1 Число обусловленности матрицы

Условие:

$$A = \begin{cases} 2x + y = 2 \\ (2 - \epsilon)x + y = 1 \end{cases}, \ \epsilon > 0$$

Найти: $\mu(A)$, x, y

Решение

Найдём x, y

$$\begin{cases} y = 2 - 2x \\ x = \frac{1 - y}{2 - \epsilon} \end{cases} \Rightarrow \begin{cases} x = \frac{2x - 1}{2 - \epsilon} \\ y = 2 - 2x \end{cases} \Rightarrow \begin{cases} x = \frac{1}{\epsilon} \\ y = 2 - \frac{2}{\epsilon} \end{cases}$$
$$A = \begin{pmatrix} 2 & 1 \\ 2 - \epsilon & 1 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$|A| = 2 - 2 + \epsilon = \epsilon$$

$$||A||_1 = \max(2 + |2 - \epsilon|, 2)$$

$$A^{-1} = \frac{1}{\epsilon} \begin{pmatrix} 1 & -1 \\ \epsilon - 2 & 2 \end{pmatrix}$$

 $||A^{-1}||_1 = \frac{1}{\epsilon} max(3, |\epsilon - 2| + 1)$

Рис. 1: Графики функций 2 + |2 - x| и 2.

Из Рис.1 видно, что максимумом из двух функций на промежутке положительных чисел является $2+|2-\epsilon|$.

Из рис 2 видно, что на (0,4) большей функцией является 3, а для $x\in (4,+\infty)$ – $1+|\mathbf{x}-2|$.

Рассмотрим три промежутка: $(0,2), (2,4), (4,+\infty)$.

Рис. 2: Графики функций 1 + |2 - x| и 3.

(0,2)

Норма $||A||_1$ будет равна $4 - \epsilon$

Норма $||A^{-1}||_1$ будет равна $\frac{3}{\epsilon}$

Таким образом, число обусловленности на данном промежутке будет равно: $\mu(A) = ||A|| \cdot ||A^{-1}|| = \frac{12}{\epsilon} - 3$

(2,4)

Норма $||A||_1$ будет равна ϵ Норма $||A^{-1}||_1$ будет равна $\frac{3}{\epsilon}$ Таким образом, число обусловленности на данном промежутке будет равно: $\mu(A) = ||A|| \cdot ||A^{-1}|| = 3$

$$(4, +\infty)$$

Норма $||A||_1$ будет равна ϵ

Норма $||A^{-1}||_1$ будет равна $\frac{\epsilon-1}{\epsilon}$

Таким образом, число обусловленности на данном промежутке будет равно: $\mu(A) = ||A|| \cdot ||A^{-1}|| = \epsilon - 1$

2 Ответ:

$$\mu(a) = \begin{cases} \frac{12}{\epsilon} - 3 & \epsilon \in (0, 2) \\ 3 & \epsilon \in (2, 4) \\ \epsilon - 1 & \epsilon \in (4, +\infty) \end{cases}$$
$$\begin{cases} x = \frac{1}{\epsilon} \\ y = 2 - \frac{2}{\epsilon} \end{cases}$$