入门

- 1. 强化学习两个随机性来源
 - 1. 动作根据给定的环境,计算下一步每种动作的概率,而随机生成
 - 2. 下一时间的环境状态根据当前的环境状态和动作而随机生成
- 2. 三元组(s1,a1,r1.....st,at,rt)(state, action, reward)
- 3. 折扣汇报,未来的奖励没现在的奖励值钱

 $S G_t = R_t + \operatorname{R}_{t+1} + \operatorname{S}_{t+1}$

为什么回报与未来的奖励有关,与过去的奖励无关?

过去的因为是已经改变不了的了,不是个变量了,而强化学习做的是在当前状态下该采取什么动作,做了当前的动作是为了未来更好才去做的。

- 1. **动作价值函数(Action-value function)** \$Q_\pi(s_t,a_t)=E[G_t|S_t=s_t,A_t=a_t]\$,因为没办法直接求 \$G_t\$,所以只能通过概率去求其期望,转化为状态价值函数(与policy \$\pi\$有关),这个函数是**用来评价当前的动作好不好**,这里的期望是根据未来的所有可能的状态\$A_{t+1},A_{t+2}...\$和动作 (\$S_{t+1},S_{t+2},...\$)求的
- 2. **optimal Action-value function**:\$Q^*(s_t,a_t)=\underset{\pi}{max}Q_\pi(s_t,a_t)\$,作用为评价当前的动作,找一个最好的policy \$\pi\$,使得当前的动作最好
- 3. **State-value function**:\$V_\pi(s_t)=E_A[Q_\pi(s_t,A)]\$,可以判断**当前局势好不好**,因为是对所有动作求期望,所以是对当前局势的评价 \$\$ V_\pi(s_t)=E_A[Q_\pi(s_t,A)]=\begin{cases} \Sigma_a[Q_\pi(s_t,a)\pi(a|s_t)] & \text{if } discrete\ \int_a[Q_\pi(s_t,a)\pi(a|s_t)]da & \text{if } continuous \end{cases} \$\$ \$E_s[V_\pi(S)]\$也可以**评价当前 \$policy \pi\$ 的好坏**,因为是对所有状态求期望,所以是对整个policy的评价
- 4. agent学习方式:根据当前的观察状态 \$ s_t \$
 - 1. 策略学习(policy \$\pi(a|s)\$)
 - 2. 价值学习(optimal value function \$Q^*(s,a)\$)
- 5. **学习过程**

6. **贝尔曼方程**及其推导

- 1. 状态值函数的贝尔曼方程 \$\$ V^{\pi}(s) = \mathbb{E}{a \sim \pi(s)} \left[R(s, a) + \gamma, \mathbb{E}{s' \sim P(s'|s, a)} \left[V^{\pi}(s') \right] \right] \$\$
 - 1. 状态值函数的贝尔曼方程是一个递归方程,它表示了一个状态的值与其后继状态的值之间的 关系。

2. 推导过程: \$\$ \begin{array}{|| V^{\pi}(s) = \mathbb{E}{\pi} \left[G_t | S_t = s \right] \ = \mathbb{E}{\pi} \left[R_{t+1} + \gamma G_{t+1} | S_t = s \right] \ = \mathbb{E}{\pi} \left[R_{t+1} + \gamma $V^{\phi}(S_{t+1})$ | S_t = s \right] \ = \mathbb{E}{\pi} \left[R(s, A) + \gamma $V^{\phi}(S')$ | S_t = s \right] \ = \mathbb{E}{\pi} \left[R(s, A) + \gamma $V^{\phi}(S')$ | S_t = S_t \right] \ = \mathbb{E}{\pi} \left[R(s, A) + \gamma \mathbb{E}{\pi} \left[R(s, A) + \gamma \mathbb{E}{\pi} \left[R(s, A) \right] \right] \right] \right| \left[R(s, A) + \gamma \mathbb{E}{\pi} \left[R(s, A) + \gamma \right| \righ

- 2. 动作值函数的贝尔曼期望方程 \$\$ Q^{\pi}(s, a) = R(s, a) + \gamma , \mathbb{E}{s' \sim P(s'|s,a)} \left[\mathbb{E}{a' \sim \pi(s')} \left[Q^{\pi}(s', a') \right] \right] \$\$
 - 动作值函数的贝尔曼方程是一个递归方程,它表示了一个状态动作对的值与其后继状态动作 对的值之间的关系。
 - 2. 推导过程: \$\$ \begin{array}{|| Q^{\pi}(s, a) = \mathbb{E}{\pi} \left[G_t | S_t = s, A_t = a \right] \ = \mathbb{E}{\pi} \left[R_{t+1} + \gamma G_{t+1} | S_t = s, A_t = a \right] \ = \mathbb{E}{\pi} \left[R_{t+1} + \gamma Q^{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a \right] \ = \mathbb{E}{\pi} \left[R(s, a) + \gamma Q^{\pi}(S', A') | S = s, A = a \right] \ = R(s, a) + \gamma , \mathbb{E}{s' \sim P(s'|s,a)} \left[\mathbb{E}_{a' \sim \pi(s')} \left[Q^{\pi}(s', a') \ \right] \right] \right] \left[Q^{\pi}(s', a') \ \right] \right] \left[\mathbb{E}_{a' \sim \pi(s')} \left[Q^{\pi}(s', a') \ \right] \right] \right] \right] \left[\mathbb{E}_{a' \sim \pi(s')} \right] \r
- 3. 状态值函数的贝尔曼最优方程 \$\$ $V^(s) = \max_{a} \left\{ R(s, a) + \sum_{s=1}^{n} \left\{ V^(s') \right\} \right\}$
 - 1. 状态值函数的贝尔曼最优方程是一个递归方程,它表示了一个状态的值与其后继状态的值之间的关系。
 - 2. 推导过程: \$\$ \begin{array}{|| V^(s) = \max_{a} \left[Q^(s, a) \right] \ = \max_{a} \left[R(s, a) + \gamma , \mathbb{E}_{s' \sim P(s'|s,a)} \left[V^*(s') \right] \right] \end{array} \$\$
- 4. 动作值函数的贝尔曼最优方程 \$\$ Q^(s, a) = R(s, a) + \gamma , \mathbb{E}{s' \sim P(s'|s,a)} \left[\max{a'} Q^(s', a') \right] \$\$
 - 1. 动作值函数的贝尔曼最优方程是一个递归方程,它表示了一个状态动作对的值与其后继状态 动作对的值之间的关系。
 - 2. 推导过程: \$\$ \begin{array}{|| Q^(s, a) = \mathbb{E}_{\pi^} \left[G_t | S_t = s, A_t = a \right] \ = \mathbb{E}_{\pi^*} \left[R{t+1} + \gamma G_{t+1} | S_t = s, A_t = a \right] \ = \mathbb{E}_{\pi^*} \left[R{t+1} + \gamma \max_{a'} Q^(S_{t+1}, a') | S_t = s, A_t = a \right] \ = \mathbb{E}_{\pi^*} \left[R(s, a) + \gamma \max_{a'} Q^(S', a') | S = s, A = a \right] \ = R(s, a) + \gamma , \mathbb{E}_{\si}' \sim P(s'|s,a)} \left[\max{a'} Q^(s', a') \right] \end{array} \$\$\$
- 7. DQN(Deep Q-Network)(离散型) 用深度学习来近似Q函数 目标:最大化奖励函数 问题1:如何通过已知的\$Q^(*s*,*a*)\$来*寻*找最好*动*作答:\$*a*^=\underset{a}{argmax}Q^(*s*,*a*)\$ 挑战:\$Q^(s,a)\$是未知的,只能通过已知的数据来近似答:用神经网络\$Q(s,a;w)\$来近似\$Q^*(s,a)\$ (DNQ)

训练过程:

8. Temporal Difference(TD) Learning 最简单的例子

Example

- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

Question: How do I update the model?

- Make a prediction: $q = Q(\mathbf{w})$, e.g., q = 1000.
- Finish the trip and get the target y, e.g., y = 860.
- Loss: $L = \frac{1}{2}(q y)^2$.
- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = \frac{\partial q}{\partial \mathbf{w}} \cdot \frac{\partial L}{\partial q} = (q y) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} |_{\mathbf{w} = \mathbf{w}_t}$

Q: Can I update the model before the end of the episode? A: 前半段实际值,后半段预测值,加起来作为一个值去与模型的整体估计值作比较

- 9. apply TD to DQN 因为 \$\$ G_t=R_t+\gamma G_{t+1} \$\$ 所以 \$\$ y_t=Q(s_t,a_t;w) \approx r_t + \gamma Q(s_{t+1},a_{t+1};w) \ = r_t + \gamma max_{a'}Q(s_{t+1},a';w)(a_{t+1})的选择原理) \ Loss: L_t=\frac{1}{2} (y_t-Q(s_t,a_t;w))^2 \$\$ 所以 \$\$ EG_t \approx E[r_t(Reality) + \gamma EG_{t+1}] (TD\ target) \$\$
- 10. Policy Network \$\pi (a|s,\theta)\$

近似状态价值函数 \$\$ V(s_t,\theta)=\Sigma_a\pi(a|s_t,\theta)Q_\pi(s_t,a) \$\$ 问题1:如何学习参数

\$\theta\$? 答:学习\$\theta\$,使得\$J(\theta)=E_s[V(S;\theta)]\$最大化

策略梯度算法(随机梯度,随机性来源于s) 1. 观察当前状态s 2. 更新参数\$\theta \leftarrow \theta+\beta \frac{\partial V(s;\theta)}{\partial \theta}\$

Algorithm

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate).
- 4. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a_t}|s_t, \theta)}{\partial \theta} |_{\theta = \theta_t}$.
- 5. (Approximate) policy gradient: $\mathbf{g}(\mathbf{a}_t, \mathbf{\theta}_t) = q_t \cdot \mathbf{d}_{\theta,t}$.
- 6. Update policy network: $\theta_{t+1} = \theta_t + \beta \cdot \mathbf{g}(a_t, \theta_t)$.

问题4: 如何近似计算\$q_t\$ 答:两种方法: 6. REINFORCE

Option 1: REINFORCE.

Play the game to the end and generate the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_T, a_T, r_T.$$

- Compute the discounted return $u_t = \sum_{k=t}^T \gamma^{k-t} r_k$, for all t.
- Since $Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[U_t]$, we can use u_t to approximate $Q_{\pi}(s_t, \mathbf{a_t})$.
- \rightarrow Use $q_t = u_t$.
- 7. Actor-Critic 用神经网络近似价值函数\$Q \pi\$

11.