· vn node ros root

Info (D) =
$$-\sum_{i=1}^{n} P_i \log_{x}(P_i)$$

Info (D) = I(9,5); 9=yes, 5=no
=
$$-\frac{9}{14}\log_{1}(\frac{9}{14}) - \frac{5}{14}\log_{1}(\frac{5}{14}) = 0.940$$

und Into lumin teature

- Info age (D) =
$$\frac{5}{12} I(2,5) + \frac{4}{14} I(4,0) + \frac{5}{14} I(5,2)$$

$$= \frac{5}{14} \left[-\frac{2}{5} \log_{1} \left(\frac{2}{5} \right) - \frac{3}{5} \log_{1} \left(\frac{3}{5} \right) \right] + \frac{4}{14} \left[-\frac{4}{4} \log_{1} \left(\frac{4}{4} \right) - \frac{0}{4} \log_{1} \left(\frac{0}{4} \right) \right] + \frac{5}{14} \left[-\frac{3}{5} \log_{1} \left(\frac{3}{5} \right) - \frac{2}{5} \log_{1} \left(\frac{2}{5} \right) \right]$$

$$- \ln f_0 \frac{1}{\text{incorre}} = \frac{4}{124} \frac{I(2,2) + \frac{16}{14}}{\text{high}} \frac{I(4,2) + \frac{4}{14}}{\text{red for}} \frac{I(5,1)}{\text{low}}$$

$$=\frac{4}{14}\left[\frac{2}{4}\log_{1}\left(\frac{2}{4}\right)-\frac{2}{4}\log_{1}\left(\frac{1}{4}\right)+\frac{b}{14}\left[-\frac{4}{b}\log_{1}\left(\frac{4}{b}\right)-\frac{2}{b}\log_{1}\left(\frac{2}{b}\right)\right]+\frac{4}{14}\left[-\frac{3}{4}\log_{1}\left(\frac{5}{4}\right)-\frac{1}{4}\log_{1}\left(\frac{1}{4}\right)\right]$$

$$- I_{n} f_{0} (0) = \frac{\gamma}{12} I(1,1) + \frac{\gamma}{12} I(3,4)$$

$$= \frac{1}{14} \left[-\frac{1}{7} \log_{2}(\frac{1}{7}) - \frac{1}{7} \log_{2}(\frac{1}{7}) + \frac{1}{14} - \frac{3}{7} \log_{2}(\frac{3}{7}) - \frac{4}{7} \log_{2}(\frac{4}{7}) \right]$$

$$- \operatorname{Info}_{\text{Ondil wing}}(0) = \frac{8}{14} \operatorname{I(6,2)} + \frac{1}{14} \operatorname{I(5,3)}_{\text{excellent}}$$

$$= \frac{4}{14} \left[-\frac{b}{6} \log_{1}(\frac{b}{6}) - \frac{2}{6} \log_{1}(\frac{2}{6}) \right] + \frac{b}{14} \left[-\frac{3}{b} \log_{1}(\frac{3}{b}) - \frac{3}{b} \log_{1}(\frac{3}{b}) \right]$$

Cain (age) = Info(0) - Info (0) = 0.940 - 0.694 = 0.246
$$\times$$

Cain (income) = Info(0) - Info (0) = 0.940 - 0.911 = 0.029
Cain (student) = Info(0) - Info (0) = 0.940 - 0.789 = 0.151
Cain (credit) = Info(0) - Info (0) = 0.940 - 0.692 = 0.046

Training data set: Who buys computer?

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Note: The data set is adapted from "Playing Tennis" example of R. Quinlan

Info (D) =
$$I(2,3)$$
; 2 = yes, 3 = no
= $-\frac{1}{5}\log_{1}(\frac{2}{5}) - \frac{3}{5}\log_{1}(\frac{3}{5}) = 0.991$

age	income	student	credit_rating	buy
	high	no	fair	no
⟨= 30	high	no	excellent	no
	medium	no	fair	no
	lon	yes	fair	yes
	medium	yes	excellent	yes

Info (0) =
$$\frac{high}{5}I(0,2) + \frac{2}{5}I(1,1) + \frac{1}{5}I(1,0)$$

$$= \frac{2}{5} \left[-\frac{0}{2} \log_{2} \left(\frac{0}{2} \right) - \frac{2}{2} \log_{2} \left(\frac{2}{2} \right) \right] + \frac{2}{5} \left[-\frac{1}{2} \log_{2} \left(\frac{1}{2} \right) - \frac{1}{2} \log_{3} \left(\frac{1}{2} \right) \right] + \frac{1}{5} \left[-\frac{1}{1} \log_{2} \left(\frac{1}{1} \right) - \frac{0}{1} \log_{3} \left(\frac{0}{1} \right) \right]$$

$$Info_{\text{student}}(0) = \frac{2}{5}I(2,0) + \frac{3}{5}I(0,3)$$

$$= \frac{2}{5} \left[-\frac{2}{2} \log_{2} \left(\frac{2}{2} \right) - \frac{0}{2} \log_{2} \left(\frac{0}{2} \right) \right] + \frac{3}{5} \left[-\frac{0}{3} \log_{2} \left(\frac{0}{3} \right) - \frac{3}{3} \log_{2} \left(\frac{3}{3} \right) \right]$$

$$Inf_{0} = 0$$

$$Inf_{0} = \frac{3}{5}I(1,2) + \frac{2}{5}I(1,1)$$

$$= \frac{3}{5} \left[-\frac{1}{3} \log_{2} \left(\frac{1}{3} \right) - \frac{2}{3} \log_{3} \left(\frac{2}{3} \right) \right] + \frac{2}{5} \left[-\frac{1}{2} \log_{2} \left(\frac{1}{2} \right) - \frac{1}{2} \log_{3} \left(\frac{1}{2} \right) \right]$$

- 31...40

	age	income	student	credit	buys
		high	no	fair	yes
1	3140	low	yes	excellent	yes
		medium	no	excellent	yes
١		high	yes	fair	yes

* จาก ชาวาว สามารถสานได้ราชรวงายุ 31... Ao มีข้อมูล buys_computer เป็น yes ทั้งแมด

Info (D) =
$$I(3, 2)$$
 ; $3 = yes$, $2 = no$ age income student credit rolling by $= -\frac{3}{5} \log_2(\frac{3}{5}) - \frac{2}{5} \log_2(\frac{2}{5}) = 0.971$ medium no fair yes fair yes income = $\frac{3}{5}I(2,1) + \frac{2}{5}I(1,1)$ medium no excellent no medium no excellent no $= \frac{3}{5}[-\frac{2}{3}\log_2(\frac{2}{3}) - \frac{1}{3}\log_2(\frac{1}{3})] + \frac{2}{5}[-\frac{1}{2}\log_2(\frac{1}{3})] - \frac{1}{2}\log_2(\frac{1}{3})$ $= 0.951$

$$= \frac{3}{5} \left[-\frac{2}{3} \log_{2}(\frac{2}{3}) - \frac{1}{3} \log_{2}(\frac{1}{3}) \right] + \frac{2}{5} \left[-\frac{1}{2} \log_{2}(\frac{1}{2}) - \frac{1}{3} \log_{2}(\frac{1}{2}) \right]$$

$$= 0.951$$

$$= \frac{3}{5} \left[(3,0) + \frac{2}{5} \right] (2,0)$$

$$= \frac{3}{5} \left[-\frac{3}{3} \log_{2}(\frac{3}{3}) - \frac{0}{3} \log_{2}(\frac{0}{3}) \right] + \frac{2}{5} \left[-\frac{3}{2} \log_{2}(\frac{2}{3}) - \frac{0}{2} \log_{2}(\frac{0}{3}) \right]$$

$$= 0$$

Cain (income) = Info(0) - Info(0) = 0.991 - 0.951 = 0.09
Cain (student) = Info(0) - Info(0) = 0.991 - 0.951 = 0.09
Cain (credit) = Info(0) - Info(0) = 0.991 - 0 = 0.991
$$\times$$

Descision Tree Induction

