科技 立成报报图 8H 2013 2013

Quantum Mechanics

Solutions to the Problems in the Midterm Exam

Fall, 2019

1. (25 points) Complete the following five problems (5 points each).

(1) Planck's law of blackbody radiation is given by $E_{\lambda}(T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda k_{\rm B}T} - 1}$. Find the total radiation intensity $E(T) = \int_0^\infty d\lambda \ E_{\lambda}(T)$. An integral that yields a numerical constant can be left unevaluated in your answer.

The total radiation intensity is given by

$$E(T) = \int_0^\infty d\lambda \ E(\lambda) = 2\pi h c^2 \int_0^\infty \frac{d\lambda}{\lambda^5} \frac{1}{e^{hc/\lambda k_B T} - 1}.$$

Making a change of integral variables from λ to $x = hc/\lambda k_B T$, we have

$$E(T) = 2\pi hc^2 \left(\frac{k_B T}{hc}\right)^4 \int_0^\infty dx \, \frac{x^3}{e^x - 1} = \left[\frac{2\pi k_B^4}{h^3 c^2} \int_0^\infty dx \, \frac{x^3}{e^x - 1}\right] T^4 = \sigma T^4,$$

where $\sigma = \frac{2\pi k_B^4}{h^3c^2} \int_0^\infty dx \, \frac{x^3}{e^x - 1}$ is the Stefan-Boltzmann constant. $E(T) = \sigma T^4$ is referred to as the Stefan-Boltzmann law.

(2) For a wave packet of a particle, $g(k) = \left(\frac{a}{\sqrt{2\pi}}\right)^{1/2} e^{-a^2(k-k_0)^2/4}$. Using $\psi(x,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \ g(k) e^{ikx}$, find $\psi(x,0)$. What is the probability density of finding the particle at t=0?

From
$$\psi(x,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \ g(k) e^{ikx}$$
, we have

$$\psi(x,0) = \frac{\sqrt{a}}{(2\pi)^{3/4}} \int_{-\infty}^{\infty} dk \ e^{-a^2(k-k_0)^2/4} e^{ikx}$$

$$= \frac{\sqrt{a}}{(2\pi)^{3/4}} \int_{-\infty}^{\infty} dk \ e^{-a^2[(k-k_0)-2ix/a^2]^2/4} e^{-x^2/a^2} e^{ik_0x}$$

$$= \left(\frac{2}{\pi a^2}\right)^{1/4} e^{-x^2/a^2} e^{ik_0x}.$$

From the above result, we see that the Fourier transform of a Gaussian function is also a Gaussian function. $\psi(x,0)$ is normalized as can be seen from the following

$$\int_{-\infty}^{\infty} dx \; |\psi(x,0)|^2 = \sqrt{\frac{2}{\pi a^2}} \int_{-\infty}^{\infty} dx \; e^{-2x^2/a^2} = \sqrt{\frac{2}{\pi a^2}} \cdot \sqrt{\frac{\pi}{2/a^2}} = 1.$$

The probability density of finding the particle at t=0 is given by $|\psi(x,0)|^2 = \sqrt{\frac{2}{\pi a^2}} e^{-2x^2/a^2}$.

(3) The component operators of the orbital angular momentum are respectively given by $\hat{L}_x = y\hat{p}_z - z\hat{p}_y$, $\hat{L}_y = z\hat{p}_x - x\hat{p}_z$, and $\hat{L}_z = x\hat{p}_y - y\hat{p}_x$. Show that $[\hat{L}_x, \hat{L}_y] = i\hbar\hat{L}_z$.

$$\begin{split} [\hat{L}_x, \hat{L}_y] &= [y\hat{p}_z - z\hat{p}_y, z\hat{p}_x - x\hat{p}_z] = [y\hat{p}_z, z\hat{p}_x] - [y\hat{p}_z, x\hat{p}_z] - [z\hat{p}_y, z\hat{p}_x] + [z\hat{p}_y, x\hat{p}_z] \\ &= y[\hat{p}_z, z]\hat{p}_x - 0 - 0 + x[z, \hat{p}_z]\hat{p}_y = -i\hbar y\hat{p}_x + i\hbar x\hat{p}_y = i\hbar (x\hat{p}_y - y\hat{p}_x) = i\hbar \hat{L}_z. \end{split}$$

(4) It is known that the volume occupied by a quantum state in phase space is $h^3 = (2\pi\hbar)^3$. Find the density of states per unit volume, g(E), for a free particle of mass m.

From the fact that the volume occupied by a quantum state in phase space is $h^3 = (2\pi\hbar)^3$, the number of states in the volume $V(4\pi p^2 dp) = V(4\pi\hbar^3 k^2 dk)$ in phase space is given by

$$dN = \frac{V(4\pi\hbar^3 k^2 dk)}{h^3} = \frac{V}{2\pi^2} k^2 dk.$$

For a free particle of mass m, we have $E = \hbar^2 k^2/2m$ from which we obtain

$$k^2 dk = \frac{1}{2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E} \, dE.$$

The density of states per unit volume for the free particle is then given by

$$g(E) = \frac{1}{V} \frac{dN}{dE} = \frac{1}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E} = 2\pi \left(\frac{m}{2\pi^2 \hbar^2}\right)^{3/2} \sqrt{E}.$$

(5) Find the eigenvalues and normalized eigenfunctions of the z-component operator $\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi}$ of the orbital angular momentum operator.

The eigenequation of \hat{L}_z reads $-i\hbar \frac{\partial \Phi(\phi)}{\partial \phi} = \lambda \Phi(\phi)$. The general solution to the eigenequation of \hat{L}_z is given by $\Phi(\phi) = Ce^{i\lambda\phi/\hbar}$.

The single-valuedness of $\Phi(\phi)$ indicates that $\Phi(\phi) = \Phi(\phi + 2\pi)$. From $\Phi(\phi) = \Phi(\phi + 2\pi)$, we have $e^{2\pi i\lambda/\hbar} = 1$ from which we obtain the following discrete eigenvalues of \hat{L}_z

$$\lambda_m = m\hbar, \ m = 0, \pm 1, \pm 2, \cdots$$

Making use of the normalization condition, we have

$$1 = |C_m|^2 \int_0^{2\pi} d\phi = 2\pi |C_m|^2.$$

Choosing $C_m = \frac{1}{\sqrt{2\pi}}$, we have the following normalized eigenfunctions

$$\Phi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}, \ m = 0, \pm 1, \pm 2, \cdots.$$

2. **(15 points)** \hat{A} and \hat{B} are two Hermitian operators. The commutation relation between them is given by $[\hat{A}, \hat{B}] = i\hat{C}$ with \hat{C} a Hermitian operator. The averages of \hat{A} and \hat{B} in the state described by the normalized ket $|\psi\rangle$ are respectively given by $\langle \hat{A} \rangle = \langle \psi | \hat{A} | \psi \rangle$ and $\langle \hat{B} \rangle = \langle \psi | \hat{B} | \psi \rangle$. The deviations of \hat{A} and \hat{B} from their respective averages are given by $\Delta \hat{A} = \hat{A} - \langle \hat{A} \rangle$ and $\Delta \hat{B} = \hat{B} - \langle \hat{B} \rangle$. Through considering the function of the real variable λ , $I(\lambda) = \langle (\lambda \Delta \hat{A} - i\Delta \hat{B})\psi | (\lambda \Delta \hat{A} - i\Delta \hat{B})\psi \rangle$, derive the general Heisenberg uncertainty relation $\Delta A \Delta B \geq |\langle \hat{C} \rangle|/2$ with ΔA and ΔB given respectively by $\Delta A = \langle (\Delta \hat{A})^2 \rangle^{1/2}$ and $\Delta B = \langle (\Delta \hat{B})^2 \rangle^{1/2}$.

We first evaluate $I(\lambda)$. We have

$$I(\lambda) = ((\lambda \Delta \hat{A} - i\Delta \hat{B})\psi, (\lambda \Delta \hat{A} - i\Delta \hat{B})\psi) = (\psi, (\lambda \Delta \hat{A} - i\Delta \hat{B})^{\dagger}(\lambda \Delta \hat{A} - i\Delta \hat{B})\psi)$$

$$= (\psi, (\lambda \Delta \hat{A} + i\Delta \hat{B})(\lambda \Delta \hat{A} - i\Delta \hat{B})\psi) = (\psi, \{\lambda^{2}(\Delta \hat{A})^{2} - i\lambda[\Delta \hat{A}, \Delta \hat{B}] + (\Delta \hat{B})^{2}\}\psi)$$

$$= (\psi, [\lambda^{2}(\Delta \hat{A})^{2} + \lambda \hat{C} + (\Delta \hat{B})^{2}]\psi) = \lambda^{2} \langle (\Delta \hat{A})^{2} \rangle + \lambda \langle \hat{C} \rangle + \langle (\Delta \hat{B})^{2} \rangle.$$

Making use of $\Delta A = \langle (\Delta \hat{A})^2 \rangle^{1/2}$ and $\Delta B = \langle (\Delta \hat{B})^2 \rangle^{1/2}$, we have

$$I(\lambda) = \lambda^2 (\Delta A)^2 + \lambda \langle \hat{C} \rangle + (\Delta B)^2.$$

Completing the square for λ yields

$$I(\lambda) = (\Delta A)^2 \left[\lambda + \frac{\langle \hat{C} \rangle}{2(\Delta A)^2} \right]^2 + (\Delta B)^2 - \frac{\langle \hat{C} \rangle^2}{4(\Delta A)^2}$$

From the above expression of $I(\lambda)$, we see that the minimum value of $I(\lambda)$ is given by

$$\min I(\lambda) = (\Delta B)^2 - \frac{\langle \hat{C} \rangle^2}{4(\Delta A)^2}.$$

Because $I(\lambda) \geq 0$, $\min I(\lambda) \geq 0$. From $\min I(\lambda) \geq 0$, we have

$$(\Delta B)^2 - \frac{\langle \hat{C} \rangle^2}{4(\Delta A)^2} \ge 0$$

from which we obtain the following general Heisenberg uncertainty relation

$$\Delta A \Delta B \ge \frac{1}{2} |\langle \hat{C} \rangle|.$$

3. (15 points) The potential energy of a particle of mass m in a δ -function potential well is given by $V(x) = -\alpha \delta(x)$ with $\alpha > 0$. Find the energy and normalized wave function of the particle in the bound state of the δ -function potential well.

The stationary Schrödinger equation of the particle in the δ -function potential well reads in the two regions given in Fig. 1

$$\begin{split} \frac{d^2\varphi_{\rm I}(x)}{dx^2} - \kappa^2\varphi_{\rm I}(x) &= 0, \\ \frac{d^2\varphi_{\rm II}(x)}{dx^2} - \kappa^2\varphi_{\rm II}(x) &= 0. \end{split}$$

FIG. 1: δ -function potential well.

The boundary conditions at $x = \pm \infty$ are given by

$$\varphi_{\rm I}(x=-\infty) = 0,$$

$$\varphi_{\rm II}(x=+\infty) = 0.$$

The matching conditions at x = 0 are given by

$$\begin{split} \varphi_{II}(0) &= \varphi_{I}(0), \\ \varphi_{II}'(0) &- \varphi_{I}'(0) = -\frac{2m\alpha}{\hbar^{2}} \varphi_{I}(0). \end{split}$$

The general solutions of the stationary Schrödinger equation in the two regions are respectively given by

$$\varphi_{\rm I}(x) = Ae^{\kappa x} + Be^{-\kappa x},$$

$$\varphi_{\rm II}(x) = Ce^{\kappa x} + De^{-\kappa x}.$$

From the boundary conditions at $x = \pm \infty$, $\varphi_{\rm I}(x = -\infty) = 0$ and $\varphi_{\rm II}(x = +\infty) = 0$, we have B = 0 and C = 0. We then have

$$\varphi_{\rm I}(x) = Ae^{\kappa x},$$

 $\varphi_{\rm II}(x) = De^{-\kappa x}.$

From the matching condition $\varphi_{II}(0) = \varphi_{I}(0)$, we have A = D. We then have

$$\varphi_{\rm I}(x) = Ae^{\kappa x},$$

 $\varphi_{\rm II}(x) = Ae^{-\kappa x}.$

From the matching condition $\varphi'_{\rm II}(0) - \varphi'_{\rm I}(0) = -\frac{2m\alpha}{\hbar^2}\varphi_{\rm I}(0)$, we have

$$\left(\kappa - \frac{m\alpha}{\hbar^2}\right)A = 0.$$

Since $A \neq 0$, we have

$$\kappa = \frac{m\alpha}{\hbar^2}$$

from which we obtain

$$E = -\frac{m\alpha^2}{2\hbar^2}.$$

Putting the wave function into a single expression, we have

$$\varphi(x) = Ae^{-\kappa|x|}.$$

From the normalization condition, we have

$$1 = \int_{-\infty}^{\infty} dx \ |\varphi(x)|^2 = |A|^2 \left[\int_{-\infty}^{0} dx \ e^{2\kappa x} + \int_{0}^{\infty} dx \ e^{-2\kappa x} \right] = \frac{1}{\kappa} |A|^2.$$

Choosing $A = \sqrt{\kappa}$, we have the following normalized wave function

$$\varphi(x) = \sqrt{\kappa} \, e^{-\kappa |x|}.$$

4. (15 points) The state space of a certain physical system is three-dimensional. Let $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ be an orthonormal basis of this space. The kets $|\psi_0\rangle$ and $|\psi_1\rangle$ are defined by

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} |u_1\rangle + \frac{i}{2} |u_2\rangle + \frac{1}{2} |u_3\rangle, \ |\psi_1\rangle = \frac{1}{\sqrt{3}} |u_1\rangle + \frac{i}{\sqrt{3}} |u_3\rangle.$$

- (a) (5 points) Are these kets normalized?
- (b) (10 points) Calculate the matrices ρ_0 and ρ_1 representing, in the $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ basis, the projection operators onto the state $|\psi_0\rangle$ and onto the state $|\psi_1\rangle$. Verify that these matrices are Hermitian.
- (1) (5 points) The square of the norm of $|\psi_0\rangle$ is given by

$$\langle \psi_0 | \psi_0 \rangle = \left[\frac{1}{\sqrt{2}} \langle u_1 | -\frac{i}{2} \langle u_2 | +\frac{1}{2} \langle u_3 | \right] \left[\frac{1}{\sqrt{2}} | u_1 \rangle + \frac{i}{2} | u_2 \rangle + \frac{1}{2} | u_3 \rangle \right]$$
$$= \left(\frac{1}{\sqrt{2}} \right)^2 + \left(-\frac{i}{2} \right) \left(\frac{i}{2} \right) + \left(\frac{1}{2} \right)^2 = 1.$$

 $\langle \psi_0 | \psi_0 \rangle = 1$ indicates that the norm of $|\psi_0\rangle$ is equal to unity. Thus, $|\psi_0\rangle$ is normalized. The square of the norm of $|\psi_1\rangle$ is given by

$$\langle \psi_1 | \psi_1 \rangle = \left[\frac{1}{\sqrt{3}} \langle u_1 | -\frac{i}{\sqrt{3}} \langle u_3 | \right] \left[\frac{1}{\sqrt{3}} | u_1 \rangle + \frac{i}{\sqrt{3}} | u_3 \rangle \right]$$
$$= \left(\frac{1}{\sqrt{3}} \right)^2 + \left(-\frac{i}{\sqrt{3}} \right) \left(\frac{i}{\sqrt{3}} \right) = \frac{2}{3}.$$

Thus, $|\psi_1\rangle$ is not normalized. The normalized $|\psi_1\rangle$ is given by

$$|\psi_1\rangle = \frac{1}{\sqrt{2}}|u_1\rangle + \frac{i}{\sqrt{2}}|u_3\rangle.$$

The above normalized $|\psi_1\rangle$ will be used in the following calculations.

(2) (10 points) The projection operator $\hat{\rho}_0$ is given by

$$\begin{split} \hat{\rho}_0 &= |\psi_0\rangle \langle \psi_0| = \left[\; \frac{1}{\sqrt{2}} \, |u_1\rangle + \frac{i}{2} \, |u_2\rangle + \frac{1}{2} \, |u_3\rangle \; \right] \left[\; \frac{1}{\sqrt{2}} \, \langle u_1| - \frac{i}{2} \, \langle u_2| + \frac{1}{2} \, \langle u_3| \; \right] \\ &= \frac{1}{2} \, |u_1\rangle \langle u_1| - \frac{i}{2\sqrt{2}} \, |u_1\rangle \langle u_2| + \frac{1}{2\sqrt{2}} \, |u_1\rangle \langle u_3| \\ &+ \frac{i}{2\sqrt{2}} \, |u_2\rangle \langle u_1| + \frac{1}{4} \, |u_2\rangle \langle u_2| + \frac{i}{4} \, |u_2\rangle \langle u_3| \\ &+ \frac{1}{2\sqrt{2}} \, |u_3\rangle \langle u_1| - \frac{i}{4} \, |u_3\rangle \langle u_2| + \frac{1}{4} \, |u_3\rangle \langle u_3| \; . \end{split}$$

From the above expression, we can easily infer the matrix representing $\hat{\rho}_0$. We have

$$\rho_0 = \begin{pmatrix} \frac{1}{2} & -\frac{i}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ \frac{i}{2\sqrt{2}} & \frac{1}{4} & \frac{i}{4} \\ \frac{1}{2\sqrt{2}} & -\frac{i}{4} & \frac{1}{4} \end{pmatrix}.$$

From the above matrix representing $\hat{\rho}_0$, we see that ρ_0 is a Hermitian matrix. The projection operator $\hat{\rho}_1$ is given by

$$\begin{split} \hat{\rho}_1 &= |\psi_1\rangle\langle\psi_1| = \left[\frac{1}{\sqrt{2}}|u_1\rangle + \frac{i}{\sqrt{2}}|u_3\rangle\right] \left[\frac{1}{\sqrt{2}}\langle u_1| - \frac{i}{\sqrt{2}}\langle u_3|\right] \\ &= \frac{1}{2}|u_1\rangle\langle u_1| - \frac{i}{2}|u_1\rangle\langle u_3| \\ &+ \frac{i}{2}|u_3\rangle\langle u_1| + \frac{1}{2}|u_3\rangle\langle u_3|. \end{split}$$

From the above expression, we can easily infer the matrix representing $\hat{\rho}_1$. We have

$$\rho_1 = \frac{1}{2} \begin{pmatrix} 1 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 1 \end{pmatrix}$$

From the above matrix representing $\hat{\rho}_1$, we see that ρ_1 is a Hermitian matrix. Let us check the properties of ρ_0 and ρ_1 . For ρ_0^2 , we have

$$\rho_0^2 = \begin{pmatrix} \frac{1}{2} & -\frac{i}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ \frac{i}{2\sqrt{2}} & \frac{1}{4} & \frac{i}{4} \\ \frac{1}{2\sqrt{2}} & -\frac{i}{4} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{i}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ \frac{i}{2\sqrt{2}} & \frac{1}{4} & \frac{i}{4} \\ \frac{1}{2\sqrt{2}} & -\frac{i}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{i}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ \frac{i}{2\sqrt{2}} & \frac{1}{4} & \frac{i}{4} \\ \frac{1}{2\sqrt{2}} & -\frac{i}{4} & \frac{1}{4} \end{pmatrix} = \rho_0.$$

For ρ_1^2 , we have

$$\rho_1^2 = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{i}{2} \\ 0 & 0 & 0 \\ \frac{i}{2} & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & -\frac{i}{2} \\ 0 & 0 & 0 \\ \frac{i}{2} & 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{i}{2} \\ 0 & 0 & 0 \\ \frac{i}{2} & 0 & \frac{1}{2} \end{pmatrix} = \rho_1.$$

Thus, ρ_0 and ρ_1 indeed possess the property of projection operators that the square of a projection operator is equal to itself.

5. (15 points) In the three-dimensional state space spanned by the orthonormal basis formed by the three kets $|u_1\rangle$, $|u_2\rangle$, and $|u_3\rangle$, consider two operators \hat{L}_z and \hat{S} defined by

$$\hat{L}_z |u_1\rangle = |u_1\rangle, \ \hat{L}_z |u_2\rangle = 0, \quad \hat{L}_z |u_3\rangle = -|u_3\rangle;$$

$$\hat{S} |u_1\rangle = |u_3\rangle, \quad \hat{S} |u_2\rangle = |u_2\rangle, \ \hat{S} |u_3\rangle = |u_1\rangle.$$

- (1) (5 points) Write the matrices which represent, in the $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ basis, the operators \hat{L}_z , \hat{L}_z^2 , \hat{S} , and \hat{S}^2 . Are these operators observables?
- (2) (10 points) Do \hat{L}_z^2 and \hat{S} form a CSCO? Give a basis of common eigenvectors.
- (1) (5 points) From $\hat{L}_z |u_1\rangle = |u_1\rangle, \hat{L}_z |u_2\rangle = 0, \hat{L}_z |u_3\rangle = -|u_3\rangle$, we obtain the following matrix elements of \hat{L}_z

$$\begin{split} \langle u_1|\hat{L}_z|u_1\rangle &= 1, \ \langle u_1|\hat{L}_z|u_2\rangle = 0, \ \langle u_1|\hat{L}_z|u_3\rangle = 0, \\ \langle u_2|\hat{L}_z|u_1\rangle &= 0, \ \langle u_2|\hat{L}_z|u_2\rangle = 0, \ \langle u_2|\hat{L}_z|u_3\rangle = 0, \\ \langle u_3|\hat{L}_z|u_1\rangle &= 0, \ \langle u_3|\hat{L}_z|u_2\rangle = 0, \ \langle u_3|\hat{L}_z|u_3\rangle = -1. \end{split}$$

Thus, the representation matrix of \hat{L}_z in the $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ basis is a diagonal matrix given by

$$L_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

From the representation matrix of \hat{L}_z , we can obtain the representation matrix of \hat{L}_z^2 by squaring the representation matrix of \hat{L}_z . We have

$$L_z^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

From $\hat{S}|u_1\rangle = |u_3\rangle, \hat{S}|u_2\rangle = |u_2\rangle, \hat{S}|u_3\rangle = |u_1\rangle$, we obtain the following matrix elements of \hat{S}

$$\langle u_1 | \hat{S} | u_1 \rangle = 0, \ \langle u_1 | \hat{S} | u_2 \rangle = 0, \ \langle u_1 | \hat{S} | u_3 \rangle = 1,$$

$$\langle u_2 | \hat{S} | u_1 \rangle = 0, \ \langle u_2 | \hat{S} | u_2 \rangle = 1, \ \langle u_2 | \hat{S} | u_3 \rangle = 0,$$

$$\langle u_3 | \hat{S} | u_1 \rangle = 1, \ \langle u_3 | \hat{S} | u_2 \rangle = 0, \ \langle u_3 | \hat{S} | u_3 \rangle = 0.$$

Thus, the representation matrix of \hat{S} in the $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ basis is given by

$$S = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

6

From the representation matrix of \hat{S} , we can obtain the representation matrix of \hat{S}^2 by squaring the representation matrix of \hat{S} . We have

$$S^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

We see that the representation matrix of \hat{S}^2 is a unit matrix.

Because the representation matrices of \hat{L}_z , \hat{L}_z^2 , \hat{S} , and \hat{S}^2 are all Hermitian matrices, these operators are observables.

(2) (10 points) Let us first see if L_z^2 and S commute. Their commutator is evaluated as follows

$$\begin{bmatrix} L_z^2, S \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0.$$

Thus, L_z^2 and S commute and they can have common eigenvectors. Since L_z^2 is a diagonal matrix, its eigenvalues are the matrix elements on the main diagonal. We see that the eigenvalues of L_z^2 are 0 and 1. The eigenvalue 0 of L_z^2 is nondegenerate with the corresponding eigenvector given by $|u_2\rangle$. The eigenvalue 1 of L_z^2 is doubly degenerate. The two-dimensional eigensubspace of the eigenvalue 1 of L_z^2 is spanned by $|u_1\rangle$ and $|u_3\rangle$. Note that any linear combination of $|u_1\rangle$ and $|u_3\rangle$ is an eigenvector of L_z^2 corresponding to the eigenvalue 1.

For the convenience of diagonalizing S, we rearrange the basis vectors into the order $|u_2\rangle, |u_3\rangle, |u_1\rangle$. From the previous results,

$$\langle u_1 | \hat{S} | u_1 \rangle = 0, \ \langle u_1 | \hat{S} | u_2 \rangle = 0, \ \langle u_1 | \hat{S} | u_3 \rangle = 1,$$

$$\langle u_2 | \hat{S} | u_1 \rangle = 0, \ \langle u_2 | \hat{S} | u_2 \rangle = 1, \ \langle u_2 | \hat{S} | u_3 \rangle = 0,$$

$$\langle u_3 | \hat{S} | u_1 \rangle = 1, \ \langle u_3 | \hat{S} | u_2 \rangle = 0, \ \langle u_3 | \hat{S} | u_3 \rangle = 0,$$

we obtain the following representation matrix of S in the $\{|u_2\rangle, |u_3\rangle, |u_1\rangle\}$ basis

$$S' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

We see that S' is a block matrix of the form

$$S' = \begin{pmatrix} S_1' & 0 \\ 0 & S_2' \end{pmatrix},$$

where

$$S_1' = (1), \ S_2' = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

From $S'_1 = (1)$, we see that 1 is an eigenvalue of S' with the corresponding eigenvector given by $|u_2\rangle$. Note that 1 is also an eigenvalue of S with the corresponding eigenvector given by $|u_2\rangle$.

Note that S_2' is of the form of B_2 in the previous problem. The eigenvalues and the corresponding vectors of S_2' can be obtained from those of B_2 through setting b=1 and with the proper basis vectors used. Thus, the eigenvalues of S_2' are ± 1 with the corresponding eigenvectors respectively given

$$\frac{1}{\sqrt{2}}\big[|u_3\rangle+|u_1\rangle\big],\ \frac{1}{\sqrt{2}}\big[|u_3\rangle-|u_1\rangle\big].$$

Note that the eigenvalues and eigenvectors of S_2' are also those of S. Since the subspace spanned by $|u_3\rangle$ and $|u_1\rangle$ is the eigensubspace of the eigenvalue 1 of L_z^2 , the above eigenvectors of S_2' are also the eigenvectors of L_z^2 corresponding to the eigenvalue 1.

In summary, we have obtained the following common eigenvectors of L_z^2 and S.

From the above table, we see that, specifying a pair of eigenvalues of L_z^2 and S, their common eigenvector can be uniquely determined (within a multiplying numerical factor). Therefore, \hat{L}_z^2 and \hat{S} form a CSCO.

TABLE I: Common eigenvectors of L_z^2 and S.

Common eigenvector	Eigenvalue of L_z^2	Eigenvalue of S
$ u_2 angle$	0	1
$\frac{1}{\sqrt{2}} \left[u_3\rangle + u_1\rangle \right]$	1	1
$\frac{1}{\sqrt{2}}\big[u_3\rangle - u_1\rangle\big]$	1	-1

6. (15 points)

- (1) (7 **points**) Starting from the time-dependent Schrödinger equation $i\hbar \frac{d|\psi(t)\rangle}{dt} = \left[\frac{\hat{\vec{p}}^2}{2m} + \hat{V}(\hat{\vec{r}})\right]|\psi(t)\rangle$ in the Dirac notation, derive the time-dependent Schrödinger equation in the $\{|\vec{p}\rangle\}$ representation.
- (2) (8 points) Starting from the time-dependent Schrödinger equation in the $\{|\vec{p}\rangle\}$ representation, derive the time-dependent Schrödinger equation in the $\{|\vec{r}\rangle\}$ representation.
- (1) **(7 points)** Taking the scalar product of $i\hbar \frac{d|\psi(t)\rangle}{dt} = \left[\frac{\hat{\vec{p}}^2}{2m} + \hat{V}(\hat{\vec{r}})\right]|\psi(t)\rangle$ with $|\vec{p}\rangle$, we have

$$i\hbar \langle \vec{p} | \frac{d}{dt} | \psi(t) \rangle = \langle \vec{p} | \left[\frac{\hat{\vec{p}}^2}{2m} + \hat{V}(\hat{\vec{r}}) \right] | \psi(t) \rangle.$$

From $\langle \vec{p} | \psi(t) \rangle = \overline{\psi}(\vec{p}, t)$, we have

$$i\hbar \left\langle \vec{p} \,|\, \frac{d}{dt} \,| \psi(t) \right\rangle = i\hbar \frac{\partial}{\partial t} \left\langle \vec{p} \,| \psi(t) \right\rangle = i\hbar \frac{\partial}{\partial t} \overline{\psi}(\vec{p},t).$$

From $\langle \vec{p} | \hat{\vec{p}} | \psi(t) \rangle = \vec{p} \langle \vec{p} | \psi(t) \rangle = \vec{p} \overline{\psi}(\vec{p}, t)$, we have

$$\frac{1}{2m} \langle \vec{p} \, | \hat{\vec{p}}^2 | \psi(t) \rangle = \frac{1}{2m} \vec{p} \cdot \langle \vec{p} \, | \hat{\vec{p}} | \psi(t) \rangle = \frac{\vec{p}^2}{2m} \, \langle \vec{p} \, | \psi(t) \rangle = \frac{\vec{p}^2}{2m} \overline{\psi}(\vec{p}, t).$$

From $\langle \vec{p} \, | \hat{\vec{r}} \, | \psi(t) \rangle = i \hbar \vec{\nabla}_{\vec{p}} \, \langle \vec{p} \, | \psi(t) \rangle = i \hbar \vec{\nabla}_{\vec{p}} \, \overline{\psi}(\vec{p}, t)$, we have

$$\langle \vec{p} \, | \hat{V}(\hat{\vec{r}}) | \psi(t) \rangle = V(i\hbar \vec{\nabla}_{\vec{p}}) \overline{\psi}(\vec{p}, t).$$

Making use of the above-obtained results, we obtain the following time-dependent Schrödinger equation in the $\{|\vec{p}'\rangle\}$ representation

$$i\hbar\frac{\partial}{\partial t}\overline{\psi}(\vec{p},t) = \left[\begin{array}{c} \vec{p}^2 \\ \overline{2m} + V(i\hbar\vec{\nabla}_{\vec{p}}) \end{array} \right] \overline{\psi}(\vec{p},t).$$

(2) **(8 points)** Writing $\overline{\psi}(\vec{p},t)$ as $\langle \vec{p} | \psi(t) \rangle$ and making use of $\vec{p}^2 \langle \vec{p} | \psi(t) \rangle = \langle \vec{p} | \hat{\vec{p}}^2 | \psi(t) \rangle$ and $V(i\hbar \vec{\nabla}_{\vec{p}}) \langle \vec{p} | \psi(t) \rangle = \langle \vec{p} | \hat{V}(\hat{r}) | \psi(t) \rangle$, we can rewrite the time-dependent Schrödinger equation in the $\{ | \vec{p} \rangle \}$ representation as

$$i\hbar\frac{\partial}{\partial t}\left\langle \vec{p}\left|\psi(t)\right\rangle =\left\langle \vec{p}\right|\left[\begin{array}{c} \frac{\hat{\vec{p}}^{2}}{2m}+\hat{V}(\hat{\vec{r}})\end{array}\right]\left|\psi(t)\right\rangle .$$

Utilizing the magic one, $\int d^3r' |\vec{r}'\rangle \langle \vec{r}'| = 1$, in the $\{|\vec{r}\rangle\}$ representation, we have

$$i\hbar \int d^3r' \; \frac{\partial}{\partial t} \left[\left\langle \vec{p} | \vec{r}' \right\rangle \left\langle \vec{r}' | \psi(t) \right\rangle \right] = \int d^3r' \; \left\langle \vec{p} | \vec{r}' \right\rangle \left\langle \vec{r}' | \left\lceil \; \frac{\hat{\vec{p}}^2}{2m} + \hat{V}(\hat{\vec{r}}) \; \right\rceil | \psi(t) \right\rangle.$$

Utilizing $\langle \vec{r}'|\psi(t)\rangle = \psi(\vec{r}',t), \ \langle \vec{r}'|\hat{p}^2|\psi(t)\rangle = -\hbar^2 \vec{\nabla}'^2 \langle \vec{r}'|\psi(t)\rangle = -\hbar^2 \vec{\nabla}'^2 \psi(\vec{r}',t), \ \text{and} \ \langle \vec{r}'|\hat{V}(\hat{r})|\psi(t)\rangle = V(\vec{r}')\langle \vec{r}'|\psi(t)\rangle = V(\vec{r}')\psi(\vec{r}',t), \ \text{we have}$

$$i\hbar \int d^3r' \ \langle \vec{p} | \vec{r}' \rangle \frac{\partial}{\partial t} \psi(\vec{r}',t) = \int d^3r' \ \langle \vec{p} | \vec{r}' \rangle \bigg[-\frac{\hbar^2}{2m} \, \vec{\nabla}'^2 + V(\vec{r}') \, \bigg] \psi(\vec{r}',t).$$

Multiplying both sides of the above equation with $\langle \vec{r} | \vec{p} \rangle$ and then integrating both sides of the resulting equation over \vec{p} , we have

$$i\hbar \int d^3r' \int d^3p \ \left\langle \vec{r} \left| \vec{p} \right\rangle \left\langle \vec{p} \left| \vec{r}' \right\rangle \frac{\partial}{\partial t} \psi(\vec{r}',t) = \int d^3r' \int d^3p \ \left\langle \vec{r} \left| \vec{p} \right\rangle \left\langle \vec{p} \left| \vec{r}' \right\rangle \right| - \frac{\hbar^2}{2m} \, \vec{\nabla}'^2 + V(\vec{r}') \ \bigg] \psi(\vec{r}',t).$$

Utilizing the magic one, $\int d^3p |\vec{p}\rangle\langle\vec{p}| = 1$, in the $\{|\vec{p}\rangle\}$ representation, we have

$$i\hbar \int d^3r' \ \langle \vec{r} | \vec{r}' \rangle \frac{\partial}{\partial t} \psi(\vec{r}', t) = \int d^3r' \ \langle \vec{r} | \vec{r}' \rangle \left[-\frac{\hbar^2}{2m} \, \vec{\nabla}'^2 + V(\vec{r}') \, \right] \psi(\vec{r}', t).$$

Utilizing $\langle \vec{r} | \vec{r}' \rangle = \delta(\vec{r} - \vec{r}')$ yields

$$i\hbar \int d^3r' \; \delta(\vec{r}-\vec{r}') \frac{\partial}{\partial t} \psi(\vec{r}',t) = \int d^3r' \; \delta(\vec{r}-\vec{r}') \bigg[-\frac{\hbar^2}{2m} \; \vec{\nabla'}^2 + V(\vec{r}') \; \bigg] \psi(\vec{r}',t). \label{eq:dispersion}$$

Performing the integration over \vec{r}' on both sides of the above equation, we obtain the following time-dependent Schrödinger equation in the $\{|\vec{r}\rangle\}$ representation

$$i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t) = \bigg[-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V(\vec{r}\,) \, \bigg] \psi(\vec{r},t). \label{eq:potential}$$