

生物工程基础

第四章 生物反应器的操作特性

连续操作

- 连续操作的分类特点
- 单级恒化器法连续操作
- 多级连续操作

学习目的: 了解连续操作基本目的, 掌握连续操作基本方法。

连续操作

- 采用连续操作的反应器叫做连续式反应器。原料连续输入反应器,反应产物则连续地从反应器中流出。反应器内任何部位的物系组成均不随时间而变,故连续操作反应器多属于稳态操作。具有如下特点:反应速度容易控制;可提高生产率;产品质量稳定、劳动强度低、生产率高等。
- 可以对微生物施加一个<u>特定的强制力</u>(比生长速率、温度、pH或培养基组成)来提供特殊的生长条件,从而<u>筛选出</u>所需的微生物。
- 各<u>过程变量</u>可以<u>独立改变</u>,故特别适用于研究微生物的<u>生理特性</u>,使细胞的某些生化活性组份增加或减少。
- 染菌和微生物突变的风险大。

只适用于生产能力大,微生物变异小,酶活稳定,产品需连续处理 的工业体系。仅限用于纯培养要求不高的情况。

连续操作反应器中组分浓度变化

华东理工大学生物工程学院

连续操作的分类及特点

连续操作有两大类: CSTR (Continuous stired tank reactor)
CPFR (Continuous plug flow reactor)

连续操作的特点

	优点	缺点
设备方面	易机械化、自动化	设备投资高,同一套设备 无法生产多种产品
操作方面	易于管理,能够缩短生产总周期, 减少操作带来的污染	要求相关的工作连续化
生产能力方面	有利于减少能耗,节约劳动力, 中间或终产物质量稳定。	得率或产物浓度低于分批 操作,易污染,易突变。
生物方面	是分析微生物生理、生态及反应 机理的好助手。	可能出现杂菌污染或菌种 变异,环境因素使生物反 应复杂化。

连续操作的特点

- 在CSTR中,只要反应器中有一定含量的菌体,在一定的进料范围内,可以实现稳态操作;
- 但在平推流CPFR反应器中,若流入物料中不含有微生物,就不能实现连续操作。
- 因此,微生物纯培养的连续操作主要采用CSTR,而平推流反应器 CPFR不能在培养微生物中单独使用,必须与其它型式的反应器串 联使用。

连续操作的特点

华东理工大学生物工程学院

连续操作的分类

- <u>恒化器</u>:设定培养液体积V_R为定值,通过检测培养液体积对设定值的偏差,改变加料速率F以使培养液体积V_R不变。
- <u>恒浊器</u>:在反应器体积VR一定时,通过测量反应器中的细胞浓度Cx, 调节加料速率F,控制细胞浓度在设定值。
- 恒pH法:将葡萄糖等生理酸性物质与控制pH的酸或碱溶液分开加料。
 测量培养液中的pH,用反馈控制方式调节生理酸性物质的加料速率F,使pH保持恒定。
- 恒定产物浓度法: 通过测量培养液中产物浓度,用反馈控制方式调节加料速率F,使产物浓度保持定值。
- 由于控制简单,实际应用中恒化器占大多数。

连续操作的控制方式

恒化器方式较适用于底物浓度较低的情况。原因是当底物浓度较低时,对它的数值难以精确测量,且F改变时,C_x对其响应不明显,但是当D值较小时,C_s与D基本呈线性关系,通过改变F或D,可以控制Cs恒定。

在D值较高时,特别是在临界稀释率D。附近时,底物浓度快速上升,细胞浓度快速下降,此时恒浊器适用。D的较小改变可引起Cx的较大改变。

由于质子的生成与细胞密度相关,产物浓度受稀释率影响较大,因此在 D_c附近,恒pH法和恒定产物浓度法较为适用。

恒化器的控制较为简单,不依靠任何反馈控制机构。

而对恒浊器,恒pH法和恒定产物浓度法,需要通过传感器作参数检测以控制加料,需要配置反馈控制机构,它们都属于反馈控制方式的类型。反馈控制方式还可以通过测定溶氧浓度,排气中CO。含量等参数来实现。

华东理工大学生物工程学院

单级CSTR中的连续培养

单级CSTR培养体系中,流入液体中仅有一种成分为微生物生长的限制性因子,其它成分在不发生抑制的条件下不充分存在。

基本模型

影响操作特性的主要变量:

- 稀释率 D
- 加料中限制性底物浓度C_{s0}和培养基组成
- 培养条件 (µ_{max}, K_s, Y_{xs})

状态参数

生物量作衡算:
$$V_R \frac{dC_X}{d_t} = F(C_{X0} - C_X) + \mu C_X V_R = 0$$
, $C_{X0} = 0$

$$D = \frac{F}{V_R}$$

整理得: μ = D

假设符合Monod方程:
$$\mu = \mu_{max} \frac{c_S}{K_S + C_S}$$

$$C_S = \frac{K_S D}{\mu_{max} - D}$$

$$C_S = f(K_S, \mu_{max}, D)$$

由Cs推导下式:
$$C_X = C_{X0} + Y_{XS}(C_{S0} - C_S), C_{X0} = 0$$

$$C_X = Y_{XS}(C_{S0} - \frac{K_SD}{\mu_{max} - D})$$

$$\mathbf{E} \qquad C_P = C_{P0} + Y_{PS}(C_{S0} - C_S), C_{P0} = 0$$

$$C_P = Y_{PS}(C_{S0} - \frac{K_S D}{\mu_{max} - D})$$

单位时间单位反应器的细胞产率:

$$r_X = \mu C_X = DC_X = Y_{XS}D(C_{S0} - \frac{K_SD}{\mu_{max} - D})$$

$$C_X, C_P, r_X = f(Y, \mu_{max}, K_S, D, C_{S0})$$

当
$$(C_{S0} - \frac{K_SD}{\mu_{max}-D}) > 0$$
时, C_X, C_P, r_X 随 C_{S0} 增大而增大。

华东理工大学生物工程学院

稀释率的影响

临界稀释率 *D*; 在加料速率达到一定值后,反应器中培养基全部被加料中的新鲜培养基置换,达到"洗出状态"。

此时, $C_S=C_{S0}, C_X=0$

$$D_C = \mu_{max} \frac{C_{S0}}{K_S + C_{S0}}$$

最佳稀释率: Dopt: 细胞产率达到最大时的稀释率。

$$\frac{dr_x}{dD} = 0$$

$$D_{opt} = \mu_{max} (1 - \sqrt{\frac{K_S}{K_S + C_{S0}}})$$

$$C_{X,opt} = Y_{XS} [C_{S0} + K_S - \sqrt{K_S(K_S + C_{S0})}]$$

$$r_{X,max} = D_{opt} C_{X,opt} = Y_{XS} \mu_{max} (\sqrt{K_S + C_{S0}} - \sqrt{K_S})^2$$

$$D_C$$
, $C_{X,opt}$, $r_{X,max} \sim f(C_{S0})$

加料中底物浓度的影响

加料中的底物浓度Cso既影响上述各种参数,也影响最优稀释率下的各个 性能参数。Lenvenspie 给出了一种算法,概括出这些关系。

$$N = \sqrt{1 + \frac{C_{S0}}{K_S}}$$

$$D_C = \mu_{max} \frac{N^2 - 1}{N^2}$$

$$D_{OPT} = \mu_{max} \frac{N - 1}{N}$$

$$C_{X,OPT} = Y_{XS}C_{S0} \frac{N}{N + 1}$$

$$C_{S,OPT} = C_{S0} \frac{1}{N + 1}$$

$$r_{X,max} = Y_{XS}\mu_{max}C_{S0} \frac{N - 1}{N + 1}$$

华东理工大学生物工程学院

对于反应组分或者产物而言, 其物料平衡关系为:

变化速率=输入速率-输出速率+生成速率

对于细胞做质量衡算:

细胞质量增加速率=加入细胞速率-流出细胞速率+细胞生长速率-细胞死亡速率

活细胞:
$$\frac{d(V_R c_X)}{dt} = V_R r_X - V_R r_d + F_{in} c_{X_0} - F_{out} c_X$$
非活细胞: $\frac{d(V_R c_{X_d})}{dt} = V_R r_d + F_{in} c_{X_{d_0}} - F_{out} c_{X_d}$
产物: $\frac{d(V_R c_P)}{dt} = V_R r_P + F_{in} c_{P_0} - F_{out} c_P$
底物: $\frac{d(V_R c_S)}{dt} = -V_R (r_{SX} + r_{SM} + r_{SP}) + F_{in} c_{S_0} - F_{out} c_S$
总体积: $\frac{dV_R}{dt} = F_{in} - F_{out}$

连续培养在稳态下操作,体积为常数, $F_{in}=F_{out}=F$,D=F/V,操作方程简化为

活细胞:
$$\frac{dc_X}{dt} = r_X - r_d + D(c_{X_0} - c_X) = 0$$
非活细胞: $\frac{dc_{X_d}}{dt} = r_d + D(c_{X_{d_0}} - c_{X_d}) = 0$
产物: $\frac{dc_P}{dt} = \alpha r_X + \beta c_X + D(c_{P_0} - c_P) = 0$
底物: $\frac{dc_S}{dt} = -(\frac{r_X}{Y_{X/S}} + \frac{\alpha r_X + \beta c_X}{Y_{P/S}} + mc_X) + D(c_{S_0} - c_S) = 0$
总体积: $\frac{dV_R}{dt} = 0$

单级CSTR中连续培养基本变量

$$c_{S} = \frac{K_{S}(D + k_{d})}{\mu_{m} - (D + k_{d})}$$

$$c_{X} = \frac{D(c_{S0} - c_{S})}{(D + k_{d})/Y_{X/S} + m + [\alpha(D + k_{d}) + \beta]/Y_{P/S}}$$

$$c_{Xd} = \frac{k_{d}c_{X}}{D}$$

$$c_{P} = \frac{[\alpha(D + k_{d}) + \beta]c_{X}}{D}$$

由此,便建立了操作变量与<mark>状态变量</mark>之间的对应关系式。 只要给出操作条件,便知连续培养能够达到的状态。

基于单级CSTR的连续培养优化设计

设计型优化目标函数:细胞产率 $r_X = \mu C_X$

● 增大反应器系统的平均细胞浓度水平。对于单级CSTR采用带浓缩细胞回流CSTR反应器的设计,利用自催化特性。

缺点: 平均营养物水平较比较低。

● 增大平均比生长速率水平,即增大平均营养物浓度水平,采用 多级CSTR串联系统。、

缺点: 串级条件下, 返混小, 不利于细胞生长的自催化特性。

浓缩细胞回流的循环式CSTR

 F_r , c_{Xr} , c_S

CSTR与离心或沉降组合的细胞循环

浓缩细胞回流的循环式CSTR

对于CSTR与离心或沉降组合的细胞循环系统,

● 定义物料循环比:
$$R = \frac{F_r}{F}$$

• 细胞浓缩比:
$$oldsymbol{eta} = rac{c_{Xr}}{c_X} > 1$$

因为,
$$C_{X0}=0$$
, $F_R=RF$, $\frac{F}{V_R}=D$, $C_{Xr}=eta C_X$

CSTR与离心或沉降组合的细胞循环

对CSTR作对细胞的质量衡算。

$$FC_{X0} + F_rC_{Xr} + \mu C_X V_R = (F + F_r)C_X$$

整理得:
$$D = \frac{\mu}{1+R-R\beta} = \frac{\mu}{W}, W < 1$$

循环式CSTR: **D** > μ

浓缩细胞回流的循环式CSTR

对底物作质量衡算,可求得:

$$C_{X} = \frac{Y_{XS}}{W} (C_{S0} - \frac{K_{S}WD}{\mu_{max} - WD})$$

$$C_{S} = \frac{K_{S}WD}{\mu_{max} - WD}$$

$$D_{Cr} = \frac{1}{W} \frac{\mu_{max}C_{S0}}{K_{S} + C_{S0}}$$

$$D_{Cr} = \frac{1}{W}D_{C}$$

$$D_{Cr} > D_{C}$$

由于有浓缩细胞流的循环,临界稀释率得以提高,允许的加料速率 提高。若加料速率维持不变,则所需的反应器有效体积可减小。

华东理工大学生物工程学院

基于单级CSTR的连续培养优化设计

多级CSTR的浓度分布

华东理工大学生物工程学院

单股两级CSTR串联系统 假定两个反应器体积相等, $V_{R1} = V_{R2} = V_R$ 对第一级,可得到与单级CSTR相同的操作特性方程。

对第二级,对细胞作质量衡算

$$V_R \frac{dC_{X2}}{dt} = FC_{X1} - FC_{X2} + \mu_2 C_{X2} V_R$$

稳态时,可得: $\mu_2 = D \frac{c_{X2} - c_{X1}}{c_{X2}} = D (1 - \frac{c_{X1}}{c_{X2}}), D = \frac{F}{V_R}$

第一级的稀释率等于比生长速率: $D=\mu_1$ 。但是由于第二级的平均底物浓度小于第一级。则第二级的比生长速率小于第一级: $\mu_2<\mu_1$ 。因此,对于第二级: $\mu_2< D$ 。

华东理工大学生物工程学院

两级CSTR串联系统与单级CSTR的细胞产率的比较

对两级系统, $r_X = DC_{X2} = \mu_1 C_{X2}$

对单级系统,若作设计型计算与比较,离开它的物料中的底物浓度和细胞浓度应该为 C_{xz} 和 C_{sz} ,则:

$$r_{X}^{'} = D^{'}C_{X2} = \mu^{'}C_{X2} = \mu_{max} \frac{C_{S2}}{K_{S} + C_{S2}} C_{X2} = \mu_{2}C_{X2}$$

由于 $\mu_1>\mu_2$,所以 $r_X>r_X^{'}$ 。

因此,为达到相同的物料处理流量和底物转化率,两级系统比单级 系统所需的空时较小。

连续操作的酶反应

CSTR中的均相酶反应:

对于米氏方程,由CSTR操作特性方程

$$r_{max}\tau_m = (C_{S0} - C_s) + K_m \frac{C_{S0} - C_s}{C_s}$$

$$r_{max}\tau_m = C_{S0}X_S + K_m \frac{X_S}{1 - X_S}$$

对于一定的进料底物浓度和转化率,影响空时的主要变量是用酶量。

连续操作的酶反应

CPFR中的均相酶反应

对于米氏方程,由CPFR的空时计算式,积分可得:

$$r_{max}\tau_{p} = (C_{S0} - C_{s}) + K_{m} \frac{C_{S0}}{C_{S}}$$
 $r_{max}\tau_{p} = C_{S0}X_{s} + K_{m} \frac{1}{1 - X_{S}}$

对于一定的进料底物和转化率,影响空时的主要变量是用酶量。

由于全混流反应器的返混最大,反应器中的物料对进料底物浓度有稀 释作用,也即返混最大。因此,对于米氏反应,CSTR比CPFR空时要大。

CPFR与CSTR的比较

反应器中组分浓度分布决定反应速率

A 产物抑制酶反应器的选择

平推流反应器中的平均产物浓度较低和平均底物浓度较高,有利于获得较高的反应速率。这是对此反应选择连续操作的固定床管式反应器的原因。

B用酶量的比较

对于米氏反应,采用<u>平推流反应器的空时较小</u>,或反应器器体积较小,单位反应器体积的用酶量也较小。

CPFR与CSTR的比较

推导如下:

若F与Cso相同,为达到相同的转化率,由于VR=Ft, rmax=k2E/VR,则

$$\frac{V_{R,CSTR}}{V_{R,CPFR}} = \frac{\tau_m}{\tau_P}$$

代入CSTR和CPFR操作特性方程中,

$$k_2 \frac{E_{CSTR}}{V_{R,CSTR}} \tau_m = C_{S0} X_S + K_m \frac{X_S}{1 - X_S}$$

$$k_2 \frac{E_{CPFR}}{V_{R,CPFR}} \tau_p = C_{S0} X_S + K_m \frac{1}{1 - X_S}$$

比较以上各式,可得:
$$\frac{E_{CSTR}}{E_{CPFR}} = \frac{X_S + \frac{K_m}{C_{S0}} \frac{X_S}{1 - X_S}}{X_S + \frac{K_m}{C_{S0}} \frac{1}{1 - X_S}}$$

CSTR和CPFR用酶量的比

华东理工大学生物工程学院

填充床反应器中的固定化酶反应

对于管式填充床固定化酶反应器作拟均相简化,由CPFR的操作特性方程:

$$\tau_p = -\frac{1}{1-\varepsilon_L} \int_{C_{S0}}^{C_S} \frac{dC_S}{\eta r_s} = \frac{C_{S0}}{1-\varepsilon_L} \int_{0}^{X_S} \frac{dX_S}{\eta r_s}$$

对米氏方程,积分得:

$$r_{max}\eta(1-\varepsilon_L)\tau_p=C_{S0}X_S+K_mln\frac{1}{1-X_S}$$

对于一定进料底物浓度和转化率,影响空时得主要变量是用酶量,与固定化酶颗粒填充密度相关得液相体积分率,固定化方法有关得扩散限制因素。

填充床反应器中的固定化酶反应

对于管式填充床反应器,在计算出空时后,若确定液体表观线速度 u (m/s),则床层高度H为:

$$au_p = \frac{H}{u}$$

其中
$$u = \frac{F}{S}$$

F: 进料的体积流量;

S: 床层的截面积;

例一: 葡萄糖为限制性基质进行呼吸缺陷型酵母突变株的单级连续培养(恒化器法)。请给出存在乙醇抑制和无抑制两种情况下稀释率D与菌体浓度X、基质浓度S与产物浓度P的关系。已知原料中不含产物乙醇(P_{in}=0),基质浓度S_{in}=10 g/L。存在乙醇抑制的生长动力学可用下式表示:

$$\mu = \frac{\mu_{\text{max}} S}{K_S + S} \frac{K_P}{K_P + P}$$

解:存在乙醇抑制时,
$$\mu = \frac{\mu_{\text{max}} S_{out}}{K_S + S_{out}} \frac{K_P}{K_P + P}$$

连续培养稳态下,

$$D = \mu$$

$$S_{out} = \frac{K_S D}{\frac{\mu_{\text{max}} K_P}{K_P + P} - D}$$

$$X = Y_{X/S}(S_{in} - S_{out}) = Y_{X/S} \left(S_{in} - \frac{K_S D}{\frac{\mu_{\max} K_P}{K_P + P} - D} \right)$$

$$P = Y_{P/S}(S_{in} - S_{out}) = Y_{P/S} \left(S_{in} - \frac{K_S D}{\frac{\mu_{\max} K_P}{K_P + P} - D} \right)$$

无乙醇抑制时,

$$\mu = \frac{\mu_{\text{max}} S_{out}}{K_S + S_{out}}$$

连续培养稳态下,

$$D = \mu$$

$$S_{out} = \frac{K_S D}{\mu_{\text{max}} - D}$$

$$X = Y_{X/S} \left(S_{in} - \frac{K_S D}{\mu_{\text{max}} - D} \right)$$

$$P = Y_{P/S} (S_{in} - \frac{K_S D}{\mu_{\text{max}} - D})$$

例二:求青霉素连续发酵的稳定状态下最大菌体生成速率(DX) $_{max}$ 及此时的稀释率 D_{max} ,菌体浓度X和基质浓度 S_{out} 。已知 S_{in} =30 g/L , $Y_{x/s}$ =0.45,菌体生长可用Monod 方程表达, μ_{max} =0.18 h^{-1} , K_s =1.0 g/L。

解: 菌体生长符合 Monod 模型, 连续培养稳态下达到最大菌体生成速度的稀释率

$$D_{\text{max}} = \mu_{\text{max}} \left(1 - \sqrt{\frac{K_S}{K_S + S_{in}}} \right) = 0.18 \times \left(1 - \sqrt{\frac{1.0}{1.0 + 30}} \right) = 0.15(h^{-1})$$

$$S_{out} = \frac{K_S D_{\text{max}}}{\mu_{\text{max}} - D_{\text{max}}} = \frac{1.0 \times 0.15}{0.18 - 0.15} = 5(g/L)$$

$$X = Y_{X/S}(S_{in} - S_{out}) = 0.45 \times (30 - 5) = 11.25(g/L)$$

$$(DX)_{\text{max}} = D_{\text{max}} X_{\text{max}} = 0.15 \times 11.25 = 1.69[g/(L \cdot h)]$$

连续培养的周期逾长,菌种变异的可能性愈大;另外,由于营养成分不断流入反应器中,因此也增加了杂菌污染的几率。减少杂菌污染的途径之一时控制环境条件。

例如:

- 1) 有目的地改变pH、温度、营养成分等;
- 2) 使用高温菌可保证不受常温菌的污染;
- 3) 筛选某些耐特殊条件的菌种也有助于防止杂菌的污染。

连续培养中杂菌污染可分为三种形式,将这三种形式所对应的杂菌记为Y、Z、W。假定在碳源为限制性基质的连续培养系统中,目的微生物为X,有关杂菌的物料衡算式为:

积累量=流入量-流出量+杂菌繁殖量

$$\frac{dX'}{dt} = DX'_{in} - DX'_{out} + \mu X'_{\pm \pm}$$

如果在限制性基质浓度S的条件下,杂菌Y仅能以μγ值得比速率生长,这是Y的积累速率为:

$$\frac{dY}{dt} = \mu_Y Y - DY$$

由于DY> μ_Y Y,所以dY/dt<0,就是说伴随培养过程,Y逐渐被洗出。

对于杂菌Z,如果 μ_z Z>DZ,即是Z的比生长速率大于培养X

的稀释率D

$$\frac{dZ}{dt} = \mu_Z Z - DZ$$

$$\frac{dX}{dt} = \mu_{x}X - DX$$

由于dZ/dt>0,杂菌Z将积累,记过基质浓度S下降至S',出现稀释率等于比生长速率的稳定状态。此时X不可能竞争,因为其比生长速率小于稀释率。在经历某一速率时,微生物X将从容器中洗出。

对于W类杂菌,其繁殖成功与否取决于稀释率。如在D=0.25D_{cri} 时,W不能与X竞争,被冲出。

当D=0.75D_{cri}时, X 将同W一样 具有竞争优势,并能积累, X 将被冲 出。

连续培养中的菌种变异

连续培养为目的的微生物选择了有利的生长环境,提高了竞争的优势,有利于杂菌污染。但是在连续培养过程中,菌种变异问题也是不可轻视的。DNA的复制是一种复杂而精确的过程,虽然出现差错的概率仅为1/10⁶。但因为每毫升反应液中往往有10⁹个细胞,所以变异问题显得很重要。

有人研究了工程菌株连续培养的稳定性问题,多数情况下,只要保持一定的选择压力,工程菌株一样可以维持稳定。

小结

- 连续操作的分类和基本特点;
- 单级恒化器连续培养操作中基本操作方程及其优化;
- 连续培养中的杂菌污染状况分析;

思考题:

- 1生物反应器连续操作分分类?
- 2生物反应器连续操作的优缺点?
- 3 CSTR连续操作的分类?
- 4单级恒化器法连续操作的定义?
- 5 单级恒化器法连续操作过程中,稳态时底物、产物和菌体浓度的表达式?
- 6 稀释率和临界稀释率的定义?
- 7 单级恒化器法连续操作在稳态条件下的最大细胞生成速率 (DX)_{max}和稀释率D_{max}的表达式。

谢谢!