Interfaz RS-232

Diseño Basado en Microprocesadores

Víctor Manuel Sánchez Corbacho

Dpto. de Automática, Electrónica, Arquitectura y Redes de Computadores

2016

- 1 El estándar RS232
- 2 Conectores
- Señales
- 4 Formato de transmisión de datos
- **5** Aspectos eléctricos
- **6** Transceivers RS-232
- Convertidores USB-RS232
- **8** UART

2 / 21

El estándar RS232

- Desarrollado por la EIA (Electronics Industries Association) en los años 60.
- Título de la norma: Interface Between Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) Employing Serial Binary Data Interchange.
- El objetivo inicial fue estandarizar la comunicación entre teletipos y modems y posteriormente entre terminales y modems (RS-232C).

Aprovechamiento para otros usos

- Muchos fabricantes adaptaron la norma a dispositivos diferentes de terminales y modems.
- Algunos han hecho una interpretación propia del estándar generando:
 - Asignación arbitraria de señales en los conectores.
 - Problemas para interconectar equipos.
 - Mercado de cajas adaptadoras, instrumentos de test, cables, ...

Ejemplos de aplicaciones actuales

• Impresoras industriales.

• Lectores de códigos de barras.

Modems industriales de telefonía móvil.

Módulos GPS.

Definciones de DTE y DCE

DTE

- Equipo Terminal de Datos (Data Terminal Equipmet).
- Convierte la información introducida por el usuario en señales para su transmisión y reconvierte las señales recibidas en información que presenta al usuario.
- Actúa como fuente y/o destino de información.
- Ejemplos: terminal de datos, impresora.

DCE

- Equipo de Comunicación de Datos (Data Communication Equipment).
- Convierte y/o codifica las señales del DTE para poder transmitirlas y recibirlas a través de un canal de comunicación.
- Ejemplo: modem.

Conectores

- La norma establece el uso de conectores de 25 patillas pero no indica un tipo concreto.
- Los conectores DB-25 de 25 patillas han sido los usados habitualmente.

 Posteriormente se pasó a usar conectores DB-9 con solamente las 9 señales más importantes.

- El **DTE** debe llevar un conector **macho**.
- El **DCE** debe llevar un conector **hembra**.

Las 9 señales importantes

- TxD (Transmit Data): Salida de datos en serie del DTE. Entrada de datos en serie en el DCE.
- RxD (Receive Data): Entrada de datos en serie del DTE. Salida de datos en serie en el DCE.
- DTR (Data Terminal Ready): Salida en el DTE (entrada en el DCE). Indica al DCE que el DTE está activo.
- DSR (Data Set Ready): Salida en el DCE (entrada en el DTE). Indica al DTE que el DCE está activo.
- RTS (Request To Send): Salida en el DTE (entrada en el DCE). La activa el DTE para solicitar al DCE permiso para transmitirle datos.
- CTS (Clear To Send): Salida en el DCE (entrada en el DTE). La activa el DCE para indicar al DTE que está preparado para recibir datos.
- DCD (Data Carrier Detect): Salida en el DCE (entrada en el DTE). La activa el DCE para indicar al DTE que está recibiendo una señal portadora de datos correcta del DCE remoto.
- RI (Ring Indicator): Salida en el DCE (entrada en el DTE). La activa un DCE de tipo modem telefónico indica una llamada entrante en la línea telefónica a la que está conectado.
- GND (Ground): Conexión de tierra o masa común.

Asignación de señales a los conectores

Pin (DB-25)	Pin (DB-9)
2	3
3	2
20	4
6	6
4	7
5	8
8	1
22	9
7	5
	2 3 20 6 4 5 8

Cables de conexión

• Cable DTE-DCE completo.

• Cable DTE-DCE con solo 3 hilos.

Cable DTE-DTE "modem nulo".

Formato de transmisión de datos

- Se muestran niveles lógicos, no niveles eléctricos.
- Si se usa paridad puede ser par o impar.
- El inverso del periodo de bit Tb se denomina velocidad de comunicación en baudios.
- Velocidades estándar: 75, 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600 y 115200.
- Los equipos conectados deben estar configurados con el mismo número de bits de datos, bits de stop, paridad (si se usa) y velocidad en baudios.

11 / 21

Parámetros eléctricos de circuitos

- ullet La tensión en cualquier circuito no debe exceder el rango de \pm 25 V.
- Cualquier pin debe poder soportar un cortocircuito sostenido con cualquier otro sin sufrir daños.
- La impedancia de carga del receptor (R_L) debe estar entre 3 k Ω y 7 k Ω .
- La capacidad de carga (C_L) no debe superar 2500 pF. Esto limita la longitud del cable a unos 15 metros.

Niveles de tensión

- Niveles de salida del driver:
 - $\bullet\,$ El '0' lógico se representa por una tensión de salida entre +5 V y +15 V.
 - El '1' lógico se representa por una tensión de salida entre -5~V~y~-15~V.
- Niveles de entrada del receiver:
 - Una tensión de entrada entre +3 V y +15 V se interpreta como un '0' lógico.
 - Una tensión de entrada entre -3~V~y~-15~V~se interpreta como un '1' lógico.
- Márgenes de ruido de 2 voltios.
- Las tensiones entre –3 V y + 3 V no representan un nivel lógico definido.
- Máximo slew rate de 30 V/μs para limitar el crosstalk entre conductores.

Drivers y receivers RS-232

- Los niveles eléctricos usados en la norma RS-232 no coinciden con los empleados en la mayoría de los sistemas digitales.
- Se necesitan circuitos que trasladen los niveles usados en el sistema a los niveles RS-232 y viceversa.
- Ejemplos: driver MC1488 y receiver MC1489.

Transceivers con generadores de tensiones RS232

- Obtienen las tensiones para generar los niveles RS-232 a partir de la alimentación de 5 V o 3.3 V.
- Evitan tener que añadir alimentaciones extra al sistema.
- Ejemplos: MAX232 (alimentación de 5 V) y MAX3232 (alimentación de 3.3 V) de Maxim. Hay varios equivalentes de otros fabricantes.

Ejemplo de uso de transceivers RS232

Comunicación a corta distancia usando niveles CMOS

- Hay dispositivos que usan el formato trama de datos RS-232 pero emplean niveles lógicos CMOS (5 V ó 3.3 V típicamente).
- Pensados para conectarse distancias cortas (misma PCB que el microcontrolador o cables cortos).
- La conexión puede ser directa, sin intercalar transceivers.
- Ejemplos: pequeños módulos inalámbricos, GPS y RFID.

Convertidores USB-RS232

 Permite usar periféricos RS-232 en ordenadores que no tienen interfaces RS-232 pero sí USB.

Convertidor USB-RS232 en la tarjeta EA Dev. Kit

- Basado en el integrado FT232 (FTDI).
- Otros integrados de este tipo son: FT2232 (FTDI), PL2303 (Prolific Technology), CP2102 (Silabs).

- UART: Universal Asynchronous Receiver-Transmitter.
- Funciones:
 - Convertir datos paralelos hacia/desde el formato serie.
 - Añadir/retirar los bits de start, stop y paridad.
 - Comprobar errores de recepción.
 - Generar y comprobar DTR, DSR, RTS, CTS, DCD y RI.
 - Generar la velocidad de comunicación en baudios deseada.

UART

- La CPU interactúa con la UART mediante un conjunto de registros.
- Se fabrican:
 - Como circuitos integrados independientes.
 - Integradas en los chipsets de las placas base de ordenador.
 - Como periféricos internos de los microcontroladores.