Algorytmy Metaheurystyczne Komiwojażer Heurystycznie

Gabriel Budziński (254609) Franciszek Stepek (256310)

Przedmowa

Na samym początku omówimy po krótce użyte algorytmy, oraz zastanowimy się nad ich złożonością obliczeniową, natomiast dalej dopiero przejdziemy do opisu eksperymentów.

1 Podsumowanie złożoności obliczeniowych implementacji

2 Opis eksperymentów

2.1 Implementacja

Algorytmy implementujemy w języku C/C++, odległości między wierzchołkami są przechowywane jako pełne tablice dwuwymiarowe typu int, a trasy są w kontenerach vector, co ułatwia operacje odwracania i mieszania. Korzystaliśmy z kompilatora g++ wraz z użyciem flag -lSDL2 (używanej przy wizualizacji, wraz z odpowiednim dla danego systemu operacyjnego podlinkowania do folderu zawierającego) oraz -lpthread (przy korzystaniu z wielowątkowości)

2.2 Sprzęt

Programy były testowane na dwóch maszynach, laptopie *Lenovo* i komputerze stacjonarnym. Obie jednostki są wyposażone w procesor architektury x86 marki intel oraz 16GB pamięci RAM.

2.2.1 Pececik

Komputer stacjonarny posiada procesor sześciordzeniowy i5-10600K 4,1 GHz (o obniżonym napięciu operacyjnym).

2.2.2 Lapek

Laptop posiada procesor czterordzeniowy i7-6700HQ 2,6 GHz

2.3 Instancje

2.3.1 Przykłady TSPLIB

W części eksperymentów użyto instancji euklidejskiego problemu komiwojażera.

2.3.2 Instancje losowe

W celu zwiększenia liczności i dokładności testów spreparowano losowo generowane instancje eukidejskiego problemu komiwojażera.

2.4 Metodologia/cel

Testy przeprowadzono za pomocą zaimplementowanych w tym celu funkcji ku jak największej automatyzacji. Dane o przeprowadzonych testach zapisywano do plików tekstowych w formacie CSV, a następnie poddane analizie. Testowanie miało na celu wskazanie mocnych i słabych stron zaimplementowanych heurystyk, jak i ich porównanie.

2.5 Opis wyników

2.6 Wyniki z custom-parameter-tuner

Zaimplementowany został także masowy test, który miał na celu wynalezienie 'optymalnych' hiperparametrów mając za zbiór testowy 3 instancje (70, 280 oraz 1002 miastowe). Największe różnorodności otrzymano dla instancji z 70 miastami, dla miast 280 można już było zawęzić nieco wyniki, natomiast dla instancji z 1002 miastami różnice okazały się na tyle znaczące, że bez problemu można wyznaczyć najlepsze.

Na początku przedstawmy tabelę wynikową dla n = 70. Ale zanim to zrobimy, to dodajmy tylko, że w tabeli 1 zawrzemy jedynie przedstawienie wyników dla otoczenia *Invert*, ponieważ dla pozostałych 2 otoczeń dobór parametrów okazał się praktycznie bez znaczenia po względnie minimalnym odcinku czasu (po około 0.5 sekundy od rozpoczęcia działania każdy z pojedynczych testów ostatecznie zwracał ten sam wynik), gdzie otoczenie *Insert* dało wynik 722, natomiast *Swap* 756.

Tabela 1.						
Kik Mode	Tabu Size Mode	Enhance Mode	Min	Avg	Max	$\int St Dev$
\overline{Invert}	7	Tabu * 2 + 1	675	675	675	0
		Tabu * 10	675	692.(3)	699	10
		Tabu * \sqrt{Size}	675	687.(6)	699	12.0726964676496
		Tabu * $log_2(Size)$	690	696.(8)	699	3.05959329178095
	\sqrt{Size}	Tabu * 2 + 1	684	694.(3)	699	6.14410286372226
		Tabu * 10	675	693	699	10.2834819006016
		Tabu * \sqrt{Size}	675	691	699	9.94987437106621
		Tabu * $log_2(Size)$	691	696.(7)	701	3.73422608373463
	$log_2(Size)$	Tabu * 2 + 1	686	686.(8)	694	2.666666666666
		Tabu * 10	675	689.(7)	699	9.25712938466584
		Tabu * \sqrt{Size}	695	697.(6)	699	1.9999999999999
		Tabu * $log_2(Size)$	686	695.(4)	699	5.70331287742287
Insert	7	Tabu * 2 + 1	695	701.(4)	707	5.05250213040802
		Tabu * 10	696	696.(8)	701	1.69148192751537
		Tabu * \sqrt{Size}	687	696.(4)	707	7.09068246206084
		Tabu * $log_2(Size)$	688	691	701	5.67890834580028
	\sqrt{Size}	Tabu * 2 + 1	681	694.(3)	699	5.83095189484535
		Tabu * 10	688	691.(8)	708	6.97216688778397
		Tabu * \sqrt{Size}	688	692.(7)	713	8.52610370828576
		Tabu * $log_2(Size)$	681	695.(2)	712	11.9035475571127
	$log_2(Size)$	Tabu * 2 + 1	697	709.(6)	716	9.5
		Tabu * <u>10</u>	685	692.(7)	703	6.99603062060507
		Tabu * \sqrt{Size}	681	691.(8)	703	8.22259758902934
		Tabu * $log_2(Size)$	686	690.(6)	696	4.76969600708475
Swap	7	Tabu * 2 + 1	691	694.(3)	697	2.783882181415
		Tabu * <u>10</u>	691	695.(8)	701	4.01386485959743
		Tabu * \sqrt{Size}	683	692.(3)	699	6.24499799839846
		Tabu * $log_2(Size)$	685	691.(8)	696	4.53994615729206
	\sqrt{Size}	Tabu * 2 + 1	679	683.(7)	696	5.71790559946948
		Tabu * <u>10</u>	686	696.(7)	701	4.86769395550341
		Tabu * \sqrt{Size}	686	693.(7)	701	6.01618188259331
		Tabu * $log_2(Size)$	686	693.(5)	701	7.50185162328459
	$log_2(Size)$	Tabu * 2 + 1	684	694.(2)	708	11.110555541666
		Tabu * 10	694	698.(6)	701	3.5000000000000001
		Tabu * \sqrt{Size}	685	690.(1)	701	5.84047182264508
		Tabu * $log_2(Size)$	681	690.(8)	695	5.66(6)

W tabeli pogrubione zostały wyniki najlepsze w danej sekcji. Rozważaliśmy tutaj 3 parametry (oraz 1 niewspominany):

- Kik Mode rodzaj kroków wykonywanych przez podprocedurę Kik (wyskakiwanie z obecnego rozwiązania)
- Tabu Size Mode wielkość listy Tabu
- Enhance Mode Liczba iteracji po której nie było poprawy (po przekroczeniu najpierw następuje 'cofanie' po liście długoterminowe
- (Kik Size) niewspominany tutaj, po części ze względu na czytelność tabeli (zwiększyłaby wtedy swój rozmiar 3-krotnie), ale w głównej mierze ze względu na brak wpływania tutaj na wyniki.

W kontekście analizy tabeli 1.:

- Po pierwsze widać znaczną przewagę przy używaniu Kik'a w trybie *Invert*, ponieważ nie dość, że osiąga najlepsze wyniki, to także oograniczenia górne (Max) są niższe niż w przypadku pozostałych trybów.
- W przypadku długości listy Tabu można wyróżnić 2 wartości: magiczną 7, oraz (już uzależnioną od wielkości) wartość \sqrt{n} , gdzie n jest wielkością problemu. Tak jak w przypadku pierwszego trybu Kika lepsza była 7, tak w 2 pozostałych przypadkach lepiesj sprawdził się pierwiastek. Można zaryzykować, że dla naszych potrzeb są ze sobą 'wysoce porównywalne'
- Iteracje do poprawy tutaj już widać, że jest to mocno uzależnione od pozostałych parametrów, oraz że różne wartości zachowują się najlepiej w połączeniu z innymi ustawieniami (Wysoka różnorodność rozłożenia najlepszego wyniku w danych 'sekcjach')

2.7 Porównanie wariantów dla optymalnych parametrów

Po przetestowaniu optymalnych parametrów przeprowadzono testy dla ustalonych instancji TSPLIB. Wykresy podzielono na dwie grupy, po lewej operacja kick była losowa w zadanym przedziale, po prawej deterministyczna.

W obydwu wariantach operacji kick można zauważyć zbliżone wyniki przy wszystkich wielkościach problemu. Co więcej, wraz ze zwiększaniem się problemu bardziej klarownie widać różnice między wersjami.

- Początkowa trasa na podstawie Nearest Neighbour daje lepsze wyniki niż k-random
- Wszystkie otoczenia są porównywalne, najlepszy Invert, następnie Insert, najgorszy Swap

2.7.1 Algorytmy uwspółbieżnione

Uwspółbieżnienie zaimplementowano na zasadzie równoległego uruchamiania kilku instancji algorytmu TABU-Search jednocześnie. Z oczywistych względów nie testowano zachowania deterministycznej wersji algorytmu. Niestety, ta metoda uwspółbieżnienia nie dała dobrych rezultatów:

Dla każdego otoczenia i każdego rodzaju trasy startowej nie uzyskano w ten sposób polepszenia trasy.

2.8 Wnioski

Drobne uwagi