# Lecture 5 Frequency and Spatial Domain Filters

ECE 1390/2390

#### Learning Objectives:

- Frequency domain filtering
- Window-method for FIR design







#### **Image Resolution**

1000 x 1000 [15cm x 10cm]

- = 0.15 mm/pixel in X-direction
- = 0.10 mm/pixel in Y-direction

Sample Rate

1/0.15 pixel/mm = 6.7 pixel/mm 1/0.10 pixel/mm = 10.0 pixel/mm

**Nyquist Spatial Frequency** 

 $3.3 \text{ pixel/mm} = 3.3 \text{ mm}^{-1}$ 

 $5.0 \text{ pixel/mm} = 5.0 \text{ mm}^{-1}$ 







iDFT







iDFT









iDFT



### **Butterworth**

$$H(u,v) = \frac{1}{1 + \left[D(u,v)/D_0\right]^{2n}}$$
Corner frequency







 $\left|F_{real}(i,j) + F_{imaginary}(i,j)\right|$ 

















## Frequency -> Spatial domain













An ideal <u>top-hat function</u> in the frequency-domain would be a <u>sinc function</u> in the spatial domain.

But, the sinc function in the spatial domain would have infinite size.

Need to truncate the sinc kernel. Where?











## Window method for FIR design



#### Low-pass

$$\frac{\sin(kw_c)}{\pi k}$$

$$\lim_{n\to 0} = \frac{w_0}{\pi}$$

## 0.15

#### **High-pass**

$$\frac{-\sin(kw_c)}{\pi k}$$

$$\lim_{n\to 0} = 1 - \frac{w_0}{\pi}$$



#### **Band-pass**

$$\frac{\sin(kw_{up})}{\pi k} - \frac{\sin(kw_{low})}{\pi k}$$

$$\lim_{n\to 0} = \frac{w_{up} - w_{low}}{\pi}$$



#### Notch

$$\frac{\sin(kw_{low})}{\pi k} - \frac{\sin(kw_{up})}{\pi k}$$

$$\lim_{n\to 0} = 1 - \frac{w_{up} - w_{low}}{\pi}$$



## Window method for FIR design



#### Hamming



#### Blackman



Larger main-lobe width

↓
Sharper transition bandwidth

More side lobes

↓
Less ripple in pass/stop band

| Window                       | Passband<br>ripple (db) | Stopband attenuation (dB) $A_m$ | First side-<br>lobe (dB) | Transition width $\Delta f$ (norm. Hz) | $\delta_m$ |
|------------------------------|-------------------------|---------------------------------|--------------------------|----------------------------------------|------------|
| Rectangular                  | 0.7416                  | 21                              | -13                      | 0.9/N                                  | 0.0891     |
| Kaiser, A=30,<br>β=2.12      | 0.270                   | 30                              | -19                      | 1.5/N                                  | 0.0316     |
| Hanning                      | 0.0546                  | 44                              | -31                      | 3.1/N                                  | 0.00632    |
| Kaiser, <i>A</i> =50, β=4.55 | 0.0274                  | 50                              | -34                      | 2.9/N                                  | 0.00316    |
| Hamming                      | 0.0194                  | 53                              | -41                      | 3.3/N                                  | 0.00224    |
| Kaiser, <i>A</i> =70, β=6.76 | 0.00275                 | 70                              | -49                      | 4.3/N                                  | 0.000316   |
| Blackman                     | 0.0017                  | 74                              | -57                      | 5.5/N                                  | 0.000196   |
| Kaiser, A=90,<br>β=8.96      | 0.000275                | 90                              | -66                      | 5.7/N                                  | 0.0000316  |

Sharpest transition/ Largest ripple

Kaiser- Adjustable trade-offs

#### 2D FIR filtering

homogenous sampling

$$yf[n] = x[n] * h[n]$$
$$yf[i,j] = x[i,j] * h[i,j]$$

$$yf[i,j] = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} h[n,m] \cdot x[i-n,j-m]$$

## Window method for FIR design





$$a(k) = a_d(k) \cdot w(k)$$

"T" – temporal sampling interval → "voxel size"

"F" – temporal frequency (s<sup>-1</sup>)  $\rightarrow$  spatial frequency (cm<sup>-1</sup>)

"w" – frequency in radians/s → same definition

- Images are typically a lot fewer samples than time (e.g. 1024x1024 vs #time-points)
- Larger filter kernels will have more edge effects (edges on all 4 sides of an image)
- Zero-padding needed

$$yf[i,j] = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} h[n,m] \cdot x[i-n,j-m]$$

#### **Gaussian filter**



FIR LPF







FIR HPF





