

Multicore Computing Lecture 08 - Performance

남 범 석 bnam@skku.edu

Performance

- Performance is a measure of how well (in terms of latency, throughput, etc) computational requirements can be satisfied
- Performance is the *raison d'être (reason of existence)* for parallelism.
 - Parallel performance versus sequential performance
 - If the performance is not better, parallelism is not necessary

Parallel Performance Expectation

- Q: If each processor is rated at k MFLOPS and there are p processors, should we see k*p MFLOPS performance?
- Q: If it takes 100 seconds on 1 processor, shouldn't it take 10 seconds on 10 processors?
- True for Embarrassingly Parallel Computations
 - Can be obviously divided into completely independent parts that can be executed simultaneously
 - There is no interaction between separate processes
 - E.g.,) Monte Carlo Simulations
 - If it takes T time sequentially, there is the potential to achieve T/P time running in parallel with P processors
- False for numerous algorithms

Performance Metrics and Formulas

- T_1 is the execution time on a single processor
- \mathcal{T}_p is the execution time on a p processor system
- $S(p)(S_p)$ is the speedup

$$S(p) = \frac{T_1}{T_p}$$

 E.g) Theoretical Performance of Pairwise sum

$$- T_1 = O(n)$$

$$- T_p = O(\log n)$$

$$- S(p) = O(n/\log n)$$

Performance Metrics and Formulas

- T_1 is the execution time on a single processor
- \mathcal{T}_p is the execution time on a p processor system
- E(p) (E_p) is the *efficiency*

Efficiency =
$$\frac{S_p}{p} = \frac{T_s}{pT_p}$$

• E.g.) Pairwise sum

$$E = O(\frac{n}{\log n} \cdot \frac{1}{n}) = O(\frac{1}{\log n})$$

 Efficiency measures the fraction of time for which a processor is usefully utilized

Performance Metrics and Formulas

- T_1 is the execution time on a single processor
- \mathcal{T}_p is the execution time on a p processor system
- Cost(p) (C_p) is the cost

$$Cost = p \times T_p$$

- Cost-optimal parallel system solves a problem with a cost that matches the execution time of the fastest known sequential algorithm on a single processor.
 - E.g.) Pairwise sum: Cost = O(n log n)

Cost of the fastest sequential algorithm = O(n)

Therefore, parallel pairwise sum is not cost-optimal.

Amdahl's Law

- Gene Amdahl
 - Chief architect of IBM's first mainframe series
 - found that there were stringent restrictions on how much of a speedup one could get for a given parallelized task.
 - These observations were called *Amdahl's Law* (1967)
- If F is the fraction of a calculation that is sequential, and (1-F) is the fraction that can be parallelized, then the maximum speed-up that can be achieved by using P processors is 1/(F+(1-F)/P).

Amdahl's Law

- f is the fraction of a program that is sequential
- 1-f is the fraction that can be parallelized
- Let T_1 be the execution time on 1 processor
- Let \mathcal{T}_{p} be the execution time on p processors
- S_p is the *speedup*

$$S_p = T_1 / T_p$$

= $T_1 / (fT_1 + (1-f)T_1 / p))$
= $1 / (f + (1-f)/p))$

• As
$$p \to \infty$$

 $S_p = 1/f$

Amdahl's Law

- Speed up = 1/(F+(1-F)/P)
 - E.g.) 90% is parallel (i.e. 10% is sequential)
 - \rightarrow Speed-up on 5 processors = 1/(0.1+(1-0.1)/5) = about 3.6

Amdahl's Law and Scalability

- Scalability
 - Achieving performance proportional to the number of processors and the size of the problem
- What's the point of this?
 - Speedup is determined by sequential execution time, not by # of processors!!!
 - The performance is constrained by the slowest point.
 - Perfect efficiency is hard to achieve
 - Straggler Problem: Some processors will likely run out of work to do before others are finished
 - Amdahl was trying to argue in support of making single processor faster

Gustafson's Law (Scaled Speedup, 1988)

- Amdahl's Law is applied when the problem is fixed
- What about larger problems?
 - HPC Linpack
 - Constrain problem size by parallel time
- Assume parallel time is kept constant
 - $T_p = C = (f + (1-f)) * C$
 - f_{seq} is the fraction of T_p spent in sequential execution
 - f_{par} is the fraction of T_p spent in parallel execution
- What is the execution time on one processor?

• Let C=1, then
$$T_s = f_{seq} + p(1 - f_{seq}) = 1 - f_{par} + p f_{par} = 1 + (p-1)f_{par}$$

What is the speedup in this case?

•
$$S_p = T_s / T_p = T_s / 1 = f_{seq} + p(1 - f_{seq}) = 1 + (p-1)f_{par}$$

Gustafson's Law and Scalability

- Scalability
 - Ability of parallel algorithm to achieve performance gains proportional to the number of processors and the size of the problem
- When does Gustafson's Law apply?
 - When the problem size increases as the number of processors increases
 - Weak scaling $(S_p = 1 + (p-1)f_{par})$
 - Speedup function includes the number of processors!!!
 - Can maintain or increase parallel efficiency as the problem scales

Weak vs Strong Scaling

- In the context of high performance computing, there are two common notions of scalability:
- The first is *strong scaling*, which is defined as how the solution time varies with the number of processors for a fixed *total* problem size.
- The second is *weak scaling*, which is defined as how the solution time varies with the number of processors for a fixed problem size *per processor*.

Amdahl versus Gustafson

Amdahl

Amdahl versus Gustafson

Gustafson-Baris

Work decomposition and Principles of Parallel Programming

Work Decomposition

- The first step in developing a parallel algorithm
- Divide work into tasks that can run concurrently
- Many different ways of decomposition
- Tasks may be same, different, or even indeterminate sizes
- Tasks can be independent or dependent

Task Dependency Graph

- In most cases, there are dependencies between different tasks
 - Certain tasks can only start once some other tasks have finished
 - Ex) producer-consumer relationship
- Task dependency can be drawn using directed acyclic graph (DAG)
 - Node: task
 - Weight of a node: size (load) of a task
 - Edge: control dependency between tasks

Example: Dense Matrix-Vector Multiplication

- Computing each element of output vector y is independent
- Easy to decompose → one task per element in y
- Observations
 - Tasks share b
 - No control dependency between tasks
 - Task size is uniform

Granularity of Task Decompositions

- Granularity: task size
 - The number of tasks determines its granularity
- Fine-grained decomposition
 - A large number of tasks
- Coarse-grained decomposition
 - A small number of tasks

- Fine-grained decomposition: task per element in y
- Coarse-grained decomposition: task per 3 elements in y

Degree of Concurrency

- Definition: number of tasks that can run in parallel
- May change over program execution
- Two metrics
 - Maximum degree of concurrency
 - Largest number of concurrent tasks at any point of computation
 - Average degree of concurrency
 - Average number of concurrent tasks that can be executed concurrently
- Finer task granularity → larger degree of concurrency
- Coarser task granularity → smaller degree of concurrency

- Edges in task dependency graph serializes tasks
- Critical path: the longest weighted path in task dependency graph
- Critical path length bounds parallel execution time

Example: task dependency graphs

Number in each node is load of each task

Task 2

10

Task 6

Task 1

10

Task 5

- Critical path?
- How many processors are needed?
- Maximum degree of concurrency?
- Average degree of concurrency?

Example: task dependency graphs

Number in each node is load of each task

Task 1

Task 5

- Critical path? 27 vs 34
- How many processors are needed? 4 vs 2 (or 3)
- Maximum degree of concurrency? 4 vs 4
- Average degree of concurrency? 63/27 vs 64/38 (or 64/34)

Example: dense matrix-vector multiplication

- N tasks vs N² tasks
- Critical path?
- What is the shortest parallel execution time?
- How many processors are needed?
- Maximum degree of concurrency?
- Average degree of concurrency?

Example: dense matrix-vector multiplication

- N tasks vs N² tasks
- Critical path? N vs log₂N
- What is the shortest parallel execution time? log₂N
- How many processors are needed? N vs N²
- Maximum degree of concurrency? N vs N²
- Average degree of concurrency? N vs (2N²)/ log₂N

