Dataset Distillation with Infinitely Wide Convolutional Networks

Mikhail Kuznetsov, 4th year, CMC MSU

What is data distillation?

Applications

Distillation method.Recap

Ridge Regression

$$\min_{w} \|Xw - y\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

$$w^* = \left(X^\top X + \lambda I\right)^{-1} X^\top y$$

$$y_{\text{new}} = X_{\text{new}} w^*$$

Kernel Ridge Regression

$$\min_{w} \|K_{XX}w - y\|_{2}^{2} + \lambda w^{\top} K_{XX}w$$

$$w^* = (K_{XX} + \lambda I)^{-1} y$$

$$y_{\text{new}} = K_{X_{\text{new}}X} w^*$$

Distillation method.KIP

$$L(X_s, y_s) = \frac{1}{2} \left\| y_t - K_{X_t X_s} (K_{X_s X_s} + \lambda I)^{-1} y_s \right\|_2^2$$

Algorithm 1: Kernel Inducing Point (KIP)

Require: A target labeled dataset (X_t, y_t) along with a kernel or family of kernels.

- 1: Initialize a labeled support set (X_s, y_s) .
- 2: while not converged do
- 3: Sample a random kernel. Sample a random batch (\bar{X}_s, \bar{y}_s) from the support set. Sample a random batch (\bar{X}_t, \bar{y}_t) from the target dataset.
- 4: Compute the kernel ridge-regression loss given by (7) using the sampled kernel and the sampled support and target data.
- 5: Backpropagate through \bar{X}_s (and optionally \bar{y}_s and any hyper-parameters of the kernel) and update the support set (X_s, y_s) by updating the subset (\bar{X}_s, \bar{y}_s) .
- 6: end while
- 7: **return** Learned support set (X_s, y_s)

Distillation method. Algorithm

- 1) Forward pass: compute kernels by batch partition
- 2) Backward pass:

$$\frac{\partial L}{\partial X_s} = \frac{\partial L}{\partial (K(X_s, X_s))} \frac{\partial K(X_s, X_s)}{\partial X_s} + \frac{\partial L}{\partial (K(X_t, X_s))} \frac{\partial K(X_t, X_s)}{\partial X_s}$$

Infinitely Wide Convolutional Networks

Neural Tangents [lib] [paper]

Preprocessing.ZCA-regulized

- 1) flatten the features for each train image and then standardize each feature across the train dataset.
- 2) feature-feature covariance matix $C = U\Sigma U^T$,
- 3) Let $W_{\lambda} = U\phi_{\lambda}(\Sigma)U^{T}$ where ϕ_{λ} : μ to $(\mu + \lambda \overline{\operatorname{tr}}C)^{-1/2}$, $\overline{\operatorname{tr}}(C) = \operatorname{tr}(C)/\operatorname{len}(C)$.
- 4) New features: standardize + @ W_lambda

(if lambda = 0 -> standadrt ZCA = I cov matrix)

Experiments.KIP vs ALL

Table 1: **Comparison with other methods.** The left group consists of neural network based methods. The right group consists of kernel ridge-regression. All settings for KIP involve the use of label-learning. Grayscale datasets use standard channel-wise preprocessing while RGB datasets use regularized ZCA preprocessing.

	Imgs/	DC^1	DSA ¹	KIP FC ¹	LS ConvNet ^{2,3}	KIP ConvNet ²	
	Class			aug		no aug	aug
MNIST	1	91.7±0.5	88.7±0.6	85.5±0.1	73.4	97.3±0.1	96.5±0.1
	10	97.4 ± 0.2	97.8 ± 0.1	97.2 ± 0.2	96.4	99.1 ± 0.1	99.1 ± 0.1
	50	98.8 ± 0.1	99.2 ± 0.1	98.4 ± 0.1	98.3	99.4 ± 0.1	99.5 ± 0.1
Fashion- MNIST	1	70.5±0.6	70.6±0.6	-	65.3	82.9 ± 0.2	76.7±0.2
	10	82.3 ± 0.4	84.6 ± 0.3	-	80.8	91.0 ± 0.1	88.8 ± 0.1
	50	83.6 ± 0.4	88.7 ± 0.2	-	86.9	92.4 ± 0.1	91.0 ± 0.1
SVHN	1	31.2±1.4	27.5±1.4	-	23.9	62.4±0.2	64.3±0.4
	10	76.1 ± 0.6	79.2 ± 0.5	-	52.8	79.3 ± 0.1	81.1 ± 0.5
	50	82.3 ± 0.3	84.4 ± 0.4	-	76.8	82.0 ± 0.1	84.3 ± 0.1
CIFAR-10	1	28.3±0.5	28.8±0.7	40.5±0.4	26.1	64.7 ± 0.2	63.4±0.1
	10	44.9 ± 0.5	52.1 ± 0.5	53.1 ± 0.5	53.6	75.6 ± 0.2	75.5 ± 0.1
	50	53.9 ± 0.5	60.6 ± 0.5	58.6 ± 0.4	65.9	78.2 ± 0.2	80.6 ± 0.1
CIFAR-100	1	12.8±0.3	13.9±0.3	-	23.8	34.9 ± 0.1	33.3±0.3
	10	25.2 ± 0.3	32.3 ± 0.3	-	39.2	47.9 ± 0.2	49.5±0.3

DOTTE - 1 ANALY DOLLER - 1 BY ANALY VIDEOUS - 1 ANALY

Experiments.Kernels Choice

Experiments.Transfer

	Imgs/Class	DC/DSA	KIP to NN	Perf. change	LS to NN	Perf. change
MNIST	1	91.7±0.5	90.1±0.1	-5.5	71.0±0.2	-2.4
	10	97.8±0.1	97.5±0.0	-1.1	95.2±0.1	-1.2
	50	99.2±0.1	98.3±0.1	-0.8	97.9±0.0	-0.4
Fashion-MNIST	1	70.6±0.6	73.5±0.5*	-9.8	61.2±0.1	-4.1
	10	84.6±0.3	86.8±0.1	-1.3	79.7±0.1	-1.2
	50	88.7 ± 0.2	88.0±0.1*	-4.5	85.0±0.1	-1.8
SVHN	1 10 50	31.2±1.4 79.2±0.5 84.4±0.4	57.3±0.1 * 75.0±0.1 80.5±0.1	-8.3 -1.6 -1.0	23.8±0.2 53.2±0.3 76.5±0.3	-0.2 0.4 -0.4
CIFAR-10	1	28.8±0.7	49.9±0.2	-9.2	24.7±0.1	-1.4
	10	52.1±0.5	62.7±0.3	-4.6	49.3±0.1	-4.3
	50	60.6±0.5	68.6±0.2	-4.5	62.0±0.2	-3.9
CIFAR-100	1	13.9±0.3	15.7±0.2*	-18.1	11.8±0.2	-12.0
	10	32.3±0.3	28.3±0.1	-17.4	25.0±0.1	-14.2

ZCA preprocessing, +- aug, * - best with trained labels

Experiments.Transfer

Experiments. Hyperparameters

Experiments. Datasets Dims

Experiments.Learned Images

CIFAR-100

Experiments.Learned Images

Papers

• [2] Wang, T., Zhu, J., Torralba, A. and Efros, A. Dataset Distillation, 2018.