

Lezione 5 - Le Immagini: Grafica Raster, Analisi Spettrale

https://www.youtube.com/watch?v=kMjDyb9XrnE

Schemi di classificazioni delle immagini

Raster (o bitmap)

Raster → Griglia

Relativa a tutte le immagini composte da "pixel", a cui è associato un colore secondo uno specifico modello

I modelli di memorizzazione possono essere Lossy o Lossless

Vettoriali

Un'immagine è descritta mediante una serie di funzioni o primitive geometriche che descrivono punti, linee, curve e poligoni ai quali sono associabili svariati attributi

Così facendo si ottiene elevata qualità e compressione

Vale lo stesso concetto dell'audio MIDI

Miglioramento della grafica Raster

La grafica raster è stata migliorata attraverso la Super-Resolution, ottenuta mediante due tecniche:

- Tecnica del single-frame → Partendo da un frame, utilizza algoritmi di Al per migliorare la qualità dell'immagine
- Tecnica del multi-frame → Impiega più frame della stessa immagine per ottenere un risultato più accurato

Immagini Grey-Scale

Grandezza delle immagini

Dato un piano cartesiano tridimensionale, nel quale gli assi x e y rappresentano larghezza e profondità dell'immagine e z la scala dei livelli di grigio, la grandezza di un'immagine (misurata in bit) si troverà come:

$$m * n * \lceil \log_2 z \rceil$$

Le Immagini a Colori

Un modello di colore è un modello matematico astratto che permette di rappresentare i colori in forma numerica:

- RGB → Sintesi Additiva
- CMYB → Sintesi Sottrattiva
- YUV → Opera in ambito analogico
- YCbCr → Equivalente digitale del YUV
- HSV → Hue Saturation Value

Compressione dell'immagine

Fondamenti della compressione:

- L'occhio umano è limitato a un range di frequenze
- Per ogni pixel di immagine i punti adiacenti sono simili; questa similitudine si chiama Ridondanza Spaziale
- Non è troppo significativa la perdita di informazioni (a differenza dei testi)

Tipi di compressione

- Lossless → Permette di ricostruire perfettamente l'immagine iniziale
 - Es: Codifica di Huffman
- Lossy → Permette di ricostruire solo parzialmente l'immagine iniziale
 - Sottocampionamento
 - Predictive Coding
 - Codifica Mediante Trasformazione

Compressione per Sottocampionamento

Sfruttando la ridondanza spaziale, posso considerare solo alcuni pixel durante la compressione (es: posso prenderne uno al posto di due)

In fase di decodifica i pixel mancanti vengono "approssimati" utilizzando un'interpolazione: viene fatta una "media" tra i valori dei colori dei pixel e lo spazio mancante viene riempito con questi valori mediati

Essendo, inoltre, il nostro occhio più limitato nell'ambito della <u>crominanza</u>, di conseguenza per questa componente posso effettuare un livello di sottocampionamento maggiore e un'interpolazione meno raffinata

Compressione con Predictive Coding

Tecnica molto simile al <u>predictive coding per l'audio</u>, quindi valori spazialmente vicini sono fortemente correlati.

Se abbiamo due pixel A e B, e ho già codificato A, piuttosto che codificare entrambi i valori posso codificare B come la differenza rispetto ad A, riducendo il numero di bit necessari per la memorizzazione

Codifica Mediante Trasformazione

Un'immagine viene frammentata in tante piccole immagini su cui si applica una trasformazione unitaria dal dominio spaziale al dominio delle frequenze

Se nel dominio spaziale i dati sono fortemente correlati, allora i dati risultanti nel dominio delle frequenze sono adatti a una fase di compressione (Huffman, RLE...)

Le trasformazioni maggiormente impiegate sono:

- DFT → Discrete Fourier Transform
- DCT → Discrete Cosin Transform

Serie di Fourier

Fourier dimostrò che un qualsiasi segnale periodico può essere scomposto in una somma di infiniti segnali sinusoidali

La serie quindi rappresenta un segnale periodico x(t) di pulsazione ω_0 mediante una somma pesata di sinusoidi di cui la prima avrà pulsazione ω_0 , detta fondamentale, e le successive multipli della fondamentale

$$x(t) = a_0 + a_1 \cos(\omega_0 t + \theta_1) + a_2 \cos(2\omega_0 t + \theta_2) + ... + a_N \cos(N\omega_0 t + \theta_N)$$

Banalmente possiammo dire che decomponiamo un segnale per ottenere le sue singole frequenze

Trasformata di Fourier

La trasformata di Fourier è una decomposizione unica di un segnale nelle diverse frequenze che vi partecipano, comprese le loro fasi

$$(Ff)(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \, dx$$

Della trasformata di Fourier possiamo cogliere un'approssimazione attraverso la FFT (Fast Fourier Transform)

Immagini JPEG

JPEG → Joint Photographic Experts Group

Sono immagini a colori 24 bit o immagini in bianco e nero, ed è un modello Lossy e Opern-Source

Fasi principali:

- Decompongo l'immagine in blocchi 8x8 ed effettuo una conversione da RGB a YCrCb
- Applico la DCT alle 3 matrici Y Cr e Cb. Un'immagine può essere considerata come una somma di tante variazioni di luminosità di diversa frequenza, fase e intensità
- 3. Le frequenze trovate vengono quantizzate in modo non lineare, approssimando con meno precisione le alte frequenze rispetto alle basse
- Codifica → Scansionamento a Zig-Zag che elimina le ridondanze attraverso le compressioni di Huffman e RLE

Immagini Vettoriali

Un'immagine è descritta mediante una serie di funzioni o primitive geometriche che descrivono punti, linee, curve e poligoni ai quali sono associabili svariati attributi. Quindi è un'immagine descritta da insiemi di equazioni matematiche

Vantaggi:

- Indipendente dalla risoluzione
- Maggior compressione di dati
- L'ingrandimento o la riduzione delle misure non incide sul peso

Svantaggi:

- Meno intuitiva rispetto alle raster
- Richiede maggiore unità di elaborazione

Immagini Frattali

Rappresentano un modo intermedio (fra raster e vettoriali) per la rappresentazione delle immagini

Il metodo frattale decompone l'immagine in tante parti elementari che vengono memorizzate insieme alle regole che guideranno la ricomposizione

I video

- Video digitale → Sequenza di immagini a frequenza costante
- Frame Rate → Velocità di scorrimento delle immagini

Più il frame-rate è elevato più il video risulterà fluido. Il "minimo indispensabile" è 25 fps

Codifica Intraframe

Descrive ogni singolo fotogramma che compone la sequenza del video, seguendo quindi la regola classica di quantizzazione video come sequenza di immagini statiche

Codifica Interframe

Descrive i cambiamenti che intercorrono fra ogni frame partendo da un fotogramma iniziale codificato con il metodo intraframe. Di conseguenza salvo solo alcuni fotogrammi, e i fotogrammi intermedi vengono generati con l'interpolazione

Compressione del video

Sfrutta il limite della percezione visiva per la riduzione della ridondanza:

- La ridondanza temporale viene trattata attraverso la similitudine dei fotogrammi adiacenti
- Ogni fotogramma si divide in blocchi e si cerca la migliore corrispondenza tra blocchi di fotogrammi adiacenti. Per ogni coppia di blocchi "simili" si determina:
 - Lo spostamento del blocco (Motion Vector)
 - La differenza tra i blocchi