

Protein-Protein Interactions Biological Network

- Protein-protein interaction network plays a critical role in various biological processes, such as signaling pathways and networks.
- It allows us to understand the complexities of cellular function and even predict potential therapeutics.

TABLE OF **CONTENTS**

01

Our Network Data

Biological Network directed interactome

03

Methods and Results

Our analysis steps and results

02

Tools

Used packages for network analysis

04

Conclusion

Overall findings of analysis

Network Data

Network Data

PathLinker_2018_human-ppi-weighted-cap0_75 interactome txt file

Weighted Directed interactome data: each interaction starts from the tail node to the head node.

- Tail: start protein node.
- Head : end protein node.
- Edge weight: Interaction confidence.
- Edge Type: Method used to identify this interaction.

Each protein is represented by its UniProt ID.

PathLinker_2018_human-ppi-weighted-cap0_75.txt - Notepad									
File Edit	Format	View Help							
#tail	head	edge_weight	edge_type						
Q8TBF5	Q9UKB1	3.11133e-01	MI:0004 (affinity chromatography technology)						
Q8TBF4	Q15717	3.11133e-01	MI:0004 (affinity chromatography technology)						
Q8TBF4	P08865	3.11133e-01	MI:0004 (affinity chromatography technology)						
Q8TBF4	Q02539	3.11133e-01	MI:0004 (affinity chromatography technology)						
Q8TBF4	Q96J01	2.01461e-01	MI:0401 (biochemical)						

02

Tools

Used packages for network analysis

NetworkX

Main package used for creation, manipulation, and study of the structure, and functions of complex networks.

UniProt

NumPy

Powerful library for scientific computing in Python.

Matplotlib & Seaborn

Pandas

Python's widely used data manipulation and analysis library.

StringIO

Freely accessible database of protein sequence and functional information

Python data visualization libraries. Used it for visualizing our figures

Used for reading UniProt gene information from a given protein.

03

Methods and Results

Network analysis steps and results

- □ Reading Data from Text File.
- □ Extracting proteins' tails, heads, and edge weights.
- □ Data Exploration with Pandas.
- □ Result : 612,516 edges

Our network has: 17082 unique tails & 17095 unique heads.

- ☐ As the number of heads is very close to the number of tails, we may assume that the network is balanced, and this can lead to several insights.
 - Network stability
 - Symmetrical interactions

- Redundancy
- Functionality

- □ Biological network graph construction of PPIs interactome data.
- □ By using NetworkX package
- □ Plot a graph of a sample of 300 edges out of 612,516 edges.

- ☐ Listing the acyclic shortest path(s) between two given proteins.
- ☐ The same 2 proteins may Have different paths with same weight

```
acyclic_shortest_path.txt - Notepad
File Edit Format View Help
Shortest paths between P20933 and O15303 Proteins
Number of shortest paths :6
Total path score: 0.688944
Path 0:
P20933 > Q9Y3A3 > Q68CZ1 > P04637 > Q15303
        Tail
                         Edge_weight
        P20933
                09Y3A3 0.311133
        09Y3A3
                068CZ1 0.0333391
                        0.0333391
                 015303 0.311133
Path 1:
P20933 > Q9Y3A3 > Q6ZU80 > P04637 > Q15303
                         Edge_weight
        P20933 09Y3A3 0.311133
                 06ZU80
                         0.0333391
                         0.0333391
                        0.311133
```


- Listing all the directly connected proteins to given protein.
- Calculating the degree of this protein.
- When in-degree is close to out-degree that can result in stability of overall network topological.
- More stable network may decrease the probability of disease infection by providing more robust connections between proteins, reducing the risk of

network failure and disease spread.

```
successors - [a for a in D6. successors(given protein)]

print("The out begree for the given protein is (len(successors)) and the proteins where the given protein interact with are: \(\bar{n}\) (successors)')

out degree - D6.out degree(given_protein)

The out Degree for the given protein is 33 and the proteins where the given protein interact with are:

\[
\begin{align*}
\text{Polester}
\text{P
```

```
Q5MIZ7_predecessors.txt - Notepad
File Edit Format View Help
O5MIZ7 In Degree = 31
Tail
                  Edge weight
P62829
        O5MIZ7
                 0.201461
Q99689
         Q5MIZ7
                 0.75
014745
                  0.201461
P27348
         O5MIZ7
                 0.201461
P30084
         O5MIZ7
                 0.201461
086VU5
        O5MIZ7
                  0.311133
         O5MIZ7 0.311133
014103
         Q5MIZ7
                 0.311133
                  0.311133
        05MT77 0.201461
```

- Listing degrees of given set of proteins and drawing Histogram
- We can conclude that both `P05067` and `P04629` are hub proteins and may be key scaffold proteins.
- □ The importance of hub proteins can be attributed to several factors, including:
 - Modularity
 - Robustness
 - Functionality
 - Evolution
 - Disease

- Convert graph as an unweighted graph and save it using the adjacency matrix method
- We constructed this adjacency matrix from the last network we created of shortest paths where "P20933" is the tail, "Q15303" is the head, and
 - "0.6889442" is the weight cost.
- Q9Y3A3 is the hub protein of this sub-network

- Conversion map between the protein UniProt ID and its gene name.
- As we concluded before that we have two hub proteins, in this section we retrieved their corresponding genes.

Entry	Entry Name	Reviewed	Protein names	Gene Names	Organism	Length
P05067	A4_HUMAN	reviewed	Amyloid-beta precursor protein (APP) (ABPP) (A	APP A4 AD1	Homo sapiens (Human)	770
P04629	NTRK1_HUMAN	reviewed	High affinity nerve growth factor receptor (EC	NTRK1 MTC TRK TRKA	Homo sapiens (Human)	796

Conclusion

Conclusion

The analysis of protein-protein interactions is a critical step toward gaining a comprehensive understanding of biological systems and the formation of complex biological networks provided valuable insights into the organization and regulation of it as the power of computational analysis in understanding the complexities of cellular function and predicting potential therapeutics

OUR **TEAM**

Abdelrahman Ali Farouk Nevein Mohamed Ayman

Mahmoud Yaser Salman Omar Saad EL-Gharbawy

Members Contribution

THANKS

GitHub Repo Link