Übungen PVK Analysis

MB & LB, Vorlage gemäss SeSc

January 2, 2018

Die Verweise auf Theoreme und Propositionen beziehen sich auf das Skript der Vorlesung, welches Sie *hier* finden können. Die Verweise auf Serien beziehen sich auf das HS 15. Es handelt sich bei dieser Übungssammlung um eine überarbeitete Version der von SeSc zur Verfügung gestellten Vorlage.

1 sup, inf, max, min von Mengen

Aufgabe 1. Berechnen Sie das Supremum (kleinste obere Schranke) der Menge:

$$S := \left\{ \frac{n}{n+1} : n \in \mathbb{N}_0 \right\} = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots \right\}.$$

Was gilt für das Supremum der Menge $M := S \cup \{1\}$?

Aufgabe 2. Es sei $A \subset \mathbb{R}$ und $A \neq \emptyset$, desweiteren definieren wir $-A := \{x \in \mathbb{R} : -x \in A\}$. Entscheiden Sie für jede Aussage, ob sie wahr oder falsch ist.

- i.) A unbeschränkt \iff sup $A = \infty$.
- $ii.) A ist endlich \implies maxA = supA.$
- iii.) $minA \ existiert \Longrightarrow minA = -max(-A).$
- iv.) $sup A \notin A$.

Aufgabe 3. Finden Sie das max, min, sup und inf der folgenden Menge und beweisen Sie ihre Aussage.

$$S := \left\{ \frac{2n+1}{n+1} : n \in \mathbb{N}_{\geq 1} \right\} = \left\{ \frac{3}{2}, \frac{5}{3}, \frac{7}{4}, \frac{9}{5}, \frac{11}{6}, \dots \right\}.$$

Aufgabe 4. Es sei S := (1, 5]. Beweisen Sie, dass inf S = 1.

2 Vollständige Induktion

Aufgabe 5.

i.) Beweisen Sie die Bernoulli-Ungleichung:

$$\forall x > -1$$
, $\forall n \in \mathbb{N} : (1+x)^n \ge 1 + nx$.

mittels Induktion.

ii.) Seien $n \in \mathbb{N}_{\geq 2}$ und $x_1, \ldots, x_n \geq 0$. Zeigen Sie:

$$\prod_{i=1}^{n} (1 + x_i) \ge 1 + \sum_{i=1}^{n} x_i.$$

Aufgabe 6. Zeigen Sie, dass:

$$\frac{4^{2n}-3^n}{13} \in \mathbb{N}.$$

 $f\ddot{u}r \ alle \ n \in \mathbb{N}_{>1}.$

Aufgabe 7.

- i) Zeigen Sie, dass der kleinste, nicht triviale Teiler einer natürlichen Zahl $n \in \mathbb{N}_{\geq 2}$ stets eine Primzahl ist. Hier ist keine vollständige Induktion notwendig, ein Beweis per Widerspruch genügt völlig.
- ii) Zeigen Sie, dass jede natürliche Zahl $n \in \mathbb{N}_{\geq 2}$ als Produkt von Primzahlen in der kanonischen Form $n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k}$, wobei $p_1 < p_2 < \cdots < p_k \in \mathbb{P}$ und $a_1, \ldots, a_k \in \mathbb{N}_0$, geschrieben werden kann. Diese Darstellung ist desweiteren eindeutig, dies muss jedoch nicht gezeigt werden.

Aufgabe 8 (* Trig Heavy). Wir definieren die Chebyshev Polynome für alle $x \in \mathbb{R}$ wie folgt:

$$P_0(x) = 1.$$

$$P_1(x) = x.$$

$$P_{n+1}(x) = xP_n(x) - P_{n-1}(x), \ \ f\ddot{u}r \ n \in \mathbb{N}.$$

Zeigen Sie, dass gilt:

$$P_n(2\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin(\theta)}, \ \theta \in (0,\pi).$$

Aufgabe 9. (*) Sei $n \in \mathbb{N}$ und $a_{jk} \in \mathbb{C}$ für j = 0, ..., n + 1, k = 0, ..., n. Zeigen Sie, dass:

$$\sum_{j=0}^{n+1} \sum_{k=0}^{n} a_{jk} = \sum_{0 \le j \le k \le n} a_{jk} + \sum_{0 \le k < j \le n+1} a_{jk}.$$

3 Folgen

Aufgabe 10. Seien $(x_i)_{i\in\mathbb{N}}\subseteq\mathbb{R}$ und $x\in\mathbb{R}$.

- i.) Zeigen Sie, falls jede Teilfolge $(x_{n_i})_{i\in\mathbb{N}}$ eine Teilfolge $(x_{n_{i_j}})_{j\in\mathbb{N}}$ besitzt, die gegen x konvergiert, dann gilt $\lim_{n\to\infty} x_n = x$.
- ii.) Finden Sie eine Folge $(x_n)_{n\in\mathbb{N}}$ so, dass für jede Teilfolge $(x_{n_i})_{i\in\mathbb{N}}$ eine konvergente Teilfolge $(x_{n_{i_j}})_{j\in\mathbb{N}}$ existiert, aber $(x_n)_{n\in\mathbb{N}}$ nicht konvergiert.

Aufgabe 11. Sei $(z_n)_{n\in\mathbb{N}}\subseteq\mathbb{C}$, $z\in\mathbb{C}$. Entscheiden Sie für jede Aussage, ob sie wahr oder falsch ist.

- i.) $z_n \longrightarrow z \iff Re(z_n) \longrightarrow Re(z) \ und \ Im(z_n) \longrightarrow Im(z).$
- $ii.) |z_n| \longrightarrow |z| \Longrightarrow z_n \longrightarrow z.$
- iii.) $z_n \longrightarrow z \Longrightarrow |z_n| \longrightarrow |z|.$
- iv.) $z_n \in \mathbb{R}$ für alle $n \in \mathbb{N}$ und $z_n \longrightarrow z \Longrightarrow z \in \mathbb{R}$.

Aufgabe 12. Seien $m \in \mathbb{N}_{\geq 1}$, $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}^m$ and $\lambda \in \mathbb{R}$. Entscheiden Sie für jede der folgenden Aufgaben, ob sie wahr oder falsch sind (mit Beweis oder Gegenbeispiel).

- i.) $(\|x_n\|)_{n\in\mathbb{N}}$ konvergiert $\Longrightarrow (x_n)_{n\in\mathbb{N}}$ konvergiert.
- ii.) $(x_n \cdot y_n)_{n \in \mathbb{N}}$ konvergiert $\Longrightarrow (x_n)_{n \in \mathbb{N}}$ konvergiert.
- iii.) $(\lambda x_n)_{n\in\mathbb{N}}$ konvergiert $\Longrightarrow (x_n)_{n\in\mathbb{N}}$ konvergiert.
- iv.) Jede beschränkte Folge konvergiert.

Aufgabe 13. Berechnen Sie die folgenden Grenzwerte:

$$\lim_{n \to \infty} \sup_{n \to \infty} (\sqrt{n^2 + n} - n).$$

$$\lim_{n\to\infty} \left(1 - \frac{5}{n-3}\right)^{(n+\sqrt{n})/2}.$$

iii.)
$$\liminf_{n \to \infty} (-1)^n \frac{\sqrt{n} - 5n^3}{n^3 + n(n+1)(n+2)}.$$

Aufgabe 14. Entscheiden Sie für jede Aussage, ob sie wahr oder falsch ist. Sei $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ mit Häufungspunkt $h\in\mathbb{R}$.

- i.) h ist der Grenzwert von $(a_n)_{n\in\mathbb{N}}$.
- ii.) h ist der einzige Häufungspunkt in $\mathbb{R} \Longrightarrow a_n \longrightarrow h$.
- iii.) $(a_n)_{n\in\mathbb{N}}$ konvergiert $\Longrightarrow a_n \longrightarrow h$.
- iv.) Es existiert eine Teilfolge von $(a_n)_{n\in\mathbb{N}}$, die gegen h konvergiert.
- $v.) \ \forall \ \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N : |a_n h| < \epsilon.$

Aufgabe 15. (\star)

i.) Berechnen Sie alle Häufungspunkte der Folge:

$$a_n = \sin\left(\frac{\pi n}{2}\right) \left(1 + \frac{3}{n}\right)^{n+1}.$$

ii.) Seien $a_i > 0$ für alle i = 1, ..., p. Zeigen Sie, dass:

$$\lim_{n \to \infty} (a_1^n + \dots + a_p^n)^{1/n} = \max_{i=1,\dots,p} a_i.$$

Aufgabe 16. (*) Sei eine reelle Folge $(a_k)_{k\in\mathbb{N}}$ rekursiv definiert durch:

$$a_0 = 1$$
, $a_{k+1} = \sqrt{|a_k|} + \frac{15}{4} \text{ für } k \in \mathbb{N}$.

- i.) Zeigen Sie, dass $(a_k)_{k\in\mathbb{N}}$ konvergiert.
- ii.) Berechnen Sie den Grenzwert von $(a_k)_{k\in\mathbb{N}}$.

Aufgabe 17. (\star)

i.) Berechnen Sie den folgenden Grenzwert:

$$\lim_{n \to \infty} \log \left(\left(\frac{n}{n+1} \right)^n \right).$$

ii.) Berechnen Sie alle Häufungspunkte der komplexen Folge:

$$z_n = (n^4 - n^2 + 2)^{1/n} \sin\left(\frac{\pi n}{2}\right) + i\frac{n+e}{2n+1}(-1)^n.$$

iii.) Zeigen Sie:

$$\lim_{n \to \infty} \left[(n+1) \cos \left(\frac{1}{n+1} \right) - n \cos \left(\frac{1}{n} \right) \right] = 1.$$

Aufgabe 18 (\star) .

- i) Es sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge derart, dass für ihre Inkremente gilt $|a_{n+1}-a_n|\leq 2^{-n}$. Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ eine Cauchy Folge ist. Bedeutet dies, dass $(a_n)_{n\in\mathbb{N}}$ konvergiert? Warum?
- ii) Es sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge, welche rekursiv definiert ist mittels:

$$a_{n+2} = \frac{a_n + a_{n+1}}{2}$$
, für alle $n \in \mathbb{N}$.

Zeigen Sie, dass dies eine Cauchy Folge ist. Verwenden Sie Teil i).

iii) Berechnen Sie den Grenzwert der Folge aus Teil ii).

4 Reihen

Aufgabe 19. Verwenden Sie den Cauchy'schen Verdichtungssatz (Kondensationssatz) um zu zeigen, dass die nachfolgenden Reihen divergieren respektive konvergieren:

i)

$$\sum_{n=1}^{\infty} \frac{1}{n}.$$

ii)

$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

iii)

$$\sum_{n=1}^{\infty} \frac{1}{n^s}, \ wobei \ s > 1.$$

Aufgabe 20. (\star) Bestimmen Sie für die folgenden Reihen, ob sie konvergent und ob sie absolut konvergent sind:

$$\sum_{k>0} \frac{2k}{3k^3+1}.$$

$$\sum_{k>2} \frac{\sin(k\pi/2)}{\log(k)}.$$

$$\sum_{k>1} \frac{2^k k!}{k^k}.$$

Aufgabe 21. (*) Untersuchen Sie die folgenden Reihen auf Konvergenz und absolute Konvergenz:

$$\sum_{n\geq 0} (-1)^n \frac{\sqrt{n}}{n+1}.$$

$$\sum_{n>0} \left(\frac{n+5}{3n-2}\right)^{3n}.$$

$$\sum_{n \ge 0} \frac{\exp(3n\log(n))}{(k!)^2}.$$

Aufgabe 22. (\star) Berechnen Sie

$$\lim_{n \longrightarrow \infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{(n-1) \cdot n} \right).$$

Aufgabe 23.

i) Existiert ein s>0 sodass die nachfolgende Reihe konvergiert?

$$\sum_{n=2}^{\infty} \frac{1}{\log(n)^s}.$$

 $ii) \ \textit{F\"{u}r welche } s \in \mathbb{R} \ \textit{ist die nachfolgende Reihe konvergent?}$

$$\sum_{n=2}^{\infty} \frac{1}{n \log^s(n)}.$$

Aufgabe 24. Zeigen Sie, dass die nachfolgende Reihe konvergiert:

$$\sum_{k=1}^{\infty} \frac{2k^2 + 2k + 3}{6k^5 + 6}.$$

Aufgabe 25. Zeigen Sie, dass die folgende Reihe konvergiert:

$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1}.$$

Aufgabe 26. Bestimmen Sie, ob die nachfolgende Reihe konvergiert:

$$\sum_{n=0}^{\infty} ne^{-n^2}.$$

5 Stetigkeit und Grenzwerte von Funktionen

Aufgabe 27. Zeigen Sie, mit Hilfe der Definition der Stetigkeit, dass die folgende Funktion in x = 1 stetig ist:

$$h: \begin{cases} \mathbb{R} \setminus \{-1\} & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{x^2 + x + 1}{x + 1}. \end{cases}$$

Aufgabe 28. Sind die 3 nachfolgenden Funktionen Lipschitz-stetig?

- $i) \ f:(0,\infty)\longrightarrow \mathbb{R}, \ x\longmapsto \frac{1}{1+x^2}.$
- $ii) \ f:[0,1)\longrightarrow \mathbb{R}, \ x\longmapsto \sqrt{x}$.
- iii) $f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \sin x.$
- iv) Finden Sie eine Funktion, welche gleichmässig stetig, aber nicht Lipschitz-stetig ist.
- v) Finden Sie eine Funktion, die Lipschitz-stetig, aber nicht differenzierbar ist.

Aufgabe 29. Beweisen Sie, falls $f : \mathbb{R} \longrightarrow \mathbb{R}$ stetig und injektiv ist, dann ist f streng monoton.

Aufgabe 30. (*) Sei $f_n:[0,1] \longrightarrow \mathbb{R}$ eine Funktionenfolge und $f:[0,1] \longrightarrow \mathbb{R}$. Entscheiden Sie für jede der folgenden Aussagen, ob sie wahr oder falsch ist.

- i.) Alle f_n sind stetig und $f_n \longrightarrow f$ punktweise $\Longrightarrow f$ ist stetig.
- ii.) Alle f_n sind stetig und $f_n \longrightarrow f$ gleichmässig $\Longrightarrow f$ ist stetig.
- $iii.) \ \textit{Alle } f_n \ \textit{sind differenzierbar } \textit{auf } (0,1) \ \textit{und } f_n \longrightarrow f \ \textit{gleichm\"{assig}} \Longrightarrow f \ \textit{ist differenzierbar } \textit{auf } (0,1).$

Aufgabe 31. Beweisen Sie, falls $f: \mathbb{R} \longrightarrow \mathbb{R}$ stetig und beschränkt ist, dann besitzt f einen Fixpunkt.

Aufgabe 32. (*) Sei $f:(0,1] \longrightarrow \mathbb{R}$ gleichmässig stetig. Zeigen Sie: Es existiert ein $c \in \mathbb{R}$, sodass für jede Folge $(x_n)_{n \in \mathbb{N}}$ in (0,1] mit $x_n \longrightarrow 0$ gilt:

$$f(x_n) \longrightarrow c \quad \text{für } n \longrightarrow \infty.$$

Bemerkung (nicht Teil der Aufgabe): Das bedeutet, dass $\lim_{x\downarrow 0} f(x) = c$.

Aufgabe 33. Berechnen Sie die folgenden Grenzwerte:

$$\lim_{x \to 0} \frac{\sin(ax)}{x}.$$

$$\lim_{x \to \infty} \frac{e^x x^5}{x^x}.$$

iii)
$$\lim_{x \to \infty} (x^2 + 3 - \sqrt{x^4 + 6x^2})x^2.$$

Aufgabe 34. Berechnen Sie die folgenden Grenzwerte (möglicherweise $\pm \infty$):

i)

$$\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right).$$

ii)

$$\lim_{x \to \infty} \frac{2 - \cos x}{x + 3}.$$

iii)

$$\lim_{x \to \infty} \frac{x^2(2 + \sin^2 x)}{x + 100}.$$

iv)

$$\lim_{x \to 0} x^2 e^{\sin^3\left(\frac{1}{x}\right)}.$$

Aufgabe 35. Berechnen Sie die folgenden Grenzwerte:

i)

$$\lim_{x\to 0^+} \left(\sqrt{x^2+1}\right)^{\frac{1}{\sin^2 x}}.$$

ii)

$$\lim_{x \to 0^+} x^{\sqrt{x+4} - 2}.$$

Aufgabe 36. Berechnen Sie den folgenden Grenzwert:

$$\lim_{x \to 0} \frac{1}{x} \int_0^{\tan x} \log(2+t) dt.$$

Aufgabe 37. Berechnen Sie den folgenden Grenzwert. Tipp: Verwenden sie einen Fundamentallimes.

$$\lim_{x \to \infty} \left(\frac{x^2 + 2x}{x^2 - 3x + 2} \right)^{\frac{x^2 + 1}{x - 3}}.$$

6 Potenzreihen

Aufgabe 38. Sei $f: \mathbb{R}_{>-1} \longrightarrow \mathbb{R}$, $f(x) = \log(1+x)$.

- i.) Bestimmen Sie die Taylorreihe von f um $x_0 = 0$. Bestimmen Sie den Konvergenzradius ρ dieser Reihe.
- ii.) Sei $R_2f(x)$ das Restglied des Taylorpolynoms zweiter Ordnung. Zeigen Sie:

$$R_2 f(x) \ge 0, \quad \forall \ 0 \le x < R.$$

iii.) Zeigen Sie für alle n > 1:

$$1 - \left(1 + \frac{1}{n}\right)^{-1} \left(1 + \log\left(1 + \frac{1}{n}\right)\right) \le \frac{1}{2n^2}.$$

Aufgabe 39. Es sei $f_n:[1,\infty)\longrightarrow \mathbb{R},\ f_n(x)=2n\left((2x)^{1/n}-1\right)$.

- i.) Zeigen Sie, dass $(f_n)_{n\in\mathbb{N}}$ punktweise konvergiert und bestimmen Sie den Grenzwert $f:[1,\infty)\longrightarrow\mathbb{R}$. Hinweise: Schreiben Sie $(2x)^{1/n}=\exp{(1/n\cdot\log(2x))}$.
- ii.) Zeigen Sie, dass die Konvergenz auf dem Intervall [1,2] gleichmässig ist.
- iii.) Ist die Konvergenz gleichmässig auf $[1, \infty)$?

Aufgabe 40. (*) Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen in $z \in \mathbb{C}$.

i.)

$$\sum_{m>1} \left(\sum_{j=1}^{m} \frac{1}{j} \right) z^{m}.$$

ii.)

$$\sum_{k>0} 4k^5 3^k z^{k^2}.$$

iii.)

$$\sum_{n>1} \left(5 - \frac{2}{n}\right)^n z^n.$$

iv.)

$$\sum_{n>0} i^{n-1} n^n z^n.$$

v.)

$$\sum_{n>0} \frac{2^n}{n!} z^n.$$

Aufgabe 41. (★) Entscheiden Sie für die folgenden Aussagen, ob sie wahr oder falsch sind:

- i.) Sei $\rho > 0$ der Konvergenzradius von $f(z) = \sum_{n \geq 0} a_n z^n$. Dann ist f auf $\{z \in \mathbb{C} : |z| < \rho\}$ stetig.
- ii.) Sei $\rho > 0$ der Konvergenzradius von $f(z) = \sum_{n \geq 0} a_n z^n$. Dann $p_m(z) = \sum_{n=0}^m a_n z^n \longrightarrow f(z) \text{ gleichm\"{a}ssig auf } \{z \in \mathbb{C} : |z| \leq r\} \text{ f\"{u}r alle } r < \rho.$

Aufgabe 42. Berechnen Sie den folgenden Grenzwert mit Hilfe der Lagrange'schen Fehlerabschätzung:

$$\lim_{x \to 0} \left(\frac{1}{e^x - 1} - \frac{1}{x} \right).$$

7 Differential rechnung

Aufgabe 43. (*) Sei $f : \mathbb{R} \longrightarrow \mathbb{R}$ eine gerade (d.h. f(x) = f(-x) für alle $x \in \mathbb{R}$), differenzierbare Funktion. Zeigen Sie, dass $f' : \mathbb{R} \longrightarrow \mathbb{R}$ eine ungerade Funktion ist, d.h. f'(-x) = -f'(x).

Aufgabe 44. Beweisen Sie die verallgemeinerte Bernoulli-Ungleichung, welche besagt, dass für alle $r \ge 1$, $x \ge 0$ gilt:

$$(1+x)^r \ge 1 + rx.$$

Hint: Betrachten Sie die Funktion $h(x) = (1+x)^r - (1+rx)$.

Aufgabe 45. (*) Sei $f : \mathbb{R} \longrightarrow \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

- i.) Zeigen Sie, dass f auf ganz \mathbb{R} differenzierbar ist und berechnen Sie f'(x) für alle $x \in \mathbb{R}$.
- ii.) Ist f' an der Stelle x = 0 stetig?

Aufgabe 46. Sei $\epsilon > 0$. Wir definieren $f_{\epsilon} : \mathbb{R} \longrightarrow \mathbb{R}, f_{\epsilon}(x) = |x|^{1+\epsilon}$. Zeigen Sie, dass f_{ϵ} auf ganz \mathbb{R} differenzierbar ist.

Aufgabe 47. Bestimmen Sie alle Punkte, in denen:

$$f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = \left\{ \begin{array}{ll} x^2, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{array} \right.$$

- i.) stetig ist.
- ii.) differenzierbar ist.

Aufgabe 48. (\star) Berechnen Sie die Ableitungen f'(x) der folgenden Funktionen:

i.)
$$f(x) = \log\left(\frac{1+\sqrt{1-x^2}}{x}\right) \quad \text{ für } x \in (0,1).$$

$$f(x)=\sqrt{\frac{a+bx}{a-bx}} \quad \text{ für } a,b>0, \text{ für } x\in\left(\frac{-\alpha}{\beta},\frac{\alpha}{\beta}\right).$$

iii.)
$$f(x) = x^{1/3} (1-x)^{2/3} (1+x)^{1/2} \quad \text{für } x \in (0,1).$$

$$f(x) = x^{\sqrt{x}}$$
 für $x > 0$.

v.)
$$f(x) = \log(\tan(x)^{-1/3}) \quad \text{für } x \neq k\frac{\pi}{2}, \ k \in \mathbb{Z}.$$

Aufgabe 49. (*) Seien $f, g: (a, b) \longrightarrow \mathbb{R}$ differenzierbare Funktionen.

- i.) Zeigen Sie, dass in allen Punkten $x \in (a,b)$ mit $f(x) \neq g(x)$ die Funktion $\max(f,g)$ differenzierbar ist.
- ii.) Unter welcher Bedingung ist $\max(f,g)$ differenzierbar in einem Punkt $x \in (a,b)$ mit f(x) = g(x).

Aufgabe 50. Seien $n \in \mathbb{N}_{\geq 1}$, $f \in C^n([0,1],\mathbb{R})$ und $b \in \mathbb{R}$. Seien $0 \leq x_1 < \cdots < x_{n+1} \leq 1$ sodass $f(x_i) = b$ für alle $i \in \{1, \ldots, n+1\}$. Zeigen Sie, es existiert ein $\xi \in (x_1, x_{n+1})$ sodass $f^{(n)}(\xi) = 0$. Hint: Induktion.

Aufgabe 51. Sei K > 0. Wir definieren:

$$f_n: [-K, K] \longrightarrow \mathbb{R}, \ f_n(x) := \begin{cases} \frac{n}{2}x^2 + \frac{1}{2n}, & x \in (-\frac{1}{n}, \frac{1}{n}) \\ |x|, & sonst. \end{cases}$$

- i.) Zeigen Sie, dass $f_n \in C^1([-K, K], \mathbb{R})$.
- ii.) Berechnen Sie den Limes von $(f_n)_{n\in\mathbb{N}\setminus\{0\}}$ in $(C^0([-K,K],\mathbb{R}),\|\cdot\|_{C^0([-K,K],\mathbb{R})})$.
- iii.) Schliessen Sie, dass $(C^1([-K,K],\mathbb{R}), \|\cdot\|_{C^0([-K,K],\mathbb{R})})$ nicht vollständig ist.

Aufgabe 52. (\star)

i.) Berechnen Sie die Ableitungen der folgenden Funktionen:

(a)
$$f(x) = \frac{x^2 - 2x + 1}{3x + 2}, \quad x \in \mathbb{R} \setminus \left\{ -\frac{2}{3} \right\}.$$

(b)
$$g(x) = \log((x + \sin(x))^2), \quad x \in \mathbb{R} \setminus \{0\}.$$

(c)
$$h(x) = x^{\sin(\sqrt{x})}, \quad x > 0.$$

ii.) Finden Sie alle lokalen Extrema der Funktion $f(x) := (1+x)\sqrt{|x|}, \ x \in \mathbb{R}.$

Aufgabe 53. Zeigen Sie, dass die Exponentialabbildung auf \mathbb{R} konvex ist und zeigen Sie $e^x \geq 1 + x$ für alle $x \in \mathbb{R}$.

Aufgabe 54. (*) Zeigen Sie, dass für alle $x, y \in \mathbb{R}$ mit $0 \le y < x$ gilt:

$$ny^{n-1} \le \frac{x^n - y^n}{x - y} \le nx^{n-1}, \quad \forall n \in \mathbb{N} \setminus \{0\}.$$

Aufgabe 55. (★) Entscheiden Sie für jede der folgenden Aussagen, ob Sie wahr oder falsch ist:

- i.) Als Folge in $C^0([0,1],\mathbb{R})$ hat $f_n(x) = x^n$ keine konvergente Teilfolge.
- ii.) Die Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ definiert durch $f(x) = x^2 \cos(1/x)$ für $x \neq 0$ und f(0) = 0 ist in x = 0 differenzierbar.
- iii.) Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ konvex. Dann ist f auf \mathbb{R} differenzierbar.
- iv.) Ist $f:[0,1] \longrightarrow \mathbb{R}$ gleichmässig stetig und auf (0,1) differenzierbar, dann ist f' beschränkt.
- v.) Ist $f:[0,1] \longrightarrow \mathbb{R}$ differenzierbar und es gibt ein $x_0 \in (0,1)$ mit $f'(x_0) = 0$, so hat f in x_0 ein lokales Extremum.

Aufgabe 56. Sei im folgenden $f:[a,b] \longrightarrow \mathbb{R}$ stetig und auf (a,b) differenzierbar.

- i) Verwenden Sie den Satz von Rolle um den Mittelwertsatz zu beweisen.
- ii) Sei f'(x) = 0 für alle $x \in (a,b)$, dann gilt: f(x) ist auf (a,b) konstant.
- iii) Beweisen Sie die folgende Identität

$$\arctan(x) + \arccos(x) = \frac{\pi}{2}.$$

iv) Es gilt f'(x) > 0 für alle $x \in (a,b)$, dann ist f auf (a,b) monoton wachsend.

8 Integrationsrechnung

Aufgabe 57. Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind, begründen Sie Ihre Antwort.

i) Es sei $f:[a,b] \longrightarrow [0,\infty)$. Dann gilt: $\int_a^b f(x) \ dx = 0 \iff f \equiv 0$.

 $ii) \ \ Seien \ f,g:[a,b] \longrightarrow \mathbb{R} \ sodass \ f \leq g. \ \ Dann \ gilt: \ \int_a^b f(x) \ dx \leq \int_a^b f(x) \ dx.$

iii) Sei $f:[a,b] \longrightarrow \mathbb{R}$. Dann impliziert $\int_a^b f(x) \ dx > 0$, dass f > 0.

 $iv) \ \ Sei \ f: [0,\infty) \longrightarrow \mathbb{R}_+ \ \ monoton \ fallend \ mit \int_0^\infty f(x) \ dx < \infty. \ \ Dann \ gilt: \sum_{n=0}^\infty f(n) < \infty.$

Aufgabe 58. Es sei $t \in \mathbb{R}_{>}1$. Berechnen Sie die folgenden Integrale:

i)

$$\int_0^t x^2 (\ln(x))^2 dx.$$

ii)

$$\int_{1}^{3} \frac{2x+3}{x^2+3x+2} \ dx.$$

iii)

$$\int_0^t \sin(3x)\cos(5x) \ dx.$$

iv)

$$\int_{-2}^{3} \frac{56x^7 \cos(\ln(x^8+6))}{x^8+6} \ dx.$$

v)

$$\int_0^3 \frac{\cos(x)}{1 + \cos(x)} \ dx.$$

vi)

$$\int_{-1}^{1} \cos(3x) \sqrt{x^4 + 3x^2 + 4} \ dx.$$

vii)

$$\int_0^1 \frac{1}{\sqrt{x+1} + \sqrt{x+2}} \ dx.$$

viii)

$$\int_0^1 \ln(1+x^2) \ dx.$$

ix)

$$\int_{2}^{4} \frac{x^{4} + x^{3} + x^{2} + 1}{x^{2} + x - 2} dx.$$