

Budapest University of Technology and Economics Department of Electron Devices

The abstraction level of our study:

Field effect transistors 1

 FET = Field Effect Transistor – the flow of charge carriers is influenced by electric field

- ▶ Unipolar device: current is conducted by majority carriers
- Power needed for controlling the device ≈ 0

Field effect transistors 2

MOSFET: Metal-Oxide-Semiconductor FET

First type: depletion mode device

Most important parameter: U₀ pinch off voltage

Field effect transistors 3

Symbols:

MOSFETs

More realistic cross-sectional view of enhnacement mode

MOSFETs:

The most modern MOSFETs:

2007/2008 ... Intel:

Further topics:

- Overview of operation of MOS transistors
- Characteristics
- Secondary effects
- Models

Operation of MOSFETs

- The simplest (logic) model:
 - open (off) / short (on)

Operation of MOSFETs

- n-channel device:
 - electrons are flowing
- p-channel device:
 - holes are flowing
 - same operation, change of the signs
- Normally OFF device: at 0 gate (control) voltage the are "open" (enhancement mode device)
- Normally ON device: at 0 gate (control) voltage the are "short" (depletion mode device)

Overview of MOSFET types

Overview of the operation

- The operation is based on the so called MOS capacitance:
- As a result of electrical field perpendicular to the gate surface
 - positive charges accumulate at the metal (gate)
 - in the p-type semiconductor
 - first the positive charges are "swept" out and a depletion layer is formed
 - further increasing the electric field, negative carriers are collected from the bulk under the metal
 - if the voltage at the surface exceeds a <u>threshold</u> value, the type of the semiconductor gets <u>"inverted</u>": an <u>inversion layer</u> is formed
- V_T threshold voltage − the minimal voltage needed to form the inversion layer; depends on:
 - the energy levels of the semiconductor material
 - the thickness and the dielectric constant of the oxide (SiO₂)
 - the doping level and dielectric constant of the semiconductor (Si)

Overview of the operation

Surface phenomena in case of the MOS capacitance

The MOS transistor

MOS capacitance completed by two electrodes at its two sides:

- n-channel device: current conducted by electrons
- p-channel device: current conducted by holes

Qualitative operation of the MOSFET

- ► If V_{GS} > V_T, inversion layer is formed
 - the n+ region at the source can inject electrons into the inversion channel
 - the positive potential at the drain induces flow of electrons in the channel,
 - the positive potential of the drain reverse biases the pn junction formed there
 - the electrons drifted there are all sank in the n+ region and the circuit is closed

Qualitative operation of the MOSFET

- the charge density in channel depends on the V_{GS} voltage
- there is a voltage drop in the channel, thus, the thickness of the inversion layer will deminish along the channel
- at a given V_{DSsat} saturation voltage the thickness will reach 0, this is the so called pinch-off

$$V_{DSsat} = V_{GS} - V_{T}$$

After this voltage is reached, the MOSFET operates in saturation mode, the drain voltage does not influence the drain current any longer.

Qualitative operation of the MOSFET

In the *pinch-off* region the charge transport takes place by means of diffusion current.

I-V characteristics

- output characteristics: I_D=f(U_{DS}), parameter: U_{GS}
- input characteristics: I_D=f(U_{GS})

Output characteristics:

In saturation:

$$I_D = \frac{W}{L} \frac{\mu_n}{2} \frac{\varepsilon_{ox}}{t_{ox}} (V_{GS} - V_T)^2$$

$$K = \frac{\mu_n \mathcal{E}_{ox}}{t_{ox}} \quad \begin{array}{c} current \\ constant \end{array}$$

The circuit designer can change the geometry only: the W width and the L length

Example

Calculate the saturation current of a MOSFET for $U_{GS}=5V$ if

$$K=\frac{\mu_n\mathcal{E}_{ox}}{t_{ox}}=110\mu\text{A}/V^2$$
 V_T =1V, and the geometry a) W= 5 μ m, L=0.4 μ m, b) W= 0.8 μ m, L=5 μ m!

a)
$$I_D = \frac{W}{L} \frac{K}{2} (U_{GS} - V_T)^2 = \frac{5}{0.4} \frac{110}{2} 10^{-6} (5 - 1)^2 = 11 \cdot 10^{-3} A = 11 \text{ mA}$$

b)
$$I_D = \frac{W}{L} \frac{K}{2} (U_{GS} - V_T)^2 = \frac{0.8}{5} \frac{110}{2} 10^{-6} (5 - 1)^2 = 141 \cdot 10^{-6} A = \underline{141 \,\mu A}$$

By changing the **W/L ratio** the drain current can be changed by orders of magnitude

I-V charactersitics

nMOS transistor, 0.25um, $L_d = 10um$, W/L = 1.5, $V_{DD} = 2.5V$, $V_T = 0.4V$

Overview of the physics:

- Charges and potentials at the surface
- The threshold voltage
- The characteristics
- Secondary effects

Potentials of the MOS structure

$$Q_G = Q_{SC} - Q_{SS} + Q_i$$

$$C_0 = \frac{\varepsilon_{ox}}{d_{ox}} \left[Q_G = C_0 U_{ox} \right]$$

$$Q_{SC} = qN_aS$$

semiconductor

oxide

Potentials of the MOS structure

$$U_{GB} = U_{ox} + U_F + \Phi_{MS}$$

$$Q_G = Q_{SC} - Q_{SS} + Q_i$$

$$Q_G = C_0 U_{ox}$$

$$Q_{SC} = qN_aS$$

$$\begin{vmatrix} Q_i = Q_G - Q_{SC} + Q_{SS} = \\ = C_0 U_{ox} - \sqrt{2\varepsilon_s q N_a} \sqrt{U_F} + Q_{SS} \end{vmatrix}$$

$$Q_{i} = C_{0}(U_{GB} - U_{F} - \Phi_{MS}) -$$

$$-\sqrt{2\varepsilon_{s}qN_{a}}\sqrt{U_{F}} + Q_{SS}$$

$$Q_{SC} = qN_a \sqrt{\frac{2\varepsilon_s}{qN_a}} \sqrt{U_F} = \sqrt{2\varepsilon_s qN_a} \sqrt{U_F}$$

The threshold voltage of the MOSFET

Inversion

$$U_F = 2\Phi_F$$

$$U_F = 2\Phi_F + U_{SB}$$

The threshold voltage of the MOSFET

$$Q_{i} = C_{0}(U_{GB} - 2\Phi_{F} - U_{SB} - \Phi_{MS}) - \sqrt{2\varepsilon_{s}qN_{a}}\sqrt{2\Phi_{F} + U_{SB}} + Q_{SS}$$

$$V_T = U_{GS}\big|_{Q_i = 0}$$

$$Q_i \cong C_0 (U_{GS} - V_T)$$

$$V_T = 2\Phi_F + \Phi_{MS} - \frac{Q_{SS}}{C_0} + \frac{\sqrt{2\varepsilon_s q N_a}}{C_0} \sqrt{2\Phi_F + U_{SB}}$$

The threshold voltage of the MOSFET

$$V_{T} = 2\Phi_{F} + \Phi_{MS} - \frac{Q_{SS}}{C_{0}} + \frac{\sqrt{2\varepsilon_{s}qN_{a}}}{C_{0}} \sqrt{2\Phi_{F} + U_{SB}}$$

-2Ф_г

$$V_T = 2\Phi_F + \Phi_{FB} + P\sqrt{2\Phi_F + U_{SB}}$$

Flat-band potential:

$$\Phi_{FB} = \Phi_{MS} - \frac{Q_{SS}}{C_0}$$

Bulk constant:

$$P = \frac{\sqrt{2\varepsilon_s q N_a}}{C_0}$$

The char. of an enhancement mode MOSFET

Later we shall calculate these!

Derivation of the charactersitic

$$U(0) = U_{GS}, \ U(L) = U_{GD}$$
$$Q_i(U) = Q_i[U(x)]$$

$$I_D = Q_i W v$$

$$v = -\mu E = -\mu \frac{dU}{dx}$$

$$I_{D} = -Q_{i}(U)W\mu \frac{dU}{dx} \longrightarrow \int_{0}^{L} I_{D}dx = -W\mu \int_{0}^{L} Q_{i} \frac{dU}{dx} dx$$

Derivation of the charactersitic

$$\int_{0}^{L} I_{D} dx = -W \mu \int_{0}^{L} Q_{i} \frac{dU}{dx} dx$$

$$I_D L = -W \mu \int_{U_{GS}}^{U_{GD}} Q_i(U) dU$$

$$Q_i = C_0 (U(x) - V_T)$$

$$I_{D} = -\frac{W}{L} \mu \int_{U_{CS}}^{U_{GD}} C_{0} (U - V_{T}) dU = \frac{W}{L} \frac{\mu C_{0}}{2} (U - V_{T})^{2} \Big|_{U_{GD}}^{U_{GS}}$$

$$I_D = \frac{W}{L} \frac{\mu C_0}{2} \left[(U_{GS} - V_T)^2 - (U_{GD} - V_T)^2 \right]$$

Derivation of the charactersitic

$$I_{D} = \frac{W}{L} \frac{\mu C_{0}}{2} [F(U_{GS}) - F(U_{GD})]$$

$$I_D = \frac{W}{L} \frac{\mu C_0}{2} \left[F(U_{GS}) - F(U_{GD}) \right]$$

$$F(U) = \begin{cases} (U - V_T)^2 & \text{if } U > V_T \\ 0 & \text{if } U \leq V_T \end{cases}$$

For all regions of operation!

The saturation region

$$I_D = \frac{W}{L} \frac{\mu C_0}{2} [F(U_{GS}) - F(U_{GD})]$$

$$F(U) = \begin{cases} (U - V_T)^2 & ha \quad U > V_T \\ 0 & ha \quad U \le V_T \end{cases}$$

For all regions of operation!

$$I_D = \frac{W}{L} \frac{\mu C_0}{2} (U_{GS} - V_T)^2$$

Saturation: $U_{GD} < V_{T}$

Overview of all types of MOSFETs

Depletion mode MOSFET

Like an enhance mode MOSFET with a negative threshold voltage

Capacitances of the MOSFET

$$Q_G = f_G(U_{GS}, U_{GD}, U_{GB})$$

$$Q_G = f_G(U_{GS}, U_{GD}, U_{GB})$$

$$Q_i = f_i(U_{GS}, U_{GD}, U_{GB})$$

S/D – B capacitance: reverse biased PN junction

$$C_{gs} = \frac{\partial Q_G}{\partial U_{GS}}$$

The gate capacitance:

$$C_{gate} = \frac{\varepsilon_{ox}}{t_{ox}} WL$$

Top view

Cross section

Secondary effects

- Short and narrow-channel effects
- Velocity saturation
- Channel length modulation
- Temperature dependence
- Subthreshold current

Dependence of threshold voltage on geometry

Short channel: V_T decreases

Narrow channel: V_T increases

Velocity saturation

Influences the operation of short channel devices

Velocity saturation the speed of carriers (due to the collisions) becomes constant

In a L = $0.25\mu m$ channel device a few Volts of D-S voltage may already result in velocity saturation.

Velocity saturation

 In short channel device velocity saturation takes place sooner (at lower voltage)

Short channel charactersitics

Short channel charactersitics

nMOS transistor, 0.25um, $L_d = 10um$, W/L = 1.5, $V_{DD} = 2.5V$, $V_T = 0.4V$

Temperature dependence

$$I_D = \frac{W}{L} \frac{\mu C_0}{2} (U_{GS} - V_T)^2$$

$$\frac{1}{\mu} \frac{d\mu}{dT} = -0.003 \dots -0.006 / {^o} C$$

$$\frac{\partial V_T}{\partial T} = -1.5... - 4 \, mV \, /^o \, C$$

Zero Temperature Coefficient (ZTC) bias point

Subthreshold current

• Assuming a given V_T is rough model; in reality the current vanishes exponentially with the gate voltage:

Subthreshold current

- Continuous transition between the ON and OFF states
 - Subthreshold is <u>undesired</u>: strong deviation from the **switch** model

$$I_D \sim I_0 e^{\frac{qV_{GS}}{nkT}}, \quad n = 1 + \frac{C_D}{C_{ox}}$$

- \blacksquare I_0 , n empirical parameters, n is typically 1.5
- *Slope factor*: S = n (kT/q) ln (10)

(typically: 60 ..100 mV/decade) – the smaller the better, depends

on.

Can be reduced by SOI:

e.g. SIMOX process

Subthreshold I_D(V_{GS}) charactersitic

Subthreshold I_D(V_{DS}) charactersitic

MOS transistor models

- Needed for circuit simulators (SPICE, TRANZ-TRAN, ELDO, SABER, etc.)
- Different levels of complexity:
 - level0, 1, 2, ...n,
 - EKV,
 - BSIM3, BSIM4

No.	Text Symbol	SPICE Keyword	Level	Parameter Name	Default Value	Units
1	_	LEVEL	1–3	SPICE model 1, 2 or 3	1	_
2	V_T	VTO	1-3	Zero-bias threshold voltage	0.0	V
3	γ	GAMMA	1–3	Bulk space-charge parameter	0.0	V ^{0.5}
4	ψ_s	PHI	1–3	Surface potential	0.6	V
5	KP	KP	1–3	Transconductance parameter	2.0E-5	A/V ²
6	λ	LAMBDA	1, 2	Channel-length modulation	0	V^{-1}
7	tox	TOX	1–3	Gate-oxide thickness	1.0E-7	meter
8	N _b	NSUB	1–3	Substrate doping	0.0	cm ⁻³
9	N _f	NSS	2, 3	Fixed oxide charge	0.0	cm ⁻²
10	N _{lt}	NFS	2, 3	Interface-trapped charge	0.0	cm ⁻²
11	-	TPG	2, 3	Type of gate material	1	_
	1			+1 opp. to substrate		
				-1 same as substrate		
	1			0 Al gate		
12	μ	UO	1-3	Surface mobility	600	cm ² /Vs
13	Uc	UCRIT	2 2	Critical electric field for mobility	1E4	V/cm
14	U _o	UEXP	2	Exponential coefficient for mobility	0.0	—
15	U _t	UTRA	2	Transverse field coefficient	0.0	_
16	X _i	ΧJ	2, 3	Source or drain junction depth	0.0	meters
17	X _{ii}	LD	1-3	Lateral diffusion	0.0	meters
18	Vmax	VMAX	2, 3	Maximum carrier drift velocity	0.0	meters/s
19	Neff	NEFF	2	Total channel charge coefficient	1	_
20	δ	DELTA	2, 3	Width effect on threshold voltage	0.0	_
21	η	ETA	3	Static feedback on threshold voltage	0.0	_
22	V _{bi}	PB	1–3	Source and drain junction built-in		
				potential	0.80	V
23	θ	THETA	3	Mobility modulation	0.0	l —
24	K	KAPPA	3	Saturation field factor	0.2	_

TABLE 8.1 SPICE2 and PSpice MOSFET DC Model Parameters.

MOS transistor models

Needed for circuit simulators (SPICE, TRANZ-TRAN, ELDO, SABER, etc.)

- Different levels of complexity:
 - level0, 1, 2, ...n,
 - EKV,
 - BSIM3, BSIM4

Examples for MOSFETs

Micro-photograph by SEM

Photograph by optical microscope

How is it manufactured?

Metal gate MOS transistor

Poly-Si gate MOS transistor

In-depth structure: Drain Gate Source doping thin oxide doping Layout view: Source **Advantages** Drain smaller V_T contact self alignment

- Start with: p type substrate (Si wafer)
 - cleaing,
 grow thick SiO₂ this is called *field oxide*

- Create the active zone with photolithography
 - coat with resist,
 - expose to UV light through a mask,
 - development, removal of exposed resists
 - etching of SiO₂ removal of the resist

M1: active zone

- Create the gate structure:
 - growth of thin oxide
 - deposit poly-Si
 - pattern poly-Si with photolithography
 - etch poly-Si, etch thin oxide

M2: poly-Si pattern

- S/D doping (implantation)
 - the exide (thin, thick) masks the dopants
 - this way the self-alignment of the gate is assured
- ▶ Passivation: deposit PSG

- Open contact windows through PSG
 - photolithography (resist, expose pattern, develop)
 - etching (copy the pattern)

M3: contact window pattern

- Metallization
 - Deposit Al
 - · photolithography, etching, cleaning

M4: metallization pattern

- ► The recepy of the process is given, the in-depth structure is determined by the sequence of the masks
- One needs to specify the shapes on the masks
 - The set of shapes on subsequent masks is called layout

Poli-Si gate self-aligned device

Steps of the self-aligned poli-Si gate process

1) Open window for the active region

M

- photolitography, field oxide etching
- 2) Growth of thin oxide
- 3) Window for hidden contacts

- M
- Contacts the poli-Si gate (yet to be deposited) with the active region (after doping).
- 3) Deposit poli-Si
- 4) Patterning of poli-Si

M

5) Open window through the thin oxide (etching only)

Steps of the self-aligned poli-Si gate process

6) n+ doping:

Form source and drain regions as well as wiring by diffusion lines. Through the hidden contact poli-Si gate will also be connected to diffused lines.

- 7) Deposit phosphor-silica glass (PSG) as insulator
- 8) Open contact windows through PSG-n M
- 9) Metallization
- 10) Patterning metallization layer

M

Layout of a depletion mode inverter

- Layout == set of 2D shapes on subsequent masks
- Masks are color coded:

active zone: red

poly-Si: green

 contact windows: black

blue metal:

Mask == layout layer

Where is a transistor? Channel between two doped regions:

CHANNEL = ACTIVE AND POLY

Some more complex MOS circuits

Some more complex MOS circuits

