SEMAINE 15

FORMES QUADRATIQUES

EXERCICE 1:

K est un corps de caractéristique nulle.

Soit E un K-espace vectoriel de dimension finie, soit q une forme quadratique sur E, de forme polaire b.

On appelle SETI (sous-espace totalement isotrope) tout sous-espace vectoriel F de E dont tous les vecteurs sont isotropes :

$$\forall x \in F \qquad q(x) = 0 \ .$$

On appelle SETIM tout SETI maximal pour l'inclusion (c'est-à-dire qui n'est inclus strictement dans aucun SETI).

1. Soient U et V deux SETI. Montrer que, pour tout $x \in U \cap V^{\perp}$, le sous-espace W = V + Kx est un SETI.

2. Soient U et V deux SETI, soient M et N des supplémentaires de $U \cap V$ dans U et dans V respectivement. Prouver l'inclusion

$$M \cap N^{\perp} \subset U \cap V^{\perp}$$
.

3. Soient F et G deux sous-espaces vectoriels de E, de dimensions r et s. Prouver que

$$\dim(F \cap G^{\perp}) \ge r - s .$$

4. Montrer que tout SETI est contenu dans au moins un SETIM, puis que tous les SETIM ont même dimension.

1. Soit $w = v + kx \in V + Kx$. Alors

$$q(w) = q(v) + 2k b(v, x) + k^2 q(x) .$$

Or, $v \in V$ donc q(v) = 0; $x \in U$ donc q(x) = 0; enfin, $x \in V^{\perp}$ donc b(v, x) = 0. Donc q(w) = 0 et le sous-espace W = V + Kx est totalement isotrope.

2. Remarquons d'abord que, si U est un SETI alors b(u, u') = 0 pour tous vecteurs u et u' de U (la forme bilinéaire induite par b sur U est nulle) : cela résulte des identités de polarisation $b(u, u') = \frac{1}{4} (q(u+u') - q(u-u'))$.

Soit $x \in M \cap N^{\perp}$.

- Comme $M \subset U$, on a $x \in U$.
- Soit $v \in V$, décomposons-le en v = u + n avec $u \in U \cap V$ et $n \in N$. Alors b(x,v) = b(x,u) + b(x,n) mais chaque terme est nul (le premier car x et u appartiennent à U qui est un SETI, cf. la remarque faite au début de cette question ; le deuxième car $x \in N^{\perp}$ et $n \in N$). On a donc b(x,v) = 0 pour tout $v \in V$, donc $x \in V^{\perp}$.

Finalement, $x \in U \cap V^{\perp}$.

3. Soit (g_1, \ldots, g_s) une base de G. L'application

$$\begin{cases} \varphi : F \to K^s \\ x \mapsto (b(x, g_1), \dots, b(x, g_s)) \end{cases}$$

est linéaire, et Ker $\varphi=F\ \cap\ G^{\perp}$. Comme $\operatorname{Im}\varphi\subset K^s$, on a dim $\operatorname{Im}\varphi\leq s$. Le théorème du rang donne alors

$$\dim(F \cap G^{\perp}) = \dim(\operatorname{Ker} \varphi) = \dim F - \dim(\operatorname{Im} \varphi) \ge r - s$$
.

- 4. Il existe des SETI : {0} en est un.
 - Soit $V = V_0$ un SETI; si ce n'est pas un SETIM, il existe un SETI, V_1 , contenant strictement V_0 . Si V_1 n'est pas un SETIM, il existe un SETI, V_2 , contenant strictement V_1 . Si V n'était contenu dans aucun SETIM, on pourrait construire une suite (V_n) de SETI, strictement croissante pour l'inclusion, mais les dimensions de ces sous-espaces iraient aussi en croissant strictement, ce qui est impossible dans un espace vectoriel E de dimension finie. Tout SETI est donc contenu dans au moins un SETIM.
 - D'après ce qui précède, il existe donc au moins un SETIM dans E. Soient U et V deux SETIM, supposons dim $U > \dim V$. Introduisons deux sous-espaces M et N tels que

$$\begin{cases} U = (U \cap V) \oplus M \\ V = (U \cap V) \oplus N \end{cases}$$
. Alors dim $M > \dim N$, donc (question **3.**) :

$$\dim(M\ \cap\ N^{\perp}) \ge \dim M - \dim N > 0 \qquad \text{et} \qquad M\ \cap\ N^{\perp} \ne \{0\}\ .$$

- Soit x un vecteur non nul de $M \cap N^{\perp}$. Alors $x \in U \cap V^{\perp}$ (question **2.**), donc W = V + Kx est un SETI (question **1.**). Mais $x \notin V$ (si on avait $x \in V$, alors $x \in U \cap V$ et $x \in M$, donc x = 0 puisque les sous-espaces sont supplémentaires), donc W contient strictement V, ce qui est absurde.
- Il en résulte que les SETIM ont tous la même dimension, appelée **indice** de la forme *b* (*l'exercice* 2 donne un moyen de calculer l'indice d'une forme non dégénérée).

EXERCICE 2:

- Soit E un \mathbb{R} -espace vectoriel de dimension n, soit b une forme bilinéaire symétrique sur E.
- On dit qu'un sous-espace vectoriel F de E est **totalement isotrope** (en abrégé, un SETI) lorsque $F \subset F^{\perp}$, c'est-à-dire lorsque la forme bilinéaire induite par b sur F est la forme nulle.
- On appelle base de Witt pour b toute base $\mathcal{B} = (u_1, \dots, u_r, v_1, \dots, v_r, w_1, \dots, w_k)$ de E, avec 2r + k = n, dans laquelle la matrice de b est de la forme

$$W = \begin{pmatrix} 0 & I_r & 0 \\ I_r & 0 & 0 \\ 0 & 0 & \varepsilon I_k \end{pmatrix} ,$$

avec
$$\varepsilon \in \{-1, 1\}$$
.

- ${\bf 1.}$ On suppose b non dégénérée. Montrer que b admet une base de Witt.
- **2.** On suppose que b admet une base de Witt $\mathcal{B} = (u_1, \dots, u_r, v_1, \dots, v_r, w_1, \dots, w_k)$ et on pose

$$F = \operatorname{Vect}(u_1, \dots, u_r)$$
, $G = \operatorname{Vect}(v_1, \dots, v_r)$ et $H = \operatorname{Vect}(w_1, \dots, w_k)$.

 ${\bf a}$. Montrer que b est non dégénérée.

- **b.** Déterminer, en fonction des entiers r et k, la signature (p,q) de la forme b.
- **c.** Déterminer F^{\perp} et G^{\perp} . Montrer que $G \cap F^{\perp} = \{0\}$ et $H = (F + G)^{\perp}$.
- **d.** Montrer que F et G sont des sous-espaces totalement isotropes, maximaux au sens de l'inclusion.

Source : J. RIVAUD, Algèbre linéaire, tome 2, Éditions Vuibert, ISBN 2-7117-2151-5

On notera f la forme quadratique associée à b.

1. Soit (p,q) la signature de la forme b. On sait qu'il existe une base b-orthogonale $(e_1, \dots, e_p, e'_1, \dots, e'_q)$ avec $f(e_i) = +1$ pour $i \in [\![1,p]\!]$ et $f(e'_j) = -1$ pour $j \in [\![1,q]\!]$.

Supposons $p \geq q$. Posons $u_i = \frac{1}{\sqrt{2}} (e_i + e_i')$ et $v_i = \frac{1}{\sqrt{2}} (e_i - e_i')$ pour $i \in [1, q]$, puis $w_i = e_{q+i}$ pour $i \in [1, p-q]$. Ces n vecteurs forment évidemment une base \mathcal{B} de E. On vérifie les relations

- $b(u_i, u_j) = b(v_i, v_j) = 0$ pour $(i, j) \in [1, q]^2$, y compris si i = j;
- $b(u_i, v_i) = 1$ pour tout $i \in [1, q]$;
- $b(u_i, v_j) = 0 \text{ si } i \neq j ;$
- $f(w_i) = b(w_i, w_i) = 1$ pour tout $i \in [1, p q]$;
- pour $i \in [1, p-q]$, w_i est b-orthogonal à tous les autres vecteurs de la base \mathcal{B} .

La matrice de la forme b dans la base \mathcal{B} est donc $W = \begin{pmatrix} 0 & I_q & 0 \\ I_q & 0 & 0 \\ 0 & 0 & I_{p-q} \end{pmatrix}$, donc \mathcal{B} est une base de Witt pour la forme b, avec r = q et k = p - q.

On procède de même si p < q, avec $W = \begin{pmatrix} 0 & I_p & 0 \\ I_p & 0 & 0 \\ 0 & 0 & -I_{q-p} \end{pmatrix}$.

Dans les deux cas, on obtient une base de Witt pour b, avec $r = \min\{p, q\}$ et k = |p - q|.

- **2.a.** La matrice de Witt W est inversible, donc b est non dégénérée.
 - **b.** C'est la question "inverse" de la question **1.**, puisqu'il s'agit, à partir de la base de Witt \mathcal{B} , de construire une base b-orthogonale. Posons donc $e_i = \frac{1}{\sqrt{2}} \left(u_i + v_i\right)$ et $e_i' = \frac{1}{\sqrt{2}} \left(u_i v_i\right)$ pour $i \in \llbracket 1, r \rrbracket$, puis $e_i'' = w_i$ pour $i \in \llbracket 1, k \rrbracket$. Je laisse l'improbable lecteur vérifier que la base $\mathcal{B}' = (e_1, \cdots, e_r, e_1', \cdots, e_r', e_1'', \cdots, e_k'')$ est b-orthogonale, avec $f(e_i) = +1$, $f(e_i') = -1$ et $f(e_i'') = \varepsilon$. En conséquence, la signature de la forme b est $\begin{cases} (r+k,r) & \text{si } \varepsilon = +1 \\ (r,r+k) & \text{si } \varepsilon = -1 \end{cases}$.
 - c. Tout d'abord, rappelons que, si b est non dégénérée, on a, pour tout sous-espace vectoriel V de E, la relation

$$\dim V + \dim V^{\perp} = \dim E . \tag{*}$$

En effet, pour tout x de E, considérons la forme linéaire $\beta_x: y \mapsto b(x,y)$. Si b est non dégénérée, l'application linéaire $\beta: x \mapsto \beta_x$ est injective (donc est un isomorphisme de E sur E^*). Si (x_1, \dots, x_p) est une base de V, les p formes linéaires $\beta_{x_1}, \dots, \beta_{x_p}$ sont

indépendantes et
$$V^{\perp} = \bigcap_{i=1}^{p} \operatorname{Ker} \beta_{x_i}$$
 est de dimension $n-p$.

De l'allure de la matrice W, on déduit que $F+H\subset F^{\perp}$; comme ces deux sous-espaces ont même dimension d'après (*), on a $F^{\perp}=F+H$. De même, $G^{\perp}=G+H$. Comme $E=F\oplus G\oplus H$, on en déduit $F\cap G^{\perp}=G\cap F^{\perp}=\{0\}$.

Enfin, $H \subset F^{\perp} \cap G^{\perp} = (F+G)^{\perp}$ et $\dim H = n - \dim(F+G) = \dim(F+G)^{\perp}$, donc $(F+G)^{\perp} = H$.

d. On a $F \subset F^{\perp}$, donc F est totalement isotrope (F est un SETI).

Montrons qu'il est maximal pour l'inclusion : si V est un SETI contenant F, alors $V \subset V^{\perp} \subset F^{\perp} = F + H$. Un élément de V est donc de la forme x = y + z avec $y \in F$ et $z \in H$. Mais x est isotrope, donc

$$0 = f(x) = f(y) + f(z) + b(y, z) = f(z)$$

car $y \in F$ est isotrope et $z \in H \subset F^{\perp}$, donc f(z) = 0: z est donc nul puisque la restriction de la forme b au sous-espace H est définie (positive ou négative selon la valeur de ε). Finalement, $x \in F$, ce qui prouve que V = F.

Les sous-espaces F et G sont des SETIM pour la forme b, cf. exercice 1 et leur dimension commune r est donc l'indice de la forme b. La question 1. donne donc la valeur de l'indice en fonction de la signature, dans le cas d'une forme non dégénérée.

Soit E un \mathbb{R} -espace vectoriel de dimension finie n, soit q une forme quadratique non dégénéreé sur E, de forme polaire b. On note O(q) le **groupe orthogonal** pour la forme q, c'est-à-dire

$$O(q) = \{ u \in GL(E) \mid \forall (x, y) \in E^2 \quad b(u(x), u(y)) = b(x, y) \}.$$

On note C(q) le **cône isotrope** de q:

$$C(q) = \{x \in E \mid q(x) = 0\}$$
.

1. Pour tout vecteur a non isotrope $(a \notin C(q))$, on définit l'endomorphisme s_a de E par la relation

$$\forall x \in E \qquad s_a(x) = x - \frac{2 b(x, a)}{q(a)} a.$$

Montrer que $s_a \in O(q)$. Interpréter géométriquement s_a .

- **2.** Soient x et y deux vecteurs de E tels que $q(x) = q(y) \neq 0$. Montrer qu'il existe un vecteur a non isotrope tel que $s_a(y) = x$ ou $s_a(y) = -x$.
- **3.** Montrer que le groupe O(q) est engendré par les s_a , avec $a \in E \setminus C(q)$.

 $Source: Jacques\ CHEVALLET,\ Algèbre\ MP/PSI,\ Collection\ \ Vuibert\ Supérieur,\ ISBN\ 2-7117-2092-6$

- **1.** Tout d'abord, s_a est un automorphisme de l'espace vectoriel E puisque, si $s_a(x) = 0$, alors x est colinéaire à a, soit $x = \lambda a$, d'où $s_a(x) = \lambda a 2\lambda a = -\lambda a$, puis x = 0.
 - \bullet Si x et y sont dans E, alors

$$b(s_a(x), s_a(y)) = b(x - \frac{2b(a, x)}{q(a)} a, y - \frac{2b(a, y)}{q(a)} a) = b(x, y),$$

donc $s_a \in O(q)$.

- Soit $H = (\mathbb{R}a)^{\perp}$: on a alors $E = H \oplus (\mathbb{R}a)$. En effet, $H \cap (\mathbb{R}a) = \{0\}$ car a est non isotrope et, la forme b étant non dégénérée, la forme linéaire $\varphi : x \mapsto b(x,a)$ n'est pas nulle, donc son noyau H est un hyperplan de E. Comme $a \notin H$, on a bien $H \oplus (\mathbb{R}a) = E$. Notons aussi que $H^{\perp} = \mathbb{R}a$: en effet, $H^{\perp} = ((\mathbb{R}a)^{\perp})^{\perp}$ contient $\mathbb{R}a$ et dim $H^{\perp} = n \dim H = 1$ car la forme b est non dégénérée (cf. exercice 2, question 2.c.). En fait, quand une forme bilinéaire symétrique b sur E est non dégénérée, on a $(V^{\perp})^{\perp} = V$ pour tout sous-espace vectoriel V de E.
- s_a est la réflexion d'hyperplan (non isotrope) H, c'est-à-dire la symétrie par rapport à H et parallèlement à $H^{\perp} = \mathbb{R}a$: en effet, $s_a(a) = -a$ et, pour tout x appartenant à H, $s_a(x) = x$.
- **2.** Les vecteurs x + y et x y ne peuvent être tous deux isotropes car, en ajoutant les relations q(x + y) = 0 et q(x y) = 0, il viendrait q(x) + q(y) = 2q(x) = 0, contraire à l'hypothèse.

Supposons x + y non isotrope, notons H l'hyperplan $(\mathbb{R}(x+y))^{\perp}$; alors b(x+y,x-y) = 0, donc $s_{x+y}(y) = -x$ puisque $y - x \in H$ et $y + x \in \mathbb{R}(x+y) = H^{\perp}$.

Rappelons que, si $E = F \oplus G$, un vecteur Y de E est image du vecteur X par la symétrie par rapport à F et parallèlement à G si et seulement si $\begin{cases} X + Y \in F \\ X - Y \in G \end{cases}$

Si x - y est non isotrope, on vérifie de même $s_{x-y}(y) = x$.

3. Prouvons-le par récurrence sur $n = \dim E$.

C'est évident pour n = 1: alors $O(q) = \{id_E, -id_E\}$ et, si $a \neq 0$, $s_a = -id_E$.

Soit $n \geq 2$, supposons l'assertion vraie en dimension n-1, et soit E un \mathbb{R} -espace vectoriel de dimension n, soit q une forme quadratique non dégénérée sur E, de forme polaire b. Soit $u \in O(q)$. Soit a un vecteur de E, non isotrope, on a alors $q(u(a)) = q(a) \neq 0$, donc il existe un vecteur c non isotrope de E tel que $s_c(u(a)) = \varepsilon a$, avec $\varepsilon \in \{-1,1\}$.

Soit l'hyperplan $H = (\mathbb{R}a)^{\perp}$, soit q' la forme induite par q sur H.

- La forme q' est non dégénérée : notons b' sa forme polaire ; si $x \in \operatorname{Ker} b'$, alors b'(x,y) = b(x,y) = 0 pour tout vecteur y de H mais on a aussi b(x,a) = 0 car $H = (\mathbb{R}a)^{\perp}$, donc $x \in \operatorname{Ker} b$ et x = 0.
- H est stable par $s_c \circ u$: si $x \in H$, alors b(x, a) = 0, donc

$$b(s_c \circ u(x), a) = \varepsilon b(s_c \circ u(x), s_c \circ u(a)) = \varepsilon b(x, a) = 0$$

car $s_c \circ u \in O(q)$; donc $s_c \circ u(x) \in (\mathbb{R}a)^{\perp} = H$.

Notons v' l'endomorphisme de H induit par $s_c \circ u$.

- $v' \in O(q')$: il est clair que $b'(s_c \circ u(x), s_c \circ u(y)) = b'(x, y)$ pour tout x et y de H; enfin, $s_c \circ u$ est un automorphisme de E laissant stable H, donc $v'(H) = (s_c \circ u)(H)$ est un sous-espace de H de même dimension que H, donc v'(H) = H et $v' \in GL(H)$.
- Par l'hypothèse de récurrence, on peut écrire $v' = s'_{a_1} \circ \cdots \circ s'_{a_k}$ où les vecteurs a_i $(1 \le i \le k)$ de H sont non isotropes pour q' (ou pour q, ce qui revient au même), s'_{a_i} étant (dans H) la réflexion d'hyperplan l'orthogonal de $\mathbb{R}a_i$ dans H, c'est-à-dire $H \cap (\mathbb{R}a_i)^{\perp}$. Pour tout $i \in [1, k]$, soit s_{a_i} la réflexion (dans E) d'hyperplan $(\mathbb{R}a_i)^{\perp}$: c'est l'unique endomorphisme de E qui coïncide avec s'_{a_i} sur H et qui vérifie $s_{a_i}(a) = a$. Posons alors $v = s_{a_1} \circ \cdots \circ s_{a_k}$. Alors

$$\triangleright$$
 si $x \in H$, on a $s_c \circ v(x) = s_c(v'(x)) = s_c(s_c(u(x))) = u(x)$;

$$\triangleright s_c \circ v(a) = s_c(a) = s_c(\varepsilon s_c(u(a))) = \varepsilon u(a).$$

Donc:

 $\triangleright \operatorname{si} \varepsilon = +1$, on a $u = s_c \circ v = s_c \circ s_{a_1} \circ \cdots \circ s_{a_k}$;

 \triangleright si $\varepsilon = -1$, on a $u = s_{u(a)} \circ s_c \circ v$ puisque, pour $x \in H$, $s_{u(a)}(u(x)) = u(x)$ du fait que b(u(x), u(a)) = b(x, a) = 0 et $s_{u(a)}(-u(a)) = u(a)$: les deux endomorphismes u et $s_{u(a)} \circ s_c \circ v$ coïncident donc sur H et sur $\mathbb{R}a$.

Dans les deux cas, on a prouvé que u est produit d'un nombre fini de réflexions par rapport à des hyperplans non isotropes.

Soit E un \mathbb{R} -espace vectoriel de dimension finie n, soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. On note F et G deux formes quadratiques sur E, de matrices $A = (a_{ij})$ et $B = (b_{ij})$ dans la base \mathcal{B} .

On note Q et R les formes quadratiques sur E dont les matrices relativement à la base $\mathcal B$ sont respectivement

$$M_{\mathcal{B}}(Q) = C = (a_{ij}b_{ij})$$
; $M_{\mathcal{B}}(R) = D = (e^{a_{ij}})$.

- 1. Montrer que, si F et G sont positives, alors Q l'est aussi. Que peut-on dire si F et G sont définies positives ?
- **2.** Que dire de la forme R si F est positive? définie positive?

Source : Patrice TAUVEL, Exercices de Mathématiques pour l'Agrégation, Éditions Masson, ISBN 2-225-84441-0

1. Si F est positive de rang p, donc de signature (p,0), elle est somme des carrés de p formes linéaires indépendantes $\varphi_1, \dots, \varphi_p$. De même, si G est positive de rang q, elle est somme des carrés de q formes linéaires indépendantes ψ_1, \dots, ψ_q :

$$F = \sum_{k=1}^{p} (\varphi_k)^2$$
 ; $G = \sum_{l=1}^{q} (\psi_l)^2$.

Pour tout $k \in [\![1,p]\!]$, notons $\Phi_k = \begin{pmatrix} \alpha_1^{(k)} & \cdots & \alpha_n^{(k)} \end{pmatrix}$ la matrice de la forme linéaire φ_k dans la base \mathcal{B} . Posons de même $\Psi_l = M_{\mathcal{B}}(\psi_l) = \begin{pmatrix} \beta_1^{(l)} & \cdots & \beta_n^{(l)} \end{pmatrix}$ pour $l \in [\![1,q]\!]$. On a alors

$$\begin{split} A &= \sum_{k=1}^p \,^t \Phi_k \Phi_k \ \text{ et } \ B = \sum_{l=1}^q \,^t \Psi_l \Psi_l \text{, c'est-\`a-dire} \\ \forall (i,j) \in [\![1,n]\!]^2 \qquad a_{ij} &= \sum_{k=1}^p \alpha_i^{(k)} \alpha_j^{(k)} \quad \text{et} \quad b_{ij} = \sum_{l=1}^q \beta_i^{(l)} \beta_j^{(l)} \;. \end{split}$$

Donc, si $x = x_1e_1 + \cdots + x_ne_n$, on a

$$Q(x) = \sum_{i,j} a_{ij} b_{ij} x_i x_j = \sum_{i=1}^n \sum_{j=1}^n \left(\sum_{k=1}^p \alpha_i^{(k)} \alpha_j^{(k)} \right) \left(\sum_{l=1}^q \beta_i^{(l)} \beta_j^{(l)} \right) x_i x_j$$

$$= \sum_{k=1}^p \sum_{l=1}^q \left(\sum_{i=1}^n \alpha_i^{(k)} \beta_i^{(l)} x_i \right) \left(\sum_{j=1}^n \alpha_j^{(k)} \beta_j^{(l)} x_j \right)$$

$$= \sum_{k=1}^p \sum_{l=1}^q \left(\sum_{i=1}^n \alpha_i^{(k)} \beta_i^{(l)} x_i \right)^2,$$

donc $Q(x) \geq 0$: la forme Q est positive.

Supposons F et G définies positives (alors p=q=n). Si Q(x)=0, alors chaque terme de la somme est nulle, soit $\sum_{i=1}^n \alpha_i^{(k)} \beta_i^{(l)} x_i = 0$ pour tout $(k,l) \in [\![1,n]\!]^2$. Pour tout $l \in [\![1,n]\!]$, notons y_l le vecteur de coordonnées $(\beta_1^{(l)} x_1, \cdots, \beta_n^{(l)} x_n)$ dans la base \mathcal{B} . On a $\varphi_k(y_l)=0$ pour tout $k \in [\![1,n]\!]$, soit $y_l \in \bigcap_{k=1}^n \operatorname{Ker} \varphi_k$ donc $y_l=0$ puisque les formes linéaires φ_k sont indépendantes. On en déduit que, pour tout $l \in [\![1,n]\!]$, $\psi_l(x) = \sum_{i=1}^n \beta_i^{(l)} x_i = 0$ donc $x \in \bigcap_{l=1}^n \operatorname{Ker} \psi_l$, donc x=0 puisque les formes linéaires ψ_l sont indépendantes. La forme Q est donc définie positive.

2. Pour tout $p \in \mathbb{N}$, notons A_p la matrice de coefficients (a_{ij}^p) (par convention, A_0 est la matrice dont tous les coefficients sont égaux à 1). La forme quadratique de matrice A_0 dans la base \mathcal{B} est positive, plus précisément de signature (1,0) puisque

$${}^{t}XA_{0}X = \sum_{i,j=1}^{n} x_{i}x_{j} = \left(\sum_{i=1}^{n} x_{i}\right)^{2}.$$

Si la forme F est positive alors, d'après la question $\mathbf{1}$, la forme F_p définie par $F_p(x) = {}^t X A_p X$ est positive pour tout $p \in \mathbb{N}^*$ donc

$$R(x) = {}^t\!XDX = \sum_{i,j} x_i e^{a_{ij}} x_j = \sum_{i,j} x_i \Big(\sum_{p=0}^\infty \frac{a_{ij}^p}{p!} \Big) x_j = \sum_{p=0}^\infty \Big(\sum_{i,j} \frac{x_i a_{ij}^p x_j}{p!} \Big) = \sum_{p=0}^\infty \frac{{}^t\!XA_p X}{p!} \;.$$

Chaque terme étant positif, on a R(x) > 0, donc la forme quadratique R est positive.

Si F est définie positive, si R(x) = 0, alors chaque terme doit être nul, et en particulier ${}^tXAX = F(x) = 0$, donc x = 0: la forme R est définie positive.

Soit q la forme quadratique sur \mathbb{R}^3 définie par

$$\forall \overrightarrow{X} = (x, y, z) \in \mathbb{R}^3 \qquad q(\overrightarrow{X}) = x^2 + 4z^2 + 2xy + 2yz + 4zx.$$

Déterminer tous les plans P de \mathbb{R}^3 tels que la restriction de q à P soit définie positive.

Commençons par une réduction de Gauss :

$$q(\overrightarrow{X}) = (x+y+2z)^2 - y^2 + 2yz - 4yz = (x+y+2z)^2 + z^2 - (y+z)^2$$

(les trois formes linéaires sont indépendantes), q est donc de signature (2,1).

Si P est un plan tel que $q|_P$ soit définie positive, alors P^\perp est une droite supplémentaire de P (en effet, lorsqu'une forme quadratique est non dégénérée, on a $\dim V + \dim V^\perp = \dim E$ et $(V^\perp)^\perp = V$ pour tout sous-espace vectoriel V de E, cf. exercice 2, question 2.c.; de plus, si le sous-espace V est non isotrope, c'est-à-dire si $V \cap V^\perp = \{0\}$, alors il est évident que $V \oplus V^\perp = E$), notons $P^\perp = \mathbb{R} \overrightarrow{u}$; on a alors $q(\overrightarrow{u}) < 0$ par le théorème d'inertie de Sylvester.

Réciproquement, si un plan P admet un vecteur q-orthogonal \overrightarrow{u} tel que $q(\overrightarrow{u}) < 0$, alors $P^{\perp} = \mathbb{R} \overrightarrow{u}$, puis $(\mathbb{R} \overrightarrow{u})^{\perp} = P$ et $P \oplus \mathbb{R} \overrightarrow{u} = \mathbb{R}^3$ car le vecteur \overrightarrow{u} est non isotrope. De la loi d'inertie de Sylvester, il résulte que $q|_P$ est définie positive.

Nous cherchons donc les plans P tels qu'un vecteur \overrightarrow{u} , q-orthogonal à ce plan, vérifie $q(\overrightarrow{u}) < 0$. La forme polaire f de q est définie par

$$f(\overrightarrow{X}, \overrightarrow{X'}) = xx' + 4zz' + 2xz' + 2zx' + xy' + yx' + yz' + zy'$$

donc, si $\overrightarrow{u} = (a, b, c)$ est un vecteur non nul, le plan $P = (\mathbb{R} \overrightarrow{u})^{\perp}$ (qui n'est pas toujours un supplémentaire de $\mathbb{R} \overrightarrow{u}$) admet pour équation cartésienne $\alpha x + \beta y + \gamma z = 0$, avec

$$\begin{cases} \alpha = a+b+2c\\ \beta = a +c \end{cases}$$
. En "inversant le point de vue" (et le système), un plan P d'équation
$$\gamma = 2a+b+4c$$

cartésienne $\alpha x + \beta y + \gamma z = 0$ avec $(\alpha, \beta, \gamma) \neq (0, 0, 0)$ admet pour vecteur q-orthogonal

$$\overrightarrow{u} = (a, b, c) \text{ avec} \begin{cases} a = \alpha + 2\beta - \gamma \\ b = 2\alpha - \gamma. \text{ La forme } q|_P \text{ est définie positive si et seulement si } \\ c = -\alpha - \beta + \gamma \end{cases}$$

 $q(\overrightarrow{u}) < 0$, c'est-à-dire si et seulement si (après calculs)

$$\alpha^2 + \gamma^2 + 4\alpha\beta - 2\alpha\gamma - 2\beta\gamma < 0 \ .$$

Soit K un corps fini, de caractéristique différente de 2.

- **1.** Démontrer l'assertion : $\forall (a,b) \in (K^*)^2 \quad \exists (x,y) \in K^2 \qquad ax^2 + by^2 = 1.$
- **2.** Soit α un élément de K qui n'est pas un carré dans K. Soit E un K-espace vectoriel de dimension n. Montrer que, pour toute forme quadratique q non dégénérée sur E, il existe une base \mathcal{B} de E dans laquelle la matrice de q est, soit la matrice -unité I_n , soit la matrice diagonale $D = \operatorname{diag}(1, 1, \dots, 1, \alpha)$.

Source : Cyril GRUNSPAN et Emmanuel LANZMANN, L'oral de mathématiques aux concours, Algèbre, Collection Vuibert Supérieur, ISBN 2-7117-8824-5

- 1. Soit N=|K| le cardinal de K. Alors K^* est un groupe de cardinal N-1 et l'application $\gamma:x\mapsto x^2$ est un endomorphisme de ce groupe, de noyau $\{-1,1\}$ (ces deux éléments, distincts, appartiennent à $\ker\gamma$ et l'équation $x^2-1=0$ ne peut avoir plus de deux solutions dans le corps K). Donc $\operatorname{Im}\gamma$ (ensemble des carrés de K^*) est de cardinal $\frac{N-1}{2}$. Comme 0 est un carré dans K, l'ensemble Γ des carrés dans K est de cardinal $\frac{N+1}{2}$.
 - Considérons maintenant les ensembles $A=\{ax^2\;;\;x\in K\}$ et $B=\{1-by^2\;;\;y\in K\}$. Ils sont tous deux de cardinal $\frac{N+1}{2}$, donc |A|+|B|>|K| et $A\cap B\neq\emptyset$, ce qui démontre l'assertion.
 - On démontre de façon analogue que tout élément a de K est somme de deux carrés, en considérant les ensembles $\{x^2 : x \in K\} = \Gamma$ et $\{a y^2 : y \in K\}$.
- **2.** Procédons par récurrence sur $n = \dim E$.
 - Pour n = 1, E = Ka avec a vecteur non nul de E.
 - ⊳ si q(a) ∈ Γ, alors $q(a) = λ^2$ (avec $λ ∈ K^*$ car q est non dégénérée) et $q\left(\frac{a}{λ}\right) = 1$, donc la matrice de q dans la base $\mathcal{B} = \left(\frac{a}{λ}\right)$ est $I_1 = (1)$;
 - ightharpoonup si $q(a) \notin \Gamma$, alors il existe $\lambda \in K^*$ tel que $\lambda^2 q(a) = \alpha$: en effet, l'application $\operatorname{Ker} \gamma = \Gamma \setminus \{0\} \to K \setminus \Gamma$, $z \mapsto q(a)z$, est injective, donc surjective car les ensembles de départ et d'arrivée ont le même cardinal $\frac{N-1}{2}$. Donc $q(\lambda a) = \alpha$ et la matrice de q dans la base $\mathcal{B} = (\lambda a)$ est (α) .
 - Soit $n \geq 2$, supposons l'assertion vraie en dimension n-1, soit q une forme non dégénérée sur E de dimension n. Il existe une base orthogonale $\mathcal{B} = (e_1, \cdots, e_n)$ de vecteurs non isotropes, c'est-à-dire avec $q(e_i) \neq 0$ pour tout $i \in [\![1,n]\!]$. Posons $a = q(e_1)$ et $b = q(e_2)$. D'après la question $\mathbf{1}$., on peut trouver deux scalaires x et y tels que $ax^2 + by^2 = 1$, donc le vecteur $u = xe_1 + ye_2$ vérifie q(u) = 1. Ce vecteur u étant non isotrope, on a $E = (Ku) \oplus H$, où $H = (Ku)^{\perp}$. La forme q' induite par q sur H étant non dégénérée (vérification immédiate), on peut lui appliquer l'hypothèse de récurrence : il existe une base (f_1, \cdots, f_{n-1}) de H dans laquelle la forme q' admet pour matrice I_{n-1} ou diag $(1\$(n-2), \alpha)$. La matrice de q dans la base $(u, f_1, \cdots, f_{n-1})$ de E est alors I_n ou diag $(1\$(n-1), \alpha)$.