Large-Scale Numerical Investigations into the Dynamics of Nonlinear Classical Systems

Sebastian Micluța-Câmpeanu

May 15, 2019

University of Bucharest

Outline

Introduction

Numerical simulations

Conclusions

Acknowledgements

- I would like to thank A.I. Nicolin, and V. Băran for helping and motivating me.
- The author has been supported by PN-III-P4-ID-PCE-2016-0792.
- All numerical simulations were performed on the computing cluster of Department of Computational Physics and Information Technologies, "Horia Hulubei" National Institute for Physics and Nuclear Engineering.

Introduction

- The physical system that we model is the surface of heavy nuclei.
- The Hamiltonian describes the constrained motion of the vibrational quadrupole degrees of freedom of nuclear surface.

The Hamiltonian of the system

$$H = \frac{A}{2} \left(p_0^2 + p_2^2 \right) + \frac{A}{2} \left(q_0^2 + q_2^2 \right) + \frac{B}{\sqrt{2}} q_0 \left(3q_2^2 - q_0^2 \right) + \frac{D}{4} \left(q_0^2 + q_2^2 \right)^2$$

- Harmonic oscillator part
- · Integrable part
- · Non-integrable term

The Hamiltonian of the system

$$H = \frac{A}{2} \left(p_0^2 + p_2^2 \right) + \frac{A}{2} \left(q_0^2 + q_2^2 \right) + \frac{B}{\sqrt{2}} q_0 \left(3q_2^2 - q_0^2 \right) + \frac{D}{4} \left(q_0^2 + q_2^2 \right)^2$$

- · Harmonic oscillator part
- Integrable part
- · Non-integrable term

The Hamiltonian of the system

$$H = \frac{A}{2} (p_0^2 + p_2^2) + \frac{A}{2} (q_0^2 + q_2^2) + \frac{B}{\sqrt{2}} q_0 (3q_2^2 - q_0^2) + \frac{D}{4} (q_0^2 + q_2^2)^2$$

- Harmonic oscillator part
- · Integrable part
- · Non-integrable term

Numerical simulations

Figure 1: Energy error benchmark for short integration time

Figure 2: Computational time benchmark for short integration time

Figure 3: Energy error benchmark for long integration time

Figure 4: Computational time benchmark for long integration time

Figure 5: Maximal Lyapunov coefficient histogram for B = 0.55, E = 120.

Figure 6: Maximal Lyapunov coefficient histogram for B = 0.55, E = 120.

Figure 7: Maximal Lyapunov coefficient histogram for B = 0.55, E = 120.

Figure 8: Maximal Lyapunov coefficient histogram for B = 0.55, E = 120.

Figure 9: Selecting the chaotic trajectories for B = 0.55, E = 120.

Figure 10: Selecting the chaotic trajectories for B = 0.55, E = 120.

Figure 11: Averaged λ for $B = 0.5, E \in (10, 3000)$.

Figure 12: Averaged λ for $B = 0.5, E \in (0.01, 10)$.

Figure 13: Averaged λ for $B = 0.5, E \in (10, 3000)$ and $B \in (0.1, 0.6)$.

Figure 14: Averaged λ for $B = 0.5, E \in (0.01, 10)$ and $B \in (0.1, 0.6)$.

Figure 15: Averaged $d\infty$ for $B = 0.5, E \in (10, 3000)$.

Figure 16: Averaged *d*∞ for *B* = 0.5, *E* ∈ (0.01, 10).

Conclusions

Figure 17: Energy error benchmark for short integration time with rescaling

Figure 18: Computational time benchmark for short integration time with rescaling

Figure 19: Energy error benchmark for long integration time with rescaling

Figure 20: Computational time benchmark for long integration time with rescaling

Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

References i