Applications de Thurston et Orbifolds

Thiago Landim

UPMC

Sommaire

1. Points critiques

2. Orbifolds

- 3. Applications de Thurston
- 4. Théorème de Thurston

Points critiques

Philosophie

La dynamique d'une application est déterminée par l'orbites des points critiques

Ensemble de Julia rempli

Pour $c \in \mathbb{C}$, on peut définir $P_c(z) = z^2 + c$ et

$$K_c := \{ z \in \mathbb{C} \mid P_c^n(z) \text{ est limit\'ee} \}$$

FIGURE 1: c = -0.123 + 0.745i

FIGURE 2 : c = 0.4 + 0.6i

Ensemble de Mandelbrot

On peut définir

$$\mathcal{M} := \{ c \in \mathbb{C} \mid K_c \text{ est connexe} \}$$

et

$$\mathcal{H} := \{c \in \mathbb{C} \mid P_c \text{ a une orbite attractive}\}$$

Ensemble de Mandelbrot

On peut définir

```
\mathcal{M} := \{ c \in \mathbb{C} \mid K_c \text{ est connexe} \}= \{ c \in \mathbb{C} \mid P_c^n(0) \text{ est limit\'ee} \}
```

et

```
\mathcal{H} := \{ c \in \mathbb{C} \mid P_c \text{ a une orbite attractive} \}= \{ c \in \mathbb{C} \mid P_c^n(0) \text{ converge vers un cycle périodique} \}
```

Ensemble de Mandelbrot

Orbifolds

Problème

Applications holomorphes sont **presque** revêtements (il peut y avoir des ramifications...)

Problème

Applications holomorphes sont **presque** revêtements (il peut y avoir des ramifications...)

 Solution usuelle : Enlever de la surface l'ensemble discret des branchements

Problème

Applications holomorphes sont **presque** revêtements (il peut y avoir des ramifications...)

- Solution usuelle : Enlever de la surface l'ensemble discret des branchements
- Nouvelle solution : généraliser la notion de surface de Riemann pour inclure ces branchements

Orbifold

Définition

Un **Orbifold** est un pair (X, ν) où

- · X est une surface de Riemann
- $\nu: X \to \mathbb{N} \cup \{\infty\}$ est une fonction telle que $\{x \in X \mid \nu(x) \neq 1\}$ est discret. Ces points sont appelés les **points de branchement**.

Orbifold

Définition

Un **Orbifold** est un pair (X, ν) où

- · X est une surface de Riemann
- $\nu: X \to \mathbb{N} \cup \{\infty\}$ est une fonction telle que $\{x \in X \mid \nu(x) \neq 1\}$ est discret. Ces points sont appelés les **points de branchement**.

Remarque. Ce n'est pas la définition usuelle de orbifold, mais c'est équivalent à définition usuelle car $Iso(\mathbb{C}) = U(1)$ et las rotations sont les seules sous groupes finis.

Exemples

Exemple 1. L'orbifold (\mathbb{P}^1, ν) définie par

$$\nu(z) = \begin{cases} 1, & \text{si } z \neq 0, \infty \\ \infty, & \text{si } z = 0, \infty \end{cases}$$

est un orbifold associé au polinôme $P(z)=z^2$. Il représente la surface \mathbb{C}^* avec la métrique $\rho=\frac{|dw|}{|w|}$.

Exemples

Exemple 1. L'orbifold (\mathbb{P}^1, ν) définie par

$$\nu(z) = \begin{cases} 1, & \text{si } z \neq 0, \infty \\ \infty, & \text{si } z = 0, \infty \end{cases}$$

est un orbifold associé au polinôme $P(z)=z^2$. Il représente la surface \mathbb{C}^* avec la métrique $\rho=\frac{|dw|}{|w|}$. De plus,

$$\frac{P^*\rho}{\rho} = \frac{2|w||dw|/|w|^2}{|dw|/|w|} = 2.$$

Exemples

Exemple 1. L'orbifold (\mathbb{P}^1, ν) définie par

$$\nu(\mathbf{Z}) = \begin{cases} 1, & \text{si } \mathbf{Z} \neq 0, \infty \\ \infty, & \text{si } \mathbf{Z} = 0, \infty \end{cases}$$

est un orbifold associé au polinôme $P(z)=z^2$. Il représente la surface \mathbb{C}^* avec la métrique $\rho=\frac{|dw|}{|w|}$. De plus,

$$\frac{P^*\rho}{\rho} = \frac{2|w||dw|/|w|^2}{|dw|/|w|} = 2.$$

Exemple 2. L'application \wp de Weierstrass est une revêtement de degré 2 du tore \mathbb{T} dans $\hat{\mathbb{C}}$ avec branchement (2,2,2,2).

Applications

Définition

Une application analytique $f: (X, \nu) \to (Y, \mu)$ est une application holomorphe $f: X \to Y$ telle que $\mu(f(x)) \mid \nu(x) \cdot \deg_x(f)$ pour chaque $x \in X$.

Applications

Définition

Une application analytique $f: (X, \nu) \to (Y, \mu)$ est une application holomorphe $f: X \to Y$ telle que $\mu(f(x)) \mid \nu(x) \cdot \deg_x(f)$ pour chaque $x \in X$.

Définition

Une application analytique $f: (X, \nu) \to (Y, \mu)$ est appelé **revêtement** si $\mu(f(x)) = \nu(x) \cdot \deg_x(f)$ et la fonction est localement propre.

Revêtement

Définition

Un **revêtement universel** de (X, ν) est un orbifold (X, ν) avec un revêtement $\pi : (X, \nu) \to (Y, \mu)$ tel que

Une surface est dit elliptique, parabolique ou hyperbolique quand \mathbb{P}^1 , \mathbb{C} ou \mathbb{D} est son revêtement.

Bons Orbifolds

Proposition

Tout orbifold a un revêtement universel lisse sauf les deux suivantes :

- Si $X = \mathbb{P}^1$ et $\nu > 1$ en un unique point x avec $1 < \nu(x) < \infty$, ou
- Si $X = \mathbb{P}^1$ et $\nu > 1$ en deux points x et y avec $\nu(x) \neq \nu(y)$.

Caractéristique d'Euler

Définition

La caractéristique d'Euler d'une orbifold (X, ν) est donnée par

$$\chi(X,\nu) = \chi(X) + \sum_{x \in X} \left(\frac{1}{\nu(X)} - 1 \right)$$

Caractéristique d'Euler

Définition

La caractéristique d'Euler d'une orbifold (X, ν) est donnée par

$$\chi(X,\nu) = \chi(X) + \sum_{x \in X} \left(\frac{1}{\nu(x)} - 1 \right)$$

Proposition

Soit X une surface de Riemann compacte. Alors

- (X, ν) est elliptique ssi $\chi(X, \nu) > 0$
- (X, ν) est parabolique ssi $\chi(X, \nu) = 0$
- (X, ν) est hyperbolique ssi $\chi(X, \nu) < 0$

Riemann-Hurwitz

Théorème (Riemann-Hurwitz)

Si $f: (X, \nu) \xrightarrow{\cdot} (Y, \mu)$ est un revêtement de degré d, alors

$$\chi(X, \nu) = d \cdot \chi(Y, \mu).$$

Riemann-Hurwitz

Théorème (Riemann-Hurwitz)

Si $f: (X, \nu) \xrightarrow{\cdot} (Y, \mu)$ est un revêtement de degré d, alors

$$\chi(X,\nu)=d\cdot\chi(Y,\mu).$$

Application. Les orbifolds $\hat{\mathbb{C}}$ avec branchements (n) et (n,m) pour $n \neq m$ sont mauvais.

Applications de Thurston

Ensemble Post-critique

Définition

Soit $f \colon \mathbb{P}^1 \to \mathbb{P}^1$ une application rationnelle. Alors

$$\mathcal{P}_f := \overline{\bigcup_{\omega \in \mathcal{C}_f} \bigcup_{n \geq 1} \{f^{\circ n}(\omega)\}}$$

est sont ensemble post-critique.

On appelle f post-critiquement finie, ou **application de Thurston**, si \mathcal{P}_f est fini.

Propriétés

Les applications de Thurston son bien étudiées.

Théorème

Si f est une application de Thurston, alors tout cycle est ou superattractive ou bien répulsive.

Propriétés

Les applications de Thurston son bien étudiées.

Théorème

Si f est une application de Thurston, alors tout cycle est ou superattractive ou bien répulsive.

Théorème

Si une application de Thurston n'a pas des cycles superattractive, alors son ensemble de Julia est $\hat{\mathbb{C}}$.

Orbifold d'une application de Thurston

À chaque application de Thurston $f \colon \mathbb{P}^1 \to \mathbb{P}^1$, on peut associer une orbifold (\mathbb{P}^1, ν_f) ou ν_f est la plus petite fonction telle que :

- $\nu_f(x) = \infty$ si x est dans une cycle superattractive
- $\nu_f(x) = 1 \operatorname{si} n \notin \mathcal{P}_f$
- $\nu_f(y)$ est un multiple de $\nu_f(x)$ $\deg_x(f)$ pour tout $x \in f^{-1}(y)$

Orbifold d'une application de Thurston

À chaque application de Thurston $f: \mathbb{P}^1 \to \mathbb{P}^1$, on peut associer une orbifold (\mathbb{P}^1, ν_f) ou ν_f est la plus petite fonction telle que :

- $\nu_f(x) = \infty$ si x est dans une cycle superattractive
- $\nu_f(x) = 1 \operatorname{si} n \notin \mathcal{P}_f$
- $\nu_f(y)$ est un multiple de $\nu_f(x)$ $\deg_x(f)$ pour tout $x \in f^{-1}(y)$

Exemple. Si $f(x) = 2z^2 - 1$, alors l'orbite de 0 est

$$0 \rightarrow -1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow \cdots$$

donc $\nu_f(-1)=2=\nu_f(1)$ et $\nu_f(x)=1$ pour tout $x\neq \pm 1$. De plus, $\nu_f(\infty)=\infty$.

Orbifold d'une application de Thurston

À chaque application de Thurston $f: \mathbb{P}^1 \to \mathbb{P}^1$, on peut associer une orbifold (\mathbb{P}^1, ν_f) ou ν_f est la plus petite fonction telle que :

- $\nu_f(x) = \infty$ si x est dans une cycle superattractive
- $\nu_f(x) = 1 \operatorname{si} n \notin \mathcal{P}_f$
- $\nu_f(y)$ est un multiple de $\nu_f(x)$ $\deg_x(f)$ pour tout $x \in f^{-1}(y)$

Exemple. Si $f(x) = 2z^2 - 1$, alors l'orbite de 0 est

$$0 \rightarrow -1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow \cdots$$

donc $\nu_f(-1)=2=\nu_f(1)$ et $\nu_f(x)=1$ pour tout $x\neq \pm 1$. De plus, $\nu_f(\infty)=\infty$.

Remarque. Cette orbifold est soit parabolique soit hyperbolique.

Revêtements

L'orbifold associé a une application de Thurston f ne donne pas généralement une application analytique. Bien, on a le contraire!

Théorème

Soit (\mathbb{P}^1, ν_f) l'orbifold associé a f et $\pi: S_f \to (\mathbb{P}^1, \nu_f)$ sont revêtement. Alors il y a $g: S_f \to S_f$ holomorphe telle que $f \circ \pi \circ g = \pi$, c'est à dire,

$$S_f \leftarrow S_f - S_f$$

$$\pi \downarrow \qquad \qquad \downarrow \pi$$

$$\mathbb{P}^1 \xrightarrow{f} \mathbb{P}^1$$

est commutative.

Consequences

Lemme (Orbifold Hyperbolique) Si (\mathbb{P}^1, ν_f) est hyperbolique, alors f est fortement expanseur dans J_f pour la métrique orbifold donnée par S_f.

Consequences

Lemme (Orbifold Hyperbolique)

Si (\mathbb{P}^1, ν_f) est hyperbolique, alors f est fortement expanseur dans J_f pour la métrique orbifold donnée par S_f .

Lemme (Orbifold Parabolique)

Si (\mathbb{P}^1, ν_f) est parabolique, alors $g(z) = \alpha z + \beta$, où $|\alpha|^2 = \text{degr\'e de } f$.

Théorème de Thurston

Combinatoire des applications

La définition d'application de Thurston ne dépend que de la topologie

Combinatoire des applications

La définition d'application de Thurston ne dépend que de la topologie

On peut étudier les pairs (F,Z) tels que $F: S^2 \to S^2$ est un revêtement ramifié de degré $\deg(F) \ge 2$ qui préserve l'orientation et $\mathcal{P}_F \subseteq Z \subseteq S^2$ est un ensemble fini positivement invariant.

Combinatoire des applications

La définition d'application de Thurston ne dépend que de la topologie

On peut étudier les pairs (F,Z) tels que $F: S^2 \to S^2$ est un revêtement ramifié de degré $\deg(F) \ge 2$ qui préserve l'orientation et $\mathcal{P}_F \subseteq Z \subseteq S^2$ est un ensemble fini positivement invariant.

On dit que (F_0, Z_0) et (F_1, Z_1) sont **combinatoirement équivalents** si il y a un pair (φ, ψ) tel que $\varphi, \psi \colon S^2 \to S^2$ sont homéomorphismes tels que

- $\cdot \varphi(Z_0) = \psi(Z_0) = Z_1$
- φ et ψ sont isotopiques rel Z_0
- $F_1 \circ \psi = \varphi \circ F_0$

Théorème de Thurston

On dit que (F,Z) a une **obstruction de Thurston** si F ne change pas beaucoup l'indice des courbes environs deux ou plus points de Z.

Théorème de Thurston

On dit que (F, Z) a une obstruction de Thurston si F ne change pas beaucoup l'indice des courbes environs deux ou plus points de Z.

Théorème (Théorème de Thurston marqué) Soit $F: S^2 \to S^2$ un revêtement ramifié de Thurston qui n'est pas (2, 2, 2, 2) et soit Z un ensemble fini positivement invariant tel que $\mathcal{P}_f \subseteq Z \subseteq S^2$. Si (F,Z) n'a pas d'obstruction de Thurston, alors sa classe d'équivalence combinatoire a un représentant rationnel, unique a isomorphisme près.

Applications

Polynôme de Geyer. Un polynôme est dit de Geyer si :

- · Ses coefficients sont réels
- Ses points critiques sont simples
- · Il y a au plus un point critique réel
- $P(c) = \overline{c}$ pour chaque point critique c

Applications

Polynôme de Geyer. Un polynôme est dit de Geyer si :

- · Ses coefficients sont réels
- · Ses points critiques sont simples
- · Il y a au plus un point critique réel
- $P(c) = \overline{c}$ pour chaque point critique c

Théorème

Pour chaque d \geq 2, il y a un polynôme de Geyer P de degré d.

Bibliographie

- · John Milnor. Dynamics in One Complex Variable, University Press
- Xavier Buff & John Hubbard. Dynamics in One Complex Variable (Draft)
- Xavier Buff, Guizhen Cui, & Lei Tan. Teichmüller spaces and holomorphic dynamics