⑪特許出願公告

⑩特 許 公 報(B2)

平5-35207

®Int. Cl. 3

識別記号

庁内整理番号

2000公告 平成5年(1993)5月26日

C 22 C 9/06 B 23 K 35/30

310 C

6919-4K 7362-4E

発明の数 1 (全3頁)

60発明の名称

可撓性を有する銅基合金

三菱製鋼株式会社

20特 願 昭60-201855 匈公 開 昭62-63633

22出 願 昭60(1985)9月13日 @昭62(1987) 3 月20日

@発明者 村 H

至 東京都江東区東雲 1 - 9 - 31 三菱製鋼株式会社技術開発

@発 明 者 赤沢

和夫

センター内 東京都江東区東雲 1 - 9 - 31 三菱製鋼株式会社技術開発

センター内

の出 顧 人

東京都千代田区大手町2丁目6番2号

19代理人 弁理士 小松 秀岳 外1名

審査官 小 野 秀幸

1

2

釣特計請求の範囲

1 Ni: $5 \sim 15\%$, Sn: $2 \sim 15\%$, P: $4 \sim 10$ %、及びAg: 0.001~20%を含有し、残部はCu及 び附随的不純物であり、かつ急冷凝固組織を有す ることを特徴とする可撓性を有する銅基合金。

発明の詳細な説明

産業上の利用分野

本発明は、銅基合金に関するものであり、詳し くは、銅又は銅合金から成る金属製品のろう付け 用ろう、その他の用途に有用な可撓性に富む新規 10 は、"はく" 状のものが使用されている。 の銅基合金に関するものである。

従来の技術

銅及び銅合金のろう付けに好適なろうとして、 下記の第1表に示すような合金ろうAWS BcuP が知られている。また銅基合金の非晶質合金ろう 5 が特開昭58-193334号、特開昭59-76845号、又 は特開昭59-100247号などの公報によつて知られ ている。

前記AWS BcuPはペースト状、棒状又ははく 状のものが使用されている。前記非晶質合金ろう

第1表 BOuPろう (米国溶接協会A 5.8明細書)

名称	合金組成(重量%)			固相線	液相線	ろう付け範囲
	Cu	Ag	P	(C)	(C)	(C)
BCuP-1	残部		5	710	924	788-927
BCuP-2	"	_	7.2	710	793	732-843
BCuP-3	"	5	6,0	643	813	718-816
BCuP-4	"	6	7,2	643	718	691-788
BCuP - 5	"	15	5,0	643	802	704-816

3

名称	合金組成(重量%)			固相線	液相線	ろう付け範囲
	Cu	Ag	P	(C)	(C)	(C)
BCuP-6	"	2	7.0	643	788	732-816
BCuP-7	"	5	6,7	643	771	704-816

発明が解決しようとする問題点

前記AWS BcuPは非常にもろく、そのため粉 末又は鋳造棒でしか得られない。粉末のものは、 10 う。 例えば有機結合剤を用いたペーストとして入手可 能であるが、この結合剤は、ろう付け中に好まし くない空孔と残さを形成する。

一方、棒のものは、部品の接合個所の外方で溶 融し、この溶融ろうを毛細管作用で接合個所に供 15 ポン状に製造される。 給しなければならない。"はく"状のものは、高 価な一連のロール操作で成形するか、又は粉末や 金技術を用いて成形するが、ロール加工による "はく"は延性が十分でなく、また粉末や金はく は均一でなく、結合剤を用いているので、ろう付 20 く"又はリポンは、ろうに使用して、ろう付け予 け中に好ましくない空孔と残さを形成する。他 方、前配各公報に配載の非晶質合金ろうは、いづ れも延性と可撓性が十分でない。

本発明の目的とするところは、急冷凝固法によ 微細結晶の相と非晶質相との混合組織、又は非晶 質組織を有し、延性と可撓性に富む銅基合金を提 供し、これにより前記問題点を解決することにあ

問題点を解決するための手段

本発明は、可撓性を有する銅基合金であり、こ の合金は、前記目的を達成するため、組成とし τ , Ni: 5~15%, Sn: 2~15%, P: 4~10 %、及びAg: 0.001~20%を含み、残部がCu及び 附随的不純物であり、かつその組織として、急冷 35 凝固組織を有することを特徴としている。

Niは5%以上にしないと接合強度が得られず、 15%を越えると可撓性が著しく低下する。Snは 2%以上にしないと融点を低下させる効果がな る。PはSnと同様の理由により4~10%とした。 Agは融点を低下させ、可撓性を向上させるが、 0.001%以上添加させないとその効果がなく、20 %を越えると強度を著しく低下させる。

又、急冷凝固組織とは急冷凝固により凝固組織 が通常の凝固組織より微細となつている状態を言

本発明の銅基合金は、これを溶製した後、溶融 物を急令疑固法により、例えば、溶融合金を急速 回転するロールの面に噴出し、およそ10~106 ℃/secの冷却速度で急冷して"はく"伏又はリ

本発明による銅基合金の"はく"又はリポン は、可撓性に富むので、これをドラムに巻くこと ができる。これにより、ろう付け作業を自動化する ることが可能である。また本発明による合金"は 備成形品等を好都合に提供することができる。 実施例

例 1

30

アルゴン雰囲気下で、下記第2表に示す各組成 り得られる組織、すなわち微細結晶組織あるいは 25 の合金を試料として、試料ごとにそれぞれ溶製し て、この溶融合金を、表面速度が23.6m/secで 急速回転する銅製ロールの面上に噴出させて、幅 約5mm、厚さ約30μmのリボンを製作した。

第2表 (重量%)

試料Na	Cu	Ni	Sn	P	Ag
1	77.999	10	4	8	-
2	77.0	"	"	"	0.001
3	73,0	"	"	"	1.0
4	68.0	"	"	"	5.0
5	63, 0	"	"	"	15.0

各リポンは、いづれも急冷凝固により生成した 微細結晶の相と非晶質の相との混合組織を有し、 く、15%を越えると強度と可撓性が著しく低下す 40 均質で可撓性を有していた。ここで、"可撓性" とははくを180°折り曲げても破壊されないことを 意味する。

> なお、Ag含有量が多いほど、可撓性が良好で あつた。

5

例 2

アルゴン雰囲気下で、例1の各試料ごとにそれ ぞれ溶製し、この溶融合金を、表面速度47.1m/ secで急速回転する銅製ロールの面上に噴出させ て、幅約5 mm、厚さ約20μmのリポンを製作し 5 あつても、あるいはそれらの混合組織であつて た。

Agを含有しない試料 1 のリポンは微細結晶の 相と非晶質の相との混合組織であつたが、Agを 含有する他の試料のリボンでは、すべて非晶質の 単相であり、試料1のリポンよりも可撓性に優れ 10 とができる。 ていた。

例 3

例1の各試料ごとに、それぞれ溶製し、この溶 融合金を表面速度11.8m/secで回転する銅製ロ **ルのリボンを製作した。**

Agを含有しない試料1のリポンはでは、非晶 質の相は無く、結晶質の単相であつた。Agを含 有する他の試料のリポンはいづれも微細結晶相と 非晶質相との混合組織であった。また、試料1に 20 よるリボンはぜい弱であつたが、他の試料による リポンは、いづれも可撓性を有し、Ag含有量が 多いほど、可撓性がより良好であつた。 発明の効果

6

本発明の銅基合金は、急冷凝固法によつて、 "はく"又はリポン(以下、単に"リポン"とい う) に製造するのが有利である。本発明の合金 は、非晶質であつても、また結晶質(固溶体)で も、ろう又はその他の用途に使用できる。可撓性 のある"リポン"はドラム状に巻くことができる ので、ドラムに巻いて連続"リポン"として、こ れを用いれば、ろう付け等の作業を自動化するこ

急冷凝固法により製造される本発明合金のリポ ンは、その厚さが20~60μmである。この厚さ は、ろう付けする部品の接合すきまに対しても望 ましいものである。 すなわち、このすきまは、ろ ールの面上に噴出させて、幅約5 mm、厚さ約40 μ 15 う付け強度を最大にするものである。なお、"リ ポン"の厚さは、薄い"リポン"を重ねて厚くし てもよい。

> ろう付けに当つては、融剤は不要であり、ま た、はく内には、いかなる結合剤も存在しない。 したがつて、ろう付け接合部には空孔も汚染残 さも存在しない。結果として、本発明による可撓 性のある"リボン"はくは、スペーサの必要がな いため、ろう付けを容易にし、かつろう付け後の 処理を最小限にとどめる。