Home Assignment 4 Solutions

STAT 154/254: Modern Statistical Prediction & Machine Learning

Problem 1: Bias and variance for linear ridge regression.

Consider the linear model in which

$$y_i = x_i^{\top} \beta + \varepsilon_i \quad \text{for } i \in [n],$$

where $\beta \in \mathbb{R}^d$, $x_i \in \mathbb{R}^d$, and $\varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. The linear ridge regression estimator gives

$$\hat{\beta} = (X^{\top}X + \lambda I_d)^{-1}X^{\top}y,$$

where $y = [y_1, \dots, y_n]^{\top} \in \mathbb{R}^n$, and $X = [x_1, \dots, x_n]^{\top} \in \mathbb{R}^{n \times d}$. Calculate the expression for $\mathbb{E} \|\mathbb{E}[\hat{\beta}] - \beta\|_2^2$, $\mathbb{E} \|\hat{\beta} - \mathbb{E}[\hat{\beta}]\|_2^2$, and $\mathbb{E} \|\hat{\beta} - \beta\|_2^2$, where the expectation is with respect to the randomness of $\{\varepsilon_i\}_{i \in [n]}$.

Solution. We just need to use the explicit ridge regression solution, the formula $y = X\beta + \varepsilon$, and some linear algebra. To start, we can compute:

$$\widehat{\beta}_{\lambda} = (X^{\top}X + \lambda I)^{-1}X^{\top}y$$

$$= (X^{\top}X + \lambda I)^{-1}X^{\top}(X\beta + \varepsilon)$$

$$= (X^{\top}X + \lambda I)^{-1}X^{\top}X\beta + (X^{\top}X + \lambda I)^{-1}X^{\top}\varepsilon.$$

Taking expectation and using linearity and $\mathbb{E}[\varepsilon] = 0$, we get

$$\mathbb{E}[\widehat{\beta}_{\lambda}] = (X^{\top}X + \lambda I)^{-1}X^{\top}X \beta.$$

Thus the bias term is

$$\mathbb{E}[\widehat{\beta}_{\lambda}] - \beta = (X^{\top}X + \lambda I)^{-1}X^{\top}X \beta - \beta$$

$$= [(X^{\top}X + \lambda I)^{-1}X^{\top}X - I]\beta$$

$$= (X^{\top}X + \lambda I)^{-1}(X^{\top}X + \lambda I - \lambda I - (X^{\top}X))\beta$$

$$= (X^{\top}X + \lambda I)^{-1}(\lambda I)\beta$$

$$= (X^{\top}X + \lambda I)^{-1}\lambda\beta.$$

Hence

$$\left\| \mathbb{E}[\widehat{\beta}_{\lambda}] - \beta \right\|_{2}^{2} = \left\| \lambda \left(X^{\top} X + \lambda I \right)^{-1} \beta \right\|_{2}^{2}. \tag{1}$$

For the variance term, note

$$\widehat{\beta}_{\lambda} - \mathbb{E}[\widehat{\beta}_{\lambda}] = (X^{\top}X + \lambda I)^{-1}X^{\top}\varepsilon.$$

Hence

$$\begin{split} \mathbb{E} \left\| \widehat{\beta}_{\lambda} - \mathbb{E} [\widehat{\beta}_{\lambda}] \right\|_{2}^{2} &= \mathbb{E} \left\| (X^{\top}X + \lambda I)^{-1}X^{\top}\varepsilon \right\|_{2}^{2} \\ &= \mathbb{E} \left[\varepsilon^{\top}X (X^{\top}X + \lambda I)^{-1}(X^{\top}X + \lambda I)^{-1}X^{\top}\varepsilon \right]. \end{split}$$

Using $\mathbb{E}[\varepsilon^{\top}A^{\top}A\,\varepsilon] = \sigma^2\operatorname{tr}(A^{\top}A)$ for any A, we get

$$\mathbb{E} \|\widehat{\beta}_{\lambda} - \mathbb{E}[\widehat{\beta}_{\lambda}]\|_{2}^{2} = \sigma^{2} \operatorname{tr} ((X^{\top}X + \lambda I)^{-2}X^{\top}X).$$

By the bias–variance decomposition, the total mean-squared error is

$$\mathbb{E}\|\widehat{\beta}_{\lambda} - \beta\|_{2}^{2} = \mathbb{E}\|\widehat{\beta}_{\lambda} - \mathbb{E}[\widehat{\beta}_{\lambda}]\|_{2}^{2} + \|\mathbb{E}[\widehat{\beta}_{\lambda}] - \beta\|_{2}^{2}.$$

Problem 2: RKHS inner product and norm.

In this problem, we assume all infinite summations are convergent. In other words, you can treat all summations as finite sums, for index j running from 1 to a finite number m.

Let $\{\varphi_j: \mathbb{R}^d \to \mathbb{R}\}_{j\geq 1}$ be a sequence of linearly independent feature maps (linear independence means $\sum_{j\geq 1} c_j \varphi_j(x) = 0$ for any $x \in \mathbb{R}^d$ implies $c_j = 0$ for any $j \geq 1$). Denote the kernel $k(x,z) = \sum_{j\geq 1} \varphi_j(x)\varphi_j(z)$. For any functions $f(x) = \sum_{j\geq 1} a_j \varphi_j(x)$ and $g(x) = \sum_{j\geq 1} b_j \varphi_j(x)$, we denote its RKHS inner-product by

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{j>1} a_j b_j,$$

and the RKHS norm of f by

$$||f||_{\mathcal{H}}^2 = \sum_{j>1} a_j^2.$$

By the linear independence of $\{\varphi_j\}$, such inner-product and norm are uniquely defined.

- For any $p \in \mathbb{R}^d$, $k(p,\cdot)$ can be treated as a function on \mathbb{R}^d , which maps $x \mapsto k(p,x)$.
- For any $q \in \mathbb{R}^d$, $k(\cdot, q)$ can be treated as a function on \mathbb{R}^d , which maps $x \mapsto k(x, q)$.

Consider the following exercises:

- i. Show that for any f which can be expressed as a linear combination of $\{\varphi_j\}_{j\geq 1}$, we have $\langle f, k(\cdot, q) \rangle_{\mathcal{H}} = f(q)$.
- ii. Show that for any $p, q \in \mathbb{R}^d$, we have $\langle k(p, \cdot), k(\cdot, q) \rangle_{\mathcal{H}} = k(p, q)$.
- iii. Show that suppose $g(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i)$. For any $x \in \mathbb{R}^d$, we have $\|g\|_{\mathcal{H}}^2 = \sum_{i,j=1}^{n} \alpha_i \alpha_j k(x_i, x_j)$.

Solution. First, if

$$f = \sum_{j \ge 1} \alpha_j \varphi_j,$$

then

$$\langle f, k(\cdot, q) \rangle_{\mathcal{H}} = \left\langle \sum_{j \ge 1} \alpha_j \varphi_j, \sum_{j \ge 1} \varphi_j(q) \varphi_j \right\rangle_{\mathcal{H}}$$
$$= \sum_{j \ge 1} \alpha_j \varphi_j(q)$$
$$= f(q).$$

Second, if $p, q \in \mathbb{R}^d$ then by the same reasoning with $f = k(p, \cdot)$,

$$\langle k(p,\cdot), k(\cdot,q) \rangle_{\mathcal{H}} = k(p,q).$$

Third, if

$$g = \sum_{i=1}^{n} \alpha_i \, k(\cdot, x_i),$$

Then by linearity and the above result,

$$||g||_{\mathcal{H}}^{2} = \langle g, g \rangle_{\mathcal{H}} = \left\langle \sum_{i=1}^{n} \alpha_{i} k(\cdot, x_{i}), \sum_{j=1}^{n} \alpha_{j} k(\cdot, x_{j}) \right\rangle_{\mathcal{H}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \langle k(\cdot, x_{i}), k(\cdot, x_{j}) \rangle_{\mathcal{H}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(x_{i}, x_{j}).$$

Problem 3: Describe the Bootstrap procedure.

Let \mathbb{P}_Z be a distribution on the real line, with mean $\mu = \mathbb{E}_{Z \sim \mathbb{P}_Z}[Z]$ and variance $\tau = \mathbb{E}_{Z \sim \mathbb{P}_Z}[(Z - \mu)^2]$. Let $z_1, \ldots, z_n \stackrel{\text{iid}}{\sim} \mathbb{P}_Z$. We define

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} z_i, \quad \hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} (z_i - \hat{\mu})^2$$

as the estimator of μ and τ . Please describe the steps of using the Bootstrap method to estimate the variance of the estimator $\hat{\tau}$.

Requirement of the description (please be as concrete as possible):

- In the first step, describe how the Bootstrap dataset is generated. Please use $(z_i^{(k)})_{i \in [n]}$ to denote the k-th Bootstrap dataset, and denote the number of Bootstrap copies as B.
- In the second step, describe what are the intermediate quantities $\{\hat{\tau}^{(k)}\}_{k\in[B]}$, writing down their mathematical definition using $(z_i^{(k)})_{i\in[n]}$ (you may find it helpful to define intermediate quantities $\hat{\mu}^{(k)}$).
- In the last step, write down the mathematical formula for the Bootstrap estimator $\operatorname{Var}(\hat{\tau})$ using $\{\hat{\tau}^{(k)}\}_{k\in[B]}$.

Solution. First, for $k \in \{1, ..., B\}$ we sample with replacement from $\{z_i\}_{i=1}^n$ to get the bootstrap sample $\{z_i^{(k)}\}_{i=1}^n$.

Second, for each $k \in \{1, ..., B\}$ we compute

$$\hat{\mu}^{(k)} = \frac{1}{n} \sum_{i=1}^{n} z_i^{(k)}, \qquad \hat{\tau}^{(k)} = \frac{1}{n} \sum_{i=1}^{n} (z_i^{(k)} - \hat{\mu}^{(k)})^2.$$

Finally, we compute

$$\bar{\tau} = \frac{1}{B} \sum_{k=1}^{B} \hat{\tau}^{(k)}, \qquad \widehat{\text{Var}}(\hat{\tau}) = \frac{1}{B} \sum_{k=1}^{B} (\hat{\tau}^{(k)} - \bar{\tau})^2.$$