CS353: Theory of Computation (TOC)

Unit-I,II, III-Question Bank

Que 1].

Find a deterministic acceptor equivalent to

$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{\epsilon\})$$

where δ is as given by Table

TABLE	State Table	
State/Σ	а	
$\rightarrow q_0$	q ₀ , q ₁	
q_1	q_0	
q_2		

Que 2]. Construct a Deterministic finite automaton equivalent to $M=(\{p,q,r,s\},\{a,b\},d,q0,\{q3\})$

State\ Σ	a	b
р	p, q	р
q	r	r
r	S	~
S	S	s~

Que 3]. Consider the Mealy machine describe by transition table given by following table.

Construct a Moore machine which is equivalent to Mealy machine.

Present State		Ne Sta	ext ate	
Tresent state	a=0		a=1	
	Stat e	Outpu t	State	Outpu t
q0	q3	0	q1	1
q1	q1	1	q2	0
q2	q2	1	q3	1
q3	q3	0	q0	0

Que 4]. Construct a deterministic finite automaton equivalent to $M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}), \delta, q_0, \{q_3\})$

where δ is given by Table

TABLE	State Table	
State/Σ	а	b
$\rightarrow q_0$	q_0, q_1	q_0
Q_1	q_2	q_1
q_2	q_3	q_3
<u>q</u> 3		q_2

Que 5]. Construct a minimum state automaton equivalent to the DFA describe by following fig.

Que 6]. Construct a Mealy machine which is equivalent to the Moore machine defined by following table.

Next State		State	_
Present State	a=0	a=1	Output
	State	State	
q0	q3	q1	0
q1	q1	q2	1
Q2	q2	q3	0
q3	q3	Qp	0

Que 7]. Construct a minimum state automaton equivalent to the DFA describe by following fig.

Que 8]. Construct a DFA equivalent to NDFA whose transition table is defined by following table.

State\ Σ	a	b
q0	q0, q1	q0
q1	q2	q1
q2	q3	q3
q3		q2

Que 9]. Construct a minimum state automaton equivalent to a given automaton M whose transition table is :

State\ Σ		Input
	a	b
q0	q0	q3
q1	q2	q5
q2	q3	q4
q3	q0	q5
q4	q0	q6
q5	q1	q4
q6	q1	q3

Que 10]. $M=(\{q1,q2,q3\},\{0,1\}, d,q1,\{q3\}))$ is a NFA where d is:

$$(q1,0)=\{q2,q3\}$$

$$(q1, 1)=\{q1\}$$

$$(q2,0)=\{q1,q2\}$$

$$(q2,1)=\emptyset$$

$$(q3,0)=\{q2\}$$

$$(q3,1)=\{q1,q2\}$$

Convert it to DFA.

Que 11]. Convert the given NFA with epsilon to NFA without epsilon

Que 12]. Convert the given NFA with epsilon to NFA without epsilon

Que 13]. Describe the following sets by regular expressions:

- (a) L 1 = the set of all strings of O's and l's ending in 00.
- (b) L2 = the set of all strings of O's and I's beginning with 0 and ending with 1.

(c) L3 ={A, 11, 1111, 111111,
$$\dots$$
 }.

Que 14]. Construct a regular expression corresponding to the state diagram described by following Fig.

Que 15]. Find the regular expression corresponding to following Fig.

- Que 16]. Construct the finite automaton equivalent to the regular expression (0 + 1)*(00 + 11)(0 + 1)*
- Que 17]. Construct a DFA with reduced states equivalent to the R.E. $10 + (0 + 11)^{0}$ 1.
- Que 18]. Let G be the grammar S-> OB |1A, A-> 0| OS |1AA, B-> 1|1S |OBB|. For the string 00110101, find
 - (a) the leftmost derivation,
 - (b) the rightmost derivation, and
 - (c) the derivation tree.
- Que 19]. If G is the grammar S -> SbS |a, show that G is ambiguous.
- Que 20].Let G be S -> AB, A -> a, B -> C I b, C -> D, D -> E and E -> a. Eliminate unit productions and get an equivalent grammar.