Chapter 6: Eigenvalues and Eigenvectors

- **Definition.** Let $A \in \mathbb{C}^{n \times n}$ and $\lambda \in \mathbb{C}$ and $v \in \mathbb{C}^n$ be a nonzero vector so that $Av = \lambda v$. Then we say that λ is an eigenvalue of A and v is an eigenvector for the eigenvalue λ .
- **Solving** $Av = \lambda v$: We can write the equation $Av = \lambda v$ as

$$(A-\lambda I)v=0.$$

- Hence $\lambda \in \mathbb{C}$ is an eigenvalue for A if and only if $\mathcal{N}(A \lambda I)$ contains a nonzero vector v, that is, $\det(A \lambda I) = 0$.
- Therefore λ is an eigenvalue of A if and only if $det(A \lambda I) = 0$.
- Notice that $det(A \lambda I) = 0 \Leftrightarrow det(\lambda I A) = 0$. Also, $p_A(x) = det(xI A)$ is a polynomial in x which is called the **characteristic polynomial** of A.
- **Exercise.** Show that $p_A(x) = \det(xI A)$ is a monic polynomial of degree n, i.e., the coefficient of the term x^n is 1. (Hint: Use induction on n, the order of the square matrix A).
- **1** It follows that λ is an eigenvalue of A iff it is a root of the polynomial $p_A(x)$.

Eigenvalues and eigenvectors of linear operators

- **①** Recall that $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. We can define eigenvalues and eigenvectors for linear operators too.
- **Definition.** Let V be a vector space over $\mathbb F$ and let $T:V\to V$ be a linear operator. A scalar $\lambda\in\mathbb F$ is said to be an **eigenvalue** of T if there is a nonzero vector $v\in V$ such that $T(v)=\lambda v$.
- **3** We say that v is an **eigenvector** of T with eigenvalue λ .
- **1** Let A be an $n \times n$ matrix over \mathbb{F} .
- Notice that an eigenvalue and eigenvector of A are an eigenvalue and eigenvector of the linear map T_A: Fⁿ → Fⁿ defined by T_A(v) = Av, v ∈ Fⁿ, i.e., λ ∈ F is an eigenvalue of A if there exists a nonzero (column) vector v ∈ Fⁿ with T_A(v) = Av = λv.
- **Example.** Let V be the real vector space of all smooth real valued functions on \mathbb{R} . Let $D=\frac{d}{dx}:V\to V$ be the derivative map. The function $f(x)=e^{\lambda x}$ is an eigenvector with eigenvalue λ since $D(e^{\lambda x})=\lambda e^{\lambda x}$.

Eigenvalues and eigenvectors of linear operators

- **Example.** Let A be a diagonal matrix with scalars μ_1, \ldots, μ_n on the diagonal. We write this as $A = \text{diag}(\mu_1, \ldots, \mu_n)$.
- ② Then $Ae_i = \mu_i e_i$ for $1 \le i \le n$ and so e_1, \dots, e_n are eigenvectors of A with the corresponding eigenvalues μ_1, \dots, μ_n .
- **1** Let $T: V \to V$ be linear and let $\lambda \in \mathbb{F}$. It can be checked that

$$V_{\lambda} = \{ v \in V : T(v) = \lambda v \}$$

is a subspace of V. If $V_{\lambda} \neq \{0\}$, then λ is an eigenvalue of T.

- **4** Any nonzero vector in V_{λ} is an eigenvector (of T) with eigenvalue λ .
- **1** In this case we say that V_{λ} is the **eigenspace** of the eigenvalue λ .
- **Theorem.** Let $T:V\to V$ be a linear operator. Let $\lambda_1,\ldots,\lambda_k\in\mathbb{F}$ be k distinct eigenvalues of T and let v_1,\ldots,v_k be corresponding eigenvectors. Then v_1,v_2,\ldots,v_k are linearly independent.

Eigenvalues and eigenvectors of linear operators

- **1 Proof.** Use induction on k, the case k = 1 being clear.
- ② Let k > 1. Let $c_1, c_2, \ldots, c_k \in \mathbb{F}$ such that

$$c_1v_1+c_2v_2+\cdots+c_kv_k=0\cdots\cdots(1)$$

Apply T to equation (1) to get

$$c_1\lambda_1v_1+c_2\lambda_2v_2+\cdots+c_k\lambda_kv_k=0\cdots\cdots(2)$$

• Now, $(2) - \lambda_1 \times (1)$ implies

$$c_2(\lambda_2-\lambda_1)v_2+\cdots+c_k(\lambda_k-\lambda_1)v_k=0.$$

- § Since $\lambda_1, \lambda_2, \dots, \lambda_k$ are distinct, we get by induction, that $c_2 = \dots = c_k = 0$ and by substituting these values in (1) we get $c_1 = 0$ too.
- **Example.** The functions $e^{\lambda_1 x}, \dots, e^{\lambda_k x}$ where $\lambda_1, \dots, \lambda_k$ are distinct real numbers, are linearly independent.

Diagonalizable matrices and linear operators

- Definition. Let V be a finite dimensional vector space over F and let T: V → V be a linear operator. We say that T is diagonalizable if there exists a basis of V consisting of eigenvectors of T.
- ② If $B = (v_1, \ldots, v_n)$ is an ordered basis with $T(v_i) = \lambda_i v_i, \ \lambda_i \in \mathbb{F}$, then

$$M_B^B(T) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n).$$

- **Definition.** An $n \times n$ matrix A over \mathbb{F} is said to be diagonalizable if $T_A : \mathbb{F}^n \to \mathbb{F}^n$, given by $T_A(v) = Av$, $v \in \mathbb{F}^n$, is diagonalizable.
- **Proposition.** An $n \times n$ matrix A over \mathbb{F} is diagonalizable if and only if $P^{-1}AP$ is a diagonal matrix, for some invertible matrix P over \mathbb{F} .
- **1** In that case, the columns of P are eigenvectors of A and the ith diagonal entry of $P^{-1}AP$ is the eigenvalue associated with the ith column of P.
- **9 Proof.** Let A be diagonalizable and let (v_1, \ldots, v_n) be an ordered basis of \mathbb{F}^n with $T_A(v_i) = Av_i = \lambda_i v_i$.

Similar matrices have same characteristic polynomial

1 Let $P = [v_1 \ v_2 \cdots v_n]$ and $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Then

$$AP = A[v_1 \ v_2 \cdots v_n] = [Av_1 \ Av_2 \cdots Av_n] = [\lambda_1 v_1 \ \lambda_2 v_2 \cdots \lambda_n v_n] = PD.$$

- ② Since P is invertible (why?), we have $P^{-1}AP = D$.
- **②** Conversely, suppose $P^{-1}AP = D$, where $D = \text{diag}(\lambda_1, \dots, \lambda_n)$. Then for $P = [u_1 \ u_2 \cdots u_n], \ P^{-1}AP = D \implies AP = PD$

$$\implies A[u_1 \ u_2 \cdots u_n] = [Au_1 \ Au_2 \cdots Au_n] = [\lambda_1 u_1 \ \lambda_2 u_2 \cdots \lambda_n u_n].$$

- **9** Hence the *i*th column vector u_i of P is an eigenvector with eigenvalue λ_i . \square
- **9 Proposition.** If $A = PBP^{-1}$ then $p_A(x) = p_B(x)$.
- Proof. We have

$$p_A(x) = \det(xI - PBP^{-1})$$

= $\det(P(xI - B)P^{-1})$
= $\det(P)\det(xI - B)\det(P^{-1}) = p_B(x)$. \square

Roots of the characteristic polynomials

- **9 Proposition.** (1) Eigenvalues of a square matrix $A \in \mathbb{F}^{n \times n}$ are the roots of $p_A(x)$ lying in \mathbb{F} . (2) For a scalar $\lambda \in \mathbb{F}$, $V_{\lambda} = \text{nullspace of } A \lambda I$.
- **Proof.** (1) $\lambda \in \mathbb{F}$ is an eigenvalue of $A \iff Av = \lambda v$ for some nonzero $v \iff (A \lambda I)v = 0$ for some nonzero $v \iff \text{the nullity of } (A \lambda I) > 0 \iff \text{rank}(A \lambda I) < n \iff \det(A \lambda I) = 0 \iff p_*(\lambda) = 0.$
- **3** (2) $V_{\lambda} = \{ v \mid Av = \lambda v \} = \{ v \mid (A \lambda I)v = 0 \} = \mathcal{N}(A \lambda I).$
- **Example.** Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. To find the eigenvalues of A we solve the equation

$$p_{A}(x) = \det(xI - A) = \det\begin{bmatrix} x - 1 & -2 \\ 0 & x - 3 \end{bmatrix} = (x - 1)(x - 3) = 0.$$

- Hence the eigenvalues of A are 1 and 3.
- ② Let us calculate the eigenspaces V_1 and V_3 . By definition

$$V_1 = \{ v \mid (A - I)v = 0 \} \text{ and } V_3 = \{ v \mid (A - 3I)v = 0 \}.$$

- It follows that $V_1 = L\{[1,0]^t\}$. Now,

for
$$A - 3I = \begin{bmatrix} -2 & 2 \\ 0 & 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} x \\ y \end{bmatrix}$, solve $\begin{bmatrix} -2 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

- It follows that $V_3 = L(\{[1,1]^t\})$. Is there a P such that $P^{-1}AP = \text{diag}(1,3)$?
- Notice that any two eigenvectors corresponding to the distinct eigenvalues 1 and 3 are linearly independent.

- **1 Example.** We use the notation $i = \sqrt{-1}$.
- ② Let $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, where $\theta \neq n\pi$, for any $n \in \mathbb{Z}$. Now

$$\rho_{A}(x) = \det(xI - A) = \det \begin{bmatrix} x - \cos \theta & \sin \theta \\ -\sin \theta & x - \cos \theta \end{bmatrix} \\
= (x - \cos \theta)^{2} + \sin^{2} \theta = x^{2} - 2\cos \theta x + 1 \\
= (x - e^{i\theta})(x - e^{-i\theta}).$$

- **3** So, the real matrix A has no eigenvalues and thus no eigenvectors.
- **9** Recall that A represents the rotation by θ .
- **3** But as a complex matrix A has two distinct eigenvalues $e^{i\theta}$ and $e^{-i\theta}$.
- **3** An eigenvector corresponding to $e^{i\theta}$ is $[1, -i]^t$ and an eigenvector corresponding to $e^{-i\theta}$ is $[-i, 1]^t$.

Example. Find A^8 , where $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$. The eigenvalues of A are 2, 1.

The corresponding eigenvectors are $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- **3** Then $P^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$ and $A = PDP^{-1}$.
- We find A^8 using the eigenvalues.

$$A^{8} = (PDP^{-1})^{8} = (PDP^{-1}) \cdots (PDP^{-1}) = PD^{8}P^{-1}$$

$$= \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2^{8} & 0 \\ 0 & 1^{8} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 256 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 766 & -765 \\ 510 & -509 \end{bmatrix}.$$

Algebraic and geometric multiplicity of eigenvalues

- Let T: V → V be a linear transformation of a finite dimensional vector space over F.
- **②** We define the **characteristic polynomial** $p_T(x)$ of T to be $p_A(x)$, where $A = M_B^B(T)$ with respect to an ordered basis B of V.
- **③** Since $M_B^B(T) = (M_C^B)^{-1} M_C^C(T) M_C^B$ where C is another ordered basis of V, $p_T(x)$ is well defined (as for $P = M_C^B$, $M_B^B(T) = P^{-1} M_C^C(T) P$).
- Let f(x) be a polynomial with coefficients in \mathbb{F} .
- **5** Let $\mu \in \mathbb{F}$ be a root of f(x). Then $(x \mu)$ divides f(x).
- **1** The multiplicity of the root μ is the largest positive integer k such that $(x \mu)^k$ divides f(x).
- **①** Let V be a fdvs over \mathbb{F} and let $T:V\to V$ be a linear operator.
- Let μ be an eigenvalue of T. Then the **geometric multiplicity** of μ is dim V_{μ} and the **algebraic multiplicity** of μ is the multiplicity of μ as a root of the characteristic polynomial $p_{\tau}(x)$.

Geometric multiplicity \leq algebraic multiplicity

- **Theorem.** Let V be a finite dimensional vector space over \mathbb{F} . Then the geometric multiplicity of an eigenvalue $\mu \in \mathbb{F}$ of T is less than or equal to the algebraic multiplicity of μ .
- **Proof.** Suppose that the algebraic multiplicity of μ is k and the geometric multiplicity of μ is ℓ .
- **1** Hence V_{μ} has a basis of ℓ eigenvectors $v_1, v_2, \ldots, v_{\ell}$.
- We can extend this basis of V_{μ} to an ordered basis of V, say $B = (v_1, v_2, \dots, v_{\ell}, \dots, v_n)$.
- Now

$$M_B^B(T) = \begin{bmatrix} \mu I_\ell & D \\ \hline 0 & C \end{bmatrix}$$

where D is an $\ell \times (n-\ell)$ matrix and C is an $(n-\ell) \times (n-\ell)$ matrix.

• It is now clear from the form of $M_B^B(T)$ that $(x - \mu)^{\ell}$ divides $p_{\tau}(x) = \det(xI - M_B^B(T))$. Thus $\ell \leq k$.

Criterion for diagonalizability

- **Theorem.** Let $T:V\to V$ be a linear operator, where V is an n-dimensional vector space over \mathbb{F} . Then
 - **1** T is diagonalizable $\iff \sum_{\lambda} \dim V_{\lambda} = \dim V$.
 - **Q** Assume $\mathbb{F} = \mathbb{C}$. Then T is diagonalizable iff the algebraic and geometric multiplicities are equal for each eigenvalue of T.
- **Proof.** (1) Suppose that T is diagonalizable. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T. Let B_i be a basis of V_{λ_i} for $i = 1, 2, \ldots, k$.
- **②** Note that $V_{\lambda} \cap V_{\mu} = \{0\}$ for $\lambda \neq \mu$ and hence $B_1 \cup B_2$ is L.I. and it follows by induction that $B_1 \cup B_2 \cup \cdots \cup B_k$ is L.I. and, being a spanning set for V, it is a basis of V having eigenvectors of T.
- Since $B_i \cap B_j = \emptyset$ for $i \neq j$ (why?), $\sum_{\lambda} \dim V_{\lambda} = \dim V$.
- ullet The converse assumption ensures that V has a basis containing eigenvectors of T and hence T is diagonalizable.

Proof of the second part

- **1** (2) Let $\mathbb{F} = \mathbb{C}$. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T.
- ② By the Fundamental theorem of Algebra, $p_{\tau}(x) = \prod_{i=1}^{k} (x \lambda_i)^{m_i}$, where m_i is the algebraic multiplicity of λ_i .
- Since $\sum_i m_i = n$, if T is diagonalizable it follows from the first part that $m_i = \dim V_{\lambda_i}$ =geometric multiplicity of λ_i (why?).
- Conversely, if the algebraic and geometric multiplicities are equal for each eigenvalue of T, it follows from the fact $\sum_i m_i = n$ that $\sum_{\lambda} \dim V_{\lambda} = \dim V$ and hence T is diagonalizable by the first part.

- **1 Example.** (1) $A = \begin{bmatrix} 3 & 0 & 0 \\ -2 & 4 & 2 \\ -2 & 1 & 5 \end{bmatrix}$, $det(xI A) = (x 3)^2(x 6)$.
- **9** Hence eigenvalues of A are 3 and 6. The eigenvalue $\lambda = 3$ has algebraic multiplicity 2 and the algebraic multiplicity of 6 is one.
- **1** Let us find the eigenspaces V_3 and V_6 .

For
$$\lambda = 3: A - 3I = \begin{bmatrix} 0 & 0 & 0 \\ -2 & 1 & 2 \\ -2 & 1 & 2 \end{bmatrix}$$
. Hence $rank(A - 3I) = 1$.

- Therefore nullity (A 3I) = 2. So the geometric multiplicity of the eigenvalue 3 is 2 which is also the algebraic multiplicity of the eigenvalue 3.
- **9** By solving the linear system (A 3I)v = 0, we find that $\mathcal{N}(A 3I) = V_3 = L(\{[1, 0, 1]^t, [1, 2, 0]^t\}).$

• For
$$\lambda = 6 : A - 6I = \begin{bmatrix} -3 & 0 & 0 \\ -2 & -2 & 2 \\ -2 & 1 & -1 \end{bmatrix}$$
. Hence $\operatorname{rank}(A - 6I) = 2$.

- ② Therefore dim $V_6 = 1$. We can show that $\{[0,1,1]^t\}$ is a basis of V_6 .
- ullet Therefore the algebraic and geometric multiplicities of the eigenvalue 6 are 1.

• Let
$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
, then $P^{-1}AP = \text{diag}(3,3,6)$.

- **SExample.** (2) Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- Then $det(xI A) = (x 1)^2$ and hence A has only one eigenvalue 1 with the algebraic multiplicity 2.
- Therefore the geometric multiplicity < algebraic multiplicity of the eigenvalue 1 and hence A is not a diagonalizable matrix.</p>

Revisiting orthogonal and unitary matrices

- **Proposition.** The set $\{v_1, v_2, \dots, v_n\}$ is an orthonormal basis of \mathbb{R}^n (resp. \mathbb{C}^n) if and only if the matrix $P = [v_1 \ v_2 \cdots v_n]$ is an orthogonal (resp. unitary) matrix, that is, $P^t P = I$ (resp. $P^* P = I$).
- **② Proof.** Note that $P^tP = [v_1 \ v_2 \cdots v_n]^t[v_1 \ v_2 \cdots v_n] = \begin{bmatrix} v_1 \\ v_2^t \\ \vdots \\ v_n^t \end{bmatrix} [v_1 \ v_2 \cdots v_n]$

$$= \begin{bmatrix} v_1^t v_1 & v_1^t v_2 & \cdots & v_1^t v_n \\ v_2^t v_1 & v_2^t v_2 & \cdots & v_2^t v_n \\ \vdots & \vdots & \vdots & \vdots \\ v_n^t v_1 & v_n^t v_2 & \cdots & v_n^t v_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

1 if and only if the set $\{v_1, v_2, \ldots, v_n\}$ is orthonormal in \mathbb{R}^n (and hence is an orthonormal basis of \mathbb{R}^n). The respective case in \mathbb{C}^n is proved similarly.

Orthogonally and unitarily diagonalizable matrices

- Recall that a complex $n \times n$ matrix A is **diagonalizable** if there is an invertible matrix $P \in \mathbb{C}^{n \times n}$ so that $P^{-1}AP = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. Recall also that the column vectors of P are eigenvectors of A corresponding to the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ of A.
- **Oefinition.** A matrix $A \in \mathbb{C}^{n \times n}$ is called **unitarily diagonalizable** if there is an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of A, and this is equivalent of saying that there exists a unitary matrix U such that $U^{-1}AU = U^*AU = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.
- **Oefinition.** A real $n \times n$ matrix A is called **orthogonally diagonalizable** if there is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A, and this is equivalent of saying that there exists an orthogonal matrix P such that $P^{-1}AP = P^tAP = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.
- **Theorem (Spectral Theorem for real matrices).** $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix if and only if A is orthogonally diagonalizable.

Normal and symmetric matrices

- **1** Theorem. (a) $A \in \mathbb{R}^{n \times n}$ is orthogonally diagonalizable $\implies A^t = A$.
- ② (b) $A \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable $\implies A^*A = AA^*$.
- **9 Proof.** (a) Let A be a real $n \times n$ orthogonally diagonalizable matrix.
- Let $\{v_1, v_2, \ldots, v_n\}$ be an orthonormal basis of \mathbb{R}^n with $Av_i = \lambda_i v_i$, $\lambda_i \in \mathbb{R}$ and let $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$.
- **5** Let $P = [v_1 \ v_2 \cdots v_n]$. Then

$$AP = [Av_1 \ Av_2 \cdots Av_n] = [\lambda_1 v_1 \ \lambda_2 v_2 \cdots \lambda_n v_n] = PD.$$

- **3** Since the set $\{v_1, v_2, \dots, v_n\}$ is orthonormal we have $P^t P = I = PP^t$.
- Therefore

$$A = PDP^t$$
 and $A^t = PD^tP^t$.

3 Since D is a diagonal matrix we have $D = D^t$ and hence $A^t = A$.

Normal and symmetric matrices

- **1** (b) Let A be a complex $n \times n$ unitarily diagonalizable matrix.
- ② Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of \mathbb{C}^n with $Av_i = \lambda_i v_i$, $\lambda_i \in \mathbb{C}$ and let $D = \text{diag}(\lambda_1, \dots, \lambda_n)$.
- Let $P = [v_1 \ v_2 \cdots v_n]$. Then

$$AP = [Av_1 \ Av_2 \cdots Av_n] = [\lambda_1 v_1 \ \lambda_2 v_2 \cdots \lambda_n v_n] = PD.$$

- **①** Since the set $\{v_1, v_2, \dots, v_n\}$ is orthonormal we have $P^*P = I = PP^*$.
- Thus

$$A = PDP^*$$
 and $A^* = PD^*P^*$.

- Therefore $AA^* = (PDP^*)(PD^*P^*) = PDD^*P^*$ and $A^*A = PD^*DP^*$.
- **②** Since D is a diagonal matrix, $D^*D = DD^*$ and hence $AA^* = A^*A$.
- **10 Definition.** A square complex matrix A is called **normal** if $A^*A = AA^*$.
- **1** A square complex matrix A is called **Hermitian** or **self-adjoint** (resp. skew-Hermitian) if $A^* = A$ (resp. $A^* = -A$). Notice that a real symmetric matrix is Hermitian and Hermitian matrices are normal.

Statement of the Spectral Theorems

- **Theorem (Spectral Theorem for real symmetric matrices).** Any real symmetric $n \times n$ matrix A is orthogonally diagonalizable. In other words, there is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.
- **Theorem (Spectral Theorem for normal matrices).** Let A be an $n \times n$ complex normal matrix. Then there is an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of A. In other words, A is unitarily diagonalizable.
- Note. We shall prove the Spectral Theorem for Hermitian matrices first and then deduce the one for normal matrices.
- **1 Theorem.** The eigenvalues of a Hermitian matrix are real.
- **5 Proof.** Let A be a Hermitian matrix. Then for any $v \in \mathbb{C}^n$

$$(v^*Av)^* = v^*A^*v = v^*Av.$$

③ Therefore v^*Av is a real number. Let λ be an eigenvalue of A with eigenvector v. Then $v^*Av = v^*(\lambda v) = \lambda(v^*v) = \lambda \|v\|^2 \implies \lambda \in \mathbb{R}$.

Self-adjoint operators on inner product spaces

- Though a proof of the spectral theorem for self-adjoint matrices can be given working only with matrices, a coordinate free approach is more intuitive and more memorable.
- Therefore, we first develop a coordinate free version of the concept of a self-adjoint matrix. The following definition covers both the real and complex cases.
- **Definition.** Let V be a finite dimensional inner product space over \mathbb{F} . A linear operator $T:V\to V$ is said to be **self-adjoint** if

$$\langle x, T(y) \rangle = \langle T(x), y \rangle, x, y \in V.$$

Example. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and $T_A : \mathbb{R}^n \to \mathbb{R}^n$ be the associated linear operator. Then T_A is self-adjoint. To see this, let $x, y \in \mathbb{R}^n$. Then

$$\langle x, T_A(y) \rangle = \langle x, Ay \rangle = x^t Ay = x^t A^t y = \langle Ax, y \rangle = \langle T_A(x), y \rangle.$$

Characterization of self-adjoint operators

- **Theorem.** Let V be a finite dimensional inner product space over \mathbb{F} and let $T:V\to V$ be a linear operator. Then T is self-adjoint iff $M_B^B(T)$ is self-adjoint for every **ordered orthonormal basis** B of V.
- **2 Proof.** Let $B = (v_1, \dots, v_n)$ be an ordered orthonormal basis of V.
- **3** Suppose that T is self-adjoint and $A = (a_{ij}) = M_B^B(T)$.
- Then $T(v_j) = \sum_{k=1}^n a_{kj} v_k$. So $\langle T(v_j), v_i \rangle = \langle \sum_{k=1}^n a_{kj} v_k, v_i \rangle = \overline{a_{ij}}$.
- **o** Conversely suppose that $A = (a_{ij}) = M_B^B(T)$ is self-adjoint, i.e., $\overline{a_{ij}} = a_{ji}$.
- **②** Then $\langle T(v_j), v_i \rangle = \langle v_j, T(v_i) \rangle$. Let $x = \sum_{j=1}^n a_j v_j$ and $y = \sum_{i=1}^n b_i v_i$. Then

$$\langle x, T(y) \rangle = \langle \sum_{j} a_{j} v_{j}, \sum_{i} b_{i} T(v_{i}) \rangle = \sum_{j,i} \overline{a_{j}} b_{i} \langle v_{j}, T(v_{i}) \rangle,$$

$$\langle T(x), y \rangle = \langle \sum_{j} a_{j} T(v_{j}), \sum_{i} b_{i} v_{i} \rangle = \sum_{j,i} \overline{a_{j}} b_{i} \langle T(v_{j}), v_{i} \rangle.$$

Therefore T is self-adjoint.

Spectral Theorem for self-adjoint operators

- Theorem (Spectral Theorem for Self-Adjoint Operators). Let V be a finite dimensional inner product space over F and let T: V → V be a self-adjoint linear operator. Then there exists an orthonormal basis of V consisting of eigenvectors of T.
- **Proof.** By the fundamental theorem of algebra and the fact that Hermitian matrices have only real eigenvalues, there exists $\lambda \in \mathbb{R}$ and a unit vector $v \in V$ with $T(v) = \lambda v$. Put $W = L(\{v\})^{\perp}$.
- **3** Claim. (a). $w \in W$ implies $T(w) \in W$ (b). $T: W \to W$ is self-adjoint.
- **Proof.** (a). $\langle T(w), v \rangle = \langle w, T(v) \rangle = \langle w, \lambda v \rangle = \lambda \langle w, v \rangle = 0$, since $w \in W$. Therefore $T(w) \in W$. (b). This is clear (as T is self-adjoint on V).
- **9** By induction on dimension, there is an orthonormal basis B of W consisting of eigenvectors of $T:W\to W$.
- **1** Now $\{v\} \cup B$ is the required orthonormal basis of V.

Eigenspaces of self-adjoint matrices are mutually \perp

- **9 Proposition.** Let T be a self-adjoint operator on a finite-dimensional inner product space V. Let u, v be eigenvectors of T with distinct eigenvalues λ and μ respectively. Then $u \perp v$.
- **2 Proof.** As T is self-adjoint, $\lambda, \mu \in \mathbb{R}$. Therefore,

$$(\lambda - \mu)\langle u, v \rangle = \lambda \langle u, v \rangle - \mu \langle u, v \rangle = \langle \lambda u, v \rangle - \langle u, \mu v \rangle$$
$$= \langle Tu, v \rangle - \langle u, Tv \rangle$$
$$= \langle u, Tv \rangle - \langle u, Tv \rangle = 0.$$

- **3** Since $\lambda \neq \mu$, $\langle u, v \rangle = 0$ and hence u and v are mutually perpendicular.
- **Theorem.** Let T be a self-adjoint linear operator on a finite dimensional inner product space V. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T. Then $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_k}$ and dim $V = \sum_{i=1}^k \dim V_{\lambda_i}$.
- **9 Proof.** Exercise (Hint: *T* is diagonalizable).

Spectral Theorem for real symmetric matrices

- **Theorem (Spectral Theorem for Real Symmetric matrices).** Let A be an $n \times n$ real symmetric matrix with (real) eigenvalues $\lambda_1, \ldots, \lambda_n$. Set $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Then there exists an $n \times n$ real orthogonal matrix S such that $S^tAS = D$.
- **Theorem.** Let A be an $n \times n$ Hermitian matrix with eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Set $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Then there exists an $n \times n$ unitary matrix U such that $U^*AU = D$.
- **Proof of the theorems.** Recall that for given $n \times n$ real symmetric (resp. Hermitian) matrix A as in theorems, T_A is a self-adjoint operator on \mathbb{R}^n (resp. on \mathbb{C}^n).
- **9** Now it follows from the spectral theorem for self-adjoint operators that there is an orthonormal basis B of \mathbb{R}^n (resp. \mathbb{C}^n) such that

$$M_B^B(T_A) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n) = D.$$

3 Recall that if E is the standard basis of \mathbb{R}^n (resp. \mathbb{C}^n), then $M_E^E(T_A) = A$.

An algorithm for diagonalizing a self-adjoint matrix

- Hence it follows from the relation $M_B^B(T_A) = M_B^E M_E^E(T_A) M_E^B$ that $M_B^B(T_A) = P^{-1}AP$ for $P = M_E^B$.
- **③** Since B is an orthonormal basis of \mathbb{R}^n (resp. \mathbb{C}^n), the matrix $P = M_E^B$ is orthogonal (resp. unitary) in real (resp. complex) case and hence $P^{-1} = P^t$ (resp. $P^{-1} = P^*$). Thus $P^tAP = M_B^B(T_A) = D$ (resp. $P^*AP = D$).
- **1** Notice that this P is S of the first theorem and U of the second theorem.
- **a** An algorithm for diagonalizing an $n \times n$ self-adjoint matrix:
- **5** Find the distinct eigenvalues μ_1, \ldots, μ_k of A. These are all real.
- For each μ_i construct a basis of V_{μ_i} using Gauss elimination. Convert it to an orthonormal basis $B(\mu_i)$, for all i = 1, 2, ..., k, using Gram-Schmidt process.
- O Suppose this basis has d_i vectors. Then $d_1 + \cdots + d_k = n$. (why?)
- Form an $n \times n$ matrix as follows: the first d_1 columns are the vectors in $B(\mu_1)$ the next d_2 columns are the vectors in $B(\mu_2)$ and so on. This is the matrix U in the complex case or S in the real case and $D = \text{diag}(\mu_1, \ldots, \mu_1, \ldots, \mu_k)$.

Diagonalization of a real symmetric matrix

Example. Consider the real symmetric matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{array} \right].$$

- ② Solve $det(\lambda I A) = 0$. Check that the eigenvalues of A are 3, 3, -3.
- **1** The eigenvectors for $\lambda = 3$ are in $\mathcal{N}(A 3I)$, the null space of A 3I.
- They are the nonzero solutions of

$$\begin{bmatrix} -2 & 2 & -2 \\ 2 & -2 & 2 \\ -2 & 2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -2 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

1 It follows that $\dim \mathcal{N}(A-3I)=2$ and $\mathcal{N}(A-3I)=L(\{[1,1,0]^t,[-1,0,1]^t\})$.

Diagonalization of a real symmetric matrix

a Apply Gram-Schmidt process to get an orthonormal basis of $V_3 = L(\{[1,1,0]^t,[-1,0,1]^t\})$:

$$v_1 = \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]^t \quad \text{and} \quad v_2 = \left[\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right]^t.$$

- ② Similarly we find that $\left\{v_3 = \left[\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]^t\right\}$ is an orthonormal basis of V_{-3} .
- **③** Set $S = [v_1 \ v_2 \ v_3]$ and D = diag(3, 3, -3). Then $S^t A S = D$. □

Diagonalization of commuting self-adjoint operators

- **① Definition.** Two operators $A, B: V \to V$ are called commuting operators if AB = BA.
- **Theorem.** Let V be an n-dimensional complex inner product space. Let A, B be two commuting self-adjoint operators on V. Then there exists an orthonormal basis (v_1, \ldots, v_n) of V such that each v_i is an eigenvector of both A and B.
- **9 Proof.** Let V_1, \ldots, V_r be eigenspaces of A for distinct eigenvalues μ_1, \ldots, μ_r .
- **4** Let $v \in V_i$. Then we claim that $B(v) \in V_i$. For,

$$A(B(v)) = (AB)(v) = (BA)(v) = B(A(v)) = B(\mu_i v) = \mu_i B(v).$$

- **1** Therefore for all i, $B: V_i \rightarrow V_i$ is a self-adjoint operator.
- Hence each V_i has an orthonormal basis of eigenvectors of B and all of these vectors are already eigenvectors of A.

Diagonalization of normal matrices

- Theorem (Spectral Theorem for Normal Matrices). A complex normal matrix is unitarily diagonalizable.
- **② Proof.** Let *N* be a normal matrix. Write $N = \frac{N+N^*}{2} + \frac{N-N^*}{2}$.
- **9** Put $A = (N + N^*)/2$ and $B = (N N^*)/2$.
- Check that $A = A^*$ and $B^* = -B$ and AB = BA.
- **1** C = iB is Hermitian as $C^* = -iB^* = iB = C$, and AC = CA.
- **1** Therefore there is a common orthnormal eigenbasis \mathcal{B} of A and C.
- As B = -iC, \mathcal{B} is an orthonormal eigenbasis of B and N = A + B.
- **Proposition.** Let U be an $n \times n$ unitary matrix. Then U is unitarily diagonalizable and every eigenvalue λ of U satisfies $|\lambda| = 1$.
- **Proof.** Since *U* is normal (why?), it is unitarily diagonalizable and for $x, y \in \mathbb{C}^n$, $Ux \cdot Uy = (Ux)^*Uy = x^*U^*Uy = x^*y = x \cdot y$. So ||Ux|| = ||x||.

Applications of spectral theorem to geometry

① Definition. Let $A=(a_{ij})$ be an $n\times n$ real symmetric matrix. The **quadratic** form associated with A is the map $Q:\mathbb{R}^n\to\mathbb{R}$ defined as follows. For $X=[x_1,x_2,\ldots,x_n]^t\in\mathbb{R}^n$,

$$Q(X) = X^{t}AX = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}x_{j} = \sum_{i=1}^{n} a_{ii}x_{i}^{2} + \sum_{1 \leq i < j \leq n} 2a_{ij}x_{i}x_{j}.$$

- ② If $A = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, then $Q(X) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2$ is called a **diagonal form**.
- **3 Example.** Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$, $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Then

$$Q(X) = X^{t}AX = [x_1, x_2] \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 4x_1x_2 + 5x_2^2.$$

Theorem. Let U be an orthogonal matrix such that $U^tAU = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. Then if we put $X = UY = U[y_1, y_2, \dots, y_n]^t$, then $Q(X) = X^tAX = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$.

Diagonalization of quadratic forms

- **1 Proof.** Since X = UY, $X^tAX = (UY)^tA(UY) = Y^t(U^tAU)Y$.
- ② Since $U^tAU = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$, we get

$$X^{t}AX = \begin{bmatrix} y_{1}, y_{2}, \dots, y_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} \begin{bmatrix} y_{1} & & \\ & y_{2} & & \\ \vdots & & & \\ & & y_{n} \end{bmatrix}$$
$$= \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \dots + \lambda_{n}y_{n}^{2}.$$

- **Example.** Let us determine the orthogonal matrix U which reduces the quadratic form $Q(X) = 2x_1^2 + 4x_1x_2 + 5x_2^2$ to a diagonal form.
- For, we write $Q(X) = [x_1, x_2] \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = X^t A X$.

Diagonalization of quadratic forms

- The symmetric matrix $A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}$ can be diagonalized.
- ② The eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = 6$.
- lacktriangledown An orthonormal set of eigenvectors for λ_1 and λ_2 is

$$u_1 = rac{1}{\sqrt{5}} \left[egin{array}{c} 2 \ -1 \end{array}
ight] \quad ext{and} \quad u_2 = rac{1}{\sqrt{5}} \left[egin{array}{c} 1 \ 2 \end{array}
ight].$$

- Hence $U=\frac{1}{\sqrt{5}}\begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$. Check that $U^tAU=\operatorname{diag}(1,6)$. Now use X=UY.
- **•** The diagonal form is: $Y^t \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix} Y = y_1^2 + 6y_2^2$.

Identification of conic sections

 ${\color{red} \bullet}$ A conic section is the locus in the Cartesian plane \mathbb{R}^2 of an equation

$$ax^2 + bxy + cy^2 + dx + ey + f = 0.$$

- ② It can be proved that this equation represents one of the following:
- (i) the empty set (ii) single point (iii) one or two straight lines
- (iv) ellipse (v) hyperbola (vi) parabola.
- **1** We consider the second degree part $Q(x,y) = ax^2 + bxy + cy^2$.
- This is a quadratic form. This determines the type of the conic.
- **9** We can write the matrix form after setting $x = x_1, y = x_2$:

$$[x_1, x_2] \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + [d, e] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + f = 0$$

Identification of conic sections

- Write $A = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}$. Let $U = [u_1, u_2]$ be an orthogonal matrix where u_1 and u_2 are eigenvectors of A with eigenvalues λ_1 and λ_2 .
- ② Apply the change of variables $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = U \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ to diagonalize the quadratic form $Q(x_1, x_2)$ to the diagonal form $\lambda_1 y_1^2 + \lambda_2 y_2^2$.
- **3** The orthonormal basis $\{u_1, u_2\}$ determines new coordinate axes.
- The locus of the equation $X^tAX + BX + f = 0$, where B = [d, e], is same as the locus of the equation

$$0 = Y^{t} \operatorname{diag}(\lambda_{1}, \lambda_{2}) Y + (BU) Y + f$$

$$= \lambda_{1} y_{1}^{2} + \lambda_{2} y_{2}^{2} + [d, e][u_{1}, u_{2}] \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} + f.$$

An Ellipse

Example. We shall identify the conic section represented by

$$2x_1^2 + 4x_1x_2 + 5x_2^2 + 4x_1 + 13x_2 - 1/4 = 0.$$

- **②** We have earlier diagonalized the quadratic form $2x_1^2 + 4x_1x_2 + 5x_2^2$.
- The associated symmetric matrix, the eigenvectors and eigenvalues are displayed in the equation of diagonalization:

$$U^{t}AU = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}.$$

• Set $t = 1/\sqrt{5}$. Then the new coordinates are defined by

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} 2t & t \\ -t & 2t \end{array}\right] \left[\begin{array}{c} y_1 \\ y_2 \end{array}\right].$$

5 This means $x_1 = t(2y_1 + y_2)$ and $x_2 = t(-y_1 + 2y_2)$.

An Ellipse

Substitute these into the original equation to get

$$y_1^2 + 6y_2^2 - \sqrt{5}y_1 + 6\sqrt{5}y_2 - \frac{1}{4} = 0.$$

Complete the square to write this as

$$(y_1 - \frac{1}{2}\sqrt{5})^2 + 6(y_2 + \frac{1}{2}\sqrt{5})^2 = 9.$$

- **1** This represents an ellipse with center $(\frac{1}{2}\sqrt{5}, -\frac{1}{2}\sqrt{5})$ in the y_1y_2 -plane.
- The y_1 and y_2 axes are determined by the eigenvectors u_1 and u_2 .
- **Example.** Let us identify the locus of the equation

$$2x_1^2 - 4x_1x_2 - x_2^2 - 4x_1 + 10x_2 - 13 = 0.$$

We write the equation in matrix form as

$$[x_1, x_2]$$
 $\begin{bmatrix} 2 & -2 \\ -2 & -1 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $+$ $[-4, 10]$ $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $13 = 0$.

A hyperbola

- ① Let $t = 1/\sqrt{5}$. The eigenvalues of A are $\lambda_1 = 3, \lambda_2 = -2$.
- **3** An orthonormal set of eigenvectors is $\{u_1 = t(2,-1)^t, u_2 = t(1,2)^t\}$.
- The transformed equation becomes

$$3y_1^2 - 2y_2^2 - 4t(2y_1 + y_2) + 10t(-y_1 + 2y_2) - 13 = 0$$

$$\implies 3y_1^2 - 2y_2^2 - 18ty_1 + 16ty_2 - 13 = 0.$$

3 Complete the square to get $3(y_1 - 3t)^2 - 2(y_2 - 4t)^2 = 12$. Therefore

$$\frac{(y_1-3t)^2}{4}-\frac{(y_2-4t)^2}{6}=1.$$

- **1** This represents a hyperbola with center (3t, 4t) in the y_1y_2 -plane.
- **1** The vectors u_1 and u_2 are the directions of positive y_1 and y_2 axes.

A parabola

- **Solution** Example. Consider $9x_1^2 + 24x_1x_2 + 16x_2^2 20x_1 + 15x_2 = 0$.
- **3** The symmetric matrix for the quadratic part is $A = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$.
- **1** The eigenvalues are $\lambda_1 = 25, \lambda_2 = 0$.
- Put a = 1/5. An orthonormal set of eigenvectors is $\{u_1 = a(3,4)^t, u_2 = a(-4,3)^t\}$.
- **1** An orthogonal diagonalizing matrix is $U = a \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}$.
- The equations of change of coordinates are

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = U \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \implies x_1 = a(3y_1 - 4y_2), \ x_2 = a(4y_1 + 3y_2).$$

- The equation in y_1y_2 -plane is $y_1^2 + y_2 = 0$.
- This is an equation of parabola with its vertex at the origin.