全国计算机技术与软件专业技术资格(水平)考试

2006 年下半年 软件设计师 上午试卷

(考试时间 9:00~11:30 共150分钟)

请按下述要求正确填写答题卡

- 1. 在答题卡的指定位置上正确写入你的姓名和准考证号,并用正规 2B 铅笔 在你写入的准考证号下填涂准考证号。
- 2. 本试卷的试题中共有75个空格,需要全部解答,每个空格1分,满分75分。
- 3. 每个空格对应一个序号,有 A、B、C、D 四个选项,请选择一个最恰当的 选项作为解答,在答题卡相应序号下填涂该选项。
- 4. 解答前务必阅读例题和答题卡上的例题填涂样式及填涂注意事项。解答时用 正规 2B 铅笔正确填涂选项,如需修改,请用橡皮擦干净,否则会导致不 能正确评分。

例题

● 2006 年下半年全国计算机技术与软件专业技术资格(水平)考试日期是 (88) 月 (89) 日。

(88) A. 9 B. 10 C. 11 D. 12 (89) A. 4 B. 5 C. 6 D.7

因为考试日期是"11月4日",故(88)选C,(89)选A,应在答题卡序号88下对C填涂,在序号89下对A填涂(参看答题卡)。

- 若内存按字节编址,用存储容量为 32K×8 比特的存储器芯片构成地址编号 A0000H 至 DFFFFH 的内存空间,则至少需要 (1) 片。
 - (1) A. 4
- B. 6
- C. 8
- D. 10
- 某计算机系统由下图所示的部件构成,假定每个部件的千小时可靠度 R 均为 0.9,则该系统的千小时可靠度约为__(2)__。
 - (2) A. 0.882
- B. 0.951
- C. 0.9
- D. 0.99

- 设指令由取指、分析、执行 3 个子部件完成,每个子部件的工作周期均为△t,采用常规标量单流水线处理机。若连续执行 10 条指令,则共需时间__(3)__△t。
 - (3) A.8
- **B**. 10
- C. 12
- D. 14
- 某计算机的时钟频率为 400MHz, 测试该计算机的程序使用 4 种类型的指令。每种指令的数量及所需指令时钟数 (CPI)如下表所示,则该计算机的指令平均时钟数为<u>(4)</u>;该计算机的运算速度约为 (5) MIPS。

_	71 10 10 10 10 10 10 10 10 10 10 10 10 10		
	指令类型	指令数目(条)	每条指令需时钟数
	1	160000	1
	2	30000	2
	3	24000	4
	4	16000	8

- (4) A. 1.85
- B. 1.93
- C. 2.36
- D. 3.75

- (5) A. 106.7
- B. 169.5
- C. 207.3
- D. 216.2
- - (6) A. 2^6

B. $(2^4-m) \times 2^6-1$

C. $(2^4 - m) \times 2^6$

- D. $(2^4-m) \times (2^6-1)$
- 以下不属于网络安全控制技术的是<u>(7)</u>。
- (7) A. 防火墙技术

B. 访问控制技术

- C. 入侵检测技术
- D. 差错控制技术

● "冲击波"病毒属 洞进行快速传播。	于 <u>(8)</u> 类型的	病毒,它利用 Wind	lows 操作系统的 <u>(9)</u>	_漏
(8) A. 蠕虫	B. 文件	C. 引导区	D. 邮件	
(9) A. CGI 脚本	B. RPC	C. DNS	D. IMAP	
实施标准的要求,明确了是 (10) A. 标准化	b法行为的法律责。 B. 标准	任和处罚办法。 C. 标准化法	制定标准的对象与原则以 E D. 标准与标准化	
			参与该企业开发设计的应 开发	
软件的核心程序设计技巧和 (11) A. 属于开发人 C. 违反了企业	员权利不涉及企业		业商业秘密权	
● 计算机要对声音信音信号数字化方法是取样一辨率是 <u>(12)</u> 。			女字声音信号。最基本的 用 2 个字节表示,则量化	• /
(12) A. 1/2	B. 1/1024	C. 1/65536	D. 1/131072	
● 某幅图像具有 640 (13) 种不同的颜色,经 (13) A. 8 (14) A. 61440	5:1 压缩后,其图 B. 256	像数据需占用 <u>(1</u> C. 512	D. 1024	-
● 常见的软件开发模模型适用于需求明确或很少过程。			、喷泉模型等。其中 <u>(</u> 长描述面向对象的软件开	
(15) A.瀑布模型	B. 演化模型	C. 螺旋模型	D. 喷泉模型	
(16) A.瀑布模型	B. 演化模型	C. 螺旋模型	D. 喷泉模型	
● 软件能力成熟度模式和软件企业成熟度的等级证级、可重复级、已定义级、目管理过程的政策和管理规(17) A.初始级	人证标准。该模型 已管理级、优化约 R程,使项目管理	将软件能力成熟度 吸。从 <u>(17)</u> 开好 工作有章可循。	治,要求企业建立基本的	刀始
			^{莫型} 。常用的模型主要有	

④ 中级 COCOMO 模型 ⑤ 高级 COCOMO 模型

其中 (18) 均是静态单变量模型。

(18) A. (1)(2) B. (2)(4)(5) C. (1)(3) D. (3)(4)(5)

● "通过指明一系列可执行的运算及运算的次序来描述计算过程"是_(19) 语言 的特点。

(19) A. 逻辑式 B. 函数式 C. 交互式 D. 命令式(或过程式)

● "X = $(A + B) \times (C - D/E)$ "的后缀式表示为<u>(20)</u>。

(20) A. XAB+CDE/-x=

B. XAB+C-DE /x=

C. $XAB+CDE-/\times=$

D. XAB+CD-E \times =

● 在一个单 CPU 的计算机系统中,采用可剥夺式(也称抢占式)优先级的进程调度 方案,且所有任务可以并行使用 I/O 设备。下表列出了三个任务 T1、T2、T3 的优先级、 独立运行时占用 CPU 和 I/O 设备的时间。如果操作系统的开销忽略不计,这三个任务从同 时启动到全部结束的总时间为 (21) ms, CPU 的空闲时间共有 (22) ms。

任务	优先级	每个任务独立运行时所需的时间
T1	峝	对每个任务:
T2	中	占用 CPU 10ms,I/O 13ms,再占用 CPU 5ms
Т3	低	

(21) A. 28

B. 58

C. 61

D. 64

(22) A. 3

B. 5

C. 8

D. 13

● 从下表关于操作系统存储管理方案 1、方案 2 和方案 3 的相关描述可以看出,它们 分别对应 (23) 存储管理方案。

方案	说明
	在系统进行初始化的时候就已经将主存储空间划分成大小相等或不
1	等的块,并且这些块的大小在此后是不可以改变的。系统将程序分
	配在连续的区域中。
	主存储空间和程序按固定大小单位进行分割,程序可以分配在不连
2	续的区域中。该方案当一个作业的程序地址空间大于主存可以使用
	的空间时也可以执行。
2	编程时必须划分程序模块和确定程序模块之间的调用关系,不存在
3	调用关系的模块可以占用相同的主存区。

(23) A. 固定分区、请求分页和覆盖

B. 覆盖、请求分页和固定分区

C. 固定分区、覆盖和请求分页

D. 请求分页、覆盖和固定分区

● 假设系统中有三类互斥资源 R1、R2 和 R3,可用资源数分别为 8、7 和 4。在 To 时刻系统中有 P1、P2、P3、P4 和 P5 五个进程,这些进程对资源的最大需求量和已分配资 源数如下表所示。在 To 时刻系统剩余的可用资源数分别为 (24)。如果进程按 (25)序 列执行, 那么系统状态是安全的。

资源	最大需求量		己分配资源数					
进程	R1	R2	R3		R1	R2	R3	
P1	6	4	2		1	1	1	
P2	2	2	2		2	1	1	
P3	8	1	1		2	1	0	
P4	2	2	1		1	2	1	
P5	3	4	2		1	1	1	

(24) A. 0、1和0 B. 0、1和1 C. 1、1和0 D. 1、1和1

(25) A. $P1 \rightarrow P2 \rightarrow P4 \rightarrow P5 \rightarrow P3$

B. $P2 \rightarrow P1 \rightarrow P4 \rightarrow P5 \rightarrow P3$

C. $P4 \rightarrow P2 \rightarrow P1 \rightarrow P5 \rightarrow P3$

D. $P4 \rightarrow P2 \rightarrow P5 \rightarrow P1 \rightarrow P3$

● 统一过程(UP)的基本特征是"用例驱动、以架构为中心的和受控的迭代式增量 开发"。UP 将一个周期的开发过程划分为 4 个阶段,其中 (26) 的提交结果包含了系统 架构。

(26) A. 先启阶段 B. 精化阶段 C. 构建阶段 D. 提交阶段

● 某软件在应用初期运行在 Windows NT 环境中。现因某种原因,该软件需要在 UNIX 环境中运行,而且必须完成相同的功能。为适应这个要求,软件本身需要进行修改,而所 需修改的工作量取决于该软件的 (27)。

(27) A. 可扩充性 B. 可靠性 C. 复用性 D. 可移植性

● 按照 ISO/IEC 9126 软件质量度量模型定义,一个软件的可靠性的子特性包括 (28) 。

(28) A. 容错性和安全性

B. 容错性和适应性

C. 容错性和易恢复性

D. 易恢复性和安全性

● (29)详细描述软件的功能、性能和用户界面,以使用户了解如何使用软件。

(29) A. 概要设计说明书

B. 详细设计说明书

C. 用户手册

D. 用户需求说明书

● 各类软件维护活动中, (30) 维护占整个维护工作的比重最大。

(30) A. 完善性 B. 改正性 C. 适应性 D. 预防性

● 给定 C 语言程序: int foo(int x, int y, int d) if(x = 0) { if (y == 0) d = d/x; else d = d / (x * y); } else { if(y == 0) d = 0; else d = d / y; } return d; 当用路径覆盖法进行测试时,至少需要设计 (31) 个测试用例。 (31) A. 3 C. 5 B. 4 D. 8

- 软件的测试通常分单元测试、组装测试、确认测试、系统测试四个阶段进行。(32) 属于确认测试阶段的活动。
 - (32) A. 设计评审

- B. 代码审查 C. 结构测试 D. 可靠性测试
- 面向对象分析的第一步是 (33)。
- (33) A. 定义服务

B. 确定附加的系统约束

C. 确定问题域

- D. 定义类和对象
- 面向对象程序设计语言为 (34) 提供支持。
- (34) A. 面向对象用例设计阶段
- B. 面向对象分析阶段
- C. 面向对象需求分析阶段 D. 面向对象实现阶段
- 下面关于面向对象的描述正确的是 (35)。
- (35) A. 针对接口编程,而不是针对实现编程
 - B. 针对实现编程, 而不是针对接口编程
 - C. 接口与实现不可分割
 - D. 优先使用继承而非组合
- 下面关于 UML 文档的叙述中正确的是 (36) 。
- (36) A. UML 文档指导开发人员如何进行面向对象分析
 - B. UML 文档描述了面向对象分析与设计的结果
 - C. UML 文档给出了软件的开发过程和设计流程
 - D. UML 文档指导开发人员如何进行面向对象设计

- UML 的设计视图包含了类、接口和协作, 其中, 设计视图的静态方面由 (37) 和 (38) 表现;动态方面由交互图、(39)表现。
 - (37) A. 类图 B. 状态图 C. 活动图 D. 用例图

- (38) A. 状态图
- B. 顺序图
- C. 对象图
- D. 活动图

- (39) A. 状态图和类图
 - C. 对象图和状态图
- B. 类图和活动图 D. 状态图和活动图
- UML 中的构件是遵从一组接口并提供一组接口的实现,下列说法错误的是(40)。
- (40) A. 构件应是可替换的 B. 构件表示的是逻辑模块而不是物理模块

 - C. 构件应是组成系统的一部分 D. 构件与类处于不同的抽象层次
- 设计模式具有 (41) 的优点。
- (41) A. 适应需求变化

- B. 程序易于理解
- C. 减少开发过程中的代码开发工作量 D. 简化软件系统的设计
- 下面的 (42) 模式将对象组合成树形结构以表示"部分-整体"的层次结构,并 使得用户对单个对象和组合对象的使用具有一致性。
 - (42) A. 组合(Composite)

B. 桥接 (Bridge)

C. 修饰 (Decorator)

- D. 外观(Facade)
- 下图描述了一种设计模式,该设计模式不可以 (43) 。

- (43) A. 动态决定由一组对象中某个对象处理该请求
 - B. 动态指定处理一个请求的对象集合, 并高效率地处理一个请求
 - C. 使多个对象都有机会处理请求, 避免请求的发送者和接收者间的耦合关系
 - D. 将对象连成一条链,并沿着该链传递请求

- 在面向对象程序设计中,常常将接口的定义与接口的实现相分离,可定义不同的 类实现相同的接口。在程序运行过程中,对该接口的调用可根据实际的对象类型调用其相 应的实现。为达到上述目的,面向对象语言须提供(44)机制。
 - (44) A. 继承和过载(overloading) B. 抽象类

C. 继承和重置(overriding)

- D. 对象自身引用
- 下图是一有限自动机的状态转换图,该自动机所识别语言的特点是 (45), 等价的正规式为 (46)。

- (45) A. 由符号 a、b 构成且包含偶数个 a 的串
 - B. 由符号 a、b 构成且开头和结尾符号都为 a 的串
 - C. 由符号 a、b 构成的任意串
 - D. 由符号a、b构成且b的前后必须为a的串
- (46) A. (a|b)*(aa)* B. a(a|b)*a
- C. (a|b)*
- D. a(ba)*a
- 关系 R、S 如下图所示,元组演算表达式 $\{t \mid (\forall u)(R(t) \land S(u) \land t[3] > u[1])\}$ 的结果为

(47) 。

A	В	С			
1	2	3			
4	5	6			
7	8	9			
10	11	12			
R					

A	В	С
3	7	11
4	5	6
5	9	13
6	10	14
	C	

(47) A.	A	В	C	B.	A	В	C
	1	2	3		3	7	11
	4	5	6		4	5	6
C.	A	В	С	D.	A	В	С
	7	8	9		5	9	13
	10	11	12		6	10	14

● 某企业职工和部门的关系模式如下所示,其中部门负责人也是一个职工。职工和部 门关系的外键分别是 (48)。

职工(职工号,姓名,年龄,月工资,部门号,电话,办公室) 部门(部门号,部门名,负责人代码,任职时间)

查询每个部门中月工资最高的"职工号"的 SQL 查询语句如下:

Select 职工号 from 职工 as E

where 月工资=(Select Max(月工资) from 职工 as M (49))。

- (48) A. 职工号和部门号
- B. 部门号和负责人代码

- (49) A. where M.职工号=E.职工号
- C. 职工号和负责人代码
 D. 部门号和职工号

 A. where M.职工号=E.职工号
 B. where M.职工号=E.负责人代码

 - C. where **M.**部门号=部门号 **D.** where **M.**部门号=**E.**部门号

● 操作序列 T1、T2、T3 对数据 A、B、C 并发操作如下所示, T1 与 T2 间并发操作 <u>(50)</u>, T2 与 T3 间并发操作<u>(51)</u>。

时间	T1	T2	Т3
t 1	读 A=50		
t2	读 B=200		
t 3	X 1=A+B		
t 4			读 B=200
t 5		读 B=200	
t6		B=B-100	
t 7		写 B	
t 8	读 A=50		
t 9	读 B=100		
t 10	X1=A+B		
t 11	验算不对		B=B+50
t 12			写 B

- (50) A. 不存在问题
- B. 将丢失修改
- C. 不能重复读
- D. 将读"脏"数据
- (51) A. 不存在问题
- B. 将丢失修改
- C. 不能重复读
- D. 将读"脏"数据

● 结点数目为 n 的二叉查找树(二叉排序树)的最小高度为 (52) 、最大高度为 (53) 。

- (52) A. n

- B. $\frac{n}{2}$ C. $\lceil \log_2 n \rceil$ D. $\lceil \log_2 (n+1) \rceil$
- (53) A. n
- B. $\frac{n}{2}$
- C. $\left[\log_2 n\right]$ D. $\left[\log_2 (n+1)\right]$

● 某双向链表中的结点如下图所示,删除t所指结点的操作为 (54)。

- (54) A. t->prior->next = t->next; t->next->prior = t->prior;
 - B. t->prior->prior = t->prior; t->next->next = t->next;
 - C. t->prior->next = t->prior; t->next->prior = t->next;
 - D. t->prior->prior = t->next; t->next->prior = t->prior;
- 对于二维数组 a[0..4,1..5],设每个元素占 1 个存储单元,且以列为主序存储,则元 素 a[2,2]相对于数组空间起始地址的偏移量是 (55)。
 - (55) A. 5
- B. 7
- C. 10
- D. 15
- 对于 n 个元素的关键字序列 $\{k_1, k_2, ..., k_n\}$, 当且仅当满足关系 $\mathbf{k}_{i} \leq \mathbf{k}_{2i}$ 且 $\mathbf{k}_{i} \leq \mathbf{k}_{2i+1}$ ($2i \leq n, 2i + 1 \leq n$) 称其为小根堆,反之则为大根堆。以下序列中, (56) 不符合堆的定义。
 - (56) A. (4,10,15,72,39,23,18)
- B. (58,27,36,12,8,23,9)
- C. (4,10,18,72,39,23,15)
- D. (58,36,27,12,8,23,9)
- 求单源点最短路径的迪杰斯特拉(Dijkstra)算法是按 (57) 的顺序求源点到各 顶点的最短路径的。
 - (57) A. 路径长度递减

B. 路径长度递增

C. 顶点编号递减

- D. 顶点编号递增
- (58) 算法策略与递归技术的联系最弱。
- (58) A. 动态规划
- B. 贪心
- C. 回溯
- D. 分治
- 对于具有 n 个元素的一个数据序列, 若只需得到其中第 k 个元素之前的部分排序, 最好采用 (59) ,使用分治(Divide and Conquer)策略的是 (60) 算法。
 - (59) A. 希尔排序
- B. 直接插入排序 C. 快速排序
- D. 堆排序

- (60) A. 冒泡排序
- B. 插入排序
- C. 快速排序
- D. 堆排序

		(61), ARI	·	<u>〔62〕</u> 中传送。			
	(61) A. 由 IP 地址查找对应的 MAC 地址						
		止查找对应的 IP 地	址				
		找对应的端口号	→				
		业查找对应的端口。		III)			
(62) A	. 以太帧	B. IP 数据报	C. UDP 报文	D. TCP 报文			
● 802.1	1标准定义的	分布式协调功能采	用了 <u>(63)</u>	办议。			
(63) A	. CSMA/CD	B. CSMA/CA	C. CDMA/CD	D. CDMA/CA			
● 设有际 络地址是(118.133.0/24 和 202	2.118.130.0/24,如	果进行路由汇聚,得到的网			
(64) A	. 202.118.128.0	0/21	B. 202.118.128.0/	22			
C	. 202.118.130.0	0/22	D. 202.118.132.0/	/20			
(65) A	器收到一个数 . 195.26.0.0/21 . 195.26.8.0/22		为 195.26.17.4,译 B. 195.26.16.0/20 D. 195.26.20.0/22				
endpoints and proactive and	(66) users. I	However, NAC is no nrity measures must	t a complete LAN to be implemented.	vork access to only compliant (67) solution; additional Nevis is the first and only processing of every packet at			
-	-			ility and performance. Nevis			
_				tion to NAC, enterprises need			
_		-	<u> </u>	proactive security measures			
-		(0) inspection and		-			
(66) A. a	·	B. distinguished					
		B. security					
	onstructive	B. reductive	C. reactive	D. productive			
(69) A. d	efense	B. intrusion	C. inbreak	D. protection			
(70) A. p	ort	B. connection	C. threat	D. insurance			
Virtua	alization is an a	approach to IT that p	oools and shares	(71) so that utilization is			
				environments are often silos,			
•		•		d an application or business			
			=	ology are focused on meeting			

service levels, (74) is allocated dynamically, resources are optimized, and the entire

infrastructure is simplified and flexible. We offer a broad spectrum of virtualization <u>(75)</u> that allows customers to choose the most appropriate path and optimization focus for their IT infrastructure resources.

(71) A. advantages	B. resources	C. benefits	D. precedents
(72) A. profits	B. costs	C. resources	D. powers
(73) A. system	B. infrastructure	C. hardware	D. link
(74) A. content	B. position	C. power	D. capacity
(75) A solutions	B networks	C interfaces	D connections