Lista 6 - 2022.1

Prof. João Paixão

1. Usando a informação que

$$\begin{bmatrix} | & | \\ a_1 & a_2 \\ | & | \end{bmatrix} = \begin{bmatrix} | & | \\ q_1 & q_2 \\ | & | \end{bmatrix} \begin{bmatrix} 5 & 9 \\ 0 & 4 \end{bmatrix}$$

e que q_1 e q_2 tem norma igual à 1 e são perpendiculares entre si.

- (a) Determine a distância do vetor a_2 para o reta gerada por a_1 .
- (b) Determine o tamanho de a_1 .
- (c) Determine o tamanho da projeção de a_1 na reta gerada por q_1 .
- (d) Determine o tamanho da projeção de a_1 na reta gerada por q_2 .
- (e) Determine o tamanho da projeção de a_2 na reta gerada por q_1 .
- (f) Determine o tamanho da projeção de a_2 na reta gerada por q_2 .
- (g) Determine o tamanho de a_2 .
- 2. Usando a informação que

$$\begin{bmatrix} | & | & | \\ a_1 & a_2 & a_3 \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ q_1 & q_2 & q_3 \\ | & | & | \end{bmatrix} \begin{bmatrix} 3 & 4 & 5 \\ 0 & 7 & 6 \\ 0 & 0 & 9 \end{bmatrix}$$

e que q_1, q_2 e q_3 tem norma igual à 1 e são perpendiculares entre si.

- (a) Determine a distância do vetor a_3 para o plano gerado por a_1 e a_2 .
- (b) Determine o tamanho de a_1 .
- (c) Determine o tamanho da projeção de a_3 no plano gerado por a_1 e a_2 .
- (d) Determine o tamanho da projeção de a_2 na reta gerada por a_1 .
- (e) Determine o tamanho de a_2
- (f) Determine o tamanho de a_3 .
- 3. População. Suponha que um 120-vetor x representa a distribuição de idades na população do Rio de Janeiro, com x_i sendo o número de pessoas com i anos para $i=1,2,\ldots,120$ (estamos supondo que não tem nimguém acima de 120 anos). Determine a tal que a^tx calcula o

1

- (a) número total de pessoas no Rio de Janeiro.
- (b) número total de pessoas acima de 65.
- (c) idade média da população
- 4. Um vetor x é esparso se tem poucas entradas não-nulas. Escreva uma ou duas frases explicando o que isso significa nos contextos a seguir se x é esparso:
 - (a) cada entrada de x representa o faturamento diário de uma empresa em n dias.
 - (b) x representa a quantidade de chuva em uma cidade em um ano (n = 365 dias).
 - (c) x representa a maneira que um senador votou em n votações (usando a modelagem que 0 representa que ele votou contra e 1 a favor).
 - (d) x representa a maneira que um senador votou em n votações (usando a modelagem que -1 representa que ele votou contra, 1 representa que ele votou a favor e 0 que ele se absteve).
- 5. Produto interno de vetores não-negativos. Um vetor é não-negativo se todas as suas entradas são não-negativas.
 - (a) Explique por que o produto interno de dois vetores não-negativos é não-negativo.
 - (b) Suponha que o produto interno de dois vetores não-negativos é zero. O que você pode dizer sobre eles? Sua resposta deve ser em termos de quais entradas são nulas e quais entradas são não-nulas.
 - (c) Se u e v são vetores em \mathbb{R}^2 , o que podemos dizer sobre o ângulo entre eles? Desenhe uma figura para explicar.
- 6. Dado uma tabela usuários por filmes (matriz):

Ratings Matrix	Titanic	Rocky	The Hobbit	Fight Club	Jurassic Park
User A	0.82	0.18	0.5	0.1	0.26
User B	0.74	0.26	0.5	0.2	0.32
User C	0.34	0.69	0.5	0.7	0.62
User D	0.58	0.42	0.5	0.4	0.44
User E	0.1	0.9	0.5	1	0.8

Qual filme você recomendaria para quem gostou de Titanic usando a função distância que implementamos em Julia?

- 7. Determine o vetor a tal que $a^t x$ calcula:
 - (a) a quinta entrada do 10-vetor x.
 - (b) a média do 5-vetor x.

- (c) a média ponderada da disciplina de Criptografia onde: a primeira prova vale 20%, a segunda prova vale 40%, a terceira prova vale 40% e x é um 3-vetor das suas três provas.
- (d) a soma das três últimas entradas do 7-vetor x.
- 8. Sintomas Cada um dos P pacientes pode manifestar quaisquer dos n sintomas. Isso pode ser escrito como uma matriz $S_{P\times n}$ tal que:

$$S_{ij} = \begin{cases} 1, \text{o paciente } i \text{ manifestou o sintoma } j \\ 0, \text{o paciente } i \text{ não manifestou o sintoma } j \end{cases}$$

- (a) O que significa se a cosseno entre dois pacientes é igual à 0?
- (b) O que significa se a cosseno entre dois sintomas é igual à 0?
- (c) O que significa se a distância entre dois pacientes é igual à 0?
- (d) O que significa se a distância entre dois sintomas é igual à 0?
- 9. Verdadeiro ou falso? Se x e y fazem um ângulo agudo, então $||x+y|| \ge \max\{||x||, ||y||\}$.
- 10. Determine o cosseno do ângulo formado entre a diagonal de um cubo (diagonal por dentro do cubo) com lados iguais à 3 e um dos extremos laterais do cubo (tanto a diagonal quanto o extremo da lateral considerados iniciam no mesmo ponto extremo).
- 11. Defina e desenhe os seus próprios vetores $v, w \in \mathbb{R}^2$ e ilustre graficamente
 - (a) a projeção ortogonal u de w sobre v e
 - (b) o vetor r = v u.
 - (c) Quanto vale $||u||^2 + ||r||^2$?
- 12. Suponha que os vetores a, b e $c \in \mathbb{R}^3$ satisfazem $a \perp c$ e $b \perp c$. Quais afirmações são verdadeiras para qualquer a, b, e c?
 - (a) $a \perp b$
 - (b) $(a+b) \perp c$
 - (c) $(a+c) \perp (b+c)$
- 13. Sejam a,b e c vetores em \mathbb{R}^3 e $a\perp b, a\perp c$ e $b\perp c$. Simplifique a expressão $\|a+b+c\|$ e faça um desenho associado a essa simplificação. Escreva um pequeno texto sobre o que você aprendeu.
- 14. Se a soma de 3 vetores no \mathbb{R}^3 é igual ao vetor nulo, então esses vetores estão sobre o mesmo plano? Por quê?
- 15. Teorema de Pitágoras. Demostre usando as propriedades do produto interno que, se $u,v\in\mathbb{R}^n$ são ortogonais, então $\|u+v\|^2=\|u\|^2+\|v\|^2$.

- 16. Interprete graficamente em 2D a desigualdade $||x y|| \le ||y|| + ||x||$.
- 17. Desigualdade triangular. Quais são as condições em u e v para que a desigualdade triangular seja uma igualdade, ||u+v|| = ||u|| + ||v||.
 - (a) Resolva geometricamente.
 - (b) Resolva algebricamente.
- 18. Seja ||u|| = 1. Podemos dizer que $v^t u \le ||v||$ (conhecido como desigualdade de Cauchy-Schwarz)? O que isso quer dizer geometricamente?
- 19. Interprete graficamente no plano a desigualdade $||z-x|| \le ||z-y|| + ||y-x||$.
- 20. Prove que as diagonais de um losango são perpendiculares.
- 21. Projeção sobre uma reta. Seja P(x) a projeção de um ponto no plano sobre a reta que passa por (0,0) e (1,3). (Implicando que P(x) é ponto sobre essa reta mais próximo de x). Mostre que P é uma transformação linear e escreva a matriz A tal que P(x) = Ax para qualquer x.
- 22. Prove que existe pelo menos duas diagonais do octágono regular (um octógono regular tem todos os oito lados de mesmo tamanho e todos os ângulos com a mesma medida) que são perpendiculares usando as propriedades do produto interno.
- 23. Determine se as afirmações abaixo são verdadeiras ou falsas. Prove se verdadeira, ou exiba um contra-exemplo caso falsa.
 - (a) Se A e B são matrizes ortogonais, então AB é uma matriz ortogonal.
 - (b) Se det(A) = 1 ou -1, então A é uma matriz ortogonal.
 - (c) Se A é uma matriz ortogonal, então det(A) = 1 ou -1.
- 24. (a) Escreva as duas definições diferentes de uma matriz ortogonal.
 - (b) Explique por que elas são equivalentes.
- 25. Determine:
 - (a) a matriz $A_{2\times 2}$ que representa a transformação linear que projeta ortogonalmente todos os vetores de \mathbf{R}^2 na reta gerada pelo vetor $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$.
 - (b) todos os vetores x tal que Ax = 0. Explique algebricamente.
- 26. Mostre que uma matriz ortogonal não muda o tamanho de um vetor na transformação (sem usar determinantes).

m (kg)	5	6	7	8
$\Delta x \text{ (metros)}$	1	2	3	4

27. A lei de Hooke é dada pela equação $mg = k\Delta x$.

Neste caso, tem-se uma massa m, a gravidade g ($10m/s^2$), deslocamento Δx da posição original, e a constante da mola k, na qual a constante k tem um valor diferente para cada mola. A lei de Hooke diz que a força exercida por uma mola é diretamente proporcional à sua deformação. Em um laboratório, foram presas diferentes massas na mesma mola e medidas o deslocamento para cada massa. Use a tabela de medições acima para determinar uma aproximação para a constante da mola utilizada por mínimos quadrados.

28. Problemas geométricos

- (a) Existe um vetor perpendicular aos vetores $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ e $\begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}$?

 (b) Existe um vetor perpendicular aos vetores $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$ e $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$?
- 29. Pacientes e sintomas. Cada um dos n pacientes pode manifestar quaisquer dos m sintomas. Isso pode ser escrito como uma matriz $S_{n\times m}$ tal que:

$$S_{ij} = \begin{cases} 1, \text{o paciente } i \text{ manifestou o sintoma } j \\ 0, \text{o paciente } i \text{ não manifestou o sintoma } j \end{cases}$$

Modele o sistema Ax = b dando a matriz A em função de S e o significado e/ou a descrição das entradas de x quando:

- (a) b é o vetor de sintomas exibidos pelo paciente k
- (b) b é a quantidade de sintomas exibidos por cada paciente
- (c) b é a quantidade de pacientes que exibe cada sintoma
- 30. Seja Pa matriz que projeta ortogonalmente todos os vetores de \mathbb{R}^3 para reta gerada pelo vetor $[2, 1, 3]^t$.

5

- (a) Descreva como a matriz P pode ser usada para calcular a distância entre qualquer vetor v e a reta gerada pelo vetor $[2,1,3]^t$.
- (b) Descreva duas soluções diferentes do sistema $Px = [2, 1, 3]^t$
- (c) Determine a matriz P.
- 31. Seja P o plano gerado por $[2,0,1]^t$ e $[1,2,2]^t$
 - (a) Determine um vetor perpendicular ao plano P.
 - (b) Determine o vetor que é a projeção ortogonal do vetor $[1,1,1]^t$ no plano.
 - (c) Determine a distância do ponto $[1, 1, 1]^t$ ao plano.
 - (d) Determine o vetor que é a projeção ortogonal do vetor $[3,2,3]^t$ no plano.
 - (e) Determine a distância do ponto $[3, 2, 3]^t$.
- 32. (a) Prove que $B^tA=(A^tB)^t$ (Dica: escreva A e B como matrizes de vetores colunas).
 - (b) Use o item anterior para provar que $(A^{-1})^t = (A^t)^{-1}$
- 33. Seja P o plano gerado por $\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$ e $\begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix}$.
 - (a) Determine uma normal para o plano P.
 - (b) Determine o vetor que é a projeção ortogonal do vetor $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ no plano.
 - (c) Determine a distância do ponto $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ ao plano.
 - (d) Determine o vetor que é a projeção ortogonal do vetor $\begin{bmatrix} 11 \\ 5 \\ -7 \end{bmatrix}$ no plano.
 - (e) Determine a distância do ponto $\begin{bmatrix} 11 \\ 5 \\ -7 \end{bmatrix}$ ao plano.