

$$[1] \rightarrow 1$$

$$[1,2] \rightarrow 3$$

$$[1,2,3] \rightarrow 6$$

$$[2] \rightarrow 2$$

$$[2,3] \rightarrow 5$$









# Idea -3 Carry Forward

arr 
$$[ ] \rightarrow [ -4 \quad 1 \quad 3 \quad 2 ]$$

$$0 \quad 1 \quad 2 \quad 3$$

#### [ Dry - run ] -

arr[] 
$$\rightarrow$$
 [-4 1 3 2]



< Question >: Given arr[N]. Find reminum subarray sum.





all = <1,2,3}

$$[1,2] \rightarrow I+2$$

$$[1,2,3] \rightarrow 1+2+3$$

$$[2,3] \rightarrow 2+3$$

$$[3] \rightarrow 3$$

dum = 20



=> Peint all suballays

instead of buint, take the sum

TC: O(N3)



Using prefin sum 
$$\Rightarrow$$
 sum [l:1]  
 $pf(x) - pf(l-1)$ 

1) Create psum ()

TC, 8C: D(N)

for 
$$(i: 0 \rightarrow n-1)$$
  $\mathcal{L}$ 

| for  $(j: i \rightarrow n-1)$   $\mathcal{L}$ 

| sum =  $bf(j)$  - $bf(i-1)$ 

| total + = sum

y

TC: O(N2)

1,2,3 bf 136

## 🔮 Idea -3 Carry Forward

total=0

for  $(i: 0 \rightarrow n \rightarrow 1)$  C cut = 0  $for (j: i \rightarrow n \rightarrow 1)$  C cut + = arr (j) total + = cut

total += cus

au (3:82 + au (9)

If length = n

idn 0 => n

idne 1 =>

(141) (n-i) 3 × 4 = 12 0 1 2

1, 2,3

CUI=101+2=3+3=6

total += 1+3+6

au[l:x]+al(1+1)=
au[l:x+1]

TC: O(N2)

= au [3:9]

0,0 0,1 0,2 0,2 0,3 1,1 1,2 1,3

1=2 n=6



[ <mark>3</mark> ]

[<mark>3 -2</mark>]

[<mark>3 -2 1</mark>]

[<mark>3 -2 1 4</mark>]

[ -2 ]

[-2 1]

[-2 1 4]

[1]

[14]

[4]

(3\*4) + (-2\*6) + (1\*6) + (4\*4)

3=> 4

-2 => 6

1 => 6

4 => 4



· How many times an element appears in all the subarrays?

arr 
$$\rightarrow$$
 [ 3 -2 4 -1 2 6 ]  
0 1 2 3 4 5

• In how many subarrays index-2 will be present?

arr 
$$\rightarrow$$
 [ 3 -2  $\frac{4}{0}$  -1 2 6 ]

0 1 2 3 4 5



#### **Generalize**





### Number of subarrays of length k

| 17 | 3 | 4 | 9 | 12 | 6 |
|----|---|---|---|----|---|
| 0  | 1 | 2 | 3 | 4  | 5 |

Number of subarrays with length =  $1 \rightarrow 6$ Number of subarrays with length =  $2 \rightarrow 5$ Number of subarrays with length =  $3 \rightarrow 4$ Number of subarrays with length =  $4 \rightarrow 3$ Number of subarrays with length =  $5 \rightarrow 2$ Number of subarrays with length =  $5 \rightarrow 3$ 

gb len = N, how many suballays of len =  $k \Rightarrow n-k+1$ 



### < **Question** >: Print si and ei of every subarray of length k.

N = 8, K = 3

ei

S=0 e=k-1while  $(e \le (h-1))$  Cprint (S)print (e) S+C e+C



< **Question** >: Given arr[ N ]. Print maximum subarray sum of subarray with length k.

 $arr[] \rightarrow -3 \ 4 \ -2 \ 5 \ 3 \ -2 \ 8 \ 2 \ -1 \ 4$  S = 5 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S = 0 S





For each suballay, iterate &find the sum

</>
</>
Code



Idea -2 use psum[]

Creak plefin som

S=0 e=k-1 while  $(e \le (h-1))$  C Sum = pf (e) -pf (s-1) ans = man (ans, sum)

TC: 0(n)

sc: O(n)



From prev and to nent and free + ar [e] - ar [s-1]



</>
</>
Code

1. Create the window → Calculate sum of first K elements.

$$O(k-1)$$

$$sum = 0$$

$$fol (i: 0 \rightarrow k-1)$$

$$sum + = au(i)$$

$$y$$

$$ans = sum$$

2. Consider the remaining subarrays of length K with sliding window

$$S = 1 \qquad e = k$$
while  $(e \le n-1) \le$ 

$$sum = sum + as(e) - as(s-1)$$

$$ans = man (ans, sum)$$

$$S + f \qquad e + f$$



0:2 => 66 70 60

