Principals of Information Security Date: 1 April 2020

Instructor: Prof Kannan Srinathan Wrriten by: Gaurav Batra (20171114)

POIS Evaluation Question-1

1 Problems

1. Design a zero-knowledge proof for the Discrete-Logarithm Problem (DLP), that is, given prime p, generator g and the element $y = g^x mod p$, how does a prover claiming to know x, convince the verifier, without revealing x?

1.1 Zero Knowledge proof

Zero-knowledge proof is a method by which the Prover (P) can prove to the Verifier (V) that it knows a value x, without conveying any information apart from the fact that it knows the value x.

A true zero-knowledge proof needs to prove 3 criteria:

- Completeness: it should convince the Verifier that the Prover knows what they say they know.
- **Soundness:** if the information is false, it cannot convince the Verifier that the Prover's information is true.
- Zero-knowledge-ness: it should reveal nothing else to the Verifier.

1.2 Construction of ZKP from DLP

1.2.1 Assumptions

- \bullet Let P be the Prover and V be the Verifier.
- x is the private key known only to P.
- Let p, g and $y = g^x \mod p$ be known to both P and V. (p is a prime and g is generator of the cyclic group \mathbb{Z}_p^*).
- Let length of prime p is n.
- DLP is a one way function.

1.2.2 Goal

The Prover P wants to convince the Verifier V that is knows x such that $y = g^x \mod p$.

1.2.3 Construction

- (a) P sends $t = g^r \mod p$ to V, where r is any random number from the group \mathbb{Z}_p^* .
- (b) V sends c to P, where c is any random number from the group \mathbb{Z}_{p}^{*} .
- (c) P sends z = cx + r to V.
- (d) V calculates $k = g^z \mod p$. If $k = (y^c t) \mod p$, then accept, else reject.

The above construction is a ZKP as it satisfies the following criteria:

1.2.4 Completeness

If P knows x, it can always send the correct z = cx + r to V. Therefore proof accepts, whenever P knows x as:

$$y^{c}t \bmod p = g^{cx}t \bmod p$$

$$= g^{cx}g^{r} \bmod p$$

$$= g^{cx+r} \bmod p$$

$$= g^{z} \bmod p$$
(1)

1.2.5 Soundness

If P does not know x, then the proof accepts only if he is able to output z' = cx' + r such that z' = z, that is cx' + r = cx + r.

The probability of this happening is $O(\frac{1}{p})$, which is negligible if n is large. Thus, the proof is sound.

1.2.6 Zero-Knowledge

P sends z, t to V. Since $t = g^r \mod p$, no information about x can be revealed by revealing t. z = c * x + r where c and r are random numbers so z is also random and no information about x is revealed. Thus P doesn't reveal any information about x by sharing z and t and thus the proof is Zero-Knowledge.

2. Moreover, using hash-functions (and assuming them to be random oracles) show how would to build a digital signature scheme based on your above zero-knowledge proof and the hardness of DLP?

The construction in the last question can be made into a Digital Signature scheme if we can make it non-interactive, that is make it so that all the information is sent from P to V.

The only information that V sends to P is c, which is a uniformly chosen element from \mathbb{Z}_p^* . We cannot let P choose c, as then, P would be able to fool V. This is accomplished by using a collision resistant hash function $\mathbb{H}(p,g,y)$ as c.

Our construction is modified as follows:

1.2.7 Construction

- (a) P sends $t = g^r \mod p$ to V, where r is any random number from the group \mathbb{Z}_p^* .
- (b) P sends z = cx + r to V, where $c = \mathbb{H}(p, q, y)$.
- (c) V accepts if $g^z \mod p = y^{\mathbb{H}(p,g,y)}t \mod p$ else reject.

Thus, based on the Zero-Knowledge Proof and hardness of DLP, we have constructed a digital signature using \mathbb{H} as a random oracle.

All the above proofs of Completeness, Soundness and Zero-Knowledge still hold here.

3. Also, show how would you design collision-resistant hash functions based on the hardness of DLP?

Now to construct the random oracle $\mathbb{H}(p, g, y)$, we can a use a collision-resistant hash function. We can create a collision-resistant hash function which is based on the hardness of DLP as follows:

1.2.8 Construction

(a) Design a hash function $\mathbb{H}^r: \{0,1\}^{2n} \to \{0,1\}^n$ as:

 $\mathbb{H}^r(x,y)=(g^xz^y) \bmod p \text{ where } z=g^k \bmod p \text{ where } k \text{ is a random number}$

This function is collision resistant as if a PPTM adversary can find a collision in the above hash function implies that it can solve DLP which is shown below:

Proof: Let there be a collision in \mathbb{H}^r , that is $\mathbb{H}^r(x_1, y_1) = \mathbb{H}^r(x_2, y_2)$. Since $x_1y_1 \neq x_2y_2$, WLOG we can take $y_1 \neq y_2$.

$$\mathbb{H}^{r}(x_{1}, y_{1}) = (g^{x_{1}}z^{y_{1}}) \bmod p$$

$$\mathbb{H}^{r}(x_{2}, y_{2}) = (g^{x_{2}}z^{y_{2}}) \bmod p$$

$$\therefore (g^{x_{1}}z^{y_{1}}) \bmod p = (g^{x_{2}}z^{y_{2}}) \bmod p$$

$$(g^{x_{1}-x_{2}}) \bmod p = (z^{y_{2}-y_{1}}) \bmod p$$

$$(g^{x_{1}-x_{2}}) \bmod p = (g^{k(y_{2}-y_{1})}) \bmod p$$

$$\therefore k = \frac{x_{1}-x_{2}}{y_{2}-y_{1}}$$

$$(2)$$

Hence we have found k such that $z = g^k \mod p$ and thus have solved DLP.

(b) To get arbitrary length hash function, we can use the Merkle-Damgard Transform which is a way of extending a fixed length collision-resistant function into a general one that receives input of any length.

Given $\mathbb{H}^r:\{0,1\}^{2n}\to\{0,1\}^n$, we need to build $\mathbb{H}:\{0,1\}^*\to\{0,1\}^n$ as follows:

- i. Let the message be $m \in \{0,1\}^*$. We pad m such that |m| is a multiple of n.
- ii. Divide m into b blocks each of size n, that is $m = m_1, m_2, \ldots, m_b$.
- iii. Define $z_0 = 0^n$.
- iv. For every i in (1, 2, ..., b), compute $z_i = \mathbb{H}(z_{i-1}||m_i)$.
- v. Ouptut $z = \mathbb{Z}_b |||m||$.

If \mathbb{H}^r is collision resistant hash function, then so is \mathbb{H} , which is proved as follows:

Proof: Let $m = m_1, m_2, \ldots, m_b$ with |m| = t and $m' = m'_1, m'_2, \ldots, m'_{b'}$ with |m'| = t'. Let there be a collision, that is $\mathbb{H}(t) = \mathbb{H}(t')$.

- i. If $t \neq t'$, as $\mathbb{H}(t) = \mathbb{H}(t') \implies \mathbb{H}^r(z_b||t) = \mathbb{H}^r(z_{b'}^{'}||t')$. As $t \neq t'$, this implies a collision in \mathbb{H}^r . Hence contradiction.
- ii. if t = t',
 - A. Let z and $z^{'}$ be the intermediate hash values of m and $m^{'}$ during the computation of \mathbb{H} .
 - B. Since $m \neq m'$ and they are of same length, \exists at least one index i such that $m_i \neq m'_i$.
 - C. Let i^* be the highest index for which it holds that $z_{i^*-1}||m_i^* \neq z_{i^*-1}'||m_{i^*}'$.
 - D. If $i^* = b$, then $(z_{i^*-1}||m_i^*)$ and $(z_{i^*-1}^{'}||m_{i^*}^{'})$, constitute a collision else $m = m^{'}$.
 - E. If $i^* < b$, then maximality of i^* implies $z_{i^*} = z'_{i^*}$.
 - F. This again implies collision in \mathbb{H}^r . Hence, we reach a contradiction.