Convert the following energy units: (a) 200 cal to Kcal (b) 7000 J to cal Show work to get full credit

2. ♥ STUDY CHECK

Convert 200°C to K. Show work to get full credit

3. ♥ STUDY CHECK

How many calories are absorbed by 100g of Gold ($c_e = 0.0308 \frac{cal}{g^{\circ}C}$) if its temperature rises from 25°C to 100°C.

Show work to get full credit

4. ♥ STUDY CHECK

When a hot balloon deflates, it receives $10^7 J$ of work from the external atmosphere and its temperature change from $90^{\circ}C$ to $25^{\circ}C$. Given that the air initially contained in the balloon has a mass of $3 \times 10^5 g$ and a specific heat of $1J/g^{\circ}C$. Calculate the internal energy of the hot ballon. Show work to get full credit

/ – Page 2 of – <u>Name:</u>

5. ♥ STUDY CHECK

We mix 2.5mL of NaOH 0.5M with 2.5mL of HCl 0.5M both at 25°C in a constant-pressure calorimeter. The heat of reaction is -40KJ/mol. Calculate the final temperature inside the calorimeter, if the solution density is 1g/mL and the specific heat of the solution is 4.184J/g°C. Show work to get full credit

6. ♥ STUDY CHECK

A 2 mol-sample of a chemical reacts in a constant-volume calorimeter with 20g of water and a heat capacity of $11KJ/^{\circ}C$. Calculate the heat of reaction knowing that the temperature of water inside the calorimeter rises $10^{\circ}C$.

Show work to get full credit

7. ♥ STUDY CHECK

Using the enthalpy tables at the end of the chapter, locate the enthalpy values for: $I_{2(aq)}$, $F_{2(g)}$ and $C_{diamond(s)}$.

Show work to get full credit

8. ♥ STUDY CHECK

Calculate the number of hydrogen moles needed to generate -200KJ. Show work to get full credit

Calculate the enthalpy for this reaction:

$$CS_{2(1)} + 3 O_{2(g)} \longrightarrow CO_{2(g)} + 2 SO_{2(g)}$$

Given the following thermochemical equations:

$$\begin{array}{cccc} C_{(s)} + O_{2(g)} & \longrightarrow & CO_{2(g)} \\ S_{(s)} + O_{2(g)} & \longrightarrow & SO_{2(g)} \\ C_{(s)} + 2 S_{(s)} & \longrightarrow & CS_{2(l)} \end{array} \qquad \begin{array}{c} \Delta H_1 = -393.5 KJ \\ \Delta H_2 = -296.8 KJ \\ \Delta H_3 = 87.9 KJ \end{array}$$

Show work to get full credit

10. ♥ STUDY CHECK

Classify the following reactions as exothermic and endothermic:

$$C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} +$$

$$\Delta Q_r = -393.5kJ.$$

$$C_{(s)} + 2S_{(s)} + \stackrel{?}{\underline{\hspace{0.1cm}}} \longrightarrow CS_{2(l)}$$

$$\Delta Q_r = +87.9kJ.$$

$$S_{(s)} + O_{2(g)} \longrightarrow SO_{2(g)} +$$

$$\Delta Q_r = -296.8kJ.$$

Show work to get full credit

11. ♥ STUDY CHECK

Calculate: (a) the wavelength of radiation with energy of $5.6 \times 10^{-19} J$; (b) the frequency of a radiation with frequency of $4.8 \times 10^{-18} J$; (c) the wavelength of a radiation with frequency of $2 \times 10^{15} Hz$. Show work to get full credit

Indicate: (a) the color of a radiation with $\nu=7.5\times10^{14}$ Hz; (b) the type of a radiation with $\nu=10^8$ Hz. Show work to get full credit

13. ♥ STUDY CHECK

A metal with workfunction of 5eV is exposed to a radiation source with frequency of $9 \times 10^{14} Hz$. Indicate whether electrons will be ejected and if so, indicate the kinetic energy of these. Show work to get full credit

14. ♥ STUDY CHECK

Calculate the De Broglie wavelength of an electron at a velocity of 100m/s given that an electron mass is 9×10^{-31} kg. Show work to get full credit

15. ♥ STUDY CHECK

Indicate if the following combination of quantum numbers is allowed:	п	ℓ
	4	3
	4	3
	2	1

Show work to get full credit

/	− Page 5 of −	Name:	

The uncertainty on the position of a particle with a mass of $1.7 \times 10^{-27} \text{kg}$ is $\pm 10^{-11} \text{m}$. Calculate the uncertainty on the velocity of the particle.

Show work to get full credit

17. ♥ STUDY CHECK

At a given energy level you can fit 162 electrons. Identify the energy level. Show work to get full credit

18. ♥ STUDY CHECK

Obtain the abbreviated electronic configuration of Cobalt (Co, Z=27). Show work to get full credit

19. ♥ STUDY CHECK

Compare the following property for the given couple of elements: (a) Atomic radius of F and I. (b) Electronegativity of Cs and Na. Show work to get full credit

20. ♥ STUDY CHECK

Obtain the orbital diagram for Li given the electron configuration: $[He]2s^1$. Show work to get full credit