Moles

What particles can you think of?

- Atoms
- lons
- Simple molecules
- Giant covalent structures

How many particles do you think are in this beaker?

• 6.02 x 10²³ particles.

• 602,000,000,000,000,000,000 particles

• In chemistry we say this is 1 mole

Moles

• One mole is the amount of substance that contains the same number of particles (atoms, ions, molecules etc.) as there are in 12 g of carbon-12.

• This number is called Avagadro's constant (L) or (N_a) and has the value $6.02 \times 10^{23} \text{ mol}^{-1}$.

• The mole is an amount (n) and **not** a mass. You can have a mole of anything, atoms, molecules, ions, ping pong balls etc.

JUST HOW BIG IS A MOLE

https://www.youtube.com/watch?v=1R7Nilum2Tl&feature=related

If you had a mole of paper, how tall would it be?

• If you had a mole of marshmallows, how long would it take 5 billion people to eat all of them, eating one a second?

• Why is this useful to chemists?

• We use it to make our lives easier!

What a chemical equation means

Relative masses

- Relative atomic mass (A_r)
- The average of the masses of the isotopes in a naturally occurring sample of the element relative to the mass of 1/12 of an atom of carbon-12.
- *Is twelve the A_r of carbon?*
- NO! REMEMBER ISOTOPES!
- Relative formula mass (M_r)
- This is simply the sum of the relative atomic masses of all the individual atoms in the formula.
- Note that because A_r and M_r are relative terms, they have no units.

• number of moles (mol) = mass (g) / M_r

How do chemists use moles?

 One use is to predict what mass of products to expect from a reaction. This is what you are going to do today.

PRACTICAL

- Baking soda
- What is the formula of baking soda?
- NaHCO₃
- What do chemists call it?
- Sodium bicarbonate
- Why do cakes rise?
- When we heat sodium bicarbonate a gas is given off.
- What is the gas evolved?
- Carbon dioxide (CO₂)

PRACTICAL

If we heat sodium bicarbonate (NaHCO₃), carbon dioxide (CO₂) is given off.

$$NaHCO_3(s) \rightarrow CO_2(g) + H_2O(g) + Na_2CO_3(s)$$

Is this balanced?

No

$$2NaHCO_3(s) \rightarrow CO_2(g) + H_2O(g) + Na_2CO_3$$

• If we heat 5.00 g of NaHCO₃ to constant mass, how much Na₂CO₃ will be left in grams?

•
$$2NaHCO_3(s) \rightarrow CO_2(g) + H_2O(g) + Na_2CO_3$$

• number of moles (mol) = mass (g) / M_r

• M_r of NaHCO₃ 84.01 mass of NaHCO₃ 5.00 g

• M_r of CO_2 44.01 predicted mass of $Na_2CO_3 = ?$

• M_r of H₂O 18.02

• M_r of Na₂CO₃ 106.0

Moles

- number of moles (n) = mass of substance/ M_r
- Use this equation to complete the table below.

Compound	M _r	Mass (g)	Number of moles (mol)
H ₂ O	18.02	9.01	0.500
CO ₂		5.00	
H ₂ S			0.100
NH ₃			3.50
$Mg(NO_3)_2$		1.75	
C ₃ H ₇ OH		2500	
Fe ₂ O ₃			5.68 x 10 ⁻⁵