北京邮电大学 2018--2019 学年第1学期

《概率论与数理统计》期末考试试题(A)

考试注意事项:学生必须将答题内容做在试题答题纸上,做在试题纸上一律无效.

- 一. 填空题 (每空4分, 共40分)
 - 1.设A, B为两事件,且 $P(A) = \frac{1}{4}$, $P(B|A) = \frac{1}{3}$, $P(A|B) = \frac{1}{2}$,则 $P(A \cup B) = ____$.
 - 2.设随机变量 X 的概率密度为

$$f(x) = \begin{cases} ax, 0 < x < 2, \\ 0, \quad 其它 \end{cases}$$

则 $P\{X > 1\} =$ _____. (先确定常数 a, 再计算 $P\{X > 1\}$)

- 3.设随机变量 X 和 Y 相互独立,且 $X \sim N(0,3)$, $Y \sim N(0,4)$,则 2X Y 与 2X + Y 的相关系数为 .
- 4. 设随机变量 X 和 Y 相互独立,且 $X \sim U(0,2)$, Y 的分布律为 $P\{Y=k\}=\frac{1}{2},\ k=1,2,\ 则\ P\{X+Y\leq 2\}=\underline{\hspace{1cm}}.$
- 5.某种型号器件的寿命 X (单位:小时) 具有概率密度

$$f(x) = \begin{cases} \frac{1000}{x^2}, & x > 1000, \\ 0, 其他 \end{cases}$$

现有一大批此种器件,从中任取10件, Y表示 10 件器件中寿命大于 2000 小时的件数,则 $D(Y) = _____.$

6.设 X_1, X_2, \dots, X_{48} 独立同分布,且 $X_1 \sim U(-1,1)$,利用中心极限定理可得

$$P\{|\sum_{i=1}^{48} X_i| < 2\} \approx$$
_____.

7.设 X 服从参数为 2 的泊松分布,则 $E(e^X) = ____.$

- 8.从正态总体 $N(\mu, \sigma^2)$ 中抽取容量为16的样本,算得样本均值为 $\bar{x} = 14.68$,样本标准差为 s = 2.4,则 μ 的置信水平为95% 的置信区间为 _____.
- 9.设 X_1, X_2, \dots, X_n 为来自总体b(1, p)的样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,则 $D(\overline{X}) = \underline{\qquad}$.
- 10. 设 X_1, X_2, X_3, X_4, X_5 为 来 自 总 体 $N(0, \sigma^2)$ 的 样 本 , 若 统 计 量

$$\frac{cX_1}{(X_2^2 + X_3^2 + X_4^2 + X_5^2)^{1/2}} 服从 t 分布,则 c = ____.$$

- 二. (10分) 一袋中有5个球,其中2个红球、3个白球. 从中不放回地任取3个球,以X表示取出的3球中的红球数,求
 - (1) X 的分布律; (2) E(X); (3) X 的分布函数.
- 三. $(10 \, \mathcal{G})$ 设随机变量 $X \, \mathcal{H} Y \, \mathcal{H} \mathcal{G}$ 相互独立,且均服从参数为 1 的指数分布, 求
 - (1) $P\{X > 2Y\}$; (2) $Z = \min(X, Y)$ 的分布函数; (3) U = X + Y 的概率密度.
- 四. (10 分) 设随机向量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} \frac{21}{4}x^2y, x^2 < y < 1, \\ 0, & \text{其它} \end{cases}$$

- 求(1) Cov(X,Y); (2) Y = y(0 < y < 1) 的条件下, X 的条件概率密度.
- 五. (10 分) 设总体X的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} x^{\frac{1}{\theta}-1}, 0 < x < 1, \\ 0, 其他 \end{cases}$$

 $\theta \in (0,+\infty)$ 为未知参数, X_1, X_2, \dots, X_n 为来自该总体的样本.

(1)求 θ 的最大似然估计量 $\hat{\theta}$; (2) 证明 θ 的最大似然估计量 $\hat{\theta}$ 是 θ 的无偏估计.

六. (10 分) 有甲、乙两台机器生产同种类型的金属部件. 分别在两台机器所生产的部件中各抽取一个容量均为8的样本, 测量部件的重量(单位:kg), 经计算得样本均值和样本方差如下:

甲机器:
$$\bar{x} = 12.68$$
, $s_1^2 = 5.06$,

乙机器:
$$\bar{y} = 10.45$$
, $s_2^2 = 2.94$,

- 设甲、乙两台机器生产的金属部件的重量分别服从正态分布 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$,
- (1) 试检验假设: $H_0: \sigma_1 = \sigma_2$ $H_1: \sigma_1 \neq \sigma_2$ (显著性水平 $\alpha = 0.1$);
- (2) 在显著性水平 $\alpha = 0.05$ 下,能否认为甲机器生产的部件的重量比乙机器生产的部件的重量大?
- 七. (10分) 在钢线碳含量对于电阻的效应的研究中,得到以下数据:

并计算得
$$\sum_{i=1}^{7} x_i = 2.8$$
, $\sum_{i=1}^{7} x_i^2 = 1.4$, $\sum_{i=1}^{7} y_i = 147$, $\sum_{i=1}^{7} y_i^2 = 3181$, $\sum_{i=1}^{7} x_i y_i = 63.9$,

- (1)求线性回归方程 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$;
- (2)在显著水平 $\alpha = 0.01$ 下,检验回归方程的显著性,即检验假设 $H_0: \beta_1 = 0, H_1: \beta_1 \neq 0$

附:
$$\Phi(0.5) = 0.6915$$
 , $t_{0.025}(15) = 2.13$, $t_{0.05}(14) = 1.76$, $F_{0.05}(7,7) = 3.79$, $F_{0.01}(1,5) = 16.3$.

北京邮电大学 2018--2019 学年第1学期

《概率论与数理统计》期末试题答案 (B)

一. 填空题 (每空4分, 共40分)

1.
$$P(A \cup B) = \frac{1}{3}$$
.

2.
$$P\{X > 1\} = 1 - \int_0^1 \frac{x}{2} dx = \frac{3}{4}$$
.

- 3. $\frac{1}{2}$
- 4. $\frac{1}{4}$.
- 5. $\frac{5}{2}$
- 6. 0.383
- 7. $e^{2(e-1)}$.
- 8. (13.402,15.958)
- 9. $\frac{p(1-p)}{n}$
- 10. 2

二. (10分)

$$\Re (1) P\{X=0\} = \frac{C_3^3}{C_5^3} = 0.1,$$

$$P{X = 1} = \frac{C_2^1 C_3^2}{C_5^3} = 0.6$$
,

$$P{X = 2} = \frac{C_2^2 C_3^1}{C_5^3} = 0.3.$$

X 的分布律为

-----4 分

(2) $E(X) = 0 \times 0.1 + 1 \times 0.6 + 2 \times 0.3 = 1.2$.

-----3分

(3) X 的分布函数为

$$F(x) = \begin{cases} 0, x < 0, \\ 0.1, 0 \le x < 1, \\ 0.7, 1 \le x < 2, \\ 1, x \ge 2 \end{cases}$$
3 \cancel{f}

三. (10分)

解:(1) (X,Y)的概率密度为

$$f(x,y) = \begin{cases} e^{-(x+y)}, x > 0, y > 0 \\ 0, 其他 \end{cases}$$

$$P\{X > 2Y\} = \iint_{x>2y} f(x,y) dx dy$$

$$= \int_0^\infty dy \int_{2y}^\infty e^{-(x+y)} dx$$

$$= \int_0^\infty e^{-3y} dy$$

$$= \frac{1}{3}.$$
......3 分

(2) $Z = \min(X, Y)$ 的分布函数为

$$F_{Z}(z) = P\{\min(X,Y) \le z\}$$

$$= 1 - P\{\min(X,Y) > z\}$$

$$= 1 - P\{X > z, Y > z\}$$

$$= 1 - P\{X > z\}P\{Y > z\}$$

$$= \begin{cases} 1 - e^{-2z}, z \ge 0, \\ 0, z < 0 \end{cases} \dots 3$$

(3) U = X + Y 的概率密度为

$$f_U(u) = \int_{-\infty}^{\infty} f(x, u - x) dx,$$

当u > 0时,

$$f_U(u) = \int_0^u e^{-u} du = ue^{-u}$$
,

即得

$$f_U(u) = \begin{cases} ue^{-u}u > 0, \\ 0, 其他 \end{cases}$$
4 分

四. (10分)

解: (1) $E(X) = \int_0^1 dy \int_{-\sqrt{y}}^{\sqrt{y}} x \cdot \frac{21}{4} x^2 y dx = 0$,

$$E(XY) = \int_0^1 dy \int_{-\sqrt{y}}^{\sqrt{y}} xy \cdot \frac{21}{4} x^2 y dx = 0,$$

所以

(2)
$$\stackrel{\text{def}}{=} 0 < y < 1$$
 $\stackrel{\text{def}}{=} f_Y(y) = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{21}{4} x^2 y dx = \frac{7}{2} y^{5/2}$

Y = y(0 < y < 1)条件下, X的条件概率密度为

五. (10分)

解: (1) 似然函数为

$$L(\theta) = \frac{1}{\theta^n} (x_1 x_2 \cdots x_n)^{\frac{1}{\theta} - 1},$$

对数似然函数为

$$\ln[L(\theta)] = -n\ln\theta + (\frac{1}{\theta} - 1)\sum_{i=1}^{n} \ln x_i,$$

令

$$\frac{\partial}{\partial \theta} \ln[L(\theta)] = -\frac{n}{\theta} - \frac{1}{\theta^2} \sum_{i=1}^n \ln x_i = 0,$$

得 θ 的最大似然估计量为

$$\hat{\theta} = -\frac{1}{n} \sum_{i=1}^{n} \ln X_i \ . \tag{5}$$

(2)
$$E(\ln X) = \int_0^1 \ln x \cdot \frac{1}{\theta} x^{\frac{1}{\theta}-1} dx = -\int_0^1 x^{\frac{1}{\theta}-1} dx = -\theta$$
,

$$E(\hat{\theta}) = -\frac{1}{n} E\{\sum_{i=1}^{n} \ln X_i\} = -E(\ln X) = \theta$$
,

所以 θ 的最大似然估计量 $\hat{\theta}$ 是 θ 的无偏估计.

-----5 分

六. (10分)

解: (1) 检验统计量的观察值为

$$F = \frac{s_1^2}{s_2^2} = \frac{5.06}{2.94} = 1.7211$$

由于 $F_{0.95}(7,7) < F = 1.7211 < F_{0.05}(7,7)$,故不拒绝原假设,即认为 $\sigma_1 = \sigma_2$.

-----5 分

(2) 需检验假设

$$H_0: \mu_1 \leq \mu_2 \qquad H_1: \mu_1 > \mu_2$$

$$s_w^2 = \frac{7s_1^2 + 7s_2^2}{14} = 4$$
,

检验统计量的观察值为

$$t = \frac{\overline{x} - \overline{y}}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{12.68 - 10.45}{\sqrt{4} \sqrt{\frac{1}{8} + \frac{1}{8}}} = 2.23,$$

由于 $t = 2.23 > t_{0.05}(14)$,故拒绝原假设,即认为甲机器生产的部件的重量比乙机生产的部件的重量大.5 分

七. (10分)

解: (1)
$$L_{xx} = \sum_{i=1}^{7} x_i^2 - \frac{1}{7} (\sum_{i=1}^{7} x_i)^2 = 0.28$$
, $L_{xy} = \sum_{i=1}^{7} x_i y_i - \frac{1}{7} (\sum_{i=1}^{7} x_i) (\sum_{i=1}^{7} y_i) = 5.1$,

$$\hat{\beta}_1 = \frac{L_{xy}}{L_{xx}} = 18.2143,$$

线性回归方程为

$$\hat{y} = \frac{147}{7} + 18.2143(x - \frac{2.8}{7}),$$

即
$$\hat{y} = 13.7143 + 18.2143x$$
.

……5分

(2)
$$L_{xx} = \sum_{i=1}^{7} y_i^2 - \frac{1}{7} (\sum_{i=1}^{7} y_i)^2 = 94$$
,

回归平方和为

$$S_R = \frac{L_{xy}^2}{L_{yy}} = 92.893$$
,

残差平方和为

$$S_E = L_{yy} - S_R = 1.107$$
,

检验统计量的观察值为

$$F = \frac{S_R}{S_E / 5} = 419.57 \ .$$

由于 $F > F_{0.01}(1,5)$,故拒绝原假设,即在显著水平 $\alpha = 0.01$ 下,回归方程是显著的.5 分