

Listado 2: Cuerpo, espacio vectorial, subespacio vectorial. Solución de problemas seleccionados.

Los problemas marcados con (P) fueron resueltos en práctica.

Cuerpos

1. (P) Analice si \mathbb{R} con las operaciones suma (Δ) y producto (*) siguientes

es un cuerpo.

Solución: Resuelto en práctica.

2. Si \mathbb{K} es un cuerpo, diremos que un subconjunto \mathbb{F} de \mathbb{K} es un subcuerpo de \mathbb{K} si:

- ullet 0 y 1 (neutros para la suma y el producto en $\mathbb K$) están en $\mathbb F$ y
- dados x e y, dos elementos de \mathbb{F} , entonces x+y,-x,xy y x^{-1} (si $x\neq 0$) también están en \mathbb{F} .

Demuestre que si $\mathbb F$ es un subcuerpo, entonces es un cuerpo.

Solución: Resuelto en archivo Listado2_SolProblemasSeleccionados.pdf.

3. Sea \mathbb{F} un subcuerpo cualesquiera de \mathbb{C} .

- (a) Justifique por qué $2 \in \mathbb{F}$.
- (b) Demuestre que \mathbb{F} contiene a todos los números enteros.
- (c) Demuestre que para cualquier número racional $\frac{m}{n}$ se cumple que $\frac{m}{n}$ es elemento de \mathbb{F} .

Solución: Resuelto en archivo Listado2_SolProblemasSeleccionados.pdf.

Espacios vectoriales

1. Analice si \mathbb{R}^2 con la suma usual entre elementos de \mathbb{R}^2 y el siguiente producto por un escalar real

$$\alpha \odot (a, b)^{\mathrm{T}} = (\alpha^2 a, \alpha^2 b)^{\mathrm{T}}$$

es un espacio vectorial sobre \mathbb{R} .

2. (P) Decida si \mathbb{R}^+ , con las operaciones de suma \oplus y producto \odot por escalar (real) siguientes

$$\forall x, y \in \mathbb{R}^+ : x \oplus y = x \cdot y, \qquad \forall x \in \mathbb{R}^+, \forall \alpha \in \mathbb{R} : \alpha \odot x = x^{\alpha}.$$

es un espacio vectorial real.

Si lo es, compruebe que

$$\forall u \in \mathbb{R}^+ : 0 \odot u = \theta \quad \text{y} \quad (-u) = (-1) \odot u,$$

si θ denota al vector nulo de $(\mathbb{R}^+, \oplus, \odot)$ y -u es el inverso aditivo de un vector $u \in \mathbb{R}^+$.

Solución: Resuelto en práctica.

3. Para cada par de vectores $(a,b)^{\mathrm{T}}, (x,y)^{\mathrm{T}} \in \mathbb{R}^2$ y cada $\alpha \in \mathbb{R}$ se definen las operaciones

$$(x,y)^{\mathrm{T}} \oplus (a,b)^{\mathrm{T}} = (x+a,y+b)^{\mathrm{T}}$$

 $\alpha \odot (x,y)^{\mathrm{T}} = (\alpha x,y)^{\mathrm{T}}$

Analice si $(\mathbb{R}^2, \oplus, \odot)$ es un \mathbb{R} -espacio vectorial.

Solución: Resuelto en archivo Listado2_SolProblemasSeleccionados.pdf.

4. Para cada par de vectores $(a,b)^{\mathrm{T}},(x,y)^{\mathrm{T}}\in\mathbb{C}^2$ y cada $\alpha\in\mathbb{C}$ se definen las operaciones

$$(x,y)^{\mathrm{T}} \oplus (a,b)^{\mathrm{T}} = (x+a,y+b)^{\mathrm{T}}$$

 $\alpha \odot (x,y)^{\mathrm{T}} = (\alpha x,0)^{\mathrm{T}}$

Analice si $(\mathbb{C}^2, \oplus, \odot)$ es un \mathbb{C} -espacio vectorial.

Subespacios vectoriales

1. En cada uno de los casos siguientes el conjunto V es un e.v. sobre el cuerpo \mathbb{K} , con las operaciones usuales de suma de elementos de V y producto de un elemento de V por un escalar en \mathbb{K} .

Por cada conjunto V se han definido uno o dos subconjuntos de V.

Encuentre en cada caso tres elementos de V que pertenezcan a los subconjuntos dados. Determine cuáles de esos subconjuntos son espacios vectoriales sobre el cuerpo \mathbb{K} especificado, con las mismas operaciones de suma y producto por escalar definidas en V.

(a)
$$V = \mathcal{F}((0,1), \mathbb{R}), \mathbb{K} = \mathbb{R},$$

$$\mathcal{A} = \left\{ f \in \mathcal{F}((0,1), \mathbb{R}) : \int_0^1 f(x) dx = 0 \right\}.$$

(b)
$$V = \mathbb{R}^3$$
, $\mathbb{K} = \mathbb{R}$,

■
$$\mathcal{B} = \{(x, y, z)^{\mathrm{T}} \in V : xyz \ge 0\},$$
■ $\mathcal{C} = \{(x, y, z)^{\mathrm{T}} \in V : x - yz = 0\}.$

(c)
$$V = \mathbb{C}^2$$
, $\mathbb{K} = \mathbb{C}$,

• (P)
$$\mathcal{D}_1 = \{(x,y)^T \in V : \overline{y} = i \operatorname{Im}(x)\}, \quad \bullet \quad \mathcal{E}_1 = \{(x,y)^T \in V : x + iy = 0\}.$$

(d)
$$V = \mathbb{C}^2$$
, $\mathbb{K} = \mathbb{R}$,

(e)
$$V = \mathcal{P}_3(\mathbb{R}), \mathbb{K} = \mathbb{R},$$

•
$$\mathcal{F} = \{ p \in V : p(1) + p(-1) = 0 \},$$

• (P)
$$\mathcal{G} = \{(a+1)x^2 + b(x+1) \in V : a, b \in \mathbb{R}\}.$$

(f)
$$V = \mathcal{F}(\mathbb{R}, \mathbb{R}), \mathbb{K} = \mathbb{R},$$

•
$$\mathcal{H} = \{ f \in V : f \text{ es sobreyectiva} \},$$
 • $\mathcal{I} = \{ f \in V : f \text{ es par} \}.$

(g)
$$V = \mathbb{R}^n$$
, $\mathbb{K} = \mathbb{R}$, $n \in \mathbb{N}$,

$$\bullet (\mathbf{P}) \ \mathcal{K} = \left\{ \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} \in V : z_1 = z_n \right\}.$$

Observación:

$$\mathcal{F}((0,1),\mathbb{R}) = \{ f : (0,1) \to \mathbb{R} : f \text{ es función} \}, \quad \mathcal{F}(\mathbb{R},\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} : f \text{ es función} \}.$$

Solución:

- A: Sí,
- *B*: No,
- C: No.
- \mathcal{D}_1 : No (en práctica),
- \mathcal{E}_1 : Sí,
- \bullet \mathcal{D}_2 : Sí,
- \mathcal{E}_2 : Sí,

- F: Sí,
- \mathcal{G} : Sí (en práctica),
- \blacksquare \mathcal{H} : No,
- *I*: Sí,
- .7: Sí,
- K: Sí (en práctica).
- 2. Dé un ejemplo de un subconjunto de \mathbb{R}^2 que sea cerrado para la suma, pero que no sea cerrado para la ponderación por números reales.

- 3. Dé un ejemplo de un subconjunto de \mathbb{R}^2 que sea cerrado para la ponderación por números reales, pero que no sea cerrado para la suma.
- 4. Justifique por qué, si bien el conjunto vacío \emptyset es subconjunto de V, no puede ser subespacio de V.
- 5. Sean V un K-e.v y U, un s.e.v. de V. Muestre que para todo escalar $\alpha \neq 0$, el conjunto

$$\alpha U := \{\alpha \cdot u : u \in U\}$$

es igual a U.

Observación: Veamos algunos casos particulares de la demostración anterior (que debemos hacer para un \mathbb{K} -e.v. V cualquiera y un s.e.v. cualquiera de V):

• Tomemos $V = \mathbb{R}^2$, $\mathbb{K} = \mathbb{R}$ y

$$U = \left\{ P \in \mathbb{R}^2 : \vec{OP} = \lambda \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}.$$

U está formado por los pares ordenados (puntos) de \mathbb{R}^2 que están en la recta con centro en el origen y vector director $\vec{r} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Veamos por qué $2U=\{2P:P\in U\}$ es igual a U. Primero imagínalo gráficamente. Dibuja el conjunto U.

Denotemos por O al origen de coordenadas. Toma un punto cualquiera P=(x,y) en U. Nota que P está en U si y solo si \vec{OP} es paralelo a \vec{r} o \vec{OP} es el vector nulo. Esto ocurre si y solo si el vector desde el origen a 2P=(2x,2y) es paralelo a \vec{r} o es el vector nulo. Es decir, P está en U si y solo si 2P está en U, lo que demuestra que U=2U.

Veamos ahora un ejemplo que no podemos graficar.

 $V = \mathcal{P}_2(\mathbb{R}), \mathbb{K} = \mathbb{R},$

$$U = \left\{ ax^2 : a \in \mathbb{R} \right\}.$$

Entonces

$$2U = \{2p : p \in U\}.$$

Demostremos la igualdad entre estos conjuntos.

 $U\subseteq 2U$ porque si $p\in U$, entonces $p(x)=ax^2$ y $a\in\mathbb{R}$, pero $p(x)=ax^2=2\left(\frac{a}{2}x^2\right)$. El polinomio q tal que $q(x)=\frac{a}{2}x^2$ es elemento de U, por tanto, p=2q es elemento de 2U. $2U\subseteq U$ porque si $q\in 2U$, entonces q=2p con $p\in U$, es decir, q(x)=2p(x). Como $p\in U$, $p(x)=ax^2$ y $a\in\mathbb{R}$. Es decir, $q(x)=2(ax^2)=(2a)x^2$ y esta igualdad indica que $q\in U$.

 \bullet ¿Para qué seguir trabajando con espacios, subespacios particulares y $\alpha=2?$ ¡Hagamos la demostración del problema!