Mathematical Logic

Propositions:

A statement or proposition is a declarative sentence which is either true or false but not both. Thus it has only one truth value namely 'true' or 'false'.

- Ex. i) The Sun rises in the East.
- ii) Do you know Tamil?
- iii) 5+7=10
- iv) x-5=6
- v) Give me the pen.
- vi) The temperature of Darjeeling is 11° C.
- vii) The Sun will set at 5.45 p.m.

i) The Sun rises in the East.

is declarative sentence & has truth value "true'. Hence it is statement.

ii) Do you know Tamil?

is an interrogative sentence so it is not statement.

is a statement that happens to be false.

iv)
$$x-5=6$$

is a declarative sentence but not a statement, depending on x value it may be true or false.

v) Give me the pen.

is not a statement since it is a command(not a declarative sentence).

vi) The temperature of Darjeeling is 11° C.

is a declarative sentence(statement) whose truth value or falsity we do not know at this moment. However we can in principle determine if it is true or false, so it is a statement.

vii) The Sun will set at 5.45 p.m.

is a statement since it is either true or false but not both, although we have to wait till 5.45 p.m. to find out if it is true or false.

A proposition obtained by the combination of 2 or more elementary propositions (only a single propositional variable or a single propositional constant (either 'true' or 'false')) by means of logical connectives or operators is called a compound or composite proposition.

The words or phrases or symbols used to form a compound proposition are called logical connectives. There are 5 basic connectives namely negation, conjunction, disjunction, conditional & biconditional.

Negation:

Let p be a proposition. The negation of p is denoted by p or p (not p) is a proposition that is false when p is true & vice versa.

Let, p: "Jeff Bezos is intelligent".

~p: "Jeff Bezos is not intelligent".

Note: Negation of a negation is the affirmation.

Thus $^{\sim}(^{\sim}p)=p$

Conjunction:

If p and q are two statements, then conjunction of p and q denoted by $p \land q$ is a compound statements which is true only when p and q are both true.

If r: "5>3" and s: "5<10" then

 $r \wedge s : "3 < 5 < 10"$

Disjunction:

p V q is true only when at least one of p or q is true.

Truth Table:

р	q	p V q
Т	T	Т
Т	F	Т
F	Т	Т
F	F	F

р	q	pΛq
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Conditional:

If p & q are two propositions then the conditional of p and q denoted by $p \rightarrow q$ or p = >q (read as " if p then q") is a compound proposition called conditional proposition or implication whose truth values are as follows:

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

p is called antecedent or hypothesis q is called consequent or conclusion

Let, p: "Tomorrow is Monday"

q: "Today is Sunday"

Then $p \rightarrow q$: "If tomorrow is Monday then Today is Sunday".

Converse, Inverse & Contrapositive of an Implication:

Let, $p \rightarrow q$ be an implication. Then

- i) the converse of $p \rightarrow q$ is the implication $q \rightarrow p$
- ii) the inverse of $p \rightarrow q$ is the implication $p \rightarrow q$
- iii) the contrapositive of $p \rightarrow q$ is the implication $\sim q \rightarrow \sim p$

Truth Table of Converse:

р	q	Converse(q→p)
T	T	Т
Т	F	Т
F	Т	F
F	F	Т

Truth Table of Inverse:

р	q	~ p	~q	Inverse(~p→~q)
Т	Т	F	F	Т
Т	F	F	Т	Т
F	T	T	F	F
F	F	T	Т	Т

Truth Table of Contrapositive:

р	q	~ q	~ p	Contrapositive (~q→~p)
Т	Т	F	F	Т
Т	F	T	F	F
F	T	F	T	T
F	F	T	Т	T

Contd.

Truth Table for all these Implications:

р	q	Conditional (p→q)	Converse (q→p)	Inverse (~p→~q)	Contrapositive (~q→~p)
Т	Т	Т	Т	Т	Т
Т	F	F	Т	Т	F
F	Т	Т	F	F	Т
F	F	Т	Т	Т	Т

Let p: "The day is Sunny" and

q: "I go to the School"

p→q: "If the day is Sunny then I go to the School"

Converse $(q \rightarrow p)$

q→p: "If I go to the School then the day is Sunny"

Inverse($p \rightarrow q$)

~p→~q: "If the day is not Sunny then I do not go to the School"

Contrapositive($^{q}\rightarrow ^{p}$)

~q→~p: "If I do not go to the School then the day is not Sunny"

Biconditional:

Biconditional of p and q denoted by p \leftrightarrow q (read as "p iff q"). Truth table of p \leftrightarrow q

р	q	p↔q
Т	T	Т
Т	F	F
F	Т	F
F	F	Т

Thus $p \leftrightarrow q$ is true only when either both p and q are true or both p and q are false.

Let, p: "I will get wet"

q: "I swim"

Then $p \leftrightarrow q$: "I will get wet if and only if I swim".