一、函数单调性的判定法

二、曲线的凹凸性与拐点

一、函数单调性的判定法

1. 函数单调性的定义

单调性
$$\forall x_1 < x_2 \in I$$
, 有 $f(x_1) < f(x_2)$ 单调性 $\forall x_1 < x_2 \in I$, 有 $f(x_1) > f(x_2)$

直接用定义来判别函数的单调性就是要比较当 $x_1 < x_2$ 时 $f(x_1)$ 与 $f(x_2)$ 的大小. 这在本章之前有时是很困难的,但现在有了微分中值定理,这种做法就变得容易了.

2. 函数单调性的判定法

定理1 设函数 y = f(x) 在 [a,b] 上连续,在 (a,b) 内可导.

- (1) 如果在 (a,b) 内 f'(x) > 0,那么函数 y = f(x) 在 [a,b] 上单调增加;
- (2) 如果在 (a,b) 内 f'(x) < 0,那么函数 y = f(x) 在 [a,b] 上单调减少.

例1 确定函数 $y = 2x^3 - 9x^2 + 12x - 3$ 的单调区间.

解令

上页 下

返回

MathGS

公式

线与面

例2 确定函数 $y = (x^2 - 4)\sqrt[3]{x^2}$ 的单调区间.

解令

用函数的<u>驻点与导数不存在的点来划分定义区间</u>,就能够保证函数的导数在各个部分区间内保持固定的符号,从而函数在每个部分区间上单调.

例3 证明不等式 $1+x\ln(x+\sqrt{1+x^2})>\sqrt{1+x^2}$ (x>0).

解令

二、曲线的凹凸性与拐点

1. 定义

函数的单调性反映在图形上,就是曲线的上升或下降.但曲线在上升或下降的过程中,还有一个弯曲方向

的问题. 例如,如图所示的红色

和蓝色曲线弧都是上升的,但它

们的弯曲方向刚好相反:

红色曲线弧:向上凹

蓝色曲线弧: 向上凸

下面先来研究如图所示的向上凹的曲线弧所具有的性质. 研究发现,曲线弧上任意两点所作的弦总位于该曲线弧的上方. 类似地,向上凸的曲线弧上任意两点所所作的弦总位于该曲线弧的下方.

而直线与曲线的位置关系可用横坐相同时,比较纵 坐标大小的方法来判断.

定义 设f(x) 在区间I上连续,如果对I上任意两点 x_1,x_2 ,恒有

$$f\left(\frac{x_1+x_2}{2}\right) < \frac{f(x_1)+f(x_2)}{2},$$

那么称 f(x) 在 I 上的图形是(向上)凹的(或凹弧);如果恒有

$$f\left(\frac{x_1+x_2}{2}\right) > \frac{f(x_1)+f(x_2)}{2},$$

那么称f(x) 在I上的图形是(向上)凸的(或凸弧).

2. 曲线凹凸性的判别法

定理2 设f(x) 在 [a,b] 上连续,在 (a,b) 内具有一 阶和二阶导数, 那么

(1) 若在 (a,b) 内 f''(x) > 0,则 f(x) 在 [a,b] 上的

图形是凹的;

(2) 若在 (a,b) 内 f''(x) < 0,则 f(x) 在 [a,b] 上的

图形是凸的.

证明 🔷

例4 讨论下列曲线的凹凸性:

(1)
$$y = x\sqrt[3]{x}$$
; (2) $y = x^3$; (3) $y = \sqrt[3]{x}$.

解令

上页 下页 返回 MathGS 公式 线与面 数学家

 $y = \sqrt[3]{x}$

3. 拐点及其求法

定义 设y = f(x) 在区间 I 上连续, x_0 是 I 的内点. 如果曲线 y = f(x) 在经过点 $(x_0, f(x_0))$ 时,曲线的凹凸性改变了,那么就称点 $(x_0, f(x_0))$ 为这曲线的拐点.

页 【 下页 】 返回 】 MathGS 【 公式

拐点的求法

Step1 求 f''(x);

Step2 令 f''(x) = 0,解出这方程在区间 I 内的实根, 并求出在区间 I 内使 f''(x) 不存在的点;

Step3 对 Step2 中求出的每一个点,检查 f''(x) 在这个点左右两侧的符号,当两侧的符号相反时,该点是拐点,当两侧的符号相同时,该点不是拐点.

例5 求曲线 $y = 3x^4 - 4x^3 + 1$ 的拐点与凹凸区间.

解令

例6 求曲线 $y = \sqrt[3]{x}(x^2 - 1)$ 的拐点与凹凸区间.

解

作业

P150: 3 (4),(5); 5 (1), (5); 10 (3), (6);

13