УП "Завод полупроводниковых приборов" НПО "Интеграл"

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

каталог

2007

Ваши предложения по совершенствованию содержания и формы представления информации просим направлять в отдел рекламы и информации, где они будут с благодарностью приняты, рассмотрены и учтены в последующих изданиях.

Наш адрес: НПО "Интеграл" пл. Казинца 1, к.313, Минск, 220108 Республика Беларусь Отдел рекламы и информации Тел. (+375 17) 212-11-20 Факс (+375 17) 278-16-22 Е-mail: dzumrek@integral.by http://www.integral.by

© 2006, 28 ноября НПО "ИНТЕГРАЛ", Республика Беларусь. Цеханович А.А.

Содержание

Ведение	6	Серия 133ХХХХ	16
Освоение микросхем специального назначения	7	Серия 1533ХХХХ	18
Интегральные микросхемы	8	Серия 1554ХХХХТБМ	22
Запоминающие устройства	8	Серия 1594ХХХХТ	25
Cepuя 541XXXX	8	Cepuя 5584XXXXT	28
1632PT1T	8	Полупроводниковые приборы	30
Серия 1635ХХХХ	9	Импульсные диоды	30
1644РС1ТБМ	9	Габаритные размеры корпусов	31
1835PE2T	9	4112.8-1.01	31
Микросхемы на стадии освоения	10	4116.8-3	32
Микропроцессоры и микроконтроллеры	10	401.14-5	33
Серия 1880ХХХХ (1830ВЕ31/51)	11	2102.14-10	34
5518АП1ТБМ	11	402.16-32/402.16-21	35
Микросхемы на стадии освоения	11	427.18-1.03/427.18-2.03	36
Интерфейсные и связные	13	2140.20-4	37
588BA2	13	4153.20-6	38
Cepuя 5102XXXT	13	405.24-2	39
5512ПП1Р/ТБМ	13	4118.24-1	40
Серия 5559ХХХТ	14	2121.28-6	41
Стандартные аналоговые	15	4119.28-6	42
Серия 1467ХХХХ	14	4119.28-11	43
Стандартная цифровая логика	16	4183.28-2	44

Содержание (продолжение)

2123.40-6	45	1880BE31/51 Р/У	158
429.42-1	46	1880BE71Y	174
H16.48-1B	47	5102AΠ1T	188
H18.64-3B	48	5102АП2Т	195
КД-3	49	5512ПП1Р/ТБМ	199
Технические спецификации	50	5518АП1ТБМ	211
Микросхемы	50	5559ИН1Т	223
1467CA1T	50	5559ИН2Т	234
1467CA2P	55	5559ИН3ТБМ	237
1467САЗТБМ	60	5559ИН5ТБП	244
1467СА4ТБМ	64	Серия 5584ххххТ	251
1467УД1Т	69	5584АПЗТ	254
1467УД2Р/Т	72	5584АП5Т	257
1473УД1Т	75	5584АП6Т	260
1632PT1T	78	5584ИД7Т	263
1635PT1Y	84	5584ИД14Т	268
1635РУ1Т	91	5584ИЕ7Т	272
1642РГ1Р/ТБМ	103	5584ИЕ10Т	280
1642РК1УБМ	118	5584ИР8Т	284
1644РС1ТБМ	139	5584ИР22Т	289
1835PE2T	150	5584ИР23Т	294

Содержание (продолжение)

5584ИР33Т	298
5584ИР35Т	302
5584КП11Т	307
5584ЛАЗТ	310
5584ЛЕ1Т	312
5584ЛИ1Т	314
5584ЛЛ1Т	316
5584ЛН1Т	318
5584ЛП5Т	320
5584ТЛ2Т	322
5584TM2T	324
5584TM9T	329
Полупроводниковые приборы	334
2Д510А	334
2Д522Б	336
Информация для связи	338
Дилерская сеть	339

ВВЕДЕНИЕ

Научно-производственное объединение "Интеграл" имеет 40-летний опыт в области разработки и производства микроэлектронных компонентов. В настоящее время в НПО "ИНТЕГРАЛ" входят четыре центра проектирования — Научно-технический центр "Белмикросистемы" (Минск), республиканское научно-производственное унитарное предприятие "СКБ Немига" (Минск), республиканское унитарное научно-исследовательское предприятие "Специальное конструкторское бюро "Запад" (Брест), специальное конструкторское бюро "Элмаш" (Минск) и шесть производственных республиканских унитарных предприятий: "Завод полупроводниковых приборов" (Минск), "Завод электронного машиностроения" (Минск), "Завод Транзистор" (Минск), "Завод "Электроника" (Минск), "Завод "Цветотрон" (Брест), "Завод "Камертон" (Пинск).

Уровень качества разработки и производства наших изделий подтвержден национальными и международными сертификатами ISO серии 9000.

Научно-производственное объединение "Интеграл" - крупнейшее предприятие по производству микроэлектронных компонентов в СНГ. Номенклатура выпускаемой продукции составляет около 2000 типов интегральных микросхем, 500 типов полупроводниковых приборов, 50 типов жидкокристаллических индикаторов и панелей, 150 видов товаров народного потребления, 60 наименований спецтехнологического оборудования. Изделия объединения нашли применение практически во всех отраслях народного хозяйства: вычислительной технике, системах информатики, теле- и радиотехнике, фототехнике, автомобильной электронике, авиационно-космической промышленности, медицине, спорте, быту.

НПО "Интеграл" входит в число предприятий Республики Беларусь, обеспечивающих поставку электрорадиоизделий военного назначения для нужд Вооружённых Сил Республики Беларусь и Вооружённых Сил Российской Федерации.

VП "Завод полупроводниковых приборов" аттестован 22 ЦНИИИ МО $P\Phi$ на производство микросхем специального назначения (заключение № CBC.01.424.0330.04 от 28.10.2004). На заводе серийно выпускается более 230 типов интегральных микросхем специального назначения.

Учитывая необходимость в проведении модернизации существующей и комплектования вновь разрабатываемой аппаратуры систем вооружений и военной техники современными интегральными микросхемами НПО "Интеграл" проводит НИОКР по разработке элементной базы для создания новых интегральных микросхем специального назначения, разрабатывает аналоги интегральных микросхем импортного производства.

Расширяя и обновляя микроэлектронную элементную базу и выпуская новые высокотехнологичные изделия собственной разработки, решая проблемы сохранения конкурентоспособности, выхода на новые рынки и получения международного признания, "ИНТЕГРАЛ" стремится удовлетворить возрастающие потребности как можно большего числа потребителей. Для этого "ИНТЕГРАЛ" делает все необходимое по активизации НИОКР, сокращению цикла разработки и производства новых изделий, совершенствованию их качества и надежности, поиску новых партнеров для взаимовыгодного сотрудничества.

Микросхемы ЗУ

Микроконтрол леры

Стандартные аналоговые ИС

1642РК1УБМ IDT7005LA-35

Двухпортовое CO3У 8Кх8, ф. Integrated Device Technology

Донор-65 СҮ7С1009

CO3Y 128Kx8 Cypress Semiconductor 1893BE1T AT90S2333

8-разрядный RISC МК с 10-разрядным АЦП и ЭСППЗУ, ф. Atmel

1473УД1Т ОУ, **ОР27**, Analog Devices, USA

1642PΓ1PБM IDT7205L-20

O3Y 8Kx9, FIFO, ф. Integrated Device Technology **Десерт-53** ЭПЗУ 64Кх8 Без прототипа

1880BE71Y TN87C51FA-3

8-разрядный МК с ОЗУ и ЭСППЗУ, Intel Сдача ОКР 2007

Интегральные микросхемы Запоминающие устройства

Серия 541ХХХ (4 типа)

Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 150 В.

Напряжение питания $5.0 \text{ B} \pm 10\%$.

Обозначение	Номер ТУ	Функциональное назначение	Корпус
541PT1	бКО.347.236ТУ3	Постоянное запоминающее устройство с возможностью однократного программирования 256х4.	402.16-21
541PT2	бКО.347.236-05ТУ	Постоянное запоминающее устройство с возможностью однократного программирования 2048x8.	405.24-2

Диапазон рабочих температур -45°÷+85°С.

Обозначение	Номер ТУ	Функциональное назначение	Корпус
541РУ1	бКО.347.236ТУ1	Оперативное запоминающее устройство статическое 4096х1.	427.18-2.03
541РУ2	бКО.347.236ТУ2	Оперативное запоминающее устройство статическое 1024х4.	427.18-2.03

1632PT1T

Диапазон рабочих температур -60°÷+85°С.

Допустимое значение потенциала статического электричества 1000 В.

Напряжение питания $5.0 \text{ B} \pm 10\%$.

Обозначение	Номер ТУ	Функциональное назначение	Корпус
1632PT1T	АЕЯР.431210.267 ТУ	Постоянное запоминающее устройство с возможностью однократного программирования (ППЗУ) информационной емкостью 256 К и организацией 32768 × 8 разрядов	4119.28-6

Интегральные микросхемы Запоминающие устройства

Серия 1635ХХХХ (2 типа)

Диапазон рабочих температур -60°÷+125°С

Допустимое значение потенциала статического электричества 1000 В.

Напряжение питания $5.0 \text{ B} \pm 10\%$.

Обозначение	Номер ТУ	Функциональное назначение	Корпус
1635РУ1Т	АЕЯР.431220.344 ТУ	Оперативное запоминающее устройство статическое (32K × 8)	4183.28-2

Допустимое значение потенциала статического электричества 1000 В. Диапазон рабочих температур -60°÷+85°С

Обозначение	Номер ТУ	Функциональное назначение	Корпус
1635РТ1У	АЕЯР.431210.345 ТУ	Постоянное запоминающее устройство емкостью 32×8 бит с возможностью однократного программирования	H16.48-1B

1644РС1ТБМ

Диапазон рабочих температур -60°÷+85°С.

Допустимое значение потенциала статического электричества 1000 В.

Напряжение питания $5.0 \text{ B} \pm 10\%$.

Обозначение	Номер ТУ	Функциональное назначение	Корпус
1644РС1ТБМ	АЕЯР.431210.448 ТУ	ПЗУ с возможностью многократного электрического перепрограммирования с последовательным вводом/выводом информации (8К x 8)	4153.20-6

1835PE2T

Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 1000 В.

Напряжение питания $5.0 \text{ B} \pm 10\%$.

Обозначение	Номер ТУ	Функциональное назначение	Корпус
1835PE2T	АЕЯР.431210.215 ТУ	Масочное ПЗУ ёмкостью 1 Мбит с организацией 128Кх8	4119.28-6

Интегральные микросхемы Запоминающие устройства

Микросхемы на стадии освоения

Серия 1642ХХХХ (2 типа)

Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 2000 В. Напряжение питания $5.0 \text{ B} \pm 10\%$.

Обозначение	Номер ТУ	Функциональное назначение	Корпус
1642РГ1РБМ 1642РГ1ТБМ	АЕЯР.431220.408 ТУ	Оперативное запоминающее устройство (ОЗУ) емкостью 72К (8Кх9) с двух портовыми буферами памяти, с внутренними указателями,	2121.28-6
		загружающими и выгружающими по принципу первый вошел – первый вышел.	4183.28-2
1642РК1УБМ	АЕЯР.431220.407 ТУ	Двухпортовое статическое ОЗУ емкостью 64К (8Кх8) с двумя независимыми портами с раздельным управлением, адресом и выводами вход/выход	H18.64-3B

Наименование	Основные технические характеристики, параметры разрабатываемых микросхем	Срок освоения	Корпус	Тема ОКР
O3У 128Кх8 (прототип CY7C1009 ф. Cypress Semiconductor)	Температурный диапазон -60÷+125°C, СВВФ – 2У, Та=80нс	2007		''Донор-65''
ЭПЗУ	Постоянное запоминающее устройство емкостью 64К×8 бит с возможностью однократного программирования Температурный диапазон - 60÷+125°C, СВВФ – 2У, Та=80нс	2007	H18.64-3B	''Десерт-53''

Интегральные микросхемы Микропроцессоры и микроконтроллеры

Серия 1880ХХХХ (2 типа)

Диапазон рабочих температур - 60° ÷+ 125° С. Напряжение питания 5,0 В ± 10%.

Устойчивый к СВВФ аналог 1830ВЕ31/51 производства г. Воронеж

Допустимое значение потенциала статического электричества 500 В.

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1880BE31P	1830BE31,	АЕЯР.431280.202 ТУ	Восьмиразрядная ОЭВМ без ПЗУ.	2123.40-6
1880BE31Y	80C31		восьмиразрядная ОЭВМ ост 1133.	H16.48-1B
1880BE51P-XXX	1830BE51,	АЕЯР.431280.202 ТУ	Door surmoon graves OODM a secondary of HOV	2123.40-6
1880BE51У-XXX	80C51		Восьмиразрядная ОЭВМ с масочным ПЗУ.	H16.48-1B

5518АП1ТБМ

Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 1000 В.

Напряжение питания 1,2-5,5 В.

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
5518АП1ТБМ	AD705	АЕЯР.431310.437 ТУ	Супервизор питания	4112.8-1.01

Микросхемы на стадии освоения

Наименование	Основные технические характеристики, параметры разрабатываемых микросхем	Срок освоения	Корпус	Тема ОКР
1880BE71У однокристальная микро-ЭВМ с электрически программируемым ПЗУ (прототип TN87C51FA-3 ф. Intel)	Напряжение питания 5 В ± 10%. ЭСППЗУ 8Кх8. ОЗУ 256х8. Тактовая частота 16 МГц. Система команд 80С51. Температурный диапазон -60÷+125°C; СВВФ-1У, АЕЯР.431280.335 ТУ	2007	H16.48-1B	''Делегат-12''

Интегральные микросхемы Микропроцессоры и микроконтроллеры

Микросхемы на стадии освоения (продолжение)

Наименование	Основные технические характеристики, параметры разрабатываемых микросхем	Срок освоения	Корпус	Тема ОКР
1893ВЕ1Т 8-разрядный микроконтроллер с RISC- архитектурой с 10- разрядным АЦП и ЭСППЗУ (прототип AT90S2333 ф. Atmel)	память ЭСППЗУ (128х8 бит), -память программ (2Кх8 бит, FLASH - ЭСППЗУ), -память СОЗУ (128х8 бит), -таймеры/счетчики, -сторожевой таймер (WDT), аналоговый компаратор, -АЦП, -АЛУ, -УАПП (универсальный асинхронный последовательный порт) -схема слежения за питанием, %. Температурный диапазон -60÷+85°C, АЕЯР.431280.410 ТУ	2007	4119.28-11	''Декрет-65''

Интегральные микросхемы Интерфейсные и связные

588BA2	Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 100 B. Напряжение питания $5,0 \text{ B} \pm 10\%$.

Обозначение	Номер ТУ	Функциональное назначение	Корпус
588BA2	бКО.347.367-10ТУ	Приёмо-передатчик для сопряжения с трансформаторной магистралью, два канала обмена.	427.18-1.03

Серия 5102ХХХТ (2 типа)

Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 1000 B. Напряжение питания $5.0 \text{ B} \pm 5\%$.

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
5102AΠ1T	отсутствует	АЕЯР.431310.242 ТУ	Четыре приемника	402.16-32
5102АП2Т	отсутствует	АЕЯР.431310.242 ТУ	Четыре передатчика	402.16-32

5512ПП1 Диапазон рабочих температур -60°÷+85°С.

Допустимое значение потенциала статического электричества 2000 В. Напряжение питания $5.0~\mathrm{B} \pm 5\%$.

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
5512ПП1РБМ	MC145567	1 E GD 101000 071 EYY	Импульсно-кодовый модулятор – кодер-фильтр-декодер (ИКМ-	2140.20-4
5512ПП1ТБМ	1.101.000,		кофидек) для преобразования речевого сигнала в цифровую форму и обратно	4153.20-6

Интегральные микросхемы Интерфейсные и связные

Серия 5559ХХХХ (4 типа)

Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 2000 В.

Напряжение питания $5.0 \text{ B} \pm 5\%$.

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
5559ИН1Т	MAX232	АЕЯР.431230.283 ТУ	Интерфейсный приемопередатчик последовательных данных стандартов EIA/TIA-232E и CCITT V.28 с одним напряжением питания	402.16-32
5559ИН2Т	MAX485	АЕЯР.431230.284 ТУ	Интерфейсный приемопередатчик последовательных данных стандартов RS-485, RS-422	4112.8-1.01
5559ИН3ТБМ	MAX483	АЕЯР.431230.466 ТУ	Интерфейсный приемопередатчик последовательных данных стандартов RS-485/422	4112.8-1.01
5559ИН5ТБП	MAX488	АЕЯР.431230.479 ТУ	Интерфейсный приемопередатчик последовательных данных стандарта RS-422	4112.8-1.01

Интегральные микросхемы Стандартные аналоговые

Серия 1467ХХХХ (7 типов)

Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 200 В.

Напряжение питания 5,0 \div 30,0 или \pm (2.5 \div 15) В

4,5÷5,5 В для СА3, СА4.

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1467CA1T	LM193	АЕЯР.431000.257-04 ТУ	Компаратор напряжения двухканальный	4112.8-1.01
1467CA2P	LM139	АЕЯР.431000.257-04 ТУ	Компаратор напряжения четырехканальный	201.14-10
1467САЗТБМ	MAX908	АЕЯР.431000.257-02 ТУ	Компаратор напряжения четырехканальный	401.14-5
1467СА4ТБМ	MAX909ESA	АЕЯР.431000.257-03 ТУ	Компаратор напряжения одноканальный	4112.8-1.01
1467УД1Т	LM158	АЕЯР.431000.257-01 ТУ	Операционный усилитель двухканальный	4112.8-1.01
1467УД2Р	LM124	АЕЯР.431000.257-01 ТУ	On anavyroviny vi volunitany, voty may rovo vo vy vi	201.14-10
1467УД2Т	LIVI I 24	АЕЛГ.451000.257-01 ТУ	Операционный усилитель четырехканальный	401.14-5

Микросхемы на стадии освоения

1473УД1Т(1)

Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 200 В. Напряжение питания ± 15.0 В $\pm 2\%$.

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1473УД1Т	OP27A	AEGD 421120 206 TV	Maranna anni anni anni anni anni anni ann	4116.8-3
1473УД1Т1		Р27А АЕЯР.431130.306 ТУ Малошумящий прецизионный операционный усилитель	4112.8-1.01	

Серия 133ХХХХ (31 тип)

Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 200 В.

Напряжение питания $5.0 \text{ B} \pm 10\%$.

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
133АГ3	SN54123	дР/И63.088.023ТУ58	Сдвоенный одновибратор с повторным запуском.	402.16-32
133ИД1	SN54141	дР/И63.088.023ТУ28	Двоично-десятичный дешифратор с высоковольтным выходом.	402.16-32
133ИД3	SN54154	дР/И63.088.023ТУ33	Дешифратор 4 на 16.	405.24-2
133ИД4	SN54155	дР/И63.088.023ТУ32	Сдвоенный дешифратор мультиплексор 2-4.	402.16-32
133ИД10	SN54145	дР/И63.088.023ТУ62	Двоично-десятичный дешифратор.	402.16-32
133ИП2	SN54180	дР/И63.088.023ТУ38	Восьмиразрядная схема контроля чётности и нечётности.	401.14-5
133ИП3	SN54181	дР/И63.088.023ТУ35	Арифметическо-логическое устройство.	405.24-2
133ИП4	SN54182	дР/И63.088.023ТУ38	Блок ускоренного переноса для арифметического узла.	402.16-32
133ИР13	SN54198	дР/И63.088.023ТУ46	Восьмиразрядный реверсивный сдвиговый регистр.	405.24-2
133ИР17	Am2504	дР/И63.088.023ТУ61	Двенадцатиразрядный регистр последовательного приближения.	405.24-2
133КП1	SN54150	дР/И63.088.023ТУ30	Селектор-мультиплексор данных на шестнадцать каналов со стробированием.	405.24-2
133КП2	SN54153	дР/И63.088.023ТУ32	Сдвоенный селектор мультиплексор 4-1.	402.16-32
133КП5	SN54152	дР/И63.088.023ТУ31	Мультиплексор восемь каналов на один без стробирования.	401.14-5
133КП7	SN54151	дР/И63.088.023ТУ18	Селектор-мультиплексор на 8 каналов со стробированием.	402.16-32
133ЛА1	SN5420	И6/И63.088.023ТУ7	Два логических элемента "4И-НЕ", один расширяемый по "ИЛИ".	401.14-5
133ЛА2	SN5430	И6/И63.088.023ТУ7	Логический элемент "8И-НЕ".	401.14-5
133ЛА3	SN5400	И6/И63.088.023ТУ7	Четыре логических элемента "2И-НЕ".	401.14-5
133ЛА4	SN5410	И6/И63.088.023ТУ7	Три логических элемента "ЗИ-НЕ".	401.14-5
133ЛА6	SN5440	И6/И63.088.023ТУ7	Два логических элемента "4И-НЕ" с большим коэффициентом разветвления по выходу.	401.14-5
133ЛА7	SN5422	И6/И63.088.023ТУ7	Две четырёхвходовые схемы "И-НЕ" с открытым коллекторным выходом и повышенной нагрузочной способностью (элементы индикации).	401.14-5

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
133ЛА8	SN5401	И6/И63.088.023ТУ7	Четыре двухвходовые схемы "И-НЕ" с открытым коллекторным выходом (элементы контроля).	401.14-5
133ЛА15	отсутствует	дР/И63.088.023ТУ40	Элемент сопряжения МОП ЗУ-ТТЛ (четыре логических элемента "2И-НЕ").	401.14-5
133ЛД1	SN5460	И6/И63.088.023ТУ7	Два четырёхвходовых логических расширителя по "ИЛИ".	401.14-5
133ЛД3	отсутствует	И6/И63.088.023ТУ7	Восьмивходовый расширитель по "ИЛИ".	401.14-5
133ЛП5	SN5486	дР/И63.088.023ТУ31	Четыре двухвходовых логических элемента "Исключающее ИЛИ".	401.14-5
133ЛР1	SN5450	И6/И63.088.023ТУ7	Два логических элемента "2-2И-2ИЛИ-НЕ", один расширяемый по "ИЛИ".	401.14-5
133ЛР3	SN5453	И6/И63.088.023ТУ7	Логический элемент "2-2-2-3И-4ИЛИ-НЕ" с возможностью расширения по "ИЛИ".	401.14-5
133ЛР4	SN5455	И6/И63.088.023ТУ7	Логический элемент "4-4И-2ИЛИ-НЕ" с возможностью расширения по "ИЛИ".	401.14-5
133TB1	SN5472	И6/И63.088.023ТУ7	Триггер J-K с логикой на входе "3И".	401.14-5
133TB15	SN54109	дР/И63.088.023ТУ71	Два Ј-К триггера.	402.16-32
133TM2	SN5474	Ге/И63.088.023ТУ20	Два триггера D.	401.14-5

Серия 1533ХХХХ (65 типов)

Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 200 В.

Напряжение питания $5.0 \text{ B} \pm 10\%$.

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1533АП3	SN54ALS240	бКО.347.364-32ТУ	Два четырёхканальных формирователя с тремя состояниями на выходе с инверсией сигнала с инверсным управлением.	4153.20-6
1533АП4	SN54ALS241	бКО.347.364-32ТУ	Два четырёхканальных формирователя с тремя состояниями на выходе с прямым и инверсным управлением.	4153.20-6
1533АП5	SN54ALS244	бКО.347.364-32ТУ	Два четырёхканальных формирователя с тремя состояниями на выходе с инверсным управлением.	4153.20-6
1533АП6	SN54ALS245	бКО.347.364-55ТУ	Восьмиканальный двунаправленный формирователь с тремя состояниями на выходе.	4153.20-6
1533ИД3	SN54ALS154	бКО.347.364-12ТУ	Дешифратор 4х16.	4118.24-1
1533ИД4	SN54ALS155	бКО.347.364-06ТУ	Сдвоенный дешифратор-демультиплексор 2-4.	402.16-32
1533ИД7	SN54ALS138	бКО.347.364-08ТУ	Дешифратор демультиплексор из 3 в 8.	402.16-32
1533ИД17	отсутствует	бКО.347.364-30ТУ	Дешифратор состояний.	4119.28-1
1533ИЕ6	SN54ALS192	бКО.347.364-21ТУ	Двоично-десятичный реверсивный счётчик.	402.16-32
1533ИЕ7	SN54ALS193	бКО.347.364-07ТУ	Четырёхразрядный двоичный реверсивный счётчик.	402.16-32
1533ИЕ9	SN54ALS160	бКО.347.364-27ТУ	Четырёхразрядный двоично-десятичный счётчик с асинхронной установкой в состояние логический "0".	402.16-32
1533ИЕ10	SN54ALS161	бКО.347.364-27ТУ	Четырёхразрядный двоичный счётчик с асинхронной установкой в состояние логический "0".	402.16-32
1533ИЕ11	SN54ALS162	бКО.347.364-27ТУ	Четырёхразрядный двоично-десятичный счётчик с синхронной установкой в состояние логический "0".	402.16-32
1533ИЕ18	SN54ALS163	бКО.347.364-27ТУ	Четырёхразрядный двоичный счётчик с синхронной установкой в состояние логический "0".	402.16-32
1533ИП3	SN54ALS181	бКО.347.364-03ТУ	Арифметическо-логическое устройство.	4118.24-1

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1533ИП4	SN54ALS182	бКО.347.364-09ТУ	Схема ускоренного переноса для арифметического логического узла.	402.16-32
1533ИП5	SN54ALS86	бКО.347.364-14ТУ	Девятиразрядная схема контроля чётности.	401.14-5
1533ИП6	SN54ALS242	бКО.347.364-18ТУ	Четырёхшинный приёмо-передатчик с инверсными выходами.	401.14-5
1533ИП7	SN54ALS243	бКО.347.364-18ТУ	Четырёхшинный приёмо-передатчик.	401.14-5
1533ИР22	SN54ALS373	бКО.347.364-26ТУ	Восьмиразрядный регистр на триггерах с защёлкой с тремя состояниями на выходе.	4153.20-6
1533ИР23	SN54ALS374	бКО.347.364-26ТУ	Восьмиразрядный регистр на триггерах с защёлкой с тремя состояниями на выходе.	4153.20-6
1533ИР24	SN54ALS299	бКО.347.364-38ТУ	Восьмиразрядный универсальный сдвиговый регистр.	4153.20-6
1533ИР31	отсутствует	бКО.347.364-29ТУ	Двадцатичетырёхразрядный последовательный регистр сдвига.	4119.28-1
1533ИР33	SN54ALS573	бКО.347.364-10ТУ	Восьмиразрядный буферный регистр.	4153.20-6
1533ИР34	SN54ALS873	бКО.347.364-11ТУ	Два четырёхразрядных буферных регистра с тремя устойчивыми состояниями на выходе.	4118.24-1
1533ИР37	SN54ALS574	бКО.347.364-22ТУ	Регистр восьмиразрядный буферный с тремя состояниями на выходе (с импульсным управлением).	4153.20-6
1533ИР38	SN54ALS874	бКО.347.364-23ТУ	Два четырёхразрядных регистра D-типа с тремя состояниями на выходе.	4118.24-1
1533ИР39	отсутствует	бКО.347.364-16ТУ	Схема регистров общего назначения с многоканальным доступом.	429.42-1
1533КП2	SN54ALS153	бКО.347.364-12ТУ	Сдвоенный цифровой селектор-мультиплексор 4-1.	402.16-32
1533КП7	SN54ALS151	бКО.347.364-12ТУ	Селектор-мультиплексор на 8 каналов со стробированием.	402.16-32
1533КП11	SN54ALS257	бКО.347.364-03ТУ	Четырёхразрядный селектор-мультиплексор 2-1 с тремя устойчивыми состояниями.	402.16-32
1533КП11А	SN54ALS257	бКО.347.364-28ТУ	Четырёхразрядный селектор 2-1 с тремя устойчивыми состояниями.	402.16-32

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1533КП12	SN54ALS253	бКО.347.364-04ТУ	Двухразрядный четырёхканальный коммутатор с тремя устойчивыми состояниями по выходу.	402.16-32
1533КП13	SN54ALS298	бКО.347.364-04ТУ	Четыре двухвходовых мультиплексора с запоминанием.	402.16-32
1533КП14	SN54ALS258	бКО.347.364-03ТУ	Четырёхразрядный селектор-мультиплексор 2-1 с тремя устойчивыми состояниями с инверсными выходами.	402.16-32
1533КП14А	SN54ALS258	бКО.347.364-28ТУ	Четырёхразрядный селектор 2-1 с тремя устойчивыми состояниями с инверсными выходами.	402.16-32
1533КП15	SN54ALS251	бКО.347.364-06ТУ	Восьмивходовый селектор-мультиплексор с тремя устойчивыми состояниями.	402.16-32
1533КП16	SN54ALS157	бКО.347.364-19ТУ	Четырёхразрядный селектор-мультиплексор 2-1.	402.16-32
1533КП17	SN54ALS353	бКО.347.364-20ТУ	Сдвоенный селектор-мультиплексор 4х1 с тремя состояниями на выходе.	402.16-32
1533КП18	SN54ALS158	бКО.347.364-19ТУ	Четырёхразрядный селектор-мультиплексор 2-1 с инверсными выходами.	402.16-32
1533КП19	SN54ALS352	бКО.347.364-20ТУ	Сдвоенный селектор-мультиплексор 4х1.	402.16-32
1533ЛА1	SN54ALS20	бКО.347.364-01ТУ	Два логических элемента "4И-НЕ".	401.14-5
1533ЛА2	SN54ALS30	бКО.347.364-01ТУ	Логический элемент "8И-НЕ".	401.14-5
1533ЛА3	SN54ALS00	бКО.347.364-01ТУ	Четыре логических элемента "2И-НЕ".	401.14-5
1533ЛА4	SN54ALS10	бКО.347.364-09ТУ	Три логических элемента "ЗИ-НЕ".	401.14-5
1533ЛА7	SN54ALS22	бКО.347.364-25ТУ	Два логических элемента "4И-НЕ" с открытыми коллекторными выходами.	401.14-5
1533ЛА8	SN54ALS01	бКО.347.364-17ТУ	Четыре логических элемента "2И-НЕ" с открытым коллекторным выходом.	401.14-5
1533ЛА9	SN54ALS03	бКО.347.364-17ТУ	Четыре логических элемента "2И-НЕ" с открытым коллекторным выходом.	401.14-5

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1533ЛЕ1	SN54ALS02	бКО.347.364-05ТУ	Четыре логических элемента "2ИЛИ-НЕ".	401.14-5
1533ЛИ1	SN54ALS08	бКО.347.364-13ТУ	Четыре логических элемента "2И".	401.14-5
1533ЛН1	SN54ALS04	бКО.347.364-01ТУ	Шесть логических элементов "НЕ".	401.14-5
1533ЛН2	SN54ALS05	бКО.347.364-14ТУ	Шесть инверторов с открытым коллектором.	401.14-5
1533ЛН7	SN54ALS368	бКО.347.364-36ТУ	Шесть инверторов с тремя состояниями на выходе.	402.16-32
1533ЛН8	SN54ALS1004	бКО.347.364-36ТУ	Шесть инверторов с повышенной нагрузочной способностью.	401.14-5
1533ЛП3	отсутствует	бКО.347.364-15ТУ	Мажоритарный элемент.	402.16-32
1533ЛП5	SN54ALS86	бКО.347.364-07ТУ	Четыре двухвходовых логических элемента "Исключающее ИЛИ".	401.14-5
1533ЛР4	SN54ALS55	бКО.347.364-06ТУ	Логический элемент "4-4И-2ИЛИ-НЕ".	401.14-5
1533ЛР11	SN54ALS51	бКО.347.364-02ТУ	Логические элементы "2-2И-2ИЛИ-НЕ" и "3-3И-2ИЛИ- НЕ".	401.14-5
1533ЛР13	SN54ALS54	бКО.347.364-02ТУ	Логический элемент "3-2-2-3И-4ИЛИ-НЕ".	401.14-5
1533СП1	SN54ALS85	бКО.347.364-05ТУ	Схема сравнения двух четырёхразрядных чисел.	402.16-32
1533TB15	SN54ALS109	бКО.347.364-13ТУ	Два J-K триггера.	402.16-32
1533TM2	SN54ALS74	бКО.347.364-02ТУ	Два триггера D синхронных с дополняющими выходами.	401.14-5
1533TM8	SN54ALS175	бКО.347.364-24ТУ	Четыре D-триггера с прямыми и инверсными выходами.	402.16-32
1533TM9	SN54ALS174	бКО.347.364-24ТУ	Шесть D-триггеров.	402.16-32
1533TP2	SN54ALS279	бКО.347.364-08ТУ	Четыре триггера R-S.	402.16-32

Серия 1554ХХХХТБМ (51 тип)

Диапазон рабочих температур -60°÷+125°C

Допустимое значение потенциала статического электричества 2000 В

Напряжение питания 2,0÷6,0 В

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1554АПЗТБМ	54AC240	АЕЯР.431200.182-05 ТУ	Два четырехканальных формирователя с тремя состояниями и инверсией на выходе.	4153.20-6
1554АП4ТБМ	54AC241	АЕЯР.431200.182-05 ТУ	Два четырехканальных формирователя с тремя состояниями на выходе.	4153.20-6
1554АП5ТБМ	54AC244	АЕЯР.431200.182-05 ТУ	Два четырехканальных формирователя с тремя состояниями на выходе.	4153.20-6
1554АП6ТБМ	54AC245	АЕЯР.431200.182-05 ТУ	Восьмиканальный двунаправленный приёмо-передатчик с тремя состояниями на выходе.	4153.20-6
1554ИД4ТБМ	54AC155	АЕЯР.431200.182-10 ТУ	Сдвоенный дешифратор-демультиплексор 2-4.	402.16-32
1554ИД7ТБМ	54AC138	АЕЯР.431200.182-10 ТУ	Дешифратор-демультиплексор 3-8 с инверсией на выходе.	402.16-32
1554ИД14ТБМ	54AC139	АЕЯР.431200.182-10 ТУ	Два дешифратора-демультиплексора 2-4 с инверсией на выходе.	402.16-32
1554ИЕ6ТБМ	54AC192	АЕЯР.431200.182-03 ТУ	Четырехразрядный двоично-десятичный реверсивный счетчик.	402.16-32
1554ИЕ7ТБМ	54AC193	АЕЯР.431200.182-03 ТУ	Четырехразрядный двоичный реверсивный счетчик.	402.16-32
1554ИЕ10ТБМ	54AC161	АЕЯР.431200.182-03 ТУ	Четырехразрядный двоичный счетчик с асинхронной установкой в состояние "Логический 0".	402.16-32
1554ИЕ18ТБМ	54AC163	АЕЯР.431200.182-03 ТУ	Четырехразрядный двоичный счетчик с синхронной установкой в состояние "Логический 0".	402.16-32
1554ИЕ19ТБМ	54AC393	АЕЯР.431200.182-03 ТУ	Два четырехразрядных двоичных счетчика с индивидуальной синхронизацией и сбросом.	401.14-5
1554ИП5ТБМ	54AC280	АЕЯР.431200.182-02 ТУ	Девятиразрядная схема контроля четности.	401.14-5
1554ИР22ТБМ	54AC373	АЕЯР.431200.182-14 ТУ	Восьмиразрядный регистр, управляемый по уровню, с параллельным вводом-выводом данных, с тремя состояниями на выходе.	4153.20-6

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1554ИР23ТБМ	54AC374	АЕЯР.431200.182-12 ТУ	Восьмиразрядный регистр, управляемый по фронту, с параллельным вводом-выводом данных, с тремя состояниями на выходе.	4153.20-6
1554ИР24ТБМ	54AC299	АЕЯР.431200.182-12 ТУ	Восьмиразрядный двунаправленный сдвиговый регистр с параллельным вводом-выводом, последовательным вводом информации, асинхронным сбросом и тремя состояниями на выходе.	4153.20-6
1554ИР35ТБМ	54AC273	АЕЯР.431200.182-12 ТУ	Восьмиразрядный регистр, управляемый по фронту, с параллельным вводом-выводом данных, с входом установки.	4153.20-6
1554ИР37ТБМ	54AC574	АЕЯР.431200.182-12 ТУ	Восьмиразрядный регистр, управляемый по фронту, с параллельным вводом-выводом данных, с тремя состояниями на выходе.	4153.20-6
1554ИР40ТБМ	54AC533	АЕЯР.431200.182-14 ТУ	Восьмиразрядный регистр, управляемый по уровню, с параллельным вводом-выводом данных, с тремя состояниями и инверсией на выходе.	4153.20-6
1554ИР41ТБМ	54AC534	АЕЯР.431200.182-14 ТУ	Восьмиразрядный регистр, управляемый по фронту, с параллельным вводом-выводом данных, с тремя состояниями и инверсией на выходе.	4153.20-6
1554КП2ТБМ	54AC153	АЕЯР.431200.182-11 ТУ	Два селектора-мультиплексора 4-1.	402.16-32
1554КП7ТБМ	54AC151	АЕЯР.431200.182-11 ТУ	Селектор-мультиплексор 8-1 со стробированием.	402.16-32
1554КП11ТБМ	54AC257	АЕЯР.431200.182-11 ТУ	Четыре селектора-мультиплексора 2-1 с тремя состояниями на выходе.	402.16-32
1554КП12ТБМ	54AC253	АЕЯР.431200.182-15 ТУ	Два селектора-мультиплексора 4-1 с тремя состояниями на выходе.	402.16-32
1554КП14ТБМ	54AC258	АЕЯР.431200.182-15 ТУ	Четыре селектора-мультиплексора 2-1 с тремя состояниями и инверсией на выходе.	402.16-32
1554КП15ТБМ	54AC251	АЕЯР.431200.182-11 ТУ	Селектор-мультиплексор 8-1 с тремя состояниями на выходе.	402.16-32
1554КП16ТБМ	54AC157	АЕЯР.431200.182-15 ТУ	Четыре селектора-мультиплексора 2-1.	402.16-32

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1554КП18ТБМ	54AC158	АЕЯР.431200.182-15 ТУ	Четыре селектора-мультиплексора 2-1 с инверсией на выходе.	402.16-32
1554ЛА1ТБМ	54AC20	АЕЯР.431200.182-07 ТУ	Два логических элемента "4И-НЕ".	401.14-5
1554ЛА2ТБМ	54AC30	АЕЯР.431200.182-01 ТУ	Логический элемент "8И-НЕ".	401.14-5
1554ЛА3ТБМ	54AC00	АЕЯР.431200.182-07 ТУ	Четыре логических элемента "2И-НЕ".	401.14-5
1554ЛА4ТБМ	54AC10	АЕЯР.431200.182-07 ТУ	Три логических элемента "ЗИ-НЕ".	401.14-5
1554ЛЕ1ТБМ	54AC02	АЕЯР.431200.182-08 ТУ	Четыре логических элемента "2ИЛИ-НЕ".	401.14-5
1554ЛИ1ТБМ	54AC08	АЕЯР.431200.182-08 ТУ	Четыре логических элемента "2И".	401.14-5
1554ЛИЗТБМ	54AC11	АЕЯР.431200.182-08 ТУ	Три логических элемента "ЗИ".	401.14-5
1554ЛИ6ТБМ	54AC21	АЕЯР.431200.182-08 ТУ	Два логических элемента "4И".	401.14-5
1554ЛИ9ТБМ	54AC34	АЕЯР.431200.182-08 ТУ	Шесть логических повторителей.	401.14-5
1554ЛЛ1ТБМ	54AC32	АЕЯР.431200.182-07 ТУ	Четыре логических элемента "2ИЛИ".	401.14-5
1554ЛН1ТБМ	54AC04	АЕЯР.431200.182-07 ТУ	Шесть логических элементов "НЕ".	401.14-5
1554ЛП5ТБМ	54AC86	АЕЯР.431200.182-09 ТУ	Четыре двухвходовых логических элемента "Исключающее ИЛИ".	401.14-5
1554ЛП8ТБМ	54AC125	АЕЯР.431200.182-09 ТУ	Четыре буферных элемента с тремя состояниями на выходе.	401.14-5
1554ЛР11ТБМ	54AC51	АЕЯР.431200.182-01 ТУ	Логические элементы "2-2И-2ИЛИ-НЕ" и "3-3И-2ИЛИ-НЕ".	401.14-5
1554ЛР13ТБМ	54AC54	АЕЯР.431200.182-01 ТУ	Логический элемент "3-2-2-3И-4ИЛИ-НЕ".	401.14-5
1554СП1ТБМ	54AC85	АЕЯР.431200.182-02 ТУ	Схема сравнения двух четырехразрядных чисел.	402.16-32
1554ТВ9ТБМ	54AC112	АЕЯР.431200.182-06 ТУ	Два J-К триггера с управлением отрицательным фронтом по тактовому входу.	402.16-32
1554ТВ15ТБМ	54AC109	АЕЯР.431200.182-06 ТУ	Два J-К с управлением положительным фронтом по тактовому входу.	402.16-32
1554ТЛ2ТБМ	54AC14	АЕЯР.431200.182-04 ТУ	Шесть триггеров Шмитта-инверторов.	401.14-5
1554ТМ2ТБМ	54AC74	АЕЯР.431200.182-13 ТУ	Два D-триггера с установкой и сбросом.	401.14-5
1554ТМ8ТБМ	54AC175	АЕЯР.431200.182-13 ТУ	Четыре D-триггера с общими входами управления и сброса.	402.16-32
1554ТМ9ТБМ	54AC174	АЕЯР.431200.182-13 ТУ	Шесть D-триггеров.	402.16-32
1554ТР2ТБМ	54AC279	АЕЯР.431200.182-06 ТУ	Четыре R-S триггера.	402.16-32

Серия 1594ХХХХТ (40 типов)

Диапазон рабочих температур -60°÷+125°С.

Допустимое значение потенциала статического электричества 2000 В.

Напряжение питания 4,5÷5,5 В.

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1594АПЗТ	54ACT240	АЕЯР.431200.208-05 ТУ	Два четырёхканальных формирователя с тремя состояниями и инверсией на выходе.	4153.20-6
1594АП4Т	54ACT241	АЕЯР.431200.208-05 ТУ	Два четырёхканальных формирователя с тремя состояниями на выходе.	4153.20-6
1594АП5Т	54ACT244	АЕЯР.431200.208-05 ТУ	Два четырёхканальных формирователя с тремя состояниями на выходе.	4153.20-6
1594АП6Т	54ACT245	АЕЯР.431200.208-05 ТУ	Восьмиканальный двунаправленный приёмо-передатчик с тремя состояниями на выходе.	4153.20-6
1594ИД4Т	54ACT155	АЕЯР.431200.208-10 ТУ	Сдвоенный дешифратор-демультиплексор 2-4.	402.16-32
1594ИД7Т	54ACT138	АЕЯР.431200.208-10 ТУ	Дешифратор-демультиплексор 3-8 с инверсией на выходе.	402.16-32
1594ИД14Т	54ACT139	АЕЯР.431200.208-10 ТУ	Два дешифратора-демультиплексора 2-4 с инверсией на выходе.	402.16-32
1594ИЕ6Т	54ACT192	АЕЯР.431200.208-03 ТУ	Четырёхразрядный двоично-десятичный реверсивный счётчик.	402.16-32
1594ИЕ7Т	54ACT193	АЕЯР.431200.208-03 ТУ	Четырёхразрядный двоичный реверсивный счётчик.	402.16-32
1594ИЕ10Т	54ACT161	АЕЯР.431200.208-03 ТУ	Четырёхразрядный двоичный счётчик с асинхронной установкой в состояние "Логический 0".	402.16-32
1594ИЕ18Т	54ACT163	АЕЯР.431200.208-03 ТУ	Четырёхразрядный двоичный счётчик с синхронной установкой в состояние "Логический 0".	402.16-32
1594ИЕ19Т	54ACT393	АЕЯР.431200.208-03 ТУ	Два четырёхразрядных двоичных счётчика с индивидуальной синхронизацией и сбросом.	401.14-5
1594ИП5Т	54ACT280	АЕЯР.431200.208-02 ТУ	Девятиразрядная схема контроля чётности.	401.14-5

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1594ИР22Т	54ACT373	АЕЯР.431200.208-14 ТУ	Восьмиразрядный регистр, управляемый по уровню, с параллельным вводом-выводом данных, с тремя состояниями на выходе.	4153.20-6
1594ИР23Т	54ACT374	АЕЯР.431200.208-12 ТУ	Восьмиразрядный регистр, управляемый по фронту, с параллельным вводом-выводом данных, с тремя состояниями на выходе.	4153.20-6
1594ИР24Т	54ACT299	АЕЯР.431200.208-12 ТУ	Восьмиразрядный сдвиговый регистр с параллельным вводом-выводом, последовательным вводом информации, асинхронным сбросом и тремя состояниями на выходе.	4153.20-6
1594ИР35Т	54ACT273	АЕЯР.431200.208-12 ТУ	Восьмиразрядный регистр, управляемый по фронту, с параллельным вводом-выводом данных, с входом установки.	4153.20-6
1594ИР40Т	54ACT533	АЕЯР.431200.208-14 ТУ	Восьмиразрядный регистр, управляемый по уровню, с параллельным вводом-выводом данных, с тремя состояниями и инверсией на выходе.	4153.20-6
1594ИР41Т	54ACT534	АЕЯР.431200.208-14 ТУ	Восьмиразрядный регистр, управляемый по фронту, с параллельным вводом-выводом данных, с тремя состояниями и инверсией на выходе.	4153.20-6
1594КП11Т	54ACT257	АЕЯР.431200.208-11 ТУ	Четыре селектора-мультиплексора 2-1 с тремя состояниями на выходе.	402.16-32
1594КП14Т	54ACT258	АЕЯР.431200.208-15 ТУ	Четыре селектора-мультиплексора 2-1 с тремя состояниями и инверсией на выходе.	402.16-32
1594КП16Т	54ACT157	АЕЯР.431200.208-15 ТУ	Четыре селектора-мультиплексора 2-1 с инверсией на выходе.	402.16-32
1594КП18Т	54ACT158	АЕЯР.431200.208-15 ТУ	4-х разрядный селектор-мультиплексор 2-1 с инверсными выходами.	402.16-32

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
1594ЛА1Т	54ACT20	АЕЯР.431200.208-07 ТУ	Два логических элемента "4И-НЕ".	401.14-5
1594ЛА2Т	54ACT30	АЕЯР.431200.208-01 ТУ	Логический элемент "8И-НЕ".	401.14-5
1594ЛА3Т	54ACT00	АЕЯР.431200.208-07 ТУ	Четыре логических элемента "2И-НЕ".	401.14-5
1594ЛА4Т	54ACT10	АЕЯР.431200.208-07 ТУ	Три логических элемента "ЗИ-НЕ".	401.14-5
1594ЛЕ1Т	54ACT02	АЕЯР.431200.208-08 ТУ	Четыре логических элемента "2ИЛИ-НЕ".	401.14-5
1594ЛЕ4Т	54ACT27	АЕЯР.431200.208-01 ТУ	Три логических элемента "ЗИЛИ-НЕ".	401.14-5
1594ЛИ1Т	54ACT08	АЕЯР.431200.208-08 ТУ	Четыре логических элемента "2И".	401.14-5
1594ЛИЗТ	54ACT11	АЕЯР.431200.208-08 ТУ	Три логических элемента "ЗИ".	401.14-5
1594ЛИ6Т	54ACT21	АЕЯР.431200.208-08 ТУ	Два логических элемента "4И".	401.14-5
1594ЛИ9Т	54ACT34	АЕЯР.431200.208-08 ТУ	Шесть логических повторителей.	401.14-5
1594ЛЛ1Т	54ACT32	АЕЯР.431200.208-07 ТУ	Четыре логических элемента "2ИЛИ".	401.14-5
1594ЛН1Т	54ACT04	АЕЯР.431200.208-07 ТУ	Шесть логических элементов "НЕ".	401.14-5
1594ЛП8Т	54ACT125	АЕЯР.431200.208-09 ТУ	Четыре буферных элемента с тремя состояниями на выходе.	401.14-5
1594TB9T	54ACT112	АЕЯР.431200.208-06 ТУ	Два J-К триггера с управлением отрицательным фронтом тактового сигнала.	402.16-32
1594TB15T	54ACT109	АЕЯР.431200.208-06 ТУ	Два J-К триггера с управлением положительным фронтом тактового сигнала.	402.16-32
1594ТЛ2Т	54ACT14	АЕЯР.431200.208-04 ТУ	Шесть триггеров Шмидта-инверторов.	401.14-5
1594TM2T	54ACT74	АЕЯР.431200.208-13 ТУ	Два D-триггера с установкой и сбросом.	401.14-5

Серия 5584ХХХХТ (22 типа)

Диапазон рабочих температур -60° \div +125°C

Допустимое значение потенциала статического электричества 2000 В

Напряжение питания 2,0÷5,5 В

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
5584АПЗТ	74VHC240	АЕЯР.431200.209-12 ТУ	Два четырехканальных формирователя с тремя состояниями и инверсией на выходе	4153.20-6
5584АП5Т	74VHC244	АЕЯР.431200.209-05 ТУ	Два четырехканальных формирователя с тремя состояниями на выходе	4153.20-6
5584АП6Т	74VHC245	АЕЯР.431200.209-05 ТУ	Восьмиканальный двунаправленный приемопередатчик с тремя состояниями на выходе	4153.20-6
5584ИД7Т	74VHC138	АЕЯР.431200.209-04 ТУ	Дешифратор-демультиплексор 3 – 8 с инверсией на выходе	402.16-32
5584ИД14Т	74VHC139	АЕЯР.431200.209-04 ТУ	Два дешифратора-демультиплексора 2 – 4 с инверсией на выходе	402.16-32
5584ИЕ7Т	74VHC193	АЕЯР.431200.209-08 ТУ	Четырехразрядный двоичный реверсивный счетчик	402.16-32
5584ИЕ10Т	74VHC161	АЕЯР.431200.209-03 ТУ	Четырехразрядный двоичный счетчик с асинхронной установкой в состояние "Логический 0"	402.16-32
5584ИР8Т	74VHC164	АЕЯР.431200.209-09 ТУ	Восьмиразрядный сдвиговый регистр с последовательным вводом, параллельным выводом данных и асинхронным сбросом	401.14-5
5584ИР22Т	74VHC373	АЕЯР.431200.209-09 ТУ	Восьмиразрядный регистр, управляемый по уровню, с параллельным вводом-выводом данных, с тремя состояниями на выходе	4153.20-6
5584ИР23Т	74VHC374	АЕЯР.431200.209-06 ТУ	Восьмиразрядный регистр, управляемый по фронту, с параллельным вводом-выводом данных, с тремя состояниями на выходе	4153.20-6
5584ИР33Т	74VHC573	АЕЯР.431200.209-09 ТУ	Восьмиразрядный регистр, управляемый по уровню с параллельным вводом-выводом данных, с тремя состояниями	4153.20-6
5584ИР35Т	74VHC273	АЕЯР.431200.209-06 ТУ	Восьмиразрядный регистр, управляемый по фронту, с параллельным вводом-выводом данных, с входом установки	4153.20-6
5584КП11Т	74VHC257	АЕЯР.431200.209-11 ТУ	Четыре селектора-мультиплексора 2-1 с тремя состояниями на выходе	402.16-32

Обозначение	Прототип	Номер ТУ	Функциональное назначение	Корпус
5584ЛА3Т	74VHC00	АЕЯР.431200.209-01 ТУ	Четыре логических элемента 2И-НЕ	401.14-5
5584ЛЕ1Т	74VHC02	АЕЯР.431200.209-01 ТУ	Четыре логических элемента 2ИЛИ-НЕ	401.14-5
5584ЛИ1Т	74VHC08	АЕЯР.431200.209-01 ТУ	Четыре логических элемента 2И	401.14-5
5584ЛЛ1Т	74VHC32	АЕЯР.431200.209-01 ТУ	Четыре логических элемента 2ИЛИ	401.14-5
5584ЛН1Т	74VHC04	АЕЯР.431200.209-07 ТУ	Шесть логических элементов "НЕ"	401.14-5
5584ЛП5Т	74VHC86	АЕЯР.431200.209-07 ТУ	Четыре двухвходовых логических элемента Исключающее ИЛИ	401.14-5
5584ТЛ2Т	74VHC14	АЕЯР.431200.209-07 ТУ	Шесть триггеров Шмита-инверторов	401.14-5
5584TM2T	74VHC74	АЕЯР.431200.209-02 ТУ	Два D-триггера с установкой и сбросом	401.14-5
5584TM9T	74VHC174	АЕЯР.431200.209-10 ТУ	Шесть D-триггеров	402.16-32

Полупроводниковые приборы

Диапазон рабочих температур - 60° ÷+ 125° С.

Обозначение	Номер ТУ	Функциональное назначение	Корпус
2Д510А	ТТ3.362.096 ТУ	Кремниевые эпитаксиально-планарные импульсные диоды предназначены для работы в аппаратуре специального назначения	
2Д522Б	дР3.362.029-01 ТУ	Кремниевые эпитаксиально-планарные импульсные диоды предназначены для работы в аппаратуре специального назначения	КД-3

Диоды изготавливает УП "Завод Цветотрон" НПО "Интеграл" г. Брест

Корпус 4112.8-1.01

Корпус 4116.8-3

Корпус 401.14-5

Корпус 2102.14-10

Корпус 402.16-32/402.16-21

Dogwood	MM		
Размеры	min	max	
A		2,70	
A_1	0,90	1,30	
В	0,36	0,50	
С	0,13	0,20	
D	11,35	11,65	
Е	9,17	9,33	
e	_	1,25	
H_{E}	_	20,50	

Корпус 427.18-1.03/427.18-2.03

Корпус 2140.20-4

Корпус 405.24-2

Корпус 4118.24-1

Корпус 2121.28-6

Корпус 4119.28-6

	min	max
D	12.43	12.7
Hd	25.77	26.1
b	0.31	0.45
e	1.25	
c	0.13	0.2
Е	18.09	18.3
A	2.71	3.46

Корпус 4119.28-11

Корпус 4183.28-2

Корпус 2123.40-6

Розмория	MM	
Размеры	min	max
A	3,50	4,60
A1	1,10	1,50
В	0,47	0,57
b	ı	1,50
С	0,22	0,32
E	48,50	49,70
D	14,55	14,85
E1	-	15,00
e	-	2,50
L	3,40	3,90

Металлокерамический Материал покрытия выводов - золото

Корпус Н16.48-1В

Размеры	MM	_
газмеры	min	max
A	2,10	2,90
В	0,21	0,32
С	0,13	0,20
D	13,99	14,50
Е	13,99	14,50
e	-	1,00
H_D	-	22,70
H_{E}	-	22,70

Металлокерамический Материал покрытия выводов - золото

Корпус КД-3

4.4мах ∅ 0.56мах 3.8мах 2.5мах 2.5мах Н

Компаратор напряжения двухканальный

1467CA1T

Микросхема представляет собой два компаратора напряжения в одном корпусе с общим питанием. Микросхемы используются в радиоаппаратуре и электронной технике и предназначены для создания радиоэлектронных устройств широкого класса. Микросхема конструктивно выполняется в металлокерамическом 8-выводном корпусе типа 4112.8-1.01. **Прототип LM193, ф. Motorola, США**

Особенности:

- \bullet Диапазон напряжения питания от 5 до 30 В при однополярном питании и от \pm 2.5 до \pm 15 В при двухполярном питании
 - Допустимое значение статического потенциала не менее 200 В
 - Диапазон рабочих температур среды от минус 60 до плюс 125 °C
 - Защита выходов от короткого замыкания

Таблица 1 – Назначение выводов

Номер вывода	Назначение	Обозначение
01	Выход	OUT 1
02	Вход инверсный	<u>IN -</u> 1
03	Вход неинверсный	IN+ 1
04	Вывод питания от источника отрицательного напряжения	Uee
05	Вход неинверсный	IN+ 2
06	Вход инверсный	<u>IN -</u> 2
07	Выход	OUT 2
08	Вывод питания от источника положительного напряжения	Ucc

Таблица 2 – Предельно допустимые и предельные режимы

Наименование параметра режима, единица измерения	Буквенное	Предельно-допустимый режим		Предельный режим	
типленовите параметра режима, единица померения	обозначение	не менее	не более	не менее	не более
Напряжение питания, В: - однополярное	Ucc	5.0	30	_	36
- двухполярное	Ucc, Uee	± 2.5	± 15	-	± 18
Дифференциальное входное напряжение, В	U_{ID}	_	Ucc	_	Ucc
Синфазные входные напряжения, B, при $Ta = (25 \pm 10)$ °C	TT	0	Ucc - 1.5	-0.3	Ucc
при Та = (-60; +125) °C	$ m U_{IC}$		Ucc – 2.0		
Выходное напряжение, В	Uo	_	Ucc	_	Ucc
Выходной ток низкого уровня, мА	I_{OL}	_	_	_	20
Сопротивление нагрузки, кОм	R_{L}	7.5	_	7.5	_
Входной вытекающий ток, мА	$I_{ m IF}$	_	_	_	-50
Длительность короткого замыкания выхода на "землю", мин	t_{S}	_	_	-	5
Мощность рассеивания, Вт	P_{D}	_	_	_	0.57

Таблица 3 – Электрические параметры (U_{CC} = 5.0 B, U_{EE} = 0 B, если иное не указано ниже)

Наименование параметра, единица измерения, режим измерения	Буквенное обозначение	Норма па	араметра	Температ ура
	параметра	не менее	не более	среды, °C
Напряжение смещения нуля, мВ, при U_{CC} = (5.0 – 30) B, U_{O} = 1.4 B, U_{I} = ΔU_{IC}	U_{IO}	-	$\begin{vmatrix} \pm 5.0 \\ \pm 9.0 \end{vmatrix}$	<u>25±10</u> -60, 125
Выходное напряжение низкого уровня, мВ, при $I_{\rm OL}$ = 4.0 мА	U_{OL}	-	400 700	25±10 -60, 125
Разность входных токов, нA, при $U_O = 1.4 \ B$	I_{IO}	_	±25 ±100	
Входной ток, нА, при $U_O = 1.4 \ B$	$I_{\rm I}$	_	-100 -300	
Выходной ток высокого уровня, мкА, при U_{CC} = 30 B, U_{ID} = 1.0 B, U_{OH} = 30 B	I _{OH}	-	1.0	-60, 125
Выходной ток низкого уровня, мА, при U_{ID} = -1.0 B, U_{OL} = 1.5 B	I_{OL}	6	_	25±10
Ток потребления, мА, при U_{CC} = 30 B, R_{L} = ∞	I_{CC}		2.5	-60, 125
при $U_{CC} = 5 B, R_L = \infty$	100	-	1.0	25±10
Коэффициент усиления напряжения, B/MB , при при $U_{CC} = 15 \ B$, $U_{O} = (1.4 - 11.4) \ B$, $R_{L} = 15 \ \kappa Om$	A_{U}	50	_	25±10
Время задержки при включении, мкс, при $RL = 5.1$ кОм (подключен к выводу UCC), Uotc. $BLX = 1.4$ B, $UIIEP = 5$ мB, $UIN = 100$ мВ	tDHL	_	1.7	25±10
Время задержки при включении, выключении, нс, при $RL = 5.1$ кОм (подключен к выводу UCC), Uotc. $BHX = 1.4$ B, $UIN = (0.4 - 2.4)$ B	tDHL1, tDLH1		400	

Рисунок 1 Временная диаграмма

Рисунок 2 Временная диаграмма

Компаратор напряжения четырёхканальный

1467CA2P

Микросхема представляет собой четыре компаратора в одном корпусе с общим питанием. Микросхемы используются в радиоаппаратуре и электронной технике и предназначены для создания радиоэлектронных устройств широкого класса.

Микросхема конструктивно выполняется в металлокерамическом 14-выводном DIP корпусе типа 2102.14-10. Прототип LM139, ф. Motorola, США

Особенности:

- Диапазон напряжения питания от 5 до 30 B при однополярном питании и от \pm 2.5 до \pm 15 B при двухполярном питании
- Допустимое значение статического потенциала не менее 200 В
- Диапазон рабочих температур среды от минус 60 до плюс 125 °C
- Защита выходов от короткого замыкания

Таблица 1 – Назначение выводов

Номер вывода	Назначение	Обозначение
01	Выход	OUT 2
02	Выход	OUT 1
03	Вывод питания от источника положительного напряжения	Ucc
04	Вход инверсный	IN - 1
05	Вход неинверсный	IN+ 1
06	Вход инверсный	<u>IN -</u> 2
07	Вход неинверсный	IN+ 2
08	Вход инверсный	<u>IN -</u> 3
09	Вход неинверсный	IN+ 3
10	Вход инверсный	IN - 4
11	Вход неинверсный	IN+4
12	Вывод питания от источника отрицательного напряжения	Uee
13	Выход	OUT 4
14	Выход	OUT 3

Таблица 2 – Предельно допустимые и предельные режимы

Наименование параметра режима, единица измерения	Буквенное обозначение	Предельно-допустимый режим		Предельный режим	
	ооозначение	не менее	не более	не менее	не более
Напряжение питания, В: - однополярное	Ucc	5.0	30	-	36
- двухполярное	Ucc, Uee	±2.5	± 15	_	± 18
Дифференциальное входное напряжение, В	U_{ID}	_	Ucc	_	Ucc
Синфазные входные напряжения, B, при $Ta = (25 \pm 10) ^{\circ}C$	II	0	Ucc - 1.5	-0.3	Ucc
при Та = (-60; +125) °C	U_{IC}	U	Ucc-2.0	-0.3	
Выходное напряжение, В	Uo	_	Ucc	_	Ucc
Выходной ток низкого уровня, мА	I_{OL}	_	_	_	20
Сопротивление нагрузки, кОм	$R_{\rm L}$	7.5	_	7.5	_
Входной вытекающий ток, мА	$ m I_{IF}$	_	_	_	-50
Длительность короткого замыкания выхода на "землю", мин	$t_{ m S}$	_			5
Мощность рассеивания, Вт	P_{D}	_	_	_	1.00

Таблица 2 – Электрические параметры (U_{CC} = 5.0 B, U_{EE} = 0 B, если иное не указано ниже)

	Буквенное	Норма пара	аметра	Температу
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	ра среды, °С
Напряжение смещения нуля, мВ, при U_{CC} = (5.0 – 30) B, U_{O} = 1.4 B, U_{I} = ΔU_{IC}	$ m U_{IO}$	_	$ \begin{array}{c c} $	25±10 -60, 125
Выходное напряжение высокого уровня, B, при U_{CC} = 5.0 B, R_{L} = 2 кОм при U_{CC} = 30 B, R_{L} = 2 кОм при U_{CC} = 30 B, R_{L} = 10 кОм	$ m U_{OH}$	3.3 26 27	_	25±10 -60,125
Выходное напряжение низкого уровня, мВ, при U_{CC} = 5.0 B, R_{L} = 10 кОм	U_{OL}	_	20	-60,125
Разность входных токов, нА	I_{IO}	_	±30 ±100	
Входной ток, нА	$I_{\rm I}$	_	-150 -300	25±10 -60, 125
Выходной ток высокого уровня, мА, при U_{CC} = 15 B, U_{ID} = 1.0 B	I_{OH}	-20 -10	_	
Выходной ток низкого уровня, мА, при U_{CC} = 15 B, U_{ID} = -1.0 B мкА, при U_{CC} = 15 B, U_{ID} = -1.0 B, U_{OL} = 200 мВ мА, при U_{CC} = 15 B, U_{ID} = -1.0 B	I_{OL}	10 12 5.0	_	25±10 -60, 125,
Ток короткого замыкания, мА	I_{OS}	_	-60	25±10
Ток потребления, мА, при U_{CC} = 30 B, U_{O} = 0 B, R_{L} = \square при U_{CC} = 5 B, U_{O} = 0 B, R_{L} = \square	I_{CC}	_	3.0	-60, 125
Коэффициент усиления напряжения, B/MB , при $U_{CC}=15~B,~R_L=2.0~\kappa O_M$	${f A}_{ m U}$	<u>50</u> 25	_	25±10 -60, 125
Коэффициент ослабления синфазного входного напряжения, дБ	K_{CMR}	70	_	25±10

Таблица 2 – Продолжение

	Буквенное	Норма параметра		Температу
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	ра среды, °С
Коэффициент влияния нестабильности источников питания на напряжение смещения нуля, дБ	$K_{ m SVR}$	65	_	25±10
Средний температурный дрейф напряжения смещения нуля, мкВ/°С	$ m \alpha U_{IO}$	_	15 *	-60, 125
Средний температурный дрейф разности входных токов, нА/°C	$lpha I_{IO}$		25 *	-00, 123
Коэффициент ослабления взаимного влияния каналов, дБ, при 1.0 кГц \leq $f \leq 20$ кГц	K _{CS}	108 *	_	25±10

Рисунок 1 – Временная диаграмма

Рисунок 2 – Временная диаграмма

Технические спецификации 1467САЗТБМ

Компаратор напряжения четырёхканальный

1467САЗТБМ

Микросхема представляет собой быстродействующий маломощный счетверенный компаратор напряжений с встроенной петлей гистерезиса, задержкой распространения сигнала не более 70 нс, TTL – совместимыми выходами и предназначена для использования в системах с однополярным питанием +5 В.

Прототип МАХ908, ф. МАХІМ, США

Микросхема конструктивно выполняется в 14-выводном металлостеклянном корпусе типа 401.14-5, 401.14-5М.

Особенности:

- Потребление тока на компаратор не более 1.2 мА (6.6 мВт)
- Униполярное питание от 4.5 В до 5.5 В
- Допустимое значение статического потенциала не менее 200 В
- Диапазон рабочих температур среды от минус 60 до плюс 125 °C
- Широкий диапазон входных сигналов
- Напряжение смещения не более 3 мВ
- Встроенная петля гистерезиса обеспечивает надежное переключение
- TTL совместимые выходы
- Защита входов и выходов от короткого замыкания

Таблица 1 – Назначение выводов

Номер вывода	Назначение	Обозначение
01	Выход канала 1	Вых.1
02	Вход инвертирующий канала 1	Bx1
03	Вход неинвертирующий канала 1	Bx.+1
04	Вывод питания от источника напряжения	Vcc
05	Вход неинвертирующий канала 2	Bx.+2
06	Вход инвертирующий канала 2	Bx2
07	Выход канала 2	Вых.2
08	Выход канала 3	Вых.3
09	Вход инвертирующий канала 3	Bx3
10	Вход неинвертирующий канала 3	Bx.+3
11	Общий вывод	GND
12	Вход неинвертирующий канала 4	Bx.+4
13	Вход инвертирующий канала 4	Bx4
14	Выход канала 4	Вых.4

Таблица 2 – Предельно допустимые и предельные режимы

Наименование параметра режима, единица измерения	Буквенное обозначение	Предельно- допустимый режим		Предельный режим	
	ооозначение	не менее	не более	не менее	не более
Напряжение питания, В	U _{CC}	4.5	5.5	_	7.0
Диапазон дифференциальных входных напряжений, В	$\Delta \mathrm{U}_\mathrm{ID}$	-0.1	Ucc - 1.5	-0.3	Ucc + 0.3
Диапазон синфазных входных напряжений, В	ΔU_{IC}	-0.1	Ucc - 1.5	-0.3	Ucc + 0.3
Длительность короткого замыкания выхода на "землю", мин.	$t_{ m S}$	_	_		5

Таблица 3 – Электрические параметры U_{CC} = 5.0 B \pm 10%

Наименование параметра, единица измерения, режим измерения	Наименование параметра, единица измерения, режим измерения обозначение Норма параметра		праметра	Температу ра среды,
	параметра	не менее	не более	°C
Напряжение срабатывания, мВ, при U_{CC} = 5.0 В	U _{IT+}	_	4.0 5.0	
Напряжение отпускания, мВ, при $U_{CC} = 5.0 \text{ B}$	U _{IT-}	<u>-4.0</u> -5.0	_	
Напряжение смещения нуля, мВ, при $U_{CC} = 5.0 \text{ B}$, $U_{CM} = 0 \text{ B}$	U _{IO}	_	2.0 3.0	
Диапазон входных напряжений, B, при U_{CC} = 5.5 B	ΔU_{I}	-0.2	$U_{CC} - 1.5 B$	
Выходное напряжение высокого уровня, B, при $U_{CC} = 5.0 \text{ B}$, $I_{OH} = -100 \text{ мкA}$	U_{OH}	$\frac{3.0}{2.8}$	_	
Выходное напряжение низкого уровня, B, при U_{CC} = 5.0 B, I_{OL} = 3.2 мA	U _{OL}	_	0.39 0.4	25±10 -60, 125
Коэффициент ослабления синфазных входных напряжений, мкВ/В, при $U_{CC} = 5.5~\mathrm{B}$	K _{CMR}	_	$\frac{100}{200}$	-00, 123
Коэффициент влияния нестабильности источников питания на напряжение смещения нуля, мкВ/В	K _{SVR}	_	100 200	
Входной ток, нА, при $U_{CC} = 5.0 \; B$	$I_{\rm I}$	_	300 500	
Разность входных токов, нА, при $U_{CC} = 5.0 \text{ B}$, $U_{CM} = 0 \text{ B}$	I_{IO}	_	50 100	
Ток потребления, мА, при $U_{CC} = 5.5 \text{ B}$	I_{CC}		4.0 4.8	
Время задержки включения, выключения, нс, при U_{CC} = 5.0 B, U_{I} = 100 мB, U_{OD} = 100 мB, C_{L} = 15пФ	$t_{\mathrm{DHL}},t_{\mathrm{DLH}}$		<u>50</u> 70	

Примечание – U_{CM} – напряжение синфазной помехи;

 U_{OD} – дифференциальное напряжение превышения, при котором происходит переключение выхода

Временная диаграмма

Технические спецификации 1467СА4ТБМ

Компаратор напряжения одноканальный с TTL-выходом

1467СА4ТБМ

Микросхема представляет собой быстродействующий маломощный компаратор напряжений с триггером хранения предыдущего состояния с встроенной петлей гистерезиса, задержкой распространения сигнала не более 70 нс, TTL – совместимыми выходами и предназначена для использования в системах с двуполярным питанием. Номинальное значение напряжения питания микросхемы ± 5 В. Микросхема предназначена для использования в аппаратуре специального назначения.

Наличие встроенной петли гистерезиса обеспечивает четкое переключение выходов, даже в случае, когда устройство управляется медленно – изменяющимся входным сигналом. **Прототип MAX909**, ф. **MAXIM**, **США**

Микросхема конструктивно выполняется в 8-выводном металлокерамическом корпусе типа 4112.8-1.01.

Особенности:

- Двуполярное питание $\pm 5 \text{ B} \pm 10\%$
- Допустимое значение статического потенциала не менее 200 В
- Диапазон рабочих температур среды от минус 60 до плюс 125 °C
- Широкий диапазон входных сигналов, включает шину корпус
- Низкое напряжение смещения 3 мВ
- Встроенная петля гистерезиса обеспечивает надежное переключение
- TTL совместимые выходы
- Защита входов и выходов от короткого замыкания

Технические спецификации 1467СА4ТБМ

Таблица 2 – Назначение выводов

Номер вывода	Назначение	Обозначение
01	Вывод питания от источника положительного напряжения	Ucc
02	Вход неинверсный	IN+
03	Вход инверсный	ĪN-
04	Вывод питания от источника отрицательного напряжения	Uee
05	Вход тригтера	LE
06	Вывод общий	GND
07	Выход неинверсный	OUT+
08	Выход инверсный	OUT -

Таблица 3 – Электрические параметры микросхем при приемке и поставке ($U_{CC} = 5.0 \text{ B}$, Uee = 0 B)

Наименование параметра, единица измерения,		Норма п	араметра	Температура
режим измерения	обозначение параметра	не менее	не более	среды, °C
Диапазон входных напряжений, B, при U_{CC} = 5.5 B, Uee = 0 B	ΔU_{I}	-0.1	$U_{CC} - 1.5 B$	
при $U_{CC} = 5.5 B$, $Uee = -5 B$	ΔΟΙ	-5.1	$U_{CC} - 1.5 B$	
Выходное напряжение высокого уровня, В, при I_{OH} = -100 мкА	U _{OH}	$\frac{3.0}{2.8}$	_	
Выходное напряжение низкого уровня, B, при $I_{OL} = 3.2 \text{ мA}$	U_{OL}	_	0.4	25±10,
Напряжение срабатывания, мВ	U _{IT+}	I	<u>4.0</u> 5.0	-60, 125
Напряжение отпускания, мВ	U _{IT-}	<u>-4.0</u> -5.0		
Напряжение смещения нуля, мВ, при $U_{ICM} = 0$ В	U _{IO}	_	2.0 3.0	

Таблица 3 – Продолжение

Наименование параметра, единица измерения,		Норма п	араметра	Температура
режим измерения	обозначение параметра	не менее	не более	среды, °C
Входной ток, нА, при U_{ICM} = 0 B, U_{IN} = U_{IO}	$I_{\rm I}$	-	300 500	
Разность входных токов, нА, при $U_{ICM} = 0$ В, $U_{IN} = U_{IO}$	I_{IO}	1	<u>50</u> 70	
Входной ток низкого уровня, мкА, по входу 05 триггера	$ m I_{IL}$	_	20	
Входной ток высокого уровня, мкА, по входу 05 триггера	$ m I_{IH}$	_	20	
Ток потребления от источника положительного напряжения питания, мA, при $U_{CC} = 5.5 \ B$	I_{CC}	_	$\frac{1.8}{2.0}$	25±10,
Ток потребления от источника отрицательного напряжения питания, мкA, при $U_{CC} = 5.5 \text{ B}$, $Uee = -5 \text{ B}$	Iee	_	200	-60, 125
Коэффициент ослабления синфазных входных напряжений, мкВ/В, при U_{CC} = 5.5 B, Uee = 0, -5.5 B	K _{CMR}	-	$\frac{100}{200}$	
Коэффициент влияния нестабильности источников питания на напряжение смещения нуля, мкВ/В, при $4.5~\mathrm{B} \leq \mathrm{U_{CC}} \leq 5.5~\mathrm{B},~-5.5~\mathrm{B} \leq \mathrm{Uee} \leq 0~\mathrm{B}$	K_{SVR}	_	$\frac{100}{200}$	
Время задержки включения, выключения, нс, при U_{IN} = 100 мB, U_{OD} = 5 мB, C_L = 15 п Φ	$t_{\mathrm{DHL}},t_{\mathrm{DLH}}$		<u>50</u> 70	

Таблица 4 - Предельные и предельно-допустимые режимы эксплуатации микросхем

Наименование параметра режима, единица	Буквенное обозначение	Преде допустими		Предельный режим	
измерения	ооозначение	не менее	не более	не менее	не более
Напряжение питания, В	U_{CC}	4.5	5.5	0	7.0
Отрицательное напряжение питания, В	Uee	-5.5	0	0	-7.0
Дифференциальное входное напряжение, B, - при $U_{CC} = 5.5$ B, Uee = 0 B - при $U_{CC} = 5.5$ B, Uee = -5.0 B	U_{ID}	-0.1 -5.1	Ucc - 1.5 Ucc - 1.5	Uee - 0.3	Ucc + 0.3
Синфазные входные напряжения, B - при U_{CC} = 5.5 B, Uee = 0 B - при U_{CC} = 5.5 B, Uee = -5.0 B	U_{IC}	-0.1 -5.1	Ucc - 1.5 Ucc - 1.5	Uee - 0.3	Ucc + 0.3
Входное напряжение (вход триггера), В	U _{IH} U _{IL}	2.0	Ucc 0.8	-0.3	Ucc + 0.3
Выходной ток низкого уровня, мА	I_{OL}	_	3.2	_	3.2
Выходной ток высокого уровня, мкА	I_{OH}		-100	_	-100
Сопротивление нагрузки, кОм	$R_{ m L}$	1.6		1.6	
Длительность короткого замыкания выхода на "землю", мин	t_{S}	_	_	_	5

Технические спецификации 1467УД1Т

Операционный усилитель двухканальный

1467УД1Т

Микросхема представляет собой два операционных усилителя в одном корпусе с общим питанием. Микросхемы используются в радиоаппаратуре и электронной технике и предназначены для создания радиоэлектронных устройств широкого класса.

Микросхема конструктивно выполняется в металлокерамическом 8-выводном корпусе типа 4112.8-1.01. **Прототип LM158**, **ф. Motorola**, **США**

Особенности:

- Диапазон напряжения питания от 5 до 30 B при однополярном питании и от ± 2.5 до ± 15 B при двухполярном питании
- Допустимое значение статического потенциала не менее 200 В
- Диапазон рабочих температур среды от минус 60 до плюс 125 °C
- Защита выходов от короткого замыкания

Таблица 1 – Назначение выволов

Номер вывода	Назначение	Обозначение
01	Выход	OUT 1
02	Вход инверсный	<u>IN -</u> 1
03	Вход неинверсный	IN+ 1
04	Вывод питания от источника отрицательного напряжения	Uee
05	Вход неинверсный	IN+ 2
06	Вход инверсный	<u>IN -</u> 2
07	Выход	OUT 2
08	Вывод питания от источника положительного напряжения	U _{CC}

Технические спецификации 1467УД1Т

Таблица 2 – Предельно допустимые и предельные режимы

Наименование параметра режима, единица	Буквенное обозначение	ne	-допустимый жим	Предельный режим	
измерения	ooosha lenne		не более	не менее	не более
Напряжение питания, В: - однополярное	U _{CC}	5.0	30	-	32
- двухполярное	Ucc, Uee	± 2.5	± 15	_	± 16
Дифференциальное входное напряжение, В	$U_{ m ID}$	_	Ucc	_	Ucc
Синфазные входные напряжения, B, – при $Ta = (25 \pm 10)$ °C – при $Ta = (-60; +125)$ °C	U _{IC}	0	Ucc - 1.7 Ucc - 2.0	-0.3	Ucc
Сопротивление нагрузки, кОм	$R_{\rm L}$	2	10	0.6	_
Длительность короткого замыкания выхода на "землю", мин	t_{S}	_	_		5
Мощность рассеивания, мВт	P_{D}	_	120	_	205

Таблица 2 – Электрические параметры $(U_{CC} = 5.0 \text{ B}, U_{EE} = 0 \text{ B}, \text{ если иное не указано ниже})$

Наименование параметра, единица измерения, режим измерения	Буквенное обозначен	Норма парам	летра	Температ ура
померения померения	ие параметра	не менее	не более	среды, °C
Напряжение смещения нуля, мB, при U_{CC} = $(5.0-30)$ B, U_{O} = 1.4 B, U_{I} = ΔU_{IC}	U _{IO}	_	±5.0 ±7.0	<u>25±10</u> -60, 125
Выходное напряжение высокого уровня, B, при $U_{CC} = 5.0 \text{ B}$, $R_L = 2 \text{ кОм}$		3.3		25±10
при $U_{CC} = 30 \text{ B}, R_L = 2 \text{ кОм}$ при $U_{CC} = 30 \text{ B}, R_L = 10 \text{ кОм}$	U_{OH}	26 27	_	-60,125

Технические спецификации 1467УД1Т

Таблица 2 – продолжение

Наименование параметра, единица измерения, режим измерения		Норма параметра		Температ ура	
тапменование параметра, единица измерения, режим измерения	ие параметра	не менее	не более	среды, °C	
Выходное напряжение низкого уровня, мВ, при U_{CC} = 5.0 B, R_{L} = 10 кОм	U_{OL}	_	20	-60,125	
Разность входных токов, нА	I_{IO}	_	±30 ±100	25.10	
Входной ток, нА	$I_{\rm I}$	_	-150 -300	25±10	
Выходной ток высокого уровня, мА, при U_{CC} = 15 B, U_{ID} = 1.5 B	I _{OH}	-20	_	25±10	
Выходной ток низкого уровня, мА, при U_{CC} = 15 B, U_{ID} = -1.0 B мкА, при U_{CC} = 15 B, U_{ID} = -1.0 B, U_{OL} = 200 мВ	I_{OL}	10	_	25±10	
Ток короткого замыкания, мА	I _{OS}	_	-60	25±10	
Ток потребления, мА, при U_{CC} = 30 B, U_{O} = 0 B, R_{L} = ∞ при U_{CC} = 5 B, U_{O} = 0 B, R_{L} = ∞	I_{CC}	_	3.0	-60, 125,	
Коэффициент усиления напряжения, B/MB , при $U_{CC} = 15 \ B$, $R_L = 2.0 \ кOM$	A_{U}	50 25	_	25±10 -60, 125	
Коэффициент ослабления синфазного входного напряжения, дБ	K _{CMR}	70	_		
Коэффициент влияния нестабильности источников питания на напряжение смещения нуля, дБ	K_{SVR}	65	_	25±10	
Средний температурный дрейф напряжения смещения нуля, мкВ/°С	$lpha U_{IO}$		15 *	-60, 125,	
Средний температурный дрейф разности входных токов, нА/°C	$lpha I_{IO}$	_	25 *	-00, 123,	
Коэффициент ослабления взаимного влияния каналов, дБ, при $1.0~{ m k}$ Г $\leq 20~{ m k}$ Г ц	K _{CS}	108 *	_	25±10	

Технические спецификации 1467УД2Р/Т

Операционный усилитель четырёхканальный

1467УД2Р/Т

Микросхема представляет собой четыре операционных усилителя в одном корпусе с общим питанием. Микросхемы используются в радиоаппаратуре и электронной технике и предназначены для создания радиоэлектронных устройств широкого класса.

Микросхема 1467УД2Р конструктивно выполняется в металлокерамическом 14-выводном DIP корпусе типа 2102.14-10, микросхема 1467УД2Т в 14-выводном металлостеклянном корпусе типа 401.14-5. **Прототип LM124, ф. Motorola, США**

Особенности:

- Диапазон напряжения питания от 5 до 30 В при однополярном питании и от ± 2.5 до ± 15 В при двухполярном питании
- Допустимое значение статического потенциала не менее 200 В
- Диапазон рабочих температур среды от минус 60 до плюс 125 °C
- Защита выходов от короткого замыкания

Таблица 1 – Назначение выводов

Номер вывода	Назначение	Обозначение
01	Выход	OUT 1
02	Вход инверсный	<u>IN -</u> 1
03	Вход неинверсный	IN+ 1
04	Вывод питания от источника положительного напряжения	Ucc
05	Вход неинверсный	IN+ 2
06	Вход инверсный	<u>IN -</u> 2
07	Выход	OUT 2
08	Выход	OUT 3
09	Вход инверсный	<u>IN</u> - 3
10	Вход неинверсный	IN+ 3
11	Вывод питания от источника отрицательного напряжения	Uee
12	Вход неинверсный	OUT 4
13	Вход инверсный	<u>IN -</u> 4
14	Выход	OUT 4

Технические спецификации 1467УД2Р/Т

Таблица 2 – Предельно допустимые и предельные режимы

Наименование параметра режима, единица измерения	Буквенное обозначение	пежим			Предельный режим	
	ооозначение	не менее	не более	не менее	не более	
Напряжение питания, В: - однополярное	Ucc	5.0	30	_	32	
- двухполярное	Ucc, Uee	± 2.5	± 15	_	± 16	
Дифференциальное входное напряжение, В	U_{ID}	_	Ucc	_	Ucc	
Синфазные входные напряжения, B, – при $Ta = (25 \pm 10)$ °C	U_{IC}	0	Ucc - 1.7	-0.3	Ucc	
– при Та = (-60; +125) °C			Ucc-2.0			
Сопротивление нагрузки, кОм	$R_{\rm L}$	2	10	0.6	_	
Длительность короткого замыкания выхода на "землю", мин	t_{S}	_		_	5	
Мощность рассеивания, мВт	P_{D}	_	120	_	205	

Таблица 3 – Электрические параметры (U_{CC} = 5.0 B, U_{EE} = 0 B, если иное не указано ниже)

Наименование параметра, единица измерения, режим измерения	Буквенное обозначение	Норма параметра		Температу ра среды,	
	параметра	не менее	не более	°C	
Напряжение смещения нуля, мВ, при U_{CC} = (5.0 – 30) B, U_{O} = 1.4 B, U_{I} = ΔU_{IC}	U _{IO}	_	±5.0 ±7.0	25±10 -60, 125	
Выходное напряжение высокого уровня, B, при U_{CC} = 5.0 B, R_L = 2 кОм	ŢŢ	3.3		25±10	
при $U_{CC} = 30 \text{ B}, R_L = 2 \text{ кОм}$ при $U_{CC} = 30 \text{ B}, R_L = 10 \text{ кОм}$	U_{OH}	26 27	_	-60,125	
Выходное напряжение низкого уровня, мВ, при $U_{CC} = 5.0 \text{ B}$, $R_L = 10 \text{ кOm}$	U_{OL}	_	20	-60,125	

Технические спецификации 1467УД2Р/Т

Таблица 3 – продолжение

	Буквенное	Норма па	араметра	Температу
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	ра среды, °С
Разность входных токов, нА	I_{IO}	_	$\begin{vmatrix} \pm 30 \\ \pm 100 \end{vmatrix}$	
Входной ток, нА	I_{I}	_	-150 -300	25±10 -60, 125
Выходной ток высокого уровня, мА, при U_{CC} = 15 B, U_{ID} = 1.0 B	I_{OH}	-20 -10	_	
Выходной ток низкого уровня, мА, при U_{CC} = 15 B, U_{ID} = -1.0 B мкА, при U_{CC} = 15 B, U_{ID} = -1.0 B, U_{OL} = 200 мВ	I_{OL}	10 12	_	25±10
мА, при U_{CC} = 15 B, U_{ID} = -1.0 B		5.0		-60, 125
Ток короткого замыкания, мА	I_{OS}	_	-60	25±10
Ток потребления, мА, при U_{CC} = 30 B, U_{O} = 0 B, R_{L} = ∞ при U_{CC} = 5 B, U_{O} = 0 B, R_{L} = ∞	I_{CC}	_	3.0	-60, 125
Коэффициент усиления напряжения, B/MB , при $U_{CC}=15~B,~R_L=2.0~$ кОм	A_{U}	50 25	_	25±10 -60, 125
Коэффициент ослабления синфазного входного напряжения, дБ	K_{CMR}	70	_	
Коэффициент влияния нестабильности источников питания на напряжение смещения нуля, дБ	K_{SVR}	65	_	25±10
Средний температурный дрейф напряжения смещения нуля, мкВ/°С	$ m \alpha U_{IO}$		15 *	60, 125
Средний температурный дрейф разности входных токов, нА/°C	$lpha I_{IO}$		25 *	-60, 125
Коэффициент ослабления взаимного влияния каналов, дБ, при $1.0~{\rm k\Gamma q} \le f \le 20~{\rm k\Gamma q}$	K _{CS}	108 *	_	25±10

Примечание – Знак "минус" перед нормой на ток указывает только его направление. За величину тока принимают абсолютное значение показаний измерителя тока

Технические спецификации 1473УД1Т(1)

Малошумящий прецизионный операционный усилитель

1473УД1Т(1)

 $1473 \mathrm{Y} \mathrm{Д}1\mathrm{T}(1)$ представляет собой прецизионный операционный усилитель с малым напряжением смещения нуля и дрейфа, высокой скоростью нарастания, так и с низким уровнем шума. Смещение до 25 мкВ и дрейф с максимальным значением 0,6 мкВ/°С делают $1473 \mathrm{Y} \mathrm{Д}1\mathrm{T}(1)$ идеальным для использования в точных измерительных приборах. Исключительно низкий шум $e_n = 3.5 \mathrm{HB}/\sqrt{\Gamma}$ ц при $10 \mathrm{\Gamma}$ ц и вида $1/\mathrm{f}$ при частоте менее $10 \mathrm{\Gamma}$ ц с частотой сопряжения в $2.7 \mathrm{\Gamma}$ ц и высоким коэффициентом усиления (1,8 миллионов), позволяет обеспечить усиление слабых сигналов с высоким коэффициентом. Малый входной ток смещения в $\pm 10 \mathrm{HA}$ достигается посредством использования схемы компенсации тока смещения. В диапазоне температур -60 - +125 °C для этой схемы типичны входной ток смещения и входной разностный ток до $\pm 20 \mathrm{HA}$ и $15 \mathrm{HA}$ соответственно.

Малое напряжение микросхемы 1473УД1Т(1) достигается настройкой на кристалле цепи обратно смещенных диодов.

Характеристики микросхемы	
Низкочастотный шум	80нВз-з (от 0.1ГЦ до
	10Гц)
	3нВ /√Гц
Низкий дрейф	0,2мкВ/°С
Высокая скорость	2,8В/мкс максимальная
	скорость нарастания
	выходного напряжения
	8МГц ширина полосы
	пропускания
Малое напряжение смещения нуля	10мкВ
Vos	
Коэффициент ослабления	
синфазного сигнала.	126дБ при V _{CV} =± 11В
Коэффициент усиления без	1,8млн
обратной связи	

Выходной каскад обладает хорошей нагрузочной способностью. Гарантируемый размах выходного напряжения ±10В при нагрузке 600 Ом, небольшое выходное искажение, большие коэффициенты подавления синфазного напряжения и коэффициент влияния нестабильности напряжения источников питания вместе с хорошей долговременной стабильностью напряжения смещения в 0,2мкВ/месяц позволяют использовать прибор 1473УД1Т(1) в профессиональной аудио аппаратуре.

1473УД1Т(1) обеспечивает отличную работу при усилении слабых сигналов с высокой точностью. Применение включает в себя стабильные интеграторы, прецизионные суммирующие усилители, прецизионные пороговые детекторы напряжения, компараторы и профессиональные аудио схемы такие, как предусилители магнитной головки и микрофонные предусилители.

Корпуса 8-выводные металлокерамические 4116.8-3 и 4112.8-1.01

Наиболее близкими по составу параметров разрабатываемой схемы являются микросхемы **OP27** ф. **Analog Devices**, США, прямой аналог отсутствует.

Технические спецификации 1473УД1Т(1)

Абсолютные максимально допустимые значения

Наименование параметра	Единица Предельно-допустимый режим		Предельный режим		
паименование параметра	измерения	не менее	не более	не менее	не более
Напряжение питания	В	±13,5	±16,5		±22
Входное напряжение	В		±18		±22
Длительность короткого замыкания на выходе				не лим	итируется
Дифференциальное входное напряжение	В		±0,5		±0,7
Дифференциальный входной ток	мА		±20		±25
Диапазон рабочих температур	°C	-60	+125	-60	150
Температура перехода кристалла	°C			-60	150

Электрические параметры (V_S =±15±2%, - 60 ° C \leq $T_A <math>\leq$ +125 ° C, если не указано иначе)

Наименование параметра, единица измерения	Буквенное	Режим измерения	Ho	ома
паименование параметра, единица измерения	обозначение	т сжим измерения	Не менее	Не более
Напряжение смещения, мкВ, (Измерения проводить после подачи напряжения питания спустя 0,5сек)	V_{OS}			±60
Средний дрейф напряжения смещения без внешней подстройки, мкВ/°С	TCV_{OS}			±0,6
Средний дрейф напряжения смещения с внешней подстройкой, мкВ/°С	TCV_{OSn}			±0,6
Разность входных токов, нА	I_{OS}	-		±50
Входной ток, нА	I_{B}			±60
Диапазон синфазных входных напряжений, В	IVR		±10,3	
Коэффициент ослабления синфазных входных напряжений, дБ	CMRR	$V_{CM} = \pm 10B$	108	
Коэффициент влияния нестабильности источников питания на напряжение смещения, мкВ/В	PSRR	$V_S = \pm (4.5 \div 18)B$		16
Коэффициент усиления напряжения при большом сигнале, В/ мВ	$A_{ m VO}$	$R_L \ge 2$ кОм, $V_O = \pm 10B$	600	
Размах выходного напряжения, В	Vo	R _L ≥2 кОм	±11,5	

Технические спецификации 1473УД1Т(1)

Электрические параметры (при V_S = $\pm 15\pm 2\%$, T_A = 25^O C, если не указано иначе)

Наименование параметра, единица измерения	Буквенное	Режим	Ho	рма
паименование параметра, единица измерения	обозначение	измерения	Не менее	Не более
Напряжение смещения, мкВ (Измерения проводить после подачи напряжения питания спустя 0,5сек)	Vos			±25
Долговременная стабильность напряжения смещения, мкВ/месяц	V _{OS} /Time			±1,0
Разность входных токов, нА	I_{OS}			±35
Входной ток, нА	I_{B}			±40
Входное напряжение шума, мкВп-п	e_{np-p}	f _o =0,1Гц до10Гц		0,18
Спектральная плотность входного напряжения шума, нВ/√Гц	e_n	$egin{aligned} f_{o} &= 10 \Gamma \mu \ f_{o} &= 30 \Gamma \mu \ f_{o} &= 1000 \Gamma \mu \end{aligned}$		5,5 4,5 3,8
Спектральная плотность входного тока шума, пА/√Гц	i _n	f _o =10Гц f _o =30Гц f _o =1000Гц		4,0 2,3 0,6
Входное сопротивление дифференциальному сигналу, МОм	R _{in}		1,3	
Диапазон синфазных входных напряжений, В	IVR		±11	
Коэффициент ослабления синфазного напряжения, дБ	CMRR	$V_{CM} = \pm 11B$	114	
Коэффициент влияния нестабильности источников питания на напряжение смещения, мкВ/В	PSRR	$V_S = \pm (4 \div 18) B$		10
Коэффициент усиления напряжения при большом сигнале, В/мВ	A_{VO}	$R_L \ge 2 \text{ kOm}, V_O = \pm 10B$ $R_L \ge 600 \text{ Om},$ $V_O = \pm 10B$	1000 800	
Размах выходного напряжения, В	Vo	R _L ≥ 2 кОм R _L ≥ 600 Ом	±12 ±10	
Максимальная скорость нарастания выходного напряжения, В/мкс	SR	R _L ≥ 2 кОм	1,7	
Ширина полосы пропускания при замкнутой цепи обратной связи, МГц	GBW		5,0	
Потребляемая мощность, мВт.	P_{D}	$V_{O}=0$		140

Постоянное запоминающее устройство с возможностью однократного программирования ёмкостью 256К и организацией $32K \times 8$ разрядов 1632PT1T

Микросхемы 1632РТ1Т предназначены для использования в вычислительных и управляющих системах специального назначения с ограниченным энергетическими и весогабаритными характеристиками.

Программирование осуществляется электрически посредством пробивания диэлектрика.

Коэффициент программируемости микросхемы N_{PR} не менее 0.6.

Микросхема изготавливается в 28-выводном корпусе типа 4119.28-6.

Таблица истинности

D	Логические состояния на выводах					
Режим работы	CS OE DIO0 -					
Хранение	Н	X	Z			
Cyyyayyanayyya	L	Н	Z*			
Считывание	L	L	D0 – D7			

Примечание – Н – высокий уровень напряжения;

L – низкий уровень напряжения;

Х – любой уровень напряжения (низкий или высокий);

Z – состояние "Выключено" на выходе (высокое выходное сопротивление);

D0-D7- выходное напряжение низкого или высокого уровня, соответствующее информации в ячейке

* Состояние считывания без вывода данных при сохранении состояния "Выключено" на выходах

Назначение выводов

Номер вывода	Обозначение	Назначение
01	A14	Вход адреса
02	A12	Вход адреса
03	A7	Вход адреса
04	A6	Вход адреса
05	A5	Вход адреса
06	A4	Вход адреса
07	A3	Вход адреса
08	A2	Вход адреса
09	A1	Вход адреса
10	A0	Вход адреса
11	DIO0	Выход информации/ Вход данных
12	DIO1	Выход информации/ Вход данных
13	DIO2	Выход информации/ Вход данных
14	GND	Общий вывод
15	DIO3	Выход информации/ Вход данных
16	DIO4	Выход информации/ Вход данных
17	DIO5	Выход информации/ Вход данных
18	DIO6	Выход информации/ Вход данных
19	DIO7	Выход информации/ Вход данных
20	$\overline{\text{CS}}$	Вход выбора микросхемы
21	A10	Вход адреса
22	ŌE	Вход разрешения выхода
23	A11	Вход адреса
24	A9	Вход адреса
25	A8	Вход адреса
26	A13	Вход адреса
27	UPR	Вывод питания при программировании
28	U_{CC}	Вывод питания от источника напряжения

Структурная схема микросхемы

Предельные режимы

Наименование параметров режима, единица	Буквенное	Предельный режим		
	обозначение	Норма		
измерения	параметра	не менее	не более	
Напряжение питания, В	U_{CC}	4.0	6.0	
Входное напряжение низкого уровня, В	U_{IL}	-0.3	0.8	
Выходное напряжение высокого уровня, В	U_{OH}	$U_{CC}-0.8$	$U_{CC} + 0.3$	
Напряжение, прикладываемое к закрытому выходу, В	$\mathrm{U}_{\mathrm{OI}}{}^{*}$	-0.3	$U_{CC} + 0.3$	
Выходной ток низкого уровня, мА	I_{OL}	_	5.0	
Выходной ток высокого уровня, мА	I _{OH}	_	-5.0	
Температура хранения, °С	Tamb	-60	150	
Емкость нагрузки, пФ	C_{L}	_	500	
* Режим на выводах D0 – D7				

Предельно допустимые режимы

Поличения пораметров волице одиния	Буквенное	Предельно-допустимый режим			
Наименование параметров режима, единица измерения	обозначение	Норма			
измерения	параметра	не менее	не более		
Напряжение питания, В	U_{CC}	4.5	5.5		
Входное напряжение низкого уровня, В	U_{IL}	-0.1	0.8		
Входное напряжение высокого уровня, В	U_{IH}	4.0	U_{CC}		
Выходное напряжение высокого уровня, В	U_{OH}	$U_{\rm CC}-0.8$	U_{CC}		
Напряжение, прикладываемое к закрытому выходу, В	$\mathrm{U}_{\mathrm{OI}}^*$	-0.1	U_{CC}		
Выходной ток низкого уровня, мА	I_{OL}	_	3.2		
Выходной ток высокого уровня, мА	I_{OH}	_	- 2.0		
Температура, °С	Tamb	-60	85		
Емкость нагрузки, пФ	$C_{\rm L}$	_	50*		
» П	500	TT			

^{*} Допускается эксплуатация микросхем при емкости нагрузки до 500 пФ. Динамические параметры микросхемы при $C_L > 50$ пФ не гарантируются.

Статические параметры

Наименование параметра, единица измерения, режим измерения	Буквенное обозначение	Норма параметра		Температура среды, °С
измерения	ооозна чение	не менее	не более	среды, с
Выходное напряжение высокого уровня, В, при $I_{OH} = -0.08$ мкА	U_{OH}	$(U_{CC} - 0.4)$		
при І _{ОН} = - 2 мА	ООН	2.4	_	
Выходное напряжение низкого уровня, B, при $I_{OL} = 3.2 \text{ мA}$	U_{OL}		0.4	
Ток потребления в режиме хранения, мкА	I_{CCS}		100	
Динамический ток потребления, мА	I_{CC0}		50	-60, 85
Входной ток низкого уровня, мкА	I_{IL}	_	-10.0	
Входной ток низкого уровня, мкА	I_{IH}		10.0	
Выходной ток низкого уровня в состоянии "Выключено", мкА	I _{OZL}		-20.0	
Выходной ток низкого уровня в состоянии "Выключено", мкА	I_{OZH}		20.0	

Динамические параметры

Наименование параметра, единица измерения, режим измерения	Буквенное обозначение	Норма параметра		Температура среды, °С
нэмерения, режим измерения	ooosna tenne	не менее	не более	среды, с
Время выбора, нс	t_{CS}		170	
Время выборки адреса, нс	$t_{A(A)}$	_	200	-60, 85
Время выборки разрешения, нс	t _{A(OE)}		90	

Временная диаграмма работы микросхемы в режиме считывания из основного накопителя

Постоянное запоминающее устройство с возможностью однократного программирования организацией 32×8 разрядов 1635PT1Y

Микросхема 1635РТ1У – постоянное запоминающее устройство емкостью 32 × 8 бит с возможностью однократного программирования, предназначена для однократной записи, долговременного хранения и многократного считывания информации в составе приборов специального назначения. Позволяет исключить проведение электротермотренировки после программирования микросхемы заказчиком. Прямые и косвенные аналоги микросхемы отсутствуют.

Микросхема изготавливается в 48-выводном корпусе типа Н16.48-1В.

Таблица истинности

Режим работы	Логические состояния на выводах					
тежим раооты	CS	OE	EPR	D0 – D7		
Cyvyryypayyya	L	Н	L	D0 – D7		
Считывание	L	L	L	Z*		
Хранение	Н	X	L	Z		

Примечание

Н – высокий уровень напряжения;

L – низкий уровень напряжения;

Х – любой уровень напряжения (низкий или высокий);

Z – состояние высокого выходного сопротивления;

D0 - D7 – выходное напряжение низкого или высокого уровня, соответствующее информации в ячейке

* Состояние считывания без вывода данных при сохранении состояния "Выключено" на выходах

Назначение выводов

Номер вывода	Обозначение	Назначение
01 – 04		Технологический
05, 06	A0, A1	Вход адреса считывания
07		Свободный
08 - 10	A2A4	Вход адреса считывания
11 – 15	APR0APR4	Вход адреса программирования
16		Вход выбора микросхемы
17		Технологический
18, 19		Свободный
20, 21		Технологический
22		Вход разрешения программирования
23		Технологический
24		Общий вывод
25		Вход разрешения выхода.
26 – 29	D7D4	Выход информационный
30, 31		Свободный
32 - 35	D3D0	Выход информационный
36		Вход напряжения программирования
37, 38	C	вободный
39 – 42	DPR7 DPR4	Вход информационный для программирования
43		Свободный
44 - 47	DPR3DPR0	Вход информационный для программирования
48		Вывод питания от источника напряжения

Предельные режимы

Наименование параметра режима,	ьуквенное	Предельно-д реж	=	Предельный режим		
единица измерения	обозначение	Нор	ма	Норма		
	параметра	не менее	не более	не менее	не более	
Напряжение питания, В	U_{CC}	4.5	5.5	0	7.0	
Входное напряжение низкого уровня, В	$ m U_{IL}$	0	$0.2 \cdot U_{CC}$	_	_	
Входное напряжение высокого уровня, В	U _{IH}	$0.8 \cdot U_{CC}$	U_{CC}	_	_	
Входное напряжение, В	$U_{\rm I}$	_	_	-0.3	$U_{CC} + 0.3$	
Напряжение, прикладываемое к закрытому	Uo	0	U_{CC}	-0.3	$U_{CC} + 0.3$	
выходу данных, В						
Выходной ток, мА	I_{O}	_	1.6	1	5.0	
Емкость нагрузки, пФ	C_{L}	_	50		500	

Предельно допустимые режимы

Наименование параметров режима,	Буквенное	Предельно-допустимый режим			
единица измерения	обозначение	Норма			
единица измерения	параметра	не менее	не более		
Напряжение питания, В	U_{CC}	4.5	5.5		
Входное напряжение низкого уровня, В	U_{IL}	0	$0.3U_{CC}$		
Входное напряжение высокого уровня, В	$ m U_{IH}$	$0.7U_{CC}$	U_{CC}		
Выходной ток низкого уровня, мА	I_{OL}	-	8		
Выходной ток высокого уровня, мА	I_{OH}	_	4		
Температура, °С	Tamb	-60	125		

^{*} Допускается эксплуатация микросхем при емкости нагрузки до 500 пФ. Динамические параметры микросхемы при $C_L > 50$ пФ не гарантируются.

Электрические параметры микросхемы

Наименование параметра,	Буквенное	Норма пар	аметра	Температура
единица измерения	обозначение параметра	не менее	не более	среды, °С
Выходное напряжение высокого уровня, В	$\rm U_{OH}$	$\left(U_{CC}-0.75\right)$	_	25 ± 10
Выходное наприжение высокого уровни, в	ООН	$(U_{CC} - 0.8)$	_	-60, 85
Di montro nomagnatura magnata manua D	II.		0.36	25 ± 10
Выходное напряжение низкого уровня, В	U_{OL}		0.4	-60, 85
Ток потребления в режиме хранения, мкА	I_{CCS}		25	25 ± 10
	ices		50	-60, 85
Динамический ток потребления, мА	I_{OCC}		46	25 ± 10
$f = 0.5 M\Gamma$ ц	1000		50	-60, 85
Ток утечки низкого уровня на входе, мкА	I_{ILL}		-1.0	25 ± 10
ток утечки пизкого уровни на входе, мки	ILL.		-2.0	-60, 85
Ток утечки высокого уровня на входе, мкА	I_{ILH}		1.0	25 ± 10
ток утечки высокого уровни на входе, мк/х	*ILH		2.0	-60, 85
Ток утечки низкого уровня на выходе, мкА	I_{OLL}		-5	25 ± 10
ток утечки пизкого уровни на выходе, мки	1OLL		-20	-60, 85
Ток утечки высокого уровня на выходе, мкА	I_{OLH}		5	25 ± 10
ток утечки высокого уровни на выходе, мкл	1OLH		20	-60, 85
Время выбора, нс	tas		900	25 ± 10
Бремя выоора, не	t _{CS}		1000	-60, 85
Время выборки адреса, нс	f		900	25 ± 10
Бреми выобрки адреса, не	$t_{A(A)}$		1000	-60, 85
Время выборки разрешения выхода, нс	t _{A(OE)}		900	25 ± 10
Брени высорки разрешении выхода, по	A(OE)		1000	-60, 85
Коэффициент программируемости	N_{PR}	0.8		25 ± 10 ,
поэффициент программируемоети	1 VPK	0.0	_	-60, 85

Временная диаграмма работы микросхемы

Временная диаграмма работы микросхемы

Статическое оперативное запоминающее устройство (СОЗУ) информационной емкостью 256К и организацией 32К × 8 разрядов 1635РУ1Т

Микросхема 1635РУ1Т предназначена для построения блоков оперативной памяти вычислительных систем специального назначения.

Микросхема 1635РУ1Т имеет следующие особенности:

- КМОП-технология, сочетающая высокую скорость работы микросхемы и низкую потребляемую мощность;
- TTL-совместимые входы и выходы;
- напряжение питания в режиме хранения 2.0 В.

Микросхема изготавливается в 28-выводном корпусе типа 4183.28-2.

Прототип CY7C199-20DMB ф. Cypress Semiconductor.

Таблица истинности

Режим	Выводы				
Гежим	CE	WE	OE	I/O	
Режим хранения / режим пониженного энергопотребления /	Н	X	X	Z	
Чтение	L	Н	L	Выход	
Запись	L	L	X	Вход	
Чтение, выход в состоянии "Выключено"	L	Н	Н	Z	

Примечание - L - низкий уровень напряжения;

- Н высокий уровень напряжения;
- Х любой уровень напряжения (низкий или высокий);
- Z выход в состоянии "Выключено"

Назначение выводов

Номер вывода	Обозначение	Назначение
01	A5	Вход адреса А5
02	A6	Вход адреса Аб
03	A7	Вход адреса А7
04	A8	Вход адреса А8
05	A9	Вход адреса А9
06	A10	Вход адреса А10
07	A11	Вход адреса А11
08	A12	Вход адреса А12
09	A13	Вход адреса А13
10	A14	Вход адреса А14
11	I/O0	Вход/выход информационный І/О0
12	I/O1	Вход/выход информационный І/О1
13	I/O2	Вход/выход информационный І/О2
14	GND	Общий вывод
15	I/O3	Вход/выход информационный І/ОЗ
16	I/O4	Вход/выход информационный І/О4
17	I/O5	Вход/выход информационный І/О5
18	I/O6	Вход/выход информационный І/Об
19	I/O7	Вход/выход информационный І/О7
20	CE	Вход сигнала разрешения
21	A0	Вход адреса А0
22	OE	Вход сигнала "Разрешение вывода"
23	A1	Вход адреса А1
24	A2	Вход адреса А2
25	A3	Вход адреса А3
26	A4	Вход адреса А4
27	WE	Вход сигнала "Разрешение записи"
28	U_{CC}	Вывод питания от источника напряжения

Предельные и предельно допустимые режимы

Наименование параметра	Буквенное обозначение	лопустим)	ельно- ый режим	Предельн	ый режим
режима, единица измерения	ооозначение	не менее	не более	не менее	не более
Напряжение питания, В	U_{CC}	4,5	5,5	-0,5	7,0
Входное напряжение низкого уровня, В	U_{IL}	0	0,3U _{CC}	-0,5	$U_{CC} + 0,5$
Входное напряжение высокого уровня, В	U_{IH}	0,7U _{CC}	U_{CC}	-0,5	$U_{CC} + 0,5$
Напряжение, прикладываемое к закрытому выходу, В	$U_{\rm O}$	0	U_{CC}	-0,5	$U_{CC} + 0,5$
Выходной ток низкого уровня, мА	I_{OL}		8,0		20
Выходной ток высокого уровня, мА	I_{OH}		-4,0	_	-20

Статические параметры

Наименование параметра, единица измерения, режим измерения обозначе парамет		Норма параметра		Темпер атура
			не более	среды, °С
Напряжение питания в режиме хранения, В	U _{CCS}	2,0	-	
Выходное напряжение низкого уровня, B, при $I_{OL} = 8.0 \text{ мA}$	U_{OL}	-	0,4	
Выходное напряжение высокого уровня, В, при Іон = -4,0 мА	U_{OH}	$U_{\rm CC}$ – 0,8 B	-	
Ток утечки низкого уровня на входе, мкА, при $U_{\rm I} = 0$ В	${ m I}_{ m LIL}$	-	-5,0	
Ток утечки высокого уровня на входе, мкА, при $U_I = U_{CC}$	I_{LIH}	-	5,0	25±10,
Выходной ток низкого уровня в состоянии "Выключено", мкA, при $U_O = 0$ В	I_{OZL}	-	-5,0	-60, 125
Выходной ток высокого уровня в состоянии "Выключено", мкA, при $U_O = U_{CC}$	I_{OZH}	-	5,0	
Ток потребления в режиме хранения, мА, при $f=0,U_{IN(CS)}\geq U_{CC}-0.3B,U_{IL}\leq 0.3B,U_{IH}\geq U_{CC}-0.3B$	I_{CCS}	-	2	
Динамический ток потребления, мA, при $f=fmax=1/t_{CY(RD)}$, $I_{OUT}=0$	I _{OCC}	-	100	

Динамические параметры

Наименование параметра, единица измерения, режим измерения	Буквенное обозначение	Норма параметра		Темпер атура
Пинменование нараметра, единица измерения, режим измерения	параметра	не менее	не более	среды, °С
Время цикла считывания, нс	$t_{\mathrm{CY(RD)}}$	50	-	
Время выборки адреса, нс	t _{A(A)}	-	50	
Время выбора, нс	t_{CS}	-	50	
Время выборки разрешения, нс	t _{A(OE)}	-	40	
Время сохранения данных при смене адреса, нс	$t_{ m V}$	5	-	
Время задержки распространения при переходе из состояния "Выключено" в состояние высокого, низкого уровня, нс, от входа СЕ к выходам І/О	$t_{\mathrm{PZH(CE)}}, \ t_{\mathrm{PZL(CE)}}$	5	-	
Время задержки распространения при переходе из состояния высокого, низкого уровня в состояние "Выключено", нс, от входа СЕ к выходам I/O	$t_{\mathrm{PHZ(CE)}}, \ t_{\mathrm{PLZ(CE)}}$	-	20	
Время задержки распространения при переходе из состояния "Выключено" в состояние высокого, низкого уровня, нс, от входа ОЕ к выходам I/O	$t_{\mathrm{PZH(OE)}}, \ t_{\mathrm{PZL(OE)}}$	5	-	
Время задержки распространения при переходе из состояния высокого, низкого уровня в состояние "Выключено", нс, от входа ОЕ к выходам І/О	$t_{\mathrm{PHZ(OE)}}, \ t_{\mathrm{PLZ(OE)}}$	-	20	25±10, -60, 125
Время цикла записи, нс	t _{CY(WE)}	50	-	00, 120
Время установления адреса относительно начала записи, нс	t _{SU(A)}	5	-	
Время удержания адреса относительно сигнала записи, нс	$t_{H(A)}$	5	1	
Время установления адреса относительно сигнала записи, нс	$t_{SU(A)1}$	45	1	
Длительность сигнала выбора, нс	$t_{W(CE)}$	40	-	
Длительность сигнала записи, нс	$t_{W(WE)}$	40	-	
Время установления данных относительно окончания записи, нс	$t_{SU(D)}$	40	-	
Время удержания данных относительно окончания записи, нс	$t_{H(D)}$	5	-	
Время задержки распространения при переходе из состояния "Выключено" в состояние высокого, низкого уровня, нс, от входа WE к выходам I/O	$t_{\text{PZH (WE)}}, \ t_{\text{PZL(WE)}}$	-	20	
Время задержки распространения при переходе из состояния высокого, низкого уровня в состояние "Выключено", нс, от входа WE к выходам I/O	$t_{ ext{PHZ (WE)}}, \ t_{ ext{PLZ(WE)}}$	5	-	

Временная диаграмма режимов записи и чтения

Временная диаграмма режима разрешения записи (контроль по СЕ) и чтения

Временная диаграмма режима чтения (контроль по А0 – А14)

Временная диаграмма режима чтения (контроль по СЕ)

Временная диаграмма режима чтения (контроль по ОЕ)

Временная диаграмма режима записи по CE ($OE = U_{IH}$)

Уровни отсчета при контроле динамических параметров $t_{A(A)}$, t_V , t_{CS}

Уровни отсчета при контроле динамических параметров $t_{A(OE)}$, $t_{PZH(CE)}$, $t_{PZL(CE)}$, $t_{PLZ(CE)}$, $t_{PLZ(CE)}$, $t_{PZH(OE)}$, $t_{PZL(OE)}$, $t_{PZL(OE)}$, $t_{PLZ(WE)}$, $t_{PLZ(WE)}$, $t_{PLZ(WE)}$, $t_{PLZ(WE)}$

Оперативное запоминающее устройство (ОЗУ) емкостью 72К (8Кх9) с двух портовыми буферами памяти, с внутренними указателями, загружающими и выгружающими по принципу первый вошел – первый вышел.

1642РГ1РБМ

Микросхема 1642РГ1РБМ представляет собой оперативное запоминающее устройство (ОЗУ) емкостью 72К (8Кх9) с двух портовыми буферами памяти, с внутренними указателями, загружающими и выгружающими по принципу первый вошел – первый вышел. Предназначена для асинхронного и одновременного чтения/записи при параллельной ускоренной обработке. Разрабатываемая микросхема предназначена для использования в высокопроизводительных системах обработки информации и устройствах управления специального применения. Микросхема изготавливается в 28-выводном корпусе типа 2121.28-6. **Прототип IDT7035L ф. IDT**

Таблица 1 – Назначение выводов

Номер вывода	Обозначение	Назначение
01	WR	Вход сигнала "Разрешение записи"
02	DI8	Вход
03	DI3	Вход
04	DI2	Вход
05	DI1	Вход
06	DI0	Вход
07	EXI	Вход сигнала "Расширение"
08	PLF	Выход сигнала "Флаг полный"
09	DO0	Выход
10	DO1	Выход
11	DO2	Выход
12	DO3	Выход
13	DO8	Выход

Таблица 1 – Назначение выводов (продолжение)

Номер вывода	Обозначение	Назначение	
14	GND	Общий вывод	
15	$\overline{\text{RD}}$	Вход сигнала "Разрешение чтения"	
16	DO4	Выход	
17	DO5	Выход	
18	DO6	Выход	
19	DO7	Выход	
20	$\overline{\text{EXO}}/\overline{\text{PLH}}$	Выход сигналов "Расширение"/ "Флаг наполовину полный"	
21	PLE	Выход сигнала "Флаг пустой"	
22	\overline{SR}	Вход сигнала "Сброс"	
23	FL/\overline{RT}	Вход сигналов "Загрузка первого"/ "Ретрансляция"	
24	DI7	Вход	
25	DI6	Вход	
26	DI5	Вход	
27	DI4	Вход	
28	U_{CC}	Вывод питания от источника напряжения	

Рисунок 1 – Структурная схема микросхемы

Таблица 2 – Режим одного прибора и расширения разрядности.

Dayway	Входы			Внутренне	Выходы			
Режимы	SR	FL/RT	EXI	Указатель чтения	Указатель записи	PLE	PLF	PLH
Сброс	0	X	0	Нулевое состояние	Нулевое состояние	0	1	1
Ретрансляция	1	0	0	Нулевое состояние	Не изменяется	X	X	X
Запись	1	1	0	Не изменяется	Приращение *	X	X	X
Чтение	1	1	0	Приращение *	Не изменяется	X	X	X

^{*} Приращение указателей возможно, если соответствующий флаг находится в состоянии логической 1

Таблица 3 – Режим увеличения информационной емкости и сложного расширения

D		Входы		Внутренне	Выходы		
Режимы	SR	FL/RT	EXI	Указатель чтения	Указатель записи	PLE	PLF
Сброс 1-го прибора		0	*	Нулевое состояние Нулевое состояние		0	1
Сброс всех других приборов	0	1	*	Нулевое состояние	Нулевое состояние	0	1
Чтение/запись	1	X	*	X	X X		X
* Вход EXI подключается к выходу EXO/PLH предыдущего прибора							

Таблица 4 – Предельные режимы

Обозначение	Попоможну		Норма		
	Параметры	не менее	не более	измерения	
U_{TERM}	Напряжение питания	-0.5	7	В	
Ui	Входное напряжение	-0.5	7	В	
Т	Температурный диапазон хранения без подачи напряжения питания	-60	150	°C	
Tamb	Температура окружающей среды при подаче напряжения питания.	-60	135	°C	
I_{O}	Выходной ток	-50	50	мА	

Примечания.

Таблица 5 – Предельно допустимые режимы

Обозначение	Параметры	Ho	Единица			
Обозначение	параметры	не менее	не более	измерения		
Ucc	Напряжение питания	4.5	5.5	В		
V_{IH}	Входное напряжение высокого уровня	2.2	6.0	В		
V _{IH RT/RS/XI}	Входное напряжение высокого уровня	2.6	6.0	В		
V_{IL}	Входное напряжение низкого уровня	0	0.8	В		
I_{OL}	Выходной ток низкого уровня	-	8	мА		
I_{OH}	Выходной ток высокого уровня	-	-2	мА		
T	Рабочий температурный диапазон среды	-60	+125	°C		
Примечание – Значения входных и выходных емкостей микросхем определяются в ходе ОКР.						

¹ U_{TERM} ≥ Ucc+10% не более 25% времени цикла.

² При $U_{TERM} \ge Ucc+10\%$ $I_O \le 20$ мA

Таблица 6 – Статические параметры

(Нормы на параметры и режимы измерений могут уточняться в ходе ОКР)

Обозна			Норма		E	
чение	Параметры	Режим измерения	не менее	не более	Единица измерения	
I_{LI}	Ток утечки по входу	$0.4 \le V_I \le Ucc$	-1	1	мкА	
I_{LO}	Ток утечки по выходу	$0.4 \le V_O \le Ucc, V_{IR} \ge V_{IH}$	-10	10	мкА	
V _{OH}	Выходное напряжение высокого уровня	I _{OH} =-2мА	2.4	-	В	
V _{OL}	Выходное напряжение низкого уровня	I _{OL} =8 MA	-	0.4	В	
I_{CC1}	Ток потребления в активном режиме	$I_O=0, F_R=F_W=15M\Gamma$ ц $F_{IN}=10M\Gamma$ ц	-	150	мА	
I _{CC2}	Ток хранения	I _O =0, F _R =F _W =15МГц U _{IN} = Ucc-0.2В или U _{IN} =0.2В	-	25	мА	
I_{CC3}	Ток при сниженной мощности	I _O =0, U _{INR} = U _{INW} = Ucc-0.2B U _{IN} = Ucc-0.2B или U _{IN} =0.2B	-	12	мА	
ФК	Функциональный контроль	Ucc=4.55.5В F=14МГц	-	-		
C _{IN}	Входная емкость	$U_{IN} = 0B, f = 1M\Gamma$ ц, $T = 25^{\circ}C$	-	9	пΦ	
C_{out}	Выходная емкость	U_{OUT} =0B, f=1MГц, T=25°C	-	10	пΦ	

Таблица 7 – Динамические параметры (Временные диаграммы приведены на рисунках 3 – 14)

Обозначени	Попомотру	Режим	Норма		Единица
e	Параметры	измерения	не менее	не более	измерения
f_S	Частота		-	15	мГц
t _{CY R}	Время цикла чтения		65	-	нс
t _{A(A)}	Время выборки адреса		-	50	нс
t_{RR}	Время восстановления чтения		15	-	нс
$t_{ m RPW}$	Ширина импульса чтения	Прим.1	50	-	нс
t_{RLZ}	Время считывание Low на Low шине данных	Прим.2	10	-	нс
$t_{ m WLZ}$	Время записи High на Low-Z шине данных	Прим.2,3	15	-	нс
t_{DV}	Время данных от чтения High		5	-	нс
$t_{ m RHZ}$	Время считывания High на High-Z шине данных	Прим.2	-	30	нс
t _{CY W}	Время цикла записи		65	-	нс
$t_{ m WPW}$	Ширина импульса записи	Прим.1	50	-	нс
t_{WR}	Время восстановления записи		15	-	нс
$t_{ m DS}$	Время предустановки данных		30	-	нс
t _{DH}	Время удержания данных		5	-	нс
$t_{ m RSC}$	Время цикла предустановки		65	-	нс
t_{RS}	Ширина импульса предустановки	Прим.1	50	-	нс
$t_{ m RSS}$	Время установки по RESET	Прим.2	50	-	нс
$t_{ m RTR}$	Время восстановления по RESET		15	-	нс
$t_{ m RTC}$	Время цикла ретрансляции		65	-	нс

Продолжение таблицы 7

Обозначение	Параметры	Режим	Норма		Единица
Ооозначение	параметры	измерения	не менее	не более	измерения
$t_{ m RT}$	Ширина импульса ретрансляции	Прим.1	50	-	нс
t_{RTS}	Время установки ретрансляции	Прим.2	50	-	нс
$t_{ m RTR}$	Время восстановления ретрансляции		15	-	нс
$t_{ m EFL}$	Предустановка Low \overline{EF}		-	65	нс
t _{HFH} ,t _{FFH}	Предустановка High \overline{HF} и \overline{FF}		-	65	нс
$t_{ m RTF}$	Время ретрансляции Low на значение флагов		-	65	нс
$t_{ m REF}$	Время считывания Low на \overline{EF} Low		-	45	нс
$t_{ m RFF}$	Время считывание High на \overline{FF} High		-	45	нс
$t_{ m RPE}$	Время чтения ширины импульса после \overline{EF} High		50	-	нс
$t_{ m WEF}$	Время записи High на \overline{EF} High		-	45	нс
$t_{ m WFF}$	Время записи Low на \overline{FF} Low		-	45	нс
$t_{ m WHF}$	Время записи Low на флаг \overline{HF} Low		-	65	нс
$t_{ m RHF}$	Время чтения High на флаг \overline{HF} High		-	65	нс
t_{WPF}	Ширина импульса записи после \overline{FF} High		50	-	нс
$t_{ m XOL}$	Время чтения/записи Low на \overline{XO} Low		_	50	нс
$t_{ m XOH}$	Время чтения/записи High на \overline{XO} High		-	50	нс
t _{XI}	Ширина импульса \overline{XI}		50	-	нс
$t_{\rm XIR}$	Время восстановления \overline{XI}		10	-	нс
t _{XIS}	$\overline{\mathbf{B}}$ ремя предустановки \overline{XI}		15	-	нс

Примечания.

- 1 Ширины импульсов меньше минимальной не допускаются.
- 2 Значения гарантируются конструкцией, постоянно не тестируются.
- 3 Применяется только в режиме чтения данных сквозного потока.

Примечание - WR = RD = U_{IH} относительно нарастающего фронта сигнала SR

Рисунок 2 – Временная диаграмма режима сброса

Примечание - WR = RD = U_{IH} относительно нарастающего фронта сигнала SR

Рисунок 3 – Временная диаграмма режима асинхронного чтения и записи

Рисунок 4 – Временная диаграмма режима установки/снятия флага "Полный" по последней записи/первому чтению

Рисунок 5 – Временная диаграмма режима установки/снятия флага "Пустой" по последнему чтению/первой записи

Примечание — Выводы PLE, PLF, EXO/PLH могут изменять свое состояние во время ретрансляции, но принимают истинные значения через время t_{RTC} .

Рисунок 6 – Временная диаграмма режима ретрансляции

Рисунок 7 – Временная диаграмма минимального времени совпадения флага "Пустой" и чтения

Рисунок 8 – Временная диаграмма минимального времени совпадения флага "Полный" и записи

Рисунок 9 – Временная диаграмма установления флага "Наполовину полный"

Рисунок 10 – Временная диаграмма выхода EXO/PLH в режиме расширения

Рисунок 11 – Временная диаграмма входа EXI в режиме расширения

Рисунок 12 – Временная диаграмма чтения данных в сквозном режиме

Рисунок 13 – Временная диаграмма записи данных в сквозном режиме

Двухпортовое статическое ОЗУ емкостью 64К (8Кх8) с двумя независимыми портами с раздельным управлением, адресом и выводами вход/выход 1642РК1УБМ

Микросхема 1642РК1УБМ представляет собой двухпортовое статическое ОЗУ емкостью 64К (8Кх8) с двумя независимыми портами с раздельным управлением, адресом и выводами вход/выход, которые позволяют осуществить независимый, асинхронный доступ для чтения или записи по любому адресу в памяти. Применяется как самостоятельное двухпортовое ОЗУ 64К или как сочетание ведущее/ведомое двухпортовое ОЗУ для 16-ти и более разрядных систем. Микросхема предназначена для использования в высокопроизводительных системах обработки информации и устройствах управления специального применения. Изготавливается в 64-выводном корпусе типа Н18.64-3В, имеющем технологические перемычки расположенные между 24 и 25 и между 56 и 57 выводами. Прототип IDT7005 ф. IDT

Таблица 1 – Назначение выводов

Номер вывода	Обозначение	Назначение	Направление
01	DI/DO _{2L}	Бит 2 Данных левого порта	вход /выход
02	DI/DO _{3L}	Бит 3 Данных левого порта	вход /выход
03	DI/DO _{4L}	Бит 4 Данных левого порта	вход /выход
04	DI/DO _{5L}	Бит 5 Данных левого порта	вход /выход
05	GND	Общий вывод	
06	DI/DO _{6L}	Бит 6 Данных левого порта	вход /выход
07	DI/DO _{7L}	Бит 7 Данных левого порта	вход /выход
08	V_{CC}	Вывод источника питания	
09	GND	Общий вывод	
10	DI/DO _{0R}	Бит 0 Данных правого порта	вход /выход
11	DI/DO _{1R}	Бит 1 Данных правого порта	вход /выход
12	DI/DO _{2R}	Бит 2 Данных правого порта	вход /выход
13	V_{CC}	Вывод питания от источника напряжения	

Таблица 1 – Назначение выводов (продолжение)

Номер вывода	Обозначение	Назначение	Направление
14	DI/DO _{3R}	Бит 3 Данных правого порта	вход /выход
15	DI/DO _{4R}	Бит 4 Данных правого порта	вход /выход
16	DI/DO _{5R}	Бит 5 Данных правого порта	вход /выход
17	DI/DO _{6R}	Бит 6 Данных правого порта	вход /выход
18	DI/DO _{7R}	Бит 7 Данных правого порта	вход /выход
19	OE_R	Запрет вывода правого порта	вход
20	WR/RD _R	Чтение/запись правого порта	вход
21	SEM_R	Разрешение работы семафора правого порта	вход
22	CE_R	Вход сигнала разрешения правого порта	вход
23	NC	Вывод свободный	
24	GND	Общий вывод	
25	A_{12R}	Бит 12 адреса правого порта	вход
26	A _{11R}	Бит 11 адреса правого порта	вход
27	A_{10R}	Бит 10 адреса правого порта	вход
28	A_{9R}	Бит 9 адреса правого порта	вход
29	A_{8R}	Бит 8 адреса правого порта	вход
30	A_{7R}	Бит 7 адреса правого порта	вход
31	A_{6R}	Бит 6 адреса правого порта	вход
32	A_{5R}	Бит 5 адреса правого порта	вход
33	A_{4R}	Бит 4 адреса правого порта	вход
34	A_{3R}	Бит 3 адреса правого порта	вход
35	A_{2R}	Бит 2 адреса правого порта	вход
36	A_{1R}	Бит 1 адреса правого порта	вход
37	A_{0R}	Бит 0 адреса правого порта	вход
38	INT_R	Прерывание правого порта	выход
39	BUSYR	Busy правого порта	вход /выход
40	M/S	Ведущий/ведомый	вход

Таблица 1 – Назначение выводов (продолжение)

Номер вывода	Обозначение	Назначение	Направление
41	GND	Общий вывод	
42	$BUSY_L$	Busy левого порта	вход /выход
43	INT_{L}	Прерывание левого порта	выход
44	A_{0L}	Бит 0 адреса левого порта	вход
45	A_{1L}	Бит 1 адреса левого порта	вход
46	A_{2L}	Бит 2 адреса левого порта	вход
47	A_{3L}	Бит 3 адреса левого порта	вход
48	${ m A_{4L}}$	Бит 4 адреса левого порта	вход
49	A_{5L}	Бит 5 адреса левого порта	вход
50	A_{6L}	Бит 6 адреса левого порта	вход
51	A_{7L}	Бит 7 адреса левого порта	вход
52	A_{8L}	Бит 8 адреса левого порта	вход
53	A_{9L}	Бит 9 адреса левого порта	вход
54	A_{10L}	Бит10 адреса левого порта	вход
55	A_{11L}	Бит11 адреса левого порта	вход
56	A_{12L}	Бит12 адреса левого порта	вход
57	V _{CC}	Вывод питания от источника напряжения	
58	N/C	Вывод свободный	
59	CE_{L}	Вход сигнала разрешения левого порта	вход
60	SEM_L	Разрешение работы семафора левого порта	вход
61	WR/RD _L	Чтение/запись левого порта	вход
62	OE_L	Запрет вывода левого порта	вход
63	DI/DO0L	Бит 0 Данных левого порта	вход /выход
64	DI/DO1L	Бит 1 Данных левого порта	вход /выход

Таблица 2 – Предельные режимы

Ogomowowa	Попоможну	Hop	Единица	
Обозначение	Параметры	не менее	не более	измерения
U _{TERM}	Напряжение питания	-0.5	7	В
Ui	Входное напряжение	-0.5	7	В
T	Температурный диапазон хранения без подачи напряжения питания	-60	150	°C
Tamb	Температура окружающей среды при подаче напряжения питания.	-60	135	°C
I_{O}	Выходной ток	-50	50	мА

Таблица 3 – Предельно допустимые режимы

Обозначение	Попомотру	Ho	Единица	
Ооозначение	Параметры	не менее	не более	измерения
Ucc	Напряжение питания	4.5	5.5	В
V_{IH}	Входное напряжение высокого уровня	2.2	6.0	В
$V_{ m IL}$	Входное напряжение низкого уровня	0	0.8	В
I_{OL}	Выходной ток низкого уровня	-	4	мА
I_{OH}	Выходной ток высокого уровня	-	-4	мА
T	Рабочий температурный диапазон среды	-60	+125	°C

Рисунок 1 – Структурная схема микросхемы

Таблица 4 – Статические параметры

Обозначение	Папачатту	Ромим изморомия	Но	рма	Единица	
Ооозначение	Параметры	Режим измерения	не менее	не более	измерения	
I_{LI}	Ток утечки по входу	$V_{IN}=0 \div Ucc Ucc=5.5B$	-	10	мкА	
I_{LO}	Ток утечки по выходу	$V_{OUT}=0 \div Ucc Ucc=5.5B$	-	10	мкА	
V_{OH}	Выходное напряжение высокого уровня	І _{ОН} =-4мА	2.4	-	В	
V_{OL}	Выходное напряжение низкого уровня	I _{OL} =4 MA	-	0.4	В	
I_{CC}	Динамический рабочий ток (оба порта активные)	CE=V _{IL} ,Выходы открыты SEM=V _{IH} , f=fMAX(1)	-	300	мА	
I_{SB1}	Ток хранения (Оба порта – входы с TTL уровнями)	CE _L =CE _R =V _{IH} , SEM _R =SEM _L =V _{IH} f=fMAX ⁽¹⁾	-	80	мА	
I_{SB2}	Ток хранения (Один порт – входы с TTL уровнями)	СЕ "A"= $V_{IL\ II}$ СЕ "B"= $V_{IH}^{(3)}$. Выходы активного порта открыты. $f=14M\Gamma_{II}$ SEM $_{R}=$ SEM $_{L}=V_{IH}$	-	190	мА	
I_{SB3}	Полный ток хранения (Оба порта – все входы с КМОП уровнями)	Оба порта: $CE_L \text{ и } CE_R \geq Vcc\text{-}0.2B$ $V_{IN} \geq Vcc\text{-}0.2B \text{ или } V_{IN} \leq 0.2B, \ f\text{=}0^{(2)},$ $SEM_R\text{=}SEM_L \geq Vcc\text{-}0.2B$	-	30	мА	
${ m I}_{ m SB4}$	Полный ток хранения (Один порт – все входы с КМОП уровнями)	СЕ "A" ≤ 0.2 В и СЕ "В" \geq Vcc-0.2В SEM _R =SEM _L \geq Vcc-0.2В $V_{IN} \geq$ Vcc-0.2В или $V_{IN} \leq 0.2$ В Выходы активного порта открыты $f=fMAX^{(1)}$	-	175	мА	
C_{IN}	Входная емкость	$V_{IN}=0 \text{ B f}=1\text{M}\Gamma\text{II}, T=25^{\circ}\text{C (3)}$	-	9	пΦ	
C_{out}	Выходная емкость	V_{OUT} =0 В f=1МГц, T=25°С (3)	-	10	пФ	
ΦК	Функциональный контроль (4)	Ucc=4.55.5B F=14МГц				

Примечания:

- 1. f = 0 означает отсутствие переключения адресов или цепей управления.
- 2. Порт "А" может быть или левый или правый порт. Порт "В" есть порт противоположный "А" порту.
- 3 Параметр гарантируется квалифицированными испытаниями.
- 4 В случае если функциональный контроль проводят на максимальной рабочей частоте (F=14МГц) проверку динамических параметров допускается не проводить.
 - 5 Нормы на параметры и режимы измерений таблицы 4 могут уточняться в ходе ОКР в технически обоснованных случаях.

Таблица 5 – Динамические параметры цикла чтения (Ucc=4.5B,T= -60 ÷ 125 °C)

Наименование параметра	Обозначение	Нор	ма, нс	Примечание
паименование параметра	параметра	не менее	не более	Примечание
Время цикла чтения, нс	t _{CY R}	70	_	_
Время выборки адреса	$t_{A(A)}$	_	70	
Время выбора	t_{CS}		70	1
Время выборки разрешения выхода	t _{A(OE)}		35	_
Сохранение выхода по смене адреса	t_{OH}	3	_	
Время выхода по Low-Z	t_{LZ}	3		2
Время выхода по High-Z	$t_{\rm HZ}$	_	30	2
Время включения мощности хранения по СЕ	t_{PU}	0	_	
Время отключения мощности хранения по СЕ	t_{PD}	_	50	
Импульс обновления сигнального флага ($\overline{\text{OE}}_{\text{или}}$ $\overline{\text{SEM}}_{\text{)}}$	t_{SOP}	15	_	_
Время доступа сигнального адреса	t_{SAA}	_	70	

Примечания

1 Для доступа к ОЗУ $\overline{\text{CE}} = V_{\text{IL}}$ и $\overline{\text{SEM}} = V_{\text{IH}}$. Для доступа к флаг-сигналу $\overline{\text{CE}} = V_{\text{IH}}$ и $\overline{\text{SEM}} = V_{\text{IL}}$

2 Время задержки измеряется на уровне $\pm\,500$ мВ от низкого или высокого уровня напряжения выходного сигнала

Таблица 6 — Динамические параметры цикла записи (Ucc= $4.5 \div 5.5$ B,T= $-60 \div 125$ °C)

Наименование параметра	Обозначение	Норм	1а, нс	Приме
паименование параметра	параметра	не менее	не более	чание
Время цикла записи	t _{CY W}	70	_	_
Разрешение кристалла к концу записи	t_{EW}	50		1
Значение адреса к концу записи	$t_{ m AW}$	50		_
Время предустановки адреса	t_{AS}	0		1
Ширина импульса записи	$t_{ m WP}$	50		_
Время восстановления записи	$t_{ m WR}$	0		
Значение данных к концу записи	$t_{\rm DW}$	40		
Выходное время High-Z	$t_{ m HZ}$	_	30	2
Время удержания данных	t_{DH}	0	_	_
Разрешение записи к выходу High-Z	$t_{ m WZ}$	_	30	2
Включение выхода от конца записи	t_{OW}	0	_	
Время БЕМ флага от записи к чтению	$t_{ m SWRD}$	5		
Окно содержимого <i>SEM</i> флага	t_{SPS}	5		_

Примечания

1 Для доступа к ОЗУ $\overline{CE}=V_{IL}$ и $\overline{SEM}=V_{IH}$. Для доступа к флаг-сигналу $\overline{CE}=V_{IH}$ и $\overline{SEM}=V_{IL}$

2 Время задержки измеряется на уровне \pm 500 мВ от низкого или высокого уровня напряжения выходного сигнала

Таблица 7 – Динамические параметры в режиме \overline{BUSY} (Ucc=4.5÷5.5B,T= -60 ÷ 125 °C)

Наимонование параметра	Обозначение	Норм	1а, нс		
Наименование параметра	параметра	не менее	не более		
Временная диаграмма	$\overline{BUSY} \ (M/\overline{S} = V_{IH})$	_			
Время доступа \overline{BUSY} от совпадения адреса	$t_{ m BAA}$	_	45		
Время запрета \overline{BUSY} от несовпадения адреса	$t_{ m BDA}$		40		
Время доступа \overline{BUSY} от Low разрешения	t_{BAC}		40		
кристалла					
Время доступа \overline{BUSY} от High разрешения	$t_{ m BDC}$		35		
кристалла					
Время установки арбитража приоритета	t_{APS}	5	_		
Запрет \overline{BUSY} к значению данных	$t_{ m BDD}$	_	45		
Удержание записи после \overline{BUSY}	$t_{ m WH}$	25	_		
Временная диаграмма	$\overline{BUSY} \ (M/\overline{S} = V_{IL})$				
\overline{BXOJ} \overline{BUSY} к записи	$t_{ m WB}$	0	_		
Удержание записи после \overline{BUSY}	$t_{ m WH}$	25			
Временная диаграмма задержки Порт-Порт					
Импульс записи к задержке данных	$t_{ m WDD}$	_	95		
Значение данных записи к задержке данных	t _{DDD}		80		
чтения					

Таблица 8 Динамические параметры в режиме прерывания (Ucc=4.5÷5.5B,T= -60 ÷ 125 °C)

Наименование параметра	Обозначение	Но	рма, нс
паименование параметра	параметра	не менее	не более
Время предустановки адреса	t_{AS}	0	_
Время восстановления записи	t_{WR}	0	
Время установки прерывания	$t_{ m INS}$	_	50
Время сброса прерывания	$t_{\rm INR}$		50

Таблица 9 – Таблица истинности режимов чтения, записи

	B	ход		Вход/выход	Darrens				
CE	WR/RD	ŌE	SEM	DI/DO	Режим				
Н	X	X	Н	Z	Пониженного потребления мощности				
L	L	X	Н	Вход данных	Запись				
L	Н	L	Н	Выход данных	Чтение				
X	X	Н	X Z		Состояние с высоким импедансом				
Γ	Примечание – Адреса правого и левого портов не совпадают								

Таблица 10 – Таблица истинности режима семафора чтения, записи

	Bxc	DД		Выход	Danser	
$\overline{\text{CE}}$	WR/RD	ŌE	SEM	DI/DO ₁	Режим	
Н	Н	L	L	Выход данных	Чтение (контроль) семафора выходных данных	
Н	↑	X	L	Вход данных	Запись DI/DO ₁ в флаг семафора	
L	X	X	L	_	запрещено	

Примечание – Имеются 8 флагов семафора, записываемые через DI/DO_1 и считываемые из DI/DO_1 – DI/DO_8 . Эти флаги кодируются адресами A_0 – A_2

Таблица 11 – Таблица истинности режима прерывания 1)

Левый порт				Правый порт				Φ		
WR/RD _L	$\overline{\text{CE}}_{\text{L}}$	$\overline{\text{OE}}_{\text{L}}$	A_{0L} - A_{12L}	$\overline{\text{INT}}_{\text{L}}$	WR/RD _R	$\overline{\text{CE}}_{R}$	\overline{OE}_R	$A_{0R} - A_{12R}$	\overline{INT}_R	Функция
L	L	X	111111111	X	X	X	X	X	L	Установка флага прерывания правого
										порта
X	X	X	X	X	X	L	L	111111111	$H^{2)}$	Сброс флага прерывания правого порта
V	X	X	V	T 3)	Ţ	Ţ	Y	111111110	X	Установка флага прерывания левого
Λ	Λ	Λ	Λ	L	L	L	Λ	111111110	Λ	порта
X	L	L	111111110	$H^{2)}$	X	X	X	X	X	Сброс флага прерывания левого порта

 $^{^{1)}}$ В исходном состоянии входы $\overline{BUSY_L} = BUSY_R = V_{IH}$. Выходы \overline{INT}_R и \overline{INT}_L должны быть установлены в исходное состояние при включении питания

 $^{^{2)}}$ Если вход $BUSY_R = V_{IL}$ изменения не происходят

 $^{^{3)}}$ Если вход $\mathrm{BUSY_L} = \mathrm{V_{IL}}$ изменения не происходят

Таблица 12 – Таблица истинности арбитража BUSY

	Bxo	ды	Вых	оды	Функция		
$\overline{\text{CE}}_{\text{L}}$	$\overline{\text{CE}}_{R}$	A_{0L} - A_{12L} A_{0R} - A_{12R}	BUSY L1)	BUSY _R 1)			
X	X	не совпадают	Н	Н	нормальный		
Н	X	совпадают	Н	Н	нормальный		
X	Н	совпадают	Н	Н	нормальный		
L	L	совпадают	2)	2)	запись запрещена ³⁾		

 $[\]overline{^{1)}}$ Выводы $\overline{\mathrm{BUSY}}_{\mathrm{L}}$, $\overline{\mathrm{BUSY}}_{\mathrm{R}}$ являются выходами, когда установлены , как «ведущие». Оба вывода являются входами, когда установлены, как «ведомые». Вывод $\overline{\mathrm{BUSY}}$ двухтактный, не является выходом с открытым стоком. В состоянии «ведомого» вход $\overline{\mathrm{BUSY}}$ извне запрещает запись в ячейку

H – если входы противоположного порта устанавливаются после адресов и входов разрешения этого порта.

Если время установки арбитража приоритета t_{APS} не достигнуто, один из выходов BUSY $_L$ или \overline{BUSY}_R станет L, оба выхода одновременно не могут перейти в состояние логического "0"

²⁾ L – если входы противоположного порта имеют приоритет по адресам или входам разрешения этого порта.

 $^{^{3)}}$ Запись в левый (правый) порт запрещается извне, подачей на вывод \overline{BUSY}_L (\overline{BUSY}_R) уровня логического 0, независимо от состояния остальных логических входов

Рисунок 2 – Временная диаграмма режима чтения 5)

 $^{^{1)}}$ Параметр зависит от того, какой из сигналов $\overline{\text{OE}}\,$ или $\overline{\text{CE}}\,$ установится последним

 $[\]overline{^{2)}}$ Параметр зависит от того, какой из сигналов \overline{OE} или \overline{CE} последним выйдет из режима

³⁾ Задержка необходима только в случае, когда противоположный порт производит запись в ячейки с тем же адресом. Для одновременного чтения работа BUSY не влияет на выходные данные

 $^{^{4}}$ Начало чтения выходных данных зависит от того, какое событие произойдет последним: t_{AA} , t_{ACE} , t_{AOE} или t_{BDD}

 $^{5) \}overline{SEM} = V_{IH}$

Рисунок 3 — Временная диаграмма режима записи 1 $^{1)\,5)\,8}$

Рисунок 4 — Временная диаграмма режима записи 2 1) 5)

- * 1) Выводы R/\overline{W} или \overline{CE} должны оставаться высокими во время переключения адресов
- $^{2)}$ Запись может накладываться (перекрываться) (t_{EW} , t_{WP}) низким уровнем на выводе \overline{CE} и низким уровнем на выводе R/\overline{W} цикла записи в массив памяти
- $^{3)}$ t_{WR} измеряется от ранее перешедшего в высокий уровень сигнала \overline{CE} или R/\overline{W} (или \overline{SEM} или R/\overline{W}) в конце цикла записи
 - ⁴⁾ В течение этого режима выводы DI/DO являются выходами и входные сигналы не должны применяться
- $^{5)}$ Если переход в низкий уровень выводов $\overline{\text{CE}}$ и $\overline{\text{SEM}}$ происходит одновременно, выходы сохраняют третье состояние (высокого импеданса)
 - $^{6)}$ Время зависит от того, какой из сигналов $\overline{\text{CE}}\,$ или $R/\overline{W}\,$ установится последним
- $^{7)}$ Этот параметр гарантируется конструктивно, но не контролируется. Измеряется переход \pm 500 мВ из устойчивого состояния по схеме, приведенной на рисунке A.8
- \overline{OE} остается низким в течение всего цикла записи, контролируемого R/\overline{W} , ширина импульса должна увеличиться на время t_{WP} или $(t_{WZ}+t_{WD})$, чтобы разрешить выводам DI/DO выключиться и данным разместиться на шине для ожидания t_{DW}
- $^{9)}$ Для доступа к O3У $\overline{CE} = V_{IH}$, $\overline{SEM} = V_{IL}$. Для доступа к флаг-сигналу $\overline{CE} = V_{IH}$, $\overline{SEM} = V_{IL}$. t_{EW} должно перейти в любое состояние

Рисунок 6 – Временная диаграмма режима "BUSY адреса"

Рисунок 7 – Временная диаграмма режима BUSY порт-порт

Рисунок 8 – Временная диаграмма режима записи с BUSY

Рисунок 9 – Временная диаграмма режима прерывания

Рисунок 12 – Временная диаграмма режима семафора $^{*1)(2)(3)}$

 * DI/DO $_L$ = DI/DO $_R$ = V_{IL} , \overline{CE}_L = \overline{CE}_R = V_{IH} . Флаг семафора обоих портов свободен на начало цикла.

²⁾ Динамические параметры одинаковы для левого и правого портов. Порт A может быть как левым портом, так и правым, порт B – противоположный порту A.

 $^{3)}$ Параметр измеряется от вывода, R/ \overline{W}_A или \overline{SEM}_A , переключившегося в высокий уровень, до вывода, R/ \overline{W}_B или \overline{SEM}_B , переключившегося в высокий уровень.

4) Если время t_{SPS} не достаточное, семафор установится для одного из портов, но не конкретный порт не гарантируется

ПЗУ с возможностью многократного электрического перепрограммирования с последовательным вводом/выводом информации (8Кх8) 1644РС1ТБМ

Предназначена для записи, считывания и длительного энергонезависимого неразрушаемого хранения информации (констант и символов) в системах с I^2 С-интерфейсом. Изготавливается в 20-выводном металлокерамическом корпусе 4153.20-6. **Прототип 24FC65 ф. Microchip.**

Отличительные особенности:

Таблица 1 – Назначение выводов

Номер вывода	Обозначение	Назначение					
01 - 03	NC	Вывод свободный					
04	A2	Вход адреса*					
05	GND	Общий вывод					
06	SDA	Вход/выход сигнала "Последовательные данные"					
07	SCL	Вход сигнала "Последовательный такт"					
08 – 13	NC	Вывод свободный					
14	U_{CC}	Вывод питания от источника напряжения					
15	NC	Вывод свободный					
16	A0	Вход адреса*					
17	A1	Вход адреса*					
18 – 20	NC	Вывод свободный					
9	* Используются для расширения объема памяти, подключаемой к I ² C - шине. Возможно подключение к одной шине до 8 микросхем 1644PC1TБМ						

Таблица 2 – Предельно-допустимые и предельные режимы эксплуатации микросхем

Наименование параметра	Буквенное обозначен	-	-допустимый ежим	Предельный режим		
режима, единица измерения	ие	не менее	не более	не менее	не более	
Напряжение питания	U _{CC}	4,5	5,5	4,0	7,0	
Входное напряжение низкого уровня, В	U_{IL}	-0,3	0,3 U _{CC}	-0,6	0,3 U _{CC}	
Входное напряжение высокого уровня, В	U_{IH}	0,7 U _{CC}	$U_{CC} + 0.3 B$	0,7 U _{CC}	$U_{CC} + 1,0$	
Выходной ток, мА	I_{O}	_	3,2	_	5,0	

Таблица 3 – Электрические параметры микросхем при приемке и поставке

 $(U_{CC} = 5.0 \text{ B} \pm 10\%, \text{ если иное не указано ниже})$

Наименование параметра, единица измерения, режим измерения	Буквенное обозначение	Норма параметра		Темпера тура
паниенование нараметра, единица измерения, режим измерения	параметра	не менее	не более	среды, °С
Выходное напряжение низкого уровня, B, при $I_{OL} = 3.0$ мA, $U_{CC} = 4.5$ B	U _{OL}	-	0,4	
Ток утечки низкого уровня на входе, мкА, при $U_I = 0~\mathrm{B}$	$ m I_{LIL}$	-	-10	
Ток утечки высокого уровня на входе, мкA, при $U_I = U_{CC}$	I_{LIH}	_	10	
Ток утечки низкого уровня на выходе, мкA, при $U_O = 0~B$	I_{LOL}	-	-10	
Ток утечки высокого уровня на выходе, мкA, при $U_O = Ucc$	I_{LOH}	-	10	_
Ток потребления в режиме хранения, мкA, при $Ucc = 5.5 \text{ B}$; $U_{IH(SCL, SDA)} = Ucc$; $U_{IL(A1, A2, A3)} = 0 \text{ B}$	I_{CCS}	_	5	
Динамический ток потребления в режиме считывания, мA, при Ucc = $5.5 \text{ B}, f_C = 1 \text{ M}\Gamma\text{ц}$	I _{OCC1}	_	0,15	25±10; -60; 85
Динамический ток потребления в режиме стирания/записи, мА, при $Ucc = 5.5 \; B, f_C = 1 \; M\Gamma \mu$	I _{OCC2}	_	3,0	
Напряжение гистерезиса по входам SCL, SDA, В	U_{HYS}	0,05Ucc	_	
Время выборки, нс	t_{AA}	1	500	
Длительность сигнала просечки по входам SCL, SDA, нс	t_{SP}	_	50	
Время цикла стирания/записи, мс	t_{CY}		10	
Число циклов стирание/запись на байт, раз	N _{E/W}	100000	_	25±10

Примечания

Знак "минус" перед значением тока указывает только его направление (вытекающий ток). За величину тока принимается абсолютное значение показаний измерителя тока

Таблица 4 - Параметры сигналов на ${
m I}^2C$ – шине

Обозн		Ucc = 4, T= -60 ÷	Един ица	
ачение	Параметры	не менее	не более	измер ения
f_{C}	Тактовая частота	-	1000	кГц
t _{WH (STA)}	Время, когда шина свободна перед формированием условия "Старт"	0,5	1	мкс
t _{H (STA)}	Время удержания условия "Старт"	0,25	1	мкс
t_{WL}	Длительность сигнала низкого уровня на входе SCL	0,5	-	мкс
t_{WH}	Длительность сигнала высокого уровня на входе SCL	0,5	-	мкс
t _{SU (STA)}	Время установления условия "Старт"	0,25	-	мкс
t _{H (DAT)}	Время удержания данных для подчиненного передатчика	0	-	нс
t _{SU (DAT)}	Время установления данных	100	-	нс
t _{SU (STOP)}	Время установления условия "Остановка"	0,25	-	мкс

Рисунок 2- Временная диаграмма I²C-шины

Технические спецификации 1644PC1TБМ

Рисунок 3 - Протокол I²C -шины в режиме "Стирание/запись" одного байта

На протяжении всей длительности цикла активного программирования PROG микросхема не воспринимает внешнее обращение по I^2C -шине. Время цикла стирания/записи (t_{CY}) измеряется (контролируется) последовательным уменьшением паузы при обращении к микросхеме после начала программирования посредством подачи служебного слова CS/WR. Если микросхема не выдает подтверждение при обращении, то цикл программирования еще продолжается. Если выдает, то цикл программирования уже закончился.

Рисунок 4 - Протокол I²C -шины в режиме "Стирание/запись" страницы

Протокол I^2 С -шины в режиме "Стирание/запись" при использовании 64 байтового встроенного кэш-буфера (8 страниц по 8 байт) отличается от приведенного выше только количеством подаваемых байт данных. При этом максимальное время цикла для каждой из восьми страниц по 8 байт составляет 10 мс.

Технические спецификации 1644PC1TБМ

Рисунок 5 - Протокол I²C -шины в режиме "Считывание" с вводом адреса слова (произвольное чтение)

В течение одного протокола может быть считано произвольное число данных, начиная с записанного адреса (от одного байта до всего объема накопителя). Для прекращения считывания принимающее устройство не выдает подтверждение после приема очередного байта данных, что позволяет сформировать условие «Остановка» и прекратить передачу.

Рисунок 6 - Протокол I²C-шины в режиме "Считывание" текущего адреса

В течение одного протокола может быть считано произвольное число данных, начиная с последнего обработанного адреса увеличенного на единицу (от одного байта до всего объема накопителя). Для прекращения считывания принимающее устройство не выдает подтверждение после приема очередного байта данных, что позволяет сформировать условие «Остановка» и прекратить передачу.

Технические спецификации 1644PC1TБМ

	ST	CS/WI	R As	3	ВК	As	В	F	As	ВС		As	BN		Am	BN1	Am	SP
Ри	суно	к 7 - Пре	отокол	ı I ² C	-шины в р	режи	ме "Что	ение оп	ций з	ащиты′	,			·	,			
ST	CS	S/WR	As		ВК		As]	BF	A	S	I	3C	1	As	SP	PR	OG
	Рисунок 8 - Протокол I ² C-шины в режиме "Запись опций защиты"																	
				1 11	ICYHUK 0 - 1	npor	OKUJI I	С-шин	ывр	СЖИМС	Jaiii	ись oi	іции заі	цить	_			
[ST	CS/WR	As	ВК	As	BF	A	s BC	C	As	BN	1	Am	SP				
<u> </u>	ı	<u> </u>	ı				l l	Į.		l .	1	I			_			

Рисунок 9 - Протокол ${\bf I^2C}$ -шины в режиме "Чтение номера блока с высокой надежностью"

ST CS/WR As BK As BF As BC As SP PROG

Рисунок 10 - Протокол I^2 С-шины в режиме "Запись номера блока с высокой надежностью"

Технические спецификации 1644PC1TБМ

Таблица 5 – Основные понятия I²C -шины

Обозначение	Назначение
ST	Условие "Старт". Переход шины SDA из высокого уровня в низкий при высоком уровне на шине SCL
SP	Условие "Остановка". Переход шины SDA из низкого уровня в высокий при высоком уровне на шине SCL
PROG	Цикл активного программирования, на протяжении которого микросхема не воспринимает обращение по I^2C -шине
As	Бит подтверждения от микросхемы. $A_S = 0$ — микросхема восприняла входную информацию
Am	Бит подтверждения от "Главного". Ат $= 0$ – автоприращение адреса, $Am = 1$ - перед условием "Остановка"
X0-X12	Биты адреса байта
D0-D7	Биты данных
A0 – A2	Биты расширения. Должны соответствовать состоянию соответствующих выводов микросхемы
B0 ÷ B3	Биты номера начального защищенного блока в режимах «Чтение и запись опций защиты» или биты номера блока с высокой надежностью в режимах «Чтение и запись номера блока с высокой надежностью»
N0 ÷ N3	Биты числа защищенных блоков в режимах «Чтение и запись опций защиты»

Технические спецификации 1644PC1TБМ

Таблица 6 – Формат управляющих слов

Обозна			Номе	ер бит	га сло	ва			9 –й бит (бит	
-чение слова	1	2	3	4	5	6	7	8	подтверждения)	Назначение
CS/WR	1	0	1	0	A2	A1	A0	0	"0", от микросхемы	Слово выбора кристалла при записи информации в микросхему
CS/RD	1	0	1	0	A2	A1	A0	1	"0", от микросхемы	Слово выбора кристалла при считывании информации из микросхемы
WA1	0	0	0	X12	X11		X9	X8	"0", от микросхемы	Старшие разряды адреса слова
WA0	X7	X6	X5	X4	X3	X2	X1	X0	"0", от микросхемы	Младшие разряды адреса слова
DE	D7	D6	D5	D4	D3	D2	D1	D0	"0", от микросхемы	Входные данные
DA	D7	D6	D5	D4	D3	D2	D1	D0	"0" или "1", от "Главного" * Считываемые данные	
ВК	1	×	×	×	×	×	×	×	"0", ot	Байт контроля в режимах "Чтение опций защиты" и "Чтение номера блока с высокой надежностью" × - произвольное состояние
	1	×	×	В3	B2	B1	В0	×	микросхемы	Байт контроля в режимах "Запись опций защиты" и "Запись номера блока с высокой надежностью"
BF	X	×	×	×	×	×	×	×	"0", от микросхемы	Пустой (незначимый) байт
	1	1	×	×	×	×	×	×	-	Байт конфигурации в режиме "Чтение опций защиты"
	1	0	×	×	N3	N2	N1	N0		Байт конфигурации в режиме "Запись опций защиты"
ВС	0	1	×	×	×	×	×	×	"0", от микросхемы	Байт конфигурации в режиме "Чтение номера блока с высокой надежностью"
	0	0	×	×	0	0	0	0		Байт конфигурации в режиме "Запись номера блока с высокой надежностью"
BN	1	1	1	1	В3	B2	B1	В0	"0" или "1", от "Главного"	Считываемые данные о номере начального защищенного блока или номере блока с высокой надежностью
BN1	1	1	1	1	N3	N2	N1	N0	"1", от "Главного"	Считываемые данные о числе защищенных блоков
* "	Главні	ый" −	приб	ор, ко	торы	й кон	трол	иру	ет передачу данных по	шине (микропроцессор, микроконтроллер)

Масочное ПЗУ емкостью 1 Мбит с организацией 128К x 8 1835PE2T

Микросхема 1835РЕ2Т – масочное ПЗУ емкостью 1 Мбит с организацией 128К x 8. Предназначена для применения в вычислительной аппаратуре промышленного назначения.

Предельные режимы

Обозначение	Наименование параметра	Hoj	рма	Единица				
параметра	• •	не менее	Не более	измерения				
V_{CC}	Напряжение питания	-0.5	6.0					
V_{IH}	Входное напряжение высокого уровня	-0.5	Vcc+0.5	В				
V _{OI} *	Напряжение, прикладываемое к закрытому выходу	-0.3	Vcc + 0.3					
* Режим на	* Режим на выводах D0 – D7							

Предельно допустимые режимы

Обозначение	Панманаранна нараматра	Hop	ома	Елинина измарания
параметра	Наименование параметра	не менее	не более	Единица измерения
V _{CC}	Напряжение питания	4.5	5.5	
$ m V_{IH}$	Входное напряжение высокого уровня	0.8Vcc	V_{CC}	D
$ m V_{IL}$	Входное напряжение низкого уровня	0	0.2Vcc	Б
V _{OI} *	Напряжение, прикладываемое к закрытому выходу	0	Vcc	
C_{L}	Емкость нагрузки	_	50	пФ
* Режим на выводах D0	– D7			

Назначение выводов

Номер вывода микросхемы	Обозначение	Назначение
01	A15	Вход адреса
02	A12	Вход адреса
03	A7	Вход адреса
04	A6	Вход адреса
05	A5	Вход адреса
06	A4	Вход адреса
07	A3	Вход адреса
08	A2	Вход адреса
09	A1	Вход адреса
10	A0	Вход адреса
11	D0	Выход данных
12	D1	Выход данных
13	D2	Выход данных
14	GND	Общий вывод
15	D3	Выход данных
16	D4	Выход данных
17	D5	Выход данных
18	D6	Выход данных
19	D7	Выход данных
20	CS	Вход выбора микросхемы

Назначение выводов (продолжение)

Номер вывода микросхемы	Обозначение	Назначение
21	A10	Вход адреса
22	A16	Вход адреса
23	A11	Вход адреса
24	A9	Вход адреса
25	A8	Вход адреса
26	A13	Вход адреса
27	A14	Вход адреса
28	Vcc	Вывод питания от источника напряжения

Структурная схема

Электрические параметры

Обозначение				Единица				
параметра	Наименование параметра	Условия измерения	25°	°C	от -60 °С ,	измерения		
			не менее	не более	не менее	не более	- T	
V_{OL}	Выходное напряжение низкого уровня	I _{OL} = 1.6 мА	-	0.4	-	0.4	В	
M	Выходное напряжение высокого	$I_{OH} = -0.08 \text{ MA}$	4.1		4.1			
V_{OH}	уровня	I _{OH} = -2.0 мА	2.4	_	2.4	-		
$I_{ m LIL}$	Ток утечки низкого уровня на входе			-2.0		-10.0		
I_{LIH}	Ток утечки высокого уровня на входе			2.0		10.0		
I _{OZL}	Выходной ток низкого уровня в состоянии «Выключено»			-2.0		-10.0	мкА	
I _{OZH}	Выходной ток высокого уровня в состоянии «Выключено»			2.0		10.0		
I _{CCS}	Ток потребления в режиме хранения		-	20	-	200		
I_{CCO}	Динамический ток потребления			50		50	мА	
t _{A(A)}	Время выборки адреса	$t_{CY} = 250$ нс, $C_L = 50$ п Φ		250		250	77.0	
t_{CS}	Время выборки	$t_{CY} \ge 350$ нс, $C_L = 50$ п Φ		250		250	нс	
C_{I}	Входная емкость			8.0			пФ	
Co	Выходная емкость			10		-	IIΨ	

Временная диаграмма сигналов при измерении параметра $t_{A(A)}$

 $V(C1) = CC \circ MC, V_{SO(A-CS)} = C \circ MC, V_{W(CS)} = CC \circ MC, V_{1} = CC \circ MC$

Временная диаграмма сигналов при измерении параметров t_{CS}, t_{PLZ}, t_{PHZ}

Временная диаграмма работы микросхемы

Восьмиразрядная ОЭВМ без ПЗУ.

1880BE31 P/Y

Восьмиразрядная ОЭВМ с масочным ПЗУ.

1880BE51 P/Y

Устойчивый к СВВФ аналог 1830ВЕЗ1/51 производства г. Воронеж

Микросхемы предназначены для использования в системах локальной обработки информации и для автоматизации управления высокопроизводительными устройствами различного назначения в качестве микроконтроллеров, имеющих ограниченный ресурс питания. Количество элементов в схеме - 84550. Микросхемы выполнены на основе КМОП технологии.

Микросхемы имеют следующие функциональные параметры:

- количество регистров общего назначения, n_{RG}, 32;
- количество каналов обмена, пв. ехс., 5;
- скорость обмена информацией с внешними устройствами, $V_{\rm EXC}$, от 110 до 62500 бод;
- разрядность адреса, N_A, 16;
- разрядность данных, N_D, 8;
- емкость ОЗУ, Q_{RAM}, 128 байт;
- емкость ПЗУ, Q_{ROM} (для 1880BE51P, 1880BE51У), 4 Кбайт;
- количество уровней прерывания, n_{INR}, 2;
- потребляемая мощность, РСС, не более 110 мВт;
- частота следования импульсов тактовых сигналов, f_C , не более 12 М Γ ц. Номинальное напряжение питания 5.0 В.

Допустимое отклонение напряжения питания от номинального ± 10 %.

Микросхемы 1880BE31P, 1880BE51P выполнены в металлокерамическом корпусе 2123.40-6. Микросхемы 1880BE31V, 1880BE51V выполнены в металлокерамическом корпусе H16.48-1B.

Схема электрическая структурная микросхем 1880ВЕЗ1Р, 1880ВЕЗ1У

Схема электрическая структурная микросхем 1880ВЕ51Р, 1880ВЕ51У

Назначение выводов

Номер вывода корпуса Обозначение		Ofanyawa	Шаамамама
2123.40-6	H16.48-1B	Ооозначение	Назначение
01	01	P1.0	Вход / выход разряда 0 порта Р1
02	02	P1.1	Вход / выход разряда 1 порта Р1
03	03	P1.2	Вход / выход разряда 2 порта Р1
04	04	P1.3	Вход / выход разряда 3 порта Р1
05	05	P1.4	Вход / выход разряда 4 порта Р1
06	06	P1.5	Вход / выход разряда 5 порта Р1
-	07	-	Не используется
_	08	-	Не используется
07	09	P1.6	Вход / выход разряда 6 порта Р1
08	10	P1.7	Вход / выход разряда 7 порта Р1
09	11	RST	Вход сигнала сброса
10	12	P3.0/RXD	Вход / выход разряда 0 порта РЗ / последовательные данные приемника
11	13	P3.1/TXD	Вход / выход разряда 1 порта РЗ / последовательные данные передатчика
12	14	P3.2/ <u>INT0</u>	Вход / выход разряда 2 порта РЗ / прерывание 0
13	15	P3.3/ <u>INT1</u>	Вход / выход разряда 3 порта Р3 / прерывание 1
14	16	P3.4/T0	Вход / выход разряда 4 порта РЗ / таймер/ счетчик 0
15	17	P3.5/T1	Вход / выход разряда 5 порта РЗ / таймер/ счетчик 1
-	18	-	Не используется
-	19	-	Не используется
16	20	P3.6/ WR	Вход / выход разряда 6 порта РЗ / запись
17	21	P3.7/\overline{RD}	Вход / выход разряда 7 порта РЗ / чтение
18	22	XTAL2	Выход для подключения внешнего кварцевого резонатора

Назначение выводов (продолжение)

Номер выв	Номер вывода корпуса		Нозгология
2123.40-6	H16.48-1B	- Обозначение	Назначение
19	23	XTAL1	Вход для подключения кварцевого резонатора / внешняя синхронизация
20	24	GND	Общий вывод
-	25	-	Не используется
21	26	P2.0/A8	Вход / выход разряда 0 порта Р2 / адрес А8
22	27	P2.1/A9	Вход / выход разряда 1 порта Р2 / адрес А9
23	28	P2.2/A10	Вход / выход разряда 2 порта Р2 / адрес А10
24	29	P2.3/A11	Вход / выход разряда 3 порта Р2 / адрес А11
25	30	P2.4/A12	Вход / выход разряда 4 порта Р2 / адрес А12
-	31	-	Не используется
26	32	P2.5/A13	Вход / выход разряда 5 порта Р2 / адрес А13
27	33	P2.6/A14	Вход / выход разряда 6 порта Р2 / адрес А14
28	34	P2.7/A15	Вход / выход разряда 7 порта Р2 / адрес А15
29	35	PSEN	Вход / выход разрешения программной памяти / установка режима чтения ПЗУ
30	36	ALE	Вход / выход разрешения фиксации адреса / установка режима чтения ПЗУ
31	37	\overline{EA}	Вход блокировки работы с внутренней памятью
32	38	P0.7/AD7	Вход / выход разряда 7 порта РО / адрес А7 / данные D7
33	39	P0.6/AD6	Вход / выход разряда 6 порта Р0 / адрес А6 / данные D6
34	40	P0.5/AD5	Вход / выход разряда 5 порта P0 / адрес A5 / данные D5
35	41	P0.4/AD4	Вход / выход разряда 4 порта Р0 / адрес А4 / данные D4
-	42	-	Не используется
-	43	-	Не используется
36	44	P0.3/AD3	Вход / выход разряда 3 порта P0 / адрес A3 / данные D3

Назначение выводов (продолжение)

Номер выв	Номер вывода корпуса		Назначение	
2123.40-6	H16.48-1B	Обозначение	пазначение	
37	45	P0.2/AD2	Вход / выход разряда 2 порта Р0 / адрес A2 / данные D2	
38	46	P0.1/AD1	Вход / выход разряда 1 порта Р0 / адрес А1 / данные D1	
39	47	P0.0/AD0	Вход / выход разряда 0 порта Р0 / адрес А0 / данные D0	
40	0 48 U _{CC}		Вывод питания от источника напряжения	

Примечания

- 1 ПЗУ постоянное запоминающее устройство.
- 2 ОЗУ оперативное запоминающее устройство

КРАТКОЕ ОПИСАНИЕ УСТРОЙСТВА И ПРИНЦИП РАБОТЫ

Микросхема включает в себя следующие основные блоки:

- блок управления;
- арифметическо-логическое устройство;
- блок таймеров/счетчиков;
- блок последовательного интерфейса и прерываний;
- программный счетчик;
- память данных;
- память программ (для 1880ВЕ51Р, 1880ВЕ51У).

Двусторонний обмен информацией между функциональными блоками осуществляется с помощью внутренней восьмиразрядной шины данных.

Система команд микросхем включает 111 команд.

Микросхемы могут работать в следующих режимах:

- только с внешней памятью программ (1880BE31P, 1880BE51P, 1880BE51P);
- только с внутренней памятью программ (1880ВЕ51Р, 1880ВЕ51У);
- с внутренней и внешней памятью данных (1880ВЕЗ1Р, 1880ВЕЗ1У 1880ВЕ51Р, 1880ВЕ51У);
- проверка внутренней памяти программ (1880ВЕ51Р, 1880ВЕ51У).

Режим работы устанавливается комбинацией входных и выходных сигналов.

Инициализация (сброс) микросхемы осуществляется сигналом RST (активный высокий уровень напряжения) при условии подачи на микросхему сигнала синхронизации или при подключенном кварцевом резонаторе.

Режим работы с внутренней памятью программ устанавливается заданием высокого уровня напряжения на выводе \overline{EA} . Выполнение программы, хранящейся в памяти, начинается с команды, расположенной по адресу 00H, так как счетчик команд PC по сигналу сброса обнуляется.

В режиме работы с внутренней памятью программ порты Р0 и Р2 можно использовать как порты ввода/вывода, так как адрес/данные памяти программ передаются по внутренним магистралям ОЭВМ.

Режим работы ОЭВМ с внешней памятью устанавливается при подаче низкого уровня напряжения на вывод $\overline{\text{EA}}$ и применяется при отладке программ и контроле процессора.

Этот режим используется также тогда, когда внутренней памяти программ недостаточно. В этом случае можно совместить внутреннюю (4096 байт) и внешнюю (60 Кбайт) памяти программ общим объемом 64 Кбайт (на вывод $\overline{\rm EA}$ при этом подается напряжение высокого уровня) или использовать только внешнюю память с максимальным объемом 64 Кбайт, вывод $\overline{\rm EA}$ при этом подключается к общему выводу.

При работе с внешней памятью программ выдача младших разрядов адреса A7-A0 на внешнюю память и прием кода команд из внешней памяти осуществляется через порт P0 (выводы P0.7-P0.0). При этом адрес фиксируется по сигналу ALE, а команды принимаются по сигналу $\overline{\text{PSEN}}$. Старшие разряды адреса A15-A8 выдаются через порт P2 (выводы P2.7-P2.0).

Временные диаграммы работы ОЭВМ с внешней памятью программ и внешней память данных приведены на рисунках 6-8.

В режиме проверки внутренней памяти контролируется правильность информации, хранящейся в памяти программ, записанной в процессе изготовления микросхем.

Сигналы, подаваемые на одноименные выводы микросхемы, выполняют следующие функции:

- при подаче напряжения низкого уровня на вывод Р2.7 активизируется режим обращения к внутренней памяти для считывания;
 - через выводы P1.0-P1.7, P2.0-P2.3 подаются адреса A0-A11;
 - через выводы Р0.0-Р0.7 выдаются данные для контроля.

Временная диаграмма работы микросхем с внешней памятью программ

Временная диаграмма работы микросхем при чтении данных из внешней памяти

Временная диаграмма работы микросхем при записи данных во внешнюю память

Основные электрические параметры микросхем.

Наименование параметра, единица	Буквенное	Норма п	араметра	_	Температура среды, ° С	
измерения	обозначение параметра	не менее	не более	Режим измерения		
Выходное напряжение низкого уровня, В по портам Р1-Р3	U_{OL}	-	<u>0.4</u>	U_{CC} =5.0 B±10% U_{IL} =0.8 B U_{IH} =2.4 B U_{IH1} = U_{CC} -0.8 B I_{OL} =1.6 mA		
Выходное напряжение низкого уровня, В по порту РО и выходам PSEN, ALE	U_{OL1}	-	<u>0.4</u>	U _{CC} =5.0 B±10% U _{IL} =0.8 B U _{IH} =2.4 B U _{IH1} =U _{CC} -0.8 B I _{OL} =3.2 мА		
Выходное напряжение высокого уровня, В по портам Р1-Р3	U _{OH}	2.5 2.4	-	U _{CC} =5.0 B±10% U _{IL} =0.8 B U _{IH} =2.4 B U _{IH1} =U _{CC} -0.8 B I _{OH} = -0.06 мА		
Выходное напряжение высокого уровня, В по порту РО, выходам PSEN, ALE (в активном режиме)	U _{OH1}	2.5 2.4	-	U _{CC} =5.0 B±10% U _{IL} =0.8 B U _{IH} =2.4 B U _{IH1} =U _{CC} -0.8 B I _{OH} = -0.4 мА	25±10 -60±3	
Входной ток низкого уровня, мкА по портам P1-P3	I_{IL}	-		U _{CC} =5.0 B±10% U _{IN} =0.45 B	125±3	
Входной ток высокого уровня, мкА по портам P1-P3	$ m I_{IH}$	-		U _{CC} =5.0 B±10% U _{IN} =2.4 B		
Входной ток, мкА по входу RST	I_{RST}	10 8		U _{CC} =5.0 B±10% U _{IN} =4.7 B		
Выходной ток низкого уровня в состоянии «Выключено», мкА по порту Р0	I_{OZL}	-		U_{CC} =5.0 B±10% U_{IN} = 0.45 B		
Выходной ток высокого уровня в состоянии «Выключено», мкА по порту Р0	I _{OZH}	-		U_{CC} =5.0 B±10% U_{IN} = 5.5 B		

Основные электрические параметры микросхем (продолжение).

Наименование параметра, единица	Буквенное	Норма п	араметра		Температура	
измерения	обозначение параметра	не менее	не более	Режим измерения	среды, ° С	
Входной ток утечки низкого уровня,	${ m I}_{ m LIL}$	-		U _{CC} =5.0 B±10%		
мк A по входу \overline{EA}			-10	$U_{\rm IN} = 0.45~\rm B$		
Входной ток утечки высокого уровня,	$ m I_{LIH}$	-		U _{CC} =5.0 B±10%		
мк A по входу \overline{EA}			10	$U_{\rm IN} = 5.5~{\rm B}$		
Динамический ток потребления, мА		-	<u>20</u> 50	U _{CC} =5.0 B±10%		
	I_{CCO}		50	$f_C = 12 M\Gamma$ ц		
Динамический ток потребления в		-	<u>5.0</u> 15	U _{CC} =5.0 B±10%		
режиме хранения содержимого	I_{CCOS}		15	$f_C = 12 M\Gamma$ ц		
регистров спецфункций, мА						
Ток потребления в режиме хранения		-		U _{CC} =5.0 B±10%		
содержимого ОЗУ, мкА	I_{CCS}		<u>1</u> 00		<u>25±10</u>	
7	Динамические і	тараметры			-60±3	
Частота следования импульсов тактовых		-	12	-	125±3	
сигналов, МГц	$(1/t_{\rm C})$					
Длительность сигнала ALE, нс	t_{LL}	$\frac{2t_{C}-40}{2t_{C}-60}$	-			
Время задержки сигнала ALE	$t_{ m AL}$	<u>tc-40</u>	-			
относительно сигналов адреса А7-А0,		$t_{\rm C}$ -50				
А8-А15, нс				$U_{\rm CC} = 5.0 \; \text{B} \pm 10\%$		
Время задержки сигналов адреса А7-А0	t_{LA}	<u>tc-35</u>	-	$f_{\rm C}(1/t_{\rm C})$ =12 МГц $C_{\rm L}$ =50 пФ		
относительно сигнала ALE, нс		t _C -45				
Время задержки сигнала PSEN относительно сигнала ALE, нс	t_{LC}	$\frac{t_{C}-25}{t_{C}-30}$	-			

Основные электрические параметры микросхем (продолжение).

Наименование параметра, единица	Буквенное	Норма п	араметра		Температура
измерения	обозначение параметра	не менее	не более	Режим измерения	среды, ° С
Время установления сигналов INST IN относительно сигнала ALE, нс	$t_{ m LIV}$	-	$\frac{4t_{C}-100}{4t_{C}-60}$		
Длительность сигнала PSEN, нс	t_{CC}	$\frac{3t_{C}-35}{3t_{C}-50}$		U_{CC} =5.0 B±10% f_{C} (1/ t_{C})=12 ΜΓ $_{L}$ C _L =50 $_{L}$	
Время установления сигналов INST IN	t_{CIV}	-	3t _C -125		
относительно сигнала, PSEN нс			$3t_{C}$ -110		
Время удержания сигналов INST IN	$t_{\rm CI}$	0	-		
относительно сигнала PSEN, нс					
Время сохранения сигналов INST IN	t_{CIF}	-	<u>tc-20</u>		
относительно сигнала PSEN, нс			t _C -15		25 10
Время установления сигналов INST IN	t_{AIV}	-	<u>5t_C-115</u>		25±10 -60±3 125±3
относительно сигналов адреса А7-А0, нс			5t _C -90		
Время задержки сигналов адреса А7-А0	t_{AFC}	0	-		
относительно сигнала PSEN, нс				U _{CC} =5.0 B±10%	
Длительность сигнала $\overline{\mathrm{RD}}$, нс	$t_{ m RR}$	$\frac{6t_{C}-100}{6t_{C}-130}$	-	С _L =50 пФ	
Длительность сигнала \overline{WR} , нс	$t_{ m WW}$	6t _C -100 6t _C -130	-		
Время установления сигналов данных	$t_{ m RD}$	-	5t _C -165		
DATA IN относительно сигнала $\overline{\mathrm{RD}}$, нс			5t _C -140		
Время сохранения сигналов данных	t _{DFR}	-	<u>2t_C-70</u>		
DATA IN относительно сигнала $\overline{\text{RD}}$, нс			$2t_{C}$ -60		

Основные электрические параметры микросхем (продолжение).

Наименование параметра, единица	Буквенное	Норма п	араметра		Температура
измерения	обозначение параметра	не менее	не более	Режим измерения	среды, ° С
Время установления сигналов данных DATA IN относительно сигнала ALE, нс	$t_{ m LD}$	-	$\frac{8t_{C}-150}{8t_{C}-110}$		
Время установления сигналов данных DATA IN относительно сигналов адреса A7-A0, нс	$t_{ m AD}$	-	9t _C -165 9t _C -130		
Время задержки сигнала RD или относительно сигнала ALE, нс	$t_{ m LW}$	$\frac{3t_{C}-50}{3t_{C}-50}$	$\frac{3t_{C}+50}{3t_{C}+70}$		
Время задержки сигнала \overline{RD} или \overline{WR} относительно сигналов адреса A7-A0, A8-A15, нс	$t_{ m AW}$	$\frac{4t_{C}-130}{4t_{C}-100}$	-		
Время задержки сигнала ALE относительно сигнала \overline{RD} или \overline{WR} , нс	t _{WHLH}	$\frac{t_{\rm C}-40}{t_{\rm C}-50}$	$\frac{t_{\rm C} + 40}{t_{\rm C} + 50}$	U _{CC} =5.0 B±10% C _L =50 πΦ	25±10 -60±3
Время задержки заднего фронта сигнала WR относительно сигналов данных DATA OUT, нс	$t_{ m DWX}$	t _C -60 t _C -70	-	CL=30 II 4	125±3
Время задержки переднего фронта сигнала WR относительно сигналов данных DATA OUT, нс	$t_{ m DW}$	$\frac{7t_{C}-150}{7t_{C}-220}$	-		
Время задержки сигналов данных DATA OUT относительно заднего фронта сигнала WR, нс	$t_{ m WD}$	$\frac{t_{\rm C}\text{-}50}{t_{\rm C}\text{-}60}$	-		
Время задержки сигналов адреса A7-A0 относительно сигнала RD, нс	$t_{ m AFR}$	-	12 17		

Предельно допустимые и предельные значения электрических режимов эксплуатации.

Наименование параметра режима,	Буквенное	венное Предельно-допустимый режим			ый режим
единица измерения	обозначение	не менее	не более	не менее	не более
Напряжение питания, В	U_{CC}	4.5	5.5	-0.5	6.0
Входное напряжение низкого уровня, В	$ m U_{IL}$	0	0.8	-0.5	-
Входное напряжение высокого уровня, В					
- кроме входов XTAL1, RST	U_{IH}	2.4	U_{CC}	-	6.0
- по входам XTAL1, RST	$\mathrm{U}_{\mathrm{IH}1}$	U_{CC} -0.8	U_{CC}	-	6.0
Выходной ток низкого уровня, мА					
- по портам Р1, Р2, Р3	I_{OL}				
		-	1.6	-	5
- по порту P0, выходам $\overline{\text{PSEN}}$, ALE		-	3.2	-	5
Выходной ток высокого уровня, мА					
- по портам Р1, Р2, Р3	I_{OH}	-	-0.4	-	0.8
- по порту P0, выходам $\overline{\text{PSEN}}$, ALE		-	-0.4	-	0.8
Частота следования импульсов	$f_{\rm C}$	-	12	-	-
тактовых сигналов, МГц					
Емкость нагрузки, пФ	C_{L}	-	50	-	100

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

Общие указания

Запрещается подведение каких-либо электрических сигналов (в том числе шин ''Питание'' и ''Общий вывод'') к корпусу и выводам микросхемы, неиспользуемым согласно электрическим схемам микросхемы.

При ремонте аппаратуры и измерении параметров микросхемы в контактирующих устройствах замену микросхем необходимо производить только при отключенных источниках питания. При проверке микросхем не допускается даже кратковременное (на время переключения) отключение выводов от источников испытательных напряжений.

Указания к этапу разработки аппаратуры

При расчетах и конструировании аппаратуры электрический режим микросхем должен быть снижен по сравнению с предельным электрическим режимом эксплуатации, климатические и механические нагрузки должны быть уменьшены.

Разрешается совместная работа микросхем с электрорадиоэлементами и микросхемами других серий при условии соблюдения электрических режимов микросхем, указанных в технических условиях.

При разработке аппаратуры необходимо руководствоваться нормами электрических параметров микросхем, установленными на минимальную наработку и срок хранения, с учетом реальных условий эксплуатации.

При разработке аппаратуры не допускается:

- предусматривать отбор микросхем по каким-либо параметрам и характеристикам технических условий;
- применять микросхемы в схемах, в которых работоспособность аппаратуры определяется параметрами, не указанными в технических условиях на микросхемы.

Надежность микросхем в аппаратуре обеспечивается не только качеством самих микросхем, но и правильным их конструктивнотехнологическим применением.

Однокристальная 8-разрядная микроЭВМ с FLASH-памятью на 8Кбайт.

1880BE71Y

Микросхема 1880 ВЕ 71У представляет собой высокопроизводительную 8-разрядную однокристальную микро-ЭВМ с FLASH памятью команд (ЭСППЗУ) и памятью данных (ОЗУ). Микросхема выполнена по 0.8мкм КМОП – технологии. Наиболее близкими по параметрам и функционированию к данной микросхеме являются IN83C51FAN (НПО «Интеграл») и AT89C52 (фирма Atmel). Микросхемы предназначены для использования в портативных приборах управления и обработки цифровой информации двойного назначения. Конструктивно микросхемы выполнены в корпусе типа H16.48-1B (установочная группа 8, вид исполнения в соответствии с ОСТ В 11 0998-99).

Основные характеристики:

- напряжение питания от 4,5 В до 5,5 В.
- 8-разрядный процессор семейства MCS-51;
- память программ (8К x 8бит, FLASH ЭСППЗУ);
- память данных (256 x 8бит);
- 32 линии ввода/вывода (4 х 8бит);
- последовательный интерфейс "UART";
- три таймера/счетчика;
- программируемая матрица счетчиков (51FA);
- генератор тактовых импульсов (для внешнего кварцевого резонатора);
- число команд 111;
- число модификаций адресации 5;
- объем внешней памяти 64 Кбайт;
- скорость обмена по последовательному интерфейсу 18,8К бод;
- количество прерываний 7;
- быстродействие при выполнении основных команд: сложение РПР 1666 тыс. оп/сек, РПП 833 тыс. оп/сек. условного перехода 833 тыс. оп/сек. умножение 416 тыс. оп/сек.

Рисунок 1 - Схема электрическая структурная

Таблица 1 - Назначение выводов микросхемы

Номер вывода	Обозначение	Назначение
01	P1.0/T2	Вход / выход разряда 0 порта Р1 / таймер / счётчик 2
02	P1.1/T2EX	Вход / выход разряда 1 порта Р1 / режим работы таймера / счётчика 2
03	P1.2/ECI	Вход / выход разряда 2 порта Р1 / синхронизация ПМС
04	P1.3/CEX0	Вход / выход разряда 3 порта Р1 / модуль 0 ПМС
05	P1.4/CEX1	Вход / выход разряда 4 порта Р1 / модуль 1 ПМС
06	P1.5/CEX2	Вход / выход разряда 5 порта Р1 / модуль 2 ПМС
07	Не используется	
08	Не используется	
09	P1.6/CEX3	Вход / выход разряда 6 порта Р1 / модуль 3 ПМС
10	P1.7/CEX4	Вход / выход разряда 7 порта Р1 / модуль 4 ПМС
11	RST	Вход сигнала сброса
12	P3.0/RXD	Вход / выход разряда 0 порта РЗ / последовательные данные приёмника
13	P3.1/TXD	Вход / выход разряда 1 порта РЗ / последовательные данные передатчика
14	P3.2/INT0	Вход / выход разряда 2 порта РЗ / прерывание 0
15	P3.3/INT1	Вход / выход разряда 3 порта РЗ / прерывание 1
16	P3.4/T0	Вход / выход разряда 4 порта РЗ / таймер/ счётчик 0
17	P3.5/T1	Вход / выход разряда 5 порта РЗ / таймер/ счётчик 1
18	Не используется	
19	Не используется	
20	P3.6/WR	Вход / выход разряда 6 порта РЗ / запись

Таблица 1 - Назначение выводов микросхемы (продолжение)

Номер вывода	Обозначение	Назначение
21	P3.7/RD	Вход / выход разряда 7 порта РЗ / чтение
22	XTAL2	Выход для подключения внешнего кварцевого резонатора
23	XTAL1	Вход для подключения кварцевого резонатора / внешняя синхронизация
24	GND	Общий вывод
25	Не используется	
26	P2.0/A8	Вход / выход разряда 0 порта Р2 / адрес А8
27	P2.1/A9	Вход / выход разряда 1 порта Р2 / адрес А9
28	P2.2/A10	Вход / выход разряда 2 порта Р2 / адрес А10
29	P2.3/A11	Вход / выход разряда 3 порта Р2 / адрес А11
30	P2.4/A12	Вход / выход разряда 4 порта Р2 / адрес А12
31	Не используется	
32	P2.5/A13	Вход / выход разряда 5 порта Р2 / адрес А13
33	P2.6/A14	Вход / выход разряда 6 порта Р2 / адрес А14
34	P2.7/A15	Вход / выход разряда 7 порта Р2 / адрес А15
35	PSEN	Вход / выход разрешения программной памяти / установка режима чтения ПЗУ
36	ALE/PROG	Вход / выход разрешения фиксации адреса / программирование ПЗУ
37	EA/V _{PP}	Вход блокировки работы с внутренней памятью/ программирование ПЗУ
38	P0.7/AD7	Вход / выход разряда 7 порта P0/ адрес A7/данные D7
39	P0.6/AD6	Вход / выход разряда 6 порта P0/ адрес А6/данные D6
40	P0.5/AD5	Вход / выход разряда 5 порта Р0/ адрес А5/данные D5

Таблица 1 - Назначение выводов микросхемы (продолжение)

Номер вывода	Обозначение	Назначение
41	P0.4/AD4	Вход / выход разряда 4 порта РО/ адрес А4/данные D4
42	Не используется	
43	Не используется	
44	P0.3/AD3	Вход / выход разряда 3 порта Р0/ адрес А3/данные D3
45	P0.2/AD2	Вход / выход разряда 2 порта Р0/ адрес A2/данные D2
46	P0.1/AD1	Вход / выход разряда 1 порта Р0/ адрес А1/данные D1
47	P0.0/AD0	Вход / выход разряда 0 порта Р0/ адрес А0/данные D0
48	U_{CC}	Вывод питания от источника напряжения
Сомпания		•

Сокращения

- ПЗУ постоянное запоминающее устройство
- ПМС программируемая матрица счетчиков

Электрические параметры микросхем при приемке и поставке в диапазоне рабочих температур от -60 до +125 OC должны соответствовать нормам, приведенным в таблице 2.

Таблица 2

Наименование параметра, единица измерения,	Буквенное	Режим	Нор	ома
режим измерения	обознач.	измерения	Не менее	Не более
Частота следования импульсов тактовых сигналов, МГц	fc	Ucc=5B+10%	0	20
Входное напряжение низкого уровня (за исключением вывода ЕА),В	Uil		-0,5	0,2Ucc-0,1
Входное напряжение низкого уровня по выводу ЕА,В	Uil1		0	0,2Ucc-0,3
Входное напряжение высокого уровня (за исключением выводов XTAL1,RST),В	Uih		0,2Ucc+0,9	Ucc+0,5
Входное напряжение высокого уровня по выводам XTAL1,RST;В	Uih1		0,7Ucc	Ucc+0,5
Выходное напряжение низкого уровня по портам 1,2,3;В	Uol	Iol=1,6мА		0,45
Выходное напряжение низкого уровня по порту 0, выводам ALE и PSEN; В	Uol1	Iol=3,2мА		0,45
Выходное напряжение высокого уровня по портам 1,2,3 и выводам ALE,PSEN, В	Uoh	Ioh=-30мкА	Ucc-0,7	
Выходное напряжение высокого уровня по порту 0 и выводам ALE, PSEN (в активном режиме), В	Uoh1	Ioh=-3,2MA	Ucc-0,7	
Входной ток низкого уровня по портам 1,2,3; мкА	Iil	Uin=0,45B		-75
Выходной ток низкого уровня по портам 1,2,3 в третьем состоянии, мкА	Itl	Uin=2B		-750
Входной ток утечки по порту 0, мкА	Ili	0,45 <uin< td="" ucc-0,3<=""><td></td><td>+10</td></uin<>		+10
Динамический ток потребления, мА	Icco			50
Динамический ток в режиме микропотребления, мА	Iccos			30
Статический ток потребления, мкА	Iccs			100
Входной ток по входу RST,мкА	Irst		20	100

Значения предельно допустимых и предельных электрических параметров, режимы эксплуатации должны соответствовать нормам, приведенным в таблице 3.

Таблица 3

Буквенное обозначение Наименование параметра -		Преде допустимы		Предельный режим		Единица
обозначение	Панженование паражетра	не менее	не более	не менее	не более	измерения
Ucc	Напряжение питания	4.5	5,5	-0.5	6	В
Uin	Входное напряжение	0	6,0	-0.5	6,5	В
Vpp	Напряжение программирования ПЗУ	0	12,5	-0,5	13,0	В
Iol	Выходной ток низкого уровня		7,0		15	мА
Іон	Выходной ток высокого уровня		-7,0		-7,0	мА
Cl	Емкость нагрузки		100		100	пФ

Система команд приведена на рисунке 2.

	00	01	02	03	04	05	05	07	08	09	UA.	OB	00	00	Œ	DF	
00	NOP	AJMP 00XX 2	LIMP 3	RR. A	INC A	INC 8X Z	INC @RO	INC ØR1	INC RO	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7	00
.0	JBC 2+X,Y, ±2Z3	ACALL 00HX 2	LCALL XXXX 3	RRC A	DEC A	DBC HX 2	DBC @R0	DEC @R1	DEC R0	DEC R1	DBC R2	DEC R3	DEC R4	DBC R5	DEC R.6	DEC R7	10
30	JB 2+X.Y, ±2Z3	AJMP 01XX Z	RET	RL A	ADD A,#XX 2	ADD AXX Z	ADO A,@R0	ADD A,@R1	ADD R.O	ADD R1	ADO RZ	ADD R3	ADD R4	ADD R5	ADD R6	ADD R7	20
30	JNB 2+X.Y, ±2Z3	ACALL 01XX 2	RETT	RIC A	ADDC A,#XX 2	ADDC AXX 2	ADDC A,@R0	ADDC A,@R1	ADDC AJRD	ADDC A,R1	ADDC A,R2	ADDC AJR3	ADDC A,R4	ADDC A,R5	ADDC AJR6	ADDC A,R7	30
ю	3C ±xx 2	AJMP 02XX 2	ORL XXA 2	ORL XX,#YY 3	ORL A,#XX 2	ORL AXX 2	ORL A,@R0	ORL A,@R1	ORL A,RB	ORL A,R1	ORL A,R2	ORL A,R3	ORL A,R4	ORL A,R5	ORL A,R6	ORL A,R7	40
30	JING ±XX 2	ACALL 028X 2	ANL XXA 2	ANL XX,#YY 3	ANL A,#KX 2	ANL AXX 2	ANIL A,@R0	ANL A,@R1	ANL A,R0	ANL A,R1	ANL A _s R2	ANL AJR3	ANL A,R4	ANL A,RS	ANL AJR6	ANL A,R7	50
50	3Z ±xx Z	AJMP 03XX 2	XRL XXA 2	XRL XX,#1Y 3	∺RL A,#≪ 2	XRL A,XX 2	XRLL A,@R0	KRL A _i @R1	XRL A,RB	ARL A,R1	XRL A,R2	ARL AR3	A,Rd	XRL A,R5	XRL AJR6	XRL A,R7	60
20	JNZ ±xx 2	ACALL 038X 2	ORL G2+X .Y2	JMP ØA+ DPTR	MOV A,#XX 2	MOV XK,#YY 3	MOV ØRO, #XH2	MOV @R1, #X82	MOV RD#XX 2	MOV R1,#XX 2	MOV R2,#XX 2	MOV R3,#XX 2	MOV R4,#XX 2	MOV R5,#XX 2	MOV R6,#XX 2	MOV R7,#XX 2	70
90	SJMP XX± S	AJMP 04HX 2	ANL C,2+X .Y.2	MOVC A,@A+ PC	DIV AB	MOV XX,XY 3	MOV XXJ@RC 2	MOV XX.@R1 2	MOV XX,R0 2	MOV XXA1 2	MOV HXR2 2	MOV XX,R3 2	MOV XXR4 2	MOV HX,RS 2	MOV XX,R6 2	MOV XXR7 2	80
ю	MOV DPTR, #XXX3	ACALL 04XX 2	MOV 2+K.Y, CZ	MOVC A,@A+ DPTR	SUBB A,#XX Z	SUBB AXX Z	SUBB A,@R0	SUBB A,@R1	SUBB A,R.0	SUBB A,R1	SUBB A,R2	SUBB AJR3	SUBB A,R4	SUBB A,R5	SUBB AJR6	SUBB A,R7	90
70	ORL C/2+X Y2	AIMP 05XX 2	MOV C,2+X .Y.2	INC DPTR	MUL AB		MOV @RD,XX 2	MOV @R1,XX 2	MOV RD,XX 2	MOV R1,XX	MOV R2,XX 2	MOV R3,XX 2	MOU R4,XX 2	MOV R5,XX 2	MOV R6,XX 2	MOV R7,XX 2	Д
30	ANL CZ2+X .Y2	ACALL 058X 2	CPL Y.K+S S	CPL C	ONE A,#XX, ±YY3	CINE A,KK, ±Y/3	CINE @R0,#k ±Y3	CINE	CINE R0,#X4, ±Y3	CINE	CINE R2,#XX, ±YY3	CINE R3,#XX, ±6Y3	CINE	CINE R5,#XX, ±Y/3	CINE	CINE R7,#XX, ±YY3	В
00	PUSH XX 2	AJMP 06XX 2	CLR 24XX 2	CIR C	SWAP A	XCH AXX 2	XCH A,@R0	XCH	A,R.D.	XCH A,R1	MCH A,R2	ACH A,R3	ACH A,R4	MCH A,R5	XCH A,R.6	ACH A,R7	α
o	POP XX 2	ACALL 06XX 2	SETB 2+XY 2	SETB	DA A	DONZ XX,±YY	XCHD A,@R0	XCHD A,@R1	DONZ Rojabok Z	DJNZ R1,#XX 2	DINZ R2,±00 Z	DONZ R3j±bok Z	DJNZ R4,±XX Z	DINZ R5,±00 Z	DJNZ R6,±XX Z	DJNZ R7,±XX 2	DI
0	MOUX A, @DPTR	AJMP 078X 2	MOVX A,@R0	MOVX AJØR1	CIR A	MOV XXA 2	MOV A,@R0	MOV A,@R1	VOM A,RD	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R.6	MOV A,R7	EC
Ð.	MOUX @DPTR. ,A	ACALL 07XX 2	MOVX @RO _A	MOVX @R1,A	CPL A	MOV XX,A Z	MOV @RD,A	MOV @R1,A	MOV RO,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV RZJA	FU
	ao	01	02	03	04	05	06	07	08	09	0.4	ОВ	00		0E	DF.	83

Рисунок 2 - Система команд

Программирование FLASH – ЭСППЗУ

Микросхема 1880 ВЕ 71У в стертом состоянии содержит FFh во всех байтах FLASH - ЭСППЗУ (все единицы). Массив FLASH – ЭСППЗУ микросхемы (память программ) программируется "побайтно". Программируются только нулевые биты байтов, чтобы перевести любой неединичный бит в единицу необходимо полное стирание всего накопителя FLASH - ЭСППЗУ используя "Режим Стирания" (ВАЖНО: в процессе повторного программирования байта, нулевые биты должны оставаться нулями, например, если состояние байта накопителя FEh a его необходимо перевести в состояние FCh данные для повторного программирования должны быть FCh, а не FDh).

Алгоритм программирования (совместим с AT89C52 Ф.Atmel):

Перед программированием 1880 ВЕ 71У, адреса, данные и сигналы управления должны быть установлены согласно таблице режима программирования.

Режимы программирования FLASH – ЭСППЗУ:

Режим	RST	PSEN	ALE/PROG	EA/UPP	P2.6	P2.7	P3.6	P3.7
Программирование	1	0	-_/-	12B	0	1	1	1
Чтение данных **	1	0	1	1	0	0	1	1
Стирание *	1	0	-_/-	12B	1	0	0	0
Чтение сигнатуры **	1	0	1	1	0	0	0	0

Примечания:

Для программирования необходимо выполнить следующее:

- 1. Активизировать правильную комбинацию сигналов управления;
- 2. Установить адрес программируемого байта;
- 3. Установить данные;
- 4. Подать на вывод "ЕА/UPP" напряжение 12В;
- 5. Подать импульс отрицательной полярности на вывод "ALE/PROG" начав тем самым цикл программирования (удержание вывода "ALE/PROG" в состоянии логического нуля позволяет неограниченно увеличивать время программирования байта);

^{* -} режим стирания требует 10 мс импульса на выводе "ALE/PROG"; ** - необходимо наличие подтягивающих к UCC резисторов номиналом 1 – 10 кОм.

- 6. Снизить напряжение на выводе "EA/UPP" до уровня логической единицы (возможно программирование нескольких байт без снятия высокого напряжения при условии сохранения комбинации сигналов управления);
- 7. Дождаться перехода вывода "RDY/BSY" (P3.4) в состояние логической единицы (цикл само синхронизирован (не более 4 мс с момента снятия импульса на выводе "ALE/PROG").

Повторять шаги 2 до 7, изменяя адрес и данные для всего массива программируемых данных.

После инициализации цикла записи, чтение данных приводит к возвращению инверсного байта, до окончания цикла записи. В процессе выполнения команды "Стирание" необходимо удерживать состояние низкого уровня на выводе "ALE/PROG" не менее 10 мс.

Чтение FLASH - ЭСППЗУ

Чтение байтов сигнатуры (0030h – 0032h совместимы с AT89C52 ф.Atmel).

Байты сигнатуры

Адрес	Данные сигнатуры
0000h - 002Fh	FFh
0030h	1Eh
0031h	52h
0032h	FFh
0033h	00000XXXb
0034h - 1FFFh	FFh

Программирование FLASH – ЭСППЗУ ($T = +10 - +40^{\circ}C$)

Характеристики программирования и верификации циклов внутренней программной памяти

Обозн.	Параметр	Min	Max
UPP	Напряжение разрешения программирования, В	11.5	12.5
tAVGL	Время предустановки адреса до низкого уровня на АLE, мкс	2	
tGHAX	Время удержания адреса после ALE, мкс	2	
tDVGL	Время предустановки данных до низкого уровня на ALE, мкс	2	
tGHDX	Время удержания данных после низкого уровня на ALE, мкс	2	
tEHSH	Время предустановки высокого уровня на Р2.7 до установки UPP, мкс	2	
tSHGL	Время предустановки UPP до низкого уровня на ALE, мкс	10	
tGHSL	Время удержания UPP после низкого уровня на ALE, мкс	10	
tGLGH	Длительность импульса на ALE, мкс	1	110
tAVQV	Время от установки адреса до получения достоверных данных, мкс		2
tELQV	Время от низкого уровня на Р2.7 до получения достоверных данных, мкс		2
tEHQZ	Время освобождения порта РО после снятия низкого уровня на Р2.7, мкс	0	2
tGHBL	Время от окончания импульса на ALE до низкого уровня на P3.4, мкс		1
tWC	Время цикла записи байта данных, мс		4

Временная диаграмма режима сдвигового регистра

Временные диаграммы циклов записи и считывания внутренней программной памяти

Четыре приёмника **5102АП1Т**

Микросхема 5102АП1Т состоит из четырёх симметричных приёмников. Микросхема предназначена для межприборного обмена информацией. Корпус 16-выводной металлокерамический 402.16-32

Таблица истинности

Вход приемника	Вход управления	Вход тестовый	Выход приемника
U _{ID} ≥200 мВ	L	X	Н
U _{ID} ≤-200 мВ	L	X	L
U_{ID} $<$ $ \pm200 $ MB	L	X	Неопределённое состояние
X	Н	L	Н
X	Н	Н	L

Примечание

L – низкий уровень напряжения

Н – высокий уровень напряжения

X – любой уровень напряжения (Н или L)

U_{ID} – входное дифференциальное напряжение между прямыми входами 02, 04, 07, 09 и инверсными входами 01, 03, 06, 08

Таблица назначения выводов

Номер вывода	Обозначение	Назначение
01	B1	Вход инверсный приемника 1
02	A1	Вход прямой приемника 1
03	B2	Вход инверсный приемника 2
04	A2	Вход прямой приемника 2
05	GND	Общий вывод
06	$\overline{\mathrm{B3}}$	Вход инверсный приемника 3
07	A3	Вход прямой приемника 3
08	B 4	Вход инверсный приемника 4
09	A4	Вход прямой приемника 4
10	C	Вход управления
11	Y4	Выход приемника 4
12	Y3	Выход приемника 3
13	$ m U_{CC}$	Вывод питания от источника напряжения
14	Y2	Выход приемника 2
15	Y1	Выход приемника 1
16	Intest	Вход тестовый

Таблица значений электрических параметров микросхемы

Наименование параметра, единица измерения,	Буквенное	Норма па	Температура	
режим измерения	обозначение параметра	не менее	не более	среды, °С
Выходное напряжение высокого уровня, В,	U_{OH}	2.4	4.0	25 ± 10
U_{CC} =5 B ± 5 %, I_{OH} = -1 mA	ООН	2.4	4.5	-60; 125
Выходное напряжение низкого уровня, B, $U_{CC} = 5 \; B \pm 5 \; \%$, $I_{OL} = 3 \; \text{мA}$	U_{OL}	_	0.4	25 ± 10 -60; 125
Синфазное входное напряжение, B, U_{CC} =4.75 B	U_{IC}	ı	1.0	25 ± 10
Входной ток высокого уровня по входу управления и тестовому входу, мкA, U_{CC} =5 B \pm 5 %, U_{IH} = U_{CC}	${ m I}_{ m IH}$	-	80	25 ± 10
Входной ток низкого уровня по входу управления и тестовому входу, мкA, при U_{CC} =5 B \pm 5 %, U_{IL} =0.4 B	$I_{\rm IL}$	-100	-800	-60; 125
Ток потребления, мА,	T	_	36	25 ± 10
$U_{CC}=5.25 \text{ B}, U_{IL}=0.4 \text{ B}$	I_{CC}	_	45	-60; 125
Время нарастания (спада) выходного сигнала, нс,	+ (+)	-	8	25 ± 10
U_{CC} =4.75 B, U_{IL} =0.4 B, U_{ID} =200 мB, f_{C} =10 МГц	$t_{r}\left(t_{f}\right)$	-	10	-60; 125
Время задержки распространения при включении		-	15	25 ± 10
(выключении), нс, U_{CC} =4.75 B, U_{ID} =200 мB, f_{C} =10 М Γ ц	t _{PHL} (t _{PLH})	-	20	-60; 125

Значения параметров предельно допустимых и предельных режимов

Наименование параметра режима, единица измерения	Буквенное обозначение	Преде. допустимы		Предельный режим		
сдиница измерения	0003Ha 4CHHC	не менее	не более	не менее	не более	
Напряжение питания, В	U_{CC}	4.75	5.25	-	6.0	
Входное напряжение высокого уровня по входам А1, А2, А3, А4 передатчика, В	U _{IH}	2.4	U _{CC}	-	6.0	
Входное напряжение низкого уровня по входам А1, А2, А3, А4 передатчика, В	U_{IL}	0	0.4	-0.5	-	
Входное напряжение по входам A и \overline{B} приемника относительно вывода GND, B	$U_{\rm I}$	1.0	4.5	-1.5	U_{CC}	
Входное напряжение высокого уровня по входам С и Intest приемника, В	U_{IH}	2.4	U_{CC}	-	6.0	
Входное напряжение низкого уровня по входам С и Intest приемника, В	U_{IL}	0	0.4	-0.5	-	
Входное дифференциальное напряжение приемника, В	U_{ID}	±0.2	±2.2	-	±5.5	
Напряжение, подаваемое на выход микросхемы, В (в течение не более 10 мкс)	Uo	-	-	0	5.5	
Частота входных сигналов передатчика при длительности фронта (спада) не более 3 нс, МГц	f_{C}	-	10	-	-	
Температура кристалла, °С	Tj	_	125	-	150	

Временная диаграмма микросхемы 5102АП1Т при измерении динамических параметров $t_{\rm f},\,t_{\rm r},\,t_{\rm PHL},\,t_{\rm PHL}$

Временная диаграмма микросхемы 5102АП1Т при измерении динамических параметров t_f , t_r , t_{PHL} , t_{PHL} по тестовому входу

Временная диаграмма микросхемы 5102АП1Т при измерении синфазного входного напряжения $U_{\rm IC}$

Четыре передатчика **5102АП2Т**

Микросхема 5102AП2Т состоит из четырех симметричных передатчиков. Микросхема предназначена для межприборного обмена информацией. Корпус 16-выводной металлокерамический 402.16-32

Таблица назначения выводов

Номер вывода	Обозначение	Назначение
01	$\overline{\overline{\mathbf{Z}}}\overline{1}$	Выход инверсный передатчика 1
02	Y1	Выход прямой передатчика 1
03	$\overline{\mathbf{Z2}}$	Выход инверсный передатчика 2
04	Y2	Выход прямой передатчика 2
05	GND	Общий вывод
06	$\overline{\overline{\mathbf{Z}3}}$	Выход инверсный передатчика 3
07	Y3	Выход прямой передатчика 3
08	$\overline{Z4}$	Выход инверсный передатчика 4
09	Y4	Выход прямой передатчика 4
10	$ m U_{CC4}$	Вывод питания передатчика 4 от источника напряжения
11	A4	Вход передатчика 4
12	A3	Вход передатчика 3
13	U_{CC23}	Вывод питания передатчиков 2,3 от источника напряжения
14	A2	Вход передатчика 2
15	A1	Вход передатчика 1
16	U_{CC1}	Вывод питания передатчика 1 от источника напряжения

Таблица истинности

Вход передатчика	Прямой выход передатчика	Инверсный выход передатчика					
Н	Н	L					
L	L	Н					
Примечание – L – низки	Примечание – L – низкий уровень напряжения						
Н – высо	кий уровень напряжения						

Таблица значений электрических параметров микросхемы

Наименование параметра, единица	Буквенное	Норма па	Температура	
измерения, режим измерения	обозначение параметра	не менее	не более	среды, °С
Выходное напряжение высокого уровня, B, $U_{CC} = 5 \ B \pm 5 \ \%$, $I_{OH} = -8 \ \text{мA}$	U_{OH}	2.75	4.05	25 ± 10 125
U_{CC} =5 B ± 5 %, I_{OH} = -3 mA				-60
Выходное напряжение низкого уровня, B,	$ m U_{OL}$	1.0	2.4	25 ± 10 125 -60
Дифференциальное выходное напряжение, B ($U_{OD} = U_{OH} - U_{OL}$) $U_{CC} = 5 \text{ B} \pm 5 \text{ %, } I_{OL} = 8 \text{ mA, } I_{OH} = -8 \text{ mA}$ $U_{CC} = 5 \text{ B} \pm 5 \text{ %, } I_{OL} = 3 \text{ mA, } I_{OH} = -3 \text{ mA}$	U_{OD}	1.0	2.2	25 ± 10 125 -60
Входной ток высокого уровня ,мк A , U_{CC} =5.25 B , U_{IH} = U_{CC}	I_{IH}	-	80	25 + 10
Входной ток низкого уровня ,мкA, $U_{CC} \! = \! 5.25 \; B, U_{IL} \! = \! 0 \; B$	${ m I}_{ m IL}$	-100	-800	25 ± 10 -60; 125
Ток потребления, мА, U _{CC} =5.25 B, U _{IH} =2.4 B	I_{CC}	_	110	
Время задержки распространения при включении (выключении), нс,	t _{PHL} (t _{PLH})		10	25 ± 10
U_{CC} =4.75 B, R_L =75 Ом, f_C =10 М Γ ц	11112 (1211)	_	12	-60; 125

Значения параметров предельно допустимых и предельных режимов

Наименование параметра режима,	Буквенное обозначение	Преде. допустимы		Предельный режим		
единица измерения	ооозначение	не менее	не более	не менее	не более	
Напряжение питания, В	$U_{\rm CC}^{\ 1)}$	4.75	5.25	-	6.0	
Входное напряжение высокого уровня по входам А1, А2, А3, А4 передатчика, В	U _{IH}	2.4	U_{CC}	-	6.0	
Входное напряжение низкого уровня по входам А1, А2, А3, А4 передатчика, В	U_{IL}	0	0.4	-0.5	-	
Входное напряжение по входам A и \overline{B} приемника относительно вывода GND, B	$U_{\rm I}$	1.0	4.5	-1.5	U_{CC}	
Входное напряжение высокого уровня по входам С и Intest приемника, В	U_{IH}	2.4	U_{CC}	-	6.0	
Входное напряжение низкого уровня по входам С и Intest приемника, В	U_{IL}	0	0.4	-0.5	-	
Входное дифференциальное напряжение приемника, В	$U_{ m ID}$	±0.2	±2.2	-	±5.5	
Напряжение, подаваемое на выход микросхемы, В (в течение не более 10 мкс)	Uo	-	-	0	5.5	
Частота входных сигналов передатчика при длительности фронта (спада) не более 3 нс, МГц	f_{C}	-	10	-	-	
Температура кристалла, °С	Tj	_	125	-	150	
¹⁾ Для микросхем 5102АП2Т - U _{CC1,} U _C	CC23, UCC4					

¹⁹⁷

Временная диаграмма микросхемы 5102АП2Т при измерении динамических параметров t_{PHL}, t_{PLH}

Импульсно-кодовый модулятор – кодер-фильтр-декодер (ИКМ-кофидек) для преобразования речевого сигнала в цифровую форму и обратно.

5512ПП1Р/ТБМ

Микросхемы 5512ПП1ТБМ, 5512ПП1РБМ представляют собой ИКМ-кофидек (кодер-фильтр-декодер) и позволяет преобразовывать аналоговый сигнал в цифровую форму и обратно.

Микросхемы предназначены для использования в аппаратуре специального назначения.

Микросхемы разработана для работы как в синхронных так и в асинхронных системах и имеет в своем составе:

- генератор опорного напряжения;
- фильтры на переключаемых конденсаторах в трактах передачи и приема;
- два операционных усилителя.

Микросхемы производят компандирование сигнала по А-закону и полную дифференциальную обработку аналоговых сигналов для уменьшения шумов.

Микросхема 5512ПП1ТБМ изготавливается в 20-выводном корпусе типа 4153.20-6, микросхема 5512ПП1РБМ – в 20-выводном корпусе типа 2140.20-4.

Назначение выводов

№ вывода	Обозначение	Назначение
01	VPO+	Выход мощного ОУ
02	GND	Общий вывод
03	VPO –	Выход мощного ОУ
04	VPI	Вход мощного ОУ
05	VF _R O	Выход 3Ч принятого цифрового сигнала
06	Vcc	Питание 5 В
07	FS_R	Вход синхронизации цикла приема
08	D_R	Вход приема цифровых данных
09	BCLK _R /CLKSEL	Вход тактового генератора и селектор частот основного генератора
10	MCLK _R /PDN	Вход главного тактового генератора и контроль пониженного потребления
11	MCLKx	Вход главного тактового генератора для передачи
12	BCLKx	Вход тактового генератора для передачи данных (синхронизирован с MCLKx)
13	Dx	Выход передаваемых цифровых данных
14	FSx	Вход синхронизации цикла передачи
15	TSx	Выход индикатора временного интервала передачи
16	ANBL	Вход контроля петли обратной связи
17	GSx	Выход входного ОУ
18	VFxI-	Вход передаваемой ЗЧ (инвертирующий)
19	VFxI+	Вход передаваемой ЗЧ (неинвертирующий)
20	V_{BB}	Питание минус 5 В

Структурная схема микросхемы

Предельно допустимые и предельные режимы

Наименование параметра	Буквенное обозначение	ne	-допустимый жим	Предельный режим		
режима, единица измерения	ооозначение	не менее	не более	не менее	не более	
Напряжение питания, В	V_{CC}	4.75	5.25	-0.3	7.0	
папряжение питания, в	V_{BB}	-4.75	-5.25	-7.0	0.3	
Разность напряжений питания, В	$V_{CC} - V_{BB}$	_	_	-0.5	13	
Напряжение на аналоговом входе или выходе, В	V_{A}	_	_	$V_{BB}-0.3$	$V_{CC} + 0.3$	
Напряжение на цифровом входе или выходе, В	V_{D}	-	_	- 0.3	$V_{CC} + 0.3$	
Входное напряжение низкого уровня цифровых входов, В	V_{IL}	0	0.6	_	-	
Входное напряжение высокого уровня цифровых входов, В	V_{IH}	2.4	V_{CC}		_	
Выходной ток низкого уровня, мА	I_{OL}	_	3.2	1	_	
Выходной ток высокого уровня, мА	I_{OH}	_	-3.2	_	_	

Электрические параметры ($U_{CC} = 5.0 \; B \pm 5\%$, $U_{BB} = -5.0 \; B \pm 5\%$, если иное не указано ниже)

	Буквенное	Норма па	араметра	Температ
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	ура среды, °C
Потребляемая мощность в активном режиме (без нагрузки), мВт (вход мощного ОУ подключен к $V_{\rm BB}$)	P _{CC0}	I	85 90	
Потребляемая мощность в режиме пониженного энергопотребления (без нагрузки), мВт (вход мощного ОУ подключен к V _{вв})	P _{CCS}	П	9.0 10	
Выходное напряжение низкого уровня по выходам D_X , \overline{TSx} , B , при $I_{OL}=3.2$ мА	V_{OL}	_	<u>0.37</u> 0.40	25 ± 10
Выходное напряжение высокого уровня по выходу D_X , B , при $I_{OH} = -3.2$ мА	V_{OH}	2.47 2.40	_	-60, 85
при I _{OH} = -1.6 мА	V OH	$\frac{Vcc-0.8}{V_{CC}-0.5}$	_	
Время задержки распространения при включении, выключении от FSx до Dx, нс, при $C_L = 150~{\rm n}\Phi$	t _{PHL} , t _{PLH}	20	140	
Статические параметры]			
Входной ток низкого уровня цифрового входа, мкА	I_{IL}		-12 -20	
Входной ток высокого уровня цифрового входа, мкА	$ m I_{IH}$		12 20	25 ± 10
Выходной ток низкого уровня в состоянии "Выключено", мкА	I_{OZL}	_	-12 -20	-60, 85
Выходной ток высокого уровня в состоянии "Выключено", мкА	I_{OZH}		12 20	

	Буквенное	Норма п	араметра	Температ
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	ура среды, °С
Аналоговые электрические характеристики (вывод VF _X I- подсоединен к выводу GS_X , емкость нагрузки вывода GS_X $C_L = (0 - 100)$ п Φ , емкость нагрузки вывода VF _R O $C_L = (0 - 500)$ п Φ)				
Входной ток низкого уровня входов VF $_{ m X}$ I+, VF $_{ m X}$ I-, мкA, при V $_{ m IN}$ = -2.5 В	I _{ILA}	_	-0.3 -0.4	
Входной ток высокого уровня входов VF $_{\rm X}$ I+, VF $_{\rm X}$ I-, мкA, при V $_{\rm IN}$ = 2.5 B	I_{IHA}	_	<u>0.3</u> 0.4	
Входное сопротивление входов VFxI-, VFxI+, МОм, при частоте $f = 1 \ \kappa \Gamma \mu$	R_{IA}	<u>5.5</u> 5.0	_	
Напряжение смещения нуля по входам VF_XI+ , VF_XI- , мВ	V _{IO(GSx)}	<u>-25</u> -50	<u>25</u> 50	
Диапазон синфазных входных напряжений по входам VF $_{ m X}$ I+, VF $_{ m X}$ I-, B	ΔV_{IC}	<u>-2.7</u> -2.5	2.7 2.5	25 ± 10
Коэффициент усиления без обратной связи по выходу GS_X , дБ, при $R_L \ge 20~{ m kOm}$	A_{U}	<u>70</u> 60	_	-60, 85
Диапазон выходных напряжений по выводу GS_X , B , при $R_L=10$ к O м	A 3.7	<u>-3.7</u> -3.5	3.7 3.5	
при $R_L = 600 \; \mathrm{Om}$	$\Delta V_{O(GSx)}$	<u>-3.0</u> -2.8	3.0 2.8	
Выходной ток высокого уровня по выводу GS_X , мА, при $V_O=2.8~\mathrm{B}$	$I_{OH(GSx)}$	<u>5.5</u> 5.0	_	
Выходной ток низкого уровня по выводу GS_X , м A , при $V_O = -2.8~B$	$I_{OL(GSx)}$	<u>-5.5</u> -5.0	_	

	Буквенное	Норма па	араметра	Температу
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	ра среды, °С
Выходной ток по выводу VF_RO , мА, при $Veff = 2.046~B$	I _{O(VFR0)}	$\begin{vmatrix} \pm 5.5 \\ \pm 5.0 \end{vmatrix}$		
Выходное сопротивление вывода VF_RO , O_M , в диапазоне частот от 0 до $3400~\Gamma$ ц	R _{OA}	-	$\frac{1.5}{2.0}$	$\frac{25 \pm 10}{-60, 85}$
Напряжение смещения нуля, мВ, (для выхода VF _R O)	V _{IO(VFRO)}	<u>-94</u> -150	<u>94</u> 150	
Х арактеристики мощного ОУ ($C_L = (0 - 1000) \Pi\Phi$)				
Входной ток низкого уровня по выводу VPI, мк ${f A}$, при ${f V}_{ m I}$ = -1.0 ${f B}$	$I_{\rm IL(OY)}$	_	<u>-0.9 </u> -1.0	
Входной ток высокого уровня по выводу VPI, мкA, при $V_{\rm I} = 1.0~{ m B}$	$I_{IH(OY)}$	-	<u>0.9</u> 1.0	
Входное сопротивление вывода VPI, МОм, при -1.0 В \leq V _I \leq 1.0 В	$R_{I(OY)}$	1.0	-	25 ± 10
Напряжение смещения нуля мощного ОУ, мВ (вход VPI соединен с выходом VPO-)	V _{IO(OY)}	<u>-47</u> -100	47 100	$\frac{25 \pm 10}{-60, 85}$
Выходное сопротивление выводов VPO-, VPO+, Ом	R _{O(OY)}	_	2.0	
Частота единичного усиления, кГц, по выводу VPO-	f_1	_	300	
Коэффициент усиления мощного ОУ, B/B , при $R_L = 300$ Ом, от VPO- к VPO+	A _{U(OY)}	_	-1.0	

	Буквенное	Норма п	араметра	Температу
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	ра среды, °С
Максимальный уровень входного сигнала с нелинейностью по выходу не более $0.1~{ m дF}$, ${ m R}$, при ${ m R}_{ m L}=600~{ m Om}$	U _{INMAX}	3.0	_	$\frac{25 \pm 10}{-60, 85}$
при R _L = 1200 Ом	OINMAX	3.2		-60, 85
при R _L = 10 кОм		3.5		
Аналоговые передаточные харак	-			
(Эффективное напряжение Veff = $1.227~B$, частота по входам синхронизации FS_X , $FS_R~f_{FS} = 8~к\Gamma$ ц, частота по входам тактовых генераторов $BCLK_X/CLKSEL$, $MCLK_X/PDN~f_{CLK} = 2.048~M\Gamma$ ц при синхронной работе, вывод VF_XI - присоедин к выводу GS_X)				
Коэффициент усиления по каналам AD, DA, дБ, на частоте 1.024 к Γ ц при коэффициенте усиления входного усилителя 0 дБ, при $V_{CC} = 5.0$ B, $V_{BB} = -5.0$ B	A_{U1}	<u>-0.3</u> -0.42	<u>0.3</u> 0.42	
при коэффициенте усиления входного усилителя 30 дБ относительно входного сигнала с уровнем минус 30 дБ	A_{U2}	<u>-0.3</u> -0.42	0.3 0.42	
Отклонение коэффициента усиления по каналам AD, DA при изменении напряжения питания, дБ	ΔA_{U1}	-0.04	0.04	25 . 10
Амплитудная характеристика по каналам AD, DA относительно уровня минус 10 дБ на частоте 1.024 кГц, дБ, в диапазоне входного сигнала от плюс 3 до минус 40 дБ		-0.3	0.3	$\frac{25 \pm 10}{-60, 85}$
в диапазоне входного сигнала от минус 40 до минус 50 дБ	T.C.A.	-0.6	0.6	
в диапазоне входного сигнала от минус 50 до минус 55 дБ	KA _{U1}	-1.2	1.2]
по каналу АА в диапазоне входного сигнала от плюс 3 до минус 40 дБ]	-0.6	0.6	
по каналу АА в диапазоне входного сигнала от минус 40 до минус 50 дБ		-1.2	1.2	
по каналу АА в диапазоне входного сигнала от минус 50 до минус 55 дБ		-2.4	2.4	

	Буквенное	Норма па	араметра	Температу
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	ра среды, °С
Амплитудно – частотная характеристика (АЧХ) по каналу AD (относительно уровня 0 дБ на частоте 1.024 кГц), дБ, при частоте 15 Гц на входе VFxI+		-	-38	
при частоте 50 Гц на входе VFxI+		_	-28	1
при частоте 60 Гц на входе VFxI+		_	-24]
при частоте 200 Гц на входе VFxI+	$A_{F(AD)}$	-1.0	-0.4	
при частоте 300, 2000, 3000 Гц на входе VFxI+		-0.2	0.2	
при частоте 3300 Гц на входе VFxI+		-0.4	0.2	
при частоте 3400 Гц на входе VFxI+		-1.0	0	
при частоте 4000 Гц на входе VFxI+		_	-12	
при частоте 4600 Гц на входе VFxI+		_	-32	25 ± 10
Амплитудно – частотная характеристика (АЧХ) по каналу DA (относительно уровня 0 дБ на частоте 1.024 кГц), дБ, при частоте 15 Гц на входе VFxI+		-0.3	0.15	-60, 85
при частоте 50 Гц на входе VFxI+		-0.3	0.15	
при частоте 60 Гц на входе VFxI+		-0.3	0.15	
при частоте 200 Гц на входе VFxI+	$A_{F(DA)}$	-0.3	0.15	
при частоте от 300 до 3000 Гц на входе VFxI+		-0.2	0.2	
при частоте 3300 Гц на входе VFxI+		-0.4	0.2]
при частоте 3400 Гц на входе VFxI+		-1.0	0]
при частоте 4000 Гц на входе VFxI+			-12]
при частоте 4600 Гц на входе VFxI+		_	-30	

Электрические параметры (продолжение).

	Буквенное	Норма па	араметра	Температу
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	ра среды, °С
Амплитудно – частотная характеристика (АЧХ) по каналу АА (относительно уровня 0 дБ на частоте 1.024 кГц), дБ, при частоте 15 Гц на входе VFxI+		-	-38	
при частоте 50 Гц на входе VFxI+		_	-28	
при частоте 60 Гц на входе VFxI+	1	_	-24	
при частоте от 300 до 3000 Гц на входе VFxI+	$A_{F(AA)}$	-0.4	0.4	
при частоте 3300 Гц на входе VFxI+		-0.8	0.4	
при частоте 3400 Гц на входе VFxI+		-2.0	0	
при частоте 4000 Гц на входе VFxI+		_	-24	25 ± 10 ,
при частоте 4600 Гц на входе VFxI+		_	-60	-60, 85
Уровень паразитных гармоник в полосе пропускания (в диапазоне частот от 300 до 3000 Гц), дБ, при коэффициенте усиления входного ОУ 0 дБ (относительно уровня 0 дБ на частоте 810 Гц)	K _{h(0)}	-	-40	
при коэффициенте усиления входного ОУ -30 дБ (относительно уровня - 30 дБ на частоте 810 Гц)	K _{h(30)}	-	36	
Коэффициент ослабления паразитных гармоник за пределами частоты пропускания выхода VF_RO (в диапазоне частот от 4600 до 10000 Γ ц), дБ, по каналам AA , DA	K _{OC}	_	-25	

Примечания

¹ Режимы измерения электрических параметров приведены в таблицах 4, 5.

² Значения параметров уточняются в ходе ОКР.

Временная диаграмма проведения ФК в режиме короткой синхронизации

Временная диаграмма проведения ФК в режиме длинной синхронизации

Супервизор питания. 5518АП1ТБМ

Микросхемы используются в радиоэлектронной аппаратуре специального назначения. Микросхема конструктивно выполняется в металлокерамическом 8-выводном корпусе типа 4112.8-1.01. **Прототип ADM705AR**, ф.Analog Devices, США.

Особенности:

- Диапазон напряжения питания от 1.2 до 5.5 В
- Допустимое значение статического потенциала не менее 1000В
- Диапазон рабочих температур среды от минус 60 до плюс 125°C

Выполняемые функции:

- Формирование сигнала сброса по фиксированному уровню напряжения питания
- Формирование сигнала сброса от внешней кнопки
- Формирование сигнала состояния сторожевого таймера
- Прерывание по аварии первичного источника питания

Таблица 1 - Назначение выводов

Номер вывода	Обозначение	Наименование вывода
01	MR	Вход ручного сброса
02	Vcc	Вывод питания от источника напряжения
03	GND	Общий вывод
04	PFI	Вход исчезновения питания
05	PFO	Выход исчезновения питания
06	WDI	Вход сторожевого таймера
07	RESET	Выход сброса
08	$\overline{ ext{WDO}}$	Выход сторожевого таймера

Рисунок 1 Схема электрическая структурная

Таблица 2 – Предельно допустимые и предельные режимы

Наименование параметра режима,	Буквенное 1		-допустимый жим	Предельный режим	
единица измерения	ооозначение	не менее	не более	не менее	не более
Напряжение питания, В	U_{CC}	1,2*	5,5	- 0,3	6,0
Входное напряжение высокого уровня источника по входу \overline{MR} , В	U _{IH}	2,0	U_{CC}	-	$U_{CC} + 0,3$
Входное напряжение низкого уровня источника по входу \overline{MR} , В	U _{IL}	0	0,8	- 0,3	-
Входное напряжение высокого уровня источника по входу WDI, В	U _{IH}	3,5	U_{CC}	-	$U_{CC} + 0,3$
Входное напряжение низкого уровня источника по входу WDI, В	$ m U_{IL}$	0	0,8	- 0,3	-
Входное напряжение высокого уровня источника по входу PFI, В	$ m U_{IH}$	-	U_{CC}	-	$U_{CC} + 0.3$
Входное напряжение низкого уровня источника по входу PFI, В	U_{IL}	0	-	- 0,3	-

^{*} При напряжении питания менее U_{CCTP} регламентируется только выходное напряжение низкого уровня по выходу $\overline{\textit{RESET}}$.

Таблица 3 – Электрические параметры микросхем при приемке и поставке

	Буквенное	Норма п	Темпера	
Наименование параметра, единица измерения	обозначение параметра	не менее	не более	тура среды, °С
Выходное напряжение низкого уровня, В			0,4	
по выходу $\overline{\text{RESET}}$ при $I_{OL}=3.2$ мА, $U_{CC}=4.3~\mathrm{B}$			0,4	
по выходу \overline{RESET} при $I_{OL} = 100$ мкА, $U_{CC} = 1,2$ В		_	0,3	
по выходу $\overline{\text{WDO}}$ при $I_{\text{OL}} = 1,2$ мА, $U_{\text{CC}} = 4,8$; 5,5 В			0,4	25±10;
по выходу $\overline{\text{PFO}}$ при $I_{OL} = 3.2$ мA, $U_{CC} = 4.8; 5.5$ В			0,4	-60; 125
Выходное напряжение высокого уровня, В				
по выходу $\overline{\text{RESET}}$ при $I_{OH}=800$ мкA, $U_{CC}=5.2~\mathrm{B}$	U_{OH}	U_{CC} -1,5	_	
по выходу $\overline{\text{WDO}}$, $\overline{\text{PFO}}$ при $I_{OH}=800$ мкA, $U_{CC}=4.8~\mathrm{B}$				
Напряжение источника питания, при котором формируется сигнал сброса, В	U_{CCTP}	4,5	4,75	25±10
ттапряжение источника питания, при котором формируется сигнал сороса, в		4,44	4,75	-60; 125
Напряжение на входе PFI, при котором формируется прерывание, B, при $U_{CC} =$	$U_{THR\;PFI}$	1,2	1,3	25±10
4,8; 5,5 B		1,15	1,3	-60; 125
Входной ток низкого уровня, мкA, при $U_{CC} = 5.5 \ B$ по входу PFI	ī		-1,0	25±10;
по входу WDI	$ I_{IL}$	_	-150	-60; 125
Входной ток высокого уровня, мкA, при $U_{CC} = 5.5 \ B$ по входу PFI	Ţ		1,0	
по входу WDI	I_{IH}	_	150	25±10;
Ток подтягивающего резистора по входу \overline{MR} , мкA, при $U_{CC} = 4.8; 5.5 \ B$	I_{PULL}	100	600	-60; 125
Ток потребления, мкA, при $U_{CC} = 5.5 \ B$	I_{CC}	_	250	

Таблица 3 – Продолжение

	Буквенное	Норма параметра		Температ
Наименование параметра, единица измерения	обозначение параметра	не менее	не более	ура среды, °C
Длительность сигнала сброса, мс, при $U_{CC} = 4.8 \ B$	$t_{W(RST)}$	130	280	
Время задержки распространения при включении от $\overline{\text{MR}}$ до $\overline{\text{RESET}}$, нс, при $U_{\text{CC}}{=}4,8\text{B}$	$t_{ m PHL}$	-	250	25±10;
Время переполнения сторожевого таймера, мс, при U _{CC} = 4,8 В	$t_{ m WD}$	1000	2250	-60; 125
Длительность сигнала низкого уровня на входе \overline{MR} , нс, при $U_{CC} = 4.8~\mathrm{B}$	$t_{WL(MR)}$	200	_	
Длительность сигнала на входе WDI, нс, при $U_{CC} = 4.8 \text{ B}$	t _{W (WDI)}	100	_	
Примечания Знак "минус" перед значением тока указывает только его направле	ние (вытекающ	ций ток). За ве	еличину то	ка

Примечания Знак "минус" перед значением тока указывает только его направление (вытекающий ток). За величину тока принимается абсолютное значение показаний измерителя тока

Таблица 4 - Электрические параметры микросхем, изменяющиеся в процессе и после воздействия специальных факторов

Наименование параметра, единица измерения, режим измерения	Буквенное обозначение параметра	Норма параметра		Температура
		не менее	_	среды, °C
Ток потребления, мкА, при $U_{CC} = 5.5 \; B$	I_{CC}	ı	300	25±10; -60; 125

Рисунок 2 – Временная диаграмма работы микросхем

Рисунок 3 – Временная диаграмма работы микросхем

Рисунок 4 – Временная диаграмма работы микросхем

 $t_{W(RST)} = t_{PLH1} - t_{PHL}$

Рисунок 5 – Временная диаграмма входных и выходных импульсов при контроле $t_{W(RST)}$, t_{PHL}

Рисунок 6 – Временная диаграмма входных и выходных импульсов при контроле two

Рисунок 7 – Временная диаграмма входных и выходных импульсов при контроле t_{WD}

Рисунок 8 – Временная диаграмма входных и выходных импульсов при контроле two

Интерфейсный приемопередатчик последовательных данных стандартов EIA/TIA-232E и ССІТТ V.28 с одним напряжением питания. 5559ИН1Т

5559ИН1Т - интерфейсный приемопередатчик последовательных данных стандартов EIA/TIA-232E и CCITT V.28 с одним напряжением питания и двуполярным выходным напряжением передатчика, формируемым встроенным генератором умножения напряжения на четырех внешних емкостях равных 1.0 мкФ. Микросхема предназначена для применения в современных высокопроизводительных вычислительных системах, быстродействующих электронных устройствах с высокой надежностью обмена информации между удаленными объектами. Микросхема содержит 2 передатчика и 2 приемника последовательных данных стандарта RS-232. Конструктивно микросхема выполняется в 16-выводном металлокерамическом плоском корпусе 402.16-32. Т_А = -60° ÷ +125°C

Наиболее близкими по составу параметров разрабатываемой схемы являются микросхемы **MAX232EPA** ф. **Maxim**, США, прямой аналог отсутствует.

Таблица 1. Таблица истинности

Вход	Выход
RXIN, TXIN	$\overline{RXOUT},\overline{TXOUT}$
Н	L
L	Н

Примечание -

L - низкий уровень напряжения;

Н - высокий уровень напряжения

Таблица 2. Назначение выводов.

Номер вывода	Наименование вывода	Обозначение
01	Вывод внешней емкости блока умножения положительного напряжения	C1+
02	Выход положительного напряжения блока умножения	V+
03	Вывод внешней емкости блока умножения положительного напряжения	C1-
04	Вывод внешней емкости блока умножения отрицательного напряжения	C2+
05	Вывод внешней емкости блока умножения отрицательного напряжения	C2-
06	Выход отрицательного напряжения блока умножения	V-
07	Выход передатчика (уровни RS-232)	TXOUT2
08	Вход приемника (уровни RS-232)	RXIN2
09	Выход приемника (уровни ТТЛ/КМОП)	RXOUT2
10	Вход передатчика (уровни ТТЛ/КМОП)	TXIN2
11	Вход передатчика (уровни ТТЛ/КМОП)	TXIN1
12	Выход приемника (уровни ТТЛ/КМОП)	RXOUT1
13	Вход приемника (уровни RS-232)	RXIN1
14	Выход передатчика (уровни RS-232)	TXOUT1
15	Общий вывод	GND
16	Вывод питания от источника напряжения	V _{CC}

Рисунок 1 – Схема электрическая функциональная

Таблица 3 – Предельно допустимые и предельные режимы

Наименование параметров	Буквенное	Предельно- допустимый режим		Предельный режим	
режима, единица измерения	обозначение	не менее	не более	не менее	не более
Напряжение питания, В	U_{CC}	4.5	5.5	- 0.3	6.0
Напряжение высокого уровня на выходе передатчика, В	U _{OH T} *	_	_	_	$(U_{OV+})+0.3 B$
Напряжение низкого уровня на выходе передатчика, В	U _{OL T} *	-	-	(U _{OV} -) - 0.3 B	_
Положительное напряжение на выходе блока умножения, В	U _{OV+} **	-	_	U _{CC} - 0.3 B	14
Отрицательное напряжение на выходе блока умножения, В	U _{OV-} **	-	_	- 14	0.3
Входное напряжение приемника, В	U_{IR}	-30	30	-32	32
Входное напряжение низкого уровня передатчика, В	U_{IL}	0	0.8	- 0.3	_
Входное напряжение высокого уровня передатчика, В	U _{IH}	2.0	U _{CC}	_	$U_{CC} + 0.3 B$
Емкость нагрузки, пФ – приемника	C_{L}	_	150	_	150
– передатчика	CL		2500		2500

^{*} С учетом всех видов помех ** Внешние емкости блока умножения напряжения отключены

Таблица 4 – Электрические параметры микросхем при приемке и поставке

Наименование параметра, единица измерения, режим	Буквенное	Нор	Норма		
измерения	обозначение параметра	не менее	не более	- Температура среды, °С	
Том подробномую мА	т		10	25 ± 10	
Ток потребления, мА	I_{CC}	_	14	-60; 125	
Электрические пара	аметры приемн	ика			
Privotuce Harmanouse Harvers Vinopula P. Hint I 2.2 MA	II.		0.3	25 ± 10	
Выходное напряжение низкого уровня, B, при $I_{OL} = 3.2 \text{ мA}$	U _{OL R}	_	0.4	-60; 125	
Выходное напряжение высокого уровня, В,	ŢŢ	3.7		25 ± 10	
при $I_{OH} = -1.0 \text{ мA}$	U _{OH R}	3.5	_	-60; 125	
Напряжение гистерезиса, B, при $U_{CC} = 5.0 \text{ B}$	Uh	0.2	0.9	25 ± 10	
напряжение гистерезиса, в, при $O_{CC} = 3.0$ в	UII	0.2	1.0	-60; 125	
Harmanaya ana Sarri payura D. rinu II. — 5 0 D.	$U_{\mathrm{IT+}}$		2.4	25 ± 10	
Напряжение срабатывания, B, при $U_{CC} = 5.0 \text{ B}$		_	2.45	-60; 125	
Harrawayya arrayayyya P. Hay II 5 0 D	U_{IT-}	0.8		25 ± 10	
Напряжение отпускания, B, при $U_{CC} = 5.0 \text{ B}$		0.75	_	-60; 125	
Входное сопротивление, к O м, при $U_{CC} = 5.0 \ B$	$R_{\rm I}$	3.0	7.0	25 ± 10	
Время задержки распространения при включении,	t _{PHL R} ,		9.2	25 ± 10	
выключении, мкс, при $C_L = 150 \; \Pi\Phi$	t _{PLH R}	_	10.0	-60; 125	
Электрические пара	метры передат	чика			
Hyamanay P. W. D.	TT	±5.45	_	25 ± 10	
Диапазон выходных напряжений, B, при $R_L = 3$ кОм	$U_{ m ORN}$	±5.0		-60; 125	
Dyo wyo y moy ywy yo y monyg a w A may II O D	Ţ		-1.0	25 ± 10	
Входной ток низкого уровня, мк A , при $U_{\rm I} = 0~{ m B}$	I_{IL}	_	-10	-60; 125	
Входной ток высокого уровня, мкA, при $U_I = Ucc$	I_{IH}	-	1.0	25 ± 10	

Таблица 4 – Продолжение.

Наименование параметра, единица измерения, режим	Буквенное	Нор	Температура	
измерения	обозначение параметра	не менее	не более	среды, °C
Выходное сопротивление, Ом,	Ro	350		25 ± 10
при $U_{CC} = U_{OV+} = U_{OV-} = 0$ B, $U_{OV} = \pm 2$ B	No	300		-60; 125
Townson and was the	I _{OS} *		± 50	25 ± 10
Ток короткого замыкания, мА		_	± 60	-60; 125
Время задержки распространения при включении,	мя задержки распространения при включении, t _{PHL T} ,		15	25 ± 10
выключении, мкс, при $C_L = 2500 \text{ п}\Phi$, $R_L = 3 \text{ кOm}$	$t_{\rm PLH~T}$	_	20	-60; 125
Скорость изменения выходного напряжения, В/мкс, при		3.0	30	25 ± 10
Ucc = 5.0 B, $C_L = (50 - 1000)$ п Φ , $R_L = (3 - 7)$ кОм. Уровни отсчета минус 3 B, плюс 3 B	SR	2.7	36	-60; 125
Скорость передачи информации, Кбит/с, при $R_L = (3 - 7)$	ST	140		25 ± 10
кОм, $C_L = (50 - 1000) \Pi\Phi$	51	120	_	-60; 125

Примечание — Знак «минус» перед значением тока указывает только его направление (вытекающий ток). За величину тока принимается абсолютное значение показаний измерителя тока.

^{*} Параметр неэксплуатационный, время короткого замыкания не ограничено

Рисунок 2 – Временная диаграмма входных и выходных сигналов приемника

Рисунок 3 - Временная диаграмма входных и выходных сигналов передатчика

Рисунок 4 - Временная диаграмма входных и выходных сигналов передатчика

Функциональное описание микросхемы

Микросхема состоит из трех основных блоков: блока умножения напряжения, передатчика и приемника сигналов стандарта RS-232. Микросхема обладает высоким уровнем устойчивости к статическому электричеству по входам/ выходам стандарта RS-232.

Блок умножения напряжения

Преобразование напряжения питания плюс 5В в напряжение плюс 10В и минус 10В осуществляется в два этапа (см. рисунок 1). На первом этапе происходит удвоение напряжения на внешней емкости С1 и осуществляется хранение заряда на внешней емкости С4. На втором этапе осуществляется инверсия напряжения плюс 10В в минус 10В с использованием внешней емкости С2. Состояние после инверсии запоминается на внешней емкости С5.

Передатчик сигналов стандарта RS-232

При напряжении питания Ucc = 5B среднее значение выходного напряжения передатчика \pm 8B, если он подключен к номинальному сопротивлению 5кОм входа приемника RS-232. Выходное напряжение передатчика \pm 5B (минимальное значение) гарантируется при использовании условий и режимов стандартов EIA/TIA-232E и CCITT V.28 для самого наихудшего случая. К этим условиям относятся: нагрузка 3кОм, минимальное напряжение питания, максимальная температура среды. В режиме холостого хода диапазон выходного напряжения передатчика равен от (U_{V+} - 0.6B) до U_{V-} , где U_{V+} – положительное напряжение на выходе блока умножения, U_{V-} – отрицательное напряжение на выходе блока умножения.

Пороговые напряжения входов передатчика совместимы с уровнями КМОП/ТТЛ.

Приемник сигналов стандарта RS-232

Приемники интерфейсного приемопередатчика 5559ИН1Т осуществляют обратное преобразование сигналов стандартов RS-232 в уровни КМОП/ТТЛ. Входные пороги приемника 0.8 и 2.4В полностью соответствуют требованиям стандартов EIA/TIA-232E при минимальной амплитуде входного сигнала \pm 3В. Данные значения пороговых напряжений позволяют транслировать как сигналы стандартов RS-232, так и сигналы, соответствующие уровням КМОП/ТТЛ.

Значение порогового напряжения 0.8В обеспечивает устойчивое состояние высокого уровня на выходе. Конструктивно вход приемника через резистор сопротивлением 5кОм подключен к общему выводу, что при отсутствии сигнала на входе обеспечивает состояние высокого уровня на выходе.

Входные блоки приемника имеют входной гистерезис со средним значением ширины гистерезиса Uh = 0.5B, который обеспечивает форму выходных фронтов без ступенек, устойчивость к генерации на выходе в случае поступления на вход сигналов с затянутыми фронтами.

Рекомендации по выбору внешних емкостей

Использование различного типа внешних емкостей C1-C4 (см. рисунок 1) является некритичным для нормальной работы микросхем. Для микросхем 5559ИН1Т используются емкости с минимально допустимым значением 1.0мк Φ . Можно использовать внешние емкости с номиналом до 10мк Φ .

Для номинала 1.0мкФ наиболее предпочтительными являются керамические, алюминиевые электролитические или танталовые конденсаторы.

Если используются конденсаторы с минимально допустимым номиналом, основным требованием к ним является отсутствие значительной деградации номинала от изменения температуры. Рекомендуется использовать конденсаторы с увеличенным в 2 раза номиналом.

Эффективное последовательное сопротивление конденсаторов, которое обычно увеличивается с уменьшением температуры среды, оказывает влияние на коэффициент пульсации напряжений U_{V+} , U_{V-} .

Применение емкостей до 10мкФ позволяет уменьшить полное выходное сопротивление выходов (V+), (V-) и, следовательно, пульсации напряжений на выходах (V+), (V-).

Рекомендуется между выводом источника напряжения питания и общим выводом подключать емкость с минимальным значением 1.0мкФ (конденсатор C3 на рисунке 1). Для уменьшения шума источника напряжения питания используют конденсатор с таким же значением емкости, как внешние емкости блока умножения C1 – C4.

Каждый передатчик спроектирован для управления одним приемником. Для управления большим количеством приемников допускается объединение выходов передатчика.

Микросхемы обеспечивают диапазон выходного напряжения передатчика не менее ± 5В при скорости передачи информации больше 120Кбит/с. Скорость передачи информации можно увеличить в случае использования меньшей емкостной нагрузки, т.е. при работе на более короткий кабель.

Интерфейсный приемопередатчик последовательных данных стандартов RS-485/422 5559ИН2Т

Интерфейсный приёмопередатчик последовательных данных предназначен для применения в телекоммуникационных системах, соответствующих стандартам RS - 485, RS - 422, с низкой рассеиваемой мощностью, трансляторах уровня, приемопередающих устройствах, чувствительных к электромагнитному излучению, системах управления промышленными объектами специального назначения. Микросхема содержит 1 передатчик и 1 приемник последовательных данных стандарта RS - 485. Корпус металлокерамический 4112.8-1.01. $T_A = -60^{\circ} \div +125^{\circ}C$

Наиболее близкими по составу параметров разрабатываемой схемы являются микросхемы **MAX485EPA**, **MAX485ESA** ф. **Maxim**, США, прямой аналог отсутствует.

Таблица истинности приемника

Вход			Выход
RE	DE	A, B	RO
0	0	>+0.2 B	1
0	0	<-0.2 B	0
0	0	ВН	1
1	0	X	Z

Примечание: ВН – входы незадействованные

Таблица истинности передатчика

Вход			Вы	ход
RE	DE	DI	В	A
X	1	1	0	1
X	1	0	1	0
0	0	X	Z	Z
1	0	X	Z	Z

Х – безразличное состояние

Z – третье состояние

Параметры и режимы работы разрабатываемой микросхемы($Ta=-60-+125^{\circ}C^{*}$, $TJ=+150^{\circ}C$, напряжение питания 4.5 - 5.5 В).

Параметр, единица измерения	Символ	Условия из	мерения	Мин.	Макс.
Дифференциальное выходное напряжения передатчика в режиме холостого хода, В	V _{OD1}				5
Дифференциальное выходное напряжение передатчика, В	V_{OD2}	$R_{L} = 27 \text{ Ом (RS-4)}$		1.5	5.0
дифференциальное выходное напряжение передатчика, в	▼ OD2	$R_{\rm L} = 50 \; {\rm Om} \; ({\rm RS}\text{-}4)$	122)	2.0	
Разность амплитуд сигналов дифференциального выхода передатчика различной полярности, В	δV_{OD}	R _L = 27 Ом или 5	60 Ом		0.2
Выходное напряжение смещения передатчика относительно общего вывода, В	V_{OC}	R _L = 27 Ом или 5	0 Ом		3.0
Разность выходных напряжений смещения передатчика различной полярности, В	δV_{OC}	R _L = 27 Ом или 50	ООм		0.2
Пороговое напряжение высокого уровня входов управления, В	$ m V_{IH}$	VDE, VDI, VRE		2.0	
Пороговое напряжение низкого уровня входов управления, В	$ m V_{IL}$	VDE, VDI, VRE			0.8
Ток утечки входов управления, мкА	$ m I_{IN}$	VDE, VDI, VRE			<u>+</u> 2.0
Дифференциальное пороговое напряжение приемника, В	V_{TH}	$-7B \le V_{CM} \le 12 B$		-0.2	0.2
Выходное напряжение низкого уровня приемника, В	V_{OL}	$I_{O} = 4 \text{MA}, V_{ID} = -200 \text{ MB}$			0.4
Выходное напряжение высокого уровня приемника, В	V_{OH}	$I_{O} = -4 \text{ mA}, V_{ID} = 200 \text{ mB}$		3.5	
Выходной ток 3-го состояния приемника, мкА	I_{OZR}	$0.4B \le Vo \le 2.4 B$	l.		<u>+</u> 1.0
Статический ток потребления в режиме	I_{CC}	VRE = 0В или	$VDE = V_{CC}$		900
холостого хода, мкА	1CC	V_{CC}	VDE = 0B		500
Выходной ток короткого замыкания передатчика высокого уровня, мА	I_{OSD1}	$-7B \le V_O \le 12 B$		35	250
Выходной ток короткого замыкания передатчика низкого уровня, мА	I_{OSD2}	$-7B \le V_O \le 12 B$		35	250
Выходной ток короткого замыкания приемника, мА	I_{OSR}	$0 \text{ B} \leq V_{O} \leq V_{CC}$		7.0	95
Время распространения сигнала	t_PLH	$R_{\rm DIF} = 54~{\rm Om}$		10	60
передатчика, нс	t_PHL	$C_{L1} = C_{L2} = 100 \text{ m}$	Φ	10	60
Разность задержек распространения сиг-налов передатчика - t _P LH - t _P HL , нс	t_{SKEW}	$R_{DIF} = 54 \text{ Om, } C_{L1}$ $\Pi \Phi$	$= C_{L2} = 100$		10
Время фронтов нарастания и спада выходного сигнала передатчика, нс	t_R , t_F	$R_{DIF} = 54 \text{ Oм, } C_{L1}$ пФ	$= \overline{C_{L2}} = 100$	3.0	40
Время разрешения выхода передатчика, нс	t_{ZH} , t_{ZL}	$C_L = 100 \; \pi \Phi$			70

Параметры и режимы работы разрабатываемой микросхемы(Ta = -60 - +125°C*, TJ = +150°C, напряжение питания 4.5 - 5.5 B). (продолжение)

Параметр, единица измерения	Символ	Условия измерения	Мин.	Макс.
Время запрещения выхода передатчика, нс	t_{LZ}, t_{HZ}	$C_L = 15 \text{ m}\Phi$		70
Время распространения сигнала приемника, нс	t_{PLH}, t_{PHL}	$R_{ m DIF} = 54 \ { m Om}, \ C_{ m L1} = C_{ m L2} = 100$ ${ m II}\Phi$	20	200
Время разрешения выхода приемника, нс	t_{ZH} , t_{ZL}	$C_L = 15 \pi\Phi$		50
Время запрещения выхода приемника, нс	t_{LZ} , t_{HZ}	$C_L = 15 \text{ m}\Phi$		50
Разность задержек распространения сиг-налов приемника - $ t_PLH - t_PHL $, нс	t _{SKD}	$R_{DIF} = 54 \text{ Ом}, C_{L1} = C_{L2} = 100$ $_{\Pi}\Phi$		10**
Скорость передачи данных, Мбит/сек	fMAX		2.5	

Примечание * - верхнее значение Та устанавливается по предельной рабочей температуре кристалла $T_J = +150$ °C.

Назначение выводов.

Номер вывода	Назначение	Обозначение
01	Выход приемника	RO
02	Вход разрешения выхода приемника	RE
03	Вход разрешения выхода передатчика	DE
04	Вход передатчика	DI
05	Общий вывод	GND
06	Прямой вход (выход) приемника (передатчика)	A
07	Инверсный вход (выход) приемника (передатчика)	\overline{B}
08	Вывод питания от источника напряжения	V_{CC}

^{** -} параметр уточняется в ходе ОКР.

Интерфейсный приемопередатчик последовательных данных стандартов RS-485/422 5559ИНЗТБМ

Микросхема 5559ИНЗТБМ предназначена для применения в телекоммуникационных системах, соответствующих стандартам RS-485, RS-422, с низкой рассеиваемой мощностью, трансляторах уровня, приемопередающих устройствах, системах управления промышленными объектами специального назначения, предназначена для применения в вычислительной аппаратуре. Корпус металлокерамический 4112.8-1.01. Наиболее близкими по составу параметров разрабатываемой схемы являются микросхемы **MAX483** ф. **Maxim**, США, прямой аналог отсутствует.

Рисунок 1 – Схема электрическая структурная

Таблица 1 - Назначение выводов

Номер вывода	Обозначение	Назначение	
01	RO	Выход приемника	
02	$\overline{\text{RE}}$	Вход разрешения выхода приемника	
03	DE	Вход разрешения выхода передатчика	
04	DI	Вход передатчика	
05	GND	Общий вывод	
06	A/Y	Прямой вход приемника/ прямой выход передатчика	
07	$\overline{\overline{B}}/\overline{\overline{Z}}$	Инверсный вход приемника/инверсный выход передатчика	
08	Vcc	Вывод питания от источника напряжения	

Таблица 2 – Таблица истинности передатчика

	Входы		Вых	оды
RE	DE	DI	Z	Y
X	Н	Н	L	Н
X	Н	L	Н	L
L	L	X	Z	Z
Н	L	X	Z*	Z*

Примечание –

X – любой уровень напряжения (H или L);

Z - выход в третьем состоянии

* Режим с пониженным энергопотреблением

Таблица 3 – Таблица истинности приемника

	Входы		Выходы
RE	DE	A-B	RO
L	L	> + 0.2 B	Н
L	L	< - 0.2 B	L
L	L	Входы незадействованы	Н
Н	L	X	Z

Примечание –

X – любой уровень напряжения (H или L);

Z - выход в третьем состоянии

Таблица 4 - Основные электрические параметры

	Буквенное	Норма параметра		T	
Наименование параметра, единица измерения, режим измерения	обозначение параметра	Не менее	Не более	Температура среды, °С	
Ток утечки низкого уровня на входе, мк A , $U_{DE} = U_{DI} = U_{RE} = 0$ B	I_{LIL}	-	-2.0		
Ток утечки высокого уровня на входе, мкA, $U_{DE} = U_{DI} = U_{RE} = U_{CC}$	I_{LIH}	-	2.0		
Ток потребления в режиме холостого хода, мкA, $U_{RE} = 0 \; B \; \text{или} \; U_{CC}, U_{DE} = U_{CC}$ $U_{RE} = 0 \; B \; \text{или} \; U_{CC}, U_{DE} = 0 \; B$	I_{CC}	-	650 250	-60÷125	
Ток потребления в режиме отключения, мкA, U_{DE} =0 B, U_{RE} = U_{CC}	I_{SHDN}	-	10		
Время перехода в режим отключения, нс	$t_{ m SHDN}$	50	600		
Электрические параметр	ы приемника				
Выходное напряжение низкого уровня, В, U_{ID} = U_{TH} =-200 мВ, I_{OL} =4.0 мА	U _{OL}		0.4		
Выходное напряжение высокого уровня, $B, U_{ID} = U_{TH} = 180 \text{ мB}, I_{OH} = -4.0 \text{ мA}$ $U_{ID} = U_{TH} = 200 \text{ мB}, I_{OH} = -4.0 \text{ мA}$	U _{OH}	3.5	-		
Выходной ток низкого уровня в состоянии «Выключено», мкА, $U_{OIR}=0.4~\mathrm{B}$	I _{OZLR}	-	-2.0	-60÷125	
Выходной ток высокого уров-ня в состоянии «Выключено», мкА, U_{OIR} =2.4 В	I _{OZHR}	-	2.0		
Выходной ток короткого замыкания высокого уровня, мA, $U_{IH}=2.0$ B, $U_{IL}=0$ B, $U_{OIR}=5.5$ B	I_{OSHR}	7.0	95		
Выходной ток короткого замыкания низкого уровня, мA, $U_{IH}=2.0~B,$ $U_{IL}=0~B,$ $U_{OIR}=0~B$	I _{OSLR}	-7.0	-95		

Таблица 4 - Продолжение

Наименование параметра, единица измерения,	Буквенное обозначение	Норма п	араметра	Температура	
режим измерения	параметра	Не менее	Не более	среды, °C	
Входной ток, мА, U_{CC} =0 или 5.5 B, U_{DE} = 0 B U_{IR} =12 B	I _I		1.0		
$U_{IR} = -7 B$	1]	1	-0.8		
Входное сопротивление, кОм	$R_{\rm I}$	12	-		
Время задержки распро-странения при включении (выключении), нс,					
U_{IH} = 3.0 B, U_{IL} =0 B, t_{LH} = t_{HL} ≤ 6 нс, C_{L} = 15 пФ, C_{L1} = C_{L2} =100 пФ*, R_{DIF} = 54 Ом*	t _{PHL1} (t _{PLH1})	250	2000	-60÷125	
Время разрешения выхода при переходе из состояния «Выключено» в состояние высокого (низкого) уровня, нс, $C_L = 15 \text{ n}\Phi$	$t_{ZH1}(t_{ZL1})$	-	50	- 00.123	
Время запрещения выхода при переходе из состояния высокого (низкого) уровня в состояние «Выключено», нс, $C_L = 15 \text{ п}\Phi$	$t_{HZ1}(t_{LZ1})$	-	50		
Время разрешения перехода из режима отключения, нс, $C_L = 15 \text{ п}\Phi$	t _{ZH1 (SHDN)} , t _{ZL1 (SHDN)}	-	2500		
Электрические параметрі	ы передатчика				
Дифференциальное выходное напряжение в режиме холостого хода, В, (без выходных резисторов)	U_{OD1}	-	5.0		
Дифференциальное выходное напряжение, В,					
$R_L = 27 \text{ Om}, (RS-485)$	$ m U_{OD2}$	1.5	5.0		
$R_L = 50 \text{ Om}, (RS-422)$		2.0			
Разность сигналов дифференциального выходного напряжения различной полярности, $B,R_L=27$ или 50 Ом	δU_{OD}	-	0.2	-60÷125	
Выходное напряжение смещения относительно общего вывода, B, $R_L = 27$ или 50 Ом	U _{OC}	-	3.0		
Разность выходных напряжений смещения различной полярности, B, $R_L = 27\ \text{или}\ 50\ \text{Ом}$	δU_{OC}	-	0.2		

Таблица 4 - Продолжение

Наименование параметра, единица измерения,	Буквенное обозначение	Норма параметра		Температура
режим измерения	параметра	Не менее	Не более	среды, °С
Выходной ток короткого замыкания низкого уровня, мA, $U_{IL} = 0$ B, $U_{IH} = 5.5$ B, -7 B \leq $U_{OID} \leq$ 12 B	I_{OSLD}	35	250	
Выходной ток короткого замыкания высокого уровня, мА, $U_{IL} = 0$ В, $U_{IH} = 5.5$ В, -7 В $\leq U_{OID} \leq 12$ В	I_{OSHD}	-35	-250	
Время задержки распространения при включении (выключении), нс, $R_{DIF} = 54$ Ом, $U_{IL} = 0$ В, $U_{IH} = 3.0$ В, $C_{L1} = C_{L2} = 100$ пФ	t _{PHL2} (t _{PLH2})	250	2000	
Разность задержек распространения сигнала, нс, R_{DIF} 54 Ом, U_{IL} 0 В, U_{IH} = 3.0 В, C_{L1} = C_{L2} = 100 пФ,	t _{SKEW}	1	800	
Время разрешения выхода при переходе из состояния «Выключено» в состояние высокого (низкого) уровня, нс, $C_L = 100 \text{ n}\Phi$	$t_{ZH2}(t_{ZL2})$	250	2000	-60÷125
Время запрещения выхода при переходе из состояния высокого (низкого) уровня в состояние «Выключено», нс, $C_L = 15 \text{ n}\Phi$	$t_{HZ2} (t_{LZ2})$	300	3000	
Время нарастания (спада) сигнала, нс, $R_{DIF} = 54$ Ом, $C_{L1} = C_{L2} = 100$ пФ	$t_{r}(t_{f})$	250	2000	
Скорость передачи данных, Мбит/с, $R_{DIF} = 54$ Ом, $C_{L1} = C_{L2} = 100$ пФ, $U_{IL} = 0$ В, $U_{IH} = 3.0$ В, $Q \ge 2$	ST	0.25	-	
Время разрешения перехода из режима отключения, нс, $C_L = 100 \text{ п}\Phi$	t _{ZH2(SHDN),} t _{ZL2(SHDN)}	-	2000	

Примечания

1 Обозначения:

- U_{DE} напряжение на выводе DE микросхемы;
- U_{DI} напряжение на выводе DI микросхемы;
- U_{RE} напряжение на выводе RE микросхемы;
- U_{IR} входное напряжение приемника (относительно общего вывода);
- R_{DIF} сопротивление, подключаемое между прямым и инверсным выходом передатчика.
- 2 Знак «минус» перед значением параметра I_{OH} указывает только его направление (вытекающий ток).
- * В режиме передачи сигнала со входа передатчика на выход приемника

Таблица 5 – Предельно-допустимые и предельные режимы эксплуатации микросхем

Науманаранна нараматрар размина админа мамаранна	Буквенное	Предельно- допустимый режим		Предельный режим	
Наименование параметров режима, единица измерения	обозначение	Hoj	Норма		ома
		не менее	не более	не менее	не более
Напряжение питания, В	U_{CC}	4.5	5.5	-	12
Входное напряжение, В	$U_{\rm I}$	0	U_{CC}	-0.5	$U_{CC} + 0.5$
Входное напряжение низкого уровня, В, по входам DI, DE, RE	$ m U_{IL}$	-	0.8	-	-
Входное напряжение высокого уровня, В, по входам DI, DE, RE	$ m U_{IH}$	2.0	-	-	-
Входное напряжение приемника, В	$ m U_{IR}$	-7.0	+12	-8.0	12.5
Дифференциальное входное пороговое напряжение, В	$ m U_{TH}$	0.2	-0.2	-	-
Напряжение, прикладываемое к выходу передатчика, В	$ m U_{OID}$	-7.0	+12	-8.0	12.5
Напряжение, прикладываемое к выходу приемника, В	$ m U_{OIR}$	0	U _{CC}	-0.5	$U_{CC} + 0.5$
Рассеиваемая мощность, мВт	P _{tot}	-	-	-	640

Интерфейсный приемопередатчик последовательных данных стандарта RS-422 5559ИН5ТБП

Микросхема 5559ИН5ТБП предназначена для применения в телекоммуникационных системах, соответствующих стандарту RS-422, с низкой рассеиваемой мощностью, трансляторах уровня, приемопередающих устройствах, чувствительных к электромагнитному излучению, системах управления промышленными объектами специального назначения. Корпус металлокерамический 4112.8-1.01. Наиболее близкими по составу параметров разрабатываемой схемы являются микросхемы **МАХ488** ф. **Махіт**, США, прямой аналог отсутствует.

Таблица 1 - Назначение выводов

Номер вывода	Обозначение	Назначение
01	V_{CC}	Вывод питания от источника напряжения
02	RO	Выход приемника
03	DI	Вход передатчика
04	GND	Общий вывод
05	Y	Прямой выход передатчика
06	Z	Инверсный выход передатчика
07	B	Инверсный вход приемника
08	A	Прямой вход приемника

Таблица 2 – Таблица истинности передатчика

Вход	Выход	
DI	Y	Z
Н	Н	L
L	L	Н
Примечание –		
L – низкий уровень напряжения,		
Н – высокий уровень напряжения		

Таблица 3 – Таблица истинности приемника

Вход	Выход
A - B	RO
> + 0.25 B	Н
< - 0.25 B	L
Примечание –	
L – низкий уровень напряжения,	
Н – высокий уровень напряжения	

Таблица 4 - Основные электрические параметры

Поличения поличения поличения поличения поличения	Буквенное	Норма па	праметра	Томиополупа
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	- Температура среды, °С
Ток потребления, мкА	Ţ	-	200	25 ± 10
$U_{CC} = 5 \ B \pm 10\%; \ U_{DI} = 0 \ B$ или $U_{CC}; \ U_A, \ U_B = 0 \ B$ или U_{CC}	I_{CC}		250	-60; 125
Электрические па	араметры прие	емника		
Выходное напряжение низкого уровня, В,	II		0.26	25 ± 10
$U_{CC} = 5 \text{ B} \pm 10\%$; $U_{ID} = -250 \text{ mB}$, $I_{OL} = 4.0 \text{ mA}$	U_{OL}	-	0.4	-60; 125
Выходное напряжение высокого уровня, В,	$\rm U_{OH}$	3.6	-	25 ± 10
$U_{CC} = 5 \text{ B} \pm 10\%$; $U_{ID} = 250 \text{ mB}$, $I_{OH} = -4.0 \text{ mA}$	ООН	3.5	-	-60; 125
Ток короткого замыкания высокого уровня, мА,	I	9.0	87	25 ± 10
$U_{CC} = 5 \text{ B} \pm 10\%$; $U_{IH} = U_{CC}$; $U_{IL} = 0 \text{ B}$; $U_{OR} = U_{CC}$;	I_{OSHR}	7.0	95	-60; 125
Ток короткого замыкания низкого уровня, мА,	I	-9.0	-87	25 ± 10
$U_{CC} = 5 B \pm 10\%$; $U_{IH} = U_{CC}$; $U_{IL} = 0 B$; $U_{OR} = 0 B$;	$ m I_{OSLR}$	-7.0	-95	-60; 125
Входной ток, мА, $U_{CC} = 0$; 5.5 В;		_	1.0	25 ± 10
$U_A, U_B = 12 B$	I_{IN2}			-60; 125
$U_A, U_B = -7.0 B$		-	-0.8	,
Входное сопротивление, кОм	R_{IN}	14.0	-	25 ± 10
$U_{CC} = 0$; 5.5 B; U_A , $U_B = -7.0$; 12 B	IVIIN	12.0	-	-60; 125
Время задержки распространения при включении		180	1800	25 ± 10
(выключении), нс,	t _{PHLR} (t _{PLHR})			
$U_{CC} = 5 B \pm 10\%$; $U_{IH} = 3.0 B$; $U_{IL} = 0 B$;	PHLR (PLHR)	250	2000	-60; 125
$t_{LH} = t_{HL} \le 6$ нс; $C1 = 15$ пФ; $C2 = C3 = 100$ пФ; $R_{DIF} = 54$ Ом				
Дифференциальное входное напряжение, В				25 ± 10
$U_{CC} = 5.0 \text{ B}; -7 \text{ B} \le U_A, U_B \le 12 \text{ B}; I_{OL} = 4.0 \text{ mA};$	U_{TH}	-0.2	0.2	-60; 125
I_{OH} = -4.0 mA; $U_{OL1} \le 0.4 \text{ B}$; $U_{OH1} \ge 3.5 \text{ B}$				-00, 123

Таблица 4 – Продолжение

и	Буквенное	Норма па	раметра	Tours
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	- Температура среды, °С
Ток утечки низкого уровня на входе, мкА,	I_{LIL}	-	-0.2	25 ± 10
$U_{CC} = 5 B \pm 10\%$; $U_{DI} = 0 B$	*LIL	-	-2.0	-60; 125
Ток утечки высокого уровня на входе, мкА,	$ m I_{LIH}$	-	0.2	25 ± 10
$U_{CC} = 5 B \pm 10\%$; $U_{DI} = U_{CC}$	I LIH	-	2.0	-60; 125
Дифференциальное выходное напряжение в режиме холостого хода, B, $U_{CC} = 5 \text{ B} \pm 10\%$; $U_{IH} = 2.0 \text{ B}$; $U_{IL} = 0.8 \text{ B}$ (без нагрузки)	$ m U_{OD1}$	-	5.0	25 ± 10; -60; 125
Дифференциальное выходное напряжение, B, U _{CC} = 5 B	TI	1.56	4.8	25 ± 10
$\pm 10\%$; $R_L = 27 \text{ Om}$	$ m U_{OD2}$	1.4	5.0	-60; 125
D = 50 Ov		2.0		25 ± 10
$R_L = 50 \text{ Om}$		1.9	-	-60; 125
Разность сигналов дифференциального выходного			0.18	25 ± 10
напряжения различной полярности, B $U_{CC} = 5~B \pm 10\%$; $R_L = 27~$ или $50~$ Oм	$\Delta \mathrm{U}_{\mathrm{OD}}$	-	0.2	-60; 125
Выходное напряжение смещения относительно общего	U_{OC}	-	2.96	25 ± 10
вывода, В $U_{CC} = 5 \text{ B} \pm 10\%$; $R_L = 27$ или 50 Om	OOC		3.0	-60; 125
Разность выходных напряжений смещения различной	ΔU_{OC}	-	0.18	25 ± 10
полярности, B, $U_{CC} = 5 \text{ B} \pm 10\%$; $R_L = 27$ или 50 Om	ΔU_{OC}		0.2	-60; 125
Ток короткого замыкания низкого уровня, мА,	$ m I_{OSLD}$	40	230	25 ± 10
$U_{CC} = 5 \text{ B} \pm 10\%$; $U_{OD} = 12 \text{ B}$; $U_{IL} = 0 \text{ B}$; $U_{IH} = U_{CC}$	TOSLD	35	250	-60; 125
Ток короткого замыкания высокого уровня, мА,	Logres	-40	-230	25 ± 10
$U_{CC} = 5 \text{ B} \pm 10\%$; $U_{OD} = -7 \text{ B}$; $U_{IL} = 0 \text{ B}$, $U_{IH} = U_{CC}$	$ m I_{OSHD}$	-35	-250	-60; 125

Таблица 4 – Продолжение

Начиламарамия мараматра админия мамарамия разми	Буквенное	Норма па	раметра	Томиопалута	
Наименование параметра, единица измерения, режим измерения	обозначение параметра	не менее	не более	Температура среды, °С	
Время задержки распространения при включении		180	1800	25 ± 10	
(выключении), нс, $U_{CC} = 5 \text{ B} \pm 10\%$; $U_{IH} = 3.0 \text{ B}$; $U_{IL} = 0 \text{ B}$; $t_{LH} = t_{HL} \le 6$ нс; $C1 = 15 \text{ п}\Phi$; $C2 = C3 = 100 \text{ п}\Phi$; $R_{DIF} = 54 \text{ Om}$	t _{PHLD} (t _{PLHD})	250	2000	-60; 125	
Разность задержек распространения сигнала, нс,			700	25 ± 10	
$ t_{PLHD} - t_{PHLD} $ $U_{CC} = 5 \text{ B} \pm 10\%; \ U_{IH} = 3.0 \text{ B}; \ U_{IL} = 0 \text{ B}; \ t_{LH} = t_{HL} \le 6 \text{ hc};$ $C1 = 15 \text{ Π}\Phi; \ C2 = C3 = 100 \text{ Π}\Phi; \ R_{DIF} = 54 \text{ Om}$	t _{SKEW}	t _{skew}	-	800	-60; 125
Время нарастания (спада) сигнала, нс $U_{CC} = 5 \text{ B} \pm 10\%$; $U_{IH} = 3.0 \text{ B}$; $U_{IL} = 0 \text{ B}$; $t_{LH} = t_{HL} \le 6 \text{ hc}$; $C1 = 15 \text{ п}\Phi$; $C2 = C3 = 100 \text{ n}\Phi$; $R_{DIF} = 54 \text{ Om}$	$t_{ m R}(t_{ m F})$	180	1800	25 ± 10	
при U _{CC} = 4.5 В		250	2500		
при U _{CC} = 5.0 В; 5.5 В		250	2000	-60; 125	
Скорость передачи данных, Мбит/с, $U_{CC} = 5 \text{ B} \pm 10\%$; $U_{IH} = 3.0 \text{ B}$; $U_{IL} = 0 \text{ B}$; $t_{LH} = t_{HL} \le 6 \text{ hc}$; $C1 = 15 \text{ п}\Phi$; $C2 = C3 = 100 \text{ n}\Phi$; $R_{DIF} = 54 \text{ Om}$;	ST	0.25	-	25 ± 10 -60; 125	

Примечания

¹ Режимы измерения параметров приведены в разделе 3.

² U_A, U_B – синфазное входное напряжение

Таблица 5 – Предельно-допустимые и предельные режимы эксплуатации микросхем

Наименование параметров	Буквенное	Предельно-д реж	·	Предельный режим		
режима, единица измерения	обозначение	Нор	ма	Но	рма	
		не менее	не более	не менее	не более	
Напряжение питания, В	U_{CC}	4.5	5.5	-	12	
Входное напряжение передатчика, В	U_{DI}	0	U_{CC}	-0.5	$U_{\rm CC} + 0.5$	
Синфазное входное напряжение приемника, В	U_A, U_B	-7.0	12	-8.0	12.5	
Напряжение, прикладываемое к выходу передатчика, В	U_{OD}	-7.0	12	-8.0	12.5	
Выходное напряжение приемника, В	U_{OR}	0	U_{CC}	-0.5	$U_{CC} + 0.5$	
Рассеиваемая мощность, мВт	P _{tot}	-	-	_	640	
Температура окружающей среды, °С	Ta	-60	+125	-60	+150	

Временная диаграмма для измерения динамических параметров t_{PHLD}, t_{PLHD}, t_{PLHD}, t_{PLHR}, t_R, t_F, t_{SKEW}

Технические спецификации Серия 5584ххххТ

Микросхемы серии 5584хххТ

Микросхемы представляют собой быстродействующую логическую схему, изготовленную по КМОП технологии и предназначенную для использования в высокопроизводительных вычислительных системах с широким диапазоном напряжения питания.

Микросхемы допускают возможность работы в режиме превышения напряжения по входу до 7 В без ухудшения характеристик и надежности микросхем. Данная возможность позволяет использовать микросхемы в радиоэлектронных устройствах для сопряжения микросхем с напряжениями питания 5 В и 3 В, исключает выход из строя микросхемы при аварийном отключении источника напряжения питания.

Применение блока формирования выходного фронта в составе микросхемы позволяет уменьшить амплитуду помех при одновременном переключении выходов в одно и то же состояние.

Входные и выходные уровни микросхем соответствуют уровням КМОП.

Особенности:

- Диапазон напряжения питания от 2.0 до 5.5 В.
- Выходной ток 12 мА.
- Низкий ток потребления: 0.2 мкА (типовое значение) при Ta = 25 °C.
- Допустимое значение статического потенциала не менее 2000 В.
- Диапазон рабочих температур среды от минус 60 до плюс 125 °C.
- Сбалансированная задержка распространения сигнала.
- Обеспечивает режим превышения напряжения по входу.
- Низкий уровень шума при одновременном переключении выходов в одно и то же состояние: V_{OLP} = 0.8 B (max).

Наиболее близкими по составу параметров разрабатываемой схемы являются микросхемы серии **74VHCxxx** ф. Toshiba, Япония, прямой аналог отсутствует.

Технические спецификации Серия 5584ххххТ

Предельно допустимые и предельные режимы

	Буквенное обозначение	Предельно- допустимый режим		Предельный режим	
Наименование параметров режима, единица измерения		Норма		Норма	
	параметра	не менее	не более	не	не более
				менее	
Напряжение питания, В	V_{CC}	2.0	5.5	-0.5	7.0
Входное напряжение, В	$V_{\rm I}$	0	5.5	-0.5	10.0
Напряжение, прикладываемое к выходу, В	$V_{\rm O}$	0	V_{CC}	-0.5	$V_{CC} + 0.5B,$ $10 B*$
Напряжение, прикладываемое к выходу в режиме превышения **, В	V_{OPD}	0	5.5	-0.5	10.0
Входной ток диода, мА, $V_I \le -0.5 \; B$	$I_{ m ID}$	_	_	_	-25
Выходной ток диода, мА	I_{OD}	_	_	_	±25
Выходной ток, мА	I_{OUT}	_	_	_	±25***
Выходной ток низкого уровня, мА	I_{OL}	_	12	_	_
Выходной ток высокого уровня, мА	I_{OH}	_	-12	_	_
Постоянный ток вывода питания или общего вывода, мА					
– для восьмиразрядных микросхем	I_{CC} , I_{GND}	_	_	_	±100
– для остальных микросхем					±75
Время нарастания и спада сигнала на входах за исключением входов	t t				
Шмитта, нс/В,	t _{LH} , t _{HL}				
Vcc = 3.0 B		_	100	_	_
Vcc = 4.5 B			20		

^{*} Предельный режим от V_{CC} + 0.5B до 10 B допускается, когда выход микросхемы находится в состоянии логической 1

^{**} Режим превышения:

 $⁻ V_{CC} = 0 B;$

⁻ V_{CC} от 2.0 до 5.5 В для микросхем с третьим состоянием на выходе, при этом выходы в третьем состоянии *** Допускается превышение выходного тока в импульсном режиме. Режим уточняется в ходе ОКР

Технические спецификации Серия 5584ххххТ

Статические параметры

т.	Условное в		T 7	Температура окружающей среды, °С				
Параметр, единица	обозначен	Режим		V _{CC} , B	25 °C		-60 +125 °C	
измерения	рения ие измерения		терения	D	Мин.	Макс.	Мин.	Макс.
Входное напряжение	V_{IH}			2.0	1.50		1.50	
высокого уровня, В	V IH		_	3.0-5.5	$0.7V_{CC}$		$0.7V_{CC}$	
Входное напряжение	$V_{ m IL}$		_	2.0	_	0.50	_	0.50
низкого уровня, В	▼ IL			3.0 - 5.5		$0.3V_{CC}$		$0.3V_{CC}$
			$I_{OH} = -50$	2.0	1.9		1.9	
Выходное напряжение		$V_{I} = V_{IL}$	мк А	3.0	2.9		2.9	
высокого уровня, В	$ m V_{OH}$	$V_I - V_{IL}$ или V_{IH}	WIK7 Y	4.5	4.4	_	4.4	_
высокого уровня, в		NIIN VIH	$I_{OH} = -6 \text{MA}$	3.0	2.58		2.38	
			$I_{OH} = -12 \text{MA}$	4.5	3.94		3.7	
				2.0	_	0.1	_	0.1
Di пурнира пониямания	V_{OL}	$V_{I} = V_{IL}$ или V_{IH}	$I_{OL} = 50$ мкА	3.0		0.1		0.1
Выходное напряжение низкого уровня, В				4.5		0.1		0.1
низкого уровня, в			$I_{OL} = 6 MA$	3.0		0.36		0.5
			$I_{OL} = 12 \text{MA}$	4.5		0.36		0.5
Входной ток, мкА	I_{IN}	$V_I = V$	V _{CC} или 0В	0 - 5.5		± 0.2		± 2.0
Ток утечки 3-го		V - V	7					
состояния на выходе,	I_{OZ}		V _{IL} или V _{IH}	5.5		± 0.5		± 10
мкА		V OUT —	V _{CC} или 0В					
Статический ток	I_{CC}	V - V	V _{СС} или 0В	5.5		40		80
потребления, мкА	1CC	v I — v	СС или ОВ	3.3		40		80
Выходной ток утечки в								
режиме превышения,	I_{OPD}	V_{OU}	$_{\mathrm{TT}} = 5.5 \mathrm{B}$	0		2.0		20
мкА								

Два четырёхканальных формирователя с тремя состояниями и инверсией на выходе. 5584AП3Т

Микросхема изготавливается в 20-выводном металлокерамическом корпусе типа 4153.20-6.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	1ED	Вход разрешения выхода
02	1A1	Вход данных
03	<u>2Y4</u>	Выход инверсных данных
04	1A2	Вход данных
05	<u>2Y3</u>	Выход инверсных данных
06	1A3	Вход данных
07	$\overline{2Y2}$	Выход инверсных данных
08	1A4	Вход данных
09	<u>2Y1</u>	Выход инверсных данных
10	GND	Общий вывод
11	2A1	Вход данных
12	<u>1Y4</u>	Выход инверсных данных
13	2A2	Вход данных
14	<u>1Y3</u>	Выход инверсных данных
15	2A3	Вход данных
16	<u>1Y2</u>	Выход инверсных данных
17	2A4	Вход данных
18	<u>1Y1</u>	Выход инверсных данных
19	ZED	Вход разрешения выхода
20	Vcc	Вывод питания от источника напряжения

Таблица истинности

Bx	Выход	
$\overline{\mathrm{ED}}$	A	$\overline{\overline{Y}}$
L	L	Н
L	Н	L
Н	X	Z

Примечание - L - низкий уровень напряжения;

Н - высокий уровень напряжения;

X - любой уровень напряжения (низкий или высокий);

Z - выход в состоянии "Выключено".

Динамические параметры (C_L =50 п Φ , t_{LH} = t_{HL} = 3.0 нс, V_{CC} ± 10%)

0.4	**	-	Норма	
Обозначение параметра	Наименование параметра	V _{CC} ,	от -60 до +125 °C	Единица измерения
		_	не более	
$t_{\mathrm{PLH,}}$	Время задержки	3.3 ± 0.3	17.0	не
$t_{ m PHL}$	распространения при включении, выключении	5.0 ± 0.5	11.5	нс
	Время задержки	3.3 ± 0.3	21.5	
t _{PZH} , t _{PZL}	распространения при переходе из состояния "Выключено" в состояние высокого, низкого уровня	5.0 ± 0.5	14.5	нс
	Время задержки распространения при	3.3 ± 0.3	22.0	
t _{PHZ} , t _{PLZ}	переходе из состояния высокого, низкого уровня в состояние "Выключено"	5.0 ± 0.5	14.5	нс

Обозначение	бозначение Наименование		Значение типовое	Единица
параметра	параметра	В	(25 ± 10) °C	измерения
C_{I}	Входная емкость	5.0	10	пФ
C_{PD}	Динамическая емкость	5.0	35	пФ

Временные диаграммы

Два четырёхканальных формирователя с тремя состояниями на выходе. 5584AП5Т

Микросхема изготавливается в 20-выводном металлокерамическом корпусе типа 4153.20-6.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	1EZ	Вход разрешения выхода
02	1A1	Вход данных
03	2Y4	Выход инверсных данных
04	1A2	Вход данных
05	2Y3	Выход инверсных данных
06	1A3	Вход данных
07	2Y2	Выход инверсных данных
08	1A4	Вход данных
09	2Y1	Выход инверсных данных
10	GND	Общий
11	2A1	Вход данных
12	1Y4	Выход инверсных данных
13	2A2	Вход данных
14	1Y3	Выход инверсных данных
15	2A3	Вход данных
16	1Y2	Выход инверсных данных
17	2A4	Вход данных
18	1Y1	Выход инверсных данных
19	$\overline{2}\overline{EZ}$	Вход разрешения выхода
20	V_{CC}	Питание

Таблица истинности

Bx	Выход	
$\overline{\mathrm{EZ}}$	A	Y
L	L	L
L	Н	Н
Н	X	Z

Примечание - L - низкий уровень напряжения

Н - высокий уровень напряжения

X - любой уровень напряжения (низкий или высокий)

Z - выход в третьем состоянии

Динамические параметры (C_L =50 п Φ , t_{LH} = t_{HL} = 3.0 нс, V_{CC} ± 10%)

0.4	**		Норма	
Обозначение параметра	Наименование параметра	V _{CC} ,	от -60 до +125 °C	Единица измерения
			не более	
$t_{\mathrm{PLH,}}$	Время задержки	3.3 ± 0.3	16.6	нс
$t_{ m PHL}$	распространения при включении, выключении	5.0 ± 0.5	11.0	нс
	Время задержки	3.3 ± 0.3	19.4	
t _{PZH} , t _{PZL}	распространения при переходе из состояния "Выключено" в состояние высокого, низкого уровня	5.0 ± 0.5	13.2	нс
	Время задержки распространения при	3.3 ± 0.3	19.5	
t _{PHZ} , t _{PLZ}	переходе из состояния высокого, низкого уровня в состояние "Выключено"	5.0 ± 0.5	13.2	нс

Обозначение	чение Наименование		Значение типовое	Единица
параметра	параметра	В	(25 ± 10) °C	измерения
C_{I}	Входная емкость	5.0	4.5	пΦ
C_{PD}	Динамическая емкость	5.0	30	пФ

Временные диаграммы

Восьмиканальный двунаправленный приёмо-передатчик с тремя состояниями на выходе. 5584АП6Т

Микросхема изготавливается в 20-выводном металлокерамическом корпусе типа 4153.20-6.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	SED	Вход сигнала выбора направления передачи данных
02	A1	Вход / выход порта данных А
03	A2	Вход / выход порта данных А
04	A3	Вход / выход порта данных А
05	A4	Вход / выход порта данных А
06	A5	Вход / выход порта данных А
07	A6	Вход / выход порта данных А
08	A7	Вход / выход порта данных А
09	A8	Вход / выход порта данных А
10	GND	Общий
11	В8	Вход / выход порта данных В
12	В7	Вход / выход порта данных В
13	В6	Вход / выход порта данных В
14	B5	Вход / выход порта данных В
15	B4	Вход / выход порта данных В
16	В3	Вход / выход порта данных В
17	B2	Вход / выход порта данных В
18	B1	Вход / выход порта данных В
19	EZ	Вход разрешения выхода
20	V_{CC}	Питание

Таблица истинности

B	ход	Операция	
EZ	SED		
L	L	Передача данных от порта В к порту А	
L	Н	Передача данных от порта А к порту В	
Н	X	Порты изолированы (выходы в третьем состоянии)	

Примечание - L - низкий уровень напряжения

Н - высокий уровень напряжения

Х - любой уровень напряжения (низкий или высокий)

Динамические параметры $(C_L = 50 \ \Pi\Phi, \ t_{LH} = t_{HL} = 3.0 \ \text{нc}, \ V_{CC} \pm 10\% \)$

05	П	X 7	Норма	Единица измерения	
Обозначение параметра	Наименование параметра	V _{CC} ,	от -60 до +125 °C		
параметра	параметра	D	не более	измерения	
t _{PLH} ,	Время задержки распространения при	3.3 ± 0.3	16.6	нс	
$t_{ m PHL}$	включении, выключении	5.0 ± 0.5	11.0		
$t_{ m PZH},$ $t_{ m PZL}$	Время задержки распространения при	3.3 ± 0.3	22.8		
	переходе из состояния "Выключено" в состояние высокого, низкого уровня	5.0 ± 0.5	14.9	нс	
touz	Время задержки распространения при	3.3 ± 0.3	21.7		
ι _{PHZ} , t _{PLZ}	переходе из состояния высокого, низкого уровня в состояние "Выключено"	5.0 ± 0.5	13.8	нс	

Обозначение параметра	Наименование параметра	V _{CC} ,	Значение типовое (25 ± 10) °C	Единица измерения
C_{I}	Входная емкость	5.0	4.5	пФ
C_{PD}	Динамическая емкость	5.0	32	пΦ

Временные диаграммы

Дешифратор-демультиплексор 3-8 с инверсией на выходе. 5584ИД7Т

Микросхема изготавливается в 16-выводном металлокерамическом корпусе типа 402.16-32.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	A0	Вход адреса
02	A1	Вход адреса
03	A2	Вход адреса
04	ST1	Вход разрешения
05	ST2	Вход разрешения
06	ST3	Вход разрешения
07	Q 7	Выход
08	GND	Общий
09	$\overline{Q6}$	Выход
10	$\overline{\mathrm{Q5}}$	Выход
11	Q4	Выход
12	Q3	Выход
13	Q2	Выход
14	Q1	Выход
15	$\overline{Q0}$	Выход
16	V_{CC}	Питание

Таблица истинности

	Входы			Выход									
ST1	ST2	ST3	A0	A 1	A2	$\overline{Q}0$	$\overline{\overline{Q}}$ 1	\overline{Q} 2	\overline{Q} 3	$\overline{Q}4$	\overline{Q} 5	\overline{Q} 6	\overline{Q} 7
Н	X	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н
X	Н	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н
X	X	L	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Примечание –

Н – высокий уровень напряжения;

L – низкий уровень напряжения;

Х – любой уровень напряжения – низкий или высокий

Динамические параметры ($C_L = 50 \text{ п}\Phi$, $t_{LH} = t_{HL} = 3.0 \text{ нc}$, $V_{CC} \pm 10\%$)

Обозначение	Наименование	V ∕	Норма	F
параметра	параметра	V _{CC} , B	от -60 до +125 °C	Единица измерения
	парамстра	Б	не более	измерения
	Время задержки распространения при	3.3 ± 0.3	21.7	нс
t _{PLH} ,	включении , выключении от входа A к выходу \overline{Q}	5.0 ± 0.5	14.4	TIC .
$t_{ m PHL}$	от входа $\overline{ST1}$, $\overline{ST2}$ к выходу	3.3 ± 0.3	20.6	нс
	Q	5.0 ± 0.5	14.4	
	T DVOTO ST2 K DVVOTV O	3.3 ± 0.3	22.0	110
	от входа ST3 к выходу Q	5.0 ± 0.5	14.4	нс

Обозначение параметра	Наименование параметра	V _{CC} , B	Значение типовое (25 ± 10) °C	Единица измерения
C_{I}	Входная емкость	5.0	4.5	пФ
C_{PD}	Динамическая емкость	5.0	40	пФ

Временные диаграммы

Временная диаграмма

Два дешифратора-демультиплексора 2-4 с инверсией на выходе. 5584ИД14Т

Микросхема изготавливается в 16-выводном металлокерамическом корпусе типа 402.16-32.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	1ST	Вход разрешения
02	1A0	Вход адреса
03	1A1	Вход адреса
04	1 <u>Q0</u>	Выход
05	1 <u>Q1</u>	Выход
06	1 <u>Q2</u>	Выход
07	1Q3	Выход
08	GND	Общий
09	$\overline{2Q3}$	Выход
10	2 Q2	Выход
11	2Q1	Выход
12	2 Q0	Выход
13	2A1	Вход адреса
14	2A0	Вход адреса
15	$\overline{2ST}$	Вход разрешения
16	V _{CC}	Питание

Таблица истинности

Вход			Выход				
\overline{ST}	A 0	A1	$\overline{Q0}$	Q1	Q2	Q 3	
Н	X	X	Н	Н	Н	Н	
L	L	L	L	Н	Н	Н	
L	Н	L	Н	L	Н	Н	
L	L	Н	Н	Н	L	Н	
L	Н	Н	Н	Н	Н	L	

Примечание –

Н – высокий уровень напряжения;

L – низкий уровень напряжения;

X – любой уровень напряжения – низкий или высокий

Динамические параметры (C_L =50 п Φ , t_{LH} = t_{HL} = 3.0 нс, V_{CC} ± 10%)

Обозначение	Намманарамма	V	Норма	E
параметра	Наименование параметра	V _{CC} , B	от -60 до +125 °C	Единица измерения
парамстра	парамстра	Б	не более	измерения
	Время задержки	3.3 ± 0.3	20.0	
t _{PLH} ,	распространения при включении, выключении от входа A к выходу \overline{Q}	5.0 ± 0.5	13.2	нс
	от входа \overline{ST} к выходу \overline{Q}	3.3 ± 0.3	17.8	110
	от входа 51 к выходу Q	5.0 ± 0.5	12.2	нс

Обозначение параметра	Наименование параметра	V _{CC} ,	Значение типовое (25 ± 10) °C	Единица измерения
C_{I}	Входная емкость	5.0	4.5	пФ
C_{PD}	Динамическая емкость	5.0	30	πФ

Временные диаграммы

Временная диаграмма

Четырехразрядный двоичный реверсивный счётчик. 5584ИЕ7Т

Микросхема изготавливается в 16-выводном металлокерамическом корпусе типа 402.16-32.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	D1	Вход параллельных данных (второй разряд)
02	Q1	Выход счетчика (второй разряд)
03	Q0	Выход счетчика (первый разряд)
04	-1	Вход тактовый счета вниз
05	+1	Вход тактовый счета вверх
06	Q2	Выход счетчика (третий разряд)
07	Q3	Выход счетчика (четвертый разряд)
08	GND	Общий вывод
09	D3	Вход параллельных данных (четвертый разряд)
10	D2	Вход параллельных данных (третий разряд)
11	ED	Вход разрешения асинхронной параллельной загрузки
12	C 0	Выход переноса счета вверх
13	<u>B0</u>	Выход переноса счета вниз
14	R	Асинхронный сброс
15	D0	Вход параллельных данных (первый разряд)
16	V_{CC}	Вывод питания от источника напряжения

Таблица истинности

R	ED	+1	-1	Состояние
Н	X	X	X	Сброс (асинхронный)
L	L	X	X	Запись параллельная
L	Н	Н	Н	Хранение
L	Н	 	Н	Счет вверх
L	Н	Н	 	Счет вниз

Примечания

Н – высокий уровень напряжения;

L – низкий уровень напряжения;

X – любой уровень напряжения (низкий или высокий);

 $\overline{B0} = Q0 \cdot Q1 \cdot Q2 \cdot Q3 \cdot \overline{+1};$

 $\overline{C0} = \overline{Q0} \cdot \overline{Q1} \cdot \overline{Q2} \cdot \overline{Q3} \cdot \overline{-1}$.

Динамические параметры $(C_L = 50 \text{ п}\Phi, t_{LH} = t_{HL} = 3.0 \text{ нc}, V_{CC} \pm 10\%)$

Обозначение	Наименование	V _{CC} ,	Норма от −60 до +125 °C	Единица	
параметра	параметра	В	не более	- измерения	
	Время задержки распространения при включении,	3.3 ± 0.3	29.5	нс	
	выключении от входов $+1$, -1 к выходам $\overline{B0}$, $\overline{C0}$	5.0 ± 0.5	23.5	нс	
	от входов +1, -1 к выходам Q	3.3 ± 0.3	22.0	нс	
	от влодов +1, -1 к вылодам Q	5.0 ± 0.5	17.5	нс	
	от входов D к выходам Q	3.3 ± 0.3	21.0	нс	
t_{PHL} ,	от влодов в к вылодим Q	5.0 ± 0.5	17.5	нс	
$t_{\rm PLH,}$	от входа ED к выходам Q	3.3 ± 0.3	26.0	нс	
	от входа ЕД к выходам Q	5.0 ± 0.5	20.0	IIC	
	от входа \overline{ED} к выходам $\overline{B0}$, $\overline{C0}$	3.3 ± 0.3	24.5	нс	
	от входа ЕД к выходам во ,Со	5.0 ± 0.5	18.5	IIC	
	от входов D к выходам $\overline{B0}$, $\overline{C0}$	3.3 ± 0.3	24.5	нс	
	от влодов в к вылодим во, со	5.0 ± 0.5	20.5	IIC	
$t_{ m PHL}$	Время задержки распространения при включении от	3.3 ± 0.3	26.0	нс	
4PHL	входа R к выходам Q	5.0 ± 0.5	20.0	IIC	
$t_{ m PLH}$	Время задержки распространения при выключении	3.3 ± 0.3	26.0	нс	
ЧLН	от входа R к выходу $\overline{C0}$	5.0 ± 0.5	20.0	нс	
t	Время задержки распространения при включении от	3.3 ± 0.3	26.0	нс	
$t_{ m PHL}$	входа R к выходу ВО	5.0 ± 0.5	20.0	нс	
fc	Частота следования тактовых сигналов	3.3 ± 0.3	45	МГц	
10	тастота следования тактовых сигналов	5.0 ± 0.5	70	ТИПЦ	

Обозначение параметра	Наименование параметра	V _{CC} , B	Норма, не более (25 ± 10) °C	Единица измерения
C_{I}	Входная емкость	5.0	10	пФ
C_{PD}	Динамическая емкость	5.0	90	пΦ

Временные диаграммы

Временная диаграмма

Временная диаграмма

Четырехразрядный двоичный счётчик с асинхронной установкой в состояние "Логический 0". 5584ИЕ10Т

Микросхема изготавливается в 16-выводном металлокерамическом корпусе типа 402.16-32.

Назначение выводов

Номер вывода Обозначен		Назначение	
01	$\overline{\overline{R}}$	Вход сброса	
02	CL	Вход тактовый	
03	D0	Вход данных	
04	D1	Вход данных	
05	D2	Вход данных	
06	D3	Вход данных	
07	ECT	Вход разрешения счета	
08	GND	Общий	
09	ED	Вход разрешения записи	
10	EC	Вход разрешения переноса	
11	Q3	Выход данных	
12	Q2	Выход данных	
13	Q1	Выход данных	
14	Q0	Выход данных	
15	C0	Выход переноса	
16	V_{CC}	Питание	

Таблица истинности

		Вход	Выход		
CL	\overline{R}	$\overline{\mathrm{ED}}$	ECT	EC	Q
X	L	X	X	X	Сброс
↑	Н	L	X	X	Запись данных
↑	Н	Н	Н	Н	Счет
↑	Н	Н	L	X	Хранение
↑	Н	Н	X	L	Хранение

Примечание -

Н – высокий уровень напряжения;

L – низкий уровень напряжения;

X – любой уровень напряжения (низкий или высокий);

↑ переход напряжения из низкого уровня в высокий.

 $C0 = EC \cdot Q0 \cdot Q1 \cdot Q2 \cdot Q3$

Динамические параметры $(C_L = 50 \text{ п}\Phi, t_{LH} = t_{HL} = 3.0 \text{ нc}, V_{CC} \pm 10\%)$

Ogenwawa	Наименование	T 7	Норма	Енини	
Обозначение параметра	параметра	V _{CC} , B	от -60 до +125 °C	Единица	
парамстра	параметра	Б	не более	измерения	
	Время задержки	3.3 ± 0.3	22.0		
$t_{\mathrm{PLH,}}$	распространения при			нс	
$t_{ m PHL}$	включении, выключении от	5.0 ± 0.5	14.4	IIC	
	входа CL к выходу Q		2		
	от входа CL к выходу C0 в	3.3 ± 0.3	23.4	110	
	режиме счета	5.0 ± 0.5	14.4	нс	
	от входа CL к выходу C0 в	3.3 ± 0.3	27.8		
	режиме параллельной загрузки	5.0 ± 0.5	17.2	нс	
	or pyone EC v pywony CO	3.3 ± 0.3	21.7	***	
	от входа ЕС к выходу С0	5.0 ± 0.5	14.4	нс	
	<u> </u>	3.3 ± 0.3	23.4	110	
	от входа R к выходу Q	5.0 ± 0.5	15.5	нс	
		3.3 ± 0.3	22.8	***	
	от входа R к выходу С0	5.0 ± 0.5	14.9	нс	
f	Частота следования тактовых	3.3 ± 0.3	40	МГч	
1	импульсов	5.0 ± 0.5	70	МГц	

Обозначение	бозначение Наименование		Значение типовое	Единица	
параметра	параметра	В	(25 ± 10) °C	измерения	
C_{I}	Входная емкость	5.0	4.5	пФ	
C_{PD}	Динамическая емкость	5.0	35	πФ	

Установочные параметры

Наименование параметра,	Буквенное	Напряжение питания,	Ho	ома	Температу
единица измерения	обозначение	V_{CC} , B	не менее	не более	pa, °C
		3.3±0.3	16.5	_	25±10
Время установления сигнала D	$t_{ m SU}$	5.0±0.5	11.5	11.5	25:10
относительно сигнала CL, нс	•30	3.3±0.3	21.5		-60,
		5.0±0.5	15.5		125
Drave versus proving average		3.3±0.3	14.5		25±10
Время установления сигнала ED относительно сигнала CL,	t	5.0±0.5	10.5		25±10
нс	${ m t_{SU}}$	3.3±0.3	19.0		-60,
HC .		5.0±0.5	14.5		125
Вромя мотоморномия омено но		3.3±0.3	13.5		25±10
Время установления сигнала EC, ECT относительно сигнала	t	5.0±0.5	10.5		25±10
CL, HC	t_{SU}	3.3±0.3	19.0		-60,
CL, HC		5.0±0.5	14.5		125
Prove vitoricavite ovievous D		3.3±0.3	4.0		25±10
Время удержания сигналов D, ED, EC, ECT относительно	+	5.0 ± 0.5	4.0		23±10
сигнала CL, нс	$t_{ m H}$	3.3±0.3	6.0		-60,
сиі нала СЕ, не		5.0 ± 0.5	6.0		125
		3.3±0.3	7.0		25±10
Время восстановления сигнала	t	5.0 ± 0.5	5.0		23±10
CL после сигнала R, нс	$t_{ m REC}$	3.3±0.3	7.5		-60,
		5.0 ± 0.5	5.5		125
Длительность сигнала CL		3.3±0.3	8.5		25±10
длительность сигнала CL (высокий, низкий) (счет),	t	5.0±0.5	7.5		23±10
сигнала R (низкий), нс	t_{W}	3.3±0.3	12.0		-60,
сигнала К (пизкии), пс		5.0±0.5	10.8		125
Примечание – Нормы н	а динамически	е параметры уточняются в	ходе ОКР		

Восьмиразрядный сдвиговый регистр с последовательными входами и параллельным выходом со сбросом.

5584ИР8Т

Микросхема изготавливается в 14-выводном металлокерамическом корпусе типа 401.14-5.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	D1	Вход данных
02	D2	Вход данных
03	Q0	Выход данных
04	Q1	Выход данных
05	Q2	Выход данных
06	Q3	Выход данных
07	GND	Общий вывод
08	CL	Вход тактового сигнала
09	\overline{R}	Вход сигнала сброса
10	Q4	Выход данных
11	Q5	Выход данных
12	Q6	Выход данных
13	Q7	Выход данных
14	Vec	Вывод питания от источника напряжения

Таблица истинности

Вход			Вы	іход	
R	CL	D1	D2	Q0	Q1 Q7
L	X	X	X	L	L L
Н		L	L	L	Q0 Q6
Н		L	Н	L	Q0 Q6
Н		Н	L	L	Q0 Q6
Н		Н	Н	Н	Q0 Q6

Примечание –

Н - высокий уровень напряжения;

L – низкий уровень напряжения;

X – любой уровень напряжения (низкий или высокий);

переход из низкого уровня в высокий;

- переход из высокого уровня в низкий.

Динамические параметры $(C_L = 50 \text{ п}\Phi, t_{LH} = t_{HL} = 3.0 \text{ нc}, V_{CC} \pm 10\%)$

Обозначение параметра	Наименование параметра	V _{CC} , B	Норма от –60 до +125 °C не более	Единица измерения
t _{PLH} ,	Время задержки распространения при включении,	3.3 ± 0.3	26.0	нс
$t_{ m PHL}$	выключении от входа CL к выходам Q	5.0 ± 0.5	17.0	
,	Время задержки распространения при включении, выключении от входа от входа \overline{R} к выходам Q	3.3 ± 0.3	26.0	нс
t _{DI II}		5.0 ± 0.5	16.5	
C		3.3 ± 0.3	40	МГц
fc	Частота следования тактовых сигналов	5.0 ± 0.5	70	

Обозначение параметра	Наименование параметра	V _{CC} ,	Значение типовое (25 ± 10) °C	Единица измерения
$C_{\rm I}$	Входная емкость	5.0	10	пФ
C_{PD}	Динамическая емкость	5.0	50	пФ

Временная диаграмма

Временная диаграмма

Временная диаграмма

Восьмиразрядный регистр, управляемый по уровню, с параллельным вводом-выводом данных, с тремя состояниями на выходе.

5584ИР22Т

Микросхема изготавливается в 20-выводном металлокерамическом корпусе типа 4153.20-6.

Назначение выводов

Номор выволе	Обозначение	Назначение	
Номер вывода	Ооозначение	пазначение	
01	$\overline{\mathrm{EZ}}$	Вход разрешения выхода	
02	Q0	Выход данных	
03	D0	Вход данных	
04	D1	Вход данных	
05	Q1	Выход данных	
06	Q2	Выход данных	
07	D2	Вход данных	
08	D3	Вход данных	
09	Q3	Выход данных	
10	GND Общий вывод		
11	ED	Вход разрешения записи	
12	Q4	Выход данных	
13	D4	Вход данных	
14	D5	Вход данных	
15	Q5	Выход данных	
16	Q6	Выход данных	
17	D6	Вход данных	
18	D7	Вход данных	
19	Q7	Выход данных	
20	Vcc	Вывод питания от источника напряжения	

Таблица истинности

	Вход		Выход
EZ	ED	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	X	Qo
Н	X	X	Z

Примечание –

Н - высокий уровень напряжения;

L - низкий уровень напряжения;

Х - любой уровень напряжения (низкий или высокий);

Qo - хранение предыдущего состояния;

Z - выход в состоянии "Выключено".

Динамические параметры $(C_L = 50 \text{ п}\Phi, t_{LH} = t_{HL} = 3.0 \text{ нc}, V_{CC} \pm 10\%)$

Обозначение параметра	Наименование параметра	V _{CC} ,	Норма от −60 до +125 °C	Единица измерения
параметра	параметра		не более	измерении
t _{PLH} ,	Время задержки распространения при включении,	3.3 ± 0.3	23.0	нс
$t_{ m PHL}$	выключении от входа D к выходу Q	5.0 ± 0.5	14.5	
$t_{\mathrm{PLH,}}$	Время задержки распространения при включении,	3.3 ± 0.3	22.5	нс
$t_{ m PHL}$	выключении от входа ED к выходу Q	5.0 ± 0.5	14.5	
$t_{\mathrm{PZH}},$	Время задержки распространения при переходе из состояния	3.3 ± 0.3	23.0	нс
t_{PZL}	"Выключено" в состояние высокого, низкого уровня	5.0 ± 0.5	15.5	
t _{PHZ} ,	Время задержки распространения при переходе из состояния	3.3 ± 0.3	20.5	нс
$t_{\rm PLZ}$	высокого, низкого уровня в состояние "Выключено"	5.0 ± 0.5	14.3	

Обозначение параметра	Наименование параметра	V _{CC} , B	Значение типовое (25 ± 10) °C	Единица измерения
C_{I}	Входная емкость	5.0	10	пФ
C_{PD}	Динамическая емкость	5.0	45	пФ

Временные диаграммы

Временная диаграмма

Временная диаграмма

Восьмиразрядный регистр, управляемый по фронту, с параллельным вводом-выводом данных, с тремя состояниями на выходе.

5584ИР23Т

Микросхема изготавливается в 20-выводном металлокерамическом корпусе типа 4153.20-6.

Назначение выводов

Номер вывода	Обозначение	Назначение		
01	EZ	Вход разрешения выхода		
02	Q0	Выход данных		
03	D0	Вход данных		
04	D1	Вход данных		
05	Q1	Выход данных		
06	Q2	Выход данных		
07	D2	Вход данных		
08	D3	Вход данных		
09	Q3	Выход данных		
10	GND	Общий		
11	CL	Вход тактового сигнала		
12	Q4	Выход данных		
13	D4	Вход данных		
14	D5	Вход данных		
15	Q5	Выход данных		
16	Q6	Выход данных		
17	D6	Вход данных		
18	D7	Вход данных		
19	Q7	Выход данных		
20	V_{CC}	Питание		

Таблица истинности

Вход			Выход
EZ	CL	D	Q
L		Н	Н
L		L	L
L	L, H,	X	Qo
Н	X	X	Z

Примечание -

Н - высокий уровень напряжения;

L – низкий уровень напряжения;

Х - любой уровень напряжения (низкий или высокий);

Qo - хранение предыдущего состояния;

Z - выход в третьем состоянии

- переход из низкого уровня в высокий;

- переход из высокого уровня в низкий

Динамические параметры $(C_L = 50 \text{ п}\Phi, t_{LH} = t_{HL} = 3.0 \text{ нc}, V_{CC} \pm 10\%)$

Обозначение	Наименование	T 7	Норма	Единица	
параметра	параметра	V _{CC} , B	от -60 до +125 °C	измерения	
параметра	параметра	D	не более	измерении	
	Время задержки	3.3 ± 0.3	22.3		
$t_{\rm PLH,}$	распространения при			нс	
t_{PHL}	включении, выключении от	5.0 ± 0.5	14.4	IIC	
	входа CL до выхода Q	0.00 = 0.00	- · · ·		
	Время задержки	3.3 ± 0.3	20.0		
$t_{\mathrm{PZH}},$	распространения при	3.3 ± 0.3	20.0		
t_{PZL}	переходе из состояния			нс	
ιPZL	"Выключено" в состояние	5.0 ± 0.5	13.9		
	высокого, низкого уровня				
	Время задержки	3.3 ± 0.3	19.5		
$t_{ m PHZ},$	распространения при				
	переходе из состояния	5.0 ± 0.5	12.7	нс	
t_{PLZ}	высокого, низкого уровня в	3.0 ± 0.3	12.7		
	состояние "Выключено"				
f	Частота следования тактовых	3.3 ± 0.3	40	МГц	
1	импульсов	5.0 ± 0.5	55		

Обозначение	ие Наименование		е Наименование V _{CC} ,		Значение типовое	Единица
параметра	параметра	В	(25 ± 10) °C	измерения		
C_{I}	Входная емкость	5.0	4.5	пФ		
C_{PD}	Динамическая емкость	5.0	40	пФ		

Установочные параметры

Наименование	Букраннаа	Напряжение	Ho	рма	
параметра, единица измерения	обозначен ие	папряжение питания, V _{CC} , В	не менее	не более	Температу ра, °С
Время		3.3±0.3	6.0	_	25±10
установления		5.0±0.5	4.5		
сигнала D	$t_{ m SU}$	3.3±0.3	7.0		-60,
относительно сигнала CL, нс		5.0±0.5	5.5		125
Время удержания		3.3±0.3	2.0		25±10
сигнала D	t	5.0±0.5	2.0		
относительно	t _H	3.3±0.3	3.5		-60,
сигнала CL, нс		5.0 ± 0.5	3.5		125
		3.3±0.3	5.5		25±10
Длительность	t	5.0 ± 0.5	5.0		
сигнала CL, нс	$t_{ m W}$	3.3±0.3	7.5		-60,
		5.0±0.5	6.5		125
Примечание -	- Нормы уточ	няются в ходе	ОКР		

297

Восьмиразрядный регистр, управляемый по уровню, с параллельным вводом-выводом данных, с тремя состояниями на выходе.

5584ИР33Т

Микросхема изготавливается в 20-выводном металлокерамическом корпусе типа 4153.20-6.

Назначение выводов

Номер вывода	Обозначение	Назначение		
01	EZ	Вход разрешения выхода		
02	D0	Выход данных		
03	D1	Вход данных		
04	D2	Вход данных		
05	D3	Выход данных		
06	D4	Выход данных		
07	D5	Вход данных		
08	D6	Вход данных		
09	D7	Выход данных		
10	GND	Общий вывод		
11	ED	Вход разрешения записи		
12	Q7	Выход данных		
13	Q6	Вход данных		
14	Q5	Вход данных		
15	Q4	Выход данных		
16	Q3	Выход данных		
17	Q2	Вход данных		
18	Q1	Вход данных		
19	Q0	Выход данных		
20	Vcc	Вывод питания от источника напряжения		

Таблица истинности

	Вход		Выход
EZ	ED	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	X	Qo
Н	X	X	Z

Примечание –

Н - высокий уровень напряжения;

L - низкий уровень напряжения;

X - любой уровень напряжения (низкий или высокий);

Qo - хранение предыдущего состояния;

Z - выход в состоянии "Выключено".

Динамические параметры $(C_L = 50 \text{ п}\Phi, t_{LH} = t_{HL} = 3.0 \text{ нc}, V_{CC} \pm 10\%)$

Обозначение параметра	Наименование параметра	V _{CC} ,	Норма от -60 до +125 °C не более	Единица измерения
t _{PLH,} t _{PHL}	Время задержки распространения при включении, выключении от входа D к выходу Q	3.3 ± 0.3 5.0 ± 0.5	23.0 14.5	нс
t _{PLH,} t _{PHL}	Время задержки распространения при включении, выключении от входа ED к выходу Q	3.3 ± 0.3 5.0 ± 0.5	22.5 14.5	нс
t _{PZH} , t _{PZL}	Время задержки распространения при переходе из состояния "Выключено" в состояние высокого, низкого уровня	3.3 ± 0.3 5.0 ± 0.5	23.0 15.5	нс
t _{PHZ} , t _{PLZ}	Время задержки распространения при переходе из состояния высокого, низкого уровня в состояние "Выключено"	$3.3 \pm 0.3 \\ 5.0 \pm 0.5$	20.5	нс

Обозначение параметра	Наименование параметра	V _{CC} , B	Значение типовое (25 ± 10) °C	Единица измерения
C_{I}	Входная емкость	5.0	10	пФ
C_{PD}	Динамическая емкость	5.0	45	пФ

Временные диаграммы

0 B

Восьмиразрядный регистр, управляемый по фронту, с параллельным вводом-выводом данных, с входом установки.

5584ИР35Т

Микросхема изготавливается в 20-выводном металлокерамическом корпусе типа 4153.20-6.

Назначение выводов

Номер вывода	Обозначение	Назначение		
01	$\overline{\overline{R}}$	Вход сигнала сброса		
02	Q0	Выход данных		
03	D0	Вход данных		
04	D1	Вход данных		
05	Q1	Выход данных		
06	Q2	Выход данных		
07	D2	Вход данных		
08	D3	Вход данных		
09	Q3	Выход данных		
10	GND	Общий		
11	CL	Вход тактового сигнала		
12	Q4	Выход данных		
13	D4	Вход данных		
14	D5	Вход данных		
15	Q5	Выход данных		
16	Q6	Выход данных		
17	D6	Вход данных		
18	D7	Вход данных		
19	Q7	Выход данных		
20	V_{CC}	Питание		

Таблица истинности

Вход			Выход
\overline{R}	CL	D	Q
L		Н	L
Н		L	Н
Н	L, H,	X	L
Н	X	X	Qo

Примечание -

Н - высокий уровень напряжения;

L – низкий уровень напряжения;

Х - любой уровень напряжения (низкий или высокий);

Qo - хранение предыдущего состояния;

Z - выход в третьем состоянии

переход из низкого уровня в высокий;

└ - переход из высокого уровня в низкий

Динамические параметры ($C_L = 50 \; \pi \Phi, \, t_{LH} = t_{HL} = 3.0 \; \text{нc}, \, V_{CC} \pm 10\%$)

050000000000	П	T 7	Норма	E
Обозначение параметра	Наименование параметра	V _{CC} , B	от -60 до +125 °C	Единица измерения
парамстра	параметра	Б	не более	измерения
t _{PLH,}	Время задержки распространения при	3.3 ± 0.3	23.4	нс
t_{PHL}	включении, выключении от входа CL до выхода Q	5.0 ± 0.5	15.5	-
.	Время задержки распространения при	3.3 ± 0.3	23.4	Wa
	включении от входа \overline{R} до выхода Q	5.0 ± 0.5	15.5	нс
f	Частота следования тактовых	3.3 ± 0.3	35	МГц
1	импульсов	5.0 ± 0.5	50	_

Обозначение	Наименование	V _{CC} ,	Значение типовое	Единица
параметра	параметра	В	(25 ± 10) °C	измерения
C_{I}	Входная емкость	5.0	4.5	пФ
C_{PD}	Динамическая емкость	5.0	50	пФ

Установочные параметры

Наименование	Буквенное	Напряжение	Hoj	рма	Температу
параметра, единица измерения	обозначен ие	питания, V _{CC} , В	не менее	не более	pa, °C
Время установления		3.3±0.3	5.5	_	25±10
сигнала D	$t_{ m SU}$	5.0±0.5	4.5		
относительно	250	3.3±0.3	9.0		-60,
сигнала CL, нс		5.0±0.5	6.0		125
Время удержания		3.3±0.3	1.5		25±10
сигнала D	4	5.0±0.5	1.5		
относительно	t_{H}	3.3±0.3	2.5		-60,
сигнала CL, нс		5.0±0.5	2.5		125
Время		3.3±0.3	6.5		25±10
восстановления	$t_{ m REC}$	5.0±0.5	4.5		
сигнала CL после		3.3±0.3	7.5		-60,
сигнала \overline{R} , нс		5.0±0.5	5.5		125
		3.3±0.3	5.5		25±10
Длительность	4	5.0±0.5	5.0		
сигнала CL, нс	$t_{ m W}$	3.3±0.3	9.0		-60,
		5.0±0.5	6.5		125
		3.3±0.3	5.0		25±10
		5.0±0.5	5.0		
сигнала R		3.3±0.3	8.5		-60,
		5.0±0.5	6.5		125
Примечание -	- Нормы уто	нняются в ходе	l		

Технические спецификации 5584КП11Т

Четыре селектора-мультиплексора 2-1 с тремя состояниями на выходе. 5584КП11Т

Микросхема изготавливается в 16-выводном металлокерамическом корпусе типа 402.16-32.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	SE	Вход выбора канала
02	A0	Вход канала
03	B0	Вход канала
04	Y0	Выход
05	A1	Вход канала
06	B1	Вход канала
07	Y1	Выход
08	GND	Общий вывод
09	Y2	Выход
10	B2	Вход канала
11	A2	Вход канала
12	Y3	Выход
13	В3	Вход канала
14	A3	Вход канала
15	ED	Вход разрешения выхода
16	Vcc	Вывод питания от источника напряжения

Таблица истинности

Вход		Выход
ED	SE	Y0 Y3
Н	X	Z
L	Н	B0 B3

Примечание - L - низкий уровень напряжения;

Н - высокий уровень напряжения;

X - любой уровень напряжения (низкий или высокий);

Z - выход в состоянии "Выключено";

A0 ...A3, B0 ... B3 – состояние на входах.

Технические спецификации 5584КП11Т

Динамические параметры $(C_L = 50 \text{ п}\Phi, t_{LH} = t_{HL} = 3.0 \text{ нc}, V_{CC} \pm 10\%)$

Обозначение параметра	Наименование параметра	V _{CC} ,	Норма от -60 до +125 °C	Единица измерения
1 1			не более	1
	Время задержки распространения при включении,	3.3 ± 0.3	20.5	нс
t _{PLH,}			13.0	нс
$t_{ m PHL}$	от входа SE к выходам Y	3.3 ± 0.3	25.5	****
OT	л входа ЗЕ к выходам т	5.0 ± 0.5	15.5	нс
t _{PZH} ,	Время задержки распространения при переходе из состояния "Выключено" в состояние высокого, низкого	3.3 ± 0.3	26.5	
l fpzi	уровня, нс, не более, от входа ЕД к выходам Ү	5.0 ± 0.5	16.5	нс
$t_{\mathrm{PHZ}},$	Время задержки распространения при переходе из состояния высокого, низкого уровня в состояние	3.3 ± 0.3	26.5	110
t_{PLZ}	"Выключено", нс, не более, от входа ED к выходам Y	5.0 ± 0.5	16.5	нс

Обозначение параметра	Наименование параметра	V _{CC} ,	Значение типовое (25 ± 10) °C	Единица измерения
C_{I}	Входная емкость	5.0	10	пФ
C_{PD}	Динамическая емкость	5.0	35	пΦ

Технические спецификации 5584КП11Т

Временные диаграммы

Четыре логических элемента "2И-НЕ". 5584ЛАЗТ

Микросхема изготавливается в 14-выводном металлокерамическом корпусе типа 401.14-5.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	A1	Вход
02	B1	Вход
03	$\overline{Y1}$	Выход
04	A2	Вход
05	B2	Вход
06	$\overline{Y2}$	Выход
07	GND	Общий
08	$\overline{Y3}$	Выход
09	A3	Вход
10	В3	Вход
11	$\overline{Y4}$	Выход
12	A4	Вход
13	B4	Вход
14	V_{CC}	Питание

Таблица истинности

Вход		Выход
A	В	$Y = \overline{A \times B}$
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

Примечание - L - низкий уровень напряжения H - высокий уровень напряжения

Динамические параметры $\,(C_L \! = \! 50~\pi\Phi,\, t_{LH} \! = \! t_{HL} \! = \! 3.0~\text{нc},\, V_{CC} \! \pm 10\%\,)$

Ofennana	По	X 7	Норма	E
Обозначение		V _{CC} , B	от -60 до +125 °C	Единица
параметра	параметра	В	не более	измерения
t _{PLH,}	Время задержки	3.3 ± 0.3	16.0	***
t_{PHL}	распространения при включении, выключении	5.0 ± 0.5	11.0	нс

Обозначение	Наименование	V _{CC} ,	Значение типовое	Единица
параметра	параметра	В	(25 ± 10) °C	измерения
C _I	Входная емкость	5.0	4.5	пФ
C_{PD}	Динамическая емкость	5.0	20	пФ

Временная диаграмма

Технические спецификации 5584ЛЕ1T

Четыре логических элемента "2ИЛИ-НЕ". 5584ЛЕ1Т

Микросхема изготавливается в 14-выводном металлокерамическом корпусе типа 401.14-5.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	<u> </u>	Выход
02	A1	Вход
03	B1	Вход
04	$\overline{\overline{Y2}}$	Выход
05	A2	Вход
06	B2	Вход
07	GND	Общий
08	A3	Вход
09	В3	Вход
10	Y 3	Выход
11	A4	Вход
12	B4	Вход
13	$\overline{\text{Y4}}$	Выход
14	V _{CC}	Питание

Таблица истинности

Вход		Выход
A	В	Y = A + B
L	L	Н
L	Н	L
Н	L	L
Н	Н	L
Примочения		

Примечание –

Н – высокий уровень напряжения

L – низкий уровень напряжения

Технические спецификации 5584ЛЕ1Т

Динамические параметры $\,(C_L \! = \! 50~\pi\Phi,\, t_{LH} \! = \! t_{HL} \! = \! 3.0~\text{нc},\, V_{CC} \! \pm 10\%\,)$

Обозначение параметра	Наименование параметра	V _{CC} ,	Норма от −60 до +125 °C не более	Единица измерения
t _{PLH} ,	Время задержки распространения при	3.3 ± 0.3		нс
$t_{ m PHL}$	включении, выключении	5.0 ± 0.5	11.0	

Обозначение параметра	Наименование параметра	V _{CC} , B	Значение типовое (25 ± 10) °C	Единица измерения
C _I	Входная емкость	5.0	4.5	пФ
C_{PD}	Динамическая емкость	5.0	20	пФ

Временная диаграмма

Четыре логических элемента "2И". 5584ЛИ1Т

Микросхема изготавливается в 14-выводном металлокерамическом корпусе типа 401.14-5.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	A1	Вход
02	B1	Вход
03	Y1	Выход
04	A2	Вход
05	B2	Вход
06	Y2	Выход
07	GND	Общий
08	Y3	Выход
09	A3	Вход
10	В3	Вход
11	Y4	Выход
12	A4	Вход
13	B4	Вход
14	Vcc	Питание

Таблица истинности

	Вход	Выход
A	В	Y = A*B
L	L	L
L	Н	L
Н	L	L
Н	Н	Н
17		

Примечание –

Н – высокий уровень напряжения

L – низкий уровень напряжения

Динамические параметры $\,(C_L \! = \! 50~\pi\Phi,\, t_{LH} \! = \! t_{HL} \! = \! 3.0~\text{нc},\, V_{CC} \! \pm 10\%\,)$

Ogomona	Наумарамуа	T 7	Норма	Ениина
Обозначение		V _{CC} , B	от -60 до +125 °C	Единица
параметра	параметра	Б	не более	измерения
t _{PLH} ,	Время задержки распространения при	3.3 ± 0.3	17.0	нс
$t_{ m PHL}$	включении, выключении	5.0 ± 0.5	11.6	

Обозначение параметра	Наименование параметра	V _{CC} ,	Значение типовое (25 ± 10) °C	Единица измерения
C_{I}	Входная емкость	5.0	4.5	пФ
C_{PD}	Динамическая емкость	5.0	20	пФ

Временная диаграмма

Технические спецификации 5584ЛЛ1Т

Четыре логических элемента "2ИЛИ". 5584ЛЛ1Т

Микросхема изготавливается в 14-выводном металлокерамическом корпусе типа 401.14-5.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	A1	Вход
02	B1	Вход
03	Y1	Выход
04	A2	Вход
05	B2	Вход
06	Y2	Выход
07	GND	Общий
08	Y3	Выход
09	A3	Вход
10	В3	Вход
11	Y4	Выход
12	A4	Вход
13	B4	Вход
14	Vcc	Питание

Таблица истинности

Вход		Выход
A	В	Y = A + B
L	L	L
L	Н	Н
Н	L	Н
Н	Н	Н
-		

Примечание –

Н – высокий уровень напряжения

L – низкий уровень напряжения

Технические спецификации 5584ЛЛ1Т

Динамические параметры $\,(C_L \! = \! 50~\pi\Phi,\, t_{LH} \! = \! t_{HL} \! = \! 3.0~\text{нc},\, V_{CC} \! \pm 10\%\,)$

Ogozwawa	Помученования	T 7	Норма	E
Обозначение параметра	Наименование параметра	V _{CC} , B	от -60 до +125 °C	Единица измерения
параметра	параметра	D	не более	измерения
$t_{\rm PLH,}$	Время задержки	3.3 ± 0.3	16.0	нс
t_{PHL}	распространения при включении, выключении	5.0 ± 0.5	11.0	iic

Обозначение	Наименование	V _{CC} ,	Значение типовое	Единица
параметра	параметра	В	(25 ± 10) °C	измерения
C_{I}	Входная емкость	5.0	4.5	пФ
C_{PD}	Динамическая емкость	5.0	20	пΦ

Временная диаграмма

Технические спецификации 5584ЛН1Т

Шесть логических элементов НЕ.5584ЛН1Т

Микросхема изготавливается в 14-выводном металлокерамическом корпусе типа 401.14-5.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	A1	Вход
02	<u><u> </u></u>	Выход
03	A2	Вход
04	$\overline{Y2}$	Выход
05	A3	Вход
06	Y 3	Выход
07	GND	Общий вывод
08	$\overline{Y4}$	Выход
09	A4	Вход
10	<u></u>	Выход
11	A5	Вход
12	$\overline{Y6}$	Выход
13	A6	Вход
14	Vcc	Вывод питания от источника напряжения

Таблица истинности

Вход	Выход
A	$Y = \overline{A}$
L	Н
Н	L

Примечание –

Н – высокий уровень напряжения

L – низкий уровень напряжения

Технические спецификации 5584ЛН1Т

Динамические параметры $\,(C_L \! = \! 50~\pi\Phi,\, t_{LH} \! = \! t_{HL} \! = \! 3.0~\text{нc},\, V_{CC} \! \pm 10\%\,)$

Обозначение	Наименование	V _{CC} ,	Норма от -60 до +125 °C	Единица
параметра	параметра	В	не более	измерения
t _{PLH} ,	Время задержки распространения при	3.3 ± 0.3	16.5	110
$t_{ m PHL}$	включении, выключении	5.0 ± 0.5	11.5	нс

Обозначение параметра	Наименование параметра	V _{CC} , B	Значение типовое (25 ± 10) °C	Единица измерения
C_{I}	Входная емкость	5.0	10	пФ
C_{PD}	Динамическая емкость	5.0	35	пФ

Временная диаграмма

Четыре двухвходовых логических элемента исключающее ИЛИ. 5584ЛП5Т

Микросхема изготавливается в 14-выводном металлокерамическом корпусе типа 401.14-5.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	A1	Вход
02	B1	Вход
03	Y1	Выход
04	A2	Вход
05	B2	Вход
06	Y2	Выход
07	GND	Общий вывод
08	Y3	Выход
09	A3	Вход
10	В3	Вход
11	Y4	Выход
12	A4	Вход
13	B4	Вход
14	Vcc	Вывод питания от источника напряжения

Таблица истинности

Вход		Выход
A	В	$\mathbf{Y} = \mathbf{A} \oplus \mathbf{B} = \overline{\mathbf{A}} \cdot \mathbf{B} + \mathbf{A} \cdot \overline{\mathbf{B}}$
L	L	L
L	Н	Н
Н	L	H
Н	Н	L

Примечание -

L - низкий уровень напряжения;

Н - высокий уровень напряжения

Динамические параметры $(C_L = 50~\pi\Phi, \, t_{LH} = t_{HL} = 3.0~\text{Hc}, \, V_{CC} \pm 10\%)$

Обозначение параметра	Наименование параметра	V _{CC} ,	Норма от -60 до +125 °C	Единица измерения
парамстра	парамстра	D	не более	измерения
$t_{PLH,}$	Время задержки распространения	3.3 ± 0.3	22.5	110
$t_{ m PHL}$	при включении, выключении	5.0 ± 0.5	13.5	нс

Обозначение параметра	Наименование параметра	V _{CC} ,	Значение типовое (25 ± 10) °C	Единица измерения
C_{I}	Входная емкость	5.0	10	пФ
C_{PD}	Динамическая емкость	5.0	35	пФ

Шесть триггеров Шмитта – инверторов.5584ТЛ2Т

Микросхема изготавливается в 14-выводном металлокерамическом корпусе типа 401.14-5.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	A1	Вход
02	<u>\overline{Y1}</u>	Выход
03	A2	Вход
04	$\overline{Y2}$	Выход
05	A3	Вход
06	$\overline{Y3}$	Выход
07	GND	Общий вывод
08	$\overline{\mathrm{Y4}}$	Выход
09	A4	Вход
10	$\overline{Y5}$	Выход
11	A5	Вход
12	<u> 76</u>	Выход
13	A6	Вход
14	Vcc	Вывод питания от источника напряжения

Таблица истинности

$Y = \overline{A}$
Н
L

Примечание –

L - низкий уровень напряжения;

Н - высокий уровень напряжения

Динамические параметры $(C_L = 50 \; \pi \Phi, \, t_{LH} = t_{HL} = 3.0 \; \text{нс}, \, V_{CC} \pm 10\% \;)$

Обозначение	Наименование	V _{CC} ,	Норма от -60 до +125 °C	Единица
параметра	параметра	В	не более	измерения
$t_{\rm PLH,}$	Время задержки распространения	3.3 ± 0.3	25.0	нс
t_{PHL}	при включении, выключении	5.0 ± 0.5	16.5	

Обозначение параметра	Наименование параметра	V _{CC} , B	Значение типовое (25 ± 10) °C	Единица измерения
C _I	Входная емкость	5.0	10	пФ
C_{PD}	Динамическая емкость	5.0	40	пФ

Временная диаграмма

Два D - триггера с установкой и сбросом. 5584TM2T

Микросхема изготавливается в 14-выводном металлокерамическом корпусе типа 401.14-5.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	R1	Вход сигнала сброса
02	D1	Вход данных
03	CL1	Вход тактового сигнала
04	<u>51</u>	Вход сигнала установки
05	Q1	Выход данных
06	$\frac{Q1}{\overline{Q1}}$	Выход данных инверсный
07	GND	Общий
08	$\overline{\mathrm{Q2}}$	Выход данных инверсный
09	Q2	Выход данных
10	<u>S2</u>	Вход сигнала установки
11	CL2	Вход тактового сигнала
12	D2	Вход данных
13	R2	Вход сигнала сброса
14	Vcc	Питание

Таблица истинности

Вход			Выход		
\bar{S}	\overline{R}	CL	D	Q	$\overline{\overline{Q}}$
L	Н	X	X	Н	L
Н	L	X	X	L	Н
L	L	X	X	H*	H*
Н	Н	1	Н	Н	L
Н	Н	↑	L	L	Н
Н	Н	L	X	Q_0	$\overline{\overline{Q}}_0$
Н	Н	Н	X	Q_0	$\overline{\overline{\mathbf{Q}}}_{0}$
Н	Н	\	X	Q_0	$\overline{\overline{Q}}_0$

Примечание -

L – низкий уровень напряжения; H - высокий уровень напряжения;

X – любой уровень напряжения (Н или L);

 \uparrow - переход из низкого уровня в высокий; \downarrow - переход из высокого уровня в низкий

*- Выходы Q (Q) остаются в состоянии высокого уровня напряжения

пока на входах \overline{S} и \overline{R} низкий уровень напряжения. При одновременном переключении входов \overline{S} и \overline{R} в состояние высокого уровня на выходе Q может быть как низкий уровень (L), так и высокий уровень (H), при этом состояние на выходе \overline{Q} будет инверсное выходу Q.

Динамические параметры $(C_L = 50 \; \pi\Phi, \, t_{LH} = t_{HL} = 3.0 \; \text{нс}, \, V_{CC} \pm 10\% \;)$

Обозначение	Наименование	V _{CC} ,	Норма	Единица
параметра	параметра	B	от -60 до +125 °C	измерения
параметра	параметра	D	не более	измерения
	Время задержки сигнала при включении, выключении от	3.3 ± 0.3	21.0	
$t_{\mathrm{PLH},}$	входа CL до выхода Q или \overline{Q}	5.0 ± 0.5	13.2	нс
t_{PHL}	от входа \overline{R} , \overline{S} до выхода Q	3.3 ± 0.3	21.7	
	или $\overline{\overline{Q}}$	5.0 ± 0.5	13.8	
f	Частота следования тактовых	3.3 ± 0.3	40	МГц
1	импульсов	5.0 ± 0.5	60	1V11 Ц

Обозначение параметра	Наименование параметра	V _{CC} ,	Значение типовое (25 ± 10) °C	Единица измерения
$C_{\rm I}$	Входная емкость	5.0	4.5	пФ
C_{PD}	Динамическая емкость	5.0	35	пΦ

Установочные параметры

Цанманаранна нараматра	Буквенное	Напряжение	Ho	ома	Темпера	
Наименование параметра, единица измерения	обозначение	питания, V _{CC} , В	не менее	не более	темпера тура, °С	
	$t_{ m SU}$	3.3±0.3	9.0	_	25±10	
Время установления сигнала D		5.0±0.5	7.0			
относительно сигнала CL, нс		3.3±0.3	12.0		-60,	
		5.0±0.5	9.0		125	
De avez vizaginario a compranta D	t _H	3.3±0.3	2.0		25±10	
Время удержания сигнала D		5.0±0.5	2.0			
относительно сигнала CL, нс		3.3±0.3	3.0		-60,	
CL, HC		5.0±0.5	3.0		125	
	$t_{ m REC}$	3.3±0.3	7.0		25±10	
Время восстановления сигнала		5.0±0.5	5.0			
CP после сигналов \overline{R} , \overline{S} , нс		3.3±0.3	9.0		-60,	
		5.0±0.5	7.0		125	
	$t_{ m W}$	3.3±0.3	9.0		25±10	
Длительность сигналов СР, $\overline{\overline{R}}$,		5.0±0.5	7.0			
S, HC		3.3±0.3	12.0		-60,	
		5.0±0.5	9.0		125	

Временные диаграммы

Шесть D – триггеров. 5584TM9T

Микросхема изготавливается в 14-выводном металлокерамическом корпусе типа 401.14-5.

Назначение выводов

Номер вывода	Обозначение	Назначение
01	\overline{R}	Вход сигнала сброса
02	Q0	Выход данных
03	D0	Вход данных
04	D1	Вход данных
05	Q1	Выход данных
06	D2	Вход данных
07	Q2	Выход данных
08	GND	Общий вывод
09	CL	Вход тактового сигнала
10	Q3	Выход данных
11	D3	Вход данных
12	Q4	Выход данных
13	D4	Вход данных
14	D5	Вход данных
15	Q5	Выход данных
16	Vcc	Вывод питания от источника напряжения

Таблица истинности

	Bxc	Выход	
\overline{R}	CL	D	Q
L	X	X	L
Н	↑	Н	Н
Н	↑	L	L
Н	L	X	Q
Н	Н	X	Q
Н	<u> </u>	X	Q

Примечание –

L – низкий уровень напряжения;

Н - высокий уровень напряжения;

X – любой уровень напряжения (H или L);

↑ - переход из низкого уровня в высокий;

↓ - переход из высокого уровня в низкий

Динамические параметры $(C_L = 50 \text{ п}\Phi, t_{LH} = t_{HL} = 3.0 \text{ нc}, V_{CC} \pm 10\%)$

Обозначение параметра	Наименование параметра	V _{CC} , B	Норма от –60 до +125 °C не более	Единица измерения	
$t_{\mathrm{PHL}},$	Время задержки распространения при включении,	3.3 ± 0.3	22.5	нс	
$t_{\rm PLH,}$	выключении от входа CL к выходам Q	5.0 ± 0.5	14.5	нс	
4	Время задержки распространения при включении от	3.3 ± 0.3	22.5	***	
$t_{ m PHL}$	входа \overline{R} к выходам Q	5.0 ± 0.5	15.0	нс	
fc	Подтото ополования токторым опеновор	3.3 ± 0.3	45	МГц	
10	Частота следования тактовых сигналов	5.0 ± 0.5	70	МПЦ	

Обозначение параметра	Наименование параметра	V _{CC} , B		
C _I	Входная емкость	5.0	10	пΦ
C_{PD}	Динамическая емкость	5.0	45	пФ

Временная диаграмма

Временная диаграмма

Временная диаграмма

Технические спецификации 2Д510A

Кремниевый эпитаксиально-планарный импульсный диод 2Д510A

Электрические параметры

(значение электрических параметров при приемке и поставке, значение электрических параметров в течение минимальной наработки в пределах времени, равному сроку сохраняемости, значение электрических параметров в течение срока сохраняемости должны соответствовать требованиям, приведенным в таблице 1)

Таблица 1

	Емеронноо	Но	рма	Томноватура
Наименование параметра, режим измерения, единица измерения	Буквенное обозначение	не менее	не более	Температура ⁰ С
Постоянный обратный ток при постоянном обратном напряжении $U_{\text{обр}} =$		-	5,0	+ 25
110стоянный обратный ток при постоянном обратном напряжении Собр – 50 В, мкА	I_{ofp}	-	100	+ 125
JU D, MKA		-	5,0	минус 60
Постоянное прямое напряжение при постоянном прямом токе, В				
$I_{\text{np}} = 200 \text{ MA}$	T.T.	-	1,1	+ 25
$I_{np} = 100 \text{ MA}$	U_{np}	-	1,1	+ 125
$I_{\text{np}} = 200 \text{ MA}$		-	1,5	минус 60
Заряд восстановления диода в режиме переключения с постоянного прямого тока I_{np} =50 мA на импульсное обратное напряжение $U_{\text{обр.и.}}$ = 10 В, пКл	Q_{BOC}	1	400	+ 25
Время обратного восстановления диода в режиме переключения с постоянного прямого тока $I_{np}=10$ мА на импульсное обратное напряжение $U_{\text{обр.и.}}=10$ В при уровне отсчета обратного тока 2 мА, нс,	t _{вос.обр}	1	4,0	+ 25
Общая емкость диода при нулевом смещении, пф	СД	-	4,0	+ 25

Максимальные параметры эксплуатации

(предельно допустимые значения электрических режимов эксплуатации в диапазоне температур должны соответствовать значениям, приведенным в таблице 2)

Технические спецификации 2Д510А

Таблица 2

Наименование параметра, режим измерения, единица измерения	Буквенное обозначение	Норма	Примечани е
Максимально допустимое постоянное обратное напряжение, В	U _{обр.макс.}	50	1
Максимально допустимое импульсное обратное напряжение диода при длительности импульса не более 2 мкс и скважности не менее 10, В	U _{обр.и.макс}	70	1,3
Максимально допустимый средний прямой ток, мА			
при температуре от минус 60° C до $+50^{\circ}$ C	$I_{\text{пр.ср.макс}}$	200	
$при + 125 {}^{0}C$	$I_{\text{пр.ср.макс}}$	100	2
Максимально допустимый постоянный прямой ток, мА			
при температуре от минус 60^{0} C до $+50^{0}$ C	$I_{\text{пр.макс}}$	200	
$при + 125 {}^{0}C$	$I_{\text{пр.макс}}$	100	2
Максимально допустимый импульсный прямой ток при длительности импульса не			
более 10 мкс без превышения Іпр.ср.макс., мА			
при температуре от минус 60° C до $+50^{\circ}$ C	Іпр.и.макс	1500	
$при + 125 {}^{0}C$	$I_{\text{пр.и.макс}}$	500	2

Примечание:

Электрические параметры, изменяющиеся в процессе и после воздействия специальных факторов, приведены в таблице 3.

Таблица 3

Изманоранна нарамотра ромны изморания админия изморания	Буквенное	Норма	
Наименование параметра, режим измерения, единица измерения		не менее	не более
Постоянный обратный ток при постоянном обратном напряжении $U_{\text{обр}} = 50 \text{ B}$, мкА	$I_{oбp}$	-	150
Постоянное прямое напряжение при постоянном прямом токе $I_{np} = 200$ мA, В	U_{np}	-	1,5

¹ Для всего диапазона рабочих температур. 2 В диапазоне температур от $+50~^{0}$ C до $+125~^{0}$ C $I_{\text{пр.макс.}}=200-100$ ((T 0 C-50)/70), $I_{\text{пр.и.макс.}}=1500-1000$ ((T 0 C-50)/70), $I_{\text{пр.ср.макс.}}=$ 200-100 ((T ⁰C-50)/70).

³ Длительность импульсов в пересчете скважности определяется на уровне обратного напряжения 50 В.

Технические спецификации 2Д522Б

Кремниевый эпитаксиально-планарный импульсный диод 2Д522Б

Электрические параметры

(значение электрических параметров при приемке и поставке, значение электрических параметров в течение минимальной наработки в пределах времени, равному сроку сохраняемости, значение электрических параметров в течение срока сохраняемости должны соответствовать требованиям, приведенным в таблице 1)

Таблица 1

	Г	Норма		Температура,
Наименование параметра, режим измерения, единица измерения	Буквенное обозначение	не	не более	⁰ С
	ooosna tenne	менее		
Постоянный обратиий ток при постоянном обратиом напряжании П . –		-	5,0	+ 25
Постоянный обратный ток при постоянном обратном напряжении $U_{\text{обр}} = 50 \text{ B}$, мкА	$I_{ m o ar o p}$	-	100	+ 125
JU D, MKA		-	5,0	минус 60
Постоянное прямое напряжение при постоянном прямом токе $I_{np} = 100$		-	1,1	+ 25
MA, B	U_{np}	-	1,1	+ 125
	1	-	1,5	минус 60
Заряд восстановления диода в режиме переключения с постоянного	_			
прямого тока I_{np} =50 мA на импульсное обратное напряжение $U_{\text{обр.и.}}$ = 10	Q_{Boc}	-	400	+ 25
В, пКл				
Время обратного восстановления диода в режиме переключения с				
постоянного прямого тока I _{пр} =10 мА на импульсное обратное	t _{вос.обр}	-	4,0	+ 25
напряжение $U_{\text{обр.и.}} = 10 \text{ B}$ при уровне отсчета обратного тока 2 мA, нс				
Общая емкость диода при нулевом смещении, пф	СД	-	4,0	+ 25

Максимальные параметры эксплуатации

(предельно допустимые значения электрических режимов эксплуатации в диапазоне температур должны соответствовать значениям, приведенным в таблице 2)

Технические спецификации 2Д522Б

Таблица 2

Наименование параметра, режим измерения, единица измерения		Норма	Примечание
Максимально допустимое постоянное обратное напряжение, В	$U_{ m oбp.makc.}$	50	1
Максимально допустимое импульсное обратное напряжение диода при длительности импульса не более 2 мкс и скважности не менее 10, В	U _{обр.и.макс}	75	1
Максимально допустимый средний прямой ток, мА при температуре от минус 60 0 C до + 50 0 C при + 125 0 C	Іпр.ср.макс	100	2
Максимально допустимый импульсный прямой ток при длительности импульса не	1 пр.ср.макс	50	2
более 10 мкс без превышения $I_{\text{пр.ср.макс.}}$, мА при температуре от минус 60 0 C до + 50 0 C	$I_{\text{пр.и.макс}}$	1500	
при + 125 ⁰ C	$I_{\text{пр.и.макс}}$	500	2

Примечани:

Электрические параметры, изменяющиеся в процессе и после воздействия специальных факторов, приведены в таблице 3.

Таблица 3

Наименование параметра, режим измерения, единица измерения	Буквенное	Норма	
	обозначение	не менее	не более
Постоянный обратный ток при постоянном обратном напряжении $U_{\text{обр}} = 50 \text{ B}$, мкА	$I_{oбp}$	-	50
Постоянное прямое напряжение при постоянном прямом токе $I_{np} = 100$ мА, В	U_{np}	-	1,4

¹ Для всего диапазона рабочих температур.

² Значения максимально допустимого среднего прямого тока $I_{\text{пр.ср.макс}}$ и максимально допустимого импульсного прямого тока $I_{\text{пр.и.макс}}$ в диапазоне температур от $+50\,^{0}\text{C}$ до $+125\,^{0}\text{C}$ снижаются линейно.

Информация для связи

УП "Завод полупроводниковых приборов"

ул. Корженевского, 12, Минск, 220108

Телефон: (+375-17)-212-32-32 приемная

Управление маркетинга

Телефон: (+375-17)-278-99-63 директор - Силин Анатолий Васильевич

Телефакс: (+375-17)-212-20-31, 212-30-51

Центр микросхем специального назначения Управления маркетинга

Телефоны: (+375-17)-298-97-43 директор - Буслов Игорь Иванович

заместитель директора - Цеханович Александр Анатольевич

(+375-17)-212-20-22 ведущий инженер – Егоров Вячеслав Николаевич

Телефакс: (+375-17)-278-95-49

E-mail: dzum3@integral.by

http://www.integral.by

УП "Завод Цветотрон"

ул. Карьерная, 11, Брест, 224022

Телефоны: (+375-162)-42-72-23 приемная

(+375-162)-43-39-88 маркетинг

Телефакс: (+375-162)-41-09-58 центральный

(+375-162)-43-18-74 маркетинг

E-mail: <u>tsvetotron@brest.by</u>

Информация для связи

Дилерская сеть

ЗАО "Росспецпоставка"

ул. Фонвизина 16\29, г. Москва, 127322

Телефон/факс: (495)- 787-63-53, 788-57-33, 781-21-82

E-mail: rsp@rssp.ru

ЗАО "Спец-электронкомплект"

ул. Тверская 10/3, г. Москва, 125319

Телефон: (495)-234-01-10

Телефакс: (495)-956-33-46

ЗАО "Промышленно-коммерческая компания "МИЛАНДР".

ул. Пехотная 20, г. Москва, 123182

Телефакс: (495)- 730-54-40

E-mail: info@milandr.ru

СП ЗАО "Интеграл СПб".

Ириновский пр. 21 к. 1, г. Санкт-Петербург, 195279

Телефакс: (812)- 527-78-85

E-mail: integ@comset.net