International TOR Rectifier

IRLMS6702

HEXFET® Power MOSFET

- Generation V Technology
- Micro6 Package Style
- Ultra Low Rds(on)
- P-Channel MOSFET

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The Micro6 package with its customized leadframe produces a HEXFET power MOSFET with Rds(on) 60% less than a similar size SOT-23. This package is ideal for applications where printed circuit board space is at a premium. It's unique thermal design and R_{DS(on)} reduction enables a current-handling increase of nearly 300% compared to the SOT-23.

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ -4.5V	-2.3	
I _D @ T _A = 70°C Continuous Drain Current, V _{GS} @ -4.5V		-1.9	Α
I _{DM}	Pulsed Drain Current ①	-13	
P _D @T _A = 25°C	Power Dissipation	1.7	W
	Linear Derating Factor	13	mW/°C
V_{GS}	Gate-to-Source Voltage	± 12	V
dv/dt	Peak Diode Recovery dv/dt ②	5.0	V/ns
T_{J} , T_{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance Ratings

	Parameter	Min.	Тур.	Max	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient @			75	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			V	$V_{GS} = 0V, I_{D} = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.005		V/°C	Reference to 25°C, I _D = -1mA
Root	Static Drain-to-Source On-Resistance			0.200	Ω	V _{GS} = -4.5V, I _D = -1.6A ③
R _{DS(on)}	State Brain to Godice Off Resistance			0.375	52	$V_{GS} = -2.7V, I_D = -0.80A$ ③
V _{GS(th)}	Gate Threshold Voltage	-0.70			V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
9 fs	Forward Transconductance	1.5			S	$V_{DS} = -10V, I_{D} = -0.80A$
lane	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -16V$, $V_{GS} = 0V$
I _{DSS}	Diali-to-Source Leakage Current			-25	μA	$V_{DS} = -16V$, $V_{GS} = 0V$, $T_{J} = 125$ °C
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	$V_{GS} = -12V$
'GSS	Gate-to-Source Reverse Leakage			100	''^	$V_{GS} = 12V$
Qg	Total Gate Charge		5.8	8.8		$I_D = -1.6A$
Q _{gs}	Gate-to-Source Charge		1.8	2.6	nC	$V_{DS} = -16V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.1	3.1		V_{GS} = -4.5V, See Fig. 6 and 9 $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
t _{d(on)}	Turn-On Delay Time		13			$V_{DD} = -10V$
t _r	RiseTime		20		ns	$I_D = -1.6A$
t _{d(off)}	Turn-Off Delay Time		21		115	$R_G = 6.0\Omega$
t _f	Fall Time		18			$R_D = 6.1\Omega$, See Fig. 10 ③
C _{iss}	Input Capacitance		210			$V_{GS} = 0V$
Coss	Output Capacitance		130		pF	$V_{DS} = -15V$
C _{rss}	Reverse Transfer Capacitance		73			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current		1.7		1.7	1.7		MOSFET symbol
	(Body Diode)			- -1.7			A	showing the
I _{SM}	Pulsed Source Current		13		12	^	integral reverse	
	(Body Diode) ①			-13		p-n junction diode.		
V _{SD}	Diode Forward Voltage			-1.2	V	T _J = 25°C, I _S = -1.6A, V _{GS} = 0V ③		
t _{rr}	Reverse Recovery Time		25	37	ns	$T_J = 25^{\circ}C, I_F = -1.6A$		
Q _{rr}	Reverse RecoveryCharge		15	22	nC	di/dt = -100A/µs ③		

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\ensuremath{ \Im } \mbox{ Pulse width} \leq 300 \mu \mbox{s; duty cycle} \leq 2\%.$
- $\begin{tabular}{l} \textcircled{2} & I_{SD} \leq -1.6A, \ di/dt \leq -100A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ & T_J \leq 150 \ensuremath{^{\circ}C} \ensuremath{^{\circ}} \ensuremath{^{\circ$

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

 $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Fig 9a. Basic Gate Charge Waveform

Fig 10a. Switching Time Test Circuit

Fig 9b. Gate Charge Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 12. For P-Channel HEXFETS

Package Outline

Micro6 Outline

Part Marking Information

Micro₆

Tape & Reel Information

Micro₆

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 8/97