

Lista Zadankowa 1 – Laureat Plus

Uwaga. Rezultat 2 zadania 7 to problem z Sangaku, znany jako twierdzenie Iwaty, udowodniony w 1866 roku. Oryginalny dowód miał 52 strony. Rezultat 1 (również zadania 7), jak i sposób dowodu obydwu rezultatów (przedstawiony tutaj w postaci serii zadań) został odkryty przez Waldemara Pompego. Rezulatat 6 (jako konstrukcja) został zaproponowany przez Taxia Limneou.

Definicja 1. Dla czterech parami różnych skończonych punktów współliniowych A, B, C, D, przez <u>dwustosunek</u> rozumiemy wielkość

$$(ABCD) = \frac{\overrightarrow{AC}}{\overrightarrow{CB}} : \frac{\overrightarrow{AD}}{\overrightarrow{DB}}$$

Jeśli któryś z punktów jest nieskończony, dodefiniowujemy jeszcze $\frac{\overrightarrow{XY}}{\overrightarrow{YZ}} = -1$ dla Y w nieskończoności oraz (ABCD) = (DCBA).

Definicja 2. Bijektywne przekształcenie płaszczyzny rzutowej w siebie zachowujące współliniowość punktów i dwustosunek czwórek punktów współliniowych nazywamy rzutowym.

Definicja 3. Przez <u>stożkową</u> rozumiemy obraz okręgu w przekształceniu rzutowym. Przez elipsę rozumiemy taką stożkową, która nie posiada punktów w nieskończoności.

Definicja 4. Dla prostej k i nie leżącego na niej punktu P, przez <u>transformację perspektywiczną</u> o <u>osi k i środku P rozumiemy przekształcenie rzutowe, dla którego zarówno punkt P, jak i każdy punkt prostej k jest punktem stałym.</u>

Zadanie 1. Okręgi o_1 i o_2 są wpisane w kąt o wierzchołku P. Prosta przez P przecina okrąg o_1 w punktach A i B, zaś okrąg o_2 w punktach C i D, przy czym punkty B i C leżą pomiędzy A i D, zaś P leży poza odcinkiem AD. Styczna do o_1 w A i styczna do o_2 w D przecinają się w X. Udowodnij, że XA = XD.

Zadanie 2. Niech f będzie transformacją perspektywiczną o środku P i osi k.

- 1. Niech X to dowolny punkt. Wykaż, że punkty P, X oraz f(X) są współliniowe.
- 2. Niech x to dowolna prosta. Wykaż, że proste k, x oraz f(x) są współpękowe.

Zadanie 3. Dane są współliniowe punkty $P,\,T,\,T'$ oraz nieprzechodząca przez żaden z nich prosta k. Udowodnij, że istnieje dokładnie jedna transformacja perspektywiczna o środku P i osi k przenosząca T na T'.

Zadanie 4. Dane są styczne stożkowe c i c' wpisane w kąt o wierzchołku P. Niech A to punkt styku tych stożkowych i niech k to prosta styczna do nich przechodząca przez A. Udowodnij, że istnieje dokładnie jedna transformacja perspektywiczna o środku P i osi k przenosząca c na c'.

Zadanie 5. Odcinki SA i SB są styczne do elipsy s odpowiednio w punktach A i B, przy czym SA = SB. Proste c i d są styczne do s i równoległe do SA i SB odpowiednio. Niech $s \cap c = C$ oraz $s \cap d = D$. Udowodnij, że ABCD jest prostokątem.

Zadanie 6. Niech s to elipsa wpisana w kąt o wierzchołku A, styczna do ramion tego kąta w punktach B i C, przy czym AB < AC. Okrąg ω wpisany w ten sam kąt jest styczny do jednego z ramion kąta (i do elipsy) w C, zaś do drugiego ramienia w F. Krótszy łuk CF okręgu ω przecina s w K. Niech ponadto o będzie okręgiem wpisanym w ten kąt, stycznym zewnętrznie do s w T. Udowodnij, że punkt T, środek symetrii s oraz środek odcinka CK są współliniowe. Wywnioskuj konstrukcję poniższego zadania.

Zadanie 7. Okręgi o_1 , o_2 , o_3 , o_4 (o promieniach odpowiednio r_1 , r_2 , r_3 i r_4) i elipsa s są wpisane w kąt, przy czym o_1 i o_4 są styczne zewnętrznie do s w A i D, zaś o_2 i o_4 są styczne wewnętrznie do s w B i C odpowiednio. Udowodnij, że wówczas:

- 1. punkty A, B, C, D są wierzchołkami prostokąta.
- 2. $r_1r_4 = r_2r_3$.