MATEMATIK 1

Konya Jeknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Mühendislik Jemel Bilimleri Bölümü

Prof. Dr. Abdullah Selçuk KURBANLI

2020

SAYILAR VE BAZI TEMEL ÖZELLİKLERİ

 Sayılar Matematiğin temel taşlarından biridir ve insanlık tarihi kadar eski bir tarihe sahiptir. Bu bölümde sayıların, ileride ihtiyacımız olacak, bazı temel özelliklerini ele alacağız.

Doğal Sayılar: Peano Aksiyomları:

 Aşağıdaki beş aksiyomu sağlayan, elemanlarına doğal sayılar denilen ve

N sembolü ile gösterilen küme vardır.

Aksiyom 2.2.1. "1" Bir diye adlandırılan bir doğal sayı vardır.

Aksiyom 2.2.2. Her $n \in \mathbb{N}$ doğal sayısı için n nin ardışığı diye adlandırılan n den farklı bir ve yalnız bir $n' \in \mathbb{N}$ vardır.

Aksiyom 2.2.3. Her $n \in \mathbb{N}$ için $n' \neq 1$ dir. Yani "1" hiçbir sayının ardışığı değildir.

Aksiyom 2.2.4. $n, m \in \mathbb{N}$ ve $n \neq m$ ise $n' \neq m'$ dir. Yani farklı doğal sayıların ardışıkları da farklıdır.

Aksiyom 2.2.5. $\mathbb N$ nin herhangi bir D alt kümesi için

- **(1)** $1 \in D$
- (2) $n \in D \Rightarrow n' \in D$

şartları sağlanıyorsa, $\mathbb{N} = D$ dir. (Bu aksiyom, Matematik İndüksiyon metodu veya Tümevarım metodu olarak bilinmektedir.)

Peano aksiyomlarından elde edilen küme $\mathbb{N} = \{1, 2, 3, ...\}$ şeklindedir. Bu aksiyomlardan yararlanılarak, elde edilen doğal sayıları göstermek için kullandığımız 2, 3, 4, 5, 6, 7, ... sembollerini

$$2 = 1'$$
, $3 = 2'$, $4 = 3'$, $5 = 4'$, $6 = 5'$, $7 = 6'$, ...

işleminden de elde etmek mümkündür.

Doğal sayılar kümesi toplama ve çarpma işlemine göre kapalıdır. Fakat çıkarma ve bölme işlemine göre kapalı değildir.

Tanım 2.2.5. 1 ve kendisinden başka çarpanı bulunmayan ve 1 den büyük olan her doğal sayıya asal sayı denir.

Tanım 2.2.6. $n \ge 2$ olmak üzere $a_1, a_2, ..., a_n$ ler sıfırdan farklı doğal sayılar olmak üzere $(a_1, a_2, ..., a_n) = 1$ ise bu doğal sayılara aralarında asal sayılar denir. Ayrıca i,j = 1, 2, ..., n olmak üzere $i \ne j$ indisleri için $(a_i, a_j) = 1$ ise $a_1, a_2, ..., a_n$ sayılarına aralarında ikişer-ikişer asal denir.

Örnek 2.2.10. 5, 9 ve 10 sayıları (5,9,10) = 1 olup aralarında asaldır. Fakat (5,10) = 5 olduğundan aralarında ikişer-ikişer asal değildir.

Tanım 2.2.10. P(n) doğal sayılarla ilgili bir önerme ve D de bu önermenin doğruluk değerlerinin kümesi olmak üzere

$$D = \{ n \in N : P(n) \text{ doğru} \}$$

olsun. Eğer

(1)
$$1 \in D$$

ve

(2) $k \in D$ olduğunda $(k+1) \in D$ ise $D = \mathbb{N}$ dir. Yani önerme tüm doğal sayılar kümesinde doğrudur.

Tanımdan açıkça görülür ki P(n) önermesinin doğal sayılar kümesinde doğru olduğunu ispatlamak için öncelikle n=1 için doğru olduğunu göstermeliyiz. Daha sonra n=k için doğru olduğunu kabul edip n=k+1 için doğru olduğunu göstermemiz gereklidir.

Örnek 2.2.12. Her $n \in \mathbb{N}$ için

$$1 + 2 + 3 + \dots + n = \frac{n \cdot (n+1)}{2}$$
 (2.2.1)

olduğunu tümevarım metodu ile gösteriniz.

Çözüm.
$$n = 1$$
 için $1 = \frac{1 \cdot (1+1)}{2} = \frac{2}{2} = 1$ doğrudur. Yani $1 \in D$ dir.

$$n = k \in \mathbb{N}$$
 için $1 + 2 + 3 + ... + k = \frac{k \cdot (k+1)}{2}$ (2.2.2)

olduğunu kabul edip $n = k + 1 \in \mathbb{N}$ için

$$1+2+3+...+(k+1) = \frac{(k+1).(k+2)}{2}$$
 (2.2.3)

olduğunu gösterirsek önerme tüm doğal sayılar için geçerli olur.

(2.2.2) ifadesinin her iki tarafına (k+1) eklersek eşitlik bozulmaz.

$$1+2+3+...+k+(k+1) = \frac{k.(k+1)}{2} + (k+1)$$
$$= \frac{k.(k+1)}{2} + \frac{2.(k+1)}{2} = \frac{(k+1).(k+2)}{2}$$

olur ki önerme n = k + 1 için doğrudur. Yani önerme tüm doğal sayılar için doğrudur.

Bazı önermeler tüm doğal sayılar için doğru olmayabilir. Fakat her $r \le n \in \mathbb{N}$ doğal sayıları için doğru olabilir. O zaman Tanım 2.2.10 aşağıdaki gibi yeniden tanımlanabilir.

Tanım 2.2.11. P(n) doğal sayılarla ilgili bir önerme ve $B = \{n \in \mathbb{N} : r \le n\}$ de bu önermenin doğruluk değerlerinin kümesi olsun. Eğer

(1) P(r) doğru

ve

(2) $r \le k \in B$ için doğru olduğunda $r \le (k+1) \in B$ için doğru olduğunu gösterebilirsek önerme $r \le k \in B \subset \mathbb{N}$ doğal sayılar kümesinde doğrudur.

Yani, P(n) önermesinin doğru olması için öncelikle n=r için doğru olduğunu göstermeliyiz. Eğer n=k için doğru olduğunu kabul edip n=k+1 için doğru olduğunu gösterirsek, önerme $r \le n \in \mathbb{N}$ doğal sayıları için doğru olur.

Örnek 2.2.13. Her $n \ge 2$ için $3^n + 4^n \le 5^n$ olduğunu gösteriniz.

Çözüm. n = r = 2 için $3^2 + 4^2 \le 5^2 \Rightarrow 9 + 16 = 25 \Rightarrow 25 = 25$ olup önerme doğrudur. n = k için doğru olduğunu kabul edelim. O zaman, $3^k + 4^k \le 5^k$ dır. Eğer n = k + 1 için doğruluğunu gösterirsek önerme her $n \ge 2$ için doğru olur. Bu amaçla $3^k + 4^k \le 5^k$ ifadesinin her iki tarafını 5 ile çarpalım.

$$5.3^{k} + 5.4^{k} \le 5.5^{k}$$

$$3.3^{k} + 4.4^{k} < 5.3^{k} + 5.4^{k} \le 5.5^{k}$$

$$3^{k+1} + 4^{k+1} < 5^{k+1}$$

elde edilir ki istenendir. Yani önerme her $n \ge 2$ için doğrudur.

2.15. Çözümlü Problemler

Örnek 2.15.1. Her $n \in \mathbb{N}$ için

$$1^{2} + 2^{2} + 3^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
 (2.15.1)

olduğunu Tümevarım Metodu ile gösteriniz.

Çözüm.
$$n = 1$$
 için $1^2 = \frac{1.(1+1).(2.1+1)}{6} = \frac{2.3}{6} = 1$ doğrudur.

Yani $1 \in D$ dir. $n = k \in \mathbb{N}$ için

$$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$
 (2.15.2)

olduğunu kabul edip $n = k + 1 \in \mathbb{N}$ için

$$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$
 (2.15.3)

olduğunu gösterirsek önerme tüm doğal sayılar için doğru olur.

(2.15.2) ifadesinin her iki tarafına $(k+1)^2$ eklersek eşitlik bozulmaz.

$$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$
$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$
$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

olur ki verilen eşitlik n = k + 1 için de doğrudur. Yani önerme tüm doğal sayılar için doğrudur.

Uyarı 2.2.4. 0 sayısının da bulunmasıyla doğal sayılar kümesi insanoğlunun pek çok ihtiyacına cevap vermiştir. Ancak bazı kaynaklarda 0 sayısı doğal sayı olarak kabul edilmez. Matematikte hala sıfırın bir doğal sayı olarak ele alınıp alınmayacağı tartışma konusudur. Eğer cebirsel inşalar yapılmak isteniyorsa 0 sayısının doğal sayı olarak alınması avantaj sağlayabilir. Matematiğin diğer dallarında da problem hangi durumda daha kolay ifade edilebilecekse doğal sayılar kümesi de o şekilde alınır.

Tanım 1.1.14. Boş olmayan A ve B kümeleri için $A \times B$ kartezyen çarpımının her alt kümesine A dan B ye bir bağıntı denir ve bağıntılar genellikle β ile gösterilir.

2.3. Tam Sayılar

Tam sayıların tanımını vermeden önce $x_1, x_2, y_1, y_2 \in \mathbb{N}$ olmak üzere

$$(x_1, x_2)B(y_1, y_2) \Leftrightarrow x_1 + y_2 = y_1 + x_2$$

şeklinde tanımlanan B bağıntısını ele alalım.

Örnek 2.3.1. (2,3)B(5,6) dir. Çünkü 2+6=5+3 dir.

Teorem 2.3.1. $x_1, x_2, y_1, y_2 \in \mathbb{N}$ olmak üzere

$$(x_1, x_2)B(y_1, y_2) \Leftrightarrow x_1 + y_2 = y_1 + x_2$$

bağıntısı bir denklik bağıntısıdır.

Tanım 2.3.1. $\mathbb{N} \times \mathbb{N}$ de B bağıntısına göre denklik sınıflarından her birine bir tamsayı denir. Tamsayılardan oluşan küme \mathbb{Z} ile gösterilir.

Denklik sınıfının tanımından $x \in \mathbb{Z}$ ve $(x_1, x_2) \in x$ ise

$$x = [(x_1, x_2)]_B = \{(y_1, y_2) \in \mathbb{N} \times \mathbb{N} : (x_1, x_2) B(y_1, y_2)\}$$

dir. Bu x tamsayısına (x_1, x_2) sıralı ikilisinin ürettiği tamsayı denir.

Pozitif ve sıfır olmayan tamsayıya negatif tamsayı denir. Bu durumda $x \in \mathbb{Z}$, $(x_1, x_2) \in x$ ise x in negatif olması için gerek ve yeter şart $x_1 < x_2$ olmasıdır. Negatif tamsayıların oluşturduğu küme \mathbb{Z}^- ile gösterilir. Bu durumda $\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$ olur.

Kaynaklar:

- 1. G. B. Thomas ve Ark., **Thomas Calculus I**, Çeviri: R. Korkmaz, Beta Yayıncılık, İstanbul, 2009.
- 2. Prof. Dr. C. Çinar, Prof. Dr. İ. Yalçınkaya, Prof. Dr. A. S. Kurbanlı, Prof. Dr. D. Şimşek, **Genel Matematik**, Dizgi Ofset, 2013.
- 3. Prof. Dr. İ. Yalçınkaya, **Analiz III Diziler ve Seriler,** Dizgi Ofset, 2017.
- 4. H. İ. Karakaş, **Matematiğin Temelleri, Sayı Sistemleri ve Cebirsel Yapılar,** ODTÜ yayınları, 2011.