Curvas e Superfícies - Lista 7

Wellington José Leite da Silva¹

¹Escola de Matemática Aplicada da FGV (EMAP), Brazil

Problema 1: Provar que toda bola aberta B(x, r) é um conjunto aberto

Solução:

Seja $y \in B(x,r)$. Queremos provar que $\exists \varepsilon > 0$ t.q. $B(y,\varepsilon) \subseteq B(x,r)$. Definimos para isto $\varepsilon := r - |y - x| > 0$. Logo, dado qualquer ponto $z \in B(y,\varepsilon)$, temos que

$$|z - x| \le |z - y| + |y - x|$$

$$< \varepsilon + |y - x|$$

$$= r - |y - x| + |y - x|$$

$$= r$$

Logo, $z \in B(x, r)$. Isto é, $B(y, \varepsilon) \subseteq B(x, r)$.

Problema 2: Provar que $z := \{(x, y) \in \mathbb{R}^2 \mid xy < 0\}$ é aberto.

Solução:

Seja $(a,b) \in \mathbb{Z}$ tome $\varepsilon := \min\{|a|,|b|\} > 0$. Assim queremos provar que $B((a,b),\varepsilon) \subseteq \mathbb{Z}$. Então, $\forall (c,d) \in B((a,b),\varepsilon)$,

$$||(c,d) - (a,b)|| = ||(c-a,d,b)|| < \varepsilon$$

Daí, usamos que a distância até a origem da bola é menor que ε .

$$(c-a)^2 < \varepsilon^2 e (d-b)^2 < \varepsilon^2$$

que por consequência

$$|c-a| < \varepsilon e |d-b| < \varepsilon$$

assim

$$c \in (a - \varepsilon, a + \varepsilon) \in d \in (b - \varepsilon, b + \varepsilon)$$

Sem perda de generalidade seja $\varepsilon=|a|<|b|$ (análogo caso contrario), temos 2 casos

• Se a<0, então b>0 e vale que $c\in(a-|a|,a+|a|)=(2a,0)$ e $d\in(b-|a|,b-|a|)\subset(0,2b)$

Então c < 0 e d > 0 assim $(c, d) \in Z$

• Se a>0, então b<0 e vale que $d\in(b-|b|,b+|b|)=(2b,0)$ e $c\in(a-|a|,a-|a|)\subset(0,2a)$

Então c > 0 e d < 0 assim $(c, d) \in Z$

E concluímos que Z é aberto.

Problema 3: Provar que união de conjuntos abertos é um conjunto aberto.

Solução:

Seja $\{A_{\lambda} : \lambda \in \Lambda\}$ uma família de abertos, onde Λ é o conjunto de índices (possivelmente infinito, não enumerável). Seja a união

$$A := \bigcup_{\lambda \in \Lambda} A_{\lambda}$$

e seja $z \in A_{\lambda}$ para algum índice λ . Dado que A_{λ} é aberto, $\exists \varepsilon > 0$ t.q. $B(z, \varepsilon) \subseteq A_{\lambda} \subseteq A$. Concluímos que A é aberto.

Problema 4: Provar que a interseção de uma quantidade finita de abertos é um aberto.

Solução:

Seja A_1, \ldots, A_n abertos. E tome a interseção

$$A := \bigcap_{i=1}^n A_i$$

Então, $\forall z \in A_i \ \forall I_n$. Dado que A_i é aberto, tome $\varepsilon_0 := \min_{i=1}^n \varepsilon_i$. Assim $B(z, \varepsilon_0) \in A_i \ \forall i \in I_n$ e portanto

$$B(z,\varepsilon_0)\subset A$$

Logo A é aberto.

Problema 5: Provar que a interseção de conjuntos fechados é um conjunto fechado. Será que união de fechados é também fechado? Se não for, dar um contraexemplo.

Solução:

Como fizemos no problema 3. Seja $\{A_{\lambda} \mid \lambda \in \Lambda\}$ uma família de abertos, onde Λ é o conjunto de índices (possivelmente infinito e não enumerável). E tome a interseção

$$A = \bigcap_{\lambda \in \Lambda} A_{\lambda}$$

Usando que se X e Y são conjuntos vale que

$$(X \cap Y)^C = X^C \cup Y^C$$

temos que,

$$A^C = \cup_{\lambda \in \Lambda} A^C_{\Lambda}$$

e como o complementar de um conjunto fechado é aberto por definição, segue do *problema 3* que uma interseção de fechados é fechado. Podemos fazer de forma análoga para a união usando o *problema 4* porém para uma quantidade finita de conjuntos fechados.

Problema 6: O conjunto $\{\frac{1}{n} \mid n \in \mathbb{N}\} \subset \mathbb{R}$ é aberto? É fechado?

Solução:

O conjunto $A=\{\frac{1}{n}\mid n\in\mathbb{N}\}$ não é aberto pois $\forall \varepsilon>0,\ \nexists B(1,\varepsilon)\subset A$. Suponha então que A seja fechado, porém, isso também é falso pois $\forall \varepsilon>0,\ \nexists B(0,\varepsilon)\subset\mathbb{R}-A$. Então A não é nem fechado, nem aberto.

Problema 7: Dê exemplos de conjuntos que não são nem abertos, nem fechados.

Solução:

Em geral, um conjunto aberto em uma parte e fechado em outra como o do item anterior é um exemplo e também a união de conjuntos abertos e fechados disjuntos.

Problema 8: Prove que

$$\{(x,y) \in \mathbb{R}^2 \mid y > 0\}$$

é aberto.

Solução:

Seja $A=\{(x,y)\in\mathbb{R}^2\mid y>0\},\ \forall (a,b)\in A\ \mathrm{tome}\ \varepsilon=b/2,\ \mathrm{ent\tilde{a}o}\ B((a,b),\varepsilon)\subset A\ \mathrm{assim}\ A\ \acute{\mathrm{e}}\ \mathrm{aberto}.$

Problema 9: Prove que um conjunto em \mathbb{R}^n é aberto se, e somente se, é união de bolas abertas.

Solução:

Seja A aberto, então $\forall a \in A \ \exists \varepsilon_a > 0 \ \text{tal que } B(a, \varepsilon_a) \subset A.$ Assim

$$B = \bigcup_{a \in A} B(a, \varepsilon_a) \subset A$$

 $E \forall a \in A, \ a \in B(a, \varepsilon_a) \subset B$

$$A \subset B$$

Problema 10: Prove que bolas fechadas são conjuntos fechados.

Solução:

Para provar que uma bola fechada B=B(x,r) é um conjunto fechado vamos mostrar que seu complementar é aberto. Então, seja $a \in B^C$, por definição

$$||x - a|| > r$$

Basta tomar $\varepsilon=\frac{\|x-a\|-r}{2}>0$. Então a bola aberta $B(a,\varepsilon)\subset B^C$, o que vale $\forall a\in B^C$ então B^C é aberto e por consequência B é fechado.

Problema 11: Seja $A \subset \mathbb{R}^n$, onde $\exists d > 0$ tal que $||x - y|| \ge d$ para todo par de pontos $x, y \in A$. Prove que, A é fechado em \mathbb{R}^n .

Solução:

Problema 12: Seja $A\subset \mathbb{R}^2$ um conjunto não vazio contido numa reta de \mathbb{R}^2 . Prove que A não é aberto.

Solução:

Problema 13: Seja $A \subseteq \mathbb{R}^n$. Prove que $\mathbb{R}^n \setminus \text{int}(A)$ é fechado.

Solução:

Problema 14: Seja $A \subset B \subseteq \mathbb{R}^n$ e x ponto de acumulação de A. Será que x é também ponto de acumulação de B?

Solução:

Definition 1 (ponto de acumulação) Um ponto $a \in \mathbb{R}^n$ é dito **ponto de acumulação** de $A \subset \mathbb{R}^n$ se $\forall \varepsilon > 0$, $\exists y \in A$ tal que $|a - y| < \varepsilon$.

Pela definição como x é ponto de acumulação de A $\forall \varepsilon > 0, \ \exists y \in A \ \text{tal que} \ |a-y| < \varepsilon.$ Como $y \in A \subset B, y \in B$. Logo, x é ponto de acumulação de B.

Problema 15: Se $A \subset \mathbb{R}^n$ é aberto, prove que sua fronteira tem interior vazio.

Solução:

Sendo a fronteira de A denotada por ∂A , se $x \in \partial A$, $\exists \varepsilon > 0$ tal que

$$B(x,\varepsilon) \not\subset A$$
,

$$B(x,\varepsilon) \nsubseteq A^C$$
,

Por absurdo que existe $x \in \operatorname{int}(\partial A) \subset \partial A$, então $\exists \varepsilon > 0$ tal que $B(a,\varepsilon) \subset \partial A$, $B(a,\varepsilon) \nsubseteq A$ e $B(a,\varepsilon) \nsubseteq A^C$. Em particular, $\exists x_1,x_2 \in B(a,\varepsilon)$ tais que $x_1 \in A$ e $x_2 \in A^C$, porem se $x_1 \in A$, então $x_1 \notin \partial A$, absurdo. Logo, $\operatorname{int}(\partial A) = \emptyset$.

Problema 16: Seja $A \subseteq \mathbb{R}^n$ com $n \ge 2$. Prove que, dado $a \in \mathbb{R}^n \setminus A$, o conjunto $A \cup \{a\}$ é aberto se, e somente se, a é um ponto isolado da fronteira de A.

Solução:

Seja A um conjunto aberto e a um ponto "afastado" de A, como no desenho

Figure 1. Contraexemplo

Então, vale que a é ponto isolado da fronteira de A, mas $A \cup \{a\}$ não é aberto, pois $\forall \varepsilon > 0, \nexists B(a, \varepsilon) \subset A \cup \{a\}$.

Problema 17: Prove que se $F \subset \mathbb{R}^n$ é fechado, então sua fronteira tem interior vazio.

Solução:

Suponha por absurdo que existe $a \in \operatorname{int}(\partial F)$, então como no *item 15*, $\exists \varepsilon > 0$ tal que $B(a,\varepsilon) \subset \partial F$, $B(a,\varepsilon) \not\subseteq F$ e $B(a,\varepsilon) \not\subseteq F^C$, então $\exists x_1,x_2 \in B(a,\varepsilon)$ tais que $x_1 \in F$ e $x_2 \in F^C$, absurdo, pois $B(a,\varepsilon) \subset \partial F$. Logo $\operatorname{int}(\partial F) = \emptyset$.

Problema 18: Sejam $F \in \mathbb{R}^n$ fechado e $f: F \to \mathbb{R}^m$ uma aplicação contínua. Mostre que f leva subconjuntos limitados de F em subconjuntos limitados de \mathbb{R}^m . Prove, exibindo um contra-exemplo, que não se conclui o mesmo removendo-se a hipótese de F ser fechado.

Solução:

Problema 19: Prove que duas bolas abertas de \mathbb{R}^n são homeomorfas.

Solução:

Problema 20: Verifique que a aplicação:

$$f: B(0,1) \to \mathbb{R}^n$$
$$x \mapsto \frac{x}{1 - \|x\|}$$

é um homeomorfismo entre a bola aberta unitária B(0,1) e \mathbb{R}^n . Conclua que qualquer bola aberta de \mathbb{R}^n é homeomorfa a todo o espaço \mathbb{R}^n .

Solução:

Precisamos provar que f e f^{-1} são continuas, mas antes, note que

$$f: \mathbb{R}^n \to B(0,1)$$
$$x \mapsto \frac{x}{1 + ||x||}$$

Então,

$$f(f^{-1}(x)) = \frac{\frac{x}{1+||x||}}{1 - ||\frac{x}{1+||x||}||}$$

$$= \frac{\frac{x}{1+||x||}}{1 - \frac{||x||}{1+||x||}}$$

$$= \frac{\frac{x}{1+||x||}}{\frac{1+||x||}{1+||x||} - \frac{||x||}{1+||x||}}$$

$$= x$$

Analogamente,

$$f(f^{-1}(x)) = \frac{\frac{x}{1-||x||}}{1 + ||\frac{x}{1-||x||}||}$$

$$= \frac{\frac{x}{1-||x||}}{1 + \frac{||x||}{1-||x||}}$$

$$= \frac{\frac{x}{1-||x||}}{\frac{1-||x||}{1-||x||} + \frac{||x||}{1-||x||}}$$

$$= x$$

Então, f é bijetora e possui inversa f^{-1} da forma acima. Agora como $\|\cdot\|$ é contínua num conjunto aberto, em particular é contínua em \mathbb{R}^n e B(0,1). Logo, $f:\mathbb{R}^n\to B(0,1)$ é contínua. Valendo o mesmo para sua inversa f^{-1} . Portanto, f é homeomorfismo e em geral o mesmo vale para qualquer bola aberta $B(a,r),\ r>0$.

Problema 21: Mostre que o cone $C=\{(x,y,z)\in\mathbb{R}^3; z=\sqrt{x^2+y^2}\}$ e \mathbb{R}^2 são homeomorfos.

Solução: