Lecture 2

Scribed by: Yuhan Chen, Xianpeng Liu

September 19, 2019

1 Graph Isomorphisms

Definition 1. Graphs A and B are isomorphic iff \mathbb{E} bijection $V_A \leftrightarrow V_B$ that maps edges to edges.

Figure 1: Example for isomorphisms

$$(gf)(a) = g(f(a))$$

 $id_A(a) = a$

Inclusions $A \cong B$ iff $\exists f : A \to B, \ g : B \to A$ s.t. $gf = id_A$ $fg = id_B$

2 The Category Set

Theorem 1. The set \mathbb{Z}_+ of positive integers is not isomorphic to the set X of sets of positive integers.

Proof. Suppose the set \mathbb{Z}_+ of positive integers is isomorphic to the set X of sets of positive integers. which means $\mathbb{Z}_+ \xrightarrow{f} X$, $fg = id_X$, $gf = id_{\mathbb{Z}_+}$, Let

$$S = \{i \in \mathbb{Z}_+ : i \notin f(i)\}$$

$$S = id_X(S) = (fg)(S) = f(g(S))$$

Is $g(S) \in S$, let i = g(S). Then we can get $g(S) \in S$ iff $g(S) \notin S$, which is impossible. \Box

	1	2	3		
f(1)	1	0	1		
f(2)	0	0	1		
f(3)	1	1	0		
				i	

Figure 2: Example for set S

3 Graph Morphisms

Definition 2. A morphism is $G \to H$ is a function $f: V_G \to V_H$

$$s.t. \forall (u, v) \in E_G$$

we have $(f(u), f(v)) \in E_H$

4 Some Special Graphs

(1). Clique or Complete Graph on n vertices K_n

$$k_{2} \sim 0 \quad | \quad k_{4} \sim 0 \quad | \quad k_{5} \sim 0 \quad | \quad k_{7} \sim 0 \quad$$

(2). Path P_m with m edges, "length of P_m " is the number of edges (m)

$$P_{0} = 0$$
 $P_{1} = k_{2}$ $P_{2} = 0$ $P_{3} = 0$ $P_{m} = \{(0, ..., m), \{(i-1, i) \mid i \in [m]\}\}$

(3). Cycle

$$C_3 = \{c_3 \ C_n = (\{o, ..., n-1\}, \{(i, i+1)\%n\}\} | i \in \{o, ..., n-1\}\}$$
 $n \ge 3$

(4). Bipartite Graphs, $G = (A \cup B, E)$, where $E \in A \times B$ and $S \cap B = \emptyset$

(5). Complete Bipartite Graphs, $K_{Ka,b}$. All edges from every vertex of A to every vertex of B.

$$K_{a,b} = ([a] \sqcup [b], [a] \times [b])$$

Claim: Graph with at least two vertices is bipartite iff you can map it's morphism to a graph into K_2

5 Subgraphs

Definition 3. $G=(V,E),\ G'=(V',E'),\ G$ is subgraph of $G'(G\subseteq G')$ iff $V\subseteq V'$ and $E\subseteq E'$

Edits

$$G + e \text{ or } G \cup e = (V, E \cup e)$$

$$G + v \text{ or } G \cup v = (V \cup v, E)$$

$$G \setminus v \text{ or } G - v = (V \setminus \{v\}, E \setminus (\{v\} \times V))$$

6 Induced Subgraphs

Definition 4. G=(V,E), G' is an induced subgraph (on V') iff $G'=(V',E\cap (V'\times V'),\ V'V,\ G'=G\setminus (V\setminus V')$