Fundamentals of Database Systems

Assignment: 8

Due Date: 19th September, 2017

Instructions

This question paper contains 10 questions in 3 pages.

Q1: Consider the following schedule. All the locks are exclusive, and between the *lock l* and *unlock u* operations, the corresponding data item is first read and then written.

S: $l_1(A)$, $l_3(D)$, $l_1(B)$, $u_1(A)$, $l_2(C)$, $l_2(B)$, $l_1(D)$, $l_2(B)$, $l_3(C)$, $l_4(A)$, $l_4(C)$, $l_5(A)$

The schedule will result in a deadlock.

- A. True
- B. False

Explanation: The wait-for graph of the schedule contains a cycle, hence it will cause deadlock.

Q2: Consider the following schedule *S*.

S: $l_1(A)$, $l_2(D)$, $l_1(B)$, $u_1(A)$, $l_2(C)$, $l_2(B)$, $l_1(D)$, $l_2(B)$, $l_3(C)$, $l_4(A)$, $l_4(C)$, $l_5(A)$

Which of the following is a valid set of transactions that are potential victims?

- A. $\{T_1, T_2, T_3, T_5\}$
- B. $\{T_1, T_2\}$
- C. $\{T_1, T_2, T_3, T_4\}$
- D. $\{T_1, T_2, T_3\}$

Explanation: Transactions $\{T_1, T_2, T_3\}$ are involved in cycle of wait-for graph of the schedule.

Q3: Suppose a deadlock occurs in the schedule *S* given below.

S: $l_1(A)$, $l_3(D)$, $l_1(B)$, $u_1(A)$, $l_2(C)$, $l_2(B)$, $l_1(D)$, $l_2(B)$, $l_3(C)$, $l_4(A)$, $l_4(C)$, $l_5(A)$

A transaction that causes the *least* number of cascading rollbacks is decided to be chosen as *victim*, then which of the following transaction can *not* be chosen as a victim?

- A. T_3
- B. T_2
- C. T_1
- D. Cannot be decided

Explanation: T_1 will cause cascading rollback, if aborted as T_4 is reading item A which was written by T_1 .

Q4: Consider the following database

Col1	Col2	Col3
1	2	3
4	5	6
7	8	9

If Col1 and Col2 form a column family and Col3 is another column family, how is the data stored?

- A. 123456789
- B. 147258369
- C. 124578369
- D. 147369258

Explanation: Each columnar family is stored in a row major way, one after the other

Q5: Match the systems in column A with their best examples in column B.

A	В
a. Key Value Store	1. HBase
b. Big Table System	2. Titan
c. Document Database	3. Redis
d. Graph Database	4. MongoDB

- A. a-3 b-1 c-4 d-2
- B. a-2 b-1 c-3 d-4
- C. a-4 b-3 c-1 d-2
- D. a-4 b-2 c-3 d-1

Explanation: From the slides

Q6: Which of the following types of data can be associated with big data systems?

- (1) Structured
- (2) Semi-structured
- (3) Un-structured
 - A. Only (2)
 - B. Only (3)
 - C. Only (2) and (3)
 - D. All of (1), (2) and (3)

Explanation: Big data can contain all types of data.

- **Q7:** Which of the following can be described as a programming model used to develop applications processing massive amounts of data in a distributed and/or parallel manner?
 - A. Map Reduce
 - B. OLAP
 - C. Mahout
 - D. Cloud Computing

Explanation: Programming model is map-reduce.

- **Q8:** Which statement is *true* about big data?
 - A. It must contain complex data.
 - B. Any data more than 1TB or so is big data.
 - C. It depends critically on the application.
 - D. Any data that does not fit into the main memory of a standard machine is big data.

Explanation: Big data depends critically on the application rather than the size of the data.

- **Q9:** Which of the following statement(s) is/are *not* correct?
 - (1) 3 V's of big data are volume, variety and velocity.
 - (2) Big data can be structured as relational data.
 - (3) Hadoop is based on map-reduce framework.
 - (4) Data of size greater than a particular threshold is always treated as big data.
 - A. Only (2) and (4)
 - B. Only (3)
 - C. None of (1), (2), (3) and (4)
 - **D.** Only (4)

Explanation: Incorrect interpretation of big data.

- **Q10:** Which of the following statement(s) is/are *not* correct?
 - (1) Eventual consistency may result in stale reads.
 - (2) NoSQL can handle schema less data.
 - (3) Columnar storage handles update operation as efficiently as RDBMS.
 - (4) In key value store, keys could be heterogeneous.
 - A. Only (3) and (4)
 - B. Only (1)
 - C. All of (1), (2), (3) and (4)
 - D. Only (3)

Explanation: Columnar storage stores tuple in *column-wise* manner and hence update requires multiple access to retrieve a tuple.