Quantum noise and error mitigation

2024/06/28
Toshinari Itoko
IBM Research – Tokyo

What you learn today

- Talk 1 (Basic, 35min)
 - What is quantum noise/error
 - Error suppression and mitigation techniques
 - TREX (Twirled Readout Error eXtinction)
 - ZNE (Zero Noise Extrapolation)
 - PEA (Probabilistic Error Amplification)

<Break>

- Hands-on (20 min)
- Talk 2 (Advanced, 30min)
 - Formalism of quantum errors
 - Standard error channels, e.g. Pauli error channel
 - Quantum channel
 - PTM (Pauli Transfer Matrix) representation

Fight noise after avoiding it as possible

- Noises everywhere:
 - Initialization
 - Gates (even in idling time)
 - Measurements

- Noises cause (computational) errors
- Errors prevent the realization of useful quantum computers

Quantum circuit optimization (last week) → Reduce noise

Error mitigation (today) → Fight noise

Approaches against quantum noise

We focus on how noise affects computation (errors)

Physics approach:

- Mechanism noise is produced
- How to protect from the noise

Computer science (CS) approach: Today

- Effects of noises in computation
- How to minimize the effect of noises (errors)

Coherent error (Unitary error)

- [Sources] Miscalibration (e.g. pulse amplitudes, qubit frequency)
 - Unwanted interaction between qubits
- [Characters] Unitary evolution, No change in purity (pure state >> pure state)
- [Measures] (Better calibration), Error mitigation/suppression

Miscalibration may cause over/under rotation errors

Incoherent error

[Sources] • Entanglement (coupling) with environment (system is open)

[Characters] • Non-unitary, Loss of purity (pure state → mixed state)

[Measures] • Error mitigation

Quantum interaction as a whole

$$\rho'_{s} = \operatorname{tr}_{e}(|\varphi'_{se}\rangle\langle\varphi'_{se}|)$$

Partial trace over e (discard environment e, leave system s)

(https://en.wikipedia.org/wiki/Partial trace)

Extreme example: Subsystem of the Bell state

The Bell state is a pure state, but the reduced density operator of the first qubit is a mixed state (the completely mixed state)

Stronger entanglement (with env.) -> More error (on the system)

Partial trace over e (discard environment e, leave system s)

Measurement or Readout error (SPAM error) (SPAM: State Preparation And Measurement)

- [Sources] Mis-discrimination (in qubit state readout)
- [Characters] Classical errors (bit-flip errors)
- [Measures] (Better calibration), Error mitigation

Initialization or Reset error (SPAM error)

(SPAM: State Preparation And Measurement)

- [Sources] Imperfect reset (of previously measured state)
- [Measures] Long shot intervals

Shots: Run a circuit multiple times to sample results (bits)

Sampling error (Shot error)

- [Sources] Core nature of quantum physics
- [Measures] Increase the number of shots

Measure a qubit → Observe a bit 0 or 1, following

Bernoulli distribution

 $\begin{cases}
0 \text{ with probability } p \\
1 \text{ with probability } 1 - p
\end{cases}$

p depends on amplitude of $|0\rangle$ of the state

Measure multiple times to know p

ightarrow Obtain sample mean of Bernoulli random variables \hat{p}

More shots \rightarrow Less variance (more precise \hat{p})

Distribution of mean of Bernoulli random variables (p=0.5)

Quiz: What errors look like

Run the following 101 circuits

: |0\| \big| \big| \big| \big| \big|

400 shots for each circuit

Plot
$$\langle Z \rangle = \langle \varphi | Z | \varphi \rangle = P(0) - P(1)$$

Ideally, observe 1 and -1 alternatively

Quiz: What errors look like

Running on noisy quantum computer, we observe

Why?

Connect an observation with the error causing it by a line

Observations:

- 1. Shrink/bias (d=0/∞)
- 2. Non-smoothness
- 3. Oscillation
- 4. Decay

Errors:

Fight gate/measurement errors

 Gate and measurement errors are dominant in today's superconducting-qubit computers

What you learn today

- Talk (30min)
 - What is quantum noise/error
 - Error suppression and mitigation techniques
 - TREX (Twirled Readout Error eXtinction)
 - ZNE (Zero Noise Extrapolation)
 - PEA (Probabilistic Error Amplification)
- Break
- Hands-on (20 min)
- Theory (Hard 30min)
 - Formalism of quantum errors
 - Standard error channels, e.g. Pauli error channel
 - Quantum channel
 - PTM (Pauli Transfer Matrix) representation

Error correction or error mitigation?

How to deal with errors due to noise?

Quantum error correction (QEC)

Source: Fig. 1 in [1]

Monitor
Error occurs
Error detected

Correct in quantum computation (in real time)

Quantum error mitigation (QEM)

Source: [2]

No monitor
Error occurs
Error undetected

Estimate corrected with classical computation (by post processing)

[1] Bravyi, S., Cross, A.W., Gambetta, J.M. et al. High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778–782 (2024).

[2] Minov Z., Probabilistic Error Cancellation with Sparse Pauli-Lindblad Models on Noisy Quantum Processors (https://www.youtube.com/watch?v=oPSBivh2rxQ)

Quantum Error Mitigation and Correction

Quantum circuit complexity

Error suppression and mitigation techniques

- Different types of errors need different suppression and mitigation techniques.
- Different types of techniques can be combined!

- TREX (Twirled Readout Error eXtinction)
- ZNE (Zero Noise Extrapolation)
- PEA (Probabilistic Error Amplification)

Error suppression and Error mitigation

Error suppression

Aim to reduce the error itself (in real time)

- Do something before measurement
- No change in the number of circuits
- Work even for a single shot

Error mitigation

Aim to recover the error-free result (with post-processing)

- Require classical post-processing
- Require more circuits to run
- Require multiple shots

Error suppression: Dynamical Decoupling (DD)

- Suppress errors in qubit idling time effectively
- Insert gates add up to the identity, e.g. X—X, X—Y—X—Y

In this case, at least coherent Rz errors are cancelled out (assuming no errors on X gates):

$$R_z(\theta) X R_z(2\theta) X R_z(\theta) = R_z(\theta) R_z(-2\theta) R_z(\theta) = I$$
 No DD $\rightarrow R_z(4\theta)$ error

Twirled Readout Error eXtinction (TREX)

EV: Expectation Value

Focus on the computation of the EVs of Pauli observables composed only of Pauli I and Z for simplicity

Ex) EV of ZZ for
$$|\varphi\rangle = \text{U}|00\rangle$$
, i.e. $\langle \varphi|ZZ|\varphi\rangle$
 $\langle ZZ\rangle = P(00) - P(01) - P(10) + P(11)$

1. Original circuit (with random bit flipping)

Mitigated EV = [EV from 1] / [EV from 2]
$$\langle \tilde{\varphi} | ZZ | \tilde{\varphi} \rangle \qquad \langle \tilde{0} | ZZ | \tilde{0} \rangle$$

Van Den Berg, E., Minev, Z. K., & Temme, K. (2022). Model-free readout-error mitigation for quantum expectation values. *Physical Review A*, 105(3), 032620.

Zero Noise Extrapolation (ZNE)

Run multiple circuits with different gate error rates and extrapolate the expectation value at zero-noise point

Options:

- Noise amplifier
- Noise factors
 e.g. [1.0, 1.2, 1.5], [1, 3, 5]...
- Extrapolator e.g. Linear, Quadratic, Exponential ...

https://github.com/Qiskit/qiskit-ibm-runtime/blob/stable/0.17/docs/tutorials/Error-Suppression-and-Error-Mitigation.ipynb

ZNE: Noise Amplification

- Pulse stretching assumes gate noise is proportional to duration, which is typically not true. Calibration is also costly.
- Gate folding requires large stretch factors that greatly limit the depth of circuits that can be run.
- PEA can be applied to any circuit that can be run with native noise factor (λ=1λ=1) but requires learning the noise model.
- You can write your own amplification!

Probabilistic Error Amplification (PEA)

Pauli Twirling

- 1) Simplify noise: Gate noise → Pauli channel
- 2) Learn noise (Estimate Pauli channel params)
- 3) Amplify noise + ZNE

Zero Noise Extrapolation (ZNE)

Pauli Twirling

- Also called randomized compiling.
- Used to convert arbitrary noise channels into Pauli channels.
- Helps when dealing with coherent noise.
- Helps in the extrapolation stage of ZNE by making noise increase more or less monotonically.
- Often exclusively used on two qubit gates.

Clifford maps a Pauli to another Pauli by conjugation

Break We have a hands-on session next. Please make sure to prepare your laptop.

2024628_UTokyo_em.ipynb

What you learn today

- Talk (35min)
 - What is quantum noise/error
 - Error suppression and mitigation techniques
 - TREX (Twirled Readout Error eXtinction)
 - ZNE (Zero Noise Extrapolation)
 - PEA (Probabilistic Error Amplification)
- Break
- Hands-on (20 min)
- Theory (30min Hard)
 - Formalism of quantum errors
 - Standard error channels, e.g. Pauli error channel
 - Quantum channel
 - PTM (Pauli Transfer Matrix) representation

System-Environment representation of noise

(Incoherent) error is from entanglement with environment

- ullet Any quantum error on the system is fully characterized by U
 - Include coherent (unitary) error as a special case $U=U_S \otimes U_e$
- Difficult to describe the environment explicitly
 - Difficult to know *U* directly

Quantum Channel

A linear map of a quantum state to another quantum state

Quantum Channel

1-qubit case:

Recall we use density matrix to represent a mixed state

$$\rho = \begin{bmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{bmatrix} = \rho_{00}|0\rangle\langle 0| + \rho_{01}|0\rangle\langle 1| + \rho_{10}|1\rangle\langle 0| + \rho_{11}|1\rangle\langle 1|$$
$$= \frac{1}{2} \left(I + r_x X + r_y Y + r_z Z \right)$$

N-qubit density matrix is 2^N by 2^N

Noisy gate is a quantum channel

Two ways to represent a noisy gate using quantum channel

Common quantum errors

Incoherent errors

Amplitude damping error:

Relaxation error $(|1> \rightarrow |0>)$

Phase damping error (dephasing):

Loss of phase information

Coherent errors

Unitary error:

Miscalibration (over-/under-rotation)

$$\rho \mapsto U\rho U^{\dagger}$$

Isotropic loss of purity (A special case of Pauli error)

Pauli error:

Different loss in X/Y/Z direction (see the next page for the details)

Pauli error (channel)

1q-Paulis:

$$\sigma_x = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = Y = \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix}, \quad \sigma_z = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Random application of Pauli gates

- 1-qubit case: Apply X with probability p_x ,
 - Apply Y with probability p_{ν} ,
 - Apply Z with probability p_z ,
 - Apply I with probability $1 p_x p_y p_z$

- 2-qubit case: Apply XI, XX, XY, XZ with probability p_{XI} , p_{XX} , p_{XY} , p_{XZ}
 - Apply YI, YX, YY, YZ with probability p_{YI} , p_{YX} , p_{YY} , p_{YZ}
 - Apply ZI, ZX, ZY, ZZ with probability p_{ZI} , p_{ZX} , p_{ZY} , p_{ZZ}
 - Apply IX, IY, IZ with probability p_{IX} , p_{IY} , p_{IZ}
 - Apply II with the rest probability $1-p_{IX}-p_{IY}-p_{IZ}-\cdots$

N-qubit case: 4^N random Pauli application (with $4^N - 1$ parameters)

(Abbreviation for Pauli XY = $X \otimes Y$)

[Theory] Quantum Channel := CPTP-map

Properties required for a mapping \mathcal{E} between quantum states:

- 1. CP (Completely Positive): $\rho \succeq 0 \Rightarrow \mathcal{E}(\rho) \succeq 0$ and $\sigma \succeq 0 \Rightarrow (I \otimes \mathcal{E})(\sigma) \succeq 0$
- 2. TP (Trace Preserving): $tr(\mathcal{E}(\rho)) = tr(\rho) = 1$
- 3. Convex linear: $\mathcal{E}\left(\sum_{i} p_{i} \rho_{i}\right) = \sum_{i} p_{i} \mathcal{E}(\rho_{i})$ [Choi 1975]

$$\mathcal{E}(\rho) = \sum_{k} E_{k} \rho E_{k}^{\dagger}$$
 s.t. $\sum_{k} E_{k}^{\dagger} E_{k} = I$

Kraus (Operator-Sum) representation

Any quantum channel can be represented by

a set of operators (matrices)
$$\{E_k\}$$
 s.t. $\sum_{k} E_k^{\dagger} E_k = I$

$$\mathcal{E}^{\text{Kraus}}(\rho) = \sum_{k} E_{k} \rho E_{k}^{\dagger} \quad \text{s.t.} \quad \sum_{k} E_{k}^{\dagger} E_{k} = I$$

$$\mathcal{E}^{\text{Kraus}}: \rho \mapsto \sum_{k} E_{k} \rho E_{k}^{\dagger}$$

(Physical interpretation)

$$\mathcal{E}^{\mathrm{Kraus}}: \rho \mapsto \sum_{k} E_{k} \rho E_{k}^{\dagger} \qquad \qquad \qquad \\ \rho_{k} = \frac{E_{k} \rho E_{k}^{\dagger}}{\mathrm{tr}(E_{k} \rho E_{k}^{\dagger})} \text{ with probability } \\ \mathrm{tr}(E_{k} \rho E_{k}^{\dagger})$$

Ex. 1) Gate / Unitary evolution (special case: |k|=1)

$$\rho \mapsto U \rho U^{\dagger}$$
 $U^{\dagger}U = I$

Examples: Kraus (Operator-Sum) representation

$$\mathcal{E}^{\text{Kraus}}(\rho) = \sum_{k} E_{k} \rho E_{k}^{\dagger} \quad \text{s.t.} \quad \sum_{k} E_{k}^{\dagger} E_{k} = I$$

Ex. 2) Positive operator-valued measurement (POVM)

Projection onto computational basis (0 or 1)

$$E_1 = |0\rangle\langle 0| = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$E_1 = |0\rangle\langle 0| = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 $E_2 = |1\rangle\langle 1| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

50% Pauli I - 50% Pauli Z

$$E_1 = \frac{1}{\sqrt{2}}I = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $E_2 = \frac{1}{\sqrt{2}}Z = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$$E_2 = \frac{1}{\sqrt{2}}Z = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Exercise: Kraus representation of 1q Pauli error?

Pauli error = Random application of Pauli gates

- Ex) 1-qubit case Apply X with probability p_x ,
 - Apply Y with probability p_{ν} ,
 - Apply Z with probability p_z ,
 - Apply I with probability $1-p_x-p_y-p_z$

$$\mathcal{E}^{\text{Kraus}}(\rho) = \sum_{k} E_{k} \rho E_{k}^{\dagger} \quad \text{s.t.} \quad \sum_{k} E_{k}^{\dagger} E_{k} = I$$

Describe Kraus operators representing 1q Pauli error above.

Answer:
$$\sqrt{p_x} X$$
, $\sqrt{p_y} Y$, $\sqrt{p_z} Z$, $\sqrt{1 - p_x - p_y - p_z} I$

Examples: Kraus (Operator-Sum) representation

Ex. 2) Projection onto computational basis (0 or 1)

$$E_1 = |0\rangle\langle 0| = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 $E_2 = |1\rangle\langle 1| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

$$F_1 = \frac{1}{\sqrt{2}}I = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $F_2 = \frac{1}{\sqrt{2}}Z = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Unique representation? → Superoperator

Projection to Z-axis

Various representation of Quantum Channel

Kraus to Superoperator transformation

Kraus $(2^N \times 2^N \text{ matrices})$

Liouville **Superoperator** $(4^N \times 4^N \text{ matrix})$

$$\mathcal{E}^{\text{Kraus}}(\rho) = \sum_{k} E_{k} \rho E_{k}^{\dagger} \quad \text{s.t.} \quad \sum_{k} E_{k}^{\dagger} E_{k} = I$$

$$\sum_{k} L_{k} L_{k} = 1$$

$$\mathcal{E}^{\text{SuperOp}} = \sum_{k} \overline{E_k} \otimes E_k = \sum_{k} (E_k^{\dagger})^T \otimes E_k$$

Vec trick:

$$C = A X B \Leftrightarrow \mathrm{vec}(C) = (B^T \otimes A) \operatorname{vec}(X)$$

$$ho' = E_k \,
ho \, E_k^\dagger \Leftrightarrow ext{vec}(
ho') = ((E_k^\dagger)^T \otimes E_k) \, ext{vec}(
ho)$$

 $\operatorname{vec}(A)$ is also written as $|A\rangle\!\rangle$ in some literature

Equivalence check of two quantum channels

Ex. 2) Projection onto computational basis (0 or 1)

$$\mathcal{E}^{\text{SuperOp}} = \sum_{k} \overline{E_k} \otimes E_k$$

Ex. 3) Mixture of 50% Pauli I and 50% Pauli Z

$$E_1 = \frac{1}{\sqrt{2}}I = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$E_2 = \frac{1}{\sqrt{2}}Z = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
Kraus SuperOp
$$\frac{1}{2}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Superoperator is a unique representation!

PTM: Pauli Transfer Matrix

PTM is a superoperator with different basis

$$\begin{array}{c} \mathcal{E}^{SuperOp} & \longrightarrow & \mathcal{E}^{PTM} \\ \text{Change of basis } (c \rightarrow \sigma) \end{array}$$

c: Computational basis σ : Pauli basis

 $|0\rangle\langle 0|, |0\rangle\langle 1|, |1\rangle\langle 0|, |1\rangle\langle 1|$ I X Y Z

$$\rho = \begin{bmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{bmatrix} = \rho_{00} |0\rangle\langle 0| + \rho_{01} |0\rangle\langle 1| \cdots \qquad \rho = \frac{1}{2} \left(\mathbf{I} + r_x X + r_y Y + r_z Z \right)$$

$$\rho = \frac{1}{2} \left(I + r_x X + r_y Y + r_z Z \right)$$

Ex) 1-qubit basis change unitary

$$T_{c \to \sigma} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -i & i & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix}$$

- unique channel representation
- 4^N by 4^N matrix

Ex) 1-qubit Pauli channel

SuperOp

$$egin{bmatrix} -p_x-p_y+1 & 0 & 0 \ 0 & -p_x-p_y-2p_z+1 & p_x-p_y \ 0 & p_x-p_y & -p_x-p_y-2p_z+1 \ p_x+p_y & 0 & 0 \ \end{pmatrix}$$

$$\left[egin{array}{c} p_x+p_y & 0 & \ 0 & \ 0_x-p_y+1 \end{array}
ight]$$

SuperOp
$$\begin{bmatrix} -p_x - p_y + 1 & 0 & 0 & p_x + p_y \\ 0 & -p_x - p_y - 2p_z + 1 & p_x - p_y & 0 \\ 0 & p_x - p_y & -p_x - p_y - 2p_z + 1 & 0 \\ p_x + p_y & 0 & 0 & -p_x - p_y + 1 \end{bmatrix} \longrightarrow \begin{bmatrix} I & X & Y & Z \\ I & 0 & 0 & 0 \\ X & Y & 0 & 0 \\ Y & 0 & 1 - 2(p_y + p_z) & 0 \\ 0 & 0 & 1 - 2(p_x + p_z) & 0 \\ 0 & 0 & 0 & 1 - 2(p_x + p_y) \end{bmatrix}$$

PTM of Pauli channel

PTM of Pauli channel is a **diagonal** 4^N by 4^N matrix

Ex) PTM of 1-qubit Pauli error

I X Y Z

I 1 0 0 0

X Y

Y Z

0 1 - 2(
$$p_y + p_z$$
) 0 0

Y Z

0 1 - 2($p_x + p_z$) 0 0

1 - 2($p_x + p_z$) 1 - 2($p_x + p_z$) 1 - 2($p_x + p_y$)

Z X X

Where the origin shift (No shift in Pauli channel)

How much info on Z-axis will be kept (1: Keep $\leftarrow \rightarrow$ 0: Lost)

Ref: PTM of Phase-amplitude damping (PAD) error

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \sqrt{1-a-b} & 0 & 0 \\
0 & 0 & \sqrt{1-a-b} & 0 \\
a(1-2p_1) & 0 & 0 & 1-a
\end{bmatrix}$$

a: amplitude damping parameter,b: phase damping parameter,

 p_1 : excited state population (ratio)

Pauli twirling

Used in the first step of PEA

Pauli Twirling

- 1) Simplify noise: Gate noise → Pauli channel
- 2) Learn noise
- 3) Amplify noise + ZNE

[1] Van Den Berg, E., Minev, Z. K., Kandala, A., & Temme, K. (2023). Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. *Nature physics*, *19*(8), 1116-1121.

- Convert arbitrary error channels into Pauli channels
- PTM with off-diagonal elements → Diagonal PTM

Why Pauli twirling diagonalizes PTM? (1)

Zlatko Minov, A tutorial on tailoring quantum noise - Twirling 101 (https://www.zlatko-minev.com/blog/twirling)

Preparation: PTM of each Pauli gate

Why Pauli twirling diagonalizes PTM? (2)

Zlatko Minov, A tutorial on tailoring quantum noise - Twirling 101 (https://www.zlatko-minev.com/blog/twirling)

PTM of each Pauli gate

Each Pauli pair works as a "mask" of error channel Λ (in terms of PTM)

References (Further reading)

- Introduction to Quantum Noise Part 1 & 2 | Qiskit Global Summer School 2023
 Zlatko Minov
 - https://www.youtube.com/watch?v=3Ka11boCm1M
 - https://www.youtube.com/watch?v=gsKOx40gCUU
- Tensor networks and graphical calculus for open quantum systems Christopher J. Wood, Jacob D. Biamonte, David G. Cory
 - https://arxiv.org/abs/1111.6950
- A tutorial on tailoring quantum noise Twirling 101 Zlatko Minov
 - https://www.zlatko-minev.com/blog/twirling
- Exploring Quantum Channels | Understanding Quantum Information & Computation: Lesson 10 John Watrous
 - https://www.youtube.com/watch?v=cMI-xIDSmXI
 New (Posted on June 6)

What you have learnt today

- What is quantum noise/error
- Error mitigation techniques
 - TREX (Twirled Readout Error eXtinction)
 - ZNE (Zero Noise Extrapolation)
 - PEA (Probabilistic Error Amplification)
- Formalism of quantum errors
 - Quantum channel
 - Standard error channels, e.g. Pauli error channel
 - PTM (Pauli Transfer Matrix) representation

Thank you

© 2024 International Business Machines Corporation