INFRARED SPECTROSCOPY

Infra red region can be divided into three sections:

Region	Wavelength range (mm)	Wavenumber range (cm ⁻¹)
Near	0.78 - 2.5	12800 - 4000
Middle	2.5 - 50	4000 - 200
Far	50 -1000	200 - 10

The most useful I.R. region lies between 4000 - 670cm⁻¹.

MOLECULAR VIBRATION

NUMBER OF VIBRATIONAL MODES

Degree of freedom for molecule = Total number of degrees of freedom of component atoms

If a molecule has N number of atoms then degree of freedom = 3N

Non-linear molecule = 3N-6 degrees of freedom for vibration

Linear molecule = 3N-5 degrees of freedom for vibration

VIBRATIONAL MODES OF H₂O

VIBRATIONAL MODES OF CO₂

Polyatomic Molecular Vibration

Symmetric Stretch

Asymmetric Stretch

Twisting

Scissoring

Rocking

For a molecule to be IR active following criteria has to be met

- 1. The natural frequency of vibration of the molecule should equal the vibration of IR radiation.
- 2. There should be a net change in dipole moment as the molecule vibrates.

FORMALDEHYDE

Important parameters in all IR spectra:

The frequency of the signal, v

The intensity of the signal, I

The width of the signal, w

The frequency of the signal, v

ACETYLENE

OCTANE

1-OCTENE

1-OCTYNE

ACETONE

ACETIC ACID

PRIMARY AMINE

The intensity of the signal, I

ACETONE

1-OCTENE

The width of the signal, w

Hydrogen Bonding

- Hydrogen bonding can occur in any system containing a proton donor and a proton acceptor group.
- Common proton donor groups: carboxyl, hydroxyl, amine or amide
- Common proton acceptor atoms: oxygen and halogens
- Strength of hydrogen bond decreases as distance between acceptor and donor increases
- Hydrogen bonding alters the strength of bond and hence stretching/bending frequencies are altered

Intermolecular Hydrogen bonding

Steric hindrance to Hydrogen bonding

CLASSIFICATION OF IR BANDS

IR bands can be classified as **strong** (s), **medium** (m), or **weak** (w), depending on their relative intensities in the infrared spectrum. A strong band covers most of the *y*-axis. A medium band falls to about half of the *y*-axis, and a weak band falls to about one third or less of the *y*-axis.

Infrared Spectroscopy

Infrared Group Analysis

The four primary regions of the IR spectrum

Characteristic infrared absorption in organic molecules

bond	location	wavenumber/cm ⁻¹	intensity
С—Н	alkanes alkenes, arenes alkynes	2850–2950 3000–3100 <i>ca.</i> 3300	M-S M medium M-S S strong S * hydrogen bonded
c=c	alkenes	1620–1680	M
	arenes	several peaks in range 1450–1650	variable
c≕c	alkynes	2100–2260	M
C —0	aldehydes ketones carboxylic acids esters amides	1720–1740 1705–1725 1700–1725 1735–1750 1630–1700	S S S M
с—о	alcohols, ethers, esters	1050-1300	S
C≡N	nitriles	2200–2260	M
C—F	fluoroalkanes chloroalkanes bromoalkanes	1000–1400 600–800 500–600	S S S
О—Н	alcohols, phenols *alcohols, phenols *carboxylic acids	3600–3640 3200–3600 2500–3200	S S (broad) M (broad)
N—H	primary amines amides	3300–3500 ca. 3500	M-S M

SPECTRAL INTERPRETATION

CARBOXYLIC ACID

infra-red spectrum of ethanoic acid, CH3COOH

- Strong C=O stretch in 1680 -1750 cm⁻¹.
- Typical -OH band producing a trough between 2500 3300cm⁻¹.
- C − O (single bond) stretch is in finger print region and considered only if specifically mentioned.

ALCOHOLS

infra-red spectrum of ethanol, CH3CH2OH

- Typical strong broad -OH band between 3230 3550cm⁻¹ (higher than acid).
- Absence of strong C=O stretch.

KETONES

- Strong C=O stretch in 1680 -1750 cm⁻¹.
- Absence of -OH band.

ALDEHYDES

 $H_3C-CH_2-CH_2-CH = 0$

- Strong C=O stretch in 1680 -1750 cm⁻¹.
- Absence of -OH band.
- Presence of C-H stretch along with C=O indicates a possibility of aldehyde

ESTER

infra-red spectrum of ethyl ethanoate, $\,$ CH $_3$ C $\,$ $\,$ 100transmittance (%) Ambiguous 1500 1000 4000 3000 2000 500 wavenumber (cm⁻¹).

- Strong C=O stretch in 1680 -1750 cm⁻¹.
- Absence of -OH band.
- Consider "C O" (~1100 cm⁻¹) with ambiguity.

HYDROXY ACID

infra-red spectrum of 2-hydroxypropanoic acid, CH3CHCOOH OH

- Strong C=O stretch in 1680 -1750 cm⁻¹.
- Typical -OH band producing a trough between 2500 3600cm⁻¹.

ETHER

• Can look for C − O (~1100 cm⁻¹) stretch but cannot be sure since it is in finger print region.

AMIDES

- TWO Strong C=O stretch in 1680 -1750 cm⁻¹.
- Presence of –NH band (excludes anhydride).

ACID ANHYDRIDE

ACETIC ACID ANHYDRIDE INFRARED SPECTRUM

- TWO Strong C=O stretch in 1680 -1750 cm⁻¹.
- Absence of –NH band (excludes amide).

PRIMARY- AMINES

SECONDARY-AMINES

