Step-1

Consider that ${\bf S}$ contains only the vectors

$$(1,5,1)$$
 and $(2,2,2)$.

Note that **S** is not a subspace.

The objective is to fill the blank $\hat{a} \in \mathbb{S}^{\perp}$ is the nullspace of the matrix $A = --------\hat{a} \in \mathbb{S}$

Step-2

The set S^{\perp} is defined as,

$$\mathbf{S}^{\perp} = \left\{ x / y \cdot x = 0 \text{ for all } y \in \mathbf{S} \right\}.$$

Here, S contains only the vectors (1,5,1) and (2,2,2).

Therefore, S^{\perp} can be written as,

$$\mathbf{S}^{\perp} = \{ x / (1,5,1) \cdot x = 0 \text{ and } (2,2,2) \cdot x = 0 \}.$$

The equations $(1,5,1) \cdot x = 0$ and $(2,2,2) \cdot x = 0$ can be written matrix form as,

$$\begin{bmatrix} 1 & 5 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Step-3

Note that the nullspace of a matrix A is the solution to the system Ax = 0.

Here, $S^{\perp} = \{x/(1,5,1) \cdot x = 0 \text{ and } (2,2,2) \cdot x = 0\}$ contains all the solutions of the system Ax = 0.

Therefore, the \mathbf{S}^{\perp} is the nullspace of the matrix $A = \begin{bmatrix} 1 & 5 & 1 \\ 2 & 2 & 2 \end{bmatrix}$.

Hence, the correct matrix that fills the blank is $A = \begin{bmatrix} 1 & 5 & 1 \\ 2 & 2 & 2 \end{bmatrix}$

Since S^{\perp} is the nullspace of the matrix $A = \begin{bmatrix} 1 & 5 & 1 \\ 2 & 2 & 2 \end{bmatrix}$, so S^{\perp} is a subspace even S is not.