Spectral Radius

Definition: Spectral Radius

Let $A \in M_n$. The *spectral radius* of A, denoted $\rho(A)$, is given by:

$$\rho(A) = \max_{\lambda \in \sigma(A)} \{|\lambda|\}$$

Lemma

Let $A \in M_n$ and σ_1 be the largest singular value for A:

$$\sigma_1 = \sqrt{\rho(A^*A)}$$

Proof

Let the SVD for A be as follows:

$$A = U \begin{bmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_n \end{bmatrix} V^*$$

for unitary matrices U and V and $\sigma_k \in \mathbb{R}$ such that $\sigma_1 \geq \ldots \geq \sigma_n \geq 0$.

$$A^*A = V \begin{bmatrix} \sigma_1 & 0 \\ & \ddots \\ 0 & \sigma_n \end{bmatrix} U^*U \begin{bmatrix} \sigma_1 & 0 \\ & \ddots \\ 0 & \sigma_n \end{bmatrix} V^* = V \begin{bmatrix} \sigma_1^2 & 0 \\ & \ddots \\ 0 & \sigma_n^2 \end{bmatrix} V^*$$

Thus, the σ_k^2 are the eigenvalues for A^*A and $\rho(A^*A)=\sigma_1^2$

$$\therefore \sigma_1 = \sqrt{\rho(A^*A)}$$

Lemma

Let $A \in M_n$ and σ_1 be the largest singular value for $A : \forall \vec{x} \in \mathbb{C}^n$:

$$||A\vec{x}||_2 \le \sigma_1 ||\vec{x}||_2$$

Proof

From the previous proof:

$$A^*A = V \begin{bmatrix} \sigma_1^2 & 0 \\ & \ddots \\ 0 & \sigma_n^2 \end{bmatrix} V^*$$

Assume $\vec{x} \in \mathbb{C}^n$:

$$\vec{x}^* A^* A \vec{x} = \vec{x}^* V \begin{bmatrix} \sigma_1^2 & 0 \\ & \ddots & \\ 0 & \sigma_n^2 \end{bmatrix} V^* \vec{x}$$

Let $\vec{y} = V^* \vec{x}$:

$$||A\vec{x}||_2^2 = \vec{y}^* \begin{bmatrix} \sigma_1^2 & 0 \\ & \ddots \\ 0 & \sigma_n^2 \end{bmatrix} \vec{y}$$

By isometry: $\|\vec{y}\|_2 = \|V^*\vec{x}\|_2 = \|\vec{x}\|_2$, and so:

$$||A\vec{x}||_{2}^{2} = [\bar{y}_{1} \ \bar{y}_{2} \ \dots \ \bar{y}_{n}] \begin{bmatrix} \sigma_{1}^{2} & 0 \\ & \ddots \\ 0 & & \sigma_{n}^{2} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$= \sum_{k=1}^{n} \bar{y}_{k} \sigma_{k}^{2} y_{k}$$

$$= \sum_{k=1}^{n} \sigma_{k}^{2} |y_{k}|^{2}$$

$$\leq \sum_{k=1}^{n} \sigma_{1}^{2} |y_{k}|^{2}$$

$$= \sigma_{1}^{2} \sum_{k=1}^{n} |y_{k}|^{2}$$

$$= \sigma_{1}^{2} ||\vec{y}||_{2}^{2}$$

$$= \sigma_{1}^{2} ||\vec{x}||_{2}^{2}$$

$$\therefore ||A\vec{x}||_{2} \leq \sigma_{1} ||\vec{x}||_{2}$$

Lemma

Let $A \in M_n$ and σ_1 be the largest singular value for A. $\exists \vec{x} \in \mathbb{C}^n$ such that:

$$||A\vec{x}||_2 = \sigma_1 ||\vec{x}||_2$$

Proof

Let the SVD for *A* be as follows:

$$A = U \begin{bmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_n \end{bmatrix} V^*$$

for unitary matrices U and V and $\sigma_k \in \mathbb{R}$ such that $\sigma_1 \geq \ldots \geq \sigma_n \geq 0$.

$$AV = U \begin{bmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_n \end{bmatrix}$$

Compare the first columns:

$$A\vec{v}_1 = \sigma_1 \vec{u}_1$$

Since \vec{u}_1 and \vec{v}_1 are a unit vectors:

$$||A\vec{v}_1||_2 = ||\sigma_1\vec{u}_1||_2 = \sigma_1 ||\vec{u}_1||_2 = \sigma_1 \cdot 1 = \sigma_1 ||\vec{v}_1||_2$$

Let $\vec{x} = \vec{v_1}$. Therefore, $\exists \, \vec{x} \in \mathbb{C}^n$ such that:

$$||A\vec{x}||_2 = \sigma_1 ||\vec{x}||_2$$

Theorem

Let $A \in M_n$ and σ_1 be the largest singular value for A:

$$|||A|||_2 = \sqrt{\rho(A^*A)} = \sigma_1$$

Proof

By definition:

$$|||A|||_2 = \max_{\|\vec{x}\|_2 = 1} \{\|A\vec{x}\|_2\}$$

By the above lemma: $\forall \vec{x} \in \mathbb{C}^n$:

$$||A\vec{x}||_2 \le \sigma_1 ||\vec{x}||_2$$

And by the subsequent lemma, there exists a $\vec{x} \in \mathbb{C}^n$ such that $\|\vec{x}\|_2 = 1$ and:

$$||A\vec{x}||_2 = \sigma_1 ||\vec{x}||_2 = \sigma_1 \cdot 1 = \sigma_1$$

Therefore:

$$|||A|||_2 = \max_{\|\vec{x}\|_2 = 1} ||A\vec{x}||_2 = \sigma_1$$