

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MORELOS INSTITUTO DE INVESTIGACIÓN EN CIENCIAS BÁSICAS Y APLICADAS CENTRO DE INVESTIGACIÓN EN CIENCIAS

Clasificación algorítmica en gráficas de tipo \mathbb{D}_n

 $\mathbf{T} \ \mathbf{E} \ \mathbf{S} \ \mathbf{I} \ \mathbf{S}$ para obtener el Grado de LICENCIADO EN CIENCIAS

área terminal en ciencias computacionales y computación científica

Presenta Rey David Gutiérrez Torres

Director de Tesis: Dr.Daniel Rivera López

CUERNAVACA, MORELOS

21 de julio de 2022

Jurado revisor de tesis
Presidente Dra. Larissa Sbitneva,
Universidad Autónoma del Estado de Morelos
Secretario Dr. Rogelio Valdez Delgado,
Universidad Autónoma del Estado de Morelos
Vocal Dr. Antonio Daniel Rivera López,
Universidad Autónoma del Estado de Morelos
Suplente Dr. Jorge Hermosillo Valadez,
Universidad Autónoma del Estado de Morelos
Suplente Dr. Mario Alberto Abarca Sotelo,
Universidad Autónoma del Estado de Morelos

Esta obra está bajo una licencia Creative Commons "Atribución-CompartirIgual 4.0 Internacional".

Contenido

	Lista de símbolos	4
1	Introducción 1.1 FORMAS CUADRÁTICAS	1 1 6
2	Antecedentes 2.1 EL MÉTODO DE LAS INFLACIONES	15 15 24
3	COMPONENTES TRICONEXAS 3.1 DIVIDIR UNA GRÁFICA EN COMPONENTES TRICONEXAS 3.1.1 INTRODUCCIÓN 3.1.2 Gráficas, conectividad y busqueda en profundidad 3.1.3 La idea de el algoritmo de triconectividad 3.2 El algoritmo para encontrar componentes triconexas 3.2.1 Encontrando pares de separación 3.2.2 Encontrando componentes de separación	33 34 41 42 43
4	Clasificación \mathbb{D}_n 4.1 Componentes triconexas en gráficas de tipo \mathbb{D}_n	57
5	Componentes triconexas en un bigrafo \mathbb{D}_n . 5.1 Algoritmo para encontrar componentes triconexas de un bigrafo de tipo \mathbb{D}_n .	63
	Bibliografía	83

LISTA DE SIMOLOS

```
arista solida entre los vértices i y j
               arista punteada entre los vértices i y j
A^{-1}
                matriz inversa de A
U
                unón
                intersección
                negación
                asignación
= \mathbb{Z}
\Theta()
\in A \subseteq B
T_{ij}^{-}
T_{ij}^{+}
E(G)
V(G)
A(v)
                igualdad
                conjunto de los números enteros
                cota superor asintótica
                x está en
                A es subconjunto de B
                inflación
                deflación
                conjunto de vértices de G
                conjunto de aristas de G
                lista de advacencia de v
\mathbb{R}
                conjunto de los números reales
\mathbb{N}
                conjunto de los números naturales
               grafica de Dynkin \mathbb{A}_n grafica de Dynkin \mathbb{D}_n
\mathbb{A}_n
\mathbb{D}_n
               \mathbb{A}-bloque de m + m' aristas
                traspuesta de A
B_q
                gráfica asociado a la forma q
                forma unitaria asociada a el gráfica G
q_G
```

Introducción

En este capítulo se presenta una introducción a las formas cuadráticas, sus representaciones y su clasificación.

1.1. FORMAS CUADRÁTICAS

Esta sección fue adaptada de [18]. Algunas demostraciones aquí omitidas pueden consultarse en dicha referencia.

Fijamos un conjunto de variables $\{x_1, x_2, \ldots, x_n\}$. Un **monomio** es un producto de la forma $x_1^{e_1} \cdot x_2^{e_2} \cdots x_n^{e_n}$ donde cada e_i es un número natural. Un **término** se forma al multiplicar a un monomio por una constante, a la cual llamamos **coeficiente** del término. Un **polinomio** es una suma finita de términos.

Ejemplo: $7x^2y + 5x^24 - y$ es un polinomio sobre las variables x, y y z con tres monomios: x^2y, xz^4 y y cuyos respectivos coeficientes son 2, 4, 1 respectivamente. Una **forma cuadrática** es un polinomio en el que $q: \mathbb{R}^n \to \mathbb{R}(\text{con } n > 0)$ en el que cada

Una forma cuadrática es un polinomio en el que $q : \mathbb{R}^n \to \mathbb{R}(\text{con } n > 0)$ en el que cada monomio del mismo es una variable al cuadrado o la multiplicación de dos variables. Esto es equivalente a decir que q se puede expresar como

$$q(x_1, x_2, \dots, x_n) = \sum_{i=1}^n q_{ii} x_i^2 + \sum_{i=2}^n \sum_{i=1}^{j-1} q_{ij} x_i x_j$$

Los ejemplos más usuales aparecen al lado izquierdo del signo igual de las ecuaciones de las cónicas con centro en el origen

$$ax^2 + 2bxy + cy^2 = d$$

y de las superficies cuadráticas con centro en el origen

$$ax^{2} + 2dxy + 2exz + by^{2} + 2fyz + cz^{2} = q$$

donde a, b, c, d, e, f y g son números reales. Este tipo de polinomios surgen de manera natural en diversas áreas de la ingeniería, procesamiento de señales, cinética, economía, geometría diferencial y estadística.

En algunos curso básicos de álgebra lineal se suele definir el concepto de forma cuadrática como una función que se puede escribir como

$$q(\overrightarrow{x}) = \frac{1}{2} \overrightarrow{x}^T A \overrightarrow{x}$$

para alguna matriz simétrica A. En realidad esta representación matricial es equivalente a nuestra definición con monomios; a continuación veremos como pasar de una representación a otra. Primero notemos que $\frac{1}{2}\overrightarrow{x}^TA\overrightarrow{x}$ se puede reescribir como sigue:

$$\frac{1}{2} \overrightarrow{x}^T A \overrightarrow{x} = \frac{1}{2} [x_1, x_2, \dots, x_n] \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= \frac{1}{2} \left[\sum_{i=1}^n a_{i1} x_i, \sum_{i=1}^n a_{i2} x_i, \dots, \sum_{i=1}^n a_{in} x_i \right] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= \frac{1}{2} \left[\sum_{i=1}^n a_{i1} x_i x_1 + \dots + \sum_{i=1}^n a_{in} x_i x_n \right]$$

$$= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

Al desarrollar esto se puede ver que el coeficiente de x_i x_j es $q_{ij} = \frac{1}{2}(a_{ij} + a_{ji})$ porque x_i $x_j = x_j$ x_i , pero como dijimos que A es simétrica $(a_{ij} = a_{ji})$ entonces $q_{ij} = a_{ij}$. En particular cuando i = j se tiene que el coeficiente de x_i^2 es $q_{ii} = \frac{1}{2}a_{ii}$. Por lo cuál tenemos la siguiente identidad:

$$\frac{1}{2} \overrightarrow{x}^T A \overrightarrow{x} = \sum_{i=1}^n \frac{1}{2} a_{ii} x_i^2 + \sum_{j=2}^n \sum_{i=1}^{j-1} a_{ij} x_i x_j$$
 (1.1)

La matriz simétrica A de esta identidad se conoce como matriz asociada a la forma cuadrática q. Se denota por A_q , y según la ecuación 1.1 se puede calcular como sigue:

$$a_{ij} = \begin{cases} q_{ij} & \text{si } i < j \\ 2q_{ij} & \text{si } i = j \\ q_{ji} & \text{si } i > j \end{cases}$$
 (1.2)

Por ejemplo, para $q(x, y, x) = 6x^2 + 2y^2 + 4z^2 - 2xy + 10xz - 6yz$

$$q(x.y.z) = \frac{1}{2} \begin{bmatrix} x \ y \ z \end{bmatrix} \begin{bmatrix} 12 & -2 & 10 \\ -2 & 4 & -6 \\ 10 & -6 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

CAMBIO DE VARIABLE

Un cambio de variable es una ecuación de la forma

$$\overrightarrow{x} = P\overrightarrow{y}$$
 o bien $\overrightarrow{y} = P^{-1}\overrightarrow{x}$. (1.3)

donde P es una matriz invertible y \overrightarrow{y} es un nuevo vector variable en \mathbb{R}^n . Si se aplica el cambio de variable 1.3 sobre una forma cuadrática $q(\overrightarrow{x}) = \frac{1}{2} \overrightarrow{x}^T A \overrightarrow{x}$ se obtiene una matriz cuadrática $q'(\overrightarrow{y})$ cuya matriz asociada es P^T A P:

$$\frac{1}{2}\overrightarrow{x}^T\overrightarrow{x} = \frac{1}{2}(P\overrightarrow{y})^T A (P\overrightarrow{y}) = \frac{1}{2}(\overrightarrow{y}^T P^T) A (P\overrightarrow{y}) = \frac{1}{2}\overrightarrow{y}^T (P^T A P) \overrightarrow{y}$$

Garantizamos que P^T A P es una matriz simétrica (y por tanto que en verdad corresponde a otra forma cuadrática) porque

$$(P^T A P)^T = P^T A^T (P^T)^T$$
$$= P^T A^T P$$
$$= P^T A P$$

Mediante el cambio de variable $\overrightarrow{y} = P \overrightarrow{x}$ tenemos que $q(\overrightarrow{x}) = q'(\overrightarrow{y})$ y diremos que q y q' son **equivalentes** mediante la matriz invertible P. Si denotamos con $L(\overrightarrow{x})$ a la transformación dada por, $L(\overrightarrow{x}) = P\overrightarrow{x}$ y tomamos $\overrightarrow{y} = L(\overrightarrow{x})$, entonces $q'(\overrightarrow{y}) = q'(L(\overrightarrow{x})) = (q' \circ L)(\overrightarrow{x})$, por lo tanto

$$q' = q \circ L$$

Ejemplo 1.1. Consideremos la forma cuadrática $x^2 - 5y^2 - 8xy$ con matriz asociada

$$A = \begin{bmatrix} 2 & -8 \\ -8 & 10 \end{bmatrix}.$$

y el cambio de variable definido por

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{(5)}} & \frac{1}{\sqrt{(5)}} \\ -\frac{1}{\sqrt{(5)}} & \frac{2}{\sqrt{(5)}} \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} = \begin{bmatrix} \frac{2z+w}{\sqrt{(5)}} \\ \frac{-z+2w}{\sqrt{(5)}} \end{bmatrix}.$$

La matriz $P = \begin{bmatrix} \frac{2}{\sqrt{(5)}} & \frac{1}{\sqrt{(5)}} \\ -\frac{1}{\sqrt{(5)}} & \frac{2}{\sqrt{(5)}} \end{bmatrix}$ es invertible, y su inversa es

$$P^{-1} = \begin{bmatrix} \frac{2}{\sqrt{(5)}} & -\frac{1}{\sqrt{(5)}} \\ \frac{1}{\sqrt{(5)}} & \frac{2}{\sqrt{(5)}} \end{bmatrix} = P^T$$

Calculamos P^T A $P = \begin{bmatrix} 6 & 0 \\ 0 & -14 \end{bmatrix}$ para concluir que

$$x^2 - 5y^2 - 8xy = 3z^2 - 7w^2$$

Esto es lo que se hubiese obtenido de hacer las sustituciones

$$x \leftarrow \frac{2z+w}{\sqrt{(5)}}$$
$$y \leftarrow \frac{-z+2w}{\sqrt{(5)}}$$

sobre la expresión $x^2 - 5y^2 - 8xy$.

Las cosas a destacar en este ejemplo son:

- P resultó ser una matriz ortogonal, en otras palabras, $P^{-1} = P^T$.
- A es una matriz **ortogonalmente diagonizable**, en otras palabras, existe una matriz ortogonal P tal que P^{-1} A P es una matriz diagonal.

<u>Teorema</u> 1.1. Toda matriz es ortogonalmente diagonizable si y solo si es simétrica

El teorema 1.1 se dejara sin demostración. Lo importante es que, a partir de este teorema, y dado que las matrices asociadas a las formas cuadráticas son simétricas, se sigue el siguiente resultado:

<u>Teorema</u> 1.2. (de los ejes principales). Toda forma cuadrática $q(\overrightarrow{x})$ es equivalente mediante una matriz ortogonal P a una forma cuadrática

$$q'(\overrightarrow{y}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 \tag{1.4}$$

Demostración. La matriz Aasociada a qes simétrica, luego por teorema anterior existe una matriz Ptal que

$$P^{-1} A P = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Haciendo $\overrightarrow{x} = P \overrightarrow{y}$ y se obtiene $q'(\overrightarrow{y}) = \frac{1}{2} \overrightarrow{y}^T (P^T A P) \overrightarrow{y} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$

Como se vera, esta representación es muy útil para clasificar formas cuadráticas. Diremos que una forma cuadrática q es **definida positiva** si $q(\overrightarrow{x}) > 0$, $\forall \overrightarrow{x} \neq \overrightarrow{0}$

<u>Lema</u> 1.3. Si dos formas cuadráticas $q(\overrightarrow{x})$ y $q'(\overrightarrow{y})$ son equivalentes mediante el cambio de variable $\overrightarrow{y} = P\overrightarrow{x}$ y si una de ellas es definida positiva entonces la otra también lo es.

Demostración. Supongamos que $q(\overrightarrow{x})$ es definida positiva y definimos la transformación lineal $L(\overrightarrow{x}) = P\overrightarrow{x}$, entonces $L(\overrightarrow{0}) = L(\overrightarrow{0} + \overrightarrow{0}) = L(\overrightarrow{0}) + L(\overrightarrow{0})$, de donde $L(\overrightarrow{0}) = \overrightarrow{0}$. Como P es una matriz invertible entonces $L^{-1}(\overrightarrow{x}) = P^{-1}x$. En particular L debe ser invectiva y por lo tanto $L(\overrightarrow{x}) = \overrightarrow{0}$ implica que $\overrightarrow{x} = \overrightarrow{0}$. Si q es definida positiva entonces $q(\overrightarrow{x}) = q'(\overrightarrow{y}) > 0$ para todo $\overrightarrow{y} \neq \overrightarrow{0}$ y se cumple que $\overrightarrow{x} \neq \overrightarrow{0} \Leftrightarrow \overrightarrow{y} = P^{-1}\overrightarrow{x} \neq \overrightarrow{0}$; por lo tanto q' es definida positiva , entonces aplicando el mismo razonamiento con $L(\overrightarrow{y}) = P^{-1}\overrightarrow{y}$ se llega a la conclusión de que q también es definida positiva.

Teorema 1.4. Sea q una forma cuadrática y supongamos que

$$q(\overrightarrow{x}) = q'(y) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

entonces q es definida positiva si y solo si todos los $\lambda_i > 0$

Demostración. Por el lema anterior q es definida positiva si y solo si q' es definida positiva. Por contradicción, si $\lambda_i \leq 0$ entonces definimos $y' = (y_1, y_2, \dots, y_n)$ donde todos los $y_k = 0$ excepto $y_i = 1$. Claramente $\overrightarrow{y} \neq \overrightarrow{0}$ pero $q(\overrightarrow{y}) = \lambda_i \leq 0$; por lo tanto q no es definida positiva.

CAPÍTULO 1. INTRODUCCIÓN

Como las formas cuadráticas se pueden representar mediante matrices entonces podemos decir que una matriz A es definida positiva si su forma cuadrática asociada $q(\overrightarrow{x}) = \frac{1}{2} \overrightarrow{x}^T A \overrightarrow{x}$ es definida positiva.

El siguiente teorema típico de los cursos de análisis numérico nos da un criterio computacionalmente eficiente para decidir cuando una matriz simétrica es definida positiva(sin demostración).

<u>Teorema</u> 1.5. Una matriz A es definida positiva si y solo si tiene **factorización de Cholesky**, es decir, se puede escribir como $A = R^T R$ donde R es una matriz triangula superior con entradas positivas.

El siguiente teorema es el criterio de Sylvester para que una forma cuadrática sea positiva definida.

<u>Teorema</u> 1.6. Sean V un espacio vectorial real de dimensión $n, q \in \mathcal{Q}(V)$, B una base de V. Denotamos por q a la matriz asociada a la forma cuadrática q respecto a la base \mathcal{B} . Entonces las siguientes condiciones son equivalentes:

- 1. q > 0, esto es, q(x) > 0 para todo $x \in V \setminus \{0\}$.
- 2. todos los menores principales de qB son positivos:

$$\forall I \subseteq 1, ..., n \ \delta_I(q_{\mathcal{B}}) > 0.$$

3. todos los menores de la matriz $q_{\mathcal{B}}$ son positivos: para todo $k \in 1, \ldots, n$

$$\Delta_k(q_B) > 0.$$

1.2. FORMAS UNITARIAS

Esta sección fue adaptada de [22] y [9]. Las formas cuadráticas enteras son un caso especial de las formas cuadráticas donde todos los coeficientes q_{ij} son todos números enteros. Si además exigimos que $q_{ii} = 1$ para i = 1, 2, ..., n entonces las llamamos formas cuadráticas unitarias. En el resto de este trabajo solo se trabaja con formas cuadráticas enteras que son unitarias por lo que las llamaremos formas unitarias.

CAMBIO DE VARIABLE ENTERO

Una matriz entera M es una matriz tal que todas sus entradas son números enteros, y es \mathbb{Z} -invertible si además su matriz inversa M^{-1} también es una matriz entera. Un cambio de variable entero es un cambio de variable $\overrightarrow{y} = P\overrightarrow{x}$ donde P es una matriz \mathbb{Z} -invertible.

Los cambios de variables enteros tienen la propiedad de que transforman formas cuadráticas enteras en formas cuadráticas enteras (demostración: sean A y P matrices enteras, entonces P^T A P es una matriz entera). Cuando $q(\overrightarrow{x}) = q'(\overrightarrow{y})$ mediante el cambio de variable entero $\overrightarrow{y} = P\overrightarrow{x}$ diremos que q y q' son \mathbb{Z} -equivalentes mediante la matriz \mathbb{Z} -invertible P.

Bi-gráficas asociadas a formas unitarias

Si q es una forma unitaria entonces le asociaremos una bigráfica B_q construida de la siguiente manera:

- Existe un vértice x_i para cada variable x_i
- Si $q_{ij} > 0$ entonces trazamos aristas punteadas entre los vértices x_i y x_j con peso q_{ij} .

$$x_i \cdots x_i \cdots x_i$$

• Si $q_{ij} < 0$ entonces trazamos aristas sólidas entre los vértices x_i y x_j con peso $|q_{ij}|$.

$$x_i \frac{|q_{ij}|}{x_i} x_i$$

Figura 1.1: Bigráfica asociada a 2wx - 2yz - xz - xy - wz + wy

Este proceso se puede revertir y asociar a toda bigráfica G (posiblemente con aristas punteadas) una forma unitaria que denotaremos por q_G . Ahora, toda la información de q_G está codificada en G: La existencia de un vértice x nos dice que la forma cuadrática está definida sobre alguna variable x y que contiene el término x^2 (porque q es una forma cuadrática unitaria). El coeficiente del monomio xy es $c = a_p - a_s$ donde a_p es la cantidad de aristas punteadas entre x y y, y a_s es la cantidad de aristas sólidas entre estos mismos vértices. Más aún cabe recalcar que nosotros estamos descartando gráficas con lazos, por lo que cualquier gráfica en verdad define a una forma cuadrática unitaria.

Las gráficas de Dynkin se presentan en la figura 1.2. Hay que resaltar que las gráficas \mathbb{D}_n están definidas para $n \ge 4$ mientras que las gráficas \mathbb{E}_n solo se definen para n = 6, 7, 8. Lo importante de estas gráficas radica en que permite dar una caracterización elegante de las formas unitarias que son definidas positivas tal como se explica a continuación.

Figura 1.2: Gráficas de Dynkin. El subíndice n indica la cantidad de vértices que tiene la bigráfica.

Toda forma unitaria q manejada en este trabajo es definida positiva.

<u>Teorema</u> 1.7. Toda forma unitaria B_q es conexa, así q es \mathbb{Z} -equivalente a una forma unitaria cuya bigráfica asociada es un diagrama de Dynkin.

Para poder hacer la demostración hay que comprender el teorema. El teorema dice que la forma unitaria y conexa $q(\overrightarrow{x}) = \frac{1}{2} \overrightarrow{x}^T A \overrightarrow{x}$ es definida positiva si, y sólo si, se puede llevar, mediante un cambio de variable entero $\overrightarrow{y} = P \overrightarrow{x}$, a la forma $q'(\overrightarrow{y}) = \frac{1}{2} \overrightarrow{y}^T (P^T A P) \overrightarrow{y}$ donde $\mathbf{B}_{q'}$, tiene la propiedad de que cada una de sus componentes conexas es una gráfica de Dynkin. A dicha gráfica $\mathbf{B}_{q'}$ se le llama el **tipo Dynkin** de q.

Ejemplo 1.2. [1] La forma unitaria

$$q(w, x, y, z) = x^{2} + y^{2} + z^{2} + w^{2} - xy + yz - yw - zw$$
(1.5)

tiene asociada la bigráfica

y su matriz asociada

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & 1 & -1 \\ 0 & 1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \ con \ inversa \ P^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P^{T} A P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & 1 & -1 \\ 0 & 1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

Entonces podemos concluir que q es Z-equivalente a la forma unitaria

$$q'(x, y, z, w) = x^2 + y^2 + z^2 + w^2 - xy - yz - zw$$

con gráfica asociada

$$\textcircled{x} - \textcircled{y} - \textcircled{z} - \textcircled{w}$$

Esta gráfica es isomorfa a \mathbb{A}_4 , por lo tanto ese el tipo Dynkin es \mathbb{A}_4 .

Para demostrar el teorema 1.7 lo dividiremos en dos partes:

- 1. Demostramos que las gráficas de Dynkin son las únicas gráficas conexas de aristas sólidas que definen formas unitarias que son definidas positivas (las aristas múltiples las consideraremos como aristas con peso, ver corolario 1.10).
- 2. Demostramos que siempre es posible hacer cambios de variable enteros de tal manera que la gráfica resultante no contenga aristas solidas.

CAPÍTULO 1. INTRODUCCIÓN

La última afirmación será demostrada en 2.1

<u>Lema</u> 1.8. Los diagramas de Dynkin son las únicas gráficas conexas de aristas sólidas que tienen asociadas formas unitarias definidas positivas.

Para comenzar necesitamos convencernos en verdad de que los diagramas de Dynkin definen formas unitarias definidas positivas. Comencemos con las gráficas de tipo \mathbb{A}_n :

$$x_1$$
- x_2 -···- x_n

Consideremos la identidad:

$$\frac{1}{2}(x_i - x_j)^2 = \frac{1}{2}x_i^2 - x_i x_j + \frac{1}{2}x_j^2$$

Podemos reescribir la forma unitaria asociada a \mathbb{A}_n como

$$q_{\mathbb{A}_n}(\overrightarrow{x}) = \sum_{i=1}^n x_i^2 - \sum_{i=1}^{n-1} x_i x_{i+1}$$

$$= \frac{1}{2} x_1^2 + \sum_{i=1}^{n-1} \left(\frac{1}{2} x_i^2 + \frac{1}{2} x_{i+1}^2 \right) + \frac{1}{2} x_n^2 + \sum_{i=1}^{n-1} \left(-x_i x_{i+1} \right)$$

$$= \frac{1}{2} x_1^2 + \sum_{i=1}^{n-1} \left(\frac{1}{2} x_i^2 - x_i x_{i+1} + \frac{1}{2} x_{i+1}^2 \right) + \frac{1}{2} x_n^2$$

$$= \frac{1}{2} x_i^2 + \sum_{i=1}^{n-1} \frac{1}{2} \left(x_i - x_{i+1} \right)^2 + \frac{1}{2} x_n^2$$

Por el teorema 1.4 se concluye que $q_{\mathbb{A}_n}$ es definida positiva. La demostración para la forma unitaria $q_{\mathbb{D}_n}$ es similar solo que en este caso se usa la identidad:

$$\frac{1}{2}\left[\left(x_3 - x_2 - x_1\right)^2 + \left(x_2 - x_1\right)^2\right] = x_1^2 + x_2^2 + \frac{1}{2}x_3^2 - x_1x_3 - x_2x_3$$

de tal forma que

$$q_{\mathbb{D}_n}(\overrightarrow{x}) = \sum_{i=1}^n x_i^2 - x_1 x_3 - \sum_{i=2}^{n-1} x_i x_{i+1}$$

$$= \frac{1}{2} \left[(x_3 - x_2 - x_1)^2 + (x_2 - x_1)^2 + \sum_{i=3}^{n-1} (x_i - x_{i+1})^2 + x_n^2 \right]$$

Para las gráficas \mathbb{E}_6 , \mathbb{E}_7 y \mathbb{E}_8 usaremos el siguiente razonamiento: Supongamos que A_{Δ} es la matriz asociada a la gráfica Δ (con $\Delta = \mathbb{E}_6, \mathbb{E}_7, \mathbb{E}_8$); si existe una matriz R_{Δ} triangular superior, con entradas positivas en la diagonal principal tal que $A_{\Delta} = R_{\Delta}^T R_{\Delta}$ entonces por teorema 1.5 se sigue que Δ define una forma unitaria definida positiva

En efecto tenemos que:

$$A_{\mathbb{E}_{6}} = \begin{bmatrix} 2 & 0 & 0 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ -1 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

$$R_{\mathbb{E}_{6}} = \begin{bmatrix} \sqrt{2} & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & sqrt(2) & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{3}}{\sqrt{2}} & -\frac{\sqrt{2}}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{5}}{\sqrt{6}} & -\frac{\sqrt{6}}{\sqrt{5}} & 0 \\ 0 & 0 & 0 & 0 & \frac{2}{\sqrt{5}} & -\frac{\sqrt{5}}{2} \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$A_{\mathbb{E}_7} = \begin{bmatrix} 2 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 00 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

$$R_{\mathbb{E}_7} = \begin{bmatrix} \sqrt{2} & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\ 0 & sqrt(2) & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{3}}{\sqrt{2}} & -\frac{\sqrt{2}}{\sqrt{3}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{5}}{\sqrt{6}} & -\frac{\sqrt{6}}{\sqrt{5}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{2}{\sqrt{5}} & -\frac{\sqrt{5}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} & -\frac{2}{\sqrt{3}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} & -\frac{2}{\sqrt{3}} \end{bmatrix}$$

$$A_{\mathbb{E}_8} = \begin{bmatrix} 2 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

$$R_{\mathbb{E}_8} = \begin{bmatrix} \sqrt{2} & 0 & 0 & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\ 0 & sqrt(2) & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{3}}{\sqrt{2}} & -\frac{\sqrt{2}}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{5}}{\sqrt{6}} & -\frac{\sqrt{6}}{\sqrt{5}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{2}{\sqrt{5}} & -\frac{\sqrt{5}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} & -\frac{2}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} & -\frac{2}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{\sqrt{2}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \end{bmatrix}$$

Aun no hemos terminado la demostración del lema 1.8. Falta demostrar que los diagramas de Dynkin son las únicas bigráficas de aristas sólidas que definen formas unitarias definidas positivas. Comenzaremos con el siguiente lema, el cual muestra que toda bigráfica que tenga aristas con mayor peso no corresponde a ninguna forma unitaria definida positiva.

<u>Lema</u> 1.9. Si la forma unitaria $q(\overrightarrow{x})$ es definida positiva entonces $q_{ij} \in \{-1, 0, 1\}$ para todo $1 \le i \le j \le n$.

Demostración. Denotemos con $\overrightarrow{e}_k = (d_1, d_2, \dots, d_n)$ al vector dado por $d_k = 1$ y $d_i = 0$ para toda $i \neq k$. Si $q_{ij} \geqslant 2$ entonces $q(\overrightarrow{e}_i + \overrightarrow{e}_j) = 2 - q_{ij} \leqslant 0$ pero $\overrightarrow{e}_i - \overrightarrow{e}_j \neq \overrightarrow{0}$, $i \neq j$. Si $q_{ij} \leqslant -2$ entonces $q(\overrightarrow{e}_i + \overrightarrow{e}_j) = 2 - q_{i,j} \geqslant 4$ pero $\overrightarrow{e}_i - e_j \neq \overrightarrow{0}$. De lo anterior, ya que q es definida positiva, entonces $|q_{ij}| \leqslant 2$ para todo $1 \leqslant i < j \leqslant n$.

Cada $|q_{ij}|$ nos dice el peso de las aristas que hay entre los vértices x_i y x_j de la gráfica \mathbf{B}_q ; por lo tanto si $|q_{ij}| \leq 1$ tenemos que \mathbf{B}_q es una bigráfica simple. Es decir que el lema 1.9 se puede reescribir como sigue:

Corolario 1.10. Si q es una forma unitaria positiva entonces necesariamente B_q es una bigráfica simple.

Con base en este corolario diremos que una forma unitaria q es **simple** si su gráfica asociada \mathbf{B}_q es una bigráfica simple.

Aĥora que hemos descartado a las bigráficas de aristas con peso mayor que uno el resto de la demostración es como sigue:

- 1. Demostraremos que toda gráfica que contenga a un diagrama Euclidiano (Figura 1.3) no define a una forma unitaria definida positiva
- 2. Demostraremos que toda gráfica conexa que no sea un diagrama de Dynkin necesariamente contiene una sub-gráfica Euclidiana(bigráfica con sólo aristas solidas).

Figura 1.3: Diagramas Euclidianos. La cantidad de vértices que tiene cada gráfica es n = m + 1.

Hasta ahora hemos asociado vértices con variables (\otimes con x). Ahora a cada variable x_i le asignamos el vértice i, convenimos que le asignamos un orden a las variables y que el vértice i representa el lugar de la variable x_i en el orden dado.

representa la evaluación x = 2, y = 1, z = 2, w = -1

Mostraremos que si \mathbf{B}_q contiene una subgráfica Euclidiana entonces existe un vector $\overrightarrow{x} \neq 0$ tal que $q(\overrightarrow{x}) = 0$, mostrando así que $q(\overrightarrow{x})$ no es definida positiva. Un simple cálculo nos muestra que esta evaluación produce un vector $\overrightarrow{x} \neq \overrightarrow{0}$ tal que $q(\overrightarrow{x}) = 0$.

Solamente falta demostrar que toda gráfica que no sea de Dynkin necesariamente contiene a una subgráfica Euclidiana. Sea G una gráfica conexa de n vértices distinta de \mathbb{A}_n , \mathbb{B}_n , \mathbb{D}_n , \mathbb{E}_6 , \mathbb{E}_7 y \mathbb{E}_8 . Si G no es un árbol entonces G contiene un ciclo; es decir contiene una subgráfica de \mathbb{A}_m para algún m < n. Si G es un árbol, y dado que $G \neq \mathbb{A}_n$, entonces existe al menos un vértice v de grado 3 o más. Claramente v pertenece a una subgráfica de \mathbb{D}_r para algún $r \leqslant n$, pero habíamos supuesto que $G \neq \mathbb{D}_n$ por lo tanto hay tres casos:

Figura 1.4: Formas unitarias asociadas a las gráficas Euclidianas.

- 1. Si v tiene grado estrictamente mayor a 3 entonces G contiene a \widetilde{D}_4
- 2. Si G contiene otro vértice w de grado 3 o más, entonces G contiene a \widetilde{D}_m para algún m < n
- 3. Si todos los demás vértices tienen grado menor a 3 entonces G debe contener a \mathbb{E}_6 como subgráfica.

Ahora ya que habíamos supuesto que $G \neq \mathbb{E}_6$, por tanto n > 6. En este caso G debe contener a $\widetilde{\mathbb{E}}_6$ o \mathbb{E}_7 . Si tenemos que $G \neq \mathbb{E}_7$ entonces n > 8., de donde obtenemos que G contiene a $\widetilde{\mathbb{E}}_7$ o \mathbb{E}_8 , pero si $G \neq \mathbb{E}_8$ entonces n > 8 y por lo tanto G contiene a $\widetilde{\mathbb{E}}_8$.

contiene a \mathbb{E}_7 o \mathbb{E}_8 , pero si $G \neq \mathbb{E}_8$ entonces n > 8 y por lo tanto G contiene a \mathbb{E}_8 . Resumiendo, las gráficas de Dynkin definen formas unitarias positivas, y cualquier otra gráfica conexa y de aristas solidas que no sea un diagrama de Dynkin necesariamente contiene una gráfica Euclidiana que la vuelve no positiva: por lo tanto las gráficas de Dynkin son las únicas gráficas conexas de aristas sólidas que definen formas unitarias definidas positivas. Esto concluye la demostración del lema 1.8.

En la sección 2.1 se dará termino a la demostración del teorema 1.7

Antecedentes

Este capitulo está dedicado a presentar los resultados principales de [9] & [4] que permiten caracterizar a las formas \mathbb{A}_n

2.1. EL MÉTODO DE LAS INFLACIONES

La demostración del teorema 1.7 aparece en [9] y hace uso implícito de un algoritmo que describiremos aquí.

La idea intuitiva es pasar mediante cambios de variable enteros de la forma unitaria conexa q a la forma unitaria q', donde $\mathbf{B}_{q'}$ no contiene aristas punteadas. Si q es definida positiva entonces por el lema 1.3 q' también es definida positiva; luego como q' solamente contiene aristas solidas entonces por lema 1.8 se sigue que cada una de sus componentes conexas debe ser una gráfica de Dynkin(figura 1.2). El procedimiento para encontrar dicha forma cuadrática q' es el $m\acute{e}todo\ de\ las\ inflaciones\ y$ es el tema de esta sección.

INFLACIONES Y DEFLACIONES

Tomemos matrices elementales E^d_{sr} , cuya transformación lineal

$$T_{sr}^d(A) = E_{sr}^d A$$

equivale a sumar d veces el renglón s de A al renglón r de A. Dado que la matriz inversa de E^d_{sr} es E^{-d}_{sr} , notamos que E^d_{sr} es Z-invertible si y solamente si d es un número entero.

Consideremos el cambio de variable entero $\overrightarrow{y} = E_{sr}^d \overrightarrow{x}$, entonces

$$\begin{bmatrix} y_1 \\ \vdots \\ y_r \\ \vdots \\ y_n \end{bmatrix} = E_{sr}^d \begin{bmatrix} x_1 \\ \vdots \\ x_r \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_r + dx_s \\ \vdots \\ x_n \end{bmatrix}$$

y por tanto podemos concluir que T_{sr}^d como cambio de variable tiene el mismo efecto que

sustituir $x_r \leftarrow x_r + dx_s$. £Qué efecto tiene T_{sr}^d si sobre una forma unitaria q?. Supongamos que q tiene matriz asociada $A = [a_{ij}]$ y sea

$$q'(\overrightarrow{x}) = \frac{1}{2} \left(E_{rs}^d \right)^T A E_{sr}^d$$

Dado que E^d_{sr} es la matriz identidad salvo por la d en la posición (s,r)-ésima, entonces $\left(E^d_{sr}\right)^T=E^d_{sr}$. Por lo tanto $\left(E^d_{sr}\right)^T$ tiene el efecto de sumar d veces el renglón r al renglón s. Por otra parte E^d_{sr} multiplicado por la derecha tiene el efecto de sumar d veces la columna ra la columna s, por lo tanto la matriz $C = \left(E_{sr}^d\right)^T A E_{sr}^d$ está dada por

$$c_{ij} = \begin{cases} a_{ij} & \text{si } i \neq s \text{ y } j \neq s \\ a_{sj} + da_{rj} & \text{si } i = s \text{ pero } j \neq s \\ a_{is} + da_{ir} & \text{si } j = s \text{ pero } i \neq s \\ d^2 a_{rr} + d(a_{sr} + a_{rs}) + a_{ss} & \text{si } i = s \text{ y } j = s \end{cases}$$
 (2.1)

 E_{rs}^d define un cambio de variable entero, por lo que C es la matriz asociada a alguna forma cuadrática entera, aunque no necesariamente unitaria. Para que $q'(\overrightarrow{x}) = \frac{1}{2}\overrightarrow{x}^T C\overrightarrow{x}$ sea una forma unitaria es necesario que $c_{ss}=2$, o lo que es lo mismo (con $a_{rr}=a_{ss}=2$ y $a_{rs}=a_{sr}$:

$$2d^2 + 2da_{rs} + 2 = 2.$$

Esta ecuación tiene dos soluciones: d = 0y $d = -a_{rs}$. Estas soluciones se resumen en el siguiente lema:

<u>Lema</u> 2.1. Si q es una forma unitaria entonces $q \circ T_{rs}^d$ es una forma unitaria si y solo si $q_{rs} = q_{sr} = -d$.

<u>Corolario</u> 2.2. Si q es una forma unitaria simple entonces $q \circ T_{rs}^d$ es una forma unitaria para un $d \neq 0$ en cualquiera de estos dos casos y solamente estos dos:

- 1. d=1 y \mathbf{B}_q contiene una arista punteada entre los vértices x_r y x_s .
- 2. d = -1 y \mathbf{B}_q contiene a una arista sólida entre los vértices x_r y x_s .

Este corolario no garantiza que $q \circ T^d_{rs}$ sea simple; en este caso por corolario 1.9 vemos que esto ocurre solamente cuando q (que es Z-equivalente a $q \circ T^d_{rs}$) no es definida positiva.

Con base al corolario anterior se justifica que definamos la transformación de **inflación** como

$$T_{rs}^{-} = T_{rs}^{-1}$$

y la transformación de la **deflación** como

$$T_{rs}^+ = T_{rs}^1$$

El corolario anterior dice que la inflación T_{rs}^- se puede aplicar solamente cuando \mathbf{B}_q contiene a la arista punteada x_r x_s mientras que T_{rs}^+ solamente cuando \mathbf{B}_q contiene a la arista sólida x_r x_s . A partir de la ecuación (2.1), y del hecho de que la matriz es simétrica. Podemos interpretar las inflaciones y deflaciones como un algoritmo de reconexión sobre la gráfica \mathbf{B}_q (bajo las condiciones del corolario anterior) que consiste de cuatro pasos:

- 1. Duplicar: Generar una copia de las aristas que inciden en x_i excepto la arista que conecta x_i con x_j .
- 3. Arrastrar: Cada una de las aristas duplicadas se desconecta de su x_i y se reconecta en x_j .
- 4. Simplificar: Si existen dos aristas x_i ---------------------- x_j incidentes en x_r y x_j , se borran.

Por ejemplo, consideremos la forma cuadrática q de la ecuación (1.5) y ordenemos a las variables como (w, x, y, z). Entonces para aplicar T_{23}^- podemos calcular $\left(E_{23}^{-1}\right)^T$ A E_{23}^{-1} donde A es la matriz asociada a q.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & 1 & -1 \\ 0 & 1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 & 0 \\ -1 & 2 & -1 & -1 \\ 1 & -1 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{bmatrix}$$

La matriz resultante nos describe la misma forma cuadrática que se hubiera obtenido reemplazando $y \to y - z$; en efecto:

$$x^{2} + (y-z)^{2} + z^{2} + w^{2} - x(y-z) + (y-z)z - (y-z)w - zw = x^{2} + y^{2} + z^{2} + w^{2} - xy + xz - yz - yw$$

Tambien se puede hacer el cambio de variable de manera gráfica como se ilustra a continuación en la figura (2.1)

Figura 2.1: Ejemplo de una inflación.

DESCRIPCIÓN Y JUSTIFICACIÓN

El método que aparece en [9] consiste en aplicar sucesivamente inflaciones como se indica en el algoritmo 2.1 tanto como sea posible, es decir, hasta que no haya más aristas punteadas.

Algoritmo 2.1: Inflaciones(q)

Veamos como funciona este algoritmo sobre la forma cuadrática de la ecuación (1.5).

1. Comenzamos con la forma unitaria

$$x^{2} + y^{2} + z^{2} + w^{2} - xy + yz - yw - zw$$

2. Tenemos a la arista y.....z y aplicamos T_{23}^- para obtener

2.1. EL MÉTODO DE LAS INFLACIONES

$$x^2 + y^2 + z^2 + w^2 - xy + xz - yz - wy$$

3. Tenemos a la arista x-----z y aplicamos T_{13}^- para obtener

$$x^2 + y^2 + z^2 + w^2 - xy - xz - wy$$

4. Esta gráfica es isomorfa a \mathbb{A}_4 , por lo tanto es el tipo Dynkin de la forma cuadrática (1.5).

Para terminar la demostración del teorema 1.7 es necesario mostrar que si q es una forma unitaria definida positiva entonces este algoritmo termina. Esto lo podemos resumir de la siguiente manera.

- Decimos que $\overrightarrow{x} \in \mathbf{Z}^n$ es una **raíz** de la forma unitaria q si $q(\overrightarrow{x}) = 1$.
- Primero mostramos que toda forma cuadrática se puede poner en la forma

$$q(\overrightarrow{x}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$
$$y_i = x_i + \sum_{j=i+1}^n \rho_{ij} x_j$$

- Vamos a suponer que q es una forma unitaria positiva, y usando la expresión anterior mostraremos que q tiene una cantidad finita de raíces. Más específicamente mostraremos que cada x_i está acotada en el intervalo $[-\sigma, \sigma]$ para alguna constante σ_i .
- Encontraremos cierto subconjunto de raíces que crece con cada iteración del algoritmo 2.1. Como el conjunto de raíces es finito, la cantidad de iteraciones también.

La **reducción de Lagrange** es un método que nos permite llevar toda forma cuadrática a la forma (1.1). Primero necesitamos recordar la fórmula de **completar cuadrados**:

$$ax^{2} + bx + x = a\left[x^{2} + \frac{b}{a}x\right] + c$$

$$= a\left[x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right] + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} + \left(c - \frac{b^{2}}{4a}\right)$$

$$(2.2)$$

Sea q una forma unitaria sobre las variables $x_k, x_{k+1}, \ldots, x_n$. Para escribir $q(x_k, \ldots, x_k)$ en la forma (1.1) se hace los siguiente:

- 1. Si $q = q_{nn}x_n^2$ es una forma cuadrática en una variable entonces se definen $\lambda_n = q_{nn} = x_n$ y terminamos (en caso contrario seguimos).
- 2. Sea $\ell = k + 1$. Tomamos todos los términos que contienen la variable x_k :

$$q = q_{kk}x_k^2 + \sum_{j=\ell}^{n} q_{kj}x_kx_j + r$$

donde $r = \sum_{i=\ell}^{n} q_{ii} x_i^2 + \sum_{j=\ell+1}^{n} \sum_{i=\ell}^{j_1} q_{ij} x_i x_j$

3. Factorizamos $q_{k\ell}x_k$

$$q = q_{kk}x_k^2 + q_{k\ell}x_k \left(\sum_{j=\ell}^n \frac{q_{kj}}{q_{k\ell}}x_j\right) + r$$

4. Completando el cuadrado sustituyendo en la ecuación (2.2) los valores de $a=q_{kk}, b=q_{k\ell}\left(\sum_{j=\ell}^n\frac{q_{kj}}{q_{k\ell}}x_j\right)$ y c=0

$$q = q_{kk} \left(x + \sum_{j=\ell}^{n} \frac{q_{kj}}{2q_{kk}} x_j \right)^2 - \frac{q_{k\ell}^2}{4q_{kk}} \left(\sum_{j=\ell}^{n} \frac{q_{kj}}{q_{k\ell}} x_j \right)^2 + r$$

5. Se definen

$$\lambda_k = q_{kk}$$

$$y_k = x_k + \sum_{j=\ell}^n \frac{q_{kj}}{2q_{kk}} x_j$$

$$q' = -\frac{q_{k\ell}^2}{4q_{kk}} \left(\sum_{j=\ell}^n \frac{q_{kj}}{q_{k\ell}} x_j\right)^2 + r$$

Desarrollando el cuadrado en q' vemos que q' es una forma cuadrática sobre las variables $(x_{\ell}, x_{\ell+1}, \dots, x_n)$ (una variable menos que q) y además

$$q = \lambda_1 y_1^2 + q'$$

6. Repetimos el mismo procedimiento para q'

Este método es una demostración constructiva(e inductiva) de el siguiente lema:

<u>Lema</u> 2.3. Toda forma cuadrática $q(\overrightarrow{x})$ se puede reescribir como

$$q(\overrightarrow{x}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

$$y_i = x_i + \sum_{j=i+1}^n \rho_{ij} x_j$$
(2.3)

Ejemplo 2.1. Sea $q(x_1, x_2, x_3) = x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 8x_1x_3$ la primera iteración hace lo siquiente:

$$q(x_1, x_2, x_3) = x_1^2 - 4x_1x_2 + 8x_1x_3 + \underbrace{2x_2^2 - 7x_3^2}_{r}$$

$$= \underbrace{1}_{a} x_1^2 + x_1 \underbrace{(-4)(x_2 - 2x_3)}_{b} + \underbrace{2x_2^2 - 7x_2^2}_{r}$$

$$= \underbrace{1}_{\lambda_1} \underbrace{(x_1 - 2x_2 + 4x_3)^2}_{y_1} \underbrace{-4(x_2 - 2x_3)^2 + 2x_2^2 - 7x_3^2}_{q'}$$

$$= \lambda_1 y_1^2 \underbrace{-2x_2^2 - 23x_3^2 + 16x_2x_3}_{q'}$$

La segunda iteración funciona sobre $q'(x_2, x_3) = -2x_2^2 - 23x_3^2 + 16x_2x_3$:

$$q'(x_2, x_3) = \underbrace{-2}_{a} x_2^2 + x_2 \underbrace{(16x_3)}_{b} - \underbrace{23x_3^2}_{r'}$$
$$= \underbrace{-2}_{\lambda_2} \underbrace{(x_2 + 4x_3)^2}_{y_2} + \underbrace{9x_3^2}_{q''}$$
$$= \lambda_2 y_2 + \underbrace{9x_3^2}_{q''}$$

Finalmente en la tercera iteración opera sobre $q''(x_3) = 9x_3^2$, que es una forma cuadrática en una sola variable, por tanto $\lambda_3 = 9$ y $y_3 = x_3$. Así hemos reescrito a q como

$$q(x_1, x_2, x_3) = y_1^2 - 2y_2^2 + 9y_3^2$$

donde

$$\begin{array}{cccccc} y_1 & = x_1 & -2x_2 & 4x_3 \\ y_2 & = & x_2 & -4x_3 \\ y_3 & = & x_3 \end{array}$$

CAPÍTULO 2. ANTECEDENTES

Supongamos que q es una forma unitaria definida positiva y que \overrightarrow{x} es una raíz de q. Usando la reducción de Lagrange escribimos

$$q(\overrightarrow{x}) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$
$$y_i = x_i + \sum_{j=i+1}^n \rho_{ij} x_j$$

Como q es definida positiva entonces cada $\lambda_i > 0$. Más aún, como $\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 = 1$ (porque habíamos supuesto que \overrightarrow{x} es una raíz) entonces $\lambda_i y_i^2 \leqslant 1$ para cada i.

Como $y_n = x_n$ entonces $\lambda_n x_n^2 \leq 1$, de donde $|x_n| \leq \frac{1}{\sqrt{\lambda_n}}$. Definbiendo $\sigma_n = \frac{1}{\sqrt{\lambda_n}}$ se ha mostrado que $-\sigma_n \leq x_n \leq \sigma_n$ está acotada por alguna constante σ_k . En efecto, tenemos que

$$\lambda_k y_k^2 = \lambda_k \left(x_k + \sum_{j=k+1}^n \rho_{kj} x_j \right)^2 \leqslant 1$$

de donde

$$\left| x_k + \sum_{j=k+1}^n \rho_{kj} x_j \right| \leqslant \frac{1}{\sqrt{\lambda_k}}$$

Para continuar es necesaria la siguiente desigualdad:

$$\left| \sum_{i=1}^{m} a_i \right| \geqslant |a_1| - \sum_{i=2}^{m} |a_i| \tag{2.4}$$

para cualesquiera números reales a_1, a_2, \ldots, a_m . Esta desigualdad la demostramos por inducción (el caso base m=2 establece que $|a_1+a_2|\geqslant |a_1|-|a_2|$ y se comprueba por casos; para el paso inductivo escribimos $|\sum_{i=1}^m a_i|\geqslant \left|\sum_{i=1}^{m-1} a_i\right|-|a_m|$ y aplicamos la inducción). Usando la desigualdad (2.4) deducimos que

$$|x_k| - \sum_{j=k+1}^n |\rho_{kj} x_j| \leqslant \left| x_k + \sum_{j=k+1}^n \rho_{kj} x_j \right| \leqslant \frac{1}{\lambda_k}$$

de donde despejando $|x_k|$ y usando que $x_j \leqslant \sigma_j$ con $\sigma_j \geqslant 0$, obtenemos

$$|x_k| \leqslant \frac{1}{\sqrt{\lambda_k}} + \sum_{j=k+1}^n |\rho_{kj} x_j| \leqslant \frac{1}{\sqrt{\lambda_k}} + \sum_{j=k+1}^n |\rho_{kj}| \sigma_j$$

Por lo tanto $\sigma_k = \frac{1}{\sqrt{\lambda_k}} + \sum_{j=k+1}^n |\rho_{kj}| \, \sigma_j$ es una constante tal que $-\sigma_k \leqslant x_k \leqslant \sigma_k$. Por inducción concluimos que si \overrightarrow{x} es una raíz de q entonces todo x_i está acotado entre $-\sigma_i$ y σ_i para alguna constante σ_i . Como cada x_i debe ser un número entero entre $-\sigma_i$ y σ_i entonces concluimos el siguiente lema:

Lema 2.4. Si q es una forma unitaria positiva entonces su conjunto de raíces es finito.

En lo siguiente denotaremos por S(q) al conjunto finito de raíces de q, y por R(q) al conjunto de raíces no negativas de q, en otras palabras:

$$S(q) = \{ \overrightarrow{x} \in \mathbb{Z}^n | q(\overrightarrow{x}) = 1 \}$$

$$R(q) = \{ \overrightarrow{x} \in \mathbb{N}^n | q(\overrightarrow{x}) = 1 \}$$

Claramente $R(q) \subseteq S(q)$.

Supongamos que q es una forma unitaria positiva. Entonces \mathbf{B}_q es una gráfica simple y el algoritmo 2.1 busca valores de r y s tales que existe una arista punteada x_r - - - - x_s . Estos es lo mismo que decir que $q_{rs}=1$ (ver Corolario 1.10). Sea $q'=q\circ T_{rs}^-$. Como la transformación $T_{rs}^-:\mathbb{Z}^n\to\mathbb{Z}^n$ está definida por una matriz \mathbb{Z} -invertible entonces T_{rs}^- es invertible y su inversa es T_{rs}^+ .

Supongamos que \overrightarrow{x} es una raíz de q, entonces

$$q'\left(T_{rs}^{+}\left(\overrightarrow{x}\right)\right) = q\left(T_{rs}^{-}\left(T_{rs}^{+}\left(\overrightarrow{x}\right)\right)\right) = q\left(\overrightarrow{x}\right) = 1$$

y por tanto T_{rs}^+ es una raíz de q'. Esto nos dice que de hecho T_{rs}^+ es una función biyectiva entre los conjuntos $S\left(q\right)$ y $S\left(q'\right)$, e inyectiva en los conjuntos $R\left(q\right)$ y $R\left(q'\right)$. De aqui concluimos que $\left|S\left(q\right)\right|=\left|S\left(q'\right)\right|$ y que $\left|R\left(q\right)\right|\leqslant\left|R\left(q'\right)\right|$; mostraremos que esta desigualdad es estricta.

Denotamos con $\overrightarrow{e} = (d_1, d_2, \dots, d_n)$ al vector tal que d_k y d_i para todo $i \neq k$. Sea $\overrightarrow{z} = \overrightarrow{e_s} - \overrightarrow{e_r}$. Notamos que

$$q(\overrightarrow{z}) = (-1)^2 + 1^2 + q_{rs}(-1)(1) = 1$$

por lo que $\overrightarrow{z} \in S(q)$ pero $\overrightarrow{z} \notin R(q)$ (porque tiene un -1 en la entrada r-ésima). Sin embargo $T_{rs}^+(\overrightarrow{z}) = \overrightarrow{e_s}$, es decir que $\overrightarrow{z} \in R(q')$. Como $\overrightarrow{z} \in R(q')$ pero $\overrightarrow{z} \notin R(q)$, entonces |R(q)| < |R(q')|.

Finalmente, si denotamos por q_1, q_2, q_3, \ldots a la sucesión de valores que toma la variable q de el algoritmo 2.1 entonces de lo anterior tenemos que

$$|S(q_1)| = |S(q_2)| = |S(q_3)| = \cdots$$

 $|R(q_1)| < |R(q_2)| < |R(q_3)| < \cdots$

Si estas sucesiones fuesen infinitas entonces eventualmente contradecimos que $R(q_i) \subseteq S(q_i)$, por lo tanto el algoritmo 2.1 solamente puede hacer un número finito de iteraciones de ciclo **mientras**. Una breve vista al pseudocodigo nos muestra que esto ocurre cuando \mathbf{B}_q ya no contiene aristas punteadas, por lo tanto al término de este ciclo \mathbf{B}_q contiene solamente aristas sólidas. Como habíamos supuesto que q es positiva y como cada q_i es \mathbb{Z} -equivalente a q, entonces el lema 1.8 nos garantiza que cada componente conexa de \mathbf{B}_q es una gráfica de Dynkin.

Con esto concluye la demostración de el teorema 1.7.

2.2. ENSAMBLAJE POR A-BLOQUES

VISIÓN GENERAL DEL ENSAMBLE En [4] se aborda el problema de caracterizar las formas de tipo \mathbb{A}_n ; pero en lugar de basarse en transformaciones, se basa en la construcción de las gráficas Δ tales que q_{Δ} es de tipo \mathbb{A}_n . La idea es ir "pegando" ciertas gráficas como si fueran bloques de construcción. La estructura de estos bloques es muy sencilla: Se parte de dos conjuntos de vértices V_0 y V_1 ; entre los vértices (u,v) hay una arista punteada v_1,v_2,v_3 en otro caso. A las gráficas así obtenidas les llamaremos \mathbb{A} -bloques y las denotaremos por $F_{m,m'}$ donde $m=|V_0|$ y $m'=|V_1|$ (pero acostumbramos a escribir $m\geqslant m'$). La figura 2.3 muestra cómo dibujar un \mathbb{A} -bloque. [1][4]

Figura 2.2: Algunos ejemplos de A-bloques.

Figura 2.3: Como se construye un A-bloque.

El resultado principal de [4] es que todas las formas unitarias de tipo \mathbb{A}_n se construyen pegando \mathbb{A} -bloques sobre un árbol como se explica a continuación:

1. Se comienza con un árbol T de vértices $\{1,2,\ldots,t\}$ y a cada vértice $i\in T$ se le asocia un \mathbb{A} -bloque \mathcal{B}_i .

2. A cada arista i— $j \in T$ se le asocian los vértices σ_i (i—j) $\in \mathcal{B}_i$ y σ_j (i—j) de manera que cada función σ_k sea inyectiva.

3. Para cada arista i— $j \in T$ se identifican los vértices σ_i (i—j) y σ_j (i—j), es decir, se pegan para volverse uno solo. Continuando con este ejemplo obtenemos la figura 2.4

Figura 2.4: Esta gráfica define a una forma de tipo \mathbb{A}_{19}

LOS A-BLOQUES

A continuación trataremos de justificar el ensamble de \mathbb{A} -bloques a partir del siguiente resultado tomado de [5]:

<u>Teorema</u> 2.5. Si q_G es de tipo \mathbb{A}_n , y si H es una subgráfica conexa inducida por m vértices de G, entonces q_H es de tipo \mathbb{A}_m .

Comencemos con un caso especial de gráficas: las gráficas circulares son aquellas en los que cada vértice está conectado con exactamente otros dos vértices. Nos interesa saber cuáles gráficas circulares definen formas cuadráticas de tipo \mathbb{A}_n . Ciertamente $F_{3,0}$ y $F_{2,1}$ son unas

de estas (lo podemos comprobar usando el algoritmo 2.1)

Trataremos de simplificar un poco el problema. Las gráficas circulares de la figura 2.5 definen formas \mathbb{Z} -equivalentes: podemos pasar de una a otra mediante las matrices elementales E_i^{-1} de tamaño n. No es difícil comprobar que estas matrices tienen el efecto de intercambiar aristas sólidas con punteadas siempre que estas incidan en el vértice x_i . De hecho, este mismo razonamiento muestra que toda gráfica circular es equivalente a otra gráfica circular estandarizada, que consiste de aristas sólidas y posiblemente una sola arista punteada.

Figura 2.5: Ejemplos de gráficas circulares.

Podemos descartar a las gráficas que no tienen ninguna arista punteada por que son de tipo \tilde{A}_m , es decir, no son positivas. Denotemos con C(n) a el grafo circular de n vértices que tiene exactamente una arista punteada x_n y las demás sólidas:

Con el algoritmo 2.1 podemos comprobar directamente que C(4) tiene tipo Dynkin D_4 . Si $n \ge 4$, aplicando la inflación T_{n1}^- y borrando el vértice x_n de C(n) se obtiene C(n-1), de modo que por inducción y el teorema 2.5, todas las gráficas C(n) con $n \ge 3$ no pueden ser de tipo \mathbb{A}_n . Hemos mostrado el siguiente lema:

<u>Lema</u> 2.6. Las únicas gráficas circulares G tales que q_G es de tipo \mathbb{A}_n son $F_{3,0}$ y $F_{2,1}$.

Una gráfica es k-conexa si no existe ningún subconjunto de k-1 vértices tales que su borrado desconecte a la gráfica. Dicho de otro modo, si κ denota la cantidad mínima de vértices que es necesario borrar para obtener una gráfica disconexa, entonces $\kappa \geqslant k$. Por ejemplo, toda gráfica conexa es automáticamente 1-conexa y toda gráfica completa K_n es k-conexa para todo $k \in \{1, 2, \ldots, n\}$. De hecho, por definición tenemos que si G es una gráfica k-conexa entonces también es (k-1)-conexa, (k-2)-conexa, etc. Otro ejemplo: las gráficas circulares son gráficas biconexa(2-conexos). Ahora supongamos que \mathbf{B}_q es biconexa y que q es de tipo \mathbb{A}_n ; mostraremos que \mathbb{B}_q es un \mathbb{A} -bloque.

Primero mostraremos que \mathbf{B}_q debe ser una gráfica completa. Supongamos que no es así y sea S el conjunto de vértices más pequeño tal que al borrarlos de \mathbf{B}_q la gráfica se vuelve disconexa y defínase $\kappa = |S|$. Sabemos que \mathbf{B}_q es 2-conexa, y además que la ausencia de la arista u—v porque \mathbf{B}_q no es completa) nos permite obtener una gráfica disconexa borrando todos los

vértices excepto u y v; por lo tanto tenemos que $2 \leqslant \kappa \leqslant n-2$. Seleccionamos cualesquiera $\kappa-2$ vértices del conjunto S y los borramos de la gráfica \mathbf{B}_q para obtener otra gráfica \mathbf{B}_q' . Por la definición de S sabemos que \mathbf{B}_q' es una gráfica biconexa pero no triconexa(3-conexa). Es decir, en \mathbf{B}_q' existen dos vértices x e y tales que al borrarlos de B_q' se obtiene una gráfica de dos componentes conexos \mathcal{B}_0 y \mathcal{B}_1 . Consideremos el camino más corto $x \leadsto y$ que inicia en x pasa solamente por vértices de \mathcal{B}_0 y termina en y, juntemos este camino con el camino más corto $y \leadsto x$ que inicia en y, pasa solamente por vértices de \mathcal{B}_1 y termina en x. Esta unión forma un ciclo $x \leadsto y \leadsto x$, pero habíamos supuesto que q es de tipo \mathbb{A}_n , por tanto el lema 2.6 nos dice que \mathbb{B}_q' contiene la siguiente subgráfica inducida (sin tomar en cuenta si las aristas son sólidas o punteadas):

Aquí $z \in \mathcal{B}_0$, $w \in \mathcal{B}_1$ y no existe la arista z—w(en otro caso \mathbf{B}_q seguiría conectada después de quitar los vértices x e y). Otra vez mediante el uso del algoritmo 2.1 se puede demostrar que no importa cuáles aristas sean sólidas o punteadas, esta gráfica no es de tipo \mathbb{A}_n , en contradicción con el teorema 2.5; por lo tanto tenemos:

<u>Lema</u> 2.7. Si $q: \mathbb{Z}^n \to \mathbb{Z}$ es una forma unitaria de tipo \mathbb{A}_n y si \mathbf{B}_1 es una gráfica biconexa, entonces \mathbf{B}_q es una gráfica completa.

El siguiente lema se puede leer *entre líneas* en el artículo mencionado; aquí solamente se está recalcando su importancia porque haremos referencia a este lema en capítulos posteriores:

<u>Lema</u> 2.8. Si toda subgráfica de B_q inducida por tres vértices es $F_{3,0}$ o $F_{2,1}$, entonces B_q es un A-bloque.

Demostración. Fijemos un vértice u y definamos los conjuntos

$$V_0 = \{u\} \cup \{v \mid \text{ existe una arista punteada } u \cdots v\}$$

 $V_1 = \{v \mid \text{ existe una arista solida } u v\}$

Considérese a otros dos diferentes vértices v y w en \mathbf{B}_q . Por hipótesis tenemos que los vértices u, v y w inducen una subgráfica $F_{3,0}$ o $F_{2,1}$. Por la definición de V_0 y V_1 concluimos que si dos vértices v, w están en el mismo V_i entonces hay una arista punteada v.....w; y en otro caso (están en conjuntos diferentes) hay una arista sólida v...w; por lo tanto Bq es un A-bloque.

Vamos a recapitular lo que hemos visto hasta ahora:

1. El lema 2.7 nos dice que si q es de tipo \mathbb{A}_n y si \mathbf{B}_q es biconexa, entonces \mathbf{B}_q es, de hecho, completa.

- 2. Pero por el teorema 2.5 cada subgráfica inducida de B_q debe definir otra forma de tipo \mathbb{A}_n .
- 3. En particular, como \mathbf{B}_q es completa, el lema 2.6 nos dice que toda subgráfica inducida por cada tres vértices de B_q es $F_{3,0}$ o $F_{2,1}$.
- 4. Entonces, por lema 2.8 concluimos que \mathbf{B}_q es un \mathbb{A} -bloque.

Ahora vamos a mostrar el recíproco: que todo \mathbb{A} -bloque es biconexo y que define una forma de tipo \mathbb{A}_n . La biconexidad es obvia puesto que todo \mathbb{A} -bloque $F_{m,m}$ es una gráfica completa. Ahora bien, renombremos a los vértices en V_0 como x_1, x_2, \ldots, x_m ; y a los de V_1 como $x_{m+1}, x_{m+2}, \ldots, x_n$. Podemos deshilar a \mathbf{B}_q en dos etapas: en la primera quitamos todas las aristas punteadas que hay entre los vértices de V_1 usando las inflaciones T_{i+1}^- en orden $i=n-1, n-2, \ldots, m+1$ y en la segunda las punteadas que hay en V_0 usando las inflaciones T_{i+1i}^- en orden $i=1,2,\ldots,m-1$.

Para mostrar que este método de deshilado funciona, supongamos que $m \ge 0$ y $m' \ge 0$ y sean $V_0 = \{x_1, \ldots, x_m\}$ y $V_1 = \{x_{m+1}, \ldots, x_n\}$ los conjuntos que definen a $F_{m,m'}$. Sea x_r incidente en x_{n-1} .

- Si $x_r = x_n$ entonces la arista $x_{n-1} \cdots x_n$ se sustituye por $x_{n-1} x_n$.
- Para todos los x_r tales que exista una arista punteada x_r x_{n-1} se tiene que $x_r \in V_1$ y el arrastre forma una arista sólida x_r x_n que se cancela con la arista x_r x_n ; por lo tanto luego de aplicar T_{n-1n}^- en el vértice x_n no incide ninguna arista punteada.
- Para todos los x_r tales que exista una arista sólida x_r — x_{n-1} se tiene que $x_r \in V_0$ y el arrastre forma una arista punteada x_r — x_n que se cancela con la arista x_r — x_n ; por lo tanto luego de aplicar T_{n-1n}^- en el vértice x_n no incide ninguna arista sólida.

De lo anterior concluimos que al aplicar T_{n-1n}^- a $F_{m,m'}$ se obtiene $F_{m,m'-1}$ unida con una arista sólida x_{n-1} — x_n ; luego entonces por inducción se sigue la sucesión de inflaciones $\left(T_{ii+1}^-\right)_{i=n-1}^{m+1}$ sobre el grafo $F_{m,m'}$ produce la gráfica $F_{m,1}$ unido con x_{m+1} — \cdots — x_n . Un razonamiento similar muestra que la sucesión de inflaciones $\left(T_{i+1i}^-\right)_{i=1}^{m-1}$ aplicadas a $F_{m,1}$ produce $F_{m,m'}$. Por lo tanto el método descrito transforma $F_{m,m'}$ en $\mathbb{A}_{m,m'}$.

Figura 2.6: Deshilando $F_{4,3}$

Se ha demostrado lo siguiente:

<u>Lema</u> 2.9. q es una forma unitaria de tipo \mathbb{A}_n con \mathbf{B}_q biconexa si y solamente si \mathbf{B}_q es un \mathbb{A} -bloque.

ENSAMBLAJE DE FORMAS \mathbb{A}_n

Ahora sí tenemos las herramientas necesarias para justificar el ensamble de \mathbb{A} -bloques. Primero veamos que todo ensamble de \mathbb{A} -bloques en verdad define una forma unitaria de tipo \mathbb{A}_n .

Supongamos que T es el árbol que subyace en un pegado de \mathbb{A} -bloques. Si este árbol tiene un solo vértice entonces ya acabamos por el lema 2.9 recién mostrado. En otro caso, como T es un árbol, debe haber un vértice t de grado 1 (podría decirse que t es una hoja del árbol). Entonces el \mathbb{A} -bloque asociado al vértice t, que es $\mathcal{B}_t = F_{m,m'}$, comparte exactamente un vértice v con algún otro \mathbb{A} -bloque $\mathcal{B}_s(*)$. Ahora apliquemos la técnica deshilado explicada justo antes del lema 2.9, pero renombrando al vértice v como $x_{m,m'}$, de manera que este deshilado no afecta en absoluto a ningún otro vértice de \mathcal{B}_s . Lo que veremos (*) es que ahora del vértice v cuelga la siguiente gráfica:

Figura 2.7: Esquemática de la fusión de dos A-bloques

$$x_{m+m'}$$
 $x_{m+m'-1}$ x_3 x_2 x_3

Esto se parece a lo que se obtiene durante los pasos intermedios para deshilar un A-bloque; esto sugiere hacer el proceso inverso, es decir, utilizar las deflaciones.

Podemos usar las deflaciones para tejer los vértices de \mathcal{B}_t en \mathcal{B}_s aplicando sucesivamente $T_{i+1,i}$ en orden $i=m+m^{'}-1,m+m^{'}-2,\ldots,3,2,1$ (porque precisamente este es el proceso inverso al de deshilado). Cada vez que hacemos esto estamos, en cierto sentido, agregando x_i a \mathcal{B}_s ; de manera que al término de estas deflaciones tendremos todos los vértices de \mathcal{B}_s y \mathcal{B}_t en un mismo \mathbb{A} -bloque $\mathcal{B}_s^{'}$. Así hemos mostrado cómo fusionar dos \mathbb{A} -bloques del árbol en uno solo, repitiendo este proceso podemos fusionarlos todos, mostrando así que todo ensamble de \mathbb{A} -bloques es equivalente a un solo \mathbb{A} -bloque. *

Figura 2.8: Ejemplo de fusión de dos A-bloques

<u>Lema</u> 2.10. Si G es una gráfica construida por un ensamble de árbol de \mathbb{A} -bloques, entonces q_G es de tipo \mathbb{A}_n .

Falta mostrar el converso: que si G es una forma unitaria con tipo Dynkin \mathbb{A}_n entonces se puede construir mediante un ensamble de árbol de \mathbb{A} -bloques. Una **componente biconexa** de una gráfica, es una subgrafo biconexo maximal (no contenida propiamente en ninguna otra subgrafo biconexo). La manera más fácil de entender a las componentes biconexos es mediante los **puntos de articulación**, que son los vértices de la gráfica que al quitarlos la deja desconectada.

Figura 2.9: Una gráfica sus puntos de articulación y componentes biconexas

Lema 2.11. Las componentes biconexas de una gráfica particionan al conjunto de aristas.

Demostración. Cada arista es por sí misma una subgráfica biconexa, y por lo tanto pertenece a una subgráfica biconexa maximal; por otro lado ninguna arista puede pertenecer a dos componentes biconexas, por que si este fuera el caso entonces podríamos pegar ambas componentes por medio de la arista que tienen en común, mostrando así que no eran maximales.

Del teorema 2.5 y del lema 2.9 se concluye que si q es de tipo \mathbb{A}_n entonces las componentes biconexas de \mathbf{B}_q son \mathbb{A} -bloques. Supongamos que $\mathcal{B}_1, mathcal \mathcal{B}_2, \ldots, \mathcal{B}_t$ son las componentes biconexas de \mathbf{B}_q , y formemos una nueva gráfica T de vértices $\{1, 2, \ldots, t\}$, donde cada arista i—j representa que \mathcal{B}_i y \mathcal{B}_j , con $i \neq j$, tienen un vértice en común (este debe ser un punto de articulación de \mathbf{B}_q). Más aún, si \mathcal{B}_i y \mathcal{B}_j comparten el vértice v definiremos σ_i (i—j) = σ_j (i—j) = v.

Debido a la manera en que construimos las funciones σ_k y la gráfica T, tenemos que las siguientes tres afirmaciones son equivalentes:

- 1. Cada función σ_k es inyectiva
- 2. T es un árbol
- 3. Ningún punto de articulación pertenece a tres o más componentes biconexas

Por lo tanto basta mostrar cualquiera de estas afirmaciones. Mostraremos la tercera afirmación por inducción. Si \mathbf{B}_q no tiene puntos de articulación, por vacuidad ningún punto de articulación pertenece a tres o más componentes biconexas. Ahora supongamos que \mathbf{B}_q tiene al menos un punto de articulación v; entonces $\mathbf{B}_q - v$ tiene componentes conexas $\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_\ell$.

CAPÍTULO 2. ANTECEDENTES

Defínase D_i como la subgráfica de \mathbf{B}_q inducida por los vértices $V(\mathcal{C}_i) \cup \{v\}$. Por teorema 2.5 cada $q_{\mathcal{C}_i}$ es de tipo \mathbb{A}_{n_i} y por hipótesis de inducción, cada C_i se construye haciendo un ensamble de árbol de \mathbb{A} -bloques (ningún \mathcal{C}_i tiene puntos de articulación que pertenezcan a tres o más componentes biconexas). Ahora, mediante el proceso previamente descrito, deshilemos a cada \mathcal{C}_i para convertirlo en un grafo \mathbb{A}_{n_i} que tenga a v como extremo. Luego entonces v es el centro de una gráfica de estrella de ℓ picos y sin aristas punteadas; pero habíamos supuesto que \mathbf{B}_q es de tipo \mathbb{A} , de manera que el algoritmo 2.1 nos dice que $\ell=2$. Por lo tanto v, que es un punto de articulación cualquiera, solamente puede pertenecer a exactamente dos componentes biconexas.

Así tenemos el siguiente teorema:

<u>Teorema</u> 2.12. Una forma unitaria q es de tipo \mathbb{A}_n si y solamente si \mathbf{B}_q se construye mediante un ensamble de árbol de \mathbb{A} -bloques.

Sin embargo, para los fines de este trabajo es más conveniente reinterpretar este resultado utilizando otras palabras (pero la demostración es la misma):

Corolario 2.13. Una forma unitaria q es de tipo \mathbb{A}_n si y solo si \mathbf{B}_q es conexa, sus componentes biconexas son \mathbb{A} -bloques y todo punto de articulación pertenece a exactamente dos de estas componentes.

COMPONENTES TRICONEXAS

Para esta parte se utilizan los conceptos generados por [16] y mejorados por [11].

3.1. DIVIDIR UNA GRÁFICA EN COMPONENTES TRICONEXAS

3.1.1. INTRODUCCIÓN

Las propiedades de conectividad de las gráficas forman una parte importante de la teoría de gráficas. En [16] se considera el problema de separar una gráfica en sus componentes triconexas. Un algoritmo para esto es de utilidad para analizar circuitos eléctricos [2], para determinar si una gráfica es plana [6] y para determinar cuando dos gráficas planas son isomorfas [15]. Un algoritmo para planaridad puede ser usado en el diseño de tablas de circuitos; un algoritmo para isomorfismo de gráficas planas puede ser usado para probar el isomorfismo estructural de compuestos químicos [19] y en nuestro caso para ayudar a clasificar gráficas de Dynkin de tipo \mathbb{D}_n .

Una técnica que se ha utilizado para resolver problemas de conectividad es el recorrido primero en profundidad. En [23] y [13], se aplica la búsqueda primero en profundidad para obtener algoritmos eficientes para determinar las componentes biconexas de una gráfica no dirigida y para determinar las componentes fuertemente conexas de una gráfica dirigido. El método también se ha utilizado en un algoritmo eficiente para pruebas de planaridad ([25], [14]) y en un algoritmo para encontrar dominadores en un grafo de flujo [26]. Aquí se aplica la búsqueda primero en profundidad al problema de encontrar las componentes triconexas de una gráfica. Los métodos antiguos para determinar estos componentes requieren $\Theta\left(V^3\right)$ pasos o más, si el la gráfica tiene V vértices([2], [17]). El algoritmo descrito aquí requiere sustancialmente utilizamos la combinación de los artículos [16] y mejorados por [11].

Se usa la siguiente notación para especificar límites: si f y g son funciones de x, digamos que

f(x) es $\Theta(g(x))$ si, para algunas constantes k_1 y k_2 , $|f(x)| \leq k_1 |g(x)| + k_2$ para todo x

3.1.2. Gráficas, conectividad y busqueda en profundidad

Las definiciones utilizadas aquí se ven [7] y [12]. Las componentes triconexas pueden definirse de varias maneras, todas más o menos equivalentes. Los resultados a continuación, se dan sin prueba, siguen de Saunders Maclaine [20]; estas definiciones se modifican un poco para hacerlos más adecuadas para aplicaciones computacionales.

Una gráfica $G = (\mathcal{V}, \mathcal{E})$ consiste de un conjunto \mathcal{V} que contiene V vértices y un conjunto \mathcal{E} que contiene E aristas. Si \mathcal{E} es un conjunto de aristas en G, $\mathcal{V}\left(\mathcal{E}'\right)$ es el conjunto de vértices que inciden a uno o más aristas en \mathcal{E} . Si S es un conjunto de vértices en G, $\mathcal{E}\left(\mathcal{S}\right)$ es el conjunto de aristas incidentes a al menos un vértice en S.

Un camino $p:v \stackrel{*}{\Rightarrow} w$ en G es una secuencia de vértices y aristas que van de v a w. Un camino es simple si todos sus vértices son distintos. Un camino $p:v \stackrel{*}{\Rightarrow} v$ es un ciclo si todas las aristas son distintas y el único vértice que se repite en p es v y este está al principio y al final de la secuencia de vértices. Un gráfica no dirigida(sin dirección) es conexa(esta conectada) si para cada par de vértices (v,w) existe un camino entre (v,w). Sea $G=(\mathscr{V},\mathscr{E})$ y sea $G'=(\mathscr{V},\mathscr{E})$ dos gráficas tales que $\mathscr{V}'\subseteq\mathscr{V}$ y $\mathscr{E}'\subseteq\mathscr{E}$ entonces G es una subgráfica de G. Una gráfica con exactamente dos vértices v,w y uno o más aristas (v,w) se le dice enlace.

Un árbol T (dirigido, enraizado) es una gráfica dirigida cuya versión no dirigida es conexa, que tienen un vértice (llamado raíz) y en el que cualquier par de vértices están conectados por exactamente un camino. La relación "(v,w) es una arista de T" se denota por $v \to w$. La relación "hay un camino de v a w en T" se denota por $v \stackrel{*}{\to} w$. Si $v \to w$, donde v es el padre de w, y w es un hijo de v. Si $v \stackrel{*}{\to} w$, entonces v en un ancestro de v y v es un descendiente de v. El conjunto de descendientes de un vértice v se denota por v0. Todo vértice es ancestro y descendiente de sí mismo. Si v0 es una gráfica no dirigida, un árbol v1 es un árbol generador de v2 si v3 un subgráfica de v4 contiene todos los vértices de v5.

Sea P una gráfica no dirigida que consta de dos conjuntos disjuntos de aristas, denotados por $v \to w$ y $v \to w$. Supongamos que P satisface las siguientes propiedades:

- 1. La subgráfica T que contiene las aristas $v \to w$ es un árbol generado de P.
- 2. Si $v \to w$, entonces $w \stackrel{*}{\to} v$. Es decir, cada arista que no está en el árbol generador T de P conecta el vértice w con uno de sus ancestros v en T.

Entonces a P llamaremos árbol de recorrido. Las aristas $v \to w$ las llamaremos aristas de retroceso de P.

3.1. DIVIDIR UNA GRÁFICA EN COMPONENTES TRICONEXAS

Un gráfica conexa G es **biconexa** si por cada tripleta de vértices distintos v, w y a en V, hay un camino $p:v\stackrel{*}{\to}w$ tal que a no está en el camino p. Si hay una tripleta distinta v, w, a tal que a está en cada camino de $p:v\stackrel{*}{\to}w$, entonces se dice que a es un **punto** de separación (o **punto** de articulación) de G. Podemos particionar las aristas de G de manera que dos aristas están en el mismo bloque de la partición si y sólo si pertenecen a un ciclo. Sea $G_i = (V_i, E_i)$ donde E_i es el conjunto de aristas en el i-ésimo bloque de la partición, y $V_i = V(E_i)$. Entonces lo siguiente se cumple:

- 1. Cada G_i es biconexa.
- 2. Ningún G_i es una subgráfica propia de una subgráfica biconexa de G.
- 3. Cada vértice de G que no sea un punto de articulación de G está exactamente una vez entre los V_i y cada punto de articulación está al menos dos veces.
- 4. Para cada $i, j, i \neq j, V_i \cap V_j$ contiene como máximo un vértice; además, este el vértice (si existe) es un punto de articulación.

Los subgráficas G_i de G se denominan **componentes biconexas** de G. Las componentes biconexas de G son únicas.

Definición 3.1. Sea G = (V, E) una gráfica y sea H = (W, F) una subgráfica de G, definimos una relación de equivalencia sobre EF como sigue:

- 1. $\forall e \in E F, e = e$
- 2. $\forall e, f \in E F$ con $e: a_1$ - b_1 y $f: a_2$ - b_2 , entonces e = f si y solo si existe un camino de los siguientes tipos:
 - $a_1-b_1-v_1-v_2-\cdots-v_k-a_2-b_2$ tal que $b_1, v_1, \ldots, v_k, a_2 \notin W$
 - $a_1-b_1-v_1-v_2-\cdots-v_k-b_2-a_2$ tal que $b_1, v_1, \ldots, v_k, b_2 \notin W$
 - $b_1-a_1-v_1-v_2-\cdots-v_k-a_2-b_2$ tal que $a_1, v_1, \ldots, v_k, a_2 \notin W$
 - $b_1-a_1-v_1-v_2-\cdots-v_k-b_2-a_2$ tal que $a_1, v_1, \ldots, v_k, b_2 \notin W$

Si $H = \{\{a, b\}, \emptyset\}$, las clases de equivalencia son llamadas clases de separación relativas al par $\{a, b\}$.

Definición 3.2. Sean S_1, S_2, \ldots, S_k , las clases de separación relativas al par (a, b). Si existe una partición (A, b) de $\{1, 2, \ldots, k\}$ tal que $|E_1 = \bigcup_{i \in A} S_i| \ge 2$ y $|E_2 = \bigcup_{j \in B} S_j| \ge 2$ decimos que $\{a, b\}$ es un par de separación. Veamos esto en el siguiente ejemplo.

Ejemplo 3.1. Sea G el bigrafo y $H = \{\{2,3\},\emptyset\}$

CAPÍTULO 3. COMPONENTES TRICONEXAS

La clase de equivalencia de 2—5 es el conjunto:

$$S_1 = \{2-5, 5 - 3\}$$

La clase de equivalencia de 1 ··· 4 es el conjunto:

$$S_2 = \{2 - 1, 1 - 4, 4 - 3\}$$

La clase de equivalencia de 2—3 es el conjunto:

$$S_3 = \{2-3\}$$

Para saber si $\{2,3\}$ es un par de separación hay que encontrar una partición de $\{1,2,3\} = A \cup B$, $A \cap B = \{\emptyset\}$ tal que se cumpla que $|E_1 = \bigcup_{i \in A} S_i| \ge 2$ y $|E_2 = \bigcup_{j \in B} S_j| \ge 2$. En este caso $A = \{1,3\}$, $B = \{2\}$ es una partición posible que buscamos y entonces $\{2,3\}$ es un par de separación.

Ahora supongamos $\{a,b\}$ es un par de separación. Si $H=\{\{a,b\},\emptyset\}$ y S_1,S_2,\ldots,S_k son las clases de separación del par $\{a,b\}$ (las clases de equivalencia definidas por H). Sea A,B la partición del conjunto $\{1,2,\ldots,k\}$ tal que $|E_1=\bigcup_{i\in A}S_i|\geqslant 2$ y $|E_2=\bigcup_{j\in B}S_j|\geqslant 2$. Si $H_1=(V(E_1),E_1)$ y $H_2=(V(E_2),E_2)$ entonces, $V(E_1)\cap V(E_1)=\{a,b\}$ donde la arista a—b es llamada arista virtual. Sea $G_i=H_i+\{a,b\}$ para $i\in\{1,2\}$. Los G_i son las gráficas de separación de G en $\{a,b\}$. A la operación de reemplazar la gráfica G por dos gráficas de separación llamaremos **separación** de G. Debe de haber muchas formas posibles de separación se denota por S(a,b,i); donde S0 es un etiqueta que distingue esta operación de separación de otras separaciones. Una arista virtual S1 asociada con la separación S2 también es biconexa.

Si hay al menos dos clases de separación, entonces $\{a,b\}$ es una **par de separación** de G a menos que (i) haya exactamente dos clases de separación y una clase consta de una sola arista, o (ii) hay exactamente tres clases, cada una de las cuales consta de una sola arista.

Si G es una gráfica biconexa tal que ningún par $\{a,b\}$ es un par de separación de G, entonces G es **triconexa**.

Figura 3.1: Ejemplos de componentes triconexas

Supongamos que separamos una gráfica G, las gráficas de separación se dividen, y así sucesivamente, hasta que no sean posibles más separaciones (cada gráfica restante es triconexa). Los gráficas construidas de esta manera se denominan **componentes de separación** de G. Los componentes de separación de una gráfica no son necesariamente únicos. <u>Lema</u> 3.1. Sea G = (V, E) un gráfica con $|E| \ge 3$. Sea $G_1, G_2, \ldots G_m$ los componentes de separación de G. Entonces el número total de aristas en G_1, G_2, \ldots, G_m está delimitado por 3|E|-6.

Demostración. El lema se demuestra por inducción sobre el número de aristas de G. Si G tiene 3 aristas, el lema es inmediato, porque G no se puede separar. Supongamos que el lema es cierto para gráficas con n-1 aristas y supongamos que G tiene G aristas. Si G no puede ser dividido, el lema es verdadero para G. Supongamos, por otro lado, que G se puede separar en G' y G'', donde G' tiene G'

Para obtener las componentes triconexas únicas, debemos volver a unir parcialmente los componentes de separación. Supongamos que $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son dos componentes de separación, ambos con una arista virtual (a, b, i). Sea

$$G = (V_1 \cup V_2, (E_1 - \{(a, b, i)\}) \cup (E_2 - \{(a, b, i)\}))$$

Entonces a G se le llama una **gráfica de unión** de G_1 y G_2 ; la operación de unión se denotará por m(a,b,i). La unión es la inversa de la separación; si realizamos un suficiente número de uniones en los componentes divididos de una gráfica, recreamos la gráfica original.

Los componentes de separación de una gráfica son de tres tipos:

- 1. enlaces triples de la forma $(\{a,b\},\{(a,b),(a,b),(a,b)\})$ 3.1b
- 2. triángulos de la forma $(\left\{a,b,c\right\},\left\{\left(a,b\right),\left(a,c\right),\left(b,c\right)\right\})$ 3.1a
- 3. gráficas triconexas 3.1c

Sea G una gráfica cuyos componentes de separación son un conjunto de enlaces triples \mathcal{B}_3 , un conjunto de triángulos \mathscr{F} y un conjunto de gráficas triconexas \mathscr{C} . Supongamos que los enlaces triples \mathcal{B}_3 se unen tanto como sea posible para dar un conjunto de enlaces \mathscr{B} y que los triángulos \mathscr{F} se unen tanto como sea posible para dar un conjunto de polígonos \mathscr{P} . Entonces el conjunto de gráficas $\mathscr{B} \cup \mathscr{P} \cup \mathscr{C}$ es el conjunto de componentes triconexas de G. Si G es una gráfica arbitraria, las componentes triconexas de las componentes biconexas de G se les llama **componentes triconexas** de G.

<u>Lema</u> 3.2. Las componentes triconexas de una gráfica G son únicas

Demostración. Prueba. Ver [20], [8] y [24]. \Box

Tomemos como ejemplo el siguiente grafo para mostrar todo el procedimiento.

Figura 3.2: Una gráfica biconexa G con pares de separación (1,4), (4,5), (1,8), (12,8)

Figura 3.3: Componentes de separación de G las componentes triconexas se forma al unir los triangulos (1,4,5) y (1,5,8)

Los algoritmos de gráficas requieren una forma sistemática de explorar una gráfica. En el articulo [16] se utiliza un método llamado **búsqueda en profundidad**. Para llevar a cabo una búsqueda en profundidad en G, se comienza desde algún vértice s y se elije una arista

3.1. DIVIDIR UNA GRÁFICA EN COMPONENTES TRICONEXAS

que vaya desde s a otro vértice w en el gráfica, después se marca el vértice s como visitado y se elige ahora w como punto de partida ahora vamos a elegir alguna arista que conecta w cuyo vértice que la conecta a w aun no haya sido visitado si cumple esto elegimos esta arista y marcamos a w como visitado y continuamos así hasta que ya no haya vértices a los cuales visitar. Si G es conexa, cada arista se recorre exactamente una vez*.

Si G no es dirigida, una búsqueda sobre G impone una dirección en cada arista de G dada por la dirección en la que se recorre la arista durante la búsqueda. Así la búsqueda convierte G en una gráfica dirigida G'.

<u>Lema</u> 3.3. Sea P la gráfica dirigida generada por una búsqueda en profundidad de una gráfica no dirigida conexa G. Entonces P es un árbol de recorrido.

Demostración.	V_{0000}		
пленноѕитастон.	vease (Zo).		

La búsqueda primero en profundidad es importante porque la estructura de los caminos en un árbol es muy simple. Para implementar una búsqueda en profundidad de una gráfica, usamos un procedimiento recursivo simple que mantiene una pila de los viejos vértices con posiblemente aristas inexploradas. Para representar un gráfica, se utiliza un conjunto de **listas de adyacencia**, uno para cada vértice. Si v es un vértice la lista de adyacencia A(v) contiene todos los w tales que (v, w) es una arista de G. Estas listas juntas comprenden una **estructura de adyacencia** para G. Si G no es dirigida, cada arista (v, w) se representa dos veces, una en A(v) y otra en A(w).

3.1 muestra un procedimiento recursivo para realizar una búsqueda en profundidad. La búsqueda exacta depende del orden de los aristas en las listas de adyacencia. Los números de procedimiento de los vértices del 1 al V en el orden en que se alcanzan durante el búsqueda, además de identificar arcos y ramas de el árboles de recorrido y aristas de retroceso que nos ayudan mas adelante. La referencia [23] da una prueba que el procedimiento es correcto y requiere tiempo $\Theta(V+E)$ para ejecutarse. Los vértices están numerados de modo que $NUMBER(v) \leq NUMBER(w)$ si $v \stackrel{*}{\to} w$ en el árbol generado.

Las declaraciones a, b, c, se reemplazarán cuando se use DFS para calcular otra información sobre el gráfica. En 3.4 representa el árbol formado aplicando DFS y también las aristas de backtracking $a \hookrightarrow b$ que son necesarias para nuestro algoritmo. En rojo están coloreadas las aristas de DFS y en azul el Backtracking de estas aristas y identificar los valores de lowpt1 y lowpt2.

Algoritmo 3.1: DFS(v, u)

```
// a: declaración vacía
2 para cada \ w \ in \ A(v)
      \mathbf{si} \ NUMBER(w) = 0
3
          marcamos a (v, w) como una rama de el árbol
          DFS(w,v)
5
          // b: declaración vacía
6
      si no (NUMBER(w) < NUMBER(v)) and ((w \neq u) \text{ or } \neg FLAG(v))
7
         marcamos (v, w) como arista de retroceso
8
          // b: declaración vacía
9
      \mathbf{si} \ w = u
10
          FLAG(v) = false
11
12 n = 0
13 para i = 1 to V:
      NUMBER(i) = 0
14
      FLAG(i) = True
15
16 DFS(1,0)
```


Figura 3.4: Árbol de recorrido generado por la búsqueda primero en profundidad de G en 3.2

3.1.3. La idea de el algoritmo de triconectividad

Esta sección esboza las ideas detrás del algoritmo de triconectividad. Las secciones posteriores desarrollan los componentes detallados. El algoritmo se basa en una idea de Auslander, Parter y Goldstein ([3], [10]) para probar la planaridad de los gráficas. La idea de Auslander, Parter y Goldstein da lugar a un algoritmo de tiempo $\Theta(V)$ para probar la planaridad, si la búsqueda primero en profundidad se utiliza para ordenar los cálculos de ([13], [14]). La misma idea da un tiempo $\Theta(V + E)$ para el algoritmo de encontrar componentes triconexas.

Sea G una gráfica biconexo arbitrario. Supongamos que un ciclo c se encuentra en G. Cuando se elimina el ciclo de G quedan ciertas piezas conectadas; a estos se les llama **segmentos**. Auslander y Parter [3] demuestran que G es plano si y solo si

- 1. Cualquier subgráfica de G que consta de c más un solo segmento es plano.
- 2. Los segmentos pueden combinarse consistentemente para dar una incrustación plana de todo la gráfica.

Se puede desarrollar un algoritmo de planaridad eficiente a partir de este resultado([13], [14]). A resultado similar se cumple para los pares de separación de G, es decir, el siguiente lema.

<u>Lema</u> 3.4. Sea G una gráfica biconexa y sea c un ciclo en G. Sea S_1, \ldots, S_m las subgráficas de G-c tales que e_1 y e_2 son aristas de S_i si y sólo si algún camino p en G contiene tanto e_1 como e_2 y ningún vértice de c se encuentra entre e_1 y e_2 en p. Los segmentos S_i y el ciclo c particionan las aristas de G. Sea $\{a,b\}$ un par de separación de G ,entonces se cumplen las siguientes conclusiones.

- 1. Tanto a como b se encuentran en c, o bien a y b se encuentran ambos en algún segmento S_i .
- 2. Supongamos que tanto a como b están en c. Sean p_1 y p_2 los dos caminos que componen c los cuales unen a y b. Entonces o
 - a) Algún segmento S_i con al menos dos aristas tiene solo a a y b en común con c, y algún vértice v no está en S_i ($\{a,b\}$ se le dice par de separación de "tipo 1"), o
 - b) Ningún segmento contiene un vértice $v \neq a, b$ en p_1 y un vértice $w \neq a, b$ en p_2 , p_1 y p_2 contienen cada uno un vértice además de a y b ($\{a,b\}$ se le dice par de separación de "tipo 2").
- 3. A la inversa, cualquier par $\{a,b\}$ que satisfaga (a) o (b) es un par de separación.

El lema 3.4 da lugar a un algoritmo recursivo eficiente para encontrar componentes de separación. Encontramos un ciclo en G y determinamos los segmentos formados cuando es eliminado. Probamos cada segmento en busca de pares de separación aplicando el algoritmo recursivamente y probamos el ciclo para pares de separación verificando los criterios en lema 3.4. La aplicación recursiva del algoritmo requiere encontrar ciclos en subgráficas de G formados por la combinación de un segmento S_i y el ciclo inicial c.

Podemos hacer que este algoritmo sea muy eficiente ordenando los cálculos usando búsqueda en profundidad. Cada llamada recursiva en el algoritmo requiere que encontremos un ciclo en la parte de la gráfica que se va a probar para los pares de separación. Este ciclo constará de un camino simple de aristas las cuales no están en ciclos previamente encontrados más un camino simple de aristas en ciclos no encontrados. Usamos la búsqueda primero en profundidad para separar la gráfica en caminos simples que pueden ensamblarse en estos ciclos. El primer ciclo c consistirá en una secuencia de aristas del árbol seguidos por una arista en P, el árbol formado a partir de G por búsqueda primero en profundidad. La numeración de vértices es tal que los vértices están ordenados por número a lo largo del ciclo. Cada segmento consistirá en una sola arista (v, w) o en una arista (v, w) de el árbol más un subárbol con raíz w, además todas las ramas que salen del subárbol. La búsqueda explora los segmentos en orden decreciente de v y divide cada uno en caminos simples que consisten en una secuencia de ramas de el árbol seguido por una vértice.

Encontrar caminos en realidad requiere dos búsquedas porque la búsqueda de caminos debe llevarse a cabo en un orden especial para tener éxito, y ciertos cálculos preliminares son necesarios. La sección sobre cómo encontrar pares de separación describe la proceso de búsqueda de caminos en detalle e incluye una versión del lema 3.4 que caracteriza pares de separación en términos de los caminos generados. La sección de encontrar componentes de separación indica cómo se pueden usar estos resultados para determinar los componentes de separación de una gráfica biconexa en tiempo $\Theta\left(V+E\right)$.

Para determinar las componentes triconexas de una gráfica arbitrarias, encontramos las componentes biconexas de la gráfica usando el algoritmo $\Theta\left(V+E\right)$ descrito en [23] y [13]. A continuación, los componentes de separación de cada componente biconexa se encuentran utilizando el algoritmo descrito anteriormente y presentado en detalle en el siguiente dos secciones. Esto nos da los componentes de separación de toda la gráfica. El tamaño total de las componentes de separación es $\Theta\left(V+E\right)$, por el lema 3.1. A continuación identificamos el conjunto de enlaces triples \mathscr{B}_3 y el conjunto de triángulos \mathscr{T} . Para cada uno de estos dos conjuntos, construimos una gráfica auxiliar S cuyos vértices son los elementos del conjunto; dos componentes de separación están unidos por una arista en una gráfica auxiliar si tienen un arista virtual común. Los componentes conectados de $S\left(\mathscr{B}_3\right)$ y $S\left(\mathscr{T}\right)$ corresponden a los enlaces y polígonos que son componentes triconexas de G. Encontrar estos enlaces y polígonos requiere tiempo $\Theta\left(V+E\right)$. A continuación se muestra un esquema de todo el algoritmo de acuerdo a [11].

3.2. El algoritmo para encontrar componentes triconexas

Algoritmo 3.2: TRICONNECTIVITY(G)

- 1 A: Encontramos las componentes biconexas de G;
- 2 para cada componente biconexa C de G
- B: encontrar los componentes de separación de C;
- 4 C: combinar los triangulos en poligonos al encontrar las componentes conexas correspondientes a las gráficas auxiliares;

Los pasos A y C requieren tiempo $\Theta(V+E)$ si se implementan correctamente. La implementación del paso A se describe en [23]. El paso difícil es el paso B, cuya implementación se describe en el siguientes dos secciones. Con base en los resultados de estas secciones, toda el algoritmo de triconectividad esta acotado por $\Theta(V+E)$.

3.2.1. Encontrando pares de separación

Sea $G = (\mathcal{V}, \mathcal{E})$ una gráfica biconexa con vértices V y aristas E. El problema principal al separar G en sus componentes de separación radica en encontrar sus pares de separación. Esta sección da un criterio simple, basado en la búsqueda primero en profundidad, para identificar los pares de separación de una gráfica. Se deben realizar dos búsquedas en profundidad y algunos cálculos auxiliares. Estos cálculos forman la primera parte del algoritmo de componentes separación y se describen a continuación. Las definiciones de las cantidades lowpt1, ND, etc., utilizadas en el el esquema se dará posteriormente.

Paso 1 Realice una búsqueda primero en profundidad en el gráfica G, convirtiendo G en un árbol P. Numeramos los vértices de G en el orden en que se alcanzan durante la búsqueda. Calculamos lowpt1(v), lowpt2(v), nd(v) y padre(v) para cada vértice v en P.

Paso 2 Construimos una estructura de adyacencia aceptable A para P ordenando las aristas en la estructura de adyacencia de acuerdo con los valores de lowpt1 y lowpt2.

Paso 3 Realizar una búsqueda en profundidad sobre P utilizando la estructura de adyacencia A. Volvemos a numerar los vértices de A desde V a 1 en el orden en que se examinaron por última vez durante la búsqueda. Particionamos las aristas en caminos simples disjuntos. Recalculamos lowpt1(v) y lowpt2(v) utilizando los nuevos números de los vértices. Calculamos A1(v), deg(v), y highpt(v) para cada vértice v.

Los detalles de estos cálculos aparecen a continuación. Desde los pasos 1, 2 y 3, obtenemos suficiente información para determinar rápidamente los pares de separación de G. lema 3.13 da una condición para este propósito.

Supongamos que G se explora primero en profundidad, dando un árbol P. Sean los vértices de P numerados desde 1 a V de modo que $v \stackrel{*}{\to} w$ en P implica que $v \leqslant w$, si identificamos los vértices por su número. Para cualquier vértice v en P, sea padre(v) el padre de v en el árbol de P. Sea $\mathrm{ND}(v)$ el número de descendientes de v. Sea $\mathrm{lowpt1}(v) = \min\left(\{v\} \cup \{w|v \stackrel{*}{\to} - \to w\}\right)$. Es decir, $\mathrm{lowpt1}(v)$ es el vértice más bajo alcanzable desde v atravesando cero o más ramas de árbol en P seguido de en la mayoría una arista. Sea $\mathrm{lowpt2}(v) = \min\left[\{v\} \cup \left(\{w|v \stackrel{*}{\to} - \to w\} - \{lowpt1(v)\}\right)\right]$. Es decir, $\mathrm{lowpt2}(v)$ es el segundo vértice más bajo alcanzable desde v atravesando cero o más ramas de el árbol seguidas por una arista de P como máximo, a menos que $\mathrm{lowpt1}(v) = v$. En este caso, $\mathrm{lowpt2}(v) = v$.

<u>Lema</u> 3.5. $lowpt1(v) \stackrel{*}{\to} v \ y \ lowpt2(v) \stackrel{*}{\to} v \ en \ P$.

CAPÍTULO 3. COMPONENTES TRICONEXAS

misma para lowpt2(v).

Demostración. lowpt1 $(v) \leq v$ por definición. Si lowpt1(v) = v, el resultado es inmediato. Si lowpt1 $(v) \leq v$, hay una rama u- \to lowpt1(v) tal que $v \stackrel{*}{\to} u$. Como u- \to lowpt1(v) es una rama, lowpt1 $(v) \stackrel{*}{\to} u$. Como P es un árbol, $v \stackrel{*}{\to} u$ y lowpt1 $(v) \stackrel{*}{\to} u$, ya sea que $v \stackrel{*}{\to}$ lowpt1(v) o lowpt1 $(v) \stackrel{*}{\to} v$. Pero lowpt1 $(v) \leq v$. Así debe ser el caso que lowpt1 $(v) \stackrel{*}{\to} v \stackrel{*}{\to} u$, y el lema se cumple para lowpt1(v). La demostración es la

<u>Lema</u> 3.6. Supongamos que lowpt1(v) y lowpt2(v) se definen en relación con alguna numeración para la cual $v \stackrel{*}{\to} w$ en P implica NUMERO(v) < NUMERO(v). Entonces lowpt1(v) y lowpt2(v) identifican vértices únicos independientemente de la numeración usada.

Demostración. lowpt1(v) siempre identifica a un ancestro del vértice v. Además, lowpt1(v) es el ancestro con el número más bajo de v con cierta propiedad relativa al árbol P. Dado que el orden de los ancestros de v corresponde al orden de sus números, lowpt1(v) identifica a un único vértice independiente de la numeración, es decir, el primer ancestro de v a lo largo de el camino 1 $\stackrel{*}{\to}$ v tiene la propiedad deseada(Cualquier numeración satisfactoria asigna 1 a la raíz de P.) La prueba es la misma para lowpt2(v).

Los valores lowpt de un vértice v dependen solo de los valores lowpt de los hijos de v y en las ramas que salen de v; es fácil ver que si los vértices se identifican por número, entonces

$$\begin{split} lowpt1\left(v\right) &= min\left(\{v\} \cup \{lowpt1\left(w\right)|v \rightarrow w\}U\{w|v \rightarrow w\}\right) \\ \\ lowpt2\left(v\right) &= min(\{v\} \cup \left(\left(\{lowpt1\left(w\right)|v \rightarrow w\}\right.\right.\right. \\ \\ &\quad \cup \{lowpt2\left(w\right)|v \rightarrow w\} \\ \\ &\quad \cup \{w|v \rightarrow w\}\right) - \{lowpt1v\}\right)). \end{split}$$

En el caso de la gráfica anterior los valores de lowpt1 y lowpt2 son los siguientes:

vértice	lowpt1	lowpt2
1	1	1
2	1	2
$\frac{2}{3}$	1	2
4 5	1	4
	1	4
6 7 8 9	4	5 5
7	4	
8	1	8
	1	8
10	1	8 9 8
11	8	9
12	1	8
13	1	2

También tenemos $\operatorname{nd}(v) = 1 + \sum_{v \to w} \operatorname{ND}(w)$. Podemos calcular los valores de lowpt, nd y padre para todos los vértices en tiempo $\Theta(V+E)$ insertando las siguientes declaraciones para las declaraciones a, b, c en DFS. La numeración de los vértices en el orden en que se alcanzan durante la búsqueda garantiza claramente que $v \stackrel{*}{\to} w$ implica $v \leqslant w$.

Algoritmo 3.3: adiciones a DFS(G)

```
1 a: lowpt1(v) = lowpt2(v) = NUMERO(v);
     ND(v) = 1
\mathbf{2}
3 b: si lowpt1(w) < lowpt1(v)
        lowpt2(v) = min\{lowpt2(v), lowpt2(w)\}\
4
        lowpt1(v) = lowpt1(w)
5
     si no lowpt1(w) = lowpt1(v)
6
        lowpt2(v) = min\{lowpt2(v), lowpt2(w)\}\
7
     en otro caso
8
         lowpt2(v) = \{ lowpt2(v), lowpt1(w) \}
9
     ND(v) = ND(v) + ND(w)
10
     FATHER(w) = v
11
  c: si NUMERO(w) < lowpt1(v)
12
        lowpt2(v) = lowpt1(v)
13
        lowpt1(v) = NUMERO(w)
14
     si no NUMERO(w) = lowpt1(v)
15
        lowpt2(v) = min\{lowpt2(v), NUMERO(w)\}
16
```

Verificamos que DFS modificado anteriormente calculará lowpt1, lowpt2, ND y FATHER correctamente en tiempo $\Theta(V+E)$. (Ver [14], [24].) lowpt1 puede usarse para probar la biconectividad de G, como se describe en [23]. El siguiente lema es importante.

<u>Lema</u> 3.7. Si G es biconexa $y \ v \to w$, $lowpt1(w) \leqslant v$ a menos que v = 1, en cuyo caso lowpt1(w) = v = 1. Además, lowpt1(1) = 1.

Demostración. Véase [5].

Sea ϕ el mapeo de las aristas de P en $\{1, 2, \dots, 2V + 1\}$ definido por:

$$\phi(x) = \begin{cases} 3lowpt1(w) & \text{si } e = v \to w \text{ y lowpt2}(w) < v \\ 3w + 1 & \text{si } e = v \hookrightarrow w \\ 3lowpt1(w) + 2 & \text{if } e = v \to w \text{ y lowpt2}(w) \geqslant v \end{cases}$$

Sea A una estructura de adyacencia para P. A se le dice aceptable si las aristas e en cada lista de adyacencia de A se ordena de forma creciente de acuerdo a $\phi(e)$.

Lo cual da el siguiente resultado de 3.2 en forma de mapeo a cada vértice 1, 2, ..., 13 los vértices adyacentes ordenados de acuerdo al ordenamiento de ϕ :

CAPÍTULO 3. COMPONENTES TRICONEXAS

1: [2], 2: [3], 3: [13, 4], 4: [1, 5], 5: [8, 6], 6: [7, 4], 7: [4, 5], 8: [1, 9], 9: [10], 10: [12, 11], 11: [8, 9], 12: [1, 8, 9], 13: [1, 2]

<u>Lema</u> 3.8. Sea P un arbol de una gráfica biconexa G cuyos vértices son numerados de manera que $v \stackrel{*}{\to} w$ en P implica $v \leqslant w$. Entonces las estructuras de adyacencia aceptables de P son independientes del esquema de numeración exacto.

Demostración. Si $v \to w$ en P entonces por el lema 3.5, lowpt2(w) es un ancestro de w. Por el lema 3.6 lowpt2(w) es un vértice fijo independiente de la numeración. Ya que el orden de los ancestros es independiente de la numeración, la cuestión de si lowpt2(w) es menor que v es independiente de la numeración. Como G es biconexa, si $v \to w$ en P entonces lowpt1 $(w) \le v$ por el lema 3.7. Por el lema 3.5, lowpt1(w) es un ancestro de w. Dado que lowpt1 $(w) \le v$, lowpt1(w) debe ser un ancestro de v. Por el lema 3.6, el vértice correspondiente a lowpt1(w) es independiente de el esquema de numeración. De manera similar si $v \to w$, entonces por el lema 3.3 y la definición de árbol; w es un ancestro de v. Pero el orden de los ancestros de v es idéntico al orden de sus números y este orden es independiente de la numeración. Por lo tanto las estructuras de adyacencia aceptables A para P dependen solo de P y no de la numeración exacta

Ya después de tener numeradas las aristas por esta función ordenamos las aristas. Hacemos el recorrido primero en profundidad sobre G

En el paso 3 de los cálculos realizamos una búsqueda en profundidad sobre P usando el estructura de adyacencia aceptable A dada por el paso 2. Esta búsqueda genera un conjunto de caminos de la siguiente manera: cada vez que atravesamos una arista, esta arista la agregamos al camino que se está construyendo. Cada vez que atravesamos una arista, la arista se convierte en la última arista del camino actual. Así, cada camino consta de una secuencia de ramas del árbol seguidos por un solo vértice. Debido al ordenamiento impuesto a A, cada camino termina en el vértice más bajo posible, el camino inicial es un ciclo, y cada camino excepto el primero es simple y sólo tiene en común su vértice inicial y terminal con las anteriores caminos generados ([14], [25]).

Si $p:s \stackrel{*}{\Rightarrow} f$ es un camino generado, podemos formar un ciclo agregando el camino del árbol $f \stackrel{*}{\to} s$ a p. Los ciclos formados de esta manera son los ciclos generados por llamadas recursivas al algoritmo básico de triconectividad explicado en la última sección.

Solo necesitamos información mínima sobre los caminos. Sean los vértices de P numerados de manera que $v \stackrel{*}{\to} w$ implica $v \leqslant w$. Sea $\mathrm{A1}(v)$ el primer vértice de $\mathrm{A}(v)$. Si $v \to w$ es la primera rama explorada en el paso 3 que termina en w, sea highpt(w) = v. Sea $\mathrm{deg}(v)$ el número de aristas que inciden en el vértice v. En el paso 3 numeramos los vértices de V a 1 en el orden en que se examinaron por última vez durante la búsqueda. Esta numeración garantiza que $v \leqslant w$ si $v \stackrel{*}{\to} w$. El paso 3 también calcula lowpt1(v), highpt(v), $\mathrm{A1}(v)$ y $\mathrm{deg}(v)$ con respecto a la nueva numeración.

El paso 3 enumera los vértices de V a 1 en el orden en que se alcanzaron por última vez durante la búsqueda. Sin embargo, a cada vértice en realidad se le debe asignar un número la primera vez que se alcanza, para que el cálculo de highpt se realice correctamente. Para lograr esto, la variable se establece igual a V cuando comienza la búsqueda (afirmación Z). El valor de i disminuye en uno cada vez que se descubre un nuevo vértice (afirmación Y). Así, cuando se alcanza por primera vez un vértice v, i es igual al número que desea asignar a v menos el número de vértices a encontrar antes de encontrar v por última vez. Pero los vértices a alcanzar entre el tiempo en que v se examinado por primera vez v el momento en que v se examinar por última vez son solo los descendientes propios de v. Por lo tanto, si asignamos el número i-nd(v) + 1 a v cuando v se examinar por primera vez (enunciado v), la numeración será correcta.

Los caminos generados de las aristas ya ordenadas por phi en el paso 3 de la grafica 3.2.

Sea G una gráfica biconexa en el que se han realizado los pasos 1, 2 y 3, dando un árbol P y los conjuntos de valores definidos anteriormente. Sea A con una lista de adyacencia A(v) la estructura de adyacencia aceptable construida en el paso 2. Sean los vértices de G identificados por los números asignados en el paso 3. Necesitamos una definición más. Si $u \to v$ y v es la primera entrada en A(u), entonces a v se le llama el primer **hijo** de u. (Para cada vértice v, A1(v), el primer hijo de v, si existe, se calcula en el paso 3). Si $u_0 \to u_1 \to \cdots \to u_n$ y u_i es un hijo primogénito de u_{i-1} para $1 \le i \le n$, entonces a u_n , se le llama el primer descendiente de u_0 . La secuencia de ramas del árbol $u_0 \to u_1 \to u_2 \to \cdots \to u_n$ es parte de un camino generado por el paso 3. Los lemas a continuación dan las propiedades que necesitamos para determinar los pares de separación de G.

<u>Lema</u> 3.9. Sea A(u) la lista de adyacencia del vértice u. Sean $u \to v$ y $u \to w$ ramas del árbol con v antes de w en A(u). Entonces $u \le w \le v$.

Demostración. El paso 3 numera los vértices de V a 1 en el orden en que son los últimos examinados en la búsqueda. Si $u \to v$ se explora antes que $u \to w$, v se examinarán en último lugar antes de que w se examine en último lugar, y v recibirá un número más alto. Claramente u será el último examinado después de que tanto v como w hayan sido examinados por última vez, por lo que u es el número más pequeño de los tres vértices.

<u>Lema</u> 3.10. A es aceptable con respecto a la numeración dada por el paso 3.

Demostración. El ordenamiento en el paso 2 crea una estructura de adyacencia aceptable para el numeración original. Por el lema 3.9, $u \to v$ implica $u \leqslant v$ y por lo tanto por el lema 3.8, A es aceptable para la nueva numeración.

<u>Lema</u> 3.11. Si v es un vértice y d(v) es el conjunto de descendientes de v, entonces $d(v) = \{x|v \leqslant x \leqslant v + nd(v)\}$. Si w es un primer descendiente de v, entonces $d(v) - D(w) = \{x|v \leqslant x \leqslant w\}$.

Demostración. Supongamos que invertimos todas las listas de adyacencia A(v) y las usamos para especificar una búsqueda en profundidad de P. Los vértices se examinarán por primera vez en sentido ascendente orden de 1 a V, si los vértices se identifican por su número del paso 3. Así a los descendientes de v se les asignan números consecutivos desde v a v + nd(v) + 1. Si w es el primer descendiente de v, los vértices en d(w) se les asignarán números de acuerdo a los vértices en d(v) - d(w). Así $d(v) - d(w) = \{x | v \leq x \leq w\}$.

<u>Lema</u> 3.12. Sean $\{a,b\}$ un par de separación en G con $a \leq b$. Entonces $a \stackrel{*}{\to} b$ en el árbol generador T de P.1

Demostración. Como $a \leq b$, a no puede ser descendiente de b. Supongamos que b no es un descendiente de a. Sean E_i , para $1 \leq i \leq k$, las clases de separación con respecto a $\{a,b\}$. Sea $S = \mathcal{V} - D(a) - D(b)$. Los vértices S definen un subárbol en T que no contiene a a ni a b, por lo que E(S) debe estar contenido en alguna clase de separación, digamos E_1 . Sea c cualquiera hijo de a. E(D(c)) debe estar contenido en alguna clase de separación. Pero como G es biconexa, y $a \neq 1$, lowpt1(c) < a, por el Lema 3.7. Por lo tanto, alguna arista incide en un vértice en S y a un vértice en D(c). Así $E(D(c)) \subseteq E_1$. Un argumento similar demuestra que las aristas incidentes a cualquier descendiente de b están en E_1 . Pero esto significa que $E_1 = E$, y entonces a, b no puede ser un par de separación.

<u>Lema</u> 3.13. Supongamos que a < b. Entonces $\{a, b\}$ es un par de separación de G si y solo si y a sea (i), (ii) o (iii) a continuación se cumple:

- 1. Hay vértices distintos $r \neq a, b$ y $s \neq a, b$ tales que $b \rightarrow r$, lowpt1(r) = a, $lowpt2(r) \geqslant b$ y s no es un descendiente de r. (El par $\{a,b\}$ se le llama par de separación "tipo 1". Los pares de tipo 1 en 3.2 son (1,8), (1,5), (4,5), (1,4), (1,3).
- 2. Hay un vértice $r \neq b$ tal que $a \rightarrow r \stackrel{*}{\rightarrow} b$; b es el primer descendiente de r (es decir, a, r y b se examinaron en una ruta generada); $a \neq 1$; cada rama $x \rightarrow y$ con $r \leqslant x \leqslant b$ y $a \leqslant y$ cada rama $x \rightarrow y$ con $a \leqslant y \leqslant b$ y $b \rightarrow w \stackrel{*}{\rightarrow} x$ tiene lowpt1(w) $\geqslant a$. ({a,b} se denomina par de separación de "tipo 2". Los pares de tipo 2 en 3.2 son (8,12))

Demostración. La parte inversa del lema es más fácil de probar. Supongamos que un par $\{a,b\}$ satisface (i), (ii) o (iii). Sea E_i para $1 \le i \le k$ las clases de separación de G con respecto a $\{a,b\}$. Supongamos que $\{a,b\}$ satisface (i). Entonces la arista (b,r) está contenido en alguna clase de separación, digamos E_1 . Cada rama del árbol con un vértice final en d(r)

tiene el otro extremo en $d(r) \cup \{a, b\}$. Además, dado que lowpt1(r) = a y lowpt $2(r) \ge b$, toda rama con una vértice final en D(r) tiene la otra vértice final en $D(r) \cup \{a, b\}$. Por lo tanto, E_1 consta de todas las aristas con un vértice final en D(r). No hay otras aristas en E_1 , y las aristas incidentes al vértice s deben estar en alguna otra clase, digamos E_2 . Ya que E_1 y E_2 contienen cada uno dos o más aristas, $\{a, b\}$ es un par de separación.

Supongamos que $\{a,b\}$ satisface (ii). Sea S=d(r)-d(b). Todas las aristas incidentes a un vértice en S están en la misma clase de separación, digamos E_1 . Dado que b es un primer descendiente de $r, S=\{x|r\leqslant x\leqslant b\}$ por el lema 3.1. Sean b_1,b_2,\ldots,b_n los hijos de b en el orden ocurren en A(b). Sea $i_0=min\{i|\ \text{lowpt1}(b)\geqslant a\}$. Por el ordenamiento impuesto en $A,i\leqslant i_0$ implica lowpt1 $(b_i)\leqslant a,$ y $i\geqslant i_0$ implica que lowpt1 $(b_i)\geqslant a$. Por (ii), cada arista de retroceso con vértice inicial en S tiene su vértice final en $S\cup\{a\}$. También por (ii), cada arista de retroceso con vértice final en S tiene su vértice inicial en $S\cup\{b\}\cup(\bigcup_{i\geqslant i_0}d(b_i))$. Cada arista con un vértice final en $d(b), i\geqslant i_0$, tiene su otro extremo en $S\cup\{a,b\}\cup d(b)$. Así la clase E_1 contiene al menos todas las aristas con un vértice final en $S\cup\{a,b\}\cup d(b)$. Así la clase S0 no pueden estar en S1 y por lo tanto S3 es un par de separación.

Ahora debemos demostrar la parte directa del lema. Por 3.12, $a \stackrel{*}{\to} b$. Sea E_i , para $1 \leqslant i \leqslant k$, las clases de separación de G con respecto a $\{a,b\}$. Sea v el hijo de a tal que $a \to v \stackrel{*}{\to} b$, S = d(v) - d(b), y X = V - d(a). (O S o X o ambos pueden estar vacíos.). E(S) y E(X) están contenidos cada uno en una clase de separación, digamos $E(S) \subseteq E_1$ y $E(X) \subseteq E_2$.

Sea $a_i \neq v$ un hijo de a. Si a tiene un hijo así, lowpt1 $(a) \leqslant a$. Esto significa que $E(d(a_i)) \subseteq E_2$. Sean $Y = X \cup (\bigcup_i d(a_i)$. Sean $b_1, b_2, \dots b_n$ los hijos de b en el orden en que aparecen en la lista de adyacencia de b. Sea E(d(b)) el conjunto de aristas con vértice final en d(b). Las clases de separación deben ser uniones de los conjuntos $E(S), E(Y), \{(a,b)\}, E(d(b_1)), E(d(b_2)), \dots E(d(b_n))$.

Si $E(d(b)) = E_j$ para algún i y j, entonces lowpt $1(b_i) = a$ ya que G es biconexo y esto significa que lowpt $1(b_i) \leq b$ por el Lema 3.7. También, lowpt $2(b_i) \geq b$. Ya que $\{a,b\}$ es un par de separación, debe haber una clase de separación distinta de E_j y $\{(a,b)\}$. Por tanto, existe un vértice s tal que $s \neq a$, $s \neq b$, y $s \notin d(b_i)$. Esto significa que $\{a,b\}$ satisface (i) donde r es b_i .

Supongamos ahora que ninguna E(d(b)) es una clase de separación. Sea $i_0 = min\{i | lowpt1(b_i) \ge a\}$. Si $i \ge i_0$, entonces como G es biconexo, debe ser el caso que $lowpt1(b) \le b$, y estas clases de separación son $E_1 = E(S) \cup (\bigcup_{i \ge i_0} E(d(b_i)))$, $E_2 = E(Y) \cup (\bigcup_{i \le i_0} E(d(b_i)))$, $E_3 = \{(a,b)\}$. (E_3 puede estar vacío.) Tenemos $v \ne b$ va que

 $E_2 = E(Y) \cup (\bigcup_{i \leqslant i_0} E(d(b_i)))$, $E_3 = \{(a,b)\}$. $(E_3 \text{ puede estar vacio.})$ Tenemos $v \neq b$ ya que $\{a,b\}$ no es un par de tipo 1 y $a \neq 1$ ya que E_2 no es vacio. Si $x \rightarrow y$ es una rama con $v \leqslant x \leqslant b$, entonces $x \in S$, $(x,y) \in E_1$, y $a \geqslant y$. Si $x \rightarrow y$ es una rama con $a \leqslant y \leqslant b$ y $b \rightarrow b_i \stackrel{*}{\rightarrow} x$, entonces $y \in S$, $(x,y) \in E_1$ y $i \geqslant i_0$, lo que significa que lowpt1 $(b_i) \geqslant a$. Debemos verificar una condición más para demostrar que (ii) se cumple, es decir, que b es un primer descendiente de v. Dado que G es biconexa, lowpt1 $(v) \leqslant a$. Por lo tanto alguna arista con vértice inicial d(v) tiene un vértice final (a,b) or el ordenamiento impuesto a AS y la

definición de un primer descendiente, existe alguna arista de retroceso x o y con $x \in d(v)$ y $y \leq a$ tal que x es el primer descendiente de v. Si b no fuera el primer descendiente de v, entonces x estaría en S, y E_1 y E_2 no podrían ser clases de separación distintas. Por lo tanto, b es un primer descendiente de v, y (ii) se cumple con r = v. Esto completa la prueba de la parte directa del lema.

Vale la pena considerar cuidadosamente ?? y su demostración. El lema da tres condiciones fáciles de aplicar para pares de separación. Las condiciones (i) y (ii) identifican los pares de separación no triviales de la gráfica. La condición (iii) maneja aristas múltiples. La condición (i) requiere que se realice una prueba simple en cada rama del árbol P. Por lo tanto, la prueba de pares de tipo 1 requiere tiempo $\Theta(V)$. La prueba de pares de tipo 2 es algo más difícil, pero se puede hacer en tiempo $\Theta(V+E)$ usando otra búsqueda primero en profundidad. Sea $\{a,b\}$ un par de tipo 2 que satisfaga $a \to r \stackrel{*}{\to} b$ y $i_0 = \min\{i|lowpt2(b_i) \geqslant a\}$, donde b_1,b_2,\ldots,b_n , son los hijos de b en el orden en que aparecen en A(b). Entonces una clase de separación con respecto a $\{a,b\}$ es $E(\{x|r\leqslant x\leqslant b_{i_0}+nd(b_{i_0})\}-\{b\})$. Esto se sigue de la demostración de 3.13. La nueva numeración satisface la condición un tanto extraña en 3.9 por lo que hace fácil determinar la clases de separación y separar la gráfica cuando se encuentra un par de separación. Un algoritmo para encontrar los componentes de separación basado en 3.13 se da en el siguiente sección.

3.2.2. Encontrando componentes de separación

Encontramos los componentes de separación al examinar los caminos generados en orden y probamos los pares de separación con 3.13. Los pares de separación serán de varios tipos. Pares de tipo 1 son mas fáciles de reconocer. También lo son los pares de tipo 2 $\{a,b\}$, donde $a \to v \to b$ y v tiene grado dos. Otros pares de tipo 2 son algo más difíciles de reconocer. Sea c el primer camino generado (un ciclo). El ciclo consta de un conjunto de aristas del árbol $1 \to v_1 \to v_2 \to \cdots \to v_n$ seguido de una rama $v_{n^-} \to 1$. La numeración de los vértices es tal que $1 \le v_1 \le \cdots \le v_n$. Cuando se elimina c, la gráfica se divide en varias partes conectadas, llamadas segmentos. Cada segmento consta de una sola arista (v_i, v_j) o de una arista del árbol (v_i, w) más un subárbol con raíz w más todas las aristas que salen del subárbol. El orden del cámino generado es tal que todas las rutas en un segmento se generan antes que las rutas en cualquier otro segmento, y los segmentos se exploran en orden decreciente de v_i . Supongamos que repetimos la búsqueda del camino, usándola ahora para encontrar los componentes de separación. Mantendremos una pila de aristas, agregando aristas a esta pila a medida que retrocedemos sobre ellos durante la búsqueda. Cada vez que encontramos un par de separación, eliminamos un conjunto de aristas de la pila correspondiente a un componente de separación. Agregamos una arista virtual correspondiente a la separación tanto al componente como a la pila de aristas. Nosotros también necesitamos actualizar varias piezas de información, ya que los padres de vértices y los grados de los vértices pueden cambiar cuando se divide una gráfica. El camino completo de la búsqueda creará un conjunto completo de componentes de separación. Unir los componentes de separación para dar los componentes triconexos es el paso final.

Para identificar los pares de tipo 2, mantenemos una pila (llamada tstack) de tripletas (h, a, b). El par $\{a, b\}$ es un posible par de tipo 2 y h denota el vértice numerado más grande en el componente de separación correspondiente. Los pares están en orden anidado en la pila; es decir, si v_i es el vértice actual que está siendo examinado por la búsqueda de ruta y $(h_1, a_1, b_1), (h_2, a_2, b_2), \cdots, (h_k, a_k, b_k)$ están en tstack, entonces $a_k \leq a_{k-1} \leq \cdots \leq a_2 \leq$

 $a_1 \leqslant v_i \leqslant b_1 \leqslant b_2 \leqslant \cdots \leqslant b_k$. Además, todos los a_i y b_i son vértices. en el ciclo c.

Se actualiza tstack de las siguientes maneras:

- 1. Cada vez que recorremos un nuevo camino $p: s \stackrel{*}{\Rightarrow} f$, borramos todos las tripletas (h_j, a_j, b_j) encima de la pila con $a \geqslant f$. Si p tiene un segundo vértice $v \neq f$, sea x = v + ND(v) + 1. De lo contrario, sea x = s. Sea $y = max\{h_j|triple(h_t, a_t, b_t)$ que se eliminó de tstack $\}$. Si (h_k, a_k, b_k) fue la última tripleta eliminada, agregamos (max(x, y), f, s) a la pila. Si no se eliminó una tripleta, agregamos (x, f, s) a la pila.
- 2. Cuando retrocedemos sobre una rama del árbol $v_i \to v_{i+1}$ con $v \neq 1$, borramos todos entradas (h_j, a_j, b_j) encima de tstack que satisfacen highpt $(v_i) > h_j$. esta prueba es necesaria para garantizar que las entradas que no correspondan a los pares de tipo 2 no se acumulan en tstack.

Usamos tstack para encontrar pares de separación de la siguiente manera: siempre que busquemos hacia atrás a lo largo de una rama del árbol $v_i \to v_{i+1}$ durante la búsqueda de ruta, examinamos la tripleta superior en $(h_1, a_1 +, b_1)$ en tstack. Si $v \neq 1$, $a = v_i$, y $a \neq \text{padre}(b_i)$, $\{a_1, b_1\}$ es un par de separación de tipo 2. Si $\deg(v+1) = 2$ y v_{i+1} tiene un hijo, entonces v_i y el hijo de v_{i+1} forman un par de separación tipo 2. Dividimos los componentes correspondientes a los pares de tipo 2 hasta que estas dos condiciones no nos den más componentes. (Simultáneamente, probamos los componentes correspondientes a múltiples aristas y los dividimos.) Luego aplicamos el Lema 3.13 para probar si $\{v, \text{lowpt1}(v+1)\}$ es un par de tipo 1, dividiendo un componente si es necesario. (De nuevo, tenemos que comprobar si hay un componente de múltiples aristas).

Manejamos la parte recursiva del algoritmo de la siguiente manera: recorremos una ruta $p:s\stackrel{*}{\Rightarrow} f$ que comienza en c significa que la búsqueda está entrando a un nuevo segmento. El vértice f debe ser el vértice más bajo en el segmento por el orden impuesto en el búsqueda de caminos. Después de actualizar tstack como se describe arriba, si p contiene más de una arista, colocamos un marcador de fin de pila en tstack y continuamos encontrando caminos. Esto corresponde a una llamada recursiva de la triconectividad básica del algoritmo. Cuando retrocedemos sobre el primer arista de p, eliminamos todas las entradas de tstack hasta el marcador de fin de la pila. esto corresponde a apareciendo de la recursividad.

Un punto más necesita explicación: la razón por la que usamos lowpt2 así como lowpt1 para construir A, la estructura de adyacencia aceptable que determina el orden de búsqueda de caminos. Este paso es necesario para que todas las aristas múltiples sean manejadas correctamente. Supongamos que v es un vértice, y w_1, w_2, \ldots, w_k son los hijos de v tales que lowpt1(w_i) = u. Además, supongamos que v- $\to u$. Sea la w_i ordenada como en A(v). Hay algún i_0 tal que $i \leq i_0 \Rightarrow \text{lowpt2}(w_i) \leq v$ y $i \geq i_0 \Rightarrow \text{lowpt2}(w_i) \geq v$. En A(v), u aparecerá después de el w_i con $1 \leq i \leq i_0$. Si $i \geq i_0$, entonces $\{u, w_i\}$ es un par de separación tipo 1; dividiendo los correspondientes componentes produce una nueva arista(virtual) v- $\to u$. Es importante que todos los w_i con $i \geq i_0$ aparecen juntos en A(v) para que estas aristas virtuales puedan ser localizadas y combinadas para dar componentes de separación que son enlaces.

Los siguientes algoritmos son dados en [11]

Algoritmo 3.4: SPLIT(G)

```
agregamos (EOS) a tstack
PATHSEARCH(1)
sea e_1, e_2, \ldots, e_\ell aristas en ESTACK
3.1 \mathcal{C} = nuevo componente (e_1, \ldots, e_\ell)
```

Algoritmo 3.5: PATHSEARCH(v)

```
para e \in A(v):
       \mathbf{si}\ e = v \to w
           si e empieza un camino
              eliminar todos los (h, a, b) con a > lowpt1(w) de tstack
              si no se eliminar tripletas
                  agregar a tstack (w + ND(w) - 1, lowpt1(w), v
              en otro caso
                  y = max\{h | (h, a, b) \text{ eliminados de tstack}\}
                  sea (h, a, b) la ultima tripleta eliminada
                  agregar a tstack (max(y, w + ND(w) - 1), lowpt1(w), b)
              agregar a tstack (EOS)
           PATHSEARCH(w)
           agregamos a ESTACK (v \to w)
           buscamos pares de tipo 2
           buscamos pares de tipo 1
           si e empieza un camino
              quitamos las tripletas en tstack hasta el EOS
           mientras (h, a, b) en tstack tiene a \neq v y b \neq v y highpt(v) > h
4.1
               eliminamos (h, a, b) de tstack
       en otro caso
           sea e = v \hookrightarrow w
           si e empieza un camino
              eliminar todos los (h, a, b) con a > w de tstack
              si no se eliminaron tripletas
                  agregamos (v, w, v) a tstack
              en otro caso
                  y = max\{h | eliminado de tstack\}
                  sea (h, a, b) la utima tripleta eliminada
                  agregamos (y, w, b) a tstack
           \mathbf{si} \ w \in \mathit{parent}(v)
              \mathcal{C} = nuevo componente (e, w \to v)
              e' = nueva arista virtual (w, v, \mathcal{C})
              crear arista vitual (e', w \to v)
           en otro caso
               agregamos e a tstack
```

Algoritmo 3.6: checkTipo2(v)

```
mientras v \neq 1 y ((h, a, b) en tstack tiene a = v) o (deg(v) = 2 y A1(w) > w)
   \mathbf{si} \ a = v \ y \ FATHER(b) = a
        eliminamos el primero de tstack
   en otro caso
        e_{ab} = nulo \, \mathbf{si} \, DEGREE(w) = y \, A1 > w
           C = nuevo componente
           quitamos las primeras aristas (v, w) y (w, b) de ESTACK y las agregamos a
             \mathcal{C}
           e' = nueva arista virtual (v, x, \mathcal{C})
           \mathbf{si} eliminamos (v,b)
                e_{ab} es el primer elemento que eliminamos de ESTACK
        en otro caso
            (h, a, b) = \text{primer elemento eliminado de tstack}
           C = nuevo componente
           mientras (x,y) en ESTACK tiene a \le x \le h y a \le y \le h
                si (x,y) = (a,b)
                    e_{ab} es el primer elemento que eliminamos de ESTACK
                en otro caso
                    \mathcal{C} = \mathcal{C} \cup \{ primer elemento eliminado de ESTACK \}
        \mathbf{si}\ e_{ab} = nulo
           \mathcal{C} = nuevo componente (e_{ab}, e') e' = nueva arista virtual (v, b, \mathcal{C})
        agregamos e' a ESTACK
        creamos la arista del árbol \left(e^{'},v\rightarrow b\right)
```

Algoritmo 3.7: checkTipo1(v)

```
6.1 si lowpt2(w) \geqslant v y lowpt1(w) < v y (FATHER(v) \neq 1) o v es adyacente a una rama
      de el árbol que aún no has sido visitada :
        \mathcal{C} = nuevo componente
        mientras (x,y) en ESTACK tiene w \leqslant x \leqslant w + ND(w) o w \leqslant y \leqslant w + ND(w)
            \mathcal{C} = \mathcal{C} \cup \{\text{ESTACK.pop}()\}
        e' = nueva arista virutal (v, lowpt1(w), C)
        \mathbf{si}\ ESTACK.pop() = (v, lowpt1(w))
            \mathcal{C} = \text{nuevo componente } (\mathbf{ESTACK.pop}(), e')
             e' = nueva arista virtual (v, lowpt1(w), C)
        \mathbf{si}\ lowpt1(w) \neq FATHER(v)
            agregar e' a ESTACK
             crear arista de l'árbol (e', lowpt1(w) \rightarrow v)
        en otro caso
            \mathcal{C} = nuevo componente (e', \text{lowpt1}(w) \rightarrow v)
             e' = nueva arista virtual (lowpt1(w), v, \mathcal{C})
             crear arista de l'árbol (e', lowpt1(w) \rightarrow v)
```

<u>Lema</u> 3.14. SPLIT divide correctamente un gráfica biconexo G en sus componentes de separación.

Demostración. Debemos probar dos cosas (i) si G es triconexo, SPLIT no lo divide y (ii) si G no es triconexo, el algoritmo lo separará. Una vez que tengamos estos dos hechos, podemos demostrar el lema por inducción sobre el número de aristas de la gráfica. Las pruebas para múltiples aristas, para pares de separación de tipo 1 y para vértices de grado 2 son sencillos. (La prueba de tipo 1(G en PATHSEARCH) incluye la condición (lowpt $1(w) \neq 1$) o (padre $(v) \neq 1$) o $(w \geqslant 3)$ para asegurarse que algún vértice está afuera del componente de separación correspondiente.) Estas pruebas descubren un par de separación del tipo correcto, si existe, y no informarán un par de separación si no existe uno. Por lo tanto, solo debemos mostrar que la prueba para el tipo 2 funciona correctamente en gráficas sin vértices de grado

dos o pares de separación tipo 1 y habremos verificado (i) y (ii).

Supongamos que G es una gráfica biconexo sin vértices de grado dos, o pares de separación tipo 2. Consideremos la prueba de tipo 2 y el cambio contenido de tstack a medida de que avanza la búsqueda en G. $Si(h_1, a_1, b_1), \dots, (h_k, a_k, b_k)$ son los contenidos de tstack por encima del marcador de fin de pila más alto y si v es el vértice que se está examinando actualmente durante la búsqueda, entonces $a_k \leqslant a_{k-1} \leqslant \cdots \leqslant a_1 \leqslant v \leqslant b_1 \leqslant \cdots \leqslant b_k$. Esto se sigue por inducción de un examen de la posibles cambios que se pueden hacer en tstack (declaraciones A, B, C, D, E, F en PATHSEARCH). Además, $a_k, a_{k-1} \cdots b_k$ se encuentran en el ciclo correspondiente a la llamada recursiva actual del algoritmo básico de triconectividad. Suponga que (h, a, b) en tstack satisface la prueba de tipo $\tilde{2}$ cuando el la búsqueda regresa a lo largo de una rama del árbol $v \to w$. La prueba (B, E en PATHSEARCH) establece que $a = v, v \neq 1$ y padre $(b) \neq a$. Se sigue que $r = A1(a) \neq b$ satisface $a \rightarrow r \stackrel{*}{\rightarrow} b$ y que b es un primer descendiente de r (es decir, a, r y b se examinaron en un mismo camino generado). Si alguna rama $x \to y$ con $r \leqslant x \leqslant b$ tuviera $a \geqslant y$, la tripleta en tstack correspondiente a (h, a, b) se habría eliminado de tstack cuando se exploró la arista $(A \circ F)$ en PATHSEARCH). Similarmente, si alguna rama $x \to y$ con $a \leqslant y \leqslant b$ y $b \to w \stackrel{*}{\to} x$ tenía lowpt $1(w) \leqslant a$. la tripleta en tstack correspondiente a (h, a, b) habría sido eliminado por la prueba highpt cuando se examinó el vértice y (D en PATHSEARCH). Se sigue que $\{a,b\}$ es un par de separación tipo 2 por 3.13.

Por el contrario, supongamos que G tiene un par $\{a,b\}$ de tipo 2. Sean b_1,b_2,\ldots,b_n , los hijos de b en el orden en que aparecen en A(b). Sea $i_0 = min\{i | lowpt1(b_i) \ge a\}$. Si i_0 existe, entonces $(b_{i_0}+\mathrm{ND}(b_{i_0}),\ \mathrm{lowpt1}\ (b_i),b)$ se colocará en tstack cuando la rama del árbol $b\to b_i$ se explora. Esta tripleta puede ser borrado de tstack, pero siempre será reemplazado por una tripleta de la forma (h, x, b), con lowpt $1(b) \ge x \ge a$. Finalmente dicha tripleta satisfará la prueba de tipo 2, a menos que se encuentre primero algún otro par de tipo $\bar{2}$. Si i_0 no existe, sea (i,j) la primera arista recorrida después de llegar a b tal que $a \leq i$ y $j \leq b$. Si $i \rightarrow j$, entonces (i, j, i) se colocará en tstack, posiblemente modificado y eventualmente seleccionado como un par de tipo 2, a menos que algún otro par de tipo 2 sea examinado primero. Si $i \to j$, entonces (j+ND(j),lowpt1(j),i) se colocará en tstack, posiblemente modificado y eventualmente seleccionado como un par de tipo 2 a menos que algún otro par de tipo 2 se examine primero. Por lo tanto, si existe algún par de tipo 2, al menos un par de tipo 2 será encontrado por el algoritmo. De ello se deduce que la prueba de tipo 2 funciona correctamente,

y el algoritmo divide un gráfica si y solo si existe un par de separación.

El lema se sigue por inducción sobre el número de aristas en G. Supongamos que el lema es cierto para gráficas con menos de k aristas. Sea G una gráfica con k aristas. Si G no puede ser dividido, el algoritmo funciona correctamente en G por el argumento anterior. Si G se puede separar, se separará. Consideremos la primera separación realizada por el algoritmo, produciendo gráficas de separación G_1 y G_2 . El comportamiento del algoritmo en G es un compuesto de su comportamiento en G_1 y G_2 . Dado que el algoritmo divide G_1 y G_2 correctamente por la hipótesis de inducción, debe separar G correctamente. El lema se sigue por inducción.

Figura 3.5: Componentes triconexas finales de la gráfica 3.2

<u>Lema</u> 3.15. El algoritmo de componentes triconexas procesa una gráfica G con V vértices g E aristas en tiempo $\Theta(V+E)$.

Demostración. El número de aristas en un conjunto de componentes de separación de G está acotado por 3E-6, por el lema 3.1. Todos los pasos, excepto encontrar componentes de separación, requiere un tiempo $\Theta\left(V+E\right)$, por los resultados de las dos ultimas secciones.. Considérese la ejecución de algoritmo SPLIT. Cada arista se coloca en ESTACK una vez y se elimina una vez. La búsqueda en profundidad en sí misma requiere un tiempo $\Theta\left(V+E\right)$, incluidas las diversas pruebas. El número de tripletas agregadas a tstack es $\Theta\left(V+E\right)$. Cada tripleta sólo puede modificarse si está encima de la pila. Por lo tanto, el tiempo necesario para mantener tstack es también $\Theta\left(V+E\right)$ y SPLIT requiere de tiempo $\Theta\left(V+E\right)$.

Clasificación \mathbb{D}_n

4.1. Componentes triconexas en gráficas de tipo \mathbb{D}_n

Antes de entrar en detalle con el tema de nuestro interés se definen dos conceptos que nos ayudaran a hacer la clasificación.

Definición 4.1. Una bigráfica cumple la condición de ciclo si todo ciclo tiene un número impar de aristas punteadas.

Una pareja de aristas paralelas se considera un ciclo de longitud 2.

- Una bigráfica cíclica $H = x_1 x_2 \dots x_h x_1$ (todos los x_i distintos para $1 \le i \le h$) que satisface la condición de ciclo.
- A esta bigráfica H le llamaremos el \mathbb{D} -núcleo.

Definición 4.2. El marco $\Phi(G)$ de una bigráfica G es su gráfica subyacente.

Su diagrama se obtiene reemplazando aristas punteadas por sólidas.

4.1.1. Idea general de la clasificación algorítmica de \mathbb{D}_n

Aquí daremos la idea general de el algoritmo de clasificación cuando tenemos un ciclo > 2:

- 1. Descomponemos la bigráfica en sus componentes biconexas.
- 2. Si todas excepto una son componentes biconexas entonces:
 - a) A la componente que no es biconexa aplicamos el algoritmo de componentes triconexas a el marco de la bigráfica.
 - b) Ya que obtengamos las componentes triconexas finales regresamos las aristas a su forma original.
 - c) a los enlaces les quitamos las aristas paralelas y hacemos que la arista sea solida.
 - d) y para las aristas virtuales de los polígonos o componentes triconexas con la misma etiqueta hacemos lo siguiente:
 - 1) Calculamos el camino mas corto hacia la arista virtual si el numero de aristas punteadas es par la arista virtual la hacemos punteada si el número es impar la arista virtual la hacemos solida.
 - e) Ya que tengamos una arista virtual definida si existe otra arista con la misma etiqueta solo cambiamos el tipo de arista en esa etiqueta (solida \rightarrow punteada, punteada \rightarrow solida).
 - f) Si tenemos que todas las componentes triconexas finales excepto una son \mathbb{A}_n entonces:
 - 1) Verificamos que la componente triconexa que no es un \mathbb{A} -bloque cumpla la condición de ciclo(si el ciclo es > 2).
 - 2) Si lo cumple entonces podemos decir que la bigráfica es de tipo \mathbb{D}_n con n=|V|

Si tenemos un ciclo =2 entonces nuestras componentes triconexas van a ser necesariamente \mathbb{A} -bloques.

4.1.2. Clasificación algorítmica de \mathbb{D}_n

En [21] existe una implementación de el algoritmo de componentes triconexas en el lenguaje Python la cual verifica si es una gráfica triconexa y te devuelve las componentes triconexas finales de la gráfica ingresada solo funciona con gráficas por lo cual utilizaremos el marco de la bigráfica para poder utilizar este algoritmo y ya que tengamos las componentes finales volvemos las aristas a su forma original a las aristas virtuales si son punteadas o solidas lo definiremos conforme a la idea general.

Hay dos casos principales que ver en este problema de clasificación:

- con ciclo > 2
- \bullet con ciclo = 2

Las bigráficas con ciclo > 2 son mas fáciles de ver que las bigráficas con ciclo = 2 A continuación veremos unos ejemplos de estos casos y como [21] lo descompone en sus componentes triconexas.

Vamos a describir el proceso de clasificación en los siguientes ejemplos:

Figura 4.1: Ejemplos de gráficas de tipo \mathbb{D}_n

Descomponemos en su componentes biconexas:

Figura 4.2: Descomposición de G_1 en sus componentes biconexas

Arboles generados de el recorrido en profundidad de la componente biconexa que no es de tipo \mathbb{A}_n de las gráficas:

4.1. COMPONENTES TRICONEXAS EN GRÁFICAS DE TIPO \mathbb{D}_N

Figura 4.3: Árbol generado en el recorrido primero en profundidad en $G_{1,1}$

Figura 4.4: Árbol generado en el recorrido primero en profundidad en G_2

Calculamos los lowpt1 y lowpt2 de cada gráfica:

CAPÍTULO 4. CLASIFICACIÓN \mathbb{D}_N

vertice	lowpt1	lowpt2
1	1	1
$\frac{2}{3}$	1	$\frac{2}{2}$
4	1	3
5 6	$\frac{2}{2}$	3 3
7	$\frac{2}{3}$	5

Tabla 4.1: Cálculos de lowpt1 y lowpt2 en $G_{1,1}$

vertice	lowpt1	lowpt2
1	1	1
2	1	2
3	1	2
4	1	2
5	1	2
6	3	4

Tabla 4.2: Cálculos de lowpt1 y lowpt2 en G_2

El ordenamiento de ϕ en $G_{1,1}$ da el siguiente resultado:

Los caminos generados de
$$G_{1,1}$$
 son: 1: $1 \to 2 \to 3 \to 4 \hookrightarrow 1$ 2: $4 \to 7 \hookrightarrow 3$ 3: $3 \to 5 \to 6 \hookrightarrow 2$ 4: $6 \hookrightarrow 3$ 5: $5 \hookrightarrow 2$

Solo hay pares de separación de tipo 1 en $G_{1,1}$ los cuales son (3,4),(1,3),(2,3).

El ordenamiento de ϕ en G_2 da el siguiente resultado:

4.1. COMPONENTES TRICONEXAS EN GRÁFICAS DE TIPO \mathbb{D}_N

Los caminos generados de G_2 son: 1: 1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 4 \hookrightarrow 1 2: 4 \hookrightarrow 2 3: 4 \rightarrow 6 \hookrightarrow 3 4: 6 \hookrightarrow 5 5: 3 \hookrightarrow 1

Solo hay un par de separación de tipo 2 en G_2 el cual es (3,4).

Figura 4.5: Componentes de separación de $G_{1,1}$

En el caso de G_2 los componentes de separación son iguales a las componentes triconexas finales.

Las componentes triconexas finales de las bigráficas:

Figura 4.6: Componentes triconexas de $G_{1,1}$

CAPÍTULO 4. CLASIFICACIÓN \mathbb{D}_N

Figura 4.7: Componentes triconexas de G_2

Obtenemos ahora la bigráfica original y aplicamos el criterio para decidir si la arista virtual es solida o punteada.

Figura 4.8: Componentes triconexas de $G_{1,1}$

De el capitulo 2 sabemos que estas gráficas excepto (e) son A-bloques.

Figura 4.9: Componentes triconexas de G_2

Componentes triconexas en un bigráfo \mathbb{D}_n .

5.1. Algoritmo para encontrar componentes triconexas de un bigráfo de tipo \mathbb{D}_n

```
class _LinkedListNode:
           def __init__(self, data=None):
                    self.data = data
                    self.prev = None
                    self.next = None
                    self.set_data(self.data)
9
10
           def set_data(self, data):
11
                    self.data = data
13
           def get_data(self):
14
                    return self.data
16
   class _LinkedList:
           def __init__(self):
4
                    self.head = None
                    self.tail = None
                    self.length = 0
           def remove(self, node):
10
11
                    if node.prev is None and node.next is None:
12
```

```
self.head = None
13
                              self.tail = None
14
                     elif node.prev is None:
15
                              self.head = node.next
16
                              node.next.prev = None
17
                     elif node.next is None:
18
                              node.prev.next = None
19
                              self.tail = node.prev
20
                     else:
                              node.prev.next = node.next
22
                              node.next.prev = node.prev
23
                     self.length -= 1
25
            def set_head(self, h):
26
27
                     self.head = h
28
                     self.tail = h
29
                     self.length = 1
30
31
            def append(self, node):
33
                     if self.head is None:
34
                              self.set_head(node)
35
                     else:
36
                              self.tail.next = node
                              node.prev = self.tail
38
                              self.tail = node
39
                              self.length += 1
40
41
            def get_head(self):
42
                     return self.head
43
44
            def get_length(self):
45
                     return self.length
46
47
            def push_front(self, node):
48
49
                     if self.head is None:
50
                              self.set_head(node)
51
                     else:
52
                              self.head.prev = node
                              node.next = self.head
54
                              self.head = node
55
                              self.length += 1
56
57
            def to_string(self):
59
                     temp = self.head
60
                     s = ""
61
                     while temp:
62
                              s += " " + str(temp.get_data())
63
                              temp = temp.next
64
                     return s
65
```

```
66
            def concatenate(self, lst2):
67
68
                     self.tail.next = 1st2.head
69
                     lst2.head.prev = self.tail
70
                     self.tail = lst2.tail
71
                     self.length += lst2.length
72
                     lst2.head = None
73
                     lst2.length = 0
75
1
   class _Component:
2
3
            def __init__(self, edge_list, type_c):
5
                     self.edge_list = _LinkedList()
                     for e in edge_list:
                             self.add_edge(e)
                     self.component type = type c
10
            def add edge(self, e):
11
                     self.edge list.append( LinkedListNode(e))
12
13
            def finish tric or poly(self, e):
15
                     self.add_edge(e)
16
                     if self.edge_list.get_length() > 3:
17
                             self.component_type = 2
18
                     else:
                             self.component type = 1
20
21
            def str (self):
23
                     if self.component_type == 0:
24
                             type_str = "Bond: "
25
                     elif self.component_type == 1:
26
                             type_str = "Polygon: "
27
                     else:
28
                             type_str = "Triconnected: "
29
                     return type_str + self.edge_list.to_string()
30
31
            def get_edge_list(self):
32
33
                     e list = []
34
                     e_node = self.edge_list.get_head()
                     while e node:
36
                             e_list.append(e_node.get_data())
37
                             e_node = e_node.next
38
                     return e list
39
```

1

```
class _LinkedListNode:
3
            def __init__(self, data=None):
4
5
                    self.data = data
6
                    self.prev = None
7
                    self.next = None
                    self.set data(self.data)
9
10
            def set data(self, data):
11
                    self.data = data
12
13
            def get data(self):
14
                    return self.data
15
16
1
   class TriconnectivitySPQR:
            def __init__(self, G, check=True):
4
5
                    self.n = G.order()
                    self.m = G.size()
                    self.graph_name = G.name()
10
                    if self.n < 2:
11
                             raise ValueError("Graph is not biconnected")
12
                    elif self.n == 2 and self.m:
13
                             self.comp_list_new = [G.edges()]
15
                             self.comp_type = [0]
16
                             self.__build_spqr_tree()
17
                             return
18
                    elif self.m < self.n -1:</pre>
20
                             raise ValueError("Graph is not connected")
21
                    elif self.m < self.n:</pre>
22
23
                             raise ValueError("Graph is not biconnected")
25
                    self.int_to_vertex = G.vertices()
26
                    self.vertex_to_int = {u:i for i,u in enumerate(self.int_to_vertex)}
27
                    self.int_to_original_edge_label = []
28
                    self.graph copy = Graph(self.n, multiedges=True)
29
                    for i,(u, v, 1) in enumerate(G.edge_iterator()):
30
                             self.graph_copy.add_edge(self.vertex_to_int[u], self.vertex_
31
                             self.int_to_original_edge_label.append(1)
32
33
34
                    self.edge_status = {e: 0 for e in self.graph_copy.edge_iterator()}
35
36
37
```

```
self.reverse edges = set()
38
39
                    self.dfs number = [0 for i in range(self.n+1)]
40
41
42
                    self.highpt = [ LinkedList() for i in range(self.n)]
43
44
45
                    self.in_high = {e:None for e in self.graph_copy.edge_iterator()}
47
48
                    self.old_to_new = [0 for i in range(self.n+1)]
                    self.newnum = [0 for i in range(self.n)]
50
                    self.node_at = [0 for i in range(self.n+1)]
                    self.lowpt1 = [None for i in range(self.n)]
52
                    self.lowpt2 = [None for i in range(self.n)]
53
55
                    self.adj = [_LinkedList() for i in range(self.n)]
57
58
                    self.in adj = {}
                    self.nd = [None for i in range(self.n)]
60
61
                    self.parent = [None for i in range(self.n)]
63
                    self.degree = [None for i in range(self.n)]
64
                    self.tree arc = [None for i in range(self.n)]
                    self.vertex_at = [1 for i in range(self.n)]
66
                    self.dfs_counter = 0
                    self.components list = []
68
                    self.graph_copy_adjacency = [[] for i in range(self.n)]
69
71
                    self.starts path = {e:False for e in self.graph copy.edge iterator()}
72
73
                    self.is biconnected = True
74
                    self.cut_vertex = None
76
77
                    self.virtual_edge_num = 0
79
                    self.virtual_edges = set()
81
                    self.new path = False
82
84
                    self.e_stack = []
85
                    self.t stack h = [None for i in range(2*self.m + 1)]
86
                    self.t stack a = [None for i in range(2*self.m + 1)]
87
                    self.t_stack_b = [None for i in range(2*self.m + 1)]
                    self.t stack top = 0
89
                    self.t_stack_a[self.t_stack_top] = -1
90
```

```
91
92
                     self.comp_list_new = []
93
                      self.comp_type = []
94
95
                      self.spqr tree = None
96
97
                      self.type1 = []
98
                     self.type2 = []
100
                      for e in self.graph_copy.edge_iterator():
101
                              self.graph_copy_adjacency[e[0]].append(e)
102
                              self.graph_copy_adjacency[e[1]].append(e)
103
                      self.dfs counter = 0
105
                      self.start_vertex = 0
106
                      self.cut_vertex = self.__dfs1(self.start_vertex, check=check)
107
108
                      if check:
109
                               # If graph is disconnected
110
                              if self.dfs_counter < self.n:</pre>
111
                                       raise ValueError("Graph is not connected")
112
113
                               # If graph has a cut vertex
114
                              if self.cut vertex != None:
115
                                       raise ValueError("Graph has a cut vertex")
116
117
118
                      for e in self.graph_copy.edge_iterator():
119
                              up = (self.dfs number[e[1]] - self.dfs number[e[0]]) > 0
120
                              if (up and self.edge_status[e] == 2) or (not up and self.edge_
121
122
                                       self.reverse_edges.add(e)
123
124
                      self. build acceptable adj struct()
125
                      self. dfs2()
126
127
                     self._path_search(self.start_vertex)
128
129
130
                      if self.e_stack:
131
                              e = self.__estack_pop()
132
                              c = _Component(self.e_stack, 0)
133
                              c.finish tric or poly(e)
134
                              self.components_list.append(c)
135
                      self.__print_split()
137
                      self.__assemble_triconnected_components()
138
139
                      self.__build_spqr_tree()
140
141
             def __tstack_push(self, h, a, b):
142
143
```

```
self.t stack top += 1
144
                      self.t stack_h[self.t_stack_top] = h
145
                      self.t_stack_a[self.t_stack_top] = a
146
                      self.t_stack_b[self.t_stack_top] = b
147
148
             def tstack push eos(self):
149
150
                      self.t stack top += 1
151
                      self.t_stack_a[self.t_stack_top] = -1
153
             def __tstack_not_eos(self):
154
155
                      return self.t stack a[self.t stack top] != -1
156
             def __tstack_print(self):
158
159
                      return self.t_stack_a, self.t_stack_b, self.t_stack_h
160
161
             def __estack_pop(self):
162
163
                      return self.e_stack.pop()
164
165
             def estack print(self):
166
167
                      return self.e stack
169
             def    new component(self, edges=[], type c=0):
170
171
                      c = Component(edges, type c)
172
                      self.components list.append(c)
                      return c
174
175
             def __new_virtual_edge(self, u, v):
176
177
                      e = (u, v, "newVEdge"+str(self.virtual edge num))
                      self.virtual edge num += 1
179
                      self.virtual edges.add(e)
180
                      return e
181
182
             def high(self, v):
183
                      head = self.highpt[v].get head()
185
                      if head is None:
186
                               return 0
187
                      else:
188
                               return head.get data()
190
             def __del_high(self, e):
191
192
                      if e in self.in high:
193
                               it = self.in_high[e]
194
                               if it:
195
                                        if e in self.reverse_edges:
196
```

```
v = e[0]
197
                                       else:
198
                                                v = e[1]
190
                                       self.highpt[v].remove(it)
200
201
            def bucket sort(self, bucket, edge list):
202
203
                     if len(bucket) == 1:
204
                              return
206
                     # Create n bucket linked lists
207
                     bucket_list = []
208
                     for i in range(self.n):
209
                              bucket_list.append(_LinkedList())
210
211
                     # Get the head pointer of the edge list
212
                     e node = edge list.head
213
214
                     # Link the n buckets w.r.t bucketId
215
                     while e node:
216
                              bucketId = bucket[e_node.get_data()]
217
                              if bucket_list[bucketId].get_head():
218
                                       bucket list[bucketId].tail.next = e node
219
                                       bucket_list[bucketId].tail = bucket_list[bucketId].t
220
                              else:
221
                                       bucket_list[bucketId].set_head(e_node)
222
                              e node = e node.next
223
224
                     # Rearrange the `edge_list` Using bucket list
225
                     new_tail = None
226
                     for i in range(self.n):
227
                              new_head = bucket_list[i].get_head()
228
                              if new_head:
229
                                       if new_tail:
230
                                               new tail.next = new head
231
232
                                       else:
                                                edge list.set head(new head)
233
                                       new tail = bucket list[i].tail
234
235
                     edge list.tail = new tail
236
                     new_tail.next = None
238
            def __sort_edges(self):
239
240
                      # Create a linkedlist of edges
241
                     edge_list = _LinkedList()
242
                     for e in self.graph_copy.edges(sort=False):
243
                              edge_list.append(_LinkedListNode(e))
244
                     bucketMin = {} # Contains the lower index of edge end point
246
                     bucketMax = {} # Contains the higher index of edge end point
247
248
                     # In `graph_copy`, every edge `(u, v)` is such that `u < v`.
249
```

```
# Hence, `bucketMin` of an edge (u, v)` will be u
250
                     # and `bucketMax` will be `v`.
251
                     for e in self.graph_copy.edge_iterator():
252
                             bucketMin[e] = e[0]
253
                             bucketMax[e] = e[1]
254
255
                     # Sort according to the endpoint with lower index
256
                     self. bucket sort(bucketMin, edge list)
257
                     # Sort according to the endpoint with higher index
                     self. bucket sort(bucketMax, edge list)
259
260
                     # Return the head pointer to the sorted edge list
261
                     return edge_list.get_head()
262
263
            def dfs1(self, v, u=None, check=True):
264
265
                     first son = None # For testing biconnectivity
266
                     s1 = None # Storing the cut vertex, if there is one
267
                     self.dfs counter += 1
268
                     self.dfs number[v] = self.dfs counter
269
                     self.parent[v] = u
270
                     self.degree[v] = self.graph_copy.degree(v)
271
                     self.lowpt1[v] = self.lowpt2[v] = self.dfs_number[v]
272
                     self.nd[v] = 1
273
                     for e in self.graph_copy_adjacency[v]:
                             if self.edge_status[e]:
275
                                      continue
276
277
                             w = e[0] if e[0] != v else e[1] # Opposite vertex of edge e
278
                             if self.dfs number[w] == 0:
279
                                      self.edge_status[e] = 1 # tree edge
280
                                      if first_son is None:
281
                                              first son = w
282
                                      self.tree arc[w] = e
283
                                      s1 = self.\_dfs1(w, v, check)
284
285
                                      if check:
286
                                               # Check for cut vertex.
287
                                               # The situation in which there is no path from w to
288
                                               # ancestor of v: we have identified a cut vertex
289
                                               if (self.lowpt1[w] >= self.dfs_number[v]) and (w !=
                                                       s1 = v
291
292
                                      # Calculate the `lowpt1` and `lowpt2` values.
293
                                      \# `lowpt1` is the smallest vertex (the vertex x with smalle
294
                                      # dfs \ number[x]) that can be reached from v.
                                      # `lowpt2` is the next smallest vertex that can be reached
296
                                      if self.lowpt1[w] < self.lowpt1[v]:</pre>
297
298
                                              self.lowpt2[v] = min(self.lowpt1[v], self.lowpt2[w])
                                               self.lowpt1[v] = self.lowpt1[w]
299
300
                                      elif self.lowpt1[w] == self.lowpt1[v]:
301
                                               self.lowpt2[v] = min(self.lowpt2[v], self.lowpt2[w])
302
```

```
303
                                        else:
304
                                                 self.lowpt2[v] = min(self.lowpt2[v], self.lo
305
306
                                        self.nd[v] += self.nd[w]
307
308
                               else:
309
                                        self.edge_status[e] = 2 # frond
310
                                        if self.dfs_number[w] < self.lowpt1[v]:</pre>
                                                 self.lowpt2[v] = self.lowpt1[v]
312
                                                 self.lowpt1[v] = self.dfs_number[w]
313
                                        elif self.dfs_number[w] > self.lowpt1[v]:
314
                                                 self.lowpt2[v] = min(self.lowpt2[v], self.df
315
                      return s1 # s1 is None if graph does not have a cut vertex
317
318
319
             def build acceptable adj struct(self):
320
321
                      \max \text{ size} = 3*\text{self.n} + 2
                      bucket = [[] for _ in range(max_size + 1)]
323
324
                      for e in self.graph copy.edge iterator():
325
                               edge_type = self.edge_status[e]
326
                               # compute phi value
328
                               # bucket sort adjacency list by phi values
329
                               if e in self.reverse edges:
330
                                        if edge_type == 1: # tree arc
331
                                                 if self.lowpt2[e[0]] < self.dfs number[e[1]]</pre>
332
                                                         phi = 3*self.lowpt1[e[0]]
333
                                                 else:
334
                                                         phi = 3*self.lowpt1[e[0]] + 2
335
                                        else: # tree frond
336
                                                phi = 3*self.dfs number[e[0]]+1
337
                               else:
338
                                        if edge type == 1: # tree arc
339
                                                 if self.lowpt2[e[1]] < self.dfs_number[e[0]]</pre>
340
                                                         phi = 3*self.lowpt1[e[1]]
341
                                                 else:
342
                                                         phi = 3*self.lowpt1[e[1]] + 2
                                        else: # tree frond
344
                                                phi = 3*self.dfs_number[e[1]]+1
345
346
                               bucket[phi].append(e)
347
                      # Populate `adj` and `in_adj` with the sorted edges
349
                      for i in range(1, max_size + 1):
350
351
                               for e in bucket[i]:
                                       node = LinkedListNode(e)
352
                                        if e in self.reverse_edges:
353
                                                 self.adj[e[1]].append(node)
354
                                                 self.in_adj[e] = node
355
```

```
else:
356
                                               self.adj[e[0]].append(node)
357
                                               self.in_adj[e] = node
358
359
            def path finder(self, v):
360
361
                     self.newnum[v] = self.dfs counter - self.nd[v] + 1
362
                     e node = self.adj[v].get head()
363
                     while e node:
                             e = e node.get data()
365
                             e_node = e_node.next
366
                             w = e[1] if e[0] == v else e[0] # opposite vertex of e
367
                              if self.new path:
368
                                      self.new_path = False
                                      self.starts_path[e] = True
370
                              if self.edge status[e] == 1: # tree arc
371
                                      self.__path_finder(w)
372
                                      self.dfs counter -= 1
373
                             else:
374
                                      # Identified a new frond that enters `w`. Add to `highpt[w]
375
                                      highpt_node = _LinkedListNode(self.newnum[v])
376
                                      self.highpt[w].append(highpt_node)
377
                                      self.in high[e] = highpt node
378
                                      self.new_path = True
379
381
            def dfs2(self):
382
                     self.in high = {e:None for e in self.graph copy.edge iterator()}
384
                     self.dfs counter = self.n
                     self.newnum = [0 for i in range(self.n)]
386
                     self.starts_path = {e:False for e in self.graph_copy.edge_iterator()}
387
                     self.new_path = True
389
                     # We call the pathFinder function with the start vertex
391
                     self. path finder(self.start vertex)
392
393
                     # Update `old to new` values with the calculated `newnum` values
394
                     for v in self.graph copy.vertex iterator():
395
                              self.old_to_new[self.dfs_number[v]] = self.newnum[v]
397
                     # Update lowpt values according to `newnum` values.
398
                     for v in self.graph copy.vertex iterator():
399
                             self.node at[self.newnum[v]] = v
400
                              self.lowpt1[v] = self.old_to_new[self.lowpt1[v]]
                             self.lowpt2[v] = self.old_to_new[self.lowpt2[v]]
402
403
404
            def path search(self, v):
405
                     y = 0
                     vnum = self.newnum[v]
407
                     outv = self.adj[v].get_length()
408
```

```
e_node = self.adj[v].get_head()
409
                     while e_node:
410
                              e = e_node.get_data()
411
                              it = e_node
412
413
                              if e in self.reverse edges:
414
                                       w = e[0] \# target
415
                              else:
416
                                       w = e[1]
                              wnum = self.newnum[w]
418
                              if self.edge_status[e] == 1: # e is a tree arc
419
                                       if self.starts_path[e]: # if a new path starts at ea
420
                                                y = 0
421
                                                # Pop all (h,a,b) from tstack where a > low
422
                                                if self.t stack a[self.t stack top] > self.l
423
                                                         while self.t_stack_a[self.t_stack_to
424
                                                                  y = max(y, self.t_stack_h[se
425
                                                                  b = self.t stack b[self.t st
426
                                                                  self.t_stack_top -= 1
427
                                                         self.__tstack_push(y, self.lowpt1[w]
428
429
                                                else:
430
                                                         self. tstack push(wnum + self.nd[w]
431
                                                self.__tstack_push_eos()
432
                                       self.__path_search(w)
434
435
                                       self.e stack.append(self.tree arc[w])
436
                                       temp_node = self.adj[w].get_head()
437
                                       temp = temp_node.get_data()
                                       if temp in self.reverse_edges:
439
                                                temp_target = temp[0]
440
                                       else:
441
                                                temp_target = temp[1]
442
443
                                       # Type-2 separation pair check
444
                                       # while v is not the start_vertex
445
                                       while vnum != 1 and ((self.t_stack_a[self.t_stack_to
446
                                                                                     (self.degre
447
448
                                                a = self.t_stack_a[self.t_stack_top]
449
                                                b = self.t_stack_b[self.t_stack_top]
450
                                                e_virt = None
451
                                                if a == vnum and self.parent[self.node at[b]
452
                                                         self.t stack top -= 1
453
                                                else:
455
456
                                                         e_ab = None
                                                         if self.degree[w] == 2 and self.newn
457
                                                                  # found type-2 separation po
458
                                                                  self.type2.append((v+1, temp
459
                                                                  e1 = self.__estack_pop()
460
                                                                  e2 = self.__estack_pop()
461
```

```
self.adj[w].remove(self.in adj[e2])
462
463
                                                                   if e2 in self.reverse_edges:
464
                                                                            x = e2[0] # target
465
                                                                   else:
466
                                                                            x = e2[1] # target
467
468
                                                                   e virt = self. new virtual edge(v,
469
                                                                   self.graph_copy.add_edge(e_virt)
                                                                   self.degree[v] -= 1
471
                                                                   self.degree[x] -= 1
472
                                                                   if e2 in self.reverse edges:
474
                                                                            e2_source = e2[1] # target
                                                                   else:
476
                                                                            e2\_source = e2[0]
477
                                                                   if e2_source != w:
478
                                                                            raise ValueError("Graph is n
479
480
                                                                   comp = Component([e1, e2, e virt],
481
                                                                   self.components_list.append(comp)
482
                                                                   comp = None
484
                                                                   if self.e_stack:
485
                                                                            e1 = self.e stack[-1]
                                                                            if e1 in self.reverse_edges:
487
                                                                                     if e1[1] == x and e1
488
                                                                                              e ab = self.
                                                                                              self.adj[x].
490
                                                                                              self.__del_h
                                                                            else:
492
                                                                                     if e1[0] == x and e1
493
                                                                                              e ab = self.
494
                                                                                              self.adj[x].
495
                                                                                              self. del h
496
497
                                                          else: # found type-2 separation pair - (sel
498
                                                                   self.type2.append((self.node_at[a]+1
499
                                                                   h = self.t_stack_h[self.t_stack_top]
500
                                                                   self.t stack top -= 1
501
                                                                   comp = _Component([],0)
503
                                                                   while True:
504
                                                                            xy = self.e stack[-1]
505
                                                                            if xy in self.reverse edges:
506
                                                                                     x = xy[1]
                                                                                     xy_target = xy[0]
508
                                                                            else:
509
510
                                                                                     x = xy[0]
                                                                                     xy target = xy[1]
511
                                                                            if not (a <= self.newnum[x]</pre>
512
513
                                                                                     break
                                                                            if (self.newnum[x] == a and
514
```

```
e ab = self.
515
                                                                                      if e_ab in s
516
                                                                                               e_ab
517
                                                                                      else:
518
                                                                                               e ab
519
                                                                                      self.adj[e_a
520
                                                                                      self.__del_h
521
522
                                                                             else:
                                                                                      eh = self.__
524
                                                                                      if eh in sel
525
                                                                                               eh_s
526
                                                                                      else:
527
                                                                                               eh_s
                                                                                      if it != sel
529
                                                                                               self
530
                                                                                               self
531
532
                                                                                      comp.add_edg
533
                                                                                      self.degree[
534
                                                                                      self.degree[
535
536
                                                                    e_virt = self.__new_virtual_
537
                                                                    self.graph_copy.add_edge(e_v
538
                                                                    comp.finish_tric_or_poly(e_v
539
                                                                    self.components_list.append(
540
                                                                    comp = None
541
                                                                    x = self.node at[b]
542
543
                                                           if e_ab is not None:
544
                                                                    comp = _Component([e_ab, e_v
545
                                                                    e_virt = self.__new_virtual_
546
                                                                    self.graph_copy.add_edge(e_v
547
                                                                    comp.add_edge(e_virt)
548
                                                                    self.degree[x] -= 1
549
                                                                    self.degree[v] -= 1
550
                                                                    self.components_list.append(
551
                                                                    comp = None
552
553
                                                           self.e_stack.append(e_virt)
554
                                                           # Replace the edge `it` with `e_vir
555
                                                           it.set_data(e_virt)
556
557
                                                           self.in_adj[e_virt] = it
558
                                                           self.degree[x] += 1
559
                                                           self.degree[v] += 1
                                                           self.parent[x] = v
561
                                                           self.tree_arc[x] = e_virt
562
563
                                                           self.edge_status[e_virt] = 1
                                                           w = x
564
                                                           wnum = self.newnum[w]
565
566
                                                  # update the values used in the while loop
567
```

```
temp node = self.adj[w].get head()
568
                                              temp = temp_node.get_data()
569
                                              if temp in self.reverse_edges:
570
                                                      temp_target = temp[0]
571
                                              else:
572
                                                      temp target = temp[1]
573
574
                                      # start type-1 check
575
                                     if self.lowpt2[w] >= vnum and self.lowpt1[w] < vnum and (sel</pre>
                                              # type-1 separation pair - (self.node_at[self.lowpt
577
                                              self.type1.append((self.node_at[self.lowpt1[w]]+1, v
578
                                              # Create a new component and add edges to it
                                              comp = Component([], 0)
580
                                              if not self.e_stack:
                                                      raise ValueError("stack is empty")
582
                                              while self.e stack:
583
                                                      xy = self.e_stack[-1]
                                                       if xy in self.reverse edges:
585
                                                               xx = self.newnum[xy[1]] #source
                                                               y = self.newnum[xy[0]] #target
587
                                                      else:
588
                                                               xx = self.newnum[xy[0]] #source
                                                               y = self.newnum[xy[1]] #target
590
                                                      if not ((wnum <= xx and xx < wnum + self.no</pre>
                                                                        (wnum \le y and y \le wnum + se
593
                                                               break
594
595
                                                       comp.add_edge(self.__estack_pop())
596
                                                       self. del high(xy)
                                                       self.degree[self.node at[xx]] -= 1
598
                                                       self.degree[self.node_at[y]] -= 1
599
600
                                              e_virt = self.__new_virtual_edge(v, self.node_at[sel
601
                                              self.graph copy.add edge(e virt) # Add virtual edge
602
                                              comp.finish_tric_or_poly(e_virt) # Add virtual edge
603
                                              self.components list.append(comp)
604
                                              comp = None
605
606
                                              if (xx == vnum and y == self.lowpt1[w]) or (y == vnu
607
                                                       608
                                                      eh = self.__estack_pop()
609
                                                       if self.in_adj[eh] != it:
610
                                                               if eh in self.reverse edges:
611
                                                                       self.adj[eh[1]].remove(self.
612
                                                               else:
                                                                       self.adj[eh[0]].remove(self.
614
615
616
                                                       comp bond.add edge(eh)
                                                       comp bond.add edge(e virt)
617
                                                       e_virt = self.__new_virtual_edge(v, self.nod
618
                                                      self.graph copy.add edge(e virt)
619
                                                       comp_bond.add_edge(e_virt)
620
```

```
if eh in self.in high:
621
                                                                  self.in_high[e_virt] = self.
622
                                                         self.degree[v] -= 1
623
                                                         self.degree[self.node_at[self.lowpt1
624
                                                         self.components list.append(comp bon
625
                                                         comp bond = None
626
627
                                                if self.node_at[self.lowpt1[w]] != self.pare
628
                                                         self.e_stack.append(e_virt)
629
630
                                                         # replace edge `it` with `e_virt`
631
                                                         it.set_data(e_virt)
632
633
                                                         self.in_adj[e_virt] = it
634
                                                         if not e virt in self.in high and se
635
                                                                  vnum_node = _LinkedListNode(
636
                                                                  self.highpt[self.node_at[sel
637
                                                                  self.in high[e virt] = vnum :
638
639
                                                         self.degree[v] += 1
640
                                                         self.degree[self.node_at[self.lowpt1
641
642
                                                else:
643
                                                         self.adj[v].remove(it)
644
                                                         comp bond = Component([e virt], typ
                                                         e_virt = self.__new_virtual_edge(sel
646
                                                         self.graph_copy.add_edge(e_virt)
647
                                                         comp bond.add edge(e virt)
648
649
                                                         eh = self.tree arc[v];
650
                                                         comp_bond.add_edge(eh)
651
                                                         self.components_list.append(comp_bon
652
                                                         comp_bond = None
653
654
                                                         self.tree_arc[v] = e_virt
655
                                                         self.edge_status[e_virt] = 1
656
                                                         if eh in self.in adj:
657
                                                                  self.in_adj[e_virt] = self.i
658
                                                         e virt node = LinkedListNode(e virt
659
                                                         self.in_adj[eh] = e_virt_node
660
                                                # end type-1 search
661
662
                                       # if an path starts at edge e, empty the tstack.
663
                                       if self.starts_path[e]:
664
                                                while self. tstack not eos():
665
                                                         self.t_stack_top -= 1
666
                                                self.t stack_top -= 1
667
668
                                       while self.__tstack_not_eos() and self.t_stack_b[sel
669
670
                                                self.t stack top -= 1
671
                                       outv -= 1
                              else: # e is a frond
673
```

```
if self.starts_path[e]:
674
                                              y = 0
675
                                               # pop all (h,a,b) from tstack where a > w
                                               if self.t_stack_a[self.t_stack_top] > wnum:
677
                                                       while self.t stack a[self.t stack top] > wnu
678
                                                                y = max(y, self.t_stack_h[self.t_sta
679
                                                                b = self.t stack b[self.t stack top]
680
                                                                self.t stack top -= 1
681
                                                       self.__tstack_push(y, wnum, b)
683
                                               else:
684
                                                       self.__tstack_push(vnum, wnum, vnum)
                                      self.e stack.append(e) # add (v,w) to ESTACK
686
                              # Go to next edge in adjacency list
                             e node = e node.next
688
689
            def __print_split(self):
690
                     self.comp list new1 = []
691
                     self.comp_type1 = []
692
                     for comp in self.components list:
693
                             if comp.edge_list.get_length() > 0:
694
                                      e_list = comp.get_edge_list()
695
                                      e list new = []
696
                                      # For each edge, get the original source, target and label
697
                                      for u,v,l in e_list:
                                               source = self.int_to_vertex[u]
699
                                              target = self.int to vertex[v]
700
                                               if isinstance(1, str):
701
                                                       label = 1
702
                                               else:
                                                       label = self.int_to_original_edge_label[1]
704
                                               e_list_new.append((source, target, label))
705
                                      self.comp_list_new1.append(e_list_new)
706
                     return self.comp_list_new1
707
            def assemble triconnected components(self):
709
710
                     comp1 = {} # The index of first component that an edge belongs to
711
                     comp2 = \} # The index of second component that an edge belongs to
712
                     item1 = {} # Pointer to the edge node in component1
713
                     item2 = {} # Pointer to the edge node in component2
                     num components = len(self.components list)
715
                     visited = [False for i in range(num_components)]
716
717
                     # For each edge, we populate the comp1, comp2, item1 and item2 values
718
                     for i in range(num components): # for each component
                             e node = self.components list[i].edge list.get head()
720
                             while e_node: # for each edge
721
722
                                      e = e node.get data()
                                      if e not in item1:
723
                                               comp1[e] = i
                                               item1[e] = e node
725
                                      else:
726
```

```
comp2[e] = i
727
                                                item2[e] = e_node
728
729
                                        e_node = e_node.next
730
731
                      # For each edge in a component, if the edge is a virtual edge, merg
732
                      # the two components the edge belongs to
733
                      for i in range(num_components):
734
                              c1 = self.components_list[i]
                              c1_type = c1.component_type
736
                              11 = c1.edge_list
737
                              visited[i] = True
738
739
                              if l1.get_length() == 0:
740
                                       continue
741
742
                              if c1_type == 0 or c1_type == 1:
743
                                        e_node = self.components_list[i].edge_list.get_head(
744
                                        # Iterate through each edge in the component
745
                                       while e_node:
746
                                                e = e_node.get_data()
747
                                                e_node_next = e_node.next
748
                                                # The label of a virtual edge is a string
749
                                                if not isinstance(e[2], str):
750
                                                         e node = e node next
751
                                                         continue
752
753
                                                j = comp1[e]
754
                                                if visited[j]:
755
                                                         j = comp2[e]
756
                                                         if visited[j]:
757
                                                                  e_node = e_node_next
758
                                                                  continue
759
                                                         e_node2 = item2[e]
760
                                                else:
761
                                                         e_node2 = item1[e]
762
763
                                                c2 = self.components_list[j]
764
765
                                                # If the two components are not the same ty
766
                                                if (c1_type != c2.component_type):
767
                                                         e_node = e_node_next # Go to next ed
768
                                                         continue
769
770
                                                visited[j] = True
771
                                                12 = c2.edge_list
773
                                                # Remove the corresponding virtual edges in
774
775
                                                # and merge the components
                                                12.remove(e node2)
776
                                                11.concatenate(12)
777
778
                                                # if `e_node_next` was empty, after merging
779
```

```
# more edges are added to the component.
780
                                               if not e node next:
781
                                                       e_node_next = e_node.next # Go to next edge
782
783
                                               11.remove(e node)
784
785
                                               e node = e node next
786
787
                     # Convert connected components into original graph vertices and edges
                     self.comp_list_new = []
789
                     self.comp_type = []
790
                     for comp in self.components_list:
                             if comp.edge_list.get_length() > 0:
792
                                      e_list = comp.get_edge_list()
                                      e list new = []
794
                                      # For each edge, get the original source, target and label
795
                                      for u,v,l in e_list:
796
                                               source = self.int to vertex[u]
797
                                               target = self.int_to_vertex[v]
                                               if isinstance(l, str):
799
                                                       label = 1
800
                                               else:
801
                                                       label = self.int to original edge label[1]
802
                                               e_list_new.append((source, target, label))
803
                                      # Add the component data to `comp_list_new` and `comp_type
                                      self.comp_type.append(comp.component_type)
805
                                      self.comp list new.append(e list new)
806
            #print(self.comp_list_new)
807
808
            def __build_spqr_tree(self):
810
                     # Types of components 0: "P", 1: "S", 2: "R"
811
                     component_type = ["P", "S", "R"]
812
813
                     self.spqr tree = Graph(multiedges=False, name='SPQR-tree of {}'.format(self.
814
815
                     if len(self.comp list new) == 1 and self.comp type[0] == 0:
816
                             self.spqr_tree.add_vertex(('Q' if len(self.comp_list_new[0]) == 1 el
817
                                                                                    Graph(self.comp 1
818
                             return
819
                     int to vertex = []
821
                     partner_nodes = {}
822
823
                     for i in range(len(self.comp_list_new)):
                              # Create a new tree vertex
                             u = (component type[self.comp type[i]],
826
                                       Graph(self.comp_list_new[i], immutable=True, multiedges=Tru
827
828
                             self.spqr tree.add vertex(u)
                              int_to_vertex.append(u)
829
830
                              # Add an edge to each node containing the same virtual edge
831
                             for e in self.comp_list_new[i]:
832
```

CAPÍTULO 5. COMPONENTES TRICONEXAS EN UN BIGRÁFO \mathbb{D}_N .

Bibliografía

- [1] Abarca Sotelo, M. A. (2011). Algoritmo para decidir si una forma unitaria es de tipo.
- [2] Ariyoshi, H., Shirakawa, I., and Ozaki, H. (1971). Decomposition of a graph into compactly connected two-terminal subgraphs. *IEEE Transactions on Circuit Theory*, 18(4):430–435.
- [3] AUSLANDER, L. and PARTER, S. V. (1961). On imbedding graphs in the plane. *Journal of Applied Mathematics and Mechanics*, pages 517–523.
- [4] Barot, M. (1999). A characterization of positive unit forms.
- [5] Barot, M. and de la Pena, J. (1999). The dynkin type of a non-negative unit form. Expositiones Mathematicae, 17.
- [6] Bruno, J., Steiglitz, K., and Weinberg, L. (1970). A new planarity test based on 3-connectivity. *IEEE Transactions on Circuit Theory*, 17(2):197–206.
- [7] Busacker, R., Busacker, R., Saaty, T., and Grob, B. (1965). Finite Graphs and Networks: An Introduction with Applications. Number v. 10 in Finite Graphs and Networks: An Introduction with Applications. McGraw-Hill.
- [8] EDMONDS, J. and CUNNINGHAM, W. (1973). private communication.
- [9] Gabriel, P. (1997). Representations of finite-dimensional algebras / P. Gabriel, A.V. Roiter. Springer, Berlin;
- [10] Goldstein, A. (1963). An efficient and constructive algorithm for testing whether a graph can be embedded in a plane. In *Graph and Combinatorics Conference*, Contract No. NONR 1858-(21), Office of Naval Research Logistics Proj., Dept. of Mathematics, Princeton University, May 16-18.
- [11] Gutwenger, C. and Mutzel, P. (2000). A linear time implementation of spqr-trees. In *Graph Drawing*.

- [12] Harary, F. (1971). *Graph Theory*. Addison Wesley series in mathematics. Addison-Wesley.
- [13] Hopcroft, J. and Tarjan, R. (1973a). Algorithm 447: Efficient algorithms for graph manipulation. *Commun. ACM*, 16(6):372378.
- [14] Hopcroft, J. and Tarjan, R. (1974). Efficient planarity testing. J. ACM, 21(4):549568.
- [15] Hopcroft, J. E. and Tarjan, R. E. (1972). *Isomorphism of Planar Graphs (Working Paper)*, pages 131–152. Springer US, Boston, MA.
- [16] Hopcroft, J. E. and Tarjan, R. E. (1973b). Dividing a Graph into Triconnected Components. SIAM Journal on Computing, 2(3):135–158.
- [17] Kleitman, D. (1969). Methods for investigating connectivity of large graphs. *IEEE Transactions on Circuit Theory*, 16(2):232–233.
- [18] Lay, D. C. (2001). Algebra lineal y sus aplicaciones. Pearson Educación, México, 2a ed. actualizada. edition.
- [19] Lederberg, J. (1964). Dendral-64: A system for computer construction, enumeration and notation of organic molecules as tree structures and cyclic graphs. part i. notational algorithm for tree structures.
- [20] Mac Lane, S. (1937). A structural characterization of planar combinatorial graphs. *Duke Mathematical Journal*, 3(3).
- [21] Meghana M Reddy, Sai Harsh Tondomker, D. C. (2018). Triconnectivity linear time algorithm. https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/connectivity.html#sage.graphs.connectivity.TriconnectivitySPQR.
- [22] Ringel, C. M. (1985). Tame algebras and integral quadratic forms.
- [23] Tarjan, R. (1971a). Depth-first search and linear graph algorithms. In 12th Annual Symposium on Switching and Automata Theory (swat 1971), pages 114–121.
- [24] TARJAN, R. and HOPCROFT, J. (1972). Finding the triconnected components of a graph. *Dept. of Computer Science*, pages 72–140.
- [25] Tarjan, R. E. (1971b). An efficient planarity algorithm. Technical report, STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE.
- [26] Tarjan, R. E. (1974). Finding dominators in directed graphs. SIAM J. Comput., 3:62–89.