Pumping Lemma

Definition Reguläre Sprache

Sei X ein Alphabet und L eine Sprache über X.

L heißt reguläre Sprache genau dann wenn es einen endlichen Automaten A (NEA oder DEA) gibt, mit L(A) = L.

Pumping - Lemma

Sei L eine reguläre Sprache über einem Alphabet X. Es gibt ein $n \in \mathbb{N}$, so dass für alle $x \in L$ mit $|x| \ge n$ gilt: Es gibt eine Zerlegung x = uvw mit $u, v, w \in X^*$ und:

- a) x = uvw
- b) $|uv| \le n$ oder $|vw| \le n$
- c) $|v| \ge 1$
- d) $uv^i w \in L \ \forall i \in \mathbb{N}_0$

Es gilt also:

L ist eine reguläre Sprache \Rightarrow Bei L gilt das Pumping-Lemma

Durch negation der Aussage bekommen wir eine äquivalente Aussage:

Bei L gilt das Pumping-Lemma NICHT \Rightarrow L ist KEINE reguläre Sprache

Wie zeigt man, dass bei L das Pumping-Lemma nicht gilt? Folgende Schritte sind zu tun:

- 1) Sei $p \in \mathbb{N}$ beliebig. Einfach Abschreiben
- 2) Finde ein Wort x ∈ L mit |x| ≥ p. Hier ist die Schwierigkeit das x so zu wählen, dass hinterher das v aus den Buchstaben bestehen muss, die das x aus der Sprache pumpen Wir wissen vom pumpbaren Anteil v nicht wie lange er ist und nicht wo er genau im Wort ist. Wir wissen nur er ist in den ersten p Buchstaben. Deshalb ist es oft günstig das Wort so zu wählen, dass die ersten p Buchstaben gleich sind.
- 3) Zerlege x in x = uvw mit $|uv| \le p$ und $|v| \ge 1$. Einfach Abschreiben

- 4) Bestimme aus welchen Buchstaben u,v,w bestehen.

 Da nicht klar ist wie lang das u,v,w genau ist, werden meist für die Längen von u,v,w neue Variablen eingeführt
- 5) Bestimme $x_i = uv^i w$ mit den Buchstaben von 4). Einfach Abschreiben nur u,v,w ersetzen mit dem was man von 4ten hat.
- 6) Wähle i so, dass x_i nicht mehr in der Sprache L ist. Kurz überlegen welche Wörter in der Sprache sind und welche nicht und dann meist i sehr groß oder gleich 0 wählen.
- 7) Begründung warum x_i nicht in der Sprache ist. x_i vergleichen mit der Definition der Sprache
- 8) \Rightarrow L ist nicht regulär Profit

Aufgabe 1

Zeige, dass die Sprache nicht regulär ist.

a)
$$L = \{a^n b^m a^n \mid n, m \in \mathbb{N}\}$$

b)
$$L = \{a^{2n}b^n \mid n \in \mathbb{N}\}$$

c)
$$L = \{a^m b^n \mid n, m \in \mathbb{N}, m < n\}$$

d)
$$L = \{a^m b^n \mid n, m \in \mathbb{N}, m > n\}$$

e)
$$L = \{a^m b^n c^i \mid n, m, i \in \mathbb{N}, m + n < i\}$$

f)
$$L = \{a^m b^n c^i \mid n, m, i \in \mathbb{N}, m + i < n\}$$

Aufgabe Klausuraufgaben

Zeige, dass die Sprache nicht regulär ist.

a)
$$L = \{x^p y x^k y \mid p, k \in \mathbb{N}, k > p\}$$

(Angelehnt an SoSe17)

b)
$$L = \{xy^i z^k \mid i, k \in \mathbb{N}, i \ge k\}$$

(Angelehnt an SoSe20)

c)
$$L = \{ab^n au \mid n \in \mathbb{N}, u \in \{c, d\}^*, |u| \le n + 1\}$$

(Angelehnt an WS19/20)

d)
$$L = \{x^i y^j x^k \mid i \in \mathbb{N}_0 j, k \in \mathbb{N}, j < k\}$$

(Angelehnt an SoSe2020 Probe)