Descenso de Gradiente

Luz Magaly Turpo Mamani

Universidad Nacional del Altiplano

Programa web: https://3ej8eu-antartidalil.shinyapps.io/LUZ_DESCENSO_GRAD/ Repositorio GitHub: https://github.com/luz897/Shinyapp

December 16, 2024

Problema

En una parcela de quinua en la región de Puno, un agricultor desea encontrar la cantidad óptima de agua de riego (litros por hectárea) y fertilizante (kilogramos por hectárea) para maximizar el rendimiento del cultivo.

- Rendimiento promedio: 2 toneladas por hectárea.
- Variación según insumos: agua y fertilizante.
- Objetivo: Minimizar la diferencia entre el rendimiento real y esperado, sin exceder un presupuesto de 500 soles por hectárea.

Definiciones del Problema

Función de costo:

Costo = $(rendimiento_predicho - rendimiento_real)^2 + (x_1 + x_2) \cdot 0.05$

Rendimiento predicho:

 $rendimiento_predicho = 2 + 0.05 \cdot x_1 + 0.1 \cdot x_2$

Gradientes para el Descenso de Gradiente

Derivada parcial respecto a x_1 :

$$\frac{\partial C}{\partial x_1} = 2 \cdot (rendimiento_predicho - rendimiento_real) \cdot 0.05 + 0.05$$

Derivada parcial respecto a x_2 :

$$\frac{\partial C}{\partial x_2} = 2 \cdot (rendimiento_predicho - rendimiento_real) \cdot 0.1 + 0.05$$

Actualización de Parámetros

Actualización de *x*₁:

$$x_1 = x_1 - \alpha \cdot \frac{\partial C}{\partial x_1}$$

Actualización de x₂:

$$x_2 = x_2 - \alpha \cdot \frac{\partial C}{\partial x_2}$$

Valores Iniciales

Parámetros iniciales:

- $x_1 = 10$ litros de agua por hectárea.
- $x_2 = 5$ kilogramos de fertilizante por hectárea.
- rendimiento_real = 2 toneladas por hectárea.
- Tasa de aprendizaje (α) = 0.01.