Soil Moisture Data

Peter Prevos
3 August 2017

Introduction

The Australian Landscape Water Balance is an interactive website which provides Australia-wide information on key landscape water balance components including soil moisture, run-off, evapotranspiration, deep drainage and precipitation in near real time (http://www.bom.gov.au/water/landscape/).

The data presented on Australian Landscape Water Balance is produced by the Bureau's operational Australian Water Resources Assessment (AWRA) Modelling System (AWRAMS).

Data products

The data from this website needs to be downloaded manually. The data is available for various variables over a daily, monthly or annual time horizon. The Australian Landscape Water Balance provides a continental scale grid available either as:

- An ASCII grid for the currently selected map, or
- A NetCDF file containing multiple time steps in a single file

The website can also generate a time series for individual points or for whole catchments.

The data can be made available for automatic download upon request by the BoM for a fee.

Problem Statement

This report visualises two data sets provided as an ASCII continental grid, focusing on the Coliban river catchment. This visualisation is developed in the R Language.

Initialisation

Two functions prepare and visualise the ASCII continental grid data. The first six lines of these files contain metadata. The metadata is stripped to transform the ASCII grid into a suitable format. The centre point of the visualisation is Lauriston reservoir and the data is projected on a Google map.

```
# Libraries
library(tidyverse)
library(reshape2)
library(RColorBrewer)
library(ggmap)
library(gridExtra)

# Transformation function
trans <- function(raw_data) {
   header <- strsplit(raw_data[1:6], " ") %>%
   unlist()
```

```
metadata <- as.numeric(header[c(2, 4, 6, 8, 10, 12)])
    names(metadata) \leftarrow header[c(1, 3, 5, 7, 9, 11)]
    moisture <- matrix(ncol = metadata["ncols"], nrow = metadata["nrows"])</pre>
    for (i in 7:length(raw data)) {
        moisture[i - 6,] <- strsplit(raw_data[i], " ") %>%
            sapply(as.numeric)
    }
    colnames(moisture) <- seq(metadata["xllcorner"], by = metadata["cellsize"],</pre>
                               length.out = metadata["ncols"])
    rownames(moisture) <- rev(seq(metadata["yllcorner"], by = metadata["cellsize"],</pre>
                                   length.out = metadata["nrows"]))
    moisture <- moisture %>%
        melt(varnames = c("lat", "lon")) %>%
        subset(value != -999)
    return(moisture)
}
# Visualisation function
visual <- function(moisture, title) {</pre>
    map <- get_map("Lauriston Reservoir", zoom = 11)</pre>
    ggmap(map) +
        geom_tile(data = moisture, aes(x = lon, y = lat, fill =value), alpha = .5) +
        scale_fill_gradientn(colors = brewer.pal(7, "RdYlBu")) +
        ggtitle(title)
}
```

Load and visualise the data

This example uses the relative moisture data for the upper and lower levels for 2 August 2017. These files were manually downloaded from the website.

```
# Upper oil Moisture (relative)
upper <- readLines("s0_pct_Relative_2017082.txt", warn = FALSE)
# Lower Soil Moiture (relative)
lower <- readLines("ss_pct_Relative_2017082.txt", warn = FALSE)

p1 <- trans(upper) %>%
    visual("Relative upper soil moisture")
p2 <- trans(lower) %>%
    visual("Relative lower soil moisture")
grid.arrange(p1, p2, ncol = 2)
ggsave("moisture_map.pdf")
```

Production

The code presented in this report can be used to visualise any ASCII grid provided by the Bureau of Meteorology.

If these maps need to be created on a regular basis than it is advisable to obtain a subscription from BoM and develop a script to create layers in the GIS or use Reporting Services to visualise the information.

Figure 1: Relative moisture levels at 2 August 2017 (Source: Bureau of Meteorology)