Modelo	Modelo matemático	Función de costo	Método de resolución	Correspondencia con el punto 1	Tamaño y observaciones
LinearRegressor	$y = Xw + \eta$	$J = \ Xw - y\ ^2$	Solución analítica mediante ecuaciones normales	Equivale a los mínimos cuadrados descritos en el punto 1	Rinde bien hasta del orden de 10^4 – 10^5 registros; muy veloz e interpretable.
Lasso	$y = Xw + \eta$	$J = \ Xw - y\ ^2 + \lambda \ w\ _1$	Descenso por coordenadas /	Estimador MAP con prior	Favorece soluciones dispersas;
			gradiente proximal	Laplaciano sobre w	útil para selección de variables.
ElasticNet	Igual	$J = Xw - y ^2 + \lambda_1 w _1 + \lambda_2 w ^2$	Descenso por	Punto intermedio entre	Suele funcionar mejor cuando las
			coordenadas	Lasso y Ridge	features están correlacionadas.
KernelRidge	$y = K\alpha + \eta$	$J = K\alpha - y ^2 + \lambda \alpha^{\top} K\alpha$	Solución cerrada en	Ridge aplicado en el espacio de	Coste cúbico $O(n^3)$;
			el problema dual	características $\phi(x)$	capacidad limitada en n .
SGDRegressor	Igual al lineal	$J = \ Xw - y\ ^2$	Optimización con	Aproxima la regresión lineal	Escala a conjuntos con millones
			gradiente estocástico	mediante SGD	de ejemplos.
BayesianRidge	$y = Xw + \eta$ con prior	Minimiza la	Resolución cerrada;	Versión Bayesiana (MAP/MLE)	Entrega incertidumbre explícita
	$w \sim \mathcal{N}(0, \lambda^{-1}I)$	evidencia marginal	posterior Gaussiano	del modelo del punto 1	sobre w .
GaussianProcessRegressor	$f(x) \sim \mathcal{GP}(0, k(x, x'))$	Maximiza la log-	Inversión/álgebra lineal	Extiende KernelRidge a un	Complejidad $O(n^3)$;
		verosimilitud del kernel	de la matriz de kernel	enfoque no paramétrico	incertidumbre exacta.
SVR	$f(x) = w^{\top} \phi(x) + b$	$\frac{1}{2} w ^2 + C\sum \xi_i,$	Programación cuadrática	Regresión regularizada con	Escala de forma moderada;
		con margen ϵ	(SMO)	kernel y margen ϵ	resistente a atípicos.
RandomForestRegressor	Ensamble de árboles	Minimiza el error	Bagging con árboles	Modelo no lineal; sin vínculo	Muy escalable y robusto; no
		cuadrático medio	entrenados en forma independiente	directo con el punto 1	exige normalizar entradas.
GradientBoosting / XGBoost	Ensamble secuencial	Pérdida diferenciable	Gradient boosting	No lineal; combina aprendices	Alta precisión y buena escalabilidad;
	de árboles	optimizada con boosting	iterativo (aditivo)	débiles de manera secuencial	entrenamiento relativamente costoso.