Instituto Infnet

Projeto da Disciplina: Algoritmos Não-Supervisionados para clusterização [22E4_2]

Aluno: Pedro Pinheiro Cabral

Professor: Luiz Frias

```
In [76]: # Importar bibliotecas
    import pandas as pd
    from pivottablejs import pivot_ui
    from sklearn.preprocessing import StandardScaler
    from sklearn.cluster import KMeans
    from sklearn.metrics import pairwise_distances_argmin_min
    import scipy.cluster.hierarchy as sch
    import matplotlib.pyplot as plt
    from platform import python_version

pd.set_option('display.max_rows', 500)

In [77]: python_version()
Out[77]: '3.9.7'
```

Escolha da base de dados

```
In [2]: # importar dados
    df = pd.read_csv("../data/raw/Country-data.csv")
In [3]: df
```

Out[3]:		country	child_mort	exports	health	imports	income	inflation	life_expec	total_fer	g
	0	Afghanistan	90.2	10.0	7.58	44.9	1610	9.44	56.2	5.82	
	1	Albania	16.6	28.0	6.55	48.6	9930	4.49	76.3	1.65	
	2	Algeria	27.3	38.4	4.17	31.4	12900	16.10	76.5	2.89	4
	3	Angola	119.0	62.3	2.85	42.9	5900	22.40	60.1	6.16	:
	4	Antigua and Barbuda	10.3	45.5	6.03	58.9	19100	1.44	76.8	2.13	17
	•••										
	162	Vanuatu	29.2	46.6	5.25	52.7	2950	2.62	63.0	3.50	i
	163	Venezuela	17.1	28.5	4.91	17.6	16500	45.90	75.4	2.47	1.
	164	Vietnam	23.3	72.0	6.84	80.2	4490	12.10	73.1	1.95	
	165	Yemen	56.3	30.0	5.18	34.4	4480	23.60	67.5	4.67	
	166	Zambia	83.1	37.0	5.89	30.9	3280	14.00	52.0	5.40	

167 rows × 10 columns

```
In [4]: # Quantos países existem no dataset?
len(df.country.unique())
```

Out[4]: **167**

In [7]: # Mostre através de gráficos a faixa dinâmica das variáveis que serão usadas nas ta df.describe()

ut[7]:		child_mort	exports health		imports	income	inflation	life_expec	1
	count	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000	167.000000	167
	mean	38.270060	41.108976	6.815689	46.890215	17144.688623	7.781832	70.555689	2
	std	40.328931	27.412010	2.746837	24.209589	19278.067698	10.570704	8.893172	1
	min	2.600000	0.109000	1.810000	0.065900	609.000000	-4.210000	32.100000	1
	25%	8.250000	23.800000	4.920000	30.200000	3355.000000	1.810000	65.300000	1
	50%	19.300000	35.000000	6.320000	43.300000	9960.000000	5.390000	73.100000	2
	75%	62.100000	51.350000	8.600000	58.750000	22800.000000	10.750000	76.800000	Ξ
	max	208.000000	200.000000	17.900000	174.000000	125000.000000	104.000000	82.800000	7

```
'inflation', 'life_expec', 'total_fer', 'gdpp']])

df_scaled = df[['country']].join(pd.DataFrame(df_scaled, columns=['child_mort', 'ex 'inflation', 'life_expec', 'total_fer', 'gdpp']))

df_scaled
```

Out[23]:		country	child_mort	exports	health	imports	income	inflation	life_expec	to
	0	Afghanistan	1.291532	-1.138280	0.279088	-0.082455	-0.808245	0.157336	-1.619092	1.9
	1	Albania	-0.538949	-0.479658	-0.097016	0.070837	-0.375369	-0.312347	0.647866	-0.8
	2	Algeria	-0.272833	-0.099122	-0.966073	-0.641762	-0.220844	0.789274	0.670423	-0.0
	3	Angola	2.007808	0.775381	-1.448071	-0.165315	-0.585043	1.387054	-1.179234	2.1
	4	Antigua and Barbuda	-0.695634	0.160668	-0.286894	0.497568	0.101732	-0.601749	0.704258	-0.5
	162	Vanuatu	-0.225578	0.200917	-0.571711	0.240700	-0.738527	-0.489784	-0.852161	0.3
	163	Venezuela	-0.526514	-0.461363	-0.695862	-1.213499	-0.033542	3.616865	0.546361	-0.3
	164	Vietnam	-0.372315	1.130305	0.008877	1.380030	-0.658404	0.409732	0.286958	-0.€
	165	Yemen	0.448417	-0.406478	-0.597272	-0.517472	-0.658924	1.500916	-0.344633	1.1
	166	Zambia	1.114951	-0.150348	-0.338015	-0.662477	-0.721358	0.590015	-2.092785	1.6

167 rows × 10 columns

Clusterização

Out[27]:		country	child_mort	exports	health	imports	income	inflation	life_expec	to
	0	Afghanistan	1.291532	-1.138280	0.279088	-0.082455	-0.808245	0.157336	-1.619092	1.9
	1	Albania	-0.538949	-0.479658	-0.097016	0.070837	-0.375369	-0.312347	0.647866	-0.8
	2	Algeria	-0.272833	-0.099122	-0.966073	-0.641762	-0.220844	0.789274	0.670423	-0.0
	3	Angola	2.007808	0.775381	-1.448071	-0.165315	-0.585043	1.387054	-1.179234	2.1
	4	Antigua and Barbuda	-0.695634	0.160668	-0.286894	0.497568	0.101732	-0.601749	0.704258	-0.5
	•••									
	162	Vanuatu	-0.225578	0.200917	-0.571711	0.240700	-0.738527	-0.489784	-0.852161	0.3
	163	Venezuela	-0.526514	-0.461363	-0.695862	-1.213499	-0.033542	3.616865	0.546361	-0.3
	164	Vietnam	-0.372315	1.130305	0.008877	1.380030	-0.658404	0.409732	0.286958	-0.6
	165	Yemen	0.448417	-0.406478	-0.597272	-0.517472	-0.658924	1.500916	-0.344633	1.1
	166	Zambia	1.114951	-0.150348	-0.338015	-0.662477	-0.721358	0.590015	-2.092785	1.6
	167 ro	ows × 11 col	umns							
In [28]:	clust	er_df.clus	ster.value_	_counts()						
Out[28]:	2 84 1 47 0 36 Name: cluster, dtype: int64									
In [37]:	<pre># Qual a distribuição das dimensões em cada grupo cluster_df.groupby('cluster').mean().T # claramente, pela tabela abaixo, cluster 0 é dos países mais desenvolvidos, 2 são</pre>									
Out[37]:		uster	0	1	2	- 403 pa		ucsenvoc	7 6463, 2 3	u o
ouc[37].		mort -0.82								
		ports 0.64! nealth 0.72								
		ports 0.190								
		come 1.484								
		ation -0.484								
		expec 1.079								
		al_fer -0.79								
		gdpp 1.61!	5995 -0.6042	242 -0.3544	481					

```
# Encontrar os países mais próximos dos centroides por cluster
         closest, _ = pairwise_distances_argmin_min(k_fit.cluster_centers_, cluster_df[['chi
                'inflation', 'life_expec', 'total_fer', 'gdpp']])
         closest
Out[42]: array([68, 63, 76], dtype=int64)
In [44]: # Cluster 0 (desenvolvidos)
         cluster_df.iloc[68]
Out[44]: country
                       Iceland
         child_mort -0.887138
         exports 0.449729
         health
                    0.943661
         imports
                   -0.148743
         income
                    1.126692
         inflation
                     -0.21936
         life_expec 1.290735
         total_fer -0.495567
         gdpp
                      1.583465
         cluster
         Name: 68, dtype: object
In [45]: # Cluster 1 (pobres)
         cluster_df.iloc[63]
Out[45]: country
                        Guinea
         child_mort 1.759101
         exports -0.395501
health -0.688559
         imports
                   -0.152886
         income
                    -0.830097
         inflation 0.789274
         life_expec -1.416081
         total_fer 1.584856
         gdpp
                  -0.673981
         cluster
         Name: 63, dtype: object
In [46]: # Cluster 2 (intermediários)
         cluster_df.iloc[76]
Out[46]: country
                      Jamaica
         child_mort -0.501643
                  -0.358911
         exports
                    -0.732377
         health
         imports
                     0.112267
         income
                   -0.475784
         inflation
                    0.192444
         life_expec 0.467412
         total_fer -0.515444
         gdpp
                     -0.453336
         cluster
                             2
         Name: 76, dtype: object
```

```
In [47]: # Esses representam melhor o agrupamento pois são os mais próximos aos centróides,
         # que representam exatamente o cluster.
In [67]: # Para os resultados da Clusterização Hierárquica, apresente o dendograma e interpr
         plt.figure(figsize=(20, 5))
         plt.grid(False)
         dendrogram = sch.dendrogram(sch.linkage(df_scaled.drop('country', axis=1), method='
         plt.title('Dendrogram')
Out[67]: Text(0.5, 1.0, 'Dendrogram')
In [68]: # Zoom
         plt.figure(figsize=(50, 10))
         plt.grid(False)
         dendrogram = sch.dendrogram(sch.linkage(df_scaled.drop('country', axis=1), method=
         plt.title('Dendrogram')
Out[68]: Text(0.5, 1.0, 'Dendrogram')
In [71]: # É visível no dendograma que os países desenvolvidos ficaram em laranja, os pobres
         # No "olhômetro" mesmo é possível notar inclusive que a quantidade de países por co
         # encontrado no k-means. Isso que o dendograma é construído de maneira bem diferent
         # depende da inicialização. Também, no dendograma, conseguimos ver similaridades en
```

vemos que o Brasil se parece mais com Chile, Colômbia, Turquia e Uruguai do que t

Escolha de algoritmos

a priori para fazer uma análise intra-cluster.

```
In [72]: #Escreva em tópicos as etapas do algoritmo de K-médias até sua convergência.
         # Etapa 1: Input do número K para decidir o número de clusters, o número de iteraçõ
         # Etapa 2: Seleciona-se K pontos aleatórios ou centróides;
         # Etapa 3: Atribui-se a cada ponto ao centróide mais próximo, que formam os K clust
         # Etapa 4: Calcula-se a média de todos os pontos de cada cluster, e reposicionam-se
         # Etapa 5: Repete-se a terceira etapa: reatribui-se cada ponto ao novo centróide ma
         # Etapa 6: Se a tolerância ou o número de iterações tiver sido atingido, siga em fr
         # Etapa 7: O modelo está pronto.
In [73]: # Refaça o algoritmo apresentado na questão 1 a fim de garantir que o cluster seja
         # ao seu baricentro em todas as iterações do algoritmo.
         # Etapa 1: Input do número K para decidir o número de clusters, o número de iteraçõ
         # Etapa 2: Seleciona-se K pontos aleatórios ou centróides;
         # Etapa 3: Atribui-se a cada ponto ao centróide mais próximo, que formam os K clust
         # Etapa 4: Calcula-se a média de todos os pontos de cada cluster, encontram-se os p
         # e reposicionam-se os centróides nesses locais;
         # Etapa 5: Repete-se a terceira etapa: reatribui-se cada ponto ao novo centróide ma
         # Etapa 6: Se a tolerância ou o número de iterações tiver sido atingido, siga em fr
         # Etapa 7: O modelo está pronto.
In [74]: # O algoritmo de K-médias é sensível a outliers nos dados. Explique.
         # Na etapa 4, calcula-se o novo centróide pela média dos valores dentro de um clust
         # pelos pontos mais próximos ao centróide calculado na rodada anterior, portanto, t
         # algum cluster. Um ponto outlier portanto acaba também entrando no cálculo da médi
         \# muito da mediana do cluster. Sendo assim, em uma amostra com 1 outlier e k = 2, o
         # será exclusivo do outlier e os demais pontos ficarão todos em um mesmo outro clus
In [ ]: # Por que o algoritmo de DBScan é mais robusto à presença de outliers?
         # O motivo é que o DB Scan apenas atua apenas na vizinhança dos chamados Core point
         # mínimo predefinido de vizinhos. Tendo em vista que outliers costumam estar isolad
         # vizinhos a nenhum outro Core point, e assim portanto sendo rotulado como ruído, f
         # Ao contrário do K-means, o DBScan aceita pontos fora de clusters.
```