Art Of Problem Solving - AMC 10 July 17, 2021

Patrick & James Toche

Revised: July 3, 2021

Abstract

Notes on the AMC-10 Course by Art Of Problem Solving (AOPS). Copyright restrictions may apply. Written for personal use. Please report typos and errors over at https://github.com/ptoche/Math/tree/master/aops.

In quadrilateral ABCD, AB=5, BC=17, CD=5, DA=9, and BD is an integer. What is BD?

(A) 11 (B) 12 (C) 13 (D) 14 (E) 15

 \boldsymbol{x}

Rectangle ABCD has AB=4 and BC=3. Segment \overline{EF} is constructed through B so that $\overline{EF}\perp \overline{DB}$, and A and C lie on \overline{DE} and \overline{DF} , respectively. What is EF?

(A) 9 (B) 10	(C) $\frac{125}{12}$	(D) $\frac{103}{9}$	(E) 12
--------------	----------------------	---------------------	--------

 \boldsymbol{x}

Points A, B, C, D, E, and F lie, in that order, on \overline{AF} , dividing it into five segments, each of length 1. Point G is not on line AF. Point H lies on \overline{GD} , and point J lies on \overline{GF} . The line segments \overline{HC} , \overline{JE} , and \overline{AG} are parallel. Find HC/JE.

(A) 5/4 (B) 4/3 (C) 3/2	$2 (D) \ 5/3 (E) \ 2$
-------------------------	-------------------------

 \boldsymbol{x}

In rectangle ABCD, AB=5 and BC=3. Points F and G are on \overline{CD} so that DF=1 and GC=2. Lines AF and BG intersect at E. Find the area of triangle AEB.

(A) 10	(B) $\frac{21}{2}$	(C) 12	(D) $\frac{25}{2}$	(E) 15

 \boldsymbol{x}

Points E and F are located on square ABCD so that triangle BEF is equilateral. What is the ratio of the area of triangle DEF to that of triangle ABE?

(A) $\frac{4}{3}$ (B) $\frac{3}{2}$ (C)	C) $\sqrt{3}$ (D) 2 (E)	$1+\sqrt{3}$
---	------------------	---------	--------------

x			

In triangle ABC points D and E lie on \overline{BC} and \overline{AC} , respectively. If \overline{AD} and \overline{BE} intersect at T so that AT/DT=3 and BT/ET=4, what is CD/BD?

(A) $\frac{1}{8}$ (B) $\frac{2}{9}$	(C) $\frac{3}{10}$	(D) $\frac{4}{11}$	(E) $\frac{5}{12}$
-------------------------------------	--------------------	--------------------	--------------------

 \boldsymbol{x}

Triangle ABC has a right angle at B, AB=1, and BC=2. The bisector of $\angle BAC$ meets \overline{BC} at D. What is BD?

(A) $\frac{\sqrt{3}-1}{2}$ (B) $\frac{\sqrt{5}-1}{2}$	(C) $\frac{\sqrt{5}+1}{2}$	(D) $\frac{\sqrt{6}+\sqrt{2}}{2}$	(E) $2\sqrt{3} - 1$
---	----------------------------	-----------------------------------	---------------------

 \boldsymbol{x}

Right triangle ABC has $\overline{AB}=3$, $\overline{BC}=4$, and $\overline{AC}=5$. Square XYZW is inscribed in triangle ABC with X and Y on \overline{AC} , W on \overline{AB} , and Z on \overline{BC} . What is the side length of the square?

(A) $\frac{3}{2}$	(B) $\frac{60}{37}$	(C) $\frac{12}{7}$	(D) $\frac{23}{13}$	(E) 2

 \boldsymbol{x}

A triangle with sides of 5, 12, and 13 has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?

(A) $\frac{3\sqrt{5}}{2}$ (B) $\frac{7}{2}$ (C) $\sqrt{15}$ (D) $\frac{\sqrt{65}}{2}$ (E) $\frac{9}{2}$

 \boldsymbol{x}

In triangle ABC we have AB=25, BC=39, and AC=42. Points D and E are on \overline{AB} and \overline{AC} respectively, with AD=19 and AE=14. What is the ratio of the area of triangle ADE to the area of the quadrilateral BCED?

		(E) 1	(D) $\frac{19}{56}$	(C) $\frac{1}{3}$	(B) $\frac{19}{75}$	(A) $\frac{266}{1521}$
						x
					x	