Amendments to the Claims

Claim 1 (original) A compound of Formula I:

where:

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_7 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^4R^5 , biphenyl optionally

substituted with halo, hydrogen,

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

R3 is:

i) a piperidin-2-yl moiety of formula:

ii) a tetrahydropyridin-2-yl moiety of formula:

Serial No. 10/599,125

iii) a piperazin-2-yl moiety of formula:

- iv) homopiperidin-2-yl;
- 1,2,3,4-tetrahydroisoquinolin-3-yl optionally substituted with one or two substituents selected from halo, C₁-C₆ alkyl, and C₁-C₆ alkoxy;
- vi) 2-azabicyclo[2.2.2]oct-(5Z)ene-3-vl;
- vii) 2-azabicyclo[2.2.1]hept-3-yl optionally substituted with C₁-C₁₀ alkyl optionally substituted with C₁-C₄ alkoxy; or
- viii) 2-azabicyclo[2,2.2]oct-3-yl optionally substituted with oxo, or optionally substituted with one or two substituents independently selected from hydroxy, fluoro, and Ci-Ca alkvl;

X is CH, N, or N+O:

Y is CR11, N, or N+-O:

O is CR12, N, or N+O:

R4 is hydrogen, C1-C6 alkyl optionally substituted up to three times with fluoro, or phenyl;

R⁵ is hydrogen, C₁-C₆ alkyl optionally substituted up to three times with fluoro, phenyl, -C(O)(C₁-C₆ alkyl optionally substituted up to three times with fluoro), or

-SO₂(C₁-C₆ alkyl optionally substituted up to three times with fluoro);

 R^6 and R^7 are independently selected from the group consisting of methyl, ethyl, and propyl;

R8 is hydrogen or C1-C6 alkvl;

R9 is C3-C5 cycloalkyl, sec-butyl, or -CH2R13;

 $R^{10} \ is - CF_2R^{14}, -OR^{15}, -CH_2C(O)CH_3, -S(O)_{1:2}R^{16}, -NR^{17}SO_2R^{18}, (C_1-C_3 \ alkoxy)-carbonyl, phenyl optionally substituted with halo, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with <math>C_1$ - $C_3 \ alkyl$;

```
R<sup>11</sup> is hydrogen, chloro, isobutyl, CH<sub>2</sub>R<sup>19</sup>; CF<sub>2</sub>R<sup>20</sup>, 1,1,1-trifluoro-2-hydroxyeth-2-yl, C<sub>2</sub>-
C<sub>4</sub> alkenyl optionally substituted with one or two fluorine atoms, OR<sup>21</sup>, C(O)R<sup>22</sup>.
N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N.N-
dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from
the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl,
1.3-dithiolan-2-vl, 1.3-oxathiolan-2-vl, 1.3-dioxan-2-vl, 1.3-dithian-2-vl, pyridinyl, thiazolyl,
oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;
         R<sup>12</sup> is hydrogen or fluoro:
         R13 is ethynyl or cyclopropyl:
         R14 is hydrogen or methyl:
         R15 is difluoromethyl or methanesulfonyl:
         R16 is C1-C4 alkyl, C3-C6 cycloalkyl, phenyl, or -NR25R26;
         R<sup>17</sup> is hydrogen, C<sub>1</sub>-C<sub>3</sub> alkyl optionally substituted with up to 3 fluorine atoms, or C<sub>3</sub>-C<sub>6</sub>
cycloalkyl:
         R18 is C1-C3 alkyl or C3-C6 cycloalkyl:
         R<sup>19</sup> is fluoro, hydroxy, or C<sub>1</sub>-C<sub>3</sub> alkoxy;
         R<sup>20</sup> is hydrogen, phenyl, or furyl;
         R21 is C1-C3 alkyl optionally substituted with one or two fluorine atoms;
         R<sup>22</sup> is C<sub>1</sub>-C<sub>3</sub> alkyl, C<sub>3</sub>-C<sub>5</sub> cycloalkyl, C<sub>2</sub>-C<sub>3</sub> alkenyl, C<sub>1</sub>-C<sub>3</sub> alkoxy, NR<sup>23</sup>R<sup>24</sup>, pyrrolidin-1-
vl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-vl, phenyl,
pyridinyl, or furyl;
         R<sup>23</sup> is hydrogen or methyl:
         R<sup>24</sup> is methyl, ethyl, or propyl;
         R<sup>25</sup> is hydrogen or methyl;
         R26 is methyl; or
         R25 and R26 taken together with the nitrogen atom to which they are attached form a
pyrrolidine or piperidine ring;
         R<sup>29</sup> is hydrogen or C<sub>1</sub>-C<sub>6</sub> alkyl;
         R<sup>30</sup> is hydrogen or C<sub>1</sub>-C<sub>6</sub> alkyl;
         R29 and R30 taken together with the carbon to which they are attached form a C3-C6
cycloalkyl ring;
         R31 is hydrogen, C1-C6 alkyl, C3-C6 cycloalkyl, or phenyl optionally monosubstituted with
C<sub>1</sub>-C<sub>6</sub> alkyl;
```

R³² is hydrogen, R³³, or -(CH₂)_{0.2}-OR³³:

 R^{33} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, or -(CH-) $a_{3.7}$ R 44 :

R³⁴ is C₃-C₇ cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, thienyl optionally substituted with halo, benzothienyl optionally substituted with halo, thiazolyl optionally substituted with C₁-C₄ alkyl, or adamantyl;

 R^{35} is -(CH₂)₀₋₆- R^{34} ,-C(O)-(CH₂)₀₋₆- R^{34} , -C(O)-(C₁-C₁₀ alkyl), -C(O)-(C₁-C₄ alkoxy optionally substituted with phenyl), C₁-C₁₀ alkyl optionally substituted with 1-6 fluorine atoms, C₂-C₁₀ alkenyl, or C₂-C₁₀ alkvnyl:

 R^{36} and R^{37} are both hydrogen or, taken together with the carbon atom to which they are attached form a carbonyl group; or a pharmaceutically acceptable salt thereof; provided that: a) no more than one of X, Y, and Q may be N or N^{1} -O; and b) when X is CH, Y is CR^{11} , and Q is CR^{12} , then one of R^{11} and R^{12} is other than hydrogen.

Claims 2-5 (canceled)

Claim 6 (original): A pharmaceutical formulation comprising a compound of Claim 1, in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

Claim 7 (original): A compound of Formula III:

where:

 $R^1 \ is \ (C_3-C_7 \ cycloalkyl)_{0-l}(C_1-C_6 \ alkynl), \ (C_3-C_7 \ cycloalkyl)_{0-l}(C_2-C_6 \ alkenyl), \ (C_3-C_7 \ cycloalkyl)_{0-l}(C_2-C_6 \ alkenyl), \ (C_3-C_7 \ cycloalkyl), \ each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl,$

trifluoromethoxy, C1-C7 alkoxy, C3-C7 cycloalkoxy, oxo, and NR4R5, biphenyl optionally

$$\mathbb{R}^{7}$$
 \mathbb{N} \mathbb{R}^{8} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N}

substituted with halo, hydrogen,

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

R3' is:

ix) a piperidin-2-vl moiety of formula:

x) a tetrahydropyridin-2-yl moiety of formula:

xi) a piperazin-2-yl moiety of formula:

xii) homopiperidin-2-yl substituted in the 1-position with variable R²⁸;

- xiii) 1,2,3,4-tetrahydroisoquinolin-3-yl substituted in the 1-position with variable R²⁸ and optionally further substituted with one or two substituents selected from halo, C₁-C₆ alkyl, and C₁-C₆ alkoxy;
- xiv) 2-azabicyclo[2.2.2]oct-(5Z)ene-3-yl substituted in the 2-position with variable R²⁸:
- xv) 2-azabicyclo[2,2.1]hept-3-yl substituted in the 2-position with variable R²⁸ and optionally further substituted with C_I-C_{I0} alkyl optionally substituted with C_I-C₄ alkoxy; or
- xvi) 2-azabicyclo[2.2.2]oct-3-yl substituted in the 2-position with variable R²⁸ and optionally further substituted with oxo, or optionally further substituted with one or two substituents independently selected from hydroxy, fluoro, and C₁-C₆ alkyl:

```
X is CH, N, or N<sup>+</sup>-O;
```

Y is CR11, N. or N+-O:

Q is CR¹², N, or N⁺-O⁻;

R⁴ is hydrogen, C₁-C₆ alkyl optionally substituted up to three times with fluoro, or phenyl;

R⁵ is hydrogen, C₁-C₆ alkyl optionally substituted up to three times with fluoro, phenyl, C(O)(C₁-C₆ alkyl optionally substituted up to three times with fluoro), or

-SO₂(C₁-C₆ alkyl optionally substituted up to three times with fluoro);

 $\mbox{\sc R}^6$ and $\mbox{\sc R}^7$ are independently selected from the group consisting of methyl, ethyl, and propyl;

R8 is hydrogen or C1-C6 alkyl;

R9 is C3-C5 cycloalkyl, sec-butyl, or -CH2R13;

 $R^{10} is - CF_2R^{14}, -OR^{15}, -CH_2C(O)CH_3, -S(O)_{1:2}R^{16}, -NR^{17}SO_2R^{18}, (C_1-C_3 alkoxy)-carbonyl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with <math>C_1$ - C_3 alkyl;

R¹¹ is hydrogen, chloro, isobutyl, CH₂R¹⁹; CF₂R²⁰, 1,1,1-trifluoro-2-hydroxyeth-2-yl, C₂-C₄ alkenyl optionally substituted with one or two fluorine atoms, OR²¹, C(O)R²², N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl, oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;

alkynyl, or -(CH2)6 2-R34:

```
R12 is hydrogen or fluoro:
          R13 is ethynyl or cyclopropyl:
          R14 is hydrogen or methyl:
          R15 is difluoromethyl or methanesulfonyl:
          R<sup>16</sup> is C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, phenyl. or -NR<sup>25</sup>R<sup>26</sup>:
          R<sup>17</sup> is hydrogen, C<sub>1</sub>-C<sub>2</sub> alkyl optionally substituted with up to 3 fluorine atoms, or C<sub>3</sub>-C<sub>6</sub>
cycloalkyl:
          R18 is C1-C3 alkyl or C3-C6 cycloalkyl:
          R<sup>19</sup> is fluoro, hydroxy, or C<sub>1</sub>-C<sub>3</sub> alkoxy;
          R<sup>20</sup> is hydrogen, phenyl, or furyl;
          R<sup>21</sup> is C<sub>1</sub>-C<sub>3</sub> alkyl optionally substituted with one or two fluorine atoms:
          R<sup>22</sup> is C<sub>1</sub>-C<sub>3</sub> alkyl, C<sub>3</sub>-C<sub>5</sub> cycloalkyl, C<sub>2</sub>-C<sub>3</sub> alkenyl, C<sub>1</sub>-C<sub>3</sub> alkoxy, NR<sup>23</sup>R<sup>24</sup>, pyrrolidin-1-
vl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-vl, phenyl,
pyridinyl, or furyl;
          R23 is hydrogen or methyl:
          R<sup>24</sup> is methyl, ethyl, or propyl;
          R25 is hydrogen or methyl:
          R26 is methyl: or
          R<sup>25</sup> and R<sup>26</sup> taken together with the nitrogen atom to which they are attached form a
pyrrolidine or piperidine ring;
          R<sup>27</sup> is hydrogen or a nitrogen protecting group;
          R<sup>28</sup> is hydrogen or a nitrogen protecting group;
          R29 is hydrogen or C1-C6 alkyl;
          R<sup>30</sup> is hydrogen or C<sub>1</sub>-C<sub>4</sub> alkyl:
          R29 and R30 taken together with the nitrogen to which they are attached form a C3-C6
cycloalkyl ring;
          R<sup>31</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, or phenyl optionally monosubstituted with
C1-C6 alkyl:
          R<sup>32</sup> is hydrogen, R<sup>33</sup>, or -(CH<sub>2</sub>)<sub>0-2</sub>-OR<sup>33</sup>;
          R33 is C1-C10 alkyl optionally substituted with 1-6 fluorine atoms, C2-C6 alkenyl, C2-C6
```

 R^{34} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy,

trifluoromethyl, and trifluoromethoxy, thienyl optionally substituted with halo, benzothienyl optionally substituted with halo, thiazolyl optionally substituted with C₁-C₄ alkyl, or adamantyl:

 $R^{35} is -(CH_{2})_{0-6} - R^{34}, -C(O) - (CH_{2})_{0-6} - R^{34}, -C(O) - (C_{1} - C_{10} \text{ alkyl}), -C(O) - (C_{1} - C_{4} \text{ alkoxy})$ optionally substituted with phenyl), C_{1} - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, C_{2} - C_{10} alkenyl, or C_{2} - C_{10} alkynyl;

 R^{36} and R^{37} are both hydrogen or, taken together with the carbon atom to which they are attached form a carbonyl group;

 R^{38} is hydrogen or an oxygen protecting group; or an acid addition salt thereof provided that: a) no more than one of X, Y, and Q may be N or N^{1} -O; b) when X is CH, Y is CR^{11} , and Q is CR^{12} , then one of R^{11} and R^{12} is other than hydrogen; and c) at least one of R^{27} , R^{28} , and R^{38} is other than hydrogen.

Claim 8 (original): A compound of Formula IV:

where:

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_7 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^4R^5 , biphenyl optionally

substituted with halo, hydrogen,

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent

independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_2 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_7 - C_7 cycloalkyl;

R3' is:

ix) a piperidin-2-vl moiety of formula;

x) a tetrahydropyridin-2-vl moiety of formula:

xii) a piperazin-2-yl moiety of formula:

- xii) homopiperidin-2-yl substituted in the 1-position with variable R²⁸;
- 1,2,3,4-tetrahydroisoquinolin-3-yl substituted in the 1-position with variable R²⁸ and optionally further substituted with one or two substituents selected from halo, C₁-C₆ alkyl, and C₁-C₆ alkoxy;
- xiv) 2-azabicyclo[2.2.2]oct-(5Z)ene-3-yl substituted in the 2-position with variable R²⁸;
- 2-azabicyclo[2.2.1]hept-3-yl substituted in the 2-position with variable R²⁸
 and optionally further substituted with C₁-C₁₀ alkyl optionally substituted with C₁-C₄ alkoxy; or
- xvi) 2-azabicyclo[2.2.2]oct-3-yl substituted in the 2-position with variable R²⁸ and optionally further substituted with oxo, or optionally further substituted

```
and C1-C6 alkvl:
         X is CH. N. or N<sup>+</sup>-O<sup>-</sup>:
         Y is CR11. N. or N+-O:
         O is CR12, N. or N+-O-:
         R4 is hydrogen, C1-C6 alkyl optionally substituted up to three times with fluoro, or phenyl:
         R5 is hydrogen, C1-C6 alkyl optionally substituted up to three times with fluoro, phenyl, -
C(O)(C<sub>1</sub>-C<sub>6</sub> alkyl optionally substituted up to three times with fluoro), or
-SO<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl optionally substituted up to three times with fluoro):
         R<sup>6</sup> and R<sup>7</sup> are independently selected from the group consisting of methyl, ethyl, and
propyl:
         R8 is hydrogen or C1-C6 alkyl:
         R9 is C3-C5 cycloalkyl, sec-butyl, or -CH2R13:
         R<sup>10</sup> is -CF<sub>2</sub>R<sup>14</sup>, -OR<sup>15</sup>, -CH<sub>2</sub>C(O)CH<sub>3</sub>, -S(O)<sub>1-2</sub>R<sup>16</sup>, -NR<sup>17</sup>SO<sub>2</sub>R<sup>18</sup>, (C<sub>1</sub>-C<sub>3</sub> alkoxy)-
carbonyl, 1.3-dioxolan-2-vl, 1.3-dioxan-2-vl, 1.1-dioxo-2.3.4.5-tetrahydroisothiazol-2-vl, or
tetrazol-5-vl optionally substituted with C1-C3 alkvl;
         R11 is hydrogen, chloro, isobutyl, CH2R19; CF2R20, 1.1.1-trifluoro-2-hydroxyeth-2-vl, C2-
C4 alkenyl optionally substituted with one or two fluorine atoms, OR21, C(O)R22,
N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N.N-
dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from
the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl,
1.3-dithiolan-2-vl, 1.3-oxathiolan-2-vl, 1.3-dioxan-2-vl, 1.3-dithian-2-vl, pyridinyl, thiazolyl,
oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;
         R<sup>12</sup> is hydrogen or fluoro:
         R13 is ethynyl or cyclopropyl;
         R<sup>14</sup> is hydrogen or methyl:
         R15 is difluoromethyl or methanesulfonyl;
         R<sup>16</sup> is C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, phenyl. or -NR<sup>25</sup>R<sup>26</sup>:
         R<sup>17</sup> is hydrogen, C<sub>1</sub>-C<sub>3</sub> alkyl optionally substituted with up to 3 fluorine atoms, or C<sub>3</sub>-C<sub>6</sub>
cycloalkyl;
         R18 is C1-C2 alkyl or C2-C4 cycloalkyl:
         R<sup>19</sup> is fluoro, hydroxy, or C<sub>1</sub>-C<sub>3</sub> alkoxy;
         R<sup>20</sup> is hydrogen, phenyl, or furyl;
```

with one or two substituents independently selected from hydroxy, fluoro.

R²¹ is C₁-C₃ alkyl optionally substituted with one or two fluorine atoms:

 R^{22} is $C_1\text{-}C_3$ alkyl, $C_3\text{-}C_5$ cycloalkyl, $C_2\text{-}C_3$ alkenyl, $C_1\text{-}C_3$ alkexy, $NR^{23}R^{24}$, pyrrolidin-1-yl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-yl, phenyl, pyridinyl, or furyl;

R²³ is hydrogen or methyl;

R24 is methyl, ethyl, or propyl;

R²⁵ is hydrogen or methyl;

R26 is methyl; or

R²⁵ and R²⁶ taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

R²⁸ is hydrogen or a nitrogen protecting group;

R29 is hydrogen or C1-C6 alkyl;

R30 is hydrogen or C1-C6 alkyl:

 $$R^{29}$$ and $$R^{30}$$ taken together with the nitrogen to which they are attached form a $C_3\text{-}C_6$ cycloalkyl ring;

 $R^{31} \ is \ hydrogen, \ C_1\text{--}C_6 \ alkyl, \ C_3\text{--}C_6 \ cycloalkyl, \ or \ phenyl \ optionally \ monosubstituted \ with \ C_1\text{--}C_6 \ alkyl;$

R³² is hydrogen, R³³, or -(CH₂)₀₋₂-OR³³;

 R^{33} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, C_2 - C_6 alkenyl, C_2 - C_6 alkenyl, or -(CH₂)_{0.3}- R^{34} ;

R³⁴ is C₃-C₇ cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, thienyl optionally substituted with halo, benzothienyl optionally substituted with halo, thiazolyl optionally substituted with C₁-C₄ alkyl, or adamantyl;

 $R^{35} is \ -(CH_2)_{0.6} \cdot R^{34}, -C(O) \cdot (CH_2)_{0.6} \cdot R^{24}, -C(O) \cdot (C_1 - C_{10} \ alkyl), -C(O) \cdot (C_1 - C_4 \ alkoxy)$ optionally substituted with phenyl), $C_1 \cdot C_{10}$ alkyl optionally substituted with 1-6 fluorine atoms, $C_2 \cdot C_{10}$ alkenyl, or $C_2 \cdot C_{10}$ alkynyl;

 R^{36} and R^{37} are both hydrogen or, taken together with the carbon atom to which they are attached form a carbonyl group;

R38 is hydrogen or an oxygen protecting group;

 $R^{30} \ and \ R^{40} \ are \ independently selected from methyl, ethyl, or propyl; or an acid addition salt thereof provided that no more than one of <math>X,Y,$ and Q may be N or N^+ -O'.

Serial No. 10/599,125

Claim 9 (Previously presented): A method for the inhibition of production of A- β peptide comprising administering to a mammal in need of such treatment an effective amount of a compound of Claim 1.

Claim 10 (Cancelled)