

USN:

Department of Artificial Intelligence and Machine Learning

Course Code:22EM101 Date:24/02/2023
Sem: I Duration: 90 Minutes

CIE-II Introduction to Internet of Things

Answer all Questions

SL.	No	Questions	M	BT	CO
1	a)	Differentiate between wired and wireless sensing technology with an	05	1	1
		example?			
	b)	Discuss the use of Bluetooth technology with an example?	05	2	1
2	a)	Discuss use of 4G technology and give its applications?	05	2	1
	b)	Discuss the three types of data fusion and issues related to it?	05	3	1
3	a)	Discuss the pervasive management and object entity management with	05	2	2
		respect to Management and Data Centres?			
	b)	Differentiate between Distributed data mining and Grid data mining?	05	2	1
4	a)	Illustrate the use of Biometrics identification for Home Automation	05	3	3
		System.			
	b)	Infer the design of identification used in e-passport.	05	3	4
5	a)	Design a safety awareness applications used in Bird Strike Avoidance	05	2	4
		Radar System?			
	b)	Design an application for Monitoring and control system with respect to	05	1	4
		Precision Manufacturing System?			

Cours	se Outcome							
CO1	Apply the knowledge of IoT and related science to solve the engineering problems							
CO ₂	Analyse the applicability of IoT in various application domains							
CO3	Design a sustainable solution using IoT with societal and environmental concern by engaging in							
	lifelong learning for emerging technology							
CO4	Demonstrate the solutions using various IoT principles by exhibiting team work and effective							
	communication.							

M-Marks, BT-Blooms Taxonomy Levels, CO-Course Outcomes

Marks	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution		25	05	05	15	10	25	15	-	1	-
	Max										
	Marks										

USN:

Department of Artificial Intelligence and Machine Learning

Course Code:22EM101 Date: 24/02/2023
Sem: I Duration: 20 Minutes

QUIZ-II Introduction to Internet of Things

SL.	Question	M	BT	CO
No				
1	State the two limitations of wired technology	2	1	1
2	State True or False	1	2	1
	RFID comes under perception layer			
3	Bluetooth operates inGHz frequency	1	1	1
4	State True or False	1	2	2
	The 2.4 GHz band of Wifi, provides more WiFi coverage with slower speeds			
5	State two applications of UWB	2	2	2
6	requires bandwidth of 500 MHz for accurate and fast transfer of data	1	2	1
7	The range of Zigbee is between and meters)	1	2	2
8	The topology supported by Zigbee is	1	1	1

Cours	e Outcome							
CO1	Apply the knowledge of IoT and related science to solve the engineering problems							
CO2	Analyse the applicability of IoT in various application domains							
CO3	Design a sustainable solution using IoT with societal and environmental concern by engaging in							
	lifelong learning for emerging technology							
CO4	Demonstrate the solutions using various IoT principles by exhibiting team work and effective							
	communication.							

M-Marks, BT-Blooms Taxonomy Levels, CO-Course Outcomes

Marks Distribution	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
	Max Marks	6	4	-	-	4	6		-	-	-