Theme: Chomsky Normal Form (CNF) Laboratory tasks:

- 1. Eliminate ε productions.
- 2. Eliminate any renaming.
- 3. Eliminate inaccessible symbols.
- 4. Eliminate the non productive symbols.
- 5. Obtain the Chomsky Normal Form.

Normal forms of the context-free languages

In the case of arbitrary grammars the normal form was defined as grammars with no terminals in the left-hand side of productions. The normal form in the case of the context-free languages will contains some restrictions on the right-hand sides of productions.

Chomsky Normal Form

A context-free grammar $G=(V_N, V_T, P, S)$ is in Chomsky normal form, if all productions have form $A \to a$ or $A \to BC$, where $A, B, C \in V_N$, $a \in V_T$.

To each ϵ -free context-free language can be associated an equivalent grammar is Chomsky normal form.

Example:

$$G=(V_N, V_T, P, S) V_N=\{S, A, B, C, D\} V_T=\{a, b\}$$

 $P=\{1. S \rightarrow AC\}$

- 2. S→bA
- 3. S→B
- 4. $S \rightarrow aA$
- 5. $A \rightarrow \varepsilon$
- 6. $A \rightarrow aS$
- 7. $A \rightarrow ABAb$
- 8. $B \rightarrow a$
- 9. B→AbSA
- 10. C→abC
- 11. D \rightarrow AB}

1. Elimination of ε productions:

- a) $N_{\varepsilon} = \emptyset$
- b) for the production $A \rightarrow \varepsilon$ $N_{\varepsilon} = \emptyset \cup \{A\}$

$$N_{\varepsilon} = \{A\}$$

$P'=\{1. S \rightarrow AC$	11. S→C
2. S→bA	12. S→b

8. B
$$\rightarrow$$
AbSA
17. B \rightarrow bSA
18. B \rightarrow AbS
19. B \rightarrow bS

9.
$$C \rightarrow abC$$

2. Elimination of renaming:

The production that has the form $X \rightarrow Y$, X and Y are nonterminal, is called renaming.

The renaming from P' are: $S \rightarrow B$, $S \rightarrow C$, $D \rightarrow B$

$$R_S = \{S\}, R_B = \{B\}, R_C = \{C\}, R_D = \{D\}$$

for
$$S \to B$$
 $R_B = R_B \cup R_S = \{B\} \cup \{S\} = \{B, S\}$

for S
$$\to$$
C $R_C = R_C \cup R_S = \{C\} \cup \{S\} = \{C, S\}$

for D
$$\to$$
B $R_B = R_B \cup R_D = \{B, S\} \cup \{D\} = \{B, S, D\}$

$$P''=\{1. S \rightarrow AC$$
 18. $S \rightarrow a$

2.
$$S \rightarrow bA$$
 19. $S \rightarrow AbSA$

5.
$$A \rightarrow ABAb$$
 22. $S \rightarrow bSA$

7.
$$B \rightarrow AbSA$$
 24. $S \rightarrow bS$

8.
$$C \rightarrow abC$$
 25. $D \rightarrow bSA$

9.
$$D\rightarrow AB$$
 26. $D\rightarrow AbS$

11.
$$S \rightarrow a$$
 28. $D \rightarrow AbSA$

16. B
$$\rightarrow$$
AbS

17. B
$$\rightarrow$$
bS

3. Elimination of nonproductive symbols.
$$PROD(G) = \{A \mid A \in V_N, \exists A \Rightarrow v, v \in V_T \}$$

$$NEPROD(G) = V_N \setminus PROD(G)$$

$$V_N = \{S, A, B, C, D\}$$

$$PROD(G) = \{B, S, A, D\}$$

$$NEPROD(G) = \{S, A, B, C, D\} \setminus \{B, S, A, D\} = \{C\}$$

$$P'''=\{1. S\rightarrow a\}$$

18.
$$S \rightarrow AbSA$$

}

3.
$$S \rightarrow aA$$

5.
$$A \rightarrow ABAb$$

20.
$$S \rightarrow bSA$$

21.
$$S \rightarrow AbS$$

8. D
$$\rightarrow$$
 bSA

23. D
$$\rightarrow$$
 AbS

25. D
$$\rightarrow$$
 AbSA

```
15. B→bSA
16. B→AbS
17. B→bS }
```

4. Elimination of inaccesibile symbols:

Initial
$$ACCES(G) = \{S\}$$

 $ACCES(G) = \{x \mid \exists S \Rightarrow \alpha x \beta\}$
 $INACCES(G) = \{V_N \cup V_T \} \setminus ACCES(G)$
 $ACCES(G) = \{S, A, b, a, B\}$
 $V_N = \{S, A, B, D\}$ $V_T = \{a, b\}$
 $INACCES(G) = \{S, A, B, D, a, b\} \setminus \{S, A, b, a, B\} = \{D\}$

$$P^{IV} = \{ \\ 1. S \rightarrow a \\ 2. S \rightarrow bA \\ 3. S \rightarrow aA \\ 4. A \rightarrow aS \\ 5. A \rightarrow ABAb \\ 6. B \rightarrow a \\ 7. B \rightarrow AbSA \\ 10. S \rightarrow b \\ 11. S \rightarrow a \\ 12. A \rightarrow BAb \\ 13. A \rightarrow ABb \\ 14. A \rightarrow Bb \\ 15. B \rightarrow bSA \\ 16. B \rightarrow AbS$$

5. The Chomsky Normal Form

17. B→bS

A grammar in the Chomsky Normal Form is a grammar of rules that has a form $A \rightarrow BC$, $D \rightarrow i$, where $A,B,C,D \in V_N$ and $i \in V_T$

}

17. $S \rightarrow X_1Y_4$

18. S \rightarrow AY₆

19. $S \rightarrow X_1S$ }

 $V_N\!\!=\!\!\{S,\!A,\!B,\!X_1,\!X_2,\!Y_1,\,Y_2,\,Y_3,\,Y_4,\,Y_5,\,Y_6\}$