## UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS ESCUELA DE ESTADÍSTICA

# PRUEBA DE HIPÓTESIS PARA $\mu$

## 1. Hipótesis

$$\begin{array}{cccc} H_a: \mu > \mu_0 & (1) \\ H_0: \mu = \mu_0 & vs & H_a: \mu < \mu_0 & (2) \\ H_a: \mu \neq \mu_0 & (3) \end{array}$$

#### 2. Estadístico de Prueba



#### 3. Tomar una decisión

## 3.1 Región de Rechazo.

(1) 
$$RR : \{Z \mid Z_c > Z_\alpha\}$$
  
 $RR : \{T \mid T_c > t_{\alpha,n-1}\}.$ 

(2) 
$$RR : \{Z \mid Z_c < -Z_\alpha\}$$
  
 $RR : \{T \mid T_c < -t_{\alpha,n-1}\}.$ 

(3) 
$$RR : \{Z \mid Z_c < -Z_{\alpha/2} \text{ o } Z_c > Z_{\alpha/2} \}$$
  
 $RR : \{T \mid T_c < -t_{\alpha/2,n-1} \text{ o } T_c > t_{\alpha/2,n-1} \}.$ 

(1) 
$$P(Z > Z_c)$$
  
 $P(T > T_c)$ .

(2) 
$$P(Z < Z_c)$$
  
 $P(T < T_c)$ .

(3) 
$$2P(Z > |Z_c|)$$
  
 $2P(T > |T_c|).$ 

**NOTA:** Si no se da  $\alpha$ , se asume  $\alpha = 0.05$ .

# PRUEBA DE HIPÓTESIS PARA $\mu_1 - \mu_2$

## 1. Hipótesis

$$H_a: \mu_1 - \mu_2 > \delta_0$$
 (1)  
 $H_0: \mu_1 - \mu_2 = \delta_0$  vs  $H_a: \mu_1 - \mu_2 < \delta_0$  (2)  
 $H_a: \mu_1 - \mu_2 \neq \delta_0$  (3)

#### 2. Estadístico de Prueba



Con

$$SP = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

$$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(\frac{S_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1}}$$

## 3. Tomar una decisión

#### 3.1 Región de Rechazo.

(1) 
$$RR : \{Z \mid Z_c > Z_{\alpha}\}\$$
  
 $RR : \{T \mid T_c > t_{\alpha, ol}\}.$ 

(2) 
$$RR : \{Z \mid Z_c < -Z_\alpha\}$$
  
 $RR : \{T \mid T_c < -t_{\alpha,al}\}$ 

(3) 
$$RR : \{Z \mid Z_c < -Z_{\alpha/2} \text{ o } Z_c > Z_{\alpha/2} \}$$
  
 $RR : \{T \mid T_c < -t_{\alpha/2,gl} \text{ o } T_c > t_{\alpha/2,gl} \}.$ 

(1) 
$$P(Z > Z_c)$$
  
 $P(T > T_c)$ .

(2) 
$$P(Z < Z_c)$$
  
 $P(T < T_c)$ .

(3) 
$$2P(Z > |Z_c|)$$
  
 $2P(T > |T_c|).$ 

NOTA: Los grados de libertad (gl) dependen de si las varianzas son iguales o no.

# PRUEBA DE HIPÓTESIS PARA P

(a) Hipótesis

$$H_0: P = P_0 \quad vs \quad \begin{array}{ccc} H_a: P > P_0 & (1) \\ H_a: P < P_0 & (2) \\ H_a: P \neq P_0 & (3) \end{array}$$

(b) Estadístico de Prueba

$$Z_c = \frac{\widehat{P} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}} \sim n(0, 1)$$
, Aproximadamente.  $\widehat{P} = \frac{x}{n}$ .

(c) Tomar una decisión

3.1 Región de Rechazo.

3.2 Valor-P.

(1)  $RR : \{Z \mid Z_c > Z_{\alpha}\}.$ 

(1)  $P(Z > Z_c)$ .

(2)  $RR : \{Z \mid Z_c < -Z_\alpha\}.$ 

(2)  $P(Z < Z_c)$ .

(3)  $RR: \{Z \mid Z_c < -Z_{\alpha/2} \text{ o } Z_c > Z_{\alpha/2}\}.$  (3)  $2P(Z > |Z_c|).$ 

# PRUEBA DE HIPÓTESIS PARA $\sigma_1^2/\sigma_2^2$

(a) Hipótesis

$$H_0: \sigma_1^2 = \sigma_2^2 \quad vs \quad \begin{array}{ll} H_a: \sigma_1^2 > \sigma_2^2 & (1) \\ H_a: \sigma_1^2 < \sigma_2^2 & (2) \\ H_a: \sigma_1^2 \neq \sigma_2^2 & (3) \end{array}$$

(b) Estadístico de Prueba

$$F_c = \frac{S_1^2}{S_2^2} \sim F_{n_1 - 1, n_2 - 1}.$$

(c) Región de Rechazo

(1) 
$$RR: \{F \mid F_c > F_{1-\alpha,(n_1-1,n_2-1)}\}.$$

(2) 
$$RR: \left\{ F \mid F_c < \frac{1}{F_{1-\alpha,(n_2-1,n_1-1)}} \right\}.$$

(3) 
$$RR: \left\{ F \mid F_c < \frac{1}{F_{1-\alpha/2,(n_2-1,n_1-1)}} \text{ o } F_c > F_{1-\alpha/2,(n_1-1,n_2-1)} \right\}.$$

NOTA: 
$$F_{\alpha/2,(n_1-1,n_2-1)} = \frac{1}{F_{1-\alpha/2,(n_2-1,n_1-1)}}$$
.