P1 Chapter 4: Transforming Graphs

Quartic Graphs

Recap

If we sketched $y = (x - a)(x - b)^2(x - c)^3$ what happens on the x-axis at:

x = a:

,

x = b:

7

x = c:

7

Recap

If we sketched $y = (x - a)(x - b)^2(x - c)^3$ what happens on the x-axis at:

$$x = a$$
: The line **crosses** the axis.

$$x = b$$
: The line **touches** the axis.

x = c: **Point of inflection** on the axis.

Quartics |

If you understand the principle of sketching polynomials in general, then sketching quartics shouldn't feel like anything new.

Recall that if the x^4 term is positive, the 'tails' both go upwards, otherwise downwards.

Sketch the curve with equation

$$y = x(x + 1)(x - 2)(x - 3)$$

Shape: Tails upwards

Roots: -1, 0, 2, 3

y-intercept:

Sketch the curve with equation

$$y = (x - 2)^2(x + 1)(3 - x)$$

Shape: **Tails downwards**

Roots: -1, 2, 3

2 is repeated.

y-intercept: $4 \times 1 \times 3 = 12$

Quartics

Sketch the curve with equation $y = (x + 1)(x - 1)^3$

-1 root only appears once so line crosses at x=-1 +1 root triple repeated so point of inflection at x=1

Sketch the curve with equation $y = (x - 2)^4$

2 is a quadruple repeated root! Because the line effectively crosses the axis 4 times all at -2, it ends up in the opposite direction, and hence looks like a 'touch' point.

Test Your Understanding

Sketch the curve with equation $y = x^2(x+1)(x-1)$

Sketch the curve with equation
$$y = -(x + 1)(x - 3)^3$$

Test Your Understanding

Sketch the curve with equation $y = x^2(x+1)(x-1)$

Sketch the curve with equation $y = -(x + 1)(x - 3)^3$

Exercise 4.2

Pearson Pure Mathematics Year 1/AS Page 27

Extension

- a. Sketch $y = x^4 6x^2 + 9$
- b. For what values of b does the equation $y = x^4 6x^2 + b$ have the following number of <u>distinct</u> roots (i) 0, (ii) 1, (iii) 2, (iv) 3, (v) 4.

b) By changing *b*, we shift the graph up and down. Then we can see that:

)	3
i) ii)	?
ii)	?
v)	· .
/)	?

Exercise 4.2

Pearson Pure Mathematics Year 1/AS Page 27

Extension

- a. Sketch $y = x^4 6x^2 + 9$
- b. For what values of b does the equation $y = x^4 6x^2 + b$ have the following number of <u>distinct</u> roots (i) 0, (ii) 1, (iii) 2, (iv) 3, (v) 4.
- a) By factorising, $y = (x^2 3)^2$. This is a quartic, where y is always positive, and has repeated roots at $x = \pm \sqrt{3}$:

- b) By changing b, we shift the graph up and down. Then we can see that:
 - i) 0 roots: When b > 9
 - ii) 1 root: Not possible.
 - iii) 2 roots: When b = 9 or b < 0
 - iv) 3 roots: b = 0
 - v) 4 roots: 0 < b < 9

Exercise 1.1

Pearson Pure Mathematics Year 1/AS Pages 1

Homework Exercise

1 Sketch the following curves and indicate clearly the points of intersection with the axes:

a
$$y = (x+1)(x+2)(x+3)(x+4)$$
 b $y = x(x-1)(x+3)(x-2)$

b
$$y = x(x-1)(x+3)(x-2)$$

$$\mathbf{c} \quad y = x(x+1)^2(x+2)^2$$

c
$$y = x(x+1)^2(x+2)$$
 d $y = (2x-1)(x+2)(x-1)(x-2)$

e
$$y = x^2(4x + 1)(4x - 1)$$
 f $y = -(x - 4)^2(x - 2)^2$

$$\mathbf{f} \quad y = -(x-4)^2(x-2)^2$$

g
$$y = (x-3)^2(x+1)^2$$
 h $y = (x+2)^3(x-3)$

h
$$y = (x+2)^3(x-3)$$

i
$$y = -(2x-1)^3(x+5)$$
 j $y = (x+4)^4$

$$y = (x+4)^4$$

In part f the coefficient of x^4 will be negative.

2 Sketch the following curves and indicate clearly the points of intersection with the axes:

a
$$y = (x+2)(x-1)(x^2-3x+2)$$
 b $y = (x+3)^2(x^2-5x+6)$

b
$$y = (x+3)^2(x^2-5x+6)$$

$$\mathbf{c} \quad y = (x-4)^2(x^2-11x+30)$$

c
$$y = (x-4)^2(x^2-11x+30)$$
 d $y = (x^2-4x-32)(x^2+5x-36)$

Hint 1 Factorise the quadratic factor first.

- 3 The graph of $y = x^4 + bx^3 + cx^2 + dx + e$ is shown opposite, where b, c, d and e are real constants.
 - a Find the coordinates of point P.

(2 marks)

b Find the values of b, c, d and e.

(3 marks)

4 Sketch the graph of $y = (x + 5)(x - 4)(x^2 + 5x + 14)$.

(3 marks)

Problem-solving

Consider the discriminant of the quadratic factor.

Homework Exercise

Challenge

The graph of $y = ax^4 + bx^3 + cx^2 + dx + e$ is shown, where a, b, c, d and e are real constants.

Find the values of a, b, c, d and e.

Homework Answers

Homework Answers

2 8

b

 \mathbf{c}

d

b
$$b = -2$$
, $c = -7$, $d = 8$, $e = 12$

4

Challenge

$$a = \frac{1}{3}$$
, $b = -\frac{4}{3}$, $c = -\frac{2}{3}$, $d = 4$, $e = 3$