

Bloque I. Fundamentos de la economía monetaria y bancaria

Tema 2. Los tipos de interés y el mercado de dinero

Prof. Borja Petit
Economía monetaria y bancaria
CUNEF Universidad
Curso 2024/2025

Esquema

- 1. El tipo de interés
- 2. La determinación de los tipos de interés
- 3. Riesgo y liquidez en los tipos de interés

Introducción

- Los tipos de interés se encuentran entre las variables económicas que más atención reciben.
 Afectan a muchas decisiones económicas: ahorro, inversión, política fiscal, consumo, etc.
- En este tema vamos a:
 - Entender mejor qué es el tipo de interés y su relación con la tasa de descuento.
 - Vamos también a fijar qué entenderemos nosotros por "tipo de interés".
 - o Cómo se determina el tipo de interés en el mercado de activos.
 - El dinero compite con otros activos como depósito de valor: el tipo de interés se ve afectado por la oferta monetaria del banco central.
 - Cómo se forma el tipo de interés de mercado que pagamos nosotros.
 - Los activos difieren en su nivel de riesgo y liquidez: diferentes tipos de interés

Esquema

1. El tipo de interés

- El tipo de interés.
- El valor presente descontado.
- Midiendo el tipo de interés.
- 2. La determinación de los tipos de interés
- 3. Riesgo y liquidez en los tipos de interés

Introducción

- Muchas de nuestras decisiones tienen efectos durante múltiples periodos.
 Pe. pedir un préstamo, elegir qué grado estudiar, tener hijos, o decidir cuándo estudiar EMyB.
- El valor que otorgamos al dinero (y a la utilidad, en general) es diferente si ese dinero se recibe en diferentes momentos del tiempo: ¡somos impacientes!
 - Todos preferimos tener 1€ (o un coche) hoy a 1€ (o un coche) mañana.
 - Preferencias: valoramos más el presente que el futuro.
 - Coste de oportunidad: 1€ hoy podríamos invertirlo y tener más de 1€ mañana.
- Necesitamos ser capaces de evaluar los efectos futuros en el presente.
 - ¿Comprar bonos por 100€ o disfrutar de ese dinero hoy yéndome a cenar por ahí?
 - ¿Estudio un poco cada semana o lo dejo todo para diciembre?

El tipo de interés

- Una de las leyes fundamentales de la economía es que los agentes económicos somos impacientes: todos preferimos tener 1€ (o un coche) hoy a 1€ (o un coche) mañana.
 - Cuando prestamos dinero estamos posponiendo capacidad de compra presente.
 - Cuando pedimos dinero estamos adelantando capacidad de compra futura.
- Dada la preferencia por el consumo presente frente al consumo futuro, adelantar (posponer)
 capacidad de compra requiere de un coste (compensación): el tipo de interés.
 - El tipo de interés es el precio de mover capacidad de compra futura al periodo presente. O el precio que exigimos por posponer capacidad de compra.

El tipo de interés

- El tipo de interés mide el coste de adelantar capacidad de compra futura (o la compensación de posponer capacidad de compra presente). ¿Cómo se calcula?
- Imaginemos un bono que hoy cuesta 100€ y nos ofrece 110€ el año que viene:
 - Esto supone dejar de consumir hoy por la promesa de consumir (más) mañana.
 - El tipo de interés de este bono sencillo sería:

$$i = \frac{110 - 100}{100} = 10\%$$

El tipo de interés

- El ejemplo anterior prestamos una cantidad de dinero hoy ($P_0=100$) y recibimos una cantidad mayor mañana ($P_1=100$), siendo el tipo de interés del 10%.
- Mañana podemos hacer lo mismo: invertir los $110 \in \mathbb{C}$ y recibir pasado mañana $110 \in (1+i)$

$$100 \in \longrightarrow 110 \in 100 \in (1+i) \longrightarrow 121 \in 110 \in (1+i) = 100 \in (1+i)^2$$

De hecho, este proceso podemos repetirlo indefinidamente...

- Este proceso de "mover" el dinero hacia delante se conoce como capitalización y nos dice que 100€ hoy equivalen a 133,1€ en el periodo 3 o a 164,6€ en el periodo 4.
- Este mismo proceso podemos hacerlo a la inversa: actualizar o descontar.
 - o Si 100€ equivalen a 100€(1 + i) mañana, 100€ mañana "equivalen" a 100€/(1 + i) hoy.
 - O De forma similar, podemos valorar cualquier flujo de caja futuro en términos presentes...
 - El valor presente de un flujo de caja futuro se conoce como valor presente descontado.

- El valor presente descontado nos permite fijar el precio de flujos de caja diferentes.
- Imaginemos que tenemos dos opciones de inversión a 5 años:
 - A. Recibir 25€ en cada periodo (total de 125€)
 - B. Recibir 132,3€ al final del periodo 5.
- ¿Cuál es el valor de cada una de estas opciones? Asumiendo que el tipo de interés es del 5%...

$$PV_A = \frac{25}{1+i} + \frac{25}{(1+i)^2} + \frac{25}{(1+i)^3} + \frac{25}{(1+i)^4} + \frac{25}{(1+i)^5} = 108,24 \le <125 \le$$

$$PV_B = \frac{0}{1+i} + \frac{0}{(1+i)^2} + \frac{0}{(1+i)^3} + \frac{0}{(1+i)^4} + \frac{132,3}{(1+i)^5} = 103,66 \le <132,3 \le$$

• Si el tipo de interés es del 2% en vez del 5%, tendríamos...

$$PV_A = \frac{25}{1+i} + \frac{25}{(1+i)^2} + \frac{25}{(1+i)^3} + \frac{25}{(1+i)^4} + \frac{25}{(1+i)^5} = 117,84 \in$$

$$PV_B = \frac{0}{1+i} + \frac{0}{(1+i)^2} + \frac{0}{(1+i)^3} + \frac{0}{(1+i)^4} + \frac{132,3}{(1+i)^5} = 119,83 \le PV_A$$

...; la opción B se vuelve más atractiva!

• ¿Por qué? El tipo de interés "pone precio" a nuestra impaciencia.

Un menor tipo de interés reduce la "penalización" de los pagos más alejados en el tiempo.

¿Qué tipo de interés debemos usar para calcular el valor presente descontado?

- Lo ideal es usar la tasa de descuento intertemporal (β), que mide la reducción de utilidad que un individuo otorga a 1 \in en el futuro frente a 1 \in en el presente.
 - Tener $x \in \text{mañana es como tener } x/(1+\beta) \in \text{hoy.}$
 - \circ Es una medida de nuestra impaciencia: cuanto más impacientes seamos, mayor será β . El tipo de interés es el "precio" de la impaciencia, no su valor.
- Esta tasa no es observable: tipo de interés de un bono a corto plazo como aproximación.
 - Si fuese superior, la demanda de bonos sería muy alta y el tipo de interés bajaría. Si $i > \beta$, el bono más que compensa mi impaciencia.
 - Si fuese inferior, la demanda de bonos sería muy baja y el tipo de interés subiría. Si $i < \beta$, el bono no compensa mi impaciencia.

- Ya hemos definido qué es el tipo de interés, cómo el tipo de interés nos permite descontar (del futuro al presente) o capitalizar (del presente al futuro) un flujo de caja.
- Pero bajo el término "tipo de interés" podemos entender cosas muy distintas:
- Por ejemplo, el tipo de interés de este bono....

... "es" del 5%: cada periodo recibimos un 5% del principal en concepto de interés.

... o del 25%: en total, recibimos 0.25€ por cada euro que hemos invertido.

- Ya hemos definido qué es el tipo de interés, cómo el tipo de interés nos permite descontar (del futuro al presente) o capitalizar (del presente al futuro) un flujo de caja.
- Pero bajo el término "tipo de interés" podemos entender cosas muy distintas:
- Por ejemplo, el tipo de interés de este bono....

... "es" del 32,3%: obtenemos 0,323 euros por cada euro que invertimos.

- Ya hemos definido qué es el tipo de interés, cómo el tipo de interés nos permite descontar (del futuro al presente) o capitalizar (del presente al futuro) un flujo de caja.
- Pero bajo el término "tipo de interés" podemos entender cosas muy distintas:
- Por ejemplo, el tipo de interés de este bono....

... "es" del 7,93%: cada periodo recibimos un 7,93% de intereses.

... o del 39.6%: en total, recibimos 0.396€ por cada euro que hemos invertido.

¿Con cuál nos quedamos?

- Los bonos que hemos usado como ejemplos tienen diferentes estructuras temporales de pagos: unos pagan más antes y otros más después.
- Para poder comprarlos necesitamos una medida del tipo de interés que tenga en cuenta esta diferente estructura temporal de pagos: el retorno a vencimiento.
 - Retorno a vencimiento: el tipo de interés que hace que el valor presente descontado de un flujo de caja sea igual a su precio.
 - O Si el precio es P_0 y el flujo de caja es $(C_1, C_2, C_3, C_4, C_5)$, el retorno a vencimiento:

$$PV = \frac{C_1}{1+i} + \frac{C_2}{(1+i)^2} + \frac{C_3}{(1+i)^3} + \frac{C_4}{(1+i)^4} + \frac{C_5}{(1+i)^5} = P_0 \longrightarrow i$$

- Esta medida de tipo de interés nos permite compara cualquier tipo de instrumento financiero.
 - Convierte cualquier flujo de caja en un bono que capitaliza el precio inicial hasta el final de la vida del bono que queremos estudiar.

$$(C_1, C_2, C_3, C_4, C_5) \equiv (0, 0, 0, 0, 0, P_0(1+i)^5)$$

O Convierte cualquier flujo de caja en un bono con cupón anual de $i \cdot P_0 \in Q$ que es equivalente al bono que queremos estudiar.

$$(C_1, C_2, C_3, C_4, C_5) \equiv (C, C, C, C, C + P_0) \text{ con } C = i \cdot P_0$$

Utilizando esta medida, los ejemplos que hemos visto... ¡son todos equivalentes!

7.93

107.93

7.93 7.93 7.93

PV (i = 7.93%) = 100

Importante: no confundir el retorno a vencimiento de un bono con su rentabilidad.

La rentabilidad de un bono en el periodo t es la suma del pago recibido en ese periodo (cupón) más el cambio en el precio del bono. Es decir:

$$R_t = \frac{C_t}{P_t} + \frac{P_{t+1} - P_t}{P_t}$$

donde C_t es el cupón que nos da el bono en el periodo t y P_t el precio del bono en el periodo t

- Estas dos medidas pueden diferir porque se produzca un cambio en los tipos de interés a corto plazo durante la vida del bono que haga que su precio se vea modificado.
 - Más adelante veremos porqué se pueden producir estos cambios en los tipos a corto plazo.
 - O Durante el último periodo de vida del bono, la rentabilidad del bono y su retorno a vencimiento siempre coinciden: en el último periodo de vida del bono $P_{t+1}=0$.

 Imaginemos que el tipo de interés a corto plazo es del 5% y compramos un bono a 5 años que nos paga 5€ en cada periodo y nos devuelve 100€ al final del 5° periodo. Su precio es de:

$$\frac{5}{1+5\%} + \frac{5}{(1+5\%)^2} + \frac{5}{(1+5\%)^3} + \frac{5}{(1+5\%)^4} + \frac{5}{(1+5\%)^5} + \frac{100}{(1+5\%)^5} = 100$$

Al final del periodo 2, y asumiendo que los tipos de interés no han cambiado, el precio sería de:

$$\frac{5}{1+5\%} + \frac{5}{(1+5\%)^2} + \frac{5}{(1+5\%)^3} + \frac{100}{(1+5\%)^3} = 100$$

Pero si el tipo de interés a corto plazo baja al 2% al final del periodo 2, su precio pasaría a:

$$\frac{5}{1+2\%} + \frac{5}{(1+2\%)^2} + \frac{5}{(1+2\%)^3} + \frac{100}{(1+2\%)^3} = 108,65$$

- ¿Cuál es la rentabilidad del bono en el periodo 2?
 - Si vendemos el bono al final del periodo 2 obtendremos los 5€ que paga el bono más los 108,65€. Por tanto, la rentabilidad del bono en el periodo 2 es de:

$$R_2 = \frac{5}{100} + \frac{108,65 - 100}{100} = 5\% + 8,65\% = 13,65\%$$

- Una reducción del tipo de interés a corto plazo... ¡aumenta la rentabilidad del bono!
 - Esto ocurre porque en el momento en el que tipo de interés se reduce, el bono ya se ha comprado (a un tipo de interés mayor), aumentando su valor relativo a los bonos emitidos después de la caída del tipo de interés.
 - Por eso los bonos a plazo más largos son más arriesgados, aunque el pagador no falle: hay más probabilidad de que se produzcan cambios en los tipos de interés.

- El tipo de interés es el coste de adelantar capacidad de compra futura: precio de la impaciencia
 - Si traemos al presente capacidad de compra futura hablamos de descontar.
 - Si llevamos al futuro capacidad de compra presente hablamos de capitaliza.
- El valor presente descontado (PV) es la suma del valor actual de un flujo de caja futuro.
 - Nos permite poner precio a diferentes instrumentos financieros.
 - Se calcula con el tipo de interés a corto plazo como aproximación a la tasa de descuento.
 - La tasa de descuento mide el valor relativo de una unidad monetaria futura respecto a una unidad monetaria presente ("valor", no "precio").
- Cuando hablamos de "tipo de interés" de un bono, nos referimos a su retorno a vencimiento: el tipo que hace que el PV de todos sus flujos de caja sea igual a su precio.

Esquema

- 1. El tipo de interés
- 2. La determinación de los tipos de interés
 - Oferta y demanda de activos
 - Oferta y demanda de dinero
 - El tipo de interés, la inflación esperada y la oferta monetaria
- 3. Riesgo y liquidez en los tipos de interés

Introducción

- En 1950 el tipo de interés de los bonos americanos a tres meses era del 1%, en 1981 alcanzó el 20% y a principios de los 2000 volvió a bajar hasta el 2%.
- ¿Qué explica estos cambios en los tipos de interés? Oferta y demanda de bonos.
 - ¿Qué determina la demanda de un determinado activo?
 - ¿Qué determina la oferta de un determinado activo?
- Luego veremos una explicación alternativa que relaciona las fluctuaciones del tipo de interés con los cambios en la oferta y demanda de dinero.
- Nuestro objetivo es entender cómo reacciona el tipo de interés ante un cambio en la cantidad de dinero o la inflación esperada.
 - Esto nos permitirá entender la relación entre el dinero y la inflación que veremos en el tema 3.

El mercado de bonos

- Vamos a hacer algunos supuestos para simplificar nuestro análisis.
 - Solo existen dos activos: dinero y bonos.
 - o Todos los bonos son similares: pagan un cupón anual del i% El retorno a vencimiento nos permite "traducir" cualquier bono en uno de cupón fijo.
 - Alternativamente, podemos asumir que el único bono es un bono a un año que paga $100\mathbb{C}$ a vencimiento y hoy cuesta P: i=100/P-1.
 - Los bonos están valorados correctamente: el valor presente descontado es cero.
 El precio y el tipo de interés está inversamente relacionados.
 - Las empresas y el gobierno emiten bonos para financiar sus inversiones.

El mercado de dinero

- El tipo de interés de los bonos se determina según la oferta y demanda de éstos.
- Una forma alternativa (pero relacionada) de estudiar la determinación de los tipos de interés consiste en analizar el mercado de dinero.
- El dinero es una alternativa a los bonos (y otros instrumentos) como depósito de valor: la demanda de uno de ellos afecta a la demanda del otro.
 - Asumiendo que existen solo dos activos: el dinero y los bonos...

$$B^{s} + M^{s} = B^{d} + M^{d} \longrightarrow B^{s} - B^{d} = 0 = M^{s} - M^{d}$$

• El tipo de interés que hace que oferta y demanda de bonos sean iguales $(B^s = B^d)$ es el que hace que la oferta y la demanda de dinero sean iguales.

El mercado de dinero. Demanda

- Los agentes demandamos dinero por dos motivos:
 - o Cómo depósito de valor:
 - Cuánto mayor es el tipo de interés, o la rentabilidad de los bonos (depósito de valor alternativo), menos dinero querremos tener.

o Cómo medio de pago:

- Cuánto mayor sea nuestra renta, más transacciones querremos hacer y, por tanto, más dinero necesitaremos.
- Cuánto mayor sea la inflación esperada, más euros necesitaremos para nuestras transacciones y mayor será nuestra demanda de dinero.

El mercado de dinero. Demanda

- La demanda de dinero es una función decreciente del tipo de interés: a mayor tipo de interés, mayor rentabilidad del activo alternativo (bonos).
- Un aumento en la renta (o en la inflación esperada) provoca un aumento en la demanda de dinero sea cual sea el tipo de interés.
- Una caída en la inflación esperada (o la renta) provoca una disminución en la demanda de dinero sea cual sea el tipo de interés.

El mercado de dinero. Oferta

- La oferta de dinero la controla el BC.
 - El BC es capaz de modificar la cantidad de dinero (M1) a discreción modificando la base monetaria (M0).
- Por tanto, la oferta monetaria es independiente del tipo de interés (y de cualquier otra variable): es decisión exclusiva del banco central.
 - Aumentos de MO hacen aumentar la oferta total de dinero.
 - Disminuciones del MO disminuyen la cantidad total de dinero.

El mercado de dinero. Equilibrio

- En equilibrio, la demanda de dinero coincide con la oferta de dinero determinando el tipo de interés.
- Si el tipo de interés es superior a i₀, los bonos son "muy" atractivos, lo que haría que la demanda de dinero fuese inferior a la oferta.
- Si el tipo de interés es inferior a i₀, los bonos son "muy poco" atractivos, haciendo que la demanda de dinero fuese superior a la oferta.

El mercado de dinero. Equilibrio

Cambios en la demanda:

- Un aumento en la renta o una mayor inflación esperada hace que la demanda aumente generando un exceso de demanda.
- Si la oferta monetaria no se ajusta, se producirá una caída en la demanda de bonos (ahora preferimos dinero).
- El tipo de interés aumenta.

El mercado de dinero. Equilibrio

Cambios en la oferta:

- Si el banco central aumenta la base monetaria (MO), se produce un aumento del dinero en la economía: de M a M'.
- Esta decisión no supone ningún cambio en la demanda, produciéndose un exceso de oferta.
- Los agentes pueden usar ese exceso de liquidez para comprar bonos.
- El tipo de interés disminuye.

El mercado de dinero. Resumen

	Demanda	Oferta	Dinero	Tipo interés
▲ la renta			=	
▲ la inflación esperada			=	
▲ la oferta monetaria				V

El mercado de bonos. Demanda

- Los bonos son un depósito de valor que los agentes económicos compran para poder posponer capacidad de compra presente. Su demanda depende de:
 - El tipo de interés: cuánto mayor sea el tipo de interés será la capacidad de compra futura y mayor será la demanda de bonos: la demanda es creciente en el tipo de interés.
 - Dado un tipo de interés, la demanda de un bono depende de (otros) 4 factores:
 - 1. El nivel de riqueza de los inversores/ahorradores
 - La necesidad de liquidez de los inversores/ahorradores.
 - 3. El riesgo del activo.
 - 4. El nivel de liquidez del activo.

El mercado de bonos. Demanda

1. Riqueza de los ahorradores/inversores

- Si tenemos mucha riqueza, el coste de oportunidad de comprar un activo es menor.
 Además, a mayor riqueza, mayor cantidad de recursos disponibles para comprar activos.
- Conclusión: a mayor riqueza, mayor demanda de activos.

2. Necesidad de liquidez de los inversores/ahorradores

- Cuando los agentes necesitan mayor liquidez (quieren hacer más compras o esperan una mayor inflación), el coste de oportunidad de los bonos aumenta, reduciendo su demanda.
 Cuando los agentes necesitan (demandan) más dinero, demandan menos bonos.
- Conclusión: a mayor necesidad de liquidez, menor demanda.

El mercado de bonos. Demanda

3. El nivel de riesgo del activo

- Además de impacientes, los agentes económicos somos aversos al riesgo: no nos gusta la incertidumbre sobre el futuro.
- Conclusión: a mayor riesgo (manteniendo todo lo demás constante), menor demanda.

4. Liquidez

- La liquidez de un activo mide el coste de transformar ese activo en capacidad de compra (cuánto cuesta, en tiempo y dinero, convertirlo en efectivo): un activo es más líquido si el mercado en el que se negocia es amplio (muchos compradores y vendedores), lo que hace más fácil vender el activo rápido y a mejor precio.
- Conclusión: a mayor liquidez (manteniendo todo lo demás constante), mayor demanda.

El mercado de bonos. Demanda

- La demanda de bonos es una función creciente del tipo de interés.
- La demanda de bonos aumenta para cualquier tipo de interés si:
 - la riqueza
 - ▼ la necesidad de liquidez
 - Tel riesgo del activo
 - ▲ la liquidez del activo

El mercado de bonos. Demanda

- La demanda de bonos es una función creciente del tipo de interés.
- La demanda de bonos cae para cualquier tipo de interés si:
 - ▼ la riqueza
 - ▲ la necesidad de liquidez
 - A el riesgo del activo
 - Ia liquidez del activo

El mercado de bonos. Oferta

- ¿Qué explica la emisión de activos? Tres factores fundamentales:
 - Rentabilidad de las inversiones: si las inversiones que se pretenden financiar ofrecen una alta rentabilidad, la oferta de bonos será mayor.
 - ↑ Rentabilidad de las inversiones → ↑ Oferta de bonos
 - Inflación esperada: si la inflación esperada es mayor, el coste real del activo para su emisor es menor, aumentando su oferta.
 - Si el emisor es una empresa, el coste real de la deuda puede medirse como el número de bienes que tiene que vender para devolver el préstamo.
 - ↑ Inflación esperada → ↑ Oferta de bonos
 - Además de hogares y empresas, el gobierno también emite activos (deuda pública) que será mayor cuanto mayor sea el déficit público.

El mercado de bonos. Oferta

- La oferta de bonos es una función decreciente del tipo de interés.
- La oferta de bonos aumenta para cualquier tipo de interés si...
 - rentabilidad inversiones
 - inflación esperada
 - déficit público

El mercado de bonos. Oferta

- La oferta de bonos es una función decreciente del tipo de interés.
- La oferta de bonos cae para cualquier tipo de interés si...
 - rentabilidad inversiones
 - Tinflación esperada
 - o déficit público

El mercado de bonos. Equilibrio

- El equilibrio del mercado de activos viene definido por el tipo de interés que iguala oferta y demanda.
- Los aumentos en la demanda de bonos generan una mayor cantidad de bonos en el mercado y una reducción en el tipo de interés.

El mercado de bonos. Equilibrio

- El equilibrio del mercado de activos viene definido por el tipo de interés que iguala oferta y demanda.
- Los aumentos en la oferta de bonos generan una mayor cantidad de bonos en el mercado y un aumento en el tipo de interés.

El mercado de bonos. Resumen

	Demanda	Oferta	Bonos	Tipo interés
▲ la riqueza				•
▲ la rentabilidad alternativa	V		•	
▲ el riesgo del activo	•		•	A
▲ la liquidez del activo				•
▲ rentabilidad inversiones				
▲ inflación esperada				
▲ déficit público				

El tipo de interés, la inflación esperada y la oferta monetaria

- Acabamos de ver cómo diferentes cambios en la economía afectan al tipo de interés tanto a través del mercado de bonos como a través del mercado de dinero.
- Hay dos cambios especialmente relevantes para nosotros:
 - o Un aumento (o disminución) de la inflación esperada.
 - Esto es importante porque el coste financiero que impacta en la economía es el tipo de interés real: $r_t=i_t-\pi_t^e$.
 - Entendiendo cómo reacciona i_t ante un cambio en π_t^e sabremos qué pasa con r_t .
 - Un aumento (o disminución) de la oferta monetaria.
 - Este es nuestro objetivo último: entender qué ocurre en la economía cuando el banco central modifica la cantidad de dinero en circulación.

El tipo de interés, la inflación esperada y la oferta monetaria

- Acabamos de ver cómo diferentes cambios en la economía afectan al tipo de interés tanto a través del mercado de bonos como a través del mercado de dinero.
- Hay un cambios especialmente relevante para nosotros: un cambio en la oferta monetaria.

$$\uparrow M \longrightarrow \downarrow i \longrightarrow \uparrow \pi^e \longrightarrow \uparrow i$$

o Para entender el efecto, es clave saber qué ocurre con la inflación esperada.

El tipo de interés y la inflación esperada en el mercado de dinero

- En el mercado de dinero, un aumento de la inflación esperada genera una mayor demanda de dinero.
- Los agentes van a necesitar más dinero para pagar sus transacciones.
- El exceso de demanda de dinero provoca un aumento en los tipos de interés: los agentes venden sus bonos para recibir liquidez, provocando una caída en su precio (mayor tipo de interés)

El tipo de interés y la inflación esperada en el mercado de bonos

- Un aumento de la inflación esperada eleva la oferta de bonos para cualquier tipo de interés: su coste real desciende.
- Dada la mayor inflación esperada, las necesidades de liquidez de los agentes aumenta, reduciendo la demanda de bonos.
- Al final nos encontramos con cantidad de bonos similar (no tiene porqué ser la misma) pero un tipo de interés superior: efecto Fisher.

El tipo de interés y la inflación esperada. El efecto Fisher

Inflación esperada y tipo de interés de la deuda pública de EEUU a tres meses

- Un aumento de la oferta monetaria reduce el tipo de interés al provocar un exceso de oferta. ¿Y después?
- Los agentes actualizan al alza sus expectativas de inflación aumentando su demanda de dinero.
 - Tema 3: La caída en el tipo de interés genera mayor actividad económica, provocando inflación.
- El tipo de interés se "corrige" (efecto Fisher): el efecto final depende de cómo se ajusten las expectativas de inflación...

- El aumento de la oferta monetaria provoca una caída inicial del tipo de interés.
- Conforme se ajustan las expectativas de inflación, el tipo de interés comienza a crecer.
- Si el efecto del tipo de interés sobre la actividad económica (y s/ la inflación) es moderado, el tipo de interés acabará finalmente por debajo del nivel inicial.

- El aumento de la oferta monetaria provoca una caída inicial del tipo de interés.
- Conforme se ajustan las expectativas de inflación, el tipo de interés comienza a crecer.
- Si el efecto del tipo de interés sobre la actividad económica (y s/ la inflación) es elevado, el tipo de interés acabará finalmente por encima del nivel inicial.

- Si el ajuste en las expectativas de inflación es muy rápido, la caída inicial en el tipo de interés puede no producirse, y generarse directamente un aumento en el tipo de interés.
- Esto es lo que ocurre en una economía en la que los precios/salarios son muy flexibles.

- En definitiva, si el banco central aumenta la cantidad de dinero...
 - 1. El exceso inicial de liquidez se traduce en un aumento en la demanda de bonos generando una caída del tipo de interés.
 - 2. Mientras las expectativas de inflación se mantienen, la caída del tipo de interés provoca una caída en el tipo de interés real $(r_t = i_t \pi_t^e)$ aumentando la producción.
 - 3. La expansión económica genera inflación, aumentando las expectativas de los agentes.
 - 4. El aumento de los precios esperados provoca un aumento de la demanda de dinero, aumentando el tipo de interés
- Si los agentes ajustas sus expectativas de forma inmediata, el paso 2 no se produce (o dura muy poco), y el aumento en la cantidad de dinero se traduce en un aumento (casi) inmediato del tipo de interés \longrightarrow la cantidad de dinero no afecta a la economía real.

- El tipo de interés se determina en el mercado de bonos, aunque podemos estudiarlo también desde la perspectiva del mercado de dinero (el depósito de valor alternativo).
- Las expectativas de inflación afectan positivamente al tipo de interés:
 - Una mayor inflación esperada hace que aumente la oferta de bonos y, a su vez, un aumento en la rentabilidad alternativa (queremos más dinero), reduciendo la demanda y provocando un mayor tipo de interés.
 - Una mayor inflación esperada hace que aumente la demanda de dinero, provocando una caída en la demanda de bonos y el consiguiente aumento en el tipo de interés.
- La oferta monetaria tiene un efecto ambiguo sobre el tipo de interés:
 - Manteniendo todo lo demás constante, una mayor oferta monetaria reduce el tipo de interés, lo que genera una mayor actividad y más inflación.
 - Si las expectativas se ajustan mucho, el tipo de interés puede acabar siendo superior.

Esquema

- 1. El tipo de interés
- 2. La determinación de los tipos de interés
- 3. Riesgo y liquidez en los tipos de interés
 - El riesgo de impago y la prima de riesgo.
 - La liquidez y la prima de liquidez.
 - La curva de tipos.

Introducción

- Hasta ahora hemos hablado de los tipos de interés libres de riesgos.
 - En la primera parte los hemos definido como el retorno a vencimiento de un bono
 - En la segunda parte hemos visto cómo se determinan en el mercado de bonos/dinero.
- En el mundo real, las operaciones financieras tienen plazos diversos y tienen riesgos.
 - El plazo de la operación de crédito, así como los riesgos asociados, determinan los tipos de interés de mercado (los que pagamos por un crédito o cobramos por una inversión).
 - ¿Cómo se forman estos tipos de interés de mercado?
- Notación:
 - \circ i_T : el tipo de interés anual de un activo con vencimiento a T años.
 - \circ $i_{t|t+1}$: el tipo de interés a corto plazo de un bono sin riesgo entre el año t y el t+1

Introducción

- Imaginad que disponéis de 100€ para invertir y tenéis dos alternativas:
 - Dar un préstamo a Carlos a 2 años.
 - Dejar el dinero en un depósito en el banco (inversión sin riesgo).
- ¿Qué tipo de interés deberíamos exigir a Carlos para estar dispuestos a darle el crédito?
 - Puede que, llegado el año 2, Carlos no nos devuelva el dinero...
 - Puede que el año que viene (año 1) los tipos de interés de los depósitos suban mucho de forma que nos habría interesado dejar nuestro dinero en el banco...
 - Puede que mañana tengamos un gasto inesperado y necesitemos el dinero...

Introducción

Tipo de mercado = Tipo de referencia + Prima de riesgo + Iiquidez

- Los tipos de mercado (los que pagamos por un crédito) tienen tres componentes:
 - Los tipos de referencia, que compensa el coste de oportunidad del prestamista.
 - Los tipos a corto plazo y sin riesgo; los que hemos analizado en la sección anterior.
 - La prima de riesgo, que compensa al prestamista por el riesgo de impago y tipo de interés.
 - La prima de liquidez, que compensa al prestamista por el riesgo de liquidez

Los tipos de referencia

El primer componente del tipo de interés de mercado es el tipo de interés de referencia.

- El tipo de interés de referencia de un instrumento financiero es el tipo de interés que tendría un activo similar, pero sin ningún riesgo (impago, tipo de interés y liquidez).
 - El que hace que el valor presente descontado de los flujos de caja sea igual a su precio.
 - Tal y como vimos en la primera parte de este tema, este tipo de interés es igual a la tasa de retorno de un bono al mismo plazo que el instrumento que queremos valorar.
 - Su valor se determina en el mercado de bonos a corto plazo, o en el mercado de dinero.

Los tipos de referencia

• Por ejemplo, para un activo con vencimiento a 5 años, el tipo de referencia ($i_{0|5}$) satisface...

$$(1+i_{0|5})^5 = (1+i_{0|1})(1+i_{1|2})(1+i_{2|3})(1+i_{3|4})(1+i_{4|5})$$

donde $i_{t|t+1}$ es el tipo de interés a anual entre el periodo t y el periodo t+1.

El tipo de referencia es la media geométrica de los tipos a corto durante la vida del activo

Los tipos de referencia

Despejando, el tipo de interés de referencia de un activo a 5 años es:

$$i_{0|5} = \left[\left(1 + i_{0|1} \right) \left(1 + i_{1|2} \right) \left(1 + i_{2|3} \right) \left(1 + i_{3|4} \right) \left(1 + i_{4|5} \right) \right]^{1/5} - 1$$

- En ausencia de riesgos, comprar este activo es equivalente a invertir durante 5 periodos en un bono a un año que pague un tipo de interés del $i_{0|5}$ al año.
- Si asumimos que los tipos a corto plazo son constantes: $i_{0|5} = i_{0|1} = i_{t|t+1} = i$. El tipo de referencia es el tipo de interés a corto plazo de la economía.

- Cuando un agente presta dinero a otro no solo necesita ser compensado por su impaciencia (tipos de interés a corto plazo o de referencia) sino también por el riesgo que asume:
 - Riesgo de impago: probabilidad que el emisor del activo no cumpla con los pagos.
 - Riesgo de tipo de interés: probabilidad que los tipos a corto plazo cambien
 (inesperadamente) haciendo que la rentabilidad del instrumento financiero cambie.

- Riesgo de impago: probabilidad que el emisor del activo no cumpla con los pagos.
 - Ejemplo: $P_0 = 100$, i = 10% y $i^* = 10\%$

$$PV = -P_0 + \frac{P_0(1+i)}{1+i^*} = -100 + 100 = 0$$

Si la probabilidad de recibir el dinero de vuelta es del 90%...

$$PV = -P_0 + \text{Prob(pago)} \cdot \left[\frac{P_0(1+i)}{1+\beta} \right] = -100 + 0.9 \cdot 100 = -10$$

- Riesgo de tipo de interés: probabilidad que los tipos a corto plazo cambien (inesperadamente)
 haciendo que la rentabilidad del instrumento financiero cambie.
 - En el momento de invertir no conocemos los tipos a corto plazo del futuro...

$$(1+i_{0|5})^5 = (1+i_{0|1})(1+i_{1|2}^e)(1+i_{2|3}^e)(1+i_{3|4}^e)(1+i_{4|5}^e)$$

O Si los tipos a corto aumentan, el tipo de interés de referencia, $i_{0|5}$, sería demasiado bajo para cumplir la identidad anterior... No compensaría el coste de oportunidad.

La prima de liquidez

- Además del riesgo de impago (o riesgo de crédito) y de tipo de interés, el prestamista asume el riesgo necesitar el dinero antes de que venza el activo.
 - Cuanto mayor sea el plazo mayor será el riesgo de necesitar el dinero antes de tiempo y,
 por tanto, mayor tendrá que ser la compensación.
 - Cuanto más estrecho sea el mercado de ese tipo de activos (menos compradores y vendedores) mayor será la pérdida que tendrá que asumir el emisor al vender el activo.
- Esa compensación se conoce como prima de liquidez.

Los tipos de interés de mercado

En definitiva, los tipos de interés de mercado a 5 años son:

$$i_5 = \left(\left[\left(1 + i_{0|1} \right) \left(1 + i_{1|2}^e \right) \left(1 + i_{2|3}^e \right) \left(1 + i_{3|4}^e \right) \left(1 + i_{4|5}^e \right) \right]^{1/5} - 1 \right) + x + \rho$$

- El problema con los tipos de mercado es que no podemos observar sus diferentes componentes. ¿Cómo medimos las primas de riesgo y liquidez?
 - La prima de riesgo la medimos comparando el activo en cuestión con el tipo de interés de un activo seguro (generalmente deuda pública) al mismo plazo.
 - La prima de liquidez la medimos a través de la curva de tipos de interés.

 Para calcular/cuantificar la prima de riesgo debemos comparar el tipo de interés de dos activos similares en todo salvo en el nivel de riesgo de su emisor.

$$i$$
 de deuda con riesgo: $i_t = i_{0|t} + \rho$
 $-i$ de deuda sin riesgo: $i_t = i_{0|t} + \rho + x$
 $=$ Prima de riesgo, x

- Un valor muy relevante para la economía es la prima de riesgo de la deuda pública del país: se asume que la prima de riesgo de la deuda privada es superior a la prima de riesgo soberana, que sirve como referencia "mínima".
- En Europa, la prima de riesgo de un país se calcula como la diferencia entre el tipo de interés de la deuda pública del país en cuestión y el tipo de interés de la deuda pública alemana al mismo plazo.

Fuente: Diario Expansión.

- Algo muy vigilado por los economistas y el sector financiero es la curva de tipos, o yield curve.
- La curva de tipos representa los tipos de un bono según aumenta su plazo de vencimiento,
 manteniendo todo lo demás (incluyendo el riesgo) constante.
 - Se comparan los tipos anualizados de dos bonos similares en todo a distinto vencimiento.
 - Para evitar que el riesgo de impago distorsione la imagen, se suele emplear los tipos de interés de la deuda pública a distintos plazos.
- Dado que los agentes económicos tenemos una preferencia por la liquidez (ante dos activos iguales, preferimos el más líquido), la curva de tipos suele ser creciente.

Curva de tipos, deuda pública de EEUU, 09/2005

- Algo muy vigilado por los economistas y el sector financiero es la curva de tipos, o yield curve.
- La curva de tipos representa los tipos de un bono según aumenta su plazo de vencimiento,
 manteniendo todo lo demás (incluyendo el riesgo) constante.
 - Se comparan los tipos anualizados de dos bonos similares en todo a distinto vencimiento.
 - Para evitar que el riesgo de impago distorsione la imagen, se suele emplear los tipos de interés de la deuda pública a distintos plazos.
- Dado que los agentes económicos tenemos una preferencia por la liquidez (ante dos activos iguales, preferimos el más líquido), la curva de tipos suele ser creciente.
- Aunque no siempre es así...

Curva de tipos, deuda pública de EEUU, 08/2023

- ¿Cómo puede ser el tipo de interés a largo plazo inferior al de corto plazo?
 - Cuando se espera que los tipos de interés a corto plazo se reduzcan en el futuro, esto genera una caída en los tipos a más largo plazo.
 - Por ejemplo, si $i_{0|1} = 6\%$, $i_{1|2}^e = 1\%$, x = 1%, $\rho = 1\%$, el tipo de referencia es:

$$(1 + i_{0|2})^2 = 1.06 \cdot 1.01 = 1.0906 \rightarrow i_{0|2} = 1.0906^{1/2} - 1 = 3.47\%$$

Y, por tanto, el tipo de interés de mercado a dos años sería $i_2=i_{0|2}+x+\rho=5.47\%$

- o ¡El tipo de interés a dos años (5.47%) es menor que el tipo de interés a un año (6%)!
 - Los inversores anticipan la bajada del tipo de interés del periodo 1 y estas expectativas se incorporan al tipo de interés a más largo plazo.

- Dado que los agentes económicos tenemos una preferencia por la liquidez (ante dos activos iguales, preferimos el más líquido), la curva de tipos suele ser creciente:
 - A mayor plazo, mayor tipo de interés: se tiene que compensar por el mayor riesgo de liquidez y el mayor riesgo de tipo de interés.

- Cuando se espera una bajada de los tipos de interés en el futuro, podemos encontrarnos con una curva de tipos plana:
 - Los tipos de referencia son decrecientes porque anticipan los menores tipos de interés a corto plazo en el futuro.

- Si la caída esperada es suficientemente grande, la curva de tipos puede llegar a ser negativa:
 - Los tipos de referencia son (muy) decrecientes.
 - \circ El riesgo de liquidez es menor: si esperamos que los tipos sean menores en el futuro, el bono emitido hoy será más fácil de vender en el futuro \longrightarrow menor prima de liquidez.

- Los tipos de interés de mercado se componen de:
 - Tipos de interés de referencia, que compensan el coste de oportunidad del dinero.
 - La prima de riesgo, que compensa el riesgo de impago y de tipo de interés.
 - Riesgo de impago: prob. de que no se satisfagan los pagos.
 - Riesgo de tipo de interés: prob. de que se aumenten los tipos a corto.
 - La prima de liquidez, que compensa el riesgo de liquidez:
 - Riesgo de liquidez: prob. de necesitar el dinero antes del vencimiento y potencial coste de tener que vender el activo anticipadamente.
- La curva de tipos representa cómo cambian los tipos de interés según ampliamos el vencimiento de un activo, manteniendo constante su riesgo de impago.

¿Preguntas?