

Primer Parcial Análisis Matemático I	C2	1/10/19	Carrera: Bioquímica
Nombre del Alumno:	•••••	• • • • • • • • • • • • • • • • • • • •	Comisión:

IMPORTANTE: Todas las respuestas deberán estar debidamente justificadas y no se permite que el estudiante realice consultas sobre la resolución del examen una vez comenzado el mismo.

Ejercicio 1.

- a) **Hallar** la ecuación de la recta que sea perpendicular a la recta $f(x) = \frac{1}{2}x + 5$ y que pase por el origen de coordenadas.
- b) **Graficar** la recta encontrada en el ítem a).

Ejercicio 2.

- a) Dada la siguiente función cuadrática $f(x) = a.(x-1)^2 + 8$, hallar "a", que pertenece a reales, de modo que la gráfica de dicha función tenga un cero en x=3.
- b) Graficar f(x)

Ejercicio 3.

- a) Dada la siguiente función $f(x) = e^{x}$, obtener la expresión analítica de:
 - i) $h_1(x) = f(-x)$

 - ii) $h_2(x) = f(-x-2)$ iii) $h_3(x) = f(-x-2) 1$
- b) Graficar en h_1 , h_2 y h_3 respectivamente.

Ejercicio 4.

Determinar si f(x) resulta continua en x = 0

$$f(x) = \begin{cases} \frac{e^x}{2} - xe^x + \frac{1}{2} & si \ x \ge 0 \\ \frac{x^2 e^x - xe^x}{x^3 - x} & si \ x < 0 \end{cases}$$

Ejercicio 5.

Dada la siguiente información sobre f(x),

i) Dominio de
$$f(x) = \mathbb{R} - \{2\}$$

ii)
$$C_o = \{1,3\}$$

iii)
$$\lim_{x \to 2^+} f(x) = -\infty$$
; $\lim_{x \to 2^-} f(x) = -\infty$
iv) $\lim_{x \to +\infty} f(x) = 0$; $\lim_{x \to -\infty} f(x) = 3$

iv)
$$\lim_{x \to +\infty} f(x) = 0$$
; $\lim_{x \to -\infty} f(x) = 3$

$$v) f(5) = 2$$

Se pide <u>realizar</u> un gráfico aproximado de f(x).

	Ejercicio 1		Ejercicio 2		Ejercicio 3			Ejercicio 4	Ejercicio 5			Total			
Ítem	a	b	a	b		a		b		i	ii	iii	iv	v	
Puntaje	1	1	1	1	i	ii	iii	1	2	0.2	0.4	0.6	0.6	0.2	
					0.3	0.3	0.4								

Firma alumno Firma docente

1 Resolución Primer parcial comisión 2, segundo cuatrimestre de 2019.

1. Ejercicio 1

(a) La recta perpendicular va a tener una ecuación $y=m_px+b$, donde m_p es la pendiente y b es la ordenada al origen. Se puede obtener m_p a partir de la condición de perpendicularidad que implica la siguiente relación entre las pendientes $m_p=-\frac{1}{m}=-\frac{1}{1/2}$ =-2. Llamamos m=1/2 a la pendiente de la recta y=1/2x+5 dada en el enunciado del problema. La ordenada al origen la determinamos sabiendo que pasa por el punto A=(0,0) (origen). Reemplazando en la ecuación podemos despejar b,

$$0 = -2 * 0 + b \tag{1}$$

$$0 = b \tag{2}$$

Respuesta: La ecuación de la recta perpendicular es y = -2x

(b) La gráficas de las rectas es

Figure 1: La recta verde tiene ecuación $y = \frac{1}{2}x + 5$ y la roja es la perpendicular y = -2x.

2. Ejercicio 2

(a) La función cuadrática está dada en su forma canónica $f(x) = a(x-1)^2 + 8$. Se puede calcular el parámetro a a partir de la condicón f(3) = 0 que es equivalente a que la función cuadrática tiene

un cero en x = 3.

$$f(3) = a(3-1)^2 + 8 = 0 (3)$$

$$4a + 8 = 0 \tag{4}$$

$$a = -2 \tag{5}$$

La función cuadratica es $f(x) = -2(x-1)^2 + 8$

(b) La gráfica de la función cuadrática es

Figure 2: Gráfica de la función $f(x) = -2(x-1)^2 + 8$

- 3. (a) $f(x) = e^x$,
 - (i) $h_1(x) = f(-x) = e^{-x}$

(ii)
$$h_2(x) = f(-x-2) = f(-(x+2)) = e^{-(x+2)}$$

(iii)
$$h_3(x) = f(-x-2) - 1 = e^{-(x+2)} - 1$$

(b) Los gráficos de detallan en la figura 3.

Figure 3: (i) corresponde a la gráfica de h_1 ,(ii) corresponde a la gráfica de h_2 y (iii) corresponde a la gráfica de h_3 .

4. Ejercicio 4 Para determinar si la función es continua en x = 0 debemos calcular el límite lateral por izquierda L_{-} el límite lateral por derecha L_{+} y la función en el punto f(0) y verificar si estos valores coinciden.

La función es continua si o solo si $L_{-}=L_{+}=f(0)$. A continuación se calculan los límites correspondientes

$$L_{+} = \lim_{x \to 0^{+}} \frac{e^{x}}{2} - xe^{x} + \frac{1}{2} = \frac{e^{0}}{2} - 0 * e^{0} + \frac{1}{2} = 1$$
 (6)

$$L_{-} = \lim_{x \to 0^{-}} \frac{e^{x} x(x-1)}{x(x^{2}-1)} = \lim_{x \to 0^{-}} \frac{e^{x}(x-1)}{x^{2}-1} = 1$$
 (7)

$$f(0) = \frac{e^0}{2} - 0 * e^0 + \frac{1}{2} = 1 \tag{8}$$

En el límite lateral L_{-} hay una indeterminación $\frac{0}{0}$ que se resuelve factorizando y luego cancelando (x) que tiende a cero en el numerador y denominador.

Los límites laterales coinciden y son iguales a f(0) la función es continua en x = 0.

5. Ejercicio 5

Figure 4: Gráfico aproximado de f(x).