Deep Reinforcement Learning (Deep RL)

Reinforcement Learning

Optimal control

 Take a sequence of actions under uncertainty to reach a goal while optimizing some objective function

Examples:

- Moon shot:
 - > Goal: reach the moon
 - > Burn minimal amount of fuel
 - > Uncertainty: imperfect modeling of rocket and gravitational effects
 - > Solution: series of mid-course corrections till you reach moon

Reinforcement learning

- Optimal control when you have little to no knowledge of the dynamics of system
- However, you are allowed to perform many experiments to build a working model of the dynamics

Earth interface (EI) Launch Trans Lunar > Injection (TLI) Correction-1 Earth Parking Orbit ~ 2.5 hours LOI - Lunar Orbit Insertion (57 x 168 nm) Time To Moon ~ 75 hours DOI - Descent Orbit Insertion (7 x 57 nm) Lunar Parking Orbit ~90 hours CIRC - Circularization (60 x 60 nm) Lunar Surface Stay ~ 33.5 hours TEI - Trans Earth Injection Not to Scale Time To Earth ~ 73 hours

Figure 4. Nominal Apollo 13 mission profile.12

Reinforcement learning = Optimal control while learning system dynamics

RL methods

AlphaGo Zero (2017) uses Deep RL

Organization

Vanilla RL

- Assume environment dynamics are known
- System model: Markov Decision Process (MDP)
- Solving optimal control problem in MDPs (*planning*)
 - > Value iteration aka Bellman iteration (1957)
 - > **Policy iteration**: Ron Howard (1960)
- Tabular implementations
 - > Represent data using state tables

Deep RL

- Large or continuous state spaces
 - > Backgammon: 10^{20} states, Chess: 10^{44} states, Go: 10^{170} states (atoms ~ 10^{80})
 - > Helicopter: Continuous state space
- Use neural networks to approximate state tables

• REINFORCE: simplest deep RL method

- Policy iteration
- Policy network
- Monte Carlo method to optimize policy network

Reinforcement Learning: Terminology and initial assumptions (I)

- Model: Discrete-time Markov decision process (MDP)
- Time: advances in discrete steps
- Agent states: finite set S (e.g.) {Sa, Sb, Sc, Sd}
 - Assumption: at each step, agent knows what state it is in
 - Partial observability: only part of the state is known (cf. Kalman filtering)
 - > We will not worry about this
- Action: finite set A (e.g.) {Go East, Go West, Go North, Go South}
 - Result of taking action in a given state
 - > **Probabilistic** transition to another state; uncertainty comes from environment (think Markov processes)
 - > Reward: may depend on new state
 - Some actions may not be available in some states (e.g. at a wall)
- End/terminal state: no actions available

Terminology and initial assumptions (II)

Task:

 Episodic: transitions starting from some initial state until clock runs out (finite horizon) or you reach end state

 $Task: State \xrightarrow{Action} Reward, State \xrightarrow{Action} Reward, State.... \xrightarrow{Action} Reward, EndState$

- Continuous: sequence of transitions but no notion of end

Policy:

- Action to be taken by agent at each state

Goal: Policy optimization under uncertainty

What policy maximizes expected total reward?

Markov Decision Processes (MDPs)

Markov Decision Process (MDP): Model for RL

- States: S = {Sa, Sb, Sc, Sd}
- Actions: A = {Ax, Ay}
- Result of action is probabilistic
 - E.g. action Ax at Sa has two possible outcomes
 - > Get reward of 10 and end up in Sa with probability 0.1
 - > Get reward of -2 and end up in Sb with probability 0.9
- Horizon: 1
 - t = [1,0]
- Policy: function S → A
 - Set of policies: |A||S|
- Policy optimization
 - What policy maximizes total expected reward?

Policy optimization in MDPs (I): policy iteration

Policy iteration

- Set of policies is finite
- Search over set of policies, performing policy evaluation for each policy

Policy evaluation

- Compute expected reward at each state at t=1

Example: focus on Sa at t=1

- (Sa,Ax) \rightarrow Expected reward = -0.8
- (Sa,Ay) → Expected reward = 3
- Optimal policy at Sa:
 - > Sa → Ay
- Similar computation at all other starting states

Valuations:

- $V_1^{\pi}(s)$: Expected reward at state s at t = 1 under policy π
- V₁*(s): Expected reward at state s at t = 1 under optimal policy

Exhaustive search over policies not required

Policy improvement

Policy optimization in MDPs (II): value iteration

- Value iteration: expectimax
 - Backward dataflow algorithm starting at t = 0
- Initialization: $V_0(s) = 0 \ (\forall s \in S)$
- Transfer function on transition edge (Qi, p, r, Sj)

$$p * (r + V_0(Sj))$$

- Confluence operations
 - Q-nodes: sum incoming values
 - S-nodes: max incoming values
- Computes V₁*(s) directly

Generalizations

- Episodic tasks with time horizon T > 1
 - Policy: SxT → A
 - Obvious extension to value and policy iteration

• Continuous tasks

- Policy: S→ A
- Discount factor γ for delayed rewards
- Policy iteration: search algorithm (policy improvement)
- Value iteration: fixpoint equation (Banach fixpoint theorem)

Reformulate Policy Iteration Valuations as Expectations

• Useful to express valuations for policy π as expectations

$$au_2^\pi(Sa)=$$
 set of terminating paths from Sa at $t=2$ consistent with π $R(q)=$ sum of rewards on path q Claim: $V_2^\pi(Sa)=E_{q\sim au_2^\pi(Sa)}\left[R(q)\right]$

• Intuition: express valuation as sum of products (like in gradient computation)

$$- pl(rl + p2*r2 + (l-p2)*r3) = plp2(rl+r2) + pl(l-p2)(rl+r3)$$

• Easy proof by induction: bottom-up in transition diagram

Motivation

One implementation of π : S \rightarrow A

- Assume |S| and |A| are finite
- Table mapping states to actions

Disadvantages

- Table becomes bigger as number of states increases
- Cannot handle continuous state spaces
 - > Backgammon: 10^{20} states, Chess: 10^{44} states, Go: 10^{170} states
 - Helicopter: Continuous state space

Policy network

- Instead of table, implement a neural network
 - > Input is state, which can even be a real number
 - Output is a distribution over actions
- Intuition: think of the table as implementing a classifier

State Action

Policy

Network

 $\pi: S \to Distribution(A)$

2 A6 |S|A9

> Probability distribution of actions given state s

Probability of action 1

Probability of action 2

Probability of action 3

Action space is still finite, although easy to extend to continuous action spaces

State

State transitions and episodes

Making state transitions

- Policy network maps current state to action distribution
- Sampler samples distribution to generate an action
- Agent performs action and observes reward

Episode/trajectory

- Perform state transitions from start state until a terminal state is reached

Valuations

Trajectories starting at S₀

$$V^{\theta}(S_0) = E_{\tau \sim \pi_{\theta}}[R(\tau)]$$
$$= \sum_{\tau_i} R(\tau_i) \mathcal{P}(\theta; \tau_i)$$

Use gradient-ascent for policy improvement

$$\theta \leftarrow \theta + \alpha * \nabla_{\theta} V^{\theta}(S_0)$$

$$\nabla_{\theta} V^{\theta}(S_0) = \sum_{\tau_i} R(\tau_i) \underbrace{\nabla_{\theta} \mathcal{P}(\theta; \tau_i)}$$

State transition probabilities

Each transition probability has two factors

- Probability that action A_i is selected at $S_i = \pi_{\theta}(A_i|S_i)$
 - > Depends on policy network and sampler
- Probability that taking action A_i at S_i leads to state $S_{i+1} = P(S_{i+1} | S_i, A_i)$
 - > Depends on characteristics of environment as before

• Probability for sequence of transitions τ from S_0 to S_T

- Product of probabilities of individual transitions

$$\mathcal{P}(\theta;\tau) = \prod_{i=0}^{T-1} \pi_{\theta}(A_i|S_i) * P(S_{i+1}|S_i, A_i) = \underbrace{(\prod_{i=0}^{T-1} \pi_{\theta}(A_i|S_i))}_{\pi_{\theta}(\tau)} * \underbrace{\prod_{i=0}^{T-1} P(S_{i+1}|S_i, A_i)}_{P(\tau)} = P(\tau) * \pi_{\theta}(\tau)$$

Gradient computation

$$y(x) = k * f(x)$$

$$\implies$$

$$y'(x) = k * f'(x)$$

$$= k * f(x) * \frac{f'(x)}{f(x)}$$

$$= k * f(x) * \frac{d}{dx} log(f(x))$$

$$\mathcal{P}(\theta;\tau) = P(\tau) * \underbrace{\prod_{i=0}^{T-1} \pi_{\theta}(A_i|S_i)}_{\pi_{\theta}(\tau)}$$

$$\nabla_{\theta} \mathcal{P}(\theta; \tau) = P(\tau) \pi_{\theta}(\tau) \ \nabla_{\theta}(\log \pi_{\theta}(\tau))$$

$$\nabla_{\theta} V^{\theta}(S_{0}) = \sum_{\tau_{i}} R(\tau_{i}) \nabla_{\theta} \mathcal{P}(\theta; \tau_{i})$$

$$= \sum_{\tau_{i}} \underbrace{P(\tau_{i}) \pi_{\theta}(\tau_{i})}_{\text{probability of trajectory}} \underbrace{R(\tau_{i}) * \nabla_{\theta} log(\pi_{\theta}(\tau_{i}))}_{\text{contribution to gradient}}$$

Monte Carlo Sampling

$$\nabla_{\theta} V^{\theta}(S_0) = \sum_{\tau_i} \underbrace{P(\tau_i) \pi_{\theta}(\tau_i)}_{\text{probability of trajectory}} \underbrace{R(\tau_i) * \nabla_{\theta} log(\pi_{\theta}(\tau_i))}_{\text{contribution to gradient}}$$

Construct *multiset* of episodes by Monte Carlo sampling: probability ≈ frequency

$$\nabla_{\theta} \widehat{V^{\theta}}(S_0) = \frac{1}{|Episodes|} \sum_{e_i \in Episodes} R(e_i) * \nabla_{\theta} log (\pi_{\theta}(e_i))$$

REINFORCE algorithm:

- 1. Sample multiset of episodes $\{e_i\}$ from π_{θ} .
- 2. $\nabla_{\theta} \widehat{V^{\theta}}(S_0) \approx \frac{1}{|Episodes|} \sum_{e_i} R(e_i) * \nabla_{\theta} log(\pi_{\theta}(e_i))$

3.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \widehat{V^{\theta}}(S_0)$$

Do not need to know environment dynamics

Drawbacks of REINFORCE

- Use of MC results in high variance
 - Gradient updates may result in bad directions
- One solution: slow learning rate
 - Computationally inefficient

- Another solution: average over lots of episodes with given θ
 - Inefficient use of samples
 - Episodes must usually be discarded after θ is updated since π_{θ} has changed
- Solutions
 - Baseline methods: reduce variance by subtracting a baseline
 - > Actor-critic method
 - Limit θ updates by bounding KL-divergence
 - > **Trust Region Policy Optimization** (TRPO): update with region where KL-divergence is bounded
 - > Proximal Policy Optimization (PPO): clipping

Thank you

