Теоремы Чевы и Менелая

Пусть различные точки A, B, C лежат на одной прямой. Отношением, в котором точка C делит вектор \overrightarrow{AB} , назовем число, модуль которого равен отношению длин отрезков AC и BC, а знак зависит от расположения точки C: если она лежит внутри AB, то число положительное, а иначе отрицательное.

Обозначение:
$$\frac{\overrightarrow{AC}}{\overrightarrow{CB}}$$
.

На сторонах (или их продолжениях) AB, BC, CA треугольника ABC отмечены точки C_1 , A_1 , B_1 соответственно.

Теорема Чевы. Прямые AA_1 , BB_1 , CC_1 пересекаются в одной точке или параллельны тогда и только тогда, когда

$$\frac{\overrightarrow{AC_1}}{\overrightarrow{C_1B}} \cdot \frac{\overrightarrow{BA_1}}{\overrightarrow{A_1C}} \cdot \frac{\overrightarrow{CB_1}}{\overrightarrow{B_1A}} = 1.$$

Теорема Менелая. Точки A_1, B_1, C_1 лежат на одной прямой тогда и только тогда, когда

$$\frac{\overrightarrow{AC_1'}}{\overrightarrow{C_1B}} \cdot \frac{\overrightarrow{BA_1'}}{\overrightarrow{A_1C}} \cdot \frac{\overrightarrow{CB_1'}}{\overrightarrow{B_1A}} = -1.$$

- 1. Неравные окружности ω_1 и ω_2 произвольным образом касаются окружности Ω в точках A и B. Докажите, что хотя бы один из центров гомотетий, переводящих ω_1 в ω_2 , лежит на прямой AB.

 Тем самым в очередной раз убедитесь в справедливости теоремы о трех центрах гомотетий.
- **2.** Вписанная в треугольник ABC окружность касается его сторон AB и AC в точках C_1 и B_1 соответственно. Вневписанная окружность касается продолжения стороны BC за точку C в точке A_1 . Докажите, что точки B_1 , C_1 , A_1 лежат на одной прямой тогда и только тогда, когда угол C прямой.
- **3.** Докажите, что касательные к описанной окружности треугольника, проведённые в его вершинах, пересекают прямые, содержащие противоположные стороны, в точках, лежащих на одной прямой.

- **4.** Прямые AP, BP, CP пересекают стороны BC, CA, AB треугольника ABC соответственно в точках A_1 , B_1 , C_1 . Окружность $(A_1B_1C_1)$ вторично пересекает прямые BC, CA, AB в точках A_2 , B_2 , C_2 . Докажите, что прямые AA_2 , BB_2 , CC_2 пересекаются в одной точке.
- **5.** Теорема Дезарга. Прямые AA_1, BB_1, CC_1 пересекаются в одной точке. Прямые AB и A_1B_1 пересекаются в точке C_2, BC и B_1C_1 пересекаются в точке A_2, CA и C_1A_1 пересекаются в точке B_2 . Докажите, что точки A_2, B_2, C_2 лежат на одной прямой.
- **6.** Прямая Гаусса. Продолжения сторон AB и CD четырехугольника ABCD пересекаются в точке P, а продолжения сторон AD и BC в точке Q. Докажите, что середины отрезков AC, BD и PQ лежат на одной прямой.
- 7. На стороне AB треугольника ABC отмечены точки D, E, причем AD = BE; на стороне BC отмечены точки K, L, причем BK = LC; и, наконец, на стороне AC отмечены точки M, N, причем CM = AN. Докажите, что прямые, проходящие через вершины треугольника и содержащие диагонали параллелограммов ADXN, BKYE, CLZM, пересекаются в одной точке.
- 8. В треугольник ABC вписана окружность с центром I, которая касается стороны AC в точке K. Другая окружность с центром I пересекает сторону AC в точках B_1 и B_2 , причем B_1 ближе к A, а стороны AB и BC в точках C_1, C_2 и A_1, A_2 соответственно, причем C_2 и A_1 ближе к B. Докажите, что точки B, K, и точка пересечения отрезков B_1A_1 и B_2C_2 лежат на одной прямой.