

Course Methods Test 2 Year 12

Student name:	Teacher name:			
Task type:	Response			
Reading time for this test: 5 mins				
Working time allowed for this task: 40 mins				
Number of questions:	6			
Materials required:	Upto three calculators/classpads			
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters			
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper,			
Marks available:	41 marks			
Task weighting:	13%			
Formula sheet provided:	no but formulae listed on next page.			
Note: All part questions worth more than 2 marks require working to obtain full marks.				

Useful formulae

$\frac{d}{dx}x^n = nx^{n-1}$		$\int x^n dx = \frac{x^{n+1}}{n+1} + c, \qquad n \neq -1$	
$\frac{d}{dx}e^{ax-b} = ae^{ax-b}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx} \ln x = \frac{1}{x}$		$\int \frac{1}{x} dx = \ln x + c, x > 0$	
$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$		$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c, f(x) > 0$	
$\frac{d}{dx}\sin(ax-b) = a\cos(ax-b)$		$\int \sin(ax-b) dx = -\frac{1}{a} \cos(ax-b) + c$	
$\frac{d}{dx}\cos(ax-b) = -a\sin(ax-b)$		$\int \cos(ax-b) dx = \frac{1}{a} \sin(ax-b) + c$	
Product rule	If $y = uv$		If $y = f(x) g(x)$
	then	or	then
	$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$		y'=f'(x) g(x) + f(x) g'(x)
Quotient rule	If $y = \frac{u}{v}$		If $y = \frac{f(x)}{g(x)}$
	then	or	then
	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		$y' = \frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$
Chain rule	If $y = f(u)$ and $u = g(x)$)	If $y = f(g(x))$
	then	or	then
	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		y' = f'(g(x)) g'(x)
Fundamental theorem	$\left \frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x) \right $	and	$\int_{a}^{b} f'(x) dx = f(b) - f(a)$
Increments formula	$\delta y \approx \frac{dy}{dx} \times \delta x$		
Exponential growth and decay	$\frac{dP}{dt} = kP \iff P = P_0 e^{kt}$		

Q1 (2, 3, 2, 2 & 3 = 12 marks)

Consider the function y = f(x) which is graphed below.

- a) $\int_{-10}^{10} f(x) dx$.
- b) $\int_{-3}^{3} f(x) 4 dx$.
- c) $\frac{d}{dt} \int_{t}^{6} f(x) dx$ when t = 8.
- d) $\int_{-9}^{-6} f'(x) dx$.
- e) $\frac{d}{dt} \int_{5}^{t^2} f(x) dx$ in terms of t for 0 < t < 2.

Q2 (4 marks)

Sketch a continuous function **showing the** x **coordinates and labelling** of all special features on the axes below that meet the following requirements.

$$f\left(-4\right) = 0 = f\left(3\right)$$

$$f(0) = -7$$

$$f'(-4) = 0 = f'(1)$$

$$f''(1) > 0, f''(-4) < 0$$

Has **exactly** two stationary points.

Q3 (3 marks)

Consider a balloon whose volume V, litres, varies with time, t seconds, such that $\frac{dV}{dt} = \frac{-100t^2}{\left(2t^3 + 5\right)^2}$.

If the balloon fully deflates after 12 seconds, determine the initial volume. Full reasoning must be shown for full marks.

Q4 (2, 2 & 3 = 7 marks)

An object's displacement, x metres at t seconds, from the origin is $x = 5e^{-3t}\cos(5t)$ metres.

a) Determine the velocity function at time t seconds.

b) Determine the first two times that the object changes direction.

Q4 continued-

c) Determine the distance travelled in the first 1.5 seconds.

Q5 (2 & 4 = 6 marks)

a) Determine $\frac{d}{dx} \left(3x \cos \frac{\pi x}{6} \right)$ without the use of a classpad. Full reasoning must be given.

b) Hence show how to determine $\int \frac{\pi}{6} x \sin \frac{\pi x}{6} dx$ without the use of a classpad. Full reasoning must be given using the result from part a.

Q6 (2, 4 & 3 = 9 marks)

Consider a glass wall with the height H(x) metres **above floor** at x metres along the floor according to

 $H(x) = 17 - (2x - 9)^2 - \cos(2x - \frac{3\pi}{2})$. The glass wall sits on a stone support of height 8 metres.

metres

- a) Determine the values $x_1 \& x_2$ to the nearest cm.
- b) Using calculus, determine the maximum height of the wall. Justify.

Q6 continued

c) If the wall is 5 cm thick determine the volume of glass with units, needed to make the wall.

End of test.