75.12 ANÁLISIS NUMÉRICO I

FACULTAD DE INGENIERÍA UNIVERSIDAD DE BUENOS AIRES

GUÍA DE PROBLEMAS

4. APROXIMACIÓN DE FUNCIONES: AJUSTE

- **1-** Determinar las líneas rectas que aproximen la curva $y = e^x$, según los siguientes métodos y comparar los resultados obtenidos:
- a) Cuadrados mínimos sobre la malla $(-1 0.5 \ 0 \ 0.5 \ 1)$.
- b) Tomando la línea tangente a $y = e^x$ en el punto medio del intervalo $\begin{pmatrix} 0 & 1 \end{pmatrix}$, es decir, aproximación de Taylor en el punto medio del intervalo $\begin{pmatrix} -1 & 1 \end{pmatrix}$.

Calcular los errores en x=1. Utilizar 3 decimales.

2- El nivel de agua en el Mar del Norte está determinado principalmente por la marea llamada M2, cuyo período es de aproximadamente 12 horas. Se han realizado las siguientes mediciones:

t(horas)	0	2	4	6	8	10
H(t)(m)	1.0	1.6	1.4	0.6	0.2	0.8

a) Ajustar la serie de mediciones usando el método de los cuadrados mínimos y la función

$$H_1^*(t) = h_0 + a_1 \cdot \sin\left(\frac{2 \cdot \pi \cdot t}{12}\right)$$

- b) Calcular errores que permitan estimar la precisión de la aproximación realizada en a)
- c) Utilizar ahora la función

$$H_2^*(t) = h_0 + a_1 \cdot \sin\left(\frac{2 \cdot \pi \cdot t}{12}\right) + a_2 \cdot \cos\left(\frac{2 \cdot \pi \cdot t}{12}\right)$$

- d) Repetir b) para la nueva función aproximante. Comparar. Obtener conclusiones.
- **3-** Se tiene la siguiente tabla de datos :

X	6	8	10	12	14	16	18	20	22	24
у	3.8	3.7	4.0	3.9	4.3	4.2	4.2	4.4	4.5	4.5

- a) Encontrar una función lineal que aproxime estos datos por cuadrados mínimos. Utilizar esta curva para suavizar los datos.
- b) Repetir el punto anterior con una función cuadrática.
- c) Comparar los resultados.

4- Obtener una fórmula del tipo $P(x) = a \cdot e^{m \cdot x}$ a partir de los datos que siguen:

Х	1	2	3	4
y	7	11	17	27

5- Dada la siguiente colección de datos, elegir la curva de aproximación y analizar los errores respecto de los valores dados.

X	1.00	1.25	1.50	1.75	2.00
у	5.10	5.79	6.53	7.45	8.46

6- Construir las aproximaciones indicadas, calcular los errores y obtener conclusiones.

- a) Aproximación polinómica de grado 1.
- b) Aproximación polinómica de grado 2.
- c) Aproximación polinómica de grado 3.
- d) d) Aproximación de la forma $b \cdot e^{a \cdot x}$.
- e) Aproximación de la forma $b \cdot x^a$.

1) 2) 4.0 102.56 4.2 113.18 4.5 130.11 4.7 142.05 5.1 167.53 195.14 5.5 5.9 224.87 256.73 6.3 299.50 6.8

X	y
0.2	0.050446
0.3	0.098426
0.6	0.332770
0.9	0.726600
1.1	1.097200
1.3	1.569700
1.4	1.848700
1.6	2.501500

7- Para 5 instantes de tiempo se observaron los siguientes valores de un parámetro físico

326.72

t	-2	-1	0	1	2
u	u ₋₂	$\mathbf{u}_{\text{-}1}$	u_0	u_1	u_2

Mostrar que, si los datos se ajustan con una parábola $\psi(t)$, la aproximación en t=0 es:

$$\psi(0) = \frac{1}{35} \left\{ -3u_{-2} + 12u_{-1} + 17u_0 + 12u_1 - 3u_2 \right\}$$

- **8-** Hallar el polinomio aproximante de segundo grado para la función $f(x) = \sin(\pi \cdot x)$ en el intervalo $\begin{bmatrix} 0 & 1 \end{bmatrix}$. Graficar la función y su aproximación. Analizar los errores.
- 9- Encontrar la aproximación polinómica de grado 1 y 2 de f(x) en el intervalo indicado.
- $f(x) = x^2 2 \cdot x + 3$ a)
- $\begin{bmatrix} 0 & 1 \end{bmatrix}$
- $f(x) = x^3 1$
- 0 2

- b)
- e) $f(x) = e^{x}$ f) $f(x) = \ln(x)$
- $\begin{bmatrix} 0 & 1 \end{bmatrix}$

- f(x) = 1/x [1 3] $f(x) = \cos(\pi \cdot x)$ [0 1] c)

Menéndez-Cavaliere -Tarela