Polish Japanese Academy of Information Technology

Lab. 5	Operational amplif	Date:		
	name and surname	points	Supervisor	

1. Offset voltage measurement.

$$U_{Offsetvoltage} =[mV]$$

2. Open loop output voltage measurement

$$U_{\mathit{Open}} = \dots \dots [V]$$

Explain points 1 and 2:

3. Parameters of inverting operational amplifiers measurement

Find gain and input resistance of inverting amplifier

$U_{ m in}$	$U_{ m in}-$	$U_{\scriptscriptstyle out}$	R_1	k_{U}	$R_{ m in}$
[V]	[mV]	[V]	$[k\Omega]$	[V/V]	$[k\Omega]$
notes				$k_{U} = \frac{U_{out}}{U_{in}}$	$R_{\rm in} = \frac{U_{\rm in}}{I_{\rm in}}$

$$I_{\rm in} = \frac{U_{\rm in} - U_{\rm in}}{R_1}$$

4. Parameters of noninverting operational amplifiers measurement

Find gain and input resistance of noninverting amplifier

$U_{ m in}$	$U_{ m in}$ +	U_{out}	R_3	k_{U}	$R_{ m in}$
[V]	[V]	[V]	$[k\Omega]$	[V/V]	$[M \ \Omega]$
notes				$k_{U} = \frac{U_{out}}{U_{in}}$	$R_{\rm in} = \frac{U_{\rm in}}{I_{\rm in}}$

$$I_{\rm in} = \frac{U_{\rm in} - U_{\rm in} + R_3}{R_3}$$

Polish Japanese Academy of Information Technology

5. Slew rate measurement

	a	sensitivity	ΔU	b	Time base	Δt	Slew rate
	[div]	[V/div]	[V]	[div]	$\left[\frac{\mu s}{\text{div}}\right]$	$[\mu s]$	$\left[\frac{V}{\mu s}\right]$
rising							
falling							
notes							$SR = \frac{\Delta U}{\Delta t}$

6. Inverting operational amplifier magnitude characteristic

f	a	Sa	$U_{ m in}$	b	Sb	$U_{\scriptscriptstyle out}$	k	k_{dB}
[Hz]	[div]	[V/div]	[V]	[div]	[V/div]	[V]	[V/V]	[dB]

