

• Nicht jedes Dreieck separat, sondern zusammenhängend/konsistent

Media Informatics

Graphics & Geometric Computing

Prof. Dr. M. Campen

Prof. Dr. M. Campen

• 1D Illustration:

"Low Distortion" Mapping

Wie?

Länge des Objektes abmessen und gleichmäßig auf Texturlänge skalieren.

Aber: funktioniert für 1D-Kantenzug, nicht jedoch für Dreiecksnetz.

• 1D Illustration:

"Low Distortion" Mapping

Wie?

Randpunkte in Textur fixieren, den Rest als "Gummi" oder "Feder" betrachten und relaxieren lassen.

Funktioniert auch für Dreiecksnetz!

- Low-Distortion Mapping
 - Für Dreiecksnetze mit einem Rand
 - Rand in Texturebene fixieren
 - Kanten als Federn betrachten (Hooke'sches Gesetz)
 - **Satz von Tutte**: Wenn der Rand *konvex* fixiert ist, überlappen die Dreiecke nicht, d.h. jedes hat einen exklusiven Texturbereich.

- Low-Distortion Mapping
 - Hooke'sches Gesetz: Kraft proportional zu Federdehnungslänge
 - Wir nehmen an, dass unsere virtuellen Federn im Ruhezustand Länge 0 haben.
 - Netz nimmt Zustand des Kraftgleichgewichts ein:
 - An jedem Knoten addieren sich die Kraftvektoren, d.h. die angeschlossenen Kantenvektoren, zu 0:

• Für jeden Knoten
$$v: \sum_{v_i \in \mathcal{N}(v)} (v_i - v) = 0$$

- Low-Distortion Mapping
 - Hooke'sches Gesetz: Kraft proportional zu Federdehnungslänge
 - Wir nehmen an, dass unsere virtuellen Federn im Ruhezustand Länge 0 haben.
 - Netz nimmt Zustand des Kraftgleichgewichts ein:
 - An jedem Knoten addieren sich die Kraftvektoren, d.h. die angeschlossenen Kantenvektoren, zu 0:

• Für jeden Knoten
$$v$$
: $\sum_{v_i \in \mathcal{N}(v)} (v_i - v) = 0$
$$\left(\sum_{v_i \in \mathcal{N}(v)} v_i\right) - |\mathcal{N}(v)|v = 0$$

$$v = \frac{1}{|\mathcal{N}(v)|} \left(\sum_{v_i \in \mathcal{N}(v)} v_i\right)$$

- Low-Distortion Mapping
 - Lösung:
 - direkt: Lineares Gleichungssystem aufstellen und lösen

• eine Gleichung pro Vertex:
$$\sum_{v_i \in \mathcal{N}(v)} (v_i - v) = 0$$

- iterativ: Jeden Vertex immer wieder in den Mittelpunkt seiner direkten Nachbarn verschieben (Gauss-Seidel, Jacobi)
 - besser (schnelle Konvergenz): nur halb dorthin schieben:

$$v \leftarrow \frac{1}{2}v + \frac{1}{2}\frac{1}{|\mathcal{N}(v)|} \left(\sum_{v_i \in \mathcal{N}(v)} v_i\right)$$

Bis zum nächsten Mal!

