

Распределенные системы хранения и обработки данных

Владислав Белогрудов, ЕМС

vlad.belogrudov@gmail.com

Лекция 3

Защита данных с помощью RAID

Содержание лекции

- Методы и техники
- Типы
- Производительность
- Сравнение и области применения

Немного истории

- 1987(8) David A. Patterson, Garth Gibson, and Randy H.
 Katz: A Case for Redundant Arrays of Inexpensive Disks (RAID)
 - «кризис производительности»
 - среднее время безотказной работы (MTBF)
 - избыточный массив недорогих дисков

$$MTTF of a Disk Array = \frac{MTTF of a Single Disk}{Number of Disks in the Array} MIPS = 2 Year-1984$$

$$MAD = 10^{(Year-1971)/10}$$

Redundant Array of Independent Disks

- Техника комбинирования физических дисков в логические диски
- Улучшение доступности и производительности за счет:
 - распределения
 - зеркалирования
 - контроля четности
- Реализации:
 - программная
 - аппаратная (контроллер или внешнее устройство)

Компоненты RAID-массива

Техники RAID - Распределение

Распределение - Термины

- Strip (стрип, полоса) блок данных со смежной адресацией
- Stripe (страйп, дорожка) группа полос, охватывающая все диски
- Объем полосы или глубина дорожки кол-во блоков в полосе на одном диске
- Объем дорожки суммарный объем полос
- Ширина дорожки кол-во полос в дорожке

Распределение – преимущества и недостатки

- Данные записываются по частям на разные диски – IOPS увеличивается пропорционально количеству дисков
- Выход из строя одного диска уничтожает данные на всех остальных

Texники RAID - Зеркалирование

Зеркалирование – преимущества и недостатки

- При выходе из строя одного диска данные остаются целыми на втором
- Поврежденный диск меняется, новый диск получает копию с уцелевшего (без участия хоста)
- Улучшает чтение, замедляет запись
- Не заменяет резервных копий
- Больше дисков (2x, 3x)

Texники RAID - Контроль четности

Контроль четности

- Обеспечивает полную защиту от сбоя без дублирования
- XOR функция четности
- Стоимость защиты гораздо ниже из 5 дисков – 4 для данных, 1 для контрольных сумм
- Медленная запись перерасчет контрольных значений
- Хорошая скорость чтения

Уровни RAID

Уровни	Описание	
RAID 0	Распределенный массив без отказоустойчивости	
RAID 1	Зеркалирование диска	
RAID 3	Параллельный (синхронный) доступ с диском контроля четности	
RAID 4	Распределенный массив с независимыми дисками и с диском контроля четности	
RAID 5	Распределенный массив с независимыми дисками и с распределенным контролем четности	
RAID 6	Распределенный массив с независимыми дисками и с двойным распределенным контролем четности	
Вложенные	Комбинация уровней, 1+0, 5+1,	

"Mission critical" apps, данные на дисках копируются 1:1

RAID 0+1

RAID 0+1, потеря диска

RAID 1+0

Сегментированное зеркало

RAID 1+0, потеря диска

RAID 0+1, 1+0 - сравнение

RAID 1+0 - применение

- OLTP
- Базы данных
- Центры приема и отправки сообщений
- Приложения с произвольным чтением и записью данных, требовательные к производительности и надежности

- D3 = XOR(D0+D1+D2)
- Запись и чтение целыми дорожками
- Полезный объем = N-1

- RAID-3 + произвольные чтение и запись
- Узкое место диск с контрольными суммами
- Используется в основном в СХД NetApp (в связке с кэшированием и WAFL)

- Две контрольные суммы на дорожку
- Защита данных от поломки двух дисков
- Контрольные суммы
 - горизонтальная + диагональная
 - -Q+P
 - **–** ...

RAID-6, P+Q parity

Эффективность хранения

RAID	Мин. дисков	Эффективность, %
0	2	100
1	2	50
3, 4	3	100 x (N-1) / N
5	3	100 x (N-1) / N
6	4	100 x (N-2) / N
1+0, 0+1	4	50

Производительность RAID

- Ускорение чтения ~ количеству дисков
- Запись медленнее из-за
 - дублирования
 - подсчета контрольной суммы

1.
$$D_p = D_1 + D_2 + D_3 + D_4$$

- 2. $D_4 = new$
- 3. $D_{p \text{ new}} = D_{p \text{ old}} D_{4 \text{ old}} + D_{4 \text{ new}}$

Зависимость IOPS от RAID

Задача: сервер производит 5200 IOPS, из них 60% - чтение. Рассчитать загрузку на диски в случае RAID-1 и RAID-5

- 1. RAID-1: $0.6 \times 5200 + 2 \times 0.4 \times 5200 = 7280$
- 2. RAID-5: $0.6 \times 5200 + 4 \times 0.4 \times 5200 = 11440$
- В RAID-5 необходимо больше дисков, чтобы обеспечить требуемый уровень IO. Его следует использовать в приложениях с малым отношением операций записи к чтению (1:2).

Спасибо!

##