Probabilistic Time Series Analysis: Lab 9

Tim Kunisky

November 14, 2018

A Gaussian Paradox

- For g and h gaussians with $\mathbb{E}g = \mathbb{E}h = 0$, the joint distribution (g,h) depends only on the covariance matrix.
- · Consider two pairs (g, h):
 - 1. g_1 and h_1 are independent $\mathcal{N}(0,1)$ random variables.
 - 2. $g_2 \sim \mathcal{N}(0,1)$, and $h_2 = sg_2$, where $s = \pm 1$ with equal probability and is independent of g_2 .

Both pairs consist of gaussians and have covariance matrix

$$\boldsymbol{\Sigma} = \left[\begin{array}{cc} \mathbb{E}[g_i^2] & \mathbb{E}[g_i h_i] \\ \mathbb{E}[g_i h_i] & \mathbb{E}[h_i^2] \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

· However, $|g_2| = |h_2|$ always, while $|g_1| \neq |h_1|$ almost surely, so (g_1, h_1) and (g_2, h_2) do not have the same distribution!

What's wrong with this argument?

A Gaussian Process Paradox

Let's review the basic setup of gaussian process regression: we want to model a time series f(t), so we suppose f(t) is distributed according to a gaussian process with a parametrized covariance kernel.

$$\mathbb{E}f(t) = 0,$$

$$\mathbb{E}f(s)f(t) = K(s, t; \boldsymbol{\theta}).$$

- Then, we fit the parameters θ to the data using (say) maximum likelihood.
- · But the model dictates $\mathbb{E}f(t) = 0$, so our model can never capture a trend or seasonality in the data.

What's wrong with this argument?

A Very Special Gaussian Process

 Let's say I do gaussian process regression with a covariance kernel like

$$\mathbb{E} f(s)f(t)=K(s,t;m,c)=m^2(s-c)(t-c).$$

• The parameters of the kernel are $\theta = (m, c)$.

Consider the covariance matrix of $(f(s_1), ..., f(s_k))$ under this model. What can you say about this matrix?

What kinds of functions does this kernel let me model?

Some Computational Aspects

- · Let's say I give you a multivariate gaussian distribution $\mathcal{N}(\mu, \Sigma)$. How would you draw 100,000 samples from it? What would you need to compute? How much time does your method take if $\mu \in \mathbb{R}^N$ and $\Sigma \in \mathbb{R}^{N \times N}$?
- Now what if I need to compute the conditional distribution on some M < N of the variables? What's the bottleneck in this calculation?