Algoritmos de Procura e de Ordenação II

07/10/2024

Sumário

- Binary Search Procura binária num array ordenado
- Algoritmos de Ordenação
- Selection Sort Ordenação por seleção
- Exercícios / Tarefas

Sugestão de leitura

Binary Search — Array ordenado

Binary Search – Procura com sucesso

• O valor 2 pertence ao array?

Binary Search – Procura com insucesso

• O valor 13 pertence ao array?

0	1	2	3	4	5	
2	4	6	8	10	12	
			3	4	5	
			8	10	12	
					5	
					12	Não !!

Representação do array como árvore binária

 A representação gráfica como árvore binária auxilia a compreensão do funcionamento do algoritmo

Procura binária — Nº de iterações do ciclo ?

```
int binSearch( int a[], int n, int x ) {
       int left = 0; int right = n - 1;
       while( left <= right ) {
               int middle = (left + right) / 2;
                                                           // Divisão inteira
               if(a[middle] == x) return middle;
               if(a[middle] > x) right = middle - 1;
               else left = middle + 1;
       return -1;
```

Procura binária – Melhor Caso

- O 1º elemento consultado é o valor procurado !!
- 1 comparação com o elemento na posição a[middle]
- 1 iteração do ciclo while
- B(n) = 1
- Muito pouco habitual...

Pior Caso – Procura com sucesso

• Percorrer a árvore até atingir a/uma folha mais longínqua

• Em geral, qual é a forma da árvore ?

• E qual é a sua altura ?

- Array com 1 elemento : ?
- Array com 2 elementos : ?
- Array com 3 elementos : ?
- Array com 4 elementos : ?
- ...
- Array com n elementos : ?

Pior Caso – Instâncias mais simples

2 iterações

0	1	2
2	4	6

2 iterações

Pior Caso – Instâncias mais simples

•

Pior Caso – Procura com sucesso

- Percorrer a árvore até atingir a/uma folha mais longínqua
- Array com 1 elemento : 1 iteração
- Array com 2 elementos : 2 iterações
- Array com 3 elementos : 2 iterações
- Array com 4 elementos : 3 iterações
- ...
- Array com 7 elementos : 3 iterações
- Array com 8 elementos : 4 iterações

Array com n elementos : ?

Pior Caso – Procura com insucesso

- Há alguma diferença se o valor procurado não pertencer ao array?
- Ou o nº de iterações é o mesmo, sempre que procurarmos um valor que não pertence ao array ?
- No pior caso, o nº de iterações é determinado pela altura da árvore binária associada

$$W(n) = 1 + \lfloor \log_2 n \rfloor = 1 + \text{floor}(\log n)$$

$$W(n) \in O(\log n)$$

Caso Médio — Procuras com sucesso

- Cenário experimental
- Procurar uma vez cada um dos valores registados no array
- Qual o nº médio de iterações realizadas ?

- Análise formal
- Equiprobabilidade
- Caso particular: array com 2^k 1 elementos

Caso Médio – Instâncias mais simples

(1+2)/2=1.5

1.5 iterações

(1 + 2 + 2) / 3 = 1.67 1.67 iterações

Caso Médio – Instâncias mais simples

(1+2+2+3)/4=22 iterações

•

Caso Médio – Nº de nós em cada nível da árvore

- Valor procurado pertence ao array Equiprobabilidade
- Caso particular : $n = 2^k 1$, $k = log_2(n + 1)$
- Representação em árvore binária : árvore tem k níveis

Índice do nível	Nº de nós no nível	Nº de iterações
0	1	1
1	2	2
2	4	3
3	8	4

Caso Médio – Sucesso – Nº de iterações

- Valor procurado pertence ao array Equiprobabilidade
- Caso particular : $n = 2^k 1$, $k = log_2(n + 1)$
- Nº de níveis da árvore binária = k

$$A(n) = \sum_{i=0}^{k-1} \frac{1}{n} \times 2^i \times (i+1) = \frac{1}{n} \left[\sum_{i=0}^{k-1} i \times 2^i + \sum_{i=0}^{k-1} 2^i \right]$$
No de nós no nível i

No de iterações para um nó do nível i

Caso Médio – Sucesso – Nº de iterações

Expressões auxiliares

$$\sum_{i=0}^{k-1} 2^{i} = 2^{k} - 1$$

$$\sum_{i=0}^{k-1} i \times 2^{i} = 2^{k}(k-2) + 2$$

$$A(n) = \frac{1}{n} [2^{k}(k-1) + 1] = \frac{k \times 2^{k} - (2^{k} - 1)}{n} = \frac{k \times (n+1)}{n} - 1$$

$$A(n) = k + \frac{k}{n} - 1 = k - \left(1 - \frac{k}{n}\right) = \log_2(n+1) - \left(1 - \frac{\log_2(n+1)}{n}\right)$$

Verificação para as instâncias mais simples

- n = 3 **1.67** iterações
- n = 7 **2.43** iterações

- $A(1) = \log 2 1 + (\log 2)/1 = 1$
- $A(3) = \log 4 1 + (\log 4)/3 = 1 + 2/3$
- $A(7) = \log 8 1 + (\log 8)/7 = 2 + 3/7$

OK!

Caso Médio vs Pior Caso – Nº de iterações

- Caso particular : $n = 2^k 1$
- W(3) = 1 + floor(log 3) = 2
- $A(3) = \log 4 1 + (\log 4)/3 = 1 + 2/3$

$$A(3) = W(3) - 1/3$$

- W(7) = 1 + floor(log 7) = 3
- $A(7) = \log 8 1 + (\log 8)/7 = 2 + 3/7$

$$A(7) = W(7) - 4/7$$

- W(n) = 1 + floor(log n) = log(n + 1)
- $A(n) = \log(n + 1) 1 + \log(n + 1)/n = W(n) 1 + \log(n + 1)/n \approx W(n) 1$

Caso Médio $-p = Prob(x \in a[0..(n-1)])$

Casos possíveis		Nº de iterações	Probabilidade
Sucesso 0	É o 1º elemento	?	p / n
Sucesso 1	É o 2º elemento	?	p / n
Sucesso (n – 1)	É o último elemento	?	p / n
Insucesso 0	Menor do que o 1º	Nº de níveis da árvore	(1 - p) / (n + 1)
Insucesso 1	Entre o 1º e o 2º	Nº de níveis da árvore	(1 - p) / (n + 1)
Insucesso (n – 1)	Entre o penúltimo e o último	Nº de níveis da árvore	(1 - p) / (n + 1)
Insucesso n	Maior do que o último	Nº de níveis da árvore	(1 - p) / (n +1)

Caso Médio $-p = Prob(x \in a[0..(n-1)])$

- Caso particular : $n = 2^k 1$, $k = log_2(n + 1)$
- Nº de níveis da árvore binária = k

$$A(n) = \left[\frac{p}{n} \times \sum_{i=0}^{k-1} 2^i \times (i+1) + \frac{1-p}{n+1} \times (n+1) \times k\right]$$

$$\mathbf{A}(\mathbf{n}) = \frac{p}{n} \times [\mathbf{k} \times (\mathbf{n} + \mathbf{1}) - \mathbf{n}] + (\mathbf{1} - \mathbf{p}) \times \mathbf{k}$$

$$A(n) = k - p \times \left(1 - \frac{k}{n}\right) \approx k - p \approx \log_2(n+1) - p$$

Caso Médio $-p = Prob(x \in a[0..(n-1)])$

$$A(n) = k - p \times \left(1 - \frac{k}{n}\right) \approx \log_2(n+1) - p$$

• Se p = 1, então $A(n) \approx \log_2(n+1) - 1$

– Sempre sucesso!

- Se p = 50%, então $A(n) \approx \log_2(n+1) \frac{1}{2}$
- Se p = 25%, então $A(n) \approx \log_2(n+1) \frac{1}{4}$
- Se p = 0, então $A(n) \approx \log_2(n+1)$

– Sempre insucesso!

P. Sequencial vs P. Binária – Comparações

Nº de	Procura S	Procura Sequencial		Procura Binária	
elementos	A(n)	W(n)	A(n)	W(n)	
$2^9 - 1 = 511$	256	512	17	18	
$2^{10} - 1 = 1023$	512	1024	19	20	
$2^{14} - 1 = 16383$	8192	16384	27	28	
$2^{17} - 1 = 131071$	65536	131072	33	34	
$2^{20} - 1 = 1048575$	524288	1048576	39	40	
	O(n)	O(n)	O(log n)	O(log n)	

- Cenário: valores procurados podem não pertencer ao array
- P. Binária : nº de comparações ≈ 2 x nº de iterações

Caso médio : valores aproximados

Procura Binária – Resumo

- Estratégia "diminuir-para-reinar" "decrease-and-conquer"
- Representar as possíveis situações com o auxílio de uma árvore binária
- Pior caso: percurso da raiz até à folha mais longínqua
- $W(n) = 1 + \lfloor \log_2 n \rfloor$ No de níveis da árvore binária
- Caso particular : $n = 2^k 1$, $k = log_2(n + 1)$
- Procuras sempre com sucesso : $A(n) \approx W(n) 1$
- Sucesso com probabilidade p : $A(n) \approx W(n) p$ $O(\log n)$
- Para um n qualquer, obtemos expressões "semelhantes"

Algoritmos de Ordenação

Algoritmos de Ordenação

- Para quê ordenar os elementos de um conjunto/multi-conjunto?
- Para facilitar operações de procura, reunião, etc.
- Para simplificar, vamos considerar arrays de números inteiros
- Em geral, cada elemento do array é um registo com uma chave de ordenação
- Função auxiliar para a comparação de duas chaves: -1, 0, 1

Critérios de ordem habituais

Ordem crescente : a[i-1] < a[i]

0	1	2	3	4	5
2	4	6	8	10	12

• Ordem não-decrescente : a[i-1] <= a[i]

0	1	2	3	4	5
2	4	4	8	10	10

Algoritmo de ordenação estável

• Preservar a ordem relativa inicial de elementos com o mesmo valor

Arrays auxiliares de indexação

• Evitar a troca de elementos/registos que ocupem muitos bytes

0	1	2	3	4	5
99999	33333	22222	88888	55555	11111

• Trocar apenas os correspondentes índices num array auxiliar

0	1	2	3	4	5
0	1	2	3	4	5

|--|

Selection Sort – Ordenação por Seleção

Selection Sort – Estratégia

- Procurar a última ocorrência do major elemento
 - Quantas comparações ?
- Colocá-lo na última posição, se necessário, efetuando uma troca
- Repetir o processo para os restantes elementos
 - Quantas comparações ?
- Algoritmo in-place
- Variante: procurar a primeira ocorrência do menor elemento

Exemplo

 0
 1
 2
 3
 4

 7
 2
 6
 4
 3

Exemplo – Encontrar o maior elemento

4 comparações

Exemplo – Trocar para a posição final

7	2	6	4	3
3	2	6	4	7

- 4 comparações
- 1 troca

Exemplo – Encontrar o maior dos restantes

7	2	6	4	3
3	2	6	4	7

- 4 + 3 comparações
- 1 troca

Exemplo – Trocar para a posição final

0	1	2	3	4
7	2	6	4	3

7	2	6	4	3
3	2	6	4	7
3	2	4	6	7

- 4 + 3 comparações
- 1 + 1 trocas

Exemplo – Encontrar o maior dos restantes

0	1	2	3	4
7	2	6	4	3

7	2	6	4	3
3	2	6	4	7
3	2	4	6	7

- 4 + 3 + 2 comparações
- 1 + 1 trocas

Exemplo – Não é necessário trocar !!

0	1	2	3	4
7	2	6	4	3

7	2	6	4	3
3	2	6	4	7
3	2	4	6	7
3	2	4	6	7

- 4 + 3 + 2 comparações
- 1 + 1 + 0 trocas

Exemplo – Encontrar o maior dos restantes

0	1	2	3	4
7	2	6	4	3

7	2	6	4	3
3	2	6	4	7
3	2	4	6	7
3	2	4	6	7

- 4 + 3 + 2 + 1 comparações
- 1 + 1 + 0 trocas

Exemplo – Trocar para a posição final

0	1	2	3	4
7	2	6	4	3

7	2	6	4	3
3	2	6	4	7
3	2	4	6	7
3	2	4	6	7
2	3	4	6	7

• 1 + 1 + 0 + 1 trocas

Terminado!!

Selection Sort

```
void selectionSort( int a[], int n ) {
      for( int k = n - 1; k > 0; k--) {
             int indMax = 0;
             for( int i = 1; i <= k; i++ ) {
                    if(a[i] >= a[indMax]) indMax = i;
             if(indMax!= k) swap(&a[indMax], &a[k]);
```

Selection Sort – Nº de Comparações

- Número fixo de comparações! --- Algoritmo "pouco inteligente"
- Mesmo que o array já esteja ordenado, continuamos a comparar !!

$$\sum_{k=1}^{n-1} k = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

 $O(n^2)$

Nº de Trocas — Melhor Caso e Pior Caso

- Melhor Caso ?
- Bt(n) = 0 Quando?

 Las Best core Traces → Methor po

 Le trocas
- Wt(n) = n 1 Quando? O(n)

 Ly Worst Case Tracks
- Um array pela ordem inversa é uma configuração de pior caso?

Selection Sort – Nº de Trocas – Caso Médio

- p(I_i) é a probabilidade de o elemento a[j] estar na posição correta
- Simplificação : Equiprobabilidade : $p(I_i) = 1 / (j + 1)$
- (1 p(I_j)) é a probabilidade de ser necessária uma troca para o elemento a[j] ficar na posição correta
- (n − 1) iterações

$$A_t(n) = \sum_{j=1}^{n-1} \left(1 - p(I_j)\right) \times \mathbf{1} = \sum_{j=1}^{n-1} 1 - \sum_{j=1}^{n-1} p(I_j)$$

Selection Sort – Nº de Trocas – Caso Médio

$$A_t(n) = \sum_{j=1}^{n-1} \left(1 - p(I_j)\right) \times \mathbf{1} = \sum_{j=1}^{n-1} 1 - \sum_{j=1}^{n-1} p(I_j)$$

$$A_t(n) = n - 1 - \sum_{j=1}^{n-1} \frac{1}{j+1} = n - 1 - \left\{ \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right\} = n - H_n$$

$$A_t(n) = n - H_n \approx n - \ln n$$
 O(n)

Exercícios / Tarefas

Exercício 1 – Escolha múltipla

Considere o *array* ordenado de 8 elementos. Usando o algoritmo de **procura binária**:

			1				
0	1	2	3	4	5	6	7
1	3	5	7	9	11	13	15

- a) O elemento de valor 3 é encontrado ao fim de 2 tentativas.
- b) O elemento de valor 13 é encontrado ao fim de 3 tentativas.
- c) Ambas estão corretas.
- d) Nenhuma está correta.

Exercício 2 – Escolha múltipla

Considere o *array* ordenado de 15 elementos. Usando o algoritmo de **procura binária**:

0	1	2	3	4	5	6	1 7	8	9	10	11	12	13	14
1	3	5	7	9	11	13	15	17	19	21	23	25	27	29

- √ a) O elemento de valor 11 é encontrado ao fim de 3 tentativas.
- / b) O elemento de valor 1 é encontrado ao fim de 4 tentativas.
- √ c) Ao fim 4 tentativas conclui-se que o valor 28 não pertence ao array.
 - d) Todas estão corretas.

Exercício 3 – Escolha múltipla

Considere o seguinte *array* de 6 elementos que é ordenado, por ordem crescente, usando o algoritmo "Selectionsort".

0	1	2	3	4	5
6	5	4	3	2	1

- √a) São efetuadas **15 comparações** entre elementos do *array*.
- /b) São efetuadas 3 trocas entre elementos do array.
 - c) Ambas estão corretas.
 - d) Nenhuma está correta.

Tarefa – Ordenação por Seleção

- Mantendo o objetivo de ordenar os elementos de um array por ordem não-decrescente, é possível desenvolver variações do algoritmo Selection Sort :
- Versão 1: Em cada iteração identifica-se, para o conjunto dos elementos ainda não ordenados, a primeira ocorrência do seu menor elemento e, se necessário, coloca-se na sua posição final
- Versão 2 (mais complexa): Em cada iteração identifica-se, para o conjunto dos elementos ainda não ordenados, a primeira ocorrência do seu menor elemento e a última ocorrência do seu maior elemento, e, se necessário, colocam-se nas suas posições finais
- Desenvolva e teste estes algoritmos

Sugestão de leitura

Sugestão de leitura

- J. J. McConnell, Analysis of Algorithms, 1st Edition, 2001
 - Capítulo 2: secção 2.2