COMP90015: Distributed Systems

Dr. Rajkumar Buyya

Redmond Barry Distinguished Professor & Director
Cloud Computing and Distributed Systems (CLOUDS) Laboratory
School of Computing and Information Systems
The University of Melbourne, Australia

http://www.buyya.com

Teaching Staff

- Lecturer 1: Prof. Rajkumar Buyya
 - Email: rbuyya@unimelb.edu.au
 - Office: Zoom!
- Raj's Consulting Time:
 - After formal lecture, I will be stay online upto 30 minute for any of your ask clarify or discuss or talk to me. We followed this in 2020/S1 on Zoom and worked well.

Head Tutor

- Head Tutor: Shashikant llager
 - Handles lectures in my absence and assists with labs/projects.
 - Email: ilagers@unimelb.edu.au
 - Office: Zoom!
- Consulting Time:
 - We will offer one possible during a week before the Assignment deadline if required.

Tutors (6)

- Handle all tutorials/workshops, assisting with labs/projects and marking of assignments (associated with their tutorials)
 - Shashikant Ilager: silager@student.unimelb.edu.au
 - TianZhang He: tianzhangh@student.unimelb.edu.au
 - Mohammad Goudarzi: mgoudarzi@student.unimelb.edu.au
 - Aayush Mehta: aayushm@student.unimelb.edu.au
 - Scarlett Qin: scarlett.qin@unimelb.edu.au
 - Wei Lin: wei.lin2@unimelb.edu.au
- Note: Please contact only those who are in-charge of your tutorial.

Web and Course Schedule

Course Web Site:

- http://clouds.cis.unimelb.edu.au/652/
- http://www.cloudbus.org/652
- Note: LMS gives link to this.
- All announcements, notes, etc. via this page only. LMS can be used for discussions, video lectures, and for assignments.

Lectures:

- Time:
 - Friday: 2:15-4.15pm 2 hours with 5-10 minute break.
 - Venue: Zoom!

Workshops/Tutorials – 12

- Each session accommodate ~25; Must attend your own Tutorial
- Please make friends in your tutorial!

Tutorials: Time, Venue and Tutors

T01/11	Monday	10 AM	Shashi Ilager
T01/18	Monday	12 PM	Shashi Ilager
T01/20	Monday	5.15 PM	Wei Lin
T01/01	Monday	2:15 PM	Aayush Mehta
T01/14	Tuesday	2:15 PM	Scarlett QIn
T01/13	Tuesday	10:00 AM	Mohammad Goudarzi
T01/15	Tuesday	3:15 PM	Mohammad Goudarzi
T01/19	Wednesday	11 AM	Wei Lin
T01/16	Wednesday	1:15 PM	Aayush Mehta
T01/04	Thursday	12:00 PM	Scarlett QIn
T01/03	Thursday	5:15 PM	TianZhang He
T01/07	Friday	11:00 AM	TianZhang He

Zoom Links for each Tutorial: Please login into LMS/Canvas https://canvas.lms.unimelb.edu.au/courses/105371

Wide-Background of Students???

- Master of IT
 - MIT (Comp), MEDC/MIT (DC), MIT (Spatial, CyberSec, HCI)
 - MIT (Distributed Computing) foundation subject.
- MSc (Computer Science)
- ME (Software Engineering)
- Master of Data Science
- ++ Students from all over the world joining our Masters programs.
- So, please understand that we are trying our best to satisfy all of you although it is difficult to please everyone ©

Background expectation

- Pre-requisites:
 - COMP90041 Programming and Software Development (Java)
 - COMP90038 Algorithms and Data Structures
 - COMP90007 Internet Technologies (No Sockets/Threads taught)
 - OR Equivalent subjects
- If you know "MORE" than pre-requisite subjects, then this subject is NOT for you.
 - Better take Advanced related/follow-up subject if you know "More" than pre-requisite subject coverage (e.g., UniMelb: OS and Network Services).

DS subject is a "foundation" (pre-requisite) for many advanced subjects

- Distributed Algorithms
- Mobile Computing Systems Programming
- Cluster and Cloud Computing
- Distributed Computing Project (for MIT(DC))
- Sensor Networks and Applications
- Parallel and Multi-core Computing
- Some special offerings:
 - Stream Computing?
 - Management and Mining of Spatio-Temporal Data (MapReduce application)

Why study distributed computing now?

- We have started MEDC, now MIT(DC) degree at a time when distributed systems, particularly the Web and Internet applications and services, are of unprecedented interest and importance.
 - Microsoft .NET
 - HP Adaptive Enterprise
 - Oracle Oracle 10g / 11g / 12c
 - IBM On Demand
 - SAP enterprise management software
 - Cloud Computing: Amazon EC2, Microsoft Azure, Google AppEngine, Aneka, Force.com, Alibaba China Cloud, Apple iCloud

Oracle Cloud

Get Started

- Social Networks: Facebook, WhatsApp, Skype, WeChat....
- Academic R&D worldwide: Service computing, e-Science, etc.
- The DC degree and this subject in particular aims to convey insight into, and knowledge of the principles and practice underlying the design of distributed systems.
- The depth covered in this subject enables you to evaluate existing systems or design new ones.

DS Subject Overview

- Part I: Foundations approx. 5 weeks
 - Introduction, Inter-process Communication, Socket and Thread Programming, and System Models
- Part II: Programming and Principles 4 weeks
 - Distributed Objects and Programming,
 - Operating System support services, Distributed Shared Memory Systems
- Part III: Paradigms/Platforms 3 weeks:
 - RMI, Kerberos, NFS etc. taught during Part I & II
 - Distributed File Systems, Security and Naming Services
- Guest Lectures / Advanced Topics (not in exam)
 - CDN, Cloud, BlockChain, IoT, and industrial applications
- Depth of some parts may be reduced as the Dept. has dedicated subjects on some of these topics:
 - Distributed Algorithms, Software Systems Security, Cluster and Cloud Computing, High-Performance Database Systems

Course Assessment

- Project work and some short assignments:
 - During semester worth 40%
 - Assignment 1 (Single): 15%
 - Assignment 2 (Single): 25%
- Written examination:
 - A written examination (three hours) at the end of the semester worth 60%
- All components must be completed satisfactorily (50% marks) to pass the subject.

Assignment 1

Each server provides services to multiple clients.

Multi-Threaded Dictionary Server

 Design and Implementation of a Simple Multi-Threaded Distributed System Supporting Access to a Remote Dictionary

Aim:

- Enhance Understanding of Socket Programming and Multi-Threading
- Gain experience in implementing a simple distributed, client server application.
- "Using a client-server architecture, design and implement a multi-threaded server that returns the meaning of a word as stored in a remote dictionary."
- Do some smart design/architecture (networking, storage)!

Assignment 2

- Distributed Applications Project
 - To be decided:
 - Distributed, Shared White Board OR Net Games along with a chat box.
- Individual Assignment like A1
- You are given a chance to show some creative thinking / architecture (e.g. you can "use client/server or P2P", "TCP or UDP")
- Will recommend as Multi-stage project (even if not assessed at each stage)

Computational Resources

- Your laptop!
 - Use it for both assignments..
- Uni. Computing Resources:
 - Can also be used for simple assignments and learning
 - For demonstration of assignments (along with your own laptops)

Books and References

- Main Text Book:
 - CDK: G. Couloris, J. Dollimore, T. Kinberg, and G. Blair, *Distributed Systems Concepts and Design*, 5th Edition, Addison-Wesley, Pearson Education, UK, ISBN 0132-143-011. http://www.cdk5.net
- Programming Reference:
 - R. Buyya, S. Selvi, X. Chu, "Object Oriented Programming with Java: Essentials and Applications", McGraw Hill, New Delhi, India, 2009.
 - Sample chapters at book website: http://www.buyya.com/java/
- Research Articles:
 - To be supplied by the Lecturer (if used)!

Text Book

DISTRIBUTED SYSTEMSCONCEPTS AND DESIGN

George Coulouris Jean Dollimore Tim Kindberg

G. Couloris, J. Dollimore, T. Kinberg, and G. Blair,

Distributed Systems - Concepts and Design,

5th Edition, Addison-Wesley/Pearson Education, UK,

2011. http://www.cdk5.net

Programming Reference

Buyya, R. Selvi, S.T., Chu, X., *Object Oriented Programming with Java: Essentials and Applications*, McGraw Hill, New Delhi, India, 2009.

Sample chapters at book website: http://www.buyya.com/java/

Presentation Slides

- Usually on the web before the lecture
- They may be find tuned/updated slightly a day before the lecture to reflect recent developments
 - No need to read Today's lecture content beforehand!
 - You only need to read & understand previous lecture!
 - Do online Quiz (Multiple choice test) on previous lecture topic prior to tutorial —ask Q on difficult topic from quiz.
- Mostly derived from the text book.
 - Please procure (or own) the prescribed textbook.
- Good ideas and figures from alternative text book or reference may also be used.

What do we expect from you?

- 1. Regular attendance of lectures
 - Pay full attention, be enthusiastic, fully committed to learn new things, ask questions during the class (especially in Tutorials), participate in discussion.
 - If the class overlaps with others, please choose one subject. This is a great favour you can do for yourself.
- 2. Review previous lecture material before coming to the class. – read material from the Text book
- 3. Start working on assignments right from the day they are announced and submit on time.
- 4. If you have some problem with the lectures/subject/??, please discuss with us early.
 - Don't take out your frustrations on me during QoT/SES©

QoT (Quality of Teaching) / SES (Subject Experience Survey)

I had a clear idea of what was expected of me in this subject

```
5. Strongly agree :
4. Agree :
3. Neutral :
2. Disagree :
1. Strongly disagree :
Mean :
```