Predicting Under and Overfitting in Deep Neural Networks (DNNs) using Graph Smoothness

Carlos Lassance, Vincent Gripon, Antonio Ortega

June 7, 2018

Graph Signal Processing Workshop 2018

Introduction

DNNs can approximate **any** function:

- +: Perfect fit is achievable;
- -: Training performance

 Test performance.

Standard solution: Cross Validation.

Objective

Better understand what determines generalization in DNNs.

Introduction

DNNs can approximate **any** function:

- +: Perfect fit is achievable;
- -: Training performance

 Test performance.

Standard solution: Cross Validation.

Objective

Better understand what determines generalization in DNNs.

Adversarial Examples

Definition

A noisy image that:

- Has high signal-to-noise ratio (SNR);
- **Fools** a classifier.

Definitions

Graph Construction - Adjancency Matrix (A)

- Batch with M examples from each class,
- $lue{}$ Generate intermediate representations for layer ℓ ,
- Create a pairwise cosine similarity matrix,
- \blacksquare Threshold the k nearest neighbors.

Laplacian

$$L = D - A$$

Label signal and Smoothness

We consider here label signals **s**: indicator vectors of classes.

$$\mathbf{s}^{\top} L \mathbf{s} = \sum_{i=1}^{d} \Lambda_{ii} \hat{\mathbf{s}}_{i}^{2} = \sum_{u \leftrightarrow v} A_{uv} (\mathbf{s}_{u} - \mathbf{s}_{v})^{2}$$
.

Definitions

Graph Construction - Adjancency Matrix (A)

- Batch with M examples from each class,
- Generate intermediate representations for layer ℓ,
- Create a pairwise cosine similarity matrix,
- \blacksquare Threshold the k nearest neighbors.

Laplacian

$$L = D - A$$

Label signal and Smoothness

We consider here label signals **s**: indicator vectors of classes.

$$\mathbf{s}^{\top} L \mathbf{s} = \sum_{i=1}^{d} \Lambda_{ii} \hat{\mathbf{s}}_{i}^{2} = \sum_{u \leftrightarrow v} A_{uv} (\mathbf{s}_{u} - \mathbf{s}_{v})^{2}$$
.

Definitions

Graph Construction - Adjancency Matrix (A)

- Batch with M examples from each class,
- $lue{}$ Generate intermediate representations for layer ℓ ,
- Create a pairwise cosine similarity matrix,
- \blacksquare Threshold the k nearest neighbors.

Laplacian

$$L = D - A$$

Label signal and Smoothness

We consider here label signals **s**: indicator vectors of classes.

$$\mathbf{s}^{\top} L \mathbf{s} = \sum_{i=1}^{d} \Lambda_{ii} \hat{\mathbf{s}}_{i}^{2} = \sum_{u \leftrightarrow v} A_{uv} (\mathbf{s}_{u} - \mathbf{s}_{v})^{2}.$$

Laplacian example

To illustrate what our Laplacian represents:

- Trained network + batch of examples ordered by class,
- Generate a complete graph,
- Dark points are highly correlated.

Middle layer

Deep layer

Prior Work

An Inside Look at DNNs using Graph Signal Processing

- Gripon, Ortega, Girault, 2018 at ITA,
- Analyses how the smoothness evolves over the network,
- Difference in behavior for under/over/ok networks.

Studied architecture

Experiments

Setup

- We test the same architecture with different hyperparameters.
- To stress generalization to:
 - Underfitting: Different scales of network size;
 - Overfitting: Different sizes of the training set;
 - Architecture scale: Different types of network scale.
- Smoothness gap between:
 - before the global average pooling;
 - after the global average pooling.
- Graphs of 500 examples from the training set,
- Thresholded by the 20 nearest neighbors,
- We evaluate the measure by the mean gap over 10 graphs.

Studied architecture

Results, Different states

Results, Network Scale

Results, R^2

Reported value

 R^2 value of a **linear regression** of given measure against the test set.

Results

Case/Measure	Training Accuracy	Network Size	Ours
Underfitting	54%	50%	84%
Overfitting	19%	Not Applicable	68%
Network Scale	30%	14%	67%

Can we use smoothness gap as a regularizer during training?

Results, R^2

Reported value

 R^2 value of a **linear regression** of given measure against the test set.

Results

Case/Measure	Training Accuracy	Network Size	Ours
Underfitting	54%	50%	84%
Overfitting	19%	Not Applicable	68%
Network Scale	30%	14%	67%

Can we use smoothness gap as a regularizer during training?

Adversarial Examples

Definition

A noisy image that:

- Has high signal-to-noise ratio (SNR);
- **Fools** a classifier.

Recent work in defense against adversarial noise

Parseval Networks, Cisse et al, ICML 2017

- Bounding the Lipschitz constant of layers.
- Distance between 2 examples can only decrease in the network:
 - Interested in the effects of the weights,
 - As the distance is small at the start it should be small at the end,
 - Similar to our smoothness metric,
 - Examples domain vs Class domain,

Our Proposal

Bound the smoothness gap between successive layers.

Adversarial boundary region

Minimum noise to adversarial region

i) No regularization:

Initial problem:

ii) Proposed:

Our Proposal

Bound the smoothness gap between successive layers.

Minimum noise to adversarial region

i) No regularization:

Initial problem:

ii) Proposed:

- Laplacian Power Networks: Bounding Indicator Function Smoothness for Adversarial Defense
 - https://arxiv.org/pdf/1805.10133.pdf

Studied architecture

Results

Defense/SNR	Clean	50	33
None	88.47%	80.10%	33.25%
Parseval	89.87%	83.06%	45.11%
Ours	87.25%	82.35%	50.16%
Both	89.08%	82.52%	50.25%

Results

Defense/SNR	Clean	50	33
None	88.47%	80.10%	33.25%
Parseval	89.87%	83.06%	45.11%
Ours	87.25%	82.35%	50.16%
Both	89.08%	82.52%	50.25%

Conclusion

Conclusion

- Smoothness of label signals seem interesting to control generalization in DNNs:
 - Can be used to identify interesting architectures,
 - Can be used to limit adversarial noise

Future Work

- Need for theoretical understanding,
- Better construction of graphs?
- Use of graph sampling techniques?

Conclusion

Conclusion

- Smoothness of label signals seem interesting to control generalization in DNNs:
 - Can be used to identify interesting architectures,
 - Can be used to limit adversarial noise

Future Work

- Need for theoretical understanding,
- Better construction of graphs?
- Use of graph sampling techniques?

Results

Results

