

Scalable differential transcript usage analysis for single-cell applications

JEROEN GILIS

EuroBioc2019 presentation

Promotor: Prof. Lieven Clement

Supervisor: Dr. Koen Van den Berge

Differential Transcript Usage (DTU)

Our workflow unlocks edgeR for DTU analysis

DGE
$$\begin{cases} Y_{\rm gi} \sim \textit{NB} \left(\mu_{\rm gi}, \varphi_{\rm g}\right) \\ \log \left(\mu_{\rm gi}\right) = \eta_{\rm gi} \\ \eta_{\rm gi} = \beta_0 + \beta_{\rm gc}^{\rm C} + \log \left(S_{\rm i}\right) \end{cases}$$

Our workflow unlocks edgeR for DTU analysis

DTE
$$\begin{cases} Y_{ti} \sim NB \ (\mu_{ti}, \varphi_{t}) \\ \log (\mu_{ti}) = \eta_{ti} \\ \eta_{ti} = \beta_{0} + \beta_{tc}^{C} + \log (S_{i}) \end{cases}$$

Our workflow unlocks edgeR for DTU analysis

• Our workflow takes the gene-level counts (total counts, T_{ti}) as offsets to the GLM framework \rightarrow edgeR-total

Our workflow unlocks edgeR for DTU analysis

$$\begin{array}{c} \boxed{ \begin{array}{c} \mathbf{Y}_{ti} \sim \mathit{NB} \left(\mu_{ti}, \varphi_{t}\right) \\ \\ \log \left(\mu_{ti}\right) = \eta_{ti} \\ \\ \eta_{ti} = \beta_{\theta} + \beta_{tc}^{\mathtt{C}} + \log \left(\mathbf{T}_{ti}\right) \end{array} } \end{array} }$$

 Our workflow takes the gene-level counts (total counts, T_{ti}) as offsets to the GLM framework → edgeR-total

DEXSeq

Counts

	Sample 1	 Sample m
Tx 1	112	 15
Tx t		 •••
Tx n	62	 348

	Sample 1	 Sample m
Tx 1	25	 3
Tx t		 •••
Tx n	88	 212
	•	

'other' counts

Our second workflow takes the other counts as offsets → edgeR-other

Performance evaluation on real bulk data

Gtex dataset, Nature Genetics 45, 580-585 (2013)

Scalability benchmark on real single-cell data

- Our workflow performs a DTU analysis between two groups of 512 cells in ~20 minutes
- DEXSeq scales quadratically

Single-cell transcriptomics case study

Dataset from Buettner et al., Nature Biotechnology 33; 155-160 (2015)

- Dataset; 288 mouse embryonic stem cells, different cell cycle stages (G1, S and G2M)
- Runtime; < 2 minutes
- Significant enrichment in cell cycle processes
- Several DTU genes are;
 - → Biologically relevant
 - ◆ Not picked up in a gene-level analysis
 - Clearly differentially used when visualised

The size of the dots (which represent individual cells) are weighted according to the total expression of the gene in that cell.

Single-cell transcriptomics case study

Buettner dataset, Nature Biotechnology 33; 155-160 (2015)

- Dataset; 288 mouse embryonic stem cells, different cell cycle stages (G1, S and G2M)
- Runtime; < 2 minutes for offset-based methods
- Significant enrichment in cell cycle processes
- Some DTU genes display clear DTU in visualisation and are biologically relevant
- edgeR_other method large number of (false) positive results; sensitive to outliers (?)
- Discrepancy between edgeR-total and limma diffsplice; asses formally in single-cell benchmark

Take-home messages

We are developing a workflow for studying DTU that;

- 1. Has a performance similar to that of DEXSeq
- 2. Correctly controls the false discovery rate
- 3. Scales towards large transcriptomics datasets

Scalable differential transcript usage analysis for single-cell applications

JEROEN GILIS

EuroBioc2019 presentation

Promotor: Prof. Lieven Clement

Supervisor: Dr. Koen Van den Berge

Background - DTU

Background - DEXSeq

Input: matrix of transcript-level counts (e.g. Salmon or kallisto)

Transcript-level counts

		Sample 1	Sample 2	
Gene A	Transcript 1	20	18	
	Transcript 2	10	7	
	Transcript 3	70	45	
Gene B	Transcript 1	22	0	
	Transcript 2	3	16	

Complementary counts

		Sample 1	Sample 2	
Gene A	Transcript 1	80	52	
	Transcript 2	90	63	
	Transcript 3	30	25	
Gene B	Transcript 1	3	16	
	Transcript 2	22	0	

Statistical model:

$$\begin{cases} Y_{ti} \sim NB (\mu_{ti}, \varphi_{t}) \\ \log (\mu_{ti}) = \eta_{ti} \\ \eta_{ti} = \beta_{ti}^{S} + \beta_{t}^{T} + \beta_{tc_{i}}^{TC} \end{cases}$$

Parametric bulk simulation study

Dataset from Love et al., F1000Research, 7:952 (2018)

Gtex dataset stringent filtering

Love dataset stringent filtering

Other parametric bulk simulations and additional methods

Results - Scalability

- Methods that require sample-level intercepts scale quadratically with the number of cells
- edgeR one order of magnitude faster than DESeq2
- All methods scale linearly with the number of transcripts

