CSC 461: Machine Learning Fall 2024

Hierarchical Clustering

Prof. Marco Alvarez, Computer Science University of Rhode Island

Agglomerative vs divisive

- Agglomerative approach (**bottom-up**)
 - start with observations as singleton clusters and progressively merge them until a final single cluster is created
 - most common form
- ▶ Divisive approach (top-down)
 - start with all observations on a single cluster and progressively split the clusters until all observations are singleton clusters

Hierarchical clustering

- Unsupervised learning technique that groups observations into nested clusters
- Key features:
 - does not require a predefined number of clusters
 - creates a hierarchy of clusters, often visualized as a dendrogram
 - can be agglomerative (bottom-up), or divisive (top-down)
 - widely used in various domains (gene expression, phylogenetic trees, community detection, etc.)

HAC algorithm

- Initially each observation is considered a cluster
- → Repeat
 - merge: find the closest pair of clusters and merge it into a single cluster
 - if all observations are in a single cluster stop

Distance Metrics:

- Euclidean distance
- Manhattan distance
- Minkowski distance
- Hamming distance
- Cosine similarity
- Correlation coefficient

Linkage Criteria:

- Single-linkage
- Complete-linkage
- Average-linkage
- Centroid-linkage
- Ward's method

Pairwise metrics See the Pairwise metrics, Affinities and Kernels section of the user guide for further details. Compute the additive chi-squared kernel between observations in X metrics.pairwise.additive_chi2_kernel(X[, Y]) metrics.pairwise.chi2_kernel(X[, Y, gamma]) Compute the exponential chi-squared kernel between X and Y. metrics.pairwise.cosine_similarity(X[, Y, ...]) Compute cosine similarity between samples in X and Y. metrics.pairwise.cosine_distances(X[, Y]) Compute cosine distance between samples in X and Y. metrics.pairwise.distance_metrics() Valid metrics for pairwise_distances. Compute the distance matrix between each pair from a vector array X metrics.pairwise.euclidean_distances(X[, Y, ...]) metrics.pairwise.haversine_distances(X[, Y]) Compute the Haversine distance between samples in X and Y metrics.pairwise.kernel_metrics() Valid metrics for pairwise_kernels. metrics.pairwise.laplacian_kernel(X[, Y, gamma]) Compute the laplacian kernel between X and Y. metrics.pairwise.linear kernel(X[, Y, ...]) Compute the linear kernel between X and Y. metrics.pairwise.manhattan_distances(X[, Y, ...]) Compute the L1 distances between the vectors in X and Y. metrics.pairwise.nan_euclidean_distances(X) Calculate the euclidean distances in the presence of missing values. metrics.pairwise.pairwise_kernels(X[, Y, ...]) Compute the kernel between arrays X and optional array Y. metrics.pairwise.polynomial_kernel(X[, Y, ...]) Compute the polynomial kernel between X and Y. metrics.pairwise.rbf_kernel(X[, Y, gamma]) Compute the rbf (gaussian) kernel between X and Y. metrics.pairwise.sigmoid_kernel(X[, Y, ...]) Compute the sigmoid kernel between X and Y. metrics.pairwise.paired_euclidean_distances(X, Y) Compute the paired euclidean distances between X and Y. metrics.pairwise.paired_manhattan_distances(X, Y) Compute the paired L1 distances between X and Y. metrics.pairwise.paired_cosine_distances(X, Y) Compute the paired cosine distances between X and Y. metrics.pairwise.paired_distances(X, Y, *[, ...]) Compute the paired distances between X and Y. metrics.pairwise_distances(X[, Y, metric, ...]) Compute the distance matrix from a vector array X and optional Y. metrics.pairwise_distances_argmin(X, Y, *[, ...]) Compute minimum distances between one point and a set of points. metrics.pairwise_distances_argmin_min(X, Y, *) Compute minimum distances between one point and a set of points. metrics.pairwise_distances_chunked(X[, Y, ...]) Generate a distance matrix chunk by chunk with optional reduction.

What kind of distance to consider?

• We have been using Euclidean distances, however, the choice is **very important**

Observations 1 and 3 have a small Euclidean distance between them. But they have a large correlation-based distance. Observations 1 and 2 have a large Euclidean distance between them. But they have a small correlation-based distance.

An Introduction to Statistical Learning, 2nd Ed

Distances between clusters

Single-linkage:	$D(A, B) = \underset{\mathbf{x_1} \in A, \mathbf{x_2} \in B}{\arg \min} d(\mathbf{x_1}, \mathbf{x_2})$
Complete-linkage:	$D(A, B) = \underset{\mathbf{x_1} \in A, \mathbf{x_2} \in B}{\arg \max} d(\mathbf{x_1}, \mathbf{x_2})$
Average-linkage:	$D(A,B) = \frac{1}{ A B } \sum_{\mathbf{x_1} \in A, \mathbf{x_2} \in B} d(\mathbf{x_1}, \mathbf{x_2})$
Centroid-linkage:	$D(A, B) = \ \mu_A - \mu_B\ _2^2$
Ward's method:	Minimizes variance within clusters

Limitations and considerations

- → Computational complexity
 - can be computationally expensive for large datasets
- → Sensitivity to noise and outliers
 - can be sensitive to noise and outliers in the data
- → Choice of distance metric and linkage criterion
 - distance metric and linkage criterion can significantly affect the results
- → Optimal number of clusters
 - no definitive method for determining the optimal number of clusters

HAC Notebook

https://colab.research.google.com/drive/ 13ENliESwlVT7IWNXeB0Q-7tyMuHPppuM

