AD-AE

Aerodinámica en régimen transónico

CONTENIDO

- 1. INTRODUCCIÓN
- 2. VERIFICACIÓN Y VALIDACIÓN
- 3. ESTUDIO PARAMÉTRICO
- 4 CONCLUSIONES

INTRODUCCIÓN

RÉGIMEN TRANSÓNICO

- Ocurre entre 0,7<M<1.3
- No son válidas las simplificaciones habituales
- Ecuaciones no lineales

MODELADO MATEMÁTICO

- Ecuaciones RANS
- Modelado de la turbulencia. Hipótesis de Boussinesq
- Spalart-Allmaras

Verificación

Estudio de independencia de malla

- "Farfield"
- Longitud mínima tangencial sobre el perfil
- Longitud mínima normal sobre el perfil

"Farfield"

Tendencias de los coeficientes aerodinámicos frente al aumento de la distancia del "farfield"

Longitud mínima tangencial

Tendencias de los coeficientes aerodinámicos frente a la disminución de la longitud mínima tangencial

Longitud mínima normal

Tendencias de los coeficientes aerodinámicos frente a la disminución de la longitud mínima normal

	NACA 0012	RAE 2822
"Farfield"	200	150
Longitud mínima tangencial	1,36 · 10 ⁻³	8,13 · 10 ⁻⁴
Longitud mínima normal	5 · 10 ⁻⁶	5 · 10 ⁻⁶

Validación

- Comparación mediante la curva del coeficiente de presión
- Comparación con información experimental
- Comparación con información de simulaciones
- Comprobación de SA y SST

Validación

NACA 0012

Validación

RAE 2822

Prematura entrada en pérdida debido a la separación de la capa límite de la base de la onda de choque

Similar al régimen subsónico y supersónico

El perfil supercrítico muestra mejores resultados

Retraso inicial y posterior avance de la onda debido a la separación de la capa límite

Mach variable y AoA fijo

Pérdida debida a la separación de la capa límite de la base de la onda de choque

Mach variable y AoA fijo

El perfil supercrítico tarda más en aumentar su resistencia. El cambio abrupto es debido a la separación

Mach variable y AoA fijo

Aparición más tardía en el perfil supercrítico Estancamiento de la onda del extradós Aparición de la onda del intradós

Mach crítico y Mach de divergencia

Aparición más tardía en el perfil supercrítico Criterio del 2% Pequeño margen entre Mach crítico y de divergencia

Curva Cp

Onda de choque fuerte frente a una más débil Distribución de presiones más uniforme

Burbuja sónica

NACA 0012 RAE 2822

Onda de choque fuerte frente a una más débil Distribución de presiones más uniforme Mayor área supersónica

CONCLUSIONES

CONCLUSIONES

- Mayor rango de Mach de operación
- Mayor eficiencia aerodinámica
- Uso en la aviación moderna

PREGUNTAS

