Metrična in delna metrična dimenzija kartezičnega produkta

Zanimalo naju je, kakšna je metrična in delna metrična dimenzija pri različnih kartezičnih produktih grafov. Najprej sva si pogledali kartezični produkt poti $P_t \Box P_m$. Ugotovili sva da je metrična in delna metrična dimenzija enaka 2. Pri kartezičnem produktu poti in cikla, $P_t \Box C_m$ sva ugotovili, da je metrična dimenzija pri sodih m enaka 3, delna metrična pa je enaka 2. Če je m lih sva dobili metrično dimenzijo 2, delna metrična dimenzija pa ni tako lepa kot v prejšnem primeru, velja pa $dim_f(P_t \Box C_m) \geq dim_f(C_m) = \frac{m}{m-1}$. Nadaljevali sva s kartezičnim produktom ciklov $C_t \Box C_m$. Za lihe m sva dobili metrično dimenzijo 3, z izjemo $C_2 \Box C_5$, ki ima metrično dimenzijo 2. Če sta m in n soda, sva dobili metrično dimenzijo 4, z izjemo $C_2 \Box C_4$, ki ima metrično dimenzijo 3. Za delno metrično dimenzijo sva ugotovili, če sta m in n soda, je enaka 2 sicer pa je manjša od 2. Pri kartezičnem produktu polnega grafa in poti $K_t \Box P_m$, sva ugotovili, da je metrična dimenzija vedno enaka t-1. Delna metrična dimenzija, pa je enaka $\frac{|V(K_t)|}{2} = dim_f(K_t)$. Metrična dimenzija kartezičnega produkta polnega grafa in cikla $K_t \Box C_m$ je enaka 3, če je t=4 in m sod, oziroma 4, če je t=4 in m lih. Če je $t\geq5$, je metrična dimenzija enaka t-1. Delna metrična dimenzija je enaka $\frac{|V(K_t)|}{2}$, razen v posebnem primeru ko je t=2 in m lih, $m\geq3$, je $dim_f(K_t\Box C_m)=\frac{2m}{m+1}$, tu je tudi metrična dimenzija enaka 2. Povzetek ugotovitev:

G	$\beta(G)$	$dim_f(G)$				
$P_t \square P_m$	2	2				
$P_t \square C_m$	2, če je m liho 3, če je m sodo	$ \geq dim_f(C_m) = \frac{m}{m-1} $				
$ C_t \square C_m $	3, če je t ali m liho 4, če je t in m sodo	≤ 2 2				
$K_t \square P_m$	t-1	$\frac{ V(K_t)}{2} = dim_f(K_t)$				
$K_t \square C_m$	3, če je t $= 4$ in m sod	$\frac{ V(K_t) }{2}$				
	4, če je $t=4$ in m lih	$\frac{ V(K_t) }{2}$				
	t-1, t≥5	$\frac{ V(K_t) }{2}$				
	2, če je t =2, m lih, $m \ge 3$	$\frac{2m}{m+1}$				

Metrična in delna metrična dimenzija mreže

Po definiciji je dvodimenzionalna mreža graf $G_{m,n}$ velikosti $m \times n$, ki je kartezični produkt poti $P_m \square P_n$. Tako je d-dimenzionalna mreža graf $G_{m_1,m_2,...,m_d} = P_{m_1} \square P_{m_2} \square \dots P_{m_d}$. Posebaj sva izračunali metrično in delno metrično dimenzijo za $G_{m,n} = P_m \square P_n$, kjer sva ugotovili, da sta obe enaki 2. Za dimenzije večje od 2 pa velja naslednja formula :

$$\beta(P_{m_1} \square P_{m_2} \square \ldots \square P_{m_d}) \le d$$
, za $d \ge 2$

Zgornjo formulo sva potrdili z računanjem posebnega primera mreže hiperkocke. Hipekocka je sestavljena iz kartezičnega produkta poti P_2 . Pogledali sva hiperkocke do dimenzije 5, saj je bilo za večje dimenzije računsko prezahtevno. Hiperkocko dimenzije n označimo $Q_n = \underbrace{P_2 \square P_2 \square \ldots \square P_2 \square}_{n}$. Opazimo da je

$$\beta(Q_n) \le n$$

Hkrati velja, za $n \ge 2$ je delna metrična dimenzija $dim_f(Q_n) = 2$. V spodnji tabeli so povzete najine ugotovitve in znane metrične ter delne metrične dimenzije za dimenzije večje od 5.

n	2	3	4	5	6	7	8	9	10	15
$\beta(Q_n)$	2	3	4	4	5	6	6	7	7	≤ 10
$dim_f(Q_n)$	2	2	2	2	2	2	2	2	2	2