Theorems, Lemmas, Properties: Real Analysis and Measure Theory

Adarsh

Ref: Real Analysis 3: Stein-Shakarachi

Chapter 1

MEASURE THEORY

1.1 Basic Definitions

Definition 1 (Open Ball): The open ball in \mathbb{R}^d centered at x and of radius r is defined by

$$B_r(x) = \{ y \in \mathbb{R}^d : |y - x| < r \}$$

Definition 2 (Open Set and Closed Set): A subset $E \subset \mathbb{R}^d$ is open if for every $x \in E$ there exists r > 0 with $B_r(x) \subset E$. By definition, a set is closed if its complement is open.

- Any (not necessarily countable) union of open sets is open
- The intersection of finitely many open sets is open
- Any (not necessarily countable) intersection of close sets is closed
- The union of finitely many close sets is close

Definition 3 (Bounded Set and Compact Set): A set *E* is bounded if it is contained in some ball of finite radius. A bounded set is compact if it is also closed.

Property 1 (Heine-Borel covering property): Any covering of a compact set by a collection of open sets contains a finite subcovering.

Definition 4 (Limit Point): A point $x \in \mathbb{R}^d$ is a limit point of the set E if for every r > 0, the ball $B_r(x)$ contains points of E.

Definition 5 (Isolated Point): An isolated point of E is a point $x \in E$ such that there exists an r > 0 where $B_r(x) \setminus E$ is equal to x.

Definition 6 (Interior): A point $x \in E$ is an interior point of E if there exists r > 0 such that $B_r(x) \subset E$. The set of all interior points of E is called the interior of E.

Definition 7 (Closure): The closure \bar{E} of the E consists of the union of E and all its limit points.

Definition 8 (Boundary): The boundary of a set E, denoted by δE , is the set of points which are in the closure of E but not in the interior of E.

Property 2:

- The closure of a set is a closed set.
- Every point in E is a limit point of E.
- A set is closed if and only if it contains all its limit points.

Definition 9 (Perfect Set): A closed set E is perfect if E does not have any isolated points.

Definition 10 (Rectangle): A (closed) rectangle R in \mathbb{R}^d is given by the product of d one-dimensional closed and bounded intervals,

$$R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d]$$

where a_j , b_j are real numbers, j = 1, 2, ..., d. If all intervals are equal then it is a cube.

Lemma 1: If a rectangle is the almost disjoint (interior disjoint) union of finitely many other rectangles, say $R = \bigcup_{k=1}^{N} R_k$ then $|R| = \sum_{k=1}^{N} |R_k|$.

Lemma 2: If R, R_1, \ldots, R_N are rectangles, and $R \subset \bigcup_{k=1}^N R_k$ then $|R| \leq \sum_{k=1}^N |R_k|$.

Theorem 1: Every open subset O of \mathbb{R} can be written uniquely as a countable union of disjoint open intervals. In general, this is not true for \mathbb{R}^d , d > 1.

Theorem 2: Every open subset O of \mathbb{R}^d , $d \geq 1$, can be written as a countable union of almost disjoint closed rectangles (cubes).

Definition 11 (The Cantor Set): Let $C_0 = [0,1]$ and we get C_k by dividing each disjoint interval of C_{k-1} in three equal parts and deleting the middle part (end points are included in the set), then the Cantor set is defined as,

$$\mathcal{C} = \bigcap_{k=0}^{\infty} C_k$$

Property 3:

- $C_0 \supset C_1 \supset C_2 \cdots \supset C_k \supset C_{k+1} \cdots$
- ullet C is closed and bounded, hence compact.
- \mathcal{C} is totally disconnected: given any $x, y \in \mathcal{C}$ there exists $z \notin \mathcal{C}$ that lies between x and y.
- \bullet \mathcal{C} is perfect: it has no isolated points and it is closed.
- \mathcal{C} is not countable: maps to power set of \mathbb{N}
- \mathcal{C} has measure 0.
- $x \in \mathcal{C} \iff x = \sum_{k=0}^{\infty} a_k 3^{-k}, a_k \in \{0, 2\}$

1.2 The Outer (Exterior) Measure

Definition 12 (Outer Measure): If E is any subset of \mathbb{R}^d , the outer measure of E is,

$$m_*(E) = \inf \sum_{k=1}^{\infty} \left| R_k \right|$$

where inf is taken over all countable coverings $E \subset \bigcup_{k=1}^{\infty} R_k$ by closed rectangles (cubes). Note that $0 \leq m_*(E) \leq \infty$.

Property 4: The outer measure of a point is zero.

Property 5: The outer measure of a closed rectangle (open rectangle) is equal to its volume.

Property 6: The outer measure of \mathbb{R}^d is infinite.

Property 7: For every $\epsilon > 0$, there exists a covering $E \subset \bigcup_{i=1}^{\infty} R_i$ with

$$\sum_{j=1}^{\infty} m_*(R_j) \le m_*(E) + \epsilon$$

Property 8 (Monotonicity): If $E_1 \subset E_2$, then $m_*(E_1) \leq m_*(E_2)$.

Property 9 (Countable Sub-additivity): If $E = \bigcup_{j=1}^{\infty} E_j$, then $m_*(E) \leq \sum_{j=1}^{\infty} m_*(E_j)$.

Property 10: If $E \in \mathbb{R}^d$, then $m_*(E) = \inf m_*(\mathcal{O})$, where the inf is taken over all open sets \mathcal{O} containing E.

Property 11: If $E = E_1 \bigcup E_2$ and $d(E_1, E_2) > 0$ then, $m_*(E) = m_*(E_1) + m_*(E_2)$ where $d(E_1, E_2) = \inf_{x \in E_1, y \in E_2} |x - y|$.

Property 12: If a set E is the countable union of almost disjoint rectangles $E = \bigcup_{k=1}^{\infty} R_k$, then $m_*(E) = \sum_{k=1}^{\infty} \left| R_k \right|$

Need to add more

1.3 Measurable Sets and Lebesgue Measure

Definition 13 (σ -algebra): A σ -algebra of sets is a collection of subsets of \mathbb{R}^d that is closed under countable unions, countable intersections, and complements. Example: Collection of all subsets of \mathbb{R}^d , collection of all measurable sets of \mathbb{R}^d

Definition 14 (Borel σ -algebra and Borel sets): A set $E \subseteq \mathbb{R}^d$ is an F_{σ} set provided that it is the countable union of closed sets and is a G_{δ} set if it is the countable intersection of open sets. The smallest σ -algebra that contains all open sets. Elements of this σ -algebra are called Borel sets.

1.4 Measurable Functions

Definition 15 (Characteristic Function): A characteristic function of a set E is defined by

$$\chi_E(x) = \begin{cases} 1, & \text{if } x \in E \\ 0, & \text{if } x \notin E. \end{cases}$$

Definition 16 (Step Function): Step functions are defined as finite sum, $f = \sum_{k=1}^{N} a_k \chi_{R_k}$, where each R_k is a rectangle and each a_k is a constant. These are used in Reimann integral.

Definition 17 (Simple Function): A simple function is a finite sum, $f = \sum_{k=1}^{N} a_k \chi_{E_k}$, where each E_k is a measurable set of finite measure, and the a_k are constants. These are used in Lebesgue integral.

Definition 18 (Measurable Function): A function f defined on a measurable subset E of \mathbb{R}^d is measurable, if for all $a \in \mathbb{R}$, the set

$$f^{-1}([-\infty, a)) = \{x \in E : f(x) < a\} = \{f < a\}$$

is measurable. Equivalently, $\{f \leq a\}, \{f > a\}, \{f \geq a\}$ are measurable. If f is finite valued then $\{a < f < b\}$ is measurable (with any combinations of \leq, \geq).

Property 13: The finite-valued function f is measurable if and only if $f^{-1}(O)$ is measurable for every open set O, and if and only if $f^{-1}(F)$ is measurable for every closed set F.

Property 14: If f is continuous on \mathbb{R}^d , then f is measurable. If f is measurable and finite-valued, and ϕ is continuous, then $\phi \circ f$ is measurable. But $f \circ \phi$ may not.

Property 15: Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions. Then

$$\sup_{n} f_n(x), \inf_{n} f_n(x), \limsup_{n \to \infty} f_n(x), \liminf_{n \to \infty} f_n(x)$$

are measurable.

Property 16: Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions. Then

$$\lim_{n \to \infty} f_n(x) = f(x)$$

then f is measurable.

Property 17: If f and g are measurable, then,

- The integer powers $f^k, k \ge 1$ are measurable.
- f + g and fg are measurable if both f and g are finite-valued.

Definition 19 (Almost Everywhere): We shall say that two functions f and g defined on a set E are equal almost everywhere, and write,

$$f(x) = g(x) \text{ a.e. } x \in E,$$

if the set $\{x \in E : f(x) \neq g(x)\}$ has measure zero. All the properties above can be relaxed to conditions holding almost everywhere.

Property 18: Suppose f is measurable, and f(x) = g(x) for a.e. x. Then g is measurable.

Definition 20 (Pointwise Convergence of a Function): Let $E \subset \mathbb{R}^d$ and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of real valued functions defined on E. Then $\{f_n\}_{n=1}^{\infty}$ converges pointwise to f if given any x in E and given any $\epsilon > 0$, there exists a natural number $N(x, \epsilon)$ such that $|f_n(x) - f(x)| < \epsilon$ for every $n > N(x, \epsilon)$.

Definition 21 (Uniform Convergence of a Function): Let $E \subset \mathbb{R}^d$ and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of real valued functions defined on E. Then $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f if given any $\epsilon > 0$, there exists a natural number $N(\epsilon)$ such that $|f_n(x) - f(x)| < \epsilon$ for every $n > N(\epsilon)$ for every $x \in E$.

Theorem 3: Suppose f is a non-negative measurable function on \mathbb{R}^d . Then there exists an increasing sequence of non-negative simple functions $\{\phi\}_{k=1}^{\infty}$ that converges pointwise to f, namely,

$$\phi_k(x) \le \phi_{k+1}(x) \text{ and } \lim_{k \to \infty} = f(x) \ \forall \ x.$$

Theorem 4: Suppose f is a measurable function on \mathbb{R}^d . Then there exists a sequence of simple functions $\{\phi\}_{k=1}^{\infty}$ that satisfies,

$$|\phi_k(x)| \le |\phi_{k+1}(x)|$$
 and $\lim_{k \to \infty} = f(x) \ \forall \ x.$

Theorem 5: Suppose f is measurable on \mathbb{R}^d . Then there exists a sequence of step functions $\{\psi\}_{k=0}^{\infty}$ that converges pointwise to f(x) for almost every x.

Theorem 6 (Egorov): Suppose $\{f_k\}_{k=1}^{\infty}$ is a sequence of measurable functions defined on a measurable set E with $m(E) < \infty$, and assume that $f_k \to f$ a.e on E. Given $\epsilon > 0$, we can find a closed set $A_{\epsilon} \subset E$ such that $m(E - A_{\epsilon}) \leq \epsilon$ and $f_k \to f$ uniformly on A_{ϵ} .

Theorem 7 (Lusin): Suppose f is measurable and finite valued on E with E of finite measure. Then for every $\epsilon > 0$ there exists a closed set F_{ϵ} , with

$$F_{\epsilon} \subset E \ and \ m(E - F_{\epsilon}) \leq \epsilon$$

and such that $f|_{F_{\epsilon}}$ is continuous.

Chapter 2

INTEGRATION THEORY

Definition 22 (Canonical Form of Simple Function): The canonical form of a simple function ϕ is the unique decomposition as below,

$$\phi = \sum_{k=1}^{M} c_k \chi_{F_k}$$

where the numbers c_k are distinct and non-zero, and the sets F_k are disjoint.

Property 19: If ϕ is a simple function with canonical form $\phi = \sum_{k=1}^{M} c_k \chi_{F_k}$, then we define the Lebesgue integral of ϕ by $\int_{\mathbb{R}^d} \phi(x) dx = \sum_{k=1}^{M} c_k m(F_k)$.

Property 20: If E is a measurable subset of \mathbb{R}^d with finite measure, then $\phi(x)\chi_E(x)$ is also a simple function, and we define,

$$\int_{E} \phi(x)dx = \int \phi(x)\chi_{E}(x)dx$$

where second integral is over \mathbb{R}^d .

Proposition 1: The integral of simple functions defined above satisfies the following properties:

• Independence of the representation. If $\phi = \sum_{k=1}^{N} a_k \chi_{E_k}$ is any representation of ϕ , then

$$\int \phi = \sum_{k=1}^{N} a_k m(E_k)$$

• Linearity. If ϕ and ψ are simple, and $a, b \in \mathbb{R}$, then

$$\int (a\phi + b\psi) = a \int \phi + b \int \psi$$

• Additivity. If E and F are disjoint subsets of \mathbb{R}^d with finite measure, then

$$\int_{E \sqcup F} \phi = \int_{E} \phi + \int_{F} \phi$$

• Monotonicity. If $\phi \leq \psi$ are simple, then

$$\int \phi \le \int \psi$$

• Triangle inequality. If ϕ is a simple function, then so is $|\phi|$, and

$$\left| \int \phi \right| \le \int \left| \phi \right|$$