Apache Hadoop Ecosystem

Rim Moussa

rim.moussa@gmail.com

Big Data

- More data usually beats better algorithms!
- Need of Scalable and Distributed Data Management Systems

System Requirements

- Response time (CRUD, OLTP)
- Processing Time (analytics: data mining, OLAP workloads)

- Continuity of service despite nodes' failures
 - » Data recovery
 - » Query/Job recovery

System performance face to *n times* higher loads + *n times* hardware capacities

- Automatic provisioning relinquish resources
- Storage: split/merge

and of

bucket

- Cost in-premises
- Cost at a CSP

System Categorization

Classical

Columnar

MapReduce

Dataflow

Array DB

Graph DB

Ecosystem

- HDFS: Distributed File System
- MapReduce: parallel data processing
 - Pig latin: data flow scripting language
- HBase: distributed, columnar, nonrelational database
- Hive: data warehouse infrastructure
- ZooKeeper: centralized service providing distributed synchronization
- Ganglia: monitoring system for clusters and grids

- Sqoop: designed for efficiently transferring bulk data between Apache Hadoop and structured datastores
- Hama: distributed engine for massive scientific computations such as matrix, graph and network algorithm (BSP)
- HCatalog: table mgmt layer for Hive metadata to other Hadoop applications
- Mahout: scalable machine learning library.
- Ambari: software for provisioning, managing, and monitoring Apache Hadoop clusters
- Flume: distributed service for efficiently collecting, aggregating, and moving large amounts of log data
- Giraph: iterative graph processing system
- DRILL: low latency SQL query engine for Hadoop
- Oozie or TEZ: workflow automation

5

Storage Architecture

- » HDFS client asks the Name Node for metadata, and performs reads/writes of files on DataNodes.
- » Data Nodes communicate with each other for pipeline file reads and writes.

HDFS

- Distributed File Systems
 - » Network File System (Sun Microsystems, 1984), ...
 - » Google File System (Google, 2000)
- Large scale distributed data intensive systems
 - » big data, I/O-bound applications
- Key properties
 - » High-throughput
 - »Large blocks: 256MB,.. versus common kilobyte range blocks (8KB, ..)
 - »Scalability
 - Yahoo requirements for HDFS in 2006 were,
 - storage capacity: 10 PB,
 - number of nodes: 10,000 (1TB each),
 - number of concurrent clients: 100,000, ...
 - » K. V. Shvachko. HDFS Scalability: the limits to growth.
 - Namespace server capacities correlates to the storage capacity of hadoop clusters.
 - » High availability
 - » Achieved through blocks' replication

Hadoop 0 | 1.x vs Hadoop YARN

Hadoop 0|1.x

Hadoop YARN

- » Static resource allocation deficiencies
- » Job Tracker manages cluster resources and monitors MR Jobs

Hadoop YARN: Job Processing

- » Application Master manages the application's lifecycle, negotiates resources from the Resource Manager
- » Node Manager manages processes on the node
- » Resource Manager is responsible for allocating resources to running applications,
- » Container (YARN Child) performs MR tasks and has its CPU, RAM attributes

HDFS

- hadoop dfs -help Is
- hadoop dfs -ls
- hadoop dfs -lsr
- hadoop dfs -mkdir /user/hadoop/dir1 /user/hadoop/dir2
- hadoop dfs -rm example.txt
- hadoop dfs -rmr /user/hadoop/dir
- hadoop dfs -copyFromLocal \$HOME/dir1 dir1

References

- Chuck Lam. *Hadoop in Action*. Manning. 2011.
- Tom White. *Hadoop: The Definitive Guide*. O'Reilly, Yahoo! Press. 2009. https://github.com/tomwhite/hadoop-book/