

Versuch 4 des FORTGESCHRITTENEN-PRAKTIKUMS

UI-Kennlinien

Versuchstermin Freitag, 17.05.2024

Protokoll von:
Frederik Uhlemann

giessen.de

 ${\it frederik-vincent.uhlemann@physik.uni-} giessen. de$

Marius Müller
marius.mueller@physik.uni-giessen.de

Florian Adamczyk
florian.marius.adamczyk@physik.uni-

Praktikumsbetreuer:

Inhaltsverzeichnis

Ei	Cinleitung		2
1	Versuchsaufbau und Durchführung		3
2			4
	2.1 Diode		4
	2.2 Bipolartransistor		5
	2.2.1 Vierpolarparameter		6
	2.2.2 Bestimmung der Parameter		7
	2.3 Feldeffektransistor		
	2.4 Solarzelle		9
3	Fazit		10
\mathbf{A}	Abbildungsverzeichnis		11
Li	iteraturverzeichnis		12
Anhang			13

Einleitung

In der Welt der Elektronik sind die Charakteristiken von Halbleiterbauteilen von entscheidender Bedeutung. Dieser Versuch zielt darauf ab, die typischen Kennlinien einer Diode, eines Bipolartransistors und eines Feldeffekttransistors zu erfassen, um ihre spezifischen Eigenschaften und Verhaltensweisen zu verstehen. Zusätzlich liegt ein Fokus auf der Untersuchung von Solarzellen, bei denen durch die Aufnahme von Dunkel- und Hell-Kennlinien wichtige Kenngrößen ermittelt werden sollen. Die Ergebnisse sollen nicht nur Aufschluss über den Typ der Dioden und Transistoren geben, sondern auch über die Leistungsfähigkeit der Solarzellen, wie etwa den Füllfaktor und die relative Effizienz.

1. Versuchsaufbau und Durchführung

In den Versuchen werden die Kennlinien der Halbleiterbauteile aufgenommen. Dazu werden die fertigen Schaltungen mit dem Messgerät farblich passend verbunden und die Kennlinien mit einem LABVIEW-Programm aufgenommen und auf einen USB-Stick abgespeichert. So können die Daten später ausgewertet werden.

- Im ersten Versuchsteil wird die Kennlinie einer Diode aufgenommen. Dazu wird die Diode in Durchlassrichtung und in Sperrrichtung betrieben.
- Im zweiten Versuchsteil wird die Kennlinie eines Bipolartransistors aufgenommen. Dazu wird der Transistor in der Emitterschaltung betrieben und die vier Kennlinienfelder aufgenommen.
- Im dritten Versuchsteil wird die Kennlinie eines Feldeffekttransistors aufgenommen. Dazu wird der Transistor in der Source-Schaltung betrieben und die vier Kennlinienfelder aufgenommen.
- Im vierten Versuchsteil werden zwei Solarzellen untersucht. Dazu wird die Kennlinie der Solarzellen im Dunkeln und im Licht aufgenommen und die jeweiligen Kennlinien abgespeichert.

2. Auswertung

2.1 Diode

Die auch Diodengleichung (oder auch Shockley-Gleichung) ist:

$$I_{\rm D} = I_{\rm S}(T) \left(e^{\frac{U}{nU_{\rm T}}} - 1 \right) \tag{2.1}$$

Dabei bezeichnet $I_{\rm S}(T)$ den Sättigungssperrstrom welcher typischerweise zwischen $10 \times 10^{-12} \,\mathrm{A}$ und $10 \times 10^{-6} \,\mathrm{A}$ liegt, $U_{\rm T} = \frac{k \cdot T}{q}$ die Temperaturspannung und n den Idealitätsfaktor oder Emissionskoeffizient. Dieser soll auch bestimmt werden und liegt typischerweise zwischen 1 und 2.

In unserem Fall (bei Raumtemperatur von 25 °C) beträgt die Temperaturspannung $U_T=25\,\mathrm{mV}.$

In Abbildung 2.1 ist die Kennlinie der Diode dargestellt.

Der rechte Teil der Kennlinie ist mit der Gleichung 2.1 gefittet worden, während der linke Teil nicht mit dieser Gleichung beschrieben werden kann und daher linear gefittet ist.

Im Schockley-Fit kann man den Sättigungssperrstrom I_S und den Idealitätsfaktor n bestimmen. Daraus ergibt sich:

- Sättigungssperrstrom $I_{\rm S} = (2.1290 \pm 2.0394) \times 10^{-2} \, \mu {\rm A}$
- Emissionskoeffizient $n=2.386\pm0.198$

Um die Durchbruchspannung zu bestimmen, betrachten wir den linearen Fit auf der rechten Seite des Diagramms. Davon müssen wir den Schnittpunkt mit der x-Achse (bzw. Spannungsachse) bestimmen. Dazu setzen wir die Gleichung

 $I = B \cdot U_D + A \stackrel{!}{=} 0$. Hieraus ergibt sich dann:

$$U_D = \frac{-a}{b} = \frac{-536,703}{141,987} = 3.77 \,\mathrm{V}$$

Abbildung 2.1: Kennlinie der Diode

Aus Origin werden folgende Fehler für b und a gegeben: $\Delta b = \pm 3,670$ und $\Delta a = \pm 15,329$.

Durch Fehlerfortpflanzung erlangen wir:

$$\Delta U = \left| \frac{\partial U_D}{\partial b} \right| \Delta b + \left| \frac{\partial U_D}{\partial a} \right| \Delta a = \left| \frac{a \Delta b}{b^2} \right| + \left| \frac{\Delta a}{b} \right| \approx 0,21 \text{V}$$
 (2.2)

Die bestimmte Durchschlagsspannung ist also:

$$U_D = (3.77 \pm 0.21) \,\mathrm{V}$$

Dieser Wert lässt darauf schließen, dass es sich bei der untersuchten Diode um eine Zener-Diode handelt: Diese Dioden werden beim Betrieb in Sperrrichtung nicht zerstört und lassen sich beispielsweise als Spannungsstabilisatoren einsetzen.

2.2 Bipolartransistor

Im folgenden Versuchsteil werden die typischen Kennlinienfelder eines Bipolartransistors vermessen. Es handelt sich um einen pnp-Transistor des Typs BC550. Ein

Abbildung 2.2: Schaltskizze eines pnp-Transistors

Schaltplan solch eines Transistors ist in Abbildung 2.2 dargestellt. Dabei sind die wichtigsten Größen eingetragen, dazu zählen der Kollektor- und Basisstrom I_C und I_B , zudem die jeweiligen Spannungen zwischen Kollektor, Emitter und Basis.

2.2.1 Vierpolarparameter

Abbildung 2.3: allgemeiner Vierpol

Jedes elektronische Bauteil kann als Vierpol dargestellt werden, in Abbildung 2.3 ist der Schaltplan eines allgemeinen Vierpols angegeben. Das Modell beschreibt ein elektrisches Netzwerk oder Bauteil durch zwei Ein- und Ausgänge, dabei wird ein lineares Gleichungssystem mit einer 2x2 Matrix verwendet.

Transistoren sind aktive Bauelemente und nicht linear, deshalb müssen sie in einem Punkt linearisiert werden, damit die Beschreibung des Vierpols angewandt werden kann. Dieser Punkt heißt Arbeitspunkt des Transistors. Für Transistoren in der

Emittersschaltung wird häufig die folgende Hybrid-Darstellung verwendet:

$$\begin{pmatrix} u_{BE} \\ i_C \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} = \begin{pmatrix} i_B \\ u_{CE} \end{pmatrix}$$
 (2.3)

Wie bereits erwähnt wird am Arbeitspunkt des Transistors linearisiert, deshalb sind die Vierpolparameter Ableitungen in der folgenden Form:

$$h_{11} = \frac{\partial U_{BE}}{\partial I_B} \qquad h_{12} = \frac{\partial U_{BE}}{\partial U_{CE}}$$

$$h_{21} = \frac{\partial I_C}{\partial I_B} \qquad h_{22} = \frac{\partial I_C}{\partial U_{CE}}$$
(2.4)

2.2.2 Bestimmung der Parameter

Abbildung 2.4: Vierquadrantenkennlinienfeld des Bipolartransistors

In Abbildung 2.4 sind die aufgenommenen, typischen vier Kennlinien des Transistors aufgetragen. In Rot ist jeweils der gewählte Arbeitspunkt eingetragen, dieser wird

bei folgenden Werten gewählt:

$$I_B = 0.2 \,\mathrm{mA}$$
 $U_{CE} = 2 \,\mathrm{V}$ (2.5)

Zudem ist in Orange die jeweilige Fit-Gerade eingezeichnet und die Fitparameter sind gegeben.

Der erste Vierpolparameter ergibt sich aus den Eingangskennlinien, also der U_{BE} - I_{B} Kennlinie. Dieser Parameter ist direkt der differentielle Transistor-Eingangswiderstand:

$$r_{BE} = \frac{\Delta U_{BE}}{\Delta I_B} \tag{2.6}$$

Im obigen Kennlinienfeld wurde die Gerade in einem Bereich von $0.05\,\mathrm{mA}$ um den Arbeitspunkt für I_B zu U_{BE} gefittet. Der differentielle Eingangswiderstand ist damit der Kehrwert des Fitparameters a, zudem werden die mA in A umgerechnet, um die Einheit Ω zu erhalten:

$$r_{BE} = \frac{1}{a} = \underline{(214.041 \pm 20.525)\,\Omega = h_{11}} \tag{2.7}$$

Der Vierpolparameter h_2 2 kann im Ausgangskennlinienfeld über den differentiellen Transistor-Ausgangswiderstand bestimmt werden. Der Widerstand ist die Steigung des Fits, erneut werden die mA in A umgerechnet:

$$r_{CE} = \frac{\Delta U_{CE}}{\Delta I_C} = (4009 \pm 31) \,\Omega$$
 (2.8)

Der dazugehörige Vierpolparameter berechnet sich aus dem Kehrwert des Ausgangswiderstands:

$$h_{22} = (2.494 \pm 0.019) \times 10^{-4} \, 1/\Omega$$
 (2.9)

Aus dem Stromsteuerungskennlinienfeld I_C - I_B kann der differentielle Stromverstärkungsfaktor β bestimmt werden. Dieser ist entspricht dem Anstieg der gefitteten Geraden und gibt in gewisser Weise an, um welchen Faktor der Transistor den Kollektorstrom verstärkt. Dieser Faktor ist auch der Vierpolparameter h_{21} :

$$\beta = \frac{\Delta I_C}{\Delta I_B} = \underline{207.5 \pm 4.2 = h_{21}} \tag{2.10}$$

Der letzte Vierpolparameter ist im Rückwirkungskennlinienfeld der differentielle Rückwirkungsfaktor D. Dieser gibt an, wie stark Änderungen der Ausgangsspannung U_{CE} auf die Eingangsspannung U_{BE} zurückwirken. Solche sind unerwünscht und sollen möglichst klein sein.

$$D = \frac{\Delta U_{BE}}{\Delta U_{CE}} = -0.298 \pm 0.052 = h_{12}$$
 (2.11)

2.3 Feldeffektransistor

2.4 Solarzelle

Fehlt!...

3. Fazit

Abbildungsverzeichnis

2.1	Kennlinie der Diode	5
2.2	Schaltskizze eines pnp-Transistors	6
2.3	allgemeiner Vierpol	6
2.4	Vierquadrantenkennlinienfeld des Bipolartransistors	7

Literaturverzeichnis

- [1] I. Physikalisches Institut, "Versuch 1.8: I-U-Kennlinien an Halbleitern und Solarzellen", 2024.
- [2] K. Beuth, "Elektronik 2 Bauelemente", Vogel Buchverlag (Bauelemente)
- [3] S. Hunklinger, "Festkörperphysik", Oldenbourg Wissenschaftsverlag (Grundlagen)

Anhang