Definition of Galois Extensions and Examples

Jiang-Hua Lu

The University of Hong Kong

MATH4302, Algebra II

Recall definitions and notation

• For a field L,

$$Aut(L)$$
 = the set of all field isomorphisms $L \longrightarrow L$.

• For a field extension $K \subset L$, denote

$$\operatorname{Aut}_{K}(L)=\{\sigma\in\operatorname{Aut}(L):\ \sigma(k)=k,\ \forall\,k\in K\}.$$

Today:

Definition of Galois extensions and Examples

Recall Basic lemma on automorphism groups of finite(simple) extensions:

Assume that $L = K(\alpha)$ for $\alpha \in L$ algebraic over K, and let $p(x) \in K[x]$ be the minimal polynomial of α over K. 0 m o(a)

- **1** Have bijection $\operatorname{Aut}_{K}(L) \leftrightarrow R_{p}$ (set of roots of p in L); Thus $|\operatorname{Aut}_{K}(L)| = |R_{p}| \leq \deg(p) = |L:K|$.
- 2 If p completely splits over L with no repeated roots in L, then

Fact For any finite ext
$$K \subset L$$
, have $|Aut_K(L)| < \infty$

Definition. A finite extension $K \subset L$ is aid to be Galois if

$$|\operatorname{Aut}_K(L)| = |L:K|.$$

For a Galois extension, we also write $\operatorname{Aut}_K(L) = \operatorname{Gal}(L/K)$.

Example.
$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$$
 and

$$p(x) = x^4 - 10x^2 + 1.$$

$$R_p = \{ \mathbf{v}(\sqrt{2} \pm \sqrt{3}) \text{ so } |\mathrm{Aut}_K(L)| = 4, \text{ thus } \mathrm{Aut}_{\mathbb{Q}}(L) \cong \mathbb{Z}_4 \text{ or } \mathbb{Z}_2 \times \mathbb{Z}_2.$$

- Let $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(L)$ and consider $\sigma(\sqrt{2})$ and $\sigma(\sqrt{3})$.
- Must have

$$\sigma(\sqrt{2}) = \pm \sqrt{2}, \quad \sigma(\sqrt{3}) = \pm \sqrt{3}$$

- Thus $\sigma^2(\sqrt{2}) = \sqrt{2}$ and $\sigma^2(\sqrt{3}) = \sqrt{3}$.
- Thus $\sigma^2 = 1$.
- Thus $\operatorname{Aut}_{\mathbb{Q}}(L) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Example, the cyclotomic extensions: For $n \ge 1$,

$$C_n$$
 = splitting field of $x^n - 1 = \mathbb{Q}(e^{2\pi i/n})$.

Irreducible polynomial of $\omega_n = e^{2\pi i/n}$ in $\mathbb{Q}[x]$ is

$$\Phi_n = \prod_{1 \le k \le n, (k,n)=1} (x - \omega_n^k).$$

So Φ_n completely splits over C_n and has no repeated roots. Thus

$$|\mathrm{Aut}_{\mathbb{Q}}(C_n)| = \deg(\Phi_n) = \phi_n = |\{k \in [1, n] : (k, n) = 1\}|.$$

Each
$$k \in [1, n]$$
 with $(k, n) = 1$ defines $(k, n) = 1$ defines

$$\kappa(\omega_n) = \omega_n^k$$
.

 $\sigma_k \in \operatorname{Aut}_{\mathbb{Q}}(C_n): \ \sigma_k(\omega_n) = \omega_n^k.$ Let $(\mathbb{Z}/n\mathbb{Z})^{\times}$ be the group of units of the ring $\mathbb{Z}/n\mathbb{Z}$, i.e.,

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\overline{k} : 1 \leq k \leq n, \ (k,n) = 1\}.$$

Then we have the group isomorphism

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \longrightarrow \operatorname{Aut}_{\mathbb{Q}}(C_n) : \overline{k} \longmapsto \sigma_k.$$

The cyclotomic extensions continued:

Let $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$ be the prime factorization of n. Then

$$\mathbb{Z}/n\mathbb{Z} \cong (\mathbb{Z}/p_1^{k_1}\mathbb{Z}) \times (\mathbb{Z}/p_2^{k_2}\mathbb{Z}) \times \cdots \times (\mathbb{Z}/p_m^{k_m}\mathbb{Z}),$$

SO

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{k_1}\mathbb{Z})^{\times} \times (\mathbb{Z}/p_2^{k_2}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_m^{k_m}\mathbb{Z})^{\times}.$$

Known: For any prime p and integer $k \ge 0$,

- \bullet $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$ is an abelian group of size p^k-p^{k-1} (easy to see);
- $(\mathbb{Z}/p^k\mathbb{Z})^{\times} \cong \mathbb{Z}/(p^k p^{k-1})\mathbb{Z}$ is cyclic when $p \neq 2$;
- $(\mathbb{Z}/2^k\mathbb{Z})^{\times}$ is cyclic iff k = 0, 1, 2.
- For example, $(\mathbb{Z}/8\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Example: $\mathbb{F}_p \subset \mathbb{F}_{p^n}$ for prime number p and $n \geq 1$. We have proved

- \mathbb{F}_{p^n} is a splitting field of $x^{p^n} x$ over \mathbb{F}_p ;
- the extension $\mathbb{F}_p \subset \mathbb{F}_{p^n}$ is simple:

$$\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha),$$

where $\alpha \in \mathbb{F}_{p^n} \backslash \{0\}$ is any generator of $\mathbb{F}_{p^n} \backslash \{0\}$ as a cyclic group.

• The irreducible polynomial $q \in \mathbb{F}_p[x]$ of $\alpha \in \mathbb{F}_{p^n} \setminus \{0\}$ splits completely in $\mathbb{F}_{p^n}[x]$.

Thus $|\operatorname{Aut}_{\mathbb{F}_n}(\mathbb{F}_{p^n})| = n$. Which one?

<u>Claim:</u> Aut_{\mathbb{F}_p}(\mathbb{F}_{p^n}) is the cyclic group generated by the Frobenius isomorphism σ .

Proof. Let $G = \operatorname{Aut}_{\mathbb{F}_p}(\mathbb{F}_{p^n})$.

- We already know that $\langle \sigma \rangle \subset G$.
- Also know that $|G| = |\mathbb{F}_{p^n} : \mathbb{F}_p|$, and $\sigma^n = \mathrm{Id}$;
- Need to show $\operatorname{order}(\sigma) = n$.
- If $\sigma^k = \operatorname{Id}$ for k < n, then $a^{p^k} = a$ for all $a \in \mathbb{F}_{p^n}$, but

$$f(x) = x^{p^k} - x$$

can not have p^n elements, contradiction.

Q.E.D.