Miscellaneous

Contents

1	Miscellaneous	1
2	Hodge structure	5
3	Plucker embedding	7
4	Graph theory	9
5	Moduli space	11
6	Teichmüller space	13
7	Weil conjecture	15
8	Elliptic curves	17
9	Logarithmic form	19
10	Axiomatic sheaf cohomology theory	2 1
11	Jet	23
12	Algebraic K theory	25
13	Thinking shortcut	27

4 CONTENTS

Hodge structure

Use $H_{\mathbb{F}}$ or $H(\mathbb{F})$ to indicate coefficients in \mathbb{F}

Definition 2.0.1. A pure Hodge structure of weight n on $H_{\mathbb{Z}}$ is a decomposition $H_{\mathbb{C}} = \bigoplus_{n+q=n} H^{p,q}$

such that $\overline{H^{p,q}} = H^{q,p}$. Equivalently, $H_{\mathbb{C}} = F^p \oplus \overline{F^{n+1-p}}$ by introducing the decreasing Hodge filtration $F^p = \bigoplus_{i>p} H^{i,n-i}$, then $\overline{F^q} = \bigoplus_{j< p} H^{j,n-j}$, $H^{p,q} = F^p \cap \overline{F^q}$, $F^p \cap \overline{F^{n+1-p}} = 0$

Example 2.0.2. X is a complex manifold, $H_{\mathbb{Z}} = H^n(X; \mathbb{Z})$, then

$$H^n(X;\mathbb{C}) = \bigoplus_{p+q=n} H^{p,q} = \bigoplus_{p+q=n} H^p(X;\mathbb{C}) \wedge \overline{H^p(X;\mathbb{C})}$$

Example 2.0.3. Tate structure $\mathbb{Z}(-k)$ is of weight 2k given by $H_{\mathbb{Z}} = \mathbb{Z}$ with filtration $F^k = \begin{cases} H_{\mathbb{C}} = \mathbb{C} & k \leq p \\ 0 & k > p \end{cases}$

Definition 2.0.4. A polarization over \mathbb{Q} of a Hodge structure over \mathbb{Q} of weight k is a $(-1)^k$ symmetric nondegenerate flat bilinear map $\beta: \mathbb{V}_{\mathbb{Q}} \times \mathbb{V}_{\mathbb{Q}} \to \mathbb{Q}$ such that the Hermitian form $\beta_x(C_xv,\bar{w})$ on each fiber \mathcal{V}_x is positive definite, here C_x is the Weil operator, given as the direct sum of multiplication i^{p-q} on $H_x^{p,q}$

Definition 2.0.5. A mixed Hodge structure on $H_{\mathbb{Z}}$ consists of an increasing weight filtration W_{\bullet} on $H_{\mathbb{Q}}$ and a decreasing filtration F^{\bullet} that are compatible, i.e.

$$F^p(\operatorname{gr}_k W)_{\mathbb C} = F^p\left(\frac{W_{k+1}}{W_k}\right)_{\mathbb C} = \frac{F^p\cap W_{k+1}(\mathbb C)}{W_k(\mathbb C)} = \frac{F^p\cap W_{k+1}(\mathbb C) + W_k(\mathbb C)}{W_k(\mathbb C)}$$

is a pure Hodge structure of weight k of $\operatorname{\mathsf{gr}}_k W$

Definition 2.0.6. A variation of Hodge structure of weight k over \mathbb{Q} and a complex manifold X is $(\mathbb{V}_{\mathbb{Q}}, \mathcal{F}^{\bullet})$, $\mathbb{V}_{\mathbb{Q}}$ is a locally constant sheaf of \mathbb{Q} vector spaces, \mathcal{F}^{\bullet} is a decreasing filtration of holomorphic subbundles of the locally free sheaf $\mathcal{V} = \mathcal{O}_X \otimes \mathbb{V}_{\mathbb{Q}}$ such that

- $(\mathcal{V}_x, \mathcal{F}_x^{\bullet})$ has a pure Hodge structure of weight k, i.e. $\mathcal{V}_x = \mathcal{F}^p \oplus \overline{\mathcal{F}^{k+1-p}}$
- (Griffiths transversality) $\nabla \mathcal{F}^p \subseteq \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{F}^{p-1}$

Definition 2.0.7. A variation of mixed Hodge structure over \mathbb{Q} and a complex manifold X is $(\mathbb{V}_{\mathbb{Q}}, \mathcal{W}_{\bullet}, \mathcal{F}^{\bullet})$, \mathcal{W}_{\bullet} is an increasing filtration of $\mathbb{V}_{\mathbb{Q}}$ by locally constant subsheaves such that

- $(\mathcal{V}_x, (\mathcal{W}_{\bullet})_x, \mathcal{F}_x^{\bullet})$ has a mixed Hodge structure, i.e. () is a pure Hodge structure of weight k
- $\nabla \mathcal{F}^p \subseteq \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{F}^{p-1}$

Remark 2.0.8. Given a locally constant sheaf is equivalent to given a monodromy representation $\rho_{\mathbf{x}}: \pi_1(X, \mathbf{x}) \to \operatorname{Aut}_{\mathbb{Q}}(\mathcal{V}_x)$. A variation is *unipotent* if the the monodromy representation is unipotent

Deligne's theorem on unipotent VMHS

Theorem 2.0.9 (Deligne). \tilde{X} is a normalization of X, $(\mathbb{V}_{\mathbb{Q}}, \mathcal{W}_{\bullet}, \mathcal{F}^{\bullet})$ is a unipotent variation of mixed Hodge structure of weight k, then there is a unique extension $\tilde{\mathcal{V}}$ over \tilde{X} such that

- Inside every section of $\tilde{\mathcal{V}}$, flat sections increase at most at the rate of $O(\log(\|x\|^k))$ on each compact set of $\tilde{X} X$
- Every flat section of \mathcal{V}^{\vee} increases at most at the rate of $O(\log(\|x\|^k))$

These conditions are equivalent to

- In a local basis of $\tilde{\mathcal{V}}$, the connection matrix $\boldsymbol{\omega}$ of \mathcal{V} has at most logarithmic singularities along $\tilde{X} X$
- The residue of $\boldsymbol{\omega}$ along any irreducible component of $\tilde{X}-X$ is nilpotent

Plucker embedding

Definition 3.0.1. Consider Grassmannian $W \in Gr_k(n)$, the *Plücker coordinates* W_{i_1,\dots,i_k} to be the minor of i_1,\dots,i_k -th columns. For $1 \leq i_1 < \dots < i_{k-1} \leq n, \ 1 \leq j_1 < \dots < j_k \leq n, \ r \leq k$, the **Plücker relations** is

$$W_{i_1,\cdots,i_k}W_{j_1,\cdots,j_k} = \sum W_{i'_1,\cdots,i'_k}W_{j'_1,\cdots,j'_k}$$

The summation is over all swaps of a size r order set of $\{i_1, \dots, i_k\}$ with w_1, \dots, w_r , respectively

Proof. If r = k, it is trivial. So we may assume r < k. For $v_1, \dots, v_k, w_1, \dots, w_k \in \mathbb{C}^k$, consider multilinear function

$$f(v_1,\cdots,v_k,w_1,\cdots,w_k) = |v_1\cdots v_k||w_1\cdots w_k| - \sum |v_1'\cdots v_k'||w_1'\cdots w_k'| = exttt{LHS} - exttt{RHS}$$

Let's first show that f is skew-symmetric, it is suffices to prove if $v_i = v_{i+1}$ or $v_k = w_k$, then f = 0

- (i) If $v_i = v_{i+1}$, LHS = 0, RHS consists of terms $| \cdots v_i \cdots | | \cdots v_{i+1} \cdots | | | \cdots v_{i+1} \cdots | | | \cdots v_i \cdots |$, and each pair will cancel out in summation
- (ii) If $v_k = w_k$, through a linear transformation, $v_k = w_k$ can be taken to be $(0, \dots, 0, 1)^T$, and then it reduces to a lower case

Since w_k, v_k can be move to any column up to a sign, we know f is indeed skew-symmetric \square

Example 3.0.2. Consider ${\rm Gr}_2(4),$ the only Plücker relation is

$$W_{12}W_{34} - W_{13}W_{24} + W_{14}W_{23} = 0$$

Theorem 3.0.3. The *Plücker embedding* is

$$\begin{split} \operatorname{Gr}_k(n) &\to \mathbb{P}(\textstyle \bigwedge^k \mathbb{C}) \\ \operatorname{Span}(v_1, \cdots, v_k) &\mapsto [v_1 \wedge \cdots \wedge v_k] \end{split}$$

The image is an irreducible projective algebraic variety defined exactly by Plücker relations on Plücker coordinates

Graph theory

Definition 4.0.1. A graph is

Moduli space

Consider a parametrized curve $C = \{(t, \mathbf{x}(t))\}_{t \in I}, \mathbf{x}(t) \in \mathbb{R}^n$, now we change I to some space X, $\mathbf{x}(t)$ to some algebro-geometric objects, then we have a parametrization of these objects by X

Definition 5.0.1. U is a family of some algebro-geometric objects. A parametrization of U by space X is a map $X \to U$, attaching some object U_x for each $x \in X$, we can also think of this map as a section of $X \times U \to X$

We say X is the parametrization space, U is parametrized over X

A moduli functor F is a contravariant functor $Space \to Set$ that takes a space X to the set of families of objects over X, and take a morphism f to the pullback f^* that taking section s to pullback section $f^*s(y) = (y, \Pr_U sf(y))$

$$\begin{array}{ccc}
Y \times U & \longrightarrow X \times U \\
\downarrow & & \downarrow \\
Y & \stackrel{f}{\longrightarrow} X
\end{array}$$

The category of spaces can be the category of schemes, manifolds, topological spaces, etc.

M is a fine moduli space if F is corepresentable by M, i.e. there is a natural isomorphism $\tau: F \to \operatorname{Hom}(-,M)$. There is a universal family over M corresponds to $1_M \in \operatorname{Hom}(M,M)$. Then any family over X is the pullback along some $X \xrightarrow{f} M$ of the universal family. The universal family is essentially unique and "tautological"

M is a coarse moduli space if there is exists a natural transformation $\tau: F \to \text{Hom}(-, M)$ and universal among these natural transformations, i.e. for any natural transformation $\tau': F \to \text{Hom}(-, M')$, there is a morphism $M' \xrightarrow{\phi} M$ such that the following diagram commutes

Teichmüller space

Let $S_{g,b,n,m}$ be the surface with genus g, b boundaries, n punctures inside and m punctures on the boundaries. Then

$$\chi(S_{a,b,n,m}) = (1+b) - (2g+2b+n+m) + 1 = 2 - 2g - b - n - m$$

Definition 6.0.1. Suppose $\operatorname{Aut}(X)$ has a natural topology, the mapping class group is $\operatorname{Aut}(X)/\operatorname{Aut}_0(X)$, where $\operatorname{Aut}_0(X)$ is the path connected component of the identity, hence we have exact sequence

$$0 \to \operatorname{Aut}_0(X) \to \operatorname{Aut}(X) \to \operatorname{MCG}(X) \to 0$$

If X is a space, then a path connecting $f, g \in Aut(X)$ is an isotopy

Example 6.0.2. $MCG(S^2) = \mathbb{Z}/2\mathbb{Z}$

Definition 6.0.3. Let S be a compact surface with finitely many holes, X be a surface with a complete, finite area hyperbolic metric. A hyperbolic structure on S is a diffeomorphism $\phi: S \to X$, ϕ is called a marking, (X, ϕ) is a marked hyperbolic surface. (X, ϕ) , (Y, ψ) are equivalent if there is an isometry $i: X \to Y$ such that $i \circ \phi$ and ψ are homotopic

$$X \xrightarrow{\phi} S \qquad \psi \qquad X \xrightarrow{i} Y$$

The Teichmuller space of S is

$$T(S) = \{(X, \phi)\}/\sim$$

Definition 6.0.4 (Change of marking). $f: S \to S$ is a homeomorphism

When $f = 1_S$, $\psi \circ \phi^{-1}$ is the *change of marking* The mapping class group left acts on T(S) by $h \cdot (X, f) = (X, fh^{-1})$, then T(S) mod the action is just S

Example 6.0.5. By Uniformization theorem $\ref{eq:thm.1}$, $T(\mathbb{S}^2)$ is a point corresponds to the Riemann sphere, $T(\mathbb{R}^2)$ is two points corresponds the complex plane and the unit disc. T(A) = [0,1), where A is the open annulus, and $\lambda \in [0,1)$ corresponds to $\{\lambda < |z| < \lambda^{-1}\}$ according to Exercise $\ref{eq:thm.1}$?

By Gauss-Bonnet theorem, it is necessary that a closed hyperbolic surface X has area Area $(X) = -\int_X K dS = -2\pi\chi(X)$ since the Gaussian curvature K is -1. Similarly, by Gauss-Bonnet theorem, it is reasonable to consider flat structures on the torus T^2 , by modulo homothety, we may just assume it has unit area. Thus let's define $T(T^2)$ as the isotopy classes of unit-area flat structures on T^2 , i.e. markings $T^2 \to \mathbb{T}^2$. Similarly, $T(S^2)$ should be defined to be the unique induced metric on the unit sphere \mathbb{S}^2

A marking on a lattice Λ in \mathbb{R}^2 is an ordered pair of generators, two marked lattices are equivalent if they transitive under $\mathrm{Isom}(\mathbb{R}^2)$. Marked lattices in \mathbb{R}^2 are in bijection with the upper half plane \mathbb{H}^2 as follows: $\mathbb{Z} + \mathbb{Z}\tau \leftrightarrow \tau$. note that $\mathbb{Z}\lambda + \mathbb{Z}\mu \sim \mathbb{Z} + \mathbb{Z}\frac{\mu}{\lambda}$ by homothety, $\mathbb{Z} + \mathbb{Z}\tau \sim \mathbb{Z} + \mathbb{Z}\bar{\tau}$ by reflection

Proposition 6.0.6. $T(T^2)$ is in bijection \mathbb{H}^2 , this induces a hyperbolic metric on $T(T^2)$ so that $T(T^2) \cong \mathbb{H}^2$

Proof. It suffices to show that $T(T^2)$ is in bijection with equivalence classes of marked lattices in \mathbb{R}^2 . \mathbb{R}^2 is the metric universal cover of \mathbb{T}^2

Given a marked lattice $\mathbb{Z} + \mathbb{Z}\tau$, $\tau \in \mathbb{H}^2$, using homothety, we get an equivalent lattice $\mathbb{Z}\lambda + \mathbb{Z}\mu$ with unit area, we can simply take the marking to be the map induced by the linear map $\mathbb{R}^2 \to \mathbb{R}^2$, taking $\mathbb{Z} + \mathbb{Z}i$ to $\mathbb{Z}\lambda + \mathbb{Z}\mu$

For any marking $\phi: T^2 \to \mathbb{T}^2$, we have the following diagram

$$\begin{array}{ccc}
\mathbb{R}^2 & \stackrel{\tilde{\phi}}{----} & \mathbb{R}^2 \\
\pi \downarrow & & \downarrow \pi \\
T^2 & \stackrel{\phi}{\longrightarrow} & \mathbb{T}^2
\end{array}$$

Hence $\tilde{\phi} \in \text{Isom}(\mathbb{R}^2)$, the image of the standard lattice gives us the desired marked lattice \Box

Since \mathbb{H}^2 is the metric universal cover of X, for any marking $\phi: S_g \to X,$ we have

 $\tilde{\phi} \in \mathrm{Isom}(\mathbb{H}^2) \cong \mathrm{PGL}(2,\mathbb{R})$

Proposition 6.0.7. Let $DF(\pi_1(S_g), PSL(2, \mathbb{R}))$ be the subset of discrete and faithful representations in $Hom(\pi_1(S_g), PSL(2, \mathbb{R}))$, there is a natural bijection

$$T(S_q) \leftrightarrow DF(\pi_1(S_q), PSL(2, \mathbb{R}))/PGL(2, \mathbb{R})$$

Proof. Consider map
$$T(S_g) \to \operatorname{Hom}(\pi_1(S_g),\operatorname{Isom}(\mathbb{H}^2))$$
 by $\pi_1(S_g) \xrightarrow{\phi_*} \pi_1(X) \xrightarrow{\cong} \operatorname{Aut}(\mathbb{H}^2/X) \hookrightarrow \operatorname{Aut}(\mathbb{H}^2) \cong \operatorname{Isom}(\mathbb{H}^2)$, if $(X,\phi) \sim (Y,\psi)$

Definition 6.0.8. Use the discrete topology on $T(S_g)$, and Lie group topology on $PSL(2, \mathbb{R})$, and then use compact-open topology on $Hom(\pi_1(S_g), PSL(2, \mathbb{R}))$ which can be embedded in $PSL(2, \mathbb{R})^{2g}$ (this is well defined regardless of the choice the generator), called the algebraic topology on $T(S_g)$

Proposition 6.0.9. Let c be an isotopy class of simple closed curves, then the map $T(S_g) \to \mathbb{R}$, $\mathcal{X} \to \ell_{\mathcal{X}}(c)$ is continuous

Weil conjecture

Definition 7.0.1. X is a non-singular n dimensional projective algebraic variety over F_q , the zeta function is

$$\zeta(X,s) = \exp\left(\sum_{m=1}^{\infty} \frac{N_m}{m} q^{-ms}\right)$$

Where N_m are the number of points of X over F_{q_m} . The Weil conjectures are

1. Let $T = q^{-s}$

$$\zeta(X,s) = rac{P_1(T)P_3(T)\cdots P_{2n-1}(T)}{P_0(T)P_2(T)\cdots P_{2n}(T)} = \prod_{i=0}^{2n} P_i(T)^{(-1)^{i+1}}$$

Where $P_0(T) = 1 - T$, $P_{2n}(T) = 1 - q^n T$, $P_i(T)$ can be split into $\prod_j (1 - \alpha_{ij} T)$ over \mathbb{C} . In particular, $\zeta(X, s)$ is a rational function of T

2.

$$\zeta(X,n-s)=\pm q^{rac{nE}{2}-Es}\zeta(X,s)$$

Or equivalently

$$\zeta(X, q^{-n}T^{-1}) = \pm q^{\frac{nE}{2}}T^{E}\zeta(X, T)$$

E is the Euler characteristic. $\{\alpha_{2n-i,1}, \alpha_{2n-i,2}, \cdots\}$ coincide with $\{\frac{q^n}{\alpha_{i,1}}, \frac{q^n}{\alpha_{i,2}}, \cdots\}$ in some order

3.
$$|\alpha_{i,j}| = q^{i/2}$$

4.

Example 7.0.2. If X is the n dimensional projective space, $N_m = 1 + q^m + \cdots + q^{nm}$, $\zeta(\mathbb{P}^n, s) = \frac{1}{(1 - q^{-s}) \cdots (1 - q^{n-s})}$

Elliptic curves

Consider ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, the circumference is

$$4\int_{0}^{a}\sqrt{1+rac{b^{2}x^{2}}{a^{2}(a^{2}-x^{2})}}dx=4a\int_{0}^{rac{\pi}{2}}\sqrt{1-e^{2}\sin^{2} heta}d heta$$

Definition 8.0.1. The elliptic integral of the *first* kind is

$$\int_0^{\varphi} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$$

Let $t = \sin \theta$, $x = \sin \varphi$, we have

$$\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}$$

The elliptic integral of the second kind is

$$\int_0^{\varphi} \sqrt{1 - k^2 \sin^2 \theta} d\theta$$

Let $t = \sin \theta$, $x = \sin \varphi$, we have

$$\int_{0}^{x} \frac{\sqrt{1-k^{2}t^{2}}}{\sqrt{1-t^{2}}} dt$$

The elliptic integral of the third kind is

$$\int_0^{arphi} rac{d heta}{(1-n\sin^2 heta)\sqrt{1-k^2\sin^2 heta}}$$

Let $t = \sin \theta$, $x = \sin \varphi$, we have

$$\int_0^x \frac{dt}{(1-nt^2)\sqrt{(1-t^2)(1-k^2t^2)}}$$

These elliptic integrals are called incomplete, they are complete if $\varphi = \frac{\pi}{2}$

Legendre's relation

Theorem 8.0.2 (Legendre's relation). For $k^2 + k'^2 = 1$, E, E' are corresponding complete elliptic integrals of the second kind, K, K' are corresponding complete elliptic integrals of the first kind, then they satisfy the *Legendre's relation*

$$KE' + K'E - KK' = \frac{\pi}{2}$$

Equivalently

$$\omega_1\eta_2-\omega_2\eta_1=2\pi i$$

 ω_1, ω_2 are the periods of Weierstrass \wp function, η_1, η_2 are the quasiperiods of Weierstrass zeta function

Definition 8.0.3. An *elliptic integral* is of the form

$$\int_{c}^{x} R\left(x, \sqrt{P(x)}\right) dx$$

Here R(x, w) is a rational function of x, w and P(x) is a polynomial of degree 3 or 4. Every elliptic integral can be reduced into elliptic integrals of the first, second and third kinds

Definition 8.0.4. An abelian integral is of the form

$$\int_{z_0}^z R(x,w) dx$$

R is a rational function of x, w, and F(x, w) = 0 for some

$$\varphi_n(x)w^n+\cdots+\varphi_0(x)=0$$

 $\varphi_i(x)$ are rational functions of x. It is called a hyperelliptic integral if $F(x, w) = w^2 - P(x)$ for some polynomial P, note that if degree of P is 3 or 4 than it is an elliptic integral

Definition 8.0.5. C is a compact algebraic curve of genus g, $H^0(X, K) = \mathbb{C}^g$ is generated by one forms $\omega_1, \dots, \omega_g$, K is a canonical bundle, the *Abel-Jacobi map* is

$$J:C o J(C)=\mathbb{C}^g/\Lambda$$
 $P\mapsto \left(\int_{P_0}^P\omega_1,\cdots,\int_{P_0}^P\omega_g
ight)\ \mathrm{mod}\ \Lambda$

Theorem 8.0.6 (Abel-Jacobi theorem). Abel-Jacobi map J is an isomorphism

Logarithmic form

Definition 9.0.1. D is a simple normal crossing divisor of X, Y = X - D, $Y \stackrel{\jmath}{\hookrightarrow} X$ is the embedding, the log de Rham commplex of X along D is $\Omega_X^*(\log D)$, which is the smallest chain complex of $j_*\Omega_Y^*$ closed under wedge product such that for any $f\in j_*\mathcal{O}_X^*(U)$ meromorphic along $D, \frac{df}{f} \in \Omega_X^*(\log D)(U).$ A section of $j_*\Omega_Y^*$ has logarithmic poles if it is a section of $\Omega_X^*(\log D)$

Proposition 9.0.2.

- 1. Section ω of $j_*\Omega_*^{\nu}$ has logarithmic poles along D iff both ω , $d\omega$ have at most simple poles along D
- **2.** $\Omega_X^1(\log D)$ is locally free and $\Omega_X^p(\log D) = \bigwedge^p \Omega_X^1(\log D)$
- **3.** For $(X, D) = (X_1, D_1) \times (X_2, D_2) = (X_1 \times X_2, X_1 \times D_2 \cup X_2 \times D_1)$, isomorphism $\Omega^*_{Y_1} \boxtimes \Omega^*_{Y_2} \to \operatorname{pr}^*_{X_1} \Omega^*_{X_1} \otimes \operatorname{pr}^*_{X_2} \Omega^*_{X_2}$ induces isomorphism $\Omega^*_{X_1}(\log D_1) \boxtimes \Omega^*_{X_2}(\log D_2) \to \Omega^*_X(\log D)$
- **4.** For $f: X_1 \to X_2, \ f^{-1}(D_2) = D_1, \ f^*: j_{2_*}\Omega_{Y_2}^* \to j_{1_*}\Omega_{Y_1}^* \text{ induces } f^*: \Omega_{X_2}^*(\log D_2) \to 0$ $\Omega_{X_1}^*(\log D_1)$

Lemma 9.0.3. $X = D^n$, $D = \bigcup_{1 \le i \le k} D_i$ with $D_i = \operatorname{pr}_i^{-1}(0)$, $Y = D^{*k} \cup D^{n-k}$. Then $\Omega^1_X(\log D)$ is a free sheaf with base $\left\{\frac{dz_i}{z_i}\right\}_{1 \le i \le k}$ and $\{dz_i\}_{k \le i \le n}$. In fact, any section of $j_*\mathcal{O}_Y^*$ meromorphic

along D can be written locally as $f = g \prod_{i=1}^{\kappa} z_i^{n_i}$, then

$$rac{df}{f} = rac{dg}{g} + \sum_{i=1}^k rac{n_i}{z_i} dz_i$$

Axiomatic sheaf cohomology theory

Definition 10.0.1. A sheaf cohomology theory H for M with coefficients in the sheaves of K-modules over M is a covariant cohomological δ functor that consists of

- 1. A family of covariant additive functors H^q from the category of sheaves of K-modules over M to the category of K-modules
- 2. For each short exact sequence $0 \to \mathcal{S}' \to \mathcal{S} \to \mathcal{S}'' \to 0$, a homomorphism $H^q(M, \mathcal{S}'') \to H^{q+1}(M, \mathcal{S}')$

such that

1. $H^q(M,\mathcal{S})=0$ for q<0. $H^0(M,\mathcal{S})\cong\Gamma(\mathcal{S})$, and for any homomorphism $\mathcal{S}\to\mathcal{S}'$

$$H^0(M,\mathcal{S}) \stackrel{\cong}{\longrightarrow} \Gamma(\mathcal{S}) \ \downarrow \ \downarrow \ H^0(M,\mathcal{S}') \stackrel{\cong}{\longrightarrow} \Gamma(\mathcal{S}')$$

commutes

- 2. If S is a fine sheaf, then $H^q(M, S) = 0$ for q > 0
- 3. For each short exact sequence $0 \to \mathcal{S}' \to \mathcal{S} \to \mathcal{S}'' \to 0$, we have long exact sequence

$$\cdots \to H^q(M,\mathcal{S}') \to H^q(M,\mathcal{S}) \to H^q(M,\mathcal{S}'') \to H^{q+1}(M,\mathcal{S}') \to \cdots$$

4. For commutative diagram

we have commutative diagram

$$\cdots \longrightarrow H^q(M,\mathcal{S}') \longrightarrow H^q(M,\mathcal{S}) \longrightarrow H^q(M,\mathcal{S}'') \longrightarrow H^{q+1}(M,\mathcal{S}') \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow H^q(M,\mathcal{T}') \longrightarrow H^q(M,\mathcal{T}) \longrightarrow H^q(M,\mathcal{T}'') \longrightarrow H^{q+1}(M,\mathcal{T}') \longrightarrow \cdots$$

Existence of cohomology theories

Let $\mathcal{K} = M \times K$ be the constant sheaf over M, we shall show that any fine torsionless resolution of \mathcal{K}

$$0 \to \mathcal{K} \to \mathcal{C}^0 \to \mathcal{C}^1 \to \cdots$$

Give rise to a cohomology theory by defining $H^q(M,\mathcal{S}) = H^q(\Gamma(\mathcal{C}^* \otimes \mathcal{S}))$, since \mathcal{C}_i are fine torsionless resolution, we have

$$0 \to \Gamma(C^* \otimes \mathcal{S}') \to \Gamma(C^* \otimes \mathcal{S}) \to \Gamma(C^* \otimes \mathcal{S}'') \to 0$$

is exact, which gives us the long exact sequence

Let $\mathcal{Z}^q = \ker(\mathcal{C}^q \to \mathcal{C}^{q+1})$, then we have short exact sequence $0 \to \mathcal{Z}^q \to \mathcal{C}^q \to \mathcal{Z}^{q+1} \to 0$, as a subsheaf \mathcal{Z}^q is also torsionless, thus $0 \to \mathcal{Z}^q \otimes \mathcal{S} \to \mathcal{C}^q \otimes \mathcal{S} \to \mathcal{Z}^{q+1} \otimes \mathcal{S} \to 0$ is exact, so $0 \to \Gamma(\mathcal{Z}^q \otimes \mathcal{S}) \to \Gamma(\mathcal{C}^q \otimes \mathcal{S}) \to \Gamma(\mathcal{Z}^{q+1} \otimes \mathcal{S})$ is exact, and $\Gamma(\mathcal{C}^q \otimes \mathcal{S}) \to \Gamma(\mathcal{C}^{q+1} \otimes \mathcal{S})$ is the composition $\Gamma(\mathcal{C}^q \otimes \mathcal{S}) \to \Gamma(\mathcal{Z}^{q+1} \otimes \mathcal{S}) \to \Gamma(\mathcal{C}^{q+1} \otimes \mathcal{S})$, hence $H^q(M, \mathcal{S}) = H^q(\Gamma(\mathcal{C}^* \otimes \mathcal{S})) \to \Gamma(\mathcal{Z}^q \otimes \mathcal{S}) \to$

Let S_0 denote the sheaf of germs of discontinuous sections of S (which is the shefification of the sheaf of discontinuous sections of S), we shall show that S_0 is always a fine sheaf

Definition 10.0.2. H, \tilde{H} are cohomology theories, a homomorphism $H \to \tilde{H}$ is a natural transformation such that

$$H^0(M,\mathcal{S}) \stackrel{\cong}{\longrightarrow} \Gamma(\mathcal{S}) \ \downarrow \ \parallel \ ilde{H}^0(M,\mathcal{S}) \stackrel{\cong}{\longrightarrow} \Gamma(\mathcal{S})$$

commutes

Theorem 10.0.3. H, \tilde{H} are cohomology theories, then there is a unique homomorphism $H \to \tilde{H}$

Corollary 10.0.4. Any two cohomology theories H, \tilde{H} are uniquely isomorphic

Theorem 10.0.5. H is a cohomology theory

$$0 \to \mathcal{S} \to \mathcal{C}^0 \to \mathcal{C}^1 \to \cdots$$

is a fine resolution of \mathcal{S} , then there are canonical isomorphisms $H^q(M,\mathcal{S}) \xrightarrow{\cong} H^q(\Gamma(\mathcal{C}^*))$

Jet

24 CHAPTER 11. JET

Algebraic K theory

Definition 12.0.1. The Grothendieck group of R is $K_0(R)$, the Grothendieck group of monoid of finitely generated projective modules over R

Swan's theorem

Theorem 12.0.2 (Swan's theorem). X is a compact Hausdorff space, $K(X) = K_0(C(X, \mathbb{R}))$

Proof. If $E \to X$ is a vector bundle, then it is the direct summand of some trivial vector bundle. Conversely, if P is a finitely generated module over $R = C(X, \mathbb{R})$, then P is image of some idempotent endomorphism of \mathbb{R}^n which is a vector bundle

Definition 12.0.3 (Whitehead group). The **Whitehead group** of ring R is an abelian group $K_1(R)$ satisfying universal property

For any abelian group A

Construction 12.0.4. Thanks to Whitehead's lemma ??, $K_1(R) = GL(R)/[GL(R), GL(R)] = GL(R)/E(R)$

Definition 12.0.5. If R is commutative, SL(R) is the kernel of $GL(R) \xrightarrow{\det} R^{\times}$, the special Whitehead group $SK_1(R) = SL(R)/E(R)$ is the kernel of $K_1(R) \xrightarrow{\det} R^{\times}$, $GL(R) \cong SL(R) \rtimes R^{\times}$, $K_1(R) \cong SK_1(R) \oplus R^{\times}$. $K_1(F) = F^{\times}$

Lemma 12.0.6. Since $GL(R_1 \times R_2) = GL(R_1) \times GL(R_2), K_1(R_1 \times R_2) = K_1(R_1) \oplus K_1(R_2)$

Thinking shortcut

Remark 13.0.1.

$$a^{k} + \dots + a^{l} = (a^{k} + \dots) - (a^{l+1} + \dots)$$

$$= \frac{a^{k}}{1-a} - \frac{a^{l+1}}{1-a}$$

$$= \frac{a^{k} - a^{l+1}}{1-a}$$