Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 12		
Standard: This student is able to		Mark:
C08: Work. Express the work done in a system as a dentite integral.	ĥ-	war.
Extra2 * 1	ceattempt due on:	

Hooke's Law states that the force required to stretch or compress a spring x units from its natural length requires F(x) = kx units of force for some constant k (depending on the spring). Suppose a spring satisfies k = 3 and is naturally length 5. Find a definite integral equal to the work required to compress this spring from length 4 to length 2. (Do not solve your integral.)

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 12		
Standard: This student is able to		Mark:
C11: SeqLim. Compute the limit of a convergent sequence).	Mark.
3/4 * reattempt due on:		

Recall that the recursive defintion of a factorial is given by 0! = 1 and (n+1)! = n!(n+1). Find $\lim_{n \to \infty} \frac{\frac{3^{n+1}}{(n+1)!}}{\frac{3^n}{n!}}$.

Name:	Exercise T	Type (Cost):
J#:	In-Class (1AP)	
Date: 2017 July 12		
Standard: This student is able to C12: PartSum. Find the value of a convergent series by expressing it as a limit of partial sums.		Mark:

Find a formula for the partial sum $s_n = a_0 + a_1 + \dots + a_n$ where $a_n = (\frac{3n+4}{n+1} - \frac{3n+7}{n+2})$. Then use this formula to prove that $\sum_{n=0}^{\infty} (\frac{3n+4}{n+1} - \frac{3n+7}{n+2}) = 1$.

 \star reattempt due on:

2/4

Name:	Exercise Type (Cost):	
J#:	In-Class (1AP)	
Date: 2017 July 12		
Standard: This student is able to	Mark:	
S11: GeoAlt. Determine if a geometric series or alternating		
series is convergent or divergent.		

Recall that the geometric series $\sum_{n=0}^{\infty} ar^n$ converges to $\frac{a}{1-r}$ when |r| < 1 and diverges otherwise.

1/3

Does the series $\sum_{k=1}^{\infty} 3^{-k} = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$ converge or diverge? If it converges, what it is value?