Vector and tensor norms

- Measure of the size, or magnitude of a vector or tensor
- Definition: The following criteria qualify $f(\cdot)$ as a norm:
 - Positive definite: $f(\mathbf{x}) = 0$ iff $\mathbf{x} = \mathbf{0}$
 - Triangle inequality: $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$
 - Homogeneity: $\forall \alpha \in \mathbb{R} : f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x})$
- The ones we care about are:
 - Lp norm: $\|\mathbf{x}\|_p = \left(\sum_i |x_i|^p\right)^{1/p}$
 - Frobenius norm: $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} A_{i,j}^2}$

Distance metrics

• The two distance metrics used most often in machine learning are the Manhattan (L1) and Euclidean (L2) distances, which can be defined using the Lp norm:

• Manhattan:
$$\|\mathbf{x_1} - \mathbf{x_2}\|_1 = \sum_i |x_i^{(1)} - x_i^{(2)}|$$

• Euclidean:
$$\|\mathbf{x_1} - \mathbf{x_2}\|_2 = \sqrt{\sum_i (x_i^{(1)} - x_i^{(2)})^2}$$