Задания

10 февраля 2020 г.

- 1. Опишите в категории (пред)порядка следующие конструкции:
 - (а) Начальные объекты.
 - (b) Копроизведения объектов.
- 2. Докажите, что если $A \coprod B$ существует, то $B \coprod A$ тоже существует и изоморфен $A \coprod B$.
- 3. Начальный объект 0 произвольной категории называется *строгим*, если любой морфизм вида $X \to 0$ является изоморфизмом. Например, в **Set** пустое множество является строгим начальным объектом. В **Grp** тривиальная группа не является строгим начальным объектом, хоть и является начальным.

Докажите, что в произвольной категории начальный объект 0 является строгим тогда и только тогда, когда для любого X произведение $X\times 0$ существует и $X\times 0\simeq 0.$

- 4. Докажите, что в **Ab** существуют все копроизведения.
- 5. Приведите нетривиальный пример категории, в которой для всех A и B существуют сумма и произведение и $A \amalg B \simeq A \times B.$
- 6. Идемпотентный морфизм $h: B \to B$ является расщепленным, если существуют $f: A \to B$ и $g: B \to A$ такие, что $g \circ f = id_A$ и $f \circ g = h$. Докажите, что если в категории существуют коуравнители, то любой идемпотентный морфизм расщеплен.
- 7. При каких условиях в категории (пред)порядка существует булевский объект?
- 8. Пусть в категории ${\bf C}$ есть все конечные произведения и булевский объект. Сконструируйте в ${\bf C}$ морфизмы and, or : Bool imes Bool, такие что следующие диаграммы коммутируют

9. Мы видели, что объекты 2 и 1 могут быть изоморфны. Если 2 является булевским объектом, то это все равно может произойти, но эту ситуацию легко отследить.

Пусть ${\bf C}$ – категория с конечными произведениями. Докажите, что следующие утверждения эквивалентны:

- (а) С категория предпорядка.
- (b) В **С** терминальный объект является булевским.
- (c) В **С** существует булевский объект, такой что true = false.