INF210 Overview

Åsmund Kløvstad

Universitetet i Bergen

December 4, 2021

State Transition Systems

- ightharpoonup a tuple (S, R)
- $S = \{s_0, s_1...\}$
- ▶ $R \subseteq S \times S$, often written $s \rightarrow s'$
- ▶ example: switch = $({s_0, s_1}, {s_0 \times s_1, s_1 \times s_0})$

Important Properties of STSs

- if a state has no rules going from it, it is a terminal state.
- if there is a sequence of steps from state a to state b, b is **reachable** from a. Write $R^*(a, b)$.
- ▶ if R is a function (in the set theory sense), then STS is deterministic.
- we can make a non-deterministic STS deterministic with $(\mathcal{P}(S), R_{\mathcal{P}})$
- ▶ if all paths eventually converge the STS is **confluent**.
- switch is deterministic and confluent, and has no terminal states.

Labeled Transition Systems

Syntax

- extends STSs with labels
- ightharpoonup a 3-tuple (S, L, R).
- ▶ $R \subseteq S \times L \times S$, often written $s \xrightarrow{a} s'$

Reachability

- \triangleright consider the STS (S_L, R_L) with:
 - \triangleright $S_I = S \times L^*$
 - $\mathbf{s} \times \mathbf{a} \cdot \mathbf{w} \rightarrow \mathbf{s}' \times \mathbf{w} \in R_I \text{ iff } \mathbf{s} \xrightarrow{\mathbf{a}} \mathbf{s}' \in R$
- ightharpoonup s' is reachable from s by \mathbf{w} if $s' \times \lambda$ is reachable from $s \times \mathbf{w}$.
- ▶ write $s \times \mathbf{w} \vdash_{R}^{*} s' \times \lambda$

Languages

- ▶ language over alphabet: $L \subseteq \Sigma^*$
- ▶ ex. $\{a^nb^n \mid n \in \mathbb{N}\}$ over $\Sigma = \{a, b\}$
- deciding membership in a language
- classifying classes of languages

Figure: from https://en.wikipedia.org/wiki/Chomsky_hierarchy

Grammars

- $ightharpoonup G = (\Sigma, N, S, \mathcal{R})$
- ightharpoonup rules are $lap{1} \Rightarrow
 lap{r}$ with at least one non-terminal in $lap{1}$
- **generates** a language over Σ
- ▶ uav \Rightarrow_G ubv if $\mathbf{a} \Rightarrow \mathbf{b} \in \mathcal{R}$
- ▶ write $\mathbf{u} \Rightarrow_G^* \mathbf{v}$ for $\mathbf{u}, \mathbf{v} \in (\Sigma \cup N)^*$ for " \mathbf{u} generates \mathbf{v} "
- $ightharpoonup L_G = \{ \mathbf{w} \in \Sigma^* \mid S \Rightarrow_G^* \mathbf{w} \}$
- lacktriangle example: $G = (\{a\}, \{S\}, S, \{S \Rightarrow \lambda, S \Rightarrow Sa\})$ generates a^*

Machines

- ► FA/FSM's, PDA's, TM's
- **accepts** input words
- $ightharpoonup L_M = \{ words accepted by M \}$

Finite Automata

- \blacktriangleright $M = (\Sigma, Q, q_0, \Upsilon, F)$
- a finite LTS with initial and final states
- ▶ the language accepted by M is $L_M = \{ \mathbf{w} \in \Sigma^* \mid q_0 \times \mathbf{w} \vdash^*_{\Upsilon} q_i \times \lambda \text{ and } q_i \in F \}$
- deterministic/non-deterministic are equally powerful
- \triangleright example accepting a^+b^+

Figure:
$$M = (\{a, b\}, \{s_0, s_1, s_2\}, s_0, \{(s_0, a, s_0), (s_0, a, s_1), (s_1, b, s_2), (s_2, b, s_2)\}, \{s_2\})$$

Regular Languages

- regular languages are inductively defined by:
 - ▶ \emptyset , $\{\lambda\}$ and $\{a\}$ are regular for $a \in \Sigma$
 - ▶ if L, L' regular, then $L \cup L', L \cdot L'$ and L^* are regular
- ▶ \overline{L} and $L \cap L'$ are also regular

Kleene's Theorem

Theorem

a language is regular \iff it is accepted by a finite automata

 \Rightarrow

Construct FAs for the empty language, $\{\lambda\}$ and singleton languages. Then construct FAs for union, concatenation, and Kleene star.

 \leftarrow

Define R(i, k, j) =

 $\{\mathbf{w} \mid q_j \text{ is reachable from } q_i \text{ by } \mathbf{w} \text{ without visiting } q_m \text{ with } m \geq k\}$

Then show

$$R(i,k+1,j) = R(i,k,j) \cup R(i,k,k) \cdot R(k,k,k)^* \cdot R(k,k,j)$$

Pumping Lemma

- ▶ if *L* is regular then there exists some n > 0 s.t for any $\mathbf{w} \in L$ longer than n, $\mathbf{w} = \mathbf{x}\mathbf{y}\mathbf{z}$ with $|\mathbf{y}| \ge 1$ and $|\mathbf{x}\mathbf{y} \le n|$ Then $\mathbf{x}\mathbf{y}^{\mathbf{k}}\mathbf{z} \in L$ for all $k \ge 0$
- makes sense because some state must be visited twice
- very useful for showing a language is not regular

Syntactic Monoid of a Language

- ightharpoonup given a language L over Σ
- $LR(\mathbf{w}) = \{\mathbf{x} \times \mathbf{y} \mid \mathbf{xwy} \in L\}$
- $ightharpoonup \mathbf{u} pprox \mathbf{v} := LR(\mathbf{u}) = LR(\mathbf{v})$
- ▶ this is left-right invariant, so $[\mathbf{u}]_{\approx}\cdot[\mathbf{v}]_{\approx}:=[\mathbf{u}\mathbf{v}]_{\approx}$ is well defined
- $(\Sigma_{/\approx}^*, \cdot, [\lambda]_{\approx})$ is the **syntactic monoid** of *L*.

Transformation Monoid of a FA

- ▶ given $M = (\Sigma, Q, q_0, \Upsilon, F)$
- ▶ each $a \in \Sigma$ induces a function $\overline{a} : Q \to Q$ by $q \mapsto \Upsilon(q, a)$
- with $\overline{\lambda} = id_Q$ and $\overline{\mathbf{w}} \overline{a} = \overline{\mathbf{w}} \circ \overline{a}$ this extends to words
- ▶ $\overline{\mathbf{v}}\overline{\mathbf{w}} = \overline{\mathbf{v}} \circ \overline{\mathbf{w}}$, so : $\Sigma^* \to (Q \to Q)$ is a (monoid) homomorphism
- $lackbox{ }$ call the image $\overline{\Sigma^*}\subseteq (Q o Q)$ the **transformation monoid** of M
- ▶ the syntactic monoid of $L \cong$ the transformation monoid of M_L (intrinsic/minimal FA)

Regular Grammars

- ▶ rules are either $A \Rightarrow B$, $A \Rightarrow aB$ or $A \Rightarrow \lambda$ for $A, B \in \mathbb{N}, a \in \Sigma$
- generate regular languages
- ▶ let FA $M = (\Sigma, N \cup \{f\}, S, \Upsilon, \{A \in N \mid A \Rightarrow \lambda \in \mathcal{R}\})$ with Υ :
 - $ightharpoonup A \stackrel{a}{\Rightarrow} B \text{ for } A \Rightarrow aB \in \mathcal{R}$
 - $ightharpoonup A \stackrel{a}{\Rightarrow} f \text{ for } A \Rightarrow a \in \mathcal{R}$
- ▶ then $L_M = L_G$

Pushdown Automata

- finite automaton with a stack:
 - Σ: an alphabet
 - Γ: a stack alphabet
 - Q: a finite set of states
 - ▶ $q_0 \in Q$: an initial state
 - ▶ $\Delta \subseteq Q \times (\Sigma_{\lambda} \times \Gamma_{\lambda} \times \Gamma_{\lambda}) \times Q$: a transition relation
 - $ightharpoonup F \subseteq Q$: a set of final states
- accepts in final state with empty stack
- example:

Context Free Grammars

- left hand side is a single non-terminal
- generate a superset of regular languages
- call this class context free languages
- ightharpoonup ex. $S \Rightarrow \lambda, S \Rightarrow aSb$ generates a^nb^n

Context Free Languages

Theorem

a language is context free \iff it is accepted by a pushdown automata

$$\Leftarrow$$

Given PDA $M = (\Sigma, \Gamma, \{s_0\}, s_0, !, \Delta)$ construct $G' = (\Sigma, \Gamma, !, \mathcal{R})$ with \mathcal{R} :

- ▶ $A \Rightarrow a\mathbf{W}$ for each $(a, A; \mathbf{W}) \in \Delta$
- ▶ $A \Rightarrow \mathbf{W}$ for each $(\lambda, A; \mathbf{W}) \in \Delta$

note: empty stack acceptance, start with ! on stack, allow pushing words

Context Free Languages

Theorem

a language is context free \iff it is accepted by a pushdown automata

$$\Rightarrow$$

Given CFG $G = (\Sigma, N, S, \mathcal{R})$ construct:

for each $a \in \Sigma$ and $A \Rightarrow \mathbf{w} \in \mathcal{R}$

Parsing

- **ightharpoonup** given a $\mathbf{w} \in \Sigma^*$, identify syntactic structure
- \triangleright top-down: attempt to generate **w** from S (PDA)
- bottom-up: split into subwords and find rules to generate them

Figure: from Parsing.pdf

Pumping Lemma for CFLs

- ▶ given CFG $G = (\Sigma, N, S, \mathcal{R})$
- ▶ any $\mathbf{s} \in L_G$ longer than $2^{|N|-1}$ can be written as $\mathbf{s} = \mathbf{uvwxy}$ with $|\mathbf{vx}| \ge 1$ s.t $\mathbf{uv}^n \mathbf{wx}^n \mathbf{y} \in L_G$ for all $n \in \mathbb{N}$

Figure: from https://www.geeksforgeeks.org/pumping-lemma-in-theory-of-computation/

Turing Machine

- $ightharpoonup M = (Q, \Sigma, q_0, \delta, H)$ with:
 - Q: a finite set of states
 - $ightharpoonup \Sigma$: a finite alphabet which includes the blank symbol #
 - ▶ $q_0 \in Q$: a starting state
 - ▶ $\delta: (Q \setminus H) \times \Sigma \to Q \times \Sigma \times \{-1,0,1\}$: a (possibly partial) transition function
 - $ightharpoonup H = \{h_0, h_1\}$: a rejecting and an accepting halting state
- a head with state reading an infinite tape
- accepts a word w iff it halts in h₁ when started with w on the tape
- **decides** a language only if h_0 is reached for $\mathbf{w} \notin L$

Phrase-Structure Grammars

- grammars with rules u ⇒ w s.t u has at least one non-terminal
- as powerful as Turing Machines

Create a PSG which work like:

- 1. generate $\{\mathbf{w}!q_0H\mathbf{w}!\}$
- 2. maintain w! [tape] [state] H [tape] !
- 3. when state is h_1 , remove everything between !'s (and then the !'s)

Halting Problem

Theorem

Standardize and enumerate all Turing Machines $\{T_i\}$. Let $L = \{1^i01^j \mid T_i \text{ halts on input } 1^j\}$ Then there is no Turing Machine which decides L

- ► assume *M* decides *L*
- \triangleright construct M' s.t it acts on input 1^i :
 - 1. change tape to 1^i01^i
 - 2. move to first cell
 - 3. emulate M on the tape
 - 4. if M accepts, loop infinitely. if M rejects, accept
- enumerate $M' = T_k$ and run M' with 1^k as input
- \blacktriangleright if M accepts, then M' loops forever on 1^k , so M must reject
- ightharpoonup if M rejects, then M' halts on 1^k , so M must accept

Splicing Languages

- ▶ abstracts DNA as a word over $\Sigma = \{a, c, g, t\}$
- ▶ splicing rules: $(\mathbf{u}, \mathbf{u}', \mathbf{v}, \mathbf{v}') \in (\Sigma^*)^4$
- splicing action: split between u,u' and v,v'. Recombine uv'
- ightharpoonup splicing system: (Σ, R, I) with an alphabet, set of rules, finite initial language
- language generated by system: smallest closed language
- ► L is a **splicing language** if it is generated by some splicing system
- given a regular language and a set of splicing rules, we can check if the language respects the rules