Suites de fonctions

Types de convergence

Définition : Suite de fonctions

On appelle suite de fonctions de D vers \mathbb{K} toute suite $(f_n)_{n\in\mathbb{N}}$ ou $(f_n)_{n\geq n_0}$ (pour un certain $n_0\in\mathbb{N}$) où $\forall n,f_n:D\to\mathbb{K}$

Convergence simple

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de D vers \mathbb{K} .

<u>Définition</u>: Convergence simple.

On dit que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement (CVS) sur $A\subset D$ vers $f:A\to\mathbb{K}$ si :

$$\forall x \in A$$
, la suite numérique $\big(f_n(x)\big)_{n \in \mathbb{N}}$ converge vers f

C'est-à-dire:

$$\forall x \in A, f_n(x) \xrightarrow[n \to +\infty]{} f(x)$$

C'est-à-dire:

$$\forall x \in A, \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Longrightarrow |f_n(x) - f(x)| \le \varepsilon)$$

On dira que $(f_n)_{n\in\mathbb{N}}$ CVS sur A s'il existe une fonction $f:A\to\mathbb{K}$ telle que $(f_n)_{n\in\mathbb{N}}$ CVS sur A vers f.

<u>Définition</u>: Domaine de convergence simple

Le domaine de convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ de D vers \mathbb{K} est la plus grande partie $A\subset D$ sur laquelle $(f_n)_{n\in\mathbb{N}}$ CVS.

Définition: Limite simple

Si $(f_n)_{n\in\mathbb{N}}$ CVS sur A vers f, on dit que f est la limite simple de $(f_n)_{n\in\mathbb{N}}$ sur A.

Paramètres préservés par le passage à la limite simple

<u>Propriété</u>: Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de D vers $\underline{\mathbb{R}}$.On suppose que $(f_n)_{n\in\mathbb{N}}$ CVS sur $A\subset D$ vers f.

- (i) Si $\forall n \in \mathbb{N}$, f_n est positive sur A, f est positive sur A
- (ii) Si $\forall n \in \mathbb{N}$, f_n est croissante sur A, alors f est croissante sur A
- (iii) Si $\forall n \in \mathbb{N}$, f_n est convexe sur un intervalle $I \subset A$, f est convexe sur I.

Paramètres NON conservés par le passage à la limite simple (mais par la convergence uniforme)

- (i) La continuité
- (ii) Le caractère borné
- (iii) L'interversion série-intégrale

Convergence uniforme

<u>Définition</u>: Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de D vers \mathbb{K} . On dit que $(f_n)_{n\in\mathbb{N}}$ converge uniformément (CVU) sur $A \subset D$ vers $f: A \to \mathbb{K}$ si :

$$\forall \varepsilon > 0, \exists n \in \mathbb{N}, \forall n \geq N, \forall x \in A, |f_n(x) - f(x)| \leq \varepsilon$$

 \Leftrightarrow

$$\forall \varepsilon > 0, \exists n \in \mathbb{N}, \forall x \in A, (n \ge N \Longrightarrow |f_n(x) - f(x)| \le \varepsilon$$

<u>Théorème</u>: Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de D vers \mathbb{K} , $A\subset D$ et $f:A\to\mathbb{K}$. On a équivalence entre :

- (i) $(f_n)_{n\in\mathbb{N}}$ CVU sur A vers f
- (ii) $\exists N_0 \in \mathbb{N} \text{ tel que } \forall n \in \mathbb{N} \text{, la fonction } f_n f \text{ est bornée sur } A \text{, et :}$

$$||f_n - f||_{\infty} = \sup_{x \in A} |f_n(x) - f(x)| \underset{n \to \infty}{\longrightarrow} 0$$

<u>Théorème</u>: Si $(f_n)_{n\in\mathbb{N}}$ CVU sur A vers f, alors $(f_n)_{n\in\mathbb{N}}$ CVS sur A vers f.

Propriétés préservées par la CVU

 $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions de $D\subset\mathbb{R}$ vers \mathbb{K} , et A une partie de D.

1. Caractère borné

Propriété:

Si:

- (i) $\forall n \in \mathbb{N}, f_n \text{ est bornée sur } A.$
- (ii) $(f_n)_{n\in\mathbb{N}}$ CVU sur A vers $f:A\to\mathbb{K}$

Alors f est bornée sur A.

2. Continuité

Théorème : Soit a ∈ A.

On suppose que:

- (i) $\forall n \in \mathbb{N}, f_n \text{ est continue en } a.$
- (ii) $(f_n)_n$ CVU sur A vers une fonction $f: A \to \mathbb{K}$.

Alors f est continue en a.

Corollaire: Si:

- (i) $\forall n \in \mathbb{N}, f_n \text{ est continue sur } A.$
- (ii) $(f_n)_n$ CVU sur A vers une fonction $f: A \to \mathbb{K}$.

Alors f est continue sur A.

3. Interversion de limites

Théorème de la double limite :

Soit a un point adhérent à A (ou $a = +\infty$ (resp. $-\infty$) si A n'est pas majoré (resp. minoré))

On suppose que:

- (i) $(f_n)_n$ CVU sur A vers une fonction $f:A\to \mathbb{K}$
- (ii) $\exists N_0 \in \mathbb{N}, \forall n \geq N_0$, la fonction f_n admet une limite finie quand $x \to a$ qu'on note ℓ_n

Alors la série $(\ell_n)_{n\geq N_0}$ est convergente, la fonction f admet une limite en a et ces 2 limites sont égales :

$$\lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right) = \lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right)$$

Suites de fonctions & intégration

Intégration sur un segment

Théorème:

Soient $a,b \in \mathbb{R}$, a < b, $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de [a;b] vers \mathbb{K}

Supposons que:

- (i) $\forall n \in \mathbb{N}, f_n \text{ est continue sur } [a; b]$
- (ii) $(f_n)_n$ CVU sur [a;b] vers une fonction $f:[a;b] \to \mathbb{K}$

Alors f est continue sur [a;b] et $\int_a^b f_n(x)dx \xrightarrow[n \to +\infty]{b} \int_a^b f(x)dx$

<u>Théorème:</u>

Soient $a, b \in \mathbb{R}$, a < b, $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de [a; b] vers \mathbb{K}

Supposons que:

- (i) $\forall n \in \mathbb{N}, f_n \text{ est continue par morceaux sur } [a; b]$
- (ii) $(f_n)_n$ CVU sur [a;b] vers une fonction $f:[a;b] \to \mathbb{K}$
- (iii) f est continue par morceaux

Alors
$$\int_a^b f_n(x) dx \xrightarrow[n \to +\infty]{} \int_a^b f(x) dx$$

Intégration sur un intervalle quelconque

Théorème de convergence dominée (TCD)

Soit I un intervalle de $\mathbb R$ et $(f_n)_{n\in\mathbb N}$ une suite de fonctions de I vers $\mathbb K$. On suppose que :

- (i) $\forall n \in \mathbb{N}, f_n \in C_m^0(I)$
- (ii) $(f_n)_n$ CVS sur I vers une fonction $f:I\to \mathbb{K}, f\in \mathcal{C}_m^0(I)$
- (iii) (Hypothèse de domination)

 $\exists \varphi: I \to \mathbb{R}^+ \in C_m^0(I)$, intégrable sur I, telle que :

$$\forall n \in \mathbb{N}, \forall x \in I, |f_n(x)| \leq \varphi(x)$$

Alors pour $n \in \mathbb{N}$, f_n et f sont intégrables sur I et

$$\lim_{n \to +\infty} \int_{I} f_n(x) dx = \int_{I} f(x) dx$$

Dérivation

Théorème de dérivation :

Soient I un intervalle de \mathbb{R} et $(f_n)_n$ une suite de fonctions de I vers \mathbb{K} . On suppose que :

- (i) Pour tout $n \in \mathbb{N}$, f_n est de classe C^1 sur I
- (ii) La suite de fonctions $(f_n)_n$ converge simplement en un point $a \in I$
- (iii) La suite de fonctions $(f'_n)_n$ converge uniformément sur tout segment de I vers une fonction g

Alors $(f_n)_n$ converge uniformément sur tout segment de I vers une fonction $f \in C^1(I)$, de dérivée f' = g.

Dérivées d'ordre supérieur

Théorème:

Soit $p \in \mathbb{N}^*$, I un intervalle de \mathbb{R} , $(f_n)_n$ une suite de fonctions de I vers \mathbb{K} . On suppose que :

- (i) $\forall n \in \mathbb{N}, f_n \text{ est de classe } C^p \text{ sur } I.$
- (ii) $\forall k \in [0; p-1], \left(f_n^{(k)}\right)_{n \in \mathbb{N}}$ CVS sur I vers une fonction $g_k : I \to \mathbb{K}$
- (iii) $\left(f_n^{(p)}\right)_n$ CVU sur tout segment inclus dans I vers une fonction $g_p:I\to\mathbb{K}$

Alors la limite simple $f=g_0$ de $(f_n)_n$ est de classe \mathcal{C}^p sur I et $\forall k \in [0;p]$, $f^{(k)}=g_k$