LECTURE: 2-6 LIMITS AT INFINITY

Intuitive Definition of a Limit at Infinity Let f be a function defined on some interval (a, ∞) or $(-\infty, a)$. Then

$$\lim_{x \to \infty} f(x) = L \quad \text{(or } \lim_{x \to -\infty} f(x) = L)$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be big enough or

<u>ex</u>|

The line y = L is called a **horizontal asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L$$
 or $\lim_{x \to -\infty} f(x) = L$

Example 1: Sketch a graph of $y = \tan^{-1} x$ and find the $\lim_{x \to 0} \tan^{-1} x$ and $\lim_{x \to 0} \tan^{-1} x$.

and
$$\lim_{x \to -\infty} \tan^{-1} x = \boxed{-\pi/2}$$

see. 2.6 or x+ ± a sec. 2.2

Example 2: Find the infinite limits, limits at infinity, and asymptotes for the function f whose graph is shown below.

infinite limits: lim f(x)= 00

$$\lim_{\chi \to 2^{-}} f(\chi) = -\infty$$

$$\lim_{X\to 2^+}f(x)=\infty$$

limits at infinity $\lim_{x \to -\infty} f(x) = 4$ $\lim_{x \to -\infty} f(x) = 2$

$$\lim_{x\to\infty}f(x)=4$$

$$\lim_{x \to -\infty} f(x) = 2$$

asymptotes vertical: [X=-1, X=2

horizontal: [y=2, y=4

2-6 Limits at Infinity

Example 2: Find the following limits.

a)
$$\lim_{x \to \infty} \frac{1}{7x+1} = \boxed{\bigcirc}$$

$$l \div (big \#) \rightarrow 0$$

b)
$$\lim_{x\to\infty} \sin x$$
 DNE

c)
$$\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{6}x = 0$$

How to Determine Limits at Infinity: Divide the numerator and denominator by the highest common power between the numerator and denominator.

Example 3: Find the limit.

(a)
$$\lim_{x \to \infty} \frac{(2x+5)}{(x-4)} = \lim_{x \to \infty} \frac{2+5/x}{1-4/x}$$

= $\frac{2+0}{1-0}$

(a)
$$\lim_{x \to \infty} \frac{(2x+5)}{(x-4)} = \lim_{x \to \infty} \frac{2+5/x}{1-4/x}$$
 (b) $\lim_{x \to \infty} \frac{(x+4)}{(x^2+x-3)} = \lim_{x \to \infty} \frac{1+4/x}{x+1-3/x}$

$$= \frac{2+0}{1-0} = \boxed{0}$$

$$= \boxed{2}$$

$$(1 \div (big \#) \longrightarrow 0$$

Example 4: Evaluate the following limits.

(a)
$$\lim_{x\to\infty} \frac{(2x^2+5)}{(3x^2+1)}$$

$$= \lim_{X \to 0} \frac{2 + 9/x^2}{3 + 1/x^2}$$

$$=\frac{2+0}{3+0}$$

$$=$$
 $\frac{2}{3}$

(b)
$$\lim_{x\to\infty} (2x+5) V_X$$

$$= \lim_{X \to 0} \frac{2 + 5/x}{3x + y_X}$$

$$\frac{2}{2}$$

(c)
$$\lim_{x\to\infty} \left(2x^3+5\right) \frac{1}{2}$$

$$= \lim_{X \to \infty} \frac{2 \times + 5/x^2}{3 + 1/x^2}$$

$$(big #)*2 ÷3 \longrightarrow \infty$$

Example 5: Find the following limits at infinity.

(a)
$$\lim_{x \to \infty} \frac{(1 + 5e^x)}{(7 - e^x)} \frac{1}{2e^x} = \lim_{x \to \infty} \frac{(\frac{1}{2}e^x + 5)}{(\frac{1}{2}e^x - 1)}$$
$$= \boxed{-5}$$

(b)
$$\lim_{x \to \infty} [\ln(2+x) - \ln(1+x)] = \lim_{x \to \infty} \ln \left(\frac{2+x}{1+x} \right)$$

$$= \ln \left(\lim_{x \to \infty} \frac{(2+x)^{1/x}}{(1+x)^{1/x}} \right)$$

$$= \ln \left(\lim_{x \to \infty} \frac{(2+x)^{1/x}}{(1+x)^{1/x}} \right)$$

$$= \ln \left(1 \right)$$

$$= \boxed{0}$$

Example 6: Find the limit.

(a)
$$\lim_{x \to \infty} \frac{(x+2)}{(\sqrt{9x^2+1})} \frac{1}{y_X} = \lim_{x \to \infty} \frac{1+2/x}{\sqrt{(9x^2+1)}} = \lim_{x \to \infty} \frac{1+2/x}{\sqrt{(9x^2+1)}} = \lim_{x \to \infty} \frac{1+2/x}{\sqrt{(9+1)}} = \frac{1+0}{\sqrt{9+0}} = \frac{1}{\sqrt{3}}$$

(a)
$$\lim_{x \to \infty} \frac{(x+2)}{(\sqrt{9x^2+1})} \frac{1}{\sqrt{\chi}} = \lim_{x \to \infty} \frac{1+2/\chi}{\sqrt{(\sqrt{1}x^2+1)}} \frac{(b) \lim_{x \to \infty} \frac{(\sqrt{3x^6-x})}{(x^3+1)} \frac{1}{\sqrt{\chi}} = \lim_{x \to \infty} \frac{(\sqrt{3x^6-x})}{\sqrt{(x^3+1)}} = \lim_{x \to \infty} \frac{(\sqrt{3x^6-x})}{\sqrt{(x^3+1)}} \frac{1}{\sqrt{\chi}} = \lim_{x \to \infty} \frac{(\sqrt{3x^6-x})}{\sqrt{(x^3+1)}} = \lim_{x \to \infty} \frac{(\sqrt{3x^6-x})}{\sqrt{(x^6-x)}} = \lim_{x \to \infty} \frac{(\sqrt{3x^6-x})}{\sqrt{(x^6-x$$

plugging in large, negatives. Think

How do deal with limits as $x \to -\infty$: Replace x by -x and take the limit as $x \to \infty$.

Example 7: Find the limit.

(a)
$$\lim_{x \to -\infty} \frac{2x}{\sqrt{x^2 + 2}} = \lim_{x \to \infty} \frac{2(-x)}{\sqrt{(-x)^2 + 2}}$$

$$= \lim_{x \to \infty} \frac{(-2x)}{\sqrt{x^2 + 2}} \xrightarrow{x \to \infty} \frac{-2}{\sqrt{(x^2 + 2)} \frac{1}{\sqrt{x^2}}}$$

$$= \lim_{x \to \infty} \frac{-2}{\sqrt{1 + 2 \frac{1}{x^2}}}$$

$$= \frac{-2}{\sqrt{1 + 0}}$$

$$= [-2]$$

(b)
$$\lim_{x \to -\infty} (5 - 3e^x) = \lim_{x \to \infty} (5 - 3e^{-x})$$

= $\lim_{x \to \infty} (5 - \frac{3}{e^x})$
= $5 - 0$
= 5

Example 8: Evaluate the following limits.

(a)
$$\lim_{x \to \infty} (\sqrt{x^4 + 6x^2} - x^2) \left(\frac{\sqrt{x^4 + 6y^2} + x^2}{\sqrt{x^4 + 6y^2} + x^2} \right)$$

$$= \lim_{x \to \infty} \frac{x^4 + 6x^2 - x^4}{\sqrt{x^4 + 6x^2} + x^2}$$

$$= \lim_{x \to \infty} \frac{(6x^2 - y^4)}{\sqrt{x^4 + 6y^2} + x^2} \frac{(6x^2 - y^4)}{\sqrt{x^4 + 6y^2} + x^2}$$

$$= \lim_{x \to \infty} \frac{6}{\sqrt{(x^4 + 6y^2)y^4 + 1}}$$

$$= \lim_{x \to \infty} \frac{6}{\sqrt{1 + 6y^2} + y^2}$$

$$= \lim_{x \to \infty} \frac{6}{\sqrt{1 + 6y^2} + y^2}$$

(b)
$$\lim_{x \to \infty} (\sqrt{x^2 + 1} - x) \left(\frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x} \right)$$

$$= \lim_{x \to \infty} \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x}$$

$$= \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x}$$

$$= \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x}$$

$$= 0$$

Example 9: Evaluate the following limits.

(a)
$$\lim_{x \to 0^-} e^{1/x}$$

= 6

=3

as
$$x \to 0^-$$
, $y_x \to -\infty$.

See:

So
$$\lim_{x \to 0^{-}} e^{1/x} = \left(e^{-big \#}\right)$$

[Squeeze it]

(b)
$$\lim_{x\to\infty} e^{-2x} \cos x = \lim_{x\to\infty} \frac{\cos x}{e^{2x}}$$

Note: $-1 \le \cos x \le 1$

and $-\frac{1}{2} = \cos x \le \frac{\cos x}{e^{2x}} \le \frac{1}{2} = 0$

Since $\lim_{x\to\infty} \frac{1}{2} = 0$ and $\lim_{x\to\infty} \frac{1}{2} = 0$

We know $\lim_{x\to\infty} \frac{\cos x}{e^{2x}} = 0$ by

the Squeeze theorem.

Example 11: Sketch the graph of $y = (x-2)^4(x+1)^3(x-1)$ by finding its intercepts and its limits as $x \to \pm \infty$.

"y-Intercept:
$$x=0 \Rightarrow y=(-2)^{4}(1)^{3}(-1)$$
 $y=-16$

"x-int: $y=0 \Rightarrow 0=(x-2)^{4}(x+1)^{3}(x-1)$
 $x=2,-1,1$

as $x + \infty$, $y + \infty$

as $x + \infty$, $y + \infty$
 $x + \infty$, $y + \infty$

Example 12: Find the horizontal and vertical asymptotes of $f(x) = \frac{\sqrt{16x^2 + 1}}{2x - 8}$.

Ha:
$$\lim_{y \to \infty} f(x) = \lim_{y \to \infty} \frac{\sqrt{16x^2 + 1}}{(2x - 8)^{1/x}}$$
 and $\lim_{y \to -\infty} f(y) = \lim_{x \to -\infty} \frac{\sqrt{16x^2 + 1}}{2x - 8}$

$$= \lim_{x \to \infty} \frac{\sqrt{16 + 1/x^2}}{2 - 8/x}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16 + 1/x^2}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-x) - 8}$$

$$= \lim_{x \to \infty} \frac{\sqrt{16(-x)^2 + 1}}{2(-$$