Federated learning with Flower

김진수

Index

- Federated Learning 소개
- Step by Step Federated Learning
- Method: FedAvg
- FedAvg with flower
- Method: FedProx
- FedProx with flower
- Federated Learning 연구 분야

Federated Learning

- "Communication-Efficient Learning of Deep Networks from Decentralized Data (McMahan et al., google, 2016)
- However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches.

Federated Learning

• 빠른 속도로 성장하고 있는 연구 분야

Figure 2: The number of pulished FL papers in top-tie conference from 2019-2022.

Step by Step Federated Learning

- Federated Learning은 Server Client 구조
- Server = 학습되는 모델 구조를 선정하고 로컬 모델을 집계
- Client = Server에게 전달받은 모델을 로컬 데이터를 활용해 학습

Step by Step Federated Learning

- 1. Server는 학습 모델을 선정(ex. MobileNet, ResNet, AlexNet). $\therefore \min_{\mathcal{W} \in \mathbb{R}^d} f(\mathcal{W})$
- 2. Server는 Client에게 선정한 모델의 초기 Weight를 배포 \therefore Send w_0 to Client
- 3. Client는 Server로부터 받은 모델을 로컬 데이터로 학습

$$\therefore C1: w_1^1 \leftarrow w_0 - \eta \nabla \mathcal{L}_1(x_1, y_1), \quad C2: w_1^2 \leftarrow w_0 - \eta \nabla \mathcal{L}_2(x_2, y_2), \quad C3: w_1^3 \leftarrow w_0 - \eta \nabla \mathcal{L}_3(x_3, y_3)$$

4. Client는 학습된 로컬 모델의 Weight를 서버로 전송

- $\therefore return w_1^1, w_1^2, w_1^3 to Server$
- 5. Server는 Client로부터 받은 데이터를 통해 글로벌 모델 업데이트(Aggregation), 라운드 종료

$$\therefore w_1 \leftarrow \sum_{k=1}^3 \frac{n_k}{n} w_1^k$$

Method: FedAvg

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

```
initialize w_0

for each round t = 1, 2, \ldots do

m \leftarrow \max(C \cdot K, 1)

S_t \leftarrow (random set of m clients)

for each client k \in S_t in parallel do

w_{t+1}^k \leftarrow ClientUpdate(k, w_t)

m_t \leftarrow \sum_{k \in S_t} n_k

w_{t+1} \leftarrow \sum_{k \in S_t} \frac{n_k}{m_t} w_{t+1}^k // Erratum<sup>4</sup>
```

ClientUpdate(k, w): // Run on client k $\mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do
for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$ return w to server

Federated Learning Optimization Problem

$$\min_{\mathcal{W} \in \mathbb{R}^d} f(\mathcal{W}) = \sum_{k=1}^N \frac{n_k}{n} f_k(\mathcal{W}, x_k, y_k)$$

FedAvg with Flower

conda create -n gachon_fl python=3.8 git clone --depth=1 https://github.com/adap/flower.git conda activate gachon_fl cd flower/baselines pip install –r requirements.txt pip install flwr[simulation] 설치가 안된다면 pip install 'ray[tune]' pip install omegaconf

pip install hydra-core

Method: FedProx

FEDERATED OPTIMIZATION IN HETEROGENEOUS NETWORKS

Tian Li ¹ Anit Kumar Sahu ² Manzil Zaheer ³ Maziar Sanjabi ⁴ Ameet Talwalkar ¹⁵ Virginia Smith ¹

- 1. Systems Heterogeneity (systems characteristic on each device in network)
- 2. Statistical Heterogeneity (Non-IID Data)

Proximal term.
$$\min_{w} h_k(w; w^t) = F_k(w) + \frac{\mu}{2} \|w - w^t\|^2$$

Method: FedProx

Algorithm 1 Federated Averaging (FedAvg)

Input: $K, T, \eta, E, w^0, N, p_k, k = 1, \dots, N$ for $t = 0, \dots, T - 1$ do

Server selects a subset S_t of K devices at random (each device k is chosen with probability p_k)

Server sends w^t to all chosen devices

Each device $k \in S_t$ updates w^t for E epochs of SGD on F_k with step-size η to obtain w_k^{t+1}

Each device $k \in S_t$ sends w_k^{t+1} back to the server Server aggregates the w's as $w^{t+1} = \frac{1}{K} \sum_{k \in S_t} w_k^{t+1}$

end for

Algorithm 2 FedProx (Proposed Framework)

Input: $K, T, \mu, \gamma, w^0, N, p_k, k = 1, \dots, N$ for $t = 0, \dots, T-1$ do

Server selects a subset S_t of K devices at random (each device k is chosen with probability p_k)

Server sends w^t to all chosen devices

Each chosen device $k \in S_t$ finds a w_k^{t+1} which is a γ_k^t -inexact minimizer of: $w_k^{t+1} \approx \arg\min_w h_k(w; w^t) = F_k(w) + \frac{\mu}{2} \|w - w^t\|^2$

Each device $k \in S_t$ sends w_k^{t+1} back to the server Server aggregates the w's as $w^{t+1} = \frac{1}{K} \sum_{k \in S_t} w_k^{t+1}$ end for

Method: FedProx

Definition 2 $(\gamma_k^t\text{-inexact solution})$. For a function $h_k(w; w_t) = F_k(w) + \frac{\mu}{2} ||w - w_t||^2$, and $\gamma \in [0, 1]$, we say w^* is a γ_k^t -inexact solution of $\min_w h_k(w; w_t)$ if $\|\nabla h_k(w^*; w_t)\| \le \gamma_k^t \|\nabla h_k(w_t; w_t)\|$, where $\nabla h_k(w; w_t) = \nabla F_k(w) + \mu(w - w_t)$. Note that a smaller γ_k^t corresponds to higher accuracy.

FedProx with flower

```
publications
adaptive_federated_optimization
fedavg_mnist
fedbn
fedprox_mnist
example_test.py
```

Federated Learning 연구분야

Client Selection/Incentive Mechanism

Aggregation optimization

Local Update
$$f_k(\mathcal{W}) \colon \mathcal{W}_{t+1}^k \leftarrow \mathcal{W}_t - \eta \nabla \mathcal{L}_k(x_k, y_k)$$
 Personalization

Federated Learning 연구분야

- Papers (Research directions)
 - Model Aggregation
 - Personalization
 - Recommender system
 - Security
 - Survey
 - Efficiency
 - Optimization
 - Fairness
 - Application
 - Boosting
 - Incentive mechanism
 - Unsupervised Learning
 - Heterogeneity
 - Client Selection
 - Graph Neural Networks
 - Other Machine Learning Paradigm
 - Trade-off

https://github.com/innovation-cat/Awesome-Federated-Machine-Learning