WOMANIUM | QUANTUM >

QML for Conspicuity Detection in Production

Team "Q-WeldGuards"

Ahmed Aboukouta

Project Statement and Tasks

Base Tasks:

- Learn Pennylane QML framework
- Implement a Variational Classifier with Pennylane
- Implement a Quanvolutional Neural Network with Pennylane

Extra Tasks:

- Implement a QML model to learn the sine function
- Implement a QML model to detect a defective production part (Aluminum welds)

Project Solution

Pennylane QML Framework

 Solved exercises on sections "Introduction to Quantum" Computing", "Single-Qubit Gates" and "Circuits with Many Qubits" from Pennylane's Codebook

Introduction to Quantum Computing

"Source"

Single-Qubit Gates

"Source"

Circuits with Many Qubits

Womanium Quantum+Al Project

Variational Classifier

• Implemented the <u>Variational Classifier</u> Pennylane Demo

Parity function variational circuit

Iris flower dataset classification variational circuit

Source: Task-2 in GitHub Repo

Quanvolutional Neural Network

• Implemented the <u>Quanvolutional NN</u> Pennylane Demo

Learning the Sine Function

• Implemented a Simple Quantum Neural Network (Variational Circuit) that learns the sine function on the interval $x \in [0, 2\pi]$

State Preparation and Ansatz:

QML model to Detect Defective Aluminum Welds

- Our Idea was to use the Quanvolutional Layer from Task 3 and convert it into a Keras Layer such that it becomes optimizable just like a classical filter
- Due to time Constraints and technical difficulties in the Pennylane-Keras interface, we could not finish our implementation

