

# TEMP V3

# **Technical Reference Manual**

# 868 EU - LoRa / Sigfox

Applicable for APP versions >= 2.0.0



# New documentation / Nouvelle documentation

|                                  | ENGLISH                                                                                                                                                                                                                                                                                                                | FRANCAIS                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USER GUIDE                       | <ul> <li>Dedicated to a product</li> <li>Cautions &amp; electrical warnings</li> <li>Declaration of conformity</li> <li>Product functionalities and modes</li> <li>Casing dimensions</li> <li>Characteristics (casing and electrical)</li> <li>LED explanations</li> <li>Specific wiring on terminal blocks</li> </ul> | <ul> <li>Dédié à un produit</li> <li>Recommandations et avertissements<br/>électriques</li> <li>Déclaration de conformité</li> <li>Fonctionnalités et modes du produit</li> <li>Dimensions du boitier</li> <li>Caractéristiques (boitier et électrique)</li> <li>Explication des LED</li> <li>Câblage sur bornier spécifique au produit</li> </ul> |
| TECHNICAL<br>REFERENCE<br>MANUAL | <ul> <li>Dedicated to a product</li> <li>Registers content</li> <li>Frame explanations (uplink and downlink)</li> </ul>                                                                                                                                                                                                | <ul> <li>Dédié à un produit</li> <li>Contenu des registres</li> <li>Explication des trames (uplink et downlink)</li> </ul>                                                                                                                                                                                                                         |
| INSTALLATION<br>GUIDE            | <ul> <li>For all adeunis® products</li> <li>Configuration of the products</li> <li>Installation and fixing</li> <li>Start-up of the products</li> <li>Opening and closing the case</li> <li>Replace battery</li> </ul>                                                                                                 | <ul> <li>Pour tous les produits adeunis®</li> <li>Configuration des produits</li> <li>Installation et fixation</li> <li>Démarrage des produits</li> <li>Ouvrir et fermer les boîtiers</li> <li>Remplacer la batterie</li> </ul>                                                                                                                    |



# TABLE OF CONTENTS

| N  | EW DO   | CUMENTATION / NOUVELLE DOCUMENTATION    | . 2 |
|----|---------|-----------------------------------------|-----|
| T/ | ABLE OF | CONTENTS                                | . 3 |
| 1. | REG     | ISTERS                                  | . 4 |
|    | 1.1     | GENERIC REGISTERS                       | . 4 |
|    | 1.2     | APPLICATIVE REGISTERS                   | . 4 |
|    | 1.3     | ALARM REGISTERS                         | . 5 |
|    | 1.3.1   | 1 Sensor 1                              | . 5 |
|    | 1.3.2   | ? Sensor 2                              | . 5 |
|    | 1.4     | RADIO REGISTERS                         | . 5 |
|    | 1.4.1   |                                         |     |
|    | 1.4.2   | 2 Sigfox Network Registers              | . 7 |
|    | 1.5     | COHERENCY CHECK                         | . 8 |
| 2. | RAD     | IO PROTOCOL                             | . 9 |
|    | 1.6     | STATUS BYTE                             | 9   |
|    | 1.7     | UPLINK FRAME FORMAT                     |     |
|    | 1.7.1   |                                         |     |
|    | 1.7.2   |                                         |     |
|    | 1.7.3   | Reep alive frame (0x30)                 | 11  |
|    | 1.7.4   | Periodic data frame (0x57)              | 11  |
|    | 1.7.5   | 5 Alarms (0x58)                         | 13  |
|    | 1.7.6   | Response to Get register request (0x31) | 14  |
|    | 1.7.7   | Response to Set register request (0x33) | 14  |
|    | 1.7.8   | 3 Transmit conditions                   | 15  |
|    | 1.8     | DOWNLINK FRAME FORMAT                   |     |
|    | 1.8.1   |                                         |     |
|    | 1.8.2   |                                         |     |
|    | 1.8.3   |                                         |     |
|    | 1.8.4   | Get registers (0x40)                    | 16  |
|    | 1.8.5   | Set registers (0x41)                    | 17  |



# 1. REGISTERS

# 1.1 Generic registers

| Register | Size<br>(bytes) | Ba<br>se | Descriptio<br>n | Default<br>Value       | Range<br>(Min-<br>Max) | Comments                                                                                               |
|----------|-----------------|----------|-----------------|------------------------|------------------------|--------------------------------------------------------------------------------------------------------|
| 304      | 2               | 10       | PIN code        | 0<br>(deactivate<br>d) | 0 - 9999               | PIN code used with ATPIN command. Value 0 disables the PIN code.                                       |
| 306      | 1               | 10       | Product<br>mode | 0                      | 0: PARK<br>1: RUN      | In PARK mode, product is not using Radio. In RUN mode, product will send/receive RF uplinks/downlinks. |

# 1.2 Applicative registers

| Register | Size<br>(bytes) | Base | Description                                        | Default value | Min-Max Value                                 | Comments                                                                                                                                                         |  |
|----------|-----------------|------|----------------------------------------------------|---------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 300      | 2               | 10   | Keep alive period                                  | 8640<br>(24h) | 2 65535                                       | X 10 seconds                                                                                                                                                     |  |
| 301      | 2               | 10   | Transmit period of data                            | 1             | 0 65535                                       | Number of backups (history logs) to be done before sending a frame (thus defining the sending period). The value 0 is equivalent to disabling the periodic mode. |  |
| 308      | 4               | 16   | LED activity                                       | 0x7F          | 0-0xFFFFFFF                                   | Default: 10007F<br>Eco : 100070<br>Other values : reserved                                                                                                       |  |
| 320      | 2               | 10   | History period                                     | 1             | 1 65535                                       | Number of readings to be performed before saving in the history logs The value 1 is equivalent to 1 backup per reading                                           |  |
| 321      | 2               | 10   | Sampling period                                    | 1800<br>(1h)  | 15 65535                                      | X 2 seconds                                                                                                                                                      |  |
| 322      | 2               | 10   | Alarm repetition period                            | 0             | 0 65535                                       | If an alarm is active, this register allows the product to send periodically a reminder.  0 : no repetition X sampling period (S321)                             |  |
| 323      | 1               | 10   | Number of additional (redundant) samples per frame | 0             | 0 23                                          | Number of samples to be repeated in the next frame                                                                                                               |  |
| 324      | 1               | 10   | Sensors activation                                 | 3             | 1: Sensor 1<br>2: Sensor 2<br>3: Both sensors |                                                                                                                                                                  |  |



# 1.3 Alarm registers

#### Sensor 1

| Register | Size<br>(bytes) | Base | Description               | Default value   | Min-Max value                                                     | Comments    |
|----------|-----------------|------|---------------------------|-----------------|-------------------------------------------------------------------|-------------|
| 330      | 1               | 10   | Alarm type                | 0<br>(inactive) | 0: Inactive 1: Low threshold 2: High threshold 3: Both thresholds |             |
| 331      | 2               | 10   | High threshold value      | 0               | -550 1550<br>(-55°C to +155°C)                                    | tenth of °C |
| 332      | 1               | 10   | High threshold hysteresis | 0               | 0255                                                              | tenth of °C |
| 333      | 2               | 10   | Low threshold value       | 0               | -550 1550<br>(-55°C to +155°C)                                    | tenth of °C |
| 334      | 1               | 10   | Low threshold hysteresis  | 0               | 0 255                                                             | tenth of °C |

#### 1.3.2 Sensor 2

| Register | Size<br>(bytes) | Base | Description                 | Default value   | Min-Max value                                                     | Comments    |
|----------|-----------------|------|-----------------------------|-----------------|-------------------------------------------------------------------|-------------|
| 340      | 1               | 10   | Alarm type                  | 0<br>(inactive) | 0: Inactive 1: Low threshold 2: High threshold 3: Both thresholds |             |
| 341      | 2               | 10   | High threshold value        | 0               | -550 1550<br>(-55°C to +155°C)                                    | tenth of °C |
| 342      | 1               | 10   | High threshold hysteresis   | 0               | 0255                                                              | tenth of °C |
| 343      | 2               | 10   | Low threshold value         | 0               | -550 1550<br>(-55°C to +155°C)                                    | tenth of °C |
| 344      | 1               | 10   | Low threshold<br>hysteresis | 0               | 0 255                                                             | tenth of °C |

# 1.4 Radio registers

## 1.4.1 LoRaWAN Network Registers

| Register | Description                        | Encoding    | Details                                                                                                                          |
|----------|------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------|
| 201      | Spreading Factor (SF) by           | Decimal     | Default: 12                                                                                                                      |
|          | default                            |             | Min/max: 4 to 12                                                                                                                 |
|          |                                    |             | Unit: None                                                                                                                       |
| 204      | Reserved                           | Hexadecimal | Do not use                                                                                                                       |
| 214      | LORA APP-EUI (first part<br>– MSB) | Hexadecimal | Default: 0 Key encoded on 16 characters. Each register contains a part of the key. Used during the JOIN phase in OTAA mode E.g.: |
| 215      | LORA APP-EUI (second part – MSB)   | Hexadecimal | APP-EUI = 0018B244 41524632<br>• S214 = 0018B244<br>• S215 = 41524632                                                            |



| 040 | LODA ADDIKEV (final                   |                        | D.C. H.O.                                                             |
|-----|---------------------------------------|------------------------|-----------------------------------------------------------------------|
| 216 | LORA APP-KEY (first part – MSB)       | Hexadecimal            | Default: 0 Key encoded on 32-byte characters. Each of the 4 registers |
|     | part – MOD)                           |                        | contains 8 characters.                                                |
|     |                                       |                        | Used during the JOIN phase in OTAA mode                               |
|     |                                       |                        | E.g.:                                                                 |
|     | 1004 400 ((5)//                       |                        | APP-KEY = 0018B244 41524632 0018B200 00000912                         |
| 217 | LORA APP-KEY (second                  | Hexadecimal            | • S216 = 0018B244                                                     |
| 218 | part – MID MSB) LORA APP-KEY (third   | Hexadecimal            | • \$217= 41524632                                                     |
| 210 | part – MID LSB)                       | Tiexadeciiilai         | • S218=0018B200<br>• S219= 00000912                                   |
| 219 | LORA APP-KEY (fourth                  | Hexadecimal            | 3219-00000912                                                         |
|     | part – LSB)                           |                        |                                                                       |
| 220 | LoRaWAN Options                       | Hexadecimal            | Default: 5                                                            |
|     |                                       |                        | Bit 0: Activation of the ADR ON(1)/OFF(0)                             |
|     |                                       |                        | Bit 1: Reserved                                                       |
|     |                                       |                        | Bit 2: DUTYCYCLE ON(1)/DUTYCYCLE OFF(0)                               |
|     |                                       |                        | Bits 3 & 4: Reserved Bits 5 to 7: Reserved                            |
|     |                                       |                        | Dits 5 to 7. Neserved                                                 |
|     |                                       |                        | CAUTION:                                                              |
|     |                                       |                        | Deactivation of the Duty Cycle may result in a violation of the       |
|     |                                       |                        | conditions of use of the frequency band, depending on the use         |
|     |                                       |                        | of the device, thus violating the regulations in force.               |
|     |                                       |                        | In the case of disabling the Duty Cycle, liability is transferred to  |
| 204 | 14 1 6 0 0                            | 5                      | the user.                                                             |
| 221 | Mode of activation                    | Decimal                | Default: 1                                                            |
|     |                                       |                        | Choice: (see NOTE 1 after the table)  • 0: ABP                        |
|     |                                       |                        | • 1: OTAA                                                             |
| 222 | LORA NWK SKEY (first                  | Hexadecimal            | Default: 0                                                            |
|     | part – MSB)                           | and the second         | Parameter encoded on 16 bytes. Each of the 4 registers                |
|     |                                       |                        | contains 4 bytes.                                                     |
| 223 | LORA NWK_SKEY                         | Hexadecimal            |                                                                       |
| 004 | (second part - MID MSB)               | I I a consideration al |                                                                       |
| 224 | LORA NWK_SKEY (third part - MID LSB)  | Hexadecimal            |                                                                       |
| 225 | LORA NWK_SKEY                         | Hexadecimal            |                                                                       |
| 223 | (fourth part – LSB)                   | Tiexadeciiilai         |                                                                       |
| 226 | LORA APP_SKEY (first                  | Hexadecimal            | Default: 0                                                            |
|     | part – MSB)                           |                        | Parameter encoded on 16 bytes. Each of the 4 registers                |
|     | , , , , , , , , , , , , , , , , , , , |                        | contains 4 bytes.                                                     |
| 227 | LORA APP_SKEY                         | Hexadecimal            |                                                                       |
|     | (second part - MID MSB)               |                        |                                                                       |
| 228 | LORA APP_SKEY (third                  | Hexadecimal            |                                                                       |
| 220 | part - MID LSB) LORA APP SKEY         | Hovedesimal            |                                                                       |
| 229 | (fourth part – LSB)                   | Hexadecimal            |                                                                       |
| 257 | Configuration RX2                     | Decimal                | Default: 1                                                            |
|     |                                       | 200                    | 0 : Channel disabled                                                  |
|     |                                       |                        | 1 : Default configuration: LoRaWAN Other: User configuration          |
| 260 | Reserved                              | Decimal                | Do not use                                                            |
|     |                                       |                        |                                                                       |
| 261 | Reserved                              | Decimal                | Do not use                                                            |
|     | NETWORK:                              |                        |                                                                       |
| 280 | NETWORK ID                            | Hexadecimal            | Default: 0 Read only                                                  |
| 004 | DEVICE ADDRESS                        | Hayester to 1          | Defectly 0                                                            |
| 281 | DEVICE ADDRESS                        | Hexadecimal            | Default: 0                                                            |
|     |                                       |                        |                                                                       |

NOTE 1: The "Over The Air Activation" (OTAA) mode uses a JOIN phase before being able to transmit on the network. This mode uses the APP\_ EUI (S214 and S215) and APP\_KEY (S216 to S219) codes during this phase to



create the keys for network communication. Once this phase is completed, the codes APP\_sKEY, NWK\_sKEY and DEVICE ADDRESS will be present in the corresponding registers. A new JOIN phase is started every time the device exits Command mode, a reset is performed or the device is turned on. Codes:

- APP\_EUI identifier for global use (provided by default by adeunis®)
- APP\_KEY device application key (provided by default by adeunis®)

The "Activation by personalization" (ABP) mode has no JOIN phase; it transmits directly on the network using the codes NWK\_sKEY (S222 to S225), APP\_sKEY (S226 to S229) and DEVICE ADDRESS (S281) to communicate. Codes:

- NWK sKEY network session key (provided by default by adeunis®)
- APP\_KEY applicative session key (provided by default by adeunis®)
- DEVICE ADDRESS Address of the device in the network (provided by default by adeunis®)

NOTE 2: By default, channels 0 to 2 use the default settings of the LoRaWAN network; the other 4 channels are inactive. A register value different from 0 or 1 allows the channel to be configured as follows:

| Bit         | 7 | 6 | 5      | 4      | 3 | 2 | 1 | 0 |
|-------------|---|---|--------|--------|---|---|---|---|
| Description |   |   | DR Max | DR Min |   |   |   |   |
| Example     |   |   | 5      | 3      |   |   |   |   |

| Data Rate value (DR) | Description     |
|----------------------|-----------------|
| 0                    | SF12            |
| 1                    | SF11            |
| 2                    | SF10            |
| 3                    | SF9             |
| 4                    | SF8             |
| 5                    | SF7             |
| 6                    | SF7 – BW 250kHz |
| 7                    | FSK 50 kps      |

The example given allows the user to configure a frequency of 868.1 Hz and authorizes a SF 7 to 9. The command to be sent to perform this

operation is: ATS250=86810053<cr>

| Regi | ster | Size<br>(bytes) | Base | Description               | Default<br>Value | Range<br>(Min-<br>Max) | Minimum<br>required<br>Application<br>version | Comments                                                                                   |
|------|------|-----------------|------|---------------------------|------------------|------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------|
| 30   | 3    | 1               | 10   | LORA<br>Confirmed<br>mode | 0                | 0-1                    | V1.2.0                                        | LoRa only – activation or deactivation of the confirmed mode 0: deactivation 1: activation |



| Register | Size<br>(bytes) | Base | Description                  | Default<br>Value | Range<br>(Min-<br>Max) | Minimum<br>required<br>Application<br>version | Comments                                                                                         |
|----------|-----------------|------|------------------------------|------------------|------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|
| 307      | 2               | 10   | Sigfox<br>Downlink<br>period | 1440<br>(24h)    | 0-65535                | >= V2.0.0                                     | X 1 minute  ⇒ Period : 1 min to 45 days                                                          |
| 317      | 1               | 10   | Sigfox<br>DutyCycle          | 1                | 0-1                    | V1.2.0                                        | 0 : dutycycle activated     1 : dutycycle deactivated  Not displayed anymore in LoRa since 2.0.0 |

# 1.5 Coherency check

A configuration coherency check is made at the time of the backup (AT&W). Cases where backups are refused (AT&W returns "E") because considered as inconsistent:

| Cases refused                          | Description                                                                 |
|----------------------------------------|-----------------------------------------------------------------------------|
| (S330 = 3) && (S333 > S331)            | CH1: Low threshold > High threshold                                         |
| (S330 = 3) && ((S333 + S334) > (S331 - | CH1 : (Low threshold + Low hysteresis) > (High threshold - High hysteresis) |
| S332))                                 |                                                                             |
| (S324 = 2) && (S330 != 0)              | CH1 : Sensor not activated and alarm activated                              |
| (S340 = 3) && (S343 > S341)            | CH2: Low threshold > High threshold                                         |
| (S340 = 3) && ((S343 + S344) > (S341 - | CH2 : (Low threshold + Low hysteresis) > (High threshold - High hysteresis) |
| S342))                                 |                                                                             |
| (S324 = 1) && (S340 != 0)              | CH2 : Sensor not activated and alarm activated                              |



# 2. RADIO PROTOCOL

Data with size greater than 1 byte will be transmitted MSB first. In LoRa, frames are sent on port 1.

## 1.6 Status byte

All frames sent by the product contain a status byte. Its format is identical for all IoT Adeunis products.

| Alarm Status  | Bit 7         | Bit 6        | Bit 5    | Bit 4    | Bit 3 | Bit 2   | Bit 1  | Bit 0 |
|---------------|---------------|--------------|----------|----------|-------|---------|--------|-------|
|               | Frame Counter |              | AppFlag2 | AppFlag1 | HW    | Low Bat | Config |       |
| No Error      |               |              |          | 0        | 0     | 0       | 0      | 0     |
| Configuration |               |              |          | 0        | 0     | 0       | 0      | 1     |
| done          |               |              | U        | U        | O     | U       | Ī      |       |
| Low bat       | (             | 0x00 to 0x07 | 7        | 0        | 0     | 0       | 1      | 0     |
| HW Error      |               |              |          | 0        | 0     | 1       | 0      | 0     |
| AppFlag1      |               |              |          | 0        | 1     | 0       | 0      | 0     |
| AppFlag2      |               |              |          | 1        | 0     | 0       | 0      | 0     |

The status byte provides two bits reserved for a specific use of each product (AppFlag1 and AppFlag2). For this product:

- AppFlag1: configuration inconsistency
  - o Samples lost in periodic data frame because the payload is not sufficient.
- AppFlag2: Number of channels
  - o 0: 1 channel activated
  - o 1: 2 channels activated

## 1.7 Uplink Frame format

#### 1.7.1 Product configuration (0x10)

This frame is sent following the reception of a frame with code 0x01, or at the start of the product.

| Offset<br>(in byte) | Data   | Description                                        |
|---------------------|--------|----------------------------------------------------|
| 0                   | 0x10   | Frame code                                         |
| 1                   | Status | Status byte                                        |
| 2-3                 | S300   | Transmission period of the Keep Alive frame        |
| 4-5                 | S301   | Transmission period of the periodic frame          |
| 6-7                 | S320   | History period                                     |
| 8-9                 | S321   | Sampling period                                    |
| 10                  | S323   | Number of additional (redundant) samples per frame |

#### Decoding example:

| Offset<br>(in byte) | Data   | Description                                                    |
|---------------------|--------|----------------------------------------------------------------|
| 0                   | 0x10   | Frame code                                                     |
| 1                   | 0x10   | Frame counter: 0 Bit4@1: 2 sensors activated Bit1@0: no LowBat |
| 2-3                 | 0x21C0 | 8640 => 8640 x 10s = 86400s = 24h                              |
| 4-5                 | 0x0001 | 1                                                              |
| 6-7                 | 0x0001 | 1                                                              |
| 8-9                 | 0x0708 | 1800 => 1800 x 2s = 3600s = 1h                                 |
| 10                  | 0x00   | No redundancy                                                  |



#### Network configuration (0x20) 1.7.2

This frame is sent following the reception of a frame with code 0x02, or at the start of the product.

#### 1.7.2.1 LoRa 868

| Offset<br>(in byte) | Data   | Description                                                                                                                                                                  |
|---------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                   | 0x20   | Frame code                                                                                                                                                                   |
| 1                   | Status | Status byte                                                                                                                                                                  |
| 2                   | S220   | LoRa options Bit 0: Activation of the ADR ON(1)/OFF(0) Bit 1: Reserved Bit 2: DUTYCYCLE ON(1)/DUTYCYCLE OFF(0) Bits 3 & 4: Reserved Bit 5: CLASS A (0) Bits 6 to 7: Reserved |
| 3                   | S221   | Provisionning mode (0: ABP, 1:OTAA)                                                                                                                                          |

#### Decoding example:

| Offset<br>(in byte) | Data | Description                                                    |
|---------------------|------|----------------------------------------------------------------|
| 0                   | 0x20 | Frame code                                                     |
| 1                   | 0x30 | Frame counter: 1 Bit4@1: 2 sensors activated Bit1@0: no LowBat |
| 2                   | 0x05 | CLASS A Dutycycle activated ADR ON                             |
| 3                   | 0x01 | OTAA                                                           |

## 1.7.2.1 Sigfox 868

| <b>0</b> 0x20 Frame code |  |
|--------------------------|--|
| 1 Status Status byte     |  |
| 2 S202 Retry count       |  |

#### Decoding example:

| Offset<br>(in byte) | Data | Description                                                    |
|---------------------|------|----------------------------------------------------------------|
| 0                   | 0x20 | Frame code                                                     |
| 1                   | 0x30 | Frame counter: 1 Bit4@1: 2 sensors activated Bit1@0: no LowBat |
| 2                   | 0x02 | 2 retries                                                      |



#### 1.7.3 Keep alive frame (0x30)

#### This frame is sent:

- after an amount of time determined by S300 register
- following the reception of a frame with code 0x02

#### 1.7.3.1 1 channel activated

| Offset<br>(in byte) | Data               | Description |
|---------------------|--------------------|-------------|
| 0                   | 0x30               | Frame code  |
| 1                   | Status             | Status byte |
| 2-3                 | T° <sub>(t0)</sub> | Status byte |

#### Decoding example:

| Offset (in byte) | Data   | Description                                                         |
|------------------|--------|---------------------------------------------------------------------|
| 0                | 0x30   | Frame code                                                          |
| 1                | 0xE2   | Frame counter: 7 Bit4@0: 1 sensor activated Bit1@1: LowBat detected |
| 2-3              | 0x01B3 | 435 => 43.5°C                                                       |

#### 1.7.3.2 2 channels activated

| Offset<br>(in byte) | Data                  | Description    |
|---------------------|-----------------------|----------------|
| 0                   | 0x30                  | Frame code     |
| 1                   | Status                | Status byte    |
| 2-3                 | T°CH1(t0)             | In tenth of °C |
| 4-5                 | T° <sub>CH2(t0)</sub> | In tenth of °C |

#### Decoding example:

| Offset<br>(in byte) | Data   | Description                 |
|---------------------|--------|-----------------------------|
| 0                   | 0x30   | Frame code                  |
|                     |        | Frame counter: 7            |
| 1                   | 0xF2   | Bit4@1: 2 sensors activated |
|                     |        | Bit1@1: LowBat detected     |
| 2-3                 | 0x01B3 | 435 => 43.5°C for sensor 1  |
| 4-5                 | 0xFF9C | -100 => -10°C for sensor 2  |

#### 1.7.4 Periodic data frame (0x57)

The measure frequency is defined by: S321 \* S320
The sending frequency is defined by: S321 \* S320 \* S301
The number of samples per channel is defined by: (S301 + S323)

#### 1.7.4.1 1 channel activated

Maximum number of samples per frame:

LoRa 868: 24 samplesSigfox 868: 5 samples



| Offset<br>(in byte) | Data                  | Description    |  |
|---------------------|-----------------------|----------------|--|
| 0                   | 0x57                  | Frame code     |  |
| 1                   | Status (AppFlag2 = 0) | Status byte    |  |
| 2-3                 | T°(t0)                | In tenth of °C |  |
| 4-5                 | T° <sub>(t-1)</sub>   | In tenth of °C |  |
| 6-7                 | T° <sub>(t-2)</sub>   | In tenth of °C |  |
| 8-9                 | T° <sub>(t-3)</sub>   | In tenth of °C |  |
| 10-11               | T° <sub>(t-4)</sub>   | In tenth of °C |  |
| 12-13               | T° <sub>(t-5)</sub>   | In tenth of °C |  |
| 14-15               | T° <sub>(t-6)</sub>   | In tenth of °C |  |
|                     |                       |                |  |

## Decoding example (for 2 samples):

| Offset<br>(in byte) | Data   | Description                                                             |
|---------------------|--------|-------------------------------------------------------------------------|
| 0                   | 0x57   | Frame code                                                              |
| 1                   | 0x80   | Frame counter: 4 Bit4@0: 1 sensor activated Bit1@0: LowBat not detected |
| 2-3                 | 0x01B3 | 435 => 43.5°C for t=0                                                   |
| 4-5                 | 0x8000 | Invalid measure for t=-1 (sensor disconnected)                          |

#### 1.7.4.2 2 channels activated

Maximum number of samples per frame and per channel:

LoRa 868: 12 samples per channel Sigfox 868: 2 samples per channel

| Offset<br>(in byte) | Data                  | Description    |
|---------------------|-----------------------|----------------|
| 0                   | 0x57                  | Frame code     |
| 1                   | Status (AppFlag2 = 1) | Status byte    |
| 2-3                 | T°CH1(t0)             | In tenth of °C |
| 4-5                 | T°CH2(t0)             | In tenth of °C |
| 6-7                 | T°CH1(t-1)            | In tenth of °C |
| 8-9                 | T°CH2(t-1)            | In tenth of °C |
| 10-11               | T°CH1(t-2)            | In tenth of °C |
| 12-13               | T°CH2(t-2)            | In tenth of °C |
| 14-15               | T°CH1(t-3)            | In tenth of °C |
|                     | <                     |                |

#### Decoding example (for 2 samples):

| Offset (in byte) | Data   | Description                                                          |
|------------------|--------|----------------------------------------------------------------------|
| 0                | 0x57   | Frame code                                                           |
| 1                | 0x92   | Frame counter: 4 Bit4@1: 2 sensors activated Bit1@1: LowBat detected |
| 2-3              | 0x01B3 | 435 => 43.5°C for sensor 1 @ t=0                                     |
| 4-5              | 0xFF9C | -100 => -10°C for sensor 2 @ t=0                                     |
| 6-7              | 0x01F4 | 500 => 50.0°C for sensor 1 @ t=-1                                    |
| 8-9              | 0xFFFF | -1 => -0.1°C for sensor 2 @ t=-1                                     |



## 1.7.5 Alarms (0x58)

This frame is sent during the appearance, or disappearance, of a threshold exceeding alarm.

#### 1.7.5.1 1 active channel

| Offset<br>(in byte) | Data                  | Description                      |
|---------------------|-----------------------|----------------------------------|
| 0                   | 0x58                  | Frame code                       |
| 1                   | Status (AppFlag2 = 0) | Status byte                      |
| 2                   | Alarm status          | 0: No alarm<br>1: High threshold |
| _                   | Alaim status          | 2: Low threshold                 |
| 3-4                 | Temperature           | In tenth of °C                   |

#### Decoding example:

| Offset | Data   | Description                                                             |
|--------|--------|-------------------------------------------------------------------------|
| 0      | 0x58   | Frame code                                                              |
| 1      | 0x80   | Frame counter: 4 Bit4@0: 1 sensor activated Bit1@0: LowBat not detected |
| 2      | 0x01   | 1: temperature is higher than the configured threshold                  |
| 3-4    | 0x0032 | 50 => 5.0°C                                                             |

#### 1.7.5.2 2 active channels

| Offset | Data                  | Description       |
|--------|-----------------------|-------------------|
| 0      | 0x58                  | Frame code        |
| 1      | Status (AppFlag2 = 1) | Status byte       |
|        |                       | 0: No alarm       |
| 2      | CH1 Alarm status      | 1: High threshold |
|        |                       | 2: Low threshold  |
| 3-4    | CH1 Temperature       | In tenth of °C    |
|        |                       | 0: No alarm       |
| 5      | CH2 Alarm status      | 1: High threshold |
|        |                       | 2: Low threshold  |
| 6-7    | CH2 Temperature       | In tenth of °C    |

### Decoding example:

| Offset | Data   | Description                                                              |
|--------|--------|--------------------------------------------------------------------------|
| 0      | 0x58   | Frame code                                                               |
| 1      | 0x90   | Frame counter: 4 Bit4@1: 2 sensors activated Bit1@0: LowBat not detected |
| 2      | 0x01   | 1: temperature is higher than the configured threshold                   |
| 3-4    | 0x0032 | 50 => 5.0°C                                                              |
| 5      | 0x00   | 0: no alarm                                                              |
| 6-7    | 0x0032 | 50 => 5.0°C                                                              |



## 1.7.6 Response to Get register request (0x31)

Following reception of a downlink frame with the code 0x40, the frame 0x31 is transmitted. It contains all the values of the registers requested in the downlink frame 0x40.

| Offset (in byte) | Data    | Description                     |
|------------------|---------|---------------------------------|
| 0                | 0x31    | Frame code                      |
| 1                | Status  | Status byte                     |
| 2-3              | Value 1 | If value 1 is a 2-byte register |
| 4                | Value 2 | If value 2 is a 1-byte register |
| 5-8              | Value 3 | If value 3 is a 4-byte register |
|                  |         |                                 |

If an error is detected in the request, the returned 0x31 frame will be empty.

Note: the size of the data registers is variable depending on the register number. Refer to the list of registers to determine the size of each one and to deduce the total size of the data returned by the 0x31 frame.

#### Decoding example:

| Offset (in byte) | Data       | Description                                                             |
|------------------|------------|-------------------------------------------------------------------------|
| 0                | 0x31       | Frame code                                                              |
| 1                | 0x80       | Frame counter: 4 Bit4@0: 1 sensor activated Bit1@0: LowBat not detected |
| 2-3              | 0x1234     | 4660 (considering that value 1 is a 2-byte register)                    |
| 4                | 0xFF       | 255 (considering that value 2 is a 1-byte register)                     |
| 5-8              | 0x00000000 | 0 (considering that value 3 is a 4-byte register)                       |
|                  |            |                                                                         |

## 1.7.7 Response to Set register request (0x33)

Following reception of a downlink frame with the code 0x41, the frame 0x33 is transmitted. It shows whether the downlink frame (0x41) has been received and gives information on the support status of the latter.

| Offset (in byte) | Data           | Description                                                                                                                                                                                                                                                                                                                                                                      |  |
|------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0                | 0x33           | Frame code                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1                | Status         |                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 2                | Request status | <ul> <li>0x00 : N/A</li> <li>0x01 : success</li> <li>0x02 : success – no update (value to set is the current register value)</li> <li>0x03 : error – coherency</li> <li>0x04 : error – invalid register</li> <li>0x05 : error – invalid value</li> <li>0x06 : error – truncated value</li> <li>0x07 : error – access not allowed</li> <li>0x08 : error – other reason</li> </ul> |  |
| 3-4              | Register Id    | Indicates to the user the register that caused the error (only if "Request Status" is different from 0x01).                                                                                                                                                                                                                                                                      |  |

CAUTION: if the request 0x41 concerns several registers, the device will stop the analysis of the Downlink request at the first error and will send the Status frame with the reason and the identifier of the register concerned.



In the event of an error, if a partial reconfiguration has taken place before the error was detected, the device restarts and returns to its last valid configuration. As a result, you will have to configure the device again with the new data.

## Decoding example:

| Offset (in byte) | Data   | Description                                                             |
|------------------|--------|-------------------------------------------------------------------------|
| 0                | 0x33   | Frame code                                                              |
| 1                | 0x80   | Frame counter: 4 Bit4@0: 1 sensor activated Bit1@0: LowBat not detected |
| 2                | 0x04   | invalid register                                                        |
| 3-4              | 0x0140 | 320: register S320 does not exist (should be S3XX)                      |

#### 1.7.8 Transmit conditions

| Frame code | Description            | Sending conditions                                               |
|------------|------------------------|------------------------------------------------------------------|
| 0x10       | Status (configuration) | Product start up                                                 |
|            |                        | <ul> <li>Exit configuration mode (AT command)</li> </ul>         |
|            |                        | <ul> <li>Reception of frame 0x01 (get product config)</li> </ul> |
| 0x20       | Network configuration  | Product start up                                                 |
|            |                        | <ul><li>Exit configuration mode (AT command)</li></ul>           |
|            |                        | <ul> <li>Reception of frame 0x02 (get network config)</li> </ul> |
| 0x30       | Keep alive             | Periodically if no periodical data is defined                    |
|            |                        | <ul> <li>Reception of frame 0x05 (get value)</li> </ul>          |
| 0x57       | Periodic data          | Periodically                                                     |
| 0x58       | Alarm                  | Threshold crossing                                               |



## 1.8 Downlink Frame format

#### 1.8.1 Get applicative configuration (0x01)

| Offset<br>(in byte) | Data | Description |
|---------------------|------|-------------|
| 0                   | 0x01 | Frame code  |

When the device receives the downlink, it will generate a product configuration frame (0x10).

#### 1.8.2 Get network configuration (0x02)

| Offset (in byte) | Data | Description |  |
|------------------|------|-------------|--|
| 0                | 0x02 | Frame code  |  |

When the device receives the downlink, it will generate a network configuration frame (0x20).

#### 1.8.3 Get value (0x05)

| Offset<br>(in byte) | Data | Description |
|---------------------|------|-------------|
| 0                   | 0x05 | Frame code  |

When the device receives the downlink, it will generate a KEEP ALIVE frame (0x30) with instant measured temperatures.

#### 1.8.4 Get registers (0x40)

This frame (0x40) allows you to inform the device through the network that it must send the values of specific S3XX registers in an uplink frame (0x31).

| Offset<br>(in byte) | Data    | Description                                                                          |  |
|---------------------|---------|--------------------------------------------------------------------------------------|--|
| 0                   | 0x40    | Frame code                                                                           |  |
| 1                   | CONFID1 | Index of the register to be cent. The corresponding register is                      |  |
| 2                   | CONFID2 | Index of the register to be sent. The corresponding register is 300 + CONFIDX value. |  |
| 3                   | CONFID3 | 300 + CONFIDA Value.                                                                 |  |

IMPORTANT: the user can specify several CONF IDs in the downlink frame but it is up to the user's responsibility to verify that according to the protocol, the size of the data available in a downlink will be large enough to contain all the desired data. Otherwise, the application will send only the first values.

In Sigfox mode: backend may request to send 8 bytes in a downlink. All unused bytes should set to 0xFF to ask the product to stop the downlink frame parsing.

#### Coding example:

| Offset (in byte) | Data      | Description                 |
|------------------|-----------|-----------------------------|
| 0                | 0x40      | Frame code                  |
| 1                | 0x00      | Get register S300           |
| 2                | 0x14      | Get register S320           |
| 3                | 0x20      | Get register S332           |
| 4-7              | 0xFFFFFFF | In SFX : ignored by product |



#### 1.8.5 Set registers (0x41)

This frame (0x41) allows you to change the value of requested S3XX registers.

| Offset (in byte) | Data                  | Description                                                                        |
|------------------|-----------------------|------------------------------------------------------------------------------------|
| 0                | 0x41                  | Frame code                                                                         |
| 1                | CONFID1               | Index of the register to be changed. The corresponding register is "300 + CONFID1" |
| 2                | Value of<br>CONF ID 1 | Value to set In this example, its value is contained in 1 byte                     |
| 3                | CONFID2               | Index of the register to be changed. The corresponding register is "300 + CONFID2" |
| 4-5              | Value of<br>CONF ID 2 | Value to set In this example, its value is contained in 2 bytes                    |
|                  |                       |                                                                                    |

Following the sending of the downlink 0x41, the associated uplink 0x33 is immediately returned. If the update of the register(s) went well, the device will perform a backup and begin its restart procedure automatically. In addition, the Config bit of the status byte will be set to 1 in the next scheduled uplink frame (periodic or alarm or keep alive frame) if everything went well.

#### Coding example:

| Offset (in byte) | Data   | Description                                             |
|------------------|--------|---------------------------------------------------------|
| 0                | 0x41   | Frame code                                              |
| 1                | 0x14   | Register to modify is S320                              |
| 2-3              | 0x00AA | Value to set in S320 is 170 (S320 is a 2-byte register) |
| 4                | 0x1E   | Register to modify is S330                              |
| 5                | 0x02   | Value to set in S330 is 2(S330 is a 1-byte register)    |
|                  |        |                                                         |