Thermal transport & gas diffusion in CNT aerogels

Lin Hu, Scott N. Schiffres, Jonathan A. Malen, and Alan J. H. McGaughey

> Department of Mechanical Engineering Carnegie Mellon University

> > February, 20th 2012

Background & Motivation

Gas mean free pass L_{KT} (2-7 um) >> Characteristic pore diameters d_c (2-50 nm)

Estimation of gas traveling distance in CNT aerogels

Procedure

- Randomly choose a starting point and direction
- Move the gas atom 1A at the selected direction until collision happens
- Record the traveling distance
- Repeat the calculation 10,000 times
- ullet Calculate the average gas traveling distance r_s

$$r_s = L_{KT}$$
 or $r_s = d_c$???

Estimation of gas traveling distance in CNT aerogels

Traveling distance of different gas (radius) in CNT aerogels with density of 7 kg/m³.

Traveling distance of Ne in CNT aerogels (different densities).

Experimental Measurements - Simulation

Experiment (L_{KT})

Calculation (r_s)

Ar

Ne

He

2.7 um

450 nm

5.6 um

470 nm

6.6 um

520 nm

Experimental Measurements - Simulation

$$\alpha = \frac{E_{in} - E_{re}}{E_{in} - E_{si}}$$
 - thermal accommodation coefficient

$$q = 1 - \alpha$$

 r_{s} - average gas traveling distance

 \emph{r}_{e} - average energy traveling distance

$$r_e = \alpha \times r_s + \alpha \times q \times 2r_s + \alpha \times q^2 \times 3r_s + ... + \alpha \times q^{n-1} \times nr_s$$

$$r_e = \{1 - q^n \times (1 + n - nq)\} \times \frac{r_s}{\alpha}$$

$$0 < \alpha < 1$$

$$n \longrightarrow \infty$$

$$\frac{r_e}{r_s} = \frac{1}{\alpha}$$

Thermal Accommodation Coefficient

NEMD simulation

CNT – AIREBO

CNT-gas – LJ potential

N1 gas atoms go into the cylinder

N2 gas atoms go out from the cylinder

Record velocities (energy) of gas atoms

Experimental Measurements - Simulation

Ar Ne He
1.49um 3.03um 7.54um

$$r_e = L_{KT}$$

 $\mathbf{r}_{\mathbf{e}}$

Summary

- Gas traveling distance in the CNT aerogel is calculated using the meso-scale CNT aerogel model.
- ➤ Gas-CNT thermal accommodation coefficient is calculated with NEMD simulations.
- Accommodation coefficient bridges the order-of-magnitude difference between the gas mean free path from experimental measurements and simulation.
- Mechanism of gas diffusion in CNT aerogel is proposed.

Thank You!