

Группа: <u>Р3131</u>	К работе допущен:
Студент: Зубахин Д.С.	Работа выполнена:
Прополователя : Нург гор В К	OTHOT HANNET!

Рабочий протокол и отчет по лабораторной работе № 3.05 *«Температурная зависимость*

электрического сопротивления металла и проводника»

1. Цель работы.

Изучить температурную зависимость электрического сопротивления металла и полупроводника.

2. Задачи, решаемые при выполнении работы.

- **2.1.** Получить зависимость электрического сопротивления металлического и полупроводникового образцов в диапазоне температур от комнатной до 75 ∘ *C*.
- **2.2.** По результатам п.1 вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника.

3. Объект исследования.

Металлический образец. Полупроводниковый образец.

4. Метод экспериментального исследования.

Изменение сопротивления путём повышения температуры.

5. Рабочие формулы и исходные данные.

- 5.1. Расчет сопротивления: $R = \frac{U}{I}$
- 5.2. Температурный коэффициент: $\alpha_{ij} = \frac{R_i R_j}{R_i \cdot t_i R_i \cdot t_j}$
- 5.3. Ширина запрещённой зоны: $E_{gij} = 2k \cdot \frac{T_i \cdot T_j}{T_j T_i} \cdot \ln \left(\frac{R_i}{R_j} \right)$

6. Измерительные приборы.

№ п/п	Наименование	Цена деления	Диапазон	Δи
1	Вольтметр	0,001 B	от 0 до 2 В	0,0005 B
2	Амперметр	1 мкА	от 0 до 2000 мкА	0,5 мкА
3	Электрический термометр	1 K	От 290 до 390 К	0,5 K

7. Схема установки.

- 1. Амперметр-вольтметр АВ1
- 2. Генератор ГН1
- 3. Стенд «С3-ТТ01» с объектами изучения металлическим и полупроводниковым образцами.

Принципиальная электрическая схема установки. Одновременно измеряя напряжение на объекте исследования и ток через него, можно найти его сопротивление с помощью закона Ома для участка цепи R=U/I.

8. Расчет.

Таблица 1: металлический образец

№ п.п	T,K	<i>I</i> , мкА	U, B	<i>R,</i> кОм		t,°C
1	390	1300	1,929	1,483846	1,5	117
2	380	1300	1,867	1,436154	1,4	107
3	370	1300	1,83	1,407692	1,4	97
4	360	1300	1,779	1,368462	1,4	87
5	350	1300	1,727	1,328462	1,3	77
6	340	1300	1,67	1,284615	1,3	67
7	330	1300	1,619	1,245385	1,2	57
8	320	1300	1,563	1,202308	1,2	47
9	310	1300	1,509	1,160769	1,2	37
10	300	1300	1,453	1,117692	1,1	27

Таблица 2: полупроводниковый образец

№ п.п	<i>T</i> , <i>K</i>	<i>I,</i> мкА	U, B	<i>R</i> ,Ом		R,Ом ln R		$\frac{10^3}{T}$, $\frac{1}{K}$	
1	290	1206	0,861	713,9303	714	6,570785	7	3,448276	3,4
2	298	1206	0,425	352,4046	352	5,86478	6	3,355705	3,4
3	306	1206	0,304	252,073	252	5,529719	6	3,267974	3,3
4	314	1206	0,211	174,9585	175	5,164549	5	3,184713	3,2
5	322	1206	0,154	127,6949	128	4,849644	5	3,10559	3,1
6	330	1206	0,113	93,69818	94	4,540079	5	3,030303	3
7	338	1206	0,082	67,99337	68	4,21941	4	2,95858	3
8	346	1206	0,064	53,06799	53	3,971574	4	2,890173	2,9
9	354	1206	0,049	40,63018	41	3,704511	3,7	2,824859	2,8
10	362	1206	0,037	30,67993	31	3,423609	3,4	2,762431	2,8

Таблица 1: металлический образец

Расчёт сопротивления R для каждого измерения: $R = \frac{U}{I} = \frac{1,929}{1300 \cdot 10^{-6}} = 1483,846 \text{ Ом} = 1,5 кОм$

Расчёт температуры t по шкале Цельсия:

$$t = T - 273 = 390 - 273 = 117$$
 °C

Таблица 2: полупроводниковый образец

Расчёт сопротивления R для каждого измерения:

$$R = \frac{U}{I} = \frac{0,861}{1206 \cdot 10^{-6}} = 713,9303 \text{ Om} = 714 \text{ Om}$$

Расчёт натурального логарифма сопротивления $\ln R$ для каждого измерения:

$$\ln R = \ln 6,570785 = 6,570785 = 7$$

Расчёт величины обратного значения температуры $\frac{10^3}{T}$:

$$\frac{10^3}{T} = \frac{10^3}{290} = 3,448276 \frac{1}{K} = 3,4 \frac{1}{K}$$

9. Расчет косвенных измерений.

Расчёт температурного коэффициента α_{ij} :

$$\alpha_{ij} = \frac{R_i - R_j}{R_j \cdot t_i - R_i \cdot t_j} = \frac{1,483846 - 1,284615}{1,284615 \cdot 117 - 1,483846 \cdot 67} = 3,91552869503294 \cdot 10^{-3} \text{ K}^{-1} = 4 \cdot 10^{-3} \text{ K}^{-1}$$

i	j	$lpha_{ij}\cdot 10^{-3}$, K^{-1}			
1	6	3,916			
2	7	3,712			
3	8	4,07			
4	9	4,125			
5	10	4,199			

Расчёт среднего значения температурного коэффициента:

$$\alpha = \frac{1}{n} \cdot \sum_{i=1}^{n} \alpha_i = 0,004004 \text{ K}^{-1} = 4 \cdot 10^{-3} \text{ K}^{-1}$$

i	j	$E_{gij}\cdot 10^{-19}$, Дж
1	6	1,34157
2	7	1,14406
3	8	1,13883
4	9	1,12034

Расчёт ширины запрещённой зоны E_{gij} :

$$E_{gij} = 2k \cdot \frac{T_i \cdot T_j}{T_j - T_i} \cdot \ln\left(\frac{R_i}{R_j}\right) =$$

$$= 2 \cdot 1,380649 \cdot 10^{-23} \cdot \frac{290 \cdot 330}{330 - 290} \cdot \ln \left(\frac{713,9303}{93,69818} \right) =$$

$$= 1,34157 \cdot 10^{-19} \, \text{Дж} = 1,3 \cdot 10^{-19} \, \text{Дж} = 0,83848 \, \text{эВ} == 0,8 \, \text{эВ}$$

Расчёт среднего значения ширины запрещённой зоны \boldsymbol{E}_g :

$$E_g = \frac{1}{n} \cdot \sum_{i=1}^n E_i = 1,17846 \cdot 10^{-19} \,$$
Дж = 1,18 · 10⁻¹⁹ Дж = 0,736536 эВ = 0,7 эВ

10. Расчет погрешности.

Коэффициент Стьюдента для доверительной вероятности $\alpha=0.95$ и n=10: $t_{\alpha,n}=2.2621$

Расчёт абсолютной погрешности температуры t:

Расчёт среднего значения \bar{t} :

$$\bar{t} = \frac{1}{n} \cdot \sum_{i=1}^{n} t_i = 72 \, ^{\circ}\text{C}$$

Расчёт СКО $S_{\bar{t}}$:

$$S_{\bar{t}} = \sqrt{\frac{\sum_{i=1}^{n} (t_i - \bar{t})^2}{n(n-1)}} = \sqrt{\frac{8250}{10 \cdot (10-1)}} = 9,57427 \, ^{\circ}\text{C}$$

Расчёт доверительного интервала $\Delta_{\bar{t}}$:

$$\Delta_{\bar{t}} = t_{\alpha,n} \cdot S_{\bar{t}} = 2,2621 \cdot 8,626070421 = 21,66 \,^{\circ}\text{C}$$

Расчёт абсолютной погрешности Δt :

$$\Delta t = \sqrt{\Delta_{\bar{t}}^2 + (\frac{2}{3} \cdot \Delta_{_{\rm H}})^2} = \sqrt{21,66^2 + (\frac{2}{3} \cdot 0.5)^2} = 21,66 \, {}^{\circ}\text{C} = 22 \, {}^{\circ}\text{C}$$

Расчёт абсолютной погрешности температурного коэффициента α :

Расчёт среднего значения $\bar{\alpha}$:

$$\bar{\alpha} = \frac{1}{n} \cdot \sum_{i=1}^{n} \alpha_i = 4,03 \cdot 10^{-3} \text{ K}^{-1}$$

Расчёт СКО $S_{\overline{\alpha}}$:

$$S_{\overline{\alpha}} = \sqrt{\frac{\sum_{i=1}^{n} (\alpha_i - \overline{\alpha})^2}{n(n-1)}} = \sqrt{\frac{0.034103202}{5 \cdot (5-1)}} = 8.66633 \cdot 10^{-8} \text{ K}^{-1}$$

Расчёт доверительного интервала $\Delta_{\overline{\alpha}}$:

$$\Delta_{\overline{\alpha}} = t_{\alpha,n} \cdot S_{\overline{\alpha}} = 2,26 \cdot 8,66633 \cdot 10^{-8} = 1,96 \cdot 10^{-7} \text{ K}^{-1}$$

Расчёт абсолютной погрешности $\Delta \alpha$:

$$\Delta \alpha = \sqrt{\Delta_{\overline{\alpha}}^2 + (\frac{2}{3} \cdot \Delta_{\text{\tiny M}})^2} = \sqrt{(1.96 \cdot 10^{-7})^2 + (\frac{2}{3} \cdot 0.05)^2} = 0.03 \text{ K}^{-1}$$

Расчёт относительной погрешности ε_{α} :

$$\varepsilon_{\alpha} = \frac{\Delta \alpha}{\bar{\alpha}} \cdot 100\% = \frac{0.03}{4.03 \cdot 10^{-3}} \cdot 100\% = 7.4442\% = 7\%$$

Расчёт абсолютной погрешности ширины запрещённой зоны ΔE_g :

Расчёт среднего значения $\overline{E_q}$:

$$\overline{E_g} = \frac{1}{n} \cdot \sum_{i=1}^{n} E_{g_i} = 1,34157 \cdot 10^{-19} \,$$
Дж = $1,3 \cdot 10^{-19} \,$ Дж = $0,83848 \,$ эВ = $0,83848 \,$ эВ

Расчёт СКО $S_{\overline{E_a}}$:

$$S_{\overline{E_g}} = \sqrt{rac{\sum_{i=1}^n (E_{g_i} - \overline{E_g})^2}{n(n-1)}} = \sqrt{rac{3,36948 \cdot 10^{-40}}{5 \cdot (5-1)}} = 4,10456 \cdot 10^{-21}$$
 Дж

Расчёт доверительного интервала $\Delta_{\overline{E_g}}$:

$$\Delta_{\overline{E_g}} = t_{\alpha,n} \cdot S_{\overline{E_g}} = 2,26 \cdot 4,10456 \cdot 10^{-21} = 9,27631 \cdot 10^{-21}$$
 Дж

Расчёт абсолютной погрешности ΔE_g :

$$\Delta E_g = \sqrt{\Delta_{\overline{E_g}}^2 + \left(\frac{2}{3} \cdot \Delta_{\text{H}}\right)^2} = 9,27631 \cdot 10^{-21} \,\text{Дж} = 9 \cdot 10^{-21} \,\text{Дж} = 0,05625 \,\text{эВ} = 0.06 \,\text{эВ}$$

Расчёт относительной погрешности ε_{E_g}

$$\varepsilon_{E_g} = \frac{\Delta E_g}{\overline{E_g}} \cdot 100\% = \frac{1,34157 \cdot 10^{-19}}{9,27631 \cdot 10^{-21}} \cdot 100\% = 14,4623293\% = 14\%$$

11. Окончательные результаты.

1. График зависимости R = R(t) для металлического образца.

2. График зависимости $\ln R = \ln R \left(\frac{1}{T}\right)$ для полупроводникового образца

3. Температурный коэффициент α для металлического образца:

$$\alpha = (40300,00 \pm 0,87) \cdot 10^{-7} \; \mathrm{K}^{-1}, \qquad \varepsilon_{\alpha} = 7\%$$

4. Ширина запрещённой зоны E_g для полупроводникового образца:

$$E_g=(1{,}3\ \pm 0{,}09)\cdot 10^{-19}$$
 Дж, $arepsilon_{E_g}=14\%$ $E_g=(0{,}8\pm 0{,}06)$ эВ , $arepsilon_{E_g}=14\%$

Выводы и анализ результатов работы:

В ходе многократных прямых и косвенных измерений рассчитан температурный коэффициент α для металлического образца и ширина запрещённой зоны E_g для полупроводникового образца, а также их абсолютные и относительные погрешности.

По значению температурного коэффициента сопротивления металла с помощью литературных данных удалось точно определить материал: Медь (Си).

Ширина запрещенной зоны полупроводника соответствует германию (Ge).