Ex.3

Tissue distribution

CD4 is expressed on most thymocytes and approximately two thirds of peripheral blood T cells, which constitute the CD8 negative cells ². In human and rat but not in mouse, CD4 is expressed on monocytes and macrophages ².

CI

ce

m

Ъī

Structure

The extracellular domain is made up of four IgSF domains. The structures of the amino terminal two domains have been determined by X-ray crystallography, confirming that they are Ig-like 3,4 . Domain 2 is characterized by an unusual disulphide within one beta sheet and domain 3 lacks a disulphide in the position conserved in most IgSF domains. Cat CD4 shows some unusual features with 17 residues inserted between domains 1 and 2 5 . There is an additional Cys in domain 1 and the Cys in the unusual β strand C position in domain 2 is replaced with a Trp and there is an extra Cys in the β strand F 5 . The position of the NH₂-terminus has been established for the rat homologue 6 .

Function

CD4 is an accessory molecule in the recognition of foreign antigens in association with MHC Class II antigens by T cells ². MAbs against CD4

inhibit T cell functions in vivo and in vitro ². The cytoplasmic domain of CD4 is phosphorylated at Ser residues 408, 415, 431 (see below) when T cells are activated by antigen or phorbol esters ⁷. The cytoplasmic domain interacts with a lymphocyte-specific tyrosine kinase called p56lck through a motif shown below ⁸. CD4 is a receptor for HIV-1 (AIDS virus) and the binding of the viral gp120 protein is to a region of the amino terminal domain ^{3,4}.

Comments

CD4 shows particularly close similarities in overall structure to the LAG-3 protein (see page 342).

Motifs involved in CD4 function

p56lck recognition site (underlined) and Ser residues phosphorylated (in bold) RROAERMSOI KRLLSEKKTC OCPHRFOKTC SPI (433)

Database

Database accession numbers

	PIR	SWISSPROT	<i>EMBL/GENBANK</i>	REFERENCE
Human	AO2109	P01730	M12807	2
Rat	A27449	P05540	M15768	6
Mouse	A02110	P06332	M13816	2

ds of ². In and

tures (-ray 1 is ain 3 CD4 tns 1

Jal B

:xtra

been

s in

CD4

Amino acid sequence of human CD4

MNRGVPERHL	LLVLQLALLP	AATOG			- 1
KKAAI CKKCD	TVELTCTASO	KKSIOFHWKN	SNQIKILGNQ	GSFLTKGPSK	50
INDRADSRRS	LWDOGNEPLI	IKNLKIEDSD	TYICEVEDOK	EEVOLLVFGL	100
TANSDITHILO	GOSLILILES	PPGSSPSVQC	RSPRGKNIQG	GKTLSVSOLE	150
INDSGTWICT	VIONOKKVEE	KIDIVVLAFO	KASSIVYKKE	GEOVEFSFPL	200
AFTVEKLTGS	GELWWOAFRA	SSSKSWITFD	LKNKEVSVKR	VTQDPKLQMG	250
KKI DI HI TI D	DALPOYAGSG	NUTLALEAKT	GKLHQEVNLV	VMRATQLQKN	300
ITCEVWGPTS	PKIMISIKIE	NKFAKVSKRE	KAVWVLNPEA	GMWOCLLSDS	350
CONTIESMIK	VIPTWSTPVO	PMALIVLGGV	AGLLLFIGLG	IFFCVRCRHR	400
	KRLLSEKKTC				433

References

- 1 Maddon, P.J. et al. (1987) Proc. Nat Acad. Sci. USA 84, 9155-9159.
- ² Parnes, J.R. (1989) Adv. Immunol. 44, 265–311.
- 3 Wang, J. et al. (1990) Nature 348, 411-418.
- 4 Ryu, S-E. et al. (1990) Nature 348, 419-426.
- ⁵ Norimine, J. et al. (1992) Immunology 75, 74–79.
- 6 Clark, S.J. et al. (1987) Proc. Natl Acad. Sci. USA 84, 1649-1653.
- ⁷ Shin, J. et al. (1990) EMBO J. 9, 425-434.
- 8 Turner, J.M. et al. (1990) Cell 60, 755-757.