

After studying this chapter, you should ...

- Know how plants make sugars
- Understand the mechanisms behind photosynthetic processes
 - Trapping of solar energy
 - Storage of energy in chemical bonds
- Deepen your appreciation for plants

(a) Plants

(b) Multicellular alga

(d) Cyanobacteria 40 µm

(e) Purple sulfur bacteria

Chloroplasts look like tiny green jelly beans within each plant cell.

Pigment molecules embedded in thylakoid membranes make them look green.

Cellular Respiration in short

Photosynthesis in short

(b) Action spectrum

Wavelength of light (nm)

(a) Absorption spectra

CH₂ CH₃ ĊН H₃C CH₂ C=O CH₃ ĊH₂

@ 2014 Pearson Education, Inc.

CH₃ in chlorophyll a CHO in chlorophyll b

Porphyrin ring: light-absorbing "head" of molecule; note magnesium atom at center

Hydrocarbon tail: interacts with hydrophobic regions of proteins inside thylakoid membranes of chloroplasts; H atoms not shown

(a) Excitation of isolated chlorophyll molecule

Photorespiration decreases the photosynthetic output

- Stomata close (partly) during hot days; level of CO₂ drops
- RubisCO can bind O_2
- A 2-carbon compound is formed after RubisCO adds O₂ to Calvin cylce
- This compound is converted again into CO₂ in the cell (respiration)

C₄ leaf anatomy

Photosynthetic cells of C₄ plant leaf

Mesophyll cell **Bundle**sheath cell Vein (vascular tissue) **Stoma**

Cell type #1

Cell type #2

CO₂ incorporated into four-carbon compounds

Four-carbon compounds release CO₂ to Calvin cycle

(a) Sugarcane

 C_4

O₂ incorporated into four-carbon compounds

Four-carbon compounds release CO₂ to Calvin cycle

(b) Pineapple

Pineapple Sugarcane CAM C_4 CO2 CO Mesophyll Organic **Organic** Night cell acid acid CO_2 CO₂ 2 **Bundle-**Day sheath Calvin Calvin cell Cycle Cycle Sugar Sugar (b) Temporal separation (a) Spatial separation

(a) Spatial separation of steps

(b) Temporal separation of steps