(1 point) In general, what can be said about the vector product $x \times (x \times y)$? A. the result is orthogonal to x ${f B}.$ the result is orthogonal to y**C.** the result is orthogonal to x and y ${\bf D}$. the result is parallel to x \mathbf{E} . the result is parallel to y**F**. the result is not parallel to x or to y(1 point) Find the vector in \mathbb{R}^3 from point A=(x,y,z) to B=(6,-4,3). $\vec{AB} = <6-x,-4-y,3-z>$ help (vectors) (1 point) From the list below, select the vector that is NOT orthogonal (perpendicular) to: $\cos \theta$ $\sin \theta$ $-\sin\theta$ $\cos \theta$ 0 $-\cos\theta$ $-\sin\theta$ 1 $\sin \theta$ $-\cos\theta$ 0 0 D. -1 $\sin \theta$ $\sin \theta$ $\cos \theta$ 0 (1 point) The distance d of a point P to the line through points A and B is the length of the component of \overline{AP} that is orthogonal to \overline{AB} , as indicated in the diagram. So the distance from P=(4,-3) to the line through the points A=(-4,1) and B=(0,4) is sqrt(24*24+32*32)/5 (1 point) If $\vec{v} \times \vec{w} = 2\vec{i} + 2\vec{j} + \vec{k}$, and $\vec{v} \cdot \vec{w} = 3$, and θ is the angle between \vec{v} and \vec{w} , then (a) $\tan \theta = 1$ **(b)** $\theta = \tan^{-1}(-1)(1)$ (1 point) Let $\mathbf{a} = (6, -7, -3)$ and $\mathbf{b} = (-2, -9, 4)$ be vectors. (A) Find the scalar projection of \boldsymbol{b} onto \boldsymbol{a} . Scalar Projection: 39/sqrt(94) (B) Decompose the vector ${f b}$ into a component parallel to ${f a}$ and a component orthogonal to ${f a}$. Parallel component: (39*6/94 Orthogonal Component: (-2-39*6/94 , -9-39*(-7)/94 , 4-39*(-3)/(94) (1 point) Find two vectors \overline{v}_1 and \overline{v}_2 whose sum is $\langle -3, 2, -5 \rangle$, where \overline{v}_1 is parallel to $\langle 4, 4, -2 \rangle$ while \overline{v}_2 is perpendicular to (4, 4, -2). $\overline{v}_1 = \langle 2/3, 2/3, -1/3 \rangle$ and $\overline{v}_2 = \langle -11/3, 4/3, -14/3 \rangle$ (1 point) Are the following statements true or false? False \clubsuit 3. For any scalar c and any vector \vec{v} , we have $||c\vec{v}|| = c||\vec{v}||$.