

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

E5 Kern- und Teilchenphysik WiSe 17/18 – Übungsblatt 1

Besprechung: 24.10.2017 bis 30.10.2017

Studierende im Studiengang Lehramt Gymnasium lösen bitte die Aufgaben 1 a und b, 2 sowie 3 a. Studierende aller anderen Studiengänge lösen bitte alle Teilaufgaben.

1. Umrechnungen zwischen Einheiten

Berechnen Sie folgende Ausdrücke explizit im SI-System:

- (a) $\hbar c$ (ebenso in der Einheit MeV fm). Interpretieren Sie diese Relation mit Hilfe der Heisenbergschen Unschärferelation.
- (b) Lassen Sie Protonen im LHC-Beschleuniger, die mit einer Energie von 6.5 TeV umlaufen, zu einem Wettlauf mit einem Lichtstrahl antreten. Um welchen Geschwindigkeitsbetrag (in km/h) sind die LHC-Protonen langsamer im Vergleich zu den Photonen des Lichtstrahls? Hinweis: Nutzen Sie eine Taylor-Entwicklung, um den numerischen Rechenfehler zu reduzieren.
- (c) Freiwillig für Lehramtsstudierende: die de-Broglie-Wellenlänge $\lambda=h/p$ eines Elektrons, das aus der Ruhe heraus durch eine Potentialdifferenz von 2 MV beschleunigt wird.

2. Kinematik

Am HERA-Speicherring kollidierten Elektronen einer Energie von 27.5 GeV frontal mit im Gegensinn umlaufenden Protonen einer Energie von 920 GeV.

- (a) Berechnen Sie die Gesamtenergie im Schwerpunktsystem von Elektron und Proton!
- (b) Welche Energie müssen Elektronen, die auf ein ruhendes Protontarget treffen, haben, damit im Schwerpunktsystem die gleiche Gesamtenergie wie in Teilaufgabe (a) zur Verfügung steht?

3. Wirkungsquerschnitt und Luminosität

Betrachten Sie die Produktion von $\mu^+\mu^-$ -Paaren am Beispiel des Elektron-Positron Beschleunigers LEP (Betrieb: 1989-2000, maximale Strahlenergie: 109.5 GeV)!

Der differentielle Wirkungsquerschnitt für den Prozess $e^+e^- \to \mu^+\mu^-$ über die Bildung eines virtuellen Photons ist

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \cdot \hbar^2}{4 \cdot s \cdot c^2} (1 + \cos^2 \theta)$$

in der Näherung $m_e = 0$. Der Nachweis der $\mu^+\mu^-$ -Paare erfolge auf einer Kugelschale mit einem Radius R = 1 m (die Nachweiswahrscheinlichkeit für μ^+ und μ^- sei 100 % auf der gesamten Kugelschale).

(a) Wie groß muss die Luminosität des Speicherrings sein, damit bei einer Strahlenergie von 40 GeV im zeitlichen Durchschnitt mindestens ein Myon pro cm² pro Stunde auf der gesamten Detektorfläche registriert wird?

Hinweis: Es genügt, hierfür das Minimum des differentiellen Wirkungsquerschnittes zu verwenden.

(b) Freiwillig für Lehramtsstudierende:

Wie hoch sind die Strahlströme bei der für LEP typischen Luminosität von $\mathcal{L}=20\cdot 10^{30}\,\mathrm{cm^{-2}s^{-1}}$ (Annahme: $I_{e^+}=I_{e^-}$, jeweils zwei Teilchenbündel, Strahlausdehnung: $\sigma_x=13\,\mu\mathrm{m}$, $\sigma_y=430\,\mu\mathrm{m}$, Ringumfang: 26.6 km)? Wieviele Elektronen bzw. Positronen sind in jeweils einem Teilchenbündel enthalten?