Detecção de Câncer Cervical com o Exame de Papanicolau com Classificadores Rasos e Profundos

Arthur S. Quadros¹, Quézia P. Silva¹, Sarah S. Magalhães¹

¹Instituto de Ciências Exatas e Informática Pontifícia Universidade Católica de Minas Gerais (PUC Minas) 30.535-901 – Belo Horizonte – MG – Brasil

 ${aquadros, qsilva, sarah.magalhaes.1280966} \\ @sga.pucminas.br$

Abstract. Este artigo investiga a eficácia de técnicas de aprendizagem rasa e profunda para detecção de câncer cervical usando imagens de exame de Papanicolau. Utilizamos os descritores Haralick de seis matrizes de coocorrência como features para um Support Vector Machine (SVM) e utilizamos a imagem inteira para o modelo de aprendizado profundo EfficientNetB1. Os resultados demonstram a superioridade do EfficientNetB1, alcançando uma acurácia de 85% e 65% nas tarefas de classificação binária e multiclasse (6 classes), respectivamente. Por outro lado, os classificadores SVM alcançaram precisões inferiores de 64% e 47% para os problemas binários e multiclasses. Estas descobertas sugerem que as abordagens de aprendizagem profunda são promissoras para melhorar a detecção de câncer cervical.

1. Introdução

O exame de Papanicolau é um procedimento crítico na detecção precoce do câncer cervical. Ao coletar células do colo do útero e examiná-las ao microscópio, este teste pode identificar processos potencialmente pré-cancerosos e cancerosos [Koss 1989, Naucler et al. 2007]. A integração de Inteligência Artificial (IA) para esse fim potencializa a análise de imagens médicas, aumentando a acurácia e a rapidez na detecção do câncer. Os algoritmos de IA podem aprender com conjuntos de dados a reconhecer padrões indicativos de câncer, tornando o exame de Papanicolau uma ferramenta ainda mais potente no combate a esta doença.

Nesse estudo, empregamos duas abordagens para classificar imagens de Papanicolau do dataset em [Rezende et al. 2021]: um classificador raso usando descritores de Haralick - entropia, homogeneidade, contraste - derivados de múltiplas matrizes de coocorrência, e um classificador profundo analisando matrizes de pixels de imagens coloridas via EfficientNetB1, especificado na seção 3. Esses métodos foram aplicados a contextos binários e multiclasse. O aumento de dados quadruplicou nosso conjunto de dados com imagens giradas em ângulos de 0, 90, 180 e 270 graus. Avaliamos o desempenho de nossos modelos usando métricas de acurácia e confusão, bem como perdas especificamente para EfficientNetB1.

As implementações propriamente ditas foram feitas em Python com as bibliotecas Scikit-Learn para o uso do SVM, Tensorflow para uso do EfficientNetB1, OpenCV e Pillow para pré-processamento e manipulação de imagens, numpy para cálculo dos Descritores Haralick e Tkinter para criação de uma interface gráfica simples.

2. Trabalhos Relacionados

Estudos semelhantes utilizam técnicas de aprendizagem superficial e profunda para reconhecer indicadores de câncer. [Chen et al. 2023] alcançou mais de 90% de acurácia com 3 classes usando classificadores profundos EfficientNetB0, [Rastogi et al. 2023] alcançou 94% de acurácia em conjuntos de dados de benchmarking para classificação binária de células "normais" e "cancerígenas" usando classificadores profundos EfficientNetB7. [Zhang and Liu 2004] usa SVM para detectar câncer em classificações em nível de pixel, segmentando regiões da célula potencialmente identificando câncer, [Amole and Osalusi 2018] usa classificadores rasos SVM e k-NN para prever câncer em configurações binárias alcançando mais de 88% de acurácia para ambos os modelos. Com isso em mente, neste estudo propomos o uso de SVM e EfficientNetB1 para detectar câncer em exames de Papanicolau em classificação binária e de 6 classes, comparando os resultados de cada abordagem.

3. Metodologia

3.1. Pré-processamento das Imagens

As imagens utilizadas para o exame Papanicolau foram agrupadas por classe, sendo elas (0) "Negativas para lesão intraepitelial", (1) "ASC-US", (2) "ASC-H", (3) "LSIL", (4) "HSIL", ou (5) "SCC". O comprimento total do conjunto de dados inicial é de 5.581 imagens separadas de forma desigual entre as classes mencionadas. A configuração inicial das imagens está disposta na Tabela 1.

_	J	
Nome de classe	ID de classe	Tamanho
Negativas para lesão intraepitelial	0	4244
ASC-US	1	84
ASC-H	2	391
LSIL	3	287
HSIL	4	493
SCC	5	82

Todas essas imagens foram recortadas com dimensões 100x100 ao redor do núcleo das células e separadas cada uma em sua própria pasta com seus respectivos identificadores no banco de dados original.

3.2. Classificadores

Os classificadores implementados tiveram uma combinação de diferentes abordagens, totalizando 4 combinações de testes. Classificamos os exames de Papanicolau usando os Descritores de Haralick de entropia, homogeneidade e contraste, a partir das matrizes de co-ocorrência de $C_{1,1}$, $C_{2,2}$, $C_{4,4}$, $C_{8,8}$, $C_{16,16}$ e $C_{32,32}$, (um total de 18 features) para um classificador raso; e os classificamos usando as matrizes que representam os pixels das imagens coloridas, com 3 canais e 10.000 pixels (um total de 30.000 features) para um classificador profundo. Ambas as abordagens foram aplicadas em um contexto binário, em que, com base na Tabela 1, temos a classe 0 como sendo negativa, e todas as outras como sendo positivas, assim como na versão completa, com todas as 6 classes. E

por fim, quanto aos classificadores em si, utilizamos um classificador raso, SVM, e um classificador profundo, EfficientNetB1.

O treinamento de todos os classificadores, exceto o classificador binário Efficient-NetB1, incluiu os dados aumentados da tabela 1 na qual o conjunto de dados original acabou sendo 4 vezes maior. Todas as imagens originais foram giradas no sentido horário em quatro ângulos: 0 (imagem original), 90, 180 e 270 graus. Como o corte da imagem original mantém intencionalmente o núcleo da célula no centro, nenhum corte adicional ou edição de imagem é aplicado no conjunto de dados original.

Comparamos todas as métricas combinadas em termos de acurácia, perda (para EfficientNetB1) e confusão, por meio das matrizes de confusão da predição. O SVM foi implementado com as combinações de hiperparâmetros dos kernels *rbf* e *poly*, parâmetro de regularização (C) de 0,1, 1 e 10. Para o kernel *poly*, testamos juntamente com essas combinações o grau de 1 (linear), 2, 3, 4, 5, 6 e 7; e o EfficientNetB1 foi implementado com as combinações de hiperparâmetros de batch size 4, 8, 16, 32, 64 e 128, taxa de aprendizado de 0,001, 0,0001, 0,00005 e 0,00002 e 0,00001, 0, 1, 2, 3 e 4 camadas ocultas com 0, 4, 8, 16, 32, 64, 128, 256 e 512 neurônios cada um com dropout de 50%, otimizadores Adam e SGD (Stochastic Gradient Descent), todos com parada antecipada e redutores de taxa de aprendizagem.

4. Resultados e Discussão

O cálculo das 18 features para todo o conjunto de dados incluiu o cálculo das 6 matrizes de coocorrência para cada imagem, e o resultado é usado para calcular sua entropia, homogeneidade e contraste. Este cálculo levou mais de 1 hora para ser executado no Google Colab. O tempo de treinamento para o melhor modelo raso foi de cerca de 30 minutos, enquanto o treinamento do classificador profundo levou bem mais de 3 horas (sem aceleração de GPU) para ser concluído.

A figura 1 foi usada como exemplo para demonstrar os resultados obtidos por todas as quatro implementações do modelo. A célula possui classe 1 nas classificações binária e multiclasse (ASC-H), com o SVM binário respondendo 1 (indicando corretamente câncer); o SVM multiclasse respondendo 1 (indicando corretamente ASC-H); o EfficientNetB1 binário respondendo 1 (indicando corretamente câncer); e o EfficientNetB1 multiclasse respondendo 0 (indicando incorretamente que não há câncer). Para esta imagem em particular, 3 em 4 modelos responderam corretamente.

Figure 1. Exemplo de imagem de ASC-H sendo classificada por todos os quatro modelos

Os melhores resultados para SVM foram os parâmetros de kernel poly, parâmetro

de regularização 10 e grau 7, tanto para a versão binária quanto para a versão multiclasse, com acurácia de 64% e 47% respectivamente. Enquanto isso, para os parâmetros EfficientNetB1, os melhores resultados foram obtidos para a versão binária com batch size de 16, taxa de aprendizado inicial de 0,00001, 3 camadas ocultas com 8 neurônios sem dropout e otimizador Adam; e as mesmas configurações para a versão multiclasse exceto o uso de batch size de 128, 2 camadas ocultas com 512 neurônios com dropout de 50%, com acurácias de 82% e 65%. A matriz de confusão normalizada para as melhores combinações de SVM e EfficientNetB1 é exibida na Figura 2.

Quanto aos resultados do EfficientNetB1, temos um classificador multiclasse que por si só é melhor que o SVM binário, com 65% de acurácia, e uma versão binária com 82% de acurácia. E simplesmente adaptando o EfficientNetB1 multiclasse para considerar qualquer previsão das classes 1, 2, 3, 4 ou 5 como sendo 1 e tratando o problema como binário com o classificador multiclasse conseguimos chegar a uma média de 85% de acurácia em uma média de 10 execuções em uma amostra de dados aleatória. A acurácia e perda de treinamento e validação são exibidas na Figura 3.

Figure 2. Matrizes de confusão dos melhores modelos SVM binário (superior esquerdo) e EfficientNetB1 binário (superior direito), e SVM multiclasse (inferior esquerdo) e EfficientNetB1 multiclasse (inferior direito)

No geral, os resultados para o classificador binário EfficientNetB1 foram fracos, uma vez que a adaptação binária do EfficientNetB1 multiclasse foi capaz de obter uma melhor acurácia média. O treinamento do classificador binário EfficientNetB1 não apresentou resultados muito confiáveis, com as métricas de treinamento da Figura 3 não sendo mantidas após o carregamento do modelo (caindo de 97% para 82%).

Figure 3. Métricas de treinamento e validação para o EfficientNetB1 binário e multiclasse

Nossos resultados indicam que as abordagens de Deep Learning com Efficient-NetB1 são mais adequadas para exames de Papanicolau do que os classificadores rasos com o SVM. A versão multiclasse do nosso classificador profundo alcançou uma acurácia maior do que a versão binária do nosso classificador superficial, conforme observado na Figura 2.

5. Conclusão

Concluímos que as abordagens de Deep Learning são adequadas para classificações de imagens de exames de Papanicolau, possivelmente atingindo mais de 85% de acurácia na configuração binária para identificação do câncer cervical. Enquanto isso, a classificação superficial com SVM atingiu no máximo 65% de acurácia na configuração binária. Possíveis trabalhos futuros e continuações desse estudo incluem equilibrar o conjunto de dados com um downsampler com estimador de probabilidades para evitar a perda de informações vitais em imagens removidas devido à redução aleatória da amostragem na

tentativa de melhorar a acurácia final.

References

- Amole, A. and Osalusi, B. S. (2018). Textural analysis of pap smears images for k-nn and svm based cervical cancer classification system. *Advances in Science, Technology and Engineering Systems Journal*.
- Chen, X., Pu, X., Chen, Z., Li, L., Zhao, K.-N., Liu, H., and Zhu, H. (2023). Application of efficientnet-b0 and gru-based deep learning on classifying the colposcopy diagnosis of precancerous cervical lesions. *Cancer Medicine*, 12(7):8690–8699.
- Koss, L. G. (1989). The Papanicolaou Test for Cervical Cancer Detection: A Triumph and a Tragedy. *JAMA*, 261(5):737–743.
- Naucler, P., Ryd, W., Törnberg, S., Strand, A., Wadell, G., Elfgren, K., Rådberg, T., Strander, B., Johansson, B., Forslund, O., Hansson, B.-G., Rylander, E., and Dillner, J. (2007). Human papillomavirus and papanicolaou tests to screen for cervical cancer. New England Journal of Medicine, 357(16):1589–1597.
- Rastogi, P., Khanna, K., and Singh, V. (2023). Classification of single-cell cervical pap smear images using efficientnet. *Expert Systems*, 40(10):e13418.
- Rezende, M. T., Silva, R., Bernardo, F. d. O., Tobias, A. H., Oliveira, P. H., Machado, T. M., Costa, C. S., Medeiros, F. N., Ushizima, D. M., Carneiro, C. M., et al. (2021). Cric searchable image database as a public platform for conventional pap smear cytology data. *Scientific data*, 8(1):151.
- Zhang, J. and Liu, Y. (2004). Cervical cancer detection using svm based feature screening. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pages 873–880. Springer.