Überblick über Smith-Diagramm

Roland Pfeiffer 22. Vorlesung

Gliederung

- Smith-Diagramm-was ist das?
 - ◆ Normierte kartesische Impedanz-Ebene, Reflexionsfaktor-Ebene
- Darstellung von R,C und L im Smith-Impedanz-Diagramm
 - ◆ nur R, nur C, nur L
 - Serienschaltung
 - Parallelschaltung
 - Beispiel
- Smith-Diagramm auf Leitungen
- Smith-Diagramm bei Verstärkern
 - Leistungsanpassung: Berechnung der konjungiert komplexen Impedanz/Admittanz
- Praktisches Arbeiten mit dem Smith-Diagramm
 - ◆ Impedanz-Admittanz-Übertragung bei Smith-Diagrammen
 - Präzision von Smith-Diagrammen, Download-Möglichkeiten

Kartesische Impedanzebene (bekannt)

Normierung der Impedanzebene auf Zo (meist Zo = 50 Ohm)

• Transformation der normierte Impedanzebene in die Reflexionsfaktorebene Γ mit

normierte kartesische Impedanzebene

Smith-Impedanz-Diagramm

Transformation: normierte Impedanzebene - Reflexionsfaktorebene Γ

An-95-1a.mov

siehe auch:

http://www.hf.ruhr-uni-bochum.de/lehre/Animationen/SmithChart.html

Bilinearität der Transformation

normierte kartesische Impedanzebene

Smith-Impedanz-Diagramm

Nur R: R= Zo (Anpassung)

Nur R: R=0 Ohm (Kurzschluß)

Nur R: R=: Ohm (Leerlauf)

Nur R:

R im Smith-Impedanz-Diagramm: "mittendurch, nach rechts für steigendes R"

• Nur C: $1/j\omega$ C = -j: Ohm (ω = 0 Hz \Rightarrow Leerlauf)

• Nur C: $1/j\varpi$ C = -jZo

• Nur C: $1/j\omega$ C = -j0 Ohm (ω = : Hz \Rightarrow Kurzschluß)

Nur C:

C im Smith-Impedanz-Diagramm: "untere Hälfte, im Uhrzeigersinn für steigendes ωC"

• Nur L: $j\varpi L = j0$ Ohm $(\varpi = 0 Hz \Rightarrow Kurzschluß)$

• Nur L: $j\varpi L = jZo$

• Nur L: $j\varpi L = j$: Ohm $(\varpi = :Hz \Rightarrow Leerlauf)$

Nur L:

Rote Pfeilrichtung $\Rightarrow \omega L$ steigt L im Smith-Impedanz-Diagramm: "obere Hälfte, im Uhrzeigersinn für steigendes ωL "

Serienschaltung C,L

Serienschaltung R,L mit R< Zo</p>

Serienschaltung R,L mit R> Zo

Serienschaltung R,C mit R < Zo</p>

Serienschaltung R,C mit R> Zo

Serienschaltung R,C,L mit R < Zo</p>

Serienschaltung R,C,L mit R < Zo</p>

Parallelschaltung R,C

Parallelschaltung R,L

Parallelschaltung C,L

Achtung: Serienschaltung C,L ≠ Parallelschaltung C,L !!

Parallelschaltung R,C,L

R > Zo R < Zo

Schlagworte zum Smith-Impedanz-Diagramm

-nur C, nur L: Halbkreise

-C und L: Kreis

-"oben L, unten C, x-Achse R !!!"

-x-Achse: links Kurzschluß

-x-Achse: rechts Leerlauf

-im Uhrzeigersinn für steigendes σ

-Serienschaltung C,L beteiligt "rechts"

-Parallelschaltung C,L beteiligt "links"

Schaltung?

Parallel/Serienschaltung C1 << C2, R= Zo!
 (z.B. Eingangsimpedanz bei Transistoren)

Parallel/Serienschaltung C1 >> C2, R= Zo!
 (z.B. Eingangsimpedanz bei Transistoren)

Schaltung?

2. Beispiel im Smith-Impedanz-Diagramm

Parallel/Serienschaltung L << C, R= Zo!</p>

2. Beispiel im Smith-Impedanz-Diagramm

Parallel/Serienschaltung L >> C, R= Zo!

Smith-Diagramm auf Leitungen

Annahmen:

- -verlustlose Leitung (nur Phasenbeeinflußung induktiv-kapazitiv⇒, Kreise im Smith-Diagramm)
- -bestimmte Frequenz ⇔ bestimmte Wellenlänge λ

Frage:

-wie ist die Gesamtimpedanz von einer Leitung bestimmter Länge und einer Impedanz

oder

-wie lang muß die Leitung sein, um eine Impedanztransformation zu gewährleisten?

Smith-Diagramm auf Leitungen

- Prinzip:
 - -ablesbar am Rand im I/λ
 - -"waveleght towards generator" im Uhrzeigersinn
 - -"waveleght towards load" gegen den Uhrzeigersinn

Leistungsanpassung

Definition:

"sowenig Leistungsverluste wie möglich"

- -bei NF-Verstärker unwesentlich, da genügend Leistungs-Verstärkung bei NF!
- -bei HF-Verstärker wesentlich, da nicht mehr genügend Leistungs-Verstärkung bei Hochfrequenz!

Leistungsanpassung

Fragestellung:

Welche Größe muß die Impedanz von $Z_L=R_L+j\cdot X_L$ bei festen $Z_s=R_s+j\cdot X_s$ haben, um maximale Leistungsübertragung zu gewährleisten?

oder:

Welche Größe muß die Impedanz von $Z_s=R_s+j\cdot X_s$ bei festen $Z_L=R_L+j\cdot X_L$ haben, um maximale Leistungsübertragung zu gewährleisten?

Leistungsanpassung

Antwort:

bei festen
$$Z_s = R_s + j \cdot X_s$$
 $Z_L = R_s - j \cdot X_s = Z_s^*$

oder

bei festen
$$Z_L = R_L + j \cdot X_L$$
 $Z_S = R_L - j \cdot X_L = Z_L^*$

"konjungiert komplexe Leistungsanpassung"

Leistungsanpassung

Realfall:

bei festen
$$Z_s = R_s + j \cdot X_s$$
 $Z_L \neq Z_s^*$

oder:

bei festen
$$Z_L = R_L + j \cdot X_L$$
 $Z_S \neq Z_L^*$

Ausweg: Anpassungsnetzwerke!!

Bedingung: feste Frequenz ("narrowband")!!

Leistungsanpassung

einfacher Fall von Anpassungsnetzwerke: "L-Netzwerke"

Hoch nach Tief Hochpaß

Tief nach Hoch Hochpaß

Hoch nach Tief Tiefpaß

Tief nach Hoch Tiefpaß

Leistungsanpassung bei "Narrowband"-Verstärkern

außerdem: Biasing durch L!

Leistungsanpassung

Möglichkeit der grafischen Ermittlung von "L-Netzwerke" durch Smith-Diagramme!!

Beispiel: Anpassungsnetzwerk Ausgang

Frequenz = 300MHz

$$Z_L = 50 \text{ Ohm } (Z_L = Z_O)$$

$$Z_S = s_{22}^*$$
 (siehe folgendes Beispiel)

verwendete Schaltung

Hoch nach Tief Hochpaß

Leistungsanpassung

Möglichkeit der grafischen Ermittlung von "L-Netzwerke" durch Smith-Diagramme!!

1.Schritt:

Einzeichnen der Punkte bei Frequenz = 300 MHz

 Z_L / Zo

konjungiert komplex ⇒
Spiegelung an der x-Achse

Leistungsanpassung

Möglichkeit der grafischen Ermittlung von "L-Netzwerke" durch Smith-Diagramme!!

2.Schritt:
Serienschaltung von C

Leistungsanpassung

Möglichkeit der grafischen Ermittlung von "L-Netzwerke"

durch Smith-Diagramme!!

3.Schritt:

Parallelschaltung von L ⇒

C und L bestimmt !!

Bestimmung von C

Leistungsanpassung

Möglichkeit der grafischen Ermittlung von "L-Netzwerke" durch Smith-Diagramme!!

2-3. Schritt:

An-95-1b.mov

Leistungsanpassung

Möglichkeit der grafischen Ermittlung von "L-Netzwerke" bei "Broadband"-Verstärkern (in einem gewissen Frequenzbereich) auch durch Smith-Diagramme!!

Prinzip: Rückgang der Verstärkung bei höheren Frequenzen wird durch "L-Netzwerke" ausgeglichen

Näheres unter

http://cp.literature.agilent.com/litweb/pdf/5952-1087.pdf

Literatur zur Leistungsanpasssung z.Bsp.

John Rogers, Calvin Plett: "Radio Frequency Integrated Circuit Design", Artech House, ISBN 1-58053-502-x

Leistungsanpassung

interaktive Ermittlung von "L-Netzwerken" und anderen Anpassungsnetzwerken unter

http://www.circuitsage.com/matching/matcher2.html

Praktisches Arbeiten mit dem Smith-Diagramm

- Impedanz-Admittanz-Übertragung bei Smith-Diagrammen
 - ◆ Reine Serienschaltung ⇒ Impedanzebene
 - ◆ Reine Parallelschaltung ⇒ Admittanzebene
- Übertragung: Spiegelung am Ursprung

Praktisches Arbeiten mit dem Smith-Diagramm

- Präzision von Smith-Diagrammen:
- Smith-Diagramme = grobe Rechnung?
- Beispiel: Leitungsanpassung
 - Frequenz 1 GHz $\Rightarrow \lambda$ = 20 cm
 - Auflöung Smith-Diagramm große Striche λ /100, 5 kleine Striche dazwischen
 - ⇒ Auflöung Smith-Diagramm 20cm/500=0.4 mm!!

Praktisches Arbeiten mit dem Smith-Diagramm

Download-Möglichkeiten von Smith-Diagrammen unter

http://sss-mag.com/smith.html