

- 1. Business Problem
- 2. EDA
- 3. Analysis and Modeling
- 4. Model Performance Results
- 5. Future Work

Air quality in major Indian cities is hazardous

Business Problem

Rising Air Pollution Levels

- Air quality in many Indian cities is deteriorating rapidly.
- High levels of pollutants such as PM2.5, PM10, NO2, and SO2.

Potential Causes

- Factory emissions
- Vehicle emissions
- Waste burning

- Agricultural activities
- Fossil fuel
- Weak policies

Objective

Forecast Air Quality Index (AQI) of major Indian cities to help mitigate the adverse effects of air pollution.

Key Questions We Want to Answer

- 1. What are the future trends in air quality across India?
- 2. Can accurate forecasting **help policy making** and **public health**?
- 3. What seasonal variations affect air quality?

Business Impact of AQI Forecast Model							
Improved public health	Implementing better policies						
Reduced economic costs	Raising awareness						

Assumptions/Hypotheses

- 1. The historical data is accurate and consistent
- 2. The time series data is stationary
- 3. AQI patterns exhibit seasonal variations

Data Processing

- Original dataset has 29531 rows and contains data from 26 regions
- Only 6 regions has full-length data from 2015-01-01 ~ 2020-07-01
- Ahmedabad and Mumbai has too many missing data across all columns = dropped

- Interpolation was made using na_ma from imputeTS package
- Moving Average = na_ma(data, k = 15, weighting = "exponential")

Data Imputations

• After interpolation, 4 regions\$AQI each contains 2009 data points.

Lucknow

Seasonal Decomposition of AQI for Lucknow

Delhi

Commonalities

 Seasonal Presence: All cities exhibit some level of seasonality in AQI, indicating a cyclic pattern that repeats annually

Differences

- Lucknow: Strong seasonal fluctuations, peak in late winter.
- **Delhi**: Moderate seasonality, noticeable peaks in winter months.
- **Chennai**: Weak seasonality, relatively stable throughout the year
- Bengaluru: Very mild seasonal changes, minimal fluctuation.

Data Properties/EDA

- Data stationarity check using ACF and PACF analysis
 Data from four regions show instability; adjustments are needed
 Using Auto ARIMA to find optimal parameters for P D Q
 This method enhances the robustness of our time series forecasting

Prediction Result

Chennai AQI Forecast

Metrics for Modeling

City	RMSE	MAE	MAPE	AMAPE
Lucknow	47.57	36.71	39.98	38.16
Chennai	29.47	21.42	18.34	20.85
Delhi	52.78	42.68	36.48	33.93
Bengaluru	13.88	12.24	24.40	22.27

- Bengaluru shows the highest forecast accuracy with the lowest RMSE and MAE values.
- Delhi displays the highest error rates, indicating the least accurate predictions.
 Chennai has notably low MAPE and AMAPE, suggesting consistent and reliable forecasts.
 Lucknow experiences moderate forecasting
- errors, positioned between the best and worst performing cities.

About ARMA-GARCH

- ARMA model for the linear dependencies + GARCH model for the conditional heteroskedasticity
- Suitable for modeling and forecasting time series data with changing volatility over time.

Why ARMA-GARCH for AQI forecasting?

- Heteroskedasticity: ACF plots of squared original data show heteroskedasticity.
- Starting Orders: arma(1,1) + garch(1,1)

City RMSE		MAE	MAPE	AMAPE
Lucknow	57.9988	52.2579	62.74	62.7362
Chennai	21.2329	14.8511	13.66	13.6629
Delhi	80.1953	65.9042	62.35	62.3521
Bengaluru	33.0371	31.7739	5944	59.4431

ARMA-GARCH: Initial Model

	Bengaluru_xts	Lucknow_xts <dbl></dbl>	Delhi_xts	Chennai_xts
Jarque-Bera (R) pv	0.0000	0.0000	0.0000	0.0000
Shapiro-Wilk (R) pv	0.0000	0.0000	0.0000	0.0000
Ljung_Box (R, Q = 10) pv	0.0003	0.0000	0.0000	0.0000
$Ljung_Box (R, Q = 15) pv$	0.0000	0.0000	0.0000	0.0000
$Ljung_Box (R, Q = 20) pv$	0.0000	0.0000	0.0000	0.0000
$Ljung_Box (R^2, Q = 10) pv$	0.9993	0.0980	0.9345	0.4468
Ljung_Box (R^2 , $Q = 15$) pv	1.0000	0.3013	0.9747	0.5054
Ljung_Box (R^2 , $Q = 20$) pv	1.0000	0.5300	0.9873	0.6099
LM Arch pv	0.9996	0.1498	0.8825	0.4209

Test on the standardized residuals

- Normality Tests (Jarque-Bera and Shapiro-Wilk):
 Not normally distributed for any of the datasets
- Autocorrelation Tests (Ljung-Box for residuals):
 Significant autocorrelation, indicating that the model has not fully captured the time-series dynamics
- Autocorrelation Tests for Squared Residuals (Ljung-Box for R^2):
 No significant autocorrelation, suggesting that the GARCH model is effectively capturing the volatility
- LM Arch Test:

 The GARCH model adequately captures the autoregressive conditional heteroskedasticity in the data.

Used grid search to find the optimal ARMA components

• Bengaluru: (1, 1, 1)

• Lucknow: (0, 1, 4)

• **Delhi:** (1, 1, 2)

• Chennai: (1, 1, 1)

Differentiate the time series by d = 1 and run $\sim arma(p, q) + garch(1, 1)$

City RMSE		MAE	MAPE	AMAPE	
Lucknow	101.8298	95.6396	99.53	99.5317	
Chennai	105.5568	103.4924	100.8	100.7989	
Delhi	129.1922	125.1313	99.50	99.4955	
Bengaluru	55.0340	54.3562	98.57	98.5669	

	Bengaluru_xts «dbl»	Lucknow_xts <dbl></dbl>	Delhi_xts <dbl></dbl>	Chennai_xts <dbl></dbl>
Jarque-Bera (R) pv	0.0000	0.0000	0.0000	0.0000
Shapiro-Wilk (R) pv	0.0000	0.0000	0.0000	0.0000
Ljung_Box (R, Q = 10) pv	0.0246	0.7637	0.0493	0.6210
Ljung_Box (R, Q = 15) pv	0.1172	0.8192	0.1222	0.8187
Ljung_Box (R, Q = 20) pv	0.1475	0.5996	0.0875	0.6769
Ljung_Box (R^2 , $Q = 10$) pv	0.9992	0.2134	0.5818	0.3169
Ljung_Box (R^2 , $Q = 15$) pv	1.0000	0.5315	0.5563	0.4711
Ljung_Box (R^2 , $Q = 20$) pv	1.0000	0.7687	0.6027	0.6418
LM Arch pv	0.9995	0.3151	0.3712	0.3517

Test on the standardized residuals

- Normality Tests (Jarque-Bera and Shapiro-Wilk):
 Still not normally distributed for any of the datasets
- Autocorrelation Tests (Ljung-Box for residuals):

 Reduced significance for autocorrelation, indicating that the model has captured the time series.
 - Reduced significance for autocorrelation, indicating that the model has captured the time-series dynamics
 Autocorrelation Tests for Squared Residuals (Ljung-Box for R^2):
 - No significant autocorrelation, suggesting that the GARCH model is effectively capturing the volatility
- LM Arch Test:
 The GARCH model adequately captures the autoregressive conditional heteroskedasticity in the data.

About VARIMA

- 1. Multivariate time series model
- 2. Forecasting by past observations of itself and of the other variables within the data set

Why VARIMA for AQI forecasting?

- Spatial Interdependencies: Regions in India may exhibit spatial interdependencies in terms of air quality.
- Integration and Differencing: Air quality data may be non-stationary, exhibiting trends and seasonality.

City RMSE		MAE	MAPE	AMAPE
Lucknow	35.37972	30.05236	32.55386	29.52032
Chennai	24.33768	17.26720	15.04081	16.54072
Delhi	32.77869	23.93517	19.07055	18.68528
Bengaluru	35.37972	30.05236	32.55386	29.52032

VARIMA: Actual vs Forecast

About Prophet

- 1. Developed by Facebook
- 2. Automatic detect trends and seasonality with minimal manual training
- 3. Intuitive and user-friendly

Why Prophet for AQI forecasting?

Prophet excels at capturing daily, weekly, monthly, and yearly seasonal effects and can incorporate holidays or special events.

City	RMSE	MAE	MAPE	AMAPE
Lucknow	43.8092	32.99207	0.3155502	40.46366
Chennai	55.41889	49.7491	0.4633163	62.37414
Delhi	48.23874	30.73455	0.2210615	26.18271
Bengaluru	14.58552	11.92744	0.2166511	22.76304

Prophet: Actual vs Forecast

Results

L	ucknow						D	elhi					
	Model	RMSE	MAE	MAPE %	AMAPE %			Model	RMSE	MAE	MAPE %	AMAPE %	
	ARIMA	47.57	36.71	39.98	38.16			ARIMA	52.78	42.68	36.48	33.93	
[[[ARMA GARCH	58.00	52.26	63.00	62.74	_		ARMA GARCH	80.20	65.90	62.00	62.35	
	VARIMA	35.38	30.05	32.55	29.52] 		VARIMA	32.78	23.94	19.07	18.69	
	Prophet	43.8	32.9	31.50	40.4			Prophet	48.2	30.7	22.00	26.2	
Chennai						Beng	galuru						
	Model	RMSE	MAE	MAPE %	AMAPE %			Model	RMSE	MAE	MAPE %	AMAPE %	
	ARIMA	29.47	21.42	18.34	20.85			ARIMA	52.78	12.24	24.40	22.27	
	ARMA GARCH	21.23	14.85	14.00	13.66	1		ARMA GARCH	33.03	31.77	59.00	59.44	
	VARIMA	24.34	17.27	15.04	16.54		•		VARIMA	35.38	30.05	32.55	29.52
-	Prophet	55.4	49.7	46.3	62.4		į	Prophet	14.5	11.9	21.00	22.7	

- 1. Incorporate additional exogenous variables like weather data, traffic data, industrial emissions, and social events
- 2. Explore more advanced models like LSTM, GRU, and hybrid models
- 3. Account for spatial dependencies between different regions using techniques
- 4. Incorporate holiday effects, COVID impact, and other seasonal events
- 5. Real-time forecasting

Appendix

ACF & PACF for Differentiated Data (d = 1)

- Differencing removes trends and cycles, stabilizing mean across the series. Reduces dependence among values, enhancing model's predictive accuracy and stability.

