Summary of the course/ End Sem. Exam

- 1. <u>Differential Calculus: Numerical ODE solvers</u>
- **2 Elementary Mechanics**
- 2.1 Newtonian Mechanics: Single Particle. Force, Energy, Potential.
- 2.2 Basic Kinematic Quantities. Conservation Theorems
- 2.3 Rotational Motion.
- 2.4 Configuration and phase space
- 2.5 Problem Solving
- 3 Oscillations and Motion
- 3.1 Simple harmonic oscillator
- 3.2 Nonlinear Oscillations
- 3.4 Applications and Problem Solving
- **4 Lagrangian and Hamiltonian Dynamics**
- 4.1 Lagrangian approach to Mechanics
- 4.2 Variational calculas, Eulers Equations
- 4.3 Hamiltonian Dynamics
- 4.4 Examples and Problem Solving
- **5.1 Central Force Motion.**
- 5.2 Two body problem. Orbits, Gravitation.
- 5.3 Scattering Problem

Scattering in a Central force field.

Central Force Field Scattering

- Application of Central Forces outside of astronomy: Scattering of particles.
- Atomic scale scattering.

Description of scattering processes:

1 body formulation = Scattering of particles by a

Center of Force.

 Original 2 body problem = Scattering of "particle" with the reduced mass µ from a center of force

Assumptions

- 1. Consider a **uniform beam** of particles (of any kind) of equal mass and energy incident on a center of force (Central force **f(r)**).
 - Assume that f(r) falls off to zero at large r.
- 2. Incident beam is characterized by an intensity (flux density) I = # particles crossing a unit area (\bot beam) per unit time.
 - As a particle approaches the center of force, it is either attracted or repelled & thus it's orbit will be changed (deviate from the initial straight line path).

Direction of final motion is not the same as incident motion. ⇒ ≡ Particle is Scattered

Interested in distribution of scattering angles that result from collisions with various impact parameters.

Impact parameter \rightarrow distance of closest approach.

> repulsive scattering (as shown in the figure):

ightharpoonup Define: Cross Section for Scattering in a given direction (into a given solid angle dΩ):

$$\sigma(\Omega)d\Omega \equiv (N_s/I).$$

With I = incident intensity

 N_s = # particles/time scattered into solid angle $d\Omega$

Differential Scattering Cross Section:

$$\sigma(\Omega) d\Omega \equiv (N_s/I)$$
 $I = \text{incident intensity}$
 $N_s = \# \text{ particles/time}$
scattered into angle $d\Omega$

- In general, the solid angle Ω depends on the spherical angles
 Θ, Φ. However, for central forces, there must be symmetry about the axis of the incident beam
 - $\Rightarrow \sigma(\Omega) \ (\equiv \sigma(\Theta))$ is independent of azimuthal angle Φ
 - \Rightarrow dΩ = 2π sinΘdΘ, $\sigma(\Omega)$ dΩ = 2π sinΘdΘ,
- Θ = Angle between incident & scattered beams, as in the figure.
 - $\sigma \equiv$ "cross section". It has units of area

Also called the differential cross section.

In all Central Force problems, for a given particle, the orbit, & thus the amount of scattering, is determined by ??

- \succ As in all Central Force problems, for a given particle, the orbit, & thus the amount of scattering, is determined by the energy **E** & the angular momentum ℓ
- Define: Impact parameter, s, & express the angular momentum ℓ in terms of E & s.
- ➤ Impact parameter $s = \text{the } \bot \text{ distance between the center of force & the incident beam velocity (fig).}$
- \triangleright **GOAL:** Given the energy **E**, the impact parameter **s**, & the force **f(r)**, what is the cross section **σ(Θ)**?

Beam, intensity I.
 Particles, mass m, incident speed
 (at r → ∞) = v₀.

Find v_0 and ℓ (angular momentum of the particle about force center or m2)

Beam, intensity I.
 Particles, mass m, incident speed
 (at r → ∞) = v₀.

Energy conservation:

E = T + V =
$$(\frac{1}{2})$$
mv² + V(r) = $(\frac{1}{2})$ m(v₀)² + V(r $\rightarrow \infty$)

- Assume $V(r \to \infty) = 0 \Rightarrow E = (\frac{1}{2})m(v_0)^2$ $\Rightarrow v_0 = (2E/m)^{\frac{1}{2}}$
- ightharpoonup Angular momentum: $\ell \equiv mv_0s \equiv s(2mE)^{1/2}$

If E and s are fixed, **Θ can be determined.**

Assume \rightarrow The number of particles scattered into a solid angle d Ω lying between Θ and Θ +d Θ must be equal to the number of the incident particles with impact parameter lying between the s and s+ds.

- Angular momentum $\ell \equiv mv_0 s \equiv s(2mE)^{1/2}$ Incident speed v_0 .
- $ightharpoonup N_s$ = # particles scattered into solid angle dΩ between $\Theta \& \Theta + d\Theta$.

Cross section definition

$$\Rightarrow$$
 N_s = 2πIσ(Θ)sinΘdΘ

- N_i = # incident particles with impact parameter between s & s
 + ds . N_i = 2πIsds
- Conservation of particle number

$$\Rightarrow N_s = N_i$$
 or: $2\pi I\sigma(\Theta)\sin\Theta|d\Theta| = 2\pi Is|ds|$

2πI cancels out! (Use absolute values because N's are always> 0, but ds & dΘ can have any sign.)

$$\sigma(\Theta)\sin\Theta|d\Theta| = s|ds|$$
 (1)

> s = a function of energy

E & scattering angle **Θ**:

$$s = s(\Theta, E)$$

(1)
$$\Rightarrow \sigma(\Theta) = (s/\sin\Theta) (|ds|/|d\Theta|)$$
 (2)

- \triangleright To compute $\sigma(\Theta)$ we clearly need $s = s(\Theta, E)$
- > Alternatively, could use $\Theta = \Theta(s,E)$ & rewrite (2) as: $\sigma(\Theta) = (s/\sin\Theta)/[(|d\Theta|/|ds|)]$ (2')
- ightharpoonup Get $\Theta = \Theta(s,E)$ from the orbit eqtn. For general central force (θ is the angle which describes the orbit $\mathbf{r} = \mathbf{r}(\theta)$; $\theta \neq \Theta$)

$$\theta(r) = \int (\ell/r^2)(2m)^{-1/2}[E - V(r) - \{\ell^2/(2mr^2)\}]^{-1/2}dr$$

> Orbit eqtn. General central force:

$$\theta(r) = \int (\ell/r^2)(2m)^{-1/2}[E - V(r) - \{\ell^2/(2mr^2)\}]^{-1/2}dr$$
 (3)

Considering purely repulsive scattering. See figure:

➤ Closest approach distance $\equiv r_m$. Orbit must be symmetric about $r_m \Rightarrow$ (see figure):

Scattering angle $\Theta \equiv \pi - 2\Psi$. Also, orbit angle

 $\theta = \pi - \Psi$ in the special case $r = r_m$

⇒ Rearrange (3) as:

$$\Psi = \int (dr/r^2)[(2mE)/(\ell^2) - (2mV(r))/(\ell^2) - 1/(r^2)]^{-1/2}$$
 (4)

- ightharpoonup Integrate from \mathbf{r}_{m} to $\mathbf{r} \to \infty$
- > Angular momentum in terms of impact parameter

s & energy E:
$$\ell \equiv mv_0s \equiv s(2mE)^{1/2}$$
.

Put this into (4) & get for scattering angle Θ:

⇒ Rearrange (3) as:

$$\Psi = \int (dr/r^2)[(2mE)/(\ell^2) - (2mV(r))/(\ell^2) - 1/(r^2)]^{-1/2}$$
 (4)

- ightharpoonup Integrate from \mathbf{r}_{m} to $\mathbf{r} \to \infty$
- Angular momentum in terms of impact parameter

s & energy E:
$$\ell \equiv mv_0s \equiv s(2mE)^{\frac{1}{2}}$$
.

Put this into (4) & get for scattering angle Θ:

$$\Theta(s) = \pi - 2 \int dr(s/r) [r^2 \{1 - V(r)/E\} - s^2]^{-1/2}$$
 (4')

Changing integration variables to $\mathbf{u} = 1/\mathbf{r}$:

$$\Theta(s) = \pi - 2\int sdu \left[1 - V(r)/E - s^2u^2\right]^{-1/2}$$
 (4'')

ightharpoonup Integrate from u = 0 to $u = u_m = 1/r_m$

4- Direct numerical computation!

- > Summary: Scattering by a general central force:
- Scattering angle Θ = Θ(s,E) (s = impact parameter, E = energy):

$$\Theta(s) = \pi - 2\int sdu [1 - V(r)/E - s^2u^2]^{-1/2}$$
 (4'')
Integrate from $u = 0$ to $u = u_m = 1/r_m$

> Scattering cross section:

$$\sigma(\Theta) = (s/\sin\Theta) (|ds|/|d\Theta|)$$
 (2)

- "Steps": To solve a scattering problem:
 - **1.** Given force f(r), compute potential V(r).
 - 2. Compute $\Theta(s)$ using (4'').
 - 3. Compute $\sigma(\Theta)$ using (2).

assignment

 \triangleright Relations between orbit angle Θ scattering angle Θ , & auxillary angle Ψ in the scattering problem, to get $\Theta = \Theta(s)$ & thus the

scattering cross section.

$$\Theta = \pi - 2\Psi$$

Ψ = direction of incoming asymptote. Determined by

$$r \rightarrow \infty$$

Example problem

Problem

Examine the scattering produced by a repulsive central force $f = kr^{-3}$. Show that the differential cross section is given by

$$\sigma(\Theta)d\Theta = \frac{k}{2E} \frac{(1-x)dx}{x^2(2-x)^2 \sin \pi x}$$

where x is the ratio Θ/π and E is the energy.

- > Summary: Scattering by a general central force:
- Scattering angle Θ = Θ(s,E) (s = impact parameter, E = energy):

$$\Theta(s) = \pi - 2\int sdu [1 - V(r)/E - s^2u^2]^{-1/2}$$
 (4'')
Integrate from $u = 0$ to $u = u_m = 1/r_m$

> Scattering cross section:

$$\sigma(\Theta) = (s/\sin\Theta) (|ds|/|d\Theta|)$$
 (2)

- "Steps": To solve a scattering problem:
 - **1.** Given force f(r), compute potential V(r).
 - 2. Compute $\Theta(s)$ using (4").
 - 3. Compute $\sigma(\Theta)$ using (2).

Beam, intensity I.
 Particles, mass m, incident speed
 (at r → ∞) = v₀.

Energy conservation:

E = T + V =
$$(\frac{1}{2})$$
mv² + V(r) = $(\frac{1}{2})$ m(v₀)² + V(r $\rightarrow \infty$)

- Assume $V(r \rightarrow \infty) = 0 \implies E = (\frac{1}{2})m(v_0)^2$ $\implies v_0 = (2E/m)^{\frac{1}{2}}$
- ightharpoonup Angular momentum: $\ell \equiv mv_0s \equiv s(2mE)^{1/2}$

Equation of the Orbit

$$\dot{r} = \frac{d}{dt}(r) = \frac{\ell u^2}{\mu} \frac{d}{d\phi} \frac{1}{u} = -\frac{\ell}{\mu} \frac{du}{d\phi}$$

$$\ddot{r} = \frac{d}{dt}(\dot{r}) = \frac{\ell u^2}{\mu} \frac{d}{d\phi} \left(-\frac{\ell}{\mu} \frac{du}{d\phi} \right) = -\frac{\ell^2 u^2}{\mu^2} \frac{d^2 u}{d\phi^2}.$$

$$\mu \ddot{r} = F(r) + \frac{\ell^2}{\mu r^3}.$$

$$-\mu \frac{\ell^2 u^2}{\mu^2} \frac{\partial^2 u}{\partial \phi^2} = F(r) + \frac{\ell^2 u^3}{\mu} \quad \text{or}$$

$$u''(\phi) = -u(\phi) - \frac{\mu}{\ell^2 u(\phi)^2} F(r).$$

we substituted u = 1/r.

solution

$$U = k/2r^2 = ku^2/2$$

$$l = mv_0 s = (2mE)^{1/2} s$$

$$\frac{d^2u}{d\theta^2}+u=-\frac{m}{l^2}\frac{dU}{du}=-\frac{mk}{l^2}u$$

$$\frac{d^2u}{d\theta^2} + \left(1 + \frac{mk}{l^2}\right)u = 0$$

Solution →

$$u = A\cos\gamma\theta + B\sin\gamma\theta$$

$$\gamma = \sqrt{1 + \frac{mk}{l^2}}.$$

solution

Initial conditions:

initially the particle is at angle $\theta = \pi$ and a great distance from the force cer

$$u(\theta=\pi)=0$$
 \longrightarrow $A\cos\gamma\pi+B\sin\gamma\pi=0$
 \longrightarrow $A=-B\tan\gamma\pi.$

particle head off to $r = \infty$ at angle $\theta = \theta_s$

$$A\cos\gamma\theta_s + B\sin\gamma\theta_s = 0.$$

Manipulate and Find γ in terms of θ

solution

$$-\cos\gamma\theta_s\tan\gamma\pi + \sin\gamma\theta_s = 0$$

$$-\cos \gamma \theta_s \sin \gamma \pi + \sin \gamma \theta_s \cos \gamma \pi = 0$$

$$\longrightarrow \sin \gamma (\theta_s - \pi) = 0$$

$$\longrightarrow \gamma (\theta_s - \pi) = \pi$$

$$\gamma = \frac{1}{x - 1}.$$

$$\gamma = \sqrt{1 + \frac{mk}{l^2}}.$$

$$\rightarrow$$

$$1 + \frac{mk}{l^2} = \frac{1}{(x-1)^2}.$$

Get an equation for s in terms of E

Soln.

$$1 + \frac{k}{2Es^2} = \frac{1}{(x-1)^2}$$

$$\rightarrow$$

$$1 + \frac{k}{2Es^2} = \frac{1}{(x-1)^2} \longrightarrow s^2 = -\frac{k}{2E} \left[\frac{(x-1)^2}{x(x-2)} \right].$$

Differential cross section is:

$$\sigma(\theta)d\Omega = \frac{|s\,ds|}{\sin\theta}.$$

$$2s ds = -\frac{k}{2E} \left[\frac{2(x-1)}{x(x-2)} - \frac{(x-1)^2}{x^2(x-2)} - \frac{(x-1)^2}{x(x-2)^2} \right] dx$$

$$= -\frac{k}{2E} \left[\frac{2x(x-1)(x-2) - (x-1)^2(x-2) - x(x-1)^2}{x^2(x-2)^2} \right]$$

$$= -\frac{k}{2E} \left[\frac{2(1-x)}{x^2(x-2)^2} \right].$$

$$\sigma(\theta)d\Omega = \frac{k}{2E} \left[\frac{(1-x)}{x^2(x-2)^2 \sin \theta} \right] dx$$