Teoría de la integral y de la medida

Hoja n⁰ 4 (Integración y teoremas de convergencia) SOLUCIONES

1.- Sea $f(x):[0,1] \to \mathbb{R}^+$ definida mediante f(x)=0, si x es racional, f(x)=n, si n es el número de ceros inmediatamente después del punto decimal en la representación de x en la escala decimal. Calcular $\int f(x)dm$, siendo m la medida de Lebesgue.

SOL: Por la definición que nos dan, se tiene que f(x) = n en el conjunto $I_n = (10^{-n-1}, 10^{-n}] \cap \mathbb{Q}^c$. De esta forma podemos escribir $f(x) = \sum_{n=1}^{\infty} n \chi_{I_n}(x)$. Usando que la medida de Lebesgue de I_n es la misma que la del intervalo $\tilde{I}_n = (10^{-n-1}, 10^{-n}]$, es decir, $9/10^{n+1}$ su integral es

$$\int f \, dm = \sum_{n=1}^{\infty} n \frac{9}{10^{n+1}} = \frac{9}{10} \sum_{n=1}^{\infty} n \frac{1}{10^n} = \frac{9}{10} \frac{1/10}{(1-1/10)^2} = \frac{9}{9^2} = \frac{1}{9}.$$

2.- Sea f(x) = 0 en cada punto del conjunto ternario de Cantor en [0,1]. Sea f(x) = p en cada intervalo del complementario de longitud $\frac{1}{3p}$. Demostrar que f es medible y calcular $\int f(x)dm$, siendo m la medida de Lebesgue.

SOL: El complementario del conjunto de Cantor en [0,1] viene dado por un abierto de la forma $\bigcup_{p=1}^{\infty}\bigcup_{k=1}^{2^{p-1}}I_{p,k}$, donde los $I_{p,k}$ son intervalos abiertos disjuntos cada uno de medida 3^{-p} . La función f se puede escribir como

$$f(x) = \sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} p \chi_{I_{p,k}}(x),$$

y su integral vale por tanto

$$\int f dm = \sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} p \, m(I_{p,k}) = \sum_{p=1}^{\infty} p \frac{2^{p-1}}{3^p} = \frac{1}{2} \sum_{p=1}^{\infty} p \left(\frac{2}{3}\right)^p = \frac{1}{2} \frac{2/3}{(1-2/3)^2} = 3.$$

3.- Sea f(x) la función definida en (0,1) mediante f(x)=0, si x es racional, $f(x)=\left[\frac{1}{x}\right]$ si x es irracional $\left(\left[\frac{1}{x}\right]\right]$ es la parte entera de $\frac{1}{x}$). Calcular $\int f(x)dm$ siendo m la medida de Lebesgue.

SOL: Observamos primero que $[y] \ge y - 1$. Como el conjunto de números racionales tiene medida 0 con respecto a la medida de Lebesgue, se sigue que $f(x) \ge \frac{1}{x} - 1$ c.t.p. Por tanto

$$\int f dm \ge \int_0^1 \left(\frac{1}{x} - 1\right) dx = \infty.$$

4.- Llamemos $d_i(x)$ a los dígitos del desarrollo decimal $0.d_1d_2...$ de un $x \in (0,1)$. Decir por qué son convergentes las siguientes series:

$$f(x) = \sum_{i} d_i(x)/2^i$$
 $g(x) = \sum_{i} (-1)^{d_i(x)}/2^i$,

1

y hallar $\int_0^1 f$, $\int_0^1 g$, expresándolas como sumas de series. ¿Por qué son válidas esas expresiones?

SOL:
$$\int_0^1 f(x) dx = \frac{9}{2}$$
 y $\int_0^1 g(x) dx = 0$, que ya veremos con calma ...

5.- Sea $f_{2n-1}=\chi_{[0,1]}$ $f_{2n}=\chi_{(1,2]}$ $n=1,2,\ldots$ Comprobar que se verifica la desigualdad de Fatou estrictamente.

SOL: $\forall x \in \mathbb{R}$ se tiene $\liminf_{n \to \infty} f_n(x) = 0$ porque $f_n(x) = 0$ bien si n es par o bien si n es impar. Por tanto $\int \liminf_{n \to \infty} f_n(x) dx = 0 < \liminf_{n \to \infty} \int f_n(x) dx = 1$.

- 6.- Comprobar $\int_1^\infty \frac{1}{x} dm = \infty$, siendo m la medida de Lebesgue.
- 7.- Sea $f_n \ge 0$, medible, $\lim f_n = f$, $f_n \le f$ $\forall n$. Comprobar que $\int f d\mu = \lim \int f_n d\mu$. (Sugerencia: Usar el lema de Fatou y que $\int f_n d\mu \le \int f d\mu$)

SOL: Por el Lema de Fatou y las hipótesis, $\int f d\mu = \int \lim f_n d\mu \leq \lim \inf \int f_n d\mu \leq \int f d\mu$.

8.- Sea $f_n(x) = \min(f(x), n)$ siendo $f(x) \ge 0$ y medible. Demostrar que $\int f_n d\mu \uparrow \int f d\mu$.

SOL: Basta observar que $\{f_n\}_n$ es una sucesión creciente de funciones medibles y que $\lim f_n(x) = f(x)$ puntualmente $\forall x$. A continuación se usa el TCM.

9.- Sean $f \ge 0$, $g \ge 0$ medibles $f \ge g$, $\int g d\mu < \infty$. Probar que

$$\int f d\mu - \int g d\mu = \int (f - g) d\mu$$

10.- Sean $f_n(x)$ funciones medible no negativas y acotadas. Supongamos que $f_n(x) \downarrow f(x)$ y que para algún k se verifica $\int f_k d\mu < \infty$. Probar que (**TCM para sucesiones decrecientes**):

$$\lim \int f_n d\mu = \int f d\mu.$$

(Sugerencia: Formar la sucesión $g_n = f_k - f_{k+n}$).

SOL: La sucesión $\{g_n\}_n$ es creciente y cumple $\lim_{n\to\infty}g_n(x)=f_k(x)-f(x), \forall x$. Por el TCM,

$$\int f_k d\mu - \int f d\mu = \lim_{n \to \infty} \int (f_k - f_{k+n}) d\mu = \int f_k d\mu - \lim_{n \to \infty} \int f_n d\mu.$$

Despejando queda el resultado.

- 11.- Sea $1 = a_1 \ge a_2 \ge a_3, \ldots, \ge a_n, \ldots$, una sucesión de números positivos tales que $\lim a_n = 0$. Sea $f_n(x) = a_n/x$, x > a > 0. Comprobar que f_n decrece a cero uniformemente pero $\int f_n dm = \infty$ para $\forall n$.
- 12.- Sea $f_n:[0,1]\to[0,\infty)$, definida mediante

$$f_n(x) = n$$
, si $0 < x < \frac{1}{n}$
 $f_n(x) = 0$, en otro caso.

Comprobar que $f_n \to 0$, puntualmente pero $\int f_n dm = 1$.

13.- Sea $g:(X,\mathcal{A},\mu)\to (\bar{\mathbb{R}},\mathcal{B}_{\bar{\mathbb{R}}})$ integrable. Sea $\{E_n\}$ uns sucesión decreciente de conjuntos tal que $\cap_1^\infty E_n=\emptyset$. Probar que $\lim_{n\to\infty}\int_{E_n}gd\mu=0$

SOL: Usar TCD con $f_n = g\chi_{E_n}$ y función dominante F = |g|.

14.- Sea $f: \mathbb{R} \to [0, \infty)$ medible y $f \in L^1(m)$. Sea $F: \mathbb{R} \to \mathbb{R}$ definida mediante $F(x) = \int_{-\infty}^x f(t) dm$. Probar que F(x) es continua. (Sugerencia: Usar teoremas de convergencia)

Probar que dados $x_1 < x_2 < x_3 < \dots$ números reales, se tiene

$$\sum_{k} |F(x_{k+1}) - F(x_k)| \le \int_{\mathbb{R}} |f| dm$$

SOL: La continuidad se deduce del TCD de la forma siguiente: fijamos x y elegimos $\{z_n\}_n$ una sucesión convergente a x, supongamos además que $z_n < x, \forall n$. Definimos $f_n(y) = f(y)\chi_{(z_n,x)}(y)$ (es decir, $f_n(y) = f(y)$ si $z_n < y < x$ y $f_n(y) = 0$ en el resto. Entonces

$$\lim_{n \to \infty} |F(z_n) - F(x)| \le \lim_{n \to \infty} \int_{z_n}^x |f| dm = \lim_{n \to \infty} \int |f_n| dm = 0,$$

porque $\lim_{n\to\infty} f_n(y) = 0, \forall y$ y las f_n están dominadas por la función integrable |f|.

15.- Sea $\mu(X) < \infty$. Sean $\{f_n\}$ una sucesión de funciones de $L^1(\mu)$, con $f_n(x) \to f(x)$ uniformemente. Demostrar que $f \in L^1(\mu)$ y que $\int f_n d\mu \to \int f d\mu$. (Sugerencia: Estudiar la sucesión $\varepsilon_n(x) = f_n(x) - f(x)$, escribir $f(x) = f_n(x) - (f_n(x) - f(x))$.

16.- Sea $A = [0,1] \cap \mathbf{Q}$, entonces $A = \{a_1, a_2, \dots, a_n \dots\}$. Definimos $f_n : [0,1] \to \mathbb{R}$ mediante: $f_n(x) = 1$ si $x \in \{a_1, a_2, \dots, a_n\}$ y $f_n(x) = 0$ en los demás casos. Probar que f_n es integrable Riemann, hallar $f(x) = \lim_{n \to \infty} f_n(x)$ y estudiar si f(x) es integrable Riemann

SOL: f es la función de Dirichlet, luego no es integrable Riemann.

17.- Demostrar que $\lim_{n\to\infty} \int_0^\infty \frac{dx}{(1+\frac{x}{2})^n x^{\frac{1}{n}}} = 1.$

(Sugerencia: Usar que para n > 1 $(1 + \frac{x}{n})^n \ge \frac{x^2}{4}$)

SOL: Definimos $f_n(x) = \frac{1}{(1+\frac{x}{n})^n x^{\frac{1}{n}}}$. Se tiene $\lim_{n\to\infty} f_n(x) = e^{-x}, \forall x>0$. Sea por otro lado

$$F(x) = \begin{cases} \frac{1}{x^{1/2}} & \text{si } x < 1\\ \frac{4}{x^2} & \text{si } 1 \le x \end{cases}$$

Entonces, F es integrable y $f_n(x) \leq F(x)$, si $n \geq 2$. Por el TCD, $\lim_{n \to \infty} \int_0^\infty f_n dx = \int_0^\infty e^{-x} dx = 1$.

18.- Sea $f_n(x) = \frac{nx-1}{(x\log n+1)(1+nx^2\log n)}$, $x \in (0,1]$. Comprobar que $\lim_{n\to\infty} f_n(x) = 0$ y sin embargo $\lim_{n\to\infty} \int_0^1 f_n(x) dx = \frac{1}{2}$. (Sugerencia: $f_n(x) = \frac{-1}{x\log n+1} + \frac{nx}{(n\log n)x^2+1}$).

SOL: Con la sugerencia, podemos encontrar una primitiva de forma directa que nos da

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \lim_{n \to \infty} \left(\frac{\log[(n \log n)x^2 + 1]}{2 \log n} - \frac{\log(x \log n + 1)}{\log n} \right) \Big|_0^1$$
$$= \lim_{n \to \infty} \left(\frac{\log[(n \log n) + 1]}{2 \log n} - \frac{\log(\log n + 1)}{\log n} \right) = \frac{1}{2}.$$

Esto no contradice el TCD porque no existe función "dominante" que permita usarlo.

19.- Calcular $\lim_{n\to\infty}\int_a^\infty \frac{n}{1+n^2x^2}dx$, estudiando los casos a<0, $a=0,\ a>0$. ¿ Qué teoremas de convergencia son aplicables ?

SOL: Sea $f_n(x) = \frac{n}{1 + n^2 x^2}$. Se tiene $\lim_{n \to \infty} f_n(x) = 0, \forall x > 0$. Definimos $F(x) = \frac{1}{x^2}$. Entonces, $F(x) = \frac{1}{n}$ es integrable en (a, ∞) si a > 0 y $f_n(x) \le F(x)$, $\forall n$. Por el TCD, $\lim_{n \to \infty} \int_a^{\infty} f_n dx = 0$ si a > 0.

Sin embargo, dado cualquier $\epsilon > 0$ el cambio de variable y = nx nos da

$$\int_0^{\epsilon} \frac{n}{1 + n^2 x^2} dx = \int_0^{n\epsilon} \frac{1}{1 + y^2} dy = \arctan(n\epsilon) \longrightarrow \frac{\pi}{2}, \quad \text{si} \quad n \to \infty.$$

Por simetría, lo mismo ocurre en $(-\epsilon,0)$. Por tanto $\lim_{n\to\infty}\int_0^\infty f_n dx = \frac{\pi}{2}$ y $\lim_{n\to\infty}\int_a^\infty f_n dx = \pi$, si a<0.

20.- Calcular $\lim_{n \to \infty} \int_0^\infty \frac{1 + nx^2}{(1 + x^2)^n} dx$.

SOL: Sea $f_n(x) = \frac{1 + nx^2}{(1 + x^2)^n}$. Se tiene $\lim_{n \to \infty} f_n(x) = 0, \forall x > 0$. Definimos

$$F(x) = \begin{cases} 1 & \text{si } x < 1 \\ \frac{4}{x^2} & \text{si } 1 \le x \end{cases}$$

Entonces, F es integrable y $f_n(x) \leq F(x)$, si $n \geq 2$ (porque, por el desarrollo del binomio de Newton, $(1+x^2)^n \geq 1+nx^2+\frac{n(n-1)}{2}x^4$). Por el TCD, $\lim_{n\to\infty}\int_0^\infty f_ndx=0$.