№1

Напишите программу, на вход которой подаётся прямоугольная матрица в виде последовательности строк. После последней строки матрицы идёт строка, содержащая только строку "end".

Программа должна вывести матрицу того же размера, у которой каждый элемент в позиции i, j равен сумме элементов первой матрицы на позициях (i-1, j), (i+1, j), (i, j-1), (i, j+1). У крайних символов соседний элемент находится с противоположной стороны матрицы.

В случае одной строки/столбца элемент сам себе является соседом по соответствующему направлению.

Примеры:

Ввод 1:

953

07-1

-529

end

Вывод 1:

3 21 22

10619

20 16 -1

Ввол 2:

1

end

Вывол 2:

4

№ 2

Выведите таблицу размером $\mathbf{n} \times \mathbf{n}$, заполненную числами от 1 до \mathbf{n}^2 по спирали, выходящей из левого верхнего угла и закрученной по часовой стрелке, как показано в примере (здесь $\mathbf{n} = \mathbf{5}$):

Ввол:

5

Вывод:

12345

16 17 18 19 6

15 24 25 20 7

14 23 22 21 8

13 12 11 10 9

№3

В институте биоинформатики по офису передвигается робот. Недавно студенты из группы программистов написали для него программу, по которой робот, когда заходит в комнату, считает количество программистов в ней и произносит его вслух: "п программистов".

Для того, чтобы это звучало правильно, для каждого п нужно использовать верное окончание слова.

Напишите программу, считывающую с пользовательского ввода целое число **n** (неотрицательное), выводящее это число в консоль вместе с правильным образом изменённым словом «программист», для того чтобы робот мог нормально общаться с людьми, например: *1 программист, 2 программиста, 5 программистов*.

В комнате может быть очень много программистов. Проверьте, что ваша программа правильно обработает все случаи, как минимум до 1000 человек. В конце документа представлено приложение, которое позволит понять, как правильно классифицировать числа для правильного вывода.

Примеры:

Ввод 1: 5 Вывод 1: 5 программистов Ввод 2: 0 Вывод 2: 0 программистов Ввод 3: 1 Вывод 3: 1 программист Ввод 4: 2 Вывод 4: 2

2 программиста

№ 4

Объявлены две числовые переменные \mathbf{a} и \mathbf{b} . Необходимо сделать так, чтобы без объявления других переменных в результате работы алгоритма значения переменных поменялись местами. Например, если изначально $\mathbf{a} = \mathbf{4}$, $\mathbf{b} = \mathbf{5}$, то в результате алгоритма стало $\mathbf{a} = \mathbf{5}$, $\mathbf{b} = \mathbf{4}$. Применять можно только операции присваивания и арифметические операции с числами и значениями переменных. Конструкцию \mathbf{a} , $\mathbf{b} = \mathbf{b}$, \mathbf{a} применять нельзя!

№ 5

Имеется неупорядоченный массив из $\mathbf{n-1}$ различных целых чисел от $\mathbf{1}$ до \mathbf{n} ($\mathbf{1},...,\mathbf{j-1},\mathbf{j+1},....,\mathbf{n}$). Необходимо за один цикл определить недостающее число \mathbf{j} .

№6 Ответ к задаче: 8601 28

Игра «Заполни поле» заключается в том, чтобы заполнить прямоугольное поле, разбитое на квадраты. Игрок хочет написать программу, которая определила бы сколько есть позиций, в которые можно поместить горизонтальные блоки из четырех квадратов.

Входные данные представлены в файле 26-72.txt следующим образом. В первой строке записаны три числа N, M, K – размер поля по горизонтали, размер поля по вертикали и количество занятых на поле квадратов. В каждой из следующих K строк записана пара чисел – номера строки и столбца занятого квадрата.

Программа должна вывести пару чисел — количество позиций, в которые можно разместить горизонтальную линию из четырёх квадратов и номер ряда, в котором находится максимальное количество позиций для такого размещения. Если таких рядов несколько, выводится минимальный возможный номер. Пример входного файла:

После анализа пар можем прийти к выводу, что имеем дело со следующим полем:

	1	2	3	4	5	6	7
1							
2							
3							
4							
5							
6							

Расположить линию из четырех квадратов можно в 9 позициях (2;1), (3;2), (3;3), (4;1), (4;2), (4;3), (4;4), (5;3), (5;4). Максимальное количество позиций (4), в которых можно расположить фигуру, в 4 ряду. Ответ: 9 4.

№7 Ответ к задаче: 36.138.32.0 24

В терминологии сетей TCP/IP IP-адресом называют 32-битную последовательность, позволяющую однозначно определить подключенное к сети устройство, маской сети называют двоичное число (32 бита), которое показывает, какая часть IP-адреса узла сети относится к адресу сети, а какая – к адресу узла в этой сети. Адрес сети получается в результате применения поразрядной конъюнкции к заданному адресу узла и его маске.

Для удобства каждые 8 бит в последовательности разделяются точками.

Например, при IP-адресе 174.23.88.201 и маске 255.255.192.0 адрес сети будет равен 174.23.64.0, адрес узла в этой сети -6345.

В файле **26.txt** к заданию приведен лог обращений к серверу – IP-адреса, с которых были получены запросы. Определите адрес сети, из которой пришло наибольшее количество запросов. Для этой сети определите количество узлов, отправлявших запросы. Известно, что маска у всех сетей равна 255.255.224.0.

Формат входных данных:

В первой строке число N– количество обращений к серверу, в каждой из последующих N строках 4 числа, числа, соответствующие числам, разделенным точками.

Формат выходных данных — строка, адрес сети, из которой отправлено максимальное количество запросов, и число, количество узлов в этой сети, которые отправляли запросы. Если сетей, удовлетворяющих условию, нашлось больше одной, выбрать ту, для которой второе число больше. Если и таких сетей несколько, выбрать сеть с наименьшим IP-адресом.

Пример:

5

125 10 13 14 125 10 13 20 125 10 45 14

Ответ для примера: 125.10.0.0 2

Приложение к задаче

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59
60		62	63		65	66	67	68	69	70	71		73			76	77	78	79
0.0000000	61			64								72		74	75				
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	108	109
120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139
140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199
200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219
220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259
260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279
280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299
300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319
320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339
340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359
360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379
380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399
400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419
420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439
440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459
460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479
480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499
500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519
520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539
540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559
560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579
580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599
600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619
620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639
640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659
660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679
680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699
700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719
720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739
740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759
760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779
780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799
800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819
820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839
840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859
860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879
880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899
900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919
920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939
940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959
960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979
980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999