Compression of Programs and the Similarity Distance

KIREPRO1PE Research Project, MSc. Computer Science, ITU - 10th of June 2025

Jonas Nim Røssum <jglr@itu.dk>

Background

- Lines of Code Changed (LoCC)
 - ▶ De facto standard for measuring code changes
 - ► Has it's limitations (e.g. renaming files)

Figure 1: LoCC in a GitHub Pull Request

Project goal and findings

- Find a new metric to address limitations of *Lines of Code Changed* (LoCC)
- Difference in Compression Distance (ΔCD)

Research questions

- ? Is Δ CD correlated with LoCC?
- ? Can Δ CD discriminate between commit types?
- ? What are the advantages / limitations of Δ CD?

Findings

- \rightarrow Partial linear correlation, $R^2 = \{0.8, 0.7\}$
- → For Commitizen¹ repo, features and bug fixes stand apart
- → Robust to renames, survivorship bias / 250× slower than LoCC, scaling challenges

¹https://github.com/commitizen-tools/commitizen/

RQ1: Δ CD correlation with LoCC

Linear regression R^2 for **commitizen**: 0.7

LoCC vs \triangle CD for commitizen-tools/commitizen (github)

 $ightharpoonup \Delta CD$ and LoCC correlate, but not perfectly $ightharpoonup \Delta CD$ captures more than raw line changes

Figure 3: Commits in the Commitizen repository categorized using conventional keywords²

²https://www.conventionalcommits.org/en/v1.0.0/

Bug Fixes: lower Δ CD, changes to existing code

Features: higher ΔCD , typically novel code

Bug Fixes: lower Δ CD, changes to existing code

Features: higher Δ CD, typically novel code

lacksquare $\Delta {
m CD}$ can partly discriminate between some commit types, at least for this project

RQ3: Advantages - Robust to Renames

Figure 7: Δ CD (Difference in Compression Distance) Explained

 $lue{f \Box}$ $\Delta {
m CD}$ is insensitive to renames and project structure

RQ3: Advantages - Survivorship Bias

- Example: Thomas' thesis work in Git Truck
- According to LoCC (left), Thomas is responsible for 25% of the contributions project
- According to $\Delta {
 m CD}$ (right), Thomas is responsible for 46% of the final revision

 $ightharpoonup \Delta CD$ reflects **lasting impact** on the codebase using survivorship bias

Limitations: Performance and Scalability

Future work

Performance and scalability Generalize findings Integration Use cases

Thank You - Questions?

Project work: Jonas Nim Røssum <jglr@itu.dk>

Original idea: Christian Gram Kalhauge <chrg@dtu.dk>

Source code: github.com/git-truck/git-truck