연구노트 2025.04

장서현¹

¹SYstems Modeling and Programming Lab at Yonsei University (SYMPLY) 연세대학교 산업공학과 (https://symply.yonsei.ac.kr/)

SYSTEMS MODELING AND PROGRAMMING LAB
DEPARTMENT OF INDUSTRIAL ENGINEERING, YONSEI UNIVERSITY

Background

Individual DER Participation 모델의 한계

• 개별적 DER 포토폴리오 운영의 실질적 한계

Aggregated DER Participation 모델의 한계

- 모델 내에서 pooling의 과정이 추상적으로 이루어지기 때문에, 각 DER 소유자가 어떻게 기여하는지 알 수 없음
- 차후 수익 분배 및 페널티 부담 문제를 고려하면 이를 구체적으로 모델링할 필요가 있음

Solution of Part 2

1. Aggregated level에서 최적화를 진행하되, Aggregated DER Participation 모델이 설명하지 못한 각 개인의 커밋량 및 에너지 거래 내역을 결정해야함

⇒ Settlement Phase의 필요성

2. Settlement Phase를 최적화 과정에서 고려할 수 있도록 수리모델을 확장해야 함

⇒ **수리모델 확장**의 필요성

Settlement Phase

Decision Variables

- d_{ijt}(\$): Amount of surplus energy transferred from individual i to individual j at hour t
- $e_{it}^+(\xi)$: Amount of surplus energy of individual i at hour t after settlement • Aggregation 모델의 $\beta_t^+(\xi)$ 의 역할
- $e_{it}^-(\xi)$: Amount of shortage energy of individual i at hour t after settlement • Aggregation 모델의 $\beta_t^-(\xi)$ 의 역할

Figure 9: Pre-Settlement

Figure 10: Settlement Process

Figure 11: Post-Settlement

Aggregated DER Settlement Model (1/4)

Framework

- (1) First-Stage Decision: 개별 day ahead commitment 양 결정 (x_{it}^{DA})
 - $\alpha_t^{DA} = \sum_{i \in I} x_{it}^{DA} = x_{it}^{DA}$
- (2) Second-Stage Decisions
 - Pre-Settlement: commitment 후에 남는 initial surplus $(y_{it}^+(\xi))$ / shortage $(y_{it}^-(\xi))$ 결정
 - Settlement Phase: DER 사업자들 간 에너지 거래량 $(d_{iit}(\xi))$ 결정
 - Post-Settlement: 에너지 거래 후 settled surplus $(e_{it}^+(\xi))$ / shortage $(e_{it}^-(\xi))$ 결정

Objective Function: Maximize Aggregated Profit

$$\max \sum_{t \in T} \left(P_t^{DA} \sum_{i \in I} x_{it}^{DA} + \mathbb{E} \left[P_t^{RT}(\xi_s) \sum_{i \in I} e_{it}^+(\xi_s) - P_t^{PN} \sum_{i \in I} e_{it}^-(\xi_s) \right] \right)$$
(3a)

(3a) Profit = Day-ahead Commitment Revenue
$$\left(\sum_{t \in \mathcal{T}} \left(P_t^{DA} \sum_{i \in I} x_{it}^{DA}\right)\right)$$

- + Real-time Trading Revenue $\left(\sum_{t \in T} \left(P_t^{RT}(\xi) \sum_{i \in I} e_{it}^+(\xi)\right)\right)$
- Commitment Breach Cost $\left(\sum_{t \in T} \left(P_t^{PN} \sum_{i \in I} e_{it}^-(\xi)\right)\right)$

Aggregated DER Settlement Model (2/4)

Constraints: Pre-Settlement

$$R_{it}(\xi_s) - x_{it}^{DA} = y_{it}^+(\xi_s) - y_{it}^-(\xi_s) \quad \forall i \in I, \forall t \in T$$
 (3b)

$$R_{it}(\xi_s) \ge y_{it}^+(\xi_s) \quad \forall i \in I, \forall t \in T$$
 (3c)

$$y_{it}^{+}(\xi_s) \le M^{y} z_{it}^{y}(\xi_s), \quad y_{it}^{-}(\xi_s) \le M^{y} (1 - z_{it}^{y}(\xi_s)) \quad \forall i \in I, \forall t \in T$$
 (3d)

- (3b) 자신의 residual energy와 commitment 양에 따라 initial surplus/shortage 양이 결정됨
- (3c) 자신이 real-time market에 판매할 수 있는 양은 자신의 residual energy보다 작아야함
- $(3d) y^{+} 와 y^{-}$ 는 동시에 발생할 수 없음

Constraints: Settlement Phase

$$\sum_{j \in I, j \neq i} d_{ijt}(\xi_s) \le y_{it}^+(\xi_s), \quad \sum_{j \in I, j \neq i} d_{jit}(\xi_s) \le y_{it}^-(\xi_s) \quad \forall i \in I, \forall t \in T$$
(3e)

$$d_{iit}(\xi_s) = 0 \quad \forall i \in I, \forall t \in T$$
(3f)

- (3e) 자신이 줄 수 있는 양은 자신의 initial surplus보다 작아야하며, 자신이 받을 수 있는 양은 자신의 initial shortage보다 작아야함
- (3f) 자기 자신과 거래할 수 없음

Aggregated DER Settlement Model (3/4)

Constraints: Post-Settlement

$$e_{it}^{+}(\xi_s) = y_{it}^{+}(\xi_s) - \sum_{j \in I, j \neq i} d_{ijt}(\xi_s) \quad \forall i \in I, \forall t \in T$$
 (3g)

$$e_{it}^{-}(\xi_s) = y_{it}^{-}(\xi_s) - \sum_{j \in I, j \neq i} d_{jit}(\xi_s) \quad \forall i \in I, \forall t \in T$$

$$\tag{3h}$$

(3g) (3h) 개별 DER의 settled surplus/shortage는 에너지 거래 결과에 의해 결정됨

Constraints: Aggregated Market Participation

$$\sum_{i \in I} R_{it}(\xi_s) - \sum_{i \in I} x_{it}^{DA} = \sum_{i \in I} e_{it}^+(\xi_s) - \sum_{i \in I} e_{it}^-(\xi_s) \quad \forall t \in T$$
(3i)

$$\sum_{i \in I} R_{it}(\xi_s) \ge \sum_{i \in I} e_{it}^+(\xi_s) \quad \forall t \in T$$
(3j)

$$\sum_{i \in I} e_{it}^{+}(\xi_{s}) \le M^{e} z_{t}^{e}(\xi_{s}), \quad \sum_{i \in I} e_{it}^{-}(\xi_{s}) \le M^{e} (1 - z_{t}^{e}(\xi_{s})) \quad \forall t \in T$$
(3k)

- (3i) Aggregated residual과 commitment에 의해 aggregator의 surplus/shortage가 결정됨
- (3j) Aggregator가 real-time market에 판매할 수 있는 양은 aggregated surplus보다 작아아함
- (3k) Aggregated level에서의 surplus와 shortage는 동시에 발생할 수 없음

Aggregated DER Settlement Model (4/4)

$$\max \sum_{t \in T} \left(P_t^{DA} \sum_{i \in I} x_{it}^{DA} + \mathbb{E} \left[P_t^{RT}(\xi_s) \sum_{i \in I} e_{it}^+(\xi_s) - P_t^{PN} \sum_{i \in I} e_{it}^-(\xi_s) \right] \right)$$
(3a)

s.t.
$$R_{it}(\xi_s) - x_{it}^{DA} = y_{it}^+(\xi_s) - y_{it}^-(\xi_s) \quad \forall i \in I, \forall t \in T$$
 (3b)

$$R_{it}(\xi_s) \ge y_{it}^+(\xi_s) \quad \forall i \in I, \forall t \in T$$
 (3c)

$$y_{it}^{+}(\xi_{s}) \leq M^{y} z_{it}^{y}(\xi_{s}), \quad y_{it}^{-}(\xi_{s}) \leq M^{y} (1 - z_{it}^{y}(\xi_{s})) \quad \forall i \in I, \forall t \in T$$
 (3d)

$$\sum_{j \in I, j \neq i} d_{ijt}(\xi_{\mathfrak{S}}) \le y_{it}^{+}(\xi_{\mathfrak{S}}), \quad \sum_{j \in I, j \neq i} d_{jit}(\xi_{\mathfrak{S}}) \le y_{it}^{-}(\xi_{\mathfrak{S}}) \quad \forall i \in I, \forall t \in T$$

$$(3e)$$

(3f)

$$d_{iit}(\xi_{\rm S}) = 0 \quad \forall i \in I, \forall t \in T$$

$$e_{it}^{+}(\xi_{s}) = y_{it}^{+}(\xi_{s}) - \sum_{j \in I, j \neq i} d_{ijt}(\xi_{s}) \quad \forall i \in I, \forall t \in T$$
 (3g)

$$e_{it}^{-}(\xi_{s}) = y_{it}^{-}(\xi_{s}) - \sum_{j \in I, j \neq i} d_{jit}(\xi_{s}) \quad \forall i \in I, \forall t \in T$$
 (3h)

$$\sum_{i \in I} R_{it}(\xi_{s}) - \sum_{i \in I} \chi_{it}^{DA} = \sum_{i \in I} e_{it}^{+}(\xi_{s}) - \sum_{i \in I} e_{it}^{-}(\xi_{s}) \quad \forall t \in T$$
(3i)

$$\sum_{i \in I} R_{it}(\xi_S) \ge \sum_{i \in I} e_{it}^+(\xi_S) \quad \forall t \in T$$
(3j)

$$\sum_{i \in I} e_{it}^{+}(\xi_{s}) \le M^{g} z_{t}^{e}(\xi_{s}), \quad \sum_{i \in I} e_{it}^{-}(\xi_{s}) \le M^{e} (1 - z_{t}^{e}(\xi_{s})) \quad \forall t \in T$$
(3k)

$$x_{it}^{DA} \ge 0, y_{it}^{+}(\xi_s) \ge 0, y_{it}^{-}(\xi_s) \ge 0, d_{ijt}(\xi_s) \ge 0, e_{it}^{+}(\xi_s) \ge 0, e_{it}^{-}(\xi_s) \ge 0 \quad \forall i \in I, \forall t \in T, \forall s \in S$$
(31)

$$z_{it}^{V}(\xi_{s}) \in \{0,1\}, z_{t}^{e}(\xi_{s}) \in \{0,1\} \quad \forall i \in I, \forall t \in T, \forall s \in S.$$
(3m)

Illustration of Settlement Model

[10명의 DER 소유자, 15시, 시나리오 10]

Table 5: Pre-Settlement

Agg. Model	α	β^+	β^-
Aggregator	35.64	9.45	0
Set. Model	Х	y ⁺	y-
DER 0	3.53	3.53	0
DER 1	5.23	6.5	0
DER 2	10.1	0	6.83
DER 3	3.05	0.36	0
DER 4	2.42	6.85	0
DER 5	3.39	0	2.96
DER 6	3.71	0	0.57
DER 7	1.86	4.84	0
DER 8	0.87	0	0.87
DER 9	1.4	0	1.4
Aggregator	35.64	22.08	12.62

Table 6: Settlement

i	j	d
0	5	2.13
0	9	1.40
1	5	0.45
1	6	0.57
1	8	0.87
3	2	0.36
4	2	6.47
4	5	0.38

Table 7: Post-Settlement

Table 7. Fost-Settlement				
Agg. Model	β^+	β^-		
Aggregator	9.45	0		
Set. Model	e ⁺	e ⁻		
DER 0	0	0		
DER 1	4.61	0		
DER 2	0	0		
DER 3	0	0		
DER 4	0	0		
DER 5	0	0		
DER 6	0	0		
DER 7	4.84	0		
DER 8	0	0		
DER 9	0	0		
Aggregator	9.45	0		

Part 2: Conclusion

Aggregated level에서 최적화된 시장 참여를 하며, Settlement의 과정을 통해 개별적 DER 의 운영을 구체화할 수 있었음

Fairness Consideration (1/2)

Aggregated DER Settlement Model의 한계점

에너지 거래 방식 및 수익 분배 과정에서 공정성이 보장되어야함

수익분배 측면

- 자동 정산
 - 1. 최적화의 결과(x_{it} , e_{it}^+ , e_{it}^-)대로 각 개인별 수익 계산
- 사후 정산
 - 2. 균등 분배
 - 3. 발전량과 그의 시간별 가격에 따른 가중치 기반 분배
 - 4. 하루 동안의 에너지 거래량에 따른 가중치 기반 분배

Figure 12: Profit Renumeration Approaches

Fairness Consideration (2/2)

통합 포토폴리오 운영 측면

- 시간별 기여도 제약
 - → 각 시간 surplus가 있는 DER 소유자들은 shortage를 분배하여 부담해야 함

- 하루별 기여도 제약
 - → 하루동안 에너지를 준 양과 받은 양은 비슷해야 함

Figure 13: Violation of Hourly Balancing

Figure 14: Violation of Daily Balancing

Future Works

Table 8: Framework for Considering Fairness

Fairness Consideration	Ex-ante (Settlement Mechanism)	Ex-post (Profit Remuneration)
Centralized Control	X	0
Decentralized Control	0 0	X O

- 불확실성 및 공정성을 고려한 모델을 제안 ⇒ 공정성을 어떤 방식으로 보장해야할지 결정
- 공정성의 위반 정도를 risk factor로서 정의해서 risk-aware한 모델을 구성

References I

- [1] 대한민국 정부. 분산에너지 활성화 특별법. https://www.law.go.kr/법령/분산에너지활성화특별법, 2023.
- [2] Pecan Street Inc. Pecan street dataport. https://www.pecanstreet.org/dataport, 2018.
- [3] Patrizia Beraldi, Antonio Violi, Gianluca Carrozzino, and Maria Elena Bruni. A stochastic programming approach for the optimal management of aggregated distributed energy resources. Computers & Operations Research, 96:200–212, 2018.
- [4] Seyedfarzad Sarfarazi, Saeed Mohammadi, Dina Khastieva, Mohammad Reza Hesamzadeh, Valentin Bertsch, and Derek Bunn. An optimal real-time pricing strategy for aggregating distributed generation and battery storage systems in energy communities: A stochastic bilevel optimization approach. International Journal of Electrical Power & Energy Systems, 147:108770, 2023.
- [5] Homa Rashidizadeh-Kermani, Mostafa Vahedipour-Dahraie, Hamid Reza Najafi, Amjad Anvari-Moghaddam, and Josep M Guerrero. A stochastic bi-level scheduling approach for the participation of ev aggregators in competitive electricity markets. *Applied Sciences*, 7(10):1100, 2017.
- [6] Saeed Rahmani Dabbagh and Mohammad Kazem Sheikh-El-Eslami. Risk-based profit allocation to ders integrated with a virtual power plant using cooperative game theory. *Electric Power Systems Research*, 121:368–378, 2015.
- [7] Nian Liu, Xinghuo Yu, Cheng Wang, and Jinjian Wang. Energy sharing management for microgrids with pv prosumers: A stackelberg game approach. *IEEE Transactions on Industrial Informatics*, 13(3):1088–1098, 2017.