Spotify URL Analyzer

Saverio Cannone - Mat. 700567

Repository - https://github.com/Xav147/ICon 2021 Cannone

Dataset

Il dataset utilizzato è disponibile al seguente link:

https://www.kaggle.com/datasets/yamaerenay/spotify-dataset-19212020-600k-tracks

Quest'ultimo contiene più di 600.000 tracce musicali di Spotify e i dati di oltre 1 milione di artisti.

Per poter utilizzare al meglio il dataset è necessario svolgere alcune operazioni per pulire i dati.

Data Preparation

Alcune feature del dataset non sono prontamente utilizzabili. Per esempio, **release_date** è una stringa che può essere trasformata nella decade della canzone.

Inoltre, il dataset non offre informazioni sul genere di una canzone; tuttavia, sono associati dei generi per gli artisti. Questo permette di ricavare il genere di una canzone in base all'artista.

Features del dataset

Le feature più importanti del dataset sono quelle che rappresentano aspetti principali delle canzoni:

Variabili numeriche

- Acousticness: variabile da 0 a 1, rappresenta quanto sia acustica la canzone
- **Danceability**: variabile da 0 a 1, rappresenta quanto sia ballabile la canzone
- Energy variabile da 0 a 1, rappresenta l'energia della canzone
- **Duration_ms** variabile da 200k a 300k, durata della canzone
- Instrumentalness variabile da 0 a 1, rapporto della parte della canzone identificata come strumentale
- Valence variabile da 0 a 1, rappresenta la positività della canzone
- Popularity variabile da 0 a 100, popolarità della canzone negli USA
- Tempo variabile da ~50 a 150, tempo della traccia in BPM
- **Liveness** variabile da 0 a 1, rapporto della parte della canzone identificata come live performance
- Loudness variabile da -60 a 0, valore decibel (dB)
- **Speechiness** variabile da 0 a 1, rapporto della parte della canzone in cui viene identificata la presenza di voce umana
- Year variabile da 1921 a 2020, anno della canzone

Variabili categoriche

- Key Chiave della canzone rappresentata come un intero tra 0 e 11, partendo dal Do
- Artists Lista degli artisti presenti nella canzone
- Name Titolo della canzone
- **Mode** Valore binario che rappresenta se la canzone inizi con una progressione di accordi minore o maggiore
- Explicit Valore binario che rappresenta se la canzone contenga contenuti espliciti o meno

Funzionalità

Le funzionalità principali del programma sono:

- Raccomandazione di un insieme di canzoni in base all'analisi della playlist inserita dall'utente
- Classificazione del genere di una canzone inserita dall'utente
- Raccomandazione di canzoni simili a quella inserita dall'utente

L'approccio utilizzato per la raccomandazione di una playlist è il TF-IDF (Term Frequency – Inverse Document Frequency).

Con il **TF-IDF** è possibile dare più o meno peso ai metadata sul genere a seconda di quanto spesso determinati generi compaiono nel dataset.

Una volta generato un set di feature basandosi sul **TF-IDF**, è possibile rappresentare ogni canzone in una playlist come un vettore di features. È possibile dunque utilizzare la **cosine similarity** per individuare canzoni che sono simili alla playlist analizzata.

Analisi di una playlist

Una volta fornito l'URL della playlist che si vuole analizzare il programma genera un'altra playlist con canzoni che sono simili al vettore che rappresenta la playlist.

Canzone analizzata

Beat It

Michael Jackson

Audio features

Danceability: 0.779

Energy: 0.867

Key: 3

Loudness: -3.704

Mode: o

Speechiness: 0.0457

Acousticness: 0.0491

Instrumentalness: 7.98e-06

Liveness: 0.197

Valence: 0.915

Tempo: 138.858

Analisi di una canzone

Per la classificazione del genere di una canzone è stato necessario semplificare il dataset, in quanto contenente molti generi con pochi esempi oppure esempi senza alcun genere. Raccogliendo solo i 20 generi più rappresentati, il totale delle tracce si attesta sui 350.000.

Il programma mostra le **percentuali** di probabilità del genere, ordinate in modo decrescente.

Oltre a classificare il genere della canzone, il programma fornisce dei suggerimenti in base alla canzone analizzata.

Per generare i suggerimenti viene utilizzato **l'apprendimento non supervisionato**, in particolare vengono consigliate canzoni che appartengono allo stesso cluster della canzone analizzata. I cluster vengono generati utilizzando **k-means clustering**, con k = 1000.

Canzoni consigliate

Hear it grow - Underground Sound Of Lisbon False Alarm - The Weeknd

The Shortest Message (2015) - Todd Glass

Analisi del genere

pop: 20%

hoerspiel: 18%

rock: 16%

easy_listening: 11%

classic: 9%

jazz: 8%

dance: 5%

soul: 4%

metal: 3%

latin_alternative: 2%

hip_hop: 1%

orchestral_performance: 1%

latin: 1%

disco: 1%

rap: o%

folk: 0%

country: 0%

punk: 0%

filmi: o%

progressive_house: o%

Oltre ai modelli di classificazione implementati con Sklearn, è stato implementata una **Belief Network** utilizzando **pybbn**. Il modello della Belief Network è il seguente:

Il modello è stato costruito utilizzando alcune assunzioni elementari. Ad esempio, la valence di una canzone rappresenta quanto sia allegra, per questo motivo key e mode (rispettivamente chiave e tonalità della canzone) sono due feature ritenute rilevanti, poiché una canzone con una tonalità minore, piuttosto che maggiore, sarà generalmente considerata più triste. Lo stesso vale per loudness, energy, tempo e danceability, intuitivamente canzoni più forti ed energiche, con un tempo incalzante, saranno, generalmente, più ballabili.

Statistiche dei classificatori

I modelli di **apprendimento supervisionato** usati per la classificazione sono:

• Logistic Regression

Modello di classificazione che punta a minimizzare **log-loss** per determinare i pesi di una **funzione lineare**

Neural Networks

È stata utilizzata una rete neurale di tipo **MLPC** (Multi-layer Perceptron Classifier), che punta a minimizziare la **log-loss**.

• Random Forest e GradientBoosting

Algoritmi di **ensemble learning** che generano più learner (alberi) per effettuare predizioni, unendoli alla fine per ottenere il classificatore.

Decision Tree

Algoritmo che determina delle regole per un albero di decisione analizzando i dati ad esso forniti.

Gaussian NB

Versione dell'algoritmo Naive Bayes che da per scontato che la probabilità delle feature sia gaussiana.

Le statistiche sui classificatori sono state valutate utilizzando **metrics** di sklearn.

Inoltre, per ogni classificatore è stata effettuata **cross validation** con **10 folds**.

	Decision	n Gradier	nt Logistic	NN	Random	Naive
	Tree	Boostin	g Reg.		Forest	Bayes
Accuracy	0.552	0.473	0.511	0.416	0.489	0.301
Misclassification rate	0.447	0.526	0.488	0.583	0.510	0.698
Precision score	0.494	0.413	0.455	0.419	0.443	0.351
Recall score	0.552	0.473	0.511	0.416	0.489	0.301

10-Folds Cross Validation

	±0 1 010	5 61 655 V 411	14411							
DT	0.533	0.620	0.572	0.594	0.574	0.596	0.581	0.597	0.586	0.590
GB	0.423	0.428	0.424	0.432	0.435	0.431	0.427	0.434	0.434	0.434
LR	0.403	0.403	0.424	0.431	0.403	0.431	0.403	0.433	0.403	0.403
NN	0.427	0.462	0.440	0.456	0.444	0.453	0.449	0.463	0.457	0.457
RF	0.538	0.617	0.559	0.576	0.564	.0591	0.575	0.592	0.574	0.580
NB	0.437	0.494	0.460	0.475	0.471	0.489	0.488	0.505	0.486	0.495