Regression Evaluation

Regression

Regression analysis - fitting lines to patterns of data

Regression terminology

Simple Linear Regression: One target and one independent variable

<u>Multiple</u> Linear Regression: One Target and >1 independent variables.

Univariate Linear Regression: Predicting one target variable.

Multivariate Linear Regression: Predicting multiple target variables.

Regression - Theoretical description

Intercept

Target

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Unexplained Error

- Independent
- Same variance (homoscedasticity)
- normally distributed

Regression Model - Estimate the coefficients

$$\hat{y}_i$$
 = b_0 + b_1 x_i

Estimated values of coefficients

Estimated Intercept

Estimate/Predicted Target

residuals:
$$e = y_i - \hat{y}_i$$

Predict Final Exam Score

Baseline Model?

Regression Evaluation

- Residual error (actual minus prediction)
- SSE (sum of squared error)
- MSE (mean squared error)
- RMSE (root mean squared error)

Baseline Residuals (Actual - Baseline Prediction)

Baseline - Sum of Squared Errors

Baseline - Sum of Squared Errors (SSE)

OLS model

OLS model Residuals (Actual - OLS predictions)

OLS - Sum of Squared Errors (SSE)

OLS - Sum of Squared Errors (SSE)

Baseline - Sum of Squared Errors (SSE)

OLS - Sum of Squared Errors (SSE)

Regressions Matrices

- 1. Residual
- 2. Sum of Square Error (SSE)
- 3. Mean Squared Error (MSE)
- 4. Root Mean Square Error (RMSE)

Regressions Matrices

Residual	$y_i - \widehat{y}_i$
Sum of Squared Error (SSE)	$\sum \left(y_i - \widehat{y}_i ight)^2$
Mean Squared Error (MSE)	$rac{1}{n}\sum \left(y_i-\widehat{y}_i ight)^2$
Root Mean Squared Error (RMSE)	$\sqrt{rac{1}{n}\sum\left(y_i-\widehat{y}_i ight)^2}$

R² - Explained Variance (aka coefficient of determination)

Fraction of variance/error explained by regression model

- $R^2 = 1.0$ (all of the data points fall perfectly on the regression line)
 - The predictor x accounts for all of the variation in y!

- $R^2 = 0$ (model performance is same as predicting baseline i.e. predicting mean)
 - The predictor x accounts for none of the variation in y!

R² - Explained Variance

SSE_baseline = TSS

ESS =
$$\Sigma (\hat{y_i} - \bar{y}^2)$$

SSE =
$$\Sigma (y_i - \hat{y_i})^2$$

$$R^2 = ESS/TSS$$

exam score 1 (x)

Regression Metrics

