WLOG  $x \le y \le z \le w$ , and  $k \ge 0$  unless otherwise stated (by flipping one bit if necessary). We would like to quadratise

$$f = xb_1b_2b_3 + yb_2b_3b_4 + zb_3b_4b_1 + wb_4b_1b_2 + kb_1b_2b_3b_4.$$

We shall write  $\mathbf{b} = b_1 b_2 b_3 b_4$ .

# List of Cases:

- 1. An even number of x, y, z, w lie on each side of  $-\frac{k}{2}$ , i.e.  $-\frac{k}{2} \le x \le y \le z \le w$  or  $x \le y \le -\frac{k}{2} \le z \le w$  or  $x \le y \le z \le w \le -\frac{k}{2}$ . Done by lemma 0.1 and flipping pairs of bits.
- 2. At least three of x, y, z, w lie in  $(-\infty, -k] \cup [0, \infty)$ . By flipping bits WLOG  $y, z, w \ge 0$ . Summarised in proposition 0.9.
  - a)  $x \ge -\frac{k}{2}$ . Then we are in a previous case.
  - b)  $-k \le x \le -\frac{k}{2}$ . Done by lemma 0.6.
  - c)  $x \le -k$ . Done by lemma 0.2 and flipping one bit.
- 3. An odd number of x, y, z, w lie on each side of  $-\frac{k}{2}$  and at least two of x, y, z, w lie in [-k, 0]. WLOG  $x \le -\frac{k}{2}, y, z, w \ge -\frac{k}{2}$ .
  - a)  $-\frac{k}{2} \le y \le 0 \le z \le w$ . Note that  $x \ge -k$  in this cases because at least two of x, y, z, w lie in [-k, 0].
    - i.  $k + x + y \le 0$ . Done by 0.12.
    - ii. k + x + y > 0. Done by 0.11.
  - b)  $-\frac{k}{2} \le y \le z \le 0 \le w$ .
    - i.  $x \leq -k$ . Done by 0.10.
    - ii.  $x \ge -k$  and  $k + x + y \le 0$ . Done by 0.12.
    - iii.  $x \ge -k$  and  $k + x + y \ge 0$ . Done by 0.11.
  - c)  $-\frac{k}{2} \le y \le z \le w \le 0$ .
    - i.  $k + x + y \le 0$ . Done by 0.14.
    - ii. k + x + y > 0. Done by 0.13.

## Lemma 0.1

If  $k \ge 0$  and  $x, y, z, w \ge -\frac{k}{2}$ , then  $g = b_a((3k + x + y + z + w) - (2k + x + z + w)b_1 - (2k + x + y + w)b_2 - (2k + x + y + z)b_3 - (2k + y + z + w)b_4) + k(b_1b_2 + b_1b_3 + b_1b_4 + b_2b_3 + b_2b_4 + b_3b_4) + x(b_1b_2 + b_1b_3 + b_2b_3) + y(b_2b_3 + b_2b_4 + b_3b_4) + z(b_1b_3 + b_1b_4 + b_3b_4) + w(b_1b_2 + b_1b_4 + b_2b_4)$  is a quadratisation of f.

*Proof.* Using the symmetry in the condition that x, y, z, w satisfy and the symmetry in the quadratisation, WLOG consider  $b_1 \le b_2 \le b_3 \le b_4$ , so we only need to check 5 cases:  $\mathbf{b} = 0000, 0001, 0011, 0111$ , or 1111.

If  $\mathbf{b} = 0000$ , then  $g = b_a(3k + w + x + y + z)$ . Since  $k + w + x \ge 0$  and  $k + y + z \ge 0$ , the minimiser is  $b_a^* = 0$ , so min g = 0 = f.

If b = 0001, then  $g = b_a(k + x)$ . Since  $k + x \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If  $\mathbf{b} = 0011$ , then  $g = k + y + z - b_a(k + y + z)$ . Since  $-(k + y + z) \le 0$ ,  $b_a^* = 1$ , so  $\min g = 0 = f$ .

If  $\mathbf{b} = 0111$ , then  $g = 3k + w + x + 3y + z - b_a(3k + w + x + 2y + z)$ . Since  $-(k + w + x) \le 0$  and  $-(k + 2y) \le 0$  and  $-(k + z) \le 0$ ,  $b_a^* = 1$ , so min g = y = f.

If b = 1111, then  $g = 6k + 3w + 3x + 3y + 3z - b_a(5k + 2w + 2x + 2y + 2z)$ . Since  $-k - 2w \le 0$  and  $-k - 2x \le 0$  and  $-k - 2y \le 0$  and  $-k - 2z \le 0$  and  $-k \le 0$ ,  $b_a^* = 1$ , so  $\min g = k + w + x + y + z = f$ .

### Lemma 0.2

If  $k, x, y, z, w \le 0$ , then  $g = b_a(k(b_1 + b_2 + b_3 + b_4 - 3) + x(b_1 + b_2 + b_3 - 2) + y(b_2 + b_3 + b_4 - 2) + z(b_3 + b_4 + b_1 - 2) + w(b_4 + b_1 + b_2 - 2))$  is a quadratisation of f.

**Remark 0.3.** Using the standard quadratisation for the negative monomial, we can quadratise  $-b_1b_2b_3b_4$  as  $(3-b_1-b_2-b_3-b_4)b_a$ , and quadratise  $-b_1b_2b_3$  as  $(2-b_1-b_2-b_3)b'_a$ . Here we are saying that we can add them together and use the *same* auxiliary variable.

*Proof.* By symmetry, it suffices to check the cases when  $\boldsymbol{b} = 0000, 0001, 0011, 0111,$  or 1111.

If  $\mathbf{b} = 0000$ , then  $g = -b_a(3k + 2w + 2x + 2y + 2z)$ . Since  $-k \ge 0$  and  $-x \ge 0$  and  $-y \ge 0$  and  $-z \ge 0$  and  $-w \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If  $\mathbf{b} = 0001$ , then  $g = -b_a(2k + w + 2x + y + z)$ . Similar to the case when  $\mathbf{b} = 0000$  we have min g = 0 = f.

If b = 0011, then  $g = -b_a(k + w + x)$ . Since  $-k \ge 0$  and  $-w \ge 0$  and  $x \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If  $\boldsymbol{b} = 0111$ , then  $g = b_a y$ . Since  $y \leq 0$ ,  $b_a^* = 1$ , so min g = y = f.

If b = 1111, then  $g = b_a(k + w + x + y + z)$ . Since  $k \le 0$  and  $w \le 0$  and  $x \le 0$  and  $y \le 0$  and  $z \le 0$ ,  $b_a^* = 1$ , so min g = k + w + x + y + z = f.

This has a natural generalisation to n variables.

#### Theorem 0.4

Let  $a_0, a_1, \dots a_n \leq 0$  and  $f = a_0 \prod_{i=1}^n b_i + \sum_{i=1}^n \left( a_i \prod_{j \neq i} b_j \right)$  has quadratisation  $g = b_a \left( a_0 \left( \sum_{i=1}^n b_i - (n-1) \right) + \sum_{i=1}^n a_i \left( \sum_{j \neq i} b_j - (n-2) \right) \right)$ 

*Proof.* Again WLOG  $b_1 = b_2 = \dots = b_k = 0$  and  $b_{k+1} = b_{k+2} = \dots = b_n = 1$  for some  $k \in \{0, 1, \dots, n\}$ . Then

$$f = \begin{cases} 0, & \text{if } k \ge 2, \\ a_1, & \text{if } k = 1, \\ \sum_{i=0}^{n} a_i, & \text{if } k = 0. \end{cases}$$

For  $k \geq 2$ , we have

$$\sum_{j \neq i} b_j \le n - 2 \quad \forall j, \text{ and } \sum_{j=1}^n b_j \le n - 2,$$

so the coefficient of  $b_a$  in g is non-negative, so the minimiser is  $b_a^* = 0$  and min g = 0 = f.

If 
$$k = 1$$
, then  $g = b_a a_1$ , so  $b_a^* = 1$  and min  $g = a_1 = f$ .  
If  $k = 0$ , then  $g = b_a \sum_{i=0}^n a_i$ , so  $b_a^* = 1$  and min  $g = \sum_{i=0}^n a_i = f$ .

Next we consider some substitutions that reduce other cases to the two cases above that we know how to quadratise.

If we consider the substitution  $b'_1 = 1 - b_1$  and  $b'_2 = 1 - b_2$ , then

$$f = (kb_3b_4 - kb_2'b_3b_4 - kb_1'b_3b_4 + kb_1'b_2'b_3b_4) + (xb_3 - xb_1'b_3 - xb_2'b_3 + xb_1'b_2'b_3)$$

$$+ (yb_3b_4 - yb_2'b_3b_4) + (zb_3b_4 - zb_1'b_3b_4) + (wb_4 - wb_1'b_4 - wb_2'b_4 + wb_1'b_2'b_4),$$

so ignoring all linear and quadratic terms it is

$$f' = kb'_1b'_2b_3b_4 + xb'_1b'_2b_3 + (-y - k)b'_2b_3b_4 + (-z - k)b_3b_4b'_1 + wb_4b'_1b'_2$$
  
=  $k'b'_1b'_2b_3b_4 + x'b'_1b'_2b_3 + y'b'_2b_3b_4 + z'b_3b_4b'_1 + w'b_4b'_1b'_2$ 

This is of the original form with y' = -y - k and z' = -z - k and other coefficients unchanged. If we have a 1-auxiliary quadratisation for f in terms of  $b_1, b_2, b_3, b_4, b_a$ , then after the substitution and taking care of the linear and quadratic terms in f, we obtain a 1-aux quadratisation for f' in terms of  $b'_1, b'_2, b_3, b_4, b_a$ .

1-aux quadratisation for f' in terms of  $b'_1, b'_2, b_3, b_4, b_a$ . If f has  $k \geq 0$  and  $w, x, y, z \geq -\frac{k}{2}$  as in 0.1, then f' has  $k' \geq 0$  and  $w', x' \geq -\frac{k}{2}$  and  $y', w' \leq -\frac{k}{2}$ . And this correspondence is invertible, so given any f' with  $k' \geq 0$  and  $w', x' \geq -\frac{k}{2}$  and  $y', w' \leq -\frac{k}{2}$ , we know that it has a 1-aux quadratisation. We can also do the same substitution on the other pair of variables  $b_3, b_4$  to prove that any f'' with  $k'' \geq 0$  and  $w'', x'', y'', z'' \leq -\frac{k}{2}$  has a 1-aux quadratisation.

To sum up, if  $k \ge 0$ , an even number of x, y, z, w are at least  $-\frac{k}{2}$ , and an even number of them are most  $-\frac{k}{2}$ , then f has a quadratisation in 1 auxiliary.

We can also consider substituting  $b'_1 = 1 - b_1$  but not flipping  $b_2$ , then

$$f = k(b_2b_3b_4 - b_1'b_2b_3b_4) + x(b_2b_3 - b_1'b_2b_3) + yb_2b_3b_4 + z(b_3b_4 - b_3b_4b_1') + w(b_2b_4 - b_4b_1'b_2),$$

so ignoring quadratic and linear terms we are left with

$$f' = -kb_1'b_2b_3b_4 - xb_1'b_2b_3 + (k+y)b_2b_3b_4 - zb_3b_4b_1' - wb_4b_1'b_2.$$

If  $k \ge 0$  and  $y \le -k$  and  $x, z, w \ge 0$ , then f' is of the form in 0.2, so we can quadratise f'. Putting back in the quadratic and linear terms and substitute back, we can obtain a quadratisation of f.

By flipping another pair  $b'_2 = 1 - b_2$  and  $b'_3 = 1 - b_3$  as before, we also see that if  $k \ge 0$  and three of x, y, z, w are at most -k and the remaining one is at least 0, then f can be quadratised with 1 auxiliary.

Therefore, we have proved the following.

### Proposition 0.5

If  $k \geq 0$  and either of the following holds:

- 1.  $x, y, z, w \ge -\frac{k}{2}$ ;
- 2. three of them are at least 0 and the other one is at most -k;
- 3. two are at least  $-\frac{k}{2}$  and the other two are at most  $-\frac{k}{2}$ ;
- 4. one is at least 0 and the other three are at most -k; or
- 5.  $x, y, z, w \le -\frac{k}{2}$ ;

Then f has a quadratisation with 1 auxiliary.

## Lemma 0.6

If  $k \ge 0$ ,  $-k \le x \le -\frac{k}{2}$ , and  $w, y, z \ge 0$ , then  $g = b_a((3k + x + y + z + w) - (2k + x + z + w)b_1 - (2k + x + y + w)b_2 - (2k + x + y + z)b_3 - (2k + y + z + w)b_4) + k(b_1b_2 + b_1b_3 + b_1b_4 + b_2b_3 + b_2b_4 + b_3b_4) + x(b_1b_2 + b_1b_3 + b_2b_3) + y(b_2b_3 + b_2b_4 + b_3b_4) + z(b_1b_3 + b_1b_4 + b_3b_4) + w(b_1b_2 + b_1b_4 + b_2b_4)$  is a quadratisation of f.

### **Remark 0.7.** This is the same quadratisation as in 0.1.

*Proof.* By symmetry, WLOG  $b_1 \le b_2 \le b_3$  (we cannot make assumption on  $b_4$  because x is special among x, y, z, w). If  $\mathbf{b} = 0000$ , then  $g = b_a(3k + w + x + y + z)$ . Since  $k + x \ge 0$  and  $k, y, z, w \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 0001, then  $g = b_a(k + x)$ . Since  $k + x \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 0010, then  $g = b_a(k + w)$ . Since  $k, w \ge 0, b_a^* = 0$ , so min g = 0 = f.

If  $\mathbf{b} = 0011$ , then  $g = -(b_a - 1)(k + y + z)$ . Since  $-k \le 0$  and  $-y \le 0$  and  $-z \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If  $\mathbf{b} = 0110$ , then  $g = -(b_a - 1)(k + x + y)$ . Since  $-(k + x) \le 0$  and  $-y \le 0$ ,  $b_a^* = 1$ , so  $\min q = 0 = f$ .

If  $\mathbf{b} = 0111$ , then  $g = 3k + w + x + 3y + z - b_a(3k + w + x + 2y + z)$ . Since  $-(k+x) \le 0$  and  $-k, -w, -y, -z \le 0$ ,  $b_a^* = 1$ , so min g = y = f.

If  $\mathbf{b} = 1110$ , then  $g = 3k + w + 3x + y + z - b_a(3k + w + 2x + y + z)$ . Since  $-2(k+x) \le 0$  and  $-k, -w, -y, -z \le 0$ ,  $b_a^* = 1$ , so min g = x = f.

If  $\mathbf{b} = 1111$ , then  $g = 6k + 3w + 3x + 3y + 3z - b_a(5k + 2w + 2x + 2y + 2z)$ . Since  $-2(k+x) \le 0$  and  $-k, -w, -y, -z \le 0$ ,  $b_a^* = 1$ , so min g = k + w + x + y + z = f.  $\square$ 

For  $k \ge 0$ , we have shown that f has a 1-auxiliary quadratisation if  $x, y, z, w \ge -\frac{k}{2}$ , or if  $x \le -k$  and  $w, y, z \ge 0$  (both cases are sumarised in 0.5), so we can combine them with 0.6 (for  $-k \le x \le -\frac{k}{2}$ , and  $w, y, z \ge 0$ ) to conclude:

#### **Proposition 0.8**

f can be quadratised with 1 auxiliary if  $k, y, z, w \ge 0$ , whatever the value of x is.

Recall that we can substitute  $b_1' = 1 - b_1$  and  $b_2' = 1 - b_2$  to transform y to -k - y and z to -k - z. This means we can flip a pair of the cubic coefficients in the range  $[0, +\infty)$  to  $(-\infty, -k]$  or vice versa. (e.g. since we have a quadratisation for  $w \ge 0$ ,  $y \ge 0$ ,  $z \ge 0$ ,

we can find a quadratisation for  $w \le -k, y \le -k, z \ge 0$ ) Or we may as well flip x and flip one other coefficient in the proposition above. Since the above proposition does not place any condition on x, we can e.g. go from  $w \ge 0, y \ge 0, z \ge 0$  to  $w \le -k, y \ge 0, z \ge 0$ . This gives the following

## **Proposition 0.9**

If  $k \ge 0$  and three of the cubic coefficients are in  $(-\infty, -k] \cup [0, +\infty)$ , then f has a quadratisation with 1 auxiliary.

If some f has  $k \ge 0$  but is not covered by 0.9, then at least two of the cubic coefficients are in [-k,0]. If it is not covered by 0.5 either, then an odd number of cubic coefficients lie on each side of  $-\frac{k}{2}$  (WLOG  $x \le -\frac{k}{2}$  and  $y, z, w \ge -\frac{k}{2}$ ). This is what we will break down into a further 6 cases.

Below we assume  $k \geq 0$ .

| Cases                                  | $x \le -k$                | $-k \le x \le -\frac{k}{2}$ |                   |
|----------------------------------------|---------------------------|-----------------------------|-------------------|
|                                        |                           | $k + x + y \le 0$           | $k + x + y \ge 0$ |
| $-\frac{k}{2} \le y \le 0 \le z \le w$ | 0.9: only $y \in [-k, 0]$ | 0.19                        | 0.11              |
| $-\frac{k}{2} \le y \le z \le 0 \le w$ | 0.10                      | 0.12                        | 0.11              |
| $-\frac{k}{2} \le y \le z \le w \le 0$ | 0.14                      |                             | 0.13              |

## **Lemma 0.10**

If  $x \le -k$  and  $-\frac{k}{2} \le y \le z \le 0 \le w$ , then  $g = b_a(x(b_1 - b_2 - b_3) + y(-b_2 - b_3 + b_4) + z(1 - b_1 + b_3 - b_4) + w(1 - b_1 + b_2 - b_4) + k(1 - b_1 - b_4)) + x(-b_1 + b_1b_2 + b_1b_3) + y(-b_4 + b_2b_4 + b_3b_4) + zb_1b_4 + wb_1b_4 + kb_1b_4$  is a quadratisation of f.

*Proof.* If  $\mathbf{b} = 0000$ , then  $g = b_a(k + w + z)$ . Since  $w \ge 0$  and  $k + z \ge 0$ , the minimiser is  $b_a^* = 0$ , so  $\min g = 0 = f$ .

If b = 0001, then  $g = b_a y - y$ . Since  $y \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 0010, then  $g = b_a(k + w - x - y + 2z)$ . Since  $k + 2z \ge 0$  and  $w \ge 0$  and  $-x \ge 0$  and  $-y \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If **b** = 0011, then  $g = b_a(z - x)$ . Since  $z \ge x$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 0100, then  $g = b_a(k + 2w - x - y + z)$ . Since  $k + 2z \ge 0$  and  $w \ge 0$  and  $-x \ge 0$  and  $-y \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 0101, then  $g = b_a(w - x)$ . Since  $w \ge x$ ,  $b_a^* = 0$ , so min g = 0 = f.

If  $\mathbf{b} = 0110$ , then  $g = b_a(k + 2w - 2x - 2y + 2z)$ . Since  $k + 2z \ge 0$  and  $w \ge 0$  and  $-x \ge 0$  and  $-y \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 0111, then  $g = y + b_a(w - 2x - y + z)$ . Since  $w \ge 0$  and  $z - y \ge 0$  and  $-x \ge 0$ ,  $b_a^* = 0$ , so min g = y = f.

If b = 1000, then  $g = b_a x - x$ . Since  $x \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 1001, then  $g = k + w - x - y + z + b_a(-k - w + x + y - z)$ . Since  $-k \le 0$  and  $-w \le 0$  and  $y \le z$  and  $-x \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If **b** = 1010, then  $g = b_a(z - y)$ . Since  $z \ge y$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 1011, then  $g = k + w + z + b_a(-k - w)$ . Since  $-k \le 0$  and  $-w \le 0$ ,  $b_a^* = 1$ , so  $\min g = z = f$ .

If b = 1100, then  $g = b_a(w - y)$ . Since  $w \ge y$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 1101, then  $g = k + w + z - b_a(k+z)$ . Since  $-(k+z) \le 0$ ,  $b_a^* = 1$ , so min g = w = f.

If b = 1110, then  $g = x + b_a(w - x - 2y + z)$ . Since  $w + z \ge 0$  and  $-x \ge 0$  and  $-y \ge 0$ ,  $b_a^* = 0$ , so min g = x = f.

If  $\mathbf{b} = 1111$ , then  $g = k + w + x + y + z - b_a(k + x + y)$ . Since  $-(k + x) \ge 0$  and  $-y \ge 0$ ,  $b_a^* = 0$ , so min g = k + w + x + y + z = f.

### **Lemma 0.11**

If  $-k \le x \le -\frac{k}{2} \le y \le 0 \le w$ ,  $y \le z \le w$ , and  $k + x + y \ge 0$ , then  $g = b_a(x(-1+b_1+b_2+b_3)+y(-1+b_2+b_3+b_4)+z(-1+b_1+b_3+b_4)+w(-1+b_1+b_2+b_4)+k(-3+2b_1+2b_2+2b_3+2b_4))+x(+1-b_1-b_2-b_3+b_1b_2+b_1b_3+b_2b_3)+y(+1-b_2-b_3-b_4+b_2b_3+b_2b_4+b_3b_4)+z(+1-b_1-b_3-b_4+b_1b_3+b_1b_4+b_3b_4)+w(+1-b_1-b_2-b_4+b_1b_2+b_1b_4+b_2b_4)+k(+3-2b_1-2b_2-2b_3-2b_4+b_1b_2+b_1b_3+b_1b_4+b_2b_3+b_2b_4+b_3b_4)$  is a quadratisation of f.

*Proof.* If  $\mathbf{b} = 0000$ , then  $g = 3k + w + x + y + z - b_a(3k + w + x + y + z)$ . Since  $-x - k \le 0$  and  $-\frac{k}{2} - y \le 0$  and  $-\frac{k}{2} - z \le 0$  and  $-k \le 0$  and  $-w \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 0001, then  $g = k + x - b_a(k + x)$ . Since  $-k - x \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If  $\mathbf{b} = 0010$ , then  $g = k + w - b_a(k + w)$ . Since  $-k \le 0$  and  $-w \le 0$ ,  $b_a^* = 1$ , so  $\min g = 0 = f$ .

If  $\mathbf{b} = 0011$ , then  $g = b_a(k + y + z)$ . Since  $k + y + z \ge k + 2y \ge 0$ ,  $b_a^* = 0$ , so  $\min g = 0 = f$ .

If b = 0100, then  $g = k + z - b_a(k + z)$ . Since  $-k - z \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 0101, then  $g = b_a(k + w + y)$ . Since  $k + y \ge 0$  and  $w \ge 0$ ,  $b_a^* = 0$ , so  $\min g = 0 = f$ .

If b = 0110, then  $g = b_a(k + x + y)$ . Since  $k + x + y \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 0111, then  $g = y + b_a(3k + w + x + 2y + z)$ . Since  $k + x \ge 0$  and  $k + 2y \ge 0$  and  $k + z \ge 0$  and  $k \ge 0$ ,  $b_a^* = 0$ , so min g = y = f.

If b = 1000, then  $g = k + y - b_a(k + y)$ . Since  $-k - y \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 1001, then  $g = b_a(k+w+z)$ . Since  $k+z \ge 0$  and  $w \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If  $\mathbf{b} = 1010$ , then  $g = b_a(k + x + z)$ . Since  $k + x + z \ge k + x + y \ge 0$ ,  $b_a^* = 0$ , so  $\min q = 0 = f$ .

If b = 1011, then  $g = z + b_a(3k + w + x + y + 2z)$ . Since  $k + x \ge 0$  and  $k + y \ge 0$  and  $k + 2z \ge 0$  and  $k \ge 0$ ,  $b_a^* = 0$ , so min g = z = f.

If b = 1100, then  $g = b_a(k + w + x)$ . Since  $k + x \ge 0$  and  $w \ge 0$ ,  $b_a^* = 0$ , so  $\min g = 0 = f$ .

If b = 1101, then  $g = w + b_a(3k + 2w + x + y + z)$ . Since  $k + x \ge 0$  and  $k + y \ge 0$  and  $k + z \ge 0$  and  $k \ge 0$ ,  $b_a^* = 0$ , so min g = w = f.

If b = 1110, then  $g = x + b_a(3k + w + 2x + y + z)$ . Since  $2k + 2x \ge 0$  and  $k + y + z \ge 0$  and  $w \ge 0$ ,  $b_a^* = 0$ , so min g = x = f.

If  $\mathbf{b} = 1111$ , then  $g = k + w + x + y + z + b_a(5k + 2w + 2x + 2y + 2z)$ . Since  $2k + 2x \ge 0$  and  $2k + 2y + 2z \ge 0$  and  $k \ge 0$  and  $k \ge 0$ , so  $\min g = k + w + x + y + z = f$ .

#### **Lemma 0.12**

If  $-k \le x \le -\frac{k}{2} \le y \le 0 \le w$  and  $y \le z \le w$  and  $k + x + y \le 0$ , then  $g = b_a(x(+b_1-b_2-b_3)+y(-b_2-b_3+b_4)+z(1-b_1+b_3-b_4)+w(1-b_1+b_2-b_4)+k(1-b_1-b_4))+x(-b_1+b_1b_2+b_1b_3)+y(-b_4+b_2b_4+b_3b_4)+z(+b_1b_4)+w(+b_1b_4)+k(+b_1b_4)$  is a quadratisation of f.

*Proof.* If b = 0000, then  $g = b_a(k + w + z)$ . Since  $k + z \ge 0$  and  $w \ge 0$ ,  $b_a^* = 0$ , so  $\min g = 0 = f$ .

If b = 0001, then  $g = b_a y - y$ . Since  $y \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 0010, then  $g = b_a(k + w - x - y + 2z)$ . Since  $w \ge 0$  and  $k + 2z \ge 0$  and  $-x \ge 0$  and  $-y \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If **b** = 0011, then  $g = b_a(z - x)$ . Since  $z \ge x$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 0100, then  $g = b_a(k + 2w - x - y + z)$ . Since  $k + z \ge 0$  and  $w \ge 0$  and  $-x \ge 0$  and  $-y \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If **b** = 0101, then  $g = b_a(w - x)$ . Since  $w \ge x$ ,  $b_a^* = 0$ , so min g = 0 = f.

If  $\mathbf{b} = 0110$ , then  $g = b_a(k + 2w - 2x - 2y + 2z)$ . For the same reason as with  $\mathbf{b} = 0010$ , min g = 0 = f.

If b = 0111, then  $g = y + b_a(w - 2x - y + z)$ . Since  $w \ge 0$  and  $z - y \ge 0$  and  $-x \ge 0$ ,  $b_a^* = 0$ , so min g = y = f.

If b = 1000, then  $g = b_a x - x$ . Since  $x \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If  $\mathbf{b} = 1001$ , then  $g = k + w - x - y + z - b_a(k + w - x - y + z)$ . Since  $-k - z \le 0$  and  $-w \le 0$  and  $-x \le 0$  and  $-y \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If **b** = 1010, then  $g = b_a(z - y)$ . Since  $z \ge y$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 1011, then  $g = k + w + z - b_a(k + w)$ . Since  $-k \le 0$  and  $-w \le 0$ ,  $b_a^* = 1$ , so  $\min g = z = f$ .

If b = 1100, then  $g = b_a(w - y)$ . Since  $w \ge y$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 1101, then  $g = k + w + z - b_a(k + z)$ . Since  $-k - z \le 0$ ,  $b_a^* = 1$ , so min g = w = f.

If b = 1110, then  $g = x + b_a(w - x - 2y + z)$ . Since  $w \ge 0$  and  $z - y \ge 0$  and  $-y \ge 0$  and  $-x \ge 0$ ,  $b_a^* = 0$ , so min g = x = f.

If  $\mathbf{b} = 1111$ , then  $g = k + w + x + y + z - b_a(k + x + y)$ . Since  $-(k + x + y) \ge 0$ ,  $b_a^* = 0$ , so min g = k + w + x + y + z = f.

#### **Lemma 0.13**

If  $-k \le x \le -\frac{k}{2} \le y \le z \le w \le 0$  and  $k + x + y \ge 0$ , then  $g = b_a(x(1 - b_1 - b_2 - b_3) + y(1 - b_2 - b_3 - b_4) + z(1 - b_1 - b_3 - b_4) + w(1 - b_1 - b_2 - b_4) + k(3 - 2b_1 - 2b_2 - 2b_3 - 2b_4)) + x(+b_1b_2 + b_1b_3 + b_2b_3) + y(+b_2b_3 + b_2b_4 + b_3b_4) + z(+b_1b_3 + b_1b_4 + b_3b_4) + w(+b_1b_2 + b_1b_4 + b_2b_4) + k(+b_1b_2 + b_1b_3 + b_1b_4 + b_2b_3 + b_2b_4 + b_3b_4)$  is a quadratisation of f.

*Proof.* If  $\mathbf{b} = 0000$ , then  $g = b_a(3k + w + x + y + z)$ . Since  $k + x \ge 0$  and  $2k + w + y + z \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 0001, then  $g = b_a(k + x)$ . Since  $k + x \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 0010, then  $g = b_a(k + w)$ . Since  $k + w \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If  $\mathbf{b} = 0011$ , then  $g = k + y + z - b_a(k + y + z)$ . Since  $-\frac{k}{2} - y \le 0$  and  $-\frac{k}{2} - z \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 0100, then  $g = b_a(k+z)$ . Since  $k+z \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If  $\mathbf{b} = 0101$ , then  $g = k + w + y - b_a(k + w + y)$ . Since  $-\frac{k}{2} - w \le 0$  and  $-\frac{k}{2} - y \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If  $\mathbf{b} = 0110$ , then  $g = k + x + y - b_a(k + x + y)$ . Since  $-(k + x + y) \le 0$ ,  $b_a^* = 1$ , so  $\min g = 0 = f$ .

If  $\mathbf{b} = 0111$ , then  $g = 3k + w + x + 3y + z - b_a(3k + w + x + 2y + z)$ . Since  $-k - x \le 0$  and  $-k - 2y \le 0$  and  $-k - w - z \le 0$ ,  $b_a^* = 1$ , so min g = y = f.

If b = 1000, then  $g = b_a(k + y)$ . Since  $k + y \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If  $\mathbf{b} = 1001$ , then  $g = k + w + z - b_a(k + w + z)$ . Since  $-k - w - z \le 0$ ,  $b_a^* = 1$ , so  $\min g = 0 = f$ .

If  $\mathbf{b} = 1010$ , then  $g = k + x + z - b_a(k + x + z)$ . Since  $-(k + x + z) \le -(k + x + y) \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 1011, then  $g = 3k + w + x + y + 3z - b_a(3k + w + x + y + 2z)$ . Since  $-k - x \le 0$  and  $-k - w - y \le 0$  and  $-k - 2z \le 0$ ,  $b_a^* = 1$ , so min g = z = f.

If  $\mathbf{b} = 1100$ , then  $g = k + w + x - b_a(k + w + x)$ . Since  $-(k + w + x) \le -(k + x + y) \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 1101, then  $g = 3k + 3w + x + y + z - b_a(3k + 2w + x + y + z)$ . Since  $-k - 2w \le 0$  and  $-k - x \le 0$  and  $-k - y - z \le 0$ ,  $b_a^* = 1$ , so min g = w = f.

If b = 1110, then  $g = 3k + w + 3x + y + z - b_a(3k + w + 2x + y + z)$ . Sincde  $-(k + x + y) \le 0$  and  $-k - x \le 0$  and  $-k - w - z \le 0$ ,  $b_a^* = 1$ , so min g = x = f.

If b = 1111, then  $g = 6k + 3w + 3x + 3y + 3z - b_a(5k + 2w + 2x + 2y + 2z)$ . Since  $-2k - 2x \le 0$  and  $-k - 2y \le 0$  and  $-k - 2z \le 0$  and  $-k - 2w \le 0$ ,  $b_a^* = 1$ , so  $\min g = k + w + x + y + z = f$ .

#### **Lemma 0.14**

If  $x \le -\frac{k}{2} \le y \le z \le w \le 0$  and  $k + x + y \le 0$ , then  $g = b_a(x(-b_1 + b_2 + b_3) + y(+b_2 + b_3 - b_4) + z(-1 + b_1 - b_3 + b_4) + w(-1 + b_1 - b_2 + b_4) + k(-1 + b_1 + b_4)) + x(-b_2 - b_3 + b_1b_2 + b_1b_3) + y(-b_2 - b_3 + b_2b_4 + b_3b_4) + z(+1 - b_1 + b_3 - b_4 + b_1b_4) + w(+1 - b_1 + b_2 - b_4 + b_1b_4) + k(+1 - b_1 - b_4 + b_1b_4)$  is a quadratisation of f.

*Proof.* If  $\mathbf{b} = 0000$ , then  $g = k + w + z - b_a(k + w + z)$ . Since  $-k - w - z \le 0$ ,  $b_a^* = 1$ , so  $\min g = 0 = f$ .

If b = 0001, then  $g = -b_a y$ . Since  $-y \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 0010, then  $g = k + w - x - y + 2z + b_a(-k - w + x + y - 2z)$ . Since  $-k - 2z \le 0$  and  $x \le w$  and  $y \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 0011, then  $g = z - x + b_a(x - z)$ . Since  $x \le z$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 0100, then  $g = k + 2w - x - y + z + b_a(-k - 2w + x + y - z)$ . Since  $-k - 2w \le 0$  and  $y \le z$  and  $x \le 0$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 0101, then  $g = w - x + b_a(x - w)$ . Since  $x \le w$ ,  $b_a^* = 1$ , so min g = 0 = f.

If  $\mathbf{b} = 0110$ , then  $g = k + 2w - 2x - 2y + 2z + b_a(-k - 2w + 2x + 2y - 2z)$ . Since  $-k \le 0$  and  $x \le z$  and  $y \le w$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 0111, then  $g = w - 2x + z + b_a(-w + 2x + y - z)$ . Since  $x \le w$  and  $y \le z$  and  $x \le 0$ ,  $b_a^* = 1$ , so min g = y = f.

If b = 1000, then  $g = -b_a x$ . Since  $-x \ge 0$ ,  $b_a^* = 0$ , so min g = 0 = f.

If  $\mathbf{b} = 1001$ , then  $g = b_a(k + w - x - y + z)$ . Since  $k \ge 0$  and  $w \ge x$  and  $z \ge y$ ,  $b_a^* = 0$ , so min g = 0 = f.

If b = 1010, then  $g = z - y + b_a(y - z)$ . Since  $y \le z$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 1011, then  $g = z + b_a(k + w)$ . Since  $k + w \ge 0$ ,  $b_a^* = 0$ , so min g = z = f.

If b = 1100, then  $g = w - y + b_a(y - w)$ . Since  $y \le w$ ,  $b_a^* = 1$ , so min g = 0 = f.

If b = 1101, then  $g = w + b_a(k + z)$ . Since  $k + z \ge 0$ ,  $b_a^* = 0$ , so min g = w = f.

If b = 1110, then  $g = w - 2y + z + b_a(-w + x + 2y - z)$ . Since  $x \le w$  and  $y \le z$  and  $y \le 0$ ,  $b_a^* = 1$ , so min g = x = f.

If 
$$\mathbf{b} = 1111$$
, then  $g = w + z + b_a(k + x + y)$ . Since  $k + x + y \le 0$ ,  $b_a^* = 1$ , so  $\min g = k + w + x + y + z = f$ .

Hence we have shown that every f with  $k \ge 0$  has a quadratisation with 1 auxiliary. Using the substitution  $b_1' = 1 - b_1$ , we can go between cases with  $k \ge 0$  and  $k \le 0$ , so all 4-variable pseudo-boolean functions has a quadratisation with 1 auxiliary.

## **Theorem 0.15** (A sufficient condition for existence of 1-aux quadratisation)

Let  $f = f(\mathbf{b})$  be fully symmetric in the n bits  $b_1, \dots, b_n$ . Write  $|\mathbf{b}| = \sum b_i$  and  $h(|b|) = f(\mathbf{b})$ . (Note that h is well-defined because f is symmetric. Suppose  $h(0), \dots, h(n)$  is an arithmetic progression but with all positive terms replaced by 0, i.e.  $h(i) = (ai + d)^- = \min(ai + d, 0)$  for some constant a, d, then f is quadratisable with one auxiliary.

*Proof.* In fact we have a quadratisation that is also symmetric in  $b_1, \dots, b_n$ . Let  $g = b_a(a|\mathbf{b}|+d) = b_a(a(\sum b_i)+d)$ . This is quadratic in  $b, b_a$  and

$$\min_{\boldsymbol{b}_{a}} g = f \quad \forall \boldsymbol{b} \in \{0, 1\}^{n}$$

using the property of f.