La biogéographie est l'étude de la répartition géographique des espèces. Aujourd'hui, dans un monde où les écosystèmes sont très perturbés, les biogéographes comptent parmi leur mission celle d'établir des scénarios de changement de la biodiversité. Cependant, l'effort de recherche actuel nous montre à quel point il est difficile de comprendre ces répartitions et donc de les prédire. En réponse à ces difficultés, certains auteurs ont proposés d'aller vers un renouvellement de la théorie de la discipline. Parmi les étapes majeures de ce renouvellement figure l'intégration des interactions écologiques au sein d'une théorie plus intégrative de la biogéographie. C'est justement sur ce point qu'ont porté mes travaux de thèse. J'ai particulièrement réfléchi à comment intégrer les interactions dans des modèles de distribution d'espèces et leurs potentiels effets sur la répartition géographiques des effets.

Je propose dans la présente introduction de cerner un peu mieux les enjeux de ma thèse. Pour cela, je commence par montrer que la compréhension de la distribution des espèces étaient très avancée dès la fin du XIXème siècle durant lequel, après plus de 150 ans de voyages d'exploration scientifique, la connaissance plus exhaustive de la richesses biologique terrestre a mené à la théorie de l'évolution. Je souligne que dès les années 1960, la biogégraphie à chercher à se doter de théorie ambitieuse qui a participé à la compréhension de l'ensemble des processus mis en jeux. Je présente ensuite quelques cadres conceptuels en biogéographie qui, bien que présentant de nombreuses qualités sont aujourd'hui appelés à intégrer davantage de processus écologiques, comme les interactions écologiques. Je reviens alors plus en détail sur ce point pour contextualiser l'objet central de ma thèse qui a donnédes éléments de réponse à deux grandes questions : comment intégrer les interactions écologiques dans des modèles en biogégraphie? Quelles traces ces interactions laissent-elles sur la géométrie des aires de répartition?

Des îles et des espèces

En suivant Wallace

Dans l'introduction de son livre *Island Life* paru en 1881, le célèbre naturaliste Alfred Russel Wallace nous rapporte deux faits étonnants qui justifient pleinement l'examen attentif de la répartition géographique des espèces [?]. Premièrement, le biogéographe démontre, à l'aide de nombreux exemples, que l'éloignement entre deux régions du monde n'est pas suffisant pour conclure quant à l'éloignement de leur composition faunistique et floristique. Ainsi, la comparaison des avifaunes de l'île japonaise d'Hokkaido et de l'Angleterre, séparées par des milliers de kilomètres, révèle une proximité des paysages ornithologiques très supérieure à celle constatée dans l'analyse comparée des oiseaux des îles indonésiennes de Bali et de Lombok pourtant distantes de quelques kilomètres seulement. Deuxièmement, en s'appuyant sur les différences des faunes brésiliennes et africaines, Wallace souligne la faiblesse du pouvoir prédictif des variables climatiques pour décrire les compositions faunistiques présentes sous des latitudes similaires. Ces constatations soulignent l'utilité de croiser les informations des distributions à la lumière d'une analyse taxonomique pour y apporter du sens. Dans le cadre de la théorie de l'évolution¹, encore toute jeune en 1881, cette analyse taxonomique est une

¹Wallace a publié en 1858 un article *On the Tendency of Varieties to Depart Indefinitely From the Original Type* qui témoigne très clairement que ses idées sur les varitions temporelles des espèces qui étaient très proches de celles de Charles Darwin à qui il avait d'ailleurs envoyé son manuscrit

analyse historique : Wallace montre que la compréhension d'un problème spatial, celui des aires de répartition de groupes d'espèces, n'est possible que par une compréhension temporelle, celle de l'histoire des espèces. Cette idée est clairement énoncée dans la suite de son introduction :

Many years study of this class of subjects has convinced me that there is no short and easy method of dealing with them; because they are, in their very nature, the visible outcome and residual product of the whole past history of the earth.

Tout au long de son livre, Wallace démontre que la connaissance à l'échelle mondiale de la distribution des êtres vivants permet d'associer les différentes îles aux grands ensembles régionaux biologiques (que nous appelons aujourd'hui écozones) sur la base des ressemblances biologiques des espèces qui témoignent du lien temporel unissant les différentes zones géographiques de la Terre. Ce travail de caractérisation d'ensemble géographiques conduit notamment Wallace, dans un article de 1860 [?], à tracer la ligne éponyme séparant l'écozone indomalaise de l'écozone australienne (séparant les îles de Bali et Lombok mentionnée au paragraphe précédent). La connaissance apportée à la géographie par l'histoire est saisissante et les exemples de Wallace deviennent autant d'arguments en faveur de la théorie de l'évolution. Le discours de Wallace porte sur des processus à des échelles spatiales et temporelles très grandes², ce qui apporte certes un éclairage substantiel qui se double cependant d'un obstacle épistémologique majeur : si l'explication ultime de la présence d'une espèce en un point donné est le produit d'une série de contingences historiques, quelles peuvent être les fondations d'une théorie de la biogéographie? Ce n'est qu'au XXème siècle que des réponses convaincantes émergeront.

En suivant MacArthur et Wilson

Parmi les visions les plus importantes de la biogéographie se trouve celle contenue dans le livre publié en 1967 *The Theory of Island Biogeography*, produit de la fructueuse rencontre du mathématicien et biologiste Robert MacArthur et du myrmécologue Edward Wilson³. À partir d'un grand nombre de données sur les faunes insulaires de diverses régions du monde, ces auteurs ont construit un cadre théorique élégant pour expliquer les variations du nombre d'espèce trouvé sur ces îles [?]. Leur démarche théorique permet de lier des observations à un modèle mathématique donnant une explication simple et convaincante des variations étudiées. Ils font ainsi basculer la discipline dans une ère nouvelle, ce dont les auteurs étaient conscients, en atteste le premier paragraphe du dernier chapitre de leur livre :

Biogeography has long remained in a natural history phase, accumulating information about the distribution of species and higher taxa and the taxonomic composition of biotas. Interpretative reasoning has been largely directed to the solution of special problems connected with the histories of individuals taxa and biotas. Without doubt this descriptive activity will continue to be of fundamental importance to the

²L'âge de la terre est très débattu à l'époque. Bien que l'ensemble des savants s'accordent pour aller bien au-delà des 6000 ans bibliques, il n'y a alors pas de consensus. Wallace affirme à la page 212 du chapitre 10 de *Island Life* que la vie se développait il y a au moins 500 millions d'années [?], ce qui est audacieux pour l'époque mais bien en-dessous de l'âge des plus anciens fossiles découverts à ce jour qui est estimé à 3.4 milliards d'années

<sup>[?].

&</sup>lt;sup>3</sup>Cet actuel professeur émérite à l'université d'Harvard est reconnu pour ses apports en biologie et en sociologie, il est notamment l'auteur de 32 livres. C'est pour son immense connaissance des fourmis que j'ai choisi le nom de myrmécologue.

science, one of the most physically adventurous of all scientific entreprises and, in the richness of the detail it unfolds, esthetically pleasing. But biogeography is also in a position to enter an equally interesting experimental and thereotical phase.

Dans cet extrait, MacArthur et Wilson affirment que l'étude de la distribution des espèces doit sortir du royaume des contingences historiques pour devenir un objet de science au sens d'être manipulé aussi bien expérimentalement que par l'abstraction mathématique. La validation expérimentale de la théorie a d'ailleurs été menée par Wilson et son étudiant au doctorat de l'époque, Daniel Simberloff, devenu depuis un écologue reconnu [?]. Le travail d'abstraction mathématique a été conduit par MacArthur dans le livre de 1967 et prolongé dans les annexes de son livre de 1972 [?]. Ces auteurs proposent une explication de la variation spécifique des îles fondée sur deux processus opposés : la colonisation d'espèce depuis le continent qui augmente le nombre d'espèces sur l'île et un processus d'extinction locale qui diminue ce nombre. C'est en reliant ces processus aux propriétés physiques de l'île (aire et isolation) et en interprétant la richesse spécifique des îles en terme d'équilibre entre ces deux processus que les auteurs parviennent à expliquer de manière convaincante les relations observées entre richesse spécifique, taille de l'île et isolement. Dans le troisième temps de cette introduction, je reviens amplement sur cette théorie nommée théorie de la biogéographie des îles que je noterai TIB (pour *Theory of Island Biogeography*) dans la suite.

Le paradigme de la TIB est un lègue qui a eu un impact considérable sur les développements théoriques en écologie [?]. Au centre du projet de la TIB se loge la volonté de mettre l'espèce au coeur de la biogéographie afin de permettre à la discipline de s'enrichir des mécanismes biologiques qui sont un moteur essentiel de la variation dans la distribution des espèces. L'intérêt de leur »biogéographie de l'espèce» [le terme est mentionné à l'avant-dernière phrase de l'ouvrage ?, p.183] est dans l'affirmation qu'il faut regarder les contraintes conjointes de l'évolution (qui met un certains nombre d'espèces avec des caractéristiques propres en présence) et du contexte écologique qui détermine les conditions de colonisation et d'extinction. Cette intrication de l'écologie et de l'évolution est bien inscrite dans la pensée de MacArthur et Wilson même si la puissance de leur vision réside dans le fait de les occulter en partie.

Près de 50 ans après la parution de leur livre, une des clefs en biologie semble être la compréhension des rétroactions qu'il existe entre écologie et évolution dans les variations spatiales et temporelles de la biodiversité. Je reprends ci-dessous trois aphorismes cités par ? concernant les liens entre biologie, écologie et évolution : « Nothing in biology makes sense except in the light of evolution. » [?]; « Nothing in evolutionary biology makes sense except in the light of the other. » [?]; La chronologie de ces citations est un indice de la reconnaissance actuelle du besoin (de la nécessité?) de croiser écologie et évolution. Un parallèle avec les sciences humaines me semble possible dans lequel l'écologie serait à la biologie ce que la géographie est aux sciences humaines et l'évolution serait à la biologie ce que l'histoire est aux sciences humaines. Nous pouvons certes étudier l'une sans l'autre, mais le dialogue entre les deux disciplines est indispensable afin d'éviter que chacune avancent en faisant des hypothèses fortes sur l'autre qui finiront éventuellement par nuire à une compréhension plus profonde de la biologie. Par exemple, supposer que les variations démographiques ont des origines purement écologiques devient problématique si les variations génétiques sont suffisantes pour expliquer

qu'une partie importante de cette variation comme cela l'a été montré sur une population de moutons de Soay [?]. Je ne cherche pas à nier l'utilité des savoirs acquis de manière autonome par un champ disciplinaire, j'insiste simplement sur l'importance de mettre ces connaissances en persepective les unes avec les autres en vue d'une synthèse indispensable pour décrypter l'information contenue dans les distributions d'espèce.

Quelles informations renferment les distributions d'espèces?

Cette question est non seulement une invitation à découvrir les raisons de la présence de tel ou tel organisme en un lieu donné du globe, mais elle suggère aussi que certaines informations ne peuvent pas être obtenues par l'analyse de la répartition géographique des espèces seule. Les auteurs mentionnés dans les paragraphes précédents y ont apporté des éléments de réponse cruciaux : Wallace a montré que les distributions géographiques reflétaient en partie les liens de parenté entre les espèces, quant à MacArthur et Wilson, ils ont suggérés que ces distributions étaient le résultat de processus écologiques dynamiques. Examiner les aires de répartition, en détailler la géométrie exacte et les variations spatio-temporelle, faire des recoupements entre les répartitions géographiques de différentes espèces ou encore avec la distribution de variables abiotiques sont des démarches fondamentales pour en apprécier les mécanismes sous-jacents.

Dans son ouvrage de 1972, MacArthur discute de l'ensemble de ces mécanismes, il considère aussi bien le rôle que peuvent jouer les variables climatiques que celui des interactions écologiques. En plus des exemples concrets amenés pour illustrer ses propos, MacArthur développe des modèles mathématiques pour prolonger la discussion. Au chapitre 2, il formalise l'impact de la compétition sur la coexistence des espèces aboutissant ainsi sur un principe de ségrégation spatiale des espèces liées par ce type de relation : deux compétiteurs ne peuvent pas co-occurrer (résider durablement au même endroit) sauf éventuellement sur une zone très restreinte de leur distribution [?] ou sur . Toujours dans cet ouvrage, MacArthur évoque la distribution en damier (*checkerboard*) que peuvent générer des espèces en compétition. La discussion de ce type de distribution sera approfondie par Jared Diamond [?] dont les travaux déclencheront un débat important sur la détermination de modèles nuls de co-occurrence [?] et sur laquelle mon travail de thèse apporte quelques éléments nouveaux.

L'étude des limites spatiales d'un grand nombre d'espèce de leurs limites spatiales permet d'y déceler des généralités quant aux mécanismes qui les déterminent [?]. L'examen des variations spatio-temporelles apporte une information très utile sur l'importance relative des divers mécanismes. Le contexte des changements climatiques est une bonne illustration de ce principe car les bouleversements actuels des répartitions géographiques permettent en effet de pointer le rôle majeur des mécanismes micro-évolutifs auparavant sous-estimés [?]. Enfin, l'examen des distributions doit aussi être un examen des co-distributions, il faut s'intéresser à l'information de sous ensembles d'espèces et notamment les espèces en interaction afin de tester si la biologie laisse des empreintes dans la géométrie des aires de répartition. Par exemple, dans mes travaux de thèse, je propose de regarder l'intersection de l'aire associée à un ensemble de proies pour savoir ce qu'elle nous apprend sur la distribution de leur prédateur (présenté au chapitre ??).

Enjeux de la connaissance de la répartition géographique des espèces

Les observations et la compréhension des causes profondes de la géométrie et la dynamique des aires de répartitions des espèces ont déjà mené à des découvertes majeures en écologie et en évolution. La phase d'expérimentation et de théorisation de la biogéographie décrite par MacArthur et Wilson se poursuit et se tourne vers un objectif très ambitieux : faire de la biogéographie une discipline prédictive, pourvoyeuse de prédictions fiables sur les aires de répartitions futures de n'importe quelle espèce [??]. Ce problème est d'autant plus présent dans la littérature récente que nous sommes dans un contexte où ces aires sont profondément bouleversées. En biogéographie, les changements climatiques ont en effet canalisés l'attention des chercheurs qui constatent avec stupeur l'ampleur à laquelle la biodiversité mondiale est affectée [??]. La volonté d'anticiper la localisation future des espèces a également engendré des efforts conséquents pour développer des outils statistiques essentiellement centrés sur la corrélation entre les variables abiotiques et les données de présence (d'occurrence) des espèces [?].

En ciblant l'étude de la distribution de certaines espèces, la biogéographie rencontre des enjeux socio-économiques majeurs. Ainsi, pour un pays comme la France, la restriction des zones favorables à la croissance de la vigne envisagée à l'aide des scénarios de changements climatique [?] pourrait conduire à des pertes économiques importantes et un bouleversement identitaire des grandes régions viticoles. De plus, détecter aujourd'hui un potentiel viticole futur dans des régions où cette production n'existe pas peut conduire à des augmentations drastiques du prix des terres agricoles. En guise de second exemple, je pose la question suivante : où seront les érablières de demain? La réponse est donnée par la détermination de la répartition future des aires favorables à la croissance de l'érable à sucre (*Acer saccharum*) et à sa capacité à les atteindre afin de s'y établir [?]. Je termine avec un troisième exemple : la perte des pollinisateurs et notamment des abeilles. Pas moins de quatre grandes classes de facteurs d'origine anthropique les mettent en danger : les changements climatiques, le changement dans l'utilisation des terres⁴, l'apparition de nouveaux pathogènes (dont l'acarien parasite *Varroa destructoa* vecteur de nombreux virus) et l'arrivée d'espèces invasives [comme le frelon asiatique ?]. Le défi actuel est de prédire la distribution future des pollinisateurs en intégrant ces multiples aspects et leurs interactions. De plus, dans le cas des espèces invasives, il faut comprendre comment une espèce peut sortir de son aire de répartition naturelle et en établir une nouvelle.

Actuellement, les outils de prédiction des aires de répartition future reposent essentiellement sur les scénarios de changements climatiques [?]. Ces modèles dits de distribution d'espèces (que je noterai SDM dans la suite en référence au terme anglais *Species Distibution Model*) porposent une démarche est cohérente : la connaissance basée sur les corrélations de variables climatiques permet d'établir une relation climat-présence. En utilisant les résultats des climatologues qui dérivent les variations climatiques associées à des scénarios d'émission de gaz à effet de serre par les activités humaines, les biogéographes établissent les probabilités de présence des espèces dans les conditions climatiques futures. Cependant, la relation climat-présence n'est qu'une facette du lien qui unissent les espèces à l'espace et chaque nouvelle invasion nous montre à quel point il est difficile de prédire les aires de répartitions. Ces

⁴Les changements dans l'utilisations des terres sont accompagnés, entre autres, de l'utilisation parfois massive de pesticides de la famille des néonicotinoïdes affaiblissant les colonies.

problèmes de qualité de prédictions sont le reflet de lacunes théoriques qui amènent plusieurs chercheurs à se positionner en faveur d'un renouvellement des fondations théoriques pour édifier une biogéographie plus intégrative [???]. Bien sur, ces appels soulèvent des défis importants dont on ne peut qu'espérer qu'ils soient relevés au plus vite pour faire face à l'urgence.

Travail théorique et modélisation

Avant d'énumérer, avec des exemples concrets, l'ensemble des forces qui régissent la répartition géographique d'une espèce, je souligne dans cette partie l'importance du travail de théorisation et de modélisation qui joue un rôle prépondérant dans mes travaux de doctorat.

Rassembler et intégrer des faits

Le travail de théorisation est avant tout la mise en cohésion d'un certain nombre de faits, d'observations. Dans la TIB, par exemple, MacArthur et Wilson proposent une explication cohérente de l'augmentation de la richesse spécifique dans les îles de plus grande taille. De manière générale et poppérienne, trois principes encadrent la construction d'une théorie scientifique :

- 1. la théorie doit pouvoir être testée (par une expérience ou par la récolte de données),
- 2. la théorie doit être falsifiable : la théorie demeure valide tant qu'elle n'est pas prouvée fausse, tant qu'une théorie alternative ne la supplante pas,
- 3. la théorie doit être parcimonieuse, ne pas invoquer de multiples processus sans raison (c'est-à-dire sans une augmentation du nombre de faits expliqués), c'est un principe qui est aussi connu sous le nom de Rasoir d'Ockham.

Une boutade, dont je suis incapable de me souvenir de l'auteur, énonce que les physiciens expliquent 95% de l'univers avec 5 règles alors que les économistes expliquent 5% des phénomènes qu'ils étudient avec 95 règles⁵. Le problème n'est pas tant de dénigrer une discipline mais de constater d'un côté la puissance prédictive d'une théorie mature et de l'autre, les problèmes posés par une théorie lacunaire. En biogéographie, j'ai le sentiment que les théories manquent de maturité; la TIB donne certes une vision cohérente de la richesse spécifique insulaire mais c'est une théorie peu précise : prédire un nombre d'espèce n'aide que partiellement à comprendre le monde qui nous entoure. Pour faire un peu de prospective, une théorie qui donnerait des prédictions sur la composition des réseaux insulaires plutôt que sur la richesse spécifique supplanterait la TIB car elle expliquerait davantage de faits au prix probable d'une complexité supérieure.

Des modèles pour explorer et tester la théorie

Le terme de modèle signifie simplement que l'objet en question a des propriétés bien connues. Un organisme modèle, par exemple, est un organisme souvent facile à élever et manipuler, et pour lequel beaucoup de connaissances ont

⁵Une variante indique que les économistes ont prédit 12 des trois dernières crises économiques. Je pense que pour ce qui est de nos capacités de prédictions, la biogéographie est plus proche de l'économie que de la physique.

été acquises; il sert souvent d'unité empirique pour un ou plusieurs groupes de recherche. Les modèles statistiques sont des outils pour tester des relations basées sur des hypothèses issues de théories. De même, pour un travail de modélisation mathématique, la description du modèle est contenue dans une série d'équations dérivées d'une théorie et de savoirs empiriques. À travers les modèles, quelle qu'en soit leur nature, on explore et on teste une théorie que l'on a éventuellement participé à établir.

Les modèles sont souvent décrits comme une simplification de la réalité : comment, en effet, prétendre que les mécanismes biologiques décelés chez *Arabidopsis Thaliana*⁶ sont les mêmes que ceux l'œuvre pour l'ensemble des plantes à fleurs? pour combien de systèmes proie-prédateur le modèle de Lotka-Volterra est-il pertinent? Les limites des modèles doivent être reconnues mais il ne faut pas nier l'apport de ces derniers. Les modèles sont autant d'occasions pour explorer une ou plusieurs prédictions d'une théorie. Le choix du modèle employé est lié à l'histoire du chercheur qui l'utilise, à ses propensions à utiliser avec succès telle ou telle démarche scientifique, c'est ce que rappelle Kevin McCann dans la préface de son livre *Food Webs* [?] :« It just so happens that some people find it easier to think about things in terms of x's and y's, and other in terms rabbits of and lynx. » En d'autres termes, certaines personnes ont plus de facilités pour penser en termes d'abstractions mathématiques alors que d'autres font meilleur usage de manipulations plus concrètes. Je suis plutôt dans la première catégorie de personnes, je pense que les mathématiques fournissent un cadre de pensée très puissant, comme l'indique le célèbre écologue Robert May [?, p. 791] :

The virtue of mathematics in such a context is that it forces clarity and precision upon the conjecture, thus enabling meaningful comparison between the consequences of basic assumptions and the empirical facts.

Here mathematics is seen in its quintessence: no more, but no less, than a way to think clearly.

Dans mes travaux, j'ai essayé d'utiliser les mathématiques pour développer des modèles dont le point de départ a été une réflexion collective autour du rôle que pouvaient jouer les interactions dans la répartition géographique des espèces. J'ai alors établi un cadre théorique avec lequel j'ai dérivé des prédictions dont certaines semblent être vérifiées dans les données empiriques.

Nouvelles prédictions

Après l'établissement d'une théorie expliquant un certain nombre de faits et pour laquelle un certain nombre de tests ont été réalisés, le raisonnement fondé sur celle-ci peut conduire à la production de nouvelles prédictions dont la vérification la renforceront. En revanche, l'apparition de faits expérimentaux en désaccord avec cette théorie demanderont des réponses qui se traduiront soit par une meilleure compréhension de la limite d'application de la théorie soit par l'émergence d'une théorie nouvelle qui expliquera ces faits nouveaux tout en couvrant le rayon de compréhension de la théorie précédente [?]. Ces dernières années, la physique nous a donné deux exemples très probants du pouvoir de l'imagination doublé du cadre rigoureux des mathématiques avec la vérification expérimentale de théories énoncées bien avant que les outils permettant de la vérifier existent. En 2012, c'est la détection du Boson de Higgs dont l'existence fut

⁶Il s'agit de la plante modèle par excellence dont le génome fut le premier à être séquencé chez les plantes [?].

prédite en 1964⁷. Cette année, c'est la détection des ondes gravitationnelles soit 100 ans après qu'Albert Einstein en ait prédit l'existence [?]. En biogéographie, une théorie devrait être capable, par exemple, de dresser des cartes de potentiel d'invasion à l'échelle mondiale pour l'ensemble des espèces. Je pense que nous en sommes encore loin, néanmoins, le chemin pour y parvenir passe par une connaissance approfondie de l'ensemble des mécanismes qui interviennent dans le tracé des aires de répartition, c'est-à-dire connaître leur nature, la portée de leur action mais aussi leurs interactions et leurs importances relatives.

Les processus qui façonnent les aires de répartition

Biogéographie historique

Il s'agit de la compréhension des impacts sur les êtres vivants des évènements de grande amplitude temporelle (allant de quelques milliers d'années à plusieurs millions d'années). C'est dans l'étude de la proximité des taxons mais aussi des fossiles éventuels que l'on peut déchiffrer les mouvements de colonisation des différentes branches de l'arbre du vivant. Pour prendre l'exemple d'un phénomène de très grande amplitude, on peut faire appel à la théorie de la dérive des continents établie par Alfred L. Wegener⁸ qui implique que des groupes éventuellement proches il y a des millions d'années ont été séparés et ont donné naissance à des lignées différentes. Aujourd'hui, nous sommes capables de retracer ces liens de parenté à l'aide de phylogénies moléculaires qui sont des outils très efficaces pour estimer le temps que sépare différentes espèces. Ainsi, par la comparaison des génomes mitochondriaux, il a été montré récemment que les lémuriens (primates malgaches) ont été séparées de toute autre lignée de primates il y a 60 millions d'année environs [?]. Cette séparation questionne la série d'évènements qui ont conduit à l'isolation de ce groupe de singes à Madagascar et à la construction des communautés que nous y observons actuellement [?].

Les processus de grandes amplitudes temporelles sont cependant dominés par leur composante historique (et donc non reproductible) et prédire des phénomènes tel que l'extinction des dinosaures est, dans le meilleur des cas, très compliqué. Néanmoins, dans les mouvements de grandes amplitudes se manifestent des processus qui agissent en permanence. Ainsi, l'étude de la diversification des bousiers entreprise par Joachim Hortal et ses collègues [?] montre que la dernière glaciation a laissé des empreintes encore visibles dans la carte de répartition de la diversité de ce groupe : la limite de la thermocline 0°C durant le dernier maximum glacier (il y a 21000 ans environs) sépare les zones de fortes diversifiées en bousier des autres. De plus, ils montrent que la diversité phylogénique des espèces nordiques, c'est-à-dire plus tolérantes au froid, est un sous-ensemble phylogénétique bien identifié, par conséquent peu de branches des bousiers sont à l'origine des colonisations nordiques. Ainsi, après une contraction de la zone favorable au développement des bousiers, les mouvements de colonisation ont marqué à la fois la carte de répartition de la richesse spécifique de ce groupe mais aussi la carte de la répartition des différentes branches de l'arbre phylogénétique des bousiers européens

⁷Pour plus de détail, je réfère le lecteur au bulletin du CERN disponible en ligne http://cds.cern.ch/journal/CERNBulletin/2012/28/News% 20Articles/1459456?ln=fr

⁸La similarité des fossiles trouvés sur des continents très éloignés a été un des arguments en faveur de cette théorie.

Capacités de dispersion

La remonté nordique des bousiers depuis le dernier maximum glacier est le résultat d'événements de dispersion individuels. Au cours de leur vie, les bousiers parcourent de grandes distances à la recherche de nourriture, on peut imaginer qu'au fil des générations, si les conditions environnementales le permettent, certains individus établissent des populations de plus en plus nordiques. Ce qui est vrai pour ce groupe d'espèces mobiles l'est aussi pour des espèces sessiles comme les plantes qui possèdent également des capacités de dispersion du fait de la dissémination de leurs graines par des mécanismes très diversifiés. Ce rapport à l'espace des différents organismes est une forme de diffusion : des mouvements stochastiques conduisent à une augmentation de la répartition (c'est une question de probabilité), mais cette diffusion n'est pas totalement libre.

Plusieurs types de contrainte limitent l'élargissement de l'aire de répartition d'une espèce. Pour les espèces terrestres, les mers et les océans sont des obstacles majeurs à la colonisation de nouveaux territoires. A l'échelle régionale, les rivières, les hauts reliefs peuvent fortement limiter la dispersion d'une espèce. De même, pour les plantes dont la stratégie de dissémination est l'anémochorie, la vitesse et la direction des vents sont des facteurs primordiaux pour comprendre la propagation de l'espèce. Enfin, à l'échelle du paysage, il existe très souvent une mosaïque d'habitats plus ou moins favorables à la dispersion d'une espèce. Toutes ces possibilités sont complexes à intégrer et c'est en partie pour cela que la théorie de la biogéographie a été fondée sur les îles, les flux de colonisation y étant relativement faciles à identifier: de la côte la plus proche vers l'île.

Dans l'expérience historique de Daniel S. Simberloff et Edward O. Wilson qui valida la TIB, les chercheurs ont éradiqué la faune de six îlots de mangrove rouge dans la Baie de Floride et ils ont alors observé qu'en une année, la richesse spécifique en insecte était similaire à celle constatée avant de commencer l'expérience [?]. Ainsi, les événements de colonisation, bien qu'individuels, peuvent être assez fréquents pour conduire rapidement à l'établissement de populations et même d'une communauté locale d'insectes. A l'échelle d'un continent, malgré les divers obstacles physiques, il est très probable qu'une espèce donnée puisse, en un temps plus ou moins long, atteindre n'importe quelle zone du continent. Cependant, le plus souvent, les aires de répartition des espèces sont limitées à une portion du continent. Pour comprendre ces restrictions, il faut invoquer les performances des espèces dans des conditions environnementales données.

Contraintes abiotiques et niche écologique

Dans le chapitre 6 de son livre de 1972 *Geographical Ecology* illustre l'importance des contraintes climatiques avec l'exemple de l'aire de répartition du cactus Saguaro (*Cereus giganteus* en 1972 mais aujourd'hui *Carnegiea gigantea*).

Ce résident des hauteurs du désert de Sonora⁹ est sensible au gel et ne peut guère résister à une exposition de quelques dizaines d'heures au gel. Cette contrainte physiologique explique bien les limites nord et est de sa répartition. Pour la limite sud, il semblerait que l'abondance des pluies hivernales qu'il y trouve lui soit défavorables. En s'appuyant sur les conditions climatiques actuelles dans lesquelles le cactus se développe, des résultats récents prédisent que dans le cadre des changements climatiques, *Carnegiea gigantea* trouvera refuge à des altitudes supérieures mais que ce mouvement pourrait être entravé par l'augmentation de la fréquence des feux [?].

Cette démarche de croisement de la limite des aires de répartition avec des variables climatiques est une forme répandue de la détermination de la niche écologique d'une espèce. Ce concept de niche est très débattu en écologie et son caractère élusif s'accompagne d'un certain nombre de problèmes de définition¹⁰. Afin d'éviter ces problèmes, je parlerai de la niche au sens de Joseph Grinnell qui en tentant d'expliquer la restriction de la répartition du Moqueur de Californie écrit :

An explanation of this restricted distribution is probably to be found in the close adjustment of the bird in various physiological and psychological respects to a narrow range of environmental conditions.

Dans ses travaux, Grinnell montre que la présence du Moqueur de Californie est fortement corrélée à des conditions de températures et d'humidité assez élevées [?]. Ainsi la niche écologique au sens de Grinnell est un ensemble de conditions environnementales dans laquelle une espèce donnée est trouvée. Si on ne se restreint pas aux observations *in situ* et que l'on détermine l'ensemble des conditions d'existence possibles, alors on caractérise une niche écologique théorique appelée niche fondamentale. Cette caractérisation expérimentale a été poussée à son paroxysme dans l'article de Michael Kearney et Waren Porter sur le gecko nocturne australien *Heteronotia binoei* [?]. Ils ont montré qu'en combinant des mesures physiologiques (dont le taux métabolique au repos, la température cumulée nécessaire au bon développement des œufs et des mesures de températures caractéristiques) avec des données climatiques, ils obtenaient une bonne concordance des probabilités d'occurrence et des observations, justifiant ainsi la démarche prédictive en s'appuyant sur des scénarios de changements climatiques pour essayer de comprendre les répartitions futures. De manière générale, cette méthode est la recherche de facteurs abiotiques limitant le développement d'une espèce et donc sa répartition géographique. Au niveau du Panama, par exemple ? ont montré que les distributions locales et régionales de 48 espèces d'arbres s'expliquent par la sensibilité à la sécheresse, donc à une variation dans la disponibilité d'une ressource. Ces corrélations convaincantes fondent les SDM qui sont des solutions techniques (statistiques) pour l'application de la méthode générale que je viens de décrire [??].

L'engouement actuel autour de ces modèles est lié à l'espoir de pouvoir faire des prédictions fiables sur la géographie de la biodiversité mondiale de demain dans un contexte de changement climatique. Cette démarche s'est appliquée avec succès à différents cas, par exemple en 2009, Tingley et ses collègues ont montré que sur 53 espèces d'oiseaux

⁹Ce désert couvre le sud de l'Arizona et la Californie et une large partie des états méxicains de Basse-Californie et du Sonora pour une superficie de plus de 300 000 km² .

¹⁰En 1957, Hutchinson propose de voir la niche écologique comme un *hypervolume* (un espace d'un grand nombre de dimension) dans lequel une espèce peut se développer. Le problème est de savoir quelles sont les dimensions et notamment si les autres espèces sont parmi ces dimensions. Pour essayer d'avoir une définition plus claire de la niche écologique, certains auteurs proposent de parler de la niche comme d'un espace où le taux de croissance net de l'espèce est supérieur à 0 [?]. En dépit de l'aspect plus quantitatif de cette définition, un problème subsiste, celui de trouver une méthode générale pour définir cet espace.

étudiés dans la Sierra Nevada, 48 ont colonisé de nouveaux sites où les conditions de température et de précipitations leur étaient plus favorables [?]. Une autre justification de l'utilisation abondante des SDMs est la relative facilité de leur mise en application grâce à l'abondance des données climatiques et d'occurence à laquelle s'ajoute le partage des implémentations numériques de ces méthodes statistiques. Pour le premier type de données, WorldClim illustre cette facilité d'accès en proposant des données à l'échelle mondiale gratuitement téléchargeables [voir http://worldclim.org ?]. Pour les données d'occurrence, plusieurs initiatives offrent des données gratuites dont les plus exhaustives sont celles disponibles sur le portail de données sur la biodiversité à l'échelle mondiale GBIF (*Global Biodiversity Information Facility*, voir http://www.gbif.org) qui présentent cependant des biais liés à l'inégalité d'échantillonnage des régions du globe [?]. Enfin pour ce qui est du partage des implémentations des SDM, on peut évoquer le logiciel libre R [?] dont certaines extensions sont dédiées à l'utilisation des SDMs et sont largement utilisées dans la communauté scientifique.

Un des principaux problèmes posés par l'utilisation massive de ces approches est la faible remise en question des hypothèses sur lesquelles elles reposent. Le message délivré par les SDMs doit être pris comme une potentialité : étant donné les conditions actuelles dans lesquelles une espèce est trouvée et sachant les variations climatiques données par les modèles climatologiques, s'il n'existe pas d'obstacle majeur au mouvement de l'espèce en question, alors il est probable que celle-ci se déplace en suivant les conditions climatiques qui sont similaires à celles dans laquelle elle est actuellement trouvée, ce qui nous permet de savoir ou sera l'espèce demain. Ce message est délivré en supposant 1-une forme d'équilibre entre la distribution des espèces et les conditions climatiques actuelles et 2- que les espèces sont indépendantes [?]. Ces deux hypothèses sont très fortes et demandent un examen approfondi. Etant donné que mon travail de thèse porte sur la seconde, je propose de la discuter dans le paragraphe suivant.

Réseaux d'interactions : interdépendance des espèces

Au chapitre 6 de son livre *Geographical Ecology*, MacArthur parle précisément du rôle que peut avoir la compétition dans la distribution des espèces [?]. Il reprend l'exemple donné par James Brown en 1971 de l'exclusion compétitive de deux espèces de tamias, *Eutamias dorsalis* et *E. umbrinus*, dans les forêts d'altitude (au-dessus des déserts) de pins et de genévriers (*pinyon-juniper woodland*) du sud-ouest des Etats-Unis. L'article de Brown montre bien comment une différence comportementale peut engendrer une séparation des distributions locales. Ainsi, l'agressivité de *Eutamias dorsalis* lui est favorable dans les forêts clairsemées de basse-altitude où son compétiteur doit dépenser beaucoup d'énergie pour lui échapper en se réfugiant dans un arbre, elle devient cependant pénalisante lorsque l'abondance des arbres augmente car cela facilite la fuite de *E. umbrinus* [?]. La ségrégation locale des deux espèces reflète donc bien une interaction biotique, il y donc une information comportementale dans ces aires de répartition.

Au-delà de la compétition, l'écologie des réseaux nous montre aujourd'hui la difficulté de concevoir les espèces comme étant des entités indépendantes; elles sont reliées par des relations de nature très diverses. Les relations trophiques sont les plus évidentes, il existe cependant une myriade d'interactions non trophiques qui affectent aussi la démographie des espèces (voir ? pour une réflexion sur le sujet et une classification de ces interactions). De plus, aucun argument

théorique ne justifie actuellement la primauté d'un type d'interaction sur les autres. Récemment, les interactions trophiques et non-trophiques ont été exhaustivement analysées pour 104 espèces des écosystèmes intertidaux rocheux de la partie centrale de la côte chilienne, révélant ainsi que les interactions non-trophiques y étaient globalement plus abondantes et concentrées sur les bas niveau trophiques [?].

L'écologie des réseaux est traversée de débats dont le plus important est sans doute celui de la relation qu'il existe entre la diversité spécifique d'un écosystème et sa stabilité [??]. Autour de cette question, l'écologie s'est considérablement enrichit en terme d'outils mathématiques. Une preuve récente réside dans la mise en évidence par Stefano Allesina et Si Tang du caractère déstabilisant des interactions de compétition et de mutualisme et du rôle stabilisant des relations trophiques [?]. Ce résultat est en effet la mise en application directe d'un résultat mathématique récent établi par Terence Tao et Vam Vu démontrant une loi générale sur la distribution des valeurs propres des matrices aléatoires [?]. Les réseaux contiennent de nombreuses informations sur l'écologie des populations et doivent être placés au centre d'une théorie intégrative de la biogéographie. Cette idée était déjà suggérée par MacArthur et Wilson au dernier paragraphe de leur théorie de la biogéographie [?]:

« [...], biogeography appears to us to have developed to the extent that it can be reformulated in terms of the first principles of population ecology and genetics. »

Et pour appuyer cette phrase dans son entièreté, je développe ci-dessous un certain nombre d'idées relatives à l'importance des échanges génétiques.

Echanges d'informations génétiques et processus micro-evolutifs

La vie, telle que nous la connaissons, pérennise l'information accumulée au cours du temps via à un support moléculaire, l'ADN. J'ai déjà évoqué que les informations véhiculées par cette molécule pouvaient permettent d'établir des relations de parenté entre les espèces. Ceci est rendu possible par les mécanismes qui la modifient. L'information génétique d'un individu est un ensemble de bases dont la séquence renferme des instructions pour assurer le développement de l'individu. Néanmoins, le code génétique de certaines cellules de l'individu peut être modifiées (par des mutations) et si ces cellules sont celles qui seront transmises à la descendance, alors ces modifications peuvent être transmises à la génération suivante. Dans certaines conditions, la mutation peut rester dans la population, c'est le moteur de la variation à l'échelle populationnelle du code génétique. Loin d'être une combinaison précise de paires de bases, le génome d'une espèce est en effet un ensemble de possibilités, un ensemble de séquences d'ADN possibles et contraint par un certaines règles. Pour schématiser, les échanges de gènes doivent rester possibles entre individus d'une même espèce. A l'échelle des populations, tant que les échanges d'informations sont importants, la compatibilité est assurée mais lorsque ces échanges diminuent ou même cessent, les supports d'information peuvent alors diverger au point d'empêcher les échanges, ce qui conduit à la distinction entre deux espèces [?]. Bien que cette vision soit très simplifiée, elle permet de comprendre que l'ADN de deux espèces puisse refléter leur lien de parenté et qu'il permet l'établissement d'une phylogénie moléculaire.

Cela étant dit, les causes de la divergence de l'ADN sont multiples et ce qui m'intéresse ici, ce sont que ces variations puissent engendrer un différentiel démographique positif dans un milieu nouvellement exploré par une population alors que cette même variation dans un autre milieu ne l'était pas. La vitesse des mécanismes mis en jeu semble bien plus rapide au point que ceux-ci puissent jouer des rôles prépondérants dans la réponse des espèces aux changements climatiques [?]. En 2009, Joan Balanyá et ses collègues publiaient un article dans lequel ils comparent la composition génétique de la mouche *Drosophila subobscura* entre des échantillons contemporains et des échantillons prélevés 24 années auparavant en Europe et en Amérique (où elle a été introduite accidentellement). Leurs résultats montrent que dans les zones de réchauffement climatique avéré, il y a aussi un changement de la composition génotypique avec une plus grande importance des génomes adaptés aux températures chaudes [?].

Les preuves récentes de l'impact des variations génétiques rapides sur la démographie de différentes espèces poussent les chercheurs à se demander si négliger ces processus dans les travaux de dynamique des populations est une hypothèse raisonnable [???]. Takehito Yoshida et ses collègues ont montré en 2003 que la réponse des algues vertes unicellulaires *Chlorella vulgaris* aux rotifères *Brachionus calyciflorus* a conduit à un changement dans la fréquence et la phase des cycles de la dynamique proie-prédateur [?]. En 2009, dans une étude basée sur un suivi de plus de 20 ans d'une population de moutons Soay sur l'île d'Hirta dans l'archipel de Saint-Kilda (au nord-est de l'Écosse), Fanie Pelletier et ses collègues ont établi les variations dans la taille corporelle des ovins d'origine génétique ainsi que les variations dans leur survie et leur reproduction associées; ils démontrent alors que les facteurs génétiques peuvent contribuer jusqu'à 20% dans la croissance de la population certaines années. Les conséquences des dynamiques éco-évolutives et l'intégration des flux d'information génétique sont certainement capitaux pour comprendre la biodiversité de demain [??]. Nous sommes face à un enjeu appliqué capital et pourtant nos connaissances fondamentales restent insuffisantes. Pour illustrer ces lacunes et l'urgence dans laquelle nous nous trouvons, je discute d'un exemple concret : l'invasion européenne du frelon asiatique.

L'invasion européenne du frelon asiatique

Vespa velutina est une espèce présente depuis le nord-est de l'Inde jusqu'à l'est de la Chine et de la péninsule et de l'indochinoise à l'archipel indonésien [?]. Dix sous-espèces sous identifiées dont Vespa velutina nigrithorax qui a été observé pour la première fois en France en 2004 dans le Lot-et-Garonne chez un producteur de bonsaï qui importe régulièrement des poteries du Yunnan [?]. Ce frelon généraliste se nourrit notamment des abeilles domestiques et les conséquences sur les récoltes de miel sont désastreuses et ce même dans les zones d'origine où l'abeille asiatique (Apis cerana) est pourtant capable de tuer efficacement le frelon. Pour ce faire, les abeilles forment une boule autour du frelon et battent des ailes pour augmenter la température corporelle de leur prédateur, ce qui conduit à la mort de ce dernier. L'abeille européenne (Apis mellifera) est capable d'utiliser la même stratégie de défense mais avec une efficacité moindre [?]. Ce frelon représente un danger pour l'entomofaune européenne et aussi menace l'apiculture qui s'ajoute aux nombreuses autres que connait actuellement le secteur [?]. Plusieurs éléments sont remarquables dans ce cas d'invasion : c'est un cas unique (première colonisation avec succès d'une nouvelle espèce frelon en France), la

rapidité de propagation de ce frelon, le besoin urgent d'anticiper sa répartition dans les prochaines années pour mettre le plus rapidement en place les mesures d'éradication.

Après son arrivée en 2004, le frelon s'étendait déjà en 2006 largement sur l'Aquitaine avec une aire de répartition française constituée d'une bande de 300km du nord au sud et de 150 km d'est en ouest [?] et cela malgré l'éradication systématique des nids détectés. Alors que 2 nids étaient observés en 2004, 1636 nids ont été observé en 2009 et en 2013 près des trois quarts des départements étaient affectés [?]. Des travaux récents tentent de caractériser les conditions climatiques favorables au développement de cette espèce [?] et révèlent qu'une large partie de l'Europe occidentale est une zone de développement probable. Un autre phénomène intéressant lié à cette invasion est l'arrivée concomitente en Corée du Sud où sa propagation a cependant été bien moins rapide [?]. L'explication plausible de la différence de succès de la même espèce est une différence dans la composition en espèces proches des deux régions : en Europe, il n'y a qu'une espèce de frelon *Vespa crabro*, alors qu'il y en a de six en Corée du Sud dont *Vespa mandarinia* qui est une meilleure compétitrice [?]. Cette nécessité de faire appel à la composition biologique pour comprendre les raisons d'un changement d'aire de répartition est ce fait tout l'intérêt des travaux théoriques menés durant mon doctorat.

Cadre théorique de la thèse

Les développements entrepris dans mes travaux visent à incorporer les interactions écologiques dans la TIB. Je vais maintenant revenir sur cette théorie plus en détail pour expliquer pourquoi elle a marqué durablement l'écologie. Je signale d'ailleurs que ces idées étaient partagées par d'autres écologues et qu'il y a, à ma connaissance, deux autres découvertes indépendantes des idées qui ont conduit à la théorie. La première découverte est attribuée au spécialiste des lépidoptères Eugene Gordon Munroe qui a formulé dès 1948, des idées similaires dans 5 des 555 pages de sa dissertation de graduation [??]. La seconde est celle de Richard Levins et Harold Heatwole qui publie en 1963, soit la même année que l'article fondateur de la TIB, l'idée d'un équilibre de la richesse spécifique régit par les mêmes processus que ceux décrits par MacArthur et Wilson [?]. Néanmoins, ce sont sans aucun doute MacArthur et Wilson qui ont marqués les écologues par l'ensemble des développements présentés dans leur livre *The Theory of Island Biogeography* [?].

Une vision puissante de la dynamique des distributions d'espèces

Dans la préface de leur ouvrage, MacArthur et Wilson doutent que les idées proposées résisteraient longtemps à l'essort de la biogéographie expérimentale dont ils furent des acteurs de premier plan :

We do not seriously believe that the particular formulations advanced in the chapters to follow will fit for very long the exacting results of future empirical inveitigation.

Et pourtant près de 50 ans après la parution de ce livre, leurs travaux sont le fondement de nombreux développements récents, en témoigne le livre paru en 2010 *The Theory of Island Biogeography Revisited* [?] et l'article de perspectives

publié récemment par Ben Warren et ses collègues dans *Ecology Letters* [?]. L'idée majeure de la TIB est simple et puissante : étant donné une île colonisable par un ensemble d'espèces depuis un continent voisin, la diversité locale résulte de la balance entre 1- des évènements de colonisation depuis le continent et 2- des extinctions locales. La TIB est une métaphore, le cas simple d'un territoire isolé (l'île) où les flux d'individus depuis le pool d'espèces régionales (le continent) sont facilement représentables. Le modèle peut donc être étendu à de nombreux cas où un territoire isolé est colonisé par les organismes à proximité, par exemple après un incendie ou une fragmentation de l'habitat [?]. Au chapitre 5 de son livre de 1972, MacArthur prend notamment l'exemple des îlots de paramo (végétation andine située au-dessus des forêts mais en-dessous des neiges éternelles). De manière générale, le modèle est acceptable et très adaptable au prix d'un certain nombre d'hypothèses notamment une certaine rigidité du réservoir d'espèces régional (au moins en nombre d'espèces) et une absence de rétroaction dans la communauté locale sur celui-ci.

Il y a une forme de hasard et de nécessité qui fait écho à l'œuvre de Jaques Monod [?]. Ce prix Nobel de médecine présente les mutations au niveau de l'ADN comme une source de hasard dont la persistance n'est rendue possible que dans un cadre physico-chimico-évolutifs précis, la nécessité. Dans les travaux de MacArthur et Wilson, l'événement de colonisation peut être interprété comme un pourvoyeur de stochasticité alors que les contraintes écologiques régissent l'organisation des communautés. Outre le fait que la prédiction de la colonisation ne peut se faire qu'en terme de fréquence, le caractère stochastique de cette dernière donne une dimension historique aux assemblages insulaires. L'arrivée d'une espèce est en fait un tirage aléatoire (éventuellement pondéré par les capacités respectives de dispersion) dans un réservoir régional d'une singularité historique car l'espèce en question a une histoire évolutive propre et des singularités physiologiques qui en découlent. A son arrivée sur l'île, son éventuelle insertion est déterminée par la rencontre des singularités de l'espèce et du contexte biotique et abiotique de l'île. Les espèces installées sur une île ont ainsi été passées au crible des contraintes écologiques, de cette forme de nécessité qui est renouvelée à chaque nouvelle insertion. C'est ainsi que l'on peut décrire le moteur de la reconfiguration perpétuelle des réseaux écologiques locaux. Une telle dynamique peut être également analysée comme une imbrication de deux échelles de processus : régionalement, le réservoir d'espèce est façonné par une histoire évolutive de grande amplitude liée à des processus climatiques eux aussi de grande échelle, alors que les événements insulaires relèvent de processus de plus courte portée [?].

Enfin, la TIB, bien que cela soit rarement souligné, fait l'hypothèse de l'équivalence écologique des espèces considérées : il n'y a ni plantes ni animaux, ni proies ou prédateurs, elles sont toutes des unités de la richesse spécifique de la région étudiée. En analysant les exemples donnés par les auteurs en 1967, on est amené à penser la théorie a été développée pour des groupes d'espèce au rôle écologique similaire et phylogénétiquement proches. Ainsi, le premier exemple donné porte sur l'herpétofaune (amphibiens et reptiles) antillaise et non sur un inventaire exhaustif de toutes les espèces des Antilles [?]. Il est d'ailleurs possible que la validation de leur théorie ne soit possible qu'en fixant le niveau écologique étudié. Paradoxallement, c'est en s'affranchisant de la diversité biologiques qu'ils ont fait un grand bond vers la »biogéographie de l'espèce» qu'ils souhaitaient construire [?, p.183].

Le modèle mathématique et les prédictions de la TIB

Je ne rentre pas ici dans les détails mathématiques du modèle, ils sont néanmoins abordés au chapitre $\ref{eq:partition}$ ainsi que dans les deux annexes de la pésente thèse $\ref{eq:partition}$. J'écris ci-dessous l'équation qui résume à elle seule le paradigme livré par la $\ref{eq:partition}$ TIB : les $\ref{eq:partition}$ espèces d'un continent colonisent l'île avec un taux individuel $\ref{eq:partition}$, ce qui en augmente la richesse spécifique $\ref{eq:partition}$ mais augmente les risques d'extinctions dont le taux par espèce est noté $\ref{eq:partition}$.

$$\frac{dS}{dt} = c(P - S) - eS \tag{1}$$

La dynamique ainsi engendrée conduit S jusqu'à un équilibre S_{eq} pour lequel les variations temporelles s'annulent, qui est donné par :

$$S_{eq} = P \frac{c}{c+e} \tag{2}$$

Cet équilibre est une prédiction très importante de la théorie, c'est même le point de départ des développements mathématiques dans le livre de 1967 [?]. L'existence d'un tel équilibre a été validée par l'expérience de défaunation de Daniel S Simberloff et Edward O Wilson mentionnée plus haut [?]. Une seconde prédiction de la TIB est la variation de cet équilibre avec les caractéristiques de l'île. Dès leurs article de 1963, MacArthur et Wilson présentent la taille de l'île comme un facteur affectant le taux d'extinction : plus l'île est grande, moins le risque d'extinction est grand [?]. De même, ils supposent que l'isolement de l'île affecte le flux de migrants : plus l'île est isolée moins les évènements de colonisation sont fréquents. J'ai résumé la vision classique de la TIB sur la figure 1 en y ajoutant les graphiques de l'article de 1963. Cette prédiction de la théorie en est aussi l'origine : MacArthur et Wilson expliquent avec ces mécanismes que les îles de plus grandes tailles supportent plus d'espèces mais aussi que des exceptions liées à l'isolement peuvent exister. Cette relation est d'ailleurs présentée très tôt dans le livre de 1967 avec l'augmentation linéaire du nombre d'espèce de l'herpétofaune avec le logarithme de la surface des îles de l'ouest des Caraïbes [?, chapitre 2].

De manière plus générale, la TIB fournit une explication à la relation aire-espèce très discutée en écologie [?]. Il s'agit de la courbe d'augmentation de la richesse spécifique (S) avec la surface d'échantillonnage (A). La question soulevée par l'étude de ces courbes porte sur la nature des mécanismes qui régissent les variations régionales. En liant la taille de l'île au taux d'extinction, La TIB propose une courbe de la forme $S = CA^z$ pertinente avec les observations présentées [?]. La relation aire-espèce est surtout connue pour ses applications dans le domaine de la conservation (S)0. Elle permet

¹¹L'annexe ?? est un article de vulgarisation qui aborde de manière didactique la formulation la plus simple du modèle. L'annexe II aborde des aspects plus techniques qui ont été l'objet d'un article dont je suis co-auteur.

¹²Récemment Wilson a répondu à une entrevue dans laquelle il se base sur cette relation pour indiquer la proportion de la Terre qu'il faudrait épargner afin de maximiser la sauvegarde des espèce sans pour autant empêcher le développement humain http://www.nytimes.com/2016/03/13/

par exemple d'estimer la taille qu'une zone de protection doit avoir pour atteindre un objectif de sauvegarde chiffré en nombre d'espèces [??]. La relation peut être aussi utilisée dans le sens inverse pour apprécier les taux d'extinction liés à une dégradation d'habitat [?].

L'importance de la TIB dans des développements théoriques plus récents

La théorie des métapopulations

Bien que ne représentant que cinq pour-cents des terres émergées, ce sont bien les observations de la faune des îles qui ont mené à une vision paradigmatique de la biogéographie. L'importance des îles s'explique par leur relative abondance, leur disparité, leur diversité, la relative simplicité des assemblages biologiques qu'on y trouve et, comme je l'ai évoqué précédemment, la clarté des flux de migrations [?]. Cette dernière propriété est souvent absente pour des populations continentales 13 . La théorie des métapopulations s'intéresse justement aux populations reliées entre elles par des flux de migrations [?]. Le premier modèle de métapopulations a été proposé par Levins 14 lors d'une réflexion sur le contrôle démographique des ravageurs dans les cultures [?]. Pour un ravageur donné, les îlots de culture sont autant de patchs où une population peut se maintenir et disperser dans les autres patchs alentours. Levins montre alors que les mesures de la lutte biologique doivent être conduites à large échelle pour en augmenter les probabilités de succès, c'est-à-dire d'extinction régionale du ravageur [?]. Le modèle est simple et très proche de celui de la TIB : l'évolution de la proportion p est aussi gouvernée par des évènements de colonisation c et d'extinction e:

$$\frac{dp}{dt} = cp(1-p) - ep \tag{3}$$

La différence fondamentale avec la TIB est que la migration dépend de la proportion de patchs occupés : plus elle est importante plus la migration est importante. Parmi les démonstrations existantes, figurent les travaux menés par Ikkha Hanski sur les population du Mélitée du plantain (*Melitaea cinxia*) au sud-ouest de la Finland [?]. En plus de donner un cadre de pensée plus réaliste en terme de configuration spatiale, les dynamiques populationnelles associées sont bien comprises et mènent à des risques d'extinction mieux évalués [?]. C'est aussi un cadre approprié pour insérer l'étude des flux génétiques liés à l'arrangement spatial des populations. Ainsi, toujours sur ces mêmes populations de papillon, Ilik Saccheri et ses collègues montrent qu'en ajoutant le degré d'hétérozygotie, ils obtiennent des prédictions précises quant à l'extinction locale des populations [?]. Les travaux théoriques autour du concept de metapopulations proposent un certain nombre de paradigmes qui permettent d'évaluer le rôle que jouent les processus de colonisation et d'extinction dans les variations spatio-temporelles de la démographie d'une espèce et a été étendu à l'échelle de la communauté, on parle alors de metacommunauté [??]. La prépondérance de ces mécanismes qui font la force de la TIB

opinion/sunday/the-global-solution-to-extinction.html.

¹³Les îles sont cependant souvent dans des archipels où la lecture de ces flux n'est pas si simple.

¹⁴Richard Levins qui avec Heatwole est un des co-découvreurs des idées de la TIB.

Figure 1: La Théorie de la biogéographie des Iles. (A) illustre l'évolution des taux de colonisation et d'extinction pour deux îles aux caractéristiques différentes. Les tailles relatives des îles et les distances qui les séparent du continent sont schématisées sur la droite, les couleurs associent les îles à leurs courbes respectives. Le réservoir d'espèce régional (P) est constitué de 100 espèces, les taux de colonisation et d'extinction sont exprimés en terme de probabilité d'évènement (de colonisation ou d'extinction). Les points marquent les intersections entre les courbes d'extinction et de colonisation c'est-à-dire lorsque ces processus s'équilibrent. L'abscisse de ces point indique les richesses spécifiques de l'île à l'équilibre S_{eq} . (B) et (C) sont respectivement les Figures 4 et 5 extraites de l'article de 1963 de MacArthur et Wilson qui livre essentiellement le même message que celui illustré en (A) [?]. La forme convexe des courbes de 1963 sont justifiées par des facteurs biologiques qui ne sont pas intégrés dans l'équation qui confère une forme concave aux courbes comme vu en (A).

et de la théorie des métapopulations a été poussée à son paroxysme dans la théorie neutre de la biogéographie.

La théorie neutre de la biogéographie et le débat qu'elle soulève

La théorie neutre postule l'équivalence écologique entre les différents individus d'espèces éventuellement différentes et décrit les dynamiques populationnelles reposant sur les différences d'abondances relatives à l'échelle régionale et locale. Ainsi, en 1997, dans l'article fondateur de la théorie neutre, Stephen Hubbell décrit un modèle dans lequel le remplacement d'un individu mort dans une communauté locale est le résultat d'un tirage aléatoire : le nouvel individu peut soit être recruté localement et la probabilité que l'individu soit d'une espèce donnée dépend de l'abondance relative de cette dernière dans la communauté locale soit le nouvel individu peut-être un immigrant dont l'identité de l'espèce à laquelle il appartient est liée à l'abondance à l'échelle régionale de celle-ci [?]. En plus des exemples donnés dans l'article de 1997, Hubbell montre de manière convaincante que dans la forêt tropicale du Panama, à la suite d'un chablis, le recrutement de l'arbre n'est pas prévisible par ces caractéristiques et que le recrutement est similaire à la composition des alentours [?]. La dynamique engendrée est appelée la dérive écologique, elle dominée par la stochasticité qui conduit presque certainement à l'extinction de toutes les espèces sauf une, ce qui est contrebalancée par l'apparition d'espèces nouvelles [??].

La théorie neutre partage beaucoup de caractéristiques avec la TIB : les mécanismes fondamentaux sont l'extinction et la colonisation, l'hypothèse d'équivalence écologique et l'imbrication des échelles régionales et locales. Comme le fait remarquer Hubbell en 2010 dans le chapitre qu'il écrit dans The Theory of Island Biogeography Revisited, la théorie neutre place l'équivalence écologique au niveau des individus et non plus au niveau des espèces [?]. Une conséquence directe revendiquée par Hubbell est que cette hypothèse explique la forme convexe des courbes de colonisation et d'extinction décrites par MacArthur et Wislon mais qu'elle n'explique pas leur modèle (voir 1 et ?). Le principe d'équivalence et la place importante que prend le hasard dans cette théorie a soulevé de très vif débats et des démonstrations à charge contre la véracité de cette théorie (voir par exemple ? et ?). L'équivalence écologique doit, à mon sens, être comprise comme une abstraction de la singularité des espèces, une simplification de la diversité des systèmes biologiques, nécessaire à l'isolation d'une portion restreinte des phénomènes en cause dans la répartition géographique des espèces pour en évaluer le pouvoir explicatif. Bien qu'un certain nombre de cas d'études permettent de rejeter cette théorie [??], les défenseurs de la théorie neutre affirment qu'elle est tout aussi utile quand une étude en démontre la fausseté [?]. La théorie neutre peut en effet être présentée comme une jauge qui mesure l'importance des processus de différentiation de niches [?]. Ainsi, pour certaines communautés la dérive écologique est plus importante que pour d'autres et du point de vue du formalisme des solutions ont déjà été proposée pour dresser un continuum de la théorie neutre vers la théorie de la niche écologique [?]. Malgré les possibilités offertes par ces deux théories, elles occultent largement les interactions écologiques qui sont factuelles; si les observations donnent du crédit à ces théories, une théorie intégrative de la biogéographie doit expliquer pourquoi.

Le rôle des interactions dans la distribution des espèces

La thèse que je a pour objectif de trouver des pistes pour intégrer les interactions écologiques dans la TIB. Plus précisément, elle vise à i) comprendre comment les interactions écologiques affectent la répartition géographique des espèces, et ii) où chercher les traces qu'elles pourraient éventuellement laisser dans les données d'occurrence des espèces. Comme je l'ai mentionné plus haut cette idée est très ancienne, Wallace le remarque dans son livre publié en 1881: «Both competition and predation appear now to be much more important in biogeography than people had formely guessed.»

Le problème de ces relations écologiques est leur spécificité, l'unicité de chacune d'entre elles, dont découlent nos difficultés pour les prévoir. Néanmoins des travaux récents explorent des pistes prometteuses pour les prédire notamment sur la base de relations allométriques entre proie et prédateur [?]. Du point de vue théorique et à l'examen des chapitres du dernier livre de MacArthur [?], il apparait que l'intégration des interactions est une étape clef pour aller vers une biogéographie intégrative et c'est dans cette direction que j'ai mené ma thèse, essayant d'apporter des prémices de réponses pour arriver à une telle synthèse.

Importance des interactions dans la distribution

Dans la TIB, les interactions sont en fait omniprésentes car elles sont une des composantes principales du processus d'extinction. Cependant, dans la formulation du modèle, elles ne sont jamais mentionnées explicitement, cachés dans le taux d'extinction e. Comme je le montre sur la figure 1, la différence dans l'allure des courbes dessinées par MacArthur et Wilson et celles obtenues en supposant un taux d'immigration et de colonisation sont différentes. D'après les auteurs, l'immigration devient plus difficile lorsque les espèces s'accumulent sur l'île et les extinctions sont de plus en plus fréquentes dues à l'intensification des interactions. Pour parler en terme de réseau d'interaction, l'accumulation d'espèces sur l'île sature le réseau local et rend difficile l'intégration d'une nouvelle espèce qui le rend par ailleurs de plus en plus instable. Une interprétation en terme de communauté de la TIB est tout à fait possible mais les liens entre les espèces ne sont pas formulés mathématiquement en 1967.

Depuis les années 60, la littérature théorique n'a cessé de discuter le rôle joué par les interactions intra- et interspécifiques dans la distribution spatiale des espèces. Il est reconnu que l'interdépendance des espèces détermine le caractère favorable de l'environnement au sens large (biotique et abiotique). En 2009, Robert Holt et Michael Barfield discutent de l'impact de la prédation sur la répartition d'espèces en compétition insistant alors sur le rôle majeur des interactions dans le dessin des aires de répartition [?]. En 2012, William Godsoe et Luke H. Godsoe introduisent les interactions dans un modèle simple de distribution d'espèce et montrent comment la probabilité de présence d'une espèce peut être affectée par la distribution d'une seconde et concluent alors que cela doit affecter vraisemblablement la qualité de prédictions des SDMs [?]. La remise en cause des SDMs se concentrant sur les variables abiotiques est une étape fondamentale car leur succès depuis la fin du siècle dernier a relégué les interactions écologiques au second plan en démontrant que la corrélation avec les variables climatiques étaient peut-être suffisante, au moins en première

approximation pour expliquer les aires de répartitions [?]. Pourtant, dès 1998, le travail précurseur d'Andrew Davis et ses collègues [?] avait fortement remis en question l'hypothèse d'indépendance des espèces [?]. L'expérience dont les résultats ont été publiés en 1998 est une analyse d'abondance de trois espèces de drosophile le long d'un gradient de température. Les comparaisons d'abondance sont menées pour toutes les combinaisons possibles de ces trois mouches (assemblages à 1, 2 ou 3 espèces) mais aussi en présence ou en absence d'un parasitoïdes. La démonstration est sans appel, la compétition et le parasitisme affectent drastiquement la survie le long du gradient de température, les interactions affectent donc très probablement les réponses au changement climatique.

Plus récemment, on constate une grande motivation pour intégrer les relations écologiques dans les modèles de distribution d'espèces [??]. Ainsi, des modèles de distrubtions jointes d'espèces (JSDM, *Joint Species Distribution Model*) ont vu le jour dans les dernières années avec comme atout principal la prise en compte des corrélations entre les occurrences de différentes espèces [??]. Néanmoins, ces efforts se heurtent à un manque de maturité des modèles et théories qui cherchent à rassembler distribution et interactions. Parmi les travaux récents, Franck Jabot et Jordi Bascompte ont rassemblé metacommunauté et écologie des réseaux soulignent l'importance des relations écologiques dans la répartition géographique des espèces [?]. De même, Dominique Gravel et ses collègues ont introduit en 2011 l'interdépendance proie-prédateur dans le modèle de la TIB menant aux prémices d'une théorie trophique de la biogéographie des îles [?] préfigurée par Holt [?]. Ces travaux tentent de dépasser l'hypothèse d'équivalence écologique en vue de faire des prédictions plus précises concernant les compositions spécifiques attendues localement.

C'est dans la lignée de ces développements théoriques récents que s'inscrit mon premier chapitre de thèse. J'y ai montré comment l'intégration du concept de réseau écologique dans la TIB était possible tout en ajoutant la reconnaissance de performances plus ou moins importantes des espèces dans un contexte abiotique donné (niche écologique). Pour y arriver, je souligne montré l'intérêt de considérer les espèces sous la forme d'assemblage plutôt que une à une. Grâce à l'utilisation de probabilités conditionnelles d'assemblage dans un environnement abiotique donné, j'ai pu explorer les conséquences simultannées des contraintes biotiques et abiotiques sur la distribution d'espèce (voir 2 pour une représentation schématique du modèle). Du point de vue technique, mon travail montre aussi qu'un retour aux processus stochastiques tels que ceux présentés en 1967 est une démarche puissante pour ajouter de nouveaux mécanismes dans la TIB.

Un problème d'échelle?

En repartant de l'exemple classique de la ségrégation spatiale des tamias *Eutamias dorsalis* et *E. umbrinus* [?], j'ai précédemment mis en évidence qu'une information sur les interactions est contenue dans les aires de répartitions de ces espèces. Il y a cependant deux caractéristiques qui peuvent conduire à la rareté de ce type de lecture : la singularité de l'interaction et son caractère local. Je reviens un peu plus bas sur la première propriété et m'arrête ici sur la seconde. Une idée dominante en biogéographie est que les interactions ont des rôles majeurs à l'échelle locale mais que leurs conséquences sont de moins en moins perceptible à mesure que l'on considère des échelles spatiales de plus en plus

Figure 2: Intégration des interactions et des contraintes abiotiques dans la TIB. Pour intégrer les interactions j'ai considéré non pas un ensemble d'espèces indépendantes mais des espèces au sein d'un réseau décrit à l'échelle régionale (a). Comme dans la TIB ces espèces peuvent coloniser l'île (b), mais les taux de colonisation varient le long d'un gradient environnemental (c). Enfin, les interactions influencent les taux d'extinction locaux (d). Voir le chapitre ?? pour une description complète du modèle.

grandes [voir l'unique figure de ?]. Du point de vue théorique, c'est tout à fait ce qui est décrit dans la TIB car c'est à l'échelle locale que les interactions influencent l'extinction. Néanmoins, ces conséquences locales sont présentes sur l'ensemble de la distribution de l'espèce, il est alors pertinent de se demander pourquoi nous ne sommes pas capables de détecter les interactions en examinant les distributions d'espèces. En réalité, bien que cela soit rare, nous avons des preuves que cela est possible dans certains cas. En 2010, Nicholas Gotelli et ses collègues divisent l'avifaune danoise en différentes catégories fondées sur la similarité écologique et démontrent que les espèces d'une même catégorie sont très souvent significativement spatialement ségréguées [?]. De même, en 2007, Risto Heikkinen et ses collègues avaient obtenu des performances accrues de leurs modèles statistiques par l'utilisation de la répartition de six espèces de pics pour expliquer la présence de quatre espèces de hiboux [?]. Dans cette même étude, le signal est plus fort quand les données sont dérvivées de grilles spatiales à plus petites mailles (10x10km contre 40x40km), ce qui constitue un argument en faveur d'une dépendance à l'échelle, récemment supportée par d'autres travaux [?]. Ce qui est remarquable dans les travaux de Gotelli et de Heikkinen est que l'utilisation d'une connaissance biologique et écologique a permis de révéler une trace des interactions dans la distribution des espèces.

La dépendance spatiale de la détection des interactions est facile à comprendre : en examinant des données de présence à des échelles spatiales de plus en plus larges, le nombre d'espèces s'accumule (c'est le principe de la relation aire-espèce) menant à la dégradation de l'information potentielle. Cela signifie que l'information nécessaire pour déceler des empreintes laissées par les interactions sera fournit par des données à des échelles relativement fines. Cependant, cela

ne permettra pas de conclure sur le rayon d'action de ces interactions. Pour dépasser la question spatiale, il fait aussi envisager l'impact de la nature des interactions sur la répartition géographique. Ainsi, en 2014, Miguel Araújo et Alejandro Rozenfeld ont prouvé théoriquement que les interactions positives (mutualisme) se propageaient davantage que les interactions négatives [?]. Par conséquent, la nature de la relation qui unit des espèces peut influencer la perte d'information contenue dans les aire de répartition. Suite à mes travaux sur l'intégrations des interactions, je me suis penché sur un autre aspect qui peut influencer la perte d'information dans les données de présence : l'abondance des interactions. Au chapitre ??, je montre que les interactions directes et indirectes affectent les données de distributions mais aussi que l'abondance des interactions rend difficile de distinguer d'y trouver un quelconque signal : nous ne sommes plus en mesure de dire qu'il y a de différence entre les pairs d'espèces qui intéragissent et celles qui n'intéragissent pas. Ce qui est encore plus intéressant, c'est que j'ai accumulé un certain nombre d'indices dans des données de présence et d'absence réelle qui semblent confirmer nos prédictions. Je discute de ces résultats dans le chapitre ?? de cette thèse.

En constatant que l'abondance des interactions peut justifier l'hypothèse d'indépendance des espèces, je soulève le même paradoxe que celui relevé par MacArthur dans son œuvre de 1972 [?]:

A few decades ago it as fashionable for ecologist to study communities in the arctic on the grounds that these would be very simple communities and hence easy to understand. Many excellent ecologists still follow this belied, but there are others who feel that it may be easier to understand the extremely complex communities. This sounds paradoxical: How can more complex communities by easier to understand? A possible answer might be that a complex community has strong interactions among species so that the lives of the separate species are less independent than in a simple community. Where there is greater interdependence, patterns may be more conspicuous.

Dans cet extrait MacArthur suggère que la connectance du réseau (le nombre de lien entre espèces rapporté au nombre de liens possibles) est vraisemblablement une propriété importante pour comprendre la répartition des espèces. Peut-être qu'une biogéographie des réseaux serait une alternative porteuse de généralisation plus accessibl. Un nouveau problème d'échelle est soulevé, l'échelle biologique appropriée pour investiguer la répartition géographique des espèces: individus, population, communauté ou même réseaux énergétiques?

Vers une biogéographie énergétique

Le problème d'échelle biologique est aussi un problème de catégorisation des espèces. J'ai suggéré que les prédictions étaient plus faciles pour des espèces généralistes que pour des espèces spécialistes. Malheureusement, le spectre est très large et plutôt balancé avec un continuum entre des espèces hyperspécialistes de d'autres très généralistes [?]. On peut néanmoins espérer que la réduction des espèces à un certains nombres de traits [??] doublée d'une réduction des réseaux à un certains nombre de propriétés puissent permettre des généralisations utiles dans notre compréhension de la distribution des communautés. Il m'apparaît aujourd'hui important que le bon niveau de détail dans nos descriptions

des systèmes écologiques quand il est question de prédire les futures aires de répartitions des espèces.

Une piste prometteuse pour prolonger la recherche des propriétés est, me semble-t-il, de s'appuyer sur la nature profonde des espèces : des systèmes énergétiques qui se perpétuent. La lecture de la théorie de la dynamique du budget énergétique de Sebastian A. L. M. Kooijman [?] m'a été très profitable pour cerner les possibilités offertes par une telle approche. S'il est possible, comme le suggèrent les travaux de Kooijman, de dériver de manière précise un grand nombre de propriétés énergétiques des espèces sur leur masse et leur forme, alors les espoirs sont grands de pouvoir trouver des règles d'assemblages fiables des communautés et donc de comprendre d'un point de vue mécaniste les extinctions locales. Ce sont les mêmes espoirs que ceux nourrit par la théorie métabolique de l'écologie qui rassemble des relations entre la taille des espèces et différentes de leurs propriétés [?] qui montrent en somme qu'il est possible d'aller au-delà de l'espèce [?]. Mes réflexions sur l'intersection entre la TIB et une vision énergétique de l'écologie sont présentées au chapitre ?? de la présente thèse. Dans ce chapitre j'explique en quoi l'approche énergétique est pertinent pour intégrer des interactions et les contraintes données par un flux énergétique fni. Je propose des pistes pour lever des difficultés posées par le calcul précis de la consomation de chaque niveau trophique et montre ce qu'apporte l'idée que les écosystème soit énergénétiquement saturé. Ce chapitre est également une ouverture vers les projets de recherche que je souhaite mener dans un futur proche.