Implementazione, creazione e ottimizzazione di una pipeline per l'analisi biofisica su cluster a basso consumo energetico

Daniele Dall'Olio

Relatore: Dott. Enrico Giampieri

Correlatori: Prof. Gastone Castellani Ing. Andrea Ferraro

ALMA MATER STUDIORUM · UNIVERSITÁ DI BOLOGNA

22 Settembre 2017

Daniele Dall'Olio

Problema

- Costo medio elevato
- Consumo energetico elevato
- Spese per il raffreddamento elevate

Conseguenze

- Minor accessibilità
- Poche unità acquistabili
- Ridotta scalabilità e flessibilità per aggiornare l'hardware dei server

Tecnologia di calcolo low power

Vantaggi

- Costo delle singole unità basso
- Consumo elettrico inferiore
- Flessibilità nell'acquisto di nuovi hardware

Svantaggi

- Cache ridotta
- Potenza inferiore
- Numero inferiori di core

Obiettivo della tesi

Ottenere risultati con i nodi low power comparabili a quelli ottenuti con i nodi tradizionali.

Nodo	CPU	Memory	Storage	Costo*	Consumo*
xeond	1x Xeon D-1540	16 <i>GB</i>	8 TB(HDD)	€1000	60 W
avoton	1x Atom C2750	16 <i>GB</i>	5 TB(HDD)	€600	30 <i>W</i>
n3700	1x Pentium N3700	8 <i>GB</i>	0.5 <i>TB(SSD)</i>	€130	8 W
bio8	2x Xeon E5-2620v4	128 <i>GB</i>	2 TB(HDD)	€10000	180 W

I valori di costo e consumo energetico sono stimati.

Tabella: Caratteristiche dei nodi.

CPU	${\it Microarchitecture (Platform)/litho}$	Freq(GHz)	Cores	Cache	TDP
Xeon D-1540	Broadwell/14nm	2.0(2.60)	8(16)	12 MB	45 W
Atom C2750 Pentium N3700	Silvermont(Avoton)/22nm Airmont(Braswell)/14nm	2.40(2.60) 1.60(2.40)	8 4	4 MB 2 MB	25 W 6 W
Xeon E5-2620v4	Broadwell — EP/14nm	2.10(3.00)	8(16)	20 <i>MB</i>	85 <i>W</i>

Tabella: Caratteristiche delle CPU.

GATK-LODn

Requisiti molto elevati in termini di potenza di calcolo, di occupazione di memoria e di spazio d'archiviazione.

NGS

- Comprende le nuove tecniche per il sequenziamento del DNA.
- Succede al Human Genome Project.
- Tecniche più rapide e meno costose, che superano il metodo Sanger.
- Utilizzo della Teoria dei Network.
- Shotgun Sequencing.

Struttura delle simulazioni

Una parte di $GATK-LOD_n$ è stata reimplementata nel tool Snakemake.

Regole

Indipendenti dal paziente

- Indicizzazione per BWA
- Indicizzazione per Picard
- Indicizzazione per Samtools(e GATK)

Dipendenti dal paziente

- Mapping: mappatura delle sequenze del paziente sul riferimento(in SAM).
- Sort Picard: riordinamento dei file SAM(in BAM).
- Mark Duplicates: identificazione dei duplicati.
- Build BAM: indicizza il file BAM per velocizzare l'analisi.
- Realigner: determina gli intervalli che necessitano probabilmente del riallineamento Indel.

Analisi effettuate

- Tempo di esecuzione
- Memoria utilizzata

Simulazioni effettuate

numero di letture	dimensione su disco		
1×10^5	2x 28.4 MB		
$1 imes 10^6$	2x 284.9 MB		
$3 imes 10^6$	2x 854.9 MB		
9×10^6	2x 2.6 GB		
4.5×10^{7}	2x 12.8 GB		

Tabella: Stima della dimensione dei subset in relazione al numero di letture. L'ultimo valore si riferisce all'intero paziente.

Figura: Tempi per Mapping.

10 / 17

Figura: Tempi per Sort Picard

Figura: Tempi complessivi.

Figura: Mapping.

Figura: Realigner.

Figura: Sort Picard.

Tempo di esecuzione

- avoton e n3700 impiegano il doppio del tempo
- xeond è comparabile a bio8 consumando un terzo dell'energia e costando 10 volte di meno

Memoria utilizzata

- Saturazione
- Adattamento dinamico
- Sempre inferiore al massimo di memoria accessibile

Conclusione

In base a questi risultati questa pipeline di calcolo bioinformatico sembra essere realisticamente eseguibile anche su nodi a bassa potenza senza una perdita considerevole di prestazioni.

Sviluppo futuro

- Simulazioni a core multipli sui singoli nodi
- Completamento della pipeline
- Simulazioni su cluster

Pubblicazione

Cercheremo di completare il progetto e infine di pubblicarlo.