What is claimed is:

	1	1. A transmission and reception system comprising a transmission
	2	device and, a receiving device, and a communication pathway between said
	3	transmission device and said receiving device, said transmission device
	4	comprising:
	5	(1) convolutional coding means for convolution-coding input data,
	6	and outputting convolution-coded data;
	7	(2) puncturing means for puncturing said convolution-coded data
	8 .	using pucturing patterns, and outputting punctured data; and
	9	(3) modulation / transmission means for modulating and transmitting
	10	said punctured data, and
	11	said receiving device comprising:
	12	(1) reception / demodulation means for receiving and demodulating
	13	a signal transmitted by said transmission device, and outputting demodulated data;
•	14	(2) depuncturing means for depuncturing said demodulated data, and
	15	outputting depunctured data;
	16	(3) combining means for combining said depunctured data, and
	17	outputting a result of combining; and
	18	(4) convolutional decoding means for convolution-decoding said
	19	result of combining, and outputting a decoded data.
	1	2. A time-diversity transmission and reception system comprising:
	2	a transmission device including:

3	(1) convolutional coding means for convolution-coding input data,
4	and outputting convolution-coded data;
5 6	(2) first multiple puncturing pattern generation means for generating puncturing patterns having an identical puncturing rate, but having respectively
7	different puncturing block patterns;
8 9 10	(3) first puncturing means for puncturing convolution-coded data output by said first convolutional coding means by using each of said puncturing patterns supplied by said first multiple puncturing pattern generation means, and outputting punctured data;
12 13	(4) diversity transmission timing control means for outputting a diversity transmission timing control signal for carrying out transmission for a
14	plural number of times;
15 16 17 18	(5) time-diversity modulation / transmission means for modulating and transmitting, as diversity transmission data, said punctured data output by said first puncturing means in response to said diversity transmission timing control signal, and
19	a receiving device including:
20 21	(1) diversity reception timing control means for outputting a predetermined diversity reception timing control signal for carrying out reception of a signal transmitted with time diversity transmission;
23	(2) time-diversity reception / demodulation means for receiving and
24	demodulating each of the signals transmitted by said transmission device, in
25	response to said diversity reception timing control signal, and outputting
26	demodulated data;

27	(3) second multiple puncturing pattern generation means for
28	generating puncturing patterns, which are identical to the puncturing patterns
29	generated by said first multiple puncturing pattern generation means;
30	(4) first depuncturing means for depuncturing the demodulated data
31	output from said time-diversity reception / demodulation means by using the
32	puncturing patterns supplied by said second multiple puncturing pattern generation
33	means, and outputting depunctured data;
34	(5) first combining means for combining the depunctured data output
35	by said first depuncturing means, and outputting a result of combining; and
36	(6) first convolutional decoding means for convolution-decoding said
37	result of combining, and outputting decoded data,
38	wherein said time-diversity transmission and reception system
39	executes time-diversity transmission and reception of error-correction code words,
40	obtained by puncturing and convolution-coding information data with the
41	puncturing patterns.
1 ·	3. The time-diversity transmission and reception system according to
2	claim 2, wherein:
3	(1) said demodulated data output by said time-diversity reception /
4	demodulation means are digital values quantized with a predetermined number of
5	bits;
6	(2) said depuncturing carried out by said first depuncturing means
7	includes inserting a middle value between two digital values corresponding to a
8	mark and a space;
9	(3) said combining by said first combining means is a process of

10	addition of a digital value to said series of depunctured data output by said first
11	depuncturing means, symbol by symbol in a unit of block; and
12	(4) said first convolutional decoding means defines Viterbi soft
13	quantization means for executing Viterbi soft decision.
1	4. The time-diversity transmission and reception system according to
2	claim 2, wherein puncturing locations in said puncturing patterns generated by
3	said first multiple puncturing pattern generation means are set in a manner not to
4	overlap among said plurality of patterns.
1	5. The time-diversity transmission and reception system according to
2	claim 2, wherein said first multiple puncturing pattern generation means
3	comprises a first reference matrix generation means for generating a reference
4	matrix for one of said puncturing patterns, and a first matrix conversion means
5	for outputting a different puncturing pattern for each diversity branch by
6	converting at least one of rows, columns and elements of said reference matrix.
1	6. The time-diversity transmission and reception system according to
2	claim 5, wherein said second multiple puncturing pattern generation means
3	comprises second reference matrix generation means having the same function as
4	said first reference matrix generation means, and second matrix conversion means
5	having the same function as said first matrix conversion means with relation to a
6	further reference matrix generated by said second reference matrix generation
7	means.
1	7. A time-diversity transmission and reception system comprising:
2	a transmission device including:
3	(1) convolutional coding means for convolution-coding input data,

4	and outputting convolution-coded data;
5	(2) first multiple puncturing pattern generation means for generating
6	puncturing patterns having an identical puncturing rate, but having respectively
7	different puncturing block patterns;
8	(3) first puncturing means for puncturing convolution-coded data
9	output by said first convolutional coding means by using each of said puncturing
10	patterns supplied by said first multiple puncturing pattern generation means, and
11	outputting punctured data;
12	(4) diversity transmission timing control means for outputting a
13	diversity transmission timing control signal for carrying out transmission for a
14	plural number of times;
15	(5) time-diversity modulation / transmission means for modulating
16	and transmitting, as diversity transmission data, said punctured data output by
17	said first puncturing means in response to said diversity transmission timing
18	control signal, and
19	a receiving device including:
20	(1) diversity reception timing control means for outputting a
21	predetermined diversity reception timing control signal for carrying out reception
22	of a signal transmitted with time diversity transmission;
23	(2) time-diversity reception / demodulation means for receiving and
24	demodulating each of the signals transmitted by said transmission device, in
25	response to said diversity reception timing control signal, and outputting
26	demodulated data;
27	(3) second multiple puncturing pattern generation means for

28	generating puncturing patterns, which are identical to the puncturing patterns
29	generated by said first multiple puncturing pattern generation means;
30	(4) first depuncturing means for depuncturing the demodulated data
31	output from said time-diversity reception / demodulation means by using the
32	puncturing patterns supplied by said second multiple puncturing pattern generation
33	means, and outputting depunctured data;
34	(5) weighting / combining means, replacing said first combining
35	means, for combining after weighting the depunctured data output by said first
	depuncturing means according to the reception level for each of every diversity
36	- ·
37	branches stored in said reception level memory means, and outputting a result of
38	combining.
39	(6) first conveolutional decoding means for convolution-decoding
40	said result of combining, and outputting decoded data,
41	wherein said time-diversity transmission and reception system
42	executes time-diversity transmission and reception of error-correction code words,
43	obtained by puncturing and convolution-coding information data with the
44	puncturing patterns
45	(7) reception level memory means for measuring a reception level at
46	every timing of diversity reception in said time-diversity reception / demodulation
47	means, and storing a result of measurement
1	8. A time-diversity transmission and reception system, comprising a
2	transmission device and a receiving device, said transmission device comprising:
3	(1) first convolutional coding means for outputting input data by
4	convolution-coding said data;

5	(2) first multiple puncturing pattern generation means for generating
6	puncturing patterns having an identical puncturing rate, but different in block
7	pattern of puncturing with one another;
8	(3) first puncturing means for puncturing convolution-coded data
9	output by said first convolutional coding means by using each of said puncturing
10	patterns supplied by said first multiple puncturing pattern generation means, and
11	outputting punctured data;
12	(4) first code division multiplex signal transmission means for
13	transmitting said punctured data by code division multiplexing simultaneously,
14	and
15	said receiving device comprising:
16	(1) first code division multiplex signal reception means for receiving
17	and demodulating a signal transmitted with said code division multiplexing, and
18	outputting multiplexed demodulated data;
19	(2) second multiple puncturing pattern generation means for
20	generating puncturing patterns, which are identical to the predetermined plural
21	form of puncturing patterns generated by said first multiple puncturing pattern
22	generation means;
23	(3) first depuncturing means for depuncturing the demodulated data
24	corresponding to the predetermined number of diversity receptions output from
25	said first code division multiplex signal reception means by using the puncturing
26	patterns supplied by said second multiple puncturing pattern generation means,
27	and outputting depunctured data;
28	(4) first combining means for combining the depunctured data output

29	by said first depuncturing means, symbol by symbol in a unit of block, and
30	outputting a result of combining; and
31	(5) first convolutional decoding means for convolution-decoding said
32	result of combining, and outputting a decoded data,
33	wherein said time-diversity transmission and reception system
34	executes code division multiplex transmission and reception of error-correction
35 `	code words obtained by puncturing and convolution-coding identical series of
36	information data with the puncturing patterns.
1	9. A transmission and reception system according to claim 1,
2	including a transmission device comprising:
3	(1) a second convolutional coding means for convolution-coding and
4	outputting said input data;
5	(2) first puncturing pattern generation means for generating a
6	puncturing pattern having an identical puncturing rate, but different in block
7	pattern from a puncturing pattern generated in any other of said plurality of
8	transmission devices;
9	(3) second puncturing means for puncturing a series of convolution-
10	coded data output by said second convolutional coding means by using the
11	puncturing pattern supplied by said first puncturing pattern generation means, and
12	outputting a series of punctured data;
13	(4) first transmission control means for outputting information of a
14	predetermined transmission timing and a predetermined transmission frequency
15	for said transmission device to execute a transmission; and
16	(5) first modulation / transmission means for modulating and

17	transmitting said series of punctured data in response to said information of
18	transmission timing and transmission frequency, and
19	and a receiving device comprising:
20	(1) first reception control means for supplying information of a
21	predetermined reception timing and a predetermined reception frequency for
22	carrying out reception of individual signals transmitted by said plurality of
23	transmission devices in said predetermined transmission timing and said
24	predetermined transmission frequency;
25	(2) first reception / demodulation means for receiving and
26	demodulating the signal transmitted by each of said transmission devices in
27	response to information of said predetermined reception timing and said
28	predetermined reception frequency supplied from said first reception control
29	means, and outputting demodulated data;
30	(3) third multiple puncturing pattern generation means for generating
31	puncturing patterns, which are identical to the individual puncturing patterns of
32	said plurality of transmission devices;
33	(4) second depuncturing means for depuncturing each of the
34	demodulated data output by said first reception / demodulation means by using a
35	puncturing pattern that is identical to the one used by said transmission device
36	among said puncturing patterns supplied from said third multiple puncturing
37	pattern generation means, and outputting depunctured data;
38	(5) second combining means for combining said depunctured data
39	output by said second depuncturing means, symbol by symbol in a unit of block,
40	and outputting a result of combining; and

41	(6) second convolutional decoding means for convolution-decoding
42	said result of combining,
43	wherein said transmission and reception system sets said
44	transmission frequencies approximately equal and selects said transmission
45	timings in a manner not to overlap among said plurality of transmission devices
46	with said first transmission control means, and executes transmissions in different
47	timings with one another by punctured-convolution-coding said information data
48	individually with different puncturing patterns when transmitting said series of
19	identical information data by said plurality of transmission devices.
1	10. The transmission and reception system according to claim 9,
2	wherein said transmission device is further comprising:
3	(1) second transmission control means, in which transmission
4	timings are set to be approximately equal and transmission frequencies are
5	selected in a such manner not to overlap among said plurality of transmission
6	devices, and said receiving device is further comprising
7	second reception control means, in which reception timings and
8	reception frequencies are set in advance to correspond with said transmission
9	timings and said transmission frequencies of said second transmission control
10	means.
1	11. The transmission and reception system according to claim 9,
2	wherein said transmission device is further comprising:
3	third transmission control means, in which both transmission timings
4	and transmission frequencies are set in advance in a such manner not to overlap
5	among said plurality of transmission devices; and said receiving device is further
6	comprising

7	third reception control means, in which reception timings and
8	reception frequencies are set in advance to correspond with said transmission
9	timings and said transmission frequencies of said third transmission control
10	means.
1	12. A transmission and reception system according to claim 1,
	•
2	including a transmission device comprising:
3	(1) a second convolutional coding means for convolution-coding and
4	outputting said input data;
5	(2) first puncturing pattern generation means for generating a
6	puncturing pattern having an identical puncturing rate, but different in block
7	pattern from a puncturing pattern generated in any other of said plurality of
8	transmission devices;
9	(3) second puncturing means for puncturing a series of convolution-
10	coded data output by said second convolutional coding means by using the
11	puncturing pattern supplied by said first puncturing pattern generation means, and
12	outputting a series of punctured data;
•	
13	(4) first transmission control means for outputting information of a
14	predetermined transmission timing and a predetermined transmission frequency
15	for said transmission device to execute a transmission; and
16	(5) first modulation / transmission means for modulating and
17	transmitting said series of punctured data in response to said information of
18	transmission timing and transmission frequency, and
19	and a receiving device comprising:

- predetermined reception timing and a predetermined reception frequency for 21 carrying out reception of individual signals transmitted by said plurality of 22 transmission devices in said predetermined transmission timing and said 23 predetermined transmission frequency; 24 25 (2) first reception / demodulation means for receiving and demodulating the signal transmitted by each of said transmission devices in 26 27 response to information of said predetermined reception timing and said predetermined reception frequency supplied from said first reception control 28 29 means, and outputting demodulated data; 30 (3) third multiple puncturing pattern generation means for generating puncturing patterns, which are identical to the individual puncturing patterns of 31 said plurality of transmission devices; 32 (4) second depuncturing means for depuncturing each of the 33 demodulated data output by said first reception / demodulation means by using a 34 35 puncturing pattern that is identical to the one used by said transmission device 36 among said puncturing patterns supplied from said third multiple puncturing pattern generation means, and outputting depunctured data; 37 38 (5) second combining means for combining said depunctured data 39 output by said second depuncturing means, symbol by symbol in a unit of block, 40 and outputting a result of combining; and 41 (6) second convolutional decoding means for convolution-decoding 42 said result of combining, 43 wherein said transmission and reception system sets said
- wherein said transmission and reception system sets said
 transmission frequencies approximately equal and selects said transmission
 timings in a manner not to overlap among said plurality of transmission devices

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

43 with said first transmission control means, and executes transmissions in different 46 timings with one another by punctured-convolution-coding said information data 47 individually with different puncturing patterns when transmitting said series of 48 identical information data by said plurality of transmission devices 49 fourth transmission control means, in which both transmission 50 51

timings and transmission frequencies are set in advance to be approximately equal among said plurality of transmission devices;

(2) said first modulation / transmission means are replaced by second code division multiplex signal transmission means for modulating and transmitting said series of punctured data output by said second puncturing means with code division multiplexing in response to information of transmission timings and transmission frequencies supplied from said fourth transmission control means;

and said receiving device is further comprising:

- (3) said first reception control means in said reception device is replaced by a fourth reception control means, in which reception timings and reception frequencies are set in advance to correspond with said transmission timings and said transmission frequencies of said fourth transmission control means; and
- (4) said first reception / demodulation means is replaced by a second code division multiplex signal reception means for receiving and demodulating a plurality of transmission signals transmitted with said code-division multiplexing by way of a despreading process according to information of said reception timings and said reception frequencies supplied from said fourth reception control means, and outputting an individual series of extracted demodulated data.

1	13. A transmission and reception system, comprising a transmission
2	device, a plurality of receiving devices for receiving a signal output by said
3	transmission device, and an output processing device for accumulating series of
4	data received in said plurality of receiving devices, said transmission device
5	comprising:
6	(1) third convolutional coding means for outputting input data by
7	convolution-coding said data;
8	(2) fourth multiple puncturing pattern generation means for
9	generating and outputting puncturing patterns having an identical puncturing rate,
10	but different in block pattern of puncturing with one another;
11	(3) third puncturing means for puncturing convolution-coded data
12	output by said third convolutional coding means by using each of said puncturing
13	patterns supplied by said fourth multiple puncturing pattern generation means, and
14	outputting punctured data;
15	(4) fifth transmission control means for outputting information of
16	transmission timing and transmission frequency for said transmission device; and
17	(5) second modulation / transmission means for modulating and
18	transmitting each of said punctured data supplied from said third puncturing
19	means in response to the information of said transmission timing and said
20	transmission frequency supplied from said fifth transmission control means,
21	each of said plurality of receiving devices comprising:
22	(1) fifth reception control means for outputting information of a
23	transmission timing and a transmission frequency for carrying out reception of
24	individual transmission signals addressed to each of said receiving devices out of a

25	plurality of signals transmitted by said transmission device in said transmission
26	timing and said transmission frequency;
27	(2) second reception / demodulation means for executing reception
28	and demodulation according to information of said reception timing and said
29	reception frequency supplied from said fifth reception control means, and
30	outputting demodulated data;
31	(3) second puncturing pattern generation means for generating a
32	puncturing pattern, which is identical to the one used in the transmission
33	addressed to each of said receiving devices out of said puncturing patterns
34	generated by said fourth multiple puncturing pattern generation means; and
35	(4) third depuncturing means for depuncturing said demodulated data
36	by using the puncturing pattern supplied by said second puncturing pattern
37	generation means, and outputting a series of depunctured data, and
38	said output processing device comprising:
39	(1) third combining means for combining said depunctured data
40	obtained by each of said plurality of receiving devices, symbol by symbol in a
41	unit of block; and
42	(2) third convolutional decoding means for convolution-decoding a
43	result of combining output by said third combining means,
44	wherein the information of said transmission timings supplied by
45	said fifth transmission control means are arranged in a such manner that said
46	individual transmissions do not overlap, and that the information of said
47	transmission frequency are approximately equal among said individual
48	transmissions.

1	14. A transmission and reception system, comprising a transmission
2	device, a plurality of receiving devices for receiving a signal output by said
3	transmission device, and an output processing device for accumulating series of
4	data received in said plurality of receiving devices, said transmission device
5	comprising:
, 6	(1) third convolutional coding means for outputting input data by
7	convolution-coding said data;
8	(2) fourth multiple puncturing pattern generation means for
9	generating and outputting puncturing patterns having an identical puncturing rate,
10	but different in block pattern of puncturing with one another;
	(2) (1: 1 for any trains convolution coded data
11	(3) third puncturing means for puncturing convolution-coded data
12	output by said third convolutional coding means by using each of said puncturing
13	patterns supplied by said fourth multiple puncturing pattern generation means, and
14	outputting punctured data;
15	(4) sixth transmission control means, in which individual
16	transmission timings are set to be approximately equal and transmission
17	frequencies are selected in a such manner not to overlap among individual
18	transmissions of a predetermined number of times, in advance; and
19	(5) second modulation / transmission means for modulating and
20	transmitting each of said punctured data supplied from said third puncturing
21	means in response to the information of said transmission timing and said
22	transmission frequency supplied from said fifth transmission control means,
23	each of said plurality of receiving devices comprising:
24	sixth reception control means, in which reception timings and

25	reception frequencies for each of said receiving devices are set in advance to
26	correspond with said transmission timings and said transmission frequencies
27	assigned for individual receiving devices in said sixth transmission control means.
28	(2) second reception / demodulation means for executing reception
29	and demodulation according to information of said reception timing and said
30	reception frequency supplied from said fifth reception control means, and
31	outputting demodulated data;
32	(3) second puncturing pattern generation means for generating a
33	puncturing pattern, which is identical to the one used in the transmission
34	addressed to each of said receiving devices out of said puncturing patterns
35	generated by said fourth multiple puncturing pattern generation means; and
36	(4) third depuncturing means for depuncturing said demodulated data
37	by using the puncturing pattern supplied by said second puncturing pattern
38	generation means, and outputting a series of depunctured data, and
39	said output processing device comprising:
40	(1) third combining means for combining said depunctured data
41	obtained by each of said plurality of receiving devices, symbol by symbol in a
42	unit of block; and
43	(2) third convolutional decoding means for convolution-decoding a
44	result of combining output by said third combining means,
45	wherein the information of said transmission timings supplied by
46	said fifth transmission control means are arranged in a such manner that said
47	individual transmissions do not overlap, and that the information of said
48	transmission frequency are approximately equal among said individual

			•	
49	transn	การ	:510	าทร
Tフ	fi amon		,0,1	,,,,,,,

	1 diameter comprising a transmission
1	15. A transmission and reception system, comprising a transmission
2	device, a plurality of receiving devices for receiving a signal output by said
3	transmission device, and an output processing device for accumulating series of
4	data received in said plurality of receiving devices, said transmission device
5	comprising:
6	(1) third convolutional coding means for outputting input data by
	convolution-coding said data;
7	Convolution-coding said data,
8	(2) fourth multiple puncturing pattern generation means for
9	generating and outputting puncturing patterns having an identical puncturing rate,
10	but different in block pattern of puncturing with one another;
11	(3) third puncturing means for puncturing convolution-coded data
12	output by said third convolutional coding means by using each of said puncturing
13	patterns supplied by said fourth multiple puncturing pattern generation means, and
14	outputting punctured data;
	(4) seventh transmission control means, in which both transmission
15 ·	
16	timings and transmission frequencies are set in advance in a such manner not to
17	overlap among individual transmissions of a predetermined number of times; and
18	(5) second modulation / transmission means for modulating and
19	transmitting each of said punctured data supplied from said third puncturing
20	means in response to the information of said transmission timing and said
21	transmission frequency supplied from said fifth transmission control means,
22	each of said plurality of receiving devices comprising:
23	(1) seventh reception control means, in which reception timings and

24	reception frequencies for each of said reception devices are set in advance to
25	correspond with said transmission timings and said transmission frequencies
26	assigned to each of said reception devices in said seventh transmission control
27	means
28	(2) second reception / demodulation means for executing reception
29	and demodulation according to information of said reception timing and said
30	reception frequency supplied from said fifth reception control means, and
31	outputting demodulated data;
32	(3) second puncturing pattern generation means for generating a
33	puncturing pattern, which is identical to the one used in the transmission
34	addressed to each of said receiving devices out of said puncturing patterns
35	generated by said fourth multiple puncturing pattern generation means; and
36	(4) third depuncturing means for depuncturing said demodulated data
37	by using the puncturing pattern supplied by said second puncturing pattern
38	generation means, and outputting a series of depunctured data, and
39	said output processing device comprising:
40	(1) third combining means for combining said depunctured data
41	obtained by each of said plurality of receiving devices, symbol by symbol in a
42	unit of block; and
43	(2) third convolutional decoding means for convolution-decoding a
44	result of combining output by said third combining means,
45	wherein the information of said transmission timings supplied by
46	said fifth transmission control means are arranged in a such manner that said
47	individual transmissions do not overlap, and that the information of said

48	transmission frequency are approximately equal among said individual
49	transmissions
1	16. A transmission and reception system, comprising a transmission
2	device, a plurality of receiving devices for receiving a signal output by said
3	transmission device, and an output processing device for accumulating series of
4	data received in said plurality of receiving devices, said transmission device
5	comprising:
6	(1) third convolutional coding means for outputting input data by
7	convolution-coding said data;
8	(2) fourth multiple puncturing pattern generation means for
9	generating and outputting puncturing patterns having an identical puncturing rate,
10	but different in block pattern of puncturing with one another;
11	(3) third puncturing means for puncturing convolution-coded data
12	output by said third convolutional coding means by using each of said puncturing
13	patterns supplied by said fourth multiple puncturing pattern generation means, and
14	outputting punctured data;
15	(4) eighth transmission control means, in which both transmission
16	timings and transmission frequencies are set to be approximately equal among
17	individual transmissions of a predetermined number of times;
18	(5) third code division multiplex signal transmission means for
19	modulating and transmitting said punctured data with code division multiplexing
20	in response to information of transmission timings and transmission frequencies
21	supplied from said eighth transmission control means;
22	each of said plurality of receiving devices comprising:

23	(1) eighth reception control means, in which reception thinning and
24	reception frequency for each of said reception devices are set to correspond with
25	said transmission timings and said transmission frequencies of said eighth
26	transmission control means; and
27	(2) third code division multiplex signal reception means for
28	receiving and demodulating said signals transmitted with code-division
29	multiplexing by extracting only a signal addressed to each of said receiving
30	devices according to information of the reception timings and the reception
31	frequencies supplied from said eighth reception control means, and outputting
32	demodulated data.
33	(3) second puncturing pattern generation means for generating a
34	puncturing pattern, which is identical to the one used in the transmission
35	addressed to each of said receiving devices out of said puncturing patterns
36	generated by said fourth multiple puncturing pattern generation means; and
37	(4) third depuncturing means for depuncturing said demodulated data
38	by using the puncturing pattern supplied by said second puncturing pattern
39	generation means, and outputting a series of depunctured data, and
	generation means, and outputting a series of depunctured data, and
40	said output processing device comprising:
41	(1) third combining means for combining said depunctured data
42	obtained by each of said plurality of receiving devices, symbol by symbol in a
43	unit of block; and
44	(2) third convolutional decoding means for convolution-decoding a
	-
45	result of combining output by said third combining means,
46	wherein the information of said transmission timings supplied by

reception device comprising:

20

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
47	said fifth transmission control means are arranged in a such manner that said
48	individual transmissions do not overlap, and that the information of said
49	transmission frequency are approximately equal among said individual
50	transmissions:
1	17. A transmission and reception system further comprising a
2	transmission earth station, a receiving earth station, and a plurality of satellite
3	repeater stations, wherein communication is made from said transmission earth
4	station to said receiving earth station via said plurality of satellite repeater
5	stations, said transmission earth station being provided with an earth station
6	transmission device comprising:
7	(1) fourth convolutional coding means for outputting input data by
8	convolution-coding said data;
9	(2) fifth multiple puncturing pattern generation means for generating
10	puncturing patterns having an identical puncturing rate, but different in block
11	pattern of puncturing with one another;
12	(3) fourth puncturing means for puncturing convolution-coded data
13	output by said fourth convolutional coding means by using each of said puncturing
14	patterns supplied by said fifth multiple puncturing pattern generation means, and
15	outputting punctured data; and
16	(4) earth station modulation / transmission means for transmitting
17	each of said punctured data output by said fourth puncturing means to said
18	plurality of satellite repeater stations, one series of data after another, and
19	said receiving earth station being provided with an earth station

21	(1) earth station reception / demodulation means for receiving
22	individual signals transmitted from said transmission earth station via said
23	plurality of satellite repeater stations, and outputting of demodulated data;
24	(2) sixth multiple puncturing pattern generation means for generating
25	puncturing patterns, which are identical to the puncturing patterns of said fifth
26	multiple puncturing pattern generation means;
27	(3) fourth depuncturing means for depuncturing each of said
28	demodulated data output from said earth station reception / demodulation means
29	by using each of said puncturing patterns supplied by said sixth multiple
30	puncturing pattern generation means, and outputting the depunctured data;
31	(4) fourth combining means for combining the depunctured data
32	output by said fourth depuncturing means, symbol by symbol in a unit of block,
33	and outputting a result of combining; and
34	(5) fourth convolutional decoding means for convolution-decoding
35	said result of combining output by said fourth combining means, and outputting a
36	decoded data,
37	wherein said satellite-path diversity transmission and reception
38	system punctured-convolution-codes identical series of information data with
39	different forms of puncturing patterns, and executes path-diversity transmission
40	and reception of an obtained plurality of different series of error-correction code
41	word, as individual diversity branch data via said plurality of satellite repeater
42	stations.
1	18. A transmission and reception system further comprising a
2	plurality of earth stations and a plurality of satellite repeater stations, wherein said
3	plurality of earth stations communicate with one another via said plurality of

4	satellite repeater stations, and each of said plurality of earth stations comprises an
5	earth station transmission device comprising:
6	(1) fourth convolutional coding means for outputting input data by
7	convolution-coding said data;
8	(2) fifth multiple puncturing pattern generation means for generating
9	puncturing patterns having an identical puncturing rate, but different in block
10	pattern of puncturing with one another;
11	(3) fourth puncturing means for puncturing convolution-coded data
12	output by said fourth convolutional coding means by using each of said puncturing
13	patterns supplied by said fifth multiple puncturing pattern generation means, and
14	outputting punctured data; and
15	(4) earth station modulation / transmission means for transmitting
16	each of said punctured data output by said fourth puncturing means to said
17	plurality of satellite repeater stations, one series of data after another, and
18	an earth station reception device comprising:
19	(1) earth station reception / demodulation means for receiving
20	individual signals transmitted from said transmission earth station via said
21	plurality of satellite repeater stations, and outputting of demodulated data;
22	(2) sixth multiple puncturing pattern generation means for generating
23	puncturing patterns, which are identical to the puncturing patterns of said fifth
24	multiple puncturing pattern generation means;
25	(3) fourth depuncturing means for depuncturing each of said
26	demodulated data output from said earth station reception / demodulation means
27	by using each of said puncturing patterns supplied by said sixth multiple

28	puncturing pattern generation means, and outputting the depunctured data;
29	(4) fourth combining means for combining the depunctured data
30	output by said fourth depuncturing means, symbol by symbol in a unit of block,
31	and outputting a result of combining; and
32	(5) fourth convolutional decoding means for convolution-decoding
33	said result of combining output by said fourth combining means, and outputting a
34	decoded data,
35	wherein said satellite-path diversity transmission and reception
36	system punctured-convolution-codes identical series of information data with
37	different forms of puncturing patterns, and executes path-diversity transmission
38	and reception of an obtained plurality of different series of error-correction code
39	word, as individual diversity branch data via said plurality of satellite repeater
40	stations.
1	19. A transmission device comprising:
2	(1) convolutional coding means for convolution-coding input data,
3 -	and outputting convolution-coded data;
4	(2) a puncturing means for puncturing said series of convolution-
5	coded data using puncturing patterns, and outputting punctured data; and
6	(3) modulation / transmission means for modulating and transmitting
7	said punctured data.
1	20. A receiving device comprising:
2	(1) reception / demodulation means for receiving and demodulating
3	a signal transmitted by a transmission source via a communication pathway, and

4	outputting demodulated data;
5	(2) depuncturing means for depuncturing said demodulated data
6	using puncturing patterns that are identical to what have been used by said
7	transmission source, and outputting a plural variety of series of depunctured data;
8	(3) combining means for combining said depunctured data, and
9	outputting a result of combining; and
10	(4) convolutional decoding means for convolution-decoding said
11	result of combining, and outputting a decoded data.
1	21. A transmission and reception device comprising a transmitter
2	and a receiver, said transmitter comprising:
3	(1) convolutional coding means for convolution-coding input data,
4	and outputting convolution-coded data;
5	(2) puncturing means for puncturing said series of convolution-coded
6	data by using puncturing patterns, and outputting punctured data; and
7	(3) modulation / transmission means for modulating and transmitting
8	said punctured data, and
9	said receiver comprising:
10	(1) reception / demodulation means for receiving and demodulating
11	a signal transmitted by a transmission source via a communication pathway, and
12	outputting demodulated data;
13	(2) depuncturing means for depuncturing said demodulated data
14	using puncturing patterns that are identical to what have been used by said
1 =	transmission source, and outputting denunctured data:

16	(3) combining means for combining said depunctured data, and
17	outputting a result of combining; and
18	(4) convolutional decoding means for convolution-decoding said
19	result of combining, and outputting decoded data.
1	22. A method of transmission and/or reception comprising at least
2	one of a process (a) and a process (b), said process (a) comprising the steps of:
3	(1) convolution-coding input data, and outputting convolution-coded
4	data;
5	(2) puncturing said convolution-coded data by using puncturing
6	patterns, and outputting punctured data; and
7	(3) modulating and transmitting said of punctured data via at least
8	one communication pathway, and
9	said process (b) comprising the steps of:
10	(1) receiving and demodulating a signal transmitted via said
11	communication pathway, and outputting demodulated data;
12	(2) depuncturing said demodulated data by using puncturing pattern
13	that are identical to said puncturing patterns used in said step of puncturing, and
14	outputting depunctured data;
15	(3) combining said depunctured data, and outputting a result of
16	combining; and
17	(4) convolution-decoding said result of combining, and outputting
18	decoded data.

1	23. A transmission and reception system according to claim 1,
2	wherein said depuncturing means uses puncturing patterns which are used by said
3	puncturing means.
1	24. The transmission and reception system according to claim 9,
2	wherein said transmission device is further comprising:
3	(1) first reception control means for supplying information of a
4	predetermined reception timing and a predetermined reception frequency for
5	carrying out reception of individual signals transmitted by said plurality of
6	transmission devices in said predetermined transmission timing and said
7	predetermined transmission frequency;
8	and said receiving device is further comprising:
9	(2) first reception / demodulation means for receiving and
10	demodulating the signal transmitted by each of said transmission devices in
11	response to information of said predetermined reception timing and said
12	predetermined reception frequency supplied from said first reception control
13	means, and outputting demodulated data.