CM300: Introdução ao Cálculo (Prova 4)

Prof. Alberto Ramos Dezembro de 2019

Nome:

Q:	1	2	3	4	5	Total
P:	25	20	20	25	20	100
N:						

Orientações gerais

- 1) As soluções devem conter o desenvolvimento e ou justificativa.
- 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados.
- 3) Não é permitido a consulta nem a comunicação entre alunos.

Formulas trigonométricas: 1

- (a) $\boxed{5} \sin(\arcsin x)$
- (b) $10 \sin^7(\arccos x)$
- (c) $10 \tan(2\arccos(x))$

Simplifique as expressões usando funções trigonométricas. Somente as respostas que *explicitamente* usem funções trigonométricas serão considerada, não deve ter expressões radicais.

- (a) $10 \frac{1}{x\sqrt{9-x^2}}$
- (b) $10 \ x\sqrt{(x+5)(x-5)}$

Dentro do intervalo $[0,4\pi)$, encontre todas as soluções de

- (a) $\boxed{10} \ 2\cos^2 t = -\cos t$
- (b) $1 \sin t = 2\cos^2 t$

Um músico está tocando uma sanfona. O comprimento da sanfona é uma função A(t) (medido em cm) onde t é o tempo medido em segundos, qual é modelada por $A(t) = a\cos(bt) + d$, a partir de t = 0. O maior comprimento da sanfona é de 23 cm, e de 17 cm o seu menor comprimento. Se o tempo que demora para passar do seu maior comprimento até o seu menor comprimento é de 1.6 segundos. Calcule a, b, d e comprimento da sanfona depois de 5.6 segundos.

Um bote está no meio do mar boiando. A distância do bote d(t) (em metros) ao fundo do mar, é uma função do tempo (em segundo) e pode ser modelada como $A\sin(bt) + d$. Quanto t = 0, o bote está exatamente no meio da sua oscilação e está a 1cm acima do fundo. Se para $t \in (0, \pi/4)$ o bote está subindo e chega à sua altura máxima de 1.2cm depois de $\pi/4$ segundos. Calcule todos os parâmetros: $b, A \in d$.

¹(a): $\sin(x \pm y) = \sin(x)\cos y \pm \sin(y)\cos(x)$, (b): $\cos(x \pm y) = \cos(x)\cos y \mp \sin(y)\sin(x)$