EECS 376: Foundations of Computer Science

Seth Pettie Lecture 14

Complexity: Unit's Agenda

- 1) What resources are required to solve a problem on a computer?
- 2) Which problems can be solved **efficiently** on a computer?
- 3) What does "efficiently" mean?

Review: Running Time

- * We measure "efficiency" of an algorithm by how its (<u>worst-case</u>) **runtime** scales with input "size"
- * We express this tradeoff in Big-O: e.g., $O(\log n)$, O(n), $O(n^2)$, etc, where n is the size of the input.
- * Common interpretations of "size":
 - * size of array = O(# elements)
 - * size of graph = O(# vert./edges)
 - * size of integer = O(# digits)
 - * Rule of thumb: size = 0(# bits of memory to store on a computer)

Efficient ≡ "runtime is <u>polynomial</u> in size of input"; Very robust definition (will see)

Polynomial vs Exponential Growth

Polynomial time algorithms

We have seen various polynomial time (poly-time) algorithms.

```
GCD(x,y) Euclid's alg. (time O(log(x + y))
```

LIS(x) Dynamic Prog. (time $O(n^2)$)

LCS(x,y) Dynamic Prog. (time $O(n^2)$)

All pairs Shortest Path Dynamic Prog. (time $O(n^3)$

MST(G) Greedy O(n log n)

There are several others: Matching, Max-flow min-cut, Deciding if x is prime [Agarwal, Kayal, Saxena 2002]: Time $(\log x)^6$...

Based on lots of clever and ingenious ideas. Several algorithms still to be discovered

A Polynomial time algorithm for every problem?

Longest Path: Given G and vertices s,t. find longest s-t path.

Hamiltonian Cycle: Given G, find a cycle that goes through each vertex exactly once.

Subset Sum: Given $a_1, ..., a_n$ and target t. A subset that sums to t (what about a DP solution?)

Independent Set: Given G and integer k, is there a subset S of size k so that no two vertices in S are adjacent

• • •

We believe that none of these problems has a poly-time algorithm How can we say such things?

Theory of P vs. NP (a crown jewel of TCS)
Is P=NP? (a profound question with a million dollar reward)

The Class P

- * **Definition:** Class **P** (*efficiently decidable* languages)
 - * P = all languages that can be decided by a TM in polynomial time in the input size.
- * In words, problems with a polynomial time decision algorithm
- * Formally: $P = \bigcup_{k \ge 1} DTIME(n^k)$
- * Properties:
 - * Model independent: can replace TM with any "realistic" (deterministic) model.
 - * Composition: if an efficient program M calls an efficient subroutine M' then the whole procedure is efficient.
 - * Proof idea: $(n^k)^{k'} = n^{k \cdot k'}$ is also polynomial.

Search vs. Decision problems

Definition: P = the set of all languages that can be decided by a TM in polynomial time in the input size.

In words, problems with a poly-time decision algorithm

Note: We are still talking about decision problems (with answers yes/no) What about gcd(x,y), shortest path (s,t), LIS(x), ... (here the answer is not a yes/no.)

This is not a problem at all (will soon see).

Example

- * Problem: Given integers x, y, z, is $gcd(x, y) \ge z$?
 - * $L_{GCD} = \{(x, y, z) : x, y, z \in \mathbb{N} \text{ and } z \leq \gcd(x, y)\}$
- * Claim: L_{GCD} is efficiently decidable, i.e., $L_{GCD} \in \mathbf{P}$.

Run Euclid's algorithm and answer accordingly

- * Correctness analysis (sketch): The Euclidean algorithm correctly computes the greatest common divisor of x, y.
- * Runtime analysis: Given an input of length n
 - * The size of the input is $n = |x| + |y| + |z| = O(\log(x) + \log(y) + \log(z))$. (# of digits of x is $O(\log(x))$)
 - * (recall) Computing **Euclid**(x, y) takes $O(\log(x + y)) = O(n)$ time.
 - * Comparing z and **Euclid**(x, y) takes O(n) time (digit-by-digit comparison).
 - * Therefore, total time taken is O(n).

Another Example

- * Problem: Given a weighted graph G and vertices S and t, is there a path of length at most 376 between S and S in G?
 - * $L_{376PATH} = \{(G, s, t) : G \text{ is a weighted graph w/ a s-t path of length} \leq 376\}.$
- * Claim: $L_{376PATH}$ is efficiently decidable.

```
bool 376path(graph G, vertex s, vertex t)

1. D \leftarrow \text{FloydWarshall}(G)

2. \text{return}(D[s][t] \leq 376)
```

- * Correctness analysis (sketch): FloydWarshall algorithm returns matrix of all-pairs shortest path lengths.
- * Runtime analysis: Given an input (G, s, t) of length n
 - * (recall) FloydWarshall(G = (V, E)) takes $O(|V|^3) = O(|G|^3)$ time (V = V).
 - * Since n = |(G, s, t)| = O(|G|), time taken is $O(n^3)$.

Introducing: The Class NP

Common mistake: NP does <u>not</u> mean "Non-polynomial"

(NP Stands for **N**on-deterministic **P**olynomial time)

(We will not refer to "non-determinism" in this course — there is an equivalent definition of NP that does not mention non-determinism.)

A better name would have been VP (for *verifiable problems*)
- Clyde Kruskal

Verifiable Computations

- * Example 1: Given a sudoku puzzle, is there a solution?
- * Answer: Yes.
- * Reply: We are not convinced (i.e. you could be lying to us).
- * Reply: Now we are convinced.

			2	6		7		1
6	8			7			9	
6 1 8	8 9				4	5		
8	2		1				4	
		4	1 6		2	9		
	5				3		2	8
		9	3				7	4
	4			5			3	6
7		3		1	8			

4	3	5	2	6	9	7	8	
6	8	2	5	7	1	4	9	3
1	9	7	8	3	4	5	6	2
8	2		1			3		7
3	7	4	6	8	2	9	1	5
9	5	1	7	4	3	6	2	8
5	1	9	3		6	8	7	4
2	4	8	9	5	7	1	3	6
7	6	3	4	1	8	2	5	9

Verifiable Computations

- * Example 2: Decision version of Traveling Salesperson Problem (TSP)
 Given 4 cities and pair-wise distances between them, is there a tour of length at most 100 that visits all the cities?
- * Remark: Here we only care about feasibility and not the actual tour.
- * **Answer:** $A \to B \to C \to D \to A$. Cost: 20+30+12+35 = 97.
- * Reply: We are convinced.

Verifiable Computations

- * Example 3: Subset Sum
- * Given integers $a_1, ..., a_n$ and target t, is there a subset of numbers that sums to t?
- * Answer: The subset of numbers.
- * Reply: (adding them up) We are convinced.

Efficiently Verifiable Problems

- * Intuition: A class of problems is efficiently verifiable when:
 - * If the problem has a solution, then there is an "efficient" way to verify it given some <u>additional information</u> ("certificate").
 - * If there is <u>no solution</u>, then no additional information (even maliciously produced) could convince us to say 'yes'.
- Let us look at the previous examples
- * TSP: If there is a solution, we can be convinced

 If there is no solution, can a "malicious adversary" convince us?
- * Subset-Sum: Convinced if solution.
 - If there is no solution, can a "malicious adversary" convince us?

The Class NP

- * **Definition:** A decision problem L is **efficiently verifiable** if there exists an algorithm V(x,c) called a **verifier** such that:
- 1. V(x,c) is efficient with respect to x (polynomial time in |x|).
- 2. If $x \in L$, then there is <u>some</u> certificate c such that V(x,c) accepts.
- 3. If $x \notin L$, then V(x, c) rejects <u>all</u> certificates c.
- * **Definition:** The class **NP** = the class of efficiently <u>verifiable</u> languages

Example

- * **TSP:** Given n cities and pair-wise distances, is there a route that starts/ends at the same city, visits every city <u>exactly once</u>, and has length at most k?
 - * TSP = $\{(G, k) : G \text{ is a weighted, complete graph w/ tour of length } \leq k\}$
- * Claim: TSP is efficiently verifiable, i.e., TSP \in NP.

Consider the certificate in the form of a path c (which is supposed to correspond to the tour, if one exists)

```
bool verifyTSP(graph G = (V, E), int k, path c = (v_1, ..., v_m)):

1. if (c \text{ is not a permutation of } V): return false

2. return length(v_1, ..., v_m, v_1) \leq k
```


Correctness Analysis of verifyTSP

```
bool verifyTSP(graph G = (V, E), int k, path c = (v_1, ..., v_m)):

1. if (c \text{ is not a permutation of } V): return false

2. return length(v_1, ..., v_m, v_1) \leq k
```

- * Case 1: If $(G, k) \in TSP$, then <u>some</u> certificate c makes verifyTSP((G, k), c) return true.
 - * Let $c = (v_1, ..., v_m)$ be the permutation of the vertices of G where the vertices are ordered according to the tour.
 - * Since c is a permutation of V, line 1 does not return false.
 - * Then, length $(v_1, ..., v_m, v_1) \le k$ by assumption and **verifyTSP**(x, c) returns *true* on line 2, as desired.

Correctness Analysis of verifyTSP

```
bool verifyTSP(graph G = (V, E), int k, path c = (v_1, ..., v_m)):

1. if (c \text{ is not a permutation of } V): return false

2. return length(v_1, ..., v_m, v_1) \leq k
```

- * Case 2: If $(G, k) \notin TSP$, <u>every</u> certificate c makes **verifyTSP**(x, c) return *false*.
 - * If c does not represent a permutation of the vertices of G, then false is returned on line 1, as desired.
 - * Now suppose $c = (v_1, ..., v_m)$ represents a permutation of the vertices of G.
 - * By assumption, G has no tour of length $\leq k$.
 - * Therefore, length $(v_1, ..., v_m, v_1) > k$.
 - * Thus, *false* is returned on line 2, as desired.

Runtime Analysis of verifyTSP

```
bool verifyTSP(graph G = (V, E), int k, path c = (v_1, ..., v_m)):

1. if (c \text{ is not a permutation of } V): return false

2. return length(v_1, ..., v_m, v_1) \leq k
```

- * Suppose the input (G, k) has length n.
- * There are at most *n* vertices in *G*.
- * Line 1 takes O(n) time use a boolean array to check if each vertex appears exactly once in c.
- * Line 2 takes O(n) time sum up the weights on the edges seen when following the tour.
- * Therefore, runtime is polynomial in n, as desired.

Practice with certificates

```
L_{Comp} = {n: n is composite (not a prime)}
```

 L_{HAM} = {G: G has a Hamiltonian cycle}

 L_{Primes} = {n: n is a prime } (complement of L_{Comp}) Not obvious anymore, but there is a complicated one

 $L_{non-HAM}$ = {G: G has no Hamiltonian-cycle} We do not expect the problem to have an efficiently verifiable certificate (would have very unexpected consequences)

P vs NP

- * Formally: Let *L* be a language. (decision problem)
- * $L \in \mathbf{P}$ if there exists a polynomial time in |x| algorithm M(x) such that:
 - * $x \in L \Longrightarrow M(x)$ accepts
 - * $x \notin L \Longrightarrow M(x)$ rejects
- * $L \in \mathbf{NP}$ if there exists a polynomial time in |x| algorithm V(x,c) such that:
 - * $x \in L \Longrightarrow V(x,c)$ accepts for at least one c
 - * $x \notin L \Longrightarrow V(x,c)$ rejects for every c
- * Note: $P \subseteq NP$ (V can ignore c and just run M)
- * \$1,000,000 question: Is **P** = **NP**?

P vs NP

"If P = NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in 'creative leaps', no fundamental gap between solving a problem and recognizing the solution once it's found."

SOHECE CSE

- Scott Aaronson

The Major Open Problem of Computer Science

