

Факультатив по программированию на языке С

Занятие 10 Распознавание голосов птиц

План занятий

Nº	Тема	Описание
1	Введение в курс	Языки программирования. Основы работы с Linux.
2	Основы языка С	Написание и компиляция простейших программ с использованием gcc. Правила написания кода.
3	Компиляция	Разбиение программы на отдельные файлы. Маке файлы. Компиляция.
4	Ввод данных. Библиотеки	Работа со вводом/выводом. Статические и динамические библиотеки.
5	Хранение данных. Память	Хранение процесса в памяти компьютера. Виртуальная память, сегментация. Секции программы.
6	Устройство памяти.	Elf файлы. Указатели и массивы. Типы данных. Gdb и отладка
7	Аллокация памяти	Аллокация памяти. Битовые операции — сдвиги, логические операции. Битовые поля. Перечисления. Static переменные. Inline функции.
8	Язык ассемблера	Язык ассемблера. Вызов функции. Безопасные функции. Макросы
9	Основы работы ОС	Изучение основ загрузки ОС
10	Архиватор. Распознание голосов птиц	Программирование архиватора. Основы биоакустики

Попробуйте угадать птицу ©

Воробей домовый

Серая ворона

Большая синица

Зяблик

Черный дрозд

Певчий дрозд

Дрозд рябинник

Большой пестрый дятел

Формулировка задачи

All the Light We Cannot See

Основные определения ЦОС

Основные определения ЦОС

ЦОС – **Ц**ифровая **О**бработка **С**игнала

Аналоговый сигнал — описывается непрерывной (или кусочно-непрерывной) функцией f(t).

Дискретный сигнал — это функция дискретного аргумента y = y(nT) с областью определения $D = \{nT \mid n \in Z\}$, T - период (шаг) дискретизации

Частота — число колебаний за одну секунду.

Амплитуда — максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении.

Ряд Фурье

Периодическую функцию возможно представить в следующем виде:

$$f(x) = rac{a_0}{2} + \sum_{k=1}^{+\infty} A_k \cos igg(k rac{2\pi}{ au} x + heta_k igg)$$

Ряд Фурье

Периодическую функцию возможно представить в следующем виде:

$$f(x) = \sum_{k=-\infty}^{+\infty} \hat{f}_k e^{ikrac{2\pi}{ au}x},$$

Интеграл Фурье

Теорема 1.14. Пусть функция f(t) абсолютно интегрируема на всей числовой оси, т.е. $\int_{-\infty}^{+\infty} |f(t)| dt < \infty$, является кусочно-гладкой на любом конечном отрезке $t \in [a,b] \subset (-\infty;\infty)$ и в точках разрыва $f(t) = \frac{f(t+0) + f(t-0)}{2}$. Тогда она представима в виде интеграла

Фурье:

$$f(t) = \lim_{N \to \infty} \int_{-N}^{+N} S(\nu) \exp(2\pi i \nu t) d\nu = \int_{-\infty}^{+\infty} S(\nu) e^{2\pi i \nu t} d\nu, \qquad (1.17)$$

где

$$S(v) = \int_{-\infty}^{+\infty} f(t) e^{-2\pi i v t} dt, \qquad (1.18)$$

причем S(v) — непрерывная функция.

Преобразование Фурье

Анализ существующих решений

Предложенное решение

Замена символов песни

Производится замена элемента, полученного из сонограммы элементом, созданным вручную. Таким образом возможно уменьшить базу с записями птиц

Сокращенный алгоритм работы

Сокращенный алгоритм работы программы:

- 1. Считываем звуковой файл
- 2. Обработка файла фильтрация, получение характеристик
- 3. Создание сонограммы файла и поиск в нем характерных элементов
- 4. В соответствии с характеристиками, полученными в п. 2 выбираем из базы соответствующие записи
- 5. Для каждой найденной птицы из базы вычисляем коэффициент схожести на основе алгоритма
- 6. Выводим результат работы программы

Свертка

$$(fst g)(x) \ \stackrel{ ext{def}}{=} \int\limits_{-\infty}^{\infty} f(y)\,g(x-y)\,dy = \int\limits_{-\infty}^{\infty} f(x-y)\,g(y)\,dy.$$

Пример распознавания голоса птицы

Зяблик

$$E(\{w_{ij}\}) \rightarrow min$$

Спасибо за внимание!!!