Project CookBook Getting and Cleaning Data Johns Hopkins University December 2015 by Rafael Hernamperez

The features selected for this dataset come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.

Subsequently, the body linear acceleration and linear acceleration were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroJerkMag).

Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).

These signals were used to estimate variables of the feature vector for each pattern: '-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.

tBodvAcc-XYZ tGravityAcc-XYZ tBodyAccJerk-XYZ tBodyGyro-XYZ tBodyGyroJerk-XYZ tBodyAccMag tGravityAccMag tBodyAccJerkMag tBodyGyroMag tBodyGyroJerkMag fBodvAcc-XYZ fBodyAccJerk-XYZ fBodyGyro-XYZ fBodvAccMag fBodyAccJerkMag fBodyGyroMag

fBodyGyroJerkMag

The final dataset is composed by 180 observations/rows (30 subjects x 6 activities) and 89 variables/columns, which are selected only the mean and standard deviations for the objective of the present project.

Here is the description of each variable of the dataset:

subject

Integer number. ID of the subject that made the activity. This is a number between 1 and 30, and identifies to each subject of the experiment.

activity

String. Type of activity. Contains the name of the activity made by the subject:

- WALKING
- WALKING_UPSTAIRS
- WALKING DOWNSTAIRS
- SITTING
- STANDING
- LAYING

activity_id

Integer number. ID of the activity made by the subject. This is a number between 1 and 6, which corresponds with the following activities:

- 1) WALKING
- 2) WALKING UPSTAIRS
- 3) WALKING DOWNSTAIRS
- 4) SITTING
- 5) STANDING
- 6) LAYING

tBodyAcc_mean__X

Float Number. Mean of the time of body linear acceleration signals in X axis.

tBodyAcc_mean___Y

Float Number. Mean of the time of body linear acceleration signals in Y axis.

tBodyAcc_mean___Z

Float Number. Mean of the time of body linear acceleration signals in Z axis.

tGravityAcc_mean___X

Float Number. Mean of the time of gravity acceleration signals in X axis.

tGravityAcc_mean___Y

Float Number. Mean of the time of gravity acceleration signals in Y axis.

tGravityAcc_mean___Z

Float Number. Mean of the time of gravity acceleration signals in Z axis.

$tBodyAccJerk_mean__X$

Float Number. Mean of the time of body linear acceleration Jerk signals in X axis.

tBodyAccJerk_mean___Y

Float Number. Mean of the time of body linear acceleration Jerk signals in Y axis.

tBodyAccJerk_mean___Z

Float Number. Mean of the time of body linear acceleration Jerk signals in Z axis.

tBodyGyro_mean___X

Float Number. Mean of the time of body gyroscope linear acceleration signals in X axis.

tBodyGyro_mean___Y

Float Number. Mean of the time of body gyroscope linear acceleration signals in Y axis.

tBodyGyro_mean___Z

Float Number. Mean of the time of body gyroscope linear acceleration signals in Z axis.

tBodyGyroJerk_mean___X

Float Number. Mean of the time of body gyroscope Jerk linear acceleration signals in X axis.

tBodyGyroJerk_mean___Y

Float Number. Mean of the time of body gyroscope Jerk linear acceleration signals in Y axis.

tBodyGyroJerk_mean___Z

Float Number. Mean of the time of body gyroscope Jerk linear acceleration signals in Z axis.

tBodyAccMag_mean__

Float Number. Mean of the time of the magnitude of the body acceleration signals.

tGravityAccMag_mean__

Float Number. Mean of the time of the magnitude of the gravity acceleration signals.

tBodyAccJerkMag_mean__

Float Number. Mean of the time of the magnitude of the body acceleration Jerk signals.

tBodyGyroMag_mean__

Float Number. Mean of the time of the magnitude of the body gyroscope linear acceleration signals.

tBodyGyroJerkMag_mean__

Float Number. Mean of the time of the magnitude of the body gyroscope Jerk linear acceleration signals.

fBodyAcc mean X

Float Number. Mean of the frequency of the body acceleration signals in X axis.

fBodyAcc_mean___Y

Float Number. Mean of the frequency of the body acceleration signals in Y axis.

fBodyAcc mean Z

Float Number. Mean of the frequency of the body acceleration signals in Z axis.

$fBodyAcc_meanFreq__X$

Float Number. Frequency of the body acceleration signals in X axis based on the mean of its frequency.

fBodyAcc_meanFreq___Y

Float Number. Frequency of the body acceleration signals in Y axis based on the mean of its frequency.

fBodyAcc_meanFreq___Z

Float Number. Frequency of the body acceleration signals in Z axis based on the mean of its frequency.

fBodyAccJerk_mean__X

Float Number. Mean of the frequency of the body acceleration Jerk signals in X axis.

fBodyAccJerk_mean___Y

Float Number. Mean of the frequency of the body acceleration Jerk signals in Y axis.

fBodyAccJerk_mean___Z

Float Number. Mean of the frequency of the body acceleration Jerk signals in Z axis.

fBodyAccJerk_meanFreq__X

Float Number. Frequency of the body acceleration Jerk signals in X axis based on the mean of its frequency.

fBodyAccJerk_meanFreq___Y

Float Number. Frequency of the body acceleration Jerk signals in Y axis based on the mean of its frequency.

fBodyAccJerk meanFreq Z

Float Number. Frequency of the body acceleration signals in Z axis based on the mean of its frequency.

fBodyGyro_mean___X

Float Number. Mean of the frequency of body gyroscope linear acceleration signals in X axis.

fBodyGyro_mean___Y

Float Number. Mean of the frequency of body gyroscope linear acceleration signals in Y axis.

fBodyGyro_mean___Z

Float Number. Mean of the frequency of body gyroscope linear acceleration signals in Z axis.

$fBodyGyro_meanFreq__X$

Float Number. Frequency of body gyroscope linear acceleration signals in X axis based on the mean of its frequency.

fBodyGyro_meanFreq___Y

Float Number. Frequency of body gyroscope linear acceleration signals in Y axis based on the mean of its frequency.

fBodyGyro_meanFreq___Z

Float Number. Frequency of body gyroscope linear acceleration signals in Z axis based on the mean of its frequency.

fBodyAccMag_mean__

Float Number. Mean of the frequency of the magnitude of the body acceleration signals.

fBodyAccMag_meanFreq__

Float Number. Frequency of the magnitude of the body acceleration signals based on the mean of its frequency.

fBodyBodyAccJerkMag_mean__

Float Number. Mean of the frequency of the magnitude of the body acceleration Jerk signals.

fBodyBodyAccJerkMag_meanFreq__

Float Number. Frequency of the magnitude of the body acceleration Jerk signals based on the mean of its frequency.

fBodyBodyGyroMag_mean__

Float Number. Mean ot the frequency of the magnitude of the body gyroscope linear acceleration signals.

fBodyBodyGyroMag_meanFreq__

Float Number. Frequency of the magnitude of the body gyroscope linear acceleration signals based on the mean of its frequency.

fBodyBodyGyroJerkMag_mean__

Float Number. Mean of the frequency of the magnitude of the body gyroscope Jerk linear acceleration signals.

fBodyBodyGyroJerkMag_meanFreq__

Float Number. Frequency of the magnitude of the body gyroscope Jerk linear acceleration signals based on the mean of its frequency.

angle_tBodyAccMean_gravity_

Float Number. Angle of the mean of the time of body acceleration with gravity.

angle_tBodyAccJerkMean__gravityMean_

Float Number. Angle of the mean of the time of body acceleration Jerk with mean of gravity.

angle_tBodyGyroMean_gravityMean_

Float Number. Angle of the mean of the time of body acceleration gyroscope with mean of gravity.

angle tBodyGyroJerkMean gravityMean

Float Number. Angle of the mean of the time of body gyroscope Jerk with mean of gravity.

angle_X_gravityMean_

Float Number. Angle of the X axis in the mean of gravity.

angle_Y_gravityMean_

Float Number. Angle of the Y axis in the mean of gravity.

angle_Z_gravityMean_

Float Number. Angle of the Z axis in the mean of gravity.

tBodyAcc_std___X

Float Number. Standard deviation of the time of body linear acceleration signals in X axis.

tBodyAcc_std___Y

Float Number. Standard deviation of the time of body linear acceleration signals in Y axis.

tBodyAcc_std___Z

Float Number. Standard deviation of the time of body linear acceleration signals in Z axis.

tGravityAcc_std___X

Float Number. Standard deviation of the time of gravity acceleration signals in X axis.

tGravityAcc_std___Y

Float Number. Standard deviation of the time of gravity acceleration signals in Y axis.

tGravityAcc_std___Z

Float Number. Standard deviation of the time of gravity acceleration signals in Z axis.

tBodyAccJerk_std___X

Float Number. Standard deviation of the time of body linear acceleration Jerk signals in X axis.

tBodyAccJerk_std___Y

Float Number. Standard deviation of the time of body linear acceleration Jerk signals in Y axis.

tBodyAccJerk_std___Z

Float Number. Standard deviation of the time of body linear acceleration Jerk signals in Z axis.

tBodyGyro_std___X

Float Number. Standard deviation of the time of body gyroscope linear acceleration signals in X axis.

tBodyGyro_std___Y

Float Number. Standard deviation of the time of body gyroscope linear acceleration signals in Y axis.

tBodyGyro_std___Z

Float Number. Standard deviation of the time of body gyroscope linear acceleration signals in Z axis.

tBodyGyroJerk_std___X

Float Number. Standard deviation of the time of body gyroscope Jerk linear acceleration signals in X axis.

tBodyGyroJerk_std___Y

Float Number. Standard deviation of the time of body gyroscope Jerk linear acceleration signals in Y axis.

tBodyGyroJerk_std___Z

Float Number. Standard deviation of the time of body gyroscope Jerk linear acceleration signals in Z axis.

tBodyAccMag_std__

Float Number. Standard deviation of the time of the magnitude of the body acceleration signals.

tGravityAccMag_std__

Float Number. Standard deviation of the time of the magnitude of the gravity accelearation signals.

tBodyAccJerkMag_std__

Float Number. Standard deviation of the time of the magnitude of the body acceleration Jerk signals.

tBodyGyroMag_std__

Float Number. Standard deviation of the time of the magnitude of the body gyroscope linear acceleration signals.

tBodyGyroJerkMag_std__

Float Number. Standard deviation of the time of the magnitude of the body gyroscope Jerk linear acceleration signals.

fBodyAcc_std___X

Float Number. Standard deviation of the frequency of the body acceleration signals in X axis.

fBodyAcc_std___Y

Float Number. Standard deviation of the frequency of the body acceleration signals in Y axis.

fBodyAcc_std___Z

Float Number. Standard deviation of the frequency of the body acceleration signals in Z axis.

fBodyAccJerk std X

Float Number. Standard deviation of the frequency of the body acceleration Jerk signals in X axis.

fBodyAccJerk_std___Y

Float Number. Standard deviation of the frequency of the body acceleration Jerk signals in Y axis.

fBodyAccJerk_std___Z

Float Number. Standard deviation of the frequency of the body acceleration Jerk signals in Z axis.

fBodyGyro_std___X

Float Number. Standard deviation of the frequency of body gyroscope linear acceleration signals in X axis.

fBodyGyro_std___Y

Float Number. Standard deviation of the frequency of body gyroscope linear acceleration signals in V axis

fBodyGyro_std___Z

Float Number. Standard deviation of the frequency of body gyroscope linear acceleration signals in Z axis.

fBodyAccMag_std__

Float Number. Standard deviation of the magnitude of the body linera acceleration signals.

fBodyBodyAccJerkMag_std__

Float Number. Standard deviation of the magnitude of the body linear acceleration Jerk signals.

fBodyBodyGyroMag_std__

Float Number. Standard deviation of the magnitude of body gyroscope acceleration signals.

fBodyBodyGyroJerkMag_std__

Float Number. Standard deviation of the magnitude of body gyroscope acceleration Jerk signals.