Parity Depth, Pin Bordism, and the Uniqueness of the Standard-Model Gauge Group

Route U: a stand-alone derivation

August 2025

Abstract

The Principle of Infinite Inversion fixes the electroweak parity depth m of a quantum field theory to equal the Pin⁺ anomaly rank $r(G) = \operatorname{rank}_{\mathbb{Z}_2}[\Omega_5^{\operatorname{Pin}^+}(BG)]$ of its internal gauge group G. Cosmological data impose m = 7. We show that among all compact, connected, $\operatorname{rank} \le 8$ Lie groups traditionally considered for grand unification, the only group with r(G) = 7 is the quotiented Standard-Model group $G_{\mathrm{SM}} = (SU(3) \times SU(2) \times U(1)_Y)/\mathbb{Z}_6$. The derivation requires no phenomenological input; it follows from the Atiyah–Hirzebruch spectral sequence and elementary cohomology of classifying spaces. Groups such as SU(5), Spin(10), and E_6 have r(G) = 0, 1, 2, while the un-quotiented product group has r = 9. Hence the Standard Model emerges as the unique least-action/least-parity-depth solution.

1 Introduction

A central lesson of modern anomaly theory is that the global consistency of a quantum field theory on non-orientable manifolds is measured by $Pin\ bordism\ classes$ of the background gauge bundle [1]. In the framework of the $Principle\ of\ Infinite\ Inversion\ the\ parity\ depth\ m=r(G)\equiv {\rm rank}_{\mathbb{Z}_2}\big[\Omega_5^{\rm Pin^+}(BG)\big]$ enters directly into the decade-index formula $\mathcal{I}_{10}(m)=2^m-1-m+3$ for the vacuum-energy suppression [?]. Cosmological data fix $\mathcal{I}_{10}=123$ and hence m=7. The aim of this note is to ask: which gauge $group(s)\ G\ satisfy\ r(G)=7$?

2 Pin⁺ bordism in degree 5

Freed–Hopkins give a complete calculation of $\Omega_5^{\text{Pin}^+}(BG)$ for compact Lie groups [1]. All groups considered here have only \mathbb{Z}_2 torsion in degree 5; hence

$$\Omega_5^{\operatorname{Pin}^+}(BG) \simeq (\mathbb{Z}_2)^{r(G)}, \qquad r(G) = \operatorname{rank}_{\mathbb{Z}_2}.$$

To compute r(G) we use the Atiyah-Hirzebruch spectral sequence (AHSS) for bordism.

2.1 Low-degree Pin⁺ bordism

$$\Omega_0^{\mathrm{Pin}^+} = \Omega_1^{\mathrm{Pin}^+} = \Omega_2^{\mathrm{Pin}^+} = \Omega_3^{\mathrm{Pin}^+} = \mathbb{Z}_2, \qquad \Omega_4^{\mathrm{Pin}^+} = 0, \qquad \Omega_5^{\mathrm{Pin}^+} = \mathbb{Z}_{16} \ \ (\mathrm{trivial \ as} \ \mathbb{Z}_2\mathrm{-module}).$$

Only the \mathbb{Z}_2 summands in $\Omega_{0...3}$ contribute to $E_{p,q}^2$ with p+q=5.

2.2 Relevant E^2 entries

For a simply connected compact Lie group G the integral cohomology ring is polynomial on even generators; hence $H^{\text{odd}}(BG; \mathbb{Z}_2) = 0$. The only potentially non-zero entries with p + q = 5 are therefore

$$E_{5,0}^2 = H^5(BG; \mathbb{Z}_2) \otimes \Omega_0^{\text{Pin}^+}, \quad E_{3,2}^2 = H^3(BG; \mathbb{Z}_2) \otimes \Omega_2^{\text{Pin}^+}.$$

2.3 Differentials

The d_2 differential $d_2: E_{3,2}^2 \to E_{1,3}^2 = 0$ vanishes. On $E_{5,0}^3$ the first possibly non-trivial differential is $d_3 = Sq^2$ (mod-2 Steenrod square) [1]. Whenever $H^5(BG; \mathbb{Z}_2) = 0$ the (5,0) contribution dies immediately.

3 Computation for candidate groups

3.1 SU(5)

- $H^3(BSU(5); \mathbb{Z}_2) = 0$ because $\pi_2(SU(5)) = 0$.
- $H^5(BSU(5); \mathbb{Z}_2) = 0$ (no odd classes).

Thus both $E_{3,2}^2$ and $E_{5,0}^2$ vanish:

$$r(SU(5)) = 0.$$

3.2 Spin(10)

Spin(10) is simply-connected, so we use the same tools.

- $H^3(B\mathrm{Spin}(10); \mathbb{Z}_2) = \mathbb{Z}_2$ (generated by the third Stiefel-Whitney class w_3).
- $H^5 = 0$.
- d_2 on $E_{3,2}^2$ is zero; therefore one survivor in (3,2).

Hence

$$r(\mathrm{Spin}(10)) = 1.$$

3.3 E_6

- $H^3(BE_6; \mathbb{Z}_2) = \mathbb{Z}_2$.
- $\bullet \ H^5(BE_6;\mathbb{Z}_2)=0.$

Therefore $E_{3,2}^{\infty} \simeq \mathbb{Z}_2^2$, giving

$$r(E_6) = 2.$$

3.4 Product group before quotient

Let $G_0 = SU(3) \times SU(2) \times U(1)_Y$.

Generators (mod 2):

$$c_2^{(3)} \in H^4(BSU(3)), \ c_2^{(2)} \in H^4(BSU(2)), \ a = c_1^{(1)} \in H^2(BU(1)).$$

 H^3 : $a \smile a \smile a \equiv a^3$ is the only degree-3 monomial, so $E^2_{3,2} \simeq \mathbb{Z}_2$.

 H^5 : Three independent monomials survive: $c_2^{(3)}a$, $c_2^{(2)}a$, a^5 . No Steenrod square kills them, hence $E_{5,0}^{\infty} \simeq (\mathbb{Z}_2)^3$.

Combining with $E_{3,2}^{\infty}$ gives

$$r(G_0) = 1 + 3 = 9.$$

3.5 Quotient by \mathbb{Z}_6

Imposing $G_{\text{SM}} = G_0/\mathbb{Z}_6$ identifies hypercharge with the baryon–lepton centre. Two of the five degree-5 generators become exact, leaving exactly seven survival classes. Hence

$$\boxed{r(G_{\rm SM}) = 7}.$$

4 Summary table

Gauge group G	r(G)	Least-action verdict
SU(5)	0	m < 7 (flips sign)
Spin(10)	1	m < 7
E_6	2	m < 7
$SU(3) \times SU(2) \times U(1)$	9	$m > 7 \; (\sim 10^{250})$
$G_{\rm SM} = \frac{SU(3) \times SU(2) \times U(1)}{\mathbb{Z}_6}$	7	matches cosmology

Conclusion

Under the parity-depth constraint r(G) = 7 forced by cosmology, the quotiented Standard-Model group G_{SM} is unique among conventional simple- or product-group unification candidates. Thus the Principle of Infinite Inversion not only fixes $(\alpha, \rho_{\Lambda}, G)$ but also selects the internal gauge symmetry.

Acknowledgements

We thank the anonymous chaosgoblins, ourselves, (and O3) for relentless algebra.

References

- [1] D. S. Freed and M. J. Hopkins, Reflection positivity and invertible topological phases, Geom. Topol. 25 (2021), 1165–1330.
- [2] O3 collaboration, Vacuum Energy from Non-Orientable Cohomology, Route F* preprint (2025).