Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 13.05.2016

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	r:						Note:
	Aufgabe	1	2	3	4	\sum	
	erreichbare Punkte	10	9	11	10	40	
	erreichte Punkte						
Bitte							
tragen Sie	Name, Vorname und	Matrik	elnumr	ner auf	dem D	eckbla [.]	tt ein,
rechnen S	ie die Aufgaben auf se	parater	n Blätte	ern, ni c	c ht auf	dem A	ingabeblatt,
beginnen	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den N	Vamen	sowie d	lie Mat	rikelnu	mmer a	an,
begründer	n Sie Ihre Antworten a	usführl	ich und	1			
kreuzen Si antreten k	ie hier an, an welchem önnten:	der fol	genden	Termin	ne Sie z	zur mür	ndlichen Prüfung
	□ Mo., 23.05.202	16			Di., 24.0	05.2016	;

1. Bearbeiten Sie die folgenden Teilaufgaben:

10 P.|

a) Gegeben ist das nichtlineare autonome System

3 P.|

$$\dot{x} = -\sqrt{x}, \quad x(0) = x_0 > 0.$$

- i. Bestimmen Sie für x>0 das zugehörige Abtastsystem mit der Abtastzeit 2 P T_a . Verwenden Sie **kein** numerisches Integrationsverfahren, wie etwa das Eulerverfahren.
- ii. Bestimmen Sie die Ruhelage des resultierenden Abtastsystems. 1 P.
- b) Gegeben ist die Strecke

$$G(s) = \frac{V_I}{s}$$
.

Bestimmen Sie für eine allgemeine Abtastzeit T_a die z-Übertragungsfunktion G(z) des zugehörigen Abtastsystems.

c) Beurteilen Sie BIBO-Stabilität, Sprungfähigkeit und Realisierbarkeit der Über- 1.5 P.| tragungsfunktion

$$G^{\#}(q) = \frac{(4-q)(q+12)}{\left(4q+1\right)\left(1+\frac{q}{3}\right)}.$$

mit der Abtastzeit $T_a = 0.5 \,\mathrm{s}$. Begründen Sie Ihre Antwort ausführlich!

d) Gegeben ist die in Abbildung 1 dargestellte Steuerung, die in den nachfolgen- $4.5\,\mathrm{P.}$ den Aufgaben für die alternativen zeitdiskreten Strecken G_1 und G_2 mit den Impulsantworten

$$g_{1,k} = 2\sigma_k + \delta_{k-3} - \sigma_{k-3},\tag{1a}$$

$$g_{2,k} = 2\sigma_{k-1} + \delta_{k-2} - 4\sigma_{k-2} + p\sigma_{k-3}, \quad p \in \mathbb{R}.$$
 (1b)

untersucht werden soll.

Abbildung 1: Zeitdiskrete Steuerung.

Hinweise: Für die (zeitverschobene) Sprungfolge wird hier die Schreibweise $(\sigma_{k-1}) = (0, 1, 1, \dots)$ verwendet. Nachfolgende Teilaufgaben können unabhängig voneinander gelöst werden.

- i. Nehmen Sie p=2 an. Beurteilen Sie anhand der Impulsantworten (1a) und 2 P. (1b) Sprungfähigkeit sowie BIBO-Stabilität von G_1 und G_2 . Ist die Anwendung einer Steuerung auf die jeweiligen Strecken möglich? Begründen Sie Ihre Antwort ausführlich!
- ii. Von der Strecke G_2 ist bekannt, dass es sich um ein System der Ordnung 2.5 F 3 handelt. Für welchen Wertebereich von p ist dieses System vollständig erreichbar und vollständig beobachtbar? Begründen Sie Ihre Antwort ausführlich!

2. Gegeben ist das LTI-System

9 P.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u \tag{2a}$$

$$y = \mathbf{c}^{\mathrm{T}} \mathbf{x} \tag{2b}$$

mit den Systemmatrizen

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -2 \end{bmatrix} \quad \text{und} \quad \mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}. \tag{3}$$

Bearbeiten Sie folgende Teilaufgaben und begründen Sie ihre Antworten!

- a) Bestimmen Sie ob das System vollständig beobachtbar ist. 1 P.
- b) Nehmen Sie für diesen Unterpunkt an, dass $\mathbf{c}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ gilt und das System somit vollständig beobachtbar ist.
 - i. Kann durch Abtastung die vollständige Beobachtbarkeit verloren gehen? $1.5\,\mathrm{P.}$ Falls ja, berechnen Sie die Abstastzeiten T_a , bei denen das System diese Eigenschaft verlieren würde.
 - $0.5 \, P.$ ii. Kann für dieses System ein trivialer Beobachter entworfen werden?
- c) Geben Sie für das System (2) die zugehörige Übertragungsfunktion G(s) vom 1 P. Eingang u(t) zum Ausgang y(t) an.

Hinweis: Die Transitionsmatrix $\Phi(t)$ ergibt sich im Laplace-Bereich zu

$$\mathbf{\Phi}(s) = \begin{bmatrix} \frac{1}{s-1} & \frac{s+1}{(s^2+2s+2)(s-1)} & \frac{1}{(s^2+2s+2)(s-1)} & \frac{2}{(s-1)(s+2)} \\ 0 & \frac{s+1}{s^2+2s+2} & \frac{1}{s^2+2s+2} & 0 \\ 0 & -\frac{1}{s^2+2s+2} & \frac{s+1}{s^2+2s+2} & 0 \\ 0 & 0 & 0 & \frac{1}{s+2} \end{bmatrix}.$$

- 1 P. d) Ist die Ruhelage $\mathbf{x}_R = \mathbf{0}$ des Systems (2a) für u = 0 asymptotisch stabil?
- e) Ist das System (2) BIBO-stabil? 1 P.
- f) Nehmen Sie an, dass für das System (2) die Lösungen 3 P.
 - $y(t) = e^{-t}(\cos(t) \sin(t))$ für $\mathbf{x}_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}^T$ und u(t) = 0• $y(t) = e^{-t}(\cos(t) 3\sin(t)) \cos(2t) + 2\sin(2t)$ für $\mathbf{x}_0 = \mathbf{0}$ und u(t) = 0
 - $5\sin(2t)$

bekannt sind. Bestimmen Sie die Lösung y(t) für $\mathbf{x}_0 = \begin{bmatrix} 1 & 2 & 0 & 0 \end{bmatrix}$ und $u(t) = \begin{bmatrix} 1 & 2 & 0 & 0 \end{bmatrix}$ $\sin(2t)$.

3. Bearbeiten Sie die folgenden Teilaufgaben.

11 P.|

a) Gegeben ist ein nichtlineares System in impliziter Form durch

$$a\dot{x}\cos(x) - \dot{x}e^{(x-\pi)} - \ddot{x} - \int_{0}^{t} \dot{x} - \sin(x(\tau))u(\tau)d\tau = 0$$

und die Ausgangsgleichung

$$y = x - \dot{x}u^2.$$

i. Geben Sie das System in Zustandsdarstellung der Form

3 P.|

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})u$$
$$y = h(\mathbf{x}, u)$$

an.

- ii. Bestimmen Sie alle Ruhelagen des Systems für $u(t) = u_R \neq 0$. Wie viele 1.5 P.| Ruhelagen gibt es?
- iii. Linearisieren Sie das System um die Ruhelage, für die $u_R \neq 0$ gilt und 2 P.| $x_{1,R} > 0$ kleinstmöglich ist. Geben Sie die Systemmatrizen des linearisierten Systems an.
- iv. Geben Sie den zulässigen Wertebereich von a in Abhängigkeit von u_R an, 2.5 P. sodass das linearisierte System asymptotisch stabil ist.
- b) Betrachten Sie das System

2P.

$$\dot{x} = -3u$$
$$y = -x - 6u$$

und entwerfen Sie einen trivialen Beobachter. Zeigen Sie, dass für den Beobachtungsfehler e(t) gilt: $\lim_{t\to\infty} e(t) \neq 0$ für $e(0) \neq 0$.

Zeigen Sie des Weiteren, dass für

$$\dot{x} = -x - 3u$$
$$y = -x - 6u$$

der Beobachtungsfehler e(t) exponentiell abklingt.

$$R_1(s) = \frac{V_I(1+sT_I)}{s}, \quad G_1(s) = \frac{5}{s+\frac{1}{2}}, \quad G_2(s) = \frac{1}{\left(s+2\left(2+\sqrt{3}\right)\right)\left(1+2\xi sT_2+(sT_2)^2\right)}.$$

Abbildung 2: Kaskadierter Regelkreis.

Bearbeiten Sie die folgenden Teilaufgaben, die unabhängig voneinander gelöst werden können.

a) Dimensionieren Sie die Parameter V_I und T_I des Regler $R_1(s)$ durch Koeffizientenvergleich so, dass sich die Führungsübertragungsfunktion des geschlossenen inneren Regelkreises für eine allgemeine Zeitkonstante T_* zu

$$T_{r_1,y_1}(s) = \frac{1}{1 + sT_*}$$

ergibt. Ermitteln Sie anschließend den kleinstmöglichen Wert der Zeitkonstante T_* , für den die Stellgrößenübertragungsfunktion die Forderung

$$\lim_{\omega \to \infty} |T_{r_1, u_1}(\mathrm{I}\,\omega)|_{\mathrm{dB}} \le 20\,\mathrm{dB}$$

erfüllt.

- b) Nehmen Sie an, dass die Störung d(t) messbar ist. Wie müsste eine Störgrö- 1.5 P. ßenaufschaltung $\hat{w}(s) = -R_d(s)\hat{d}(s)$ ausgelegt werden, um den Einfluss von d(t) am Ausgang $y_1(t)$ exakt zu kompensieren? Ist dies im vorliegenden Fall möglich? Begründen Sie Ihre Antwort ausführlich!
- c) Entnehmen Sie der in Abbildung 3 dargestellten Sprungantwort die Parameter 1.5 P. Anstiegszeit t_r , prozentuelles Überschwingen \ddot{u} und bleibende Regelabweichung e_{∞} . Skizzieren Sie in Abbildung 3 wie die jeweiligen Parameter bestimmt werden.
- d) Entwerfen Sie einen realisierbaren Kompensationsregler $R_2(s)$ der Ordnung 2 4 P.| im Sinne einer Kaskadenregelung so, dass die Sprungantwort des geschlossenen Regelkreises die Anforderungen
 - Anstiegszeit $t_r = 0.75 \,\mathrm{s}$
 - Prozentuelles Überschwingen $\ddot{u} = 10\%$
 - Bleibende Regelabweichung $e_{\infty} = \lim_{t \to \infty} e(t)|_{r(t) = \sigma(t)} = 0$

erfüllt und das konjugiert komplexe Polpaar in $G_2(s)$ kompensiert wird.

Hinweis:
$$\frac{1}{2+\sqrt{3}} = 2 - \sqrt{3}$$

Abbildung 3: Sprungantwort.