Course Content- DSA 8302 Computational Techniques in Data Science

Week	Topics	Content
		Stochastic programming, Role of Uncertainty
	Introduction to Stochastic Programs	in Decision-Making Models, Applications in
	introduction to Stochastic Frograms	Finance, Logistics, and Healthcare. PYTHON
Week 1		(numpy and cvxpy packages)
		Definition of random walk, 1D & 2D Random
		Walks PYTHON (numpy and matplotlib.pyplot
Week 2	Introduction to Random Walks	packages)
		Optimizing a linear objective function with
	Introduction to Linear Optimization	constraints. Python Implementation: Using
Week 3	Problems	scipy.optimize.linprog
		Graph Representation: Adjacency
		Matrix/List. Applications : Social networks,
	Introduction to Graph-theoretic	road maps, shortest paths. Python
Week 4	Models	Implementation: Using networkx
		Stochastic vs Deterministic Models. Real-life
		Examples: Queueing systems, stock price
		modeling. Python Example: Simulating
Week 5	Introduction to Stochastic Thinking	stochastic demand in a warehouse
		Examples: Production scheduling,
	Simple applications in solving linear	Transportation problems. Python Example:
Week 6	problems	Transportation problem using pulp
	Programming: Fibonacci Numbers,	
	Longest Increasing Subsequence,	Different aspects of Fibonacci Sequence.
Week 7	Knapsack Problem	Knapsack Problem (Dynamic Programming)
		A method for efficiency measurement
Week 8	DEA (Data Envelopment Analysis)	Python Implementation: Using pyDEA
	Monte Carlo Simulation in Data	Repeated random sampling for approximating
Week 9	Science	distributions. Estimating Pi
		Convex Optimization Concepts
		Algorithms: Gradient Descent, Simplex
	Formulation, Geometry &	Python Example: Simplex Method with
Week 10	Algorithms	scipy.optimize
		Mathematical Form:
		Maximize/Minimize: c^T x
	Defining Linear Programming	Subject to: $Ax \le b, x \ge 0$
Week 11	problems	Python Example: Using pulp
	Introduction to Integer Linear	LP where variables are restricted to integer
Week 12	Programming (IP)	values. Python Example: Using pulp
		Shortest Path Problem. Inventory Management.
		Python Example: Solving Shortest Path
Week 13	Optimization Problems, Dynamic	Problem with Dijkstra's Algorithm