Hecke algebras for p-adic groups

Albert Lopez Bruch

5 September, 2025

Setup: Let F be a non-archimedean local field with residue field \mathbb{F}_q (think of F as a finite extension of \mathbb{Q}_p), and let G be a connected reductive group over F.

Setup: Let F be a non-archimedean local field with residue field \mathbb{F}_q (think of F as a finite extension of \mathbb{Q}_p), and let G be a connected reductive group over F.

For example, think of G as $GL_n(F)$, $SL_n(F)$, $Sp_{2n}(F)$..., but also as an exceptional group such as $G_2(F)$.

Setup: Let F be a non-archimedean local field with residue field \mathbb{F}_q (think of F as a finite extension of \mathbb{Q}_p), and let G be a connected reductive group over F.

For example, think of G as $GL_n(F)$, $SL_n(F)$, $Sp_{2n}(F)$..., but also as an exceptional group such as $G_2(F)$.

We will denote by Rep(G) the category of smooth admissible complex representations of G.

Setup: Let F be a non-archimedean local field with residue field \mathbb{F}_q (think of F as a finite extension of \mathbb{Q}_p), and let G be a connected reductive group over F.

For example, think of G as $GL_n(F)$, $SL_n(F)$, $Sp_{2n}(F)$..., but also as an exceptional group such as $G_2(F)$.

We will denote by Rep(G) the category of smooth admissible complex representations of G.

Fact (supercuspidal representations as building blocks)

For any irreducible object (π, V) in $\operatorname{Rep}(G)$, there is some parabolic subgroup $P \subseteq G$ with Levi subgroup M and supercuspidal representation σ of M such that $\pi \hookrightarrow \operatorname{Ind}_P^G \sigma$.

Theorem (Bernstein)

There is a direct product decomposition

$$\operatorname{Rep}(G) \cong \prod_{[M,\sigma] \in \mathfrak{J}(G)} \operatorname{Rep}(G)_{[M,\sigma]}$$

into full indecomposable categories $\operatorname{Rep}(G)_{[M,\sigma]}$ known as Bernstein blocks.

Theorem (Bernstein)

There is a direct product decomposition

$$\operatorname{Rep}(G) \cong \prod_{[M,\sigma] \in \mathfrak{J}(G)} \operatorname{Rep}(G)_{[M,\sigma]}$$

into full indecomposable categories $\operatorname{Rep}(G)_{[M,\sigma]}$ known as Bernstein blocks. The product ranges over conjugacy classes of pairs (M,σ) , denoted by $[M,\sigma] \in \mathfrak{J}(G)$.

Theorem (Bernstein)

There is a direct product decomposition

$$\operatorname{Rep}(G) \cong \prod_{[M,\sigma] \in \mathfrak{J}(G)} \operatorname{Rep}(G)_{[M,\sigma]}$$

into full indecomposable categories $\operatorname{Rep}(G)_{[M,\sigma]}$ known as Bernstein blocks. The product ranges over conjugacy classes of pairs (M,σ) , denoted by $[M,\sigma] \in \mathfrak{J}(G)$.

Example: Rep(G)_[T,1] is the *principal block*.

Theorem (Bernstein)

There is a direct product decomposition

$$\operatorname{Rep}(G) \cong \prod_{[M,\sigma] \in \mathfrak{J}(G)} \operatorname{Rep}(G)_{[M,\sigma]}$$

into full indecomposable categories $\operatorname{Rep}(G)_{[M,\sigma]}$ known as Bernstein blocks. The product ranges over conjugacy classes of pairs (M,σ) , denoted by $[M,\sigma] \in \mathfrak{J}(G)$.

Example: Rep(G)_[T,1] is the *principal block*.

Upshot: We study the irreducible objects $Irr(G)_{[M,\sigma]}$ of each block individually, and the extensions between them.

Hecke Algebras

Consider a pair (K, ρ) where

- K is a compact open subgroup of G.
- (ρ, W) is a smooth irreducible representation of K.

Hecke Algebras

Consider a pair (K, ρ) where

- K is a compact open subgroup of G.
- (ρ, W) is a smooth irreducible representation of K.

For such a pair, we construct the associated Hecke algebra

$$\mathcal{H}(G,K,\rho) := \operatorname{End}_{G}(\operatorname{ind}_{K}^{G}\rho)$$

Hecke Algebras

Consider a pair (K, ρ) where

- K is a compact open subgroup of G.
- (ρ, W) is a smooth irreducible representation of K.

For such a pair, we construct the associated Hecke algebra

$$\mathcal{H}(G,K,\rho) := \operatorname{End}_G(\operatorname{ind}_K^G \rho)$$

Example: If $\rho = \mathbf{1}$ is the trivial character, then

$$\mathcal{H}(G,K,\rho)=C_c(K\backslash G/K)$$

is the space of locally constant, compactly supported and K-invariant complex functions on G, equipped with the convolution product.

To study each block using Hecke algebras, we use the theory of types introduced by Bushnell-Kutzko.

To study each block using Hecke algebras, we use the theory of types introduced by Bushnell-Kutzko.

Theorem (Kim, Yu, Fintzen, Kaletha, Spice)

Under mild conditions, one can associate to any $[M, \sigma] \in \mathfrak{J}(G)$ a pair (K, ρ) (called a $[M, \sigma]$ -type) such that there is an equivalence of categories

$$\operatorname{Rep}(G)_{[M,\sigma]} \cong \operatorname{right} \mathcal{H}(G,K,\rho) - \operatorname{modules}.$$

To study each block using Hecke algebras, we use the theory of types introduced by Bushnell-Kutzko.

Theorem (Kim, Yu, Fintzen, Kaletha, Spice)

Under mild conditions, one can associate to any $[M, \sigma] \in \mathfrak{J}(G)$ a pair (K, ρ) (called a $[M, \sigma]$ -type) such that there is an equivalence of categories

$$\operatorname{Rep}(G)_{[M,\sigma]} \cong \operatorname{right} \mathcal{H}(G,K,
ho) - \operatorname{modules}.$$

Example: The pair (I, 1) is a [T, 1]-type.

To study each block using Hecke algebras, we use the theory of types introduced by Bushnell-Kutzko.

Theorem (Kim, Yu, Fintzen, Kaletha, Spice)

Under mild conditions, one can associate to any $[M, \sigma] \in \mathfrak{J}(G)$ a pair (K, ρ) (called a $[M, \sigma]$ -type) such that there is an equivalence of categories

$$\operatorname{Rep}(G)_{[M,\sigma]} \cong \operatorname{right} \mathcal{H}(G,K,\rho) - \operatorname{modules}.$$

Example: The pair (I, 1) is a [T, 1]-type. Thus,

$$\operatorname{Rep}(G)_{[T,1]} \cong \operatorname{right} C_c(I \setminus G/I) - \operatorname{modules}$$

 $\cong \{(\pi, V) \in \operatorname{Rep}(G) : V \text{ is generated by } V^I\}$

To study each block using Hecke algebras, we use the theory of types introduced by Bushnell-Kutzko.

Theorem (Kim, Yu, Fintzen, Kaletha, Spice)

Under mild conditions, one can associate to any $[M, \sigma] \in \mathfrak{J}(G)$ a pair (K, ρ) (called a $[M, \sigma]$ -type) such that there is an equivalence of categories

$$\operatorname{Rep}(G)_{[M,\sigma]} \cong \operatorname{right} \mathcal{H}(G,K,\rho) - \operatorname{modules}.$$

Example: The pair (I, 1) is a [T, 1]-type. Thus,

$$\operatorname{Rep}(G)_{[T,1]} \cong \operatorname{right} C_c(I \setminus G/I) - \operatorname{modules}$$

 $\cong \{(\pi, V) \in \operatorname{Rep}(G) : V \text{ is generated by } V^I\}$

Main idea: Hecke algebras reduce infinite dimensional problems to finite-dimensional ones.

All these results are useful if we

All these results are useful if we

understand structure of Hecke algebras,

All these results are useful if we

- understand structure of Hecke algebras,
- describe their irreducible modules.

All these results are useful if we

- understand structure of Hecke algebras,
- describe their irreducible modules.

Example: Suppose that G is simple and that $\pi \in Irr(G)$ is supercuspidal of depth-zero.

All these results are useful if we

- understand structure of Hecke algebras,
- describe their irreducible modules.

Example: Suppose that G is simple and that $\pi \in \operatorname{Irr}(G)$ is supercuspidal of depth-zero. Then $\pi = \operatorname{ind}_K^G \rho$ for some pair (K, ρ) , and this is a $[G, \pi]$ -type!

All these results are useful if we

- understand structure of Hecke algebras,
- describe their irreducible modules.

Example: Suppose that G is simple and that $\pi \in \operatorname{Irr}(G)$ is supercuspidal of depth-zero. Then $\pi = \operatorname{ind}_K^G \rho$ for some pair (K, ρ) , and this is a $[G, \pi]$ -type! Thus,

$$\mathcal{H}(G, K, \rho) = \operatorname{End}_G(\pi) = \mathbb{C},$$

All these results are useful if we

- understand structure of Hecke algebras,
- describe their irreducible modules.

Example: Suppose that G is simple and that $\pi \in \operatorname{Irr}(G)$ is supercuspidal of depth-zero. Then $\pi = \operatorname{ind}_K^G \rho$ for some pair (K, ρ) , and this is a $[G, \pi]$ -type! Thus,

$$\mathcal{H}(G, K, \rho) = \operatorname{End}_{G}(\pi) = \mathbb{C},$$

so π is the only irreducible element of $\operatorname{Rep}(G)_{[G,\pi]}$, and it has no nontrivial extensions!

Let G be a semisimple split adjoint group (e.g. $G = \operatorname{PGL}_n(F)$) with maximal torus T.

Let G be a semisimple split adjoint group (e.g. $G = \operatorname{PGL}_n(F)$) with maximal torus T. Associated to G, there is the extended affine Weyl group $\widetilde{W} = N_G(T)(F)/T(\mathcal{O}_F)$ with the properties:

1 There is a canonical \mathbb{C} -basis $\{T_w : w \in W\}$ of $\mathcal{H}(G, I, \mathbf{1})$.

- **1** There is a canonical \mathbb{C} -basis $\{T_w : w \in \widetilde{W}\}$ of $\mathcal{H}(G, I, \mathbf{1})$.
- ② There is a semidirect product $W = W_{\rm aff} \rtimes \Omega$ with Ω finite group and $(W_{\rm aff}, S_{\rm aff})$ an affine Coxeter group.

- **1** There is a canonical \mathbb{C} -basis $\{T_w : w \in \widetilde{W}\}$ of $\mathcal{H}(G, I, \mathbf{1})$.
- ② There is a semidirect product $\widetilde{W} = W_{\rm aff} \rtimes \Omega$ with Ω finite group and $(W_{\rm aff}, S_{\rm aff})$ an affine Coxeter group.
- ullet This decomposition induces an isomorphism of \mathbb{C} -algebras

$$\mathcal{H}(G, I, \mathbf{1}) = \mathcal{H}(W_{\mathrm{aff}}, S_{\mathrm{aff}}, q) \ \tilde{\otimes} \ \mathbb{C}[\Omega].$$

- **1** There is a canonical \mathbb{C} -basis $\{T_w : w \in \widetilde{W}\}$ of $\mathcal{H}(G, I, \mathbf{1})$.
- ② There is a semidirect product $\widetilde{W} = W_{\mathrm{aff}} \rtimes \Omega$ with Ω finite group and $(W_{\mathrm{aff}}, S_{\mathrm{aff}})$ an affine Coxeter group.
- ullet This decomposition induces an isomorphism of \mathbb{C} -algebras

$$\mathcal{H}(G, I, \mathbf{1}) = \mathcal{H}(W_{\mathrm{aff}}, S_{\mathrm{aff}}, q) \ \tilde{\otimes} \ \mathbb{C}[\Omega].$$

- $m{0}$ $\mathcal{H}(W_{\mathrm{aff}}, S_{\mathrm{aff}}, q)$ has basis $\{T_w : w \in W_{\mathrm{aff}}\}$ and relations
 - $T_{w_1}T_{w_2} = T_{w_1w_2}$ if $I(w_1w_2) = I(w_1) + I(w_2)$,
 - $T_s^2 = (q-1)T_s + qT_1$ if $s \in S_{aff}$.

Similar results hold for general types (K, ρ) .

Similar results hold for general types (K, ρ) .

• There is a group $W(\rho)$ and a canonical \mathbb{C} -basis $\{T_w : w \in W(\rho)\}$ of $\mathcal{H}(G, K, \rho)$.

Similar results hold for general types (K, ρ) .

- There is a group $W(\rho)$ and a canonical \mathbb{C} -basis $\{T_w : w \in W(\rho)\}\$ of $\mathcal{H}(G, K, \rho)$.
- ② There is a semidirect product $W(\rho) = W(\rho)_{\mathrm{aff}} \rtimes \Omega(\rho)$ with $(W(\rho)_{\mathrm{aff}}, S(\rho)_{\mathrm{aff}})$ an affine Coxeter group.

Similar results hold for general types (K, ρ) .

- There is a group $W(\rho)$ and a canonical \mathbb{C} -basis $\{T_w : w \in W(\rho)\}\$ of $\mathcal{H}(G, K, \rho)$.
- ② There is a semidirect product $W(\rho) = W(\rho)_{\mathrm{aff}} \rtimes \Omega(\rho)$ with $(W(\rho)_{\mathrm{aff}}, S(\rho)_{\mathrm{aff}})$ an affine Coxeter group.
- $oldsymbol{\circ}$ This decomposition induces an isomorphism of $\mathbb{C} ext{-algebras}$

$$\mathcal{H}(G, K, \rho) = \mathcal{H}(W_{\mathrm{aff}}(\rho), S_{\mathrm{aff}}(\rho), q) \ \tilde{\otimes} \ \mathbb{C}[\Omega],$$

where $q:S(
ho)_{\mathrm{aff}} o \mathbb{Q}_{>1}$ is a parameter function.

Similar results hold for general types (K, ρ) .

- There is a group $W(\rho)$ and a canonical \mathbb{C} -basis $\{T_w : w \in W(\rho)\}\$ of $\mathcal{H}(G, K, \rho)$.
- ② There is a semidirect product $W(\rho) = W(\rho)_{\mathrm{aff}} \rtimes \Omega(\rho)$ with $(W(\rho)_{\mathrm{aff}}, S(\rho)_{\mathrm{aff}})$ an affine Coxeter group.
- $oldsymbol{\circ}$ This decomposition induces an isomorphism of $\mathbb{C} ext{-algebras}$

$$\mathcal{H}(G, K, \rho) = \mathcal{H}(W_{\mathrm{aff}}(\rho), S_{\mathrm{aff}}(\rho), q) \ \tilde{\otimes} \ \mathbb{C}[\Omega],$$

where $q:S(
ho)_{\mathrm{aff}} o \mathbb{Q}_{>1}$ is a parameter function.

Open problem: Determine the parameter function $q: S(\rho)_{\mathrm{aff}} \to \mathbb{Q}_{>1}$ in the modular representation setting.

For simplicity, we assume now that $G = GL_n(F)$.

For simplicity, we assume now that $G = \operatorname{GL}_n(F)$. The work of Kazhdan–Lusztig gives a complete classification of the irreducible modules of $\mathcal{H}_n = \mathcal{H}(\operatorname{GL}_n(F),I,\mathbf{1}) = C_c(I \setminus \operatorname{GL}_n(F)/I)$:

For simplicity, we assume now that $G = \operatorname{GL}_n(F)$. The work of Kazhdan–Lusztig gives a complete classification of the irreducible modules of $\mathcal{H}_n = \mathcal{H}(\operatorname{GL}_n(F), I, \mathbf{1}) = C_c(I \setminus \operatorname{GL}_n(F)/I)$:

• For each $x \in \mathrm{GL}_n(\mathbb{C}) = G^{\vee}(\mathbb{C})$, we construct a canonical \mathcal{H}_n -representation V_x using Borel–Moore homology.

For simplicity, we assume now that $G = \operatorname{GL}_n(F)$. The work of Kazhdan–Lusztig gives a complete classification of the irreducible modules of $\mathcal{H}_n = \mathcal{H}(\operatorname{GL}_n(F), I, \mathbf{1}) = C_c(I \setminus \operatorname{GL}_n(F)/I)$:

- For each $x \in \mathrm{GL}_n(\mathbb{C}) = G^{\vee}(\mathbb{C})$, we construct a canonical \mathcal{H}_n -representation V_x using Borel–Moore homology.
- This representation has one unique irreducible subquotient, say π_x , depending only on the conjugacy class of $x \in GL_n(\mathbb{C})$.

For simplicity, we assume now that $G = \operatorname{GL}_n(F)$. The work of Kazhdan–Lusztig gives a complete classification of the irreducible modules of $\mathcal{H}_n = \mathcal{H}(\operatorname{GL}_n(F), I, \mathbf{1}) = C_c(I \setminus \operatorname{GL}_n(F)/I)$:

- For each $x \in \mathrm{GL}_n(\mathbb{C}) = G^{\vee}(\mathbb{C})$, we construct a canonical \mathcal{H}_n -representation V_x using Borel–Moore homology.
- This representation has one unique irreducible subquotient, say π_x , depending only on the conjugacy class of $x \in GL_n(\mathbb{C})$.
- All irreducible \mathcal{H}_n -modules arise this way.

For simplicity, we assume now that $G = GL_n(F)$. The work of Kazhdan–Lusztig gives a complete classification of the irreducible modules of $\mathcal{H}_n = \mathcal{H}(GL_n(F), I, \mathbf{1}) = C_c(I \backslash GL_n(F)/I)$:

- For each $x \in \mathrm{GL}_n(\mathbb{C}) = G^{\vee}(\mathbb{C})$, we construct a canonical \mathcal{H}_n -representation V_x using Borel–Moore homology.
- This representation has one unique irreducible subquotient, say π_x , depending only on the conjugacy class of $x \in GL_n(\mathbb{C})$.
- All irreducible \mathcal{H}_n -modules arise this way.
- Conjugacy classes of $\mathrm{GL}_n(\mathbb{C})$ are in bijection with unramified Langlands parameters $\varphi:W_F\times\mathrm{SL}_2(\mathbb{C})\to\mathrm{GL}_n(\mathbb{C})$ (trivial on $\mathcal{I}_F\times\{1\}$) up to $\mathrm{GL}_n(\mathbb{C})$ -conjugacy.

For simplicity, we assume now that $G = \operatorname{GL}_n(F)$. The work of Kazhdan–Lusztig gives a complete classification of the irreducible modules of $\mathcal{H}_n = \mathcal{H}(\operatorname{GL}_n(F), I, \mathbf{1}) = C_c(I \setminus \operatorname{GL}_n(F)/I)$:

- For each $x \in \mathrm{GL}_n(\mathbb{C}) = G^{\vee}(\mathbb{C})$, we construct a canonical \mathcal{H}_n -representation V_x using Borel–Moore homology.
- This representation has one unique irreducible subquotient, say π_x , depending only on the conjugacy class of $x \in GL_n(\mathbb{C})$.
- All irreducible \mathcal{H}_n -modules arise this way.
- Conjugacy classes of $\operatorname{GL}_n(\mathbb C)$ are in bijection with unramified Langlands parameters $\varphi:W_F\times\operatorname{SL}_2(\mathbb C)\to\operatorname{GL}_n(\mathbb C)$ (trivial on $\mathcal I_F\times\{1\}$) up to $\operatorname{GL}_n(\mathbb C)$ -conjugacy.

This is precisely the statement of the Unramified LLC for $GL_n(F)$!

Thank you for listening!