Astrophysics - Summary - Introduction
1. [units]:-mass: solar mass
- length: AU, pc, spc, Mpc, Gpc
1
- coordinates: Da. Dec Equatorial system - precention
l, b Galactic mystem
- brightness: magnitudes - log scale (absolute, apportent, bolometrio)
m-M = 5log 10 destance measurments
t colour of objects (B-V)
Sources of astronomical information:
- EM radiation
- neutrinos - à Sian + supernovas
- gravitational waves - or black hole 4 neutron star mergers
- cornic vargs -o energetic abjects
EM vadiation: - various wavelengths
- atmosperic windows (throughput)
- Imaging + Spectroseojoy
- Blackbody or syncrotron topectral lines
Optical: resolution $O = 1.22 \frac{1}{D}$ have a few Radio astronomy: much dish us interferently (Sources
Lubere are
X- vay astronomy: only from space the observatories
Infrared astronomy:
Gamma-ray astronomy: directly only from space

2. Ladiation transfer - Summary
Describes how vadiation interacts with matter
- Macroscopic: using emission and absorption coefficients
Describes how vadiation interacts with matter - Macroscopic: using emission and absorption coeficients - Thoroscopic: calculating the emission & absorption coeficients
Plandes law - blackbody vadiation
Radiation transfer - hour does vadiation propagate
amount of vadiation
dEydv = 1, cost dA dt dIdV solid area time angle angle of direction
solid area time angle
oldisection
Redigtion Flow: Fr = [1, cost of] += ItdV
Lo integrale the intensity to integrate over frequency
Energy dewrity: $U_{\gamma} = \int \frac{1\nu}{c} d\Omega$ density of energy in a glunder filled by radiation
Radiation pressure: pressure associated with vadiation
$P_{\gamma} = \frac{1}{3}u_{\gamma}$
Radialice transport: how dos radiation propagate trough things
- in empty space: the radiation does not change
- through matter: ancrion and alsoystion
emission coef: jr 3 all matter has this absorption coef of
radiation transfer equation: $\frac{dly}{ds} = j_{y} - d_{y} _{y}$
-t
if the metter only absorbes: $J\nu = 0$ $\frac{d \nu}{ds} = -d\nu \nu$ optical depth: $d^2\nu = -d\nu ds - \nu = \int d\nu (s') ds'$
optical depth: di, - Ly ds - Tp = [dy (s')ds'

(4) Thompson scattering: radiation occattering on free electrons elastic ocattering - wavelength does not change
elastic scattering - wavelength does not change
-s additional spacity due to thompson scattering
Spectral lines: Equivalent width the integral of the fractional dip in intervity for an absorption line
interrity for an absorption line
$W_{\lambda} = \int \frac{ c - lv }{ c } d\lambda$ $ c - continuum intensity v = absorption line$
photon diffusion inside the Sun it tales a very long time for photous to get out from the core ~ 104 years
CI Marie Plans
Stellar Physics
Solar phenomena:
rotation: differential votation -> from oscillations 25days
- wovement of sunspots 25days
magnetic field: sunspots; colder spots associated with magnetic fields
solar cycle: Myears of variation for number of surspot + polarity change = D 27 years cycle
Solar flores + CME's - space weather, Auroral Exp planets: 5 methods for detection: - radial velocity
End state of stars: - derect imaging
- White dwarf & descusted - gravitational nuivo lensing - astrometry
- BH
White dwarfe: Fermi gas (not Boltemann velocity) - o degeneracy pressure
For the pressure we have two cases For the pressure we have two cases $P = \frac{1}{2} f^{3}$

degenerate matter - stellar structure rymplifies anly need to solve the of the stallar structure equations # the first 2 combine = D R & M-1/3 - increasing wass -o smaller star depending on the star of the star we can use troughed for low mass and relativistic pressure for higher marries Neutron star: degenerate hentron gas -o "neutron drip" neutrons drip out of atoms at very high pressures, e-+p+-> n+v - D degenerate pressure - D also have a mass limit + mass of a star in a size of a city (1984) - s rotating neutron star : palsar - A binary pulsar - & graw waves -s unlisecond julsars or binary rystem Lo X-ray binances

The Melry Way