COHOMOLOGY

Same basic information as homology, but get · multiplicative structure · pairing with homology

· contravariance

Quick idea: $X = \Delta$ -complex G = abelian group, say 7L $\Delta^i(X) = \text{functions from } i\text{-simplices of } X \text{ to } G.$ $= \text{homomorphisms } \Delta_i(X) \rightarrow G$ $\delta : \Delta^i(X,G) \rightarrow \Delta^{i+1}(X,G)$ coboundary $(-1)^k f(\partial_k \Gamma)$ For $f \in \Delta^i$, Γ an i-simplex, $\delta f(\sigma) = \sum_{i=1}^{M} f(\partial_k \Gamma)$ $H^*(X;G)$ is homology of this chain complex

White Graphs. X = 1-dim Δ -complex = oriented graph Let $f \in \Delta^{\circ}(X,G)$ $\delta f(e) = f(V_t) - f(V_0)$ = change of f over e "derivative" think: f = e levation

> chain complex: $O \rightarrow \Delta^{\circ}(X,G) \xrightarrow{\delta} \Delta^{\prime}(X,G) \rightarrow O$

H°(X,G) = Ker 5
= functions constant on each component
= direct product of components
(as opposed to direct sum in homology case)

 $H'(X,G) = \Delta'(X,G)/\text{Im }\delta$ So for $f \in \Delta'(X,G)$, have [f] = 0 in H'(X,G) iff f has an antiderivative.

Examples. ① X = treeAntiderivatives always exist $\Rightarrow |H'(X,G) = 0.$ ② X = 0

 $\Delta'(X,G) \cong G$ No nontrivial function has an antiderivative $\longrightarrow H'(X,G) \cong G$

 $3 \times = \bigvee_{\alpha} S^{\alpha}$ $\longrightarrow H'(X,G) = \prod_{\alpha} G$

More generally. X = any tree graph. Let T = maximal tree (or forest), E = edges outside $T \longrightarrow H'(X,G) = TT_E G$ (again, instead of direct sum).

> Why? First consider $\{f \mid f|_{T=0}\}$ Two of these are cohomologous \iff they are equal (only possible antidenivative is F= const).

Next show any $f' \in \Delta'$ is cohomologous to some f with $f|_{T} = O$. Modify f' by making one edge of T evaluate to O, say add g to f'(e). Then for any edge e' of X-T, either add or subtract g, depending on whether loop through e,e' traverses them in same or diff directions. Check new f' cohomologous to dd.

Two dimensions.
$$X = 2$$
-dim Δ -complex $S: \Delta'(X,G) \rightarrow \Delta^2(X,G)$
$$Sf([V_0,V_1,V_2]) = f([V_1,V_2]) - f([V_0,V_2]) + f([V_0,V_1])$$

Check that

$$O \longrightarrow \Delta'(X,G) \longrightarrow \Delta'(X,G) \longrightarrow \Delta^2(X,G) \longrightarrow O$$

is a chain complex: say $f \in \Delta^{\circ}(X,G)$.

$$f(v_2) - f(v_0)$$
 $f(v_1) - f(v_1)$
 $f(v_2) - f(v_1)$

$$\delta\delta f([v_0,v_1,v_2]) = (f(v_1) - f(v_0)) + (f(v_2) - f(v_1))$$

 $f(v_2) - f(v_0)$ $f(v_2) - f(v_0)$ $f(v_2) - f(v_0)$ $f(v_1) - f(v_0) + (f(v_1) - f(v_0)) + (f(v_1) - f(v_0))$ $-(f(v_2) - f(v_0))$ i.e. if you hike a loop, total elevation change

1-cocycles: of=0 iff $f([v_0,v_2]) = f([v_0,v_1]) + f([v_1,v_2])$ so of measures failure of additivity. This is the local obstruction to f being in im & And $f \neq 0$ in $H^1(X) \iff$ does not come from $F \in \Delta^{\circ}$. i.e. if there is a global obstruction.

Analogue with calculus. I-forms on $\mathbb{R}^3 \iff \text{vector fields}$ Want to know if vector field is of local obstruction: curl = 0. (closed) global obstruction: line integrals = 0. (exact)

In 1Rn, all closed forms are exact. Not true in other spaces, e.g. $\mathbb{R}^2 - \{0\}$ of de Rham cohomology: closed forms/exact forms.

Geometric interpretation of 1-cocycles, X a surface.

Take $G = \mathbb{Z}_2$. $\delta f = 0$ means f takes value 1 on even # of edges in each Δ . → collection of curves, arcs [f]=0 \(\Leftarrow \) can color regions black & white.

examples. disk, annulus:

Take $G=\mathbb{Z}$. Again $\delta f=0$ \longrightarrow collection of curves

e.g. 3 v_0 v_1 v_1 v_2 v_3 v_4 v_4 v_5 v_1 v_2 v_3 v_4 v_5 v_1

 $[f] = 0 \iff \text{can assign elevation to each vertex}$ consistently.

exercise. Construct nontrivial coaycle on annulus. So: in annulus, can walk in a loop and change your elevation! cf. international dateline.

Exercise: Find geometric interpretations of 1- & 2-cocycles in a 3-manifold.

COHOMOLOGY GROUPS (Some Abstract Algebra)

Start with a chain complex of abelian groups
$$C:$$
 $C_n \xrightarrow{\partial n} C_{n-1} \xrightarrow{\cdots} C_n$

Hn(C) = $\frac{\ker \partial n}{\lim \partial n_{+1}}$

To get cohomology, we dualize: replace each
$$C_n$$
 with its dual $C_n^* = Hom(C_n, G)$ replace each ∂ with $\delta = \partial^* : C_{n-1}^* \longrightarrow C_n^*$ Notice: $\delta \delta = \partial^* \partial^* = (\partial \partial)^* = O^* = O$.

 $\longrightarrow H^n(C,G) = \ker \delta / \operatorname{im} \delta$

Guess:
$$H^n(C,G) \cong Hom(H^n(C),G)$$
 Too optimistic, but almost true. It is true for graphs.

Example. C:
$$O \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z}$$

use formula

 $C^*: O \leftarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2$

This holds in general, Since any chain complex of finitely generated abelian groups splits as a direct sum of
$$0 \rightarrow \mathbb{Z} \rightarrow 0$$
 and $0 \rightarrow \mathbb{Z} \stackrel{m}{\rightarrow} \mathbb{Z} \rightarrow 0$

UNIVERSAL COEFFICIENT THEOREM FOR COHOMOLOGY

C: ... — C_n — C_{n-1} Chain complex. — $H_n(C)$ $T_n(C)$ = torsion subgroup of $H_n(C)$.

We just showed: If the Hn(C) are finitely generated, and each C_i is free abelian, then $H^*(C, \mathbb{Z}) \cong Hn(C)/T_n(C) \oplus T_{n-1}(C)$

This is a special case of:

Theorem. There is a split short exact sequence: $O \longrightarrow Ext(Hm_1(C),G) \longrightarrow H^n(C,G) \longrightarrow Hom(Hn(C),G) \longrightarrow O$

The group $\operatorname{Ext}(\operatorname{Hn-I}(C),G)$ is explicit. It describes all extensions of $\operatorname{Hn-I}(C)$ by G. Some properties: If H is finitely gen, then \mathscr{O} $\operatorname{Ext}(H \oplus H',G) \cong \operatorname{Ext}(H,G) \oplus \operatorname{Ext}(H',G)$ $\cong \operatorname{Ext}(H,G) = 0$ if H is free $\cong \operatorname{Ext}(\mathcal{A}/n\mathbb{Z},G) \cong G/nG$

These imply the special case of UCT above.

Universal coefficient theorem for homology: $H_n(X, \mathbb{R}) \cong H_n(X, \mathbb{Z}) \otimes \mathbb{R}$ (later).

COHOMOLOGY OF SPACES

X = space, G = abelian group $C^n(X,G) (= \text{singular } n\text{-chains with coefficients in } G, \text{ except allow so sums})$ $= \text{dual of } C_n(X)$ $= \text{Hom}(C_n(X), G)$

Coboundary δ is ∂_* : for $\varphi \in C^n(X,G)$ $\delta \varphi : C_{n+1}(X) \xrightarrow{\partial} C_n(X) \xrightarrow{\varphi} G$.

Again, $\delta^2 = 0$.

 \rightarrow Hⁿ(X,G) cohomology group with coefficients in G. = $\ker \delta / \lim \delta = \frac{\cosh(x)}{\cosh(x)}$ coboundaries

Cocycles. A cochain φ is a cocycle iff $\delta \varphi = \varphi \partial = 0$, i.e. φ vanishes on all boundaries. It is a coboundary if it has an "antiderivative." Since Cn(X) free, UCT gives:

 $O \longrightarrow Ext(H_{n-1}(X), G) \longrightarrow H^{n}(X, G) \longrightarrow Hom(H_{n}(X), G) \longrightarrow O$

"Cohomology groups of X with arbitrary coefficients is determined by the homology groups of X with Z coefficients."

What is Ext?

Let $B_n = im \partial_{n+1}$ (boundaries) $Z_n = ker \partial_n$ (cycles) $in : B_n \rightarrow Z_n$ $Ext(H_{n-1}(X), G) = Coker i_{n-1}^*$

dual to in-1

COHOMOLOGY IN LOW DIMENSIONS

n=0 Ext term is trivial, so $H^{\bullet}(X,G) \cong Hom(H_{\bullet}(X),G)$

Can See directly from definitions:

sing. O-simplices \Longrightarrow points of Xcochains \Longrightarrow functions $X \to G$ (not continuous)

cocycles \Longrightarrow vanish on boundaries \Longrightarrow const. on each path component \Longrightarrow $H^{\bullet}_{\bullet}(X,G) = \text{functions}$ {path components of X} \Longrightarrow G= Hom ($H_{\bullet}(X), G$).

n=1 Ext = 0 since $H_0(X)$ free $\Rightarrow H'(X,G) \cong Hom(H_1(X),G)$ $\cong Hom(\pi_1(X),G)$ if X path conn.

COEFFICIENTS IN A FIELD

Hn(X,F) = homology gps of chain complex of F-vector spaces <math>Cn(X,F)Dual complex $Hom_F(Cn(X,F),F) = Hom(Cn(X),F)$ $\longrightarrow H^n(X,F)$ Can generalize UCT to fields (or pid's) $\longrightarrow Ext$ vanishes for fields $\longrightarrow H^n(X,F) \cong Hom_F(Hn(X,F),F)$

For F= 7407 or Q, Hom= Hom

Examples of 2-cocycles

$$O X = D^2$$

We know $H^{2}(D^{2}, \mathbb{Z}) = 0$ so $\varphi = \delta \Psi$. What is Ψ ?

Solution:

No obstructions.

Want to show $[\varphi] \neq 0$ in $H^2(S^2, \mathbb{Z})$ i.e. no antiderivative γ .

Any ψ with $\partial \psi = \varphi$ must satisfy:

writing a for year

$$b+d=a$$

$$e+c=a$$

$$b+f=c$$

$$e+f=d+1$$

$$\Rightarrow a-a=1.$$

Realize T^3 as Δ -complex by subdividing cube into 6 tetrahedra, identifying app faces of the cube. Let L= line segment in cube that is a loop in T^3 , misses 1-skeletion. Declare $\varphi(T)=1$ if $T \cap L \neq \emptyset$. Show $[\varphi] \neq 0$ in $H^2(T^3, \frac{1}{27L})$.

COHOMOLOGY THEORY

Reduced groups, relative groups, long exact seq of pair, excision, Mayer-Vietoris, all work for cohomology.

Included Homomorphisms - Contravariance

Given $f: X \rightarrow Y$, get chain maps $f_{\#}: C_{n}(X) \rightarrow C_{n}(Y)$ Dualize: $f^{\#}: C^{n}(Y,G) \rightarrow C^{n}(X,G)$ $f_{\#}\partial = \partial f_{\#} \text{ dualizes to } \delta f^{\#} = f^{\#}\delta$ $f^{\#}: H^{n}(Y,G) \rightarrow H^{n}(X,G)$ with: $(f_{g})^{\#} = g^{\#}f^{\#}$ & $(id)^{\#} = id$ Say $X \mapsto H^{n}(X,G)$ is a contravariant functor.

Homotopy Invariance $f \simeq g : X \longrightarrow Y \Longrightarrow f^* = g^* : H^n(Y) \longrightarrow H^n(X)$.

Dualize the proof for homotopy P s.t. $g_{\#} - f_{\#} = \partial P + P \partial P$ Dualize: $g^{\#} - f^{\#} = P^* \mathcal{F} + \mathcal{F} \mathcal{P}^*$ $\longrightarrow P^*$ a chain homotopy between $f^{\#}$ & $g^{\#}$ So all the work has been done.