Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică Secția: Informatică engleză, Curs: Dynamical Systems, Semestru: Primăvara 2017

Seminar 1

1. Find all functions $x \in C^1(\mathbb{R})$ such that: a) x' = 0; b) x' = 2t; c) $x' = \sin t$; d) $x' = 2t + \sin t$; e) $x' = e^{2t} \cos t$; f) $x' = (t^2 - 5t + 7) \sin t$.

All these are simple examples of first order differential equations. Note that, in general, a first order differential equation has the form x' = f(t, x), while all the above have the form x' = f(t), i.e. the unknown function x(t) does not appear in the right hand side. In turn, in the right hand side of the differential equation below, x' = 3x, appears the unknown function but does not appear the independent variable t.

- 2. Show that $x : \mathbb{R} \to \mathbb{R}$, given by the expression $x(t) = 2e^{3t}$ for all $t \in \mathbb{R}$, is a solution of the Initial Value Problem x' = 3x, x(0) = 2. Represent the corresponding integral curve* and describe its long term behavior**.
- *A graphical representation of a solution of some differential equation is called an integral curve or a solution curve of this equation.
- **To describe the long term behavior of some function means to decide whether it is: periodic, oscillatory around some fixed value η^* (i.e. the values of the function changes many many times from values below η^* to values above η^*), bounded, increasing, and to describe how it behaves at $\pm \infty$.
- 3. Show that $x: \mathbb{R} \to \mathbb{R}$, $x(t) = 2\sin t$ for all $t \in \mathbb{R}$, is a solution of the Initial Value Problem x'' + x = 0, x(0) = 0, x'(0) = 2. Represent the corresponding integral curve and describe its long term behavior.
- 4. Show that $x(t) = e^{-2t} \cos t$ for all $t \in \mathbb{R}$, is a solution of the Initial Value Problem x'' + 4x' + 5x = 0, x(0) = 1, x'(0) = -2. Represent this integral curve and describe its long term behavior.
- 5. Decide whether $x: \mathbb{R} \to \mathbb{R}$, $x(t) = \cos t$ for all $t \in \mathbb{R}$, is a solution of the differential equations x' + x = 0 or x'' x = 0 or x''' + x' = 0 or $x^{(4)} + x'' = 0$ or $x^{(5)} + x''' = 0$ or $x^{(6)} + x^{(4)} = 0$, ...

- 6. Find all constant solutions of the differential equations: a) $x' = x x^3$; b) $x' = \sin x$; c) $x' = \frac{x+1}{2x^2+5}$; d) $x' = x^2+x+1$; e) $x' = x+4x^3$; f) $x' = -1+x+4x^3$.
- 7. i) Let the functions $x_1, x_2, x_3 : \mathbb{R} \to \mathbb{R}$ be defined by $x_1(1) = 1$, $x_2(t) = t$ and $x_3(t) = t^2$ for all $t \in \mathbb{R}$. Prove that they are linearly independent in the linear space $C(\mathbb{R})$ (over the filed \mathbb{R} and with the usual operations).
- (ii) Find all $a,b,c\in\mathbb{R}$ such that $x(t)=at^2+bt+c$ to be a solution of $x'-5x=2t^2+3$ or x''=0 or x'''=0. Write the solutions you found.
- 8. (i) Let the functions $x_1, x_2, x_3 : \mathbb{R} \to \mathbb{R}$ be such that $x_1(1) = \cos t$, $x_2(t) = \sin t$ and $x_3(t) = e^t$ for all $t \in \mathbb{R}$. Prove that they are linearly independent in the linear space $C(\mathbb{R})$.
- (ii) Find all $a, b, c \in \mathbb{R}$ such that $x(t) = a \sin t + b \cos t + c e^t$ to be a solution of $x' + x = -3 \sin t + 2 e^t$ or $x'' + 4x = -3 \sin t$ or $x'' + x = -3 \sin t$ or x'' + x = 0 or x''' x'' + x' x = 0. Write the solutions you found.
- 9. Find $r \in \mathbb{R}$ such that $x(t) = e^{rt}$ to be a solution of x'' 5x' + 6x = 0 or x''' 5x'' + 6x' = 0 or $x^{(4)} 5x''' + 6x'' = 0$ or x'' + 9x = 0 or x'' + x' + x = 0.
- 10. Find as many functions $x \in C^1(\mathbb{R})$ as you can such that: a) x' = x; b) x' = 2x; c) x' = -x; d) x' = ax, with $a \neq 0$ a real parameter.
- 11. An integrating factor for some differential equation is a function $\mu = \mu(t, x)$ that helps us to integrate the differential equation. For example, $\mu(x) = e^{-t}$ is an integrating factor of x' = x, since after multiplying the equation with μ , we can write the equation as $(xe^{-t})' = 0$. After integration, we obtain the general solution $x = ce^t$, where c is an arbitrary real constant. Integrate the following equations: a) x' + x = 1 + t; b) $x' + 2x = \sin t$; c) tx' + x = 1; d) tx' + 2x = 1; e) xx' + t = 0.
- 12. Represent the integral curves of the differential equations x' = 0, x' = 2t, x' = x and x' = 2x. In each case, find the curve that passes through the point (1,3). Decide whether the following claim is true: "Through each point of the plane passes one and only one solution curve of the given differential equation".