面向异构信息网络对齐的神经网络模型研究

吕青松

指导教师:王志春

北京师范大学信息科学与技术学院

2019年5月

目录

- 🕕 研究动机
 - 异构信息网络
 - 异构信息网络对齐
 - 相关工作
- ② 模型介绍
 - 图卷积神经网络
 - 基于图卷积神经网络的对齐模型
- ③ 实验
 - 数据集和评测方法
 - 实验结果
- 4 总结

异构信息网络

异构信息网络 $H = (\mathcal{E}, \mathcal{R}, \mathcal{A}, \mathcal{V}, \mathcal{T}_R, \mathcal{T}_A)$

- *E*: 实体集合
- R: 关系集合
- A: 属性集合
- V: 属性値集合
- $T_R \subseteq \mathcal{E} \times \mathcal{R} \times \mathcal{E}$: 关系三元组集合
- $T_A \subseteq \mathcal{E} \times A \times \mathcal{V}$: 属性三元组集合

以知识图谱为例,

- 关系三元组:(爱因斯坦,毕业于,苏黎世联邦理工学院)
- 属性三元组: (爱因斯坦, 出生年份, 1879)

异构信息网络对齐

给定:

- 两个信息网络 H₁ 和 H₂
- 匹配实体集合 $S = \{(e_1, e_2) | e_1 \in \mathcal{E}_1 \land e_2 \in \mathcal{E}_2\}$

输出:

• 新的匹配实体集合 $S'=\{(e_1,e_2)|e_1\in\mathcal{E}_1\wedge e_2\in\mathcal{E}_2\wedge (e_1,e_2)\notin S\}$

本质:

• 发现潜在的匹配实体

4 / 25

相关工作

跨语言知识图谱匹配

跨平台社交网络匹配

传统方法

	跨语言知识图谱匹配	跨平台社交网络匹配			
基于实体名称	机器翻译 [2, 8]	用户昵称 [5]			
基于人工特征	实体类别、邻居相似度等 [10]	时间、地点、公共邻居等 [4]			

缺点

- 基于机器翻译,依赖于翻译的效果
- 基于用户昵称,存在重名、匿名和多用户名的问题
- 基于人工特征,需要人工仔细设计特征,且无法迁移使用

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

基于嵌入表示的方法

跨语言知识图谱匹配

- JE [3]
- MTansE [1]
- JAPE [9]
- ITransE [11]

跨平台社交网络匹配

- IONE [6]
- PALE [7]

基于嵌入表示的方法

JE, JAPE, IONE

MTransE、ITransE、PALE

基于嵌入表示的方法

优点

- 不依赖于实体名称
- 不依赖于人工特征

缺点

- 联合训练单一网络和跨网络的信息,在模型训练过程中需要平衡两种信息的损失函数
- ◉ 网络中的属性信息没有被充分利用

图卷积神经网络 (GCN)

图: GCN 模型

- 输入: 实体的特征矩阵
 X∈ ℝ^{n×d} 和实体的连接关系矩
 阵 A∈ ℝ^{n×n}
- 输出: 实体的嵌入表示矩阵
 Z ∈ ℝ^{n×k}.

$$H^{(l+1)} = \sigma \left(\hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

其中, $\hat{A} = A + I$, $\hat{D} = D + I$, D 是 每个节点的度。

基于图卷积神经网络的对齐模型

图: GCN 对齐模型

损失函数

$$\mathcal{L} = \sum_{(e,v) \in S} \sum_{(e',v') \in S'_{(e,v)}} [d(e,v) + \gamma - d(e',v')]_+$$

其中, $[x]_+ = \max\{0, x\}$, $S'_{(e,v)}$ 是通过 (e, v) 随机替换其中一个实体得到的反 例集合, $\gamma > 0$ 是一个超参数, d 在这里使用 L_1 距离。

结构嵌入和属性嵌入

$$[H_s^{(l+1)};H_a^{(l+1)}] = \sigma \left(\hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}} [H_s^{(l)} W_s^{(l)};H_a^{(l)} W_a^{(l)}] \right)$$

最终,实体的嵌入表示矩阵为 $[\beta H_s; (1-\beta)H_a]$,其中 $\beta > 0$ 是一个超参数。

数据集

跨语言知识图谱匹配

DBpedia15k [9],包含三个子集:汉语-英语、法语-英语、日语-英语。

数据集		实体数	体数 关系数 属性		关系三元组数	属性三元组数	
汉语-英语 汉语		66,469	2,830	8,113	153,929	379,684	
		98,125	2,317	7,173	237,674	567,755	
日语-英语	日语 英语	65,744 95,680	2,043 2,096	5,882 6,066	164,373 233,319	354,619 497,230	
法语-英语	法语	66,858	1,379	4,547	192,191	528,665	
	英语	105,889	2,209	6,422	278,590	576,543	

<ロト < 個 ト < 重 ト < 重 ト 三 重 の < で

数据集

跨平台社交网络匹配

FT5k [6], 包括 Foursquare 和 Twitter 各 5000 余个用户。

平台	用户数	关系三元组数	匹配用户数
Twitter	5,220	164,916	1,609
Foursquare	5,315	76,972	

评测方法

Hits@k

- 把匹配实体集合 S 按一定比例划分为训练集 S_{train} 和测试集 S_{test}
- 对于测试集 \mathcal{S}_{test} 中的样本 $(e_1,e_2) \in \mathcal{E}'_1 \times \mathcal{E}'_2$, 计算 e_1 与 \mathcal{E}'_2 中所有实体的距离,如果 e_2 在距离中排名前 k,则记一分
- 所有测试样本中得分的比例即为 Hits@k

距离计算方法

L1 距离

训练集: 测试集 =3:7

法语-英语		法语 → 英语			英语 → 法语		
		Hits@1	Hits@10	Hits@50	Hits@1	Hits@10	Hits@50
JE		15.38	38.84	56.50	14.61	37.25	54.01
N	1TransE	24.41	55.55	74.41	21.26	50.60	69.93
JAPE	SE w/o neg. SE SE + AE	29.55 29.63 32.39	62.18 64.55 66.68	79.36 81.90 83.19	25.40 26.55 32.97	56.55 60.30 65.91	74.96 78.71 82.38
JAPE'	SE w/o neg. SE SE + AE	28.23 27.58 30.21	60.99 62.03 65.81	78.47 79.98 82.57	24.68 24.93 31.42	55.25 58.95 63.86	74.19 77.79 80.95
GCN	SE SE + AE	42.26 43.76	78.48 80.12	88.86 90.81	40.86 42.28	76.68 79.03	88.04 90.58

40.40.41.41.1 1 200

训练集: 测试集 =3:7

日语-英语		日语 → 英语			英语 → 日语		
		Hits@1	Hits@10	Hits@50	Hits@1	Hits@10	Hits@50
JE		18.92	39.97	54.24	17.80	38.44	52.48
N	1TransE	27.86	57.45	75.94	23.72	49.92	67.93
JAPE	SE w/o neg. SE SE + AE	33.10 34.27 36.25	63.90 66.39 68.50	80.80 83.61 85.35	29.71 31.40 38.37	56.28 60.80 67.27	73.84 78.51 82.65
JAPE'	SE w/o neg. SE SE + AE	28.90 29.35 31.06	60.61 63.31 64.11	80.03 82.76 81.57	25.34 26.37 32.45	53.36 57.35 62.21	71.94 76.87 79.08
GCN	SE SE + AE	42.73 45.10	75.63 78.34	84.61 88.57	40.59 42.62	72.51 75.41	82.15 86.62

401481451451 5 000

训练集: 测试集 =3:7

汉语-英语		汉语 → 英语			英语 → 汉语		
		Hits@1	Hits@10	Hits@50	Hits@1	Hits@10	Hits@50
JE		21.27	42.77	56.74	19.52	39.36	53.25
N	1TransE	30.83	61.41	79.12	24.78	52.42	70.45
JAPE	SE w/o neg. SE SE + AE	38.34 39.78 41.18	68.86 72.35 74.46	84.07 87.12 88.90	31.66 32.29 40.15	59.37 62.79 71.05	76.33 80.55 86.18
JAPE'	SE w/o neg. SE SE + AE	30.10 30.54 33.32	62.58 66.41 69.28	80.28 83.94 86.40	23.04 23.91 33.02	52.91 57.02 66.92	72.17 77.31 85.15
GCN	SE SE + AE	41.96 44.75	74.10 77.31	83.78 87.76	38.62 40.61	69.58 72.61	80.70 84.10

401481451451 5 000

不同比例的训练集测试集划分

JAPE 和 GCN Hits@1 结果对比

(c) 法语-英语

不同比例的训练集测试集划分

IONE 和 GCN Hits@30 结果对比

图: Foursquare-Twitter 数据集

总结

我们提出了一种基于图卷积神经网络的异构信息网络对齐模型,该模型:

- 直接面向对齐任务训练实体的嵌入表示,无需权衡多个损失函数
- 可以同时处理网络的结构信息和属性信息
- 在知识图谱领域和社交网络领域都能达到很好的效果

参考文献 |

Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo Zaniolo.

Multilingual knowledge graph embeddings for cross-lingual knowledge alignment.

In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pages 1511–1517, 2017.

Bo Fu, Rob Brennan, and Declan O'Sullivan.

Cross-lingual ontology mapping – an investigation of the impact of machine translation. In Asunción Gómez-Pérez, Yong Yu, and Ying Ding, editors, *The Semantic Web*, pages 1–15, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

Yanchao Hao, Yuanzhe Zhang, Shizhu He, Kang Liu, and Jun Zhao. A joint embedding method for entity alignment of knowledge bases.

In China Conference on Knowledge Graph and Semantic Computing, pages 3–14. Springer, 2016.

Xiangnan Kong, Jiawei Zhang, and Philip S Yu.

Inferring anchor links across multiple heterogeneous social networks.

In Proceedings of the 22nd ACM international conference on Information & Knowledge Management, pages 179–188. ACM, 2013.

参考文献 ||

Jing Liu, Fan Zhang, Xinying Song, Young-In Song, Chin-Yew Lin, and Hsiao-Wuen Hon. What's in a name?: an unsupervised approach to link users across communities. In *Proceedings of the sixth ACM international conference on Web search and data mining*, pages 495–504. ACM, 2013.

Li Liu, William K Cheung, Xin Li, and Lejian Liao. Aligning users across social networks using network embedding. In *IJCAI*, pages 1774–1780, 2016.

Tong Man, Huawei Shen, Shenghua Liu, Xiaolong Jin, and Xueqi Cheng. Predict anchor links across social networks via an embedding approach. In *IJCAI*, volume 16, pages 1823–1829, 2016.

Dennis Spohr, Laura Hollink, and Philipp Cimiano.

A machine learning approach to multilingual and cross-lingual ontology matching. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Noy, and Eva Blomqvist, editors, *The Semantic Web – ISWC 2011*, pages 665–680, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

Zequn Sun, Wei Hu, and Chengkai Li.

Cross-lingual entity alignment via joint attribute-preserving embedding. In *International Semantic Web Conference*, pages 628–644. Springer, 2017.

参考文献 III

Zhichun Wang, Juanzi Li, Zhigang Wang, and Jie Tang.

Cross-lingual knowledge linking across wiki knowledge bases.

In Proceedings of the 21st International Conference on World Wide Web, WWW '12, pages 459–468, New York, NY, USA, 2012. ACM.

 $\label{thm:local_equation} \mbox{Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong Sun.}$

Iterative entity alignment via joint knowledge embeddings.

In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pages 4258–4264. AAAI Press, 2017.

谢谢!