

BMAT201L - Complex Variables and Linear Algebra Module - 1 Tutorial Sheet 2

- 1. Let a, b, c are real constants. Determine the relation among the coefficients that will guarantee that the function $\phi(x) = ax^2 + bxy + cy^2$ is harmonic.
- 2. Does an analytic function f(z) = u(x, y) + iv(x, y) exists for which $v(x, y) = x^3 + y^3$? Why?
- 3. Let $u_1(x,y) = x^2 y^2$ and $u_2(x,y) = x^3 3xy^2$. Show that u_1 and u_2 are harmonic functions and their product $u_1(x,y)u_2(x,y)$ is not harmonic function.
- 4. Use polar form of Laplace equation to show that $u(r,\theta) = (r+1/r)\cos(\theta)$ and $v(r,\theta) = (r-1/r)\sin(\theta)$ are harmonic functions. (**Hint**: The polar form of Laplace equation is given by $r^2r_{rr} + ru_r + u_{\theta,\theta} = 0$).
- 5. The function F(z) = 1/z is used to determine a field known as dipole. Express F(z) in the form $F(z) = \phi(x,y) + i\psi(x,y)$ and sketch the equipotentials $\phi = 1, 1/2, 1/4$ and the streamlines $\psi = 1, 1/2, 1/4$.
- 6. Show that $\phi = x^2 y^2 + \frac{x}{x^2 + y^2}$ can represent the velocity potential in an incompressible fluid flow. Also find the corresponding stream function and complex potential.
- 7. Show that the equation $x^3y xy^3 + xy + x + y = c$ can represent the path of electric current flow in an electric field. Also find the complex electric potential and the equation of the potential lines.
- 8. Find the analytic function P + iQ, if $P Q = \frac{\sin(2x)}{\cosh(2y) \cos(2x)}$.
- 9. Find the analytic function f(z) = u + iv if $v = \frac{\sin(x)\sinh(y)}{\cos(2x) + \cosh(2y)}$ if f(0) = 1.
- 10. Verify that the family of curves $u = c_1$ and $v = c_2$ cut orthogonally, when w = 1/z.