Linear Algebra Done Right 3F

1. 证明:线性泛函不是满射就是零映射.

Proof.

设 $\phi \in \mathcal{L}(V, \mathbb{F})$.

若存在 $v \in V$ 使得 $\phi(v) \neq 0$,那么对于任意 $f \in \mathbb{F}$ 都有存在 $\lambda := \frac{f}{\phi(v)} \in \mathbb{F}$ 使得 $\phi(\lambda v) = f$,于是 ϕ 是满射. 若对于任意 $v \in V$ 都有 $\phi(v) = 0$,那么显然 ϕ 是零映射.

2. 给出 $\mathbb{R}^{[0,1]}$ 上的三个不同的线性泛函.

Solution.

 $\phi_1 : \forall f \in \mathbb{R}^{[0,1]}, \phi_1(f) = 0.$ $\phi_2 : \forall f \in \mathbb{R}^{[0,1]}, \phi_2(f) = f(0).$ $\phi_3 : \forall f \in \mathbb{R}^{[0,1]}, \phi_3(f) = f(1).$

3. 设V是有限维的,且 $v \in V(v \neq \mathbf{0})$.证明:存在 $\phi \in V'$ 使得 $\phi(v) = 1$.

Proof.

将v扩展为V的一组基 v_1, \dots, v_m ,其中 $v_1 = v$.这基的对偶基 ϕ_1, \dots, ϕ_m 就满足 $\phi_1(v) = 1$.

4. 设V是有限维的,且U是V的子空间, $U \neq V$.证明:存在 $\phi \in V'$ 使得 $\phi(u) = 0$ 对任意 $u \in U$ 成立且 $\phi \neq 0$.

Proof.

设U的一组基 u_1, \dots, u_m ,将其扩展为V的一组基 $u_1, \dots, u_m, v_1, \dots, v_n$.由于 $U \neq V$,于是 $n \geq 1$. 选取这组基的对偶基 $\phi_1, \dots, \phi_{m+n}$:令 $\phi = \phi_{m+1}$,于是对于任意 $u \in U$ 都有

$$\phi(u) = \phi(a_1u_1 + \dots + a_mu_m) = 0$$

5. 设 $T \in \mathcal{L}(V, W), w_1, \dots, w_m$ 是range T的基.于是对于任意 $v \in V$,都存在唯一的 $\phi_1(v), \dots, \phi_m(v)$ 使得

$$Tv = \phi_1(v)w_1 + \dots + \phi_m(v)w_m$$

从而定义了从V到 \mathbb{F} 的函数 ϕ_1, \dots, ϕ_m .证明函数 ϕ_1, \dots, ϕ_m 中的每个都是V上的线性泛函.

我们只需证明 ϕ_1, \dots, ϕ_m 是V到 \mathbb{F} 的线性映射.

首先, $T(\mathbf{0}) = \mathbf{0}$,又 w_1, \dots, w_m 线性无关,于是 $\phi_k(\mathbf{0}) = 0$ 对于任意 $1 \le k \le m$ 均成立.

考虑 $Tv_k = w_k, 1 \le k \le m$,各 v_k 自然是线性无关的.根据题设, $\phi_k(v_k) = 1$,其余 $\phi_i(v_k) = 0$.

对于任意 $u, v \in V$ 有T(u + v) = Tu + Tv.两边展开有

$$\sum_{k=1}^{m} \phi_k(u+v)w_k = \sum_{k=1}^{m} \phi_k(u)w_k + \sum_{k=1}^{m} \phi_k(v)w_k = \sum_{k=1}^{m} (\phi_k(u) + \phi_k(v))w_k$$

由于 w_1, \dots, w_m 线性无关,因此表出T(u+v)的方式是唯一的.对比系数可得 $\phi_k(u+v) = \phi_k(u) + \phi_k(v)$,于是各 ϕ_k 满足可加性.

对于任意 $v \in V$ 和任意 $\lambda \in \mathbb{F}$ 都有 $T(\lambda v) = \lambda Tv$.两边展开有

$$\sum_{k=1}^{m} \phi_k(\lambda v) w_k = \lambda \sum_{k=1}^{m} \phi_k(v) w_k$$

同理,对比系数可知 $\phi_k(\lambda v) = \lambda \phi_k(v)$,于是各 ϕ_k 满足齐次性.

综上可知 ϕ_1, \dots, ϕ_m 是V上的线性泛函,命题得证.

6. 设 $\phi, \beta \in V'$.证明:null $\phi \subseteq \text{null } \beta$ 当且仅当存在 $c \in \mathbb{F}$ 使得 $\beta = c\phi$.

Proof.

 \Rightarrow :令c=0即可.此时 $\beta=\mathbf{0}$,null $\beta=V$,必然有null $\phi\subseteq$ null β .

 \Leftarrow :对于任意 $v \in \text{null } \phi$,都有 $\beta(v) = c\phi(v) = c \cdot 0 = 0$,于是 $v \in \text{null } \beta$,因此 $\text{null } \phi \subseteq \text{null } \beta$.

7. 设 V_1, \dots, V_m 是向量空间.证明 $(V_1 \times \dots \times V_m)' = V_1' \times \dots \times V_m'$ 同构.

Proof.

在**3E.3.**中令 $W = \mathbb{F}$ 即得证.

8. 设 v_1, \dots, v_n 是V的基, ϕ_1, \dots, ϕ_n 是V'的对偶基.定义 $\Gamma: V \to \mathbb{F}^n$ 和 $\Lambda: \mathbb{F}^n \to V$ 为

$$\Gamma(v) = (\phi_1(v), \dots, \phi_n(v))$$
 $\Lambda(a_1, \dots, a_n) = a_1v_1 + \dots + a_nv_n$

试证明 Γ 和 Λ 互为彼此的逆.

对于任意 $v \in V$ 有

$$(\Lambda \circ \Gamma)(v) = \Lambda(\Gamma(v)) = \phi_1(v)v_1 + \dots + \phi_n(v)v_n = v$$

于是 $\Lambda\Gamma = I$.对于任意 $(c_1, \cdots, c_n) \in \mathbb{F}^n$ 有

$$(\Gamma \circ \Lambda)(c_1, \dots, c_n) = \Gamma(\Lambda(c_1, \dots, c_n)) = \Gamma(c_1v_1 + \dots + c_nv_n) = (c_1, \dots, c_n)$$

于是 $\Gamma\Lambda = I$.于是两者互为对方的逆.

9. 设 $m \in \mathbb{N}^*$,证明 $\mathcal{P}_m(\mathbb{R})$ 的基 $1, x, \cdots, x^m$ 的对偶基是 ϕ_0, \cdots, ϕ_m . 其中对任意 $0 \le k \le m$ 和任意 $p \in \mathcal{P}_m(\mathbb{R})$ 有 $\phi_k(p) = \frac{p^{(k)}(0)}{k!}$.

Proof.

考虑 $p \in \mathcal{P}_m(\mathbb{R})$ 在x = 0处的m阶泰勒多项式和其Lagrange余项.

$$p(x) = \sum_{k=0}^{m} \frac{p^{(k)}(0)x^k}{k!} + \frac{p^{(m+1)}(\xi)x^{m+1}}{(m+1)!}$$

考虑到p的次数最高为m,于是必然有 $p^{(k+1)}(\xi) = 0$.于是上式可以写为

$$p(x) = \sum_{k=0}^{m} \frac{p^{(k)}(0)x^k}{k!}$$

$$p(x) = \phi_0(p)p_0 + \dots + \phi_m(p)p_m$$

干是命题得证

- 10. 设 $m \in \mathbb{N}^*$.
- (1) 证明 $1, x 5, \dots, (x 5)^m$ 是 $\mathcal{P}_m(\mathbb{R})$ 的一组基.
- (2) 写出上面这组基的对偶基.

Solution.

(1)
$$\[\mathrm{id} p_k = (x-5)^k, 0 \leqslant k \leqslant m.$$
设一组标量 $\[c_0, \cdots, c_m \]$ 使得

$$\mathbf{0} = c_0 p_0 + \dots + c_m p_m$$

当且仅当 $c_0 = \cdots = c_m = 0$ 时上式成立.否则,根据代数基本定理,至多存在m个根使得右边为0,这并不是零映射.

于是 p_0, \dots, p_m 是长度为m+1的线性无关组.

又 $\mathcal{P}_m(\mathbb{R})$ 的标准基 $1, x, \dots, x^m$ 长度为m+1.于是 p_0, \dots, p_m 是 $\mathcal{P}_m(\mathbb{R})$ 的一组基.

- (2) 这基的对偶基为 $\phi_0, \dots, \phi_m,$ 满足 $\phi_k(p) = \frac{p^{(k)}(5)}{k!}.$ 证明方法与**9.**类似.
- **11.** 设 v_1, \dots, v_n 是V的基, ϕ_1, \dots, ϕ_m 是V'的相应的对偶基.设 $\psi \in V'$,证明

$$\psi = \psi(v_1)\phi_1 + \dots + \psi(v_n)\phi_n$$

Proof.

对于任意 $v := b_1 v_1 + \cdots + b_n v_n \in V$ 有 $\phi_k(v) = b_k$.于是

$$\psi(v) = \psi(b_1v_1 + \dots + b_nv_n)$$

$$= b_1\psi(v_1) + \dots + b_n\psi(v_n)$$

$$= \psi(v_1)\phi_1(v) + \dots + \psi(v_n)\phi_n(v)$$

$$= (\psi(v_1)\phi_1 + \dots + \psi(v_n)\phi_n)(v)$$

于是 $\psi = \psi(v_1)\phi_1 + \dots + \psi(v_n)\phi_n$,命题得证.

- **12.** 设 $S, T \in \mathcal{L}(V, W)$.
- (1) 证明(S+T)' = S' + T'.
- (2) 证明 $(\lambda T)' = \lambda T'$ 对任意 $\lambda \in \mathbb{F}$ 都成立.

Proof.

(1) 对任意 $\phi \in W'$,有

$$(S+T)'(\phi) = \phi \circ (S+T) = \phi \circ S + \phi \circ T = S'(\phi) + T'(\phi) = (S'+T')(\phi)$$

于是(S+T)' = S' + T'.

(2) 对任意 $\phi \in W'$ 和任意 $\lambda \in \mathbb{F}$ 有

$$(\lambda T)'(\phi) = \phi \circ (\lambda T) = \lambda (\phi \circ T) = \lambda T'(\phi)$$

13. 证明V上的恒等算子的对偶映射是V'上的恒等算子.

Proof.

设I ∈ $\mathcal{L}(V)$ 是V上的恒等映射.

对于任意 $\phi \in V'$ 和任意 $v \in V$,都有

$$(I'(\phi))(v) = (\phi \circ I)(v) = \phi(I(v)) = \phi(v)$$

这表明 $I'(\phi) = \phi$,于是I'是V'上的恒等映射.命题得证.

- **14.** 定义 $T: \mathbb{R}^3 \to \mathbb{R}^2$ 为T(x, y, z) = (4z + 5y + 6z, 7x + 8y + 9z). 设 ϕ_1, ϕ_2 为 \mathbb{R}^2 的标准基的对偶基, ψ_1, ψ_2, ψ_3 为 \mathbb{R}^3 的标准基的对偶基.
- (1) 描述 $T'(\phi_1), T'(\phi_2)$ 这两个线性泛函.
- (2) 将 $T'(\phi_1)$, $T'(\phi_2)$ 分别写成 ψ_1, ψ_2, ψ_3 的线性组合.

Solution.

- (1) $T'(\phi_1): (x, y, z) \mapsto 4x + 5y + 6z, T'(\phi_2): (x, y, z) \mapsto 7x + 8y + 9z.$
- (2) $T'(\phi_1) = 4\psi_1 + 5\psi_2 + 6\psi_3, T'(\phi_2) = 7\psi_1 + 8\psi_2 + 9\psi_3.$
- **15.** 定义 $T: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ 为 $(Tp)(x) = x^2p(x) + p''(x)$ 对任意 $x \in \mathbb{R}$ 成立.
- (1) 设 $\phi \in \mathcal{P}(\mathbb{R})'$ 定义为 $\phi(p) = p'(4).$ 描述 $\mathcal{P}(\mathbb{R})$ 上的线性泛函 $T'(\phi)$.
- (2) 设 $\phi \in \mathcal{P}(\mathbb{R})'$ 定义为 $\phi(p) = \int_0^1 p dx$.计算 $(T'(\phi))(x^3)$.

Solution.

(1) 对任意 $p(x) \in \mathcal{P}(\mathbb{R})$ 有

$$(T'(\phi))(p(x)) = (\phi \circ T)(p(x)) = \phi(x^2p(x) + p''(x)) = (x^2p + p'')'(4) = 8p(4) + 16p'(4) + p'''(4)$$

于是 $T'(\phi)$ 就将任意的p映射到8p(4) + 16p'(4) + p'''(4).

(2) 我们有

$$(T'(\phi))(x^3) = \phi(T(x^3)) = \int_0^1 (x^5 + 6x) dx = \frac{19}{6}$$

16. 设W是有限维的, $T \in \mathcal{L}(V, W)$.证明 $T = \mathbf{0}$ 当且仅当 $T' = \mathbf{0}$.

Proof.

 \Rightarrow :对任意 $\phi \in W'$ 和任意 $v \in V$,有 $(T'(\phi))(v) = (\phi \circ T)(v) = \phi(\mathbf{0}) = \mathbf{0}$,于是 $T' = \mathbf{0}$.

 \Leftarrow :对任意 $\phi \in W'$ 和任意 $v \in V$,有 $\phi(T(v)) = (T'(\phi))(v) = \mathbf{0}(v) = \mathbf{0}$,于是 $Tv = \mathbf{0}$,即 $T = \mathbf{0}$.

17. 设V和W是有限维的, $T \in \mathcal{L}(V,W)$.证明T可逆当且仅当T'可逆.

Proof.

由于T可逆,于是 $\dim V = \dim W = \dim V' = \dim W'$.从而

T可逆 \Leftrightarrow T是单射 \Leftrightarrow T'是满射 \Leftrightarrow T'可逆

18. 设V和W是有限维的,证明:将 $T \in \mathcal{L}(V,W)$ 映射到 $T' \in \mathcal{L}(W',V')$ 的映射是 $\mathcal{L}(V,W)$ 到 $\mathcal{L}(W',V')$ 的同构.

Proof.

设 $\Phi: T \mapsto T'$.据**12.**可知 Φ 是线性的,据**16.**可知null $\Phi = \mathbf{0}$,故 Φ 是单射.

又dim $\mathcal{L}(V, W) = (\dim V)(\dim W) = (\dim W')(\dim V') = \dim \mathcal{L}(W', V')$,于是Φ是这两个空间的同构映射.

19. 设 $U \subseteq V$,解释为何 $U^0 = \{ \phi \in V' : U \subseteq \text{null } \phi \}$.

Proof.

我们知道 U^0 的定义是 $\phi(u) = \mathbf{0}$ 对所有 $u \in U$ 成立.这只要使 $U \subseteq \text{null } \phi$ 即可.

20. 设*V*是有限维的,且*U*是*V*的子空间.证明: $U = \{v \in V : \phi(v) = 0$ 对任意 $\phi \in U^0$ 都成立 $\}$.

设 $W = \{v \in V : \phi(v) = 0$ 对任意 $\phi \in U^0$ 都成立 $\}$.

我们知道对任意 $\phi \in U^0$ 和任意 $u \in U$ 有 $\phi(u) = 0$,于是 $U \subseteq W$.

设 u_1, \dots, u_m 是U的一组基,将其扩展为V的一组基 $u_1, \dots, u_m, v_1, \dots, v_n$.令 $\phi \in V'$ 满足

$$\phi(u_1) = \dots = \phi(u_m) = 0, \phi(v_1) = \dots = \phi(v_n) = 1$$

于是对于任意 $u \in U$ 有 $\phi(u) = 0$.即 $\phi \in U^0$.

而对于任意 $v: a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_nv_n \in V \perp v \notin U$ 有

$$\phi(v) = \sum_{i=1}^{n} b_i \neq 0$$

即 $v \notin W$,从而 $W \subseteq U$.综上可知U = W.

- **21.** 设V是有限维的,且U和W是V的子空间.
- (1) 证明: $W^0 \subset U^0$ 当且仅当 $U \subset W$.
- (2) 证明: $W^0 = U^0$ 当且仅当U = W.

Proof.

设 $A_U = \{v \in V : \phi(v) = \mathbf{0}$ 对任意 $\phi \in U^0$ 都成立 $\}$.

- (1) \Rightarrow : $W^0 \subseteq U^0$ 即任意 $\phi \in W^0$ 有 $\phi \in U^0$,于是任意 $v \in A_U$ 有 $\phi(v) = \mathbf{0}$,即 $\phi \in A_W$. 这表明 $A_U \subseteq A_W$,结合**20.**即 $U \subseteq W$. \Leftarrow :对于任意 $\phi \in W^0$ 和任意 $v \in U \subseteq W$ 有 $\phi(v) = \mathbf{0}$,即 $\phi \in U^0$.于是 $W^0 \subseteq U^0$.
- (2) 我们有

$$W^0 = U^0 \Leftrightarrow W^0 \subseteq U^0, U^0 \subseteq W^0 \Leftrightarrow U \subseteq W, W \subseteq U \Leftrightarrow U = W$$

- **22.** 设V是有限维的,且U和W是V的子空间.
- (1) 证明: $(U+W)^0 = U^0 \cap W^0$.
- (2) 证明: $(U \cap W)^0 = U^0 + W^0$.

Proof.

(1) 假定 $\phi \in (U+W)^0$,于是对于任意 $u \in U, w \in W$ 有

$$\phi(u+w) = \phi(u) + \phi(w) = 0$$

于是对任意 $u \in U, w \in W$ 有 $\phi(u) = \phi(w) = 0$,即 $\phi \in U^0$ 且 $\phi \in W^0$,即 $(U + W)^0 \in U^0 \cap W^0$. 对于任意 $\psi \in V'$ 满足 $\psi \in U^0$ 且 $\psi \in W^0$.对于任意 $v \in U + W$,可写作v = u + w,其中 $u \in U, w \in W$.于是

$$\psi(v) = \psi(u+w) = \psi(u) + \psi(w) = 0 + 0 = 0$$

即 $\psi \in (U+W)^0$,从而 $U^0 + W^0 \subseteq (U+W)^0$.

综上可知 $(U+W)^0 = U^0 \cap W^0$.

- (2) 假定 $\phi \in (U \cap W)^0$.设 $\alpha \in U^0, \beta \in W^0$ 满足
- **23.** 设V是有限维的, $\phi_1, \dots, \phi_m \in V'$.证明下面三个集合彼此相等.
- (1) span(ϕ_1, \dots, ϕ_m).
- (2) $((\text{null }\phi_1) \cap \cdots \cap (\text{null }\phi_m))^0$.
- (3) $\{\phi \in V' : (\text{null } \phi_1) \cap \cdots \cap (\text{null } \phi_m) \subseteq \text{null } \phi\}$

Proof.

据19.可知(2)与(3)相等.

根据22.可知

$$((\text{null } \phi_1) \cap \cdots \cap (\text{null } \phi_m))^0 = (\text{null } \phi_1)^0 + ((\text{null } \phi_2) \cap \cdots \cap (\text{null } \phi_m))^0$$

$$= \operatorname{span}(\phi_1) + ((\text{null } \phi_2) \cap \cdots \cap (\text{null } \phi_m))^0$$

反复递推可知

$$((\text{null }\phi_1)\cap\cdots\cap(\text{null }\phi_m))^0=\operatorname{span}(\phi_1)+\cdots+\operatorname{span}(\phi_m)=\operatorname{span}(\phi_1,\cdots,\phi_m)$$

即(1)与(2)相等.于是题中的三个集合相等.

- **24.** 设V是有限维的,且 $v_1, \dots, v_m \in V$.定义 $\Gamma \in \mathcal{L}(V', \mathbb{F}^m)$ 为 $\Gamma(\phi) = (\phi(v_1), \dots, \phi(v_m))$.
- (1) 证明 v_1, \dots, v_m 张成V当且仅当 Γ 是单射.
- (2) 证明 v_1, \dots, v_m 线性无关当且仅当 Γ 是满射.

Proof.

 $\diamond e_1, \cdots, e_m$ 是 \mathbb{F}^m 的标准基, $\diamond \psi_1, \cdots, \psi_m$ 是这标准基的对偶基. $\diamond \Psi \in \mathcal{L}(\mathbb{F}^m, (\mathbb{F}^m)')$ 为 $\Psi(e_k) = \psi_k.$ $\diamond T \in \mathcal{L}(\mathbb{F}^m, V)$ 为 $Te_k = v_k.$

对于任意 $\phi \in V'$ 和任意 $1 \leq k \leq m$ 有

$$(T'(\phi))(e_k) = \phi(Te_k) = \phi(v_k)$$

$$= \sum_{j=1}^m \phi(v_j)\psi_j(e_k)$$

$$= [\Psi(\phi(v_1), \dots, \phi(v_m))](e_k)$$

$$= [\Psi(\Gamma(\phi))](e_k)$$

于是 $\Psi \circ \Gamma = T'$.由于 Ψ 是可逆的,于是T'和 Γ 的单射和满射性互相等价.

(1) 我们有

$$V = \text{span}(v_1, \dots, v_m) \Leftrightarrow T$$
是满射 $\Leftrightarrow T'$ 是单射 $\Leftrightarrow \Gamma$ 是单射

(2) 我们有

$$v_1, \dots, v_m$$
线性无关 $\Leftrightarrow T$ 是单射 $\Leftrightarrow T'$ 是满射 $\Leftrightarrow \Gamma$ 是满射

- **25.** 设V是有限维的,且 $\phi_1, \dots, \phi_m \in V'$.定义 $\Gamma \in \mathcal{L}(V, \mathbb{F}^m)$ 为 $\Gamma(v) = (\phi_1(v), \dots, \phi_m(v))$.
- (1) 证明 ϕ_1, \dots, ϕ_m 张成V'当且仅当 Γ 是单射.
- (2) 证明 ϕ_1, \dots, ϕ_m 线性无关当且仅当 Γ 是满射.

Proof.

令 e_1, \cdots, e_m 是 \mathbb{F}^m 的标准基,令 ψ_1, \cdots, ψ_m 是这标准基的对偶基.令 $\Psi \in \mathcal{L}(\mathbb{F}^m, (\mathbb{F}^m)')$ 为 $\Psi(e_k) = \psi_k$. 对于任意 $(x_1, \cdots, x_m) \in \mathbb{F}^m$ 和任意 $v \in V$ 有

$$[\Gamma'(\Psi(x_1,\dots,x_m))](v) = \Psi(x_1,\dots,x_m) \circ \Gamma(v)$$

$$= (x_1\psi_1 + \dots + x_m\psi_m)(\phi_1(v),\dots,\phi_m(v))$$

$$= x_1\phi_1(v) + \dots + x_m\phi_m(v)$$

$$= (x_1\phi_1 + \dots + x_m\phi_m)(v)$$

这表明 $\Gamma' \circ \Psi : \mathbb{F}^m \to V'$ 由上式给出.由于 Ψ 是可逆的,于是 $\Gamma' \circ \Psi$ 和 Γ' 的单射和满射性互相等价.

(1) 我们有

$$V' = \operatorname{span}(\phi_1, \cdots, \phi_m) \Leftrightarrow \Gamma' \circ \Psi$$
是满射 $\Leftrightarrow \Gamma'$ 是单射 $\Leftrightarrow \Gamma$ 是单射

(2) 我们有

 ϕ_1, \dots, ϕ_m 线性无关 \Leftrightarrow $\Gamma' \circ \Psi$ 是单射 \Leftrightarrow Γ' 是满射 \Leftrightarrow Γ 是满射

26. 设V是有限维的,且 Ω 是V'的子空间.证明: $\Omega = \{v \in V : \phi(v) = 0$ 对任意 $\phi \in \Omega$ 成立 $\}^0$.

Proof.

设 $U = \{v \in V : \phi(v) = 0$ 对任意 $\phi \in \Omega$ 成立 $\}$.设 ϕ_1, \dots, ϕ_m 为 Ω 的一组基.

根据U的定义可知 $U \subseteq ((\text{null } \phi_1) \cap \cdots \cap (\text{null } \phi_m)).$

现在,对于任意 $v \in ((\text{null } \phi_1) \cap \cdots \cap (\text{null } \phi_m))$ 和给定的 $\phi \in \Omega$ 有

$$\phi(v) = (a_1\phi_1 + \dots + a_m\phi_m)(v) = a_1\phi_1(v) + \dots + a_m\phi_m(v) = 0$$

这表明 $v \in U$.于是 $((\text{null } \phi_1) \cap \cdots \cap (\text{null } \phi_m)) \subseteq U$.根据**23.**可知

$$U^0 = ((\text{null } \phi_1) \cap \cdots \cap (\text{null } \phi_m))^0 = \text{span}(\phi_1, \cdots, \phi_m) = \Omega$$

命题得证.

27. 设 $T \in \mathcal{L}(\mathcal{P}_5(\mathbb{R}))$ 且 $\mathrm{null}\ T' = \mathrm{span}(\phi)$,其中 $\phi \in (\mathcal{P}(\mathbb{R}))'$,定义为 $\phi(p) = p(8)$.试证明

range
$$T = \{ p \in \mathcal{P}_5(\mathbb{R}) : p(8) = 0 \}$$

Proof.

据**20.**有range $T = \{ p \in \mathcal{P}_5(\mathbb{R}) : \psi(p) = 0$ 对任意 $\psi \in (\text{range } T)^0$ 成立 $\}$.

又(range T)⁰ = null T' = span(ϕ),于是

 $\psi(p) = 0$ 对任意 $\psi \in (\text{range } T)^0$ 成立 $\Leftrightarrow \psi(p) = 0$ 对任意 $\psi \in \text{span}(\phi)$ 成立

$$\Leftrightarrow \lambda \phi(p) = 0$$
对任意 $\lambda \in \mathbb{F}$ 成立

$$\Leftrightarrow \phi(p) = 0 \Leftrightarrow p(8) = 0$$

于是range $T = \{ p \in \mathcal{P}_5(\mathbb{R}) : p(8) = 0 \}$.命题得证.

28. 设V是有限维的,且 $\phi_1, \dots, \phi_m \in V'$ 线性无关.证明dim ((null ϕ_1) $\cap \dots \cap$ (null ϕ_m)) = (dim V) - m.

Proof.

 $\diamondsuit U = (\text{null } \phi_1) \cap \cdots \cap (\text{null } \phi_m).$

据**23.**可知span
$$(\phi_1, \dots, \phi_m) = U^0$$
.又有dim $V = \dim U + \dim U^0$.于是

$$\dim U = \dim V - \dim U^{0}$$

$$= \dim V - \dim (\operatorname{span}(\phi_{1}, \dots, \phi_{m}))$$

$$= \dim V - m$$

于是命题得证.

- **29.** 设V和W是有限维的,且 $T \in \mathcal{L}(V,W)$.
- (1) 证明:如果 $\phi \in W'$ 且null $T' = \text{span}(\phi)$,那么range $T = \text{null } \phi$.
- (2) 证明:如果 $\psi \in V'$ 且range $T' = \text{span}(\psi)$,那么null $T = \text{null } \psi$.

Proof.

(1) 据20.有range $T = \{ w \in W : \psi(w) = 0$ 对任意 $\psi \in (\text{range } T)^0$ 成立 $\}$.

又(range
$$T$$
)⁰ = null T' = span(ϕ), 于是

$$\psi(w) = 0$$
对任意 $\psi \in (\text{range } T)^0$ 成立 $\Leftrightarrow \psi(w) = 0$ 对任意 $\psi \in \text{span}(\phi)$ 成立

$$\Leftrightarrow \lambda \phi(w) = 0$$
对任意 $\lambda \in \mathbb{F}$ 成立

$$\Leftrightarrow \phi(w) = 0 \Leftrightarrow w \in \text{null } \phi$$

于是range $T = \text{null } \phi$,命题得证.

(2) 据**20.**有null $T = \{v \in V : \phi(v) = 0$ 对任意 $\phi \in (\text{null } T)^0$ 成立 $\}$.

又(null
$$T$$
)⁰ = range T' = span(ψ),于是

$$\psi(v) = 0$$
对任意 $\phi \in (\text{null } T)^0$ 成立 $\Leftrightarrow \phi(v) = 0$ 对任意 $\phi \in \text{span}(\psi)$ 成立

$$\Leftrightarrow \lambda \psi(v) = 0$$
对任意 $\lambda \in \mathbb{F}$ 成立

$$\Leftrightarrow \psi(v) = 0 \Leftrightarrow v \in \text{null } \psi$$

于是null $T = \text{null } \psi$,命题得证.

30. 设V是有限维的,且 ϕ_1, \dots, ϕ_m 是V'的一个基.试证明存在V的基使得其对偶基为 ϕ_1, \dots, ϕ_m .

Proof.

$$\diamondsuit U_k = \bigcap_{j \in \{1, \dots, m\} \setminus \{k\}} (\text{null } \phi_j).$$

据**28.**可知dim
$$U_k = \dim V - (m-1) = 1.$$
又 $\bigcap_{j=1}^m (\text{null } \phi_j) = \{\mathbf{0}\}.$

于是一定存在 $u_k \in U_k$ 使得 $u_k \notin \text{null } \phi_k, \mathbb{P} \phi_k(u_k) \neq 0.$ 定义 $v_k = \frac{u_k}{\phi_k(u_k)}, \mathbb{E} \text{ x_k 可以作为} U_k$ 的基.

设 $v = a_1v_1 + \cdots + a_mv_m \in V$,于是 $\phi_k(v) = a_k$.

这表明 $v = \mathbf{0}$ 当且仅当 $a_1 = \cdots = a_m = 0$,于是 v_1, \cdots, v_m 线性无关,又其长度为m,于是这向量组是V的基.

对于任意 $1 \le j \le m$ 且 $j \ne m$ 有

$$\begin{cases} \phi_k(v_k) = 1 \\ \phi_j(v_k) = 0, \forall j \neq k \end{cases}$$

于是 ϕ_1, \dots, ϕ_m 是 v_1, \dots, v_m 的对偶基.命题得证.

- **31.** 设U是V的子空间,令 $i:U\to V$ 为包含映射.
- (1) 证明:null $i' = U^0$.
- (2) 证明:如果V是有限维的,那么range i' = U'.
- (3) 证明:如果V是有限维的,那么 \tilde{i}' 是 V'/U^0 映到U'的同构映射.

Proof.

- (1) 我们有null $i' = (\text{range } i)^0 = U^0$.
- (2) 对于任意 $\phi \in U'$,都可以被扩充为V上的线性泛函 ψ . i'的定义表明 $i'(\psi) = \psi \circ i = \phi$,由此 $\phi \in \text{range } i'$,于是range i' = U'.
- (3) 我们有dim (V'/U^0) = dim V' (dim V dim U) = dim U = dim U'.只需证明 \tilde{i}' 是单射即可. 对任意 $\phi + U^0 \in V'/U^0$ 有

$$\tilde{i}'(\phi + U^0) = i'(\phi) = \phi \circ i$$

由于 $i \neq \mathbf{0}$,于是 $\tilde{i}'(\phi + U^0) = \mathbf{0}_{U'}$ 当且仅当 $\phi = \mathbf{0}_{V'}$,即 $\phi + U^0 = \mathbf{0}_{V'/U^0}$.于是 \tilde{i}' 是单射. 综上可知 \tilde{i}' 是 V'/U^0 映到U'的同构映射.

32. V的**双重对偶空间**记为V'',定义为V'的对偶空间.定义 $\Lambda: V \to V''$ 为

$$(\Lambda v)(\phi) = \phi(v)$$

对任意 $v \in V$ 和 $\phi \in V'$ 都成立.

- (1) 证明: $\Lambda 是 V 到 V$ "的线性映射.
- (2) 证明:如果 $T \in \mathcal{L}(V)$,那么 $T'' \circ \Lambda = \Lambda \circ T$.

(3) 证明:如果V是有限维的,那么 Λ 是V到V"的同构映射.

Proof.

(1) 以下的 $\phi \in V'$ 是任意选取的.

$$(\Lambda(\mathbf{0})_V)(\phi) = \phi(\mathbf{0}_V) = 0$$
,于是 $\Lambda(\mathbf{0}_V) = \mathbf{0}_{V''}$.

对于任意 $u, v \in V$ 有

$$(\Lambda(u+v))(\phi) = \phi(u+v) = \phi(u) + \phi(v) = (\Lambda(u))(\phi) + (\Lambda(v))(\phi) = (\Lambda(u) + \Lambda(v))(\phi)$$

于是 $\Lambda(u+v) = \Lambda(u) + \Lambda(v)$,这表明 Λ 满足可加性.

对于任意 $v \in V$ 和 $\lambda \in \mathbb{F}$ 有

$$(\Lambda(\lambda v))(\phi) = \phi(\lambda v) = \lambda \phi(v) = \lambda \cdot (\Lambda(v))(\phi) = (\lambda \Lambda(v))(\phi)$$

于是 $\Lambda(\lambda v) = \lambda(\Lambda(v))$,这表明 Λ 满足齐次性.

于是 Λ 是V到V"的线性映射.

(2) 对于任意 $v \in V$ 和任意 $\phi \in V'$ 有

$$\begin{split} \left[(T'' \circ \Lambda)(v) \right] (\phi) &= \left[T''(\Lambda(v)) \right] (\phi) = \left[(\Lambda(v)) \circ T' \right] (\phi) = (\Lambda(v)) (T'(\phi)) \\ &= (T'(\phi))(v) = (\phi \circ T)(v) = \phi(Tv) = \left[\Lambda(Tv) \right] (\phi) \\ &= \left[(\Lambda \circ T)(v) \right] (\phi) \end{split}$$

这表明 $T'' \circ \Lambda = \Lambda \circ T$,命题得证.

(3) 首先有dim $V = \dim V' = \dim V''$.

设 v_1, \dots, v_m 是V的一组基, ϕ_1, \dots, ϕ_m 是其对偶基.令 $v := a_1v_1 + \dots + a_nv_n \in V$ 使得 $\Lambda v = \mathbf{0}_{V''}$. 即对于任意 $\phi \in V', \phi(v) = 0$.而对于任意 $1 \leq k \leq m$ 有

$$\phi_k(v) = \phi_k(a_1v_1 + \dots + a_nv_n) = a_k$$

于是 $a_1 = \cdots = a_m = 0$.这表明 $\Lambda v = \mathbf{0}$ 当且仅当 $v = \mathbf{0}$,即 $\mathrm{null}\ \Lambda = \{\mathbf{0}\}$.于是 Λ 是单射. 综上可知 Λ 是V到V"的同构.

- **33.** 设U是V的子空间.令 $\pi: V \to V/U$ 是商映射.
- **(1)** 证明:π'是单射.
- (2) 证明:range $\pi' = U^0$.
- (3) 证明: π' 是(V/U)'映到 U^0 的同构映射.

- (1) 根据商映射的定义,对于任意 $v+U\in V/U$ 都存在 $v\in V$ 使得 $\pi(v)=v+U$.于是 π 是满射,进而 π' 是单射.
- (2) 对于任意 $u \in U$ 有 $u + U = \mathbf{0}_V + U = \mathbf{0}_{V/U}$,即null $\pi = U$.于是range $\pi' = (\text{null } \pi)^0 = U^0$.
- (3) 由(1)可知 π' 是单射,由(2)可知 π' 是满射.于是 π' 是(V/U)'映到 U^0 的同构映射.