WNV NS3

Model	Log L	# p	dN/dS	LRT	p-value
Null	-7745.48	49	1		
Alternative	-6413.5	50	0.009 [0.007-0.011]	2512.6	~0

HIV-1 env

	Very strongly conserved					
Model	Log L	# p	dN/dS	LRT	p-value	

Model Log L # p dN/dS LRT p-value Null -2078.3 40 1 Alternative -2078.2 41 1.122 [0.94-1.33] 0.33 ~0.6

Not significantly different from neutral

SARS-CoV-2 spike

Model	Log L	# p	dN/dS	LRT	p-value
Null	-9311.0	176	1		
Alternative	-9292.0	177	0.54 [0.48-0.61]	37.94	~0

Very strongly conserved

Mean gene-wide dN/dS estimates

 Are not the way to go, <u>except</u> when you have very small (2-3 sequence) datasets

For example:

- The humoral arm of the immune system mounts a potent defense against viral infections
- Existing successful vaccines are based on raising a neutralizing antibody (nAb) response to the pathogen
- No simple host genetic basis (epitopes) of the specificity of neutralizing antibody responses is known
- Need to measure these responses