





## 6. CIRCUITOS LÓGICOS:

Un circuito, con un interruptor, puede estar "abierto" o "cerrado". Cuando el interruptor está abierto no permite el paso de corriente, mientras que cuando está cerrado sí lopermite. Si asociamos una proposición a cada interruptor, intuitivamente, vemos que enel álgebra de circuitos la V de tal proposición indica el interruptor cerrado y F el interruptor abierto. Así, el circuito lógico que representa a una proposición p es:



Si p es V, se tiene:

pasa la corriente

p=V

no pasa la corriente

p=F

## 6.1. CIRCUITOS EN SERIE Y EN PARALELO

Las operaciones proposicionales se pueden representar mediante circuitos lógicos con tantos interruptores como proposiciones que la componen, combinados en serie o en paralelo según el conectivo lógico que une las proposiciones.

6.1.1. CIRCUITOS EN SERIE La conjunción de dos proposiciones  $(p \land q)$  está representada por un circuito lógico en serie. Esto es:



Este circuito permite el paso de corriente únicamente si p y q son V (o están cerrados). Así, se obtiene la tabla de verdad de la conjunción de dos proposiciones, p y q.

6.1.2. CIRCUITOS EN PARALELO La disyunción de dos proposiciones (p∨q) está representada por un circuito lógico en paralelo. Esto es:



p y q conectados en paralelo.

Este circuito no permite el paso de corriente únicamente si p y q son F (o están abiertos). Por lo cual, la tabla de verdad de la disyunción de dos proposiciones, p y q, es:

| Ejemplo: | Representar el circuito lógico de        | $p \rightarrow q$ . |   |  |
|----------|------------------------------------------|---------------------|---|--|
| Cana     |                                          |                     |   |  |
| Como     | $p \Rightarrow q \equiv (\sim p \vee q)$ |                     |   |  |
|          | ~p                                       |                     |   |  |
|          |                                          |                     | Q |  |
|          |                                          |                     |   |  |
|          | q                                        |                     |   |  |
|          | 7                                        |                     |   |  |
|          |                                          |                     |   |  |

