# Computer Networks - Hoofdstuk 6 - Data Link Layer

# Purpose of the Data Link Layer

- De Data Link Laag is verantwoordelijk voor de communicatie tussen end-devices en netwerk interface cards.
- Het staat hogere laag protocollen toe om het medium van de fysieke data laag te raadplegen en kapselt Laag 3 pakketten (IPv4 en IPv6) in naar Laag 2 frames.
- Verder voert het ook error detection uit en reject het corrupte frames.



# **IEEE 802 LAN/MAN Data Link Sublayers**

IEEE 802 LAN/MAN normen zijn specifiek voor het type netwerk. (Ethernet, WLAN, WPAN,...)

De Data Link Laag bestaat uit 2 sublagen:

- Logical Link Control (LLC): communiceert tussen de netwerk software op de bovenste lagen en de hardware op de lagere lagen.
- Media Access Control (MAC): verantwoordelijk voor de data inkapseling en de toegangscontrole to de media



### **Providing Access to Media**

Pakketten die worden uitgewisseld tussen nodes kunnen verschillende datalinklagen en mediaovergangen meemaken.

Op elke hop langs het pad voert de router de volgende vier standaard Laag 2 functies uit:

- Aanvaard een frame van een netwerk medium
- De-encapsuleert het frame om het ingekapselde pakket bloot te leggen.
- Hercapsuleert het pakket in een nieuw frame.
- Stuurt het nieuw frame door op het medium van het nieuwe netwerk segment.

# **Data Link Layer Standards**

De protocollen van de Data Link Laag zijn opgesteld door volgende organisaties:

- Institute for Electrical and Electronic Engineers (IEEE)
- International Telecommunications Union (ITU)
- International Organizations for Standardization (ISO)
- American National Standards Insitute (ANSI)

# **Topologies**

# **Physical and Logical Topologies**

De topologie van een netwerk is de rangschikking en relatie van de netwerkapparaten en de onderlinge verbindingen.

Er zijn twee verschillende topologiëen due we gebruiken om netwerken te beschrijven:

- Physical topology: toont de fysieke connecties en hoe de toestellen onderling verbonden zijn
- Logical topology: identificeert de virtuele connecties tussen de toestellen die device interfaces en IP addressing schema's gebruiken.

# **WAN Topologies**

Er zijn drie verschillende WAN topologiëen:

- **Point-to-point**: de eenvoudigste en meest gebruikte WAN topologie. Bestaat uit een permanente link tussen twee endpoints.
- **Hub and spoke**: gelijkaardig aan de stertopologie waar een centrale site takken onderling verbindt door point-to-piont links
- Mesh: biedt een hoge beschikbaarheid, maar vereist dat elk end system verbonden is met elk ander end system.

# Point-to-Point WAN Topology

- Fysieke point-to-point topologiëen die rechtstreeks twee nodes verbind.
- De nodes mogen niet de media delen met andere hosts
- Omdat alle frames op het medium enkel kunnen verplaatsen naar of van een van nodes. (point-to-point WAN protocollen kunnen heel eenvoudig zijn.)



# **LAN Topologies**

End devices op LAN's zijn typisch verbonden via een ster-of uitgebreide stertopologie. Deze zijn zeer eenvoudig te installeren, zee uitbreidbaar en gemakkelijk te troubleshooten.

Vroegere Ethernet en Legacy Token Ring technologies voorzagen nog de volgende topologiëen:

- Bus: Alle end devices aan elkaar geketend en op het einde beëindigd.
- Ring: Elk end device is verbonden met zijn "buur" in een vorm van ring.



## Half and Full Duplex Communication

#### Half-duplex communication

- Staat enkel één end device toe om te ontvangen of verzenden op een gedeeld medium
- Gebruikt op WLAN's and legacy bus topologiëen met Ethernet hubs

#### **Full-duplex communication**

- Hiermee kunnen beide toestellen simultaan transmitten en ontvangen op een gedeeld medium.
- Ethernet switches opereren in full-duplex modus

#### **Access Control Methods**

#### Contention-based access

Alle nodes werken in half-duplex, ze strijden voor het gebruik van het medium.

#### Voorbeelden:

- Carrier sense multiple access with collision detection (CSMA/CD) as used on legacy bustopology Ethernet.
  - Gebruikt door legacy Ethernet LAN's
  - Werken in half-duplex mode waar enkel één toestel verzend of ontvangt
  - Gebruikt een collision detection process om te reguleren wanneer een toestel kan verzenden, en wat er gebeurd wanneer verschillende toestellen tegelijkertijd willen verzenden
    - Toestellen die simultaan verzenden zal resulteren in een signal collision op het gedeelde medium

- Toestellen kunnen de collision detecteren
- Toestellen wachten een willekeurige periode waarna ze de data opnieuw kunnen versturen
- Carrier sense multiple access with collision avoidance (CSMA/CA) as used on Wireless LANs.
  - Gebruikt door IEEE 802.11 WLAN's
  - Werken in half-duplex mode waar enkel één toestel verzend of ontvangt
  - Gebruikt een collision avoidance process om te reguleren wanneer een toestel kan verzenden, en wat er gebeurd wanneer verschillende toestellen tegelijkertijd willen verzenden
    - Toestellen geven bij het verzenden ook de duurtijd van de transmissie mee
    - Andere toestellen krijgen die duurtijd en weten hoelang het medium onbeschikbaar is.

#### **Controlled access**

- Deterministische toegang waarbij elke node zijn eigen tijd op het medium heeft.
- Wordt gebruikt op legacy netwerken, zoals Token Ring en ARCNET

### **Data Link Frame**

#### The Frame

De gegevens zijn ingekapseld door de data link laag met een header en een trailer en vormen samen een frame.

Een data link frame heeft drie onderdelen:

- Header
- Data
- Trailer

De velden van de header en de trailer verschillen naargelang het data link laag protocol.

#### Frame Fields



| Field                | Description                              |
|----------------------|------------------------------------------|
| Frame Start and Stop | Identifies beginning and end of frame    |
| Addressing           | Indicates source and destination nodes   |
| Туре                 | Identifies encapsulated Layer 3 protocol |
| Control              | Identifies flow control services         |
| Data                 | Contains the frame payload               |
| Error Detection      | Used to determine transmission errors    |

# **Layer 2 Addresses**

- Ookwel physical address (fysiek adres)
- Vervat in de header
- Enkel gebruikt voor de locale levering van een frame op de link
- Geupdate door elk toestel dat het frame doorstuurd

#### **LAN and WAN Frames**

De Logische topologie en de fysieke media bepalen het data link protocol dat gebruikt wordt:

- Ethernet
- 802.11 Wireless
- Point-to-Point (PPP)
- High-Level Data Link Control (HDLC)
- Frame-Relay