Experiment 4: Ensemble Prediction and Tree-Based Model Evaluation with Hyperparameter Optimization

Machine Learning Lab Report

Academic Year 2025–2026

Aim

To implement Decision Tree, Random Forest, AdaBoost, Gradient Boosting, XGBoost, and Stacking Classifiers on the Wisconsin Breast Cancer dataset, optimize hyperparameters using GridSearchCV, and evaluate their performance with ROC curves, Confusion Matrices, and 5-Fold Cross Validation.

Libraries Used

- pandas, numpy, matplotlib, seaborn
- scikit-learn
- xgboost

1. Imports and Setup

```
10 from sklearn.model_selection import train_test_split, cross_val_score,
     KFold, GridSearchCV
11 from sklearn.preprocessing import StandardScaler, LabelEncoder
12 from sklearn.metrics import (
      accuracy_score, precision_score, recall_score, f1_score,
      confusion_matrix, roc_curve, auc, ConfusionMatrixDisplay
15 )
17 # Models
18 from sklearn.tree import DecisionTreeClassifier
19 from sklearn.ensemble import AdaBoostClassifier,
     GradientBoostingClassifier, RandomForestClassifier, StackingClassifier
20 from sklearn.naive_bayes import GaussianNB
21 from sklearn.svm import SVC
22 from sklearn.linear_model import LogisticRegression
23 from sklearn.neighbors import KNeighborsClassifier
24 import xgboost as xgb
```

2. Data Loading and Preprocessing

```
1 # ========= LOAD & PREPROCESS ==========
2 cols = ["ID", "Diagnosis"] + [f"feature_{i}" for i in range(1, 31)]
3 df = pd.read_csv("wdbc.data", header=None, names=cols)
5 # Drop ID column
6 df.drop(columns=["ID"], inplace=True)
8 # Encode labels (M = malignant 1, B = benign
9 df["Diagnosis"] = LabelEncoder().fit_transform(df["Diagnosis"])
# Features / Target
12 X_raw = df.drop(columns=["Diagnosis"])
y = df["Diagnosis"]
15 # Standardize
16 scaler = StandardScaler()
17 X_scaled = scaler.fit_transform(X_raw)
19 # Train/test split
20 X_train, X_test, y_train, y_test = train_test_split(
     X_scaled, y, test_size=0.2, random_state=42, stratify=y
22 )
```

3. Exploratory Data Analysis (EDA)

```
# ======== EDA =========
```

```
sns.countplot(x=y)
plt.title("Class Balance (Benign=0, Malignant=1)")
plt.show()

plt.figure(figsize=(10, 8))
sns.heatmap(df.drop(columns=["Diagnosis"]).corr(), cmap="coolwarm")
plt.title("Feature Correlation Heatmap")
plt.show()
```

4. Evaluation Function (ROC + Confusion Matrix)

```
1 # ========= EVALUATION FUNCTION ==========
def evaluate(name, model, X_test, y_test):
      fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
      fig.suptitle(f'{name} Performance', fontsize=16)
      if hasattr(model, "predict_proba"):
          probs = model.predict_proba(X_test)[:, 1]
          fpr, tpr, _ = roc_curve(y_test, probs)
          roc_auc = auc(fpr, tpr)
          ax1.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (
     AUC = \{roc_auc:.2f\})'
          ax1.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
12
          ax1.set_xlim([0.0, 1.0])
13
          ax1.set_ylim([0.0, 1.05])
14
          ax1.set_xlabel('False Positive Rate')
          ax1.set_ylabel('True Positive Rate')
          ax1.set_title('ROC Curve')
          ax1.legend(loc="lower right")
19
      y_pred = model.predict(X_test)
      cm = confusion_matrix(y_test, y_pred)
21
      disp = ConfusionMatrixDisplay(confusion_matrix=cm)
22
      disp.plot(ax=ax2, cmap=plt.cm.Reds)
23
      ax2.set_title('Confusion Matrix')
      plt.tight_layout()
      plt.show()
      acc = accuracy_score(y_test, y_pred)
20
      prec = precision_score(y_test, y_pred)
30
      rec = recall_score(y_test, y_pred)
      f1 = f1_score(y_test, y_pred)
      print(f"\n{name}")
34
      print("Accuracy:", acc)
35
      print("Precision:", prec)
36
      print("Recall:", rec)
37
      print("F1 Score:", f1)
```

5. Hyperparameter Spaces

```
1 # ========= HYPERPARAMETER SPACES ===========
2 models_params = {
      "Decision Tree": (
          DecisionTreeClassifier(random_state=42),
          {"criterion": ["gini", "entropy"], "max_depth": [3, 5, 10, None]}
      ),
      "Random Forest": (
          RandomForestClassifier(random_state=42),
          {"n_estimators": [50, 100, 200], "max_depth": [3, 5, 10, None], "
     criterion": ["gini", "entropy"]}
      ),
      "AdaBoost": (
          AdaBoostClassifier(random_state=42, estimator=
14
     DecisionTreeClassifier(random_state=42)),
          {"n_estimators": [50, 100, 200], "learning_rate": [0.01, 0.1, 1],
16
           "estimator__max_depth": [1, 3, 5]}
      ),
17
18
      "Gradient Boosting": (
19
          GradientBoostingClassifier(random_state=42),
          {"n_estimators": [50, 100, 200], "learning_rate": [0.01, 0.1,
     0.5], "max_depth": [3, 5, 7]}
      ),
22
23
      "XGBoost": (
          xgb.XGBClassifier(use_label_encoder=False, eval_metric="logloss",
     random_state=42),
          {"n_estimators": [50, 100, 200], "learning_rate": [0.01, 0.1,
26
     0.3], "max_depth": [3, 5, 7],
           "gamma": [0, 0.1, 0.3]}
      ),
28
29 }
31 results_table = []
32 trial_tables = {}
33 best_estimators = {}
```

6. GridSearch and Top-5 Hyperparameter Trials

```
1 # ========== GRIDSEARCH + TRIAL TABLE ============
for name, (model, params) in models_params.items():
```

```
print(f"\n--- Grid Search for {name} ---")
      grid = GridSearchCV(model, params, cv=5, scoring="accuracy", n_jobs
     =-1, return_train_score=False)
      grid.fit(X_train, y_train)
      best_model = grid.best_estimator_
      best_estimators[name] = best_model
      print("Best Params:", grid.best_params_)
      print("Best CV Score:", grid.best_score_)
      # Evaluate
12
      start = time.time()
      best_model.fit(X_train, y_train)
14
      elapsed = time.time() - start
      res = evaluate(name, best_model, X_test, y_test)
16
      results_table.append((name, grid.best_params_, *res, elapsed))
      # Collect top 5 hyperparameter trials
      trial_res = []
20
      for i in range(len(grid.cv_results_["params"])):
          trial_res.append({
              **grid.cv_results_["params"][i],
              "CV Accuracy": grid.cv_results_["mean_test_score"][i]
24
          })
25
      trial_df = pd.DataFrame(trial_res).sort_values(by="CV Accuracy",
     ascending=False).head(5)
27
      y_pred = best_model.predict(X_test)
28
      trial_df["F1 Score (Test)"] = f1_score(y_test, y_pred)
30
      trial_tables[name] = trial_df
31
32
      print(f"\nTop 5 Hyperparameter Trials for {name}")
      print(trial_df)
```

7. Stacking Classifiers

```
("svm", SVC(probability=True, kernel="rbf", C=1, gamma="scale"
     )),
               ("nb", GaussianNB()),
               ("dt", DecisionTreeClassifier(max_depth=5, random_state=42))
          ],
17
          final_estimator=RandomForestClassifier(n_estimators=100,
18
     random_state=42)
      ),
19
20
      "Stacking (SVM+DT+KNN
                                 Logistic Regression)": StackingClassifier(
21
          estimators=[
              ("svm", SVC(probability=True, kernel="rbf", C=1, gamma="scale"
23
     )),
              ("dt", DecisionTreeClassifier(max_depth=5, random_state=42)),
24
               ("knn", KNeighborsClassifier(n_neighbors=5))
25
          ],
          final_estimator=LogisticRegression(max_iter=500, random_state=42)
27
      ),
29
30
  for name, stack_model in stacking_variants.items():
      start = time.time()
      stack_model.fit(X_train, y_train)
33
      elapsed = time.time() - start
34
      res = evaluate(name, stack_model, X_test, y_test)
      results_table.append((name, "Default (base learners tuned separately)"
36
     , *res, elapsed))
      best_estimators[name] = stack_model
```

8. K-Fold Cross Validation

Results and Comparisons

Table 1: Model Performance with Tuned Hyperparameters

Model	Best Hyperparameters
Decision Tree	{criterion=entropy, max_depth=10}
Random Forest	{criterion=gini, max_depth=10, n_estimators=100}
AdaBoost	{max_depth=3, learning_rate=1, n_estimators=50}
Gradient Boosting	{learning_rate=0.5, max_depth=3, n_estimators=200}
XGBoost	{gamma=0, learning_rate=0.3, max_depth=3, n_estimators=200}
Stacking (SVM+NB+DT \rightarrow LR)	Default (tuned base learners)
Stacking (SVM+NB+DT \rightarrow RF)	Default (tuned base learners)
Stacking (SVM+DT+KNN \rightarrow LR)	Default (tuned base learners)

Table 2: K-Fold CV Accuracies (K=5)

Fold	Decision Tree	Random Forest	AdaBoost	GB	XGBoost	Stacking (SVM+
1	0.9474	0.9561	0.9649	0.9649	0.9561	0.964
2	0.9561	0.9649	0.9737	1.0000	0.9649	0.99
3	0.9123	0.9386	0.9561	0.9474	0.9561	0.964
4	0.9474	0.9561	0.9912	0.9912	0.9737	0.985
5	0.9558	0.9646	0.9469	0.9381	0.9646	0.989
Average	0.9438	0.9561	0.9666	0.9683	0.9631	0.97

Table 3: Top-5 Hyperparameter Trials

Decision Tree

	Criterion	Max Depth	CV Accuracy	F1 Score (Test)
Ī	entropy	10	0.9363	0.9383
	entropy	None	0.9363	0.9383
,	gini	5	0.9341	0.9383
	entropy	5	0.9341	0.9383
	gini	3	0.9319	0.9383

Random Forest

	Criterion	Max Depth	Estimators	CV Accuracy	F1 Score (Test)
	gini	10	50	0.9670	0.9630
	gini	None	50	0.9670	0.9630
1	entropy	None	50	0.9626	0.9630
	gini	10	100	0.9626	0.9630
	entropy	10	50	0.9626	0.9630

	Estimator Depth	Learning Rate	Estimators	CV Accuracy	F1 Score (Test)
	3	1.0	50	0.9692	0.9500
A de Doogt	3	0.1	100	0.9670	0.9500
AdaBoost	1	1.0	200	0.9648	0.9500
	3	1.0	200	0.9626	0.9500
	3	1.0	100	0.9626	0.9500

	Learning Rate	Max Depth	Estimators	CV Accuracy	F1 Score (Test)
	0.5	3	200	0.9582	0.9500
Gradient Boosting	0.5	3	100	0.9582	0.9500
	0.1	3	50	0.9560	0.9500
	0.5	3	50	0.9538	0.9500
	0.1	3	200	0.9538	0.9500

	Gamma	Learning Rate	Max Depth	Estimators	CV Accuracy	F1 Score (Test)
	0.0	0.3	3	200	0.9714	0.9630
XGBoost	0.0	0.3	3	50	0.9692	0.9630
AGB00St	0.0	0.3	3	100	0.9692	0.9630
	0.0	0.3	7	100	0.9670	0.9630
	0.0	0.3	7	200	0.9670	0.9630

ROC Curves and Confusion Matrices

Below are the ROC curves and confusion matrices for each model:

Figure 1: Decision Tree ROC + Confusion Matrix

Figure 2: Random Forest ROC + Confusion Matrix

Figure 3: AdaBoost ROC + Confusion Matrix

Figure 4: Gradient Boosting ROC + Confusion Matrix

Figure 5: XGBoost ROC + Confusion Matrix

Figure 6: Stacking (SVM+NB+DT \rightarrow Logistic Regression) ROC + Confusion Matrix

Figure 7: Stacking (SVM+NB+DT \rightarrow Random Forest) ROC + Confusion Matrix

Figure 8: Stacking (SVM+DT+KNN → Logistic Regression) ROC + Confusion Matrix

Conclusion

In this experiment, multiple classifiers were optimized and evaluated on the Breast Cancer Wisconsin dataset:

- Decision Tree: Strong baseline, 94% CV accuracy, but slightly weaker recall.
- Random Forest: Improved generalization with 95.6% CV accuracy.
- AdaBoost & Gradient Boosting: Both performed well with $\approx 96-97\%$ CV accuracy, showing boosting's strength.
- XGBoost: Achieved 96.3% CV accuracy and high F1 score, confirming its robustness.
- Stacking: Best results overall, especially Stacking (SVM+NB+DT \rightarrow Logistic Regression) with 97.7% CV accuracy.

Thus, ensemble and stacking methods outperform single classifiers, with stacking providing the most reliable breast cancer classification results.