Package 'tsbox'

October 22, 2024

```
Type Package
Title Class-Agnostic Time Series
Version 0.4.2
Description Time series toolkit with identical behavior for all
      time series classes: 'ts', 'xts', 'data.frame', 'data.table', 'tibble', 'zoo',
      'timeSeries', 'tsibble', 'tis' or 'irts'. Also converts reliably between these classes.
Imports data.table (>= 1.10.0), anytime
Suggests testthat, dplyr, tibble, tidyr, forecast, seasonal, dygraphs,
      xts, ggplot2, scales, knitr, rmarkdown, tsibble (>= 0.8.2),
      tsibbledata, tibbletime, tseries, units, zoo, tis, timeSeries,
      nycflights13, imputeTS, spelling, covr
License GPL-3
Encoding UTF-8
URL https://docs.ropensci.org/tsbox/,
      https://github.com/ropensci/tsbox
BugReports https://github.com/ropensci/tsbox/issues
RoxygenNote 7.3.2
VignetteBuilder knitr
Depends R (>= 2.10)
Config/testthat/parallel true
Config/testthat/edition 3
Language en-US
NeedsCompilation no
Author Christoph Sax [aut, cre] (<a href="https://orcid.org/0000-0002-7192-7044">https://orcid.org/0000-0002-7192-7044</a>),
      Cathy Chamberlin [rev],
      Nunes Matt [rev]
Maintainer Christoph Sax <christoph.sax@gmail.com>
Repository CRAN
Date/Publication 2024-10-22 18:00:02 UTC
```

2 tsbox-package

Contents

	tsbox-package	2
	copy_class	3
	relevant_class	4
	tsbox-defunct	5
	ts	5
	ts_arithmetic	7
	ts_bind	7
	ts_boxable	8
	ts_c	9
	ts_default	10
	ts_dts	11
	ts_examples	11
	ts_first_of_period	13
	ts_frequency	14
	ts_ggplot	15
	ts_index	16
	ts_lag	17
	ts_long	18
	ts_na_omit	19
	ts_pc	20
	ts_pick	21
	ts_plot	22
	ts_regular	23
	ts_save	24
	ts_scale	25
	ts_span	25
	ts_summary	27
	ts_trend	28
	ts_ts	29
Index		32

Description

tsbox-package

The R ecosystem knows a vast number of time series classes: ts, xts, zoo, tsibble, tibbletime, tis, or timeSeries. The plethora of standards causes confusion. As different packages rely on different classes, it is hard to use them in the same analysis. tsbox provides a set of tools that make it easy to switch between these classes. It also allows the user to treat time series as plain data frames, facilitating the use with tools that assume rectangular data.

tsbox: Class-Agnostic Time Series

copy_class 3

Details

The package is built around a set of functions that convert time series of different classes to each other. They are frequency-agnostic, and allow the user to combine multiple non-standard and irregular frequencies. Because coercion works reliably, it is easy to write functions that work identically for all classes. So whether we want to smooth, scale, differentiate, chain-link, forecast, regularize or seasonally adjust a time series, we can use the same tsbox-command for any time series classes.

The best way to start is to check out the package website.

In the *ropensci* classification, this package is *An improvement on other implementations of similar algorithms in* **R**. Many time series packages, e.g., zoo or tsibble contain converter functions from one class to another. They often convert from their class to ts objects and back, but lack converters to other time series class.

In most cases, tsbox transforms an object into an augmented data.table. And uses the data.table infrastructure for efficient joining and reshaping. After computation, it restores the original input class. This restoring feature is was also used in the xts::reclass() function of the xts package.

Author(s)

Christoph Sax <christoph.sax@gmail.com>

See Also

Useful links:

- https://docs.ropensci.org/tsbox/
- https://github.com/ropensci/tsbox
- Report bugs at https://github.com/ropensci/tsbox/issues

copy_class

Re-Class ts-Boxable Object

Description

Copies class attributes from an existing ts-boxable series. Mainly used internally.

```
copy_class(
   x,
   template,
   preserve.mode = TRUE,
   preserve.names = FALSE,
   preserve.time = FALSE,
   preserve.attr = TRUE
)
```

4 relevant_class

Arguments

X	ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame,
	data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.
template	ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame,
	<pre>data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.</pre>
preserve.mode	should the mode the time column be preserved (data frame only)
preserve.names	should the name of the time column be preserved (data frame only)
preserve.time	should the values time column be preserved (data frame only)
preserve.attr	should the attributes of the value column be preserved (data frame only)

Details

Inspired by xts::reclass, which does something similar.

Value

a ts-boxable object of the same class as template, i.e., an object of class ts, xts, zoo, data. frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Examples

```
copy_class(mdeaths, ts_tbl(fdeaths))
```

Extract Relevant Class relevant_class

Description

Mainly used internally.

Usage

```
relevant_class(x)
```

Arguments

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, Х data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Value

character, the relevant class of ts-boxable object

```
relevant_class(AirPassengers)
x <- ts_df(AirPassengers)</pre>
relevant_class(x)
```

tsbox-defunct 5

tsbox-defunct

Start and end of time series

Description

In data frame objects (data.frame, tibble, data.table), tsbox automatically detects the time and the value column. This function changes the column names to the defaults (time, value), so that auto-detection can be avoided in future operations.

Usage

```
ts_start(x)
ts_end(x)
```

Arguments

Χ

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Examples

```
df <- ts_df(ts_c(mdeaths, fdeaths))
# non-default colnames
colnames(df) <- c("id", "date", "count")
# switch back to default colnames
ts_default(df)</pre>
```

ts_

Constructing ts-Functions

Description

ts_ turns an existing function into a function that can deal with ts-boxable time series objects.

```
load_suggested(pkg)

ts_(fun, class = "ts", vectorize = FALSE, reclass = TRUE)

ts_apply(x, fun, ...)
```

6 ts_

Arguments

pkg	external package, to be suggested (automatically added by ts_) predict(). (See examples)
fun	function, to be made available to all time series classes
class	class that the function uses as its first argument
vectorize	should the function be vectorized? (not yet implemented)
reclass	logical, should the new function return the same same ts-boxable output as imputed?
x	ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.
	arguments passed to subfunction

Details

The ts_ function is a constructor function for tsbox time series functions. It can be used to wrap any function that works with time series. The default is set to R base "ts" class. ts_ deals with the conversion stuff, 'vectorizes' the function so that it can be used with multiple time series.

Value

A function that accepts ts-boxable time series as an input.

See Also

ts_examples, for a few useful examples of functions generated by ts_.

Vignette on how to make arbitrary functions ts-boxable.

```
ts_(rowSums)(ts_c(mdeaths, fdeaths))
ts_plot(mean = ts_(rowMeans)(ts_c(mdeaths, fdeaths)), mdeaths, fdeaths)
ts_(function(x) predict(prcomp(x)))(ts_c(mdeaths, fdeaths))
ts_(function(x) predict(prcomp(x, scale = TRUE)))(ts_c(mdeaths, fdeaths))
ts_(dygraphs::dygraph, class = "xts")

# attach series to serach path
ts_attach <- ts_(attach, class = "tslist", reclass = FALSE)
ts_attach(EuStockMarkets)
ts_plot(DAX, SMI)
detach()</pre>
```

ts_arithmetic 7

ts_arithmetic

Arithmetic Operators for ts-boxable objects

Description

Arithmetic Operators for ts-boxable objects

Usage

```
e1 %ts+% e2
```

e1 %ts-% e2

e1 %ts*% e2

e1 %ts/% e2

Arguments

e1	ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame,
	<pre>data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.</pre>
e2	ts-hoxable time series an object of class to xts zoo zooreg data frame

data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Value

a ts-boxable time series, with the same class as the left input.

Examples

```
head(fdeaths - mdeaths)
head(fdeaths %ts-% mdeaths)
head(ts_df(fdeaths) %ts-% mdeaths)
```

ts_bind

Bind Time Series

Description

Combine time series to a new, single time series. ts_bind combines time series as they are, ts_chain chains them together, using percentage change rates.

```
ts_bind(...)
ts_chain(...)
```

8 ts_boxable

Arguments

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Details

In data frame objects, multiple time series are stored in a long data frame. In ts and xts objects, time series are combined horizontally.

Value

a ts-boxable object of the same class as the input, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries. If series of different classes are combined, the class of the first series is used (if possible).

See Also

ts_c to collect multiple time series

Examples

```
ts_bind(ts_span(mdeaths, end = "1975-12-01"), fdeaths)
ts_bind(mdeaths, c(2, 2))
ts_bind(mdeaths, 3, ts_bind(fdeaths, c(99, 2)))
ts_bind(ts_dt(mdeaths), AirPassengers)

# numeric vectors
ts_bind(12, AirPassengers, c(2, 3))
ts_chain(ts_span(mdeaths, end = "1975-12-01"), fdeaths)

ts_plot(ts_pc(ts_c(
    comb = ts_chain(ts_span(mdeaths, end = "1975-12-01"), fdeaths),
    fdeaths
)))
```

ts_boxable

Test if an Object is ts-Boxable

Description

Mainly used internally.

```
ts_boxable(x)
check_ts_boxable(x)
```

ts_c 9

Arguments

Х

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Value

logical, either TRUE or FALSE. check_ts_boxable() fails if not TRUE

Examples

```
ts_boxable(AirPassengers)
ts_boxable(lm)
```

ts_c

Collect Time Series

Description

Collect time series as multiple time series.

Usage

```
ts_c(...)
```

Arguments

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Details

In data frame objects, multiple time series are stored in a long data frame. In ts and xts objects, time series are combined horizontally.

Value

a ts-boxable object of the same class as the input, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries. If series of different classes are combined, the class of the first series is used (if possible).

See Also

ts_bind, to bind multiple time series to a single series.

10 ts_default

Examples

ts_default

Default Column Names

Description

In data frame objects (data.frame, tibble, data.table), tsbox automatically detects the time and the value column. This function changes the column names to the defaults (time, value), so that auto-detection can be avoided in future operations.

Usage

```
ts_default(x)
```

Arguments

Х

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

```
df <- ts_df(ts_c(mdeaths, fdeaths))
# non-default colnames
colnames(df) <- c("id", "date", "count")
# switch back to default colnames
ts_default(df)</pre>
```

ts_dts

ts_dts

Internal Time Series Class

Description

In data frame objects (data.frame, tibble, data.table), tsbox automatically detects the time and the value column. This function changes the column names to the defaults (time, value), so that auto-detection can be avoided in future operations.

Usage

```
ts_dts(x)
```

Arguments

Х

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Examples

```
df <- ts_df(ts_c(mdeaths, fdeaths))
# non-default colnames
colnames(df) <- c("id", "date", "count")
# switch back to default colnames
ts_default(df)</pre>
```

ts_examples

Principal Components, Dygraphs, Forecasts, Seasonal Adjustment

Description

Example Functions, Generated by ts_. ts_prcomp calculates the principal components of multiple time series, ts_dygraphs generates an interactive graphical visualization, ts_forecast return an univariate forecast, ts_seas the seasonally adjusted series. ts_na_interpolation imputes missing values.

ts_examples

Usage

```
ts_prcomp(x, ...)
ts_dygraphs(x, ...)
ts_forecast(x, ...)
ts_seas(x, ...)
ts_na_interpolation(x, ...)
```

Arguments

x ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

... further arguments, passed to the underlying function. For help, consider these functions, e.g., stats::prcomp.

Details

With the exception of ts_prcomp, these functions depend on external packages.

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

See Also

Vignette on how to make arbitrary functions ts-boxable.

```
ts_plot(
  ts_scale(ts_c(
    Male = mdeaths,
    Female = fdeaths,
    `First principal compenent` = -ts_prcomp(ts_c(mdeaths, fdeaths))[, 1]
)),
  title = "Deaths from lung diseases",
  subtitle = "Normalized values"
)

ts_plot(ts_c(
    male = mdeaths, female = fdeaths,
    ts_forecast(ts_c(`male (fct)` = mdeaths, `female (fct)` = fdeaths))
),
  title = "Deaths from lung diseases",
  subtitle = "Exponential smoothing forecast"
)
```

ts_first_of_period 13

ts_first_of_period

Use First Date of a Period

Description

Replace date or time values by the first of the period. tsbox usually relies on timestamps being the first value of a period.

Usage

```
ts_first_of_period(x)
```

Arguments

Х

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

```
x <- ts_c(
    a = ts_lag(ts_df(mdeaths), "14 days"),
    b = ts_lag(ts_df(mdeaths), "-2 days")
)
ts_first_of_period(x)
ts_first_of_period(ts_lag(ts_df(austres), "14 days"))</pre>
```

ts_frequency

ts_frequency

Change Frequency

Description

Changes the frequency of a time series. By default, incomplete periods of regular series are omitted.

Usage

```
ts_frequency(
    x,
    to = c("year", "quarter", "month", "week", "day", "hour", "min", "sec"),
    aggregate = "mean",
    na.rm = FALSE
)
```

Arguments

X	ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.
to	desired frequency, either a character string ("year", "quarter", "month") or an integer (1, 4, 12).
aggregate	character string, or function. Either "mean", "sum", "first", or "last", or any aggregate function, such as base::mean().
na.rm	logical, if TRUE, incomplete periods are aggregated as well. For irregular series, incomplete periods are always aggregated.

Details

The tempdisagg package can convert low frequency to high frequency data and has support for ts-boxable objects. See vignette("hf-disagg", package = "tempdisagg").

Value

a ts-boxable time series, with the same class as the input.

```
ts_frequency(cbind(mdeaths, fdeaths), "year", "sum")
ts_frequency(cbind(mdeaths, fdeaths), "quarter", "last")
ts_frequency(AirPassengers, 4, "sum")

# Note that incomplete years are omited by default
ts_frequency(EuStockMarkets, "year")
ts_frequency(EuStockMarkets, "year", na.rm = TRUE)
```

ts_ggplot 15

ts_ggplot

Plot Time Series, Using ggplot2

Description

ts_ggplot() has the same syntax and produces a similar plot as ts_plot(), but uses the ggplot2 graphic system, and can be customized. With theme_tsbox() and scale_color_tsbox(), the output of ts_ggplot has a similar look and feel.

Usage

```
ts_ggplot(..., title, subtitle, ylab = "")
theme_tsbox(base_family = getOption("ts_font", ""), base_size = 12)
colors_tsbox()
scale_color_tsbox(...)
scale_fill_tsbox(...)
```

Arguments

```
ts-boxable time series, objects of class ts, xts, data.frame, data.table, or tibble. For scale_functions, arguments passed to subfunctions.

title title (optional)

subtitle subtitle (optional)

ylab ylab (optional)

base_family base font family (can also be set via options)

base_size base font size
```

Details

Both ts_plot() and ts_ggplot() combine multiple ID dimensions into a single dimension. To plot multiple dimensions in different shapes, facets, etc., use standard ggplot (see examples).

See Also

ts_plot(), for a simpler and faster plotting function. ts_dygraphs(), for interactive time series plots.

ts_index

Examples

```
# using the ggplot2 graphic system
p <- ts_ggplot(total = ldeaths, female = fdeaths, male = mdeaths)</pre>
# with themes for the look and feel of ts_plot()
p + theme_tsbox() + scale_color_tsbox()
# also use themes with standard ggplot
suppressMessages(library(ggplot2))
df <- ts_df(ts_c(total = ldeaths, female = fdeaths, male = mdeaths))</pre>
ggplot(df, aes(x = time, y = value)) +
 facet_wrap("id") +
 geom_line() +
 theme_tsbox() +
 scale_color_tsbox()
## Not run:
library(dataseries)
dta <- ds(c("GDP.PBRTT.A.R", "CCI.CCIIR"), "xts")</pre>
ts_ggplot(ts_scale(ts_span(
 ts_c(
    `GDP Growth` = ts_pc(dta[, "GDP.PBRTT.A.R"]),
    `Consumer Sentiment Index` = dta[, "CCI.CCIIR"]
 ),
 start = "1995-01-01"
))) +
 ggplot2::ggtitle("GDP and Consumer Sentiment", subtitle = "normalized") +
 theme_tsbox() +
 scale_color_tsbox()
## End(Not run)
```

ts_index

Indices from Levels or Percentage Rates

Description

ts_index returns an indexed series, with value of 1 at the base date or range. ts_compound builds an index from percentage change rates, starting with 1 and compounding the rates.

```
ts_compound(x, denominator = 100)
ts_index(x, base = NULL)
```

ts_lag

Arguments

x ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

denominator positive number. Set equal to 1 if percentage change rate is given a decimal

fraction

base date, character string, Date or POSIXct, at which the index is set to 1. If

two dates are provided, the mean in the range is set equal to 1 (see examples).

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Examples

ts_lag

Lag or Lead of Time Series

Description

Shift time stamps in ts-boxable time series, either by a number of periods or by a fixed amount of time.

```
ts_{lag}(x, by = 1)
```

18 ts_long

Arguments

X	ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.
by	integer or character, either the number of shifting periods (integer), or an absolute amount of time (character). See details.

Details

The lag order, by, is defined the opposite way as in R base. Thus, -1 is a lead and +1 a lag.

If by is integer, the time stamp is shifted by the number of periods. This requires the series to be regular.

If by is character, the time stamp is shifted by a specific amount of time. This can be one of one of "sec", "min", "hour", "day", "week", "month", "quarter" or "year", optionally preceded by a (positive or negative) integer and a space, or followed by plural "s". This is passed to base::seq.Date(). This does not require the series to be regular.

Value

```
a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.
```

Examples

```
ts_plot(AirPassengers, ts_lag(AirPassengers), title = "The need for glasses")
ts_lag(fdeaths, "1 month")
ts_lag(fdeaths, "1 year")
x <- ts_df(fdeaths)
ts_lag(x, "2 day")
ts_lag(x, "2 min")
ts_lag(x, "-1 day")</pre>
```

ts_long

Reshaping Multiple Time Series

Description

Functions to reshape multiple time series from 'wide' to 'long' and vice versa. Note that long format data frames are ts-boxable objects, where wide format data frames are not. ts_long automatically identifies a **time** column, and uses columns on the left as id columns.

```
ts_long(x)
ts_wide(x)
```

ts_na_omit 19

Arguments

x a ts-boxable time series, or a wide data.frame, data.table, or tibble.

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Examples

```
x <- ts_df(ts_c(mdeaths, fdeaths))
df.wide <- ts_wide(x)
df.wide
ts_long(df.wide)</pre>
```

ts_na_omit

Omit NA values

Description

Remove NA values in ts-boxable objects, turning explicit into implicit missing values.

Usage

```
ts_na_omit(x)
```

Arguments

Х

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Details

Note that internal NAs in ts time series will not be removed, as this conflicts with the regular structure.

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

See Also

ts_regular, for the opposite, turning implicit into explicit missing values.

20 ts_pc

Examples

```
x <- AirPassengers
x[c(2, 4)] <- NA

# A ts object does only know explicit NAs
ts_na_omit(x)

# by default, NAs are implicit in data frames
ts_df(x)

# make NAs explicit
ts_regular(ts_df(x))

# and implicit again
ts_na_omit(ts_regular(ts_df(x)))</pre>
```

ts_pc

First Differences and Percentage Change Rates

Description

ts_pcy and ts_diffy calculate the percentage change rate and the difference compared to the previous period, ts_pcy and ts_diffy calculate the percentage change rate compared to the same period of the previous year. ts_pca calculates annualized percentage change rates compared to the previous period.

Usage

```
ts_pc(x)
ts_diff(x)
ts_pca(x)
ts_pcy(x)
ts_diffy(x)
```

Arguments

Х

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

ts_pick 21

Examples

```
x <- ts_c(fdeaths, mdeaths)
ts_diff(x)
ts_pc(x)
ts_pca(x)
ts_pcy(x)
ts_diffy(x)</pre>
```

ts_pick

Pick Series (Experimental)

Description

Pick (and optionally rename) series from multiple time series.

Usage

```
ts_pick(x, ...)
```

Arguments

x ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

... character string(s), names of the series to be picked, or integer, with positions. If arguments are named, the series will be renamed.

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

```
# Interactive use

ts_plot(ts_pick(
    EuStockMarkets,
    `My Dax` = "DAX",
    `My Smi` = "SMI"
))

ts_pick(EuStockMarkets, c(1, 2))
ts_pick(EuStockMarkets, `My Dax` = "DAX", `My Smi` = "SMI")

# Programming use
to.be.picked.and.renamed <- c(`My Dax` = "DAX", `My Smi` = "SMI")

ts_pick(EuStockMarkets, to.be.picked.and.renamed)</pre>
```

22 ts_plot

ts_plot

Plot Time Series

Description

ts_plot() is a fast and simple plotting function for ts-boxable time series, with limited customizability. For more theme options, use ts_ggplot().

Usage

```
ts_plot(..., title, subtitle, ylab = "", family = getOption("ts_font", "sans"))
```

Arguments

Details

Both ts_plot() and ts_ggplot() combine multiple ID dimensions into a single dimension. To plot multiple dimensions in different shapes, facets, etc., use standard ggplot.

Limited customizability of ts_plot is available via options. See examples.

See Also

ts_ggplot(), for a plotting function based on ggplot2. ts_dygraphs(), for interactive time series plots. ts_save() to save a plot to the file system.

```
ts_plot(
   AirPassengers,
   title = "Airline passengers",
   subtitle = "The classic Box & Jenkins airline data"
)

# naming arguments
ts_plot(total = ldeaths, female = fdeaths, male = mdeaths)

# using different ts-boxable objects
ts_plot(ts_scale(ts_c(
   ts_xts(airmiles),
   ts_tbl(co2),
```

ts_regular 23

```
JohnsonJohnson,
  ts_df(discoveries)
)))

# customize ts_plot
op <- options(
  tsbox.lwd = 3,
  tsbox.col = c("gray51", "gray11"),
  tsbox.lty = "dashed"
)
ts_plot(
  "Female" = fdeaths,
  "Male" = mdeaths
)
options(op) # restore defaults</pre>
```

ts_regular

Enforce Regularity

Description

Enforces regularity in data frame and xts objects, by turning implicit NAs into explicit NAs. In ts objects, regularity is automatically enforced.

Usage

```
ts_regular(x, fill = NA)
```

Arguments

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.
 numeric, instead of NA, an alternative value can be specified. E.g., 0, -99.

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

```
x0 <- AirPassengers
x0[c(10, 15)] <- NA
x <- ts_na_omit(ts_dts(x0))
ts_regular(x)
ts_regular(x, fill = 0)
m <- mdeaths</pre>
```

ts_save

```
m[c(10, 69)] <- NA
f <- fdeaths
f[c(1, 3, 15)] <- NA

ts_regular(ts_na_omit(ts_dts(ts_c(f, m))))</pre>
```

ts_save

Save Previous Plot

Description

Save Previous Plot

Usage

```
ts_save(
  filename = tempfile(fileext = ".pdf"),
  width = 10,
  height = 5,
  device = NULL,
  open = TRUE
)
```

Arguments

```
filename filename
width width
height height
device device
open logical, should the saved plot be opened?
```

Value

invisible TRUE, if successful

```
ts_plot(AirPassengers)
tf <- tempfile(fileext = ".pdf")
ts_save(tf)
unlink(tf)</pre>
```

ts_scale 25

ts_scale

Scale and Center Time Series

Description

Subtract mean (sum(x)/n) and divide by standard deviation $(sqrt(sum(x^2)/(n-1)))$. Based on base::scale().

Usage

```
ts_scale(x, center = TRUE, scale = TRUE)
```

Arguments

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

Examples

```
ts_plot(ts_scale((ts_c(airmiles, co2, JohnsonJohnson, discoveries))))
ts_plot(ts_scale(ts_c(AirPassengers, DAX = EuStockMarkets[, "DAX"])))
```

ts_span

Limit Time Span

Description

Filter time series for a time span.

```
ts_span(x, start = NULL, end = NULL, template = NULL, extend = FALSE)
```

26 ts_span

Arguments

X	ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.
start	start date, character string of length 1, Date or POSIXct
end	end date, character string of length 1, Date or POSIXct.
template	ts-boxable time series, an object of class ts, xts, data.frame, data.table, or tibble. If provided, from and to will be extracted from the object.
extend	logical. If true, the start and end values are allowed to extend the series (by adding NA values).

Details

All date and times, when entered as character strings, are processed by anytime::anydate() or anytime::anytime(). Thus a wide range of inputs are possible. See examples.

start and end can be specified relative to each other, using one of "sec", "min", "hour", "day", "week", "month", "quarter" or "year", or an abbreviation. If the series are of the same frequency, the shift can be specified in periods. See examples.

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

```
# use 'anytime' shortcuts
ts_span(mdeaths, start = "1979")
                                   # shortcut for 1979-01-01
ts_span(mdeaths, start = "1979-4")  # shortcut for 1979-04-01
ts_span(mdeaths, start = "197904")  # shortcut for 1979-04-01
# it's fine to use an to date outside of series span
ts_span(mdeaths, end = "2001-01-01")
# use strings to set start or end relative to each other
ts_span(mdeaths, start = "-7 month")  # last 7 months
ts_span(mdeaths, end = "1e4 hours") # first 10000 hours
ts_plot(
 ts_span(mdeaths, start = "-3 years"),
 title = "Three years ago",
 subtitle = "The last three years of available data"
)
ts_ggplot(
 ts_span(mdeaths, end = "28 weeks"),
```

ts_summary 27

```
title = "28 weeks later",
  subtitle = "The first 28 weeks of available data"
) + theme_tsbox() + scale_color_tsbox()

# Limit span of 'discoveries' to the same span as 'AirPassengers'
ts_span(discoveries, template = AirPassengers)
ts_span(mdeaths, end = "19801201", extend = TRUE)
```

ts_summary

Time Series Properties

Description

Extract time series properties, such as the number of observations (obs), the time differences between observations (obs), the number of observations per year (freq), and the start time stamp (start) and the end time stamp (end) of the series.

Usage

```
ts\_summary(x, spark = FALSE)
```

Arguments

x ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

spark logical should an additional column with a spark-line added to the data frame (experimental, ASCII only on Windows.)

Value

ts_summary returns a data. frame. Individual column can be accessed through the \$ notation (see examples).

```
ts_summary(ts_c(mdeaths, austres))
ts_summary(ts_c(mdeaths, austres), spark = TRUE)
# Extracting specific properties
ts_summary(AirPassengers)$start
ts_summary(AirPassengers)$freq
ts_summary(AirPassengers)$obs
```

28 ts_trend

ts_trend

Loess Trend Estimation

Description

Trend estimation that uses stats::loess().

Usage

```
ts_trend(x, ...)
```

Arguments

x ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

... arguments, passed to stats::loess():

- degree degree of Loess smoothing
- span smoothing parameter, if NULL, an automated search performed (see Details)

Value

a ts-boxable object of the same class as x, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

References

Cleveland, William S., Eric Grosse, and William M. Shyu. "Local regression models." Statistical models in S. Routledge, 2017. 309-376.

ts_ts 29

 ts_ts

Convert Everything to Everything

Description

tsbox is built around a set of converters, which convert time series stored as ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries to each other.

Usage

```
ts_data.frame(x)
ts_df(x)
ts_data.table(x)
ts_dt(x)
ts_tbl(x)
ts_tibbletime(x)
ts_timeSeries(x)
ts_tis(x)
ts_ts(x)
ts_irts(x)
ts_tsibble(x)
ts_tslist(x)
ts_xts(x)
ts_zts(x)
```

Arguments

Х

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

30 ts_ts

Details

In data frames, multiple time series will be stored in a 'long' format. tsbox detects a *value*, a *time* and zero to several *id* columns. Column detection is done in the following order:

- 1. Starting on the right, the first first numeric or integer column is used as value column.
- 2. Using the remaining columns, and starting on the right again, the first Date, POSIXct, numeric or character column is used as **time column**. character strings are parsed by anytime::anytime(). The time stamp, time, indicates the beginning of a period.
- 3. **All remaining** columns are **id columns**. Each unique combination of id columns points to a time series.

Alternatively, the **time** column and the **value** column to be explicitly named as time and value. If explicit names are used, the column order will be ignored.

Whenever possible, tsbox relies on **heuristic time conversion**. When a monthly "ts" time series, e.g., AirPassengers, is converted to a data frame, each time stamp (of class "Date") is the first day of the month. In most circumstances, this reflects the actual meaning of the data stored in a "ts" object. Technically, of course, this is not correct: "ts" objects divide time in period of equal length, while in reality, February is shorter than January. Heuristic conversion is done for frequencies of 0.1 (decades), 1 (years), 4 (quarters) and 12 (month).

For other frequencies, e.g. 260, of EuStockMarkets, tsbox uses **exact time conversion**. The year is divided into 260 equally long units, and time stamp of a period will be a point in time (of class "POSIXct").

Value

ts-boxable time series of the desired class, i.e., an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

```
x.ts <- ts_c(mdeaths, fdeaths)
x.ts
ts_df(x.ts)
suppressMessages(library(dplyr))
ts_tbl(x.ts)
suppressMessages(library(data.table))
ts_dt(x.ts)
suppressMessages(library(xts))
ts_xts(x.ts)
# heuristic time conversion
# 1 month: approx. 1/12 year
ts_df(AirPassengers)
# exact time conversion
# 1 trading day: exactly 1/260 year</pre>
```

ts_ts 31

```
ts_df(EuStockMarkets)

# multiple ids
a <- ts_df(ts_c(fdeaths, mdeaths))
a$type <- "level"
b <- ts_pc(a)
b$type <- "pc"
multi.id.df <- rbind(a, b)

ts_ts(multi.id.df)
ts_plot(multi.id.df)</pre>
```

Index

<pre>* package tsbox-package, 2 %ts*%(ts_arithmetic), 7 %ts+%(ts_arithmetic), 7</pre>	ts_diff(ts_pc), 20 ts_diffy(ts_pc), 20 ts_dt(ts_ts), 29
%ts-%(ts_arithmetic), 7 %ts-%(ts_arithmetic), 7 %ts/%(ts_arithmetic), 7	ts_dts, 11 ts_dygraphs (ts_examples), 11 ts_dygraphs(), 15, 22
anytime::anytime(), 30	<pre>ts_end (tsbox-defunct), 5 ts_examples, 6, 11 ts_first_of_period, 13</pre>
<pre>base::mean(), 14 base::scale(), 25 base::seq.Date(), 18</pre>	<pre>ts_forecast (ts_examples), 11 ts_frequency, 14 ts_ggplot, 15</pre>
<pre>check_ts_boxable(ts_boxable), 8 colors_tsbox(ts_ggplot), 15 copy_class, 3</pre>	<pre>ts_ggplot(), 22 ts_index, 16 ts_irts (ts_ts), 29 ts_lag, 17</pre>
<pre>load_suggested(ts_), 5</pre>	ts_long, 18 ts_na_interpolation (ts_examples), 11
relevant_class, 4	ts_na_omit, 19 ts_pc, 20
<pre>scale_color_tsbox (ts_ggplot), 15 scale_color_tsbox(), 15 scale_fill_tsbox (ts_ggplot), 15 stats::loess(), 28 stats::prcomp, 12</pre>	ts_pca (ts_pc), 20 ts_pcy (ts_pc), 20 ts_pick, 21 ts_plot, 22 ts_plot(), 15
theme_tsbox (ts_ggplot), 15 theme_tsbox(), 15 ts_, 5, 11 ts_apply (ts_), 5 ts_arithmetic, 7 ts_bind, 7, 9 ts_boxable, 8 ts_c, 8, 9 ts_chain (ts_bind), 7 ts_compound (ts_index), 16 ts_data. frame (ts_ts), 29 ts_data. table (ts_ts), 29 ts_default, 10 ts_df (ts_ts), 29	ts_prcomp (ts_examples), 11 ts_regular, 19, 23 ts_save, 24 ts_save(), 22 ts_scale, 25 ts_seas (ts_examples), 11 ts_span, 25 ts_start (tsbox-defunct), 5 ts_summary, 27 ts_tbl (ts_ts), 29 ts_tibbletime (ts_ts), 29 ts_timeSeries (ts_ts), 29 ts_tis (ts_ts), 29 ts_trend, 28

INDEX 33

```
ts_ts, 29
ts_tsibble (ts_ts), 29
ts_tslist (ts_ts), 29
ts_wide (ts_long), 18
ts_xts (ts_ts), 29
ts_zoo (ts_ts), 29
ts_zooreg (ts_ts), 29
tsbox (tsbox-package), 2
tsbox-defunct, 5
tsbox-package, 2
```