MODOS NORMAIS

Daniel Balsa Gallego Grupo M1

Modos da corda vibrante 1.

Comezaremos estudando os modos da corda vibrante, para iso colgaremos 5 masas m_i para establecer unha tensión na corda. Aplicaremos unha corriente de voltaxe constante ó longo do fío de forma que xeraremos unha forza vertical oscilante que actúe sobre o propio fío. Aumentaremos lentamente a frecuencia da corrente ata atopar as distintas frecuencias de resonancia da corda. Anotaremos a frecuencia á que atopamos as 6 primeiras frecuencias de resonancia da corda (γ) así como a distancia entre nodos (d) para cada unha delas.

As incertidumbres asignadas a cada unha destas magnitudes son as seguintes:

$$s(\gamma) = 1,0Hz$$
 $s(d) = 0,003m$ $s(m) = 0,001kg$

Cos datos recollidos calcularemos a lonxitude de onda e o período así coma as súas incertidumbres aplicando as seguintes expresións.

$$\lambda_n = 2d_n \qquad s(\lambda_n) = 2s(d_n) \tag{1}$$

$$\lambda_n = 2d_n \qquad s(\lambda_n) = 2s(d_n)$$

$$T = \frac{1}{\lambda_n} \qquad T = \frac{1}{(\lambda_n)^2} s(\lambda_n)$$
(2)

Calcularemos tamén a tensión do cable empregando a masa e a atracción gravitatoria $(g = 9, 81m/s^2)$ a través das seguintes expresións:

$$\tau = m_n g \qquad s(\tau) = gs(m) \tag{3}$$

Os resultados obtidos para cada unha das 5 masas recollense nas seguintes táboas:

$m_1 = 0.099 + 0.001$								
τ =0,9712 + 0,0098								
n	n 1 2 3 4 5 6							
γ (Hz)	15	30	44	59	74	88		
d (m)	1,69	0,85	0,56	0,42	0,34	0,29		
λ (m)	3,38	1,70	1,12	0,84	0,68	0,58		
$s(\lambda)$ (m)	0,06	0,06	0,06	0,06	0,06	0,06		
T (s)	0,0667	0,0333	0,02273	0,01695	0,01351	0,01136		
s(T) (s)	0,0044	0,0011	0,00052	0,00029	0,00018	0,00013		

Cuadro 1: Datos para a masa 1

$m_2 = 0.197 + 0.001$								
τ =1,9328 + 0,0098								
n	n 1 2 3 4 5 6							
γ (Hz)	20	41	61	82	103	123		
d (m)	1,69	0,85	0,56	0,42	0,34	0,29		
λ (m)	3,38	1,70	1,12	0,84	0,68	0,58		
$s(\lambda)$ (m)	0,06	0,06	0,06	0,06	0,06	0,06		
T (s)	0,0500	0,0244	0,01639	0,01220	0,009709	0,008130		
s(T) (s)	0,0025	0,0006	0,00027	0,00015	0,000094	0,000066		

Cuadro 2: Datos para a masa $2\,$

$m_3 = 0.504 + 0.001$									
	$\tau = 4.9442 + 0.0098$								
n	n 1 2 3 4 5 6								
γ (Hz)	32	63	95	127	158	190			
d (m)	1,69	0,85	0,56	0,42	0,34	0,29			
λ (m)	3,38	1,70	1,12	0,84	0,68	0,58			
$s(\lambda)$ (m)	0,06	0,06	0,06	0,06	0,06	0,06			
T (s) 0,03125 0,01587 0,01053 0,007874 0,006329 0,00526									
s(T) (s)	0,00098	0,00025	0,00011	0,000062	0,000040	0,000028			

Cuadro 3: Datos para a masa 3

$m_4 = 1,001 + 0,001$								
	$\tau = 9.8198 + 0.0098$							
n	n 1 2 3 4 5 6							
γ (Hz)	44	89	133	178	222	266		
d (m)	1,69	0,85	0,56	0,42	0,34	0,29		
λ (m)	3,38	1,70	1,12	0,84	0,68	0,58		
$s(\lambda)$ (m)	0,06	0,06	0,06	0,06	0,06	0,06		
T (s)	0,02273	0,01124	0,007519	0,005618	0,004505	0,003759		
s(T) (s)	0,00052	0,00013	0,000057	0,000032	0,000020	0,000014		

Cuadro 4: Datos para a masa 4

$m_5 = 0.701 + 0.001$								
	τ =6,8768 + 0,0098							
n	n 1 2 3 4 5 6							
γ (Hz)	37	75	112	149	186	224		
d (m)	1,69	0,85	0,56	0,42	0,34	0,29		
λ (m)	3,38	1,70	1,12	0,84	0,68	0,58		
$s(\lambda)$ (m)	0,06	0,06	0,06	0,06	0,06	0,06		
T (s)	0,02703	0,01333	0,008929	0,006711	0,005376	0,004464		
s(T) (s)	0,00073	0,00018	0,000080	0,000045	0,000029	0,000020		

Cuadro 5: Datos para a masa $5\,$

1.1. Velocidade de propagación

Agora realizaremos unha regresión lineal do período (T) fronte á lonxitude de onda (λ) para poder calcular a velocidade de propagación da onda dacordo coa seguinte expresión:

$$\lambda_n = c_i T_n \tag{4}$$

O parametro b das nosas regresións lineas corresponderanse coa velocidade de propagación da onda. Recollemos todas as regresión lineais para cada unha das masas na seguinte gráfica:

Figura 1: Regresións lineais T fronte a λ para todas as masas

Como podemos observar a maiores tensión na corda obtemos maiores velocidades de propagación. Os resultados obtidos recollense a continuación:

	m_1	m_2	m_3	m_4	m_5
c (m/s)	50,9	67,1	108,2	148,2	124,7
s(c) (m/s)	1,3	1,7	2,7	3,7	3,2
r	0,9999	0,9999	0,99994	0,99995	0,99992

Cuadro 6: Resultados regresións para o cálculo de c_i

1.2. Densidade lineal

Unha vez obtida a velocidade de propagación para cada unha das masas poderemos calcular a densidade linial do fío. Para iso realizaremos novamente unha regresión lineal pero enfrontaremos a tensión (τ) fronte ó cadrado da velocidade (c^2) . Empregando a relación $c^2 = \frac{1}{\rho_l} \tau$ poderemos igualar o termo resultante b da nosa regresión lineal para atopar a densidade lineal do fío.

$$\rho_l = \frac{1}{b} \qquad s(\rho_l) = \frac{1}{b^2} s(b) \tag{5}$$

Os resultados da regresión lineal recóllense a continuación:

$$b = 2208m/kg$$
 $\rho_l = 0,000453kg/m$ $s(b) = 79m/kg$ $s(\rho) = 0,000016kg/m$ $r = 0,9990$

Figura 2: Regresión τ fronte a c^2

1.3. diamtro do cable

Unha vez temos a densidade lineal da corda e a densidade volúmica da mesma (este dato era coñecido, $\rho_v = 7850 kg/m^3$) poderemos calcular o diámetro d do cable facendo uso da definición de ambas densidades.

$$\rho_l = \frac{m}{l} \qquad \rho_v = \frac{m}{V} = \frac{m}{\pi r^2 l} \tag{6}$$

Relacionando ambas expresión e sabendo que d=2r chegaremos a unha ecuación coa que poderemos calcular o diametro do fío.

$$d = 2\sqrt{\frac{\rho_l}{\pi \rho_v}} \qquad s(d) = \frac{1}{\sqrt{\frac{\rho_l}{\pi \rho_v}}} \frac{1}{\pi \rho_v} s(\rho_l)$$
 (7)

Tras facer os cálculos obtemos que:

$$d = 0.0002710m = 0.2710mm$$
 $s(d) = 0.0048mm$

Comparando os resultados obtidos no laboratorio experimentalmente coas medidas directas do diametro do fío $(d=0,25\pm0,05mm)$ podemos observar como ambos resultados son cercanos e coincidentes dentro das súas incertidumbres.

1.4. Polarización

Para rematar co cable estudaremos de forma cualitativa a polarización. Colgamos a masa $m_1 = 0,099kg$, aplicamoslle ó fío unha voltaxe inicial de 1V e atopamos o frecuencia fundamental (n=1). A partir de aquí aumentaremos lentamente a voltaxe aplicada e observaremos o comportamento do fío.

Para pequenos valores de voltaxe (1V, 2V) observamos como as oscilacións vense polarizadas ó plano vertical pero a partir dos 3V empezamos a percibir un movemento tamén no plano horizontal. Para esta voltaxe podemos observar como a polarización empeza a ser diagonal en vex de únicamente vertical. Se seguimos aumentando a voltaxe (6V, 8V) observamos como a corda deixa de estar polarizada e empeza describir un trazado elíptico que canto máis aumenta a voltaxe máis se asemella a unha circunferencia. A partir dos 10V xa é case imperceptible a elipse e a partir dos 15V a traxectoria que traza a corda é claramente unha circunferencia.

Realizamos este mesmo proceso cunha segunda masa $m_2 = 0,197kg$ e o comportamento foi moi similar. A única diferencia que atopamos respecto da primeira masa foi a voltaxe que tiñamos que aportrlle á corda para poder poder percibir os fenómenos anterioremente decritos. Para esta masa empezamos a percibir a polarización diagonal a partir dos 5V, o trazado elíptico pode verse a partir dos 8V e se chegamos ós 20V vese como o trazado é case circular. Neste caso non aumentamos máis a voltaxe pero podemos supoñer que se seguiramos aumentando chegaríamos ó mesmo resultado que para a masa 1; para voltaxe suficientemente alta o trazo sería circular.

2. Figuras de Chladni

Na última parte da práctica buscaremos os modos normais de dúas placas distintas, unha circular e outra cuadrada, co fin de observar como os nodos das placas forman distintas figuras coñecidas como figuras de Chladni.

Para isto conetaremos o xerador á placa e distribuiremos area de forma uniforme sobre a mesma. Empezaremos aplicando unha voltaxe de 3V e unha frecuencia de 100 Hz que Aumentaremos paulatinamente de 10 en 10 Hz ata atopar os distintos modos da placa.

Cando cheguemos a un dos modos percibiremos como a placa comeza a producir son e a area desplazarase lentamente cara os nodos. Para acelerar estre proceso aumentaremos a voltaxe durante uns segundos ata que observemos como toda a area se refuxiou nos nodos da placa. Cando paremos o xerador poderemos ver con claridade coma a area traza unha figura nomeada figura de Chladni.

O primeiro modo correspondente á placa cadrada atopamolo para $\gamma=205$ Hz. Como podemos ver na seguinte imaxe, a figura que se forma na superficie das placas trátase dunha mestura entre un rombo e unha circunferencia.

Figura 3: Primeiro modo placa cadrada

O segundo modo aparece para $\gamma=541$ Hz, formando unha figura semellante a un cadrado coas esquinas redondeadas e 4 curvas tanxentes a ditas esquinas.

Figura 4: Segundo modo placa cadrada

Para a placa redonda tan só pudimos atopar un modo normal correspondente á frecuencia $\gamma=277$. Como podemos observar a continuación o trazado que forma a area é unha circunferencia.

Figura 5: Modo placa redonda