# ECE 310: Problem Set 5: Problems and Solutions Linear and shift invariant systems; Convolution; Impulse response

**Due:** Wednesday February 26 at 6 p.m. **Reading:** 310 Course Notes Ch 3.3–3.9

Version: 1.2

### 1. [System properties]

Determine if the systems characterized by the following relations are, with respect to the input,

(i) linear or non-linear (ii) causal or non-causal (iii) shift-invariant or shift-varying

Assume that the input is zero before n = 0 and that the initial conditions of the systems are all set to zero. **Justify** your answers with proofs or counter-examples.

(a) 
$$y[n] = y[n-3] + x[n] + 5x[n-2]$$

Solution: The system is linear. Assume that

$$y_1[n] = y_1[n-3] + x_1[n] + 5x_1[n-2]$$

and

$$y_2[n] = y_2[n-3] + x_2[n] + 5x_2[n-2].$$

If the input is  $x_3[n] = a_1x_1[n] + a_2x_2[n]$  ( $a_1$  and  $a_2$  are real numbers), then the output is given by

$$y_3[n] = y_3[n-3] + (a_1x_1[n] + a_2x_2[n]) + 5(a_1x_1[n-2] + a_2x_2[n-2]).$$

We also know that

$$(a_1y_1[n] + a_2y_2[n]) = (a_1y_1[n-3] + a_2y_2[n-3]) + (a_1x_1[n] + a_2x_2[n]) + 5(a_1x_1[n-2] + a_2x_2[n-2]).$$

Hence  $y_3[n] = a_1y_1[n] + a_2y_2[n]$ .

The system is causal. y[n] depends only on  $x[m], m \leq n$ .

The system is shift-invariant. If the input is  $x_0[n] = x[n - n_0]$ , then the output is given by  $y_0[n] = y_0[n - 3] + x[n - n_0] + 5x[n - n_0 - 2]$ . We also know that  $y[n - n_0] = y[n - n_0 - 3] + x[n - n_0] + 5x[n - n_0 - 2]$ . Hence  $y_0[n] = y[n - n_0]$ .

(b) 
$$y[n-1] = x[|n|] - 2y[n]$$

Solution: The system is linear. Assume that

$$y_1[n-1] = x_1[|n|] - 2y_1[n]$$

and

$$y_2[n-1] = x_2[|n|] - 2y_2[n],$$

then

$$(a_1y_1[n-1] + a_2y_2[n-1]) = (a_1x_1[|n|] + a_2x_2[|n|]) - 2(a_1y_1[n] + a_2y_2[n])$$

for all real numbers  $a_1$  and  $a_2$ . If the input is  $x_3[n] = a_1x_1[n] + a_2x_2[n]$ , the output  $y_3[n]$  is given by

$$y_3[n-1] = (a_1x_1[|n|] + a_2x_2[|n|]) - 2y_3[n].$$

Hence  $y_3[n] = a_1y_1[n] + a_2y_2[n]$ .

The system is non-causal.  $y[n] = -\frac{1}{2}y[n-1] + \frac{1}{2}x[|n|]$ , hence  $y[-1] = -\frac{1}{2}y[-2] + \frac{1}{2}x[1]$  depends on x[1].

The system is shift-varying. Counter example: Let  $x_1[n] = \delta[n]$ ,

$$y_1[n] = \frac{1}{2}(-\frac{1}{2})^n u[n].$$

Let  $x_2[n] = x_1[n-1] = \delta[n-1]$ , then

$$y_2[n] = \frac{1}{2}(-\frac{1}{2})^{n+1}u[n+1] + \frac{1}{2}(-\frac{1}{2})^{n-1}u[n-1].$$

Hence  $y_2[0] = -\frac{1}{4} \neq 0 = y_1[0-1]$ . Also, let  $x_3[n] = x_1[n+1] = \delta[n+1]$ , then  $y_3[n] = 0$ . Hence  $y_3[0] = 0 \neq -\frac{1}{4} = y_1[0+1]$ .

(c)  $y[n-1] = \cos\left(\frac{\pi}{3n}\right)x[n-1] + \sqrt{2}x[n] - 3y[n]$ 

Solution: The system can also be described by

$$y[n] = -\frac{1}{3}y[n-1] + \frac{1}{3}\cos\left(\frac{\pi}{3n}\right)x[n-1] + \frac{\sqrt{2}}{3}x[n].$$

The system is linear. Assume that

$$y_1[n] = -\frac{1}{3}y_1[n-1] + \frac{1}{3}\cos\left(\frac{\pi}{3n}\right)x_1[n-1] + \frac{\sqrt{2}}{3}x_1[n]$$

and

$$y_2[n] = -\frac{1}{3}y_2[n-1] + \frac{1}{3}\cos\left(\frac{\pi}{3n}\right)x_2[n-1] + \frac{\sqrt{2}}{3}x_2[n],$$

then  $(a_1y_1[n] + a_2y_2[n]) = -\frac{1}{3}(a_1y_1[n-1] + a_2y_2[n-1]) + \frac{1}{3}\cos\left(\frac{\pi}{3n}\right)(a_1x_1[n-1] + a_2x_2[n-1]) + \frac{\sqrt{2}}{3}(a_1x_1[n] + a_2x_2[n])$  for all real numbers  $a_1$  and  $a_2$ . If the input is  $x_3[n] = a_1x_1[n] + a_2x_2[n]$ , the output  $y_3[n]$  is given by

$$y_3[n] = -\frac{1}{3}y_3[n-1] + \frac{1}{3}\cos\left(\frac{\pi}{3n}\right)(a_1x_1[n-1] + a_2x_2[n-1]) + \frac{\sqrt{2}}{3}(a_1x_1[n] + a_2x_2[n]).$$

Hence  $y_3[n] = a_1y_1[n] + a_2y_2[n]$ .

The system is causal. If the system is implemented using  $y[n] = -\frac{1}{3}y[n-1] + \frac{1}{3}\cos\left(\frac{\pi}{3n}\right)x[n-1] + \frac{\sqrt{2}}{3}x[n]$ , then y[n] depends only on  $x[m], m \le n$ .

The system is shift-varying. If the input is  $x_0[n] = x[n - n_0]$ , then the output is given by

$$y_0[n] = -\frac{1}{3}y_0[n-1] + \frac{1}{3}\cos\left(\frac{\pi}{3n}\right)x_0[n-1] + \frac{\sqrt{2}}{3}x_0[n]$$
$$= -\frac{1}{3}y_0[n-1] + \frac{1}{3}\cos\left(\frac{\pi}{3n}\right)x[n-n_0-1] + \frac{\sqrt{2}}{3}x[n-n_0].$$

However,

$$y[n-n_0] = -\frac{1}{3}y[n-n_0-1] + \frac{1}{3}\cos\left(\frac{\pi}{3(n-n_0)}\right)x[n-n_0-1] + \frac{\sqrt{2}}{3}x[n-n_0].$$

Hence  $y_0[n] \neq y[n-n_0]$ .

## 2. [System properties]

Determine if the following systems are

(i) linear or non-linear (ii) causal or non-causal (iii) shift-invariant or shift-varying

Assume that the input is zero before n=0 and that the initial conditions of the systems are all set to zero. Justification is **not** needed.

Note: L - Linear, NL - Non-linear, C - Causal, NC - Non-causal, SI - Shift-invariant, SV -Shift-varying.

(a)  $y[n-2] = x^2[n] + 3y[n]$ 

Solution: NL.C.SI

(b) y[n] = x[-n+2]

Solution: L.NC.SV

(c)  $y[n] = \left(\frac{1}{4}\right)^{|n|} x[n]$ 

Solution: L.C.SV

(d)  $y[n] = \sum_{m=-\infty}^{n+1} x[m]$ 

Solution: L,NC,SI

(e)  $y[n] = \frac{x[n]}{x[2]}$ Solution: NL,NC,SV

(f)  $y[n-1] = x[n-1] + \tan(4)x[n] - \cos(0.4\pi n)y[n]$ 

Solution: L,C,SV

(g) y[n] = x[12n]

Solution: L,NC,SV

# 3. [Graphical convolution]

Let  $x[n] = 3\delta[n] + 2\delta[n-1] + \delta[n-2]$  and  $h[n] = 4\delta[n] + \delta[n-2] - 2\delta[n-3] + 3\delta[n-4]$ . Compute the convolution

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

by the following steps.

(a) First determine the values of n for which y[n] is non-zero.

**Solution:** The length of x is 3. The length of h is 5. Hence the length of their convolution is 3+5-1=7. The values of n for which y[n] is non-zero are 0,1,2,...,6.

(b) Now plot h[n-k] vs. k for each value of n that you determined in part (a) above.

**Solution:** We plot h[-k] vs. k, h[1-k] vs. k, etc. (figure 1)

(c) Now, determine y[n] by multiplying x[k] by h[n-k] and summing the result for each value of n.

**Solution:** Given x[k] and h[n-k] depicted in figure 1, for n=0,1,2...,6, we have that  $y[0] = 3 \times 4 = 12.$ 

 $y[1] = 3 \times 0 + 2 \times 4 = 8.$ 

 $y[2] = 3 \times 1 + 2 \times 0 + 1 \times 4 = 7.$ 

 $y[3] = 3 \times (-2) + 2 \times 1 + 1 \times 0 = -4.$ 



Figure 1: Problem 3

$$y[4] = 3 \times 3 + 2 \times (-2) + 1 \times 1 = 6.$$
  
 $y[0] = 2 \times 3 + 1 \times (-2) = 4.$   
 $y[0] = 1 \times 3 = 3.$ 

4. [Discrete convolution]

Let  $x[n] = (0.9)^n u[n]$ ,  $h[n] = (0.7)^n u[n]$ , w[n] = u[n] - u[n - 10], find the discrete-time convolution of the following:

(a)  $y_1[n] = x[n] * h[n]$ Solution:

 $y[n] = \sum_{k=-\infty}^{\infty} h[n-k]x[k]$  $= (0.7)^n \sum_{k=0}^n (0.7)^{-k} (0.9)^k u[n]$  $= (0.7)^n \frac{1 - \left(\frac{.9}{.7}\right)^{n+1}}{1 - \left(\frac{.9}{.7}\right)} u[n]$ 

 $=(4.5(0.9)^n - 3.5(0.7)^n)u[n]$ 

(b)  $y_2[n] = x[n] * w[n]$ 

Solution:

$$y_{2}[n] = \sum_{k=-\infty}^{\infty} x[n-k]w[k]$$

$$= (0.9)^{n} \sum_{k=0}^{9} (0.9)^{-k}u[n-k]$$

$$= \begin{cases} 0, & n < 0 \\ (0.9)^{n} \sum_{k=0}^{n} (0.9)^{-k}, & 0 \le n \le 9 = \\ (0.9)^{n} \sum_{k=0}^{9} (0.9)^{-k}, & n \ge 10 \end{cases}$$

$$\begin{cases} 0, & n < 0 \\ (0.9)^{n} \frac{1-0.9^{-(n+1)}}{1-0.9^{-1}}, & 0 \le n \le 9 \\ (0.9)^{n} \frac{1-0.9^{-10}}{1-0.9^{-1}}, & n \ge 10 \end{cases}$$

$$= \begin{cases} 0, & n < 0 \\ 10(1-(0.9)^{n+1}), & 0 \le n \le 9 \\ 10(0.9)^{n-9}(1-(0.9)^{10}), & n \ge 10 \end{cases}$$

(c) y[n] = x[n] \* v[n], where  $v[n] = \frac{1}{5}h[n-1] + \frac{1}{10}w[n+9]$ **Solution:** First, notice that:

$$y[n] = x[n] * v[n] = \frac{1}{5}(x[n] * h[n-1]) + \frac{1}{10}(x[n] * w[n+9]) = \frac{1}{5}y_1[n-1] + \frac{1}{10}y_2[n+9]$$

Second, substitution and appropriately modifying (shift and scale) the results from part (a) and (b) to

$$\frac{1}{5}y_2[n-1] = \begin{cases} 0, & n < 1\\ 0.9^n - 0.7^n, & n \ge 1 \end{cases}$$

$$\frac{1}{10}y_2[n+9] = \begin{cases} 0, & n < -9\\ (1 - 0.9^{n+10}), & -9 \le n \le 0\\ (0.9)^n (1 - (0.9)^{10}), & n \ge 1 \end{cases}$$

Combinding the two results together gives:

$$y[n] = \begin{cases} 0, & n < -9 \\ 1 - (0.9)^{n+10}, & -9 \le n \le 0, \\ 0.9^n - 0.7^n + (0.9)^n (1 - 0.9^{10}), & n \ge 1 \end{cases}$$
$$y[n] = \begin{cases} 0, & n < -9 \\ 1 - (0.9)^{n+10}, & -9 \le n \le 0, \\ 0.9^n (2 - (0.9)^{10}) - 0.7^n & n \ge 1 \end{cases}$$

(d) 
$$y_0[n] = s[n] * t[n]$$
, where  $s[n] = x[n-3]$  and  $t[n] = h[n+1]$   
Solution: 
$$y_0[n] = s[n] * t[n] = x[n-3] * h[n+1] = y_1[n-3+1] = y_1[n-2]$$

$$5((0.9)^{n-1} - (0.7)^{n-1})u[n-2] = \begin{cases} 0, & n < 2 \\ 5((0.9)^{n-1} - 0.7^{n-1}), & n \ge 2 \end{cases}$$

*Hint*: For parts (c) and (d), there is an easier way to compute the discrete-time convolution than using the convolution sum directly.

#### 5. [Unit-pule response]

Assume that the zero-state response of a linear shift-invariant (LSI) system to the input  $x[n] = 4^{-n}u[n]$  is  $y[n] = \left(\frac{1}{5}\right)^n u[n]$ . Use the system properties of linearity and shift-invariance to find the system's response h[n] to a unit pulse input  $(x[n] = \delta[n])$ , which is also called the unit-pulse response or impulse response of a discrete-time system.

#### **Solution:**

#### Time-domain method:

• Due to shift-invariance, for the input

$$x_1[n] = x[n-1] = 4^{-(n-1)}u[n-1] = 4 \times 4^{-n}u[n-1],$$

the response is

$$y_1[n] = y[n-1] = \left(\frac{1}{5}\right)^{(n-1)} u[n-1].$$

• Due to linearity (homogeneity), for the input

$$x_2[n] = \frac{1}{4}x_1[n] = 4^{-n}u[n-1],$$

the response is

$$y_2[n] = \frac{1}{4}y_1[n] = \frac{1}{4}\left(\frac{1}{5}\right)^{(n-1)}u[n-1].$$

• Due to linearity, for the input

$$x_3[n] = x[n] - x_2[n] = \delta[n],$$

the response is

$$y_3[n] = y[n] - y_2[n] = \left(\frac{1}{5}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{5}\right)^{(n-1)} u[n-1]$$

Hence, impulse response

$$h[n] = y_3[n] = \left(\frac{1}{5}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{5}\right)^{(n-1)} u[n-1]$$

$$= \left(\frac{1}{5}\right)^n u[n] - \frac{5}{4} \left(\frac{1}{5}\right)^n u[n-1]$$

$$= \delta[n] - \frac{1}{4} \left(\frac{1}{5}\right)^n u[n-1]$$

$$= \frac{5}{4} \delta[n] - \frac{1}{4} \left(\frac{1}{5}\right)^n u[n].$$

### Frequency-domain method:

For LSI system, y[n] = x[n] \* h[n]. In frequency domain, the DTFTs have the following relation:

$$Y_d(\omega) = X_d(\omega)H_d(\omega)$$

The DTFT of the input is  $X_d(\omega) = \frac{1}{1 - e^{-j\omega}/4}$ . The DTFT of the output is  $Y_d(\omega) = \frac{1}{1 - e^{-j\omega}/5}$ . Hence the DTFT of the impulse response is

$$H_d(\omega) = \frac{Y_d(\omega)}{X_d(\omega)} = \frac{1 - e^{-j\omega}/4}{1 - e^{-j\omega}/5} = \frac{1}{1 - e^{-j\omega}/5} - \frac{1}{4} \frac{1}{1 - e^{-j\omega}/5} e^{-j\omega}.$$

The impulse response h[n] is the inverse DTFT of the  $H_d(\omega)$ , which is

$$h[n] = \left(\frac{1}{5}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{5}\right)^{(n-1)} u[n-1].$$

## 6. [Difference equations and unit-pulse response]

Given a causal, linear shift-invariant system characterized by

$$y[n] - \frac{1}{4}y[n-1] = 4x[n] + 3x[n-1],$$

find the impulse response h[n] (i.e., determine y[n] when  $x[n] = \delta[n]$ ). Solution: Setting  $x[n] = \delta[n]$ ,

$$h[n] - \frac{1}{4}h[n-1] = 4\delta[n] + 3\delta[n-1]$$

Also, since the system is causal, h[n] = 0 for n < 0.

1. 
$$n = 0$$
:  $h[0] - \frac{1}{4}h[-1] = 4 \Rightarrow h[0] = 4$ 

2. 
$$n = 1$$
:  $h[1] - \frac{1}{4}h[0] = 3 \Rightarrow h[1] = 4$ 

3. 
$$n \ge 2$$
:  $h[n] - \frac{1}{4}h[n-1] = 0 \Rightarrow z - \frac{1}{4} = 0 \Rightarrow z = \frac{1}{4}$   
  $\Rightarrow h[n] = C(\frac{1}{4})^n, n \ge 2$ 

Therefore,

$$h[n] = \begin{cases} 4, & n = 0\\ 16\left(\frac{1}{4}\right)^n, & n \ge 1 \end{cases}$$

$$h[n] = -12\delta[n] + 16\left(\frac{1}{4}\right)^n u[n]$$

Note: Frequency-domain method. Take the DTFT of the equation  $y[n] - \frac{1}{4}y[n-1] = 4x[n] + 3x[n-1]$ ,

$$Y_d(\omega)(1 - \frac{1}{4}e^{-j\omega}) = X_d(\omega)(4 + 3e^{-j\omega}).$$

This is a LSI system,

$$H_d(\omega) = \frac{Y_d(\omega)}{X_d(\omega)} = \frac{4 + 3e^{-j\omega}}{1 - \frac{1}{4}e^{-j\omega}}.$$

Take the Inverse DTFT, we have that

$$h[n] = 4\left(\frac{1}{4}\right)^n u[n] + 3\left(\frac{1}{4}\right)^{n-1} u[n-1] = -12\delta[n] + 16\left(\frac{1}{4}\right)^n u[n].$$