

7_1

LEARNING OUTCOMES

INTRODUCTION TO HALOALKANES Give the name of haloalkanes according to the IUPAC nomenclature. (C2)

Give the structural formulae for haloalkanes (C2)

Classify haloalkanes into primary, secondary and tertiary haloalkanes (C2)

Describe haloalkanes as compounds that contain polar bond and the carbon bearing the halogen is susceptible to nucleophilic attack. (C2)

HALOALKANES

□ Contain halogen atom X bonded to sp³ hybridized C atom

☐ General formula: $C_nH_{2n+1}X$ (acyclic) $C_nH_{2n-1}X$ (cyclic) R-X; X = F, CI, Br, I

Also known as alkyl halides

CLASSIFICATION

Depends on the classification of C that bonds to the halogen

CLASS	EXAMPLE
Primary (1 ^O) Halogen is bonded to 1 ^O C	CH ₃ C-CI H
Secondary (2 ⁰) Halogen is bonded to 2 ⁰ C	CH ₃ C-CH ₃ Br
Tertiary (3 ^O) Halogen is bonded to 3 ^O C	CH ₃ CH ₃ —C—CH ₃

Note: CH₃-Cl is methyl haloalkane

EXERCISE 1

Classify each alkyl halide as 1°, 2° and 3°.

IUPAC NAMES

☐ Find longest C chain

parent name = heptane

parent name = heptane

IUPAC nomenclature for alkyl halides follows the basic rules as described in alkanes

chloro bromo —Br iodo

Number parent chain beginning at the end nearer to the first substituent, regardless of whether it is alkyl or halo

5-bromo-2,4-dimethylheptane

Substituent	5-bromo 2,4-dimethyl
Parent	heptane

□ Treat halogens exactly like alkyl for numbering and alphabetizing purpose

(because the reactivity of halogen and alkyl group are almost similar)

2-bromo-5-methylhexane

Substituent	2-bromo 5-methyl
Parent	hexane

1-ethyl-2-fluorocyclopentane

	1-ethyl
Substituent	2–fluoro
Parent	cyclopentane

1-chloro-3-ethylbenzene

Substituent	1-chloro 3-ethyl
Parent	benzene

EXERCISE 2

Give the IUPAC name for each compound.

No	Structure	No	Structure
1	Br CH3CHCH2CHCHCH2CH3 CH3 CH3	4	FCH ₂ CH ₂ CHCH ₃ CH ₃
2	BrCH ₂ CH ₂ CHCHCH ₃ CI CH ₃	5	
3	CH3CHCH2CH2CHCH3 Br	6	CH ₂ Br

POLAR C-X BOND

□ The electronegative halogen X creates a polar C–X bond, making C atom electron deficient

□ The electrophilic C of alkyl halide is susceptible to nucleophilic attack

7_2 LEARNING OUTCOMES

Chemical Properties

- a) Explain nucleophilic substitution reaction of haloalkanes. (C2)
- b) Explain $S_N 1$ and $S_N 2$ mechanisms (C2)
- c) Illustrate $S_N 1$ and $S_N 2$ mechanism of a given haloalkanes. (C3, C4)
- d) Compare the relative reactivities of primary, secondary and tertiary haloalkanes towards hydrolysis or alcoholysis. (C4)
- e) Explain elimination reaction of haloalkanes. (C3)
- f) Explain the use of haloalkanes in the synthesis of Grignard reagent, RMgX/ ArMgX. (C3,C4)
- g) Deduce the structural formulas of alcohols and carboxylic acids prepared using Grignard reagents. (C4)

NUCLEOPHILIC SUBSTITUTION REACTION

☐ Haloalkanes undergo substitution reactions with nucleophiles

A nucleophile replaces a leaving group on a sp³ hybridized carbon

NUCLEOPHILES

Strong nucleophile

Weak nucleophile

HO-

H₂O

TOR; e.g: CH₃OT

ROH; e.g: CH₃OH

-CN

 NH_3

CH₃COO⁻

1. Reaction with NaOH

2. Reaction with Alkoxide Ion, RO

$$R-X + OR \rightarrow R-OR + X-$$
 alkoxide ether

3. Reaction with excess Ammonia

$$R-X + NH_{3}(excess) \xrightarrow{A} R-NH_{2} + NH_{4}^{+} X^{-}$$

$$ammonia \qquad 1^{\circ} amine$$

$$R-NH_{2} + NH_{4}^{+} X^{-}$$

$$1^{\circ} amine \qquad leaving group$$

$$CH_{3}CH_{2}CH_{2}Br + NH_{3} \xrightarrow{A} CH_{3}CH_{2}CH_{2}NH_{2}$$

$$bromopropane \qquad + NH_{4}^{+} Br^{-}$$

React with 1° amine to form 2° amine

Example:

NOTE:

^{*} Similar reaction can be used to produce tertiary amine.

4. Reaction with KCN or NaCN or CN

$$\begin{array}{c} \text{alcohol} \\ R - X + \overset{-}{C} \equiv N \xrightarrow{\text{reflux}} R - C \equiv N + X^{-} \\ \text{cyanide} & \text{nitrile} \end{array}$$

5. Reaction with Alcohol, RO-

6. Reaction with acetate ion

$$R-X + CH_3COO^- \rightarrow R-OCOCH_3 + X^-$$
 acetate ester

7. Reaction with water, H_2O

$$R-X + H_2O \longrightarrow R-OH + HX$$
 alcohol

S_N2 MECHANISM

Bimolecular Nucleophilic Substitution

The reaction involve two molecule (Haloalkane & Nucleophile)

S_N2 MECHANISM

Second-order reaction

Rate =
$$k[R-X][:Nu^-]$$

EXAMPLE:

$$CH_3CI + HO^- \longrightarrow CH_3OH + CI^-$$

Rate =
$$k[CH_3CI][HO^-]$$

- □ depend on [CH₃CI] and [HO⁻]
- second order overall

- 3 One-step mechanism
 - ☐ Has a transition state
 - ☐ *No carbocation* rearrangement

Reaction:
$$CH_3CI + HO^- \longrightarrow CH_3OH + CI^-$$

S_N2 MECHANISM

□ All S_N2 reactions proceed with backside attack, resulting in inversion of configuration at a stereogenic center

Backside attack literally attack from the C atom inside out, like an umbrella caught by the wind

STERIC EFFECT

S_N2 reactions are affected by steric factors (steric effect).

Steric effect:

Is an effect on relative rates caused by the space - filling properties of parts of molecules attached at or near to the reacting site.

- The reactivity on S_N^2 reaction depends on the size of atoms or groups attached to the C-X.
- Larger no. of alkyl groups, shielded the carbon atom in the C-X from attack by the incoming nucleophile

Attack is very easy!

H[®] (CH₃

Attack is easy!

ethyl bromide (1°)

isopropyl bromide (2°)

Attack is slightly difficult!

ORDER OF REACTIVITY

Increasing rate of an S_N2 reaction

more crowded more steric hindrance less reactive

less crowded less steric hindrance more reactive

EXERCISE 3

Give the S_N^2 mechanism for the formation of the product in the following reaction.

$$CH_3CH(Br)CH_2CH_3 + HO^- \longrightarrow CH_3CH(OH)CH_2CH_3 + Br^-$$

Unimolecular Nucleophilic Substitution

First step involve only one molecule (haloalkane)

- The rate of S_N1 reaction does not depend on the concentration of nucleophile.
- The rate depends only on the concentration of the substrate, alkyl halide.

Rate = k[R-X]

* S_N1 is a first order reaction

2 First-order reaction

$$(CH_3)_3C-CI + HO^- \longrightarrow (CH_3)_3C-OH + CI^-$$

Rate =
$$k[(CH_3)_3CCI]$$

- depend on [(CH₃)₃CCI]
- first order overall

Only (CH₃)₃CCl involved in the step that control reaction rate unimolecular

- 3 Two-step mechanism
 - □ Carbocation is formed as a reactive intermediate

STEP 1 Formation of Carbocation

Step 1 (slow) the rate-determining step (slowest step)

3 Two-step mechanism

STEP 2

Nucleophilic attack on the Carbocation

$$H_{3}C - C - OH + H_{3}O^{+}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{4}$$

$$CH_{4}$$

$$CH_{4}$$

$$CH_{4}$$

Write the mechanism for the following reaction

$$CH_3$$
 CH_3 $H_3C-C-Br + H_2O \longrightarrow H_3C-C-OH$ CH_3 CH_3

Solution

- > 3° haloalkane
- > weak nucleophile
- > 2 steps mechanism involve, S_N1

+ HBr

Step 1: Formation of carbocation

Step 2: Nucleophilic attack on the carbocation

Write the mechanism for the following reaction.

Solution

1º haloalkane but more **steric effect** Has *rearrangement*

Step 1: Formation of carbocation

CH3
$$\stackrel{\text{CH3}}{\text{CH3}}$$
 $\stackrel{\text{CH3}}{\text{CH3}}$ $\stackrel{\text{CH3}}{\text{CH3}}$ $\stackrel{\text{CH3}}{\text{CH3}}$ $\stackrel{\text{CH3}}{\text{CH3}}$ $\stackrel{\text{CH3}}{\text{CH3}}$

Rearrangement:

$$\begin{array}{c} \text{CH3} \\ \text{CH3-C-CH2} \\ \text{CH3} \end{array} \xrightarrow{\text{1,2-methanide shift}} \begin{array}{c} \text{CH3} \\ \text{CH3-C-CH2} \\ \text{CH3} \end{array}$$

1º carbocation

3° carbocation

Step 2: Nucleophilic attack on the carbocation

EXERCISE 4

Give the S_N 1 mechanism for the formation of the product in the following reaction.

Step 1: Formation of carbocation

Rearrangement:

Step 2: Nucleophilic attack on the carbocation

ORDER OF REACTIVITY

Reactivity and reaction rate determined by the stability of carbocation formed

Increasing rate of an S_N1 reaction

form least stable carbocation

form most stable carbocation

TYPES OF ALKYL HALIDES	NUCLEOPHILIC SUBSTITUTION MECHANISM
1° and CH ₃ X	S _N 2
2 °	S _N 2 or S _N 1
3°	S _N 1

 2° alkyl halide undergo both S_N1 and S_N2 reactions. Other factors determine the mechanism

EFFECT OF NUCLEOPHILE

S_N1

- Nucleophile strength is unimportant
- Favored by weak nucleophiles (usually neutral)

S_N2

- ☐ Strong nucleophiles is required
- Favored by strong nucleophiles (usually a net negative charge)

$S_N 1$ or $S_N 2$???

$$3^{\circ} \longrightarrow S_{N}1$$

_N 1	MECHA	NISM

Unimolecular Nucleophilic

Bimolecular Nucleophilic Substitution

- First step involve only one molecule - The reaction involve two molecule (Haloalkane & Nucleophile)

(Haloalkane) **First Order reaction** Rate = k [RX]

Second Order Reaction Rate = $k [RX][Nu^{-}]$

Carbocation as intermediate

No carbocation, Has a transition state

Two steps mechanism

Substitution

One step mechanism

Order of reactivity:

Order of reactivity: Methyl halide $< 1^{\circ} < 2^{\circ} < 3^{\circ}$

 3° < 2° < 1° < Methyl halide

Weak nucleophiles (usually neutral species)

Strong nucleophile (usually -ve charge ion)

ELIMINATION REACTION OF HALOALKANES

- □ Haloalkanes undergo elimination reactions with bases to form alkene.
- □ Name of reaction:
 Dehydrohalogenation of haloalkanes

i.
$$CH_3CHCHCH_3$$
 + NaOH CH_3CH_2OH CH_3CH_2OH CH_3 CH_3

minor

USE OF HALOALKANES IN THE SYNTHESIS OF GRIGNARD REAGENTS

Synthesis of Grignard Reagents (R- Mg-X) by the reaction of haloalkanes with magnesium metal in anhydrous (dry) ether as a solvent.

$$R-X + Mg \xrightarrow{dry \text{ ether}} R-MgX$$

Grignard Reagent

(alkylmagnesium halide)

sec-butyl chloride

GRIGNARD REAGENTS (RMgX)

Haloalkanes(R-X) + Mg

Synthesis of Alkane

i.
$$CH_3CH_2-Br$$
 + Mg $\xrightarrow{dry\ ether}$ CH_3CH_2-MgBr \downarrow H_3O^+ CH_3CH_3

ii. CH_3CHCH_3 + Mg $\xrightarrow{dry\ ether}$ CH_3CHCH_3 \downarrow H_3O^+ $CH_3CH_2CH_3$

Synthesis of 1° Alcohol

Synthesis of 1° Alcohol

or

Synthesis of 2° Alcohol

$$CH_{3}Br + Mg \xrightarrow{dry \text{ ether}} CH_{3}MgBr$$

$$CH_{3}MgBr + H \xrightarrow{C} CH_{3} \xrightarrow{ether} H \xrightarrow{C} CH_{3}$$

$$\downarrow H_{3}O^{+}$$

$$OH \\ H \xrightarrow{C} CH_{3} + Mg(OH)Br$$

$$CH_{3}$$

Synthesis of 2° Alcohol

or

CH₃MgBr +
$$\frac{O}{H-C-CH_3}$$
 $\xrightarrow{i. \text{ ether}}$ $H-C-CH_3$ $+$ Mg(OH)Br CH_3

Synthesis of 3° Alcohol

$$CH_3CH_2C1 + Mg \xrightarrow{dry \text{ ether}} CH_3CH_2MgC1$$

$$CH_{3}CH_{2}MgCl + H_{3}C - C - CH_{3} \xrightarrow{\text{ether}} H_{3}C - C - CH_{3}$$

$$CH_{2}CH_{3}$$

$$\downarrow H_{3}O^{+}$$

$$OH$$

$$H_{3}C - C - CH_{3} + Mg(OH)Cl$$

$$CH_{2}CH_{3}$$

Synthesis of 3° Alcohol

or

CH₃CH₂MgCl + H₃C - C - CH₃
$$\xrightarrow{\text{i. ether}}$$
 H₃C - C - CH₃ + Mg(OH)Cl CH₂CH₃

Synthesis of Carboxylic Acid

$$CH_3CH_2C1 + Mg \xrightarrow{dry ether} CH_3CH_2MgC1$$

CH₃CH₂MgCl
$$\xrightarrow{\text{i. CO}_2}$$
 CH₃CH₂COOH $+$ Mg(OH)Cl ii. H₃O⁺

GLOSSARY

- **1. Haloalkanes** organic compound contains halogen atom, (fluorine, chlorine, etc.) bonded to sp^3 hybridized C atom. Also known as alkyl halides.
- **2. Electrophilic site** electron-deficient site in the molecule and susceptible to nucleophilic attack.
- **3. Leaving group** an atom or group of atoms that detaches from the main or residual part of a substrate during a reaction or elementary step of a reaction.
- **4.** $S_N 1$ Unimolecular Nucleophilic Substitution Reaction The first step involves only one molecule (haloalkane)

GLOSSARY

- **5.** $S_N 2$ Bimolecular Nucleophilic Substitution Reaction The reaction involves two molecules (Haloalkane & Nucleophile)
- **6. Transition state** a configuration attended by reactants during complex formation along with the reaction coordinates where maximum potential energy is attained. It is often marked with the double dagger ‡ symbol.
- 7. Steric hindrance the prevention or retardation of inter- or intramolecular interactions because of the spatial structure of a molecule.
- 8. Steric effect is an effect on relative rates caused by the space-filling properties of parts of molecules attached at or near the reacting site.