Package 'CSHShydRology'

February 9, 2022

```
Type Package
Title Canadian Hydrological Analyses
Version 1.2.0
Date 2022-01-22
Author Kevin Shook [cre, aut],
     Paul Whitfield [aut],
      Robert Chlumsky [aut],
      Daniel Moore [aut],
     Martin Durocher [aut],
     Matthew Lemieux [ctb],
     Jason Chiang [ctb],
     Joel Trubilowicz [ctb],
      SJ Kim [ctb]
Maintainer Kevin Shook <kevin.shook@usask.ca>
Description A collection of user submitted functions to aid in the analysis of hydrological data.
License AGPL-3
URL https://github.com/CSHS-hydRology/CSHShydRology
Depends R (>= 4.0.0)
Imports fields,
      Kendall,
     lubridate,
     plotrix,
     timeDate,
      stringr,
     jsonlite,
     ggplot2,
     ggspatial,
      stats,
     raster,
     here,
     sf,
     sp,
      dplyr,
```

R topics documented:

magrittr,
httr,
tidyhydat,
whitebox,
plotKML,
datasets
Suggests knitr,
testthat,
rmarkdown,
readr
VignetteBuilder knitr
LazyData true
RoxygenNote 7.1.2

2

R topics documented:

CSHShydRology-package
Basic_data_manipulation-functions
CAN05AA008
ch_axis_doy
ch_binned_MannWhitney
ch_booth_plot
ch_catchment_hyps
ch_checkcatchment
ch_checkchannels
ch_clear_wd
ch_contours
ch_create_wd
ch_cut_block
ch_date_subset
ch_decades_plot
ch_doys
ch_fdcurve
ch_flow_raster
ch_flow_raster_qa
ch_flow_raster_trend
ch_get_AHCCD_monthly
ch_get_ECDE_metadata
ch_get_peaks
ch_get_url_data
ch_get_wscstation
ch_hydrograph_plot
ch_kml_checkcatchment
ch_polar_plot
ch_polar_plot_prep
ch qa hydrograph

ch_volcano_raster																						55 57 58 60 61 62
ch_wbt_catchment													 									55 57 58 60 61 62 63
ch_wbt_catchment					· · · · · · · · · · · · · · · · · · ·								 				· · · · · · · ·					55 57 58 60 61 62
ch_wbt_catchment					 		 			· · · · · ·			 				 					55 57 58 60
ch_wbt_catchment					 		 			 			 				 					55 57 58
ch_wbt_catchment			 		 		 			 			 		· ·		 					55 57
ch_wbt_catchment																						
																						54
ch voicano rasier																					•	
																						53
• •																						
																						48
ch_rfa_seasonstat																						47
																						46
																						45
_ & _																						44
	ch_read_ECDE_flows	ch_read_ECDE_flows	ch_read_ECDE_flows	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_AHCCD_monthly ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_AHCCD_monthly ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_AHCCD_monthly ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_AHCCD_monthly ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta	ch_read_AHCCD_daily ch_read_AHCCD_monthly ch_read_ECDE_flows ch_regime_plot ch_rfa_distseason ch_rfa_extractamax ch_rfa_julianplot ch_rfa_seasonstat ch_slice ch_sub_set_Years ch_tidyhydat_ECDE ch_tidyhydat_ECDE_meta ch_volcano_pourpoints

CSHShydRology-package Functions for Canadian hydrological analyses

Description

CSHShydRology is intended for the use of hydrologists, particularly those in Canada. It will contain functions which focus on the use of Canadian data sets, such as those from Environment Canada. The package will also contain functions which are suited to Canadian hydrology, such as the important cold-region hydrological processes. **CSHShydRology** will also contain functions which work with Canadian hydrological models, such as Raven, CRHM, Watflood, and MESH.

This packages has been developed with the assistance of the Canadian Society for Hydrological Sciences (CSHS) https://cshs.cwra.org/en which is an affiliated society of the Canadian Water Resources Association (CWRA) https://cwra.org/.

The CSHShydRology will contain functions grouped into several themes, including:

Statistical hydrology trend detection, data screening, frequency analysis, regionalization

Basic data manipulations input/conversion/adapter functions, missing data infilling

Visualization data visualization, standardized plotting functions

Spatial hydrology basin delineation, landscape data analysis, working with GIS

Streamflow measurement analysis rating curve analysis, velocity profiles, naturalization

Network design/analysis homogeneity assessment

Ecohydrology fisheries and ecological analysis

Wrappers/unwrappers between other packages and CSHShydRology

References

To cite **CSHShydRology** in publications, use the command citation("CSHShydRology") to get the current version of the citation.

Basic_data_manipulation-functions

Basic data manipulation functions

Description

These functions read in or convert values among formats

ch_read_ECDE_flows Reads a file of WSC daily flows from ECDataExplorer

ch_get_ECDE_metadata Reads station meta data from ECDataExplorer

ch get wscstation Reads station information from a data file produced by ECDE

ch_get_AHCCD_monthly Downloads monthly Adjusted and Homogenized Canadian Climate Data (AHCCD) values

ch_read_AHCCD_daily Reads file of daily AHCCD values

ch_read_AHCCD_monthly Reads file of monthly AHCCD values

ch_tidyhydat_ECDE Reads flows using tidyhydat and converts to ECDE format

ch_tidyhydat_ECDE_meta Reads station meta data using tidyhydat and converts to ECDE-like format CAN05AA008 5

Description

A dataframe of Water Survey of Canada (WSC) daily flows for station 05AA008, CROWSNEST RIVER AT FRANK Alberta. Drainage area 403 km2.

Usage

CAN05AA008

Format

A dateframe with 25252 rows and 5 columns spanning the period 1910-2013.

Details

Variables:

ID StationID

PARAM Parameter 1=Flow, 2=Level

Date R date

Flow Daily flow in m³/s

SYM Water Survey FLags A, B, D, E

Source

Water Survey of Canada

ch_axis_doy

Generates the x axis beginning on specified day of year

Description

Generates an axis for day of year or day of water year; used by ch_regime_plot. Obtaining the day of water year needs to be done separately.

Usage

```
ch_axis_doy(wyear = 1)
```

Arguments

wyear

Month of beginning of water year, wyear = 1 (the default) for calendar year, wyear = 10 to start October 1.

Value

Plots a water year axis on a standard R plot

Author(s)

Paul Whitfield

See Also

```
ch_regime_plot
```

Examples

```
a <- seq(1, 365)
b <- runif(365)
plot(a, b, type = "p", xlab = "", xaxt = "n")
ch_axis_doy(wyear = 10) # starts in October</pre>
```

ch_binned_MannWhitney Compares two time periods of data using Mann-Whitney test

Description

Compares two time periods of data using the Mann-Whitney test. Data are binned based upon a bin size, and data are extracted for two time periods and tests for change between two such periods result can be passed to ch_polar_plot or ch_decades_plot for visualization.

Usage

```
ch_binned_MannWhitney(
   DF,
   step,
   range1,
   range2,
   ptest = 0.05,
   variable = "discharge",
   metadata = NULL
)
```

Arguments

DF	A data frame of hydrometric data from ch_read_ECDE_flows
step	An integer indicating the degree of smoothing eg. 1, 5, 11.
range1	The first and last year of first period, as c(first, last)
range2	The first and last year of second period, as c(first, last)
ptest	The significance level default is 0.05.
variable	Name of variable. Default is 'discharge'
metadata	datafframe of station metadata, default is HYDAT_list

Value

Returns a list containing:

StationID ID of station
Station_lname Name of station
bin_width Smoothing time step
range1 First range of years
range2 Second range of years

p_used p_value

fail TRUE if test failed due to missing values

bin_method method used for binning

test_method Mann-Whitney U

series a data frame containing:

period numbers i.e. 1:365/step

period1 median values for each bin in period 1 period2 median values for each bin in period 2

mwu Mann Whitney U-statistic for each bin between the two periods

prob probability of U for each period code significance codes for each bin

Author(s)

Paul Whitfield

References

Whitfield, P.H., Cannon, A.J., 2000. Recent variations in climate and hydrology in Canada. Canadian Water Resources Journal 25: 19-65.

See Also

```
ch_polar_plot ch_polar_plot_prep ch_decades_plot
```

```
data(HYDAT_list)
data(CAN05AA008)
# first example fails due to missing data in both periods
range1 <- c(1960,1969)
range2 <- c(1990,1999)
b_MW <- ch_binned_MannWhitney(CAN05AA008, step = 5, range1, range2, ptest = 0.05)
range1 <- c(1970,1979)
range2 <- c(1990,1999)
b_MW <- ch_binned_MannWhitney(CAN05AA008, step = 5, range1, range2, ptest = 0.05)</pre>
```

8 ch_booth_plot

ch_booth_plot Create Booth plot of peaks over a threshold	ch_booth_plot	Create Booth plot of peaks over a threshold	
---	---------------	---	--

Description

A Booth plot is a plot of peaks over threshold flood events with duration on the horizontal and either magnitude (default) or volume on the vertical axis.

Usage

```
ch_booth_plot(events, threshold, title, type = "mag", colour1 = 1, colour2 = 1)
```

Arguments

events	A data frame of POT events from the function ch_get_peaks
threshold	The threshold used by ch_get_peaks
title	Plot title
type	The plot type, either 'mag' (magnitude, the default) or 'vol' (volume)
colour1	A vector of length 12 with line colours of rings or symbols. Defaults to those

used by Booth.

A vector of length 12 with fill colours of rings or symbols. Defaults to those

used by Booth.

Value

colour2

No value is returned; a standard R graphic is created.

Author(s)

Paul Whitfield

References

Booth, E.G., Mount, J.F., Viers, J.H. 2006. Hydrologic Variability of the Cosumnes River Floodplain. San Francisco Estuary & Watershed Science 4:21.

Whitfield, P.H., and J.W. Pomeroy. 2016. Changes to flood peaks of a mountain river: implications for analysis of the 2013 flood in the Upper Bow River, Canada. Hydrological Processes 30:4657-73. doi: 10.1002/hyp.10957.

See Also

ch_get_peaks

ch_catchment_hyps 9

Examples

```
threshold <- 0.1 * max(CAN05AA008$Flow) # arbitrary threshold
peaks <- ch_get_peaks(CAN05AA008, threshold)
events <- peaks$POTevents
ch_booth_plot(events, threshold, title = "05AA008", type='mag')
ch_booth_plot(events, threshold, title = "05AA008", type='vol')</pre>
```

ch_catchment_hyps

Catchment hypsometry

Description

Finds the hypsometric curve, which is the total fraction of the area below vs. elevation, for a given basin.

Usage

```
ch_catchment_hyps(
  catchment,
  dem,
  z_{levels} = NULL,
  n_{\text{levels}} = 10,
  zmin = NULL,
  zmax = NULL,
  quantiles = NULL,
  hypso_plot = FALSE,
  z_{units} = "m",
  col = "red",
  type = "o",
  xlab = "Fraction of catchment below given elevation",
 ylab = paste0("Elevation (", z_units, ")"),
  add_grid = FALSE,
)
```

Arguments

catchment	A sf object containing the catchment divide.
dem	A raster object of the Digital Elevation Model.
z_levels	Vector of elevation levels for the hypsometry. If specified, then no other elevation parameters are required. Default is NULL.
n_levels	If specified, sets number of elevation intervals. Can be used with zmin and zmax. Default is NULL.
zmin	Minimum elevation for hypsometry. If not specified, minimum catchment elevation is used. Default is NULL.

10 ch_catchment_hyps

Maximum elevation for hypsometry. If not specified, maximum catchment elezmax vation is used. Default is NULL. quantiles Vector of elevation quantiles. Default is NULL. hypso_plot if TRUE the hypsometric curve is plotted. Default is NULL. z_units Elevation units for plot. Default is 'm'. Colour for plot. Default is 'red'. col Type of plot. Defailt is 'o' (lines with overplotted points). type xlab Plot x-axis label. ylab Plot y-axis label. add_grid If TRUE, a grid is added to the plot. Default is FALSE

Details

The elevations may be passed as a vector of elevations, or of elevation quantiles, or as minimum and maximum elevations and the number of elevation intervals. A plot of the curve may also be created.

Value

Returns a data frame of elevations and catchment fractions below.

Other parameters for the graph

Author(s)

Dan Moore

```
## note: example tagged as 'donttest'
library(here)
library(raster)
# change the following line to specify a directory to hold the data
dir_name <- here::here("helper_functions", "test_data")</pre>
# create directory to store data sets
if (!dir.exists(dir_name)) {
  dir.create(dir_name, recursive = TRUE)
# get 25-m dem
dem_fn <- here::here("helper_functions", "test_data", "gs_dem25.tif")</pre>
dem_url <- "https://zenodo.org/record/4781469/files/gs_dem25.tif"</pre>
dem_upc <- ch_get_url_data(dem_url, dem_fn)</pre>
# get catchment boundaries
cb_fn <- here::here("helper_functions", "test_data", "gs_catchments.GeoJSON")
cb_url <- "https://zenodo.org/record/4781469/files/gs_catchments.GeoJSON"
cb <- ch_get_url_data(cb_url, cb_fn)</pre>
# quick check plot - all catchments
```

ch_checkcatchment 11

```
plot(dem_upc)
plot(cb, add = TRUE, col = NA)
# subset 240 catchment
cb_240 <- cb %>% dplyr::filter(wsc_name == "240")
plot(cb_240, col = NA)
## test function
# test different combinations of arguments
ch_catchment_hyps(cb_240, dem_upc, quantiles = seq(0, 1, 0.1))
ch_catchment_hyps(cb_240, dem_upc, z_levels = seq(1600, 2050, 50))
ch_catchment_hyps(cb_240, dem_upc, n_levels = 6)
ch_catchment_hyps(cb_240, dem_upc)
ch_catchment_hyps(cb_240, dem_upc, zmin = 1600, zmax = 2050)
ch_catchment_hyps(cb_240, dem_upc, zmin = 1600, zmax = 2050, n_levels = 6)
# generate a graph
ch_catchment_hyps(cb_240, dem_upc, hypso_plot = TRUE)
ch_catchment_hyps(cb_240, dem_upc, hypso_plot = TRUE,
             col = "blue", type = "l", ylim = c(1500, 2200))
ch_catchment_hyps(cb_240, dem_upc, hypso_plot = TRUE,
             add\_grid = TRUE, quantiles = seq(0, 1, 0.1))
ch_catchment_hyps(cb_240, dem_upc, hypso_plot = TRUE,
             ylab = expression("z ("*10^{-3} ~ "km)"))
# extract specific quantiles (e.g., median and 90%)
ch_catchment_hyps(cb_240, dem_upc, quantiles = c(0.5, 0.9))
```

ch_checkcatchment

Check Catchments

Description

Generates a simple map to allow a visual assessment of the catchment boundaries relative to the elevation contours.

Usage

```
ch_checkcatchment(
  dem,
  catchment,
  outlet,
  outlet_label = NULL,
  main_label = "",
  bbox_type = "catchment",
  channel_vec = NULL,
  cb_colour = "red",
```

12 ch_checkcatchment

```
pp_colour = "red",
  channel_colour = "blue",
  contour_colour = "grey",
  plot_na = TRUE,
  plot_scale = TRUE,
  na_location = "tr",
  scale_location = "bl"
)
```

Arguments

dem raster DEM that catchments were generated from.

catchment Catchment polygon (sf object).

outlet Location of catchment outlet (sf object).

outlet_label Character label for outlet.

main_label Main label for catchment plot.

bbox_type type of bounding box. If 'catchment', then the contours are bounded by the

catchment, otherwise they are plotted to the extent of the DEM

channel_vec Vectors of the channels will be plotted if specified.
cb_colour Colour for catchment outline. Default is "red".

pp_colour Colour for catchment pour points. Default is "red".

channel_colour Colour for channel. Default is "blue". contour_colour Colour for contours Default is "grey".

plot_na If TRUE (the default) a north arrow is added to the plot.

plot_scale If TRUE (the default) a scale bar is added to the plot.

na_location Location for the north arrow. Default is 'tr', i.e. top-right. scale_location Location for the scale bar. Default is 'bl', i.e. bottom-left.

Details

Also generates a table summarizing the catchments, including the coordinates of the outlet point and the catchment area.

Value

Nothing is returned. A map of the catchments is plotted and the catchment parameters are printed.

Author(s)

Dan Moore and Kevin Shook

See Also

ch_checkchannels

ch_checkchannels 13

Examples

```
library(raster)
test_raster <- ch_volcano_raster()</pre>
dem_raster_file <- tempfile(fileext = ".tif")</pre>
no_sink_raster_file <- tempfile("no_sinks", fileext = ".tif")</pre>
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file,</pre>
method = "fill")
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = ".tif")</pre>
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)</pre>
# get pour points
pourpoint_file <- tempfile("volcano_pourpoints", fileext = ".shp")</pre>
pourpoints <- ch_volcano_pourpoints(pourpoint_file)</pre>
snapped_pourpoint_file <- tempfile("snapped_pourpoints", fileext = ".shp")</pre>
snapped_pourpoints <- ch_wbt_pourpoints(pourpoints, flow_acc_file, pourpoint_file,</pre>
snapped_pourpoint_file, snap_dist = 10)
# get flow directions
flow_dir_file <- tempfile("flow_dir", fileext = ".tif")</pre>
flow_dir <- ch_wbt_flow_direction(no_sink_raster_file, flow_dir_file)</pre>
fn_catchment_ras <- tempfile("catchment", fileext = ".tif")</pre>
fn_catchment_vec <- tempfile("catchment", fileext = ".shp")</pre>
catchments <- ch_wbt_catchment(snapped_pourpoint_file, flow_dir_file,</pre>
fn_catchment_ras, fn_catchment_vec)
ch_checkcatchment(test_raster, catchments, snapped_pourpoints)
```

ch_checkchannels

Check Channels

Description

Generates a map of the generated channel network layer.

Usage

```
ch_checkchannels(
  dem,
  channels,
  outlet = NULL,
  main_label = "",
  channel_colour = "blue",
  pp_colour = "red",
  contour_colour = "grey"
)
```

14 ch_checkchannels

Arguments

dem raster DEM that catchments were generated from
channels channel polyline (or channels list from ch_wbt_channels) (sf object)
outlet location of catchment outlet (sf object)
main_label Main label for channel plot.
channel_colour Colour for channel. Default is "blue".

pp_colour Colour for catchment pour points. Default is "red".

contour_colour Colour for contours Default is "grey".

Details

Generates a simple map of the drainage network plotted over the contours to allow a visual assessment.

Value

check_map a **ggplot** object of a map with channel layer

Author(s)

Dan Moore

See Also

ch_checkcatchment

```
library(raster)
test_raster <- ch_volcano_raster()</pre>
dem_raster_file <- tempfile(fileext = c(".tif"))</pre>
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))</pre>
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")</pre>
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = c(".tif"))</pre>
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)</pre>
# get flow directions
flow_dir_file <- tempfile("flow_dir", fileext = c(".tif"))</pre>
flow_dir <- ch_wbt_flow_direction(no_sink_raster_file, flow_dir_file)</pre>
channel_raster_file <- tempfile("channels", fileext = c(".tif"))</pre>
channel_vector_file <- tempfile("channels", fileext = c(".shp"))</pre>
channels <- ch_wbt_channels(flow_acc_file, flow_dir_file, channel_raster_file,
channel_vector_file, 1)
# get pour points
pourpoint_file <- tempfile("volcano_pourpoints", fileext = ".shp")</pre>
pourpoints <- ch_volcano_pourpoints(pourpoint_file)</pre>
```

ch_clear_wd

```
snapped_pourpoint_file <- tempfile("snapped_pourpoints", fileext = ".shp")
snapped_pourpoints <- ch_wbt_pourpoints(pourpoints, flow_acc_file, pourpoint_file,
snapped_pourpoint_file, snap_dist = 10)
ch_checkchannels(test_raster, channels, snapped_pourpoints)</pre>
```

ch_clear_wd

Clear SAGA Working Directory

Description

Empties and removes a working directory.

Usage

```
ch_clear_wd(wd, do_check = TRUE)
```

Arguments

wd working directory file path

do_check If TRUE, the default, the user is asked to confirm the deletion of the working

directory. If TRUE, the directory is deleted without confirmation.

Details

The data for raster layers read in as Whitebox files are held on disk rather than in memory

Value

result returns TRUE upon successful execution

Author(s)

Dan Moore

See Also

ch_create_wd to create working directory

```
# not tested as clearing all files in a given directory cannot be tested in CRAN
# create a saga working directory
saga_wd <- tempdir()
ch_create_wd(saga_wd) # confirm creation
# clear the saga working directory
ch_clear_wd(saga_wd)</pre>
```

ch_contours

ch_contours	Create Contours		
-------------	-----------------	--	--

Description

Creates contour lines from a DEM.

Usage

```
ch_contours(dem, zmin = NULL, zmax = NULL, n_levels = 10, z_levels = NULL)
```

Arguments

dem	Raster object of your dem in the desired projection (note: should have had sinks removed).
zmin	Minimum elevation value for contours. If not specified, minimum value 'dem' is used.
zmax	Maximum elevation value for contours. If not specified, maximum value 'dem' is used.
n_levels	Number of contour lines. Default is 10.
z_levels	Levels at which to plot contours. If specified, overrides 'zmin', 'zmax' and 'n_levels'.

Details

Generates contour lines from a DEM, which are returned as an **sf** object. The user can either provide a vector of elevation values by specifying the z_levels argument, or by supplying the minimum and maximum elevations (zmin and zmax) and the number of contour lines (n_levels).

Value

```
contours_sf sf object containing contours
```

Author(s)

Dan Moore

```
# use volcano DEM
dem <- ch_volcano_raster()
# generate contours
contours <- ch_contours(dem)
# plot contours map
plot(contours)</pre>
```

ch_create_wd 17

ch_create_wd

Create working directory

Description

Creates a working directory.

Usage

```
ch_create_wd(wd)
```

Arguments

wd

name of a directory in which to store files created by WhiteboxTools functions

Value

TRUE

returns TRUE upon successful execution

Author(s)

Dan Moore

See Also

ch_clear_wd to clear the working directory

Examples

```
# not tested automatically as will return a warning
ch_create_wd(tempdir())
```

ch_cut_block

Extracts a specified time period from a longer record

Description

The function could also be used to get the same period of time from several station for comparison.

Usage

```
ch_cut_block(DF, st_date, end_date)
```

ch_date_subset

Arguments

DF A daily streamflow data frame as from ch_read_ECDE_flows

st_date starting date format is %Y/%m/%d end_date ending date format is %Y/%m/%d

Value

Returns a portion of the original dataframe.

Author(s)

Paul Whitfield

Examples

```
data(CAN05AA008)
subset <- ch_cut_block(CAN05AA008,"2000/01/01", "2010/12/31")</pre>
```

ch_date_subset

Subsets dates by string

Description

Subsets a data frame by an specified date range, provided as a string by the prd argument. This function is meant to emulate the subsetting capability of the **xts** package.

Usage

```
ch_date_subset(df, prd)
```

Arguments

df data frame of time series data; includes a variable called Date prd date range as string formatted as 'YYYY-MM-DD/YYYY-MM-DD'

Value

df subsetted data frame

Author(s)

Robert Chlumsky

ch_decades_plot 19

Examples

```
{
    dd <- seq.Date(as.Date("2010-10-01"), as.Date("2013-09-30"), by = 1)
    x <- rnorm(length(dd))
    y <- abs(rnorm(length(dd)))*2
    df <- data.frame("Date" = dd,x,y)
    prd <- "2011-10-01/2012-09-30"
    summary(ch_date_subset(df,prd))}</pre>
```

ch_decades_plot

Plots output from ch_binned_MannWhitney for decades

Description

Creates a simple plot comparing two decades from the output of ch_binned_MannWhitney.

Usage

```
ch_decades_plot(mplot)
```

Arguments

mplot

List output by the function ch_binned_MannWhitney

Value

A standard R graphic is created.

Author(s)

Paul Whitfield

See Also

```
ch_decades_plot
```

```
range1 <- c(1970, 1979)
range2 <- c(1990, 1999)
b_MW <- ch_binned_MannWhitney(CAN05AA008, step = 5, range1, range2, ptest = 0.05)
<math>ch_decades_plot(b_MW)
```

20 ch_doys

ch_doys	Days of year and water year	

Description

Converts an array of dates into a dataframe with date, year, month, doy, wyear, dowy.

The day of water year is computed from the first of the specified water year month.

Usage

```
ch_doys(Date, water_yr = 10)
```

Arguments

Date an array of R dates, as produced by as.Date()

water_yr the month starting the water year, default is 10 (October). If a value of 1 is

specified, the 10 will be used.

Details

Converts a date array into a data frame with years, wateryears, and days of year and of water year.

Value

Returns a dataframe with date information:

Date in Date format

year numeric calendar year
month number calendar month
doy numeric day of year

wyear numeric water year starting on day 1 of selected month

dwy numeric day of water year

Author(s)

Paul Whitfield, Kevin Shook

```
dd <- seq.Date(as.Date("2010-01-01"), as.Date("2018-01-01"),by = 1)
output <- ch_doys(dd, water_yr=10)
head(output)</pre>
```

ch_fdcurve 21

ch_fdcurve	Plot Flow Duration Curve	

Description

A flow duration curve is a plot of flow magnitude against exceedance probability. The plot may contain the Gustard Curves (default) or they can be omitted. The default is for curves to be plotted against probability, but an option is to plot against the normalized exceedance probability. In that case, the x axis represents a normal distribution.

Usage

```
ch_fdcurve(DF, normal = FALSE, gust = TRUE, metadata = NULL)
```

Arguments

DF a dataframe of daily flows from ch_read_ECDE_flows

normal If normal = TRUE then exceedance probability is normalized. Default is FALSE.

gust If TRUE (the default), adds the curves from Gustard et al. 1992 are added.

metadata dataframe of metadata, defaults to HYDAT_list.

Details

Create a Flow Duration Curve based upon Observations.

Value

Plots the flow duration curve and returns a data frame containing:

exceedance probability

probability

flow d=flow values

Author(s)

Paul Whitfield

References

Gustard, A., A. Bullock, and J.M. Dixon. 1992. Low flow estimation in the United Kingdom. Institute of Hydrology, 292. Wallingford: Institute of Hydrology.

Vogel, R.M., and N.M. Fennessy. 1994. Flow-duration curves. I: New Interpretation and confidence intervals. Journal of Water Resources Planning and Management ASCE 120:485-504.

Vogel, R.M., and N.M. Fennessy. 1995. Flow duration curves II: A review of applications in water resources planning. Water Resources Bulletin 31:1030-9.

ch_flow_raster

Examples

```
data(HYDAT_list)
data(CAN05AA008)
# plot with Gustard 1992 curves
test <- ch_fdcurve(CAN05AA008, normal = FALSE, gust = TRUE)
# plot with normalized exceedance probability
test <- ch_fdcurve(CAN05AA008, normal = TRUE, gust = FALSE)</pre>
```

ch_flow_raster

Raster plot of daily streamflows

Description

Produces a raster plot: years by day of year, showing magnitude of flow. This produces a plot showing the flow data in colours, showing different context than in a hydrograph. High flows are in warm colours.

Usage

```
ch_flow_raster(
  DF,
  rastercolours = c("lightblue", "cyan", "blue", "slateblue", "orange", "red"),
  metadata = NULL
)
```

Arguments

DF A data frame of daily flow data as read by ch_read_ECDE_flows.

 $raster colours \quad A \ vector \ of \ colours \ used \ for \ flow \ magnitudes \ (default \ c ("lightblue", "cyan", "blue", "slateblue", "cyan", "blue", "slateblue", "cyan", "blue", "slateblue", "cyan", "blue", "cyan", "blue", "cyan", "blue", "cyan", "blue", "cyan", "blue", "cyan", "blue", "cyan", "cyan", "blue", "cyan", "cyan", "blue", "cyan", "cyan", "blue", "cyan", "cya$

metadata A dataframe of station metadata, defaults to HYDAT_list.

Value

No value is returned; a standard R graphic is created.

Author(s)

Paul Whitfield

See Also

```
ch_read_ECDE_flows
ch_flow_raster_trend ch_flow_raster_qa
```

```
ch_flow_raster(CAN05AA008)
```

ch_flow_raster_qa 23

ch_flow_raster_qa

Raster plot of daily streamflows with WSC quality flags

Description

Raster plot with WSC quality flags. This produces a plot showing the flow data in grayscale overlain by the Water Survey of Canada quality flags. Colours are consistent with ECDataExplorer. Raster layout lets the use see the flags in a different context than in a hydrograph.

Usage

```
ch_flow_raster_qa(DF, metadata = NULL)
```

Arguments

DF dataframe of daily streamflow read by ch_read_ECDE_flows

metadata dataframe of metadata or defaults to "HYDAT_list"

Value

Produces a raster plot: years against day of year, showing the data flags:

A (Partial) in green

B (Backwater) in cyan

D (Dry) in yellow

E (Estimated) in red

Returns TRUE if executed properly; a standard R graphic is created.

Author(s)

Paul Whitfield

See Also

```
ch_read_ECDE_flows
ch_flow_raster_trend ch_flow_raster
```

```
data(HYDAT_list)
data(CAN05AA008)
qaplot <- ch_flow_raster_qa(CAN05AA008)</pre>
```

24 ch_flow_raster_trend

ch_flow_raster_trend Raster plot and simple trends of observed streamflows by periods

Description

Creates a raster plot plus trend plots for day of year, which are binned by a number of days (step), and the max, min, and median annual discharge across years. The plot contains four panels based upon binned data.

Usage

```
ch_flow_raster_trend(
   DF,
   step = 5,
   missing = FALSE,
   metadata = NULL,
   colours = c("lightblue", "cyan", "blue", "slateblue", "darkblue", "red")
)
```

Arguments

DF - dataframe of daily flow data as read by ch_read_ECDE_flows step - a number indicating the degree of smoothing eg. 1, 5, 11.

missing If FALSE years with missing data are excluded. If TRUE partial years are included.

metadata a dataframe of station metadata, default is HYDAT_list.

colours A vector of colours used for the raster plot. The default is c("lightblue", "cyan", "blue", "slateblue"

Details

The four plots are: (1) The maximum,minimum,and median flow with a trend test for each period: red arrows indicate decreases, blue arrows indicate increases. (2) The scale bar for the colours used in the raster plot, (3) The raster plot with a colour for each period and each year where data exist, and (4) A time series plot of the minimum, median, and maximum annual bin values. If there is no trend (p > 0.05) the points are black. Decreasing trends are in red, increasing trends are in blue.

Value

Returns a list containing:

stationID Station ID eg. 05BB001

missing How missing values were used FALSE = used, TRUE = removed step number of days in a bin periods number of periods in a year period period numbers i.e. 1:365/step bins values for each period in each year

ch_flow_raster_trend 25

med_period median for each period maximum for each period max_period minimum for each period min_period tau_period Kendalls Tau for each period probability of Tau for each period prob_period year years spanning the data median_year median bin for each year maximum bin for each year max_year minimum bin for each year min_year tau_median_year value of tau and probability for annual median tau_maximum_year value of tau and probability for annual maximum tau_minimum_year

Author(s)

Paul Whitfield

References

Whitfield, P. H., Kraaijenbrink, P. D. A., Shook, K. R., and Pomeroy, J. W. 2021. The Spatial Extent of Hydrological and Landscape Changes across the Mountains and Prairies of Canada in the Mackenzie and Nelson River Basins Based on data from a Warm Season Time Window, Hydrology and Earth Systems Sciences 25: 2513-2541.

value of tau and probability for annual minimum

See Also

```
ch_flow_raster
```

```
data(CAN05AA008)
mplot <- ch_flow_raster_trend(CAN05AA008, step=5)</pre>
```

ch_get_AHCCD_monthly Retrieve AHCCD data from EC datamart

Description

Retrieve AHCCD data from EC datamart

Usage

```
ch_get_AHCCD_monthly(
   station,
   province,
   variable,
   url = "http://dd.weather.gc.ca/climate/ahccd/geojson/historical/monthly/"
)
```

Arguments

station Required. The station number - either as numeric or as a string.

province Required. Name of province/territory. Must one of AB, BC, MB, NB, NL, NS,

NT, NU, ON, PE, QC, SK, YT.

variable Required. Must be one of

variable meaningPCP total precipitation

RA rainfall **SN** snowfall

TMAX max air temp
TMEAN mean air temp
TMIN max air temp
PSFC surface air pressure
SFCWND surface wind speed

SLP sea level pressure

url Required. The default url currently works to access the data on the Environment

Canada server. The url can be changed in case the site is moved.

Value

Returns a data frame with the monthly values and associated variables.

Note

Not all variables are available at all stations. Attempting to retrieve a non-existent variable will result in an error message being displayed.

Author(s)

Kevin Shook

References

Use of the data must cite Mekis, E and L.A. Vincent, 2011: An overview of the second generation adjusted daily temperature and precipitation dataset for trend analysis in Canada. Atmosphere-Ocean, 49 (2), 163-177.

See Also

```
ch_read_AHCCD_daily ch_read_AHCCD_monthly
```

Examples

```
stoon_monthly_precip <- ch_get_AHCCD_monthly("4057120", "SK", "PCP")</pre>
```

ch_get_ECDE_metadata Reads Environment Canada Date Explorer (ECDE) meta data file

Description

Reads the file that is generated from ECDE 'save favourite stations' to capture the ECDE metadata. The dataframe returned contains 20 fields from ECDE.

Usage

```
ch_get_ECDE_metadata(filename, writefile = NULL)
```

Arguments

The name of the ECDE file, 'FavHydatStations.tb0'. filename

Default is NULL, but if it is a filename e.g. 'filename.csv' then the dataframe writefile

is saved to a csv file.

Value

Returns a dataframe consisting of:

StationID Station StationName Station Name

Active or Discontinued **HYDStatus**

Prov Province

Latitude Longitude

 km^2 DrainageArea

28 ch_get_peaks

Years Number of years with data

From Start Year
To End Year
Reg. Regulated?

Flow If TRUE/Yes flow data exists

Level If TRUE/Yes level data exists

Sed If TRUE/Yes sediment data exists

OperSched Operations current - Continuous or Seasonal
RealTime If TRUE/Yes real time data is available

RHBN If TRUE/Yes the stations is in the reference hydrologic basin network

Region Name of regional office operating station

Datum Elevation datum

Operator Operator or provider of the data

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

Examples

```
# Not tested by check() as requires downloaded file
filename <- "FavHydatStations.tb0"
meta0 <- ch_get_ECDE_metadata(filename)
meta1 <- ch_get_ECDE_metadata(filename, writefile="study52_metadata.csv")</pre>
```

ch_get_peaks

Extracts peak flows over a threshold

Description

This function is development code being shared as is. It is expected that the user will be interested in the data frame returned for POT analysis and for plotting (i.e. ch. booth plot).

This function retrieves peaks greater than or equal to the prescribed threshold. It returns a data frame of peak characteristics suitable for subsequent analysis.

The portion under development is returns a list of the flows during an event with the values of the four preceding days and three subsequent days. If the peak is a single point the fragment is nine points long; if the events is longer the fragment contains all days above the threshold and eight additional days.

Usage

```
ch_get_peaks(dataframe, threshold)
```

ch_get_peaks 29

Arguments

dataframe a data frame of streamflow data containing columns named 'Date' and 'Flow' threshold a value for the threshold. Values above the threshold are tested for peaks.

Value

Returns a list containing:

POTevents a dataframe contining details of the events

events a vector with the value 0 when the flow is below the threshold and 1 when above. event_num a vector with the value 0 when the flow is below a threshold or the index of the

events when the threshold was exceeded. i.e. 1,2,3, etc

st_date start date of events

case a list of the daily flows in each individual event (see details for more information)

The POTevents data frame contains five columns:

st_date starting date of event

max_date date of maximum in the event
max maximum discharge during event
volume flow volume during the event
duration length of the event in days

The case list contains the flows during an event and also for four preceding and subsequent days. Each event will have a length between nine to n days in length. Note: in rare cases where the event is in progress when data becomes available the event might be shorter than nine days long.

Author(s)

Paul Whitfield

References

Burn, D.H., Whitfield, P.H., Sharif, M., 2016. Identification of changes in floods and flood regimes in Canada using a peaks over threshold approach. Hydrological Processes, 39: 3303-3314. DOI:10.1002/hyp.10861

Whitfield, P.H., and J.W. Pomeroy. 2016. Changes to flood peaks of a mountain river: implications for analysis of the 2013 flood in the Upper Bow River, Canada. Hydrological Processes 30:4657-73. doi: 10.1002/hyp.10957.

See Also

```
ch_booth_plot
```

```
CAN05AA008 <- CAN05AA008 threshold <- 0.5*max(CAN05AA008$Flow) # arbitrary threshold my_peaks <- ch_get_peaks(CAN05AA008, threshold) str(my_peaks)
```

ch_get_url_data

ch_get_url_data

Gets remote data sets

Description

Accesses data sets, via a url the first time, saves them locally, then accesses them locally after the first time the script is executed.

Usage

```
ch_get_url_data(gd_url, gd_filename)
```

Arguments

gd_url url for accessing data set

gd_filename name of file on local drive, including full path

Value

Returns a data frame (from a .csv file), a raster object (from a .tif file), or an sf object (from a GeoJSON file).

Author(s)

Dan Moore

```
# example not tested automatically as multiple large data files are downloaded
# Tested using files in the Upper Penticton Creek
# zenodo repository https://zenodo.org/record/4781469
library(ggplot2)
library(here)
library(raster)
# create directory to store data sets
dir_name <- here("test_data")</pre>
if (!dir.exists(dir_name)) {
  dir.create(dir_name)
}
# test with soil moisture data in csv format
sm_fn <- here("test_data", "sm_data.csv")</pre>
sm_url <- "https://zenodo.org/record/4781469/files/sm_data.csv"</pre>
sm_data <- ch_get_url_data(sm_url, sm_fn)</pre>
head(sm_data)
# test with tif/tiff file containing a dem
```

ch_get_wscstation 31

ch_get_wscstation

Reads station information from a data file produced by ECDE

Description

Retrieves station information for an individual Water Survey of Canada site, based on stationID; adds a text string at position 21 that combines key elements for a title.

Usage

```
ch_get_wscstation(stnID, metadata = NULL)
```

Arguments

stnID A Water Survey of Canada station number

metadata a data frame of station information from ECDataExplorer. The data frame

'HYDAT_list' is supplied with this package.

Value

Returns a line from a data frame with 21 variables

Station StationID
StationName Station Name

HYDStatus Active or Discontinued

Prov Province

Latitude Longitude 32 ch_hydrograph_plot

DrainageArea Area in km²

Years # of years with data

From Start Year
To End Year

Reg. Regulated or natural

Flow if TRUE/Yes flow data is available

Level if TRUE/Yes water level data is available
Sed if TRUE/Yes sediment data is available

OperSched Current operation schedule- Continuous or Seasonal

RealTime if TRUE/Yes real itme data exists

RHBN if TRUE/Yes is in the reference hydrologic basin network

Region WSC Region
Datum Used

Operator Agency responsible for collecting data

Station_lname Added field combining StationID, StationName, Province and if station is RHBN

an * is added

Author(s)

Paul Whitfield

Examples

```
data("HYDAT_list")
s_info <- ch_get_wscstation("05BB001", metadata = HYDAT_list)
title <- s_info[21]
print(title)</pre>
```

ch_hydrograph_plot

Hydrograph plot

Description

Creates a hydrograph plot for simulated, observed, and inflow hydrograph series, including precipitation if provided. The secondary y axis will be used to plot the precip time series.

ch_hydrograph_plot 33

Usage

```
ch_hydrograph_plot(
  flows = NULL,
  precip = NULL,
  prd = NULL,
  winter_shading = FALSE,
  winter_colour = "cyan",
  range_mult_flow = NULL,
  range_mult_precip = 1.5,
  flow_labels = NULL,
  ylabel = NULL,
  precip_label = "Precipitation [mm]",
  leg_pos = NULL,
  leg_box = NULL,
  zero_axis = TRUE
)
```

Arguments

flows data frame of flows to plot

precip data frame of precipitation values to plot

prd period to use in plotting

winter_shading optionally adds a transparent cyan shading for the December 1st to March 31st

period in each year that is plotted. Default is FALSE.

winter_colour colour to use in winter shading polygons

range_mult_flow

range multiplier for max value in hydrograph. This is useful in preventing overlap if precip is also plotted. This value should not be less than 1.0, otherwise the

values will be cutoff in the plot.

range_mult_precip

range multiplier for max value in precipitation plot (default 1.5)

flow_labels string vector of labels for flow values

ylabel text label for y-axis of the plot (default 'Flow [m^3/s]')

precip_label text label for precipitation y-axis (default 'Precipitation [mm]')

leg_pos string specifying legend placement on plot e.g. 'topleft', 'right', etc., and is

consistent with the legend function options. If NULL, the function will place the

legend left, if precip added, on the topleft otherwise).

leg_box boolean on whether to put legend in an opaque white box or not. If NULL (the

default), the function will automatically not use a white box and leave the back-

ground of the legend transparent.

zero_axis fixes the y axis to start exactly at zero (default TRUE). By default, R will plot the

values with a small buffer for presentation. Be warned that if this option is set to TRUE, the minimum value is set to zero without checking if any flow values are less than zero. This option should not be used for reservoir stage plotting,

since most reservoir stage is typically reported as an elevation.

Details

Assumes that the supplied time series have the same length and duration in time. If this is not true, then the defined period or period calculated from the first available flow series will be used to determine the plotting limits in time. If the data is take from output from the **Raven** model, this is not a concern. The supplied time series should be in **xts** format, which can be obtained directly by using the hyd.extract function in the package **RavenR**. Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Value

Returns TRUE if the function is executed properly.

Author(s)

Robert Chlumsky

Examples

```
# example with synthetic random data
dd <- seq.Date(as.Date("2010-10-01"), as.Date("2013-09-30"),by = 1)
x <- abs(rnorm(length(dd)))
y <- abs(rnorm(length(dd))) * x
df <- data.frame("Date" = dd, x, y)
myprd <- "2011-10-01/2012-09-30"

precip <- data.frame("Date" = dd," precip" = abs(rnorm(length(dd))) * 10)

# basic hydrograph plot
ch_hydrograph_plot(flows = df, winter_shading = FALSE)

# with different labels and winter shading
ch_hydrograph_plot(flows = df, winter_shading = TRUE,
    flow_labels = c("simulated", "observed"))

# add precipitation, increase the plot ranges to separate flows and precip, and add a legend box
ch_hydrograph_plot(flows = df, precip = precip, range_mult_flow = 1.7,
    range_mult_precip = 2, leg_box = TRUE)</pre>
```

Description

Generate KML file to check delineation in Google Earth

Usage

```
ch_kml_checkcatchment(
   fn_kml,
   folder_name = "",
   contours,
   catchments,
   channels,
   pp,
   pp_labels = NULL
)
```

Arguments

fn_kml	Name of the KML file to be crearted
folder_name	name of the KML folder.
contours	sp object of contours.
catchments	sp object of catchments.
channels	sp object of channels.
рр	sp object of pour points.
pp_labels	A vector of names for the pour points. If not specified, the pour points will be numbered.

Value

No value is returned. A kml file is created.

Author(s)

Dan Moore and Kevin Shook

```
library(raster)
test_raster <- ch_volcano_raster()</pre>
dem_raster_file <- tempfile(fileext = c(".tif"))</pre>
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))</pre>
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")</pre>
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = c(".tif"))</pre>
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)</pre>
# get pour points
pourpoint_file <- tempfile("volcano_pourpoints", fileext = c(".shp"))</pre>
pourpoints <- ch_volcano_pourpoints(pourpoint_file)</pre>
snapped\_pourpoint\_file \leftarrow tempfile("snapped\_pourpoints", fileext = c(".shp"))
snapped_pourpoints <- ch_wbt_pourpoints(pourpoints, flow_acc_file, pourpoint_file,</pre>
```

36 ch_polar_plot

```
snapped_pourpoint_file, snap_dist = 10)
# get flow directions
flow_dir_file <- tempfile("flow_dir", fileext = ".tif")</pre>
flow_dir <- ch_wbt_flow_direction(no_sink_raster_file, flow_dir_file)</pre>
fn_catchment_ras <- tempfile("catchment", fileext = ".tif")</pre>
fn_catchment_vec <- tempfile("catchment", fileext = ".shp")</pre>
# generate contours
contours <- ch_contours(test_raster)</pre>
catchments <- ch_wbt_catchment(snapped_pourpoint_file, flow_dir_file,</pre>
fn_catchment_ras, fn_catchment_vec)
# get channels
channel_raster_file <- tempfile("channels", fileext = c(".tif"))</pre>
channel_vector_file <- tempfile("channels", fileext = c(".shp"))</pre>
channels <- ch_wbt_channels(flow_acc_file, flow_dir_file, channel_raster_file,</pre>
channel_vector_file, 1)
fn_kml <- tempfile("volcano", fileext = ".KML")</pre>
# create KML files, suppressing warnings caused by other functions
suppressWarnings(ch_kml_checkcatchment(fn_kml, "test", contours, catchments,
channels, pourpoints))
```

ch_polar_plot

Polar plot of daily streamflows

Description

Produces a polar plot similar to that used in *Whitfield and Cannon*, 2000. It uses output from the function ch_binned_MannWhitney or a data structure created using the function ch_polar_plot_prep.

Usage

```
ch_polar_plot(
   bmw,
   lcol1 = c("black", "gray50"),
   lcol2 = c("black", "gray50"),
   lfill = c("yellow", "green"),
   lsig = c("red", "blue")
)
```

Arguments

bmw	output from binned_MannWhitney
lcol1	line colour, default is c("black", "gray50")
lcol2	point colour, default is c("black", "gray50")
lfill	fill colour, default is c("yellow", "green")
lsig	significance symbol colour, default is ("red", "blue")

Value

No value is returned; a standard R graphic is created.

ch_polar_plot_prep 37

Author(s)

Paul Whitfield

References

Whitfield, P.H. and A.J. Cannon. 2000. Polar plotting of seasonal hydrologic and climatic data. Northwest Science 74: 76-80.

Whitfield, P.H., Cannon, A.J., 2000. Recent variations in climate and hydrology in Canada. Canadian Water Resources Journal 25: 19-65.

See Also

```
ch_binned_MannWhitney ch_polar_plot_prep
```

Examples

```
range1 <- c(1970,1979)
range2 <- c(1990,1999)
b_MW <- ch_binned_MannWhitney(CAN05AA008, step = 5, range1, range2,
ptest <- 0.05)
ch_polar_plot(b_MW)</pre>
```

ch_polar_plot_prep

Creates a data structure to be passed to ch_polar_plot

Description

Could be used to move data from a different type of analysis different to the binned_MannWhitney function which uses flows. The two series need to be of the same length and their length is related to the step size. For examples, for five day periods there will be 73 periods.

Usage

```
ch_polar_plot_prep(
  station,
  plot_title,
  step,
  x0,
  x1,
  stat,
  prob,
  test_s,
  variable = "discharge",
  bin_method = "unstated"
  test_method = "unstated",
  lline1 = "Period 1",
  lline2 = "Period 2",
  pvalue = 0.05
)
```

38 ch_polar_plot_prep

Arguments

station Typically a station number

plot_title Polar plot title - usually a station name

step The number of days binned

x0 Time series of length n for a single seasonal cycle x1 Time series of length n for a single seasonal cycle

stat Time series of length n for statistical test value for each bin

prob Time series of length n of probability of test value

test_s Vector with values of -1, 0, 1 for significance, -1 negative, 1 positive, 0 not

significant

variable Name of variable plotted. Default is 'discharge'

bin_method Default is 'unstated' test_method Default is 'unstated'

1line1 Names of first period, default is 'Period 1'1line2 Names of second period, default is 'Period 2'

pvalue Value of p used. Default is 0.05

Value

Returns a list containing:

StationID ID of station
Station_lname Name of station
variable Name of variable

bin_width Smoothing time step in days

range1 First range of years range2 Second range of years

p_used p_value

fail TRUE if test failed due to missing values

bin_method Method used for binning

test_method Mann-Whitney U

series A data frame containing six columns

The series data frame contains

period period numbers i.e. 1:365/step

period1 median values for each bin in period 1 period2 median values for each bin in period 2

mwu Mann Whitney U-statistic for each bin between the two periods

prob probability of U for each period code significance codes for each bin

ch_qa_hydrograph 39

Author(s)

Paul Whitfield

References

Whitfield, P.H. and A.J. Cannon. 2000. Polar plotting of seasonal hydrologic and climatic data. Northwest Science 74: 76-80.

Whitfield, P.H., Cannon, A.J., 2000. Recent variations in climate and hydrology in Canada. Canadian Water Resources Journal 25: 19-65.

See Also

```
ch_binned_MannWhitney ch_polar_plot
```

ch_qa_hydrograph Plots a hydrograph with the data quality symbols and returns a report on qa symbols and missing data

Description

Plots a hydrograph of a WSC daily data file read from from ECDataExplorer (ECDE). The hydrograph shows individual days with data quality symbols [SYM] in colour and counts cases of each and reports them in the legend. The colours and symbols are those produced by ECDataExplorer.

There is an option is to provide start and end dates to show only part of the time period for which data exists and the plot is annotated to indicate this. Counts of missing observations is also provided in the legend.

Usage

```
ch_qa_hydrograph(
   DF,
   st_date = NULL,
   end_date = NULL,
   cts = TRUE,
   rescale = FALSE,
   metadata = NULL
)
```

Arguments

DF	$Data\ frame\ retrieved\ from\ ECD ataExplorer\ as\ returned\ by\ the\ function\ ch_read_ECDE_flows.$
st_date	Optional start date in the form 'yyyy-mm-dd'. Default is NULL.
end_date	Optional end date in the form 'yyyy-mm-dd'. Default is NULL.
cts	If TRUE (the default) shows the counts of SYM in the legend. If FALSE the counts are omitted as in ECDE.

rescale If FALSE (the default), the y-axis scaling is determined by the time period. If

TRUE then determined by the whole dataset.

metadata a dataframe of station metadata, default is HYDAT_list.

Value

Produces a plot and returns a list that contains:

station name or title used

st_date starting date end_date ending data

n the number of data points
sym_count summary of the SYM counts
missing number of missing data

Author(s)

Paul Whitfield

Examples

```
m_test <- ch_qa_hydrograph(CAN05AA008)
m_test <- ch_qa_hydrograph(CAN05AA008, st_date="1980-01-01", end_date="1999-12-31")</pre>
```

ch_read_AHCCD_daily Reads AHCCD daily file

Description

This program reads an Adjusted and Homogenized Canadian Climate Data (AHCCD) of daily precipitation or temperatures. The values are arranged as month x day, which makes them difficult to read using standard R functions.

Usage

```
ch_read_AHCCD_daily(daily_file)
```

Arguments

daily_file Required. Name of the file to be read.

Value

If successful, returns the values in a data frame, consisting of the date, the value and the data code.

Author(s)

Kevin Shook

References

Daily AHCCD data are available from http://crd-data-donnees-rdc.ec.gc.ca/CDAS/products/EC_data/AHCCD_daily/. Any use of the data must cite Mekis, E and L.A. Vincent, 2011: An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean, 49 (2), 163-177.

See Also

```
ch_read_AHCCD_monthly ch_get_AHCCD_monthly
```

Examples

```
# Not tested automatically as requires a file
stoon_daily_tmax <- ch_read_AHCCD_daily("dx40657120.txt")</pre>
```

```
ch_read_AHCCD_monthly Reads AHCCD monthly file
```

Description

This program reads an Adjusted and Homogenized Canadian Climate Data (AHCCD) data of precipitation or temperatures. The values are arranged as year x month, which makes them difficult to read using standard R functions.

Usage

```
ch_read_AHCCD_monthly(monthly_file = NULL)
```

Arguments

```
monthly_file Required. Name of the file to be read.
```

Value

If successful, returns the values in a dataframe, consisting of the year, the month, the value and the data code.

Author(s)

Kevin Shook

References

Any use of the data must cite Mekis, E and L.A. Vincent, 2011: An overview of the second generation adjusted daily temperature and precipitation dataset for trend analysis in Canada. Atmosphere-Ocean, 49 (2), 163-177.

See Also

```
ch_read_AHCCD_daily ch_get_AHCCD_monthly
```

Examples

```
# Not tested automatically as requires a file
Stoon_monthly_precip <- ch_read_AHCCD_monthly("mt4057120.txt")
NB_monthly_tmean <- ch_read_AHCCD_monthly("mm4045695.txt")</pre>
```

ch_read_ECDE_flows

Reads a file of WSC daily flows from ECDataExplorer (ECDE)

Description

Reads in a file WSC daily flows as returned from the Windows program ECDataExplorer, converts the Date, and omits the last 3 lines as these contain the data disclaimer and not data.

Usage

```
ch_read_ECDE_flows(filename)
```

Arguments

filename

Datafile retrieved from ECDataExplorer.

Value

Returns a dataframe with the last three rows removed:

ID stationID

PARAM Parameter 1 for Flow 2 for Level

Date original charater string converted to date format

Flow Daily mean flow m³/sec

SYM Quality flag

Author(s)

Paul Whitfield

ch_regime_plot 43

Examples

```
# Using a dummy file name as an example
mfile <- "04JD005_Daily_Flow_ts.csv"
mdata <- ch_read_ECDE_flows(mfile)</pre>
```

ch_regime_plot

Plots the regime of daily streamflows using quantiles

Description

Produces a regime hydrograph similar to that in the reference. It shows the flow quantiles for each day of the year and the maximum and minimum. Parameters can be set to change colours and set the y-scale to allow plots of same scale to be produced.

Usage

```
ch_regime_plot(
   DF,
   wyear = 1,
   colour = TRUE,
   mx = 1,
   metadata = NULL,
   quant = c(0.95, 0.9, 0.75, 0.5, 0.25, 0.1, 0.05)
)
```

Arguments

DF	data frame of daily flow data
wyear	set wyear = 10 for October, water year = 1 for calendar year, can be any month
colour	if TRUE plot is in colour, if FALSE plot is grayscale.
mx	set the maximum y value; if = 1 then maximum value of the flows is used to set
metadata	a data frame of metadata, defaults to HYDAT_list. the y-axis value. The value of mx can be specified to produce a series of plots with the same scale.
quant	quantiles; default is quant = $c(0.95, 0.9, 0.75, 0.5, 0.25, 0.1, 0.05)$. Can be changed but the length must be 7 and the 4th value must be 0.5 (median)

Value

No value is returned; a standard R graphic is created.

Author(s)

Paul Whitfield

ch_rfa_distseason

References

MacCulloch, G. and P. H. Whitfield (2012). Towards a Stream Classification System for the Canadian Prairie Provinces. Canadian Water Resources Journal 37: 311-332.

Examples

```
data(CAN05AA008)
ch_regime_plot(CAN05AA008, colour = TRUE, wyear = 1)
```

ch_rfa_distseason

Distance in seasonal space

Description

Calculates a matrix of distances between points in the seasonal space that characterizes timing and regularity. It is equivalent to Euclidean distance applied to regularity (radius) and timing (angle) separately.

Usage

```
ch_rfa_distseason(x, ...)
## S3 method for class 'numeric'
ch_rfa_distseason(x, a, w = 1/pi, ...)
## S3 method for class 'data.frame'
ch_rfa_distseason(x, w = 1/pi, ...)
## S3 method for class 'formula'
ch_rfa_distseason(form, x, w = 1/pi, ...)
```

Arguments

x, a	Coordinates in the seasonal space. Can be a data.frame or vectors with radius \boldsymbol{x} and angle a.
	Other parameters.
W	Weight to favor angle over radius. By default it is 1/pi, which bring angle in the interval [0,1].
form	Formula and dataset providing the coordinates of the seasonal space. Must be of the form radius ~ angle.

Value

Returns a matrix of distances between points in the seasonal space that characterizes timing and regularity.

ch_rfa_extractamax 45

Author(s)

Martin Durocher

References

Durocher, M., Burn, D. H., & Ashkar, F. (2019). Comparison of estimation methods for a nonstationary index-flood model in flood frequency analysis using peaks over threshold. https://doi.org/10.31223/osf.io/rnepc

See Also

```
ch_rfa_seasonstat
```

Examples

ch_rfa_extractamax

Extracts the annual maxima of a daily time series

Description

Extracts the annual maxima of a daily time series

Usage

```
ch_rfa_extractamax(x, ...)
## S3 method for class 'formula'
ch_rfa_extractamax(form, x, tol = 0, ...)
## Default S3 method:
ch_rfa_extractamax(x, tol = 0, nlab = "n", ylab = "yy", ...)
```

Arguments

х	Data. If no formula is passed, the first column must be the value and the second the date.
	Other parameters.
form	Formula of the form value ~ date that specifies the variable from which the annual maximums are extracted and a date variable.
tol	Filter the years having less than tol days.
nlab, ylab	Names for the added columns representing respectively the number of yearly observations and the year. If set to NULL the given column is not added.

ch_rfa_julianplot

Value

Returns a data frame containing the annual (Monthly) maxima, the date and the number of observations during the year.

Author(s)

Martin Durocher

Examples

```
out <- ch_rfa_extractamax(flow ~ date, flowStJohn, tol = 350)
head(out)</pre>
```

ch_rfa_julianplot

Circular plotting by day of year

Description

Create axis for plotting circular statistics in a unitary circle.

Usage

```
ch_rfa_julianplot(
  rose.col = "gray40",
  rose.lwd = 1.5,
  rose.cex = 1.5,
  rose.radius = seq(0.25, 1, 0.25),
  ...
)
```

Arguments

```
rose.col, rose.lwd, rose.cex
Properties of the polar axes.

rose.radius
Vector of the position of the circular axis.

Other parameter passed to points.
```

Value

Returns a empty rose plot by day of year

Author(s)

Martin Durocher

ch_rfa_seasonstat 47

See Also

```
ch_rfa_seasonstat.
```

Examples

```
data(flowAtlantic)
ss <- ch_rfa_seasonstat(date ~ id, flowAtlantic$ams)
ch_rfa_julianplot()
points(y ~ x, ss, pch = 16, col = cut(ss[,'radius'], c(0,.5,.75,1)))</pre>
```

ch_rfa_seasonstat

Seasonal statistics for flood peaks

Description

Return the circular or seasonal statistics of flood peaks. The angle represents the mean timing of the floods and the radius its regularity. For example, a radius of one represents perfect regularity. Can perform the analyses on multiple sites.

Usage

```
ch_rfa_seasonstat(x, ...)
## S3 method for class 'data.frame'
ch_rfa_seasonstat(x, ...)
## S3 method for class 'formula'
ch_rfa_seasonstat(form, x, ...)
```

site.

Arguments

Data. If data.frame with two columns, they must be respectively the date and a site variable.
 Other parameters.
 Formula that specifies the date and site variable. Must be of the form date ~

Value

Returns the circular or seasonal statistics of flood peaks.

Author(s)

Martin Durocher

48 ch_slice

References

Burn, D.H. (1997). Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of Hydrology 202, 212-230. https://doi.org/10.1016/S0022-1694(97)00068-1

See Also

```
ch_rfa_distseason
```

Examples

```
dt <- ch_rfa_extractamax(flow~date, flowStJohn)$date
ch_rfa_seasonstat(dt)
## Illustration of the analysis of multiple sites
F0 <- function(ii) data.frame(site = ii, dt = sample(dt, replace = TRUE))
x <- lapply(1:10, F0)
x <- do.call(rbind, x)

st <- ch_rfa_seasonstat(dt ~ site, x)
ch_rfa_julianplot()
points(y ~ x, st, col = 2, pch = 16)</pre>
```

ch_slice

Converts doy or dwy into a factor that is used to bin data

Description

Converts a series of a variable such as day of year into numbered bins. Whenever the number of bins does not divide in 365 evenly a message showing the number of bins created and the number of days added to the last bin is provided.

Simply put, ch_slice is used to convert doy into a factor which is a number of bins per year. A year can be converted into any number of bins; slice does it based upon a number of days. So when you send it an array of doy it slices that into bins of the desired width. For example, if the step is 5. They 365/5 gives 73 bins and because of leap years there might be one extra day added every four years to the final bin.

To illustrate for a bin of 5 days: doy: 1 2 3 4 5 6 7 8 9 10 11 12 Bin: 1 1 1 1 1 2 2 2 2 2 3 3

Usage

```
ch_slice(doy, step)
```

Arguments

doy A vector of the day of calendar year for the dataset

step Width of bin in days

ch_sub_set_Years 49

Value

Returns a vector of bin numbers that is used as a factor for each day in the dataset and provides a message indicating the handling of partial bins

Author(s)

Paul Whitfield, Kevin Shook

See Also

```
ch_binned_MannWhitney ch_flow_raster_trend
```

Examples

```
doy <- c(1:365)
# first 30 days are 1, 31-60 are 2 etc
dice <- ch_slice(doy, 30)
plot(doy, dice)</pre>
```

ch_sub_set_Years

Helper function for selecting points for an axis

Description

Sub-samples a vector every n places. Many times there are so many years the labels on the plot overlap. ch_sub_set_years returns the position and label for the subset. The function can be used on any type of simple array.

Usage

```
ch_sub_set_Years(years, n)
```

Arguments

```
years a vector of years
n sample size
```

Value

a list containing:

position array of axis positions label array of labels

Author(s)

Paul Whitfield

Examples

```
myears <- c(1900:2045)
myears <- ch_sub_set_Years(myears, 20)
myears

a <- LETTERS
my_alpha <- ch_sub_set_Years(a, 5)
my_alpha</pre>
```

ch_tidyhydat_ECDE

Converts a tidyhydat daily flow data tibble to ECDE format

Description

Accessing daily flow data using **tidyhydat** is quick and efficient. However, it sometimes conflicts with other functions as **tidyhydat** changes variable names and some default entries. This function converts a tibble obtained from a **tidyhydat** tibble to a dataframe with standard Environment and Climate Change Canada Data Explorer (ECDE) names.

Usage

```
ch_tidyhydat_ECDE(data)
```

Arguments

data

Tibble of daily flows retrieved using **tidyhydat** function hy_daily_flows.

Value

A dataframe or a list of flows with formats consistent with datafiles read using ch_read_ECDE_flows:

ID stationID

PARAM Parameter 1 for Flow 2 for Level

Date original charater string converted to date format

Flow Daily mean flow m³/sec

SYM Quality flag

Author(s)

Paul Whitfield

See Also

```
ch_tidyhydat_ECDE_meta
```

Examples

```
library(tidyhydat)
mdata <- hy_daily_flow(station_number=c("05CK004"))
m_data <- ch_tidyhydat_ECDE(mdata)

mdata <- hy_daily_flows(station_number=c("05CK004","08MF005","05BB001"))
mnew <- ch_tidyhydat_ECDE(mdata)
str(mnew[[1]])
str(mnew[[2]])
str(mnew[[3]])
#note the order is in increasing alphabetical order</pre>
```

ch_tidyhydat_ECDE_meta

Creates an ECDE-like dataframe of metadata from tidyhydat

Description

Extracts tombstone (meta) data for stations from **tidyhydat** in a format similar to that used by the Environment Canada Data Explorer (ECDE). The default does not capture all the fields in ECDE, which includes the most recent status of many fields such as operating schedule. Returning these values slows the function, particularly when all WSC stations are selected.

Usage

```
ch_tidyhydat_ECDE_meta(stations, all_ECDE = FALSE)
```

Arguments

stations

A vector of WSC station IDs, i.e. c("05BB001", "05BB003", "05BB004", "05BB005"). If stations = "all" then values are returned for all stations. Note that you should ensure that that the **tidyhydat** database is up to date, if you select stations = "all", so that the most recent set of stations is used.

all_ECDE

Should all ECDE values be returned? If FALSE the default, then values of Flow, Level, Sed, OperSched, Region, Datum, and Operator are omitted or will differ from the ECDE values. If all_ECDE = TRUE, then the function will return values identical to ECDE. Note that setting all_ECDE = TRUE will result in very long execution times, as it is necessary to extract many daily values for each station to determine the values of Flow, Level, Sed, and OperSched to determine the final values.

Value

Returns a list with three items:

• meta - a dataframe of metadata from **tidyhydat** in ECDE form (not all ECDE fields are reproduced in this summary)

- H_version version information, and
- th_meta a dataframe with all **tidyhdat** fields including:
 - Station StationID
 - StationName Station Name
 - HYDStatus Active or Discontinued
 - Prov Province
 - Latitude
 - Longitude
 - DrainageArea km²
 - Years number of years with data
 - From Start Year
 - To End Year
 - Reg. Regulated?
 - Flow not captured (differs from ECDE), unless all_ECDE = TRUE
 - Level not captured (differs from ECDE), unless all_ECDE = TRUE
 - Sed not captured (differs from ECDE), unless all_ECDE = TRUE
 - OperSched not captured (differs from ECDE), unless all_ECDE = TRUE
 - RealTime if TRUE/Yes
 - RHBN if TRUE/Yes is in the reference hydrologic basin network
 - Region number of region instead of name (differs from ECDE), unless all_ECDE = TRUE
 - Datum reference number (differs from ECDE), unless all_ECDE = TRUE
 - Operator reference number (differs from ECDE), unless all_ECDE = TRUE

Author(s)

Paul Whitfield, Kevin Shook

See Also

```
ch_get_ECDE_metadata ch_tidyhydat_ECDE
```

```
# This example requires \pkg{tidyhydat} to be installed
# the \code{HYDAT} database, which makes automatic checking slow
stations <- c("05BB001", "05BB003", "05BB004", "05BB005")
result <- ch_tidyhydat_ECDE_meta(stations)
metadata <- result[[1]]
version <- result[[2]]

# This example is not run, as it can take over an hour to execute
# It is intended to be used by the package maintainers to update \code{HYDAT_list}
result <- ch_tidyhydat_ECDE_meta("all", TRUE)
HYDAT_list <- result$meta</pre>
```

ch_volcano_pourpoints

Description

Creates a file of pour points for the volcano DEM. The pour points define the outlets of sub-basins. These pour points are used by examples within other functions.

Usage

```
ch_volcano_pourpoints(pp_shp)
```

Arguments

pp_shp

Name for shapefile to hold pour points

Value

Returns an **sf** object containing 2 pour points for the volcano DEM. The pour points are also written to the specified file.

Author(s)

Dan Moore and Kevin Shook

See Also

```
ch_volcano_raster ch_wbt_pourpoints
```

Examples

```
pourpoint_file <- tempfile("volcano_pourpoints", fileext = c(".shp"))
pourpoints <- ch_volcano_pourpoints(pourpoint_file)
plot(pourpoints)</pre>
```

ch_volcano_raster

Create Test Raster

Description

Creates a **raster** object of land surface elevations, as used to test/demonstrate many functions requiring a digital elevation model (DEM).

Usage

```
ch_volcano_raster()
```

54 ch_wbt_catchment

Details

No arguments are required as the DEM is created from the base volcano matrix of elevations.

Value

Returns a raster object of land surface elevations.

Author(s)

Dan Moore and Kevin Shook

Examples

```
test_raster <- ch_volcano_raster()</pre>
```

ch_wbt_catchment

Delineate catchment boundaries

Description

Delineate catchment boundaries

Usage

```
ch_wbt_catchment(
   fn_pp_snap,
   fn_flowdir,
   fn_catchment_ras,
   fn_catchment_vec,
   return_vector = TRUE
)
```

Arguments

```
fn_pp_snap Name of file containing snapped pour points

fn_flowdir Name of file containing flow accumulations.

fn_catchment_ras

Raster file to contain delineated catchment.

fn_catchment_vec

Vector file to contain delineated catchment.

return_vector If TRUE (the default) a vector of the catchment will be returned.
```

Value

If return_vector = TRUE a vector of the catchement is returned. Otherwise nothing is returned.

Author(s)

Dan Moore and Kevin Shook

See Also

```
ch_wbt_catchment_onestep
```

Examples

```
library(raster)
test_raster <- ch_volcano_raster()</pre>
dem_raster_file <- tempfile(fileext = ".tif")</pre>
no_sink_raster_file <- tempfile("no_sinks", fileext = ".tif")</pre>
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")</pre>
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = ".tif")</pre>
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)</pre>
# get pour points
pourpoint_file <- tempfile("volcano_pourpoints", fileext = ".shp")</pre>
pourpoints <- ch_volcano_pourpoints(pourpoint_file)</pre>
snapped_pourpoint_file <- tempfile("snapped_pourpoints", fileext = ".shp")</pre>
snapped_pourpoints <- ch_wbt_pourpoints(pourpoints, flow_acc_file, pourpoint_file,</pre>
snapped_pourpoint_file, snap_dist = 10)
# get flow directions
flow_dir_file <- tempfile("flow_dir", fileext = ".tif")</pre>
flow_dir <- ch_wbt_flow_direction(no_sink_raster_file, flow_dir_file)</pre>
fn_catchment_ras <- tempfile("catchment", fileext = ".tif")</pre>
fn_catchment_vec <- tempfile("catchment", fileext = ".shp")</pre>
catchments <- ch_wbt_catchment(snapped_pourpoint_file, flow_dir_file,</pre>
fn_catchment_ras, fn_catchment_vec)
```

ch_wbt_catchment_onestep

Delineates a catchment in a single step

Description

Calls all of the ch_wbt and other functions required to do the sub-tasks required to delineate a catchment. The names of files to be created are taken from the list created by the function ch_wbt_filenames.

Usage

```
ch_wbt_catchment_onestep(
  wd,
  in_dem,
  pp_sf,
  sink_method = "breach_leastcost",
  dist = NULL,
  check_catchment = TRUE,
  threshold = NULL,
  snap_dist = NULL,
  cb_colour = "red",
  pp_colour = "red",
  channel_colour = "blue",
  contour_colour = "grey",
  plot_na = TRUE,
  plot_scale = TRUE,
  na_location = "tr",
  scale_location = "bl",
)
```

Arguments

wd Name of working directory.
in_dem File name for original DEM.
pp_sf Vector containing pour points.

sink_method Method for sink removal as used by ch_wbt_removesinks.

dist Maximum search distance for breach paths in cells. Required if sink_method =

"breach_leastcost".

check_catchment

If TRUE (the default) ch_checkcatchment will be called after the catchment is

created.

threshold Threshold for channel initiation.

snap_dist Maximum pour point snap distance in map units.

cb_colour Colour for catchment outline. Default is "red".

pp_colour Colour for catchment pour points. Default is "red".

channel_colour Colour for channel. Default is "blue". contour_colour Colour for contours Default is "grey".

plot_na If TRUE (the default) a north arrow is added to the plot.
plot_scale If TRUE (the default) a scale bar is added to the plot.

na_location Location for the north arrow. Default is 'tr', i.e. top-right. scale_location Location for the scale bar. Default is 'bl', i.e. bottom-left.

... Extra parameters for ch_wbt_removesinks.

ch_wbt_channels 57

Value

Returns an **sp** object of the delineated catchment.

Author(s)

Dan Moore and Kevin Shook

See Also

```
ch_wbt_filenames
```

Examples

```
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = c(".tif"))
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
wd <- tempdir()
pourpoint_file <- tempfile("volcano_pourpoints", fileext = ".shp")
pourpoints <- ch_volcano_pourpoints(pourpoint_file)
catchment <- ch_wbt_catchment_onestep(wd = wd, in_dem = dem_raster_file,
pp_sf = pourpoints, sink_method = "fill", threshold = 1, snap_dist = 10)</pre>
```

ch_wbt_channels

Generate stream network

Description

Generate stream network

Usage

```
ch_wbt_channels(
   fn_flowacc,
   fn_flowdir,
   fn_channel_ras,
   fn_channel_vec,
   threshold = NULL,
   ...
)
```

Arguments

```
fn_flowaccfn_flowdirfile name for flow direction grid.fn_channel_rasFile name for raster version of channel network.
```

58 ch_wbt_filenames

fn_channel_vec File name for vector version of channel networks. threshold Threshold for channel initiation. Other parameters for whitebox function wbt_extract_streams

Value

. . .

Returns a sf vector object of the stream channels.

Author(s)

Dan Moore

Examples

```
library(raster)
test_raster <- ch_volcano_raster()</pre>
dem_raster_file <- tempfile(fileext = c(".tif"))</pre>
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))</pre>
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = c(".tif"))</pre>
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)</pre>
# get flow directions
flow_dir_file <- tempfile("flow_dir", fileext = c(".tif"))</pre>
flow_dir <- ch_wbt_flow_direction(no_sink_raster_file, flow_dir_file)</pre>
channel_raster_file <- tempfile("channels", fileext = c(".tif"))</pre>
channel_vector_file <- tempfile("channels", fileext = c(".shp"))</pre>
channels <- ch_wbt_channels(flow_acc_file, flow_dir_file, channel_raster_file,</pre>
channel_vector_file, 1)
plot(channels)
```

ch_wbt_filenames

Creates names for Whitebox function input and output files

Description

Creates a list of the files used for inputs and outputs by the Whitebox functions. This function needs to be called before calling any of the other Whitebox (i.e. those prefixed by cd_wbt) functions. If the file names are not specified, default names will be used. All raster files are TIFF (.tif), all vector files are shapefiles (.shp).

ch_wbt_filenames 59

Usage

```
ch_wbt_filenames(
   wd = NULL,
   fn_dem = "dem.tif",
   fn_dem_fsc = "dem_fsc.tif",
   fn_dem_ns = "dem_ns.tif",
   fn_flowacc = "flow_acc.tif",
   fn_flowdir = "flow_dir.tif",
   fn_channel_ras = "channel.tif",
   fn_channel_vec = "channel.shp",
   fn_catchment_ras = "catchment.tif",
   fn_catchment_vec = "catchment.shp",
   fn_pp = "pp.shp",
   fn_pp_snap = "pp_snap.shp"
)
```

Arguments

wd	Required. Name of working directory.	
fn_dem	File name of input DEM. Default is 'dem.tif'.	
fn_dem_fsc	File name for dem after filling single-cell pits. Default is 'dem_fsc.tif'.	
fn_dem_ns	File name for dem removing sinks. Default is 'dem_ns.tif'.	
fn_flowacc	File name for DEM flow accumulation grid Default is 'flow_acc.tif'.	
fn_flowdir	File name for DEM flow direction grid. Default is 'flow_dir.tif'.	
<pre>fn_channel_ras</pre>	File name for raster version of channel network. Default is 'channel.tif'.	
<pre>fn_channel_vec</pre>	File name for vector version of channel networks. Default is 'channel.shp'.	
fn_catchment_ras		
	File name for raster version of catchment. Default is 'catchment.tif'.	
fn_catchment_vec		
	File name for vector version of catchment. Default is 'catchment.shp'.	
fn_pp	File name for pour points (input). Vector file. Default is 'pp. shp'.	
fn_pp_snap	File name for pour points after snapping to channel network. Vector file. Default is 'pp. shp'.	

Value

Returns a list of the input and output file names

Author(s)

Dan Moore

```
wbt_file_names <- ch_wbt_filenames(getwd())</pre>
```

```
ch_wbt_flow_accumulation
```

Creates flow accumulation grid file

Description

Creates flow accumulation grid file

Usage

```
ch_wbt_flow_accumulation(fn_dem_ns, fn_flowacc, return_raster = TRUE)
```

Arguments

fn_dem_ns File name of dem with sinks removed.

fn_flowacc File name for flow accumulation grid to be created.

object, in addition to being written to 'fn_flowacc'. If FALSE, the output file

will still be created but a NULL value is returned.

Value

If return_raster = TRUE, the flow accumulation grid will be returned as a raster object, otherwise NULL is returned.

Author(s)

Dan Moore

```
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = c(".tif"))
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = c(".tif"))
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)
plot(flow_acc)</pre>
```

ch_wbt_flow_direction 61

ch_wbt_flow_direction Creates flow direction grid file

Description

Creates flow direction grid file

Usage

```
ch_wbt_flow_direction(fn_dem_ns, fn_flowdir, return_raster = TRUE)
```

Arguments

fn_dem_ns File name of dem with sinks removed.

fn_flowdir File name for flow direction grid to be created.

return_raster Should a raster object be returned?

Value

If return_raster = TRUE (the default), the flow direction grid will be returned as a raster object, in addition to being written to 'fn_flowdir'. If return_raster = FALSE, the output file will still be created but a NULL value is returned.

Author(s)

Dan Moore

```
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = c(".tif"))
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")
# get flow directions
flow_dir_file <- tempfile("flow_dir", fileext = c(".tif"))
flow_dir <- ch_wbt_flow_direction(no_sink_raster_file, flow_dir_file)
plot(flow_dir)</pre>
```

62 ch_wbt_pourpoints

ch_wbt_pourpoints

Snap pour points to channels

Description

Pour points describe the outlets of sub-basins within a DEM. To use the pour points to delineate catchments, they must align with the drainage network. This function snaps (forces the locations) of pour points to the channels.

Usage

```
ch_wbt_pourpoints(
   pp_sf = NULL,
   fn_flowacc,
   fn_pp,
   fn_pp_snap,
   check_crs = TRUE,
   snap_dist = NULL,
   ...
)
```

Arguments

pp_sf	sf object containing pour points. These must be supplied by the user. See the code in ch_volcano_pourpoints for an example of creating the object.	
fn_flowacc	Name of file containing flow accumulations.	
fn_pp	File name to create un-snapped pour points.	
fn_pp_snap	File name for snapped pour points.	
check_crs	If TRUE the projections of the pour points and flow accumulation files will be checked to ensure they are identical.	
snap_dist	Maximum snap distance in map units.	
	Additional parameters for whitebox function wbt_snap_pour_points.	

Value

Returns a sf object of the specified pour points snapped to the channel network.

Author(s)

Dan Moore

See Also

```
ch_volcano_pourpoints
```

ch_wbt_removesinks 63

Examples

```
library(raster)
test_raster <- ch_volcano_raster()</pre>
dem_raster_file <- tempfile(fileext = c(".tif"))</pre>
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))</pre>
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")</pre>
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = c(".tif"))</pre>
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)</pre>
# get pour points
pourpoint_file <- tempfile("volcano_pourpoints", fileext = c(".shp"))</pre>
pourpoints <- ch_volcano_pourpoints(pourpoint_file)</pre>
snapped_pourpoint_file <- tempfile("snapped_pourpoints", fileext = c(".shp"))</pre>
snapped_pourpoints <- ch_wbt_pourpoints(pourpoints, flow_acc_file, pourpoint_file,</pre>
snapped_pourpoint_file, snap_dist = 10)
```

ch_wbt_removesinks

Removes sinks from a DEM

Description

Sinks are removed from a DEM using one of several methods. The raster file types supported are listed in SpatialHydrology-functions.

Usage

```
ch_wbt_removesinks(
  in_dem,
  out_dem,
  method = "breach_leastcost",
  dist = NULL,
  fn_dem_fsc = NULL,
  ...
)
```

Arguments

ch_wtr_yr

Value

Returns a raster object containing the processed dem.

Author(s)

Dan Moore

Examples

```
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = c(".tif"))
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")</pre>
```

ch_wtr_yr

Designation of the water year

Description

Display water year

Usage

```
ch_wtr_yr(dates, start_month = 10)
```

Arguments

dates A vector of dates with actual year

start_month Month in which the year starts (defaults to October)

Value

Year starting in start_month

Source

http://stackoverflow.com/questions/27626533/r-create-function-to-add-water-year-column

```
date <- seq(as.Date("1910/1/1"), as.Date("1912/1/1"), "days")
wtr_yr_date <- ch_wtr_yr(dates=date, start_month=10)
data.frame(wtr_yr_date, date)</pre>
```

flowAtlantic 65

flowAtlantic

Annual maxima from sites in the Atlantic region of Canada

Description

Contains the annual maxima of 45 hydrometric stations found in the region '01' of Water Survey of Canada. In additional to the annual maxima, the output list includes catchment descriptors (longitude, latitude, basin area, mean annual precipitation) and the geographical distance between each station.

Usage

flowAtlantic

Format

An object of class list of length 2.

Author(s)

Martin Durocher

Source

https://wateroffice.ec.gc.ca/

flowStJohn

Streamflow data

Description

Daily river discharge for the station 01AD002 on St. John River at Fort Kent, New Brunswick. Data ranges from 1926 to 2014, for basin area of 14700 sq km.

Usage

flowStJohn

Format

An object of class data. frame with 32234 rows and 2 columns.

Author(s)

Martin Durocher

66 HYDAT_list

Source

https://wateroffice.ec.gc.ca/

HYDAT_list

List of Water Survey of Canada hydrometic stations.

Description

A dataframe of station information, as extracted from HYDAT using ECDataExplorer.

Usage

 ${\tt HYDAT_list}$

Format

A dateframe with a row for each station and 20 columns.

Details

Variables:

Station StationID

StationName Station Name

HYDStatus Active or Discontinued

Prov Province

Latitude

Longitude

DrainageArea km²

Years Number of years with data

From Start Year

To End Year

Reg. Regulated

Flow If TRUE/Yes

Level If TRUE/Yes

Sed If TRUE/Yes

OperSched Continuous or Seasonal

RealTime If TRUE/Yes

RHBN If TRUE/Yes the station is in the reference hydrologic basin network

Region ECCC Region **Datum** Reference datum

Operator Operator

Source

Water Survey of Canada

SpatialHydrology-functions

Spatial Hydrology functions

Description

These functions perform spatial analyses important in hydrology. All of the functions with the prefix ch_wbt require the installation of the package **Whitebox**. The functions include

ch_wbt_removesinks Removes sinks from a DEM by deepening drainage network

ch wbt fillsinks Removes sinks from a DEM by filling them

ch_wbt_catchment Generates catchment boundaries for a conditioned DEM based on specified points of interest

ch_wbt_channels Generates a drainage network from DEM

ch_wbt_flow_accumulation Accumulates flows downstream in a cathement

ch_wbt_flow_direction Calcualted flow directions for each cell in DEM

ch_wbt_pourpoints Snaps pour points to channel

ch_wbt_catchment_onestep Performs all catchment delineations in a single function

ch_contours Creates contour lines from DEM

ch_checkcatchment Provides a simple map to check the outputs from ch_saga_catchment

ch_checkchannels Provides a simple map to check the outputs from ch_saga_channels

ch_kml_checkcatchment Generates KML file to check delineation in Google Earth

ch_volcano_raster Returns a raster object of land surface elevations

The **Whitebox** functions support the following file types for raster data:

type extension

GeoTIFF *.tif, *.tiff

Big GeoTIFF *.tif, *.tiff

Esri ASCII *.txt, *.asc

Esri BIL *.flt, *.hdr

GRASS ASCII *.txt, *.asc

Idrisi *.rdc, *.rst

SAGA Binary *.sdat, *.sgrd

Surfer ASCII *.grd

Surfer Binary *.grd

Whitebox *.tas, *.dep

68 Visualization-functions

StatisticalHydrology-functions

Statistical analysis functions

Description

These functions perform statistical analyses

ch_binned_MannWhitney Compares two time periods of data using Mann-Whitney test

ch_fdcurve Finds flow exceedence probabilities

ch_get_peaks Finds peak flows over a specified threshold

Visualization-functions

Visualization functions

Description

These functions are primarily intended for graphing, although some analyses may also be done.

ch_booth_plot Plot of peaks over a threshold

ch_flow_raster Raster plot of streamflows

ch_flow_raster_qa Raster plot of streamflows with WSC quality flags

ch_flow_raster_trend Raster plot and simple trends of observed streamflows

ch_hydrograph_plot Plots hydrographs and/or precipitation

ch_polar_plot Polar plot of daily streamflows

ch_regime_plot Plots the regime of daily streamflows

Index

* datasets	ch_get_wscstation, 31
CAN05AA008, 5	ch_hydrograph_plot, 32
flowAtlantic, 65	ch_kml_checkcatchment, 34
flowStJohn, 65	ch_polar_plot, 7, 36, 39
HYDAT_list, 66	ch_polar_plot_prep, 7, 37, 37
* data	ch_qa_hydrograph, 39
ch_date_subset, 18	ch_read_AHCCD_daily, 27, 40, 42
* date	ch_read_AHCCD_monthly, 27, 41, 41
ch_date_subset, 18	ch_read_ECDE_flows, 22, 23, 42
* plot	$ch_regime_plot, 6, 43$
<pre>ch_booth_plot, 8</pre>	ch_rfa_distseason,44,48
<pre>ch_flow_raster_trend, 24</pre>	ch_rfa_extractamax,45
ch_polar_plot, 36	ch_rfa_julianplot,46
* subset	ch_rfa_seasonstat, <i>45</i> , <i>47</i> , 47
ch_date_subset, 18	ch_slice,48
	ch_sub_set_Years, 49
Basic_data_manipulation-functions, 4	ch_tidyhydat_ECDE, 50, 52
	ch_tidyhydat_ECDE_meta, 50, 51
CAN05AA008, 5	ch_volcano_pourpoints, 53, 62
ch_axis_doy, 5	ch_volcano_raster, 53, 53
ch_binned_MannWhitney, 6, <i>37</i> , <i>39</i> , <i>49</i>	ch_wbt_catchment, 54
ch_booth_plot, 8, 29	<pre>ch_wbt_catchment_onestep, 55, 55</pre>
ch_catchment_hyps, 9	ch_wbt_channels, 57
ch_checkcatchment, 11, 14	ch_wbt_filenames, 57, 58
ch_checkchannels, 12, 13	<pre>ch_wbt_flow_accumulation, 60</pre>
ch_clear_wd, 15, 17	<pre>ch_wbt_flow_direction, 61</pre>
ch_contours, 16	ch_wbt_pourpoints, 53, 62
ch_create_wd, <i>15</i> , 17	ch_wbt_removesinks, 63
ch_cut_block, 17	ch_wtr_yr,64
ch_date_subset, 18	CSHShydRology-package, 3
ch_decades_plot, 7, 19, 19	
ch_doys, 20	flowAtlantic, 65
ch_fdcurve, 21	flowStJohn, 65
ch_flow_raster, 22, 23, 25	
ch_flow_raster_qa, 22, 23	HYDAT_list, 66
ch_flow_raster_trend, 22, 23, 24, 49	
ch_get_AHCCD_monthly, 26, 41, 42	points, 46
ch_get_ECDE_metadata, 27, 52	
ch_get_peaks, 8, 28	SpatialHydrology-functions, 67
ch_get_url_data, 30	StatisticalHydrology-functions, 68

70 INDEX

Visualization-functions, 68