The control of a large force is the same principle as the control of a few men: it is merely a question of dividing up their numbers.

- Sun Zi, *The Art of War* (c. 400CE), translated by Lionel Giles (1910)

Our life is frittered away by detail.... Simplify, simplify.

Henry David Thoreau, Walden (1854)

Now, don't ask me what Voom is. I never will know. But, boy! Let me tell you, it DOES clean up snow!

— Dr. Seuss [Theodor Seuss Geisel], The Cat in the Hat Comes Back (1958)

Do the hard jobs first. The easy jobs will take care of themselves.

attributed to Dale Carnegie

From Jeff Erickson, alogrithms.wtf

Lecture 3: Divide & Conquer [Recursion, Erickson; Divide & Conquer, KT]

William Umboh
School of Computer Science

General techniques in this course

- Greedy algorithms [W2]
- Divide & Conquer algorithms [today]
- Dynamic programming [W4-5]
- Network flow algorithms [W6-7]

Reduction: Powerful Idea in Computer Science

Problem B is a smaller instance of Problem A: Divide-and-Conquer, Dynamic programming OR

Problem B is easier than Problem A: Network Flows, NP-hardness

- Divide-and-conquer [usually 3 steps]
 - 1. Divide: Break up problem into several parts.
 - 2. Conquer: Solve each part recursively.
 - 3. Combine solutions to sub-problems into overall solution.

- Divide-and-conquer [usually 3 steps]
 - 1. Divide: Break up problem into several parts.
 - 2. Conquer: Solve each part recursively.
 - 3. Combine solutions to sub-problems into overall solution.

- Divide-and-conquer [usually 3 steps]
 - 1. Divide: Break up problem into several parts.
 - 2. **Conquer**: Solve each part recursively.
 - 3. Combine solutions to sub-problems into overall solution.

- Divide-and-conquer [usually 3 steps]
 - 1. Divide: Break up problem into several parts.
 - 2. Conquer: Solve each part recursively.
 - 3. **Combine** solutions to sub-problems into overall solution.

Divide-and-conquer [usually 3 steps]

- 1. Divide: Break up problem into several smaller parts.
- 2. Conquer: Solve each part recursively.
- 3. Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Divide-and-conquer [usually 3 steps]

- 1. Divide: Break up problem into several smaller parts.
- 2. Conquer: Solve each part recursively.
- 3. Combine solutions to sub-problems into overall solution.

Proof of Correctness

By induction on n.

- Base case. Typically, but not always, n = 1.
- Inductive case. Prove correctness of combine step assuming correctness of solutions to sub-problems (inductive hypothesis)

Divide-and-conquer [usually 3 steps]

- 1. Divide: Break up problem into several smaller parts.
- 2. Conquer: Solve each part recursively.
- 3. Combine solutions to sub-problems into overall solution.

Time complexity

2T(n/2)

Solve recurrence relation

- T(n) = divide step + combine step + subproblems

Warmup: Searching

Input: A sorted sequence S of n numbers $a_1, a_2, ..., a_n$, stored in an array A[1..n].

Question: Given a number x, is x in S?

0	1	3	4	5	7	10	13	15	18	19	23

- -m = ceil(n/2)
- Compare x to the middle element of the array (A[m]).
- If A[m] = x then "Yes"
- Otherwise, if A[m] > x then recursively Search A[1...m-1].
- Otherwise, if A[m] < x then recursively Search A[m+1...n]

0	1	3	4	5	7	10	13	15	18	19	23

- m = ceil(n/2)
- Compare x to the middle element of the array (A[m]).
- If A[m] = x then "Yes"
- Otherwise, if A[m] > x then recursively Search A[1...m-1]. Otherwise, if A[m] < x then recursively Search A[m+1...n]

Proof of correctness by induction on n:

- Base case (n = 1). Trivial.
- Inductive case. Assume correct on input sizes < n.
 - x is in A if and only if it is in the subarray in the recursive call
 - Apply inductive hypothesis

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example of inductive case: x=1 (non-integers are rounded up)

0	1	3	4	5	7	10	13	15	18	19	23	
---	---	---	---	---	---	----	----	----	----	----	----	--

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example of inductive case: x=1 (non-integers are rounded up)

0	1	3	4	5	7	10	13	15	18	19	23	
---	---	---	---	---	---	----	----	----	----	----	----	--

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example of inductive case: x=1 (non-integers are rounded up)

Do not unroll recursion! Our job is to reduce to smaller instances and apply correctness on smaller instances.

See also "Recursion Fairy" in Erickson's textbook.

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example of inductive case: x=1 (non-integers are rounded up)

Analysis:

O(1) T(n/2)

- T(n) = divide step + combine step + subproblems = 1 + T(n/2)

Analyze recurrence via recursion tree

$$T(n) = T(n/2) + O(1)$$

- Compare x to the middle element of the array (A[n/2]).
- If A[n/2] = x then "Yes"
- Otherwise, if A[n/2] > x then recursively Search A[1...n/2-1].
- Otherwise, if A[n/2] < x then recursively Search A[n/2+1...n]

Example of inductive case: x=1 (non-integers are rounded up)

Analysis:

 $- T(n) = 1 + T(n/2) = O(\log n)$

Maximum-sum contiguous subarray

Given an array A[] of n numbers, find the maximum sum found in any contiguous subarray

A zero-length subarray has maximum 0

Example:

1	-2	7	5	6	-5	5	8	1	-6

Maximum-sum contiguous subarray

Given an array A[] of n numbers, find the maximum sum found in any contiguous subarray

A zero-length subarray has maximum 0

Example:

Divide-and-conquer algorithm (first try)

Maximum contiguous subarray (MCS) in A[1..n]

If
$$n > 1$$
, return $\max\{MCS(A[1..n/2]), MCS(A[n/2+1..n])\}$
If $n = 1$,
If $A[1] < 0$, return 0 $=$
Else return $A[1]$

Problem: what if optimal subarray contains A[n/2, n/2+1]?

Divide-and-conquer algorithm

Maximum contiguous subarray (MCS) in A[1..n]

- Three cases:
 - a) MCS in A[1..n/2]
 - b) MCS in A[n/2+1..n]
 - c) MCS that spans A[n/2, n/2 + 1]
- (a) & (b) can be found recursively

A[m2 7)

- (c) can be found in two steps
 - Consider MCS in A[1..n/2] ending in A[n/2].
 - Consider MCS in A[n/2+1..n] starting at A[n/2+1].
 - Sum these two maximum

Idea of divide-and-conquer

Example 1:
$$10 \ 15 \ -3 \ -4 \ -2 \ -1 \ 8 \ 5 \ max on L (recursion) 25 $10 \ 15 \ max on R (recursion) 13 \ mid extend to L $328 \ mid extend to R$ $10 \ 15 \ -3 \ -4 \ mid extend to R$$$$

- Possible candidates:
 - 25, 13, 28 (=18+10)
 - overall maximum 28.

Idea of divide-and-conquer

Example 2:
$$-2$$
 5 -1 -5 2 -1 max on L (recursion) 5 $\frac{5}{max}$ max on R (recursion) 3 $\frac{2}{mid}$ extend to L $+\frac{7}{4}$ $+\frac{5}{mid}$ $+\frac{1}{mid}$ $+\frac{1}$

- Possible candidates:
 - -5,3,4(=4+0)
 - overall maximum 5

Divide-and-conquer algorithm

Maximum contiguous subarray (MCS) in A[1..n]

- (a) & (b) can be found recursively
- (c) can be found in two steps

 - Consider MCS in A[1..n/2] ending in A[n/2].
 Consider MCS in A[n/2+1..n] starting at A[n/2+1].
 O(n)
 - Sum these two maximum

Total time:
$$T(n) = 2 \cdot T(n/2) + O(n) = O(n \log n)$$

Mergesort - Recap

- 1. Divide array into two halves.
- 2. Conquer: Recursively sort each half.

John von Neumann (1945)

3. Combine: Merge two halves to make sorted whole.

- Merging. Combine two pre-sorted lists into a sorted whole.
- How to merge efficiently?
 - Linear number of comparisons.
 - Use temporary array.

- Merge.
 - Keep track of smallest unprocessed element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest unprocessed element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest unprocessed element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

- Merge.
 - Keep track of smallest unprocessed element in each sorted half.
 - Insert smallest of two elements into auxiliary array.
 - Repeat until done.

Total # comparisons: O(n)

Note: runtime dominated by # comparisons

Mergesort

- 1. Divide array into two halves.
- 2. Conquer: Recursively sort each half.

John von Neumann (1945)

3. Combine: Merge two halves to make sorted whole.

Counting Inversions

Counting Inversions

- Music site tries to match your song preferences with others.
 - You rank n songs.
 - Music site consults database to find people with similar tastes.
- Similarity metric: number of inversions between two rankings.
 - My rank: 1, 2, ..., n.
 - Your rank: a₁, a₂, ..., a_n.
 - Songs i and k inverted if i < k, but $a_i > a_k$.

	Songs									
	Α	В	С	D	Ε					
Me	1	2	3	4	5					
You	1	3	4	2	5					

Inversions 3-2, 4-2

- Brute force: check all $\Theta(n^2)$ pairs i and k.

Applications

- Applications.
 - Voting theory.
 - Collaborative filtering.
 - Measuring the "sortedness" of an array.
 - Sensitivity analysis of Google's ranking function.
 - Rank aggregation for meta-searching on the Web.
 - Nonparametric statistics (e.g., Kendall's Tau distance).

- Divide-and-conquer.
 - Divide: separate list into two pieces.
 - Conquer: recursively count inversions in each half.
 - Combine: count inversions where a_i and a_k are in different halves, and return sum of three quantities.

3 14 10 18 19 7 11 17 25 23 2 16

- Divide-and-conquer.
 - Divide: separate list into two pieces.
 - Conquer: recursively count inversions in each half.
 - Combine: count inversions where a_i and a_k are in different halves, and return sum of three quantities.

- Divide-and-conquer.
 - Divide: separate list into two pieces.
 - Conquer: recursively count inversions in each half.
 - Combine: count inversions where a_i and a_k are in different halves, and return sum of three quantities.

5 blue-blue inversions

14-10, 14-7, 10-7, 18-7, 19-7

11-2, 17-2, 17-16, 25-2, 25-16, 25-23, 23-2, 23-16

8 green-green inversions

- Divide-and-conquer.
 - Divide: separate list into two pieces.
 - Conquer: recursively count inversions in each half.
 - Combine: count inversions where a_i and a_k are in different halves, and return sum of three quantities.

5 blue-blue inversions

8 green-green inversions

13 blue-green inversions

Total =
$$5 + 8 + 13 = 26$$
.

Key Observation:

- For each α_k on the right half, the number of blue-green inversions it is involved in is exactly the number of elements on the left half that is larger than α_k
- Computing this is much easier if the two halves are sorted.

13 blue-green inversions

Total =
$$5 + 8 + 13 = 26$$
.

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Merge two sorted halves into sorted whole.
- Simultaneously, count inversions where a_i and a_k are in different halves.

5 blue-blue inversions

8 green-green inversions

How many blue-green inversions?

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

The University of Sydney

Total: 6+3

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0

- Merge and count step.
 - Given two sorted halves, count number of inversions where a_i and a_k are in different halves.
 - Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

- Correctness.
 - When we place an element from left half in auxiliary array, it is smaller than remaining elements in right half

- Correctness.

- When we place an element from left half in auxiliary array, it is smaller than remaining elements in right half
- When we place element from right half in auxiliary array, it is larger than remaining elements in left half

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_i and a_k are in different halves.
- Merge two sorted halves into sorted whole.

13 blue-green inversions: 6+3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

Time: $T(n) = 2T(n/2) + O(n) = O(n \log n)$

Counting Inversions: Implementation

- Pre-condition. [Merge-and-Count] A and B are sorted.
- Post-condition. [Sort-and-Count] L is sorted.

Useful strategy: Strengthen inductive hypothesis

- Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.
- Fundamental geometric primitive.
 - Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
 - Special case of nearest neighbor, Euclidean MST, Voronoi diagram...
- Warm up 1: Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.
- Warm up 2: 1-D version. O(n log n) easy if points are on a line.

- Assumption. No two points have same x coordinate.

- Algorithm.
 - Divide: draw vertical line L so that exactly $\frac{1}{2}$ n points on each side.

- Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.

- Algorithm.
 - Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
 - Conquer: find closest pair in each side recursively.
 - Combine:
 - find closest pair with one point in each side.
 - return best of 3 solutions.

- Find closest pair with one point in each side, assuming that $\delta = \min(\text{closest pair in left half, closest pair in right half})$.

- Find closest pair with one point in each side, assuming that $\delta = \min(\text{closest pair in left half, closest pair in right half}).$
 - **Observation:** only need to consider points within δ of line L.

- Find closest pair with one point in each side, assuming that $\delta = \min(\text{closest pair in left half, closest pair in right half}).$
 - **Observation:** only need to consider points within δ of line L.
 - Sort points in 2δ -strip by their y-coordinate.

The University of Sydney ←→ δ

- Find closest pair with one point in each side, assuming that $\delta = \min(\text{closest pair in left half, closest pair in right half})$.
 - Observation: only need to consider points within δ of line L.
 - Sort points in 2δ -strip by their y coordinate.
 - Only check distances of those within 7 positions in sorted list!

- **Definition:** Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate y_i .

- Claim: For any 9 consecutive points s_i , ..., s_{i+8} in the ordering, the distance between s_i and s_k is $> \delta$. In fact, $y_{i+8} - y_i > \delta$.

- Proof:

- Suppose that $y_{i+8} y_i \le \delta$.
- Then $s_{i},$..., s_{i+8} lie in a rectangle with width $2\delta_{i}$ and height $\delta.$
- Partition rectangle into 8 squares of width $\delta/2$
- At least 2 of s_i , ..., s_{i+8} lie in same square.
- But 2 points in square of width $\delta/2$ have distance $< \delta!$
- Since each square completely in left or right side, this contradicts definition of δ

- **Definition:** Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate y_i .

- Claim: For any 9 consecutive points s_i , ..., s_{i+8} in the ordering, the distance between s_i and s_k is $> \delta$. In fact, $y_{i+8} - y_i > \delta$.

Alternative Proof:

- Draw rectangle of height δ and width 2δ such that \mathbf{s}_{i} is on bottom edge of rectangle
- Divide rectangle into squares of width δ
- No two points lie in same square, by def of δ
- Thus, at most 8 points (including s_i) can be in rectangle.
- So $y_{i+8} y_i > \delta$

Closest Pair Algorithm

```
Closest-Pair (p_1, ..., p_n) {
 If |P| \le 3 then compute closest-pair brute force
 else
   Compute separation line L such that half the points
                                                                       O(n \log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                       2T(n / 2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                       O(n)
   Sort remaining points by y-coordinate.
                                                                       O(n \log n)
   Scan points in y-order and compare distance between
                                                                       O(n)
   each point and next 7 neighbors. If any of these
   distances is less than \delta, update \delta.
 return \delta.
```

Closest Pair of Points: Analysis

Running time

$$T(n) \leq 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)$$

- Question: Can we achieve O(n log n)?
- **Answer:** Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

$$T(n) \le 2T(n/2) + O(n) \implies T(n) = O(n \log n)$$

```
Sort P by x-coordinates \Rightarrow P<sub>x</sub> \Rightarrow Py Sort P by y-coordinates \Rightarrow Py
                                       Closest-Pair (P_x, P_v) {
                                              If |P|≤ 3 then compute closest-pair brute force
                                              else
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 O(1)
Compute separation line L

P_{x,left} = points to the left of L sorted by x-coordinate P_{y,left} = points to the left of L sorted by y-coordinate P_{x,right} = points to the right of L sorted by x-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of L sorted by y-coordinate P_{y,right} = points to the right of
                                                             Compute separation line L
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               O(n)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2T(n / 2)
  O(n)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 O(n)
                                              return \delta.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Page 127
```

Summary: Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Master theorem

Problems

This weeks quiz is all

- Maximum Contiguous Subarray about solving recurrences!
- Counting inversions
- Closest pair