

John M. Medellin, IBM GBS Executive & Director Strategic Services Mexico

BBA, MBA, MPA Accounting & Computer Systems UTD MS Software Engineering Program SMU PhD Computer Science Program

American Institute of CPAs Texas Society of CPAs IBM Hispanic Engineers Association

Patent of Letters in Real Time Environments Assistant Inventor in other patent efforts

Prior Roles at IBM Include:

Application Innovation Leader Travel & Transportation (VP Level) Retail SAP North America Leader (VP Level) Global Leader Center of Excellence for SOA (VP Level)

Prior Roles at PricewaterhouseCoopers Include:

Managing Partner Aerospace, Aviation and Travel, North America Managing Partner SAP Financial Services Consulting, North America

Prior Roles at Bank of America:

Vice President, FDIC SW Plan Manager for Liquidations S. Texas Vice President, Financial Information Systems, SW USA

Today's Agenda - May 4, 2013

- Software Quality Metrics Primer on Best Practices
- ERP Testing Tools
- Legacy Rehabilitation Incorporating SE Testing Techniques

The Halstead measures are based on four scalar numbers derived directly from a program's source code:

 $\begin{array}{lll} n1 & = & \text{the number of distinct operators} \\ n2 & = & \text{the number of distinct operands} \\ N1 & = & \text{the total number of operators} \\ \end{array}$

 $N2 \quad = \quad \text{the total number of operands}$ From these numbers, five measures are derived:} \\

Measure	Symbol	Formula
Program length	N	N= N1 + N2
Program vocabulary	n	n= n1 + n2
Volume	V	V= N * (LOG2 n)
Difficulty	D	D= (n1/2) * (N2/n2)
Effort	E	E= D * V

19

Cyclomatic Complexity

The cyclomatic complexity of a software module is calculated from a connected graph of the module (that shows the topology of control flow within the program):

Cyclomatic complexity (CC) = E - N + p where E = the number of edges of the graph N = the number of nodes of the graph p = the number of connected components

Cyclomatic Complexity	Risk Complexity
1-10	a simple program, without much risk
11-20	more complex, moderate risk
21-50	complex, high risk
51+	untestable, very high risk

Cyclomatic Complexity	Cyclomatic complexity (vg) Cyclomatic complexity is probably the most widely used complexity metric in software engineering. Defined by Thomas McCabe, it's easy to understand, easy to calculate and it gives useful results. It's a measure of the structural complexity of a procedure. V(G) is a measure of the control flow complexity of a method or constructor. It counts the number of branches in the body of the method, defined as: while statements; If statements; If statements. CC = Number of decisions + 1
	http://www.aivosto.com/project/help/pm-complexity.html http://maven.apache.org/reference/metrics.html
Cyclomatic Complexity2	Cyclomatic complexity:2(Vg2) CC2 = CC + Boolean operators CC2 includes boolean operators in the decision count. Whenever a Boolean operator (And, Or, Xor, Eqv, AndAlso, OrFlae) is found within a
	conditional statement, CC2 increases by one. The reasoning behind CC2 is that a Boolean operator increases the internal complexity of the branch. You could as well split the conditional statement in several sub-conditions while maintaining the complexity level. http://www.aivosto.com/project/help/pm-complexity.html

<u>University of Texas at Dallas</u> <u>Erik Jonsson School of Engineering & Computer Science</u>

Dr. W. Eric Wong, Professor Mr. Ricky Gao, Assistant

"Evaluating SAP Testing Tools in Light of Software Engineering Principles; Version 2, Including Market Potential Extrapolations"

John M. Medellin

May 4, 2013

Contents

- ERP System Testing Failures
- ERP Testing Market and Potential for Products
- ERP Systems Overview
- Testing Tools
- Approach To Testing
- Third Party Testing Tool Overview
- Testing Tool Evaluation
- Scaling Analysis Example
- Potential Enhancements Recommended

ERP System Testing Blunders

- CPG Corporation, 2002...production system issuing wrong order fulfillment, 200+ trucks stuck without correct delivery, estimated cost in the millions, reputational impact for integrator.
- Chemicals corporation, 2000's, incorrect MRP set in several plants in europe requires additional months of testing, chemical/additional losses become part of financial statement disclosures to the Bourse
- Major telecom producer writes off several million dollars due to miss matching between telephone set production and order fulfillment.
- Fixed % of Airwaybills are written off by major logistics player due to incorrect pricing and/or billing instructions.
- And the defects go on......

Rounded Estimate	<u>ty</u>							3,212.86 3200	5,937.86 5900
								3200	3300
Productivity Financial Effect 1%								32	59
3%								96	
5%								160	295
Average Individual Ranges								96	177
Estimate Productivity Per Year (av									137
Market Potential for Offering (5 Y Cost of Organization, see below		e, 35% of p	roductivi	ty estimate,	client keeps 65	5%, company stay	s with 35% as	revenue)	240 103
5 Year EBITDA in Millions of USD									137
SW Multiplier									10
Target Market Capitalization at IP	0								1,370.00
Cost of Organization									
Number of Product Lines	Assumption	is Staffing 3	. <u>C</u>	ost Per	Extended	Benefits (30%) C	OH 20%	FF&E (10%)	Totals @ 5Y
Manager per Prod Line		1	3	150000	450000	135000	90000	45000	3,600,000
Developers/Prod Line		6	18	90000	1620000		324000	162000	
Help Desk/Prod Line		8	24	50000	1200000		240000	120000	
Consultants Executive Mgt			50 10	90000 250000	4500000 2500000		900000 500000	450000 250000	
Numbers per year in full producti	on mode		105	230000	10,270,000		2,054,000	1,027,000	
Estimated ground up cost									82,160,000
									25%
Contingency									
									102700000 103

Characteristic / Tool	SAP Provided Tool Set	HP SAP Quality Center	Borland SILK	IBM Rational	Worksoft Certify
1. Requirements based test generation	(M) tools can generate scripts within the SAP domain	(H) can create scripts that include SAP and non-SAP systems	(H) can create scripts that include SAP and non- SAP systems	(H) can create scripts that include SAP and non-SAP systems	(M) can create specialized test cases within SAP
2. Control Flow and Data Flow Testing	(M) tools can identify path to statement within ABAP & block (no decision) execution only	(I) does not contain an analyzer for ABAP (use SAP's)	(I [']) does not contain an analyzer for ABAP (use SAP's)	(I) does not contain an analyzer for ABAP (use SAP's)	(I) does not contain an analyzer for ABAP (use SAP's)
3. Coverage Criteria Reporting	(M) reports if the statements are covered but does not provide path to cover	(L) does not contain an analyzer for ABAP (use SAP's)	(L) does not contain an analyzer for ABAP (use SAP's)	(L) does not contain an analyzer for ABAP (use SAP's)	(L) does not contain an analyzer for ABAP (use SAP's)
4. White Box Testing	(L) no Xsuds style reporting of block coverage	(L) does not contain an analyzer for ABAP (use SAP's)	(L) does not contain an analyzer for ABAP (use SAP's)	(M) Available for Java based implementation s (for Java portion of ABAP)	(L) does not contain an analyzer for ABAP (use SAP's)
5. Regression Testing	(M) analyzes impact of upgrades and changes in parametrizatio n (not code)	(H) Will analyze SAP and non-SAP Impact on scripts (not code)	(M) can perform the analyisis but not as integrated as HP or IBM	(H) Will analyze SAP and non- SAP Impact on scripts (not code)	(M) Will analyze SAP and non- SAP Impact through Rational
6. Model based test generation	(H) can generate scripts from parameter values in Solution Manager	(H) can generate scripts from parameter values in Solution Manager	(H) can generate scripts from parameter values in Solution Manager	(H) can generate scripts from parameter values in Solution Manager	(M) can create specialized test cases within SAP mostly for high performance testing
7. Debugging Support	(H) Identification through SAP ABAP Debugger	(M) Tracks bug status & reports (Interface to Sol Mgr.)	(M) Tracks bug status & reports (Interface to Sol Mgr.)	(M) Tracks bug status & reports(Interfa ce to Sol Mgr.)	(M) Tracks bug status & reports (Interface to Sol Mgr.)
8. Test Process Management	(M) Restricted to SAP side of implementatio n	(H) Full best practices implemented	(H) Full best practices implemented	(H) Full best practices implemented	(H) Full best practices implemented
9. Test Artifact Management	(M) Artifacts within SAP domain well managed, can	(H) Full best practices implemented	(H) Full best practices implemented	(H) Full best practices implemented	(H) Full best practices implemented

Evaluation Part 2 Characteristic SAP Provided Tool Set HP SAP Borland IBM Rational Worksoft Certify Quality SILK Center 10. Test Data (M) some (M) some (M) some (M) some (H) High area of focus of the tool set support for script data support for script data support for script data support for script data Generation generation generation generation generation 11. Overall (L) mostly (M) higher (L) cost (H) really a part (L-M?) Did not get pricing indication but Cost included cost than effective of the previous option, may integrated small company mercury due not scale for Rational Suite to HP probably small extremely overhead large test price oras. 12. Overall (M) Lower (M) higher cost but could scale (H) cost is low (M) higher (M) probably lower cost but only useful in and only one to offer some Value cost but cost but might not scale for could scale if when the the HP Suite is brought in features Rational Suite specialized is brought in larger org. spaces

le Evaluation				
Element/Program Scope	Small	Medium	Large	Very Large
1. # of Organizational Units	1	2-3	4-7	More than 7
2. # of Locations	1	2-4	5-10	More than 10
3. # of SIPCO Level 4	10	11-40	41-100	More than 100
Business Processes				
4. # of Extensions (API Usage)	1 (Vertex)	2-5	5-10	More than 10
5. # of Interfaces &	5	6-12	13-20	More than 20
Conversions				
6. # of test scripts (4 per	100	~ 430	~ 950	~ 2000+
business process, 10 per custom object)				
7. Est Test Hours w/o tool at 40 hr/script (generation, execution, remediation included)	4,000 hours	17,200 hours	38,000 hours	80,000 hours
8. Est PMO Hours (7.5%*half of Org Units+Locations over 2, topped at 50% of tester budget)	300 hours	7,000 hours	19,000 hours	40,000 hours
Est Total Hours without tool sets	4,300 hours	24,200 hours	57,000 hours	120,000 hours
10. Estimated benefit	20-40% (860-	20-40% (4,840-	20-40% (11,400-	20-40% (24,000-
with testing tools	1720 hrs)	9,680 hrs)	22,800 hrs)	48,000 hrs
11. Cost Avoided	\$21,500-	\$121,000-	\$285,000-	\$600,000-
(@25/hr, India)	\$43,000	\$242,000	\$570,000	\$1,200,000
12. Potential Strategy	Only use the tools that SAP Provides	Consider Borland	Consider Borland & HP	Consider All Tools Mentioned

Potential Enhancements Recommended

From Class Material

- Inclusion of block and superblock analysis in the ABAP coverage model.
- •Identification of branch bound paths to get to a particular block or node in the code itself.
- •Identification of the values of a test case that will exercise the block or node that has not been exercised yet.
- •Inclusion of statistics for P-Case and C-Case usage in the Extensions and custom code generated for interfaces, conversions and other custom objects.

- Present software subsystems and applications might have **scalability** issues as volumes increase in the near to medium term.
- Selectively revising some applications might prevent some **performance** issues

MF Obsolescence Reduction (MFOR) Program

IN MAINFRAME (PRODUCTION)

Production Stack: Batch Cobol Code Product Product Product Product Product

IN MAINFRAME (DEVELOPMENT)

Configuration Tool:				
Product				

Basic Application Architecture:

The System was ported from an RPG/AS400 code base to batch COBOL, it essentially executes the way an RPG system would but under the 370 Batch Architecture.

Each product is elaborated in the Configuration Tool by a group of business analysts and batch code is generated in that tool.

Integrator estimates that between 100K and 200K of code are generated for each product. Client has approximately 250 products so the duplicated code base is around 25-35M Lines of Code

- Prototyped key strategies:
 a. Parsing, Lexical and Instrumented analysis on 4 products
 b. Theoretical analysis of reconfiguration of the basic product to reduce application footprint & turn time in generation of new

The initial results yielded the following observations:

- By blocking out code that was never used approximately 80%+
 of memmory was released.
 Similar efficiency in execution of the code in production
- (reduction of time) results were secured.

Rearchitecting the Application

The application code base would be reworked into four separate code bases based on the product line supported. Preliminary studies have shown that a high degree of parameter similarity exists within the products there rather than between the other lines.

- The Configuration tool would in addition be rearchitected to:

 Make uniform the usage of each field and reducing the number of blank spaces currently found, thereby reducing the parameter
- Potentially migrating to a dedicated Power Processor (when the reduction is achieved) to fully be able to scale on that platform rather than the Mainframe.

The Production Code Base would be rearchitected to:

- Enhance the compiler's capabilities to add instrumentation to each product so that coverage in production could be computed & determination which variables and code could be removed. Usage of special purpose tools to monitor coverage and specific
- testing as referenced in Xsuds (Telcordia/IBM technologies) to gain a high degree of competence space compliance prior to migrating into production.

Overall: the migration could be done either on a product by product basis, product line family or product line, depending on volume and complexity constraints. This would avoid any kind of knife edge cut over & would support elasticity in the program plan.