```
import pandas as pd
In [1]:
          import numpy as np
          from sklearn.model selection import train test split
          from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import accuracy score
          heart_data=pd.read_csv("C:/Users/hasif/Downloads/heart.csv")
In [2]:
          print(heart data)
                                 trestbps
                                             chol
                                                    fbs
                                                          restecg
                                                                     thalach
                                                                                exang
                                                                                        oldpeak \
                 age
                       sex
                             ср
          0
                  52
                              0
                                       125
                                               212
                                                       0
                                                                          168
                                                                                    0
                                                                                             1.0
                         1
                                                                 1
          1
                              0
                                       140
                                               203
                                                                 0
                                                                          155
                                                                                    1
                                                                                             3.1
                  53
                         1
                                                       1
          2
                  70
                         1
                              0
                                       145
                                              174
                                                       0
                                                                 1
                                                                          125
                                                                                    1
                                                                                             2.6
          3
                  61
                         1
                              0
                                       148
                                               203
                                                       0
                                                                 1
                                                                          161
                                                                                    0
                                                                                             0.0
          4
                  62
                              0
                                       138
                                              294
                                                                 1
                                                                          106
                                                                                    0
                                                                                             1.9
                         0
                                                       1
          . . .
                 . . .
                             . .
                                        . . .
                                               . . .
                                                     . . .
                                                               . . .
                                                                          . . .
                                                                                  . . .
                                                                                             . . .
          1020
                  59
                         1
                              1
                                       140
                                               221
                                                       0
                                                                 1
                                                                          164
                                                                                    1
                                                                                            0.0
          1021
                         1
                              0
                                       125
                                              258
                                                       0
                                                                 0
                                                                          141
                                                                                    1
                                                                                             2.8
                  60
          1022
                  47
                         1
                              0
                                       110
                                               275
                                                       0
                                                                 0
                                                                          118
                                                                                    1
                                                                                             1.0
          1023
                              0
                                                       0
                                                                 0
                                                                                    0
                  50
                         0
                                       110
                                               254
                                                                          159
                                                                                             0.0
          1024
                                       120
                                                                 1
                                                                                    0
                  54
                         1
                              0
                                              188
                                                       0
                                                                          113
                                                                                             1.4
                 slope
                              thal
                                     target
                         ca
          0
                      2
                          2
                                  3
                                           0
          1
                          0
                                  3
                                           0
                      0
          2
                      0
                          0
                                  3
                                           0
          3
                      2
                          1
                                  3
                                           0
          4
                                  2
                      1
                          3
                                           0
                               . . .
          . . .
                    . . .
                         . .
                                         . . .
          1020
                      2
                          0
                                  2
                                           1
          1021
                          1
                                  3
                                           0
                      1
          1022
                      1
                          1
                                  2
                                           0
                      2
                                  2
                                           1
          1023
                          0
                                  3
                                           0
          1024
                      1
                          1
          [1025 rows x 14 columns]
          heart data.head()
In [3]:
Out[3]:
                       cp trestbps
                                     chol fbs
                                                restecg
                                                        thalach exang
                                                                         oldpeak slope
                                                                                             thal target
             age
                  sex
                                                                                         ca
                                                                                           2
                                                                                                3
          0
              52
                        0
                                      212
                                             0
                                                      1
                                                             168
                                                                      0
                                                                              1.0
                                                                                       2
                                                                                                        0
                     1
                                125
              53
                     1
                        0
                                140
                                      203
                                             1
                                                      0
                                                             155
                                                                      1
                                                                              3.1
                                                                                       0
                                                                                          0
                                                                                                3
                                                                                                        0
          2
              70
                     1
                        0
                                             0
                                                      1
                                                                      1
                                                                                       0
                                                                                          0
                                                                                                3
                                                                                                        0
                                145
                                      174
                                                             125
                                                                              2.6
          3
              61
                        0
                                             0
                                                      1
                                                                      0
                                                                              0.0
                                                                                       2
                                                                                                3
                                                                                                        0
                     1
                                148
                                      203
                                                             161
                                                                                          1
```

1.9

1 3

heart_data.tail()

In [4]:

```
221
                                                                                            2
         1020
                59
                      1
                                 140
                                            0
                                                     1
                                                           164
                                                                    1
                                                                           0.0
                                                                                   2
                                                                                       0
                                                                                                   1
                                                     0
                                                                    1
                                                                                                   0
         1021
                60
                      1
                          0
                                 125
                                      258
                                            0
                                                           141
                                                                           2.8
                                                                                   1
                                                                                      1
                                                                                            3
         1022
                47
                      1
                          0
                                 110
                                      275
                                            0
                                                     0
                                                           118
                                                                    1
                                                                           1.0
                                                                                   1
                                                                                      1
                                                                                            2
                                                                                                   0
         1023
                50
                          0
                                      254
                                                     0
                                                           159
                                                                    0
                                                                           0.0
                                                                                            2
                                                                                                   1
                      0
                                 110
                                            0
                                                                                   2
                                                                                      0
         1024
                54
                      1
                          0
                                 120
                                      188
                                            0
                                                     1
                                                           113
                                                                    0
                                                                           1.4
                                                                                   1
                                                                                      1
                                                                                            3
                                                                                                   0
In [5]:
         heart_data.shape
         (1025, 14)
Out[5]:
In [6]:
         heart_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1025 entries, 0 to 1024
         Data columns (total 14 columns):
              Column
                         Non-Null Count Dtype
         ---
          0
                         1025 non-null
                                           int64
              age
          1
              sex
                         1025 non-null
                                           int64
                         1025 non-null
                                           int64
          2
              ср
          3
              trestbps 1025 non-null
                                           int64
                         1025 non-null
          4
              chol
                                           int64
                         1025 non-null
          5
              fbs
                                           int64
                         1025 non-null
          6
              restecg
                                           int64
          7
                         1025 non-null
                                           int64
              thalach
              exang
          8
                         1025 non-null
                                           int64
          9
              oldpeak
                         1025 non-null
                                           float64
          10
              slope
                         1025 non-null
                                           int64
          11
              ca
                         1025 non-null
                                           int64
                         1025 non-null
          12
                                           int64
             thal
          13 target
                         1025 non-null
                                           int64
         dtypes: float64(1), int64(13)
         memory usage: 112.2 KB
         heart_data.isnull().sum()
In [7]:
                      0
         age
Out[7]:
                      0
         sex
         ср
                      0
         trestbps
                      0
                      0
         chol
                      0
         fbs
         restecg
                      0
                      0
         thalach
                      0
         exang
         oldpeak
                      0
         slope
                      0
         ca
                      0
         thal
                      0
         target
                      0
         dtype: int64
         #statistical measures
In [8]:
         heart_data.describe()
```

trestbps chol fbs restecg thalach exang oldpeak slope ca thal target

Out[4]:

age

sex

Out[8]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	
	count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	1025.000000	102
	mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756	149.114146	
	std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878	23.005724	
	min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000	71.000000	
	25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000	132.000000	
	50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000	152.000000	
	75 %	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000	166.000000	
	max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000	202.000000	

In [9]: import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline

plt.show()

In [10]:

sns.countplot(heart_data['sex'],palette='Set2')
plt.title('gender vs quantity',fontsize=20)

E:\anaconda\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following varia ble as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, a nd passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [11]: sns.set_context("poster")
sns.scatterplot(x='age',y='trestbps',data=heart_data)
```

Out[11]: <AxesSubplot:xlabel='age', ylabel='trestbps'>


```
In [12]: sns.set_context("paper")
sns.scatterplot(x='age',y='chol',data=heart_data,hue='target')
```

Out[12]: <AxesSubplot:xlabel='age', ylabel='chol'>


```
In [13]: sns.set_context("poster")
sns.scatterplot(x='age',y='restecg',data=heart_data,hue='target')
```

Out[13]: <AxesSubplot:xlabel='age', ylabel='restecg'>


```
In [14]: sns.set_context('poster')
         sns.relplot(data=heart_data,x='age',y='cp',hue='age',col='sex',col_wrap=3)
         <seaborn.axisgrid.FacetGrid at 0x25014f81f40>
Out[14]:
                       sex = 0
                                                   sex = 1
            3-
                                                                                                   age
                                                                                                      32
            2-
                   000(000(0)0 000)00)
                                               40
         9
                                                                                                      48
            1
                                                 56
                                                                                                      64
            0
                                                                                                      72
                                                40
                   40
                             60
                                                         60
                         age
                                                     age
         sns.set_context('poster')
In [15]:
         sns.catplot(x='age',col='target',data=heart_data,kind='count',palette='husl')
         plt.gcf().set_size_inches(40,10)
         plt.show()
                               target = 0
                                                                                  target = 1
          40
          30
          10
         #checking distribution of target
In [16]:
         heart data['target'].value counts()
         #1-->stroke
         #0-->healty
              526
Out[16]:
              499
         Name: target, dtype: int64
         X=heart_data.drop(columns='target',axis=1)
In [17]:
         Y=heart_data['target']
In [18]:
         print(X)
```

```
0
                   52
                              0
                                        125
                                               212
                                                                 1
                                                                         168
                                                                                            1.0
                                               203
           1
                   53
                              0
                                        140
                                                       1
                                                                 0
                                                                         155
                                                                                    1
                                                                                            3.1
                          1
           2
                   70
                          1
                              0
                                        145
                                               174
                                                       0
                                                                 1
                                                                         125
                                                                                    1
                                                                                            2.6
           3
                   61
                              0
                                        148
                                               203
                                                       0
                                                                 1
                                                                         161
                                                                                    0
                                                                                            0.0
                          1
           4
                   62
                          0
                              0
                                        138
                                               294
                                                       1
                                                                 1
                                                                         106
                                                                                    0
                                                                                            1.9
                                        . . .
                                               . . .
                                                                         . . .
                                                                                            . . .
           . . .
                  . . .
                              . .
                                                     . . .
                                                               . . .
                                                                                  . . .
                                        140
           1020
                   59
                          1
                              1
                                               221
                                                       0
                                                                 1
                                                                         164
                                                                                    1
                                                                                            0.0
           1021
                   60
                          1
                              0
                                        125
                                               258
                                                       0
                                                                 0
                                                                         141
                                                                                    1
                                                                                            2.8
           1022
                   47
                          1
                              0
                                        110
                                               275
                                                       0
                                                                 0
                                                                         118
                                                                                    1
                                                                                            1.0
                              0
                                               254
                                                                 0
           1023
                   50
                          0
                                        110
                                                       0
                                                                         159
                                                                                    0
                                                                                            0.0
           1024
                   54
                          1
                                        120
                                               188
                                                       0
                                                                 1
                                                                         113
                                                                                    0
                                                                                            1.4
                  slope
                          ca
                              thal
           0
                      2
                           2
                                  3
                                  3
           1
                      0
                           0
           2
                                  3
                      0
                           0
           3
                      2
                           1
                                  3
           4
                           3
                                  2
                      1
           . . .
                          . .
           1020
                      2
                           0
                                  2
           1021
                      1
                           1
                                  3
                                  2
           1022
                      1
                           1
                                  2
           1023
                      2
                           0
           1024
                                  3
                      1
                           1
           [1025 rows x 13 columns]
In [19]:
           print(Y)
                    0
           0
           1
                    0
           2
                    0
           3
                    0
                    0
           1020
                    1
           1021
                    0
           1022
                    0
           1023
                    1
           1024
                    0
           Name: target, Length: 1025, dtype: int64
           #splitting the data into training data and test data
In [20]:
           X\_train, X\_test, Y\_train, Y\_test=train\_test\_split(X,Y,test\_size=0.2,stratify=Y,random\_state=2)
           X_train.shape
In [21]:
           (820, 13)
Out[21]:
           print(X_test.shape)
In [22]:
           (205, 13)
In [23]:
           X.shape
           (1025, 13)
Out[23]:
           #Model training
In [24]:
           #logistic training
           model=LogisticRegression()
           model.fit(X_train,Y_train)
```

fbs

restecg

thalach

exang

oldpeak

chol

trestbps

age

sex

ср

```
E:\anaconda\lib\site-packages\sklearn\linear model\ logistic.py:763: ConvergenceWarning: lbfgs f
         ailed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
           n iter i = check optimize result(
         LogisticRegression()
Out[24]:
In [25]:
         #model evaluation
          #accuracy score
          #on trained data
         X train prediction=model.predict(X train)
          training_data_accuracy=accuracy_score(X_train_prediction,Y_train)
In [26]:
         print('Accuracy on training data:',training_data_accuracy)
         Accuracy on training data: 0.8524390243902439
In [27]: X_test_prediction=model.predict(X_test)
          test_data_accuracy=accuracy_score(X_test_prediction,Y_test)
In [28]: print('accuracy on test data:',test_data_accuracy)
         accuracy on test data: 0.8048780487804879
         #BUILDING A PREDICTIVE MODEL
In [29]:
          input_data=(58,1,0,114,318,0,2,140,0,4.4,0,3,1)
          #change input data into numpy array
          input_data_as_numpy_array=np.asarray(input_data)
          #reshape the numpy array as we are predicting
          input data reshaped=input data as numpy array.reshape(1,-1)
          prediction=model.predict(input data reshaped)
          #print(prediction)
          if (prediction[0]==0):
             print('the person doesnot have a heart disease')
          else:
             print('the person has a heart disease')
         the person doesnot have a heart disease
In [30]:
          sns.catplot(x='sex',col='target',data=heart data,kind='count',palette='husl')
```

plt.show()

In []: