키르히호프행렬의 고유값에 의한 완전다조그라프에서의 생성나무개수평가

우승식, 전윤재

우리는 키르히호프행렬의 고유값에 의하여 완전2조그라프 $K_{p,\,q}$ 에서의 생성나무개수를 평가하고 이 방법으로 완전다조그라프 $K_{n_1,\,n_2,\,\dots,\,n_k}$ 에서의 생성나무개수를 평가하였다.

선행연구[2]에서는 임의의 n-정점다중그라프 G에 대하여 키르히호프행렬인 n차행렬 L(G) = D(G) - A(G)의 임의의 주대각선원소에 대한 여소행렬식은 서로 같으며 그 값은 G의 생성나무개수와 같다는것을 밝혔다.

선행연구[3]에서는 임의의 단순무방향그라프 G의 키르히호프행렬의 고유값에 의하여 G의 생성나무개수를, 선행연구[4]에서는 생성함수를 리용하여 완전2조그라프에서의 생성나무개수를, 선행연구[1]에서는 키르히호프행렬의 주대각선원소에 대한 여소행렬식에 의하여 완전다조그라프에서의 생성나무개수를, 선행연구[5]에서는 1:1넘기기에 의한 방법으로 완전다조그라프에서의 생성나무개수를, 선행연구[6]에서는 조합적방법으로 완전그라프와 완전2조그라프의 결합그라프에서의 생성나무개수를 평가하였다.

선행연구[3]에서는 일반적인 단순무방향그라프에서 키르히호프행렬의 고유값을 리용하여 생성나무개수를 평가하는 방법은 주었지만 구체적인 그라프들에서의 생성나무개수에 대한 닫긴평가공식은 주지 못하였다.

또한 완전2조그라프의 생성나무의 개수를 구하는 생성함수법[4]과 키르히호프행렬의 주대각선원소의 여소행렬식에 의한 생성나무개수평가방법[1], 1:1넘기기에 의한 완전다조 그라프의 생성나무개수평가방법[5]들은 모두 복잡하고 계산량이 많다.

이로부터 론문에서는 선행의 방법보다 더 간단하고 계산량이 작은 키르히호프행렬의 고유값에 의하여 완전2조그라프 $K_{p,\;q}$ 에서의 생성나무개수를 평가하고 완전다조그라프 $K_{n_1,\;n_2,\;\dots,\;n_t}$ 에서의 생성나무개수를 평가하였다.

먼저 완전2조그라프 $K_{p,q}$ 의 생성나무개수를 평가하자.

보조정리 1[3] G를 단순무방향그라프, L을 n차행렬로서 G의 키르히호프행렬이며 $\lambda_1,\ \lambda_2,\cdots,\ \lambda_n$ (여기서 $\lambda_n=0$)을 L의 고유값들이라고 하자.

이때 G의 생성나무개수는 $\lambda_1 \times \lambda_2 \times \cdots \times \lambda_{n-1}/n$ 이다.

보조정리 2 n차행렬 A에 대하여 모든 고유값들의 합은 주대각선원소들의 합과 같다.

행렬의 고유값의 정의로부터 다음의 사실들이 성립된다는것을 쉽게 증명할수 있다. n 차행렬 A 에 대하여 행렬 $A-\lambda_0 E$ 의 위수가 m(m < n) 이면 $\lambda = \lambda_0$ 은 행렬 A 의 (n-m) 중고유값이다.

A에 대하여 μ_0 이 행렬 $A-\lambda_0 E$ 의 고유값이면 $\lambda_0+\mu_0$ 은 행렬 A의 고유값이다.

정리 1 완전2조그라프 $K_{p,q}$ 의 생성나무개수는 $v(K_{p,q}) = p^{q-1}q^{p-1}$ 과 같다.

다음으로 완전다조그라프 $K_{n_1,\;n_2,\;\cdots,\;n_k}$ 의 생성나무개수를 평가하자.

정점모임이 k개의 비교차정점모임(정점분할모임)들의 합으로 되여있고 i번째 정점분 할모임에 들어있는 정점개수는 n_i , 총정점개수는 $n=n_1+n_2+\cdots+n_k$ 인 완전다조그라프 $K_{n_1, n_2, ..., n_k}$ 에서의 생성나무개수를 평가하자.

정리 2 완전다조그라프 $K_{n_1,\,n_2,\,\cdots,\,n_k}$ 의 생성나무개수는 다음과 같다.

$$v(K_{n_1, n_2, \dots, n_k}) = n^{k-2} \cdot \prod_{i=1}^k (n - n_i)^{n_i - 1}$$

증명 완전다조그라프 K_{n_1,n_2,\cdots,n_t} 의 정점들을 첫번째 정점분할모임에 들어있는 정점 들로부터 k 번째 정점분할모임에 들어있는 정점들순서로 번호화를 하면 이 그라프의 키

르히호프행렬은
$$L=L(K_{n_1,\;n_2,\;\cdots,\;n_k})=\begin{bmatrix} M_1 & -1_{n_1,\;n_2} & \cdots & -1_{n_1,\;n_k} \\ -1_{n_2,\;n_1} & M_2 & \cdots & -1_{n_2,\;n_k} \\ \vdots & \vdots & \ddots & \vdots \\ -1_{n_k,\;n_1} & -1_{n_k,\;n_2} & \cdots & M_k \end{bmatrix}$$
와 같다. 여기서 소행렬

$$M_i \leftarrow n_i \text{ 차행렬로서 } M_i = \begin{bmatrix} n-n_i & 0 & \cdots & 0 \\ 0 & n-n_i & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n-n_i \end{bmatrix}, \ i = \overline{1, \ k} \ \text{이고 소행렬} \ -1_{p, \ q} \leftarrow (p+q) \ \text{차}$$

행렬로서 모든 성분이 -1이다.

이제 이 키르히호프행렬의 n개의 고유값(그중 1개는 령이다.)을 구하자.

0을 제외한 나머지 n-1의 고유값들을 구하기 위하여 다음의 행렬을 생각하자.

0을 제외한 나머지
$$n-1$$
의 고유값들을 구하기 위하여 다음의 행렬을 생각하자.
$$L_1' \coloneqq L - (n-n_1)E = \begin{bmatrix} 0_{n_1, \, n_1} & -1_{n_1, \, n_2} & \cdots & -1_{n_1, \, n_k} \\ -1_{n_2, \, n_1} & M_2^{(1)} & \cdots & -1_{n_2, \, n_k} \\ \vdots & \vdots & \ddots & \vdots \\ -1_{n_k, \, n_1} & -1_{n_k, \, n_2} & \cdots & M_k^{(1)} \end{bmatrix}, \quad M_i^{(1)} = \begin{bmatrix} n_1 - n_i & 0 & \cdots & 0 \\ 0 & n_1 - n_i & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n_1 - n_i \end{bmatrix}, \quad i = \overline{2, \, k}$$

행렬 L'_1 에서 첫 n_1 개의 행과 렬은 같다.

 $n_{\rm l}$ 번째 행에 -1을 곱하여 첫 $n_{\rm l}-1$ 개의 행들에 더하면 첫행부터 $n_{\rm l}-1$ 번째 행들의 모든 원소들은 령이다. 즉 이 행렬의 위수는 기껏 $n-n_1+1$ 이다.

따라서 행렬의 고유값의 성질에 의하여 $\lambda_i = n - n_i$ 은 키르히호프행렬 L의 적어도 (n, -1) 중고유값이다.

마찬가지로 행렬 $L_2' := L - (n - n_2)E$, $L_3' := L - (n - n_3)E$, \cdots , $L_k' := L - (n - n_k)E$ 에서 각 각 L의 적어도 (n_2-1) 중고유값 $\lambda_2=n-n_2$, (n_3-1) 중고유값 $\lambda_3=n-n_3$, \cdots , (n_k-1) 중고 유값 $\lambda_k = n - n_k$ 를 얻는다.

결국 적어도 $(n_1-1)+(n_2-1)+\cdots+(n_k-1)=n-k$ 개의 고유값들을 구하였다.

이제 나머지 찾지 못한 고유값은 기껏 k 개인데 그중 1개는 0이다.

0을 제외한 k-1개의 고유값들을 구하기 위하여 다음의 행렬을 생각하자.

$$L'' := L - nE = \begin{bmatrix} M_1^{(2)} & -1_{n_1, n_2} & \cdots & -1_{n_1, n_k} \\ -1_{n_2, n_1} & M_2^{(2)} & \cdots & -1_{n_2, n_k} \\ \vdots & \vdots & \ddots & \vdots \\ -1_{n_k, n_1} & -1_{n_k, n_2} & \cdots & M_k^{(2)} \end{bmatrix}, \quad M_i^{(2)} = \begin{bmatrix} -n_i & 0 & \cdots & 0 \\ 0 & -n_i & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -n_i \end{bmatrix} \quad (i = \overline{1, k})$$

행렬 L'' 에서 첫 n_1 개 행들($M_1^{(2)}$ 가 놓여있는 행부분)가운데서 마지막 n_1-1 개의 행들을 첫 행에 더하면 이 행은 모든 원소들이 n_1 인 행으로 된다.

계속하여 행렬 L''에서 그다음 n_2 개 행들($M_2^{(2)}$ 가 놓여있는 행부분)가운데서 마지막 n_2-1 개의 행들을 첫행에 더하면 이 행은 모든 원소들이 n_2 인 행으로 된다.

이러한 방법을 반복하여 마지막 n_k 개 행부분에 이른다.

마찬가지로 마지막 n_k 개의 행들($M_k^{(2)}$ 가 놓여있는 행부분)가운데서 마지막 n_k -1 개의 행들을 첫행에 더하면 이 행은 모든 원소들이 n_k 인 행으로 된다. 즉 L'' 에서 k 개의 행들 매개에서는 같은 원소들이 놓인다. 이 k 개의 행들에 대하여 첫번째 행에 일정한 수를 급하여 나머지 k-1 개의 행들에 더하면 령원소들로 된 행이 k-1 개 생겨나고 따라서 L''의 위수는 기껏 n-k+1이고 고유값성질에 의하여 n은 L의 (k-1) 중고유값이다.

n 이 L 의 (k-1) 중고유값으로 된다는것은 고유벡토르들을 먼저 구하는 방법으로도론증할수 있다. 따라서 완전다조그라프 K_{n_1,n_2,\ldots,n_k} 에서의 생성나무개수는 보조정리 1에

의하여
$$v(K_{n_1, n_2, \dots, n_k}) = \frac{1}{n} n^{k-1} \cdot \prod_{i=1}^k (n-n_i)^{n_i-1} = n^{k-2} \cdot \prod_{i=1}^k (n-n_i)^{n_i-1}$$
이다.(증명뿐)

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 61, 12, 7, 주체104(2015).
- [2] N. Biggs; Algebraic Graph Theory, Cambridge University Press, 3~56, 1993.
- [3] M. Bona; A Walk Through Combinatorics, World Scientific, 1~546, 2011.
- [4] Y. Jin et al.; Auatralas. J. of Combin., 28, 73, 2003.
- [5] L. Clark; Bull. Inst. Combin. Appl., 38, 50, 2003.
- [6] U Sung Sik; Electronic Journal of Graph Theory and Applications, 4, 2, 171, 2016.

주체108(2019)년 3월 15일 원고접수

Enumeration for the Number of Spanning Trees of the Complete Multipartite Graph by the Eigenvalue of the Kirchhoff Matrix

U Sung Sik, Jon Yun Jae

We have enumerated the number of spanning trees of the complete bipartite graph $K_{p,q}$ by the eigenvalue of the Kirchhoff matrix. And, we have enumerated the number of spanning trees of the complete multipartite graph K_{n_1,n_2,\cdots,n_k} by the same way.

Key words: complete bipartite graph, complete multipartite graph