6. Considere, no conjunto dos números inteiros, a operação binária definida por

$$m*n = \left\{ egin{array}{ll} m+n & \qquad & \mbox{se } m \mbox{ \'e par} \\ m-n & \qquad & \mbox{se } m \mbox{ \'e impar}. \end{array}
ight.$$

Mostre que $(\mathbb{Z},*)$ é um grupo não abeliano.

7. Considere o conjunto $G=\mathbb{Q}\setminus\{\frac{1}{2}\}$, munido da operação * definida por

$$a * b = a + b - 2ab, \forall a, b \in G.$$

Prove que (G,*) é um grupo comutativo.

8. Sejam (G,*) e (K,\circ) grupos. No produto cartesiano $G\times K$ considere definida a seguinte operação

$$(g,k)\otimes(g',k')=(g*g',k\circ k'), \qquad g,g'\in G, \quad k,k'\in K.$$

- (a) Mostre que $(G \times K, \otimes)$ é um grupo. Este grupo designa-se por produto direto do grupo (G, *) pelo grupo (K, \circ) e representa-se por $G \otimes K$.
- (b) Prove que o grupo $(G \times K, \otimes)$ é abeliano se e só se os grupos (G, *) e (K, \circ) forem abelianos.
- 9. Considere os grupos (\mathbb{Z}_2,\oplus) e (\mathbb{Z}_3,\oplus) e o seu produto direto.
 - (a) Construa a tabela do produto direto $\mathbb{Z}_2 \otimes \mathbb{Z}_3$.
 - (b) Determine o simétrico de $([1]_2, [2]_3)$.
- 10. (a) Seja A um conjunto composto por dois elementos distintos. Defina uma operação * em A para a qual A é um grupo.
 - (b) Repita o exercício da alínea anterior supondo que A tem
 - i. 3 elementos distintos;
- iii. 5 elementos distintos.
- ii. 4 elementos distintos;
- 11. Complete a seguinte tabela de modo a que, para a operação *, se obtenha um grupo comutativo.

[Sugestão: Comece por identificar o elemento identidade.]

- 12. Sejam G um grupo e $a, b \in G$.
 - (a) Mostre que:

i.
$$ab = ba \Leftrightarrow (ab)^2 = a^2b^2$$
; ii. $ab = ba \Leftrightarrow (\forall n \in \mathbb{Z}) (ab)^n = a^nb^n$.

(b) Mostre que $(aba^{-1})^n = ab^na^{-1}$, para todo $n \in \mathbb{Z}$.