Exercise Sheet 2

1. Exercise: Shannon Entropy

Shannon entropy quantifies the amount of uncertainty (or randomness) to a variable's possible outcomes. Given a discrete random variable X, which takes the values $x \in \mathcal{X}$ and is distributed according to $p: \mathcal{X} \to [0, 1]$, the Shannon entropy is

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x). \tag{1}$$

The higher the entropy, the more uncertain, and thus in some sense the more random, and hence less predictable, the outcomes. The maximal entropy of an event with n different possible outcomes is

$$H_{\text{max}} = \log n, \tag{2}$$

If the outcomes are completely determined and there is no randomness at all, the entropy is zero $(H_{\min} = 0)$.

(a) Load the data_entropy_binary.csv. You can find the file in the Moodle course. Generate the following plot (one plot with two axes) for the random variable $X = [x_1, x_2]$ with labels x_l and random variable $Y = [y_1, y_2]$ with labels y_l .

- (b) Implement the function compute_probabilities () to calculate the probabilities of each label for a given set of labels of a random variable.
- (c) Implement the function compute_entropy() that computes the entropy according to Eq. 1.
- (d) Compute and print the entropy and maximal entropy for the random variables X, Y.
- (e) Load the data_entropy_multi.csv. You can find the file in the Moodle course. Generate a similar plot as in (b) for the random variable $X = [x_1, x_2]$ with labels x_l and random variable $Y = [y_1, y_2]$ with labels y_l . Note, that the labels are not binary in this dataset.
- (f) Compute and print the entropy and maximal entropy for the random variables X, Y.
- (g) Interpret the results of (d) and (f). What is the influence of the quantity of labels on the entropy calculation?

2. Exercise: Mahanalobis distance

The Mahalanobis distance is a measure of the distance between a point and a distribution. Given a probability distribution $p = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{C}_x)$, with mean $\boldsymbol{\mu} \in \mathbb{R}^N$ and covariance matrix $\mathbf{C}_x \in \mathbb{R}^{N \times N}$, the Mahalanobis distance of a point $\boldsymbol{x} \in \mathbb{R}^N$ from p is

$$\delta_m(\boldsymbol{x}, p) = \sqrt{(\boldsymbol{\mu} - \boldsymbol{x})^{\mathrm{T}} C_x^{-1} (\boldsymbol{\mu} - \boldsymbol{x})}.$$
 (3)

- (a) Implement the function mahanalobis_distance(), which takes as input the mean μ , covariance matrix C_x and a point x and return the Mahanalobis distance.
- (b) Load the file data_mdistance.csv. You can find the file in the Moodle course. Compute the mean $\hat{\mu}$ and the covariance matrix \hat{C}_x .
- (c) Compute the Pearson Correlation Coefficient and print it in the console. What does the coefficient tell about the correlation?
- (d) Load the file data_mdistance_points.csv. You can find the file in the Moodle course. Compute the Mahanalobis distance (based on $\hat{\mu}$, \hat{C}_x computed in (b)) and the Euclidean distance for each data point x_p of that file. Print the results in the console.
- (e) Generate the following figure by plotting all sample points and the computed statistical quantities using the function $ax_ellipse.py$. You can find the file in the Moodle course. The plot should also include the data points x_p .

(f) What is the advantage of using Mahanalobis distance over Euclidean distance?

3. Exercise: Kullback-Leibler (KL) divergence

KL divergence is a type of statistical distance. It is a measure of how one probability distribution P is different from a second, reference probability distribution Q. For discrete probability distributions P and Q, defined on the same sample space \mathcal{X} , the entropy relative from Q to P is defined to be

$$D_{\mathrm{KL}}(P||Q) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)}\right). \tag{4}$$

- (a) What are the mathematical properties of KL divergence?
- (b) Let two discrete probability distributions be $p = [0.05, 0.20, 0.40, 0.20, 0.15]^{T}$ and $q = [0.10, 0.60, 0.05, 0.15, 0.10]^{T}$, where each number in the array represents the probability of an event e happening. Compute the KL divergence $D_{KL}(p||q)$ and $D_{KL}(q||p)$.
- (c) What is the analytic formula for the KL divergence $D_{\text{KL}}(P||Q)$ when comparing two univariate Gaussian distributions $P = \mathcal{N}(\mu_p, \sigma_p^2)$ and $Q = \mathcal{N}(\mu_q, \sigma_q^2)$?

Note that
$$\mathcal{N}(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 and $\log(\frac{a}{b}) = \log(a) - \log(b)$.