

[wk08]

Data Visualization

- plotly.js

Visualization of Signals using Arduino, Node.js & storing signals in MongoDB & mining data using Python

Drone-IoT-Comsi, INJE University

2nd semester, 2020

Email: chaos21c@gmail.com

NO DE ARDUINO

My ID

1분반-목요일 (2학년)

- AA1-01: 강서현
- AA1-02: 강태민
- AA1-03: 김세은
- AA1-04: 여수민
- AA1-05: 정영훈
- AA1-06: 차혁준
- AA1-07: 하태헌
- AA1-08: 김경욱
- AA1-09: 김민욱
- AA1-10: 김민성

- AA1-11: 김민준
- AA1-12: 김인수
- AA1-13: 김현식
- AA1-14: 장성운
- AA1-15: 전승진
- AA1-16: 정희철
- AA1-17: 조동현
- AA1-18: 전동빈
- AA1-19: 신종원

2분반-수요일 (3학년)

- AA2-01: 강민수
- AA2-11: 이정문
- AA2-02: 구병준
- AA2-12: 이주원
- AA2-03: 김종민
- AA2-13: 정재영
- AA2-04: 박성철
- AA2-14: 하태성
- AA2-05: 이승현
- AA2-15: 김경미
- AA2-06: 이창호
- AA2-16: 김규년
- AA2-07: 손성빈
- AA2-17: 김유빈
- AA2-08: 안예찬
- AA2-18: 송다은
- AA2-09: 유종인
- AA2-19: 정주은
- AA2-10: 이석민
- AA2-20: 권준표

[Review]

- ◆ [wk06]
- Arduino sensors + Node.js
- Complete your project
- Upload folder: aax-nn-rpt06
- Use repo "aax-nn" in github

wk06: Practice: AAnn_Rpt06

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

제출폴더명: aax-nn-rpt06

- 압축할 파일들
 - ① AAnn_cds_IOT_data.png
 - ② AAnn_cds_tmp36_serial.png
 - ③ AAnn_cds_tmp36_lcd.png
 - 4 AAnn_cds_tmp36_IOT.png
 - **5** AAnn_multi_signals_node.png
 - 6 All *.ino
 - 7 All *.js
 - **8** NO node modules folder

IOT: HSC

Layout [H S C]

Arduino data + plotly

Data visualization using plot.ly

Network socket emitting data

tmp36 + CdS circuit


```
AA00 2020-10-17 11:41:30.533 25.27,245
AA00 2020-10-17 11:41:31.535 25.27,243
AA00 2020-10-17 11:41:32.535 25.27,158
AA00 2020-10-17 11:41:33.534 24.29,40
AA00 2020-10-17 11:41:34.538 24.29,33
AA00 2020-10-17 11:41:35.537 24.78,86
AA00 2020-10-17 11:41:36.541 25.27,249
AA00 2020-10-17 11:41:37.540 25.76,245
AA00 2020-10-17 11:41:38.543 25.76,243
AA00 2020-10-17 11:41:39.543 25.27,245
```

```
var readData = "";
var temp = "";
var lux = "";
var mdata = [];
var firstcommaidx = 0;
parser.on("data", (data) => {
 // call back when data is received
 readData = data.toString();
 firstcommaidx = readData.indexOf(",");
 if (firstcommaidx > 0) {
    temp = readData.substring(0, firstcommaidx);
    lux = readData.substring(firstcommaidx + 1);
    readData = "";
    dStr = getDateString();
   mdata[0] = dStr; //date
    mdata[1] = temp; //data
                                  시간,온도,조도
    mdata 2 = lux;
    console.log("AA00," + mdata);
    io.sockets.emit("message", mdata); // send data
   else
    console.log(readData);
```

Google search socket.io.js cdn


```
<!DOCTYPE html>
                                                                              client_signal_start.html
     <head>
       <meta charset="utf-8">
       <title>IoT example: Real time signal from Arduino</title>
 5
       <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/2.3.1/socket.io.js"></script>
 6
       <!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/1.3.6/socket.io.js"></scr
       <style>body padding:0; margin:30; background: □ #fff </style>
 9
     </head>
10
     <body> <!-- style="width:100%;height:100%"> -->
11
12
     <h1 align="center"> IoT Signal from Arduino </h1>
13
14
15
     <h2 align="center"> Real-time Signals </h2>
16
17
     (hr)
18
     <h3 align="center"> on Time: <span id="time"> </span> </h3>
19
20
     <h3 align="center"> Signal (temp, lux) : <span id="data"> </span> </h3>
21
22
```

Google search: socket.io.js cdn

Real-time console showing a signal from Arduino in Chrome browser

Arduino data + plotly

A5. Introduction to visualization

System (Arduino, sDevice, ...)

Data (signal, image, sns, ...)

Visualization & monitoring

Data storaging & mining

Service

A5.1 Introduction to data visualization

A5.1.1 D3.js

Overview Examples Documentation API Source

A5.1.2 plot.ly

A5.1.3 plotly.js

Built on top of <u>d3.js</u> and <u>stack.gl</u>,

Plotly.js is a high-level, declarative

charting library.

plotly.js ships with over 40 chart types,

including 3D charts, statistical graphs, and

SVG maps.

https://plot.ly/javascript/

A5.1.4 Introduction to plotly.js

A5.1.5 Introduction to plotly.js charts

A5.1.6 Introduction to plotly.js charts

A5.1.7 Introduction to plotly.js charts

Maps Ø

Choropleth Maps

Scatter Plots on Maps

Bubble Maps

Lines on Maps

Scatter Plots on Mapbox

3D Charts @

Plats

Ribbon Plots

3D Surface Plots

3D Mesh Plots

More 3D Charts

A5.1.8 plotly.js: time series & streaming

https://plot.ly/javascript/time-series/

https://plot.ly/javascript/streaming/

A5.1.9 Getting started: plotly.js

https://plot.ly/javascript/getting-started/

A5.1.10 Getting started: plotly.js

<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>

Data charts using plotly.js

A5.2 Data charts

Navigation

Basic Line Plot

Line and Scatter Plot

Adding Names to Line and Scatter Plot

Line and Scatter Styling

Styling Line Plot

Colored and Styled Scatter Plot

Line Shape Options for Interpolation

Graph and Axes Titles

Line Dash

Connect Gaps Between Data

Labelling Lines with Annotations

Back To Plotly.Js

Line Charts in plotly.js

How to make D3.js-based line charts in JavaScript.

Basic Line Plot @

```
var trace1 = (
  x: [1, 2, 3, 4].
  y: [18, 15, 13, 17],
  type: 'scatter'
1:
var trace2 = {
  x: [1, 2, 3, 4],
  y: [16, 5, 11, 9],
  type: 'scatter'
```


A5.2.1 Working folders

A5.2.2.1 Starting plotly basic chart

DV_chart00_start.html Starting chart! <html> <head> <meta charset="utf-8"> <!-- Plotly.js --> <script src="https://cdn.plot.ly/plotly-latest.min.js"></script> </head> <body> <h1>Data visualization by AA00</h1> 9 (hr) 10 <h2>Starting graph by AA00</h2> 11 12 <!-- Plotly chart will be drawn inside this DIV --> <div id="myDiv" style="width: 500px; height: 300px"></div> 13 14 15 <script> <!-- JAVASCRIPT CODE GOES HERE --> 16 17 18 19 </script> </body> 20 </html> 21 22

A5.2.2.2 Starting plotly basic chart

VSCode, live server

A5.2.3.1 Hello plotly basic chart

```
<html>
                                         Hello plotly data chart!
   <head>
       <meta charset="utf-8">
       <!-- Plotly.js -->
4
       <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
   </head>
   <body>
       <h1>Data visualization by AA00</h1>
8
9
       (hr)
       <h2>Hello plotly!</h2>
10
       <!-- Plotly chart will be drawn inside this DIV -->
11
12
       <div id="myDiv" style="width: 500px;height: 400px"></div>
13
      <hr>>
14
       <script>
15
           <!-- JAVASCRIPT CODE GOES HERE -->
           var data =
16
17
18
               x: [1, 2, 3, 4, 5],
                                                      data는 무엇?
               y: [1, 2, 4, 8, 16],
19
                                                  그래프 객체들의 구조,
               type: 'scatter'
20
21
           }];
                                                       데이터 배열
22
23
           Plotly newPlot('myDiv', data);
24
25
       </script>
   </body>
   </html>
```


A5.2.3.2 Hello plotly basic chart

Graph: Hello plotly chart!

A5.2.4 plotly.js: Line Charts

[1] Basic multi-line charts

```
<script>
    <!-- JAVASCRIPT CODE GOES HERE -->
    var trace1 = {
        x: [1, 2, 3, 4],
        y: [10, 15, 13, 17],
        type: 'scatter'
    };
    var trace2 = {
        x: [1, 2, 3, 4],
        y: [16, 5, 11, 9],
        type: 'scatter'
    };
    var data = [trace1, trace2];
    Plotly.newPlot('myDiv', data);
</script>
```


A5.2.5 plotly.js: Line Charts

[2] Basic line charts with layout

```
var layout = {
    autosize: false,
    width: 600,
    height: 450,
    margin: {
       1: 50, // left
       r: 50, // right
        b: 100, // bottom
       t: 100, // top
        pad: 4 // padding
    },
    paper bgcolor: '#ececec',
    plot bgcolor: '#ffffff' //'#rrggbb'
};
Plotly.newPlot('myDiv', data, layout);
```

Line charts with layout by AA00

AAnn_Chart_Layout.png

Test: pad \rightarrow 40

A5.2.6.1 plotly.js: Line & Scatter plot

[3] Line & scatter plot: setting mode

```
var trace1 = {
   x: [1, 2, 3, 4],
    y: [10, 15, 13, 17],
   mode: 'markers'
};
var trace2 = {
    x: [2, 3, 4, 5],
    y: [16, 5, 11, 9],
   mode: 'lines'
};
var trace3 = {
    x: [1, 2, 3, 4],
    y: [12, 9, 15, 12],
   mode: 'lines+markers'
};
```

```
var data = [ trace1, trace2, trace3 ];
var layout = {
    title: 'Line and Scatter charts by AA00',
    width: 600,
    height: 450,
    margin: {
        1: 50,
        r: 50,
       b: 100,
       t: 100,
        pad: 4
    },
};
Plotly.newPlot('myDiv', data, layout);
```


A5.2.6.2 plotly.js: Line & Scatter plot

[3.1] Line & scatter plot with title

Line and Scatter charts by AA00

A5.2.6.3 plotly.js: Line & Scatter plot

[3.2] Line & scatter plot with axis name

```
var trace1 = {
    x: [1, 2, 3, 4],
    y: [10, 15, 13, 17],
   mode: 'markers',
    name: 'Scatter'
};
var trace2 = {
    x: [2, 3, 4, 5],
    y: [16, 5, 11, 9],
    mode: 'lines',
    name: 'Lines'
};
var trace3 = {
    x: [1, 2, 3, 4],
    y: [12, 9, 15, 12],
    mode: 'lines+markers',
    name: 'Scatter + Lines'
};
```

Line and Scatter charts by AA00

A5.2.6.4 plotly.js: Line & Scatter plot

[3.3] Line & scatter plot with style

```
var trace1 = {
 x: [1, 2, 3, 4],
 y: [10, 15, 13, 17],
 mode: 'markers',
 name: 'Scatter',
 marker: {
   color: 'rgb(219, 64, 82)',
   size: 12
var trace2 = {
 x: [2, 3, 4, 5],
 y: [16, 5, 11, 9],
 mode: 'lines',
 name: 'Lines',
 line: {
   color: 'rgb(55, 128, 191)',
   width: 3
```

```
var trace3 = {
 x: [1, 2, 3, 4],
 y: [12, 9, 15, 12],
 mode: 'lines+markers',
 name: 'Scatter + Lines',
 marker: {
   color: 'rgb(128, 0, 128)',
   size: 8
 line: {
   color: 'rgb(128, 0, 128)',
  width: 1
```


A5.2.6.5 plotly.js: Line & Scatter plot

[3.4] Line & scatter plot with axis titles

```
var layout = {
 title:'Line and Scatter Plot',
 width: 600, height: 450,
 margin: {
   l: 50,
   r: 50,
   b: 100,
   t: 100,
   pad: 4
 xaxis: {
   title: 'x-axis title'
 yaxis: {
   title: 'y-axis title'
```


A5.2.6.6 plotly.js: Line & Scatter plot

[3.5] Line & scatter plot with dash and dot

```
var trace1 = {
 x: [1, 2, 3, 4],
 y: [10, 15, 13, 17],
 mode: 'lines',
 name: 'Solid',
 line: {
   color: 'rgb(255, 0, 0)',
   dash: 'solid',
   width: 4
var trace2 = {
 x: [2, 3, 4, 5],
 y: [16, 5, 11, 9],
 mode: 'lines',
 name: 'dot',
 line: {
   color: 'rgb(55, 228, 0)'
   dash: 'dot',
   width: 4
```

```
var trace3 = {
 x: [1, 2, 3, 4],
 y: [12, 9, 15, 12],
 mode: 'lines',
 name: 'dashdot',
 line: {
   color: 'rgb(55, 0, 255',
   dash: 'dashdot',
   width: 4
};
```


AAnn_Line_Dash_Dot.png

Data visualization using plotly.js

A5.3. Time series

A5.3.1 plotly.js: Time series

[1] Time series : date strings

```
<!-- Plotly chart will be drawn inside this DIV -->
<div id="myDiv" style="width: 500px;height: 400px"></div>
<script>
    <!-- JAVASCRIPT CODE GOES HERE -->
    var data = [
        x: ['2017-9-04 22:23:00',
        '2017-10-04 22:23:00',
        '2017-11-04 22:23:00',
        '2017-12-04 22:23:00'],
        y: [1, 3, 6, 8],
        type: 'scatter'
    Plotly.newPlot('myDiv', data);
</script>
```


A5.3.2 plotly.js: Time series

Time series : date strings – result

오늘 날자와 데이터를 추가

A5.3.3.1 plotly.js: Time series

[2] Time series: financial data strings – AAPL stock price

A5.3.3.2 plotly.js: Time series

[2] Time series: financial data strings – AAPL stock price

```
Plotly.d3.csv("https://raw.githubusercontent.com/plotly/datasets/master/
    finance-charts-apple.csv", function(err, rows){
   function unpack(rows, key) {
        return rows.map(function(row) { return row[key]; });
   var trace1 = {
       type: "scatter",
        mode: "lines",
        name: 'AAPL High',
        x: unpack(rows, 'Date'),
       y: unpack(rows, 'AAPL.High'),
       line: {color: '#17BECF'}
   var trace2 = {
       type: "scatter",
       mode: "lines",
        name: 'AAPL Low',
        x: unpack(rows, 'Date'),
        y: unpack(rows, 'AAPL.Low'),
        line: {color: '#7F7F7F'}
   var data = [trace1,trace2];
```


A5.3.3.3 plotly.js: Time series

[2] Time series: financial data strings – AAPL stock price

```
var data = [trace1,trace2];
var layout = {
    title: 'AAPL Price Time Series',
};
Plotly.newPlot('myDiv', data, layout);
```


A5.3.3.4 plotly.js: Time series

[2] Time series: financial data strings – set range

```
var data = [trace1,trace2];
var layout = {
   title: 'AAPL Price Time Series with range',
   xaxis: {
        range: ['2016-07-01', '2016-12-31'],
        type: 'date'
   yaxis: {
        autorange: true,
        range: [86.8700008333, 138.870004167],
        type: 'linear'
Plotly.newPlot('myDiv', data, layout);
```


날짜와 주가의 범위를 지정

A5.3.3.5 plotly.js: Time series

[2] Time series: financial data strings – Range slider

```
var layout = {
    title: 'AAPL Price Time Series with rangeslider',
    xaxis: {
        autorange: true,
        range: ['2015-02-17', '2017-02-16'],
        rangeselector: {buttons: [
                count: 1,
                label: '1m',
                step: 'month',
                stepmode: 'backward'
                count: 6,
                label: '6m',
                step: 'month',
                stepmode: 'backward'
            {step: 'all'}
            ]],
            rangeslider: {range: ['2015-02-17', '2017-02-16']},
            type: 'date'
        },
        yaxis: {
            autorange: true,
            range: [86.8700008333, 138.870004167],
            type: 'linear'
```


A5.3.3.6 plotly.js: Time series

[2] Time series: financial data strings – Range slider

A5.3.4.1 plotly.js: Sensor time series

[3] Time series: my lux data

```
'2015-11-05 12:09:41.382',
'2015-11-05 12:09:42.380',
'2015-11-05 12:09:43.378',
'2015-11-05 12:09:44.377',
'2015-11-05 12:09:45.375',
'2015-11-05 12:09:46.389',
'2015-11-05 12:09:47.388',
'2015-11-05 12:09:48.386',
'2015-11-05 12:09:49.384',
'2015-11-05 12:09:50.383',
'2015-11-05 12:09:51.381',
'2015-11-05 12:09:52.380',
'2015-11-05 12:09:53.394',
'2015-11-05 12:09:54.392',
'2015-11-05 12:09:55.391',
'2015-11-05 12:09:56.389',
'2015-11-05 12:09:57.387',
'2015-11-05 12:09:58.386',
'2015-11-05 12:09:59.384',
'2015-11-05 12:10:00.398',
'2015-11-05 12:10:01.397',
```

Data: date, value

A5.3.4.2 plotly.js: Time series

[3] Time series: my lux data -> DV_ts03_sensor_chart.html

A5.3.4.3 plotly.js: Time series

[3] Time series: my lux data – [DIY] → Set title and axis title

AAnn_lux_Time_Series.png

Project: Time series with Rangeslider

[Project-DIY] AAnn_lux_Rangelslider.html

[Practice]

- ♦ [wk07]
- > charts by plotly
- Complete your project
- Upload folder: aax-nn-rpt07
- Use repo "aax-nn" in github

wk07: Practice: AAnn_Rpt07

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

제출폴더명: aax-nn-rpt07

- 압축할 파일들
 - ① AAnn_Chart_Layout.png
 - ② AAnn_Axis_Title.png
 - 3 AAnn_Line_Dash_Dot.png
 - 4 AAnn_lux_Time_Series.png
 - **5** AAnn_lux_Rangeslider.png
 - 6 All *.html

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.nodejs.org/ko Node.js
- https://plot.ly/ plotly
- https://www.mongodb.com/ MongoDB
- ✓ http://www.w3schools.com By w3schools.
- http://www.github.com GitHub

주교재 및 참고도서

Target of this class

Real-time Weather Station from sensors

on Time: 2018-01-22 17:58:31.012

Target of this class

Real-time Weather Station from nano 33 BLE sensors

on Time: 2020-09-09 10:27:17.321

Another target of this class

