Homework Set 2, CPSC 8420, Fall 2023

Yue Zhang

Due 10/26/2023, Thursday, 11:59PM EST

1 Problem 1

For PCA, from the perspective of maximizing variance, please show that the solution of ϕ to maximize $\|\mathbf{X}\phi\|_2^2$, s.t. $\|\phi\|_2 = 1$ is exactly the first column of \mathbf{U} , where $[\mathbf{U}, \mathbf{S}] = svd(\mathbf{X}^T\mathbf{X})$. (Note: you need prove why it is optimal than any other reasonable combinations of \mathbf{U}_i , say $\hat{\phi} = 0.8 * \mathbf{U}(:, 1) + 0.6 * \mathbf{U}(:, 2)$ which also satisfies $\|\hat{\phi}\|_2 = 1$.)

Suppose

$$\phi = \sum_{1}^{n} \alpha_i \mathbf{U}_i$$
, where $\sum_{1}^{n} \alpha_i^2 = 1$

Then

$$\|\mathbf{X}\boldsymbol{\phi}\|_{2}^{2} = \boldsymbol{\phi}^{T}(\mathbf{U}\mathbf{S}\mathbf{U}^{T})\boldsymbol{\phi} = \boldsymbol{\phi}^{T}(\sum_{i}\mathbf{S}_{ii}\mathbf{U}_{i}\mathbf{U}_{i}^{T})\boldsymbol{\phi}$$
(1)

when,
$$i = 1 \to \|\mathbf{X}\phi\|_2^2 = \mathbf{S}_{11}$$
 (2)

otherwise,
$$m \le n \to \|\mathbf{X}\boldsymbol{\phi}\|_{2}^{2} = \sum_{i=1}^{m} \alpha_{i}^{2} \mathbf{S}_{ii} < \mathbf{S}_{11} \sum_{i=1}^{m} \alpha_{i}^{2} = \mathbf{S}_{11}$$
 (3)

So taking $\phi \| = \mathbf{U}_1$ is optimal than any other reasonable combinations of \mathbf{U}

2 Problem 2

Given matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ (assume each column is centered already), where n denotes sample size while p feature size. To conduct PCA, we need find eigenvectors to the largest eigenvalues of $\mathbf{X}^T\mathbf{X}$, where usually the complexity is $\mathcal{O}(p^3)$. Apparently when $n \ll p$, this is not economic when p

is large. Please consider conducting PCA based on $\mathbf{X}\mathbf{X}^T$ and obtain the eigenvectors for $\mathbf{X}^T\mathbf{X}$ accordingly and use experiment to demonstrate the acceleration.

2.1 eVec

Assume **v** is an eigenvector of $\mathbf{X}\mathbf{X}^T$ to eigenvalue λ . Then is holds

$$\mathbf{X}\mathbf{X}^T\mathbf{v} = \lambda\mathbf{v}$$

and

$$\mathbf{X}^T \mathbf{X} \mathbf{X}^T \mathbf{v} = \mathbf{X}^T \lambda \mathbf{v} = \lambda \mathbf{X}^T \mathbf{v}$$

, hence $\mathbf{X}^T\mathbf{v}$ is an eignevector of $\mathbf{X}^T\mathbf{X}$ with eigenvalue λ

2.2 Exp

```
n = 3; p = 10;
X = rand(n,p);
[V,D] = svd(X*X');
%[nV,nD] = svd(X'*X);

err = zeros(1,n);
for i = 1:n
    % ith eVec and EVAL
    v = V(:,i);
    lambda = D(i,i);

    nV= X'*v;
    err(i) = norm(X'*X*nV - lambda*nV,2);
end
err

err =
    1.0e-14 *
```

3 Problem 3

 $0.9770\ 0.1713\ 0.1028$

Let's revisit Least Squares Problem: minimize $\frac{1}{2} \|\mathbf{y} - \mathbf{A}\boldsymbol{\beta}\|_2^2$, where $\mathbf{A} \in \mathbb{R}^{n \times p}$.

- 1. Please show that if p > n, then vanilla solution $(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$ is not applicable any more.
- 2. Let's assume $\mathbf{A} = [1, 2, 4; 1, 3, 5; 1, 7, 7; 1, 8, 9], \mathbf{y} = [1; 2; 3; 4]$. Please show via experiment results that Gradient Descent method will obtain the optimal solution with Linear Convergence rate if the learning rate is fixed to be $\frac{1}{\sigma_{max}(\mathbf{A}^T\mathbf{A})}$, and $\boldsymbol{\beta}_0 = [0; 0; 0]$.

- 3. Now let's consider ridge regression: minimize $\frac{1}{2} \|\mathbf{y} \mathbf{A}\boldsymbol{\beta}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|_2^2$, where $\mathbf{A}, \mathbf{y}, \boldsymbol{\beta}_0$ remains the same as above while learning rate is fixed to be $\frac{1}{\lambda + \sigma_{max}(\mathbf{A}^T \mathbf{A})}$ where λ varies from 0.1, 1, 10, 100, 200, please show that Gradient Descent method with larger λ converges faster.
- 1. $\mathbf{A}^T \mathbf{A}$ is a $p \times p$ matrix, but the $rank(\mathbf{A}^T \mathbf{A}) \leq min(n,p) < n \implies \mathbf{A}^T \mathbf{A}$ is not invertable
- 2. See figure 1

```
Itr=50000;
err=zeros(Itr,1);

A=[1 2 4;1 3 5; 1 7 7; 1 8 9];
y=[1;2;3;4];

beta_star = (A'*A)\(A'*y);
opt = 0.5*norm(y-A*beta_star)^2;

[U,S,V]=svd(A'*A);
L = S(1,1);
beta = [0;0;0];

for i=1:Itr
    beta = beta - 1/L*(A'*A*beta-A'*y);
    err(i)=0.5*norm(y-A*beta)^2-opt;
end
plot(1:Itr,err)
```


Figure 1: Q3-2

:

3. See figure 2

```
Itr=1000;
err=zeros(Itr,1);
A=[1 2 4;1 3 5; 1 7 7; 1 8 9];
y=[1;2;3;4];
%lambda_list=[200];
lambda_list=[0.1, 1 , 10, 100, 200];
for lambda = lambda_list
    beta_star = (A'*A + lambda*eye(3))\setminus(A'*y);
    opt = 0.5*norm(y-A*beta_star)^2 + 0.5*lambda*norm(beta_star)^2;
    [U,S,V] = svd(A'*A);
    L = S(1,1) + lambda;
    beta = [0;0;0];
    for i=1:Itr
        beta = beta - 1/L*((A'*A+lambda*eye(3))*beta-A'*y);
        err(i)=0.5*norm(y-A*beta)^2 + 0.5*lambda*norm(beta)^2 - opt;
    end
    x = 1:Itr;
    plot(x,err)
    hold on
```


Figure 2: Q3-2

:

end

4 Problem 4

We consider matrix completion problem. As we discussed in class, the main issue of *softImpute* (Matrix Completion via Iterative Soft-Thresholded SVD) is when the matrix size is large, conducting

SVD is computational demanding. Let's recall the original problem where $\mathbf{X}, \mathbf{Z} \in \mathbb{R}^{n \times d}$:

$$\min_{\mathbf{Z}} \frac{1}{2} \|P_{\Omega}(\mathbf{X}) - P_{\Omega}(\mathbf{Z})\|_F^2 + \lambda \|\mathbf{Z}\|_*$$
(4)

People have found that instead of finding optimal **Z**, it might be better to make use of *Burer-Monteiro* method to optimize two matrices $\mathbf{A} \in \mathbb{R}^{n \times r}$, $\mathbf{B} \in \mathbb{R}^{d \times r}$ ($r \geq rank(\mathbf{Z}^*)$) such that $\mathbf{A}\mathbf{B}^T = \mathbf{Z}$. The new objective is:

$$\min_{\mathbf{A},\mathbf{B}} \frac{1}{2} \| P_{\Omega}(\mathbf{X} - \mathbf{A}\mathbf{B}^T) \|_F^2 + \frac{\lambda}{2} (\|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2).$$
 (5)

- Assume $[\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}] = svd(\mathbf{Z})$, show that if $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}^{\frac{1}{2}}, \mathbf{B} = \mathbf{V}\mathbf{\Sigma}^{\frac{1}{2}}$, then Eq. (5) is equivalent to Eq. (4).
- The Burer-Monteiro method suggests if we can find $\mathbf{A}^*, \mathbf{B}^*$, then the optimal \mathbf{Z} to Eq. (4) can be recovered by $\mathbf{A}^*\mathbf{B}^{*T}$. It boils down to solve Eq. (5). Show that we can make use of least squares with ridge regression to update \mathbf{A}, \mathbf{B} row by row in an alternating minimization manner as below. Assume n = d = 2000, r = 200, please write program to find \mathbf{Z}^* .

```
T \leftarrow 100, i \leftarrow 1~\% you can also set T to be other number instead of 100 if i \leq T then  update~A~row~by~row~while~fixing~B \\ update~B~row~by~row~while~fixing~A \\ i \leftarrow i+1 end if
```

4.1

It is easy to prove that the parts in front of the plus sign in the two objects are equal

$$\frac{1}{2} \|P_{\Omega}(\mathbf{X}) - P_{\Omega}(\mathbf{Z})\|_F^2 = \frac{1}{2} \|P_{\Omega}(\mathbf{X} - \mathbf{A}\mathbf{B}^T)\|_F^2$$

$$\tag{6}$$

since $P_{\Omega}(\mathbf{X}) - P_{\Omega}(\mathbf{Z}) = P_{\Omega}(\mathbf{X} - \mathbf{Z}) = P_{\Omega}(\mathbf{X} - \mathbf{A}\mathbf{B}^T)$. For the part behind the addion sign, since

$$\begin{aligned} \|\mathbf{A}\|_F^2 &= \|\mathbf{U}\boldsymbol{\Sigma}^{\frac{1}{2}}\|_F^2 = trace(\boldsymbol{\Sigma}^{\frac{1}{2}}\mathbf{U}^T\mathbf{U}\boldsymbol{\Sigma}^{\frac{1}{2}}) = trace(\boldsymbol{\Sigma}) \\ \|\mathbf{B}\|_F^2 &= \|\mathbf{V}\boldsymbol{\Sigma}^{\frac{1}{2}}\|_F^2 = trace(\boldsymbol{\Sigma}^{\frac{1}{2}}\mathbf{V}^T\mathbf{V}\boldsymbol{\Sigma}^{\frac{1}{2}}) = trace(\boldsymbol{\Sigma}) \\ \|\mathbf{Z}\|_* &= trace(\boldsymbol{\Sigma}) \end{aligned}$$

, we can get

$$\frac{\lambda}{2}(\|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2) = \lambda \|\mathbf{Z}\|_* \tag{7}$$

From (6) and (7), we can tell (4) is equivalent to (5)

4.2

```
see figure 3
n = 2000; d = 2000;
r = 200;
T = 100;
alpha = 0.00001;
lambda = 1.0;
R = sprand(n,d,0.01);
A = rand(n,r);
B = rand(d,r);
B_t = B';
errlist=zeros(T,1);
for t = 1:T
%
      for row = 1:n
%
          for col = 1:r
%
              if not(R(row,col)==0)
%
                  eij = R(row,col) - A(row,:)*B_t(:,col);
%
                  for rr = 1:r
%
                      A(row,rr) = A(row,rr) + alpha *(eij*B_t(rr,col) - lambda*A(row,rr));
%
                      B_t(rr,col) = B_t(rr,col) + alpha *(eij*A(row,rr) - lambda*B_t(rr,col));
%
                  end
%
% %
                    A(row,:) = A(row,:)+alpha *(eij*B(col,:) - lambda*A(row,:));
% %
                    B(col,:) = B(col,:) + alpha *(eij*A(row,:) - lambda*B(col,:));
%
              end
%
          end
%
      end
    [row,col] = find(R);
    for i = 1:size(row)
        disp([t,i]);
        eij = R(row(i),col(i)) - A(row(i),:)*B_t(:,col(i));
        A(row(i),:) = A(row(i),:) + alpha *(eij*B(col(i),:) - lambda*A(row(i),:));
        B(col(i),:) = B(col(i),:) + alpha *(eij*A(row(i),:) - lambda*B(col(i),:));
    end
    errlist(t) = norm(R-A*B_t, "fro");
end
plot(1:T,errlist);
Z_star = A*B_t;
```


Figure 3: Q4-2