Course: Machine Learning - Foundations

Week 2 - Test Questions

1. (2 points)

Answer: D

Option A and B are discontinuous at x=1.Option C is discontinuous at x=2. So correct option is D

2. (1 point)

Answer: D

A, B, C are equivalent statements.

3. (2 points)

Answer: B, D

Right hand limit and left hand limit at x=3 are different so function is not continuous at x=3

4. (1 point)

Answer: 1.011

Linear approximation of e^x is 1+x. Here x=0.011

5. (1 point)

Answer: 1.975

Linear approximation of
$$\sqrt{x}$$
 is,

$$\sqrt{x} - (x - x^*) \frac{1}{2\sqrt{x}}.$$

Here
$$x = 4$$
 and $x^* = 3.9 \sqrt{3}.9 = \sqrt{4} - (4 - 3.9) \frac{1}{2\sqrt{4}} = 1.975$

6. (1 point)

Answer: Two vectors are perpendicular if their inner product is zero

7. (2 points)

Answer: B

8. (1 point)

Answer: A

$$\begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$= \begin{bmatrix} 3x^2y^2 & 2x^3y \end{bmatrix}$$

$$= \begin{bmatrix} 12 & 4 \end{bmatrix}$$

9. (1 point)

Answer: C
$$\begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \end{bmatrix}$$

$$= \begin{bmatrix} 3x^2 & 2y & 3z^2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 2 & 3 \end{bmatrix}$$

10. (1 point)

Answer: As per Cauchy Shwarz inequality,
$$-\parallel a \parallel \parallel b \parallel \leq a.b \leq \parallel a \parallel \parallel b$$

11. (2 points)

Answer:
$$0.816$$

$$\nabla f = \begin{bmatrix} 3x^2 & 2y & 3z^2 \end{bmatrix}^T$$
at $(1,1,1)$

$$\nabla f = \begin{bmatrix} 3 & 2 & 3 \end{bmatrix}^T$$

$$\parallel i - 2j + k \parallel = \sqrt{6}$$
Directional derivative= $\frac{3\times 1 - 2\times 2 + 3\times 1}{\sqrt{6}}$

12. (2 points)

Answer: A
$$\nabla f = \begin{bmatrix} 2 & 3y^2 & 4z \end{bmatrix}^T$$
 at $(1,0,1)$
$$\nabla f = \begin{bmatrix} 2 & 0 & 4 \end{bmatrix}^T$$
 $\parallel \begin{bmatrix} 2 & 0 & 4 \end{bmatrix}^T \parallel = \sqrt{20}$ direction of steepest ascent= $\nabla f / \parallel f \parallel$

13. (2 points)

Answer:
$$0.577$$

$$\nabla f = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$
at $(-1,1,0)$

$$\nabla f = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$

$$\parallel i - j + k \parallel = \sqrt{3}$$
Directional derivative= $\frac{1 \times 1 - 1 \times 1 + 1 \times 1}{\sqrt{3}}$

14. (1 point)

Answer: Line through
$$u \in R^d$$
 along $v \in R^d$ is given by $x = u + \alpha v$ where, $\alpha \in R$ and $x \in R^d$