

Taller Lógica de Predicados

Matemáticas Discretas I / 750083M / Grupo 01 / Prof. Juan Francisco Díaz / Monitor Juan Marcos Caicedo / 2018-2

- 1. Considerando como dominio los números enteros, responda falso (F) o verdadero (V) según corresponda:
 - (a) $\exists x \exists y$ tal que $[(x+y=5) \land (x-y=2)]$ ()
 - (b) $\exists x \exists y$ tal que $[(x-2y=1) \land (x+y=7)]$ ()
 - (c) $\forall x \exists y \text{ tal que } [(x^2 + y^2 = 0)]$ ()
 - (d) $\forall x \exists y \text{ tal que } [(x \div y = 1)]$ ()
 - (e) $\exists x \exists y \text{ tal que } [(x^3 + y^3 = y^3)]$ ()

- 2. En este ejercicio los símbolos de predicado tienen los significados que se indican. Se pide expresar en lenguaje natural los enunciados expresados simbólicamente y establecer el valor de verdad de la afirmación resultante. El dominio es el conjunto de los enteros exceptuando el 0.
 - (*) M(x,y) = x es menor que y
 - (*) N(x,y) = x es mayor que y
 - (*) I(x,y) = x es igual a y
 - (*) D(x,y) = x es divisor de y
 - (*) P(x) = x es un número primo
 - (a) $\forall x \exists y | M(x, y)$
 - (b) $\exists x \forall y | D(y, x)$
 - (c) $\forall x \exists y | D(y, x)$
 - (d) $\forall x | (P(x) \Rightarrow \forall y | (D(y, x) \Rightarrow [I(y, 1) \lor I(y, x)]))$
 - (e) $\forall x \forall y | [M(x,y) \equiv N(y,x)]$
- 3. Considere la siguiente fórmula:

$$\forall x | [B(x) \land P(x)] \Rightarrow [A(x) \lor L(x)]$$

Cuál de los textos siguientes puede representarse con tal fórmula?

- (A) Todos los boxeadores pesados son ansiosos o laxos.
- (B) Todos los boxeadores o pesados son ansiosos o laxos.
- (C) Todos los boxeadores y pesados son ansiosos y laxos.
- (D) Todos los boxeadores son ansiosos o laxos.
- (E) Sólo los ansiosos y laxos son boxeadores pesados.¹

 $^{^1{\}rm Extraídos}$ de Lógica y argumentación: De los argumentos inductivos a las álgebras de Boole, (Bustamante, 2009)

2. Considere el siguiente razonamiento en lenguaje natural:

Algún columnista de la prensa escrita no está vinculado a grupos de opinión. Es un hecho que todos los militantes políticos están vinculados a grupos de opinión. Más aún: toda persona es militante político o está interesada en temas generales. En consecuencia, algún columnista de la prensa escrita está interesado en temas generales.²

Del anterior texto, realice:

- (A) El modelamiento del problema mediante los símbolos (y su semántica) de la lógica de predicados las premisas del argumento, y su conclusión.
- (B) Posterior al modelaje, utilice el aparato deductivo de lógica de predicados (es decir, sus reglas, axiomas, teoremas y reglas de inferencia) para demostrar que la conclusión C es verdadera.

Sugerencia: usar reglas de instanciación universal, instanciación existencial y generalización existencial en el desarrollo de la demostración del ejercicio 2.

También se recuerda que para una demostración acertada y correcta del problema, es necesario primero saber que el modelaje es correcto, de lo contrario, sin un modelaje correcto la demostración tampoco será correcta.

3. Considere el siguiente razonamiento en lenguaje natural:

Cada miembro de la junta directiva proviene del sector industrial o del sector público. Cada integrante del sector público que tiene un grado en Leyes está a favor de la enmienda. Juan no proviene del sector industrial, pero tiene un grado en Leyes. En consecuencia, si Juan es miembro de la junta directiva, entonces está a favor de la enmienda.³

 $^{^2}$ Extraído de Lógica y argumentación: De los argumentos inductivos a las álgebras de Boole, (Bustamante, 2009)

³Extraído de Mathematical Structures for Computer Science, (Gersting, J.L. 1987)

Del anterior texto, realice:

- (A) El modelamiento del problema mediante los símbolos (y su semántica) de la lógica de predicados las premisas del argumento, y su conclusión.
- (B) Posterior al modelaje, utilice el aparato deductivo de lógica de predicados (es decir, sus reglas, axiomas, teoremas y reglas de inferencia) para demostrar que la conclusión C es verdadera.