

Fahrerassistenzsysteme im Kraftfahrzeug

Prof. Dr.-Ing. Markus Lienkamp

Vorlesungsübersicht

01 Einführung	01 Einführung	01 Übung Einführung	
28.04.2022 - Prof. Lienkamp	28.04.2022 - Prof. Lienkamp	28.04.2022 – Hoffmann	
02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I	
05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp	
03 Sensorik / Wahrnehmung II 12.05.2022 – DrIng. Diermeyer	03 Sensorik / Wahrnehmung II 12.05.2022 – DrIng. Diermeyer	03 Übung Sensorik / Wahrnehmung II 12.05.2022 – Schimpe	
04 Sensorik / Wahrnehmung III	04 Sensorik / Wahrnehmung III	04 Übung Sensorik / Wahrnehmung III	
19.05.2022 – Schimpe	19.05.2022 – Schimpe	19.05.2022 – Schimpe	
05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	
06 Übung Funktionslogik / Regelung 09.06.2022 – DrIng. Winkler	06 Funktionale Systemarchitektur 09.06.2022 – Prof. Lienkamp	06 Aktorik 09.06.2022 – Prof. Lienkamp	
07 Deep Learning	07 Deep Learning	07 Übung Deep Learning	
23.06.2022 – Majstorovic	23.06.2022 – Majstorovic	23.06.2022 – Majstorovic	
08 MMI 30.06.2022 – Prof. Bengler	08 MMI 30.06.2022 – Prof. Bengler	08 MMI Übung 30.06.2022 – Prof. Bengler	
09 Controllability	09 Controllability	09 Übung Controllability	
07.07.2022 – Prof. Bengler	07.07.2022 – Prof. Bengler	07.07.2022 – Winkle	
10 Entwicklungsprozess	10 Entwicklungsprozess	10 Übung Entwicklungsprozess	
14.07.2022 – DrIng. Diermeyer	14.07.2022 – DrIng. Diermeyer	14.07.2022 – Hoffmann	
11 Analyse und Bewertung FAS	11 Analyse und Bewertung FAS	11 Übung Analyse und Bewertung FAS	
21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig	
12 Aktuelle und künftige Systeme	12 Aktuelle und künftige Systeme	12 Aktuelle und künftige Systeme	
28.07.2022 – Prof. Lienkamp	28.07.2022 – Prof. Lienkamp	28.07.2022 – Prof. Lienkamp	

Übung Analyse und Bewertung FAS Dr.-Ing. Philip Feig

Agenda

- 1. Wiederholung
- 2. Aufgabe zu Unfallrekonstruktion und Verletzungsrisikofunktionen zur prospektiven Bestimmung von FAS
- 3. Aufgabe zur retrospektiven Analyse von FAS

Szenario mit automatischem Notbremsassistenten

ANB mit Längsregelung

Unfallablaufplan nach ACEA

Differenzierung nach aktiver, passiver und tertiärer Sicherheit

Kommentarfolie

In der Abbildung ist ein Unfallablauf mit seinen einzelnen Phasen schematisch dargestellt. Diese Darstellung wurde vom europäischen Dachverband der Automobilindustrie entwickelt (Association des Constructeurs Europeens d'Automobiles – ACEA).

Demgemäß durchläuft jeder Unfall verschiedene Phasen, beginnend mit der Phase "Normalfahrt", in der der Unfall für den Fahrer zwar noch nicht absehbar ist, jedoch bereits konditionelle Aspekte wie beispielsweise die bisherige Fahrtdauer auf den Fahrer einwirken. Diese Phase endet mit der unfallauslösenden kritischen Situation, die jedem Unfall vorausgeht. Diese kritische Situation kann das zu späte Erkennen eines Bremsmanövers des vorausfahrenden Fahrzeugs oder auch ein auf die Straße rennendes Kind sein. Nach Eintreten dieser Situation folgt die Phase der Gefahr. Diese zwei Phasen treten im täglichen Verkehrsgeschehen relativ häufig auf, ohne dass dies jedes Mal zwingend zu einem Unfall führt. Die kritische Schwelle eines Unfalls wird erst mit dem Erreichen des Zeitpunkts der **Unvermeidbarkeit**, auch bekannt als "point of no return", überschritten. Im Anschluss folgt die Phase vor der Kollision, die je nach Unfall relativ kurz ist. Nach dem Anprall folgt die Phase während der Kollision, die mit dem Stillstand aller Beteiligten in Unfallendlage endet – in dieser Phase entstehen üblicherweise die höchsten Belastungen und damit auch die Verletzungen der Beteiligten. Die **Phase nach der Kollision** betrifft dann eventuelle Rettungsmaßnahmen, beispielsweise die Absetzung eines Notrufs.

Man erkennt, dass sich der ereich von aktiven Sicherheits- und Fahrerassistenzsystemen in den vorkollisionären Phasen 1 bis 3 befindet und mit dem ersten Anprall endet. Je nach Wirkbereich des Systems kann erreicht werden, dass keine kritische Situation mehr entsteht (z. B. das Navigationssystem, das die Ablenkung des Fahrers von der Fahraufgabe minimiert; Adaptive Cruise Control, die für die Einhaltung eines ausreichenden Abstands sorgt) oder die bereits eingetretene kritische Situation entschärft (z. B. ESC) oder aber zumindest die Aufprallenergie reduziert wird, wenn der Zeitpunkt der Unvermeidbarkeit bereits überschritten ist (z. B. Bremsassistent).

Zeitliche Phasen des Unfalls

Zeitlicher Ablauf einer kritischen Situation am Beispiel einer Kurvenfahrt

Analyse und Bewertungsprozess

Beispiel Auffahrunfall

Zebrastreifen U-Bahnstation Garching Forschungszentrum

Unfallrekonstruktion

Rekonstruktion eines Auffahrunfalles

Unfallbeteiligter 01 (blaues Fahrzeug) fährt auf das stehende rote Fahrzeug (02) auf.

Bestimmen Sie den Nutzen eines Notbremsassistenten (AEB), der eine Gefahrenbremsung auslöst, sodass das Fahrzeug noch eine Sekunde vor Kollision maximal verzögert.

Um wie viel niedriger ist die Wahrscheinlichkeit, bei diesem Unfall eine Verletzung zu erleiden?

Angaben

- Beteiligter 01: Fahrzeugmasse $m_{01}=1180~{\rm kg}$ Ausgangsgeschwindigkeit $v_{0_{01}}=50\frac{{\rm km}}{{\rm h}}$
- Beteiligter 02: Fahrzeugmasse $m_{02}=1695~{\rm kg}$ Ausgangsgeschwindigkeit $v_{0_{02}}=0~{\rm \frac{km}{h}}$
- Stoßzahl k = 0.1
- Haftreibungskoeffizient $\mu = 0.8$

Verletzungsrisiko

- Koeffizienten log. Regression
 - Tödlich:

$$\beta_0 = -8$$
 $\beta_1 = 0.075$

Schwerverletzt:

$$\beta_0 = -4.5$$

 $\beta_1 = 0.0725$

Leichtverletzt:

$$\beta_0 = -1.5$$

 $\beta_1 = 0.08$

Verletzungsrisikofunktion

Vorgehen zur Lösung der Fragestellung

Herleitung gerader zentrischer Stoß zweier Scheiben

- Kollisionsgeschwindigkeit $v_{0_{01}} = v_1$ und $v_{0_{02}} = v_2$
- lacktriangle Geschwindigkeit nach Kollision v'_1 und v'_2

Herleitung gerader zentrischer Stoß zweier Scheiben

 Aufstellen des Impulssatzes (y-Richtung und Drehrichtung entfallen):

(1):
$$m_1 \cdot (v'_1 - v_1) = -\int F_X dt = -P_X$$

(2):
$$m_2 \cdot (v'_2 - v_2) = -\int F_X dt = +P_X$$

mit P_X als Impuls.

Addition der beiden Gleichungen ergibt den Impulserhaltungssatz:

(3):
$$m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v_1' + m_2 \cdot v_2'$$

Herleitung gerader zentrischer Stoß zweier Scheiben

- Stoßzahlhypothese nach Newton: Die Stoßziffer k beschreibt das elastisch-plastische Verhalten der Stoßkontrahenten. Der Grenzfall des elastischen Stoßes ist durch k=1, der des plastischen Stoßes durch k=0 gekennzeichnet.
- Durch den Impulssatz allein ist das System unterbestimmt. Zur weiteren Lösung Annahme der Stoßhypothese nach Newton:

(4):
$$k = \frac{P_{\text{Rest}}}{P_{\text{Komp}}} = \frac{\int_{t_u}^{t'} F \, dt}{\int_{t}^{t_u} F \, dt}$$

Der Kompressions- und Restitutionsstoßantrieb lauten:

(5):
$$m_1 \cdot (v_{1u} - v_1) = -P_{\text{Komp}}$$

(5):
$$m_1 \cdot (v_{1u} - v_1) = -P_{\text{Komp}}$$
 (6): $m_1 \cdot (v'_1 - v_{1u}) = -P_{\text{Rest}}$

(7):
$$m_2 \cdot (v_{2u} - v_2) = +P_{\text{Komp}}$$

(7):
$$m_2 \cdot (v_{2u} - v_2) = +P_{\text{Komp}}$$
 (8): $m_2 \cdot (v'_2 - v_{2u}) = +P_{\text{Rest}}$

Herleitung gerader zentrischer Stoß zweier Scheiben

Aus den beiden ersten Gleichungen ergibt sich mit $v_{\rm u}=v_{\rm 1u}=v_{\rm 2u}$ durch Addition die gemeinsame Geschwindigkeit während der größten Annäherung:

(9):
$$v_{\rm u} = \frac{(m_1 \cdot v_1 + m_2 \cdot v_2)}{m_1 + m_2}$$

■ Durch Einsetzen der Teilstoßantriebe (Gl.en 5 bis 9) in Gl. 4 und Elimination der "Umkehrgeschwindigkeit" $v_{\rm u}$ ergibt sich für k die wichtige und anschauliche Form:

(10):
$$k = -\frac{v'_1 - v'_2}{v_1 - v_2} = -\frac{v'_2 - v'_1}{v_2 - v_1}$$

Herleitung gerader zentrischer Stoß zweier Scheiben

 Die gesuchten Auslaufgeschwindigkeiten können jetzt mit Hilfe der Stoßziffer und der Einlaufgeschwindigkeiten ausgedrückt werden:

(11):
$$v'_1 = v_1 - \frac{m_2 \cdot (1+k)}{m_1 + m_2} \cdot (v_1 - v_2)$$

(12): $v'_2 = v_2 + \frac{m_1 \cdot (1+k)}{m_1 + m_2} \cdot (v_1 - v_2)$

• Die Geschwindigkeitsänderungen Δv_1 und Δv_2 errechnen sich zu:

(13):
$$\Delta v_1 = v'_1 - v_1 = -\frac{m_2 \cdot (1+k)}{m_1 + m_2} \cdot (v_1 - v_2)$$

(14): $\Delta v_2 = v'_2 - v_2 = \frac{m_1 \cdot (1+k)}{m_1 + m_2} \cdot (v_1 - v_2)$

d.h. Δv wächst mit

- der Relativgeschwindigkeit $v_{\rm rel} = v_1 v_2$
- dem elastischen Anteil
- der Masse m_2 des Kollisionskontrahenten.

Johannsen 2013, S.108ff

Kommentarfolie

Es ist mit Hinblick auf die Vorzeichen der Ergebnisse (v_1', v_2') unbedingt notwendig, im "Ersatzsystem" einer Stoßkonfiguration (z.B. Folie 10-16) positive Koordinaten (hier x) festzulegen. P_X ist wegen $v_1 > v_2$ positiv, wirkt also wie eingezeichnet. Wäre P_X mit umgekehrtem Vorzeichen so eingezeichnet worden, dass er einem "Zugantrieb" entspricht, wäre das Ergebnis negativ gewesen, d.h. der Pfeil hätte real wiederum in die andere Richtung gezeigt.

Fall 1: ohne aktive Sicherheit

$$\Delta v_1 = v'_1 - v_1 = -\frac{m_2 \cdot (1+k)}{m_1 + m_2} \cdot (v_1 - v_2) =$$

$$= -\frac{1695 \text{ kg} \cdot (1+0,1)}{1180 \text{ kg} + 1695 \text{ kg}} \cdot \left(50 \frac{\text{km}}{\text{h}} - 0\right) =$$

$$= -32,42 \frac{\text{km}}{\text{h}}$$

•
$$v'_1 = v_1 + \Delta v_1 = (50 - 32,42) \frac{\text{km}}{\text{h}} = 17,58 \frac{\text{km}}{\text{h}}$$

$$\Delta v_2 = v'_2 - v_2 = \frac{m_1 \cdot (1+k)}{m_1 + m_2} \cdot (v_1 - v_2) = \frac{1180 \text{ kg} \cdot (1+0,1)}{1180 \text{ kg} + 1695 \text{ kg}} \cdot \left(50 \frac{\text{km}}{\text{h}} - 0\right)$$

$$= 22,57 \frac{\text{km}}{\text{h}}$$

•
$$v'_2 = v_2 + \Delta v_2 = 0 + 22,57 \frac{\text{km}}{\text{h}} = 22,57 \frac{\text{km}}{\text{h}}$$

Fall 1: ohne aktive Sicherheit

- Verletzungsrisiko: $p = \frac{e^z}{1 + e^z}$ $z(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_j x_j \Rightarrow \text{1D-Verletzungsfkt. abh. von } \Delta v$: $p(\Delta v) = \frac{e^{\beta_0 + \beta_1 \cdot \Delta v}}{1 + e^{\beta_0 + \beta_1 \cdot \Delta v}}$
- Für tödliche Verletzungen: $β_0 = -8$ und $β_1 = 0.075$ $⇒ p_{tödlich} \left(32.42 \frac{\text{km}}{\text{h}}\right) = 0.00380 = 0.38\%$ $p_{schwerverletzt} \left(32.42 \frac{\text{km}}{\text{h}}\right) = 10.44\%$ $p_{leichtverletzt} \left(32.42 \frac{\text{km}}{\text{h}}\right) = 74.91\%$

Fall 2: Mit aktiver Sicherheit

max. Verzögerung:

$$F = \mathbf{m} \cdot a = \mu \cdot F_{N} = \mu \cdot \mathbf{m} \cdot g$$

$$a_{\text{max}} = \mu \cdot g = 0.8 \cdot 9.81 \frac{\text{m}}{\text{s}^{2}} = 7.848 \frac{\text{m}}{\text{s}^{2}}$$

Restgeschwindigkeit nach AEB-Bremsung:

$$v(t) = v_0 - a_{\text{max}} \cdot \underbrace{t}_{\text{Verzögerung 1,0 s}} = \frac{50 \text{ m}}{3.6 \text{ s}} - 7.848 \frac{\text{m}}{\text{s}^2} \cdot 1.0 \text{ s} = 6.04 \frac{\text{m}}{\text{s}}$$
$$= 21.747 \frac{\text{km}}{\text{h}}$$

■
$$\Delta v_1 = v'_1 - v_1 = \dots = -\frac{1695 \text{ kg} \cdot 1,1}{2875 \text{ kg}} \cdot \left(21,747 \frac{\text{km}}{\text{h}}\right) = -14,10 \frac{\text{km}}{\text{h}}$$

 $\Rightarrow v'_1 = +7,64 \frac{\text{km}}{\text{h}}$

■
$$\Delta v_2 = v'_2 - v_2 = \dots = +\frac{1180 \text{ kg} \cdot 1.1}{2875 \text{ kg}} \cdot (21,747 - 0) \frac{\text{km}}{\text{h}} = 9.82 \frac{\text{km}}{\text{h}}$$

⇒ $v'_2 = 9.82 \frac{\text{km}}{\text{h}}$

Fall 2: Mit aktiver Sicherheit

Verletzungswahrscheinlichkeiten:

$$p_{\text{leichtverletzt}}\left(14,10\frac{\text{km}}{\text{h}}\right) = 0,4081 = 40,81\%$$
 $p_{\text{schwerverletzt}}\left(14,10\frac{\text{km}}{\text{h}}\right) = 0,02995 = 3,0\%$
 $p_{\text{tödlich}}\left(14,10\frac{\text{km}}{\text{h}}\right) = 0,000964 = 0,096\%$

Vergleich Verletzungswahrscheinlichkeiten mit/ohne aktive Sicherheit

	Ohne FAS	Mit FAS	% Veränderung
Mind. leichte Verletzungen	74,91%	40,81%	-46%
Mind. schwere Verletzungen	10,44%	3,0%	-71%
Tödliche Verletzungen	0,38%	0,096%	-75%

Gegeben sei das Verhältnis aus ESP-relevanten Schadenfällen bezogen auf die Gesamtschäden bei Fahrzeugen mit und ohne ESP-Ausstattung für verschiedene Versicherungssparten.

Schätzen Sie den Nutzen eines ESP anhand der FAS-Relevanzen ab.

Relevante Schadenfälle bei Fahrzeugen mit und ohne ESP-Ausstattung

Odds Ratio

Definition und Beispiel

Gibt das Verhältnis von tatsächlichen und erwarteten relevanten Unfällen für ein bestimmtes FAS an.

$$OR = \frac{\frac{\text{Relevante Unfälle}_{\text{mit FAS}}}{\text{Alle Unfälle}_{\text{ohne FAS}}}}{\frac{\text{Relevante Unfälle}_{\text{ohne FAS}}}{\text{Alle Unfälle}_{\text{ohne FAS}}}$$

$$Nutzen_{FAS} = 1 - OR$$

Beispiel: OR = 1/3

 \downarrow

Ohne FAS wären dreimal so viele FAS-relevante Unfälle erwartet worden wie mit FAS \rightarrow Nutzen_{FAS}= $1 - \frac{1}{3} = 66\%$ VKU, 2015

Lösung

	Alle Unfälle ohne ESP	Alle Unfälle mit ESP	Relevante Unfälle ohne ESP	Relevante Unfälle mit ESP
Haftpflicht- schäden mit Personen- schaden	266	318	266 · 0,03 ≈ 8	318 · 0,015 ≈ 5
Haftpflicht- schäden mit Sachschaden	290	426	290 · 0,015 ≈ 4	426 · 0,01 ≈ 4
Vollkasko- Kollisionen	203	756	203 · 0,085 ≈ 17	756 · 0,015 ≈ 11

Lösung – Haftpflichtschäden mit Personenschaden

$$OR = \frac{\frac{\text{Relevante Unfälle}_{\text{mit FAS}}}{\text{Alle Unfälle}_{\text{ohne FAS}}}}{\frac{5}{\text{Relevante Unfälle}_{\text{ohne FAS}}}} = \frac{\frac{5}{318}}{\frac{8}{266}} \approx 0,52 \approx \frac{1}{2}$$

Ohne ESP wären zweimal so viele ESP-relevante Haftpflichtschäden mit Personenschaden erwartet worden wie mit ESP

Nutzen_{FAS} =
$$1 - OR = 1 - 0.5 = 0.5 = 50\%$$

Lösung – Haftpflichtschäden mit Sachschaden

$$OR = \frac{\frac{\text{Relevante Unfälle}_{\text{mit FAS}}}{\text{Alle Unfälle}_{\text{ohne FAS}}}}{\frac{\text{Relevante Unfälle}_{\text{ohne FAS}}}{\text{Alle Unfälle}_{\text{ohne FAS}}} = \frac{\frac{4}{426}}{\frac{4}{290}} \approx 0,68 \approx \frac{2}{3}$$

Ohne ESP wären 1,5 mal so viele ESP-relevante Haftpflichtschäden mit Sachschaden erwartet worden wie mit ESP

Nutzen_{FAS} =
$$1 - OR = 1 - \frac{2}{3} = \frac{1}{3} = 33\%$$

Lösung – Vollkasko-Kollisionen

$$OR = \frac{\frac{\text{Relevante Unfälle}_{\text{mit FAS}}}{\text{Alle Unfälle}_{\text{ohne FAS}}}}{\frac{\text{Relevante Unfälle}_{\text{ohne FAS}}}{\text{Alle Unfälle}_{\text{ohne FAS}}} = \frac{\frac{11}{756}}{\frac{17}{203}} \approx 0,17 \approx \frac{1}{6}$$

Ohne ESP wären sechsmal so viele ESP-relevante Vollkasko Kollisionen erwartet worden wie mit ESP

Nutzen_{FAS} =
$$1 - OR = 1 - \frac{1}{6} = 0.83 = 83\%$$