Contents

1	Opt	ion Basics	2			
	1.1	Convexity Properties	2			
2	Black-Sholes Model					
	2.1	Currency Options	6			
	2.2	Options on Foreign Assets Struck in Foreign Currency	6			
	2.3	Quantos	7			
	2.4	Quanto Forwards	9			
	2.5	Quanto Options	9			
	2.6	Return Swaps	9			
	2.7	Uncovered Interest Parity in the Risk-Neutral Probabilities	10			
3	Black-Sholes Extension 10					
	3.1	Margrabe's Formula	10			
	3.2	Black's Formula	10			
	3.3	Merton's Formula	11			
	3.4	Deferred Exchange Options	11			
	3.5	Generic Option	11			
	3.6	Dynamic Hedging Strategy of Futures	12			
	3.7	The relation of Futures Prices to Forward Prices	12			
		3.7.1 Extension. (1)	13			
	3.8	Futures Option	13			
	3.9	Hedging with Forward and Futures	13			
	3.10		14			
4	Fixed Income 14					
-	4.1	The yield curve	14			
	4.2	Spot Rate, Swap Rate and Forward Rate	15			
	4.3	Duration and Convexity	15			
	4.4	Duration Hedge	15			
	4.5	Caps and Floors	15			
	1.0	4.5.1 The Market Model of Caps	16			
	4.6	Swaptions	16			
\mathbf{A}	Fun	damental Assets Pricing Formula	17			
В	Fev	Feyman-Kac Formula				
_		Simplified Version	17			
		Concrel Vergion	10			

Stochastic Calculus Notes

Cliff

December 20, 2020

1 Option Basics

The bound for a European Option.

$$S \ge c(S, K) \ge \max(S - KP(0, T), 0)$$

Proof The upper bound is simple, since $S>C_{\infty}(S,K)>c_{\infty}(S,K)>c(S,K)$. The lower bound is because c(S,X)+KP(t,T)>S and option value is non-negative. X=K and $B(\tau)=P(0,T)$

1.1 Convexity Properties

Write $X_2 = \lambda X_3 + (1 - \lambda)X_1$, where $0 \le \lambda \le 1, X_1 \le X_2 \le X_3$, the convexity

$$c(S, \tau; X_2) \le \lambda c(S, \tau; X_3) + (1 - \lambda)c(S, \tau; X_1)$$

 $c(S,\tau;X)$ is a decreasing function of X; furthermore, $\left|\frac{\partial c}{\partial X}\right| < B(\tau)$

2 Black-Sholes Model

Define the underlying S(t) as

$$\frac{dS(t)}{S(t)} = \mu_s(t)dt + \sigma_s(t)dW(t)$$

Define the discount factor D(t) as

$$\frac{dD(t)}{D(t)} = -R(t)dt$$

$$\frac{d(D(t)S(t))}{D(t)S(t)} = \frac{dD(t)}{dD(t)} + \frac{dS(t)}{dS(t)} + (\frac{dD(t)}{dD(t)})(\frac{dS(t)}{dS(t)})$$

$$= (\mu_s(t) - R(t))dt + \sigma_s(t)dW(t)$$

$$= \sigma_s(t)[\sigma_s(t)^{-1}(\mu_s(t) - R(t))dt + dW(t)]$$

$$= \sigma_s(t)[\Theta(t)dt + dW(t)]$$

$$= \sigma_s(t)d\tilde{W}(t)$$

Figure 1: Option Price Bound

Figure 2: Convexity

	American call	American put
time value of strike,	loss	gain
X		
dividend, D_{total}	gain	loss
insurance value as-	loss	loss
sociated with hold-		
ing of the option		
Necessary condition	$D_{total} > X[1 - B(\tau)]$	$D_{total} < X[1 - B(\tau)]$
for early exercise		
Sufficiently deep-in-	Sufficiently high as-	Sufficiently low as-
the-money	set price	set price

Figure 3: American Options

The last equality is held because Girsanov's Theorem.

Theorem 1 (Radon-Nikodym derivatives). Consider a random variable X under two different probability measures \mathcal{P} and $\tilde{\mathcal{P}}$, we define symbolically

$$dP_X(x) = P\left[X \in \left(x - \frac{dx}{2}, x + \frac{dx}{2}\right)\right] = f_X^P(x)dx$$

$$d\tilde{P}_X(x) = \tilde{P}\left[X \in \left(x - \frac{dx}{2}, x + \frac{dx}{2}\right)\right] = f_X^{\tilde{P}}(x)dx$$

The expectation calculations of X under \mathcal{P} and $\tilde{\mathcal{P}}$ are related by

$$E_{\widetilde{P}}[X] = \int x \, d\widetilde{P}_X(x) = \int x f_X^{\widetilde{P}}(x) dx = \int x \left[\frac{f_X^{\widetilde{P}}(x)}{f_X^P(x)} \right] f_X^P(x) dx$$
$$= \int x \left[\frac{f_X^{\widetilde{P}}(x)}{f_X^P(x)} \right] dP_X(x) = E_P \left[X \frac{d\widetilde{P}}{dP} \right]$$

where

$$f_X^{\widetilde{P}}(x)/f_X^P(x) = \frac{\mathrm{d}\widetilde{P}_X(x)}{\mathrm{d}P_X(x)}$$

is the likelihood ratio of the density functions of X under \mathcal{P} and $\tilde{\mathcal{P}}$. It is coined as the Radon-Nikodym derivative.

Theorem 2 (Girsanov, One dimension). In a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let W(t) be a Brownian Motion and $\Theta(t)$ be an adapted process with filtration \mathcal{F}_t . Define $\tilde{\mathbb{P}}_A = \int_A Zd\mathbb{P}$,

$$Z(t) = \exp\{\int_0^t \Theta(u)dW(u) - \frac{1}{2} \int_t^\infty \Theta^2(u)du\}$$

with $\mathbb{E}(\int_t^\infty \Theta^2(u)du) < \infty$ Then

$$\int d\tilde{W}(t) = \int (\Theta(t)dt + dW(t))$$

is a Brownian Motion under measure $\tilde{\mathbb{P}}$.

Define the capital amount as X(t)

$$dX(t) = \Delta(t)dS(t) + R(t)(X(t) - \Delta(t)S(t))dt$$

$$= R(t)X(t)dt + \Delta(t)(\mu_s(t) - R(t))S(t)dt + \Delta(t)\sigma_s(t)S(t)dW(t)$$

$$= R(t)X(t)dt + \Delta(t)\sigma_s(t)[\Theta(t)dt + dW(t)]S(t)$$

and

$$d(D(t)X(t)) = \Delta(t)\sigma_s(t)S(t)[\Theta(t)dt + dW(t)]$$

Change to measure \tilde{P} using Girsanov Theorem

$$d(D(t)X(t)) = \sigma_s(t)\Delta(t)S(t)d\tilde{W}(t)$$

Then using V(t) denotes the payoff of derivatives, with the condition X(0) = V(0) and X(T) = V(T)

$$D(t)X(t) = \tilde{\mathbb{E}}[D(T)X(T)|\mathcal{F}_t] = \tilde{\mathbb{E}}[D(T)V(T)|\mathcal{F}_t]$$
$$D(t)V(t) = \tilde{\mathbb{E}}[D(T)V(T)|\mathcal{F}_t]$$

In conclusion,

$$V(t) = \tilde{\mathbb{E}}[D(t)^{-1}D(t)V(T)|\mathcal{F}_t] = \tilde{\mathbb{E}}[e^{\int_t^T - R(t)dt}V(T)|\mathcal{F}_t]$$

and the last equation is also called risk-neutral pricing formula in continuous-time model. Note that the above formula is the induction of Fundamental Asset Pricing Formula using $B(t) = e^{\int_0^t R(t)dt}$ as the numeraire.

$$V(t) = B(t)\mathbb{E}^{B}\left[\frac{V(T)}{B(T)}\right]$$

And we compute the value of derivatives with payoff $(S(T) - K)^+$, c(x,t) where x = S(t).

$$c(x,t) = c(S(t),t) = \tilde{\mathbb{E}}\left[e^{\int_t^T - R(t)dt}(S(T) - K)^+ \middle| \mathcal{F}_t\right]$$

Let R(t) = r, $\sigma_s(t) = \sigma_s$

$$\begin{split} c(x,t) &= c(S(t),t) = \tilde{\mathbb{E}}[e^{-r(T-t)}(S(T)-K)^{+}|\mathcal{F}_{t}] \\ &= e^{-r(T-t)}\tilde{\mathbb{E}}[(S(T)-K)^{+}|\mathcal{F}_{t}] \\ &= e^{-r(T-t)}\tilde{\mathbb{E}}[(S(t)\exp\{\sigma(\tilde{W}(T)-\tilde{W}(t)) + (r-\frac{1}{2}\sigma^{2})(T-t)\} - K)^{+}|\mathcal{F}_{t}] \end{split}$$

Then we have $Y(\tau) = \tilde{W}(T) - \tilde{W}(t)$ as a normal random variable.

$$\begin{split} c(x,t) &= e^{-r(T-t)} \tilde{\mathbb{E}}[(S(t) \exp\{\sigma Y(\tau) + (r - \frac{1}{2}\sigma^2)\tau\} - K)^+ | \mathcal{F}_t] \\ &= e^{-r\tau} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d_-(x,t)} (S(t) \exp\{-\sigma\sqrt{\tau}y + (r - \frac{1}{2}\sigma^2)\tau\} - K)e^{-\frac{y^2}{2}} \quad dy \\ &= e^{-r\tau} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d_-(x,t)} S(t)e^{\{-\sigma\sqrt{\tau}y + (r - \frac{1}{2}\sigma^2)\tau\}}e^{-\frac{y^2}{2}} \quad dy \\ &- e^{-r\tau} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d_-(x,t)} Ke^{-\frac{y^2}{2}} \quad dy \\ &= e^{-r\tau} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d_-(x,t)} S(t)e^{\{-\sigma\sqrt{\tau}y + (r - \frac{1}{2}\sigma^2)\tau\}}e^{-\frac{y^2}{2}} \quad dy - e^{-r\tau}KN(d_-(x,t)) \\ &= \int_{-\infty}^{d_-(x,t)} S(t)e^{-\frac{1}{2}(\sigma\sqrt{\tau} - y)^2} \quad dy - e^{-r\tau}KN(d_-(x,t)) \\ &= S(t)N(d_+(x,t)) - e^{-r\tau}KN(d_-(x,t)) \end{split}$$

where
$$d_{+}(x,t) = \frac{1}{\sigma\sqrt{\tau}} [\log \frac{x}{K} + (r + \frac{1}{2}\sigma_{s}^{2})\tau]$$
 and $d_{-}(x,t) = \frac{1}{\sigma\sqrt{\tau}} [\log \frac{x}{K} + (r - \frac{1}{2}\sigma_{s}^{2})\tau]$.

In conclusion,
$$BSM(S(t), K, \tau, r, \sigma_s) = S(t)N(d_+(S(t), t)) - e^{-r\tau}KN(d_-(S(t), t))$$

Note*: Risk Neutral Pricing

For any non-dividend-paying assets X(t),

$$\frac{dX(t)}{X(t)} = \alpha(t)dt + \sigma(t)dW(t)$$

In risk neutral measure, $d\tilde{W}(t) = \Theta(t)dt + dW(t)$, and $\frac{dX(t)}{X(t)} = (\alpha(t) - \sigma(t)\Theta(t))dt + \sigma(t)d\tilde{W}(t)$, where $\Theta(t) = \frac{\alpha(t) - R(t)}{\sigma(t)}$. Substitute into the equation $\frac{dX(t)}{X(t)} = R(t)dt + \sigma(t)d\tilde{W}(t)$.

2.1 Currency Options

Its payoff is $(X(T) - K)^+$, using $BSM(x, K, \tau, r, q, \sigma_s)$, we have

$$BSM(X(t), K, \tau, r, r_f, \sigma_x)$$

2.2 Options on Foreign Assets Struck in Foreign Currency

Its payoff is $(X(T)S(T) - K)^+$, using $BSM(x, K, \tau, r, q, \sigma_s)$, we have

$$BSM(X(T)S(T), K, \tau, r, q, \sigma_{X(t)S(t)})$$
 with $\sigma_{X(t)S(t)} = \sqrt{\sigma_x^2 + \sigma_s^2 + 2\rho\sigma_x\sigma_s}$

Since

$$\begin{split} \sigma_{X(t)S(t)}^{2}dt &= (\frac{d(X(t)S(t))}{X(t)S(t)})(\frac{d(X(t)S(t))}{X(t)S(t)}) \\ &= (\frac{dX(t)}{X(t)} + \frac{dS(t)}{S(t)} + \frac{dX(t)}{X(t)} \frac{dS(t)}{S(t)})(\frac{dX(t)}{X(t)} + \frac{dS(t)}{S(t)} + \frac{dX(t)}{X(t)} \frac{dS(t)}{S(t)}) \\ &= \{(\mu_{x} + \mu_{s} + \rho_{x,s}\sigma_{x}\sigma_{s})dt + \sigma_{x}dW_{x}(t) + \sigma_{s}dW_{s}(t)\} \\ &= [\sigma_{x}dW_{x}(t) + \sigma_{s}dW_{s}(t)] [\sigma_{x}dW_{x}(t) + \sigma_{s}dW_{s}(t)] \\ &= [\sigma_{x}dW_{x}(t) + \sigma_{s}dW_{s}(t)] [\sigma_{x}dW_{x}(t) + \sigma_{s}dW_{s}(t)] \\ &= (\sigma_{x}^{2} + \sigma_{s}^{2} + 2\rho_{x,s}\sigma_{x}\sigma_{s})dt \end{split}$$

2.3 Quantos

Before compute the price of the quantos, we introduce a risky numeriare Y(t).

Let
$$Q(t) = \frac{V(t)}{Y(t)}$$
, where $V(t)$ is the underlying portfolio
$$V(t) = e^{\int_{-\infty}^{t} q du} S(t)$$
$$\frac{dQ(t)}{Q(t)} = \frac{dV(t)}{V(t)} - \frac{dY(t)}{Y(t)} - (\frac{dV(t)}{V(t)})(\frac{dY(t)}{Y(t)}) + (\frac{dY(t)}{Y(t)})^2$$
$$= (q - \rho \sigma_s \sigma_y + \sigma_y^2) dt + \frac{dS}{S} - \frac{dY}{Y}$$

and consider dY/Y when Y as numeraire

$$\frac{d(R/Y)}{R/Y} = (r + \sigma_y^2)dt - \frac{dY}{Y}$$

that

$$\frac{dY}{V} = (r + \sigma_y^2)dt + \sigma_y dW^*$$

substitute the above equation into dQ/Q, we have

$$\begin{aligned} \frac{dQ(t)}{Q(t)} &= (q - \rho \sigma_s \sigma_y + \sigma_y^2) dt + \frac{dS}{S} - (r + \sigma_y^2) dt - \sigma_y dW^* \\ &= (q - r - \rho \sigma_s \sigma_y) dt + \frac{dS}{S} - \sigma_y dW^* \\ &\frac{dS}{S} = (r - q + \rho \sigma_s \sigma_y) dt + \sigma_s dW^* \end{aligned}$$

Its payoff is $\bar{X}S(T)$ and we select $Z(t) = X(t)e^{qt}S(t)$ as numeraire.

Through Fundamental Pricing Formula, $\bar{X}S(0) = Z(0)\mathbb{E}^{Z}\left[\frac{\bar{X}S(T)}{Z(T)}\right]$ with $Z(t) = X(t)e^{qt}S(t)$.

$$Z(0)\mathbb{E}^{Z}\left[\frac{\bar{X}S(T)}{Z(T)}\right] = X(0)S(0)e^{-qT}\mathbb{E}^{Z}\left[\frac{\bar{X}S(T)}{X(T)S(T)}\right]$$
$$= \bar{X}S(0)e^{-qT}\mathbb{E}^{Z}\left[\frac{X(0)}{X(T)}\right]$$

Now, we compute dX/X under numeraire Z through the above formula,

(i) Compute the correlation between X and Z.

$$\begin{split} \frac{dZ}{Z} &= qdt + \frac{d(XS)}{XS} \\ &= qdt + \frac{dX}{X} + \frac{dS}{S} + \frac{dX}{X} \frac{dS}{S} \\ &= (q + \mu_s + \mu_x + \rho_{x,s} \sigma_x \sigma_s) dt + \sigma_x dW_x + \sigma_s dW_s \\ &= (q + \mu_s + \mu_x + \rho_{x,s} \sigma_x \sigma_s) dt + \sigma(\frac{\sigma_x}{\sigma} dW_x + \frac{\sigma_s}{\sigma} dW_s) \\ dW &= (\frac{\sigma_x}{\sigma} dW_x + \frac{\sigma_s}{\sigma} dW_s) \end{split}$$

The correlation is $\rho dt = (dW)(dW_x) = \frac{\sigma_x + \rho_{x,s}\sigma_s}{\sigma}dt$.

We substitute $r=r, q=r_f, \rho=\frac{\sigma_x+\rho_{x,s}\sigma_s}{\sigma}$ and $\sigma_s=\sigma_x,$

$$\frac{dX}{X} = (r - r_f + \sigma_x^2 + \rho_{x,s}\sigma_x\sigma_s)dt + \sigma_x dW_x^*$$

and

$$\frac{d(1/X)}{1/X} = -\frac{dX}{X} + (\frac{dX}{X})^2 = (r_f - r + \rho_{x,s}\sigma_x\sigma_s)dt - \sigma_x dW_x^*$$

is equivalent as

$$\frac{d(1/X)}{1/X} = -\frac{dX}{X} + (\frac{dX}{X})^2 = (r_f - r + \rho_{x,s}\sigma_x\sigma_s)dt + \sigma_x dW_x^*$$

under numeraire Z(t).

$$\frac{1}{X(T)} = \exp\left\{ \int_{-\infty}^{T} (r_f - r + \rho_{x,s} \sigma_x \sigma_s - \frac{1}{2} \sigma_x^2) dt + \int_{-\infty}^{T} \sigma_x dW_x^* \right\}$$

$$\mathbb{E}\left[\frac{X(0)}{X(T)} \right] = \mathbb{E}\left[\exp\left\{ \int_{-\infty}^{T} (r_f - r + \rho_{x,s} \sigma_x \sigma_s - \frac{1}{2} \sigma_x^2) dt + \int_{-\infty}^{T} \sigma_x dW_x^* \right\} \right]$$

$$= \exp\left\{ (r_f - r + \rho_{x,s} \sigma_x \sigma_s) T \right\}$$

The quanto price at t = 0 is $\bar{X}S(0) \exp\{(r_f - r - q + \rho_{x,s}\sigma_x\sigma_s)T\}$.

2.4 Quanto Forwards

Let the forward price $F^*(t)$, and its payoff is $\bar{X}S(T) - F^*(t)$. The quanto forward price $F^*(t)$ is

$$F^*(t) = e^{r(T-t)}V(t) = \exp\{(r_f - q - \rho\sigma_x\sigma_s)(T-t)\}\bar{X}S(t)$$

2.5 Quanto Options

Let $V(T) = \bar{X}S(T)$ and $\sigma_{\bar{X}S(T)} = \sigma_s$. The value of a quanto call is

$$V(0)N(d_1) - e^{-rT}KN(d_2)$$

= $\bar{X}S(0) \exp\{(r_f - r - q + \rho_{x,s}\sigma_x\sigma_s)T\}N(d_1) - e^{-rT}KN(d_2)$

where

$$d_1 = \frac{\log\left(\frac{V(0)}{K}\right) + (r + \frac{1}{2}\sigma_s^2)T}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma_s \sqrt{T}$$

Likewise, the value of a quanto put is given by the BS formula,

$$e^{-rT}KN(-d_2) - V(0)N(-d_1)$$

2.6 Return Swaps

The fair swap spread, which equates the value at date 0 of receiving the cash flow

$$CF(T) = \left(a + \frac{S_f(T)}{S_f(0)} - \frac{S_d(T)}{S_d(0)}\right)$$

at date T to zero, is

$$a = \exp\{(r - q_d)T\} - \exp\{(r_f - q_f - \rho\sigma_x\sigma_s)\}\$$

Sketch of Proof: Since the value of receiving $\frac{S_d(0)}{S_d(0)}$ at date 0 is $\frac{e^{-qTS(0)}}{S(0)} = e^{-q_dT}$.

And if we think $\frac{1}{S(0)}$ is a fixed exchange rate \bar{X} in quanto, we can substitute the exchange rate volatility σ_x , foreign underlying volatility σ_s and their correlation ρ into quanto price formula at date 0.

$$\bar{X}S(0)\exp\{(r_f-r-q+\rho\sigma_x\sigma_s)T\}$$

In conclusion,

$$\mathbb{E}_0[CF(T)] = e^{-rT}a - e^{-q_dT} + \bar{X}S(0)\exp\{(r_f - r - q + \rho\sigma_x\sigma_s)T\} = 0$$

That

$$a = \exp\{(r - q_d)T\} - \exp\{(r_f - q_f - \rho\sigma_x\sigma_s)\}\$$

2.7 Uncovered Interest Parity in the Risk-Neutral Probabilities

If we regard the foreign exchange rate, X, as an asset with dividends rate r_f , referring underlying dynamics under the risk-neutral measure, we have

$$\frac{dX}{X} = (r - r_f)dt + \sigma_x dB_x^*$$

It shows the no-risk return of different foreign currencies will converge. That we cannot earn profit by cross-currency arbitrage theoretically.

3 Black-Sholes Extension

3.1 Margrabe's Formula

Consider a payoff $\max(S_1(T) - S_2(T), 0)$, its price can be evaluated by BSM through thinking $\max(S_1(T) - S_2(T), 0) = \max(\frac{S_1(T)}{S_2(T)} - 1, 0)$ and $S_2(t)$ is a FX rate.

Assume
$$\frac{dS_i}{S_i} = \mu_i dt + \sigma_i dW(t)$$
, we have

$$e^{-q_1T}S_1(0)N(d_+) - e^{-q_2T}S_2(0)N(d_-)$$

where
$$d_+ = \frac{\ln(S_1/S_2(0)) + (q_2 - q_1 + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}$$
 and $\sigma = \sqrt{\sigma_1^2 - 2\rho\sigma_1\sigma_2 + \sigma_2^2}$

3.2 Black's Formula

Black's Model is used to price the option on forward contracts, and futures contracts with deterministic interest rates.

Consider a forward contract mature at T', T' > T, its call option has payoff $\max(F(T) - K, 0)$ at T.

Assume $\frac{dF}{F} = \mu dt + \sigma dW(t)$ and interest rate is random which can be written as $P(t,T) = e^{\int_t^T - R(u)du}$. Its payoff at T is $\max(P(T,T')F(T) - P(T,T')K,0)$. Recall Margrabe's Formula, let $S_1(T) = P(T,T')F(T)$ and $S_2(T) = P(T,T')K$

$$P(0,T')F(0)N(d_{+}) - P(0,T')KN(d_{-})$$

where
$$d_+ = \frac{\ln(F(0)/K) + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}$$
 and σ is the volatility of $\frac{F}{K}$.

Put-Call Parity: C + P(0.T')K = P + P(0,T')F(0).

3.3 Merton's Formula

The Merton's Formula is similar to the Black-Sholes Formula, consider a payoff $\max(F(T)-K,0)$ and assume the interest rate is random,

$$\frac{dF}{F} = \mu dt + \sigma dW(t)$$
 Call Price = $e^{-qT}S(0)N(d_+) - P(0,T)KN(d_-)$
Put Price = $P(0,T)KN(-d_-) - e^{-qT}S(0)N(-d_+)$ where $d_+ = \frac{\log\left(\frac{S(0)}{KP(0,T)}\right) - qT + \frac{1}{2}\sigma^2T}{\sigma\sqrt{T}}$.

Attention: The σ is forward volatility and we can estimate the forward volatility through underlying volatility and interest rate volatility.

$$\begin{split} \frac{dS}{S} &= \mu_s dt + \sigma_s dB_s, \\ \frac{dP}{P} &= \mu_p dt + \sigma_p dB_p, F(t) &= e^{-q(T-t)} S(t) / P(t,T) \end{split}$$

The forward volatility is $\sigma = \sqrt{\sigma_s^2 + \sigma_p^2 - 2\rho\sigma_s\sigma_p}$.

3.4 Deferred Exchange Options

Consider an option maturity at T and will exchange two assets at T' > T. So, its payoff is $\max(P(0,T')F_1(0)-P(0,T')F_2(0),0)$. Using Margrabe's formula, and let

$$S_1^*(t) = P(t, T')F_1(t)$$

 $S_2^*(t) = P(t, T')F_2(t)$

The option price is $S_1(0)e^{-q_1T'}N(d_+) - S_2(0)e^{-q_2T'}N(d_-)$, where $d_+ =$ $\frac{\log(\frac{S_1(0)}{S_2(0)}) + (q_2 - q_1)T' + \frac{1}{2}\sigma^2T}{\sigma\sqrt{T}}.$ Note: the forward price is $F(t) = \frac{e^{-qT}S(t)}{P(t,T)}.$

3.5 Generic Option

$$PV_1N(d_+) - PV_2N(d_-), \quad d_+ = \frac{\log \frac{PV_1}{PV_2} + \frac{1}{2}\sigma^2T}{\sigma\sqrt{T}}$$

Time	Profits from futures	Bond position	Net position
0	-	$G_{0,3}$	$G_{0,3}$
1	$\frac{1}{B_{0,1}}(G_{1,3}-G_{0,3})$	$\frac{G_{0,3}}{B_{0,1}}$	$\frac{G_{1,3}}{B_{0,1}}$
2	$\frac{1}{B_{0,1}B_{1,2}}(G_{2,3}-G_{1,3})$	$rac{G_{1,3}}{B_{0,1}B_{1,2}}$	$rac{G_{2,3}}{B_{0,1}B_{1,2}}$
3	$\frac{1}{B_{0,1}B_{1,2}B_{2,3}}(G_{3,3}-G_{2,3})$	$\frac{G_{2,3}}{B_{0,1}B_{1,2}B_{2,3}}$	$\frac{G_{3,3}}{B_{0,1}B_{1,2}B_{2,3}} = \frac{S_3}{B_{0,1}B_{1,2}B_{2,3}}$

Figure 4: Dynamic Hedging Strategy of Futures

3.6 Dynamic Hedging Strategy of Futures

Consider the futures matured at t_N has price $G(t_i, t_N)_{i=1,2,3,...,n}$, if we want long 1 unit of futures from t_0 , we will have the following strategy.

3.7 The relation of Futures Prices to Forward Prices

There are three facts:

- (1) The futures price is a martingale under risk-neutral measure.
- (2) The forward price is a martingale under Zero-Coupon Bonds as a numeriaire.
- (3) When interest rate is non-random, the futures price is equal to the forward price.

Prof (1). Consider a portfolio, long a futures with reinvesting and withdrawing from a money account with risk-free rate r.

$$dV = dF^* + rVdt$$

Then

$$\begin{split} \frac{d(V/R)}{V/R} &= \frac{dV}{V} - \frac{dR}{R} \\ &= \frac{dF^*}{V} \end{split}$$

the drift of $\frac{dF^*}{V}$ is zero implies the drifts of dF^* is zero.

Prof (2). Recall the forward price $F(t)=\frac{e^{-qT}S(t)}{P(t,T)},\ P(t,T)F(t)$ is a non-dividend paying assets, so $\frac{P(t,T)F(t)}{P(t,T)}=F(t)$ is a martingale.

Prof(3) Assume interest rate is non random,

$$\mathbb{P}_{A}^{R} = \mathbb{E}^{P}(1_{A}\phi(T)\frac{P(T,T)}{P(0,T)}) = \exp(\int_{0}^{T} r(u)du)\mathbb{E}^{P}(1_{A}\phi(T))$$

$$\mathbb{P}_A^R = \mathbb{E}^R(1_A\phi(T)\frac{R(T)}{R(0)}) = \exp(\int_0^T r(u)du)\mathbb{E}^R(1_A\phi(T))$$

So,

$$F^*(t) = \mathbb{E}^R(F^*(T)) = \mathbb{E}^P(F^*(T)) = \mathbb{E}^P(F(T)) = \mathbb{E}^R(F(T)) = F(t)$$

3.7.1 Extension. (1)

The difference between futures and forward is

$$F^{*}(t) - F(t) = \mathbb{E}^{R}[S_{T}] - \frac{S_{t}}{P(t,T)}$$

$$= \frac{\mathbb{E}^{R}[S_{T}]\mathbb{E}^{R}[P(t,T)] - \mathbb{E}^{R}[P(t,T)S_{T}]}{P(t,T)}$$

$$= -\frac{cov[P(t,T), S_{T}]}{P(t,T)}$$

3.8 Futures Option

The difference between forward option and futures option is that futures option is mark to market. So, the payoff of futures option in Margarabe's formula is

$$S_1 = P(0,T)F^*(0)$$
 and $S_2 = P(0,T)K$

Substitute into the Margrabe's formula, the call option price is

$$P(0,T)F^*(0)N(d_+) - P(0,T)KN(d_-)$$
 where $d_+ = \frac{\log(\frac{F^*(0)}{K}) + \frac{1}{2}\sigma^2}{\sigma\sqrt{T}}$.

3.9 Hedging with Forward and Futures

Let t < u, consider the portfolio purchase x(t) forward at F(t) and sell x(t) forward at u with F(u). Since entering a forward contract is free that the PV at time u of portfolio is

$$x(t)P(u,T)(F(u) - F(t)) = x(t) [P(t,T) [F(u) - F(t)] + [P(u,T) - P(t,T)] [F(u) - F(t)]]$$

= $x(t) [P(t,T)\Delta F + (\Delta P)(\Delta F)]$

which can be written as

$$x(t) [P(t,T)dF(t) + dP(t,T) \times dF(t)]$$

Change of futures price is simpler

$$x(t)dF^*(t)$$

The value doesn't need to discount since futures is mark to market.

Assume the risk free rate is constant,

Change of Forward

$$x(t)e^{r(T-t)}dF(t)$$

Change of Futures

$$x(t)dF^*(t)$$
 , where $F^*(t) = F(t)$

Finally, we conclude if x(t) is the number of forward contracts should be hedged, then $e^{-r(T-t)}x(t)$ is the number of futures should be hedges.

3.10 TBC

Sect. 7.6 & Sect. 7.10

4 Fixed Income

4.1 The yield curve

Define y(t) as the yield at t,

$$P(t,T) = e^{-y(t)(T-t)}$$

Then let $\tau_1 < \tau_2 < ... < \tau_N$,

$$P = \sum_{j=1}^{N} e^{-y(\tau_j)\tau_j} C_j$$

The we can use cubic spline to fit the yield curve

$$y(t) = \begin{cases} a_0 t^3 + b_0 t^2 + c_0 t + d_0 &, & 0 < t < t_1 \\ a_1 t^3 + b_1 t^2 + c_1 t + d_1 &, & t_1 < t < t_2 \\ a_2 t^3 + b_2 t^2 + c_2 t + d_2 &, & t_2 < t < t_3 \\ \dots & & \end{cases}$$

And use the Equality of yields, first order derivatives and second order derivatives to iteratively compute the parameter set.

4.2 Spot Rate, Swap Rate and Forward Rate

Spot Rate

$$\frac{1}{P(t,u)} = 1 + \mathcal{R}(u-t)$$

Swap Rate

Consider the value of swap for fixed payer

$$P(t, t_0) - P(t, t_N) - \Delta t \bar{R} \sum_{i=1}^{N} P(t, t_i)$$

where $P(t, t_0)$ is the cost of receiving \$1 at t_0 .

Forward Rate

$$\frac{P(t, u)}{P(t, u + \Delta t)} = 1 + R\Delta t$$

4.3 Duration and Convexity

$$\frac{dP}{P} = -Duration \times dy$$

$$Convexity = \frac{1}{P} \frac{d^2P}{dy^2}$$

4.4 Duration Hedge

Assume the portfolio price equals

$$P = f(t, y(t))$$

$$dP = P_t dt + P_y dy + \frac{1}{2} P_{yy} (dy)^2$$

which can be written as

$$dP = P_t dt - Duration \times P + \frac{1}{2} P_{yy} (dy)^2$$

4.5 Caps and Floors

For a Caps, the buyer's cash flow at each reset date t_i is

$$P(t_i, t_{i+1}) \max(R(t_i) - \bar{R}, 0)$$

For Floors,

$$P(t_i, t_{i+1}) \max(\bar{R} - R(t_i), 0)$$

4.5.1 The Market Model of Caps

We can regard the float leg is an asset, since $R(t_i)\Delta t$ can be replicated by $P(t,t_i) - P(t,t_{i+1})$ at $t < t_i$ and $P(t,t_{i+1})R_i\Delta t$ at $t > t_i$.

$$S_i(t) = \begin{cases} P(t, t_i) - P(t, t_{i+1}), & t < t_i \\ P(t, t_{i+1}) R_i \Delta t, & t_i < t < t_{i+1} \end{cases}$$
$$F_i(t) = \begin{cases} \frac{P(t, t_i)}{P(t, t_{i+1})} - 1, & t < t_i \\ R_i \Delta t, & t_i < t < t_{i+1} \end{cases}$$

Recall the black's formula,

Value of Caps =
$$P(0, t_{i+1})R_i(0)N(d_1) - P(0, t_{i+1})\bar{R}$$

where $d_1 = \frac{\log(R_i(0)/\bar{R}) + \frac{1}{2}\sigma^2 t_i}{\sigma\sqrt{t^i}}$.

4.6 Swaptions

Consider a swap with maturity at t_N ,

Fixed leg:

$$Z(t) = \sum_{i=1}^{N} P(t, t_i) \bar{R} \Delta t$$

Floating leg:

$$S(t) = P(t, t_1) - P(t, t_N)$$

Its payoff

$$\max(S(t) - Z(t), 0)$$

Since we can write S(t) under Z(t) as a numeriaire,

$$\frac{S(t)}{Z(t)} = \frac{\mathcal{R}\Delta t \sum_{i=1}^{N} P(t, t_i)}{\sum_{i=1}^{N} P(t, t_i) \bar{R}\Delta t} = \frac{\mathcal{R}}{\bar{R}}$$

and assume swap rate \mathcal{R} has constant volatility σ . The present value of swaptions for a payer is

$$(P(t, t_1 - P(t, t_N)))N(d_+) - \bar{R}\Delta t \sum_{i=1}^{N} P(t, t_i)N(d_-)$$
 where $d_+ = \frac{\log(P(t, t_1 - P(t, t_N))) - \log(\bar{R}\Delta t \sum_{i=1}^{N} P(t, t_i)) + \frac{1}{2}\sigma^2}{\sigma\sqrt{t_N}}$

A Fundamental Assets Pricing Formula

For arbitrary non-dividends paying assets matured at T, we have its price

$$V(t) = \mathbb{E}[V(T)|\mathcal{F}_t]$$

and we know that if use risk-free asset as a numeraire, $R(t) = e^{-\int_t^T r ds}$, the ratio of V and R is a martingale under risk neutral measure,

$$\mathbb{E}^{R}\left[\frac{V(T)}{R(T)}|\mathcal{F}_{t}\right] = \mathbb{E}^{R}\left[\frac{V(T)}{R(T)}\right]$$

So, the asset price is

$$V(t) = \mathbb{E}^{R}[V(T)|\mathcal{F}_t] = R(t)\mathbb{E}^{R}\left[\frac{V(T)}{R(T)}|\mathcal{F}_t\right] = R(t)\mathbb{E}^{R}\left[\frac{V(T)}{R(T)}\right]$$

B Feyman-Kac Formula

B.1 Simplified Version

Consider a PDE is written as follows

$$\frac{\partial F}{\partial t} + \mu(X, t) \frac{\partial F}{\partial X} + \frac{\sigma^2(X, t)}{2} \frac{\partial^2 F}{\partial X^2} = 0$$

subject to the terminal condition

$$F(X(T),T) = h(X(T))$$

Suppose the Ito process X(t) is governed by the differential equation

$$dX(s) = \mu(X(s), s)ds + \sigma(X(s), s)dZ(s), \quad t < s < T$$

with initial condition:X(t) = x

Consider a smooth function F(X(t), t), by Ito Lemma,

$$dF = \left[\frac{\partial F}{\partial t} + \mu(X, t) \frac{\partial F}{\partial X} + \frac{\sigma^2(X, t)}{2} \frac{\partial^2 F}{\partial X^2} \right] dt + \sigma \frac{\partial F}{\partial X} dZ$$

Recall the PDE in the beginning,

$$dF = \sigma \frac{\partial F}{\partial X} dZ$$

Combing the termination condition F(X(T), T) = h(X(T)),

$$F(x,t) = E_{x,t}[h(X(T))], \quad t < T$$

B.2 General Version

Consider the partial differential equation

$$\frac{\partial u}{\partial t}(x,t) + \mu(x,t)\frac{\partial u}{\partial x}(x,t) + \frac{1}{2}\sigma^2(x,t)\frac{\partial^2 u}{\partial x^2}(x,t) - V(x,t)u(x,t) + f(x,t) = 0$$

defined for all $x \in \mathbb{R}$ and $t \in [0, T]$, subject to the terminal condition

$$u(x,T) = \psi(x)$$

The solution of the above PDE is

$$u(x,t) = E^{Q} \left[\int_{t}^{T} e^{-\int_{t}^{T} V(X_{\tau},\tau) d\tau} f(X_{r},r) dr + e^{-\int_{t}^{T} V(X_{\tau},\tau) d\tau} \psi(X_{T}) \mid X_{t} = x \right]$$

Proof. Consider a partial differential equation

$$\frac{\partial u}{\partial t}(x,t) + \mu(x,t)\frac{\partial u}{\partial x}(x,t) + \frac{1}{2}\sigma^2(x,t)\frac{\partial^2 u}{\partial x^2}(x,t) - V(x,t)u(x,t) + f(x,t) = 0$$

Assume the solution of this PDE is $u(X_t, t)$, we can construct a process

$$Y(s) = e^{-\int_{t}^{s} V(X_{\tau}, \tau) d\tau} u(X_{s}, s) + \int_{t}^{s} e^{-\int_{t}^{r} V(X_{\tau}, \tau) d\tau} f(X_{r}, r) dr$$

and take the partial differential of Y(t) by Ito Lemma, we have

$$\begin{split} dY = & d\left(e^{-\int_t^s V(X_\tau,\tau)d\tau}\right) u\left(X_s,s\right) + e^{-\int_t^s V(X_\tau,\tau)d\tau} du\left(X_s,s\right) \\ & + d\left(e^{-\int_t^s V(X_\tau,\tau)d\tau}\right) du\left(X_s,s\right) + d\left(\int_t^s e^{-\int_t^r V(X_\tau,\tau)d\tau} f\left(X_r,r\right)dr\right) \end{split}$$

$$dY = e^{-\int_{t}^{s} V(X_{\tau}, \tau) d\tau} \left(-V(X_{s}, s) u(X_{s}, s) + f(X_{s}, s) + \mu(X_{s}, s) \frac{\partial u}{\partial X} + \frac{\partial u}{\partial s} + \frac{1}{2} \sigma^{2}(X_{s}, s) \frac{\partial^{2} u}{\partial X^{2}} \right) ds$$
$$+ e^{-\int_{t}^{s} V(X_{\tau}, \tau) d\tau} \sigma(X, s) \frac{\partial u}{\partial X} dW$$

Then we can substitute the PDE in the beginning to make the terms in parentheses is zero, and get

$$dY = e^{-\int_t^s V(X_\tau, \tau) d\tau} \sigma(X, s) \frac{\partial u}{\partial X} dW$$