习题 1.5.9

叶卢庆*

杭州师范大学理学院, 浙江 杭州 310036

2014年2月26日

习题. 令 A, B, C, D 为单位圆上四点, 且 A + B + C + D = 0, 证明这四点必成一矩形.

证明. 由于 A, B, C, D 为单位圆上的四点, $A = \cos \theta_A + i \sin \theta_A$, 其余各点类似. 则我们有

$$\begin{cases} \cos \theta_A + \cos \theta_B + \cos \theta_C + \cos \theta_D = 0, \\ \sin \theta_A + \sin \theta_B + \sin \theta_C + \sin \theta_D = 0. \end{cases}$$

进行和差化积, 上面两条等式可以化为

$$\begin{cases} \cos\frac{\theta_A + \theta_C}{2} \cos\frac{\theta_A - \theta_C}{2} + \cos\frac{\theta_B + \theta_D}{2} \cos\frac{\theta_B - \theta_D}{2} = 0, \\ \sin\frac{\theta_A + \theta_C}{2} \cos\frac{\theta_A - \theta_C}{2} + \sin\frac{\theta_B + \theta_D}{2} \cos\frac{\theta_B - \theta_D}{2} = 0. \end{cases}$$

将第一条式子乘以 $\sin \frac{\theta_A + \theta_C}{2}$, 可得

$$\cos\frac{\theta_A + \theta_C}{2}\sin\frac{\theta_A + \theta_C}{2}\cos\frac{\theta_A - \theta_C}{2} + \sin\frac{\theta_A + \theta_C}{2}\cos\frac{\theta_B + \theta_D}{2}\cos\frac{\theta_B - \theta_D}{2} = 0,$$

将第二条式子代进上式,可得

$$-\sin\frac{\theta_B+\theta_D}{2}\cos\frac{\theta_B-\theta_D}{2}\cos\frac{\theta_A+\theta_C}{2}+\sin\frac{\theta_A+\theta_C}{2}\cos\frac{\theta_B+\theta_D}{2}\cos\frac{\theta_B-\theta_D}{2}=0.$$

也即,

$$\cos\frac{\theta_B - \theta_D}{2}\sin\frac{\theta_A + \theta_C - \theta_B - \theta_D}{2} = 0.$$

不妨设 $\theta_A, \theta_B, \theta_C, \theta_D \in [0, 2\pi]$, 且 $\theta_A < \theta_B < \theta_C < \theta_D$. 则 $\theta_B - \theta_D = -\pi$, 或者 $\theta_A + \theta_C - \theta_B - \theta_D = -2\pi$. 如果是 $\theta_B - \theta_D = -\pi$, 则根据对称性, 必定也有 $\theta_A - \theta_C = -\pi$, 此时是矩形. 下面我们来证明, $\theta_A + \theta_C - \theta_B - \theta_D = -2\pi$ 是不可能的, 因为 A, B, C, D 在四个象限都有分布 (可以包括坐标轴), θ_A 最小为 $0, \theta_C$ 最小为 $0, \theta_B$ 最大为 $0, \theta_C$ 最小为 $0, \theta_B$ 最大为 $0, \theta_B$ 由于不能重合, 因此必有一个无法达到 $0, \theta_B$ 最大为 $0, \theta_B$ 和于不能重合, 因此必有一个无法达到 $0, \theta_B$ 和于不能。综上我们已经证明了四个点形成矩形.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:h5411167@gmail.com