Evan Ott UT EID: eao466

October 24, 2016

HW

Here, algorithms are based on §6.4 in (Boyd et al., 2011). For more information, see §3.3 and §5 in (Boyd and Vandenberghe, 2004).

The lasso is commonly written as

$$x^* = \arg\min_{x} \left(\frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1 \right)$$

Similar to the last homework, we can split this up into the differentiable part and non-differentiable part, which gives rise to the ADMM form.

minimize
$$||Ax - b||_2^2 + \lambda ||z||_1$$

s.t. $x - z = 0$

In other words,

$$f(x) = \frac{1}{2} ||Ax - b||_2^2 = \frac{1}{2} x^{\top} A^{\top} A x - b^{\top} A x + \frac{1}{2} y^{\top} y = \frac{1}{2} x^{\top} P x + q^{\top} x + r$$

$$P = A^{\top} A$$

$$q = -A^{\top} b$$

$$g(z) = \lambda ||z||_1$$

$$Ix + (-I)z = x - z = c = 0$$

So we can break up the minimization according to $\S4.2$ to find the optimal value for x:

$$x^{+} = \arg\min_{x} \left(f(x) + \frac{\rho}{2} \|Ax - (z + 0 - u)\|_{2}^{2} \right)$$

$$= \arg\min_{x} \left(f(x) + \frac{\rho}{2} \|Ax - z + u\|_{2}^{2} \right)$$

$$= \arg\min_{x} \left(\frac{1}{2} x^{\top} P x + q^{\top} x + r + \frac{\rho}{2} \|Ax - z + u\|_{2}^{2} \right)$$

$$= \left(P + \rho I^{\top} I \right)^{-1} (\rho I v - q) \quad \text{[see equation (4.1) for quadratic functions]}$$

$$= \left(A^{\top} A + \rho I \right)^{-1} (\rho (z - u) + A^{\top} b)$$

Now, the update for z:

$$g(z) = \lambda ||z||_1 = \sum_{i=1}^p \lambda |z_i| = \sum_{i=1}^p h(z_i)$$

so the objective for z is component separable, so we can minimize each element separately:

minimize
$$g(z)$$

s.t. $x - z = 0$

$$z_i^+ = \arg\min_{z_i} \left(h(z_i) + \frac{\rho}{2} (x_i - z_i + u_i)^2 \right)$$

$$= \arg\min_{z_i} \left(h(z_i) + \frac{\rho}{2} (z_i - (x_i + u_i))^2 \right)$$

$$v_i = x_i + u_i$$

$$= \arg\min_{z_i} \left(h(z_i) + \frac{\rho}{2} (z_i - v_i)^2 \right)$$

$$= S_{\lambda/\rho}(v_i) \quad [\text{see } \S4.4.3]$$

$$= S_{\lambda/\rho}(x_i + u_i)$$

Then finally for u,

$$u^{+} = u + Ix + (-I)z - 0 = u + x - z$$
 [see equation (3.7)]

TODO: refactor code to have "accelerated proximal gradient" and "ADMM" functions. See R code on GitHub.

References

Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004. http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning, 3(1):1–122, 2011. http://stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf.