

Métrologie et gestion des capteurs

Nano-ordinateurs

François Roland

- 2 Mesures et erreurs de mesure
- 3 Acquisition des données Conversion analogique-numérique Stratégies d'acquisition
- 4 Conclusion

Métrologie

Rôle des capteurs

Définition

La métrologie est la science de la mesure et de son exactitude. Elle étudie les méthodes et les moyens de réaliser des mesures fiables et précises.

- Collecter des données
- Automatiser certaines actions
- · Valider l'exécution de certaines actions
- Corriger les erreurs

Boucle de régulation

Importance de la précision des mesures

- Élément clé de la boucle de régulation
- · Garantir le bon fonctionnement du système
- Éviter les dysfonctionnements

Exercice

Lecture d'une datasheet

- 1 Quelle est la plage de mesure et la précision du capteur?
- Quelle est la tension d'alimentation et la consommation électrique du capteur?
- 3 Quel est le temps de réponse du capteur et quelle est son importance?
- Quelles sont les limites du capteur et quel peut être l'impact de ces limites sur un projet?

- 1 Métrologie
- 2 Mesures et erreurs de mesure
- 3 Acquisition des données Conversion analogique-numériqu Stratégies d'acquisition
- 4 Conclusion

Pourquoi la précision est essentielle?

- Sécurité des biens et des personnes
- · Processus industriel
- Automatisation et robotique

Exemple

- · Qualité de l'air
- Température et pression
- Présence de gaz
- · Présence de radiations

Exemple

- Qualité des produits (dimensions...)
- · Respect des normes
- · Coordination des transferts

Types d'erreurs

Linéarité

Problème:

· L'écart entre valeurs réelles et mesurées varie selon la valeur mesurée

Correction

- Courbe de calibration
- Interpolation par morceaux

Types d'erreurs

Problème:

- Valeur toujours trop haute
- · Valeur toujours trop basse

Correction

valeur corrigée = valeur brute ± offset

Exemple

Capteur de température qui indique toujours 2 °C de plus que la température réelle. S'il fait 22 °C, le capteur indique 24 °C.

Types d'erreurs

Limites de mesure

Problème:

• Valeurs mesurées en dehors de la plage de mesure

Correction

- · Choix d'un capteur adapté
- Filtrage des valeurs aberrantes
- · Utilisation de plusieurs capteurs et fusion de données

Types d'erreurs

Répétabilité

Types d'erreurs

Autres types d'erreurs

Problème:

• Valeurs mesurées différentes pour une même valeur réelle

Correction

• Moyenne sur les X dernières mesures

Hystérésis

Dérive

Couplage croisé

2 Mesures et erreurs de mesure

3 Acquisition des données Conversion analogique-numérique Stratégies d'acquisition

4 Conclusion

Analogique vs digital

Analogique

- Mesure « continue »
- Mesure directe de grandeurs physiques
- Conversion analogique-numérique

Digital

- Mesure binaire
- Permet de détecter facilement des évènements

Convertisseur analogique-numérique

Schéma d'un convertisseur A/D à résistances, Jon Guerber.

https://commons.wikimedia.org/wiki/File:Flash_ADC.png

- · Comparaison directe
- Approximations successives

Démonstration

Position d'un potentiomètre

Résolution

Définition

Nombre de valeurs différentes que peut prendre le convertisseur.

résolution =
$$\frac{U_{RefHaut} - U_{RefBas}}{2^{M} - 1}$$

Quand interroger un capteur?

- À intervalles réguliers (polling)
- En cas d'évènement (interruptions)

Polling

Interruptions

• Mécanisme matériel intégré au microprocesseur

· Permet de réagir immédiatement à un évènement

· Nécessite une configuration plus complexe

- Simple à mettre en place
- Consomme des ressources en permamence
- Attention à la fréquence d'interrogation

Consommation réduite

• Interromp la tâche en cours

- 1 Métrologie
- 2 Mesures et erreurs de mesure
- 3 Acquisition des données Conversion analogique-numérique
- 4 Conclusion

Résumé

- · Comment diminuer l'impact des erreurs de mesure
- · Conversion analogique-numérique
- · Stratégies d'acquisition des données

Progression

- Systèmes embarqués ✓
- Bus de communication ✓
- Métrologie et gestion des capteurs ✓
- Perception de l'environnement
- Contrôle de l'environnement

2