Assignment Part II

1)What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose to double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

<u>Answer</u>: From our analysis done in Part I, we see the optimal value of alpha is 2 (for Ridge regression) and alpha is 0.0001 (for Lasso regression)

For Ridge regression, we will double value of alpha which becomes 4:

R2 Score of model on test dataset for doubled value of alpha = 0.7933990805211957

MSE of model on test dataset for doubled value of alpha = 0.002211210591542772

20 important features with alpha=2

20 important features with alpha=4

Ridge Model Doubled Alpha Co-Effici		Ridge Co-Efficient	Rid
al SqrFoot 0.142	TotalSqrFoot	0.161724	TotalSqrFoot
rageArea 0.1049	GarageArea	0.116254	GarageArea
athrooms 0.0629	TotalNoOfBathrooms	0.066629	TotalNoOfBathrooms
erallCond 0.0618	OverallCond	0.065650	OverallCond
sAbvGrd 0.039	TotRmsAbvGrd	0.039030	LotArea
LotArea 0.035	LotArea	0.032450	TotRmsAbvGrd
alPorchSf 0.0324	TotalPorchSf	0.031344	TotalPorchSf
_StoneBr 0.0272	Neighborhood_StoneBr	0.030141	leighborhood_Veenker
tQual_Ex 0.0256	BsmtQual_Ex	0.029971	eighborhood_StoneBr
Frontage 0.025	LotFrontage	0.026807	MSSubClass_70
_Veenker 0.025	Neighborhood_Veenker	0.026113	LotFrontage
Class_70 0.0248	MSSubClass_70	0.024106	BsmtQual_Ex
PorchSF 0.0222	OpenPorchSF	0.022561	OpenPorchSF
pe_Stone 0.020	MasVnrType_Stone	0.019371	MasVnrType_Stone
nQual_Ex 0.0182	KitchenQual_Ex	0.017596	KitchenQual_Ex
rQual_Ex 0.0129	ExterQual_Ex	0.014273	HouseStyle_2.5Unf
le_2.5Unf 0.0122	HouseStyle_2.5Unf	0.012583	leighborhood_Blmngtn
_CulDSac 0.0120	LotConfig_CulDSac	0.012200	ExterQual_Ex
_Blmngtn 0.0094	Neighborhood_Blmngtn	0.011707	LotConfig_CulDSac
Mansard 0.0090	RoofStyle_Mansard	0.010072	RoofStyle_Mansard

The above table shows the comparison of ridge coefficients for alpha value 2 & 4 respectively.

20 Important features for alpha=0.0001

20 Important features for alpha=0.0002

	Lasso Co-Efficient		Lasso Model Doubled Alpha Co-Efficient
TotalSqrFoot	0.196702	TotalSqrFoot	0.199039
GarageArea	0.128735	GarageArea	0.123918
OverallCond	0.066294	OverallCond	0.062796
TotalNoOfBathrooms	0.060259	TotalNoOfBathrooms	0.052147
LotArea	0.035915	TotRmsAbvGrd	0.028907
TotalPorchSf	0.026834	TotalPorchSf	0.027062
Neighborhood_StoneBr	0.025067	BsmtQual_Ex	0.024043
TotRmsAbvGrd	0.024709	LotArea	0.022112
BsmtQual_Ex	0.023347	Neighborhood_StoneBr	0.018196
OpenPorchSF	0.020177	KitchenQual_Ex	0.015432
MSSubClass_70	0.019504	OpenPorchSF	0.015411
Neighborhood_Veenker	0.018665	MasVnrType_Stone	0.015012
MasVnrType_Stone	0.016484	MSSubClass_70	0.013777
KitchenQual_Ex	0.015966	ExterQual_Ex	0.008771
ExterQual_Ex	0.009875	LotConfig_CulDSac	0.007993
LotConfig_CulDSac	0.008327	RoofStyle_Hip	0.007343
Neighborhood_Blmngtn	0.007932	MasVnrType_BrkFace	0.005158
RoofStyle_Hip	0.006812	LotShape_IR2	0.002888
LotShape_IR2	0.005944	Neighborhood_Veenker	0.001508
MasVnrType_BrkFace	0.005312	Garage Type_BuiltIn	0.000414

The above table shows the comparison of Lasso coefficients for alpha value 0.0001 & 0.0002 respectively.

Below is our conclusion based on above table values:

- 1) As the alpha value was small, doubling this value did not have much impact in both the models.
- 2) Both R2 and MSE remained almost same even after doubling the alpha value.
- 3) Also, the most important predictor variables remained same.
- 4) Ridge coefficients for alpha value 2 are slightly higher than the value for alpha value 4.
- 5) Lasso coefficients for alpha=0.0001 we see a slight difference than the value for alpha=0.0002.
- 6) However, for both Ridge and Lasso we see the feature "Total rooms above ground" has taken the 5th rank by replacing the feature "Lot Area".

2) You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

<u>Answer:</u> Lasso regression would be a better option because it helps in feature elimination. Also, the model will be more robust.

3) After building the model, you realized that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer: From our above analysis the 5 most important predictors are:

- 1) Total Square foot
- 2) Garage Area
- 3) Total No of Bathrooms
- 4) Overall Condition
- 5) Lot Area

After we delete the above top 5 predictors from incoming dataset and recalculate the lasso coefficients, we found the below 5 most important predictor variables:

L	_a	S	s	o	C	0	Æ	ffi	ci	e	ní	t
	•		_	_	_	•		•				•

TotRmsAbvGrd	0.123240
LotFrontage	0.106755
TotalPorchSf	0.068439
Neighborhood_Veenker	0.050751
Neighborhood_StoneBr	0.036715

4) How can you make sure that a model is robust and generalizable? What are the implications of the same for the accuracy of the model and why?

Answer: A model should be robust and generalizable so that they are not affected by outliers in the training data. The model also needs to be generalizable so that the test accuracy is not lesser than the training score. The model needs to perform accurately for any datasets other than the training dataset. Less weightage should be given to the outliers so that the accuracy of the model is high. To build a highly accurate model, the outlier analysis should be done and only the dataset which are relevant should be retained. The outliers which are less relevant needs to be removed. This will help in increasing the accuracy of the predictions made by the model. Also, confidence intervals can be used (typically 3-5 standard deviations). This will benefit in standardizing the predictions made by the model. The model needs to be robust so that it can be trusted for predictive analysis.