Code Verification and Automated Theorem Prover (Week 4)

Yulei Sui

School of Computer Science and Engineering University of New South Wales. Australia

Today's class

Today's class

- In Lab-Exercise-2 and Assignment-2, we will conduct code verification to prove code assertions on top of reachability analysis (Assignment-1).
- Translating C statements (Lab-Exercise-2) and SVFStmt/ICFGNode (Assignment-2) to logical formulas/expressions and solve them to verify code assertions using automated theorem prover (i.e., Z3)

Formal Verification For Code

Specification $\stackrel{?}{\equiv}$ Code implementation

Formal Verification For Code

Formal Verification For Code

logical formulas of specification $\stackrel{?}{\equiv}$ Logical formulas of code implementation.

- Proving the correctness of your code given a specification (or spec) using formal methods of mathematics
- Make the connection between specifications and implementations rigid, reliable and secure by translating specification and code into logical formulas.
- The application of theorem proving tools to perform satisfiability checking of logical formulas.

Specification

- Specifications independent of the source code
 - Formal specification in a separate file from the source code, written in a specification language and accepted by theorem provers

Specification

- Specifications independent of the source code
 - Formal specification in a separate file from the source code, written in a specification language and accepted by theorem provers
- Specifications embedded in the source code (This course)
 - assume(expr): an assumed precondition of a program that expression expr always be true and uses this assumed knowledge to execute the program.
 assmue is often optional as many verification scenarios may not have preconditions, including Lab-Exercise-2 and Assignment-2.
 - assert(expr): an expected postcondition embedded in the program to check that expr always holds for any execution, otherwise the program terminates. We use svf_assert in our lab/assignment as an alternative for verification purposes.

Specification

- Specifications independent of the source code
 - Formal specification in a separate file from the source code, written in a specification language and accepted by theorem provers
- Specifications embedded in the source code (This course)
 - assume(expr): an assumed precondition of a program that expression expr always be true and uses this assumed knowledge to execute the program.
 assmue is often optional as many verification scenarios may not have preconditions, including Lab-Exercise-2 and Assignment-2.
 - assert(expr): an expected postcondition embedded in the program to check that expr always holds for any execution, otherwise the program terminates. We use svf_assert in our lab/assignment as an alternative for verification purposes.
- Hoare logic triple P{prog}Q, represents a program expressed by a predicate (first-order) logic. It describes that when the **precondition** P is met, executing the **program** prog establishes the **postcondition** Q.

Hoare logic: https://en.wikipedia.org/wiki/Hoare_logic

Pre-/Post-Conditions and Satisfiability

Prove whether the post-condition (assert) holds after executing the program given the pre-condition (assume).

```
\begin{array}{lll} \operatorname{assume}(100 > x > 0); & // & \operatorname{P} \\ & \operatorname{if}(x > 10) & \{ & & & \\ & y = x + 1; & \\ \} & & \operatorname{else} & \{ & & \Longrightarrow & \psi(P\{\operatorname{prog}\}Q) & \Longrightarrow & \operatorname{SAT/SMT} \\ & & & & & & \operatorname{Solver} \\ \end{array}
```

Will the assertion hold?

Assertions as Specifications

- In our lab and assignments, we need to verify whether the assertions (svf_assert) as specifications are satisfiable (expected results) or not.
- An assertion is a predicate or an expression that always should evaluate to true at that point during code execution.
 - help a programmer read the code
 - help the program detect its own defects
 - help catch errors earlier and pinpoint sources of errors

Satisfiability Solving as Logic Inference

Satisfiability solving of hoare logic triple $P\{prog\}Q$ as a logic inference problem:

Given P{prog}Q represented by a set of constraints (logical formulas) extracted from code, we express P{prog} as KB knowledge base or premises, and Q is the conclusion. Revisit our previous example as below:

Satisfiability Solving as Logic Inference

Satisfiability solving of hoare logic triple $P\{prog\}Q$ as a logic inference problem:

- Given P{prog}Q represented by a set of constraints (logical formulas) extracted from code, we express P{prog} as KB knowledge base or premises, and Q is the conclusion. Revisit our previous example as below:
 - $KB : (100 > x > 0) \land ((x > 10 \land y \equiv x + 1) \lor (x \le 10 \land y \equiv 10))$
 - Q: y ≥ x + 1
- *KB* ⊢ *Q* ?
 - Does KB semantically entail Q?
 - If all constraints in KB are true, is the assertion true?
 - Is the specification Q satisfiable given constraints from code?
- Each element (**proposition** or **predicate**) in *KB* can be seen as a premise and *Q* is the conclusion.

Propositional Logic (Statement Logic)

A **proposition** is a statement that is either true or false. Propositional logic studies the ways statements can interact with each other.

- **Propositional variables** (e.g., *S*) represent propositions or statements in the formal system.
- A propositional formula is logical formula with propositional variables and logical connectives like and (∧), or (∨), negation (¬), implication (→)
 - $(S_1 \land S_2) \rightarrow Q$. This formula means that if S_1 and S_2 are both true, then Q is true.
 - S_1 and S_2 are propositional variables. \wedge and \rightarrow are logical connectives.
- Logic inference allows certain logic formulas to be derived. These derived formulas are called **theorems** (or true propositions). The derivation can be interpreted as proof of the proposition represented by the theorem.

https://en.wikipedia.org/wiki/Propositional_calculus http://discrete.openmathbooks.org/dmoi2/sec_propositional.html

Predicate Logic (First-Order Logic)

Predicate logic is propositional logic with predicates and quantification.

- Propositional logic: boolean logic which represents statements without reflecting their structures and relations
- **Predicate logic**: is more expressive and further analyzes proposition(s) by representing their entities' properties and relations and to group entities, i.e., additionally covers predicates and quantification.

Predicate Logic (First-Order Logic)

Predicate logic is propositional logic with predicates and quantification.

- Propositional logic: boolean logic which represents statements without reflecting their structures and relations
- Predicate logic: is more expressive and further analyzes proposition(s) by representing their entities' properties and relations and to group entities, i.e., additionally covers predicates and quantification.
- A predicate P takes one or more variables/entities as input and outputs a proposition and has a truth value (either true or false).
 - A statement whose truth value is dependent on variables.
 - For example, in P(x): x > 5, "x" is the variable and "x > 5" is the predicate. After assigning x with the value 6, P(x) becomes a proposition 6 > 5.
- A quantifier is applied to a set of entities
 - Universal quantifier ∀, meaning all, every
 - Existential quantifier ∃, meaning some, there exists

https://en.wikipedia.org/wiki/First-order_logic https://www.youtube.com/watch?v=ARywou8HLQk

Predicate Logic (Natural Language Example)

Consider the two statements

- "Jack got a high distinction"
- "Peter got a high distinction"

In propositional logic, these statements are viewed as being unrelated and the sub-statements/words/entities are not further analyzed.

- **Predicate logic** allows us to define a **predicate** *P* representing "got a high distinction" which occurs in both sentences.
- P(x) is the predicate logic statement (formula) which accepts a name x and output as "x got a high distinction".

Consider these four statements

 S_1 : x > 20:

$$\begin{array}{ll} S_2 \colon & x > 10; \\ S_2 \to Q \colon & \text{if}(x > 10) \ y = 15; \end{array}$$

$$Q: y = 15;$$

11

Consider these four statements S_1 : x > 20; S_2 : x > 10; $S_2 \rightarrow Q$: if(x > 10) y = 15; Q: y = 15:

- In **propositional logic**, each statement (including its variables and constants) is viewed as one proposition. Their relations are not further analyzed.
 - Given propositions S_1 and $S_2 \to Q$ as the knowledge base KB. Does the following semantically entail $\{S_1, S_2 \to Q \} \vdash Q$ or $(S_1 \land (S_2 \to Q)) \to Q$ hold?

Consider these four statements S_1 : x > 20; S_2 : x > 10; $S_2 \rightarrow Q$: if(x > 10) y = 15;

Q: y = 15;

- In **propositional logic**, each statement (including its variables and constants) is viewed as one proposition. Their relations are not further analyzed.
 - Given propositions S_1 and $S_2 \to Q$ as the knowledge base KB. Does the following semantically entail $\{S_1, S_2 \to Q\} \vdash Q \text{ or } (S_1 \land (S_2 \to Q)) \to Q \text{ hold?}$
 - Answer: No! (The relation between S_1 and S_2 is not captured).

Consider these four statements

```
S_1: x > 20;

S_2: x > 10;

S_2 \rightarrow Q: if(x > 10) y = 15;

Q: y = 15:
```

- In **propositional logic**, each statement (including its variables and constants) is viewed as one proposition. Their relations are not further analyzed.
 - Given propositions S_1 and $S_2 \to Q$ as the knowledge base KB. Does the following semantically entail $\{S_1, S_2 \to Q\} \vdash Q$ or $(S_1 \land (S_2 \to Q)) \to Q$ hold?
 - Answer: No! (The relation between S_1 and S_2 is not captured).
- **Predicate logic** allows us to define **three predicates**: $P_1(x)$ represents x > 20; $P_2(x)$ represents x > 10; Q(y) represents y = 15 for the properties of x, y. Does the following hold using predicate logical for the inference?
 - $\{P_1(x), P_2(x) \to Q(y)\} \vdash Q(y) \text{ or } (P_1(x) \land P_2(x) \to Q(y)) \to Q(y)$

Consider these four statements

```
S_1: x > 20;

S_2: x > 10;

S_2 \rightarrow Q: if(x > 10) y = 15;

Q: y = 15:
```

- In **propositional logic**, each statement (including its variables and constants) is viewed as one proposition. Their relations are not further analyzed.
 - Given propositions S_1 and $S_2 \to Q$ as the knowledge base KB. Does the following semantically entail $\{S_1, S_2 \to Q\} \vdash Q$ or $(S_1 \land (S_2 \to Q)) \to Q$ hold?
 - Answer: No! (The relation between S_1 and S_2 is not captured).
- **Predicate logic** allows us to define **three predicates**: $P_1(x)$ represents x > 20; $P_2(x)$ represents x > 10; Q(y) represents y = 15 for the properties of x, y. Does the following hold using predicate logical for the inference?
 - $\{P_1(x), P_2(x) \to Q(y)\} \vdash Q(y) \text{ or } (P_1(x) \land P_2(x) \to Q(y)) \to Q(y)$
 - $\{x > 20, x > 10 \rightarrow y = 15 \} \vdash y = 15$
 - Answer: Yes!

Satisfiability Checking (Revisit Our Example)

Given the predicate formula $\psi(P\{\text{prog}\}Q)$, we can verify the correctness of a program against the assertion specification Q by checking ψ 's satisfiability (SAT).

• $\psi(P\{\text{prog}\}Q)$ is satisfiable if a program prog is correct for there valid inputs.

$$\forall \mathtt{x} \ \forall \mathtt{y} \ P(\mathtt{x}) \land S_{prog}(\mathtt{x},\mathtt{y}) \rightarrow Q(\mathtt{x},\mathtt{y})$$

- P(x) is the pre-condition predicate (100 > x > 0) over variables x.
- $S_{prog}(x,y)$ is the predicate representing prog which accepts x as its input, and terminates with output y.
- Q(x, y) is the post-condition predicate (y >= x + 1) over variables x, y.

• $\psi(P\{\text{prog}\}Q)$ is satisfiable if a program prog is correct for there valid inputs.

$$\forall x \ \forall y \ P(x) \land S_{prog}(x,y) \rightarrow Q(x,y)$$

- P(x) is the pre-condition predicate (100 > x > 0) over variables x.
- S_{prog}(x, y) is the predicate representing prog which accepts x as its input, and terminates with output y.
- Q(x, y) is the post-condition predicate (y >= x + 1) over variables x, y.
- How to prove correctness for all inputs x? Search for counterexample x where ψ does not hold, that is

$$\exists \mathtt{x} \ \exists \mathtt{y} \ \neg (P(\mathtt{x}) \land S_{prog}(\mathtt{x},\mathtt{y})) \to Q(\mathtt{x},\mathtt{y})) \\ \Rightarrow \ \exists \mathtt{x} \ \exists \mathtt{y} \ P(\mathtt{x}) \land S_{prog}(\mathtt{x},\mathtt{y}) \land \neg Q(\mathtt{x},\mathtt{y})$$
 (simplification)

Note that P(x) is always true if a program does not have a pre-condition.

Logic formula simplification: https://en.wikipedia.org/wiki/Logical_equivalence

Checking whether the logical formula ψ is satisfiable by an SMT solver.

```
\begin{array}{lll} \operatorname{assume}(100 > x > 0); & & & & & \\ & \operatorname{if}(x > 10) \ \{ & & & & & \\ & y = x + 1; & & \Longrightarrow & \underbrace{\exists x \ \exists y \ P(x) \land S_{prog}(x,y)) \land \neg Q(x,y)} & & \Longrightarrow & \operatorname{SMT} \\ & & & & & & \\ & \operatorname{logical formula} \psi & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &
```

Checking whether the logical formula ψ is satisfiable by an SMT solver.

SMT: https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

• How to extract $P(x) \land S_{prog}(x,y)) \land \neg Q(x,y)$ from code?

- How to extract $P(x) \land S_{prog}(x,y) \land \neg Q(x,y)$ from code?
- First-order logical formulas
 - The formulas of predicate logic are constructed from propositional, predicate and object variables by using logical connectives and quantifiers (This class)
- Translation
 - Translating SVFStmts of **each program path** (from Assignment-2) into a logical formula ψ , and then proving the non-existence of counterexamples (or check unsat) for each path.
 - $\forall \textit{path} \in \textit{prog}$ $\textit{checking}(\psi_{\textit{path}})$

```
\psi_{\textit{path}_1}: \exists x \ \textit{P}(x) \land ((x > 10) \land (y \equiv x + 1)) \land \neg \textit{Q}(x, y) (if branch) \psi_{\textit{path}_2}: \exists x \ \textit{P}(x) \land ((x \le 10) \land (y \equiv 10)) \land \neg \textit{Q}(x, y) (else branch)
```

- How to extract $P(x) \wedge S_{prog}(x,y) \wedge \neg Q(x,y)$ from code?
- First-order logical formulas
 - The formulas of predicate logic are constructed from propositional, predicate and object variables by using logical connectives and quantifiers (This class)
- Translation of program paths
 - Translating SVFStmts of **each program path** (from Assignment-2) into a logical formula ψ , and then proving the non-existence of counterexamples (or check unsat) for each path.
 - $\forall path \in prog$ $checking(\psi_{path})$ $\psi_{path_1} : \exists x (100 > x > 0) \land ((x > 10) \land (y \equiv x + 1)) \land \neg (y \ge x + 1)$ (if branch) $\psi_{path_2} : \exists x (100 > x > 0) \land ((x \le 10) \land (y \equiv 10)) \land \neg (y \ge x + 1)$ (else branch)
 - ψ_{path_2} : has a counterexample x = 10!!

- How to extract $P(x) \wedge S_{prog}(x, y) \wedge \neg Q(x, y)$ from code?
- First-order logical formulas
 - The formulas of predicate logic are constructed from propositional, predicate and object variables by using logical connectives and quantifiers (This class)
- Translation of program paths
 - Translating SVFStmts of **each program path** (from Assignment-2) into a logical formula ψ , and then proving the non-existence of counterexamples (or check unsat) for each path.
 - $\forall path \in prog \quad checking(\psi_{path})$ $\psi_{path_1} : \exists x (100 > x > 0) \land ((x > 10) \land (y \equiv x + 1)) \land \neg (y \ge x + 1) \quad (\text{if branch})$ $\psi_{path_2} : \exists x (100 > x > 0) \land ((x \le 10) \land (y \equiv 10)) \land \neg (y \ge x + 1) \quad (\text{else branch})$
 - ψ_{path_2} : has a counterexample x = 10!!
 - Manual translation of C statements to logic expressions via Z3 theorem prover APIs (Z3Mgr.h/cpp) (Lab-Exercise-2)
 - Automatic translation of SVFIR to logic expressions during control-flow reachability analysis (Assignment-2)

Closed-World Programs: Checking SAT vs. Proving Non-Existence of Counterexamples

- If the program operates in a closed-world (value initialisations are fixed and there are no inputs from externals such as main's arguments, like the tests in Exercise-2), there is no need to find the existence of invalid inputs (counterexamples).
- For the above closed-world programs, logical errors can be verified against
 assertions, rather than finding the existence of counterexamples. Checking
 satisfiability is essentially the same as checking the non-existence of
 counterexamples.
- The testing programs in the **Exercise 2** are all closed-world programs. Hence **checking sat** of $P(x) \wedge S_{prog}(x,y) \wedge Q(x,y)$ or **proving unsat** of $P(x) \wedge S_{prog}(x,y) \wedge \neg Q(x,y)$ are **both good** for validating your z3 expression translations.

Theorem Prover Tools

- Interactive theorem provers (proof assistants)
 - Formal proofs by human-machine collaboration via expressive specification languages; may not work directly on source code.
 - For example, ACL2, Coq, Isabelle, and HOL provers.
- Automated theorem provers
 - Proof automation (but less expressive than interactive provers); can work on real-world source code.
 - For example, Z3 and CVC.

Theorem prover tools: https://en.wikipedia.org/wiki/Theorem_prover

Automated Theorem Provers

A prover/solver checks if a formula $\psi(P\{\text{prog}\}Q)$ is satisfiable (SAT).

- If yes, the solver returns a **model** m, a valuation of x, y, z of prog that satisfies ψ (i.e., m makes ψ true).
- Otherwise, the solver returns unsatisfiable (UNSAT)

SAT vs. SMT solvers

- SAT solvers accept propositional logic (Boolean) formulas, typically in the conjunctive normal form (CNF).
- SMT (satisfiability modulo theories) solvers generalize the Boolean satisfiability problem (SAT), and accept both propositional logic and more expressive predicate logic formulas.
 - Z3 Automated Theorem Prover, a cross-platform satisfiability modulo theories (SMT) solver developed by Microsoft (This course).

Z3: https://github.com/Z3Prover/z3/wiki#background

Code to Logic Expressions with Z3 Theorem Prover

(Week 5)

Yulei Sui

School of Computer Science and Engineering University of New South Wales, Australia

Z3 Theorem Prover

- Z3 is a Satisfiability Modulo Theories (SMT) solver from Microsoft Research.
- Targeted at solving problems in software verification and software analysis.
- Main applications are static checking, test case generation, and more ...

Hardware verification Softw

Software analysis/testing

Architecture

Modeling

Geometrical solving

Biological analysis

Hybrid system analysis

https://www.microsoft.com/en-us/research/project/z3-3/

Z3 Framework

- Z3 is an effective tool to solve logical formulas (Z3 expressions/constraints).
- Z3 GitHub https://github.com/Z3Prover/z3.
- Z3 tutorials https://github.com/philzook58/z3_tutorial
- Z3 slides https: //github.com/Z3Prover/z3/wiki/Slides
- Its SMT solver supports theories such as fixed-size bit-vectors, arithmetic, extensional arrays, datatypes, uninterpreted functions, and quantifiers.
- Z3 has official APIs for C, C++, Python, .NET, etc.
- Z3 solver can find one of the feasible solutions in a set of constraints.

Z3 Solver and Z3 Formulas

Z3 solver accepts a first-order (predicate) logical formula ψ , and outputs one of the following results.

- sat if ψ is satisfiable
- ullet unsat if there is a counterexample which make ψ unsatisfiable
- unknown if ψ is too complex and can not be solved within a time frame.

You play around and check the satisfiability of your Z3 constraints/formulas here:

```
https://jfmc.github.io/z3-play Or
https://compsys-tools.ens-lyon.fr/z3/index.php
```

Z3 Playground (https://jfmc.github.io/z3-play)

Z3's Logical Formula (Constants, Check-Sat and Evaluation)

The Z3 input format (formula format) is an extension of the SMT-LIB 2.0 standard. A Z3 formula expression (z3::expr) has the following keywords:

- echo displays a message
- declare-const declares a constant of a given type (a.k.a sort)
- declare-fun declares a function
- assert adds a formula into the Z3 internal stack
- check-sat determines whether the current formulas on the Z3 stack are satisfiable or not
- get-model is used to retrieve an interpretation (one solution) that makes all formulas on the Z3 internal stack true
- eval evaluates a variable/expression produced by a model when the formulas is satisfiable.

SMT-LIB 2.0: https://homepage.cs.uiowa.edu/~tinelli/papers/BarST-SMT-10.pdf

Constants, Check-Sat and Evaluation (Example)

$$\psi : (x > 10) \land (y \equiv x + 1)$$

How to represent this formula in Z3 and feed it into Z3's solver?

Constants, Check-Sat and Evaluation (Example)

$$\psi: (\mathtt{x} > \mathtt{10}) \ \land \ (\mathtt{y} \equiv \mathtt{x} + \mathtt{1})$$

How to represent this formula in Z3 and feed it into Z3's solver?

```
1 (echo "starting Z3...")
2 (declare-const x Int) ;/// Declare an Int type variable "x"
3 (declare-const y Int) ;/// Declare an Int type variable "y"
4 (assert (> x 10)) ;/// Add the first part (x>10) of the conjunction into the solver
5 (assert (= y (+ x 1))) ;/// Add the second part (y==x+1) of the conjunction
6 (check-sat) ;/// Check whether added formulas are satisfiable.
7 (eval x) ;/// Evaluate the value of x when the formula is satisfiable
8 (eval y) ;/// Evaluate the value of y when the formula is satisfiable
```

Constants, Check-Sat and Evaluation (Example)

$$\psi: (\mathtt{x} > \mathtt{10}) \ \land \ (\mathtt{y} \equiv \mathtt{x} + \mathtt{1})$$

How to represent this formula in Z3 and feed it into Z3's solver?

```
(echo "starting Z3...")
(declare-const x Int) ;/// Declare an Int type variable "x"
(declare-const y Int) ;/// Declare an Int type variable "y"
(assert (> x 10)) ;/// Add the first part (x>10) of the conjunction into the solver
(assert (= y (+ x 1))) ;/// Add the second part (y==x+1) of the conjunction
(check-sat) ;/// Check whether added formulas are satisfiable.
(eval x) ;/// Evaluate the value of x when the formula is satisfiable
(eval y) ;/// Evaluate the value of y when the formula is satisfiable
```

Outputs of Z3's solver:

```
starting Z3...
sat /// (check-sat) result
11 /// the value of x as one satisfiable solution
4 12 /// the value of y as one satisfiable solution
```

Z3's Logical Formula (Uninterpreted Function)

The basic building blocks of SMT formulas are constants and uninterpreted functions.

- An uninterpreted function has no other property (no priori interpretation)
 than its signature (i.e., function name and arguments).
- An uninterpreted functions in first-order logic have no side-effects (e.g., can not change argument values and never return different values for the same input)
- Constants in Z3 can also be seen as functions that take no arguments.
- The details and characteristics of uninterpreted functions are **ignored**. This can **generalize** and **simplify** theorems and proofs.

```
1 (declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
2 (assert (= (f 10) 1)) ;/// f(10) = 1
3 (check-sat)
```

```
(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) ;/// f(10) = 1
(check-sat)
```

Outputs of Z3's solver:

```
1 sat
```

The solver returns sat, because f is an uninterpreted function (i.e., all that is known about f is its signature), so it is possible that f(10) = 1.

```
(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) ;/// f(10) = 1
(check-sat)
```

Outputs of Z3's solver:

```
1 sat
```

The solver returns sat, because f is an uninterpreted function (i.e., all that is known about f is its signature), so it is possible that f(10) = 1.

```
1 (declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
2 (assert (= (f 10) 1)) ;/// f(10) = 1
3 (assert (= (f 10) 2)) ;/// f(10) = 2
4 (check-sat)
```

```
(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) ;/// f(10) = 1
(check-sat)
```

Outputs of Z3's solver:

```
1 sat
```

The solver returns sat, because f is an uninterpreted function (i.e., all that is known about f is its signature), so it is possible that f(10) = 1.

```
1 (declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
2 (assert (= (f 10) 1)) ;/// f(10) = 1
3 (assert (= (f 10) 2)) ;/// f(10) = 2
4 (check-sat)
```

Outputs of Z3's solver:

```
1 unsat
```

The solver returns unsat, because f, as an uninterpreted function, can never return different values for the same input.

$$\psi: \mathtt{f}(\mathtt{x}) \equiv \mathtt{f}(\mathtt{y}) \, \wedge \, \mathtt{x}! = \mathtt{y}$$

```
(declare-const x Int)
(declare-const y Int)
(declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
(assert (= (f x) (f y)))
(assert (not (= x y)))
(check-sat)
```

$$\psi: \mathtt{f}(\mathtt{x}) \equiv \mathtt{f}(\mathtt{y}) \, \wedge \, \mathtt{x}! = \mathtt{y}$$

```
1 (declare-const x Int)
2 (declare-const y Int)
3 (declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int
4 (assert (= (f x) (f y)))
5 (assert (not (= x y)))
6 (check-sat)
```

Outputs of Z3's solver:

```
1 sat
```

An uninterpreted function can have different inputs and return the same output. For example, f can always return 1 regardless the value of the input argument.

Constants as Uninterpreted Function (Example)

$$\psi: (\mathtt{x} > \mathtt{10}) \ \land \ (\mathtt{y} \equiv \mathtt{x} + \mathtt{1})$$

```
(declare-fun x () Int) ;/// "x" and "y" as an uninterpreted functions
(declare-fun y () Int) ;/// Accepts no argument and return an Int
(assert (> x 10))
(assert (= y (+ x 1)))
(check-sat)
(get-model)
```

Outputs of Z3's solver:

(declare-const x Int) can be seen as the syntax sugar for (declare-fun x () Int).

Z3's Logical Formula (Arithmetic)

- Z3 supports majority of commonly used arithmetic operators, such as +, -, *,
 /, <<, >>, <, >, &, | (The ones listed in SVFIR)
- Types of any two operands should be the same otherwise a type conversion is needed.
- Never mix types in arithmetic, and always be explicit.

```
(declare-const a Int)
(declare-const b Float32)
(assert (= a (+ b 1)))
(check-sat)
```

Outputs of Z3's solver:

```
Error: (error "line 3 column 19: Sort mismatch at argument #1 for function (declare-fun + (Int Int) Int) supplied sort is (_ FloatingPoint 8 24)")
```

Z3's Logical Formula (if-then-else Expression)

- ite(b, x, y) represents a conditional expression, where b is the condition, ite returns x if b is evaluated true, otherwise y is returned
- Used for comparison or branches

```
(ite (and (= x!1 11) (= x!2 false)) 21 0)
```

The above Z3 formula evaluates (returns) 21 when x!1 is equal to 11, and x!2 is equal to false. Otherwise, it returns 0.

Z3's Logical Formula (Arrays)

Formulating a program of a mathematical theory of computation McCarthy proposed a basic theory of arrays as characterized by the **select-store** axioms.

- (select a i): returns the value stored at position i of the array a;
- (store a i v): returns a new array identical to a, but on position i it contains the value v.
- Z3 assumes that arrays are extensional over select. Z3 also enforces that if two arrays agree on all reads, then the arrays are equal.

Z3's Logical Formula (Arrays)

Formulating a program of a mathematical theory of computation McCarthy proposed a basic theory of arrays as characterized by the **select-store** axioms.

- (select a i): returns the value stored at position i of the array a;
- (store a i v): returns a new array identical to a, but on position i it contains the value v.
- Z3 assumes that arrays are extensional over select. Z3 also enforces that if two arrays agree on all reads, then the arrays are equal.

The following formulas store y to the x-th position of array a and then load the value at a's x-th position to z

```
(declare-const x Int)
(declare-const y Bool)
(declare-const z Bool)
(declare-const a (Array Int Bool)) ;/// an array of Bools with Int as the indices
(assert (= (store a x y) a)) ;/// a[x] == y
(assert (= (select a x) z)) ;/// z == a[x]
```

Z3's Logical Formula (Scopes)

Z3 maintains a global stack of declarations and assertions via **push** and **pop**

- **push**: creates a new scope by saving the current stack size.
- pop: removes any assertion or declaration performed between it and the matching push.

The check-sat command always operates on the current global stack.

Z3's Logical Formula (Scopes)

Z3 maintains a global stack of declarations and assertions via **push** and **pop**

- **push**: creates a new scope by saving the current stack size.
- pop: removes any assertion or declaration performed between it and the matching push.

The check-sat command always operates on the current global stack.

```
(declare-const x Int)
(declare-const a (Array Int Int)) /// an array of Ints
(push)
(assert (= (store a 1 10) a)) ;/// a[1] == 10
(assert (= (select a 1) x)) ;/// x == a[1]
(assert (= x 20)) ;/// x == 20
(check-sat)
(pop) ;/// remove the three assertions
(assert (= x 10)) ;/// x == 10
(check-sat)
```

What is the output of the solver?

Today's class

- We introduce Z3 solver, Z3 constraint format **Z3Mgr** APIs used for lab/assignment in this course.
- We learn how to manually translate C source code into logical formulas (Z3 constraints/expressions).
- Then, we will demonstrate examples for manual translation from code to Z3 constraints.

Translating Code to Z3 Formulas

We provide Z3Mgr and its subclass Z3Examples (wrapper classes to manipulate Z3 APIs) to generate Z3 formulas or so-called z3::expr.

Z3Examples API	Meanings
<pre>z3::expr getZ3Expr(std::string);</pre>	Create a z3 expr given a string name
z3::expr getZ3Expr(u32_t);	Create a z3 expr given an integer
<pre>z3::expr getMemObjAddress(std::string);</pre>	Create a memory object in program
z3::expr getGepObjAddress(z3::expr, u32_t);	Create a field object with an offset of an aggregate
<pre>void addToSolver(z3::expr);</pre>	Add a Z3 expression/formula to the solver
<pre>void resetSolver();</pre>	Clean all formulas in the the solver
solver.check();	Check satisfiability of an z3 formula
z3::expr getEvalExpr(z3::expr);	Evaluate an expression to a value based on a model.
<pre>void printExprValues();</pre>	Print the values of all expressions in the solver.

More details, refer to

https://github.com/SVF-tools/Teaching-Software-Verification/wiki/SVF-APIs

Z3Mgr::getEvalExpr

```
z3::expr Z3Mgr::getEvalExpr(z3::expr e) {
    z3::check_result res = solver.check();
    assert(res != z3::unsat && "unsatisfied constraints!");
    z3::model m = solver.get_model();
    return m.eval(e);
}
```

The Z3Mgr::getEvalExpr method checks if the constraints added to the Z3 solver are satisfiable. If they are, it retrieves the model that satisfies these constraints and evaluates the given complex expression e within this model, returning the evaluated result as one of the following:

- Boolean Expression: is_true() or is_false()
- Integer Expression: is_numeral(), get_numeral_int64()
- Real Expression: get_numeral_double()
- String Expression: get_numeral_string()

APIs for Lab-Exercise-2 vs APIs for Assignment-2

Lab-Exercise-2 (Z3Examples & Z3Mgr)	Assignment-2 (Z3SSEMgr & Z3Mgr)
Z3Examples::getZ3Expr(u32_t val)	Z3Mgr::getZ3Expr(u32_t id)
Get the z3 expression from a constant integer	Get the z3 expression from an SVFVar ID
Z3Examples::getMemObjAddress(string name)	Z3SSEMgr::getMemObjAddress(u32_t id)
Get the memory object address from a string name	Get the memory object address from SVFVar ID
Z3Examples::getGepObjAddress	Z3SSEMgr::getGepObjAddress
Get object address from a pointer and an offset	Get object address from a pointer and an offset
Z3Examples::addToSolver(z3::expr e)	Z3SSEMgr::addToSolver(z3::expr e)
Add expr e to solver	Add expr e to solver

Shared APIs

	Shared Air is		
	Z3Mgr::printZ3Exprs(): Print all z3 expressions		
_	Z3Mgr::printExprValues(): Print all expressions' values after evaluation		
	Z3Mgr::getVirtualMemAddress(u32_t id) and Z3Mgr::isVirtualMemAddress(u32_t id)		
	The id of an object (ObjVar) in SVFIR will be marked using an AddressMask (0x7f000000)		
	to mimic the virtual memory address (note that this is not a physical runtime address but an abstract address)		
	getInternalID(u32_t) will unmarsk a virtual address to get its original ObjVar's id.		
	Z3Mgr::storeValue(expr loc, expr value): stores a value to address loc.		
_	Z3Mgr::loadValue(expr loc): loads a value from address loc.		

Translation Rules

expr p = getZ3Expr("p") expr q = getZ3Expr("q") expr r = getZ3Expr("r")		
SVFStmt	C-Like form	Operations
AddrStmt (constant)	p = c	addToSolver(p == c);
AddrStmt (mem allocation)	p = alloc	addToSolver(p == getMemObjAddress("alloc");)
CopyStmt	p = q	<pre>addToSolver(p == q);</pre>
LoadStmt	p = *q	addToSolver(p == loadValue(q));
StoreStmt	*p = q	storeValue(p, q);
GepStmt	$\mathtt{p} = \mathtt{\&}(\mathtt{q} o \mathtt{i}) \ \ or \ \mathtt{p} = \mathtt{\&}\mathtt{q}[\mathtt{i}]$	addToSolver(p == getGepObjAddress(q,i));
PhiStmt	$\mathtt{r} = \mathtt{phi}(\ell_\mathtt{1} : \mathtt{p}, \ \ell_\mathtt{2} : \mathtt{q})$	<pre>if(executed from l₁) addToSolver(p==r);</pre>
		<pre>if(executed from l₂) addToSolver(q==r);</pre>
		<pre>expr cond = getEvalExpr(p);</pre>
${\tt BranchStmt}$	if (p) 1 ₁ else 1 ₂	if(cond.is_false()) execute l ₂
		else execute l ₁ addToSolver(cond == true);
UnaryOPStmt	¬р	addToSolver(!p);
BinaryOPStmt	$\mathbf{r} = \mathbf{p} \otimes \mathbf{q}$ BinaryOPStmt::OpCode	$addToSolver(r == p \otimes q);$
CmpStmt	$r = p \odot q$ CmpStmt::Predicate	addToSolver(r == ite(p \odot q, true, false));
CallPE/RetPE	$\mathtt{r} = \mathtt{f}(\ldots,\mathtt{q},\ldots) \mathtt{f}(\ldots,\mathtt{p},\ldots)\{\ldots \ \mathtt{return} \ \mathtt{z}\}$	
CallPE	p = q	<pre>solver.push(); addToSolver(p == q);</pre>
RetPE	p = r	<pre>expr ret = getEvalExpr(r); solver.pop();</pre>
		<pre>addToSolver(p == ret);</pre>

Translating Code to Z3 Formulas (Scalar Example)

The target program code needs to be in **SSA form** (e.g., SVFIR).

- Top-level variables can only be defined once
 - a = 1; a = 2; $\Longrightarrow a1 = 1$; a2 = 2;
- Memory objects can only be modified/read through top-level pointers at StoreStmt and LoadStmt.
 - p = &a; *p = r; The value of a can only be modified/read via dereferencing p.

Translating Code to Z3 Formulas (Scalar Example)

The target program code needs to be in **SSA form** (e.g., SVFIR).

- Top-level variables can only be defined once
 - a = 1: a = 2: $\implies a1 = 1$: a2 = 2:
- Memory objects can only be modified/read through top-level pointers at StoreStmt and LoadStmt
 - p = &a; *p = r: The value of a can only be modified/read via dereferencing p.

```
// int a:
int main() {
                         expr a = getZ3Expr("a");
                         // int b:
                                                                  (declare-fun a () Int)
                         expr b = getZ3Expr("b");
 int a:
                                                                  (declare-fun b () Int)
 int b:
                         // a = 0:
                                                                  (assert (= a 0))
 a = 0:
                         addToSolver(a==getZ3Expr(0));
                                                                  (assert (= b (+ a 1)))
                                                                                               solver
 b = a + 1:
                         // b = a+1:
                                                                  (assert (> b 0))
                         addToSolver(b==(a+getZ3Expr(1)));
 assert(b>0):
                                                                  (check-sat)
                         // assert(b > 0):
                         addToSolver(b>getZ3Expr(0));
                         solver.check():
```

C code

Translator

Z3 Formulas

Z3

Translating Code to Z3 Formulas (Memory Operation Example)

- Each memory object has a unique ID and allocated with a virtual memory address
- In our modeling, the virtual address starts from 0x7f...... + ID (i.e., 2130706432 + ID in decimal)
- Memory operations will be through store and load values from loc2ValMap, an Z3 array.

```
int main() {
  int* p;
  int x;

  p = malloc(..);
  *p = 5;
  x = *p;
  assert(x==5);
}
```

```
// int** p;
expr p = getZ3Expr("p");
// int x:
expr x = getZ3Expr("x");
// p = malloc(..);
expr m = getMemObjAddress("malloc1");
addToSolver(p == m);
// *p = 5:
storeValue(p, getZ3Expr(5));
// x = *p:
addToSolver(x == loadValue(p)):
// assert(x==5);
addToSolver(x == getZ3Expr(5)):
solver.check():
```

C code

Translator

Z3 Formulas

What's next?

- (1) Understand Z3 formula format in the slides
- (2) Understand Z3Mgr class in the GitHub Repository of Software-Security-Analysis
- (3) Start working on the Quiz-2 on WebCMS
- (4) Start working on Lab-Exercise-2
 - Remember to git pull or docker pull to get the latest code template.
 - You will implement a manual translation from code to Z3 formulas using Z3Mgr and Z3Examples in for code assertion verification.