Data Management With R: Exploratory Data Analysis

Matthias Haber 25 September 2017 Prerequisites

Last week's homework

Exploratory Data Analysis

Homework Exercises

Prerequisites

Packages

```
library(tidyverse)
```

Warning: package 'tidyverse' was built under R version 3

Data

336,776 flights that departed from New York City in 2013

```
# install.packages("nycflights13")
library(nycflights13)
```

Warning: package 'nycflights13' was built under R version

year	month	day	dep_time	sched_dep_time	dep_delay
2013	1	1	517	515	2
2013	1	1	533	529	4
2013	1	1	542	540	2
2013	1	1	544	545	-1

Last week's homework

Homework Solutions

```
library(tidyverse)
library(nycflights13)
data("flights")
```

```
# Which destination has the most carriers?
flights %>%
  filter(!is.na(dep_delay), !is.na(arr_delay)) %>%
  group_by(dest) %>%
  summarise(carriers = n_distinct(carrier)) %>%
  arrange(desc(carriers)) %>%
  head(n = 4)
```

```
# Which destination has the largest spread (standard
# deviation) in terms of distance that planes traveled
# to get to it.
flights %>%
  group_by(dest) %>%
  summarise(spread = sd(distance)) %>%
  arrange(desc(spread)) %>%
  head(n = 1)
```

```
## # A tibble: 1 × 2

## dest spread

## <chr> <dbl>

## 1 EGE 10.54907
```

```
# What is the average (mean) departure delay of United
# Airlines? Round to the nearest integer.
flights %>%
 filter(carrier == "UA") %>%
  summarise(delay = round(mean(dep_delay, na.rm =TRUE)))
## # A tibble: 1 × 1
##
    delay
## <dbl>
## 1 12
```

[1] 245

```
# How many flights were delayed by at least an hour,
# but made up over 45 minutes in flight?
flights %>%
  filter(dep_delay >= 60, dep_delay-arr_delay > 45) %>%
  n_distinct()
```

```
# At what time (minutes after midnight) did the first
# flight leave on September 18, 2013?
flights %>%
  filter(month == 9, day == 18) %>%
  mutate(dep time2 = dep time \%/\% 100 * 60 +
           dep_time %% 100) %>%
  select(dep_time2) %>%
  arrange(dep time2) %>%
  head(n=1)
```

```
## # A tibble: 1 × 1
## dep_time2
## <dbl>
## 1 290
```

```
# How many flights left before 5am in September (including
# # of delayed flights from the previous day)?
flights %>%
  filter(!is.na(dep_delay)) %>%
  filter(month == 9, dep_time < 500) %>%
  n_distinct()
```

[1] 66

```
# Which departure airport (FAA airport code) has the
# highest number of departure delays that are longer
# than 2 hours?
flights %>%
  filter(dep_delay > 120) %>%
  group_by(origin) %>%
  summarise(delay = n())
```

```
## # A tibble: 3 × 2
## origin delay
## <chr> <int>
## 1 EWR 3884
## 2 JFK 3048
## 3 LGA 2791
```

```
# Which departure airport (FAA airport code) has
# the longest mean departure delay in September?
flights %>%
 filter(month == 9) %>%
  group by(origin) %>%
  summarise(delay = mean(dep_delay, na.rm =TRUE))
## # A tibble: 3 × 2
    origin delay
##
     <chr> <dbl>
##
## 1 EWR 7.290954
## 2 JFK 6.635776
## 3 LGA 6.207439
```

```
# Which carrier (two letter abbreviation) has the
# shortest average (mean) departure delay when you
# take into account the distance that carrier traveled?
flights %>%
  group by(carrier) %>%
  mutate(delay = dep_delay / distance) %>%
  summarise(delay = mean(delay, na.rm =T)) %>%
  arrange(delay) %>%
  head(n=1)
```

```
# Which plane (tailnum) has the worst on-time
# record in terms of arrival delay?
flights %>%
  group_by(tailnum) %>%
  summarise(delay = mean(arr_delay, na.rm =T)) %>%
  arrange(desc(delay)) %>%
  head(n=1)
```

```
## # A tibble: 1 × 2
## tailnum delay
## <chr> <dbl>
## 1 N844MH 320
```

Exploratory Data Analysis

Goals

"There are no routine statistical questions, only questionable statistical routines." — Sir David Cox

"Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise." — John Tukey

Learn how to use visualization and transformation to systematically explore your data to answer or generate questions about your data.

Homework Exercises

Homework Exercises

For this week's homework exersises go to Moodle and answer the Quiz posted in the Data Transformation section. You will be asked a number of questions randomly selected from a question pool. If you work in pairs, then you might get two different sets of questions.

Deadline: Sunday, October 1 before midnight.

That's it for today. Questions?