

Data Link Layer IK2218/EP2120

Peter Sjödin, psj@kth.se KTH School of ICT

Acknowledgements

- The presentation builds upon material from
 - Previous slides by Markus Hidell, Björn Knutsson and Peter Sjödin
 - Computer Networking: A Top Down Approach, 5th ed. Jim Kurose, Keith Ross. Addison-Wesley.
 - TCP/IP Protocol Suite, 4th ed, Behrouz Foruzan. McGraw-Hill.

Outline

- Data Link Layer
 - Introduction
 - Scope and functions
- Ethernet
 - Principles
 - Implementation
- Wireless LAN
 - Principles
 - Implementation
- Personal Area Network
 - Bluetooth

The Internet Hourglass

Data Link Layer: Introduction

- Some terminology:
- hosts and routers are nodes
- communication channels that connect adjacent nodes along communication path are links
 - wired links
 - wireless links
 - LANS
- Data link layer packet is a frame, encapsulates datagram

Data Link Layer has responsibility of transferring datagram between adjacent nodes over a link

Data Link Layer

Data Link Layer: Context

- Datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link,ADSL on intermediate link,802.11 Wireless LAN on last link
- each link protocol provides different services

transportation analogy

- trip from Princeton to Lausanne
 - limo: Princeton to JFK
 - plane: JFK to Geneva
 - train: Geneva to Lausanne
- •tourist = datagram
- transport segment =communication link
- transportation mode =link layer protocol
- travel agent = routing algorithm

Data Link Layer Scope

- Given a physical medium that can transfer raw bits between adjacent nodes
 - How can this be transformed into a reliable link suitable for computer networking?

Link Layer Services

Framing

- Encapsulate datagram into frame
- Adding header and trailer

Access control

- Coordinate access from multiple nodes on shared medium
- Half duplex both sides can send, but not at the same time
- Full duplex both sides can send at the same time

Link addressing

- "MAC" addresses used in frame headers to identify source and destination nodes
 - Specific for link
 - Different from Internet (IP) address
 - "Physical addressing" in Forouzan
 - (MAC stands for Media Access Control)

Link Layer Services (continued)

Flow control

- Rate control
 - Prevent receiver from being overrun by faster sender

Error detection

- Errors caused by signal attenuation, noise, etc.
 - Bit values are altered in transit
- Receiver detects presence of errors
 - Signals sender for retransmission, or drops frame

Error correction

- Detect error and repair frame

Media Access Protocols

Channel Partitioning

- divide channel into smaller "pieces" (time slots, frequency, code)
- allocate piece to node for exclusive use
 - For example, radio spectrum is divided into bands
 - Often government-regulated and licensed for specific purposes
- FDMA, WDMA, TDMA, CDMA, ...
 - Frequency/Wavelength/Time/Code Division Multiple Access

Random Access

- channel not divided, allow collisions
- "recover" from collisions

Collision

Carrier Sense Multiple Access (CSMA)

- Principle for medium access
- Random access
 - Shared medium, no advance reservations
 - Problem: If two (or more) nodes send at the same time, the result is garbage
 - Collision
 - Hence, half-duplex link

CSMA

- Sense the medium before trying to use it
 - Listen for activity
- Reduce probability of collisions
 - Although collisions can still occur
 - Due to propagation delay
 - Time for a signal to travel over the medium
- Ethernet and Wireless LAN use different CSMA variants

IEEE 802 Standard for LANs

- IEEE 802.3 Ethernet
- IEEE 802.11 Wireless LAN
- IEEE 802.15 Wireless PAN (Personal Area Network)

Outline

- Data Link Layer
 - Introduction
 - Scope and functions
- Ethernet
 - Principles
 - Implementation
- Wireless LAN
 - Principles
 - Implementation
- Personal Area Network
 - Bluetooth

Ethernet Frame

- Two formats
 - IEEE 802.3
 - Length field (max 1518 bytes, not including physical layer header)
 - DIX (DEC, Intel, Xerox)
 - Type field
 - To identify network protocol. For example: network protocol is IP version 4
 - Coding compatible with IEEE 802.3: Type codes always greater than 1518
 - Most common, and often the default format

Ethernet Addresses

- 48-bit addresses
- Usually written in hexadecimal notation, in six groups with colon ':' between
- One bit indicates whether the address is multicast (multiple destinations) or unicast (one destination)
 - Least significant bit in first byte
- All-ones is broadcast (multicast to all nodes)

4A:30:10:21:10:1A 47:20:1B:2E:08:EE FF:FF:FF:FF:FF

- CSMA with collision detection
- Listen while sending
- If collision is detected, abort and retry

CSMA/CD Flow Diagram

CSMA/CD Remarks

- Requirement on maximum link length versus minimum frame size
 - Not practical for higher speed (Gigabit and beyond)
 - To increase speed, maximum link length must be shortened, or minimum frame size increased
- Nowadays we build Ethernet networks with switches

Ethernet Switch (Bridge)

Bridge table

Address	Port
71:2B:13:45:61:41	1 ,
71:2B:13:45:61:42	2
64:2B:13:45:61:12	3
64:2B:13:45:61:13	4

- All links can be used simultaneously
- Links are point-to-point
 - Full duplex mode
 - No CSMA/CD

- Bridge table
 - Bridge examines destination address in incoming frame
 - Frame is sent out on the port for that address
 - Bridge dynamically learns mapping between port and address

Learning Switch (Bridge)

 Bridge learns location of MAC addresses by inspecting source address field in incoming frames

Gradual building of Table

Learning Switch (Bridge)

 Bridge learns location of MAC addresses by inspecting source address field in incoming frames

Gradual building of Table

Address	Port		
a. Original			

Address	Port
71:2B:13:45:61:41	
64:2B:13:45:61:13	4

c. After D sends a frame to B

Address	Port
71:2B:13:45:61:41	1
64:2B:13:45:61:13	4
71:2B:13:45:61:42	2

d. After B sends a frame to A

Address	Port
71:2B:13:45:61:41	1

b. After A sends a frame to D

Address	Port
71:2B:13:45:61:41	1
64:2B:13:45:61:13	4
71:2B:13:45:61:42	
64:2B:13:45:61:12	3

e. After C sends a frame to D

Ethernet Standards

- IEEE 802.3
 - First standard in 1983
- Different transmission rates
 - 10 Mb/s, 100 Mb/s, 1 Gb/s, 10 Gb/s, 40 Gb/s, 100 Gb/s
- Different cabling
 - Copper and optical fiber
 - Varying characteristics
 - Maximum length from one meter to tens of kilometers
 - Most common: twister pair cable with RJ45 connector
 - Unshielded (UTP) or shielded (STP)
 - Different quality (Cat 4, 5, 6, 7, ...)
- Link autonegotiation
 - Negotiate speed, duplex mode, and flow control

© David Monniaux / Wikimedia Commons / CC-BY-SA-3.0

Outline

- Data Link Layer
 - Introduction
 - Scope and functions
- Ethernet
 - Principles
 - Implementation
- Wireless LAN
 - Principles
 - Implementation
- Personal Area Network
 - Bluetooth

IEEE 802.11 Wireless LAN

- Building block is a Basic Service Set (BSS)
- Group of wireless nodes
- Possibly with a Base Station
 - Access Point

wireless hosts-

- □ laptop, smartphone, tablet
- ☐ run applications
- may be stationary (nonmobile) or mobile
 - wireless does *not* always mean mobility

((:))

Infrastructure Mode

Ad Hoc Mode

ad hoc mode

- no access points
- nodes can only transmit to other nodes within link coverage
- nodes self-organize themselves into a network: route among themselves

Extended Service Set

Wireless network characteristics

 Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C cannot hear each other means A, C unaware of their interference at B

Signal attenuation

- B, A hear each other
- B, C hear each other
- A, C cannot hear each other interfering at B

CSMA with Collision Avoidance

802.11 sender

- 1 if sense channel idle for **DIFS** then transmit entire frame
- 2 if sense channel busy then
 - start random backoff timer
 - -count down backoff timer while channel is not busy
 - transmit entire frame when backoff timer expires
 - if no ACK, increase random backoff interval, repeat 2

802.11 receiver

1 if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

CSMA/CA timers

Short InterFrame Spacing (SIFS)

Distributed InterFrame Spacing (DIFS) Larger than SIFS, to give ACK priority over data

Avoiding Collisions (more)

- idea: allow sender to "reserve" channel: avoid collisions of long data frames
- sender first transmits small request-to-send (RTS) packets to receiver
- broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions
- Optional in CSMA/CA
 - More efficient for large frames: configurable RTS threshold

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS

Wireless LAN Standards

- •802.11a
 - 5-6 GHz range
 - up to 54 Mb/s
- •802.11b
 - 2.4-5 GHz unlicensed spectrum
 - up to 11 Mb/s
- •802.11g
 - 2.4-5 GHz range
 - up to 54 Mb/s

- •802.11n
 - multiple antennae
 - 2.4-5 GHz range
 - up to 200 Mb/s
- •802.11ac
 - 5 GHz range
 - up to 433 Mb/s (per stream)

- □ all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

Outline

- Data Link Layer
 - Introduction
 - Scope and functions
- Ethernet
 - Principles
 - Implementation
- Wireless LAN
 - Principles
 - Implementation
- Personal Area Network
 - Bluetooth

PAN – Personal Area Network

- Bluetooth, Zigbee, WPAN, BAN (Body Area Network),
- IEEE Standardization in IEEE 802.15
- Short distance, lower rate

Bluetooth Piconet

Coordinated by Primary

Bluetooth Scatternet

One station is Primary in one piconet, Secondary in another

Summary

- Ethernet
 - CSMA/CD
 - 10 Mb/s 100 Gb/s
 - Bridging
- Wireless LAN
 - BSS, ESS
 - AD hoc and infrastructure mode
 - CSMA/CA
- PAN
 - Bluetooth and other
 - Primary secondary
 - Piconet, scatternet

Course Material

- Forouzan, Chapter 2
 - Parts about Data Link Layer
- Forouzan Chapter 3
 - Except for... (see next slide)

Not Covered

- Ethernet standards in more detail
 - Fast Ethernet, Gigabit Ethernet, Ten-Gigabit Ethernet
- Wireless LAN
 - frame format
 - Addressing
- Point-to-point WANs
- Switched WANs
- Hubs and routers