

Unidad 1: Planificación del Almacenamiento e Indexación

Bases de Datos Avanzadas, Sesión 3: Estructuras Índices

> Iván González Diego Dept. Ciencias de la Computación Universidad de Alcalá

INDICE

- □ Introducción.
- Clasificación
- ☐ Índices Secuenciales (ordenados)
- ☐ Árboles B+
- Arboles B
- ☐ Índices Asociativos
- ☐ Índices Multiclave
- Retícula
- Asociación Dividida
- Mapas de Bits

Referencias: Silberschatz 4ª Ed. Pp 249 - 315

Elmasri, 3ª Ed. Pp 105 - 181

Indización de datos

- Mejorar el tiempo de búsqueda de los datos de la base de datos. Existen dos tipos básicos
 - Ordenados ⇒ basados en la disposición ordenada de valores
 - Asociativos (hash) ⇒ distribución uniforme de valores por funciones hash entre cajones (buckets).
- Criterios de valoración:
 - Tipos de acceso: búsqueda único valor o rango de valores.
 - Tiempo de acceso: tiempo en buscar un elemento de datos o varios
 - Tiempo de inserción: buscar + actualizar
 - Tiempo de borrado: buscar + actualizar
 - Espacio adicional requerido por el índice.
- □ Coste de Buscar datos (C)= Coste Buscar Índice (C_{indice}) + Coste Buscar archivo de Datos (C_{datos})

Clasificación de índices

- $V(A) \rightarrow$ número de valores diferentes para el campo A en archivo / tabla $n_R \rightarrow$ número de registros del archivo (tabla) R
- Archivo Ordenado respecto al campo de búsqueda -> primario
 - No ordenado respecto al campo de búsqueda → secundario
- □ Valores del campo: Campo clave → 1 valor dentro del archivo / tabla
 - Campo no clave → valores repetidos
- \square $n_{Ri} \rightarrow n$ úmero registros en el índice (nunca entradas/valores duplicados)
- ☐ Registro índice → Valor campo + Puntero (a Registro datos ó Bloque)

$$L_{Ri} = L_K + L_{PB}$$
 ó $L_{Ri} = L_K + L_{PR}$

Clasificación:

- Primario + campo clave $\rightarrow n_{Ri} = V(A) = n_R$
- Primario + campo no clave $\rightarrow n_{Ri} = V(A)$ (sólo se apunta al primero)
- Secundario + campo clave $\rightarrow n_{Ri} = V(A) = n_R$
- Secundario + campo no clave \rightarrow cajones punteros \rightarrow n_{Ri} = V(A) (se apunta a cada cajón)

 Cajones de punteros contienen siempre Punteros a Registro 4

Estimación registros/bloques a recuperar del archivo de datos (C_{datos})

Si el campo es clave $\rightarrow n_{rc}$ =1 \rightarrow leer un bloque del archivos datos.

Si el campo no es clave $\rightarrow n_{rc}$ = N * n_R / V(A) , N \rightarrow N° valores dif. que cumplen la condición

- Si el archivo datos ordenado (primario) → leer \[\text{n}_{rc} / \text{f}_{R} \] bloques datos
- Si el archivo no está ordenado (secundario) → leer n_{rc} bloques datos (peor caso)
- □ Ejemplo: $f_R = 2$ (registros /bloque), $n_R = 6$, $b_R = 3$, $\sigma_{valor=A}(R)$?

Campo

V(Campo)=2

Campo

A B A A B A

Primario (Ordenado)

$$n_{rc}$$
=6 / 2=3 reg.
Leer = $\lceil 3 / 2 \rceil$ =2 bl. datos

Secundario (No Ordenado)

$$n_{rc}$$
=6 / 2=3 reg.

Índices secuenciales (Índice ordenado)

- Índice Primario
 - archivo datos ordenado respecto a una clave de búsqueda.
 - Suele ser la clave primaria pero no tiene por qué.
 - Índice primario ≠ índice sobre clave primaria.
 - Otro nombre: índice con agrupación (cluster index)
- Índice secundario
 - Archivo datos no ordenado respecto a la clave de búsqueda.
 - Otro nombre: índice sin agrupación (non cluster index)

Índices secuenciales: Primarios

- Los ficheros se ordenan secuencialmente a partir de una clave de búsqueda principal.
- Estos archivos se llaman archivos secuenciales indexados.
- Muy utilizados en bases de datos que exigen procesamiento secuencial y acceso directo a sus registros
- Condicionan ciertos tipos de indexación ⇒ índice disperso.
 Índice denso

Índices secuenciales: Primarios

- Registro índice: valor de la clave de búsqueda + punteros a registros con ese valor de la clave de búsqueda.
- Puntero a registro: numero de bloque + offset dentro del bloque 8

Índices secuenciales: Densos

- Se crea un nuevo registro índice para cada valor de la clave de búsqueda en el archivo.
- El registro índice contiene la clave de búsqueda y un puntero al primer registro de la base de datos con ese valor
- Destaca que esta aproximación es correcta si los ficheros de la base de datos están ordenados con la estructura del índice primario.

Índices secuenciales: Densos

Su funcionamiento es sencillo: Al realizar una búsqueda en la base de datos de accede al índice y se busca el elemento que coincida con la clave de búsqueda.

Una vez encontrado, se puede acceder de forma directa al registro que contiene esa información, y a partir de ese registro, si hay otros con la misma clave de búsqueda, aparecerán a continuación.

Índices secuenciales: Dispersos

- Sólo se crea el registro índice para ciertos valores → una entrada por cada bloque del archivo de datos
- Al igual que los densos ⇒ cada registro índice contiene un valor de la clave de búsqueda y un puntero al primer registro con ese valor de clave
- Utilizan menos espacio al no almacenar todas las claves de búsqueda
- Menor mantenimiento para las inserciones y borrados.
- Se basan en los índices primarios.

Índices secuenciales: Dispersos

- Se busca la entrada del índice con el valor más grande que sea menor ó igual al valor que se está buscando.
- Una vez encontrado ⇒ se pasa a recorrer la base de datos hasta encontrar el registro exacto que se busca.

Índices secuenciales: Multinivel

- Se utilizan para grandes cantidades de datos.
- Utilizan bloques de índices, generando una estructura en árbol con dos niveles de indirección.
- Cada bloque de índices corresponde normalmente con un bloque de disco ⇒ se optimizan al máximo los accesos.
- El bloque principal ó índice externo se suele cargar en la memoria principal o en la memoria de intercambio, al ser el más utilizado.
- Dependiendo de la cantidad de datos, se puede aumentar el nivel de indirección.

Índices secuenciales: Multinivel (N niveles)

Índices secuenciales secundarios

- Los índices secundarios están estructurados de manera diferente a los primarios.
- Es necesario mantener referencias a todos los registros de una clave de búsqueda ⇒ Siempre Densos
- Los índices secundarios sobre claves candidatas son similares a los índices primarios, excepto que los registros apuntados por los valores del índice no se encuentran almacenados de forma secuencial.
- Se suelen utilizar bloques de punteros asociados a cada una de las claves de búsqueda.

Índices secuenciales secundarios

Archivo de Datos (b_R)

Cajones de Punteros (b_{caj})

1 cajón tiene n_{Ri} / V(campo) Punteros

Ejemplos

Ejemplos indices secuenciales.ppt

- Los archivos secuenciales indexados tienen problemas a la hora de realizar búsquedas ⇒ a medida que crece el fichero se va degradando el rendimiento.
- Las estructuras de índice de árbol B+ mantienen su eficiencia a pesar de la inserción y borrado de datos.
- □ Los árboles B⁺ son estructuras arbóreas equilibradas, donde los caminos de la raíz a cada nodo hoja es fijo
- □ Cada nodo no hoja tiene entre \(\int n/2 \) \(\gamma \) n hijos, donde n se fija para cada árbol en particular.

Nodo típico de Árbol B^+ , $P_i \rightarrow puntero$, $K_i \rightarrow valor campo$, $K_i < K_{i+1}$

- □ n punteros (grado de salida):
 - Intermedios son punteros a bloques
 - Hoja son punteros a registros ó bloques.
- □ n-1 valores de la clave de búsqueda
- □ Nodos hoja contengan al menos $\lceil (n-1)/2 \rceil$ valores.
- □ Nodos intermedios al menos \(\int n/2 \) \(\gamma \) punteros
- □ Nodo raíz al menos 2 punteros.
- Característica árbol: balanceado.

Diseño de los nodos

Nodo intermedio / Raíz → Punteros a bloque + valores campo

$$n^*L_{PB} + (n-1)^*L_K \leq B$$

□ Nodo hoja → Punteros a registro o bloque + valores campo + puntero a bloque

 $L_{PR}/L_{PB} \rightarrow$ longitud puntero a registro /bloque (bytes) $L_K \rightarrow$ longitud de campo de búsqueda del índice (bytes)

Estructura de ejemplo de un árbol B+

Cada nodo del árbol contiene n punteros a bloques, junto con n-1 claves de búsqueda. N=3 niveles, n=3 punteros en cada nodo

 n_{Ri} =V(campo) = 6, Número nodos hojas= b_{hojas} = $\lceil n_{Ri} / n_h \rceil = \lceil 6 / 2 \rceil = 3$ Número nodos intermedio 1= $\lceil b_{hojas} / n \rceil = \lceil 3 / 3 \rceil = 1$, es la raíz ya. $C_{indice} = N = 2$ niveles en esta estimación.

21

archivo cuenta

Índice primario + campo no clave

$$C_{indice} = N$$

Índice secundario + campo no clave \rightarrow cajones punteros $C_{indice} = N + b_{caj}$

Ejemplos

Ejemplos arboles Bmas.ppt

Archivos de índices de Árbol B

Esta operación se realiza añadiendo un campo más a los nodos internos del árbol, y eliminando por tanto esos datos de los nodos hojas finales, lo que crea una reestructuración completa del árbol

$$P_1$$
 B_1 K_1 P_2 B_2 K_2 ... P_{m-1} B_{m-1} K_{m-1} P_m

(b)

 $m^*L_{PB} + (m-1)^*(L_K + L_{PR}) \le B$, nodo Intermedio

Archivos de índices de Árbol B

En los árboles B es más complicado el borrado, pero más simple la inserción.

Ejemplo

Say we insert record with key = 25

☐ Afterwards:

n=4

Asociación Estática

- Sea K el conjunto de los valores de clave de búsqueda.
- Se B el conjunto de todas las direcciones de los cajones.
- Una función h es una función de K a B tal que:

$$h(k)=B$$

- ☐ Igual que archivos hash, pero es un índice. Mismas propiedades
- □ Los cajones guardan valor del campo + Punteros
- Los cajones están todos creados (estáticos).

Índices asociativos

Ejemplo

ejemplos_indices_asociativos.ppt

Asociación Dinámica

Las técnicas de asociación estática tienen el problema de que poco a poco la base de datos va aumentando su tamaño ⇒ irremediablemente se llegan a situaciones de desbordamiento.

- Las técnicas de asociación dinámica permiten paliar esos problemas ⇒ modificando la función de asociación dinámicamente para acomodarse al aumento o disminución de la base de datos.
- En esta parte del tema se estudiará la estructura asociativa general dinámica.

Asociación Dinámica

Asociación dinámica: Ejemplo

Ejemplo asociación dividida:

ejemplos_indices_asociativos_dinamicos.pptx

Definición de índices en SQL

- La normal SQL no permite el control de los índices de la base de datos.
- Aún así, la mayoría de sistemas permiten la gestión de índices:
- □ Ejemplos:
 - Create index <nombre-indice> on <nombre-relación> (atrbutos>)
 - Create index indice-s on sucursal(nombre sucursal).
 - Create unique index indice on tabla(clave-unica).
 - Drop index <nombre-indice>

Accesos Multiclave

Muchas consultas realizadas a la base de datos constan de condiciones en varios índices:

Select * from tabla where Campo1>10 and Campo2<7

- □ Para este tipo de casos se puede:
 - Usar primero el índice Campo1 y luego el Campo2
 - Usar primero el Campo2 y luego el Campo1
 - Hacer la intersección de ambos índices con las condiciones dadas.

Archivos en Retícula

- Son archivos que intrínsecamente sitúan la información para su uso con múltiples índices.
- Se basan en la utilización de escalas lineales.
- Las celdas de los archivos en retícula apuntan a los cajones de datos.
- ☐ Si se desean utilizar n índices en la retícula, se crearán arrays de retícula n-dimensionales.

Archivos en Retícula

Índices en Retícula: Ejemplo

Ejemplo de índice en retícula:

ejemplos indices rejilla.pptx

Asociación dividida

La clave hash se divide en tantos segmentos como claves individuales se utilicen para generar la clave principal.

Valor de clave	Valor de
De búsqueda	asociación
(Green , Brighton)	101 111
(Hayes , Perryridge)	110 101
(Johnson, Downtown)	111 001
(Lyle , Perryridge)	000 101
(Peterson , Downtown)	010 001
(Smith , Mianus)	011 111
(Turner , Round Hill)	011 000
(Williams , Perryridge)	001 101
(Hayes , Mianus)	110 011

$$C_{indice} = C_{leer \ cajones}$$

Asociación dividida: Ejemplo

□ Ejemplo asociación dividida:

ejemplos asociacion dividida.ppt

Índices de Mapas de Bits

número de registro	nombre	sexo	dirección	nivel-ingresos	Mapas de bits para sexo		Mapas de bits para nivel-ingresos	
0	Juan	m	Pamplona	L1	m	10010	L1	10100
1	Diana	f	Barcelona	L2	f	01101	L2	01000
2	María	f	Jaén	L1		_	L3	00001
3	Pedro	m_	Barcelona	L4			L4	00010
4	Katzalin	f	Pam plona .	L3			L5	00000
					,			

- Número de mapas de cada campo → V(campo)
- Cada mapa tiene n_R bits.
- ☐ Leer secuencialmente los registros
- Para contar tuplas

$$L_{mapa} = n_R bits$$

$$b_{mapa} = \lceil (L_{mapa}/8) / B \rceil$$

Número mapas = V(campo)

$$C_{indice} = C_{leer mapas bits}$$

Índice Mapa de Bits: Ejemplo

Ejemplo mapa de bits:

S03-U1-ejemplos_indices_bitmap.ppt