Homework 3

Submit the solution in the form of R Markdown report, knitted into either of the available formats (HTML, pdf or Word). Provide all relevant code and output. Goal of this homework is to have you 1) familiarized χ^2 -test of independence for contingency tables; 2) familiarized with permutation test for contingency tables; 3) interpretation of linear regression; 4) practice your R coding.

Problem #1.

1. Code up your own my.permutation.test() function to conduct permutations tests on contingency tables.

As inputs, it should take

- data frame with two categorical variables as columns (first one explanatory, second one response),
- # of randomly generated permutations to be executed.

As output, it should provide:

- contingency table for the data frame,
- permutation p-value,
- plot the histogram of permutation distribution for X^2 statistic.

NOTE: To obtain X^2 values for each permutation, you are allowed to use R's chisq.test() function.

- 2. Proceed to apply the my.permutation.test() function (and subsequently interpret the results) to:
 - a. Snowden data (from the lecture), with 10,000 permutations. What's the conclusion? Compare the resulting histogram with the one in the slides (they should be roughly similar).
 - b. Airbnb data (from previous HW), with **just** 1,000 **permutations**. What's the conclusion? Compare the shape of resulting histogram with the density of χ^2 distribution with appropriate degrees of freedom. What does it tell us about whether χ^2 -test results from previous HW were appropriate for Airbnb data?

Problem #2

In Advertisement.csv data set, proceed to study the relationship between the sales and radio advertising expenses. In particular, proceed to

- 1. Plot their relationship. Does linear regression appear as appropriate model here?
- 2. Regardless of the answer to Part 1, proceed to fit the linear regression and write down the **fitted** model equation.

- 3. Interpret both the slope and the intercept.
- 4. Provide and interpret the prediction for a 50,000\$ investment into this advertisement media.
- 5. Report and interpret the Residual Standard Error (RSE).
- 6. Report and interpret the R^2 statistic.

Problem #3

1. When one obtains the fitted simple linear regression formula

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X,$$

the actual mathematical formulas for $\hat{\beta}_0$ and $\hat{\beta}_1$ are:

$$\hat{\beta}_1 = \frac{\sum_i (X_i - \bar{\mathbf{X}})(Y_i - \bar{\mathbf{Y}})}{\sum_i (X_i - \bar{\mathbf{X}})^2}, \qquad \hat{\beta}_0 = \bar{\mathbf{Y}} - \hat{\beta}\bar{\mathbf{X}},$$

where $\mathbf{X} = (X_1, X_2, \dots, X_n)$ - vector of explanatory variable values, and $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)$ - vector of response values.

- a. Proceed to write your own function which will calculate these estimates. Specifically, your function should
 - Take vectors **X**, **Y** as inputs.
 - Output estimates $\hat{\beta}_0$ and $\hat{\beta}_1$.

Hint: You're better off avoiding loops. Conduct calculations on full vectors (AKA "vectorized calculation").

Note: Your function shouldn't "cheat" by using R's built-in "lm()" function. You need to explicitly implement above-mentioned formulas (by applying basic vectorized operations on inputs X, Y).

- b. "Sanity check": Demonstrate that your function works properly on sales $\sim TV$ regression example (Advertising.csv data), by supplying it vector of TV and expense values as \mathbf{X} argument, vector of Sales values as Y argument, and comparing your calculated estimates with the ones yielded by lm() function.
- a. Write your own function that, for a simple linear regression $Y = \beta_0 + \beta_1 X + \epsilon$, will
 - Take vectors **X** = (X₁, X₂,..., X_n), **Y** = (Y₁, Y₂,..., Y_n) as inputs.
 Output Residual Standard Error (RSE) and R² statistic.

In your function, you're allowed to use lm() function, but only for purposes of obtaining \hat{Y} values. You are NOT allowed to extract RSE or \mathbb{R}^2 values directly from the lm object. Instead, you will need to explicitly implement $RSE \& R^2$ formulas from slide deck #3.

b. "Sanity check": Demonstrate that your function works properly by supplying it vector of ad expense values for arbitrary media from Advertising.csv data (TV, radio, newspaper, whichever)as X argument, vector of sales values as Y argument, and comparing your calculated RSE and R^2 values with the ones yielded by summary() function applied to the lm object.