TRABAJO ESPECIAL DE GRADO

Diseño e implementación de una red WiFi mallada que soporte protocolo MODBUS para equipos de control industrial.

> Presentado ante la ilustre Universidad Central de Venezuela por el Br. Adrian Vazquez para optar al título de Ingeniero Electricista.

TRABAJO ESPECIAL DE GRADO

Diseño e implementación de una red WiFi mallada que soporte protocolo MODBUS para equipos de control industrial.

TUTOR ACADÉMICO: Profesor José Alonso

Presentado ante la ilustre Universidad Central de Venezuela por el Br. nombres y apellidos para optar al título de Ingeniero Electricista.

RECONOCIMIENTOS Y AGRADECIMIENTOS

Adrian Vazquez

Diseño e implementación de una red WiFi mallada que soporte protocolo MODBUS para equipos de control industrial.

Tutor Académico: José Alonso. Tesis. Caracas, Universidad Central de Venezuela. Facultad de Ingeniería. Escuela de Ingeniería Eléctrica. Mención Electrónica. Año 2020, xvii, 144 pp.

Palabras Claves: Palabras clave.

Resumen.- Escribe acá tu resumen

ÍNDICE GENERAL

RECONOCIMIENTOS Y AGRADECIMIENTOS	III
ÍNDICE GENERAL	VIII
LISTA DE FIGURAS	X
LISTA DE TABLAS	XI
LISTA DE ACRÓNIMOS	XII
INTRODUCCIÓN	1
MARCO HISTÓRICO	4
MARCO TEÓRICO	5
MARCO METODOLÓGICO	6
3.1. Diseño de una red mallada basada en el microcontrolador ESP32	. 6
DESCRIPCIÓN DEL MODELO	8
PRUEBAS EXPERIMENTALES	9
RESULTADOS	10
CONCLUSIONES	11
RECOMENDACIONES	12

TÍTULO DEL ANEXO	13
TÍTULO DEL ANEXO	14
TÍTULO DEL ANEXO	15
REFERENCIAS	16

LISTA DE FIGURAS

LISTA DE TABLAS

LISTA DE ACRÓNIMOS

INTRODUCCIÓN

En el área de la ingeniería eléctrica, las comunicaciones se pueden clasificar en dos grupos: las alámbricas y las inalámbricas. En el primer caso el medio es tangible estando, generalmente, compuesto por varios conductores metálicos o fibra óptica y en el segundo no hay medio físico. Las comunicaciones inalámbricas se clasifican básicamente según la banda de frecuencia o el estándar que satisface, así las tecnologías IEEE 802.15.1 (bluetooth), IEEE 802.11 (WiFi) y GSM (telefonía celular).

Las tecnologías basadas en el estandar IEEE 802.11, también conocidas como WiFi, han ganado popularidad en el mundo de las comunicaciones proveyendo interconectividad entre clientes (PC, laptops, smartphones) y puntos de acceso. Las redes que usan dicha tecnología se clasifican (según la topología) en centralizadas o descentralizadas dependiendo si la conectividad entre clientes posee como intermediario o no un punto de acceso?.

Dentro de las redes descentralizadas tenemos a las redes de topología mallada, donde los clientes están en capacidad de ser, simultáneamente, puntos de acceso brindando servicio a otros clientes y servir de puente a otros nodos. Además, las redes WiFi malladas difieren de las convencionales en que no es obligatorio que todos los nodos estén conectados al nodo central, en su lugar, cada nodo se puede conectar a el nodo vecino. Esto abre la posibilidad de ampliar la cobertura manteniendo la interconectividad de la red .

Las redes WiFi brindan la posibilidad de que la adquisición de información pueda estar presentes en virtualmente cualquier cosa de manera inalámbrica, poseyendo potencialidad en el monitoreo y control de procesos. No obstante, los

inconvenientes de ruido, seguridad y distancia han hecho que se hayan desarrollado arquitecturas que vayan superando estas limitaciones .

Aunque el estándar IEEE 802.11s establece las normas generales de la comunicación WiFi mallada ?, todavía es un terreno actualmente se encuentra en exploración, especialmente en los entornos electromagneticamente ruidosos o congestionados. En el mismo orden de ideas, existen reservas respecto al manejo de datos críticos o sensibles en un proceso industrial, debido a la confiabilidad y seguridad de los datos?.

Modbus es el protocolo de comunicación industrial estándar de facto desde 1979?. Al emplear un protocolo Modbus se establece un sistema de comunicación de tipo maestro/esclavo. En este tipo de sistemas un nodo principal o maestro envía una solicitud específica a un esclavo y este genera la respuesta. Los esclavos no transmiten datos sin una instrucción previa y no se comunican con ningún otro esclavo. En la capa física del sistema de comunicación, el protocolo Modbus puede emplear diversas interfaces físicas, entre las que se encuentras la RS-485 y RS-232, en la cual la interfaz TIA/EIA-485 (RS-485) de dos cables es la más común .

En el ámbito industrial la reducción de costos es siempre una meta y las redes inalámbricas podrían ser una alternativa frente a las alámbricas, en las que las grandes distancias cubiertas por conductores representan un costo relativamente elevado?. Así mismo, los conductores instalados son vulnerables a hurtos, lo que se traduce en pérdidas económicas para las industrias.

Tomando en cuenta lo anterior, se propone el diseño de una red inalámbrica WiFi mallada con una comunicación basada en el protocolo Modbus orientada a la implentación a un entorno industrial, cuyos nodos estarán constituidos por microcontroladores ESP32. Este trabajo tiene por finalidad presentar la metodología para el diseño e implementación de la red , además se presentan los detalles del

planteamiento del problema y la factibilidad de proyecto así como el cronograma para la ejecución de actividades para lograr los objetivos planteados .

CAPÍTULO I

MARCO HISTÓRICO

Planteamiento del problema

La creciente popularidad de las redes inalámbricas en casi todos los sectores ha hecho que las infraestructuras asociadas, dispositivos y protocolos se vean en la necesidad de mejorar constantemente para manejar la creciente cantidad de usuarios de manera segura y eficiente. Así mismo, las redes WiFi centralizadas están limitadas por la capacidad del punto de acceso, en el ámbito de cobertura y cantidad de clientes, restricciones que se pudiesen superar con las redes WiFi malladas.

Actualmente la redes malladas están en una etapa de desarrollo, por lo que no existe un estándar sólido para la implementación de toda la red, lo que causa reservas en las industrias, especialmente debido a la vulnerabilidad de los datos, la confiabilidad en ambientes electromagnéticamente ruidosos y el rendimiento. Es por eso que una red mallada WiFi con comunicación basada en el protocolo Modbus podría representar una solución a este problema.

Justificación

Se plantea una red WiFi lo cual representaría una reducción de costos en la implementación de un sistema de control y adquisición de datos, dado que se necesitan menos conductores. Además, se explorará el campo popular hoy en día de las redes WiFi y su rendimiento como red mallada. Dicha red representa una alternativa a superar la limitaciones de número de clientes y área de cobertura presentes en las redes WiFi centralizadas, y más aún, supone una solución a llegar a lugares lejanos de un nodo central sin la necesidad de agregar puntos de acceso adicionales.

La constitución de la red mallada se elaborará basados en comunicación WiFi a través de microcontroladores ESP32, que poseen características de tamaño, potencia y costos aunado a las ventajas principales de las redes mallada de cobertura y conectividad. También se sustentará la transmisión de información en el protocolo Modbus debido a su confiabilidad todos los sectores aplicables, especialmente el industrial.

Alcance y limitaciones

La red se compondrá de al menos cuatro nodos, donde cada nodo tendrá conexión con al menos otro nodo usando red WiFi y estarán constituidos por microcontroladores ESP32 con módulo WiFi integrado y el programa asociado a la red. Los nodos deben estar apropiadamente alimentados, cuyo diseño no forma parte del proyecto.

El programa se diseñará para que se logre transportar la información bajo el protocolo Modbus por la red inalámbrica, considerando que solo en un nodo está conectado el maestro. Así mismo, algunos de los nodos restantes poseerán esclavos. Cabe resaltar que las unidades que generan los datos del protocolo Modbus (maestro y esclavos) no forman parte de la red a diseñar, ya que se asume que se recibe información en los nodos sin tener en cuenta mayor detalle de su origen.

CAPÍTULO II

MARCO TEÓRICO

CAPÍTULO III

MARCO METODOLÓGICO

3.1. Diseño de una red mallada basada en el microcontrolador ESP32

La red mallada se diseño para una sola red Modbus, por lo que, solo puede existir un maestro y una cantidad de XXX esclavos (Citacion required). Teniendo en consideración lo anterior, se definió la topología de la red mallada; las rutas de comunicación se definieron según el esclavo que el maestro Mosbus esté interrogando. Así, aunque las rutas son estáticas, el enrutamiento de cada nodo varia según una tabla fija de enrutamiento determinada.

Por otro lado, existen otras características de comunicación como lo es el estándar del bus serial y la características del mismo. Ya que se usa el estándar RS-485, quedaba por definir la tasa de transmisión. Esta puede variar, por lo que el nodo es configurable y compatible para las tasas de Baudios siguientes:

Entonces, quedando diferenciadas las dos etapas (la inalambrica y la serial) y además, se consideraron los dos sentidos de la información (desde y hacia el esclavo), para establecer una lógica para el funcionamiento del nodo.

Cada nodo contemplaron dos sentidos, el primero es si se le introduce la información por el bus serial entonces esta debe transmitirse inalambricamente; y si recibe información inalambricamente entonces debe pasarla a su bus serial o bien debe transmitirla a otro nodo.

Cada nodo debe ser configurable respecto a su identificador, tabla de enrutamiento y tasa de baudios de la interfaz serial, para así adaptarlos a los entornos de comunicación industriales. Sabiendo que se transmite el protocolo Modbus entoinces se consideró conveniente considerar a los nodos como esclavos en el sistema. Se reservaron identificadores para los nodos, lo que deja menos cantidad de identificadores de esclavos disponibles para la red en la que se implemente la red mallada.

La comunicación entre los nodos es unicast para así aprovechar las ventajas que esto implica como lo son encriptación, respuesta de agradecimiento y ahorro de (sobrecarga). Para tener mayor cobertura, los esclavos pueden estar a mas de un nodo intermedio del nodo que posee el maestro y la red se diseño para poseyera la capacidad de reenviar dicha información convenientemente.

Definidas estar características de funcionamiento, se investigaron las librerías que el microcontrolador ESP32 poseía para hacer tales funciones. Se encontraros dos tipos de redes WiFi descritos por Espressif: mesh y espnow. Para elegir cual usar se tomó en cuenta la flexibilidad, descentralización, seguridad y alcance; pues bien son las cualidades que entraban en concordancia para la elaboración de la arquitectura de red descrita anteriormente.

3.2. Implementar el módulo del programa para el manejo del protocolo Modbus en el bus RS-485.

Como se trabajó en en microcontrolador ESP32, los programas elaborados son administrados por un sistema operativo en tiempo real (RTOS). Al mismo tiempo, el diseño de los programas contempló todas las características que un RTOS implica. Esto se traduce en un paradigma de programación basado en tareas, eventos, colas, etc.

CAPÍTULO IV

DESCRIPCIÓN DEL MODELO

CAPÍTULO V

PRUEBAS EXPERIMENTALES

CAPÍTULO VI

RESULTADOS

CAPÍTULO VII

CONCLUSIONES

CAPÍTULO VIII

RECOMENDACIONES

Apéndice I

TÍTULO DEL ANEXO

Apéndice II

TÍTULO DEL ANEXO

Apéndice III

TÍTULO DEL ANEXO

REFERENCIAS

- Brea, E. (2006). Cálculo Operacional (1ra ed.). Caracas: Escuela de Ingeniería Eléctrica, Universidad Central de Venezuela.
- Brigham, E. O. (1974). *The fast Fourier transform*. Englewood Cliffs, N.J.: Prentice Hall.
- Hvattum, L. M., y Glover, F. (2009). Finding local optima of high-dimensional functions using direct search methods. *European Journal of Operational Research*, 195(1), 31 45.