## Lista de exercícios de Introdução à Redes Booleanas **Probabilisticas**

Gustavo Estrela de Matos

6 de outubro de 2017

## Exercício 1. Dada a rede booleana abaixo:



(1) Monte a matriz de interação.

 $\mathbf{R}$ :

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

(2) Para cada gene, encontre sua expressão booleana

 $\mathbf{R}$ :

Para 
$$x_1$$
:
$$\begin{array}{c|ccccc}
x_1(t) & x_3(t) & x_1(t+1) \\
\hline
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}$$
Portanto,  $x_1(t+1) = x_1(t)\bar{x}_3(t)$ 

|              | $x_2(t)$ | $x_1(t)$ | $x_4(t)$ | $x_2(t+1)$ |                                                       |
|--------------|----------|----------|----------|------------|-------------------------------------------------------|
|              | 0        | 0        | 0        | 0          |                                                       |
|              | 0        | 0        | 1        | 0          |                                                       |
|              | 0        | 1        | 0        | 1          |                                                       |
| Para $x_2$ : | 0        | 1        | 1        | 0          | Portanto, $x_2(t+1) = x_1(t)\bar{x}_2(t)\bar{x}_4(t)$ |
|              | 1        | 0        | 0        | 1          | $+ \bar{x}_1(t)x_2(t)\bar{x}_4(t)$                    |
|              | 1        | 0        | 1        | 0          | $+ x_1(t)x_2(t)\bar{x}_4(t)$                          |
|              | 1        | 1        | 0        | 1          |                                                       |
|              | 1        | 1        | 1        | 1          | $+ x_1(t)x_2(t)x_4(t)$                                |
|              |          |          |          |            |                                                       |

Para 
$$x_4$$
:  $\begin{array}{c|cccc} x_4(t) & x_3(t) & x_4(t+1) \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$  Portanto,  $x_4(t+1) = x_2(t) + x_4(t)$