Numéro d'anonymat:

Examen LU2IN003

Mercredi 12 Mai 2021, 1.5 heures aucun document autorisé

Exercice 1 – Arbres binaires balisés (10 points)

On rappelle qu'un arbre binaire **strict** est un arbre binaire **non vide** dans lequel tout nœud a 0 ou 2 fils. Un *arbre binaire balisé* sur \mathbb{N} (noté ABB) est un arbre binaire **strict** étiqueté sur \mathbb{N} dans lequel tout nœud a une clé qui est supérieure ou égale à toutes les clés de son sous-arbre gauche et qui est strictement inférieure à toutes les clés de son sous-arbre droit.

Les clés des nœuds internes sont appelées *balises* et les clés des feuilles sont appelées *valeurs*. Dans un ABB, on ne s'intéresse qu'aux valeurs (stockées aux feuilles), les balises ne servent qu'à diriger la recherche.

Dans les preuves, on utilisera la définition inductive des ABB. B est un ABB si :

Base $B = (x, \emptyset, \emptyset)$ avec $x \in \mathbb{N}$;

Induction B = (b, G, D) avec $b \in \mathbb{N}$ et:

- G et D sont des ABB;
- toutes les clefs de G sont inférieures ou égales à b;
- toutes les clefs de D sont strictement supérieures à b.

Voici un exemple d'ABB, que l'on appellera B1 :

Les valeurs de B1 sont : 1, 4, 6, 15, 16, 18. Les balises de B1 sont : 10, 5, 15, 3, 17.

Pour manipuler les ABB, on utilise les primitives définies sur les arbres binaires : AB.clef, AB.gauche, AB.droit, auxquelles on ajoute les fonctions :

- ABfeuille (x) qui retourne un arbre binaire réduit à une feuille d'étiquette x,
- estABfeuille (B) qui teste si un arbre binaire B est réduit à une feuille.

Question 1

On note ni(B) le nombre de nœuds internes et f(B) le nombre de feuilles d'un arbre balisé B.

- 1. Que valent ni(B1) et f(B1)?
- 2. Donner une définition inductive de ni(B) et de f(B).
- 3. Prouver par induction que, pour tout arbre balisé B: f(B) = ni(B) + 1.

Solution:

- 1. $ni(B_1) = 5$ et $f(B_1) = 6$.
- 2. Base Si $B = (x, \emptyset, \emptyset)$ alors ni(B) = 0 et f(B) = 1. Induction Si B = (b, G, D) alors ni(B) = ni(G) + ni(D) + 1 et f(B) = f(G) + f(D).

3. Base Si $B=(x,\emptyset,\emptyset)$ alors ni(B)=0 et f(B)=1 donc f(B)=ni(B)+1.

Induction Soit B=(b,G,D) un ABB tel que f(G)=ni(G)+1 et f(D)=ni(D)+1, alors : f(B)=f(G)+f(D)=ni(G)+1+ni(D)+1=ni(B)+1.

Conclusion On a prouvé par induction que f(B)=ni(B)+1 pour tout ABB B.

Question 2

- 1. Soit B2 un arbre balisé dont les valeurs sont 4, 7, 3, 5, 1, 8. Combien B2 a-t-il de nœuds internes?
- 2. Dessiner un arbre balisé contenant les valeurs 4, 7, 3, 5, 1, 8 (le choix des balises est laissé libre mais il doit bien sûr être judicieux).
- 3. Pouvez-vous dessiner un arbre balisé contenant les mêmes valeurs (c'est-à-dire 4, 7, 3, 5, 1, 8) et n'ayant pas la même forme ? Si oui, le dessiner.
- 4. Un arbre balisé est-il nécessairement parfait? Justifier la réponse.

Solution:

- 1. B2 a 5 nœuds internes (un nœud interne de moins que de feuilles).
- 2. Un arbre balisé possible, parmi beaucoup d'autres...

3. On peut dessiner d'autres arbres balisés contenant les valeurs 4, 7, 3, 5, 1, 8. Par exemple :

Il y a d'autres ABB possibles, par exemple des peignes.

4. Un arbre balisé n'est pas nécessairement parfait. Par exemple, l'arbre B1 est un ABB mais n'est pas parfait (son avant-dernier niveau n'est pas entièrement rempli).

La fonction ABBinfixe (B) définie ci-dessous calcule le parcours infixe des valeurs d'un ABB.

```
def ABBinfixe(B):
   if estABfeuille(B):
     return [B.clef]
   return ABBinfixe(B.gauche) + ABBinfixe(B.droit)
```

Question 3

- 1. Prouver par induction structurelle que, pour tout arbre balisé B, ABBinfixe (B) retourne la liste des valeurs de B rangée en ordre strictement croissant.
- 2. Montrer, par induction structurelle, que le nombre c(f) de concaténations effectuées par ABBinfixe (B) est égal à f-1, où f est le nombre de valeurs de B.
- 3. En déduire la complexité de ABBinfixe (B) en fonction du nombre de nœuds n de l'arbre balisé B lorsque les listes sont représentées par des listes circulaires doublement chaînées. Justifier votre réponse.

Solution:

1. Par induction structurelle. Notons P(B) la propriété : ABBinfixe (B) retourne la liste des valeurs de B rangée en ordre strictement croissant.

Base Si $B = (x, \emptyset, \emptyset)$ avec $x \in \mathbb{N}$ alors ABBinfixe (B) est la liste [x], qui est bien la liste des valeurs de B rangée en ordre strictement croissant.

Induction Soit B=(b,G,D) où $b\in\mathbb{N}, G$ et D sont des ABB tels que toutes les clefs de G sont inférieures ou égales à b et toutes les clefs de D sont strictement supérieures à b. Supposons que P(G) et P(D) soient vraies. Posons $L=\mathtt{ABBinfixe}(B)$, $L_G=\mathtt{ABBinfixe}(G)$ et $L_D=\mathtt{ABBinfixe}(D)$ alors $L=L_G+L_D$. Par hypothèse de récurrence, L_G , resp. L_D , est la liste des valeurs (donc des étiquettes des feuilles) de G, resp. de D, donc $L=L_G+L_D$ est la liste des étiquettes des feuilles (donc des valeurs) de G.

Toujours par hypothèse de récurrence, L_G et L_D sont rangées en ordre strictement croissant. De plus tous les éléments de L_G sont inférieurs ou égaux à b, qui est **lui-même strictement inférieur** à tous les éléments de L_D . Par conséquent, tous les éléments de L_G sont strictement inférieurs à tous les éléments de L_D et la liste $L = L_G + L_D$ est rangée en ordre strictement croissant.

Conclusion On a prouvé, par induction structurelle, que P(B) est vraie pour tout ABB B.

- 2. On montre, par induction structurelle, que le nombre de concaténations c(f) effectué par ABBinfixe (B) est égal à f-1:
 - $-\operatorname{si} B = (x, \emptyset, \emptyset)$ alors f = 1 et il y a 0 concaténation;
 - $-\operatorname{si} B = (b, G, D)$ alors $c(f) = c(f_G) + c(f_D) + 1 = f_G 1 + f_D 1 + 1 = f_G + f_D 1 = f 1$ (les arbres étant stricts, le nombre f de feuilles de B est égal à la somme du nombre de feuilles de G (f_G) et du nombre de feuilles de D (f_D)).
- 3. Les listes étant représentées par des listes circulaires doublement chaînées, chaque concaténation est en $\Theta(1)$. La complexité de ABBinfixe (B) est donc en $\Theta(f)$. D'après la question 1, le nombre de nœuds n(B) de B vérfie n(B) = f(B) + ni(B) = 2f(B) 1. On en déduit que la complexité est ainsi en $\Theta(n)$.

La fonction ABBcherche (B, x) définie ci-dessous teste si un entier est une valeur d'un ABB.

```
def ABBcherche(B, x):
    b = B.clef
    print("Appel_a_partir_de_b_=_", b)
    if estABfeuille(B):
        res = (x == b)
    else:
        if x <= b:
            res = ABBcherche(B.gauche, x)
        else:
            res = ABBcherche(B.droit, x)
    print("Valeur_de_retour_en_b_=_", b, "_:_", res)
    return res</pre>
```

Question 4

- 1. Exécuter l'appel de ABBcherche (B1, 5), en ne donnant que les affichages. Préciser la valeur retournée.
- 2. Calculer ABBcherche (B1, 1), ABBcherche (B1, 10), ABBcherche (B1, 15).
- 3. Prouver que, pour tout arbre balisé B et pour tout $x \in \mathbb{N}$, ABBcherche (B, x) se termine et retourne la valeur True si x est une valeur de B et la valeur False sinon.
- 4. Pour un arbre balisé B ayant f valeurs, calculer la complexité pire cas et la complexité meilleur cas de ABBcherche (B, x) en fonction de f.

Solution:

```
1. Appel a partir de b = 10
  Appel a partir de b = 5
  Appel a partir de b = 3
  Appel a partir de b = 4
  Valeur de retour en b = 4 : False
  Valeur de retour en b = 3 : False
  Valeur de retour en b = 5 : False
  Valeur de retour en b = 10 : False
```

La valeur retournée est False.

- 2. ABBcherche (B1, 1) retourne True, ABBcherche (B1, 10) retourne False, ABBcherche (B1, 15) retourne True.
- 3. Par induction structurelle. Notons P(B) la propriété : ABBcherche (B, x) se termine et retourne la valeur True si x est une valeur de B et la valeur False sinon.
 - **Base** Si $B=(b,\emptyset,\emptyset)$ avec $b\in\mathbb{N}$ alors B est une feuille et sa seule valeur est b. Dans ce cas ABBcherche (B, x) se termine et retourne la valeur True si x=b, donc si x est une valeur de B et la valeur False sinon.
 - **Induction** Soit B=(b,G,D) où $b\in\mathbb{N}$, G et D sont des ABB tels que toutes les clefs de G sont inférieures ou égales à b et toutes les clefs de D sont strictement supérieures à b. Supposons que P(G) et P(D) soient vraies. Il y a deux cas possibles : ou bien $x\leq b$ ou bien x>b.

Dans le cas où $x \leq b$ alors ABBcherche (B, x) fait appel à ABBcherche (G, x) qui se termine.

Remarquons que x est une valeur de B ssi x est une valeur de G (car toutes les valeurs de D sont strictement supérieures à b). Par hypothèse de récurrence, ABBcherche (G, x) retourne la valeur True ssi x est une valeur de G et donc ssi x est une valeur de B.

Le cas où x > b est analogue.

Conclusion On a prouvé, par induction structurelle, que P(B) est vraie pour tout ABB B.

4. Dans le pire cas, l'arbre balisé B est un peigne et la valeur cherchée est tout en bas de B (ou n'est pas dans B mais devrait se trouver tout en bas de B), le pire cas est donc en O(f).

Dans le meilleur cas, l'arbre balisé B est un peigne et la valeur cherchée est à la feuille la plus proche de la racine de B (ou devrait s'y trouver), le meilleur cas est donc en $\Omega(1)$.

Exercice 2 – Graphes biconnexes et point d'articulation (12 points + 2 bonus)

Dans cet exercice, G=(V,E) est un graphe **non orienté connexe**. On rappelle qu'un graphe est *connexe* si pour tout couple de sommets $(x,y) \in V^2$, il existe une chaîne qui relie x à y dans G. Une chaîne (resp. un cycle) est *élémentaire* si elle (resp. il) ne passe pas deux fois par le même sommet.

Question 1

On considère dans cette question le graphe non orienté connexe $G_1 = (V_1, E_1)$ avec $V_1 = \{1, 2, 3, 4, 5\}$ et $E_1 = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{3, 4\}, \{3, 5\}\}.$

- 1. Représentez G_1 graphiquement.
- 2. Donnez la représentation de G_1 sous la forme d'une matrice sommet-sommet.
- 3. Donnez la représentation de G_1 sous la forme de listes d'adjacence.
- 4. Représentez graphiquement le sous-graphe induit $G_2 = (V_1 \{3\}, E_1)$. G_2 est il connexe? Justifiez votre réponse dans la négative.

Solution:

1.

- 2. On obtient la matrice 5×5 suivante : $M_1 = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$.
- 3. On obtient les listes L[1] = (2,3,4), L[2] = (1), L[3] = (1,4,5), L[4] = (1,3), et L[5] = (3).
- 4. Le graphe G_2 n'est pas connexe. Par exemple, il n'y a pas de chaîne reliant les sommets 2 et 5.

Ouestion 2

Soit G un graphe non orienté connexe et la relation \mathcal{R} définie sur V^2 de la manière suivante : pour tout couple $(x,y) \in V^2$, $x\mathcal{R}y$ si il existe un cycle élémentaire qui contient x et y.

Par convention, on considère que, pour tout $x \in V$, $x\mathcal{R}x$. De même, pour tout arête $e = \{x,y\} \in E$, c = (x,y,x) est un cycle élémentaire et donc $x\mathcal{R}y$ et $y\mathcal{R}x$.

Un graphe G = (V, E) est biconnexe si $\mathcal{R} = V \times V$.

- 1. Donnez la relation \mathcal{R} associée au graphe G_1 . On pourra la représenter sous la forme d'une matrice $M_{\mathcal{R}}$ à valeur dans $\{0,1\}$ de taille $V \times V$ avec $M_{\mathcal{R}}[x,y] = 1$ si $x\mathcal{R}y$.
- 2. Est-ce que \mathcal{R} est une relation d'équivalence? Justifiez votre réponse.
- 3. Est-ce que le graphe G_1 de la question 1 est biconnexe ? Dans la négative, quelles sont les arêtes que l'on peut rajouter au minimum pour obtenir à partir de G_1 un graphe biconnexe.

5

Solution:

1. On obtient
$$M_{\mathcal{R}} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$
.

- 2. La relation \mathcal{R} n'est pas une relation d'équivalence car elle n'est pas transitive. En effet, on a par exemple, $2\mathcal{R}1$, $1\mathcal{R}3$ et 1 et 3 ne sont pas en relation.
- 3. G_1 n'est pas biconnexe, car on peut avoir des sommets de G_1 qui ne sont pas en relation, par exemple 1 et 5. Pour obtenir un graphe biconnexe, on peut par exemple rajouter à G_1 les arêtes $\{2,4\}$ et $\{4,5\}$.

Question 3

On considère dans cette question la liste L = (1, 3, 5, 4, 2).

- 1. Est-ce que L est un parcours générique de G_1 ? Dans l'affirmative, donnez un graphe de liaison associé. Est-ce que le graphe de liaison est unique? Justifiez votre réponse.
- 2. Rappeler la définition d'un parcours en largeur. Est-ce que *L* est un parcours en largeur? Dans l'affirmative, donnez un graphe de liaison en largeur associé. Dans le cas général, est-ce que le graphe de liaison d'un parcours en largeur est unique? Justifiez votre réponse.
- 3. Rappeler la définition d'un parcours en profondeur. Est-ce que *L* est un parcours en profondeur? Dans l'affirmative, donnez un graphe de liaison en profondeur associé.

Solution:

- 1. L est bien un parcours générique de G_1 . $\mathcal{A} = (V_1, \{(1,2), (1,3), (3,4), (3,5)\})$ est un graphe de liaison associé à L. Le graphe de liaison n'est pas unique, par exemple $\mathcal{A}' = (V_1, \{(1,2), (1,3), (1,4), (3,5)\})$ est également un graphe de liaison associé à L.
- 2. Soit G = (V, E) un graphe non orienté connexe et $L = (v_1, \ldots, v_n)$ un parcours de G d'origine v_1 . L est un parcours en largeur si pour tout sous-parcours $L_k = (v_1, \ldots, v_k)$ avec k < n, v_{k+1} est un sommet adjacent du **premier** sommet ouvert de L_k .

L n'est pas un parcours en largeur car le sous-parcours $L_1=(1,3)$ ne vérifie pas la définition. En effet, le premier sommet ouvert de L_1 est 1 et 4 n'a pas encore été visité quand on visite 5.

Le graphe de liaison en largeur est unique car il relie, pour tout $k \in \{1, \dots, n-1\}$, le premier sommet ouvert de L_k à v_{k+1} .

3. Soit G = (V, E) un graphe non orienté connexe et $L = (v_1, \ldots, v_n)$ un parcours de G d'origine v_1 . L est un parcours en profondeur si pour tout sous-parcours $L_k = (v_1, \ldots, v_k)$ avec k < n, v_{k+1} est un sommet adjacent du **dernier** sommet ouvert de L_k .

L est bien un parcours en profondeur. $\mathcal{A} = (V_1, \{(1,2), (1,3), (3,4), (3,5)\})$ est le graphe de liaison en profondeur associé à L.

Question 4

Un point d'articulation de G=(V,E) est un sommet $x\in V$ tel que le sous-graphe induit $G'=(V-\{x\},E)$ n'est pas connexe. Est-ce que le graphe G_1 de la question 1 possède un ou plusieurs points d'articulation? Dans l'affirmative, quels sont-ils?

Solution:

Les deux points d'articulation de G_1 sont 1 et 3.

Question 5

On rappelle que G = (V, E) est un graphe non orienté connexe. Montrez que, si G est biconnexe, alors G ne possède pas de point d'articulation. Pour cela, vous pouvez démontrer la contraposée.

Solution:

On démontre la contraposée : soit G=(V,E) un graphe connexe possèdant un point d'articulation x. Montrez que G n'est pas biconnexe.

Par définition, le sous-graphe $G' = (V - \{x\}, E)$ n'est pas connexe. Soient alors i et j deux sommets dans deux composantes connexes différentes dans G'. Alors, toute chaîne qui relie i à j dans G passe forcément par x. On ne peut donc pas construire un cycle élémentaire dans G qui passe par i et j, G n'est donc pas biconnexe.

Ouestion 6

On suppose dans cette question que G ne possède pas de point d'articulation. On souhaite démontrer que G est alors biconnexe.

Pour cela, on suppose le résultat suivant : soient x,y et z trois sommets distincts tels que x et y sont inclus dans un cycle élémentaire C et que l'arête $\{y,z\} \in E$. Alors, il existe un cycle élémentaire C' qui contient x et z.

- 1. Démontrez par récurrence sur i la propriété $\Pi(i)$ suivante pour $i \geq 2$: soit $x_1, x_2, \dots x_i$ une chaîne élémentaire constituée de i sommets. Alors il existe un cycle contenant x_1 et x_i .
- 2. En déduire que si G ne possède pas de point d'articulation, alors G est biconnexe.

Solution:

1. On démontre $\Pi(i)$ par récurrence faible sur i.

Base: Pour $i=2, c=(x_1,x_2,x_1)$ est par convention un cycle élémentaire. Ainsi, $\Pi(2)$ est vérifiée.

Induction : Supposons maintenant par récurrence faible que, pour une valeur i>2, $\Pi(i-1)$ soit vérifiée. Supposons également que G possède une chaîne élémentaire x_1,x_2,\ldots,x_i . Alors, il y a un cycle élémentaire qui contient x_1 et x_{i-1} et une arête $e=\{x_{i-1},x_i\}$. D'après le résultat supposé, il y a donc un cycle élémentaire qui contient x_1 et x_i , et $\Pi(i)$ est vérifiée.

Conclusion : Pour tout i > 2, $\Pi(i)$ est vérifiée par récurrence faible.

2. Supposons que G est connexe et ne possède pas de point d'articulation. Pour tout couple de sommets $(x,y) \in V^2$, par connexité de G, il existe une chaîne élémentaire qui les relie ; donc d'après la question 6.1, il existe un cycle élémentaire contenant x et y. On en déduit que G est biconnexe.

Question 7

On souhaite maintenant développer un algorithme qui détermine si un graphe connexe G=(V,E) est biconnexe.

- 1. Citez le nom d'un algorithme du cours qui permet de déterminer si un graphe G est connexe.
- 2. En déduire le principe d'un algorithme (décrit en maximum trois phrases) pour déterminer si un graphe G connexe est biconnexe.

Solution:

- 1. D'après le cours, G est connexe si et seulement si il existe un parcours du graphe. Il suffit donc de construire un parcour générique L et vérifier que tous les sommets ont été visités par L.
- 2. Pour tout sommet $x \in V$, on teste que le sous-graphe induit $G_x = (V \{x\}, E)$ est un graphe connexe en construisant un parcours générique. Si tous les graphes G_x obtenus sont connexes, G est biconnexe. Sinon, il existe au moins un point d'articulation, et donc G n'est pas biconnexe.

Question 8 – Bonus

Supposons que G ne possède pas de point d'articulation. Soient x, y et z trois sommets distincts tels que x et y sont inclus dans un cycle élémentaire C et que l'arête $\{y,z\}\in E$. Démontrez qu'il existe un cycle élémentaire C' qui contient x et z.

Solution:

Si z est un sommet de C, alors C'=C vérifie la propriété. On suppose par la suite que z n'est pas un sommet de C. Par hypothèse, y n'est pas un point d'articulation. Donc, il existe une chaine élémentaire ν de x à z qui ne passe pas par y. Soit k le dernier élément de cette chaine qui est dans C. On construit un circuit élémentaire qui contient x et z de la manière suivante :

- aller de x à k en suivant C sans passer par y;
- aller de k à z en prenant une sous-chaine de ν ;
- l'arête $\{z, y\}$;
- et revenir à x en utilisant la partie de C non encore utilisée.