Expresiones Regulares Matemáticas Computacionales (TC2020)

M.C. Xavier Sánchez Díaz sax@itesm.mx

Tabla de contenidos

Conceptos básicos de ERs

2 Ejemplos de ERs

Recordemos que un lenguaje es un **conjunto** de palabras aceptadas por un autómata.

Si existe autómata que pueda representar al lenguaje, entonces es un lenguaje regular.

Como es un conjunto, podemos describirlo usando expresiones.

Lenguajes regulares

Conceptos básicos de Expresiones Regulares

Un lenguaje L es regular si y sólo si se cumple al menos una de las condiciones siguientes:

- L es finito.
- L es la unión o concatenación de otros lenguajes regulares R_1 y R_2 : $L=R_1\cup R_2$ o $L=R_1R_2$.
- L es la cerradura de Kleene de algún lenguaje regular: $L = R^*$.

Lenguajes regulares

Conceptos básicos de Expresiones Regulares

El lenguaje en $\{0,1\}$ de las palabras que empiecen con 00 pero que no tengan 11.

$00 \text{ ALGO_NO}(11)$

Hay un patrón regular que podemos modelar usando un AF.

Lenguajes regulares

Conceptos básicos de Expresiones Regulares

El lenguaje L de palabras formadas por a y b, pero que empiezan con a: $aab, ab, a, abaa, \dots$

- $\Sigma = \{a, b\}$
- $L = R_1 R_2$:
 - R_1 = el lenguaje que contiene una a.
 - R_2 = el lenguaje que contiene cadenas cualesquiera de a y b.

$$L = \{a\}\{a, b\}^*$$

Expresiones Regulares

Conceptos básicos de Expresiones Regulares

Una expresión regular es una representación textual de un lenguaje regular.

Definición de Expresiones Regulares

Sea Σ un alfabeto no vacío.

- ^ es una expresión regular.
- Ø es una expresión regular.
- Para cada $\sigma \in \Sigma$, σ es una expresión regular.
- Si R_1 y R_2 son expresiones regulares, entonces $R_1 \cup R_2$ es una expresión regular.
- Si R_1 y R_2 son expresiones regulares, entonces R_1R_2 es una expresión regular.
- ullet Si R es una expresión regular, entonces R^* es una expresión regular.

Operaciones

Conceptos básicos de Expresiones Regulares

Las operaciones disponibles son las mismas que usábamos en autómatas, pero algunas cambian de notación:

- La ER \(\pi \) representa al **lenguaje vacío** \(\{ \} \).
- La **palabra vacía** ε la representamos con la expresión regular $\hat{.}$
- La **unión** se representa usualmente con la ER +.
- La cerradura o estrella de Kleene de un lenguaje regular R sigue representándose con R^*

ERs sintácticamente bien formadas

Ejemplos de ERs

A nivel *implementación*, una ER es una secuencia de ERs que nos dicen **cómo** debería ser el lenguaje descrito por la ER completa:

- 0 es una ER válida que describe al lenguaje $\{0\}$.
- 01^* es una ER válida: La concatenación del lenguaje $\{0\}$ y $\{1\}^*$ —un 0 seguido de cero o más 1s.
- (0+1) es una ER válida: La unión del lenguaje $\{0\}$ y $\{1\}$ —o un 0 o un 1
- $(0+1)^*11$ es una ER válida: o 0 o 1 cero o más veces, seguida de dos 1s.

ERs más complejas

Ejemplos de ERs

Diseñar una ER para el lenguaje de las palabras en $\{0,1\}$ que empiezan y terminan en 01:

- Estructuramos con patrones: $01 \, algo \, 01$
- f 2 Definimos restricciones: algo no tiene restricción alguna, puede ser o 0 o 1, cero o más veces.
- **3** Generamos una ER para el patrón $algo: (0+1)^*$
- 4 Finalmente, concatenamos las ERs para hacer una nueva ER.

$$01(0+1)*01$$