

URL PHISHING DETECTION

Presented by: Kieran Cosgrove, Mile Stosic, and Lucas Coster

Meet the Team Members

Kieran Cosgrove

B.Sc. (Eng.) Computer

Engineering

Mile Stosic

B.Sc. (Eng.) Computer
Engineering

Lucas Coster

B.Sc. (Eng.) Computer
Engineering

Agenda

Overview of the Presentation

- Motivation
- Problem DescriptionExisting Work
- Dataset DescriptionLSTM Introduction

- Design ChangesTraining/TestingResults
- Conclusion

Motivation

Unmasking the Hidden Dangers of Phishing Attacks

Key Points

- **Prevalence of Phishing Attacks:** Highlighting the widespread issue of phishing attacks as a major online security threat.
- Impact on Individuals and Organizations: Discussing the significant financial and data losses resulting from phishing attacks
- **Sophistication and Adaptability:** Emphasizing the evolving nature of phishing attacks that can bypass traditional security measures.

Problem Description

- O1 Challenges in Detection
- Limitations of Conventional Approaches
- Need for Sophisticated Solutions
- O4 Project Objective

Existing Work

Broad Paper

Do we need hundreds of classifiers to solve real-world classification problems?

Model Related Paper

Segmentation from Natural Language Expressions

Project Specific Paper

A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN

Broad Paper

Classifier Selection

Model Paper

LSTM Model

Project Specific Paper

LSTM Model and CNN

Dataset Description

Research Data vs. Selected Data

01	Literature Datasets
02	Factors
03	Pre-Processing
04	Features

Kaggle: Phishing URLs

Introduction to LSTM

LSTM Models

- A subtype of RNNs
- Ideal for sequential data like language, time series, and URL patterns
- Learns structural and compositional patterns

Advantages of LSTM

- Memory of Context
- Adaptability
- Sequential Data Handling

Challenges with LSTM

- Reliant on the quality and variety of training data
- Computationally intensive, requiring significant resources
- Potential for overfitting to training data

Design Changes

Dropout & LSTM Units

Regularization & Embedding

SGD Optimzer & MSE loss

Mile

Starting the model training with the implementation of SGD & MSE loss

Lucas

Included Dropout layers in the model and increased the LSTM units

Kieran

Implemented L2
Regularization and a pretrained Embedded Layer
from GloVE

Model 1

Implementing High Level Changes

MSE Loss

Averaging the squared differences between predicted and actual values.

More sensitive to outliers than other loss functions

A loss function that measures the average of the squares of the errors or deviations

SGD Optimzier

An iterative method for optimizing an objective function with suitable properties

Particularly useful when dealing with large datasets

Introduces randomness during optimization

Includes a learning rate and momentum to stabilize convergence

Model 2

Expanding On Base Model

Dropout Layers

Reduces overfitting by dropping neurons to reduce reliance on specific connections

Promotes the learning of diverse features by preventing the co-adaption of hidden units

LSTM Units

LSTM unit is each individual memory cell in the LSTM structure

Increasing units allows the model to handle larger datasets and improve generalization

Model 3

Deeper Level Changes

L2 Regularization Implementation

Prevents overfitting by penalizing large weights, enhancing model generalization.

Encourages simpler, more generalizable model without compromising learning capacity.

GloVe Embedding Layer

Represents words as vectors in a highdimensional space based on their cooccurrence probabilities.

Provides rich, pre-trained word representations, improving the LSTM model's ability to detect phishing URLs

Training/Testing

Training

- Hyper-Parameters
- Loss Plot

Testing

- Train/Test Split
- URL Examples

Project Results

Project Results Continued

AUC-ROC: 0.9848680116227149 Confusion Matrix: [[77314 1356] 3779 27421]] Classification Report: precision recall f1-score support 0.95 0.98 0.97 78670 0.95 0.88 0.91 31200

macro avg	0.95	0.93	0.94	109870
weighted avg	0.95	0.95	0.95	109870

Conclusion

Model Summary

- Model Architecture
- Best Accuracy Result
 - Model 2: 97.5% Accuracy
 - Base Model: 96% Accuracy

Problems Address

- Overcame limitations of traditional detection methods with advanced sequential data analysis.
- Improved Previous Analysis

Future Work

- Continue to Improve Model
- Train on New Datasets
- Real-Time Application

Thank you!

