Topología – 2° cuatrimestre 2015

Espacios topológicos

Ejercicio para entregar

Sea X un espacio topológico con la propiedad de que toda intersección arbitraria de abiertos es abierta. Para cada $x \in X$, denotamos U_x a la intersección de todos los abiertos que contienen a x. Definimos una relación \leq en X vía $x \leq y$ si y sólo si $x \in U_y$.

Pruebe que \leq es de equivalencia si y sólo si $\forall F \subseteq X$ cerrado, $\forall x \notin F, \exists f : X \to [0,1]$ continua tal que f(x) = 0 y $f(F) = \{1\}$.

Demostración Notemos primero que ≤ siempre es reflexiva y transitiva!

Reflexiva

Como $x \in U_x$ entonces $x \leq x$

transitiva

Supongamos que $x \leq y$ y $y \leq z$, entonces $y \in U_z$ y $x \in U_y$. Sea $U \ni z$ entorno abierto, entonces como $y \in U_z \subset U$ tenemos que $y \in U$, por ende $x \in U_y \subset U$, o sea que $x \in U$. Por ende como U era arbitrario $x \in U_z$.

Ahora si veamos la proposición!

■ ⇒)

Supongamos que \leq es de equivalencia, o sea que si $x \in U_y$ entonces $y \in U_x$! Sea F un cerrado tal que $x \notin F$ y sea $f = \chi_F$, es claro que $f(F) = \{1\}$ y que f(x) = 0, veamos que f es continua! Por el ejercicio 23 esto es equivalente a que $x \notin \partial(E)$!, afirmo que $\partial(F) = \emptyset$.

En efecto, $X = \bigcup_{\overline{x}} U_x$ y es una unión disjunta pues si $x \sim y$ entonces $U_x = U_y$, o sea que tenemos la partición en abiertos dada por $X = \coprod_x U_x$ donde uno sobre x no relacionados, por ende $F = \coprod_x U_x \cap F$. Supongamos que $x \in F$, $y \in F^c$ pero $x \sim y$, entonces como $y \in F^c$ tenemos que $U_y \subset F^c$, pero entonces $x \in U_y \subset F^c$ ABS! Por ende $U_x \cap F = U_x$ o $U_x \cap F = \emptyset$ y por ende F es abierto. Por lo tango $\partial F = \emptyset$ y f es continua.

■ ← (

Supongamos que $x \leq y$ pero $y \not\leq x$, entonces $x \in U_y$ pero $y \not\in U_x$, entonces $\exists U \ni x$ tal que $y \not\in U$, sea entonces $F = U^c$, entonces $\exists f$ continua tal que $f(U^c) = \{1\}$ y f(x) = 0 por ende U^c es abierto y cerrado. Por ende $U^c \ni y$ es un abierto que contiene a y pero que $x \not\in U^c$ ABS! Pues $x \in U_y$. Entonces $y \leq x$ y \leq es de equivalencia.

1. Ejercicio 1

Demostración Veamos que es una topología!

- $\emptyset, Y \in \tau_Y$ Como $\emptyset \in \tau$ entonces $\emptyset = \emptyset \cap Y \in \tau_Y$, análogo $Y = X \cap Y \in \tau_Y$.
- $F_1 \cap F_2$ Análogo.
- 2. Ejercicio 2

Demostración Sea $au_A = \{ \cap U_i \subset \mathbb{R} \ , \ \text{intersecciones finitas de abiertos} \ / \ diam(U_i) = \infty \} \cup \mathbb{R}$ $\{\emptyset\}$, entonces veamos que τ_A es una topología! • \emptyset , \mathbb{R} Por definición $\emptyset \in \tau_A$ y como \mathbb{R} es abierto y no acotado, entonces $\mathbb{R} \in \tau_A$. $\cup_i U_i$ Es claro que $\bigcup_i U_i$ es abierto pues es unión de abiertos, mientras que $U_i \subset \bigcup_i U_i$ entonces $diam(\bigcup_j U_j) \ge diam(U_j) = \infty$, por lo que $\bigcup_j U_j \in \tau_A$. $\blacksquare U_1 \cap U_2$ Por definición. Por ende τ_A es una topología, cuyos cerrados son las uniones finitas de cerrados acotados, pero eso es un cerrado acotado (pues unión finita de cerrados es cerrado). 4. Ejercicio 4 **Demostración** Es claro que es una topología! Afirmo que es más fina que la usual! En efecto, basta verlo en las bolas, y aquí es trivial ver que toda bola es radialmente abierta. No obstante $B(0,1) \cup \{y =$ 0} es radialmente abierto (tomo p = (0,0)) pero no es abierto con la topología usual! Por ende $\tau_{met} \subsetneq \tau_{rad}$ 5. Ejercicio 5 **Demostración** a) Trivial b) Trivial c) Molesto 6. Ejercicio 6 **Demostración** Tan molesto como el anterior, es simplemente jugar con conjuntos. 7. Ejercicio 7 **Demostración** Es claro que es un operador clausura pues $A \subseteq A \cup B$ y $A \cup B \cup B = A \cup B$, y los cerrados son los puntos fijos de c, o sea $A/A \cup B = A$, o sea que $B \subseteq A$. Por ende los abiertos son los $A \subseteq X$ tal que $A \subseteq B^c$ 8. Ejercicio 8

Demostración Es claro y los cerrados son los conjuntos finitos

3. Ejercicio 3

Demostración Los cerrados son los finitos y los abiertos son los de complemento finito, por ende es

Demostración Trivial y tengo tiempo finito

ver dependiendo si X es finito o no.

9. Ejercicio 9

10. Ejercicio 10

Demostración Si $x_0 \in U$ etonces U es abierto y su clausura es X y al revés si no.

11. Ejercicio 11

Demostración a) $\{(\frac{1}{n},0), n \in \mathbb{N}\} := B$

Notemos que $A\subseteq \mathring{A}$ sii $A\subseteq B$ y A abierto, pero si $A\subseteq B$ entonces $\exists J\subset \mathbb{N}$ tal que $A=\{(\frac{1}{m},0),m\in J\}$ pero si $(\frac{1}{m},0)\in A$ entonces un entorno abierto $V\ni x$ vale que $(\frac{1}{m+1},1)\in V$ y $(\frac{1}{m+1},1)\not\in A$, por ende el único subconjunto abierto de B es \emptyset , por ende $\mathring{B}=\emptyset$. Por otro lado si $B\subseteq C$ con C cerrado, entonces $\lim_{n}(\frac{1}{n},0)\in C$. Afirmo que $\lim_{n}(\frac{1}{n},0)=(0,1)!$ En efecto sea $V\ni (0,1)$ entorno, entonces $((0,1-\epsilon),(\delta,\gamma))\subset V$, por Arquimedianidad $\exists N\in \mathbb{N}$ tal que $\frac{1}{N}<\delta$ y por ende $(\frac{1}{n},0)\in V$ $\forall n\geq N$, entonces ((0,1)). Por ende (0,1)?

b) $\{(1-\frac{1}{n},\frac{1}{2}), n \in \mathbb{N}\} := B$

Por el mismo motivo que el item anterior tenemos que $\mathring{B} = \emptyset$, por otro lado afirmo que B es cerrado. En efecto si $(x,y) \in I^2$ entonces $((x,y-\epsilon),(x,y+\epsilon)) := V$ es un entorno abierto de (x,y) y si $x \neq 1 - \frac{1}{n}$ entonces $b_n \notin V \ \forall n \in \mathbb{N}$. Por ende si $B \subseteq F$ cerrado, entonces B = F, por ende $\overline{B} = F$.

- c) $\{(x,0),\ 0 < x < 1\} := B$ Sea $x \in B$ entonces $((x-\epsilon,1-\delta),(x,\gamma)) \ni x$ es un entorno abierto de x, pero $(1-\epsilon,1) \in V$ y $(1-\epsilon,1) \not\in B$, por ende $B = \emptyset$. Por otro lado si (x,δ) con 0 < x < 1 entonces $V := ((x,\delta-\frac{\delta}{2}),(x,\delta+\frac{\delta}{2}))$ cumple que $b \not\in V$ $\forall b \in B$, por ende (si hacemos como en a)) es fácil ver que $\overline{B} = B \cup \{(0,1),(1,0)\}$.
- d) $\{(x, \frac{1}{2}, 0 < x < 1)\} := B$ Sea $x \in B$, entonces $((x, \frac{1}{3}), (x, \frac{2}{3})) := V$ cumple que $V \subsetneq B$ y por ende $\mathring{B} = \emptyset$. Por otro lado como hicimos antes tenemos que $\overline{B} = B$.
- e) $\{(\frac{1}{2}, y), 0 < y < 1\}$ Es claro que $\mathring{B} = B$, por otro lado $\overline{B} = [(\frac{1}{2}, 0), \frac{1}{2}, 1]$

12. Ejercicio 12

Demostración Sea F cerrado, basta hallar A tal que $\overline{A} = F$ y que $\mathring{A} = \emptyset$, entonces tomemos $A = F \cap \mathbb{Q}$, entonces como A tiene la topología subespacio, vale lo pedido pues $\mathbb{Q} = \emptyset$ y $\overline{\mathbb{Q}} = \mathbb{R}$.

13. Ejercicio 13

Demostración Es claro que $\cap \tau_{\alpha}$ es topología verificando los axiomas, por otro lado sea $X \times Y$ el producto de dos espacios topológicos, y sea $\tau' = \{U \times Y, U \in \tau_X\}$ y sea $\tau'' = \{X \times Y, V \in \tau_Y\}$ entonces $U \times Y \cap X \times V \notin \tau_X \cup \tau_Y$ y por ende no es topología.

14. Ejercicio 14

Demostración Sea $\sigma(A) = \bigcap_{A \in \tau_i} \tau_i$, entonces es claro que $\sigma(A)$ cumple las dos propiedades! Es claro que $\sigma(A) = \{\emptyset, A, \{a\}, \{b, c\}, \{d\}, \{a, b, c\}\}\}$.

15. Ejercicio 15

Demostración Para verlo notemos que $X = \bigcup_{x \in X} S_x$ y por ende generan, y además $S_y \cap R_x = (x, y)$ y por ende intersecciones finitas de $S \cup R$ genera la base de τ_{ord} .

16. Ejercicio 16

Demostración a) Veamoslo de a poquito!

Por un lado es claro que son base! Además tenemos que:

- $(a,b) = \bigcup_n [a \frac{1}{n}, b)$
- $(a,b) = \bigcup_n (a,b-\frac{1}{n}]$
- $\bullet (a,b) \in \mathcal{B}_4$
- $\bullet (a, \infty) = \bigcup_n (a, n)$
- $(-\infty, a) = \bigcup_n (-n, a)$
- $\blacksquare B \in \tau_{cofin} \implies B = (-\infty, a_1) \cup \bigcup (a_i, a_{i+1}) \cup (a_n, \infty)$
- $x \in (a,b)-K$ entonces si $x \leq 0$ tenemos que $x \in (a,x] \subset U$, sino sea N el más chico tal que $\frac{1}{N} < x$ entonces $U \cap (\frac{1}{N},x] = (y,x]$ con $y = \frac{1}{N}\chi_{\frac{1}{N}>a} + a\chi_{a>\frac{1}{N}}$ entonces $x \in (y,x] \subset (a,b)-K$
- Idem antes con [y, x)

Por ende $\mathcal{B}_7, \mathcal{B}_6, \mathcal{B}_5 \subsetneq \mathcal{B}_1 \subsetneq \mathcal{B}_4 \subsetneq \mathcal{B}_3, \mathcal{B}_2$.

- b) Es claro
- c) De a uno!
 - 1) $\overline{K} = K \cup \{0\}$ en τ_1
 - 2) Idem anterior pues $0 \in [0, \epsilon) := V$ y $x_n \in V \forall n$ grande
 - 3) $\overline{K} = K$ en τ_3 pues $(-\epsilon, 0] \ni 0$ es un entorno abierto que no incluye a K! Es más afirmo que $x_n \to x$ en τ_3 sii $x_n \to x$ por la izquierda en la topo usual! Por ende $\frac{1}{n} \not\to x$ para ningún x.
 - 4) Es claro que $(-\epsilon+x,x+\epsilon)-K\ni x$ es un entorno de $x\not\in K$ tal que $K\subsetneq V$ por ende $K=\overline{K}$ en τ_4
 - 5) Idem τ_1
 - 6) Idem τ_1
 - 7) Sea $x \notin K$ y sea $V \ni x$ entorno abierto, entonces $V = \mathbb{R} J$ con $x \notin J$ finito y como K es numerable, tenemos por cardinalidad que $\exists N$ tal que $\frac{1}{n} \in V \ \forall n \ge N$, por ende $\overline{K} = \mathbb{R}$ en τ_7

- 17. Ejercicio 17
- 18. Ejercicio 18

Demostración Ambos son re vagancia hacerlos...

19. Ejercicio 19

Demostración a) Sea a tal que $x_{\alpha} = a \quad \forall \alpha \geq \gamma \text{ dado, entonces sea } U \ni a \text{ entorno abierto,}$ entonces $a = x_{\alpha} \in U \quad \forall \alpha \geq \gamma \text{ y por ende } x_{\alpha} \rightarrow a$

- b) Sea $x_{\alpha} \to a$ y sea $f: \Omega \to \Lambda$ cofinal y consideremos $x_{f(\omega)}$ la subred. Sea $U \ni a$ entorno abierto y α' el que cumple que $x_{\alpha} \in U \ \forall \alpha \geq \alpha'$, entonces como f es cofinal $\exists \omega' \ / \ f(\omega') \geq \alpha'$ y por ende $f(\omega) \geq f(\omega') \geq \alpha' \ \forall \ \omega \geq \omega'$ (pues f preserva el orden). Por ende $x_{f(\omega)} \in U \ \forall \omega \geq \omega'$ y entonces $x_{f(\omega)} \to a$
- c) Supongamos que $x_{\alpha} \not\to x$, entonces $\exists U \ni x$ tal que $\forall \alpha \exists \alpha' \ / \ x_{\alpha'} \not\in U$. Dado $\alpha \in \Lambda$ sea $\beta(\alpha)$ tal que $x_{beta(\alpha)} \not\in U$ y sea $D = \{\beta(\alpha), \ \alpha \in \Lambda\}$, entonces D es dirigido y f = id es cofinal, por ende $x_{\beta(\alpha)}$ es una subred de x_{α} tal que $x_{\beta(\alpha)} \not\in U \quad \forall \beta(\alpha)$ por ende no tiene subred convergente. ABS! Por ende $x_{\alpha} \to x$
- d) Preguntar...

20. Ejercicio 20

Demostración Veamos las dos inclusiones!

- Sea $x \in \overline{A}$ entonces dado $U \ni x$ tenemos que $U \cap A \neq \emptyset$. Sea $\Lambda = \{U, U \ni xabierto\}$ y le damos el orden $U \ge V \iff U \subset V$, entonces sea $f : \Lambda \to X$ tal que $U \mapsto x_U \in U \cap A$. Entonces x_U es una red y $x_U \to x!$
- ⊇) Sea $x \in X$ tal que $\exists x_{\alpha} \to x$ con $x_{\alpha} \in A$, y sea $U \ni x$ entorno de x, entonces $x_{\alpha} \in U \cap A \ \forall \alpha \ge \alpha'$ y por ende $U \cap A \neq \emptyset$! Por ende $x \in \overline{A}$

21. Ejercicio 21

Demostración $\blacksquare \Longrightarrow$)

Sea $D = \{(\alpha, U), \alpha \in \Lambda, x \in U \text{ abierto tal que } x_{\alpha} \in U\}$ y démosle el orden $(\alpha, U) \leq (\beta, V)$ sii $\alpha \leq \beta$, $V \subseteq U$, veamos que es dirigido! Sean $(\alpha, U), (\beta, V)$ y sea $\gamma \geq \alpha, \beta$ pues Λ es dirigido, entonces como x es punto de acumulación tenemos que $\{\alpha, x_{\alpha} \in U\}, \{\alpha, x_{\alpha} \in V\}$ son cofinales y por ende $x_{\gamma} \in U \cap V$, por ende $(\gamma, U \cap V) \geq (\alpha, U), (\beta, V)$ y por ende D es dirigido. Sea entonces $U \ni x$ entorno abierto, entonces $(\alpha, U) \mapsto x_{\alpha}$ es una red tal que $x_{\alpha} \in U \forall (\beta, V) \geq (\alpha, U)$, por ende $x_{\alpha} \to x$.

■ ← Sea $A \in \mathcal{F}_x$ entonces $\exists U$ abierto tal que $x \in U \subseteq A$, por ende $\exists \alpha' \mid x_\alpha \in U \subset A$, $\alpha \geq \alpha'$, por ende $\{\alpha, x_\alpha \in A\}$ es cofinal \blacksquare .

22. Ejercicio 22

Demostración Teorica

23. Ejercicio 23

Demostración ■ ⇒)

Supongamos que $x \in \partial E$, entonces como $\partial(E) = \partial(E^c)$ tenemos que si $x \in E$ podemos tomar $x_{\alpha} \in E^c$ y si $x \notin E$ podemos tomar $x_{\alpha} \in E$, tal que de todos modos $x_{\alpha} \to x$. Tomamos sin pérdida de generalidad el primer caso, entonces tenemos que $\chi_E(x_{\alpha}) = 0$ y $\chi_E(x) = 1$ y por ende $\chi_E(x_{\alpha}) \not\to \chi_E(x)$, por ende χ_E no es continua.

Como $x \notin \partial(E)$ tenemos que $x \in \mathring{E}$ o $x \in \mathring{(E^c)}$, tomemos spdg el primer caso. Sea $x_\alpha \to x$ y sea $U \ni x$ entorno abierto de x, notemos que podemos tomar $U \subseteq \mathring{E}$ pues sino tomo $V = U \cap \mathring{E}$. Entonces como $x_\alpha \to x$ tenemos que $x_\alpha \in U \quad \forall \alpha \ge \alpha'$ y por ende $x_\alpha \in E \quad \forall \alpha \ge \alpha'$. Entonces $\chi_E(x_\alpha) = 1 \quad \forall \alpha \ge \alpha'$ y entonces $\chi_E(x_\alpha) \to \chi_E(x) \quad \forall x_\alpha \to x$, por ende χ_E es continua en x.

24. Ejercicio 24

Demostración a) Como f es morfismo de orden y biyectivo, entonces es isomorfismo de orden, entonces f(a,b) = (f(a),f(b)) y $f^{-1}(a,b) = (f^{-1}(a),f^{-1}(b))$, por ende f, f^{-1} son abiertas y por ende f es homeo.

b) Aplicar item a)

c) Trivial que es biytectiva y preserva el orden, pero no es homoe pues uno es conexo y el otro no.

25. Ejercicio 25

- **Demostración** a) Sea $A = \{x \in X \mid f(x) \leq g(x)\}$ y notemos que si f(x) > g(x) entonces $\exists U_1 \ni f(x)$ y $U_2 \ni g(x)$ tal que f(y) > g(z) $\forall y \in U_1, z \in U_2$, entonces sea $U = f^{-1}(U_1) \cap g^{-1}(U_2)$, entonces U es abierto pues f, g son continuas y cumple que $x \in U \subseteq A^c$, por ende A^c es abierto y entonces A es cerrado.
 - b) Notemos que $X = A \cup B$ donde A es cerrado y $B = \{x \in X \mid f(x) \ge g(x)\}$ también es cerrado. Además tenemos que $h|_A = f$ es continua y $h|_B = g$ es continua, por el lema del pegado h es continua.

26. Ejercicio 26

Demostración a) a),b),c) son de la teórica donde el contraejemplo es $f = \chi_{\{0\}}$ y $F_n = [\frac{1}{n}, 1]$

b) Sea $x \in X$ y U_x es de la local finitud, entonces $f|_{U_x} = \bigcup_i^n f|_{A_i}$ pues $U \cap A_i = \emptyset$ salvo para finitos, como $f|_{A_i}$ es continua y $U_x = \bigcup_i^n A_i$ entonces por el lema del pegado parte b) tenemos que $f|_{U_x}$ es continua. Ahora como $X = \bigcup_{x \in X} U_x$ entonces como $f|_{U_x}$ es continua, por el lema del pegado parte a) tenemos que f es continua.