Essentials	$E[X] := \sum_{x \in X} x \cdot P(x)$ $Var[X] := E[(X - \mu_x)^2] :=$	Reconstruction Error Exercise	Lower bound from Jensen: $\sum_{w,d} \log \sum_{z=1}^{K} q_{iwd} \frac{u_{wi}v_{id}}{q_{iwd}} \ge$
Matrix/Vector	$\sum_{x \in X} (x - \mu_x)^2 P(x) = E(X^2) - E(X)^2$	$\tilde{\mathbf{X}} = \mathbf{U}_K \mathbf{U}_K^{\top} \overline{\mathbf{X}}$, the error is $\frac{1}{N} \sum_{i=1}^{N} \tilde{x}_i - \overline{x}_i _2^2$	$\sum_{w,d,i} q_{iwd} [\log u_{wi} + \log v_{id} - \log q_{iwd}]$
Multiplication: $\mathbf{C} = \mathbf{A}\mathbf{B} \Leftrightarrow c_{ik} = \sum_{j=1}^{m} a_{ij} \cdot b_{jk}$	standard deviation $\sigma_x := \sqrt{Var[X]}$	$= \frac{1}{N} \mathbf{\tilde{X}} - \overline{\mathbf{X}} _F^2 = \frac{1}{N} (\mathbf{U}_K \mathbf{U}_K^\top - \mathbf{I}_d) \overline{\mathbf{X}} _F^2$	Don't forget to add the sum over i, j and X_{ij} again.
Orthogonal Matrix: (full rank square matrix with	Lagrangian Muttipliers	$= \frac{1}{N} \operatorname{trace}((\mathbf{U}_K \mathbf{U}_K^{\top} - \mathbf{I}_d) \overline{\mathbf{X}} \overline{\mathbf{X}}^{\top} (\mathbf{U}_K \mathbf{U}_K^{\top} - \mathbf{I}_d)^{\top})$	E-Step (optimal q: posterior $p(z = i w,d)$):
orthonormal columns) $\mathbf{A}^{-1} = \mathbf{A}^{\top}$, $\mathbf{A}\mathbf{A}^{\top} = \mathbf{A}^{\top}\mathbf{A} = \mathbf{I}$,	Problem $\min_{Q} g(Q)$ with constraint $\forall j \sum_{i} Q_{ij} = 1$	$= \operatorname{trace}((\mathbf{U}_K \mathbf{U}_K^{\top} - \mathbf{I}_d) \Sigma (\mathbf{U}_K \mathbf{U}_K^{\top} - \mathbf{I}_d)) \Sigma = \mathbf{U} \Lambda \mathbf{U}^{\top}$	$q_{iwd} = \frac{p(w i)p(i d)}{\sum_{k=1}^{K} p(w k)p(k d)} := \frac{u_{wi}v_{id}}{\sum_{k=1}^{K} u_{wk}v_{kd}}, \sum_{i} q_{iwd} = 1$
$det(\mathbf{A}) \in \{+1, -1\}, det(\mathbf{A}^{\top}\mathbf{A}) = 1$, preserves: inner product, norm, distance, angle, rank, mat. orthogon.	turn into $L(Q, \alpha) = g(Q) + \sum_{j} \alpha_{j} (1 - \sum_{i} Q_{ij})$ and	$= \operatorname{trace}((\mathbf{U}_{K}\mathbf{U}_{K}^{\top}\mathbf{U} - \mathbf{U})\Lambda(\mathbf{U}^{\top}\mathbf{U}_{K}\mathbf{U}_{K}^{\top} - \mathbf{U}^{\top}))$	$\Sigma_{k=1} p(w k)p(k u)$ $\Sigma_{k=1} u_{wk}v_{kd}$ M-Steps:
Inner Product: $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{y} = \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{y}_{i}$.	find $\max_{\alpha} \min_{Q} L(Q, \alpha)$ (can use constraint form.).	$= \operatorname{trace}(([\mathbf{U}_K; 0] - \mathbf{U}) \Lambda([\mathbf{U}_K; 0] - \mathbf{U}^\top))$	$p(w i) = u_{wi} = \frac{\sum_{d} q_{iwd} X_{wd}}{\sum_{w} d q_{iwd} X_{wd}}, \ p(i d) = v_{id} = \frac{\sum_{w} q_{iwd} X_{wd}}{\sum_{w} X_{w}d}$
$\langle \mathbf{x} \pm \mathbf{y}, \mathbf{x} \pm \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle \pm 2 \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$	Convex Function	$= \operatorname{trace}(\sum_{i=K+1}^{D} \lambda_i u_i u_i^{\top}) = \sum_{i=K+1}^{D} \lambda_i \cdot \operatorname{trace}(u_i u_i^{\top})$	Derivations: $\sum_{w,d} q_{iwd} X_{wd}$, $P(v u) = v_{id} = \sum_{w} X_{wd}$
$\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$	$\forall x_1, x_2 \in X, \forall t \in [0, 1] : \text{(also iff } \forall x : f''(x) \ge 0)$	$= \sum_{i=K+1}^{D} \lambda_i \text{ since } \operatorname{trace}(u_i u_i^\top) = u_i _2^2 = 1$	$\sum_{w} u_{wi} = 1$ and $\sum_{i} v_{id} = 1$ (no $>= 0$ constraint bc.
$\langle \mathbf{x}, \mathbf{y} \rangle = \ \mathbf{x}\ _2 \cdot \ \mathbf{y}\ _2 \cdot \cos(\theta)$	$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$ Sum of convex functions is convex, log is convex	$- \sum_{i=K+1}^{n} N_i \text{ since trace}(u_i u_i^-) - u_i _2 - 1$ Iterative View	log). $\min_{U,V} \max_{\alpha,\beta} \mathcal{L}$ where $\mathcal{L} = -g(X;U,V) +$
If y is a unit vector then $\langle x, y \rangle$ projects x onto y	Exercise: Show that if f is convex, any local opti-		$\sum_{i} \alpha_{i} (\sum_{w} u_{wi} - 1) + \sum_{d} \beta_{d} (\sum_{i} v_{id} - 1)$. Set
$(\mathbf{u}_i^T \mathbf{v}_j) \mathbf{v}_j = (\mathbf{v}_j \mathbf{v}_j^T) \mathbf{u}_i$	mum is global. Assume there is a local optimum \hat{x}	Cov of r : $\frac{1}{2}\sum_{i=1}^{n} (I - \mu u^T)x_i x_i^T (I - \mu u^T)^T =$	$\partial \mathcal{L}/\partial u_{wi} = 0$ and get $u_{wi} = \sum_{d} X_{wd} q_{iwd}/\alpha_i$. Setting
Outer Product: $\mathbf{u}\mathbf{v}^{\top}$, $(\mathbf{u}\mathbf{v}^{\top})_{i,j} = \mathbf{u}_i\mathbf{v}_j$	that is not the global optimum x^{*} , then if we choose	$(I \dots T)\nabla(I \dots T)T \nabla 2\nabla \dots T + \dots T\nabla \dots T$	$\partial \mathcal{L}/\partial \alpha_i$ gives $\sum_{w} u_{wi} = 1 \rightarrow \sum_{w,d} X_{wd} q_{iwd}/\alpha_i = 1$
Transpose: $({\bf A}^{\top})^{-1} = ({\bf A}^{-1})^{\top}$	t to be in the ball of the local optimum, so we know that $f(t) = (1 + t)x^* > f(t) = (1 + t)x^* > f(t)$	$\sum_{i} -\lambda_{i} u u^{T}$	$1 \to \alpha_i = 1/(\sum_{w,d} X_{wd} q_{iwd})$ then plug it in. Similar
Determinant: $ \mathbf{A} = \sum_{i} \lambda_{i}$, $ \mathbf{A}^{-1} = 1/ \mathbf{A} $	that $f(t\hat{x} + (1-t)x^*) \ge f(\hat{x})$. Since $f(x^*) < f(\hat{x})$, we have $f(\hat{x}) + (1-t)f(x^*) < f(\hat{x})$. So we get	1. Find principal eigenvector of $(\Sigma - \lambda uu^T)$	for v_{id} but with extra step: $\sum_{w} X_{wd} \sum_{i} q_{iwd} / \beta_d = 1 \rightarrow$
Norms	we have $t \cdot f(\hat{x}) + (1-t)f(x^*) < f(\hat{x})$. So we get $f(t\hat{x} + (1-t)x^*) \ge f(\hat{x}) > t \cdot f(\hat{x}) + (1-t)f(x^*)$,	2. Which is the second eigenvector of Σ	$\beta_d = 1/(\sum_w X_{wd})$ since $\sum_i q_{iwd} = 1$.
$\ \mathbf{x}\ _{0} = \{i x_{i} \neq 0\} \ \mathbf{x}\ _{2} = \sqrt{\sum_{i=1}^{N} \mathbf{x}_{i}^{2}} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$	which contradicts the convexity of f .	3. Iterating to get d principal eigenvector of Σ	Latent Dirichlet Allocation
1 ,	Jensen Inequality:	Power iteration: $v_{t+1} = Av_t$ $\lim_{t \to \infty} v_t = u_t$	To sample new d , need to extend X and U^T (in pLSA)
$\ \mathbf{x}\ _{p} = (\sum_{i=1}^{N} x_{i} ^{p})^{\overline{p}} \ \mathbf{M}\ _{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{m}_{i,j}^{2}}$	for convex ϕ : $\phi(\sum_{i=1}^n \lambda_i x_i) \leq \sum_{i=1}^n \lambda_i f(x_i)$ if	Power iteration: $v_{t+1} = \frac{Av_t}{ Av_t }$, $\lim_{t \to \infty} v_t = u_1$	matrix dims fixed). For each d_i sample topic weights
	$\sum_{i=1}^{n} \lambda_i = 1$. Also $\phi(E[X]) \leq E[\phi(X)]$.	Assuming $\langle u_1, v_0 \rangle \neq 0$ and $ \lambda_1 > \lambda_j (\forall j \geq 2)$ Then	$\mathbf{u}_i \sim \text{Dirichlet}(\alpha)$: $p(u_i \alpha) = \prod_{z=1}^K u_{zi}^{\alpha_k - 1}$, then topic
$= \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2} = \ \sigma(\mathbf{A})\ _2 = \sqrt{trace(\mathbf{M}^T \mathbf{M})}$	Singular Value Decomposition	$\lambda_1 = \lim_{t \to \infty} \mathbf{A}\mathbf{v}_t / \mathbf{v}_t $ Matrix Reconstruction	$z^t \sim \text{Multi}(u_i)$, word $w^t \sim \text{Multi}(v_{z^t})$
$\ \mathbf{M}\ _G = \sqrt{\sum_{ij} g_{ij} x_{ij}^2}$ (weighted Frobenius)	$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \sum_{k=1}^{\mathrm{rank}(\mathbf{A})} d_{k,k} u_k (v_k)^{\top}$	Alternating Least Squares	LDA Model: $p(\mathbf{x} V,u) = \frac{l!}{\prod_i \mathbf{x}_i!} \prod_j \pi_j^{\mathbf{x}_j}$ where $\pi_j =$
V	$\mathbf{A} \in \mathbb{R}^{N \times P}, \mathbf{U} \in \mathbb{R}^{N \times N}, \mathbf{D} \in \mathbb{R}^{N \times P}, \mathbf{V} \in \mathbb{R}^{P \times P}$	Beyond SVD: unobserved entries! $f(\mathbf{U}, v_i) =$	
$\ \mathbf{M}\ _1 = \sum_{i,j} m_{i,j} \ \mathbf{M}\ _p = \max_{\mathbf{v} \neq 0} \frac{\ \mathbf{M}\mathbf{v}\ _p}{\ \mathbf{v}\ _p}$	$\mathbf{U}^{\top}\mathbf{U} = I = \mathbf{V}^{\top}\mathbf{V}$ (\mathbf{U}, \mathbf{V} orthonormal)	$\sum_{i,j} \frac{1}{2} (q_{i,j} - \langle \mathbf{u}_i, \mathbf{v}_i \rangle)^2$ Fix one alternate other:	Bayesian averaging over u :
$\ \mathbf{M}\ _2 = \sigma_{\max}(\mathbf{M}) = \ \sigma((M))\ _{\infty}$	U: cols are eigenvectors of AA^{\top} , V: cols are eigen-	$L(i,j) \in I(ui,j)$ $(uj, vi/)$, $V \leftarrow \text{arg min}_{v,v} f(U V)$	$p(\mathbf{x} \mathbf{V},\alpha) = \int p(\mathbf{x} \mathbf{V},\mathbf{u})p(\mathbf{u} \alpha)d\mathbf{u}$
$\ \mathbf{M}\ _* = \sum_{i=1}^{\min(m,n)} \sigma_i = \ \sigma(\mathbf{A})\ _1$ (nuclear norm)	vectors of $\mathbf{A}^{\top}\mathbf{A}$, \mathbf{D} diag. el. are singular values.	Can decompose (solve independently)	NMF Algorithm for Quadratic Cost Function
$rank(\mathbf{B}) \ge \mathbf{B} _* \text{ for } B _2 \le 1$	1. calculate $\mathbf{A}^{\top}\mathbf{A}$.	$f(\mathbf{U}, v_i) = \sum_{i} \left[\sum_{(i,i) \in I} (a_{i,i} - \langle \mathbf{u}_i, \mathbf{v}_i \rangle)^2 \right]$	$\min_{\mathbf{U},\mathbf{V}} J(\mathbf{U},\mathbf{V}) = \frac{1}{2} \ \mathbf{X} - \mathbf{U}^{\top} \mathbf{V}\ _F^2 \text{s.t.} \forall i,j,z :$
Derivatives	2. calculate eigenvalues of A A, the square root of	Can add regularization $\mu(U _F^2 + V _F^2)$ $\mu > 0$	$ \lim_{\mathbf{v} \in \mathcal{V}} \mathbf{v}(\mathbf{v}, \mathbf{v}) = \frac{1}{2} \ \mathbf{A} - \mathbf{v}\ _F \text{s.t.} \forall i, j, z . $ $ u_{zi}, v_{zi} \ge 0 \text{ (non-negativity)} $
$\frac{\partial}{\partial \mathbf{x}}(\mathbf{b}^{T}\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{T}\mathbf{b}) = \mathbf{b} \qquad \frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{T}\mathbf{x}) = 2\mathbf{x}$	them, in desc. order, are the diagonal elements of \mathbf{D} .	, =1	Comparison with pLSA: different sampling model
$\frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) = (\mathbf{A}^{\top} + \mathbf{A})\mathbf{x} \frac{\partial}{\partial \mathbf{x}}(\mathbf{b}^{\top}\mathbf{A}\mathbf{x}) = \mathbf{A}^{\top}\mathbf{b}$	3. calculate eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$ using the eigenvalues resulting in the columns of \mathbf{V} .	Upd: $u_i = \left(\sum_{(i,j)\in\mathscr{I}} v_j v_j^{\dagger} + I_k \lambda\right) \left(\sum_{(i,j)\in\mathscr{I}} a_{ij} v_j\right)$	(Gaussian not multinomial), different objective (qua-
$rac{\partial}{\partial \mathbf{X}}(\mathbf{c}^{ op}\mathbf{X}\mathbf{b}) = \mathbf{c}\mathbf{b}^{ op} \qquad rac{\partial}{\partial \mathbf{X}}(\mathbf{c}^{ op}\mathbf{X}^{ op}\mathbf{b}) = \mathbf{b}\mathbf{c}^{ op}$	4. calculate the missing matrix: $\mathbf{U} = \mathbf{AVD}^{-1}$.	SVD Thresholding	dratic not KL divergence), not normalized
$\frac{\partial}{\partial \mathbf{x}}(\ \mathbf{x} - \mathbf{b}\ _2) = \frac{\mathbf{x} - \mathbf{b}}{\ \mathbf{x} - \mathbf{b}\ _2} \frac{\partial}{\partial \mathbf{x}} \log(x) = \frac{1}{x}$	5. normalize each column of U and V .	$\mathbf{B}^* = \operatorname{shrink}_{\tau}(\mathbf{A}) := \operatorname{argmin}_{\mathbf{B}} \{ \ \mathbf{A} - \mathbf{B}\ _F^2 + \tau \ \mathbf{B}\ _* \}$	ALS (not joint convex over (U,V)):
	Complexity: $O(\min(mn^2, nm^3))$	then with SVD holds $\mathbf{B}^* = \mathbf{U}\mathbf{D}_{\tau}\mathbf{V}^{\mathrm{T}}, \mathbf{D}_{\tau} =$	1. init: $\mathbf{U}, \mathbf{V} = rand()$ 2. repeat 3~4 for maxIters:
$\frac{\partial}{\partial \mathbf{x}} (\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _{2}^{2}) = 2 (\mathbf{A}^{\top} \mathbf{A}\mathbf{x} - \mathbf{A}^{\top} \mathbf{b}) \qquad \frac{\partial}{\partial \mathbf{x}} \frac{1}{f(\mathbf{x})} = \frac{-f'}{f^{2}}$	Eckart-Young Theorem	$diag(\max\{0,\sigma_i-\tau\}),\Pi(\mathbf{X})=x_{ij} \text{ if } (i,j) \in \mathscr{I} \text{ el. } 0$	3. upd. $(\mathbf{V}\mathbf{V}^{\top})\mathbf{U} = \mathbf{V}\mathbf{X}^{\top}$, proj. $u_{zi} = \max\{0, u_{zi}\}$
$\frac{\partial}{\partial \mathbf{X}}(\mathbf{X}) = \mathbf{X} \cdot \mathbf{X}^{-1} \qquad \frac{\partial}{\partial x}(\mathbf{Y}^{-1}) = -\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \mathbf{Y}^{-1}$	$\min_{rank(B)=K} A - B _F^2 = A - A_k _F^2 = \sum_{r=k+1}^{rank(A)} \sigma_r^2$	Iteration: $\mathbf{B}_{t+1} = \mathbf{B}_t + \eta_t \Pi(\mathbf{A} - shrink_{\tau}(\mathbf{B}_t))$	4. update $(\mathbf{U}\mathbf{U}^{\top})\mathbf{V} = \mathbf{U}\mathbf{X}$, proj. $v_{zj} = \max\{0, v_{zj}\}$
Eigenvalues & Eigenvectors	$\min_{rank(B)=K} A - B _2 = A - A_k _2 = \sigma_{k+1}$	Non-Negative Matrix Factorization Went to learn words win a decument d. Use tonic	Word Embeddings
Eigenvalue problem: $Ax = \lambda x$	Principal Component Analysis	Want to learn words w in a document d. Use topic letest variables $\mathbf{Y} \in \mathbb{Z}^{N \times M}$ NMF: $\mathbf{Y} = \mathbf{U}^{T} \mathbf{Y}$	Distributional Model:
1. solve $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$ resulting in $\{\lambda_i\}$	$\mathbf{X} \in \mathbb{R}^{D \times N}$. N observations, K rank.	latent variable: $\mathbf{X} \in \mathbb{Z}_{\geq 0}^{N \times M}$, NMF: $\mathbf{X} \approx \mathbf{U}^{\top} \mathbf{V}, x_{ij} = \mathbf{V}$	
2. $\forall \lambda_i \text{ solve } (\mathbf{A} - \lambda_i \mathbf{I}) x_i = 0 \text{ for } \mathbf{x}_i$	1. Empirical Mean: $\overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$.	$\sum_{z} u_{zi} v_{zj} = \langle \mathbf{u}_i \mathbf{v}_j \rangle \mathbf{U}, \mathbf{V}$ are non-neg., L_1 col normal.	$L(\theta; \mathbf{w}) = \sum_{t=1}^{T} \sum_{\Delta \in I} \log p_{\theta}(w^{(t+\Delta)} w^{(t)})$
Eigendecomposition	2. Center Data: $\overline{\mathbf{X}} = \mathbf{X} - [\overline{\mathbf{x}}, \dots, \overline{\mathbf{x}}] = \mathbf{X} - \mathbf{M}$.	Probabilistic LSA Context Model: $p(w d) = \sum_{i=1}^{K} p(w i)p(i d)$	Latent Vector Model: $w \to (\mathbf{x}_w, b_w) \in \mathbb{R}^{D+1}$
$\mathbf{A} \in \mathbb{R}^{N \times N}$ then $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}$ with $\mathbf{Q} \in \mathbb{R}^{N \times N}$	3. Cov.: $\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^{\top} = \frac{1}{N} \overline{\mathbf{X}} \overline{\mathbf{X}}^{\top}$.	Conditional independence assumption (*):	exp[$\langle \mathbf{x}_w, \mathbf{x}_{w,j} \rangle + b_w$]
if fullrank: $\mathbf{A}^{-1} = \mathbf{Q} \mathbf{\Lambda}^{-1} \mathbf{Q}^{-1}$ and $(\mathbf{\Lambda}^{-1})_{i,i} = 1/\lambda_i$		$p(w d) = \sum_{i} p(w,i d) = \sum_{i} p(w d,i)p(i d) \stackrel{*}{=}$	$p_{\theta}(w w') = \frac{\exp[\langle \mathbf{x}_w, \mathbf{x}_{w'} \rangle + b_w]}{\sum_{v \in V} \exp[\langle \mathbf{x}_v, \mathbf{x}_{w'} \rangle + b_v]} \text{ (soft-max)}.$
if A symmetric: $A = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$ (Q orthogonal)	4. Eigenvalue Decomposition: $\Sigma = \mathbf{U} \Lambda \mathbf{U}^{\top}$. 5. Select $K < D$, only keep \mathbf{U}_K, λ_K .	$\sum_{i} p(w i) - \sum_{i} p(w i) - \sum_{i} p(w i) - \sum_{i} p(w i) = p(w i) = p(w z = i)$	Skip Gram Model:
Probability / Statistics $P(x) = \sum_{y \in Y} P(x, y)$ $P(x, y) = P(x y)P(y)$	6. Transform data onto new Basis: $\overline{\mathbf{Z}}_K = \mathbf{U}_K^{\top} \overline{\mathbf{X}}$.	Symmetric parameterization:	$\mathcal{L}(\hat{\boldsymbol{\theta}}; \mathbf{w}) = \sum_{t} \sum_{\Delta \in \mathcal{J}} b_{w^{(t+\Delta)}} + \langle \mathbf{x}_{w^{(t+\Delta)}}, \mathbf{x}_{w^{(t)}} \rangle - 1$
$\forall y \in Y : \sum_{x \in X} P(x y) = 1 \text{ (a,y)} \cap Y(x y) \text{ (b)}$ $\forall y \in Y : \sum_{x \in X} P(x y) = 1 \text{ (property for any fixed } y)$		$p(w,d) = \sum_{z} p(z)p(w z)p(d z)$	$\log \sum_{v \in \mathscr{V}} \exp[\langle \mathbf{x}_v, \mathbf{x}_{w^{(t)}} \rangle + b_v]$ Modifications:
P(x y) = P(x,y) if P(y) > 0 P(x y) = P(y x)P(x)	~	EM for MLE for pLSA (NO global opt guarantee)	$\log p_{\theta}(w w') = \langle y_w, x_{w'} \rangle + b_w$, word embedding
$P(x y) = \frac{P(x,y)}{P(y)}, \text{if } P(y) > 0 P(x y) = \frac{P(y x)P(x)}{P(y)}$	8. Reverse centering: $\tilde{\mathbf{X}} = \overline{\mathbf{X}} + \mathbf{M}$.	Log-Likelihood: $L(\mathbf{U}, \mathbf{V}) = \sum_{w,d} X_{w,d} \log p(w d)$	y_w , context embeddings $x_{w'}$. Alternative to MLE
(Bayes' rule) $P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i)$ (iff i.i.d)	For compression save $U_k, \mathbb{Z}_K, \mathbb{X}$.	$p(w i) = u_{wi}, p(i d) = v_{id}, \sum_{w} u_{wi} = \sum_{i} v_{di} = 1$	(partition calculation is hard): negative sampling
$P(x y) = P(x) \Leftrightarrow P(y x) = P(y) \text{ (iff } X, Y \text{ indep.)}$	$\mathbf{U}_k \in \mathbb{R}^{D imes K}, \Sigma \in \mathbb{R}^{D imes D}, \overline{\mathbf{Z}}_K \in \mathbb{R}^{K imes N}, \overline{\mathbf{X}} \in \mathbb{R}^{D imes N}$	$q_{iwd} \in \{0,1\}$: w in d generated via $z = i$.	(modify objective into logistic classification), PMI

GloVe (Weighted Square Loss)	Expectation-Maximization (EM) for GMM	Backpropagation	not forget to normalize.
Co-occurence Matrix:	E-Step: $Pr[z_j = 1 \mathbf{x}_i] = q_{ij} = \frac{\pi_j p(\mathbf{x}_i; \theta_j)}{\sum_{l=1}^K \pi_l p(\mathbf{x}_i; \theta_l)}$	$J_{ij} = \frac{\partial \mathbf{x}_i^{out}}{\partial \mathbf{x}^{in}} = w_{ij} \cdot \boldsymbol{\sigma}'(\mathbf{w}_i^{\top} \mathbf{x}^{in})$. Across multiple layers:	Comparison to Fourier basis: local (not global) support, good for localized (not sin like, repeating)
$\mathbf{N} = (n_{ij}) \in \mathbb{N}^{ V \times C } = \text{#occ. of } w_i \text{ in context } w_j$	Derivation: Can maximize independent of i. Take		
Obj: $\mathcal{H}(\theta; \mathbf{N}) = \sum_{i,j} f(n_{ij}) (\log n_{ij} - \log \tilde{p}_{\theta}(w_i w_j))$ Unnorm. dist: $\tilde{p}_{\theta}(w_i w_j) = \exp[\langle \mathbf{x}_i, \mathbf{y}_j \rangle + b_i + c_j])^2$	Derivation: Can maximize independent of i . Take derivative of lower bound w.r.t. q_{ij} with Lagrangi-	$\frac{\partial \mathbf{x}^{(l-n)}}{\partial \mathbf{x}^{(l-n)}} = \mathbf{J}^{(l)} \cdot \frac{\partial \mathbf{x}^{(l-n)}}{\partial \mathbf{x}^{(l-n)}} = \mathbf{J}^{(l)} \cdot \mathbf{J}^{(l-n)} \cdots \mathbf{J}^{(l-n+1)}$ and	given Σ . $\hat{\mathbf{x}} = \mathbf{U}_K \mathbf{z}_{[1:K]}$
with $f(n) = \min\{1, (\frac{n}{n_{max}})^{\alpha}\}, \alpha \in (0, 1].$	an: $\lambda(\sum_j q_{ij} - 1)$ to get: $\log \pi_j + \log p(x_i \mu_j, \Sigma_j)$	then back prop. $\mathbf{V}_{\mathbf{x}^{(l)}}^{\top} \ell = \mathbf{V}_{\mathbf{y}}^{\top} \ell \cdot \mathbf{J}^{(L)} \cdots \mathbf{J}^{(l+1)}$	Overcomplete Dictionaries Use more atoms than dimensions, then choose the
normalized: need to compute partition function, but	$\log q_{ij} - 1 + \lambda = 0 \rightarrow q_{ij} = \pi_j p(x_i \mu_j, \Sigma_j) e^{\lambda - 1}.$		best representation. (e.g.Gabor wavelets use Fourier
cannot be large everywhere.	Now use $\sum_{j} q_{ij} = \sum_{j} \pi_{j} p(x_{i} \mu_{j}, \Sigma_{j}) e^{\lambda-1} = 1 \rightarrow$		like features in a localized Gaussian window).
unnormalized: can use two-sided loss function Perform SGD to find local minimum	$e^{\lambda-1} = 1/(\sum_j pi_j p(x_i \mu_j, \Sigma_j))$ and plug in.	Generative Models	Linear dependency measure: Coherence
1. sample (i, j) u.a.r, s.t. $n_{ij} > 0$	M-Step: $\mu_j^* := \frac{\sum_{i=1}^N q_{ij} \mathbf{x}_i}{\sum_{i=1}^N q_{ii}}$, $\pi_j^* := \frac{1}{N} \sum_{i=1}^N q_{ij}$	Variational Autoencoder (VAE) Sample random vector 7 of $\mathcal{N}(0, \mathbf{I})$ Transform	• $m(\mathbf{U}) = \max_{i,j:i\neq j} \mathbf{u}_i^{\top} \mathbf{u}_j \cdot m(\mathbf{B}) = 0$ if B orth. mat.
2. $\mathbf{x}_i^{new} \leftarrow \mathbf{x}_i + 2\eta f(n_{ij})(\log n_{ij} - \langle \mathbf{x}_i, \mathbf{y}_j \rangle)\mathbf{y}_j$	$\Sigma_{k}^{*} = \frac{\sum_{i=1}^{N} q_{ij} (\mathbf{x}_{i} - \boldsymbol{\mu}_{j})^{\top}}{\sum_{i=1}^{N} q_{ij} (\mathbf{x}_{i} - \boldsymbol{\mu}_{j})^{\top}}$	Sample random vector $\mathbf{z} \sim \mathcal{N}(0,\mathbf{I})$. Transform through (deterministic) DNN $F_{\theta} : \mathbb{R}^m \to \mathbb{R}^n$. No-	$m([\mathbf{D}, \mathbf{u}]) \ge \frac{1}{\sqrt{D}}$ If atom \mathbf{u} is added to \mathbf{D}
3. $\mathbf{y}_{j}^{new} \leftarrow \mathbf{y}_{j} + 2\eta f(n_{ij})(\log n_{ij} - \langle \mathbf{x}_{i}, \mathbf{y}_{j} \rangle)\mathbf{x}_{i}$	K) V + d::	te: expectations $\mathbb{E}_x[f(x)] = \mathbb{E}_z[f(F_{\theta}(z))]$ (law of the	Signal Reconstruction: orthonormal: $\mathbf{x} = \mathbf{Uz}$, spanning basis (linearly independent): $\mathbf{x} = (\mathbf{U}^T)^{-1}\mathbf{z}$
Discussion: can model analogies and relatedness, but antonyms are usually not well captured.	Derivations: Take derivative of lower bound w.r.t. π_k	unconscious statistician). Infeasible, would need to find inv. Jacobian determinant	(can be ill-conditioned), overcomplete: solve $\mathbf{z}^* \in$
Data Clustering & Mixture Models	with Lagrangian: $\lambda(\sum_k \pi_k - 1)$ to get $\sum_i q_{ik}(1/\pi_k) + \lambda = 0 \to \pi_k = (\sum_i q_{ik})/\lambda$. Then use $\sum_k \pi_k = 1 \to \infty$		$\underset{z \in \mathcal{A}}{\operatorname{arg min}} \mathbf{z} \mathbf{z} _0$ s.t. $\mathbf{x} = \mathbf{Uz}$. (NP hard). Can convexify
K-Means	$(\sum_k \sum_i q_{ik})/\lambda = N/\lambda = 1 \to \lambda = 1/N$ and plug in.		with L_1 norm or greedy approx.: Matching Pursuit (MP) 1. init: $\hat{z} \leftarrow 0, r \leftarrow x$ 2. whi-
$\mathbf{Z} \in \{0,1\}^{N \times K}$ (if point <i>i</i> assigned to cluster <i>j</i>)	For μ_k : $-\sum_i q_{ik} \sum_{k=1}^{7} (\mathbf{x}_i - \mu_i) = \sum_{k=1}^{7} \sum_i q_{ik} (\mathbf{x}_i - \mu_k)$		le $\ \mathbf{z}\ _0 < K$ do 3. select atom with smallest angle
Target: $\min_{\mathbf{U},\mathbf{Z}} J(\mathbf{U},\mathbf{Z}) = \ \mathbf{X} - \mathbf{U}\mathbf{Z}\ _F^2$	(note: Σ is symmetric & invertible so $Ax = 0$ iff $x =$	$p_{\theta}(z x^{(i)}) \qquad p_{\theta}(z x^{(i)}) \qquad p_{\theta}(z x^{(i)}) \qquad p_{\theta}(z x^{(i)}) $	$j^* = \arg\max_{j} \langle \mathbf{u}_j, \mathbf{r} \rangle $ 4. update coefficients: $\hat{z} \leftarrow$
$= \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbf{z}_{k,n} \ \mathbf{x}_{n} - \mathbf{u}_{k}\ _{2}^{2}$	0), so $\sum_{i} q_{ik}(\mathbf{x}_{i} - \mu_{k}) = 0 \rightarrow \mu_{k} = (\sum_{i} q_{ik}\mathbf{x}_{i})/(\sum_{i} q_{ik})$	$= \mathbb{E}_{z}[\log p_{\theta}(x^{(i)} z)] - D_{KL}(q_{\Phi}(z x^{(i)}) p_{\theta}(z))$	$\hat{z} + \langle \mathbf{u}_{i^*}, \mathbf{r} \rangle \mathbf{u}_{j^*}$ 5. update residual: $\mathbf{r} \leftarrow \mathbf{r} - \langle \mathbf{u}_{i^*}, \mathbf{r} \rangle \mathbf{u}_{i^*}$.
1. Initiate: choose K centroids $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$	Guaranteed to converge to local optimum. Comparison to K-Means	$+D_{KL}(q_{\Phi}(z x^{(i)}) p_{\theta}(z x^{(i)})$ (drop last part) 1st: reconstr. quality, 2nd: posterior close to prior.	Exact recovery when: $K < 1/2(1 + 1/m(\mathbf{U}))$ Instance when MP never exactly match x: Idea:
2. Cluster Assign: assign data points to closest clus-	Soft assignments (not hard), learn cov. matrix (not	Undate: $\nabla_{\alpha} \mathbb{E}_{\alpha} \left[\log n_{\alpha}(x z) \right] = \mathbb{E} \left[\nabla_{\alpha} \log n_{\alpha}(x z) \right] \approx$	if we always just half residual and start with a pos.
ter $z_{ij}^* = 1$ if $j = \arg\min_k \mathbf{x}_i - \mathbf{u}_k ^2$ else 0	spherical clusters), slow (not fast), more (not less) iterations, use K-means as initialization (use sample	$1 \Sigma I \Sigma (+(r)) (r) iid (+)$	number, we will never arrive at 0. Start with $(0,1)$.
3. Update centroids: $\mathbf{u}_k = \frac{\sum_{n=1}^{N} z_{k,n} \mathbf{x}_n}{\sum_{n=1}^{N} z_{k,n}}$. Repeat 2	coveriance as matrix, use fraction of datapoints as	Reinforce trick:	u1 = (1,0) u2 = ($\sqrt{2}/2$, $\sqrt{2}/2$), u3 = ($\sqrt{3}/2$, 1/2). Instance where MP does not have best solution:
Stop if $ \mathbf{Z} - \mathbf{Z}_{new} _F^2 = 0$. Guaranteed to converge to	mixing weights). K-means as a special case of GMM	$\nabla_{\theta} \mathbb{E}_{q_{\phi}}[\mathcal{L}(\mathbf{x}, \mathbf{z})] = \mathbb{E}_{q_{\phi}}[\mathcal{L}(\mathbf{x}, \mathbf{z}) \nabla_{\theta} \log q_{\theta}(\mathbf{z}; \mathbf{x})]$	u1 = (1.0) $u2 = (0.1)$ $u3 = (sart(2)/2 sart(2)/2)$ x
local optimum. Computational cost: $O(k \cdot n \cdot d)$	with covariances $\Sigma_j = \sigma^2 I$. in the limit of $\sigma \to 0$, recover K-means (hard assignments).	Re-parameterization trick: use variational distri-	a = (1,0), $a = (0,1)$, $a = (0,1)$, $a = (0,1)$, $a = (0,1)$, with have largest correlation with u.3, but
Gaussian Mixture Models (GMM)	Model Order Selection (AIC / BIC for GMM)	bution $q_{\phi}(\mathbf{z}; \mathbf{x}) = g_{\phi}(\zeta; \mathbf{x})$ for ζ simple (e.g. $\zeta \sim \mathcal{N}(0, \mathbf{I}), \mathbf{z} = \mu + \mathbf{U}\zeta \Rightarrow \mathbf{z} \sim \mathbf{N}(\mu, \mathbf{U}\mathbf{U}^T)$)	residual then cannot be expressed with only u1 or u2, so we will use all 3 vectors instead of only u1 & u2.
$p(x; \mu; \Sigma) = \frac{1}{ \Sigma ^{\frac{1}{2}} (2\pi)^{\frac{D}{2}}} exp[-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)]$	Trade-off between data fit (i.e. likelihood $p(\mathbf{X} \theta)$)	Stochastic Backprop: for $\zeta^{(r)} \sim iid$ simple	Compressive Sensing
- (-··)	and complexity (i.e. # of free parameters $\kappa(\cdot)$). Compare for different parameters and take smallest:	$\mathbb{E}_{q_{\phi}}[\nabla_{\phi}\mathcal{L}(\mathbf{x}, \mathbf{z})] \approx \frac{1}{L}\sum_{r=1}^{L}[\nabla_{\phi}\mathcal{L}(\mathbf{x}, g_{\phi}(\zeta^{(r)}))]$	Aquire set y of M linear combinations of signal, then reconstruct from it $y_k = \sqrt{y_k}$, $y_k = 1$
$\int \mathcal{N}(z; \mu, \Sigma) \log(\mathcal{N}(z; 0, I)) dz = E_z[\mathcal{N}(z; 0, I)]$ = $-D/2 \log(2\pi) - 1/2 \sum_{i=1}^{D} (\mu_i^2 + \sigma_i^2)$	AIC $(\theta \mathbf{X}) = -\log p_{\theta}(\mathbf{X}) + \kappa(\theta)$	Generative Adversarial Network (GAN)	then reconstruct from it. $y_k = \langle \mathbf{w}_k, \mathbf{x} \rangle, k = 1,, M$ $\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} =: \Theta \mathbf{z} \text{ with } \Theta = \mathbf{W}\mathbf{U} \in \mathbb{R}^{M \times D}.$
For GMM let $\theta_k = (\mu_k, \Sigma_k)$; $p_{\theta_k}(\mathbf{x}) = \mathcal{N}(\mathbf{x} \mu_k, \Sigma_k)$	$BIC(\theta \mathbf{X}) = -\log p_{\theta}(\mathbf{X}) + \frac{1}{2}\kappa(\theta)\log N$	$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[\log D(\mathbf{x})]$	Any orthonormal basis U can obtain a stable recon-
Mixture Models: $p_{\theta}(\mathbf{x}) = \sum_{k=1}^{K} \pi_k p_{\theta_k}(\mathbf{x})$	(penalizes complexity more)	$+\mathbb{E}_{\mathbf{z}\sim p_{\mathbf{z}}(\mathbf{z})}[\log(1-D(G(\mathbf{x})))]$	str. for any K-sparse compressible signal if: • W
Generate: sample cluster $j \sim Categorical(\pi)$,	Example: #free params, fixed cov. matrix: $\kappa(\theta) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) $	$\theta^* := \arg\min_{\theta \in \Theta} \{ \sup_{\phi \in \Phi} l(\theta, \phi) \}$ SGD: $\theta^{t+1} =$	is Gaussian random projection, i.e. $w_{ij} \sim \mathcal{N}(0, \frac{1}{D})$
sample data from <i>j</i> -th cluster: $x \sim \mathcal{N}(\mu_j, \Sigma_j)$	$K \cdot D + (K - 1)$ (K: # clusters, D: dim(data) =	$eta^t - oldsymbol{\eta} abla_{oldsymbol{ heta}} l(oldsymbol{ heta}^t, oldsymbol{\phi}^t) \ ; \ oldsymbol{\phi}^{t+1} = oldsymbol{\phi}^t + oldsymbol{\eta} abla_{oldsymbol{\phi}} l(oldsymbol{ heta}^{t+1}, oldsymbol{\phi}^t)$	• $M \ge cK \log \frac{D}{K}$ (some constant c). Reconstruct as be-
Assignment variable (generative model):	dim(μ_i)), full cov. matrix: $\kappa(\theta) = K(D + \frac{D(D+1)}{2}) + (K-1)$.	Autoregressive Models	fore: $\mathbf{z}^* \in \arg\min_{\mathbf{z}} \ \mathbf{z}\ _0$, s.t. $\mathbf{y} = \Theta \mathbf{z}$ Dictionary Learning
$z_{ij} \in \{0,1\}, \sum_{j=1}^{k} z_{ij} = 1$	Neural Networks	Generate output one variable at a time:	Adapt the dict. to signal charact. $(\mathbf{U}^{\star}, \mathbf{Z}^{\star}) \in$
$\Pr(z_k = 1) = \pi_k \Leftrightarrow p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$	Activation: ReLU: $max(0,x)$	$p(x_1,,x_m) = \prod_{t=1}^m p(x_t x_{1:t-1})$ PixelCNN: uses exactly that over a window to	
Complete data distribution: $p_{\theta}(\mathbf{x}, \mathbf{z}) = \prod_{k=1}^{K} (\pi_k p_{\theta_k}(\mathbf{x}))^{z_k}$	$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \tanh'(x) = 1 - \tanh^2(x)$	predict the next pixel (slow process).	Matrix Factorization by Iter Greedy Minim.
Posterior Probabilities:	sigmoid $s(x) = \frac{1}{1+e^{-x}}, s'(x) = s(x)(1-s(x))$	Sparse Coding	1. Coding step: $\mathbf{Z}^{t+1} \in \operatorname{argmin}_{\mathbf{Z}} \ \mathbf{X} - \mathbf{U}^t \mathbf{Z}\ _F^2$ subj.
$\Pr(z_k = 1 \mathbf{x}) = \frac{\Pr(z_k = 1) p(\mathbf{x} z_k = 1)}{\sum_{l=1}^K \Pr(z_l = 1) p(\mathbf{x} z_l = 1)} = \frac{\pi_k p_{\theta_k}(\mathbf{x})}{\sum_{l=1}^K \pi_l p_{\theta_l}(\mathbf{x})}$	Output: linear regression $\mathbf{y} = \mathbf{W}^L \mathbf{x}^{L-1}$,	Orthogonal Basis	to Z being sparse $(\mathbf{z}_n^{t+1} \in \arg\min_{\mathbf{z}} \mathbf{z} _0 \text{ s.t.}$
$\sum_{l=1}^{K} \Pr(z_{l}=1) p(\mathbf{x} z_{l}=1) \qquad \sum_{l=1}^{K} \pi_{l} p_{\theta_{l}}(\mathbf{x})$ $\text{prior } p(A) \times \text{likelihood } p(B A)$	binary (logistic) $y_1 = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x}^{L-1})}$,	Iransform: For x and orthog, mat. U compute $z = U^{\top}x$. For compression, and drop small values:	$\ \mathbf{x}_n - \mathbf{U}^t \mathbf{z}\ _2 \le \sigma \ \mathbf{x}_n\ _2$) 2. Init: random, samples from X or fixed overcomplete dictionary. 3. Dict
posterior $p(A B) = \frac{\text{prior } p(A) \times \text{likelihood } p(B A)}{\text{evidence } p(B)}$		$\mathbf{U}\hat{\mathbf{z}}, \hat{z}_i = z_i$ if $ z_i > \varepsilon$ else 0. Pros: fast inverse: preser-	update step: $\mathbf{U}^{t+1} \in \arg\min_{\mathbf{U}} \ \mathbf{X} - \mathbf{UZ}^{t+1}\ _F^2$, subj.
Likelihood of observed data X: $p_{\theta}(\mathbf{X}) = \prod_{n=1}^{N} p_{\theta}(\mathbf{x}_n) = \prod_{n=1}^{N} \left(\sum_{k=1}^{K} \pi_k p_{\theta_k}(\mathbf{x}_n) \right)$	multiclass (soft-max) $y_k = \frac{\exp(\mathbf{w}_k^T \mathbf{x}^{L-1})}{\sum_{m=1}^K \exp(\mathbf{w}^T \mathbf{x}^{L-1})}$.	ves energy. or x and orthog. mat. U compute $\mathbf{z} = \mathbf{U}^{\top} \mathbf{x}$	to $\forall l \in [L] : \ \mathbf{u}_l\ _2 = 1$ One at a time: set $\mathbf{U} =$
$p_{\theta}(\mathbf{A}) - \Pi_{n=1}p_{\theta}(\mathbf{A}_n) - \Pi_{n=1}(\Sigma_{k=1}n_kp_{\theta_k}(\mathbf{A}_n))$ Max. Likelihood Estimation (MLE):	Loss function: $l(y, \hat{y})$: squared loss $\frac{1}{2}(y - \hat{y})^2$,	else 0. Reconstr. Error $\ \mathbf{x} - \hat{\mathbf{x}}\ ^2 = \sum_{d \notin \sigma} \langle \mathbf{x}, \mathbf{u}_d \rangle^2$ for	$[\mathbf{u}_1^t \cdots \mathbf{u}_l \cdots \mathbf{u}_L^t]$ (fix all except \mathbf{u}_l), isolate \mathbf{R}_l^t (resi-
$\arg\max_{\theta} \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k p_{\theta_k}(\mathbf{x}_n) \right) \text{ (mult. 1)}$	cross-entropy loss $-y \log \hat{y} - (1-y) \log(1-\hat{y})$	a subset of basis σ . Haar Wavelets: scaling function $\phi(x) = [1, 1, 1, 1]$,	dual due to atom \mathbf{u}_l), find \mathbf{u}_l^* that minimizes \mathbf{R}_l^t
$\geq \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} [\log p_{\theta_k}(\mathbf{x}_n) + \log \pi_k - \log q_{nk}]$	$\operatorname{Conv}_{n,m}^{k \times k}(\mathbf{x}; \mathbf{w}) = \sigma \left(b + \sum_{i=-k}^{k} \sum_{j=-k}^{k} w_{i,j} x_{n+i,m+j} \right)$	mother $W(x) = [1, 1, -1, -1]$, dilated $W(2x) = [1, 1, 1, 1]$	s.t. $ \mathbf{u}_l _2 = 1$. $\min_{u_l} \mathbf{x}_l \mathbf{u}_l(\mathbf{z}_l)$ $ _F \text{ using 5 VD}$
with $\sum_{k=1}^{K} q_{nk} = 1$ by Jensen Inequality.		[1,-1,0,0], translated $W(2x-1)=[0,0,1,-1]$. Do	(first left-singular vector of \mathbf{R}_l^t).
with $\sum_{k=1}^{K} q_{nk} = 1$ by Jensen Inequality.	CNN: weight sharing (<< param), shift invar. filters		(instructional rector of \mathbf{K}_{l}).