

S05: High Performance Computing with CUDA

Case Study: Wave propagation through earth

Bernard Deschizeaux CGGVeritas Oil&Gas service company

Outline

- What Oil & Gas industry look for
 - Introduction to oil prospection.
 - Seismic prospecting overview.
- What CGGVeritas offers
 - Data acquisition.
 - Data processing.
- Overview of main processing steps
 - Description of the problem to solve.
 - How do we solve it.
- Converting the algorithm in CUDA
 - Kernel example.
- Industrial environment in processing datacenter
 - Using CUDA in hybrid parallel environment.
 - Monitoring tools.
 - GPU server solution.
- Conclusion

SC07

What Oil & Gas look for

- Oil is generated deep down the earth.
- Oil migrate up through porous rocks.
- Oil is trapped by none porous rocks with specific structural shapes.
- To find oil the knowledge of the earth structure and rocks property is mandatory.

S05: High Performance Computing with CUDA

Economical pressure for accuracy CGGVERITAS

- Mature fields need from 10 to 100 wells.
- Typical cost for drilling a well is 10 millions dollars.
- At actual stat of the art 20% of the drilled wells are lost!
- Wells need to be positioned at a few meters error, below 1km of sea water and few km of rocks.

Wave propagation in the earth is related to rocks properties Arrival time of reflection gives structural information. Amplitude of reflection gives information on rocks properties. (wave velocity, rock density)

1 seismic survey = 10TB of data | 300+ hydrophones 6-9 km | 300+ hyd

Seismic processing

- 10TB of raw data.
- Every byte of data will need 10⁶ operations.
- Through the processing, data size will be increased tenfold.
- CGGV processing capability is centralized in main datacenters providing hundreds of Teraflops of computer capability and PetaBytes of storage.

SC07

Converting arrival time into depth **CCGGVERITAS**

- In case of radar distances are simple to extract from arrival time: $D = T^* V/2$.
 - Constant velocity in air.
 - Straight line propagation.

- In Seismic exploration the problem is far more complex.
 - Far more complex reflections.
 - Velocity field is unknown.
 - Velocity field is inhomogeneous.
 - ⇒ Ray path are not straight.

The wave propagation algorithm

Finite difference algorithm used in frequency to propagation from one depth to the next.

Propagator expressed in the spatial direction using Chebychev polynomials of second derivative.

$$G(\Delta) = \sum_{n=0}^{n=N} a_{\omega/V}(n) T_n(\Delta)$$

Depth = Z + dZ

T_n(x): Chebychev polynomial of degree n computed using the recursive equation:

$$T_n(x) = 2x \cdot T_{n-1}(x) - T_{n-2}(x)$$

Δ the second derivative is approximated by a 2D cross filter.

Reference: Soubaras, R., 1996. "Explicit 3-D migration using equiripple polynomial expansion and Laplacian synthesis". Geophysics, Volume 61, pp. 1386_139

CUDA propagator kernel

Block geometry: 64x8 = 512 threads

- Load:
 - Each thread reads one value in each quarter of the block data.
- Processing:
 - Each thread applies the cross operator to one value in each third of the block data.

Random access for the kernel. But sequential access for all warps of a block. Data Loaded 40x32 complex values

Warp

Data processed 32x24 complex values

CGGVERITAS

S05: High Performance Computing with CUDA

Complex performance analyses

- Kernels speedup varying from none to one order of magnitude.
- More than 100 parameters.
 - Large varieties of survey geometry.
 - Input frequency plan size from 50x50 to 500x500.
 - Pre and Post processing percentage (Amdahl law).
 - Interpolation increment, operator length
- Global speedup even more difficult to extract.
 - Finding representative dataset.
 - Finding representative parameters (empirical).
 - Knowing that even 2X speedup will change drastically the whole methodology.

CUDA development

- Development is not straightforward.
- Programming model very powerful and flexible.
- Lack of debugger and profiler.
- Some weakness in error handling.
- CUDA still in the evolution curve (more functionality and less constraint yet to come).
- Preliminary performance results on individual kernels very encouraging.
- Ongoing benchmark on different datasets and with realistic parameters.
- Hardware GPU server solution still in evaluation.

S05: High Performance Computing with CUDA

Development for processing hub **CGGVERITAS**

The prototype is included in a composite multi-layers parallelism

- Many processing project running concurrently.
- Large processing step split and schedule on different PC cluster racks.
- MPI used to parallelize on nodes in a rack.
- OpenMP used to parallelize on cores in a node and to schedule multi GPU.
- CUDA used to parallelize on GPU.

GPU in a processing datacenter Performance measurement Speed Up.

- Overall percentage of applications using GPU.
- Large datacenter constraints.
 - Space.
 - Power supply.
 - Cooling system.
 - Maintenance.
 - Price.
- What GPU solution need to provide
 - Compact (1u server).
 - Reasonable power needs.
 - Integrated in the general cooling system.
 - Stable for sustain use.
 - Inexpensive.

20 \$\infty\$

Conclusion

- Collaboration with NVIDIA is fruitful.
- Industrial time consuming algorithm successfully prototype with CUDA.
- Extensive benchmark ongoing on real scale datasets.
- Design for GPU server still in progress.
- Capability trend of GPU versus CPU show that this is a promising technology for number crunching solutions.

