Numerical Methods

Lev Leontev

February 3, 2023

Contents

1.	Intr	oduction																		1
	1.1	Taylor series					 													1

1. Introduction

Definition 1.1 (Numerical Methods). Numerical Methods are algorithmic approaches to numerically solve mathematical problems. We use it often when it is hard/difficult/impossible to solve analytically.

1.1 Taylor series

Given a function $f: \mathbb{R} \to \mathbb{R}$ (that is hard to evaluate for some $x \in \mathbb{R}$), but f and $f^{(n)}$ are known for a value c, which is close to x. Can we use this information to approximate f(x)?

We know values for $\cos^{(n)}(0)$.

$$\begin{cases} f(0) = \cos(0) = 1\\ f'(0) = -\sin(0) = 0\\ f''(0) = -\cos(0) = -1 \end{cases}$$
 for $c = 0$

Can we get $\cos(0.1)$ from this?

Definition 1.2 (Taylor series). Let $f : \mathbb{R} \to \mathbb{R}$, differentiable infinitely many times at $c \in \mathbb{R}$. So we have $f^{(k)}(c)$, $k = 1, 2, \ldots$ Then the Taylor series of f at c is:

$$f(x) \approx f(c) + \frac{f(c)}{1!}(x-c)^1 + \frac{f''(c)}{2!}(x-c)^2 + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}}{k!}(x-c)^k$$

Remark. Taylor series is a power series.

Remark. For c=0 also known as Maclaurin series

Remark. A power series has an interval/radius of convergence. You can only evaluate the series if $x \in \text{interval}$ of convergence.

Example 1. What is the Taylor series for $f(x) = e^x$ at c = 0? We have $f^{(k)}(x) = e^x$, so $f^{(k)}(0) = 1$. Thus:

$$\sum_{k=0}^{\infty} \frac{1}{k!} x^k$$

and the radius of convergence is ∞ .

I.e. for any $x \in \mathbb{R}$:

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

For an algorithm we need a finite amount of terms. For example,

$$e^x \approx \frac{1}{0!}x^0 + \frac{1}{1!}x^1 + \frac{1}{2!}x^2 = 1 + x + \frac{x^2}{2}$$

This is a polynomial!

Example 2. Let's calculate Taylor series of a polynomial.

$$f(x) = 4x^2 + 5x + 7, \ c = 2$$

 $f(2) = 33, \ f'(2) = 8x + 5 \Big|_{x=2} = 21, \ f''(2) = 8$

Taylor series:

$$33 + 21(x - 2) + \frac{8}{2}(x - 2)^2 = 4x^2 + 5x + 7 = f(x)$$

Taylor series of a polynomial is itself.

Theorem 1.1 (Taylor theorem). Let $f \in C^{n+1}([a,b])$ (i.e. f is (n+1)-times continuously differentiable). Then for any $x \in [a,b]$ we have that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^k + \frac{f^{(n+1)}(\xi_x)}{(n+1)!} (x-c)^{n+1}$$

where ξ_x is a point that depends on x and which is between c and x.

The first sum is called truncated Taylor series, the remainder is called the error.

Example. For n = 0:

$$f(x) = f(c) + f'(\xi_x)(x - c)$$

Choose c = a, x = b:

$$f(b) = f(a) + f'(\xi_x)(b - a) \iff f'(\xi_x) = \frac{f(b) - f(a)}{b - a}$$

This is the mean value theorem!

Figure 1: Mean value theorem illustration

Definition 1.3. We say that the Taylor series *represents* the function f at x if the Taylor series converges at that point, i.e. the remainder tends to zero as $n \to \infty$.

Example 1. Back to e^x : $f(x) = e^x$, c = 0, ξ_x is between c and x.

$$e^x = \sum_{k=0}^{n} \frac{x^k}{k!} + \frac{e^{\xi_x}}{(n+1)!} x^{n+1}$$

Chapter #1 2 of 4 Author: Lev Leontev

For any $x \in \mathbb{R}$ we find $s \in \mathbb{R}_0^+$ (\mathbb{R}_0^+ are all real, positive numbers including 0) so that $|x| \leq s$, and $|\xi_x| \leq s$ because ξ_x is between c and x.

Because e^x is monotone increasing, we have $e^{\xi_x} \leq e^s$, thus

$$\lim_{n \to \infty} \left| \frac{e^{\xi^x}}{(n+1)!} x^{n+1} \right| \leqslant \lim_{n \to \infty} \left| \frac{e^s}{(n+1)!} \right| s^{n+1} = e^s \lim_{n \to \infty} \frac{s^{n+1}}{(n+1)!} = 0$$

Because (n+1)! will grow faster than any power of $s \implies \lim_{n\to\infty} \left| \frac{e^{\xi_x}}{(n+1)!} x^{n+1} \right| = 0$.

Thus e^x is represented by its Taylor series.

Example 2.

$$f(x) = \log(1+x), \ c = 0$$

$$f'(x) = \frac{1}{1+x} = (1+x)^{-1}$$

$$f''(x) = -(1+x)^{-2}$$

$$f'''(x) = +2(1+x)^{-3}$$

$$f^{(k)}(x) = (-1)^{k+1}(k-1)! \frac{1}{(1+x)^k}$$

So $f^{(k)}(0) = (-1)^{k-1}(k-1)!$ for $k \ge 1$, $f(0) = \log(1) = 0$.

Taylor series:

$$f(x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + \frac{(-1)^k}{n+1} \frac{1}{(1+\xi_x)^{n+1}} \cdot x^{n+1} \quad \left(\frac{n!}{(n+1)!} = \frac{1}{n+1}\right)$$

$$E_n(x) = \frac{(-1)^k}{n+1} \frac{1}{(1+\xi_x)^{n+1}} \cdot x^{n+1} \quad \text{the remainder}$$

Question: for which x does $\lim_{n\to\infty} E_n(x) = 0$?

$$\lim_{n \to \infty} E_n(x) = \lim_{n \to \infty} \frac{(-1)^n}{n+1} \left(\frac{x}{\xi_x + 1}\right)^{n+1} \text{ for } \xi_x \in (c, x) \ (c = 0)$$

Such a limit converges to 0, if the fraction is less than 1.

$$0 < \frac{x}{\xi_x + 1} < 1 \iff x < \xi_x + 1 \iff x - \xi_x < 1 \text{ with } \xi_x \in (0, x) \iff x \leqslant 1$$

Consequence. $\lim_{n\to\infty} E_n(x) = 0$ if $0 < x \le 1$. This means that the Taylor series represents $\log(x+1)$ for $x \in [0,1]$. We can extend this to show $x \in (-1,1]$.

Example 3. Let's compute cos(0.1). Let's approximate it with Taylor series with c=0 (around zero).

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \dots + \text{remainder}$$

Consequence.

$$\left|\cos(x) - \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k!)}\right| = \left| (-1)^{n+1} \cos(\xi_x) \frac{x^{2(n+1)}}{(2(n+1))!} \right| \leqslant \frac{0.1^{2(n+1)}}{2(n+1)!} \underset{n \to \infty}{\longrightarrow} 0$$

n
 Taylor polynomial

$$|error| ≤$$

 0
 1
 $\frac{(0.1)^2}{2} = 0.0005$

 1
 0.995
 $\frac{0.0001}{24}$

 2
 0.99500416
 $\frac{0.000001}{6!}$

Error depends on choice of |x-c| and n.

Example 4. Compute $\log(2)$ using $f(x) = \log(x+1)$

$$\log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

Keeping 8 terms (until n = 8) we get $\log(2) \approx 0.63452$, the actual solution is $\log(2) = 0.693147$. Not so accurate. Can we improve?

We can use Taylor series of $\log(\frac{1+x}{1-x})$ instead, since $\log(\frac{1+x}{1-x}) = \log(1+x) - \log(1-x)$. We choose $x = \frac{1}{3}$ instead of x = 1. Since x is closer to zero, both of the logarithms converge quicker.

$$\left(\log\left(\frac{1+1/3}{1-1/3}\right) = \log(2)\right)$$

We then get

$$\log(2) = 2 \cdot \left(\frac{1}{3} + \frac{1}{3^3 \cdot 5} + \dots\right)$$

We only need 4 terms to get $\log 2 \approx 0.69313$.

Theorem 1.2 (Reformulation of Taylor's theorem). $f \in C^{n+1}([a,b])$. We change c to x and the old x to x+h from previous version \implies get for $x, x+h \in [a,b]$:

$$f(x+h) = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^k + \frac{f^{(n+1)}(\xi_x)}{(n+1)!} h^{n+1} \text{ where } \xi_x \in (x, x+h), \ h > 0$$

We can write error term as

$$f(x+h) - \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^k = \mathcal{O}(h^{n+1})$$

Remark. Let's recall what the \mathcal{O} -notation means. $a(h) = \mathcal{O}(b(h))$ if $\exists c > 0$ such that $\frac{a(j)}{b(j)} \leqslant c$ as $h \to 0$. So, for n = 1 the error decreases with h^2 (quadratic convergence). n = 2: error decreases cubically, i.e. h^3 , etc.

Chapter #1 4 of 4 Author: Lev Leontev