Probability Review

Yutian Li

Stanford University

January 18, 2018

Outline

- Elements of probability
- Random variables
- Multiple random variables
- 4 Common inequalities

Outline

- Elements of probability
- Random variables
- Multiple random variables
- 4 Common inequalities

Definition (Sample space Ω)

The set of all the outcomes of a random experiment.

Definition (Event space \mathcal{F})

A set whose elements $A \in \mathcal{F}$ (called *events*) are subsets of Ω .

Definition (Probability measure)

A function $P: \mathcal{F} \to \mathbb{R}$ that satisfies the following properties.

- $P(A) \ge 0$, for all $A \in \mathcal{F}$.
- $P(\Omega) = 1$.
- If A_1, A_2, \ldots are disjoint events, then

$$P(\cup_i A_i) = \sum_i P(A_i).$$

These three properties are called the the Axioms of Probability.

Definition (Probability measure)

A function $P: \mathcal{F} \to \mathbb{R}$ that satisfies the following properties.

- $P(A) \ge 0$, for all $A \in \mathcal{F}$.
- $P(\Omega) = 1$.
- If A_1, A_2, \ldots are disjoint events, then

$$P(\cup_i A_i) = \sum_i P(A_i).$$

These three properties are called the *the Axioms of Probability*.

- $P(A \cap B) \leq \min(P(A), P(B)).$
- **③** Union bound: $P(A \cup B) \le P(A) + P(B)$
- $P(\Omega \setminus A) = 1 P(A).$
- **3** Law of total probability: If A_1, \ldots, A_k are a set of disjoint events such that $\bigcup_{i=1}^k A_i = \Omega$, then

$$\sum_{i=1}^k P(A_i) = 1$$

- $P(A \cap B) \leq \min(P(A), P(B)).$
- ① Union bound: $P(A \cup B) \le P(A) + P(B)$
- $P(\Omega \setminus A) = 1 P(A)$
- **1** Law of total probability: If A_1, \ldots, A_k are a set of disjoint events such that $\bigcup_{i=1}^k A_i = \Omega$, then

$$\sum_{i=1}^k P(A_i) = 1$$

- $P(A \cap B) \leq \min(P(A), P(B)).$
- **3** Union bound: $P(A \cup B) \leq P(A) + P(B)$.
- **3** Law of total probability: If A_1, \ldots, A_k are a set of disjoint events such that $\bigcup_{i=1}^k A_i = \Omega$, then

$$\sum_{i=1}^k P(A_i) = 1$$

- $P(A \cap B) \leq \min(P(A), P(B)).$
- **3** Union bound: $P(A \cup B) \leq P(A) + P(B)$.
- $P(\Omega \setminus A) = 1 P(A).$
- **3** Law of total probability: If A_1, \ldots, A_k are a set of disjoint events such that $\bigcup_{i=1}^k A_i = \Omega$, then

$$\sum_{i=1}^k P(A_i) = 1$$

- $P(A \cap B) \leq \min(P(A), P(B)).$
- **3** Union bound: $P(A \cup B) \leq P(A) + P(B)$.
- $P(\Omega \setminus A) = 1 P(A).$
- **3** Law of total probability: If A_1, \ldots, A_k are a set of disjoint events such that $\bigcup_{i=1}^k A_i = \Omega$, then

$$\sum_{i=1}^k P(A_i) = 1.$$

Definition (Conditional probability)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

Theorem (Chain rule)

Let S_1, \ldots, S_k be events, $P(S_i) > 0$. Then

$$P(S_1 \cap S_2 \cap \cdots \cap S_k)$$

$$=P(S_1)P(S_2 \mid S_1)P(S_3 \mid S_2 \cap S_1)\cdots P(S_k \mid S_1 \cap S_2 \cap \cdots \cap S_{k-1}).$$

Definition (Independence)

Two events are called independent if and only if $P(A \cap B) = P(A)P(B)$.

Outline

- Elements of probability
- Random variables
- Multiple random variables
- 4 Common inequalities

Definition (Random variable)

A random variable X is a function $X : \Omega \to \mathbb{R}$.

Typically we denote random variables using upper case letters $X(\omega)$ or more simply X. We denote the value that a random variable may take on using lower case letters x.

Definition (Cumulative distribution function)

A cumulative distribution function (CDF) is a function $F_X: \mathbb{R} \to [0,1]$ defined as

$$F_X(x) = P(X \le x).$$

- $0 \le F_X(x) \le 1.$

- **1** Right-continuous: $\lim_{x\to +a} F_X(x) = F_x(a)$

Definition (Cumulative distribution function)

A cumulative distribution function (CDF) is a function $F_X: \mathbb{R} \to [0,1]$ defined as

$$F_X(x) = P(X \le x).$$

- **1** $0 \le F_X(x) \le 1$.

- **3** Right-continuous: $\lim_{x\to +a} F_X(x) = F_x(a)$.

Definition (Cumulative distribution function)

A cumulative distribution function (CDF) is a function $F_X: \mathbb{R} \to [0,1]$ defined as

$$F_X(x) = P(X \le x).$$

- **1** $0 \le F_X(x) \le 1$.
- $\lim_{x\to-\infty} F_X(x)=0.$

- **3** Right-continuous: $\lim_{x\to +a} F_X(x) = F_x(a)$.

Definition (Cumulative distribution function)

A cumulative distribution function (CDF) is a function $F_X: \mathbb{R} \to [0,1]$ defined as

$$F_X(x) = P(X \le x).$$

- **1** $0 \le F_X(x) \le 1$.
- $\lim_{x\to-\infty} F_X(x)=0.$

- **o** Right-continuous: $\lim_{x\to +a} F_X(x) = F_x(a)$

Definition (Cumulative distribution function)

A cumulative distribution function (CDF) is a function $F_X: \mathbb{R} \to [0,1]$ defined as

$$F_X(x) = P(X \le x).$$

- **1** $0 \le F_X(x) \le 1$.
- $Iim_{x\to -\infty} F_X(x) = 0.$

- **6** Right-continuous: $\lim_{x\to +a} F_X(x) = F_x(a)$.

Definition (Cumulative distribution function)

A cumulative distribution function (CDF) is a function $F_X: \mathbb{R} \to [0,1]$ defined as

$$F_X(x) = P(X \le x).$$

- $0 \le F_X(x) \le 1.$
- $\lim_{x\to-\infty} F_X(x)=0.$

- **3** Right-continuous: $\lim_{x\to +a} F_X(x) = F_x(a)$.

Definition (Probability density function)

If the cumulative distribution function F_X is differentiable everywhere, we define the probability density function (PDF) as the derivative of the CDF,

$$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}.$$

Note that the PDF for a continuous random variable may not always exist.

- Properties:
 - $f_X(x) \ge 0.$

Definition (Probability density function)

If the cumulative distribution function F_X is differentiable everywhere, we define the probability density function (PDF) as the derivative of the CDF,

$$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}.$$

Note that the PDF for a continuous random variable may not always exist. Properties:

- **1** $f_X(x) \ge 0$.

Definition (Probability density function)

If the cumulative distribution function F_X is differentiable everywhere, we define the probability density function (PDF) as the derivative of the CDF,

$$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}.$$

Note that the PDF for a continuous random variable may not always exist. Properties:

- **1** $f_X(x) \ge 0$.

Definition (Probability density function)

If the cumulative distribution function F_X is differentiable everywhere, we define the probability density function (PDF) as the derivative of the CDF,

$$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}.$$

Note that the PDF for a continuous random variable may not always exist. Properties:

- **1** $f_X(x) \geq 0$.

Definition (Expectation)

If X is a continuous random variable with PDF $f_X(x)$ and $g: \mathbb{R} \to \mathbb{R}$ is an arbitrary function. The expectation or expected value of g(X) is defined as

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

- ① E[a] = a for any constant $a \in \mathbb{R}$.
- ② E[ag(X)] = aE[g(X)] for any constant $a \in \mathbb{R}$.
- ① Linearity: E[f(X) + g(X)] = E[f(X)] + E[g(X)].
- ⑤ For a discrete random variable X, $E[\mathbf{1}\{X=k\}] = P(X=k)$.

Definition (Expectation)

If X is a continuous random variable with PDF $f_X(x)$ and $g: \mathbb{R} \to \mathbb{R}$ is an arbitrary function. The expectation or expected value of g(X) is defined as

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

- **1** E[a] = a for any constant $a \in \mathbb{R}$.
- ② E[ag(X)] = aE[g(X)] for any constant $a \in \mathbb{R}$.
- **1** Linearity: E[f(X) + g(X)] = E[f(X)] + E[g(X)]
- For a discrete random variable X, $E[\mathbf{1}\{X=k\}] = P(X=k)$.

Definition (Expectation)

If X is a continuous random variable with PDF $f_X(x)$ and $g: \mathbb{R} \to \mathbb{R}$ is an arbitrary function. The expectation or expected value of g(X) is defined as

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

- **1** E[a] = a for any constant $a \in \mathbb{R}$.
- ② E[ag(X)] = aE[g(X)] for any constant $a \in \mathbb{R}$.
- **3** Linearity: E[f(X) + g(X)] = E[f(X)] + E[g(X)].
- ① For a discrete random variable X, $E[1{X = k}] = P(X = k)$.

Definition (Expectation)

If X is a continuous random variable with PDF $f_X(x)$ and $g: \mathbb{R} \to \mathbb{R}$ is an arbitrary function. The expectation or expected value of g(X) is defined as

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

- **1** E[a] = a for any constant $a \in \mathbb{R}$.
- ② E[ag(X)] = aE[g(X)] for any constant $a \in \mathbb{R}$.
- **3** Linearity: E[f(X) + g(X)] = E[f(X)] + E[g(X)].
- ullet For a discrete random variable X, $E[\mathbf{1}\{X=k\}]=P(X=k)$.

Definition (Expectation)

If X is a continuous random variable with PDF $f_X(x)$ and $g: \mathbb{R} \to \mathbb{R}$ is an arbitrary function. The expectation or expected value of g(X) is defined as

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

- **1** E[a] = a for any constant $a \in \mathbb{R}$.
- ② E[ag(X)] = aE[g(X)] for any constant $a \in \mathbb{R}$.
- **1** Linearity: E[f(X) + g(X)] = E[f(X)] + E[g(X)].
- **3** For a discrete random variable X, $E[\mathbf{1}\{X=k\}] = P(X=k)$.

Definition (Variance)

The variance of a random variable X is a measure of how concentrated the distribution of a random variable X is around its mean. Formally, the variance of a random variable X is defined as

$$Var[X] = E[(X - E[X])^2].$$

Alternatively, $Var[X] = E[X^2] - E[X]^2$. Properties:

- Var[a] = 0 for any constant $a \in \mathbb{R}$.
- ② $Var[af(X)] = a^2 Var[f(X)]$ for any constant $a \in \mathbb{R}$.

Definition (Variance)

The variance of a random variable X is a measure of how concentrated the distribution of a random variable X is around its mean. Formally, the variance of a random variable X is defined as

$$Var[X] = E[(X - E[X])^2].$$

Alternatively, $Var[X] = E[X^2] - E[X]^2$.

- Var[a] = 0 for any constant $a \in \mathbb{R}$.
- ② $Var[af(X)] = a^2 Var[f(X)]$ for any constant $a \in \mathbb{R}$.

Definition (Variance)

The variance of a random variable X is a measure of how concentrated the distribution of a random variable X is around its mean. Formally, the variance of a random variable X is defined as

$$Var[X] = E[(X - E[X])^2].$$

Alternatively, $Var[X] = E[X^2] - E[X]^2$.

- Var[a] = 0 for any constant $a \in \mathbb{R}$.
- ② $Var[af(X)] = a^2 Var[f(X)]$ for any constant $a \in \mathbb{R}$.

Definition (Variance)

The variance of a random variable X is a measure of how concentrated the distribution of a random variable X is around its mean. Formally, the variance of a random variable X is defined as

$$Var[X] = E[(X - E[X])^2].$$

Alternatively, $Var[X] = E[X^2] - E[X]^2$.

- Var[a] = 0 for any constant $a \in \mathbb{R}$.
- ② $Var[af(X)] = a^2 Var[f(X)]$ for any constant $a \in \mathbb{R}$.

Discrete random variables:

• $X \sim \text{Bernoulli}(p)$ (where $0 \le p \le 1$): one if a coin with heads probability p comes up heads, zero otherwise.

$$p(x) = \begin{cases} p & \text{if } p = 1\\ 1 - p & \text{if } p = 0 \end{cases}$$

• $X \sim \text{Binomial}(n, p)$ (where $0 \le p \le 1$): the number of heads in n independent flips of a coin with heads probability p.

$$p(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

Discrete random variables:

• $X \sim \text{Geometric}(p)$ (where p > 0): the number of flips of a coin with heads probability p until the first heads.

$$p(x) = p(1-p)^{x-1}$$

• $X \sim \text{Poisson}(\lambda)$ (where $\lambda > 0$): a probability distribution over the nonnegative integers used for modeling the frequency of rare events.

$$p(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

Continuous random variables:

• $X \sim \text{Uniform}(a, b)$ (where a < b): equal probability density to every value between a and b on the real line.

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

• $X \sim \text{Exponential}(\lambda)$ (where $\lambda > 0$): decaying probability density over the negative reals.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Continuous random variables:

• $X \sim \text{Normal}(\mu, \sigma^2)$: also known as the Gaussian distribution.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Outline

- Elements of probability
- 2 Random variables
- Multiple random variables
- 4 Common inequalities

Definition (Joint cumulative distribution function)

Suppose that we have two random variables X and Y,

$$F_{XY}(x,y) = P(X \le x, Y \le y).$$

The joint CDF $F_{XY}(x, y)$ and the marginal cumulative distribution functions $F_X(x)$ and $F_Y(y)$ of each variable separately are related by

$$F_X(x) = \lim_{y \to \infty} F_{XY}(x, y),$$

$$F_Y(y) = \lim_{x \to \infty} F_{XY}(x, y).$$

Definition (Joint cumulative distribution function)

Suppose that we have two random variables X and Y,

$$F_{XY}(x,y) = P(X \le x, Y \le y).$$

The joint CDF $F_{XY}(x, y)$ and the marginal cumulative distribution functions $F_X(x)$ and $F_Y(y)$ of each variable separately are related by

$$F_X(x) = \lim_{y \to \infty} F_{XY}(x, y),$$

$$F_Y(y) = \lim_{x \to \infty} F_{XY}(x, y).$$

In the discrete case, the conditional probability mass function of \boldsymbol{X} given \boldsymbol{Y} is simply

$$p_{Y|X}(y \mid x) = \frac{p_{XY}(x, y)}{p_X(x)},$$

assuming that $p_X(x) \neq 0$.

A useful formula that often arises when trying to derive expression for the conditional probability of one variable given another, is Bayes' rule:

$$p_{Y|X}(y \mid x) = \frac{p_{XY}(x, y)}{p_{X}(x)} = \frac{p_{X|Y}(x \mid y)p_{Y}(y)}{\sum_{y'} p_{X|Y}(x \mid y')p_{Y}(y')}.$$

In the discrete case, the conditional probability mass function of \boldsymbol{X} given \boldsymbol{Y} is simply

$$p_{Y|X}(y \mid x) = \frac{p_{XY}(x, y)}{p_X(x)},$$

assuming that $p_X(x) \neq 0$.

A useful formula that often arises when trying to derive expression for the conditional probability of one variable given another, is Bayes' rule:

$$p_{Y|X}(y \mid x) = \frac{p_{XY}(x,y)}{p_X(x)} = \frac{p_{X|Y}(x \mid y)p_Y(y)}{\sum_{y'} p_{X|Y}(x \mid y')p_Y(y')}.$$

Outline

- Elements of probability
- Random variables
- Multiple random variables
- 4 Common inequalities

Common inequalities

Theorem (Markov inequality)

Let X be a non-negative random variable, then

$$P(X \ge a) \le \frac{E[X]}{a}$$
.

Common inequalities

Theorem (Chebyshev inequality)

Let X be a random variable, then

$$P(|X - E[X]| \ge a) \le \frac{Var(x)}{a^2}.$$

Common inequalities

Theorem (Jensen inequality)

Let ϕ be a convex function and X be a random variable, then

$$E[\phi(X)] \ge \phi(E[X]).$$