Master 2 - IMAGINE

Semestre 3

Projet IMAGE

Oral n°1 - 13 novembre 2024

<u>Sujet 12 - Restauration d'images anciennes</u>

Présentation du projet et état d'avancement

La restauration d'images anciennes

Le but?

Image bruitée

Image restaurée

Image avec des dégradations

Image restaurée

Processus général de restauration d'images anciennes

Prétraitements

Débruitage (filtre médian, gaussien, bilatéral)

Égalisation d'histogramme

Traitements

- Création du masque binaire (manuellement ou automatiquement)
- Inpainting (méthode de Telea) : basée sur la diffusion pour combler les régions manquantes

Déconvolution (filtre de Wiener)

Expansion dynamique

Optionnel Semi-obligatoire Obligatoire

Post-traitements

Résultats non reproductibles!

Résultats

<u>Avec génération automatique du masque binaire</u>

PSNR: 22.16 dB **SSIM:** 0.94

Avec génération manuelle du masque binaire

PSNR: 18.3 dB **SSIM:** 0.86

Conclusion:

Meilleure méthode: manuelle (détection des dégradations complexes)

D'après nos tests, il faut (pour une image restaurée de bonne qualité) : SSIM entre 0.8 et 0.95

Processus avec Deep Learning de restauration d'images anciennes

Auto-encodeur variationnel (VAE)

Avantages:

- Génération de détails cohérents
- Flexibilité

Nos objectifs

Image originale

Image après restauration

Image après colorisation

Image après post-traitements

Fin

Merci pour votre attention!

Avez-vous des questions?

