Optimization of scalar complexity of Chudnovsky-type algorithm in finite fields

Thanh-Hung Dang Joint work with

Alexis Bonnecaze and Stéphane Ballet

Institut de Mathématiques de Marseille Aix-Marseille Université

Seminar of ATI group 05 mars 2020

Introduction

Multiplication in \mathbb{F}_{q^n} over \mathbb{F}_q

Let $\mathbb{F}_{q^n} = \mathbb{F}_q[x]/\langle P(x) \rangle$ and let

$$A = \sum_{i=0}^{n-1} a_i \beta^i$$
 and $B = \sum_{i=0}^{n-1} b_i \beta^i$

- 1. Product of two polynomials
- 2. Reduction modulo $P(\beta)$

Complexity?

Number of elementary operations in \mathbb{F}_q :

- 1. Addition
- 2. Scalar multiplication (by a constant which does not depend on A or B)
- 3. Bilinear multiplication (the 2 operands depend on A and B)

Multiplication of the evaluation-Interpolation type

$$A(x) = \sum_{i=0}^{n-1} a_i x^i$$
 and $B(x) = \sum_{i=0}^{n-1} b_i x^i$

- Find (2n-1) distinct points in \mathbb{F}_q : $\alpha_0, ..., \alpha_{2n-2}$
- Evaluate A and B at these points
- Multiply term by term these evaluations : $C(\alpha_i) = A(\alpha_i)B(\alpha_i)$
- Interpolate to obtain $C = A \cdot B$.

Example: Karatsuba's trick

Product of two polynomials of degree 1: $A(x) = a_0 + a_1x$ and $B(x) = b_0 + b_1x$

• Evaluation on the 3 points on the projective line over \mathbb{F}_2 : 0, 1, ∞

$$C(0) = a_0 b_0$$

 $C(1) = (a_0 + a_1)(b_0 + b_1)$
 $C(\infty) = a_1 b_1$

•
$$C(x) = C(0) + [C(1) - C(0) - C(\infty)]x + C(\infty)x^2$$

Complexity:

Karatsuba: 3 bilinear mult., 4 additions

VS

School – book method: 4 bilinear mult., 1 addition

For polynomials of higher degrees, apply the method recursively,

Asymptotic bilinear/addition/ total complexity: $O(n^{\log_2 3})$ better than $O(n^2)$ of school-book method

Other algorithms

- Toom-Cook3: with 5 interpolation points
- Fast Fourier Transform (FFT): interpolation points are \emph{n} -th roots of unity of \mathbb{F}_q
- FFT-based algorithm of Schönhage-Strassen

Algorithm	$m_q^b(n)$	$m_q^s(n)$	$M_q(n)$
Karatsuba	$O(n^{\log 3})$		$O(n^{\log 3})$
Toom-Cook3	$O(n^{\log_3 5})$	$O(n^{\log_3 5})$	$O(n^{\log_3 5})$
FFT ^(*)	O(n)	$O(n \log n)$	$O(n \log n)$
Schönhage-Strassen	$O(n \log n)$	$O(n\log n\log_2\log n)$	$O(n \log n \log \log n)$

(*): FFT algorithm is done in condition that F_q containing an n^{th} primitive root of unity.

Chudnovsky² multiplication algorithm (CCMA)

Algorithm of Chudnovsky

David and Gregory Chudnovsky, 1988 Interpolation on algebraic curves

- allows more interpolation points
- Bilinear complexity in O(n);
 Note that bilinear multiplications are the most expensive.

Problem

Scalar Complexity of Chudnovsky's algorithm?

Description

Theorem 1 $(^1)$

Let

- F/IF_a be an algebraic function field defined over IF_a ,
- Q be a place of degree n,
- $\mathcal{P} = \{P_1, \dots, P_N\}$ be a set of places of degree one of F/\mathbb{F}_q ,
- D be a divisor such that supp $D \cap \{Q, P_1, \dots, P_N\} = \emptyset$.

lf

- (i) the first evaluation map $\operatorname{Ev}_Q: \mathscr{L}(\mathbb{D}) \longrightarrow \operatorname{F}_Q \cong \operatorname{I\!F}_{q^n}$ is surjective, $f \longmapsto f(Q)$
- (ii) the second evaluation map $\operatorname{Ev}_{\mathbb{P}}: \mathscr{L}(2D) \longrightarrow \mathbb{F}_q^N$ $f \longmapsto (f(P_1), \dots, f(P_N))$

is injective.

 $^{^{1}}$ D. V. Chudnovsky and G. V. Chudnovsky, "Algebraic complexities and algebraic curves over finite fields".

then

(1) For any two elements x, y in \mathbb{F}_{q^n} , we have:

$$xy = E_Q \circ (Ev_{\mathcal{P}}^{-1})_{|_{ImEv_{\mathcal{P}}}} \left(E_{\mathcal{P}} \circ Ev_Q^{-1}(x) \odot E_{\mathcal{P}} \circ Ev_Q^{-1}(y) \right) \tag{1}$$

where

- $E_O: \mathcal{O}_O \to \mathcal{O}_O/\langle Q \rangle = F_O$
- $E_{\mathcal{P}}$: the extension of $Ev_{\mathcal{P}}$ on the valuation ring \mathcal{O}_Q ,
- ①: the Hadamard product (element-wise multiplication) .
- (2) Let \mathcal{U} denote the algorithm (1). Then we have:

$$\mu_q^b(\mathcal{U}) \leqslant N.$$

Computational route for CCMA-based multiplication

(fg)(Q)

= f(Q)g(Q) = xy

N bilinear multiplications

Sufficient conditions to apply the algorithm

S. Ballet (1999) introduced simple numerical conditions on algebraic curves giving a sufficient condition for the application of CCMA.

Let N_k be the number of places of degree k in an algebraic function field F/\mathbb{F}_q .

Theorem 2

Let q be a prime power and let n be an integer > 1. If there exists an algebraic function field F/\mathbb{F}_q of genus g satisfying the conditions

- 1. $N_n > 0$ (which is always the case if $2g + 1 \le q^{\frac{n-1}{2}}(q^{\frac{1}{2}} 1)$),
- 2. $N_1 \ge 2n + 2g 1$,

then there exists a divisor D of degree n + g - 1 and a place Q such that:

(i) The evaluation map

$$Ev_Q: \mathcal{L}(D) \rightarrow \frac{\mathcal{O}_Q}{Q}$$
 $f \mapsto f(Q)$

is an isomorphism of vector spaces over \mathbb{F}_q .

(ii) There exist places $P_1,...,P_N$ such that the evaluation map

$$\begin{array}{ccc} E \, v_{\mathbb{P}} : & \mathcal{L}(2D) & \to & \mathbb{F}_q^N \\ & f & \mapsto & \Big(f \, (P_1) \, , \ldots , f \, (P_N) \Big) \end{array}$$

is an isomorphism of vector spaces over \mathbb{F}_q with N=2n+g-1.

Construction of CCMA

Construction of CCMA is based on the choice of the following geometric objects:

Choice of $Q, D, \mathcal{L}(D), \mathcal{L}(2D)$:

- Place Q of degree n among the n places lying above an irreducible, totally decomposed polynomial Q(x) of degree n in $\mathbb{F}_a[X]$
- Divisor D as a place of degree n + g 1 s.t D Q is non-special

Note: in practice, we take a divisor D one place of degree n+g-1. It has the advantage to solve the problem of the support of D as well as the effectivity of D (then $\mathcal{L}(D) \subseteq \mathcal{L}(2D)$)

Choice of $Q, D, \mathcal{L}(D), \mathcal{L}(2D)$

• Basis \mathcal{B}_D of Rienman-Roch space $\mathcal{L}(D)$:

$$\mathfrak{B}_D = E v_Q^{-1}(\mathfrak{B}_Q).$$

• Basis \mathcal{B}_Q of $\mathcal{O}_Q/\langle Q \rangle = F_Q \cong \mathbb{F}_{q^n}$:

$$\mathcal{B}_Q = \mathcal{B}_Q^c := \{1, b, ..., b^{n-1}\};$$

b is primitive root of Q(x).

• Basis \mathcal{B}_{2D} of $\mathcal{L}(2D) = \mathcal{L}(D) \oplus M$:

$$\mathcal{B}_{2D} = \mathcal{B}_D \cup \mathcal{B}_D^c$$

 \mathcal{B}_{D}^{c} denotes the basis of complementary subspace M of $\mathcal{L}(D)$ in $\mathcal{L}(2D)$.

Original construction of CCMA

Algorithm 1 Original CCMA in \mathbb{F}_{q^n}

INPUT:
$$x = \sum_{i=1}^{n} x_i E v_Q(f_i), y = \sum_{i=1}^{n} y_i E v_Q(f_i)$$
 $//x_i, y_i \in \mathbb{F}_q$

OUTPUT:
$$z = xy = \sum_{i=1}^{n} z_i E v_Q(f_i)$$

1.
$$X := \begin{pmatrix} X_1 \\ \vdots \\ X_N \end{pmatrix} \leftarrow T_D \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ and } Y := \begin{pmatrix} Y_1 \\ \vdots \\ Y_N \end{pmatrix} \leftarrow T_D \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

2.
$$(Z_1, ..., Z_N)^t \leftarrow (X_1Y_1, ..., X_NY_N)^t =: X \odot Y$$

3.
$$(z_1, \ldots, z_n)^t \leftarrow CT_{2D}^{-1} \begin{pmatrix} Z_1 \\ \vdots \\ Z_N \end{pmatrix}$$

Kernel-type construction of CCMA²

Algorithm 2 Kernel-type construction of CCMA

INPUT: $x = (x_1, ..., x_n), y = (y_1, ..., y_n).$ **OUTPUT:** xy.

1.

$$\begin{pmatrix} a_1 \\ \vdots \\ a_{2n+g-1} \end{pmatrix} = \mathbf{T}_{2D} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} b_1 \\ \vdots \\ b_{2n+g-1} \end{pmatrix} = \mathbf{T}_{2D} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

- 2. Compute $u = (u_1 \cdots u_{2n+g-1})^t$ where $u_i = a_i \cdot b_i$ for i = 1, ..., 2n + g 1.
- 3. Compute $v = (v_1 \cdots v_{2n+q-1})^t = T_{2D}^{-1} \cdot u$
- 4. Return $xy = (v_1, ..., v_n)$.

²Kevin Atighehchi et al. "Arithmetic in finite fields based on the Chudnovsky-Chudnovsky multiplication algorithm". In: Mathematics of Computation 86.308 (2017), pp. 2975–3000.

Optimization of scalar complexity for CCMA

Parameters to evaluate scalar complexity

Number of scalar multiplications:

$$N_s = 3n(2n+g-1) - N_z,$$

where N_z is the number of zeros in CCMA, is computed by:

Original construction:

$$N_z = 2N_{zero}(T_D) + N_{zero}(CT_{2D}^{-1}).$$

Kernel-type construction:

$$N_z = 2N_{zero}(T_D) + N_{zero}(T_{2D,n}^{-1}).$$

 T_D is the first n columns of T_{2D} , T_{2D}^{-1} is the first n rows of T_{2D}^{-1}

Objective

Let $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$ be the original CCMA in \mathbb{F}_{q^n} .

To minimize the scalar complexity $\mu_q^s(\mathcal{U}_{D,Q,\mathcal{P}}^{F,n})$, we aim to maximize

$$\frac{N_z}{l} := 2N_{zero}(T_D) + N_{zero}(CT_{2D}^{-1})$$

the number of zeros in CCMA.

Brute force optimization

For each divisor D, each place Q, we vary the bases

- Basis \mathfrak{B}_D of the Riemann-Roch vector space $\mathcal{L}(D)$
- Basis \mathcal{B}_Q of F_Q
- Basis \mathfrak{B}_D^c of the complementary subspace of $\mathcal{L}(D)$ in $\mathcal{L}(2D)$
- Basis \mathcal{B}_{2D} of the Riemann-Roch vector space $\mathcal{L}(2D)$

Cost of optimization by brute force is very expensive !!

Strategy of scalar complexity optimization

Fixed appropriate triplet (D, Q, P) for a given algebraic function field F/\mathbb{F}_q of genus g.

Proposition³

Let us consider an original algorithm $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$ such that D is an effective divisor, D-Q is non-special divisor of degree g-1, $|\mathcal{P}|=\dim(\mathcal{L}(2D))=2n+g-1$.

Then, we can choose the basis $\mathcal{B}_{2D} = \mathcal{B}_D \cup \mathcal{B}_D^c$, and for any $\sigma \in GL_{\mathbb{F}_q}(2n+g-1)$, we have

$$\mathcal{U}_{\sigma(D),Q,\mathcal{P}}^{F,n} = \mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$$

where $\sigma(D)$ denotes the action of σ on the basis \mathfrak{B}_D in $\mathcal{U}^{F,n}_{D,Q,\mathcal{P}}$, with a fixed \mathfrak{B}_Q and $\mathfrak{B}^c_{\mathbb{F}^n_g^{2n}+g-1}$. In particular, $N_{zero}(CT_{2D}^{-1})$ is constant under this action.

³Stéphane Ballet, Alexis Bonnecaze, and Thanh-Hung Dang. "On the Scalar Complexity of Chudnovsky² Multiplication Algorithm in Finite Fields". In:

Algebraic Informatics, CAI 2019, Lecture Notes in Computer Science, vol 11545. Springer

Cham 2010, pp. 64, 75.

Proposition

The optimal scalar complexity $\mu^{s,o}(\mathcal{U}^{F,n}_{D,Q,\mathcal{P}})$ of $\mathcal{U}^{F,n}_{D,Q,\mathcal{P}}$ is reached for the set $\{\mathcal{B}_{D,max},\mathcal{B}_Q\}$ such that $\mathcal{B}_{D,max}$ is the basis of $\mathcal{L}(D)$ satisfying

$$N_{zero}(T_{D,max}) = \max_{\sigma \in GL_{\mathbb{F}_q}(n)} N_{zero}(T_{\sigma(D)})$$

where

- $\sigma(D)$ denotes the action of σ on \mathfrak{B}_D in $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$,
- $T_{D,max}$ is the matrix of $Ev_{\mathbb{P}}|_{\mathcal{L}(D)}$ equipped with the bases $\mathfrak{B}_{D,max}$ and $\mathfrak{B}_{Q} = Ev_{Q}(\mathfrak{B}_{D,max})$.

In particular,

$$\begin{split} \mu^{s,o}(\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}) &= \min_{\sigma \in GL_{\mathbb{F}_q}(n)} \{ \mu_q^s(\mathcal{U}_{\sigma(D),Q,\mathcal{P}}^{F,n} \mid \sigma(\mathcal{B}_D) \text{ is the basis of } \mathcal{L}(D) \\ &\quad \text{and } \mathcal{B}_Q = Ev_Q(\mathcal{B}_D) \} \end{split}$$

$$= 3n(2n+g-1) - (2N_{Zero}(T_{D,max}) + N_{Zero}(T_{2D,n}^{-1})), \end{split}$$

where C and T_{2D} are defined with respect to $\mathfrak{B}_Q = Ev_Q(\mathfrak{B}_{D,max})$, and $\mathfrak{B}_{2D} = \mathfrak{B}_{D,max} \cup \mathfrak{B}_D^c$ with \mathfrak{B}_D^c a basis of the kernel of $E_Q|_{\mathfrak{L}(2D)}$.

Setup algorithm for the scalar complexity optimization

Algorithm 3 First setup algorithm for the scalar complexity optimization⁴

INPUT: F/\mathbb{F}_q , $Q, D, \mathcal{P} = \{P_1, \dots, P_{2n+g-1}\}$. **OUTPUT:** $\mathcal{B}_{2D} = \mathcal{B}_D \cup \mathcal{B}_D^c$, T_{2D} and $T_{2D,n}^{-1}$.

- (i) Check the function field F/\mathbb{F}_q , the place Q, the divisor D are such that Conditions (i) and (ii) in Theorem 2 are satisfied.
- (ii) Construct a basis $\mathcal{B}_D^c := (f_{n+1}, ..., f_{2n+g-1})$ of the complementary space $\mathcal{M} := Ker E_Q|_{\mathcal{L}(2D)}$ of $\mathcal{L}(D)$ in $\mathcal{L}(2D)$.
- (iii) Go through the set of bases \mathcal{B}_D of $\mathcal{L}(D)$. to compute T_{2D} and $T_{2D,n}^{-1}$ in the basis $\mathcal{B}_{2D} = \mathcal{B}_D \cup \mathcal{B}_D^c$.
- (iv) Choose a basis $\mathcal{B}_D := (f_1, \ldots, f_n)$ such that N_z be the largest.
- (v) Set $\mathcal{B}_Q := E v_Q(\mathcal{B}_D)$.

Algebraic Informatics, CAI 2019, Lecture Notes in Computer Science, vol 11545. Springer Cham, 2019, pp. 64–75.

⁴Stéphane Ballet, Alexis Bonnecaze, and Thanh-Hung Dang. "On the Scalar Complexity of Chudnovsky² Multiplication Algorithm in Finite Fields". In:

AG code & CCMA

Recall the definition of algebraic geometry code (Goppa code) given by V.D. Goppa. Let

- F/\mathbb{F}_q be an algebraic function field of genus g,
- P_1 , ..., P_N are pairwise distinct places of F/\mathbb{F}_q of degree one,
- $-G=P_1+\cdots+P_N,$
- D are divisors of F/\mathbb{F}_q such that $suppP \cap suppD = \emptyset$.

The AG code $C_{\mathcal{L}}(G, D)$ associated with the divisors G and D is defined as

$$C_{\mathcal{L}}(G,D) := \{ (f(P_1), ..., f(P_N)) | f \in \mathcal{L}(D) \} \subseteq \mathbb{F}_q^N.$$

Then $C_{\mathcal{L}}(G, D)$ is an [N, k, d] code with parameters: dimension $k = \dim \mathcal{L}(D) - \dim \mathcal{L}(D - G)$ and minimum distance d of the lower bound $(N - \deg D)$.

If $\{f_1, ..., f_n\}$ is a basis of $\mathcal{L}(D)$, the matrix

$$M := \begin{pmatrix} f_1(P_1) & \cdots & f_1(P_N) \\ f_2(P_1) & \cdots & f_2(P_N) \\ \vdots & \vdots & \vdots \\ f_n(P_1) & \cdots & f_n(P_N) \end{pmatrix}$$

is a generator matrix for $C_{\mathcal{L}}(G, D)$.

In our construction of CCMA,

 $Ev_{\mathbb{P}}(\mathcal{L}(D))$ is an algebraic geometry code $C_{\mathcal{L}}(G,D)=[N,n,d]$.

Upper-bound of $N_{zero}(T_D)$

We observe that

$$T_D = M^t$$

We have

$$N_{zero}(T_D) = n \cdot N - N_{nz}(T_D),$$

where $N_{nz}(T_D)$ denotes the number of non-zero entries of T_D .

We see that

$$N_{nz}(T_D) \geqslant n \cdot d$$
.

Since $d \ge N - \deg D$, we have

$$N_{nz}(T_D) \geqslant n(N - \deg D).$$

Thus,

$$N_{zero}(T_D) \leqslant n \cdot \deg D$$
.

Upper-bound of $N_{zero}(T_D)$

If N = 2n + g - 1, in practical construction, we take the divisor D as a place of degree n + g - 1, then the upper bound of $N_{zero}(T_D)$ is n(n + g - 1).

Remark 1

- (i) this upper-bound depends on deg D, not depend on the choice of a divisor among all effective divisors D such that D − Q non-special.
- (ii) $N_{zero}(T_{2D,n}^{-1}) \leq \ref{eq:condition} < n(2n+g-1)$. An intuitive idea: $T_{2D,n}^{-1} \iff$ a certain "algebraic code" ?

Theorem⁵

Let $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$ be a Chudnovsky² multiplication algorithm in a finite field \mathbb{F}_{q^n} such that D is an effective divisor, D-Q is non-special divisor of degree g-1, $|\mathcal{P}|=\dim(\mathcal{L}(2D))=2n+g-1$. Then

$$\mu_q^s(\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}) > n(2n-3g+3).$$

⁵Thanh-Hung Dang, Stéphane Ballet, and Alexis Bonnecaze. "A note on improving scalar complexity of Chudnovsky² multiplication algorithm in finite fields". Submitted. 2020.

Improved setup algorithm for the scalar complexity optimization of CCMA

Based on upper-bound of $N_{zero}(T_D)$, we propose an efficient setup algorithm to improve the scalar complexity of CCMA

Algorithm 4 Second setup algorithm for an efficient optimization of scalar complexity

```
INPUT: F/\mathbb{F}_q, Q, D, \mathfrak{P} = \{P_1, \dots, P_{2n+g-1}\}.

OUTPUT: \mathfrak{B}_{2D} = \mathfrak{B}_D \cup \mathfrak{B}_D^c, T_D and T_{2D,n}^{-1}.
```

- (i) Check that the function field F/\mathbb{F}_q the place Q, the divisor D such that Conditions (i) and (ii) in Theorem 2 are satisfied.
- (ii) Construct a basis $\mathcal{B}_D^c := (f_{n+1}, ..., f_{2n+g-1})$ of the complementary space $Ker E_Q|_{\mathcal{L}(2D)}$ of $\mathcal{L}(D)$ in $\mathcal{L}(2D)$.
- (iii) Go through the set S of bases \mathcal{B}_D of $\mathcal{L}(D)$, set $mB_D := \{\mathcal{B}_D \in S \mid N_{zero}(T_D) = \frac{n(n+q-1)}{n}\}$.
- (iv) Search in mB_D a basis $opt\mathcal{B}_D := (f_1, \ldots, f_n)$ such that $N_{zero}(T_{2D,n}^{-1})$ (with respect to $\mathcal{B}_{2D} := opt\mathcal{B}_D \cup \mathcal{B}_D^c$) be the largest.
- (v) Set $\mathcal{B}_Q := Ev_Q(opt\mathcal{B}_D)$.

Other strategies of scalar complexity optimization of CCMA

Optimization strategies based on variations of appropriate triplet (D, Q, P)

- fixed D, Q, we vary \mathcal{P}
- fixed Q, P, we vary D
- fixed D, \mathcal{P} , we vary Q
- we vary D, Q. Fix the set \mathcal{P} in F/\mathbb{F}_q associated to \mathscr{C}/\mathbb{F}_q
- (i) First case: for a specific subcase that $\mathfrak{P}' = \pi(\mathfrak{P})$ for $\pi \in S_N$ -the symmetric group of order N.

Proposition⁶

Let us consider an algorithm $\mathcal{U}_{D,Q,\mathcal{P}}^{F,n}$ such that D is an effective divisor, D-Q a non-special divisor of degree g-1, and $|\mathcal{P}|=\dim\mathcal{L}(2D)=N$. For any π in S_N where S_N is the symmetric group on the set $\{1,2,...,N\}$, then the quantities $N_{zero}(T_D)$ and $N_{zero}(T_{2D,n}^{-1})$ are constants under the action π .

⁶Thanh-Hung Dang, Stéphane Ballet, and Alexis Bonnecaze. "A note on improving scalar complexity of Chudnovsky² multiplication algorithm in finite fields". Submitted. 2020.

Perspective

(ii) Second case, fixed
$$Q$$
 and $\mathcal{P} = \{P_1, ..., P_{2n+g-1}\}$ of F/\mathbb{F}_q

Question: Is it possible to take an effective divisor *D* satisfying:

- $n + g 1 < \deg D < 2n + g 1$,
- $supp D \cap \{Q, P_1, ..., P_{2n+g-1}\} = \emptyset$,
- D-Q is non-special

instead of choosing the divisor D as a place of degree n+g-1 in F/\mathbb{F}_q ?

If so, then the scalar complexity of CCMA will be reduced significantly.

Optimization of scalar complexity of the elliptic CCMA

Experiment of Baum-Shokrollahi over an elliptic function field

Consider the multiplication in \mathbb{F}_{256} over $\mathbb{F}_4 = \mathbb{F}_2(\omega)$ (q = 4 and n = 4) using the maximal elliptic curve $(\mathscr{C}): y^2 + y = x^3 + 1$.

Let function field F/\mathbb{F}_4 associated to \mathscr{C} over \mathbb{F}_4 .

Then

$$N_1(\mathsf{F}) = q + 1 + 2gq^{\frac{1}{2}} = 9.$$

Check the conditions of Theorem 2 for using the algorithm of CCMA on F/\mathbb{F}_4 to multiply in \mathbb{F}_{4^4} :

•
$$N_n > 0$$
 $\left(\Leftarrow 2g + 1 \leqslant q^{\frac{n-1}{2}} (q^{\frac{1}{2}} - 1) \right)$

•
$$N_1 \ge 2n + 2g - 1 \iff n \le \frac{1}{2}(N_1 - 2g + 1)$$

Consequence: the multiplication in the extension of degree n=4 of \mathbb{F}_4 is possible with the curve \mathscr{C}/\mathbb{F}_4 .

We obtain

$$\mu_q^b(\mathscr{C}/\mathbb{F}_4) = 2n + g - 1 = 8$$
 (optimal)

Applying Algorithm 4 and using computations in Magma, we gave an improved basis $\mathcal{B}_{2D} = (f_1, f_2, ..., f_8)$ of $\mathcal{L}(2D)$, where

$$\begin{split} f_1 &= \frac{y + \omega x + \omega^2}{x^2 + x + \omega}, \\ f_2 &= \frac{y + \omega^2 x + \omega}{x^2 + x + \omega}, \\ f_3 &= \frac{\omega x^2 + \omega^2 x}{x^2 + x + \omega}, \\ f_4 &= \frac{\omega y}{x^2 + x + \omega}, \\ f_5 &= \frac{(\omega x^2 + \omega x)y + \omega^2 x^4 + \omega x^3 + x^2 + x + \omega}{x^4 + x^2 + \omega^2}, \\ f_6 &= \frac{\omega^2 x^2 y + \omega x^4 + \omega x^3 + x^2 + \omega x}{x^4 + x^2 + \omega^2}, \\ f_7 &= \frac{(x^2 + \omega^2 x)y + \omega x^4 + \omega x^2}{x^4 + x^2 + \omega^2}, \\ f_8 &= \frac{(\omega x + \omega)y + \omega x^4}{x^4 + x^2 + \omega^2}. \end{split}$$

Matrices in CCMA of kernel-type construction

$$T_{2D} = \begin{pmatrix} 0 & 0 & \omega & 0 & \omega^2 & \omega & \omega & \omega \\ \omega^2 & 0 & 0 & \omega & \omega^2 & 0 & 0 & 1 \\ 0 & \omega^2 & 0 & \omega^2 & \omega^2 & 0 & 0 & \omega \\ \omega^2 & \omega^2 & \omega^2 & 0 & 1 & 1 & 0 & \omega^2 \\ 0 & 0 & \omega^2 & 1 & 1 & 0 & \omega^2 & \omega^2 \\ 0 & 1 & 0 & 0 & 0 & \omega^2 & 1 & \omega \\ \omega & \omega^2 & 0 & \omega^2 & 1 & \omega & 0 & 1 \\ \omega^2 & 0 & \omega & 0 & \omega & 0 & 1 & \omega^2 \end{pmatrix}$$

and

$$T_{2D,4}^{-1} = \begin{pmatrix} 1 & 0 & 0 & \omega^2 & \omega & 0 & \omega^2 & \omega^2 \\ 1 & 1 & \omega^2 & 0 & 0 & \omega^2 & 0 & 1 \\ 0 & 1 & \omega & 1 & \omega^2 & \omega & 0 & 0 \\ \omega^2 & \omega & \omega^2 & 0 & \omega & 0 & \omega^2 & 0 \end{pmatrix}$$

Comparison

Compare to the result of using Baum-Shokrollahi's construction⁷

Method	$N_{zero}(T_D)$	$N_{zero}(T_{2D,4}^{-1})$	Nz	Ns
Baum-Shokrollahi	10	5	25	71
Our construction	16	12	44	52

$$(maxN_{zero}(T_D) = n(n+g-1) = 16)$$

We have a gain of 27% over Baum and Shokrollahi's method.

⁷Ulrich Baum and Amin Shokrollahi. "An optimal algorithm for multiplication in $\mathbb{F}_{256}/\mathbb{F}_4$ ". In: Applicable Algebra in Engineering, Communication and Computing 2.1 (1991), pp. 15-20.

A comparison of complexities for the different methods

Complexity Method	$m_4^b(4)$	$m_4^s(4)$	a ₄ (4)	$M_4(4)$
Polynomial basis mult. (e.g. Karatsuba)	27	_	76	103
Baum-Shokrollahi's construction		71	51	130
Kernel-type construction of CCMA ^(*)	8	7 1	31	130
Kernel-type construction of CCMA ^(**)	8	78	58	144
Our construction	8	52	32	92

(*): using the canonical basis \mathcal{B}_Q^c of F_Q , (**): using the normal basis \mathcal{B}_Q^n of F_Q .

Scalar complexity/total complexity of our proposed construction is really better than other methods in case study $\mathbb{F}_{256}/\mathbb{F}_4$.

"We are the Champions!!"

