

WEBENCH® Power Architect

Project Report

Project: 682565/1: PA_Project_301 Created: 2012-04-05 03:37:23.616 Optimize project optFactor=3

Project Summary

Total System Efficiency
 Total System BOM Count
 Total System Footprint
 Total System Footprint
 Total System BOM Cost
 Total System BOM Cost
 Total System Power Dissipation
 8.954 W

--> Launch WEBENCH Power Architect.

Power Supplies

;	# Name	NSID	Description	Vout	lout	Efficiency	Foot- print	Cost	Design F	Page
1	. SUPPLY_1	LM25118	Switcher: Wide Range BuckBoost controller	5 V	5.0 A	80.6%	1538	\$11.91	4	4
2	. SUPPLY_2	LM25118	Switcher: Wide Range BuckBoost controller	6.25 V	1.0 A	85.9%	786	\$4.92	6	10
3	SUPPLY_3	LP38690-5.0	LDO: Very low quiescent current	5 V	1.0 A	72.5%	142	\$0.76	5	8

Power Loads

#	Name	VLoad	ILoad	Description
1.	Servo	5 V	5 A	VoutRipple=10%
2.	Electronics	5 V	1 A	Filter required

Project Diagram

Electrical Procurement BOM

Manufacturer	Part Number	Description 0	Quantity Bud	getary Price	Footprint (mm²)
Vishay-Semiconductor	12CWQ03FNPBF	DPAK	2	\$0.76	203
Vishay-Semiconductor	12CWQ04FNPBF	DPAK	2	\$0.76	203
Nippon Chemi-Con	APXA6R3ARA681MJC0G	CAPSMT_62_JC0	3	\$0.71	156
Nippon Chemi-Con	APXE100ARA151MF80G	CAPSMT 62 F80	1	\$0.51	74
Diodes Inc.	B220A-13-F	SMA	2	\$0.09	75
Diodes Inc.	B240A-13-F	SMA	2	\$0.09	75
Infineon Technologies	BSZ050N03MS G	PG-TSDSON-8	1	\$0.33	29
Infineon Technologies	BSZ165N04NS G	PG-TSDSON-8	1	\$0.30	29
Kemet	C0805C104K5RACTU	0805	2	\$0.01	26
TDK	C1005X5R0J105M	0402	1	\$0.01	8
TDK	C1608X5R1A105K	0603	1	\$0.01	10
TDK	C2012Y5V1C105Z/0.85	0805	2	\$0.01	26
TDK	C5750X7R1H106M	2220	6	\$0.68	120
Yageo America	CC0805JRNP09BN121	0805	1	\$0.01	13
Yageo America	CC0805KRX7R9BB152	0805	1	\$0.01	13
Yageo America	CC0805KRX7R9BB221	0805	1	\$0.01	13
Yageo America	CC0805KRX7R9BB223	0805	2	\$0.01	26
Yageo America	CC0805KRX7R9BB331	0805	1	\$0.01	13
Yageo America	CC0805KRX7R9BB472	0805	1	\$0.01	13
Yageo America	CC0805KRX7R9BB561	0805	1	\$0.01	13
Vishay-Dale	CRCW040218K7FKED	0402	3	\$0.01	22
Vishay-Dale	CRCW04021K00FKED	0402	2	\$0.01	15
Vishay-Dale	CRCW04021M00FKED	0402	2	\$0.01	15
Vishay-Dale	CRCW040232K4FKED	0402	2	\$0.01	15
Vishay-Dale	CRCW04023K09FKED	0402	1	\$0.01	8
Vishay-Dale	CRCW040241K2FKED	0402	1	\$0.01	8
Vishay-Dale	CRCW040246K4FKED	0402	1	\$0.01	8
Vishay-Dale	CRCW040247K5FKED	0402	1	\$0.01	8
Vishay-Dale	CRCW04024K12FKED	0402	1	\$0.01	8
Texas Instruments	CSD16301Q2	TRANS NexFET Q2	1	\$0.22	16
Stackpole Electronics Inc	CSR1206FK75L0	1206	1	\$0.10	19
Stackpole Electronics Inc	CSRN2512FK15L0	2512	1	\$0.19	43
Nippon Chemi-Con	EMVY160ADA470MF55G	CAPSMT_62_F55	1	\$0.09	77
Fairchild Semiconductor	FDMC8462	TRANS_Fairchild_PQFN0		\$0.76	28
MuRata	GRM155R61A105KE15D	0402	2	\$0.70 \$0.01	15
MuRata	GRM21BR71E104KA01L	0805	2	\$0.01	26
Texas Instruments	LM25118MHE	MXA20A	2	\$2.19	143
Texas Instruments	LP38690SD-5.0	SDE06A	1	\$0.55	25
TDK	NLCV32T-R15M-PFR	NLCV32	1	\$0.33 \$0.10	22
Bourns	SRR1208-150ML	SRR1208	1	\$0.10 \$0.41	216
Coilcraft	XAL1010-822MEB	XAL1010	1	\$0.41 \$1.08	160
	AAL IU IU-022IVIED	AALIUIU	61	<u> </u>	
Total			61	\$17.59	2,033

WEBENCH® Design Report

Design: 682565/4 LM25118MHE LM25118MHE 4.0V-30.0V to 5.0V @ 5.0A

VinMin = 4.0V VinMax = 30.0V Vout = 5.0V Iout = 5.0A Device = LM25118MHE Topology = Buck_Boost Created = 4/5/12 3:37:20 AM BOM Cost = \$11.91 Total Pd = 6.03 W Footprint = 1,538.0 mm2 BOM Count = 30

Electrical BOM

#	Name	Manufacturer	Part Number	Qua	anti R rice	Properties	Footprint
1.	Cboot	MuRata	GRM21BR71E104KA01L Series= X7R	1	\$0.01	Cap= 100.0 nF ESR= 0.0 Ohm VDC= 25.0 V IRMS= 0.0 A	0805 13mm2
2.	Ccomp	Yageo America	CC0805KRX7R9BB561 Series= X7R	1	\$0.01	Cap= 560.0 pF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0805 13mm2
3.	Ccomp2	Yageo America	CC0805KRX7R9BB472 Series= X7R	1	\$0.01	Cap= 4.7 nF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0805 13mm2
4.	Cin	TDK	C5750X7R1H106M Series= X7R	3	\$0.68	Cap= 10.0 µF ESR= 3.0 mOhm VDC= 50.0 V IRMS= 5.5 A	2220 60mm2
5.	Cinx	Kemet	C0805C104K5RACTU Series= X7R	1	\$0.01	Cap= 100.0 nF ESR= 64.0 mOhm VDC= 50.0 V IRMS= 1.64 A	0805 13mm2
6.	Cout	Nippon Chemi-Con	APXA6R3ARA681MJC0G Series= PXA	3	\$0.71	Cap= 680.0 µF ESR= 10.0 mOhm VDC= 6.3 V IRMS= 5.5 A	CAPSMT_62_JC0 156mm2
7.	Cramp	Yageo America	CC0805KRX7R9BB331 Series= X7R	1	\$0.01	Cap= 330.0 pF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0805 13mm2

# Name	Manufacturer	Part Number	Qua	anti Py rice	Properties	Footprint
8. Css	Yageo America	CC0805KRX7R9BB223 Series= X7R	1	\$0.01	Cap= 22.0 nF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0805 13mm2
9. Cvcc	MuRata	GRM155R61A105KE15D Series= X5R	1	\$0.01	Cap= 1.0 µF ESR= 0.0 Ohm VDC= 10.0 V IRMS= 0.0 A	0402 8mm2
10. Cvccx	TDK	C2012Y5V1C105Z/0.85 Series= Y5V	1	\$0.01	Cap= 1.0 µF ESR= 9.0 mOhm VDC= 16.0 V IRMS= 0.0 A	0805 13mm2
11. D1	Vishay-Semiconductor	12CWQ04FNPBF	1	\$0.76	VF@Io= 680.0 mV VRRM= 40.0 V	DPAK 102mm2
12. D2	Vishay-Semiconductor	12CWQ03FNPBF	1	\$0.76	VF@Io= 550.0 mV VRRM= 30.0 V	DPAK 102mm2
13. D3	Vishay-Semiconductor	12CWQ04FNPBF	1	\$0.76	VF@Io= 680.0 mV VRRM= 40.0 V	DPAK 102mm2
14. D4	Vishay-Semiconductor	12CWQ03FNPBF	1	\$0.76	VF@Io= 550.0 mV VRRM= 30.0 V	DPAK 102mm2
15. L1	Coilcraft	XAL1010-822MEB	1	\$1.08	L= 8.2 μH DCR= 10.0 mOhm	XAL1010 160mm2
16. M1	Fairchild Semiconductor	FDMC8462	1	\$0.76	VdsMax= 40.0 V IdsMax= 20.0 Amps	TRANS_Fairchild_PQFN08828mm2
17. M2	Infineon Technologies	BSZ050N03MS G	1	\$0.33	VdsMax= 30.0 V IdsMax= 40.0 Amps	PG-TSDSON-8 29mm2
18. Rcomp	Vishay-Dale	CRCW040241K2FKED Series= CRCWe3	1	\$0.01	Res= 41.2 kOhm Power= 63.0 mW Tolerance= 1.0%	■ 0402 8mm2
19. Renable	Vishay-Dale	CRCW04021M00FKED Series= CRCWe3	1	\$0.01	Res= 1000.0 kOhm Power= 63.0 mW Tolerance= 1.0%	■ 0402 8mm2
20. Rfb1	Vishay-Dale	CRCW04021K00FKED Series= CRCWe3	1	\$0.01	Res= 1,000 Ohm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
21. Rfb2	Vishay-Dale	CRCW04023K09FKED Series= CRCWe3	1	\$0.01	Res= 3.09 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
22. Rsense	Stackpole Electronics Inc	CSRN2512FK15L0 Series= ?	1	\$0.19	Res= 15.0 mOhm Power= 2.0 W Tolerance= 1.0%	2512 43mm2
23. Rt	Vishay-Dale	CRCW040246K4FKED Series= CRCWe3	1	\$0.01	Res= 46.4 kOhm Power= 63.0 mW Tolerance= 1.0%	■ 0402 8mm2
24. Ruv1	Vishay-Dale	CRCW040232K4FKED Series= CRCWe3	1	\$0.01	Res= 32.4 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2

# Name	Manufacturer	Part Number	Qua	ınti l Price	Properties	Footprint
25. Ruv2	Vishay-Dale	CRCW040218K7FKED Series= CRCWe3	1	\$0.01	Res= 18.7 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
26. U1	Texas Instruments	LM25118MHE	1	\$2.19	Switcher	MXA20A 71mm2

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	1.942 A	Current	Input capacitor RMS ripple current
2.	Cout IRMS	1.245 A	Current	Output capacitor RMS ripple current
3.	lin Avg	1.034 A	Current	Average input current
4.	L lpp	4.311 A	Current	Peak-to-peak inductor ripple current
5.	L1 Irms	5.153 A	Current	Inductor ripple current
6.	M1 Irms	2.152 A	Current	MOSFET RMS ripple current
7.	SW lpk	7.156 A	Current	Peak switch current
8.	BOM Count	30.0	General	Total Design BOM count
9.	FootPrint	1.538 k mm2	General	Total Foot Print Area of BOM components
10.	Frequency	131.0 k Hz	General	Switching frequency
11.	IC Tolerance	18.0 m V	General	IC Feedback Tolerance
12.	M1 Rdson	8.0 m Ohm	General	Drain-Source On-resistance
13.	M1 ThetaJA	53.0 degC/W	General	MOSFET junction-to-ambient thermal resistance
14.	Mode	CCM	General	Conduction Mode
15.	Pout	25.0 W	General	Total output power
16.	Total BOM	\$11.91	General	Total BOM Cost
17.		52.161 degC	Op_Point	D1 junction temperature
	Vout OP	5.0 V	Op_Point	Operational Output Voltage
	Cross Freq	5.3 k Hz	Op_point	Bode plot crossover frequency
	Duty Cycle	18.524 %	Op_point	Duty cycle
	Efficiency	80.559 %	Op_point	Steady state efficiency
22.	IC Tj	31.442 degC	Op_point	IC junction temperature
23.		40.0 degC/W	Op_point	IC junction-to-ambient thermal resistance
24.	IOUT_OP	5.0 A	Op_point	lout operating point
	M1 TiOP	34.929 degC	Op_point	MOSFET junction temperature
26.	Operating Topology	Buck		The current operating topology of the device
	Phase Marg		Op_point	
	ū	54.064 deg 30.0 V	Op_point	Bode Plot Phase Margin
	VIN_OP		Op_point	Vin operating point
	Vout p-p	14.511 m V	Op_point	Peak-to-peak output ripple voltage
30.	Cin Pd	3.773 m W	Power	Input capacitor power dissipation
	Cout Pd	5.163 m W	Power	Output capacitor power dissipation
32.	Diode Pd	1.385 W	Power	Diode power dissipation
	IC Pd	36.043 m W	Power	IC power dissipation
	L Pd	312.5 m W	Power	Inductor power dissipation
	M1 Pd	93.207 m W	Power	MOSFET power dissipation
36.	M1 PdCond	37.288 m W	Power	M1 MOSFET conduction losses
	M1 PdSw	55.919 m W	Power	M1 MOSFET switching losses
38.	Total Pd	6.033 W	Power	Total Power Dissipation
39.	Diode 1 Power Dissipation	1.385 OpvalUnits.PD	Unknown	Power dissipation in the diode
40.	Diode 2 Power Dissipation	1.375 OpvalUnits.PD	Unknown	Power dissipation in the diode
41.	Diode 3 Power Dissipation	1.385 OpvalUnits.PD	Unknown	Power dissipation in the diode
42.	Diode 4 Power	1.375 OpvalUnits.PD	Unknown	Power dissipation in the diode
43.	Dissipation Input Load Capacitand	ce30.1 µ F	Unknown	Input load capacitance seen by upstream circuit

Design Inputs

#	Name	Value	Description
1.	lout	5.0 A	Maximum Output Current
2.	lout1	5.0 Amps	Output Current #1
3.	VinMax	30.0 V	Maximum input voltage
4.	VinMin	4.0 V	Minimum input voltage
5.	Vout	5.0 V	Output Voltage
6.	Vout1	5.0 Volt	Output Voltage #1
7.	base_pn	LM25118	National Based Product Number
8.	Ta	30.0 degC	Ambient temperature

Design Assistance

- 1. The LM5118 is a wide range buck-boost controller which is operable in an ultra wide input range of 3 to 75V. A buck-boost regulator can maintain regulation for input voltages either higher or lower than the output voltage. The challenge is that buck-boost power converters are not as efficient as buck regulators. The LM5118 has been designed as a dual mode controller whereby the power converter acts as a buck regulator while the input voltage is above the output. As the input voltage approaches the output voltage, a gradual transition to the buck-boost mode occurs. This gradual transition between modes eliminates disturbances at the output during transitions.
- 2. LM25118 Product Folder: http://www.national.com/pf/LM/LM25118.html: contains the data sheet and other resources.

WEBENCH® Design Report

Design: 682565/5 LP38690SD-5.0 LP38690SD-5.0 5.625V-6.875V to 5.0V @ 1.0A

VinMin = 5.62V VinMax = 6.88V Vout = 5.0V Iout = 1.0A Device = LP38690SD-5.0 Topology = LDO Created = 4/5/12 3:37:21 AM BOM Cost = \$0.69 Total Pd = 1.9 W Footprint = 77.0 mm2 BOM Count = 5

Electrical BOM

#	Name	Manufacturer	Part Number	Qua	ntilPyrice	Properties	Footprint
1.	C_filter_1	TDK	C2012Y5V1A106Z Series= Y5V	1	\$0.02	Cap= 10.0 μF ESR= 4.8 mOhm VDC= 10.0 V IRMS= 0.0 A	0805 13mm2
2.	Cin	TDK	C1608X5R1A105K Series= X5R	1	\$0.01	Cap= 1.0 µF ESR= 5.7 mOhm VDC= 10.0 V IRMS= 0.0 A	0603 10mm2
3.	Cout	TDK	C1005X5R0J105M Series= X5R	1	\$0.01	Cap= 1.0 µF ESR= 7.9 mOhm VDC= 6.3 V IRMS= 0.0 A	0402 8mm2
4.	L_filter_1	TDK	NLCV32T-R10M-PFR	1	\$0.10	L= 100.0 nH DCR= 20.0 mOhm	NLCV32 22mm2
5.	U1	Texas Instruments	LP38690SD-5.0	1	\$0.55	Switcher	SDE06A 25mm2

Operating Values

999	.ag .a.acc			
#	Name	Value	Category	Description
1.	IC Iground	55.0 μ A	Current	IC ground current
2.	lin Avg	1.0 A	Current	Average input current
3.	filter_1 attenuation Factor	500.0 m	Filter	Attenuation factor
4.	filter_1 target Vpp	0.0 V	Filter	Target voltage ripple through filter filter_1
5.	BOM Count	5.0	General	Total Design BOM count
6.	FootPrint	77.0 mm2	General	Total Foot Print Area of BOM components
7.	IC Tolerance	250.0 m V	General	IC Feedback Tolerance
8.	Pout	5.0 W	General	Total output power
9.	Total BOM	\$0.69	General	Total BOM Cost
10.	Vin p-p	24.75 m V	Op_Point	Input Source ripple voltage
11.	filter_1 cut-off freq	159.155 k Hz	Op_Point	Filter cut off frequency filter_1
12.	filter_1 voltage drop	20.0 m V	Op_Point	Voltage drop through filter filter_1
13.	Efficiency	72.512 %	Op_point	Steady state efficiency
14.	IC Tj	121.894 degC	Op_point	IC junction temperature
15.	ICThetaJA	49.0 degC/W	Op_point	IC junction-to-ambient thermal resistance

#	Name	Value	Category	Description
16.	IOUT_OP	1.0 A	Op_point	lout operating point
17.	Input Ripple Frequency	/ 300.0 k Hz	Op_point	Input Source Ripple Frequency for PSRR Calculation
18.	PSRR est.	-5.177 dB	Op_point	Power Supply Rejection Ratio estimated
19.	VIN_OP	6.875 V	Op_point	Vin operating point
20.	Vout p-p	13.637 m V	Op_point	Peak-to-peak output ripple voltage
21.	IC Pd	1.875 W	Power	IC power dissipation
22.	Total Pd	1.895 W	Power	Total Power Dissipation
23.	filter_1_Pd	20.0 m W	Power	Filter Power Loss filter_1
24.	Input Load Capacitanc	e1.0 µ F	Unknown	Input load capacitance seen by upstream circuit

Design Inputs

#	Name	Value	Description
1.	lout	1.0 A	Maximum Output Current
2.	lout1	1.0 Amps	Output Current #1
3.	VinMax	6.875 V	Maximum input voltage
4.	VinMin	5.625 V	Minimum input voltage
5.	Vout	5.0 V	Output Voltage
6.	Vout1	5.0 Volt	Output Voltage #1
7.	base_pn	LP38690	National Based Product Number
8.	Ta	30.0 degC	Ambient temperature

Design Assistance

 $1. \ \textbf{LP38690} \ \textbf{Product Folder: http://www.national.com/pf/LP/LP38690.html: contains the data sheet and other resources.}$

WEBENCH® Design Report

Design: 682565/6 LM25118MHE LM25118MHE 4.0V-30.0V to 6.25V @ 1.0A

VinMin = 4.0V VinMax = 30.0V Vout = 6.25V Iout = 1.0A Device = LM25118MHE Topology = Buck_Boost Created = 4/5/12 3:37:22 AM BOM Cost = \$4.92 Total Pd = 1.03 W Footprint = 786.0 mm2 BOM Count = 26

Electrical BOM

#	Name	Manufacturer MuRata	Part Number GRM21BR71E104KA01L Series= X7R	QuantiPyrice		Properties	Footprint
1.	. Cboot			1	\$0.01	Cap= 100.0 nF ESR= 0.0 Ohm VDC= 25.0 V IRMS= 0.0 A	0805 13mm2
2.	Ccomp	Yageo America	CC0805KRX7R9BB221 Series= X7R	1	\$0.01	Cap= 220.0 pF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0805 13mm2
3.	Ccomp2	Yageo America	CC0805KRX7R9BB152 Series= X7R	1	\$0.01	Cap= 1.5 nF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0805 13mm2
4.	Cin	TDK	C5750X7R1H106M Series= X7R	1	\$0.68	Cap= 10.0 µF ESR= 3.0 mOhm VDC= 50.0 V IRMS= 5.5 A	2220 60mm2
5.	Cinx	Kemet	C0805C104K5RACTU Series= X7R	1	\$0.01	Cap= 100.0 nF ESR= 64.0 mOhm VDC= 50.0 V IRMS= 1.64 A	0805 13mm2
6.	Cout	Nippon Chemi-Con	APXE100ARA151MF80G Series= PXE	1	\$0.51	Cap= 150.0 μF ESR= 21.0 mOhm VDC= 10.0 V IRMS= 2.88 A	CAPSMT_62_F80 74mm2
7.	Cramp	Yageo America	CC0805JRNP09BN121 Series= C0G/NP0	1	\$0.01	Cap= 120.0 pF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0805 13mm2

# Name	Manufacturer	Part Number Quanti R yri		nti R rice	Properties	Footprint
8. Css	Yageo America	CC0805KRX7R9BB223 Series= X7R	1	\$0.01	Cap= 22.0 nF ESR= 0.0 Ohm VDC= 50.0 V IRMS= 0.0 A	0805 13mm2
9. Cvcc	MuRata	GRM155R61A105KE15D Series= X5R	1	\$0.01	Cap= 1.0 µF ESR= 0.0 Ohm VDC= 10.0 V IRMS= 0.0 A	0402 8mm2
10. Cvccx	TDK	C2012Y5V1C105Z/0.85 Series= Y5V	1	\$0.01	Cap= 1.0 µF ESR= 9.0 mOhm VDC= 16.0 V IRMS= 0.0 A	0805 13mm2
11. D1	Diodes Inc.	B240A-13-F	1	\$0.09	VF@Io= 500.0 mV VRRM= 40.0 V	SMA 37mm2
12. D2	Diodes Inc.	B220A-13-F	1	\$0.09	VF@Io= 500.0 mV VRRM= 20.0 V	SMA 37mm2
13. D3	Diodes Inc.	B240A-13-F	1	\$0.09	VF@Io= 500.0 mV VRRM= 40.0 V	SMA 37mm2
14. D4	Diodes Inc.	B220A-13-F	1	\$0.09	VF@Io= 500.0 mV VRRM= 20.0 V	SMA 37mm2
15. L1	Bourns	SRR1208-150ML	1	\$0.41	L= 15.0 μH DCR= 36.0 mOhm	SRR1208 216mm2
16. M1	Infineon Technologies	BSZ165N04NS G	1	\$0.30	VdsMax= 40.0 V IdsMax= 31.0 Amps	PG-TSDSON-8 29mm2
17. M2	Texas Instruments	CSD16301Q2	1	\$0.22	VdsMax= 25.0 V IdsMax= 5.0 Amps	TRANS_NexFET_Q2 16mm2
18. Rcomp	Vishay-Dale	CRCW040247K5FKED Series= CRCWe3	1	\$0.01	Res= 47.5 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
19. Renable	Vishay-Dale	CRCW04021M00FKED Series= CRCWe3	1	\$0.01	Res= 1000.0 kOhm Power= 63.0 mW Tolerance= 1.0%	■ 0402 8mm2
20. Rfb1	Vishay-Dale	CRCW04021K00FKED Series= CRCWe3	1	\$0.01	Res= 1,000 Ohm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
21. Rfb2	Vishay-Dale	CRCW04024K12FKED Series= CRCWe3	1	\$0.01	Res= 4.12 kOhm Power= 63.0 mW Tolerance= 1.0%	■ 0402 8mm2
22. Rsense	Stackpole Electronics Inc	CSR1206FK75L0 Series= ?	1	\$0.10	Res= 75.0 mOhm Power= 500.0 mW Tolerance= 1.0%	1206 19mm2
23. Rt	Vishay-Dale	CRCW040218K7FKED Series= CRCWe3	1	\$0.01	Res= 18.7 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
24. Ruv1	Vishay-Dale	CRCW040232K4FKED Series= CRCWe3	1	\$0.01	Res= 32.4 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
25. Ruv2	Vishay-Dale	CRCW040218K7FKED Series= CRCWe3	1	\$0.01	Res= 18.7 kOhm Power= 63.0 mW Tolerance= 1.0%	0402 8mm2
26. U1	Texas Instruments	LM25118MHE	1	\$2.19	Switcher	MVA20A 74mm2

MXA20A 71mm2

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	415.175 m A	Current	Input capacitor RMS ripple current
2.	Cout IRMS	337.284 m A	Current	Output capacitor RMS ripple current
3.	lin Avg	242.51 m A	Current	Average input current
4.	L lpp	1.168 A	Current	Peak-to-peak inductor ripple current
5.	L1 Irms	1.055 A	Current	Inductor ripple current
6.	M1 Irms	470.509 m A	Current	MOSFET RMS ripple current
7.	SW lpk	1.584 A	Current	Peak switch current
8.	BOM Count	26.0	General	Total Design BOM count
9.	FootPrint	786.0 mm2	General	Total Foot Print Area of BOM components
10.	Frequency	300.0 k Hz	General	Switching frequency
	IC Tolerance	18.0 m V	General	IC Feedback Tolerance
12.	M1 Rdson	18.48 m Ohm	General	Drain-Source On-resistance
13.	M1 ThetaJA	60.0 degC/W	General	MOSFET junction-to-ambient thermal resistance
	Mode	CCM	General	Conduction Mode
	Pout	6.25 W	General	Total output power
	Total BOM	\$4.92	General	Total BOM Cost
-	D1 Tj	34.866 degC	Op_Point	D1 junction temperature
	Vout OP	6.25 V	Op_Point	Operational Output Voltage
	Cross Freq	12.204 k Hz	Op_point	Bode plot crossover frequency
	Duty Cycle	22.138 %	Op_point	Duty cycle
	Efficiency	85.906 %	Op_point	Steady state efficiency
	IC Ti	32.864 degC	Op_point	IC junction temperature
	ICThetaJA	40.0 degC/W	Op_point	IC junction-to-ambient thermal resistance
	IOUT OP	1.0 A	Op_point	lout operating point
	M1 TjOP	30.305 degC	Op_point	MOSFET junction temperature
26.	Operating Topology	Buck	Op_point	The current operating topology of the device
-	Phase Marg	53.256 deg	Op_point	Bode Plot Phase Margin
	VIN_OP	30.0 V	Op_point	Vin operating point
	Vout p-p	24.75 m V	Op_point	Peak-to-peak output ripple voltage
	Cin Pd	517.11 μ W	Power	Input capacitor power dissipation
	Cout Pd	2.389 m W	Power	Output capacitor power dissipation
-	Diode Pd	194.655 m W	Power	Diode power dissipation
	IC Pd	71.594 m W	Power	IC power dissipation
	L Pd	45.0 m W	Power	Inductor power dissipation
	M1 Pd	5.256 m W	Power	MOSFET power dissipation
	M1 PdCond	4.351 m W	Power	M1 MOSFET conduction losses
	M1 PdSw	904.939 μ W	Power	M1 MOSFET switching losses
38.	Total Pd	1.025 W	Power	Total Power Dissipation
	Diode 1 Power	1.025 vv 194.655 m	Unknown	Power dissipation in the diode
55.	Dissipation	OpvalUnits.PD	OTINIOWIT	1 one desipation in the diode
40.	Dissipation Diode 2 Power	250.0 m OpvalUnits.F	D I Inknown	Power dissipation in the diode
40.	Dissipation	250.0 III OpvaiOnits.F	Olikilowii	rowei dissipation in the diode
41	Diode 3 Power	194.655 m	Unknown	Power dissipation in the diode
	Dissipation	OpvalUnits.PD	CHAROWII	1 onor alcolpation in the alcae
42.	Diode 4 Power	250.0 m OpvalUnits.F	PD I Inknown	Power dissipation in the diode
74.	Dissipation	200.0 III Opvaioliits.r	DOUNIOWII	i owoi dissipation in the diode
43.	Input Load Capacitan	co10.1 u F	Unknown	Input load capacitance seen by upstream circuit
43.	input Luau Capacitani	ь е го. г µ г	OHKHOWH	input load capacitatice seem by upstream circuit

Design Inputs

#	Name	Value	Description
1.	lout	1.0 A	Maximum Output Current
2.	lout1	1.0 Amps	Output Current #1
3.	VinMax	30.0 V	Maximum input voltage
4.	VinMin	4.0 V	Minimum input voltage
5.	Vout	6.25 V	Output Voltage
6.	Vout1	6.25 Volt	Output Voltage #1
7.	base_pn	LM25118	National Based Product Number
8.	Та	30.0 degC	Ambient temperature

Design Assistance

2. LM25118 Product Folder: http://www.national.com/pf/LM/LM25118.html: contains the data sheet and other resources.

^{1.} The LM5118 is a wide range buck-boost controller which is operable in an ultra wide input range of 3 to 75V. A buck-boost regulator can maintain regulation for input voltages either higher or lower than the output voltage. The challenge is that buck-boost power converters are not as efficient as buck regulators. The LM5118 has been designed as a dual mode controller whereby the power converter acts as a buck regulator while the input voltage is above the output. As the input voltage approaches the output voltage, a gradual transition to the buck-boost mode occurs. This gradual transition between modes eliminates disturbances at the output during transitions.

National's WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using National's published specifications as well as the published specifications of other device manufacturers. While National does update this information periodically, this information may not be current at the time the simulation is built. National does not warrant the accuracy or completeness of the specifications or any information contained therein. National does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. National does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of National's WEBENCH simulation tools is subject to National's Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.