

UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE

Wydział Matematyki i Informatyki

Sylabus przedmiotu - część A

PROGRAMOWANIE STRUKTURALNE STRUCTURED PROGRAMMING

17S1-PROGRSTR

ECTS: 6 CYKL: 2020L

TREŚCI MERYTORYCZNE

ĆWICZENIA:

W ramach ćwiczeń laboratoryjnych studenci mają za zadanie napisanie i uruchamianie szeregu programów ilustrujących kolejne zagadnienia przedstawiane na wykładzie.

WYKŁADY:

Podstawy paradygmatu programowania strukturalnego i jego umiejscowienie w kontekście innych paradygmatów. Historia języków i technik programowania. Funkcje i procedury (przekazywanie argumentów, zmienne lokalne, zwracanie wartości). Rekurencja. Wskaźniki (zarządzanie pamięcią, arytmetyka wskaźników). Pojęcie stosu i sterty. Tablice (jednowymiarowe, wielowymiarowe, tablice tablic). Operacje na plikach. Struktury i inne formy danych. Dynamiczne typy danych (typy wskaźnikowe, implementacja list poprzez wskaźniki, podstawowe operacje na listach). Operacje na bitach. Preprocesor.

CEL KSZTAŁCENIA:

Opanowanie paradygmatu programowania strukturalnego i jego rozpoznawanie na tle innych paradygmatów. Umiejętność stosowania programowania strukturalnego w programach małej i średniej wielkości.

OPIS CHARAKTERYSTYK DRUGIEGO STOPNIA EFEKTÓW UCZENIA SIĘ DLA KWALIFIKACJI NA POZIOMACH 6-8 PRK PRZEDMIOTU W ODNIESIENIU DO DYSCYPLIN NAUKOWYCH I EFEKTÓW KIERUNKOWYCH

Symbole ef. dyscyplinowych: InzA_K01++, XP/I1A_K01++, XP/I1A_K11++, XP/I1A_U01+++

XP/ITA_U02+++, XP/I1A_U18++, XP/I1A_U20++, XP/I1A_W04+

+, XP/I1A_W07++,

Symbole ef. kierunkowych: K1_K01+, K1_K02+, K1_U01++, K1_U02++, K1_W01+,

K1_W07+,

EFEKTY KSZTAŁCENIA/UCZENIA SIĘ:

W1 - Student zna konstrukcje programistyczne omawiane na wykładzie: typy strukturalne, typy wskaźnikowe, wskaźniki do struktur, instrukcje alokacji i dealokacji obiektów typów strukturalnych, relację między deklarowaniem wskaźnika a instrukcją alokacji obiektu.

Umiejętności

Wiedza

U1 - Student potrafi napisać program z wykorzystaniem paradygmatu strukturalnego. Student rozumie znaczenie właściwej struktury kodu.

U2 - Student potrafi przeprowadzić dekompozycję funkcjonalną zadania i ustrukturyzować kod tworzonego programu.

Kompetencje społeczne

K1 - Student docenia rolę precyzji w formułowaniu problemów.

K2 - Student jest świadomy konieczności ciągłego doskonalenia swoich umiejętności programistycznych w trakcie swojego przyszłego rozwoju zawodowego.

LITERATURA PODSTAWOWA

1) Richard Resese, Wskaźniki w języku C. Przewodnik, wyd. Helion, 2014, t. 1, s. 1; 2) Stephen Prata, Język C. Szkoła programowania, wyd. Helion, 2006, t. 1, s. 1; 3) Stephen G. Kochan, Język C. Kompendium wiedzy. Wydanie IV, wyd. Helion, 2015

LITERATURA UZUPEŁNIAJĄCA

1) Marek Tłuczek, Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II, wyd. Helion, 2011; 2) Zed A. Shaw, Programowanie w C. Sprytne podejście do trudnych zagadnień, których wolałbyś unikać (takich jak język C), wyd. Helion, 2016

Przedmiot/grupa przedmiotów:

Programowanie strukturalne

Dyscypliny:

informatyka

Status przedmiotu: Obligatoryjny

Grupa przedmiotów: B - przedmioty

kierunkowe

Kod ECTS:

Kierunek studiów: Informatyka

Zakres kształcenia: Informatyka ogólna,

Inżynieria systemów informatycznych

Profil kształcenia: Ogólnoakademicki

Forma studiów: Stacjonarne

Poziom studiów: Pierwszego stopnia/ inzynierskie

Rok/semestr: 1 / 2

Rodzaje zajęć:

Ćwiczenia laboratoryjne, Wykład

Liczba godzin w sem: Ćwiczenia

laboratoryjne: 45, Wykład: 30

Formy i metody dydaktyczne:

Ćwiczenia laboratoryjne(K1, K2, U1, U2): Ćwiczenia komputerowe - wspólne lub samodzielne pisanie programów i wykonywanie poleceń przygotowanych przez prowadzącego., Wykład(K1, U1, W1): Wykład tradycyjny (opcjonalnie wzbogacony o prezentację).

Forma i warunki weryfikacji efektów:

ĆWICZENIA LABORATORYJNE: Ocena pracy i wspólpracy w grupie - Efektywność pracy na zajęciach(U2); ĆWICZENIA LABORATORYJNE: Kolokwium praktyczne - Dwa kolokwia komputerowe - rozwiązywanie zadań programistycznych.(K1, K2, U1, U2); WYKŁAD: Egzamin - Egzamin komputerowy. Na egzaminie studenci dostaną klika zadań programistycznych. Będą to zadania typu: samodzielne napisanie kodu, uzupełnienie kodu by działał poprawnie, propozycja algorytmu do wybranego zagadnienia.(K1, U1, W1)

Liczba pkt. ECTS: 6
Język wykładowy: polski
Przedmioty wprowadzające:
Wstęp do programowania

Wymagania wstępne:

Podstawowa znajomość języka C

Nazwa jednostki org. realizującej przedmiot:

Katedra Analizy Zespolonej,

Osoba odpowiedzialna za realizację przedmiotu:

dr Piotr Jastrzębski

Osoby prowadzące przedmiot:

dr Piotr Jastrzębski , dr Agnieszka Zbrzezny , dr Jacek Marchwicki , dr Anna Szczepkowska , dr Mikhail Kolev

Uwagi dodatkowe:

Szczegółowy opis przyznanej punktacji ECTS - część B

17S1-PROGRSTR ECTS: 6

PROGRAMOWANIE STRUKTURALNE STRUCTURED PROGRAMMING

CYKL: 2020L

Na przyznaną liczbę punktów ECTS składają się:

Godziny kontaktowe z nauczycielem akademickim:	
- udział w: ćwiczenia laboratoryjne	45 godz.
- udział w: wykład	30 godz.
- konsultacje	5 godz.
	80 godz.
2. Samodzielna praca studenta:	
- przygotowanie do egzaminu	20 godz.
- przygotowanie do kolokwiów	15 godz.
- przygotowanie do laboratoriów	35 godz.
	70 godz.

1 punkt ECTS = 25-30 godz. pracy przeciętnego studenta, liczba punktów ECTS = 150 h : 25 h/ECTS = 6,00 ECTS średnio: 6 ECTS

- w tym liczba punktów ECTS za godziny kontaktowe z bezpośrednim udziałem nauczyciela akademickiego: 3,20 punktów

ECTS,

- w tym liczba punktów ECTS za godziny realizowane w formie samodzielnej pracy studenta: 2,80 punktów

ECTS,