

Table of Contents

1 Introduction	2
1. Introduction	3
Why we published this report	3
Notes about this study	3
The role of CPU and why it matters	4
2. Summary of results	4
3. Cloud Industry Overview by Structure Research	5
What's going on in the market?	5
Why is performance important?	6
Bringing it together	6
4. Performance Comparisons	7
System Performance	7
Integer and Floating Point Performance	8
Memory Bandwidth Performance	9
5. Pricing Comparisons	10
On Demand and Monthly Pricing	10
1 Year and 3 Year Pricing	11
Spot Instance Pricing	12
6. Value Comparisons	14
The CloudSpecs Score Calculation	14
On Demand and Monthly Value	15
Annual Value	15
3 Year Value	15
7. Conclusion	16
Application and Use Case Comparisons	16
About Cloud Spectator	17
About Structure Research	17
8. Appendix	18
Pricing Models	18
Amazon EC2 Pricing Model	18
Spot Instances	18
On Demand Instances	18
Reserved Instances	18
CenturyLink Cloud Pricing Model	19
Virtual Hardware Information	19
SSH Commands for replicating this study	20
About Geekbench 3	20
Integer Performance Workloads	21
Floating Point Performance Workloads	21
Memory Performance Workloads	21
Raw Scores	22
1 vCPU Machine Results	22

2 vCPU Machine Results234 vCPU Machine Results248vCPU Machine Results2616vCPU Machine Results27

Introduction

Since 2011, Cloud Spectator has tracked the pricing models and performance capabilities of the most recognized cloud infrastructure providers in the industry. One of Cloud Spectator's primary goals is to establish a standard of comparison to help cloud infrastructure users better understand the market landscape so they can make more informed decisions when selecting their provider(s).

Philbert Shih is the Founder and Managing Director of Structure Research, an independent research and consulting firm devoted to the hosting and cloud infrastructure services market. Mr. Shih has covered the hosting infrastructure space for over a decade. Prior to founding Structure Research, Mr. Shih was the first hosting analyst hired after Tier1 Research was sold to The 451 Group (2005) and spent six years as Senior Analyst for Hosting. In this role, Mr. Shih helped launch Tier1's coverage of hosting in international markets and was the lead and contributing author to all of the company's guarterly and bi-annual hosting infrastructure sector reports.

Why we published this report

Recently, CenturyLink Cloud announced lower prices for their cloud instances, claiming to make "a bold cloud move against you-know-who." For this report, Cloud Spectator wanted to see if the claim only held true to CenturyLink Cloud's claim for bandwidth value, or if it meant system value as well. In the case that it did apply, how much did it apply; i.e., was it only a matter of On-Demand pricing, or does the claim hold true for long-term pricing (think Amazon Reserved Instances) as well? And is it only a particular instance size, or does it span a variety of scalable virtual machines?

This report uses data gathered by running the Geekbench 3 benchmark suite, which simulates integer and floating point intensive compute processes to provide an understanding of processor performance. It also leverages STREAM, a recognized memory bandwidth benchmark. STREAM combines with the processor testing to produce the final score output of Geekbench 3 which gives an indexed, comparative value of system performance.

Notes about this study

- Geekbench 3 is a benchmark suite designed to measure and compare performance of machines, but may not reflect the performance of specific applications. Certain applications have complex system requirements (e.g., disk IOPS, network throughput, additional nodes, etc.) and dependencies outside of the scope of Geekbench 3 and this report. Thus, the results in this published report should be viewed as a general, comparative measurement and should not be extrapolated to reflect specific application performance, where bottlenecks may occur independent of processor performance.
- The hypervisor is a central part to controlling and allocating processing power in a public environment. Thus, this is not exclusively a comparison of processor performance across providers, but also a glimpse into hypervisor behavior and processing allocation with respect to scalability, and the costs associated. Amazon EC2 has heavily modified its Xen-based hypervisor, while CenturyLink uses VMware.
- The information on processors in this report are extracted from the system BIOS. As this is a public cloud environment, the system BIOS lists what the hypervisor reports; i.e., the accuracy of the processors reported are dependent on the hypervisor reporting them. It cannot be guaranteed with 100% certainty that the BIOS reports accurate processor information.
 - E.g., on the AWS website, Amazon states the M3 family features Intel Xeon E5-2670 processors (although in the footnote, Amazon states that "M3 instances may also launch as an Intel Xeon E5-2670 v2 (Ivy Bridge) Processor running at 2.5GHz"), while the C3 family features Intel Xeon E5-2670 v2 processors. The BIOS from the tested VMs reported the M3 running on Intel Xeon E5-2670 v2, and the C3's all running on Intel Xeon E5-2680 v2.

- All results from this report can only reflect the scope of this project including but not limited to virtual machine sizes, operating systems, default compilers, physical hosts, costs at the time of experimentation, etc. Thus, results should not be assumed to be reflective of performance outside of the scope of the project; e.g., variations of operating system images may or may not affect performance results. Geekbench 3 measures processor performance and tries to minimize the impact that the compiler and operating system have on the measurement.
 - o To standardize comparisons, Cloud Spectator provisioned virtual machines in CenturyLink's Virginia (Sterling) data center. Historically, Cloud Spectator monitors other data centers in the CenturyLink Cloud; hardware may not be not standardized, and performance is also highly dependent on the type of physical machine a virtual server is provisioned inside.
 - E.g., a 4 vCPU, 8GB Memory virtual machine enabled on CenturyLink Cloud's New York data center sustained 193 megapixels per second decompressing a JPEG file, while the same configuration on a Hyperscale enabled machine in CenturyLink Cloud's Virginia data center sustained 305.2 megapixels per second (to see these detailed results, please view Appendix - Raw Scores). The results of the New York data center can be viewed through the Cloud Spectator Portal1.

The Role of CPU and Memory and Why It Matters

On different levels, all applications and workloads depend on the processor and memory. In public cloud environments, a lack of transparency in performance of virtual cores results in limited understanding of processor capabilities and how it can affect application performance. With the practice of CPU contention common in public cloud environments, it becomes even more important for the user to understand what defines a cloud provider's virtual core, and how that definition equates to expected performance of the application(s).

Geekbench 3 was selected as the benchmark tool for this project due to its versatility, ease-of-use, and variety of practical sample workloads to test the processor and memory through a series of various tasks. Tests are categorized into three sections:

- Integer workloads, including various compression, decompression, and encryption, which are common workload tasks for Internetaccessible servers such as web servers.
- Floating point workloads, including image rendering and financial modeling, which represent more complex and modern CPU tasks.
- Memory tests using STREAM, the industry-standard open source memory bandwidth benchmark. Memory bandwidth is important in the category of high performance computing (e.g., scientific modeling) and in-memory databases

Summary of Results

Key Findings and Observations

- From the series of system tests run on increasingly powerful virtual machines, CenturyLink Cloud consistently delivers higher performance against equivalent machines on its competitor, Amazon EC2.
- When factoring in pricing, CenturyLink Cloud also provides more system value per dollar spent. Amazon EC2 provides more value than CenturyLink Cloud with a 3-year commitment.

- The single virtual core machine (m3.medium) on Amazon EC2 ran Intel Xeon E5-2670 v2 @ 2.50Ghz. All other virtual machines ran on Intel Xeon E5-2680 v2 @ 2.80GHz. The single core performance difference between the E5-2670 and the E5-2680 was approximately 1.83x.
- All tests run on CenturyLink Cloud virtual machines were conducted on Intel Xeon E5-2650 v2 @ 2.60GHz.
- CenturyLink Cloud scores 1.6x higher than Amazon EC2 on average in the system tests.
- The closest scores between two providers were achieved on the 4 virtual core machine, with CenturyLink scoring 1.43x higher.
- On the single core machine, CenturyLink achieved 2.06x greater score than Amazon EC2 M3's counterpart. While Amazon EC2 C3
 multi-core machines scored higher on single core tests, Amazon EC2's C3 Family has no single core offering.
- At a 3-year commitment, Amazon EC2's Heavy Utilization Reserved Instance significantly lowers the cost of the virtual machine, increasing its value to surpass CenturyLink Cloud.

Cloud Industry Overview by Structure Research

Philbert Shih Managing Director Structure Research, Ltd. ps@structureresearch.net

What is going on in the market?

There has been a surge of interest in cloud infrastructure performance over the past few years. This should not come as a surprise in a competitive landscape where Amazon is in a position of strength against the rest of the market. Competing clouds, run by hosters, MSPs and telcos - are looking for ways to compete and differentiate against Amazon and speed and performance is one very effective way of doing that. The performance story is compelling because it is backed by the experience of end users that have found Amazon sometimes comes up a bit short in performance, particularly when it comes to more compute-intensive workloads like databases and high-traffic websites. Data produced by third party performance benchmarking organizations also backs this up. Simply put, clouds run by hosters and other IT service providers have demonstrated – in many cases and to varying degrees – that they can deliver higher performance levels in the cloud by being more targeted and tackling bottlenecks with private layer 2 networks, software-defined networking, enterprise-grade equipment, SSD-based storage and well-constructed architectures.

Performance is also an important variable for determining the true underlying cost of any given cloud infrastructure service – a source of confusion among today's end uers. The common perception in the market is that Amazon is less expensive than competing clouds. That might be true in some cases and certainly scale and resources would put the likes of Amazon at an advantage. But as it turns out perception does not always fit reality. Competing cloud providers are very competitively priced and often have simpler billing models that include a lot of extra costs that are not reflected in Amazon's baseline pricing and are added on later and often unexpectedly. Transaction fees and bandwidth costs are two prominent examples. Third party data also shows that the performance-price ratio can and often does favor hoster-operated clouds that go up against Amazon. When controlling for the extra variable – performance – the cost of competing clouds is brought into clearer light. And as a result, competing clouds can fairly claim on par and even more value than Amazon.

Why is performance important?

Speed and performance in the cloud is important primarily because it is attached to revenue. If a business is running a production workload or a transactional application, latency issues can degrade the user experience. And that translates directly into customer goodwill and dollars and cents. Performance is also increasingly important because of the rapidly growing expansion of the Internet. Any given website or application can have end users coming from all around the globe. Weak performance can limit an organization's reach and hinder its overall opportunity and addressable market. Again, it boils right down to the bottom line. Performance is a key driver of value that directly impacts a business.

From a competitive standpoint, cloud infrastructure providers need to consider performance as a point of differentiation. Performance is crucial because it can be used as a way to provide and prove value-add, thereby enabling providers to maintain pricing integrity. Performance is also important for providers because it widens the scope of addressable use cases they can compete for and keeps them squarely in the game for production workloads, which are ideal due to stickiness, stability, predictability and long-term growth potential.

Bringing it together

The cloud infrastructure market is accelerating and competition is intensifying. As increasingly diverse and sophisticated workloads move to the cloud, the more variables like performance will be taken into consideration. This has implications for both end users and providers and is sure to spawn a new breed of clouds that will cater to these very specific requirements. The challenge will be how to balance the value-add of performance with cost. In today's market there is no clear leader and various providers offer compelling value when the data analysis is broken down as close to an apples to apples comparison as possible.

PERFORMANCE COMPARISONS

System Performance

CenturyLink scores an average of 1.6x higher than Amazon EC2 on side-by-side virtual machine comparisons. As the virtual machines scaled up in power, CenturyLink consistently achieved higher performance scores. Both cloud providers use modern Intel processors.

As a reference point, Geekbench 3 uses a Mac Mini (Mid 2011), which has an Intel Core i5-2520M @ 2.50GHz, for its baseline. The baseline score is 2,500. CenturyLink surpasses this baseline at its single virtual core offering, while Amazon EC2 surpasses it with the c3.large dual virtual core offering.

Amazon's low 1vCPU score is due to the CPU allocation of its slightly less powerful Intel Core E5-2670 v2 @ 2.50GHz found in its M3 offering. Beyond the 1vCPU offering, all other tests were run on its latest-generation Compute Optimized C3 instances. According to Amazon, this family provides "customers with the highest performing processors and the lowest price/compute performance available in EC2 currently." The C3 family of machines tested by Cloud Spectator in this study all ran on Intel Xeon E5-2680 v2 @ 2.80GHz.

While the C3 family has no single virtual core offering, when running Geekbench 3 on a single core with the C3 family, the single core received an overall score of 2738, surpassing the Geekbench 3 baseline. In other words, a single core on the Amazon EC2 C3 family achieves nearly the same score as CenturyLlnk Cloud, and surpasses the Geekbench 3 baseline machine.

For more information, please see the Appendix.

Integer and Floating Point Performance

The charts above separate the scores on the previous page (Overall System Score) into two categories: Integer and Floating Point mathematics.

The top row of charts display Geekbench results in single core runs across Amazon EC2's M3 Family, C3 Family, and CenturyLink. Amazon EC2's C3 family, which offers Amazon's highest performing processors, expectedly score higher than its M3 family counterpart on the single core tests.

CenturyLink Cloud's CPU performance falls between the two Amazon families. Its processor, the Intel Xeon E5-2650 v2 (2.6 GHz), has more power than the Amazon M3's family of Intel Xeon E5-2670 v2 (2.5 GHz) and less power than the Intel Xeon E5-2680 v2 (2.8 GHz).

While both companies scaled by an average of 2x from one machine to the next, Amazon EC2 experiences a 2.6x boost in processor power as it scales from its M3 family (m3.medium) 1vCPU machine to its C3 family (c3.large) 2vCPU machine, marking a shift from the Intel Xeon E5-2670 v2 to the Intel Xeon E5-2680 v2.

Memory Bandwidth Performance

Memory access speed was at its fastest in the 2vCPU, 4vCPU, and 8vCPU offerings for CenturyLink; consistent memory access speed was less predictable for Amazon EC2, with the most bandwidth at 4vCPUs and 8vCPUs.

This fluctuation occurred due to performance of microbenchmarks within STREAM: copy, scale, sum, and triad. Copy and Scale are the simplest of the 4 available memory tasks found within STREAM. With Copy, no computation is needed—it is the fastest memory operation in the STREAM benchmark; two values are found in the memory, and one is written to the other. Scale takes the Copy task and performs a mathematical operation on one of the values before writing it to the other.

Sum and Triad are the more complex memory tasks, and both Amazon EC2 and CenturyLink experienced similar hardship in sustaining memory bandwidth throughout the process of these operations. Sum was originally used to test vector machines, and is now used to fetch three values from memory so the first two values will be combined and written to the third. Triad, the most complex memory operation, emulates an underlying memory task for matrix multiplication, polynomials, and is directly associated with application performance.

Both Sum and Triad can quickly fill a processor pipeline, leading to poorer throughput performance on the virtual machines, which contend for public resources. More information on STREAM can be found in the appendix, and results from Geekbench 3's Memory test (STREAM) can be found in Appendix – Raw Scores.

PRICING COMPARISONS

This section only accounts for on-demand pricing comparisons across virtual machine offerings, with no inclusion of performance. To understand how cost and performance factor in obtaining a value analysis of each machine, please view the section on Value Comparisons.

On-Demand and Monthly Pricing

By definition on this comparison, "On-Demand" refers to hourly pricing. Some cloud providers offer minute-by-minute billing intervals, but CenturyLink and Amazon EC2 bill in hourly intervals at the most granular scale offered.

When conducting a basic analysis on pricing, CenturyLink in almost all cases offers a lower price for comparable virtual machine configurations than Amazon EC2 on an on-demand basis. This low cost expands into monthly terms as well. Amazon EC2's single virtual core m3.medium VM and CenturyLink Cloud's single virtual core VM are offered at equivalent costs. The doubled performance scores on CenturyLink tests, though, suggest more value on the CenturyLink VM (for more information, please see the section on Value Comparisons).

Without taking performance into account, if the target duration is less than 1 year, CenturyLink offers a stronger value proposition to the user. Amazon EC2's cost savings outweigh CenturyLink if the target duration is equal to or greater than 1 year. However, to achieve these cost savings, the business must comply with Amazon's terms for Heavy Utilization Reserved Instances.

Annual and 3-Year Pricing

Amazon EC2 offers loyal businesses an opportunity to save on the cost of On-Demand Amazon instances by providing a class of Reserved Instance offerings. More information can be found on the Amazon EC2 website or by going to the Appendix at the end of this document.

With a steady rate of utilization, these costs assumed for 24/7 uptime and runtime of virtual machines; thus, the Heavy Utilization Reserved Instance pricing on Amazon EC2 were applied to the total cost for 1 and 3 years. The large upfront financial commitment of purchasing Reserved Instances (which can be analogous to a deposit) is offset by the significantly lowered per-hour cost for the virtual machine(s), resulting in a lower price point when businesses are planning to run the same machines for a longer period of time.

To put into a simple perspective, running Heavy Utilization Reserved Instances on Amazon is the equivalent of receiving more than 5 free months on a 12-month commitment of On-Demand pricing. With 3-year Heavy Utilization Reserved Instance commitment, a business essentially receives the third year of usage free compared to 3 1-year Heavy Utilization Reserved Instances commitments. For more examples, see Table 1.1 and 1.2.

Table 1.1 Amazon Cost Comparison: On Demand VS. Reserved 1 Year					
Instances	m3.medium	c3.large	c3.xlarge	c3.2xlarge	c3.4xlarge
1 Year of On Demand Total	\$612	\$924	\$1,836	\$3,684	\$7,356
1 Year Heavy Utilization Reserved Instance Payments Total	\$380	\$554	\$1,116	\$2,215	\$4,439

Table 1.2 Amazon Cost Comparison: On Demand VS. Reserved 3 Years					
Instances	m3.medium	c3.large	c3.xlarge	c3.2xlarge	c3.4xlarge
3 Years of Monthly Payments Total	\$1,836	\$2,772	\$5,508	\$11,052	\$22,068
3 x 1 Year Heavy Utilization Reserved Instance Payments Total	\$1,140	\$1,662	\$3,348	\$6,645	\$13,317
3 Heavy Utilization Reserved Instance Payments Total	\$731	\$1,086	\$2,199	\$4,396	\$8,793

The long-term discounts come with advantages and disadvantages. The immediate and apparent advantages are the reductions in price, especially on a 3-year commitment to Amazon EC2 Instances.

A disadvantage, though, is the commitment to such a long period of time in an industry that continues to reduce cost and increase performance. Amazon AWS is an innovative industry leader in the cloud space with no exception in laaS. Their rate of innovation and aggressively reduced pricing (Amazon EC2 has announced 42 different AWS price reductions since 2008, as stated on their website blog), though, can detract from the value of a 3-year commitment to reserved instances. Also, a reserved instance cannot be resized and the upfront payment is non-refundable; a business must commit to a new reserved instance contract, and it is responsible for disposing the current commitment as well.

That being said, Amazon recognizes this concern and addresses it with the Amazon Marketplace, where users can sell unused reserved instances at a lower price as an alternative to cancelling the contract.

Spot Instance Pricing²

Spot instance pricing comparisons were not included in this report for two reasons: spot instances fluctuate on price based on demand, availability, and location, and spot instance pricing does not guarantee availability and are mainly used in batch processing. The comparison of use in this report assumes for high availability virtual machines.

However, this report will briefly describe Spot Instances and their advantages and disadvantages. As an alternative to On-Demand pricing, spot instances are instances operating on a bidding system. Due to the nature of Spot Instances, stopping an instance is not an available feature—only termination; this allows unused Instances to be immediately sent back into the pool of bids. According to Amazon, a user "[bids] on spare Amazon EC2 instances and runs them whenever [the] bid

² Amazon Web Services YouTube Channel video – Deciding on Your Spot Bidding Strategy: https://www.youtube.com/watch?v=WD9N73F3Fao#t=156

exceeds the current Spot Price, which varies in real-time based on supply and demand."

Below is a summary table of the differences in pricing models on Amazon EC2 and CenturyLink Cloud.

Pricing Model	Available On	Advantages	Disadvantages	Use Cases
Spot Instance Pricing	Amazon EC2	Bid model for VMs Can lower costs	Unstable availability No "stopped" instances	Batch workloads
On Demand Pricing	Amazon EC2 CenturyLink Cloud	Pay-as-you-go Flexibility	Higher costs	Testing/development Fluctuating traffic sites Growing databases High performance computing
Reserved Instance Pricing	Amazon EC2	Lower cost	Limited flexibility	Master servers Stable, steady traffic environments

VALUE COMPARISONS

So far on performance, CenturyLink virtual machines have scored higher than their Amazon EC2 counterparts. With pricing in consideration of frequent machine utilization, Amazon EC2 provides businesses a slight cost advantage with its 1-year Reserved Instance, which is magnified at a 3-year Reserved Instance commitment. When considering the price-performance value of the servers in this report, Cloud Spectator calculated cost with performance to produce the following results seen in the table below:

Virtual Processor Integer Performance

Commitment Term	Who Provides More Value
On Demand	CenturyLink Cloud
Monthly	CenturyLink Cloud
Annually	CenturyLink Cloud
3-Year	Amazon EC2

Virtu	ıal Pro	cesso	r Floating	Point Pe	rforn	nance
_					_	

Commitment Term	Who Provides More Value
On Demand	CenturyLink Cloud
Monthly	CenturyLink Cloud
Annually	CenturyLink Cloud
3-Year	Amazon FC2

The CloudSpecs Score Calculation

The CloudSpecs Score is an Indexed, comparable score ranging from 0-100 indicative of value based on a combination of cost and performance. The value is scaled; e.g., a Cloud Service Provider (CSP) with a score of 100 gives 4x the value of a CSP with a score of 25. The CloudSpecs Scores in this report can only be compared with equivalent configurations; e.g., a 1vCPU Instance on Amazon compared to a 1vCPU virtual machine on CenturyLink.

The calculation of the CloudSpecs score:

- 1. provider_value = [Provider Performance Score] / [Provider Cost]
- 2. best_provider_value = max(provider_values)
- 3. CSP's CloudSpecs Score = 100 * provider_value / best_provider_value

On Demand and Monthly Value

As expected with the combination of higher performance scores and lower on-demand cost, CenturyLink Cloud delivers more price-performance value for on-demand pricing. The value CenturyLink delivers for its processing power is consistently 2x more than Amazon EC2 at On-Demand cost. The value difference applies to both Integer (e.g., compression and decompression) and Floating Point (e.g., financial modeling and image rendering) CPU-intensive calculations.

Because of the linear relationship of monthly cost and hourly cost for both Amazon EC2 and CenturyLink Cloud, the CloudSpecs results can be extrapolated to apply to monthly value as well; i.e., CenturyLink Cloud virtual machines deliver 2x the processor performance value on a month-to-month basis compared to Amazon EC2.

Annual Value

Regarding cost alone, Amazon EC2's Reserved Instance Pricing under conditions of Heavy Utilization makes it the lower-priced option, but when comparing price and performance together in a value score, CenturyLink Cloud still remains as leader in value for processing power on both Integer and Floating Point operations.

With the cost of Amazon EC2 instances lowered through Reserved Instance pricing, though, the value of CenturyLink Cloud's processor drops from 2x to around 1.2x that of comparable Amazon EC2 offerings.

3-Year Value

With Heavy Utilization Reserved Instances on a 3-year commitment, Amazon EC2 costs are significantly lowered and result in greater price-peformance value than CenturyLink Cloud. Calculating 24/7 uptime for 3 years, Amazon EC2 provides 1.25x more value on average than CenturyLink Cloud for processing power.

CONCLUSION

CenturyLink's claim to make a "bold cloud move against you-know-who" was a move to decrease costs of their virtual machine offerings to compete against Amazon EC2 in value. Based on the performance and price-performance results obtained in this study, CenturyLink Cloud's decision did, in fact, give it the edge for value against comparable Amazon EC2 servers with respect to processing power.

These value comparisons were conducted under certain conditions and assumed for heavy utilization. Further studies into batch workloads or other low utilization studies can include Amazon EC2 Spot Instance analysis as well to understand performance value that can be obtained from the unique Amazon EC2 bidding system.

Applications and Use Case Comparisons

While not analyzed in detail throughout the report, the Appendix provides a good resource for application use case comparisons run by Geekbench 3. These application scenarios are categorized into Integer (e.g., AES encryption, JPEG compression/decompression) and Floating Point (e.g., Black Scholes financial modeling, Ray tracing for 2-D virtual image rendering) tasks, and descriptions of the specific tasks can be found in the Appendix – About Geekbench 3 as well as the Geekbench 3 website: http://support.primatelabs.com/kb/Geekbench/Geekbench-3-benchmarks.

About Cloud Spectator

Since 2011, Cloud Spectator has tracked the pricing models and performance capabilities of the most recognized cloud infrastructure providers in the industry. One of Cloud Spectator's primary goals is to establish a standard of comparison to help cloud infrastructure users better understand the market landscape so they can make more informed decisions when selecting their provider(s).

http://www.cloudspectator.com contact@cloudspectator.com

+1 617-300-0711

About Structure Research

Structure Research is an independent research and consulting firm with a specific focus on the hosting and cloud segments within the Internet infrastructure market. They are devoted to understanding, tracking and projecting the future of hosting and cloud infrastructure service providers.

http://www.structureresearch.net ps@structureresearch.net

+1 647-822-1404

APPENDIX

Pricing Models

CenturyLink Cloud and Amazon EC2 offer different pricing structures. Amazon EC2 provides a tier-based purchase model for users and business to select pre-configured packages with reserved amounts of virtual cores, memory, and disk space. CenturyLink Cloud provides a basic cost calculation of its services, which are custom server sizes with independently configurable resource allocations.

Amazon EC2 Pricing Model

Spot Instances

The following information is taken from the Amazon EC2 website, and more information can be found at:

http://aws.amazon.com/ec2/purchasing-options/spot-instances/

"Spot Instances allow you to name your own price for Amazon EC2 computing capacity. You simply bid on spare Amazon EC2 instances and run them whenever your bid exceeds the current Spot Price, which varies in real-time based on supply and demand. The Spot Instance pricing model complements the On-Demand and Reserved Instance pricing models, providing potentially the most cost-effective option for obtaining compute capacity, depending on your application.

Spot Instances can significantly lower your computing costs for time-flexible, interruption-tolerant tasks. Spot prices are often significantly less than On-Demand prices for the same EC2 instance types...Additionally, for some distributed, fault-tolerant tasks (like web-crawling or Monte Carlo applications), you may be able to simultaneously accelerate your computational task and reduce its overall cost by opportunistically incorporating Spot Instances."

On-Demand Instances

The following information is taken from the Amazon EC2 website, and more information can be found at: http://aws.amazon.com/ec2/pricing/

"On-Demand Instances let you pay for compute capacity by the hour with no long-term commitments. This frees you from the costs and complexities of planning, purchasing, and maintaining hardware and transforms what are commonly large fixed costs into much smaller variable costs."

Reserved Instances

The following information is taken from the Amazon EC2 website, and more information can be found at: http://aws.amazon.com/ec2/purchasing-options/reserved-instances/

"Reserved Instances ("RIs") allow you to make a low, one-time payment to reserve instance capacity and further reduce your on-going Amazon EC2 costs. There are multiple Reserved Instance types shown below that enable you to balance the amount you pay upfront with your effective hourly price:

Light Utilization RIs

Light Utilization RIs offer the lowest upfront payment of all of the Reserved Instance types. Light Utilization RIs allow you to turn off your instance at any point and not pay the hourly fee. Light Utilization RIs are ideal for periodic workloads that only run a couple of hours a day or a few days per week.

Medium Utilization RIs

Medium Utilization RIs are the exact same Reserved Instances that EC2 has offered for the last several years. They have an upfront payment, but a much lower hourly usage fee. Medium Utilization RIs allow you to turn off your instance at any point and not pay the hourly fee. Medium Utilization RIs are best suited for workloads that run most of the time, but have some variability in usage (like web server traffic where demand may increase or decrease throughout the year). Using Medium Utilization RIs, you can save up to 31% for a 1-year term and 54% for a 3-year term vs. running On-Demand Instances. The break-even point for a Medium Utilization Linux RI (vs. On Demand) is 49% for a 1-year term or 22% of a 3-year term. If you expect to use your instance more than that, an RI will save you money.

Heavy Utilization RIs

Heavy Utilization RIs offer the most absolute savings of any Reserved Instance type. They're most appropriate for steady-state workloads where you're willing to commit to always running these instances in exchange for our lowest hourly usage fee. With this RI, you pay a little higher upfront payment than Medium Utilization RIs, a significantly lower hourly usage fee, and you're charged that lower hourly rate for every hour in the Reserved Instance term you purchase. Using Heavy Utilization RIs, you can save up to 37% for a 1-year term and 60% for a 3-year term vs. running On-Demand Instances. The break-even point for a Heavy Utilization Linux RIs (vs. On Demand) is 63% for a 1-year term or 40% of a 3-year term. If you expect to use your instance more than that, an RI will save you money."

CenturyLink Cloud Pricing Model

- CPU Cost: \$0.01 per hour per virtual core, scalable up to 16 virtual cores per virtual machine.
- Memory Cost: \$0.015 per hour per GB virtual memory, scalable up to 128GB RAM per virtual machine.
- A cost estimator can be found on the CenturyLink Cloud website at http://www.centurylinkcloud.com/estimator/

Virtual Hardware Information

The tables provide the configuration information for the virtual machines that were used in side-by-side comparisons of performance, pricing, and value.

General Hardware	Amazon EC2	CenturyLink Cloud
Processor(s)	Intel Xeon E5-2670 v2 @ 2.5GHz	Intel Xeon E5-2650 v2 @ 2.6GHz
	Intel Xeon E5-2680 v2 @ 2.8GHz	
Operating System	Ubuntu 14.04 LTS 3.13.0-24-generic x86_64	Ubuntu 12.04.4 LTS 3.2.0-39-generic x86_64
Enhancement Features	HVM AMI	Hyperscale
Hypervisor	Xen-based	VMWare
Data Center Location	US-East (North Virginia)	Virginia (Sterling)

1 vCPU Offering	Amazon EC2	CenturyLink Cloud
Offering Name	M3.MEDIUM	N/A
# of Virtual Cores	1	1
RAM	3.5GB	4GB
Disk	4GB	14GB
Disk Type	SSD	SSD
Disk Configuration	Local	Local

2 vCPU Offering	Amazon EC2	CenturyLink Cloud
Offering Name	C3.LARGE	N/A
# of Virtual Cores	2	2
RAM	3.5GB	4GB

Disk	2 x 16GB	14GB
Disk Type	SSD	SSD
Disk Configuration	Local	Local

4 vCPU Offering	Amazon EC2	CenturyLink Cloud
Offering Name	C3.XLARGE	N/A
# of Virtual Cores	4	4
RAM	7.5GB	8GB
Disk	2 x 40GB	14GB
Disk Type	SSD	SSD
Disk Configuration	Local	Local

8 vCPU Offering	Amazon EC2	CenturyLink Cloud
Offering Name	C3.2XLARGE	N/A
# of Virtual Cores	2	2
RAM	3.5GB	4GB
Disk	2 x 80GB	14GB
Disk Type	SSD	SSD
Disk Configuration	Local	Local

8 vCPU Offering	Amazon EC2	CenturyLink Cloud
Offering Name	C3.4XLARGE	N/A
# of Virtual Cores	16	16
RAM	30GB	30GB
Disk	2 x 160GB	14GB
Disk Type	SSD	SSD
Disk Configuration	Local	Local

SSH Commands for Replicating This Study

The process for configuring and running the benchmarks follows a basic process of upgrading the virtual machine OS before proceeding to benchmark the system.

1. Obtain root user privileges (repeat this before step 3; reconnecting the SSH session after a successful reboot)

sudo su

2. Update and upgrade the system, followed by a reboot

apt-get update && apt-get upgrade && reboot

3. Reconnect through SSH after the reboot (also re-obtain root user). Download Geekbench 3, unzip the contents, navigate to the unzipped folder, unlock the license, and run the Geekbench test

wget http://Geekbench.s3.amazonaws.com/Geekbench-3.1.2-Linux.tar.gz && tar -xvzf Geekbench-3.1.2-Linux.tar.gz && cd dist/Geekbench-3.1.2-Linux/ && ./Geekbench_x86_64 -r [REGISTERED EMAIL ADDRESS] [LICENSE KEY]

About Geekbench 3

All of the following information and more can be found on the Geekbench website - http://www.primatelabs.com/Geekbench.

Geekbench 3 is Primate Labs' cross-platform processor benchmark, with a new scoring system that separates single-core and multi-core performance, and new workloads that simulate real-world scenarios.

Integer Performance Workloads

- AES: The AES workload encrypts a generated text string using the advanced encryption standard (AES). AES is used in security tools such
 as SSL, IPsec, and GPG. Geekbench uses the <u>AES-NI</u> instructions when they are available. When the AES-NI instructions are not available,
 Geekbench uses its own software AES implementation.
- Twofish: The Twofish workload also encrypts a text string, but it uses the Twofish algorithm. Twofish is from the family of encryption algorithms known as "Feistel ciphers." It is included in the OpenPGP standard.
- SHA1: SHA1 is a cryptographic hash algorithm: given a binary input it generates a "hash" or "digest" of the input. SHA1 is designed so that the hash may be computed quickly, but it is difficult to find a string that generates a given hash. SHA1 may be used, for example, to encrypt passwords by storing the hash instead of the password text. The SHA1 workload uses a text string as input.
- SHA2: SHA2 solves the same problem as SHA1, but is more secure: SHA1 has a known vulnerability to "collision attacks." Although these attacks are still impractical and SHA1 is still widely used, it is being gradually replaced by SHA2.
- BZip2 compression and decompression: BZip2 is a compression algorithm. The BZip2 workloads compress and decompress an ebook formatted using HTML. Geekbench 3 uses bzlib version 1.0.6 in the BZip2 workloads.
- JPEG compression and decompression: The JPEG workloads compress and decompress one digital image using lossy JPEG format. The
 workloads use libjpeg version 6b.
- PNG compression and decompression: The PNG workloads also compress and decompress a digital image, but they do so using the PNG format. The workloads use libpng 1.6.2.
- Sobel: The "Sobel operator" is used in image processing for finding edges in images. The Sobel workload uses the same input image as the JPEG and PNG workloads.
- Lua: Lua is lightweight scripting language. The Lua workload is similar to the code used to display Geekbench results in the Geekbench Browser.
- **Dijkstra**: The Dijkstra workload computes driving directions between a sequence of destinations. Similar techniques are used by Als to compute paths in games and by network routers to route computer network traffic.

Floating Point Performance Workloads

- Black-Scholes: The Black-Scholes equation is used to model option prices on financial markets. The Black-Scholes workload computes the Black-Scholes formula: a special case solution of the Black-Scholes equation for European call and put options.
- Mandelbrot: The Mandelbrot set is a fractal. It is a useful floating point workload because it has a low memory bandwidth requirement.
- Sharpen image: The sharpen image workload uses a standard image sharpening technique similar to those found in Photoshop or Gimp.
- Blur image: Image blurring is also found in tools such as Photoshop. In Geekbench 3, the blur image workload is more computationally demanding than the sharpen workload.
- **SGEMM** and **DGEMM**: GEMM is "general matrix multiplication." Matrix multiplication is a fundamental mathematical operation. It is used in physical simulations, signal processing, graphics processing, and many other areas.
- SFFT and DFFT: The fast Fourier transform (FFT) workloads simulate the frequency analysis used to compute the spectrum view in an audio processing application such as Pro Tools.
- N-Body: This workload computes a physical simulation similar to that required for a physics game placed in outer space.
- Ray trace: The ray trace workload renders a 3D scene from a geometric description. The rendered scene is shown below:

Memory Performance Workloads

- STREAM copy: The stream copy workload tests how fast your computer can copy large amounts of data in memory. It executes a value-by-value copy of a large list of floating point numbers.
- STREAM scale: This workload is similar to stream copy, but each value is multiplied by a constant during the copy.
- STREAM add: The stream add workload reads two large lists of floating point numbers value-by-value, adds corresponding values, and stores the result in a third list.
- STREAM triad: This workload combines stream add and stream scale. It reads two lists of floating point numbers value-by-value, multiplies one of the numbers by a constant, adds the result to the other number, and writes that result to a third list.

Raw Scores

55016			4 - ODII Marakii - Danaka
			1 vCPU Machine Results
AMAZON EC2	M3.MED	IUM	CENTURY LINK 1 VCPU 4GB MEMORY
Integer			Integer
AES	4505	4.04.00/-	AES
single-core	1565	1.34 GB/sec	single-core 2520 2.16 GB/sec
multi-core	1281	1.10 GB/sec	multi-core 2518 2.16 GB/sec
Twofish			Twofish
single-core	1252	70.3 MB/sec	single-core 2617 146.9 MB/sec
multi-core	1250	70.2 MB/sec	multi-core 2619 147.0 MB/sec
SHA1			SHA1
single-core	1475	160.1 MB/sec	single-core 3035 329.4 MB/sec
multi-core	1454	157.8 MB/sec	multi-core 3034 329.4 MB/sec
SHA2			SHA2
single-core	1586	68.7 MB/sec	single-core 3329 144.1 MB/sec
multi-core	1561	67.5 MB/sec	multi-core 3334 144.3 MB/sec
BZip2 Compre	ess		BZip2 Compress
single-core	1165	4.74 MB/sec	single-core 2452 9.97 MB/sec
multi-core	1143	4.65 MB/sec	multi-core 2448 9.95 MB/sec
BZip2 Decomp			BZip2 Decompress
single-core	1130	6.13 MB/sec	single-core 2428 13.2 MB/sec
multi-core	1143	6.20 MB/sec	multi-core 2424 13.1 MB/sec
JPEG Compre		0.20 MB/000	JPEG Compress
single-core	1292	18.0 Mpixels/sec	single-core 2697 37.6 Mpixels/sec
multi-core	1282	17.9 Mpixels/sec	multi-core 2696 37.6 Mpixels/sec
JPEG Decomp		17.9 Mpixei9/9ec	JPEG Decompress
single-core	1922	47.5 Mpixels/sec	single-core 3805 94.1 Mpixels/sec
multi-core	1883	46.6 Mpixels/sec	multi-core 3785 93.6 Mpixels/sec
PNG Compres		40.0 Mpixels/sec	· · · · · · · · · · · · · · · · · · ·
		00E 0 Knivele/eee	PNG Compress
single-core	1234	985.8 Kpixels/sec	single-core 2601 2.08 Mpixels/sec
multi-core	1222	976.0 Kpixels/sec	multi-core 2592 2.07 Mpixels/sec
PNG Decomp		45 0 Maissala/aaa	PNG Decompress
single-core	1374	15.8 Mpixels/sec	single-core 2808 32.4 Mpixels/sec
multi-core	1357	15.7 Mpixels/sec	multi-core 2796 32.2 Mpixels/sec
Sobel	4000		Sobel
single-core	1808	65.8 Mpixels/sec	single-core 3648 132.8 Mpixels/sec
multi-core	1796	65.4 Mpixels/sec	multi-core 3641 132.5 Mpixels/sec
Lua			Lua
single-core	1294	1.16 MB/sec	single-core 2795 2.51 MB/sec
multi-core	1294	1.16 MB/sec	multi-core 2752 2.47 MB/sec
Dijkstra			Dijkstra
single-core	1190	4.27 Mpairs/sec	single-core 2541 9.12 Mpairs/sec
multi-core	1077	3.87 Mpairs/sec	multi-core 2268 8.14 Mpairs/sec
Floating Point			Floating Point
BlackScholes			BlackScholes
single-core	1116	4.97 Mnodes/sec	single-core 1947 8.67 Mnodes/sec
multi-core	1095	4.88 Mnodes/sec	multi-core 1948 8.67 Mnodes/sec
Mandelbrot			Mandelbrot
single-core	1254	1.29 Gflops	single-core 2589 2.65 Gflops
multi-core	1237	1.27 Gflops	multi-core 2588 2.65 Gflops
Sharpen Filter			Sharpen Filter
single-core	1124	833.7 Mflops	single-core 2356 1.75 Gflops
multi-core	1126	835.1 Mflops	multi-core 2357 1.75 Gflops
Blur Filter	1120	500.1 Μπορσ	Blur Filter
Dial I litter			Didi i litoi

single-core	918	875.0 Mflops	single-core 1918	
multi-core	913	870.4 Mflops	multi-core 1915	1.83 Gflops
SGEMM			SGEMM	
single-core	1815	5.09 Gflops	single-core 3688	10.3 Gflops
multi-core	1812	5.07 Gflops	multi-core 3680	10.3 Gflops
DGEMM			DGEMM	
single-core	1683	2.47 Gflops	single-core 3315	4.87 Gflops
multi-core	1670	2.45 Gflops	multi-core 3358	4.93 Gflops
SFFT			SFFT	
single-core	1290	1.36 Gflops	single-core 2659	2.80 Gflops
multi-core	1271	1.34 Gflops	multi-core 2659	2.80 Gflops
DFFT			DFFT	
single-core	1371	1.25 Gflops	single-core 2860	
multi-core	1344	1.22 Gflops	multi-core 2850	2.60 Gflops
N-Body			N-Body	
single-core	2099	779.3 Kpairs/sec	single-core 4374	1.62 Mpairs/sec
multi-core	2080	772.3 Kpairs/sec	multi-core 4372	1.62 Mpairs/sec
Ray Trace			Ray Trace	
single-core	1705	2.01 Mpixels/sec	single-core 3509	4.14 Mpixels/sec
multi-core	1692	2.00 Mpixels/sec	multi-core 3532	4.17 Mpixels/sec
Memory			Memory	
Memory Stream Copy			Memory Stream Copy	
,	1014	4.05 GB/sec		8.37 GB/sec
Stream Copy	1014 1013	4.05 GB/sec 4.04 GB/sec	Stream Copy	8.37 GB/sec 8.24 GB/sec
Stream Copy single-core			Stream Copy single-core 2098	
Stream Copy single-core multi-core			Stream Copy single-core 2098 multi-core 2066	8.24 GB/sec
Stream Copy single-core multi-core Stream Scale	1013	4.04 GB/sec	Stream Copy single-core 2098 multi-core 2066 Stream Scale	8.24 GB/sec
Stream Copy single-core multi-core Stream Scale single-core	1013 1263	4.04 GB/sec 5.04 GB/sec	Stream Copy single-core 2098 multi-core 2066 Stream Scale single-core 2732	8.24 GB/sec 10.9 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core	1013 1263	4.04 GB/sec 5.04 GB/sec	Stream Copy single-core 2098 multi-core 2066 Stream Scale single-core 2732 multi-core 2719	8.24 GB/sec 10.9 GB/sec 10.9 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add	1013 1263 1279	4.04 GB/sec 5.04 GB/sec 5.11 GB/sec	Stream Copy single-core 2098 multi-core 2066 Stream Scale single-core 2732 multi-core 2719 Stream Add	8.24 GB/sec 10.9 GB/sec 10.9 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core	1013 1263 1279 1108	4.04 GB/sec 5.04 GB/sec 5.11 GB/sec 5.01 GB/sec	Stream Copy single-core 2098 multi-core 2066 Stream Scale single-core 2732 multi-core 2719 Stream Add single-core 2479	8.24 GB/sec 10.9 GB/sec 10.9 GB/sec 11.2 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core	1013 1263 1279 1108	4.04 GB/sec 5.04 GB/sec 5.11 GB/sec 5.01 GB/sec	Stream Copy single-core 2098 multi-core 2066 Stream Scale single-core 2732 multi-core 2719 Stream Add single-core 2479 multi-core 2483	8.24 GB/sec 10.9 GB/sec 10.9 GB/sec 11.2 GB/sec 11.2 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core Stream Triad	1013 1263 1279 1108 1095	4.04 GB/sec 5.04 GB/sec 5.11 GB/sec 5.01 GB/sec 4.95 GB/sec	Stream Copy single-core 2098 multi-core 2066 Stream Scale single-core 2732 multi-core 27719 Stream Add single-core 2479 multi-core 2483 Stream Triad	8.24 GB/sec 10.9 GB/sec 10.9 GB/sec 11.2 GB/sec 11.2 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core Stream Triad single-core multi-core	1013 1263 1279 1108 1095 1128 1125	4.04 GB/sec 5.04 GB/sec 5.11 GB/sec 5.01 GB/sec 4.95 GB/sec 4.96 GB/sec	Stream Copy single-core 2098 multi-core 2066 Stream Scale single-core 2732 multi-core 2719 Stream Add single-core 2479 multi-core 2483 Stream Triad single-core 2539 multi-core 2547	8.24 GB/sec 10.9 GB/sec 10.9 GB/sec 11.2 GB/sec 11.2 GB/sec 11.2 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core Stream Triad single-core	1013 1263 1279 1108 1095 1128 1125	4.04 GB/sec 5.04 GB/sec 5.11 GB/sec 5.01 GB/sec 4.95 GB/sec 4.96 GB/sec	Stream Copy single-core 2098 multi-core 2066 Stream Scale single-core 2732 multi-core 2719 Stream Add single-core 2479 multi-core 2483 Stream Triad single-core 2539 multi-core 2547 Benchmark Summary	8.24 GB/sec 10.9 GB/sec 10.9 GB/sec 11.2 GB/sec 11.2 GB/sec 11.2 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core Stream Triad single-core multi-core	1013 1263 1279 1108 1095 1128 1125	4.04 GB/sec 5.04 GB/sec 5.11 GB/sec 5.01 GB/sec 4.95 GB/sec 4.96 GB/sec 4.95 GB/sec	Stream Copy single-core 2098 multi-core 2066 Stream Scale single-core 2732 multi-core 2719 Stream Add single-core 2479 multi-core 2483 Stream Triad single-core 2539 multi-core 2547 Benchmark Summary	8.24 GB/sec 10.9 GB/sec 10.9 GB/sec 11.2 GB/sec 11.2 GB/sec 11.2 GB/sec 11.2 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core Stream Triad single-core multi-core	1013 1263 1279 1108 1095 1128 1125	4.04 GB/sec 5.04 GB/sec 5.11 GB/sec 5.01 GB/sec 4.95 GB/sec 4.96 GB/sec 4.95 GB/sec	Stream Copy single-core 2098 multi-core 2066 Stream Scale single-core 2732 multi-core 2719 Stream Add single-core 2479 multi-core 2483 Stream Triad single-core 2539 multi-core 2547 Benchmark Summary Integer Score	8.24 GB/sec 10.9 GB/sec 10.9 GB/sec 11.2 GB/sec 11.2 GB/sec 11.2 GB/sec 11.2 GB/sec 2836 2804

			2 vCPU Machine Results
AMAZON EC2	C3.LAR	E	CENTURY LINK CLOUD 2vCPU 4GB MEMORY
Integer			Integer
AES			AES
single-core	2647	2.27 GB/sec	single-core 2517 2.15 GB/sec
multi-core	2920	2.50 GB/sec	multi-core 5047 4.32 GB/sec
Twofish			Twofish
single-core	2704	151.7 MB/sec	single-core 2609 146.4 MB/sec
multi-core	3839	215.5 MB/sec	multi-core 5225 293.2 MB/sec
SHA1			SHA1
single-core	3140	340.9 MB/sec	single-core 3026 328.5 MB/sec
multi-core	3258	353.7 MB/sec	multi-core 6060 657.8 MB/sec
SHA2			SHA2
single-core	3401	147.2 MB/sec	single-core 3304 143.0 MB/sec
multi-core	3307	143.1 MB/sec	multi-core 6625 286.6 MB/sec
BZip2 Compres			BZip2 Compress
single-core	2541	10.3 MB/sec	single-core 2442 9.93 MB/sec
multi-core	3373	13.7 MB/sec	multi-core 4892 19.9 MB/sec
BZip2 Decomp			BZip2 Decompress
single-core	2523	13.7 MB/sec	single-core 2424 13.1 MB/sec
multi-core	3413	18.5 MB/sec	multi-core 4853 26.3 MB/sec
JPEG Compre			JPEG Compress
single-core	2788	38.9 Mpixels/sec	single-core 2692 37.5 Mpixels/sec
multi-core	3705	51.6 Mpixels/sec	multi-core 5384 75.0 Mpixels/sec
JPEG Decomp			JPEG Decompress
single-core	4014	99.2 Mpixels/sec	single-core 3783 93.5 Mpixels/sec
multi-core	4507	111.4 Mpixels/sec	multi-core 7483 185.0 Mpixels/sec
PNG Compres			PNG Compress
single-core	2687	2.15 Mpixels/sec	single-core 2595 2.07 Mpixels/sec

multi-core	3750	2.99 Mpixels/sec	multi-core 5186	6 4.14 Mpixels/sec
PNG Decompre		00.514 : 1.4	PNG Decompress	0 00 0 14 : 1 /
single-core	2907	33.5 Mpixels/sec	single-core 279	
multi-core	3830	44.2 Mpixels/sec	multi-core 5556	64.1 Mpixels/sec
Sobel	2700	120 2 Maiyolo/ooo	Sobel single-core 357	6 120 1 Mnivola/200
single-core	3799	138.3 Mpixels/sec	9,1 11 1	
multi-core	4206	153.1 Mpixels/sec	multi-core 7114	1 258.9 Mpixels/sec
Lua	2005	0.61 MD/ccc	Lua	4 0.45 MD/202
single-core	2905	2.61 MB/sec	single-core 272	
multi-core	3647	3.28 MB/sec	multi-core 5460	4.91 MB/sec
Dijkstra	2652	0.52 Magira/aga	Dijkstra	2 0.02 Mpairo/200
single-core multi-core	2652 3445	9.52 Mpairs/sec	single-core 251 multi-core 4422	
muiti-core	3443	12.4 Mpairs/sec	muiti-cole 4422	2 15.9 Mpairs/sec
Floating Point			Floating Point	
BlackScholes			BlackScholes	
single-core	2369	10.5 Mnodes/sec	single-core 194	3 8.65 Mnodes/sec
multi-core	3262	14.5 Mnodes/sec	multi-core 3875	
Mandelbrot	0202	14.0 WIII0005/000	Mandelbrot	7 17.2 141100007000
single-core	2680	2.75 Gflops	single-core 258	7 2.65 Gflops
multi-core	4500	4.61 Gflops	multi-core 5173	
Sharpen Filter			Sharpen Filter	
single-core	2444	1.81 Gflops	single-core 234	9 1.74 Gflops
multi-core	3130	2.32 Gflops	multi-core 4689	•
Blur Filter	0100	2.02 0.1000	Blur Filter	0.10 Gliopo
single-core	1984	1.89 Gflops	single-core 191	5 1.83 Gflops
multi-core	2888	2.75 Gflops	multi-core 3795	
SGEMM		20 0000	SGEMM	0.02 0opo
single-core	3854	10.8 Gflops	single-core 343	2 9.61 Gflops
multi-core	3950	11.1 Gflops	multi-core 6984	
DGEMM	0000	6666	DGEMM	
single-core	3513	5.16 Gflops	single-core 336	6 4.95 Gflops
multi-core	3839	5.64 Gflops	multi-core 6581	•
SFFT			SFFT	
single-core	2756	2.91 Gflops	single-core 265	5 2.80 Gflops
multi-core	2865	3.02 Gflops	multi-core 5312	
DFFT			DFFT	
single-core	2964	2.70 Gflops	single-core 283	9 2.59 Gflops
multi-core	3270	2.98 Gflops	multi-core 5631	
N-Body		•	N-Body	•
single-core	4538	1.68 Mpairs/sec	single-core 437	3 1.62 Mpairs/sec
multi-core	4881	1.81 Mpairs/sec	multi-core 8740	3.24 Mpairs/sec
Ray Trace			Ray Trace	
single-core	3625	4.27 Mpixels/sec	single-core 351	9 4.15 Mpixels/sec
multi-core	4371	5.15 Mpixels/sec	multi-core 7070	8.34 Mpixels/sec
Memory			Memory	
Stream Copy			Stream Copy	
single-core	2158	8.61 GB/sec	single-core 209	
multi-core	2194	8.75 GB/sec	multi-core 3997	7 15.9 GB/sec
Stream Scale			Stream Scale	
single-core	2696	10.8 GB/sec	single-core 272	
multi-core	2407	9.61 GB/sec	multi-core 5022	2 20.1 GB/sec
Stream Add			Stream Add	
single-core	2306	10.4 GB/sec	single-core 248	
multi-core	2206	9.98 GB/sec	multi-core 4560	20.6 GB/sec
Stream Triad			Stream Triad	
single-core	2372	10.4 GB/sec	single-core 252	
multi-core	2279	10.0 GB/sec	multi-core 4677	7 20.6 GB/sec
_				
Benchmark Sum			Benchmark Summary	
Integer Score		2945 3609	Integer Score	2816 5573
Floating Point S	score	2984 3634	Floating Point Score	2806 5599
Memory Score		2375 2269	Memory Score	2446 4548
Geekbench Sco	oro	2846 3254	Geekbench Score	7730 5270
Geernelicii 900	JI C	2846 3351	Geekberich Scole	2738 5378

AMAZON EC2 C3.XLARGE

Integer AES

4vCPU Machine Results
CenturyLink 4vCPUs 8GB MEMORY
Integer
AES

single-core multi-core Twofish	2636 5814	2.26 GB/sec 4.98 GB/sec		single-core multi-core Twofish	2516 9924	2.15 GB/sec 8.49 GB/sec
single-core multi-core SHA1	2698 7668	151.4 MB/sec 430.3 MB/sec		single-core multi-core SHA1	2607 10294	146.3 MB/sec 577.7 MB/sec
single-core multi-core SHA2	3138 6489	340.7 MB/sec 704.4 MB/sec		single-core multi-core SHA2	2989 11459	324.4 MB/sec 1.21 GB/sec
single-core multi-core BZip2 Compres	3389 6631	146.7 MB/sec 286.9 MB/sec		single-core multi-core BZip2 Compres	3307 13253	143.1 MB/sec 573.4 MB/sec
single-core multi-core BZip2 Decomp	2540 6590	10.3 MB/sec 26.8 MB/sec		single-core multi-core BZip2 Decomp	2444 9661	9.94 MB/sec 39.3 MB/sec
single-core multi-core JPEG Compres	2536 6720	13.7 MB/sec 36.4 MB/sec		single-core multi-core JPEG Compres	2406 9588	13.0 MB/sec 52.0 MB/sec
single-core multi-core JPEG Decomp	2790 7410 ress	38.9 Mpixels/sec 103.2 Mpixels/sec		single-core multi-core JPEG Decomp	2690 10574 ress	37.5 Mpixels/sec 147.3 Mpixels/sec
single-core multi-core PNG Compress		101.1 Mpixels/sec 226.2 Mpixels/sec		single-core multi-core PNG Compress	3759 12345 s	92.9 Mpixels/sec 305.2 Mpixels/sec
single-core multi-core PNG Decompre	2688 7680 ess	2.15 Mpixels/sec 6.13 Mpixels/sec		single-core multi-core PNG Decompre	2586 10136 ess	2.06 Mpixels/sec 8.09 Mpixels/sec
single-core multi-core Sobel	2917 7740	33.6 Mpixels/sec 89.2 Mpixels/sec		single-core multi-core Sobel	2771 10532	32.0 Mpixels/sec 121.4 Mpixels/sec
single-core multi-core Lua	3729 8308	135.7 Mpixels/sec 302.4 Mpixels/sec		single-core multi-core Lua	3557 13623	129.5 Mpixels/sec 495.7 Mpixels/sec
single-core multi-core Dijkstra	2952 7274	2.65 MB/sec 6.54 MB/sec		single-core multi-core Dijkstra	2688 10404	2.42 MB/sec 9.35 MB/sec
single-core multi-core	2786 5910	10.00 Mpairs/sec 21.2 Mpairs/sec	_	single-core multi-core	2357 7583	8.46 Mpairs/sec 27.2 Mpairs/sec
Floating Point BlackScholes			F	Floating Point BlackScholes		
single-core multi-core Mandelbrot	2361 6509	10.5 Mnodes/sec 29.0 Mnodes/sec		single-core multi-core Mandelbrot	1927 7705	8.58 Mnodes/sec 34.3 Mnodes/sec
single-core multi-core Sharpen Filter	2680 8994	2.75 Gflops 9.22 Gflops		single-core multi-core Sharpen Filter	2583 10301	2.65 Gflops 10.6 Gflops
single-core multi-core Blur Filter	2443 6221	1.81 Gflops 4.61 Gflops		single-core multi-core Blur Filter	2334 9278	1.73 Gflops 6.88 Gflops
single-core multi-core SGEMM	1988 5759	1.89 Gflops 5.49 Gflops		single-core multi-core SGEMM	1894 7596	1.81 Gflops 7.24 Gflops
single-core multi-core DGEMM	4070 8765	11.4 Gflops 24.5 Gflops		single-core multi-core DGEMM	3549 13600	9.94 Gflops 38.1 Gflops
single-core multi-core SFFT	3671 8249	5.39 Gflops 12.1 Gflops		single-core multi-core SFFT	3212 12098	4.72 Gflops 17.8 Gflops
single-core multi-core DFFT	2747 5729	2.90 Gflops 6.04 Gflops		single-core multi-core DFFT	2645 10435	2.79 Gflops 11.0 Gflops
single-core multi-core N-Body	2967 6597	2.70 Gflops 6.01 Gflops		single-core multi-core N-Body	2811 11046	2.56 Gflops 10.1 Gflops
single-core multi-core Ray Trace	4532 9754	1.68 Mpairs/sec 3.62 Mpairs/sec		single-core multi-core Ray Trace	4366 17303	1.62 Mpairs/sec 6.42 Mpairs/sec
single-core multi-core	3636 8734	4.29 Mpixels/sec 10.3 Mpixels/sec		single-core multi-core	3487 13983	4.11 Mpixels/sec 16.5 Mpixels/sec
Memory			N	Memory		

© 2014 Cloud Spectator, Inc. and Structure Research. All rights reserved. This document and content within this document is for non-commercial use only.

Stream Copy single-core multi-core	1540 3903	6.15 GB/sec 15.6 GB/sec	Stream Copy single-core 207 multi-core 3976	
Stream Scale			Stream Scale	
single-core	2744	11.0 GB/sec	single-core 269	9 10.8 GB/sec
multi-core	4961	19.8 GB/sec	multi-core 4925	19.7 GB/sec
Stream Add			Stream Add	
single-core	2250	10.2 GB/sec	single-core 246	3 11.2 GB/sec
multi-core	4253	19.2 GB/sec	multi-core 4512	20.4 GB/sec
Stream Triad			Stream Triad	
single-core	2347	10.3 GB/sec	single-core 252	11.1 GB/sec
multi-core	4328	19.0 GB/sec	multi-core 4642	20.4 GB/sec
Benchmark Sun	nmary		Benchmark Summary	
Integer Score	29	59 7126	Integer Score	2790 10607
Floating Point	Score 3	3013 7393	Floating Point Score	2788 10988
Memory Score	2	2173 4344	Memory Score	2429 4500
Geekbench Sc	core	2823 6676	Geekbench Score	2717 9538

			8 vCPU Machine Results	
AMAZON C3.22	XLARGE		CENTURYLINK 8vCPUs 15	GB MEMORY
Integer			Integer	
AES			AES	
single-core	2651	2.27 GB/sec	single-core 2529	2.16 GB/sec
multi-core	11567	9.90 GB/sec	multi-core 19195	16.4 GB/sec
Twofish			Twofish	
single-core	2710	152.1 MB/sec	single-core 2610	146.5 MB/sec
multi-core	15359	861.9 MB/sec	multi-core 20868	1.14 GB/sec
SHA1			SHA1	
single-core	3147	341.6 MB/sec	single-core 3029	328.8 MB/sec
multi-core	13046	1.38 GB/sec	multi-core 24201	2.57 GB/sec
SHA2			SHA2	
single-core	3408	147.5 MB/sec	single-core 3305	143.0 MB/sec
multi-core	13308	575.8 MB/sec	multi-core 26577	1.12 GB/sec
BZip2 Compre	SS		BZip2 Compress	
single-core	2542	10.3 MB/sec	single-core 2445	9.94 MB/sec
multi-core	13036	53.0 MB/sec	multi-core 19487	79.2 MB/sec
BZip2 Decomp	ress		BZip2 Decompress	
single-core	2534	13.7 MB/sec	single-core 2437	13.2 MB/sec
multi-core	13308	72.1 MB/sec	multi-core 19162	103.9 MB/sec
JPEG Compre	SS		JPEG Compress	
single-core	2794	38.9 Mpixels/sec	single-core 2692 3	7.5 Mpixels/sec
multi-core	14842	206.8 Mpixels/sec		99.0 Mpixels/sec
JPEG Decomp	ress		JPEG Decompress	•
single-core	3960	97.9 Mpixels/sec	single-core 3781 9	3.5 Mpixels/sec
multi-core	17739	438.5 Mpixels/sec	multi-core 23082 57	70.6 Mpixels/sec
PNG Compres	is		PNG Compress	•
single-core	2692	2.15 Mpixels/sec		.07 Mpixels/sec
multi-core	14935	11.9 Mpixels/sec	multi-core 20639 1	6.5 Mpixels/sec
PNG Decompr	ess	·	PNG Decompress	·
single-core	2891	33.3 Mpixels/sec	single-core 2798 3	2.3 Mpixels/sec
multi-core	15021	173.2 Mpixels/sec		52.5 Mpixels/sec
Sobel		·	Sobel	•
single-core	3806	138.5 Mpixels/sec	single-core 3577 13	30.2 Mpixels/sec
multi-core	16807	611.6 Mpixels/sec	multi-core 28001 1	.02 Gpixels/sec
Lua			Lua	
single-core	2857	2.57 MB/sec	single-core 2805	2.52 MB/sec
multi-core	14286	12.8 MB/sec	multi-core 21298	19.1 MB/sec
Dijkstra			Dijkstra	
single-core	2454	8.81 Mpairs/sec	single-core 2504 8	3.99 Mpairs/sec
multi-core	11411	40.9 Mpairs/sec	multi-core 13392 4	48.1 Mpairs/sec
Floating Point			Floating Point	
BlackScholes			BlackScholes	
single-core	2373	10.6 Mnodes/sec	single-core 1941 8	3.64 Mnodes/sec
multi-core	13007	57.9 Mnodes/sec	multi-core 15485 6	68.9 Mnodes/sec
Mandelbrot			Mandelbrot	
single-core	2685	2.75 Gflops	single-core 2587	2.65 Gflops
multi-core	18010	18.5 Gflops	multi-core 20672	21.2 Gflops
Sharpen Filter		•	Sharpen Filter	•

single-core multi-core	2443 12464	1.81 Gflops 9.24 Gflops	single-core 2356 multi-core 18512	
Blur Filter			Blur Filter	
single-core	1987	1.89 Gflops	single-core 1898	
multi-core SGEMM	11542	11.0 Gflops	multi-core 14385 SGEMM	13.7 Gflops
single-core	4066	11.4 Gflops	single-core 3560	
multi-core DGEMM	17062	47.8 Gflops	multi-core 26955 DGEMM	75.5 Gflops
single-core	3637	5.34 Gflops	single-core 3374	4.96 Gflops
multi-core SFFT	16144	23.7 Gflops	multi-core 25786 SFFT	37.9 Gflops
single-core	2757	2.91 Gflops	single-core 2656	
multi-core DFFT	11473	12.1 Gflops	multi-core 21080 DFFT	22.2 Gflops
single-core	2947	2.68 Gflops	single-core 2860	
multi-core N-Body	13186	12.0 Gflops	multi-core 22657 N-Body	
single-core	4545	1.69 Mpairs/sec	single-core 4381	
multi-core Ray Trace	19534	7.25 Mpairs/sec	multi-core 34771 Ray Trace	12.9 Mpairs/sec
single-core	3634	4.29 Mpixels/sec	single-core 3444	
multi-core	17475	20.6 Mpixels/sec	multi-core 27315	32.2 Mpixels/sec
			Memory	
Memory			•	
Stream Copy	2074	8 28 GP/soc	Stream Copy	8 37 CP/soc
Stream Copy single-core	2074	8.28 GB/sec	Stream Copy single-core 2097	
Stream Copy single-core multi-core Stream Scale	3632	14.5 GB/sec	Stream Copy single-core 2097 multi-core 3992 Stream Scale	15.9 GB/sec
Stream Copy single-core multi-core Stream Scale single-core	3632 2689	14.5 GB/sec 10.7 GB/sec	Stream Copy single-core 2097 multi-core 3992 Stream Scale single-core 2737	15.9 GB/sec 10.9 GB/sec
Stream Copy single-core multi-core Stream Scale	3632 2689 4795	14.5 GB/sec 10.7 GB/sec 19.1 GB/sec	Stream Copy single-core 2097 multi-core 3992 Stream Scale single-core 2737 multi-core 4975 Stream Add	15.9 GB/sec 10.9 GB/sec 19.9 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core	3632 2689 4795 2292	14.5 GB/sec 10.7 GB/sec 19.1 GB/sec 10.4 GB/sec	Stream Copy single-core 2097 multi-core 3992 Stream Scale single-core 2737 multi-core 4975 Stream Add single-core 2482	15.9 GB/sec 10.9 GB/sec 19.9 GB/sec 11.2 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add	3632 2689 4795	14.5 GB/sec 10.7 GB/sec 19.1 GB/sec	Stream Copy single-core 2097 multi-core 3992 Stream Scale single-core 2737 multi-core 4975 Stream Add	15.9 GB/sec 10.9 GB/sec 19.9 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core	3632 2689 4795 2292 4187 2341	14.5 GB/sec 10.7 GB/sec 19.1 GB/sec 10.4 GB/sec	Stream Copy single-core 2097 multi-core 3992 Stream Scale single-core 2737 multi-core 4975 Stream Add single-core 2482 multi-core 4525	15.9 GB/sec 10.9 GB/sec 19.9 GB/sec 11.2 GB/sec 20.5 GB/sec 11.1 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core Stream Triad	3632 2689 4795 2292 4187	14.5 GB/sec 10.7 GB/sec 19.1 GB/sec 10.4 GB/sec 18.9 GB/sec	Stream Copy single-core 2097 multi-core 3992 Stream Scale single-core 2737 multi-core 4975 Stream Add single-core 2482 multi-core 4525 Stream Triad	15.9 GB/sec 10.9 GB/sec 19.9 GB/sec 11.2 GB/sec 20.5 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core Stream Triad single-core multi-core	3632 2689 4795 2292 4187 2341 4273	14.5 GB/sec 10.7 GB/sec 19.1 GB/sec 10.4 GB/sec 18.9 GB/sec 10.3 GB/sec 18.8 GB/sec	Stream Copy single-core 2097 multi-core 3992 Stream Scale single-core 2737 multi-core 4975 Stream Add single-core 2482 multi-core 4525 Stream Triad single-core 2529 multi-core 4681 Benchmark Summary	15.9 GB/sec 10.9 GB/sec 19.9 GB/sec 11.2 GB/sec 20.5 GB/sec 11.1 GB/sec 20.6 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core Stream Triad single-core multi-core	3632 2689 4795 2292 4187 2341 4273	14.5 GB/sec 10.7 GB/sec 19.1 GB/sec 10.4 GB/sec 18.9 GB/sec 10.3 GB/sec 18.8 GB/sec	Stream Copy single-core 2097 multi-core 3992 Stream Scale single-core 2737 multi-core 4975 Stream Add single-core 2482 multi-core 4525 Stream Triad single-core 2529 multi-core 4681 Benchmark Summary Integer Score	15.9 GB/sec 10.9 GB/sec 19.9 GB/sec 11.2 GB/sec 20.5 GB/sec 11.1 GB/sec 20.6 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core Stream Triad single-core multi-core	3632 2689 4795 2292 4187 2341 4273 nmary 2	14.5 GB/sec 10.7 GB/sec 19.1 GB/sec 10.4 GB/sec 18.9 GB/sec 10.3 GB/sec 18.8 GB/sec 923 14094 3011 14725	Stream Copy single-core 2097 multi-core 3992 Stream Scale single-core 2737 multi-core 4975 Stream Add single-core 2482 multi-core 4525 Stream Triad single-core 2529 multi-core 4681 Benchmark Summary Integer Score Floating Point Score	15.9 GB/sec 10.9 GB/sec 19.9 GB/sec 11.2 GB/sec 20.5 GB/sec 11.1 GB/sec 20.6 GB/sec
Stream Copy single-core multi-core Stream Scale single-core multi-core Stream Add single-core multi-core Stream Triad single-core multi-core	3632 2689 4795 2292 4187 2341 4273 nmary 2	14.5 GB/sec 10.7 GB/sec 19.1 GB/sec 10.4 GB/sec 18.9 GB/sec 10.3 GB/sec 18.8 GB/sec	Stream Copy single-core 2097 multi-core 3992 Stream Scale single-core 2737 multi-core 4975 Stream Add single-core 2482 multi-core 4525 Stream Triad single-core 2529 multi-core 4681 Benchmark Summary Integer Score	15.9 GB/sec 10.9 GB/sec 19.9 GB/sec 11.2 GB/sec 20.5 GB/sec 11.1 GB/sec 20.6 GB/sec

			10 VOPO Macilile nesults
Amazon C3.4X	LARGE		CenturyLink 16vCPUs 30GB MEMORY
Integer			Integer
AES			AĔŠ
single-core	2642	2.26 GB/sec	single-core 2531 2.17 GB/sec
multi-core	19583	16.8 GB/sec	multi-core 22497 19.3 GB/sec
Twofish			Twofish
single-core	2701	151.6 MB/sec	single-core 2599 145.9 MB/sec
multi-core	30584	1.68 GB/sec	multi-core 41159 2.26 GB/sec
SHA1			SHA1
single-core	3138	340.6 MB/sec	single-core 3019 327.8 MB/sec
multi-core	25823	2.74 GB/sec	multi-core 48069 5.10 GB/sec
SHA2			SHA2
single-core	3395	146.9 MB/sec	single-core 3297 142.7 MB/sec
multi-core	26369	1.11 GB/sec	multi-core 52687 2.23 GB/sec
BZip2 Compre	ess		BZip2 Compress
single-core	2542	10.3 MB/sec	single-core 2443 9.93 MB/sec
multi-core	26023	105.8 MB/sec	multi-core 38362 155.9 MB/sec
BZip2 Decom	press		BZip2 Decompress
single-core	2509	13.6 MB/sec	single-core 2425 13.1 MB/sec
multi-core	26234	142.2 MB/sec	multi-core 37918 205.5 MB/sec
JPEG Compre	ess		JPEG Compress
single-core	2790	38.9 Mpixels/sec	single-core 2686 37.4 Mpixels/sec
multi-core	29434	410.1 Mpixels/sec	multi-core 42556 592.9 Mpixels/sec
JPEG Decom	press		JPEG Decompress
single-core	4103	101.4 Mpixels/sec	single-core 3748 92.7 Mpixels/sec
-			

16 vCPU Machine Results

multi-core	35117	868.1 Mpixels/sec	multi-core 5494	40 1.36 Gpixels/sec
PNG Compress		·	PNG Compress	·
single-core	2690	2.15 Mpixels/sec	single-core 258	
multi-core	29565	23.6 Mpixels/sec	multi-core 4108	32.8 Mpixels/sec
PNG Decompro		22.0 Maissala/aaa	PNG Decompress	77 20 0 Maissala/aaa
single-core multi-core	2930 29743	33.8 Mpixels/sec	single-core 277 multi-core 3199	
Sobel	23143	342.9 Mpixels/sec	Sobel	JO 300.0 WIPIXels/Sec
single-core	3788	137.9 Mpixels/sec	single-core 356	3 129.7 Mpixels/sec
multi-core	33290	1.21 Gpixels/sec	multi-core 534	
Lua			Lua	
single-core	2886	2.59 MB/sec	single-core 275	53 2.47 MB/sec
multi-core	27855	25.0 MB/sec	multi-core 4053	36.4 MB/sec
Dijkstra			Dijkstra	
single-core	2796	10.0 Mpairs/sec	single-core 245	
multi-core	18899	67.8 Mpairs/sec	multi-core 2128	32 76.4 Mpairs/sec
Electing Doint			Floating Point	
Floating Point BlackScholes			Floating Point BlackScholes	
single-core	2365	10.5 Mnodes/sec	single-core 193	86 8.62 Mnodes/sec
multi-core	25324	112.7 Mnodes/sec	multi-core 3064	
Mandelbrot			Mandelbrot	
single-core	2681	2.75 Gflops	single-core 258	33 2.65 Gflops
multi-core	35884	36.8 Gflops	multi-core 4073	
Sharpen Filter			Sharpen Filter	
single-core	2444	1.81 Gflops	single-core 233	
multi-core	24762	18.4 Gflops	multi-core 356	77 26.4 Gflops
Blur Filter	4000	4.00.05	Blur Filter	100.05
single-core	1990	1.90 Gflops	single-core 189	
multi-core SGEMM	22961	21.9 Gflops	multi-core 2966 SGEMM	60 28.3 Gflops
single-core	4070	11.4 Gflops	single-core 345	55 9.68 Gflops
multi-core	31025	86.9 Gflops	multi-core 518	
DGEMM	01020	oo.o onopo	DGEMM	о тчол опоро
single-core	3706	5.45 Gflops	single-core 328	37 4.83 Gflops
multi-core	30814	45.3 Gflops	multi-core 481°	
SFFT		•	SFFT	•
single-core	2751	2.90 Gflops	single-core 263	
multi-core	22790	24.0 Gflops	multi-core 3896	62 41.1 Gflops
DFFT	0000	0.70.05	DFFT	0.57.05
single-core	2963 26107	2.70 Gflops	single-core 282	
multi-core N-Body	20107	23.8 Gflops	multi-core 4250 N-Body	07 38.7 Gflops
single-core	4538	1.68 Mpairs/sec	single-core 436	55 1.62 Mpairs/sec
multi-core	38910	14.4 Mpairs/sec	multi-core 6662	•
Ray Trace			Ray Trace	
single-core	3471	4.09 Mpixels/sec	single-core 35	16 4.15 Mpixels/sec
multi-core	34808	41.0 Mpixels/sec	multi-core 5167	78 60.9 Mpixels/sec
Memory			Memory	
Stream Copy	1747	6.97 GB/sec	Stream Copy single-core 208	86 8.33 GB/sec
single-core multi-core	2514	10.0 GB/sec	single-core 208 multi-core 397	
Stream Scale	2314	10.0 OD/360	Stream Scale	0 10.3 OD/360
single-core	2473	9.88 GB/sec	single-core 270	03 10.8 GB/sec
multi-core	4696	18.7 GB/sec	multi-core 482	
Stream Add			Stream Add	
single-core	2295	10.4 GB/sec	single-core 246	
multi-core	4063	18.4 GB/sec	multi-core 351	1 15.9 GB/sec
Stream Triad	0.4.00	0.50.00/	Stream Triad	
single-core	2182	9.59 GB/sec	single-core 253	
multi-core	4124	18.1 GB/sec	multi-core 359	4 15.8 GB/sec
Danahmark Cum	mori		Panahmark Cummany	
Benchmark Sum Integer Score	•	959 27187	Benchmark Summary Integer Score	2808 39005
Floating Point S		3003 28839	Floating Point Score	
Memory Score		2156 3750	Memory Score	2435 3943
,			,	
Geekbench Sc	ore	2816 23160	Geekbench Score	2726 33350