

×

X

Victor QIAN Martin RAMPONT

Landslide after Rainfall

×

×

Thousands deaths Billions \$ damages

/Each year

Use cases of Landslide Analysis

Landslide Suceptibility

Identify areas that are prone to landslides + map in real time

Early warning system

Provide timely warnings to residents and authorities.

X

Impact Assessment

Assess the extent of damage and plan for recovery (Computer Vision)

Global Landslide Catalog Export (2007-2016), NASA

X

Rows Columns Each row is a Landslide

03 EDA

ASL Recognition

×

Missing values

Map of Fatality Count

- landslide_size small
- medium
- unknown
- large
- very_large fatality_count
- •

Time Seasonality

×

By Month

By Year

Country Landslide Number

Country deaths number

Data Preprocessing

Incorrect data types and values

Values Formating

Deals with missing values

×

Final output

Normalization

Time data splitting

×

Types of trained models

Al model	× Advantages	Drawbacks
Random Forest	Handles non-linearity and interactions well	Can be prone to overfitting, especially on noisy data
Random Forest Tuned (Grid Search)	Improved performance through hyperparameter tuning	Increased computational cost due to tuning
SVR	Effective in high-dimensional spaces	Sensitive to noise and may require careful preprocessing
SVR Tuned	Better generalization with optimized parameters	Computationally expensive, especially with grid search
Linear Regression	Simple and interpretable	Assumes a linear relationship, may not capture complex patterns
Neural Network	Powerful for complex, non-linear relationships	Requires large amounts of data and computation resources
X Tensorflow	Comprehensive deep learning framework	Steeper learning curve, especially for beginners
Xgboost	Handles missing values and outliers well	Prone to overfitting, may require tuning

05 Results

ML Results

Types of trained models_{*}

THANKS!

DO YOU HAVE ANY QUESTIONS?

