CROSS SECTION

An Introduction to Nuclear and Particle Physics Scattering Experiments

Hannah Michelle Ellis

Contents

1	Introduction						
	1.1	Scatte	ring Experiment	1			
		1.1.1	Experimental Setup	1			
Α	Not	ation		3			

 ${\it CONTENTS}$

List of Tables

A.1 Notation used in this book	3
--------------------------------	---

iv LIST OF TABLES

List of Figures

1.1 Typical scattering experiment setup. A target with a beam of particles incident on it.

vi LIST OF FIGURES

Chapter 1

Introduction

1.1 Scattering Experiment

Here we will look into scattering cross sections and how the relate to scattering experiments.

1.1.1 Experimental Setup

A typical experiment usually involves a beam of particles which is incident on some sort of target material as shown in figure 1.1.

Figure 1.1: Typical scattering experiment setup. A target with a beam of particles incident on it.

The Target

The target material will have n''' target particles per unit volume. If the target material is of some known composition¹ then we can calculate the number of particles per unit mass of the target material.

$$\tilde{n} = \frac{N_A}{\check{m}} \tag{1.1.1}$$

where \check{m} is the mass of a mole of the target material and N_A is the Avogadro constant, which is the number of particles per mole².

¹Either elemental or some known substance

²In the notation used in this book, we should really use the symbol \check{n} as this is the number of particles per mole of substance. However due to this being a constant with an already agreed upon symbol, namely N_A , we stall stick to using that here.

Appendix A

Notation

Due to having many material properties used in calculations, it is useful to be able to track the type of property the symbol represents. To aid in keeping track the following the following notation (unless stated otherwise) will be used throughout this text.

Quantity	Description	Example
Specific quanity or a	Tilde above symbol	\tilde{n}
quanity per unit mass		
Quantity per unit length	Dash following symbol	a'
Quantity per unit area	Double dash following sym-	a''
	bol	
Quantity per unit volume	Triple dash following sym-	a'''
	bol	
Quantity per particle	Bar above symbol	\bar{a}
Quantity per mole	Check above symbol	ă

Table A.1: Notation used in this book