A Guide to Interpreting the Results of MetaDAG Analysis

Table of contents

1 Load data

As an illustrative example for interpreting metaDAG results, we consider here the Eukaryotes test presented in Section 2.5. Namely, we consider all Eukaryotes from the KEGG database.

First of all, results must be downloaded from:

Hash: 0a845f74-826e-3b46-aed9-e7ecf74db262

and saved in the folder:

 $"data/result_0a845f74-826e-3b46-aed9-e7ecf74db262".$

```
library(tidyverse)
library(igraph)
library(ComplexHeatmap)
library(viridis)
library(circlize)
library(plotly)
library(randomcoloR)
library(factoextra)
library(RColorBrewer)
library(kableExtra)
library(igraph)
library(GGally)
```



```
experiment=
   "result_0a845f74-826e-3b46-aed9-e7ecf74db262/"
path_exp=paste0("data/",experiment)
knitr::kable(data.frame(
   Directory_files_and_folders=dir(path_exp),
   Type=c(rep("Data file",2),
   rep("Directory",3),
   rep("Data file",6),
```

"Directory")))

Directory_files_and_folders	Type
Different_MBB.csv	Data file
Different_mDAG.csv	Data file
Global	Directory
Groups	Directory
Individuals	Directory
Report.pdf	Data file
Results.csv	Data file
Similarities_MBB_MSAMethod.csv	Data file
Similarities_MBB_MunkresMethod.csv	Data file
Similarities_mDAG_MSAMethod.csv	Data file
Similarities_mDAG_MunkresMethod.csv	Data file
TaxonomyLevels	Directory

1.1 Load metadata

Organisms are sorted by Kingdom, Phylum and Class:

path_exp

[1] "data/result_0a845f74-826e-3b46-aed9-e7ecf74db262/"

```
Results=read_csv(paste0(path_exp, "Results.csv"))
#rename MetaDaG variables
names(Results)[c(1,2,3,4,5)]=c("Organism", "Categories", "Groups", "mDAG Id", "Full Name")
taxo=Results %>% select(Organism:Full_Name)
taxo=taxo %>% separate(Categories,into=c("Kingdom","Phylum","Class"))
index=which(is.na(taxo$Class))
taxo$Class[index]=paste(taxo$Phylum[index])
meta taxo=taxo
aux=table(meta taxo$Phylum)
Freq_Phylum=tibble(Phylum=names(aux),Freq_Phylum=aux)
names(Freq_Phylum)=c("Phylum", "Freq_Phylum")
aux=table(meta taxo$Class)
Freq Class=tibble(Class=names(aux),Freq Class=aux)
names(Freq_Class)=c("Class", "Freq_Class")
meta_taxo = meta_taxo %>%
  left_join(Freq_Phylum) %>%
  left_join(Freq_Class)
meta_taxo = meta_taxo %>%
  arrange(Kingdom, desc(Freq_Phylum), Phylum,
          desc(Freq_Class),Class)
head(meta_taxo)
# A tibble: 6 x 9
  Organism Kingdom Phylum Class Groups mDAG_Id Full_Name Freq_Phylum Freq_Class
  <chr>
                   <chr>
                           <chr> <chr> <chr>
                                                <chr>
                                                           <table[1d]> <table[1d>
1 aamp
           Animals Verteb~ Mamm~ Clust~ 0313
                                                 Arvicola~ 331
                                                                       139
```

```
2 afz
                                                Antechin~ 331
           Animals Verteb~ Mamm~ Clust~ 0143
                                                                       139
3 ajm
           Animals Verteb~ Mamm~ Clust~ 0221
                                                Artibeus~ 331
                                                                       139
4 aju
           Animals Verteb~ Mamm~ Clust~ 0224
                                                Acinonyx~ 331
                                                                       139
5 aml
           Animals Verteb~ Mamm~ Clust~ 0279
                                                Ailuropo~ 331
                                                                       139
6 anu
           Animals Verteb~ Mamm~ Clust~ 0310
                                                Arvicant~ 331
                                                                       139
```

```
table(meta_taxo$Kingdom) %>% kable %>%
  kable_styling("striped", full_width = F,position="left")%>%
  scroll_box(width = "400px", height = "200px")
```

Var1	Freq
Animals	535
Fungi	154
Plants	139
Protists	56

```
table(meta_taxo$Phylum,meta_taxo$Kingdom) %>% kable %>%
  kable_styling("striped", full_width = F,position="left")%>%
  scroll_box(width = "500px", height = "500px")
```

	Animals	Fungi	Plants	Protists
Alveolates	0	0	0	25
Amoebozoa	0	0	0	7
Annelids	1	0	0	0
Arthropods	158	0	0	0
Ascomycetes	0	113	0	0
Basal	0	0	2	0
Basidiomycetes	0	36	0	0
Brachiopodas	1	0	0	0
Cephalochordates	2	0	0	0
Choanoflagellates	0	0	0	2
Cnidarians	10	0	0	0
Cryptomonads	0	0	0	1
Echinoderms	3	0	0	0
Eudicots	0	0	98	0
Euglenozoa	0	0	0	9
Ferns	0	0	1	0
Flatworms	4	0	0	0
Green	0	0	11	0
Haptophyta	0	0	0	1
Hemichordates	1	0	0	0
Heterolobosea	0	0	0	1
Metamonada	0	0	0	2
Microsporidians	0	5	0	0
Mollusks	14	0	0	0
Monocots	0	0	23	0
Mosses	0	0	1	0
Nematodes	6	0	0	0
Placozoans	1	0	0	0
Poriferans	1	0	0	0
Red	0	0	3	0
Stramenopiles	0	0	0	8
Tunicates	2	0	0	0
Vertebrates	331	0	0	0

1.2 Table of MBBs

In this example MBB is a table with 5149 rows and 4122 columns. It displays, for every MBB, the selected groups (Kingdoms, families, etc.) to which it belongs.

#100

```
knitr::kable(MBB[1:20,1:10]) %>%
    scroll_box(width = "100%", height = "200px")
```

MBB Id	natural	#pathways	Protists	Fungi	Plants	Animals	Alveolates	Amoebozoa	Annelid
0	0	0	0	0	0	0	0	0	
0.0	0	0	0	0	0	0	0	0	
0.0.0	0	0	0	0	0	0	0	0	
0.0.0.0	1	1	0	0	0	1	0	0	
0.0.0.0.0	1	1	0	0	0	1	0	0	
0.0.0.0.0.0	1	1	0	0	0	1	0	0	
0.0.0.1	1	1	0	0	0	1	0	0	
0.0.0.2	1	1	0	0	0	1	0	0	
0.0.1	0	0	0	0	0	0	0	0	
0.0.1.0	1	1	0	0	0	1	0	0	
0.0.1.1	1	1	1	0	0	0	0	0	
0.0.1.1.0	1	1	1	0	0	0	0	0	
0.0.1.2	1	1	0	0	0	1	0	0	
0.0.1.3	1	1	0	0	0	1	0	0	
0.0.1.4	1	1	0	0	0	1	0	0	
0.0.1.4.0	1	1	0	0	0	1	0	0	
0.0.1.4.0.0	1	1	0	0	0	1	0	0	
0.0.1.5	1	1	1	0	0	0	0	0	
0.0.1.6	1	4	3	0	0	1	0	0	
0.0.1.6.0	1	3	0	0	3	0	0	0	

1.3 Table of m-DAGs

In this example mDAG is a table with 1132 rows and 5278 columns. It displays, for every m-DAG, the selected groups (Kingdoms, families, etc.) in which it belongs.

```
kable(mDAG[1:20,1:10]) %>% scroll_box(width = "100%", height = "200px")
```

mDAG Id	#Categories	Animals	Plants	Fungi	Protists	Alveolates	Amoebozoa	Annelids	Arthr
0001	3	1	0	0	0	0	0	0	
0002	2	0	0	1	0	0	0	0	
0003	2	1	0	0	0	0	0	0	
0004	3	1	0	0	0	0	0	0	
0005	3	1	0	0	0	0	0	0	
0006	3	0	1	0	0	0	0	0	
0007	2	0	1	0	0	0	0	0	
0008	3	0	1	0	0	0	0	0	
0009	3	0	1	0	0	0	0	0	
0010	3	1	0	0	0	0	0	0	
0011	3	1	0	0	0	0	0	0	
0012	3	0	0	0	1	0	0	0	
0013	3	1	0	0	0	0	0	0	
0014	3	0	0	0	1	1	0	0	
0015	2	0	0	1	0	0	0	0	
0016	3	0	0	0	1	0	1	0	
_0017	3	1	0	0	0	0	0	0	
0018	3	1	0	0	0	0	0	0	
0019	3	1	0	0	0	0	0	0	
0020	3	1	0	0	0	0	0	0	

dim(mDAG)

```
[1] 1132 5278
```

names(mDAG)[1:6]

```
[1] "mDAG Id" "#Categories" "Animals" "Plants" "Fungi"
```

[6] "Protists"

head(names(mDAG)[7:(dim(mDAG)[2]-1150)])

```
[1] "Alveolates" "Amoebozoa" "Annelids"
```

28 to 1213 code MBB: 1 if MBB in mDAG 0 $\,$

^{[4] &}quot;Arthropods" "Ascomycetes" "Basal angiosperms"

1.4 Results Table

The Results table contains for every organism (row) the following information: its category (taxonomy), selected group, Full name, m-DAG id and all reactions name id with their corresponding enzyme. When a reaction is present in the corresponding m-DAG, the MBB to which it belongs is displayed in this column.

```
kable(Results[1:20,1:10])%>%
   row_spec(0, angle = 0) %>%
   scroll_box(width = "300%", height = "1000px")
```

Organism	Categories	Groups
aaf	Protists Stramenopiles Pelagophytes	MSA Cluster 3 MUN Cluster 3
aag	Animals Arthropods Insects	MSA Cluster 2 MUN Cluster 2
aalb	Animals Arthropods Insects	MSA Cluster 2 MUN Cluster 2
aali	Animals Arthropods Insects	MSA Cluster 2 MUN Cluster 2
aalt	Fungi Ascomycetes Dothideomycetes	Fungui and Algae MSA Cluster 3 MSA Fungui and Nemat
aam	Animals Vertebrates Birds	Cluster 1
aamp	Animals Vertebrates Mammals	Cluster 1
aang	Animals Vertebrates Fishes	Cluster 1
aara	Animals Arthropods Insects	MSA Cluster 2 MUN Cluster 2
abe	Fungi Ascomycetes Eurotiomycetes	Fungui and Algae MSA Cluster 3 MSA Fungui and Nemat
abp	Fungi Basidiomycetes	Fungui and Algae MSA Cluster 3 MSA Fungui and Nemat
abv	Fungi Basidiomycetes	Fungui and Algae MSA Cluster 3 MSA Fungui and Nemat
acan	Protists Amoebozoa Acanthamoeba	MSA Cluster 3 MUN Cluster 3
acar	Animals Vertebrates Birds	Cluster 1
acep	Animals Arthropods Insects	MSA Cluster 2 MUN Cluster 2
acer	Animals Arthropods Insects	MSA Cluster 2 MUN Cluster 2
achc	Animals Vertebrates Birds	Cluster 1
ache	Fungi Ascomycetes Eurotiomycetes	Fungui and Algae MSA Cluster 3 MSA Fungui and Nemat
achl	Animals Vertebrates Birds	Cluster 1
acoz	Animals Arthropods Insects	MSA Cluster 2 MUN Cluster 2

dim(Results)

[1] 1132 3998

```
names(Results)[1] # organisms kegg id class representant of mDAG
```

[1] "Organism"

```
names(Results)[2] # taxonomy separate by /
```

```
[1] "Categories"
names (Results) [3] # groups
[1] "Groups"
names (Results) [4] # mDAG_Id
[1] "mDAG_Id"
names(Results)[5] # Full name representant
[1] "Full_Name"
names(Results)[6:36] # columns 6 to 3998
 [1] "R00005(3.5.1.54)"
                           "R00009(1.11.1.6)"
                                                 "R00010(3.2.1.28)"
 [4] "R00014(1.2.4.1)"
                           "R00014(4.1.1.1)"
                                                 "R00021(1.4.7.1)"
 [7] "R00022(3.2.1.52)"
                           "R00024(4.1.1.39)"
                                                 "R00028(3.2.1.20)"
[10] "R00031(1.10.3.1)"
                           "R00032(1.13.11.63)" "R00036(4.2.1.24)"
[13] "R00045(1.10.3.1)"
                           "R00066(2.5.1.9)"
                                                 "R00068(1.10.3.3)"
[16] "R00073(1.14.99.1)"
                           "R00075(2.5.1.43)"
                                                 "R00078(1.16.3.1)"
[19] "R00084(2.5.1.61)"
                           "R00086(3.6.1.15)"
                                                 "R00086(3.6.1.5)"
[22] "R00087(3.6.1.9)"
                           "R00093(1.4.1.14)"
                                                 "R00095(1.6.5.4)"
                           "R00102(3.2.2.5)"
[25] "R00100(1.6.2.2)"
                                                 "R00102(3.2.2.6)"
                           "R00103(3.6.1.9)"
[28] "R00103(3.6.1.22)"
                                                 "R00104(2.7.1.23)"
[31] "R00111(1.14.13.39)"
# reactions name id with its enzyme.
reactions=names(Results)[-c(1:5)]
reverse_reactions=stringr::str_detect(reactions, "rev")
reverse_reactions=table(reverse_reactions)
dimnames(reverse_reactions)$reverse_reactions=
  c("Non reverse reaction", "Reverse reaction")
reverse_reactions
reverse_reactions
Non reverse reaction
                          Reverse reaction
                3399
                                       594
```

2 Metabolic Graphs

We present here some analysis examples of the metabolic graphs generated in GraphML format.

2.1 Metabolic graphs for each organism

Read the individual metabolic graphs generated for Homo sapiens (KEGG id: hsa) in the directory(Individuals/hsa)

```
files_hsa=dir(paste0(path_exp,"Individuals/hsa"))
files_hsa
```

```
[1] "hsa_mDAG.graphml" "hsa_mDAG.pdf" "hsa_mDAG.svg"
[4] "hsa_mDAG_adj.csv" "hsa_mDAG_biggerDAG.pdf" "hsa_mDAG_biggerDAG.svg"
[7] "hsa_mDAG_nl.csv" "hsa_mDAG_structure.csv" "hsa_R_adj.csv"
[10] "hsa_R_nl.csv" "hsa_RC.graphml" "hsa_RC.pdf"
[13] "hsa_RC.svg" "hsa_summary.txt"
```

1 DAG 1 1 DAGG 1MIG	
hsa_mDAG.graphml m-DAG GraphML format	
hsa_mDAG.pdf m-DAG pdf graphic	
hsa_mDAG.svg m-DAG svg graphic	
hsa_mDAG_adj.csv csv file with the adjacency matrix of the m-DAG	
hsa_mDAG_biggerDAG.pdf pdf graphic with the biggest conected componet of the m-DAG	
hsa_mDAG_biggerDAG.svg svg graphic with the biggest conected componet of the m-DAG	
hsa_mDAG_nl.csv csv file with the node (MBBs) labels of the m-DAG	
hsa_mDAG_structure.csv	
hsa_R_adj.csv csv file with the adjacency matrix of the reaction graph	
hsa_R_nl.csv csv file with the node (reactions) labels of the reaction graph	
hsa_RC.graphml reaction graph GraphML format	
hsa_RC.pdf reaction graph pdf graphic	
hsa_RC.svg reaction graph svg graphic	
hsa_summary.txt text summary file with the number of MBBs, reactions, etc. in the prev	ous g

2.2 Pan & core metabolic graphs

Pan and core metabolic graphs for every group were generated. For instance, one can read the pan and core metabolic graphs generated for the group Algae in the directory (Groups/Algae).

```
files_Algae=dir(paste0(path_exp, "Groups/Algae"))
files_Algae
[1] "core" "pan"
```

The global core reaction graph, which is the core of all the organisms' reaction graphs in this Eukaryotes test, is empty.

The global core reaction graph has 0 vertex and 0 edges. It is an empty graph.

The core reaction graph for the Algae group is:

```
knitr::include_graphics(
   paste0(path_exp,"Groups/MSA_Cluster_3/core/MSA_Cluster_3_core_RC.pdf"))
```


Figure 2.1: Algae core reaction graph