IV. Линейные подпространства

Определения и формулы.

Подмножество M линейного пространства V называется линейным подпространством, если для любых $x, y \in M$ и любых $\lambda, \mu \in R$ выполняется $\lambda x + \mu y \in M$.

Любое линейное подпространство само является линейным пространством.

Пересечением $L = L_1 \cap L_2$ линейных подпространств называется множество их общих элементов.

Пересечение линейных подпространств является линейным подпространством.

Суммой $L = L_1 + L_2$ двух подпространств L_1 и L_2 называется множество, содержащее все суммы вида $a_1 + a_2$, где $a_1 \in L_1$, $a_2 \in L_2$.

Сумма линейных подпространств является линейным подпространством.

Сумма линейных подпространств $L = L_1 + L_2 + ... + L_k$ называется прямой суммой (обозначение $L = L_1 \oplus L_2 \oplus \ldots \oplus L_k$), если из равенства $a + a_2 + \ldots + a_k = \overline{0}$, где $a_i \in L_i$, следует $a_i = \overline{0}$ для всех j.

Сумма линейных подпространств $L = L_1 + L_2 + \ldots + L_k$ является прямой суммой тогда и только тогда, когда $\sum_{j=1}^{\kappa} \dim(L_j) = \dim(L)$.

Для любых двух линейных подпространств выполняется формула Грассмана: $\dim (L_1 + L_2) + \dim (L_1 \cap L_2) = \dim (L_1) + \dim (L_2)$.

Линейной оболочкой набора $\{a_1, a_2, ..., a_k\}$ называется множество $L\{a_1, a_2, ..., a_k\}$, содержащее все суммы вида $\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k$, где $\lambda_i \in R$ для всех j.

Линейная оболочка набора является линейным подпространством.

Множество решений однородной СЛАУ ранга r в координатном пространстве R^n является линейным подпространством размерности k = n - r, совпадающей с количеством свободных переменных. Базисом подпространства может служить любой ФНР данной СЛАУ.

Обратное утверждение: каждое линейное подпространство в R^n размерности kявляется множеством решений некоторой однородной СЛАУ ранга r = n - k.

Для того чтобы построить пересечение двух подпространств, каждое из них должно быть представлено в виде множества решений соответствующей СЛАУ. Затем следует объединить уравнения обеих СЛАУ в одну СЛАУ.

Для того чтобы построить сумму двух подпространств, каждое из них должно быть представлено в виде линейной оболочки некоторого набора. Затем следует выписать линейную оболочку объединения двух наборов.

Примеры решения задач.

Пример 1. Какие из множеств $M_k \subset R^n$, выделяемых некоторым условием, являются подпространствами?

- а) $M_1 = \{x(x_1, x_2): x = t \cdot (1; -2), \text{ где } t \in R\}.$ б) $M_2 = \{x(x_1, x_2): x_1 = 0\}.$ в) $M_3 = \{x(x_1, x_2): |x_1| = |x_2|\}.$ г) $M_4 = \{x(x_1, x_2): x_1 + x_2 = 1\}.$ в) $M_5 = \{x(x_1, x_2): x_1^2 2x_1x_2 + 3x_2^2 = 0\}.$ е) $M_6 = \{x(x_1, x_2): x_1^2 + 2x_1x_2 3x_2^2 = 0\}.$

Решение. Ответ отрицательный, если нуль-вектор не принадлежит M_k . В частном случае может сработать теорема: множество решений однородной СЛАУ является подпространством. Если оба рассуждения не работают, надо проверить выполнение определения линейного подпространства: если $x, y \in \mathbb{R}^n$ и $\lambda, \mu \in \mathbb{R}$, то $\lambda x + \mu y \in \mathbb{R}^n$.

- а) Проверим определение линейного подпространства. Пусть векторы $x=t_1\cdot (1;-2),$ $y=t_2\cdot (1;-2),$ тогда $\lambda x+\mu y=\lambda t_1\cdot (1;-2)+\mu t_2\cdot (1;-2)=(\lambda t_1+\mu t_2)\cdot (1;-2)\in R^n.$ Множество M_1 является подпространством.
- б) Множество M_2 является подпространством, так как оно является решением однородной СЛАУ, состоящей из одного уравнения $\{x_1 = 0.$
- в) Множество M_3 не является подпространством, так как векторы x = (1; 1) и y = (1; -1) принадлежат M_3 , а вектор $x + y = (2; 0) \notin M_3$.
 - г) Множество M_4 не является подпространством, так как вектор $\bar{0}=(0;0)\notin M_4.$
- д) Уравнение $x_1^2 2x_1x_2 + 3x_2^2 = 0$ имеет только нулевое решение, а множество $M_5 = \{(0,0)\}$ является подпространством.
- е) Множество M_6 не является подпространством. Уравнение $x_1^2 + 2x_1x_2 3x_2^2 = 0$ эквивалентно уравнению $(x_1 x_2)(x_1 + 3x_2) = 0$. Векторы x = (1;1) и y = (3;-1) принадлежат M_6 , а вектор $x + y = (4;0) \notin M_6$.

Пример 2. Найдите размерность и базис подпространства L, заданного однородной СЛАУ $L = \begin{cases} -2y + z - 2t = 0 \\ x - y + t = 0 \end{cases}$.

Решение. Известно, что множество решений однородной системы является подпространством. Базисом L является ФНР этой СЛАУ, $\dim(L) = n - r = 4 - 2 = 2$. Решив СЛАУ, получим $f_1(1;1;2;0), f_2(-1;0;2;1)$.

Пример 3. Найдите размерность и базис линейной оболочки $L = L\{a_1, a_2, a_3\}$, где $a_1 = (1; 3; -2; -1), \ a_2 = (2; 1; 1; -1), \ a_3 = (-1; 7; -8; -1).$

Решение. Размерность и базис подпространства L совпадают с рангом и базой набора $\{a_1,a_2,a_3\}$. Имеем:

$$\begin{pmatrix} 1 & 3 & -2 & -1 \\ 2 & 1 & 1 & \boxed{-1} \\ -1 & 7 & -8 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & 2 & -3 & 0 \\ 2 & 1 & 1 & -1 \\ -3 & 6 & -9 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} \boxed{-1} & 2 & -3 & 0 \\ 2 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Значит, $\dim(L) = 2$, базисом может служить набор $\{f_1(-1; 2; -3; 0), \{f_2(2; 1; 1; -1)\}.$

Пример 4. Докажите, что подмножество M пространства многочленов степени не выше четырех, для которых $\begin{cases} p(-x) = p(x) \\ p'(2) = 0 \end{cases}$, является подпространством. Найдите базис и размерность этого подпространства.

<u>Решение</u>. Проверим, что если $p(x) \in M$, $q(x) \in M$, то $s(x) = \lambda \cdot p(x) + \mu \cdot q(x) \in M$.

- (1) $s(-x) = \lambda \cdot p(-x) + \mu \cdot q(-x) = -\lambda \cdot p(x) \mu \cdot q(x) = -s(x).$
- (2) $s'(2) = \lambda \cdot p'(2) + \mu \cdot q'(2) = \lambda \cdot 0 + \mu \cdot 0 = 0.$

Итак, подмножество М является подпространством.

Пусть $p(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$. Условие p(-x) = p(x) изображается тождеством

 $a_4x^4+a_3x^3+a_2x^2+a_1x+a_0=a_4x^4-a_3x^3+a_2x^2-a_1x+a_0$, или $a_3x^3+a_1x=0$. Поскольку последнее равенство должно выполняться для всех x, получаем $a_3=0,\ a_1=0$.

Далее, $p'(x) = 4a_4x^3 + 3a_3x^2 + 2a_2x + a_1$. Подставив x = 2, получим уравнение $p'(2) = 32a_4 + 12a_3 + 4a_2 + a_1 = 0$. В итоге набор коэффициентов многочлена, принадлежащего подмножеству M, является решением однородной СЛАУ

$$\begin{cases}
 a_1 &= 0 \\
 a_3 &= 0 \\
 a_2 + 8a_4 &= 0
\end{cases}$$

Множество L решений этой СЛАУ является подпространством. Ранг СЛАУ r=3, откуда $\dim(L)=5-3=2$. Свободными переменными являются коэффициенты a_0 и a_4 .

Согласно теореме об изоморфизме линейных пространств, множества M и L изоморфны. При $a_0=1$, $a_4=0$ получаем первый базисный многочлен $p_1(x)=1$, при $a_0=0$, $a_4=1$ получаем второй базисный многочлен $p_2(x)=x^4-8x^2$.

Пример 5. Множество $M \in \mathbb{R}^9$ состоит из всех векторов, у которых 1-я координата совпадает со 2-й, а 4-я координата с 7-й и 8-й. Показать, что это множество является подпространством, и указать его размерность и базис.

Решение. Множество M является решением однородной СЛАУ $\begin{cases} x_1 = x_2 \\ x_7 = x_4 \\ x_8 = x_4 \end{cases}$ ранг ррой r=3. свободные перемочима

которой r = 3, свободные переменные $x_2, x_3, x_4, x_5, x_6, x_9$, поэтому M - линейное подпространство и $\dim(M) = 6$. Базис в M состоит из шести векторов:

$$f_1(1;1;0;0;0;0;0;0;0), f_2(0;0;1;0;0;0;0;0), f_3(0;0;0;1;0;0;1;1;0), f_4(0;0;0;0;1;0;0;0), f_5(0;0;0;0;0;0;0), f_6(0;0;0;0;0;0;0;0;1).$$

Пример 6. Линейную оболочку набора векторов $L = L\{a_1, a_2, ...\}$ задать как множество решений СЛАУ.

a)
$$a_1 = (1; 2; -2), a_2 = (1; -1; 1).$$

6)
$$a_1 = (3; 2; -3; -1; -2), a_2 = (1; 2; -2; 2; 1), a_3 = (-2; 1; 1; 4; 5)$$

Решение. а) Условие, что вектор $x \in L(a_1, a_2)$, то есть $x = \lambda_1 a_1 + \lambda_2 a_2$, эквивалентно утверждению, что совместна неоднородная СЛАУ AX = B, в которой столбцами матрицы A являются координаты векторов a_1 и a_2 , а столбец B состоит из координат x_1, x_2, x_3

вектора
$$x$$
 . Система $\begin{pmatrix} 1 & 1 & x_1 \\ 2 & -1 & x_2 \\ -2 & 1 & x_3 \end{pmatrix}$ приводится к виду $\begin{pmatrix} 1 & 1 & x_1 \\ 2 & -1 & x_2 \\ 0 & 0 & x_2 + x_3 \end{pmatrix}$. Последняя

система совместна тогда и только тогда, когда выполнено условие $\{x_2 + x_3 = 0 . \}$ Это и есть искомая система уравнений для L.

б) СЛАУ
$$\begin{pmatrix} 3 & 1 & -2 & x_1 \\ 2 & 2 & 1 & x_2 \\ -3 & -2 & 1 & x_3 \\ -1 & 2 & 4 & x_4 \\ -2 & 1 & 5 & x_5 \end{pmatrix}$$
 приводится к виду
$$\begin{pmatrix} 0 & 1 & 1 & -x_1 - x_3 \\ 0 & 0 & 3 & 6x_1 + x_2 + 6x_3 + 2x_4 \\ 0 & 0 & 0 & 2x_1 - x_2 + x_3 + x_4 \\ 1 & 0 & -2 & -2x_1 - 2x_3 - x_4 \\ 0 & 0 & 0 & 3x_1 + 3x_3 + 2x_4 - x_5 \end{pmatrix}.$$

Последняя СЛАУ совместна тогда и только тогда, когда $\begin{cases} 2x_1 - x_2 + x_3 + x_4 &= 0 \\ 3x_1 & + 3x_3 + 2x_4 - x_5 = 0 \end{cases}$ Эти соотношения представляют собой СЛАУ для L.

Другой способ. Составим вспомогательную однородную СЛАУ с матрицей А, строки

которой составляют координаты векторов
$$a_k$$
:
$$\begin{cases} 3x_1 + 2x_2 - 3x_3 - x_4 - 2x_5 = 0 \\ x_1 + 2x_2 - 2x_3 + 2x_4 + x_5 = 0 \\ -2x_1 + x_2 + x_3 + 4x_4 + 5x_5 = 0 \end{cases}$$
 Векторы

 $b_1=(2;-1;1;1;0),\ b_2=(1;-2;-1;0;1)$ образуют ФНР этой СЛАУ. Тогда для матрицы B, строки которой составляют координаты векторов b_j , получим $AB^T=0$. Но тогда $BA^T=0$. Из этого и из соотношения рангов матриц (r(A)+r(B)=n) следует, что столбцы матрицы A^T составляют ФНР для однородной СЛАУ BX=0. Мы получили СЛАУ для

$$L: \begin{cases} 2x_1 - x_2 + x_3 + x_4 &= 0\\ x_1 - 2x_2 - x_3 &+ x_5 &= 0 \end{cases}.$$

Системы, полученные двумя способами, эквивалентны.

Пример 7. Для подпространства $L = L_1 \cap L_2$ составьте однородную СЛАУ, в которой число уравнений равно рангу. Найдите размерность и базис L.

a)
$$L_1 = \{a_1(1; -4; 0; 3), a_2(0; 5; 1; -2)\}, L_2 : \begin{cases} x + 2y - 2z - t = 0 \\ x - y + z - t = 0 \\ x + y - z - t = 0 \end{cases}$$

Решение. a) Для построения СЛАУ для подпространства $L = L_1 \cap L_2$ оба подпространства L_1 и L_2 тоже должны быть представлены в виде СЛАУ.

Действуя, как в Примере 6, получим $L_1: \begin{cases} x+y-3z+t=0 \\ 2x-y+z-2t=0 \end{cases}$. Теперь обе СЛАУ следует объединить в одну: $L=L_1\cap L_2: \begin{cases} x+y-3z+t=0 \\ 2x-y+z-2t=0 \\ x+2y-2z-t=0 \\ x-y+z-t=0 \\ x+y-z-t=0 \end{cases}$. Преобразовав

систему, получим $\begin{cases} y-z=0\\ t-z=0. \end{cases}$ Из этого следует $\dim(L)=1$, $L=L\{f_1(1;1;1;1)\}$. x-z=0

б) Сначала найдем однородные СЛАУ, задающие подпространства L_1 и L_2 .

Действуя, как в Примере 6, найдем эти СЛАУ: $L_1: \begin{cases} x_1+x_3=0 \\ x_2+x_4=0 \end{cases}$, $L_2: \begin{cases} x_1-x_4=0 \\ x_2-x_3=0 \end{cases}$.

Далее следуем по решению пункта а). Объединенная СЛАУ $L: \begin{cases} x_1 + x_3 = 0 \\ x_2 + x_4 = 0 \\ x_1 - x_4 = 0 \\ x_2 - x_3 = 0 \end{cases}$

После преобразований получим $\begin{cases} x_1 + x_3 = 0 \\ x_2 + x_4 = 0 \end{cases}$. Из этого следует $\dim(L) = 1$, $x_1 - x_4 = 0$

$$L = L\{f_1(1; -1; -1; 1)\}.$$

Пример 8. Подпространство $L = L_1 + L_2$ представьте в виде линейной оболочки и в виде СЛАУ. Найдите его размерность и базис, и составьте однородную СЛАУ.

a)
$$L_1: -\begin{cases} -x+y & +t=0 \\ -x & +z+t=0 \end{cases}$$
 If $L_2 = \{b_1(1;0;0;0), b_2(0;0;0;2)\}$.

б)
$$L_1 = \begin{cases} x + y - z &= 0 \\ y - z &= 0 \\ 2y &- t = 0 \end{cases}$$
 и $L_2 = \begin{cases} x &- z + t = 0 \\ -x - y + z &= 0 \\ y &+ t = 0 \end{cases}$

Решение. а) Для представления подпространства $L = L_{\!_1} + L_{\!_2}$ в виде линейной оболочки оба подпространства $\ L_{_{\! 1}}$ и $\ L_{_{\! 2}}$ тоже должны быть представлены в виде линейной оболочки. Решив СЛАУ для L_1 , получим $L_1 = \{a_1(1;1;1;0), a_2(0;-1;-1;1)\}$. Согласно теории

 $L = L_1 + L_2 = L\{a_1, a_2, b_1, b_2\} . \ \, \text{Ранг набора} \,\, \{a_1, a_2, b_1, b_2\} \,\, \text{равен 3, база} \,\, \{a_1, b_1, b_2\} .$ Двойственная СЛАУ имеет вид $\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 = 0 \end{cases} , \,\, \text{ее решение} \,\,\, f_1(0;1;-1;0) . \,\, \text{Из этого} \,\, x_4 = 0$

следует $L: \{x_2 - x_3 = 0, \dim(L) = 3, \text{ базис } \{a_1, b_1, b_2\}.$

б) Задача решается в три этапа. На первом шаге, решая СЛАУ для L_1 и L_2 , находим базисы этих подпространств. Получим $L_1 = L\{a_1(0;1;1;2)\}$, $L_2 = \{b_1(1;0;1;0)\}$. На втором шаге находим ранг и базу объединенного набора $\{a_1,b_1\}$, которая будет базисом

подпространства $L=L_1+L_2$. Имеем $\dim(L)=2$, базис $\{a_1,b_1\}$. На третьем шаге, как в Примере 6, строится СЛАУ для подпространства L . Получим, $L: \begin{cases} x-z=0 \\ 2y-t=0 \end{cases}$.

Типовые задачи

- 1. Какие из множеств $M_1, M_2 \subset R^n$, выделяемых заданными условиями, являются подпространствами?
 - a) $M_1 = \{x(x_1, x_2) : x_1 = x_2 = 0\}, M_2 = \{x(x_1, x_2) : 2 | x_1 | -x_2 = 0\}.$
 - 6) $M_1 = \{x(x_1, x_2) : x_1 x_2 = 0\}, M_2 = \{x(x_1, x_2) : x_1^2 + x_2^2 = 0\}.$
 - B) $M_1 = \{x(x_1, x_2, x_3): x_1 + x_2 + x_3 = 0\}, M_2 = \{x(x_1, x_2): \frac{x_2}{x_1} + \frac{x_1}{x_2} = 2\}.$
 - Γ) $M_1 = \{x(x_1, x_2) : x_1 + 2x_2 = 1\}, M_2 = \{x(x_1, x_2) : x_1^2 = x_2^2\}.$
 - д) $M_1 = \{x(x_1, x_2): 2x_1 5x_2 = 0\}, M_2 = \{x = c(2;4) + t \cdot b(3;6)\}, t \in \mathbb{R}$.
 - e) $M_1 = \{x(x_1, x_2) : \frac{x_2}{x_1} = 2\}$, $M_2 = \{x(x_1, x_2) : x_1^2 2x_1x_2 3x_2^2 = 0\}$.
 - ж) $M_1 = \{x(x_1, x_2) : 2x_1^2 3x_1x_2 + 2x_2^2 = 0\}$, $M_2 = \{x(x_1, x_2, x_3) : |x_1 + 3x_2 2x_3| = 0\}$.
 - 3) $M_1 = \{x(x_1, x_2, x_3): x_1 + 2x_2 3x_3 = 1\}, M_2 = \{x = a(2,1,3) + \lambda \cdot b(3,2,5)\}, \lambda \in \mathbb{R}$.
 - и) $M_1 = \{x = \lambda \cdot a(2;1;3) + \mu \cdot b(3;2;5)\}$, $\lambda, \mu \in R$, $M_2 = \{x(x_1, x_2, x_3) : x_1 + 2x_2 3x_3 \ge 0\}$.
 - $M_1 = \{x = a(4;2;-6) + \lambda \cdot b(-6;-3;9)\}, \lambda \in R, M_2 = \{x(x_1,x_2,x_3) : x_1 = x_2 = 2x_3\}.$
- 2. Найдите размерность и базис $\{a_1, a_2, ..., a_k\}$ подпространства L, заданного однородной СЛАУ.

a)
$$L = \begin{cases} x + 3y - 2z = 0 \\ x - y + 4z = 0 \\ 5x + 7y + 2z = 0 \end{cases}$$

6)
$$L = \begin{cases} 2x + 4y - 3z = 0\\ 3x + y - z = 0\\ 2x - 5y + 3z = 0 \end{cases}$$

B)
$$L = \begin{cases} 2x - y - 3z = 0 \\ 3x - 4y - 8z = 0 \\ 3x + y - z = 0 \\ x + 2y + 2z = 0 \end{cases}$$

$$\Gamma) L = \begin{cases} 4x - 5y + z + 3t = 0 \\ 2x + y - z + t = 0 \\ 5x - y - z + 3t = 0 \\ x - 3y + z + t = 0 \end{cases}.$$

д)
$$L = \begin{cases} 5x + 5y + 6z - t - 5u = 0 \\ 2x - y + 3z + 2t - 2u = 0 \\ x - 3y + 2z + 3t - u = 0 \\ 3x + y + 4z + t - 3u = 0 \end{cases}$$

e)
$$\begin{cases} 2x_1 - x_2 + 2x_3 - x_4 = 0 \\ x_1 - 3x_2 = 0 \\ x_1 - 2x_2 + 2x_3 + x_4 = 0 \end{cases}$$

ж)
$$\begin{cases} 2x_1 + x_2 + x_3 + 2x_5 = 0\\ 3x_1 + 5x_2 + x_4 + 5x_5 = 0\\ x_1 + 2x_3 - x_4 - x_5 = 0 \end{cases}$$

3)
$$\begin{cases} 2x_1 + x_3 + 4x_4 - 3x_5 = 0 \\ +2x_2 - 3x_3 + 2x_4 - x_5 = 0 \\ -5x_1 - 3x_2 + 2x_3 - 13x_4 + 9x_5 = 0 \end{cases}$$

$$(x_1 + 2x_3 - x_4 - x_5 = 0)$$

$$(x_1 + 3x_3 + 2x_4 + x_5 = 0)$$

$$(2x_1 + 3x_2 + x_3 + 3x_5 = 0)$$

$$(4x_1 + 3x_2 + 7x_3 + 4x_4 + 5x_5 = 0)$$

$$(3x_1 - 3x_2 + 14x_3 + 10x_4 + 2x_5 = 0)$$

K)
$$\begin{cases} 2x_1 + x_2 - 3x_3 + 2x_4 - x_5 = 0\\ 3x_1 - x_2 - 2x_3 - x_4 + x_5 = 0\\ 2x_1 + 3x_2 + 2x_3 + x_4 - x_5 = 0\\ x_1 + 5x_2 + x_3 + 4x_4 - 3x_5 = 0 \end{cases}$$

- 3. Найдите размерность и базис линейной оболочки $L = L\{a_1, a_2, ..., a_k\}$ набора векторов.
 - a) $a_1(2; -3; 1)$, $a_2(4; 2; -3)$, $a_3(1; -3; 2)$.
 - 6) $a_1(3;5;-5)$, $a_2(6;-4;1)$, $a_3(2;8;-7)$.
 - B) $a_1(1;2;0;-3)$, $a_2(2;-1;2;-3)$, $a_3(-2;3;1;-2)$, $a_4(2;-4;-1;3)$.
 - Γ) $a_1(3;-1;0;-2)$, $a_2(0;2;2;4)$, $a_3(3;0;1;0)$, $a_4(6;1;3;2)$.

 - e) $a_1(1;-2;-1;1)$, $a_2(0;3;-2;2)$, $a_3(-2;1;0;0)$, $a_4(0;-3;1;-1)$.

ж)
$$a_1 = 1 + x + x^2$$
, $a_2 = x + x^2 + x^3$, $a_3 = 1 + x^2 + x^3$, $a_4 = 1 + x + x^3$.

3)
$$a_1 = \begin{pmatrix} 7 & 2 \\ 2 & 11 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} -5 & -3 \\ -3 & 13 \end{pmatrix}$, $a_3 = \begin{pmatrix} 2 & 9 \\ 9 & 4 \end{pmatrix}$, $a_4 = \begin{pmatrix} 1 & -3 \\ -3 & 5 \end{pmatrix}$.

- 4. В пространстве $V = P_n[x]$ многочленов p(x) степени не выше n линейное подпространство L задано ограничениями на значения многочленов и их производных. Найдите базис и размерность подпространства L.
 - a) n = 4, p(2) = 0.

6)
$$n = 4$$
, $p'(2) = 0$.

- B) n = 4, p(1) = -p(-1), p'(1) = 0. p(-1) = 0 p(-1) = 0
- д) n = 4, p(1) = 0, p'(-1) = 0, p''(1) = 0. e) n = 5, p(1) = 0, p'(1) = 0, p(x) = p(-x).
- \mathbf{x}) n = 5, p'(1) = 0, p''(x) = -p''(-x).
- 5. Найдите базис и размерность подпространства L функций f(x) в линейном функциональном пространстве V, заданного ограничениями на значения функций и их производных.
 - a) $V = L\{\sin x, \cos x, \sin 2x, \cos 2x\}, f'\left(\frac{\pi}{2}\right) = 0, f(\pi) = 0.$
 - 6) $V = L\{1; \sin x; \sin 2x; \cos 2x\}, f'(\pi) = 0, f'(\pi/2) = 0$
 - B) $V = L\{1, \sin^2 x, \cos^2 x, \sin 2x, \cos 2x\}, f(\pi/4) = -f(-\pi/4).$
 - r) $V = L\{\sin 3x, \cos 3x, \sin 2x, \cos 2x\}, f(0) = 0, f'(\pi) = 0.$
 - д) $V = L\{1, \sin x, \cos x, \sin 2x, \cos 2x\}, f(x) = -f(-x), f'(\pi) = 0.$
- 6. Множество $L \subset \mathbb{R}^n$ состоит из всех векторов, координаты которых удовлетворяют определенным условиям. Покажите, что это множество является подпространством, укажите его размерность и базис.
 - а) $L \subset \mathbb{R}^7$, координаты векторов с четными номерами равны нулю.
 - б) $L \subset \mathbb{R}^9$, 1-я координата совпадает со 2-й, а 4-я с 7-й и 8-й.
 - в) $L \subset R^{10}$, координаты векторов с нечетными номерами равны нулю.
 - г) $L \subset \mathbb{R}^6$, координаты векторов с четными номерами равны друг другу.
- 7. Линейную оболочку набора векторов $L = L(a_1, a_2, ..., a_k)$ задайте с помощью СЛАУ.
 - a) $a_1 = (1; 2; -2), a_2 = (1; -1; 1).$
 - 6) $a_1 = (1, 2, -1), a_2 = (1, 0, 1), a_3 = (1, -1, 2).$
 - B) $a_1 = (0; 5; -1), a_2 = (2; -1; -1), a_3 = (3; 1; -2).$
 - Γ) $a_1 = (1;1;3)$, $a_2 = (2;3;-1)$, $a_3 = (1;-1;-2)$.
 - $A_1 = (1; 2; -2; 3), a_2 = (1; -1; 1; -1).$
 - e) $a_1 = (1, -1, 0, -3), a_2 = (0, 1, 2, -4), a_3 = (1, 0, -2, 5).$
 - ж) $a_1 = (2; -1; 5; 7)$, $a_2 = (4; -2; 7; 5)$, $a_3 = (2; -1; 1; -5)$.
 - 3) $a_1 = (1; 1; 5; 3; 1), a_2 = (2; 5; -1; 4; 4), a_3 = (1; 1; 0; 1; 0).$
 - и) $a_1 = (1; 1; -3; -3; -2), a_2 = (1; 2; -2; 2; 1), a_3 = (-2; -3; 5; 1; 1), a_4 = (0; 1; 1; 5; 3).$
- 8. Найдите в R^n размерности суммы и пересечения подпространств L_1 и L_2 .

a)
$$n=5$$
, $L_1:\begin{cases} x_1 & -x_3+x_4-x_5=0\\ x_2-x_3 & =0 \end{cases}$, $L_2:\begin{cases} x_1-x_4=0\\ x_2-x_5=0 \end{cases}$.

- $\begin{array}{l} \text{ 6)} \ \ L_{1} = L\{a_{1}(1;2;0;1),\ a_{2}(0;1;-1;2),\ a_{3}(1;0;1;-2)\}\,,\ \ L_{2} = L\{b_{1}(2;1;1;2),\ b_{2}(1;0;1;2),\ b_{3}(2;1;-1;0)\}\,.\\ \text{B)} \ \ n = 4\,\,,\quad L_{1} = \begin{cases} 2x_{1}-x_{2}+2x_{3}-x_{4}=0\\ x_{1}-2x_{2}+2x_{3}+x_{4}=0 \end{cases}\,,\quad L_{2} = L\{a_{1}(-1;3;3;1),a_{2}(6;2;-3;4)\}\,. \end{array}$

r)
$$n = 5$$
, $L_1: \begin{cases} x_1 + x_3 + 2x_4 + x_5 = 0 \\ x_1 + x_2 - x_3 + x_4 = 0 \end{cases}$, $L_2: \begin{cases} x_2 - x_3 - x_4 + x_5 = 0 \\ x_1 + 2x_3 + 2x_5 = 0 \end{cases}$.

д)
$$L_1 = L\{a_1(1;2;1;1), a_2(2;1;-1;2), a_3(1;1;1;-2)\}$$
, $L_2 = L\{b_1(2;1;1;2), b_2(1;0;1;2), b_3(2;-1;3;6)\}$.

e)
$$n = 4$$
, $L_1 = \begin{cases} 2x_1 - x_2 + 2x_3 - x_4 = 0 \\ x_1 - 2x_2 + 2x_3 + x_4 = 0 \end{cases}$, $L_2 = L\{a_1(6; 2; -3; 4), a_2(1; 2; -1; 2)\};$

9. Для подпространства $L = L_1 \cap L_2$, пространства R^n найдите размерность и базис.

Составьте однородную СЛАУ, задающую L, в которой число уравнений равно рангу.

a)
$$n=4$$
, $L_1:\begin{cases} x+y-3z+t=0\\ 2x-y+z-2t=0 \end{cases}$, $L_2:\begin{cases} x+2y-2z-t=0\\ x-y+z-t=0\\ x+y-z-t=0 \end{cases}$.

6)
$$n=4$$
, $L_1: \begin{cases} x+y+2z = 0 \\ 2x+2y+z-3t = 0 \end{cases}$, $L_2: \begin{cases} x-2y-2z-t = 0 \\ x-y+z+t = 0 \\ x+y+z-t = 0 \end{cases}$

6)
$$n=4$$
, $L_1: \begin{cases} x+y+2z &= 0 \\ 2x+2y+z-3t=0 \end{cases}$, $L_2: \begin{cases} x-2y-2z-t=0 \\ x-y+z+t=0 \\ x+y+z-t=0 \end{cases}$
B) $n=4$, $L_1: \begin{cases} x+y-z+2t=0 \\ 4x+y-z+3t=0 \\ 3y-3z+5t=0 \end{cases}$, $L_2: \begin{cases} 2x-y+z-t=0 \\ 3x+2y-3z+4t=0 \\ -3x+3y-3z+4t=0 \end{cases}$

$$\Gamma) \quad n = 4, \quad L_1 = \begin{cases} x + y + z - t = 0 \\ 2x + y + z = 0 \\ 3x + 2y - z + 2t = 0 \end{cases} \quad L_2 = \begin{cases} x + 2y - 2z + t = 0 \\ x - y + 3z - t = 0 \\ x - 2y + z + 2t = 0 \end{cases}.$$

д)
$$n=4$$
, $L_1=L\{a_1(1;0;-1;0),a_2(0;-1;0;1)\}$, $L_2=\begin{cases}x_1-x_4=0\\x_2-x_3=0\end{cases}$
e) $n=4$, $L_1=L\{a_1(1;2;2;0),a_2(-1;3;-2;1)\}$, $L_2=\begin{cases}x_1-x_4=0\\x_2-x_3=0\end{cases}$.

e)
$$n = 4$$
, $L_1 = L\{a_1(1; 2; 2; 0), a_2(-1; 3; -2; 1)\}$, $L_2 = \begin{cases} x_1 - x_4 = 0 \\ x_2 - x_2 = 0 \end{cases}$

ж)
$$n=4$$
, $L_1=L\{a_1(1;-1;2;-1),a_2(2;1;-3;1)\}$, $L_2=L\{b_1(0;3;-7;3),b_2(4;-1;1;-1)\}$.

3)
$$n=5$$
, $L_1=L\{a_1(0;1;1;1;0),a_2(1;0;0;0;1),a_3(1;1;1;0;0)\},$ $L_2=L\{b_1(1;1;1;1;1),b_2(-1;0;0;0;-1)\}.$

10. Для подпространства $L = L_{\!\scriptscriptstyle 1} + L_{\!\scriptscriptstyle 2}$ пространства $R^{\scriptscriptstyle n}$ найдите его размерность и базис.

Составьте однородную СЛАУ, задающую L, в которой число уравнений равно рангу.

a)
$$L_1 = L\{a_1(1;1;1;0), a_2(0;-1;-1;1)\}, L_2 = L\{b_1(1;0;0;0), b_2(0;0;0;2)\}.$$

$$6) \ L_1=L\{a_1(1;2;2;3),a_2(-1;3;-2;0)\}, \ L_2=L\{b_1(1;2;3;1),b_2(-2;1;-3;-1)\}.$$

B)
$$L_1 = L\{a_1(1;-1;2;-1), a_2(2;1;-3;1)\}, L_2 = L\{b_1(0;3;-7;3), b_2(4;-1;1;-1)\}.$$

r)
$$L_1 = L\{a_1(0; 1; 1; 1; 0), a_2(1; 0; 0; 0; 1), a_3(1; 1; 1; 0; 0)\},$$

 $L_2 = L\{b_1(1; 1; 1; 1; 1), b_2(-1; 0; 0; 0; -1), b_3(0; 1; 0; 1; 0)\}$

Д)
$$L_1 = L\{a_1(1;0;-1;0), a_2(0;-1;0;1)\}, L_2 = \begin{cases} x_1 + x_4 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

д)
$$L_1 = L\{a_1(1;0;-1;0), a_2(0;-1;0;1)\}$$
, $L_2 = \begin{cases} x_1 + x_4 = 0 \\ x_2 + x_3 = 0 \end{cases}$
e) $n = 4$, $L_1 : \begin{cases} x + 2y - 2z - t = 0 \\ x - y + z - t = 0 \end{cases}$, $L_2 : \begin{cases} 2x - y - t = 0 \\ 3x - y - z - t = 0 \\ x - y + z - t = 0 \end{cases}$.

$$\text{ (3)} \quad n=4, \quad L_1: \begin{cases} x+y-z &= 0 \\ y-z &= 0 \\ 3x+2y-z-t = 0 \end{cases}, \quad L_2: \begin{cases} x+2y-3z+t=0 \\ x-y+3z-2t=0 \\ 4x-y+6z-5t = 0 \end{cases}$$

3)
$$n=4$$
, $L_1: \begin{cases} x+y-z &= 0 \\ y-z &= 0 \\ 2y &-t=0 \end{cases}$, $L_2: \begin{cases} x-z+t=0 \\ -x-y+z &= 0 \\ y &+t=0 \end{cases}$.

Дополнительные задачи

11. Пусть СЛАУ Ax = b имеет решения при некотором $b \in \mathbb{R}^m$, $b \neq 0$. Верны ли следующие утверждения (матрица A размером $(m \times n)$):

- а) Система $Ax = \overline{0}$ обязательно имеет ненулевое решение.
- б) Система $Ax = \overline{0}$ не имеет ненулевых решений.
- в) Система $Ax = \overline{0}$ может не иметь ненулевых решений.
- г) Система $Ax = \overline{0}$ может иметь ненулевое решение.
- 12. Пусть СЛАУ Ax = b не имеет решений при некотором $b \in R^m$, $b \ne 0$. Верны ли следующие утверждения (матрица A размером $(m \times n)$):
 - а) Система $Ax = \overline{0}$ обязательно имеет ненулевое решение.
 - б) Система $Ax = \overline{0}$ не имеет ненулевых решений.
 - в) Система $Ax = \overline{0}$ может не иметь ненулевых решений.
- 13. Пусть СЛАУ $Ax = \overline{0}$ имеет только нулевое решение. Верны ли следующие утверждения (матрица A размером $(m \times n)$):
 - а) Система Ax = b обязательно имеет решение при любом $b \in \mathbb{R}^m$.
 - в) Существует $b \in \mathbb{R}^m$, для которого система Ax = b не имеет решений.
- 14. Пусть СЛАУ $Ax = \overline{0}$ имеет ненулевое решение. Верны ли следующие утверждения (матрица A размером $(m \times n)$):
 - а) Система Ax = b обязательно имеет решение при любом $b \in R^m$.
 - б) Система Ax = b может иметь решение при любом $b \in R^m$.
 - в) Обязательно существует $b \in R^m$, для которого система Ax = b не имеет решений.
 - г) Система Ax = b при некотором $b \in R^m$ имеет единственное решение.
- 15. Как соотносятся следующие утверждения (матрица A размером $(m \times n)$):
 - а) (1) СЛАУ $Ax = \overline{0}$ имеет только нулевое решение;
 - (2) Существует $b \in \mathbb{R}^n$, для которого система Ax = b не имеет решения.
 - б) (1) СЛАУ $Ax = \overline{0}$ не имеет ненулевых решений;
 - (2) СЛАУ Ax = b имеет решение при любом $b \in R^m$.
 - в) (1) СЛАУ Ax = b имеет решения при всех $b \in R^m$;
 - (2) Система $Ax = \overline{0}$ имеет ненулевое решение.
 - г) (1) СЛАУ Ax = b имеет единственное решение;
 - (2) Система $Ax = \overline{0}$ имеет ненулевое решение.
 - д) (1) СЛАУ Ax = b не имеет решения при некотором $b \in \mathbb{R}^m$;
 - (2) Система $Ax = \overline{0}$ имеет ненулевое решение.
- 16. Укажите базис и размерность подпространства $P_3[x]$ многочленов степени не выше трех, имеющих корень x=1.
- 17. Укажите базис и размерность подпространства $P_4[x]$ многочленов степени не выше четырех, производная которых является четной функцией.
- 18. Чему равна размерность подпространства L симметричных квадратных матриц третьего порядка (для которых $a_{ik} = a_{kj}$)? Укажите его базис.
- 19. Чему равна размерность подпространства L симметричных квадратных матриц третьего порядка со следом нуль? Укажите его базис.
- 20. Чему равна размерность подпространства L антисимметричных квадратных матриц третьего порядка (для которых $a_{ik} = -a_{ki}$)? Укажите его базис.
- 21. Приведите пример двух двумерных подпространств в пространстве матриц (2×2) , которые пересекаются только в нуле.
- 22. Приведите пример такого трехмерного подпространства L в пространстве квадратных матриц (2 × 2), которое не содержит матрицу A.

a)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
. 6) $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

- 23. Приведите пример подпространства L в пространстве квадратных матриц размером (3×3) , не содержащего ненулевых симметричных матриц.
- 24. Является ли линейным подпространством множество матриц L размером $(m \times n)$, являющихся решением матричного уравнения $AX = \overline{0}$ (где A и $\overline{0}$ – матрицы подходящего размера)?

б) M_1 не является, M_2 является.

 Γ) M_1 не является, M_2 не является. e) M_1 не является, M_2 не является.

3) M_1 не является, M_2 не является.

 \mathbf{K}) M_1 является, M_2 является.

25. Является ли линейным подпространством множество векторов, являющихся одновременно решением двух СЛАУ: Ax = b и Cx = b ($A \neq C$)?

Ответы на типовые задачи

- 1. a) M_1 является, M_2 не является.
 - в) M_1 является, M_2 не является.
 - д) M_1 является, M_2 является.
 - ж) \boldsymbol{M}_1 является, \boldsymbol{M}_2 является.
 - и) M_1 является, M_2 не является.
- 2. a) $L = L\{a_1(-5; 3; 2)\}$, $\dim(L) = 1$.
 - 6) $L = {\bar{0}}, \dim(L) = 0.$
 - B) $L = L\{a_1(4; -7; 5)\}, \dim(L) = 1.$
 - г) Например, $L = L\{a_1(-4; 1; 0; 7), a_2(2; 0; 1; -3)\}$, dim(L) = 2.
 - д) Например, $L = L\{a_1(-7; 1; 5; 0; 0), a_2(5; 0; -4; 1; 0), a_3(1; 0; 0; 0; 1)\}$, dim(L) = 3.
 - e) $L = L\{a_1(6; 2; -3; 4)\}, \dim(L) = 1.$
 - ж) Например, $L = L\{a_1(-1; 0; 2; 3; 0), a_2(0; 0; 2; 5; -1)\}$, dim(L) = 2.
 - 3) Например, $L = L\{a_1(-1;3;2;0;0), a_2(0;7;4;-1;0), a_3(0;5;3;0;1)\}$, dim(L) = 3.
 - и) Например, $L = L\{a_1(-6; 4; 0; 3; 0), a_2(0; 2; -6; 9; 0), a_3(0; 2; 0; 1; -2)\}$, dim(L) = 3.
 - к) Например, $L = L\{a_1(0; 0; 1; 5; 7), a_2(2; -5; 0; -10; -21)\}$, $\dim(L) = 2$.
- 3. a) Например, $L = L\{a_1, a_2, a_3\}$, dim(L) = 3.
 - б) Например, $L = L\{a_1, a_2\}, \dim(L) = 2.$
 - в) Например, $L = L\{a_1, a_2, a_3\}$, dim(L) = 3.
 - г) Например, $L = L\{a_1, a_2\}, \dim(L) = 2.$
 - д) Например, $L = L\{a_1(1; 2; 3; 4), a_2 a_1 = b(1; 1; 1; 1)\}, dim(L) = 2.$
 - e) Например, $L = L\{a_1, a_2, a_3\}, \dim(L) = 3.$

 - ж) $L = L\{a_1, a_2, a_3, a_4\}$, $\dim(L) = 4$. 3) Например, $L = L\{b_1\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, b_2\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, b_3\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\}$, $\dim(L) = 3$.
- 4. a) Например, $L = L\{x-2, x(x-2), x^2(x-2), x^3(x-2)\}$, dim(L) = 4.
 - б) Например, $L = L\{1, (x-2)^2, (x-2)^3, (x-2)^4\}$, dim(L) = 4.
 - в) Например, $L = L\{x^2 2x 1, x^3 3x, x^4 4x 1\}$, $\dim(L) = 3$.
 - г) Например, $L = L\{x^3 3x, x^5 5x\}$, dim(L) = 2.
 - д) Например, $L = L\{x^3 3x^2 9x + 11, x^4 6x^2 8x + 13\}$, dim(L) = 2.
 - e) Haпример, $L = L\{1-2x^2 + x^4\}$, dim L = 1.
 - ж) Например, $L = L\{1, x^3 3x, x^5 5x\}$, dim(L) = 3.
- 5. a) $L = L\{\sin x, 2\cos x \sin 2x + 2\cos 2x\}$, dim L = 2.
 - 6) $L = L\{1, \cos 2x\}$, dim L = 2.
 - B) $L = L\{\sin 2x, \cos 2x\}, \dim(L) = 2$.
 - r) $L = L(\cos 2x \cos 3x, 3\sin 2x + 2\sin 3x)$, dim L = 2.
 - д) $L = L\{2\sin x + \sin 2x\}$, dim L = 1.

- 6. a) $L=L\{(1,0,0,0,0,0,0,0,0), (0,0,1,0,0,0,0), (0,0,0,0,1,0,0), (0,0,0,0,0,0,0,0,0)\}$, dim L=4.
 - 6) $L=L\{(1;1;0;0;0;0;0;0;0),(0;0;1;0;0;0;0;0),(0;0;0;1;0;0;1;1;0),(0;0;0;0;1;0;0;0;0),$ (0;0;0;0;0;1;0;0;0), (0;0;0;0;0;0;0;0;1)}, dim L = 6.
 - (0;0;0;0;0;0;0;1;0;0), (0;0;0;0;0;0;0;0;0;1) }, dim L = 5.
 - Γ) $L=L\{(1;0;0;0;0;0),(0;0;1;0;0;0),(0;0;0;0;1;0),(0;1;0;1;0;1)\}, \dim L=4$.
- 7. a) $L: \{x_2 + x_3 = 0.$
 - B) $L: \{3x_1 + x_2 + 5x_3 = 0.$

 - в) $L: \{x_1 4x_3 3x_4 = 0 \\ x_2 + x_3 = 0 \\ x_1 + 2x_2 = 0$ ж) $L: \{x_1 4x_3 3x_4 = 0 \\ x_2 + x_3 = 0 \\ x_1 + 2x_2 = 0$ и) $L: \{x_1 4x_3 3x_4 = 0 \\ x_1 + 2x_2 = 0 \\ x_1 2x_2 x_4 + 2x_5 = 0 \\ x_1 2x_2 x_3 + x_5 = 0$
- г) $L\{0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 0$ или пустая СЛАУ.

6) $L: \{x_1 - x_2 - x_3 = 0.$

- e) $L: \{x_1 2x_2 + 3x_3 + x_4 = 0.$
- 3) $L: \begin{cases} 2x_1 + x_2 + x_3 3x_4 + x_5 = 0 \\ x_1 3x_2 x_3 + 2x_4 + x_5 = 0 \end{cases}$.
- 8. a) $\dim(L_1 \cap L_2) = 1$, $\dim(L_1 + L_2) = 5$.
- 6) $\dim(L_1 \cap L_2) = 2$, $\dim(L_1 + L_2) = 4$.
- B) $\dim(L_1 \cap L_2) = 2$, $\dim(L_1 + L_2) = 2$.
- Γ) dim $(L_1 \cap L_2) = 1$,.
- Д) $\dim(L_1 \cap L_2) = 1$, $\dim(L_1 + L_2) = 4$.
- e) dim $(L_1 \cap L_2) = 1$, dim $(L_1 + L_2) = 3$.
- 9. a) $L: \{x = y = z = t, \dim(L) = 1, L = L \{f_1(1; 1; 1; 1)\}$.
 - 6) $L: \{x = y = t = -z, \dim(L) = 1, L = L\{f_1(-1; -1; 1; -1)\}.$
 - B) $L:\begin{cases} 5x y + z = 0 \\ 3x + t = 0 \end{cases}$, $\dim(L) = 2$, $L = L\{f_1(1; 0; -5; -3), f_2(0; 1; 1; 0)\}$.
 - r) $L:\begin{cases} x+y=0\\ x+z=0\\ x+t=0 \end{cases}$, dim(L) = 1, $L=L\{f_1(-1;1;1;1)\}$.
 - д) $L: \{x_1 = -x_2 = -x_3 = x_4, \dim(L) = 1, L = L\{f_1(1; -1; -1; 1)\}.$
 - e) $L: \{x_1 = x_2 = x_3 = x_4 = 0, \dim(L) = 0.$
 - ж) $L: \begin{cases} x_2 x_4 = 0 \\ x_1 + 7x_2 + 3x_3 = 0 \end{cases}$, dim(L) = 2, $L = L\{a_1(1; -1; 2; -1), a_2(2; 1; -3; 1)\}$.
 - 3) $L:\begin{cases} x_1 x_5 = 0 \\ x_2 x_3 = 0 \\ x_2 x_4 = 0 \end{cases}$, dim(L) = 2, $L = L\{a_1(1;0;0;0;1), a_2(0;1;1;1;0)\}$.
- 10. a) $L = L(a_1, b_1, b_2)$, $\dim(L) = 3$, $L: \{x_2 x_3 = 0$.
 - 6) $L = L(a_1, a_2, b_1, b_2)$, dim(L) = 4, $L: \{0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + 0 \cdot x_4 = 0.$
 - B) $L = L_1 = L_2 = L(a_1, a_2)$, $\dim(L) = 2$, $L: \begin{cases} x_1 + 3x_3 + 7x_4 = 0 \\ x_2 x_4 = 0 \end{cases}$.
 - r) $L = L(a_1, a_2, a_3, b_3)$, $\dim(L) = 4$, $L: \{x_1 x_2 + x_4 x_5 = 0$.
 - д) $L = L\{a_1, a_2, b(1; -1; -1; 1)\}, dim(L) = 3, L: \{x_1 + x_2 + x_3 + x_4 = 0.$
 - e) $L\{a_1(0;1;1;0), a_2(1;0;0;1), a_3(1;1;0;0)\}, \dim(L) = 3, L: \{x-y+z-t=0\}$

 - ж) $L = L\{b_1(0;1;1;1), b_2(1;-1;0;1)\}$, $\dim(L) = 2$, $L: \begin{cases} x+y-z=0 \\ x+z-t=0 \end{cases}$. 3) $L = L\{a_1(0;1;1;2), b_1(1;0;1;0)\}$, $\dim(L) = 2$, $L: \begin{cases} x+y-z=0 \\ 2y-t=0 \end{cases}$.

Ответы на дополнительные задачи

- 11. а) Неверно.
- б) Неверно.
- в) Верно.

г) Верно.

- 12. а) Неверно.
- б) Неверно.
- в) Верно.

- 13. а) Неверно.
- б) Неверно.

14. а) Неверно.

- б) Верно.
- в) Неверно. г) Неверно.
- 15. а) Не зависят друг от друга.
- б) Не зависят друг от друга.
- в) Не зависят друг от друга.
- г) Противоречат друг другу.
- д) Не зависят друг от друга.
- 16. $p_1(x) = x 1$, $p_2(x) = (x 1)^2$, $p_3(x) = (x 2)^3$, dim(L) = 3
- 17. $p_1(x) = 1$, $p_2(x) = x$, $p_3(x) = x^3$, dim(L) = 3
- 17. $p_1(x) = 1$, $p_2(x) = x$, $p_3(x) =$

$$A_4 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ A_5 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ A_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

19. dim(L) = 5. Пример базиса: $A_1 = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

$$A_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad A_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

- 20. dim(L)=3. Пример базиса: $A_1=\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ A_2=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \ A_3=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}.$
- 21. Например, $L_1 = L\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ и $L_2 = L\left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$
- 22. a) Например, $L: \{a_{22} = 0.$ б) Например, $L: \{a_{11} = a_{22}.$
- 23. Например, подпространство антисимметричных матриц.
- 24. Является.
- 25. Если $b=\overline{0}$, то является, если $b \neq \overline{0}$, то не является.