1 Review

During our discussion, we talked about how to find integral curves to a vector field that is translationally invariant, that solving an ODE is equivalent to finding some integral curve and how to do so for autonomous ODEs.

2 Suggested Exercises

- I) For each of the following, draw the associated vector field in the (t,x) plane (use python). Find the integral curves passing through $(0,x_0)$ parametrized as $\gamma(u)=(t(u),u)$. Then find another parametrization of the save curve as $\gamma'(u)=(u,x(u))$
 - i) $\dot{x} = x$
 - ii) $\dot{x} = kx^2$
 - iii) $\dot{x} = 1 + x^2$
 - iv) $\dot{x} = \frac{1}{\sin(x)}$
 - $\mathbf{v}) \dot{x} = \frac{1}{\sin(x) + 2}$
 - vi) $x\dot{x} = 1$
 - vii) Is there anything different about the last equation compared to the other ones?