Types of Operations

يختلف عدد الـ opcodes بشكل كبير من machine الحى ومع ذالك توجد نفس العمليات العامة (general types of operations) على جميع الـ machines . لتصنيف:

- Data transfer
 - Arithmetic
 - Logical •
 - Conversion
 - 1/0 •
- System control •
- Transfer of control •

يسرد هذا الجدول انواع التعليمات الشائعة لجميع الفئات:

Туре	Operation Name	Description		
Data transfer	Move (transfer)	Transfer word or block from source to destination		
	Store	Transfer word from processor to memory		
	Load (fetch)	Transfer word from memory to processor		
	Exchange	Swap contents of source and destination		
	Clear (reset)	Transfer word of 0s to destination		
	Set	Transfer word of 1s to destination		
	Push	Transfer word from source to top of stack		
	Pop	Transfer word from top of stack to destination		
	Add	Compute sum of two operands		
	Subtract	Compute difference of two operands		
	Multiply	Compute product of two operands		
Arithmetic	Divide	Compute quotient of two operands		
Arithmetic	Absolute	Replace operand by its absolute value		
	Negate	Change sign of operand		
	Increment	Add 1 to operand		
	Decrement	Subtract 1 from operand		
	AND	Perform logical AND		
	OR	Perform logical OR		
Logical	NOT	(complement) Perform logical NOT		
	Exclusive-OR	Perform logical XOR		
	Test	Test specified condition; set flag(s) based on outcome		
	Compare	Make logical or arithmetic comparison of two or more operands; set flag(s) based on outcome		
	Set Control Variables	Class of instructions to set controls for protection purpos interrupt handling, timer control, etc.		
	Shift	Left (right) shift operand, introducing constants at end		
	Rotate	Left (right) shift operand, with wraparound end		

Transfer of control	Jump (branch)	Unconditional transfer; load PC with specified address		
	Jump Conditional	Test specified condition; either load PC with specified address or do nothing, based on condition		
	Jump to Subroutine	Place current program control information in known location jump to specified address		
	Return	Replace contents of PC and other register from known location		
	Execute	Fetch operand from specified location and execute as instruc- tion; do not modify PC		
	Skip	Increment PC to skip next instruction		
	Skip Conditional	Test specified condition; either skip or do nothing based on condition		
	Halt	Stop program execution		
	Wait (hold)	Stop program execution; test specified condition repeatedly; resume execution when condition is satisfied		
	No operation	No operation is performed, but program execution is continued		

Туре	Operation Name	Description		
Input/output	Input (read)	Transfer data from specified I/O port or device to destination (e.g., main memory or processor register)		
	Output (write)	Transfer data from specified source to I/O port or device		
	Start I/O	Transfer instructions to I/O processor to initiate I/O opera		
	Test I/O	Transfer status information from I/O system to specified destination		
Conversion	Translate	Translate values in a section of memory based on a table of correspondences		
	Convert	Convert the contents of a word from one form to another (e.g., packed decimal to binary)		

سنناقش هاذي العمليات.

Data Transfer

النوع الاساسي لتعليمات الالة هو تعليمات نقل البيانات (data transfer instruction). يجب ان تحدد تعليمات نقل البيانات عدة اشياء او لا يجب تحديد source and يمكن ان يكون كل موقع عبارة عن موقع ذاكرة او register او من top of the stack . ثانيا يجب الاشارة الى طول البيانات المطلوب

نقلها. ثالثا كما هو الحال مع جميع التعليمات ذات المعاملات يجب تحديد طريقة للعنونة لكل معامل (addressing). ان اختيار تعليمات نقل البيانات لتضمينها في مجموعة التعليمات (instruction set) يجسد انواع المقايضات التي يجب على المصمم القيام بها. على سبيل المثال يمكن الاشارة الى general location يمكن ان تكون في الذاكرة او السجل للمعامل (operand) اما في specification of the opcode او operand.

Table 12.5 Examples of IBM EAS/390 Data Transfer Operations

Operation Mnemonic	Name	Number of Bits Transferred	Description Transfer from memory to register		
L	Load	32			
LH	Load Halfword	16	Transfer from memory to register		
LR	Load	32	Transfer from register to register		
LER	Load (short)	32	Transfer from floating-point register floating-point register		
LE	Load (short)	32	Transfer from memory to floating- point register		
LDR	Load (long)	64	Transfer from floating-point register floating-point register		
LD	Load (long)	64	Transfer from memory to floating- point register		
ST	Store	32	Transfer from register to memory		
STH	Store Halfword	16	Transfer from register to memory		
STC	Store Character	8	Transfer from register to memory		
STE	Store (short)	32	Transfer from floating-point register to memory		
STD	Store (long)	64	Transfer from floating-point register to memory		

هذا الـ Table يعطى امثلة على تعليمات نقل البيانات في Table .

لاحظ هناك متغيرات للاشارة الى كمية البيانات المطلوبة نقلها (8 او 16 او 32 او 64). وايضا هناك تعليمات مختلفة مثال للـ register to register او memory to memory و هكذا.

وايضا يوجد VAX يحتوي على تعليمات (MOV) هي move او نقل مع متغيرات لكميات مختلفة من البيانات المراد نقلها ولكنه يحدد ما اذا كان المعامل عبارة عن سجل او ذاكرة

كجزء من الـ operand . يعد نهج VAX اسهل الى حد ما بالنسبة للمبرمج الذي لديه عدد اقل من أساليب الاستذكار للتعامل معها. من حيث عمل المعالج ربما تكون البيانات هي نوع الابسط. اذا الـ source & destination كان register فان المعالج ببساطة ينقل البيانات من سجل الى اخر. هذه عملية داخلية في المعالج. اذا كان src & dest في الذاكرة في المعالج تنفيذ بعض او كل الاجراءات التالية :

- 1. احسب عنوان الذاكرة بناء على address mode .
- 2. اذا كان العنوان يشير الى ذاكرة الافتراضية فقم بالترجمة من عنوان ذاكرة افتراضية الى عنوان ذاكرة حقيقية.
 - 3. تحديد ما اذا كان العنصر addressed في الـ acche
 - 4. اذا لم يكن الامر كذالك قم باصدار امر الى memory module .

Arithmetic

توفر معظم الـ machines العمليات الحسابية الاساسية مثل الجمع والطرح والضرب والقسمة . يتم توفير ها دائما للارقام الصحيحة (signed integer). غالبا ما يتم ايضا توفير floating-point و packed decimal . تتضمن العمليات المحتملة الاخرى مجموعة متنوعة من تعليمات المعامل المفرد على سبيل المثال :

- Absolute : القيمة المطلقة خذ القيمة المطلقة للمعامل
 - Negate : نفى القيمة
 - Increment : زيادة اضف 1 الى المعامل
 - Decrement : اطرح 1 من المعامل

Logical

توفر معظم الالات ايضا مجموعة متنوعة من التعليمات لمعالجة البتات الفردية من word او الوحدات الاخرى القابلة للعنونة (addressable units) والتي يشار اليها غالبا باسم (bit). يتم عرض بعض العمليات المنطقية الاساسية التي يمكن اجراؤها على البيانات المنطقية او الثنائية في هذا الجدول:

P	Q	NOT P	P AND Q	P OR Q	P XOR Q	$\mathbf{P} = \mathbf{Q}$
0	0	1	0	0	0	1
0	1	1	0	1	1	0
1	0	0	0	1	1	0
1	1	0	1	1	0	1

بالاضافة الى العمليات المنطقية التي تعتمد على البت التي توفر ها معظم الـ machines مجموعة متنوعة من الوظائف منها shifting and rotating . مع الـ logical shift يتم نقل اجزاء او bit's من الـ word الى اليسار او اليمين. ومن ناحية يتم فقدان الجزء الذي تم ازاحته للخارج وعلى الجانب الاخر يتم 0 يصير لها shifted الى الداخل. الـ Logical shift تعتبر مفيدة بشكل اساسي لعزل الحقول داخل الـ word الـ 0 التي يتم نقلها الى كلمة تحل محل المعلومات غير مرغوب فيها التي يتم نقلها من الطرف الاخر.

Conversion

تعليمات التحويل (Conversion instructions) هيا التي تغير تنسيق البيانات او تعمل على تنسيقها . مثال على ذالك التحويل من الرقم العشري الى الثنائي مثال على تعليمة (EAS/390 . مثال على تعليمة (Translate (TR) instruction . يمكن استخدام هذة التعليمة لتحويل من 8 بت الى اخر ويستغرق هذا ثلاثة معاملات :

TR R1 (L), R2

الـ operand R2 يحتوي على عنوان بداية table of 8-bit codes . تتم ترجمة operand R2 يحتوي على عنوان بداية R1 ويتم استبدال بمحتويات entry indexed .

System Control

تعليمات التحكم في النظام (System control instructions) هي التي يمكن تنفيذها فقط عندما يكون المعالج في حالة مميزة معينة او يقوم بتنفيذ برنامج في منطقة مميزة خاصة من الذاكرة. عادة ما تكون هاذي التعليمات مخصصة لـ operating system .

Transfer of Control

بالنسبة لجميع انواع التعليمات التي تمت مناقشتها حتى الان فان التعليمات التالية التي سيتم تنفيذها هي التي تتبع التعليمة الحالية مباشرة في الذاكرة. ومع ذالك فان جزءا كبيرا من التعليمات في اي برنامج تؤدي وظيفتها في تغيير تسلسل تنفيذ التعليمات.

AhmadAlFareed

Twitter: https://twitter.com/dr_retkit

YouTube: https://www.youtube.com/@retkit1823