

Milestone I

Karl Jorge Cleres Andreo

Yanhong Xu

Elif Dilara Aygün

Bowen Zhang

Visual Word Paradigm

Basic Idea:

- The brain is predicting incomplete sentences
- Check were people look in the image before they hear the complete sentence

Research questions:

- Are the results of the visual word paradigm applicable to images with motion?
- Does motion lead to overstimulation and therefor have a detrimental effect on target matching?
- Does motion lead to faster target identification?

Hypothesis:

- Due to competition effects, target match is higher in normal images than in the ones with motion
- Participants fixate objects without motion under condition faster than in the ones with motion

Visual Word Paradigm

- Experimental conditions:
 - Classic visual world paradigm
 - Our spin \rightarrow add pics with motion
- Eye-Tracking-Measures:
 - # fixations on target # fixations on non target

- One factor: Target Match with 2 levels:
 - Single image condition
 - Image with motion condition

"The person ate an apple"
"The girl picked up the phone"
"I got stung by a cactus"
"The man takes a bath"

Milestone II

Karl Jorge Cleres Andreo

Yanhong Xu

Elif Dilara Aygün

Bowen Zhang

central research question

Are the results of the visual word paradigm presented by Huetting & Altmann replicable and do they persist when adding moving objects to the experiment?

conditions

- (1) static stimuli
- (2) stimuli with motion

balancing

²⁄₃ static stimuli

1/3 stimuli with motion

static stimuli

s. w. motion

- (1) within subject design(2) between subject design
- randomization: random ordering of stimuli within OpenSesame

Experimental procedure replication

64 images16 critical instructions32 trials

- 16 full match
- 16 semantic match

FULL MATCH

At the casino, the girl picked the card.

SEMANTIC MATCH

Experimental procedure "testbaloon"

64 gifs 16 critical instructions 16 trials

full match only

Experimental procedure

Static stimuli

Full match: "At breakfast, the girl ate an **apple**".

Semantic match: "At breakfast, the girl ate a banana".

Stimuli with motion

"The person washed a green apple".

"The girl picked up the phone".

"I got stung by a cactus".

"The man takes a bath".

At the casino, the girl picked the card

At the farm, the girl picked the egg.

NOTES:

- (1) Between subject design for test balloon
 - (a) 70% of all participants: replication
 - (b) 30% of all participants: test balloon
- (2) Altmann, G. T., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the domain of subsequent reference. Cognition, 73(3), 247–264. http://dx.doi.org/10.1016/s0010-0277(99)00059-1

https://www.sciencedirect.com/science/article/pii/S001002770400186 6#bbib6

Milestone III

Yanhong Xu

Elif Dilara Aygün

Karl Jorge Cleres Andreo

central research question

Do people still make anticipatory eye movements¹ when presented images with motion instead of static ones?

1: as presented by Altmann & Kamide, 1999

conditions

- (1) static stimuli
- (2) stimuli with motion

randomization:

random ordering of stimuli within OpenSesame

latin square design:

The presentation of the static and motion stimuli is reversed for two groups of participants

Milestone IV: Pilot data

Yanhong Xu

Elif Dilara Aygün

Karl Jorge Cleres Andreo

Sanity Checks

- Issues we encountered:
 - Not everything was logged

Assumption: psychopy was not working on lab computer,
 had to change to pygame (legacy) last minute

Balancing/Randomization errors:
 We only had 1 trial run, so there was not much to balance / randomize.

Logs

Takeaway lessons

- Remove fixation dot when stimuli are being shown
- Make sure, there is only one matching object per stimulus
- Some gifs are faster on the lab computer → slow down
- Discuss PyGame vs. PsychoPy Kernel (lab computer)

Milestone V: Analysis Pipeline

Yanhong Xu

Elif Dilara Aygün

Karl Jorge Cleres Andreo

Preprocessing and analysis pipeline

1. Fixation detection alg. (velocity based)

2. log parsing (to dataframe)

3. compute verb/ critical word onsets

4. analyze areas of interest

Metrics

fixations on target total fixations

- more noise resistant compared to looking at first saccade movement after onset

1920 x 1080 px

sub stimulus 300 x 300 px

areas of interest 350 x 350 px

Expected results

- overall, higher amount of fixations on targets (see pilot data)
- % of fixations on target lower for motion stimuli

Preliminary results

- Scanpath plots
- total amount of samples at main area of interest vs. rest of screen

Visualizations

- heat maps
- scanpath plots

Preliminary results

- Scanpath plots
- total amount of samples at main area of interest vs. rest of screen