1 Ejercicio 4

En primer lugar a continuacion se presenta la tabla de verdad para la salida, la cual se presenta de la forma Y3, Y2, Y1, Y0 (bit mas significativo al menos significativo y analogamente para la entrada).

	Entr	adas		Salidas				
A3	A2	A 1	A 0	Y 3	Y2	Y 1	Y0	
0	0	0	0	0	0	0	0	
0	0	0	1	1	1	1	1	
0	0	1	0	1	1	1	0	
0	0	1	1	1	1	0	1	
0	1	0	0	1	1	0	0	
0	1	0	1	1	0	1	1	
0	1	1	0	1	0	1	0	
0	1	1	1	1	0	0	1	
1	0	0	0	1	0	0	0	
1	0	0	1	0	1	1	1	
1	0	1	0	0	1	1	0	
1	0	1	1	0	1	0	1	
1	1	0	0	0	1	0	0	
1	1	0	1	0	0	1	1	
1	1	1	0	0	0	1	0	
1	1	1	1	0	0	0	1	

Lo siguiente que se realizo fueron los mapas de Karnaugh para cada bit de la salida, para Y0 arriba a la izquierda,para Y1 arriba a la derecha, para Y2 abajo ala izquierda y para Y3 abajo a la derecha:

A3A2	00	01	11	10	A3A2	00	01	11	10
A1A0					A1A0				
00	0	0	0	0	00	0	0	0	0
01	1	1	1	1	01	1	1	1	1
11	1	1	1	1	11	0	0	0	0
10	0	0	0	0	10	1	1	1	1
A3A2	00	01	11	10	A3A2	00	01	11	10
		-							
A1A0					A1A0				
00	0	1	1	0	00 00	0	1	0	1
	0	1 0	1 0	0	_	0	1	0	1 0
00	_			_	00	_		_	

Con estos mapas de Karnaugh obtenemos para cada salida las siguientes expresiones en funcion de los minterminos:

 $Y0 = m_1.m_3.m_5.m_7m_{13}.m_{15}.m_9.m_{11}$

 $Y1 = m_1.m_5.m_{13}.m_9 + m_2.m_6.m_{16}.m_{10}$

 $Y2 = m_4.m_{12} + m_1.m_3.m_9.m_{11} + m_3.m_2.m_{11}.m_{10}$

 $Y3 = m_8 + m_4.m_5.m_7.m_6 + m_1.m_3.m_5.m_7 + m_3.m_2.m_7.m_6$

Y si procedemos a simplificar obtenemos: Y0 = A0

 $Y1 = A0.\overline{A1} + \overline{A0}.A1$

 $Y2 = A0.\overline{A2} + A1.\overline{A2} + \overline{A0}.\overline{A1}.A2$

 $Y3 = A0.\overline{A3} + A1.\overline{A3} + A2.\overline{A3} + \overline{A0}.\overline{A1}.\overline{A2}.A3$

Y por ultimo podemos representar las salidas en funcion de las entradas con las compuertas logicas como se puede observar en los graficos que mostramos a continuacion, donde no representamos Y0 ya que es directamente igual a la entrada A0:

