FINM3133 Time Series for Finance and Macroeconomics

Chapter 2 Solution

- 1. (a) $E(Y_t) = 5 + 2t$
 - (b) Let α_k be the autocovariance function of Yt.

$$\alpha_k = Cov(Y_{t-k}, Y_t)$$
= $Cov(5 + 2t - 2k + X_{t-k}, 5 + 2t + X_t)$
= $Cov(X_{t-k}, X_t)$
= γ_k

- (c) Since its mean function is not constant, Y_t is not stationary.
- 2. (a) $Cov(Y_tt k, Y_t) = Cov(X_{t-k} + a, X_t + b) = Cov(X_{t-k}, X_t)$, for any constant a, b. Since X_t is stationary, $Cov(X_{t-k}, X_t)$ is free of t for all lags.
 - (b) Y_t is not stationary, because the mean function of Y_t is not constant. For example,

$$E(Y_{t-1}) \neq E(Y_t)$$

for any t.

3. (a) Since Y_t is stationary,

$$E(W_t) = E(Y_t) - E(Y_{t-1}) = 0$$

which is constant

$$Cov(W_{t-k}, W_t) = Cov(Y_{t-k} - Y_{t-k-1}, Y_t - Y_{t-1})$$

= $2\gamma_k - \gamma_{k+1} - \gamma_{k-1}$

which is free of t. Therefore W_t is also stationary.

(b) $U_t = \Delta^2 Y_t = \Delta [Y_t - Y_{t-1}]$

 $Y_t - Y_{t-1}$, we know, is stationay. Then, U_t is also stationary, according to the conclusion of (a).

4. (a) Normally, we assume the white noise has zero-mean. In this case, $e_t \sim N(0, \sigma)$. Its moment generating function is $M(t) = E(e^{te_t}) = e^{\frac{1}{2}\sigma^2 t^2}$. Its third moment is obviously 0, because the distribution of e^t is even function, e_t^3 is odd. Its fourth moment is $E(e_t^4) = \frac{d^4 M(0)}{dt^4} = 3\sigma^4$

$$Y_t = e_t - \theta(e_{t-1})^2$$

It is obvious that the correlation is 0, if their lag is larger than 2.Because e^t is iid.

The variance of Y_t

$$Var(Y_t) = Var(e_t - \theta(e_{t-1})^2)$$

$$= Var(e_t) + \theta^2 Var(e_{t-1}^2)$$

$$= \sigma^2 + \theta^2 [E(e_{t-1}^4) - E(e_{t-1}^2)^2]$$

$$= \sigma^2 + \theta^2 (3\sigma^4 - \sigma^4)$$

$$= \sigma^2 + 2\theta^2 \sigma^4$$

The covariance at lag 1:

$$Cov(Y_t, Y_{t-1}) = Cov(e_t - \theta e_{t-1}^2, e_{t-1} - \theta e_{t-2}^2)$$

$$= Cov(-\theta e_{t-1}^2, e_{t-1})$$

$$= -\theta E(e_{t-1}^3)$$

$$= 0$$

Therefore, its autocorrelation function for Y_t

$$\rho_k = \begin{cases} 1 & k = 0 \\ 0 & k > 0 \end{cases}$$

(b) Its mean is a constant. $E(Y_t) = E(e_t - \theta(e_{t-1})^2) = -\theta \sigma_t^2$ Its variance is finite and its autocorrelation doesn't vary from t.

5.

$$Var(\bar{Y}) = Var(\frac{1}{n} \sum_{1}^{n} Y_{t})$$

$$= \frac{1}{n^{2}} Cov[\sum_{t=1,n} Y_{t}, \sum_{s=1}^{n} Y_{s}] = \frac{1}{n^{2}} \sum_{t=1}^{n} \sum_{s=1}^{n} \gamma_{t-s}$$

Since the series is stationary, now make the change of variable t-s=k and t=j. The range of the summation $\{1 \le t \le n, 1 \le s \le n\}$ is transformed into $\{1 \le j \le n, 1 \le j - k \le n\} = \{k+1 \le j \le n + k, 1 \le j \le n\}$ which may be written $\{k > 0, k+1 \le j \le n\} \cup \{k \le 0, 1 \le j \le n + k\}$. Thus

$$Var(\bar{Y}) = \frac{1}{n^2} \left[\sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \gamma_k + \sum_{k=-n+1}^{0} \sum_{j=1}^{n+k} \gamma_k \right]$$

$$= \frac{1}{n^2} \left[\sum_{k=1}^{n-1} (n-k)\gamma_k + \sum_{k=-n+1}^{0} (n+k)\gamma_k \right]$$

$$= \frac{1}{n} \sum_{-n+1}^{n-1} (1 - \frac{|k|}{n})\gamma_k$$

Notice in the second expression, $\gamma_k = \gamma_{-k}$

- 6. (a) Substitute $Y_{t-1} = \theta_0 + Y_{t-2} + e_{t-1}$ into $Y_t = \theta_0 + Y_{t-1} + e_t$ and repeat until you get e_1 .
 - (b) $E(Y_t) = E(t\theta_0 + e_t + e_{t-1} + \dots + e_1) = t\theta_0$
 - (c) The autocovariance function for Y_t

$$Cov(Y_t, Y_{t-k}) = Cov(t\theta_0 + e_t + e_{t-1} + \dots + e_1, (t-k)\theta_0 + e_{t-k} + e_{t-k-1} + \dots + e_1)$$

$$= Cov(e_t + e_{t-1} + \dots + e_1, e_{t-k} + e_{t-k-1} + \dots + e_1)$$

$$= Var(e_{t-k} + e_{t-k-1} + \dots + e_1)$$

$$= (t-k)\sigma_e^2$$

- 7. (a) $\mu_1 = E(Y_1) = E(e_1) = 0$ Then $E(Y_t) = E(Y_{t-1} + e_t) = E(Y_{t-1}) + E(e_t) = E(Y_{t-1})$ or $\mu_t = \mu_{t-1}$ for t > 1 and the result follows by induction.
 - (b) $Var(Y_1) = \sigma_e^2$ is immediate. Then $Var(Y_t) = Var(Y_{t-1} + e_t) = Var(Y_{t-1}) + Var(e_t) = Var(Y_{t-1}) + \sigma_e^2$. Recursion or induction on t yields $Var(Y_t) = t\sigma_e^2$.
 - (c) $Cov(Y_t, Y_s) = Cov(Y_t, Y_t + e_{t-1} + e_{t-2} + ... + e_s) = Cov(Y_t, Y_t) = Var(Y_t) = t\sigma_e^2$ and hence the result.