Paul Gustafson

Texas A&M University - Math 447

Instructor: Dr. Johnson

HW 5, due 2/28

18.32 Let (f_n) , f be integrable. If $\int |f_n - f| \to 0$, show that $\int_E f_n \to \int_E f$ for all measurable sets E, and that $\int f_n^+ \to \int f^+$.

Proof. Note $\chi_E f_n \in L_1$ and $\chi_E f \in L_1$, so $|\int_E f - \int_E f_n| = |\int_E (f - f_n)| \le C$ $\int_E |f - f_n| \le \int |f - f_n| \to 0.$

Also, for any real function g, we have $g^+ = (|g|+g)/2$. Hence, $|\int (f_n^+ - f^+)| = (1/2)|\int (|f_n| - |f| + f_n - f)| \le (1/2)\int (||f_n| - |f|| + |f_n - f|) \le \int |f_n - f| \to 0$. \square

40 Let (f_n) , (g_n) , and g be integrable, and suppose that $f_n \to f$ a.e., $g_n \to g$ a.e., $|f_n| \leq g_n$ a.e., for all n, and that $\int g_n \to \int g$. Prove that $f \in L_1$ and that $\int f_n \to \int f$.

Proof. Just the proof of the DCT with the obvious substitutions. Since $|f_n| \leq$ g_n , we have $|f| \leq g$, so $f \in L_1$. The only other interesting parts are the equality $\lim \inf_{n\to\infty} (\int g_n + \int f_n) = \int g + \lim \inf_{n\to\infty} \int f_n$ and the corresponding one for lim sup. This follows from the more general fact that if $a_n \to a$ and $(b_n) \subset \mathbb{R}$, then $\liminf_n (a_n + b_n) = a + \liminf_n b_n$.

Indeed, for $\epsilon > 0$, we have $|a_n - a| \leq \epsilon$ for all large n. Hence, $a - \epsilon +$ $\liminf_n b_n \le a + \liminf_n (a_n - a) + b_n \le a + \epsilon + \liminf_n b_n$. Letting $\epsilon \to 0$, we have $\liminf_n (a_n + b_n) = a + \liminf_n (a_n - a) + b_n = a + \liminf_n b_n$.

43(a) Let f be measurable and finite a.e. on [0,1]. If $\int_E f = 0$ for all measurable $E \subset [0,1]$ with m(E) = 1/2, prove that f = 0 a.e. on [0,1].

Proof. Case $f \geq 0$. Suppose the conclusion fails. Then $m[f > 0] = m[\cup_n f \geq$ 1/n > 0, so $m[f \ge 1/n] > 0$ for some n. But then either $[0, 1/2] \cap [f \ge 1/n]$ or $[1/2,1] \cap [f \ge 1/n]$ has positive measure. WLOG, suppose the former. Then $\int_0^{1/2} f \ge \int_0^{1/2} 1/n \chi_{[f \ge 1/n]} = 1/n \, m([0, 1/2] \cap [f \ge 1/n]) > 0, \text{ a contradiction.}$ $General \ case. \ \text{Either} \ m[f \ge 0] \ge 1/2 \ \text{or} \ m[f \le 0] \le 1/2. \ \text{FIXME}$

Suppose not. Either m[f > 0] or m[f < 0] is positive; WLOG suppose the former is. Then $m[f > 0] = m[\bigcup_n f \ge 1/n] > 0$, so $m[f \ge 1/n] > 0$ for some n. If $m[f \ge 1/n] > 1/2$, then pick $E \subset [f \ge 1/n]$ with m(E) = 1/2, giving a contradiction. The existence of such an E follows the intermediate value theorem since $g(t) = m([f \ge 1/n] \cap [0,t])$ is continuous.

If $m[f \ge 1/n] < 1/2$, let $F \subset ([0,1] \setminus [f \ge 1/n])$ with m(F) = 1/2. Let $G = F \cap [fle0].$

43(b) Let f be measurable and finite a.e. on [0,1]. If f>0 a.e., show that $\inf \left\{ \int_E f : m(E) \ge 1/2 \right\} > 0.$

Proof. **44(c)** Show that $\lim_{n} \int_{0}^{1} f_{n} = 0$ where $f_{n}(x) = \frac{nx \log x}{1 + n^{2}x^{2}}$.

Proof. Note that $1 + n^2 x^2 \ge 2nx$. Hence, $|f_n| \le (1/2)|\log x|$. Note that $\int_0^1 |\log x| \, dx = \int_0^1 (-\log x) \, dx = [x - x \log x]_0^1 = 1 - \lim_{x \to 0} x \log x = 1 - \lim_{x \to 0} \frac{1/x}{-1/x^2} = 1$. Hence, by the DCT, $\lim_n \int_0^1 f_n = \int_0^1 \lim_{n \to \infty} f_n = 0$.

44(d) Show that $\lim_{n} \int_{0}^{1} f_{n} = 0$ where $f_{n}(x) = \frac{n^{3/2}x}{1+n^{2}x^{2}}$.

Proof. Letting $u=1+n^2x^2$, we have $\int_0^1 f_n = \int_1^{1+n^2} \frac{n^{-1/2}}{2u} du = (n^{-1/2}/2)[\log u]_1^{1+n^2} = (n^{-1/2}/2)\log(1+n^2)$.

Thus,
$$\lim_{n} \int_{0}^{1} f_{n} = \lim_{n \to \infty} \frac{\log(1+n^{2})}{2n^{1/2}} = \lim_{n \to \infty} \frac{2n/(1+n^{2})}{n^{-1/2}} = 0.$$

47(b) Compute $\lim_{n\to\infty} \int_0^1 \frac{1+nx^2}{(1+x^2)^n} dx$.

Proof. By the binomial theorem, $\frac{1+nx^2}{(1+x^2)^n} \leq 1$ for all n. Hence, by the DCT, $\lim_{n\to\infty} \int_0^1 \frac{1+nx^2}{(1+x^2)^n} dx = \int_0^1 \lim_{n\to\infty} \frac{1+nx^2}{(1+x^2)^n} dx = 0$.

47(d) Compute $\lim_{n\to\infty} \int_a^\infty \frac{n}{1+n^2x^2} dx$.

Proof. Let u = nx. Then $\int_a^\infty \frac{n}{1+n^2x^2} dx = \int_{na}^\infty \frac{1}{1+u^2} du = [\tan^{-1}(u)]_{na}^\infty = (\pi/2) - \tan^{-1}(na)$. As $n \to \infty$,

$$\int_{a}^{\infty} \frac{n}{1 + n^{2}x^{2}} dx = (\pi/2) - \tan^{-1}(na) \to \begin{cases} 0, & a > 0 \\ \pi/2, & a = 0 \\ \pi, & a < 0 \end{cases}.$$

49 For which $\alpha \in \mathbb{R}$ is $f(x) := \sum_{n=1}^{\infty} x n^{-\alpha} e^{-nx}$ continuous on $[0, \infty)$? in $L_1[0, \infty)$?

Proof. First note that, for any α , each term of the series is decreasing in x. Hence, f converges uniformly on every closed interval not containing 0 by the ratio test.

Note that if $\alpha \leq 0$, we have, for x > 0, $\sum_{n=1}^{\infty} x n^{-\alpha} e^{-nx} \geq \sum_{n=1}^{\infty} x e^{-nx} = x \frac{e^{-x}}{1-e^{-x}} = \frac{x}{e^x-1} \to 1$ as $x \to 0$. But f(0) = 0, so f is discontinuous at 0 for $\alpha \leq 0$.

If $\alpha > 0$, then

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \sum_{n=2}^{\infty} x n^{-\alpha} e^{-nx}$$

$$\leq \lim_{x \to 0} \sum_{n=2}^{\infty} \int_{n-1}^{n} x y^{-\alpha} e^{-yx} dy$$

$$= \lim_{x \to 0} \int_{1}^{\infty} x y^{-\alpha} e^{-yx} dy$$

$$= \lim_{x \to 0} \int_{1}^{\infty} (-y^{-\alpha})(-xe^{-yx}) dy$$

$$= \lim_{x \to 0} [-y^{-\alpha} e^{-yx}]_{y=1}^{\infty} - \int_{1}^{\infty} e^{-yx} (\alpha y^{-\alpha - 1}) dy$$

$$= \lim_{x \to 0} e^{-x} - \alpha \int_{1}^{\infty} e^{-yx} y^{-\alpha - 1} dy$$

$$= 1 - \alpha \int_{1}^{\infty} \lim_{x \to 0} e^{-yx} y^{-\alpha - 1} dy$$

$$= 1 + [y^{-\alpha}]_{1}^{\infty}$$

$$= 0,$$

where the interchange of limit and integral is justified by the inequality $e^{-yx}y^{-\alpha-1} \le y^{-\alpha-1}$, whose integral converges since $\alpha > 0$. Hence, f is continuous for $\alpha > 0$. To find out when $f \in L_1[0,\infty)$, note that by the MCT,

$$\int_0^\infty f(x) \, dx = \sum_{n=1}^\infty n^{-\alpha} \int_0^\infty x e^{-nx} \, dx$$

$$= \sum_{n=1}^\infty n^{-\alpha} ([x(-n^{-1})e^{-nx}]_{x=0}^\infty - \int_0^\infty (-n^{-1})e^{-nx} \, dx)$$

$$= \sum_{n=1}^\infty n^{-\alpha} [-n^{-2}e^{-nx}]_{x=0}^\infty$$

$$= \sum_{n=1}^\infty n^{-2-\alpha},$$

which converges iff $\alpha > -1$.

55 Prove that if f is integrable on \mathbb{R} , then $f(x)\cos(nx)$ is integrable and $\lim_{n\to\infty}\int_{-\infty}^{\infty}f(x)\cos(nx)\,dx=0$. The same is true with sin replacing cos.

Proof. To see that $f(x)\cos(nx) \in L_1(\mathbb{R})$, note $|f(x)\cos(nx)| \leq |f(x)|$ for all x. The other conclusion follows from (56), replacing t with x and $\sin(xt)$ with $\cos(nx)$ where appropriate.

- **60 (a)** Show that there is a sequence of polynomials (P_n) such that $P_n \to 0$ pointwise on [0,1], but with $\int_0^1 P_n(x) dx \to 3$.
- **(b)** Find $\int_0^1 \sup_n |P_n(x)| dx$.

51 Let (f_n) be a sequence of measurable functions with $|f_n| \leq g$ for all n, where $g \in L_1$. If $f_n \to f$ a.e., prove that $f_n \to f$ almost uniformly.

Proof.
$$\Box$$

56 Given $f \in L_1(\mathbb{R})$, define $g(x) = \int_{-\infty}^{\infty} f(t) \sin(xt) dt$ for $x \in \mathbb{R}$. Show that g is continuous on \mathbb{R} and that $g(x) \to 0$ as $x \to \pm \infty$; hence, g is uniformly continuous on \mathbb{R} .

Proof. Case $f = \chi_{(a,b)}$ for $a,b \in \mathbb{R}$. We have $g(x) = \int_a^b \sin(xt) dt = (1/x) \int_{xa}^{xb} \sin(t) dt = O(1/x)$ since $\int_r^{r+2n\pi} \sin(t) = 0$ for all $r \in \mathbb{R}$, $n \in \mathbb{Z}$. Hence, $g(x) \to 0$ as $|x| \to \infty$.

To see that g is continuous, fix x and suppose $x_n \to x$. Then $\sin(x_n t) \to \sin(xt)$ pointwise on (a,b), hence in measure also. Let $\epsilon > 0$. Convergence in measure says that we can pick N such that, for all n > N, we have $m[|\sin(x_n t) - \sin(xt)| \ge \epsilon] < \epsilon$. Then for n > N, we have $|g(x) - g(x_n)| \le \int_a^b |\sin(x_n t) - \sin(x_n t)| dt \le 2m[|\sin(x_n t) - \sin(x t)| \ge \epsilon] + \epsilon m[|\sin(x_n t) - \sin(x t)| < \epsilon] \le 2\epsilon + \epsilon (b-a)$. Hence, g is continuous.

Case f is a step function. We have $f = \sum_{i=1}^{m} a_i \chi_{A_i}$ a.e., where each A_i is an interval. Both conclusions follow from the linearity of the integral and the previous case.

General case. Let $\epsilon > 0$. Pick a step function h such that $\int |f - h| < \epsilon$. To see that $g(x) \to 0$ as $|x| \to \infty$, note that $|g(x)| = |\int h(t) \sin(xt) \, dt + \int (f(t) - h(t)) \sin(xt) \, dt| \le |\int h(t) \sin(xt) \, dt| + \int |f - h| \to \epsilon$ as $|x| \to \infty$ by the step function case.

For the continuity, suppose $x_n \to x$. Then $|g(x_n) - g(x)| = |\int f(t)(\sin(x_n t) - \sin(xt)) dt| \le |\int h(t)(\sin(x_n t) - \sin(xt)) dt| + 2\int |f - h| \to 2\epsilon \text{ as } n \to \infty.$