ATOMÍSTICA

PROF. ADRIANO ALVES

Demócrito

Aristóteles

Dalton

Thomson

Bohr

Rutherford

Sommerfeld

Heisenberg

Schrödinger

De Broglie

DALTON

1. Toda matéria é formada de partículas fundamentais, os átomos.

- 2. Os átomos são massas compactas, esféricas, homogêneas, indivisíveis, indestrutíveis e incriáveis em uma reação química.
- 3. Os elementos são caracterizados por seus átomos. Todos os átomos de um elemento são semelhantes ou idênticos entre si, enquanto átomos de elementos diferentes são diferentes entre si;

- 4. Os átomos podem se unir entre si, formando os compostos químicos.
- 5. Uma reação química é uma combinação de átomos, formando outros compostos por outras combinações.

Bola de Bilhar

THOMSON

- →Experimento em um tubo de gás rarefeito;
- → Estrutura elétrica da matéria:
- → Raios catódicos (elétrons);
- → Divisibilidade elétrica do átomo;
- → Aglomerado de cargas;
- → Massa compacta positiva com cargas negativas inseridas em seu interior e superfície.

Pudim de passas ou de ameixas "panetone"

RUTHERFORD

- → Dispersão de partículas alfa (+);
- → Divisibilidade física do átomo;

- → O átomo apresenta duas regiões: o núcleo (+) e a eletrosfera(-);
- → Os elétrons giram em órbitas circulares ao redor do núcleo;

Dispersão de partículas alfa

Sistema Solar ou Planetário

BOHR

- →os elétrons movimentam-se em torno do núcleo, em órbitas circulares com quantidades determinadas de energia, chamadas de **níveis** ou **camadas**;
- →um elétron não pode assumir qualquer valor de energia, mas somente determinados valores correspondentes às órbitas permitidas, portanto apresentam determinados níveis de energia;
- →um elétron, quando em uma desses órbitas, não perde e nem ganha energia espontaneamente (Estado Estacionário de Energia);

- →quanto mais distante do núcleo, maior é a energia ;
- um elétron pode passar de um nível para outro de maior energia, desde que receba energia de uma fonte externa, nesse caso é dito que o átomo fica excitado;
- →ao retornar ao seu nível de origem, o elétron perde a energia recebida sob a forma de ondas eletromagnéticas (luz visível ou ultravioleta);
- →Esses processos receberam o nome de Saltos Qüânticos

Quando o elétron retorna ao estado fundamental libera energia na forma de luz (fóton)

MODELO ATÔMICO CLÁSSICO

```
ÁTOMO

ELETROSFERA — ELÉTRONS (-)
```


Conceitos Fundamentais

 Número atômico (Z): corresponde ao número de prótons (P) existentes no núcleo, ou seja, à sua carga nuclear.

Conclusão: número atômico é igual ao número de prótons, Z = p

 Número de massa (A): corresponde à soma das quantidades de prótons e de nêutrons (N) existentes no núcleo.

Matematicamente: A = p + n = Z + n

Observações:

- O número atômico (Z) caracteriza o elemento químico;
- O número atômico (Z) e o número de massa (A) caracterizam o átomo.

ISÓTOPOS

São átomos diferentes que apresentam o mesmo número de prótons (Z),mas diferentes números de nêutrons e de massa (A). Pertencem ao mesmo elemento químico.

Ex: ₁H¹ - hidrogênio comum ou prótio ₁H² - deutério ₁H³ – trítio

ISÓBAROS

São átomos que apresentam o mesmo número de massa, mas diferentes números atômicos (elementos diferentes).

<u>ISÓTONOS</u>

São átomos de números atômicos diferentes, números de massa diferentes que apresentam o mesmo número de nêutrons.

<u>ISOELETRÔNICOS</u>

Espécies químicas distintas que apresentam o mesmo número de elétrons.

 $_{13}AI^{3+}$, $_{12}Mg^{2+}$, $_{11}Na^{+}$, $_{10}Ne$, $_{9}F^{-}$, $_{8}O^{2-}$, $_{7}N^{3-}$

Níveis ou camadas eletrônicas

$$s = 2$$
; $p = 6$; $d = 10$; $f = 14$

DIAGRAMA DE PAULING

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<6p<7s<5f<6d<7p

Linus Pauling: Esse é o cara!!!

DISTRIBUIÇÃO ELETRÔNICA

$ns^2(n-2)f$	
$ns^2(n-2)f$	

Princípio da Incerteza de Heisenberg

"É impossível conhecer com exatidão a posição e a velocidade de um elétron, simultaneamente." O elétron é melhor caracterizado pelo seu conteúdo energético do que por sua posição, velocidade ou trajetória

Princípio da Dualidade Onda-partícula

"Se a luz pode funcionar como uma partícula, então uma partícula em alta velocidade pode funcionar como onda".

$$\lambda = p \times h$$

λ = comprimento de onda do elétron

p = quantidade de movimento do elétron

h = constante de Planck

MODELO QUÂNTICO

Erwing Schrodinger estudou o movimento do elétron ao redor do núcleo por meio de equações matemáticas

Orbital

Orbital é a região de máxima probabilidade de encontrar o elétron em um determinado instante.

As soluções matemáticas encontradas por Schrödinger foram denominadas **números quânticos.**

NÚMEROS QUÂNTICOS

- Códigos matemáticos associados à energia do elétron
- A caracterização de cada elétron no átomo é feita por meio de 4 números quânticos: principal, secundário, magnético e spin
- No mesmo átomo, não existem 2 elétrons com os mesmos números quânticos.

NÚMERO QUÂNTICO PRINCIPAL (n)

Indica o nível de energia do elétron

$$n = 1, 2, 3...7$$

Quanto maior o valor do n maior é a energia do elétron

NÚMERO QUÂNTICO SECUNDÁRIO OU AZIMUTAL (I)

Relacionado com o subnível de energia do elétron

Subnível	S	p	d	f
Nº Quântico Secundário (I)	0	1	2	3

NÚMERO QUÂNTICO MAGNÉTICO (m OU m_l)

Indica a orientação dos subníveis no espaço

$$m = -\ell \dots 0 \dots + \ell$$

Assim, podemos concluir que cada subnível é formado por 1 ou mais orbitais.

Tipo de subnível	Valores de ℓ	Valores de m ou m _ℓ	Quantidade de orbitais
S	0	0	1
р	1	-1, 0, +1	3
d	2	-2, -1, 0, +1, +2	5
f	3	-3, -2, -1, 0, +1, +2, +3	7

A representação gráfica de um orbital geralmente é feita da seguinte forma:

Agora, conhecendo a representação gráfica do orbital, podemos relacionar os subníveis com seus orbitais:

Subnível	Quantidade de orbitais	Representação gráfica dos orbitais
S	1	
р	3	
d 5		
f	7	

NÚMERO QUÂNTICO SPIN (s OU m_s)

Os elétrons se comportam como um imã em função da sua rotação no sentido horário

ou anti-horário

$$M_s = + \frac{1}{2} ou - \frac{1}{2}$$

REGRA DE HUND: A distribuição dos elétrons nos orbitais de um mesmo subnível deve ser feita de modo que se tenha o maior número possível de elétrons desemparelhados.

Vejamos alguns exemplos de distribuição eletrônica envolvendo orbitais:

De acordo com a Regra de Hund, temos 2 elétrons desemparelhados nos orbitais **p**.

Temos 3 elétrons desemparelhados nos orbitais **p**.

Temos um orbital **p** completo (2 elétrons emparelhados) e 2 elétrons desemparelhados. Temos dois orbitais **p** completos e um elétron desemparelhado.

Todos os elétrons estão emparelhados, ou seja, todos os orbitais estão completos.

Exemplo

O conjunto de números quânticos que caracteriza o elétron mais energético do Si (Z = 14)

Resposta:

$$n = 3$$

$$I = 1$$

$$m = 0$$

$$s = -1/2$$

Exercício

O conjunto de números quânticos que caracteriza o elétron mais energético do Sc (Z = 21)

Resposta:

$$n = 3$$

$$I=2$$

$$m = -2$$

$$s = -1/2$$

$$AI = 1s^2 2s^2 2p^6 3s^2 3p^1$$

Logo os nºs quânticos são referentes ao elétron de 3p¹:

$$I = 2$$
(sub-nível p)

$$ml = -1$$
 (primeiro orbital p)

$$ms = -1/2$$
 (rotação)

$$Fe = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$$

Logo os nos quânticos são referentes ao elétron de

```
3d^6:

n = 3 (terceiro nível)

l = 3 (sub-nível d)

ml = -2 (primeiro orbital d)

ms = +1/2 (rotação)
```

A EVOLUÇÃO DOS MODELOS ATÔMICOS

2.200 anos

100 anos

400 a.C.-Modelo de Demócrito. Bolinha maciça.

1808 - Modelo de Dalton. Bolinha maciça baseada em resultados experimentais.

1903 - Modelo de Thomson, "Pasta" positiva incrustada de elétrons negativos.

1911 - Modelo de Rutherford. Núcleo positivo, elétrons girando em órbitas circulares.

1913 - Modelo de Rutherford - Bohr. Semelhante ao de Rutherford, porém com órbitas quantizadas.

1923 - Modelo de Orbitais. O elétron considerado como uma partícula-onda e situado em orbitais.