The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-II ■ Assignment 4

- 1. Determine which of the following are linear transformations $T: V \to W$, where the vector spaces V,W are given:
 - $(a)V = W = \mathbb{R}^3$; T(x, y, z) = (2x + y, z, |x|)
 - $(b)V = W = M_2(\mathbb{R})$, the space of all 2×2 real matrices; (i) $T(A) = A^t$, (ii) T(A) = I + A, (iii) $T(A) = A^2$, (iv) $T(A) = BAB^{-1}$, where B is some fixed 2×2 matrix.
- 2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(1,0,0) = (1,0,0), T(1,1,0) = (1,1,1) and T(1,1,1) = (1,1,0). Find (a) T(x,y,z), (b) $\ker(T)$, (c) R(T). Also show that $T^3 = T$.
- 3. Find all linear transformations from $\mathbb{R}^n \to \mathbb{R}$.
- 4. Let C be an $m \times n$ matrix and let $T : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation defined by C. Show that the matrix of T with respect to the standard bases of \mathbb{R}^n and \mathbb{R}^m is C.
- 5. Determine N(T) and R(T) for each of the following linear transformations:
 - a) $T: P_2 \to P_3, \ T(f)(x) = xf(x)$
 - b) $T: P_4 \to P_3, T(f)(x) = f'(x).$
- 6. If $T: \mathbb{R}^n \to \mathbb{R}^n$ is given by $T(x_1, x_2, ..., x_n) = (x_2 + x_3, x_3, ..., x_n, 0)$ then write down the matrix of T w.r.t. the standard basis of \mathbb{R}^n .
- 7. Does there exist a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^4$ such that $Range(T) = \{(x_1, x_2, x_3, x_4): x_1 + x_2 + x_3 + x_4 = 0\}$?
- 8. Let V be a vector space of dimension n and let $A = \{v_1, ..., v_n\}$ be an ordered basis of V. Suppose $w_1, ..., w_n \in V$ and let $(a_{1j}, ..., a_{nj})^t$ denote the coordinates of w_j with respect to A. Put $C = [a_{ij}]$. Then show that $w_1, ..., w_n$ is a basis of V if and only if C is invertible.
- 9. Let T be a linear transformation from an n dimensional vector space V to an m dimensional vector space W and let C be the matrix of T with respect to a basis A of V and B of W. Show that
 - (a) rank(T) = rank(C);
 - (b) T is one-one if and only if rank(C) = n;
 - (c) T is onto if and only if rank(C) = m;
- 10. Let <, > be any inner product on \mathbb{R}^n . Show that < $x, y >= x^t A y$ for all vectors $x, y \in \mathbb{R}^n$ where A is the symmetric $n \times n$ matrix whose (i, j) th entry is $< e_i, e_j >$, the vector e_i being the standard basis vectors of \mathbb{R}^n .

- 11. Show that the norm of a vector in a vector space V has the following three properties
 - (a) $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0.
 - (b) $\|\lambda v\| = |\lambda| \|v\|$ for all $\lambda \in \mathbb{R}$ and $v \in V$.
 - (c) $||v + w|| \le ||v|| + ||w||$ for all $v, w \in V$.

Note that $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$, where $\langle \cdot, \cdot \rangle$ is an inner product defined on V.

- 12. Use Gram-Schmidt process to transform each of the following into an orthonormal basis; (a) $\{(1,1,1),(1,0,1),(0,1,2)\}$ for \mathbb{R}^3 with dot product. (b) Same set as in (i) but using the inner product defined by $\langle (x,y,z),(x',y',z') \rangle = xx' + 2yy' + 3zz'$.
- 13. Let $T: V \to V$ be a linear map such that Ker(T) = Range(T). What can you say about T^2 . On \mathbb{R}^2 can you give example of such a map?
- 14. Let U be a proper subspace of the inner product space V. Let $U^{\perp} = \{v \in V : \langle v, u \rangle = 0, \forall u \in U\}$. Show that U^{\perp} is a subspace of V (it is called orthogonal complement of U). Let $U = \alpha(1,2,3) : \alpha \in \mathbb{R}$ be a subspace of \mathbb{R}^3 with scalar product. Find U^{\perp} . Also, show that S^{\perp} is a subspace of V for any arbitrary subset S of V.