Planos

Equação Geral do Plano

Seja $A(x_1, y_1, z_1)$ um ponto pertencente a um plano π e $\vec{n} = (a, b, c), \ \vec{n} \neq \vec{0}$ um vetor normal (ortogonal) ao plano. O plano π pode ser definido como sendo o conjunto de todos os pontos P(x, y, z) do espaço tais que o vetor \overrightarrow{AP} é ortogonal a \vec{n} . O ponto P pertence a π se, e somente se, $\vec{n} \cdot \overrightarrow{AP} = 0$.

Como $\vec{n} = (a, b, c)$ e $\overrightarrow{AP} = (x - x_1, y - y_1, z - z_1)$ a equação:

$$\vec{n} \cdot \overrightarrow{AP} = 0 \Longrightarrow (a, b, c) \cdot (x - x_1, y - y_1, z - z_1) = 0 \Longrightarrow a(x - x_1) + b(y - y_1) + c(z - z_1) = 0.$$

ou ainda

$$ax + by + cz - ax_1 - by_1 - cz_1 = 0.$$

Fazendo:

$$-ax_1 - bx_1 - cz_1 = d$$
 e $ax + by + cz + d = 0$.

Esta é a equação geral ou cartesiana do plano π .

É importante observar que os três coeficientes $a,\ b$ e c da equação geral

$$ax + by + cz + d = 0$$

representam as componentes de um vetor normal ao plano. Por exemplo, se um plano π é dado por $\pi: 3x + 2y - 4z + 5 = 0$, um de seus vetores normais é: $\vec{n} = (3, 2, -4)$.

Exemplo 1: Determinar a equação geral do plano π que passa pelo ponto A(2,-1,3), sendo $\vec{n}=(3,2,-4)$ um vetor normal a π .

Exemplo 2: Escrever a equação cartesiana do plano π que passa pelo ponto A=(3,1,-4) e é paralelo ao plano $\pi_1:2x-3y+z-6=0.$

Determinação de um Plano

(I) Existe apenas um plano que passa por um ponto A e é paralelo a dois vetores $\vec{v_1}$ e $\vec{v_2}$ não colineares. Neste caso $\vec{n}=\vec{v_1}\times\vec{v_2}$.

(II) Existe apenas um plano que passa por dois pontos A e B e é paralelo a um vetor \vec{v} não colinear ao vetor \overrightarrow{AB} . Neste caso, $\vec{n} = \vec{v} \times \overrightarrow{AB}$.

(III) Existe apenas um plano que passa por três pontos $A,\ B$ e C não em linha reta. Neste caso, $\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC}$.

(IV) Existe apenas um plano que contém duas retas concorrentes. Neste caso, $\vec{n} = \vec{v_1} \times \vec{v_2}$, sendo $\vec{v_1}$ e $\vec{v_2}$ vetores diretores das retas r_1 e r_2 .

(V) Existe apenas um plano que contém duas retas r_1 e r_2 paralelas. concorrentes. Neste caso, $\vec{n} = \vec{v_1} \times \overrightarrow{A_1 A_2}$, sendo $\vec{v_1}$ um vetor diretor de r_1 (ou de r_2) e $A_1 \in r_1$ e $A_2 \in r_2$.

(VI) Existe apenas um plano que contém uma reta r e um ponto $B \notin r$. Neste caso $\vec{n} = \vec{v} \times \overrightarrow{AB}$, sendo \vec{v} um vetor diretor de r e $A \in r$.

Exemplo 3: Determinar a equação geral do plano que passa pelo ponto A(1, -3, 4) e é paralelo aos vetores $\vec{v_1} = (3, 1, -2)$ e $\vec{v_2} = (1, -1, 1)$.

Exemplo 4: Estabelecer a equação geral do plano determinado pelos pontos $A(2,1,-1),\ B(0,-1,1)$ e C(1,2,1).

Exemplo 5: Determine a equação cartesiana do plano que contém a reta

$$r: \begin{cases} x = 4 \\ y = 3 \\ z = 1t \end{cases}$$
 e o ponto $B(-3, 2, 1)$

Exemplo 6: Determinar a equação geral do plano que contém as retas

$$r_1: \left\{ \begin{array}{lll} y & = & 2x+1 \\ z & = & -3x-2 \end{array} \right.$$
 e $r_2: \left\{ \begin{array}{lll} x & = & -1+2t \\ y & = & 4t \\ z & = & 3-6t \end{array} \right.$

Observações:

A equação ax + by + cy + d = 0 na qual a, b e c não são todos nulos, é a equação de um plano π sendo $\vec{n} = (a, b, c)$ um vetor normal a π . Quando uma ou duas das componentes de \vec{n} são nulas, ou quando d = 0, temos casos particulares:

Caso 1: Plano que Passa na Origem

Se o plano ax + by + cz + d = 0 passa pela origem então a.0 + b.0 + c.0 + d = 0 o que implica que d = 0. Assim a equação ax + by + cz = 0 representa a equação de um plano que passa pela origem.

Caso 2: Planos Paralelos aos Eixos Coordenados

Se apenas uma das coordenadas das componentes do vetor $\vec{n} = (a, b, c)$ é nula, o vetor é ortogonal a um dos eixos coordenados, e, portanto, o plano π é paralelo ao mesmo eixo:

(I) se a = 0, $\vec{n} = (a, b, c) \perp Ox$, portanto, $\pi//Ox$ e a equação geral dos planos paralelos ao eixo Ox é by + cz + d = 0.

A equação 2y + 3z - 6 = 0 mostra o plano

Observemos que suas intersecções com os eixos Oy e Oz são $A_1(0,3,0)$ e $A_2(0,0,2)$, respectivamente, e que nenhum ponto da forma P(x,0,0) satisfaz a equação. Um vetor normal ao plano é $\vec{n}=(0,2,3)$.

Caso 3: Planos Paralelos aos Planos Coordenados

Se duas componentes do vetor normal $\vec{n}=(a,b,c)$ são nulas, \vec{n} é colinear a um dos vetores (1,0,0) ou (0,1,0) ou (0,0,1), e, portanto, o plano π é paralelo ao plano dos outros dois vetores:

(I) se $a=b=0,\ \vec{n}=(0,0,c)=c(0,0,1)$ logo $\pi//xOy$ e a equação geral dos planos paralelos ao plano xOy é cz+d=0 ou seja, $z=-\frac{c}{d}$.

Ou seja, os planos cujas equações são da forma z = k são paralelos ao plano xOy.

Na figura acima temos o plano z=4 que também pode ser representado pela foram 0.x+0.y+z-4=0 na qual vemos que qualquer ponto do tipo A(x,y,4) satisfaz esta equação e que o vetor $\vec{k}=(0,0,1)$ é um vetor normal ao plano.

Assim, o plano paralelo ao plano xOy e que passa pelo ponto $A(x_1, y_1, z_1)$ tem por equação $z = z_1$.

Equações Paramétricas do Plano Seja $A(x_0, y_0, z_0)$ um ponto de um plano π e $\vec{u} = (a_1, b_1, c_1)$ e $\vec{v} = (a_2, b_2, c_2)$ dois vetores não colineares. Um ponto P(x, y, z) pertence ao plano π que passa por A e é paralelo aos vetores \vec{u} e \vec{v} se, e somente se, existem números reais s e t tais que

$$\overrightarrow{AP} = s\vec{u} + t\vec{v}.$$

Reescrevendo a equação acima temos:

$$(x - x_0, y - y_0, z - z_0) = s(a_1, b_1, c_1) + t(a_2, b_2, c_2),$$

Daí:

$$\begin{cases} x = x_0 + a_1 s + a_2 t \\ y = y_0 + b_1 s + b_2 t \\ z = z_0 + c_1 s + c_2 t \end{cases}$$

Estas são as equações paramétricas do plano.

Exemplo 7: Determine as equações paramétricas do plano que passa pelo ponto A(2,1,3) e é paralelo aos vetores $\vec{u}=(-3,-3,1)$ e $\vec{v}=(2,1,-2)$.

Exemplo 8: Escrever as equações paramétricas do plano determinado pelos pontos $A(5,7,-2),\ B(8,2,-3)$ e C(1,2,4).

Ângulo entre dois planos

Sejam os planos $a_1x+b_1y+c_1z+d_1=0$ e $a_2x+b_2y+c_2z+d_2=0$. Então, $\vec{n_1}=(a_1,b_1,c_1)$ e $\vec{n_2}=(a_2,b_2,c_2)$ são vetores normais aos planos π_1 e π_2 , respectivamente.

Chama-se ângulo de dois plano π_1 e π_2 o menor ângulo que um vetor normal de π_1 forma com um vetor normal de π_2 . Seja θ este ângulo, tem-se

$$\cos \theta = \frac{|\vec{n_1} \cdot \vec{n_2}|}{|\vec{n_1}| \cdot |\vec{n_2}|}, \text{ com } 0 \le \theta \le \frac{\pi}{2}$$

ou em coordenadas,

$$\cos \theta = \frac{|a_1.a_2 + b_1.b_2 + c_1.c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Exemplo 1: Determinar o ângulo entre os planos $\pi_1: 2x-3y+5z-8=0$ e $\pi_2: 3x+2y+5z-4=0$.

Condições de Paralelismo e Perpendicularismo de Dois Planos

Sejam os planos $\pi_1: a_1x + b_1y + c_1z + d_1 = 0$ e $a_2x + b_2y + c_2z + d = 0$. Então, $\vec{v_1} = (a_1, b_1, c_1) \perp \pi_1$ e $\vec{v_2} = (a_2, b_2, c_2) \perp \pi_2$.

As condições de paralelismo e perpendicularismo de dois planos são as mesmas de seus respectivos vetores normais, isto é,

(I) Se
$$\pi_1//\pi_2$$
, $\vec{n_1}//\vec{n_2}$

$$Logo, \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}.$$

Observe que se além das igualdades anteriores se tivermos também:

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = \frac{d_1}{d_2}.$$

os planos π_1 e π_2 serão coincidentes porque, nesse caso, a equação de π_2 é obtida de π_1 mediante a multiplicação por um número, o que não altera a equação de π_1 .

Em particular, se $a_1 = a_2$, $b_1 = b_2$, $c_1 = c_2$ e $d_1 \neq d_2$, os planos π_1 e π_2 também são paralelos. (II) Se $\pi_1 \perp \pi_2$, $\vec{n_1} \perp \vec{n_2}$, portanto $a_1a_2 + b_1b_2 + c_1c_2 = 0$.

Exemplo 2: Determinar o valor de a e b de modo que os planos π_1 : ax + by + 4z - 1 = 0 e π_2 : 3x - 5y - 2z + 5 = 0, sejam paralelos.

Exemplo 3: Determinar o valor de m para que os planos $\pi_1: 2mx+2y-z=0$ e $\pi_2: 3x-my+2z-1=0$ sejam perpendiculares.

Ângulo de uma Reta com um Plano

Seja uma reta r com a direção do vetor \vec{v} e um plano π , sendo \vec{n} o vetor normal a um plano π .

O ângulo ϕ da reta r com o plano π é o complemento do ângulo θ que a reta r forma com uma reta normal ao plano.

Tendo em vista que $\theta + \phi = \frac{\pi}{2}$, e portanto, $\cos \theta = \sin \theta$, vem, de acordo com a fórmula do cosseno:

$$\operatorname{sen}\phi = \frac{|\vec{v} \cdot \vec{n}|}{|\vec{v}||\vec{n}|}, \ 0 \le \phi \le \frac{\pi}{2}$$

Exemplo 4: Determinar o ângulo que a reta

$$r: \begin{cases} x = 1 - 2t \\ y = -t \\ z = 3 + t \end{cases}$$

forma com o plano $\pi: x+y-5=0.$

Intersecções entre Reta e Plano

Exemplo 5: Determine o ponto de intersecção da reta

$$r: \left\{ \begin{array}{lcl} y & = & 2x+3 \\ z & = & 3x-4 \end{array} \right.$$

com o plano $\pi : 3x + 5y - 2z - 9 = 0.$

Exemplo 6: Obtenha a intersecção da reta r com o plano $\pi,$ onde

$$r: \left\{ \begin{array}{lcl} x & = & 0+2t \\ y & = & 1+1t \\ z & = & 1-3t \end{array} \right.$$

e o plano

$$\pi: \left\{ \begin{array}{lcl} x & = & 1+1s \\ y & = & 0+1\lambda \\ z & = & 0+1\lambda \end{array} \right.$$

Intersecção entre Planos

Exemplo 7: Determine a intersecção dos planos π_1 e π_2 , onde π_1 : x+2y+3z-1=0 e π_2 : x-y+2z=0.

Exemplo 8: Determinar a intersecção dos planos $\pi_1:5x-y+z-5=0$ e $\pi_2:x+y+2z-7=0$.

 $\bf Exercício~1:~ Determinar~o~ ângulo formado pela reta$

$$r: \left\{ \begin{array}{lcl} y & = & -2x \\ z & = & 2x+1 \end{array} \right.$$

e o plano

$$\pi: x - y + 5 = 0.$$

Exercício 2: Determine o valor de m para que seja de 30^o o ângulo entre os planos $\pi_1: x+my+2z-7=0$ e $\pi_2: 4x+5y+3z-2=0$.

Exercícios para Entregar

Exercício 1: Determinar o ângulo formado pela reta

$$r: \left\{ \begin{array}{c} \frac{x-2}{3} = \frac{y}{-4} = \frac{z+1}{5} \end{array} \right.$$

forma com o plano

$$\pi: 2x - y + 7z - 1 = 0.$$

Exercício 2: Determine o ângulo entre os planos $\pi_1: 2x+y-z+3=0$ e $\pi_2: x+y-4=0$.