Démonstrations – Réductions géométriques

Propriété : (Dimension des sev en somme directe)

Soit E un \mathbb{K} -ev de dimension finie. Soient F_1, \dots, F_m des sev de E. On a :

La somme $F_1 + \cdots + F_m$ est directe

 \Leftrightarrow

$$\dim(F_1 + \dots + F_m) = \sum_{i=1}^m \dim(F_i)$$

<u>Démonstration</u>:

Considérons $\varphi: F_1 \times ... \times F_m \rightarrow F_1 + \cdots + F_m$

$$(f_1, \dots, f_m) \mapsto f_1 + \dots + f_m$$

On sait que φ est linéaire.

On a:

$$F_1+\cdots+F_m \text{ est directe} \Leftrightarrow \forall x \in F_1+\cdots+F_m, \exists ! \ (f_1,\ldots,f_m) \in F_1 \times \ldots \times F_m, x = \varphi(f_1,\ldots,f_m)$$

 $\Leftrightarrow \varphi$ est bijective

 $\Leftrightarrow \varphi$ est injective (car par construction, φ est surjective)

$$\Leftrightarrow \ker \varphi = \left\{0_{F_1 \times \dots \times F_m}\right\}$$

 \Leftrightarrow dim ker $\varphi = 0$

$$\Leftrightarrow \dim Im \ \varphi = \dim(F_1 \times ... \times F_m)$$

Propriété: (Inter & Union stables)

Soient F et G deux sev de E stables par $u \in \mathcal{L}(E)$. Alors F + G et $F \cap G$ sont aussi stables par u.

Démonstration:

Soit
$$z \in F + G$$
, $\exists (x, y) \in F \times G$ tell que $z = x + y$
Alors $u(x + y) = \underbrace{u(x)}_{\in F} + \underbrace{u(y)}_{\in G} \in F + G$

Donc F + G est stable par u.

- De même, $F \cap G \subseteq F$ et $F \cap G \subseteq G$

Donc $u(F \cap G) \subset u(F) \subset F$ et $u(F \cap G) \subset u(G) \subset G$

Donc $u(F \cap G) \subset F \cap G$

Propriété : (Stabilité des images et noyaux)

Soient $u, v \in \mathcal{L}(E)$, tels que $u \circ v = v \circ u$. Alors $\ker u$ et $\operatorname{Im}(u)$ sont stables par v.

Démonstration:

- Soit $y \in \text{Im}(u)$ Alors $\exists x \in E, y = u(x)$ D'où $v(y) = v(u(x)) = u(v(x)) \in \text{Im}(u)$
- Soit $x \in \ker u$, montrons que $v(x) \in \ker u$. Or $u(v(x)) = v(u(x)) = v(0_E) = 0_E$ Donc $v(x) \in \ker u$.

Théorème:

Le polynôme caractéristique de $A \in M_n(\mathbb{K})$ a pour coefficient dominant 1 et est de degré n. Il possède les coefficients suivants :

$$\mathcal{X}_A = X^n - Tr(A)X^{n-1} + \dots + (-1)^n \det A$$

Démonstration:

Notons
$$A = \left(a_{ij}\right)_{1 \leq i,j \leq n} \in M_n(\mathbb{K})$$
, alors $XI_n - A = \left(\delta_{ij}X - a_{ij}\right)_{1 \leq i,j \leq n} \in M_n(\mathbb{K})$
Alors $\mathcal{X}_A = \det(XI_n - A)$

$$= \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{\underline{i=1}}^n \left(\delta_{\sigma(i),i}X - a_{\sigma(i),i}\right)$$

Soit $\sigma \in \mathfrak{S}_n, Q_r \in \mathbb{K}[X]$ en tant que produit de n polynômes de degré au plus 1, donc $\mathcal{X}_A \in \mathbb{K}_n[X]$. \Rightarrow Si $\sigma \neq Id$.

Alors $\exists i, j \in [\![1,n]\!]$ avec $i \neq j$, tel que $\sigma(i) \neq i$ et $\sigma(j) \neq j$ donc

$$Q_r = \prod_{k=1}^{n} (\delta_{\sigma(k),k} X - a_{\sigma(k),k})$$

Et de degré au plus n-2 (car le produit contient au moins deux polynômes constants)

$$\rightarrow$$
 Si $\sigma = Id$.

Alors $\forall i \in [1, n], \sigma(i) = i$. Ainsi:

$$\begin{split} Q_r &= \prod_{i=1}^n \bigl(\delta_{i,i} X - a_{i,i}\bigr) \\ &= \prod_{i=1}^n \bigl(X - a_{i,i}\bigr) \\ &= X^n - (a_{11} + \dots + a_{nn}) X^{n-1} + P \text{, avec deg } P \leq n-2 \end{split}$$
 De plus $\varepsilon(Id) = 1$,

Donc
$$X_A = X^n - Tr(A)X^{n-1} + R$$
, $\deg R \le n - 2$

Enfin le coefficient constant de \mathcal{X}_A vaut $\mathcal{X}_A(0) = \det(0-A) = \det(-A) = (-1)^n \det(A)$

<u>Théorème</u>: Soit $A \in M_n(\mathbb{K})$, $\lambda \in \mathbb{K}$. On a équivalence entre :

- (i) λ est valeur de propre de A
- (ii) λ est racine de \mathcal{X}_A

Démonstration :

On a
$$\lambda \in Sp(A) \Leftrightarrow E_{\lambda}(A) = \ker(A - \lambda I_n) \neq \left\{0_{M_{n,1}(\mathbb{K})}\right\}$$

$$\Leftrightarrow \operatorname{rg}(A - \lambda I_n) < n$$

$$\Leftrightarrow A - \lambda I_n \text{ n'est pas inversible}$$

$$\Leftrightarrow \det(A - \lambda I_n) = 0$$
Or $\det(A - \lambda I_n) = \det(-(\lambda I_n - A))$

$$= (-1)^n \det(\lambda I_n - A)$$

$$= (-1)^n \mathcal{X}_A(\lambda)$$
Ainsi $\lambda \in Sp(A) \Leftrightarrow (-1)^n \mathcal{X}_A(\lambda) = 0$

$$\Leftrightarrow \mathcal{X}_A(\lambda) = 0$$

<u>Propriété</u>: Soient $A, B \in M_n(\mathbb{K})$, 2 matrices semblables. Alors $\mathcal{X}_A = \mathcal{X}_B$

Démonstration : Comme A et B sont semblables,

$$\exists P \in GL_n(\mathbb{K}), B = P^{-1}AP$$

$$\mathsf{Donc}\,\,\mathcal{X}_B = \det(XI_n - B) = \det(XI_n - P^{-1}AP)$$

$$\mathsf{Or}\,\,I_n = P^{-1}I_nP$$

$$\mathsf{Donc}\,\,\mathcal{X}_B = \det(P^{-1}(XI_n - A)P)$$

$$= \frac{1}{\det(P)}\det(XI_n - A)\det(P)$$

$$= \det(XI_n - A)$$

$$= \mathcal{X}_A$$

<u>Théorème</u>: Soit $u \in \mathcal{L}(E)$ et F un sev de E, $F \neq \{0_E\}$, F stable par u, alors le polynôme caractéristique de l'endomorphisme u_F induit par u sur F divise le polynôme caractéristique de u, ie :

$$\mathcal{X}_{u_F} | \mathcal{X}_u$$

<u>Démonstration</u>:

Puisque F est stable par u, on complète une base B_F de F en une base B de E,

$$M = Mat_B(u) = \begin{pmatrix} A & B \\ (0) & C \end{pmatrix}$$

$$\begin{aligned} \operatorname{Où} A &= \operatorname{Mat}_{B_F}(u_F) \in M_d(\mathbb{K}), d = \dim F \\ \operatorname{D'où} \ \mathcal{X}_u &= \det(XI_n - M), n = \dim E \\ &= \begin{vmatrix} XI_d - A & -B \\ (0) & XI_{n-d} - C \end{vmatrix} \\ &= \det(XI_d - A) \det(XI_{n-d} - C) \\ &= \mathcal{X}_A \times \mathcal{X}_C \end{aligned}$$

Or $\mathcal{X}_C \in \mathbb{K}[X]$, donc $\mathcal{X}_{u_F}|\mathcal{X}_u$.