Chapter Test

- 1. Two sides of a rectangle have the lengths 20 and 32. Find, in simplest form, the ratio of:
 - a. the length of the shorter side to the length of the longer side
 - b. the perimeter to the length of the longer side
- 2. If quad. $ABCD \sim$ quad. THUS, then:
 - a. $\angle U \cong \underline{?}$
 - **b.** $\frac{BC}{HU} = \frac{AD}{2}$
- 3. If x:y:z = 4:6:9 and z = 45, then $x = \frac{?}{}$ and $y = \frac{?}{}$.
- **4.** If $\frac{8}{9} = \frac{x}{15}$, then $x = \frac{?}{10}$. **5.** If $\frac{a}{b} = \frac{c}{10}$, then $\frac{a+b}{2} = \frac{?}{10}$.
- 6. What postulate or theorem justifies the statement $\triangle AVB \sim \triangle NVK?$
- 7. $\frac{AB}{NV} = \frac{VA}{2}$

- 8. $\angle VBA \cong ?$
- **9.** The scale factor of $\triangle AVB$ to $\triangle NVK$ is $\frac{5}{6}$. If VA = 2.5 and VB = 1.7, then $VN = \frac{?}{}$

- **10.** If PR = 10, RS = 6, and PT = 15, then $TU = \frac{?}{}$.
- 11. If PT = 32, PU = 48, and RS = 10, then $PR = \frac{?}{}$.
- 12. If PR = 14, RS = 7, and RT = 26, then $SU = \frac{?}{}$.

- In $\triangle GEB$, the bisector of $\angle E$ meets GB at K.
- 13. If GK = 5, KB = 8, and GE = 7, then $EB = \frac{?}{}$.
- **14.** If GE = 14, EB = 21, and GB = 30, then $GK = \frac{?}{}$.

15. Given: $\overrightarrow{DE} \parallel \overrightarrow{FG} \parallel \overrightarrow{HJ}$

Prove:
$$DF \cdot GJ = FH \cdot EG$$

16. Given: BX = 6; AX = 8;

$$CX = 9; DX = 12$$

Prove: $\overline{AB} \parallel \overline{CD}$

