Lab 4

Trigonometric Functions

Aim:

- To create an applet to find the values of trigonometric functions and plot their graphs
- To establish some behaviours of trigonometric functions in different quadrants

Concepts:

• Concept of circular functions

• Graph of the function f is a collection of points of the form (a, f(a)) for all values of a in its domain

Discussion:

If a point is rotated from (1,0) along the unit circle centred at the origin, by an angle x radians, the x and y coordinates of the point represent $\cos x$ and $\sin x$ respectively. We define all other trigonometric functions in terms of $\cos x$ and $\sin x$. We use this idea to construct our applet.

Activity 4.1 Values of Trigonometric Functions

Procedure:

Open a new GeoGebra window, do some initial settings as follows Options \to Advanced \to Angle unit \to Radian

- Plot the point O(0,0) (input O=(0,0))
- Draw a unit circle centred at the origin O
- Plot the point A(1,0) (input A=(1,0))
- Create a number slider **a** with min value -10, max value 10 and increment 0.01. While creating the slider, set its animation as increasing
- Plot another point A' such that $\angle AOA' = \mathbf{a}$ radian
- Rename the point A' as P (right click \rightarrow Rename)
- \bullet Show the coordinates of P
- Join *OP* using a line segment
- Create an input box for the slider a.

- To set the animation of a slider as increasing, right click on the slider and in the object properties, select increasing option from the repeat dropdown menu
- To create an angle AOA' with measurement a, use Angle with a given size tool, click on A, O and then give a as the angle in the box

- Animate the slider, observe the coordinates of the point P, hence find the domain and range of $\sin x$ and $\cos x$
- Find the values of $\sin x$ and $\cos x$ for the given values of x

x	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi}{2}$	0.3	0.6	2	-1.5	-3.1	7.5
$\sin x$										
$\cos x$										

Identify the values of x for which $\sin x$ and $\cos x$ become 0,1,-1

• Save this file as Activity 4.1

Activity 4.2 Graphs of Trigonometric Functions - 1

Procedure:

- Save file Activity 4.1 as Activity 4.2 using save as option
- Open Graphics 2 [view \longrightarrow Graphics 2]
- Plot the point B(a, y(P)). [y(P)] gives the y coordinate of P]
- Give trace to this point and animate the slider
- Observe the path of this point. What does this path represent?
- Save the file.

- We can see the path of the point using locus tool also. To get the path, take the locus tool, click on the point and on the slider
- For analysing the graphs of trigonometric functions, it is more convenient to mark ... -π/2, 0, π/2 ... on the x axis instead of ... 1, 0, 1...
 (For this right click on the Graphics 2. Go to Object Properties Change the x Axis distance to π/2)
- We can draw the graphs of $\sin x$ and $\cos x$ using input commands $\sin(x)$, $\cos(x)$ etc.

Activity 4.3 Graphs of Trigonometric Functions - 2

Procedure:

- Open Activity 4.2 and save as Activity 4.3 using save as option
- \bullet Create an input box for the point B
- Change the definition of B as (a, x(P))
- Observe the path of this point

 | Stive | Head | He
- What does this path represent?
- Redefine B as $(a, \frac{1}{y(P)})$ and $(a, \frac{y(P)}{x(P)})$, observe the path of P and identify the functions.
- What should be the definition of B for getting the graphs of $\sec x$ and $\cot x$?
- Observe the values of trigonometric functions, write their domain, range and complete the following table.

Function	$\left(0,\frac{\pi}{2}\right)$	$\left(\frac{\pi}{2},\pi\right)$	$\left(\pi, \frac{3\pi}{2}\right)$	$\left(\frac{3\pi}{2},2\pi\right)$
$\sin x$	Positive			
	Increasing from 0 to 1			
$\cos x$				
$\tan x$				
			Increasing from 0 to ∞	
$\sec x$				
$\cot x$				
cosec x				
20000 #				

Additional Activities

Activity 4.A $k \sin(x)$

Discussion:

We construct an applet similar to that in Activity 4.1, using which we describe the functions $k\sin(x), k\cos(x)$ etc. for different values of **k**.

Procedure:

Do the initial settings as in activity 4.1

- \bullet Create two sliders, **k** with Min = 0 and **a** with min value -10, max value 10 and increment 0.01. While creating the slider **a**, set its animation as increasing
- Draw a circle of radius \mathbf{k} centered at the origin O(0,0)
- Plot the point A(k,0)
- Plot another point A' such that $\angle AOA' = \mathbf{a}$ radian
- Rename the point A' as P
- \bullet Show the coordinates of P
- Join *OP* using a line segment

What does the coordinates of the point P represent?

Find the domain and range of $k\sin(x)$ and $k\cos(x)$ for different values of **k**

- Open Graphics 2 and plot the graphs of $k\sin(x)$ and $k\cos(x)$ as we done in Activity 4.2.
- Save this file as Activity 4.A

Activity 4.B $k \sin(2x)$

Discussion:

We construct an applet using which we describe the functions $k \sin(2x), k \cos(2x)$ etc.

Procedure:

- Open Activity 4.A and save it as Activity 4.B
- edit the rotation of P as 2a (Double click and edit)

What does the coordinates of the point P represent?

- Open Graphics 2 and plot the graphs of $k \sin(2x)$ and $k \cos(2x)$
- Create an applet to describe $k\sin(ax)$ and $k\cos(ax)$, for different values of **k** and **a**