

Pumping Lemma exercises

The Pumping Lemma

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

How to apply PL to prove non-regularity of a language B

- 1. Assume that B is regular in order to obtain a contradiction
- 2. Use the PL to guarantee the existence of a pumping length p such that all strings of length p or greater in B can be pumped
- 3. Find a string s in B that has length p or greater but that cannot be pumped
- 4. Demonstrate that s cannot be pumped by considering all ways of dividing s into x, y, and z (taking Condition 3 of the PL into account when convenient), and for each such division, finding a value of i where xyⁱz ∉ B

Note: Step 4 often involves grouping the various ways of dividing s into several cases and analyzing them individually.

The existence of s contradicts the PL if B were regular. Hence B cannot be regular.

•

Pumping Lemma Exercises

Use the Pumping Lemma to show the following languages are nonregular

- $E = \{0^i \ 1^j \mid i > j\}$
- $F = \{0^n \ 1^m \ 0^n \mid m, n \ge 0\}$
- $G = \{0^m \ 1^n \mid m \neq n\}$

The Language E

• Let $E = \{0^i 1^j | i > j\}$

Proof

- Assume that E is regular
- Let p be the pumping length for E
- Let $s = 0^{p+1}1^p$
- Then s can be split into xyz, satisfying the conditions of the PL
- By condition 3, y consists of only 0s
- Let us examine the string xyyz to see whether it can be in E.

The Language E

- Let $E = \{0^i 1^j | i > j\}$
- Proof
 - Let us examine the string xyyz to see whether it can be in E.
 - Adding an extra copy of y increases the number of 0s
 - But E contains all strings in 0*1* that have more 0s than 1s, so increasing the number of 0s will still give a string in E. No contradiction occurs.
 - We need try something else pumping down
 - Let us consider the string xy⁰z = xz.
 - Removing string y decreases the number of 0s in s.
 - Recall that s has just one more 0 than 1.
 - Therefore, xz cannot have more 0s than 1s, so it cannot be a member of E.
 - Thus, we obtain a contradiction.

The Language F

```
Let F = \{0^n 1^m 0^n \mid m, n \ge 0\}
```

- Proof
 - Assume that F is regular
 - Let p be the pumping length for F
 - Let $s = 0^{p}10^{p}$
 - Then s can be split into xyz, satisfying the conditions of the PL
 - We will split this as $x = 0^a$, $y = 0^b$, $z = 0^c 10^p$, where a+b+c = p and $b \ge 1$.
 - Per Condition 1 of the pumping lemma, we may let i = 0 to yield a string in F and satisfying the other two conditions.
 - Observe that string xy⁰z = 0^{a+c}10^p where a+c
 - Since the number of 0s before and after the 1 are non-equal, xy⁰z is not in F.
 - Therefore F does not satisfy the conditions of the PL and is not regular.

ľ

The Language G

- Let $G = \{0^m 1^n | m \neq n\}$
- Proof I: without using the PL (easier)
 - Let G' denote the complement of G
 - Observe that G' ∩ 0*1* = {0k 1k | k ≥ 0}
 - If G were regular, then G' would be regular and so would G' ∩ 0*1*
 - But we already know that {0^k1^k| k≥ 0} isn't regular, so G cannot be regular

The Language G

- Let $G = \{0^m 1^n | m \neq n\}$
- Proof II: using the PL (much trickier)
 - Assume that G is regular
 - Let p be the pumping length given by the PL
 - Observe that p! is divisible by all integers from 1 to p

```
• p! = p(p-1)(p-2)....1
```

- The string $s = 0^{p_1p+p_1} \in G$, and $|s| \ge p$
- Thus the PL implies that s can be divided as xyz with x= 0a, y = 0b and z = 0c1p+p!, where b≥1 and a+b+c = p.
- Let s' be the string $xy^{i+1}z$, where i = p!/b.
- Then $y^i = 0^{p!}$ so $y^{i+1} = 0^{b+p!}$, and so $s' = 0^{a+b+c+p!}1^{p+p!}$.
- That gives s' = 0^{p+p!}1^{p+p!} ∉ G, a contradiction.