딥러닝 기반 음식물 잔반량 측정 시스템

팀명: YOLO

팀원: 채종욱, 하성화, 최영인, 윤원중

지도교수: 신영학 교수

1. 개요

- 1.1 작품 명
- 1.2 작품 개요
- 1.3 작품 제작 배경 및 목적
- 1.4 유사 아이디어

2. 작품 설명

- 2.1 시스템 구성
- 2.2 작품제작 핵심기술
- 2.3 시스템 구성도
- 2.4 개발환경 및 Yolo 모델 학습 환경

3. 소프트웨어 설명

- 3.1 Yolo 모델 학습 데이터셋
- 3.2 시연 동영상
- 3.3 식사 전 후 음식량 비교
- 3.4 데이터 업로드 및 시각화

4. 기대 효과 및 활용방안

5. 부록

개요

1.1 작품 명

딥러닝 기반 음식물 잔반량 측정 시스템

1.2 작품 개요

급식환경에서의 식사 전과 식사 후의 식판 이미지들을 촬영 및 수집하여

딥러닝 기반의 음식물 잔반 측정 시스템을 만들고자 한다.

측정된 결과를 웹을 통해 시각화하여 사용자가 쉽게 분석 할 수 있도록 한다.

1.3 작품제작 배경 및 목적

<전국 음식물 폐기물 발생 및 처리현황(2019년)>

구 분		'14	15	16	17	'18	119
음식물류 폐기물 분리배출	소계	13,222	14,220	14,389	14,400	14,477	14,314

- 매년 음식물 폐기물 분류 배출량이 지속적으로 증가
- 음식물 쓰레기 처리 비용으로 1톤당 약 15만원
- 2019년 하루 발생한 음식물 쓰레기 처리 비용 약 21 억원

1.3 작품제작 배경 및 목적

• 배경

심각한 환경오염과 처리비용을 발생시키는 음식물 쓰레기를 어떻게 하면 처리할 수 있을지가 아닌어떻게 하면 줄일 수 있을지에 초점을 맞춰 작품을 제작하고자 한다.

• 목적

딥러닝 기술을 통해 음식물 잔반량 측정을 자동화하고 음식물 잔반량을 분석하여 음식물 쓰레기 양을 줄여 환경을 보호하고 음식물 쓰레기 처리비용을 절약하고자 한다.

1.4 유사 아이디어

어떤 음식인지 검출, 분류하여 음식의 칼로리를 측정하는 다이어트에 초

1. 스마트홈트 (칼로리)

[그림 1] 스마트홈트 앱의 작동 화면 출처: https://tech.kakaoenterprise.com/84 **점 ·** 2. 두잉랩 (식단조절)

[그림 2] 푸드렌즈 작동 화면 출처: https://www.joongang.co.kr /article/22973973#home 3. 스마트 아이즈 (메뉴인식 및 계 산)

[그림 3] 스마트 아이즈 출처: https://www.huawei.com/kr/

2.1 시스템구성

2.2 작품제작 핵심기술

• 객체 검출(이미지 내의 특정 객체를 감지해내는 작업)

객체의 종류와 위치를 찾아

객체의 넓이를 구하고 해당 객체 가

어떤 종류의 반찬인지 분류하여

잔반량을 측정한다.

2.2 작품제작 핵심기술

• YOLOv4 (딥러닝 기반 모델)

객체감지를 한 번만 보고 알아낼 수 있다는 의미에서 만들어졌다.

실시간 객체 인식에서 좋은 성능을

보이며 Single GPU로 학습과 테스 트, 모델 배포가 가능하다.

2.2 작품제작 핵심기술

• Jetson (GPU 기반으로 저전력 기계학습, 영상처리에 탁월한 성능)

식사 전후 식판 이미지 수집,

수집된 이미지 객체 검출,

수치화된 검출 자료 DB 저장,

DB에 저장된 데이터를 웹으로 전송한 다.

2.2 작품제작 핵심기술

• 웹 (데이터 시각화)

DB에 있는 데이터를 추출하여

메뉴별, 요일별 잔량, 식사 인원을 알려 주

는 기능, 잔반량을 통해 선호, 비선호 메 뉴

리스트를 알려주는 기능을 한다.

2.3 시스템 구성도

2.4 개발환경 및 Yolo 모델 학습 환경

- ① 개발 언어
 - Python
- ② 모델 학습 환경
 - Memory: 16GB
 - GPU: NVIDIA GeForce RTX 2080 SUPER
 - 학습 프레임워크 : DarkNet
 - 라벨링 툴 : Yolo_Mark
 - 딥러닝 프레임워크: Tensorflow 2.3.0

- ③ 웹 프레임워크
 - Flask
 - : 서비스를 제작하기 위한 웹 프레임워크로써 사용
 - Bootstrap
 - : HTML, CSS, JS, 프레임워크, 반응형 디자인 지원
- ④ 데이터베이스 관리 시스템
 - MySQL

3.1 Yolo 모델 학습 데이터셋

목포대학교 식당 메뉴 데이터

총 192장의 데이터

목포대학교 식당에서 매일 데이터를 수집하여 총 62개의 메뉴(클래스)와 192장의 식판 데이터를 수집하였다.

3.1 Yolo 모델 학습 데이터셋

목포대학교 식당 메뉴 데이터 증강

증강기법

- ① 90', 180', 270' 회전
- ② 좌우반전
- 한 이미지로 4장의 증강 이미지 생성
- 총 768장의 이미지 생성

3.1 Yolo 모델 학습 데이터셋

목포대학교 식당 메뉴 데이터 라벨링

Albumentaion을 이용해서 데이터 증강과 동시에 라벨링

3.1 Yolo 모델 학습 데이터셋

- ① 192장의 이미지 수집 (클래스(메뉴) 수 62)
- ② 192장의 이미지를 증강하여 768장의 증강 이미지 생성
- ③ 증강이미지를 train: test = 8: 2비율로 나누어서 사용
- ④ 원본이미지 192장의 이미지는 test로 활용

62개 클래스에 대한 학습결과 mAP : 95.2%

3.2 시연 동영상(젯슨 나노환경+카메라 실시간 검출영

상)

3.3 식사 전 후 음식량 비교

식사 전 식사 중 식사 후

3.3 식사 전 후 음식량 비교

식사 전

식사 중

식사 후

<class 'dict'>
[('Tray', 229914.0), ('Soup', 35237.0), ('Rice', 21112.0), ('Galbi dish', 16562.0), ('jjolmyeon', 11748.0), ('Croissant', 10836.0), ('Stir-fried Mushrooms', 10270.0)]

	밥	갈비	쫄면	크루아상	새송이 볶음
식사 전	21112	16562	11748	10836	10270
식사 중	13446	3761	10790	10780	0
식사 후	9000	0	0	0	0

3.4 데이터 업로드 및 시각화

일별 잔반량

오늘의 식단 (잔반량)

	밥	갈비	쫄면	크루아상	새송이 볶음
Case 1	13446/21112	3761/16562	10790/11748	10780/10836	0/10270
(1번과 2번)	(63%)	(22%)	(91%)	(99.4%)	(0%)
Case 2	9000/21112	0/16562	0/11748	0/10836	0/10270
(1번과 3번)	(42%)	(0%)	(0%)	(0%)	(0%)
평균	32%	11%	45%	49%	0%

기대효과 및 활용방안

기대효과 및 활용방안

4.1 기대 효과 및 활용방안

• 경제적 효과

연간 1,600억 원의 쓰레기 처리비용이 줄고 에너지 절약 등으로 5조 원에 달하는 경제적 이득이 생긴다. • 환경적 효과

오존층 파괴 감소, 다이옥신 감소, 음식물 쓰레기 침출수의 유출로 인한 강, 지하수, 토양의 오염 등 을 감소시키다.

기대효과 및 활용방안

4.1 활용방안

급식을 제공하는 모든 장소

인기메뉴를 파악하여 메뉴조합변경, 메뉴추천기능 등 메뉴의 품질 개선을 통해 음식물 쓰레기 양을 현저히 줄 일 수 있 다. • 일반 음식점

잔반량을 파악하여 부족한 반찬을 자동으로 채워준다면 서비스의 질이 향상될 것이다.

감사합니다.

부록

부록

- 1. 더 많은 데이터 확보
 - -> 부족한 데이터로 인한 한정된 메뉴와 낮은 정확도
- 2. 잔반량 계산 정확도 향상
 - -> Depth카메라를 이용해서 픽셀의 깊이를 구해서 잔반량의 부피를 계산해 정확도를 향상
- 3. 데이터를 이용한 다양한 서비스 제공
 - -> 메뉴별 칼로리 계산 및 메뉴 추천 등