Sample Solution for Problem Set 7.5

Data Structures and Algorithms, Fall 2021

December 5, 2021

Contents

1	Problem 1	2
2	Problem 2	2

1 Problem 1

The actual cost of each operation:

• OrderedpPush(x): Suppose there are k elements at the top of the stack that is smaller than x. Then, cost k to pop k elements and cost k to push.

$$C_{push} = k + 1$$

• Pop(x):

$$C_{pop} = 1$$

Use potential function $\Phi(S)=$ the number of elements in the stack . Obviously, we have $\Phi(S_i)\geq \Phi(S_0)$ holds for all $i\geq 0$. The amortized cost of each operation:

• OrderedpPush(x):

$$\hat{C}_{push} = C_{push} + \Delta\Phi = (k+1) + (-k+1) \le 2$$

• Pop(x):

$$\hat{C}_{pop} = C_{pop} + \Delta \Phi = 1 + (-1) \le 0$$

The amortized cost of each operation is O(1).

2 Problem 2

Let $\Phi(x) = 20 \times x$.

- Push: $T_{\text{amortized}} = T_{\text{actual}} + \Phi(x+1) \Phi(x) \le 21$.
- Pop: $T_{\text{amortized}} = T_{\text{actual}} + \Phi(x-1) \Phi(x) \le 0$.
- Decimate: $T_{\rm amortized} = T_{\rm actual} + \Phi(\left\lceil \frac{9x}{10} \right\rceil) \Phi(x) \le 20.$