MATH 308 D200, Fall 2019

22. The transportation problem (based on notes from Dr. J. Hales, Dr. L. Stacho, and Dr. L. Godyyn)

Dr. Masood Masjoody

SFU Burnaby

The Transportation Problem

- Another traditional example of LP problems.
- Solvable directly by using general "LP techniques".
- Due to the special shape of these problems we can develop more efficient algorithms.

The Balanced Transportation Problem

A manufacturer of cellphones owns three warehouses W_1, W_2, W_3 and sells to three markets M_1, M_2, M_3 . The supply of each warehouse, the demand of each market and the shipping costs per 100 cellphones are depicted in the following table

	M_1	M_2	M_3	supply
W_1	\$30	\$20	\$10	4000
W_2	\$15	\$30	\$25	3000
W_3	\$30	\$20	\$15	3000
demand	4500	3000	2500	

How should the manufacturer ship the cellphones if they want to meet all demand/supply requirements and minimize total transportation cost?

The Transportation Problem

- Another traditional example of LP problems.
- Solvable directly by using general "LP techniques".
- Due to the special shape of these problems we can develop more efficient algorithms.

The Balanced Transportation Problem

A manufacturer of cellphones owns three warehouses W_1, W_2, W_3 and sells to three markets M_1, M_2, M_3 . The supply of each warehouse, the demand of each market and the shipping costs per 100 cellphones are depicted in the following table

	M_1	M_2	M_3	supply
W_1	\$30	\$20	\$10	4000
W_2	\$15	\$30	\$25	3000
W_3	\$30	\$20	\$15	3000
demand	4500	3000	2500	

How should the manufacturer ship the cellphones if they want to meet all demand/supply requirements and minimize total transportation cost?

SFU department of mathematics

	M_1	M_2	M_3	supply	
W_1	\$30	\$20	\$10	4000	-
W_2	\$15	\$30	\$25	3000	Η,
W_3	\$30	\$20	\$15	3000	
demand	4500	3000	2500		-

Demand is # of phones. Transport cost is per 100 phones.

	M_1	M_2	M_3	supply
W_1				
W_2				
W_3				
demand				

Demand is # of units of 100 phones. Transport cost is per 100 phones.

	M_1	M_2	M_3	supply	
W_1	\$30	\$20	\$10	4000	-
W_2	\$15	\$30	\$25	3000	\mapsto
W_3	\$30	\$20	\$15	3000	-
demand	4500	3000	2500		-

	M_1	M_2	M_3	supply
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
demand	45	30	25	

Demand is # of phones.

Transport cost is per 100 phones.

Demand is # of units of 100 phones. Transport cost is per 100 phones.

	M_1	M_2	M_3	supply	
W_1	\$30	\$20	\$10	4000	-
W_2	\$15	\$30	\$25	3000	\mapsto
W_3	\$30	\$20	\$15	3000	-
demand	4500	3000	2500		-

	M_1	M_2	M_3	supply
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
demand	45	30	25	

Demand is # of phones.

Transport cost is per 100 phones.

Demand is # of units of 100 phones. Transport cost is per 100 phones.

minimize
$$g = 30x_{11} + 20x_{12} + 10x_{13} + 15x_{21} + 30x_{22} + 25x_{23} + 30x_{31} + 20x_{32} + 15x_{33}$$

	M_1	M_2	M_3	supply	
W_1	\$30	\$20	\$10	4000	-
W_2	\$15	\$30	\$25	3000	\mapsto
W_3	\$30	\$20	\$15	3000	-
demand	4500	3000	2500		-

	M_1	M_2	M_3	supply
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
demand	45	30	25	

Demand is # of phones.

Transport cost is per 100 phones.

Demand is # of units of 100 phones. Transport cost is per 100 phones.

minimize
$$g = 30x_{11} + 20x_{12} + 10x_{13} + 15x_{21} + 30x_{22} + 25x_{23} + 30x_{31} + 20x_{32} + 15x_{33}$$

subject to $x_{11} + x_{12} + x_{13} = 40$ W_1 supply constraint $x_{21} + x_{22} + x_{23} = 30$ W_2 supply constraint $x_{31} + x_{32} + x_{33} = 30$ W_3 supply constraint

	M_1	M_2	M_3	supply	
W_1	\$30	\$20	\$10	4000	-
W_2	\$15	\$30	\$25	3000	\mapsto
W_3	\$30	\$20	\$15	3000	-
demand	4500	3000	2500		-

	M_1	M_2	M_3	supply
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
demand	45	30	25	

Demand is # of phones.

Transport cost is per 100 phones.

Demand is # of units of 100 phones. Transport cost is per 100 phones.

minimize
$$g = 30x_{11} + 20x_{12} + 10x_{13} + 15x_{21} + 30x_{22} + 25x_{23} + 30x_{31} + 20x_{32} + 15x_{33}$$
 subject to $x_{11} + x_{12} + x_{13} = 40$ W_1 supply constraint $x_{21} + x_{22} + x_{23} = 30$ W_2 supply constraint $x_{31} + x_{32} + x_{33} = 30$ W_3 supply constraint $x_{11} + x_{21} + x_{31} = 45$ M_1 demand constraint $x_{12} + x_{22} + x_{32} = 30$ M_2 demand constraint $x_{31} + x_{23} + x_{33} = 25$ M_3 demand constraint

	M_1	M_2	M_3	supply	
W_1	\$30	\$20	\$10	4000	-
W_2	\$15	\$30	\$25	3000	\mapsto
W_3	\$30	\$20	\$15	3000	-
demand	4500	3000	2500		-

	M_1	M_2	M_3	supply
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
demand	45	30	25	

Demand is # of phones.

Transport cost is per 100 phones.

Demand is # of units of 100 phones. Transport cost is per 100 phones.

$$\begin{array}{lll} \text{minimize} & g = 30x_{11} + 20x_{12} + 10x_{13} + 15x_{21} + 30x_{22} + 25x_{23} + 30x_{31} + 20x_{32} + 15x_{33} \\ \text{subject to} & & x_{11} + x_{12} + x_{13} = 40 & W_1 \text{ supply constraint} \\ & & x_{21} + x_{22} + x_{23} = 30 & W_2 \text{ supply constraint} \\ & & x_{31} + x_{32} + x_{33} = 30 & W_3 \text{ supply constraint} \\ & & x_{11} + x_{21} + x_{31} = 45 & M_1 \text{ demand constraint} \\ & & x_{12} + x_{22} + x_{32} = 30 & M_2 \text{ demand constraint} \\ & & x_{31} + x_{23} + x_{33} = 25 & M_3 \text{ demand constraint} \\ & & x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}, x_{31}, x_{32}, x_{33} \geq 0 \end{array}$$

The initial (minimization) Tucker tableau is noncanonical.

<i>x</i> ₁₁	1	0	0	1	0	0	30
X ₁₂	1	0	0	0	1	0	20
<i>x</i> ₁₃	1	0	0	0	0	1	10
x ₂₁	0	1	0	1	0	0	15
X22	0	1	0	0	1	0	30
X23	0	1	0	0	0	1	25
<i>x</i> ₃₁	0	0	1	1	0	0	30
X32	0	0	1	0	1	0	20
X33	0	0	1	0	0	1	15
-1	40	30	30	45	30	25	0
	= 0	= 0	= 0	= 0	= 0	= 0	= g

Noncannonical max tableau (negative transpose):

<i>x</i> ₁₁	X ₁₂	<i>x</i> ₁₃	X ₂₁	X ₂₂	X23	<i>x</i> ₃₁	X32	X33	-1	
-1*	-1	-1	0	0	0	0	0	0	-40	= 0
0	0	0	-1	-1	-1	0	0	0	-30	= 0
0	0	0	0	0	0	-1	-1	-1	-30	= 0
-1	0	0	-1	0	0	-1	0	0	-45	= 0
0	-1	0	0	-1	0	0	-1	0	-30	= 0
0	0	-1	0	0	-1	0	0	-1	-25	= 0
-30	-20	-10	-15	-30	- 5	-30	-20	-15	0	= f

0	<i>x</i> ₁₂	x ₁₃	<i>x</i> ₂₁	x ₂₂	x ₂₃	x ₃₁		<i>x</i> ₃₃	-1	
-1	1	1	0	0	0	0	0	0	40	$=-x_{11}$
0	0	0	-1	-1	-1	0	0	0	-30	= 0
0	0	0	0	0	0	-1	-1	-1	-30	= 0
-1	1	1	-1	0	0	-1	0	0	-5	= 0
0	-1	0	0	-1	0	0	-1	0	-30	= 0
0	0	-1	0	0	-1	0	0	-1	-25	= 0
-30	10	20	-15	-30	-25	-30	-20	-15	1200	= f

x ₁₂	<i>x</i> ₁₃	x ₂₁	X22	X23	<i>x</i> ₃₁	X32		-1	
1	1	0	0	0	0	0	0	40	$=-x_{11}$
0	0	-1*	-1	-1	0	0	0	-30	= 0
0	0	0	0	0	-1	-1	-1	-30	= 0
1	1	-1	0	0	-1	0	0	-5	= 0
-1	0	0	-1	0	0	-1	0	-30	= 0
0	-1	0	0	-1	0	0	-1	-25	= 0
10	20	-15	-30	-25	-30	-20	-15	1200	= f

1 1 0 0 0 0 0 0 0	$0 = -x_{11}$
1 1 0 0 0 0 0 0 4	
0 0 -1 1 1 0 0 3	$0 = -x_{21}$
0 0 0 0 0 -1 -1 -1 -3	0 = 0
1 1 -1 1 1 -1 0 0 2	= 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 = 0
0 -1 0 0 -1 0 0 -1 -2	= 0
10 20 -15 -15 -10 -30 -20 -15 165	0 = f

<i>x</i> ₁₂	<i>x</i> ₁₃	X22	X23	<i>X</i> 31	X32	<i>X</i> 33	-1	
1	1	0	0	0	0	0	40	$=-x_{11}$
0	0	1	1	0	0	0	30	$=-x_{21}$
0	0	0	0	-1*	-1	-1	-30	= 0
1	1	1	1	-1	0	0	25	= 0
-1	0	-1	0	0	-1	0	-30	= 0
0	-1	0	-1	0	0	-1	-25	= 0
10	20	-15	-10	-30	-20	-15	1650	= f

<i>x</i> ₁₂	<i>X</i> 13	X22	X23	0	X32	X33	-1	
1	1	0	0	0	0	0	40	$=-x_{11}$
0	0	1	1	0	0	0	30	$=-x_{21}$
0	0	0	0	-1	1	1	30	$=-x_{31}$
1	1	1	1	-1	1	1	55	= 0
-1	0	-1	0	0	-1	0	-30	= 0
0	-1	0	-1	0	0	-1	-25	= 0
10	20	-15	-10	-30	10	15	2550	= f

<i>x</i> ₁₂	<i>x</i> ₁₃	X22	<i>X</i> 23	X32	<i>X</i> 33	-1	
1	1	0	0	0	0	40	$=-x_{11}$
0	0	1	1	0	0	30	$=-x_{21}$
0	0	0	0	1	1	30	$=-x_{31}$
1*	1	1	1	1	1	55	= 0
-1	0	-1	0	-1	0	-30	= 0
0	-1	0	-1	0	-1	-25	= 0
10	20	-15	-10	10	15	2550	= f

0	X ₁₃	X22	X23	X32	X33	-1	
-1	0	-1	-1	-1	-1	-15	$=-x_{11}$
0	0	1	1	0	0	30	$=-x_{21}$
0	0	0	0	1	1	30	$=-x_{31}$
1	1	1	1	1	1	55	$=-x_{12}$
1*	1	0	1	0	1	25	= 0
0	-1	0	-1	0	-1	-25	= 0
-10	10	-25	-20	0	5	2000	= f

X ₁₃	X22	X23	X32	X33	-1	
0	-1	-1	-1	-1	-15	$=-x_{11}$
0	1	1	0	0	30	$=-x_{21}$
0	0	0	1	1	30	$=-x_{31}$
1	1	1	1	1	55	$=-x_{12}$
1*	0	1	0	1	25	= 0
-1	0	-1	0	-1	-25	= 0
10	-25	-20	0	0	2000	= f

0	X22	X23	X32	X33	-1	
0	-1	-1	-1	-1	-15	$=-x_{11}$
0	1	1	0	0	30	$=-x_{21}$
0	0	0	1	1	30	$=-x_{31}$
-1	1	0	1	0	30	$=-x_{12}$
1	0	1	0	1	25	$=-x_{13}$
1	0	0	0	0	0	= 0
-10	-25	-30	0	-5	1750	= f
	0 0 0 -1 1 1 -10	$\begin{array}{cccc} 0 & -1 \\ 0 & 1 \\ 0 & 0 \\ -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	X22	X23	X32	X33	-1	
Ī	-1	-1	-1	-1	-15	$=-x_{11}$
	1	1	0	0	30	$=-x_{21}$
	0	0	1	1	30	$=-x_{31}$
	1	0	1	0	30	$=-x_{12}$
	0	1	0	1	25	$=-x_{13}$
	0	0	0	0	0	= 0 Delete Row! (Why did
Ī	-25	-30	0	-5	1750	= f

X22	X23	X32	X33	-1	
-1*	-1	-1	-1	-15	$=-x_{11}$
1	1	0	0	30	$=-x_{21}$
0	0	1	1	30	$=-x_{31}$
1	0	1	0	30	$=-x_{12}$
0	1	0	1	25	$=-x_{13}$
-25	-30	0	-5	1750	= f

Tableau is canonical (but infreasible), ready for the simplex algorithm.

this happen?)

For basic solutions, the basic edges form a spanning forest.

 $\mathsf{Basic}\ \mathsf{tableau} \to \mathsf{Phase}\ 1$

Feasible tableau \rightarrow Phase 2

	<i>x</i> ₁₁	x ₂₃	x ₂₂	<i>x</i> ₃₃	-1	
	-1	1	1	1	15	$=-x_{32}$
	0	1	1	0	30	$=-x_{21}$
\rightarrow	1*	-1	-1	0	15	$=-x_{31}$
	1	-1	0	-1	15	$=-x_{12}$
	0	1	0	1	25	$=-x_{13}$
	0	-30	-25	-5	1750	= f

(Multiple optimal solutions) \rightarrow Pivot on 1* to get a second optimal BFS

SFU department of mathematics

<i>x</i> ₁₁	X23	X22	<i>X</i> 33	-1		X ₁₂	X23	X22	<i>X</i> 33	-1	
-1	1	1	1	15	$=-x_{32}$	1	0	1	0	30	$=-x_{32}$
0	1	1	0	30	$=-x_{21}$	0	1	1	0	30	$=-x_{21}$
1*	-1	-1	0	15	$=-x_{31} \rightarrow$	1	-1	0	-1	15	$=-x_{11}$
1	-1	0	-1	15	$=-x_{12}$	-1	0	-1	1	0	$=-x_{31}$
0	1	0	1	25	$=-x_{13}$	0	1	0	1	25	$=-x_{13}$
0	-30	-25	-5	1750	= f	0	-30	-25	-5	1750	$=f^*$
					J						

First optimal solution: x¹

Second optimal solution: x^2

Optimal solution set is the line segment
$$\overline{\mathbf{x}^1\mathbf{x}^2}$$
 where

$$(x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{13}, x_{31}, x_{32}, x_{33})$$

 $\mathbf{x}^1 = (0, 15, 25, 30, 0, 0, 15, 15, 0)$

$$\mathbf{x}^2 = (\ \mathbf{15}, \quad 0, \ \mathbf{25}, \ \mathbf{30}, \quad 0, \quad 0, \quad \mathbf{0}, \ \mathbf{30}, \quad 0 \)$$

Notice: Pivoting only makes changes on a **single graph** cycle.

SFU department of mathematics

General Balanced Transportation Problem

- warehouses W_1, W_2, \ldots, W_m
- supplies *s*₁, *s*₂, . . . , *s*_m
- markets M_1, M_2, \ldots, M_n
- demands d_1, d_2, \ldots, d_n
- balanced transportation tableau with unit shipping cost c_{ij} from W_i to M_j
- let x_{ij} be # of units shipped from W_i to M_j

	M_1	M_2		M_n	
W_1 W_2	c ₁₁	c ₁₂ c ₂₂		c _{1n}	s_1
	c ₂₁	c ₂₂		c_{2n}	<i>s</i> ₂
:	:	:	4.	:	:
W_m	c _{m1}	c _{m2}		Cmn	S _m
	<i>d</i> ₁	d ₂		d _n	$\sum_{i=1}^m s_i = \sum_{i=1}^n d_i$

total supply
$$=\sum_{i=1}^m s_i = \sum_{i=1}^m \left(\sum_{j=1}^n x_{ij}\right) = \sum_{j=1}^n \left(\sum_{i=1}^m x_{ij}\right) = \sum_{j=1}^n d_j = \text{total demand}$$

LP formulation ...

Minimize
$$C = \sum_{i=1}^m \sum_{j=1}^n x_{ij} c_{ij}$$
 subject to $\sum_{j=1}^n x_{ij} = s_i, \quad (i = 1, 2, \dots, m)$ Warehouse constraints $\sum_{i=1}^m x_{ij} = d_j, \quad (j = 1, 2, \dots, n)$ Market constraints $x_{ij} \geqslant 0$, for all i, j

Lemma

Every balanced transportation problem has an optimal solution.

Proof.

LP formulation . . .

Minimize
$$C = \sum_{i=1}^m \sum_{j=1}^n x_{ij} c_{ij}$$
 subject to $\sum_{j=1}^n x_{ij} = s_i, \quad (i = 1, 2, \dots, m)$ Warehouse constraints $\sum_{i=1}^m x_{ij} = d_j, \quad (j = 1, 2, \dots, n)$ Market constraints $x_{ij} \geqslant 0$, for all i, j

Lemma

Every balanced transportation problem has an optimal solution.

Proof.

Let T = total supply = total demand.

The LP is feasible:

Minimize

LP formulation ...

subject to

$$C = \sum_{i=1} \sum_{j=1} x_{ij} c_{ij}$$

$$\sum_{i=1}^m x_{ij} = d_j, \quad (j=1,2,\ldots,n) igg\}$$
 Market constraints $x_{ij} \geqslant 0, \quad ext{for all } i,j$

 $\sum_{i=1}^{n} x_{ij} = s_i, \quad (i = 1, 2, \dots, m)$ Warehouse constraints

Lemma

Every balanced transportation problem has an optimal solution.

Proof.

Let T = total supply = total demand.

The LP is **feasible**: Let $x_{ii} = \frac{s_i d_j}{T}$ for each i, j. Then $x_{ii} \ge 0$, and

$$egin{aligned} \sum_{j=1}^{n} \mathsf{x}_{ij} &= \sum_{j=1}^{n} rac{\mathsf{s}_{i}d_{j}}{T} = rac{\mathsf{s}_{i}}{T} \sum_{j=1}^{n} d_{j} = \mathsf{s}_{i}, & i = 1, 2, \dots, m \ \\ \sum_{i=1}^{m} \mathsf{x}_{ij} &= \sum_{j=1}^{m} rac{\mathsf{s}_{i}d_{j}}{T} = rac{d_{j}}{T} \sum_{i=1}^{n} \mathsf{s}_{i} = d_{j}, & j = 1, 2, \dots, n. \end{aligned}$$

So (x_{ij}) is a feasible solution.

LP formulation . . .

Minimize
$$C = \sum_{i=1}^m \sum_{j=1}^n x_{ij} c_{ij}$$
 subject to $\sum_{j=1}^n x_{ij} = s_i, \quad (i = 1, 2, \dots, m)$ Warehouse constraints $\sum_{i=1}^m x_{ij} = d_j, \quad (j = 1, 2, \dots, n)$ Market constraints $x_{ij} \geqslant 0$, for all i, j

Lemma

Every balanced transportation problem has an optimal solution.

Proof.

Let T = total supply = total demand.

The LP is feasible:

The LP is bounded:

LP formulation ...

Minimize
$$C = \sum_{i=1}^m \sum_{j=1}^n x_{ij} c_{ij}$$
 subject to $\sum_{j=1}^n x_{ij} = s_i, \quad (i = 1, 2, \dots, m)$ Warehouse constraints $\sum_{i=1}^m x_{ij} = d_j, \quad (j = 1, 2, \dots, n)$ Market constraints $x_{ij} \geqslant 0$, for all i, j

Lemma

Every balanced transportation problem has an optimal solution.

Proof.

Let T = total supply = total demand.

The LP is feasible:

Let $c_{\text{max}} = \max_{i,j} c_{ij}$. If $\mathbf{x} = (x_{ij})$ is feasible, then The LP is **bounded**:

$$C(\mathbf{x}) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \le \sum_{i=1}^{m} \sum_{j=1}^{n} c_{\max} x_{ij} \quad \text{(since each } x_{ij} \ge 0\text{)}$$

$$= c_{\max} \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}$$

$$= c_{\max} T.$$

LP formulation ...

Minimize
$$C = \sum_{i=1}^m \sum_{j=1}^n x_{ij} c_{ij}$$
 subject to $\sum_{j=1}^n x_{ij} = s_i, \quad (i=1,2,\ldots,m)$ Warehouse constraints $\sum_{i=1}^m x_{ij} = d_j, \quad (j=1,2,\ldots,n)$ Market constraints $x_{ij} \geqslant 0, \quad \text{for all } i,j$

Lemma

Every balanced transportation problem has an optimal solution.

Proof.

Let T = total supply = total demand.

The LP is feasible:

The LP is bounded:

Therefore the LP has an optimal solution.

```
(P) min C = 30x_{11} + 20x_{12} + 10x_{13} + 15x_{21} + 30x_{22} + 25x_{23} + 30x_{31} + 20x_{32} + 15x_{33}

subject to x_{11} + x_{12} + x_{13} = 40

x_{21} + x_{22} + x_{23} = 30

x_{31} + x_{32} + x_{33} = 30

x_{11} + x_{21} + x_{31} = 45

x_{12} + x_{22} + x_{32} = 30

x_{13} + x_{23} + x_{33} = 25

x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}, x_{31}, x_{32}, x_{33} \ge 0
```

8/13

(P) min
$$g = 30x_{11} + 20x_{12} + 10x_{13} + 15x_{21} + 30x_{22} + 25x_{23} + 30x_{31} + 20x_{32} + 15x_{33}$$

s. t. $x_{11} + x_{12} + x_{13} = 40$ (a₁)
 $x_{21} + x_{22} + x_{23} = 30$ (a₂)
 $x_{31} + x_{32} + x_{33} = 30$ (a₃)
 $x_{11} + x_{21} + x_{21} + x_{31} = 45$ (b₁)
 $x_{12} + x_{22} + x_{23} = 30$ (b₂)
 $x_{31} + x_{32} + x_{33} = 25$ (b₃)
 $x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{13}, x_{33}, x_{32}, x_{33} \ge 0$

SELI department of mathematic

(P) min
$$C = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} c_{ij}$$
s. t.
$$\sum_{j=1}^{n} x_{ij} = s_{i}, \quad (i = 1, 2, \dots, m)$$

$$\sum_{i=1}^{m} x_{ij} = d_{j}, \quad (j = 1, 2, \dots, n)$$

$$x_{ij} \ge 0, \quad \text{for all } i, j$$

(P) min
$$C = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} c_{ij}$$

s. t. $\sum_{j=1}^{n} x_{ij} = s_i, \quad (i = 1, 2, ..., m) \quad (a_i)$
 $\sum_{i=1}^{m} x_{ij} = d_j, \quad (j = 1, 2, ..., n) \quad (b_j)$
 $x_{ij} \ge 0, \quad \text{for all } i, j$

(P) min
$$C = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} c_{ij}$$
 (D) max $P = \sum_{i=1}^{m} s_{i} a_{i} + \sum_{j=1}^{n} d_{j} b_{j}$
s. t. $\sum_{j=1}^{n} x_{ij} = s_{i}$, $(i = 1, 2, ..., m)$ (a_{i}) s. t. $a_{i} + b_{j} \leq c_{ij}$ for all i, j (x_{ij}) a_{i}, b_{j} unrestricted $\sum_{i=1}^{m} x_{ij} = d_{j}$, $(j = 1, 2, ..., n)$ (b_{j}) $x_{ij} \geqslant 0$, for all i, j

(P) min
$$C = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} c_{ij}$$
 (D) max $P = \sum_{i=1}^{m} s_{i} a_{i} + \sum_{j=1}^{n} d_{j} b_{j}$
s. t. $\sum_{j=1}^{n} x_{ij} = s_{i}$, $(i = 1, 2, ..., m)$ (a_{i}) s. t. $a_{i} + b_{j} \le c_{ij}$ for all i, j (x_{ij}) a_{i}, b_{j} unrestricted $\sum_{i=1}^{m} x_{ij} = d_{j}$, $(j = 1, 2, ..., n)$ (b_{j}) $c_{ij} \ge 0$, for all i, j

Interpretation:

Each warehouse W_i (and market M_j) is assigned a "node price", a_i (resp. b_j), that they will contribute toward the cost of transporting one item. Complementary slackness stipulates that $x_{ij} > 0$ implies $a_i + b_j = c_{ij}$, i. e. the transportation cost of every item shipped along edge ij is exactly covered by W_i and M_i .

Transportation Tableau

	M_1	M_2		M_n	
W_1	c ₁₁	c ₁₂		c _{1n}	s_1
W_2	c ₂₁	c ₂₂		c_{2n}	<i>s</i> ₂
:	:	:	4.	C _{1n} C _{2n} : : :	:
W_m	c _{m1}	c _{m2}		C _{mn}	s _m
	d ₁	<i>d</i> ₂		d _n	$\sum_{i=1}^m s_i = \sum_{j=1}^n d_j$

- the entries of the transportation tableau are called cells
- not a Tucker tableau.
- corresponding Tucker tableau is much larger.
- we will learn how to implement the simplex algorithm directly on the transportation tableau.
- the algorithm two parts:
 - i) transform the transportation tableau into basic feasible transp. tableau using VAM.
 - ii) transform the feasible tableau into an optimal one using the transportation algorithm.

SFU department of mathematics

The Vogel Advanced-Start Method

Using simplex required three steps: Making the tableau Canonical, then Phase 1, then Phase 2. **VAM** does the first two steps directly on the simpler **transportation tableau**.

- Compute the difference of two smallest entries in every row and column of the tableau.
 Write this difference opposite the row or column. (If there is only one entry, just write that
 entry.)
- 2. Select the row or column with the largest difference.
- Either empty a warehouse or fill a market demand using smallest-cost cell chosen from the selected row or column. (If there is a tie in step 2, choose the cell with the smaller cost.)
- 4. In the chosen cell, **circle** the cost used and **write** above the circle the amount shipped by that route. **Reduce** the supply and demand in the row and column containing the cell.
- 5. Delete the row or column of the emptied warehouse or fully supplied market. If both happen simultaneously, delete the row unless it is the only row remaining in which case delete the column.
- 6. If all tableau entries are deleted, STOP; otherwise go to Step 1.

Fact: VAM always outputs a feasible basic solution.

Apply VAM to the cellphone problem

	M_1	M_2	M_3	
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
	45	30	25	100

	M_1	M_2	M_3	
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
	45	30	25	100

	diffs of smallest 2 entries						
	15	0	5				
10	30 15	20	10	40			
10	15	30	25	30			
5	30	20	15	30			
	45	30	25				

	M_1	M_2	M_3	
W_1	30	20	10	40
W_1 W_2	15	30	25	30
W_3	30	20	15	30
	45	30	25	100

↓ largest diff among the 6 diffs of smallest 2 entries					
15	0	5			
30	20	10	40		
15	30	25	30		
30	20	15	30		
45	30	25			

	M_1	M_2	M_3	
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
	45	30	25	100

smallest entry in row/col with ↓ largest diff among the 6 diffs of smallest 2 entries					
15	0	5			
30	20	10	40		
15)	30	25	30		
30	20	15	30		
45	30	25			

	M_1	M_2	M_3	
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
	45	30	25	100

smallest entry in row/col with ↓ largest diff among the 6 diffs of smallest 2 entries (15) ³⁰ 30 0

Transfer 30 units from W_2 to M_1

	M_1	M_2	M_3	
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
	45	30	25	100

smallest entry in row/col with

↓ largest diff among the 6

diffs of smallest 2 entries

15 0 5

30 20 10 40

	15	0	5		
10	30	20	10	40	
10	(1E) 30	30	-25	30 0	satisfied
10	4.9	30	23	30 0	Satisfied
5	30	20	15	30	
	45	30	25		
	15				

 W_2 is depleted, cross out the row.

	M_1	M_2	M_3	
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
	45	30	25	100

smalle	st ent	ry in ı	row/col	with
↓ lar	gest d	iff am	ong the	6
dif	s of s	malles	st 2 ent	ries
15	0	5		
			1	

	an	15 01 5	manes	st z entri
	15	0	5	
10	30	20	10	40
10	(1E) 3	30	-25	20.0
10	19	30	23	30 0
5	30	20	15	30
	45	30	25	
	15			

	U	U	5		
10	30	20	10	40	
10	(15)30	30	25	_	
10	4.5	30	25	U	
5	30	20	15	30	
	15	30	25		

Recompute diffs ignoring crossed out entries.

	M_1	M_2	M_3	
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
	45	30	25	100

	U	U	5		
→ 10	30	20	10	40	
-10 -	(1E)30	30	25	_	
10	15	30	25	U	
5	30	20	15	30	
	15	30	25		

	un	13 01 3	mane	5t 2 CIIIII
	15	0	5	
10	30	20	10	40
10	(1E) 3	30	-25	20.0
10	49	30	23	30 0
5	30	20	15	30
	45	30	25	
	15			

	M_1	M_2	M_3	
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
	45	30	25	100

	U	U	5		
→ 10	30	20	10	40	
-10 -	(1 E)30	30	25		
10	15	30	25	U	
5	30	20	15	30	
	15	30	25		

	an		····u···c	JC 2 CIICII
	15	0	5	
10	30	20	10	40
-10 -	15 30	30	25	30 0
10	15) 3	30	23	30 0
5	30	20	15	30
	45	30	25	
	15			

	M_1	M_2	M_3	
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
	45	30	25	100

	U	U	5	
→ 10	30	20	(10)25	40 15
10	(1E)30	30	25	
10	15	30	25	0
5	30	20	15	30
	15	30	25	
			0	

	a i i		munic.	JC 2 CIICIIC
	15	0	5	
10	30	20	10	40
-10 -	(1E) 3	30	25	30 0
-10	49	30	23	30 0
5	30	20	15	30
	45	30	25	
	15			

	M_1	M_2	M_3	
W_1	30	20	10	40
W_2	15	30	25	30
W_3	30	20	15	30
	45	30	25	100

	Ü	U	þ	
→ 10	30	20	(10)25	40 15
-10 -	(1 E)30	30	2 -	
10	15	30	20	0
5	30	20	15	30
	15	30	25	
			()	

	un	13 01 3	manc.	3t 2 Ciitii
	15	0	5	
10	30	20	10	40
-10 -	(1E) 3	30	25	30 0
-10	49	30	23	30 0
5	30	20	15	30
	45	30	25	
	15			

 M_2

 M_1

 M_3

	V_1	30	20	10	40
V	<i>V</i> ₂ 15		30	25	30
V	V_3	30	20	15	30
	45		30	25	100
		0	0	\$	
10		30	20	10)25	40 15
10	G	<u>-30</u>	30	25	0
	4	9			
5		30	20	15	30
		L5	30	25	
				d	

							↓ Ia	rgest c	liff am	ong th	ie 6
		M_1	M_2	M_3			di 15	ffs of s	smalle: 5	st 2 en	tries
V	V_1	30	20	10	40	10	30	20	10	40	
V	V_2	15	30	25	30	-10-	15 3		25	30 0	_
V	V_3	30	20	15	30	5	30	20	15	30	
		45	30	25	100		45	30	25	"	_
		_		1			15			١,	
		0	0	5			0		0	\$	
→ 10		30	20	10)25	40 15	\rightarrow 1	0 30) 2	20	$(10)^{25}$	15
10	(1	5)30	30	25	0	-1		30 -	10	25	0
5		30	20	15	30	ightarrow 1		_	20	15	30
	1	L5	30	25		•	15			•	
				9 1			Cho	ose ei	ther ro	w, sin	ce $20 = 20$.

smallest entry in row/col with ↓ largest diff among the 6 s of smallest 2 entries -30 30 0

		M_1	M_2	M ₃	
V	V_1	30	20	10	40
V	V_2	15	30	25	30
V	<i>W</i> ₃ 30		20	15	30
		45	30	25	100
		0	0	\$	
→ 10		30	20	$(10)^{25}$	40 15
10	(1	5)30	30	25	0
5	30		20	15	30
	1	L5	30	25	
				d	

Choose either row, since 20 = 20.

 M_2

 M_1

 M_3

		V_1	30	20		10	40
		V_2	15	30		25	30
	V	V_3	30	20		15	30
			45	30		25	100
			0	0	ļ	5	
\rightarrow	10		30	20	(10)25	40 15
	10	(1	.5)30	30	-2	5	0
	5		30	20		5	30
			L5	30	2	5	
					(

		M_1	M_2	M_3	
	V_1	30	20	10	40
V	V ₂ V ₃	15	30	25	30
V	V_3	30	20	15	30
		45	30	25	100
				4	
		0	0	\$	
LO		30	20	10)25	40 15
LO -	(1	.5)30	30	25	0
5		30	20	15	30
	1	L5	30	25	
				d	

When computing diffs, write down the entry value (e.g. 30 and 20) if it is the only cell in the column.

							\downarrow	_	•		ong th	
		M_1	M_2	M_3			1		s of s 0	malle 5	st 2 en	tries
V	V_1	30	20	10	40	10	3		20	10	40	
V	V_2	15	30	25	30	-10-	I	30 30		25	30.0	
V	<i>V</i> ₃	30	20	15	30	- 10 - 5	3	-	20	15	30	_
	_	45	30	25	100	- 3	45		30	25	30	_
							15		30	23		
	()	0	5				0	()	\$	
$\rightarrow \ 10$		0	20	10)25	40 15	ightarrow 1	0	30	(2	015	(1)) ²⁵	15 (
10	1.	30	30	25	0	1	0	15	30 3	0	25	0
5	3	0	20	15	30		0	30	2		15	30
	1	5	30	25		-	L	15	3	9		
				0					1	5		
	→ ↓		20	a								
10	30		20 20 ¹⁵	(10)25								
10 10	30		$\overline{}$	\hookrightarrow								
10		30	30	2 5	0							
10	30		20	15	30							
	15	•	15	ø								
					1							

smallest entry in row/col with

		M_1	M_2	M_3	
V	V_1	30	20	10	40
V	V_2	15	30	25	30
V	V_3	30	20	15	30
		45	30	25	100
		0	0	\$	
→ 10		30	20	$(10)^{25}$	40 15
-10 -	(1	5)30	30	25	0
5	\	30	20	15	30
	15		30	2 5	
				0	
	\downarrow				
	3	0	20	5	
10	_	0	$(20)^{15}$	(10)25	0
10	(15)30		30	25	0
10	30		20	15	30
	1	5	15	0	

	M_1	M_2	M_3	
W_1	30	2015	10)25	0 40
W_2	(15) ³⁰	30	25	0 30
W_3	3015	20 ¹⁵	15	0 30
	0	0	0	
	45	30	25	

 M_2 M_3 M_1 (20)¹⁵ $(10)^{25}$ W_1 30 0 40 W_2 $(15)^{30}$ 30 25 0 30 (20)¹⁵ W_3 15 0 30 0 0 0 45 30 25

Here, VAM actually resulted in an optimal solution, but we do not yet know this fact!

Here, VAM actually resulted in an optimal solution, but we do not yet know this fact! In general, it gives only an *initial basic feasible solution*. Which we learn how to solve in the next lecture.

Here, VAM actually resulted in an optimal solution, but we do not yet know this fact! In general, it gives only an *initial basic feasible solution*. Which we learn how to solve in the next lecture.

Notes:

- All non-circled cells correspond to xii-value 0
- A transportation tableau corresponds to a basic solution of the LP iff the circled entries
 correspond to a spanning forest of the graph. The circled cells constitute a basis for the
 solution.
- A basic solution is **feasible** if no flow value is negative.

Here, VAM actually resulted in an optimal solution, but we do not yet know this fact! In general, it gives only an *initial basic feasible solution*. Which we learn how to solve in the next lecture.

Notes:

- All non-circled cells correspond to xii-value 0
- A transportation tableau corresponds to a basic solution of the LP iff the circled entries
 correspond to a spanning forest of the graph. The circled cells constitute a basis for the
 solution.
- A basic solution is feasible if no flow value is negative.

Theorem

The VAM produces a basic feasible solution for any balanced transportation problem.