CAB431 Tutorial (Week 5): IR models Solution

Task 1. Solution (discussion points):

There are lots of variant formulations and combinations! Whatever formulation is used, the unit-length-normalized TF*IDF scores are the precomputed and stored, so that similarity comparison is just a dot product.

Term Frequency (tf):

The term frequency tf in tf*idf can be the raw term frequency $f_{d,t}$ (the number of term t's appearance in document d). However, a term that occurs 10 times is not generally 10 times as important as a term that occurs once. Therefore, an alternative formulation of the tf in a document d can be:

$$1 + \log(f_{t,d})$$

Inverse Document Frequency (idf):

If N is the number of documents in a given document collection C (or a dataset), and df_t is the number of documents that contain term t. Then the idf of term t in a collection C is defined as:

$$idf_t = log \frac{N}{df_t}$$

For example, suppose C includes 10 documents, and a word "tutorial" appears in three documents. Then, mathematically, its Inverse-Document Frequency, $idf_i = \log(10/3)$.

Smoothing and Document-Length-Normalized version:

$$tfidf(t, d) = \frac{(1 + \log(f_{t,d})) \cdot \log \frac{N}{df_t}}{\sqrt{\sum_{i=1}^{T} \left[(1 + \log(f_{i,d})) \cdot \log \frac{N}{df_i} \right]^2}}$$

where N = |C|, and T is the total number of terms in collection C.

Task 2. Solution

	Term1	Term2	Term3	Term4	Term5
D1	3	0	0	5	7
D2	5	3	4	6	0
D3	0	0	5	4	6
D4	9	0	0	1	2
D5	0	1	0	3	2
D6	3	0	2	4	4
df	4	2	3	6	5

Task 4. Solution

	Relevant	Non-relevant		Total
$d_1 = 1$	$r_i = 3$	n_i - r_i =	1	$n_i = 4$
$d_1 = 0$	$R-r_i=0$	$(N-R)-(n_i-r_i) = N-n_i-R+r_i=$	3	N - $n_i = 3$
Total	R = 3	N- R =	4	N = 7

	Relevant	Non-relevant	Total
$d_2 = 1$	$r_i = 0$	$n_i - r_i = 4$	$n_i = 4$
$d_2 = 0$	R - $r_i = 3$	N - $n_i - R + r_i = 0$	N - $n_i = 3$
Total	R = 3	N-R = 4	N = 7

	Relevant	Non-relevant	Total
$d_3 = 1$	$r_i = 2$	$n_i - r_i = 1$	$n_i = 3$
$d_3 = 0$	R - $r_i = 1$	N - $n_i - R + r_i = 3$	N - $n_i = 4$
Total	R = 3	N-R = 4	N=7