

Final Project

Telco Customer Churn Prediction

Adhang Muntaha Muhammad

BUSINESS & DATASET UNDERSTANDING

Dataset Information

- Customer information from a telco company
- This company provides various services such as **streaming**, **internet**, and **phone** service

Attribute Information

Identifier	Target variable	Demographic information	Account information	Subscribed service
Customer ID	Churn status	Gender	Tenure	Phone service
		Senior citizen	Monthly charges	Multiple lines
		Partner	Total charges	Internet service
		Dependents	Contract	Online security
			Paperless billing	Online backup
			Payment method	Device protection
				Tech support
				Streaming TV
				Streaming movies

Company Goals

- Acquiring new customers as much as we can
- Retaining existing customers as much as we can

Cost Problems

Acquiring a new customer can be

25x more expensive

Reference:

https://hbr.org/2014/10/the-value-of-keeping-the-right-customers https://www.outboundengine.com/blog/customer-retention-marketing-vs-customer-acquisition-marketing

Objectives

- Predict whether the customer will still use our service or will leave our service
- Understanding customer behavior
 - What keeps customers using our service
 - What makes customers leave our service

EXPLORATORY DATA ANALYSIS

What Happened?

27%

Customers leave us! 😊

Technically speaking,
This is an imbalanced dataset

Why Did It Happen?

Not all attributes have a **strong relationship** with churn status

Both males and females almost have the same probability to churn We can say that customer's gender **has no relationship** with their churn status

Why Did It Happen?

Not all attributes have a **strong relationship** with churn status

Senior citizens have a higher probability of churn than younger citizens We can say this attribute **has a relationship** with churn status

Top 5 Churn Probability

Top 5 Retain Probability

Tenure

It has a clear trend!

Negative correlationwith the probability of churn

Tenure by Contract

Customers with **short tenure** are more likely to
have a **month-to-month**contracts

Monthly Charges

It has no clear trend

Attribute Associations to Churn Status

0.41

"Does this attribute have a **strong relationship** with churn status?"

Categorical : Cramer's V

Categorical-numerical : Correlation ratio

DATA PREPROCESSING

Missing Values

	tenure	total_charges	churn
488	0		No
753	0		No
936	0		No
1082	0		No
1340	0		No
3331	0		No
3826	0		No
4380	0		No
5218	0		No
6670	0		No
6754	0		No

	tenure	total_charges	churn
488	0	0	No
753	0	0	No
936	0	0	No
1082	0	0	No
1340	0	0	No
3331	0	0	No
3826	0	0	No
4380	0	0	No
5218	0	0	No
6670	0	0	No
6754	0	0	No

Redundant Values

Attribute	Data variation
multiple_lines	No, Yes, No phone service
online_security	No, Yes, No internet service
online_backup	No, Yes, No internet service
device_protection	No, Yes, No internet service
tech_support	No, Yes, No internet service
streaming_tv	No, Yes, No internet service
streaming_movies	No, Yes, No internet service

Attribute	Data variation
multiple_lines	No, Yes
online_security	No, Yes
online_backup	No, Yes
device_protection	No, Yes
tech_support	No, Yes
streaming_tv	No, Yes
streaming_movies	No, Yes

Replace to "No"

Avoiding multicollinearities & reducing the dimension

Train – Test Split

Train: Test

70%:30%

	Variable	Shape
Original	Χ	(7043, 19)
	Υ	(7043,)
Train set	X_train	(4930, 19)
	y_train	(4930,)
Test set	X_test	(2113, 19)
	y_test	(2113,)

Feature Encoding

6427 6971 96 5640 internet_service input Fiber optic DSL Fiber optic No churn output No Yes No Yes

LabelEncoder for target variable
OneHotEncoder for input variables

		6427	6971	96	5640
input	internet_service_dsl	0.0	0.0	1.0	0.0
input	internet_service_fiber_optic	0.0	1.0	0.0	1.0
input	internet_service_no	1.0	0.0	0.0	0.0
output	churn	0.0	1.0	0.0	1.0

Positive Correlation to Churn Status

Negative Correlation to Churn Status

Feature Scaling

	6427	6971	96	5640
tenure	41.00	18.00	71.00	1.0
monthly_charges	20.15	99.75	66.85	79.6
total_charges	802.35	1836.25	4748.70	79.6

	6427	6971	96	5640
tenure	0.57	0.25	0.99	0.01
monthly_charges	0.02	0.81	0.48	0.61
total_charges	0.09	0.21	0.55	0.01

Oversampling with SMOTE

MODEL DEVELOPMENT

Model List

Logistic Regression

Ridge Classifier

KNN

SVC

Neural Network

Decision Tree

Random Forest

Gradient Boosting Classifier

AdaBoost Classifier

CatBoost Classifier

Histogram Gradient Boosting

XGBoost

LightGBM

SMOTE vs ADASYN

The average metrics of all models using default parameter

	SMOTE	ADASYN		high	
Accuracy	0.760	0.752			
Precision	0.707	0.704			
Recall	0.732	0.731		Note:	
F1 Score	0.713	0.707		Precision, recall, F1 score, ar ROC AUC score are calculate	
ROC AUC	0.732	0.731		low using macro average	

SMOTE has a higher performance than ADASYN, So, for the next step, I will **only use SMOTE** for simplicity reason

Metrics using Default Parameter

	Accuracy	Precision	Recall	F1 Score	ROC AUC
Logistic Regression	0.747	0.707	0.755	0.714	0.755
Ridge Classifier	0.744	0.707	0.756	0.713	0.756
KNN	0.696	0.660	0.699	0.661	0.699
SVC	0.765	0.713	0.747	0.724	0.747
Neural Network	0.752	0.686	0.696	0.690	0.696
Decision Tree	0.731	0.666	0.682	0.672	0.682
Random Forest	0.771	0.708	0.714	0.711	0.714
Gradient Boosting Classifier	0.788	0.734	0.763	0.744	0.763
AdaBoost Classifier	0.755	0.712	0.756	0.720	0.756
CatBoost Classifier	0.786	0.725	0.728	0.727	0.728
Hist Gradient Boosting	0.780	0.719	0.722	0.721	0.722
XGBoost	0.784	0.731	0.762	0.741	0.762
LightGBM	0.785	0.725	0.732	0.728	0.732

high

Note:
Precision, recall, F1 score, and
ROC AUC score are calculated
using macro average

Overall, **boosting methods** show a good performance Can we improve it?

Feature Selection - Filter Method

Score function : ANOVA

K : 13 features

2223.65

1577.50

Feature Selection - Wrapper Method

Feature Selection – Embedded Method

Feature Selection Comparison

The average metrics of boosting models using default parameter

	Accuracy	Precision	Recall	F1 Score	ROC AUC		high
Without Feature Selection	0.780	0.724	0.744	0.730	0.744		
Filter Method	0.773	0.722	0.753	0.731	0.753		
Wrapper Method	0.775	0.722	0.751	0.731	0.751		
Embedded Method	0.766	0.714	0.746	0.723	0.746		low

In general, the **filter method** shows the best result Moreover, it has the **highest recall** score

Note:

Precision, recall, F1 score, and ROC AUC score are calculated using **macro average**

Hyperparameter Tuning Strategy

Adaboost classifier without feature selection

Default Parameter				Tuning 1					Tuning 2			
	precision	recall	f1-score	ı	precision	recall	f1-score	ţ	precision	recall	f1-score	
0	0.896	0.753	0.819	0	0.872	0.841	0.856	0	0.902	0.758	0.824	
1	0.527	0.759	0.622	1	0.600	0.660	0.628	1	0.536	0.772	0.633	
macro avg	0.712	0.756	0.720	macro avg	0.736	0.750	0.742	macro avg	0.719	0.765	0.728	
weighted avg	0.798	0.755	0.766	weighted avg	0.800	0.793	0.796	weighted avg	0.805	0.762	0.773	
accuracy			0.755	accuracy			0.793	accuracy			0.762	
roc auc			0.756	roc auc			0.750	roc auc			0.765	

I choose the second tuning because it has a higher positive recall than the first tuning

The hyperparameter tuning strategy is focused on Maximizing the **recall** score of the **positive class** (churn), not the average But still paying attention to the **accuracy** score

Metrics after Tuning

Without Feature Selection

_	Accı	ıracy	Recall (Positive)		
	Before	After	Before	After	
Gradient Boosting Classifier	0.788	0.783	0.709	0.742	
AdaBoost Classifier	0.755	0.762	0.759	0.772	
CatBoost Classifier	0.786	0.772	0.606	0.740	
Hist Gradient Boosting	0.780	0.763	0.599	0.774	
XGBoost	0.784	0.772	0.715	0.763	
LightGBM	0.785	0.760	0.619	0.783	

After tuning, the accuracy score is mostly decreased But, the recall score has increased dramatically

high

low

Metrics after Tuning

With feature selection

_	Accuracy			Recall (Positive)		
	Ori	Tuned		Ori	Tuned	
Gradient Boosting Classifier	0.772	0.775		0.725	0.766	
AdaBoost Classifier	0.755	0.759		0.777	0.783	
CatBoost Classifier	0.788	0.761		0.677	0.765	
Hist Gradient Boosting	0.773	0.756		0.668	0.781	
XGBoost	0.774	0.761		0.752	0.779	
LightGBM	0.777	0.762		0.663	0.791	

After tuning, the accuracy score is mostly decreased But, the recall score has increased dramatically

high

low

Model Selection

Using harmonic mean of the accuracy and recall scores

Without footure colection

$$F_{\beta} = (1 + \beta^{2}) \frac{(accuracy * recall)}{\beta^{2} * accuracy + recall}$$

	vvitno	out feature sele	ction	VVIT	with feature selection					
	Accuracy	Recall (Positive)	F-beta	Accuracy	Recall (Positive)	F-beta				
Gradient Boosting Classifier	0.783	0.742	0.762	0.775	0.766	0.770	•			
AdaBoost Classifier	0.762	0.772	0.767	0.759	0.783	0.771				
CatBoost Classifier	0.772	0.740	0.756	0.761	0.765	0.763				
Hist Gradient Boosting	0.763	0.774	0.768	0.756	0.781	0.768				
XGBoost	0.772	0.763	0.767	0.761	0.779	0.770				
LightGBM	0.760	0.783	0.771	0.762	0.791	0.776				

Conclusion

Final Model

LightGBM with feature selection using filter method

Recommendation and Request

We should pay more attention to customers who meet the criteria below

: Month-to-month Contract

: Short tenure Tenure

Internet service : Fiber optic
Payment method : Electronic check

- Please, evaluate our service! Especially for internet service (fiber optic) and payment method (electronic check)
- Can we **give more benefit** to a new customer? Because the new customer has a high probability to churn

BONUS!

Last but not least

Model Deployment

Model deployment using **Flask** and **Heroku**

https://adhang-churn.herokuapp.com/

SHAP Explainable Al

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model.

I have included it on my Heroku app

THANKS

Adhang Muntaha Muhammad

CREDITS: This presentation template was originally created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**