Relational Model 3: Relational Algebra (Part II)

Gary KL Tam

Department of Computer Science Swansea University

Relational Algebra (Review)

We have learned the 6 fundamental operations of relational algebra:

- Rename ρ
- Selection σ
- Projection Π
- Set union ∪
- Set difference –
- Cartesian product ×

- The operators of the previous slide can express all queries in relational algebra. However, if we rely on only those operations, some queries common in practice require lengthy expressions.
- To shorten those expressions, people identified the following 4
 operations, each of which can be implemented using only the
 6 fundamental operators, and can be used to simplify many
 queries:
 - Natural Join ⋈
 - Assignment ←
 - Set Intersection ∩
 - Division ÷

Cartesian product can be inconvenient

Cartesian Product ×

- It can introduce nonsense tuples.
- You can get rid of them with selects.
- But this is so highly common, an operation was defined to make it easier: natural join.

PROF

\mathbf{pid}	name	\mathbf{dept}	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p_5	Emily	EE	asso	8500

TEACH

pid	cid	year
p1	c1	2011
p2	c2	2012
p1	c2	2012

 $PROF \times TEACH$ returns the table in the next slide.

pid	name	dept	rank	sal	pid	cid	year
p1	Adam	CS	asst	6000	p_1	c_1	2011
<i>p</i> 2	Bob	EE	asso	8000	p_1	c_1	2011
p 3	Calvin	CS	full	10000	p_1	c_1	2011
p4	Dorothy	EE	asst	5000	p_1	<i>c</i> ₁	2011
<i>p</i> 5	Emily	EE	asso	8500	p_1	c_1	2011
p1	Adam	CS	asst	6000	p_2	<i>c</i> ₂	2012
p2	Bob	EE	asso	8000	p_2	<i>c</i> ₂	2012
p 3	Calvin	CS	full	10000	p_2	<i>c</i> ₂	2012
p4	Dorothy	EE	asst	5000	p_2	<i>c</i> ₂	2012
p 5	Emily	EE	asso	8500	<i>p</i> ₂	<i>c</i> ₂	2012
p1	Adam	CS	asst	6000	p_1	<i>c</i> ₂	2012
p2	Bob	EE	asso	8000	p_1	<i>c</i> ₂	2012
<i>p</i> 3	Calvin	CS	full	10000	p_1	<i>c</i> ₂	2012
p4	Dorothy	EE	asst	5000	p_1	<i>c</i> ₂	2012
<i>p</i> 5	Emily	EE	asso	8500	<i>D</i> ₁	Co	2012

Who really taught a course in the past?

Does p2 teaches c1?

Does p5 teaches c2?

		PROF				TEAC	TIT
\mathbf{pid}	name	dept	rank	sal	pid	$\begin{vmatrix} \mathbf{cid} \end{vmatrix}$	1
p1	Adam	CS	asst	6000			year
$\frac{p}{p^2}$	Bob	EE	0.000	8000	p 1	c1	2011
			asso		p2	c2	2012
p3	Calvin	CS	full	10000	$\frac{p^2}{p^1}$	c2	2012
p4	Dorothy	EE	asst	5000	p_1	62	2012
25	Emily	EE	9660	8500			

		TIOI			
pid	name	dept	rank	sal	
p1	Adam	CS	asst	6000	
p2	Bob	EE	asso	8000	2
p3	Calvin	CS	full	10000	
p4	Dorothy	EE	asst	5000	
p_5	Emily	EE	asso	8500	

TEACH						
\mathbf{pid}	cid	year				
p 1	c1	2011				
<i>p</i> 2	c2	2012				
p1	c2	2012				

	$PROF \times TEACH$							
pid	name	dept	rank	sal	pid	cid	year	_ 4
-p1	Adam	CS	asst	6000	p_1	c_1	2011	
<i>p</i> 2	Bob	EE	asso	8000	p_1	c_1	2011	
p3	Calvin	CS	full	10000	p_1	c_1	2011	
p4	Dorothy	EE	asst	5000	p_1	c_1	2011	
p5	Emily	EE	asso	8500	p_1	c_1	2011	
p1	Adam	CS	asst	6000	<i>p</i> ₂	<i>c</i> ₂	2012	_ 4_
p2	Bob	EE	asso	8000	<i>p</i> ₂	<i>c</i> ₂	2012	
<i>p</i> 3	Calvin	CS	full	10000	<i>p</i> ₂	<i>c</i> ₂	2012	_ `
	Dorothy	EE	asst	5000	<i>p</i> ₂	<i>c</i> ₂	2012	
<i>p</i> 5	Emily	EE	asso	8500	p_2	<i>c</i> ₂	2012	_ 4
<i>p</i> 1	Adam	CS	asst	6000	p_1	<i>c</i> ₂	2012	
<i>p</i> 2	Bob	EE	asso	8000	p_1	<i>c</i> ₂	2012	_ —
p3	Calvin	CS	full	10000	p_1	<i>c</i> ₂	2012	
-p4	Dorothy	EE	asst	5000	p_1	<i>c</i> ₂	2012	
<i>p</i> 5	Emily	EE	asso	8500	p_1	<i>c</i> ₂	2012	

	$\operatorname{PROF} imes \operatorname{TEACH}$							
pid	name	dept	rank	sal	pid	cid	year	_ 4
p1	Adam	CS	asst	6000	p_1	c_1	2011	
<i>p</i> 2	Bob	EE	asso	8000	p_1	c_1	2011	_
р3	Calvin	CS	full	10000	p_1	c_1	2011	
p4	Dorothy	EE	asst	5000	p_1	c_1	2011	
<i>p</i> 5	Emily	EE	asso	8500	p_1	c_1	2011	
p1	Adam	CS	asst	6000	p_2	<i>c</i> ₂	2012	_ 4
p2	Bob	EE	asso	8000	<i>p</i> ₂	<i>c</i> ₂	2012	
р3	Calvin	CS	full	10000	p_2	<i>c</i> ₂	2012	_ `
p4	Dorothy	EE	asst	5000	p_2	<i>c</i> ₂	2012	
<i>p</i> 5	Emily	EE	asso	8500	p_2	<i>c</i> ₂	2012	_ 4
p1	Adam	CS	asst	6000	p_1	<i>c</i> ₂	2012	
<i>p</i> 2	Bob	EE	asso	8000	p_1	<i>c</i> ₂	2012	_
<i>p</i> 3	Calvin	CS	full	10000	p_1	<i>c</i> ₂	2012	
p4	Dorothy	EE	asst	5000	p_1	<i>c</i> ₂	2012	
<i>p</i> 5	Emily	EE	asso	8500	p_1	<i>c</i> ₂	2012	

		PRC	$)F \times$	TEA	$^{ m CH}$			
pid	name	dept	rank	sal	pid	cid	year	
<i>p</i> 1	Adam	CS	asst	6000	p_1	c_1	2011	
<i>p</i> 2	Bob	EE	asso	8000	p_1	c_1	2011	
<i>p</i> 3	Calvin	CS	full	10000	p_1	c_1	2011	
	Dorothy	EE	asst	5000	p_1	c_1	2011	•
<i>p</i> 5	Emily	EE	asso	8500	p_1	c_1	2011	
p1	Adam	CS	asst	6000	<i>p</i> ₂	<i>c</i> ₂	2012	
p2	Bob	EE	asso	8000	<i>p</i> ₂	<i>c</i> ₂	2012	
<i>p</i> 3	Calvin	CS	full	10000	<i>p</i> ₂	<i>c</i> ₂	2012	
	Dorothy	EE	asst	5000	<i>p</i> ₂	<i>c</i> ₂	2012	•
<i>p</i> 5	Emily	EE	asso	8500	<i>p</i> ₂	<i>c</i> ₂	2012	·
p1	Adam	CS	asst	6000	p_1	<i>c</i> ₂	2012	
<i>p</i> 2	Bob	EE	asso	8000	p_1	<i>c</i> ₂	2012	
<i>p</i> 3	Calvin	CS	full	10000	p_1	<i>c</i> ₂	2012	
	Dorothy	EE	asst	5000	p_1	<i>c</i> ₂	2012	
<i>p</i> 5	Emily	EE	asso	8500	p_1	<i>c</i> ₂	2012	J Renove
	σ_{PROF}	.pid=T	EACH	. _{pid} (P	ROF	×TI	EACH	Renove nonsense truples

pid	name	dept	rank	sal	pid	cid	year
<i>p</i> 1	Adam	CS	asst	6000	p_1	c_1	2011
<i>p</i> 2	Bob	EE	asso	8000	<i>p</i> ₂	<i>c</i> ₂	2012
p1	Adam	CS	asst	6000	p_1	c ₂	2012

Natural Join

- Denoted by $T_1 \bowtie T_2$ \nearrow Converge T_1 and T_2 are tables.
 - The output of the operations T' is formed by
 - Taking the Cartesian product
 - Select to ensure equality on attributes that are in both relations (determined by name)
 - Projecting to remove duplicate attributes.

PROF

TEACH

pid	name	\mathbf{dept}	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p_5	Emily	EE	asso	8500

pid	cid	year
p1	c1	2011
p2	c2	2012
p1	c2	2012

$PROF \bowtie TEACH$ returns:

1	pid	name	dept	rank	sal	cid	year
	<i>p</i> 1	Adam	CS	asst	6000	<i>c</i> ₁	2011
	<i>p</i> 2	Bob	EE	asso	8000	<i>c</i> ₂	2012
	p1	Adam	CS	asst	6000	<i>c</i> ₂	2012

where...

 S_1 and S_2 are the schemas of T_1 and T_2 respectively,

 A_1, \ldots, A_d are the <u>common attributes</u> of T_1 and T_2 ,

and
$$S$$
 is schema of the output table $S = (S_1 - S_2) \cup \{T_1.A_1, \dots, T_1.A_d\} \cup (S_2 - S_1)$

pid	name	dept	rank	sal
$\overline{p1}$	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p5	Emily	EE	asso	8500

pid	cid	year
p1	c1	2011
p2	c2	2012
p1	c2	2012

$PROF \bowtie TEACH$

1) Cartesian Product

 $T_1 = PROF, T_2 = TEACH$

$$T_1\bowtie T_2=\Pi_S(\sigma_{T_1.A_1=T_2.A_1}\wedge\cdots\wedge\tau_{1.A_d=T_2.A_d}(\overbrace{T_1}^{\text{tipe:}}\times\overbrace{T_2}^{\text{tipe:}}))$$

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p5	Emily	EE	asso	8500

pid	cid	year
p1	c1	2011
p2	c2	2012
p1	c2	2012

PROF \bowtie TEACH

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p5	Emily	EE	asso	8500

$\operatorname{\mathbf{pid}}$	cid	year
p1	c1	2011
p2	c2	2012
p1	c2	2012

$PROF \bowtie TEACH$

2) Common Attributes

 $T_1 = PROF, T_2 = TEACH$

$$T_1 \bowtie T_2 = \prod_S (\sigma_{T_1.A_1 = T_2.A_1 \wedge \dots \wedge T_1.A_d = T_2.A_d} (T_1 \times T_2))$$

Common attributes set A: {pid}

$$T_1 \bowtie T_2 = \prod_S ($$

pid	name	dept	rank	sal	pid	cid	year
p1	Adam	CS	asst	6000	p_1	c_1	2011
p2	Bob	EE	asso	8000	<i>p</i> ₂	<i>c</i> ₂	2012
p1	Adam	CS	asst	6000	p_1	<i>c</i> ₂	2012

Schema <mark>S₁</mark>	pid	name	dept	rank	sal
	p1	Adam	CS	asst	6000
	p2	Bob	EE	asso	8000
	<i>p</i> 3	Calvin	CS	full	10000
	p4	Dorothy	EE	asst	5000
	p5	Emily	EE	asso	8500

S ₂	$\operatorname{\mathbf{pid}}$	cid	year
	p1	c1	2011
	p2	c2	2012
	p1	c2	2012

$PROF \bowtie TEACH$

3) Project Attributes

 $T_1 = PROF, T_2 = TEACH$

$$T_1 \bowtie T_2 = \Pi_S(\sigma_{T_1.A_1 = T_2.A_1 \wedge \cdots \wedge T_1.A_d = T_2.A_d}(T_1 \times T_2))$$

Schema
$$S = (S_1 - S_2) \cup \{T_1.A_1, \dots, T_1.A_d\} \cup (S_2 - S_1)$$

$$T_1 \bowtie T_2 = \Pi_S($$

pid	name	dept	rank	sal	pid	cid	year
<i>p</i> 1	Adam	CS	asst	6000	p_1	c_1	2011
p2	Bob	EE	asso	8000	<i>p</i> ₂	<i>c</i> ₂	2012
<i>p</i> 1	Adam	CS	asst	6000	D1	Co	2012

pid	name	$_{ m dept}$	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p5	Emily	EE	asso	8500
	p1 p2 p3 p4	p1 Adam p2 Bob p3 Calvin p4 Dorothy	p1 Adam CS p2 Bob EE p3 Calvin CS p4 Dorothy EE	$\begin{array}{c cccc} p1 & \text{Adam} & \text{CS} & \text{asst} \\ p2 & \text{Bob} & \text{EE} & \text{asso} \\ p3 & \text{Calvin} & \text{CS} & \text{full} \\ p4 & \text{Dorothy} & \text{EE} & \text{asst} \\ \end{array}$

S_2	pid	cid	year
	p1	c1	2011
	p2	c2	2012
	p1	c2	2012

$PROF \bowtie TEACH$

3) Project Attributes

 $T_1 = PROF, T_2 = TEACH$

$$T_1 \bowtie T_2 = \prod_{S \left(\sigma_{T_1.A_1 = T_2.A_1 \land \dots \land T_1.A_d = T_2.A_d}\left(\boxed{T_1 \times T_2}\right)\right)} S_{1}-S_{2}: \{\text{name, dept, rank, sal}\} \quad \{T_1.\text{pid}\} \quad S_2-S_1: \{\text{cid, year}\}$$

Schema
$$S = (S_1 - S_2) \cup \{T_1.A_1, \dots, T_1.A_d\} \cup (S_2 - S_1)$$

$$T_1 \bowtie T_2 = \Pi_S($$

pid	name	dept	rank	sal	pid	cid	year
p1	Adam	CS	asst	6000	p_1	c_1	2011
<i>p</i> 2	Bob	EE	asso	8000	<i>p</i> ₂	<i>c</i> ₂	2012
ם1	Adam	CS	asst	6000	<i>D</i> 1	Co	2012

$\operatorname{\mathbf{pid}}$	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p5	Emily	EE	asso	8500
	p1 p2 p3 p4	p1 Adam p2 Bob p3 Calvin p4 Dorothy	$\begin{array}{c cccc} p1 & \text{Adam} & \text{CS} \\ p2 & \text{Bob} & \text{EE} \\ p3 & \text{Calvin} & \text{CS} \\ p4 & \text{Dorothy} & \text{EE} \end{array}$	$\begin{array}{c cccc} p1 & \text{Adam} & \text{CS} & \text{asst} \\ p2 & \text{Bob} & \text{EE} & \text{asso} \\ p3 & \text{Calvin} & \text{CS} & \text{full} \\ p4 & \text{Dorothy} & \text{EE} & \text{asst} \\ \end{array}$

cid	year
c1	2011
c2	2012
c2	2012
	c1 c2

PROF \bowtie TEACH

3) Project Attributes

$$T_1 = PROF, T_2 = TEACH$$

$$T_1 \bowtie T_2 = \prod_{S \left(\sigma_{T_1.A_1 = T_2.A_1 \land \dots \land T_1.A_d = T_2.A_d} \left(\boxed{T_1 \times T_2} \right) \right)}$$

$$S_{1} - S_{2} : \{\text{name, dept, rank, sal}\} \qquad T_{1} - A_{1} : \{T_{1} - \text{pid}\} \qquad S_{2} - S_{3} : \{\text{cid, year}\}$$

Schema
$$S = \operatorname{pid} | \operatorname{name} | \operatorname{dept} | \operatorname{rank} | \operatorname{sal} | \operatorname{cid} | \operatorname{year}$$

$$T_1 \bowtie T_2 = \Pi_S($$

T	1 pid	name	dept	rank	sal	² pid	cid	year
	p1	Adam	CS	asst	6000	p_1	c_1	2011
	<i>p</i> 2	Bob	EE	asso	8000	<i>p</i> ₂	<i>c</i> ₂	2012
	p1	Adam	CS	asst	6000	p_1	<i>c</i> ₂	2012

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p5	Emily	EE	asso	8500
	p1 p2 p3 p4	p1 Adam p2 Bob p3 Calvin p4 Dorothy	$\begin{array}{c cccc} p1 & \text{Adam} & \text{CS} \\ p2 & \text{Bob} & \text{EE} \\ p3 & \text{Calvin} & \text{CS} \\ p4 & \text{Dorothy} & \text{EE} \\ \end{array}$	$\begin{array}{c cccc} p1 & \text{Adam} & \text{CS} & \text{asst} \\ p2 & \text{Bob} & \text{EE} & \text{asso} \\ p3 & \text{Calvin} & \text{CS} & \text{full} \\ p4 & \text{Dorothy} & \text{EE} & \text{asst} \\ \end{array}$

S ₂	$\operatorname{\mathbf{pid}}$	cid	year
	p1	c1	2011
	p2	c2	2012
	p1	c2	2012

$PROF \bowtie TEACH$

		PROF				TEAC	H
pid	name	dept	rank	sal	pid	cid	year

$PROF \bowtie TEACH$

A: pid S1-S2: name, dept, rank, sal S2-S1: cid, year

pid	name	dept	rank	sal	cid	year
p1	Adam	CS	asst	6000	<i>c</i> ₁	2011
p2	Bob	EE	asso	8000	<i>c</i> ₂	2012
p1	Adam	CS	asst	6000	<i>c</i> ₂	2012

	PROF			7	[EAC]	\mathbf{H}
pid n	ame dept	rank	sal	pid	cid	year

PROF ⋈ TEACH

	A: pid	S1-S2:	S <u>2-S1</u> : cid, yea				
	pid	name	dept	rank	sal	cid	year
1	p1	Adam	CS	asst	6000	<i>c</i> ₁	2011
	p2	Bob	EE	asso	8000	<i>c</i> ₂	2012
	p1	Adam	CS	asst	6000	c ₂	2012

in comparison...

(PROF.	oid = TEA	(PROF:	$\times TE A$	ACH)		
pid	name	dept	rank	sal	pid		year
<i>p</i> 1	Adam	CS	asst	6000	p_1	c_1	2011
p2	Bob	EE	asso	8000	p_2	<i>c</i> ₂	2012
p1	Adam	CS	asst	6000	p_1	<i>c</i> ₂	2012

Properties of Natural Join

Commutative:

$$T_1 \bowtie T_2 = T_2 \bowtie T_1$$

(although attribute order may vary)

Associative:

$$T_1 \bowtie (T_2 \bowtie T_3) = (T_1 \bowtie T_2) \bowtie T_3$$

 So when writing n-ary joins, brackets are irrelevant. We can just write:

$$T_1 \bowtie T_2 \bowtie \cdots \bowtie T_3$$

Special cases of natural join

Result: empty

Dept	Head	Employee

Special cases of natural join

Relations have exactly the same attributes

	Artist	Name	Artist	Name
	9132	William Shatner	1234	Brad Pitt
	8762	Harrison Ford	1868	Angelina Jolie
Ċ	1868	Angelina Jolie	5555	Patrick Stewart

Result:

Artist	Name
1868	Angelina Jolie

Special cases of natural join

Relations have no attributes in common

Artist	Name
1234	Brad Pitt
1868	Angelina Jolie
5555	Patrick Stewart

mID	Title	Year
1111	Alien	1979
1234	Sting	1973

Result: s Artist	ame as Cartesian l Name	Product mID	Title	Year
1234	Brad Pitt	1111	Alien	1979
1868	Angelina Jolie	1111	Alien	1979
5555	Ratrick Stewart	1111	Alien	1979
1234	Brad Pitt	1234	Sting	1973
1868	Angelina Jolie	1234	Sting	1973
5555	Patrick Stewart	1234	Sting	1973
				•

Set intersection

Denoted by $T_1 \cap T_2$

- where T_1 and T_2 are tables with the same schema.
- The output of the operation is a table T' such that
 - T' has the same schema as T_1 (and hence, T_2).
 - T' contains all and only the tuples that appear in both T_1 and T_2 .

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

 $\sigma_{sal \geq 8500}(PROF) \cap \sigma_{dept=CS}(PROF)$

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
р3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

 $\sigma_{sal \geq 8500}$

PROF

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

 $\sigma_{dept=CS}($

pid	name	dept	rank	sal
<i>p</i> 3	Calvin	CS	full	10000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

PROF

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
<i>p</i> 3	Calvin	CS	full	10000
<i>p</i> 6	Frank	CS	full	9000

Remember, union \bigcup and intersect \bigcap :

The two operands have the same schema!

PROF

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
<i>p</i> 2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

 $\sigma_{\rm sal} \ge {\rm 8500}({\rm PROF}) \cap \sigma_{\rm dept} = {\rm CS}({\rm PROF})$ returns:

/	pid	name	dept	rank	sal	
	p3	Calvin	CS	full	10000	
	<i>p</i> 6	Frank	CS	full	9000	

In general:

$$T_1 \cap T_2 = T_1 - (T_1 - T_2)$$

Division

Denoted by $T_1 \div T_2$

- where T_1 and T_2 are tables such that the schema of T_2 is a subset of the schema of T_1 .
- ullet The output of the operation is a table T' such that
 - The schema of T' includes all the columns that are in T_1 , but not in T_2 .
 - T' contains all and only the tuples t such that:
 - for every tuple $t_2 \in T_2$, $t_1 = (t, t_2)$ is a tuple in T_1 , where (t, t_2) represents a tuple that concatenates the attributes of t with those of t_2 .

 $\begin{array}{c|c} T_2 \\ \hline \begin{array}{c} \mathbf{cid} \\ \hline c1 \\ \hline c2 \\ \hline c3 \\ \end{array}$

So the Cid in
this cose has
to be in
the Set of

 $T_1 \div T_2$ returns:

Sor dousier

 $T_1 \in T_2$

pid <u>p1</u> <u>p4</u>

Division Tip: good for answering query like

Find in T1 those who/which takes ALL in T2

Example - Division

Get the names of students who take ALL modules taught by Gary.

 $T1 \leftarrow \Pi_{studentID,courses}(Takes)$

 $T2 \leftarrow \Pi_{course}(\sigma_{lecturer='Gary'} Teaches)$

Answer \leftarrow T1 \div T2

In general:

$$T_1 \div T_2 = \Pi_{S_1 - S_2}(T_1) - \Pi_{S_1 - S_2}(\Pi_{S_1 - S_2}(T_1) \times T_2 - T_1)$$

where S_1 and S_2 are the schemas of T_1 and T_2 respectively.

- Remember it.
- It will becomes useful when we come to SQL.
- More explanation later.

Assignment

Denoted by $T \leftarrow [expression]$

- where [expression] is a relational algebra expression, and T is a table variable.
- The assignment stores in T the table output by [expression].

Assignments are often used to increase clarity by cutting a long query into multiple steps, each of which can be described by a short line.

Jos Short low Ser Nonger Repression

Assignment 2

Alternative Notation: $T'(s_1, \dots, s_n) \leftarrow [expression]$

- Let's you name all the attributes of the new relation (not necessarily the same name they would get from Expression).
- T' must be a temporary variable, not one of the relations in the schema.

le, you are not updating the content of a relation!

Example

Given tables Q, R, S:

- Temp1 \leftarrow Q \bowtie R
- Temp2 $\leftarrow \sigma_{a=99}(\text{Temp1}) \bowtie S$
- Answer(part, price) $\leftarrow \Pi_{b,c}$ (Temp2)
- Whether / how small to break things down is up to you. It's all for readability.
- As we saw, assignment can be used not only to break things down, but also to change the names of relations [and attributes].

Building complex expressions

- Complex expressions can be composed recursively, just as in arithmetic.
- Parentheses and precedence rules define the order of evaluation.
- Precedence, from highest to lowest, is:

$$\frac{\sigma, \Pi, \rho}{\times, \bowtie}$$

$$\frac{\cap, \div}{\cup, -}$$

• Unless very sure, use brackets!

Breaking down complex expressions

- Complex nested expressions can be hard to read.
- Two alternative notations allow us to break them down:
 - Sequences of assignment statements
 - Expression trees (operator trees)

Expression tree

Earlier Example

- $\bullet \ \mathsf{Temp1} \leftarrow \mathsf{Q} \bowtie \mathsf{R}$
- Temp2 $\leftarrow \sigma_{a=99}(\text{Temp1}) \bowtie S$
- Answer(part, price) $\leftarrow \Pi_{b,c}$ (Temp2)

Tips for Relational Algebra

- Ask yourself which relations need to be involved. Ignore the rest.
- Every time you combine relations, confirm that
 - 1 attributes that should match will be made to match and
 - 2 attributes that will be made to match should match
- Break the answer down. Define intermediate relations using assignment.
 - Use good names for the new relations.
 - Name the attributes on the LHS each time, so you don't forget what you have in hand.
 - Add a comment to explain exactly what the relation contains.

Next lecture: SQL

SQL is not based on sets

- Although the relational model is based on sets, SQL is not.
- Reason: getting rid of duplicates is expensive!
- Instead, SQL generally leaves duplicates in unless you ask it not to.
- SQL is based on "bags" (or "multisets"):
 just like sets, but duplicates are allowed.
- {6, 2, 56, 1, 9} is a set, and a bag; {6, 2, 6, 56, 1, 9} is not a set, but is a bag.