Welcome!

command

GM #3 | HHS CS

> When do we meet?

Every **Tuesday**

At lunch (1:30-2:10)

in **i5** (here!)

Neural Networks

Single Layer Perceptrons Multilayer Perceptrons

> Starting off with a Problem

Problem: Predict grade on (my Econ) test

What is some data I could use to predict my score?

→ WWLB Quizzes		14 / 20
WWLB Quiz #1 8/2	8/23 🛍	B-5 / 6 83%
WWLB Quiz #2 9/0	6/23	D-4 /8 50%
WWLB Quiz #3 9/1	1/23	B- 5 / 6 83%

> Starting off with a Problem

Target / Label: Grade of Econ test

Features / Covariates: Time studied

Target / Label: Grade of Econ test

Features / Covariates: Time studied

Grade = w * Time + b

Target: Grade of Econ test

Features: Study time, current grade, sleep, constant

Grade = w1 * time + w2 * cur_grade + w3 * sleep + b

Target: Grade of Econ test

Features: Study time, current grade, sleep, constant

Grade = w1 * time + w2 * cur_grade + w3 * sleep + b

Target: Grade of Econ test

Features: Study time, current grade, sleep, constant

Grade = w1 * time + w2 * cur_grade + w3 * sleep + w4 * 1

Target: Grade of Econ test

Features: Study time, current grade, sleep, constant

Grade = [w1, w2, w3, w4] * [x1, x2, x3, x4]

Target: Grade of Econ test

Features: Study time, current grade, sleep, constant

Grade = $\mathbf{w} * \mathbf{x}$

Target: Grade of Econ test

Features: Study time, current grade, sleep, constant

Grade = $\mathbf{w} * \mathbf{x}$

Objective: Using data to find the weights w

> Regression

Labels => Arbitrary numerical values

How much? How many? questions

command

> Regression Model

Grade = [w1, w2, w3, w4] * [x1, x2, x3, x4]

> Linear Neural Network

Grade = [w1, w2, w3, w4] * [x1, x2, x3, x4]

> How do we find the weights?

Model fits data

Minimize model error

Loss Function

Mean Squared Error

> CoLab Activity 1

Link on Discord or hhscs.club

Fit a regression model to the data

Usage:

IF YOU WANT YOUR CODE/CHANGES TO BE SAVED,

make sure you make a copy of the CoLab Use your **personal** gmail account.

> What were some limitations?

> What were some limitations?

Function is Linear

Multilayer Perceptrons for Non-Linearity

> Perceptron

Mark I Perceptron 1960

> Perceptron

Linear NN with Activation Function o

σ determines whether Neuron should "fire"

> Multilayered Perceptrons

> Multilayered Perceptrons

> Perceptron

Linear NN with Activation Function o

σ determines whether Neuron should "fire"

> Activation Function: Sigmoid

 $\operatorname{sigmoid}(x) = \frac{1}{1 + \exp(-x)}.$

> Activation Function: ReLU

ReLU(x) = max(x, 0).

command

> CoLab Activity 2

Link on Discord or hhscs.club

Fit a regression model to the data

Usage:

IF YOU WANT YOUR CODE/CHANGES TO BE SAVED,

make sure you make a copy of the CoLab

Use your **personal** gmail account.

> MLP Structure

> Socials

Website: hhscs.club

Email List:

Insta:

@hhscomputerscience

Discord:

Next Meeting: Tuesday (9/26) Lunch