Package 'ggplot2'

January 8, 2011

Type Package

Title An implementation of the Grammar of Graphics

Version 0.8.9

Author Hadley Wickham < h.wickham@gmail.com>

Maintainer Hadley Wickham < h.wickham@gmail.com>

Description An implementation of the grammar of graphics in R. It combines the advantages of both base and lattice graphics: conditioning and shared axes are handled automatically, and you can still build up a plot step by step from multiple data sources. It also implements a sophisticated multidimensional conditioning system and a consistent interface to map data to aesthetic attributes. See the ggplot2 website for more information, documentation and examples.

Depends reshape (>= 0.8.0), grid, proto

Imports plyr (>= 1.0), splines, MASS, RColorBrewer, digest, colorspace

Suggests quantreg, Hmisc, mapproj, maps, hexbin, gpclib, maptools

Extends sp

License GPL-2

URL http://had.co.nz/ggplot2/

LazyLoad false

LazyData true

Collate aaa-.r aaa-compare.r aaa-constants.r aaa-examples.r aaa-html.r aaa-rdoc.r aes.r annotation.r coord-.r coord-cartesian-.r coord-cartesian-equal.r coord-cartesian-flipped.r coord-map.r coord-polar.r coord-transform.r date-time-breaks.r date-time.r facet-.r facet-grid-.r facet-labels.r facet-viewports.r facet-wrap.r formats.r fortify-lm.r fortify-map.r fortify-spatial.r fortify.r geom-.r geom-abline.r geom-bar-.r

2 R topics documented:

geom-bar-histogram.r geom-bin2d.r geom-blank.r geom-boxplot.r
geom-crossbar.r geom-defaults.r geom-error.r geom-errorh.r
geom-freqpoly.r geom-hex.r geom-hline.r geom-linerange.r
geom-pathr geom-path-contour.r geom-path-density2d.r
geom-path-line.r geom-path-step.r geom-pointr
geom-point-jitter.r geom-pointrange.r geom-polygon.r
geom-quantile.r geom-rect.r geom-ribbonr
geom-ribbon-density.r geom-rug.r geom-segment.r geom-smooth.r
geom-text.r geom-tile.r geom-vline.r grob-absolute.r
grob-background.r grob-grid.r grob-null.r guides-axis.r
guides-grid.r guides-legend.r labels.r layer.r matrix.r
plot-build.r plot-construction.r plot-last.r plot-render.r
plot-surrounds.r plot.r positionr position-collide.r
position-dodge.r position-fill.r position-identity.r
position-jitter.r position-stack.r quick-plot.r save.r scaler
scale-continuousr scale-continuous-alpha.r
scale-continuous-colour.r scale-convenience.r scale-date.r
scale-datetime.r scale-defaults.r scale-discreter scale-discrete-colour.r scale-discrete-grey.r
scale-discrete-position.r scale-identity.r scale-linetype.r
scale-manual.r scale-shape.r scale-size.r scalesr statr
stat-bin.r stat-bin2d.r stat-binhex.r stat-boxplot.r
stat-contour.r stat-density-2d.r stat-density.r stat-function.r
stat-identity.r stat-qq.r stat-quantile.r stat-smooth-methods.r
stat-smooth.r stat-spoke.r stat-sum.r stat-summary.r
stat-unique.r stat-vline.r summary.r templates.r
theme-defaults.r theme-elements.r theme.r transr trans-scales.r utilities-break.r utilities-colour.r
utilities-discrete.r utilities-facet.r utilities-grid.r
utilities-layer.r utilities-matrix.r utilities-position.r
utilities-resolution.r utilities.r xxx-codegen.r xxx-digest.r xxx.r zxx.r coord-munch.r

Repository CRAN

Date/Publication 2010-12-23 18:17:13

R topics documented:

aes
borders
comma
coord_cartesian
coord_fixed
coord_flip
coord_map
coord_polar
coord_trans
cut_interval
cut_number
Diamond prices

dist_central_angle	19
dollar	19
expand_limits	20
expand_range	20
facet_grid	21
facet_wrap	
fortify	25
fortify.lm	26
fortify.map	27
fortify.SpatialPolygonsDataFrame	28
Fuel economy	29
geom_abline	29
geom_area	31
geom_bar	33
geom_bin2d	35
geom_blank	
geom_boxplot	
geom_contour	
geom_crossbar	
geom_density	
geom_density2d	
geom_errorbarh	
geom_freqpoly	
geom_hex	51
geom_histogram	52
geom_hline	
geom_jitter	
geom_line	
geom_linerange	61
geom_path	63
geom_point	
geom_pointrange	
geom_polygon	
geom_quantile	
geom_rect	
geom_ribbon	
geom_rug	76
geom_segment	78
geom_smooth	80
geom step	81
geom_text	83
geom_tile	85
geom vline	87
ggfluctuation	89
ggmissing	90
ggorder	91
ggpcp	91
CCI I	

ggplot	92
ggplot.data.frame	93
ggsave	
ggstructure	95
MDB movies data	95
abel_both	96
abel_bquote	97
abel_parsed	98
abel_value	98
abs	99
ast_plot	100
Mammals sleep	100
map_data	101
mean_se	102
Midwest demographics	102
Nodoc	103
opts	
percent	
olotmatrix	
position dodge	
position_fill	
position_identity	
position_jitter	
position_stack	
Presidential terms	
ηplot	
rescale	
scale_alpha_continuous	
scale brewer	
scale_continuous	
scale_date	
scale_datetime	
scale discrete	
scale gradient	
scale_gradient2	
scale_gradientn	
scale_grey	
scale_hue	
scale_identity	
scale_linetype_discrete	
scale_manual	
scale_shape_discrete	
scale_size_continuous	
scientific	
Seals vector field	
stat_abline	
stat_bin	
stat_bin2d	
onat_viii∠u	142

aes 5

	stat_binhex
	stat_boxplot
	stat_contour
	stat_density
	stat_density2d
	stat_function
	stat_hline
	stat_identity
	stat_qq
	stat_quantile
	stat_smooth
	stat_spoke
	stat_sum
	stat_summary
	stat_unique
	stat_vline
	theme_blank
	theme_bw
	theme_grey
	theme_line
	theme_rect
	theme_segment
	theme_text
	theme_update
	update_geom_defaults
	update_stat_defaults
	US economic time series
	xlim
	ylim
Index	177

aes

Generate aesthetic mappings

Description

Aesthetic mappings describe how variables in the data are mapped to visual properties (aesthetics) of geoms.

Usage

```
aes(x, y, ...)
```

6 borders

Arguments

```
x x valuey value... List of name value pairs
```

Details

aes creates a list of unevaluated expressions. This function also performs partial name matching, converts color to colour, and old style R names to new ggplot names (eg. pch to shape, cex to size)

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

```
aes_string
```

Examples

```
aes(x = mpg, y = wt)
aes(x = mpg ^2, y = wt / cyl)
```

borders

Map borders.

Description

Create a layer of map borders

Usage

```
borders(database = "world", regions = ".", fill = NA, colour = "grey50", ...)
```

Arguments

```
database map data, see map for details
regions map region
fill fill colour
colour border colour
... other arguments passed on to geom_polygon
```

Author(s)

Hadley Wickham <h.wickham@gmail.com>

comma 7

Examples

```
if (require(maps)) {
ia <- map_data("county", "iowa")
mid_range <- function(x) mean(range(x))
seats <- ddply(ia, .(subregion), colwise(mid_range, .(lat, long)))
ggplot(ia, aes(long, lat)) +
geom_polygon(aes(group = group), fill = NA, colour = "grey60") +
geom_text(aes(label = subregion), data = seats, size = 2, angle = 45)

data(us.cities)
capitals <- subset(us.cities, capital == 2)
ggplot(capitals, aes(long, lat)) +
borders("state") +
geom_point(aes(size = pop)) +
scale_area()
}</pre>
```

comma

Comma formatter

Description

Format number with commas separating thousands

Usage

```
comma(x, ...)
```

Arguments

```
x numeric vector to format
```

... other arguments passed on to format

Author(s)

Hadley Wickham < h.wickham@gmail.com>

8 coord_cartesian

```
coord_cartesian coord_cartesian
```

Description

Cartesian coordinates

Usage

```
coord_cartesian(xlim = NULL, ylim = NULL, wise = FALSE, ...)
```

Arguments

```
xlim x limits
ylim y limits
wise NULL
... ignored
```

Details

The Cartesian coordinate system is the most familiar, and common, type of coordinate system. There are no options to modify, and it is used by default, so you shouldn't need to call it explicitly

This page describes coord_cartesian, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/coord_cartesian.html

```
## Not run:
# There are two ways of zooming the plot display: with scales or
# with coordinate systems. They work in two rather different ways.

(p <- qplot(disp, wt, data=mtcars) + geom_smooth())

# Setting the limits on a scale will throw away all data that's not
# inside these limits. This is equivalent to plotting a subset of
# the original data</pre>
```

coord_fixed 9

```
p + scale_x_continuous(limits = c(325, 500))
 # Setting the limits on the coordinate system performs a visual zoom
 # the data is unchanged, and we just view a small portion of the original
 # plot. See how the axis labels are the same as the original data, and
 # the smooth continue past the points visible on this plot.
 p + coord_cartesian(xlim = c(325, 500))
 # You can see the same thing with this 2d histogram
 (d <- ggplot(diamonds, aes(carat, price)) +</pre>
   stat_bin2d(bins = 25, colour="grey50"))
 # When zooming the scale, the we get 25 new bins that are the same
 # size on the plot, but represent smaller regions of the data space
 d + scale_x_continuous(limits = c(0, 2))
 # When zooming the coordinate system, we see a subset of original 50 bins,
 # displayed bigger
 d + coord_cartesian(xlim = c(0, 2))
 ## End(Not run)
coord_fixed
                     coord_fixed
```

Description

Cartesian coordinates with fixed relationship between x and y scales.

Usage

```
coord_fixed(ratio = 1, ...)
```

Arguments

```
ratio NULL ... ignored
```

Details

A fixed scale coordinate system forces a specified ratio between the physical representation of data units on the axes. The ratio represents the number of units on the y-axis equivalent to one unit on the x-axis. The default, ratio = 1, ensures that one unit on the x-axis is the same length as one unit on the y-axis. Ratios higher than one make units on the y axis longer than units on the x-axis, and vice versa. This is similar to ?eqscplot in MASS, but it works for all types of graphics

This page describes coord_fixed, see layer and qplot for how to create a complete plot from individual components.

10 coord_flip

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/coord_fixed.html

Examples

```
## Not run:
# ensures that the ranges of axes are equal to the specified ratio by
# adjusting the plot aspect ratio

qplot(mpg, wt, data = mtcars) + coord_equal(ratio = 1)
qplot(mpg, wt, data = mtcars) + coord_equal(ratio = 5)
qplot(mpg, wt, data = mtcars) + coord_equal(ratio = 1/5)
# Resize the plot to see that the specified aspect ratio is mantained
## End(Not run)
```

coord_flip

coord_flip

Description

Flipped cartesian coordinates

Usage

```
coord_flip(xlim = NULL, ylim = NULL, wise = FALSE, ...)
```

Arguments

```
xlim x limits
ylim y limits
wise NULL
... ignored
```

coord_map 11

Details

Flipped cartesian coordinates so that horizontal becomes vertical, and vertical, horizontal. This is primarily useful for converting geoms and statistics which display y conditional on x, to x conditional on y

This page describes coord_flip, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

```
• http://had.co.nz/ggplot2/coord_flip.html
```

Examples

```
## Not run:
# Very useful for creating boxplots, and other interval
# geoms in the horizontal instead of vertical position.
qplot(cut, price, data=diamonds, geom="boxplot")
last_plot() + coord_flip()

qplot(cut, data=diamonds, geom="bar")
last_plot() + coord_flip()

qplot(carat, data=diamonds, geom="histogram")
last_plot() + coord_flip()

# You can also use it to flip lines and area plots:
qplot(1:5, (1:5)^2, geom="line")
last_plot() + coord_flip()

## End(Not run)
```

coord_map

coord_map

Description

Map projections

12 coord_map

Usage

```
coord_map(projection = "mercator", orientation = NULL, xlim = NULL,
    ylim = NULL, fast = TRUE, ...)
```

Arguments

```
projection projection to use, see ?mapproject for complete list

orientation orientation, which defaults to c(90, 0, mean(range(x))). This is not optimal for many projections, so you will have to supply your own.

xlim x limits
ylim y limits
fast NULL
... other arguments passed on to mapproject
```

Details

This coordinate system provides the full range of map projections available in the mapproj package.

This is still experimental, and if you have any advice to offer regarding a better (or more correct) way to do this, please let me know

This page describes coord_map, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/coord_map.html

```
## Not run:
try_require("maps")
# Create a lat-long dataframe from the maps package
nz <- data.frame(map("nz", plot=FALSE)[c("x","y")])
(nzmap <- qplot(x, y, data=nz, geom="path"))

nzmap + coord_map()
nzmap + coord_map(project="cylindrical")
nzmap + coord_map(project='azequalarea', orientation=c(-36.92,174.6,0))

states <- data.frame(map("state", plot=FALSE)[c("x","y")])
(usamap <- qplot(x, y, data=states, geom="path"))</pre>
```

coord_polar 13

```
usamap + coord_map()
# See ?mapproject for coordinate systems and their parameters
usamap + coord_map(project="gilbert")
usamap + coord_map(project="lagrange")

# For most projections, you'll need to set the orientation yourself
# as the automatic selection done by mapproject is not available to
# ggplot
usamap + coord_map(project="orthographic")
usamap + coord_map(project="stereographic")
usamap + coord_map(project="conic", lat0 = 30)
usamap + coord_map(project="bonne", lat0 = 50)

## End(Not run)
```

coord_polar

coord_polar

Description

Polar coordinates

Usage

```
coord_polar(theta = "x", start = 0, direction = 1, expand = FALSE,
    ...)
```

Arguments

```
theta variable to map angle to ('x' or 'y')

start offset from 12 o'clock in radians

direction 1, clockwise; -1, anticlockwise

expand should axes be expanded to slightly outside the range of the data? (default: FALSE)

... other arguments
```

Details

The polar coordinate system is most commonly used for pie charts, which are a stacked bar chart in polar coordinates.

This coordinate system has one argument, theta, which determines which variable is mapped to angle and which to radius. Valid values are "x" and "y".

This page describes coord_polar, see layer and qplot for how to create a complete plot from individual components.

14 coord_polar

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/coord polar.html

```
## Not run:
# NOTE: Use these plots with caution - polar coordinates has
# major perceptual problems. The main point of these examples is
# to demonstrate how these common plots can be described in the
# grammar. Use with EXTREME caution.
# A coxcomb plot = bar chart + polar coordinates
cxc \leftarrow ggplot(mtcars, aes(x = factor(cyl))) +
  geom_bar(width = 1, colour = "black")
cxc + coord_polar()
# A new type of plot?
cxc + coord_polar(theta = "y")
# A pie chart = stacked bar chart + polar coordinates
pie <- ggplot(mtcars, aes(x = factor(1), fill = factor(cyl))) +</pre>
geom_bar(width = 1)
pie + coord_polar(theta = "y")
# The bullseye chart
pie + coord_polar()
# Hadley's favourite pie chart
df <- data.frame(</pre>
 variable = c("resembles", "does not resemble"),
  value = c(80, 20)
ggplot(df, aes(x = "", y = value, fill = variable)) +
  geom\_bar(width = 1) +
  scale_fill_manual(values = c("red", "yellow")) +
  coord_polar("y", start=pi / 3) +
  opts(title = "Pac man")
# Windrose + doughnut plot
movies$rrating <- cut_interval(movies$rating, length = 1)</pre>
movies$budgetq <- cut_number(movies$budget, 4)</pre>
doh <- ggplot(movies, aes(x = rrating, fill = budgetq))</pre>
# Wind rose
```

coord_trans 15

```
doh + geom_bar(width = 1) + coord_polar()
# Race track plot
doh + geom_bar(width = 0.9, position = "fill") + coord_polar(theta = "y")
## End(Not run)
```

coord_trans

coord_trans

Description

Transformed cartesian coordinate system

Usage

```
coord_trans(xtrans = "identity", ytrans = "identity", ...)
```

Arguments

```
xtrans      NULL
ytrans      NULL
...      ignored
```

Details

This page describes coord_trans, see layer and qplot for how to create a complete plot from individual components.

Value

```
A\; {\tt layer}
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/coord_trans.html

16 cut_interval

Examples

```
## Not run:
# See ?geom_boxplot for other examples
# Three ways of doing transformating in ggplot:
  * by transforming the data
qplot(log10(carat), log10(price), data=diamonds)
# * by transforming the scales
qplot(carat, price, data=diamonds, log="xy")
qplot(carat, price, data=diamonds) + scale_x_log10() + scale_y_log10()
# * by transforming the coordinate system:
qplot(carat, price, data=diamonds) + coord_trans(x = "log10", y = "log10")
# The difference between transforming the scales and
# transforming the coordinate system is that scale
# transformation occurs BEFORE statistics, and coordinate
# transformation afterwards. Coordinate transformation also
# changes the shape of geoms:
d <- subset(diamonds, carat > 0.5)
qplot(carat, price, data = d, log="xy") +
  geom_smooth (method="lm")
gplot(carat, price, data = d) +
  geom_smooth(method="lm") +
  coord_trans(x = "log10", y = "log10")
# Here I used a subset of diamonds so that the smoothed line didn't
# drop below zero, which obviously causes problems on the log-transformed
# scale
# With a combination of scale and coordinate transformation, it's
# possible to do back-transformations:
qplot(carat, price, data=diamonds, log="xy") +
 geom_smooth(method="lm") +
  coord_trans(x="pow10", y="pow10")
qplot(carat, price, data=diamonds) + geom_smooth(method = "lm")
## End(Not run)
```

cut_interval

Discretise continuous variable, equal interval length.

Description

Cut numeric vector into intervals of equal length.

Usage

```
cut_interval(x, n = NULL, length = NULL, ...)
```

cut_number 17

Arguments

```
    n numeric vector
    n number of intervals to create, OR
    length length of each interval
```

... other arguments passed on to cut

Details

@arguments numeric vector @arguments number of intervals to create, OR @arguments length of each interval @arguments other arguments passed on to cut @keyword manip @seealso cut_number

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

```
cut_number
```

Examples

```
table(cut_interval(1:100, n = 10))
table(cut_interval(1:100, n = 11))
table(cut_interval(1:100, length = 10))
```

cut_number

Discretise continuous variable, equal number of points.

Description

Cut numeric vector into intervals containing equal number of points.

Usage

```
cut_number(x, n = NULL, ...)
```

Arguments

```
    n numeric vector
    n number of intervals to create, OR
    length of each interval
    other arguments passed on to cut
```

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Diamond prices

See Also

```
cut_interval
```

Examples

```
table(cut_number(runif(1000), n = 10))
```

Diamond prices

Prices of 50,000 round cut diamonds

Description

A dataset containing the prices and other attributes of almost 54,000 diamonds. The variables are as follows:

- price. price in US dollars (\\$326-\\$18,823)
- carat. weight of the diamond (0.2–5.01)
- cut. quality of the cut (Fair, Good, Very Good, Premium, Ideal)
- colour. diamond colour, from J (worst) to D (best)
- clarity. a measurement of how clear the diamond is (I1 (worst), SI1, SI2, VS1, VS2, VVS1, VVS2, IF (best))
- x. length in mm (0–10.74)
- y. width in mm (0–58.9)
- z. depth in mm (0–31.8)
- depth. total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43-79)
- table. width of top of diamond relative to widest point (43–95)

Usage

```
data(diamonds)
```

Format

A data frame with 53940 rows and 10 variables

dist_central_angle 19

dist_central_angle Compute central angle between two points.

Description

Multiple by radius of sphere to get great circle distance

Usage

```
dist_central_angle(lon, lat)
```

Arguments

lon longitude
lat latitude

Author(s)

Hadley Wickham <h.wickham@gmail.com>

dollar

Currency formatter

Description

Round to nearest cent and display dollar sign

Usage

```
dollar(x, ...)
```

Arguments

x numeric vector to format

... other arguments passed on to format

Author(s)

Hadley Wickham <h.wickham@gmail.com>

20 expand_range

expand_limits

Expand the plot limits with data.

Description

Some times you may want to ensure limits include a single value, for all panels or all plots. This function is a thin wrapper around <code>geom_blank</code> that makes it easy to add such values.

Usage

```
expand_limits(...)
```

Arguments

... named list of aesthetics specifying the value (or values that should be included.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```
p <- qplot(mpg, wt, data = mtcars)
p + expand_limits(x = 0)
p + expand_limits(y = c(1, 9))
p + expand_limits(x = 0, y = 0)

qplot(mpg, wt, data = mtcars, colour = cyl) +
expand_limits(colour = seq(2, 10, by = 2))
qplot(mpg, wt, data = mtcars, colour = factor(cyl)) +
expand_limits(colour = factor(seq(2, 10, by = 2)))</pre>
```

expand_range

Expand range

Description

Convenience function for expanding a range with a multiplicative or additive constant.

Usage

```
expand_range(range, mul = 0, add = 0, zero = 0.5)
```

facet_grid 21

Arguments

range	range of data
mul	multiplicative constract
add	additive constant
zero	distance to use if range has zero width

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Description

Lay out panels in a rectangular/tabular manner.

Usage

```
facet_grid(facets = . ~ ., margins = FALSE, scales = "fixed",
    space = "fixed", labeller = "label_value", as.table = TRUE,
    widths = NULL, heights = NULL, ...)
```

Arguments

facets	a formula with the rows (of the tabular display) on the LHS and the columns (of the tabular display) on the RHS; the dot in the formula is used to indicate there should be no faceting on this dimension (either row or column); the formula can also be entered as a string instead of a classical formula object
margins	logical value, should marginal rows and columns be displayed
scales	NULL
space	NULL
labeller	NULL
as.table	NULL
widths	NULL
heights	NULL
	other arguments

Details

This page describes facet_grid, see layer and qplot for how to create a complete plot from individual components.

22 facet_grid

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/facet_grid.html

```
## Not run:
# faceting displays subsets of the data in different panels
p <- ggplot(diamonds, aes(carat, ..density..)) +</pre>
geom_histogram(binwidth = 1)
# With one variable
p + facet_grid(. ~ cut)
p + facet_grid(cut ~ .)
# With two variables
p + facet_grid(clarity ~ cut)
p + facet_grid(cut ~ clarity)
# p + facet_grid(cut ~ clarity, margins=TRUE)
qplot(mpg, wt, data=mtcars, facets = . ~ vs + am)
qplot(mpg, wt, data=mtcars, facets = vs + am ~ . )
# You can also use strings, which makes it a little easier
# when writing functions that generate faceting specifications
# p + facet_grid("cut ~ .")
# see also ?plotmatrix for the scatterplot matrix
# If there isn't any data for a given combination, that panel
# will be empty
qplot(mpg, wt, data=mtcars) + facet_grid(cyl ~ vs)
# If you combine a facetted dataset with a dataset that lacks those
# facetting variables, the data will be repeated across the missing
# combinations:
p <- qplot(mpg, wt, data=mtcars, facets = vs ~ cyl)
df \leftarrow data.frame (mpg = 22, wt = 3)
p + geom_point(data = df, colour="red", size = 2)
df2 \leftarrow data.frame(mpg = c(19, 22), wt = c(2,4), vs = c(0, 1))
p + geom_point(data = df2, colour="red", size = 2)
df3 <- data.frame(mpg = c(19, 22), wt = c(2,4), vs = c(1, 1))
```

facet_wrap 23

```
p + geom_point(data = df3, colour="red", size = 2)
# You can also choose whether the scales should be constant
# across all panels (the default), or whether they should be allowed
# to vary
mt <- ggplot(mtcars, aes(mpg, wt, colour = factor(cyl))) + geom_point()</pre>
mt + facet_grid(. ~ cyl, scales = "free")
# If scales and space are free, then the mapping between position
# and values in the data will be the same across all panels
mt + facet_grid(. ~ cyl, scales = "free", space = "free")
mt + facet_grid(vs ~ am, scales = "free")
mt + facet_grid(vs ~ am, scales = "free_x")
mt + facet_grid(vs ~ am, scales = "free_y")
mt + facet_grid(vs ~ am, scales = "free", space="free")
# You may need to set your own breaks for consitent display:
mt + facet_grid(. ~ cyl, scales = "free_x", space="free") +
  scale_x_continuous(breaks = seq(10, 36, by = 2))
# Adding scale limits override free scales:
last_plot() + xlim(10, 15)
# Free scales are particularly useful for categorical variables
qplot(cty, model, data=mpg) +
  facet_grid(manufacturer ~ ., scales = "free", space = "free")
# particularly when you reorder factor levels
mpg <- within(mpg, {</pre>
 model <- reorder(model, cty)</pre>
 manufacturer <- reorder(manufacturer, cty)</pre>
})
last_plot()
## End(Not run)
```

facet_wrap

facet_wrap

Description

Wrap a 1d ribbon of panels into 2d.

Usage

```
facet_wrap(facets, nrow = NULL, ncol = NULL, scales = "fixed",
    as.table = TRUE, drop = TRUE, ...)
```

24 facet_wrap

Arguments

```
facets NULL

nrow number of rows

ncol number of columns

scales should scales be fixed, free, or free in one dimension (free_x, free_y)

as.table NULL

drop NULL

... other arguments
```

Details

This page describes facet\wrap, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/facet_wrap.html

```
## Not run:
d <- ggplot(diamonds, aes(carat, price, fill = ..density..)) +</pre>
  xlim(0, 2) + stat_binhex(na.rm = TRUE) + opts(aspect.ratio = 1)
d + facet_wrap(~ color)
d + facet_wrap(~ color, ncol = 1)
d + facet_wrap(~ color, ncol = 4)
d + facet_wrap(~ color, nrow = 1)
d + facet_wrap(~ color, nrow = 3)
# Using multiple variables continues to wrap the long ribbon of
# plots into 2d - the ribbon just gets longer
# d + facet_wrap(~ color + cut)
# You can choose to keep the scales constant across all panels
# or vary the x scale, the y scale or both:
p <- qplot(price, data = diamonds, geom = "histogram", binwidth = 1000)
p + facet_wrap(~ color)
p + facet_wrap(~ color, scales = "free_y")
p <- qplot(displ, hwy, data = mpg)
p + facet_wrap(~ cyl)
```

fortify 25

```
p + facet_wrap(~ cyl, scales = "free")

# Add data that does not contain all levels of the faceting variables
cyl6 <- subset(mpg, cyl == 6)
p + geom_point(data = cyl6, colour = "red", size = 1) +
    facet_wrap(~ cyl)
p + geom_point(data = transform(cyl6, cyl = 7), colour = "red") +
    facet_wrap(~ cyl)
p + geom_point(data = transform(cyl6, cyl = NULL), colour = "red") +
    facet_wrap(~ cyl)

# By default, any empty factor levels will be dropped
mpg$cyl2 <- factor(mpg$cyl, levels = c(2, 4, 5, 6, 8, 10))
qplot(displ, hwy, data = mpg) + facet_wrap(~ cyl2)
# Use drop = FALSE to force their inclusion
qplot(displ, hwy, data = mpg) + facet_wrap(~ cyl2, drop = FALSE)

## End(Not run)</pre>
```

fortify

Fortify a model with data

Description

Generic method to supplement the original data with model fit statistics

Usage

```
fortify(model, data, ...)
```

Arguments

```
model model
data dataset
... other arguments passed to methods
```

Author(s)

Hadley Wickham < h.wickham@gmail.com>

See Also

```
fortify.lm
```

26 fortify.lm

fortify.lm

Fortify a linear model with its data

Description

Supplement the data fitted to a linear model with model fit statistics.

Usage

```
fortify.lm(model, data = model$model, ...)
```

Arguments

```
model linear model
data data set, defaults to data used to fit model
... not used
```

Details

The following statistics will be added to the data frame:

- .hatDiagonal of the hat matrix
- .sigmaEstimate of residual standard deviation when corresponding observation is dropped from model
- .cooksdCooks distance, cooks.distance
- · .fittedFitted values of model
- · .residResiduals
- · .stdresidStandardised residuals

If you have missing values in your model data, you may need to refit the model with na.action = na.preserve.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

```
mod <- lm(mpg ~ wt, data = mtcars)
head(fortify(mod))
head(fortify(mod, mtcars))

plot(mod, which = 1)
qplot(.fitted, .resid, data = mod) + geom_hline() + geom_smooth(se = FALSE)
qplot(.fitted, .stdresid, data = mod) + geom_hline() +
geom_smooth(se = FALSE)
qplot(.fitted, .stdresid, data = fortify(mod, mtcars),</pre>
```

fortify.map 27

```
colour = factor(cyl))
qplot(mpg, .stdresid, data = fortify(mod, mtcars), colour = factor(cyl))
plot(mod, which = 2)
# qplot(sample =.stdresid, data = mod, stat = "qq") + geom_abline()
plot(mod, which = 3)
qplot(.fitted, sqrt(abs(.stdresid)), data = mod) + geom_smooth(se = FALSE)
plot (mod, which = 4)
qplot(seq_along(.cooksd), .cooksd, data = mod, geom = "bar",
stat="identity")
plot (mod, which = 5)
qplot(.hat, .stdresid, data = mod) + geom_smooth(se = FALSE)
ggplot(mod, aes(.hat, .stdresid)) +
geom_vline(size = 2, colour = "white", xintercept = 0) +
geom_hline(size = 2, colour = "white", yintercept = 0) +
geom_point() + geom_smooth(se = FALSE)
qplot(.hat, .stdresid, data = mod, size = .cooksd) +
geom_smooth(se = FALSE, size = 0.5)
plot (mod, which = 6)
ggplot(mod, aes(.hat, .cooksd, data = mod)) +
geom_vline(colour = NA) +
geom\_abline(slope = seq(0, 3, by = 0.5), colour = "white") +
geom\_smooth(se = FALSE) +
geom_point()
qplot(.hat, .cooksd, size = .cooksd / .hat, data = mod) + scale_area()
```

fortify.map

Fortify a map

Description

Fortify method for map objects

Usage

```
fortify.map(model, data, ...)
```

Arguments

```
model map object
data ignored
... ignored
```

Details

This function turns a map into a data frame than can more easily be plotted with ggplot2.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```
if (require(maps)) {
ca <- map_data("county", "ca")
qplot(long, lat, data = ca, geom="polygon", group = group)
tx <- map_data("county", "texas")
qplot(long, lat, data = tx, geom="polygon", group = group,
colour = I("white"))
}</pre>
```

```
fortify.SpatialPolygonsDataFrame

Fortify spatial polygons and lines
```

Description

Fortify method for a number of the class from the sp package.

Usage

```
fortify.SpatialPolygonsDataFrame(model, data, region = NULL, ...)
```

Arguments

```
model SpatialPolygonsDataFrame
data not used
region name of variable to split up regions by
... not used
```

Details

To figure out the correct variable name for region, inspect as .data.frame (model).

Author(s)

Hadley Wickham < h.wickham@gmail.com>

Fuel economy 29

Fuel economy

Fuel economy data from 1999 and 2008 for 38 popular models of car

Description

This dataset contains a subset of the fuel economy data that the EPA makes available on http://fueleconomy.gov. It contains only models which had a new release every year between 1999 and 2008 - this was used as a proxy for the popularity of the car.

- manufacturer.
- · model.
- displ. engine displacement, in litres
- year.
- cyl. number of cylinders
- trans. type of transmission
- drv. f = front-wheel drive, r = rear wheel drive, 4 = 4wd
- cty. city miles per gallon
- hwy. highway miles per gallon
- fl.
- · class.

Usage

```
data(mpg)
```

Format

A data frame with 234 rows and 11 variables

geom_abline

geom_abline

Description

Line, specified by slope and intercept

Usage

```
geom_abline(mapping = NULL, data = NULL, stat = "abline", position = "identity",
...)
```

30 geom_abline

Arguments

mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored

Details

The abline geom adds a line with specified slope and intercept to the plot.

With its siblings geom_hline and geom_vline, it's useful for annotating plots. You can supply the parameters for geom_abline, intercept and slope, in two ways: either explicitly as fixed values, or stored in the data set. If you specify the fixed values (geom_abline(intercept=0, slope=1)) then the line will be the same in all panels, but if the intercept and slope are stored in the data, then can vary from panel to panel. See the examples for more ideas.

This page describes geom_abline, see layer and qplot for how to create a complete plot from individual components.

Value

Alayer

Aesthetics

The following aesthetics can be used with geom_abline. Aesthetics are mapped to variables in the data with the aes function: $geom_abline(aes(x = var))$

```
• colour: border colour
```

• size: size

• linetype: line type

• alpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- stat_smooth: To add lines derived from the data
- geom hline: for horizontal lines
- geom_vline: for vertical lines
- geom_segment: for a more general approach
- http://had.co.nz/ggplot2/geom_abline.html

geom_area 31

Examples

```
## Not run:
p <- qplot(wt, mpg, data = mtcars)</pre>
# Fixed slopes and intercepts
p + geom_abline() # Can't see it - outside the range of the data
p + geom_abline(intercept = 20)
# Calculate slope and intercept of line of best fit
coef(lm(mpg ~ wt, data = mtcars))
p + geom\_abline(intercept = 37, slope = -5)
p + geom_abline(intercept = 10, colour = "red", size = 2)
# See ?stat_smooth for fitting smooth models to data
p + stat_smooth(method="lm", se=FALSE)
# Slopes and intercepts as data
p \leftarrow gplot(mtcars, aes(x = wt, y=mpg), . \sim cyl) + geom_point()
df \leftarrow data.frame(a=rnorm(10, 25), b=rnorm(10, 0))
p + geom_abline(aes(intercept=a, slope=b), data=df)
# Slopes and intercepts from linear model
coefs <- ddply(mtcars, .(cyl), function(df) {</pre>
 m <- lm(mpg ~ wt, data=df)
  data.frame(a = coef(m)[1], b = coef(m)[2])
})
str(coefs)
p + geom_abline(data=coefs, aes(intercept=a, slope=b))
# It's actually a bit easier to do this with stat_smooth
p + geom_smooth(aes(group=cyl), method="lm")
p + geom_smooth(aes(group=cyl), method="lm", fullrange=TRUE)
## End(Not run)
```

geom_area

geom_area

Description

Area plots

Usage

```
geom_area(mapping = NULL, data = NULL, stat = "identity", position = "stack",
    na.rm = FALSE, ...)
```

32 geom_area

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
stat	statistic used by this layer
position	position adjustment used by this layer
na.rm	NULL
	ignored

Details

An area plot is the continuous analog of a stacked bar chart (see geom_bar), and can be used to show how composition of the whole varies over the range of x. Choosing the order in which different components is stacked is very important, as it becomes increasing hard to see the individual pattern as you move up the stack.

An area plot is a special case of geom_ribbon, where the minimum of the range is fixed to 0, and the position adjustment defaults to position_stacked.

This page describes geom_area, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_area. Aesthetics are mapped to variables in the data with the aes function: geom_area (aes (x = var))

```
• x: x position (required)
```

• y: y position (required)

colour: border colourfill: internal colour

• size: size

linetype: line typealpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_bar: Discrete intervals (bars)
- geom_linerange: Discrete intervals (lines)
- geom_polygon: General polygons
- http://had.co.nz/ggplot2/geom_area.html

geom_bar 33

Examples

```
## Not run:
# Examples to come
## End(Not run)
```

geom bar

geom bar

Description

Bars, rectangles with bases on x-axis

Usage

```
geom_bar(mapping = NULL, data = NULL, stat = "bin", position = "stack",
...)
```

Arguments

mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored

Details

The bar geom is used to produce 1d area plots: bar charts for categorical x, and histograms for continuous y. stat_bin explains the details of these summaries in more detail. In particular, you can use the weight aesthetic to create weighted histograms and barcharts where the height of the bar no longer represent a count of observations, but a sum over some other variable. See the examples for a practical example.

By default, multiple x's occuring in the same place will be stacked a top one another by position\stack. If you want them to be dodged from side-to-side, check out position_dodge. Finally, position_fill shows relative propotions at each x by stacking the bars and then stretch or squashing them all to the same height

This page describes geom_bar, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

34 geom_bar

Aesthetics

The following aesthetics can be used with geom\bar. Aesthetics are mapped to variables in the data with the aes function: $geom_bar(aes(x = var))$

• x: x position (required)

• colour: border colour

• fill: internal colour

• size: size

• linetype: line type

• weight: observation weight used in statistical transformation

• alpha: transparency

Advice

If you have presummarised data, use <code>stat="identity" to turn off the default summary

Sometimes, bar charts are used not as a distributional summary, but instead of a dotplot. Generally, it's preferable to use a dotplot (see geom_point) as it has a better data-ink ratio. However, if you do want to create this type of plot, you can set y to the value you have calculated, and use stat='identity'.

A bar chart maps the height of the bar to a variable, and so the base of the bar must always been shown to produce a valid visual comparison. Naomi Robbins has a nice article on this topic. This is the reason it doesn't make sense to use a log-scaled y axis.

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- stat_bin: for more details of the binning alogirithm
- position_dodge: for creating side-by-side barcharts
- position stack: for more info on stacking
- http://had.co.nz/ggplot2/geom_bar.html

```
## Not run:
# Generate data
c <- ggplot(mtcars, aes(factor(cyl)))

c + geom_bar()
c + geom_bar() + coord_flip()
c + geom_bar(fill="white", colour="darkgreen")

# Use qplot
qplot(factor(cyl), data=mtcars, geom="bar")</pre>
```

geom_bin2d 35

```
qplot(factor(cyl), data=mtcars, geom="bar", fill=factor(cyl))
# Stacked bar charts
qplot(factor(cyl), data=mtcars, geom="bar", fill=factor(vs))
qplot(factor(cyl), data=mtcars, geom="bar", fill=factor(gear))
# Stacked bar charts are easy in ggplot2, but not effective visually,
# particularly when there are many different things being stacked
ggplot(diamonds, aes(clarity, fill=cut)) + geom_bar()
ggplot(diamonds, aes(color, fill=cut)) + geom_bar() + coord_flip()
# Faceting is a good alternative:
ggplot(diamonds, aes(clarity)) + geom_bar() +
 facet_wrap(~ cut)
# If the x axis is ordered, using a line instead of bars is another
# possibility:
ggplot(diamonds, aes(clarity)) +
 geom_freqpoly(aes(group = cut, colour = cut))
# Dodged bar charts
ggplot(diamonds, aes(clarity, fill=cut)) + geom_bar(position="dodge")
# compare with
ggplot(diamonds, aes(cut, fill=cut)) + geom_bar() +
 facet_grid(. ~ clarity)
# But again, probably better to use frequency polygons instead:
ggplot(diamonds, aes(clarity, colour=cut)) +
 geom_freqpoly(aes(group = cut))
# Often we don't want the height of the bar to represent the
# count of observations, but the sum of some other variable.
# For example, the following plot shows the number of diamonds
# of each colour
qplot(color, data=diamonds, geom="bar")
# If, however, we want to see the total number of carats in each colour
# we need to weight by the carat variable
qplot(color, data=diamonds, geom="bar", weight=carat, ylab="carat")
# A bar chart used to display means
meanprice <- tapply(diamonds$price, diamonds$cut, mean)</pre>
cut <- factor(levels(diamonds$cut), levels = levels(diamonds$cut))</pre>
qplot(cut, meanprice)
qplot(cut, meanprice, geom="bar", stat="identity")
qplot(cut, meanprice, geom="bar", stat="identity", fill = I("grey50"))
## End(Not run)
```

36 geom_bin2d

Description

Add heatmap of 2d bin counts

Usage

```
geom_bin2d(mapping = NULL, data = NULL, stat = "bin2d", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

This page describes geom_bin2d, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_bin2d. Aesthetics are mapped to variables in the data with the aes function: $geom_bin2d(aes(x = var))$

```
• xmin: left (hortizontal minimum) (required)
```

- xmax: right (hortizontal maximum) (required)
- ymin: bottom (vertical minimum) (required)
- ymax: top (vertical maximum) (required)
- colour: border colour
- fill: internal colour
- size: size
- linetype: line type
- weight: observation weight used in statistical transformation
- alpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

geom_blank 37

See Also

```
• http://had.co.nz/ggplot2/geom_bin2d.html
```

Examples

```
## Not run:
# See ?stat_bin2d
## End(Not run)
```

geom_blank

geom_blank

Description

Blank, draws nothing

Usage

```
geom_blank(mapping = NULL, data = NULL, stat = "identity", position = "identity",
...)
```

Arguments

mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored

Details

This page describes geom_blank, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

```
• http://had.co.nz/ggplot2/geom_blank.html
```

38 geom_boxplot

Examples

```
## Not run:
qplot(length, rating, data=movies, geom="blank")
# Nothing to see here!
## End(Not run)
```

geom_boxplot

geom_boxplot

Description

Box and whiskers plot

Usage

```
geom_boxplot(mapping = NULL, data = NULL, stat = "boxplot", position = "dodge",
    outlier.colour = "black", outlier.shape = 16, outlier.size = 2,
    ...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes

data dataset used in this layer, if not specified uses plot dataset

stat statistic used by this layer

position position adjustment used by this layer

outlier.colour

colour for outlying points

outlier.shape
shape of outlying points

outlier.size size of outlying points

other arguments
```

Details

This page describes geom_boxplot, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

geom_boxplot 39

Aesthetics

The following aesthetics can be used with geom_boxplot. Aesthetics are mapped to variables in the data with the aes function: $geom_boxplot(aes(x = var))$

```
• x: x position (required)
```

```
• lower: NULL (required)
```

- upper: NULL (required)
- middle: NULL (required)
- ymin: bottom (vertical minimum) (required)
- ymax: top (vertical maximum) (required)
- weight: observation weight used in statistical transformation
- colour: border colour
- fill: internal colour
- size: size
- alpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- stat_quantile: View quantiles conditioned on a continuous variable
- geom_jitter: Another way to look at conditional distributions
- http://had.co.nz/ggplot2/geom_boxplot.html

```
## Not run:
p <- ggplot(mtcars, aes(factor(cyl), mpg))

p + geom_boxplot()
qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot")

p + geom_boxplot() + geom_jitter()
p + geom_boxplot() + coord_flip()
qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot") +
    coord_flip()

p + geom_boxplot(outlier.colour = "green", outlier.size = 3)

# Add aesthetic mappings
# Note that boxplots are automatically dodged when any aesthetic is
# a factor
p + geom_boxplot(aes(fill = cyl))
p + geom_boxplot(aes(fill = factor(cyl)))
p + geom_boxplot(aes(fill = factor(cyl)))</pre>
```

40 geom_contour

```
p + geom_boxplot(aes(fill = factor(am)))
# Set aesthetics to fixed value
p + geom_boxplot(fill="grey80", colour="#3366FF")
qplot(factor(cyl), mpg, data = mtcars, geom = "boxplot",
  colour = I("#3366FF"))
# Scales vs. coordinate transforms -----
# Scale transformations occur before the boxplot statistics are computed.
# Coordinate transformations occur afterwards. Observe the effect on the
# number of outliers.
m \leftarrow ggplot(movies, aes(y = votes, x = rating,
  group = round_any(rating, 0.5)))
m + geom_boxplot()
m + geom_boxplot() + scale_y_log10()
m + geom_boxplot() + coord_trans(y = "log10")
m + geom_boxplot() + scale_y_log10() + coord_trans(y = "log10")
# Boxplots with continuous x:
# Use the group aesthetic to group observations in boxplots
qplot(year, budget, data = movies, geom = "boxplot")
qplot(year, budget, data = movies, geom = "boxplot",
 group = round_any(year, 10, floor))
## End(Not run)
```

geom_contour

geom_contour

Description

Display contours of a 3d surface in 2d

Usage

```
geom_contour(mapping = NULL, data = NULL, stat = "contour", position = "identity",
    lineend = "butt", linejoin = "round", linemitre = 1, na.rm = FALSE,
    ...)
```

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
stat	statistic used by this layer
position	position adjustment used by this layer
lineend	Line end style (round, butt, square)
linejoin	Line join style (round, mitre, bevel)

geom_contour 41

```
linemitre Line mitre limit (number greater than 1)
na.rm NULL
... other arguments
```

Details

This page describes geom_contour, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_contour. Aesthetics are mapped to variables in the data with the aes function: $geom_contour(aes(x = var))$

- x: x position (required)
- y: y position (required)
- weight: observation weight used in statistical transformation
- colour: border colour
- size: size
- linetype: line type
- alpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_density2d: Draw 2d density contours
- http://had.co.nz/ggplot2/geom_contour.html

```
## Not run:
# See stat_contour for examples
## End(Not run)
```

42 geom_crossbar

geom_crossbar	geom_crossbar

Description

Hollow bar with middle indicated by horizontal line

Usage

```
geom_crossbar(mapping = NULL, data = NULL, stat = "identity",
    position = "identity", fatten = 2, ...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
fatten a multiplicate factor to fatten middle bar by
... other arguments
```

Details

This page describes geom_crossbar, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_crossbar. Aesthetics are mapped to variables in the data with the aes function: $geom_crossbar(aes(x = var))$

- x: x position (required)
- y: y position (required)
- ymin: bottom (vertical minimum) (required)
- ymax: top (vertical maximum) (required)
- colour: border colour
- fill: internal colour
- size: size
- linetype: line type
- alpha: transparency

geom_density 43

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_errorbar: error bars
- geom_pointrange: range indicated by straight line, with point in the middle
- geom_linerange: range indicated by straight line + examples
- stat_summary: examples of these guys in use
- geom_smooth: for continuous analog
- http://had.co.nz/ggplot2/geom_crossbar.html

Examples

Description

Display a smooth density estimate

Usage

```
geom_density(mapping = NULL, data = NULL, stat = "density", position = "identity",
    na.rm = FALSE, ...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
na.rm NULL
... ignored
```

Details

A smooth density estimate calculated by stat_densityThis page describes geom_density, see layer and qplot for how to create a complete plot from individual components.

44 geom_density2d

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_density. Aesthetics are mapped to variables in the data with the aes function: $geom_density(aes(x = var))$

- x: x position (required)
- y: y position (required)
- fill: internal colour
- weight: observation weight used in statistical transformation
- colour: border colour
- alpha: transparency
- size: size
- linetype: line type

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_histogram: for the histogram
- http://had.co.nz/ggplot2/geom_density.html

Examples

```
## Not run:
# See stat_density for examples
## End(Not run)
```

```
geom_density2d
```

geom_density2d

Description

Contours from a 2d density estimate

Usage

```
geom_density2d(mapping = NULL, data = NULL, stat = "density2d",
    position = "identity", lineend = "butt", linejoin = "round",
    linemitre = 1, na.rm = FALSE, ...)
```

geom_density2d 45

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
stat	statistic used by this layer
position	position adjustment used by this layer
lineend	Line end style (round, butt, square)
linejoin	Line join style (round, mitre, bevel)
linemitre	Line mitre limit (number greater than 1)
na.rm	NULL
	other arguments

Details

Perform a 2D kernel density estimatation using kde2d and display the results with contours.

This page describes geom_density2d, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_density2d. Aesthetics are mapped to variables in the data with the aes function: $geom_density2d$ (aes (x = var))

- x: x position (required)
- y: y position (required)
- weight: observation weight used in statistical transformation
- colour: border colour
- size: size
- linetype: line type
- alpha: transparency

Advice

This can be useful for dealing with overplotting.

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

geom_errorbar

See Also

- geom_contour: contour drawing geom
- stat_sum: another way of dealing with overplotting
- http://had.co.nz/ggplot2/geom_density2d.html

Examples

```
## Not run:
# See stat_density2d for examples
## End(Not run)
```

geom_errorbar

geom_errorbar

Description

Error bars

Usage

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

This page describes geom_errorbar, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

geom_errorbar 47

Aesthetics

The following aesthetics can be used with geom_errorbar. Aesthetics are mapped to variables in the data with the aes function: $geom_errorbar(aes(x = var))$

• x: x position (required)

• ymin: bottom (vertical minimum) (required)

• ymax: top (vertical maximum) (required)

• colour: border colour

• size: size

• linetype: line type

• width: width

• alpha: transparency

Author(s)

Hadley Wickham, http://had.co.nz/

See Also

- geom_pointrange: range indicated by straight line, with point in the middle
- geom_linerange: range indicated by straight line
- geom_crossbar: hollow bar with middle indicated by horizontal line
- stat_summary: examples of these guys in use
- geom_smooth: for continuous analog
- http://had.co.nz/ggplot2/geom_errorbar.html

```
## Not run:
# Create a simple example dataset

df <- data.frame(
    trt = factor(c(1, 1, 2, 2)),
    resp = c(1, 5, 3, 4),
    group = factor(c(1, 2, 1, 2)),
    se = c(0.1, 0.3, 0.3, 0.2)
)

df2 <- df[c(1,3),]

# Define the top and bottom of the errorbars
limits <- aes(ymax = resp + se, ymin=resp - se)

p <- ggplot(df, aes(fill=group, y=resp, x=trt))
p + geom_bar(position="dodge", stat="identity")

# Because the bars and errorbars have different widths
# we need to specify how wide the objects we are dodging are dodge <- position_dodge(width=0.9)</pre>
```

48 geom_errorbarh

```
p + geom_bar(position=dodge) + geom_errorbar(limits, position=dodge, width=0.25)

p <- ggplot(df2, aes(fill=group, y=resp, x=trt))
p + geom_bar(position=dodge)
p + geom_bar(position=dodge) + geom_errorbar(limits, position=dodge, width=0.25)

p <- ggplot(df, aes(colour=group, y=resp, x=trt))
p + geom_point() + geom_errorbar(limits, width=0.2)
p + geom_pointrange(limits)
p + geom_crossbar(limits, width=0.2)

# If we want to draw lines, we need to manually set the
# groups which define the lines - here the groups in the
# original dataframe
p + geom_line(aes(group=group)) + geom_errorbar(limits, width=0.2)

## End(Not run)</pre>
```

geom_errorbarh

geom_errorbarh

Description

Horizontal error bars

Usage

Arguments

mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored

Details

This page describes geom_errorbarh, see layer and qplot for how to create a complete plot from individual components.

Value

Alayer

geom_errorbarh 49

Aesthetics

The following aesthetics can be used with geom_errorbarh. Aesthetics are mapped to variables in the data with the aes function: $geom_errorbarh(aes(x = var))$

• x: x position (**required**)

• xmin: left (hortizontal minimum) (required)

• xmax: right (hortizontal maximum) (required)

• colour: border colour

• size: size

• linetype: line type

• height: height

• alpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_errorbar: vertical error bars
- http://had.co.nz/ggplot2/geom_errorbarh.html

```
## Not run:
df <- data.frame(
    trt = factor(c(1, 1, 2, 2)),
    resp = c(1, 5, 3, 4),
    group = factor(c(1, 2, 1, 2)),
    se = c(0.1, 0.3, 0.3, 0.2)
)

# Define the top and bottom of the errorbars

p <- ggplot(df, aes(resp, trt, colour = group))
p + geom_point() +
    geom_errorbarh(aes(xmax = resp + se, xmin = resp - se))

## End(Not run)</pre>
```

50 geom_freqpoly

```
geom_freqpoly geom_freqpoly
```

Description

Frequency polygon

Usage

```
geom_freqpoly(mapping = NULL, data = NULL, stat = "bin", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

This page describes geom_freqpoly, see layer and qplot for how to create a complete plot from individual components.

Value

Alayer

Aesthetics

The following aesthetics can be used with geom\freqpoly. Aesthetics are mapped to variables in the data with the aes function: $geom_freqpoly(aes(x = var))$

```
• colour: border colour
```

• size: size

linetype: line typealpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_histogram: Histogram
- http://had.co.nz/ggplot2/geom_freqpoly.html

geom_hex 51

Examples

```
## Not run:
qplot(carat, data = diamonds, geom="freqpoly")
qplot(carat, data = diamonds, geom="freqpoly", binwidth = 0.1)
qplot(carat, data = diamonds, geom="freqpoly", binwidth = 0.01)

qplot(price, data = diamonds, geom="freqpoly", binwidth = 1000)
qplot(price, data = diamonds, geom="freqpoly", binwidth = 1000,
    colour = color)
qplot(price, ..density.., data = diamonds, geom="freqpoly",
    binwidth = 1000, colour = color)

## End(Not run)
```

geom_hex

geom_hex

Description

Tile the plane with hexagons

Usage

```
geom_hex(mapping = NULL, data = NULL, stat = "binhex", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

This page describes geom_hex, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

52 geom_histogram

Aesthetics

The following aesthetics can be used with geom_hex. Aesthetics are mapped to variables in the data with the aes function: $geom_hex(aes(x = var))$

```
• x: x position (required)
```

• y: y position (required)

• colour: border colour

• fill: internal colour

• size: size

• alpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

```
• http://had.co.nz/ggplot2/geom_hex.html
```

Examples

```
## Not run:
# See ?stat_binhex for examples
## End(Not run)
```

geom_histogram

geom_histogram

Description

Histogram

Usage

```
geom_histogram(mapping = NULL, data = NULL, stat = "bin", position = "stack",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

geom_histogram 53

Details

geom_histogram is an alias for geom_bar + stat_bin so you will need to look at the documentation for those objects to get more information about the parameters.

This page describes geom\histogram, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom\histogram. Aesthetics are mapped to variables in the data with the aes function: $geom_histogram(aes(x = var))$

• x: x position (required)

• colour: border colour

• fill: internal colour

• size: size

• linetype: line type

• weight: observation weight used in statistical transformation

• alpha: transparency

Advice

geom\histogram only allows you to set the width of the bins (with the binwidth parameter), not the number of bins, and it certainly does not suport the use of common heuristics to select the number of bins. In practice, you will need to use multiple bin widths to discover all the signal in the data, and having bins with meaningful widths (rather than some arbitrary fraction of the range of the data) is more interpretable.

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- stat_bin: for more details of the binning alogirithm
- position_dodge: for creating side-by-side barcharts
- position_stack: for more info on stacking
- http://had.co.nz/ggplot2/geom_histogram.html

54 geom_histogram

```
## Not run:
# Simple examles
qplot(rating, data=movies, geom="histogram")
qplot(rating, data=movies, weight=votes, geom="histogram")
qplot(rating, data=movies, weight=votes, geom="histogram", binwidth=1)
qplot(rating, data=movies, weight=votes, geom="histogram", binwidth=0.1)
# More complex
m <- ggplot(movies, aes(x=rating))</pre>
m + geom_histogram()
m + geom_histogram(aes(y = ..density..)) + geom_density()
m + geom histogram(binwidth = 1)
m + geom_histogram(binwidth = 0.5)
m + geom_histogram(binwidth = 0.1)
# Add aesthetic mappings
m + geom_histogram(aes(weight = votes))
m + geom_histogram(aes(y = ..count..))
m + geom_histogram(aes(fill = ..count..))
# Change scales
m + geom_histogram(aes(fill = ..count..)) +
  scale_fill_gradient("Count", low = "green", high = "red")
# Often we don't want the height of the bar to represent the
# count of observations, but the sum of some other variable.
# For example, the following plot shows the number of movies
# in each rating.
qplot(rating, data=movies, geom="bar", binwidth = 0.1)
# If, however, we want to see the number of votes cast in each
# category, we need to weight by the votes variable
qplot(rating, data=movies, geom="bar", binwidth = 0.1,
 weight=votes, ylab = "votes")
m \leftarrow ggplot(movies, aes(x = votes))
# For transformed scales, binwidth applies to the transformed data.
# The bins have constant width on the transformed scale.
m + geom_histogram() + scale_x_log10()
m + geom_histogram(binwidth = 1) + scale_x_log10()
m + geom_histogram() + scale_x_sqrt()
m + geom_histogram(binwidth = 10) + scale_x_sqrt()
# For transformed coordinate systems, the binwidth applies to the
# raw data. The bins have constant width on the original scale.
# Using log scales does not work here, because the first
# bar is anchored at zero, and so when transformed becomes negative
# infinity. This is not a problem when transforming the scales, because
# no observations have 0 ratings.
```

geom_hline 55

```
should_stop(m + geom_histogram() + coord_trans(x = "log10"))
m + geom_histogram() + coord_trans(x = "sqrt")
m + geom_histogram(binwidth=1000) + coord_trans(x = "sqrt")
# You can also transform the y axis. Remember that the base of the bars
# has value 0, so log transformations are not appropriate
m \leftarrow ggplot(movies, aes(x = rating))
m + geom_histogram(binwidth = 0.5) + scale_y_sqrt()
m + geom_histogram(binwidth = 0.5) + scale_y_reverse()
# Set aesthetics to fixed value
m + geom_histogram(colour = "darkgreen", fill = "white", binwidth = 0.5)
# Use facets
m \leftarrow m + geom\_histogram(binwidth = 0.5)
m + facet_grid(Action ~ Comedy)
# Often more useful to use density on the y axis when facetting
m \leftarrow m + aes(y = ..density..)
m + facet_grid(Action ~ Comedy)
m + facet_wrap(~ mpaa)
# Multiple histograms on the same graph
# see ?position, ?position_fill, etc for more details.
ggplot(diamonds, aes(x=price)) + geom_bar()
hist_cut <- ggplot(diamonds, aes(x=price, fill=cut))
hist_cut + geom_bar() # defaults to stacking
hist_cut + geom_bar(position="fill")
hist_cut + geom_bar(position="dodge")
# This is easy in ggplot2, but not visually effective. It's better
# to use a frequency polygon or density plot. Like this:
ggplot(diamonds, aes(price, ..density.., colour = cut)) +
  geom_freqpoly(binwidth = 1000)
# Or this:
ggplot(diamonds, aes(price, colour = cut)) +
  geom_density()
# Or if you want to be fancy, maybe even this:
ggplot(diamonds, aes(price, fill = cut)) +
  geom_density(alpha = 0.2)
# Which looks better when the distributions are more distinct
ggplot(diamonds, aes(depth, fill = cut)) +
  geom\_density(alpha = 0.2) + xlim(55, 70)
## End(Not run)
```

56 geom_hline

Description

Line, horizontal

Usage

```
geom_hline(mapping = NULL, data = NULL, stat = "hline", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

This geom allows you to annotate the plot with horizontal lines (see geom_vline and geom_abline for other types of lines)

There are two ways to use it. You can either specify the intercept of the line in the call to the geom, in which case the line will be in the same position in every panel. Alternatively, you can supply a different intercept for each panel using a data.frame. See the examples for the differences

This page describes geom_hline, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom\hline. Aesthetics are mapped to variables in the data with the aes function: $geom_hline(aes(x = var))$

```
colour: border coloursize: sizelinetype: line typealpha: transparency
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

geom_jitter 57

See Also

```
• geom_vline: for vertical lines
```

- geom_abline: for lines defined by a slope and intercept
- geom_segment: for a more general approach
- http://had.co.nz/ggplot2/geom_hline.html

Examples

```
## Not run:
p <- ggplot(mtcars, aes(x = wt, y=mpg)) + geom_point()

p + geom_hline(aes(yintercept=mpg))
p + geom_hline(yintercept=20)
p + geom_hline(yintercept=seq(10, 30, by=5))

# To display different lines in different facets, you need to
# create a data frame.
p <- qplot(mpg, wt, data=mtcars, facets = vs ~ am)

hline.data <- data.frame(z = 1:4, vs = c(0,0,1,1), am = c(0,1,0,1))
p + geom_hline(aes(yintercept = z), hline.data)

## End(Not run)</pre>
```

geom_jitter

geom_jitter

Description

Points, jittered to reduce overplotting

Usage

```
geom_jitter(mapping = NULL, data = NULL, stat = "identity", position = "jitter",
    na.rm = FALSE, ...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
na.rm NULL
... ignored
```

58 geom_jitter

Details

The jitter geom is a convenient default for geom_point with position = 'jitter'. See position_jitter for more details on adjusting the amount of jittering.

This page describes geom_jitter, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_jitter. Aesthetics are mapped to variables in the data with the aes function: $geom_jitter(aes(x = var))$

```
• x: x position (required)
```

• y: y position (required)

• shape: shape of point

• colour: border colour

• size: size

• fill: internal colour

• alpha: transparency

Advice

It is often useful for plotting categorical data.

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_point: Regular, unjittered points
- geom_boxplot: Another way of looking at the conditional distribution of a variable
- position_jitter: For examples, using jittering with other geoms
- http://had.co.nz/ggplot2/geom_jitter.html

```
## Not run:
p <- ggplot(movies, aes(x=mpaa, y=rating))
p + geom_point()
p + geom_point(position = "jitter")

# Add aesthetic mappings
p + geom_jitter(aes(colour=rating))</pre>
```

geom_line 59

```
# Vary parameters
p + geom_jitter(position=position_jitter(width=5))
p + geom_jitter(position=position_jitter(height=5))

# Use qplot instead
qplot(mpaa, rating, data=movies, geom="jitter")
qplot(mpaa, rating, data=movies, geom=c("boxplot","jitter"))
qplot(mpaa, rating, data=movies, geom=c("jitter", "boxplot"))
## End(Not run)
```

geom_line

geom_line

Description

Connect observations, in ordered by x value

Usage

```
geom_line(mapping = NULL, data = NULL, stat = "identity", position = "identity",
...)
```

Arguments

```
mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... other arguments
```

Details

This page describes geom_line, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

60 geom_line

Aesthetics

The following aesthetics can be used with geom_line. Aesthetics are mapped to variables in the data with the aes function: $geom_line(aes(x = var))$

```
• x: x position (required)
```

• y: y position (required)

• colour: border colour

• size: size

• linetype: line type

• alpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_path: Connect observations, in original order
- geom_segment: Line segments
- geom_ribbon: Fill between line and x-axis
- http://had.co.nz/ggplot2/geom_line.html

```
## Not run:
# Summarise number of movie ratings by year of movie
mry <- do.call(rbind, by(movies, round(movies$rating), function(df) {</pre>
 nums <- tapply(df$length, df$year, length)</pre>
  data.frame(rating=round(df$rating[1]), year = as.numeric(names(nums)), number=as.vector(nums)
p <- ggplot(mry, aes(x=year, y=number, group=rating))</pre>
p + geom_line()
# Add aesthetic mappings
p + geom_line(aes(size = rating))
p + geom_line(aes(colour = rating))
# Change scale
p + geom_line(aes(colour = rating)) + scale_colour_gradient(low="red")
p + geom_line(aes(size = rating)) + scale_size(to = c(0.1, 3))
# Set aesthetics to fixed value
p + geom_line(colour = "red", size = 1)
# Use qplot instead
qplot(year, number, data=mry, group=rating, geom="line")
```

geom_linerange 61

```
# Using a time series
qplot(date, pop, data=economics, geom="line")
qplot(date, pop, data=economics, geom="line", log="y")
qplot(date, pop, data=subset(economics, date > as.Date("2006-1-1")), geom="line")
qplot(date, pop, data=economics, size=unemploy/pop, geom="line")
# See scale_date for examples of plotting multiple times series on
# a single graph
# A simple pcp example
y2005 \leftarrow runif(300, 20, 120)
y2010 \leftarrow y2005 * runif(300, -1.05, 1.5)
group <- rep(LETTERS[1:3], each = 100)</pre>
df <- data.frame(id = seq_along(group), group, y2005, y2010)</pre>
dfm <- reshape::melt(df, id.var = c("id", "group"))</pre>
ggplot(dfm, aes(variable, value, group = id, colour = group)) +
  geom_path(alpha = 0.5)
## End(Not run)
```

geom_linerange

geom_linerange

Description

An interval represented by a vertical line

Usage

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

This page describes geom_linerange, see layer and qplot for how to create a complete plot from individual components.

62 geom_linerange

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_linerange. Aesthetics are mapped to variables in the data with the aes function: $geom_linerange(aes(x = var))$

- x: x position (required)
- ymin: bottom (vertical minimum) (required)
- ymax: top (vertical maximum) (required)
- colour: border colour
- size: size
- linetype: line typealpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• geom_errorbar: error bars

se + geom_linerange()
se + geom_pointrange()

- geom_pointrange: range indicated by straight line, with point in the middle
- geom_crossbar: hollow bar with middle indicated by horizontal line
- stat_summary: examples of these guys in use
- geom_smooth: for continuous analog
- http://had.co.nz/ggplot2/geom_linerange.html

ymin = fit - se.fit, ymax=fit + se.fit, colour = cut))

```
## Not run:
# Generate data: means and standard errors of means for prices
# for each type of cut
dmod <- lm(price ~ cut, data=diamonds)
cuts <- data.frame(cut=unique(diamonds$cut), predict(dmod, data.frame(cut = unique(diamonds$cut))

qplot(cut, fit, data=cuts)
# With a bar chart, we are comparing lengths, so the y-axis is
# automatically extended to include 0
qplot(cut, fit, data=cuts, geom="bar")
# Display estimates and standard errors in various ways
se <- qgplot(cuts, aes(cut, fit,</pre>
```

geom_path 63

```
se + geom_errorbar(width = 0.5)
se + geom_crossbar(width = 0.5)

# Use coord_flip to flip the x and y axes
se + geom_linerange() + coord_flip()
## End(Not run)
```

geom_path

geom_path

Description

Connect observations, in original order

Usage

```
geom_path(mapping = NULL, data = NULL, stat = "identity", position = "identity",
    lineend = "butt", linejoin = "round", linemitre = 1, na.rm = FALSE,
    ...)
```

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
stat	statistic used by this layer
position	position adjustment used by this layer
lineend	Line end style (round, butt, square)
linejoin	Line join style (round, mitre, bevel)
linemitre	Line mitre limit (number greater than 1)
na.rm	NULL
	other arguments

Details

This page describes geom_path, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

geom_path

Aesthetics

The following aesthetics can be used with geom_path. Aesthetics are mapped to variables in the data with the aes function: $geom_path(aes(x = var))$

```
• x: x position (required)
```

• y: y position (required)

• colour: border colour

• size: size

linetype: line typealpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

```
• geom_line: Functional (ordered) lines
```

- geom_polygon: Filled paths (polygons)
- geom_segment: Line segments
- http://had.co.nz/ggplot2/geom_path.html

```
## Not run:
# Generate data
myear <- ddply(movies, .(year), colwise(mean, .(length, rating)))</pre>
p <- ggplot(myear, aes(length, rating))</pre>
p + geom_path()
# Add aesthetic mappings
p + geom_path(aes(size = year))
p + geom_path(aes(colour = year))
# Change scale
p + geom_path(aes(size = year)) + scale_size(to = c(1, 3))
# Set aesthetics to fixed value
p + geom_path(colour = "green")
# Control line join parameters
df \leftarrow data.frame(x = 1:3, y = c(4, 1, 9))
base <- ggplot(df, aes(x, y))
base + geom_path(size = 10)
base + geom_path(size = 10, lineend = "round")
base + geom_path(size = 10, linejoin = "mitre", lineend = "butt")
# Use qplot instead
```

geom_point 65

```
qplot(length, rating, data=myear, geom="path")
# Using economic data:
# How is unemployment and personal savings rate related?
qplot(unemploy/pop, psavert, data=economics)
qplot(unemploy/pop, psavert, data=economics, geom="path")
qplot(unemploy/pop, psavert, data=economics, geom="path", size=as.numeric(date))
# How is rate of unemployment and length of unemployment?
qplot(unemploy/pop, uempmed, data=economics)
qplot(unemploy/pop, uempmed, data=economics, geom="path")
qplot(unemploy/pop, uempmed, data=economics, geom="path") +
    geom_point(data=head(economics, 1), colour="red") +
    geom_point(data=tail(economics, 1), colour="blue")
qplot(unemploy/pop, uempmed, data=economics, geom="path") +
    geom_text(data=head(economics, 1), label="1967", colour="blue") +
    geom_text(data=tail(economics, 1), label="2007", colour="blue")
# geom_path removes missing values on the ends of a line.
# use na.rm = T to suppress the warning message
df <- data.frame(</pre>
    x = 1:5,
    y1 = c(1, 2, 3, 4, NA),
    y2 = c(NA, 2, 3, 4, 5),
    y3 = c(1, 2, NA, 4, 5),
    y4 = c(1, 2, 3, 4, 5))
qplot(x, y1, data = df, geom = c("point", "line"))
qplot(x, y2, data = df, geom = c("point", "line"))
qplot(x, y3, data = df, geom = c("point", "line"))
qplot(x, y4, data = df, geom = c("point", "line"))
# Setting line type vs colour/size
# Line type needs to be applied to a line as a whole, so it can
# not be used with colour or size that vary across a line
x <- seq(0.01, .99, length=100)
 df \leftarrow data.frame(x = rep(x, 2), y = c(qlogis(x), 2 * qlogis(x)), group = rep(c("a", "b"), each of the second sec
p <- ggplot(df, aes(x=x, y=y, group=group))</pre>
# Should work
p + geom_line(linetype = 2)
p + geom_line(aes(colour = group), linetype = 2)
p + geom_line(aes(colour = x))
# Should fail
should_stop(p + geom_line(aes(colour = x), linetype=2))
## End(Not run)
```

geom_point

Description

Points, as for a scatterplot

Usage

```
geom_point(mapping = NULL, data = NULL, stat = "identity", position = "identity",
    na.rm = FALSE, ...)
```

Arguments

mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
na.rm NULL
... ignored

Details

The point geom is used to create scatterplots.

This page describes geom_point, see layer and qplot for how to create a complete plot from individual components.

Value

Alayer

Aesthetics

The following aesthetics can be used with geom_point. Aesthetics are mapped to variables in the data with the aes function: $geom_point(aes(x = var))$

- x: x position (required)
- y: y position (required)
- shape: shape of point
- colour: border colour
- size: size
- fill: internal colour
- alpha: transparency

geom_point 67

Advice

The scatterplot is useful for displaying the relationship between two continuous variables, although it can also be used with one continuous and one categorical variable, or two categorical variables. See geom_jitter for possibilities.

The *bubblechart* is a scatterplot with a third variable mapped to the size of points. There are no special names for scatterplots where another variable is mapped to point shape or colour, however.

The biggest potential problem with a scatterplot is overplotting: whenever you have more than a few points, points may be plotted on top of one another. This can severely distort the visual appearance of the plot. There is no one solution to this problem, but there are some techniques that can help. You can add additional information with stat\smooth, stat\quantile or stat\density2d. If you have few unique x values, geom\boxplot may also be useful. Alternatively, you can summarise the number of points at each location and display that in some way, using stat\sum. Another technique is to use transparent points, geom\point(colour=alpha('black', 0.05))

Author(s)

Hadley Wickham, http://had.co.nz/

See Also

- scale_size: To see how to scale area of points, instead of radius
- geom_jitter: Jittered points for categorical data
- http://had.co.nz/ggplot2/geom_point.html

```
## Not run:
p <- ggplot(mtcars, aes(wt, mpg))</pre>
p + geom_point()
# Add aesthetic mappings
p + geom_point(aes(colour = qsec))
p + geom_point(aes(alpha = qsec))
p + geom_point(aes(colour = factor(cyl)))
p + geom_point(aes(shape = factor(cyl)))
p + geom_point(aes(size = qsec))
# Change scales
p + geom_point(aes(colour = cyl)) + scale_colour_gradient(low = "blue")
p + geom_point(aes(size = qsec)) + scale_area()
p + geom_point(aes(shape = factor(cyl))) + scale_shape(solid = FALSE)
# Set aesthetics to fixed value
p + geom_point(colour = "red", size = 3)
qplot(wt, mpq, data = mtcars, colour = I("red"), size = I(3))
# Varying alpha is useful for large datasets
d <- ggplot(diamonds, aes(carat, price))</pre>
d + geom_point(alpha = 1/10)
```

68 geom_pointrange

```
d + geom_point(alpha = 1/20)
d + geom_point(alpha = 1/100)
# You can create interesting shapes by layering multiple points of
# different sizes
p <- ggplot(mtcars, aes(mpg, wt))</pre>
p + geom_point(colour="grey50", size = 4) + geom_point(aes(colour = cyl))
p + aes(shape = factor(cyl)) +
  geom_point(aes(colour = factor(cyl)), size = 4) +
  geom_point(colour="grey90", size = 1.5)
p + geom_point(colour="black", size = 4.5) +
  geom_point(colour="pink", size = 4) +
  geom_point(aes(shape = factor(cyl)))
# These extra layers don't usually appear in the legend, but we can
# force their inclusion
p + geom_point(colour="black", size = 4.5, legend = TRUE) +
  geom_point(colour="pink", size = 4, legend = TRUE) +
  geom_point(aes(shape = factor(cyl)))
# Transparent points:
qplot(mpg, wt, data = mtcars, size = I(5), alpha = I(0.2))
# geom_point warns when missing values have been dropped from the data set
# and not plotted, you can turn this off by setting na.rm = TRUE
mtcars2 <- transform(mtcars, mpg = ifelse(runif(32) < 0.2, NA, mpg))</pre>
qplot(wt, mpg, data = mtcars2)
qplot(wt, mpg, data = mtcars2, na.rm = TRUE)
# Use qplot instead
qplot(wt, mpg, data = mtcars)
qplot(wt, mpg, data = mtcars, colour = factor(cyl))
qplot(wt, mpg, data = mtcars, colour = I("red"))
## End(Not run)
```

geom_pointrange

Description

An interval represented by a vertical line, with a point in the middle

Usage

```
geom_pointrange(mapping = NULL, data = NULL, stat = "identity",
    position = "identity", ...)
```

geom_pointrange 69

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

This page describes geom_pointrange, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_pointrange. Aesthetics are mapped to variables in the data with the aes function: $geom_pointrange(aes(x = var))$

- x: x position (required)
- y: y position (required)
- ymin: bottom (vertical minimum) (required)
- ymax: top (vertical maximum) (required)
- colour: border colour
- size: size
- linetype: line typeshape: shape of pointfill: internal colour
- alpha: transparency
- Author(s)

Hadley Wickham, http://had.co.nz/

See Also

- geom_errorbar: error bars
- geom_linerange: range indicated by straight line, + examples
- geom_crossbar: hollow bar with middle indicated by horizontal line
- stat_summary: examples of these guys in use
- geom_smooth: for continuous analog
- http://had.co.nz/ggplot2/geom_pointrange.html

70 geom_polygon

Examples

```
## Not run:
# See geom_linerange for examples
## End(Not run)
```

geom_polygon

geom_polygon

Description

Polygon, a filled path

Usage

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

This page describes geom_polygon, see layer and qplot for how to create a complete plot from individual components.

Value

Alayer

Aesthetics

The following aesthetics can be used with geom_polygon. Aesthetics are mapped to variables in the data with the aes function: $geom_polygon(aes(x = var))$

```
• x: x position (required)
```

- y: y position (required)
- colour: border colour
- fill: internal colour
- size: size
- linetype: line type
- alpha: transparency

geom_polygon 71

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_path: an unfilled polygon
- geom_ribbon: a polygon anchored on the x-axis
- http://had.co.nz/ggplot2/geom_polygon.html

```
## Not run:
# When using geom_polygon, you will typically need two data frames:
# one contains the coordinates of each polygon (positions), and the
# other the values associated with each polygon (values). An id
# variable links the two together
ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))
values <- data.frame(</pre>
 id = ids,
  value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5)
)
positions <- data.frame(
  id = rep(ids, each = 4),
  x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
  0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),
  y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,
  2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2)
)
# Currently we need to manually merge the two together
datapoly <- merge(values, positions, by=c("id"))</pre>
(p \leftarrow ggplot(datapoly, aes(x=x, y=y)) + geom_polygon(aes(fill=value, group=id)))
# Which seems like a lot of work, but then it's easy to add on
# other features in this coordinate system, e.g.:
stream <- data.frame(</pre>
 x = cumsum(runif(50, max = 0.1)),
  y = cumsum(runif(50, max = 0.1))
p + geom_line(data = stream, colour="grey30", size = 5)
# And if the positions are in longitude and latitude, you can use
# coord_map to produce different map projections.
## End(Not run)
```

72 geom_quantile

Description

Add quantile lines from a quantile regression

Usage

```
geom_quantile(mapping = NULL, data = NULL, stat = "quantile",
    position = "identity", lineend = "butt", linejoin = "round",
    linemitre = 1, na.rm = FALSE, ...)
```

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
stat	statistic used by this layer
position	position adjustment used by this layer
lineend	Line end style (round, butt, square)
linejoin	Line join style (round, mitre, bevel)
linemitre	Line mitre limit (number greater than 1)
na.rm	NULL
	other arguments

Details

This page describes geom_quantile, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_quantile. Aesthetics are mapped to variables in the data with the aes function: $geom_quantile(aes(x = var))$

- x: x position (required)
- y: y position (required)
- weight: observation weight used in statistical transformation
- colour: border colour
- size: size
- linetype: line type
- alpha: transparency

geom_rect 73

Advice

This can be used as a continuous analogue of a geom_boxplot.

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

```
• geom_line: Functional (ordered) lines
```

- geom_polygon: Filled paths (polygons)
- geom_segment: Line segments
- http://had.co.nz/ggplot2/geom_quantile.html

Examples

```
## Not run:
# See stat_quantile for examples
## End(Not run)
```

geom_rect

geom_rect

Description

2d rectangles

Usage

```
geom_rect(mapping = NULL, data = NULL, stat = "identity", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

This page describes geom_rect, see layer and qplot for how to create a complete plot from individual components.

74 geom_rect

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_rect. Aesthetics are mapped to variables in the data with the aes function: $geom_rect$ (aes (x = var))

```
• xmin: left (hortizontal minimum) (required)
```

- xmax: right (hortizontal maximum) (required)
- ymin: bottom (vertical minimum) (required)
- ymax: top (vertical maximum) (required)
- colour: border colour
- fill: internal colour
- size: size
- linetype: line type
- alpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/geom_rect.html

```
## Not run:
df <- data.frame(
    x = sample(10, 20, replace = TRUE),
    y = sample(10, 20, replace = TRUE)
)
ggplot(df, aes(xmin = x, xmax = x + 1, ymin = y, ymax = y + 2)) +
geom_rect()
## End(Not run)</pre>
```

geom_ribbon 75

Description

Ribbons, y range with continuous x values

Usage

```
geom_ribbon(mapping = NULL, data = NULL, stat = "identity", position = "identity",
    na.rm = FALSE, ...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aesthetic data dataset used in this layer, if not specified uses plot dataset stat statistic used by this layer position position adjustment used by this layer na.rm NULL ignored
```

Details

This page describes geom_ribbon, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_ribbon. Aesthetics are mapped to variables in the data with the aes function: $geom_ribbon(aes(x = var))$

- x: x position (**required**)
- ymin: bottom (vertical minimum) (required)
- ymax: top (vertical maximum) (required)
- colour: border colour
- fill: internal colour
- size: size
- linetype: line typealpha: transparency

76 geom_rug

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_bar: Discrete intervals (bars)
- geom_linerange: Discrete intervals (lines)
- geom_polygon: General polygons
- http://had.co.nz/ggplot2/geom_ribbon.html

```
## Not run:
# Generate data
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))</pre>
huron$decade <- round_any(huron$year, 10, floor)</pre>
h <- ggplot(huron, aes(x=year))</pre>
h + geom_ribbon(aes(ymin=0, ymax=level))
h + geom\_area(aes(y = level))
# Add aesthetic mappings
h + geom_ribbon(aes(ymin=level-1, ymax=level+1))
h + geom_ribbon(aes(ymin=level-1, ymax=level+1)) + geom_line(aes(y=level))
# Take out some values in the middle for an example of NA handling
huron[huron$year > 1900 & huron$year < 1910, "level"] <- NA</pre>
h <- ggplot(huron, aes(x=year))</pre>
h + geom_ribbon(aes(ymin=level-1, ymax=level+1)) + geom_line(aes(y=level))
\mbox{\#} Another data set, with multiple y's for each x
m <- ggplot(movies, aes(y=votes, x=year))</pre>
(m <- m + geom_point())</pre>
# The default summary isn't that useful
m + stat_summary(geom="ribbon", fun.ymin="min", fun.ymax="max")
m + stat_summary(geom="ribbon", fun.data="median_hilow")
# Use qplot instead
qplot(year, level, data=huron, geom=c("area", "line"))
## End(Not run)
```

geom_rug 77

Description

Marginal rug plots

Usage

```
geom_rug(mapping = NULL, data = NULL, stat = "identity", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

This page describes geom\rug, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom\rug. Aesthetics are mapped to variables in the data with the aes function: $geom_rug$ (aes (x = var))

```
colour: border coloursize: sizelinetype: line typealpha: transparency
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/geom_rug.html

78 geom_segment

Examples

```
## Not run:
p <- ggplot(mtcars, aes(x=wt, y=mpg))
p + geom_point()
p + geom_point() + geom_rug()
p + geom_point() + geom_rug(position='jitter')
## End(Not run)</pre>
```

geom_segment

geom_segment

Description

Single line segments

Usage

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
other arguments
```

Details

This page describes geom_segment, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom\segment. Aesthetics are mapped to variables in the data with the aes function: $geom_segment(aes(x = var))$

- x: x position (**required**)
- y: y position (required)
- xend: NULL (required)

geom_segment 79

```
• yend: NULL (required)
```

• colour: border colour

• size: size

• linetype: line type

• alpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_path: Connect observations, in original order
- geom_line: Connect observations, in ordered by x value
- http://had.co.nz/ggplot2/geom_segment.html

```
## Not run:
require("maps")
xlim <- range(seals$long)</pre>
ylim <- range(seals$lat)</pre>
usamap <- data.frame(map("world", xlim = xlim, ylim = ylim, plot =</pre>
FALSE) [c("x", "y")])
usamap <- rbind(usamap, NA, data.frame(map('state', xlim = xlim, ylim</pre>
= ylim, plot = FALSE) [c("x", "y")]))
names(usamap) <- c("long", "lat")</pre>
p \leftarrow ggplot(seals, aes(x = long, y = lat))
(p <- p + geom_segment(aes(xend = long + delta_long, yend = lat + delta_lat), arrow=arrow(le
p + geom_path(data = usamap) + scale_x_continuous(limits=xlim)
# You can also use geom_segment to recreate plot(type = "h") :
counts <- as.data.frame(table(x = rpois(100,5)))
counts$x <- as.numeric(as.character(counts$x))</pre>
with (counts, plot(x, Freq, type = "h", lwd = 10))
qplot(x, Freq, data = counts, geom="segment",
  yend = 0, xend = x, size = I(10))
## End(Not run)
```

geom_smooth

```
geom_smooth geom_smooth
```

Description

Add a smoothed condition mean.

Usage

```
geom_smooth(mapping = NULL, data = NULL, stat = "smooth", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

This page describes geom_smooth, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom\smooth. Aesthetics are mapped to variables in the data with the aes function: $geom_smooth(aes(x = var))$

- x: x position (required)
- y: y position (required)
- colour: border colour
- fill: internal colour
- size: size
- linetype: line type
- weight: observation weight used in statistical transformation
- alpha: transparency

geom_step 81

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/geom_smooth.html

Examples

```
## Not run:
# See stat_smooth for examples of using built in model fitting
# if you need some more flexible, this example shows you how to
# plot the fits from any model of your choosing
qplot(wt, mpg, data=mtcars, colour=factor(cyl))
model <- lm(mpg ~ wt + factor(cyl), data=mtcars)</pre>
grid <- with(mtcars, expand.grid(</pre>
 wt = seq(min(wt), max(wt), length = 20),
  cyl = levels(factor(cyl))
))
grid$mpg <- stats::predict(model, newdata=grid)</pre>
qplot(wt, mpg, data=mtcars, colour=factor(cyl)) + geom_line(data=grid)
# or with standard errors
err <- stats::predict(model, newdata=grid, se = TRUE)
grid$ucl <- err$fit + 1.96 * err$se.fit
grid$lcl <- err$fit - 1.96 * err$se.fit
qplot(wt, mpg, data=mtcars, colour=factor(cyl)) +
  geom_smooth(aes(ymin = lcl, ymax = ucl), data=grid, stat="identity")
## End(Not run)
```

geom_step

geom_step

Description

Connect observations by stairs

Usage

geom_step

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
stat	statistic used by this layer
position	position adjustment used by this layer
direction	direction of stairs: 'vh' for vertical then horizontal, or 'hv' for horizontal then vertical
	other arguments

Details

Equivalent to plot(type='s'). This page describes geom_step, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_step. Aesthetics are mapped to variables in the data with the aes function: geom_step (aes (x = var))

```
colour: border coloursize: sizelinetype: line typealpha: transparency
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/geom_step.html

```
## Not run:
# Simple quantiles/ECDF from examples(plot)
x <- sort(rnorm(47))
qplot(seq_along(x), x, geom="step")

# Steps go horizontally, then vertically (default)
qplot(seq_along(x), x, geom="step", direction = "hv")
plot(x, type = "s")
# Steps go vertically, then horizontally
qplot(seq_along(x), x, geom="step", direction = "vh")</pre>
```

geom_text 83

```
plot(x, type = "S")

# Also works with other aesthetics

df <- data.frame(
    x = sort(rnorm(50)),
    trt = sample(c("a", "b"), 50, rep = T)
)

qplot(seq_along(x), x, data = df, geom="step", colour = trt)

## End(Not run)</pre>
```

geom_text

geom_text

Description

Textual annotations

Usage

```
geom_text(mapping = NULL, data = NULL, stat = "identity", position = "identity",
    parse = FALSE, ...)
```

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
stat	statistic used by this layer
position	position adjustment used by this layer
parse	If TRUE, the labels will be parsed into expressions and displayed as described in ?plotmath
	other arguments

Details

This page describes geom_text, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

84 geom_text

Aesthetics

The following aesthetics can be used with geom_text. Aesthetics are mapped to variables in the data with the aes function: geom_text (aes (x = var))

- x: x position (required)
- y: y position (required)
- label: text label (required)
- colour: border colour
- size: size
- angle: angle
- hjust: horizontal justification, between 0 and 1
- vjust: vertical justification, between 0 and 1
- alpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/geom_text.html

```
## Not run:
p <- ggplot(mtcars, aes(x=wt, y=mpg, label=rownames(mtcars)))</pre>
p + geom_text()
p <- p + geom_point()
# Set aesthetics to fixed value
p + geom_text()
p + geom_point() + geom_text(hjust=0, vjust=0)
p + geom_point() + geom_text(angle = 45)
# Add aesthetic mappings
p + geom_text(aes(colour=factor(cyl)))
p + geom_text(aes(colour=factor(cyl))) + scale_colour_discrete(1=40)
p + geom_text(aes(size=wt))
p + geom_text(aes(size=wt)) + scale_size(to=c(3,6))
# You can display expressions by setting parse = TRUE. The
# details of the display are described in ?plotmath, but note that
# geom_text uses strings, not expressions.
p + geom_text(aes(label = paste(wt, "^(", cyl, ")", sep = "")),
  parse = T)
```

geom_tile 85

```
# Use qplot instead
qplot(wt, mpg, data = mtcars, label = rownames(mtcars),
    geom=c("point", "text"))
qplot(wt, mpg, data = mtcars, label = rownames(mtcars), size = wt) +
    geom_text(colour = "red")
## End(Not run)
```

geom_tile

geom_tile

Description

Tile plot as densely as possible, assuming that every tile is the same size.

Usage

```
geom_tile(mapping = NULL, data = NULL, stat = "identity", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

Details

Similar to levelplot and image.

This page describes geom_tile, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom_tile. Aesthetics are mapped to variables in the data with the aes function: $geom_tile(aes(x = var))$

- x: x position (required)
- y: y position (required)
- fill: internal colour

86 geom_tile

```
• colour: border colour
```

• size: size

• linetype: line type

• alpha: transparency

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/geom_tile.html

```
## Not run:
# Generate data
pp \leftarrow function (n, r=4) {
 x \leftarrow seq(-r*pi, r*pi, len=n)
df <- expand.grid(x=x, y=x)</pre>
df$r <- sqrt (df$x^2 + df$y^2)
df$z <- cos(df$r^2) *exp(-df$r/6)
p \leftarrow ggplot(pp(20), aes(x=x,y=y))
p + geom_tile() #pretty useless!
# Add aesthetic mappings
p + geom_tile(aes(fill=z))
# Change scale
p + geom_tile(aes(fill=z)) + scale_fill_gradient(low="green", high="red")
# Use qplot instead
qplot(x, y, data=pp(20), geom="tile", fill=z)
qplot(x, y, data=pp(100), geom="tile", fill=z)
# Missing values
p \leftarrow gplot(pp(20)[sample(20*20, size=200),], aes(x=x,y=y,fill=z))
p + geom_tile()
# Input that works with image
image(t(volcano)[ncol(volcano):1,])
ggplot(melt(volcano), aes(x=X1, y=X2, fill=value)) + geom_tile()
# inspired by the image-density plots of Ken Knoblauch
cars <- ggplot(mtcars, aes(y=factor(cyl), x=mpg))</pre>
cars + geom_point()
cars + stat_bin(aes(fill=..count..), geom="tile", binwidth=3, position="identity")
cars + stat_bin(aes(fill=..density..), geom="tile", binwidth=3, position="identity")
```

geom_vline 87

```
cars + stat_density(aes(fill=..density..), geom="tile", position="identity")
cars + stat_density(aes(fill=..count..), geom="tile", position="identity")
# Another example with with unequal tile sizes
x.cell.boundary <- c(0, 4, 6, 8, 10, 14)
example <- data.frame(</pre>
  x = rep(c(2, 5, 7, 9, 12), 2),
  y = factor(rep(c(1,2), each=5)),
 z = rep(1:5, each=2),
  w = rep(diff(x.cell.boundary), 2)
qplot(x, y, fill=z, data=example, geom="tile")
qplot(x, y, fill=z, data=example, geom="tile", width=w)
qplot(x, y, fill=factor(z), data=example, geom="tile", width=w)
# You can manually set the colour of the tiles using
# scale_manual
col <- c("darkblue", "blue", "green", "orange", "red")</pre>
qplot(x, y, fill=col[z], data=example, geom="tile", width=w, group=1) + scale_fill_identity(
## End(Not run)
```

geom_vline

geom_vline

Description

Line, vertical

Usage

```
geom_vline(mapping = NULL, data = NULL, stat = "vline", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
stat statistic used by this layer
position position adjustment used by this layer
... ignored
```

88 geom_vline

Details

This geom allows you to annotate the plot with vertical lines (see geom_hline and geom_abline for other types of lines)

There are two ways to use it. You can either specify the intercept of the line in the call to the geom, in which case the line will be in the same position in every panel. Alternatively, you can supply a different intercept for each panel using a data frame. See the examples for the differences

This page describes geom\vline, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with geom\vline. Aesthetics are mapped to variables in the data with the aes function: $geom_vline(aes(x = var))$

```
• colour: border colour
```

• size: size

• linetype: line type

• alpha: transparency

Author(s)

Hadley Wickham, http://had.co.nz/

See Also

- geom_hline: for horizontal lines
- geom_abline: for lines defined by a slope and intercept
- geom segment: for a more general approach
- http://had.co.nz/ggplot2/geom_vline.html

```
## Not run:
# Fixed lines
p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
p + geom_vline(xintercept = 5)
p + geom_vline(xintercept = 1:5)
p + geom_vline(xintercept = 1:5, colour="green")

last_plot() + coord_equal()
last_plot() + coord_flip()

p2 <- p + aes(colour = factor(cyl))
p2 + geom_vline(xintercept = 15)</pre>
```

ggfluctuation 89

```
## End(Not run)
```

ggfluctuation Fluctuation plot

Description

Create a fluctuation plot.

Usage

```
ggfluctuation(table, type="size", floor=0, ceiling=max(table$freq, na.rm=TRUE))
```

Arguments

table	a table of values, or a data frame with three columns, the last column being frequency
type	size, or colour to create traditional heatmap
floor	don't display cells smaller than this value
ceiling	round cells to at most this value

Details

A fluctutation diagram is a graphical representation of a contingency table. This fuction currently only supports 2D contingency tabless but extension to more should be relatively straightforward.

With the default size fluctuation diagram, area is proportional to the count (length of sides proportional to sqrt(count))

Author(s)

Hadley Wickham <h.wickham@gmail.com>

```
ggfluctuation(table(movies$Action, movies$Comedy))
ggfluctuation(table(movies$Action, movies$mpaa))
ggfluctuation(table(movies$Action, movies$Comedy), type="colour")
ggfluctuation(table(warpbreaks$breaks, warpbreaks$tension))
```

90 ggmissing

ggmissing	Missing values plot
ggmissing	missing values plot

Description

Create a plot to illustrate patterns of missing values

Usage

```
ggmissing(data, avoid="stack", order=TRUE, missing.only = TRUE)
```

Arguments

data	data.frame
avoid	whether missings should be stacked or dodged, see <pre>geom_bar</pre> for more details
order	whether variable should be ordered by number of missings
missing.only	whether only variables containing some missing values should be shown

Details

The missing values plot is a useful tool to get a rapid overview of the number of missings in a dataset. It's strength is much more apparent when used with interactive graphics, as you can see in Mondrian (http://rosuda.org/mondrian) where this plot was copied from.

Author(s)

Hadley Wickham < h.wickham@gmail.com>

See Also

```
ggstructure, ggorder
```

```
mmissing <- movies
mmissing[sample(nrow(movies), 1000), sample(ncol(movies), 5)] <- NA
ggmissing(mmissing)
ggmissing(mmissing, order=FALSE, missing.only = FALSE)
ggmissing(mmissing, avoid="dodge") + scale_y_sqrt()</pre>
```

ggorder 91

ggorder	Order plot
---------	------------

Description

A plot to investigate the order in which observations were recorded.

Usage

```
ggorder(data, scale="rank")
```

Arguments

data data set to plot

scale type of scaling to use. See rescaler for options

Author(s)

Hadley Wickham <h.wickham@gmail.com>

ggpcp	Parallel coordinates plot.
シラド マド	

Description

Generate a plot "template" for a parallel coordinates plot.

Usage

```
ggpcp(data, vars=names(data), scale="range", ...)
```

Arguments

data	data frame
vars	variables to include in parallel coordinates plot
scale	scaling function, one of "range", "var" or "I"
	other arguments passed on plot creation

Details

One way to think about a parallel coordinates plot, is as plotting the data after it has transformation been transformed to gain a new variable. This function does this using melt.

This gives us enormous flexibility as we have separated out the type of drawing (lines by tradition) and can now use any of the existing geom functions. In particular this makes it very easy to create parallel boxplots, as shown in the example.

92 ggplot

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```
ggpcp(mtcars) + geom_line()
ggpcp(mtcars, scale="var") + geom_line()
ggpcp(mtcars, vars=names(mtcars)[3:6], formula= . ~cyl, scale="I") + geom_line()
ggpcp(mtcars, scale="I") + geom_boxplot(aes(group=variable))
ggpcp(mtcars, vars=names(mtcars[2:6])) + geom_line()
p <- ggpcp(mtcars, vars=names(mtcars[2:6]))
p + geom_line()
p + geom_line(aes(colour=mpg))</pre>
```

ggplot

Create a new plot

Description

Create a new ggplot plot

Usage

```
ggplot(data = NULL, ...)
```

Arguments

```
data default data set
... other arguments passed to specific methods
```

Author(s)

Hadley Wickham < h.wickham@gmail.com>

See Also

```
http://had.co.nz/ggplot2
```

ggplot.data.frame 93

```
ggplot.data.frame Create a new plot
```

Description

Create a new ggplot plot

Usage

```
ggplot.data.frame(data, mapping=aes(), ..., environment = globalenv())
```

Arguments

data default data frame

mapping default list of aesthetic mappings (these can be colour, size, shape, line type –

see individual geom functions for more details)

... ignored

environment in which evaluation of aesthetics should occur

Author(s)

Hadley Wickham < h.wickham@gmail.com>

See Also

```
http://had.co.nz/ggplot2
```

ggsave ggsave

Description

Save a ggplot with sensible defaults

Usage

```
ggsave(filename=default_name(plot), plot = last_plot(), device=default_device(filename)
```

94 ggsave

Arguments

filename	file name/filename of plot
plot	plot to save, defaults to last plot displayed
device	device to use, automatically extract from file name extension
path	path to save plot to (if you just want to set path and not filename)
scale	scaling factor
width	width (in inches)
height	height (in inches)
dpi	dpi to use for raster graphics
keep	plot components to keep
drop	plot components to drop
	other arguments passed to graphics device

Details

ggsave is a convenient function for saving a plot. It defaults to saving the last plot that you displayed, and for a default size uses the size of the current graphics device. It also guesses the type of graphics device from the extension. This means the only argument you need to supply is the filename.

ggsave currently recognises the extensions eps/ps, tex (pictex), pdf, jpeg, tiff, png, bmp, svg and wmf (windows only).

Author(s)

Hadley Wickham <h.wickham@gmail.com>

```
## Not run:
ratings <- qplot(rating, data=movies, geom="histogram")
qplot(length, data=movies, geom="histogram")
ggsave(file="length-hist.pdf")
ggsave(file="length-hist.png")
ggsave(ratings, file="ratings.pdf")
ggsave(ratings, file="ratings.pdf", width=4, height=4)
# make twice as big as on screen
ggsave(ratings, file="ratings.pdf", scale=2)
## End(Not run)</pre>
```

ggstructure 95

ggstructure

Structure plot

Description

A plot which aims to reveal gross structural anomalies in the data

Usage

```
ggstructure(data, scale = "rank")
```

Arguments

data data set to plot

scale type of scaling to use. See rescaler for options

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```
ggstructure (mtcars)
```

IMDB movies data

Movie information and user ratings from IMDB.com

Description

The internet movie database, http://imdb.com/, is a website devoted to collecting movie data supplied by studios and fans. It claims to be the biggest movie database on the web and is run by amazon. More about information imdb.com can be found online, http://imdb.com/help/show_leaf?infosource. com/help/show_leaf?infosource.

IMDB makes their raw data available at http://uk.imdb.com/interfaces/. Unfortunately, the data is divided into many text files and the format of each file differs slightly. To create one data file containing all the desired information I wrote a script in the ruby to extract the relevent information and store in a database. This data was then exported into csv for easy import into many programs.

The following text files were downloaded and used:

- business.list. Total budget
- genres.list. Genres that a movie belongs to (eg. comedy and action)
- movies.list. Master list of all movie titles with year of production.

96 label_both

- mpaa-ratings-reasons.list. MPAA ratings.
- ratings.list. IMDB fan ratings.
- running-times.list. Movie length in minutes.

Movies were selected for inclusion if they had a known length and had been rated by at least one imdb user. The csv file contains the following fields:

- title. Title of the movie.
- year. Year of release.
- budget. Total budget (if known) in US dollars
- length. Length in minutes.
- rating. Average IMDB user rating.
- votes. Number of IMDB users who rated this movie.
- r1-10. Multiplying by ten gives percentile (to nearest 10%) of users who rated this movie a 1.
- mpaa. MPAA rating.
- action, animation, comedy, drama, documentary, romance, short. Binary variables representing if movie was classified as belonging to that genre.

Usage

```
data(movies)
```

Format

A data frame with 28819 rows and 24 variables

References

```
http://had.co.nz/data/movies/
```

label_both

Label facets with value and variable

Description

Join together facet value and the name of the variable to create a label.

Usage

```
label_both(variable, value)
```

Arguments

variable variable name passed in by facetter value variable value passed in by facetter

label_bquote 97

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```
p <- qplot(wt, mpg, data = mtcars)
p + facet_grid(~ cyl)
p + facet_grid(~ cyl, labeller = label_both)</pre>
```

label_bquote

Label facet with 'bquoted' expressions

Description

Create facet labels which contain the facet label in a larger expression

Usage

```
label_bquote(expr = beta ^ .(x))
```

Arguments

expr

expression to use

Details

See bquote for details on the syntax of the argument. The label value is x.

Author(s)

Hadley Wickham < h.wickham@gmail.com>

See Also

```
plotmath
```

```
p <- qplot(wt, mpg, data = mtcars)
p + facet_grid(~ vs, labeller = label_bquote(alpha ^ .(x)))
p + facet_grid(~ vs, labeller = label_bquote(.(x) ^ .(x)))</pre>
```

98 label_value

label_parsed

Label facets with parsed label.

Description

Parses the facet label, as if

Usage

```
label_parsed(variable, value)
```

Arguments

```
variable variable name passed in by facetter value variable value passed in by facetter
```

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

```
plotmath
```

Examples

```
mtcars$cyl2 <- factor(mtcars$cyl, labels = c("alpha", "beta", "gamma"))
qplot(wt, mpg, data = mtcars) + facet_grid(. ~ cyl2)
qplot(wt, mpg, data = mtcars) + facet_grid(. ~ cyl2,
labeller = label_parsed)</pre>
```

label_value

Label facets with their value

Description

The default facet labelling just uses the value of the variable

Usage

```
label_value(variable, value)
```

Arguments

```
variable variable name passed in by facetter value variable value passed in by facetter
```

labs 99

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```
p <- qplot(wt, mpg, data = mtcars)
p + facet_grid(~ cyl)
p + facet_grid(~ cyl, labeller = label_value)</pre>
```

labs

Change axis labels and legend titles

Description

This is a convenience function that saves some typing when modifying the axis labels or legend titles

Usage

```
labs(...)
```

Arguments

... a list of new names in the form aesthetic = "new name"

Author(s)

Hadley Wickham <h.wickham@gmail.com>

```
p <- qplot(mpg, wt, data = mtcars)
p + labs(x = "New x label")
p + xlab("New x label")
p + ylab("New y label")

# This should work indepdendently of other functions that modify the
# the scale names
p + ylab("New y label") + ylim(2, 4)
p + ylim(2, 4) + ylab("New y label")

# The labs function also modifies legend labels
p <- qplot(mpg, wt, data = mtcars, colour = cyl)
p + labs(colour = "Cylinders")

# Can also pass in a list, if that is more convenient
p + labs(list(x = "X", y = "Y"))</pre>
```

100 Mammals sleep

last_plot

Retrieve last plot modified/created.

Description

Whenever a plot is created or modified, it is recorded.

Usage

```
last_plot()
```

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

ggsave

Mammals sleep

An updated and expanded version of the mammals sleep dataset

Description

This is an updated and expanded version of the mammals sleep dataset. Updated sleep times and weights were taken from V. M. Savage and G. B. West. A quantitative, theoretical framework for understanding mammalian sleep. Proceedings of the National Academy of Sciences, 104 (3):1051-1056, 2007. Additional variables order, conservation status and vore were added from wikipedia data.

- name. common name
- · genus.
- vore. carnivore, omnivore or herbivore?
- order.
- conservation. the conservation status of the animal
- sleep_total. total amount of sleep, in hours
- sleep_rem. rem sleep, in hours
- sleep_cycle. length of sleep cycle, in hours
- awake. amount of time spent awake, in hours
- brainwt. brain weight in kilograms
- bodywt. body weight in kilograms

map_data 101

Usage

```
data(msleep)
```

Format

A data frame with 83 rows and 11 variables

map_data

Map data

Description

Convert map to data frame

Usage

```
map_data(map, region = ".")
```

Arguments

```
map map name region name
```

Author(s)

Hadley Wickham <h.wickham@gmail.com>

```
if (require(maps)) {
    states <- map_data("state")
    arrests <- USArrests
    names(arrests) <- tolower(names(arrests))
    arrests$region <- tolower(rownames(USArrests))

choro <- merge(states, arrests, sort = FALSE, by = "region")
    choro <- choro[order(choro$order), ]
    qplot(long, lat, data = choro, group = group, fill = assault,
    geom="polygon")
    qplot(long, lat, data = choro, group = group, fill = assault / murder,
    geom="polygon")
}</pre>
```

mean_se

Mean + se's.

Description

Mean and standard errors on either side.

Usage

```
mean\_se(x, mult = 1)
```

Arguments

x numeric vector

mult number of multiples of standard error

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

for use with stat_summary

Midwest demographics

Demographic information of midwest counties

Description

The variables are as follows:

- PID
- county
- state
- area
- poptotal. Total population
- popdensity. Population density
- popwhite. Number of whites.
- popblack. Number of blacks.
- popamerindian. Number of American Indians.
- popasian. Number of Asians.

Nodoc 103

- popother. Number of other races.
- percwhite. Percent white.
- percblack. Percent black.
- percamerindan. Percent American Indian.
- percasian. Percent Asian.
- percother. Percent other races.
- popadults. Number of adults.
- perchsd.
- percollege. Percent college educated.
- percprof. Percent profession.
- poppovertyknown.
- · percpovertyknown
- · percbelowpoverty
- percchildbelowpovert
- percadultpoverty
- percelderlypoverty
- inmetro. In a metro area.
- · category'

Usage

data(midwest)

Format

A data frame with 437 rows and 28 variables

Nodoc

See website for documentation

Description

All documentation is available at http://had.co.nz/ggplot2. Future versions will include more documentation in the package itself.

Author(s)

Hadley Wickham < h.wickham@gmail.com>

104 percent

opts

Plot options

Description

Set options/theme elements for a single plot

Usage

```
opts(...)
```

Arguments

... named list of theme settings

Details

Use this function if you want to modify a few theme settings for a single plot.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```
p <- qplot(mpg, wt, data = mtcars)
p
p + opts(panel_background = theme_rect(colour = "pink"))
p + theme_bw()</pre>
```

percent

Percent formatter

Description

Multiply by one hundred and display percent sign

Usage

```
percent(x)
```

Arguments

Х

numeric vector to format

Author(s)

Hadley Wickham <h.wickham@gmail.com>

plotmatrix 105

plotmatrix

Code to create a scatterplot matrix (experimental)

Description

Crude experimental scatterplot matrix

Usage

```
plotmatrix(data, mapping=aes(), colour="black")
```

Arguments

data data frame

mapping any additional aesthetic mappings (do not use x and y)

colour default point colour

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```
plotmatrix(mtcars[, 1:3])
plotmatrix(mtcars[, 1:3]) + geom_smooth(method="lm")
```

position_dodge

position_dodge

Description

Adjust position by dodging overlaps to the side

Usage

```
position_dodge(width = NULL, height = NULL, ...)
```

Arguments

```
width NULL height NULL ignored
```

106 position_fill

Details

This page describes position_dodge, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/position_dodge.html

Examples

```
## Not run:
ggplot(mtcars, aes(x=factor(cyl), fill=factor(vs))) +
  geom_bar(position="dodge")
ggplot(diamonds, aes(x=price, fill=cut)) + geom_bar(position="dodge")
# see ?geom_boxplot and ?geom_bar for more examples
# Dodging things with different widths is tricky
df <- data.frame(x=c("a", "a", "b", "b"), y=1:4)</pre>
(p <- qplot(x, y, data=df, position="dodge", geom="bar", stat="identity"))</pre>
p + geom_linerange(aes(ymin = y-1, ymax = y+1), position="dodge")
# You need to explicitly specify the width for dodging
p + geom_linerange(aes(ymin = y-1, ymax = y+1),
  position = position_dodge(width = 0.9))
# Similarly with error bars:
p + geom_errorbar(aes(ymin = y-1, ymax = y+1), width = 0.2,
 position="dodge")
p + geom_errorbar(aes(ymin = y-1, ymax = y+1, width = 0.2),
 position = position_dodge(width = 0.90))
## End(Not run)
```

```
position_fill
```

position_fill

Description

Stack overlapping objects on top of one another, and standardise have equal height

position_fill 107

Usage

```
position_fill(width = NULL, height = NULL, ...)
```

Arguments

```
width NULL height NULL ignored
```

Details

This page describes position_fill, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/position_fill.html

```
## Not run:
# See ?geom_bar and ?geom_area for more examples
ggplot(mtcars, aes(x=factor(cyl), fill=factor(vs))) + geom_bar(position="fill")

cde <- geom_histogram(position="fill", binwidth = 500)

ggplot(diamonds, aes(x=price)) + cde
ggplot(diamonds, aes(x=price, fill=cut)) + cde
ggplot(diamonds, aes(x=price, fill=clarity)) + cde
ggplot(diamonds, aes(x=price, fill=clarity)) + cde
## End(Not run)</pre>
```

108 position_identity

```
position_identity position_identity
```

Description

Don't adjust position

Usage

```
position_identity(width = NULL, height = NULL, ...)
```

Arguments

```
width NULL height NULL ... ignored
```

Details

This page describes position_identity, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/position_identity.html

```
## Not run:
    # Coming soon
## End(Not run)
```

position_jitter 109

Description

Jitter points to avoid overplotting

Usage

```
position_jitter(width = NULL, height = NULL, ...)
```

Arguments

```
width degree of jitter in x direction. Defaults to 40% of the resolution of the data.

height degree of jitter in y direction. Defaults to 40% of the resolution of the data.

other arguments
```

Details

This page describes position_jitter, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/position_jitter.html

```
## Not run:
qplot(am, vs, data=mtcars)

# Default amount of jittering will generally be too much for
# small datasets:
qplot(am, vs, data=mtcars, position="jitter")
# Control the amount as follows
qplot(am, vs, data=mtcars, position=position_jitter(w=0.1, h=0.1))

# The default works better for large datasets, where it will
# will up as much space as a boxplot or a bar
qplot(cut, price, data=diamonds, geom=c("boxplot", "jitter"))

## End(Not run)
```

position_stack

Description

Stack overlapping objects on top of one another

Usage

```
position_stack(width = NULL, height = NULL, ...)
```

Arguments

```
width NULL height NULL ignored
```

Details

This page describes position_stack, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/position_stack.html

```
## Not run:
# Stacking is the default behaviour for most area plots:
ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) + geom_bar()

ggplot(diamonds, aes(price)) + geom_histogram(binwidth=500)

ggplot(diamonds, aes(price, fill = cut)) + geom_histogram(binwidth=500)

# Stacking is also useful for time series
data.set <- data.frame(
    Time = c(rep(1, 4), rep(2, 4), rep(3, 4), rep(4, 4)),
    Type = rep(c('a', 'b', 'c', 'd'), 4),
    Value = rpois(16, 10)</pre>
```

Presidential terms 111

```
qplot(Time, Value, data = data.set, fill = Type, geom = "area")
# If you want to stack lines, you need to say so:
qplot(Time, Value, data = data.set, colour = Type, geom = "line")
qplot(Time, Value, data = data.set, colour = Type, geom = "line",
    position = "stack")
# But realise that this makes it *much* harder to compare individual
# trends
## End(Not run)
```

Presidential terms of 10 presidents from Eisenhower to Bush W.

Description

The names of each president, the start and end date of their term, and their party of 10 US presidents from Eisenhower to Bush W.

Usage

```
data(presidential)
```

Format

A data frame with 10 rows and 4 variables

qplot Quick plot.

Description

Quick plot is a convenient wrapper function for creating simple ggplot plot objects.

Usage

```
qplot(x, y = NULL, z=NULL, ..., data, facets = . ~ ., margins=FALSE, geom = "auto",
```

112 qplot

Arguments

X	x values
У	y values
Z	z values
	other arguments passed on to the geom functions
data	data frame to use (optional)
facets	faceting formula to use
margins	whether or not margins will be displayed
geom	geom to use (can be a vector of multiple names)
stat	statistic to use (can be a vector of multiple names)
position	position adjustment to use (can be a vector of multiple names)
xlim	limits for x axis (aesthetics to range of data)
ylim	limits for y axis (aesthetics to range of data)
log	which variables to log transform ("x", "y", or "xy")
main	character vector or expression for plot title
xlab	character vector or expression for x axis label
ylab	character vector or expression for y axis label
asp	the y/x aspect ratio

Details

You can use it like you'd use the plot function.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

```
# Use data from data.frame
qplot(mpg, wt, data=mtcars)
qplot(mpg, wt, data=mtcars, colour=cyl)
qplot(mpg, wt, data=mtcars, size=cyl)
qplot(mpg, wt, data=mtcars, facets=vs ~ am)

# Use data from local environment
attach(mtcars)
qplot(hp, wt)
qplot(hp, wt, colour=cyl)
qplot(hp, wt, size=cyl)
qplot(hp, wt, facets=vs ~ am)

qplot(1:10, rnorm(10), colour = runif(10))
qplot(1:10, letters[1:10])
mod <- lm(mpg ~ wt, data=mtcars)</pre>
```

rescale 113

```
qplot(resid(mod), fitted(mod))
qplot(resid(mod), fitted(mod), facets = . ~ vs)
f <- function() {</pre>
a <- 1:10
b <- a ^ 2
qplot(a, b)
f()
# qplot will attempt to guess what geom you want depending on the input
# both x and y supplied = scatterplot
qplot(mpg, wt, data = mtcars)
# just x supplied = histogram
qplot(mpg, data = mtcars)
# just y supplied = scatterplot, with x = seq_along(y)
qplot(y = mpg, data = mtcars)
# Use different geoms
qplot(mpg, wt, geom="path")
qplot(factor(cyl), wt, geom=c("boxplot", "jitter"))
```

rescale

Rescale numeric vector

Description

Rescale numeric vector to have specified minimum and maximum.

Usage

```
rescale(x, to=c(0,1), from=range(x, na.rm=TRUE), clip = TRUE)
```

Arguments

X	data to rescale
to	range to scale to
from	range to scale from, defaults to range of data
clip	should values be clipped to specified range?

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Description

Alpha scale for continuous variable

Usage

```
scale_alpha_continuous(name = NULL, limits = NULL, breaks = NULL,
    labels = NULL, trans = NULL, to = c(0.1, 1), legend = TRUE,
    ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
limits	numeric vector of length 2, giving the extent of the scale
breaks	numeric vector indicating where breaks should lie
labels	character vector giving labels associated with breaks
trans	a transformer to use
to	numeric vector of length 2, giving minimum and maximum after transformation
legend	NULL
	ignored

Details

This page describes scale_alpha_continuous, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- scale_discrete: Discrete position scales
- http://had.co.nz/ggplot2/scale_alpha_continuous.html

scale_brewer 115

Examples

```
## Not run:
  (p <- qplot(mpg, cyl, data=mtcars, alpha=cyl))
p + scale_alpha("cylinders")
p + scale_alpha("number\nof\ncylinders")

p + scale_alpha(to = c(0.4, 0.8))

## End(Not run)</pre>
```

scale_brewer

scale_brewer

Description

Sequential, diverging and qualitative colour scales from colorbrewer.org

Usage

```
scale_colour_brewer(name = NULL, palette = 1, type = "qual",
    na.colour = "grey80", limits = NULL, breaks = NULL, labels = NULL,
    formatter = identity, legend = TRUE, ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
palette	Either numeric or character. If numeric, selects the nth palette of type type. If character, selects the named palette. Get a complete list of all parameters by running RColorBrewer::display.brewer.all(n=8, exact.n=FALSE)
type	Type of scale. One of 'div' (diverging), 'qual' (qualitative, the default), 'seq' (sequential), or 'all' (all). Only used when palette is numeric.
na.colour	colour to use for missing values
limits	numeric vector of length 2, giving the extent of the scale
breaks	numeric vector indicating where breaks should lie
labels	character vector giving labels associated with breaks
formatter	NULL
legend	NULL
• • •	other arguments

Details

See colorbrewer.org for more info

This page describes scale_brewer, see layer and qplot for how to create a complete plot from individual components.

116 scale_continuous

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/scale_brewer.html

Examples

```
## Not run:
dsamp <- diamonds[sample(nrow(diamonds), 1000), ]</pre>
(d <- qplot(carat, price, data=dsamp, colour=clarity))</pre>
# Change scale label
d + scale_colour_brewer()
d + scale_colour_brewer("clarity")
d + scale_colour_brewer(expression(clarity[beta]))
# Select brewer palette to use, see ?brewer.pal for more details
d + scale_colour_brewer(type="seq")
d + scale_colour_brewer(type="seq", palette=3)
RColorBrewer::display.brewer.all(n=8, exact.n=FALSE)
d + scale_colour_brewer(palette="Blues")
d + scale_colour_brewer(palette="Set1")
# scale_fill_brewer works just the same as
# scale_colour_brewer but for fill colours
ggplot(diamonds, aes(x=price, fill=cut)) +
  geom_histogram(position="dodge", binwidth=1000) +
  scale_fill_brewer()
## End(Not run)
```

scale_continuous scale_continuous

Description

Continuous position scale

scale_continuous 117

Usage

```
scale_x_continuous(name = NULL, limits = NULL, breaks = NULL,
    labels = NULL, trans = NULL, expand = c(0.05, 0), minor_breaks = NULL,
    formatter = "scientific", legend = TRUE, ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
limits	numeric vector of length 2, giving the extent of the scale
breaks	numeric vector indicating where breaks should lie
labels	character vector giving labels associated with breaks
trans	a transformer to use
expand	numeric vector of length 2, giving multiplicative and additive expansion factors
minor_breaks	NULL
formatter	NULL
legend	NULL
	ignored

Details

This page describes scale_continuous, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- scale_discrete: Discrete position scales
- http://had.co.nz/ggplot2/scale_continuous.html

```
## Not run:
(m <- qplot(rating, votes, data=subset(movies, votes > 1000), na.rm = T))
# Manipulating the default position scales lets you:

# * change the axis labels
m + scale_y_continuous("number of votes")
m + scale_y_continuous(expression(votes^alpha))
```

118 scale_date

```
# * modify the axis limits
m + scale_y_continuous(limits=c(0, 5000))
m + scale_y_continuous(limits=c(1000, 10000))
m + scale_x_continuous(limits=c(7, 8))
# you can also use the short hand functions xlim and ylim
m + ylim(0, 5000)
m + ylim(1000, 10000)
m + xlim(7, 8)
# * choose where the ticks appear
m + scale_x_continuous(breaks=1:10)
m + scale_x_continuous(breaks=c(1,3,7,9))
# * manually label the ticks
m + scale_x_continuous(breaks=c(2,5,8), labels=c("two", "five", "eight"))
m + scale_x_continuous(breaks=c(2,5,8), labels=c("horrible", "ok", "awesome"))
m + scale_x_continuous(breaks=c(2,5,8), labels=expression(Alpha, Beta, Omega))
# There are also a wide range of transformations you can use:
m + scale_y_log10()
m + scale_y_log()
m + scale_y_log2()
m + scale_y_sqrt()
m + scale_y_reverse()
# see ?transformer for a full list
\# You can control the formatting of the labels with the formatter
# argument. Some common formats are built in:
x <- rnorm(10) * 100000
y < - seq(0, 1, length = 10)
p \leftarrow qplot(x, y)
p + scale_y_continuous(formatter = "percent")
p + scale_y_continuous(formatter = "dollar")
p + scale_x_continuous(formatter = "comma")
# qplot allows you to do some of this with a little less typing:
  * axis limits
qplot(rating, votes, data=movies, ylim=c(1e4, 5e4))
  * axis labels
qplot(rating, votes, data=movies, xlab="My x axis", ylab="My y axis")
# * log scaling
qplot(rating, votes, data=movies, log="xy")
## End(Not run)
```

scale_date 119

Description

Position scale, date

Usage

```
scale_x_date(name = NULL, limits = NULL, major = NULL, minor = NULL,
format = NULL, expand = c(0.05, 0), ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
limits	numeric vector of length 2, giving the extent of the scale
major	NULL
minor	NULL
format	NULL
expand	numeric vector of length 2, giving multiplicative and additive expansion factors
	ignored

Details

This page describes scale_date, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- scale_discrete: Discrete position scales
- http://had.co.nz/ggplot2/scale_date.html

```
## Not run:
# We'll start by creating some nonsense data with dates
df <- data.frame(
   date = seq(Sys.Date(), len=100, by="1 day")[sample(100, 50)],
   price = runif(50)
)
df <- df[order(df$date), ]
dt <- qplot(date, price, data=df, geom="line") + opts(aspect.ratio = 1/4)</pre>
```

120 scale_datetime

```
# We can control the format of the labels, and the frequency of
# the major and minor tickmarks. See ?format.Date and ?seq.Date
# for more details.
dt + scale_x_date()
dt + scale_x_date(format="
dt + scale_x_date(format="
dt + scale_x_date(major="months", minor="weeks", format="
dt + scale_x_date(major="months", minor="3 days", format="
dt + scale_x_date(major="years", format="
# The date scale will attempt to pick sensible defaults for
# major and minor tick marks
qplot(date, price, data=df[1:10,], geom="line")
qplot(date, price, data=df[1:4,], geom="line")
df <- data.frame(</pre>
  date = seq(Sys.Date(), len=1000, by="1 day"),
  price = runif(500)
)
qplot(date, price, data=df, geom="line")
# A real example using economic time series data
qplot(date, psavert, data=economics)
qplot(date, psavert, data=economics, geom="path")
end <- max(economics$date)</pre>
last_plot() + scale_x_date(lim = c(as.Date("2000-1-1"), end))
last_plot() + scale_x_date(lim = c(as.Date("2005-1-1"), end))
last_plot() + scale_x_date(lim = c(as.Date("2006-1-1"), end))
# If we want to display multiple series, one for each variable
# it's easiest to first change the data from a "wide" to a "long"
em <- melt(economics, id = "date")
# Then we can group and facet by the new "variable" variable
qplot(date, value, data = em, geom = "line", group = variable)
qplot(date, value, data = em, geom = "line", group = variable) +
  facet_grid(variable ~ ., scale = "free_y")
## End(Not run)
```

scale_datetime

scale_datetime

Description

Position scale, date time

scale_datetime 121

Usage

```
scale_x_datetime(name = NULL, limits = NULL, major = NULL, minor = NULL,
format = NULL, expand = c(0.05, 0), tz = "", ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
limits	numeric vector of length 2, giving the extent of the scale
major	NULL
minor	NULL
format	NULL
expand	numeric vector of length 2, giving multiplicative and additive expansion factors
tz	NULL
• • •	ignored

Details

This page describes scale_datetime, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- scale_discrete: Discrete position scales
- http://had.co.nz/ggplot2/scale_datetime.html

```
## Not run:
start <- ISOdate(2001, 1, 1, tz = "")
df <- data.frame(
   day30 = start + round(runif(100, max = 30 * 86400)),
   day7 = start + round(runif(100, max = 7 * 86400)),
   day = start + round(runif(100, max = 86400)),
   hour10 = start + round(runif(100, max = 10 * 3600)),
   hour5 = start + round(runif(100, max = 5 * 3600)),
   hour = start + round(runif(100, max = 3600)),
   min10 = start + round(runif(100, max = 10 * 60)),
   min5 = start + round(runif(100, max = 5 * 60)),
   min = start + round(runif(100, max = 60)),</pre>
```

scale_discrete

```
sec10 = start + round(runif(100, max = 10)),
 y = runif(100)
)
# Automatic scale selection
qplot(sec10, y, data = df)
qplot(min, y, data = df)
qplot(min5, y, data = df)
qplot(min10, y, data = df)
qplot(hour, y, data = df)
qplot(hour5, y, data = df)
qplot(hour10, y, data = df)
qplot(day, y, data = df)
qplot(day30, y, data = df)
# Manual scale selection
qplot(day30, y, data = df)
last_plot() + scale_x_datetime(major = "2 weeks")
last_plot() + scale_x_datetime(major = "2 weeks", minor = "1 week")
last_plot() + scale_x_datetime(major = "10 days")
# See ?strptime for formatting parameters
last_plot() + scale_x_datetime(major = "10 days", format = "
## End(Not run)
```

scale_discrete

scale_discrete

Description

Discrete position scale

Usage

```
scale_x_discrete(name = NULL, expand = c(0.05, 0.55), limits = NULL,
    breaks = NULL, labels = NULL, formatter = identity, drop = FALSE,
    legend = TRUE, ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
expand	numeric vector of length 2, giving multiplicative and additive expansion factors
limits	numeric vector of length 2, giving the extent of the scale
breaks	numeric vector indicating where breaks should lie
labels	character vector giving labels associated with breaks
formatter	NULL

scale_discrete 123

```
drop NULL legend NULL ignored
```

Details

This page describes scale_discrete, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/scale_discrete.html

```
## Not run:
qplot(cut, data=diamonds, stat="bin")
gplot(cut, data=diamonds, geom="bar")
# The discrete position scale is added automatically whenever you
# have a discrete position.
(d <- qplot(cut, clarity, data=subset(diamonds, carat > 1), geom="jitter"))
d + scale_x_discrete("Cut")
d + scale_x_discrete("Cut", labels = c("Fair" = "F", "Good" = "G",
  "Very Good" = "VG", "Perfect" = "P", "Ideal" = "I"))
d + scale_y_discrete("Clarity")
d + scale_x_discrete("Cut") + scale_y_discrete("Clarity")
# Use limits to adjust the which levels (and in what order)
# are displayed
d + scale_x_discrete(limits=c("Fair","Ideal"))
# you can also use the short hand functions xlim and ylim
d + xlim("Fair", "Ideal", "Good")
d + ylim("I1", "IF")
# See ?reorder to reorder based on the values of another variable
qplot(manufacturer, cty, data=mpg)
qplot(reorder(manufacturer, cty), cty, data=mpg)
qplot(reorder(manufacturer, displ), cty, data=mpg)
```

124 scale_gradient

```
# Use abbreviate as a formatter to reduce long names
qplot(reorder(manufacturer, cty), cty, data=mpg) +
    scale_x_discrete(formatter = "abbreviate")

## End(Not run)

scale_gradient scale_gradient
```

Description

Smooth gradient between two colours

Usage

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
low	colour at low end of scale
high	colour at high end of scale
space	colour space to interpolate through, rgb or Lab, see ?colorRamp for details
	other arguments

Details

This page describes scale \gradient , see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- scale_gradient2: continuous colour scale with midpoint
- colorRamp: for details of interpolation algorithm
- http://had.co.nz/ggplot2/scale_gradient.html

scale_gradient2 125

Examples

```
## Not run:
# It's hard to see, but look for the bright yellow dot
# in the bottom right hand corner
dsub <- subset (diamonds, x > 5 & x < 6 & y > 5 & y < 6)
(d <- qplot(x, y, data=dsub, colour=z))</pre>
# That one point throws our entire scale off. We could
# remove it, or manually tweak the limits of the scale
# Tweak scale limits. Any points outside these
# limits will not be plotted, but will continue to affect the
# calculate of statistics, etc
d + scale_colour_gradient(limits=c(3, 10))
d + scale_colour_gradient(limits=c(3, 4))
# Setting the limits manually is also useful when producing
# multiple plots that need to be comparable
# Alternatively we could try transforming the scale:
d + scale_colour_gradient(trans = "log")
d + scale_colour_gradient(trans = "sqrt")
# Other more trivial manipulations, including changing the name
# of the scale and the colours.
d + scale_colour_gradient("Depth")
d + scale_colour_gradient(expression(Depth[mm]))
d + scale_colour_gradient(limits=c(3, 4), low="red")
d + scale_colour_gradient(limits=c(3, 4), low="red", high="white")
# Much slower
d + scale_colour_gradient(limits=c(3, 4), low="red", high="white", space="Lab")
d + scale_colour_gradient(limits=c(3, 4), space="Lab")
# scale_fill_continuous works similarly, but for fill colours
(h <- qplot(x - y, data=dsub, geom="histogram", binwidth=0.01, fill=..count..))
h + scale_fill_continuous(low="black", high="pink", limits=c(0,3100))
## End(Not run)
```

Description

scale_gradient2

Smooth gradient between three colours (high, low and midpoints)

scale_gradient2

Usage

126 scale_gradient2

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
low	colour at low end of scale
mid	colour at mid point of scale
high	colour at high end of scale
midpoint	position of mid point of scale, defaults to 0
space	colour space to interpolate through, rgb or Lab, see ?colorRamp for details
	other arguments

Details

This page describes scale_gradient2, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- scale_gradient: continuous colour scale
- colorRamp: for details of interpolation algorithm
- http://had.co.nz/ggplot2/scale_gradient2.html

```
## Not run:
dsub <- subset(diamonds, x > 5 & x < 6 & y > 5 & y < 6)
dsub$diff <- with(dsub, sqrt(abs(x-y))* sign(x-y))
(d <- qplot(x, y, data=dsub, colour=diff))

d + scale_colour_gradient2()
# Change scale name
d + scale_colour_gradient2(expression(sqrt(abs(x - y))))
d + scale_colour_gradient2("Difference\nbetween\nwidth and\nheight")

# Change limits and colours
d + scale_colour_gradient2(limits=c(-0.2, 0.2))

# Using "muted" colours makes for pleasant graphics
# (and they have better perceptual properties too)
d + scale_colour_gradient2(low="red", high="blue")
d + scale_colour_gradient2(low=muted("red"), high=muted("blue"))</pre>
```

scale_gradientn 127

```
# Using the Lab colour space also improves perceptual properties
# at the price of slightly slower operation
d + scale_colour_gradient2(space="Lab")
# About 5
# idea to avoid that combination
d + scale_colour_gradient2(high=muted("green"))
# We can also make the middle stand out
d + scale_colour_gradient2(mid=muted("green"), high="white", low="white")
# or use a non zero mid point
(d <- qplot(carat, price, data=diamonds, colour=price/carat))</pre>
d + scale_colour_gradient2(midpoint=mean(diamonds$price / diamonds$carat))
# Fill gradients work much the same way
p <- qplot(letters[1:5], 1:5, fill= c(-3, 3, 5, 2, -2), geom="bar")</pre>
p + scale_fill_gradient2("fill")
# Note how positive and negative values of the same magnitude
# have similar intensity
## End(Not run)
```

scale_gradientn scale_gradientn

Description

Smooth gradient between n colours

Usage

```
scale_colour_gradientn(name = NULL, colours, values = NULL, rescale = TRUE,
    space = "rgb", ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
colours	NULL
values	NULL
rescale	NULL
space	colour space to interpolate through, rgb or Lab, see ?colorRamp for details
	other arguments

128 scale_gradientn

Details

This page describes scale_gradientn, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- scale_gradient: continuous colour scale with midpoint
- colorRamp: for details of interpolation algorithm
- http://had.co.nz/ggplot2/scale_gradientn.html

```
## Not run:
# scale_colour_gradient make it easy to use existing colour palettes
dsub <- subset(diamonds, x > 5 & x < 6 & y > 5 & y < 6)
dsub$diff <- with(dsub, sqrt(abs(x-y))* sign(x-y))
(d <- qplot(x, y, data=dsub, colour=diff))</pre>
d + scale_colour_gradientn(colour = rainbow(7))
breaks <-c(-0.5, 0, 0.5)
d + scale_colour_gradientn(colour = rainbow(7),
 breaks = breaks, labels = format(breaks))
d + scale_colour_gradientn(colour = topo.colors(10))
d + scale_colour_gradientn(colour = terrain.colors(10))
# You can force them to be symmetric by supplying a vector of
# values, and turning rescaling off
max_val <- max(abs(dsub$diff))</pre>
values <- seq(-max_val, max_val, length = 11)</pre>
d + scale_colour_gradientn(colours = topo.colors(10),
 values = values, rescale = FALSE)
d + scale_colour_gradientn(colours = terrain.colors(10),
 values = values, rescale = FALSE)
## End(Not run)
```

scale_grey 129

Description

Sequential grey colour scale

Usage

```
scale_colour_grey(name = NULL, start = 0.2, end = 0.8, limits = NULL,
    breaks = NULL, labels = NULL, formatter = identity, legend = TRUE,
    ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
start	starting grey colour (between 0 and 1)
end	ending grey colour (between 0 and 1)
limits	numeric vector of length 2, giving the extent of the scale
breaks	numeric vector indicating where breaks should lie
labels	character vector giving labels associated with breaks
formatter	NULL
legend	NULL
	other arguments

Details

Based on ?gray.colors

This page describes scale_grey, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

```
• http://had.co.nz/ggplot2/scale_grey.html
```

scale_hue

Examples

```
## Not run:
p <- qplot(mpg, wt, data=mtcars, colour=factor(cyl))
p + scale_colour_grey()
p + scale_colour_grey(end = 0)

# You may want to turn off the pale grey background with this scale
p + scale_colour_grey() + theme_bw()

## End(Not run)</pre>
```

scale_hue

scale_hue

Description

Qualitative colour scale with evenly spaced hues

Usage

```
scale_colour_hue(name = NULL, h = c(0, 360) + 15, l = 65, c = 100,
    limits = NULL, breaks = NULL, labels = NULL, h.start = 0,
    direction = 1, formatter = identity, legend = TRUE, ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
h	range of hues to use, in [0, 360]
1	luminance (lightness), in [0, 100]
С	chroma (intensity of colour)
limits	numeric vector of length 2, giving the extent of the scale
breaks	numeric vector indicating where breaks should lie
labels	character vector giving labels associated with breaks
h.start	hue to start at
direction	direction to travel around the colour wheel, $1 = clockwise$, $-1 = counter-clockwise$
formatter	NULL
legend	NULL
	other arguments

Details

This page describes scale_hue, see layer and qplot for how to create a complete plot from individual components.

scale_identity 131

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/scale_hue.html

Examples

```
## Not run:
dsamp <- diamonds[sample(nrow(diamonds), 1000), ]</pre>
(d <- qplot(carat, price, data=dsamp, colour=clarity))</pre>
# Change scale label
d + scale_colour_hue()
d + scale_colour_hue("clarity")
d + scale_colour_hue(expression(clarity[beta]))
# Adjust luminosity and chroma
d + scale_colour_hue(l=40, c=30)
d + scale_colour_hue(l=70, c=30)
d + scale_colour_hue(l=70, c=150)
d + scale_colour_hue(l=80, c=150)
# Change range of hues used
d + scale_colour_hue(h=c(0, 90))
d + scale_colour_hue(h=c(90, 180))
d + scale_colour_hue(h=c(180, 270))
d + scale_colour_hue(h=c(270, 360))
# Vary opacity
# (only works with pdf, quartz and cairo devices)
d <- ggplot(dsamp, aes(carat, price, colour = clarity))</pre>
d + geom_point(alpha = 0.9)
d + geom_point(alpha = 0.5)
d + geom_point(alpha = 0.2)
## End(Not run)
```

scale_identity

scale_identity

Description

Use values without scaling

scale_identity

Usage

```
scale_alpha_identity(name = NULL, breaks = NULL, labels = NULL,
formatter = NULL, legend = TRUE, ...)
```

Arguments

name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath

breaks numeric vector indicating where breaks should lie
labels character vector giving labels associated with breaks

formatter NULL
legend NULL
... ignored

Details

This page describes scale_identity, see layer and qplot for how to create a complete plot from individual components.

Value

Alayer

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/scale_identity.html

```
## Not run:
colour <- c("red", "green", "blue", "yellow")
qplot(1:4, 1:4, fill = colour, geom = "tile")
qplot(1:4, 1:4, fill = colour, geom = "tile") + scale_fill_identity()

# To get a legend, you also need to supply the labels to
# be used on the legend
qplot(1:4, 1:4, fill = colour, geom = "tile") +
    scale_fill_identity("trt", labels = letters[1:4], breaks = colour)

# cyl scaled to appropriate size
qplot(mpg, wt, data = mtcars, size = cyl)

# cyl used as point size
qplot(mpg, wt, data = mtcars, size = cyl) + scale_size_identity()

## End(Not run)</pre>
```

scale_linetype_discrete 133

```
scale_linetype_discrete

scale_linetype_discrete
```

Description

Scale for line patterns

Usage

```
scale_linetype_discrete(name = NULL, expand = c(0.05, 0.55),
    limits = NULL, breaks = NULL, labels = NULL, formatter = identity,
    drop = FALSE, legend = TRUE, ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
expand	numeric vector of length 2, giving multiplicative and additive expansion factors
limits	numeric vector of length 2, giving the extent of the scale
breaks	numeric vector indicating where breaks should lie
labels	character vector giving labels associated with breaks
formatter	NULL
drop	NULL
legend	NULL
	ignored

Details

This page describes scale_linetype_discrete, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/scale_linetype_discrete.html

scale_manual

Examples

```
## Not run:
ec_scaled <- data.frame(
   date = economics$date,
   rescaler(economics[, -(1:2)], "range")
)
ecm <- melt(ec_scaled, id = "date")

qplot(date, value, data=ecm, geom="line", group=variable)
qplot(date, value, data=ecm, geom="line", linetype=variable)
qplot(date, value, data=ecm, geom="line", colour=variable)
# See scale_manual for more flexibility
## End(Not run)</pre>
```

scale_manual

scale_manual

Description

Create your own discrete scale

Usage

```
scale_colour_manual(name = NULL, values = NULL, limits = NULL,
    breaks = NULL, labels = NULL, formatter = identity, legend = TRUE,
    ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
values	NULL
limits	numeric vector of length 2, giving the extent of the scale
breaks	numeric vector indicating where breaks should lie
labels	character vector giving labels associated with breaks
formatter	NULL
legend	NULL
• • •	ignored

Details

This page describes scale_manual, see layer and qplot for how to create a complete plot from individual components.

scale_shape_discrete 135

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/scale_manual.html

Examples

```
## Not run:
p <- qplot(mpg, wt, data = mtcars, colour = factor(cyl))</pre>
p + scale_colour_manual(values = c("red", "blue", "green"))
p + scale_colour_manual(
 values = c("8" = "red","4" = "blue","6" = "green"))
# As with other scales you can use breaks to control the appearance
# of the legend
cols <- c("8" = "red", "4" = "blue", "6" = "darkgreen", "10" = "orange")
p + scale_colour_manual(values = cols)
p + scale_colour_manual(values = cols, breaks = c("4", "6", "8"))
p + scale_colour_manual(values = cols, breaks = c("8", "6", "4"))
p + scale_colour_manual(values = cols, breaks = c("4", "6", "8"),
 labels = c("four", "six", "eight"))
# And limits to control the possible values of the scale
p + scale_colour_manual(values = cols, limits = c("4", "8"))
p + scale_colour_manual(values = cols, limits = c("4", "6", "8", "10"))
## End(Not run)
```

Description

Scale for shapes, aka glyphs

Usage

```
scale_shape_discrete(name = NULL, solid = TRUE, limits = NULL,
    breaks = NULL, labels = NULL, formatter = identity, legend = TRUE,
    ...)
```

scale_shape_discrete

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
solid	NULL
limits	numeric vector of length 2, giving the extent of the scale
breaks	numeric vector indicating where breaks should lie
labels	character vector giving labels associated with breaks
formatter	NULL
legend	NULL
	ignored

Details

This page describes scale_shape_discrete, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/scale_shape_discrete.html

```
## Not run:
dsmall <- diamonds[sample(nrow(diamonds), 100), ]

(d <- qplot(carat, price, data=dsmall, shape=cut))
d + scale_shape(solid = TRUE) # the default
d + scale_shape(solid = FALSE)
d + scale_shape(name="Cut of diamond")
d + scale_shape(name="Cut of\ndiamond")

# To change order of levels, change order of
# underlying factor
levels(dsmall$cut) <- c("Fair", "Good", "Very Good", "Premium", "Ideal")

# Need to recreate plot to pick up new data
qplot(price, carat, data=dsmall, shape=cut)

# Or for short:
d</pre>
```

scale_size_continuous 137

```
## End(Not run)
```

Description

Size scale for continuous variable

Usage

```
scale_size_continuous(name = NULL, limits = NULL, breaks = NULL,
    labels = NULL, trans = NULL, to = c(1, 6), legend = TRUE,
    ...)
```

Arguments

name	name of scale to appear in legend or on axis. Maybe be an expression: see ?plotmath
limits	numeric vector of length 2, giving the extent of the scale
breaks	numeric vector indicating where breaks should lie
labels	character vector giving labels associated with breaks
trans	a transformer to use
to	a numeric vector of length 2 that specifies the minimum and maximum size of the plotting symbol after transformation.
legend	NULL
	other arguments

Details

This page describes scale\size\continuous, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

138 scientific

See Also

- scale_manual: for sizing discrete variables
- http://had.co.nz/ggplot2/scale_size_continuous.html

Examples

```
## Not run:
(p <- gplot(mpg, cyl, data=mtcars, size=cyl))</pre>
p + scale_size("cylinders")
p + scale_size("number\nof\ncylinders")
p + scale\_size(to = c(0, 10))
p + scale\_size(to = c(1, 2))
# Map area, instead of width/radius
# Perceptually, this is a little better
p + scale_area()
p + scale_area(to = c(1, 25))
# Also works with factors, but not a terribly good
# idea, unless your factor is ordered, as in this example
qplot(mpg, cyl, data=mtcars, size=factor(cyl))
# To control the size mapping for discrete variable, use
# scale_size_manual:
last_plot() + scale_size_manual(values=c(2,4,6))
## End(Not run)
```

scientific

Scientific formatter

Description

Default scientific formatting

Usage

```
scientific(x)
```

Arguments

X

numeric vector to format

Author(s)

Hadley Wickham < h.wickham@gmail.com>

Seals vector field 139

```
Seals vector field Vector field of seal movements
```

Description

This vector field was produced from the data described in Brillinger, D.R., Preisler, H.K., Ager, A.A. and Kie, J.G. "An exploratory data analysis (EDA) of the paths of moving animals". J. Statistical Planning and Inference 122 (2004), 43-63, using the methods of Brillinger, D.R., "Learning a potential function from a trajectory", Signal Processing Letters. December (2007).

Usage

```
data(seals)
```

Format

A data frame with 1155 rows and 4 variables

References

```
http://www.stat.berkeley.edu/~brill/Papers/jspifinal.pdf
```

```
stat_abline stat_abline
```

Description

Add a line with slope and intercept

Usage

```
stat_abline(mapping = NULL, data = NULL, geom = "abline", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes data dataset used in this layer, if not specified uses plot dataset geom geometric used by this layer position adjustment used by this layer ignored
```

Details

This page describes stat_abline, see layer and qplot for how to create a complete plot from individual components.

stat_bin

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

```
• http://had.co.nz/ggplot2/stat_abline.html
```

Examples

```
## Not run:
# See geom_abline for examples
## End(Not run)
```

stat_bin

stat_bin

Description

Bin data

Usage

```
stat_bin(mapping = NULL, data = NULL, geom = "bar", position = "stack",
    width = 0.9, drop = FALSE, right = TRUE, ...)
```

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
geom	geometric used by this layer
position	position adjustment used by this layer
width	Width of bars when used with categorical data
drop	If TRUE, remove all bins with zero counts
right	Should intervals be closed on the right (a, b], or not [a, b)
	other arguments

Details

Missing values are currently silently dropped.

This page describes stat_bin, see layer and qplot for how to create a complete plot from individual components.

stat_bin 141

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with stat_bin. Aesthetics are mapped to variables in the data with the aes function: stat bin (aes (x = var))

- x: x position (required)
- y: y position

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/stat_bin.html

```
## Not run:
simple <- data.frame(x = rep(1:10, each = 2))
base <- ggplot(simple, aes(x))</pre>
# By default, right = TRUE, and intervals are of the form (a, b]
base + stat_bin(binwidth = 1, drop = FALSE, right = TRUE, col = "black")
# If right = FALSE intervals are of the form [a, b)
base + stat_bin(binwidth = 1, drop = FALSE, right = FALSE, col = "black")
m <- ggplot(movies, aes(x=rating))</pre>
m + stat_bin()
m + stat_bin(binwidth=0.1)
m + stat\_bin(breaks=seq(4,6, by=0.1))
# See geom_histogram for more histogram examples
# To create a unit area histogram, use aes(y = ..density..)
(linehist <- m + stat_bin(aes(y = ..density..), binwidth=0.1,
  geom="line", position="identity"))
linehist + stat_density(colour="blue", fill=NA)
# Also works with categorical variables
ggplot(movies, aes(x=mpaa)) + stat_bin()
qplot(mpaa, data=movies, stat="bin")
## End(Not run)
```

stat_bin2d

Description

Bin 2d plane into rectangles

Usage

```
stat_bin2d(mapping = NULL, data = NULL, geom = "rect", position = "identity",
bins = 30, drop = TRUE, ...)
```

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
geom	geometric used by this layer
position	position adjustment used by this layer
bins	NULL
drop	NULL
	ignored

Details

This page describes stat_bin2d, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with $stat_bin2d$. Aesthetics are mapped to variables in the data with the aes function: $stat_bin2d$ (aes (x = var))

```
• x: x position (required)
```

- y: y position (required)
- fill: internal colour

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

stat_binhex 143

See Also

- stat_binhex: For hexagonal binning
- http://had.co.nz/ggplot2/stat_bin2d.html

Examples

```
## Not run:
d <- ggplot(diamonds, aes(carat, price))</pre>
d + stat_bin2d()
d + geom_bin2d()
# You can control the size of the bins by specifying the number of
# bins in each direction:
d + stat_bin2d(bins = 10)
d + stat\_bin2d(bins = 30)
# Or by specifying the width of the bins
d + stat\_bin2d(binwidth = c(1, 1000))
d + stat\_bin2d(binwidth = c(.1, 500))
# Or with a list of breaks
x \leftarrow seq(min(diamonds\$carat), max(diamonds\$carat), by = 0.1)
y <- seq(min(diamonds$price), max(diamonds$price), length = 50)
d + stat\_bin2d(breaks = list(x = x, y = y))
# With qplot
qplot(x, y, data = diamonds, geom="bin2d",
  xlim = c(4, 10), ylim = c(4, 10))
qplot(x, y, data = diamonds, geom="bin2d", binwidth = c(0.1, 0.1),
  xlim = c(4, 10), ylim = c(4, 10))
## End(Not run)
```

stat_binhex

stat_binhex

Description

Bin 2d plane into hexagons

Usage

```
stat_binhex(mapping = NULL, data = NULL, geom = "hex", position = "identity",
bins = 30, na.rm = FALSE, ...)
```

144 stat_binhex

Arguments

5022202	
mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
geom	geometric used by this layer
position	position adjustment used by this layer
bins	NULL
na.rm	NULL
	ignored

Details

This page describes stat_binhex, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with stat_binhex. Aesthetics are mapped to variables in the data with the aes function: $stat_binhex(aes(x = var))$

- x: x position (**required**)
- y: y position (required)
- fill: internal colour

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- stat_bin2d: For rectangular binning
- http://had.co.nz/ggplot2/stat_binhex.html

```
## Not run:
d <- ggplot(diamonds, aes(carat, price))
d + stat_binhex()
d + geom_hex()

# You can control the size of the bins by specifying the number of
# bins in each direction:
d + stat_binhex(bins = 10)
d + stat_binhex(bins = 30)</pre>
```

stat_boxplot 145

```
# Or by specifying the width of the bins
d + stat_binhex(binwidth = c(1, 1000))
d + stat_binhex(binwidth = c(.1, 500))

# With qplot
qplot(x, y, data = diamonds, geom="hex", xlim = c(4, 10), ylim = c(4, 10))
qplot(x, y, data = diamonds, geom="hex", xlim = c(4, 10), ylim = c(4, 10),
binwidth = c(0.1, 0.1))

## End(Not run)
stat_boxplot

stat_boxplot
```

Description

Calculate components of box and whisker plot

Usage

```
stat_boxplot(mapping = NULL, data = NULL, geom = "boxplot", position = "dodge",
    na.rm = FALSE, coef = 1.5, ...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes data dataset used in this layer, if not specified uses plot dataset geom geometric used by this layer position position adjustment used by this layer na.rm NULL coef NULL ignored
```

Details

This page describes stat_boxplot, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with stat_boxplot. Aesthetics are mapped to variables in the data with the aes function: $stat_boxplot(aes(x = var))$

```
• x: x position (required)
```

• y: y position (required)

stat_contour

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/stat_boxplot.html

Examples

```
## Not run:
# See geom_boxplot for examples
## End(Not run)
```

stat_contour

stat_contour

Description

Contours of 3d data

Usage

```
stat_contour(mapping = NULL, data = NULL, geom = "path", position = "identity",
    na.rm = FALSE, ...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
geom geometric used by this layer
position position adjustment used by this layer
na.rm NULL
... ignored
```

Details

This page describes stat_contour, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

stat_contour 147

Aesthetics

The following aesthetics can be used with stat_contour. Aesthetics are mapped to variables in the data with the aes function: $stat_contour(aes(x = var))$

```
• x: x position (required)
```

• y: y position (required)

• z: NULL (required)

• order: NULL

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/stat_contour.html

```
## Not run:
# Generate data
volcano3d <- melt(volcano)</pre>
names(volcano3d) <- c("x", "y", "z")</pre>
# Basic plot
v \leftarrow ggplot(volcano3d, aes(x, y, z = z))
v + stat contour()
# Setting bins creates evenly spaced contours in the range of the data
v + stat_contour(bins = 2)
v + stat\_contour(bins = 10)
# Setting binwidth does the same thing, parameterised by the distance
# between contours
v + stat\_contour(binwidth = 2)
v + stat_contour(binwidth = 5)
v + stat_contour(binwidth = 10)
v + stat_contour(binwidth = 2, size = 0.5, colour = "grey50") +
  stat_contour(binwidth = 10, size = 1)
# Add aesthetic mappings
v + stat_contour(aes(size = ..level..))
v + stat_contour(aes(colour = ..level..))
# Change scale
v + stat_contour(aes(colour = ..level..), size = 2) +
  scale_colour_gradient(low = "brown", high = "white")
# Set aesthetics to fixed value
v + stat_contour(colour = "red")
v + stat_contour(size = 2, linetype = 4)
```

stat_density

```
# Try different geoms
v + stat_contour(geom="polygon", aes(fill=..level..))
v + geom_tile(aes(fill = z)) + stat_contour()

# Use qplot instead
qplot(x, y, z, data = volcano3d, geom = "contour")
qplot(x, y, z, data = volcano3d, stat = "contour", geom = "path")
## End(Not run)
```

stat_density

stat_density

Description

Density estimation, 1D

Usage

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
geom	geometric used by this layer
position	position adjustment used by this layer
adjust	see ?density for details
kernel	kernel used for density estimation, see density for details
trim	NULL
na.rm	NULL
	other arguments

Details

This page describes stat_density, see layer and qplot for how to create a complete plot from individual components.

Value

Alayer

stat_density 149

Aesthetics

The following aesthetics can be used with stat_density. Aesthetics are mapped to variables in the data with the aes function: $stat_density(aes(x = var))$

```
• x: x position (required)
```

- y: y position
- fill: internal colour

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- stat_bin: for the histogram
- density: for details of the algorithm used
- http://had.co.nz/ggplot2/stat_density.html

```
## Not run:
m <- ggplot(movies, aes(x=rating))</pre>
m + geom_density()
# Adjust parameters
m + geom_density(kernel = "rectangular")
m + geom_density(kernel = "biweight")
m + geom_density(kernel = "epanechnikov")
m + geom_density(adjust=1/5) # Very rough
m + geom_density(adjust=5) # Very smooth
# Adjust aesthetics
m + geom_density(aes(fill=factor(Drama)), size=2)
# Scale so peaks have same height:
m + geom_density(aes(fill=factor(Drama), y = ..scaled..), size=2)
m + geom_density(colour="darkgreen", size=2)
m + geom_density(colour="darkgreen", size=2, fill=NA)
m + geom_density(colour="darkgreen", size=2, fill="green")
# Change scales
(m <- ggplot(movies, aes(x=votes)) + geom_density(trim = TRUE))</pre>
m + scale_x_log10()
m + coord_trans(x="log10")
m + scale_x_log10() + coord_trans(x="log10")
# Also useful with
m + stat_bin()
# Make a volcano plot
```

150 stat_density2d

```
ggplot(diamonds, aes(x = price)) +
  stat_density(aes(ymax = ..density.., ymin = -..density..),
    fill = "grey50", colour = "grey50",
    geom = "ribbon", position = "identity") +
  facet_grid(. ~ cut) +
  coord_flip()
# Stacked density plots
# If you want to create a stacked density plot, you need to use
\# the 'count' (density * n) variable instead of the default density
# Loses marginal densities
qplot(rating, ..density.., data=movies, geom="density", fill=mpaa, position="stack")
# Preserves marginal densities
qplot(rating, ..count.., data=movies, geom="density", fill=mpaa, position="stack")
# You can use position="fill" to produce a conditional density estimate
qplot(rating, ..count.., data=movies, geom="density", fill=mpaa, position="fill")
# Need to be careful with weighted data
m <- ggplot(movies, aes(x=rating, weight=votes))</pre>
m + geom_histogram(aes(y = ..count..)) + geom_density(fill=NA)
m <- ggplot(movies, aes(x=rating, weight=votes/sum(votes)))</pre>
m + geom_histogram(aes(y=..density..)) + geom_density(fill=NA, colour="black")
movies$decade <- round_any(movies$year, 10)</pre>
m <- ggplot(movies, aes(x=rating, colour=decade, group=decade))</pre>
m + geom_density(fill=NA)
m + geom_density(fill=NA) + aes(y = ..count..)
# Use qplot instead
qplot(length, data=movies, geom="density", weight=rating)
qplot(length, data=movies, geom="density", weight=rating/sum(rating))
## End(Not run)
```

Description

Density estimation, 2D

Usage

```
stat_density2d(mapping = NULL, data = NULL, geom = "density2d",
    position = "identity", na.rm = FALSE, contour = TRUE, n = 100,
    ...)
```

stat_density2d 151

Arguments

Suments	
mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
geom	geometric used by this layer
position	position adjustment used by this layer
na.rm	NULL
contour	If TRUE, contour the results of the 2d density estimation.
n	number of grid points in each direction
	other arguments passed on to ?kde2d

Details

This page describes stat_density2d, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with $stat_density2d$. Aesthetics are mapped to variables in the data with the aes function: $stat_density2d$ (aes (x = var))

```
• x: x position (required)
```

• y: y position (required)

• colour: border colour

• size: size

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/stat_density2d.html

```
## Not run:
m <- ggplot(movies, aes(x=rating, y=length)) +
    geom_point() +
    scale_y_continuous(limits=c(1, 500))
m + geom_density2d()

dens <- MASS::kde2d(movies$rating, movies$length, n=100)
densdf <- data.frame(expand.grid(rating = dens$x, length = dens$y),</pre>
```

152 stat_function

```
z = as.vector(dens$z))
m + geom_contour(aes(z=z), data=densdf)
m + geom_density2d() + scale_y_log10()
m + geom_density2d() + coord_trans(y="log10")
m + stat_density2d(aes(fill = ..level..), geom="polygon")
qplot(rating, length, data=movies, geom=c("point", "density2d")) +
  ylim(1, 500)
# If you map an aesthetic to a categorical variable, you will get a
# set of contours for each value of that variable
qplot(rating, length, data = movies, geom = "density2d",
  colour = factor(Comedy), ylim = c(0, 150))
qplot(rating, length, data = movies, geom = "density2d",
  colour = factor(Action), ylim = c(0, 150))
qplot(carat, price, data = diamonds, geom = "density2d", colour = cut)
# Another example -----
d <- ggplot(diamonds, aes(carat, price)) + xlim(1,3)</pre>
d + geom_point() + geom_density2d()
# If we turn contouring off, we can use use geoms like tiles:
d + stat_density2d(geom="tile", aes(fill = ..density..), contour = FALSE)
last_plot() + scale_fill_gradient(limits=c(1e-5,8e-4))
# Or points:
d + stat_density2d(geom="point", aes(size = ..density..), contour = FALSE)
## End(Not run)
```

Description

Superimpose a function

Usage

```
stat_function(mapping = NULL, data = NULL, geom = "path", position = "identity",
    fun, n = 101, args = list(), ...)
```

Arguments

mapping mapping between variables and aesthetics generated by aes data dataset used in this layer, if not specified uses plot dataset geom geometric used by this layer

stat_function 153

position	position adjustment used by this layer
fun	function to use
n	number of points to interpolate along
args	list of additional arguments to pass to fun
• • •	other arguments

Details

This page describes stat_function, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with stat_function. Aesthetics are mapped to variables in the data with the aes function: $stat_function(aes(x = var))$

• y: y position

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/stat_function.html

```
## Not run:
x <- rnorm(100)
base <- qplot(x, geom="density")
base + stat_function(fun = dnorm, colour = "red")
base + stat_function(fun = dnorm, colour = "red", arg = list(mean = 3))
## End(Not run)</pre>
```

stat_hline

Description

Add a horizontal line

Usage

```
stat_hline(mapping = NULL, data = NULL, geom = "hline", position = "identity",
    intercept, ...)
```

Arguments

mapping mapping between variables and aesthetics generated by aes data dataset used in this layer, if not specified uses plot dataset geom geometric used by this layer position position adjustment used by this layer intercept NULL ignored

Details

This page describes stat_hline, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

```
• http://had.co.nz/ggplot2/stat_hline.html
```

```
## Not run:
# See geom_hline for examples
## End(Not run)
```

stat_identity 155

Description

Don't transform data

Usage

```
stat_identity(mapping = NULL, data = NULL, geom = "point", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
geom geometric used by this layer
position position adjustment used by this layer
... ignored
```

Details

This page describes stat_identity, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

```
• http://had.co.nz/ggplot2/stat_identity.html
```

```
## Not run:
# Doesn't do anything, so hard to come up a useful example
## End(Not run)
```

156 stat_qq

Description

Calculation for quantile-quantile plot

Usage

Arguments

mapping mapping between variables and aesthetics generated by aes data dataset used in this layer, if not specified uses plot dataset geom geometric used by this layer position position adjustment used by this layer distribution NULL dparams Parameters for distribution function na.rm NULL

Other arguments passed to distribution function

Details

This page describes stat_qq, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with stat\qq. Aesthetics are mapped to variables in the data with the aes function: $stat_qq$ (aes (x = var))

```
sample: NULL (required)x: x position
```

• y: y position

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

stat_quantile 157

See Also

• http://had.co.nz/ggplot2/stat_gg.html

Examples

```
## Not run:
# From ?qqplot
y < - rt(200, df = 5)
qplot(sample = y, stat="qq")
# qplot is smart enough to use stat_qq if you use sample
qplot(sample = y)
qplot(sample = precip)
qplot(sample = y, dist = qt, dparams = list(df = 5))
df <- data.frame(y)</pre>
ggplot(df, aes(sample = y)) + stat_qq()
ggplot(df, aes(sample = y)) + geom_point(stat = "qq")
# Use fitdistr from MASS to estimate distribution params
params <- as.list(MASS::fitdistr(y, "t") $estimate)</pre>
ggplot(df, aes(sample = y)) + stat_qq(dist = qt, dparam = params)
# Using to explore the distribution of a variable
qplot(sample = mpg, data = mtcars)
qplot(sample = mpg, data = mtcars, colour = factor(cyl))
## End(Not run)
```

stat_quantile

stat_quantile

Description

Continuous quantiles

Usage

```
stat_quantile(mapping = NULL, data = NULL, geom = "quantile",
    position = "identity", quantiles = c(0.25, 0.5, 0.75), formula = y ~
        x, method = "rq", na.rm = FALSE, ...)
```

Arguments

mapping mapping between variables and aesthetics generated by aes data dataset used in this layer, if not specified uses plot dataset geom geometric used by this layer

158 stat_quantile

```
position position adjustment used by this layer quantiles conditional quantiles of y to calculate and display formula formula relating y variables to x variables method NULL na.rm NULL other arguments
```

Details

This page describes stat_quantile, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with stat_quantile. Aesthetics are mapped to variables in the data with the aes function: $stat_quantile(aes(x = var))$

- x: x position (required)
- y: y position (required)

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/stat_quantile.html

```
## Not run:
msamp <- movies[sample(nrow(movies), 1000), ]
m <- ggplot(msamp, aes(y=rating, x=year)) + geom_point()
m + stat_quantile()
m + stat_quantile(quantiles = 0.5)
m + stat_quantile(quantiles = seq(0.1, 0.9, by=0.1))

# Doesn't work. Not sure why.
# m + stat_quantile(method = rqss, formula = y ~ qss(x), quantiles = 0.5)

# Add aesthetic mappings
m + stat_quantile(aes(weight=votes))

# Change scale
m + stat_quantile(aes(colour = ..quantile..), quantiles = seq(0.05, 0.95, by=0.05))
m + stat_quantile(aes(colour = ..quantile..), quantiles = seq(0.05, 0.95, by=0.05)) +</pre>
```

stat_smooth 159

```
scale_colour_gradient2(midpoint=0.5, low="green", mid="yellow", high="green")

# Set aesthetics to fixed value
m + stat_quantile(colour="red", size=2, linetype=2)

# Use qplot instead
qplot(year, rating, data=movies, geom="quantile")

## End(Not run)
```

stat_smooth

Description

Add a smoother

stat_smooth

Usage

```
stat_smooth(mapping = NULL, data = NULL, geom = "smooth", position = "identity", method = "auto", formula = y \sim x, se = TRUE, n = 80, fullrange = FALSE, level = 0.95, na.rm = FALSE, ...)
```

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
geom	geometric used by this layer
position	position adjustment used by this layer
method	smoothing method (function) to use, eg. lm, glm, gam, loess, rlm
formula	formula to use in smoothing function, eg. $y \sim x$, $y \sim poly(x, 2)$, $y \sim log(x)$
se	display confidence interval around smooth? (true by default, see level to control)
n	number of points to evaluate smoother at
fullrange	should the fit span the full range of the plot, or just the data
level	level of confidence interval to use (0.95 by default)
na.rm	NULL
	other arguments are passed to smoothing function

Details

Aids the eye in seeing patterns in the presence of overplotting. This page describes stat\smooth, see layer and qplot for how to create a complete plot from individual components.

stat_smooth

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with stat\smooth. Aesthetics are mapped to variables in the data with the aes function: $stat_smooth(aes(x = var))$

- x: x position (required)
- y: y position (required)

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- 1m: for linear smooths
- glm: for generalised linear smooths
- loess: for local smooths
- http://had.co.nz/ggplot2/stat_smooth.html

```
## Not run:
c <- ggplot(mtcars, aes(qsec, wt))</pre>
c + stat_smooth()
c + stat_smooth() + geom_point()
# Adjust parameters
c + stat_smooth(se = FALSE) + geom_point()
c + stat_smooth(span = 0.9) + geom_point()
c + stat_smooth(method = "lm") + geom_point()
library(splines)
c + stat\_smooth(method = "lm", formula = y ~ ns(x,3)) +
  geom_point()
c + stat\_smooth(method = MASS::rlm, formula= y \sim ns(x,3)) + geom\_point()
# The default confidence band uses a transparent colour.
# This currently only works on a limited number of graphics devices
# (including Quartz, PDF, and Cairo) so you may need to set the
# fill colour to a opaque colour, as shown below
c + stat_smooth(fill = "grey50", size = 2, alpha = 1)
c + stat_smooth(fill = "blue", size = 2, alpha = 1)
# The colour of the line can be controlled with the colour aesthetic
c + stat_smooth(fill="blue", colour="darkblue", size=2)
c + stat_smooth(fill="blue", colour="darkblue", size=2, alpha = 0.2)
```

stat_spoke 161

```
c + geom_point() +
  stat_smooth(fill="blue", colour="darkblue", size=2, alpha = 0.2)
# Smoothers for subsets
c <- ggplot(mtcars, aes(y=wt, x=mpg)) + facet_grid(. ~ cyl)</pre>
c + stat_smooth(method=lm) + geom_point()
c + stat_smooth(method=lm, fullrange=T) + geom_point()
# Geoms and stats are automatically split by aesthetics that are factors
c <- ggplot(mtcars, aes(y=wt, x=mpg, colour=factor(cyl)))</pre>
c + stat_smooth(method=lm) + geom_point()
c + stat_smooth(method=lm, aes(fill = factor(cyl))) + geom_point()
c + stat_smooth(method=lm, fullrange=TRUE, alpha = 0.1) + geom_point()
# Use qplot instead
qplot(qsec, wt, data=mtcars, geom=c("smooth", "point"))
# Example with logistic regression
data("kyphosis", package="rpart")
qplot(Age, Kyphosis, data=kyphosis)
qplot(Age, data=kyphosis, facets = . ~ Kyphosis, binwidth = 10)
qplot(Age, Kyphosis, data=kyphosis, position="jitter")
qplot(Age, Kyphosis, data=kyphosis, position=position_jitter(height=0.1))
qplot(Age, as.numeric(Kyphosis) - 1, data = kyphosis) +
  stat_smooth(method="glm", family="binomial")
qplot(Age, as.numeric(Kyphosis) - 1, data=kyphosis) +
  stat\_smooth(method="glm", family="binomial", formula = y ~ ns(x, 2))
## End(Not run)
```

Description

stat_spoke

Convert angle and radius to xend and yend

stat_spoke

Usage

```
stat_spoke(mapping = NULL, data = NULL, geom = "segment", position = "identity",
...)
```

Arguments

mapping	mapping between variables and aesthetics generated by aes
data	dataset used in this layer, if not specified uses plot dataset
geom	geometric used by this layer

stat_spoke

```
position position adjustment used by this layer ... ignored
```

Details

This page describes stat_spoke, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with stat_spoke. Aesthetics are mapped to variables in the data with the aes function: $stat_spoke(aes(x = var))$

```
• x: x position (required)
```

• y: y position (required)

• angle: angle (required)

• radius: NULL (required)

xend: NULLyend: NULL

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/stat_spoke.html

```
## Not run:
df <- expand.grid(x = 1:10, y=1:10)
df$angle <- runif(100, 0, 2*pi)
df$speed <- runif(100, 0, 0.5)

qplot(x, y, data=df) + stat_spoke(aes(angle=angle), radius = 0.5)
last_plot() + scale_y_reverse()

qplot(x, y, data=df) + stat_spoke(aes(angle=angle, radius=speed))
## End(Not run)</pre>
```

stat_sum 163

Description

Sum unique values. Useful for overplotting on scatterplots

Usage

```
stat_sum(mapping = NULL, data = NULL, geom = "point", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes data dataset used in this layer, if not specified uses plot dataset geom geometric used by this layer position position adjustment used by this layer ignored
```

Details

This page describes stat\sum, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with stat\sum. Aesthetics are mapped to variables in the data with the aes function: $stat_sum(aes(x = var))$

```
• x: x position (required)
```

- y: y position (required)
- size: size

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- ggfluctuation: Fluctuation diagram, which is very similar
- http://had.co.nz/ggplot2/stat_sum.html

164 stat_summary

Examples

```
## Not run:
d \leftarrow ggplot(diamonds, aes(x = cut, y = clarity))
# Need to control which group proportion calculated over
# Overall proportion
d + stat_sum(aes(group = 1))
d + stat_sum(aes(group = 1)) + scale_size(to = c(3, 10))
d + stat_sum(aes(group = 1)) + scale_area(to = c(3, 10))
# by cut
d + stat_sum(aes(group = cut))
d + stat_sum(aes(group = cut, colour = cut))
# by clarity
d + stat_sum(aes(group = clarity))
d + stat_sum(aes(group = clarity, colour = cut))
# Instead of proportions, can also use sums
d + stat sum(aes(size = ..n..))
# Can also weight by another variable
d + stat_sum(aes(group = 1, weight = price))
d + stat_sum(aes(group = 1, weight = price, size = ..n..))
# Or using aplot
qplot(cut, clarity, data = diamonds)
qplot(cut, clarity, data = diamonds, stat = "sum", group = 1)
## End(Not run)
```

stat_summary

stat_summary

Description

Summarise y values at every unique x

Usage

```
stat_summary(mapping = NULL, data = NULL, geom = "pointrange",
    position = "identity", ...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes
data dataset used in this layer, if not specified uses plot dataset
geom geometric used by this layer
position position adjustment used by this layer
other arguments
```

stat_summary 165

Details

stat\summary allows for tremendous flexibilty in the specification of summary functions. The summary function can either operate on a data frame (with argument name data) or on a vector. A simple vector function is easiest to work with as you can return a single number, but is somewhat less flexible. If your summary function operates on a data frame it should return a data frame with variables that the geom can use.

This page describes stat\summary, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Aesthetics

The following aesthetics can be used with stat\summary. Aesthetics are mapped to variables in the data with the aes function: stat summary (aes (x = var))

- x: x position (required)
- y: y position (required)

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

- geom_errorbar: error bars
- geom_pointrange: range indicated by straight line, with point in the middle
- geom_linerange: range indicated by straight line
- geom_crossbar: hollow bar with middle indicated by horizontal line
- stat_smooth: for continuous analog
- http://had.co.nz/ggplot2/stat_summary.html

```
## Not run:
# Basic operation on a small dataset
c <- qplot(cyl, mpg, data=mtcars)
c + stat_summary(fun.data = "mean_cl_boot", colour = "red")

p <- qplot(cyl, mpg, data = mtcars, stat="summary", fun.y = "mean")
p
# Don't use ylim to zoom into a summary plot - this throws the
# data away
p + ylim(15, 30)
# Instead use coord_cartesian
p + coord_cartesian(ylim = c(15, 30))</pre>
```

166 stat_summary

```
# You can supply individual functions to summarise the value at
# each x:
stat_sum_single <- function(fun, geom="point", ...) {</pre>
 stat_summary(fun.y=fun, colour="red", geom=geom, size = 3, ...)
c + stat_sum_single(mean)
c + stat_sum_single(mean, geom="line")
c + stat_sum_single(median)
c + stat_sum_single(sd)
c + stat_summary(fun.y = mean, fun.ymin = min, fun.ymax = max,
  colour = "red")
c + aes(colour = factor(vs)) + stat_summary(fun.y = mean, geom="line")
# Alternatively, you can supply a function that operates on a data.frame.
# A set of useful summary functions is provided from the Hmisc package:
stat_sum_df <- function(fun, geom="crossbar", ...) {</pre>
  stat_summary(fun.data=fun, colour="red", geom=geom, width=0.2, ...)
c + stat_sum_df("mean_cl_boot")
c + stat_sum_df("mean_sdl")
c + stat_sum_df("mean_sdl", mult=1)
c + stat_sum_df("median_hilow")
# There are lots of different geoms you can use to display the summaries
c + stat_sum_df("mean_cl_normal")
c + stat_sum_df("mean_cl_normal", geom = "errorbar")
c + stat_sum_df("mean_cl_normal", geom = "pointrange")
c + stat_sum_df("mean_cl_normal", geom = "smooth")
# Summaries are much more useful with a bigger data set:
m <- ggplot(movies, aes(x=round(rating), y=votes)) + geom_point()</pre>
m2 <- m +
   stat_summary(fun.data = "mean_cl_boot", geom = "crossbar",
     colour = "red", width = 0.3)
# Notice how the overplotting skews off visual perception of the mean
# supplementing the raw data with summary statisitcs is _very_ important
# Next, we'll look at votes on a log scale.
# Transforming the scale performs the transforming before the statistic.
# This means we're calculating the summary on the logged data
m2 + scale_y_log10()
# Transforming the coordinate system performs the transforming after the
# statistic. This means we're calculating the summary on the raw data,
```

stat_unique 167

Description

Remove duplicates

Usage

```
stat_unique(mapping = NULL, data = NULL, geom = "point", position = "identity",
...)
```

Arguments

```
mapping mapping between variables and aesthetics generated by aes data dataset used in this layer, if not specified uses plot dataset geom geometric used by this layer position adjustment used by this layer ignored
```

Details

This page describes stat\unique, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

• http://had.co.nz/ggplot2/stat_unique.html

```
## Not run:
ggplot(mtcars, aes(x=vs, y=am)) + geom_point(colour="#00000010")
ggplot(mtcars, aes(x=vs, y=am)) + geom_point(colour="#00000010", stat="unique")
## End(Not run)
```

stat_vline

Description

Add a vertical line

Usage

```
stat_vline(mapping = NULL, data = NULL, geom = "vline", position = "identity",
    intercept, ...)
```

Arguments

mapping mapping between variables and aesthetics generated by aes data dataset used in this layer, if not specified uses plot dataset geom geometric used by this layer position position adjustment used by this layer intercept NULL ignored

Details

This page describes stat\vline, see layer and qplot for how to create a complete plot from individual components.

Value

```
Alayer
```

Author(s)

```
Hadley Wickham, http://had.co.nz/
```

See Also

```
• http://had.co.nz/ggplot2/stat_vline.html
```

```
## Not run:
# See geom_vline for examples
## End(Not run)
```

theme_blank 169

theme_blank

Theme element: blank

Description

This theme element draws nothing, and assigns no space

Usage

```
theme_blank()
```

Author(s)

Hadley Wickham <h.wickham@gmail.com>

theme_bw

Black and white theme

Description

Produce a theme with white background and black gridlines

Usage

```
theme_bw(base_size = 12, base_family = "")
```

Arguments

```
base_size base font size
base_family base font family
```

Author(s)

Hadley Wickham <h.wickham@gmail.com>

theme_line

theme_grey

Grey theme

Description

Produce a theme with grey background and white gridlines

Usage

```
theme_grey(base_size = 12, base_family = "")
```

Arguments

```
base_size base font size
base_family base font family
```

Author(s)

Hadley Wickham <h.wickham@gmail.com>

theme_line

Theme element: line

Description

This element draws a line between two (or more) points

Usage

```
theme_line(colour = "black", size = 0.5, linetype = 1)
```

Arguments

```
colour line color size line size line type
```

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

```
polylineGrob for underlying grid function, link{theme_segment}
```

theme_rect 171

theme_rect

Theme element: rectangle

Description

This element draws a rectangular box

Usage

```
theme_rect(fill = NA, colour = "black", size = 0.5, linetype = 1)
```

Arguments

fill fill colour
colour border color
size border size
linetype border linetype

Details

This is most often used for backgrounds and borders

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

rectGrob for underlying grid function

theme_segment

Theme element: segments

Description

This element draws segments between a set of points

Usage

```
theme_segment(colour = "black", size = 0.5, linetype = 1)
```

Arguments

colour line color size line size line type

theme_text

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

```
segmentsGrob for underlying grid function, link{theme_line}
```

theme_text

Theme element: text

Description

This element adds text

Usage

```
theme_text(family = "", face = "plain", colour = "black", size = 10, hjust = 0.5, v
```

Arguments

```
family
                  font family
face
                  font face ("plain", "italic", "bold")
colour
                  text colour
                  text size (in pts)
size
hjust
                  horizontal justification (in [0, 1])
vjust
                  vertical justification (in [0, 1])
angle
                  angle (in [0, 360])
lineheight
                  line height
```

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

textGrob for underlying grid function

theme_update 173

theme_update

Get, set and update themes.

Description

These three functions get, set and update themes.

Usage

```
theme_update(...)
```

Arguments

... named list of theme settings

Details

Use theme_update to modify a small number of elements of the current theme or use theme_set to completely override it.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

```
qplot(mpg, wt, data = mtcars)
old <- theme_set(theme_bw())
qplot(mpg, wt, data = mtcars)
theme_set(old)
qplot(mpg, wt, data = mtcars)

old <- theme_update(panel.background = theme_rect(colour = "pink"))
qplot(mpg, wt, data = mtcars)
theme_set(old)
theme_set(old)
theme_get()

qplot(mpg, wt, data=mtcars, colour=mpg) +
opts(legend.position=c(0.95, 0.95), legend.justification = c(1, 1))
last_plot() +
opts(legend.background = theme_rect(fill = "white", col="white", size =3))</pre>
```

174 update_stat_defaults

```
update_geom_defaults
```

Update geom defaults

Description

Modify geom aesthetic defaults for future plots

Usage

```
update_geom_defaults(geom, new)
```

Arguments

name of geom to modify
new named list of aesthetics

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```
update_geom_defaults("point", list(colour = "darkblue"))
qplot(mpg, wt, data = mtcars)
update_geom_defaults("point", list(colour = "black"))
```

```
update_stat_defaults
```

Update geom defaults

Description

Modify geom aesthetic defaults for future plots

Usage

```
update_stat_defaults(geom, new)
```

Arguments

name of geom to modify
new named list of aesthetics

Author(s)

Hadley Wickham <h.wickham@gmail.com>

US economic time series 175

```
US economic time series
```

US economic time series

Description

This dataset was produced from US economic time series data available from http://research.stlouisfed.org/fred2.

- date. Month of data collection
- psavert, personal savings rate, http://research.stlouisfed.org/fred2/series/ PSAVERT/
- pce, personal consumption expenditures, in billions of dollars, http://research.stlouisfed.org/fred2/series/PCE
- unemploy, number of unemployed in thousands, http://research.stlouisfed.org/fred2/series/UNEMPLOY
- uempmed, median duration of unemployment, in week, http://research.stlouisfed. org/fred2/series/UEMPMED
- pop, total population, in thousands, http://research.stlouisfed.org/fred2/ series/POP

Usage

```
data (economics)
```

Format

A data frame with 478 rows and 6 variables

xlim

Set x limits

Description

Convenience function to set the limits of the x axis.

Usage

```
xlim(...)
```

Arguments

... if numeric, will create a continuos scale, if factor or character, will create a discrete scale

limits

176 ylim

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```
xlim(15, 20)
xlim(20, 15)
xlim(c(10, 20))
xlim("a", "b", "c")
qplot(mpg, wt, data=mtcars) + xlim(15, 20)
```

ylim

Set y limits

Description

Convenience function to set the limits of the y axis.

Usage

```
ylim(...)
```

Arguments

... if numeric, will create a continuos scale, if factor or character, will create a discrete scale limits

Author(s)

Hadley Wickham <h.wickham@gmail.com>

```
ylim(15, 20)
ylim(c(10, 20))
ylim("a", "b", "c")
qplot(mpg, wt, data=mtcars) + ylim(15, 20)
```

Index

*Topic datasets	geom_crossbar,42
Diamond prices, 18	geom_density, 43
Fuel economy, 29	geom_density2d,44
IMDB movies data, 95	geom_errorbar, 46
Mammals sleep, 100	geom_errorbarh,48
Midwest demographics, 102	geom_freqpoly,50
Presidential terms, 111	geom_hex, 51
Seals vector field, 139	geom_histogram,52
US economic time series, 175	geom_hline, 55
*Topic dplot	geom_jitter,57
theme_blank, 169	geom_line, 59
theme_bw, 169	geom_linerange, 61
theme_grey, 170	geom_path, 63
theme_line, 170	geom_point, 66
theme_rect, 171	geom_pointrange, 68
theme_segment, 171	geom_polygon, 70
theme_text, 172	geom_quantile,72
*Topic file	geom_rect, 73
ggsave, 93	geom_ribbon,75
*Topic hplot	geom_rug,76
aes, 5	geom_segment, 78
borders, 6	geom_smooth, 80
coord_cartesian,8	geom_step,81
coord_fixed,9	geom_text,83
coord_flip, 10	$geom_tile, 85$
coord_map, 11	geom_vline, 87
coord_polar, 13	ggfluctuation, 89
coord_trans, 15	ggmissing, 90
$expand_limits, 20$	ggorder, 91
facet_grid, 21	ggpcp, 91
facet_wrap, 23	ggplot, 92
fortify.map,27	ggplot.data.frame, 93
geom_abline,29	ggstructure, 95
geom_area,31	label_both, 96
geom_bar,33	label_bquote,97
geom_bin2d,35	label_parsed,98
geom_blank,37	label_value,98
geom_boxplot, 38	last_plot, 100
geom_contour,40	map_data, 101

Nodoc, 103	cut_interval, 16
plotmatrix, 105	cut_number, 17
position_dodge, 105	expand_range, 20
position_fill, 106	rescale, 113
position_identity, 108	[.uneval (aes), 5
position_jitter, 109	
position_stack, 110	aes,5
aplot, 111	aes_string, 6
scale_alpha_continuous, 114	as.character.uneval(aes),5
scale_brewer, 115	
scale_continuous, 116	borders, 6
scale_date, 118	bquote, 97
scale_datetime, 120	colorRamp, 124, 126, 128
scale_discrete, 122	comma, 7
scale_gradient, 124	cooks.distance, 26
scale_gradient2, 125	Coord (<i>Nodoc</i>), 103
scale_gradientn, 127	coord_cartesian, 8
scale_grey, 129	coord_equal (coord_fixed), 9
scale_hue, 130	coord_fixed, 9
scale_identity, 131	coord_flip, 10
scale_linetype_discrete, 133	coord_map, 11
scale_manual, 134	coord_polar, 13
scale_shape_discrete, 135	coord_trans, 15
scale_size_continuous, 137	CoordCartesian (coord_cartesian),
stat_abline, 139	8
stat_bin, 140	CoordFixed(coord_fixed),9
stat_bin2d, 142	CoordFlip (coord_flip), 10
stat_binhex, 143	CoordMap(coord_map), 11
stat_boxplot, 145	CoordPolar(coord_polar), 13
stat_contour, 146	CoordTrans (coord_trans), 15
stat_density, 148	create_accessors(Nodoc), 103
stat_density2d, 150	cut, <i>17</i>
stat_function, 152	cut_interval, 16 , 18
stat_hline, 154	cut_number, 17, 17
stat_identity, 155	
stat_qq, 156	density, 148, 149
stat_quantile, 157	Diamond prices, 18
stat_smooth, 159	diamonds (Diamond prices), 18
stat_spoke, 161	dist_central_angle, 19
stat_sum, 163	dollar, 19
stat_summary, 164	economics(US economic time
stat_unique, 167	series), 175
stat_vline, 168	expand_limits, 20
update_geom_defaults, 174	expand_range, 20
update_stat_defaults, 174	enpana_range, 20
xlim, 175	Facet (Nodoc), 103
ylim, 176	facet_grid, 21
*Topic manip	facet_wrap, 23

FacetGrid(facet_grid), 21	geom_path, 60, 63, 71, 79
FacetWrap(facet_wrap), 23	geom_point, 58, 65
format, 7, 19	geom_pointrange, 43, 47, 62, 68, 165
fortify, 25	geom_polygon, 6, 32, 64, 70, 73, 76
fortify.Line	<pre>geom_quantile, 72</pre>
(fortify.SpatialPolygonsDataFro	agebm_rect,73
28	geom_ribbon, 60, 71, 75
fortify.Lines	geom_rug,76
(fortify. Spatial Polygons Data From Spatial Polygons Data Polygons Da	agebm_segment, 30, 57, 60, 64, 73, 78, 88
28	geom_smooth, 43, 47, 62, 69, 80
fortify.lm, 25 , 26	geom_step, 81
fortify.map, 27	geom_text, 83
fortify.Polygon	geom_tile, 85
(fortify.SpatialPolygonsDataFro	ayeom_vline, 30, 57, 87
28	GeomAbline(geom_abline), 29
fortify.Polygons	GeomArea(geom_area), 31
(fortify.SpatialPolygonsDataFro	ageom_bar),33
28	GeomBin2d(geom_bin2d), 35
fortify.SpatialLinesDataFrame	GeomBlank (geom_blank), 37
(fortify.SpatialPolygonsDataFr	ame omBoxplot (geom_boxplot), 38
20	GeomContour(geom_contour),40
fortify.SpatialPolygons	GeomCrossbar(geom_crossbar),42
(fortify.SpatialPolygonsDataFra	ame) GeomDensity(geom_density),43
20	GeomDensity2d(geom_density2d),44
fortify.SpatialPolygonsDataFrame,	GeomErrorbar(geom_errorbar),46
28	GeomErrorbarh (geom_errorbarh), 48
Fuel economy, 29	GeomFreqpoly(geom_freqpoly),50
Geom (Nodoc), 103	GeomHex(geom_hex), 51
geom_abline, 29, 57, 88	GeomHistogram (geom_histogram), 52
geom_area, 31	GeomHline(geom_hline),55
geom_bar, 32, 33, 76, 90	GeomJitter(geom_jitter),57
geom_bin2d, 35	GeomLine (geom_line), 59
geom_blank, 20, 37	GeomLinerange (geom_linerange), 61
geom_boxplot, 38, 58	GeomPath (geom_path), 63
geom_contour, 40, 46	GeomPoint (geom_point), 66
geom_crossbar, 42, 47, 62, 69, 165	GeomPointrange (geom_pointrange),
geom density, 43	68
geom_density2d, 41, 44	GeomPolygon (geom_polygon), 70
geom_errorbar, 43, 46, 49, 62, 69, 165	GeomQuantile(geom_quantile),72
geom_errorbarh, 48	GeomRect (geom_rect), 73
geom_freqpoly, 50	GeomRibbon (geom_ribbon), 75
geom_hex, 51	GeomRug(geom_rug),76
geom_histogram, 44, 50, 52	GeomSegment (geom_segment), 78
geom_hline, 30, 55, 88	GeomSmooth (geom_smooth), 80
geom_jitter, 39, 57, 67	GeomStep (geom_step), 81
geom_line, 59, 64, 73, 79	GeomText (geom_text), 83
geom_linerange, 32, 43, 47, 61, 69, 76,	GeomTile (geom_tile), 85
165	GeomVline (geom_vline), 87

ggfluctuation, 89, 163	percent, 104
ggmissing, 90	plist (Nodoc), 103
ggopt (theme_update), 173	plot, 112
ggorder, 90, 91	plot_clone (Nodoc), 103
ggpcp, 91	plotmath, 97, 98
ggplot, 92	plotmatrix, 105
ggplot.data.frame,93	polylineGrob, 170
ggsave, 93, 100	Position (Nodoc), 103
ggstructure, 90, 95	position_dodge, 34, 53, 105
glm, 160	position_fill, 106
	position_identity, 108
IMDB movies data,95	position_jitter, 58, 109
	position_stack, 34, 53, 110
label_both, 96	PositionDodge (position_dodge),
label_bquote,97	105
label_parsed, 98	PositionFill (position_fill), 106
label_value,98	PositionIdentity
labs, 99	(position_identity), 108
last_plot, 100	PositionJitter(position_jitter),
Layer (Nodoc), 103	109
layer, 8-15, 21, 22, 24, 30, 32, 33, 36-38,	PositionStack(position_stack),
41–46, 48, 50, 51, 53, 56, 58, 59,	110
61–63, 66, 69, 70, 72–75, 77, 78, 80,	PowerTrans (Nodoc), 103
82, 83, 85, 88, 106–110, 114–117,	pprint (Nodoc), 103
119, 121, 123, 124, 126, 128–137,	presidential(Presidential
139–142, 144–146, 148, 151,	terms), 111
153–156, 158–160, 162, 163, 165,	Presidential terms, 111
167, 168	print.proto(Nodoc), 103
layer (Nodoc), 103	print.uneval(aes),5
lm, 160	ProbabilityTrans(Nodoc), 103
loess, <i>160</i>	1
Mammals sleep, 100	qplot, 8, 9, 11-13, 15, 21, 24, 30, 32, 33,
map, 6	36–38, 41–43, 45, 46, 48, 50, 51, 53,
map_data, 101	56, 58, 59, 61, 63, 66, 69, 70, 72, 73,
mean_se, 102	75, 77, 78, 80, 82, 83, 85, 88,
$mean_{_}$ se, 102 $melt$, 91	106–110, 111, 114, 115, 117, 119,
midwest (Midwest demographics),	121, 123, 124, 126, 128–130, 132–134, 136, 137, 139, 140, 142,
102	132–134, 136, 137, 139, 140, 142, 144–146, 148, 151, 153–156, 158,
Midwest demographics, 102	159, 162, 163, 165, 167, 168
movies (IMDB movies data), 95	quickplot (qplot), 111
mpg(Fuel economy), 29	quickpiot (<i>qpiot)</i> , III
msleep (Mammals sleep), 100	rectGrob, 171
	rescale, 113
Nodoc, 103	rescaler, 91, 95
ont a 104	Scale (Nodoc), 103
opts, 104	scale_alpha
package-ggplot	(scale_alpha_continuous),
(ggplot.data.frame), 93	114

scale_alpha_continuous, 114	scale_discrete, 114, 117, 119, 121, 122
scale_alpha_identity	<pre>scale_fill_brewer(scale_brewer),</pre>
(scale_identity), 131	115
scale_area	scale_fill_continuous
(scale_size_continuous),	(scale_gradient), 124
137	scale_fill_discrete(scale_hue),
scale_brewer, 115	130
scale_color_brewer	scale_fill_gradient
(scale_brewer), 115	(scale_gradient), 124
scale_color_continuous	scale_fill_gradient2
(scale_gradient), 124	(scale_gradient2), 125
scale_color_discrete (scale_hue),	scale_fill_gradientn
130	(scale_gradientn), 127
scale_color_gradient	scale_fill_grey(scale_grey), 129
(scale_gradient), 124	scale_fill_hue(scale_hue), 130
scale_color_gradient2	scale_fill_identity
(scale_gradient2), 125	(scale_identity), 131
scale_color_gradientn	scale_fill_manual(scale_manual),
(scale_gradientn), 127	134
scale_color_grey(scale_grey), 129	scale_gradient, 124, 126, 128
scale_color_hue(scale_hue), 130	scale_gradient2, 124, 125
scale_color_identity	scale_gradientn, 127
(scale_identity), 131	scale_grey, 129
scale_color_manual	scale_hue, 130
(scale_manual), 134	scale_identity, 131
scale_colour(Nodoc), 103	scale_linetype
scale_colour_brewer	(scale_linetype_discrete),
(scale_brewer), 115	133
scale_colour_continuous	scale_linetype_discrete, 133
(scale_gradient), 124	scale_linetype_identity
scale_colour_discrete	(scale_identity), 131
(scale_hue), 130	scale_linetype_manual
scale_colour_gradient	(scale_manual), 134
(scale_gradient), 124	scale_manual, 134, 138
scale_colour_gradient2	scale_shape
(scale_gradient2), 125	(scale_shape_discrete), 135
scale_colour_gradientn	scale_shape_discrete, 135
(scale_gradientn), 127	scale_shape_identity
scale_colour_grey(scale_grey),	(scale_identity), 131
129	scale_shape_manual
scale_colour_hue(scale_hue), 130	(scale_manual), 134
scale_colour_identity	scale_size, 67
(scale_identity), 131	scale_size
scale_colour_manual	(scale_size_continuous),
(scale_manual), 134	137
scale_continuous, 116	scale_size_continuous, 137
scale_date, 118	scale_size_discrete (Nodoc), 103
scale_datetime, 120	scale_size_identity

(scale_identity), 131	scale_y_sqrt (<i>Nodoc</i>), 103
scale_size_manual(scale_manual),	scale_z_asn(Nodoc), 103
134	scale_z_atanh(Nodoc), 103
scale_x_asn (Nodoc), 103	scale_z_discrete
scale_x_atanh (Nodoc), 103	(scale_discrete), 122
scale_x_continuous	scale_z_exp(Nodoc), 103
(scale_continuous), 116	scale_z_inverse(Nodoc), 103
scale_x_date(scale_date), 118	scale_z_log(Nodoc), 103
scale_x_datetime	scale_z_log10 (Nodoc), 103
(scale_datetime),120	scale_z_log2 (Nodoc), 103
scale_x_discrete	scale_z_logit(Nodoc), 103
(scale_discrete),122	scale_z_pow(Nodoc), 103
scale_x_exp(Nodoc), 103	scale_z_pow10(Nodoc), 103
scale_x_inverse(Nodoc), 103	scale_z_prob(Nodoc), 103
scale_x_log(Nodoc), 103	scale_z_probit (Nodoc), 103
scale_x_log10 (Nodoc), 103	scale_z_reverse (Nodoc), 103
scale_x_log1p(Nodoc), 103	scale_z_sqrt (Nodoc), 103
scale_x_log2 (Nodoc), 103	ScaleAlphaContinuous
scale_x_logit (Nodoc), 103	(scale_alpha_continuous),
scale_x_pow(Nodoc), 103	114
scale_x_pow10 (Nodoc), 103	ScaleArea (Nodoc), 103
scale_x_prob(Nodoc), 103	ScaleAsn (Nodoc), 103
scale_x_probit (Nodoc), 103	ScaleAtanh (Nodoc), 103
scale_x_recip(Nodoc), 103	ScaleBrewer (scale_brewer), 115
scale_x_reverse (Nodoc), 103	ScaleColour (Nodoc), 103
scale_x_sqrt (Nodoc), 103	ScaleColourContinuous (Nodoc), 103
scale_y_asn (Nodoc), 103	ScaleColourDiscrete (Nodoc), 103
scale_y_atanh (Nodoc), 103	ScaleContinuous
scale_y_continuous	(scale_continuous), 116
(scale_continuous), 116	ScaleDate(scale_date), 118
scale_y_date(scale_date), 118	ScaleDatetime(scale_datetime),
scale_y_datetime	120
(scale_datetime),120	ScaleDiscrete(Nodoc), 103
scale_y_discrete	ScaleDiscretePosition
(scale_discrete),122	(scale_discrete), 122
scale_y_exp(Nodoc), 103	ScaleExp(Nodoc), 103
scale_y_inverse(Nodoc), 103	ScaleGradient (scale_gradient),
scale_y_log(Nodoc), 103	124
scale_y_log10 (Nodoc), 103	ScaleGradient2(scale_gradient2)
scale_y_log1p (Nodoc), 103	125
scale_y_log2 (Nodoc), 103	ScaleGradientn(scale_gradientn)
scale_y_logit (Nodoc), 103	127
scale_y_pow(Nodoc), 103	ScaleGrey(scale_grey), 129
scale_y_pow10 (Nodoc), 103	ScaleHue(scale_hue), 130
scale_y_prob(Nodoc), 103	ScaleIdentity(scale_identity),
scale_y_probit (Nodoc), 103	131
scale_y_recip(Nodoc), 103	ScaleInverse (Nodoc), 103
scale v reverse (Nodoc), 103	ScaleLinetypeDiscrete

(scale_linetype_discrete),	StatBin2d(stat_bin2d),142
133	StatBinhex(stat_binhex), 143
ScaleLog (Nodoc), 103	StatBoxplot(stat_boxplot), 145
ScaleLog10 (Nodoc), 103	StatContour(stat_contour), 146
ScaleLog1p (Nodoc), 103	StatDensity(stat_density),148
ScaleLog2 (Nodoc), 103	StatDensity2d(stat_density2d),
ScaleLogit (Nodoc), 103	150
ScaleManual (scale_manual), 134	StatFunction(stat_function), 152
ScalePow (Nodoc), 103	StatHline(stat_hline), 154
ScalePow10 (Nodoc), 103	StatIdentity(stat_identity), 155
ScaleProb (Nodoc), 103	StatQq $(stat_qq)$, 156
ScaleProbit (Nodoc), 103	StatQuantile(stat_quantile), 157
ScaleRecip (Nodoc), 103	StatSmooth(stat_smooth), 159
ScaleReverse (Nodoc), 103	StatSpoke(stat_spoke), 161
Scales (Nodoc), 103	StatSum(stat_sum), 163
ScaleShapeDiscrete	StatSummary(stat_summary),164
(scale_shape_discrete), 135	StatUnique(stat_unique), 167
ScaleSizeContinuous	StatVline(stat_vline),168
(scale_size_continuous),	str.uneval(aes),5
137	
ScaleSizeDiscrete (Nodoc), 103	textGrob, 172
ScaleSqrt (Nodoc), 103	theme settings to override
scientific, 138	(theme_update), 173
seals (Seals vector field), 139	theme_blank, 169
Seals vector field, 139	theme_bw, 169
segmentsGrob, 172	theme_get(theme_update), 173
Stat (Nodoc), 103	theme_gray(theme_grey),170
stat_abline, 139	theme_grey, 170
stat_bin, 34, 53, 140, 149	theme_line, 170
stat_bin2d, 142, 144	theme_rect, 171
	theme_segment, 171
stat_binhex, 143, 143	theme_set(theme_update),173
stat_boxplot, 145	theme_text, 172
stat_contour, 146	theme_update, 173
stat_density, 148	TopLevel (Nodoc), 103
stat_density2d, 150	Trans (Nodoc), 103
stat_function, 152	TransAsn (Nodoc), 103
stat_hline, 154	TransAtanh (Nodoc), 103
stat_identity, 155	TransDate (Nodoc), 103
stat_qq, 156	TransDatetime (Nodoc), 103
stat_quantile, 39, 157	TransExp (Nodoc), 103
stat_smooth, 30, 159, 165	TransIdentity(Nodoc), 103
stat_spoke, 161	TransInverse (Nodoc), 103
stat_sum, 46, 163	TransLog (Nodoc), 103
stat_summary, 43, 47, 62, 69, 102, 164	TransLog10 (Nodoc), 103
stat_unique, 167	TransLog1p (Nodoc), 103
stat_vline, 168	TransLog2 (Nodoc), 103
StatAbline(stat_abline), 139	TransLogit (Nodoc), 103
StatBin(stat_bin), 140	TransPow10 (Nodoc), 103

```
TransProbit (Nodoc), 103
TransReverse (Nodoc), 103
TransSqrt (Nodoc), 103

update_geom_defaults, 174
update_stat_defaults, 174
US economic time series, 175
xlab(labs), 99
xlim, 175

ylab(labs), 99
ylim, 176
```