Fourier Analysis in Arithmetic Statistics

Frank Thorne

University of South Carolina

Pittsburgh Number Theory Day, April 18, 2024 thornef.github.io/pitt-2024.pdf

Theorem (Pólya-Vinogradov inequality, special case)

Let χ be a primitive Dirichlet character (mod q). Then we have

$$\left|\sum_{n=M+1}^{M+N} \chi(n)\right| < q^{\frac{1}{2}} \log q.$$

Theorem (Pólya-Vinogradov inequality, special case)

Let χ be a primitive Dirichlet character (mod q). Then we have

$$\left|\sum_{n=M+1}^{M+N} \chi(n)\right| < q^{\frac{1}{2}} \log q.$$

Proof. By Fourier inversion, we have

$$\chi(n) = \frac{1}{\tau(\overline{\chi})} \sum_{a=1}^{q} \overline{\chi}(a) e^{2\pi i a n/q},$$

with $|\tau(\overline{\chi})| = q^{1/2}$,

Theorem (Pólya-Vinogradov inequality, special case)

Let χ be a primitive Dirichlet character (mod q). Then we have

$$\left|\sum_{n=M+1}^{M+N} \chi(n)\right| < q^{\frac{1}{2}} \log q.$$

Proof. By Fourier inversion, we have

$$\chi(n) = \frac{1}{\tau(\overline{\chi})} \sum_{a=1}^{q} \overline{\chi}(a) e^{2\pi i a n/q},$$

with $|\tau(\overline{\chi})| = q^{1/2}$, so that

$$\sum_{n=M+1}^{M+N} \chi(n) = \frac{1}{\tau(\overline{\chi})} \sum_{a=1}^{q} \overline{\chi}(a) \sum_{n=M+1}^{M+N} e^{2\pi i a n/q},$$

and the innermost sum is a geometric series.

Sample Theorem 1: Counting Cubic Fields

What is "arithmetic statistics"?

Sample Theorem 1: Counting Cubic Fields

What is "arithmetic statistics"?

For any integer $d \ge 1$, write

$$N_d(X) := \#\{K : [K : \mathbb{Q}] = d, |\mathrm{Disc}(K)| < X\}.$$

Sample Theorem 1: Counting Cubic Fields

What is "arithmetic statistics"?

For any integer $d \ge 1$, write

$$N_d(X) := \#\{K \ : \ [K:\mathbb{Q}] = d, \ |\mathrm{Disc}(K)| < X\}.$$

Theorem (Davenport-Heilbronn)

$$N_3(X) = \frac{1}{3\zeta(3)}X + o(X).$$

Sample Theorem 2: Counting Quartic and Quintic Fields

Theorem (Bhargava)

$$N_4(X, S_4) \sim \frac{5}{24} \prod_p (1 + p^{-2} - p^{-3} - p^{-4})X,$$

Sample Theorem 2: Counting Quartic and Quintic Fields

Theorem (Bhargava)

$$N_4(X, S_4) \sim \frac{5}{24} \prod_p (1 + p^{-2} - p^{-3} - p^{-4})X,$$

$$N_5(X) \sim \frac{13}{130} \prod_p (1 + p^{-2} - p^{-4} - p^{-5}) X.$$

Sample Theorem 3: 3-torsion in Quadratic Class Groups

Theorem (Davenport-Heilbronn)

$$\sum_{|D| < X} \# |\mathrm{Cl}(\mathbb{Q}(\sqrt{D}))[3]| = \frac{3+3+1+3}{\pi^2} X + o(X).$$

Sample Theorem 4: 2-Selmer Groups in Elliptic Curves

Theorem (Bhargava-Shankar)

When elliptic curves E are ordered by height, the average size of their 2-Selmer groups is 3.

Sample Theorem 4: 2-Selmer Groups in Elliptic Curves

Theorem (Bhargava-Shankar)

When elliptic curves E are ordered by height, the average size of their 2-Selmer groups is 3.

Corollary

Their average rank is at most 1.5.

Parametrization: The Basic Metatheorem

Theorem

There exists an explicit, "nice" bijection

$$\{ \text{ Something nice } \} \longleftrightarrow G(\mathbb{Z}) \backslash V(\mathbb{Z})$$

where V is a f.d. representation of an algebraic group G.

Parametrization: The Basic Metatheorem

Theorem

There exists an explicit, "nice" bijection

$$\{ \text{ Something nice } \} \longleftrightarrow G(\mathbb{Z}) \backslash V(\mathbb{Z})$$

where V is a f.d. representation of an algebraic group G.

Moreover, certain arithmetic properties on the left correspond to congruence conditions on the right.

Let V be the space of binary cubic forms:

$$V := \{x(u, v) = au^3 + bu^2v + cuv^2 + dv^3\}.$$

Let V be the space of binary cubic forms:

$$V := \{x(u, v) = au^3 + bu^2v + cuv^2 + dv^3\}.$$

 $G = \operatorname{GL}_2$ acts on V by

$$(gx)(u,v)=\frac{1}{\det g}x((u,v)g).$$

Let V be the space of binary cubic forms:

$$V := \{x(u, v) = au^3 + bu^2v + cuv^2 + dv^3\}.$$

 $G = GL_2$ acts on V by

$$(gx)(u,v) = \frac{1}{\det g}x((u,v)g).$$

We have

$$Disc(x) = b^2c^2 - 4ac^3 - 4b^3d - 27a^2d^2 + 18abcd,$$

for which we have

Let V be the space of binary cubic forms:

$$V := \{x(u, v) = au^3 + bu^2v + cuv^2 + dv^3\}.$$

 $G = GL_2$ acts on V by

$$(gx)(u,v) = \frac{1}{\det g}x((u,v)g).$$

We have

$$Disc(x) = b^2c^2 - 4ac^3 - 4b^3d - 27a^2d^2 + 18abcd,$$

for which we have

Let V be the space of binary cubic forms:

$$V := \{x(u, v) = au^3 + bu^2v + cuv^2 + dv^3\}.$$

 $G = GL_2$ acts on V by

$$(gx)(u,v) = \frac{1}{\det g}x((u,v)g).$$

We have

$$Disc(x) = b^2c^2 - 4ac^3 - 4b^3d - 27a^2d^2 + 18abcd,$$

for which we have

- $\operatorname{Disc}(gx) = (\det g)^2 \operatorname{Disc}(x);$
- ▶ $\operatorname{Disc}(x) = 0$ if and only if x(u, v) has a repeated root.

Theorem (Levi, Delone-Faddeev, Gan-Gross-Savin) $G(\mathbb{Z})$ -orbits on $V(\mathbb{Z})$ parametrize cubic rings. Further, if $v \leftrightarrow R$,

```
Theorem (Levi, Delone-Faddeev, Gan-Gross-Savin) G(\mathbb{Z})-orbits on V(\mathbb{Z}) parametrize cubic rings. Further, if v \leftrightarrow R, \blacktriangleright Stab(v) is isomorphic to \operatorname{Aut}(R);
```

```
Theorem (Levi, Delone-Faddeev, Gan-Gross-Savin)
```

 $G(\mathbb{Z})$ -orbits on $V(\mathbb{Z})$ parametrize cubic rings. Further, if $v \leftrightarrow R$,

- Stab(v) is isomorphic to Aut(R);

Theorem (Levi, Delone-Faddeev, Gan-Gross-Savin)

 $G(\mathbb{Z})$ -orbits on $V(\mathbb{Z})$ parametrize cubic rings. Further, if $v \leftrightarrow R$,

- Stab(v) is isomorphic to Aut(R);
- ▶ (Davenport-Heilbronn) R is maximal iff, for all primes p, v satisfies a certain congruence condition (mod p^2).

▶ $V = \mathrm{Sym}^3(2)$, $G = \mathrm{GL}_2$: cubic rings; 3-torsion in class groups (Levi, Delone-Faddeev, Davenport-Heilbronn)

- ▶ $V = \mathrm{Sym}^3(2)$, $G = \mathrm{GL}_2$: cubic rings; 3-torsion in class groups (Levi, Delone-Faddeev, Davenport-Heilbronn)
- ▶ $V = 2 \otimes \mathrm{Sym}^2(3)$, $G = \mathrm{GL}_2 \times \mathrm{GL}_3$. quartic rings; 2-torsion in class groups of cubic fields (Wright-Yukie; Bhargava)

- ▶ $V = \mathrm{Sym}^3(2)$, $G = \mathrm{GL}_2$: cubic rings; 3-torsion in class groups (Levi, Delone-Faddeev, Davenport-Heilbronn)
- ▶ $V = 2 \otimes \mathrm{Sym}^2(3)$, $G = \mathrm{GL}_2 \times \mathrm{GL}_3$. quartic rings; 2-torsion in class groups of cubic fields (Wright-Yukie; Bhargava)
- ► $V = 4 \otimes \wedge^2(5)$, $G = GL_4 \times SL_5$ quintic rings (Wright-Yukie; Bhargava)

- ▶ $V = \mathrm{Sym}^3(2)$, $G = \mathrm{GL}_2$: cubic rings; 3-torsion in class groups (Levi, Delone-Faddeev, Davenport-Heilbronn)
- ▶ $V = 2 \otimes \mathrm{Sym}^2(3)$, $G = \mathrm{GL}_2 \times \mathrm{GL}_3$. quartic rings; 2-torsion in class groups of cubic fields (Wright-Yukie; Bhargava)
- ► $V = 4 \otimes \wedge^2(5)$, $G = GL_4 \times SL_5$ quintic rings (Wright-Yukie; Bhargava)
- V = Sym⁴(2), G = PGL₂
 2-Selmer elements of elliptic curves (Birch−Swinnerton-Dyer, Bhargava-Shankar)

- ▶ $V = \mathrm{Sym}^3(2)$, $G = \mathrm{GL}_2$: cubic rings; 3-torsion in class groups (Levi, Delone-Faddeev, Davenport-Heilbronn)
- ▶ $V = 2 \otimes \mathrm{Sym}^2(3)$, $G = \mathrm{GL}_2 \times \mathrm{GL}_3$. quartic rings; 2-torsion in class groups of cubic fields (Wright-Yukie; Bhargava)
- ► $V = 4 \otimes \wedge^2(5)$, $G = GL_4 \times SL_5$ quintic rings (Wright-Yukie; Bhargava)
- V = Sym⁴(2), G = PGL₂
 2-Selmer elements of elliptic curves
 (Birch-Swinnerton-Dyer, Bhargava-Shankar)
- ... and more! (Bhargava, Ho, Shankar, Varma, X. Wang, Wood,)

56 Manjul Bhargava

Table 1: Summary of Higher Composition Laws

$\overline{}$						_
#	Lattice (V_Z)	Group acting (G_Z)	Parametrizes (C)	(k)	(n)	(H)
1.	{0}	-	Linear rings	0	0	A_0
2.	$\widetilde{\mathbb{Z}}$	$\mathrm{SL}_1(\mathbb{Z})$	Quadratic rings	1	1	A_1
3.	$(\operatorname{Sym}^2\mathbb{Z}^2)^*$	$SL_2(\mathbb{Z})$	Ideal classes in	2	3	B_2
	(GAUSS'S LAW)		quadratic rings			
4.	$\operatorname{Sym}^3 \mathbb{Z}^2$	$SL_2(\mathbb{Z})$	Order 3 ideal classes	4	4	G_2
			in quadratic rings			
5.	$\mathbb{Z}^2 \otimes \operatorname{Sym}^2 \mathbb{Z}^2$	$SL_2(\mathbb{Z})^2$	Ideal classes in	4	6	B_3
			quadratic rings			
6.	$\mathbb{Z}^2\otimes\mathbb{Z}^2\otimes\mathbb{Z}^2$	$SL_2(\mathbb{Z})^3$	Pairs of ideal classes	4	8	D_4
			in quadratic rings			
7.	$\mathbb{Z}^2 \otimes \wedge^2 \mathbb{Z}^4$	$SL_2(\mathbb{Z}) \times SL_4(\mathbb{Z})$	Ideal classes in	4	12	D_5
			quadratic rings			
8.	$\wedge^3 \mathbb{Z}^6$	$SL_6(\mathbb{Z})$	Quadratic rings	4	20	E_6
9.	$(\operatorname{Sym}^3\mathbb{Z}^2)^*$	$GL_2(\mathbb{Z})$	Cubic rings	4	4	G_2
10.	$\mathbb{Z}^2 \otimes \operatorname{Sym}^2 \mathbb{Z}^3$	$GL_2(\mathbb{Z}) \times SL_3(\mathbb{Z})$	Order 2 ideal classes	12	12	F_4
			in cubic rings			
11.	$\mathbb{Z}^2\otimes\mathbb{Z}^3\otimes\mathbb{Z}^3$	$GL_2(\mathbb{Z}) \times SL_3(\mathbb{Z})^2$	Ideal classes	12	18	E_6
			in cubic rings			
12.	$\mathbb{Z}^2 \otimes \wedge^2 \mathbb{Z}^6$	$GL_2(\mathbb{Z}) \times SL_6(\mathbb{Z})$	Cubic rings	12	30	E_7
13.	$(\mathbb{Z}^2 \otimes \operatorname{Sym}^2 \mathbb{Z}^3)^*$	$GL_2(\mathbb{Z}) \times SL_3(\mathbb{Z})$	Quartic rings	12	12	F_4
14.	$\mathbb{Z}^4 \otimes \wedge^2 \mathbb{Z}^5$	$GL_4(\mathbb{Z}) \times SL_5(\mathbb{Z})$	Quintic rings	40	40	E_8

Still More Interesting Parametrizations

	Group (s.s.)	Representation	Geometric Data	Invariants	Dynkin	§
1.	SL_2	$Sym^4(2)$	(C, L_2)	2, 3	$A_2^{(2)}$	4.1
2.	SL_2^2	$\operatorname{Sym}^2(2) \otimes \operatorname{Sym}^2(2)$	$(C, L_2, L'_2) \sim (C, L_2, P)$	2, 3, 4	$D_3^{(2)}$	6.1
3.	SL_2^4	$2\otimes 2\otimes 2\otimes 2$	$(C, L_2, L'_2, L''_2) \sim (C, L_2, P, P')$	2, 4, 4, 6	$D_4^{(1)}$	6.2
4.	SL_2^3	$2 \otimes 2 \otimes \mathrm{Sym}^2(2)$	$(C, L_2, L'_2) \sim (C, L_2, P)$	2, 4, 6	$B_3^{(1)}$	6.3.1
5.	SL_2^2	$\operatorname{Sym}^2(2) \otimes \operatorname{Sym}^2(2)$	$(C, L_2, L'_2) \sim (C, L_2, P)$	2, 3, 4	$D_3^{(2)}$	6.3.3
6.	SL_2^2	$2 \otimes \mathrm{Sym}^3(2)$	(C, L_2, P_3)	2,6	$G_2^{(1)}$	6.3.2
7.	SL_2	$Sym^4(2)$	(C, L_2, P_3)	2, 3	$A_2^{(2)}$	6.3.4
8.	$SL_2^2 \times GL_4$	$2 \otimes 2 \otimes \wedge^2(4)$	$(C, L_2, M_{2,6})$	2, 4, 6, 8	$D_5^{(1)}$	6.6.1
9.	$SL_2 \times SL_6$	$2 \otimes \wedge^3(6)$	$(C, L_2, M_{3,6})$ with $L^{\otimes 3} \cong \det M$	2, 6, 8, 12	$E_6^{(1)}$	6.6.2
10.	$SL_2 \times Sp_6$	$2 \otimes \wedge_{0}^{3}(6)$	$(C, L_2, (M_{3,6}, \varphi))$ with $L^{\otimes 3} \cong \det M$	2, 6, 8, 12	$E_6^{(2)}$	6.6.3
11.	$\mathrm{SL}_2 \times \mathrm{Spin}_{12}$	$2 \otimes S^{+}(32)$	$(C \rightarrow \mathbb{P}^1(\mathcal{H}_3(\mathbb{H})), L_2)$	2, 6, 8, 12	$E_7^{(1)}$	6.6.3
12.	$SL_2 \times E_7$	$2 \otimes 56$	$(C \rightarrow \mathbb{P}^1(\mathcal{H}_3(\mathbb{O})), L_2)$	2, 6, 8, 12	$E_8^{(1)}$	6.6.3
13.	SL_3	$Sym^3(3)$	(C, L_3)	4,6	$D_4^{(3)}$	4.2
14.	SL_3^3	$3 \otimes 3 \otimes 3$	$(C, L_3, L'_3) \sim (C, L_3, P)$	6, 9, 12	$E_6^{(1)}$	5.1
15.	SL_3^2	$3 \otimes \operatorname{Sym}^2(3)$	(C, L_3, P_2)	6, 12	$F_4^{(1)}$	5.2.1
16.	SL_3	$Sym^3(3)$	(C, L_3, P_2)	4, 6	$D_4^{(3)}$	5.2.2
17.	$SL_3 \times SL_6$	$3 \otimes \wedge^2(6)$	$(C, L_3, M_{2,6})$ with $L^{\otimes 2} \cong \text{det } M$	6, 12, 18	$E_7^{(1)}$	5.5
18.	$SL_3 \times E_6$	$3 \otimes 27$	$(C \hookrightarrow \mathbb{P}^2(\mathbb{O}), L_3)$	6, 12, 18	$E_8^{(1)}$	5.4
19.	$SL_2 \times SL_4$	$2 \otimes \operatorname{Sym}^{2}(4)$	(C, L_4)	8,12	$E_6^{(2)}$	4.3
20.	$SL_5 \times SL_5$	$\wedge^2(5) \otimes 5$	(C, L_5)	20, 30	$E_8^{(1)}$	4.4

Table 1: Table of coregular representations and their moduli interpretations

Bhargava and Ho, Coregular spaces and genus one curves, Camb. J. Math.

An explicit evaluation

Theorem (Taniguchi-T., 2011) We have

$$\widehat{\Phi_{p^2}}(v) = \begin{cases} p^{-2} + p^{-3} - p^{-5} & v/p : of type (0), \\ p^{-3} - p^{-5} & v/p : of type (1^3), (1^21), \\ -p^{-5} & v/p : of type (111), (21), (3). \\ p^{-3} - p^{-5} & v : of type (1^3_{**}), \\ -p^{-5} & v : of type (1^3_*), (1^3_{\max}), \\ 0 & otherwise. \end{cases}$$

An explicit evaluation

Theorem (Taniguchi-T., 2011)

We have

$$\widehat{\Phi_{p^2}}(v) = \begin{cases} p^{-2} + p^{-3} - p^{-5} & v/p : of type (0), \\ p^{-3} - p^{-5} & v/p : of type (1^3), (1^21), \\ -p^{-5} & v/p : of type (111), (21), (3). \\ p^{-3} - p^{-5} & v : of type (1^3_{**}), \\ -p^{-5} & v : of type (1^3_*), (1^3_{\max}), \\ 0 & otherwise. \end{cases}$$

So:

$$\frac{1}{p^8} \sum_{v \in V(\mathbb{Z}/p^2\mathbb{Z})} |\widehat{\Phi_{p^2}}(v)| \ll p^{-7}.$$

Consequence - Improved Davenport-Heilbronn

Theorem (DHBBPBSTTTBTT)

We have

$$N_3(X) = \frac{1}{3\zeta(3)}X + \frac{4(1+\sqrt{3})\zeta(1/3)}{5\Gamma(2/3)^3\zeta(5/3)}X^{5/6} + O(X^{\frac{3}{5}+\epsilon}) + O(X^{1-\frac{1}{8-7+2}+\epsilon}).$$

Improving the error terms

Theorem (Anderson-Bhargava-T., in progress) We have

Improving the error terms

Theorem (Anderson-Bhargava-T., in progress)

We have

$$N_4(X, S_4) \sim \frac{5}{24} \prod_p (1 + p^{-2} - p^{-3} - p^{-4}) X + O(X^{1-??}),$$

Improving the error terms

Theorem (Anderson-Bhargava-T., in progress)

We have

$$N_4(X, S_4) \sim \frac{5}{24} \prod_p (1 + p^{-2} - p^{-3} - p^{-4}) X + O(X^{1-??}),$$

$$N_5(X) \sim \frac{13}{130} \prod_p (1 + p^{-2} - p^{-4} - p^{-5}) X + O(X^{1-??})$$

Group decomposition (Hough, 2018)

(1) Case O_0 , $\xi = p\xi_0$.

 $\mathcal{O}_{1^{2}1^{2}}$ $(p-1)^{2}p(3p+1)$

 $\mathcal{O}_{1^211} \mid p(p^3 - 3p^2 + p + 1)$

 $-p^{3}+p^{2}+p$

 $-p^{3}+p^{2}+p$

 $-p^{3} + p^{2} + p$

 $-p^3 + p^2 + p$ $-p^3 + p^2 + p$

 O_{112}

 O_{22}

O13

 $-(p-1)p(p+1)^2$

 $p(p^3 - 3p^2 + p + 1)$

(6.1)

Theorem 2. The Fourier transform of the maximal set is supported on the mod p orbits $\mathscr{O}_0, \mathscr{O}_{D1^2}, \mathscr{O}_{D11}$ and \mathscr{O}_{D2} . It is given explicitly in the following tables.

	$p^{-12}\widehat{1_{\max}}(p\xi_0)$	Orbit size
\mathscr{O}_0	$(p-1)^4p(p+1)^2(p^5+2p^4+4p^3+4p^2+3p+1)$	1
\mathscr{O}_{D1^2}	$-(p-1)^3p(p+1)^4$	$(p-1)(p+1)(p^2+p+1)$
\mathscr{O}_{D11}	$-(p-1)^3p(2p^3+6p^2+4p+1)$	$(p-1)p(p+1)^2(p^2+p+1)/2$
\mathscr{O}_{D2}	$(p-1)^2p(2p^2+3p+1)$	$(p-1)^2p(p+1)(p^2+p+1)/2$
\mathscr{O}_{Dns}	$(p-1)^2p(2p^2+3p+1)$	$(p-1)^2p^2(p+1)(p^2+p+1)$
\mathscr{O}_{Cs}	$-p^7 + 5p^5 - 3p^4 - 3p^3 + p^2 + p$	$(p-1)^2p(p+1)^2(p^2+p+1)$
\mathcal{O}_{Cns}	$(p-1)^2p(2p^2+3p+1)$	$(p-1)^2p^3(p+1)(p^2+p+1)$
\mathscr{O}_{B11}	$(p-1)^2p(2p^2+3p+1)$	$(p-1)^2p^2(p+1)^2(p^2+p+1)/2$
\mathscr{O}_{B2}	$(p-1)^2p(2p^2+3p+1)$	$(p-1)^3p^2(p+1)(p^2+p+1)/2$
\mathcal{O}_{1^4}	$p(p^3 - 3p^2 + p + 1)$	$(p-1)^3p^2(p+1)^2(p^2+p+1)$
$O_{1^{3}1}$	$p(p^3 - 3p^2 + p + 1)$	$(p-1)^3p^3(p+1)^2(p^2+p+1)$

 $(p-1)^2p^4(p+1)^2(p^2+p+1)/2$

 $(p-1)^3p^4(p+1)^2(p^2+p+1)/2$

 $(p-1)^3p^4(p+1)^2(p^2+p+1)/2$

 $(p-1)^4p^4(p+1)^2(p^2+p+1)/24$

 $(p-1)^4p^4(p+1)^2(p^2+p+1)/4$

 $(p-1)^4p^4(p+1)^2(p^2+p+1)/8$

 $(p-1)^4 p^4 (p+1)^2 (p^2+p+1)/3$

 $(p-1)^4p^4(p+1)^2(p^2+p+1)/4$

 $(p-1)^3p^4(p+1)(p^2+p+1)/2$

The Fouvry-Katz Theorem

Let Y be a (locally closed) subscheme of $\mathbb{A}^n_{\mathbb{Z}}$, of dimension d. Take $V = \mathbb{A}^n$, p prime, and Φ_p the the characteristic function of $Y(\mathbb{F}_p)$.

Theorem (Fouvry-Katz, 2001)

There exists a filtration of subschemes

$$\mathbb{A}^n_{\mathbb{Z}} \supseteq X_1 \supseteq \cdots \supseteq X_j \supseteq \cdots \supseteq X_n$$

with X_j of codimension j, so that

$$|\widehat{\Phi_p}(y)| \le Cp^{-n + \frac{d}{2} + \frac{j-1}{2}}$$

away from $X_j(\mathbb{F}_p)$.

Example: Fouvry-Katz

Corollary (Fouvry-Katz, 2001)
 There exist
$$\gg \frac{X}{\log X}$$
 primes $p \leq X$ with
$$\#\text{Cl}(\mathbb{Q}(\sqrt{p+4}))[3] = 1.$$

Example: Fouvry-Katz

There exist $\gg \frac{X}{\log X}$ primes $p \leq X$ with

$$\#\mathsf{Cl}(\mathbb{Q}(\sqrt{p+4}))[3] = 1.$$

(Here $p + 4 \equiv 1 \pmod{4}$ and squarefree.)

Binary quartic forms

Let V be the space of binary quartic forms, where $\mathrm{GL}(1) \times \mathrm{GL}(2)$ acts by

$$\left(\alpha, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \cdot f(x, y) = \alpha f(ax + cy, bx + dy).$$

Binary quartic forms

Let V be the space of binary quartic forms, where $\mathrm{GL}(1) \times \mathrm{GL}(2)$ acts by

$$\left(\alpha, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \cdot f(x, y) = \alpha f(ax + cy, bx + dy).$$

Associate to $f = a_0x^4 + a_1x^3y + a_2x^2y^2 + a_3xy^3 + a_4y^4$:

$$I(f) = 12a_0a_4 - 3a_1a_3 + a_2^2,$$

$$J(f) = 72a_0a_2a_4 + 9a_1a_2a_3 - 27(a_0a_3^2 + a_1^2a_4) - 2a_2^3.$$

Binary quartic forms

Let V be the space of binary quartic forms, where $\mathrm{GL}(1) \times \mathrm{GL}(2)$ acts by

$$\left(\alpha, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \cdot f(x, y) = \alpha f(ax + cy, bx + dy).$$

Associate to $f = a_0x^4 + a_1x^3y + a_2x^2y^2 + a_3xy^3 + a_4y^4$:

$$I(f) = 12a_0a_4 - 3a_1a_3 + a_2^2,$$

$$J(f) = 72a_0a_2a_4 + 9a_1a_2a_3 - 27(a_0a_3^2 + a_1^2a_4) - 2a_2^3.$$

Let Φ_p be the characteristic function of the singular locus:

$$\Phi_{
ho}(v) := egin{cases} 1 & ext{if } \operatorname{Disc}(v) = 0 \ , \ 0 & ext{otherwise} \ . \end{cases}$$

Main Theorem for Quartic Forms

Theorem (Ishitsuka, Taniguchi, T., Xiao)

For a prime p > 3, we have

$$\widehat{\Phi_p}(v) = \begin{cases} p^{-1} + p^{-2} - p^{-3} & (v = 0), \\ p^{-2} - p^{-3} & (v \text{ has splitting type } (1^4) \text{ or } (1^31)), \\ \chi_{12}(p)(p^{-4} - p^{-3}) & (v \text{ has splitting type } (1^21^2)), \\ \chi_{12}(p)(p^{-4} + p^{-3}) & (v \text{ has splitting type } (2^2)), \\ \chi_{12}(p)p^{-4} & (v \text{ has splitting type } (1^211) \text{ or } (1^22)), \\ \chi_{3}(p)\left(\frac{I(v)}{p}\right) \cdot p^{-4} & (J(v) = 0, I(v) \neq 0), \\ a(E'_v)p^{-4} & (J(v) \neq 0, \mathrm{Disc}(v) \neq 0). \end{cases}$$

Here E'_{ν} is the elliptic curve defined by

$$y^2 = x^3 - 3I(v)x^2 + J(v)^2$$

with $a(E_{\nu}'):=p+1-\#E_{\nu}'(\mathbb{F}_p).$

Main Application for Quartic Forms

Theorem (Ishitsuka, Taniguchi, T., Xiao)

We have

$$\sum_{\substack{E: \text{ elliptic curve }/\mathbb{Q}\\ H(E) < X\\ \Omega(\operatorname{disc}(E)) \le 4\\ \operatorname{disc}(E): \text{ squarefree}}} (|\operatorname{Sel}_2(E)| - 1) \gg \frac{X^{5/6}}{\log X}. \tag{1}$$

Proof of IITTX: Projectivization

If $w \neq 0$, we have

$$\sum_{\substack{w\in\overline{w}\\w\neq 0}}\langle[w,v]\rangle=\begin{cases} p-1 & ([w,v]=0)\\ -1 & ([w,v]\neq 0),\end{cases}$$

where \overline{w} is the line through w and 0. So,

$$egin{aligned} \widehat{\Phi_{m{
ho}}}(m{v}) &= 1 + (m{p}-1) \sum_{\overline{w} \in \mathbb{P}(m{V}), [\overline{w}, m{v}] = 0} \Phi_{m{
ho}}(\overline{w}) - \sum_{\overline{w} \in \mathbb{P}(m{V}), [\overline{w}, m{v}]
eq 0} \Phi_{m{
ho}}(\overline{w}) \ &= 1 + m{
ho} \# X_{m{v}}(\mathbb{F}_{m{
ho}}) - \# X(\mathbb{F}_{m{
ho}}), \end{aligned}$$

where

$$\begin{split} X &:= \left\{ w \in \mathbb{P}(V) \mid \mathrm{Disc}(w) = 0 \right\}, \\ X_v &:= \left\{ w \in \mathbb{P}(V) \mid \mathrm{Disc}(w) = [w,v] = 0 \right\}. \end{split}$$

Three morphisms

Consider projective morphisms

$$\psi_{1} \colon \mathbb{P}(\mathbb{F}_{p}^{2}) \times \mathbb{P}(\operatorname{Sym}^{2}\mathbb{F}_{p}^{2}) \to \mathbb{P}(\operatorname{Sym}^{4}\mathbb{F}_{p}^{2}) = \mathbb{P}(V)$$

$$(s_{0}x + s_{1}y, t_{0}x^{2} + t_{1}xy + t_{2}y^{2}) \mapsto (s_{0}x + s_{1}y)^{2}(t_{0}x^{2} + t_{1}xy + t_{2}y^{2}).$$

$$\psi_{2} \colon \mathbb{P}(\operatorname{Sym}^{2}\mathbb{F}_{p}^{2}) \to \mathbb{P}(\operatorname{Sym}^{4}\mathbb{F}_{p}^{2}) = \mathbb{P}(V)$$

$$t_{0}x^{2} + t_{1}xy + t_{2}y^{2} \mapsto (t_{0}x^{2} + t_{1}xy + t_{2}y^{2})^{2}$$

$$\psi_{3} \colon \mathbb{P}(\mathbb{F}_{p}^{2}) \times \mathbb{P}(\mathbb{F}_{p}^{2}) \to \mathbb{P}(\operatorname{Sym}^{4}\mathbb{F}_{p}^{2}) = \mathbb{P}(V)$$

$$(s_{0}x + s_{1}y, t_{0}x + t_{1}y) \mapsto (s_{0}x + s_{1}y)^{2}(t_{0}x + t_{1}y)^{2}.$$

Three morphisms – inverse images

Then, the cardinalities of each $\psi_i(v)$ are:

Spitting type	$\#\psi_1^{-1}$	$\#\psi_2^{-1}$	$\#\psi_3^{-1}$
non-degenerate	0	0	0
(1 ⁴)	1	1	1
(1^31)	1	0	0
(1^21^2)	2	1	2
(2^2)	0	1	0
(1^211)	1	0	0
(1^22)	1	0	0

Three morphisms – inverse images

Then, the cardinalities of each $\psi_i(v)$ are:

Spitting type	$\#\psi_1^{-1}$	$\#\psi_2^{-1}$	$\#\psi_3^{-1}$
non-degenerate	0	0	0
(1 ⁴)	1	1	1
(1^31)	1	0	0
(1^21^2)	2	1	2
(2 ²)	0	1	0
(1^211)	1	0	0
(1^22)	1	0	0

So,
$$\Phi_{\rho}(\overline{w})=\#\psi_1^{-1}(\overline{w})+\#\psi_2^{-1}(\overline{w})-\#\psi_3^{-1}(\overline{w}).$$

The elliptic curve

We have

$$\sum_{\overline{w}\in\mathbb{P}(V), [\overline{w}, \nu]=0} \#\psi_3^{-1}(\overline{w}) = \#C_3(\nu),$$

where

$$C_3(v) = \{(I_1, I_2) \in \mathbb{P}(\mathbb{F}_p^2) \times \mathbb{P}(\mathbb{F}_p^2) \mid [I_1^2 I_2^2, v] = 0\}.$$

The elliptic curve

We have

$$\sum_{\overline{w}\in\mathbb{P}(V), [\overline{w}, \nu]=0} \#\psi_3^{-1}(\overline{w}) = \#C_3(\nu),$$

where

$$C_3(v) = \left\{ (I_1, I_2) \in \mathbb{P}(\mathbb{F}_p^2) \times \mathbb{P}(\mathbb{F}_p^2) \mid [I_1^2 I_2^2, v] = 0 \right\}.$$

Proposition (Bhargava-Ho)

If $\operatorname{Disc}(v) \neq 0$ and $J(v) \neq 0$, then $C_3(v)$ is of genus one, isomorphic to

$$E'_{v}$$
: $y^{2} = x^{3} - 3I(v)x^{2} + J(v)^{2}$.

