PV Measurement

48550Renewable Energy Systems - Lab $1\,$

 Robert Carey
 99139382

 William Rooke
 12051342

 Joel Goodwin
 98055953

 August 9, 2019

Contents

1	Pur	rpose	3
2	Lab	o Questions	3
	2.1	Q1	3
	2.2	Q2	3
	2.3	Q3	4
3	Exp	perimental Measurements	4
	3.1	Results	5
		3.1.1 Graphs	5
		3.1.2 Tables	7

List of Figures

1	PV Cell Structure	3
2	Circuit diagram of experiment	4
3	Measurement of panel insolation	5
4	Voltage vs Current	5
5	Voltage vs Power	6
6	Resistance vs Power	6
	of Tables	
1	0 Degrees, 7800 Lux	7
2		
3	40 Degrees, 8380 Lux	7
3	40 Degrees, 8380 Lux	
4		8
	90 Degrees, 5259 Lux	8

1 Purpose

- To familiarize with the non-linear electrical property of solar PV generation.
- To investigate the effects of solar radiation, shading and tilt angle of a solar panel on the electrical characteristic of solar cells.
- To determine the optimal conditions for operating a PV panel in a circuit with a known load and understand maximum power point tracking principle (MPPT).
- To collect measurement data for construction of a PV array for the individual assignment.

2 Lab Questions

2.1 Q1

Briefly explain the mechanism of solar PV generation with the aid of diagram(s).

Solar Photovoltaic (PV) generation work by using multiple semicondictor devices (PV cells) that convert light into electrical energy. Usally these PV cells are arrange in arrays to increase electrical output.

An example is of PV cell construction is a wafer f p-type silicon with a thin layer of n-type silicon on one side. The p-type and n-type material acts as the positive and negative terminal of the cell respectively. When light hits the PV cell photons of light will provide energy to the electrons to promote them from the valence band into the conduction band, leaving behind a positive "hole". At this point the electrons are now free to flow through the crystal structure and conduct electricity. This process is illustrated in fig. 1.

Figure 1: PV Cell Structure

2.2 Q2

Explain the three test conditions and show the results in both table format and graphical plots.

We took measurements on two separate days. For both days we took measurements at the same time of day and location with the solar panel in the same orientation. The only variable we change in our set up was the elvation of the solar panel.

1. Cloudy Day

- Solar panel at 0 degrees elevation.
- Solar panel at 40 degrees elevation.
- Solar panel at 90 degrees elevation.
- Solar Panel at 0 degrees elevation with 3 PV cells covered.

2. Clear Sunny Day

- Solar panel at 0 degrees elevation.
- Solar panel at 40 degrees elevation.

The results from these test cases can be seen in section 3.1.

2.3 Q3

Locate on the graphs the estimated maximum power points (MPPs). Comment on any variation of the MPPs and the implication of loading impedance values for the PV panel to maintain at MPPs under all solar intensity conditions.

From fig. 5 it can be seen that the MPP is much larger for higher insolation values (measured in Lux). This is due to the fact that there is a much larger current flow occouring with greater insolation.

fig. 6 illustrates the implications of loading impedance on the MPP for different insolation. For our higher insolation measurements (38400 Lux) the MPP was occouring at impedances of around 50Ω however for lower insolation measurements (3880 Lux) the MPP was occouring at impedances of around 250Ω . This illustrates that in order to maintain the MPP the load impedance nees to be reduced for greater insolation.

3 Experimental Measurements

To begin taking measurements of the current and voltage produced by the PV panel, the equipment, consisiting of the PV panel, a current meter, voltage meter and resistance box, were set up as shown in fig. 2

Figure 2: Circuit diagram of experiment

The insolation of the PV panel was taken for each angle setup by placing the light meter on top of the PV panel before measurements were taken as shown in fig. 3.

Figure 3: Measurement of panel insolation

The voltage and current produced by the PV panel was then measured at three different levels of insolation and at a number of resistances, provided by the resistance box, in order to find the maximum power point (MPP) for the panel.

3.1 Results

3.1.1 Graphs

Figure 4: Voltage vs Current

Figure 5: Voltage vs Power

Figure 6: Resistance vs Power

3.1.2 Tables

Table 1: 0 Degrees, 7800 Lux

R1 (Ohms)	R2 (Ohms)	Total (Ohms)	Current (A)	Voltage (V)	Power (W)
0.00	0.00	0.00	0.06	0.14	0.01
1.00	0.00	1.00	0.06	0.20	0.01
4.70	0.00	4.70	0.06	0.43	0.03
10.00	0.00	10.00	0.06	0.74	0.04
22.00	0.00	22.00	0.06	1.43	0.08
33.00	0.00	33.00	0.06	2.03	0.12
47.00	0.00	47.00	0.06	2.83	0.16
68.00	0.00	68.00	0.06	4.15	0.24
100.00	0.00	100.00	0.06	6.08	0.36
220.00	0.00	220.00	0.06	12.75	0.74
220.00	25.00	245.00	0.06	14.50	0.87
220.00	50.00	270.00	0.06	16.20	0.93
O/C			0.00	20.83	0.00

Table 2: 40 Degrees, 8380 Lux

R1 (Ohms)	R2 (Ohms)	Total (Ohms)	Current (A)	Voltage (V)	Power (W)
0.000	0.000	0.000	0.064	0.150	0.010
1.000	0.000	1.000	0.064	0.217	0.014
4.700	0.000	4.700	0.065	0.456	0.030
10.000	0.000	10.000	0.065	0.808	0.052
22.000	0.000	22.000	0.064	1.585	0.101
33.000	0.000	33.000	0.064	2.265	0.145
47.000	0.000	47.000	0.064	3.150	0.202
68.000	0.000	68.000	0.064	4.470	0.286
100.000	0.000	100.000	0.064	6.600	0.422
220.000	0.000	220.000	0.064	14.000	0.893
220.000	25.000	245.000	0.064	15.600	0.992
220.000	50.000	270.000	0.061	16.850	1.021
O/C			0.000	20.930	0.000

Table 3: 90 Degrees, 5259 Lux

R1 (Ohms)	R2 (Ohms)	Total (Ohms)	Current (A)	Voltage (V)	Power (W)
0.000	0.000	0.000	0.042	0.100	0.004
1.000	0.000	1.000	0.043	0.150	0.006
4.700	0.000	4.700	0.042	0.300	0.013
10.000	0.000	10.000	0.042	0.540	0.023
22.000	0.000	22.000	0.042	1.050	0.044
33.000	0.000	33.000	0.042	1.497	0.063
47.000	0.000	47.000	0.042	2.070	0.087
68.000	0.000	68.000	0.042	2.930	0.122
100.000	0.000	100.000	0.041	4.250	0.176
220.000	0.000	220.000	0.041	9.040	0.374
220.000	25.000	245.000	0.042	10.170	0.422
220.000	50.000	270.000	0.041	12.300	0.509
O/C			0.000	20.280	0.000

Table 4: 0 Degrees, 1100 Lux, 3 Cells Covered

R1 (Ohms)	R2 (Ohms)	Total (Ohms)	Current (A)	Voltage (V)	Power (W)
0.000	0.000	0.000	0.004	0.020	0.000
1.000	0.000	1.000	0.004	0.010	0.000
4.700	0.000	4.700	0.004	0.080	0.000
10.000	0.000	10.000	0.002	0.040	0.000
22.000	0.000	22.000	0.002	0.060	0.000
33.000	0.000	33.000	0.002	0.080	0.000
47.000	0.000	47.000	0.002	0.120	0.000
68.000	0.000	68.000	0.002	0.170	0.000
100.000	0.000	100.000	0.002	0.240	0.001
220.000	0.000	220.000	0.002	0.500	0.001
220.000	25.000	245.000	0.002	0.540	0.001
220.000	50.000	270.000	0.002	1.100	0.002
O/C			0.000	20.400	0.000

Table 5: 0 Degrees, 38400 Lux

R1 (Ohms)	R2 (Ohms)	Total (Ohms)	Current (A)	Voltage (V)	Power (W)
0.000	0.000	0.000	0.301	0.700	0.210
1.000	0.000	1.000	0.307	1.050	0.322
4.700	0.000	4.700	0.309	2.160	0.667
10.000	0.000	10.000	0.310	3.800	1.178
22.000	0.000	22.000	0.310	7.500	2.325
33.000	0.000	33.000	0.310	10.850	3.364
47.000	0.000	47.000	0.306	14.800	4.529
68.000	0.000	68.000	0.270	19.000	5.130
100.000	0.000	100.000	0.198	20.400	4.039
220.000	0.000	220.000	0.095	21.400	2.033
220.000	25.000	245.000	0.084	21.500	1.806
220.000	50.000	270.000	0.077	21.500	1.656
O/C			0.000	22.500	0.000

Table 6: 40 Degees, Out of Range Lux

R1 (Ohms)	R2 (Ohms)	Total (Ohms)	Current (A)	Voltage (V)	Power (W)
0.000	0.000	0.000	0.363	0.760	0.276
1.000	0.000	1.000	0.363	1.120	0.407
4.700	0.000	4.700	0.362	2.430	0.880
10.000	0.000	10.000	0.363	4.300	1.561
22.000	0.000	22.000	0.362	8.600	3.113
33.000	0.000	33.000	0.361	12.500	4.513
47.000	0.000	47.000	0.355	17.100	6.071
68.000	0.000	68.000	0.282	19.700	5.555
100.000	0.000	100.000	0.201	20.700	4.161
220.000	0.000	220.000	0.096	21.500	2.064
220.000	25.000	245.000	0.085	21.600	1.836
220.000	50.000	270.000	0.077	21.600	1.663
O/C			0.000	22.300	0.000