Operációs rendszerek BSc

8. Gyak.

2022.03.30.

Készítette:

Szelényi Szabolcs Bsc Mérnökinformatikus hallgató

TYNYS9

1. Adott a következő ütemezési feladat, amit a FCFS, SJF és Round Robin (RR:10ms) ütemezési algoritmus alapján határozza meg következő teljesítmény értékeket, metrikákat (külön-külön táblázatba):

	P1	P2	P3	P4
Érkezés	0	7	11	20
CPU idő	14	8	36	10
Indulás				
Befejezés				
Várakozás				

Külön táblázatba számolja a teljesítmény értékeket!

Algoritmus neve						
CPU kihasználtság						
Körülfordulási idők átlaga						
Várakozási idők átlaga						
Válaszidők átlaga						

FCFS

FCFS	P1	P2	P3	P4		
Érkezés	0	7	11	20		
CPU Idő	14	8	36	10		
Indulás	0	14	22	58		
Befejezés	14	22	58	68		
Várakozás	0	7	11	38		
Algoritmus neve		FC	FS			
CPU kihasználtság		10	0%			
Körülfordulási idők átlaga		3	1			
Várakozási idők átlaga	14					
Válaszidők átlaga	161,5					

SJF

SJF	P1	P2	P3	P4			
Érkezés	0	7	11	20			
CPU Idő	14	8	36	10			
Indulás	0	14	32	22			
Befejezés	14	22	68	32			
Várakozás	0	7	21	2			
Algoritmus neve		S.	JF				
CPU kihasználtság		10	0%				
Körülfordulási idők átlaga		24	1,5				
Várakozási idők átlaga	7,5						
Válaszidők átlaga	163,5						

RR: 10ms

RR: 10ms	P	1	P2	P	3	P4			
Érkezés	0	10	7	11	32	20			
CPU Idő	14	4	8	36	26	10			
Indulás	0	18	10	22	42	32			
Befejezés	14	22	22	32	68	42			
Várakozás	0	8	3	11	10	12			
Algoritmus neve		RR: 1	L0ms						
CPU kihasználtság		144%							
Körülfordulási idők átlaga	17								
Várakozási idők átlaga	7,33333333								
Válaszidők átlaga		114,5							

- 2. Adott négy processz a rendszerbe, melynek a ready sorban a beérkezési sorrendje: A, B, C és D. Minden processz USER módban fut és mindegyik processz futásra kész. Kezdetben mindegyik processz p_uspri = 60. Az A, B, C processz p_nice = 0, a D processz p_nice = 5. Mindegyik processz p_cpu = 0, az óraütés 1 indul, a befejezés legyen 301. óraütés-ig.
 - a.) Határozza meg az ütemezést RR nélkül 301 óraütésig és RR-nal 201 óraütésig különkülön táblázatba!
 - b.) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés előtt/után.
 - c.) Igazolja a számítással a tanultak alapján. A táblázat javasolt formája RR/RR nélkül a következő:

	A pro	ocess	B process		C process		D process		Reschedule	
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_uspri	p_uspri	p_cpu	running before	running after
Starting point	60	0	60	0	60	0	60	0		
1	i	i	i	i	i	i	i	i		
1		1	1	i	ı	ı	1	1		:
					1				i	

RR nélkül 301 óraütésig:

	A pro	ocess	B pro	cess	C pro	ocess	D pro	ocess	Resch	iedule	A,B,C p_nice	0
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	running before	running after	D p_nice	5
Starting point	60	0	60	0	60	0	60	0	Α	Α		
1	60	1	60	0	60	0	60	0	Α	Α	p_uspri:	p_user+p_cpu/2+2*p_nice
2	60	2	60	0	60	0	60	0	Α	Α		
3	60	3	60	0	60	0	60	0	Α	Α	p_cpu	p_cpu/2
99	60	99	60	0	60	0	60	0	Α	Α		
100	65	50	60	0	60	0	60	0	Α	В		
101	65	50	60	1	60	0	60	0	В	В		
199	65	50	60	99	60	0	60	0	В	В		
200	55	25	65	50	60	0	60	0	В	С		
201	55	25	65	50	60	1	60	0	С	С		
299	55	25	65	50	60	99	60	0	С	C		
300	43	12	55	25	65	50	60	0	С	D		
301	43	12	55	25	65	50	60	1	D	D		

RR-nal 201 óraütésig:

	A process B process		C process		D process		Reschedule			
Clock tick	p_uspri	р_сри	p_uspri	р_сри	p_uspri	р_сри	p_uspri	р_сри	running before	running after
Starting point	60	0	60	0	60	0	60	0	А	Α
1	60	1	60	0	60	0	60	0	А	Α
9	60	9	60	0	60	0	60	0	А	Α
10	60	10	60	0	60	0	60	0	А	В
19	60	10	60	9	60	0	60	0	Α	В
20	60	10	60	10	60	0	60	0	В	С
29	60	10	60	10	60	9	60	0	В	С
30	60	10	60	10	60	10	60	0	С	D
39	60	10	60	10	60	10	60	9	С	D
40	60	10	60	10	60	10	60	10	D	Α
50	60	20	60	10	60	10	60	10	Α	В
60	60	20	60	20	60	10	60	10	В	С
70	60	20	60	20	60	20	60	10	С	D
80	60	20	60	20	60	20	60	20	D	Α
90	60	30	60	20	60	20	60	20	А	В
100	67	26	67	26	64	27	67	27	В	С
199	67	46	67	46	64	37	64	46	D	D
200	70	39	70	39	68	31	70	40	D	Α
201	70	40	70	39	68	31	70	40	Α	Α

Minden 100. óraütésnél van ütemezés, illetve korrekciós faktor.

100. óraütésnél a korrekciós faktor:

KF = 2* FK / 2 * FK + 1 = (2 * 3) / (2 * 3 + 1) = 0,85								
A p_cpu = 30 * 0,85 = 26	A p_uspr = 60 + (26 / 4) = 67							
B p_cpu = 30 * 0,85 = 26	B p_uspr = 60 + (26 / 4) = 67							
C p_cpu = 20 * 0,85 = 17	C p_uspr = 60 + (17 / 4) = 64							
D p_cpu = 20 * 0,85 = 17	D p_uspr = 60 + (17 / 4) + 10 = 74							

200. óraütésnél a korrekciós faktor:

KF = 2* FK / 2 * FK + 1 = (2 *	3) / (2 *3 + 1) = 0,85				
A p_cpu = 46 * 0,85 = 39	A p_uspr = 60 + (39 / 4) = 70				
B p_cpu = 46 * 0,85 = 39	B p_uspr = 60 + (39 / 4) = 70				
C p_cpu = 37 * 0,85 = 31	C p_uspr = 60 + (31 / 4) = 68				
D p_cpu = 46 * 0,85 = 40	D p_uspr = 60 + (40 / 4) + 10 = 70				