I. Puissance électrique

Á RETENIR

- La fiche signalétique d'un appareil électrique indique sa tension nominale (en volts, V) et sa puissance de fonctionnement ()en watt, W).
- L'énergie électrique fournie par le secteur est convertie en un autre type d'énergie suivant l'objet utilisé. Énergie thermique pour un appareil de chauffage, énergie lumineuse pour une lampe, etc.
- Toute l'énergie apportée à l'appareil est convertie, il y a conservation de l'énergie. L'énergie apportée est égale à la somme des énergies fournies par l'appareil.

EXEMPLE

• Fiche signalétique d'un appareil électrique

• Chaîne énergétique d'un dispositif d'éclairage

II. Puissance, tension et intensité

Á RETENIR

- Dans le système international, la puissance est exprimée en watt, notée W.
- La puissance P d'un appareil électrique dépend de sa tension de fonctionnement U et de l'intensité du courant reçu I. On a :

$$P = U \times I$$

avec P en watt (W), U en volts (V) et I en ampère (A).

EXEMPLE

Ordres de grandeur de puissance :

	lampe basse consommation	four électrique	centrale nucléaire	besoins moyens de la France
Puissance	30 W	3 kW	1300 MW	60 GW

▲ Ordres de grandeur de puissance

Rappel: $1 \text{ kW} = 10^3 \text{ W}$; $1 \text{ MW} = 10^6 \text{ W}$; $1 \text{ GW} = 10^9 \text{ W}$.

III. Énergie électrique

Á RETENIR

L'énergie électrique utilisée par un appareil de puissance P qui fonctionne pendant une durée t est donné par la relation :

$$E = P \times t$$

Avec E en kilowattheure (kWh), P en kilowatt (kW) et t en heures (h), ou E en joules (J), P en watt (W) et t en secondes (s).

Utiliser des appareil électriques moins puissants, diminuer leur durée de fonctionnement et éviter de les laisser en veille réduit la consommation d'énergie électrique.

REMARQUE

Le joule est une unité très petite, dans la pratique, on utilise le kilowattheure.

$$1kWh = 1kW \times 1h = 1000W \times 3600s = 3.6 \times 10^6 J$$

