Supplement for "Analyzing the effect of equal-angle spatial discretization for sound event localization and detection"

Saksham Singh Kushwaha Iran R. Roman Juan Pablo

July 18, 2022

1 Mathematics of equal-angle spatial discretization

1.1 background

A 3D sphere can be discretized along its axes of inclination $\theta = [0, \pi] \in \mathbb{R}$ and azimuth $\phi = [0, 2\pi) \in \mathbb{R}$. The discretization is done using a train of Dirac deltas on the sampling function:

$$s(\theta, \phi) = \sum_{i=0}^{N_I - 1} \sum_{j=0}^{N_A - 1} \alpha(\theta) \delta(\cos(\theta) - \cos(\theta_i)) \delta(\phi - \phi_j). \tag{1}$$

Where $\alpha(\theta)$ is a coefficient that is strictly increasing in $\theta \in [0, \frac{\pi}{2}]$ [Theorem 3.11 Rafaely, 2015]. N_I is the number of points sampled along the inclination axis and N_A is the number points along the azimuth axis. The points are:

$$\theta_i = i \frac{\pi}{N_I}, i = 0, 1, 2, ..., N_I - 1 \tag{2}$$

$$\phi_j = j \frac{2\pi}{N_A}, j = 0, 1, 2, ..., N_A - 1.$$
(3)

1.2 proof that equal-angle spatial discretization is irregularly spaced as a function of inclination

For any $\theta_i \in \left[0, \frac{\pi}{2}\right]$, let two neighboring points x, y on the azimuth axis sampled using (1), *i.e.*, $x = (\theta_i, \phi_j)$, $y = (\theta_i, \phi_{j+1})$. Then, the euclidean distance between neighboring points x, y is strictly decreasing in θ_i .

Proof fixate $\bar{\theta} \in (0, \frac{\pi}{2})$

$$||s(\bar{\theta}_i, \phi_j) - s(\bar{\theta}_i, \phi_{j+1})|| = \bar{c}$$

$$\tag{4}$$

now let $\tilde{\theta} < \bar{\theta}$

$$||s(\tilde{\theta}_i, \phi_i) - s(\tilde{\theta}_i, \phi_{i+1})|| = \tilde{c} < \bar{c} \quad \Box$$
 (5)

Figure 1: Density of sound events locations in the STARS2022 (+ supplemental synthetic) dataset along the elevation (A) and azimuth axes (B). Data is highly non-uniform along the elevation axis.

2 Data distribution for baseline data