# **Enhancing NHL Salary Evaluation through Dimensionality Reduction**

Raphaël Fontaine McGill University Montreal, Canada raphael.fontaine@mail.mcgill.ca

### **Case Studies**

```
In [1]: import common
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

In [2]: original_df = common.load_dataset(preprocess=False)

   df = common.preprocess_dataset(original_df)

# Split features and label
   X_data, y_data = common.split_dataset(df)
```

# **Brendan Gallagher**

term: 6yrs cap hit: \$3.75M seasons: 2015-2021

#### Out[3]:

|                     | R2       | MAE       | Top-100 MAE | Top-50 MAE | SMAPE  | Train time (sec) |
|---------------------|----------|-----------|-------------|------------|--------|------------------|
| Model               |          |           |             |            |        |                  |
| Linear Regression   | -23.0005 | 931,713   | 931,713     | 931,713    | 0.2494 | 0.50             |
| Random Forest       | -35.4415 | 1,090,176 | 1,090,176   | 1,090,176  | 0.2297 | 8.12             |
| Support Vector      | -10.7066 | 672,323   | 672,323     | 672,323    | 0.1559 | 6.61             |
| K-Nearest Neighbors | -22.4009 | 836,157   | 836,157     | 836,157    | 0.1797 | 0.03             |

```
In [4]: # Use SVM prediction as the base model
        salary_evaluation = predictions[2]
        seasons = player_seasons["season"].astype(str)
        adjusted_salary = player_seasons["adjustedSalary"]
        salary = player_seasons["salary"]
        # Plot the results
        plt.plot(seasons, salary_evaluation, label="Predicted", marker="o")
        plt.plot(seasons, adjusted_salary, label="Adjusted Salary", marker="o")
        plt.plot(seasons, salary, label="Salary", marker="o")
        plt.gca().yaxis.set_major_formatter(common.get_mformatter(2))
        plt.xlabel("Season")
        plt.ylabel("Salary")
        plt.title("Salary Prediction")
        plt.legend()
        plt.grid()
        plt.show()
        # Plot the error by season
        error = salary evaluation - adjusted salary
        plt.plot(seasons, error, marker="o")
        plt.gca().yaxis.set_major_formatter(common.get_mformatter(2))
        plt.xlabel("Season")
        plt.ylabel("Error")
        plt.title("Prediction Error")
        plt.grid()
        plt.show()
```





## **Zach Hyman**

term: 6yrs cap hit: \$3.75M seasons: 2017-2020

term: 7yrs cap hit: \$5.50M seasons: 2021-2028

#### Baseline

#### Out[5]:

|         |               | R2      | MAE       | Top-100 MAE | Top-50 MAE | SMAPE  | Train time (sec) |
|---------|---------------|---------|-----------|-------------|------------|--------|------------------|
|         | Model         |         |           |             |            |        |                  |
| Linea   | r Regression  | 0.0976  | 1,276,427 | 1,276,427   | 1,276,427  | 0.3206 | 1.29             |
| Ra      | andom Forest  | -0.6810 | 1,813,310 | 1,813,310   | 1,813,310  | 0.4139 | 7.99             |
| Sı      | upport Vector | 0.5366  | 945,722   | 945,722     | 945,722    | 0.2737 | 7.33             |
| K-Neare | est Neighbors | -0.2359 | 1,458,428 | 1,458,428   | 1,458,428  | 0.3331 | 0.03             |

```
In [6]: # Use SVM prediction as the base model
        salary_evaluation = predictions[2]
        seasons = player_seasons["season"].astype(str)
        adjusted_salary = player_seasons["adjustedSalary"]
        salary = player_seasons["salary"]
        # Plot the results
        plt.plot(seasons, salary_evaluation, label="Predicted", marker="o")
        plt.plot(seasons, adjusted_salary, label="Adjusted Salary", marker="o")
        plt.plot(seasons, salary, label="Salary", marker="o")
        plt.gca().yaxis.set_major_formatter(common.get_mformatter(2))
        plt.xlabel("Season")
        plt.ylabel("Salary")
        plt.title("Salary Prediction")
        plt.legend()
        plt.grid()
        plt.show()
        # Plot the error by season
        error = salary evaluation - adjusted salary
        plt.plot(seasons, error, marker="o")
        plt.gca().yaxis.set_major_formatter(common.get_mformatter(2))
        plt.xlabel("Season")
        plt.ylabel("Error")
        plt.title("Prediction Error")
        plt.grid()
        plt.show()
```





```
In [7]: | X = X_train.copy()
        n_samples, n_features = X.shape
        # Center the data (subtract the mean of each feature)
        X_centered = X - np.mean(X, axis=0)
        # Singular Value Decomposition
        U, S, Vt = np.linalg.svd(X_centered, full_matrices=False)
        # Compute explained variance
        explained_variance = (S**2) / (n_samples-1)
        total_explained_variance = np.sum(explained_variance)
        explained_variance_ratio = explained_variance / total_explained_variance
        # Compute cumulative explained variance
        cumsum = np.cumsum(explained_variance_ratio)
        x_range = range(0, len(cumsum))
        n components = 3
        # Transform data into principal component space
        X_train_pca = np.dot(X_centered, Vt.T)
        X_train_pca = X_train_pca[:, :n_components]
        # Adjust the features for playering
        X_player_centered = X_player - np.mean(X, axis=0)
        X_player_pca = np.dot(X_player_centered, Vt.T)
        X_player_pca = X_player_pca[:, :n_components]
        # Train the models
        results_pca_df, predictions_pca = common.train_and_evaluate(X_train_pca, y_tra
        in, X_player_pca, y_player)
        results_pca_df
```

#### Out[7]:

|                     | R2      | MAE       | 10p-100 MAE | 10p-50 MAE | SWAPE  | rrain time (sec) |
|---------------------|---------|-----------|-------------|------------|--------|------------------|
| Model               |         |           |             |            |        |                  |
| Linear Regression   | -0.1777 | 1,534,336 | 1,534,336   | 1,534,336  | 0.3691 | 0.00             |
| Random Forest       | -1.1858 | 1,828,733 | 1,828,733   | 1,828,733  | 0.3788 | 0.82             |
| Support Vector      | 0.0191  | 1,390,071 | 1,390,071   | 1,390,071  | 0.3322 | 0.57             |
| K-Nearest Neighbors | -0.8451 | 1,648,480 | 1,648,480   | 1,648,480  | 0.3330 | 0.00             |

MAE Ton 400 MAE Ton 50 MAE SMADE Train time (cos)

```
In [8]: # Use SVM prediction as the base model
        salary_evaluation = predictions_pca[2]
        seasons = player_seasons["season"].astype(str)
        adjusted_salary = player_seasons["adjustedSalary"]
        salary = player_seasons["salary"]
        # Plot the results
        plt.plot(seasons, salary_evaluation, label="Predicted", marker="o")
        plt.plot(seasons, adjusted_salary, label="Adjusted Salary", marker="o")
        plt.plot(seasons, salary, label="Salary", marker="o")
        plt.gca().yaxis.set_major_formatter(common.get_mformatter(2))
        plt.xlabel("Season")
        plt.ylabel("Salary")
        plt.title("Salary Prediction with PCA")
        plt.legend()
        plt.grid()
        plt.show()
        # Plot the error by season
        error = salary evaluation - adjusted salary
        plt.plot(seasons, error, marker="o")
        plt.gca().yaxis.set_major_formatter(common.get_mformatter(2))
        plt.xlabel("Season")
        plt.ylabel("Error")
        plt.title("Prediction Error with PCA")
        plt.grid()
        plt.show()
```





```
In [9]: n_top_features = 10

loadings_df = pd.DataFrame(Vt, index=X_data.columns)

for comp in range(n_components):
    plt.figure(figsize=(8, 4))
    # Sort features by absolute loading values for the current component
    top_features = loadings_df.iloc[:, comp].abs().nlargest(n_top_features)

# Plot
    top_features.sort_values().plot(kind='barh', color='skyblue')
    plt.title(f"Top {n_top_features} Features for Component {comp + 1}")
    plt.xlabel("Loading Value")
    plt.ylabel("Features")
    plt.grid(axis='x')
    plt.tight_layout()
    plt.show()
```







```
In [10]: def density_plot(df, c1=1, c2=2):
             plt.figure(figsize=(10, 6))
             scatter = plt.scatter(
                 df[f"PC{c1}"], df[f"PC{c2}"],
                 c=df["Salary"], cmap="viridis", edgecolor="k", s=300
             colorbar = plt.colorbar(scatter, label="Salary")
             colorbar.ax.yaxis.set_major_formatter(common.get_mformatter(2))
             plt.xlabel(f"Principal Component {c1}")
             plt.ylabel(f"Principal Component {c2}")
             plt.title("Scatter Plot of Pincipal Components (Colored by Adjusted Salar
         y)")
             plt.grid()
             plt.show()
         def plot_component(df, c=1):
             plt.figure(figsize=(10, 6))
             plt.scatter(df[f"PC{c}"], df["Salary"], s=100)
             plt.xlabel(f"Principal Component {c}")
             plt.ylabel("Salary")
             plt.gca().yaxis.set_major_formatter(common.get_mformatter(2))
             plt.title(f"Principal Component {c} vs Salary")
             plt.grid()
             plt.show()
```

```
In [11]: train_df = pd.DataFrame(X_train_pca, columns=[f"PC{i+1}" for i in range(n_comp onents)])
    train_df["Season"] = X_data["season"].astype(str) # Add season info
    train_df["Salary"] = y_data.drop(player_seasons.index) # Add salary info

# Select only 2013 season
    train_df = train_df[train_df["Season"] == "2013"]

density_plot(train_df, c1=1, c2=2)
    density_plot(train_df, c1=1, c2=3)
    density_plot(train_df, c1=2, c2=3)
```







```
In [12]: player_df = pd.DataFrame(X_train_pca, columns=[f"PC{i+1}" for i in range(n_components)])
    player_df["Season"] = player_seasons["season"].astype(str)
    player_df["Salary"] = player_seasons["adjustedSalary"]

density_plot(player_df, c1=1, c2=2)
    density_plot(player_df, c1=1, c2=3)
    density_plot(player_df, c1=2, c2=3)
```







```
In [13]: plot_component(train_df, c=1)
    plot_component(train_df, c=2)
    plot_component(train_df, c=3)

    plot_component(player_df, c=1)
    plot_component(player_df, c=2)
    plot_component(player_df, c=3)
```













```
In [14]: def PLS(n_components):
             X = X_train.astype(np.float64)
             n_samples, n_features = X.shape
             # Reshape y to column vector of floats
             y = y_train.reshape(-1, 1).astype(np.float64)
             # Initialize matrices full of zeros
             T = np.zeros((n_samples, n_components))
                                                        # Components
             W = np.zeros((n_features, n_components))  # Weights
             P = np.zeros((n_features, n_components)) # Loadings for X
             Q = np.zeros(n components)
                                                         # Loadings for y
             for i in range(n_components):
                 # Compute weights w that maximize covariance between X and y
                 W = X.T @ y
                 w /= np.linalg.norm(w) # Normalize to unit Length
                 # Project X onto w to find t
                 t = X @ w
                 tk = (t.T @ t)
                 # Compute Loadings p
                 p = (X.T @ t) / tk
                 # Compute Loadings q
                 q = (y.T @ t) / tk
                 q = q.item() # Convert to scalar
                 # Deflate X and y
                 X -= t @ p.T
                 y -= q * t
                 # Store results
                 T[:, i] = t.ravel()
                 P[:, i] = p.ravel()
                 W[:, i] = w.ravel()
                 Q[i] = q
             return T, W, P, Q
```

In [15]: X = X\_train.copy()
 n\_samples, n\_features = X.shape

 n\_components = 3

# Perform PLS and apply to the data
 T, W, P, Q = PLS(n\_components)

X\_train\_pls = X\_train @ W
 X\_player\_pls = X\_player @ W

# Train the models
 results\_pls\_df, predictions\_pls = common.train\_and\_evaluate(X\_train\_pls, y\_train, X\_player\_pls, y\_player)
 results\_pls\_df

#### Out[15]:

|                     | R2      | MAE       | Top-100 MAE | Top-50 MAE | SMAPE  | Train time (sec) |
|---------------------|---------|-----------|-------------|------------|--------|------------------|
| Model               |         |           |             |            |        |                  |
| Linear Regression   | 0.4663  | 1,056,753 | 1,056,753   | 1,056,753  | 0.2781 | 0.00             |
| Random Forest       | -0.3950 | 1,622,787 | 1,622,787   | 1,622,787  | 0.3589 | 0.71             |
| Support Vector      | 0.5480  | 979,214   | 979,214     | 979,214    | 0.2601 | 0.56             |
| K-Nearest Neighbors | 0.1857  | 1,280,001 | 1,280,001   | 1,280,001  | 0.3098 | 0.00             |

```
In [16]: n_top_features = 10
    loadings_df = pd.DataFrame(P, index=X_data.columns)

for comp in range(n_components):
    plt.figure(figsize=(8, 4))
    # Sort features by absolute loading values for the current component
    top_features = loadings_df.iloc[:, comp].abs().nlargest(n_top_features)

# Plot
    top_features.sort_values().plot(kind='barh', color='skyblue')
    plt.title(f"Top {n_top_features} Features for Component {comp + 1}")
    plt.xlabel("Loading Value")
    plt.ylabel("Features")
    plt.grid(axis='x')
    plt.tight_layout()
    plt.show()
```







```
In [17]: def density_plot(df, c1=1, c2=2):
             plt.figure(figsize=(10, 6))
             scatter = plt.scatter(
                 df[f"PC{c1}"], df[f"PC{c2}"],
                 c=df["Salary"], cmap="viridis", edgecolor="k", s=300
             colorbar = plt.colorbar(scatter, label="Salary")
             colorbar.ax.yaxis.set_major_formatter(common.get_mformatter(2))
             plt.xlabel(f"Component {c1}")
             plt.ylabel(f"Component {c2}")
             plt.title("Scatter Plot of Components (Colored by Adjusted Salary)")
             plt.grid()
             plt.show()
         def plot_component(df, c=1):
             plt.figure(figsize=(10, 6))
             plt.scatter(df[f"PC(c)"], df["Salary"], s=100)
             plt.xlabel(f"Component {c}")
             plt.ylabel("Salary")
             plt.gca().yaxis.set_major_formatter(common.get_mformatter(2))
             plt.title(f"Component {c} vs Salary")
             plt.grid()
             plt.show()
```

```
In [18]: train_df = pd.DataFrame(X_train_pls, columns=[f"PC{i+1}" for i in range(n_comp onents)])
    train_df["Season"] = X_data["season"].astype(str) # Add season info
    train_df["Salary"] = y_data.drop(player_seasons.index) # Add salary info

# Select only 2023 season
    train_df = train_df[train_df["Season"] == "2013"]

density_plot(train_df, c1=1, c2=2)
    density_plot(train_df, c1=1, c2=3)
    density_plot(train_df, c1=2, c2=3)
```













```
In [20]: plot_component(train_df, c=1)
    plot_component(train_df, c=2)
    plot_component(train_df, c=3)

    plot_component(player_df, c=1)
    plot_component(player_df, c=2)
    plot_component(player_df, c=3)
```













```
In [21]: # Use SVM prediction as the base model
         salary evaluation = predictions[2]
         salary_evaluation_PCA = predictions_pca[2]
         salary_evaluation_PLS = predictions_pls[2]
         seasons = player_seasons["season"].astype(str)
         adjusted_salary = player_seasons["adjustedSalary"]
         salary = player_seasons["salary"]
         # Plot the results
         plt.plot(seasons, salary_evaluation, label="Predicted", marker="o")
         plt.plot(seasons, salary evaluation PCA, label="Predicted with PCA", marker
         plt.plot(seasons, salary_evaluation_PLS, label="Predicted with PLS", marker
         ="o")
         plt.plot(seasons, adjusted_salary, label="Adjusted Salary", marker="o")
         plt.plot(seasons, salary, label="Salary", marker="o")
         plt.gca().yaxis.set major formatter(common.get mformatter(2))
         plt.xlabel("Season")
         plt.ylabel("Salary")
         plt.title("Salary Prediction")
         plt.legend()
         plt.grid()
         plt.show()
         # Plot the error by season
         error = salary_evaluation - adjusted_salary
         error_PCA = salary_evaluation_PCA - adjusted_salary
         error_PLS = salary_evaluation_PLS - adjusted_salary
         plt.plot(seasons, error.abs(), label="Predicted", marker="o")
         plt.plot(seasons, error_PCA.abs(), label="Predicted with PCA", marker="o")
         plt.plot(seasons, error_PLS.abs(), label="Predicted with PLS", marker="o")
         plt.gca().yaxis.set_major_formatter(common.get_mformatter(2))
         plt.xlabel("Season")
         plt.ylabel("MAE")
         plt.title("Prediction MAE")
         plt.legend()
         plt.grid()
         plt.show()
```





## **Sidney Crosby**

term: 12yrs cap hit: \$8.70M seasons: 2013-2024

```
In [22]: player_seasons = original_df[(original_df["name"] == "Sidney Crosby")]

# Separate player seasons from X_data by using the indexes from player_seasons
X_player = X_data.loc[player_seasons.index].to_numpy()
y_player = y_data.loc[player_seasons.index].to_numpy()

X_train = X_data.drop(player_seasons.index).to_numpy()
y_train = y_data.drop(player_seasons.index).to_numpy()

# Standardize the data
X_train, X_player = common.standard_scaler(X_train, X_player)

# Train the models
results_df, predictions = common.train_and_evaluate(X_train, y_train, X_player, y_player)
results_df
```

#### Out[22]:

|                     | R2      | MAE       | Top-100 MAE | Top-50 MAE | SMAPE  | Train time (sec) |
|---------------------|---------|-----------|-------------|------------|--------|------------------|
| Model               |         |           |             |            |        |                  |
| Linear Regression   | -3.5726 | 1,470,148 | 1,470,148   | 1,470,148  | 0.1546 | 1.66             |
| Random Forest       | -5.8071 | 1,912,158 | 1,912,158   | 1,912,158  | 0.2208 | 8.76             |
| Support Vector      | -2.4039 | 1,275,435 | 1,275,435   | 1,275,435  | 0.1409 | 7.08             |
| K-Nearest Neighbors | -6.5853 | 1,976,926 | 1,976,926   | 1,976,926  | 0.2299 | 0.02             |

```
In [23]: | X = X_train.copy()
         n_samples, n_features = X.shape
         # Center the data (subtract the mean of each feature)
         X_centered = X - np.mean(X, axis=0)
         # Singular Value Decomposition
         U, S, Vt = np.linalg.svd(X_centered, full_matrices=False)
         # Compute explained variance
         explained_variance = (S**2) / (n_samples-1)
         total_explained_variance = np.sum(explained_variance)
         explained_variance_ratio = explained_variance / total_explained_variance
         # Compute cumulative explained variance
         cumsum = np.cumsum(explained_variance_ratio)
         x_range = range(0, len(cumsum))
         n_{components} = 3
         # Transform data into principal component space
         X_train_pca = np.dot(X_centered, Vt.T)
         X_train_pca = X_train_pca[:, :n_components]
         # Adjust the features for player
         X_player_centered = X_player - np.mean(X, axis=0)
         X_player_pca = np.dot(X_player_centered, Vt.T)
         X_player_pca = X_player_pca[:, :n_components]
         # Train the models
         results_pca_df, predictions_pca = common.train_and_evaluate(X_train_pca, y_tra
         in, X_player_pca, y_player)
         results_pca_df
```

#### Out[23]:

|                     | R2       | MAE       | Iop-100 MAE | IOP-50 MAE | SMAPE  | Irain time (sec) |
|---------------------|----------|-----------|-------------|------------|--------|------------------|
| Model               |          |           |             |            |        |                  |
| Linear Regression   | -9.3717  | 2,316,999 | 2,316,999   | 2,316,999  | 0.2840 | 0.00             |
| Random Forest       | -10.1698 | 2,440,196 | 2,440,196   | 2,440,196  | 0.2976 | 0.87             |
| Support Vector      | -10.2135 | 2,404,476 | 2,404,476   | 2,404,476  | 0.2976 | 0.48             |
| K-Nearest Neighbors | -10.1510 | 2,303,808 | 2,303,808   | 2,303,808  | 0.2850 | 0.02             |

In [24]: X = X\_train.copy()
 n\_samples, n\_features = X.shape

 n\_components = 3

# Perform PLS and apply to the data
 T, W, P, Q = PLS(n\_components)

X\_train\_pls = X\_train @ W
 X\_player\_pls = X\_player @ W

# Train the models
 results\_pls\_df, predictions\_pls = common.train\_and\_evaluate(X\_train\_pls, y\_train, X\_player\_pls, y\_player)
 results\_pls\_df

#### Out[24]:

|                     | R2      | MAE       | Top-100 MAE | Top-50 MAE | SMAPE  | Train time (sec) |
|---------------------|---------|-----------|-------------|------------|--------|------------------|
| Model               |         |           |             |            |        |                  |
| Linear Regression   | -5.3028 | 1,792,367 | 1,792,367   | 1,792,367  | 0.2084 | 0.00             |
| Random Forest       | -3.5646 | 1,477,570 | 1,477,570   | 1,477,570  | 0.1664 | 0.88             |
| Support Vector      | -5.8704 | 1,872,298 | 1,872,298   | 1,872,298  | 0.2196 | 0.63             |
| K-Nearest Neighbors | -2.7305 | 1,386,503 | 1,386,503   | 1,386,503  | 0.1548 | 0.02             |

```
In [25]: # Use SVM prediction as the base model
         salary evaluation = predictions[2]
         salary_evaluation_PCA = predictions_pca[2]
         salary_evaluation_PLS = predictions_pls[2]
         seasons = player_seasons["season"].astype(str)
         adjusted_salary = player_seasons["adjustedSalary"]
         salary = player_seasons["salary"]
         # Plot the results
         plt.plot(seasons, salary_evaluation, label="Predicted", marker="o")
         plt.plot(seasons, salary evaluation PCA, label="Predicted with PCA", marker
         plt.plot(seasons, salary_evaluation_PLS, label="Predicted with PLS", marker
         ="o")
         plt.plot(seasons, adjusted_salary, label="Adjusted Salary", marker="o")
         plt.plot(seasons, salary, label="Salary", marker="o")
         plt.gca().yaxis.set major formatter(common.get mformatter(2))
         plt.xlabel("Season")
         plt.ylabel("Salary")
         plt.title("Salary Prediction")
         plt.legend()
         plt.grid()
         plt.show()
         # Plot the error by season
         error = salary_evaluation - adjusted_salary
         error_PCA = salary_evaluation_PCA - adjusted_salary
         error_PLS = salary_evaluation_PLS - adjusted_salary
         plt.plot(seasons, error.abs(), label="Predicted", marker="o")
         plt.plot(seasons, error_PCA.abs(), label="Predicted with PCA", marker="o")
         plt.plot(seasons, error_PLS.abs(), label="Predicted with PLS", marker="o")
         plt.gca().yaxis.set_major_formatter(common.get_mformatter(2))
         plt.xlabel("Season")
         plt.ylabel("MAE")
         plt.title("Prediction MAE")
         plt.legend()
         plt.grid()
         plt.show()
```



