## Chapter 7

# Identifying second degree equations

#### 7.1 The eigenvalue method

In this section we apply eigenvalue methods to determine the geometrical nature of the second degree equation

$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0, (7.1)$$

where not all of a, h, b are zero.

Let  $A = \begin{bmatrix} a & h \\ h & b \end{bmatrix}$  be the matrix of the quadratic form  $ax^2 + 2hxy + by^2$ .

We saw in section 6.1, equation 6.2 that A has real eigenvalues  $\lambda_1$  and  $\lambda_2$ , given by

$$\lambda_1 = \frac{a+b-\sqrt{(a-b)^2+4h^2}}{2}, \ \lambda_2 = \frac{a+b+\sqrt{(a-b)^2+4h^2}}{2}.$$

We show that it is always possible to rotate the x, y axes to  $x_1$ ,  $x_2$  axes whose positive directions are determined by eigenvectors  $X_1$  and  $X_2$  corresponding to  $\lambda_1$  and  $\lambda_2$  in such a way that relative to the  $x_1$ ,  $y_1$  axes, equation 7.1 takes the form

$$a'x^{2} + b'y^{2} + 2g'x + 2f'y + c = 0. (7.2)$$

Then by completing the square and suitably translating the  $x_1$ ,  $y_1$  axes, to new  $x_2$ ,  $y_2$  axes, equation 7.2 can be reduced to one of several standard forms, each of which is easy to sketch. We need some preliminary definitions.

**DEFINITION 7.1.1 (Orthogonal matrix)** An  $n \times n$  real matrix P is called *orthogonal* if

$$P^tP = I_n.$$

It follows that if P is orthogonal, then  $\det P = \pm 1$ . For

$$\det(P^t P) = \det P^t \det P = (\det P)^2,$$

so  $(\det P)^2 = \det I_n = 1$ . Hence  $\det P = \pm 1$ .

If P is an orthogonal matrix with  $\det P = 1$ , then P is called a *proper* orthogonal matrix.

**THEOREM 7.1.1** If P is a  $2 \times 2$  orthogonal matrix with det P = 1, then

$$P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

for some  $\theta$ .

**REMARK 7.1.1** Hence, by the discussion at the beginning of Chapter 6, if *P* is a proper orthogonal matrix, the coordinate transformation

$$\left[\begin{array}{c} x \\ y \end{array}\right] = P \left[\begin{array}{c} x_1 \\ y_1 \end{array}\right]$$

represents a rotation of the axes, with new  $x_1$  and  $y_1$  axes given by the repective columns of P.

**Proof.** Suppose that  $P^tP = I_2$ , where  $\Delta = \det P = 1$ . Let

$$P = \left[ \begin{array}{cc} a & b \\ c & d \end{array} \right].$$

Then the equation

$$P^t = P^{-1} = \frac{1}{\Delta} \operatorname{adj} P$$

gives

$$\left[\begin{array}{cc} a & c \\ b & d \end{array}\right] = \left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right]$$

Hence a = d, b = -c and so

$$P = \left[ \begin{array}{cc} a & -c \\ c & a \end{array} \right],$$

where  $a^2 + c^2 = 1$ . But then the point (a, c) lies on the unit circle, so  $a = \cos \theta$  and  $c = \sin \theta$ , where  $\theta$  is uniquely determined up to multiples of  $2\pi$ .

**DEFINITION 7.1.2** (Dot product). If  $X = \begin{bmatrix} a \\ b \end{bmatrix}$  and  $Y = \begin{bmatrix} c \\ d \end{bmatrix}$ , then  $X \cdot Y$ , the *dot product* of X and Y, is defined by

$$X \cdot Y = ac + bd.$$

The dot product has the following properties:

(i) 
$$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$$
;

(ii) 
$$X \cdot Y = Y \cdot X$$
:

(iii) 
$$(tX) \cdot Y = t(X \cdot Y);$$

(iv) 
$$X \cdot X = a^2 + b^2$$
 if  $X = \begin{bmatrix} a \\ b \end{bmatrix}$ ;

(v) 
$$X \cdot Y = X^t Y$$
.

The length of X is defined by

$$||X|| = \sqrt{a^2 + b^2} = (X \cdot X)^{1/2}.$$

We see that ||X|| is the distance between the origin O = (0, 0) and the point (a, b).

**THEOREM 7.1.2 (Geometrical interpretation of the dot product)** Let  $A = (x_1, y_1)$  and  $B = (x_2, y_2)$  be points, each distinct from the origin O = (0, 0). Then if  $X = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$  and  $Y = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$ , we have

$$X \cdot Y = OA \cdot OB \cos \theta$$
,

where  $\theta$  is the angle between the rays OA and OB.

**Proof.** By the cosine law applied to triangle *OAB*, we have

$$AB^2 = OA^2 + OB^2 - 2OA \cdot OB \cos \theta. \tag{7.3}$$

Now 
$$AB^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$
,  $OA^2 = x_1^2 + y_1^2$ ,  $OB^2 = x_2^2 + y_2^2$ .

Substituting in equation 7.3 then gives

$$(x_2 - x_1)^2 + (y_2 - y_1)^2 = (x_1^2 + y_1^2) + (x_2^2 + y_2^2) - 2OA \cdot OB \cos \theta,$$

which simplifies to give

$$OA \cdot OB \cos \theta = x_1 x_2 + y_1 y_2 = X \cdot Y.$$

It follows from theorem 7.1.2 that if  $A = (x_1, y_1)$  and  $B = (x_2, y_2)$  are points distinct from O = (0, 0) and  $X = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$  and  $Y = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$ , then  $X \cdot Y = 0$  means that the rays OA and OB are perpendicular. This is the reason for the following definition:

**DEFINITION 7.1.3 (Orthogonal vectors)** Vectors X and Y are called orthogonal if

$$X \cdot Y = 0.$$

There is also a connection with orthogonal matrices:

**THEOREM 7.1.3** Let P be a  $2 \times 2$  real matrix. Then P is an orthogonal matrix if and only if the columns of P are orthogonal and have unit length.

**Proof.** P is orthogonal if and only if  $P^tP = I_2$ . Now if  $P = [X_1|X_2]$ , the matrix  $P^tP$  is an important matrix called the *Gram* matrix of the column vectors  $X_1$  and  $X_2$ . It is easy to prove that

$$P^{t}P = [X_{i} \cdot X_{j}] = \begin{bmatrix} X_{1} \cdot X_{1} & X_{1} \cdot X_{2} \\ X_{2} \cdot X_{1} & X_{2} \cdot X_{2} \end{bmatrix}.$$

Hence the equation  $P^tP = I_2$  is equivalent to

$$\left[\begin{array}{cc} X_1 \cdot X_1 & X_1 \cdot X_2 \\ X_2 \cdot X_1 & X_2 \cdot X_2 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right],$$

or, equating corresponding elements of both sides:

$$X_1 \cdot X_1 = 1, X_1 \cdot X_2 = 0, X_2 \cdot X_2 = 1,$$

which says that the columns of P are orthogonal and of unit length.

The next theorem describes a fundamental property of real symmetric matrices and the proof generalizes to symmetric matrices of any size.

**THEOREM 7.1.4** If  $X_1$  and  $X_2$  are eigenvectors corresponding to distinct eigenvalues  $\lambda_1$  and  $\lambda_2$  of a real symmetric matrix A, then  $X_1$  and  $X_2$  are orthogonal vectors.

**Proof**. Suppose

$$AX_1 = \lambda_1 X_1, \ AX_2 = \lambda_2 X_2, \tag{7.4}$$

where  $X_1$  and  $X_2$  are non-zero column vectors,  $A^t = A$  and  $\lambda_1 \neq \lambda_2$ . We have to prove that  $X_1^t X_2 = 0$ . From equation 7.4,

$$X_2^t A X_1 = \lambda_1 X_2^t X_1 \tag{7.5}$$

and

$$X_1^t A X_2 = \lambda_2 X_1^t X_2. (7.6)$$

From equation 7.5, taking transposes,

$$(X_2^t A X_1)^t = (\lambda_1 X_2^t X_1)^t$$

so

$$X_1^t A^t X_2 = \lambda_1 X_1^t X_2.$$

Hence

$$X_1^t A X_2 = \lambda_1 X_1^t X_2. (7.7)$$

Finally, subtracting equation 7.6 from equation 7.7, we have

$$(\lambda_1 - \lambda_2) X_1^t X_2 = 0$$

and hence, since  $\lambda_1 \neq \lambda_2$ ,

$$X_1^t X_2 = 0.$$

**THEOREM 7.1.5** Let A be a real  $2 \times 2$  symmetric matrix with distinct eigenvalues  $\lambda_1$  and  $\lambda_2$ . Then a proper orthogonal  $2 \times 2$  matrix P exists such that

$$P^t A P = \operatorname{diag}(\lambda_1, \lambda_2).$$

Also the rotation of axes

$$\left[\begin{array}{c} x \\ y \end{array}\right] = P \left[\begin{array}{c} x_1 \\ y_1 \end{array}\right]$$

"diagonalizes" the quadratic form corresponding to A:

$$X^t A X = \lambda_1 x_1^2 + \lambda_2 y_1^2.$$

**Proof.** Let  $X_1$  and  $X_2$  be eigenvectors corresponding to  $\lambda_1$  and  $\lambda_2$ . Then by theorem 7.1.4,  $X_1$  and  $X_2$  are orthogonal. By dividing  $X_1$  and  $X_2$  by their lengths (i.e. normalizing  $X_1$  and  $X_2$ ) if necessary, we can assume that  $X_1$  and  $X_2$  have unit length. Then by theorem 7.1.1,  $P = [X_1|X_2]$  is an orthogonal matrix. By replacing  $X_1$  by  $-X_1$ , if necessary, we can assume that  $\det P = 1$ . Then by theorem 6.2.1, we have

$$P^t A P = P^{-1} A P = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.$$

Also under the rotation X = PY,

$$X^{t}AX = (PY)^{t}A(PY) = Y^{t}(P^{t}AP)Y = Y^{t}\operatorname{diag}(\lambda_{1}, \lambda_{2})Y$$
$$= \lambda_{1}x_{1}^{2} + \lambda_{2}y_{1}^{2}.$$

**EXAMPLE 7.1.1** Let A be the symmetric matrix

$$A = \left[ \begin{array}{cc} 12 & -6 \\ -6 & 7 \end{array} \right].$$

Find a proper orthogonal matrix P such that  $P^tAP$  is diagonal.

**Solution**. The characteristic equation of A is  $\lambda^2 - 19\lambda + 48 = 0$ , or

$$(\lambda - 16)(\lambda - 3) = 0.$$

Hence A has distinct eigenvalues  $\lambda_1 = 16$  and  $\lambda_2 = 3$ . We find corresponding eigenvectors

$$X_1 = \begin{bmatrix} -3\\2 \end{bmatrix}$$
 and  $X_2 = \begin{bmatrix} 2\\3 \end{bmatrix}$ .

Now  $||X_1|| = ||X_2|| = \sqrt{13}$ . So we take

$$X_1 = \frac{1}{\sqrt{13}} \begin{bmatrix} -3\\2 \end{bmatrix}$$
 and  $X_2 = \frac{1}{\sqrt{13}} \begin{bmatrix} 2\\3 \end{bmatrix}$ .

Then if  $P = [X_1|X_2]$ , the proof of theorem 7.1.5 shows that

$$P^t A P = \left[ \begin{array}{cc} 16 & 0 \\ 0 & 3 \end{array} \right].$$

However det P = -1, so replacing  $X_1$  by  $-X_1$  will give det P = 1.



Figure 7.1:  $12x^2 - 12xy + 7y^2 + 60x - 38y + 31 = 0$ .

**REMARK 7.1.2 (A shortcut)** Once we have determined one eigenvector  $X_1 = \begin{bmatrix} a \\ b \end{bmatrix}$ , the other can be taken to be  $\begin{bmatrix} -b \\ a \end{bmatrix}$ , as these vectors are always orthogonal. Also  $P = [X_1|X_2]$  will have  $\det P = a^2 + b^2 > 0$ .

We now apply the above ideas to determine the geometric nature of second degree equations in x and y.

**EXAMPLE 7.1.2** Sketch the curve determined by the equation

$$12x^2 - 12xy + 7y^2 + 60x - 38y + 31 = 0.$$

**Solution**. With P taken to be the proper orthogonal matrix defined in the previous example by

$$P = \begin{bmatrix} 3/\sqrt{13} & 2/\sqrt{13} \\ -2/\sqrt{13} & 3/\sqrt{13} \end{bmatrix},$$

then as theorem 7.1.1 predicts, P is a rotation matrix and the transformation

$$X = \left[ \begin{array}{c} x \\ y \end{array} \right] = PY = P \left[ \begin{array}{c} x_1 \\ y_1 \end{array} \right]$$

or more explicitly

$$x = \frac{3x_1 + 2y_1}{\sqrt{13}}, \ y = \frac{-2x_1 + 3y_1}{\sqrt{13}},\tag{7.8}$$

will rotate the x, y axes to positions given by the respective columns of P. (More generally, we can always arrange for the  $x_1$  axis to point either into the first or fourth quadrant.)

Now  $A = \begin{bmatrix} 12 & -6 \\ -6 & 7 \end{bmatrix}$  is the matrix of the quadratic form

$$12x^2 - 12xy + 7y^2$$

so we have, by Theorem 7.1.5

$$12x^2 - 12xy + 7y^2 = 16x_1^2 + 3y_1^2.$$

Then under the rotation X = PY, our original quadratic equation becomes

$$16x_1^2 + 3y_1^2 + \frac{60}{\sqrt{13}}(3x_1 + 2y_1) - \frac{38}{\sqrt{13}}(-2x_1 + 3y_1) + 31 = 0,$$

or

$$16x_1^2 + 3y_1^2 + \frac{256}{\sqrt{13}}x_1 + \frac{6}{\sqrt{13}}y_1 + 31 = 0.$$

Now complete the square in  $x_1$  and  $y_1$ :

$$16\left(x_1^2 + \frac{16}{\sqrt{13}}x_1\right) + 3\left(y_1^2 + \frac{2}{\sqrt{13}}y_1\right) + 31 = 0,$$

$$16\left(x_1 + \frac{8}{\sqrt{13}}\right)^2 + 3\left(y_1 + \frac{1}{\sqrt{13}}\right)^2 = 16\left(\frac{8}{\sqrt{13}}\right)^2 + 3\left(\frac{1}{\sqrt{13}}\right)^2 - 31$$
$$= 48. \tag{7.9}$$

Then if we perform a translation of axes to the new origin  $(x_1, y_1) = (-\frac{8}{\sqrt{13}}, -\frac{1}{\sqrt{13}})$ :

$$x_2 = x_1 + \frac{8}{\sqrt{13}}, y_2 = y_1 + \frac{1}{\sqrt{13}},$$

equation 7.9 reduces to

$$16x_2^2 + 3y_2^2 = 48,$$

or

$$\frac{x_2^2}{3} + \frac{y_2^2}{16} = 1.$$



Figure 7.2:  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , 0 < b < a: an ellipse.

This equation is now in one of the standard forms listed below as Figure 7.2 and is that of a whose centre is at  $(x_2, y_2) = (0, 0)$  and whose axes of symmetry lie along the  $x_2$ ,  $y_2$  axes. In terms of the original x, y coordinates, we find that the centre is (x, y) = (-2, 1). Also  $Y = P^t X$ , so equations 7.8 can be solved to give

$$x_1 = \frac{3x_1 - 2y_1}{\sqrt{13}}, y_1 = \frac{2x_1 + 3y_1}{\sqrt{13}}.$$

Hence the  $y_2$ -axis is given by

$$0 = x_2 = x_1 + \frac{8}{\sqrt{13}}$$
$$= \frac{3x - 2y}{\sqrt{13}} + \frac{8}{\sqrt{13}},$$

or 3x - 2y + 8 = 0. Similarly the  $x_2$  axis is given by 2x + 3y + 1 = 0. This ellipse is sketched in Figure 7.1.

Figures 7.2, 7.3, 7.4 and 7.5 are a collection of standard second degree equations: Figure 7.2 is an ellipse; Figures 7.3 are hyperbolas (in both these examples, the asymptotes are the lines  $y=\pm\frac{b}{a}x$ ); Figures 7.4 and 7.5 represent parabolas.

**EXAMPLE 7.1.3** Sketch  $y^2 - 4x - 10y - 7 = 0$ .





Figure 7.3: (i)  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ ; (ii)  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ , 0 < b, 0 < a.





Figure 7.4: (i)  $y^2 = 4ax$ , a > 0; (ii)  $y^2 = 4ax$ , a < 0.



**Solution**. Complete the square:

$$y^{2} - 10y + 25 - 4x - 32 = 0$$
$$(y - 5)^{2} = 4x + 32 = 4(x + 8),$$

or  $y_1^2 = 4x_1$ , under the translation of axes  $x_1 = x + 8$ ,  $y_1 = y - 5$ . Hence we get a parabola with vertex at the new origin  $(x_1, y_1) = (0, 0)$ , i.e. (x, y) = (-8, 5).

The parabola is sketched in Figure 7.6.

**EXAMPLE 7.1.4** Sketch the curve  $x^2 - 4xy + 4y^2 + 5y - 9 = 0$ .

**Solution**. We have  $x^2 - 4xy + 4y^2 = X^tAX$ , where

$$A = \left[ \begin{array}{cc} 1 & -2 \\ -2 & 4 \end{array} \right].$$

The characteristic equation of A is  $\lambda^2 - 5\lambda = 0$ , so A has distinct eigenvalues  $\lambda_1 = 5$  and  $\lambda_2 = 0$ . We find corresponding unit length eigenvectors

$$X_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ -2 \end{bmatrix}, X_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Then  $P = [X_1|X_2]$  is a proper orthogonal matrix and under the rotation of axes X = PY, or

$$x = \frac{x_1 + 2y_1}{\sqrt{5}}$$
$$y = \frac{-2x_1 + y_1}{\sqrt{5}},$$



Figure 7.6:  $y^2 - 4x - 10y - 7 = 0$ .

we have

$$x^{2} - 4xy + 4y^{2} = \lambda_{1}x_{1}^{2} + \lambda_{2}y_{1}^{2} = 5x_{1}^{2}$$
.

The original quadratic equation becomes

$$5x_1^2 + \frac{\sqrt{5}}{\sqrt{5}}(-2x_1 + y_1) - 9 = 0$$

$$5(x_1^2 - \frac{2}{\sqrt{5}}x_1) + \sqrt{5}y_1 - 9 = 0$$

$$5(x_1 - \frac{1}{\sqrt{5}})^2 = 10 - \sqrt{5}y_1 = \sqrt{5}(y_1 - 2\sqrt{5}),$$

or  $5x_2^2 = -\frac{1}{\sqrt{5}}y_2$ , where the  $x_1$ ,  $y_1$  axes have been translated to  $x_2$ ,  $y_2$  axes using the transformation

$$x_2 = x_1 - \frac{1}{\sqrt{5}}, \quad y_2 = y_1 - 2\sqrt{5}.$$

Hence the vertex of the parabola is at  $(x_2, y_2) = (0, 0)$ , i.e.  $(x_1, y_1) = (\frac{1}{\sqrt{5}}, 2\sqrt{5})$ , or  $(x, y) = (\frac{21}{5}, \frac{8}{5})$ . The axis of symmetry of the parabola is the line  $x_2 = 0$ , i.e.  $x_1 = 1/\sqrt{5}$ . Using the rotation equations in the form

$$x_1 = \frac{x - 2y}{\sqrt{5}}$$



Figure 7.7:  $x^2 - 4xy + 4y^2 + 5y - 9 = 0$ .

$$y_1 = \frac{2x+y}{\sqrt{5}},$$

we have

$$\frac{x-2y}{\sqrt{5}} = \frac{1}{\sqrt{5}}$$
, or  $x-2y = 1$ .

The parabola is sketched in Figure 7.7.

### 7.2 A classification algorithm

There are several possible degenerate cases that can arise from the general second degree equation. For example  $x^2 + y^2 = 0$  represents the point (0, 0);  $x^2 + y^2 = -1$  defines the empty set, as does  $x^2 = -1$  or  $y^2 = -1$ ;  $x^2 = 0$  defines the line x = 0;  $(x + y)^2 = 0$  defines the line x + y = 0;  $x^2 - y^2 = 0$  defines the lines x - y = 0, x + y = 0;  $x^2 = 1$  defines the parallel lines  $x = \pm 1$ ;  $(x + y)^2 = 1$  likewise defines two parallel lines  $x + y = \pm 1$ .

We state without proof a complete classification <sup>1</sup> of the various cases

<sup>&</sup>lt;sup>1</sup>This classification forms the basis of a computer program which was used to produce the diagrams in this chapter. I am grateful to Peter Adams for his programming assistance.

that can possibly arise for the general second degree equation

$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0. (7.10)$$

It turns out to be more convenient to first perform a suitable translation of axes, before rotating the axes. Let

$$\Delta = \left| \begin{array}{ccc} a & h & g \\ h & b & f \\ g & f & c \end{array} \right|, \quad C = ab - h^2, \ A = bc - f^2, \ B = ca - g^2.$$

If  $C \neq 0$ , let

$$\alpha = \frac{-\begin{vmatrix} g & h \\ f & b \end{vmatrix}}{C}, \qquad \beta = \frac{-\begin{vmatrix} a & g \\ h & f \end{vmatrix}}{C}. \tag{7.11}$$

CASE 1.  $\Delta = 0$ .

(1.1)  $C \neq 0$ . Translate axes to the new origin  $(\alpha, \beta)$ , where  $\alpha$  and  $\beta$  are given by equations 7.11:

$$x = x_1 + \alpha, \quad y = y_1 + \beta.$$

Then equation 7.10 reduces to

$$ax_1^2 + 2hx_1y_1 + by_1^2 = 0.$$

- (a) C > 0: Single point  $(x, y) = (\alpha, \beta)$ .
- (b) C < 0: Two non-parallel lines intersecting in  $(x, y) = (\alpha, \beta)$ . The lines are

$$\begin{array}{rcl} \frac{y-\beta}{x-\alpha} & = & \frac{-h\pm\sqrt{-C}}{b} & \text{if } b\neq 0, \\ \\ x=\alpha & & \text{and} & \frac{y-\beta}{x-\alpha} = -\frac{a}{2h}, & \text{if } b=0. \end{array}$$

- (1.2) C = 0.
  - (a) h = 0.
    - (i) a = g = 0.
      - (A) A > 0: Empty set.
      - (B) A = 0: Single line y = -f/b.

(C) A < 0: Two parallel lines

$$y = \frac{-f \pm \sqrt{-A}}{b}$$

- (ii) b = f = 0.
  - (A) B > 0: Empty set.
  - (B) B = 0: Single line x = -g/a.
  - (C) B < 0: Two parallel lines

$$x = \frac{-g \pm \sqrt{-B}}{a}$$

- (b)  $h \neq 0$ .
  - (i) B > 0: Empty set.
  - (ii) B = 0: Single line ax + hy = -g.
  - (iii) B < 0: Two parallel lines

$$ax + hy = -g \pm \sqrt{-B}$$
.

CASE 2.  $\Delta \neq 0$ .

(2.1)  $C \neq 0$ . Translate axes to the new origin  $(\alpha, \beta)$ , where  $\alpha$  and  $\beta$  are given by equations 7.11:

$$x = x_1 + \alpha$$
,  $y = y_1 + \beta$ .

Equation 7.10 becomes

$$ax_1^2 + 2hx_1y_1 + by_1^2 = -\frac{\Delta}{C}. (7.12)$$

**CASE** 2.1(i) h = 0. Equation 7.12 becomes  $ax_1^2 + by_1^2 = \frac{-\Delta}{C}$ .

- (a) C < 0: Hyperbola.
- (b) C > 0 and  $a\Delta > 0$ : Empty set.
- (c) C > 0 and  $a\Delta < 0$ .
  - (i) a = b: Circle, centre  $(\alpha, \beta)$ , radius  $\sqrt{\frac{g^2 + f^2 ac}{a}}$ .
  - (ii)  $a \neq b$ : Ellipse.

**CASE** 2.1(ii)  $h \neq 0$ .

Rotate the  $(x_1, y_1)$  axes with the new positive  $x_2$ -axis in the direction of

$$[(b-a+R)/2, -h],$$

where  $R = \sqrt{(a-b)^2 + 4h^2}$ .

Then equation 7.12 becomes

$$\lambda_1 x_2^2 + \lambda_2 y_2^2 = -\frac{\Delta}{C}. (7.13)$$

where

$$\lambda_1 = (a+b-R)/2, \ \lambda_2 = (a+b+R)/2,$$

Here  $\lambda_1 \lambda_2 = C$ .

(a) C < 0: Hyperbola.

Here  $\lambda_2 > 0 > \lambda_1$  and equation 7.13 becomes

$$\frac{x_2^2}{u^2} - \frac{y_2^2}{v^2} = \frac{-\Delta}{|\Delta|},$$

where

$$u = \sqrt{\frac{|\Delta|}{C\lambda_1}},\, v = \sqrt{\frac{|\Delta|}{-C\lambda_2}}.$$

- (b) C > 0 and  $a\Delta > 0$ : **Empty set**.
- (c) C > 0 and  $a\Delta < 0$ : Ellipse.

Here  $\lambda_1$ ,  $\lambda_2$ , a, b have the same sign and  $\lambda_1 \neq \lambda_2$  and equation 7.13 becomes

$$\frac{x_2^2}{u^2} + \frac{y_2^2}{v^2} = 1,$$

where

$$u = \sqrt{\frac{\Delta}{-C\lambda_1}}, v = \sqrt{\frac{\Delta}{-C\lambda_2}}.$$

(2.1) C = 0.

- (a) h = 0.
  - (i) a = 0: Then  $b \neq 0$  and  $g \neq 0$ . Parabola with vertex

$$\left(\frac{-A}{2gb}, -\frac{f}{b}\right).$$

Translate axes to  $(x_1, y_1)$  axes:

$$y_1^2 = -\frac{2g}{b}x_1.$$

(ii) b = 0: Then  $a \neq 0$  and  $f \neq 0$ . Parabola with vertex

$$\left(-\frac{g}{a}, \frac{-B}{2fa}\right).$$

Translate axes to  $(x_1, y_1)$  axes:

$$x_1^2 = -\frac{2f}{a}y_1.$$

(b)  $h \neq 0$ : **Parabola**. Let

$$k = \frac{ga + bf}{a + b}.$$

The vertex of the parabola is

$$\left(\frac{(2akf - hk^2 - hac)}{d}, \frac{a(k^2 + ac - 2kg)}{d}\right).$$

Now translate to the vertex as the new origin, then rotate to  $(x_2, y_2)$  axes with the positive  $x_2$ -axis along [sa, -sh], where s = sign(a).

(The positive  $x_2$ -axis points into the first or fourth quadrant.) Then the parabola has equation

$$x_2^2 = \frac{-2st}{\sqrt{a^2 + h^2}} y_2,$$

where t = (af - gh)/(a + b).

**REMARK 7.2.1** If  $\Delta = 0$ , it is not necessary to rotate the axes. Instead it is always possible to translate the axes suitably so that the coefficients of the terms of the first degree vanish.

**EXAMPLE 7.2.1** Identify the curve

$$2x^2 + xy - y^2 + 6y - 8 = 0. (7.14)$$

$$\Delta = \begin{vmatrix} 2 & \frac{1}{2} & 0\\ \frac{1}{2} & -1 & 3\\ 0 & 3 & -8 \end{vmatrix} = 0.$$

Let  $x = x_1 + \alpha$ ,  $y = y_1 + \beta$  and substitute in equation 7.14 to get

$$2(x_1 + \alpha)^2 + (x_1 + \alpha)(y_1 + \beta) - (y_1 + \beta)^2 + 4(y_1 + \beta) - 8 = 0.$$
 (7.15)

Then equating the coefficients of  $x_1$  and  $y_1$  to 0 gives

$$4\alpha + \beta = 0$$
$$\alpha + 2\beta + 4 = 0.$$

which has the unique solution  $\alpha = -\frac{2}{3}$ ,  $\beta = \frac{8}{3}$ . Then equation 7.15 simplifies to

$$2x_1^2 + x_1y_1 - y_1^2 = 0 = (2x_1 - y_1)(x_1 + y_1),$$

so relative to the  $x_1$ ,  $y_1$  coordinates, equation 7.14 describes two lines:  $2x_1 - y_1 = 0$  or  $x_1 + y_1 = 0$ . In terms of the original x, y coordinates, these lines become  $2(x + \frac{2}{3}) - (y - \frac{8}{3}) = 0$  and  $(x + \frac{2}{3}) + (y - \frac{8}{3}) = 0$ , i.e. 2x - y + 4 = 0 and x + y - 2 = 0, which intersect in the point

$$(x, y) = (\alpha, \beta) = (-\frac{2}{3}, \frac{8}{3}).$$

**EXAMPLE 7.2.2** Identify the curve

$$x^{2} + 2xy + y^{2} + 2x + 2y + 1 = 0. (7.16)$$

Solution. Here

$$\Delta = \left| \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right| = 0.$$

Let  $x = x_1 + \alpha$ ,  $y = y_1 + \beta$  and substitute in equation 7.16 to get

$$(x_1+\alpha)^2 + 2(x_1+\alpha)(y_1+\beta) + (y_1+\beta)^2 + 2(x_1+\alpha) + 2(y_1+\beta) + 1 = 0. (7.17)$$

Then equating the coefficients of  $x_1$  and  $y_1$  to 0 gives the same equation

$$2\alpha + 2\beta + 2 = 0.$$

Take  $\alpha = 0$ ,  $\beta = -1$ . Then equation 7.17 simplifies to

$$x_1^2 + 2x_1y_1 + y_1^2 = 0 = (x_1 + y_1)^2,$$

and in terms of x, y coordinates, equation 7.16 becomes

$$(x+y+1)^2 = 0$$
, or  $x+y+1 = 0$ .

#### 7.3 PROBLEMS

1. Sketch the curves

(i) 
$$x^2 - 8x + 8y + 8 = 0$$
;

(ii) 
$$y^2 - 12x + 2y + 25 = 0$$
.

2. Sketch the hyperbola

$$4xy - 3y^2 = 8$$

and find the equations of the asymptotes.

[Answer: 
$$y = 0$$
 and  $y = \frac{4}{3}x$ .]

3. Sketch the ellipse

$$8x^2 - 4xy + 5y^2 = 36$$

and find the equations of the axes of symmetry.

[Answer: 
$$y = 2x$$
 and  $x = -2y$ .]

4. Sketch the conics defined by the following equations. Find the centre when the conic is an ellipse or hyperbola, asymptotes if an hyperbola, the vertex and axis of symmetry if a parabola:

(i) 
$$4x^2 - 9y^2 - 24x - 36y - 36 = 0$$
;

(ii) 
$$5x^2 - 4xy + 8y^2 + 4\sqrt{5}x - 16\sqrt{5}y + 4 = 0$$
;

(iii) 
$$4x^2 + y^2 - 4xy - 10y - 19 = 0;$$

(iv) 
$$77x^2 + 78xy - 27y^2 + 70x - 30y + 29 = 0$$
.

[Answers: (i) hyperbola, centre (3, -2), asymptotes 2x - 3y - 12 = 0, 2x + 3y = 0;

- (ii) ellipse, centre  $(0, \sqrt{5})$ ;
- (iii) parabola, vertex  $\left(-\frac{7}{5}, -\frac{9}{5}\right)$ , axis of symmetry 2x y + 1 = 0;
- (iv) hyperbola, centre  $\left(-\frac{1}{10}, \frac{7}{10}\right)$ , asymptotes 7x+9y+7=0 and 11x-3y-1=0.]
- 5. Identify the lines determined by the equations:

(i) 
$$2x^2 + y^2 + 3xy - 5x - 4y + 3 = 0$$
;

(ii) 
$$9x^2 + y^2 - 6xy + 6x - 2y + 1 = 0$$
;

(iii) 
$$x^2 + 4xy + 4y^2 - x - 2y - 2 = 0$$
.

[Answers: (i) 
$$2x + y - 3 = 0$$
 and  $x + y - 1 = 0$ ; (ii)  $3x - y + 1 = 0$ ; (iii)  $x + 2y + 1 = 0$  and  $x + 2y - 2 = 0$ .]