$Package\ 'two Stage Design TMLE'$

September 5, 2024

Design
Version 1.0
Author Susan Gruber [aut, cre], Mark van der Laan [aut]
Maintainer Susan Gruber <sgruber@tlrevolution.com></sgruber@tlrevolution.com>
Copyright Copyright 2024. TL Revolution LLC. All Rights Reserved.
Description An inverse probability of censoring weighted (IPCW) targeted maximum likelihood estimator (TMLE) for evaluating a marginal point treatment effect from data where some variables were collected on only a subset of participants using a two-stage design (or marginal mean outcome for a single arm study). A TMLE for conditional parameters defined by a marginal structural model (MSM) is also available.
Depends tmle (>= 2.0)
Suggests dbarts (>= 0.9-18), glmnet
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.1
NeedsCompilation no
Repository CRAN
Date/Publication 2024-09-05 17:20:02 UTC
Contents
evalAugW print.summary.twoStageTMLE print.twoStageTMLE setV summary.twoStage summary.twoStage twoStageDesignTMLE twoStageDesignTMLENews twoStageTMLE twoStageTMLE twoStageTMLE

Index 11

evalAugW calls TMLE to use super learner to evalute preliminary predictions for Q(0,W) and Q(1,W) conditioning on stage 1 covariates

Description

.evalAugW calls TMLE to use super learner to evalute preliminary predictions for Q(0,W) and Q(1,W) conditioning on stage 1 covariates

Usage

```
evalAugW(Y, A, W, Delta, id, family, SL.library)
```

Arguments

Y outcome vector

A binary treatment indicator

W covariate matrix

Delta outcome missingness indicator

id identifier of i.i.d. unit family outcome regression family

SL.library super learner library for outcome regression modeling

Value

W.Q, nx2 matrix of outcome predictions based on stage 1 covariates

```
print.summary.two Stage TMLE \\ print.summary.two Stage TMLE
```

Description

print.summary.twoStageTMLE

Usage

```
## S3 method for class 'summary.twoStageTMLE' print(x, ...)
```

Arguments

x an object of class summary.twoStageTMLE

... additional arguments (i)

print.twoStageTMLE 3

Value

print object

print.twoStageTMLE

print.twoStageTMLE

Description

```
print.twoStageTMLE
```

Usage

```
## S3 method for class 'twoStageTMLE' print(x, ...)
```

Arguments

x an object of class twoStageTMLE

... additional arguments (i)

Value

print tmle results using print.tmle method from tmle package

setV

Utilities setV Set the number of cross-validation folds as a function of effective sample size See Phillips 2023 doi.org/10.1093/ije/dyad023

Description

Utilities setV Set the number of cross-validation folds as a function of effective sample size See Phillips 2023 doi.org/10.1093/ije/dyad023

Usage

```
setV(n.effective)
```

Arguments

n.effective the effective sample size

Value

the number of cross-validation folds

summary.twoStage

summary.twoStageTMLE

Description

Summarizes estimation procedure for missing 2nd stage covariates

Usage

```
## S3 method for class 'twoStage'
summary(object, ...)
```

Arguments

object An object of class twoStageTMLE

... Other arguments passed to the tmle function in the tmle package

Value

A list containing the missingness model, terms, coefficients, type,

```
summary.twoStageTMLE summary.twoStageTMLE
```

Description

```
summary.two Stage TMLE\\
```

Usage

```
## S3 method for class 'twoStageTMLE'
summary(object, ...)
```

Arguments

```
object an object of class twoStageTMLE ... additional arguments (ignored)
```

Value

list summarizing the two-stage procedure components, summary of the twoStage missingness estimation summary of the tmle for estimating the parameter

two Stage Design TMLE News

twoStageDesignTMLENews Get news about recent updates and bug fixes

Description

twoStageDesignTMLENews Get news about recent updates and bug fixes

Usage

```
twoStageDesignTMLENews(...)
```

Arguments

.. ignored

Value

invisible character string giving the path to the file found.

twoStageTMLE

twoStageTMLE

Description

Inverse probability of censoring weighted TMLE for evaluating parameters when the full set of covariates is available on only a subset of observations.

Usage

```
twoStageTMLE(
   Y,
   A,
   W,
   Delta.W,
   W.stage2,
   Z = NULL,
   Delta = rep(1, length(Y)),
   pi = NULL,
   piform = NULL,
   piform = NULL,
   pi.SL.library = c("SL.glm", "SL.gam", "SL.glmnet", "tmle.SL.dbarts.k.5"),
   V.pi = 10,
   pi.discreteSL = TRUE,
   condSetNames = c("A", "W", "Y"),
```

6 twoStageTMLE

```
id = NULL,
Q.family = "gaussian",
augmentW = TRUE,
augW.SL.library = c("SL.glm", "SL.glmnet", "tmle.SL.dbarts2"),
rareOutcome = FALSE,
verbose = FALSE,
...
)
```

Arguments

Y outcome

A binary treatment indicator

W covariate matrix observed on everyone

Delta.W binary indicator of missing second stage covariates

W. stage 2 matrix of second stage covariates observed on subset of observations

Z optional mediator of treatment effect for evaluating a controlled direct effect

Delta binary indicator of missing value for outcome Y

pi optional vector of missingness probabilities for W. stage2

piform parametric regression formula for estimating pi

pi.SL.library super learner library for estimating pi

V.pi number of cross validation folds for estimating pi using super learner

pi.discreteSL Use discrete super learning when TRUE, otherwise ensemble super learning

condSetNames Variables to include as predictors of missingness in W. stage2, any combination

of Y, A, and either W (for all covariates in W), or individual covariate names in W

id Identifier of independent units of observation, e.g., clusters

Q. family Regression family for the outcome

augmentW When TRUE include predicted values for the outcome the set of covariates used

to model the propensity score

augW.SL.library

super learner library for preliminary outcome regression model (ignored when

augmentW is FALSE)

rareOutcome When TRUE specifies less ambitious SL for Q in call to tmle (discreteSL, glm,

glmnet, bart library, V=20)

verbose When TRUE prints informational messages

... other parameters passed to the tmle function (not checked)

Value

object of class 'twoStageTMLE'.

tmle Treatment effect estimates and summary information

twoStage IPCW weight estimation summary, pi are the probabilities, coef are SL weights

or coefficients from glm fit, type of estimation procedure, discreteSL flag

indicating whether discrete super learning was used

augW Matrix of predicted outcomes based on stage 1 covariates only

See Also

- tmle::tmle() for details on customizing the estimation procedure
- twoStageTMLEmsm() for estimating conditional effects
- S Rose and MJ van der Laan. A Targeted Maximum Likelihood Estimator for Two-Stage Designs. *Int J Biostat.* 2011 Jan 1; 7(1): 17. doi:10.2202/15574679.1217

Examples

```
n <- 1000
W1 <- rnorm(n)
W2 <- rnorm(n)
W3 <- rnorm(n)
A \leftarrow rbinom(n, 1, plogis(-1 + .2*W1 + .3*W2 + .1*W3))
Y < -10 + A + W1 + W2 + A*W1 + W3 + rnorm(n)
d <- data.frame(Y, A, W1, W2, W3)</pre>
# Set 400 with data on W3, more likely if W1 > 1
n.sample <- 400
p.sample <- 0.5 + .2*(W1 > 1)
rows.sample <- sample(1:n, size = n.sample, p = p.sample)</pre>
Delta.W <- rep(0,n)
Delta.W[rows.sample] <- 1</pre>
W3.stage2 <- cbind(W3 = W3[Delta.W==1])
#1. specify parametric models and do not augment W (fast, but not recommended)
result1 <- twoStageTMLE(Y=Y, A=A, W=cbind(W1, W2), Delta.W = Delta.W,
   W.stage2 = W3.stage2, piform = "Delta.W~ I(W1 > 0)", V.pi= 5, verbose = TRUE,
   Qform = "Y~A+W1",gform="A~W1 + W2 +W3", augmentW = FALSE)
summary(result1)

    specify a parametric model for conditional missingness probabilities (pi)

   and use default values to estimate marginal effect using \code{tmle}
result2 <- twoStageTMLE(Y=Y, A=A, W=cbind(W1, W2), Delta.W = Delta.W,
     W.stage2 = cbind(W3)[Delta.W == 1], piform = "Delta.W~ I(W1 > 0)",
     V.pi= 5,verbose = TRUE)
result2
```

two Stage TML Emsm

twoStageTMLEmsm

Description

Inverse probability of censoring weighted TMLE for evaluating MSM parameters when the full set of covariates is available on only a subset of observations, as in a 2-stage design.

Usage

```
twoStageTMLEmsm(
   Y,
```

```
Α,
 W,
 ٧,
 Delta.W,
 W.stage2,
 Delta = rep(1, length(Y)),
 pi = NULL,
 piform = NULL,
 pi.SL.library = c("SL.glm", "SL.gam", "SL.glmnet", "tmle.SL.dbarts.k.5"),
 V.pi = 10,
 pi.discreteSL = TRUE,
 condSetNames = c("A", "V", "W", "Y"),
 id = NULL,
 Q.family = "gaussian",
 augmentW = TRUE,
 augW.SL.library = c("SL.glm", "SL.glmnet", "tmle.SL.dbarts2"),
 rareOutcome = FALSE,
 verbose = FALSE,
)
```

Arguments

Υ	outcome of interest (missingness allowed)
A	binary treatment indicator
W	matrix or data.frame of covariates measured on entire population
V	vector, matrix, or dataframe of covariates used to define MSM strata
Delta.W	Indicator of inclusion in subset with additional information
W.stage2	matrix or data.frame of covariates measured in subset population
Delta	binary indicator that outcome Y is observed
pi	optional vector of sampling probabilities
piform	optional parametric regression model for estimating pi
pi.SL.library	optional SL library specification for estimating pi (ignored when piform or pi is provided)
V.pi	optional number of cross-validation folds for super learning (ignored when piform or pi is provided)
pi.discreteSL	flag to indicate whether to use ensemble or discrete super learning (ignored when piform or pi is provided)
condSetNames	variables to condition on when estimating pi. Default is covariates in V and W.Can optionally also condition on A and/or Y.
id	optional indicator of independent units of observation
Q.family	outcome regression family, "gaussian" or "binomial"
augmentW	set to TRUE to augment W with predicted outcome values when $A=\emptyset$ and $A=1$

```
augW.SL.library

super learner library for preliminary outcome regression model (ignored when augmentW is FALSE)

rareOutcome

when TRUE sets V.Q = 20, Q.discreteSL = TRUE, Q.SL.library includes glm, glmnet, bart

verbose

when TRUE prints informative messages

other arugments passed to the tmleMSM function
```

Value

Object of class "twoStageTMLE"

Treatment effect estimates and summary information from call to tmleMSM function

trwhstage IPCW weight estimation summary, pi are the probabilities, coef are SL weights or coefficients from glm fit, type of estimation procedure, discreteSL flag indicating whether discrete super learning was used

augW Matrix of predicted outcomes based on stage 1 covariates only

See Also

- tmle::tmleMSM() for details on customizing the estimation procedure
- twoStageTMLE() for estimating marginal effects

Examples

```
n <- 1000
set.seed(10)
W1 <- rnorm(n)
W2 <- rnorm(n)
W3 <- rnorm(n)
A \leftarrow rbinom(n, 1, plogis(-1 + .2*W1 + .3*W2 + .1*W3))
Y < -10 + A + W1 + W2 + A*W1 + W3 + rnorm(n)
Y.bin <- rbinom(n, 1, plogis(-4.6 - 1.8* A + W1 + W2 -.3 *A*W1 + W3))
# Set 400 obs with data on W3, more likely if W1 > 1
n.sample <- 400
p.sample <- 0.5 + .2*(W1 > 1)
rows.sample <- sample(1:n, size = n.sample, p = p.sample)</pre>
Delta.W <- rep(0,n)
Delta.W[rows.sample] <- 1</pre>
W3.stage2 <- cbind(W3 = W3[Delta.W==1])</pre>
# 1. specify parametric models, misspecified outcome model (not recommended)
result1.MSM <- twoStageTMLEmsm(Y=Y, A=A, V= cbind(W1), W=cbind(W2),
Delta.W = Delta.W, W.stage2 = W3.stage2, augmentW = FALSE,
piform = "Delta.W~ I(W1 > 0)", MSM = "A*W1", augW.SL.library = "SL.glm",
Qform = "Y~A+W1",gform="A~W1 + W2 +W3", hAVform = "A~1", verbose=TRUE)
summary(result1.MSM)
# 2. Call again, passing in previously estimated observation weights,
# note that specifying a correct model for Q improves efficiency
```

```
result2.MSM <- twoStageTMLEmsm(Y=Y, A=A, V= cbind(W1), W=cbind(W2),
Delta.W = Delta.W, W.stage2 = W3.stage2, augmentW = FALSE,
pi = result1.MSM$twoStage$pi, MSM = "A*W1",
Qform = "Y~ A + W1 + W2 + A*W1 + W3",gform="A~W1 + W2 +W3", hAVform = "A~1")
cbind(SE.Qmis = result1.MSM$tmle$se, SE.Qcor = result2.MSM$tmle$se)

#Binary outcome, augmentW, rareOutcome
result3.MSM <- twoStageTMLEmsm(Y=Y.bin, A=A, V= cbind(W1), W=cbind(W2),
Delta.W = Delta.W, W.stage2 = W3.stage2, augmentW = TRUE,
piform = "Delta.W~ I(W1 > 0)", MSM = "A*W1", gform="A~W1 + W2 +W3",
Q.family = "binomial", rareOutcome=TRUE)
```

Index

```
evalAugW, 2
print.summary.twoStageTMLE, 2
print.twoStageTMLE, 3
setV, 3
summary.twoStage, 4
summary.twoStageTMLE, 4
tmle::tmle(), 7
tmle::tmleMSM(), 9
twoStageDesignTMLENews, 5
twoStageTMLE, 5
twoStageTMLE(), 9
twoStageTMLEmsm, 7
twoStageTMLEmsm(), 7
```