

1. Features

- 650 V enhancement mode half bridge power switch
- Bottom-side cooled configuration
- $R_{DS(on)} = 100 \text{ m}\Omega \text{ perswitch}$
- I_{DS(max)} = 10 A
- Low inductance PQFN PACKAGE
- Easy gate drive requirements (0 V to 6 V)
- Transient tolerant gate drive (-20 V / +10V)
- Very high switching frequency (> 1 MHz)
- Fast and controllable fall and rise times
- Integrated Source sense
- Reverse current capability
- Zero reverse recovery loss
- Small 6 x 8 mm² PCB footprint
- RoHS 6 compliant

2. Applications

- High efficiency power conversion
- High density power conversion
- AC-DC Converters
- Bridgeless Totem Pole PFC
- ZVS Phase Shifted Full Bridge
- · Half Bridge topologies
- Synchronous Buck or Boost
- Small-Medium UPS
- · Fast Battery Charging

PCB footprint

Symbol & Pinout

Pins 3, 4, 5, 9, 10, 11 not connected.

(Do not use Pin 4 for power)

Description

The WI65100A2 is an enhancement mode GaN-on silicon half bridge power circuit. The properties of GaN allow for high current, high voltage breakdown and high switching frequency.

Table of contents

1.	Features	. 1
2.	Applications	. 1
<i>3.</i>	Absolute Maximum Ratings per transistor (T _{case} = 25 °C except as noted)	.3
4.	Thermal Characteristics (Typical values)	. 3
5.	ESD Ratings	. 3
6. per t	Electrical Characteristics (Typical values at TJ = 25 °C, VGS = 6 V unless otherwise noted ransistor)	
7.	Characteristics Graphs	. 5
8.	Recommended PCB Footprint	.9
<i>9</i> .	PQFN Package Outline	10
<i>10.</i>	Tape and Reel Dimensions	11
11.	Ordering Information	11

3. Absolute Maximum Ratings per transistor (T_{case} = 25 °C except as noted)

Parameter	Symbol	Value	Unit
Operating Junction Temperature	Tı	-55 to +150	°C
Storage Temperature Range	Ts	-55 to +150	°C
Drain-to-Source Voltage	V_{DS}	650	V
Drain-to-Source Voltage - transient (note 1)	VDS(transient)	750	V
Gate-to-Source Voltage	V _{GS}	-10 to +7	V
Gate-to-Source Voltage - transient (note 1)	VGS(transient)	-20 to +10	V
Continuous Drain Current (T _{case} = 25 °C) (note 2)	los	10	А
Continuous Drain Current (T _{case} = 100 °C) (note 2)	los	5	А
Pulse Drain Current (Pulse width 100 μs)	DS Pulse	20	А

⁽¹⁾ Pulse $\leq 1 \mu s$

4. Thermal Characteristics (Typical values)

Parameter	Symbol	Value	Units
Thermal Resistance (junction-to-case) – bottom side	Rojc	2	°C /W
Thermal Resistance (junction-to-ambient)	Roja	45	°C /W

5. ESD Ratings

Parameter	Symbol	Max	Units	
Human Body Model (JS-001-2014)	НВМ	1 000	V	
Charged Device Model (JS-002-2014)	CDM	1 000	V	

⁽²⁾ Limited by saturation

6. Electrical Characteristics (Typical values at TJ = 25 °C, VGS = 6 V unless otherwise noted per transistor)

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Drain-to-Source Blocking Voltage	BV _{DS}	650			V	$V_{GS} = 0 V$ $I_{DSS} = 1 \mu A$
Drain-to-Source On Resistance	R _{DS} (on)		100	110	mΩ	$V_{GS} = 6 \text{ V}, T_J = 25^{\circ}\text{C I}_{DS}$ = 2 A
Drain-to-Source On Resistance	R _{DS} (on)		150		mΩ	$V_{GS} = 6 \text{ V , T}_{J} = 150 \text{ °C}$ $I_{DS} = 2 \text{ A}$
Gate-to-Source Threshold	VGS(th)	1.2	1.4	1.5	V	$V_{DS} = V_{GS}$, $Tj=25$ °C $I_{DS} = 1$ mA
Gate-to-Source Current	lgs		10		μΑ	$V_{GS} = 6 \text{ V}, V_{DS} = 0 \text{ V}$
Gate Plateau Voltage	Vplat		3		V	V _{DS} = 400 V I _{DS} = 5 A
Reverse Drain-to-Source voltage	V _{rDS}		1.3		V	$V_{GS}=0V,Tj=25$ °C $I_{SD}=1$ mA
Drain-to-Source Leakage Current	loss		0.1	5	μΑ	$V_{DS} = 650 \text{ V}$ $V_{GS} = 0 \text{ V}$ $T_J = 25 \text{ °C}$
Drain-to-Source Leakage Current	loss		35	100	μΑ	$V_{DS} = 650 \text{ V}$ $V_{GS} = 0 \text{ V}$ $T_J = 150 \text{ °C}$
Input Capacitance	C _{ISS}		100		pF	
Output Capacitance	Coss		15		pF	V _{DS} = 400 V V _{GS} = 0 V f =
Reverse Transfer Capacitance	Crss		10,5		pF	100 kHz

⁽³⁾ C_{O(ER)} is the fixed capacitance that would give the same stored energy as C_{OSS} while V_{DS} is rising from 0 V to the stated V_{DS}

⁽⁴⁾ C_{O(TR)} is the fixed capacitance that would give the same charging time as C_{OSS} while V_{DS} is rising from 0 V to the stated V_{DS}.

7. Characteristics Graphs

Figure 1 : Drain-to-source leakage current (I_{DSS}) vs. drain-to-source voltage (V_{DS}) @ 25°C

Figure 2 : Typical C_{OSS} , C_{ISS} , C_{RSS} vs V_{DS}

Figure 3 : Typical threshold voltage $I_{DS}=f(V_{GS})$ for $V_{DS}=0.1V$, $T=25^{\circ}C$. Back & Reverse measurement to check V_{T} shift.

Figure 4 : Typical I_{DS} =f(V_{DS} , V_{GS}) curve. R_{ON} =100 m Ω

8. Recommended PCB Footprint

All dimensions are in mm

9. PQFN Package Outline

All dimensions are in mm

	Symbol	Min	Nom	Max		Symbol	Min	Nom	Max
Total Thickness	Α	1.18	1.2	1.2	Lower EP Size	J	4.4	4.4	4.4
Stand off	A1	0.03	0.03	0.03	Lower Er Size	К	2.3	2.3	2.3
Mold thickness	A2	0.8	0.82	0.82	Lead length	L	0.3	0.3	0.3
L/F thickness	А3		0.381		Merged lead length	М			•
Lead width	В		0.3		Package edge aaa		0.1		
	D	5.98	6	6.01	Mold Flatness	bbb		0.1	
BODY Size	E	7.98	8	8.01	Coplanarity	ссс		0.08	
Lead pitch	е		0.8		Lead offset	ddd	0.1		
	0	2.8	2.8	2.8	Exposed pad offset eee			0.1	
Upper EP Size	Р	2.3	2.3	2.3	Lower EP left shift N		0.9	0.9	0.9
					Upper EP right shift	Q	0.7	0.7	0.7

10. Tape and Reel Dimensions

11. Ordering Information

Ordering code	Package type	Packing method	Qty	Reel Diameter	Reel Width
WI650100A2	6 x 8 mm PQFN	Tape-and-Reel	1000 5000	7" Reel 13" Reel	13mm