Linear System of Equations

- (lowkey review of MATH 221)
- linear system of equation

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

- o x_j are variables and we want to solve for them; while a_j are coefficients
- each eq above is a linear eq (nothing is squared)
- we want to solve for a set of sols (if any exists) for $x_1, \ldots h_n$ such that all m equations are satisfied
- \bullet writing the system in matrix form

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{b}$$

$$Ax = b$$

$$\circ \ A = (m \times n), x = (n \times 1), b = (m \times 1)$$

- fact: every linear system with m equations, n unknowns (all real values) can be expressed as a matrix equations Ax = b where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$
- Gaussian Elimination (GE): how we solve for linear equations
 - 1. Form the "augmented matrix" from Ax = b

$$[A \mid b]$$

- 2. Do row reduction using elementary row operations until the augmented matrix is in row echelon form (REF)
- elementary row operations:
 - 1. add multiple of a row to another
 - 2. multiply a row be a non-zero scalar
 - 3. interchange two rows
- \bullet row echelon form

$$\begin{bmatrix} 0 & 0 & \blacksquare & x & x & x & b_1 \\ 0 & 0 & 0 & 0 & \blacksquare & x & b_2 \\ 0 & 0 & 0 & 0 & 0 & \blacksquare & b_3 \end{bmatrix}$$

- \circ all non-zero rows at the bottom
- first non-zero entry (called a <u>pivot</u>) in any row is to the right of the pivot in any row above it
- \circ note: if all pivot entries are 1 and all entries above the pivot are 0, then we have a matrix in reduced row echelon form (RREF)
- example: TODO (maybe)
- <u>rank</u> (of a matrix): the number of non-zero rows in REF of a matrix
 - this number is unique to the matrix
 - $\circ\,$ can also be defined as the number of linearly independent rows OR the number of pivots
 - o theorems
 - 1. The system Ax = b has no solutions (the system is inconsistent) when $\operatorname{rank}(A) < \operatorname{rank}([A \mid b])$

- 2. Suppose A is $(m \times n)$, then Ax = b has a unique solution iff $\operatorname{rank}(A) = \operatorname{rank}([A \mid b]) = n$ (number of columns/variables)
- 3. Iff $\operatorname{rank}(A) = \operatorname{rank}([A \mid b]) < n$, then there are $n \operatorname{rank}(A)$ free variables and the system has ∞ solutions
- special case: square matrix
 - \circ suppose A is a $(n \times n)$ matrix and rank(A) = n, then Ax = b has a unique solution regardless of b
 - \circ in fancier terms: the map $f: x \in \mathbb{R}^n \to Ax \in \mathbb{R}^n$ is an invertible function (or: linear transformation)
 - \rightarrow i.e for every $y \in \mathbb{R}^n$, there exists x $in\mathbb{R}^n$ such that Ax = y
 - \circ so, we define the inverse of A as: $y = Ax \longrightarrow x = A^{-1}y$
 - o facts about this inverse
 - 1. A^{-1} is also an $(n \times n)$ matrix
 - 2. $(A^{-1})^{-1}$ exists and is equal to A
 - 3. for square matrices $\mathbf{w}/$ non-zero determinant, you can find its inverse
- recall: the identity matrix

$$I_n = (n \times n)$$
 Identity Matrix
= matrix w/ 0s everywhere, 1s on the diagonal

 \circ I_n takes on the role of "the number one" in matrix computation, that is

$$I_n \times x = x$$
 $x \ in \mathbb{R}^n$
 $I_n \times A = A$ $A \in \mathbb{R}^{m \times n}$
 $A \times A^{-1} = I_n$ (only if A is square-invertible)

- theorem: Suppose $A \in \mathbb{R}^{m \times n}$ and rank(A) = n (full rank),
 - 1. A^{-1} exists is an $(n \times n)$ matrix
 - 2. $A(A^{-1}) = (A^{-1})A = I_n$
 - o points is: when solving linear system Ax = b w/ an invertible A, solution given by $x = A^{-1}b$
- Finding the Inverse: typically do $[A \mid I_n]$ then do GE to REF which gives $[I_n \mid A^{-1}]$
 - \circ (so reduce until you get I_n on the LHS, whatever on the RHS is the inverse)
 - o example: TODO

LU Decomposition

- computational motivation: suppose we want to solve many large linear system Ax = b; Ax = c; Ax = d, ... where A is a common (the same) but the RHS b, c, d, ... are different
 - o for each linear system, we need to do GE to get to REF

$$[A \mid b] \longrightarrow \dots$$

$$[A \mid c] \longrightarrow \dots$$

$$[A \mid d] \longrightarrow \dots$$

however, the **steps** to do GE to get to REF <u>only depend</u> on A

 goal: record the steps of GE and use it repeatedly with however many different RHS we have (this is what LU aims to do) • What is LU decomposition? It is a factorization of A in the form

$$A = LU$$
$$U = REF(A)$$

L = matrix that encodes steps of GE

• L is a <u>unit lower triangular matrix</u> and U is called an <u>upper</u> triangular matrix (see below)

- definitions
 - 1. Lower triangular matrix: all entries above the main diagonal are 0

$$\begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & * & * \\ * & * & * \end{bmatrix} \qquad \begin{bmatrix} * & 0 & 0 & 0 \\ * & * & 0 & * \\ * & * & * & 0 \end{bmatrix} \qquad \begin{bmatrix} * & 0 \\ * & * \\ * & * \\ * & * \end{bmatrix}$$

- \circ in other words $a_{ij} = 0 \ \forall \ i < j$
- the stars can be anything
- 2. Unit lower triangular matrix: it's a <u>square</u> lower triangular matrix with all ones on the main diagonal
 - \circ stars can still be anything
- 3. Upper triangular & unit upper triangular matrix: same as lower but just opposite
- row operation matrices: matrices that perform row operations when mutiplied with another matrix
 - 1. Swapping Rows: you take the identity matrix, then you apply the row operation to the identity matrix
 - \circ ex. swap row 2 and 3 for the matrix A below

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(we swapped row 2 and 3 of the identity matrix)

- 2. Multiply row i by a scalar s: we have $A \longrightarrow DA$ where D is I_n where the i-th diagonal entry is replaced with s
- 3. Add c times row j to row i $(i \neq j)$: replace the entry in the i-th row and j-th column with the value c
 - o we basically do A[i][j] = c
 - o example: TODO
 - \circ note: for this matrix, its matrix is particularly easy to get, just flip the c entry to -c
- ullet want: compute the LU decomposition of a matrix (if it exists)
 - o solution: do Gaussian Elimination
 - o that is:

$$A \longrightarrow E_{1}(A) \longrightarrow E_{2}(E_{1}(A)) \longrightarrow \dots \longrightarrow REF(A)$$

$$\therefore \underbrace{REF(A)}_{U} = E_{j} \cdot E_{j-1} \cdot \dots \cdot E_{2} \cdot E_{1} \cdot A$$

$$U = (E_{j} \dots E_{2}E_{1})A$$

$$\therefore A = (E_{j} \dots E_{2}E_{1})^{-1}U$$

$$= \underbrace{(E_{1}^{-1}E_{2}^{-1} \dots E_{j}^{-1})}_{L}U$$

o example: find the LU decomposition of

$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 4 \\ -1 & 0 & 1 \end{bmatrix}$$

solution:

$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 4 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{-3R_1 + R_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ -1 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix} = REF(A) = U$$

thus we have

$$E_{1} = -3R_{1} + R_{2} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{2} = R_{1} + R_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$U = E_{1}E_{2}A$$

$$\therefore A = E_{2}^{-1}E_{1}^{-1}U$$

$$= \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{E_{1}^{-1}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}}_{E_{2}^{-1}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix}}_{U}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix} = LU$$

- the steps above is general and can be stated as a theorem
- <u>theorem</u>: if a matrix A can be reduced to REF by GE without swapping rows, then A has an LU decomposition
 - \circ def: we say A has an LU decomposition if A = LU where \overline{L} is unit lower triangular and U is upper triangular.
- using LU decomposition to solve linear systems: the usual set up is that we have the same A but multiple different b's currently we have

$$Ax = b \Longrightarrow (LU)x = b$$

- 1. Let Ux = y, so we solve Ly = b for $y \longrightarrow$ should be easy by L is a lower unit triangular matrix (use forward sub)
- 2. Solve y = Ux for $x \longrightarrow \text{can do backward sub}$
- o example: let

$$A = \begin{bmatrix} 2 & 4 & 4 \\ -1 & -1 & 3 \\ 3 & 4 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 3/2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 9 \end{bmatrix}$$
 (no work shown)

1. Let LUx = b, set Ux = y and solve Ly = b

$$\begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 3/2 & -2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 6 \end{bmatrix}$$

Solving, we can see that $y = [y_1, y_2, y_3] = [2, 3, 9]$

2. Solve Ux = y for x

$$\begin{bmatrix} 2 & 4 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 9 \end{bmatrix}$$

Solving, we can get x = [1, -2, 6]

- other useful facts about LU
 - $\circ \operatorname{rank}(A) = \operatorname{rank}(U)$
 - \circ if A is square, det(A) = det(U) = product of diag entry of U

Error Analysis

Vector Norms

- norms of vectors: norms on \mathbb{R}^n assigns a magnitude (size) to vectors in \mathbb{R}^n
 - \circ ex. n=1: in \mathbb{R} the absolute value of x, |x| does the job
 - \circ ex. n=2: let $\vec{x}=\langle x_1,x_2\rangle$, the typical norm is the Euclidean norm (aka 2-norm)

$$||x|| = \sqrt{|x_1^2| + |x_2^2|}$$

- \rightarrow note that the 2-norm can be used in *n*-dimension
- definition: a function $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}^n$ is a norm iff
 - 1. $||x|| > 0, \ \forall \ x \in \mathbb{R}^n$
 - 2. ||x|| = 0 if and only if $x = \vec{0}$ (the zero-vector)
 - 3. $||cx|| = |c| \cdot ||x||, \ \forall \ c \in \mathbb{R}, \ \forall \ x \in \mathbb{R}^n$
 - 4. $||x+y|| \le ||x|| + ||y||$ (known as the triangle inequality)
- examples of other norms
 - 1-norm: it's the sum of all the absolute value of the components (aka Manhattan Distance)

$$||x||_1 = |x_1| + |x_2| + \ldots + |x_n|$$

 \circ p-norm: let $1 \leq p < \infty$ on \mathbb{R}^n

$$||x||_p \coloneqq \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}$$

- \rightarrow note: when p=2 that's the Euclidean norm and p=1 then it's the 1-norm
- $\circ \infty$ -norm:

$$||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$$

• remark: with any given norm, we can define the "distance" between 2 points in \mathbb{R}^n (say x and y) as

$$dist(x, y) := ||x - y||_t$$
 where t can be any norm

- different norms can have different "geometry"
 - \circ in n=2 (we're in \mathbb{R}^2), we can def the unit circle in 2 ways

$$S_2 := \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 = 1, \quad x, y \in \mathbb{R} \right\}$$
$$= \left\{ x \in \mathbb{R}^2 : ||x||_2 = 1 \right\}$$
$$= \text{all vector } \vec{x} \text{ such that the 2-norm of } \vec{x} \text{ is } 1$$

o now if we wanted to define the "unit circle" as a 1-norm

$$S_1 = \{ x \in \mathbb{R}^2 : ||x||_1 = 1 \}$$

 \circ so here "circle" no longer has the same geometric representation that we usually think of, instead we can define it as $\vec{x} \in \mathbb{R}^2 : \|x\|_p = 1$ for any norm p

Matrix Norms

- want: measure the magnitude (size) of a matrix in meaningful way
- \bullet definition of a norm is the same as before they need to satisfy the 4 properties

• Frobenius (or Hibery-Schmidt) Norm: like the 2-norm for vectors

let
$$A = [a_{ij}]_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$||A||_F = ||A||_S = \sqrt{\sum_{j=1}^n \sum_{i=1}^m |a_{ij}|^2}$$

- Operator Norm: intuitively, it's calculating the maximum "stretching" capability of the matrix across all possible non-zero vectors
 - when you multiply a matrix and vector, you transform the vector you stretch it by some factor

$$||A||_{\text{op}} = ||A|| = \max\left\{\frac{||Ax||_2}{||x||_2}\right\}$$

• we can also re-write the definition in another manner

$$||A||_{\text{op}} = \max_{||x||=1} ||Ax||$$
$$||A^{-1}||_{\text{op}} = \frac{1}{\min_{||x||=1} ||Ax||_2}$$

- \circ so $\|A\|$ is the maximum stretch of a unit vector by the linear transformation A while $\|A^{-1}\|$ is the reciprocal of the minimum stretch of a unit vector by the linear transformation A
- o operator norms have some special properties
 - 1. ||A|| > 0
 - 2. ||A|| = 0 iff A is a non-zero matrix
 - 3. ||cA|| = |c|||A||
 - 4. $||A + B|| \le ||A|| + ||B||$
 - 5. $||AB|| \le ||A|| \cdot ||B||$ (new)
 - 6. $||Ax||_2 \le ||A||_{\text{op}} \cdot ||x||$
- solving operator norm: we will cover general case later, for now we'll only cover special cases
 - \circ diagonal matrices: let D be a diagonal matrix, then the norm is the max magnitude of the diagonal entries

$$||D|| = \max\{|d_{ij}|\}$$

 \circ permutation matrices: let P be the perm matrix (matrix obtained by shuffling rows of I)

$$||P|| = 1$$
 for any permutation matrix $||PA|| = ||A||$ if P is a permutation matrix

Condition Number

- we want to answer the question "how stable" is the solution with respect to small changes in b
- **definition**: the condition of a nonsingular (invertible) square matrix A is

$$cond(A) = ||A|| \times ||A^{-1}||$$

$$= \frac{\text{max stretch of a unit vector}}{\text{min stretch of a unit vector}}$$

if A is singular, we have $cond(A) = \infty$

• **definition**: given a vector b and a small change Δb , the relative change (or relative error) is $\frac{\|\Delta b\|}{\|b\|}$

• theorem: Let A be a nonsingular matrix and consider the linear system Ax = b. If a small change Δb corresponds to a change Δx in the sense that $A(x + \Delta x) = (b + \Delta b)$ - we define the error bound

$$\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}$$

- \circ this means that if A has a large condition number, then small changes in b may result in very large changes in x (solution x is sensitive to errors in Δb)
- \bullet for permutation matrix P

$$cond(P) = 1$$

 $cond(PA) = cond(A)$

Interpolation

- interpolating function provides information about values between points and beyond the range of the data
 - note that there are infinitely many different ways to interpolate a set of data
- **definition**: given data $[(t_0, y_0), \ldots, (t_d, y_d)]$, an interpolating function (or interpolant) is a function f(t) such that $f(t_k) = y_k$ for $k = 0, \ldots, d$

Polynomial Interpolation

 \bullet a polynomial of degree (at most) d is a function of the form

$$p(t) = c_0 + c_1 t + \dots c_d t^d, \quad c_i \in \mathbb{R}$$

- \circ note that there are d+1 variables (because of c_0 as well)
- \circ we want to solve for c_i
- we have d+1 variables to solve for \longrightarrow every data point gives an equation

$$P(t_i) = y_i$$

i.e.
$$P(t_0) = c_0 + c_1 t_0 + \ldots + c_d (t_0)^d = y_0$$
$$P(t_1) = c_0 + c_1 t_1 + \ldots + c_d (t_1)^d = y_1$$
$$\vdots$$
$$P(t_d) = c_0 + c_1 t_d + \ldots + c_d (t_d)^d = y_d$$

• re-write above into matrix form

- \circ problem of interpolation: solve Ac = y for c
- sidenote: Vandermonde matrix
 - \circ the matrix A above is a Vandermonde matrix, generated by t_0, t_1, \ldots, t_d
 - \circ ex. Vandermonde matrix generated by -2, 3, 5

$$\begin{bmatrix} (-2)^0 & (-2)^1 & (-2)^2 \\ (3)^0 & (3)^1 & (3)^2 \\ (5)^0 & (5)^1 & (5)^2 \end{bmatrix}$$

 \circ **theorem**: let A be the Vandermonde matrix, then

$$\det(A) = \prod_{0 \le i < j \le d} (t_j - t_i)$$

in simple terms: for a Vandermonde matrix constructed from numbers x_1, x_2, \ldots, x_n , the determinant of the matrix, the determinant is the product of the differences between each pair of these numbers

- in terms of interpolation: if the determinant of the Vandermonde matrix is zero, it implies that at least two xcoordinates used to construct the matrix are the same, this means generating a interpolant is impossible
- <u>note</u>: while invertible, the condition number of the Vandermonde matrix gets very large as d increases
 - \circ as d increases, poly interpolation is not numerically stable
 - intuitively: more data = higher degree polynomial = very sensitive and oscillating function → not very useful

Cubic Spline Interpolation

- general idea: between every pair of adjacent points (t_i, t_{i+1}) , we want to fit a cubic function then glue them together
- definition: consider N+1 points $(t_0, y_0) \dots, (t_N, y_N)$, a cubic spline is a function p(t) defined piecewise (made up of many parts) by N cubic polynomials $p_1(t), \dots, p_N(t)$ where

$$p_k(t) = a_k(t - t_{k-1})^3 + b_k(t - t_{k-1})^2 + c_k(t - t_{k-1}) + d_k$$

- we need to solve for (a_j, b_j, c_j, d_j) for $j = 1, 2, ..., N \to \text{we}$ require 4N unknowns, thus we have to impose conditions to get 4N equations
 - 1. Interpolation at left endpoints (yield N equations)

$$p_k(t_{k-1}) = y_{k-1}, \qquad k = 1, \dots, N$$

(basically saying left endpoint of this polynomial need to match the data)

2. Interpolation at right endpoints (yield N equations)

$$p_k(t_k) = y_k, k = 1, \dots, N$$

3. Continuity of p'(t) (yield N-1 equations)

$$p'_{k}(t_{k}) = p'_{k+1}(t_{k}), \qquad k = 1, \dots, N-1$$

4. Continuity of p'' (yield N-1 equations)

$$p''_{k}(t_{k}) = p''_{k+1}(t_{k}), \quad k = 1, \dots, N-1$$

5. Natural spline condition (yield 2 equations)

$$p''_{1}(t_{0}) = p''_{N}(t_{N}) = 0$$

note: there are different choices to get these extra 2 equations (i.e "not-a-knot" condition)

- theorem: for N+1 points $(t_0, y_0), \ldots (t_N, y_N)$ where $t_i \neq t_j$ for all $i \neq j$, a unique "natural" cubic spline p(t) that interpolates these points can be constructed
 - $\circ\,$ term "natural" here means second derivatives of the spline at the endpoints are zero
 - \circ can represent the cubic spline p(t) by the coefficient matrix

$$C = \begin{bmatrix} a_1 & a_2 & \dots & a_N \\ b_1 & b_2 & \dots & b_N \\ c_1 & c_2 & \dots & c_N \\ d_1 & d_2 & \dots & d_N \end{bmatrix}$$

where the k-th column of C consists of the coefficients for the k cubic polynomial in the spline, i.e

$$p_k(t) = a_k(t - t_{k-1})^3 + b_k(t - t_{k-1})^2 + c_k(t - t_{k-1}) + d_k$$

 turns out that we get the solutions to the first set of equations for free

$$d_k = y_{k-1}$$
 for $k = 1, ..., N$

 \circ the coefficients $a_1, b_1, c_1, \dots, a_N, b_N, c_N$ are the solutions to the linear system

	$A(L_1)$	B			
H =		$A(L_2)$	B		
			·	·	
				$A(L_{N-1})$	В
	T				\overline{V}

$$H \cdot \begin{bmatrix} a_1 \\ b_1 \\ c_1 \\ \vdots \\ a_N \\ b_N \\ c_N \end{bmatrix} = \begin{bmatrix} y_1 - y_0 \\ 0 \\ 0 \\ \vdots \\ y_N - y_{N-1} \\ 0 \\ 0 \end{bmatrix}$$

where $L_k = t_k - t_{k-1} =$ the length of the sub-interval $[t_{k-1}, t_k]$ and

$$A(L) = \begin{bmatrix} L^3 & L^2 & L \\ 3L^2 & 2L & 1 \\ 6L & 2 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -2 & 0 \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad V = \begin{bmatrix} L_N^3 & L_N^2 & L_N \\ 0 & 0 & 0 \\ 6L_N & 2 & 0 \end{bmatrix}$$

• note: condition number of the matrix for constructing the natural cubic spline does not increase as drastically with the number of points like Vandermonde

Subspaces

- note: term vector refers to elements of \mathbb{R}^n and scalar s refers to elements in \mathbb{R}
- definition: a subset $S \subseteq \mathbb{R}^n$ is a <u>subspace</u> iff $\forall u, v \in S, \ \forall \ a \in \mathbb{R}$
 - 1. $u + v \in S$ (S is closed under addition)
 - 2. $a \times u \in S$ (S is closed under scalar multiplication)

another way to write this is (equiv to both statements above)

$$\forall u, v \in S, \ \forall \ a \in \mathbb{R}, \ au + bv \in S$$

 \circ remark: if S is a subspace, then $\vec{0}$ must be in S

- definition: given $\{v_1, v_2, \dots, v_k\} \in \mathbb{R}^n, c_i \in \mathbb{R}$
 - the sum $\sum_{i=1}^k c_i v_i$ is a **linear combination** of v_1, \ldots, v_k
 - the set of all linear combination of $\{v_1, \ldots, v_k\}$ is its **span**

$$\operatorname{span}\{v_1,\ldots,v_k\} = \left\{ \sum_{j=1}^k c_j v_j, \quad c_j \in \mathbb{R} \right\}$$

- \rightarrow in other words, it is the set of all vectors that can be obtained by scaling and adding these vectors together
- \rightarrow for any $v_1, \dots v_k \in \mathbb{R}^k$, span $\{v_1, \dots, v_k\}$ is a subspace
- $v_1, \dots v_k$ is <u>linearly dependent</u> if there exists a case where $\sum_{i=1}^k c_j v_j = 0$ but not all c_j are 0

- \rightarrow equivalently: at least 1 v_j can be expressed as linear combo of other vectors
- $\circ \{v_1, \dots v_k\}$ is <u>linearly independent</u> if it is not linearly dependent
 - \rightarrow equivalently: $\sum_{j=1}^{k} c_j v_j = \vec{0} \iff c_j = 0$ for all j
- note: we can write linear combination as matrix multiplication (put each vector v_i as column of V)

$$\sum_{j=1}^{k} c_j v_j = \underbrace{\left[v_1 \mid v_2 \mid \dots \mid v_k\right]}_{V} \underbrace{\left[\begin{matrix} c_1 \\ \vdots \\ c_k \end{matrix}\right]}_{c}$$

- this means that you can use the rank to check for linear independence
- \circ example: check if $\left\{[1,1,1]^T,[1,1,0]^T,[1,0,0]^T\right\}$ is linearly independent

$$V = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

This matrix has full rank so it is linearly independent (if less then it's dependent) - note that we could have done REF instead of RREF

- definition: a set $\{v_1, v_2, \dots, v_k\} \subseteq S$ is a basis of S if
 - 1. $\operatorname{span}\{v_1,\ldots,v_k\}=S$ (the set of vector spans S)
 - 2. $\{v_1, \ldots, v_k\}$ is linearly independent
 - in other words, the vectors in the basis can generate (or span) the entire space by linear combinations
 - so any vector in the vector space can be expressed as a unique linear combination of the basis vectors
 - \circ remark: if $\{v_1, \dots, v_k\}$ is linearly independent, then it is a basis for its span
 - \circ equivalently: a set $\{v_1, v_2, \dots, v_k\} \subseteq S$ is a **basis** of S iff
 - 1. $\forall u \in S, \exists c_1, c_2 \dots c_k \in \mathbb{R} \text{ s.t } u = \sum_{j=1}^{k} c_j v_j \text{ (basically the span requirement above)}$
 - 2. the choice of c_j in 1) is unique (i.e only 1 way of expressing any vector)
 - o remarks
 - 1. given a subspace, the choice of a basis is not unique
 - 2. however, given a subspace S, the number of vector in any basis of S must be the same this number of vectors is called the dimension of S
 - 3. **theorem**: in a k-dim subspace S, any k linearly independent vectors for a basis for S

Example: Find a basis and the dimension of $S = \text{span}(u_1, u_2, u_3, u_4)$

$$u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} u_2 = \begin{bmatrix} 2 \\ -3 \\ 1 \\ 0 \end{bmatrix} u_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} u_4 = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 2 \end{bmatrix}$$

important: the pivot columns indicates which u_i is indep

Let $U = [u_1 \ u_2 \ u_3 \ u_4]$

$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & -3 & -1 & -1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 2 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & -5 & 2 & -3 \\ 0 & 0 & 2/5 & -2/5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

So we can say that $\{u_1, u_2, u_3\}$ is the basis for S and thus $\dim(S) = 3$

• if we found out that $U = \text{span}\{u_1, u_2, \dots, u_k\}$ has dimension d, then any d linearly independent vector from the set $\{u_1, u_2, \dots, u_k\}$ will form the basis for U

Null Spaces & Ranges

• recall: a matrix $A \in \mathbb{R}^{m \times n}$ can be interpreted as a linear map (function transformation) from \mathbb{R}^n to \mathbb{R}^m

$$A: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 or $A: x \in \mathbb{R}^n \longrightarrow Ax \in \mathbb{R}^m$

 \circ note: A is linear iff $\forall x_1, x_2 \in \mathbb{R}^n, \ \forall s_1, s_2 \in \mathbb{R}$

$$A(sx_1 + sx_2) = s_1 A x_2 + s_2 A x_2$$

 \bullet definition: null spaces of A

$$N(A) = \{x \in \mathbb{R}^n : Ax = \vec{0}\} \subseteq \mathbb{R}^n$$

= solution set of $Ax = 0$

- \circ fact: N(A) is a subspace of \mathbb{R}^n
- \circ example: given A, find basis of $N(A)\to$ means solve Ax=0 (technically, want to solve for the basis of N(A))

$$A = \begin{bmatrix} 1 & 3 & 3 & 10 \\ 2 & 6 & -1 & -1 \\ 1 & 3 & 1 & 4 \end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 x_1, x_3 are pivots and x_2, x_4 are free variables let $x_2 = s, x_3 = t \rightarrow x_3 = -3t, x_1 = -3s - t$

$$\therefore N(A) = \left\{ \begin{bmatrix} -3s - t \\ s \\ -3t \\ t \end{bmatrix} : s, t \in \mathbb{R} \right\} = \left\{ s \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ -3 \\ 1 \end{bmatrix} \right\}$$

$$= \operatorname{span} \left\{ \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix} + \begin{bmatrix} -1\\0\\-3\\1 \end{bmatrix} \right\} \text{ is the basis of } N(A)$$

- \circ geometrically, think of it as the "directions" or "vectors" that get mapped to zero by A when you apply it
- \circ it represents the subspace of vectors that get "collapsed" or "squished" to the origin when applied to A
- **definition**: **range of** A assume that A is $m \times n$

$$R(A) := \{Ax : x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

= span $\{a_1, \dots, a_k\}$
= set of all possible linear combinations of its col
= col (A) = "column space" of A

- \circ fact: R(A) is a subspace of \mathbb{R}^n
- some important facts: let $A \in \mathbb{R}^{m \times n}$
 - 1. $rank(A) = \# \text{ of pivots} \leq \min(m, n)$
 - 2. $\dim(R(A)) = \#$ of pivots = rank(A) (because the number linearly independent columns gives the basis)
 - 3. $\dim(N(A)) = \#$ of free variable $= n \operatorname{rank}(A)$
 - \circ all things above lead to **Rank-Nullity Theorem**: For any $m \times n$ matrix A, $\dim(R(A)) + \dim(N(A)) = n$
- special case: if we have the LU decomposition of A and we want to find R(A) and N(A)
 - ∘ **theorem**: let A = LU be the LU decomposition of A and let rank(A) = r, then the first r columns of L forms the basis for $R(A) \longrightarrow$ that is, $R(A) = \text{span}\{l_1, \ldots, l_r\}$
 - \circ and since L is invertible, we have

$$N(A) = N(LU) = N(U)$$

so we just have to find N(U) (meaning solve for $Ux = \vec{0}$)

- \rightarrow proposition: suppose B is invertible $m \times n$ and A is any $m \times n$ matrix, then N(BA) = N(A)
- ullet some remarks on A^T

$$A = [a_{ij}]_{m \times n}$$
 $A^T = [a_{ji}]_{n \times m}$ (rows \rightarrow columns)

$$\circ R(A^T) = R(U^T) =$$
the first r rows of U

Orthogonality

• **definition**: the **inner product** (dot product) of two vectors $x = [x_1, \dots, x_n]^T$ and $y = [y_1, \dots, y_n]^T$ in \mathbb{R}^n is

$$\langle x, y \rangle := x \cdot y = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

$$= \sum_{i=1}^n x_i y_i$$

- important properties
 - 1. we can express it in matrix notation

$$\langle x, y \rangle = x^T y = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

- 2. $\langle x, y \rangle = \langle y, x \rangle$ (only true for real numbers)
- 3. $\langle x, cy + dz \rangle = c \langle x, y \rangle + d \langle x, z \rangle$ where $c, d \in \mathbb{R}$ and $x, y, z \in \mathbb{R}^n$
- 4. $\langle x, Ay \rangle = \langle A^T x, y \rangle$ (memorize, always true for reals and any matrix A)
- 5. the inner product induces the 2-norm (can write the 2-norm as inner product)

$$\langle x, x \rangle = \sum_{i=1}^{n} x_i^2 = ||x||_2^2$$

- 6. $|\langle x, y \rangle| \le ||x||_2 \cdot ||y||_2$ (Cauchy–Schwarz inequality)
- 7. $\langle x, y \rangle = ||x||_2 \cdot ||y||_2 \cdot \cos \theta$ where θ is angle b/t x & y
- some more definitions
 - 1. two vectors x and y in \mathbb{R}^n are said to be orthogonal iff < x, y>=0 (because $\cos(\pi/2)=0$)
 - 2. vector set $x_1, x_2, \ldots, x_k \in \mathbb{R}^n$ are said to be orthogonal if $\langle x_i, x_j \rangle = 0 \ \forall i \neq j$
 - \circ if in addition to being orthogonal, these vectors also have $||x_i||_2 = 1$, then they are called orthnormal
 - o in other words, they are orthonormal if

$$\langle x_i, x_j \rangle = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases} =: \delta_{ij}$$

- \circ ex. the set of standard basis in \mathbb{R}^n , $\{e_1, e_2, \dots, e_n\}$ are orthonormal (i.e $\langle e_i, e_j \rangle = \delta_{ij}$)
- 3. if x, y are orthogonal, we write $x \perp y$
- Pythagorean theorem: let x_1, \ldots, x_k be orthogonal in \mathbb{R}^n , then

$$||x_1 + x_2 + \ldots + x_n||^2 = ||x_1||^2 + ||x_2||^2 + \ldots + ||x_n||^2$$

Orthogonal Subspaces

• **definition**: 2 subspaces S_1 and S_2 are orthogonal iff

$$\forall u \in S_1, \forall v \in S_2, \langle u, v \rangle = 0$$

- ex. in 3D space, imagine each subspace as a plane, 2 subspaces can be perpendicular if they intersect at a right angle, forming an "L" shape (hyper-planes in higher dims)
- geometrically, this implies that these subspaces don't share any common directionality, they span different dimensions of the overall vector space
- theorem: 2 subspaces S_1 & S_2 are orthogonal iff there exists a basis $B = \{b_1, \ldots, b_k\}$ for S_1 and $C = \{c_1, \ldots, c_l\}$ for S_2 that's mutually orthogonal; i.e

$$\langle b_i, c_j \rangle = 0$$
 $\forall i = 1, \dots, k$ $\forall j = 1, \dots, l$

- note: if one such pair of basis exist, then any basis for each subspace will also satisfy this property
- $\circ\,$ example: the following will work as $B\perp C$

$$S_1 = \text{span}\{e_1, e_2\}$$
 $S_2 = \text{span}\{e_3\}$
 $B = \{e_1, e_2\}$ $C = \{e_3\}$

 \circ note: the property above is equivalent to

$$B^T C = \vec{0}$$
 where $B = [b_1| \dots |b_k] \& C = [c_1| \dots |c_l]$

• definition: let U be a subspace of a vector space W (i.e $U \subseteq W$), we define the orthogonal complement of U as

$$U^{\perp} = \{x \in W : x \perp U\}$$

- \circ (all vectors that are orthogonal to every vector in U)
- $\circ\,$ note: U^{\perp} is the largest subspace that is orthogonal to U
- \circ intuitively, it consists of all vectors that do not "point into" or "lie within" the subspace U
- ex. let $U = \text{span}\{e_1, e_3, e_4\}$, then $U^{\perp} = \text{span}\{e_2, e_5\}$ as $e_2, e_5 \perp U$
- o remarks
 - 1. given subspace $U \subseteq W$, we have

$$\dim(U) + \dim(U^{\perp}) = \dim(W)$$

- 2. $(U^{\perp})^{\perp} = U$
- 3. if B is a basis for $U{\rm and}\ C$ is a basis for $U^\perp,$ then $B\cup C$ is a basis for W
- 4. given $U, U^T \subseteq W$ and $x \in W$, we can express

$$x = x_u + x_{u^{\perp}}$$
 $x_u \in U, x_{u^{\perp}} \in U^{\perp}$

- \rightarrow this is called an orthogonal decomposition
- \rightarrow further: given x, the choice is x_u and $x_{u^{\perp}}$ is unique
- \rightarrow say x_u is the orthogonal projection of x onto U
- \rightarrow so any vector $x\in W$ can be uniquely decomposed into its project onto U and its projection onto U^\perp
- theorem: let A be a $m \times n$ matrix, then
 - 1. $N(A) = [R(A^T)]^{\perp}$
 - 2. $N(A^T) = [R(A)]^{\perp}$

Orthogonal Projections

ullet definition: projection of vector x onto a vector u is

$$\mathrm{proj}_u v = \frac{\langle x, u \rangle}{\langle u, u \rangle} u$$

- \circ it is the vector that represents the component of x that lies on in the direction of v
- \circ geometrically, the projection of x onto v is the point along the direction of v where the shadow of x falls
- o remark
 - 1. $\operatorname{proj}_u(x) = \langle \hat{u}, x \rangle \cdot \hat{u}$ where $\hat{u} = \frac{u}{\|u\|} = \text{unit projection}$ of u
 - 2. using matrix notation

$$\operatorname{proj}_{u}(x) = \frac{uu^{T}}{\|u\|^{2}}x$$
$$= P_{u}x$$

call P_v the orthogonal projection matrix onto span v

 \circ example: Let $v=\begin{bmatrix}1\\2\\0\end{bmatrix}$ and $x=\begin{bmatrix}5\\7\\3\end{bmatrix}$. Compute P_v and the projection of x onto v

$$P_v = \frac{vv^T}{\|v\|^2} \qquad \|v\|^2 = 1^2 + 2^2 + 0^2 = 5$$

$$= \frac{1}{5} \begin{bmatrix} 1\\2\\0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} 1 & 2 & 0\\2 & 4 & 0\\0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{proj}_{v}(x) = P_{v}x = \begin{bmatrix} 1/5 & 2/5 & 0 \\ 2/5 & 4/5 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 19/5 \\ 2/5 \\ 0 \end{bmatrix}$$

- \circ properties of P_v
 - 1. $P_v(P_v x) = P_v(x)$ (additional projections doesn't do anything, $(P_v)^k = P_v$)
 - $2. (P_v)^T = P_v$
- \circ additionally: let $P_v = P$ for notation purposes
 - 1. $\langle x, Py \rangle = \langle Px, y \rangle$
 - 2. $\langle Px, P_y \rangle = \langle Px, y \rangle$
 - 3. $R(P) = \text{span}\{v\}$
 - 4. $N(P) = \text{span}\{v\}^{\perp}$

Orthonormal Basis & Gram-Schmidt

- we say $\{w_1, w_2, \dots, w_m\}$ is an orthonormal basis (ONB) for a subspace U if
 - 1. $\{w_1, \ldots, w_m\}$ is a basis for U
 - 2. $\{w_1, \ldots, w_m\}$ is orthonormal

i.e.
$$\langle w_i, w_j \rangle = \delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

- why is ONB important: let $\{w_1, w_2, \ldots, w_m\}$ be ONB for U, then for any $x \in U$, there exist a unique set of scalars $\{c_1, c_2, \ldots c_m\}$ s.t
 - 1. $x = \sum_{i=1}^{m} c_j w_j$ (this is nothing special, simply the basis definition usually solve system of equations to find c_i)
 - 2. $c_i = \langle w_i, x \rangle$ (special to ONB)
 - 3. $||x||^2 = \sum |x_j|^2$ (Parseval Equality holds for all basis)

• Gram-Schmidt Orthogonalization Algorithm: let $\{v_1, v_2, \dots, v_n\}$ be a basis of a subspace U, we want to find the ONB

$$u_{1} = v_{1}$$

$$u_{2} = v_{2} - \frac{\langle v_{2}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1}$$

$$u_{3} = v_{3} - \frac{\langle v_{3}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} - \frac{\langle v_{3}, u_{2} \rangle}{\langle u_{2}, u_{2} \rangle} u_{2}$$

$$\vdots$$

$$u_{n} = v_{n} - \sum_{j=1}^{n-1} \frac{\langle v_{n}, u_{j} \rangle}{\langle u_{j}, u_{j} \rangle} u_{j}$$

$$= v_{n} - \sum_{j=1}^{n-1} P_{v_{j}}(u_{n})$$

Then $\{u_1,u_2,\ldots,u_n\}$ is an orthogonal basis of U. If you normalize them, i.e. $e_i=\frac{u_i}{\|u_i\|}$ then $\{e_1,e_2,\ldots,e_n\}$ is an orthonormal basis of U

o example:

Construct ONB for
$$U = \text{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 3 \\ -1 \end{bmatrix} \right\}$$

Apply GS:

$$v_{1} = u_{1} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

$$v_{2} = u_{2} - P_{u_{1}}(u_{2}) = \begin{bmatrix} 1 \\ 1 \\ 3 \\ -1 \end{bmatrix} - \frac{\langle v_{i}, u_{2} \rangle}{\|v_{1}\|^{2}} v_{1}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 3 \\ -1 \end{bmatrix} - \frac{4}{4} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \end{bmatrix}$$

After normalizing, we have

$$w_1 = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix} \qquad w_2 = \frac{1}{2\sqrt{2}} \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \end{bmatrix}$$

o note: can use GS even if given vec not linearly independent

Projection onto Subspaces

• definition: let $U \subseteq \mathbb{R}^n$ be a subspace with ONB $\{w_1, \ldots, w_m\}$, then

$$\operatorname{proj}_{U}(x) := \operatorname{proj}_{w_{1}}(x) + \operatorname{proj}_{w_{2}}(x) + \dots \operatorname{proj}_{w_{m}}(x)$$
$$= (w_{1}w_{1}^{T} + w_{2}w_{2}^{T} + \dots w_{m}w_{m}^{T}) x$$
$$= P \times x$$

- \circ where P is the ortho projector onto U (it is a matrix)
- \circ (second line works because w_j is a unit vector)
- properties of P:
 - 1. $P^2 = P$
 - 2. $P^T = P$

• **definition**: a matrix P is an ortho projection matrix iff $(P^2 = P) \wedge (P^T = P)$

- fact: if P is an ortho projector onto U, then Q = I P is the ortho projector onto U^{\perp}
 - $\circ\,$ while P projects any vector onto $U,\,Q$ projects any vector onto U^\perp
- fact: let $U \in \mathbb{R}^n$ be a subspace, let P_U be the ortho projector onto U
 - 1. $x P_u(x) \in U^{\perp}$
 - \circ if you take any vector x and subtract its projection onto U, the result is a vector that is orthogonal to U
 - \circ because the projection captures all of x's components that are in U, so what remains must be orthogonal to U
 - 2. $||x P_u(x)|| \le ||x y|| \quad \forall \ y \in U$
 - o basically saying the orthogonal projection of x onto $U(P_U(x))$ is the closest point in U to x
- fact: let U be a subspace in \mathbb{R}^n , let $\{w_1, w_2, \ldots, w_m\}$ be an ONB for U, then we can express the ortho projector onto U in different ways
 - 1. $P_U = \sum_{i=1}^n w_i w_i^T$
 - 2. define $B = [w_1 \mid w_2 \mid \dots \mid w_m]$, then $P_U = BB^T$

QR Decomposition

- big idea: If A is a $m \times n$ matrix with rank(A), then the decomposition A = QR provides orthonormal bases of both R(A) and $R(A)^{\perp}$
- **definition**: a matrix A is called orthogonal if $A^TA = AA^T = I$, it has properties:
 - 1. A is square and invertible $(A^{-1} = A^T)$
 - 2. ||Ax|| = ||x|| (norm preserving or has norm of 1)
 - 3. columns of A are orthonormal
 - 4. rows of A are orthonormal
- some examples of orthogonal matrices
 - \circ I_n is orthogonal matrix
 - o rotation matrices are orthogonal matrices
 - o reflection matrix wrt subspaces are orthogonal
 - \rightarrow reflection of x across $U \operatorname{ref}_U(x) = (I 2P_{U^{\perp}})x$
 - \rightarrow for any ortho projector P, the reflection matrix is I-2P and it's also orthogonal
- QR Decomposition: Let A be an $m \times n$ matrix with $\operatorname{rank}(A) = n$
 - 1. Write $A = [a_1 | \dots | a_n]$
 - 2. Apply Gram-Schmidt to $\{a_1, \ldots a_n\}$ and construct $\{w_1, w_2, \ldots, w_n\}$ that's an ONB for R(A)
 - \circ recall that $a_k \in \operatorname{span}\{w_1, \dots, w_k\}$ by construction
 - 3. Rewrite to express each column a_j of A as linear combination of the ONB

$$A = Q_1 R_1$$

$$Q_1 = \underbrace{\begin{bmatrix} w_1 & \cdots & w_n \end{bmatrix}}_{m \times n}$$

$$R_1 = \underbrace{\begin{bmatrix} \langle w_1, a_1 \rangle & \langle w_1, a_2 \rangle & \dots & \langle w_1, a_n \rangle \\ & \langle w_2, a_2 \rangle & \dots & \langle w_2, a_n \rangle \\ & & \ddots & \\ & & & \langle w_n, a_n \rangle \end{bmatrix}}_{n \times n}$$

(this is called the **thin QR decomposition** of A)

4. Obtain the full QR decomposition of A by writing

$$A = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$

where Q is an $m \times m$ orthogonal matrix and R is a $m \times n$ upper triangular matrix

- $\circ Q_2 = \begin{bmatrix} w_{n+1} & w_{n+2} & \dots & w_m \end{bmatrix}$ where $\{w_{n+1}, \dots, w_m\}$ is any ONB of the orthogonal complement $R(A)^{\perp}$
- \circ since $R(A)^{\perp} = N(A^T)$, we just solve $A^T w = 0$ for Q_2
- theorem: let A = QR be the full QR decomposition of the matrix A and let $Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}$
 - 1. the columns of Q_1 form ONB for R(A)
 - 2. the columns of Q_2 form ONB for $R(A)^{\perp}$

$$\operatorname{proj}_{R(A)}(x) = Q_1 Q_1^T x$$

$$Q_1 Q_1^T = \text{ ortho projector onto } R(A)$$

$$\operatorname{proj}_{R(A)^{\perp}} = Q_2 Q_2^T x$$

$$Q_2 Q_2^T = \text{ ortho projector onto } R(A)^{\perp}$$

Least Squares Approximation

• theorem: let A be an $m \times n$ matrix with and m > n and $\overline{\operatorname{rank}(A)} \ge n$ – the least squares approximation of the system $Ax \approx b$ is the solution of the system

$$A^T A x^* = A^T b$$
$$x^* = x_{LS} = (A^T A)^{-1} A^T b$$

The system is called the normal equations.

- o the LSE (in our current set-up) always has a solution
- \circ any solution u of LSE minimze $||Au b||_2$
- \circ if $A^T A$ is invertible then LSE has a unique sol (called x_{LS})
 - $\rightarrow A^T A$ is invertible iff rank(A) = # of col = n
- \circ as an alternative to QR decomposition, we can find the ortho-projector onto R(A)

$$A(x_{LS}) = \operatorname{proj}_{R(A)}(b) \qquad \text{by design}$$

$$A\left[(A^TA)^{-1}A^Tb \right] = \operatorname{proj}_{R(A)}(b)$$

$$A(A^TA)^{-1}A^T = \text{ortho projector onto } R(A)$$

• example: solve the following using LSE

$$\begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix} x = \underbrace{\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}}_{b}$$

$$A^{T}A = \begin{bmatrix} 4 & 6 & 4 \\ 6 & 34 & -4 \\ 4 & -4 & 24 \end{bmatrix} \qquad A^{T}b = \begin{bmatrix} 10 \\ 15 \\ 6 \end{bmatrix}$$

$$(A^{T}A)^{-1} = \begin{bmatrix} 0.5 & -0.1 & -0.1 \\ -0.1 & 0.05 & 0.025 \\ -0.1 & 0.025 & 0.0625 \end{bmatrix}$$

$$x_{LS} = (A^{T}A)^{-1}A^{T}b = \begin{bmatrix} 2.9 \\ -0.1 \\ -0.25 \end{bmatrix}$$

• solving LSE using QR decomp: using the same set-up as above and let $A = Q_1R_1$ be the thin QR decomposition

$$R_1 x = Q_1^T y$$
$$x_{LS} = R^{-1} Q_1^T y$$

further, the residual is given by

$$||Ax - b|| = ||Q_2^T b||$$

(note, most of the time, it's easier to solve $R_1x = Q_1^Ty$ using augmented matrix - inverses are tricky)

• fitting models to data: suppose we have m points $\overline{\{(t_1,y_1),(t_2,y_2),\ldots(t_m,y_m)\}}$ and we want the to find a line $y=c_1+c_2t+c_3t^2$ that best fits the data (minimize SSE)

$$A = \begin{bmatrix} 1 & t_1 & (t_1)^2 \\ 1 & t_2 & (t_2)^2 \\ \vdots & \vdots & \vdots \\ 1 & t_m & (t_m)^2 \end{bmatrix} \qquad c = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \qquad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

and we want to solve $Ac \approx y$ using the LSE

- \circ this generalize to any function on t that's defined in the best fit equation
- \circ we assume $m \geq n$ and the function f_1, f_2, \dots, f_n are linearly independent (so rank(A) = n)

Eigenvalues

• <u>definition</u>: let A be an $n \times n$ matrix, a scalar $\lambda \in \mathbb{R}$ and a non-zero vector $v \in \mathbb{R}^n$ is called an <u>eigenvalue/eigenvector</u> pair if

$$Av = \lambda v$$

 \bullet how to find eigeven values of a given matrix A

$$Av = \lambda v$$

$$Av = \lambda Iv$$

$$Av - \lambda Iv = 0$$

$$(A - \lambda I)v = 0$$

- $\circ \operatorname{def}_{of A} : c_A(\lambda) = \det(A \lambda I)$ is the characteristic polynomial
- theorem: eigenvalues of A is the root of $c_A(\lambda)$ (set $c_A(\lambda) = 0$)
 - \rightarrow note: via fundamental theorem of algebra, $c_A(\lambda)$ will have n roots (possible repeated, possibly complex)
- finding corresponding eigenvector: once we have eigenvalue λ_j , since $v \in N(A \lambda_j I)$ (see above)

solve for
$$v$$
: $(A - \lambda_i I)v = 0$

- any vector in the basis of $N(A \lambda_j I)$ is the corresponding eigenvector to λ_j
- we defined $E_{\lambda_i} := N(A \lambda_j I)$ as the eigenspace of λ_j
- \bullet example: find a eigenvalue/eigenvector pair for A

$$A = \begin{bmatrix} 3 & -6 & -7 \\ 1 & 8 & 5 \\ 1 & 2 & 1 \end{bmatrix}$$

$$c_A(\lambda) = \det(A) = (\lambda - 2)(\lambda - 4)(\lambda - 6) =$$

$$\therefore \lambda = 2, 4, 6$$

for $\lambda = 2$, we can find the corresponding eigenvector

$$E_{\lambda_1} = N(A - 2I) = \begin{bmatrix} 1 & -6 & -7 \\ 1 & 6 & 5 \\ -1 & -2 & -1 \end{bmatrix}$$
$$= \operatorname{span} \left\{ \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} \right\}$$

- **theorem**: if all eigenvalue of $n \times n$ matrix is distinct, then the corresponding eigenvector are linearly independent and form a basis for \mathbb{R}^n
 - o such a basis is called a eigenbasis
- multiplicity of eigenvalue: say $c_A(\lambda) = (\lambda \lambda_1)^2 (\lambda \lambda_2)^3 (\lambda \lambda_3)^3 (\lambda \lambda_3)$ λ_3) where $\lambda_1 \neq \lambda_2 \neq \lambda_3$
 - \circ algebraic multiplicity of $\lambda_1, \lambda_2, \lambda_3$

$$m_1 = 2$$
 $m_2 = 3$ m_3

 \circ geometric multiplicity of $\lambda_1, \lambda_2, \lambda_3$

$$d_j := \dim(E_{\lambda_j})$$
 $j = 1, 2, 3$

- \rightarrow note: $1 \le d_j \le m_j$
- \rightarrow when $d_i < m_i$, that's called a defective eigenvalue
- theorem: there exists an eigenbasis corresponding to A if $d_j = m_j$ for each eigenvalue of A

Diagonalization

- setting for this section
 - \circ A is $n \times n$
 - $\circ \lambda_1, \lambda_2, \ldots, \lambda_3$: eigenvalues of A
 - v_1, v_2, \ldots, v_n : eigenbasis of A such that $Av_i = \lambda_i v_i$
- definition: A matrix is diagonalizable if there exists an some propositions/observations invertible matrix P and a diagonal matrix D such that

$$A = PDP^{-1}$$

theorem: if A is diagonalizable, then we can construct Pwith the eigenvectors as the columns and D with the eigenvalues in the diagonal

$$P = \begin{bmatrix} | & | & | & | \\ v_1 & v_2 & \dots & v_n \\ | & | & | & | \end{bmatrix} \quad D = \begin{bmatrix} \lambda_1 \\ & \lambda_2 \\ & & \ddots \\ & & & \lambda_n \end{bmatrix}$$

$$A = PDP^{-1}$$

- **theorem**: if A has distinct eigenvalues, it is diagonalizable
- application of diagonalization: power of matrices

Suppose we have
$$A = PDP^{-1}$$

$$A^{k} = PD^{k}P^{-1}$$

- \circ the formula above also hold for negative k if all egienvalues
- \circ equivalently, it holds for negative k if A is diagonalizable and invertible
- \circ note: $D^{-1} = 1/\lambda_i$ for all diagonal values

Spectral Theorem

- **definition**: a square matrix A is symmetric if $A^T = A$
 - \circ proposition: all eigenvalues of a real symmetric matrix Aare real
 - \circ proposition: let A be a real symmetric matrix, and suppose λ_1, λ_2 are distinct eigenvalues with respective eigenvectors v_1, v_2 ; then $v_1 \perp v_2$
- theorem: let A be a real symmetric matrix, then there exists an orthogonal matrix P and diagonal matrix D such that $A = P\overline{DP^T}$

- $\circ\,$ in other words, A is orthogonally diagonalizable
- \circ note: $P^{-1} = P^T$ for orthogonal matrices
- important remark: let A be any real $m \times n$ matrix, then we
 - 1. $A^T A$ and AA^T will both be real symmetric matrices (try transposing each of them and see)
 - 2. both A^TA and AA^T are orthogonally diagonalizable (via Spectral theorem)

Single Value Decomposition

• theorem: let A be a $m \times n$ real matrix, then there exists and orthogonal matrix $P(m \times n)$, $Q(n \times n)$ and a "diagonal" matrix Σ such that $A = P\Sigma Q^T$

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 & 0 \\ 0 & \sigma_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_R & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- \circ so the diagonal values only goes up until index r, after that you fill it with 0s
- the values $\sigma_1 \geq \sigma_2 \geq \dots \sigma_r > 0$ (they are ordered) and are the non-zero singular values of A
- \circ where $r = \min(m, n)$
- - 1. if λ is a non-zero eigenvalue of AA^T , λ is also the eigenvalue of $A^T A$
 - 2. all eigenvalues of A^TA and AA^T (they are the same) are non-negative
 - 3. if λ is a non-zero eigenvalue of AA^T (and thus of A^TA), then λ has the same level of repetition in A^TA and AA^{T} \circ or dim $(N(AA^T - \lambda I)) = \dim(N(A^T A - \lambda I))$
- theorem: let $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_r > 0$ by the (ordered) non- $\overline{\text{zero eigen}}$ values of AA^T (or A^TA), then the non-zero singular

$$\sigma_k = \sqrt{\lambda_k}$$

- SVD construction: let A be $m \times n$ and real
 - 1. Find singular value for Σ $(m \times m)$:
 - (a) find eigenvalue of either $A^T A$ or AA^T , order them
 - (b) set $\sigma_k = \sqrt{\lambda_k}$
 - 2. Construct the matrix $Q(n \times n)$
 - (a) set the corresponding eigenvectors as columns

$$Q = \begin{bmatrix} | & | & | & | \\ v_1 & v_2 & \dots & v_n \\ | & | & | & | \end{bmatrix}$$

- (b) you also have to normalize the q_i such that $||q_k||_2 = 1$
- 3. Construct the matrix $P(n \times n)$
 - (a) let p_k be the columns of P, then we can take

$$p_k = \frac{1}{\sigma_k} A q_k$$

this will give you the first r columns of P

- (b) for the remaining m-r columns, complete $p_1, \ldots p_m$ to an ONB (remember thin QR to full QR)
- application of SVD
 - 1. $||A||_{op} = \sigma_1$ (the largest singular value of A)
 - 2. $||A||_F = (\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_r^2)^{1/2}$
 - 3. rank(A) = r (number of non-zero singular value)

4. if A is $n \times n$ and invertible, then all singular values of A **Pseudoinverse** is positive, thus Σ is invertible, and A^{-1}

$$A = P\Sigma Q^{T}$$

$$A^{-1} = Q\Sigma^{-1}P^{T} \quad \text{because } Q, P \text{ are orthogonal}$$

$$\Sigma^{-1} = \begin{bmatrix} 1/\sigma_{1} & 0 & \cdots & 0 & 0\\ 0 & 1/\sigma_{2} & \cdots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & 1/\sigma_{R} & 0\\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

 \circ note: this is not a SVD of A^{-1} , because the columns of Σ is not ordered, but if you reorder them (reverse the column order for all matrices), you'll get the SVD

5.
$$||A^{-1}||_{op} = \frac{1}{\sigma_r}$$

6.
$$\operatorname{cond}(A) = ||A||_{op} \times ||A^{-1}||_{op} = \frac{\sigma_1}{\sigma_r}$$

7. assume
$$P = \begin{bmatrix} p_1 & \cdots & p_m \end{bmatrix}$$
 and $Q = \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix}$, then

- $\circ \{p_1, \ldots, p_r\}$ is an orthonormal basis of R(A)
- $\circ \{p_{r+1}, \ldots, p_m\}$ is an orthonormal basis of $N(A^T)$
- $\circ \{q_1,\ldots,q_r\}$ is an orthonormal basis of $R(A^T)$
- $\circ \{q_{r+1},\ldots,q_n\}$ is an orthonormal basis of N(A).

SVD Expansion

• theorem: let A be a $m \times n$ matrix such that rank(A) = r $\overline{\text{and } A} = P\Sigma Q^T$ is the SVD; then the SVD expansion of A is

$$A = \sum_{k=1}^{r} \sigma_k p_k q_k^T$$

where p_1, \ldots, p_r are the first r columns of P, and q_1, \ldots, q_r are the first r columns of Q

• definition: let $A = P\Sigma Q^T$, then truncated SVD expansion of rank s of A is

$$A_s = \sum_{k=1}^{s} \sigma_k p_k q_k^T$$

- \circ A_s is a rank s approximation of A
- $\circ A_s$ is the best rank s approximation of A wrt the Frobenius norm

Principal Component Analysis

- problem: you're given $x_1, x_2, \dots x_n \in \mathbb{R}^P$
 - \circ (can assume they are centered (i.e $\sum x_k = 0)$ but if not replace each points with $\tilde{x}_k = x_k - \bar{x}$)
 - \circ we can form the data matrix that looks like

$$X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix}$$

- \circ we want to find the unit vector w_1 that maximizes $\sum_{k=1}^{n} |\langle x_k, w_1 \rangle|$
- \circ interpretation: the first weight vector w_1 points in the direction which captures the most information (ie. the maximum variance) of the data, and the second weight vector w_2 is orthogonal to w_1
- **theorem**: we can pick the weight vectors w_i as

$$w_i = q_i$$

where q_i is the k-th column of Q in SVD decomposition of X

- fact: if A is $n \times n$ and invertible, then there's an $n \times n$ matrix such that $AA^{-1} = I$ and $A^{-1}A = I$ (i.e right inverse and left inverse is the same)
 - we want to generalize the notion of inverse to some approximate sense to non-square matrices as well
- def: let A be an $m \times n$ matrix with SVD $A = P\Sigma Q^T$, we define the pseudoinverse A^{\dagger}

$$A^{\dagger} = Q \Sigma^{\dagger} P^{T} \quad \Sigma^{\dagger} = \begin{bmatrix} 1/\sigma_{1} & 0 & \cdots & 0 & 0 \\ 0 & 1/\sigma_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1/\sigma_{R} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

theorem:

- 1. if A is invertible, $A^{\dagger} = A^{-1}$
- 2. if A is $m \times n$, $m \leq n$ and rank(A) = m then $AA^{\dagger} = I_m$ (right inverse)
- 3. if A is $m \times n$, $n \leq m$ and rank(A) = n then $A^{\dagger}A = I_n$ (left inverse)
- general properties
 - 1. $AA^{\dagger}A = A$ and $A^{\dagger}AA^{\dagger} = A^{\dagger}$
 - 2. AA^{\dagger} is the projection matrix onto R(A) and $A^{\dagger}A$ is the projection onto $R(A^T)$
 - 3. let A be an $m \times n$ matrix with rank(A) = n and let $b \in \mathbb{R}^m$, the LSE approximation of $Ax \approx b$ is given by

$$x = A^\dagger b \qquad \qquad A^\dagger = \sum_{k=1}^r \frac{1}{\sigma_i} q_i p_i^T$$

Discrete Fourier Transform

Complex Vectors

 \bullet we define the symbol i such that

$$i^2 = -1 i = \sqrt{-1}$$

• def: a complex number is of the form

$$z = a + ib$$

- \circ we say that Re(z) = a is the real part of z
- \circ and say that Im(z) = b is the imaginary part of z
- **def**: polar form of a complex number z = a + ib

$$z = re^{i\theta}$$

$$r = \sqrt{a^2 + b^2}$$

$$\theta = \tan^{-1}(b/a)$$

- Euler's formula: $e^{i\theta} = \cos \theta + i \sin \theta$
- **definition**: let z = a + ib and $z = re^{i\theta}$ in polar form
 - 1. the modulus of z is $|z| = r = \sqrt{a^2 + b^2}$
 - 2. the angle (or argument) of z is $arg(z) = \theta = tan^{-1}(b/a)$
 - 3. the conjugate of z is $\bar{z} = a ib = re^{-i\theta}$
 - o properties of conjugate
 - $1. \ \overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$
 - $2. \ \overline{z_1 z_2} = \overline{z}_1 \overline{z}_2$
 - 3. $\overline{z_1/z_2} = \overline{z_1}/\overline{z_2}$

- o properties of modulus
 - 1. $|z_1z_2| = |z_1||z_2|$
 - 2. |cz| = |c||z|
 - 3. $|z_1/z_2| = |z_1|/|z_2|$
- \circ properties of $e^{i\theta}$
 - 1. $e^{i\theta_1} \times e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}$
 - 2. $|e^{i\theta}|^2 = 1 \longrightarrow |e^{i\theta}| = 1$
 - $3. \ (e^{i\theta})^n = e^{i\theta n}$
 - 4. $e^{i\theta}$ is 2π periodic meaning $e^{i2\pi k} = 1$ for $k \in \mathbb{Z}$
- def: complex vector space
 - \circ a complex vector space \mathbb{C}^n is the set of vectors of length n with complex entries $v_1, \dots v_n$
 - the conjugate of a vector $v \in \mathbb{C}^n$ is given by the conjugate of each entry $\overline{v}_1, \dots, \overline{v}_n$
- **def**: the standard inner product of vectors $u, v \in \mathbb{C}^n$ is

$$\langle u, v \rangle = u^T \overline{v} = u_1 \overline{v_1} + \ldots + u_n \overline{v_n}$$

- \circ properties: let $u, v \in \mathbb{C}^n$ and let $c \in \mathbb{C}$
 - 1. $\langle cu, v \rangle = c \langle u, v \rangle$
 - 2. $\langle u, cv \rangle = \overline{c} \langle u, v \rangle$
 - 3. $\langle u, v \rangle = \overline{\langle v, u \rangle}$
 - 4. $\langle v, v \rangle \geq 0$ for all v and it's only 0 if $v = \vec{0}$
- **def**: the norm of $v \in \mathbb{C}^n$ is

$$||v|| = \sqrt{\langle v, v \rangle} = \sqrt{|v_1|^2 + \ldots + |v_n|^2}$$

- **def**: the complex vectors $u, v \in \mathbb{C}^n$ are orthogonal if $\langle u, v \rangle = 0$
- **def**: the conjugate transpose of a complex A is $A^* = (\overline{A})^T$
 - \circ we can note that $\langle Au, v \rangle = \langle u, A^*v \rangle$
- **def**: A complex matrix A is hermitian if $A = A^*$, they have the following properties
 - 1. $\langle Au, v \rangle = \langle u, Av \rangle$ for $u, v \in \mathbb{C}^n$
 - 2. A has real eigenvalues
 - 3. diagonal entries of A are real
 - notice it's very similar to properties of a real symmetric matrix
- **def**: A complex matrix A is unitary if $A^{-1} = A^*$, unitary matrices have the following properties (to check see if $AA^* \stackrel{?}{=} I$)
 - 1. if A is real, then A is orthogonal
 - 2. $\langle Ax, Ay \rangle = \langle x, y \rangle$
 - 3. their columns and rows are orthonormal
 - notice properties are the same as orthogonal, just generalize to complex too now
- **general spectral theorem**: every hermitian matrix is unitary diagonalizable

Roots of Unity

- **def**: an Nth root of unity is a complex number w wuch that $w^N = 1$
- proposition: let $w_N = e^{2\pi i/N}$, then w_N is an Nth root of unity
 - o further, $\{1, w_N, (w_N)^2, \dots, (w_N)^{N-1}\}$ are all Nth roots of unity that is $\{w_N^k : 0 \le k \le N-1\}$
- proposition: let $w_N = e^{2\pi i/N}$
 - 1. $(w_N)^N = (w_N)^0 = 1$ (it repeats once you're past N-1)
 - 2. $\overline{w}_N = (w_N)^{-1} = (w_N)^{N-1}$

- this means that $(1, N-1), (2, N-2), (3, N-3), \dots$ are conjugate pairs of each other
- 3. let s be an integer such that 0 < s < N

$$\sum_{k=0}^{N-1} (w_N{}^k)^s = 0$$

 \circ this means that the sum of all N-th root of unity $(w_N^k, 0 \leq k \leq N-1)$ raised to a power s is always 0

The Fourier Basis

- first, we'll use 0-indexing now (like Python) going forward
- the standard basis of \mathbb{C}^N is $\{e_0, \dots, e_{N-1}\}$ where e_k is the vector with all 0s except 1 in index k
 - \circ ex. for N=3

$$e_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad e_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad e_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• **def**: let N be a positive integer and let $w_N = e^{2\pi i/N}$, the fourier basis of \mathbb{C}^N is $\{f_0, \ldots, f_{N-1}\}$

$$f_k = \begin{bmatrix} 1 \\ w_N^k \\ w_N^{2k} \\ \vdots \\ w_N^{(N-1)k} \end{bmatrix}$$

(all the Nth root of unity raised to power of k)

- \circ basically, they're a set of orthogonal functions that are used in the Fourier transform
- o they are like standard basis (in a sense) Fourier basis functions span the function space for periodic signals, just as the standard basis spans \mathbb{R}^n
- \circ example: for $N=3,\,w_3=e^{2\pi/3}=(-1+i\sqrt{3})/2$ and the Fourier basis of \mathbb{C}^3 is

$$f_{0} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad f_{1} = \begin{bmatrix} 1 \\ (-1 + i\sqrt{3})/2 \\ (-1 - i\sqrt{3})/2 \end{bmatrix}$$

$$f_{2} = \begin{bmatrix} 1 \\ (-1 - i\sqrt{3})/2 \\ (-1 + i\sqrt{3})/2 \end{bmatrix}$$

- proposition:
 - 1. the Fourier basis $\{f_0, \ldots, f_{N-1}\}$

$$\langle f_k, f_l \rangle = \begin{cases} N & \text{if } k = l \\ 0 & \text{otherwise} \end{cases}$$

so the Fourier basis is an **orthogonal basis** of \mathbb{C}^N

- 2. $||f_k||_2 = \sqrt{N}$ (all of them have the same norm)
- 3. let 0 < k < N

$$\overline{f}_k = f_{N-k}$$

 \circ example: N=8

$$f_7 = \overline{f_1}$$
 $f_6 = \overline{f_2}$ $f_5 = \overline{f_3}$...

- you can see this kind of symmetry in the entries too (i.e $\overline{f_k[i]} = f_k[N-i]$)
- \circ if N is even, then $f_{N/2}$ is a real vector

Discrete Fourier Transform

• def: let $x \in \mathbb{C}^N$, the discrete Fourier transform of x is

$$DFT(x) = F_N(x)$$

where F_N is the Fourier matrix

$$F_{N} = \begin{bmatrix} \overline{f_{0}}^{T} \\ \overline{f_{1}}^{T} \\ \vdots \\ \overline{f_{N-1}}^{T} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \overline{w}_{N} & \overline{w}_{N}^{2} & \dots & \overline{w}_{N}^{N-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & \overline{w}_{N}^{N-1} & \overline{w}_{N}^{2(N-1)} & \dots & \overline{w}_{N}^{(N-1)^{2}} \end{bmatrix}$$

- DFT is a mathematical transformation used to analyze the frequency components of a discrete signal
- takes a signal represented in the time domain (as a sequence of samples) and transforms it into the frequency domain (as a set of frequencies and corresp amplitudes)
- ex. say you have a signal, such as a sound recording, the DFT tells you what notes (frequencies) are playing and how loud (amplitude) they are
- DFT decomposes the signal into its constituent sinusoidal waves, each with a certain frequency, amplitude, and phase
- \bullet note: you can also expand x in terms of the Fourier basis

$$x = \frac{1}{N} \begin{bmatrix} f_0 & \dots & f_{N-1} \end{bmatrix} \begin{bmatrix} \overline{f_0}^T \\ \overline{f_1}^T \\ \vdots \\ \overline{f_{N-1}}^T \end{bmatrix} x$$
$$= \frac{1}{N} \cdot \overline{F_N}^T \cdot F_N x$$

 \circ this means the DFT(x) is the vector of coefficients of x wrt the Fourier basis (up to multiplication of N)

$$DFT(x) = \begin{bmatrix} \langle x, f_0 \rangle \\ \langle x, f_1 \rangle \\ \vdots \\ \langle x, f_{N-1} \rangle \end{bmatrix}$$

• notation: the DFT used to study signal (sound, image) that can be represented as vector $x\in\mathbb{C}^N$ and we use the notation

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{N-1} \end{bmatrix}$$
 $x[n] = x_n \text{ (i.e indexing)}$

 \bullet for a vector y, we define the inverse DFT of y

$$IDFT(y) = \frac{1}{N} \overline{F}_N^T y$$

and this will invert the DFT of y

- the process of taking a frequency domain signal and reconstructing the original time domain signal from it (reverse operation of the DFT)
- \circ ex. the DFT is like breaking a song into individual notes, the IDFT is like putting those notes back together to recreate the original song

• proposition: let x be a real signal (that is $x[k] \in \mathbb{R}$ for all k) and let y = DFT(x)

$$\overline{y[k]} = y[N - k]$$

• def: sinusoids

$$\circ \text{ let } t = \left(0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}\right)^T$$

 \circ a sinusoids is a vector $x \in \mathbb{C}^N$ of the form

$$x = A\cos(2\pi kt + \phi)$$

A = amplitude

k = frequency

 $\phi = \text{phase}$

 \circ prop: we can say that for any sinusoids x

$$x = A\cos(2\pi kt + \phi)$$
 $k \in \{1, 2, \dots, N-1\}$

$$DFT(x) = \frac{AN}{2} (e^{i\phi}e_k + e^{-i\theta}e_{N-k})$$

- \rightarrow note: $e^{i\phi}$ is Euler's number, e_k is the standard basis (meaning we only care about certain entries)
- \rightarrow equivalently, we can say

$$A\cos(2\pi kt + \phi) = \frac{A}{2}e^{i\phi}f_k + \frac{A}{2}e^{-i\phi}f_{N-k}$$

• Example: Find DFT of x if

$$x = 3\cos\left(4\pi t - \frac{\pi}{2}\right)$$
 $t = [0, 1/8, \dots, 7/8]^T$

- \circ we can see that $A=3, k=2, \phi=-\pi/2$
- because k = 2, we know that only index 2 and N k = 6 entries of the DFT(x) will be non-zero, i.e

$$\mathrm{DFT}(x) = \begin{bmatrix} 0 \\ 0 \\ \frac{AN}{2}(e^{i\phi}e_k) \\ 0 \\ 0 \\ \frac{AN}{2}(e^{-i\theta}e_{N-k}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \frac{3(8)}{2}e^{-\frac{\pi}{2}i} \\ 0 \\ 0 \\ 0 \\ \frac{3(8)}{2}e^{\frac{\pi}{2}i} \end{bmatrix}$$

• Example: Calculate y = IDFT(Y) where

$$Y = [0, 0, 2, 3i, -3i, 2, 0]^T \in \mathbb{C}^7$$

- \circ we can recognize that $Y[k] = \overline{Y[N-k]}$ for all k and thus we can conclude that the signal is real
- \circ we can think of Y as: (only care about non-zero pairs)

$$Y = Y_1 + Y_2$$

 $Y_1 = [0, 0, 2, 0, 0, 2, 0]^T$

 $Y_2 = [0, 0, 0, 3i, -3i, 0, 0]^T$

similarly, we can do the same for y

$$y = y_1 + y_2$$

• finding $y_1 = \text{IDFT}(Y_1)$: we only have to focus on $Y_1[2] = 2$ because the other is just the complex conjugate

$$k = 2 \qquad \longrightarrow y_1 = A\cos(2\pi \times 2t + \phi)$$

$$Y_1[2] = 2 = \frac{AN}{2}e^{i\phi} \qquad \longrightarrow A = \frac{4}{7}, \phi = 0$$

$$\therefore y_1 = \frac{4}{7}\cos(4\pi t)$$

(note: the second line came from the real part of the decomposition of the DFT above)

 \circ finding y_2

$$k = 3$$

$$Y_2[3] = 3i = \frac{AN}{2}e^{i\phi_2} \longrightarrow A = \frac{6}{7}, \phi_2 = \frac{\pi}{2}$$

$$\therefore y_2 = \frac{6}{7}\cos(6\pi t + \pi/2)$$

 \circ and finally $y = y_1 + y_2$