Марина Б04-005, Лабораторная работа №3.3.4 "Эффект Холла в полупроводниках".

Цель работы:

- 1. исследовать зависимость ЭДС Холла от величины магнитного поля при различных значениях тока через образец для определения константы Холла
- 2. определить знак носителей заряда и проводимость материала образца

Оборудование:

- 1. электромагнит с источником питания
- 2. амперметр
- 3. миллиамперметр
- 4. реостат
- 5. милливеберметр
- 6. цифровой вольтметр
- 7. источник питания (1.5 В)
- 8. образцы легированного германия

Формулы, необходимые для расчетов:

Эффект Холла - явление возникновения поперечной разности потенциалов при помещении проводника с постоянным током в магнитное поле.

• ЭДС Холла:

$$U_{\perp} = U_{34} - U_0; \tag{1}$$

• Постоянная Холла:

$$R_{\scriptscriptstyle \rm H} = -\frac{U_{\perp}}{B} \cdot \frac{a}{I};\tag{2}$$

• Индукция:

$$B = \frac{\Delta\Phi}{SN} \tag{3}$$

• Концентрация носителей тока в образце:

$$n = \frac{1}{R_{\rm H}e} \tag{4}$$

• Удельная проводимость материала образца:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{5}$$

• Подвижность носителей тока:

$$\mu = \frac{\sigma}{en} \tag{6}$$

• Метод наименьших квадратов y = a + bx

$$b = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \quad a = \langle y \rangle - b \cdot \langle x \rangle \tag{7}$$

Расстояние между контактами 3 и 5 L_{35} , мм	Толщина образца a , мм	Ширина образца $l,\ { m MM}$	Постоянная катушки SN , cm^2 · вит.		
6	2,2	7	72		

Описание установки:

Установка представлена на рисунке:

В зазоре электромагнита создается (1a) создается постоянное магнитное поле, величину которого можно менять с помощью регулятора источника питания электромагнита. Ток питания электромагнита измеряется амперметром A_1 .

Прямоугольный образец из легированного германия, смонтированный в специальном держателе (16) подключается к источнику питания. Величина тока регулируется реостатом R_2 и измеряется миллиамперметром A_2 .

В образце, помещенном в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью вольтметра V

Ход работы:

1. Откалибруем электромагнит: для этого установим связь между индукцией магнитного поля в зазоре электромагнита и током через обмотку магнита.

I_m, A	0.2	0.2 0.4 0.6		0.8	1.0	1.2	1.4	
B, мТл	242.7	404.5	632.3	801.0	921.1	1003.1	1028.3	

$\mathcal{N}_{\overline{0}}$	1	2	3	4	5	6	7
I_m , A		0.4	0.6	0.8	1.0	1.2	1.4
$U_0 = 66$, MKB $(I_0 = 0.3 \text{ A})$	51	108	158	205	240	263	281
$U_0 = 90, \text{ MKB } (I_0 = 0.4 \text{ A})$	75	143	214	275	322	356	381
$U_0 = 112$, мкВ $(I_0 = 0.5 \text{ A})$	86	181	266	347	402	445	475
$U_0 = 132$, мкВ $(I_0 = 0.6 \text{ A})$	101	219	322	379	485	536	572
$U_0 = 153, \text{ MKB } (I_0 = 0.7 \text{ A})$	123	251	373	483	568	625	667
$U_0 = 175$, мкВ $(I_0 = 0.8 \text{A})$	140	293	429	552	648	715	762
$U_0 = 197, \text{ MKB } (I_0 = 0.9 \text{ A})$	157	329	482	632	731	804	858
$U_0 = 218, \text{ MKB } (I_0 = 1.0 \text{ A})$	172	356	535	693	808	894	953

2. На основе этих данных построим график зависимости B(I). Получаем квадратичную зависимость

3. Произведем измерения ЭДС Холла. В таблице приведены значения, при которых начальное на U_{34} напряжение при $I_0=0$ уже учтено и вычтено.

Далее, исходя из полученных данных, построим график зависимости U(B), воспользовавшись методом наименьших квадратов (МНК).

Определим коэффициенты наклона графика $k=\frac{dU_{\perp}}{dB}.$

По полученным значениям коэффициента k, построим график k(I), пользуясь МНК. Новая переменная $k=\frac{dU_\perp^2}{dBdI}\frac{\rm B}{{\rm Tr}\cdot{\rm A}}$

$$k \cdot h = 0.96 \cdot 0.22 = 0.21 \quad \frac{\mathbf{B} \cdot \mathbf{cM}}{\mathbf{T}_{\mathrm{J}} \cdot \mathbf{A}}$$

4. По формуле (2) рассчитаем постоянную Холла по:

$$R_{\text{\tiny H}} = 0.96 \cdot 72 = 691.2 \ \frac{\text{cm}^3}{\text{K}_{\text{\tiny T}}}$$

5. По формуле (4) рассчитаем концентрацию носителей тока:

$$n = \frac{1}{691.2 \cdot 1.6 \cdot 10^{-19}} = 9.04 \cdot 10^{15} \text{ cm}^3$$

6. Измерим $U_{35} = 4,07$ мВ По формуле (5) рассчитаем удельную проводимость:

$$\sigma = \frac{5 \cdot 10^{-7}}{4.07 \cdot 0.22 \cdot 7} = 1.38 \ (\text{Om} \cdot \text{cm})^{-1}$$

Найдем подвижность электронов по формуле (6):

$$\mu = \frac{1.38}{9.04 \cdot 10^{15} \cdot 1.6 \cdot 10^{-19}} = 954 \frac{\text{cm}^2}{B \cdot \text{c}}$$

Выводы:

- 1. Установили линейную зависимость ЭДС Холла от величины магнитного поля при различных значениях тока через образец
- 2. Рассчитали значения постоянной Холла $R_{\rm H}=691.2~\frac{{\rm cm}^3}{{\rm K}_{\rm J}}$ Подвижность электронов $\mu==954~\frac{{\rm cm}^2}{B\cdot c}$
- 3. Обнаружили дырочную зависимость