Clustering evidentiel : intérêt, application et variantes

V. Antoine

Université Clermont Auvergne, LIMOS, UMR CNRS 6158, France https://perso.isima.fr/~viantoin

Avril 2024

Clustering

Détermine des groupes d'objets selon une notion de similarité

Clustering basé sur les prototypes

Avantages

- Complexité réduite
- Interprétable

Clustering basé sur les prototypes

Avantages

- Complexité réduite
- Interprétable

Applications

- Vulcanologie
- Biologie
- Santé
- •

Clustering basé sur les prototypes

Avantages

- Complexité réduite
- Interprétable

Applications

- Vulcanologie
- Biologie
- Santé
- •

Bloc dans du ML

- Compression
- Augmentation automatique d'étiquettes

K-means : clustering à partition dure

• Chaque objet est assigné à un et un seul cluster

•
$$\mathbf{P} = (p_{ik}) \text{ s.t } p_{ik} \in \{0,1\}, \sum_{k=1}^{c} p_{ik} = 1$$

Exemple

- ω_1 la classe des carrés
- ω_2 la classes des cercles

	p_{i1}	p_{i2}	
0	0	1	
	1	0	
	1	0	

Soft clustering

Modélisation de l'incertitude de la décision Modèle de Machine Learning résultat

Cause de l'incertitude

- incertitude aléatoire
 - Variabilité naturelle due à des phénomènes aléatoires
 - Irréductible
- incertitude épistémique
 - Incertitude due à un manque de données ou de connaissance

7

Soft clustering

Modélisation de l'incertitude de la décision

Si les données sont incertaines, le résultat sera incertain !

Cause de l'incertitude

- incertitude aléatoire
 - Variabilité naturelle due à des phénomènes aléatoires
 - Irréductible
- incertitude épistémique
 - Incertitude due à un manque de données ou de connaissance

7

Soft clustering

Variantes de k-means

- Théorie des ensembles flous : FCM
- Théorie des possibilité : PCM
- Théorie des ensembles approximatifs : RKM
- Théorie des fonctions de croyance : ECM
- ...

Notations

- $X = (x_i) \in \mathbb{R}^{n \times p}$ l'ensemble des objets
- $m{V} = (m{v}_k) \in \mathbb{R}^{c imes p}$ l'ensemble des centres associés aux classes
- $\Omega = \{\omega_1, \dots, \omega_c\}$ l'ensemble des classes

Plan

Plan

Partition floue

- Chaque objet a un degré d'appartenance à chaque cluster
- ullet $\mathbf{U}=(u_{ik})$ tel que $u_{ik}\in[0,1],$ $\sum_{k=1}^{c}u_{ik}=1$

Exemple

- ω_1 la classe des carrés
- \bullet ω_2 la classe des cercles

	p_{i1}	p_{i2}
O	0	1
	1	0
	0.9	0.1
\Box	0.5	0.5

Fuzzy *c*-means (FCM)

Modèle géométrique

- Chaque cluster ω_k est représenté par un centre \mathbf{v}_k
- Distance Euclidienne $d_{ik}^2 = (\mathbf{x}_i \mathbf{v}_k)^T (\mathbf{x}_i \mathbf{v}_k)$

Fonction objectif

$$J_{FCM}(\mathbf{U}, \mathbf{V}) = \sum_{i=1}^{n} \sum_{k=1}^{c} u_{ik}^{\beta} d_{ik}^{2}$$

tel que

$$\sum_{k=1}^{c} u_{ik} = 1 \text{ et } u_{ik} \ge 0 \quad \forall i, k$$

$$\min_{\mathbf{J}} J_{FCM} \rightarrow \min_{\mathbf{V}} J_{FCM} \rightarrow \dots$$

Problématique : affectations imprécises et objets atypiques

Problématique : affectations imprécises et objets atypiques

Problématique : affectations imprécises et objets atypiques

Théorie des fonctions de croyance

Soit Y une variable prenant des valeurs dans l'ensemble fini Ω

Fonction de masse $m:2^\Omega \to [0,1]$

$$\sum_{A\subseteq\Omega}m(A)=1$$

- m(A): degré de croyances spécifique à $Y \in A$
- Si m(A) > 0 alors A est un ensemble focal

Notions dérivées

Fonction de croyance

Total soutien donné à A: $bel(A) = \sum_{B \subseteq A} m(B),$

Fonction de plausibilité

Degré de croyance *potentiel* qui *peut être* donné à *A* :

$$pI(A) = \sum_{B \cap A \neq \emptyset} m(B),$$

$$\forall A \subseteq \Omega, A \neq \emptyset$$

Partition crédale

- Chaque objet a un degré de croyance pour chaque sous-ensemble $A_i \subseteq \Omega$
- ullet $\mathbf{M}=\left(m_{ij}
 ight)$ tel que $m_{ij}\in[0,1]$, $\sum_{A_i\subset\Omega}m_{ij}=1$

Exemp	ole			
	$m_{i\emptyset}$	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\Omega}$
0	0	0	1	0
	0	1	0	0
	0	0.9	0.1	0
\Box	0	0	0	1
☆	1	0	0	0

Transformation crédale

Transformation pignistique pour une prise de décision

$$\mathit{BetP}(\omega) = rac{1}{1 - \mathit{m}(\emptyset)} \sum_{\{A \subseteq \Omega | \omega \in A\}} rac{\mathit{m}(A)}{|A|}$$

Partition crédale

$m_{i\emptyset}$	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\Omega}$
0	0	1	0
0	1	0	0
0	0.9	0.1	0
0	0	0	1
1	0	0	0
	0 0 0	0 0 0 1 0 0.9 0 0	0 0 1 0 1 0 0 0.9 0.1 0 0 0

Partition floue

	$u_{i\omega_1}$	$u_{i\omega_2}$	
O	0	1	
	1	0	
	0.9	0.1	
$\bar{\Box}$	0.5	0.5	
*	0.5	0.5	

transformation pignistique

Transformation crédale

Evidential c-means (ECM)

- ullet Chaque cluster ω_k est representé par un centre ${f v}_k$
- Centre $\overline{\mathbf{v}}_j$: barycentre des centres associés aux classes composant $A_j \subseteq \Omega$
- Distance d_{ij}^2 entre \mathbf{x}_i et $\overline{\mathbf{v}}_j$

Evidential c-means (ECM)

- ullet Chaque cluster ω_k est representé par un centre ${f v}_k$
- Centre $\overline{\mathbf{v}}_j$: barycentre des centres associés aux classes composant $A_i \subseteq \Omega$
- Distance d_{ij}^2 entre \mathbf{x}_i et $\overline{\mathbf{v}}_j$

Evidential c-means (ECM)

Fonction objectif

$$J_{ECM}(\mathbf{M}, \mathbf{V}) = \sum_{i=1}^{n} \sum_{A_i \subseteq \Omega, \ A_i \neq \emptyset} |A_j|^{\alpha} m_{ij}^{\beta} d_{ij}^2 + \sum_{i=1}^{n} \delta^2 m_{i\emptyset}^{\beta}$$

Tel que

$$\sum_{A_j \subseteq \Omega, \ A_j
eq \emptyset} m_{ij} + m_i(\emptyset) = 1, \ m_i(A_j) \geq 0 \quad orall i, j$$

$$\mathsf{opt}(\mathsf{M}) \to \mathsf{opt}(\mathsf{V}) \to \dots$$

Application de ECM pour la santé

[1] A. Soubeiga, V. Antoine, A. Corteval, N. Kerckhove, S. Moreno, I. Falih, J. Phalip. Clustering and Interpretation of time-series trajectories of chronic pain using evidential c-means, Expert Systems With Application (engévision).

Plan

Distance adaptative

Distance de Mahalanobis pour chaque classe ω_k

- Chaque cluster ω_k est représenté par un centre ${m v}_k$
- Chaque cluster ω_k a une matrice de covariance $\boldsymbol{S}_k \succ 0$

Définition $\forall A_i \subseteq \Omega, A_i \neq \emptyset$

$$d_{ij}^2 = (\mathbf{x}_i - \overline{\mathbf{v}}_j)^T \overline{\mathbf{S}}_j (\mathbf{x}_i - \overline{\mathbf{v}}_j)$$
 tel que

$$\overline{\mathsf{S}}_j = rac{1}{|A_j|} \sum_{\omega_k \in A_j} \mathsf{S}_{k,j}$$

Distance adaptative

Distance de Mahalanobis pour chaque classe ω_k

- Chaque cluster ω_k est représenté par un centre ${m v}_k$
- Chaque cluster ω_k a une matrice de covariance $\boldsymbol{S}_k \succ 0$

Définition $\forall A_i \subseteq \Omega, A_i \neq \emptyset$

$$d_{ij}^2 = (\mathbf{x}_i - \overline{\mathbf{v}}_j)^T \overline{\mathbf{S}}_j (\mathbf{x}_i - \overline{\mathbf{v}}_j)$$
 tel que

$$\overline{\mathbf{S}}_j = rac{1}{|A_j|} \sum_{\omega_k \in A_j} \mathbf{S}_k$$
,

Nouvelle fonction objectif

Minimiser $J_{ECM}(\boldsymbol{M}, \boldsymbol{V}, \boldsymbol{S})$ tq $\boldsymbol{S}_k \succ 0$, $\det(\boldsymbol{S}_k) = 1 \quad \forall k = 1, c$

- [1] M.-H. Masson & al, ECM: An evidential version of the fuzzy c-means algorithm, 2008
- [2] D. Gustafson & al, Fuzzy clustering with a fuzzy covariance matrix, 1978

Expérience

[1] V. Antoine, B. Quost, M.-H. Masson and T. Denoeux. *CECM: Constrained Evidential C-Means algorithm*. Computational Statistics and Data Analysis, Vol. 56, Issue 4, pages 894-914, 2012.

Plan

Clustering semi-supervisé

Problématique du clustering

Aucune connaissance a priori

- comment définir la notion de similarité ?
- comment choisir une solution parmi plusieurs partition possible?

Clustering semi-supervisé

Problématique du clustering

Aucune connaissance a priori

- comment définir la notion de similarité ?
- comment choisir une solution parmi plusieurs partition possible?

Information provenant de l'expert

- étiquettes,
- contraintes par pair,
- classes équilibrées,...

Clustering semi-supervisé

Motivation

L'expert fournit des étiquettes imprécises A_j

Exemple d'annotation d'expert

 ω_1 pour les carrés, ω_2 pour les cercles, ω_3 pour les pentagones

	ω_1	ω_2	ω_3	A_j
0	Y	X	X	ω_1
ш	×	V	×	ω_2
\Box	?	?	X	$\omega_{12} = \{\omega_1, \omega_2\}$

		pa	rtitic	on ci	rédal	е		étiquette		
	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\omega_{12}}$	$m_{i\omega_3}$	$m_{i\omega_{13}}$	$m_{i\omega_{23}}$	Ω	A_j		
0	1	0	0	0	0	0	0	ω_1	++	
Ö	0	0	1	0	0	0	0	ω_1	+	
Ö	0	0	0	0	0	0	1	ω_1	=	
Ŏ	0	1	0	0	0	0	0	ω_1	-	

		ра	rtitic	n cr	édal	е		étiquette		
	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\omega_{12}}$	$m_{i\omega_3}$	$m_{i\omega_{13}}$	$m_{i\omega_{23}}$	Ω	A_{j}		
0	1	0	0	0	0	0	0	ω_1	++	
O	0	0	1	0	0	0	0	ω_1	+	
Ö	0	0	0	0	0	0	1	ω_1	=	
Ö	0	1	0	0	0	0	0	ω_1	-	
	0	1	0	0	0	0	0	ω_{12}	++	
	0	0	1	0	0	0	0	ω_{12}	+	
\Box	0	0	0	0	1	0	0	ω_{12}	=	
\Box	0	0	0	0	0	0	1	ω_{12}	=	
\Box	0	0	0	1	0	0	0	ω_{12}	-	

		ра	rtitic	n cr	édal	e		étiquette		r=1	
	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\omega_{12}}$	$m_{i\omega_3}$	$m_{i\omega_{13}}$	$m_{i\omega_{23}}$	Ω	A_j		T_{ij}	
0	1	0	0	0	0	0	0	ω_1	++	1	
O	0	0	1	0	0	0	0	ω_1	+	1/2	
O	0	0	0	0	0	0	1	ω_1	=	1/3	
Ö	0	1	0	0	0	0	0	ω_1	-	0	
	0	1	0	0	0	0	0	ω_{12}	++	1	
\Box	0	0	1	0	0	0	0	ω_{12}	+	$\sqrt{2}/2$	
\Box	0	0	0	0	1	0	0	ω_{12}	=	1/2	
\Box	0	0	0	0	0	0	1	ω_{12}	=	$\sqrt{2}/3$	
\Box	0	0	0	1	0	0	0	ω_{12}	-	0	

Mesure de cohérence

$$T_{ij}=T_i(A_j)=\sum_{A_\ell\cap A_j
eq\emptyset}rac{|A_j\cap A_\ell|^{r/2}}{|A_\ell|^r}m_{i\ell},\ r\geq 0$$
 un hyperparamètre

		ра	rtitic	n cr	édal	e		étiquette		r=1	r=0
	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\omega_{12}}$	$m_{i\omega_3}$	$m_{i\omega_{13}}$	$m_{i\omega_{23}}$	Ω	A_j		T_{ij}	T_{ij}
0	1	0	0	0	0	0	0	ω_1	++	1	1
0	0	0	1	0	0	0	0	ω_1	+	1/2	1
O	0	0	0	0	0	0	1	ω_1	=	1/3	1
O	0	1	0	0	0	0	0	ω_1	-	0	0
	0	1	0	0	0	0	0	ω_{12}	++	1	1
	0	0	1	0	0	0	0	ω_{12}	+	$\sqrt{2}/2$	1
\Box	0	0	0	0	1	0	0	ω_{12}	=	1/2	1
\Box	0	0	0	0	0	0	1	ω_{12}	=	$\sqrt{2}/3$	1
	0	0	0	1	0	0	0	ω_{12}	-	0	0

Mesure de cohérence

$$T_{ij}=T_i(A_j)=\sum_{A_\ell\cap A_j
eq\emptyset}rac{|A_j\cap A_\ell|^{r/2}}{|A_\ell|^r}m_{i\ell},\ r\geq 0$$
 un hyperparamètre

Étude de l'hyperparamètre r

	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\omega_{12}}$	$m_{i\omega_3}$	$m_{i\omega_{13}}$	$m_{i\omega_{23}}$	Ω	A_j	r=1	L, T_{ij}	r=0), T _{ij}
O	1	0	0	0	0	0	0	ω_1	++	1	+	1
Ŏ	0	0	1	0	0	0	0	ω_1	+	1/2	+	1
O	0	0	0	0	0	0	1	ω_1	=	1/3	+	1
O	0	1	0	0	0	0	0	ω_1	_	0	-	0
\Box	0	1	0	0	0	0	0	ω_{12}	++	1	+	1
\Box	0	0	1	0	0	0	0	ω_{12}	+	$\sqrt{2}/2$	+	1
\Box	0	0	0	0	1	0	0	ω_{12}	=	1/2	+	1
\Box	0	0	0	0	0	0	1	ω_{12}	=	$\sqrt{2}/3$	+	1
\Box	0	0	0	1	0	0	0	ω_{12}	_	0	-	0

Mesure de cohérence

- $r = 0 \Rightarrow$ ne pénalise pas les sous-ensembles de grandes cardinalités. Utile en cas de bruit dans les étiquettes.
- $r > 0 \Rightarrow$ pénalise les sous-ensembles de grandes cardinalités. Etiquettes certaines.

Semi-supervised evidential clustering: SECM

Idée globale

Si $\mathbf{x}_i \in A_j \Rightarrow T_{ij}$ doit être élevé

Fonction objectif

$$J_{SECM} = (1 - \gamma)J_{ECM} + \gamma \sum_{i=1}^{n} \sum_{A_i \subseteq \Omega, A_i \neq \emptyset} b_{ij} (1 - T_{ij})$$

tel que $b_{ij} = \begin{cases} 1 & \text{si } \mathbf{x}_i \text{ est contraint avec } A_j, \\ 0 & \text{sinon.} \end{cases}$

Méthode d'optimisation de type Gauss-Seidel

Méthode d'optimisation de type Gauss-Seidel

- [1] M.-H. Masson & al, ECM: An evidential version of the fuzzy c-means algorithm, 2008
- [2] V. Antoine, & al, CECM: Constrained Evidential C-Means algorithm, 2012.

Optimisation de la partition crédale

[1] V. Antoine, J. Guerrero, J. Xie. Fast semi-supervised evidential clustering. International Journal of Approximate Reasonning, Vol. 133, pp 116-132, 2021.

Optimisation de la partition crédale

[1] V. Antoine, J. Guerrero, J. Xie. Fast semi-supervised evidential clustering. International Journal of Approximate Reasonning, Vol. 133, pp 116-132, 2021.

Intérêt des contraintes

Intérêt des contraintes

Protocole experimental

Jeux de données

	# objets	# attributs	# classes
Column	310	6	3
Wine	178	13	3

Méthode d'évaluation basée sur les vraie classes

- sélection aléatoire des contraintes
- mesure d'évaluation:
 - transformation pignistique ⇒ partition floue
 - maximum de probabilité ⇒ partition dure
 - ARI \in [0, 1]

Analyse de l'optimization sur le jeu de données Wine

30 cont.	SECM _H	$SECM_E$
J _{SECM}	236.3[1.1]	232.7[1.1]
CPU (s)	0.19[0.00]	0.89[0.03]
ARI	0.92[0.02]	0.92[0.03]

Comparaison d'algorithme sur le jeu de données Column

Application en génomique

Jeu de données tetragen

Séquences d'ADN dont les plus grandes ont été divisées en plusieurs objets ⇒ génération d'étiquettes

[1] V. Antoine, K. Gravouil, N. Labroche. On evidential clustering with partial supervision. BELIEF, 2018.

Plan

Conclusion ...

ECM avec une distance adaptative

- clustering évidentiel
- + généralisation de la distance Euclidienne
- + permet de trouver des clusters de forme ellipsoïdale
 - complexité
 - plus sensible au minima locaux

SECM

- clustering évidentiel
- ajout d'étiquettes
- + partition crédale comprend de nombreuses informations
- + les étiquettes améliorent les performances
 - complexité
 - sensibilité à la sélection d'étiquettes

41/1

... et perspectives

Perspectives à court terme

- subspace ECM
- définition améliorée des centres de gravité

Perspectives à long terme

- prendre en compte des données floues en entrée de ECM
- clustering évidentiel pour des données multisources de santé
 - notamment données ordinales et séries longitudinales

Merci

