Une Khôlle Calcul de complexité

Amar AHMANE

31 janvier 2022

Énoncé On considère l'algorithme suivant implémenté en python

En calculer la complexité au pire des cas.

Éléments de réponse Si on note T(n) le nombre d'opérations élémentaires effectués par l'algorithme lorsque l'entrée est de taille n, on remarque que

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + \mathcal{O}(1)$$

Ceci vient de l'appel récursif fait à la ligne 5 : le coût total est égal au coût des appels sur des entrées de tailles respectives $\frac{n}{3}$ et $\frac{2n}{3}$ plus celui de l'addition. On peut alors représenter dans un arbre binaire les appels récursifs et les additions qui sont faites

FIGURE 1 – Arbre représentant les appels récursifs à la fonction foo

La première chose que l'on remarque est que la valeur du noeud tout à gauche du dernier étage de l'arbre semble décroitre plus rapidement que celle du noeud tout à droite du dernier étage du fait de la présence d'une puissance de 2 en facteur. En fait, si l'on regarde de plus près, notamment en dessinant le troisième étage, on remarque un motif et on arrive à dénombrer les différentes tailles qui apparaîssent : faisons ça

FIGURE 1 – Arbre représentant les appels récursifs à la fonction foo

On fait alors la conjecture que, pour un étage k donné, pour un entier $i \in [0, k]$, le problème de taille $\frac{2^i n}{3^k}$ est traîté C_k^i fois.

Montrons cela par récurrence :

- Pour k = 0, tout est OK, il n'y a que la racine qui est traîtée C_0^0 fois i.e 1 fois.
- Pour un étage k donné, on suppose que notre conjecture est vérifiée. On montre qu'elle reste vraie à l'étage k+1. Soit $i \in [0,k+1]$: pour arriver à un problème de taille $\frac{2^i n}{3^{k+1}}$, on a du soit partir d'un problème de taille $\frac{2^{i-1} n}{3^k}$ et descendre à droite, soit partir d'un problème de taille $\frac{2^i n}{3^k}$ et descendre à gauche : ceci n'est pas vrai si i=0 ou i=k+1, en écartant ces cas particuliers, on a que le nombre de problèmes de taille $\frac{2^i n}{3^{k+1}}$ est égal à

$$C_k^i + C_k^{i-1} = C_{k+1}^i$$

Dans le cas où i = 0, il n'y a qu'une seule possibilité et pour i = k + 1 aussi, ce qui achève de montrer que notre conjecture reste vraie à l'étage k + 1.

— Conclusion : notre conjecture est vraie quel que soit l'étage auquel on se place.

On estime alors le nombre d'opérations élémentaires (c'est à dire le nombre d'additions) à la moitié du nombre de noeuds décrits par $(k,i) \in \mathbb{N}^2$ tels que $\frac{2^i n}{3^k} \ge 1$. C'est ainsi que, pour un étage k donné, et pour $i \in [0,k]$, on notera

$$\beta_{ki} = \begin{cases} 0 & \text{si } \frac{2^i n}{3^k} < 1\\ 1 & \text{sinon} \end{cases}$$

En se rappelant que le terme tout à droite du dernier étage est celui qui décroît le moins rapidement et qu'il représente un problème de taille $\frac{2^m n}{3^m}$ où m est l'étage, on en déduit qu'il détermine la hauteur de l'arbre puisqu'il est le dernier à être plus grand que 1, ainsi la hauteur est $m = \lfloor \log_{\frac{3}{2}}(n) \rfloor$. D'où la majoration suivante pour S, le nombre de sommes effectuées :

$$S = \frac{1}{2} \sum_{k=0}^{m} \sum_{i=0}^{k} C_{k}^{i} \beta_{ki}$$

$$\leq \sum_{k=0}^{m} \sum_{i=0}^{k} C_{k}^{i} \frac{2^{i} n}{3^{k}}$$

$$\leq \sum_{k=0}^{m} \frac{n}{3^{k}} \sum_{i=0}^{k} C_{k}^{i} 2^{i}$$

$$\leq \sum_{k=0}^{m} \frac{n}{3^{k}} 3^{k}$$

$$\leq \sum_{k=0}^{m} n$$

$$\leq (m+1)n = \mathcal{O}(n \log_{\frac{3}{3}}(n))$$

Ce qui achève de montrer que $T(n) = O(n \log_{\frac{3}{5}}(n))$.