# ALGORITHMS AND DATA STRUCTURES II

Lecture 1
Algorithms and their Complexity

Lecturer: K. Markov

markov@u-aizu.ac.jp

Course webpage:

http://hi-srv2.u-aizu.ac.jp

1/34

# COURSE OVERVIEW

### • Schedule:

- 6/14 L1,
- 6/18 L2,
- 6/21 L3,
- 6/25 L4,
- 6/28 L5
- 7/02 L6,

7/05 - MidTerm

7/09 - L7

7/12 - L8,

7/16 - L9,

7/19 - L10,

7/23 - L11,

#### 7/26 - L12,

7/30 - L13,

8/XX – Final

#### • Exams:

- MidTerm Lectures 1 to 6.
- Final Lectures 7 to 12.

# Course Overview

### Grading

- Exercises 40%
- MidTerm Exam— 30%
- Final Exam 30%

#### Exercises

- Text problems.
- Programming tasks.

### COURSE MANAGEMENT

- oUsing Moodle system.
  - http://hi-srv2.u-aizu.ac.jp
- Need an account.
- Exercises downloaded from Moodle.
- •Answers uploaded to Moodle.
- Grades, comments from Moodle.

## TODAY'S OUTLINE

### • Algorithms:

- Definition.
- Basic concepts.
- Function growth.
  - Upper bound.
  - Lower bound.
  - Tight bound.
- Algorithm complexity.
- Merge sort algorithm.



- •To solve any problem by a computer, we need an algorithm.
- Given an algorithm for the problem, we want to know the efficiency the algorithm.
- •We are most interested in how much time and how much memory *space* the algorithm takes to solve the problem.

## •What is an algorithm?

An <u>algorithm</u> is a well-defined computational **procedure** that transforms inputs into outputs, achieving the desired input-output relationship.

• The **computation time** of an algorithm depends on the number of computational steps of the algorithm and the computer used.

•To evaluate the efficiency of algorithms, it is ideal to use an **unique computer** to measure their computation time.

• The computation time of an algorithm for a problem **depends** on the size of the problem.

•Important! How the computation time of the algorithm grows when the size of the problem increases.

- •The size of a problem is denoted by an integer *n*, which is a measure of the quantity of input data.
  - The size of a matrix multiplication problem might be the **largest dimension** of the matrices.
  - The size of a sorting problem might be the **number of data** to be sorted.
  - The size of a graph problem might be the number of vertices or edges.

# **ALGORITHMS COMPLEXITY**

The computation time needed by an algorithm expressed as a function of the size of a problem is called **time complexity** of the algorithm.

•Analogous definition can be made for space complexity.



# **ALGORITHMS COMPLEXITY**

- Given an algorithm for a problem of size n, it is important to find the time complexity and how the time complexity grows when n increases.
- oIt is the growth rate of the **time complexity** (space complexity) of an algorithm which ultimately determines the **size** of problems that can be solved by the algorithm.

- **Ound.** g(n) = O(f(n)) if there exist constants c > 0 and  $n_0 \ge 0$  such that for all  $n \ge n_0$  we have  $g(n) \le cf(n)$ .
- o Lower bound. g(n) = Ω(f(n)) if there exist constants c > 0 and  $n_0 ≥ 0$  such that for all  $n ≥ n_0$  we have g(n) ≥ cf(n).
- Tight bound.  $g(n) = \Theta(f(n))$  if g(n) is both O(f(n)) and  $\Omega(f(n))$ .
- Example:  $g(n) = 32n^2 + 17n + 32$ .
  - g(n) is  $O(n^2)$ ,  $O(n^3)$ ,  $\Omega(n^2)$ ,  $\Omega(n)$ , and  $\Theta(n^2)$ .
  - g(n) is not O(n),  $\Omega(n^3)$ ,  $\Theta(n)$ , or  $\Theta(n^3)$ .





- Upper bound says that if constant factors are ignored f(n) is at least as large as g(n).
- og(n) = O(f(n)) means that the growth rate of g(n) is smaller than or equal to the growth rate of f(n).
- o0(...) is read ``order ...'' or ``Big-Oh ....''

- Lower bound  $g(n) = \Omega(f(n))$  (read "omega") means that the growth rate of g(n) is *greater than or equal to* the growth rate of f(n).
- **Tight bound**  $g(n) = \Theta(f(n))$  means that for all n right of  $n_0$ , the value of g(n) lies at or above  $c_1 f(n)$  and at or below  $c_2 f(n)$ .

- Prove  $g(n) = an^2 + bn + c = \Theta(n^2)$ 
  - a, b, c are constants and a > 0.
  - Find  $c_1$ , and  $c_2$  (and  $n_0$ ) such that  $c_1 n^2 \le g(n) \le c_2 n^2$  for all  $n \ge n_0$ .
  - It turns out:  $c_1 = a/4$ ,  $c_2 = 7a/4$  and  $n_0 = 2 \max(|b|/a, \sqrt{|c|/a})$
  - Here we also can see that lower terms and constant coefficient can be ignored.
  - How about  $g(n) = an^3 + bn^2 + cn + d$ ?

7/34

# o Properties:

If  $g_1(n)$  is  $O(f_1(n))$ ,  $g_2(n)$  is  $O(f_2(n))$  then

- $g_1(n) + g_2(n)$  is  $O(\max(f_1(n), f_2(n)))$
- $g_1(n)g_2(n)$  is  $O(f_1(n)f_2(n))$
- $ag_1(n)$  is  $O(f_1(n))$  for any constant a.



### Bounds for some functions.

• Polynomials.

$$a_0 + a_1 n + \dots + a_d n^d$$
 is  $O(n^d)$  if  $a_d > 0$ .

• Logarithms.

$$O(\log_a n) = O(\log_b n) = O(n) \text{ for } a, b > 0.$$

• Exponentials.

For every r > 1 and every d > 0,  $n^d = O(r^n)$ .

• Constant.

$$O(c) = O(1)$$
 for any  $c$ .

• Typical growth functions.

### Function

 $\boldsymbol{C}$ 

log n

n

 $n \log n$ 

 $n^2$ 

 $n^3$ 

 $2^n$ 

### Name

Constant

Logarithmic

Linear

Loglinear

Quadratic

Cubic

Exponential



### • Running time examples

**Table 2.1** The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds  $10^{25}$  years, we simply record the algorithm as taking a very long time.

|               | п       | $n \log_2 n$ | $n^2$   | $n^3$        | 1.5 <sup>n</sup> | 2 <sup>n</sup>         | n!                     |
|---------------|---------|--------------|---------|--------------|------------------|------------------------|------------------------|
| n = 10        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | < 1 sec          | < 1 sec                | 4 sec                  |
| n = 30        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | < 1 sec          | 18 min                 | 10 <sup>25</sup> years |
| n = 50        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | 11 min           | 36 years               | very long              |
| n = 100       | < 1 sec | < 1 sec      | < 1 sec | 1 sec        | 12,892 years     | 10 <sup>17</sup> years | very long              |
| n = 1,000     | < 1 sec | < 1 sec      | 1 sec   | 18 min       | very long        | very long              | very long              |
| n = 10,000    | < 1 sec | < 1 sec      | 2 min   | 12 days      | very long        | very long              | very long              |
| n = 100,000   | < 1 sec | 2 sec        | 3 hours | 32 years     | very long        | very long              | very long              |
| n = 1,000,000 | 1 sec   | 20 sec       | 12 days | 31,710 years | very long        | very long              | very long              |

- Statement complexity.
  - for/while loop:

for 
$$i = 1$$
 to m:

S

if the computation time of S is  $t_i(n)$  for each i then the computation time of the for statement is  $\sum_{i=1}^{m} t_i(n)$ .

If  $t_i(n) = t(n)$  for all i then the computation time of the loop is mt(n).



- Statement complexity.
  - *if/else* statement:

if (condition):

 $S_1$ 

else:

 $S_2$ 

let  $t_1(n)$  and  $t_2(n)$  be the computation times of  $S_1$  and  $S_2$ , respectively. The computation time of the **if** statement is  $\max\{t_1(n), t_2(n)\}$ .



- Statement complexity.
  - Consecutive statements:

• • •

 $S_1$ 

 $S_2$ 

• • •

Let  $t_1(n)$  and  $t_2(n)$  be the computation times of two consecutive statements, respectively. The total computation time of the two statements is  $t_1(n) + t_2(n)$ .

- Linear Time: O(n)
  - Running time is at most a constant factor times the size of the input.

```
max = a<sub>1</sub>
for i = 2 to n {
   if (a<sub>i</sub> > max)
      max = a<sub>i</sub>
}
```

• Computing the maximum. Compute maximum of n numbers  $a_1, ..., a_n$ .

# • Quadratic Time: $O(n^2)$

- Closest pair of points. Given a list of n points in the plane  $(x_1, y_1), ..., (x_n, y_n)$ , find the pair that is closest.
- $O(n^2)$  solution. Try all pairs of points.

```
min = (x<sub>1</sub> - x<sub>2</sub>)<sup>2</sup> + (y<sub>1</sub> - y<sub>2</sub>)<sup>2</sup>
for i = 1 to n {
   for j = i+1 to n {
      d = (x<sub>i</sub> - x<sub>j</sub>)<sup>2</sup> + (y<sub>i</sub> - y<sub>j</sub>)<sup>2</sup>
      if (d < min)
          min = d
   }
}</pre>
```

**26/34** 

# O Polynomial Time: $O(n^k)$

- Independent set of size *k*. Given a graph, are there *k* nodes such that no two are joined by an edge?
- $\circ$   $O(n^k)$  solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
   check whether S in an independent set
   if (S is an independent set)
      report S is an independent set
   }
}
```

- Checking whether S is an independent set is  $O(k^2)$ .
- Number of k element subsets is  $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots(2)(1)} \le \frac{n^k}{k!}$
- Total complexity is  $O\left(\frac{k^2n^k}{k!}\right) = O(n^k)$ .

# Exponential Time

- Given a graph, which is the largest independent set?
- $O(n^2 2^n)$  solution. Enumerate all subsets.

```
S* = \phi
foreach subset S of nodes {
   check whether S in an independent set
   if (S is largest independent set seen so far)
      update S* = S
   }
}
```

- •Step 1: divide the *n*-element sequence into two sub-problems of *n*/2 elements each.
- •Step 2: sort the two subsequences recursively using merge sort. If the length of a sequence is 1, do nothing since it is already in order.
- •Step 3: merge the two sorted subsequences to produce the sorted answer.



• Pseudo-code

```
def merge_sort(A):
    middle = len(A) / 2
    left = merge_sort (A[1:middle])
    right = merge_sort (A[middle+1:end])
    return merge (left, right)
```



• Pseudo-code

```
def merge (A,B):
  result = \langle empty \rangle
     while len(A) > 0 or len(B) > 0:
       if len(A) > 0 and len(B) > 0:
          if A/1 <= B/1:
             append result with A/1, delete A/1
          else:
            append result with B/1, delete B/1
       else if len(A) > 0:
          append result with A/1, delete A/1
       else if len(B) > 0:
          append result with B/1, delete B/1
  return result
```

31/34

Animated example

6 5 3 1 8 7 2 4



# Time complexity

- There are two recursive calls, each of them sorts a sequence of n/2, and the statements after the two recursive calls take O(n) time.
- Let t(n) be the time complexity of the algorithm, then

$$t(n) = 2t(n/2) + cn$$

and t(2) = O(1), where c is a constant. Solving the equation,  $t(n) = O(n \log n)$ .



# THAT'S ALL FOR TODAY!

