Fabio Fassetti

Reti Logiche e Calcolatori

Lezione 1

Introduzione al corso

Il corso mira a fornire solide basi in merito al funzionamento del livello logico-digitale, mediante l'acquisizione di capacità di analisi e di sintesi delle reti logiche combinatorie e sequenziali, all'organizzazione ed al funzionamento della macchina calcolatore, mediante l'acquisizione delle tecniche di microprogrammazione, ed alla conoscenza del linguaggio di programmazione assembly.

Il corso è anche su Facebook

<u>Gruppo su Reti Logiche e Calcolatori</u>

Contatti

Fabio Fassetti

Contatti: Cubo 41C - III piano, <u>fabio.fassetti@unical.it</u>

Ricevimento

- in via telematica, sulla piattaforma TEAMS
- durante le lezioni previste dall'orario
- martedì pomeriggio dalle 15:00 alle 17:00
- su appuntamento
- quando mi trovate on line :)

Introduzione al corso

Conoscenze preliminari

- Numeri binari, complemento a 2, codifica di numeri reali
- Rudimenti di logica proposizionale

Materiale didattico

- Fabrizio Lucci, Linda Pagli Reti Logiche e Calcolatore Bollati Boringhieri Editore
- Manuale di programmazione Intel
- Appunti di lezione

Introduzione al corso

Metodi di valutazione

- L'esame consiste in una prova scritta e in una prova orale obbligatoria.
- È prevista la possibilità di conservare lo scritto per una sessione, ossia è possibile sostenere la prova orale o nella stessa sessione della prova scritta o nella sessione successiva.

Rappresenta lo strumento matematico alla base dell'analisi e della sintesi di circuiti logici / reti logiche

- Costanti: 0, 1
- Variabili: x, y, z, ... con valore in {0,1}
- Funzioni: $z = f(x1, ..., xn) = \{0,1\}^n \{0,1\}$
- Rappresentazioni: Tabella di verità, Espressione algebrica

X	z = f1(x)
0	1
1	0

x1	x2	z = f2(x1,x2)	x1	x2	
0	0	0	0	0	
0	1	1	0	1	
1	0	1	1	0	
1	1	1	1	1	

$$f1(x) = x$$

OR
$$f2(x1,x2) = x1 + x2$$

AND
$$f3(x1,x2) = x1 \cdot x2$$

z = f3(x1,x2)

Proprietà.

Ogni funzione booleana ammette un'espressione algebrica costruita utilizzando gli operatori NOT, AND, OR e le parentesi.

$$f(x1,x2,x3) = x1 \cdot x2 + x3$$

Priorità degli operatori -, ·, +

Algebra Booleana - Proprietà

$$0. \quad = \\ x = x$$

OR

- 1. x + 0 = x
- 2. x + 1 = 1
- 3. $x + \overline{x} = x$
- 4. x + x = 1
- 5. x + y = y + x [commutativa]
- 6. x + (y + z) = (x + y) + z [associativa]
- 7. $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ [distributiva]

Proprietà duale

Data una proprietà P, si definisce duale di P la proprietà P' ottenuta da P sostituendo

- AND con OR e viceversa
- 0 con 1 e viceversa

Principio di dualità

Se una proprietà P è valida nell'algebra booleana, allora è anche valida la sua duale.

Algebra Booleana - Proprietà

$$0. \quad = \\ x = x$$

OR

1.
$$x + 0 = x$$

2.
$$x + 1 = 1$$

3.
$$x + \overline{x} = 1$$

4.
$$x + x = x$$

5.
$$x + y = y + x$$
 [commutativa]

6.
$$x + (y + z) = (x + y) + z$$
 [associativa]

7.
$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$
 [distributiva]

AND

1.
$$x \cdot 1 = x$$

$$2. \quad \mathbf{x} \cdot \mathbf{0} = \mathbf{0}$$

3.
$$x \cdot x = 0$$

4.
$$x \cdot x = x$$

5.
$$x \cdot y = y \cdot x$$
 [commutativa]

6.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
 [associativa]

7.
$$x + (y \cdot z) = (x + y) \cdot (x + z)$$
 [distributiva]

Algebra Booleana - Teorema di De Morgan

Ci consentono di passare dalle tabelle di verità alle espressioni algebriche.

x1	x2	х3	z
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Ci consentono di passare dalle tabelle di verità alle espressioni algebriche.

x1	x2	х3	z
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

MINTERMINE

funzione logica che vale 1 in corrispondenza di una e una sola configurazione degli ingressi e 0 altrimenti

x1	x2	х3	z	p0	p2	p4	р5	p6
0	0	0	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	1	0	1	0	0	0
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	1	0	0
1	0	1	1	0	0	0	1	0
1	1	0	1	0	0	0	0	1
1	1	1	0	0	0	0	0	0

MINTERMINE

- definizione
 - funzione logica che vale 1 in corrispondenza di una e una sola configurazione degli ingressi e 0
 altrimenti
- espressione algebrica
 - AND di tutte le variabili prese dirette se valgono 1 nella configurazione per cui il mintermine vale
 1, negate se valgono 0

MAXTERMINE

funzione logica che vale 0 in corrispondenza di una e una sola configurazione degli ingressi e 1 altrimenti

x1	x2	х3	Z	p0	p2	p4	р5	p6	s1	s3	s7
0	0	0	1	1	0	0	0	0	1	1	1
0	0	1	0	0	0	0	0	0	0	1	1
0	1	0	1	0	1	0	0	0	1	1	1
0	1	1	0	0	0	0	0	0	1	0	1
1	0	0	1	0	0	1	0	0	1	1	1
1	0	1	1	0	0	0	1	0	1	1	1
1	1	0	1	0	0	0	0	1	1	1	1
1	1	1	0	0	0	0	0	0	1	1	0

MAXTERMINE

- definizione
 - funzione logica che vale 0 in corrispondenza di una e una sola configurazione degli ingressi e 1 altrimenti
- espressione algebrica
 - OR di tutte le variabili prese dirette se valgono 0 nella configurazione per cui il maxtermine vale
 0, negate se valgono 1

Ogni funzione f può essere rappresentata mediante un'espressione algebrica in forma canonica

- PRIMA FORMA CANONICA (SOMMA DI PRODOTTI) SP
 - OR di tutti i mintermini associati alle configurazioni in cui f vale 1

x1	x2	х3	z	p0	p2	p4	р5	p6
0	0	0	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	1	0	1	0	0	0
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	1	0	0
1	0	1	1	0	0	0	1	0
1	1	0	1	0	0	0	0	1
1	1	1	0	0	0	0	0	0

x1	x2	х3	z	рО	p2	p4	р5	р6	p0 + p2 + p4 + p5 + p6
0	0	0	1	1	0	0	0	0	
0	0	1	0	0	0	0	0	0	
0	1	0	1	0	1	0	0	0	
0	1	1	0	0	0	0	0	0	
1	0	0	1	0	0	1	0	0	
1	0	1	1	0	0	0	1	0	
1	1	0	1	0	0	0	0	1	
1	1	1	0	0	0	0	0	0	

$$z = p0 + p2 + p4 + p5 + p6$$

x1	x2	х3	z	рО	p2	p4	р5	р6	p0 + p2 + p4 + p5 + p6
0	0	0	1	1	0	0	0	0	1
0	0	1	0	0	0	0	0	0	
0	1	0	1	0	1	0	0	0	
0	1	1	0	0	0	0	0	0	
1	0	0	1	0	0	1	0	0	
1	0	1	1	0	0	0	1	0	
1	1	0	1	0	0	0	0	1	
1	1	1	0	0	0	0	0	0	

$$z = p0 + p2 + p4 + p5 + p6$$

x1	x2	х3	z	рО	p2	p4	р5	p6	p0 + p2 + p4 + p5 + p6
0	0	0	1	1	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0
0	1	0	1	0	1	0	0	0	
0	1	1	0	0	0	0	0	0	
1	0	0	1	0	0	1	0	0	
1	0	1	1	0	0	0	1	0	
1	1	0	1	0	0	0	0	1	
1	1	1	0	0	0	0	0	0	

$$z = p0 + p2 + p4 + p5 + p6$$

x1	x2	х3	z	рО	p2	p4	р5	р6	p0 + p2 + p4 + p5 + p6
0	0	0	1	1	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0
0	1	0	1	0	1	0	0	0	1
0	1	1	0	0	0	0	0	0	
1	0	0	1	0	0	1	0	0	
1	0	1	1	0	0	0	1	0	
1	1	0	1	0	0	0	0	1	
1	1	1	0	0	0	0	0	0	

$$z = p0 + p2 + p4 + p5 + p6$$

x1	x2	х3	z	рО	p2	p4	р5	р6	p0 + p2 + p4 + p5 + p6
0	0	0	1	1	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0
0	1	0	1	0	1	0	0	0	1
0	1	1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0	0	1
1	0	1	1	0	0	0	1	0	1
1	1	0	1	0	0	0	0	1	1
1	1	1	0	0	0	0	0	0	0

$$z = p0 + p2 + p4 + p5 + p6$$

Ogni funzione f può essere rappresentata mediante un'espressione algebrica in forma canonica

- SECONDA FORMA CANONICA (PRODOTTO DI SOMME) PS
 - o AND di tutti i maxtermini associati alle configurazioni in cui f vale 0

x1	x2	х3	z	s 1	s3	s7	s1·s3·s7
0	0	0	1	1	1	1	1
0	0	1	0	0	1	1	0
0	1	0	1	1	1	1	1
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	1
1	0	1	1	1	1	1	1
1	1	0	1	1	1	1	1
1	1	1	0	1	1	0	0

$$z = s1 \cdot s3 \cdot s7$$

Insiemi di operatori

Un insieme di operatori si dice funzionalmente completo se ogni funzione può essere rappresentata attraverso mediante i soli operatori dell'insieme.

- $\{+,\cdot,^-\}$ è un insieme funzionalmente completo
- {·, -} è un insieme funzionalmente completo
- {+, -} è un insieme funzionalmente completo
- {·,+} non è un insieme funzionalmente completo
 - o non è possibile ottenere il not attraverso l'uso di and e or

Operatori NAND e NOR

x1	x2	x1·x2	x1 x2
0	0	0	
0	1	0	
1	0	0	
1	1	1	

x1	x2	x1 + x2	x1 □ x2
0	0	0	
0	1	1	
1	0	1	
1	1	1	

NAND

Operatori NAND e NOR

x1	x2	x1·x2	x1 x2
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

x1	x2	x1 + x2	x1 □ x2
0	0	0	
0	1	1	
1	0	1	
1	1	1	

NAND

Operatori NAND e NOR

x1	x2	x1·x2	x1 x2
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

x1	x2	x1 + x2	x1 □ x2
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

NAND

Non vale la proprietà associativa!

Quesito

Quante funzioni distinte di n variabili possono essere definite?