Introduzione all'Intelligenza Artificiale

Progetto di Marco Costato (866373)

Esercizio 2

M veicoli occupano caselle da (1,1) a (n,1) (cioè la riga inferiore) di un n×n griglia. I veicoli devono essere spostati nella fila superiore ma in ordine inverso; quindi il veicolo i che inizia in (i,1) deve finire in (n-i+1,n). Ad ogni passo temporale, ognuno degli M veicoli può muoversi di una casella in alto, in basso, a sinistra o a destra o rimanere fermi; ma se un veicolo rimane fermo, un altro veicolo adiacente (ma non più di uno) può saltarci sopra e fare uno spostamento maggiore. Due veicoli non possono occupare la stessa casella.

Rispondere alle seguenti domande:

Calcolare la dimensione dello spazio degli stati in funzione di n e M.

Calcolare il fattore di ramificazione in funzione di n e M.

Definire un'euristica ammissibile focalizzata sul singolo obiettivo.

Costruire un euristica complessiva combinando quelle dei singoli veicoli

Implementare un programma che risolva questo problema usando almeno tre diversi algoritmi di ricerca.

Spazio degli stati

Dati:

n = numero di caselle per ogni riga/colonna

M = numero di veicoli sul "tabellone"

Prendiamo il caso n = 3, M = 1: il veicolo può trovarsi, in un momento qualsiasi, in uno di 9 stati:

Spazio degli stati

Per n = 3 e M = 1, lo spazio degli stati ha quindi cardinalità = 9.

Introducendo un secondo veicolo, per ogni stato precedente, si aggiungono 8 stati in cui il secondo veicolo può trovarsi, portando la cardinalità dello spazio degli stati = $(3^2)!/((3^2-2)!)$ = 9 x 8 = 72

In funzione di n e M, la cardinalità dello spazio degli stati è:

$$\frac{n^2!}{(n^2-M)!}$$

Fattore di ramificazione

Prendiamo il caso n=5 M=1. Dato uno stato, il veicolo può muoversi in 4 direzioni oppure rimanere nel suo stato iniziale:

Fattore di ramificazione

Portando M = 2, il secondo veicolo può anch'esso eseguire 5 "mosse" indipendentemente dalla mossa svolta dall'altro veicolo. Potendo muovere/non muovere più di un veicolo alla volta, da uno stato iniziale si possono raggiungere 5^2 = 25 stati differenti. Il fattore di ramificazione in funzione di M è:

Fattore di ramificazione

IMPORTANTE!

Il fattore di ramificazione 5^M è il fattore MASSIMO. A seconda dello stato iniziale e dei movimenti dei veicoli, un veicolo potrebbe avere meno di 5 opzioni.

Obiettivo singolo:

Consideriamo il seguente caso:

L'obiettivo è raggiungibile in 4 mosse:

A primo sguardo, la distanza di Manhattan sembrerebbe un'euristica ammissibile:

$$E = |x_1 - x_2| + |y_1 - y_2|$$

Consideriamo ora quest'esempio:

L'obiettivo (individuale) è raggiungibile in 2 mosse!

La distanza di Manhattan non è quindi un euristica ammissibile!

Come si è visto, un veicolo può raggiungere l'obiettivo nella metà delle mosse previste con la distanza di Manhattan. Un' euristica ammissibile è dunque la metà della distanza di Manhattan (arrotondato all'intero inferiore):

$$E = \frac{|x_{i1} - x_{i2}| + |y_{i1} - y_{i2}|}{2}$$

Un'euristica complessiva per uno stato può essere ottenuta sommando le euristiche dei singoli M veicoli:

$$E_C = \sum_{i=1}^{M} \frac{|x_{i1} - x_{i2}| + |y_{i1} - y_{i2}|}{2}$$