Learning Material-Aware Local Descriptors for 3D Shapes

Hubert Lin¹ Melinos Averkiou² Evangelos Kalogerakis³ Balazs Kovacs⁴ Siddhant Ranade⁵ Vladimir G. Kim⁶ Siddhartha Chaudhuri^{6,7} Kavita Bala¹

¹Cornell Univ. ²Univ. of Cyprus ³UMass Amherst ⁴Zoox ⁵Univ. of Utah ⁶Adobe ⁷IIT Bombay

Outline

- 1. Goal
- 2. Motivation
- 3. Related Work
- 4. Data Collection
- 5. Network Architecture and Training Pipeline
- 6. Post-Processing
- 7. Results
- 8. Future Directions

Outline

- 1. Goal
- 2. Motivation
- 3. Related Work
- Data Collection
- 5. Network Architecture and Training Pipeline
- 6. Post-Processing
- 7. Results
- Future Directions

Goal: Learn local shape descriptors sensitive to physical material

Outline

- 1. Goal
- 2. Motivation
- 3. Related Work
- 4. Data Collection
- 5. Network Architecture and Training Pipeline
- 6. Post-Processing
- 7. Results
- Future Directions

Understanding physical material properties from 3D geometry:

- Jointly reason about materials and geometry
- Interactive design tool
- Robotic perception

• ...

Jointly reason about materials and geometry

What material is typically used for an object part like this?

How can we retrieve objects that are composed of similar materials?

...

Design and fabrication

Design and fabrication

Robotic Perception

Which one is better for an emergency collision?

Which one requires more gentle handling?

Outline

- 1. Goal
- 2. Motivation
- 3. Related Work
- Data Collection
- 5. Network Architecture and Training Pipeline
- 6. Post-Processing
- 7. Results
- 8. Future Directions

Related Work

- 1. Shape databases
- 2. Deep learning for shape analysis
- 3. Material understanding for shapes
- 4. Material understanding for images

Shape Databases

ShapeNet

- Large-scale database with many object classes
- Some shapes are textured; part segmentation

[https://www.shapenet.org]

Shape Databases

Semantically-Enriched 3D Models for Common-sense Knowledge

 Many different annotations, including categorylevel priors over material labels

Shape Databases

Text2Shape

- Natural language descriptions for 3D shapes
- Joint text / shape embedding

a) 3D shapes and natural language descriptions

Circular glass coffee table with two sets of wooden legs that clasp over the round glass edge.

A brown wooden moon shaped table with three decorative legs with a wooden vine shaped decoration base connecting the legs.

Wooden half round table.

Based on...

- Mesh
- Canonicalized meshes
- 2D renderings
- Point sets
- Dense Voxels
- Voxel octrees
- Spectral alignment
- Surface patch collection

And more...

Segmentation, classification

Shape completion

Geometric descriptors

Material Memex

- Automatic material suggestion for parts
- Requires database of with known part properties

Unsupervised Texture Transfer from Images to Shapes

- Image-to-shape, shape-to-shape texture transfer
- Aligns user-specified image to shape

Magic Decorator: Indoor Material Suggestion

- Automatically suggest textures for indoor 3D scene
- Used color / texture statistics of 2D images
- Requires scene segmented and labeled

Input Scene Suggestion 1 Suggestion 2 Suggestion 3

Flickr Material Database

- Surfaces of common materials; manually curated
- Relatively small dataset (100 per category)

Describable Textures Dataset

- Textures described by attributes ("striped", ...)
- Dataset of representative textures

OpenSurfaces

 Segmented surfaces from consumer photographs labelled with material and appearance properties

Materials in Context Database

- Millions of material points in real-world images
- Strong material recognition performance with deep learning

Reminder: Learn local shape descriptors sensitive to physical material

Our work:

- Focuses on physical material rather than appearance
- Does not strictly require additional input (such as semantic segmentation, image-to-shape matching, parts, ...)
- Only uses shape geometry as input
- Leverages existing deep learning approaches

Outline

- 1. Goal
- 2. Motivation
- 3. Related Work
- 4. Data Collection
- 5. Network Architecture and Training Pipeline
- 6. Post-Processing
- 7. Results
- 8. Future Directions

Challenge: Existing data is insufficient

- Selected 17K chairs, tables, cabinets from ShapeNet
- Remove hard-to-label shapes for reliable crowdsourced annotations

Remaining shapes (17K)

- Selected 17K chairs, tables, cabinets from ShapeNet
- Remove hard-to-label shapes for reliable crowdsourced annotations

Remaining shapes (12K)

No texture

- Selected 17K chairs, tables, cabinets from ShapeNet
- Remove hard-to-label shapes for reliable crowdsourced annotations

Remaining shapes (8K)

No texture, too many/too few components

- Selected 17K chairs, tables, cabinets from ShapeNet
- Remove hard-to-label shapes for reliable crowdsourced annotations

Remaining shapes (3K)

No texture, too many/too few components, low-quality mesh, duplicates

Material categories (commonly found in furniture):

- 1. Wood
- 2. Plastic
- 3. Metal
- 4. Glass
- 5. Fabric (including leather)
- 6. Stone

Here are a few views of a 3D object:

Now look carefully at the selected part of this 3D object below (rest of the object is faded):

What material is this part made of?

- Fabric / Leather
- Glass
- Metal
- Plastic
- Metal OR Plastic
- Stone
- Wood
- Can't tell / None of the above

Here are a few views of a 3D object:

Now look carefully at the selected part of this 3D object below (rest of the object is faded):

What material is this part made of?

- Fabric / Leather
- Glass
- Metal
- Plastic
- Metal OR Plastic
- Stone
- Wood
- Can't tell / None of the above

Here are a few views of a 3D object:

Now look carefully at the selected part of this 3D object below (rest of the object is faded):

What material is this part made of?

- Fabric / Leather
- Glass
- Metal
- Plastic
- Metal OR Plastic
- Stone
- Wood
- Can't tell / None of the above

Here are a few views of a 3D object:

Now look carefully at the selected part of this 3D object below (rest of the object is faded):

What material is this part made of?

- Fabric / Leather
- Glass
- Metal
- Plastic
- Metal OR Plastic
- Stone
- Wood
- Can't tell / None of the above

- 20 questions per task
- 3 sentinels per task
- Ignored labels from workers who incorrectly labeled sentinels or selected "Can't tell" too often
- 5 votes per part, with 4+/5 considered reliable

 Parts with transparent textures labelled as glass (manually checked)

Expert-Annotated Data

- Crowdsourced data is noisy
- Only one label assigned per part, but...

e.g. This seat body can be made of wood or plastic.

- Need high quality annotations for evaluation
- Selected 115 chairs, tables, cabinets from 3D
 Warehouse and Herman Miller

[https://3dwarehouse.sketchup.com/]
[https://www.hermanmiller.com/resources/models/3d-models]

Expert-Annotated Data

Expert annotators reference product images and descriptions for accurate labelling

Expert-Annotated Data

Expert annotators reference product images and descriptions for

accurate labelling

Manufacturer Product Images

Label Distribution (# Parts / Label)

(Left) Crowdsourced Dataset (Right) Expert Labeled Dataset

Outline

- 1. Goal
- 2. Motivation
- 3. Related Work
- 4. Data Collection
- 5. Network Architecture and Training Pipeline
- 6. Post-Processing
- 7. Results
- Future Directions

Challenge: Learning Pipeline

Based on MVCNN architecture [Huang et al. 2018]

CNN backbone is Googlenet (VGG etc also works)

• Input is 9 rendered views around surface point

- Input is 9 rendered views around surface point
- Views are selected to maximize surface coverage
- 3 viewing directions at 3 viewing distances

Camera is oriented upright wrt shape

Also tried 36 views

Loss function:

- 1) Contrastive loss [Hadsell et al. 2006] + classification loss
- 2) Classification loss only

Loss function:

- 1) Contrastive loss [Hadsell et al. 2006] + classification loss
- 2) Classification loss only

Loss function:

- 1) Contrastive loss [Hadsell et al. 2006] + classification loss
- 2) Classification loss only

Loss function:

- 1) Contrastive loss [Hadsell et al. 2006] + classification loss
- 2) Classification loss only

These two variants produced the best results.

Trained in Siamese fashion

Training set is sampled from crowdsourced data (>50% parts labeled)

- 75 uniformly separate points are sampled from each shape (occluded points ignored)
- Final training set consists of ~150K points.

- Dataset is biased / imbalanced
- Class-balanced training explicitly cycle through each combination of label pairs when sampling

```
e.g. (wood, wood)
(wood, metal)
(wood, fabric)
```

• • •

- Dataset is biased / imbalanced
- Class-balanced training explicitly cycle through each combination of label pairs when sampling

```
e.g. <del>(wood, wood)</del>
(wood, metal)
(wood, fabric)
```

• • •

- Dataset is biased / imbalanced
- Class-balanced training explicitly cycle through each combination of label pairs when sampling

```
e.g. <del>(wood, wood)</del>
<del>(wood, metal)</del>
(wood, fabric)
```

- Dataset is biased / imbalanced
- Class-balanced training explicitly cycle through each combination of label pairs when sampling

```
e.g. <del>(wood, wood)</del>
<del>(wood, metal)</del>
<del>(wood, fabric)</del>
```

- Dataset is biased / imbalanced
- Class-balanced training explicitly cycle through each combination of label pairs when sampling

```
e.g. <del>(wood, wood)</del>

<del>(wood, metal)</del>

<del>(wood, fabric)</del>

...
```

 Sample same class pairs 20% of time, sample different class pairs 80% of time

Outline

- 1. Goal
- 2. Motivation
- 3. Related Work
- 4. Data Collection
- 5. Network Architecture and Training Pipeline
- 6. Post-Processing
- 7. Results
- 8. Future Directions

Challenge: Global Reasoning

Local Material Predictions

CRF with symmetry

Comparison

- Use CRF to smooth local material predictions
- Three pairwise factors between polygons:
 - Low dihedral angle → same material
 - Low geodesic distance → same material
 - Rotational / reflective symmetry → same material

- Use CRF to smooth local material predictions
- Three pairwise factors between polygons:
 - Low dihedral angle → same material
 - Low geodesic distance → same material
 - Rotational / reflective symmetry → same material

Fig from http://mathworld.wolfram.com/DihedralAngle.html

- Use CRF to smooth local material predictions
- Three pairwise factors between polygons:
 - Low dihedral angle → same material
 - Low geodesic distance → same material
 - Rotational / reflective symmetry → same material

- Use CRF to smooth local material predictions
- Three pairwise factors between polygons:
 - Low dihedral angle → same material
 - Low geodesic distance → same material
 - Rotational / reflective symmetry → same material

Outline

- 1. Goal
- 2. Motivation
- 3. Related Work
- Data Collection
- 5. Network Architecture and Training Pipeline
- 6. Post-Processing
- 7. Results
- 8. Future Directions

Test Set

1024 uniformly separated points sampled from each benchmark shape:

- Occluded points are discarded
- Final test set consists of 117K points

Material Prediction Mean Class (Top 1) Accuracy

- Multitask has more balanced predictions and highest mean accuracy
- +CRF boosts performance across all categories except glass

Network	Mean	Wood	Glass	Metal	Fabric	Plastic
Classification	65	82	53	72	62	55
Classification +CRF	66	85	36	77	66	65
Multitask	66	68	65	72	70	53
Multitask +CRF	71	75	64	74	74	68

Multitask (No CRF)

Multitask (No CRF)

Multitask (No CRF)

Multitask+CRF:

Multitask+CRF:

Multitask+CRF:

Descriptor Retrieval Mean Class Precision

- Similar mean class performance
- Multitask outperforms Classification for all materials except wood

Network	Mean	Wood	Glass	Metal	Fabric	Plastic	
Classification							
k=1	55.7	76.4	34.3	65.0	56.1	46.7	
k=30	56.9	75.3	41.1	64.9	55.3	47.6	
k=100	57.3	75.1	43.0	64.9	55.5	48.0	
Multitask							
k=1	56.2	62.2	40.8	68.6	58.0	51.2	
k=30	56.2	61.0	42.6	68.9	57.4	51.1	
k=100	56.6	60.7	44.7	68.7	57.4	51.5	

Embedding Visualization (tSNE)

Multitask Descriptor Space

Effect of # of Input Views

3 views (1 direction, 3 distances) vs 9 views (3, 3)

- Multiple view directions are advantageous
- Top 1 classification accuracy:

Network	Mean	Wood	Glass	Metal	Fabric	Plastic
Classification 3 views	59	81	41	71	60	40
Classification 9 views	65	82	53	72	62	55
Multitask 3 views	56	45	71	85	65	15
Multitask 9 views	66	68	65	72	70	53

Material-Aware Part Retrieval

Material-Aware Part Retrieval

Material-Aware Automatic Texturing

Material-Aware Physics Simulation

Material-Aware Physics Simulation

Conclusion

 Two shape datasets with per-part material labels through crowdsourcing and expert-labelling

 Material-aware local descriptors computed through supervised learning pipeline

Symmetry-aware CRF for global reasoning

Future Directions

- Increase variety of shapes and materials
- Learn smooth predictions end-to-end without CRF
- Fine-grained materials
- 2D material classification has good performance. Leverage this to improve 3D understanding.

Thank you!