Theoretische Physik II (Hebecker)

Robin Heinemann

28. Juni 2017

Inhaltsverzeichnis

1	Lagı	Lagrange - Formalismus					
	1.1	Grundidee (1788, Joseph-Louis Lagrange)	3				
	1.2	Variationsrechnung: Der Funktionalbegriff	3				
	1.3	Weglänge als Funktional	4				
	1.4	Variationsrechnung: Extremalisierung von Funktionalen	4				
	1.5	Das Hamiltonsche Prinzip (Prinzip der kleinsten Wirkung)	5				
	1.6	Form der Lagrange-Funktion und erste Anwendungen	6				
	1.7	Vereinfachte Herleitung der Lagrange-Gleichungen	8				
	1.8	Kommentare	8				
2	Sym	Symmetrien und Erhaltungssätze					
	2.1	Symmetriemotivation der Wirkung	9				
		2.1.1 Freier Massenpunkt	9				
		2.1.2 Mehrere Massenpunkte	10				
	2.2	Homogene Funktionen und Satz von Euler	10				
	2.3	Energieerhaltung	11				
	2.4	Erhaltung von verallgemeinerten Impulsen	12				
	2.5	Noether-Theorem	13				
	2.6	Mechanische Ähnlichkeit	15				
	2.7	Virialsatz	16				
3	Träg	gheitstensor	16				
	3.1	Trägheitsmoment und Satz von Steiner	16				
	3.2	Trägheitstensor	18				
	3.3	Hauptträgheitsachsen	19				
	3.4	Eigenwerte, Eigenvektoren, Diagonlisierbarkeit	20				
	3.5	Trägheitsellipsoid	21				
	3.6	Trägheitstensor und Drehimpuls (mehr zur Geometrie)	22				
4	Kreisel 22						
	4.1	Euler-Gleichungen	22				

	4.2	Freier Kreisel	23			
	4.3	Freier Kreisel analytisch				
	4.4	Schwerer Kreisel (vereinfacht)	24			
	4.5	Eulersche Winkel	25			
	4.6	Schwerer Kreisel (exakt)	25			
5	D'Al	embertsches Prinzip und Lagrange Gleichungen 1. und 2. Art	26			
	5.1	Arten von Zwangsbedingungen	26			
	5.2	Prinzip der virtuellen Arbeit und "D'Alembert"	27			
	5.3	D'Alembertsches Prinzip mit verallgemeinerten Koordinaten und Kräften	28			
	5.4	Lagrange-Gleichungen 1. Art	29			
	5.5	Lagrange-Multiplikatoren und Zwangskräfte	30			
	5.6	Lagrange-Gleichungen 2. Art	31			
	5.7	Lagrange-Multiplikatoren - allgemeine Sicht	31			
		Zing-unige Truncip unigemente etene Transporter in the Transporter in	0.1			
6	Hamilton-Formalismus 3					
	6.1	Legendre-Transformation	32			
	6.2	Hamilton - Funkion	34			
	6.3	Hamilton-Gleichungen und Phasenraum	34			
7	Poisson-Klammern 3					
	7.1	Definition und erste Anwendungen	35			
	7.2	Die Poissonklammer als Lie-Algebra Operation	36			
	7.3	Poisson-Klammern und Vektorfelder	37			
	7.4	Die Drehimpuls Lie-Algebra in die Hamilton-Mechanik	38			
	7.5	Satz von Liouville	38			
8	Hamilton-Machanik in Differentialformen 3					
	8.1	Tangential- und Cotangentialraum	39			
	8.2	Vektorfelder und 1-Formen	40			
	8.3	Höhere p-Formen	40			
	8.4	Formulierung der Hamilton-Mechanik in Formen	41			
	8.5	Integration von Differentialformen	42			
9	Von	onische Transformationen, Integrabilität, Chaos	43			
9	9.1	Integrabilität	45			
	9.2	Chaos	46			
	·		10			
10	Schwingungen / Kontinuum					
	10.1	Kleine Schwingungen allgemeiner Systeme	47			
		10.1.1 Ein Freiheitsgrad	47			
		10.1.2 Viele Freiheisgrade	47			
		Lineare Kette	48			
		Schwingende Saite	49			
	10.4	Ideale Hydrodynamik (Fluiddynamics)	49			

1 Lagrange - Formalismus

1.1 Grundidee (1788, Joseph-Louis Lagrange)

Vorteile gegenüber Newton:

- Flexibilität
- Zwangskräfte
- Zusammenhang zwischen Symmetrie und Erhaltungsgrößen

Zentrales Objekt: Wirkungsfunktional S.

Abbildung S: Trajektorie \mapsto reelle Zahl

(S definiert mittels Lagrange-Funktion L)

Zentrale physikalische Aussage des Formalismus: "Wirkungsprinzip" ("Hamilton-Prinzip")

Letztes besagt: Eine physikalische Bewegung verläuft so, dass das Wirkungsfunktional minimal wird.

 \rightarrow DGL ("Euler-Lagrange-Gleichung"), im einfachen Fall \equiv Newton Gleichung

1.2 Variationsrechnung: Der Funktionalbegriff

Funktion (mehrerer Variablen) *y*;

$$y: \mathbb{R}^n \to \mathbb{R}, y: \vec{x} \mapsto y(\vec{x})$$

Funktional: analog, mit \mathbb{R}^n ersetzt durch eine Menge von Funktionen (Vektorraum \mathbb{V})

$$F: \mathbb{V} \to \mathbb{R}, F: y \mapsto F[y]$$

Beispiel 1.1 $\mathbb V$ seinen differenzierbare Funktionen auf [0,1] mit y(0)=y(1)=0 Diskretisierung:

$$x_1, \dots, x_n \to \{y(x_1), \dots, y(x_n)\}$$

$$\downarrow$$
Vektor \equiv Funktion

 \implies im diskreten Fall ist unser Funktional schlicht eine Funktion mit Vektor-Argument. (Eigentlicher Funktionalbegriff folgt im Limes $n \to \infty$).

Beispielfunktionale zu obigem $\mathbb{V}.$

- $F_1[y] = y(0.5)$
- $F_2[y] = y'(0.3)$
- $F_3[y] = y(0.1) + y(0.5) + y'(0.9)$

•
$$F_4[y] = \int_0^1 dx \Big(x \cdot y(x)^2 + y'(x)^2 \Big)$$

•
$$F_5[y] = \int_0^1 \mathrm{d}x f(y(x), y'(x), x)$$

 F_5 hängt von Funktion f (von 3 Variablen) ab. Falls wir $f(a,b,c)=ca^2+b^2$ wählen, folgt F_4 wählen. Noch konkreter: wähle Beispielfunktion (ignoriere zur Einfachheit Randbedingung y(1)=0)

$$y_0: x \mapsto x^2; y_0(x) = x^2; y_0'(x) = 2x;$$

$$\implies F_1[y_0] = 0.25; F_2[y_0] = 0.6, F_3[y_0] = 0.01 + 0.25 + 1.8 = 2.06$$

$$F_4[y_0] = \int_0^1 dx (x^5 + 4x^2) = \frac{1}{6} + \frac{4}{3} = \frac{3}{2}$$

1.3 Weglänge als Funktional

Weg von \vec{y}_a nach \vec{y}_b : $\vec{y}: \tau \mapsto \vec{y}(\tau), \tau \in [0,1]; \vec{y}(0) = \vec{y}_a, \vec{y}(1) = \vec{y}_b$ Weglänge:

$$F[\vec{y}] = \int_{\vec{y}_a}^{\vec{y}_b} |\mathrm{d}\vec{y}| = \int_0^1 \mathrm{d}\tau \sqrt{\left(\frac{\mathrm{d}\vec{y}(\tau)}{\mathrm{d}\tau}\right)^2}$$

(Eigentlich haben wir sogar ein Funktional einer vektorwertigen Funktion beziehungsweise ein Funktional mit 3 Argumenten: $F[y] = F[y^1, y^2, y^3]$)

Etwas interessanter: Weglänge im Gebirge:

Sei $\vec{x}(\tau) = \{x^1(\tau), x^2(\tau)\}$ die Projektion des Weges auf Horizontale. Zu jedem solchen Weg gehört die "echte" Weglänge im Gebirge. Beachte: Höhenfunktion $z: \vec{x} \mapsto z(\vec{x})$ \Longrightarrow 3-d Weg:

$$\vec{y}(\tau) = \{y^1(\tau), y^2(\tau), y^3(\tau)\}$$

$$\equiv \{x^1(\tau), x^2(\tau), z(\vec{x}(\tau))\}$$

$$F_{Geb.}[x] = F[\vec{y}[\vec{x}]] = \int dt \sqrt{\left(\frac{dx^1(\tau)}{d\tau}\right)^2 + \left(\frac{dx^2(\tau)}{d\tau}\right)^2 + \left(\frac{dz(x^1(\tau), x^2(\tau))}{d\tau}\right)}$$

1.4 Variationsrechnung: Extremalisierung von Funktionalen

Funktionen: $y:x\mapsto y(x)$; wir wissen y hat Extremum bei $x_0\Longrightarrow y'(x_0)=0$ Funktionale der Form: $F[y]=\int_0^1\mathrm{d}x f(y,y',x); y:[0,1]\to\mathbb{R}; y(0)=y_a; y(1)=y_b$ Annahme: y_0 extremalisiert F. Sei weiterhin δy eine beliebige 2-fach differenzierbare Funktion mit $\delta y(0)=\delta y(1)=0$

$$\Longrightarrow \underbrace{y_\alpha \equiv y_0 + \alpha \cdot \delta y}_{\text{Ist eine Funktion aus unserem Wertevorrat von } F$$

 \implies Betrachte Abbildung $(-\varepsilon,\varepsilon)\to\mathbb{R}, \alpha\mapsto F[y_\alpha]$. Per unserer Annahme hat diese Abbildung Extremum bei $\alpha=0$. Also gilt

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}F[y_{\alpha}] = 0\big|_{\alpha=0}$$

Taylor-Entwicklung um $\alpha = 0$:

$$F[y_{\alpha}] = \int_{0}^{1} dx f(y_{0} + \alpha \delta y, y'_{0} + \alpha \delta y', x)$$
$$= F[y_{0}] + \int_{0}^{1} dx \left(\frac{\partial f}{\partial y}(y_{0}, y'_{0}, x) \cdot \alpha \delta y + \frac{\partial f}{\partial y'}(y_{0}, y'_{0}, x) \cdot \alpha \delta y'\right) + \mathcal{O}(\alpha^{2})$$

Term linear in α muss verschwinden:

$$0 = \int_0^1 dx \left(\frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial y'} \frac{d}{dx} (\delta y) \right)$$

 $\frac{\partial f}{\partial y'}\delta y = 0$ bei 0, 1

$$= \int_0^1 dx \left(\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) \right) \delta y = 0$$

für beliebige $\delta y \implies \operatorname{der}$ Koeffizient von δy im Integral muss verschwinden

$$0 = \frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial t}{\partial y'} \right)$$
 (Eulersche Differentialgleichung)

Falls y_0 das Funktional F extremalisiert, so gilt die obige Gleichung für $y_0 \forall x \in [0,1]$

Beispiel 1.2 $f(y, y', x) = y^2 + y'^2$

$$\frac{\partial f}{\partial y} = 2y$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) = \frac{\mathrm{d}}{\mathrm{d}x} 2y' = 2y''$$

$$\implies y_0'' - y_0 = 0$$

Beachte: y und y' sind hier unabhängig, das heißt es spielt für die Herleitung der Eulerschen Differentialgleichung keine Rolle, dass y' die Ableitung von y ist.

1.5 Das Hamiltonsche Prinzip (Prinzip der kleinsten Wirkung)

Die Lage einer sehr großen Klasse von Systemen beschreiben durch verallgemeinerte Koordinaten $(q_1, \ldots, q_s), s$: Zahl der Freiheitsgrade.

Beispiel 1.3 • N Massenpunkte:
$$s = 3N, (q_1, \dots, q_{3N}) = \left(x_1^1, x_1^2, x_1^3, \dots, x_N^1, x_N^2, x_N^3\right)$$

- 1 Massenpunkt in Kugelkoordinaten: $s=3, (q_1,q_2,q_3)=(r,\theta,\varphi)$
- eine dünne Stange: s=5. Schwerpunktskoordinaten x_s^1, x_s^2, x_s^3 . 2 Winkel zur Ausrichtung θ, φ
- Rad auf einer Welle: $s=1, q_1=\varphi$

• Perle auf einem Draht: $s = 1, q_1 = s$ (Bogenlänge)

Hamiltonsches Prinzip:

Für jedes (in einer sehr großen Klasse) mechanische System s Freiheitsgraden existiert die Lagrange-Funktion $L(q_1,\ldots,q_s,\dot{q}_1,\ldots,\dot{q}_s,t)$ (kurz $L(q,\dot{q},t)$), für die gilt:

Die physikalische Bewegung aus einer Lage $q(t_1)=q^{(1)}$ in eine Lage $q(t_2)=q^{(2)}$ verläuft so, dass das Wirkungsfunktional

$$S[q] = \int_{t_1}^{t_2} \mathrm{d}t L(q, \dot{q}, t)$$

extremal wird.

Anmerkung 1.4 • für kleine Bahnabschnitte: Minimalität

- DGL. aus Stationalität
- Wirkung: Dimensionsgründe $[S] = \text{Zeit} \cdot \text{Wirkung}$
- Bedeutung des Wirkungsprinzip kann man kaum überschätzen. [spezielle + allgemeine Relativitätstheorie, Feldtheorie (Elektro-Dynamik), Quantenfeldtheorie (Teilchenphysik, kondensierte Materie), Quantengravitation]

für s=1 folgt aus dem Hamiltonschen Prinzip:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\dot{q}} - \frac{\partial L}{\partial q} = 0$$

(Euler-Lagrange-Gleichung, oder Lagrange-Gleichung der 2. Art) für $s \geq 1$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\dot{q}_i} - \frac{\partial L}{\partial a_i} = 0, i = 1, \dots, s$$

1.6 Form der Lagrange-Funktion und erste Anwendungen

Fundamentaler Fakt:

$$L = T - V$$

- T: kinetische Energie
- V: potentielle Energie

Beispiel 1.5 (Massenpunkt im Potenzial)

$$L(\vec{x}, \dot{\vec{x}}, t) = \frac{m}{2} \dot{\vec{x}}^2 - V(\vec{x})$$
$$\frac{d}{dt} \frac{\partial L}{\partial \dot{x}^i} - \frac{\partial}{\partial x^i} L = 0$$
$$\frac{d}{dt} (m\dot{x}^i) - \left(-\frac{\partial V}{\partial x_i} \right) = 0$$
$$m\ddot{\vec{x}}^i - F^i = 0$$
$$m\ddot{\vec{x}} - \vec{F} = 0$$

Beispiel 1.6 (System wechselwirkender Massenpunkte)

$$T = \sum_{a} T_a = \sum_{a} \frac{m_a}{2} \dot{\vec{x}}_a^2$$
$$V = \sum_{\substack{a,b \\ a < b}} V_{ab}(|x_a - x_b|)$$

Lagrange Gleichung für x_a^i :

$$m_a \ddot{x}_a^i - \frac{\partial}{\partial x_a^i} \left(\sum_b V_{ab}(|\vec{x}_a - \vec{x}_b|) \right) = 0$$
$$m_a \ddot{\vec{x}}_a - \vec{\nabla}_a \sum_b V_{ab}(|\vec{x}_a - \vec{x}_b|) = 0$$

Beispiel 1.7 (Perle auf Draht) Draht: beschrieben durch $\vec{x}(s)$ (s: Bogenlänge)

$$L = \frac{m}{2}v^2 - V(\vec{x}(s))$$

$$v = \left|\frac{\mathrm{d}\vec{x}}{\mathrm{d}s}\right| \frac{\mathrm{d}s}{\mathrm{d}t}$$

$$L = \frac{m}{2}\dot{s}^2 - V(\vec{x}(s))$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{s}} - \frac{\partial L}{\partial s} = 0$$

$$m\ddot{s} - \sum_{i} \underbrace{\frac{\partial L}{\partial x^{i}}}_{-\frac{\partial V}{\partial x^{i}}} \frac{\partial x^{i}}{\partial s} = 0$$

$$m\ddot{s} - \vec{F} \cdot \frac{\vec{x}}{s} = 0$$

Beispiel 1.8 (Mathematisches Pendel im Fahrstuhl) Beschleunigung des Fahrstuhls: $v_y = a \cdot t$

$$\begin{split} L &= \frac{m}{2} \vec{v}^2 - V \\ \vec{v} &= \left(\frac{\mathrm{d}}{\mathrm{d}t} (l \sin \varphi), at - \frac{\mathrm{d}}{\mathrm{d}t} (l \cos \varphi) \right) \\ &= (l \cos(\varphi) \dot{\varphi}, at + l \sin \varphi \dot{\varphi}) \\ V &= mg \Big(\frac{a}{2} t^2 - l \cos \varphi \Big) \\ 0 &= \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{\varphi}} - \frac{\partial L}{\partial \varphi} \end{split}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{m}{2} \left(l^2 \cos^2 \varphi 2\dot{\varphi} + 2atl \sin \varphi + l^2 \sin^2 \varphi 2\dot{\varphi} \right) \right) - \left(\frac{m}{2} \left(l^2 \dot{\varphi}^2 2 \cos \varphi (-\sin \varphi) + 2atl \dot{\varphi} \cos \varphi + l^2 \dot{\varphi}^2 2 \sin \varphi \cos \varphi \right) - mgl \sin \varphi \right)$$

$$0 = \left(2l^2\cos\varphi(-\sin\varphi)\dot{\varphi}^2 + l^2\cos^2\varphi\ddot{\varphi} + al\sin\varphi + atl\cos\varphi\dot{\varphi} + l^22\sin\varphi\cos\varphi\dot{\varphi}^2 + l^2\sin^2\varphi\ddot{\varphi}\right) - tal\dot{\varphi}\cos\varphi + gl\sin\varphi$$

$$0 = l^2 \ddot{\varphi} + l \sin \varphi (a+g)$$

1.7 Vereinfachte Herleitung der Lagrange-Gleichungen

q(t) Trajektorie, Variation der Trajektorie: $\delta q(t)$

- neue Trajektorie: $q(t) + \delta q(t)$.
- neue Wirkung $S+\delta S$ Anders gesagt: $\delta S\equiv S[q+\delta q]-S[q].$

Extremalität:

$$\begin{split} 0 &= \delta S = \int_{t_1}^{t_2} \mathrm{d}t \delta L(q,\dot{q},t) \\ &= \int_{t_1}^{t_2} \mathrm{d}t \left[\frac{\partial L(q,\dot{q},t)}{\partial q} \delta q + \frac{\partial L(q,\dot{q},t)}{\partial \dot{q}} \delta \dot{q} \right] \\ &= \int_{t_1}^{t_2} \mathrm{d}t \left[\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \frac{\mathrm{d}}{\mathrm{d}t} (\delta q) \right] \end{split}$$

Partielle Integration, nutze $\delta q(t_1) = \delta q(t_2) = 0$

$$0 = \int_{t_1}^{t_2} dt \left(\frac{\partial L}{\partial q} \delta q - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \delta q \right)$$
$$0 = \int_{t_1}^{t_2} dt \left(\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} \right) \delta q$$

 δq beliebig \implies Term muss verschwinden

$$0 = \frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} = 0 \checkmark$$

1.8 Kommentare

Argumente von L: \ddot{q} , \dddot{q} , etc. dürfen nicht in L vorkommen, weil sonst \dddot{q} , \dddot{q} , etc. in den Bewegungsgleichungen vorkommen würden. Dann reichen $\vec{x}(t_0) \wedge \vec{v}(t_0)$ nicht mehr zur Lösung des Anfangswertproblems.

Totale Zeitableitungen:

Seinen L, L' zwei Lagrangefunktionen mit

$$L' = L + \frac{\mathrm{d}}{\mathrm{d}t} f(q, t)$$

$$\implies S' = S + \int_{t_1}^{t_2} \mathrm{d}t \frac{\mathrm{d}}{\mathrm{d}t} f(q, t) = S + \underbrace{\left(f(q(t_2), t_2) - f(q(t_1), t_1)\right)}_{\text{variiert nicht}}$$

$$\implies \delta S' = \delta S$$

 $\implies L'$ physikalisch äquivalent zu L (L ist nur bis auf totale Zeitableitungen definiert.)

Bedeutung von S in der QM:

In der Quantenmechanik ist die Wahrscheinlichkeit w für den Übergang von $\left(q^{(1)},t_1\right)$ zu $\left(q^{(2)},t_2\right)$ gegeben durch

$$w \sim |A|^2$$

, $A \in \mathbb{C}$ ist "Amplitude", mit

$$A \sim \int Dq e^{\frac{iS[q]}{\hbar}}$$

 $\int Dq$ - Summe über alle mögliche Trajektorien ("Wege"), ("Pfade").

Im Limes $\hbar \to 0$ dominiert klassischer Weg. Grund: S ist an dieser Stelle stationär. Beiträge von "ganz anderen" Wegen heben sich wegen schneller Oszillation von $\exp[iS/\hbar]$ weg.

2 Symmetrien und Erhaltungssätze

Zentrales Ziel: **Noether Theorem** (Emmy Noether - 1918)

"Zu jeder Kontinuierlichen Symmetrie eines physikalischen Systems gehört eine Erhaltungsgröße." Idealfall: Symmetrien \implies Form der Wirkung. Wirkung hat Symmetrie \implies Erhaltungsgrößen.

2.1 Symmetriemotivation der Wirkung

2.1.1 Freier Massenpunkt

Homogenität von Raum und Zeit $\implies L(\vec{x}, \vec{v}, t) = L(\vec{v}).$

Isotropie des Raumes $\implies L = L(\vec{v}^2)$.

Betrachte (kleine) Galilei-Boosts: $\vec{v} \rightarrow \vec{v}' = \vec{v} + \vec{\varepsilon}$.

$$L\!\left(\vec{v}^2\right) \to L\!\left(\vec{v}^{2\prime}\right) = L\!\left(\vec{v}^2 + 2\,\vec{v}\cdot\vec{\varepsilon} + \vec{\varepsilon}^2\right)$$

Taylorentwicklung:

$$=L\!\left(\vec{v}^2\right)+\frac{\partial L\!\left(\vec{v}^2\right)}{\partial (\vec{v}^2)}(2\,\vec{v}\,\vec{\varepsilon})+\mathcal{O}\!\left(\vec{\varepsilon}^2\right)$$

Falls nun $(\partial L/\partial \vec{v}^2)$ = const., so gilt

$$\frac{\partial L}{\partial \vec{v}^2}(2\,\vec{v}\,\vec{\varepsilon}) = \frac{\mathrm{d}}{\mathrm{d}t} \bigg(\frac{\partial L}{\partial \vec{v}^2}(2\,\vec{x}\,\vec{\varepsilon}) \bigg)$$

 \implies wir fordern, dass $\partial L/\partial \vec{v}^2$ eine Konstante ist und nennen diese $m/2. \implies L = \frac{m}{2} \vec{v}^2$

2.1.2 Mehrere Massenpunkte

Für unabhängige Systeme können wir die Lagrangefunktionen schlicht addieren:

$$L(q_1, q_2, \dot{q}_1, \dot{q}_2, t) = L_1(q_1, \dot{q}_2, t) + L_2(q_2, \dot{q}_2, t)$$

Dazu rechnen wir nach, dass die Anwendung der Differentialoperatoren

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_i} - \frac{\partial}{\partial q_i} \quad (i = 1, 2)$$

auf L und Nullsetzen äquivalent ist zur Anwendung des Operators "1" auf L_1 und "2" auf L_2 . Dies gibt aber gerade die Lagrangefunktionen und es ist somit egal ob ich L_1+L_2 oder L_1 und L_2 getrennt als Lagrange-Funktionen betrachte

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_1} - \frac{\partial}{\partial q_1}\right)L = \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_1} - \frac{\partial}{\partial q_1}\right)L_1 = \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L_1}{\partial \dot{q}_1} - \frac{\partial L_1}{\partial q_1} \stackrel{!}{=} 0$$

Also Mehrere Massenpunkte:

$$L = \sum_{a} \frac{m_a}{2} \vec{v}_a^2$$

 $\implies L = T$ mit T =kinetische Energie. Hinzunahme von Wechselwirkungen der Form

$$V = \sum_{a < b}^{V_{ab}} (|\vec{x}_a - \vec{x}_b|)$$

respektiert Galilei-Invarianz. Also Vorschlag: L=T-V wie oben eingeführt. Aber: T,V sind im Moment nur Namen.

2.2 Homogene Funktionen und Satz von Euler

Eine Funktion f von n Variablen heißt homogen von Grad k falls $f(\alpha x_1, \ldots, \alpha x_n) = \alpha^k f(x_1, \ldots, x_n)$.

Beispiel 2.1 $f(x) = x^p$ ist homogen von Grad p.

Beispiel 2.2 $f(x, y, z) = \frac{x}{yf} + \frac{1}{z}\cos(\frac{x}{z})$ ist homogen von Grad -1.

Beispiel 2.3 ("Unser Bespiel")

$$T(q_1,\ldots,q_n,\dot{q}_1,\ldots,\dot{q}_n)=rac{1}{2}f_{ij}(q)\dot{q}_i\dot{q}_j$$
 Summe!

homogen **in den** \dot{q}_i vom Grad 2.

Satz 2.4 (Satz von Euler) $f(x_1, \ldots, x_n)$ homogen von Grad k

$$\implies \sum_{i} \frac{\partial f}{\partial x_i} x_i = kf$$

Begründung:

$$\frac{\partial}{\partial \alpha} f(\alpha x_1, \dots, \alpha x_n) = \frac{\partial}{\partial \alpha} \left(\alpha^k f(x_1, \dots, x_n) \right)$$

$$\implies \sum_i \frac{\partial f(\alpha x_1, \dots, \alpha x_n)}{\partial (\alpha x_i)} \frac{\partial \alpha x_i}{\partial \alpha} = k \alpha^{k-1} f(x_1, \dots, x_n)$$

Setze $\alpha=1$

$$\implies \sum_{i} \frac{\partial f(x_1, \dots, x_n)}{\partial x_i} x_i = k f(x_1, \dots, x_n)$$

2.3 Energieerhaltung

Homogenität von t " \Longrightarrow " $L(q,\dot{q},t)=L(q,\dot{q})$ Wir betrachten:

$$\frac{\mathrm{d}}{\mathrm{d}t}L = \frac{\partial L}{\partial q_i}\dot{q}_i + \frac{\partial L}{\partial \dot{q}_i}\ddot{q}_i \qquad (Kettenregel)$$

Euler-Lagrange-Gleichung ($\frac{\partial L}{\partial q_i}=\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}_i})$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \frac{\mathrm{d}}{\mathrm{d}t} \dot{q}_i$$

Produktregel

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \cdot \dot{q}_i \right)$$

$$\implies \frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\left(\sum_i \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i - L \right)}_{=:E} = 0$$

$$\implies \frac{\mathrm{d}}{\mathrm{d}t} E = 0$$

Beispiel 2.5

$$\begin{split} L &= \frac{m}{2}\dot{x}^2 - V(x) \\ \frac{\partial L}{\partial \dot{x}} - L &= m\dot{x}^2 - \left(\frac{m}{2}\dot{x}^2 - V\right) \\ &= \frac{m}{2}\dot{x}^2 + V \end{split}$$

Um dies allgemeiner zu zeigen: Satz von Euler. Wir nehmen an, dass L folgende Form hat:

$$L = T - V = \frac{1}{2} f_{ij}(q) \dot{q}_i \dot{q}_j - V(q)$$

Begründung: Diese Form ergibt sich typischerweise, wenn man

$$\sum_{a} \frac{m_a}{2} \dot{\vec{x}}_a^2 - V(\vec{x})$$

in verallgemeinerte Koordinaten umschreibt. Mit dieser Annahme folgt:

$$\begin{split} \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i &= \frac{\partial T}{\partial \dot{q}_i} \dot{q}_i = \frac{\partial}{\partial \dot{q}_i} \left(\frac{1}{2} f_{jk} \dot{q}_j \dot{q}_k \right) \dot{q}_i \\ &= \frac{1}{2} f_{jk} \delta_{ij} \dot{q}_k \dot{q}_i + \frac{1}{2} f_{jk} \dot{q}_j \delta_{ik} \dot{q}_i \\ &= f_{ik} \dot{q}_i \dot{q}_k = 2T \end{split}$$

Leichter mit Satz von Euler

$$E \equiv \frac{\partial L}{\partial \dot{q}_i} - L = 2T - (T - V) = T + V \checkmark$$

2.4 Erhaltung von verallgemeinerten Impulsen

In einen durch q_1, \ldots, q_s parametrisierten System heißen

$$p_i := \frac{\partial L}{\partial \dot{q}_i}$$

"verallgemeinerte Impulse"

Bekannter Fall:

$$L = \sum_{i=1}^{3} \frac{m}{2} \dot{x}_i^2$$

mit

$$p_i = m\dot{x}_i = \frac{\partial L}{\partial \dot{x}_i}$$

Eine Koordinate heißt "zyklisch", falls die **nicht** explizit in L vorkommt (Ableitung darf vorkommen).

Beispiel 2.6

$$L = L(q_2, \ldots, q_s, \dot{q}_1, \ldots, \dot{q}_s)$$

In dieser Situation ist die Transformation $q_1 o q_1' = q_1 + arepsilon$ eine Symmetrie.

Sei q_1 zyklisch. Es gilt

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_1} - \frac{\partial L}{\partial q_1} = 0$$
 (Euler-Lagrange-Gleichung)

 $\partial L/\partial q_1 = 0$ per Annahme

$$\implies \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_1} = 0$$
$$\frac{\mathrm{d}}{\mathrm{d}t} (p_1) = 0$$

 \implies "Die verallgemeinerten Impulse zyklischer Koordinaten sind erhalten."

Beispiel 2.7 Massenpunkt in Potential, dass nicht von x_1 abhängt. Noch konkreter: schräger Wurf:

$$V(x_1, x_2, x_3) = mqx_3$$

 $\implies x_1, x_2$ zyklisch.

Beispiel 2.8 (Massenpunkt in Ebene mit Zentralpotential)

$$L = \frac{m}{2} \left(r^2 \dot{\varphi}^2 + \dot{r}^2 \right) - V(q)$$

 φ zyklisch

 $\Rightarrow \frac{\partial L}{\partial \dot{\varphi}} = mr^2 \dot{\varphi}$: Betrag des Drehimpulses. (Dieses Beispiel erklärt den Namen "zyklisch" im Sinne von periodisch)

2.5 Noether-Theorem

Definition 2.9 (kontinuierliche Transformation)

$$q(t) \rightarrow q'(t) = q(t) + \delta q(t)$$

= $q(t) + \varepsilon \chi(t)$

 $\varepsilon \in \mathbb{R}$, sodass $\varepsilon \to 0$ möglich ist.

Definition 2.10 (kontinuierliche Transformation) Damit diese Transformation eine Symmetrie ist, fordern wir **Invarianz der Bewegungsgleichungen**, also

$$\delta L \equiv L(q + \delta q, \dot{q} + \delta; t) - L(q, \dot{q}, t) = \varepsilon \frac{\mathrm{d}}{\mathrm{d}t} f$$

Wir betrachten

$$\varepsilon \frac{\mathrm{d}}{\mathrm{d}t} f = \delta L = \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q}$$

mit Euler-Lagrange:

$$=\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}}\right)\delta q+\frac{\partial L}{\partial \dot{q}}\frac{\mathrm{d}}{\mathrm{d}t}(\delta)=\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}}\delta q\right)$$

$$\Longrightarrow 0=\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}}\delta q-\varepsilon f\right)$$

$$=\varepsilon\frac{\mathrm{d}}{\mathrm{d}t}\underbrace{\left(\frac{\partial L}{\partial \dot{q}}\chi-f\right)}_{\text{Erhaltungsgröße}}$$
(Erhaltungsgröße)

Satz 2.11 (Noether-Theorem) Noether-Theorem (nach analoger Rechnung mit q_1,\ldots,q_n): Falls $\delta q_i=\varepsilon\chi_i$ Symmetrie (also $\delta L=\varepsilon\frac{\mathrm{d}}{\mathrm{d}t}f$) gilt

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \chi_i - f \right) = 0$$

Beispiel 2.12 (Zeittranslation) $q(t) \rightarrow q'(t) = q(t+\varepsilon) = q(t) + \dot{q}(t)\varepsilon + \mathcal{O}(\varepsilon^2)$ $\delta q = \dot{q}\varepsilon = \varepsilon\chi \implies \chi = \dot{q}$ Berechne δL :

$$\begin{split} \delta L &= \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} = \varepsilon \frac{\partial L}{\partial q} \dot{q} + \frac{\partial L}{\partial \dot{q}} \varepsilon \ddot{q} \\ &= \varepsilon \bigg(\frac{\partial L}{\partial q} \frac{\mathrm{d}q}{\mathrm{d}t} + \frac{\partial L}{\partial \dot{q}} \frac{\mathrm{d}\dot{q}}{\mathrm{d}t} \bigg) = \varepsilon \frac{\mathrm{d}}{\mathrm{d}t} L \\ \Longrightarrow \frac{\partial L}{\partial \dot{q}} \chi - f &= \frac{\partial L}{\partial \dot{q}} \dot{q} - L = E \, \checkmark \end{split}$$

Beispiel 2.13 (Verschiebung zyklischer Koordinate)

$$q' = q + \varepsilon \implies \chi = 1, \delta L = 0 \implies f = 0$$

Erhaltungsgröße:

$$\frac{\partial L}{\partial \dot{a}}\chi - f = \frac{\partial L}{\partial \dot{a}} = p \qquad \text{(verallgemeinerter Impuls)}$$

Zusammenstellung zu Galilei Transformationen

Symmetrie	Erhaltungsgröße
Zeittranslation	Energie
Translation	Impuls
Rotation	Drehimpuls
Boosts	$\vec{x}_s - \vec{v}_s \cdot t$

zum Boost:

 $\vec{x}_s - \vec{v}_s \cdot t = \text{const.}$ Schwerpunkt bewegt sich geradlinig und gleichförmig.

2.6 Mechanische Ähnlichkeit

Lagrangefunktion:

$$L = \sum_{a} \frac{m_a}{2} \dot{\vec{x}}_a^2 - V(\vec{x}_1, \dots, \vec{x}_n)$$

Sei V homogen in den x_a^i von Grad k.

Sei $\{\vec{x}_a(t)\}$ beziehungsweise $[t \mapsto \{\vec{x}_a(t)\}]$ eine physikalische Bewegung. Kurz: $t \mapsto x(t)$.

Betrachte Transformation: $x \to \alpha x, t \to \beta t \forall t, x$.

Alte Bewegung: $\{t \to x(t)\}\$, Neue Bewegung $\{\beta t \mapsto \alpha x(t)\}\$.

Variablenweschsel: $t' = \beta t$ und anschließend $t' \to t$. Neue Bewegung: $\{t \mapsto \alpha x(t/\beta)\}$

Betrachte nun Transformationen von T, V

$$T, V \to \left((\alpha/\beta)^2 T, \alpha^k V \right)$$

Fordere nun $\alpha^k = (\alpha/\beta)^2 \implies L \rightarrow \alpha^k L$

Beachte:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0$$

ist homogen in L, x, t jeweils vom Grad $\{1, -1, 0\}$

 \implies Falls alte Bewegung Lösung \implies neue Bewegung auch Lösung.(entscheidend: $L \to \alpha_k L$)

⇒ "Mechanische Ähnlichkeit".

Definition 2.14 (Mechanische Ähnlichkeit) $\beta = \beta(\alpha)$ so wählbar, dass $x \to \alpha x, t \to \beta t \implies L \to \alpha^k L$.

Anwendung:

Sei X typische Länge einer Bewegung (Bahnradius, Entfernung von Umkehrpunkten, etc.). Sei T typische Zeit (Periode, Zeit zwischen Umkehrpunkten, etc.). Seien $X' = \alpha X, T' = \beta T$ die entsprechenden Größen ähnlischer Bewegungen. Dann gilt:

$$\frac{T'}{T} = \beta = \alpha^{1-k/2} = \left(\frac{X'}{X}\right)^{1-k/2}$$

Beispiel 2.15 (Harmonischer Oszillator)

$$V \sim x^2 \implies k = 2 \implies \frac{T'}{T} = 1$$

Beispiel 2.16 (Freier Fall)

$$V \sim x \implies k = 1 \implies \frac{T'}{T} = \sqrt{\frac{X'}{X}}$$

Beispiel 2.17 (Gravitation)

$$V \sim \frac{1}{x} \implies k = -1 \implies \frac{T'}{T} = \frac{X'^{3/2}}{X}$$

2.7 Virialsatz

Betrachte Zeitmittel: $\langle A \rangle := \lim_{t \to \infty} \frac{1}{t} \int_0^t dt' At'$ (besonders leicht zu berechnen für totale Zeitableitungen).

Ziel: < T > (kinetische Energie)

Also: Versuche T als totale Zeitableitung zu schreiben. (zur Vereinfachung in 1D, ein Teilchen)

$$\begin{split} 2T &= mv^2 2 = p\dot{x} = \frac{\mathrm{d}}{\mathrm{d}t}(px) - \dot{p}x \\ &= \frac{\mathrm{d}}{\mathrm{d}t}(px) + x\frac{\partial V}{\partial x} \\ \Longrightarrow 2T - x\frac{\partial V}{\partial x} = \frac{\mathrm{d}}{\mathrm{d}t}(px) \\ \Longrightarrow &< 2T - x\frac{\partial V}{\partial x} > = <\frac{\mathrm{d}}{\mathrm{d}t}(px) > \\ &= \lim_{t \to \infty} \frac{1}{t} \left(px \big|_t - px \big|_0 \right) = 0 \end{split} \tag{falls } p, x \text{ beschränkt)} \end{split}$$

Definition 2.18 (Virialsatz) Für Bewegungen in beschränkten Gebieten mit beschränket Geschwindigkeiten gilt:

$$2 < T > = < \sum_{a} \vec{x}_{a} \frac{\partial V}{\partial \vec{x}_{a}} > = < \sum_{a} \sum_{i=1}^{3} x_{a}^{i} \frac{\partial V}{\partial x_{a}^{i}} >$$

Beispiel 2.19 (homogenes Potential) Falls V homogen von Grad k: 2 < T >= k < V >

Beispiel 2.20 (harmonischer Oszillator) < T > = < V >

Beispiel 2.21 (Gravitation) k = -1, 2 < T > = - < V >

3 Trägheitstensor

3.1 Trägheitsmoment und Satz von Steiner

Rotation von Körper um feste Achse A. Körper besteht aus Elementen m_a mit Radius $r_{a,\perp}$. Kontinuierlich: $m_a=\rho\Delta V$. Einzige erlaubte Bewegung sei Drehung um Achse A:

$$T \simeq \sum_{a} \frac{m_a}{2} v_a^2 = \sum_{a} \frac{m_a}{2} \omega_2 r_{a,\perp}^2$$
$$= \frac{1}{2} I_A \omega^2$$
$$\implies I_A \equiv \sum_{a} m_a r_{a,\perp}^2$$

Trägheitsmoment im Kontinuum:

$$I_A = \int \mathrm{d}^2 \vec{r} \rho(\vec{r}) r_\perp^2$$

Einziger Freiheitsgrad: Drehwinkel φ (wobei $\omega = \dot{\varphi}$)

$$L(\varphi, \dots \varphi) = \frac{1}{2} I_A \dot{\varphi}^2 - V(\varphi)$$
$$\implies I_A \ddot{\varphi} = -\frac{\partial V}{\partial \varphi}$$

Annahme: V ergibt sich als Summe der Potentiale aller Teilmassen:

$$V(\varphi) = \sum_{a} V_a(\vec{r}_a(\varphi))$$

Betrachte

$$\begin{split} V(\varphi + \delta \varphi) &= \sum_{a} V_{a}(\vec{r}_{a}(\varphi) + \delta \vec{v}_{a}) \\ &= \sum_{a} V_{a}(\vec{r}_{a}(\varphi) + \delta \vec{\varphi} \times \vec{r}_{a}(\varphi)) \\ &= \sum_{a} V_{a} + \sum_{a} (\delta \vec{\varphi} \times \vec{r}_{a}) \cdot \vec{\nabla} V_{a}(\vec{r}_{a}(\varphi)) \\ V(\varphi + \delta \varphi) - V(\varphi) &= \sum_{a} (\delta \vec{\varphi} \times \vec{r}_{a}) \vec{\nabla} V_{a}(\vec{r}_{a}(\varphi)) \end{split}$$

Limes $\delta \varphi \to 0, \delta \, \vec \varphi = \, \vec e_A \delta \varphi, \, \vec e_A$ Einheitsvektor der Achse

$$-\frac{\mathrm{d}V(\varphi)}{\mathrm{d}\varphi} = -\sum_{a} \frac{\delta \vec{\varphi} \times \vec{r}_{a}}{\delta \varphi} \vec{\nabla}V$$

$$= \sum_{a} \varepsilon_{ijk} (\vec{e}_{A})_{j} (\vec{r}_{a})_{k} \cdot (F_{a})_{i}$$

$$= \sum_{a} (\vec{e}_{A})_{j} (\vec{r}_{a} \times \vec{F}_{a})_{j} = \sum_{a} \vec{e}_{A} \cdot \vec{M}_{a}$$

 \vec{M}_a : Drehmoment auf Punkt "a". Zuletzt: $I_A\ddot{\varphi}=-\frac{\mathrm{d}V}{\mathrm{d}\varphi}$

$$\implies \frac{\mathrm{d}}{\mathrm{d}t}(I_A\dot{\varphi}) = \vec{e}_A\vec{M}$$

 \vec{M} : Gesamtdrehmoment.

Erinnerung: Drehimpuls für Punktmasse: $\vec{L} = m \, \vec{r} imes \vec{v}$

$$\implies \vec{e}_A \cdot \vec{L} = m \vec{e}_A [(\vec{r}_{\parallel} + \vec{r}_{\perp}) \times \vec{r}]$$
$$|\vec{r}_{\perp} \times \vec{v}| = |\vec{r}_{\perp}| |\vec{v}| = |\vec{r}_{\perp}| |\vec{r}_{\perp}| \dot{\varphi}$$
$$\implies \vec{e}_A \vec{L} = mr_{\perp}^2 \dot{\varphi} \implies \vec{e}_A \vec{L} = I_A \dot{\varphi}$$
$$\implies \vec{e}_A \cdot \dot{\vec{L}} = \vec{e}_A \vec{M}$$

Bemerkung: I_A ist besonders einfach zu berechnen falls $A \parallel S$ (Schwerpunktsachse) und I_S bekannt, \vec{R}_{\perp} ist der (senkrechte) Abstand der beiden Achsen.

$$I_A = \sum_a m_a v_{0,\perp}^2 = \sum_a m_a \left(\vec{R}_{\perp} + \vec{r}'_{\perp,a} \right)^2$$

Summe der Mischterme fällt weg

$$I_A = \sum_a m_a \left(\vec{R}_\perp^2 + \vec{r}_{a,\perp}^{\prime 2} \right)$$

Satz von Steiner:

$$\implies I_A = M \vec{R}_{\perp}^2 + I_s$$

3.2 Trägheitstensor

Berechne kinetische Energie einen Körpers der sich mit \vec{v} und mit $\vec{\omega}$ um Achse durch Schwerpunkt dreht.

$$T = \sum_{a} \frac{m_a}{2} \vec{v}_a^2 = \sum_{a} \frac{m_a}{2} (\vec{v} + \vec{\omega} \times \vec{r}_a)^2$$
$$= \sum_{a} \frac{m_a}{2} (\vec{v}^2 + 2\vec{v}(\vec{\omega} \times \vec{r}_a) + (\vec{\omega} \times \vec{r}_a)^2)$$

Mischtermfällt weg, da $\sum_a m_a \, \vec{r}_a = 0$, wegen Schwerpunktbedingung

$$= \frac{M}{2}\vec{v}^2 + \sum_a \frac{m_a}{2} (\vec{\omega} + \vec{r}_a)^2$$
$$= \frac{M}{2}\vec{v}^2 + \frac{1}{2}I_{ij}\omega_i\omega_j$$
$$I_{ij} \equiv \sum_a m_a \left(\delta_{ij}\vec{r}_a^2 - (\vec{r}_a)_j(\vec{r}_a)_j\right)$$

Integralform:

$$I_{ij} = \int d^3 \vec{r} \rho(\vec{r}) (\delta_{ij} \vec{r}^2 - r_i r_j)$$

Speziell für $\vec{r}=(x,y,z)$ findet man:

$$I = \int dx dy dz \rho(\vec{r}) \begin{pmatrix} y^2 + z^2 & -xy & -xz \\ -xy & x^2 + z^2 & -yz \\ -xz & -yz & x^2 + y^2 \end{pmatrix}$$

Beispiel 3.1 (homogener Würfel) $\int dx \rightarrow \int_{-a/2}^{a/2} dx$

$$\int_{-a/2}^{a/2} dx \int_{-a/2}^{a/2} dy y^2 \int_{-a/2}^{a/2} dz = a \cdot \frac{a^3}{12} \cdot a$$

Insgesamt:

$$I = a^{2} \rho \begin{pmatrix} \frac{1}{6} a^{3} & & \\ & \frac{1}{6} a^{3} & \\ & & \frac{1}{6} a^{3} \end{pmatrix} = \frac{1}{6} M a^{2} \mathbb{1}$$

3.3 Hauptträgheitsachsen

Tensor ist (wie) Vektor ein geometrisches Objekt. Er beschreibt Dichte/ Form des Körpers. Bei Drehungen des Körpers: Dreht sich mit: $I'_{ij} = R_{ik}R_{jl}I_{kl} \iff I' = RIR^T = RIR^{-1}$ (aktive Sicht).

Passive Sicht: Für die Komponenten von I im gedrehten Koordinatensystem gilt:

$$I'_{ij} = R_{ik}R_{jl}I_{kl}$$

Zentraler Satz: Jede symmetrische, reelle Matrix kann durch eine orthogonale Transformation auf Diagonalform gebracht werden. \implies Wir können als stets den Körper so drehen beziehungsweise das Koordinatensystem so wählen, dass

$$I = \begin{pmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{pmatrix}$$

 I_1, I_2, I_3 heißen Hauptträgheitsmonente. Die Koordinaten $\hat{e}_1, \hat{e}_2, \hat{e}_3$ des Systems in dem I diagonal ist heißen Hauptträgheitsachsen. (im Allgemeinen sind dies die Symmetrieachsen des Körpers, soweit vorhanden).

Sei $\vec{v} = 0$, sei $\vec{\omega} = \omega \hat{e}$ (\hat{e} beliebiger Einheitsvektor).

$$\implies T = \frac{1}{2}I_{ij}\omega_i\omega_j = \frac{1}{2}I_{ij}\hat{e}_i\hat{e}_j\omega^2 \equiv \frac{1}{2}I_e\omega^2$$

(Daher ist $I_e \equiv I_{ij} \hat{e}_i \hat{e}_j$) das Trägheitsmoment bezüglich \hat{e} .

Sei speziell I diagonal und $\hat{e}=\hat{e}_1=(1,0,0)$. Es folgt $I_e=I_{11}=I_1$, sprich: Die Hauptträgheitsmomente sind also gerade die Trägheitsmomente bezüglich die Hauptträgheitsachsen. Außerdem gilt:

$$I_{ij}(\hat{e}_1)_j = I_{ij}\delta_{j1} = I_{i1} = I_1\delta_{i1} = I_1(\hat{e}_1)_i$$

Matrixschreibweise:

$$I\hat{e}_1 = I_1\hat{e}_1$$

Demnach ist \hat{e}_1 ein **Eigenvektor** von I mit **Eigenwert** I_1 . Die Existenz eines gewissen Eigenvektors und dessen Eigenwert sind **koordinatenunabhängig!** In der Tat:

$$R \cdot I\hat{e}_1 = I_1 R\hat{e}_1$$

$$(RIR^{-1})R = I_1 R\hat{e}_1$$

$$I'\hat{e}'_1 = I_1 \hat{e}'_1 \qquad \hat{e}'_1 = R\hat{e}_1$$

Wir sehen: Die Matrix I hat 3 Eigenvektoren $\hat{e}_{(a)}$. Diese Eigenvektoren definieren die Hauptträgheitsachsen. Die Eigenwerte I_a sind die entsprechenden Hauptträgheitsmomente.

3.4 Eigenwerte, Eigenvektoren, Diagonlisierbarkeit

Sei $\mathbb{V} = \mathbb{C}^n$ ein Vektorraum über \mathbb{C} . Definiere das Skalarprodukt $(\forall x, y \in \mathbb{V})$

$$x, y \mapsto \langle x, y \rangle \equiv x^{\dagger} y \in \mathbb{C}$$

Notation: $M^{\dagger} \equiv \bar{M}^T$ für alle komplexenen Matrizen. Sei H eine hermitesche Matrix $(n \times n)$, das heißt $H^{\dagger} = H$. Wir können H wie folgt diagonalisieren:

- Löse $\det(H \lambda \mathbb{H}) = 0$. (Fundamentalsatz der Algebra) Nenne diese Lösung λ_1 . Da nun $\det(H \lambda_1 \mathbb{H}) = 0$ hat die Gleichung $(H \lambda_1 \mathbb{H}) \cdot x = 0$ eine nichttriviale Lösung $x_1 \in \mathbb{V}$. (Wegen Nicht-Invertierbarkeit $(H \lambda_1 \mathbb{H})$). Notation: x_1 heißt Eigenvektor von H zum Eigenwert λ_1 . Es gilt $Hx_1 = \lambda_1 x_1$
- Behauptung: H bildet $\{x_1\}_{\perp}$ auf $\{x_1\}_{\perp}$ ab.
- Begründung: Sei $\langle y, x_1 \rangle = 0$. Dann gilt

$$\langle Hy, x_1 \rangle = (Hy)^{\dagger} x_1 = y^{\dagger} H^{\dagger} x_1 = y^{\dagger} H x_1 = \lambda_1 y^{\dagger} x_1 = \lambda_1 \langle y, x_1 \rangle = 0 \checkmark$$

Betrachte jetzt die $(n-1) \times (n-1)$ -Matrix H_1 welce die Wirkung von H auf $\{x_1\}_{\perp}$ beschreibt. Wiedehohle obiges Argument. Finde λ_2, x_2 und so weiter.

- Wähle normierte Basis $e_1, \ldots, e_n \sim x_1, \ldots, x_n$. Diese Basis ist nach obigem auch orthogonal.
- Wir nennen Matrizen welche eine Orthonormalbasis in eine Orthonormalbasis überführen unitär. Ohne Beweis: Für solche Matrizen gilt $U^\dagger=U^{-1}$
- Damit haben wir Diagonalisierbarkeit vod hermitesche Matrizen durch unitäre Transformationen!
- Behauptung: λ_i sind reell.
- Begründung: < $Hx_1,x_1>=<\lambda x_1,x_1>=\bar{\lambda}< x_1,x_1>=< x_1,Hx_1>=\lambda< x_1,x_1>\checkmark$

Korollar: Reelle, symmetrische Matrizen $(H=H^{\dagger},H_{ij}\in\mathbb{R})$ können durch orthogonale Transformationen diagonalisiert werden.

Dazu: Finde wie oben $\lambda_1 \in \mathbb{C}$. Wir wissen aber, dass auch $\lambda_1 \in \mathbb{R}$. Dann existiert ein reelles x_1 mit $(H - \lambda_1 \mathbb{H})x_1 = 0$. Fortsetzung wie oben, nur "unitär" \to "orthogonal".

3.5 Trägheitsellipsoid

Bisher: $I_{\text{würfel}} = \frac{1}{6} M a^2 \mathbb{1}$

Nächstes Beispiel: homogene Kugel, ohne Rechnung: $I \sim \mathbb{1}$, Warum?

Es muss gelten: $I = RIR^{-1} \forall R \in SO(3)$. Fakt: δ_{ij} ist der einzige invariante Tensor von SO(3) mit zwei Indizes (vom Rang 2).

Betrachte nun ein weniger symmetrisches Beispiel:

Beispiel 3.2 (Hantel) Hantel mit masseloser Stange, $m_1 = m_2 = m$

$$I_{ij} = \sum_{m} m \cdot (\delta_{ij} \vec{r}^2 - r_i r_j)$$

$$= 2m (\delta_{ij} \vec{r}^2 - r_i r_j) \qquad \vec{r} = (0, 0, a)$$

$$= 2ma^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij}$$

realistische Hantel (keine Punktmassen)

$$=2ma^{2}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \varepsilon \end{pmatrix}_{ij}$$

Vermutung: "einfache" Beziehung zwischen Form des Körpers und Trägheitstensors. So wie ein Vektor einen Pfeil in \mathbb{R}^3 entspricht, so entspricht ein symmetrischer Tensor vom Rang 2

einer Fläche 2. Grades:

$$t_{ij}x_ix_j=1$$

Wir setzen nun $t \equiv I$ und gehen ins Hauptträgheitsachsensystem.

$$I_{ij}x_ix_j = 1 \implies I_1x_1^2 + I_2x_2^2 + I_3x_3^2 = 1$$

Dies beschreibt einen Ellipsoid. Betrachte beliebige Achse \hat{e} ($\hat{e}^2=1$). Diese schniede Ellipsoid bei \vec{x}_e .

$$\vec{x}_e = \hat{e} \cdot |\vec{x}_e|$$

$$1 = I_{ij}(x_e)_i(x_e)_j$$

$$1 = |\vec{x}_e|^2 I_{ij} \hat{e}_i \hat{e}_j = I_e |\vec{x}_e|^2$$

$$\implies |\vec{x}_e| = \frac{1}{\sqrt{I_e}}$$

 $|\vec{x}_e|$ groß \iff I_e klein \iff Körer hat in den "anderen" Richtungen eine kleine Ausdehnung. \implies Trägheitsellipsoid folgt ungefähr Form des Körpers:

Körper Würfel / Kugel Hantel / Quader gekreutzte Hantel / "Buch"
Ellipsoid Sphäre vertikal gestreckte Sphäre vertikal gestauchte ("abgeflachte") Sphäre

3.6 Trägheitstensor und Drehimpuls (mehr zur Geometrie)

Erinnerung: Tensor t vom Rang 2 ist bilineare Abbildung

$$t: \mathbb{V} \times \mathbb{V} \to \mathbb{R}, (x, y) \mapsto t_{ij}x_iy_j$$

Unser Fall:

$$I: (\vec{\omega}, \vec{\omega}) \mapsto I_{ij}\omega_i\omega_j = 2T$$

 \implies Die formale mathematische Definition vom I hat unmittelbare physikalische Bedeutung. Sie ordnet $\vec{\omega}$ die kinetische Energie zu. Im euklidischen Raum definiert ein Tensor außerdem eine Abbildung

$$t: \mathbb{V} \to \mathbb{V}, \{x_i\} \mapsto \{t_{ij}x_j\}$$
 beziehungsweise $x \to tx$

Auch dies hat bei uns physikalische Bedeutung:

$$I: \{\omega_i\} \mapsto \{I_{ij}\omega_i\} = \{L_i\} \text{ also } \vec{\omega} \mapsto \vec{L}$$

Wir behaupten hier, dass $L_i = I_{ij}\omega_j$ gilt. Das ist leicht zu prüfen: Betrachte Massenpunkt bei der Position \vec{r} . Drehe jetzt um Achse $\vec{\omega}$ mit Winkelgeschwindigkeit $\vec{\omega}$:

$$\vec{L} = \vec{r} \times \vec{p} = m\vec{r} \times \dot{\vec{r}} = m\vec{r} \times (\vec{w} \times \vec{r})$$

$$L_i = m\varepsilon_{ijk}r_j(\varepsilon_{klm}\omega_l r_m) = \dots$$

$$= m(\delta_{ij}\vec{r}^2 - r_1r_j)\omega_j$$

Nach Summation über viele Massenpunkte:

$$L_i = \sum_a m_a \left(\delta_{ij} \vec{r}_a^2 - (r_a)_i (r_a)_j \right) \omega_j = I_{ij} \omega_j, L = I \omega$$

4 Kreisel

4.1 Euler-Gleichungen

Körperfestes System vs. Raumfestes System. Drehmatrix $R(t) \in SO(3)$

$$L' = RL, v' = Rv$$

Bewegungsgleichungen:

$$\dot{\vec{L}}' = \vec{M}'$$
 $\frac{\mathrm{d}}{\mathrm{d}t}(R \cdot L) = RM$ $\dot{R}L + R \to L = RM$

Erinnerung: $\dot{R}r = R(\omega \times r)$

$$R(\omega \times L) + R\dot{L} = RM$$
$$\dot{R} = M + L \times \omega$$
$$L = I\omega$$

$$I\dot{\omega} = M + (I\omega) \times \omega$$

Wähle als körperfestes System speziell das Hauptachsensystem $\implies I = \begin{pmatrix} I_1 & & \\ & I_2 & \\ & & I_3 \end{pmatrix}$. \implies

Euler-Gleichungen

$$I_1 \dot{\omega}_1 = M_1 + \omega_2 \omega_3 (I_2 - I_3)$$

$$I_2 \dot{\omega}_2 = M_2 + \omega_3 \omega_1 (I_3 - I_1)$$

$$I_3 \dot{\omega}_3 = M_3 + \omega_1 \omega_3 (I_1 - I_2)$$

4.2 Freier Kreisel

Energieerhaltung:

$$E = T = \frac{1}{2}\omega^T I\omega = \frac{1}{2}\sum_{i=1}^3 I_i \omega_i^2$$
$$L_i = I_i \omega_i \implies E = \frac{1}{2}\sum_{i=1}^3 \frac{L_i^2}{I_i}$$

oder

$$\frac{L_1^2}{2EI_1} + \frac{L_2^2}{2EI_2} + \frac{L_3^2}{2EI_3} = 1$$

 $\implies L$ ist auf ein Ellipsoid ("Binet-Ellipsoid" (Ellipsoid im "L-Raum")) eingeschränkt. Drehimpulserhaltung:

$$L' = \text{const.}, L' = RL, R \in SO(3) \implies |L| = \text{const.}$$

 $\implies L$ bewegt sich im körperfesten System auf Schnittkurven von Binet-Ellipsoid und Sphäre mit Radius $\left| \vec{L} \right| = \left| \vec{L}' \right|$ Ohne Beschränkung der Allgemeinheit: $I_1 > I_2 > I_3$

Fall 1: $\left|\vec{L}\right| < \sqrt{2EI_3} \implies$ Sphäre und Ellipsoid haben keine gemeinsamen Punkte \implies physikalische unmöglich

Fall 2: $|\vec{L}| = \sqrt{2EE_3}$ ("einbeschriebene Kugel") $\implies L = \pm (0, 0, \sqrt{2EI_3})^T, \omega_2 \parallel e_3$ fest.

Fall 3: $\sqrt{2EI_3} < \left| \vec{L} \right| < \sqrt{2EI_2} \implies$ Sphäre stößt aus Ellipsoid heraus $\implies L$ bewegt sich im körperfesten System auf einer geschlossenen Kurve \implies kräftefreie Präzession des Kreisels im Laborsystem.

Fall 4: $\left| \vec{L} \right| = sqrt(2EI_2)$ Zwei kreuzende Kurven L sitzt am Kreuzungspunkt (instabil) oder bewegt sich entlang Kurve

Fall 5: $\sqrt{2EI_2} < \left| \vec{L} \right| < \sqrt{2EI_1}$ "Gurke", nur Enden sind abgeschnitten $\implies L$ bewegt sich im körperfesten System auf einer geschlossenen Kurve \implies kräftefreie Präzessions des Kreisels im Laborsystem

Fall 6: $\left| \vec{L} \right| = \sqrt{2EI_1}$ ("einbeschriebene Kugel"), wie Fall 2

Fall 7: $\sqrt{2EI_1} < \left| \vec{L} \right|$ unmöglich

Auch möglich: Geometrische Diskussion im raumfesten System ⇒ Poinsot-Konstruktion: Ellipse rollt rutschfrei auf Ebene ab.

4.3 Freier Kreisel analytisch

Euler-Gleichungen

$$I_1 \dot{\omega}_1 = \omega_2 \omega_3 (I_2 - I_3)$$

$$I_2 \dot{\omega}_2 = \omega_3 \omega_1 (I_3 - I_1)$$

$$I_3 \dot{\omega}_3 = \omega_1 \omega_3 (I_1 - I_2)$$

 \implies Falls 2 der 3 Komponenten von $\vec{\omega}$ Null sind $\implies \vec{\omega} = \text{const.}$. Jetzt zur Vereinfachung sei $I_1 = I_2 < I_3$. Definiere $I_0 \equiv I_1 = I_2$ (Beispiel: abgeflachte Kugel, wie etwa Erde).

$$I_0\dot{\omega}_1 = \omega_2\omega_3(I_0 - I_3)$$

$$I_0\dot{\omega}_2 = -\omega_3\omega_1(I_0 - I_3)$$

$$I_3\dot{\omega}_3 = 0$$

 $\omega_3={
m const..}$ Definiere $lpha\equiv-\omega_3\Big(1-rac{I_3}{I_0}\Big)={
m const..}$ Man erhält:

$$\dot{\omega}_1 = -\alpha \omega_2$$

$$\dot{\omega}_2 = -a\omega_1$$

$$\implies \ddot{\omega}_1 = -\alpha^2 \omega_1$$

$$\implies \omega_1 = A\cos(\alpha t + \varphi)$$

(ohne Beschränkung der Allgemeinheit $\varphi = 0$). \Longrightarrow freie Präzession:

$$\omega_1 = A \cos \alpha t$$

$$\omega_2 = A \sin \alpha t$$

$$\omega_3 = \text{const.}$$

 $\vec{\omega}$ bewegt sich auf Kreis in der $\omega_3=$ const. Ebene.

Konkreter Fall: Erde

$$-\left(1 - \frac{I_3}{I_0}\right) \approx 0.003 \equiv \varepsilon$$

$$\implies \alpha = \omega_3 \cdot \varepsilon \implies T_{\text{Präz}} = \frac{T_{\text{Erde}}}{\varepsilon} \sim 300 \text{Tage}$$
 $\implies \text{Realität ist leider komplizierter, "Chandler-Wobble"}$

4.4 Schwerer Kreisel (vereinfacht)

Raumfestes System!

- \vec{S}' : Schwerpunktsachse des Kreisels
- φ : Winkel der Schräglage des Kreisels

entscheidende Näherung: $\vec{L}' \parallel \vec{S}'$

$$\vec{M}' = \vec{r}' \times \vec{F}' \sim \vec{S}' \times \vec{F}'$$

Also in unserer Näherung: $\vec{L}' \perp \vec{M}'$. Betrachte:

$$\left(\vec{L}'^2\right)^{\cdot} = 2\vec{L}'\dot{\vec{L}}' \qquad \dot{\vec{L}}' = \vec{M}'$$

 $\implies \left(\, \vec{L}'^2 \right)^{\cdot} = 0$ beziehungsweise $\left| \, \vec{L}' \right| =$ const. Weiterhin: $\vec{F}' \parallel \hat{e}'_z \implies \vec{M}'$ liegt in x-y-Ebene.

 \implies Spitze von \vec{L}' bewegt sich auf Kreis in horizontaler Ebene.

Kreisradius = $|\vec{L}'|\sin \varphi$, Geschwindigkeit = $|\vec{M}'|$. Periodendauer:

$$T = \frac{2\pi R}{v} = \frac{2\pi \left| \vec{L}' \right| \sin \varphi}{\left| \vec{M}' \right|} = \frac{2\pi \left| \vec{L}' \right|}{mgl}$$

Anwendung auf Erde: kein fester Punk, stattdessen Drehmoment durch Sonne/Mond und Abflachung der Erde. \implies Präzession der Äquinoktialpunkte (precession of the equinoxes). $T\sim26\,000\,\mathrm{a}$

4.5 Eulersche Winkel

Ziel: exakte Analyse der symmetrischen schweren Kreiseln.

Brauchen: Parametrisierung der relativen Lage zweier Koordinatensysteme.

 \implies Drehe um $\hat{e}'_3 = \hat{e}_3$ um φ , dann Drehe um \hat{e}_1 um θ und dann drehe um \hat{e}_3 um ψ Wichtig: kleine Winkel (als Vektoren) sind bezüglich Drehungen additiv. (folgt aus $\mathbb{R} = \mathbb{1} + \iota(\delta \vec{\varphi})$). \implies Winkelgeschwindigkeiten addieren sich vektoriell.

$$\implies \vec{\omega}' = \dot{\varphi}\hat{e}_3' + \dot{\psi}\hat{e}_3 + \dot{\theta}\hat{e}_N$$

4.6 Schwerer Kreisel (exakt)

Ungestrichenes System - fest verbunden mit Kreisel. ($I_1 = I_2 \equiv I_0$)

$$\mathcal{L} = \frac{1}{2} [I_0(\omega_1^2 + \omega_2^2) + I_3\omega_3^2] - mgl\cos\theta$$

Wegen Rotationssymmetrie von Schwerefeld und Kreisel sind φ, ψ zyklisch \implies können die Umschreibung von $\{\omega_1, \omega_2, \omega_3\} \rightarrow \{\varphi, \psi, \theta, \dot{\varphi}, \dot{\psi}, \dot{\theta}\}$ bei $\varphi = \psi = 0$ durchführen: Wir haben (bei $\varphi = \psi = 0$):

$$\begin{split} \hat{e}_N &= \hat{e}_1, \hat{e}_3 = \hat{e}_3 \cos \theta + \hat{e}_2 \sin \theta \\ \vec{\omega}' &= \dot{\varphi}(\hat{e}_3 \cos \theta + \hat{e}_2 \sin \theta) + \dot{\psi}\hat{e}_3 + \dot{\theta}\hat{e}_1 \\ &= \hat{e}_1 \underbrace{\dot{\theta}}_{\omega_1} + \hat{e}_2 \underbrace{(\dot{\varphi} \sin \theta)}_{\omega_2} + \hat{e}_3 \underbrace{(\dot{\psi} + \dot{\varphi} \cos \theta)}_{\omega_3} \\ \mathcal{L} &= \frac{1}{2} \bigg(I_0 \Big(\dot{\theta}^2 + \dot{\varphi}^2 \sin^2 \theta \Big) + I_3 \Big(\dot{\psi} + \dot{\varphi} \cos \theta \Big)^2 \bigg) - mgl \cos \theta \end{split}$$

Energie: $E = T + V = \text{const.}_1$

$$\frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = L_3' = \text{const.}_2$$

$$\frac{\partial \mathcal{L}}{\partial \dot{\psi}} = L_3 = \text{const.}_3$$

Auflösen nach $\dot{\varphi}$, $\dot{\psi}$ und einsetzen in T+V=E gibt:

$$E = \frac{1}{2}I_0 \frac{\dot{U}^2}{1 - U^2} + V_{eff}(u), \quad u \equiv \cos \theta$$
$$V_{eff}(u) = mglu + \frac{L_3^2}{2I_3^2} + \frac{(L_3' - L_3 u)^2}{2I_0(1 - u^2)}$$

$$-\dot{U}^2 = \frac{2}{I_0} \left\{ \left(mglu + \frac{L_3^2}{2I_3} - E \right) \left(1 - U^2 \right) + \frac{\left(L_3' - L_3 U \right)^2}{2I_0} \right\}$$

 \Longrightarrow Kurvendiskussion \Longrightarrow u oszilliert zwischen u_{min}, u_{max} \Longrightarrow θ oszilliert zwischen $\theta_{min}, \theta_{max}$. Währenddessen schreitet φ unregelmäßig voran:

$$\dot{\varphi} = \frac{L_3' - L_3 \cos \theta}{I_0 \sin^2 \theta}$$

5 D'Alembertsches Prinzip und Lagrange Gleichungen 1. und 2. Art

Unter anderem "Herleitung" (historisch) der Euler-Lagrange-Gleichungen, immer noch Anwendungsrelevant: Lagrange-Gleichungen 1. Art / nichtholonome Zwänge

5.1 Arten von Zwangsbedingungen

- 1. Gasmoleküle in einem Kasten
- 2. a) Perle auf Draht, Draht unbewegt
 - b) Perle auf Draht, Draht bewegt
- 3. Senkrecht stehendes Rad, ohne Rutschen
- 4. Durch massenlose Stangen verbundene Punktmassen

Zwänge heißen **holonom** falls sie durch nicht-differentielle Gleichungen ausdrückbar sind, zum Beispiel

$$\phi_{\alpha}(\vec{x}_1,\ldots,\vec{x}_N,t)=0, \alpha\in\{0,\ldots,d\}$$

Genauer:

t kommt vor: "rheonom"

t kommt nicht vor: "skleronom"

Besonders interessant: Zwänge in differentieller, nicht-integriebarer Form (nicht-holonom). (Fall

3). Im Moment nicht klassifiziert 1. Also betrachte Fall 3.: 4 Parameter: $(\vec{x}, \theta, \varphi), \vec{x} \in \mathbb{R}^2$. Zwänge:

 $\mathrm{d}x^1=R\mathrm{d}\varphi\cos\theta,\mathrm{d}x^2=R\mathrm{d}\varphi\sin\theta.$ Hoffnung: (wenigstens eine) dieser Bedingungen **ausdrückbar** als

$$\phi(x^1, x^2, \varphi, \theta) = 0$$

Das heißt Differenzieren dieser Gleichung gibt eine der obigen Zwänge:

$$0 = d\phi = \frac{\partial \phi}{\partial x^{1}} dx^{1} + \frac{\partial \phi}{\partial x^{2}} dx^{2} + \frac{\partial \phi}{\partial \varphi} d\varphi + \frac{\partial \phi}{\partial \theta} d\theta$$

Falls dies für beide differentiellen Zwänge ginge, wäre unser System doch **holonom**. (beziehungsweise "integrierbar"). Aber im konkreten Fall geht das **nicht**.

Beweis per Widerspruch: Wenn es ginge, könnten wir nach φ auflösen $\implies \varphi = /(x^1, x^2, \theta)$. Dies ist unmöglich, weil man durch "Rollen im Kreis" beliebiges φ zu vorgegebenen x^1, x^2, θ erreichen kann.

5.2 Prinzip der virtuellen Arbeit und "D'Alembert"

Betrachte eine masselose starre Stange, die zwei Massen m_1,m_2 verbindet. Auf m_1,m_2 wirken die Zwangskräfte $\vec{F}_{12}^c, \vec{F}_{21}^c$ "constraint". Wir wissen schon: Energie erhalten \Longrightarrow Zwangskräfte verrichten keine Arbeit. $\Longrightarrow \delta A = \vec{F}_{12}^c \mathrm{d} \vec{x}_1 + \vec{F}_{21}^{]} \mathrm{d} \vec{x}_2 = 0$. Ebenso für Perle auf Draht (Draht fest): $\vec{F}_c \perp$ Draht $\parallel \mathrm{d} \vec{x}$

$$\implies \delta A = \vec{F}^c d\vec{x} = 0$$

Wir wollen die Aussage "Zwangskräfte verrichten keine Arbeit" allgemein formulieren.

Problem: bei einem bewegtem Draht gilt die Aussage $d\vec{x} \parallel$ Draht nicht und damit gilt dann auch $\Rightarrow \delta A = 0$ im Allgemeinen nicht mehr.

Lösung: Definiere **virtuelle Verrückung** δx bei t= const.. Dies ist eine **gedachte** Verschiebung des Systems in eine andere Lage - keine echte Bewegung. Fakt: in einfachen Beispielen (bewegter Draht, etc.) gilt jetzt wieder $\delta A=0.$ \Longrightarrow Formulieren: "**Prinzip der virtuellen Arbeit**"

$$\sum_{a} \vec{F}_{a}^{c} \delta \vec{x}_{a} = 0$$

für jede virtuelle Verrückung $\{\delta \vec{x}_a, a=1,\dots,N\} \implies$ Definition eines "glatt geführten Systems". Für jede der Punktmassen gilt: $\vec{F}_a^{tot} = \vec{F}_A + \vec{F}_a^c$

$$\implies \sum_{a} \left(\vec{F}_{a} - \vec{F}_{a}^{tot} \right) \delta \vec{x}_{a} = 0$$

$$\implies \sum_{a} \left(\vec{F}_{a} - m_{a} \ddot{\vec{x}}_{a} \right) \delta \vec{x}_{a} = 0$$
(d'Alembertsches Prinzip)

Das D'Alembertsche Prinzip ist äquivalent zum Prinzip der virtuellen Arbeit. Vorteil: ohne Zwangkräft. Nützliches Korollar: Im Gleichgewicht gilt:

$$\sum_{a} \vec{F}_{a} \delta \vec{x}_{a} = 0$$

Elementare Anwendung: Wippe: m_1, m_2 im Abstand l_1, l_2 von dem Auflagepunkt. Offensichtlich gilt:

$$\delta x_2 = -\frac{l_2}{l_1} \delta x_1$$

(für jede virtuelle Verrückung $\{\delta x_1, \delta x_2\}$). Wir setzen in d'Alembert (im Gleichgewicht) ein: $F_1\delta x_i+F_2\delta x_2=0$

$$\implies F_1 \delta x_i + F_2 \left(-\frac{l_2}{l_1} \right) \delta x_1 = 0 \implies \frac{F_1}{F_2} = \frac{l_2}{l_1}$$

(Hebelgesetz).

5.3 D'Alembertsches Prinzip mit verallgemeinerten Koordinaten und Kräften.

Betrachte N Massenpunkte, d holonome Zwänge.

$$\phi_{\alpha}(\vec{x}_1,\ldots,\vec{x}_N,t)=0, \alpha=1,\ldots,d$$

mit verallgemeinerten Koordinaten q_m , sodass

$$\vec{x}_a = \vec{x}_a(q_1, \dots, q_{3N-d}, t)$$

Laut D'Alembert:

$$\sum_{a} \left(\vec{F}_a - m_a \ddot{\vec{x}}_a \right) \delta \vec{x}_a = 0$$

für alle virtuellen Verrückungen $\delta \, \vec{x}_a$. In verallgemeinerten Koordinaten kann man schreiben

$$\delta \vec{x}_a = \sum_m \frac{\partial \vec{x}_a}{\partial q_m} \delta q_m$$

Für den ersten Term findet man

$$\sum_{a} \vec{F}_{a} \delta \vec{x}_{a} = \sum_{m} Q_{m} \delta q_{m}$$

mit den verallgemeinerten Kräften.

$$Q_m := \sum_a \vec{F}_a \frac{\partial \vec{x}_a}{\partial q_m}$$

Für den zweiten Term erhält man:

$$\ddot{\vec{x}}_a \delta \vec{x}_a = \sum_m \ddot{\vec{x}}_a \frac{\partial \vec{x}_a}{\partial q_m} \delta q_m = \sum_m \left(\frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{\vec{x}}_a \frac{\partial \vec{x}_a}{\partial q_m} \right) - \dot{\vec{x}}_a \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \vec{x}_a}{\partial q_m} \right) \right) \delta q_m$$

Nebenrechnung: Gegeben x = x(q, t). Totale Zeitableitung:

$$\dot{x} = \frac{\partial x}{\partial q}\dot{q} + \frac{\partial x}{\partial t} := \dot{x}(q,\dot{q},t)$$

Offensichtlich gilt:

$$\frac{\partial \dot{x}}{\partial \dot{q}} = \frac{\partial x}{\partial q}$$

Wir berechnen:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial x}{\partial q} \right) = \frac{\partial^2 x}{\partial q^2} \dot{q} + \frac{\partial^2 x}{\partial q \partial t} \tag{A}$$

$$\frac{\partial \dot{x}}{\partial q} = \frac{\partial^2 x}{\partial q^2} \dot{q} + \frac{\partial^2 x}{\partial q \partial t}$$

$$\implies \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial x}{\partial q} \right) = \frac{\partial \dot{x}}{\partial q}$$

Weiterführung vom zweitem Term:

$$\ddot{\vec{x}}_{a}\delta\vec{x}_{a} = \sum_{m} \left(\frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{\vec{x}}_{a} \frac{\partial \dot{\vec{x}}_{a}}{\partial \dot{q}_{m}} \right) - \dot{\vec{x}}_{a} \frac{\partial \dot{\vec{x}}_{a}}{\partial q_{m}} \right) \delta q_{m}$$

$$\implies \sum_{a} m_{a} \ddot{\vec{x}}_{a}\delta\vec{x}_{a} = \sum_{m,a} m_{a} \left(\frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{\vec{x}}_{a} \frac{\partial \dot{\vec{x}}_{a}}{\partial \dot{q}_{m}} \right) - \dot{\vec{x}}_{a} \frac{\partial \dot{\vec{x}}_{a}}{\partial q_{m}} \right) \delta q_{m}$$

$$= \sum_{m,a} m_{a} \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial \dot{q}_{m}} \left(\frac{1}{2} \dot{\vec{x}}_{a}^{2} \right) - \frac{\partial}{\partial q_{m}} \left(\frac{1}{2} \dot{\vec{x}}_{a}^{2} \right) \right) \delta q_{m}$$

$$= \sum_{m} \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial \dot{q}_{m}} - \frac{\partial}{\partial q_{m}} \right) T \delta q_{m}, \quad T = \sum_{a} \frac{1}{2} m_{a} \dot{\vec{x}}_{a}^{2}$$

Zusammen mit 1. Term folgt:

$$0 = \sum_{m} \left(Q_m - \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial \dot{q}_m} - \frac{\partial}{\partial q_m} \right) T \right) \delta q_m$$

 δq_m unabhängig! \Longrightarrow jeder der Klammer-Ausdrücke verschwindet getrennt. \Longrightarrow 3d-d Differentialgleichungen 2. Ordnung \Longrightarrow Problem prinzipiell gelöst.

5.4 Lagrange-Gleichungen 1. Art

Jetzt **zusätzlich** *p* nichtholomome (differentielle) Zwänge.

$$\alpha = 1, \dots, p : \sum_{m} f_{m}^{\alpha} dq_{m} + f_{t}^{\alpha} dt = 0$$

 f_m^α sind Funktionen der $q_m,t.$ Wir wollen mit Vektoren in \mathbb{R}^{3N-d} arbeiten:

$$\delta \vec{q} := \{\delta_m\}, \vec{f}^{\alpha} := \{f_m^{\alpha}\}, \vec{p} := \{Q_M - \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial \dot{q}_m} - \frac{\partial}{\partial q_m}\right)T\}$$

Bedingung für virtuelle Verrückung:

$$\sum_{m} f_{m}^{\alpha} \delta q_{m} = 0 \iff \vec{f}^{\alpha} \delta \vec{q} = 0$$

Sei span $\{\vec{f}^{\alpha}\}$ der von dem \vec{f}^{α} aufgespannte lineare Unterraum von \mathbb{R}^{3N-d} . Sei span $\{\vec{f}^{\alpha}\}_{\perp}$ das orthogonale Komplement. \implies Zwänge $\delta \vec{q} \in \operatorname{span}\{\vec{f}^{\alpha}\}_{\perp}$. D'Alembert besagt nun: $\vec{p}\delta \vec{q} = 0$. Äquivalent: $\vec{p} \in \{\delta \vec{q}\}_{\perp}$

$$\implies \vec{p}\{\operatorname{span}\{\vec{f}_{\alpha}\}_{\perp}\}_{\perp} = \operatorname{span}\{\vec{f}_{\alpha}\}$$

 $\implies \exists \lambda^{\alpha}(t)$, sodass

$$Q_m - \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_m} - \frac{\partial}{\partial q_m}\right)T + \sum_{\alpha} \lambda^{\alpha} f_m^{\alpha} = 0$$
$$\sum_m f_m^{\alpha} \dot{q}_m + f_t^{\alpha} = 0$$

Sie haben: (3N-d)+p Differentialgleichungen für die (3N-d)+p Funktionen q_m und λ^α Problem prinzipiell gelöst.

5.5 Lagrange-Multiplikatoren und Zwangskräfte

Aus unserer Herleitung von D'Alembert folgt als technisches Zwischenergebnis:

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_m} - \frac{\partial}{\partial q_m}\right)T = \sum_a m_a \ddot{\vec{x}}_a \frac{\partial \vec{x}_a}{\partial q_m}$$

Ersetze: $m_a \ddot{\vec{x}}_a = \vec{F}_a^{tot} = \vec{F}_a + \vec{F}_a^c$. Definiere

$$Q_m := \sum_a \vec{F}_a \frac{\partial \vec{x}_a}{\partial q_m}, Q_m^c := \sum_a \vec{F}_a^c \frac{\partial \vec{x}_a}{\partial q_m}$$

Schreibe rechte Seite von der Gleichung in Q 's um. Setze in "Lagrange-1" ein. Finde:

$$Q_m^C = \sum_{\alpha} \lambda^{\alpha} f_m^{\alpha}$$

⇒ Lagrange-Multiplikatoren bestimmen Zwangskräfte.

Schlusskommentar: Einfacherer Spezialfall: keine holonomen Zwänge. \implies Lagrange-1 direkt in kartesischen Koordinaten formulierbar.

$$F_m - m_m \ddot{x}_m + \sum_{\alpha} \lambda^{\alpha} f_m^{\alpha} = 0$$
$$\sum_{m=1}^{3N} f_m^{\alpha} \dot{x}_m + f_t^{\alpha} = 0$$

$$m = 1, \dots, 3N, m_1 = m_2 = m_3, etc$$

5.6 Lagrange-Gleichungen 2. Art

Betrachte System wie in 5.4 mit verallgemeinerten Koordinaten q_m und **ohne** nichtholonome Zwänge. Seien die äußeren Kräfte konservativ: $\vec{F}_a = -\vec{\nabla}_a V(\vec{x}_1,\ldots,\vec{x}_N) \ \vec{\nabla}_a$: Gradient bezüglich \vec{x}_a

$$\implies Q_m = \sum_a \vec{F}_a \frac{\partial \vec{x}_a}{\partial q_m} = -\sum_a \left(\vec{\nabla}_a V\right) \frac{\partial \vec{x}_a}{\partial q_m} = -\frac{\partial V}{\partial q_m}$$
$$= \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial \dot{q}_m} - \frac{\partial}{\partial q_m}\right) V$$

D'Alembert sagt:

$$\begin{split} Q_m - \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_m} - \frac{\partial q_m}{\partial}\right)T &= 0 \\ \Longrightarrow \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_m} - \frac{\partial}{\partial q_m}\right)V - \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_m} - \frac{\partial}{\partial q_m}\right)T &= 0 \\ \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_m} - \frac{\partial}{\partial q_m}\right)(V - T) &= 0 \\ \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_m} - \frac{\partial}{\partial q_m}\right)(L) &= 0 \end{split}$$

⇒ "Herleitung" von "Lagrange-2" aus Newton, "glatt geführte Systeme", konservative Kräfte.

5.7 Lagrange-Multiplikatoren - allgemeine Sicht

Höhenfunktion f(x, y) im Gebirge. Gipfel:

$$\frac{\partial f}{\partial x} = 0$$
$$\frac{\partial f}{\partial y} = 0$$

Andere Frage: Höchster Punkt auf einem Weg. Weg: gegeben durch g(x,y)=0. Können (im Allgemeinen) nicht Gipfel und Weg Bedingung gleichzeitig lösen! Allgemeine Methode:

$$\begin{split} \frac{\partial}{\partial x}(f+\lambda g) &= 0\\ \frac{\partial}{\partial y}(f+\lambda g) &= 0\\ g(x,y) &= 0 \bigg(\iff \frac{\partial}{\partial \lambda}(f+\lambda g) = 0 \bigg) \end{split}$$

 $\implies \{x_0, y_0, \lambda_0\}$. Diese Lösung liefert die Funktion $(f + \lambda_0 g)$, deren auf dem Weg Extremum liegt. Auf dem Weg ist aber g = 0. Damit liegt aber auch das Extremum von f (auf dem Weg) bei

 x_0,y_0 . Zunächst zu Lagrange 1: Betrachte **eine** nichtholonome Zwangsbedingung: $\vec{f} \, \mathrm{d} \, \vec{q} = 0$. ($f_t = 0$). Naiv:

$$\vec{p} \equiv \{Q_m - \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_m} - \frac{\partial}{\partial q_m}\right)T\} = 0$$

zusammen mit $\vec{f} \cdot \vec{q} = 0$. Das ist aber unmöglich, weil zu viele Differentialgleichungen. In der Tat wir wollen nur $\vec{p}\delta\vec{y} = 0$. Lösung: Fordere $\vec{p} + \lambda \vec{f}s = 0$ und $\vec{f}\vec{q} = 0$.

Noch allgemeiner Anwendung der Lagrange-Multiplikatoren: Seien F[f],G[f] Funktionale. Wir wollen F extremalisieren mit der Nebenbedingung G=0. Lösung: Extremalisieren $F[f]+\lambda G[f]$ bezüglich f und λ . Konkrete Anwendung: Sei L Lagrange Funktion und f=0 sei zusätzlich holomoner Zwang. \Longrightarrow Wir müssen jetzt nur Extremalisierungs (Variationsproblem)

$$\delta \int dt [L(\vec{x}, \dot{\vec{x}}, t) + \lambda(t) f(\vec{x})] = 0$$

bezüglich $\vec{x}(t), \lambda(t)$ lösen.

6 Hamilton-Formalismus

Motivation:

- nur 1. Ordnung Differentialgleichungen
- \exists Umkehrung von Noether
- Grundlegend für Quantenmachanik (für kanonische Quantisierung)

6.1 Legendre-Transformation

Gegeben: $f: \mathbb{R} \to \mathbb{R}, x \mapsto f(x)$. Wollen "Information" in f anders darstellen, zum Beispiel durch Funktion von $u \equiv f'(x)$. Man könnte zum Beispiel x = x(u) definieren durch Auflösen von u = f'(x). Dann könnte man f = f(x(u)) als transformierte Funktion auffassen. Das ist nur "fast" richtig. Mathematisch natürlicher ist

$$g(u) = x(u) \cdot u - f(x(u))$$

Definition 6.1 (Legendre-Transformation) Die Legendre-Transformation zu einer Funktion $x\mapsto f(x)$ ist die Funktion $u\mapsto g(u)$ mit

$$q(u) = xu - f(x)$$

wobei x durch u = f'(x) definiert ist. Wir wollen fordern, dass $f''(x) \neq 0$ damit u = f'(x) auflösbar in x.

Fakten:

• g'(u) = x(u), denn:

$$g'(u) = \frac{\mathrm{d}}{\mathrm{d}u}x(u)u - f(x(u)) = \dots = x(u) + u\frac{\mathrm{d}x(u)}{\mathrm{d}u} - f'(x(u))\frac{\mathrm{d}x(u)}{\mathrm{d}u} = x(u)$$

• Wenn g die Legendre-Transformation zu f ist, dann sind f', g' zueinander inverse Funktionen, denn:

$$f'(g'(u)) = f'(x(u)) = u$$

• $\operatorname{Leg}(\operatorname{Leg}(f)) = f$ (Legendre-Transformation ist eine Involution), denn: $f \xrightarrow{Leg.} g \xrightarrow{Leg.} h, h(z) = uz - g(u), z = g'(u)$. Wegen g'(u) = x gilt z = x. Weiterhin:

$$h(z) = ux - (xu - f(x)) = f(x) = f(z)$$

Verallgemeinerung auf mehrere Variablen: $f:\mathbb{R}^n\to\mathbb{R},\,\vec{x}\mapsto f(\vec{x})$ Legendre-Transformation: $g:\mathbb{R}^n\to\mathbb{R},\,\vec{u}\mapsto g(\vec{u})$

Definition 6.2 (Legendre-Transformation mehrerer Variablen)

$$g(\vec{u}) = \vec{x}(\vec{u})\vec{u} - f(\vec{x}), \vec{u} = \vec{\nabla}f(\vec{x})$$

Nebenbedingung:

$$f'' \neq 0 \implies \det\left(\frac{\partial^2 f}{\partial x^i \partial x^j}\right) \neq 0$$

Beispiel 6.3

$$f(x) = x^2$$

$$f'(x) = 2x = u$$

$$x = \frac{u}{2}$$

$$g(u) = xu - f = \frac{u^2}{2} - \left(\frac{u}{2}\right)^2 = \frac{u^2}{4}$$

Beispiel 6.4

$$f(x) = e^{x}$$

$$f'(x) = e^{x} = x$$

$$x = \ln u$$

$$g(u) = xu - f = u \ln u - e^{\ln u} = u(\ln u - 1)$$

6.2 Hamilton - Funkion

Gegeben $L = L(q, \dot{q}, t)$. Die Hamilton - Funktion H(q, p, t) ist die Legendre-Transformation zu L in der Variablen \dot{q} . Also:

$$H(q, p, t) \equiv p\dot{q} - L(q, \dot{q}, t)$$

mit $\dot{q} = \dot{q}(q, p, t)$ gegeben durch:

$$p \equiv \frac{\partial L(q, \dot{q}, t)}{\partial \dot{a}}$$

"Der zu q kanonische Impuls"

Beispiel 6.5 (Eindimensional)

$$\begin{split} L &= \frac{1}{2} f(q) \dot{q}^2 - V(q), p = f(q) \dot{q} \\ H &= p \dot{q} = p \frac{p}{f(q)} - \frac{1}{2} f(q) \left(\frac{p}{f(q)} \right)^2 + V(q) = \frac{1}{2} \frac{p^2}{f(q)} + V(q) = T + V \end{split}$$

Beispiel 6.6 (Mehrdimensional)

$$L = L(q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_n, t)$$

Völlig analog folgt

$$H = H(q_1, \dots, q_n, p_1, \dots, p_n) = \sum_{i=1}^n p_i \dot{q}_i - L$$

$$\dot{q}_i = \dot{q}_i(q_1, \dots, q_n, p_1, \dots, p_n, t)$$

$$p_i = \frac{\partial L(q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_n, t)}{\partial \dot{q}_i}$$

$$L = T - V$$

$$H = T + V$$

6.3 Hamilton-Gleichungen und Phasenraum

Eigenschaften der Legendre-Transformation: $\partial H/\partial p = \dot{q}$. Außerdem:

$$\begin{split} \frac{\partial H}{\partial q} &= \frac{\partial}{\partial q} \{ p \dot{q}(q, p, t) - L(q, \dot{q}(q, p, t), t) \} \\ &= p \frac{\partial \dot{q}}{\partial q} - \frac{\partial L}{\partial q} - \frac{\partial L}{\partial \dot{q}} \frac{\partial \dot{q}}{\partial q} = -\frac{\partial L}{\partial q} = -\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} = -\dot{p} \end{split}$$

Völlig analoge Rechnung:

⇒ Hamilton-Gleichung

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$

$$\dot{p}_i = -\frac{\partial H}{\partial q_i}$$

Vergleich:

7 Poisson-Klammern 35

1. Lagrange - $\{q_i\}$ - Lage im Konfigurationsraum, $\{\dot{q}_i\}$ - momentane Geschwindigkeiten \Longrightarrow Zustand des Systems Bewegung: Differentialgleichungen 2. Ordnung

2. Hamilton - $\{\xi_a\} \equiv \{q_i, p_i\}$ - Lage im Phasenraum \implies Zustand des Systems Bewegung: Differentialgleichungen 1. Ordnung (2n Stück): $\dot{\xi}_a = f_a(\xi_1, \dots, \xi_{2n})$

Zur Intuition:

$$H = \frac{p^2}{2m} + V(q)$$

Hamilton-Gleichungen:

$$\dot{q} = \frac{\partial H}{\partial p} = \frac{p}{m}, \dot{p} = -\frac{\partial H}{\partial q} = -\frac{\partial V}{\partial q}$$

Check: Leite 1. Gleichung ab:

$$\ddot{q} = \frac{\dot{p}}{m}$$

Setze in 2. Gleichung ein:

$$m\ddot{q} = -\frac{\partial V}{\partial q}$$

Veranschaulichung im Phasenraum: Betrachte Energieerhaltung:

$$\frac{p^2}{2m} + V(q) = E = \text{const.}$$

$$\implies p = \pm \sqrt{2m(E - V(q))} \equiv p(q)$$

 \implies Trajektiorie im Phasenraum. Allgemein: $-\frac{\partial H}{\partial q}$ und $\frac{\partial H}{\partial p}$ definieren an jedem Punkt des Phasenraumes einen Vektor (\rightarrow TP1, 2.2/2.3)

7 Poisson-Klammern

7.1 Definition und erste Anwendungen

Sei der Phasenraum eines Hamiltonschen Systems durch $\{q_i\}, \{p_i\}, i=1,\ldots,n$ parametrisiert. Seien F(q,p,t) und G(q,p,t) zwei beliebige **Observable** (Funktionen auf dem Phasenraum). Dann heißt

$$\{F,G\} \equiv \sum_{i} \left(\frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}} - \frac{\partial F}{\partial p_{i}} \frac{\partial G}{\partial q_{i}} \right)$$

heißt **Poisson-Klammer** von F und G (wieder Observable). Erste Anwendung:

$$\dot{F} = \frac{\mathrm{d}}{\mathrm{d}t}F = \frac{\partial F}{\partial t} + \sum_{i} \frac{\partial F}{\partial q_{i}} \dot{q}_{i} + \sum_{i} \frac{\partial P}{\partial p_{i}} \dot{p}_{i}$$

$$= \frac{\partial F}{\partial t} + \sum_{i} \left(\frac{\partial F}{\partial q_{i}} \frac{\partial H}{\partial p_{i}} - \frac{\partial F}{\partial p_{i}} \frac{\partial H}{\partial q_{i}} \right)$$

$$= \frac{\partial F}{\partial t} + \{F, H\}$$

7 Poisson-Klammern 36

 \implies Zeitliche Entwicklung einer Observablen ist durch Poisson-Klammer mit H bestimmet. Insbesondere

$$\dot{H} = \frac{\partial H}{\partial t} + \{H, H\} = \{H, H\} = 0$$

Allgemeiner: Falls eine Observable F nicht explizit von t abhängt:

F bleibt erhalten \iff $\{F, H\} = 0$

Betrachte speziell die Observablen $\{q_i\}$ und $\{p_i\}$

$$\dot{p}_i = \{p_i, H\} = \sum_j \left(\frac{\partial p_i}{\partial q_j} \frac{\partial H}{\partial p_j} - \frac{\partial p_i}{\partial p_j} \frac{\partial H}{\partial q_j}\right) = -\frac{\partial H}{\partial q_i}$$
$$\dot{q}_i = \{q_i, H\} = \dots = \frac{\partial H}{\partial p_i}$$

Man nennt $\{q_i\}, \{p_i\}$ zueinander kanonisch konjugiert

$$\iff$$
 $\{q_i, q_j\} = 0, \{p_i, p_j\} = 0, \{q_i, p_j\} = \delta_{ij}$

Nachrechnen:

$$\{q_i, p_j\} = \sum_{k} \left(\frac{\partial q_i}{\partial q_k} \frac{\partial p_j}{\partial p_k} - \frac{\partial q_i}{\partial p_k} \frac{\partial p_j}{\partial q_k} \right)$$
$$= \sum_{k} \delta_{ik} \delta_{jk} = \delta_{ij}$$

7.2 Die Poissonklammer als Lie-Algebra Operation

V Vektroraum, $[\cdot,\cdot]$ eine binäre Operation (also Abbildung $V\times V\to V, (v,w)\mapsto [v,w]$). Der Tupel $(V,[\cdot,\cdot])$ ist eine Lie-Algebra falls:

1.
$$[v, w] = -[w, v]$$
 (Antisymmetrie)

2.
$$[\alpha v + \beta w, u] = \alpha [v, u] + \beta [w, u]$$
 (Linearität)

3.
$$[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0$$
 (Jacobi-Identität)

Beispiel 7.1 1. kleine Drehungen

2. Raum der $n \times n$ Matrizen wird mit

$$[\cdot,\cdot]:A,B\mapsto [A,B]\equiv AB-BA$$

zur Lie-Algebra

Für uns entscheidend: Die Poisson-Klammer macht den Raum der Observablen zur Lie-Algebra.

7 Poisson-Klammern 37

7.3 Poisson-Klammern und Vektorfelder

$$\dot{q} = \frac{\partial H}{\partial p}, \dot{p} = -\frac{\partial H}{\partial q}$$

Man kann die Bewegung auf Phasenraum mit Änderung von Observablen verbinden: $F=F(\xi), \xi=\{q,p\}$

$$\frac{\mathrm{d}F}{\mathrm{d}t} = \frac{\partial F}{\partial \xi^{i}} \frac{\mathrm{d}\xi^{i}}{\mathrm{d}t} = \frac{\mathrm{d}\xi^{i}}{\mathrm{d}t} \frac{\partial F}{\partial \xi^{i}} \equiv V^{i}(\xi) \frac{\partial F}{\partial \xi_{i}}$$

Mit solcher Bewegung ist immer auf natürliche Weise ein Differentialoperator verbunden:

$$\frac{\mathrm{d}F}{\mathrm{d}t} = \left(V^i \xi \frac{\partial}{\partial \xi_i} F \equiv DF\right)$$

Zurück zum speziellen Fall der Hamilton Dynamik:

$$\frac{\mathrm{d}F}{\mathrm{d}t} = -\{H, F\} = -\left(\frac{\partial H}{\partial q_i}\frac{\partial}{\partial p_i} - \frac{\partial H}{\partial p_i}\frac{\partial}{\partial q_i}\right)F \equiv -D_H F$$

H induziert Bewegung auf Phasenraum \to Vektorfeld \to Differentialoperator. H ist nur **eine** der vielen Observablen. Wir könne auch jede andere Observable nehmen und analog Vektorfeld / Bewegung / Differentialoperator definieren. H induziert

$$\frac{\mathrm{d}F}{\mathrm{d}t} = -D_H F = \{F, H\}$$

G = G(q, p) induziert:

$$\frac{\mathrm{d}F}{\mathrm{d}t} = -D_G F = \{F, G\}$$

Entscheidende Beobachtung (ohne Beweis): Das obige induziert einen Isomorphismus von Lie-Algebren

Observable
$$\longleftrightarrow$$
 Differential operator $\{\cdot,\cdot\}$ \longleftrightarrow $[D_F,D_G]=\underbrace{D_FD_G-D_GD_F}_{\text{Kommutator}}$

Beachte $[D_F, D_G] \neq 0$ weil Ableitung in D_F auf Koeffizientenfunktionen von D_G wirken (und umgekehrt). Beachte: Es entsteht nur Differentialoperator 1. Ordnung weil: $[\partial/\partial x, \partial/\partial y] = 0$, etc.

Beispiel 7.2 (unphysikalisch):

$$D_1 \equiv \frac{\partial}{\partial x}, D_2 \equiv x - \frac{\partial}{\partial x}$$

$$D_1 D_2 f = D_1 (xf') = f' + xf''$$

$$D_2 D_1 f = D_2 (f') = xf''$$

$$(D_1 D_2 - D_2 D_1) f = f' + xf'' - xf'' = f' = D_1 f$$

$$\implies [D_1, D_2] = D_1$$

Erhaltungsgrößen sind Observablen, welche unter der durch H induzierten Bewegung invariant sind: das heißt $D_H F = 0$, $\{H, F\} = 0$. Die zugehörge **Symmetrie** ist die durch D_F induzierte Bewegung ("Umkehrung von Noether")

7 Poisson-Klammern 38

7.4 Die Drehimpuls Lie-Algebra in die Hamilton-Mechanik

Aus TP1:

$$R(\xi) = \mathbb{1} + \varepsilon_i T_i; \quad (T_i)_{jk} = \varepsilon_{ijk}$$

Schon erwähint: T_i - Basis von SO(3) = Lie(SO(3)) Kommutator macht SO(3) zur Lie-Algebra:

$$\left[\frac{1}{2}T_I, \frac{1}{2}T_j\right] = \varepsilon_{ijk} \left(\frac{1}{2}T_k\right)$$

Noether-Theorem ordnet den durch die T_i generierten Symmetrien Erhaltungsgröhen zu, und zwar die Drehimpulskomponenten:

$$L_i = \varepsilon_{ijk} x_j p_k \qquad (q_i \equiv x_i)$$

Man prüft mit der Definiton der Poisson-Klammer leicht nach, dass

$$\{L_i, L_j\} = \varepsilon_{ijk} L_k$$

Die L_i generieren auf Phasenraum die Bewegung die den zu T_i gehörenden Symmetrien entspricht.

7.5 Satz von Liouville

Schreibe:

$$\vec{\xi}(t) = \{q_1(t), \dots, q_n(t), p_1(t), \dots, p_n(t)\}\$$

Die sei Trajektorie im Phasenraum. Die entsprechenden Geschwindigkeiten seien:

$$\vec{\omega}(t) \equiv \frac{d\vec{\xi}(t)}{dt} = \left\{ \frac{\partial H}{\partial p_i}, \dots, \frac{\partial H}{\partial p_n}, -\frac{\partial H}{\partial q_i}, \dots, -\frac{\partial H}{\partial q_n} \right\}$$

Berechne:

div
$$\vec{\omega} = \vec{\nabla}_{\xi} \vec{\omega} = \vec{\nabla}_{q,p} \vec{\omega} = \dots$$

$$= \sum_{i=1}^{n} \left(\frac{\partial \omega_{i}}{\partial q_{i}} + \frac{\partial \omega_{n+i}}{\partial p_{i}} \right) = \sum_{i=1}^{n} \left(\frac{\partial^{2} H}{\partial q_{i} p_{i}} - \frac{\partial^{2} H}{\partial q_{i} p_{i}} \right)$$

$$= 0$$

Wenn div $\vec{\omega}=0$ für Geschwindigkeitsfeld dann spricht man von **inkompressibler Strömung**. In der Tat: Gauß \Longrightarrow

$$\int_0 \vec{\omega} d\vec{f} = 0$$

⇒ pro Zeiteinheit strömnt aus dem Volumen, das von O umgeben ist, gleichviel hinein wie hinaus. Anschaulich folgt damit:

Satz 7.3 (**Satz von Liouville**) Die Größe von Teilvolumina des Phasenraums ändert sich bei der durch H definierten Strömung nicht.

Genauere Begründung: Wähle zwei Volumina V, V':

$$\begin{split} \Delta V &= V' - V = \int_O \mathrm{d} \vec{F} \cdot \Delta \vec{\xi} = \int_O \mathrm{d} \vec{f} \cdot \vec{\omega} \Delta t \\ \frac{\mathrm{d} V}{\mathrm{d} t} &= \int_O \mathrm{d} \vec{F} \cdot \vec{\omega} = \int_V \mathrm{d}^{2n} \xi \Big(\vec{\nabla} \vec{\omega} \Big) = 0 \end{split}$$
 Gauß

8 Hamilton-Machanik in Differentialformen

8.1 Tangential- und Cotangentialraum

Sei M ein d -dimensionaler Raum, zum Beispiel für d=2 ein Sphäre. Solch ein Raum ist "real" unabhängig von den Koordianten.

Beispiel 8.1 (Ebene) Koordiantenwechsel wird durch wohlbekannte Ausdrücke für $x^1=x^1(r,\varphi), x^2=x^2(r,\varphi)$ beschrieben. Auch Vektorfeld auf M ist real unabhänigig von den Koordianten: Zum Beispiel sieht man dies, weil Vektorfeld \longleftrightarrow Differentialoperator, aber $D: f \mapsto Df$

koodinatenunabhngi

Vektorfelder sind ebenso real ("koordinatenunabängig").

In gewissen Koordinaten $x^i: H=v^i(x)\frac{\partial}{\partial x^i}$ In andere Koordinaten $x'^i: D=v'^i(x')\frac{\partial}{\partial x'^i}$ Umrechnung:

$$d = v^j \frac{\partial}{\partial x^j} = v^j \left(\frac{\partial x'^i}{\partial x^j} \right) \frac{\partial}{\partial x'^i}$$

Koeffizientenvergleich liefert:

$$v^{\prime i} = \left(\frac{\partial x^{\prime i}}{\partial x^j}\right) v^j$$

Diese Vektoren an $q \in M$ bilden "Tangentialraum" (Vektorraum!) T_qM . In obiger Diskussion sei zum Beispiel D_V der absolite Vektor in T_qM und $\{v^1,\ldots,v^n\}$ beziehungsweise $\{v^{'1},\ldots,v^{'n}\}$ seien die **Komponenten** in x^i beziehungsweise x'^i . Basis (immer noch bei $q \in M$):

$$\partial_i \equiv \frac{1}{x^i}$$

Zu V gibt es Dualraum V^* . (Raum der linearen Funktionale. Hier heißt dieser Cotangentialraum $(T_aM)^*$ auf V). Definiere duale Basis $\mathrm{d}x^i$

$$\mathrm{d}x^i \bigg(\frac{\partial}{\partial x^i} \bigg) = \delta^i_j$$

Wegen Linearität ist allgemeines Element von $T_q^*: \omega_i \mathrm{d} x^i \in T_q^*$

$$\omega(v) = \omega_i dx^i \left(v^j \frac{\partial}{\partial x^j} \right) = \omega_i v^j \delta_j^i = \omega_i v^i$$

8.2 Vektorfelder und 1-Formen

All dies geht auch gleichzeitig an allen Punkten $q \in M$: Vektorfeld ist Abbildung $q \mapsto v(q) \in T_qM$. (eigentlich nur Satz von Funktionen $v^i(x)$). Analog: 1-Form ist Abbildung: $q \mapsto \omega(q) \in (T_qM)^*$ (Funktionen $\omega_i(x)$).

Beispiel 8.2 Zu jeder Funktion f gehört eine 1-Form $\omega = \mathrm{d}f$, definiert durch:

$$\mathrm{d}f(v) = v^i \frac{\partial}{\partial x^i}(f) = v^i \frac{\partial f}{\partial x^i} = D_v f$$

In Komponenten:

$$\mathrm{d}f = \left(\frac{\partial f}{\partial x^i}\right) \mathrm{d}x^i \quad \text{beziehungsweise} \quad \left(\mathrm{d}f\right)_i = \frac{\partial f}{\partial x^i}$$

8.3 Höhere p-Formen

Betrachte Tensorprodukte: $T_q^* \otimes F_q^*$ mit Basis

$$\{\mathrm{d}x^i\otimes\mathrm{d}x^j\}=\{\mathrm{d}x^1\otimes\mathrm{d}x^1,\mathrm{d}x^i\otimes\mathrm{d}x^2,\dots\}$$

auffassbar als Raum der bilinearen Funktionale auf T_a :

$$\left(\mathrm{d} x^i \otimes \mathrm{d} x^j\right) \left(\frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^l}\right) \equiv \mathrm{d} x^i \left(\frac{\partial}{\partial x^k}\right) \mathrm{d} x^i \left(\frac{\partial}{\partial x^l}\right) = \delta^i_k \delta^j_l$$

Allgemeineres Element:

$$\omega^2() = \omega_{ij} dx^i \otimes dx^j, \quad \omega^2(q) \in (T_q^*)^2$$

 ω^2 ist eine Rang-2 Tensorfeld. Allgemeiner: Wi können ebeso das p-fache Tensorprodukt von $(T_q M)^*$ mit sich betrachten. \implies Tensoren und Tensorfelder vom Rnag p:

$$\omega * p(q) \in (T_q^* M)^{\otimes p}$$

Besonders wichtig: total antisymmetrische Tensoren: Diese sind definiert dadurch, dass $\omega_{ij\dots kl}$ sei Vorzeichen wechselt, wann man zwei beliebige, benachbarte Indizes vertauscht. Antisymmetrische $\Longrightarrow \omega^p(q) \in \left(T_q^*\right)^{\wedge p} \subset \left(T_q^*\right)^{\otimes p}$, \land symbolisiert Antisymmetrie \Longrightarrow "antisymmetrische Unterraum von $\left(T_q^*\right)^{\otimes p}$ ". Diese antisymmetrische Tensorfelder (Tensorfelder mit Werten in $\left(T_q^*\right)^{\wedge p}$) heißen **p-Formen**. Wir wollen den Fall p=2 explizit machen:

$$\omega^2(x) = \omega_{ij}(x) dx^i \otimes dx^j$$

mit $\omega_{ij} = -\omega_{ji}$. Die Basiselemente von $(T_q^*)^{\wedge p}$ schreibt man mit "Wedge":

$$\omega^{2}(x) = \frac{1}{2}\omega_{ij}(x)dx^{i} \wedge dx^{j} \equiv \omega_{ij}(x)\frac{1}{2}(dx^{i} \otimes dx^{j} - dx^{j} \otimes dx^{i})$$

Noch konkreter: p = d = 2

Beispiel 8.3

$$\omega^2 = \frac{1}{2}\varepsilon_{ij}dx^i \wedge dx^j = \varepsilon_{ij}\frac{1}{2}\frac{1}{2}(dx^i \otimes dx^j - dx^j \otimes dx^j) = dx^1 \otimes dx^2 - dx^2 \otimes dx^1$$

für p=d immer!, aber zum Beispiel p=2 in d=1 geht nicht! (weil $\mathrm{d} x^1 \wedge \mathrm{d} x^1=0$). Aber: p< d ist natürlich möglich. zum Beispiel:

$$\omega^2 = \frac{1}{2}\omega_{ij} dx^i \wedge dx^j, i, j \in \{1, \dots, d\}$$

Nebenbewerkung: Äußere Ableitung d:

$$d:\omega^p\mapsto\omega^{p+1}$$

$$d(\omega_{i_1...i_p}dx^{i_1}\wedge\ldots\wedge dx^{i_p}) \equiv \left(\frac{\partial}{\partial x^i}\omega_{i_1...i_p}\right)dx^idx^{i_1}\wedge\ldots\wedge dx^{i_p}$$

Wichtiges Beispiel:

$$d(f) = \mathrm{d}f \equiv \left(\frac{\partial f}{\partial x^i}\right) \mathrm{d}x^i$$

Funktion \equiv "0-Form". Fakt: $d^2 = d \otimes d = 0$

8.4 Formulierung der Hamilton-Mechanik in Formen

Ein Phasenraum ist ein 2n dimensionaler Raum d=2n mit einer nicht-degenerierten, geschlossenen 2-Form

$$\omega^2 \equiv \omega = \omega_{ij} (\vec{\xi}) d\vec{\xi}^i \wedge d\vec{\xi}^j \qquad \vec{\xi} \leftrightarrow \{q, p\}$$

welche man symplektische Struktur nennt. Nicht-degeneriert heißt: ω_{ij} als Matrix invertierbar. Geschlossen heißt: $d\omega = 0$. Eine Hamilton-Funktion ist eine Funktion auf dem Phasenraum

$$H = H(\vec{\xi}) = H(\xi^1, \dots, \xi^d)$$

Hamilton-Gleichungen:

$$\omega(\dot{\xi}) = dH \quad \dot{\xi} \equiv \frac{d\xi}{dt}$$

Erklärung: $\dot{\xi}$ = Vektor = $\{\dot{\xi}^1,\dots,\dot{\xi}^d\}$ $\omega\left(\dot{\xi}\right)\equiv\omega\left(\cdot,\dot{\xi}\right)$ Dies ist eine 1-Form $\implies\omega\left(\dot{\xi}\right)=\mathrm{d}H$ ist also Äquivalenz von 1-Formen-Gleichungen!

$$\dot{\xi} = \dot{\bar{\xi}} \frac{\partial}{\partial \xi^i}$$

Jetzt wählen wir auf M Koordianten q_{α}, p^{α} , sodass

$$\omega = \mathrm{d}p_{\alpha} \wedge \mathrm{d}q^{\alpha} \quad (\alpha = 1, \dots, n)$$

(Dass dies geht, ist ein **nichttrivialer Fakt**). Da $\xi^i = \{q^1, \dots, q^n, p_1, \dots, p_n\}$ gilt

$$\omega_{ij} = \begin{pmatrix} 0 & -\mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}$$

 $R \mathbb{K} R^T = \mathbb{K} \iff R \in SO(n), S\omega S^T = \omega \iff S \in Sp(2n)$. Auswertung der abstrakten Hamilton-Gleichung in unseren speziellen Koordinaten:

$$dp_{\beta} \wedge dq^{\beta} \left(\cdot, \dot{q}^{\alpha} \frac{\partial}{\partial q^{\alpha}} + \dot{p}_{\alpha} \frac{\partial}{\partial p_{\alpha}} \right) = \dot{q}^{\alpha} dp_{\alpha} - \dot{p}_{\alpha} dq^{\alpha}$$
$$= \frac{\partial H}{\partial q^{\alpha}} dq^{\alpha} + \frac{\partial H}{\partial p_{\alpha}} dp_{\alpha}$$

Koeffizientenvergleich:

$$\dot{q}^{\alpha} = \frac{\partial H}{\partial p^{\alpha}}, \dot{p}_{\alpha} = -\frac{\partial H}{\partial q_{\alpha}}$$

Fortgeschrittener Kommentar: Betrachte die zu ω_{ij} inverse Matrix:

$$\omega^{ij}\omega_{jk} = \delta^i_k$$

 ω^{ij} definiert eine antisymmetrische Bilinearform $\underline{\omega}$ auf T_q^* . Damit gilt: $\{F,G\} \equiv \underline{\omega}(\mathrm{d}F,\mathrm{d}G)$. Nachrechnen des Vergleichs mit alternativer Definition:

$$\underline{\omega}(\mathrm{d}F,\mathrm{d}G) = \omega_{ij}(\mathrm{d}F)^{i}(\mathrm{d}G)^{j} = \delta_{\alpha}^{\beta} \left(\frac{\partial F}{\partial q^{\beta}} \frac{\partial G}{\partial p_{\alpha}} - \frac{\partial G}{\partial q^{\beta}} \frac{\partial F}{\partial p_{\alpha}} \right) = \delta_{\alpha}^{\beta} \{F, G\}$$

Abstrakte Hamilton-Gleichung in Koordinaten ξ ausschreiben:

$$\omega_{ij}\xi^i = \frac{\partial H}{\partial \xi^i} \implies \dot{\xi}^i = \omega^{ij} \frac{\partial H}{\partial \xi^j}$$

 \implies Man sieht explizit, wie H das Vektorfeld ξ^i definiert. Das geht mit jeder Observablen und wir nennen den entsprechenden Vektor (Vektorfeld) V(F), V(G), etc.

$$\implies \{F,G\} = \omega(V(F),V(G))$$

8.5 Integration von Differentialformen

Behauptung: p -Form kann über p -dimensionale Hyperfläche C_p integriert werden:

$$\int_{C_n} \omega P = \text{Zahl}$$

Man zerlege dazu die Fläche in kleine Parallelepipede. Definiere

$$\int C_p \omega P = \lim \sum_{\text{Parallelepide}} \omega P(v_1, \dots, v_p)$$

Wichtig: Obige Definition ist Koodinatenunabhängig. Trotzdem: Praktisch rechnen wir meist in Koordinaten: d=p=z:

$$v_1 = \Delta x^1 \frac{\partial}{\partial x^1}, v_2 = \Delta x^2 \frac{\partial}{\partial x^2}$$

$$\implies \int \omega = \lim \sum \omega(v_1, v_2) = \lim \sum \omega_{12} \Delta x^1 \Delta x^2 = \int dx^1 dx^2 \omega_{12}$$

In anderen Koordinaten:

$$\int \omega = \int \mathrm{d}x'^1 \mathrm{d}x'^2 \omega'_{12}$$

Zum Prüfen der Gleichheit:

Fakt:

$$\omega'_{i_1...i_p} = \left(\frac{\partial x^{j_1}}{\partial x'^{i_1}}\right) \dots \left(\frac{\partial x^{j_p}}{\partial x'^{i_p}}\right) \omega_{j_1...j_p}$$

(wie beim Vektor, nur $x\leftrightarrow x$ '). Einschränkung: p=d ("Top-Form"). Dies ist stets

$$\omega = \varepsilon f(x)$$

$$\int dx'^{1} \dots dx' f'(x'^{1}, \dots, x'^{n}) = \int dx'^{1} \dots dx'^{n} \det\left(\frac{\partial x'}{\partial x'^{j}}\right) f(x^{1}(x'), \dots, x^{n}(x'))$$

Verallgemeinerter Satz von Stokes:

$$\int_C \mathrm{d}\omega = \int_{\partial C} \omega$$

9 Kanonische Transformationen, Integrabilität, Chaos

Lagrange-Mechanik ist invariant unter Punkttransformationen

$$q \to Q(q), L(q, \dot{q}, t) \to L'(Q, \dot{Q}, t)$$

(Reparametrisierung des Konfigurationsraums). L' ist definiert durch $L'\Big(Q(q),\dot{Q}(q),t\Big)\stackrel{!}{=}L(q,\dot{q},t)$. Man prüft leicht nach:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0 \implies \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L'}{\partial \dot{Q}} - \frac{\partial L'}{\partial Q} = 0$$

(obiger ist aus so klar, seil sich S nicht ändert.).

Betrachte analoges Problem in Hamilton-Machanik:

$$q, p \to Q(q, p), P(q, p)$$

Dürfen wir bei so einem Koordinaten-Wechsel auf Phasenraum "Einteilung" in verallgemeinerte Koordinaten und Impulse verletzen? Einfache Antwort: $\xi \to \xi'(\xi)$ stets OK, falls wir in ω und H denken. Etwas kompliziertere (und **interessantere**) Antwort: Wenn wir fordern, dass sich die **Form**

der (gewöhnlichen) Hamilton-Gleichung nicht ändert, führt dies auf **kanonische Transformationen** Es wird reichen, zu fordern, dass

$$\omega = \mathrm{d}p_{\alpha} \wedge \mathrm{d}q^{\alpha} \stackrel{!}{=} \mathrm{d}P_{\alpha}(q, p) \wedge \mathrm{d}Q^{\alpha}(q, p)$$

Explizit benutzen wir eine erzeugende Funktion $F_z(q, P)$. Wir definieren

$$p = \frac{\partial F_Z(q, P)}{\partial q}, Q = \frac{\partial F_Z(q, P)}{\partial P}$$

Auflösen $\implies Q = Q(q, p), P = P(q, p)$. Es gilt

$$dF_Z = \frac{\partial F_Z}{\partial q} dq + \frac{\partial F_Z}{\partial P} dP$$

$$= pdq + QdP$$

$$0 = dp \wedge dq + pd^2q + dQ \wedge dP + Qd^2P$$

$$0 = dp \wedge dq - dP \wedge dQ$$

$$dp_\alpha \wedge dq^\alpha = dP_\alpha \wedge Q^\alpha \checkmark$$

In der Tat, die so definierte Transformation ist kanonisch. Analog: $F_1(q,Q), F_3(p,Q), F_4(p,P)$. Die Identität ("Triviale Transformation") wird durch $F_Z(q,P) = q^{\alpha}P_{\alpha}$ generiert. \checkmark Demnach, **kleine** kanonische Transformationen generiert durch

$$F_Z(q, P) = qP + \varepsilon G(q, P)$$

$$\implies p = P + \varepsilon \frac{\partial G}{\partial q}(q, P)$$

$$Q = q + \varepsilon \frac{\partial G}{\partial p}(q, P)$$

In führender Ordnung in ε :

$$P = P + \varepsilon \frac{\partial G}{\partial q}(q, p)$$

$$Q = q + \varepsilon \frac{\partial G}{\partial p}(q, p)$$

$$\implies \Delta p = P - p = -\varepsilon \frac{\partial G(q, p)}{\partial q} = \varepsilon \left(\frac{\partial p}{\partial q} \frac{\partial G}{\partial p} - \frac{\partial p}{\partial p} \frac{\partial G}{\partial q}\right) = \varepsilon \{p, G\}$$

$$\Delta q = Q - q = \varepsilon \frac{\partial G}{\partial p} = \dots = \varepsilon \{q, G\}$$

 $\implies F_Z = qP + \varepsilon G$ generiert die Transformation die der durch G(q,p) mittels Poisson-Klammer erzeugten Bewegung auf dem Phasenraum entspricht.

9.1 Integrabilität

Definition 9.1 (Integrabilität) Ein System mit n Freiheitsgraden heißt **integrabel**, wenn es n unabhängige Erhaltungsgröhen $f_{\alpha}(\alpha=1,\ldots,n)$ gibt, sodass $\{f_{\alpha},f_{\beta}\}=0$ "unabhängig": $\mathrm{d}f_{\alpha}$ an jedem Punkt $\xi\in M$ linear unabhängig in $T_{\xi}^{*}M$.

Bedeutung des Begriffs: Für solche Systeme kann man kanonische Transformationen finden, sodass $P_{\alpha}=f_{\alpha}, \alpha=1,\ldots,n$. (Wir sehen, dass die Bedingung $\{f_{\alpha},f_{\beta}\}=0$ in der Tat notwendig war, denn $\{P_{\alpha},P_{\beta}\}=0$ und kanonische Transformationen respektiren Poisson-Klammer) Da nach der Transformation alle Impulse konstant sind, sind alle Q's zyklisch:

$$\begin{split} \dot{P}_{\alpha} &= -\frac{\partial H}{\partial Q^{\alpha}} = 0 \\ \Longrightarrow \ \dot{Q}_{\alpha} &= \frac{\partial H(Q,P)}{\partial P_{\alpha}} = \frac{\partial H(P)}{\partial P_{\alpha}} = \text{const.} \\ \Longrightarrow \ Q^{\alpha} &= Q_{0}^{\alpha} + t \frac{\partial H(P)}{\partial P_{\alpha}} \end{split}$$

Beispiel 9.2 1. Die eindimensionale Bewegung: n = 1 1 Erhaltungsgröße: H

2. Das Zweikörper-Problem: n=6, 6 Erhaltungsgrößen: $H, \vec{P}, L_Z, \vec{L}^2$

Zeige, dass $\{f_{\alpha}, f_{\beta}\}_{p,q} = 0$ hinreichend ist. (Nur Idee). Definiere $P_{\alpha} = f_{\alpha}(q,p)$. Löse auf nach den p_{α} 's $\implies p_{\alpha} = p_{\alpha}(q,P)$. Betrachte Phasenraum als "Schichtung": In jeder Schicht (und damit global) definiere:

$$F_Z(q, P) = \int_{\{q^{\alpha}\}}^{\{q^{\alpha}\}} \mathrm{d}q'^{\beta} p_{\beta}(q', P)$$

- 1. Zeige Wegunabhängigkeit mit Stokes (nicht hier)
- 2. Wollen prüfen:

$$p_{\alpha} = \frac{\partial F_Z}{\partial q^{\alpha}}!$$

Dazu: wähle letztes Wegstück parallel zu q^{α} -Achse

$$\frac{\partial F_Z}{\partial q^{\alpha}} = \frac{\partial}{\partial q^{\alpha}} \int^{q^{\alpha}} \sum dq'^{\alpha} p_{\alpha} (q'^1, \dots, q'^{\alpha}, \dots, q'^n, P) = p_{\alpha}$$

Definiere $Q_{\alpha} \equiv \frac{\partial P_Z}{\partial P_{\alpha}}$. Damit ist klar, dass unsere F_Z die Bedingungen erfüllt. \to Theorem von Lioville / Arnold. (Auch: falls Σ 's kompakt sind und zusammenhängend, so sind sie Tori, $\Sigma \sim T^n \sim (S^1)^n$)

9.2 Chaos

Bewegung eines kleinen Bereichs im Phasenraum. Bei kleinen Radien: Volumen $\sim r^{2n}$ Halbachsen a_i .

$$V(0) = \frac{\pi^n}{n!} r^{2n} \to V(t) = \frac{\pi^2}{n!} \prod_{i=1}^{2n} a_i$$

Schnellstes mögliches Wachtum einer Halbachse ist exponentiell: (weil 1. Ordnung Differentialgleichung)

$$a_i = e^{\lambda_i t} r$$

Die λ_i heißn Lyapunov-Eponenten:

$$\lambda_i = \lim_{t \to \infty} \lim_{r \to 0} \frac{1}{t} \ln \left(\frac{a_i(t)}{r} \right)$$

Wegen Liouville:

$$\prod_{i=1}^{2n} \left(e^{\lambda i t} r \right) = r^{2n} \implies \sum_{i=1}^{2n} \lambda_i = 0$$

Für integrable Systeme: P's konstant, Q's linear

$$\implies Q_{\alpha} = t \text{const.}_{\alpha} + Q_{\alpha}^{0}$$

 \rightarrow Für Lyapunov-Exponenten

$$\frac{1}{t}\ln(t) \xrightarrow{t \to \infty} 0 \implies \lambda_I = 0 \forall i$$

Chaotische Systeme: $\lambda_i > 0$ für wenigstens ein i

Problim: Einfache Beispiele in n=1 unmöglich! Stattdessen: "künstliches" Beispiel der Bäcker Transformation \to Teig kneten (\Longrightarrow Blätterteig ...) Betrachte zwei Punkte im Teig. Sei r Abstand bei t=0, Periode sei τ . Abstand nach N Perioden:

$$a_1 = 2^N r = 2^{t/\tau} r$$

Also

$$\lambda_1 = \lim_{t \to \infty} \lim_{r \to 0} \frac{1}{t} \ln \left(\frac{2^{t/\tau} r}{r} \right) = \lim_{t \to \infty} \frac{1}{t} \ln 2^{t/\tau}$$
$$= \lim_{t \to \infty} \frac{1}{\tau} \ln 2 = \frac{1}{\tau} \ln 2 > 0 \checkmark$$

 \implies chaotisch.

10 Schwingungen / Kontinuum

10.1 Kleine Schwingungen allgemeiner Systeme

10.1.1 Ein Freiheitsgrad

$$L = \frac{1}{2}f(q)\dot{q}^2 - V(q)$$

Sei q_0 eine Ruhelage, $V'(q_0)=0$. Definiere \tilde{q} : $q=q_0+\tilde{q}$. Umbennung: $\tilde{q}\to q$.

$$L = \frac{1}{2}f(q_0 + q)\dot{q}^2 - V(q_0 + q)$$

$$= \frac{1}{2}f(q_0)\dot{q}^2 - V(q_0) - \frac{1}{2}V''(q_0)q^2 + \mathcal{O}(q^3) + \dot{q}^2\mathcal{O}(q)$$

$$\implies L = \frac{1}{2}\dot{q}^2 - \frac{1}{2}V''(q_0)q^2$$

⇒ harmonischer Oszillator mit

$$\omega = \sqrt{\frac{V''}{f}}$$

völlig unabhängig von Details des Systems!

10.1.2 Viele Freiheisgrade

$$L = \frac{1}{2} f_{ij}(q) \dot{q}_i \dot{q}_j - V(q), q \equiv \{q_1, \dots, q_n\}$$

Ruhelage:

$$q_0 \equiv \{q_1^{(0)}, \dots, q_n^{(0)}\}, \frac{\partial V}{\partial q_i}(q_0) = 0 \forall i$$

Variablenwechsel: $q \rightarrow q_0 + q$

$$L = \frac{1}{2} f_{ij}(q_0 + q)\dot{q}_i \dot{q}_j - V(q_0 + q)$$

Taylor:

$$L = \frac{1}{2} f_{ij}(q_0) \dot{q}_i \dot{q}_j - \frac{1}{2} V_{ij}(q_0) q_i q_j$$
$$V_{ij} \equiv \frac{\partial^2 V}{\partial x^i x^j}$$

(f und V sind konstante Matrizen). Ohne Beschränkung der Allgemeinheit ist f_{ij} symmetrisch (Weglassen der antisymmetrischen Teils)

$$\exists R \in SO(n) : RfR^{-1} \text{ diagonal } : RfR^{-1} \equiv \text{diag}(a_1, \dots, a_n)$$

 $(a_i > 0 \text{ damit } T \text{ stets positiv.})$ Definiere "gestrichene Variablen":

$$\dot{q}_i \equiv \left(R^T\right)_{ij} q_j'$$

$$L = \frac{1}{2} \dot{q}'_i R_{ij} f_{jk} (R^T)_{kl} \dot{q}'_l - \frac{1}{2} q'_i R_{ij} V_{jk} R_{kl}^T q'_l$$

= $\frac{1}{2} \sum_i a_i (\dot{q}'_i)^2 - \frac{1}{2} q'_i M_{ij} q'_j, M \equiv RV R^T$

Neue Variablen:

$$q_i' \equiv q_i'' / \sqrt{a_i}$$

$$L = \frac{1}{2} \dot{q}_i'' \dot{q}_i'' - \frac{1}{2} \sum_{ij} q_i'' \underbrace{\frac{M_{ij}}{\sqrt{a_i a_j}}}_{\equiv K_{ij}} q_j''$$

$$L = \frac{1}{2} (\dot{q}'')^T \mathbb{F} \dot{q}'' - \frac{1}{2} (q'')^T K q''$$

 $\exists \tilde{R} \in SO(n), \tilde{R}K\tilde{R}^T = \mathrm{diag}(k_1,\ldots,k_n).$ Definiere

$$q'' = \left(\tilde{R}^T\right)q'''$$

$$\implies L = \frac{1}{2}\dot{q}'''^T \tilde{R}\tilde{R}^T \dot{q}''' - \frac{1}{2}q'''^T \tilde{R}K\tilde{R}^T q'''$$

$$\implies L = \sum_i \left(\frac{1}{2}\dot{q}_i^2 - \frac{1}{2}k_i q_i^2\right)$$

fallen von den k_i einige weg \rightarrow instabile Ruhelage, sonst: n harmonische Oszillationen

10.2 Lineare Kette

Betrachte Kette von verbundenen Federn

$$L = \sum_{i} \frac{m}{2} \dot{q}_{i}^{2} - \sum_{i} \frac{k}{2} (q_{i+1} - q_{i})^{2}$$

Angenähert q(x) mit $q_i = q(x_i)$:

$$q'(x_i) = \frac{q_{i+1} - q_i}{\Delta x}$$

$$L = \sum_{i} \frac{m}{2} \dot{q}(x_i)^2 - \frac{k}{2} q'(x_i)^2 \Delta x^2$$

$$= \sum_{i} \Delta x \left(\frac{m}{2\Delta x} \dot{q}(x_i)^2 - \frac{m\Delta x}{2} q'(x_i)^2 \right)$$

Limes: $\Delta x \to 0$: $m \to 0, k \to \infty$ sodass

$$\rho = \frac{m}{\Delta x} = \text{const.}, b = k\Delta x = \text{const.}$$

$$L = \int dx \left(\frac{\rho}{2}\dot{q}^2 - \frac{b}{2}q'^2\right), \quad q = q(t, x)$$

$$\implies S = \int dt L = \int dt dx \mathcal{L} = \int dt dx \left(\frac{\rho}{2}\dot{q}^2 - \frac{b}{2}q'^2\right)$$

 \implies unsere erste (2-dimensionale) Feldtheorie, \mathcal{L} heißt Lagrange-Dichte. Bewegungsgleichung:

$$0 \stackrel{!}{=} \delta S = \int dt dx \left(\frac{\rho}{2} \delta(\dot{q}^2) - \frac{b}{2} \delta(q'^2) \right)$$
$$= \int ddx \left(\rho \dot{q} \delta \dot{q} - bq' \delta q' \right) = \int dt dx \left(\rho \ddot{q} - bq'' \right) + \underbrace{\dots}_{\text{Randterme} = 0}$$

 δq beliebig, $\delta S \stackrel{!}{=} 0$

$$\implies \ddot{q}-c^2q''=0$$
 (Wellengleichnug, Partielle Differentialgleichung)
$$c^2\equiv b/\rho$$
 (Geschwindigkeit)

10.3 Schwingende Saite

Nicht longitudinal, sondern transversal \implies analoge Wellengleichnug

10.4 Ideale Hydrodynamik (Fluiddynamics)

Ausgangspunkt: Gedachte Flüssigkeitszellen.

Wichtig: Arbeiten mit Feldern: $(\vec{v}(\vec{x},t), \rho(\vec{x},t), p(\vec{x},t), \ldots)$

Newton:

$$m\frac{\mathrm{d}\,\vec{v}}{\mathrm{d}t}\,\vec{F}$$

für jede Zelle. $d/dt \equiv$ "Matrialableitung", also:

$$\frac{\mathrm{d}}{\mathrm{d}t} = \frac{\partial}{\partial t} + \frac{\mathrm{d}x^i}{\mathrm{d}t} \frac{\partial}{\partial x^i} = \frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla}$$

Kraft auf Zelle:

$$\vec{F} = \vec{F}_u + \vec{F}_p$$

$$\vec{F}_p = -\int_O p \, \mathrm{d}\vec{f}$$

Berechnen zunächst $F_{p_i 1} = \hat{e}_i \vec{P}_p$

$$\hat{e}_i \vec{F}_p = \int_O (\hat{e}_1 p) d\vec{f} = -\int_V \vec{\nabla} (\hat{e}_1 p) dV = -\hat{e}_1 \int (\vec{\nabla} p) dV$$

Analog mit \hat{e}_2 , \hat{e}_3 :

$$\implies \vec{F}_p = -\int_V (\vec{\nabla}p) dV$$

Zelle klein:

$$\implies \rho \bigg(\frac{\partial \, \vec{v}}{\partial t} + \Big(\, \vec{v} \cdot \, \vec{\nabla} \Big) \, \vec{v} \bigg) = \frac{\vec{F}_{uh}}{V_{Zelle}} - \, \vec{\nabla} p$$

Definition 10.1 $\vec{f}_u = \vec{P}_u/V_{Zelle}$ - "Äußere Kraftdichte". \Longrightarrow Eulergleichung:

$$\implies \frac{\partial \vec{v}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla} \right) \vec{v} = -\frac{\vec{\nabla} p + \vec{f}_u}{\rho}$$

Außerdem: Kontinuitätsgleichung. Dazu: Massenstrom $\equiv \rho \cdot \vec{v} \equiv \vec{j}$. (Physikalische Intuition: $\vec{j} \cdot d\vec{f}$ = Masse / Zeit (durch die Fläche $d\vec{f}$)) Betrachte festes gedachtes Volumen O.

$$\int_{O} d\vec{f} \cdot \vec{j} = \int_{V} (\vec{\nabla} \cdot \vec{j}) dV$$

Dies muss der Massenabnahme

$$-\frac{\partial}{\partial t} \int_{V} \rho dV = -\int_{V} \left(\frac{\partial \rho}{\partial t} \right) \cdot dV$$

entsprechen. Im Limes beliebig kleiner V folgt: Kontinuitätsgleichung

$$\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \, \vec{v}) = 0$$

Außerdem: Zustansgleichnug $p=p(\rho)$ (zum Beispiel $p\sim \rho^k$). \Longrightarrow Eulergleichung + Kontinuitätsgleichung + Zustandsgleichung = 5 Partielle Differentialgleichungen. Da wir fünf Funktionen bestimmen (\vec{v},p,ρ) ist alles prinzipiell gelöst. Einfach Anwendung: Bernoulli-Gleichung. Inkompressibel ($\rho=$ const.), stationär ($\partial \vec{v}/\partial t=0$)

$$\implies \left(\vec{v} \cdot \vec{\nabla} \right) \vec{v} = -\frac{\vec{\nabla}p}{\rho} + \vec{f}$$

 $\vec{f} = -\vec{\nabla} V$ (konstante Kraft)

$$(\vec{v} \cdot \vec{\nabla})\vec{v} + \vec{\nabla}\left(\frac{f}{\rho} + V\right) = 0$$
$$\vec{v}\frac{\mathrm{d}}{\mathrm{d}t}\vec{v} + \vec{v} \cdot \vec{\nabla}\left(\frac{p}{\rho} + V\right) = 0$$

 $ec{V}\cdotec{
abla}=\mathrm{d}/\mathrm{d}t$ wegen stationär

$$\implies \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} \vec{v}^2 + \frac{p}{\rho} + V \right) = 0$$
 (Bernoulli)

10.5 Potentialströmungen

Wirbelfreiheit: $\vec{\nabla} \times \vec{v} = 0$. Falls Wirbelfrei \implies wirbelfrei für immer, folgt aus Kelvin's Theorem:

$$\oint_C \vec{v} \, \mathrm{d}\vec{s} = \text{const.}$$

(falls \vec{F} const., $p=p(\rho)$) $\implies \exists$ Geschwindigkeitspotential φ , sodass

$$\vec{v} = \vec{\nabla} \varphi$$

(weiter mit Inkompressibilität)

$$\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \vec{v}) = 0 \implies \vec{\nabla} \vec{v} = 0 \implies \vec{\nabla} \vec{\nabla} \varphi = 0 \implies \Delta \varphi = 0$$

Laplace-Gleichung. Noch besser: d=2. Definiere zur Geschwindigkeit duales Feld $\vec{u}\equiv -\varepsilon_{ij}^{2d}v_j$ Rechne:

$$(\vec{\nabla} \times \vec{u})_3 = \varepsilon_{3ij}^{(3d)} \partial_i u_j = \varepsilon_{ij}^{(2d)} \partial_i u_j = -\varepsilon_{ij}^{(2d)} \partial_i \varepsilon_{jk}^{2d} v_k$$
$$= \delta_{ij} \partial_i u_k = \vec{\nabla} \vec{v} = 0$$

 $\implies u$ auch Wirbelfrei $\implies \exists \psi$, sodass $\varepsilon_{ij}v_j = -\partial \psi$

$$v_1 = \partial_1 \varphi$$

$$v_2 = \partial_2 \varphi$$

$$u_1 = \partial_2 \psi$$

$$u_2 = -\partial_1 \psi$$

Mit $1, 2 \rightarrow xy$

$$\partial_x \varphi = \partial_y \psi$$

$$\partial_y \varphi = -\partial_x \psi$$

⇒ Cauchy-Riemannsche Differentialgleichungen ⇔ Existenz einer holomorphen Funktion

$$w = W(z)$$

$$z = x + iy$$

$$\implies \varphi = \Re w(z)$$

$$\psi = \Im w(z)$$