Aprendizaje por refuerzo

Clase 22: RL multi-agente II

Para el día de hoy...

- Juegos de Markov
- Sistemas multi-agentes
- Juegos
- Arquitecturas multiagente

Antes de empezar...

Dudas del proyecto

Juego de Markov

- Es una tupla $G = (N, S, A, P, \{R_i\}_{i \in \mathbb{N}}, \delta)$
- Donde
 - $N = \{1, ..., n\}$ es un conjunto de jugadores
 - S es el espacio de estados
 - $A = A_1 \times \cdots \times A_n$ es el espacio de acciones donde A_i es el conjunto de acciones de i
 - Para estados $s \in S$ y $a \in A$, $P(\cdot, s, a)$ es la distribución de probabilidad $P_{i,s \to s'}^a$
 - Para estados $s \in S$ y $a \in A$, $R_i(s'|s,a)$ es la recompensa $R^a_{i,s \to s'}$
 - $\delta \in (0,1)$ es un factor de descuento

Tipos de sistemas multi-agente

Cooperativos

Recompensa conjunta Problema de coordinación

Competitivo

Juegos de suma cero

Recompensas opuestas

Equilibrio minimax

Mixtos

Juegos de suma general

Equilibrio de

Nash

El estado del arte en juegos

Program	Level of Play	Program to Achieve Level
Checkers	Perfect	Chinook
Chess	Superhuman	Deep Blue
Othello	Superhuman	Logistello
Backgammon	Superhuman	TD-Gammon
Scrabble	Superhuman	Maven
Go	Grandmaster	MoGo ¹ , Crazy Stone ² , Zen ³
Poker ⁴	Superhuman	Polaris

Un par de enfoques

- La mejor respuesta es la solución al problema de RL con un solo agente
 - Los otros agentes se tratan como parte del ambiente
 - El juego se reduce a un MDP
 - La mejor respuesta es la política óptima del MDP
- Equilibrio de Nash es el punto fijo para juego en solitario
 - Se genera experiencia de los agentes
 - Cada agente aprende la mejor respuesta a los otros agentes
 - La política de un agente determina el ambiente del otro
 - Todos los jugadores se adaptan a los otros

Juegos de información perfecta e imperfecta

Un juego de información perfecta es completamente observable (Juegos de Markov)

Ajedrez

Damas inglesas

Otelo

Backgammon

Go

Información imperfecta

Scrabble

Poker

Minimax

- Una función de valor define la recompensa esperada total de las políticas $\pi=(\pi^1,\pi^2)$
- $v^{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$
- La función de valor minimax resuelve
- $v_*(s) = \max_{\pi^1} \min_{\pi^2} v_{\pi}(s)$
- Una política minimax es la política $\pi=(\pi^1,\pi^2)$ que alcanza el valor minimax
- La política minimax es un equilibrio de Nash

Búsqueda minimax

Función de valor en minimax

- El árbol de búsqueda crece exponencialmente
- Es impráctico llegar al final del juego
- Se suele usar alguna función de aproximación $v(s,w) \approx v_*(s)$
- Utiliza funciones de valor para estimar el valor de las hojas
- Minimax se ejecuta a alguna profundidad fija

Función de valor lineal

$$v(s, \mathbf{w}) = 5 + 3 - 5 = 3$$

Deep Blue

- Conocimiento
 - 8000 características desarrolladas a mano
 - Funciones de valor con aproximación lineal
 - Los pesos fueron ajustados por humanos expertos
- Búsqueda
 - Búsqueda en paralelo con búsqueda alfa-beta
 - 200 millones de posiciones por segundo
- Resultados
 - Derrotó a Garry Kasparov 4-2 (1997)

Chinook

- Conocimiento
 - Funciones lineales
 - 12 características
 - 4 etapas del juego
- Búsqueda
 - Alfa beta
 - Análisis
 - Búsqueda hacia atrás de posiciones de victoria
 - Almacena todas las posiciones de victoria
 - Juega perfecto con las últimas n piezas
- Resultado
 - Derrota a Marion Tinsley en 1994
 - Se resuelve el juego en 2007

Juego en solitario con diferencia temporal

- Usar algoritmos de RL basados en valor para generar juegos
 - MC
 - TD(0)
 - $TD(\lambda)$

Mejora de política

- Para juegos deterministas, estimar $v_*(s)$
- Es posible evaluar
 - $q_*(s,a) = v_*(succ(s,a))$
- Las reglas del juego determinan el estado sucesor succ(s,a)
- Las acciones son seleccionadas maximizando/minimizando
 - $A_t = \arg\min_{a} v_*(succ(S_t, a))$ para el jugador 1
 - $A_t = \arg \max_{a} v_*(succ(S_t, a))$ para el jugador 2
- Esto mejora la política de ambos jugadores

Logistello

Representación

- Genera sus propias características
- Inicia con características crudas
- Construye características con conjunciones y disyunciones
- Genera 1.5 millones de características
- Funciones de aproximación lineales

Algoritmo

- Iteración de política
- Juego en solitario
- Evaluación de Monte-Carlo
- Mejora de política voraz

Resultado

• Derrota a Takeshi Murukami 6-0

TD Gammon

- Red neuronal inicializada aleatoriamente
- Juego en solitario
- Aprendizaje de diferencia temporal
- Política voraz
- Siempre converge en la práctica
- Derrota a Luigi Villa 7-1 (1992)

Búsqueda basada en simulación

- El juego en solitario puede reemplazar la búsqueda
- Simula juegos desde la raíz
- Utiliza RL para simular experiencia
 - Monte-Carlo Tree Search
 - UCB

Desempeño de MCTS en juegos

- Consigue muy buenos resultados en juegos como
 - Go
 - Hex
 - Lines of action
- Búsqueda de Monte-Carlo puede funcionar en
 - Scrabble
 - Backgammon

Maven

- Aprendizaje
 - Aproximación de funciones lineales
 - Iteración de política con Monte-Carlo
- Búsqueda
 - Imaginar n pasos de juego en solitario
 - Evaluar la posición resultante por el puntaje
 - Seleccionar el movimiento con el puntaje más alto
- Resultado
 - Derrota a Adam Logan 9-5
 - Maven tenía un error promedio de 3 puntos por juego

Juegos de información imperfecta

- Los jugadores tienen árboles diferentes
- Existe un nodo que contine la información que el agente conoce
- Métodos
 - Métodos de búsqueda hacia adelante
 - Juego en solitario
- Resultado
 - 3 medallas de plata en Poker (limit Hold'em) para 2 y 3 jugadores

Un algoritmo UCT Search

- Usar MCTS al árbol de estado de información del juego
- Los agentes aprenden y responden al comportamiento promedio
- Extrae la estrategia promedio de los nodos de acción
- En cada nodo, elige una acción de acuerdo a alguna probabilidad

Algunos otros enfoques

Independent Q-learning [Tan 1993]

- Cada agente aprende de forma independiente su función Q
- Cada agente trata al resto como parte del ambiente

Independent actor-critic [Foerster et al. 2018]

- Cada agente aprende independientemente con su propio actor critico
- Cada agente trata al resto como parte del ambiente

Aprendizaje rápido con parámetros compartidos

• Diferentes entradas inducen diferentes comportamientos

Limitaciones

- Aprendizaje no estacionario
- Difícil de aprender a coordinarse

Centralised critics

- Lowe et al. 2017; Foerster et al. 2018
- Centralizar $V(s,\tau)$ o $Q(s,\tau,u)$

Factored value functions

- Guestrin et al. 2003
- Permite mejorar escalabilidad
- $Q_{tot} = (\tau, u, \theta) = \sum_{(e=1)}^{E} Q_e(\tau^e, u^e, \theta^e)$
- Donde cada *e* indica un subconjunto de agentes

Coevolución

- Llamaremos coevolución a un cambio en la composición genética de una especie como respuesta a un cambio de otra
- Se ha utilizado para juegos, incertidumbre, problemas de gran escala entre otros
- En general existen dos clases de coevolutivos
 - Competitivos
 - Cooperativos

	A	В	
Neutralismo	0	0	Las poblaciones son independientes
Mutualismo	+	+	Ambas se benefician
Comensalismo	+	0	A se beneficia
Competición	-	-	Las dos se perjudican
Depredador	+	-	A se beneficia y B se perjudica
Parasito	+	-	A se beneficia y B se perjudica

Taxonomia de coevolutivos

MOEAs coevolutivos cooperativos

Basados en descomposición de variables de decisión

- Descomponen el espacio de búsqueda. Una variable es asginada a una especie y cada especie optimiza una o varias variables de decision. Para la evaluación es necesario combiner individuos de cada especie
- Basados en indicadores
- Para Hyperspectral sparce unimixing

Basados en descomposición de funciones objetivo

- Cada función es asignada a una especie
- Evolución diferencial con múltiples poblaciones para múltiples objetivos
- Basada en equilibrio de Nash
- Basado en preferencias utilizando vectores de pesos

MOEAs coevolutivos competitivos

- CMOEAs basados en el modelo depredador-presa
 - Una presa representa un individuo de la población y el depredador "caza" a la presa más débil de acuerdo al valor en algún objetivo en particular
- CMOEAs basados en aptitud competitiva
 - Se utiliza una función objetivo que toma en cuenta las dependencias entre las especies
 - La aptitud de los individuos se compara con respecto a los otros y aquel con mejor aptitud gana la competencia
- CMOEAs basados en coevolución de soluciones objetivo
 - Realizan competencia entre dos poblaciones una de posibles soluciones y otra de valores deseados

PettingZoo

Atari

Multi-player Atari 2600 games (both cooperative and competitive)

MAgent

Configurable environments with massive numbers of particle agents

Butterfly

Cooperative graphical games developed by us, requiring a high degree of coordination

Classic

Classical games including card games, board games, etc.

MPE

A set of simple nongraphical communication tasks originally from https://github.com/openai/multiagentparticle-envs

SISL

3 cooperative environments, originally from https://github.com/sisl/MADRL

Para saber más

QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning, ICML-18 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster, & Shimon Whiteson

Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning, Conditionally accepted to JMLR Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster, & Shimon Whiteson

MAVEN: Multi-Agent Variational Exploration, NeurIPS-19
Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, & Shimon Whiteson

Para la otra vez...

• RL multi-tarea

