

Gehirn-Muster-Erkennung

Dr. Felix Putze

Willkommen!

Felix – Postdoctoral Researcher, am CSL seit 2009

Forschung am CSL

Forschungsschwerpunkte

- Sprache und Kommunikation
 - Automatische Spracherkennung
 - Multilingualität, Schnelle Portierung
 - Silent Speech Interfaces (Muskelaktivität, EMG)
- Biosignale und Benutzerschnittstellen
 - Biosignale: Muskel- und Hirnaktivität, Bewegung
- Gehirnaktivitätsmodellierung
- Kognitive adaptive Interaktionssysteme
 - Interaktionsstrategien, Autonomes Lernen
 - Kognitive Benutzermodellierung
- Systeme für Menschen mit Demenz und die gesamte Lebensspanne

Ihr seid dran.

Organisatorisches

Der Blockkurs

- Termine: Montag 19.9.2022 bis Mittwoch 28.02.2022
- Täglich (außer am Wochenende) ca. 9:00-16:00
- Raum 2.43 und Labor des Cognitive Systems Labs
- Die meiste Zeit eigenständige Arbeit in Gruppen ("Hackathon")
- Bei Fragen sind wir aber jederzeit da

Der Blockkurs: Ablauf

- Morgens um 9 Uhr: "Check-In" → Neue Aufgaben und Theorie, Fragen und Präsentation des Stands
- Während des Tages: Selbstständige Arbeit, vor Ort oder remote. Ich stehe immer in Person und auf Discord für Fragen zur Verfügung
- Bei Bedarf weitere gemeinsame Termine
- Keine feste Arbeitszeit, aber auf Vollzeit ausgelegt → bitte innerhalb eurer Gruppe koordinieren
- Mittwoch: Präsentation der Ergebnisse

Das Thema - allgemein

Gehirn – Muster – Erkennung

Das Thema - allgemein

Gehirn – Muster – Erkennung

Prozesse im Gehirn messen und darstellen lassen

Die resultierenden Muster analysieren

Das Gehirn-Muster klassifizieren (einteilen in eine bestimmte Kategorie)

Das Thema - allgemein

Gehirn – Muster – Erkennung

Das Umwandeln der Gehirnaktivität in ein lesbares Muster

 \rightarrow EEG

Das Umwandeln des Musters in eine verständliche Aussage über den Zustand

→ Eure Aufgabe

Das Thema - konkret

Mental Workload

- Ein Experiment durchführen, in dem gemessen werden kann ob der Teilnehmer gerade aufmerksam bei der Aufgabe ist oder nicht
- EEG Daten während des Tasks aufzeichnen
- Die aufgenommenen Daten verarbeiten
- Einen Klassifikator trainieren der in den EEG Daten "hoher Workload" von "niedriger Workload" unterscheiden kann

Das Experiment

- Verschiedene Workload-Level durch Parallelität von Aufgaben (Multitasking)
- Implementiert in Unity

Ablaufplan

- Montag & Dienstag: Theorie, Experiment-Ablauf, EEG-Einarbeitung, Datenaufzeichnung, Datenaufbereitung
- Mittwoch-Freitag: Implementierung und Optimierung Brain-Computer-Interface, Auswertung & Analyse
- (Wochenende)
- Montag: Abschluss Implementierung, Online-System oder weitergehende Analysen
- Dienstag: Vorbereitung Präsentation
- Mittwoch: Abgabe & Präsentation

Was wir erwarten

- ✓ Aktive Mitarbeit in der Gruppe bei den Programmieraufgaben
- ✓ Jeder ist einmal Teilnehmer im Experiment
- ✓ Jeder hilft bei den Experimenten seiner Gruppe
- ✓ Ein Abschlussbericht pro Gruppe über die Datenanalyse (aufbereitet aus dem Analyse-Notebook)
- ✓ Eine Abschlusspräsentation pro Gruppe über das gesamte Experiment mit Auswertung

Die Grundlagen

Das Gehirn

Aufmerksamkeit im Gehirn

Verschiedene "Gründe" für Aufmerksamkeit entscheidend

Bewusste Aufmerksamkeit:
Präfrontale Aktivität

Höhere Aktivierung je nach Modalität auf der die Aufmerksamkeit liegt

Brain-Computer-Interfaces

- Brain-Computer-Interface (BCI)
 - Mensch-Maschine-Schnittstelle basierend auf Messung von Gehirn-Aktivität
 - Aktive BCIs: "Mentale Kommandos" steuern den Cursor, betätigen Buttons
 - Passive BCIs: Kontinuierliches Monitoring des Benutzer-Zustands (z.B. der mentalen Auslastung)
- Bestandteile eines BCIs
 - Paradigma: Art der Aufgabe, Art der Kommandos
 - Daten Akquisition: Positionierung der Sensoren
 - Datenverarbeitung: Artefaktbereinigung, Normalisierung
 - Merkmalsextraktion: Relevante Deskriptoren
 - Klassifikation: Statistische Modellierung
 - Auswertung: Accuracy

Das Elektroenzephalogramm (EEG)

- Erfassung der Gehirnaktivität durch Elektroden am Kopf
- Erste nicht-invasive Messungen elektrischer Gehirnaktivität Hans Berger (Jena, 1924)

EEG heute (Beispiel)

Elektroden-Kappe

- Anwendungsbereiche
 - Klinischer Einsatz
 - Kognitve Neurowissenschaften
 - Benutzerschnittstellen: Brain Computer Interfaces

Das EEG Signal

 Typisches EEG Signal (wacher, gesunder, erwachsener Mensch, 5 Sekunden,16 Kanäle)

EEG im klinischen Einsatz

- Untersuchung anhand der Interpretation von EEG Zeitreihen durch Experten
- Auswertung von pathologischen Veränderung im EEG für Diagnose und Therapie
- Aussagen über funktionelle Störungen im Gehirn
 - Ereigniskorrelierte Potenziale (EKP)
 - Evozierte Potentiale
 - Untersuchung von Schlafphasen
 - Anästhesie (Überwachung der Narkosetiefe)
 - Feststellung von irreversiblem Hirnfunktionsverlust
 - Etc
- Überprüfung von sensorischer
 Verarbeitung und kognitiver Funktionen

EEG basierte Brain Computer Interfaces (BCIs)

BCI: Benutzerschnittstelle basierend auf Hirnaktivität

- Erkennung von Benutzerzuständen
 - Emotionen, Intentionen, mentale Auslastung, etc.
 - Natürliche Schnittstelle für die Mensch-Maschine-Interaktion
 - Forschungsinstrument um neurowissenschaftliche Vorgänge zu untersuchen und zu verstehen
- Steuerung von externen Geräten
 - Bewegungsvorstellung
 - Kommunikationsmöglichkeit für Locked-in Patienten

Was ist das EEG?

- Elektrische Spannungsschwankungen werden an der Kopfoberfläche gemessen
- EEG kann man als Summe kortikaler Feldpotentiale verstehen
 - D.h. jede EEG Elektrode misst die Summe einer Vielzahl von Potentialen die in Signalquellen im Kortex entstehen
 - Volume Conduction:
 elektrische Potentiale
 breiten sich von ihrer
 Quelle (im Kortex)
 bis zum Ort der Messung
 (Kopfoberfläche) stark aus
 - An Kopfoberfläche messbare Spannung von Hirnaktivität ist sehr schwach (< +-100µV)
 - Signal-Rausch-Abstand sehr klein

Elektroenzephalographie (EEG)

- Was sind die Potentialquellen des EEG (kortikalen Feldpotentiale)?
 - Nicht die Aktionspotenziale der Neuronen
 - Nur 1-2ms Dauer
 - Außerhalb der Zelle nur geringe Stärke
 - Postsynaptische Potenziale liegen dem EEG zugrunde
 - EPSP: Exitatorische (erregende) postsynaptische Potentiale
 - IPSP: Inhibitorische (hemmende) postsynaptische Potentiale
- Synchronisation und Desynchronisation der EPSP und IPSP können an der Kopfoberfläche messbare EEG-Aktivität hervorrufen

EEG-Erfassung: Elektrodenpositionen

- Die Positionen der Elektroden sollten die relevanten Hirnareale abdecken
- Internationaler Standard für die Platzierung von Elektroden: 10-20 System (1957 von der International EEG Federation)
- Schädelasymmetrien entsprechen meist Hirnasymmetrien, daher ist die Zuordnung der Elektroden zur Anatomie relativ zuverlässig
- 1. Bestimme Nasion, Inion, Prä-auricularen Referenzpunkt

reflektieren anatomische Region auf dem Kortex (Fp = frontopolar, F = frontal, T = temporal, C = central, P = parietal, O = ocipital; A=Auricular)

Quelle http://www.bem.fi/book/13/13x/1302ax.gif

2.

Erweitertes 10-20 System

- Neben den 19 Positionen des ursprünglichen 10-20 Systems gibt es erweiterte Versionen
- High density EEG/EMG

256 Elektroden (EGI, Inc)

330 Elektrodenpositionen in erweitertem 10-20 System

EEG-Erfassung: EEG-Kappen und Head-Sets

- Standard EEG-Kappen/Head-Sets verwenden meist das 10-20 Layout
- 16 256 Elektroden sind üblich (meist 32 oder 64 sonst sehr lange Setup Zeit)
- Kappe hat den Vorteil, dass nicht jedes Mal alle Elektrodenpositionen vermessen werden müssen (Kappen für unterschiedliche Kopfgrößen)
- Für EEG Benutzerschnittstellen sollte die Positionierung schnell und leicht sein
 - Flexible Kappen
 - (trage-) komfortable Lösungen
 - Evtl. ohne Elektrodengel (z.B. Trockenelektroden)

Dry electrode head-set DSI-24 wearablesensing.com

Consumer EEG Head-Sets

- Kommerziell verfügbare Peripheriegeräte konzipiert für Computerspiele
 - Emotionserkennung (Aufregung, Frustration, Engagement,...)
 - Erkennung von Gesichtsausdrücken (Blinzeln, Lachen,...)
 - Steuerung (12 verschiedene Bewegungen)

EEG-Erfassung: Elektroden

- Häufig werden Silber/Silberchlorid (Ag/AgCl)-Elektroden eingesetzt
- Zwischen Elektrode und Kopfhaut wird Elektrolyt/Elektrodengel/Paste mit gelösten NaCl appliziert
- Durch Kombination mit positiven Metallionen bildet sich ein Potenzial
- Elektrolyt reduziert Hautwiderstand um Größenordnungen
- Elektrodenwiderstand kann durch Hornhaut und Fett erhöht werden (sehr viele Haare oder Glatze sind auch nicht optimal)

EEG-Erfassung: Setup

- EEG Setup Prozedur (normale EEG Kappe)
 - Geeignete Kappe für die Kopfgröße finden (z.B. für 58 cm Kopfumfang)
 - Kappe aufziehen und richtig positionieren (evtl. Maßband verwenden)
 - Impedanzmessung starten
 - Gel in jede Elektrode applizieren bis alle hohe Leitfähigkeit erreicht haben (Widerstand < Schwellwert, z.B. 20 k Ω)
- Niedrige Impedanzwerte zu erreichen kann pro Elektrode bis zu mehreren Minuten dauern

Referenzableitung und Durchschnittsreferenz

- Natürliche Referenz am Probanden
- Durchschnitts- oder Mittelwertreferenz
 - Vorteil: Artefakte einzelner Elektroden haben geringeren Einfluss,
 - Nachteil: Aktivität jeder Elektrode wird mit kleiner Amplitude auf alle anderen Kanäle

Frequenzbereich

- Bisher Signal nur im Zeitbereich betrachtet,
 - Amplitude (Signalstärke) als Funktion der Zeit dargestellt
- Signal im Frequenzbereich,
 - Welche Frequenzanteile im Signal in welcher "Stärke" vorkommen
 - Nützlich für Signalverarbeitung
 - Hilft beim Verstehen des Signals
 - Frequenzrepräsentation eines Signals: Spektrum
 - Hier erst einmal: Amplitudenspektrum, Phase: Später

Quelle: Wikipedia (englisch, "Frequency")

Der Frequenzbereich

- Frequenz: "Schwingungen pro Zeiteinheit",
 - Bei Zeiteinheit 1 Sekunde: Einheit Hertz
 - 1 Hertz = 1 Schwingung pro Sekunde.
- Beispiel: Die Frequenz der Sinuswellen steigt von oben nach unten. x ist die Zeitachse.

Quelle: Wikipedia (englisch, "Frequency")

Frequenzbereich

- Beispiel: Links Signale im Zeitbereich, rechts Signale im Frequenzbereich.
 - Oben: Frequenz ω_0
 - Mitte: Frequenz ω_1 .
- Reelle Signale: Frequenzdarstellung symmetrisch.
- Unten: Summe der Signale.
 - Kompliziertes Signal besteht aus mehreren Frequenzen.
 - Sinusschwingungen haben eine reine Frequenz.
- Frequenzbereich: Die x-Achse zeigt die Frequenz! (rechts)

EEG-Frequenzbänder

- EEG wird häufig in Frequenzbereiche mit den Namen delta, theta, alpha, beta, und gamma bezeichnet (Nomenklatur)
- Frequenzeinteilung ist empirisch entstanden
- Synchronisierung der Gehirnpotentiale über größere Kortexareale

• Bänder haben unterschiedlichen neurowissenschaftlichen Hintergrund

(teilweise nicht vollständig bekannt)

- Anzahl der Bänder und genaue Grenzen variieren je nach Autor
- Grenzen und Intensität der Rhythmen sind personenspezifisch
- Amplituden werden relativ zum zugrundeliegenden Rhythmus betrachtet

EEG-Frequenzbänder

• Unterschiedliche Wachheitsgrade führen zu Änderungen des EEG Frequenz-Spektrums

Alpha	8 – 13 Hz	20 – 120 μV	Wach, entspannt, Augen geschlossen
Beta	13 – 30 Hz	5 – 50 μV	Augen offen, Aufmerksamkeit
Gamma	31 – 60 Hz	< 10 μV	Anspruchsvolle Tätigkeiten, Konzentration, Lernen
Theta	4 – 8 Hz	20 – 100 μV	Übergang zum Schlaf, leichte Schlafphase, Reaktion nur noch auf starke Umweltreize
Delta	0.5 – 4 Hz	5 – 250 μV	Traumlose Tiefschlafphase (ansonsten Hinweis auf patholog. Veränderungen)

Topographie von Gehirnaktivität im EEG

22.0 Hz

• EEG hat schlechte räumliche Auflösung

Trotzdem häufig hilfreich die grobe topographische Struktur des EEG

zu analysieren

 Scalp maps: Grafischen Darstellung der Hirnaktivität an der Kopfoberfläche (Energie interpoliert zwischen den Elektroden)

- Plot zeigt
 - Spektren der einzelnen Kanäle
 - Örtliche Energieverteilung bei
 6, 10 und 22Hz durch scalp maps

10.0

• Komplexere Verfahren zur Quellenlokalisation aus EEG existieren haben aber eine räumliche Auflösung von einigen Zentimetern

EEG im Frequenzbereich

- Spektrale Leistung (d.h. Amplitude im Zeitbereich) nimmt mit steigender Frequenz ab (y-Achse ist logarithmisch)
- Deutlich im Spektrum erkennbar
 - 1 Hz: stark Frontale Aktivität vmtl. Augenartefakte
 - 10 Hz: okzipitale Alpha
 Aktivität
 - 60 Hz: Netzbrummen (USA)
- Beispiel: Visueller Aufmerksamkeitstask

(Makeig et al. J Neurosci. 19:2665-80, 1999)

- 128 Hz Sampling Rate
- 32 Kanäle

EEG-Artefakte

EEG Artefakte

- Aktivität die ihren Ursprung nicht in der neuronalen Aktivität des Gehirns hat
 - Biologische Artefakte (erzeugt durch menschlichen Organismus)
 - Technische Artefakte (durch Geräte, die direkt oder indirekt an der Messung beteiligt sind)
- Die Amplitude von Artefakten kann die der Gehirnaktivität im EEG um ein Vielfaches übersteigen
- Biologische Artefakte:
 - Einstreuung von Muskelaktivität (EMG in EEG)
 - Augenbewegungen, Blinzeln (EOG in EEG)
 - Elektrische Aktivität des Herzens (EKG in EEG)
 - Zungenbewegungen (Glossokinetische Artefakte)
 - Haareigenschaften (Haarspray, Gel, ...)
 - Hautpotentiale (z.B. Schwitzen)
 - Andere physiologische Faktoren (z.B. Atmung)
 - Unerwünschte Gehirnaktivität wird teilweise auch als Artefakt angesehen

EEG Artefakte

- Technische Artefakte:
 - Defekte oder verschmutzte Elektroden, korrodierte Kontakte, Kabel
 - Bewegung von Elektroden
 - Bewegung von Kabeln
 - Schlechter Elektroden-Haut Kontakt
 - Elektromagnetische Felder (z.B. 50Hz)
 - Elektrostatische Aufladungen (Reibungselektrizität)
 - Verstärkerrauschen
 - Aliasing
 - Quantisierung
- Artefakte bei der EEG Aufzeichnung (soweit möglich) vermeiden
 - Kontrollierte Experimente: Keine unnötigen Muskelbewegungen
 - Signal-Störquellen identifizieren und entfernen

Einige Artefakte im EEG können durch Frequenzfilter entfernt werden

Was ist ein Filter?

- Ein Filter transformiert ein Eingabesignal in ein Ausgabesignal
- Filter treten in der Natur/Technik "überall" auf!
- Beispiele:
 - Akustisches Filter (z.B. Auspuff eines Autos, Konzertsaal, menschlicher Mund)
 - Analoges (elektrisches) Filter (Kombination von Widerständen, Kondensatoren und Spulen)
 - Digitales Filter (ein Programm, oder einfach eine Koeffizientenfolge)
 - Filtereigenschaften von Objekten (z.B. wirkt bei der Messung von elektrischen Biosignalen die Haut als Tiefpassfilter)
- Wir beschäftigen uns an dieser Stelle nur mit digitalen Filtern.
- Grammatik: der Kaffee-Filter, aber das digitale Filter

Warum filtern wir?

- In der Natur auftretenden Filter können durch digitale Filter beschrieben werden.
- Filterung ist eine wichtige Operation der Signalverarbeitung, um die Entstehung eines Signals zu modellieren
- Mit Filterung können wir (im Idealfall) mathematisch beschreiben, welche Einflüsse ein Signal geformt haben.
- Filter wirken auf die Frequenzen des Eingabesignals
 - Wichtiger Signalverarbeitungsschritte (Modulation, Rauschunterdrückung, ...) durch Filter repräsentieren.
- Impulsantwort und Frequenzantwort (Übertragungsfunktion) eines Filters charakteristisch

Beispiel Bandstopp-Filter

- Audio Signal mit 50 Hz Netzbrummen
- Bandstopp-Filter: Sperren von 50 Hz

Beispiel Tiefpass-Filter

- Funktionale Nah-Infrarot Spektroskopie
- Misst Konzentrationen von Sauerstoff armen/reichem Blut im Gehirn
 - Änderungen mit mentalen Aufgaben
- Puls (mechanische Auswirkungen von Herzaktionen) enthält keine Information über Gehirnaktivierungen, ca. 50 Schläge/min
- Tiefpassfilter mit 0.5 Hertz: lässt nur Frequenzen < 0.5 Hertz durch

Beispiel Hochpass-Filter

- EEG Signal enthält niedrigfrequente Anteile
 - Enthalten keine relevante Information
- Hochpassfilter mit Cut-Off 1Hz: lässt nur Frequenzen >1Hz durch

Jetzt haben wir schön vorverarbeitete EEG Daten. Können wir irgendwas "erkennen"?

Pipeline

- 1. Daten vorverarbeiten
- 2. Merkmale generieren und auswählen (Features)
- 3. Klassifikator mit einem Trainingsdatenset "trainieren" (Fit)
- 4. Testdaten-Label vorhersagen mit dem Model (Predict)
- 5. Übereinstimmung von Vorhersage und Wahrheit analysieren (Evaluation)

Merkmale

- Daten für Machine Learning
- Einzelner Datenpunkt: Sample
- Beschrieben durch Attribut Wert Paare → Features
- Alle Samples sollten gleiche Attribute haben

Eure Aufgabe:

- Was für Merkmale eignen sich für unser BCI?
- Ist eine Selektion nötig/hilfreich?

Pipeline

- 1. Daten vorverarbeiten
- 2. Merkmale generieren und auswählen (Features)
- 3. Klassifikator mit einem Trainingsdatenset "trainieren" (Fit)
- 4. Testdaten-Label vorhersagen mit dem Model (Predict)
- 5. Übereinstimmung von Vorhersage und Wahrheit analysieren (Evaluation)

Trainings- und Testset

- Suchen Funktionen, die uns für neue Daten eine Prädiktion gibt
- Daher muss Funktion auf anderen Daten gelernt, als getestet werden
- Wenn keine neuen Daten gesammelt werden k\u00f6nnen Aufspalten in Trainingund Testset

- Training Set:
 - Daten und Label gegeben
- Test Set:
 - Benutze nur Daten und vergleiche Ausgabe des Klassifikators mit echten Labeln

Kreuzvalidierung

- Einteilen der Daten in komplementäre Subsets
- Training auf einem Subset (Trainingset), Validierung auf dem anderen (Testset)
- Um Variabilität zu reduzieren, mehrere Runden mit verschiedenen Partitionierungen ausführen
- Sehr gut geeignet, wenn nicht genug Daten vorhanden sind um echte seperate
 Sets zu definieren

K-Fold Kreuzvalidierung

- k-fold cross-validation
- Datenmenge mit N Elementen, wird in k ≤ N möglichst gleich große Teilmengen T_1, . . . , T_k aufgeteilt.
- k Testdurchläufe gestartet, bei denen die jeweils i − te Teilmenge T_i als Testmenge und die verbleibenden k − 1 Teilmengen {T_1, . . . , T_k} \ {T_i} als Trainingsmengen verwendet werden.
- Gesamfehlerquote = Durchschnitt aus den Einzelfehlerquoten der k Einzeldurchläufe

Pipeline

- 1. Daten vorverarbeiten
- 2. Merkmale generieren und auswählen (Features)
- 3. Klassifikator mit einem Trainingsdatenset "trainieren" (Fit)
- 4. Testdaten-Label vorhersagen mit dem Model (Predict)
- 5. Übereinstimmung von Vorhersage und Wahrheit analysieren (Evaluation)

Das Experiment

