NEW FIGURES (3): Importance of the Dielectric Friction Effect on the Conductivity of Polyelectrolytes

Jalel Mhalla*, Anis Ghazouani, Sondes Boughammoura

UR Electrolytes, Laboratory LPQS, Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia

GRAPHIC ABSTRACT

Schematization of the dielectric friction phenomenon for a chain of successive charged spheres

Fig. 1. Ellipsoidal representation of the conformation of a coiled polyion.

: Represents a condensed counterion

• : Represents a free counterion (in the ionic atmosphere)

Fig. 2. Representation of an ellipsoidal polyion surrounded by its condensed couterions and its ionic atmosphere.

Fig. 3 Expanded formula of poly(1,1-dimethyl-3,5-dimethylene piperidinium) PDDP $^{Z_{S^+}}$ polyion chain.

Fig. 4 Comparison between the theoretical variations with the counter ion concentration C_F , of the degree of dissociation α_F in the case of ellipsoidal model and in the case of stretched chain model, for PDDPF polyelectrolytes in aqueous solution at 25 °C.

Fig. 5 Heuristic schematization of the dielectric friction phenomenon for spherical moving charged particle.

Fig. 6 Schematization of the dielectric friction phenomenon for a non-spherical polyion.

Fig. 7 Comparison of the variations of the apparent radius R_{app} , the inter-focuses distance L and the mean radius < R > of an ellipsoidal polyion with its eccentricity $\gamma = L/2R$.

Fig. 8 Schematization of the dielectric friction phenomenon for a chain of successive charged spheres.

Fig. 9. Representation of a moving polyion as a chain of successive charged electrostatic blobs.

Fig. 10 Globular hydrophobic Polymer represented as dense stack of Thermal Blobs of size ξ_T .

Fig. 11 The "pearl necklace" conformation of a hydrophobic polyion chain.

Fig. 12 Schematization of the electrophoretic effect undergone by a moving polyion.

Fig. 13 Schematization of the ionic relaxation friction undergone by a moving polyion.

Fig. 14 Variations with the ionic concentration C_X of experimental equivalent conductivities: Λ^{exp}_{PDDPF} , Λ^{exp}_{PDDPCI} , Λ^{exp}_{PDDPBr} and $\Lambda^{exp}_{PDDPNO3}$, of PDDPX polyelectrolytes in water at 25°C.

Fig. 15 Comparison of the variations with concentration C_{F} of the equivalent conductivities $A_{PDDPF}^{Manning,cor}$, A_{PDDPF}^{Colby} , A_{PDDPF}^{colby} , respectively of Manning, Colby, experimental, and ours theoretical Conductibility, of Fluoride poly(1,1-dimethyl-3,5-dimethylene piperidinium) PDDPF polyelectrolyte.

Fig. 16 Comparison of the variations with concentration C_{Cl}^- of the equivalent conductivities $\Lambda^{Manning,cor}_{PDDPCl}$, Λ^{Colby}_{PDDPCl} , Λ^{exp}_{PDDPCl} , respectively of Manning, Colby, experimental, and ours theoretical Conductibility, of Chloride poly(1,1-dimethyl-3,5-dimethylene piperidinium) PDDPCl polyelectrolyte.

Fig. 17 Comparison of the variations with concentration C_{Br} of the equivalent conductivities $\varLambda^{Manning,cor}_{PDDPBr}$, $\varLambda^{Colby}_{PDDPBr}$, $\varLambda^{exp}_{PDDPBr}$, \varLambda^{th}_{PDDPBr} , respectively of Manning, Colby, experimental, and ours theoretical Conductibility, of Bromide poly(1,1-dimethyl-3,5-dimethylene piperidinium) PDDPBr polyelectrolyte.

Fig. 18 Comparison of the variations with concentration C_{NO3}^- of the equivalent conductivities $\varLambda^{\mbox{Manning,cor}}_{\mbox{PDDPNO3}}$, $\varLambda^{\mbox{colby}}_{\mbox{PDDPNO3}}$, $\varLambda^{\mbox{th}}_{\mbox{PDDPNO3}}$, respectively of Manning, Colby, experimental, and ours theoretical Conductibility, of Nitrate poly(1,1-dimethyl-3,5-dimethylene piperidinium) PDDPNO₃ polyelectrolyte.