

PB 161557

JUN 23 1994

copy 1

Technical Note

No. 56

Boulder Laboratories

AD-A281 167

A BIBLIOGRAPHY
OF THE
PHYSICAL EQUILIBRIA AND RELATED PROPERTIES
OF
SOME CRYOGENIC SYSTEMS

DTIC QUALITY INSPECTED 2

BY
THOMAS M. FLYNN

94-18651

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers. These papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$1.50), available from the Superintendent of Documents, Government Printing Office, Washington 25, D.C.

NATIONAL BUREAU OF STANDARDS

Technical Note

56

May 1960

A Bibliography of the Physical Equilibria and Related Properties of Some Cryogenic Systems

by

Thomas M. Flynn

Accession For	
NTIS CRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Serial and/or	
Distr	Special
A-1	

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature. They are for sale by the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C.

DISTRIBUTED BY

UNITED STATES DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D. C.

Price \$1.75

Contents

	Page
Abstract	III
1. Introduction	1
1.1 Purpose	1
1.2 Organization	2
1.3 Scope	4
1.4 Acknowledgements	7
2. Phenomena Index	8
2.1 Hydrogen	9
2.2 Helium	13
2.3 Nitrogen	15
2.4 Carbon Dioxide	19
2.5 Carbon Monoxide	22
2.6 Methane	24
2.7 Ethane	28
2.8 Propane	30
3. Properties Index	32
3.1 Hydrogen	33
3.2 Helium	36
3.3 Nitrogen	38
3.4 Carbon Dioxide	42
3.5 Carbon Monoxide	45
3.6 Methane	47
3.7 Ethane	50
3.8 Propane	52
4. Bibliography of References	54

j /
jj

Abstract

A bibliography of approximately 700 references is presented on the physical equilibria and related properties of several important cryogenic systems. The systems considered are the pure components and mixtures of: Hydrogen, Helium, Nitrogen, Carbon Dioxide, Carbon Monoxide, Methane, Ethane, and Propane.

1. Introduction

1.1 Purpose

Gases to be liquefied are frequently obtained as by-products from some parent source, and may contain very large amounts of impurities. Determining the method of removal of the impurities is difficult since the systems are seldom ideal, and may deviate from some theoretical models by factors of several thousand. Research in the area of physical equilibria attempts to present the problem from a fundamental viewpoint so that accurate predictions and designs can be made.

Any serious effort to predict physical equilibria demands at least two types of information, sine qua non. First, a precise description of the P-V-T behavior of the pure components. Second, a precise description of the mixture: the P-V-T behavior, or the interaction of the different molecular species, and the like.

Information in these categories appears in several forms and in many places in the scientific literature. It is the purpose of this paper to present results of a literature search in this field. The search was intended to discover, as completely as possible, that work in phenomena and properties, experimental and theoretical, related to the physical equilibria of a few selected systems.

The systems selected were those of primary interest in cryogenics. They included the pure components and mixtures of: Hydrogen, Helium, Nitrogen, Carbon Dioxide, Carbon Monoxide, Methane, Ethane, and Propane.

Oxygen and the higher hydrocarbons were deliberately excluded as primary systems since their behavior has already been thoroughly reported in the literature of air separation and petroleum, respectively. They were included, however, as "Other Components" within the primary systems.

1.2 Organization

The information is presented in three principal parts:

I. Phenomena, II. Properties, and III. Bibliography of References.

The following outline delineates the arrangement. For the sake of brevity, the sub-headings are given only once in each principal part. They are, of course, repeated for each component.

Organization Outline

I. Phenomena

A. Hydrogen

1. Phase equilibria
2. Fugacity, activity
3. Adsorption, on charcoal
4. Adsorption, on silica gel
5. Adsorption, on other adsorbents

B. Helium

1. -- 5.

C. Nitrogen

1. -- 5.

D. Carbon Dioxide

1. -- 5.

E. Carbon Monoxide

1. -- 5.

F. Methane

1. -- 5.

G. Ethane

1. -- 5.

H. Propane

1. -- 5.

II. Properties**A. Hydrogen**

1. P-V-T General
2. Vapor pressure
3. Critical constants, and triple point
4. Compressibility isotherms
5. Density, molar volume (of a condensed phase)
6. Equations of state, general
7. Corresponding states
8. Beattie - Bridgeman
9. Benedict - Webb - Rubin
10. Potential forms, general
11. Virial coefficients
12. Lennard - Jones 6 - 9 potential
13. Lennard - Jones 6 - 12 potential

B. Helium

1. -- 13.

C. Nitrogen

1. -- 13.

D. Carbon Dioxide

1. -- 13.

E. Carbon Monoxide

1. -- 13.

F. Methane

1. -- 13.

G. Ethane

1. -- 13.

H. Propane

1. -- 13.

III. Bibliography of References (Listed alphabetically by first author)

1.3 Scope

I. Areas Searched

Indexes, when available, were searched under the following headings:

- | | |
|----------------------|-------------------------|
| 1. acetylene | 9. helium |
| 2. adsorbents | 10. hydrogen |
| 3. adsorption | 11. methane |
| 4. carbon dioxide | 12. nitrogen |
| 5. carbon monoxide | 13. propane |
| 6. ethane | 14. propene (propylene) |
| 7. ethene (ethylene) | 15. purification |
| 8. gases | 16. solubility |

The sub groups searched within these general headings were:

1. Analysis: detection, determination, chromatography, mass spectrometry
2. Adsorption: by various agents, of mixtures
3. Absorption
4. Cryostat: cryogenics
5. Distillation

6. Liquefaction: condensation, melting point, solidification
7. Mists: analysis of, formation, separation, supersaturation
8. Physical equilibria: phase diagrams
9. Purification: impurities, separation, removal, drying
10. P-V-T: equations of state, critical constants, compressibility, vapor pressure, specific volume, fugacity
11. Reviews: bibliographies
12. Solubility: dissolved, determination, theory of, laws of
13. Thermodynamic properties

For the years of Chemical Abstracts for which no indexes are available, the following sections were searched:

- a. (1) Apparatus, plant equipment and Unit Operations
- b. (2) General and Physical Chemistry
- c. (6) Inorganic Chemistry
- d. (7) Analytical Chemistry
- e. (13) Miscellaneous and Industrial Products
- f. (22) Petroleum

II. The Abstracts, Indexes, and Lists searched were:

1. Chemical Abstracts, 1907 to date. *
2. British Chemical Abstracts, 1926 through 1953.
3. FIAT Review of German Science, 1936-1946,
Vols. 27b (Inorganic Chemistry, Part V;
Equilibrium Investigation on Inorganic Substances);
Gas Analysis); and 30a (Physical Chemistry;
adsorption and desorption).
4. Chemisches Zentralblatt, 1955 only.
5. Doctoral Dissertations accepted by American
Universities, 1949-1955.
6. Index to American Doctoral Dissertations,
Combined with Dissertation Abstracts, 1955 to
date. *
7. Index to theses accepted for Higher Degrees in
the Universities of Great Britain and Ireland.
* 1951 to date.
8. Bibliography of Translations from Russian
Scientific and Technical Literature. 1953-1956
(no more published).
9. Translation Monthly. 1955-1958.
10. Monthly List of Russian Accessions. 1948 to
date. *
11. Deitz, V. R., Bibliography of Solid Adsorbents,
1900 to 1942, and 1943 to 1953.
12. Rose, Arthur and Elizabeth, Distillation Litera-
ture Index and Abstract, 1946 to 1952, and 1953
to 1954.

* "to date" means through and including the most recent issue available on October 1, 1959.

13. A few selected journals were searched issue by issue from January, 1958, to date, * since it was possible that these issues had not yet been fully abstracted. The journals searched in this manner were:

- a. A.I.Ch.E. Journal
- b. Chemical Engineering Progress
- c. Industrial and Engineering Chemistry
- d. Journal of the American Chemical Society

1.4 Acknowledgements

This work simply never would have been compiled without the aid of many able persons of the National Bureau of Standards Cryogenic Engineering Laboratory staff. Recognition is due: Mr. D. E. Drayer, who performed the bulk of the search; Mr. A. J. Kidnay for help in compiling and proofing; Mrs. B. E. Douglas for typing the two principal indicies; and especially to Mrs. L. E. Merritt for the painstaking and exhausting typing of the bibliography.

The author also wishes to acknowledge the aid of the Cryogenic Engineering Laboratory Data Center, under the direction of Mr. V. J. Johnson. This able group advised the preparation of the primary information retrieval system, and supplied many of the original papers for review.

8

2.0

Phenomena Index

Phenomenon**Major Component****HYDROGEN**

Category	Other Components	References
Phase Equilibria	Helium	568
	Nitrogen	17, 88, 169, 205, 226, 227, 231, 374, 420, 472, 637
	Nitrogen and Carbon Dioxide	2
	Nitrogen and Carbon Dioxide and Carbon Monoxide	3
	Nitrogen and Carbon Monoxide	10, 169, 184, 204, 539, 637
	Nitrogen and Methane	131, 132, 133, 572
	Nitrogen and Methane and Carbon Monoxide	600
	Nitrogen and Methane and Ethane	131, 132, 133
	Nitrogen and Ethene	435
	Carbon Dioxide	1, 3, 186, 236, 426, 605
	Carbon Dioxide and Nitrogen	2

Phenomenon

Major Component

HYDROGEN
(continued)

Category	Other Components	References
Phase Equilibria (continued)	Carbon Dioxide and Nitrogen and Carbon Monoxide	3
	Carbon Monoxide	169, 227, 637
	Carbon Monoxide and Nitrogen	10, 169, 184, 204, 539, 637
	Carbon Monoxide and Nitrogen and Carbon Dioxide	3
	Carbon Monoxide and Nitrogen and Methane	600
	Methane	56, 57, 58, 59, 187, 193, 194, 207, 226, 227, 653
	Methane and Nitrogen	131, 132, 133, 572
	Methane and Nitrogen and Carbon Monoxide	600
	Methane and Nitrogen and Ethane	131, 132, 133
	Methane and Ethane	353

Phenomenon**Major Component****HYDROGEN
(continued)**

Category	Other Components	References
Phase Equilibria (continued)	Methane and Ethane and Propane	56, 57, 58, 59
	Methane and Propane	56, 57, 58
	Methane and Propene	57, 58
	Ethane	352, 612, 663
	Propane	59, 96, 663
	Propene	59
Fugacity, Activity		605
	Helium	370
Adsorption, Charcoal		32, 97, 118, 140, 158, 159, 161, 164, 214, 237, 315, 325, 326, 351, 367, 395, 475, 499, 527, 580, 588, 595, 610, 611, 618, 624
	Nitrogen	12
	Carbon Dioxide	268, 366, 372
Adsorption, Silica Gel		140, 408, 512, 513, 616
	Nitrogen	12, 290

Phenomenon**Major Component****HYDROGEN
(continued)**

Category	Other Components	References
Adsorption, Other Adsorbents		23, 33, 86, 202, 274, 289, 363, 373, 440, 463, 487, 489, 622, 623

Phenomenon**Major Component****HELIUM**

Category	Other Components	References
Phase Equilibria	Hydrogen	568
	Nitrogen	79, 80, 198, 228, 320, 536, 537
	Nitrogen and Methane and Ethane	79, 80, 583
	Nitrogen and Methane and Ethane and Propane	79, 80
	Carbon Dioxide	186, 603
	Methane	229, 230
	Propane	604
	Argon	300, 301
Fugacity, Activity		370
	Nitrogen	228
Adsorption, Charcoal		118, 127, 159, 181, 192, 238, 297, 396, 403, 551, 615, 620, 621, 626
	Nitrogen	346, 430, 678
	Methane	346

Phenomenon**Major Component****HELIUM
(continued)**

Category	Other Components	References
Adsorption, Silica Gel		614
	Oxygen	345
Adsorption, Other Adsorbents		206, 312, 386

Other Components	References
Hydrogen	17, 88, 169, 205, 226, 227, 231, 374, 420, 472, 637
Hydrogen and Carbon Dioxide	2
Hydrogen and Carbon Dioxide and Carbon Monoxide	3
Hydrogen and Carbon Monoxide	10, 169, 184, 204, 539, 637
Hydrogen and Carbon Monoxide and Methane	600
Hydrogen and Methane	131, 132, 133, 572
Hydrogen and Methane and Ethane	131, 132, 133
Helium	79, 80, 198, 228, 320, 536, 537

Phenomenon**Major Component****NITROGEN
(continued)**

Category	Other Components	References
Phase Equilibria (continued)	Carbon Dioxide	1, 3, 200, 426, 605
	Carbon Dioxide and Hydrogen	2
	Carbon Dioxide and Hydrogen and Carbon Monoxide	3
	Carbon Dioxide and Argon	648
	Carbon Monoxide	169, 203, 294, 334, 534, 538, 558, 570, 571, 637
	Carbon Monoxide and Hydrogen	10, 169, 184, 204, 539, 637
	Carbon Monoxide and Hydrogen and Methane	600
	Methane	71, 72, 113, 114, 195, 197, 199, 404, 581, 598, 599, 635
	Methane and Hydrogen	131, 132, 133, 572
	Methane and Helium and Ethane	583
	Methane and Ethane	131, 132, 133

Phenomenon**Major Component****NITROGEN
(continued)**

Category	Other Components	References
Phase Equilibria (continued)	Methane and Ethane and Propane and Butane	584
	Ethane	137, 176, 507
	Ethene	137, 606, 607
	Acetylene	200, 286
	Propane	635
	Propene	137, 607
	Butane	9
	Benzene	518, 519
	Argon	163, 196, 277
Fugacity, Activity	Argon and Oxygen	257, 347, 651
		75, 370
	Helium	228
	Methane	75
	Ethane	492

Phenomenon

Major Component

NITROGEN
(continued)

Category	Other Components	References
Adsorption, Charcoal		20, 21, 22, 97, 109, 118, 149, 150, 159, 161, 180, 201, 215, 218, 275, 278, 279, 283, 296, 302, 314, 365, 400, 405, 436, 499, 508, 511, 525, 527, 595, 609, 640, 641, 664, 665
	Hydrogen	12
	Helium	346, 430, 678
	Oxygen	12
	Carbon Dioxide	268
Adsorption, Silica Gel		90, 108, 145, 172, 173, 179, 222, 296, 330, 337, 376, 480, 565, 589, 616, 665
	Hydrogen	290
	Oxygen	345, 366
	Carbon Dioxide	673
	Carbon Monoxide	666
Adsorption, Other Adsorbents	Methane	666
		23, 33, 86, 433, 546, 622, 644, 677

Phenomenon**Major Component****CARBON DIOXIDE**

Category	Other Components	References
Phase Equilibria	Hydrogen	1, 3, 186, 236, 426, 605
	Hydrogen and Nitrogen	2
	Hydrogen and Nitrogen and Carbon Monoxide	3
	Helium	186, 603
	Nitrogen	1, 3, 200, 426, 605
	Nitrogen and Hydrogen	2
	Oxygen	200
	Carbon Monoxide	1, 3
	Carbon Monoxide and Nitrogen	3
	Methane	170, 171, 500, 605
	Ethane	117, 502, 529
	Ethene	110, 117, 124, 256, 529, 606
	Ethene and Propane	564
	Acetylene	116

Phenomenon**Major Component****CARBON DIOXIDE**
(continued)

Category	Other Components	References
Phase Equilibria (continued)	Propane	8, 144, 488, 506
	Propane and Ethene	564
	Butane	450, 488
	Butanes and Higher Hydrocarbons	406, 407, 470, 488, 575
Fugacity, Activity		152, 375
Adsorption, Charcoal		67, 208, 215, 217, 278, 279, 367, 368, 499, 511, 516, 525, 526, 595, 609
	Hydrogen	268, 366, 372
	Nitrogen	268
	Oxygen	268
	Carbon Monoxide	366
	Ethene	67, 366
	Acetylene	557
Adsorption, Silica Gel		108, 632
	Nitrogen	673
	Oxygen	673

Phenomenon**Major Component****CARBON DIOXIDE**
(continued)

Category	Other Components	References
Adsorption, Other Adsorbents		288, 451, 644

Phenomenon**Major Component****CARBON MONOXIDE**

Category	Other Components	References
Phase Equilibria	Hydrogen	169, 227, 637
	Hydrogen and Nitrogen	10, 169, 184, 204, 539, 637
	Hydrogen and Nitrogen and Carbon Dioxide	3
	Hydrogen and Nitrogen and Methane	600
	Nitrogen	169, 203, 294, 334, 534, 538, 558, 570, 571, 637
	Nitrogen and Hydrogen	10, 169, 184, 204, 539, 637
	Carbon Dioxide	1, 3
	Methane	674
	Propane	659
	Propene	659
Fugacity, Activity	Other Hydrocarbons	470, 659
		370
Adsorption, Charcoal		97, 180, 215, 278, 279, 499, 525, 527, 625

Phenomenon**Major Component****CARBON MONOXIDE**
(continued)

Category	Other Components	References
Adsorption, Charcoal (continued)	Carbon Dioxide	366
Adsorption, Silica Gel		480, 513, 589
	Nitrogen	666
	Methane	666
Adsorption, Other Adsorbents		23, 216, 363, 486, 487, 644

Phenomenon**Major Component****METHANE**

Category	Other Components	References
Phase Equilibria	Hydrogen	56, 57, 58, 59, 187, 193, 194, 207, 226, 227, 653
	Hydrogen and Nitrogen	131, 132, 133, 572
	Hydrogen and Nitrogen and Carbon Monoxide	600
	Hydrogen and Nitrogen and Ethane	131, 132, 133
	Hydrogen and Ethane	353
	Hydrogen and Ethene	362
	Hydrogen and Propane	56, 57, 58
	Hydrogen and Propene	56, 57, 58
	Helium	229, 230
	Helium and Nitrogen and Ethane	583
	Helium and Nitrogen and Hydrocarbons	79, 80

Phenomenon**Major Component****METHANE
(continued)**

Category	Other Components	References
Phase Equilibria (continued)	Nitrogen	71, 72, 113, 114, 195, 197, 199, 404, 581, 598, 599, 635
	Nitrogen and Hydrogen	131, 132, 133, 572
	Nitrogen and Hydrogen and Carbon Monoxide	600
	Nitrogen and Hydrogen and Ethane	131, 132, 133, 572
	Nitrogen and Helium and Ethane	583
	Nitrogen and Helium and Hydrocarbons	79, 80
	Oxygen	19, 195
	Carbon Dioxide	170, 171, 500, 605
	Carbon Monoxide	674
	Ethane	91, 251, 534, 535, 540, 612
	Ethane and Hydrogen	353

Phenomenon**Major Component****METHANE
(continued)**

Category	Other Components	References
Phase Equilibria (continued)	Ethane and Hydrogen and Nitrogen	131, 132, 133
	Ethane and Helium and Nitrogen	583
	Ethane and Ethene	246, 441
	Ethene	243, 245, 361, 441, 639
	Ethene and Hydrogen	362
	Propane	7, 251, 504, 544, 545, 612, 649
	Propane and Hydrogen	56, 57, 58
Fugacity, Activity	Propene and Hydrogen	56, 57, 58
		75, 370, 547, 605
	Nitrogen	75
Adsorption, Charcoal	Propane	64
		32, 76, 183, 214, 215, 218, 278, 279, 327, 329, 332, 354, 377, 436, 471, 499, 511, 609, 645, 650

Phenomenon**Major Component****METHANE
(continued)**

Category	Other Components	References
Adsorption, Charcoal (continued)	Nitrogen	12
	Ethane	633
	Propane	633, 645
	n - Butane	633, 645
Adsorption, Silica Gel		354, 480, 513, 614
	Nitrogen	666
	Carbon Monoxide	666
	Ethane	129
Adsorption, Other Adsorbents		233, 363, 563

Phenomenon**Major Component****ETHANE**

Category	Other Components	References
Phase Equilibria	Hydrogen	352, 612, 663
	Hydrogen and Nitrogen and Methane	131, 132, 133
	Hydrogen and Methane	353
	Hydrogen and Ethene	567
	Hydrogen and Hydrocarbons	56, 57, 58, 59
	Nitrogen	137, 176, 507
	Nitrogen and Helium and Hydrocarbons	79, 80
	Oxygen	19, 137
	Carbon Dioxide	117, 502, 529
	Methane	91, 251, 534, 535, 540, 612
		353
		131, 132, 133

Phenomenon**Major Component****ETHANE
(continued)**

Category	Other Components	References
Phase Equilibria (continued)	Methane and Hydrogen and Hydrocarbons	57, 58, 59
	Methane and Ethene	246, 441
	Ethene	253
	Ethene and Acetylene	397
	Acetylene	116
Fugacity, Activity		492
Adsorption, Charcoal		97, 183, 218, 278, 279, 332, 354, 436, 462, 471, 499, 643, 650
	Methane	633
Adsorption, Silica Gel		354, 643
	Methane	129
	Propane	642
Adsorption, Other Adsorbents		522, 591

Phenomenon**Major Component****PROPANE**

Category	Other Components	References
Phase Equilibria	Hydrogen	59, 96, 663
	Hydrogen and Methane	56, 57, 58, 59
	Helium	604
	Helium and Nitrogen and Hydrocarbons	79, 80
	Nitrogen	635
	Nitrogen and Hydrocarbons	584
	Oxygen	19
	Carbon Dioxide	8, 144, 488, 506
	Carbon Monoxide	659
	Methane	7, 251, 504, 544, 545, 612, 649
	Propene	252, 505
Fugacity, Activity		64
Adsorption, Charcoal		62, 183, 218, 332, 354, 436, 462, 471, 499, 645, 650
	Methane	633, 645

Phenomenon**Major Component****PROPANE
(continued)**

Category	Other Components	References
Adsorption, Charcoal (continued)	Propene	357
	n - Butane	645
Adsorption, Silica Gel		354, 515
	Ethane	642
	Ethene	355
	Propene	357
Adsorption, Other Adsorbents		591

32

3.0

Properties Index

Properties**Major Component****HYDROGEN**

Category	Other Components	References
P-V-T General		235, 262, 291, 292, 656, 658, 669
	Nitrogen	34, 419, 608
	Nitrogen and Carbon Dioxide	338
	Carbon Dioxide	338
Compressibility Isotherms		4, 6, 34, 35, 52, 85, 220, 247, 272, 273, 293, 384, 424, 445, 446, 448, 452, 456, 477, 560, 576, 577, 590, 601, 638, 661, 669, 680
	Helium	52, 220, 590
	Nitrogen	34, 35, 60, 209, 338, 340, 359, 380, 418, 638, 661
	Nitrogen and Carbon Dioxide	338, 380
	Nitrogen and Methane	74, 340
	Carbon Dioxide	338, 380, 636
	Carbon Monoxide	560, 587, 601
	Methane	207, 340

Properties**Major Component****HYDROGEN
(continued)**

Category	Other Components	References
Compressibility Isotherms (continued)	Methane and Nitrogen	74, 340
Vapor Pressure		27, 105, 111, 122, 190, 211, 235, 239, 270, 427, 428, 561, 656, 669
Critical Constants and Triple Point		27, 61, 211, 242, 260, 262, 271, 306, 349, 476, 477, 478, 627, 655, 656, 669, 670
Density, Molar Volume		30, 160, 387, 401, 456, 532, 552, 562, 669
	Nitrogen	75
Compressibility Factor, Z		212, 669, 675
	Nitrogen	34, 60, 543
Equation of State, General		51, 123, 213, 265, 333, 339, 438, 531, 613, 652, 669
	Nitrogen	339, 380, 466
	Carbon Dioxide	339
	Carbon Monoxide	380
Corresponding States		5, 370

Properties**Major Component****HYDROGEN
(continued)**

Category	Other Components	References
Beattie-Bridgeman		43, 44, 156, 381, 585
	Nitrogen	46, 154, 169
	Nitrogen and Carbon Monoxide	169
	Carbon Monoxide	46, 169
Benedict-Webb-Rubin		17
Virial Coefficients		4, 305, 322, 379, 416, 417, 429, 444, 553, 619
	Helium	295
	Nitrogen	177, 295, 473, 515
	Carbon Dioxide	136, 177
	Carbon Monoxide	295, 473, 515
	Methane	177
Lennard-Jones 6-9 Potential		148
	Helium	590
Lennard-Jones 6-12 Potential		148

Properties**Major Component****HELIUM**

Category	Other Components	References
P-V-T General		16, 235, 306, 438
	Nitrogen	335
Compressibility Isotherms		6, 85, 92, 98, 115, 272, 273, 308, 311, 384, 387, 453, 454, 474, 477, 478, 660
	Hydrogen	52, 220, 590
	Carbon Dioxide	255
Vapor Pressure		13, 14, 69, 119, 235, 242, 306, 389, 427, 583, 617
Critical Constants and Triple Points		61, 262, 306, 389, 476, 477, 478, 623, 627
Density, Molar Volume		11, 77, 175, 234, 249, 264, 298, 548
Compressibility Factor, Z		79, 80, 583
	Carbon Dioxide	254
Equation of State, General		134, 148, 262, 298, 328, 382, 439, 455, 479, 533, 555, 681
Corresponding States		370

Properties**Major Component****HELIUM
(continued)**

Category	Other Components	References
Beattie- Bridgeman		44, 381, 585
Virial Coefficients		4, 106, 240, 299, 309, 311, 313, 316, 323, 324, 379
	Hydrogen	295
	Nitrogen	177, 336
	Argon	295
	Carbon Dioxide	135, 177, 255, 474
Lennard-Jones 6-9 Potential		148, 299
	Hydrogen	590
	Argon	590
Lennard-Jones 6-12 Potential		148

Properties**Major Component****NITROGEN**

Category	Other Components	References
P-V-T General		53, 235, 287, 349, 530
	Hydrogen	34, 419, 608
	Hydrogen and Carbon Dioxide	338
	Helium	335
	Methane	72
	Ethane	176
Compressibility Isotherms		35, 37, 41, 85, 153, 157, 272, 394, 474, 638
	Hydrogen	34, 35, 60, 209, 338, 340, 359, 380, 418, 638, 661
	Hydrogen and Carbon Dioxide	338, 380
	Hydrogen and Methane	74, 340
	Carbon Dioxide	250, 380
	Carbon Monoxide	597
	Methane	318, 340
	Methane and Hydrogen	74, 340

Properties**Major Component****NITROGEN
(continued)**

Category	Other Components	References
Vapor Pressure		24, 79, 84, 142, 163, 210, 219, 235, 242, 260, 261, 265, 276, 287, 307, 310, 427, 451, 484, 491, 520, 583, 657, 672
Critical Constants and Triple Points		104, 261, 306, 348, 349, 457, 476, 478, 484, 657
Density, Molar Volume		75, 84, 160, 387, 532, 566, 667
	Hydrogen	75
Compressibility Factor, Z		34, 79, 80, 125, 265, 370, 421, 438, 477, 484, 528, 583, 667
	Hydrogen	34, 60, 543
	Hydrogen and Carbon Dioxide and Carbon Monoxide and Methane	543
	Methane	73, 587
	Ethane	176
	Ethene	248
	Propane	647

Properties**Major Component****NITROGEN
(continued)**

Category	Other Components	References
Equation of State, General		265, 266, 321, 331, 383, 388, 421, 432, 433, 465, 467, 477, 480, 555, 582, 629, 667
	Hydrogen	339, 380, 466
	Methane	199, 318, 339, 628
Corresponding States		370, 443, 630
Beattie-Bridgeman		44, 153, 480, 585, 586
	Hydrogen	46, 169, 154
	Hydrogen and Carbon Monoxide	169
	Carbon Monoxide	169
	Methane	45, 46
Benedict-Webb-Rubin		17, 480, 581
	Hydrogen	17
	Carbon Monoxide	558
Virial Coefficients		106, 304, 305, 379, 443, 474, 581, 654
	Hydrogen	177, 295, 473, 515

Properties**Major Component****NITROGEN
(continued)**

Category	Other Components	References
Virial Coefficients (continued)	Helium	177, 336
	Oxygen	295
	Carbon Dioxide	136, 177, 474
	Methane	177
Lennard-Jones 6-9 Potential		349
Lennard-Jones 6-12 Potential		221, 519, 592

Properties**Major Component****CARBON DIOXIDE**

Category	Other Components	References
P-V-T General		235, 414, 496
	Hydrogen	338
	Hydrogen and Nitrogen	338
	Ethane	502
	Ethene and Propane	564
	n - Butane	450
Vapor Pressure		82, 117, 188, 235, 409, 410, 434, 458, 484, 593, 676
Critical Constants and Triple Points		102, 423, 484
Compressibility Isotherms		39, 40, 107, 247, 258, 387, 411, 412, 448, 574
	Hydrogen	338, 380, 636
	Hydrogen and Nitrogen	34, 35, 338, 359, 380, 638
	Helium	255
	Nitrogen	250, 338

Properties

Major Component

CARBON DIOXIDE
(continued)

Category	Other Components	References
Compressibility Isotherms (continued)	Nitrogen and Hydrogen	34, 35, 338, 359, 380, 638
Compressibility Factor, Z		438, 484
	Hydrogen and Nitrogen and Carbon Monoxide and Methane	543
	Helium	254
	Methane	500
Equation of State, General		139, 266, 331, 383, 432, 582, 586, 634
	Hydrogen	380
Corresponding States		125
	Ethene	110
Beattie-Bridgeman		83, 281, 381, 585
Virial Coefficients		126, 136, 304, 371, 379, 553, 592
	Hydrogen	136, 177
	Helium	135, 177, 255, 474

Properties**Major Component****CARBON DIOXIDE**
(continued)

Category	Other Components	References
Virial Coefficients (continued)	Nitrogen	136, 177, 474
	Oxygen	136, 177
	Carbon Monoxide	136
	Ethene	177
Lennard-Jones 6-12 Potential		221, 519, 592

Properties

Major Component

CARBON MONOXIDE

Category	Other Components	References
P-V-T General		182, 235, 530
Vapor Pressure		120, 143, 235, 241, 265, 389, 390, 422, 672
Critical Constants and Triple Points		104, 143, 244, 389, 390, 478
Compressibility Isotherms		36, 37, 78, 223, 224, 258, 394, 476, 560, 574
	Hydrogen	560, 587, 601
	Nitrogen	597
Density, Molar Volume		104, 157, 160
	Methane	103
Compressibility Factor, Z		265, 438, 517, 528
	Hydrogen and Nitrogen and Carbon Dioxide and Methane	543
Equation of State, General		155, 265, 467, 549
	Hydrogen	339

Properties**Major Component****CARBON MONOXIDE**
(continued)

Category	Other Components	References
Corresponding States		125, 189, 244, 370
Beattie-Bridgeman		381, 549
	Hydrogen	46, 169
	Hydrogen and Nitrogen	169
	Nitrogen	169
Benedict-Webb-Rubin		549, 558
	Nitrogen	558
Virial Coefficients		391
	Hydrogen	295, 473, 515
	Carbon Dioxide	136
Lennard-Jones 6-12 Potential		221

Properties**Major Component****METHANE**

Category	Other Components	References
P-V-T General		72, 87, 100, 165, 225, 232, 319, 342, 468
	Nitrogen	72
	Ethane	280
	Propane	280
	n - Butane	280, 503
Vapor Pressure		26, 70, 79, 81, 121, 130, 178, 241, 259, 303, 317, 319, 344, 360, 484, 510, 573, 579, 583, 594, 602, 672, 679
Critical Constants and Triple Point		42, 101, 103, 104, 141, 178, 225, 244, 317, 319, 425, 476, 477, 478, 481, 523, 524, 602, 623, 631
Compressibility Isotherms		207, 413
	Hydrogen	207, 340
	Hydrogen and Nitrogen	74, 340
	Nitrogen	318, 340
	Ethane	415

Properties

Major Component

METHANE

(continued)

Category	Other Components	References
Density, Molar Volume		121, 263, 387, 393, 431, 532, 541, 554, 578
	Carbon Monoxide	103
Compressibility Factor, Z		15, 79, 80, 89, 438, 477, 484, 583
	Hydrogen and Nitrogen and Carbon Dioxide and Carbon Monoxide	543
	Nitrogen	73, 587
	Carbon Dioxide	500
	Ethane	587
	n - Butane	587
Equation of State, General		258, 331, 383, 432, 464, 467, 477
	Nitrogen	199, 318, 339, 628
Corresponding States		225, 251, 285, 461, 586
Beattie- Bridgeman		43, 44, 381, 519, 585
	Nitrogen	45, 46
Benedict- Webb-Rubin		54, 55, 459, 560, 461, 482, 483, 581

Properties**Major Component****METHANE
(continued)**

Category	Other Components	References
Virial Coefficients		304, 485, 556, 587
	Hydrogen	177
	Nitrogen	177
Lennard-Jones 6-12 Potential		221

Properties**Major Component****ETHANE**

Category	Other Components	References
P-V-T General		100, 232
	Nitrogen	176
	Carbon Dioxide	502
	Methane	280
	Propene	378, 402, 494
Vapor Pressure		79, 94, 95, 117, 130, 151, 178, 360, 364, 490, 583, 593, 594, 679
Critical Constants and Triple Point		42, 50, 102, 524
Compressibility Isotherms		38, 47, 49, 146, 501
	Methane	415
	Propene	378, 493, 494
Density, Molar Volume		263, 578
Compressibility Factor, Z		79, 80, 333
	Nitrogen	176
	Methane	587

Properties**Major Component****ETHANE
(continued)**

Category	Other Components	References
Equation of State, General		47, 139, 162, 258, 331, 383, 549, 629
Corresponding States		18, 110, 125, 284, 461, 586
Beattie-Bridgeman		381, 549, 585
Benedict-Webb-Rubin		54, 55, 459, 460, 461, 482, 549
Virial Coefficients		521

Properties

Major Component

PROPANE

Category	Other Components	References
P-V-T General		232
	Carbon Dioxide and Ethane	564
	Methane	280
	Propene	505
Vapor Pressure		79, 93, 95, 151, 178, 191, 360, 593, 594, 679
Critical Constants and Triple Point		138, 178, 343, 369, 523, 524
Compressibility Isotherms	Propene	358
Density, Molar Volume		263, 385, 578
Compressibility Factor, Z		79, 80, 191
	Nitrogen	647
Equation of State, General		258, 331, 383
Corresponding States		18, 125, 284, 461

Properties**Major Component****PROPANE
(continued)**

Category	Other Components	References
Beattie- Bridgeman		48, 381, 585
Benedict- Webb-Rubin		54, 55, 459, 461, 482

4.0

Bibliography of References

BIBLIOGRAPHY

1. Abdulaev, Ya. A.; Phase Relations in Mixtures of Carbon Dioxide with Hydrogen, Nitrogen, and Carbon Monoxide
J. Phys. Chem. (U.S.S.R.) 13, 986-8 (1939)
2. Abdulaev, Ya. A.; Investigating the Solubility of a Hydrogen-Nitrogen Mixture in Liquid Carbon Dioxide
J. Applied Chem. (U.S.S.R.) 14, 302-4 (1941)
3. Abdulaev, Ya. A.; Equilibrium in the Liquid Carbon Dioxide System in the Presence of Technical Gases
J. Chem. Ind. (U.S.S.R.) 16, no. 2, 37-40 (1939)
4. Agt, F. van, and Onnes, H. K.; The Compressibility of Hydrogen and Helium Between 90 and 14°K
Communs. Kamerlingh Onnes Lab. Univ. Leiden 176b (1925)
5. Agt, F. van; The Behavior of Hydrogen Relative to the Law of Corresponding States
Communs. Kamerlingh Onnes Lab. Univ. Leiden 176c (1925)
6. Agt, F. van, and Onnes, H. K.; Isotherms of Monatomic Substances and of Their Binary Mixtures XXI. The Compressibility of Hydrogen and Helium between 90 and 14°K
Verslag. Akad. Wetenschappen Amsterdam 34, 625-37 (1925)
7. Akers, W. W., Burns, J. F., and Fairchild, W. R.; Low-Temperature Phase Equilibria. Methane-Propane System
Ind. Eng. Chem. 46, 2531-34 (1954)
8. Akers, W. W., Kelley, R. E., and Lipscomb, T. G.; Low-Temperature Phase Equilibria. Carbon Dioxide-Propane System
Ind. Eng. Chem. 46, 2535-6 (1954)
9. Akers, W. W., Attwell, L. L., and Robinson, J. A.; Volumetric and Phase Behavior of Nitrogen-Hydrocarbon Systems. Nitrogen-Butane System
Ind. Eng. Chem. 46, 2539-40 (1954)
10. Akers, W. W., and Eubanks, L. S.; Vapor-Liquid Equilibrium in the System Hydrogen-Nitrogen-Carbon Monoxide
Proc. Cryogenic Eng. Conf., 2nd, Boulder, Colo., 1957, 275-93

11. Akin, S. W.; The Thermodynamic Properties of Helium
Trans. ASME 72, 751-57 (Dec. 1954)
12. Alekseev, V. N.; Separation of Mixtures of Gases by
Adsorption
J. Applied Chem. (U.S.S.R.) 12, 996-1005 (1939)
13. Ambler, E., and Hudson, R. P.; Examination of the Helium
Vapor-Pressure Scale of Temperature Using a Magnetic
Thermometer
J. Research Nat. Bur. Standards 56, 99-104 (1956)
14. Ambler, E., and Hudson, R. P.; Examination of the 1955
Helium Vapor-Pressure Scale of Temperature
J. Research Nat. Bur. Standards 57, 23-25 (1956)
15. Anon.; Pacific Coast Gas Association; Gas Engineer's
Handbook
McGraw-Hill Book Co., Inc., New York (1934)
16. Anon.; Bibliography of Gas Properties
Trans. ASME 894, 901 (1949)
17. Anon.; Hydrocarbon Research Inc., Final Report to the
U.S.A.E.C., Low Temperature Heavy Water Plant, Contract
No. AT(30-1)-810, NYO-889 (3-15-51)
18. Anon.; Engineering Data Book, NGSMA, 7th ed., Tulsa,
Okla., (1957)
19. Anon.; Safety in Air and Ammonia Plants
Chem. Eng. Prog. 55, no. 6, 54-64 (1959)
20. Antropoff, A. V.; Adsorption of Nitrogen by Charcoal at High
Pressures
Z. Elektrochem. 39, 616 (1933)
21. Antropoff, A. V., Steinberg, F., Kalthof, F., Schmitz, L.,
and Schaeben, R.; The Adsorption of Argon and of Nitrogen
on Active Charcoal from the Lowest to the Highest Pressures
Z. Elektrochem. 42, 554-7 (1936)

22. Antropoff, A. V., Propfe, H. A., Weil, K., Kalthoff, F., Schmitz, L., and Cronenthal, G. R.; Investigations of Adsorption of Gases from Very Small to Very High Pressures. III. Adsorption Isotherms of the Noble Gases and of Nitrogen at Pressures Below Atmospheric
Kolloid Z. 129, 1-10 (1952)
23. Armbruster, M. H., and Austin, J. E.; The Adsorption of Gases on Smooth Surfaces of Steel; Argon, Neon, Hydrogen, Nitrogen, Carbon Monoxide, and Carbon Dioxide.
J. Am. Chem. Soc. 66, 159-71 (1944)
24. Armstrong, G. T.; Vapor Pressure of Nitrogen
J. Research Nat. Bur. Standards 53, 263 (1954)
25. Armstrong, G. T., Goldstein, J. M., and Roberts, D. E.; Liquid-Vapor Phase Equilibrium in Solutions of Oxygen and Nitrogen at Pressures below one Atmosphere
J. Research Nat. Bur. Standards 55, 265-77 (1955)
26. Armstrong, G. T., Brickwedde, F. G., and Scott, R. B.; Vapor Pressures of the Methanes
J. Research Nat. Bur. Standards 55, 39 (1955)
27. Arnold, R. D., and Hoge, H. J.; A Test of the Ideal Solution Laws for Hydrogen, Hydrogen-Deuteride, and Deuterium. Vapor Pressures and Critical Constants of the Individual Components.
J. Chem. Phys. 18, 1295 (1950)
28. Aroyan, H. J.; Vapor Liquid Equilibrium in the Hydrogen-n Butane system; 75 to - 200° F, and 300 to 8000 psia
Ph.D. Thesis, University of Michigan, Ann Arbor, Mich.; Univ. Microfilms (1950)
29. Aroyan, H. J., and Katz, D. L.; Low Temperature Vapor Liquid Equilibrium in the Hydrogen-n Butane System
Ind. Eng. Chem. 43, 188 (1951)
30. Augustin, H.; Density of Liquid Hydrogen, Index of Refraction and Dispersion of Liquid Hydrogen in Liquid Nitrogen
Ann. Physik 46, 419 (1915)

31. Baly, R.; On the Distillation of Air, and the Composition of the Gaseous and Liquid Phases
Phil. Mag. (V), 49, 517 (1900)
32. Barrer, R. M.; Interaction of Hydrogen with Micro-Crystalline Charcoal, II. Activated Sorption of Hydrogen and Methane by Carbon
Proc. Roy. Soc. 149A, 231-269 (1935)
33. Barrer, R. M. and Robins, A. B.; Sorption of Mixtures, II. Equilibria Between Binary Gas Mixtures and Some Zeolites
Trans. Farady Soc. 49, 929-39 (1953)
34. Bartlett, E. P.; Compressibility Isotherms of Hydrogen, Nitrogen, and Mixtures of These Gases at 0° and Pressures to 1000 Atmospheres
J. Am. Chem. Soc. 49, 687-701 (1927)
35. Bartlett, E. P., Cupples, H. L., and Tremearne, T. H.; Compressibility Isotherms of Hydrogen, Nitrogen, and a 3:1 Mixture of These Gases at Temperatures Between 0° and 400° and at Pressures to 1000 Atmospheres
J. Am. Chem. Soc. 50, 1275-88 (1928)
36. Bartlett, E. P., Hetherington, H. C., Kvalnes, H. M., and Tremearne, T. H.; Compressibility Isotherms of Carbon Monoxide at Temperatures from -70° to 200° and at Pressures to 1000 Atmospheres
J. Am. Chem. Soc. 52, 1374-82 (1930)
37. Batuecas, T., Schlatter, C. and Maverick, G.; Compressibility of Gases at 0° and Below One Atmosphere, and Their Divergence from Avagodro's Law, IV. Carbon Monoxide and Nitrogen
J. Chim. Phys. 26, 548-555 (1929)
38. Batuecas, T.; Compressibility of Certain Gases at Low Pressures
J. Chim. Phys. 31, 65-75 (1934)
39. Batuecas, T., and Malde, G. G.; Compressibility and Deviation from Boyle's Law of Carbon Dioxide at 0° to one Atmosphere
Anales Real Soc. Espan. Fis. Quim. (Madrid) 49B, 405-10 (1953)

40. Batuecas, T. and Losa, C. G.; Compressibility and Deviation from Boyle's Law of Carbon Dioxide Gas at 0° Between 0 and one Atmosphere, II.
Anales Real Soc. Espan. Fis. Quim. (Madrid) 50B, 845-50 (1954)
41. Baxter, G. P., and Starkweather, H. W.; The Density, Compressibility and Atomic Weight of Nitrogen
Proc. Nat. Acad. Sci. 12, 703-7 (1926)
42. Beall, I. M.; Physical and Thermodynamic Properties of Methane and Ethane
Refiner Nat. Gasoline Mfr. 14, No. 5, 232-4 (1935)
43. Beattie, J. A., and Bridgeman, O. C.; A New Equation of State for Fluids
Proc. Am. Acad. Arts and Sci. 63, 229-308 (1928)
44. Beattie, J. A., and Bridgeman, O. C.; A New Equation of State for Fluids. II. Application to Helium, Neon, Hydrogen, Nitrogen, Oxygen, Air and Methane. III. The Normal Densities and Compressibilities of Several Gases at 0°C
J. Am. Chem. Soc. 50, 3133-8 (1928)
45. Beattie, J. A.; An Equation of State for Gaseous Mixtures I. Application to Mixtures of Methane and Nitrogen
J. Am. Chem. Soc. 51, 19-30 (1929)
46. Beattie, J. A., and Ikehara, S.; An Equation of State for Gas Mixtures II. A Study of the Methods of Combination of the Constants of the Beattie - Bridgeman Equation of State
Proc. Am. Acad. Arts and Sci. 64, 127-76 (1930)
47. Beattie, J. A., Hadlock, C. and Poffenberger, N.; Compressibility of, and An Equation of State for, Gaseous Ethane
J. Chem. Phys. 3, 93-6 (1935)
48. Beattie, J. A., Kay, W. C. and Kaminsky, J.; Compressibility of and Equation of State for Gaseous Propane
J. Am. Chem. Soc. 59, 1589-90 (1937)

49. Beattie, J. A., Su, G. J. and Simard, G. L.; The Compressibility of Gaseous Ethane in the High Density Region
J. Am. Chem. Soc. 61, 926-7 (1939)
50. Beattie, J. A., Su, G. J. and Simard, G. L.; The Critical Constants of Ethane
J. Am. Chem. Soc. 61, 924-5 (1939)
51. Beenakker, J. J. and Varekamp, F. H.; Equation of State of Hydrogen and Isotopes Below 20 K
Inst. Internat. du Froid, Annexe 1956-2, 189 (1956)
52. Beenakker, J. J. M., et al; The Isotherms of Hydrogen Isotopes and Their Mixtures with Helium at the Boiling-point of Nitrogen
Physica 25, 9 (1959)
53. Benedict, M.; Pressure, Volume, Temperature Properties of Nitrogen at High Density. I. Results Obtained with a Weight Piezometer
J. Am. Chem. Soc. 59, 2224-33 (1937)
54. Benedict, M., Webb, G. B. and Rubin, L. C.; An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and their Mixtures. I. Methane, Ethane, Propane, N-Butane
J. Chem. Phys. 8, 334-45 (1940)
55. Benedict, M., Webb, G. B. and Rubin, L. C.; An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and their Mixtures. Constants for 12 Hydrocarbons
Chem. Eng. Prog. 47, 419-22 (1951)
56. Benham, A. L.; Vapor Liquid Equilibria of Light Hydrocarbon Systems Containing Hydrogen at Low Temperatures
Ph.D. Thesis, U. of Mich., 1956
57. Benham, A. L. and Katz, D. L.; Vapor - Liquid Equilibrium for Hydrogen - Light Hydrocarbon Systems at Low Temperatures
A.I.Ch.E. Journal 3, 33-6 (1957)

58. Benham, A. L.; Vapor - Liquid Equilibria of Light Hydrocarbon Systems Containing Hydrogen at Low Temperatures
Univ. Microfilms (Ann Arbor, Mich.) Publ. No. 21145, pp. 140
59. Benham, A. L., Katz, D. L. and Williams, R. B.; Phase Behavior of Hydrogen - Light Hydrocarbon Systems
A. I. Ch. E. Journal 3, 236-41 (1957)
60. Bennett, C. O. and Dodge, B. F.; Compressibilities of Mixtures of Hydrogen and Nitrogen Above 1000 Atmospheres
Ind. Eng. Chem. 44, 180-5 (1952)
61. Benson, S. W.; Critical Densities and Related Properties of Liquids (Related to Hydrogen, Helium, Neon and Ammonia
J. Phys. and Colloid Chem. 52, 1060-74 (1948)
62. Berg, C., Fairfield, R. G., Imhoff, D. H. and Multer, H. J.; Hypersortion (Process for Separating Gases)
Oil Gas J. 47, 95, 97, 130, 132, 135 (1949)
63. Bergeon R.; The Solubility of Solids and Liquids in Compressed Gases
Genie Chim 79, 139-51 (1958)
64. Bergholm, A.; Vapor - Liquid Equilibria at High Pressure
Svensk Kem. Tid 63, 233-49 (1951)
65. Bering, B. P., and Serpinskii, V. V.; Adsorption of Mixtures of Gases, II. Adsorption of Ethylene and Propylene on Active Carbon
Izvest. Akad. Nauk. S.S.R., Otdel. Khim. Nauk. 997-1007 (1952)
66. Bering, B. P. and Serpinskii, V. V.; Simultaneous Adsorption of Ethylene and Propylene on Active Carbon
Doklady Akad. Nauk S.S.R. 85, 1065-8 (1952)
67. Bering, B. P. and Serpinskii, V. V.; Adsorption of Mixtures of Gases I. Adsorption of Ethylene and Carbon Dioxide on Active Carbon
Zhur. Fiz. Khim. 26, 253-69 (1952)

68. Bering, B. P. and Serpinskii, V. V.; Adsorption of Mixtures of Gas. II. Adsorption of Ethylene and Propylene on Active Carbon
Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci. 877-84
(English translation) (1952)
69. Berman, R. and Swenson, C. A.; Absolute Temperature Scale Between 4.2° and 5.2° K
Phys. Rev. 95, 311-14 (1954)
70. Billig, K.; The Calculation of Boiling Points
Ber. 70B, 157 (1937)
71. Bloomer, O. T. and Parent, J. D.; (Methane - Nitrogen Phase Equilibria)
Inst. Gas Technol. Res. Bull. No. 17 (1952)
72. Bloomer, O. T. and Parent, J. D.; Liquid - Vapor Phase Behavior of the Methane - Nitrogen System
Chem. Eng. Prog. Sympos. Ser. 49, No. 6, (1953)
73. Bloomer, O. T., Eakin, B. E., Ellington, R. T. and Gami, D. C.; Thermodynamic Properties of Methane - Nitrogen Mixtures
Inst. Gas Technol., Res. Bull. No. 21, pp. 51 (1955)
74. Bolshakov, P. and Etherman, A.; The Compressibility of Hydrogen - Nitrogen - Methane Mixtures at High Pressure
Acta Physicochim. U.R.S.S. 14, 365-70 (1941)
75. Bolshakov, P. E.; Partial Molal Volume, Fugacity, and Activity Coefficients of Nitrogen and Hydrogen in their Mixtures at High Pressure
Acta Physicochim., U.R.S.S. 20, 259-67 (1945)
76. Bonnetain, L., Duval, X. and Letort, M.; Stepwise Adsorption Isotherms for Methane on Graphite and Various other Solid Adsorbents
Compt. Rend. 234, 1363-6 (1952)
77. Borelius, G.; Equations of State for Liquid Helium
Arkiv. Fysik 13, 369-78 (1958)

78. Botella, S. G.; Compressibility of Carbon Monoxide at 0° , at Surrounding Temperatures and at Pressure Between 50 and 130 Atmospheres
Anales Soc. Espan. Fis. Quim. 27, 315-50 (1929)
79. Brandt, L. W., Stroud, L. S. and Bruce, H. E.; An Experimental Study of the Phase Relationships, Dew Points, and Compressibility of Keyes Gas
Open File Report No. 14, May 1, 1959, Bureau of Mines Helium Activity
80. Brandt, L. W. and Stroud, L.; Thermodynamic Diagrams of Helium Containing Gaseous Systems. 1 T - H Diagram for Cliffside Gas
Open File Report No. 8, May 1, 1959, Proj 17A; Bureau of Mines Helium Activity
81. Bratu, E. M.; A General Equation for Calculating the Pressure of Saturated Vapors
Bull. Inst. Nat'l Cercetari Technol. 2, 36 (1947)
82. Bridgeman, O. C.; A Fixed Point for Calibration of Pressure Gauges. The vapor pressure of carbon dioxide at 0°C
Chem. Soc. 49, 1174 (1927)
83. Bridgeman, O. C.; Equation of State for Gaseous Carbon Dioxide
J. Am. Chem. Soc., 49, 1130-1138 (1927)
84. Bridgman, P. W.; Melting Curves and Compressibilities of Nitrogen and Argon
Proc. Am. Acad. Arts and Sci., 70, 1-32 (1935)
85. Bridgman, P. W.; Compressibility of Five Gases to High Pressures
Proc. Am. Acad. Arts and Sci., 59, No. 8, 173-211 (1924)
86. Briggs, H. and Cooper, W.; The Adsorption of Gas under Pressure
Proc. Roy. Soc. Edinburgh 41, 119-27 (1920 - 21)
87. Broon, J.; Methane, Properties, Constants, and Uses
Chemiker Ztg. 46, 926-7 (1922)

88. Brown, G. M. and Stutzman, L. F.; Low-Temperature Vapor - Liquid Equilibria. II. Equilibrium Constants for Nitrogen, Methane and Ethane at Low Temperatures Chem. Eng. Prog. 45, 142-8 (1949)
89. Brown, G. G.; (title not known) Proc. Nat. Gas Assoc. (May, 1940)
90. Brunauer, S. and Emmett, P. H.; The Use of Low Temperature van der Waals Adsorption Isotherms in Determining the Surface Areas of Various Adsorbents J. Am. Chem. Soc. 59, 2682 (1937)
91. Budenholzer, R. A., Sage, B. H. and Lacey, W. N.; Phase Equilibria in Hydrocarbon Systems Ind. Eng. Chem. 31, 1288 (1939)
92. Burnett, E. S.; Compressibility Determinations without Volume Measurements Journal of Applied Mechanics, 3, 136-140 (1936)
93. Burrell, G. A. and Robertson, I. W.; Vapor Pressures of Propane, Propylene and N-Butane at Low Temperatures J. Am. Chem. Soc., 37, 2188-93 (1915)
94. Burrell, G. A. and Robertson, I. W.; Vapor Pressures of Ethane and Ethylene at Temperatures Below their Normal Boiling Point J. Am. Chem. Soc. 37, 1893-902 (1915)
95. Burrell, G. A. and Robertson, I. W.; Vapor Pressures of Various Compounds at Low Temperatures Bur. Mines, Tech. Papers 142, pp. 30 (1916)
96. Burriss, W. L., Hsu, N. T., Reamer, H. H. and Sage, B. H.; Phase Behavior of the Hydrogen - Propane System Ind. Eng. Chem. 45, 210-13 (1953)
97. Burshtein, R., Levin, P. and Petrov, S.; Activated Adsorption of Gases on Charcoal Physik. Z. Sowjetunion 4, 197-211 (1933)

98. Burt, F. P.; Compressibilities of Helium and Neon
Trans. Faraday Soc. 6, 19-26 (1910)
99. Burwell, R. L., Jr., Smudski, P. A. and May T. P.;
Ethylene Adsorption Isotherms at -183°
J. Am. Chem. Soc. 69, 1525-9 (1947)
100. Canjar, L.J.; P-V-T and Related Properties for Methane
Ethane. Pressure - Volume - Temperature and Related
Properties for Methane and Ethane
Chem. and Eng. Data Ser. 3, 185-92 (1958)
101. Cardoso, E.; The Critical Constants of Methane
Arch. Sci. Phys. et Nat. 36, 97-100 (1913)
102. Cardoso, E.; Critical Point
J. Chim. Phys. 10, 470-96 (1913)
103. Cardoso, E.; Densities of the Coexisting Phases of Methane
and Carbon Monoxide
Arch. Sci. Phys. Nat. 39, 403-4 (1915)
104. Cardoso, E.; Critical Points of Nitrogen, Oxygen, Carbon
Monoxide, and Methane
J. Chim. Phys. 13, 312-50 (1916)
105. Cath, P. G. and Onnes, H. K.; The Measurement of Low
Temperatures XXVII. Vapor Pressure of Hydrogen in the
Neighborhood of the Boiling Point and Between the Boiling
Point and the Critical Point
Commun. Kamerlingh Onnes Lab. Univ. Leiden 152a (1917)
106. Cath, P. G. and Onnes, H. K.; Measurement of Very Low
Temperature XXX. Comparison of the Helium, Argon, Neon,
Oxygen and Nitrogen Thermometers with Hydrogen Thermo-
meter Corrections which will Reduce the Indications of These
Thermometers to the International Scale of Kelvin. The
Second Coefficient of the Virial for Helium, Argon, Neon,
Oxygen and Nitrogen Below 0°
Arch. Neerl. Sci. 6, 1-30 (1922)
107. Cawood, W. and Patterson, H. S.; Compressibilities of
Certain Gases at Low Pressures and Various Temperatures
J.C.S. 619-624 (1933)

108. Chang, Ta-Yu and Tsang, J.-L.; Adsorption of Carbon Dioxide, Methanol, and Nitrogen on Various Silica Gels
K'o Hsueh T'ung Pao 239-40 (1957)
109. Chaplin, R.; Adsorption of Nitrogen at Low Pressure by Activated Charcoal
Phil. Mag. (7) 2, 1198-207 (1926)
110. Charnley, A., Cook, D., Ewald, A. H. and Rowlinson, J. S.; Equilibrium of Phases in Solution
Compt. Rend. Reunion Ann. Auec Comm Thermodynam., Union Intern. Phys. (Paris) 1952, Changements de Phases 111-14
111. Chester, F. P. and Dugbale, J. S.; Melting Curves of Deuterium and Hydrogen
Phys. Rev. 95, 278-9 (July 1954)
112. Churchill, S. W., Collamore, W. G. and Katz, D. L.; Phase Behavior of the Acetylene - Ethylene System
Oil Gas J. 41, No. 13, 33-4, 36-7, (1942)
113. Cines, M. R., Roach, J. T., Hogan, R. J. and Roland, C. H.; (Methane - Nitrogen Phase Equilibria)
Program, A.I.Ch.E., Atlantic City, N. J. (Dec. 24, 1951)
114. Cines, M. R., Roach, J. T., Hogan, R. J. and Roland, C. H.; Nitrogen - Methane Vapor Liquid Equilibria
Chem. Eng. Prog. Symp. Ser. 49, No. 6, Phase Equilibria
115. Claitor, L. C. and Crawford, D. B.; Thermodynamic Properties of Oxygen Nitrogen, and Air at Low Temperatures
Trans. ASME 71, 885-95 (1949)
116. Clark, A. M. and Din, F.; Equilibria Between Solid, Liquid, and Gaseous Phases at Low Temperatures Binary Systems Acetylene - Carbon Dioxide, Acetylene - Ethylene, and Acetylene - Ethane
Trans. Faraday Soc. 46, 901-11 (1950)

117. Clark, A. M. and Din, F.; Equilibria Between Solid, Liquid, and Gaseous Phases at Low Temperatures. The System Carbon Dioxide Plus Ethane Plus Ethylene
Discussions Faraday Soc. No. 15, 202-7 (1953)
118. Claude, G.; Adsorption of Gases by Charcoal at Low Temperatures
Compt. rend. 158, 861-864 (1914)
119. Clement, J. R., Logan, J. K. and Gaffney, J.; Liquid Helium Vapor Pressure Equation
Phys. Rev. 100, 743-4 (1955)
120. Clusius, K. and Teske, W.; Vapor Pressures and Vapor - Pressure Constant of Carbon Monoxide
Z. Physikal Chem., B.6, 135-151 (1929)
121. Clusius, K. and Weigand, K.; Melting Curves of the Gases A, Kr, Xe, CH_4 , CH_4D , CD_4 , C_2H_4 , C_2H_6 , COS, and NH_3 to 200 Atmospheres Pressure
Z. Physik. Chem. B46, 1-37 (1940)
122. Cohen, K. and Urey, H. C.; Van der Waal's Forces and the Vapor Pressures of Ortho and Para Hydrogen and Ortho and Para Deuterium
J. Chem. Phys. 7, 157 (1939)
123. Cohen, E. G. D., et al; The Transport Properties and Equation of State of Gaseous Para - and Ortho - Hydrogen and their Mixtures Below 40°K
Physica 21, 737 (1955)
124. Cook, D. and Longvet - Higgins, H. C.; Application of the Theory of Conformed Solutions to the System Carbon Dioxide - Ethylene
Proc. Roy. Soc. A209, 28 (1951)
125. Cook, D. and Rowlinson, J. S.; Deviations from the Principle of Corresponding States
Proc. Roy. Soc. (London) A219, 405-18 (1953)
126. Cook, D.; 2nd Virial Coefficient of Carbon Dioxide at Low Temperatures
Can. J. Chem. 35, 268-75 (1957)

127. Cook, J. W.: Purification of Helium
Phys. Rev. (ii), 29, 920 (1927)
128. Cook, M. W. and Hanson, D. N.: Accurate Measurement of Gas Solubility
Rev. Sci. Instr. 28, 370-4 (1957)
129. Coppens, L.; The Separation at Low Temperature of Mixtures of Ethane and Methane
Bull. Soc. Chim. Belg. 41, 525-8 (1932)
130. Copson, R. L. and Frolich, P. K.; Vapor - Pressure Chart for Lower Aliphatic Hydrocarbons
Ind. Eng. Chem. 21, 1116-7 (1929)
131. Cosway, H. F.; Low Temperature Vapor - Liquid Equilibria in Ternary and Quaternary Systems Containing Hydrogen, Nitrogen, Methane and Ethane
Ph.D. Thesis, U. of Mich. (1957)
132. Cosway, H. F.; Low - Temperature Vapor - Liquid Equilibrium in Ternary and Quaternary Systems Containing Hydrogen, Nitrogen, Methane and Ethane
Univ. Microfilms (Ann Arbor, Mich.) L.C. Card No.
Mic 58-7704, pp. 179; Dissertation Abstr. 19, 1314 (1958)
133. Cosway, H. F. and Katz, D. L.; Low Temperature Vapor - Liquid Equilibria in Ternary and Quaternary Systems Containing Hydrogen, Nitrogen, Methane and Ethane
A.I.Ch.E. Journal 5, 46 (1959)
134. Cottrell, T. L.; Equations of State, Physical Properties, and Thermodynamic Transformation of Intermolecular Repulsive Forces
Discussions Faraday Soc. 22, 10-16 (1956)
135. Cottrell, T. L. and Hamilton, R. A.; 2nd Virial Coefficient of Gases and Mixtures I. Carbon Dioxide and Helium Mixtures
Trans. Faraday Soc. 52, 156-60 (1956)

136. Cottrell, T. L., Hamilton, R. A. and Taubinger, R. P.;
2nd Virial Coefficients of Gases and Mixtures II. Mixtures
of Carbon Dioxide with Nitrogen, Oxygen, Carbon Monoxide,
Argon and Hydrogen
Trans. Faraday Soc. 52, 1310-12 (1956)
137. Cox, A. L. and DeVries, T.; The Solubility of Solid Ethane,
Ethylene and Propylene in Liquid Nitrogen and Oxygen
J. Phys. and Colloid Chem. 54, 665-70 (1950)
138. Cox, E. R.; The Physical Constants of Propane
Petroleum World 31, No. 12, 44-5, 56 (1934)
139. Cramer, F.; An Empirical Equation of State for Extremely
High Pressures II.
Chem. Tech. (Berlin) 6, 590-5 (1954)
140. Cremer, E. and Prior, F.; Application of Chromatographic
Methods to the Separation of Gases and Determination of
Adsorption Energies
Z. Elektrochem. 55, 66-70 (1951)
141. Crommelin, C. A.; Triple Point of Methane
J. Chem. Soc. 104, II, 20 (1913);
Proc. Akad. Wetenschap. Amsterdam 15, 666 (1912)
142. Crommelin, C. A.; Vapor Pressure of Nitrogen Between
Critical Point and Boiling Point
Verslag K. Akad. Wettenschappen 23, 991-4 (1914)
143. Crommelin, C., Bijleveld, W. J. and Brown, E. G.;
Vapour Tensions, Critical Point, and Triple Point of Carbon
Monoxide
Proc. K. Akad. Wetensch. Amsterdam, 34, 1314-1317 (1931)
144. Cullen, E. J. and Kobe, K. A.; Benedict Equation of State:
Application to Vapor - Liquid Equilibria
A.I.Ch.E. Journal 1, 452-5 (1955)
145. Damkohler, G.; Adsorption of Mixtures of Nitrogen and Argon
Z. Physikal. Chem., B 23, 69-88, (1933)

146. Danneel, H. and Stoltzenberg, H.; The Compressibility of Ethylene
Z. Angew. Chem. 42, 1121-3 (1929)
147. Dean, M. R. and Tooke, J. W.; Vapor Liquid Equilibria in Three Hydrogen - Paraffin Systems
Ind. Eng. Chem. 38, 389-93 (1946)
148. DeBoer, J.; Equation of State of Gases at Low Temperature
Physica 24, 590-597 (1958)
149. Deitz, V. R. and Gleysteen, L. F.; Determination of Carbon and Hydrogen in Bone Black and Chars
J. Research Natl. Bur. Stds. 28, 795 (1942)
150. Deitz, V. R. and Gleysteen, L. F.; Surface Available to Nitrogen on Bone Black and Other Carbonaceous Adsorbents
J. Research Natl. Bur. Stds., 29, 191 (1942)
151. Delaplace, R.; Vapor Pressure of Gaseous Hydrocarbons at Low Temperatures
Compt. Rend. 204, 493-5 (1937)
152. Deming, W. E. and Deming, L. S.; Some Physical Properties of Compressed Gases. VI. The Fugacity of Carbon Dioxide
Phys. Rev. 56, 108-12 (1939)
153. Deming, W. E. and Shupe, L. E.; Constants of the Beattie - Bridgeman Equation of State with Bartlett's P-V-T Data on Nitrogen
J. Am. Chem. Soc., 52, 1382-13 (1930)
154. Deming, W. E. and Shupe, L. E.; The Beattie - Bridgeman Equation of State and Bartlett's P-V-T Data on a 3:1 Hydrogen-Nitrogen Mixture
J. Am. Chem. Soc. 53, 860-9 (1931)
155. Deming, W. E. and Shupe, L. E.; Physical Properties of Compressed Gases. II. Carbon Monoxide
Physical Rev. (ii), 38, 2245-2264; (1931)

156. Deming, W. E. and Shupe, L. E.; Constants of the Beattie-Bridgeman Equation of State with Bartlett's P-V-T Data on Hydrogen
J. Am. Chem. Soc., 53, 843-49 (1931)
157. Deming, W. E. and Shupe, L. E.; Some Physical Properties of Compressed Gases III. Hydrogen, also Nitrogen and Carbon Monoxide
Phys. Rev. 40, 848-59 (1932)
158. DeSorbo, W., Milton, R. M. and Andrews, D. H.; New Cryogenic Methods of Using Liquid Hydrogen
Chem. Rev. 39, 403-17 (1946)
159. Dewar, J.; The Adsorption and Thermal Evolution of Gases Occulded in Charcoal at Low Temperatures. Adsorption of Hydrogen, Nitrogen, Oxygen, Argon, Helium, Electrolytic Gas, Carbonic Oxide and Oxygen, Carbonic Oxide, at 0°K and -185°C by Charcoal
Proc. Roy. Soc. (London A74,) 122-127 (1904)
160. Dewar, J.; The Densities of Solid Oxygen, Nitrogen, Hydrogen, Argon, Carbon Monoxide, etc.
Proc. Roy. Soc. A73, 251 (1904)
161. Dewar, James; Studies on Charcoal and Liquid Air
Chem. News 97, 4-8, 16-19 (1908)
162. DiCio, A.; Application of the Paoluzi Equation to Ethane
Idrocarburi 5, No. 11, 17-18 (1956)
163. Din, F., Goldman, K. and Monroe, A. G.; Solid-Liquid Equilibriums of the Systems Argon - Nitrogen and Argon - Oxygen
Congr. Intern. Froid, 9^e, Paris, 1955, Compt. Rend. Trav. Comm. I et II, 1003-10
164. Dingenen, W. van and Itterbeek A. van; Measurements of the Adsorption of Light and Heavy Hydrogen on Charcoal Between 90 and 17°K
Physica 6, 49-58 (1939)

165. Dinglinger, G.; Determination of Specific Volumes of Carbon Dioxide, Propane and Methane
Chem. - Ztg. 80, 135-8 (1956)
166. Dodge, B. F.; Isotherms and Isobars for Air Separation Studies
Chem. Metall. Engng. 35, No. 10 622 (1928)
167. Dodge, B. F. and Davis, H. W.; Vapor Pressure of Liquid Oxygen and Nitrogen
J. Am. Chem. Soc. 49, 610-20 (1927)
168. Dodge, B. F. and Dunbar, A.; Investigation of the Co-existing Liquid and Vapor Phases of Solutions of Oxygen and Nitrogen
J. Am. Chem. Soc. 49, 591 (1927)
169. Dokoupil, Z., Soest, G. van and Swenker, M.D.P.; The Equilibrium Between the Solid Phase and the Gas Phase of the Systems Hydrogen - Nitrogen, Hydrogen - Carbon Monoxide, and Hydrogen - Nitrogen - Carbon Monoxide
Appl. Sci. Research A5, 182-241 (1955)
170. Donnelly, H. G.; Two - Phase and Three - Phase Equilibria in the System Carbon Dioxide - Methane
Univ. Microfilms (Ann Arbor, Mich.) Pub. No. 3741, pp. 290
Dissertation Abstrs. 12, 461 (1952)
171. Donnelly, H. G.; Phase Equilibria in the Carbon Dioxide - Methane System
Ind. Eng. Chem. 46, 511-17 (1954)
172. Dreving, V. P., Kiselev, A. V. and Likhacheva, O. A.; Adsorption of Nitrogen Vapor on Silica Gel at Low Temperatures
Zhurnal Fizicheskoi Khimii 25, (6): 710-18, (1951)
173. Dreving, V. P., Kiselev, A. V. and Likhacheva, O. A.; The Absolute Isotherms for the Adsorption of Nitrogen Vapor on Silica Gel, Alumino - Silica Gel, and Barium Sulfate
Doklady, Akad. Nauk U.S.S.R. 82, 277-80 (1952)
174. Dubinin, M. M. and Zaverina, E. D.; Adsorption of Gases by Active Carbons
Doklady Akad. Nauk U.S.S.R. 72, 319-22 (1950)

175. Dugdale, J. S. and Simon, F. E.; Thermodynamic Properties of Melting and Solid Helium
Porc. Roy. Soc. (London) A218, 291-310 (1953)
176. Eakin, B. E., Ellington, R. T. and Gami, D. C.; Physical-Chemical Properties of Ethane - Nitrogen Mixtures
Inst. Gas Technol. Research Bull. 26, pp. 40 (1955)
177. Edwards, A. E. and Roseveare, W. E.; The Second Virial Coefficient of Gaseous Mixtures
J. Am. Chem. Soc. 64, 2816-19 (1942)
178. Egloff, G.; Physical Constants of Hydrocarbons, 7-10, 16-19
Reinhold Publishing Corp., N. Y. (1953)
179. Egorow, M. M., Egorova, T. S., Krasil'Nikov, K. G. and Kiselev, V. F.; Effects of the Nature of Silica Gel or Quartz Surface on Their Adsorption Properties II. Water, Methane and Nitrogen Adsorption by Silica Gel in Different Hydration Stages
Zhur. Fiz. Khim. 32, 2624-33 (1958)
180. Ehrlich, G., Hicmott, T. W. and Hudda, F. G.; The Low-Temperature Chemisorption of Nitrogen and Carbon Monoxide
J. Chem. Phys. 28, 506-7 (1958)
181. Ermolin, M. G.; Method of Quantitative Separation of Helium-Neon Mixture
Trudy Radievogo Inst. Im. V. G. Khlopina 6, 119-38 (1957)
182. Estreicher T. and Bobotek, J.; The Behavior of Carbon Monoxide at Low Temperatures
Bull. Intern. Acad. Sci. Cracovie 1913, A, 451-62
183. Etherington, L. D., Haney, R. E. D., Herbst, W. A. and Scheeline, H. W.; Adsorption Phase Equilibrium Correlations. Light-Hydrocarbon Vapors on Activated Charcoal
A.I.Ch.E. Journal 2, 65-70 (1956)
184. Eubanks, L. S.; Vapor-Liquid Equilibrium in the System Hydrogen - Nitrogen - Carbon Monoxide
Ph. D. Thesis, Rice Inst., (1956)

185. Evans, R. B., III and Watson, G. M.; Compressibility Factors of n-Butane Mixtures in the Gas Phase
Chem. and Eng. Data Ser. I, No. 1, 67-71 (1956)
186. Ewald, A. H.; Solubility of Solids in Gases. III. Solubility of Solid Xenon and Solid Carbon Dioxide
Trans. Faraday Soc. 51, 347-56 (1955)
187. Ewell, R. H., Harrison, J. M. and Berg, L.; Azeotropic Distillation
Ind. Eng. Chem. 36, No. 10, 871 (1944)
188. Falck, E.; Theoretical Determination of the Vapor Pressure of Liquid and Solid Carbon Dioxide
Physik Z., 9, 433-7 (1908)
189. Fales, H. A. and Shapiro, C. S.; Thermodynamic Properties of Substances III Vapor Volumes as Functions of Reduced Temperature Alone
J. Am. Chem. Soc. 62, 393-406 (1940)
190. Farjas, Adalbert, Orthohydrogen, Parahydrogen and Heavy Hydrogen, (Cambridge University Press, 1935)
191. Farrington, F. S. and Sage, B. H.; Volumetric Behavior of Propene
Ind. Eng. Chem. 41, 1734-7 (1949)
192. Fastovski, V. G. and Girskaia, L. A.; Adsorption of Neon and Helium
J. Chem. Ind. Russ. 14, 358-361 (1937)
193. Fastovski, V. G. and Gonikberg, M. G.; Solubility of Gases in Liquids at Low Temperature and High Pressure III.
Solubility of Hydrogen in Liquid Methane
Acta Physicochim. (U.S.S.R.) 12, 488 (1940)
194. Fastovski, V. G. and Gonikberg, M. G.; Solubility of Gases in Liquids at Low Temperatures and High Pressure
J. Phys. Chem. Russ. 14, 427-28 (1940)
195. Fastovski, V. G. and Krestinskii, YU. A.; Solubility of Solid Methane in Liquid Nitrogen and Oxygen
J. Phys. Chem. (U.S.S.R.) 15, 525-31 (1941)

196. Fastovski, V. G., Petrovskii, Yu. V. and Lenin, V. I.; Investigation of the Argon - Nitrogen Liquid - and Vapor - Phase Equilibrium. II.
Zhur. Fiz. Khim. 30, 76-8 (1956)
197. Fastovski, V. G. and Petrovskii, Yu. V.; Liquid and Vapor Equilibriums in the Nitrogen - Methane System
Zhur. Fiz. Khim. 31, 2317-20 (1957)
198. Fedoritenko, A. and Ruhemann, M.; Equilibrium Diagram of Helium - Nitrogen Mixtures
Tech. Phys. (U.S.S.R.) 4, 36-43 (1937)
199. Fedorova, M. F.; Binary Mixtures of Substances Melting at Low Temperatures
J. Exptl. Theoret. Phys. (U.S.S.R.) 8, 425-35 (1938)
200. Fedorova, M. F.; Solubility of Acetylene and Carbon Dioxide in Liquid Nitrogen and Liquid Oxygen
J. Phys. Chem. (U.S.S.R.) 14, 422-6 (1940)
201. Fejes, P. and Schay, G.; Adsorption and Desorption of Nitrogen on Charcoal
Acta Chim. Acad. Sci. Hung. 14, 439-52 (1958)
202. Firth, J. B.; Sorption of Hydrogen by Palladium at Low Temperatures
J. Chem. Soc. 117, 171-83 (1920)
203. Fischer, V.; The Analysis of a Mixture of Carbon Monoxide, Nitrogen and Hydrogen
Tech. Mech. Thermodynamik 1, 268-76 (1930)
204. Fischer, V.; Equilibrium Isotherms and Isobars of Carbon Monoxide - Nitrogen - Hydrogen Mixtures
Ann. Physik 31, 531-9 (1938)
205. Fischer, V.; Thermodynamics of the Nitrogen - Hydrogen Mixtures
Ann. Physik, (v), 39, 273-280 (1941)
206. Frederikse, H.P.R. and Gorter, C. J.; Investigations on the Adsorption of Helium at Very Low Temperatures
Physica 16, 402-18 (1950)

207. Freeth, F. A. and Verschoyle, T. T. H.; Physical Constants of the Methane - Hydrogen System
Proc. Roy. Soc. (London) A130, 453-63 (1931)
208. Freundlich, H.; Adsorption and Occlusion
Z. Physik. Chem. 61, 249, (1908)
209. Friedman, A. S.; PVT Relationships of Gaseous, Hydrogen, Nitrogen and Hydrogen - Nitrogen Mixtures
Ph.D. Thesis, Ohio St. Univ. (1950)
210. Friedman, A. S. and White, D.; The Vapor Pressure of Liquid Nitrogen
J. Am. Chem. Soc. 72, 3931-32 (1950)
211. Friedman, A. S., White, D. and Johnston, H. L.; Critical Constants, Boiling Points, Triple Point Constants and Vapor Pressure of the Six Isotropic Hydrogen Molecules Based on a Simple Mass Relationship
J. Chem. Phys. 19, 126-7 (1951)
212. Friedman, A. S.; The Thermodynamic and Transport Properties of Liquid Hydrogen and Its Isotopes. Part II. Compressibility Factors, Viscosity, Dielectric Constant and Surface Tension
NBS Report 3282, May 1, 1954
213. Friedman, A. S. and Oppenheim, I.; Equation of State of Hydrogen Isotopes at Intermediate Densities
Phys. Rev. 98, 258 (1955)
214. Frolich, P. K. and White, A.; Adsorption of Methane and Hydrogen on Charcoal at High Pressure
Ind. Eng. Chem. 22, 1058-60 (1930)
215. Ganguli, A.; The Adsorption of Gases by Solids
J. Phys. Chem. 34, 665-8 (1930)
216. Garner, W. E. and Maggs, J.; Adsorption of Carbon Monoxide on Zinc Oxide
Trans. Faraday Soc. 32, 1744-8 (1936)

217. Geddes, A. E. M.; Adsorption of Carbon Dioxide by Charcoal
Ann. Physik, 29, 797-808 (1909)
218. Georgiev, Ts.O.; Adsorption of Hydrocarbon Gases on Active Charcoal
Trudy Moskov. Khim. Tekhnol. Inst. Im. D. I. Mendeleeva 25, 170-7 (1957)
219. Gerold, E.; Density, Refractive Index and Dispersion of Gaseous Nitrogen at its Boiling Point
Ann. Physik 65, 82-96 (1921)
220. Gibby, C. W., Tanner, C. C. and Masson, I.; The Pressure of Gaseous Mixtures II. Helium and Hydrogen and Their Intermolecular Forces
Proc. Roy. Soc. (London) A122, 283-304 (1929)
221. Gibert, R. and Dognin, A.; The Calculation of the Force Constants of Lennard - Jones Potentials
Compt. Rend. 246, 2607-9 (1958)
222. Gleysteen and Deitz; Hysteresis in the Physical Adsorption of Nitrogen on Bone Char and Other Adsorbents
J. Research Nat. Bur. Standards 35, 285 (1945)
223. Goig, S.; The Compressibility of Carbon Monoxide at 0° and Above 50 Atmospheres
Compt. Rend. 189, 246-8 (1929)
224. Goig, S.; Compressibility of Carbon Monoxide at 0° and Ordinary Temperature Between 50 and 150 Atmospheres
J. Chim. Phys. 27, 212-235 (1930)
225. Goldhammer, D. A.; Studies in the Theory of Corresponding States
Z. Physik. Chem. 71, 577-624 (1910)
226. Gonikberg, M. G.: Regular Solutions of Gases in Liquids
I. Regular Solutions of Hydrogen
J. Phys. Chem. (U.S.S.R.) 14, 582-8 (1940)

227. Gonikberg, M. G.; Regular Solutions of Gases in Liquids.
II. More Concentrated Solutions of Hydrogen at High Pressures
Acta Physicochim (U.S.S.R.) 12, 921-30 (1940)
228. Gonikberg, M. G. and Fastovskii, V. G.; Solubility of Gases
in Liquids at Low Temperatures and High Pressures II.
Solubility of Helium in Liquid Nitrogen at Temperatures From
78.0 to 109.0°K and at Pressures up to 295 Atmospheres
Acta Physicochim (U.S.S.R.) 12, 67-72 (1940)
229. Gonikberg, M. G. and Fastovskii, V. G.; Solubility of Gases
in Liquids at Low Temperatures and High Pressures. IV.
Solubility of Helium in Liquid Methane at 90.3 and 106.0°K
and at Pressures up to 160 Atmospheres
Acta Physicochim. (U.S.S.R.) 13, 399-404 (1940)
230. Gonikberg, M. G. and Fastovskii, V. G.; The Solubility of
Gases in Liquids at Low Temperatures and High Pressures.
IV. The Solubility of Helium in Liquid Methane at Temperatures
of 90.3°K and 106°K and Pressures up to 160 Atmospheres
Foreign Petroleum Tech. 9, 214-19 (1941)
231. Gonikberg, M. G., Fastovskii, V. G. and Gurvitsch, J. G.;
Solubility of Gases in Liquids at Low Temperatures and High
Pressures I. Solubility of Hydrogen in Liquid Nitrogen at
79-109°K and at Pressures up to 190 Atmospheres
Acta Physicochim (U.S.S.R.) 11, 865-882 (1939)
232. Gore, T. L., Davis, P. C. and Kurata, F.; Phase and
Volumetric Behavior of Natural Gases at Low Temperatures
Petroleum Transactions, AIME, 195, 279-284 (1952)
233. Granquist, W. T.; Adsorption of Methane on Fuller's Earth
Ind. Eng. Chem. 42, 2572-5 (1950)
234. Grassmann, P.; Properties of Liquid and Solid Helium
Viertel Jahrsschr. Naturforsch. Ges. Zuri 102, No. 3,
61-87 (1957)
235. Gratch, S.; Vapor Pressure, Specific Volume, P-V-T Data
for Hydrogen, Nitrogen, Oxygen, Carbon Monoxide, Carbon
Dioxide, Air, Helium, Argon, Mercury
Trans. ASME 70, 631-40 (Aug. 1948)

236. Greco, G., Casale, C. and Negri, G.; Liquid - Vapor Equilibria at Elevated Pressures of One Component in the Presence of Noncondensable Components
Compt. Rend. 27^e Congr. Intern. Chim. Ind. (Brussels) 1954; 2; Industrie Chim. Belge 20, Spec. No. 251.. (1955)
237. Greene, S. A., Moberg, M. L. and Wilson, E. M.; Separation of Gases by Gas Adsorption Chromatography
Anal. Chem. 28, 1369-70 (1956)
238. Greyson, J. and Aston, J. G.; The Heats of Adsorption of Helium and Neon on Graphitized Carbon Black
J. Phys. Chem. 61, 610-13 (1957)
239. Grilly, E. R.; The Vapor Pressures of Hydrogen, Deuterium and Tritium up to 3 Atmospheres
J. Am. Chem. Soc. 43, 843 (1951)
240. Gropper, L.; Calculation of the 2nd Virial Coefficient of Helium Gas for the Lowest Measured Temperature.
Phys. Rev. 55, 1095-7 (1939)
241. Groth, V. W., Ihle, H. and Murrenhoff, A.; Determination of the Temperature Dependence of the Vapor Pressure Relations
Z. Naturforsch 9a, 895-6 (1954)
242. Guertler, W. and Prani, M.; The Melting Points of the Pure Elements
Z. Metallk. 11, 1-7 (1919)
243. Guggenheim, E. A.; The Statistical Mechanics of Regular Solutions
Proc. Roy. Soc. A148, 305 (1935)
244. Guggenheim, E. A.; The Principle of Corresponding States
J. Chem. Phys. 13, 253- 6 (1945)
245. Guter, M., Newitt, D. M. and Ruhemann, M.; Two - Phase Equilibrium in Binary and Ternary Systems. II. The System Methane - Ethylene
Proc. Roy. Soc. (London), A176, 140-6 (1940)

246. Guter, M., Newitt, D. M., and Runemann, M.; Two - Phase Equilibrium in Binary and Ternary Systems. III. The System Methane - Ethane - Ethylene
Proc. Roy. Soc. (London) A176, 146-52 (1940)
247. Guye, P. A., and Batuecas, T.; The Compressibility of Several Gases at 0° and up to One Atmosphere, and the Deviation From Avagadro's Law. I. Oxygen, Hydrogen and Carbon Dioxide
Helvetica Chim. Acta 5, 532-43 (1922)
248. Hagenbach, W. P., and Comings, E. W.; P-V-T Relations of Nitrogen and Ethylene Mixtures at High Pressures
Ind. Eng. Chem. 45, 606-9 (1953)
249. Ham, N. S.; The Properties of Liquid Helium
Roy. Australian Chem. Inst. J. and Proc. 17, 272-283 (1950)
250. Haney, R. E. D., and Bliss, H.; Compressibilities of Nitrogen-Carbon Dioxide Mixtures
Ind. Eng. Chem. 36, 985-9 (1944)
251. Hanson, G. H., Rzasa, M. J., and Brown, G. G.; Equilibrium Constants for Methane in Paraffin Mixtures
Ind. Eng. Chem. 37, 1216-17 (1945)
252. Hanson, G. H., Hogan, R. J., Nelson, W. T., and Cines, M. R.; Propylene-Propane System-Vapor-Liquid Equilibrium Relationships
Ind. Eng. Chem. 44, 604-9 (1952)
253. Hanson, G. H., Hogan, R. J., Ruehlin, F. N., and Cines, M. R.; Ethane-Ethylene System; Vapor-Liquid Equilibria at 0° , -40° , and -100° F
Chem. Eng. Prog. Symposium Ser. 49, No. 6, Phase-Equilibria-Collected Research Papers for 1953, 37-44 (1953)
254. Harper, R. C., Jr.; Compressibility Factors of Gaseous Mixtures of Carbon Dioxide and Helium
Univ. Microfilms (Ann Arbor, Mich.) Publ. No. 17232, pp. 52

255. Harper, R. C., Jr., and Miller, J. G.; Compressibility of Gases. II. Mixtures of Carbon Dioxide and Helium at 30°^O
J. Chem. Phys. 27, 36-9 (1957)
256. Haselden, G. G., Newitt, D. M., and Shah, S. M.; Two - Phase Equilibrium in Binary and Ternary Systems. V.
Carbon Dioxide - Ethylene
Proc. Roy. Soc. (London) A209, 1-14 (1951)
257. Hausen, H.; Rectification of Ternary Mixtures, Especially Oxygen - Nitrogen - Argon Mixtures
Forsch. Ingeieurw. 6A, 9-22 (1935)
258. Havlicek, V.; The Coefficients of Compressibility for Gases
Strojirenstvi 8, 903-4 and Inclosure (1958)
259. Henning, F., and Stock, A.; Saturation Pressure of Some Vapors Between 10° and -181°
Z. Physik 4, 226-44 (1921)
260. Henning, F., and Heuse, W.; A New Determination of the Normal Boiling Points of Oxygen, Nitrogen and Hydrogen
Z. Physik 23, 105-16 (1924)
261. Henning, F.; The Gas and Resistance Thermometer in the Temperature Region of Liquid Hydrogen and Nitrogen
Z. Physik 40, 775 (1926)
262. Herz, W.; Über das b der van der Waalsschne Gleichung
On the b of the Van der Waals Equation
Z. Electrochem. 29, 527-30 (1923)
263. Heuse, W.; Molecular Volumes of Hydrocarbons and Other Compounds at Low Temperature
Z. Physik. Chem. 147, 266-74 (1930)
264. Hewlett, C. W.; Physical Properties of Liquid Helium
Gen. Elec. Rev. 49, 42-7 (1946)
265. Hilsenrath, J. (Editor); Tables of Thermal Properties of Gases
Natl. Bur. Standards (U.S.) Circ. 564, 201-53 (1955)

266. Himpan, J.; A New Thermodynamic Equation of State for Gases and Liquids
Monatsh. 84, 787-97 (1953)
267. Hiraoka, H.; The Fugacities of Steam and Acetylene at High Pressures
Rev. Phys. Chem. Japan 26, 52-5 (1956)
268. Hitz, K., Scheller, W., and Treadwell, W. D.; The Mixed Adsorption of Hydrogen, Oxygen, and Nitrogen with Carbon Dioxide on Linden Charcoal
Helv. Chim. Acta 34, 1783-90 (1951)
269. Hogan, R. J., Nelson, W. T., Hanson, G. H., and Cines, M. R.; Ethane - Ethylene - Acetylene System. Vapor - Liquid Equilibrium Data at -35° , 0° , and 40° F
Ind. Eng. Chem. 47, 2210-15 (1955)
270. Hoge, H. J. and Arnold, R. D.; Vapor Pressures of Hydrogen, Deuterium, and Hydrogen Deuteride and the Dew - Point Pressures of Their Mixtures
J. Research, NBS 47, 63 (1951)
271. Hoge, H. J., and Lassiter, J. W.; Critical Temperatures, Pressures, and Volumes of Hydrogen, Deuterium and Hydrogen Deuteride.
J. Research NBS 47, 75 (1951)
272. Holborn, L., and Otto, J.; The Isotherms of Various Gases Between 400° and -183°
Z. Physik 33, 1-12 (1925)
273. Holborn, L., and Otto, J.; Isotherms of Helium, Hydrogen, and Heon Below -200°
Z. Physik 38, 359-67 (1926)
274. Hollings, H., and Griffith, R. H.; Activated Adsorption of Hydrogen
Nature 129, 834 (1932)
275. Holmes, J., and Emmett, P. H.; Investigation of Low-Temperature Nitrogen Adsorption at High Relative Pressures
J. Phys. and Colloid Chem. 51, 1262-76 (1947)

276. Holst, G.; The Vapor Pressure of Oxygen and Nitrogen
Proc. Akad. Wetenschappen 18, 829-39 (1916)
277. Holst, G., and Hamburger, L.; Investigation of the Equilibrium Liquid-Vapor of the System Argon - Nitrogen
Proc. Akad. Wetenschappen 18, 872 (1916)
278. Homfray, I. F.; Adsorption of Gases by Charcoal
Z. Physik, Chem. 74, 129-201 (1910)
279. Homfray, I. F.; Adsorption of Gases by Charcoal
Proc. Roy. Soc. (London) A84, 99-106 (1910)
280. Hough, E. W., and Sage, B. H.; Volumetric Behavior in Several Gaseous Hydrocarbon Solutions
Chem. Revs. 44, 193-204 (1949)
281. Houghton, G., McLean, A. M., and Ritchie, P. D.; Compressibility, Fugacity, and Water Solubility of Carbon Dioxide in the Region 0-36 Atmosphere and 0-100°
Chem. Eng. Sci. 6, 132-7 (1957)
282. Hughes, E. E., and Gordon, R., Jr.; Detection of Acetylene in Air in Concentrations from 10 Parts Per Billion to 10 Parts Per Million
Anal. Chem. 31, 94-8 (1959)
283. Husung, E.; Adsorption of Gases and Gas Mixtures by Special Charcoals
Z. Tech. Physik 17, 289-301 (1936)
284. Hutchinson, A. J. L.; A System of Process Calculations for Light Hydrocarbons. I.
Petroleum Refiner 29, 83-9 (1950)
285. Hutchinson, A. J. L.; A System of Process Calculations for Light Hydrocarbons. II. Equilibrium Consideration
Petroleum Refiner 29, 117-22 (1950)
286. Ishkin, I. P., and Burbo, P. Z.; Solubility of Solid Acetylene and Carbon Dioxide in Liquid Oxygen, Nitrogen, and Oxygen-Nitrogen Mixtures
J. Phys. Chem. (U.S.S.R.) 13, 1337-9 (1939)

287. Ishkin, I. P., and Kaganer, M. G.; Investigation of Thermo-dynamic Properties of Air and Nitrogen at Low Temperatures Under Pressure. II. Thermodynamic Diagrams of State for Air and Nitrogen
Soviet Phys. Tech. Phys. 1, 2263-71 (1956)
288. Jelinek, R. V.; Adsorption of Binary Gas Mixtures of Carbon Dioxide and Hydrocarbons
Univ. Microfilms (Ann Arbor, Mich.) Publ. No. 15741
289. Johnson, M. C.; An Analysis of Hydrogen Adsorption Phenomena
Trans. Faraday Soc. 29, 1139-55 (1933)
290. Johnson, V. J.; Removal of Nitrogen from Hydrogen with Silica Gel at Low Temperatures
Proc. Cryogenic Eng. Conf., 2nd, Boulder 1957, 11-18
291. Johnston, H. L., and White, D.; Pressure - Volume - Temperature Relationships of Gaseous Normal Hydrogen from its Boiling Point to Room Temperature from 0-200 Atmospheres
Trans. ASME 72, 785-7 (1950)
292. Johnston, H. L., White, D., Wirth, H., Swanson, C., Jensen, L. H., and Friedman, A. S.; Gaseous Data of State II, the P-V-T Relationships of Gaseous Normal Hydrogen from the Critical Temperature to Room Temperature and up to 200 Atmosphere Pressures
T.R. 264-25 Ohio State Cry. Lab. (Nov. 25, 1953)
293. Johnston, H. L., Keller, W. E., and Friedman, A. S.; The Compressibility of Liquid Normal Hydrogen from the Boiling Point to the Critical Point at Pressures up to 100 Atmospheres
J. Am. Chem. Soc. 76, 1482-6 (1954)
294. Juschkevitsch, N. F., and Torotscheschnikov, N. J.; Liquid and Gaseous Phases in the System Nitrogen - Carbon Monoxide
J. Chem. Ind. Russ. 13, 1273-83 (1936)
295. Justi, E.; Thermodynamics of Real Gas Mixtures
Forsch. Gebiete Ingenieurw. 15, 18-21 (1944)

296. Kaganer, M. G.; Adsorption Isotherms of Nitrogen at Low Pressures
Doklady Akad. Nauk U.S.S.R. 122, 416-19 (1958)
297. Kanda, E.; The Adsorption of Helium on Charcoal Below 78°K, and Thermometry of Low Temperatures
Bull. Chem. Soc. Japan 13, 241-6 (1938)
298. Kane, G.; Equation of State of Solid Helium
J. Chem. Phys. 9, 568-70 (1941)
299. Kaneka, S., and Kihara, T.; Second Virial Coefficient of Helium from the Square-Well Potential
J. Phys. Soc. Japan 11, 471-3 (1956)
300. Karasz, F. E., and Halsey, G. D., Jr.; Solubility of Helium and Neon in Liquid Argon. An Approximation to the Entropy of Lattice Vacancy Formation in Liquid Argon
J. Chem. Phys. 29, 173-9 (1958)
301. Karasz, F. E.; Solubility of Helium and Neon in Liquid Argon
Univ. Microfilms (Ann Arbor, Mich.) L. C. Card No.
Mic 58-2139, pp. 90 Dissertation Abstr. 18, 1996 (1958)
302. Karnaughov, A. P., Kiselev, A. V., and Khrapova, E. V.; Adsorption of Nitrogen Vapors on Carbon Black
Doklady AN U.S.S.R. 92, No. 2: 361-4 (1953)
303. Karwat, E.; Vapor Pressure of Solid Hydrogen Chloride, Methane, and Ammonia
Z. Physik. Chem. 112, 486-90 (1924)
304. Kazavchinskii, Ya. Z.; A Method of Determining the Constants for the Virial Form of the Equation of State for a Real Gas
Doklady Akad. Nauk U.S.S.R. 95, 1005-8 (1954)
305. Keesom, W. H.; Second Virial Coefficient for Diatomic Gases
Proc. Akad. Wetenschappen 15, 417-31 (1913)
306. Keesom, W. H.; Thermodynamic Investigations Including Triple Point and Critical Magnitudes of Oxygen, Argon, Nitrogen, Neon, Hydrogen and Helium
Onnes-Festschrift 1922, 89-163 (1922)

307. Keesom, W. H., and Lisman, J. H. C.; Melting Curve of Nitrogen to 110 KG/CM²
Physica 1, 735-738 (1934)
308. Keesom, W. H., and Kraak, H. H.; The Compressibility of Helium Gas Between 2.6° and 4.2°K
Commun. Kamerlingh Onnes Lab. Univ. Leiden Commun No. 234e (1935)
309. Keesom, W. H., and Van Santen, J. J. M.; The Second Virial Coefficient of Helium
7th Congr. Intern. Froid, 1st Comm. Intern., Rapports et Commun. 1-5 (June 1936)
310. Keesom, W. H., and Bijl, A.; Determination of the Vapor Pressure of Liquid Nitrogen Below one Atmosphere and of Solid Nitrogen. B. Boiling Point and Triple Point of Nitrogen
Physica 4, 305-10 (1937)
311. Keesom, W. H., and Walstra, W. K.; Isotherms of Helium at Liquid - Helium Temperatures
Physica 6, 1146 (1939)
312. Keesom, W. H., and Schweers, J.; Measurements of the Adsorption of Helium on Solidified Layers of Some Gases
Physica 8, 1032-43 (1941)
313. Keesom, W. N., and Walstra, W. K.; The Second Virial Coefficient of Helium at Temperatures of Liquid and Solid Hydrogen
Physica 13, 225-30 (1947)
314. Keier, N. P., and Roginskii, S. Z.; The Properties of Broadly Heterogeneous Surfaces as Shown by the Study of the Adsorption of Oxygen and Hydrogen on Activated Charcoal
Problemy Kinetiki i Kataliza 7, Statisticheskie Yavleniya v Geterogen - Sistemakh 410-35 (1949)
315. Keiar, N. P., and Roginskii, S. Z.; The Kinetics of Desorption of Activated Adsorbed Hydrogen
Zhurnal Fizicheskoi Khimii 23(8); 897-916 (1949)
316. Keller, W. E.; Second Virial Coefficients of Helium³ - Helium Mixtures Between 2 and 4°K
Phys. Rev. 100, 1021-2 (1955)

317. Keyes, F. G., Taylor, R. S., and Smith, L. B.; The Thermodynamic Properties of Methane
J. Math. Phys., Mass. Inst. Tech. 1, 211-42 (1922)
318. Keyes, F. G., and Burks, H. B.; Equation of State for Finary Mixtures of Methane and Nitrogen
J. Am. Chem. Soc. 50, 1100-6 (1928)
319. Keyes, F. G.; Vapor Pressure, Specific Volumes and P-V-T Data for Water, Ammonia, Methane and Eithylene
Trans. ASME 70, 641-4 (1948)
320. Kharakhorin, F. F.; The Phase Relations in Systems of Liquefied Gases. I. The Binary Mixture Nitrogen - Helium
Foreign Petroleum Tech. 9, 397-410 (1941)
321. Kigoshi, K.; Fusion and State Equations of Simple Liquids
Bull. Soc. Japan 23, 236-44 (1950)
322. Kihara, Taro, et al, Virial Coefficients and Intermolecular Potential of Small, Non-Spherical Molecules (Hydrogen),
J. Phys. Soc. Japan 11, 362-6 (1956)
323. Kilpatrick, J. E., et al; Second Virial Coefficients of Helium³ and Helium⁴
Phys. Rev. 94, 1103-10 (1954)
324. Kilpatrick, J. E., et al; Second Virial Coefficients of Helium from the Exp-Six Potential
Phys. Rev. 97, 9-12 (1955)
325. Kingman, F. E. T.; Adsorption of Hydrogen on Charcoal
Nature 127, 742 (1931)
326. Kingman, F. E. T.; Adsorption of Hydrogen by Charcoal
Trans. Faraday Soc. 28, 269-72 (1932)
327. Kirillov, I. P., and Rakhlin, E. S.; Adsorption of Methane by Charcoal
J. Applied Chem. (U.S.S.R.) 19, 511-16 (1946)
328. Kirkwood, J. G., and Keyes, F. G.; The Equation of State of Helium
Phys. Rev. 37, 832-40 (1931)

329. Kiselev, A. V., et al; Adsorption of Methane on Carbon Black and Coal Above and Below Critical Temperature Doklady AN U.S.S.R. 111, 129-32 (1956)
330. Kirshenbaum, I., and Grover, R. K.; Low-Temperature Nitrogen Adsorption Studies of Silica Gel J. Am. Chem. Soc. 70, 1282-3 (1948)
331. Kobe, K. A., and Rosenberg, H. E.; The Wohl Equation of State Applied to Light Hydrocarbons Petroleum Engr. 23, No. 11 35-8 (1951)
332. Koble, R. A., and Corrigan, T. E.; Adsorption Isotherms for Pure Hydrocarbons Ind. Eng. Chem. 44, 383-7 (1952)
333. Kogan, V. S., Lazarev, B. G., and Bulatova, R. B.; State Diagram of the Hydrogen - Deuterium System Zhur. Eksptl. I. Teoret. Fiz. 34, 238-40 (1958)
334. Komarov, P., Likhter, A., and Rueman, M.; The Diagrams of State of Mixtures Fusing at Low Temperatures Systems Nitrogen - Oxygen and Nitrogen - Carbon Monoxide J. Tech. Phys. (U.S.S.R.) 5, 1723-8 (1935)
335. Kramer, G. M.; P-V-T Behavior of Mixture of Helium and Nitrogen at 30° Univ. Microfilms (Ann Arbor, Mich.) Publ. No. 23611
336. Kramer, G. M., and Miller, J. G.; Compressibility of Gases III. The Second and Third Virial Coefficients of Mixtures of Helium and Nitrogen at 30° J. Phys. Chem. 61, 785-8 (1957)
337. Krasil'nikov, K. G., et al; Low Temperature Adsorption of Nitrogen on Thermally Dehydrated Silica Gel and Alumogel Samples Zhur. Fiz. Khim. 31, 1448-54 (1957)
338. Kristscheveskii, I. R., and Markov, V. P.; The Compressibility of Gas Mixtures I. The P-V-T Data for Binary and Ternary Mixtures of Hydrogen, Nitrogen and Carbon Dioxide Acta Physicochim. U.S.S.R. 12, 59-66 (1940)

339. Kritscheveskii, I. R., and Kazarnovskii, Ya. S.; An Equation of State for Gaseous Mixtures
Acta Physicochim U.S.S.R. 10, 217-44 (1939)
340. Kritscheveskii, I. R., and Levchenko, G. T.; Compressibility of Gas Mixtures II. P-V-T Data for Binary and Ternary Mixtures of Methane, Nitrogen and Hydrogen
Acta Physicochim U.S.S.R. 14, 271-8 (1941)
341. Kritscheveskii, I. R., and Tarocheshnikov, N. S.; Thermodynamics of the Liquid-Gas Equilibrium in the Nitrogen - Oxygen System
Z. Physik. Chem. A176, 338-46 (1936)
342. Kvalnes, H. N., and Gaddy, V. L.; The Compressibility Isotherms of Methane at Pressures to 1000 Atmospheres and at Temperatures from -70 to 200°
J. Am. Chem. Soc. 53, 394 (1931)
343. Lacey, W. N., and Sage, B. H.; Properties of Pure Propane
Petroleum World 31, No. 12 37-41 (1934)
344. Lamb, A. B., and Roper, E. E.; The Vapor Pressures of Certain Unsaturated Hydrocarbons
J. Am. Chem. Soc. 62, 806-1940)
345. Lambert, B., and Heaven, H. S.; Gas - Solid Equilibria VI. Adsorption from Binary Gas Mixtures by Silica Gel
Proc. Roy. Soc. (London) A153, 584-600 (1936)
346. Lang, R. J.; The Purification of Helium
Trans. Roy. Soc. Can 17, Sec. III, 181-8 (1923)
347. Latimer, R. E.; Vapor - Liquid Equilibrium of Nitrogen - Argon - Oxygen Mixtures
A.I.Ch.E. Journal 3, 75-82 (1957)
348. Lee, J. F.; Specific Heat of Gases at the Critical Point
Z. Angew. Math. u Phys. 4, 401-4 (1953)
349. Lennard-Jones, J. E.; The Molecule Fields of Hydrogen, Nitrogen, and Neon
Proc. Roy. Soc. (London) 112, 214-29 (1926)

350. Lenoir, J. M., and Hipkin, H. G.; Equilibrium Ratios of Hydrogen and the Critical Locus of Hydrogen - Paraffin Mixtures
A.I.Ch.E Journal 3, 318 (1957)
351. Lepointe, R.; Heat of Adsorption of Gases by Charocal at -183°C
J. Phys. Radium 7, 469-72 (1936)
352. Levitskaya, E., and Pryannikov, K.; Equilibrium Between Liquid and Vapor in the Binary System of Hydrogen and Ethane
J. Tech. Phys. (U.S.S.R.) 9, 1849-53 (1939)
353. Levitskaya, E. P.; Equilibrium of Liquid-Gas in the Triple System: Ethane - Methane - Hydrogen
J. Tech. Phys. (U.S.S.R.) 11, 197-204 (1941)
354. Lewis, W. K., Gilliland, E. R., Chertow, B., and Caoogan, W. P.; Adsorption Equilibria. Pure Gas Isotherms
Ind. Eng. Chem. 42, 1326-32 (1950)
355. Lewis, W. K., Gilliland, E. R., Chertow, B., and Bareis, O.; Vapor - Adsorbate Equilibrium III. The Effect of Temperature on the Binary Systems Ethylene - Propane, Ethylene - Propylene over Silica Gel
J. Am. Chem. Soc. 72, 1160-3 (1950)
356. Lewis, W. K., Gilliland, E. R., Chertow, B., and Milliken, W.; Vapor - Adsorbate Equilibrium II. Acetylene - Ethylene on Activated Carbon and on Silica Gel
J. Am. Chem. Soc. 72, 1157-9 (1950)
357. Lewis, W. K., Gilliland, E. R., Chertow, B., and Hoffman, W. H.; Vapor - Adsorbate Equilibrium I. Propane - Propylene on Activated Carbon and on Silica Gel
J. Am. Chem. Soc. 72, 1153-7 (1950)
358. Li, K., and Canjar, L. N.; Propane - Propylene Mixtures
A.I.Ch.E. Journal 2, 448-50 (1956)

359. Lialine, L., Hestermans, P., and Deffet, L.; Determination of the Compressibility of a Hydrogen - Nitrogen Mixture by a Method Suitable for the Study of Industrial Gases
 Proc. Conf. Thermodynamic and Transport Properties Fluids, London (Pub. 1958) 43-7 (1957)
360. Liang, S. C.; Low Vapor Pressure Measurements and Thermal Transpiration
 J. Phys. Chem. 56, 660 (1952)
361. Likhter, A. I ., and Tikhonovich, N. P.; Equilibrium Between Vapor and Liquid in the System Ethylene - Hydrogen
 J. Tech. Phys. (U.S.S.R.) 9, 1916-22 (1939)
362. Likhter, A. I ., and Tikhonovich, N. P.; The Equilibrium Vapor - Liquid in the System Ethylene - Methane - Hydrogen II.
 J. Tech. Phys. (U.S.S.R.) 10, 1201 (1940)
363. Livingston, M. K.; The Cross-Sectional Areas of Molecules Adsorbed on Solid Surfaces. (H_2 , D_2 , CH_4 , C_2H_2 , C_2H_6 , 1-Butane, $N-C_4H_{10}$, C_6H_6 , n- C_7H_{16} , NH_3 , O_2 , H_2O , C_3H_7OH , CO, CO_2 , N_2 , Ne, CS₂, CHFCI₂, C_2H_5Cl , A, Kr)
 J. Colloid Sci. 4, 447-58 (1949)
364. Loomis, A. G., and Walters, J. E.; The Vapor Pressure of Ethane Near the Normal B. P.
 J. Am. Chem. Soc. 48, 2051-5 (1926)
365. Lopez-Gonzales, Carpenter and Dietz; Adsorption of Nitrogen on Carbon Adsorbents at Low Pressures Between 69° and 90° K
 J. Research NBS 55, 11 (1955)
366. Lorenz, R., and Wiedbrauck, E.; Adsorption Equilibria of Mixtures of Two Gases
 Z. Anorg. Allgen. Chem. 143, 268-76 (1925)
367. Lowry, H. H., and Morgan, S. O.; The Adsorption of Gases by Graphitic Carbon
 J. Phys. Chem. 29, 1105-15 (1925)

368. Lowry, H. H., and Olmstead, P. S.; The Adsorption of Gases by Solids with Special Reference to the Adsorption of Carbon Dioxide by Charcoal
J. Phys. Chem. 31, 1601-26 (1927)
369. Ludwig, E. H. B.; Propane, Butane and Pentane, the "Liquid Gases"
Z. Osterr. Ver. Gas - Wasserfach 74, 121-9, 132-5 (1934)
370. Lydersen, A. L., Greenkorn, R. A., and Hougen, O. A.; Generalized Thermodynamic Properties of Fluids
Eng. Expt. Station Rpt No. 4, Univ. of Wisconsin, (1955)
371. Mac Cormack, K. E., and Schneider, W. G.; Compressibility of Gases at High Temperatures IV. Carbon Dioxide in the Temperature Range 0° - 600° and Pressures up to 50 Atmospheres
J. Chem. Phys. 18, 1269-72 (1950)
372. Magnus, A., and Roth, N.; Adsorption VII. The Adsorption of Carbon Dioxide - Hydrogen Mixtures on Wood Charcoal
Z. Anorg. Allgem. Chem. 150, 311-25 (1926)
373. Maidanovskaya, L. G., Panfilov, I. A., and Zakharova, R. O.; Adsorption of Hydrogen and Some Electrolytes on Iron Oxide
Uchenye Zapiski Tomsk. Gosudarst. Univ. 1955, No. 26, 93-102; Referat Zhur. Khim. 1956, Abstr. No. 57687
374. Maimoni - Biblarz, Arturo; Vapor Liquid Equilibria in the System Hydrogen - Nitrogen
Ph.D. Thesis, U. of Calif., Berkeley (1956)
375. Majumdar, A. J., and Roy, R.; Fugacities and Free Energies of Carbon Dioxide at High Pressures and Temperatures
Geochim et Cosmochim Acta 10, 311-15 (1956)
376. Malanchuk, M. and Stuart, E. B.; Effect of Heat Treatment on Silica Gel
Ind. Eng. Chem. 50, 1207-10 (1958)

377. Mamedaliev, Yu. G., and Kuliev, A. M.; The Separation of Pure Methane from Hydrocarbon Gas Mixtures by Means of Selective Adsorption
J. Applied Chem. (U.S.S.R.) 13, 738-42 (1940)
378. Marchman, H., and Prengle, H. W., Jr.; Compressibility of Ethane Propylene Vapor Mixtures
Ind. Eng. Chem. 42, 2371 (1950)
379. Margenau, H.; The Second Virial Coefficient for Gases: A Critical Comparison Between Theoretical and Experimental Results
Phys. Rev. 36, 1782-90 (1930)
380. Markov. V. P.; Compressibility of Gaseous Mixtures II. Verification of the Equation of State for Gaseous Mixtures
J. Phys. Chem. (U.S.S.R.) 15, 410-15 (1941)
381. Maron, S. H., and Turnbull, D.; Equation of State for Gases at High Pressures Involving only Critical Constants
J. Am. Chem. Soc. 64, 2195-8 (1942)
382. Marshak, R. E., Morse, P. M., and York, H.; Equation of State of Hydrogen, Helium, and Russell Mixtures at High Temperatures and Pressures
Astro Phys. J. 111, 214-20 (1950)
383. Maslan, F., and Aberth, E.; Equation of State for Liquids
J. Chem. Phys. 19, 658-9 (1951)
384. Maslan, F. D., and Littman, T. M.; Compressibility Chart for Hydrogen and Inert Gases
Ind. Eng. Chem. 45, 1566-8 (1953)
385. Massie, D. S., and Whytlaw-Gray, R.; The Normal Density of Propane and Its Expansion Coefficients Between 0° and 20°
J. Chem. Soc. 2874-7 (1949)
386. Mastrangelo, S. V. R., and Aston, J. G.; Thermodynamic Data and Some Notes on the Nature of Absorbed Helium
J. Chem. Phys. 19, 1370-5 (Nov. 1951)

387. Mathias, E.; Study of Density Curves at Low Temperatures
Onnes-Festschrift 165-96 (1922)
Physik. Ber. 4, 701-2 (1923)
388. Mathias, E., and Crommelin, C. A.; Work Done in the
Leiden Cryogenic Lab. Concerning the Equation of State of
Argon, Neon and Hydrogen Between the 3rd and 4th Intern.
Cong. of Refrigeration
Proc. 4th Intern. Congr. Refrig. 1, 89-106a (1924)
389. Mathias, E., and Crommelin, C. A.; Carbon Monoxide and
Helium
Ann. Physik 5, 137-66 (1936)
390. Mathias, E., and Crommelin, C. A.; The Rectilinear
Diameter of Carbon Monoxide
7th Congr. Intern. Froid, 1st Comm. Intern., Rapport et
Commun. June 1936, 96-102 (1936)
391. Mathot, V., Staveley, L. A. K., Young, J. A., and
Parsonage, N. G.; Thermodynamic Properties of the System
Methane - Carbon Monoxide at 90.67° K
Trans. Faradya Soc. 52, 1488-1500 (1956)
392. Matsui, R., Ito, Y., Yasui, E., and Susuki, H.; Detection of
Acetylene, Hydrocarbons, and Carbon Dioxide in Liquid
Lxygen
Kogyo Kasaku Zasshi 60, 413-17 (1957)
393. Matthews, C. S., and Hurd, C. O.; Thermodynamic
Properties of Methane
Trans. Am. Inst. Chem. Engrs. 42, 55 (1946)
394. Maverick, S., and Schlatter, C.; Compressibility at 0° and
Below 1 Atmosphere and the Deviation from the Law of
Avogadro of Several Gases
J. Chim. Phys. 27, 36-43, 44-53 (1930)
395. McBain, J. W.; The Mechanism of the Adsorption of
Hydrogen by Carbon
Z. Physik. Chem. 68, 471-97

396. McBain, J. W., and Britton, G. T.; The Nature of the Sorption by Charcoal of Gases and Vapors Under Great Pressure
J. Am. Chem. Soc. 52, 2198-222 (1930)
397. McCurdy, J. L., and Katz, D. L.; Phase Equilibria in the System Ethane - Ethylene - Acetylene
Ind. Eng. Chem. 36, 674-80 (1944)
398. McCurdy, J. L., and Katz, D. L.; Phase Equilibria in the Systems Propylene - Acetylene and Propane - Acetylene
Oil Gas J. 43, 102-4 (1945)
399. McDermot, H. L., Arnell, J. C., and Lawton, B. E.; Charcoal Sorption Studies. III. The Adsorption of Ethylene and Perfluoroethylene by an Activated Charcoal
Can. J. Chem. 33, 320-9 (1955)
400. McDermot, H. L., and Lawton, B. E.; Adsorption of Nitrogen by Carbon Black and Graphite
Can. J. Chem. 34, 769-74 (1956)
401. McGaw, H. D.; The Density and Compressibility of Solid Hydrogen and Deuterium at 4.2° K
Phil. Mag. 28, 129 (1939)
402. McKay, R. A., Reamer, H. H., Sage, B. H., and Lacey, W. N.; Volumetric and Phase Behavior in the Ethane - Propylene System
Ind. Eng. Chem. 43, 2112-17 (1951)
403. McLean, S.; The Adsorption of Helium by Charcoal
Trans. Roy. Soc. Canada 12, (III), 79-81 (1918)
404. McTaggart, H. A., and Edwards, E.; Composition of the Vapor and Liquid Phases of the System Methane - Nitrogen
Trans. Roy. Soc. Can., 13, Sect. iii, 57-66 (1919)
405. Medek, J.; Gas Adsorption on the Surface of Solids
Paliva 34, 292-8 (1954)

406. Meldrum, A. H., and Nielsen, R. F.; A Study of 3-Phase Equilibria for Carbon Dioxide - Hydrocarbon Mixtures Penna. State Univ., 18th Tech. Conf. on Petroleum Production, Mineral Inds. Expt. Sta. Bull. No. 64, 9-28 (1954)
407. Meldrum, A. H., and Nielsen, R. F.; Three-Phase Equilibria for Carbon Dioxide - Hydrocarbon Mixtures Producers Monthly 19, No. 10, 22-35 (1955)
408. Melkonian, G. A., and Reps, B.; Isotope Displacement by Absorption and Desorption on Silica Gels at Low Temperatures and Pressures Z. Elektrochem. 58, 616-19 (1954)
409. Meyers, C. H., and Van Dusen, M. S.; Vapor Pressure of Liquid Carbon Dioxide Refrigerating Eng. 13, 180-4 (1926)
410. Meyers, C. H., and Van Dusen, M. S.; The Vapor Pressure of Liquid and Solid Carbon Dioxide J. Research NBS 10, 381-412 (1933)
411. Michels, A., Michels, Mrs. C., and Wouters, H.; Isotherms of Carbon Dioxide Between 70 and 3000 Atmospheres (Amagat Densities Between 200 and 600) Proc. Roy. Soc. (London) A153, 214-24 (1935)
412. Michels, A., and Michels, Mrs. C.; Isotherms of Carbon Dioxide Between 0° and 150° and Pressures from 16 to 250 Atmospheres (Amagat Densities 18 - 206) Proc. Roy. Soc. (London) A153, 201-14 (1935)
413. Michels, A., and Nederbragt, G. W.; Isotherms of Methane Between 0° and 150° and Densities 19 and 53 Amagat (Pressures Between 20 and 80 Atmospheres) Physica 2, 1000-2 (1935)
414. Michels, A., Biji, A., and Michels, C.; Thermodynamic Properties of Carbon Dioxide Between 25 and 150° ; C up to 3000 Atmospheres Proc. Roy. Soc. (London) A160, 376 (1937)

415. Michels, A., and Nederbragt, G. W.; Isotherms of Methane-Ethane at 0°, 25°, and 50° up to 60 Atmospheres
Physica 6, 656-62 (1939)
416. Michels, A., and Goudeket, M.; Compressibility of Hydrogen Between 0° and 150° up to 3000 Atmospheres
Physica 8, 353-9 (1941)
417. Michels, A., and Goudeket, M.; Compressibilities of Deuterium Between 0° and 150° up to 3000 Atmospheres
Physica 8, 353-9 (1941)
418. Michels, A., and Wassenaar, T.; Isotherms of Argon Nitrogen - Hydrogen Mixture Between 0 and 150° up to 340 Atmospheres
Applied Sci. Research 1A, 258-62 (1949)
419. Michels, A., deGroot, S. R., and Lunbeck, R. J.; Thermo-dynamic Functions of Argon Nitrogen - Hydrogen Mixture Between 0° and 300° up to 1000 Atmospheres
Applied Sci. Research 1A, 378-86 (1949)
420. Michels, A., Skelton, G. F., and Dumoulin, E. L.; Gas-Liquid Phase Equilibrium in the System Ammonia - Hydrogen - Nitrogen
Physica 16, 831-38 (1950)
421. Michels, A., Lunbeck, R. J., and Wolkers, G. J.; Thermo-dynamic Properties of Nitrogen as Functions of Density and Temperature Between -125° and +150°C and Densities up to 760 Amagat
Physica 17, 801-16 (1951)
422. Michels, A., Wassenaar, T., and Zwietering, Th. N.; The Vapor Pressure of Carbon Monoxide
Physica 18, 160-2 (1952)
423. Michels, A., Wassenaar, T., Slayters, Th., and Graaff, W. D.; Triple Points of Carbon Dioxide and of Argon as Fixed Points for the Calibration of Thermometers
Physica 23, 89-94 (1957)

424. Michels, A., deGraff, W., et al; Compressibility Isotherms of Hydrogen and Deuterium at Temperatures Between -175° C and +150° C (at Densities up to 960 Amagat)
Physica 25, 25-42 (1959)
425. Millar, R. W.; Specific Heats of Polyatomic Gases at Low Temperatures
J. Am. Chem. Soc. 45, 874-81 (1923)
426. Mills, J. R., and Miller, F. J. L.; Liquefaction of Carbon Dioxide
Can. Chem. Process Inds. 29, 651-3 (1945)
427. Mills, R. L., and Grilly, E. K.; Melting Curves of Helium 3, Helium 4, Hydrogen, Deuterium, Neon, Nitrogen, and Oxygen up to 3500 Kg/cm²
Phys. Rev. 99, 480-86 (1955)
428. Mills, R. L., and Grilly, E. R.; Melting Curves of Hydrogen, Deuterium, and Tritium up to 3500 Kg/cm²
Phys. Rev. 101, No. 4, 1246-7 (1956)
429. Miyako, R.; Viscosity and Second Virial Coefficients of Gaseous Hydrogen at Low Temperatures
Proc. Phys. Math. Soc. Japan 24, 852-63 (1942)
430. Moore, R. B.; Helium-History, Properties, and Commercial Development. The Uses of Charcoal in Helium Purification
J. Franklin Inst. 191, 183-4 (1921)
431. Mooy, H. H.; On the Crystal Structure of Methane
Comm. Kamerlingh Onnes Phys. Lab. Univ. Leiden 213d (1931)
432. Mori, Y.; The Perfect Gas and the Equation of State of Real Gases
J. Sci. Research Inst. (Tokyo) 48, 272-9 (1954)
433. Morrison, J. A., Drain, H. E., and Dugdale, J. S.; Phase Transitions in Multi Molecular Layers of Adsorbed Nitrogen
Can. J. Chem. 30, 890-903 (1952)

434. Moss, S. A.; General Law for Vapor Pressure III - Vapor Pressure of Carbon Dioxide
Phys. Rev. 26, 439-47 (1908)
435. Mulders, E. M. J., and Scheffer, F. E. C.; Analysis of Mixtures of Hydrogen, Methane and Ethane
Rec. Trav. Chim. 49, 1057-65 (1930)
436. Nay, M. A., and Morrison, J. L.; The Molecular Adsorption Areas of Hydrocarbon Gases on Charcoal
Can. J. Research 27B, 205-14 (1949)
437. Nelson, E. E., and Bonnell, W. S.; Solubility of Hydrogen in Nitrogen - Butane
Ind. Eng. Chem. 35, 204 (1943)
438. Nelson, L. C., and Obert, E. F.; Generalized P-V-T Properties of Gases
Trans. Am. Soc. Mech. Engrs. 76, 1057-66 (1954)
439. Neusser, E.; The van der Waals Equation for Rare Gases
Physik. Z. 33, 76-81 (1932)
440. Neven, P., and Van Tiggelen, A.; Quantitative Adsorption of Hydrogen
Bull. Soc. Chim. Belg. 61, 328-29 (1952)
441. Newitt, D. M., Ruhemann, M., and Guter, M.; Two Phase Equilibrium in Binary and Ternary Systems II. The System Methane - Ethylene III. The System Methane - Ethane - Ethylene
Proc. Roy. Soc. 176A, 140 (1940)
442. Newitt, D. M., and Ruhemann, M.; Two Phase Equilibrium in Binary and Ternary Systems IV. The System Ethylene - Propylene
Proc. Roy. Soc. 178A, 506 (1941)
443. Nijhoff, G. P.; Comparison of Nitrogen and Oxygen According to the Law of Corresponding States
Comm. Phys. Lab. Univ. Leiden, Suppl., 64, 49-52 (1929)

444. Nijhoff, G. P.; The Second Virial Coefficient of Helium and Hydrogen
Comm. Phys. Lab. Univ. Leiden, Suppl., 64, 17-27 (1929)
445. Nijhoff, G. P., and Keesom, W. H.; Isotherms of Hydrogen at Temperatures of 0° and $+100^{\circ}\text{C}$
Commun. Phys. Lab. Univ. Leiden Commun. No. 188d (1927)
446. Nijhoff, G. P., and Keesom, W. H.; Isotherms of Hydrogen at Temperatures from -225.5° to -248.3°C and Pressures from 1.6 to 4.2 Atmospheres
Commun. Phys. Lab. Univ. Leiden Commun. No. 188e (1928)
447. Nodop, G.; Gas Chromatographic Analysis of Very Pure Ethylene
Z. Anal. Chem. 164, 120-7 (1958)
448. Oiski, J.; 0° and 100° Isotherms of Helium, Hydrogen, Neon, Argon, Air and Carbon Dioxide at Pressures Below 2 Atmospheres, and Absolute Temperature, 0°C
J. Sci. Research Inst. (Tokyo) 43, 220-31 (June 1949)
449. Olds, R. H., Sage, B. H., and Lacey, W. N.; Methane - Isobutane System
Ind. Eng. Chem. 34, 1008 (1942)
450. Olds, R. H., Reamer, H. H., Sage, B. H., and Lacey, W. N.; Phase Equilibria in Hydrocarbon Systems. The Nitrogen - Butane and Carbon Dioxide System
Ind. Eng. Chem. 41, 475 (1949)
451. Oliphant, M. L.; Selective Adsorption from Gaseous Mixtures by a Mercury Surface Formed in the Mixture
Phil. Mag. 6, 422-33 (1928)
452. Onnes, H. K., and Braak, C.; Isotherms of Hydrogen Between -104°C and 217°C
Communs. Phys. Lab. Univ. Leiden No. 97a (1906);
99a, 100a (1907)
453. Onnes, H. K.; Isotherms of Helium at -253°C and -259°C
Proc. Acad. Amsterdam, 10, 741-2 (1908)

454. Onnes, H. K.; Isotherms of Helium, +100° C to -217° C
Proc. Acad. Amsterdam 10, 445-50 (1908)
455. Onnes, H. K.; Investigations Carried Out in the Low
Temperature Laboratory at Leiden
Chem. Ztg. 34, 1373-4 (1910)
456. Onnes, H. K., and Crommelin, C. A.; Isotherms of Dia-
tomic Substances and Their Binary Mixtures. XIII. Liquid
Densities of Hydrogen Between the Boiling Point and the
Triple Point: Contraction of Hydrogen on Freezing
Communs. Phys. Lab. Univ. Leiden No. 137a (1913)
457. Onnes, H. K., Dorsman, C., and Holst, G.; Vapor Pressure
and Critical Point of Oxygen and Nitrogen
Verslag K. Akad. Wettenschappen 23, 982-5 (1914)
458. Onnes, H. K., and Weber, S.; Vapor Pressure of Substances
of Low Critical Temperature at Low Temperatures
Verslag Akad. Wettenschappen 22, 226-39 (1914)
459. Opfell, J. B.; A Detailed Study in the Application of the
Benedict Equation to One Component Systems
Ph. D. Thesis, California Tech. (1954)
460. Opfell, J. B., Schlinger, W. G., and Sage, B. H.; Benedict
Equation of State - Applied to Methane, Ethane, M-Butane,
and N-Propane
Ind. Eng. Chem. 46, 1286-91 (1954)
461. Opfell, J. B., Sage, B. H., and Pitzer, K. S.; Application of
Benedict Equation to Theorem of Corresponding States
Ind. Eng. Chem. 48, 2069-76 (1956)
462. Ore, F., and Moulton, R. W.; Adsorption of Binary Hydro-
carbon Mixtures on Activated Charcoal
Trend in Eng. 7, No. 1., 24-9 (1955)
463. Paal, C., and Hartman, W.; Gaseometric Determination of
Hydrogen by Catalytic Absorption
Ber. 43, 243-58 (1910)

464. Paoluzi, G.; New Equation of State Applied to Methane
Idrocarburi 5, No. 8, 31-2 (1956)
465. Paoluzi, G.; A New Equation of State
Ricerca Sci. 25, 567-75 (1955)
466. Paoluzi, G.; The Equation of State for Gaseous Mixtures
Chim. e Ind. (Milan) 39, 350-3 (1957)
467. Paoluzi, G.; New Isothermal Constant for Gases
Ann. Geofis. (Rome) 10, 241-5 (1957)
468. Pavlovich, N. V., and Timrot, D. L.; Experimental Investi-
gation of P V T Values of Gaseous and Liquid Methane
Teploenergetika 5, No. 4, 69-75 (1958)
469. Pearce, J. N., and Johnstone, H. F.; Adsorption of the
Vapors of Methane and Its Chlorine Derivatives by Charcoal
J. Phys. Chem. 34, 1260-79 (1930)
470. Peter, S., and Weinert, M.; Solubility of Hydrogen, Carbon
Monoxide, Carbon Dioxide, and Water Vapor in Liquid Hydro-
carbons
Z. Physik. Chem. (Frankfurt) N. F. 5, 114-21 (1955)
471. Peters, K., and Proksch, E.; The Kinetics of Adsorption of
Gases Near Their Critical Temperature
Z. Elektrochem. 61, 1241-6 (1957)
472. Petit, P.; Solubility of Nitrogen in Hydrogen Below the
Critical Temperature of Nitrogen
Compt. Rend. 246, 1171-2 (1957)
473. Peuss, J., and Beenakker, J. J. M.; Bestimmung Der
Zweiten Virial Kochhizienten Bis von Gas Mischen
Physica 22, 869-79 (1952)
474. Pfefferle, W. C., Jr., Goff, J. A., and Miller, J. G.;
Compressibility of Gases. I. The Burnett Method An
Improved Method of Treatment of Data. Extension of the
Method to Gas Mixtures
J. Chem. Phys. 23, 509-13 (1955)

475. Phillips, T. D.; Adsorption of Hydrogen
Phys. Rev. 45, 215 (1934)
476. Pickering, S. R.; A Review of the Critical Constants of
Various Gases
J. Phys. Chem. 28, 97 (1924)
477. Pickering, S. F.; Compressibilities of Gases
NBS, Miscellaneous Publ. No. 71 (Nov. 21, 1925)
478. Pickering, S. F.; A Review of the Literature Relating to the
Critical Constants of Various Gases
Nat. Bur. Standards Sci. Paper No. 541, 597-629 (1926)
479. Pietrusky, K.; Helium
Chem. - Ztg. 61, 661-2 (1937)
480. Pietsch, H.; Determination of Very Small Amounts of Oxygen,
Carbon Monoxide, Methane and Nitrogen in Purest Ethylene
by Adsorption Chromatography
Erdol v. Kohle 11, 157-9 (1958)
481. Pietsch, E., and Wilcke, G.; The Ionization Potential of
Methane
Z. Physik 43, 342-53 (1927)
482. Pings, C. J., Jr.; I. An Orthogonal Polynomial Equation of
State. II. Application of the Benedict Equation of State to
Methane - N-Pentane System
Ph.D. Thesis California Tech. 1955
483. Pings, C. J., Jr., and Sage, B. H.; Benedict Equation of
State - Methane-Pentane System
Chem. and Eng. Data Ser. 1, No. 1, 56-62 (A56)
484. Pitzer, K. S., Lippman, D. F., Curl, J. R. F., Huggens, C.
M., and Petersen, D. E.; Volumetric and Thermodynamic
Properties of Fluids. II. Compressibility Factor, Vapor
Pressure, and Entropy of Vaporization
J. Am. Chem. Soc. 77 3433-40 (1955)
485. Pitzer, K. S.; Volumetric and Thermodynamic Properties of
Fluids I. Theoretical Basis and Virial Coefficients
J. Am. Chem. Soc. 77, 3427-33 (1955)

486. Piutti, A.; Adsorption of Carbon Monoxide
Rend. Accad. Sci. Napoli 28, 91 (1922; Giorn. Chim. Ind.
Applicata 5, 70-3 (1923)
487. Podgurski, H. H., and Emmett, P. H.; The Adsorption of
Hydrogen and Carbon Monoxide on Iron Surfaces
J. Phys. Chem. 57, 159-64 (1953)
488. Poettmann, F. H., and Katz, D. L.; Phase Behavior of
Binary Carbon Dioxide - Paraffin Systems
Ind. Eng. Chem. 37, 847-53 (1945)
489. Pollard, F. H.; The Adsorption of Carbon Monoxide and
Hydrogen by Platinized Asbestos
J. Phys. Chem. 27, 356-75 (1923)
490. Porter, F.; Vapour Pressures and Specific Volumes of
Saturated Ethane Vapour
J. Am. Chem. Soc. 48, 2055-58 (1926)
491. Porter, F.; High Vapour Pressures of Nitrogen
J. Am. Chem. Soc. 48, 2059-60 (1926)
492. Prausnitz, J. M.; Fugacities in Simple Gas Mixtures
Chem. Eng. Sci. 6, 112-15 (1957)
493. Prengle, H. W., Jr.; The Compressibility and Critical
Constants of Propylene Vapor, the Compressibility of Ethane -
Propylene
Ph.D. Thesis: Carnegie Tech., (1949)
494. Prengle, H. W., Jr., and Marchman, H.; Compressibility of
Ethane - Propylene Vapor Mixtures
Ind. Eng. Chem. 42, 2371-4 (1950)
495. Price, A. R.; Low Temperature Vapor Liquid Equilibrium in
Light Hydrocarbon Mixtures: Methane, Ethane and Propane
Ph.D. Thesis; Rice Inst., (1957)
496. Price, D.; Thermodynamic Functions of Carbon Dioxide -
Joule-Thompson Coefficienc, Isochofic Heat Capacity, and
Isentropic Behavior at 100 to 1000 and 50 to 1400 Bars
Chem. and Eng. Data Ser. 1, No. 1, 83-6 (1956)

497. Prikhotiko, A.; Absorption by Solid Mixtures of Oxygen - Nitrogen and Oxygen - Argon Between 2800 and 2400
J. Exptl. Theoret. Phys. (U.S.S.R.) 8, 671-81 (1938)
498. Prikotiko, A., and Yaunel, A.; Investigations of Solid Mixtures of Oxygen and Nitrogen
Acta. Physiochim. U.S.S.R. 11, 865-82 (1939)
499. Ray, G. C., and Box, E. O., Jr.; Adsorption of Gases on Activated Charcoal
Ind. Eng. Chem. 42, 1315-18 (1950)
500. Reamer, H. H., Olds, R. H., Sage, B. H., and Lacey, W. N.; Phase Equilibria in Hydrocarbon Systems. Methane - Carbon Dioxide System in the Gaseous Region
Ind. Eng. Chem. 36, 88-90 (1944)
501. Reamer, H. H., Olds, R. H., Sage, B. H., and Lacey, W. N.; Phase Equilibria in Hydrocarbon Systems. Volumetric Behaviour of Ethane
Ind. Eng. Chem. 36, 956-58 (1944)
502. Reamer, H. H., Olds, R. H., Sage, B. H., and Lacey, W. N.; Phase Equilibria in Hydrocarbon Systems. XLV. Volumetric Behavior of Ethane - Carbon Dioxide System
Ind. Eng. Chem. 37, 688-91 (1945)
503. Reamer, H. H., Korpi, K. J., Sage, B. H., and Lacey, W. N.; Phase Equilibria in Hydrocarbon Systems. Volumetric Behavior of Methane - Butane System at Higher Pressures
Ind. Eng. Chem. 39, 206-9 (1947)
504. Reamer, H. H., Sage, B. H., and Lacey, W. N.; Phase Equilibria in Hydrocarbon Systems. Volumetric and Phase Behavior of the Methane - Propane System
Ind. Eng. Chem. 42, 534-9 (1950)
505. Reamer, H. H., and Sage, B. H.; Volumetric and Phase Behavior of Propylene - Propane System
Ind. Eng. Chem. 43, 1628-34 (1951)

506. Reamer, H. H., Sage, B. H., and Lacey, W. N.; Phase Equilibria in Hydrocarbon Systems. Volumetric and Phase Behavior of the Propane - Carbon Dioxide System
Ind. Eng. Chem. 43, 2515-20 (1951)
507. Reamer, H. H., Selleck, F. T., Sage, B. H., and Lacey, W. N.; Phase Equilibria in Hydrocarbon Systems. Volumetric Behavior of the Nitrogen - Ethane System
Ind. Eng. Chem. 44, 198-201 (1952)
508. Regak, N. Ya., and Smirnov, N. I.; A Study of Adsorption Processes. II. Adsorption of Unsaturated Gases by Activated Charcoal
Zhur. Priklad. Khim. 28, 433-6 (1955)
509. Reimann, A. L.; Clean-Up of Various Gases by Magnesium, Calcium, and Borium
Phil. Mag. 18, 1117-32 (1934)
510. Reis, Christof; Determination of the Heat of Vaporization of Saturated Hydrocarbons from the Vapor-Pressure Curves
Chem. Tech. (Berlin) 1, 11-18 (1949)
511. Remy, H., and Hene, W.; The Adsorption of Gases by Active Charcoal
Kolloid. Z. 61, 314-22 (1932)
512. Reyerson, L. H.; The Adsorption of Hydrogen by Silica Gel at Elevated Temperatures
J. Am. Chem. Soc. 55, 3105-8 (1933)
513. Reyerson, L. H., and Swearingen, L. E.; Adsorption of Gases by Metallized Silica Gels
J. Phys. Chem. 31, 88-101 (1927)
514. Reyerson, L. H., and Cines, M. R.; Adsorption of Propane and Propylene by Silica Gel and Metallized Silica Gel
J. Phys. Chem. 46, 1060-8 (1942)
515. Reuss, J., and Beenakker, J. J. M.; Determination of the Second Virial Coefficient B_{12} for Mixtures of Gases
Physica 22, 869 (1956); Leiden Comm. Suppl. No. 110e

516. Richardson, L. B.; Adsorption of Carbon Dioxide and Ammonia by Charcoal
J. Am. Chem. Soc. 39, 1828-48 (1917)
517. Robin, Stephane; Study of the Solubility of Phenanthrene in Nitrogen Components up to 1200 kg/cm²; Effect of Temperature
Compt. Rend. 231, 218-20 (1950)
518. Robin, S., and Vodar, B.; Interpretations of Some Measurements of Solubility in Compressed Gases
J. Phys. Radium 13, 264-70 (1952)
519. Robin, S., and Vodar, B.; Solubility in Compressed Gases
Discussions Faraday Soc. No. 15, 233-8 (1953)
520. Robinson, D. W.; An Experimental Determination of the Melting Curves of Argon and Nitrogen into the 1. 000 Atmospheres Region
Proc. Roy. Soc. (London) A225, 393-405 (1954)
521. Roper, E. E.; The Second Virial Coefficient of Ethane
J. Chem. Phys. 8, 290 (1940)
522. Ross, S., and Winkler, W.; Physical Adsorption V; Two Dimensional Condensation of Ethane on Surfaces of Solids at 90°K
J. Am. Chem. Soc. 76, 2637-40 (1954)
523. Rossini, F. D., et al; Selected Values of the Properties of Hydrocarbons
NBS Cir. 461 (1947)
524. Rossini, F. D., et al; Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds
(Book) Carnegie Press (1953)
525. Rowe, H.; The Adsorption of Gases by Activated Charcoal at Very Low Pressures I. At Air Temperature
Phil. Mag. 1, 109-31 (1926)

526. Rowe, H.; Adsorption of Carbon Dioxide by Activated Coconut Charcoal
Phil. Mag. 1, 659-70 (1926)
527. Rowe, H.; The Adsorption of Gases by Activated Charcoal at Very Low Pressures II. At -183° C
Phil. Mag. 1, 1042-54 (1926)
528. Rowlinson, J. S.; Reduced Equation of State
Trans. Faraday Soc. 51, 1317-26 (1955)
529. Rowlinson, J. S., and Sutton, J. R.; The Statistical Thermodynamics of Solutions of Non-Spherical Molecules II. Liquid Vapor Equilibrium and the Formation of Azeotropes
Proc. Roy. Soc. A229, 396 (1955)
530. Rozen, A. M.; The Calculations of Thermodynamic Quantities from Experimental P-V-T Data
Zhur. Fiz. Khim. 27, 178-93 (1953)
531. Rozen, A. M.; Method of Deviation Coefficients in the Technical Thermodynamics of High Pressure
J. Phys. Chem. (U.S.S.R.) 19, 469-84 (1945)
532. Rudenko, N. S.; Molecular Weight, Density and Viscosity of Liquefied Gases
Zhur. Tekh. Fiz. 18, 1123-6 (1948)
533. Rudorf, G.; The Noble Gases and the Equation of State
Ann. Physik. 29, 251-79 (1909)
534. Ruhemann, M.; Equilibrium Curves of Low-Melting Mixtures
Physikal. Z. Soviet Union 67-82 Spec. No. (June 1936)
535. Ruhemann, M.; Two-Phase Equilibrium in Binary and Ternary Systems. I. The System Methane - Ethane
Proc. Roy. Soc. (London) A171, 121-36 (1939)
536. Ruhemann, M., and Fedoritenko, A.; Equilibrium Diagrams of Helium - Nitrogen Mixtures
Tech. Phys. U.S.S.R. 4, 36 (1939)

537. Ruhemann, M., and Fedoritenko, A.; The Use of the I-X Diagram (Heat Content vs. Composition) in the Separation of Helium and Nitrogen
J. Chem. Ind. (U.S.S.R.) 14, 28-31 (1937)
538. Ruhemann, M., Likter, A., and Komarov, P.; The Phase Diagram of Low-Melting Mixtures. II. The Melting Diagram of Oxygen - Nitrogen and the Phase Diagram of Nitrogen - Physik. Z. Soviet Union 8, 326-36 (1935)
539. Ruhemann, M., and Zinn, N.; The System Hydrogen - Nitrogen - Carbon Monoxide and the Scrubbing out of Carbon Monoxide
Physik. Z. Soviet Union 12, 389-403 (1937)
540. Sage, B. H., and Lacey, W. N.; Phase Equilibria in Hydrocarbon Systems. The Methane - Ethane System in the Gaseous Region
Ind. Eng. Chem. 31, 1497-1509 (1939)
541. Sage, B. H., and Lacey, W. N.; The Partial Volume and Its Significance
Calif. Oil World 34, No. 22, 31-2, 34-5; No. 23, 16-17, 32 (1941)
542. Sage, B. H., and Lacey, W. N.; The Fugacity of Propene and 1-Butene
Petroleum Refiner 29, No. 10, 123-7 (1950)
543. Sage, B. H., Olds, R. H., and Lacey, W. N.; Two Gaseous Mixtures Containing Hydrogen and Nitrogen Thermodynamic Properties
Ind. Eng. Chem. 40, 1453-9 (1948)
544. Sage, B. H., Lacey, W. N., and Schaafsma, J. G.; Phase Equilibria in Hydrocarbon Systems. II. Methane - Propene System
Ind. Eng. Chem. 26, 214-17 (1934)
545. Sage, B. H., Schaafsma, J. G., and Lacey, W. N.; Phase Equilibria in Hydrocarbon Systems V. Pressure - Volume - Temperature Relations and Thermal Properties of Propane
Ind. Eng. Chem. 26, 1218 (1934)

546. Salvi, G., and Fiumara, A.; Absorption in the Measurement of Surface Area of Porous Solids
Riv. Combustibili 7, 345-91 (1953)
547. Snaiev, L. G.; Fugacity of Vaporous and Liquid Methane
Org. Chem. Ind. (U.S.S.R.) 5, 350-3 (1938)
548. Satterly, J.; Physical Properties of Solid and Liquid Helium
Rev. Modern Phys. 8, 347-57 (1936)
549. Saurel, J. R.; Equations of State and the Thermodynamic Properties of Compressed Gases
Genie Chim. 79, 12-22, 44-51 (1958)
550. Savvina, IA. D., and Velikovskii, A. S.; Equilibrium Constants of Methane and Hydrocarbons of Various Groups in Binary Systems
Gaz. Prom. No. 2: 26-30 (1957)
Russ. Acces 10, No. 3, 702 (1957)
551. Schaeffer, W. D., Smith, W. R., and Wendell, C. B.; The Adsorption of Helium on Carbon Black at Liquid Helium Temperatures
J. Am. Chem. Soc. 71, 863-7 (1949)
552. Schaefer, C. A., and Thodos, G.; Reduced Density Correlation for Hydrogen: Liquid and Gaseous States
A.I.Ch.E. Journal 5, 155 (1959)
553. Schafer, K.; The Second Virial Coefficient of the Different Modifications of Light and Heavy Hydrogen I. Experimental Determination
Z. Physik. Chem. B36, 85-104 (1937)
554. Schallamach, A.; X-Ray Investigation of the Structure Transition of Methane at the Lambda Point
Proc. Roy. Soc. (London) A171, 569 (1939)
555. Schames, L.; Direct Relationship of Equation of State and Internal Friction of Nitrogen, Helium, Neon, Hydrogen, Air, Argon, and Oxygen
Physik. Z. 32, 16-20 (1931)

556. Schamp, H. W., Jr., Mason, E. A., Richardson, A. C. B., and Altman, A.; Compressibility and Intermolecular Forces in Gases: Methane
Phys. Fluids 1, 329-37 (1958)
557. Schay, G., Szekely, Gy., and Szigetvary, G.; Adsorption of Gas Mixtures II. New Chromatographic Method for Determination of Mixed Adsorption; Adsorption of Carbon Dioxide-Acetylene Mixtures on Charcoal
Acta Chim. Acad. Sci. Hung 12, 309-23 (1957)
558. Schiller, F. C., and Canjar, L. N.; An Equation of State for Carbon Monoxide Vapor - Liquid Equilibria for the Nitrogen - Carbon Monoxide System
Chem. Eng. Prog. Symposium Ser. 49, No. 7, *Appl. Thermodynamics* 67-72 (1953)
559. Schneider, W. G., and Maass, O.; Phase Equilibria in the Two-Component System: Ethylene - Propylene, in the Critical-Temperature Region
Can. J. Research 19, 231-40 (1941)
560. Scott, G. A.; Isotherms of Hydrogen, Carbon Monoxide, and Their Mixtures
Proc. Roy. Soc. (London) A125, 330-44 (1929)
561. Scott, R. B., Brickwedde, F. G., Urey, H. C., and Wahl, M. H.; The Vapor Pressures and Derived Thermal Properties of Hydrogen and Deuterium
J. Chem. Phys. 2, 454 (1934)
562. Scott, R. B., and Brickwedde, F. G.; Molecular Volumes and Expansivities of Liquid Normal Hydrogen and Parahydrogen
J. Research NBS 19, 237 (1937)
563. Seeliger, R.; The Absorption of Gases by Crystals
Physik. Z. 22, 563 (1921)
564. Shearn, R. B.; The Volumetric and Phase Behavior of the Propane - Ethylene - Carbon Dioxide System
Ph. D. Thesis, Birmingham (1955)

565. Shull, C. G., Elkin, P. B., and Roess, L. C.; Physical Studies of Gen Microstructure
J. Am. Chem. Soc. 70, 1410-14 (1948)
566. Simon, F., Ruhemann, M., and Edwards, W. A. M.; Melting Point Curves of Hydrogen, Neon, Nitrogen and Argon
Z. Phys. Chem. 6, 331 (1929)
567. Smith, H. A., and Vaughan, W. E.; Ethane - Ethylene - Hydrogen Equilibrium
J. Chem. Physics 3, 341-3 (1935)
568. Smith, S. R.; I. Gas-Liquid Phase Equilibria in the System Helium - Hydrogen. II. Development of Mass Spectrometer Techniques for Analysis of Helium - Hydrogen and Their Isotopes
Ph.D. Thesis, Ohio State (1952)
569. Steacie, E. W. R., and Stovel, H. V.; Rate of Adsorption of Ethylene by Silica Gel and Nickel
J. Chem. Phys. 2, 581-4 (1934)
570. Steckel, F.; Dew and Boiling Points for Mixtures of Nitrogen with Carbon Monoxide at Pressures up to 17 Atmospheres
J. Tech. Phys. (U.S.S.R.) 6, 137-40 (1936)
571. Steckel, F.; Dew-and Boiling-Point Curves of Nitrogen - Carbon Monoxide Mixtures up to 17 Atmospheres
Physik. Z. Soviet Union 8, 337-41 (1935)
572. Steckel, F., and Tsin, N. M.; Determination of the Component Diagram for the Liquid-Gas System Methane - Nitrogen - Hydrogen
J. Chem. Ind. (U.S.S.R.) 16, No. 8, 24-8 (1939)
573. Sterne, T. E.; The Vapor Pressure Constant of Methane
Phys. Rev. 42, 556-64 (1932)
574. Stevenson, R.; Compressions and Solid Phases of Carbon Dioxide, Carbon Disulfide, Carbonyl Sulfide, Oxygen, and Carbon Monoxide at Low Temperatures
J. Chem. Phys. 27, 673-5 (1957)

575. Stewart, W. C., and Nielsen, R. F.; Phase Equilibria for Mixtures of Carbon Dioxide and Several Normal Saturated Hydrocarbons
Penna. State Univ., State Coll., Pa., Mineral Inds.
Expt. Sta. Bull. 62, 9-18 Seventeenth Tech. Conf. on Petroleum Production (1953)
576. Stewart, J. W., and Swenson, C. A.; Compression to 10,000 Atmospheres of Solid Nitrogen and Oxygen at 4.2°K
Phys. Rev. 94, 1069-70 (1954)
577. Stewart, J. W.; Compressibilities of Some Solidified Gases at Low Temperature
Phys. Rev. 97, 578-82 (1955)
578. Stewart, J. W., and LaRock, R. I.; Compression and Densities of 4 Solidified Hydrocarbons and Carbon Tetrafluoride at 77°K
J. Chem. Phys. 28, 425-7 (1958)
579. Stock, A., Henning, F., and Kuss, E.; Vapor Pressure Tables for Determinations Between +25° and -185°
Ber. 54B, 1119-29 (1921)
580. Storfer, E.; Heterogeneous Catalysis. I. Activated Adsorption of Hydrogen on Charcoal
Z. Elektrochem. 41, 198-204 (1935)
581. Stotler, H. H., and Benedict, M.; Correlation of Nitrogen - Methane Vapor - Liquid Equilibria by Equation of State
Chem. Eng. Prog. Sympos. Ser. 49, No. 6, Phase - Equilibria, Coll. Res. Papers for 1953, 25-36 (1953)
582. Strehlow, R. A.; Method of Extrapolating Equation-of-State Data to Higher Temperatures
J. Chem. Phys. 23, 1562 (1955)
583. Stroud, L., Miller, J. E., and Brandt, H. W.; An Experimental Study of the Phase Relationships of a Typical Helium Conservation Gas
Open File Supplement, Bur. Mines, (August 6, 1959)

584. Stutzman, L. F., and Brown, G. F.; Low Temperature Vapor-Liquid Equilibrium I.; Phase Equilibrium in Natural Gas at Low Temperatures
Chem. Eng. Prog. 45, 139 (1949)
585. Su, G. J., and Chang, C. H.; Generalized Beattie - Bridgeman Equation of State for Real Gases
J. Am. Chem. Soc. 68, 1080-3 (1946)
586. Su, G. J., and Chang, C. H.; Generalized Equation of State of Real Gases
Ind. Eng. Chem. 38, 800-2 (1946)
587. Su, G. J., Huang, P. H., and Chang, Y. M.; The Compressibilities of Gas Mixtures
J. Am. Chem. Soc. 68, 1403-4 (1946)
588. Swenson, C. A.; The Catalysis of the Ortho-Para Conversion in Liquid Hydrogen
J. Chem. Phys. 18, 520-2 (1950)
589. Szulciewski, D. H.; Gas Chromatographic Separation of Some Permanent Gases on Silica Gel at Reduced Temperatures
Anal. Chem. 29, 1541 (1957)
590. Tanner, C. C., and Masson, I.; The Pressure of Gaseous Mixtures III.
Proc. Roy. Soc. (London) A126, 268-88 (1930)
591. Taramasso, M.; Vapor - Phase Chromatography of Gaseous Hydrocarbons
Ricerca Sic. 26, 887-8 (1956)
592. Thomas, W.; Second Virial Coefficients of Argon, Krypton, Xenon, Nitrogen and Carbon Dioxide in the 0 to 1200 Temperature Region
Z. Physik 147, 92-8 (1957)
593. Tickner, A. W., and Lossing, F. P.; Mass Spectrometer Measurements of Low Vapor Pressures
J. Chem. Phys. 18, 148 (1950)

594. Tickner, A. W., and Lossing, F. P.; Measurements of Low Vapor Pressure by Means of a Mass Spectrometer
J. Phys. and Colloid Chem. 55, 733 (1951)
595. Titov, A.; The Adsorption of Gases on Charcoal
Z. Physik. Chem. 74, 641-78 (1910)
596. Torocheshnikov, N. S.; Isotherms and Isobars of the Nitrogen -Carbon Monoxide System
Journ. Techn. Phys. (Russian) 7, 1107 (1937)
597. Torocheshnikov, N. S.; Isotherms and Isobars of the Nitrogen - Carbon Monoxide System
Tech. Phys. U.S.S.R. 4, No. 5, 365-9 (1937)
598. Torocheshnikov, N. S., and Levius, L. A.; Liquid-Vapor Equilibrium in the System Nitrogen - Methane
J. Chem. Ind. (U.S.S.R.) 16, No. 1, 19-22 (1939)
599. Torocheshnikov, N. S., and Levius, M.; Liquid Vapor Equilibrium in the System Nitrogen - Methane
Zh. Khim. Prom. 18, No. 5, 7 (1941)
600. Torocheshnikov, N. S., and Sernenova, V. A.; Equilibrium Liquid-Vapor in the System Hydrogen - Methane - Nitrogen - Carbon Monoxide
Trudy Mozkov. Khim. - Tekhnol. Inst. No. 18, 115-17 (1954)
601. Townend, D. T. A., and Bhatt, L. A.; Isotherms of Hydrogen, Carbon Monoxide and Their Mixture
Proc. Roy. Soc. (London) A134, 502-12 (1931)
602. Trautz, M., and Badstubner, W.; Calculation of the Specific Heats of Gases from Vapor-Pressure Cruves
Ann. Physik. 8, No. 5, 185-202 (1931)
603. Tsiklis, D. S.; Limited Mutual Solubility of Gases Under High Pressure in the Systems Helium - Ammonia and Helium - Carbon Dioxide
Doklady Akad. Nauk U.S.S.R. 86, 1159-61 (1952)

604. Tsiklis, D. S.; Limited Mutual Solubilities of Gases at High Pressure in the Helium - Propane System
Doklady Akad. Nauk U.S.S.R. 101, 129-30 (1955)
605. Tsiklis, D. S.; Heterogeneous Equilibria in Binary Systems
J. Phys. Chem. (U.S.S.R.) 20, 181-8 (1946)
606. Tsiklis, D. S.; Heterogeneous Equilibria in Binary Systems
Systems Ethylene - Carbon Dioxide and Ethylene - Nitrogen
J. Phys. Chem. (U.S.S.R.) 21, 355-9 (1947)
607. Tsin, N. M.; Solubility of Ethylene and Propylene in Liquid
Nitrogen and Liquid Oxygen
J. Phys. Chem. Russ. 14, 418-21 (1940)
608. Trzeciak, Max; P V T Relationships of Gaseous Normal
Deuterium and Three Hydrogen - Nitrogen Mixtures
Ph.D. Thesis, Ohio State Univ. (1954)
609. Turvizumi, A.; Porous Structure of Active Carbons. IV.
Adsorption of Nitrogen, Methane, Carbon Dioxide, and Ethylene
Nippon Kagaku Zasggi 80, 221-4 (1959)
610. Ubbelohde, A. R.; Kinetics of Adsorption Processes. III.
Influence of Nuclear Spin on Sorption of Hydrogen on Charcoal
Trans. Faraday Soc. 28, 291-9 (1932)
611. Ubbelohde, A. R., and Egerton, A.; The Kinetics of
Adsorption Processes
Proc. Roy. Soc. (London) A134, 512-23 (1931)
612. Uehara, K.; Gas Mixtures of Low Hydrocarbons. II.
Solubilities of Hydrogen and Methane in Liquid Ethane
J. Chem. Soc. Japan 53, 931-2 (1932)
613. Uhlenbeck, G. E., and Beth, E.; Quantum Theory of the
Nonideal Gas. I. Deviations from the Classical Theory
Physica 3, 729-45 (1936)
614. Urry, W. D.; Adsorption with Silica Gel at Low Temperatures
J. Phys. Chem. 36, 1831-45 (1932)

615. Vagin, E. Y., and Zhukhovitskii, A. A. Theory of Thermal Separation of Gas Mixtures by the Adsorption Method *Doklady Akad. Nauk U.S.S.R.* 94, 273-6 (1954)
616. Van Der Waarden, M., and Scheffer, F. E. C.; Adsorption of Nitrogen, Hydrogen and Their Mixtures on Silica Gel *Rec. Trav. Chim. Phys - Bas.* 71, 689-98 (1952)
617. Van Dijk, H., and Shoenberg, D.; Tables of Vapor Pressure of Liquid Helium *Nature* 164, 151 (1949)
618. Van Dingenen, W., and Van Itterbeek, A.; Measurements of the Adsorption of Light and Heavy Hydrogen on Charcoal Between 90° and 17 K *Physica* 6, 49-58 (1939)
619. Van Itterbeek, A.; The Dependency of C_p/C_V on Pressure for Hydrogen Gas Deduced from Measurements of the Velocity of Sound at Liquid - Hydrogen Temperatures *Commun. Phys. Lab. Univ. Leiden, Supp.* 70b, 7-12 (1932)
620. Van Itterbeek, A., Van Dingenen, W., and Borghs, J.; Measurements of the Adsorption of Helium Gas on Active Charcoal Between 4.22° K and 1.78° K *Physica* 6, 951-60 (1939)
621. Van Itterbeek, A., Van Dingenen, W., and Borghs, J.; Adsorption of Helium Gas on Active Charcoal Between 4.2° and 1.78° K *Nature* 144, 249 (1939)
622. Van Itterbeek, A., and Borghs, J.; The Van der Walls Adsorption of Gases *Z. Physik. Chem.* B50, 128-42 (1942)
623. Van Itterbeek, A., and Vereycken, W.; Further Experiments on the Simon Desorption Method Between Temperatures of 90 and 40° K *Physica* 3, 954-8 (1936)
624. Van Itterbeek, A., and Van Dingenen, W.; Determination of Adsorption Isotherms of Hydrogen on Charcoal Between 90 and 50° K, in Connection with Desorption Experiments *Physica* 4, 389-402 (1937)

625. Van Itterbeek, A., and Van Dingenen, W.: Adsorption Isotherms and Heats of Adsorption of Oxygen and Carbon Monoxide on Charcoal in the Temperature Range 50 to 90°K
Physica 4, 1169-80 (1937)
626. Van Itterbeek, A., and Van Ginneken, W.: Adsorption Isotherms and Heats of Adsorption of Helium on Charcoal Between 20 and 6°K. New Desorption Experiments
Physica 5, 529-40 (1938)
627. Van Laar, J. J.: The Critical Density of Hydrogen, Helium and Neon
Chem. Weekblad. 16, 1557-64 (1919)
628. Van Lerberghe, B., and Schouls, G.: Characteristic Equation of a Binary Mixture of Gases
Bull. Sci. Acad. Roy. Belg. 15, 583-9 (1929)
629. Van Ness, H. C.: Use of the Redlich and Kwong Equation of State in Calculating Thermodynamic Properties of Gases from Experimental Compressibility Data
A.I.Ch.E. Journal 1, 100-4 (1955)
630. Van Urk, A. T.: Behaviour of Nitrogen According to the Law of Corresponding States
Proc. Fourth Intern. Congress Refrigeration 1, 79-80A
Leiden Comm. No. 169 (1924)
631. Varshni, Y. P., and Srivastava, S. N.: Additive Function of Critical Pressures
Sci. and Culture (Calcutta) 19, 308 (1953)
632. Vasil'ev, B. N., Bering, B. P., Dubinin, M. M., and Serpinskii, V. V.: Adsorption at High Pressures
Doklady Akad. Nauk U.S.S.R. 114, 131 (1957)
633. Uehara, K.: The Gas Mixtures of Lower Hydrocarbons. V. Adsorption of the Gas Mixtures
J. Chem. Soc. Japan 60, 1149-58 (1939)
634. Veinik, A. I.: The Equation of State of Argon Gas
Doklady Akad. Nauk Bloruss U.S.S.R. 1, No. 1, 7-11 (1957)

635. Vellinger, E., and Pons, E.; The Solubility of Nitrogen in Liquid Methane and Propane
Compt. Rend. 217, 689-91 (1943)
636. Verschaffelt, J. E.; Researches on the Compressibility and Condensation of Mixtures of Carbon Dioxide and Hydrogen
Arch. Neerland. Sci. Inact. Nat. 11, 358 (1906)
637. Verschoyle, T. T. H.; The Ternary System: Carbon Monoxide - Nitrogen - Hydrogen and the Component Binary Systems Between Temperatures of -185° and -215° and Between Pressures of 0 and 225 Atmospheres
Trans. Roy. Soc. (London) A230, 189-220 (1931)
638. Verschoyle, T. T. H.; Isotherms of Hydrogen, Nitrogen, and Hydrogen - Nitrogen Mixtures at 0° and 20° up to a Pressure of 200 Atmospheres
639. Volova, L. M.; Equilibrium of Coexisting Liquid and Gas Phases in the Binary System Methane - Ethylene
J. Phys. Chem. (U.S.S.R.) 14, 268-76 (1940)
640. Von Antropoff, A., Propfe, H. A., Weil, K., Kalthoff, F., Schmitz, L., and Von Cronenthal, G. R. H.; Adsorption of Gases at Lowest to Highest Pressures III. Adsorption Isotherms of the Rare Gases and Nitrogen at Pressures Below Atmospheric
Kolloidzschr 129, 1-10 (1952)
641. Von Antropoff, A., Propfe, H. A., Weil, K., Kalthoff, F., Schmitz, L., and Von Cronenthal, G. R. H.; Adsorption of Gases at Lowest to Highest Pressures. IV. Adsorption Isotherms of Argon and Nitrogen up to Pressures of 400 kg/cm^2
Kolloidzschr 129, 11-19 (1952)
642. Vyakhirev, D. A., Bruk, A. I., and Guglina, S. A.; Volumetric - Chromatographic Method of Gas Analysis
Doklady Akad. Nauk U.S.S.R. 90, 577-9 (1953)
643. Vyakhiren, D. A., and Reshetnikova, L. E.; Chromatographic Study of Static Ethane Adsorption
Uchenye Zapiski Gor'kovsk, Univ. 1953, No. 24, 191-209,
Referat, Zhur. Khim, 1955 No. 7254

644. Wagener, S.; Adsorption Measurements at Very Low Pressures. II.
J. Phys. Chem. 61, 267-71 (1957)
645. Walters, C. J.; Charcoal Adsorption Equilibriums for Light Hydrocarbons
Ind. Eng. Chem. 47, 2544-7 (1955)
646. Wang, D. I. J.; Vapor - Liquid Equilibria Studies on the System Argon - Oxygen
Proc. of 1957 Cryog. Engr. Conf. 294, (1957)
647. Watson, G. M., Stevens, A. B., Evans, R. B., III, and Hodges, D., Jr.; Compressibility Factors of Nitrogen - Propane Mixtures in the Gas Phase
Ind. Eng. Chem 46, 362-4 (1954)
648. Webster, T. J.; The Influence of Pressure on the Equilibria Between Carbon Dioxide and Air
Proc. Roy. Soc. London A214, 61-71 (1951)
649. Weinaug, C. F., and Katz, D. L.; Surface Tensions of Methane - Propane Mixtures
Ind. Eng. Chem. 35, 239 (1943)
650. Weingaertner, E.; Sorption Equilibria of Methane, Ethane and Propane with Active Carbon Above and Below the Critical Temperature
Z. Elektrochem 42, 599-606 (1936)
651. Weishaupr, J.; Determination of the Phase Equilibria of Nitrogen - Argon - Oxygen Mixtures at a Pressure of 1000 Tarc. (1000 mm Hg)
Angew. Chem. B20, 321-6 (1948)
652. Weiss, P.; Equation of State of Fluids. Negative Internal Pressure at High Temperature
Compt. Rend. 200, 1700-2 (1935)
653. Wenzel, L. A.; Low - Temperature Distillation
Chem. Eng. Prog. 53, 272-7 (1957)

654. White, David; Second Virial Coefficients of Non Polar Binary Gas Mixtures
Bull. Eng. Expt. Stat. Ohio State Univ. (June 12, 1952)
655. White, D., Friedman, A. S., and Johnston, H. L.; Direct Determination of the Critical Temperature and Critical Pressure of Normal Hydrogen
J. Am. Chem. Soc. 72, 3565 (1950)
656. White, D., Friedman, A. S., and Johnston, H. L.; The Vapor Pressure of Normal Hydrogen from the Boiling Point to the Critical Point
J. Am. Chem. Soc. 72, 3927-30 (1950)
657. White, D., Friedman, A. S., and Johnston, H. L.; The Critical Temperature and Critical Pressure of Nitrogen
J. Am. Chem. Soc. 73, 5713-15 (1951)
658. White, D., Friedman, A. S., and Johnston, H. L.; Low Pressure P-V-T Data of Gaseous Hydrogen from the Boiling Point to Room Temperature
T.R. 264-12 (1951) Cry. Lab., Ohio State Univ.
659. Widdoes, L. C., and Katz, D. L.; Vapor-Liquid Equilibrium Constants for Carbon Monoxide
Ind. Eng. Chem. 40, 1742-6 (1948)
660. Wiebe, R., Gaddy, V. L., and Heins, C., Jr.; Compressibility Isotherms of Helium at Temperatures from -70° to 200° and at Pressures to 1000 Atmospheres
J. Am. Chem. Soc. 53, 1721-5 (1931)
661. Wiebe, R., and Gaddy, V. L.; The Compressibilities of Hydrogen and Four Mixtures of Hydrogen and Nitrogen at 0°, 25°, 50°, 100°, 200°, and 300° and to 1000 Atmospheres
J. Am. Chem. Soc. 60, 2300-3 (1938)
662. Williams, George B., Jr.; P V T Relationships and Phase Equilibria in the System Ethylene - N-Butane
Ph.D. Thesis U. of Mich. (1949)
663. Williams, R. B., and Katz, D. L.; Vapor - Liquid Equilibria in Binary Systems. Hydrogen with Ethylene, Ethane, Propylene and Propane
Ind. Eng. Chem. 46, 2512-20 (1954)

664. Wilson, R. E.; Adsorption of Nitrogen and Oxygen by Charcoal
Phys. Rev. 16, 8-16 (1920)
665. Winkler, O.: Absorption of Gases at Low Pressure by Active Carbon and Silica Gel
Z. Tech. Physik 14, 319-332 (1933)
666. Wirth, H.; Separation of Gases by Sorption Processes. II.
Monatsh. 84, 741-50 (1953)
667. Woolley, H. W.; Thermodynamic Properties of Gaseous Nitrogen
Natl. Bur. Standards (U.S.) Report 2287 (March 1953)
668. Woolley, H. W.; Vapor Pressure of Parahydrogen and Ortho-hydrogen Mixtures
Natl. Bur. Standards Report 3253 (April 15, 1954)
669. Woolley, H. W., Scott, R. B., and Brickwedde, F. G.;
Compilation of Thermal Properties of Hydrogen in Its Various Isotopic and Ortho-Para Modifications
J. Research NBS 41, 379 (1948)
670. Woolsey, G.; Critical Constants of the Inert Gases and of Hydrogen Compounds Having the Same Number of Electrons per Molecule
J. Am. Chem. Soc. 59, 1577-8 (1937)
671. Wroblewski, M. S. de; Sur les Proprietes die gas des marais liquide et sur son emploie comme refrigerant
On the Properties of Liquid Methane and Its Use as a Refrigerant
Compt. Rend. 99, 136-9 (1994)
672. Wylie, L. M.; The Vapor Pressure of Solid Argon, Carbon Monoxide, Methane, Nitrogen, and Oxygen from Their Triple Points to the Boiling Point of Hydrogen
M. S. Thesis, Georgia Inst. of Tech. (1958)
673. Yasui, E., and Suzuki, H.; Determination of Small Amounts of Hydrocarbons and Carbon Dioxide Contained in Air, Oxygen, or Nitrogen by Use of Silica Gel Under Cooling with Liquid Oxygen
Kogyo Kagaku Zasshi 60, 260-5 (1957)

674. Young, J. A.; Some Thermodynamic Studies of Binary Liquid Mixtures of Carbon Monoxide and Methane
B. Sc. Thesis, Oxford, New College (1951)
675. Zaalishvili, Sh. D.; A Modified Theorem of Corresponding States for Gas Mixtures and Its Test on Hydrocarbon Mixtures II.
Zhur. Fiz. Khim. 26, 970-6 (1952)
676. Zelany, J., and Smith, R. H.; Vapor Pressures of Carbon Dioxide at Low Temperatures
Phys. Rev. 24, 42 (1907)
677. Zickermann, C.; Adsorption of Gases on Solid Surfaces at Low Temperatures
Z. Physik 88, 43-54 (1934)
678. Zielinski, E.; Separation of Helium - Neon - Nitrogen Mixtures by a Combination Adsorption and Desorption Method
Przemyst Chem. 13, 642-6 (1957)
679. Ziegler, W. T.; The Vapor Pressure of Some Hydrocarbons in the Liquid and Solid State at Low Temperatures
NBS Tech. Note No. 4, PB 151363 (1959)
680. Zlunitsyn, S. A., and Rudenko, N. S.; Compressibility of Hydrogen at Low Temperatures
J. Exptl. Theoret. Phys. (U.S.S.R.) 16, 776-9 (1946)
681. Zwanzig, R. W., Kirkwood, J. G., Stripp, K. F., and Oppenheim, I.; Errata: Radial Distribution Functions and the Equation of State of Monatomic Fluids
J. Chem. Phys. 22, 1625 (1954)

U.S. DEPARTMENT OF COMMERCE

Frederick H. Mueller, Secretary

NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Electricity and Electronics. Resistance and Reactance. Electron Devices. Electrical Instruments. Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic Instrumentation. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Photographic Technology. Length. Engineering Metrology.

Heat. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology. Molecular Kinetics. Free Radicals Research.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Physics. Radiation Theory. Radioactivity. X-rays. High Energy Radiation. Nucleonic Instrumentation. Radiological Equipment.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Molecular Structure and Properties of Gases. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enamelled Metals. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Air Conditioning. Heating, and Refrigeration. Floor, Roof, and Wall Coverings. Codes and Safety Standards. Heat Transfer. Concreting Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. SEAC Engineering Group. Components and Techniques. Digital Circuitry. Digital Systems. Analog Systems. Application Engineering.

• Office of Basic Instrumentation.

• Office of Weights and Measures.

BOULDER, COLORADO

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Sun-Earth Relationships. VHF Research. Radio Warning Services. Airglow and Aurora. Radio Astronomy and Arctic Propagation.

Radio Propagation Engineering. Data Reduction Instrumentation. Modulation Research. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation Obstacles Engineering. Radio-Meteorology. Lower Atmosphere Physics.

Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. High Frequency Impedance Standards. Electronic Calibration Center. Microwave Physics. Microwave Circuit Standards.

Radio Communication and Systems. Low Frequency and Very Low Frequency Research. High Frequency and Very High Frequency Research. Ultra High Frequency and Super High Frequency Research. Modulation Research. Antenna Research. Navigation Systems. Systems Analysis. Field Operations.