LOYOLA ACADEMY DEGREE & PG COLLEGE, OLD ALWAL (An Autonomous and Re-Accredited with 'A' Grade by NAAC) M.C.A III Semester Final Examinations, January - 2016

Subject .	M.C.A III Semester Final Examinations, Januar	y - 2016	
	Design & Analysis of Algorithms	Exam Time : :	3 hrs
Sub. Code:	MCA 11303	May Marks:	100

Answer the following Questions:	5*20=100M)
UNIT-I	
1. (a) Define an algorithm? Explain the specification of an algorithm in deta (b) What are stacks? Write an algorithm making use of a stack representation. With an example	ail? (5M)
tan un example.	(15M)
2. (a) What are Queues? Explain how queues are represented with necessar	rv
angorithm.	(10NI)
(b) What are priority queues? Explain with an algorithm?	(10M)
UNIT-II	
3. (a) Explain quick sort? Write an example give its time complexity?	(10M)
(b) Explain with an algorithm to solve "single source shortest paths" us greedy method.	(10M)
(Or)	
4. (a) Explain about "Tree Vertex Sputting" using greedy method.	(10M)
(b) Explain in detail about "Minimum cost spanning Trees".	(10M)
UNIT-III	
5. (a) Explain about biconnected compounds & explain in detail about D	
(b) Explain in detail about "Multistage graphs".	(8M)
6. (a) Explain the techniques for graphs with suitable examples?	(8M)
(b) Explain in detail about "Breadth first search" with examples.	(12M)
UNIT-IV	
7. (a) Explain about "Graph colouring" with suitable examples.	(8M)
(b) Explain in detail about "8-Queens problem"	(12M)
(Or)	iltonian
8. (a) Discuss Hamiltonian Cycles giving an algorithm to find all Ham	(10M)
Cycles. (b) Explain 0/1 Kanpsack problem using "Branch one – bound tech	
(b) Explain 0/1 Kanpsack proofers assign	
UNIT-V	
(a) Explain in detail about "Hamiltonian Cycles".	(10M)
(b) Explain about deterministic algorithm. Give examples?	(10M)
(Or)	
Type tie " cook's theorem". Explain in detail.	(10M)
(b) Explain about "Decision problem" with suitable examples?	(10M)

LOYOLA ACADEMY DEGREE & PG COLLEGE, OLD ALWAL (An Autonomous and Re-Accredited with 'A' Grade by NAAC) M.C.A III Semester Final Examinations, January - 2016 Subject Exam Time: 3 hrs **Operating System** Sub. Code: Max. Marks: 100 MCA 11304 Answer the following Questions: (5*20=100M)**UNIT-I** 1. (a) List the three main purposes of an operating system? Explain the concept of process management in detail? (10 M)(b) Explain the concept of operating system in detail? (10 M)2. (a) Explain multi threading models? (10 M)(b) Explain multi level queue scheduling? (10 M)**UNIT-II** 3. Explain the following (a) Dynamic loading (5 M)(b) Swapping (5 M) (c) Memory Allocation (5 M)(d) Paging (5 M)(or) 4. (a) Explain the difference between internal and external fragmentation? (10 M)(b) Describe a mechanism by which one segment could belong to the address space of two different process? (10 M)**UNIT-III** (a) Explain classic problems of synchronization in detail? (10 M)(b) Explain about Monitors in detail? (10 M)(or) (a) Explain about dead lock and its necessary conditions? (10 M)

(b) Explain the methods for handling dead locks?

(P.T.O)

(10 M)

(An Autonomous and Reaccredited with 'A' Grade by NAAC) MCA (III semester) Examinations, January - 2016

Subject Code

: Operation Research

Exam Time : 3hrs

: MCA14305

:100 Max.Marks

UNIT - I

1. a) Write about all the special cases of linear programming. b) Solve the following problem using graphical method

(8M)

(12M)

Maximize $Z = 7X_1 + 10X_2$

Subject to $X_1+X_2 \le 30000$

 $X_2 \le 12000$

 $X_1 \ge 6000$

 $X_1, X_2 \ge 0$

OR

2. a) Write about (i) Sensitivity analysis (ii) Duality

b) Solve the following LPP using Simplex Method

(6M) (14M)

Maximize $Z = 10X_1 + 5X_2$

Subjected to $4X_1 + 5X_2 \le 100$

 $5X_1 + 2X_2 \le 80$

 $X_1, X_2 \ge 0$

UNIT-II

3. a) Determine initial basic feasible solution to the following transportation problem using VAM method (16M)

		Des	tination		
	1	2	3	4	Supply
A	9	9	4	0	80
В	11	9	5	3	120
Origin C	9	11	8	9	150
D	11	5	1	1	70
Е	7	7	8	6	90
Demand	100	200	120	80	

b) Write about mathematical model for transportation problem

(4M)

OR

(4M) 4. a) write about transshipment model

b) Solve the following transshipment problem

(16 M)

		Destin	nations		Capacity
Origin	1	2	3	4	
A	8	13	4	-	80
В	15	12	5	3	120
C	_	11	8	9	150
D	6	5	1	1	70
Requirements	350	350	130	130	

UNIT - III

5. Certain equipment needs 5 repair jobs which have to be assigned to 5 machines. The estimated time (in hours) that each mechanic requires to complete the repair job is given in the following table. Solve the following assignment problem using Hungarian method (20M)

		Job	os		
	J_1	J_2	J_3	J_4	J_5
M1	7	5	9	8	11
M2	9	12	7	11	10
Machine M3	8	5	4	6	9
M4	7	3	6	9	5
M5	4	6	7	5	11

OR

6. a) Write about integer programming problems	
b) Write about branch and bound technique with example	(10M)
with example	(10M)

UNIT-IV

7. a) Define Dynamic Programming. What are the applications of Dynamic programming

	9
b) Differentiate between Pert and CPM	(12M)
OF IVE	(8M)

OR

8. Given the following information draw the network diagram, Find Earliest and Latest occurrence Time and find the critical Path and its duration (20M)

								1	1+	T	K	I.
Activity	A	В	C	D	E	F	G	H	1	J	II	G
Immediate	-	-	-	B,C	A	C	E	E	D,F,H	E	1,J	0
predecessor										0	10	2
Duration(days)	9	4	7	8	7	5	10	8	6	19	10	12

UNIT - V

9. a) Define (i) Saddle point (ii) Pure strategies (iii) Mixed strategies

(6M)

b) Solve the following problem optimally for the players A and B.

(14M)

	Player B				
		1	2	3	
	1	55	40	35	
Player A	2	70	70	55	
	3	75	55	65	

OR

10. a) Explain the graphical method for 2 x n or m x 2 games

(4M)

b) A soft drink company calculates the market share of its two products against its major competitor having three products and found out the impact of additional advertisement in any one of its products against the other. (16M)

Competitor	В
Competitor	_

		1	2	3
	1	6	7	15
Company A	2	20	12	10

What is the best strategy for the company as well as the competitor? What is the pay-off obtained by the company and the competitor in the long run? Use graphical method to obtain the solution.

LOYOLA ACADEMY DEGREE & PG COLLEGE, OLD ALWAL (An Autonomous and Re-Accredited with 'A' Grade by NAAC)

BAC A YYY C				2 1 112
M.C.A III Semester	· Final Exami	nations, Ja	nuary -	2016

Subject : Data Base Management System Exam Time: 3 hrs Sub. Code: MCA 11302 Max. Marks: 100

Answer the following Questions	s:	(5*20=100M)
1 () =	UNIT-I	
1. (a) Discuss about file system (b) Explain	Versus DRMS	(10)
(b) Explain aggregation and ge	neralization with example.	(10)
	(0-)	
2. (a) Explain about loseless join (b) Explain integrity asset in	decomposition.	(10)
(b) Explain integrity constraint	s over relations.	(10)
2 () =	UNIT-II	
3. (a) Explain about Triggers & A	ctive data bases in data:1	(10)
(b) Define relational calculus. I	Explain Tuple relational calculus.	(10)
	(Or)	
4. (a) Explain about Cursors.		(10)
(b) Explain the following: (i) Set operators		(2*5=10)
(1) Set operators	(ii) Nested queries.	
	UNIT-III	
5. (a) Discuss in detail about various	ous file organizations.	(10)
(b) Explain B+ trees.		(10)
	(Or)	
6. (a) Explain about ISAM.		(10)
(b) Explain about Extendible H	ashing.	(10)
	UNIT-IV	
7. Explain the following:	ON11-1 V	(4*5=20)
(i) 2 PL (ii) Phanton	n Problem (iii) Granularity of	(4 3-20)
(iv) Recoverability	(m) Grandianty of	locking
(iv) items versions	(Or)	
8. (a) Define lock management . E	xplain concurrency control without lo	ocking. (10)
	eadlock avoidance and deadlock prev	
		(10)
	UNIT-V	
9. (a) What are the 3 phases of AR	IES algorithm? Explain the functional	ality of
each of them.		(10)
(b) Explain about media recover	y.	(10)
	(Or)	
10 Explain the following terms.		(4*5=20)
(i) Database Security		
(ii) Discretionary Access Co	ontrol	
(iii) WAL Protocol		
(iv) Fuzzy Checkpoint.		
(IV) I ULL J CARE		

Subject: M.C.A III Semester Final Examinations, January - Sub. Code: MCA 11301	Exam Time: 3 hrs Max. Marks: 100
Answer the following Questions:	(5*20=100M)
UNIT-I	
(a) Explain about the software quality attributes? (b) Describe in detail about waterfall model?	(8M) (12M)
(Or)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2. (a) Write short notes on XP & agile processes?	(10M)
(b)Describe about Rational unified process?	(10M)
UNIT-II	
3. (a) Explain about the components of an SRS?	(8M)
(b) Write short notes on DFD?	(12M)
4. (a) Give a brief explanation of different architectural styles?	(12M)
(b) Explain the role of software architecture?	(8M)
UNIT-III	
5. (a) Explain about Top-down estimation approach?	(12M)
(b) Write about the major risk items and risk management Techniqu (Or)	ies? (8M)
6.(a) What is coupling? Explain different types of coupling that exist	
between modules?	(10M)
(b) Explain about function – oriented design with structure charts?	(10M)
UNIT-IV	
7. (a) Describe about unit-testing?	(10M)
(b) Explain incremental coding with the help of a flow chart? (Or)	(10M)
. (a) Differentiate between white - box & black - box testing?	(12M
(b) Define the terms error, fault & failure?	(8M)
UNIT-V	
(a) Write short notes on reverse engineering?	
(b) Explain about software maintenance?	(12N
(Or)	(8M
(a) Describe the SPI process?	
(L) Write short notes on CMMI for	(8M

(b) Write short notes on CMMI frame work?

(8M)

(12M)

(An Autonomous and Reaccredited with 'A' Grade by NAAC) MCA (III semester) Supply Examination, July 2016

Subject

	ode	: DAA : MCA 11303	Max. Marks : 100	
		Answer the following questions	5×20=100M	
		UNIT-I		
1.	(a)	Write the non-recursive algorithm for finding the Fibonacci s Complexity	equence and derive its	Time 10
	(b)	Define Time complexity. Describer different notations complexities?	used to represent	their 10
2.	(a)	OR Define Tree. Explain Spanning Tree with an Example.		10
	(b)	What is stack? Explain Stack concept with an Algorithm and	example.	10
		UNIT-II		
3.	()	Define Quick sort Analyze the Average case time complexity	of quick sort	10
		with an example? Define Binary Search Tree. Write deletion algorithm of Binar OR	y Search Tree.	10
4.		Write Prim's algorithm and also analyze its time complexity.		10
	(b)	Write an algorithm to solve Knapsack problem using Greedy	method.	10
		UNIT-III		
5.		Discuss Dynamic programming solutions for the problems o	f reliability design.	10
	(b)	Write an algorithm for All Pairs Shortest Path problem OR		10
5.	(2)	Write an Algorithm to find Bi connected components.		10
J.	(b)	Define Graph? Explain various techniques for Graphs.		10
	(0)			
		UNIT-IV		
7.	(a)	Write a backtracking algorithm for 8-queens problem.		10
	(b)	Explain the applications of backtracking. OR		10
)	(0)	Explain general method of Branch and Bound?		10
). ·	(a)	Write an algorithm for LC Branch and Bound solution for 0.	/1 knapsack problem.	10
	(0)	Wille an algeria		
		UNIT-V		
).	(a)	Differentiate between NP-Complete and NP-hard		10
	(b)	State and Explain Cooks Theorem. OR		10
0	(0)	Define NP Hard. Explain NP Hard code generation.		10
0.	(a)	What is non-deterministic algorithm? Give Example		10
	(0)	What is non determined algorithm. Give Example		1

(An Autonomous and Reaccredited with 'A' Grade by NAAC) MCA (III semester) Supply Examination, July 2016

Subje	: M	perating System CA 11304		Exam Time : 3hr Max. Marks : 100	
	Answer the	e following questi	ons	5×20M=100M	
1			UNIT-I		
(b)	Define opera Define Thr programmin	cau: what are	plain briefly the Strate Benefits of threa	egies of operating system? ads and explain briefly mult	
2 (2)			OR		10
2. (a)	Turnaround	Detail FCFS Sche	duling Algorithm w	ith an example? Calculate the A	verage
	Process	Arrival time	Waiting time for fol Burst time	lowing Example?	12
	P1	0	8		
	P2	1	4		
	P3	2	9		
	P4	3	5		
(b)	Define Scheo	duling Criteria? A	nd Explain Schedulii	ng Criteria?	8
			UNIT-II		
. Wri	te a Short not	te on			20
(1)	Paging (2) Se	egmentation (3) S	wapping (4) Structure	of page table (5) Demand Paging	20
			OR		
(a) l	Define Acces	s Method? Differ	ent types of access n	nethod?	10
(b) 1	What is Direct	ctory structure? E	xplain Different Typ	es of Directory structures?	10
					10
(a) I	Define Comor	shares? Cive the	UNIT-III		
(b) [Define Monit	ors? Explain Ch	aracteristics of a m	writers problem using Semapho onitor and features and Drawb	re?10
N	Monitors?	oro. Explain Ch	aracteristics of a m	officer and leatures and Drawb	
		O	R		10
(a) D	efine Deadlo	ock? What are ne	cessary conditions n	eed for Dead lock?	10
(b) W	hat is the pro-	otection Domain	? Explain the goals of	of protection system?	10
(a) II	That is dials at		UNIT-IV		
	hat is disk st short note or			c-SCAN (5) LOCK	20
Defin	e Kernel 19 F	vnlain briefly K	OR ennel I/O Subsytem		
Demi	c Remer 1. L	Apiam oneny K	omer 1/O Subsylem	(20
			UNIT-V		
(a) De	efine inter pro	ocess communic	ation? Explain brief	ly inter process communication	10
(D) W	nat is securi	ty: Write short n	ote on		ns: 10
(1)	Torjan Hou	se (2) Worm (3)	Virus (4) Authenti	cation	10
			OR		11
		Principles of wi	ndows XP?		10
b) Ex	plain System	Components?			1(

8.

9.

10.

(An Autonomous and Reaccredited with 'A' Grade by NAAC) MCA (III semester) Prefinal Examination, November- 2016

Subject : Operations Research

Exam Time: 3 hrs

Sub Code: MCA 11305

Max. Marks: 80

Answer the following Questions:

(5*16=80M)

UNIT-I

(4M)

(ii) Unbounded solution

b) Solve using simplex method

(12M)

$$Max z = 3x + 2y$$

STC

$$2x+y \le 40$$

$$x+y \le 24$$

$$2x+3y \le 60$$

$$x, y \ge 0$$
.

(Or)

(4M)

b) Using Big-M method solve

(12M)

$$Min z = 5x + 3y$$

STC

$$2x+4y \le 12$$

$$2x + 2y = 10$$

$$5x+2y \ge 10$$

NNC

$$x, y \ge 0$$
.

UNIT-II

3. a) Difference between transportation & transhipment problems.

(3M)

b) Find the optimal transportation cost, such that the total cost is minimized (13M)

Destination

		A1	B1	C1	D1	E1	Supply
	A	2	11	10	3	7	
Origin	В	1	4	7	2	1	4
	C	3	9	4	8	12	8
Den	nand	3	3	4	5	6	9

(Or)

4. Find optimal shipping plan such that the total cost is minimized

	~.	62	D1	D2	D3
S1	S1 0	S2 3	12	4	12
S2	5	0	3	6	10
D1	8	10	0	4	20
D2	20	12	5	0	15
D3	8	10	30	8	0
					2 700

Supply Values for S1, S2 sources re 800 & 700 respectively . Demand values for destinations D_1 , D_2 , D_3 are 500,400,600 respectively.

UNIT-III

5. Solve the following Assignment problem.

(16M)

		A I	3	C D	E
1	7	5	9	8	11
2	9	12	7	11	10
3	8	5	4	6	9
4	7	3	6	9	5
5	4	6	7	5	11

6. Solve the following IPP using Gomorian cutting plane algorithm $\text{Max } z = 10x_1 + 20x_2$

(16M)

$$6x_1 + 8x_2 \le 48$$

$$x_1 + 3x_2 \le 12$$

NNC

 $x_1, x_2 \ge 0$ and integers.

UNIT-IV

7. a) Explain dynamic programming? b) Using dynamic programming solve the following LPP? (4M) (12M)

$$Max z = x+9y$$

$$STC$$

$$2x+y \le 25$$

$$y \le 11$$

$$x,y \ge 0$$

(Or)

8. a) Write difference between PERT & CPM.

(4M)

b) Construct the network and determine the critical path for the following data

(12M)

Activity	A	R	C	D	E	E	G	Н	I
Pre Activity	-	-	BD	Δ	A	C	F	C	G,E
Durations	8	6	3	4	2	7	3	2	4

UNIT-V

9. a) Define: (4M)i) Value of the game ii) Dominance property (12M)b) Solve 3x5 game using Dominance property

		1	2	Player B 3	4	5
	1	2	5	10	7	2
Player A	2	3	3	6	6	4
	3	4	4	8	12	1
				(0.)		

(Or)

10. Solve using graphical method find optimal strategies & value of the game. (16M)

	1	2	3	4	5
Г	3	0	6	-1	7
1	-1	5	-2	2	1