Theoretical Physics I Itanisley Hubin, Problem 6.1 Properties of oross product JPSP 3720433 a) their, a, beir3: B=n3 -> 3xB=0 Geometricolly: \vec{B} = \vec{a} × $(N\vec{a})$ = $N\cdot(\vec{a}$ × \vec{a}) = $N\cdot\vec{a}$ = \vec{a} .

b) Geometricolly: \vec{a} on some line, area of paraleloguem is 0.

The bolume of relelepiped is 0. proselepiped is 0. It is enough to prove 1, lecouse if $\vec{c} = \vec{L}\vec{a} + \beta \vec{B} \rightarrow \vec{a} = -\frac{1}{2}\vec{c} - \beta \vec{l}$, or $\vec{b} = -\frac{1}{2}\vec{c} - \frac{1}{2}\vec{a} = \vec{b}$, (coses where \vec{L} or $\vec{B} = \vec{d} = \vec{b}$) are travial)

So without gener, loss, $\vec{C} = \vec{L}\vec{a} + \beta \vec{B}$, Then (ax8). = (ax8). (fa+ B8)= | v= 2x8)= = 0. (fa+ 8B) = L(va)+B(Bv)= L(va)+B(Bv)= = $\int (\vec{\alpha} \cdot (\vec{\alpha} \times \vec{B})) + \beta (\vec{B} \cdot (\vec{\alpha} \times \vec{B})) = \int (\vec{B} \cdot (\vec{\alpha} \times \vec{\alpha})) + \beta (\vec{\alpha} \cdot (\vec{B} \times \vec{B})) = \int (\vec{B} \cdot (\vec{\alpha} \times \vec{\alpha})) + \beta (\vec{\alpha} \cdot (\vec{B} \times \vec{B})) = \int (\vec{A} \cdot (\vec{A} \times \vec{A})) + \beta (\vec{A} \cdot (\vec{B} \times \vec{B})) = \int (\vec{A} \cdot (\vec{A} \times \vec{A})) + \beta (\vec{A} \cdot (\vec{B} \times \vec{B})) = \int (\vec{A} \cdot (\vec{A} \times \vec{A})) + \beta (\vec{A} \cdot (\vec{A} \times \vec{A})) + \beta (\vec{A} \cdot (\vec{A} \times \vec{A})) = \int (\vec{A} \cdot (\vec{A} \times \vec{A})) + \beta (\vec{A} \cdot (\vec{A} \times$ $(c) \quad \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{R} \cdot (\overrightarrow{a} \cdot \overrightarrow{c}) - \overrightarrow{C} \cdot (\overrightarrow{a} \cdot \overrightarrow{R}) = 3$ $\vec{a} \times (\vec{b} \times \vec{c}) = \underbrace{\sum_{i=1}^{3} a_i \hat{e}_i \times \left(\underbrace{\sum_{j=1}^{3} \ell_j \hat{e}_j}_{j=1}^{3} \times \underbrace{\sum_{i=1}^{3} c_i \hat{e}_i}_{j=1}^{3} \times \underbrace{\sum_{i=1}^{3} c_i \hat{e}_i}_{j=1}^{3} \times \underbrace{\sum_{i=1}^{3} c_i \hat{e}_i \times \left(\underbrace{\sum_{j=1}^{3} \ell_j \hat{e}_i}_{j=1}^{3} \times \underbrace{\sum_{i=1}^{3} c_i \hat{e}_i}_{j=1}^{3} \times \underbrace{\sum_{i=1}^{3} c_i \hat{e}_i}_{j=1}^{3} \times \underbrace{\sum_{i=1}^{3} c_i \hat{e}_i \times \left(\underbrace{\sum_{j=1}^{3} \ell_j \hat{e}_i}_{j=1}^{3} \times \underbrace{\sum_{i=1}^{3} c_i \hat{e$ The sum of the state of the st

 $\frac{\hat{Z}(a;c_i)}{\hat{Z}(b_j)} = \hat{a}_i \hat{z} \hat{z} + (\hat{a}_i \hat{z})(-\hat{c}_i) = \hat{z}_i \hat{z} \hat{z} \hat{z} \hat{z} - \hat{c}(\hat{a}_i \hat{c}_i) - \hat{c}(\hat{a}_i \hat{c}_i),$ d) $\forall \vec{a}, \vec{b}, \vec{c}, \vec{d} \in \mathbb{R}^3$: $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \vec{c} \cdot (\vec{d} \times (\vec{a} \times \vec{b})) = \vec{c} \cdot (\vec{a} (\vec{c} \times \vec{b})) - \vec{b} (\vec{d} \vec{a}) = c \cdot (\vec{a} (\vec{c} \times \vec{b})) + c \cdot (\vec{a} (\vec{c} \times \vec{b})) + c \cdot (\vec{a} (\vec{c} \times \vec{b})) + c \cdot (\vec{c} \times \vec{d}) + c \cdot (\vec{c}$ $= (\vec{c} \cdot \vec{a})(\vec{J} \cdot \vec{k}) - (\vec{b} \cdot \vec{c})(\vec{J} \cdot \vec{a}) = (\vec{a} \cdot \vec{c})(\vec{k} \cdot \vec{J}) - (\vec{a} \cdot \vec{J})(\vec{k} \cdot \vec{c}).$ Problem6.2. Poult Modrices ADVS of nistrices over IR field form fosts for 4D vector space of 2x2 matrixes; $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ where $a_{ij} \in \mathcal{L}$, $a_{ij} = a_{ji} - meanining$ $a_{11} = a_{ii}^{*}$, $a_{22} = a_{22}^{*}$ are

Test elements. d) Linear Independence. $\binom{0}{0}\binom{0}{0} = \sum_{i=0}^{n} \binom{0}{0}\binom{0}{0} + \binom{0}{0}\binom{0}{0} + \binom{0}{0}\binom{0}{0}\binom{0}{0} + \binom{0}{0}\binom{0}{0}\binom{0}{0}\binom{0}{0} + \binom{0}{0}\binom$ $= \begin{pmatrix} C_0 + C_3 & C_1 - C_2 i \\ C_1 + C_2 i & C_0 - C_3 \end{pmatrix}, Sobring \begin{pmatrix} C_0 + C_2 i = 0 \\ C_1 - C_2 i = 0 \end{pmatrix}$ There is unique $\begin{pmatrix} C_0 = C_2 = C_3 = 0 \\ 0 & 0 \end{pmatrix} \rightarrow nustrices are independent,$ b) show that all their combinations are matrices like A. exactly of type of A (xo + x) are their own *, and XIIX2 = (XI = X2 i) *). -> E/H. 924 Show that all motorces, see " reschable" by Bulin.

7/1-

General matrix in IH is of type [a c-di]=xolo i/+ $+ x_1(0) + x_2(0) - i + x_3(0) = [$ need find]. Take $x_0 = \frac{a+b}{2}$, $x_3 = \frac{a-b}{2}$, $x_1 = c$, $x_2 = d$, then indeed $(c+di) = \frac{a+b}{2} (0) + (0) + d(0-i) + \frac{a-b}{2} (0-1)^{2}$ indeedy each matrix can be reachable by Pauli matrias
if taking coefficients bike this. So the coordinate of such
matrix in [a c-di] in Pauli base will be [a+b]
c+di b] in Pauli base will be [a-b]. d) Zi Gi E H? where zi E (No! Let me show it in general way: * $M = Z_0(10) + Z_1(10) + Z_2(0-i) + Z_3(10) = (Z_0 + Z_3 Z_1 - Z_2i)$ Neither element parts have to be conjugates, Example: $Z_1 = i$, $Z_2 = 0$, $i \neq i^*$, $Z_1 - Z_2i \neq (Z_1 + Z_2i)^*$, But they do four these own vector space (if defining t, \star Shave that (V, +) is commutative group, \star such $(Z_0 + Z_3) + (Z_0 + Z_3) + (Z_0 + Z_3) + (Z_1 + Z_2) + ($ $= ((\overline{z}_{0} + \widetilde{z}_{0}) + (\overline{z}_{3} + \widetilde{z}_{3}) + (\overline{z}_{1} + \widetilde{z}_{1}) - (\overline{z}_{2} + \widetilde{z}_{2})i)$ $(\overline{z}_{1} + \widetilde{z}_{1}) + (\overline{z}_{1} + \widetilde{z}_{2})i + (\overline{z}_{0} + \widetilde{z}_{0}) - (\overline{z}_{3} + \widetilde{z}_{3})$ $(\overline{z}_{0} + \widetilde{z}_{0}) - (\overline{z}_{3} + \widetilde{z}_{3})$ $(\overline{z}_{0} + \widetilde{z}_{0}) - (\overline{z}_{3} + \widetilde{z}_{3})$ of some (see (*))

** Newtral is (00) which is trivially checked ** Invarse for (20+23 2,-22i) is (-20-23 -2,+22i) EIH ** Associational Communitation follow from the respective preparties of general 2x2 modries. * Show L.(B.M)=(FB)M where M is motrix of such type.
This also follows from respective property of all 2x2
motrices. x (I+B)M = SM+BM also directly results from 2x2 motrices, × f(M,+M2) = fM, + fM2 also directly results from 2x2 molting. Hence, if we scale Buli matrices by complex numbers, they are not Hermittan, but they form vector space. Problem 6.3 Forces/Torques on ladder Reason one to neglect - purely geometrical + nature of friction due to resistance of inegularities of surface, way times and position H-dy L of Ladder is parameter, constant, noting L investigation L of L adder is parameter, constant, L and L adder is parameter, L of L adder is parameter, L and L and L adder is parameter, L and L

tri

some

Reason 2 to neglect & is very small compared to & due to less irregularities in wall than in ground. Also [will be This effect con differ 2 small values, actual o widely if being honest, I consider 81, 82 also changing in some limits (815 Ms.

Bill Horizontal: N=8, f

Wer Heal: mg = f+ 1/2 N f many
solutions

Need to consider angles and torques.

The rixing of Add torque in consideration:

The rixing of the consideration: vectors and considering to ique >0 if counterclackwise,

* Fif

1. SIND - mg + (l coso) N + (l sin b) / 2 N / (x) [Other to rques 4TBY= = [-sin of + cos of f + cos o.N + sin o f N) and $T_c = mg \frac{l}{z} sin\theta - fl sin\theta + j, f los \theta$ give the same values (this is also a generic rule) and in torque coloulation — assumed uniform distribution, so center of man is in the nordalle— and this relatived in torque coloulation. It is not clear whether I understood the question. Now use three equations; (there could be very to drow line N= \(\in \) \ N=\(\xi\) f varying there are top many narrowsters, with \(\xi\), \(\xi\) \ \ \ \lambda \text{mg} = \(\xi\) \ \ \lambda \text{mg} = \(\xi\) \ \ \lambda \text{mg} \) \ \ \(\xi\) \ \ \ \lambda \text{mg} = \(\xi\) \ \ \\ \lambda \text{mg} \) \ \ \ \lambda \text{mg} \) \ \ \(\xi\) \ \ \ \lambda \text{mg} \) \ \ \\ \lambda \text{mg} \) \ \ \\ \lambda \text{mg} \) \ \ \\ \\ \alpha \text{mg} \) \ \\ \\ \alpha \text{mg} \) \ \\ \\ \alpha \text{mg} \text{mg} \text{mg} \text{mg} \) \ \ \\ \alpha \text{mg} \te

to Simplified system: be $N=X_{i}f$ ng=f $N=X_{i}mg$ $0=X_{i}mg\cos\theta-\frac{mg\sin\theta}{2}$ $0=X_{i}mg\cos\theta-\frac{mg\sin\theta}{2}$ $Y_{i}\cos\theta=\frac{\sin\theta}{2}$ Am $2J_1 = ton \theta$ SO 0 = stan(2), risms). When we consider critical value, $\theta = aton (2 \mu s) = aton 4 \approx 76°.$ * 1) To analyze injusced of walking man, consider simplified ous vocsion (/2 = 0). $k \in [0,1] \quad \text{Equations;}$ $\{M+m\}g = f$ $\{N=3, f = \mu f \text{ (take crist col cose)}$ $\{-mg \sin\theta \frac{1}{2} - k \ell \text{ Mg} \sin\theta + N \ell \cos\theta = 0\}$ $\{M+m\}g \quad \text{X} \cos\theta - mg \sin\theta \frac{1}{2} = k \ell \text{Mg} \sin\theta$ gyring N.(x) uMoso+ umoso- = msino = kMsino If k (relative poss from on ladder) increases, u must also increase to morntain equilibrium for. the Other way to say; MH UM- I m tand + KM tand, ce, $\theta = A \cos \frac{M}{2} + kM = \mu (M + m)$ $\theta = A \cos \frac{\mu (M + m)}{3} \Rightarrow A \cos 2\mu \text{ in old cose when no mon}$ sed tood It kt, I must become smaller as possible, 1,82 Suppose m=M, u=2, 2m+2m= m tont km tont, 4 2 ± =k - knowing the vertical angle how to put ladder,

for the given

k [0 to 1] without fall. nd

Test special cases

- sint=0

FA = VF2 (Mg)2 FA=1/F2+(Mg)2+2FMgsind FA is applied at exte set My J. F. 2) Algebraic approach to find FA. $\vec{F} = \begin{bmatrix} Foot \\ -Fsinf \end{bmatrix}$ $M\vec{g} = \begin{bmatrix} 0 \\ -Mg \end{bmatrix}$ $\vec{F_A} = -(\vec{F} + M\vec{g}) = \begin{bmatrix} -Fcost \\ Fsinf + Mg \end{bmatrix}$ then direction is It stan (-FCDS+) and value is [[Foot]2+[Fant+Mg]2= [F3(Mg)2+2MgFsint which motches geometric way, Plotting FA(L) = [F4(Mg)] +2FMant, ==3 -> F= Mg==3Mg, (FAIG) = FA(L) = \(Idmg)^2 + 6(mg)^2 nf = Mg \(10 + 6 \) in L, FA(1) = 10+6sinf - note it is possible to use ony engle. (upwords) largest resistance by oxle

(to the left) T= T=21

*e) When not pulling, ER/FA/= MgR (compensate great by FA=V(My)2+0=Mg, ERMg=MgR, EZI The next torque is

| If $L = \frac{\pi}{2}$,
| The next torque is

| Ulgk-rf|, if it is not

| enough large - roll does
| not rotate in any direction,
| Mgk-rf| \leq Ek |FA|,

| Uhere $F_A = \sqrt{(Mg)^2 + F_A^2 + 2Mg} F_{and} = \sqrt{(Mg+F)^2} = Mg + F$. Therefore $|MgR-F\tau| \leq \mathcal{E}R(Mg+F)$. ER (F+Mg) = MgR-rF \leq ER (Mg+F) \rightarrow and roll does not rotal due to friction,

- $\forall F$ = $\forall F$ Cases FE [Mg (1-E)R; Mg R(1+E)] if 7>ER -> if the fore

is less, it rolls counterclackwise due to gravity, if more-clockwise due to this force, otherwise stuck by friction. Case 2 if $r \in \mathbb{R}$, $F \in \left[\frac{(1-E)R}{2+ER}, +\infty\right]$ — so if the force is less (e.g. absent) it can roll counterclackwise due to greatly, otherwise however strong null is, due to small lever and long friction, roll does not rotate.

If $E \to 1$, case 1 is not working, $F \in \left[0, +\infty\right]$. So no force can roll this. Individively: whatever force is applied and even if on distance R, friction compensation is ER[FA] = E(F+Mg), that is full compensation.

Bonus problems: to be covered with the professor,

Index der Kommentare

1.1	2/2
1.2	4/4
1.3	3/3
2.1	3/3. Very concise and nice solutions!
2.2	5/5
2.3	4/4
2.4	4/4
5.1	1
5.2	4
6.1	2
7.1	3/3
7.2	3/3
7.3	2/2

6/6

great work, nice to read

8.1

8.2