Криптографические протоколы Лекция 7 Протоколы распределения ключей (Часть 1)

Деркач Максим Юрьевич

November 26, 2019

Ссылки

- 1. ISO/IEC 11770-1:2010 Information technology Security techniques Key management Part 1: Framework
- ISO/IEC 11770-2:2008 Information technology Security techniques – Key management – Part 2: Mechanisms using symmetric techniques
- 3. ISO/IEC 11770-3:2008 Information technology Security techniques Key management Part 3: Mechanisms using asymmetric techniques
- 4. ISO/IEC 11770-4:2006 Information technology Security techniques Key management Part 4: Mechanisms based on weak secrets
- 5. СТБ 34.101.45-2013 "Информационные технологии и безопасность. Алгоритмы электронной цифровой подписи и транспорта ключа на основе эллиптических кривых". http://apmi.bsu.by/assets/files/std/bign-spec19.pdf
- 6. СТБ 34.101.60-2014 "Информационные технологии и безопасность. Алгоритмы разделения секрета".

Определения и понятия

Определение 1

Протокол распределения ключей (key establishment protocol)это криптографический протокол, в процессе выполнения которого общий секрет доступен двум или более сторонам для последующего использования в криптографических целях.

Протоколы распределения ключей подразделяются на два класса:

- протоколы транспортировки ключей,
- протоколы обмена ключами.

Определение 2

Протокол транспортировки ключей (key transport)- это протокол, распределения ключей, в котрых один участник создает или другим образом приобретает секрет и безопасным образом передает его другим участникам.

Определения и понятия

Определение 3

Протокол обмена ключами (key exchange) - это протокол, распределения ключей, в котрых общий секрет вырабатывается двумя или более участниками как функция от информации.

- По типу выработки ключей:
 - 1. обновление ключей (key update) выработка совершенно нового ключа, не зависищего от ключей выработанных в прошлых сеансах выполнения ппротокола;
 - 2. выработка производных ключей (key derivation) вырабока нового ключа на основе уже существующих у участников криптосистемы.

Определения и понятия

- ▶ По типу:
 - 1. протоколы с предраспределенными ключами (key pre-distribution) протоколы распределения, в которых результирующие ключи полностью определены априори начальным ключевым материалом (схемы разделения секрета);
 - 2. протоколы динамического распределения ключей (dynamic key establishment) протоколы распределения, в которых ключи, вырабатываемые участниками, различны в различных сеансах протокола.
- ▶ По типу используемых криптосистем:
 - 1. симметричные;
 - 2. асиметричные.
- По количеству сторон:
 - 1. с участием "третьей стороны" (сервер аутентификации, центр распределения ключей, удостоверяющий центр и др.);

Классы	Протоколы распределения ключей					
протоколов	Транспортировка	Обмен	Обмен ключами			
	ключей					
Протоколы,	Needham – Schroeder,	Шарады	Схема			
основанные на	Otway-Rees,	Меркле	Блома			
симметричных	Kerberos,					
криптосхемах	Трехэтапный			Схемы		
	протокол Шамира			разделения		
Протоколы,	Needham – Schroeder,	Diffie – Hellman,		секрета		
основанные на	X.509, Beller – Yacobi,	ElGamal, MTI,	-			
асимметричных	SSL	STS, Gunther				
криптосхемах						
		Протоколы с предраспределенны ми ключами				
	Динамическое распр					

Протоколы распределения ключей ISO/IEC 11770-2

Mech. #2 (Однораундовый протокол)*

1.
$$A -> B : E_{K_{AB}}(KS)$$

A генерирует KS.

Mech. #1 (Однораундовый протокол)*

TVP - переменная

1.
$$A - > B$$
 : TVP $KS = f(K_{AB}, TVP)$, где f - одностороняя функция.

Mech. #3 (Однораундовый протокол)

1.
$$A - > B : E_{K_{AB}}(KS||T_A/N_A||ID_B)$$

 T_A/N_A - проверяет корректность момента времени или номера сессии.

 ID_B - против атаки отражения.

Протоколы распределения ключей ISO/IEC 11770-2

Mech. #4 (Двухраундовый протокол)

- 1. $B->A:R_B$
- 2. $A > B : E_{K_{AB}}(KS||R_B||ID_B)$

Mech. #4 (Модификация для двустороней аунтетификации)

- 1. $B->A:R_B$
- 2. $A > B : E_{K_{AB}}(KS||R_A||R_B||ID_B)$
- 3. $B->A:E_{KS}(R_A)$

Mech. #6

 K_A - часть ключа KS, которая принадлежит A.

 $\mathcal{K}_{\mathcal{B}}$ - часть ключа \mathcal{KS} , которая принадлежит \mathcal{B} .

$$KS = f(K_A, K_B)$$

- 1. $B->A:R_B$
- 2. $A > B : E_{K_{AB}}(K_A||R_A||R_B||ID_B)$
- 3. $B->A: E_{K_{AB}}(K_B||R_A||R_B)$

Протоколы распределения ключей ISO/IEC 11770-2

Mech. #5

- 1. $A > B : E_{K_{AB}}(K_A||T_A/N_A||ID_B)$
- 2. $B->A: E_{K_{AB}}(K_B||T_B/N_B||ID_A)$

Бесключевой протокол Шамира (Трёхпроходный протокол Шамира)

Коммутирующее шифрующее преобразование

$$\forall M,\ K_1,\ K_2:\ E_{K_1}(E_{K_2}(M))=E_{K_2}(E_{K_1}(M))$$
 $E_K(M)=M\oplus K$ - слабое преобразование. $E_{K_A}(M)=M^a mod p$, где a - зависит от K_A , p - простое.

- 1. $A > B : E_{K_A}(KS)$
- 2. $B->A: E_{K_B}(E_{K_A}(KS))$
- 3. $A > B : D_{K_A}(E_{K_B}(E_{K_A}(KS))) = E_{K_B}(KS)$

Отсутствует аутентификация, вместо B злоумышленник может вступить в протокол со своим ключом.

Атака повторением (Replay Attack)

- 1. $A -> B : E_{K_A}(KS)$
- 2. $I(B) > A : E_{K_A}(KS)$
- 3. $A -> B : D_{K_A}(E_{K_A}(KS)) = KS$

Можно защитить протокол от этой атаки, осуществляя проверку на втором шаге с целью отбраковки повторно переданных сообщений.

Ho, как заметил Карлсен (Carlsen), все равно можно осуществить атаку паралеллельного сеанса.

Wide-Mouth-Frog

- 1. $A > S : ID_A||E_{K_{AS}}(T_A||ID_B||KS)$
- 2. $S > B : E_{K_{BS}}(T_S||ID_A||KS)$

Атака подмены типа

- 1. $A > S : ID_A||E_{K_{AS}}(T_A||ID_B||KS)$
- 2. $S > B : E_{K_{BS}}(T_S||ID_A||KS)$
- 3. $I(B) > S : ID_B || E_{K_{BS}}(T_S || ID_A || KS)$
- 4. $S > A : E_{K_{AS}}(T'_{S}||ID_{B}||KS)$
- 5. $I(A) > S : ID_A||E_{K_{AS}}(T_S'||ID_B||KS)$
- 6. $S > B : E_{K_{BS}}(T_S''||ID_A||KS)$

Цель атаки - злоумышленник может поддерживать ключи рабочими, в случае их компрометации.

Трёхсторонние протоколы

Yahalom

- 1. $A -> B : ID_A || R_A$
- 2. $B-> S: ID_B||E_{K_{BS}}(ID_A||R_A||R_B)$
- 3. S > A:

$$m_a = E_{K_{AS}}(ID_B||KS||R_A||R_B)||$$

$$m_b = E_{K_{BS}}(ID_A||KS)$$

4. $A - > B : m_b || E_{KS}(R_B)$

Трёхсторонние протоколы

BAN-Yahalom

- 1. $A -> B : ID_A || R_A$
- 2. $B-> S: ID_B||R_B||E_{K_{BS}}(ID_A||R_A)$
- 3. $S > A : R_B ||$ $m_a = E_{K_{AS}}(ID_B || KS || R_A) ||$ $m_b = E_{K_{BS}}(ID_A || KS || R_B)$
- 4. $A > B : m_b || E_{KS}(R_B)$

Атака чередования сеансов и подмены типов

- 1. $I(A) > B : ID_A || R_A$
- 2. $B > I(S) : ID_B||R_B||E_{K_{BS}}(ID_A||R_A)$
- 1' $I(A) > B : ID_A||(R_A||R_B)$
- 2' $B-> I(S): ID_B||R'_B||E_{K_{BS}}(ID_A||(R_A||R_B))$
- 3. ----
- 4. $I(A) > B : E_{K_{BS}}(ID_A||R_A||R_B)||E_{R_A}(R_B)$

Needham-Schroeder (NSSK)

- 1. $A > S : ID_A ||ID_B|| R_A$
- 2. $S > A : E_{K_{AS}}(R_A||ID_B||KS||E_{K_{BS}}(KS||ID_A))$
- 3. $A->B: E_{K_{BS}}(KS||ID_A)$
- 4. $B->A:E_{KS}(R_B)$
- 5. $A > B : E_{KS}(R_B 1)$

Атака повторением (Replay Attack)

Если ключ KS скомпрометирован, возможна атака на протокол методом повтора сеанса: берутся сообщения из прошлого сеанса с ключом KS^* :

- 1. $A > S : ID_A || ID_B || R_A$
- 2. $S > A : E_{K_{AS}}(R_A||ID_B||KS||E_{K_{BS}}(KS||ID_A))$
- 3. $I(A) > B : E_{K_{BS}}(KS^*||ID_A)$
- 4. $B- > I(A) : E_{KS*}(R_B)$
- 5. $I(A) > B : E_{KS*}(R_B 1)$

Протокол Деннинг - Сакко*

- 1. $A->S:ID_A||ID_B|$
- 2. $S > A : E_{K_{AS}}(ID_B||KS||T_S||E_{K_{BS}}(ID_A||KS||T_S))$
- 3. $A > B : E_{K_{BS}}(ID_A||KS||T_S)$
- 4. $B->A:E_{KS}(R_B)$
- 5. $A > B : E_{KS}(R_B 1)$
- 1. $A -> B : ID_A$
- 2. $B->A: E_{K_{BS}}(ID_A||R_B)$
- 3. $A > S : ID_A||ID_B||R_A||E_{K_{BS}}(ID_A||R_B)$
- 4. $S > A : E_{K_{AS}}(R_A||ID_B||KS||E_{K_{BS}}(KS||R_B||ID_A))$
- 5. $A > B : E_{K_{BS}}(KS||R_B||ID_A)$
- 6. $B->A:E_{KS}(R'_B)$
- 7. $A > B : E_{KS}(R'_{R} 1)$

Протокол Отвея - Рисса

M - ID сеанса.

- 1. $A > B : M||ID_A||ID_B||E_{K_{AS}}(R_A||M||ID_A||ID_B)$
- 2. B > S: $M||ID_A||ID_B||E_{K_{AS}}(R_A||M||ID_A||ID_B)||E_{K_{BS}}(R_B||M||ID_A||ID_B)$
- 3. $S > B : M||E_{K_{AS}}(R_A||KS)||E_{K_{BS}}(R_B||KS)$
- 4. $B->A:M||E_{K_{AS}}(R_A||KS)$

Атака 1

KS - 64 бита, M - 32 бита, ID_A , ID_B - 16 бит. $len(KS) = len(M + ID_A + ID_A)$ 1' $A - > I(B) : M||ID_A||ID_B||E_{K_{AS}}(R_A||M||ID_A||ID_B)$ 4' $I(B) - > A : M||E_{K_{AS}}(R_A||M||ID_A||ID_B)$

Атака 2

- 1. $A > B : M||ID_A||ID_B||E_{K_{AS}}(R_A||M||ID_A||ID_B)$
- 2. B > I(S): $M||ID_A||ID_B||E_{K_{AS}}(R_A||M||ID_A||ID_B)||E_{K_{BS}}(R_B||M||ID_A||ID_B)$
- 3. I(S) > B: $M||E_{K_{AS}}(R_A||M||ID_A||ID_B)||E_{K_{BS}}(R_B||M||ID_A||ID_B)$
- 4. $B->A: M||E_{K_{AS}}(R_A||M||ID_A||ID_B)$

Mech. #10*

- 1. $A->S: TVP_A||ID_B|$
- 2. S > A: $E_{K_{AS}}(TVP_A||KS||ID_B||text_1)||E_{K_{BS}}(T_S/N_S||KS||ID_A||text_2)||$
- 3. A > B: $E_{K_{BS}}(T_S/N_S||KS||ID_A||text_2)||E_{KS}(T_A/N_A||ID_B||text_3)$
- 4. $B->A: E_{KS}(T_B/N_B||ID_A||text_4)$

Протоколы основанные на ассиметричных криптосистемах

Needham-Schroeder Public Key (NSPK)

- 1. $A->S:ID_A||ID_B|$
- 2. $S->A: E_{K_S^{sec}}(K_B^{pub}||ID_B)$
- 3. $A > B : E_{K_B^{pub}}(K_A||ID_A)$
- 4. $B > S : ID_B || ID_A$
- 5. $S > B : E_{K_S^{sec}}(K_A^{pub}||ID_A)$
- 6. $B->A: E_{K_A^{pub}}(K_B||K_A)$
- 7. $A->B:E_{K_B^{pub}}(K_B)$
- 8. A, B: $KS = f(K_A, K_B)$

 $E_{K_{\xi}^{ec}}()$ - подпись на секретном ключе.

 $E_{K_{R}^{pub}}()$ - шифрование на открытом ключе.

f()- общеизвестная однонаправленная функция.

Протоколы основанные на ассиметричных криптосистемах

NSPK без 3-ей стороны

- 1. $A > B : E_{K_R^{pub}}(K_A||ID_A)$
- 2. $B->A: E_{K_A^{pub}}(K_A||K_B)$
- 3. $A > B : E_{K_B^{pub}}(K_B)$
- 4. A, B: $KS = f(K_A, K_B)$

EKE(Encrypted Key Exchange)

$$K_{AB}=P$$
 - пароль

- 1. $A->B:ID_A||E_P(K_A^{pub})$
- 2. $B->A: E_P(E_{K_{\Delta}^{Pub}}(KS))$
- 3. $A -> B : E_{KS}(R_A)$
- 4. $B->A: E_{KS}(R_A||R_B)$
- 5. $A > B : E_{KS}(R_B)$

Bilateral Key Exchange with Public Key*

- 1. $B->A: ID_B||E_{K_A^{pub}}(R_B||ID_B)$
- 2. $A->B: E_{K_{R}^{pub}}(h(R_{B})||R_{A}||ID_{A}||KS)$
- 3. $B->A: E_{KS}(h(R_A))$

Сертификаты открытых ключей

$$cert_A = (ID_A||K_A^{pub}||t||sign_T(ID_A||K_A^{pub}||t))$$

X.509

$$d_{A} = (T_{A}||R_{A}||ID_{B}||text_{1}||E_{K_{B}^{pub}}(K_{A}))$$

$$d_{B} = (T_{B}||R_{B}||ID_{A}||text_{2}||E_{K_{A}^{pub}}(K_{B}))$$

- 1. $A->B: cert_A||d_A||sign_A(d_A)$
- 2. B->A: $cert_B||d_B||sign_B(d_B)$
- 3. $A > B : R_B ||ID_B|| sign_A(R_B ||ID_B)$
- 4. $A, B : KS = f(K_A, K_B)$

Шаг (3) необязателен, выполняется только если нужно подтвержденрие.

Протоколы с использованием ЭЦП

Денниг - Сакко*

- 1. $A > S : ID_A || ID_B$
- 2. $S->A: cert_A||cert_B|$
- 3. $A->B: cert_A||cert_B||E_{K_D^{pub}}(KS||t_A||sign_A(kS||T_A))$
- 4. A, B: $KS = f(K_A, K_B)$

Протокол MTI

1. Предварительный этап:

Выбираются следующие параметры: p, lpha, где p - простое число, $a \in \mathbb{Z}_p^*$

А выбирает $a, 1 \le a \le p-2, z_A = \alpha^a \pmod{p}$. В выбирает $b, 1 \le b \le p-2, z_B = \alpha^b \pmod{p}$.

- 2. A > B: $m_{AB} = \alpha^x \pmod{p}$, $1 \le x \le p 2$, x случайное
- 3. $B->A: m_{BA}=\alpha^y \ (mod \ p), \ 1\leq y\leq p-2, \ y$ случайное

Варианты построения ключа:

Nº	m_{AB}	m_{BA}	K_A	K_B	K
1	α^{x}	α^{y}	$m_{BA}^a z_B^{\chi}$	$m_{AB}^b z_A^y$	$\alpha^{\mathit{bx}+\mathit{ay}}$
2	z_B^x	z_A^y	$m_{BA}^{a-1}\alpha^{x}$	$m_{AB}^{b^{-1}} \alpha^y$	α^{x+y}
3	z_B^x	z_A^y	$m_{BA}^{a^{-1}\chi}$	$m_{AB}^{b^{-1}y}$	α^{xy}
4	z_B^x	z_A^Y	m_{BA}^{x}	m_{AB}^{y}	$lpha^{ extit{bxay}}$

