Exam Prep Discussion 12

• A technique to prevent overfitting when predicting probabilities from training data

- A technique to prevent overfitting when predicting probabilities from training data
- Assumes that we have already seen *k* extra instances of each observation

- A technique to prevent overfitting when predicting probabilities from training data
- Assumes that we have already seen *k* extra instances of each observation

X = x	0	0	0	0	1	0
Y = y	1	1	1	1	0	0

• MLE prediction formula:
$$P(X = x | Y = y) = \frac{\text{# of times } X = x + k}{\text{# of times } Y = y + k | X|}$$

- A technique to prevent overfitting when predicting probabilities from training data
- Assumes that we have already seen *k* extra instances of each observation

X = x	0	0	0	0	1	0
Y = y	1	1	1	1	0	0

• MLE prediction formula:
$$P(X = x | Y = y) = \frac{\text{\# of times } X = x + k}{\text{\# of times } Y = y + k|X|}$$

Without Laplace smoothing,
$$P(X = 1 \mid Y = 1) = 0$$

With Laplace smoothing with $k = 2$, $P(X = 1 \mid Y = 1) = \frac{0+2}{4+2*2} = \frac{1}{4}$

- A technique to prevent overfitting when predicting probabilities from training data
- Assumes that we have already seen *k* extra instances of each observation

X = x	0	0	0	0	1	0
Y = y	1	1	1	1	0	0

• MLE prediction formula:
$$P(X = x | Y = y) = \frac{\text{\# of times } X = x + k}{\text{\# of times } Y = y + k|X|}$$

Without Laplace smoothing,
$$P(X = 1 \mid Y = 1) = 0$$

With Laplace smoothing with $k = 2$, $P(X = 1 \mid Y = 1) = \frac{0+2}{4+2*2} = \frac{1}{4}$

- *k* is a hyperparameter you can choose
 - A smaller *k* adheres to the true observation's distribution
 - A bigger *k* causes a more uniform distribution

• Use $\vec{w}^T\vec{x}$ to obtain a probability of a data point belonging to a class, using the sigmoid function

- Use $\vec{w}^T \vec{x}$ to obtain a probability of a data point belonging to a class, using the sigmoid function
- Probability that the point belongs to the positive class: $P(y|x,w) = \frac{1}{1 + e^{-w^Tx}}$

- Use $\vec{w}^T \vec{x}$ to obtain a probability of a data point belonging to a class, using the sigmoid function
- Probability that the point belongs to the positive class: $P(y|x,w) = \frac{1}{1+e^{-w^Tx}}$
- Probability that the point belongs to the negative class: $P(y|x,w) = 1 \frac{1}{1 + e^{-w^Tx}}$

- Use $\vec{w}^T \vec{x}$ to obtain a probability of a data point belonging to a class, using the sigmoid function
- Probability that the point belongs to the positive class: $P(y|x,w) = \frac{1}{1 + e^{-w^Tx}}$
- Probability that the point belongs to the negative class: $P(y|x,w) = 1 \frac{1}{1 + e^{-w^Tx}}$
- Goal: Find \vec{w} that maximizes the probability of correct classification for all points

$$\vec{w}^* = \operatorname{argmax}_w \prod_i P(y_i|x_i, w) = \operatorname{argmax}_w \log \prod_i P(y_i|x_i, w)$$

- ML algorithm that can learn complex functions to represent data and provide an output for the data
 - Attempts to simulate biological neural networks but does so poorly

- ML algorithm that can learn complex functions to represent data and provide an output for the data
 - Attempts to simulate biological neural networks but does so poorly
- Input layer: data point x with d features, one for each node

- ML algorithm that can learn complex functions to represent data and provide an output for the data
 - Attempts to simulate biological neural networks but does so poorly
- Input layer: data point x with d features, one for each node
- Hidden layers: apply linear functions and nonlinear activation functions to the features of the data

- ML algorithm that can learn complex functions to represent data and provide an output for the data
 - Attempts to simulate biological neural networks but does so poorly
- Input layer: data point *x* with *d* features, one for each node
- Hidden layers: apply linear functions and nonlinear activation functions to the features of the data
- Output layer: applies an activation function to produce the label/output value

- ML algorithm that can learn complex functions to represent data and provide an output for the data
 - Attempts to simulate biological neural networks but does so poorly
- Input layer: data point x with d features, one for each node
- Hidden layers: apply linear functions and *nonlinear* activation functions to the features of the data
- Output layer: applies an activation function to produce the label/output value

$$softmax(W^{T}(act(W^{T}(x))))$$

Activation Functions

- Sigmoid: $\sigma(x) = \frac{1}{1 + e^{-x}}$
- Rectified Linear Unit (ReLU): ReLU(x) = max(x, 0)
- Tanh: $tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
- Softmax: softmax $(x_i) = \frac{e^{x_i}}{\sum_{i=1}^d e^{x_i}}$