



# LaBRADOR: Compact Proofs for R1CS from Module-SIS

GAO Shang 2025/07/10

#### **Notion**

- $\mathbb{Z}_q$ : ring of integers mod q.
  - $\vec{a} \in \mathbb{Z}_q^m$ , where the *i*-th element is  $a_i \in \mathbb{Z}_q$ .
- $\mathcal{R}_q$ : polynomial ring  $\mathbb{Z}_q[X]/(X^d+1)$ .
  - $a = a_0 + a_1 \cdot X + \dots + a_{d-1} \cdot X^{d-1} \in \mathcal{R}_q$ , and  $ct(a) = a_0$  is the constant term of a.
  - $\vec{a} \in \mathcal{R}_q^m$ , where the *i*-th element is  $a_i \in \mathcal{R}_q$ .
  - $\sigma(\mathbf{a}) = a_0 + a_1 \cdot X^{-1} + \dots + a_{d-1} \cdot X^{-(d-1)}$ .
- $\langle *, * \rangle$ : inner-product, works on  $\mathbb{Z}_q$   $\langle \vec{a}, \vec{b} \rangle$  and  $\mathcal{R}_q$   $\langle \vec{a}, \vec{b} \rangle$ .
  - Let  $\vec{a}, \vec{b} \in \mathbb{Z}_q^{md}$ , we can also write  $\vec{a}, \vec{b} \in \mathcal{R}_q^m$ . Then  $\langle \vec{a}, \vec{b} \rangle = ct(\langle \sigma(\vec{a}), \vec{b} \rangle)$ .

#### LaBRADOR Relation

$$\Re = \left\{ (\mathcal{F}, \mathcal{F}', \beta); (\vec{\boldsymbol{s}}_1, \dots, \vec{\boldsymbol{s}}_r) : \begin{array}{l} f(\vec{\boldsymbol{s}}_1, \dots, \vec{\boldsymbol{s}}_r) = \boldsymbol{0} \quad \forall f \in \mathcal{F} \\ ct(f'(\vec{\boldsymbol{s}}_1, \dots, \vec{\boldsymbol{s}}_r)) = 0 \quad \forall f' \in \mathcal{F}' \\ \sum_{i=1}^r ||\vec{\boldsymbol{s}}_i||_2^2 \le \beta^2 \end{array} \right\},$$

• where  $f(\vec{s}_1, ..., \vec{s}_r)$  is defined as:

$$(s, \vec{s}_r)$$
 is defined as:
$$f(\vec{s}_1, ..., \vec{s}_r) = \sum_{i,j=1}^r a_{i,j} \langle \vec{s}_i, \vec{s}_j \rangle + \sum_{i=1}^r \langle \vec{\phi}_i, \vec{s}_j \rangle - b,$$

- so does f'.
- $f'(\mathbb{Z}_q$ -constraint form) can be extended to  $\mathcal{R}_q(\mathcal{R}_q$ -constraint form).

#### LaBRADOR Overview

- Committing  $\vec{s}_1, ..., \vec{s}_r$ .
- Proving  $\sum_{i=1}^r ||\vec{s}_i||_2^2 \le \beta^2$ .
- Aggregating the results.
- Amortizing for better efficiency.
- Verifying.

### Committing

- Committing  $\vec{s}_1, ..., \vec{s}_r$  is to build a binding relation ( $\Re$  may not be binding).
- Naively: Ajtai for each  $\vec{s}_i$ :  $\vec{t}_i = A\vec{s}_i \in \mathcal{R}_q^{\kappa}$ .
- LaBRADOR: commitment of commitments.

# Projecting

- Proving  $\sum_{i=1}^{r} ||\vec{s}_i||_2^2 \le \beta^2$  is the most challenging part in lattice-based proofs.
- Modular Johnson-Lindenstrauss Lemma: if  $\|\Pi\vec{s}\|_2$  is small, then  $\|\vec{s}\|_2$  is small.

• For 
$$\Pr[C = 0] = 1/2$$
,  $\Pr[C = 1] = \Pr[C = -1] = 1/4$ , if  $\|\vec{s}\|_2 \ge b$ , then 
$$\Pr_{\Pi \leftarrow C^{256 \times d}} [\|\Pi\vec{s}\|_2 < \sqrt{30}b] \le 2^{-128}.$$

## Projecting

• Let  $\vec{p} = \sum_{i} \Pi_{i} \vec{s}_{i} \in \mathbb{Z}_{q}^{256}$  and  $\vec{\pi}_{i}^{(j)}$  be the j-th row of  $\Pi_{i}$ . We have  $\sum_{i} \left\langle \vec{\pi}_{i}^{(j)}, \vec{s}_{i} \right\rangle = p_{j} \implies \sum_{i} ct\left(\left\langle \sigma\left(\vec{\pi}_{i}^{(j)}\right), \vec{s}_{i} \right\rangle\right) - p_{j} = 0.$ 

• They are in the  $\mathbb{Z}_q$ -constraint form.

#### Aggregating

• Aggregate  $|\mathcal{F}'|$  functions  $f'^{(\ell)} \in \mathcal{F}'$  and 256 derived projecting functions ( $\mathbb{Z}_q$ -constraints).

• Extent the  $\mathbb{Z}_q$ -constraints to  $\mathcal{R}_q$ -constraints.

• Aggregate  $|\mathcal{F}|$  functions  $f^{(k)} \in \mathcal{F}$  and extended functions.

#### **Amortizing**

• Now we only have one aggregated  $\mathcal{R}_q$ -constraint under the from

$$f(\vec{s}_1, \dots, \vec{s}_r) = \sum_{i,j=1}^r a_{i,j} \langle \vec{s}_i, \vec{s}_j \rangle + \sum_{i=1}^r \langle \vec{\phi}_i, \vec{s}_j \rangle - b.$$

#### **Amortizing**

- $\cdot \vec{z} = c_1 \vec{s}_1 + \dots + c_r \vec{s}_r.$
- For commitments  $\vec{t}_i = A\vec{s}_i$ :
- For  $\langle \vec{s}_i, \vec{s}_j \rangle$ , verifier computes  $\langle \vec{z}, \vec{z} \rangle$ :
- For $\langle \overrightarrow{\boldsymbol{\phi}}_i, \overrightarrow{\boldsymbol{s}}_j \rangle$ , verifier computes  $\langle \overrightarrow{\boldsymbol{\phi}}_i, \overrightarrow{\boldsymbol{z}} \rangle$ :

#### **Amortizing**

•  $\vec{g}_{i,j}$ ,  $\vec{h}_{i,j}$  are short, but we can still decompose.

• But  $\overrightarrow{g}$ ,  $\overrightarrow{h}$  are long, so the prover sends commitments of them.

# Verifying

- Prover sends  $\vec{t}$ ,  $\vec{g}$ ,  $\vec{h}$ ,  $\vec{z}$ .
- Verifier checks:
  - Commitment constraint:
  - $\vec{g}$ ,  $\vec{h}$  are correct:
  - Aggregated  $\mathcal{R}_q$ -constraint:
  - $\vec{t}$ ,  $\vec{g}$ ,  $\vec{h}$ ,  $\vec{z}$  are short:

#### Recursion

- Prover does not send  $\vec{t}$ ,  $\vec{g}$ ,  $\vec{h}$ ,  $\vec{z}$  (regard them as a witness).
- We now have another  $\Re$  relation, allowing us to conduct a recursion.
- Decomposing  $\vec{z}$  to avoid blowing up. No need to decompose  $\vec{t}$ ,  $\vec{g}$ ,  $\vec{h}$ .

# Thanks!

