AAMAS 2024, Auckland, New Zealand

Forecasting and Mitigating Disruptions in Public Bus Transit Services

Chaeeun Han¹, Jose Paolo Talusan², Dan Freudberg³, Ayan Mukhopadhyay², Abhishek Dubey², Aron Laszka¹

¹Pennsylvania State University, University Park, PA, USA

²Vanderbilt University, Nashville, TN, USA

³WeGo Public Transit, Nashville, TN, USA

Background

 Infrastructure and Demand Imbalance

2. Congestion and Commute Delays

3. Need for Proactive Strategies

Background

Trips

A single journey along a designated route at a designated time e.g., For Route 7 on January Mondays at 4am

Disruptions

Unplanned cancellation or suspension of service e.g., Mechanical problems, Accidents, etc.

Objectives

1 Forecasting Problem

Predict disruptions in space and time

2 Stationing Problem

Optimize the stationing of substitute buses to promptly respond to disruptions

Data

Dataset	Features	Date
General Transit Feed Specification (GTFS)	33 Routes, 1619 Stops	2020-2023
Automated Passenger Count (APC)	Ridership, Stops	2020-2023
Disruption	Location, Datetime, Stops	2020-2023
Weather	Location, Temperature, Precipitation	2020-2023

Data

Dataset	Features	Date
General Transit Feed Specification (GTFS)	33 Routes, 1619 Stops	2020-2023
Automated Passenger Count (APC)	Ridership, Stops	2020-2023
Disruption	Location, Datetime, Stops	2020-2023
Weather	Location, Temperature, Precipitation	2020-2023

5096 disruptions out of about 90,000 trips => Imbalance in data

Route + Direction Passenger Capacity Service Time O: No Disruption Year Trip 1: Disruption Month Probability of Day of Week Disruption Precipitation Temperature

Categorical 4AM - 6AM: Early Route + Direction 6AM - 9AM: Morning 9AM - 2PM: Mid-day Passenger Capacity 2PM - 6PM: Afternoon 6PM - OAM: Evening Service Time O: No Disruption Year Trip 1: Disruption Month Probability of Day of Week Disruption Precipitation Temperature

Route + Direction

Passenger Capacity

Service Time

Year

Month

Day of Week

Precipitation

Temperature

Negative Log Likelihood

Route + Direction

Paste ger Capacity

Service Time

Year

Month

Day of Week

Precipitation

Route + Direction

Passenger Capacity

Service Time

Year

Month

Day of Week

Precipitation

Temperature

Negative Log Likelihood

Route + Direction

Passenger Capacity

Service Time

Year

Day of Week

Precipitation

Route + Direction

Passenger Capacity

Service Time

Year

Month

Day of Week

Precipitation

Temperature

Negative Log Likelihood

Route + Direction

Pasted ger Capacity

Service Time

Month

Day of Week

Precipitation

Route + Direction

Passenger Capacity

Service Time

Year

Month

Day of Week

Precipitation

Temperature

Negative Log Likelihood

Route + Direction Pasteger Capacity Service Time Day of Week

Precipitation

Route + Direction Passenger Capacity **0** or **1** Service Time Probability of Selected Year Disruption **Features** Month Day of Week Supervised Logistic Precipitation Learning Regression Temperature Models Model

Calibration

Transform classifier scores into class probabilities i.e., probabilities of trips having disruptions or not

Model	Test Cross Entropy
Logistic Regression	0.0903
XGBoost	0.0872
XGBoost + Calibration	0.0870

Regular Buses

Normal buses start and end from main depot

Substitute Buses

Extra buses waiting at <u>predetermined stop</u> for when regular buses are <u>overcrowd</u>ed or face <u>disruptions</u>

Nearest substitute bus provides service

Passengers

Stop#3 **Vehicle Stationing BUS #3 BUS #5** Stop #5 Greyhound Bus Station 23 Division Rochelle 93 Center Adventure 2 Science Center Vanderbilt 64 H Medical Center 75 Edgehill 61 75 Veterans 65 Administration Hospital Trevecca Stop #2 Nazaren Universit Blakemore 93 *****BUS#2 6 Be nont 59 Park 22 University Tennessee State Craighead Craighead Fairgrounds Woodlawn Rosedale Kirkwood Stop #1 **BERRY** HIIStop#4 Thomp sboro Woodmont Transit Graybar Glen Echo Lipscomb **BUS#4** University Maplehurst Shackleford

Objectives

- 1 How far? (Deadhead Miles)
- 2 How long it takes? (Deadhead Times)
- 3 How many passengers are left behind?

- 1 Deadhead Miles
- 2 Deadhead Times
- 3 Left behind passengers

S_{Station}: Subset of stops

k: Budget of substitute buses

D: Deadhead Miles

T: Deadhead Times

L: Left behind passengers

P: Occurrence of disruptions

$$\operatorname{argmin}_{x \subseteq S_{station}: |x|=k} \mathbb{E}_{P} \left[D(x; P) + T(x; P) + \sum_{j=1}^{J} L(j, x; P) \right]$$

Simulated Annealing Optimizer

Search

Our Proposed method

Garage

When all substitute buses are waiting at garage

Hub

When all substitute buses are waiting at <u>hub</u>

Agency

When following the current <u>agency</u> <u>policy</u>

Contribution

- 1 Predict rare incidents like disruptions
- 2 Reduce delays and crowding
- 3 Find optimal set of stops by simulation
- Increase efficiency of transit operations and enhance the passenger experience

Thank you

Chaeeun Han (cfh5554@psu.edu)

