Algebra and Discrete Mathematics ADM

Bc. Xiaolu Hou, PhD.

FIIT, STU xiaolu.hou @ stuba.sk

Course Outline

- Vectors and matrices
- System of linear equations
- Matrix inverse and determinants
- Vector spaces and matrix transformations
- Fundamental spaces and decompositions
- Eulerian tours
- Hamiltonian cycles
- Midterm
- Paths and spanning trees
- Trees and networks
- Matching

Recommended reading

- Anton, Howard, and Chris Rorres. Elementary linear algebra: applications version. John Wiley & Sons, 2013.
 - Sections 1.8, 4.1 4.6, 4.9, 4.10
 - Accessible online (free copy)
 - Alternative download link

Lecture outline

- Real Vector Space
- Subspaces
- Linear independence
- Coordinates and basis
- Dimension
- Change of basis
- Matrix operators
- Proofs and principles

Vector spaces and matrix transformations

- Real Vector Space
- Subspaces
- Linear independence
- Coordinates and basis
- Dimension
- Change of basis
- Matrix operators
- Proofs and principles

Definition

Definition

Let V be a nonempty set on which two operations are defined:

- Addition: $V \times V \to V$, $\boldsymbol{v} + \boldsymbol{u}$ is called the *sum* of \boldsymbol{v} and \boldsymbol{u}
- Scalar multiplication: $\mathbb{R} \times V \to V$, αv is called the *scalar multiple* of v by α

V, (together with the associated addition and scalar multiplication), is called a *vector space (over* \mathbb{R}) if $\forall v, u, w \in V$ (*vectors*) and $\forall \alpha, \beta \in \mathbb{R}$ (*scalars*):

- 1. u + v = v + u
- 2. u + (v + w) = (u + v) + w
- 3. $\exists \mathbf{0} \in V$, called zero vector or additive identity, s.t. $\mathbf{0} + u = u$
- 4. $\exists -u \in V$, called *negative* or *additive inverse* of u s.t. u+(-u)=0
- 5. $\alpha(\boldsymbol{u} + \boldsymbol{v}) = \alpha \boldsymbol{u} + \alpha \boldsymbol{v}$
- 6. $(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$
- 7. $\alpha(\beta \boldsymbol{u}) = (\alpha \beta) \boldsymbol{u}$
- 8. 1u = u

Show that a set with two operations is a vector space

- Identify the set V and elements of V that will become vectors
- ullet Identify the addition and and scalar multiplication operations on V
- Verify that $v + u \in V$ (closure under addition) and $\alpha u \in V$ (closure under scalar multiplication) for all $v, u \in V$, $\alpha \in \mathbb{R}$
- Verify that all axioms are satisfied

Remark

Any kind of object can be a vector, and the operations of addition and scalar multiplication need not have any relationship to those on \mathbb{R}^n .

Example (The zero vector space)

Let $V = \{0\}$, define

$$\mathbf{0} + \mathbf{0} = \mathbf{0}, \quad \alpha \mathbf{0} = \mathbf{0}, \ \alpha \in \mathbb{R}$$

It is easy to check all axioms are satisfied and V together with the addition and scalar multiplication defined above, $(V, +, \cdot)$, is a vector space.

Example

Consider \mathbb{R}^n with the usual operations of addition and scalar multiplication

$$\mathbf{u} + \mathbf{v} = (u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n) = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

$$\alpha \mathbf{u} = (\alpha u_1, \ \alpha u_2, \ \dots, \ \alpha u_n)$$

zero vector

$$\mathbf{0} = (0, 0, \dots, 0)$$

 $(\mathbb{R}^n,+,\cdot)$ is a vector space.

Example

Let V consist of objects of the form

$$u = (u_1, u_2, \dots),$$

where u_1, u_2, \ldots is an infinite sequence of real numbers.

We define two infinite sequences to be equal if their corresponding components are equal and we define addition and scalar multiplication component-wise by

$$\mathbf{u} + \mathbf{v} = (u_1, u_2, \dots) + (v_1, v_2, \dots) = (u_1 + v_1, u_2 + v_2, \dots)$$

 $\alpha \mathbf{u} = (\alpha u_1, \alpha u_2, \dots)$

 $(V,+,\cdot)$ is a vector space, denoted by \mathbb{R}^{∞}

Example (The vector space of 2×2 matrices)

Consider $\mathcal{M}_{2\times 2}$ together with matrix addition and multiplication by a scalar

$$\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} + \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix} = \begin{pmatrix} u_{11} + v_{11} & u_{12} + v_{12} \\ u_{21} + v_{21} & u_{22} + v_{22} \end{pmatrix}$$
$$\alpha \mathbf{u} = \alpha \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} = \begin{pmatrix} \alpha u_{11} & \alpha u_{12} \\ \alpha u_{21} & \alpha u_{22} \end{pmatrix}$$

 $\mathcal{M}_{2\times2}$ is closed under addition and scalar multiplication. The additive identity is $\begin{pmatrix} 0 & 0 \end{pmatrix}$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix}$$

Additive inverse of u

$$\begin{pmatrix} -u_{11} & -u_{12} \\ -u_{21} & -u_{22} \end{pmatrix}$$

Example (The vector space of 2×2 matrices)

Consider $\mathcal{M}_{2\times 2}$ together with matrix addition and multiplication by a scalar

$$\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} + \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix} = \begin{pmatrix} u_{11} + v_{11} & u_{12} + v_{12} \\ u_{21} + v_{21} & u_{22} + v_{22} \end{pmatrix}$$

$$\alpha \mathbf{u} = \alpha \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} = \begin{pmatrix} \alpha u_{11} & \alpha u_{12} \\ \alpha u_{21} & \alpha u_{22} \end{pmatrix}$$

$$\begin{pmatrix} -u_{11} & -u_{12} \\ -u_{21} & -u_{22} \end{pmatrix} + \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$1\mathbf{u} = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix}$$

 $(\mathcal{M}_{2\times 2},+,\cdot)$ is a vector space

Example (The vector space of $m \times n$ matrices)

- Consider $\mathcal{M}_{m \times n}$ with matrix addition and scalar multiplication.
- Similar to $\mathcal{M}_{2\times 2}$, we can show that $(\mathcal{M}_{m\times n},+,\cdot)$ is also a vector space.
- The additive inverse is the zero matrix.

Example (The vector space of real-valued functions)

- Let $\mathcal{F}(\mathbb{R},\mathbb{R})=\{\ f\ |\ f:\mathbb{R}\to\mathbb{R}\ \}$ be the set of real-valued functions that are defined at each $x\in\mathbb{R}$
- Define addition and scalar multiplication as follows: for any $f,g\in\mathcal{F}(\mathbb{R},\mathbb{R})$, and any $\alpha\in\mathbb{R}$,

$$(f+g)(x) = f(x) + g(x), \quad (\alpha f)(x) = \alpha(f(x))$$

- It is easy to see that f+g and αf are real-valued functions defined at each $x\in\mathbb{R}$ closure under addition and scalar multiplication
- Additive identity: the function $\mathbf{0}$ that outputs 0 for every $x \in \mathbb{R}$
- Additive inverse: the additive inverse of f is the function defined by

$$-f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto -f(x)$$

Example (The vector space of real-valued functions)

- $\mathcal{F}(\mathbb{R}, \mathbb{R}) = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$
- Validity of the axioms follow from the properties of real numbers
- For example, Axiom 1

$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x)$$

Example (Not a vector space)

- Consider \mathbb{R}^2 with addition and scalar multiplication defined as follows:
- For any $\boldsymbol{u}=\begin{pmatrix}u_1,&u_2\end{pmatrix}\,\boldsymbol{v}=\begin{pmatrix}v_1,&v_2\end{pmatrix}\in\mathbb{R}^2$, $\alpha\in\mathbb{R}$

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2), \quad \alpha \otimes \mathbf{u} = (\alpha u_1, 0).$$

For example

$$(2, 4) + (-3, 5) = (-1, 9), 7 \otimes (2, 4) = (14, 0)$$

• Not a vector space because for $u = (u_1, u_2)$ with $u_2 \neq 0$

$$1 \otimes \boldsymbol{u} = (u_1, 0) \neq \boldsymbol{u}.$$

Example (A special vector space)

- Consider $\mathbb{R}_{>0}$, the set of positive real numbers
- Define addition and scalar multiplication as follows: for any $u,v\in\mathbb{R}_{>0}$ and any $\alpha\in\mathbb{R}$

$$u \oplus v = uv$$
, $\alpha \otimes u = u^{\alpha}$

• The additive identity is the number 1

$$u \oplus 1 = u1 = u$$

ullet The additive inverse of an element u is its reciprocal

$$u \oplus \frac{1}{u} = u \frac{1}{u} = 1$$

because u>0, $\frac{1}{u}>0$ is an element of $\mathbb{R}_{>0}$

Example (A special vector space)

- Consider $\mathbb{R}_{>0}$, the set of positive real numbers
- Define addition and scalar multiplication as follows: for any $u,v\in\mathbb{R}_{>0}$ and any $\alpha\in\mathbb{R}$

$$u \oplus v = uv, \quad \alpha \otimes u = u^{\alpha}$$

- Other axioms are also satisfied
- For example, Axiom 6

$$(\alpha + \beta) \otimes u = u^{\alpha + \beta} = u^{\alpha} u^{\beta} = \alpha \otimes u + \beta \otimes u$$

• $(\mathbb{R}_{>0}, \oplus, \otimes)$ is a vector space

Some properties of vectors

Theorem 1

Let V be a vector space, for any ${\boldsymbol u} \in V$ and $\alpha \in \mathbb{R}$

- (a) 0u = 0
- (b) $\alpha 0 = 0$
- (c) (-1)u = -u
- (d) If $\alpha u = 0$, then $\alpha = 0$ or u = 0

Remark

- Whenever we discover a new theorem about general vector spaces, we will at the same time be discovering a theorem about \mathbb{R}^n , matrices, etc.
- For example, consider the vector space $\mathbb{R}_{>0}$ with the two operations defined in the previous example

$$0u = 0$$

translates to for $u \in \mathbb{R}_{>0}$

$$u^0 = 1$$

Vector spaces and matrix transformations

- Real Vector Space
- Subspaces
- Linear independence
- Coordinates and basis
- Dimension
- Change of basis
- Matrix operators
- Proofs and principles

Subspace – definition

Definition

A subset W of a vector space V is called a *subspace* of V if W is a vector space under the addition and scalar multiplication defined on V.

- ullet To show W is a vector space, certain properties are "inherited" from V
- ullet e.g. $oldsymbol{u}+oldsymbol{v}=oldsymbol{v}+oldsymbol{u}$
- It remains to show
 - ullet Closure of W under addition
 - ullet Closure of W under scalar multiplication
 - Additive identity $\in W$
 - Existence of additive inverse

Theorem

Let V be a vector space, a nonempty set $W\subseteq V$ is a subspace of V iff for any $u,v\in W$, $\alpha\in\mathbb{R}$

- 1. $u + v \in W$
- 2. $\alpha \boldsymbol{u} \in W$

Example

- Let V be any vector space and let $W = \{0\}$
- ullet W is closed under addition and scalar multiplication

$$0 + 0 = 0$$
, $\alpha 0 = 0$

ullet W is called the zero subspace of V

Example (Lines through the origin are subsapces of \mathbb{R}^2 and \mathbb{R}^3)

- W= a line through the origin of either \mathbb{R}^2 or \mathbb{R}^3
- Adding two vectors on the line or multiplying a vector on the line by scalar gives another vector on the line - closed under addition and scalar multiplication

Example (Planes through the origin are subsapces of \mathbb{R}^3)

- W = a plane through the origin of \mathbb{R}^3
- Adding two vectors on the line or multiplying a vector on the line by scalar gives another vector in the same plane - closed under addition and scalar multiplication

Subspaces of \mathbb{R}^2 and \mathbb{R}^3

Summary of what we have discussed

Subspaces pf \mathbb{R}^2	Subspaces of \mathbb{R}^3
$\{0\}$	{0 }
Lines through the origin	Lines through the origin
\mathbb{R}^2	Planes through the origin
	\mathbb{R}^3

Example (A subset of \mathbb{R}^2 that is not a subspace)

• Let

$$W = \{ (x, y) \mid x \ge 0, y \ge 0 \} \subseteq \mathbb{R}^2$$

- ullet W is not a subspace of \mathbb{R}^2
- W is not closed under scalar multiplication

$$(-1)(1, 1) = (-1, -1) \notin W$$

Linear combination

Definition

 $u \in V$ is a linear combination of vectors $v_1, v_2, \cdots, v_r \in V$ if

$$\boldsymbol{u} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_r \boldsymbol{v}_r,$$

where $\alpha_1, \alpha_2, \ldots, \alpha_r \in \mathbb{R}$ are called the *coefficients* of the linear combination.

Linear combinations – example

Example

- Consider $\boldsymbol{u}=\begin{pmatrix}1,&2,&-1\end{pmatrix}$, $\boldsymbol{v}=\begin{pmatrix}6,&4,&2\end{pmatrix}$ from \mathbb{R}^3
- w = (9, 2, 7) is a linear combination of u and v: Suppose

$$\boldsymbol{w} = \alpha_1 \boldsymbol{u} + \alpha_2 \boldsymbol{v}$$

$$(9, 2, 7) = (\alpha_1 + 6\alpha_2, 2\alpha_1 + 4\alpha_2, -\alpha_1 + 2\alpha_2)$$

gives

$$\alpha_1 + 6\alpha_2 = 9$$
$$2\alpha_1 + 4\alpha_2 = 2$$

$$-\alpha_1 + 2\alpha_2 = 7$$

Solving the linear system gives $\alpha_1=-3,\ \alpha_2=2$

Linear combinations – example

Example

- ullet Consider $oldsymbol{u}=egin{pmatrix} 1, & 2, & -1 \end{pmatrix}$, $oldsymbol{v}=egin{pmatrix} 6, & 4, & 2 \end{pmatrix}$ from \mathbb{R}^3
- w' = (4, -1, 8) is not a linear combination of u and v: Suppose

$$\boldsymbol{w}' = \alpha_1 \boldsymbol{u} + \alpha_2 \boldsymbol{v}$$

$$(4, -1, 8) = (\alpha_1 + 6\alpha_2, 2\alpha_1 + 4\alpha_2, -\alpha_1 + 2\alpha_2)$$

gives

$$\alpha_1 + 6\alpha_2 = 4$$

$$2\alpha_1 + 4\alpha_2 = -1$$

$$-\alpha_1 + 2\alpha_2 = 8$$

The linear system is inconsistent

Subspace from a set of vectors

Theorem

Let $S = \{ v_1, v_2, \cdots, v_r \} \subseteq V$, let W be the set of all possible linear combinations of vectors in S. Then

- ullet W is a subspace of V
- ullet W is the "smallest" subspace of V that contain S any other subspace of V containing S contains W

Definition

Let $S=\{\, {\boldsymbol v}_1,\ {\boldsymbol v}_2,\ \cdots,\ {\boldsymbol v}_r\,\}\subseteq V$, the subspace W of V that consists of all linear combinations of the vectors in S is called the subspace of V generated by S, and we say the vectors ${\boldsymbol v}_1,\ {\boldsymbol v}_2,\ \cdots,\ {\boldsymbol v}_r$ span W. We write

$$W = \operatorname{span}\{\boldsymbol{v}_1, \ \boldsymbol{v}_2, \ \cdots, \ \boldsymbol{v}_r\}, \quad W = \operatorname{span}(S), \quad W = \langle S \rangle.$$

Subspace generated by S – example

Example (The standard unit vectors span \mathbb{R}^n)

The unit vectors

$$e_1 := (1, 0, 0, \dots, 0), \quad e_2 := (0, 1, 0, \dots, 0), \quad \dots, \quad e_n := (0, 0, 0, \dots, 1)$$

are called the *standard unit vectors* of \mathbb{R}^n .

ullet Any $oldsymbol{v}=ig(v_1,\ v_2,\ \dots,\ v_nig)\in\mathbb{R}^n$ can be expressed as

$$\boldsymbol{v} = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2 + \dots + v_n \boldsymbol{e}_n$$

- $\mathbb{R}^n = \operatorname{span}\{\boldsymbol{e}_1, \; \boldsymbol{e}_2, \; \cdots, \; \boldsymbol{e}_n\}$
- ullet For example, $\mathbb{R}^3=\mathrm{span}\{oldsymbol{e}_1,\;oldsymbol{e}_2,\;oldsymbol{e}_3\}$

$$e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$$

• e.g. v = (2, 3, -2)

Test for spanning

Example

• Determine if the vectors v_1 , v_2 , v_3 span \mathbb{R}^3

$$v_1 = (1, 1, 2), v_2 = (1, 0, 1), v_3 = (2, 1, 3)$$

• We need to show every vector $m{u} \in \mathbb{R}^3$ can be expressed as a linear combination of $m{v}_1, \ m{v}_2, \ m{v}_3$

$$(u_1, u_2, u_3) = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \alpha_3 \boldsymbol{v}_3$$

$$(u_1, u_2, u_3) = (\alpha_1 + \alpha_2 + 2\alpha_3, \alpha_1 + \alpha_3, 2\alpha_1 + \alpha_2 + 3\alpha_3)$$

or

$$\alpha_1 + \alpha_2 + 2\alpha_3 = u_1$$

$$\alpha_1 + \alpha_3 = u_2$$

$$2\alpha_1 + \alpha_2 + 3\alpha_3 = u_3$$

Test for spanning

Example

$$\alpha_1 + \alpha_2 + 2\alpha_3 = u_1$$

$$\alpha_1 + \alpha_3 = u_2$$

$$2\alpha_1 + \alpha_2 + 3\alpha_3 = u_3$$

• We need to show the linear system is consistent for all values of u_1, u_2, u_3 , which is true iff the coefficient matrix is invertible

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix}, \quad \det(A) = 0$$

• The vectors v_1 , v_2 , v_3 do not span \mathbb{R}^3

Test for spanning $-\mathbb{R}^n$

From the previous examples, we have the following result for a special case

Theorem

$$S=\{m{v}_1,m{v}_2,\dots,m{v}_n\}$$
 spans \mathbb{R}^n iff the determinant $egin{bmatrix} m{v}_1 \ m{v}_2 \ dots \ m{v}_n \end{bmatrix}
eq 0.$

Solution spaces of homogeneous systems

Theorem

The solution set of a homogeneous linear system Ax = 0 of m equations in n unknowns is a subspace of \mathbb{R}^n .

Definition

This subspace is called the *solution space* of the system.

Note

We only consider homogeneous linear system because the zero vector is an element of a vector space.

Example

$$\begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

General solution

$$x = 2s - 3t, \quad y = s, \quad z = t$$

it follows that

$$x - 2y + 2z = 0$$

Corresponds to a plane through the origin.

Example

$$\begin{pmatrix} 1 & -2 & 3 \\ -3 & 7 & -8 \\ -2 & 4 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

General solution

$$x = -35t$$
, $y = -t$, $z = t$

Corresponds to a line through the origin. The parametric equation for the line is

$$x = -35t$$
, $y = -t$, $z = t$, $t \in \mathbb{R}$.

Example

$$\begin{pmatrix} 1 & -2 & 3 \\ -3 & 7 & -8 \\ 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Has a unique solution $\mathbf{0}$, corresponding to the zero subspace of \mathbb{R}^3

Example

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The solution space $= \mathbb{R}^3$

Vector spaces and matrix transformations

- Real Vector Space
- Subspaces
- Linear independence
- Coordinates and basis
- Dimension
- Change of basis
- Matrix operators
- Proofs and principles

Linearly independent vectors

Definition

$$S = \{v_1, v_2, \dots, v_r\} \subseteq V$$
 is said to be *linearly independent* if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_r \mathbf{v}_r = \mathbf{0} \Longrightarrow \alpha_1 = 0, \ \alpha_2 = 0, \ \dots, \ \alpha_r = 0$$

Otherwise, S is said to be *linearly dependent*.

Linearly independent vectors – \mathbb{R}^n

Theorem

$$S=\{m{v}_1,m{v}_2,\dots,m{v}_n\}\subseteq\mathbb{R}^n$$
 is linearly independent iff the determinant $egin{bmatrix} m{v}_2 \ dots \ m{v}_n \end{bmatrix}
eq 0$

Proof

 ${\cal S}$ is linearly independent iff the linear system

$$\alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_r \boldsymbol{v}_r = \boldsymbol{0}$$

has only the trivial solution. The coefficient matrix A has columns given by v_i^\top . $\det(A) = \det(A^\top)$

Linearly dependent vectors in \mathbb{R}^n

Theorem

$$S = \{ \boldsymbol{v}_1, \ \boldsymbol{v}_2, \ \dots, \boldsymbol{v}_r \} \subseteq \mathbb{R}^n$$
. If $r > n$, then S is linearly dependent.

Proof.

$$\alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_r \boldsymbol{v}_r = \boldsymbol{0}$$

corresponds to the homogeneous system

which has more equations than unknowns

Linearly independent vectors – example

Example

$$v_1 = (1, -2, 3), v_2 = (5, 6, -1), v_3 = (3, 2, 1)$$

$$\alpha_1(1, -2, 3) + \alpha_2(5, 6, -1) + \alpha_3(3, 2, 1) = (0, 0, 0)$$

$$\alpha_1 + 5\alpha_2 + 3\alpha_3 = 0$$

$$-2\alpha_1 + 6\alpha_2 + 2\alpha_3 = 0$$

$$3\alpha_1 - \alpha_2 + \alpha_3 = 0$$

The determinant of the coefficient matrix

$$\begin{vmatrix} 1 & 5 & 3 \\ -2 & 6 & 2 \\ 3 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ 5 & 6 & -1 \\ 3 & 2 & 1 \end{vmatrix} = 0 \Longrightarrow \text{linearly dependent}$$

Solution set is
$$\left\{ \left(-\frac{1}{2}t, -\frac{1}{2}t, t \right) \mid t \in \mathbb{R} \right\}$$

Linearly independent vectors – example

Example

ullet Determine whether $oldsymbol{v}_1, \ oldsymbol{v}_2, \ oldsymbol{v}_3 \in \mathbb{R}^3$ are linearly independent

$$\mathbf{v}_1 = \begin{pmatrix} 1, & -2, & 3 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 5, & 6, & -1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 3, & 2, & 1 \end{pmatrix}$$
$$\begin{vmatrix} 1 & -2 & 3 \\ 5 & 6 & -1 \\ 3 & 2 & 1 \end{vmatrix} = 0$$

• In fact, $v_3 - \frac{1}{2}v_1 - \frac{1}{2}v_2 = 0$

Linearly independent vectors – example

Example

• Determine whether $oldsymbol{v}_1, \ oldsymbol{v}_2, \ oldsymbol{v}_3 \in \mathbb{R}^4$ are linearly independent

$$v_1 = (1, 2, 2, -1), v_2 = (4, 9, 9, -4), v_3 = (5, 8, 9, -5)$$

$$\alpha_1 (1, 2, 2, -1) + \alpha_2 (4, 9, 9, -4) + \alpha_3 (5, 8, 9, -5) = (0, 0, 0, 0)$$

$$\alpha_1 + 4\alpha_2 + 5\alpha_3 = 0$$

$$2\alpha_1 + 9\alpha_2 + 8\alpha_3 = 0$$

$$2\alpha_1 + 9\alpha_2 + 9\alpha_3 = 0$$

$$-\alpha_1 - 4\alpha_2 - 5\alpha_3 = 0$$

• The system has only the trivial solution \Longrightarrow the vectors are linearly independent

Linearly independent vectors

Theorem

 $S = \{v_1, v_2, \dots, v_r\} \subseteq V$, $r \ge 2$, S is linearly independent iff no vector in S can be expressed as a linear combination of the others.

Example

- $S = \{(2, 3), (1, 0), (0, 1)\}$, linearly dependent
- $S = \{ (1, 0), (0, 1) \}$, linearly independent

Special cases

- A finite set that contains 0 is linearly dependent
- A set with exactly one vector is linearly independent iff that vector is not 0
- A set with exactly two vectors is linearly independent iff neither vector is a scalar multiple of the other

Vector spaces and matrix transformations

- Real Vector Space
- Subspaces
- Linear independence
- Coordinates and basis
- Dimension
- Change of basis
- Matrix operators
- Proofs and principles

Rectangular coordinate systems

• It is common to use rectangular coordinate systems to create a one-to-one correspondence between points in 2-D space and ordered pairs of real numbers and between points in 3-D space and ordered triple of real numbers

Non-rectangular coordinate system

• Although rectangular coordinate systems are common, they are not essential.

Coordinate systems

- We can specify a coordinate system using vectors rather than coordinate axes
- ullet Here, we have re-created the coordinate system from the previous slide by using unit vectors to identify the positive directions and then attaching coordinates to a point P using the scalar coefficients in the equations

$$\overrightarrow{OP} = a\mathbf{u}_1 + b\mathbf{u}_2, \quad \overrightarrow{OP} = a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$$

Units of measurement

- Units of measurement are essential ingredients of any coordinate system
- In geometry problems one tries to use the same unit of measurement on all axes to avoid distorting the shapes of figures.
- This is less important in applications where coordinates represent physical quantities with diverse units (for example, time in seconds on one axis and temperature in degrees Celsius on another axis).
- To allow for this level of generality, we will relax the requirement that unit vectors be used to identify the positive directions and require only that those vectors be linearly independent.
- We will refer to these as the "basis vectors" for the coordinate system.

Units of measurement

The directions of the basis vectors establish the positive directions, the lengths of the basis vectors establish the spacing between the integer points on the axes

Finite-dimensional vector spaces

• We will now extend the concept of "basis vectors" and "coordinate systems" to general vector spaces

Definition

A vector space V is said to be *finite-dimensional* if there is a finite set of vectors in V that spans V and is said to be *infinite-dimensional* if no such set exists

Basis

Definition

If $S = \{v_1, v_2, \dots, v_n\}$ is a set of vectors in a finite-dimensional vector space V, then S is called a *basis* for V if

- (a) S spans V
- (b) S is linearly independent

Basis – example

Example

ullet We have discussed that the standard unit vectors of \mathbb{R}^n

$$e_1 := (1, 0, 0, \dots, 0), \quad e_2 := (0, 1, 0, \dots, 0), \quad \dots, \quad e_n := (0, 0, 0, \dots, 1)$$

span \mathbb{R}^n

- ullet They are also linearly independent: the matrix $oldsymbol{e}_1^ op \ oldsymbol{e}_2^ op \ \cdots \ oldsymbol{e}_n^ op) = I_n$
- Thus, they form a basis for \mathbb{R}^n standard basis for \mathbb{R}^n .

Basis for \mathbb{R}^n

Theorem

Theorem
$$S=\{m{v}_1,m{v}_2,\dots,m{v}_n\}$$
 is a basis for \mathbb{R}^n iff the determinant $egin{bmatrix} m{v}_1 \ m{v}_2 \ dots \ m{v}_n \end{bmatrix}
eq 0.$

Example (Another basis for \mathbb{R}^3)

$$\boldsymbol{v}_1=\begin{pmatrix}1,&2,&1\end{pmatrix}$$
, $\boldsymbol{v}_2=\begin{pmatrix}2,&9,&0\end{pmatrix}$, $\boldsymbol{v}_3=\begin{pmatrix}3,&3,&4\end{pmatrix}$ The determinant

$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 9 & 0 \\ 3 & 3 & 4 \end{vmatrix} = -1 \neq 0$$

Thus $\{v_1, v_2, v_3\}$ is a basis for \mathbb{R}^3 .

Uniqueness of basis representation

Theorem

If $S = \{v_1, v_2, \dots, v_n\}$ is a basis for a vector space V, then every vector $v \in V$ has a unique representation as a linear combination of vectors in S:

$$\boldsymbol{v} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_v \boldsymbol{v}_n.$$

Coordinates

Definition

Let $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n \}$ be a basis for V. Suppose $\boldsymbol{v} \in V$

$$\boldsymbol{v} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_v \boldsymbol{v}_n,$$

then $\alpha_1, \alpha_2, \ldots, \alpha_n$ are called the *coordinates* of v relative to the basis S. The vector $(\alpha_1, \alpha_2, \cdots, \alpha_n)^{\top}$ is called the *coordinate vector of* v *relative to* S, denoted by

$$[\boldsymbol{v}]_S = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Remark

The order of vectors matters for coordinate vectors – we assume the underlying basis is ordered without saying so explicitly

Coordinates – example

Example

- Let S be the standard basis for \mathbb{R}^n
- The coordinate vector $[v]_S$ and the vector v are the same

Coordinates – example

Example

- We have discussed that $v_1=\begin{pmatrix}1,&2,&1\end{pmatrix}$, $v_2=\begin{pmatrix}2,&9,&0\end{pmatrix}$, $v_3=\begin{pmatrix}3,&3,&4\end{pmatrix}$ form a basis for \mathbb{R}^3
- Let $S = \{ v_1, v_2, v_3 \}$
- v = (5, -1, 9)
- Solve for $\alpha_1, \alpha_2, \alpha_3$

$$\boldsymbol{v} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \alpha_3 \boldsymbol{v}_3$$

we get

$$\alpha_1 = 1, \quad \alpha_2 = -1, \quad \alpha_3 = 2$$

Then

$$[oldsymbol{v}]_S = egin{pmatrix} 1 \ -1 \ 2 \end{pmatrix}$$

Vector spaces and matrix transformations

- Real Vector Space
- Subspaces
- Linear independence
- Coordinates and basis
- Dimension
- Change of basis
- Matrix operators
- Proofs and principles

Bases

Theorem

If B_1 , B_2 are bases of a vector space V, then $|B_1| = |B_2|$

Dimension

Definition

The dimension of a vector space V, denoted $\dim(V)$, is given by the cardinality of B, |B|, where B is a basis of V. The zero vector space is defined to have dimension zero.

Example

- $\dim(\mathbb{R}^n) = n$ the standard basis has n vectors
- ullet $S = \{oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_r\}$, linearly independent, then $\mathrm{span}(S)$ has dimension r

Dimension – example

Example (Dimension of a solution space)

$$x_1 + 3x_2 - 2x_3 + 2x_5 = 0$$

$$2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = 0$$

$$5x_3 + 10x_4 + 15x_6 = 0$$

$$2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 0$$

Solution is of the form

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (-3r - 4s - 2t, r - 2s, s, t, 0)$$

$$= r(-3, 1, 0, 0, 0, 0) + s(-4, 0, -2, 1, 0, 0) + t(-2, 0, 0, 0, 1, 0)$$

The vectors $\begin{pmatrix} -3, & 1, & 0, & 0, & 0 \end{pmatrix}$, $\begin{pmatrix} -4, & 0, & -2, & 1, & 0, & 0 \end{pmatrix}$, $\begin{pmatrix} -2, & 0, & 0, & 0, & 1, & 0 \end{pmatrix}$

span the solution space. They are also linearly independent (verify), thus the solution space has dimension 3.

Remark

- It can be shown that for any homogeneous linear system, the method of the last example always produces a basis for the solution space of the system.
- We omit the formal proof.

Vector spaces and matrix transformations

- Real Vector Space
- Subspaces
- Linear independence
- Coordinates and basis
- Dimension
- Change of basis
- Matrix operators
- Proofs and principles

The change-of-basis problem

The change-of-basis problem

 $v \in V$, $\dim(V) < \infty$. Let B_1 and B_2 be two bases for V. What is the relation between $[v]_{B_1}$ and $[v]_{B_2}$?

- B_1 old basis
- B_2 new basis
- Our objective is to find a relationship between the old and new coordinates of a fixed vector ${m v} \in V$

Two dimensional vector spaces

• Suppose $\dim(V) = 2$ $B_1 = \{u_1, u_2\}, \quad B_2 = \{w_1, w_2\}$ and

$$[{m w}_1]_{B_1} = \begin{pmatrix} a \\ b \end{pmatrix}, \quad [{m w}_2]_{B_1} = \begin{pmatrix} c \\ d \end{pmatrix}$$

i.e. $w_1 = au_1 + bu_2$, $w_2 = cu_1 + du_2$

• Suppose $[oldsymbol{v}]_{B_2}=inom{k_1}{k_2}$, so

$$v = k_1 w_1 + k_2 w_2 = k_1 (a u_1 + b u_2) + k_2 (c u_1 + d u_2) = (k_1 a + k_2 c) u_1 + (k_1 b + k_2 d) u_2$$

$$[oldsymbol{v}]_{B_1} = egin{pmatrix} k_1a + k_2c \ k_1b + k_2d \end{pmatrix} = egin{pmatrix} a & c \ b & d \end{pmatrix} egin{pmatrix} k_1 \ k_2 \end{pmatrix} = egin{pmatrix} a & c \ b & d \end{pmatrix} [oldsymbol{v}]_{B_2}$$

$$P := \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} [\boldsymbol{w}_1]_{B_1} & [\boldsymbol{w}_2]_{B_1} \end{pmatrix}$$

Change of basis and transition matrices

- $v \in V$, $B_1 = \{u_1, u_2, \dots, u_n\}$, $B_2 = \{w_1, w_2, \dots, w_n\}$ basis for V
- Then

$$[\boldsymbol{v}]_{B_1} = P[\boldsymbol{v}]_{B_2}$$

where

$$P = \begin{pmatrix} [\boldsymbol{w}_1]_{B_1} & [\boldsymbol{w}_2]_{B_1} & \cdots & [\boldsymbol{w}_n]_{B_1} \end{pmatrix}$$

• P: transition matrix from B_2 to B_1 , denoted $P_{B_2 o B_1}$

$$P_{B_2 \to B_1} = ([\boldsymbol{w}_1]_{B_1} \ [\boldsymbol{w}_2]_{B_1} \ \cdots \ [\boldsymbol{w}_n]_{B_1})$$

$$P_{B_1 \rightarrow B_2} = \begin{pmatrix} [\boldsymbol{u}_1]_{B_2} & [\boldsymbol{u}_2]_{B_2} & \cdots & [\boldsymbol{u}_n]_{B_2} \end{pmatrix}$$

The coordinate vector

$$[v]_{B_1} = P_{B_2 \to B_1}[v]_{B_2}, \quad [v]_{B_2} = P_{B_1 \to B_2}[v]_{B_1}$$

Change of basis and transition matrices – example

Example

•
$$B_1 = \{ u_1, u_2 \}, B_2 = \{ w_1, w_2 \}, \text{ basis for } \mathbb{R}^2$$

• Transition matrix $P_{B_2 \to B_1}$

$$[\boldsymbol{w}_1]_{B_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad [\boldsymbol{w}_2]_{B_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \Longrightarrow P_{B_2 \to B_1} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

• Transition matrix $P_{B_1 \to B_2}$

$$[oldsymbol{u}_1]_{B_2} = egin{pmatrix} -1 \ 1 \end{pmatrix}, \quad [oldsymbol{u}_2]_{B_2} = egin{pmatrix} 2 \ -1 \end{pmatrix} \Longrightarrow P_{B_1 o B_2} = egin{pmatrix} -1 & 2 \ 1 & -1 \end{pmatrix}$$

• Suppose $[v]_{B_2} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$, $[v]_{B_1} = P_{B_2 \to B_1}[v]_{B_2} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$

$$m{u}_1=egin{pmatrix}1,&0\end{pmatrix}, \ m{u}_2=egin{pmatrix}0,&1\end{pmatrix}, \ m{w}_1=egin{pmatrix}1,&1\end{pmatrix}, \ m{w}_2=egin{pmatrix}2,&1\end{pmatrix}$$

72 / 131

Invertibility of transition matrices

$$P_{B_2 \to B_1} P_{B_1 \to B_2} = P_{B_1 \to B_1} = I$$

Using the previous example

$$P_{B_2 \to B_1} P_{B_1 \to B_2} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Theorem

The transition matrix $P_{B_1 \to B_2}$ is invertible and $P_{B_1 \to B_2}^{-1} = P_{B_2 \to B_1}$.

Vector spaces and matrix transformations

- Real Vector Space
- Subspaces
- Linear independence
- Coordinates and basis
- Dimension
- Change of basis
- Matrix operators
- Proofs and principles

Matrix transformations

- Consider the linear system Ax = w
- We can view it as a transformation that maps a vector $m{x} \in \mathbb{R}^n$ into the vector $m{w} \in \mathbb{R}^m$
- We call this a matrix transformation (or matrix operator when m=n), denoted

$$T_A: \mathbb{R}^n \rightarrow \mathbb{R}^m$$
 $x \mapsto Ax$

• We call the transformation T_A multiplication by A

Example

• Zero transformation:

$$T_O(x) = Ox = 0$$

Identity operator:

$$T_I(\boldsymbol{x}) = I\boldsymbol{x} = \boldsymbol{x}$$

Properties of matrix transformations

Theorem

For any $A \in \mathcal{M}_{m \times n}$, $\alpha \in \mathbb{R}$, $u, v \in \mathbb{R}^n$, $T_A : \mathbb{R}^n \to \mathbb{R}^m$ satisfies

- $T_A(\mathbf{0}) = \mathbf{0}$
- $T_A(\alpha u) = \alpha T_A(u)$ (Homogeneity property)
- $T_A(u + v) = T_A(u) + T_A(v)$ (Additivity property)
- $T_A(\boldsymbol{u}-\boldsymbol{v})=T_A(\boldsymbol{u})-T_A(\boldsymbol{v})$

Remark

When we deal with matrix transformations, vectors are assumed to be column vectors unless explicitly stated otherwise.

Standard matrix

Theorem

 $T_A:\mathbb{R}^n o \mathbb{R}^m$, $T_B:\mathbb{R}^n o \mathbb{R}^m$. If $T_A(\boldsymbol{x}) = T_B(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathbb{R}^n$, then A = B.

Note

- Every $A \in \mathcal{M}_{m \times n}$ produces exactly one matrix transformation (multiplication by A)
- Every matrix transformation from \mathbb{R}^n to \mathbb{R}^m arises from exactly one $A \in \mathcal{M}_{m \times n}$ standard matrix for the transformation

Find standard matrix

• The standard matrix for $T: \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$A = \begin{pmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{pmatrix}$$

• e_1 , e_2 , ..., e_n : standard basis

Operators on \mathbb{R}^2 and \mathbb{R}^3

- There are many ways to transform the vector spaces \mathbb{R}^2 and \mathbb{R}^3
- Some can be accomplished by using a matrix operator T_A , $A \in \mathcal{M}_{2\times 2}$ or $\mathcal{M}_{3\times 3}$
- e.g. rotations about the origin, reflections about lines and planes through the origin, and projections onto lines and planes through the origin

Reflection operators

 Map each point into its symmetric image about a fixed line or a fixed plane that contains the origin

Reflection operators on \mathbb{R}^2 – reflection about the x-axis

•
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$$

• Images of $oldsymbol{e}_1$ and $oldsymbol{e}_2$

$$T(e_1) = T\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

 $T(e_2) = T\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\-1 \end{pmatrix}$

• Standard matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Reflection operators on \mathbb{R}^2 – reflection about the y-axis

•
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$$

• Images of e_1 and e_2

$$T(e_1) = T\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} -1\\0 \end{pmatrix}$$
 $T(e_2) = T\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix}$

• Standard matrix $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Reflection operators on \mathbb{R}^2 – reflection about the line y=x

•
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$$

• Images of e_1 and e_2

$$T(e_1) = T\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix}$$

 $T(e_2) = T\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix}$

• Standard matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Reflection operators on \mathbb{R}^3

Reflection about the xy-plane, xz-plane and yz-plane

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ -z \end{pmatrix} \qquad T(e_1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ T(e_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ T(e_3) = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -y \\ z \end{pmatrix} \qquad T(e_1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ T(e_2) = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, \ T(e_3) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ y \\ z \end{pmatrix} \qquad T(e_1) = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \ T(e_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ T(e_3) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Projection operators

 Projection operators/orthogonal projection operators: Map each point into its orthogonal projection onto a fixed line or plane through the origin

Projection operators on \mathbb{R}^2

• Orthogonal projection onto the x-axis

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

• Images of e_1 and e_2

$$T(e_1) = T\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

 $T(e_2) = T\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$

Standard matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Projection operators on \mathbb{R}^2

• Orthogonal projection onto the y-axis

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ y \end{pmatrix}$$

ullet Images of $oldsymbol{e}_1$ and $oldsymbol{e}_2$

$$T(e_1) = T\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$$

 $T(e_2) = T\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix}$

Standard matrix

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Projection operators on \mathbb{R}^3

Orthogonal projection onto the xy-plane, xz-plane and yz-plane

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \qquad T(e_1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ T(e_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ T(e_3) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} \qquad T(e_1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ T(e_2) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \ T(e_3) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} \qquad T(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \ T(e_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ T(e_3) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Rotation operators

• Move points along arcs of circles centered at the origin

Rotation operators

• Consider the rotation operator $T:\mathbb{R}^2 \to \mathbb{R}^2$ that moves points counterclockwise about the origin through a positive angle θ

$$T(e_1) = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \quad T(e_2) = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$$

Standard matrix - rotation matrix

$$R_{\theta} := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

• $\boldsymbol{x} = (x, y), \boldsymbol{w} = R_{\theta} \boldsymbol{x}^{\top}, \longrightarrow$

rotation equations:

$$w_1 = x \cos \theta - y \sin \theta$$

$$w_2 = x \sin \theta + y \cos \theta$$

Rotation operators

• The rotation matrix for a clockwise rotation of θ , or a rotation of $-\theta$, radians has rotation matrix

$$R_{-\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

Rotation operator on \mathbb{R}^2 – example

Example

Find the image of $x=\begin{pmatrix}1\\1\end{pmatrix}$ under a rotation of $\frac{\pi}{6}$ radians $(=30^\circ)$ about the origin

$$R_{\frac{\pi}{6}}\boldsymbol{x} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}-1}{2} \\ \frac{1+\sqrt{3}}{2} \end{pmatrix} \approx \begin{pmatrix} 0.37 \\ 1.37 \end{pmatrix}$$

Rotation operators on \mathbb{R}^3

- A rotation of vectors in \mathbb{R}^3 is commonly described in relation to a line through the origin called the *axis* of rotation and unit vector u along that line
- Positive angle: counterclockwise looking toward the origin along the positive coordinate axis
- right-hand-rule: cup the fingers of right hand so they curl in the direction of the rotation, thumb points in the direction of u corresponds to positive angle

Rotation operators on $\ensuremath{\mathbb{R}}^3$

Operator	Rotation equations	Standard matrix
Counterclockwise rotation about the positive $x-$ axis through an angle θ	$w_1 = x$ $w_2 = y\cos\theta - z\sin\theta$ $w_3 = y\sin\theta + z\cos\theta$	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} $
Counterclockwise rotation about the positive $y-$ axis through an angle θ	$w_1 = x \cos \theta + z \sin \theta$ $w_2 = y$ $w_3 = -x \sin \theta + z \cos \theta$	$ \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} $
Counterclockwise rotation about the positive $z-$ axis through an angle θ		$ \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} $

Dilations and contractions

- $\alpha \in \mathbb{R}$, $\alpha > 0$
- $T(x) = \alpha x$ on \mathbb{R}^2 or \mathbb{R}^3 has the effect of increasing or decreasing the length of each vector by a factor of α
- Contraction with factor α : $0 \le \alpha < 1$
- *Dilation* with factor α : $\alpha > 1$
- Identity operator: $\alpha = 1$

Dilations and contractions on \mathbb{R}^2 – $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix}$

(1,0)

Dilations and contractions on \mathbb{R}^3

• Similarly, for dilation/contraction with factor α on \mathbb{R}^3

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha x \\ \alpha y \\ \alpha z \end{pmatrix}$$

• The standard matrix is

$$\begin{pmatrix}
\alpha & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \alpha
\end{pmatrix}$$

Expansions and compressions

- Dilation or contraction: all coordinates are multiplied by a nonnegative factor
- Compression/expansion: only one coordinate is multiplied by α

Expansions and compressions in the x-direction – $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha x \\ y \end{pmatrix}$

Expansions and compressions in the y-direction – $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ \alpha y \end{pmatrix}$

Shears

- $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \alpha y \\ y \end{pmatrix}$
- Translates a point $\begin{pmatrix} x \\ y \end{pmatrix}$ in the xy-plane parallel to the x-axis by an amount αy that is proportional to the y-coordinate of the point.
- Points on the x-axis are fixed (y=0), the translation distance increases as we progress away from the x-axis
- Shear in the x-direction by a factor α
- Similarly, $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y + \alpha x \end{pmatrix}$ Shear in the y-direction by a factor α

Shears

Shears – example

Example

- $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$: shear in the x-direction by a factor 2
- $\begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$: shear in the x-direction by a factor -2
- $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$: dilation with factor 2
- $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$: expansion in the x-direction with factor 2

Orthogonal projections onto lines through the origin

• Orthogonal projections onto the coordinate axes in \mathbb{R}^2 are special cases of the operator that maps each point into its orthogonal projection onto a line L through the origin that makes an angle θ with the positive x-axis

Orthogonal projection on a line

- Find the orthogonal projections of the vectors $e_1=\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $e_2=\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ on the line L that makes an angle θ with the positive x-axis in \mathbb{R}^2
- ullet First we find the orthogonal projection of e_1 onto $oldsymbol{a} := egin{pmatrix} \cos heta \ \sin heta \end{pmatrix}$

$$\operatorname{proj}_{\boldsymbol{a}} \boldsymbol{e}_{1} = \frac{\boldsymbol{e}_{1} \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^{2}} \boldsymbol{a} = \frac{\cos \theta + 0}{1} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
$$= \begin{pmatrix} \cos^{2} \theta \\ \sin \theta \cos \theta \end{pmatrix}$$

• We note that for any other vector, u on the line L, $u = \alpha a$ for some $\alpha \in \mathbb{R}$

Similarly

$$\operatorname{proj}_{\boldsymbol{a}} \boldsymbol{e}_{2} = \frac{\boldsymbol{e}_{1} \cdot \boldsymbol{a}}{\|\boldsymbol{a}\|^{2}} \boldsymbol{a}$$

$$= \begin{pmatrix} \sin \theta \cos \theta \\ \sin^{2} \theta \end{pmatrix}$$

Orthogonal projection onto a line through the origin

- projection onto a line L through the origin that makes an angle θ with the positive $x-{\sf axis}$
- ullet The images of $oldsymbol{e}_1$ and $oldsymbol{e}_2$ are

$$T(e_1) = \begin{pmatrix} \cos^2 \theta \\ \sin \theta \cos \theta \end{pmatrix}, \quad T(e_2) = \begin{pmatrix} \sin \theta \cos \theta \\ \sin^2 \theta \end{pmatrix}$$

Standard matrix is

$$P_{\theta} := \begin{pmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{pmatrix} = \begin{pmatrix} \cos^2 \theta & \frac{1}{2} \sin 2\theta \\ \frac{1}{2} \sin 2\theta & \sin^2 \theta \end{pmatrix}$$

Orthogonal projection onto a line through the origin

Example

- Find the orthogonal projection of the vector $\boldsymbol{x} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ onto the line through the origin that makes an angle of $\frac{\pi}{6} (=30^\circ)$ with the positive x-axis
- The standard matrix is

$$P_{\pi/6} = \begin{pmatrix} \cos^2(\pi/6) & \sin(\pi/6)\cos(\pi/6) \\ \sin(\pi/6)\cos(\pi/6) & \sin^2(\pi/6) \end{pmatrix} = \begin{pmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix}$$

$$P_{\pi/6}\boldsymbol{x} = \begin{pmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 1 \\ 5 \end{pmatrix} = \begin{pmatrix} \frac{3+5\sqrt{3}}{4} \\ \frac{\sqrt{3}+5}{4} \end{pmatrix} \approx \begin{pmatrix} 2.91 \\ 1.68 \end{pmatrix}$$

Reflection about lines through the origin

- $H_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$
- Maps each point into its reflection about a line L through the origin that makes an angle θ with the positive x-axis
- From the figure, we can see

$$P_{\theta} \boldsymbol{x} - \boldsymbol{x} = \frac{1}{2} (H_{\theta} \boldsymbol{x} - \boldsymbol{x}) \Longrightarrow H_{\theta} \boldsymbol{x} = (2P_{\theta} - I) \boldsymbol{x}$$

It follows from the theorem that

$$H_{\theta} = 2P_{\theta} - I = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$$

Theorem

 $T_A:\mathbb{R}^n \to \mathbb{R}^m$, $T_B:\mathbb{R}^n \to \mathbb{R}^m$. If $T_A(\boldsymbol{x}) = T_B(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathbb{R}^n$, then A = B.

Reflection about lines through the origin

Example

- Find the reflection of the vector $\boldsymbol{x}=\begin{pmatrix}1\\5\end{pmatrix}$ about the line through the origin that makes an angle $\pi/6$ (= 30°) with the positive x-axis
- The standard matrix

$$H_{\pi/6} = \begin{pmatrix} \cos(\pi/3) & \sin(\pi/3) \\ \sin(\pi/3) & -\cos(\pi/3) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$H_{\pi/6} m{x}^ op = egin{pmatrix} rac{1}{2} & rac{\sqrt{3}}{2} \ rac{\sqrt{3}}{2} & -rac{1}{2} \end{pmatrix} egin{pmatrix} 1 \ 5 \end{pmatrix} = egin{pmatrix} rac{1+5\sqrt{3}}{2} \ rac{\sqrt{3}-5}{2} \end{pmatrix} pprox egin{pmatrix} 4.83 \ -1.63 \end{pmatrix}$$

Compositions of matrix transformations

- $T_A: \mathbb{R}^n \to \mathbb{R}^k$, $T_B: \mathbb{R}^k \to \mathbb{R}^m$
- The composition of T_B and T_A is a matrix transformation

$$T_B \circ T_A : \mathbb{R}^n \to \mathbb{R}^m$$

 $\boldsymbol{x} \mapsto (BA)\boldsymbol{x}$

Because

$$T_B \circ T_A(\boldsymbol{x}) = T_B(T_A(\boldsymbol{x})) = B(A\boldsymbol{x}) = (BA)\boldsymbol{x}$$

Thus

$$T_B \circ T_A = T_{BA}$$

Compositions of matrix transformations

Consider

$$T_A: \mathbb{R}^n \to \mathbb{R}^k, \quad T_B: \mathbb{R}^k \to \mathbb{R}^\ell, \quad T_C: \mathbb{R}^\ell \to \mathbb{R}^m$$

Then

$$T_C \circ T_B \circ T_A : \mathbb{R}^n \to \mathbb{R}^m$$

and

$$(T_C \circ T_B \circ T_A)(\boldsymbol{x}) = T_C(T_B(T_A(\boldsymbol{x}))) = (CBA)\boldsymbol{x}$$

• i.e.

$$T_C \circ T_B \circ T_A = T_{CBA}$$

Compositions of matrix transformations

- Let us denote the standard matrix for T by [T]
- Then

$$[T_2 \circ T_1] = [T_2][T_1], \quad [T_3 \circ T_2 \circ T_1] = [T_3][T_2][T_1]$$

Composition is not commutative

Example (Composition is not commutative)

• T_1 : reflection about the line y=x; T_2 : orthogonal projection onto the y-axis

$$[T_1 \circ T_2] = [T_1][T_2] = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$[T_2 \circ T_1] = [T_2][T_1] = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Composition of rotations is commutative

Example

- Rotation in \mathbb{R}^2
- T_1 : rotate vectors about the origin through the angle θ_1
- T_2 : rotate vectors about the origin through the angle θ_2
- Standard matrix

$$[T_1] = \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix}, \quad [T_2] = \begin{pmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{pmatrix}$$

• With trigonometric identities, it can be verified that

$$[T_2 \circ T_1] = [T_1 \circ T_2] = \begin{pmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{pmatrix}$$

Vector spaces and matrix transformations

- Real Vector Space
- Subspaces
- Linear independence
- Coordinates and basis
- Dimension
- Change of basis
- Matrix operators
- Proofs and principles

Some properties of vectors

Theorem 1

Let V be a vector space, for any $\boldsymbol{u} \in V$ and $\alpha \in \mathbb{R}$

- (a) 0u = 0
- (b) $\alpha \mathbf{0} = \mathbf{0}$
- (c) (-1)u = -u
- (d) If $\alpha u = 0$, then $\alpha = 0$ or u = 0

Proof.

We will show the proof of part (c)

$$egin{array}{lll} oldsymbol{u} + (-1)oldsymbol{u} &=& 1oldsymbol{u} + (-1)oldsymbol{u} & (\operatorname{Axiom 8}) \\ &=& (1+(-1))oldsymbol{u} & (\operatorname{Axiom 6}) \\ &=& 0oldsymbol{u} & (\operatorname{property of real numbers}) \\ &=& oldsymbol{0} & (\operatorname{part (a)}) \end{array}$$

Subspace

Theorem

Let V be a vector space, a nonempty set $W\subseteq V$ is a subspace of V iff for any $u,v\in W$, $\alpha\in\mathbb{R}$

- 1. $u + v \in W$
- 2. $\alpha \boldsymbol{u} \in W$

Proof.

 \implies by definition.

 \Leftarrow By the previous discussion, we just need to prove the existence of additive identity and additive inverse. By Axiom 2 and Theorem 2 (a), (c)

$$0\mathbf{u} = \mathbf{0} \in W, \quad -\mathbf{u} \in W$$

Subspace from a set of vectors

Theorem

Let $S = \{ v_1, v_2, \cdots, v_r \} \subseteq V$, let W be the set of all possible linear combinations of vectors in S. Then

- ullet W is a subspace of V
- ullet W is the "smallest" subspace of V that contain S any other subspace of V containing S contains W

Proof

For any
$$\boldsymbol{u} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_r \boldsymbol{v}_r, \ \boldsymbol{w} = \beta_1 \boldsymbol{v}_1 + \beta_2 \boldsymbol{v}_2 + \dots + \beta_r \boldsymbol{v}_r \in W$$

$$\boldsymbol{u} + \boldsymbol{w} = (\alpha_1 + \beta_1) \boldsymbol{v}_1 + (\alpha_2 + \beta_2) \boldsymbol{v}_2 + \dots + (\alpha_r + \beta_r) \boldsymbol{v}_r \in W$$

$$\gamma \boldsymbol{u} = (\gamma \alpha_1) \boldsymbol{v}_1 + (\gamma \alpha_2) \boldsymbol{v}_2 + \dots + (\gamma \alpha_r) \boldsymbol{v}_r \in W$$

W is closed under vector addition and scalar multiplication

Subspace from a set of vectors

Theorem

Let $S = \{ v_1, v_2, \cdots, v_r \} \subseteq V$, let W be the set of all possible linear combinations of vectors in S. Then

- W is a subspace of V
- ullet W is the "smallest" subspace of V that contain S any other subsapce of V containing S contains W

Proof.

Let W' be any subspace of V containing S. Since W' is closed under vector addition and scalar multiplication, it contains all linear combinations of vectors in S and hence contains W.

Solution spaces of homogeneous systems

Theorem

The solution set of a homogeneous linear system Ax = 0 of m equations in n unknowns is a subspace of \mathbb{R}^n .

Proof

- Let W be the solution set
- $\mathbf{0} \in W$, W is not empty
- For any $x_1, x_2 \in W$

$$A(\boldsymbol{x}_1 + \boldsymbol{x}_2) = A\boldsymbol{x}_1 + A\boldsymbol{x}_2 = \boldsymbol{0} \Longrightarrow \boldsymbol{x}_1 + \boldsymbol{x}_2 \in W$$

$$A(\alpha x_1) = \alpha_1(Ax_1) = \mathbf{0} \Longrightarrow \alpha x_1 \in W$$

Definition

W is called the *solution space* of the system.

Test for spanning $-\mathbb{R}^n$

From the previous examples, we have the following result for a special case

Theorem

$$S=\{m{v}_1,m{v}_2,\ldots,m{v}_n\}$$
 spans \mathbb{R}^n iff the determinant $egin{bmatrix} m{v}_1 \ m{v}_2 \ dots \ m{v}_n \end{bmatrix}
eq 0.$

Proof.

S spans \mathbb{R}^n iff the following equation has solutions for $\alpha_1, \alpha_2, \ldots, \alpha_n$

$$\alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_n \boldsymbol{v}_n = \boldsymbol{u}.$$

for any vector $u \in \mathbb{R}^n$. This equation corresponds to a linear system in the unknowns α_i 's with coefficient matrix A, whose columns are v_j 's. Consequently, the equation has solutions for all u iff $\det(A) \neq 0$. The result follows from that $\det(A) = \det(A^\top)$.

Linearly independent vectors

Theorem

 $S = \{v_1, v_2, \dots, v_r\} \subseteq V$, S is linearly independent iff no vector in S can be expressed as a linear combination of the others.

Proof.

We will prove S is linearly dependent iff at least one vector in S can be expressed as a linear combination of the others.

 \Longrightarrow Consider the equation

$$\alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_r \boldsymbol{v}_r = \boldsymbol{0}$$

If S is linearly dependent, then WLOG, suppose $\alpha_1 \neq 0$, and

$$\mathbf{v}_1 = \left(-\frac{\alpha_2}{\alpha_1}\right)\mathbf{v}_2 + \dots + \left(-\frac{\alpha_r}{\alpha_1}\right)$$

Linearly independent vectors

Theorem

 $S = \{v_1, v_2, \dots, v_r\} \subseteq V$, $r \ge 2$, S is linearly independent iff no vector in S can be expressed as a linear combination of the others.

Proof

We will prove S is linearly dependent iff at least one vector in S can be expressed as a linear combination of the others.

$$\longleftarrow$$
 Suppose $v_1 = \beta_2 v_2 + \cdots + \beta_2 v_r$, then

$$-\boldsymbol{v}_1 + \beta_2 \boldsymbol{v}_2 + \cdots + \beta_2 \boldsymbol{v}_r = \boldsymbol{0}.$$

Example

- $S = \{(2, 3), (1, 0), (0, 1)\}$, linearly dependent
- $S = \{ (1, 0), (0, 1) \}$, linearly independent

Special cases

Theorem

- A finite set that contains 0 is linearly dependent
- ullet A set with exactly one vector is linearly independent iff that vector is not $oldsymbol{0}$
- A set with exactly two vectors is linearly independent iff neither vector is a scalar multiple of the other

Proof.

We prove the first part. Let $S = \{ {m v}_1, {m v}_2, \dots, {m v}_r, {m 0} \}$

$$0v_1 + 0v_2 + \cdots + 0v_r + 10 = 0$$

Basis for \mathbb{R}^n

Theorem

$$S=\{m{v}_1,m{v}_2,\dots,m{v}_n\}$$
 is a basis for \mathbb{R}^n iff the determinant $egin{bmatrix} m{v}_1 \ m{v}_2 \ m{dots} \ m{v}_n \end{bmatrix}
eq 0.$

Proof.

We have proved that

Theorem

$$S = \{m{v}_1, m{v}_2, \dots, m{v}_n\} \subseteq \mathbb{R}^n$$
 is linearly independent iff the determinant $eq 0$

Theorem

$$S = \{oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_n\}$$
 spans \mathbb{R}^n iff the determinant $eq 0$

Uniqueness of basis representation

Theorem

If $S = \{v_1, v_2, \dots, v_n\}$ is a basis for a vector space V, then every vector $v \in V$ has a unique representation as a linear combination of vectors in S:

$$\boldsymbol{v} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_v \boldsymbol{v}_n.$$

Proof.

Suppose

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_n \mathbf{v}_n,$$

then

$$(\alpha_1 - \beta_1)\boldsymbol{v}_1 + (\alpha_2 - \beta_2)\boldsymbol{v}_2 + \dots + (\alpha_n - \beta_n)\boldsymbol{v}_n = \mathbf{0}$$

S is linearly independent $\implies \alpha_1 - \beta_1 = 0, \ \alpha_2 - \beta_2 = 0, \ \dots, \ \alpha_n - \beta_n = 0$

Lemma

Let S_1, S_2 be subsets of V. If $V = \operatorname{span}(S_1)$ and vectors in S_2 are linearly independent, then $|S_1| \geq |S_2|$.

Proof

Suppose $S_1 = \{ v_1, v_2, \dots, v_{r_1} \}$ and $S_2 = \{ w_1, w_2, \dots, w_{r_2} \}$. Since $V = \text{span}(S_1)$,

$$\boldsymbol{w}_1 = \sum_{j=1}^{r_1} \alpha_j \boldsymbol{v}_j$$

At least one of $a_j \neq 0$ as vectors in S_2 are linearly independent – $\mathbf{0} \notin S_2$. WLOG, assume $a_1 \neq 0$, then

$$\mathbf{v}_1 = -\sum_{j=2}^{r_1} \frac{a_j}{a_1} \mathbf{v}_j + \frac{1}{a_1} \mathbf{w}_1 \Longrightarrow V = \operatorname{span}(\{ \mathbf{w}_1, \mathbf{v}_2, \dots, \mathbf{v}_{r_1} \})$$

Lemma

Let S_1, S_2 be subsets of V. If $V = \operatorname{span}(S_1)$ and vectors in S_2 are linearly independent, then $|S_1| \ge |S_2|$.

Proof

 $V = \operatorname{span}(\{ \boldsymbol{w}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_{r_1} \})$, then, we can write

$$\boldsymbol{w}_2 = \beta_1 \boldsymbol{w}_1 + \sum_{j=2}^{r_1} \beta_j \boldsymbol{v}_j,$$

at least one of $\beta_j \neq 0$ for $2 \leq j \leq r_1$, otherwise w_2 is a linear combination of w_1 . Suppose $\beta_2 \neq 0$, We have

$$oldsymbol{v}_2 = -rac{eta_1}{eta_2}oldsymbol{w}_1 - \sum_{i=2}^{r_1}rac{eta_j}{eta_2}oldsymbol{v}_j + rac{1}{eta_2}oldsymbol{w}_2 \Longrightarrow V = \mathrm{span}(\set{oldsymbol{w}_1, oldsymbol{w}_2, oldsymbol{v}_3, \dots, oldsymbol{v}_{r_1}})$$

Lemma

Let S_1, S_2 be subsets of V. If $V = \operatorname{span}(S_1)$ and vectors in S_2 are linearly independent, then $|S_1| \geq |S_2|$.

Proof.

We can continue in this manner, if $r_1 < r_2$, we will deduce that $\{ w_1, w_2, \dots, w_{r_1} \}$ spans V and w_{r_1+1} can be written as a linear combination of $\{ w_1, w_2, \dots, w_{r_1} \}$, a contradiction.

Theorem

If B_1 , B_2 are bases of a vector space V, then $\left|B_1\right|=\left|B_2\right|$

Proof.

By the previous lemma,

$$|B_1| \ge |B_2|, |B_2| \ge |B_1| \Longrightarrow |B_1| = |B_2|.$$

Standard matrix

Theorem

 $T_A:\mathbb{R}^n o \mathbb{R}^m$, $T_B:\mathbb{R}^n o \mathbb{R}^m$. If $T_A(\boldsymbol{x}) = T_B(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathbb{R}^n$, then A = B.

Proof.

Consider standard basis e_1, e_2, \ldots, e_n

$$Ae_j = Be_j, \quad j = 1, 2, \dots, n$$

 Ae_j (resp. Be_j) is the jth column of A (resp. B)

Note

- Every $A \in \mathcal{M}_{m \times n}$ produces exactly one matrix transformation (multiplication by A)
- Every matrix transformation from \mathbb{R}^n to \mathbb{R}^m arises from exactly one $A \in \mathcal{M}_{m \times n}$ standard matrix for the transformation