

Les antiseptiques mode d'action - spectre d'activité

O. Castel
E.O.H. CHU de Poitiers

Rappel de l'anatomie de la bactérie

Membrane externe

Peptidoglycane

Membrane interne

BG -

Entérobactéries Pseudomonas Acinetobacter BG +

Staphylocoques Streptocoques

Rappel de l'anatomie de la bactérie La membrane interne

Prédominance de phospholipides

"Modèle de la mosaïque fluide"

Rappel de l'anatomie de la bactérie La membrane interne :

Mobilité des phospholipides

Diffusion latérale

10⁷ fois / sec.

Bascule (flip-flop)

Diffusion par Flexion (battement) Rotation

Bactéries à Gram -

Membrane externe

Peptidoglycane

Membrane interne

Bactéries à Gram Négatif

LPS
Membrane externe
Phospholipides
Peptidoglycane
Phospholipides
Membrane interne
Phospholipides

Bactérie à Gram +

Acide lipoteichoïque

Acide teichoïque

Peptidoglycane

Membrane interne

Bactéries Gram- vs Bactéries Gram+

Cibles principales des Antiseptiques

La chlorhexidine

Biguanide chloré

Molécule symétrique

Avec 2 groupements cationiques

Bactéries à Gram (+): Mode d'action de la Chlorhexidine

Bactéries à Gram (-): Mode d'action de la Chlorhexidine

Bactéries à Gram Négatif : Mode d'action de la Chlorhexidine (Cation)

Bactéries à Gram (-): Mode d'action de la Chlorhexidine

Résistance naturelles aux antiseptiques cationiques des B. G. (-) Exemple

Résistance naturelles aux antiseptiques cationiques des B. G. (-) Exemple

Pour la pratique (1)

- Résistance naturelle de certaines bactéries gram (-) sous leur forme végétatives :
 - due à la composition de la membrane :
 non accession aux cibles anioniques
 - Proteus ; Providencia
 - P. aeruginosa ; Serratia
- Résistance naturelle
 - Des bactéries sous leur forme sporulée
 - des Mycobacteria
- Incompatibilité avec les savons anioniques

Mode d'action de la Chlorhexidine sur la membrane interne

Déplacement des cations bi-valents Ca++; Mg++ Liaison de 2 têtes de phospholipides Chargées nég.

Mode d'action de la Chlorhexidine sur la membrane interne

État «cristallisé » de la membrane

Perte de fonction

Fuites du cytoplasme

Mort de la bactérie

Mode d'action de la Chlorhexidine

- •À faible concentration :
 - Formation de ponts entre 2 têtes de phospholipides
 - Augmentation de la rigidité de la membrane
 - Fuite des éléments cytoplasmiques avec perte en ions potassium et protons
 - Inhibition des transports transmembranaires

Mode d'action de la Chlorhexidine

•À forte concentration :

- •État «cristallisé» de la membrane (et non plus fluide)
 - Perte importante du matériel intracellulaire
 - Mort de la cellule

Pour la pratique (2)

- Importance de la concentration
 - < 0.5% : action bactériostatique réversibilité possible
 - Intérêt de compléter le spectre par des QACs
 - •0,5%: action bactéricide possible
 - •2% : action bactéricide certaine
- Intérêt de compléter le spectre par :
 - de l'alcool (activité sur les virus enveloppés)

Les oxydants

Eléments actifs

PVP-I : Diiode I₂

Dakin : l'acide hypochloreuxHClo

Pénétration dans les B. Gram (-)

Pénétration de HCIO et du Diiode

Pénétration dans les B. Gram (+)

Pénétration de HCIO et du Diiode

Dans la bactérie les

oxydants se réduisent et oxydent les protéines

- Les protéines sont composées d'acides aminés.
- La cystéine est un acide aminé présent dans la plupart des protéines.

elle possède un groupement thiol qui s'oxyde facilement

L'oxydation de 2 cystéines proches dans l'espace forme un pont disulfure

- Cette réaction peut avoir lieu entre :
 - des cystéines appartenant à des protéines différentes (réaction inter-chaîne)
 - ou dans la même protéine (réaction intra-chaîne) influant sur la structure tertiaire de la protéine concernée.

- Il existe une similitude d'action avec les protéines de l'œuf quand ce dernier est plongé dans de l'eau bouillante :
 - une fois dépliées, les protéines se collent entre elles et forment des agrégats insolubles, comme le blanc d'œuf quand il cuit;
 - les bactéries ne supportent pas ces agrégats et finissent pas mourir.

Pour la pratique

- Absence de problème de pénétration
- •Mécanisme d'action chimique « universel »
- Donc pas de résistance possible
- Spectre d'activité complet vis à vis des
 B. G (-) et des B. G (+)

24 juillet 1969 : retour sur terre de la mission Apollo 11

Armstrong, Collins, Aldrin « désinfectés » avec un dérivé chloré

la capsule désinfectée avec de la Bétadine scrub

Les alcools

•Alcools aliphatiques à chaîne carbonnée courte :

Éthanol

Isopropanol

Propanol

CH3-CH2-OH

CH3-CH-OH-CH3

CH3-CH2-CH2OH

- Les antiseptiques alcooliques sont définis par la Food and Drug Administration comme ayant un des ingrédients actifs suivant :
 - De l'éthanol de 60 à 95%,
 - ■De l'isopropanol de 50 à 91,3%

L'alcool se substitue à une liaison hydrogène en formant lui-même des liaisons hydrogènes

La réversibilité est donc possible

60 - 70 %

Dénaturation

Puis

Coagulation

A % élevé (/ ex : . >95 %)

Coagulation
Dès le
contact

- L'alcool pur coagule les protéines dès le contact
- Si on verse de l'alcool pur sur une bactérie :
 - L'alcool passe en passant à travers la paroi et coagule les protéines de la paroi
 - Il se forme une barrière compacte empêchant son entrée dans la bactérie
 - La bactérie sera alors inactivée mais pas morte
- Si on verse de l'alcool à 70°:
 - L'alcool dilué coagule aussi la protéine
 - Mais plus lentement lui permettant de pénétrer dans la bactérie avant que la coagulation bloque son passage

Activité en fonction du % d'alcool

Conservateur 0-30% Antiseptique Bactériostatique 30-50% Antiseptique Bactéricide 50-95% Inactif 95-100%

Conclusion (1): dans l'antisepsie il faut prendre en compte

- Le spectre d'activité des AS par exemple en prenant en compte l'écologie du site
- Mais aussi :
 - La baisse de 5Log₁₀ de la population bact.
 - Les éléments connus comme pouvant inactiver le process (matières organiques)
 - L'éventualité d'une résistance acquise
 - La toxicité des produits
 - Les RCP des produits

Conclusion (2):

Si le choix de l'antiseptique est un des éléments de la qualité de l'antisepsie

ce n'est pas le seul