Repérage et Vecteurs

Table des matières

1	Repères et coordonnées	1
2	Translation et vecteurs	3
3	Coordonnées d'un vecteur, base d'un repère	5
4	Somme de deux vecteurs	6

1 Repères et coordonnées

1.1 Repères du plan

Dans le plan, trois points non alignés O, I et J déterminent un repère (O, I, J). Dans ce repère, tout point M du plan est repéré son couple de coordonnées (x; y).

1.2 Trois types de repères

1.2.1 Orthogonal

Définition 1. Si (OI) est perpendiculaire à (OJ) on dit que le repère (O,I,J) est orthogonal.

1.2.2 Orthonormé

Définition 2. Si (OI) est perpendiculaire à (OJ) et que OI = OJ on dit que le repère (O, I, J) est **orthonormé**.

Repérage et Vecteurs Seconde

1.2.3 Quelconque

Définition 3. Sinon, le repère est dit quelconque.

1.2.4 Propriétés communes à tous les repères

Propriété 1.

Dans n'importe quel type de repère $({\cal O},{\cal I},{\cal J})$ on a :

- Les coordonnées : O(0;0), I(1;0) et J(0;1).
- Deux points qui ont les mêmes coordonnées sont confondus.

1.3 Milieu d'un segment

Théorème 2. Dans le repère (O, I, J), soit $A(x_A, y_A)$ et $B(x_B, y_B)$. Le milieu K du segment [AB] a pour coordonnées

$$K\left(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2}\right).$$

Cette formule est valable dans tout type de repère.

Exemple. Soit
$$A(-2;3)$$
 et $B(4;2)$ alors $x_K = \frac{-2+4}{2} = 1$ et $y_K = \frac{3+2}{2} = \frac{5}{2}$.

Remarque. Le milieu K est le « point moyen » de A et B.

Son abscisse est la moyenne des abscisses, son ordonnée est la moyenne des ordonnées.

1.4 Distance en repère orthonormé

Théorème 3. Dans un repère **orthonormé**, soit $A(x_A, y_A)$ et $B(x_B; y_B)$. La **distance** AB est donnée par

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}.$$

Exercice 1. Soit A(1;-2) et B(4;2) démontrer que B appartient au cercle de centre A et de rayon 5. Contrôler le résultat sur une figure.

Solution B appartient au cercle de centre A et de rayon 5 si AB=5.

D'après la propriété, $AB = \sqrt{(4-1)^2 + (2+2)^2} = \sqrt{9+16} = 5$.

Ainsi, B appartient au cercle.

Démonstration. Distance en repère orthonormé

La preuve s'appuie sur le théorème de Pythagore.

Considérons le point $C(x_B;y_A)$. On suppose $x_A \neq x_B$ et $y_A \neq y_B$.

Les axes du repères sont perpendiculaires donc le triangle ABC est **rectangle** en C.

D'après le théorème de Pythagore, $AB^2 = AC^2 + BC^2$

Or $AC=x_B-x_A$ ou x_A-x_B , dans tous les cas $AC^2=(x_A-x_B)^2$ De même $BC^2=(y_B-y_A)^2$. On remplace : $AB^2=(x_A-x_B)^2+(y_B-y_A)^2$

Donc $AB = \sqrt{(x_A - x_B)^2 + (y_B - y_A)^2}$.

On vérifie que la formule reste vraie si $x_A = x_B$ ou si $y_A = y_B$.

2 Translation et vecteurs

Vecteurs du plan

Définition 4. Soient A et B deux points du plan. À tout point C du plan on associe l'unique point D tel que [AD]et [BC] aient le même milieu.

On dit que D est image de C par la translation qui envoie A sur B.

Si C n'est pas aligné avec A et B.

D est l'unique point tel que ABDC soit un parallélogramme.

Si C est aligné avec A et BLe parallélogramme ABDC est aplati.

Remarque. Attention à l'ordre, le parallélogramme est $AB\underline{DC} \neq AB\underline{CD}$! La translation qui envoie A sur B est aussi appelée la translation de vecteur AB. Si $A \neq B$, on représente le vecteur AB par une flèche d'origine A et d'extrémité B. Repérage et Vecteurs Seconde

Visuellement, ce vecteur donne l'idée d'un déplacement : Il en indique

- la direction, celle de la droite (AB),
- le sens, de A vers B,
- et la longueur AB.

2.2 Egalité de deux vecteurs.

Propriété 4. Dire que $\overrightarrow{AB} = \overrightarrow{CD}$ signifie que D est l'image de C par la translation de vecteur \overrightarrow{AB} . Autrement dit

- ullet $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si [AD] et [BC] ont même milieu.
- $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si ABDC est un parallélogramme.

Remarque.

- Visuellement, \overrightarrow{AB} et \overrightarrow{CD} sont égaux s'ils donnent l'idée du même déplacement. Les translation de vecteur \overrightarrow{AB} et de vecteur \overrightarrow{CD} sont identiques.
- Si $\overrightarrow{AB} = \overrightarrow{AC}$ alors B = C.

Propriété 5. Le point I est milieu de [AB] si et seulement si, $\overrightarrow{AK} = \overrightarrow{KB}$.

2.3 Représentant d'un vecteur, vecteur nul, opposé d'un vecteur

Définition 5. Représentant

Le vecteur \overrightarrow{AB} peut être représenté à partir de n'importe quel point. Partant du point C on aura $\overrightarrow{AB} = \overrightarrow{CD}$. On peut le représenter avec une seule lettre $\overrightarrow{u} = \overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF} = \cdots$. On dit que \overrightarrow{AB} est le représentant de \overrightarrow{u} d'origine \overrightarrow{A} , \overrightarrow{EF} celui d'origine E, etc.

Définition 6. Vecteur nul

Si A=B le déplacement de A vers B est considéré comme nul. On note $\overrightarrow{AA}=\overrightarrow{BB}=\overrightarrow{0}=\cdots$

Définition 7. Opposé d'un vecteur

Le vecteur \overrightarrow{BA} et le vecteur \overrightarrow{AB} sont opposés.

On note
$$\overrightarrow{BA} = -\overrightarrow{AB}$$
.

 \overrightarrow{BA} et \overrightarrow{AB} ont la même direction et la même longueur mais des sens opposés.

La translation de vecteur \overrightarrow{BA} est la translation réciproque à celle de vecteurs \overrightarrow{AB} .

2.4 Norme d'un vecteur

Définition 8. La norme du vecteur \overrightarrow{AB} est la longueur AB. On la note $||\overrightarrow{AB}||$.

Propriété 6. Deux vecteurs sont égaux s'ils ont : même direction, même sens et même norme.

Ainsi, $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement și,

 \bullet (AB)//(CD), \bullet \overrightarrow{AB} et \overrightarrow{CD} ont même sens

 \bullet AB = CD

Coordonnées d'un vecteur, base d'un repère

3.1 Coordonnées d'un vecteur

Définition 9. Dans un repère les coordonnées d'un vecteur \overrightarrow{u} sont les coordonnées du point M tel que $\overrightarrow{OM} = \overrightarrow{u}$:

les coordonnées de \overrightarrow{u} . Si M(x,y) on note (

Propriété 7. Dans un repère, si $A(x_A, y_A)$ et $B(x_B, y_B)$, le vecteur \overrightarrow{AB} a pour coordonnées : $\overrightarrow{AB}\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

• Si A(1;3) et B(4,-1) on obtient $\overrightarrow{AB}\left(\begin{array}{c} 4-1\\ 3-(-1) \end{array}\right)$ donc $\overrightarrow{AB}\left(\begin{array}{c} 3\\ 4 \end{array}\right)$. Exemple.

- Dans le repère (O,I,J), on a $\overrightarrow{OI}\left(\begin{array}{c}1\\0\end{array}\right)$ et $\overrightarrow{OJ}\left(\begin{array}{c}0\\1\end{array}\right)$.
 Le vecteur $\overrightarrow{0}$ a pour coordonnées $\left(\begin{array}{c}0\\0\end{array}\right)$.

 $\overrightarrow{Demonstration}$. Les coordonnées de \overrightarrow{AB} sont les coordonnées (x,y) du point M tel que $\overrightarrow{OM} = \overrightarrow{AB}$. Alors [OB] et [AM] ont même milieu.

Repérage et Vecteurs Seconde

Les coordonnées du milieu de [OB] sont $\left(\frac{x_B}{2}, \frac{y_B}{2}\right)$ et celles du milieu de [AM] sont $\left(\frac{x_A+x}{2}, \frac{y_A+y}{2}\right)$. Donc $\frac{x_A+x}{2}=\frac{x_B}{2}$ et $\frac{y_A+y}{2}=\frac{y_B}{2}$. D'où $x=x_B-x_A$ et $y=y_B-y_A$.

Propriété 8. Deux vecteurs du plan sont égaux si, et seulement s'ils ont les mêmes coordonnées dans un repère du plan.

3.2 Base d'un repère

Définition 10. Deux vecteurs \overrightarrow{i} et \overrightarrow{j} forment une base s'ils ne sont pas portés par des droites parallèles.

Remarque. On dira plus tard que deux vecteurs portés par des droites parallèles sont colinéaires.

Définition 11. Base d'un repère

La base du repère (O, I, J) est le couple $(\overrightarrow{i}, \overrightarrow{j})$ où $\overrightarrow{i} = \overrightarrow{OI}$ et $\overrightarrow{j} = \overrightarrow{OJ}$.

Remarque. Comme pour le repères, on distingue trois types de bases :

- base orthogonale quand les vecteurs \overrightarrow{i} et \overrightarrow{j} sont portés par des droites perpendiculaires,
- base orthonormée quand la base est orthogonale et que \overrightarrow{i} et \overrightarrow{j} ont la même norme,
- base quelconque dans tous les autres cas.

Remarque. On note généralement le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

Propriété 9. Coordonnée d'un point dans une base repérée. Si les coordonnées du point M sont (x,y) on a $\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j}$.

4 Somme de deux vecteurs

4.1 Relation de Chasles

Définition 12. En enchaînant la translation de vecteur \overrightarrow{u} et celle du vecteur \overrightarrow{v} on obtient une nouvelle translation. Le vecteur qui lui est associé est appelé la somme des vecteurs \overrightarrow{u} et du vecteur \overrightarrow{v} et est noté $\overrightarrow{u}+\overrightarrow{v}$. L'ordre n'a pas d'importance, autrement dit $\overrightarrow{v}+\overrightarrow{u}=\overrightarrow{u}+\overrightarrow{v}$. On peut enchaîner trois vecteurs et le vecteur qu'on obtient est $\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}$.

Propriété 10. Relation de Chasles.

Pour tous points du plan A,B et $C:\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}.$

4.2 Coordonnées de la somme de deux vecteurs

Propriété 11. Dans un repère du plan, si $\overrightarrow{u} \left(\begin{array}{c} x \\ y \end{array} \right)$ et $\overrightarrow{v} \left(\begin{array}{c} x' \\ y' \end{array} \right)$ alors $\overrightarrow{u} + \overrightarrow{v} \left(\begin{array}{c} x + x' \\ y + y' \end{array} \right)$

4.3 Règle du parallélogramme

Propriété 12. Si \overrightarrow{AB} et \overrightarrow{AC} ont la même origine alors $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$, où D est l'unique point tel que ABDC est un parallélogramme.

4.4 Différence de deux vecteurs

Définition 13. Opposé d'un vecteur

- Le vecteur $-\overrightarrow{v}$ vérifie $\overrightarrow{v}+(-\overrightarrow{v})=\overrightarrow{0}$. La différence $\overrightarrow{u}-\overrightarrow{v}$ est définie par $\overrightarrow{u}+(-\overrightarrow{v})$.

 $\begin{array}{c} \textbf{D\'efinition 14. D\'iff\'erence de deux vecteurs} \\ \text{Dans un rep\`ere du plan, si } \overrightarrow{u} \left(\begin{array}{c} x \\ y \end{array} \right) \text{ et } \overrightarrow{v} \left(\begin{array}{c} x' \\ y' \end{array} \right) \text{ alors } \overrightarrow{u} - \overrightarrow{v} \left(\begin{array}{c} x - x' \\ y - y' \end{array} \right) \end{array}$