Задание 3 по курсу «Байесовский выбор моделей»

Общая информация

- Время сдачи задания: 26е ноября, 23:59 по Москве;
- Максимальная базовая оценка за задание 50 баллов, так что при желании можно выполнять не всё;
- Оценка автора наилучшей работы удваивается (с учетом баллов сверх 50), но не более, чем до 125 баллов;
- Вопросы и само задание принимаются по почте: aduenko1@gmail.com & iakovlev.kd@phystech.edu (отправлять на обе сразу);
- Тема письма: вопрос по заданию #3 или решение задания #3;
- Опоздание на неделю снижает оценку в 2 раза, опоздание на час на $0.5^{1/(7\cdot24)}=0.41\%$;
- Работы опоздавших не участвуют в конкурсе на лучшую работу;
- Задание не принимается после его разбора и / или после объявления об этом.

Задача 1 (15 баллов). Пусть имеется обучающая и тестовая выборки ($\mathbf{X}_{\text{train}}, \mathbf{y}_{\text{train}}$), $\mathbf{X}_{\text{train}} \in \mathbb{R}^{m_1 \times n}$, $\mathbf{y}_{\text{train}} \in [-1, 1]^{m_1}$; ($\mathbf{X}_{\text{test}}, \mathbf{y}_{\text{test}}$), $\mathbf{X}_{\text{test}} \in \mathbb{R}^{m_2 \times n}$, $\mathbf{y}_{\text{test}} \in [-1, 1]^{m_2}$, полученные из общей модели генерации данных с совместным правдоподобием

$$p(\mathbf{y}, \mathbf{w}, \mathbf{X}|\mathbf{A}) = \prod_{j} \mathcal{N}(\mathbf{x}_{i}|\mathbf{0}, \sigma^{2}\mathbf{I}_{n})\mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{A}^{-1}) \prod_{j} p(y_{j}|\mathbf{x}_{j}, \mathbf{w}),$$

где $p(y_j|\mathbf{x}_j, \mathbf{w})$ дается моделью логистической регрессии, то есть

$$\mathbb{P}(y_j = 1) = \frac{1}{1 + \exp(-\mathbf{w}^\mathsf{T}\mathbf{x}_j)}.$$

- а) Выписать формулу для апостериорного распределения $p(\mathbf{w}|\mathbf{X}_{\text{train}}, \mathbf{y}_{\text{train}}, \mathbf{A})$ и получить его нормальную аппроксимацию $p(\mathbf{w}|\mathbf{X}_{\text{train}}, \mathbf{y}_{\text{train}}, \mathbf{A}) \approx \mathcal{N}(\mathbf{w}_0, \mathbf{H}_0^{-1})$ (4 балла);
- б) Пусть $\hat{\mathbf{p}}$ вектор оценок вероятностей принадлежности классу 1 для некоторого классификатора на тестовой выборке. Введем уверенность $C(\mathbf{X}_{\text{test}},\,\mathbf{y}_{\text{test}})$ классификатора на тестовой выборке как

$$C(\hat{\mathbf{p}}) = \sum_{i=1}^{m_2} |\hat{p}_i - 0.5|.$$

Рассмотрим также правдоподобие тестовой выборки относительно вектора $\hat{\mathbf{p}}$ как

$$l(\mathbf{y}_{\text{test}}, \, \hat{\mathbf{p}}) = \prod_{i=1}^{m_2} \hat{p}_i^{y_{\text{test}}^i} (1 - \hat{p}_i)^{1 - y_{\text{test}}^i}.$$

Считая $m_2 = 1000$, а $\sigma^2 = 1$, $\mathbf{A} = \mathbf{I}_n$ известными и фиксированными, для разных размеров обучающей выборки m_1 сравнить с помощью сэмплирования уверенность классификатора на тестовой выборке и правдопобие на ней для точечного MAP-классификатора вида

$$\hat{\mathbf{p}}_{test} = \frac{1}{1 + \exp(-\mathbf{X}_{test}^{\mathsf{T}} \mathbf{w}_{MAP})}$$

и для полного байесовского классификатора, учитывающего неопределенность в w вида

$$\hat{\mathbf{p}}_{\text{test}} = \int \frac{1}{1 + \exp(-\mathbf{X}_{\text{test}}^{\mathsf{T}} \mathbf{w})} p(\mathbf{w} | \mathbf{X}_{\text{train}}, \ \mathbf{y}_{\text{train}}) d\mathbf{w}.$$

Какой практический вывод можно сделать из полученных результатов? (11 баллов)

Задача 2 (20 баллов). Пусть имеется модель линейной регрессии с нормальным шумом

$$\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\varepsilon}, \ \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \ \sigma^2 \mathbf{I}),$$

где σ^2 – известно, и априорным распределение на \mathbf{w} $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}, \operatorname{diag}(\mathbf{s}))$, где \mathbf{m} и $\operatorname{diag}(\mathbf{s})$ неизвестные гиперпараметры.

- а) Выписать совместное правдоподобие $p(\mathbf{y}, \mathbf{w}|\mathbf{X}, \mathbf{m}, \mathbf{s})$, задающее вероятностную модель. (2 балла)
- б) Получить апостериорное распределение на вектор \mathbf{w} , предполагая \mathbf{m} и \mathbf{s} известными. Что происходит, если $s_i=0$? (4 баллов)
- в) Решить задачу максимизации обоснованности

$$p(\mathbf{y}|\mathbf{X}, \mathbf{m}, \mathbf{s}) = \int p(\mathbf{y}|\mathbf{X}, \mathbf{w}) p(\mathbf{w}|\mathbf{m}, \operatorname{diag}(\mathbf{s})) d\mathbf{w}$$

по гиперпараметрам **m** и **s**. Какой вывод можно сделать из полученного результата? (14 баллов)

Задача 3 (20 баллов). Пусть имеется две двухсторонние монеты, случайно и независимо выбранные из всех существующих монет достоинством в 2 рубля. Пусть было произведено $n_1=10$ бросаний первой монеты и $n_2=10000$ бросаний второй. Среди $n_1=10$ результатов бросания первой монеты было $k_1=3$ орла, а среди $n_2=10000$ бросаний второй – $k_2=5100$ орлов.

- а) Построить вероятностную модель эксперимента, записав правдоподобие и введя априорные распределения на вероятности p_1 и p_2 выпадания орлов для первой и второй монеты соответственно. Опишите, как и из каких соображений Вы выбрали априорные распределения $q(p_1)$ и $q(p_2).(4$ балла)
- б) Получить апостериорные распределения $q(p_1|k_1, n_1)$ и $q(p_2|k_2, n_2)$. (4 балла)
- в) Пусть теперь рассматривается две вероятностные модели: M_1 с $p_1 = p_2 = p$ и априорным распределением, которые было ранее выбрано Вами для p_1 и полная модель M_2 из пункта а), где p_1 и p_2 априорно выбраны независимо из $q(p_1)$ и $q(p_2)$. Сосчитать апостериорную вероятность обеих моделей, считая их априори равновероятными ($p(M_1) = p(M_2) = 0.5$). Какой вывод можно сделать из результата? (12 баллов)

Задача 4 (10 баллов). a) Что такое дивергенция Кульбака-Лейблера (KL-divergence), что она показывает и когда определена? (2 балла)

- б) Докажите, что значение дивергенции Кульбака-Лейблера неотрицательно (3 балла).
- в) Пусть у Вас есть две модели логистической регрессии с равномерным априорным псевдораспредлением на параметр \mathbf{w} , оцененные на двух разных выборках $(\mathbf{X}_1, \mathbf{y}_1)$ и $(\mathbf{X}_2, \mathbf{y}_2)$ с одинаковым набором из двух признаков. Пусть апостериорные распределение для первой выборки $\mathbf{w} \sim \mathcal{N}\left(\mathbf{w} \mid [1, 1]^\mathsf{T}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)$, а для второй выборки $\mathbf{w} \sim \mathcal{N}\left(\mathbf{w} \mid [-8, -3]^\mathsf{T}, \begin{pmatrix} 10000 & 0 \\ 0 & 2000 \end{pmatrix}\right)$

Считая, что выборки сгенерированы с помощью модели логистической регрессии, можно ли с уверенностью утверждать, что истинные векторы параметров этих моделей \mathbf{w}_1 и \mathbf{w}_2 разные? (5 баллов)