

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 5070/21

Paper 2 Theory May/June 2013

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 hour 30 minutes

Section A

For Examiner's Use

[Total: 6]

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

A1 Choose from the following compounds to answer the questions below.

butane

calcium carbonate
carbon dioxide
copper(II) nitrate
iron(II) hydroxide
iron(III) hydroxide
propene
sodium chloride
sulfur dioxide
sulfuric acid

Each compound can be used once, more than once or not at all.

Name a compound which

(a)	is a green solid,	
		[1]
(b)	is a saturated hydrocarbon,	
		[1]
(c)	has a molecule with only 9 atoms,	
		[1]
(d)	can be used to reduce the acidity in lakes,	
		[1]
(e)	will turn aqueous acidified potassium dichromate(VI) from orange to green,	
		[1]
(f)	can be electrolysed in aqueous solution to form two gases.	
		[1]

A2 Photosynthesis helps to maintain the percentage of oxygen in air. (a) What is the percentage, by volume, of oxygen in dry air?[1] **(b)** In addition to releasing oxygen, photosynthesis produces glucose, C₆H₁₂O₆. Write the overall equation that represents photosynthesis. (c) Describe the essential conditions needed for photosynthesis. (d) Photosynthesis is an endothermic reaction. Explain, in terms of the energy changes that occur during bond breaking and bond making, why photosynthesis is an endothermic reaction.[2] (ii) Complete the energy profile diagram for photosynthesis. On your diagram label the products, enthalpy change for the reaction, ΔH , activation energy, E_a . reactants energy progress of reaction

[3]

[Total: 9]

For Examiner's Use A3 Salts are often made by the neutralisation of bases.

For Examiner's Use

(a) Aqueous potassium hydroxide, of concentration 0.150 mol/dm³, is added to 25.0 cm³ of sulfuric acid in a flask.

The graph shows how the pH of the liquid in the flask changes as aqueous potassium hydroxide is added to it.

(i) Construct the equation for the complete neutralisation of sulfuric acid by potassium hydroxide.

_____[1]

(ii) Use the graph to deduce the volume of aqueous potassium hydroxide required to neutralise 25.0 cm³ of sulfuric acid.

......[1]

	(iii)	Use your answers to (i) and (ii) to calculate the concentration of sulfuric acid.	For Examiner's Use
		concentration of sulfuric acid = mol/dm ³ [3]	
(b)	Des	scribe the essential experimental details for preparing a pure sample of zinc nitrate stals from zinc oxide.	
		[4]	
		[Total: 9]	
			1

BLANK PAGE

A4 The table shows the number of electrons, neutrons and protons in seven different particles.

For Examiner's Use

particle	number of				
particle	electrons	neutrons	protons		
Α	12	12	12		
В	15	16	15		
С	17	18	17		
D	17	20	17		
E	18	16	16		
F	18	22	18		
G	18	20	20		

What is the nucleon number for F ?	
	[1]
Explain why A is a neutral particle.	
	[2]
Which particles are isotopes of the same element?	
	[1]
What is the charge on E ?	
	[1]
Which particles have the same relative mass?	
	[1]
Γ	Total: 6]
,	Explain why A is a neutral particle. Which particles are isotopes of the same element? What is the charge on E ? Which particles have the same relative mass?

A5 Analysis of compound **X** shows it has the following composition.

For
Examiner's
Use

[3]

element	percentage by mass
nitrogen	11.1
hydrogen	3.20
chromium	41.3
oxygen	44.4

(a) Show that ${\bf X}$ has the formula ${\bf N_2H_8Cr_2O_7}.$

(b)	An	aqueous solution of X is orange.
	Sug	gest which element in ${\bf X}$ is responsible for the orange colour.
		[1]
(c)	An	acidified aqueous solution of ${\bf X}$ reacts with aqueous potassium iodide to form iodine.
	Sta	te and explain what you can conclude about the chemical nature of X .
		[2]
(d)		seous sodium hydroxide is added to solid ${\bf X}$ and the mixture is warmed. A gas that is moist red litmus blue is evolved.
	(i)	Give the formula of the positive ion present in X .
		[1]
	(ii)	Suggest the formula of the other ion present in X.
		[41]

(e)	When solid X is heated only Cr_2O_3 , water and gas Z are formed.	For
	Name gas Z .	Examiner's Use
	[1]	
	[Total: 9]	

Question A6 starts on page 10.

A6 Potassium is in Group I and chlorine is in Group VII of the Periodic Table. Potassium forms an oxide with the formula K₂O and chlorine forms an oxide with the formula Cl_2O . (a) (i) Draw a 'dot-and-cross' diagram for Cl_2O . You only need to draw the outer shell electrons. [1] Explain, using ideas about structure and bonding, why $\mathrm{C}l_2\mathrm{O}$ has a low melting (ii) point. (b) Draw diagrams to show the electronic structures and charges of both ions present in potassium oxide. [2] (c) Chlorine forms another oxide Cl_2O_7 . One mole of this oxide reacts with one mole of water to make two moles of an acid and no other products. Construct the equation for this reaction.[1] [Total: 6]

© UCLES 2013 5070/21/M/J/13

For Examiner's Use

Section B

For Examiner's Use

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

37	Mal	achit	e is an ore of copper. The formula of malachite is ${\rm CuCO_3.Cu(OH)_2.}$	
	Mal	achit	e reacts as though it is a mixture of copper(II) carbonate and copper(II) hydroxide	€.
			sample of malachite is added to excess dilute hydrochloric acid, $HCl(aq)$. The carbon ormed is collected and has a volume of $96\mathrm{cm}^3$ at room temperature and pressure	
	(a)	Wha	at would you observe when malachite reacts with HCl(aq)?	
				2]
	(b)	Con	struct the equation for the reaction between malachite and $HCl(aq)$.	
				2]
	(c)	Cald	culate the mass of carbonate ion, ${\rm CO_3}^{2-}$, in the sample of malachite.	
			mass of $CO_3^{2-} = \dots g$	3]
	(d)	·	pper is extracted from malachite by heating with carbon.	
		(i)	Construct an equation for the reduction of malachite by carbon.	
				2]
		(ii)	Malachite is a finite resource. Give one other reason why copper should lead recycled.	Эе
			·	-

B8 Carboxylic acids are a homologous series of organic compounds.

For Examiner's Use

The table shows information about some carboxylic acids.

carboxylic acid	formula	melting point/°C	boiling point/°C
methanoic acid	HCO ₂ H	8	100
ethanoic acid	CH ₃ CO ₂ H	17	118
	C ₂ H ₅ CO ₂ H	-22	141
butanoic acid	C ₃ H ₇ CO ₂ H		
hexadecanoic acid	C ₁₅ H ₃₁ CO ₂ H	63	269

(a)	What is meant by the term <i>homologous series</i> ?				
	[2]				
(b)	Name the carboxylic acid with the formula $C_2H_5CO_2H$.				
	[1]				
(c)	Deduce the general formula for a carboxylic acid.				
(d)	It is more difficult to estimate the melting point of butanoic acid than its boiling point. Use the data in the table to explain why.				
	[1]				
(e)	When warmed in the presence of concentrated sulfuric acid, butanoic acid reacts with ethanol to make an ester.				
	Name and draw the structure, showing all the atoms and all the bonds, of this ester.				
	name				
	structure				

)	пех	Radecarioic acid, $O_{15}H_{31}OO_{2}H$, is a weak acid.	For
	(i)	Write an equation to show the dissociation of hexadecanoic acid when dissolved in water. Use the equation to explain the meaning of the term weak acid.	Examiner's Use
		[2]	
	(ii)	What is the formula of the salt formed when hexadecanoic acid reacts with aqueous sodium hydroxide?	
		[1]	
		[Total: 10]	

B9	Ethanol is	manufactured by	v the h	vdration o	f ethene
		ilialialactarea b		y ai ation o	

For
Examiner's
llse

$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$
 $\Delta H = -45 \text{ kJ/mol}$

This reaction is exothermic.

The reaction is normally carried out at a pressure of 70 atmospheres and a temperature of $300\,^{\circ}\text{C}$.

500	Ο.	
(a)	The	reaction is carried out at 70 atmospheres pressure and at 600 °C rather than 300 °C.
	Pred	lict and explain the effect of raising the temperature on
	(i)	the rate of reaction,
		[2]
	(ii)	the position of equilibrium.
		[2]
(b)	The 300	reaction is carried out at 20 atmospheres rather than 70 atmospheres, and at °C.
	Pred	dict and explain the effect of decreasing the pressure on
	(i)	the rate of reaction,
		[2]
	(ii)	the position of equilibrium.
		[2]

(c)	Calculate the energy released when 10 moles of ethanol are formed.	For Examiner's Use
	energy released =kJ [1]	
(d)	The hydration of ethene uses an acid catalyst.	
	Explain how a catalyst can increase the rate of reaction.	
	[1]	
	[Total: 10]	

B10 Aqueous silver nitrate can be electrolysed using inert electrodes. Solid silver is formed on the cathode (negative electrode).

For Examiner's Use

The table shows how the mass of silver formed is affected by four factors.

temperature of solution /°C	duration of electrolysis /seconds	current passed through solution/amps	concentration of solution /mol/dm ³	mass of silver formed /g
25	100	9.65	1.0	0.108
30	100	9.65	1.0	0.108
25	100	9.65	0.5	0.108
25	200	9.65	0.5	0.216
25	100	19.3	1.0	0.216

(a)	The	electrode reaction at the cathode is reduction.
	(i)	Construct the equation for the reaction which occurs at the cathode.
		[1]
	(ii)	Explain why this reaction is reduction.
		[1]
(b)	Stat	e how each of the following factors affects the mass of silver formed at the cathode.
	tem	perature of solution
	dura	ation of electrolysis
	curr	ent used
	con	centration of solution

[4]

(c)	Explain why aqueous silver nitrate can be electrolysed but solid silver nitrate cannot.	For Examiner's Use
	[2]	
(d)	Aqueous silver nitrate reacts with dilute hydrochloric acid to form a white precipitate.	
	Construct the ionic equation, including state symbols, for the formation of this white precipitate.	
	[2]	
	[Total: 10]	

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

The Periodic Table of the Elements	Group	1 He Hydrogen 2 Heitum	11 12 14 16 19 20	27 28 31 32 35.5 40 A1 Silcon Phosphorus Sulfur TChlorine Argon 13 14 15 16 17 17 18 18 18 18 18 18 Argon Argon 18 Argon 18 Argon Argon	55 56 59 59 64 65 70 73 75 79 80 Mn Fe Coal Ni Cu Zn Gallum Germanium Arsenic Selenium Bromine 25 25 27 28 29 30 31 32 34 35	Tc Ru Rh Pd Ag Cd In Tn Tn Antimory Tellurium Tellurium Tellurium Tellurium Tellurium Tellurium Tollurium Tolluriu	186 190 192 195 197 201 204 207 209 209 210 Re Os Ir Pt Au Hg T1 Pb Bismuth Pool oilum At Asiatine 75 76 77 78 79 80 80 81 Pool oilum Asiatine		144 147 150 152 157 159 162 165 167 169 173 175 175 175 175 175 175 175 175 175 175
				Alu Alu		49			
ments					30				
the Ele					59	47	79		
ble of	Group				28	10i PÇ	19: P Piatin		
odic Ta			1		59 Cob 27		192 Iridium		150
he Peri		Hydrogen 1				101 Ru Ruthenium 44	190 Os Osmium 76		147
					Manganese	Tc Technetium 43	186 Re Rhenium 75		144
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141
					51 V Vanadium 23	93 Nb Niobium	181 Ta Tantalum		140
					48 T Titanium	2r Zrconium 40	178 Hf Hafnium		
					Sc Scandium 21	89 ≺ Yttrium	139 La Lanthanum 57	227 AC Actinium 89	d series
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium	* 58-71 Lanthanoid series
	_		7 Lithium	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	223 Fr Francium 87	38–71 L

piol series	S	ቯ	Š	Вш	Sm	Eu	<u>ნ</u>	q_	۵	우	ш
	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium		Terbium	Dysprosium		Erbium
Г	58	29	09	61	62	63		65	99		89
a = relative atomic mass	232	231	238	237	244	243	247	247	251	252	257
X = atomic symbol	ᄕ	Ра	_	δ	Pu	Am	Cm	路	ర	Es	FB
h - otomic (notora) primptor	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium
	06	91	92	93	94	95	96	26	86	66	100

Key

258 **Md**

69

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).