Relevant readings for the lecture are Waller & Gotway, Chapter 9, and Golpher, A. B., and P. R. Voss. How to Interpret the Coefficients of Spatial Models: Spillovers, Direct and Indirect Effects. Spatial Demography (2016) 4:175-205.

Classification of Gaussian spatial regression models

- First order effects in all spatial regression models are as usually written as linear regression equation $E(\mathbf{y} \mid \mathbf{X}) = \mathbf{X} \cdot \boldsymbol{\beta}$ in a set of independent variables \mathbf{X} .
- Second order effects are reflected by a dependency pattern among the regression disturbances $\varepsilon = y X \cdot \beta$.
- Note: this discussion is based on the unobserved disturbances ε and the population regression parameters β .
- The covariance matrix of the disturbances $Cov(\varepsilon) = \sigma^2 | \Omega(\rho) |$ is exhibiting some form of spatial autocorrelation where σ^2 is the variance of the disturbances (i.e., we assume homoscedasticity) and $\Omega(\rho)$ autocorrelation matrix, which depends on the autocorrelation coefficient ρ .
- Depending on the explicit specification of autocorrelation matrix $\Omega(\rho)$ we get three different Gaussian spatial processes:
 - The *simultaneous autoregressive* spatial process (SAR) $\mathbf{\Omega}(\rho) = (\mathbf{I} \rho \cdot \mathbf{V})^{-1} \cdot (\mathbf{I} \rho \cdot \mathbf{V}^T)^{-1}$ or equivalently $\mathbf{\Omega}(\rho) = \left[(\mathbf{I} \rho \cdot \mathbf{V}^T) \cdot (\mathbf{I} \rho \cdot \mathbf{V}) \right]^{-1}$
 - The *moving average* spatial process (MA) $\Omega(\rho) = (\mathbf{I} + \rho \cdot \mathbf{V}) \cdot (\mathbf{I} + \rho \cdot \mathbf{V}^T).$

• The *conditional autoregressive* spatial process (CAR) $\Omega(\rho) = (\mathbf{I} - \rho \cdot \mathbf{V})^{-1}$.

Here the matrix $\mathbf{I} - \rho \cdot \mathbf{V}$ must be *positive definite* and, therefore, the coded spatial link matrix \mathbf{V} has to be *symmetric*.

- The *feasible value range* of the spatial autocorrelation coefficient ρ is restricted in all specification. In essence, its range depends on the eigenvalues of the coded spatial link matrix V. Any autocorrelation coefficient ρ outside the feasible range leads to a *non-stationary* spatial process.
- For the moving average and the simultaneous autoregressive spatial processes, the matrix $\Omega(\rho)$ automatically satisfies symmetry and positive definiteness (the inverse matrix exists) criteria for any feasible autocorrelation coefficients.
- Most popular in spatial autocorrelation modeling is the *simultaneous autoregressive* process with a *first order spatial lag* matrix in the *W*-coding scheme. This is mostly for practical reasons.
- Consequently, in the subsequent discussion we will focus only on $\Omega(\rho) = (\mathbf{I} \rho \cdot \mathbf{W})^{-1} \cdot (\mathbf{I} \rho \cdot \mathbf{W}^T)^{-1}$

The simultaneous autoregressive process

- The model structure of a simultaneous autoregressive process is $\mathbf{y} = \mathbf{X} \cdot \mathbf{\beta} + \mathbf{\epsilon}$ where $\mathbf{\varepsilon} = (\mathbf{I} \rho \cdot \mathbf{W})^{-1} \cdot \mathbf{\eta} \iff \mathbf{\varepsilon} = \rho \cdot \mathbf{W} \cdot \mathbf{\varepsilon} + \mathbf{\eta}$.
 - \circ η is the *independent white noise* disturbance, which is the random input into the stochastic process
 - o $(\mathbf{I} \rho \cdot \mathbf{W})^{-1}$ is the linking mechanism of the stochastic process
 - \circ ϵ is the spatially autocorrelated output of the stochastic process.

• This model can also be written in different but equivalent forms:

$$\mathbf{y} = \mathbf{X} \cdot \mathbf{\beta} + (\mathbf{I} - \boldsymbol{\rho} \cdot \mathbf{W})^{-1} \cdot \mathbf{\eta}$$
 error term

- \Leftrightarrow $(\mathbf{I} \rho \cdot \mathbf{W}) \cdot \mathbf{y} = (\mathbf{I} \rho \cdot \mathbf{W}) \cdot \mathbf{X} \cdot \mathbf{\beta} + \mathbf{\eta}$ (this is the specification of the FGLS estimator)
- $\Leftrightarrow \mathbf{y} = \rho \cdot \mathbf{W} \cdot \mathbf{y} + \mathbf{X} \cdot \mathbf{\beta} \rho \cdot \mathbf{W} \cdot \mathbf{X} \cdot \mathbf{\beta} + \mathbf{\eta}$
- The terms $\mathbf{W} \cdot \mathbf{y}$ and $\mathbf{W} \cdot \mathbf{X}$ denote the spatial averages (spill-over effects) of the dependent and independent variables, respectively, around the reference locations.
- In OLS the right side of the regression equation comprises solely of exogenous information and a random error term.
 - Now, however, we also have the random component $\rho \cdot \mathbf{W} \cdot \mathbf{y}$ on the right hand side, which therefore will be correlated with the error term η .
 - This violates the fundamental OLS assumptions that the exogenous information is independent from the random error term.
- Note: As long as the underlying data generating process is Gaussian auto-regressive the estimated OLS regression coefficients $\hat{\beta}$ remain unbiased.
 - However, if the underlying data generation process deviates for the Gaussian auto-regressive model the estimated OLS regression coefficients will become biased.
- The estimated coefficients $\hat{\beta}_*$ of the term $\mathbf{W} \cdot \mathbf{X}$ have to satisfy the *common factor constraint* $\hat{\beta}_* = -\hat{\rho} \cdot \hat{\beta}$ for the *simultaneous autoregressive model*.
 - The violation of this constraint leads to the Durbin model in spatial econometrics.

- Commonly used alternative models are:
 - Estimates may indicate, however, a violation of the common factor constraint, that is, $\hat{\beta}_* \neq -\rho \cdot \hat{\beta}$. Then the model no longer a simultaneous autoregressive.
 - O Alternatively, one may constrain $\beta_* = 0$ explicitly to be zero. This leads to the econometric spatial lag $model y = \rho \cdot W \cdot y + X \cdot \beta + \eta$.
- Both models can be distinguished be the Lagrange multiplier tests.
 - O The Lagrange multiplier test for the *simultaneous autoregressive* error model is asymptotically χ^2 -distributed with one degree of freedom. It is asymptotically equivalent to Moran's I, however, Moran's I is more precise.
 - The Lagrange multiplier test for the *lag* model is asymptotically χ^2 -distributed with one degree of freedom.
 - o If the Lagrange multiplier test for the lag model is more significant than the Lagrange multiplier test for the spatial autoregressive model ($\alpha_{LAG} < \alpha_{SAR}$ or $\chi^2_{SAR} < \chi^2_{LAG}$, respectively) then the underlying data generating process has more in common with the lag model and we choose the lag model specification.
 - O Alternatively, if $\alpha_{LAG} > \alpha_{SAR}$ or $\chi^2_{SAR} > \chi^2_{LAG}$, respectively, then we choose the simultaneous autoregressive model as underlying data generating process.
 - \circ If neither χ^2_{SAR} nor χ^2_{LAG} is significant then the data generating process is neither LAG nor SAR.
- Evaluate the different models with the **-script SpatialRegModels.R.

Excurse: Calculation of the Spatial Covariance Matrix

• Bailey and Gatrell (p 284) derive the covariance matrix of the simultaneous autoregressive process explicitly. Recall that $\mathbf{\varepsilon} = (\mathbf{I} - \rho \cdot \mathbf{W})^{-1} \cdot \mathbf{\eta}$. Thus:

$$Cov(\mathbf{\varepsilon}) = E(\mathbf{\varepsilon} \cdot \mathbf{\varepsilon}^{T}) \text{ because the mean of } E(\mathbf{\varepsilon}) = \mathbf{0}$$

$$= E\left[(\mathbf{I} - \rho \cdot \mathbf{W})^{-1} \cdot \mathbf{\eta} \cdot \mathbf{\eta}^{T} \cdot (\mathbf{I} - \rho \cdot \mathbf{W}^{T})^{-1} \right]$$

$$= (\mathbf{I} - \rho \cdot \mathbf{W})^{-1} \cdot \underbrace{E(\mathbf{\eta} \cdot \mathbf{\eta}^{T})}_{=\sigma^{2} \cdot \mathbf{I}} \cdot (\mathbf{I} - \rho \cdot \mathbf{W}^{T})^{-1}$$

$$= \sigma^{2} \cdot \left[(\mathbf{I} - \rho \cdot \mathbf{W})^{-1} \cdot (\mathbf{I} - \rho \cdot \mathbf{W}^{T})^{-1} \right]$$

$$= \sigma^{2} \cdot \left[(\mathbf{I} - \rho \cdot \mathbf{W})^{T} \cdot (\mathbf{I} - \rho \cdot \mathbf{W}) \right]^{-1} \text{ because } \mathbf{B}^{-1} \cdot \mathbf{A}^{-1} = \left[\mathbf{A} \cdot \mathbf{B} \right]^{-1}$$

$$= \sigma^{2} \cdot \mathbf{\Omega}(\rho)$$

- If heteroscedasticity is present, that is, $E(\mathbf{\eta} \cdot \mathbf{\eta}^T) \neq \sigma^2 \cdot \mathbf{I}$, a diagonal weights matrix can be entered in-between the terms $(\mathbf{I} \rho \cdot \mathbf{W})^{-1}$.
- Unfortunately, by default the matrix $\Omega(\rho) = (\mathbf{I} \rho \cdot \mathbf{W})^{-1} \cdot (\mathbf{I} \rho \cdot \mathbf{W}^T)^{-1}$ is not constant on the diagonal. Thus by design the spatial process has a varying variance and, therefore, is not perfectly stationary. Also its off-diagonal elements may differ for a given spatial lag.
- The variance stabilizing *S*-coding scheme of a spatial link matrix alleviates this problem (See Tiefelsdorf, Griffith, Boots, 1999, Environment and Planning A)

Excurse: Estimation of the regression model under spatial autocorrelation

• If we would know the full specification of the spatial correlation matrix $\Omega(\rho)$ in advance, then we could use General Least Squares to estimate the parameters β by

$$\hat{\boldsymbol{\beta}}_{gls} = (\mathbf{X}^T \cdot \mathbf{\Omega}^{-1}(\boldsymbol{\rho}) \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{\Omega}^{-1}(\boldsymbol{\rho}) \cdot \mathbf{y}$$

• In the case of a simultaneous autoregressive process this equation simplifies to

$$\hat{\boldsymbol{\beta}}_{gls} = [\mathbf{X}^T \cdot (\mathbf{I} - \boldsymbol{\rho} \cdot \mathbf{W}^T) \cdot (\mathbf{I} - \boldsymbol{\rho} \cdot \mathbf{W}) \cdot \mathbf{X}]^{-1} \cdot \mathbf{X}^T \cdot (\mathbf{I} - \boldsymbol{\rho} \cdot \mathbf{W}^T) \cdot (\mathbf{I} - \boldsymbol{\rho} \cdot \mathbf{W}) \cdot \mathbf{y}$$

because the inverse of $\Omega^{-1}(\rho) = (\mathbf{I} - \rho \cdot \mathbf{W}^T) \cdot (\mathbf{I} - \rho \cdot \mathbf{W})$.

- Thus no calculation of the inverse spatial autocorrelation matrix is required which is a main advantage of the simultaneous autoregressive model.
- However, since the autocorrelation level ρ is unknown, one would need to use feasible general least squares and estimate the spatial autocorrelation coefficient ρ by maximum likelihood.
- Assuming that $\mathbf{y} \sim N(\mathbf{X} \cdot \boldsymbol{\beta}, \sigma^2 \cdot \boldsymbol{\Omega}(\rho))$, that is, \mathbf{y} is normal distributed with an expectation of $\mathbf{X} \cdot \boldsymbol{\beta}$ and a covariance of $\sigma^2 \cdot \boldsymbol{\Omega}(\rho)$, the log-likelihood function is

$$\ell(\boldsymbol{\beta}, \sigma^2, \rho \mid \mathbf{y}, \mathbf{X}) \propto -\ln \left| \sigma^2 \cdot \mathbf{\Omega}(\rho) \right| - (\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\beta})^T \cdot \frac{1}{\sigma^2} \cdot \mathbf{\Omega}^{-1}(\rho) \cdot (\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\beta})$$

• The term within the determinant of $\ln |\sigma^2 \cdot \Omega(\rho)|$ is called the log-Jacobian. It ensured that we are dealing with a proper density function that integrates to one. This term complicates the estimation of any autoregressive spatial model substantially.

Misconceptions in Bailey and Gatrell:

- p 284: $-1 \le \rho \le 1$ does not hold, the bounds depend on the specific spatial structure, coding scheme and spatial process.
- p 285: For positive spatial autocorrelation the standard deviation of the estimated regression parameters is inflated. This statement is wrong; the direction of the bias cannot be given *a priori*.

Further reading on model specifications and interpretations:

Anselin, Luc (2003). Spatial Externalities, Spatial Multipliers, and Spatial Econometrics. *International Regional Science Review* **26**:153-166

Golgher, Andre Braz & Paul R. Voss (2016) How to Interpret the Coefficients of Spatial Models: Spillovers, Direct and Indirect Effects. *Spatial Demography*, **4**:175-205

Fig. 1 Some spatial models