Tutorial Sheet 3 - State-Space Representation

- Q1 Consider the circuits given below. In each case:
 - (i) Using mesh analysis, write the system's equations in state-space form (matrix form) using the currents as states.
 - (ii) Using nodal analysis, write the system's equations in state-space form (matrix form) using the voltages as states.
 - (iii) Using the transfer function v_o / v_i from Q2 on Tutorial Sheet 2, determine the minimal state realization.

Q2 Consider the following mechanical system:

- (i) Develop a state equation for the system using the position and velocity of each mass as states.
- (ii) Determine the output equation for the system if the outputs of interest are the position of mass M_1 and the relative velocity of mass M_2 with respect to mass M_1 .

Q3 The data in the table below are samples of the input and output of an unknown dynamical system.

Sample instant (k)	1	2	3	4	5	6
input $u(k)$	0.065	0.065	-0.15	-0.15	-0.1	0.11
output $y(k)$	0.098	0.109	0.117	-0.019	-0.128	-0.1

Experimental data from an unknown process

- (i) Using the 2nd order transfer function from Q5 on Tutorial Sheet 2, develop a discrete-time state-space model for the 2nd order system.
- (ii) Show that the 2nd order transfer function model can be obtained directly from the state-space model.
- Q4 Consider the mechanical system shown below, with M = 0.1 kg, $K_1 = 6$ N/m, $K_2 = 4$ N/m and B = 0.4 Ns/m. Distances y and z are measured with respect to the equilibrium point of the system.
 - (i) Determine the equations of motion for this system.
 - (ii) Choosing the states as $x_1 = y$, $x_2 = \dot{y}$ and $x_3 = z$ and the output as y, derive a state-space model for the system.
 - (iii) Determine the transfer function model for the system (a) directly from the equations of motion in part (i) and (b) from the state-space model in part (ii)
 - (iv) Derive the canonical state-space model for the system from the transfer function obtained in part (iii). Verify your answer by transforming the system back to transfer function form.

