

Análisis de la pandemia a través de Data Werehouse

Andy Manuel Sequeira Garcia

Priscilla Aylin Brenes Ulloa

Joseph Antonio Rojas Leon

Luis Emerson Solano Artavia

Ingeniería en sistemas de Computación, Universidad Fidélitas

SC-602 Data Warehouse y Base de Datos Multidimensionales

Prof. Marvin Solano Campos

6 de diciembre del 2023

# Índice

# Contenido

| Introducción                           | 3  |
|----------------------------------------|----|
| Objetivo General                       | 4  |
| Objetivos específicos                  | 4  |
| Justificación y su importancia         | 5  |
| Requerimientos funcionales             | 6  |
| Requerimientos no funcionales          | 6  |
| Alcance                                | 7  |
| Limitaciones                           | 9  |
| Desarrollo del planteamiento           | 10 |
| Estructura de la Base de datos         | 10 |
| Diccionario completo del Datawerehouse | 21 |
| Desarrollo en Knime                    | 28 |
| Desarrollo de un ETL                   | 31 |
| Dashboard Dinámico                     | 35 |
| Conclusiones:                          | 42 |
| Recomendaciones:                       | 42 |
| Referencias Bibliográficas             | 43 |

## Introducción

En el 2019 su sufrió una de las grandes epidemias de la historia humana. El COVID-19, que provocó grandes cambios a nivel mundial, en muchos ambientes de toda la vida. Debido a toda esta situación mundial se derivaron en datos recolectados masivamente de todo tipo, como, por ejemplo: Datos clínicos, demográficos, etc. Que se recolectaron a través de los años.

En este contexto, se plantea la necesidad de aprovechar las capacidades de los Data Warehouses y la técnica de minería de datos para la exploración, recopilación y análisis eficiente de esta vasta cantidad de información relacionada con el estudio del COVID-19. El objetivo es identificar patrones, tendencias y desafíos clave enfrentados por diferentes países y autoridades de salud durante la pandemia. Este análisis retrospectivo busca proporcionar información valiosa que permita la formulación de estrategias más efectivas para la gestión de futuras epidemias y situaciones similares.

Esta formulación del problema es más concisa y enfocada en el objetivo de tu estudio, que es utilizar Data Warehouses y técnicas de minería de datos para analizar los registros relacionados con el COVID-19 y extraer información relevante para la toma de decisiones y la planificación de futuras respuestas ante situaciones de crisis de salud pública.

# Objetivo General

Analizar la información que está recopilada acerca del COVID-19 para mejorar la gestión de crisis de salud pública

## Objetivos específicos

- Limpiar los datos nulos, duplicados o con errores, para que haya la consistencia en el Data Werehouse
- 2. Identificar patrones y tendencias que se dieron en el transcurso de la epidemia
- Crear Dashboards para visualizar e interactuar con los datos de manera efectiva para el análisis

## Justificación y su importancia

Desde el inicio oficial de la pandemia en el año 2020 la recolección, manejo y análisis de datos han sido procesos que casi era todo el mundo se tuvo que realizar casi de manera inmediata. Durante en el inicio de la pandemia fue muy común leer y ver en las noticias las estadísticas como la taza de contagio, la mortalidad y la eficiencia de las vacunas, para poder sacar estas estadísticas se debió de hacer un análisis muy detallado, porque se demostró cuán importante es el manejo de este tipo de información y saber cómo emplearla.

Como se explicó anteriormente, el análisis de datos fue fundamentas en el transcurso de la pandemia, esto no solo para ver el avance a nivel mundial sino para poder tomar las acciones necesarias para poder disminuir los contagios. Por esto en este trabajo se empleará el uso de herramientas tecnologías para realizar un tipo de análisis similar al que se desarrolló durante la pandemia, con la diferencia que ya se tiene datos más concretos y una mejor compleción de la situación.

Tener los datos y saber cómo emplear las estragas necesarias para el futuro es de gran importancia, de esto la gran relevancia que tienen este tipo de trabajos donde se realiza un análisis de diferentes factores y se realizan acciones o como en este caso se visualizan los datos para un mejor entendimiento de la información.

## Requerimientos funcionales

- El sistema mostrara los datos a través de diferentes dimensiones creadas por los estudiantes relacionado al COVID-19 y sus años más fuertes.
- El sistema permitirá a los usuarios ingresar los datos a través de las diferentes tablas creadas para llegar a visualizar los datos ingresados
- Se mostrará el nivel de población contagiada a través de los años que la pandemia estuvo en su máximo apogeo.
- A través del datawarehouse mostraremos el nivel de mortalidad que hubo durante la época de la pandemia.
- El sistema podrá mostrar el nivel de población por edad enfocándose en las personas mayores de 60 y 70 años.
- El sistema eliminara datos en nulos, lo cual no utilizara espacios en blanco.

# Requerimientos no funcionales

- Uso de la aplicación SQL Server 2019 para mostrar los datos además del uso de Power BI Desktop esto para mostrar las diferentes gráficas
- El sistema debe ser capaz de leer todos los datos y además de eso debe de por lo menos crear más de tres dimensiones a través de los datos proporcionados del COVID-19.
- Toda la visualización de las tablas creadas por los usuarios debe de responder en menos de 10 segundos.
- El sistema debe de llevar un orden de sus datos, no puede mostrar datos acumulados, si esto ocurre los administradores deben de setear los datos.

### Alcance

Este proyecto se llevará a cabo en un lapso de 4 meses, durante los cuales se planea llevar a cabo una serie de pasos mediante los cuales mostraremos una amplia cantidad de datos relacionados con el covid-19, a continuación de procederá a hablar acerca de ellos.

- 1. Obtención de Datos: En este punto buscaremos la mayor cantidad de información que podamos encontrar hacer del COVID en cada país, entre los datos más relevantes que buscamos serian, las fechas de ingreso, cantidad total de enfermos por país, las regiones, los nuevos casos que podrían aparecer, nuevas muertes y el total de muertes que encontremos hasta ese punto.
- 2. Después de haber obtenido toda esta información, el próximo paso a seguir seria transferir esta información a una base de datos desde la cual se pueda podamos tener una mejor distribución, un manejo de la información y mediante esto poder realizar mejor las vistas y todos los otros cometidos que surjan a través del proyecto.
- 3. Después de tener toda la información necesaria en la base de datos, se procederá a realizar algunos gráficos en los cuales podremos observar las épocas en las que hubo más casos del COVID como el promedio de muertes por cada mes a través del lapso durante el cual duro la pandemia.
- 4. Y por último con los gráficos creados a base de la información y las vistas que se crearon en el SQL server, esperamos que el público hacia el que va dirigido este proyecto tenga una conciencia mundial acerca de inmenso impacto que

tuvo en distintos países y algunos ejemplos de la alta tasa de mortalidad que tuvo durante el lapso en el que su apogeo era más grande.

El propósito de este proyecto poder brindar un panorama aún más amplio a nivel mundial acerca de cómo esta enfermedad trajo consigo múltiples consecuencias para la humanidad, la información a mostrar también incluirá el impacto que tuvo en aquellas personas las cuales su edad superaba los 60 y 70 años.

Este proyecto está centrado únicamente en el COVID-19, por lo cual no se tocaran temas aparte del mismo, como por ejemplo, el fallecimiento de cierta cantidad de personas las cuales fallecieron a causa de paros cardiacos u otro tipo de enfermedades, así también no se tocara el tema de aquellas personas las cuales se sospecha que fallecieron presuntamente a causa del COVID-19 nuestra investigación estará centrada únicamente en casos confirmados ya sea de muerte o de las personas las cuales pudieron haber sido hospitalizadas a causa de esta enfermedad, ni hablaremos de aquellas personas fumadoras o con algún tipo de enfermedad pulmonar.

## Limitaciones

En este tipo de proyectos donde el trabajo de análisis es en base de una información encontrada o suministrada la principal limitación que se encuentra es el acceso a la información ya se está restringido a la información que se posee y el uso de información no oficial puede afectar negativamente el proyecto al no tener la certeza de la procedencia de los datos.

Otra limitación que se presenta en este proyecto es que no se cuenta con algún tipo de asesoría o contacto directo con el cual puedan realizar preguntas o asesorías sobre los datos y todo el proceso de limpieza y análisis será del equipo de trabajo de este proyecto.

# Desarrollo del planteamiento

### Estructura de la Base de datos

Se desarrolló una base de datos Data Mart con forma de estrella, con la tabla Hechos y 4 tablas DIM, las cuales van a almacenar los datos extraídos de nuestro DatawWrehouse, A continuación una foto de la estructura en Diagrama y el script de la generación de la Base de datos



```
Fuente (Creación propia diseñada y generado en el SQL Server, Management
Studio)
Script:
Create Database DW_Proyecto
USE master
Use DW_Proyecto
CREATE TABLE DIM_Pais (
 id_pais INT IDENTITY(1,1) PRIMARY KEY,
 iso_code VARCHAR(10) NOT NULL,
continent VARCHAR(50) NOT NULL,
location VARCHAR(100) NOT NULL
);
CREATE TABLE DIM_Fecha (
 id_fecha int IDENTITY PRIMARY KEY,
fecha varchar(30) not null
);
```

```
CREATE TABLE DIM_Casos (
 id_caso INT IDENTITY(1,1) PRIMARY KEY,
 total_cases_per_million INT NOT NULL,
 new_cases_per_million INT NOT NULL,
 new_cases_smoothed_per_million INT NOT NULL,
 reproduction rate DECIMAL(10,2) NOT NULL
);
CREATE TABLE DIM_Muertes (
 id_muerte INT IDENTITY(1,1) PRIMARY KEY,
 total_deaths_per_million INT NOT NULL,
 new_deaths_per_million INT NOT NULL,
 new_deaths_smoothed_per_million INT NOT NULL
);
CREATE TABLE Hechos_Casos (
 id_casos INT IDENTITY PRIMARY KEY,
 id_pais INT FOREIGN KEY REFERENCES DIM_Pais(id_pais),
 id_fecha int FOREIGN KEY REFERENCES DIM_Fecha(id_fecha),
 Ubicacion VARCHAR(100),
```

```
total_cases INT,
new_cases INT,
 new_cases_smoothed INT,
total_deaths INT,
 new_deaths INT,
 new_deaths_smoothed INT,
id_muerte_dim INT FOREIGN KEY REFERENCES DIM_Muertes(id_muerte),
id_caso_dim INT FOREIGN KEY REFERENCES DIM_Casos(id_caso)
);
USE DW_Proyecto
select * from DIM_Muertes;
select * from DIM_Casos;
select * from DIM_Pais;
SELECT * FROM DIM_Fecha;
```

```
SELECT * FROM Hechos_Casos;
```

CREATE OR ALTER PROCEDURE sp\_llenar\_nulos

AS

**BEGIN** 

DECLARE @id\_pais int = 1

WHILE @id\_pais <= (SELECT MAX(id\_pais) FROM DIM\_Pais)

**BEGIN** 

UPDATE top (1) Hechos\_Casos

SET id\_pais = @id\_pais

WHERE id\_pais IS NULL

SET @id\_pais = @id\_pais + 1

**END** 

DECLARE @id\_fecha int = 1

WHILE @id\_fecha <= (SELECT MAX(id\_fecha) FROM DIM\_Fecha)

**BEGIN** 

UPDATE top (1) Hechos\_Casos

SET id\_fecha = @id\_fecha

WHERE id\_fecha IS NULL

SET @id\_fecha = @id\_fecha + 1

**END** 

DECLARE @id\_muerte int = 1

WHILE @id\_muerte <= (SELECT MAX(id\_muerte) FROM DIM\_Muertes)

**BEGIN** 

UPDATE top (1) Hechos\_Casos

SET id\_muerte\_dim = @id\_muerte

WHERE id\_muerte\_dim IS NULL

SET @id\_muerte = @id\_muerte + 1

**END** 

DECLARE @id\_caso int = 1

WHILE @id\_caso <= (SELECT MAX(id\_caso) FROM DIM\_Casos)

**BEGIN** 

UPDATE top (1) Hechos\_Casos

SET id\_caso\_dim = @id\_caso

WHERE id\_caso\_dim IS NULL SET @id\_caso = @id\_caso + 1 **END END** EXEC sp\_llenar\_nulos /\* PROCEDIMIENTOS ALMACENADOS DE CONSULTAS \*/ --sp\_casos\_pais\_tiempo: Obtiene los casos por país a través del tiempo. Útil para gráficos de tendencia. CREATE PROCEDURE sp\_casos\_pais\_tiempo AS SELECT p.iso\_code, f.fecha, h.total\_cases FROM Hechos\_Casos h INNER JOIN DIM\_Pais p ON h.id\_pais = p.id\_pais INNER JOIN DIM\_Fecha f ON h.id\_fecha = f.id\_fecha

```
--sp_tasa_mortalidad: Obtiene la tasa de mortalidad por país.
CREATE PROCEDURE sp_tasa_mortalidad
AS
SELECT p.iso_code,
    (h.total_deaths * 100.0) / h.total_cases AS mortality_rate
FROM Hechos_Casos h
INNER JOIN DIM_Pais p
 ON h.id_pais = p.id_pais
EXEC sp_tasa_mortalidad
--sp_comparacion_mortalidad Comparación de muerte entre paises
CREATE PROCEDURE sp_comparacion_mortalidad
AS
SELECT
```

EXEC sp\_casos\_pais\_tiempo

p.iso\_code,

```
MAX(h.total_deaths) AS total_muertes,
 MAX(h.total_cases) AS total_casos,
 (MAX(h.total_deaths)*100 / MAX(h.total_cases)) AS tasa_mortalidad
FROM Hechos_Casos h
INNER JOIN DIM_Pais p
 ON h.id pais = p.id pais
GROUP BY p.iso_code
ORDER BY tasa_mortalidad DESC
EXEC sp_comparacion_mortalidad
--Tendencia reproducción del virus:
CREATE PROCEDURE sp_tendencia_reproduccion
AS
SELECT AVG(c.reproduction_rate) AS tasa_reproduccion,
    DATEPART(month, f.fecha) AS mes
FROM Hechos_Casos h
INNER JOIN DIM_Casos c
```

ON h.id\_caso\_dim = c.id\_caso

```
INNER JOIN DIM_Fecha f
 ON h.id fecha = f.id fecha
WHERE f.fecha >= '2020-01-01'
GROUP BY DATEPART(month, f.fecha)
ORDER BY mes
EXEC sp_tendencia_reproduccion
-- Tendencias Globales de Casos:
CREATE PROCEDURE sp_ObtenerTendenciasGlobalesCasos
AS
BEGIN
  SELECT
    F.fecha AS Fecha,
    SUM(HC.total_cases) AS TotalCasos,
    SUM(HC.new_cases) AS NuevosCasos,
    SUM(HC.total_deaths) AS TotalMuertes,
    SUM(HC.new_deaths) AS NuevasMuertes
```

**FROM** 

```
Hechos_Casos HC
    INNER JOIN DIM_Fecha F ON HC.id_fecha = F.id_fecha
  GROUP BY
    F.fecha;
END;
EXEC sp_ObtenerTendenciasGlobalesCasos
--Estadísticas Generales de Guatemala, Belice y el Salvador:
CREATE PROCEDURE sp_ObtenerEstadisticasGeneralesPorPais
AS
BEGIN
  SELECT
    P.location AS Pais,
    SUM(HC.total_cases) AS TotalCasos,
    SUM(HC.total_deaths) AS TotalMuertes
  FROM
    Hechos_Casos HC
    INNER JOIN DIM_Pais P ON HC.id_pais = P.id_pais
  GROUP BY
```

|      | P.location; |
|------|-------------|
|      |             |
| END; |             |

## EXEC sp\_ObtenerEstadisticasGeneralesPorPais

Diccionario completo del Datawerehouse

## Tabla 1: DIM\_Pais

Descripción: En esta tabla se tienen toda la información referente al pais.

- Columna 1: id\_pais
  - Descripción: Este campo tiene la infromacion del id del pais.
  - Tipo de datos: int
  - Restricciones de la columna: no aplica
  - Longitud y precisión: 1,1
  - Valores permitidos: solo valores enteros
- Columna 2 : iso\_code
  - Descripción: Este campo tiene el codigo identificador del país.
  - Tipo de datos: varchar
  - Restricciones de la columna: no aplica
  - Longitud y precisión: 10
  - Valores permitidos: solo valores varchar
- Columna 3 : continent
  - Descripción: Este campo tiene la informacion del continente del país.
  - Tipo de datos: varchar
  - Restricciones de la columna: no aplica

Longitud y precisión: 50

Valores permitidos: solo valores varchar

- Columna 4: location

Descripción: Este campo tiene la informacion de la locación del país.

Tipo de datos: varchar

Restricciones de la columna: no aplica

Longitud y precisión: 100

Valores permitidos: solo valores varchar

Clave primaria: id\_pais

Origen de datos: owid-covid-data.xlsx

## Tabla 2: DIM\_Fecha

Descripción: En esta tabla se tienen toda la información referente a la fecha.

Columna 1: id\_fecha

• Descripción: Este campo tiene la infromacion del id de la fecha.

• Tipo de datos: Date

Restricciones de la columna: no aplica

• Valores permitidos: solo valores de tipo date

Columna 2 : iso\_code

• Descripción: Este campo tiene la fecha.

Tipo de datos: Date

Restricciones de la columna: no aplica

• Valores permitidos: solo valores de tipo date

Clave primaria: id\_fecha

Origen de datos: owid-covid-data.xlsx

## Tabla 3: DIM\_Casos

Descripción: En esta tabla se tienen toda la información a los casos de Covid.

- Columna 1: id caso
  - Descripción: Este campo tiene la infromacion del id de la caso.
  - Tipo de datos: int
  - Restricciones de la columna: no aplica
  - Longitud y precisión: 1,1
  - Valores permitidos: solo valores de tipo int
- Columna 2: total\_cases\_per\_million
  - Descripción: Data el total de los casos por millon
  - Tipo de datos: Int
  - Restricciones de la columna: no aplica
  - Valores permitidos: solo valores de tipo int
- Columna 3: new\_cases\_per\_million
  - Descripción: : Data los nuevos casos por millon
  - Tipo de datos: Int
  - Restricciones de la columna: no aplica
  - Valores permitidos: solo valores de tipo int
- Columna 4: new\_cases\_smoothed\_per\_million
  - Descripción: Data el total de los casos leves por millon

- Tipo de datos: Int
- Restricciones de la columna: no aplica
- Valores permitidos: solo valores de tipo int
- Columna 5: reproduction\_rate
  - Descripción: Este campo tiene la taza de produccion.
  - Tipo de datos: Decimal
  - Restricciones de la columna: no aplica
  - Longitud y precisión: 10,2
  - Valores permitidos: solo valores de tipo decimal

Clave primaria: id\_fecha

Origen de datos: owid-covid-data.xlsx

### Tabla 4: DIM\_Muertes

Descripción: En esta tabla se tienen toda la información a los muertes asociadas al Covid.

- Columna 1: id\_muerte
  - Descripción: Este campo tiene la infromacion del id de las muertes.
  - Tipo de datos: Int
  - Restricciones de la columna: no aplica
  - Longitud y precisión: 1,1
  - Valores permitidos: solo valores de tipo int
- Columna 2: total\_deaths\_per\_million
  - Descripción: Data el total de muertes por millon

- Tipo de datos: Int
- Restricciones de la columna: no aplica
- Valores permitidos: solo valores de tipo int
- Columna 3: new\_deaths\_per\_million
  - Descripción: : Data los nuevas muertes por millon
  - Tipo de datos: Int
  - Restricciones de la columna: no aplica
  - Valores permitidos: solo valores de tipo int
- Columna 4: new\_deaths\_smoothed\_per\_million
  - Descripción: Data el total de los muertes leves por millon
  - Tipo de datos: Int
  - Restricciones de la columna: no aplica
  - Valores permitidos: solo valores de tipo int

Clave primaria: id\_muerte

Origen de datos: owid-covid-data.xlsx

## Tabla 5: Hechos\_Casos

Descripción: En esta tabla se tienen toda la información a los casos y hace refencia a las otras tablas.

- Columna 1: id\_caso
  - Descripción: Este campo tiene la infromacion del id de las casos.
  - Tipo de datos: Int

- Restricciones de la columna: no aplica
- Valores permitidos: solo valores de tipo int
- Columna 2: id\_pais
  - Descripción: Este campo tiene la infromacion del id del pais.
  - Tipo de datos: int
  - Clave foránea: DIM\_Pais(id\_pais)
  - Valores permitidos: solo valores enteros
- Columna 3: id\_fecha
  - Descripción: Este campo tiene la infromacion del id de la fecha.
  - Tipo de datos: Date
  - Clave foránea: DIM\_Fecha(id\_fecha)
  - Valores permitidos: solo valores de tipo date
- Columna 4 : location
  - Descripción: Este campo tiene la informacion de la locación del país.
  - Tipo de datos: varchar
  - Restricciones de la columna: no aplica
  - Longitud y precisión: 100
  - Valores permitidos: solo valores varchar
- Columna 5: total cases
  - Descripción: Data el total de los casos
  - Tipo de datos: Int
  - Restricciones de la columna: no aplica
  - Valores permitidos: solo valores de tipo int
- Columna 6: new\_cases
  - Descripción: Data los nuevos casos

- Tipo de datos: Int
- Restricciones de la columna: no aplica
- Valores permitidos: solo valores de tipo int
- Columna 7: new\_cases\_smoothed
  - Descripción: Data los nuevos leves
  - Tipo de datos: Int
  - Restricciones de la columna: no aplica
  - Valores permitidos: solo valores de tipo int
- Columna 8: total\_deaths
  - Descripción: Data el total de muertes
  - Tipo de datos: Int
  - Restricciones de la columna: no aplica
  - Valores permitidos: solo valores de tipo int
- Columna 9: new\_deaths
  - Descripción: Data las nuevas muertes
  - Tipo de datos: Int
  - Restricciones de la columna: no aplica
  - Valores permitidos: solo valores de tipo int
- Columna 10: new\_deaths\_smoothed
  - Descripción: Data las nuevas muertes
  - Tipo de datos: Int
  - Restricciones de la columna: no aplica
  - Valores permitidos: solo valores de tipo int
- Columna 11: id\_caso\_dim
  - Descripción: Este campo tiene la infromacion del id de la caso.

- Tipo de datos: int
- Clave foránea: DIM\_Casos(id\_caso)
- Valores permitidos: solo valores de tipo int
- Columna 12: id\_muerte\_dim
  - Descripción: Este campo tiene la infromacion del id de las muertes.
  - Tipo de datos: Int
  - Restricciones de la columna: no aplica
  - Longitud y precisión: 1,1
  - Valores permitidos: solo valores de tipo int

Clave primaria: id\_muerte

Origen de datos: owid-covid-data.xlsx

### • Desarrollo en Knime

Se desarrollo un ETL en la herramienta Knime la cual consideramos una herramienta fácil y amigable para usarse, en esta sección se explicará lo hecho dentro de la herramienta.



En este caso ya que Knime no permite cierta cantidad de datos se opto por visualizar las estadísticas de los países centroamericanos de lo vivido en la pandemia de Covid 19 vivida de 2020 a finales de 2021 en ella se utilizaron los siguientes componentes:

### **Excel Reader**



Este componente es utilizado para extraer datos directamente de un Excel, en ella se extrayeron los detalles de los países centroamericanos.

### Column Filter



En este componente es utilizado para filtrar columnas por su nombre, esto sirve mucho a la hora de separar datos de una tabla.

### **Row Filter**

# Row Filter

Este componente se utiliza para filtrar las filas ya sea por datos determinados o por números en específicos, es uno de los filtros más útiles a la hora de depurar datos.

### **Excel Writer**



Por último el Excel Writer, este componente es utilizado para crear archivos Excel en base a todos los filtros de columnas y filas ya depurados.

Con estos Excel Writer se crearon los siguientes Excels:



### Desarrollo de un ETL

Se desarrollo un ETL con el fin de poner depurar los datos, en el cual se eliminaron todos los países que no fueran de Centroamérica para poder tener un mejor enfoque con los datos.





Mediante este circuito de componentes que nos brinda Knime logramos realizar la inserción de datos a una base de datos en sql, la cual llenamos de información acerca

del covid-19, en el ejemplo mostrado observamos el método usado para llenar la tabla Países.

|      | id_pais | iso_code | continent     | location |
|------|---------|----------|---------------|----------|
| 9528 | 9528    | PAN      | North America | Panama   |
| 9529 | 9529    | PAN      | North America | Panama   |
| 9530 | 9530    | PAN      | North America | Panama   |
| 9531 | 9531    | PAN      | North America | Panama   |
| 9532 | 9532    | PAN      | North America | Panama   |
| 9533 | 9533    | PAN      | North America | Panama   |
| 9534 | 9534    | PAN      | North America | Panama   |
| 9535 | 9535    | PAN      | North America | Panama   |
| 9536 | 9536    | PAN      | North America | Panama   |
| 9537 | 9537    | PAN      | North America | Panama   |
| 9538 | 9538    | PAN      | North America | Panama   |
| 9539 | 9539    | PAN      | North America | Panama   |
| 9540 | 9540    | PAN      | North America | Panama   |
| 9541 | 9541    | PAN      | North America | Panama   |
| 9542 | 9542    | PAN      | North America | Panama   |
| 9543 | 9543    | PAN      | North America | Panama   |
| 9544 | 9544    | PAN      | North America | Panama   |
| 9545 | 9545    | PAN      | North America | Panama   |
| 9546 | 9546    | PAN      | North America | Panama   |
| 9547 | 9547    | PAN      | North America | Panama   |
| 9548 | 9548    | PAN      | North America | Panama   |

Aquí podemos observar como la inserción de datos hacia la base de datos se realizo de manera correcta y se insertaron los 9548 datos que habían en este Excel.



Mediante este componente logramos obtener la información del Excel para luego mediante una conexión lograr la inserción de datos asía el sql.



En este componente establecemos una conexión con el sql y definimos a que base de datos deseamos realizar la inserción de la información obtenida del Excel anterior.



Y finalmente mediante la ayuda de este componente definimos que datos del Excel deseamos transferir a la base de datos y así también definimos que tablas vamos a llenar con los datos ya extraídos del Excel.



En este ejemplo podemos observar como la taba DIM\_Casos se encuentra vacía por el momento, pero al poner en funcionamiento el siguiente circuito.



Y al ponerlo en funcionamiento se llenará la base de datos de casos.

|      | id_caso | total_cases_per_million | new_cases_per_million | new_cases_smoothed_per_million | reproduction_rate |
|------|---------|-------------------------|-----------------------|--------------------------------|-------------------|
| 9452 | 9452    | 237564                  | 0                     | 0                              | 0.00              |
| 9453 | 9453    | 237564                  | 0                     | 0                              | 0.00              |
| 9454 | 9454    | 237564                  | 0                     | 0                              | 0.00              |
| 9455 | 9455    | 237564                  | 0                     | 0                              | 0.00              |
| 9456 | 9456    | 237564                  | 0                     | 0                              | 0.00              |
| 9457 | 9457    | 237564                  | 0                     | 0                              | 0.00              |
| 9458 | 9458    | 237564                  | 0                     | 0                              | 0.00              |
| 9459 | 9459    | 237564                  | 0                     | 0                              | 0.00              |
| 9460 | 9460    | 237564                  | 0                     | 0                              | 0.00              |
| 9461 | 9461    | 237564                  | 0                     | 0                              | 0.00              |
| 9462 | 9462    | 237564                  | 0                     | 0                              | 0.00              |
| 9463 | 9463    | 237564                  | 0                     | 0                              | 0.00              |
| 9464 | 9464    | 237564                  | 0                     | 0                              | 0.00              |
| 9465 | 9465    | 237564                  | 0                     | 0                              | 0.00              |
| 9466 | 9466    | 237564                  | 0                     | 0                              | 0.00              |

```
id_fecha int IDENTITY PRIMARY KEY,
  fecha varchar(30) not null
);
```

En la tabla DIM\_Fecha, se tuvo que realizar un cambio el cual permitiera realizar la inserción de datos de manera optima, el cambio realizado fue el cambiar el date del id\_fecha por un int identity

Para realizar la última inserción en la tabla de hechos, se le tuvieron que realizar unos ajustes a la ultima tabla, el resultado final de dicha tabla es el siguiente

```
CREATE TABLE Hechos_Casos (
   id_caso INT PRIMARY KEY,
   id_pais INT NOT NULL FOREIGN KEY REFERENCES DIM_Pais(id_pais),
   id_fecha int NOT NULL FOREIGN KEY REFERENCES DIM_Fecha(id_fecha),
   Ubicacion VARCHAR(100) NOT NULL,
   total_cases INT NOT NULL,
   new_cases INT NOT NULL,
   new_cases_smoothed INT NOT NULL,
   total_deaths INT NOT NULL,
   new_deaths INT NOT NULL,
   id_muerte_dim INT NOT NULL,

   id_muerte_dim INT NOT NULL FOREIGN KEY REFERENCES DIM_Muertes(id_muerte));
```

## Así quedan las tablas llenas de valores



## Dashboard Dinámico

Usando toda la información recopilada vamos a realizar un proceso de análisis de la información y lo vamos a mostrar y aplicar mediante la herramienta de Power BI que nos permite hacer DashBoard Dinámicos, para ejemplificar bien los datos que se trabajaron. Las consultas se manejaron mediante procedimientos almacenados en el SQL Server y se muestran a continuación de forma gráfica.

## Tendencia de los casos a través del tiempo



## Mortalidad por país



## Muerte por país



# Tendencia a reproducción del virus en un mes



## Tendencias globales por país

| Fecha      | Suma de NuevosCasos | Suma de TotalCasos | Suma de TotalMuertes |                     |
|------------|---------------------|--------------------|----------------------|---------------------|
| 2020-03-12 | 1143                | 903529             | 8323                 | Tendencias globales |
| 2020-03-13 | 826                 | 904355             | 8325                 |                     |
| 2020-03-14 | 2080                | 906435             | 8329                 |                     |
| 2020-03-15 | 2055                | 909602             | 8355                 |                     |
| 2020-03-16 | 2185                | 911787             | 8360                 |                     |
| 2020-03-17 | 1899                | 913686             | 8367                 |                     |
| 2020-03-18 | 1659                | 915345             | 8376                 |                     |
| 2020-03-19 | 1198                | 916628             | 8378                 |                     |
| 2020-03-20 | 2486                | 1093099            | 10609                |                     |
| 2020-03-21 | 2426                | 1095525            | 10626                |                     |
| 2020-03-22 | 2877                | 1098496            | 10651                |                     |
| 2020-03-23 | 2844                | 1101408            | 10673                |                     |
| 2020-03-24 | 2362                | 1103770            | 10696                |                     |
| 2020-03-25 | 1980                | 1105755            | 10720                |                     |
| 2020-03-26 | 2288                | 1108392            | 10746                |                     |
| 2020-03-27 | 2658                | 1111114            | 10770                |                     |
| 2020-03-28 | 10771               | 1125329            | 10800                |                     |
| 2020-03-29 | 7501                | 1132984            | 10840                |                     |
| 2020-03-30 | 7065                | 1140066            | 10872                |                     |
| 2020-03-31 | 7143                | 1147209            | 10900                |                     |
| 2020-04-01 | 7599                | 1154945            | 10928                |                     |
| 2020-04-02 | 7100                | 1162288            | 10962                |                     |
| 2020-04-03 | 6018                | 1168415            | 10995                |                     |
| 2020-04-04 | 4107                | 1172576            | 11020                |                     |
| 2020-04-05 | 3415                | 1175991            | 11051                |                     |
| 2020-04-06 | 2560                | 1178719            | 11074                |                     |
| 2020-04-07 | 1944                | 1180796            | 11098                |                     |
| 2020-04-08 | 1730                | 1182568            | 11118                |                     |
| 2020-04-09 | 1493                | 1184113            | 11139                |                     |
| 2020-04-10 | 1307                | 1185420            | 11155                |                     |
| 2020-04-11 | 1341                | 1187430            | 11179                |                     |
| 2020-04-12 | 2167                | 1190435            | 11202                |                     |
| 2020-04-13 | 4029                | 1194498            | 11229                |                     |
| Total      | 4172152             | 1335335378         | 23538393             |                     |

# Estadísticas generales de Guatemala, El Salvador y Belize



## Casos en Costa Rica

| location   | -       | -         | Suma de total_deaths |
|------------|---------|-----------|----------------------|
| Costa Rica | 1238884 | 828079125 | 7510469              |
| Total      | 1238884 | 828079125 | 7510469              |

## Suma de muertes por país



## Tasa de reproducción del virus por país



## Recuento total de casos por país y suma de casos nuevos



## Suma total de casos por país



## Conclusiones:

- El análisis retrospectivo de los datos de COVID-19 utilizando técnicas de data warehouse y minería de datos permitió identificar patrones y tendencias claves durante el apogeo de la pandemia, proporcionando información valiosa para la toma de decisiones.
- Se logró consolidar y analizar eficientemente una gran cantidad de datos relacionados con el COVID-19, superando las limitaciones de desempeño de bases de datos transaccionales.
- 3. Los tableros de control dinámicos desarrollados facilitan la visualización y el análisis continuo de métricas críticas como casos acumulados, mortalidad relativa, estacionalidad del virus, entre otros hallazgos.

### Recomendaciones:

- Ampliar el data warehouse para incorporar otras fuentes de información como datos de vacunación, estudios clínicos, movilidad de la población, que permitan un análisis aún más profundo.
- 2. Desarrollar data marts específicos por temas como efectividad de vacunas, tratamientos médicos, impactos económicos, etc., para soportar análisis especializados.
- Incorporar capacidades avanzadas de inteligencia artificial como machine learning y procesamiento de lenguaje natural para potenciar la toma de decisiones informada por los datos.

## Referencias Bibliográficas

- Big Data preprocessing knime. (s.f.). KNIME Community Hub.
   https://hub.knime.com/knime/spaces/Examples/10\_Big\_Data/01\_Big\_Data\_C
   onnectors/01\_Big\_Data\_Preprocessing\_Example~P69kx252fdUB-aFR/most-recent
- DB reference row filter tommy. (s.f.). KNIME Community Hub.
   https://hub.knime.com/tommy/spaces/Public/DB%20Reference%20Row%20F
   ilter~VZmRcQMf4qUUZFn-/most-recent
- Extracción, transformación y carga de datos (ETL) Azure Architecture
  Center. (s.f.). Microsoft Learn: Build skills that open doors in your career.
  https://learn.microsoft.com/es-es/azure/architecture/data-guide/relational-data/etl
- In-Database processing on SQL server knime. (s.f.). KNIME Community
  Hub.
  https://hub.knime.com/knime/spaces/Examples/40\_Partners/01\_Microsoft/01\_
  SQL\_Server\_InDB\_Processing(Azure)~44JVorS4AKoeiFHQ/current-state
- Las diez formas principales de limpiar los datos Soporte técnico de Microsoft. (s.f.). Microsoft Support. https://support.microsoft.com/eses/office/las-diez-formas-principales-de-limpiar-los-datos-2844b620-677c-47a7-ac3e-c2e157d1db19
- Open for Innovation | KNIME. (s.f.). Open for Innovation | KNIME. https://www.knime.com/
- 7. ¿Qué es ETL? Explicación de extracción, transformación y carga (ETL) AWS. (s.f.). Amazon Web Services, Inc. https://aws.amazon.com/es/what-is/etl/#:~:text=El%20proceso%20ETL%20funciona%20en,base%20de%20dat os%20de%20destino.
- 8. Search | kaggle. (s.f.). Kaggle: Your Machine Learning and Data Science Community. https://www.kaggle.com/search?q=covid
- Tutorial: Connect to on-premises data in SQL server power BI. (s.f.).
   Microsoft Learn: Build skills that open doors in your career.
   https://learn.microsoft.com/en-us/power-bi/connect-data/service-gateway-sql-tutorial