SESA3029 Aerothermodynamics

Lecture 2.6 Laval Nozzle

Area equation (differential form)

Mass conservation
$$\frac{dA}{A} + \frac{dV}{V} + \frac{d\rho}{\rho} = 0$$

Newton II $\rho V dV = -d\rho$

$$\frac{\mathrm{d}A}{A} = \left(M^2 - 1\right)\frac{\mathrm{d}V}{V}$$

Opposite dA for M<1 compared to M>1

M=1 at dA=0, but only a converging-diverging charge (und charge there)

(lux gear)

Application to nozzles and diffusers

$$\frac{\mathrm{d}A}{A} = \left(M^2 - 1\right) \frac{\mathrm{d}V}{V}$$

Two possibilities for dA=0 and M=1 at throat

$$\frac{\mathrm{d}A}{A} = \left(M^2 - 1\right)\frac{\mathrm{d}V}{V}$$

Only the converging-diverging configuration (b) can get to M=1 at throat

Area-Mach number relation

$$\frac{A}{A^*} = \frac{1}{M} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

- Tabulated in IFT
 - For any M we can find A/A*
 - For any A/A^* (>1) there are two solutions for M, one subsonic, one supersonic
 - 'Design condition' of a supersonic (Laval) nozzle has M<1 upstream, M>1 downstream of throat with no shocks

Supersonic design condition of a Laval nozzle

Mass flowrate

$$\dot{m} = \rho AV$$

$$= \rho^* A^* a^*$$

$$= \rho^* A^* \sqrt{\gamma RT^*}$$

and for sonic conditions

$$\frac{T_0}{T^*} = \frac{\gamma + 1}{2}$$

$$\frac{\rho_0}{\rho^*} = \left(\frac{\gamma + 1}{2}\right)^{\frac{1}{\gamma - 1}}$$

$$\dot{m} = \rho_0 A^* \sqrt{\gamma R T_0} \left(\frac{2}{\gamma + 1} \right)^{\frac{1}{\gamma - 1} + \frac{1}{2}}$$

$$\dot{m} = \frac{p_0}{\sqrt{RT_0}} A^* \sqrt{\gamma} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Stagnation Throat Gas conditions area properties

N.B. – no influence of back pressure or other downstream conditions as long as flow is choked

Critical conditions for choked flow

$$\frac{\boldsymbol{p}_0}{\boldsymbol{p}^*} = \left(\frac{\gamma + 1}{2}\right)^{\frac{\gamma}{\gamma - 1}} \quad \text{or} \quad \frac{\boldsymbol{p}^*}{\boldsymbol{p}_0} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}} = 0.528 \quad \text{for } \gamma = 1.4$$

- If $p_{throat} > p^*$ flow is subsonic throughout
- If $p_{throat} = p^*$ flow is choked
 - (can't have $p_{\text{throat}} < p^*$)

Effect of back pressure

Environment is at 'back' pressure p_h

Reservoir conditions p₀, T₀

 p_{b1} – low subsonic throughout (effectively incompressible) p_{b2} –subsonic throughout

 ho_{b2} –subsonic throughout (compressible)

 p_{b3} —sonic at throat, subsonic in diverging section

 p_{b4} –shock in diverging section

 p_{b5} –shock at exit

*p*_{b6} –design condition

(supersonic exit)

Mach number variation

Example

For a Laval nozzle with a design exit Mach number of $M_e=2.2$ find p_{b6} , p_{b3} and p_{b5} in terms of p_0

Isentropic-flow table (γ = 1.4):								
M	p/p_0	ρ/ρ_0	T/T_0	ν (deg.)	A/A*			
2.2000	0.0935	0.1841	0.5081	31.7325	2.0050			
2.2200	0.0906	0.1800	0.5036	32.2494	2.0409			
2.2400	0.0878	0.1760	0.4991	32.7629	2.0777			
2.2600	0.0851	0.1721	0.4947	33.2730	2.1153			
2.2800	0.0825	0.1683	0.4903	33.7796	2.1538			

Design condition $M_e=2.2$, $A_e/A^*=2.005$ and $p_{b6}/p_0=0.0935$

For same area ratio there is a subsonic solution

	Isentropic-flow table (γ = 1.4):								
M	p/p_0	ρ/ρ_0	T/T ₀	ν (deg.)	A/A*				
0.3000 0.3200	0.9395 0.9315	0.9564 0.9506	0.9823 0.9799	n/a n/a	2.0351 1.9219				
0.3400 0.3600	0.9231 0.9143	0.9445 0.9380	0.9774 0.9747	n/a n/a	1.8229 1.7358				
0.3800	0.9052	0.9313	0.9719	n/a	1.6587				

Linear interpolation for $A_e/A^*=2.005$ gives $M_e=0.305$ and $p_{b3}/p_0=0.937$

To get p_{b5} we add a normal shock at the exit i.e. from M=2.2

NST for M=2.2 gives p_{b5}/p_{b6} =5.480

$$p_{b5} = p_{b6} \times p_{b5}/p_{b6} = 0.0935p_0 \times 5.480 = 0.512p_0$$