```
In [4]: # import python libraries
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt # visualizing data
        %matplotlib inline
        import seaborn as sns
In [5]:
        df=pd.read_csv('Diwali Sales Data.csv', encoding='unicode_escape')
In [6]: df.shape
Out[6]: (11251, 15)
        df.head()
In [7]:
Out[7]:
                                                     Age
            User ID Cust name Product ID Gender
                                                          Age Marital_Status
                                                                                      Stat
                                                   Group
          1002903
                       Sanskriti
                                P00125942
                                                F
                                                    26-35
                                                           28
                                                                           0
                                                                                Maharashti
                                                                             Andhra Prades
           1000732
                         Kartik
                                P00110942
                                                    26-35
                                                           35
                                                                               Uttar Prades
           1001990
                         Bindu
                                P00118542
                                                F
                                                    26-35
                                                           35
           1001425
                        Sudevi
                                P00237842
                                                     0 - 17
                                                                                  Karnatak
                                               M
                                                            16
                                                    26-35
           1000588
                          Joni
                                P00057942
                                                           28
                                                                           1
                                                                                     Gujara
                                               M
In [8]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 11251 entries, 0 to 11250
       Data columns (total 15 columns):
        #
            Column
                              Non-Null Count Dtype
            ____
                              -----
           User ID
                              11251 non-null int64
        0
        1
            Cust_name
                              11251 non-null object
        2
            Product_ID
                              11251 non-null object
        3
            Gender
                              11251 non-null object
        4
            Age Group
                              11251 non-null object
        5
                              11251 non-null int64
            Age
        6
            Marital Status
                              11251 non-null int64
        7
                              11251 non-null object
            State
            Zone
                              11251 non-null object
        9
            Occupation
                              11251 non-null object
        10 Product Category 11251 non-null
                                              object
        11 Orders
                              11251 non-null int64
        12 Amount
                              11239 non-null float64
        13 Status
                              0 non-null
                                              float64
        14 unnamed1
                              0 non-null
                                              float64
       dtypes: float64(3), int64(4), object(8)
       memory usage: 1.3+ MB
In [9]:
        #drop unrelated/blank columns
        df.drop(['Status', 'unnamed1'], axis=1, inplace=True)
```

```
In [10]: #check for null values
         pd.isnull(df).sum()
Out[10]: User_ID
         Cust_name
                              0
         Product_ID
                              0
         Gender
                              0
         Age Group
                              0
                              0
         Age
         Marital_Status
                              0
         State
         Zone
                              0
         Occupation
         Product_Category
         Orders
                              0
         Amount
                              12
         dtype: int64
In [11]: # drop null values
         df.dropna(inplace=True)
In [12]: # change data type
         df['Amount'] = df['Amount'].astype('int')
In [13]: df['Amount'].dtypes
Out[13]: dtype('int32')
In [14]: df.columns
Out[14]: Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
                 'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Category',
                 'Orders', 'Amount'],
                dtype='object')
In [15]: #rename column
         df.rename(columns= {'Marital_Status':'Shaadi'})
```

Out[15]:

State	Shaadi	Age	Age Group	Gender	Product_ID	Cust_name	User_ID	
Maharashtra	0	28	26-35	F	P00125942	Sanskriti	1002903	0
Andhra Pradesh	1	35	26-35	F	P00110942	Kartik	1000732	1
Uttar Pradesh	1	35	26-35	F	P00118542	Bindu	1001990	2
Karnataka	0	16	0-17	М	P00237842	Sudevi	1001425	3
Gujarat	1	28	26-35	М	P00057942	Joni	1000588	4
								•••
Maharashtra	1	19	18-25	М	P00296942	Manning	1000695	11246
Haryana	0	33	26-35	М	P00171342	Reichenbach	1004089	11247
Madhya Pradesh	0	40	36-45	F	P00201342	Oshin	1001209	11248
Karnataka	0	37	36-45	М	P00059442	Noonan	1004023	11249
Maharashtra	0	19	18-25	F	P00281742	Brumley	1002744	11250

11239 rows × 13 columns

→

In [16]: # describe() method returns description of the data in the DataFrame (i.e. count
df.describe()

()	11'	Τ.		1	6	- 1	4
\cup	u	L	1	-	\cup	- 1	4
			-			-	

	User_ID	Age	Marital_Status	Orders	Amount
count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

In [17]: # use describe() for specific columns
df[['Age', 'Orders', 'Amount']].describe()

Out[17]:

	Age	Orders	Amount
count	11239.000000	11239.000000	11239.000000
mean	35.410357	2.489634	9453.610553
std	12.753866	1.114967	5222.355168
min	12.000000	1.000000	188.000000
25%	27.000000	2.000000	5443.000000
50%	33.000000	2.000000	8109.000000
75%	43.000000	3.000000	12675.000000
max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

Gender

```
In [18]: # plotting a bar chart for Gender and it's count
ax = sns.countplot(x = 'Gender',data = df)
for bars in ax.containers:
    ax.bar_label(bars)
```


In [19]: # plotting a bar chart for gender vs total amount

```
sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(b
sns.barplot(x = 'Gender',y= 'Amount' ,data = sales_gen)
```

Out[19]: <Axes: xlabel='Gender', ylabel='Amount'>

From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men

Age

```
In [20]: ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```


In [21]: # Total Amount vs Age Group
sales_age = df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_value
sns.barplot(x = 'Age Group',y= 'Amount' ,data = sales_age)

Out[21]: <Axes: xlabel='Age Group', ylabel='Amount'>

From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

State

```
In [22]: # total number of orders from top 10 states
sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Orders')
```

Out[22]: <Axes: xlabel='State', ylabel='Orders'>


```
In [23]: # total amount/sales from top 10 states
sales_state = df.groupby(['State'], as_index=False)['Amount'].sum().sort_values(
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Amount')
```

Out[23]: <Axes: xlabel='State', ylabel='Amount'>

From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

Marital Status

```
In [24]: ax = sns.countplot(data = df, x = 'Marital_Status')
          sns.set(rc={'figure.figsize':(7,5)})
          for bars in ax.containers:
              ax.bar_label(bars)
         6000
         5000
                                                                           4721
         4000
        8 <sub>3000</sub>
         2000
           0
                                 0
                                                   Marital_Status
In [25]: sales_state = df.groupby(['Marital_Status', 'Gender'], as_index=False)['Amount']
          sns.set(rc={'figure.figsize':(6,5)})
          sns.barplot(data = sales_state, x = 'Marital_Status',y= 'Amount', hue='Gender')
```


From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

Occupation

```
In [26]:
        sns.set(rc={'figure.figsize':(20,5)})
         ax = sns.countplot(data = df, x = 'Occupation')
         for bars in ax.containers:
             ax.bar_label(bars)
```



```
In [27]:
         sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_va
         sns.set(rc={'figure.figsize':(20,5)})
         sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')
```


From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

Product Category

```
sns.set(rc={'figure.figsize':(20,5)})
In [28]:
          ax = sns.countplot(data = df, x = 'Product_Category')
          for bars in ax.containers:
              ax.bar_label(bars)
         2500
         2000
         1000
          sales_state = df.groupby(['Product_Category'], as_index=False)['Amount'].sum().s
```

In [29]:

```
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_Category',y= 'Amount')
```

Out[29]: <Axes: xlabel='Product_Category', ylabel='Amount'>

From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category

```
In [30]: sales_state = df.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_va
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_ID',y= 'Orders')
```

Out[30]: <Axes: xlabel='Product_ID', ylabel='Orders'>


```
In [31]: # top 10 most sold products (same thing as above)

fig1, ax1 = plt.subplots(figsize=(12,7))
    df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=Fals)
```

Out[31]: <Axes: xlabel='Product_ID'>

Conclusion:

Married women age group 26-35 yrs from UP, Maharastra and Karnataka working in IT, Healthcare and Aviation are more likely to buy products from Food, Clothing and Electronics category

Thank you!