Solutions to Homework 5 BIOS 7731

1. BD 3.2.3. In Problem 3.2.2 preceding, give the MLE of the Bernoulli variance $q(\theta) = \theta(1 - \theta)$ and gives the Bayes estimate of $q(\theta)$. Check whether $q(\widehat{\theta}_B) = E(q(\theta)|\mathbf{x})$, where $\widehat{\theta}_B$ is the Bayes estimate of θ .

The MLE of the Bernoulli random variable is \overline{X} . Then, by the invariance property of MLEs, the MLE estimate of the variance is $q(\widehat{\theta}_{MLE}) = \overline{X}(1-\overline{X})$.

From lecture, for squared loss the Bayes estimate is the posterior mean $\widehat{\theta}_B = \frac{\sum_{i=1}^n X_i + r}{r + s + n}$. Plug-in estimate for $q(\theta)$ is $(\widehat{\theta}_B)(1 - \widehat{\theta}_B)$:

$$q(\widehat{\theta}) = \left(\frac{\sum_{i=1}^{n} X_i + r}{r + s + n}\right) \left(1 - \frac{\sum_{i=1}^{n} X_i + r}{r + s + n}\right)$$

$$= \frac{\left(\sum_{i=1}^{n} X_i + r\right) \left(r + s + n - \sum_{i=1}^{n} X_i - r\right)}{(r + s + n)^2}$$

$$= \frac{\left(\sum_{i=1}^{n} X_i + r\right) \left(n + s - \sum_{i=1}^{n} X_i\right)}{(r + s + n)^2}$$

We also showed $\theta | \vec{X} \sim Beta\Big(r + \sum_{i=1}^n X_i, n - \sum_{i=1}^n X_i + s\Big)$. To simplify our calculations, let $a = r + \sum_{i=1}^n X_i$ and $b = n - \sum_{i=1}^n X_i + s$. Recall $E[\theta | \vec{X}] = \frac{a}{a+b}$ and $Var(\theta | \vec{X}) = \frac{ab}{(a+b)^2(a+b+1)}$.

$$\begin{split} E\Big[q(\theta_B)\Big|\vec{X}\Big] &= E\Big[\theta\Big(1-\theta\Big)\Big|\vec{X}\Big] \\ &= E[\theta-\theta^2\Big|\vec{X}] \\ &= E[\theta|\vec{X}] - E[\theta^2|\vec{X}] \\ &= E[\theta|\vec{X}] - \Big(Var(\theta|\vec{X}) + \Big(E[\theta|\vec{X}]\Big)^2\Big) \\ &= \frac{a}{a+b} - \Big(\frac{ab}{(a+b)^2(a+b+1)} + \frac{a^2}{(a+b)^2}\Big) \\ &= \frac{a}{a+b} \Big(1 - \frac{b}{(a+b)(a+b+1)} - \frac{a}{a+b}\Big) \\ &= \frac{a}{a+b} \Big(\frac{a+b-a}{a+b} - \frac{b}{(a+b)(a+b+1)}\Big) \\ &= \frac{a}{(a+b)^2} \Big(b - \frac{b}{a+b+1}\Big) \end{split}$$

$$= \frac{ab}{(a+b)^2} \left(1 - \frac{1}{a+b+1}\right)$$

$$= \frac{ab}{(a+b)^2} \left(\frac{a+b+1-1}{a+b+1}\right)$$

$$= \frac{ab}{(a+b)(a+b+1)}$$

$$= \frac{\left(r + \sum_{i=1}^{n} X_i\right) \left(n+s - \sum_{i=1}^{n} X_i\right)}{(r+s+n)(r+s+n+1)}$$

(Note, you can also use what we learned about $E[\theta(1-\theta)]$ for the Beta distribution - see hint from class problems)

Although the numerator is the same, the denominator is different, therefore $q(\widehat{\theta}_B) < E\left[q(\theta)\middle|\vec{X}\right]$. Unlike the MLE, you cannot just plug in the Bayes estimate into a function q to get the Bayes estimate of $q(\theta)$.

An alternative solution includes using Jensen's Inequality.

Another alternative solution is noticing that

$$E[q(\theta)|\vec{X}] = E[\theta(1-\theta)|\vec{X}] = E[\theta|\vec{X}] - E[\theta^2|\vec{X}] = q(\hat{\theta}_B) - Var(\theta|\vec{X}).$$

- 2. BD 3.2.5. Suppose $\theta \sim \pi(\theta)$, $(X|\theta = \theta) \sim p(x|\theta)$.
 - (a) Show that the density of X and θ is

$$f(x, \theta) = p(x|\theta)\pi(\theta) = c(x)\pi(\theta|x)$$

where $c(x) = \int \pi(\theta) p(x|\theta) d\theta$.

$$\begin{split} f(x,\theta) &= p(x|\theta)\pi(\theta) = \pi(\theta|x)p(x) = \pi(\theta|x)\int f(x,\theta)d\theta \\ &= \pi(\theta|x)\int p(x|\theta)\pi(\theta)d\theta = \pi(\theta|x)c(x) \end{split}$$

(b) Let $l(\theta, a) = (\theta - a)^2/w(\theta)$ for some weight function $w(\theta) > 0, \theta \in \Theta$. Show that the Bayes rule is

$$\delta^* = E_{f_0(x)}(\theta|x)$$

where

$$f_0(x,\theta) = p(x|\theta)[\pi(\theta)/w(\theta)]/c$$

and

$$c = \int \int p(x|\theta)[\pi(\theta)/w(\theta)]d\theta dx$$

is assumed to be finite. That is if π and l are changed to $a(\theta)\pi(\theta)$ and $l(\theta,a)/a(\theta)$, $a(\theta)>0$, respectively, the Bayes rule does not change.

Minimizing this loss function (not shown) gives us the following Bayes rule:

$$\delta^* = \frac{E[\theta/w(\theta)|X]}{E[1/w(\theta)|X]}$$

$$= \frac{\int \theta \pi(\theta|x)/w(\theta)d\theta}{\int \pi(\theta|x)/w(\theta)d\theta}$$

$$= \frac{\int \theta p(x|\theta)\pi(\theta)/(c(x)w(\theta))d\theta}{\int p(x|\theta)\pi(\theta)/(c(x)w(\theta))d\theta}$$

$$= \frac{\int \theta p(x|\theta)\pi(\theta)/w(\theta)d\theta}{\int p(x|\theta)\pi(\theta)/w(\theta)d\theta}$$

$$= \frac{\int \theta p(x|\theta)\pi(\theta)/w(\theta)d\theta}{c}$$

$$= \int \theta f_0(x,\theta)d\theta$$

$$= E_{f_0}(\theta|x)$$

Alternative solution is using Problem 1.4.24.

3. BD 3.2.8

(a) Suppose that N_1, \ldots, N_r , given θ are multinomial $M(n,\theta)$, $\theta = (\theta_1, \ldots, \theta_r)^T$, and that θ has the Dirichlet distribution $\mathcal{D}(\alpha)$, $\alpha = (\alpha_1, \ldots, \alpha_r)^T$, defined in Problem 1.2.15. Let $q(\theta) = \sum_{j=1}^r c_j \theta_j$, where c_1, \ldots, c_r are given constants. If $l(\theta, a) = [q(\theta) - a]^2$, find the Bayes decision rule δ^* and the minimum conditional Bayes risk $r(\delta^{*x}|x)$. Given,

$$p(n|\theta) = \frac{n!}{n_1! \dots n_r!} \theta_1^{n_1} \dots \theta_r^{n_r}$$

and

$$\pi(\theta) = \frac{\Gamma(\sum_{j=1}^r \alpha_j)}{\prod_{j=1}^r \Gamma(\alpha_j)} \theta_1^{\alpha_1 - 1} \dots \theta_r^{\alpha_r - 1},$$

the posterior distribution of θ is

$$\pi(\theta|N=n) \propto p(n|\theta)\pi(\theta)$$
$$\propto \theta_1^{n_1+\alpha_1-1} \dots \theta_r^{n_r+\alpha_r-1},$$

which is a Dirichlet distribution $\mathcal{D}(\beta)$ where $\beta = (n_1 + \alpha_1, \dots, n_r + \alpha_r)^T$.

From class, for squared loss the Bayes decision rule that minimizes the posterior risk is

$$\delta^* = E[q(\theta)|X] = E[\sum_{j=1}^r c_j \theta_j | X] = \sum_{j=1}^r c_j E[\theta_j | X] = \sum_{j=1}^r c_j \frac{\beta_j}{\sum_{j=1}^r \beta_j} = \sum_{j=1}^r c_j \frac{\alpha_j + n_j}{a_0 + n_j},$$

where $\alpha_0 = \sum_{j=1}^r \alpha_j$ and $n = \sum_{j=1}^r n_j$.

The minimum conditional (posterior) Bayes risk is

$$r(\delta^*|X) = E[(q(\theta) - \delta^*)^2|X] = E[(q(\theta) - E[q(\theta)|X])^2|X] = Var(q(\theta)|X).$$

$$Var(q(\theta)|X) = Var(\sum_{j=1}^{r} c_j \theta_j | X)$$

$$= \sum_{j=1}^{r} c_j^2 Var(\theta_j | X) + 2 \sum_{j < k} c_j c_k Cov(\theta_j, \theta_k | X)$$

$$= \sum_{j=1}^{r} c_j^2 \frac{\beta_j (\beta_0 - \beta_j)}{\beta_0^2 (\beta_0 + 1)} - 2 \sum_{j < k} c_j c_k \frac{\beta_j \beta_k}{\beta_0^2 (\beta_0 + 1)}$$

$$= \frac{1}{\beta_0^2 (\beta_0 + 1)} [\sum_{j=1}^{r} c_j^2 \beta_j^2 - (\sum_{j=1}^{r} c_j \beta_j)^2],$$

where $\beta_0 = \sum_{j=1}^r \beta_j = \alpha_0 + n$.

(b) We want to estimate the vector $(\theta_1,\ldots,\theta_r)$ with loss function $l(\theta,a)=\sum_{j=1}^r(\theta_j-a_j)^2$. Find the Bayes decision rule.

We minimize risk for a sum of squared losses by minimizing the sum of risks for each squared loss. Therefore the Bayes rule for each $j=1,\ldots,r$ is the expected value of the posterior distribution for θ_j , that is,

$$\delta_j^* = \frac{n_j + \alpha_j}{n + \alpha_0}$$

and $\delta^* = (\delta_1^*, \dots, \delta_r^*)^T$. Can show that this minimizes the posterior risk by taking the Hessian, or by arguing that each posterior mean minimizes the posterior risk.

4. Consider a Bayesian model in which the random parameter Θ has a Bernoulli prior distribution with success probability $\frac{1}{2}$. That is,

$$\pi(\theta) = \left\{ \begin{array}{ll} \frac{1}{2}, & \theta = 0; \\ \frac{1}{2}, & \theta = 1. \end{array} \right.$$

Given $\theta = 0$, the random variable X has density f_0 and given $\theta = 1$, X has density f_1 .

(a) Find the Bayes estimate (aka Bayes rule) of θ under squared loss.

Under squared loss, the Bayes estimate is $E[\theta|X]$. First, find the posterior distribution of θ .

$$p(\theta|x) = \frac{p(x|\theta)\pi(\theta)}{\sum_{\theta} p(x|\theta)\pi(\theta)}$$

$$p(\theta = 0|x) = \frac{f_0(x)\frac{1}{2}}{f_0(x)\frac{1}{2} + f_1(x)\frac{1}{2}} = \frac{f_0(x)}{f_0(x) + f_1(x)}$$

$$p(\theta = 1|x) = \frac{f_1(x)\frac{1}{2}}{f_0(x)\frac{1}{2} + f_1(x)\frac{1}{2}} = \frac{f_1(x)}{f_0(x) + f_1(x)}$$

Then,

$$E[\theta|X] = \sum_{\theta} \theta p(\theta|x) = 0 * \frac{f_0(x)}{f_0(x) + f_1(x)} + 1 * \frac{f_1(x)}{f_0(x) + f_1(x)} = \frac{f_1(x)}{f_0(x) + f_1(x)}.$$

(b) Find the Bayes estimate (aka Bayes rule) of θ if $l(\theta,d) = I\{\theta \neq d\}$ (zero-one loss).

To find the Bayes estimate, we need to minimize the posterior risk

$$\begin{split} E[l(\theta,d)|X] &= \sum_{\theta} I\{\theta \neq d\} p(\theta|x) \\ &= I\{0 \neq d\} p(\theta=0|x) + I\{1 \neq d\} p(\theta=1|x) \end{split}$$

When d = 1.

$$E[L(\theta,1)|X] = 1 * p(\theta = 0|x) + 0 * p(\theta = 1|x) = \frac{f_0(x)}{f_0(x) + f_1(x)}.$$

When d=0,

$$E[L(\theta, 1)|X] = 0 * p(\theta = 0|x) + 1 * p(\theta = 1|x) = \frac{f_1(x)}{f_0(x) + f_1(x)}.$$

This is minimized by selecting d = 1 when $f_0(x) < f_1(x)$ and d = 0 when $f_1(x) < f_0(x)$. Therefore, the Bayes rule d is

$$\delta(x) = 1 \ if \ f_1(x) > f_0(x)$$

$$\delta(x) = 0 \ if \ f_1(x) < f_0(x).$$

If $f_1(x) = f_0(x)$ can randomly select $\delta(x) = 1$ or 0 with equal probability.

- 5. Let $X_1, \ldots X_n$ be iid Uniform $(0, \theta)$, with $\theta > 0$.
 - (a) Show that the density of the largest order statistic $X_{(n)}$ is $p(x,\theta)=n\theta^{-n}x^{n-1}I_{(0,\theta)}(x)$, where $I_{(0,\theta)}(x)$ is an indicator for $0< x<\theta$.

Using Casella & Berger (CB Thm 5.4.4) the pdf of the nth order statistic is

$$p(x,\theta) = n f_X(x) F_X(x)^{n-1}.$$

Here $f_X(x) = \frac{1}{\theta} I_{(0,\theta)}(x)$ and $F_X(x) = \frac{x}{\theta} I_{(0,\theta)}(x)$, therefore

$$p(x,\theta) = n\theta^{-n}x^{n-1}I_{(0,\theta)}(x).$$

(b) Find an unbiased estimator for θ based on $X_{(n)}$ and determine its variance.

$$E[X_{(n)}] = \int_0^\theta nx \theta^{-n} x^{n-1} dx = \frac{n\theta}{n+1}.$$

Therefore, an unbiased estimator for θ based on $X_{(n)}$ is $\hat{\theta} = \frac{n+1}{n} X_{(n)}$. The variance of $\hat{\theta} = \frac{n+1}{n} X_{(n)}$ is

$$\frac{(n+1)^2}{n^2} Var(X_{(n)}) = \frac{(n+1)^2}{n^2} (E[X_{(n)}^2] - E[X_{(n)}]^2).$$

Since,

$$E[X_{(n)}^2] = \int_0^\theta x^2 n\theta^{-n} x^{n-1} dx = \frac{n\theta^2}{n+2},$$

then

$$\frac{(n+1)^2}{n^2} Var(X_{(n)}) = \frac{(n+1)^2}{n^2} \left(\frac{n\theta^2}{n+2} - \left(\frac{n\theta}{n+1}\right)^2\right),$$

which simplifies to $\frac{\theta^2}{n(n+2)}$.

(c) Find the Fisher information matrix $I(\theta)$. Show that the Fisher information inequality does NOT hold for the UMVU estimator in b).

Since $X_{(n)}$ is complete and sufficient for θ (see CB Example 6.2.23) any function of $X_{(n)}$ that is an unbiased estimator for θ is UMVU (see CB Thm 7.3.23). Therefore, $\hat{\theta} = \frac{n+1}{n} X_{(n)}$, is UMVU.

For an exponential family or if assumptions I and II hold, the Fisher information inequality holds and the variance for an unbiased estimator would be bounded by $I^{-1}(\theta)$, where

$$I(\theta) = E[(\frac{d}{d\theta} \log p(X,\theta))^2].$$

For the uniform case, assumptions I and II do not hold and this is not an exponential family. Although it won't have the same properties as the Fisher Information Number, we still calculate the expectation $E[(\frac{d}{d\theta}\log p(X,\theta))^2]$.

First,

$$\log p(X_{\cdot}\theta) = -\log \theta$$

and

$$I(\theta) = E[(\frac{d}{d\theta} \log p(X_,\theta))^2] = \frac{1}{\theta^2}$$

Using $I_n(\theta) = nI(\theta)$, the Fisher Information Inequality does not hold

$$\frac{\theta^2}{n} > \frac{\theta^2}{n(n+2)}.$$

Although we cannot use the inequality to show UMVU for $\hat{\theta} = \frac{n+1}{n}X_{(n)}$, it is still UMVU. Since $X_{(n)}$ is complete and sufficient for θ any function of $X_{(n)}$ that is an unbiased estimator for θ is UMVU.

- 6. Let X_1, \ldots, X_n be iid $N(\theta, 1)$
 - (a) Show that the unbiased estimator of θ^2 is $\overline{X}^2 \frac{1}{n}$.

$$\begin{split} E\Big[\overline{X}^2 - \frac{1}{n}\Big] &= E\big[\overline{X}^2\big] - \frac{1}{n} \\ &= Var(\overline{X}) + \Big(E[\overline{X}]\Big)^2 - \frac{1}{n} \\ &= Var\Big(\sum_{i=1}^n \frac{X_i}{n}\Big) + \Big(E\Big[\sum_{i=1}^n \frac{X_i}{n}\Big]\Big)^2 - \frac{1}{n} \\ &= \frac{nVar(X_i)}{n^2} + \Big(\frac{nE[X_i]}{n}\Big)^2 - \frac{1}{n} \\ &= \frac{n}{n^2} + \Big(\frac{n\theta}{n}\Big)^2 - \frac{1}{n} \\ &= \frac{1}{n} + \theta^2 - \frac{1}{n} \\ &= \theta^2 \end{split}$$

Therefore $\overline{X}^2 - \frac{1}{n}$ is the unbiased estimator of θ^2 .

(b) Calculate its variance and show that is greater than the Information Inequality Bound.

$$Var\left(\overline{X}^2 - \frac{1}{n}\right) = Var\left(\overline{X}^2\right)$$

= $E[\overline{X}^4] - \left(E[\overline{X}^2]\right)^2$

Aside:

$$\begin{split} E[\overline{X}^2] &= Var(\overline{X}) + \left(E[\overline{X}]\right)^2 \\ &= \frac{1}{n} + \theta^2 \end{split}$$

$$\begin{split} E[\overline{X}^4] &= E[\overline{X}^3(\overline{X} - \theta + \theta)] \\ &= E[\overline{X}^3(\overline{X} - \theta)] + \theta E[\overline{X}^3] \\ &= \frac{1}{n} E[3\overline{X}^2] + \theta \Big(E[\overline{X}^2(\overline{X} - \theta + \theta)] \Big) \\ &= \frac{3}{n} E[\overline{X}^2] + \theta \Big(E[\overline{X}^2(\overline{X} - \theta)] + \theta E[\overline{X}^2] \Big) \\ &= \frac{3}{n} E[\overline{X}^2] + \theta \Big(\frac{1}{n} E[2\overline{X}] + \theta E[\overline{X}^2] \Big) \\ &= \Big(\frac{3}{n} + \theta^2 \Big) E[\overline{X}^2] + \frac{2\theta}{n} E[\overline{X}] \\ &= \Big(\frac{3}{n} + \theta^2 \Big) E[\overline{X}^2] + \frac{2\theta^2}{n} \end{split}$$

Note: $E[\overline{X}^4]$ is computed by applying Stein's Lemma two times. So the $Var(\overline{X}^2 - \frac{1}{n})$ equals

$$Var\left(\overline{X}^2 - \frac{1}{n}\right) = \frac{2\theta^2}{n} + \left(\frac{3}{n} + \theta^2\right) E[\overline{X}^2] - \left(E[\overline{X}^2]\right)^2$$

$$= \frac{2\theta^2}{n} + \left(\frac{3}{n} + \theta^2 - E[\overline{X}^2]\right) E[\overline{X}^2]$$

$$= \frac{2\theta^2}{n} + \left(\frac{3}{n} + \theta^2 - \left(\frac{1}{n} + \theta^2\right)\right) \left(\frac{1}{n} + \theta^2\right)$$

$$= \frac{2\theta^2}{n} + \frac{2}{n} \left(\frac{1}{n} + \theta^2\right)$$

$$= \frac{2\theta^2}{n} + \frac{2}{n^2} + \frac{2\theta^2}{n}$$

$$= \frac{4\theta^2}{n} + \frac{2}{n^2}$$

Information Inequality lower bound is $\frac{\left(\Psi'(\theta)\right)^2}{nI_1(\theta)}$ where $\Psi(\theta) = E[\overline{X}^2] = Var(\overline{X}) + \left(E[\overline{X}]\right)^2 = \frac{1}{n} + \theta^2$:

$$I_{1}(\theta) = -E \left[\frac{\partial^{2} log(p(X_{1}, \theta))}{\partial \theta^{2}} \right]$$

$$= -E \left[\frac{\partial^{2} \left(-log\sqrt{2\pi} - \frac{1}{2}(X_{1} - \theta)^{2} \right)}{\partial \theta^{2}} \right]$$

$$= -E \left[\frac{\partial (X_{1} - \theta)}{\partial \theta} \right]$$

$$= 1$$

The Information Inequality lower bound is $\frac{\left(\Psi'(\theta)\right)^2}{nI_1(\theta)} = \frac{(2\theta)^2}{n} = \frac{4\theta^2}{n}$. The variance of the estimator does not meet the inequality bound, $Var\left(\overline{X}^2 - \frac{1}{n}\right) = \frac{4\theta^2}{n} + \frac{2}{n^2} > \frac{4\theta^2}{n}$ since $\frac{2}{n^2} > 0$ and it is a strict inequality.