PATENT AT9-98-538

WHAT IS CLAIMED IS:

1	1. A method for managing a link stack comprising the steps of:	
2	for a first type instruction:	
3	setting a first data value corresponding to a first address stored in said	
4	link stack in a first portion of an entry in a queue having a plurality of entries; and	
5	for a second type instruction:	
6	setting a current value of a first pointer into said link stack in a first	
7	register; and	
8	setting said current value of said first pointer in a second portion of	
9	said entry in said queue.	
1	2. The method of claim 1 further comprising the steps of:	
2	for said second type instruction, reading from said link stack a second address	
3	stored at a stack entry at said current value of said first pointer; and	
4	storing said second address in a second register.	
1	3. The method of claim 1 wherein said first type instruction is a "push" type	
2	instruction an said second type instruction is a "pop" type instruction.	

- instruction an said second type instruction is a "pop" type instruction.
- The method of claim 1 further comprising the step of, for a first type 4. operation, setting said first data value in a third register. 2

5.

AT9-98-538 PATENT

The method of claim 4 further comprising the step of, for third type

	2	instruction, setting a second data value from said second register in a said first portion
	3	of said entry.
Bring Month Bring Month Carlo	1 2 3	6. The method of claim 1 wherein said steps recited therein are performed in response to a fetch of a corresponding one of said first type instruction and said second type instruction
	1	7. The method of claim 2 further comprising the steps of:
	2	receiving a pointer value in response to a pipeline flush, said pointer value
	3	operable for pointing into said queue; and
	4	setting a current pointer value of said first pointer to a value in said second
	5	portion of an entry pointed to by said pointer value.
	1	8. The method of claim 7 further comprising the steps of:
	2	retrieving a value from said second register; and
	3	comparing said value from said retrieving step with a value from said second
	4	portion of said entry pointed to by said pointer value.
	1	9. The method of claim 8 further comprising the steps of:
	2	in response to a compare in said comparing step, comparing said current value
	3	of said first pointer with a value in said first register; and
	4	in response to a compare of said current value of said first pointer and said
	5	value in said first register, setting said value in said second register in said link stack
	6	at a location pointed to by said current value of said first pointer decremented by one.

AT9-98-538 PATENT

1	10. A method of managing a link stack comprising:
2	for a first type instruction:
3	setting, in a first register, a first data value from a link stack entry
4	pointed to by a current value of a first pointer;
5	setting said current value of said first pointer in a second register; and
6	setting a second data value in said link stack at an entry pointed to by
7	said current value of said first pointer; and
8	for a second type instruction:
9	setting said decremented value of said first pointer into a second
10	portion of an entry in a queue having a plurality of entries.
1	11. The method of claim 10 further comprising the steps of:
2	for said first type operation:
3	setting a first Boolean value in a third register;
4	setting a current value of said second pointer in a fourth register, said
5	second pointer operable for pointing into a queue for tracking instructions; and
6	for said second type operation:
7	decrementing a current value of said first pointer by one;
8	reading from said link stack a first address stored at a stack entry at
9	said decremented current value of said first pointer; and
10	incrementing a current value of a second pointer, said second
11	pointer pointing to an entry point in said queue.

diffine or

2

17.

AT9-98-538 PATENT

1	12.	The method of claim 11 further comprising the steps of, in response to a		
2	comp	completion of an instruction:		
3		comparing a current value of a third pointer and a value in said fourth register,		
4	where	in said fourth pointer is operable for deallocating an entry in said queue.		
1	13.	The method of claim 12 further comprising, in response to a compare in said		
2	comp	aring step, the steps of:		
3		placing a second Boolean value in said fourth register; and		
4		decrementing said fourth pointer.		
1	14.	The method of claim 11 further comprising the steps of:		
2		determining if a value in said fourth register is between a current value of said		
3	secon	nd pointer and a pointer value received in response to a pipeline flush; and		
4		determining if a current value in said third register corresponds to said first		
5	Boole	ean value.		
1	15.	The method of claim 14 further comprising the step of setting a current value		
2	from	said first register in a link stack entry pointed to by a value from said second		
3	regis	ter in response to said determining steps evaluating logically true.		
1	16.	The method of claim 13, wherein said first Boolean value represents logical		
2	true a	and said second Boolean value represents logical false.		

The method of claim 14 further comprising the step of setting a current value

of said second pointer to said pointer value received in response to said pipeline flush.

1

2

3

22.

PATENT AT9-98-538

1	18. A data processing system comprising:
2	a central processing unit (CPU), said CPU including:
3	a link stack; and
4	first logic operable for, for a first type instruction, setting a first data
5	value corresponding to a first address stored in said link stack in a first portion of an
6	entry in a queue having a plurality of entries, and for a second type instruction, setting
7	a current value of a first pointer into said link stack in a first register, and setting said
8	current value of said first pointer in a second portion of said entry in said queue
1	19. The system of claim 18 wherein said CPU further comprises, second logic
2	operable for, for said second type instruction, reading from said link stack a second
3	address stored at a stack entry at said current value of said first pointer, and storing
	said second address in a second register.
1	20. The system of claim 18 wherein said first type instruction is a "push" type
_	instruction an said second type instruction is a "pop" type instruction.
2	monuclion an said second type instruction to a pop 1970 mere instruction
1	21. The system of claim 18 wherein said CPU further comprises, third logic
2	operable for, for a first type operation, setting said first data value in a third register.

register in a said first portion of said entry.

The system of claim 21 wherein said CPU further comprises fourth logic

operable for, for third type instruction, setting a second data value from said second

AT9-98-538 PATENT

23.	The system of claim 18 wherein said first logic sets said first data value, for
said fi	erst type instruction, and sets said current value of said pointer, for said second
type in	astruction in response to a fetch of a corresponding one of said first type
instru	ction and said second type instruction.
24.	The system of claim 19 wherein said CPU further comprises:
	fifth logic operable for receiving a pointer value in response to a pipeline
flush,	said pointer value operable for pointing into said queue; and
	sixth logic operable for setting a current pointer value of said first pointer to a
value	in said second portion of an entry pointed to by said pointer value.
25.	The system of claim 24 wherein said CPU further comprises:
	seventh logic operable for retrieving a value from said second register; and
	eighth logic operable for comparing said value from said retrieving step with a
value	from said second portion of said entry pointed to by said pointer value.
26.	The system of claim 25 wherein said CPU further comprises:
	ninth logic operable for, in response to a compare in said comparing step,
compa	aring said current value of said first pointer with a value in said first register;
and	
	tenth logic operable for, in response to a compare of said current value of said
first p	ointer and said value in said first register, setting said value in said second
registe	er in said link stack at a location pointed to by said current value of said first
pointe	er decremented by one.

AT9-98-538 PATENT

1 27. The system of claim 18 further comprising system memory coupled to said

2 CPU, said system memory operable for storing a program of instructions including

3 instructions of said first type and said second type.

amenda edilihi a ikt

1	28. A data processing system comprising:
2	a central processing unit (CPU), said CPU including:
3	a link stack;
4	a first register;
5	a second register
6	first logic operable for, for a first type instruction, setting, in said first
7	register, a first data value from a link stack entry pointed to by a current value of a
8	first pointer, setting said current value of said first pointer in said second register, and
9	setting a second data value in said link stack at an entry pointed to by said current
10	value of said first pointer; and
11	second logic operable for, for a second type instruction,
12	decrementing a current value of said first pointer, reading from said link stack a first
13	address stored at a stack entry at said decremented current value of said first pointer,
14	setting said decremented value of said first pointer into a second
15	portion of an entry in a queue having a plurality of entries, said queue operable for
16	tracking instructions and incrementing a current value of a second pointer, said
17	second pointer pointing to an entry point in said queue.
1	29. The system of claim 28 wherein said CPU further comprises:
2	a third register;
3	a fourth register;
4	third logic operable for, for said first type operation, setting a first
5	Boolean value in said third register, and setting a current value of a second pointer in
6	said fourth register, said second pointer operable for pointing into said queue; and

wherein said second logic is further operable for, for said second type instruction.

1

35.

AT9-98-538 PATENT

1	30. The system of claim 29 wherein said CPU further comprises:
2	fourth logic operable for, in response to a completion of an instruction,
3	comparing a current value of a third pointer and a value in said fourth register,
4	wherein said fourth pointer is operable for deallocating an entry in said queue.
1	31. The system of claim 30 wherein said CPU further comprises, fifth logic
2	operable for, in response to a compare in said fourth logic, placing a second Boolean
3	value in said fourth register, and decrementing said fourth pointer.
1	32. The system of claim 29 wherein said CPU further comprises:
2	sixth logic operable for determining if a value in said fourth register is
3	between a current value of said second pointer and a pointer value received in
4	response to a pipeline flush; and
5	seventh logic operable for determining if a current value in said third register
6	corresponds to said first Boolean value.
1	33. The system of claim 32 wherein said CPU further comprises eighth logic
2	operable for setting a current value from said first register in a link stack entry pointed
3	to by a value from said second register in response to said sixth and seventh logic
4	outputting a logical true value.
1	34. The system of claim 31 wherein said first Boolean value represents a logical

The system of claim 32 wherein said CPU further comprises ninth logic

true value and said second Boolean value represents a logical false value.

AT9-98-538 PATENT

2 operable for setting a current value of said second pointer to said pointer value

3 received in response to said pipeline flush.

36.

AT9-98-538 PATENT

A method for managing a link stack comprising the steps of:

	2	for a first type instruction:
	3	setting a first address in a first portion of an entry in a queue having a
Ę	4	plurality of entries; and
1	5	setting a current value of a first pointer into said link stack in a second
	6	portion of said entry in said queue; and.
	7	for a second type instruction:
	8	setting a second current value of said first pointer in said second
	9	portion of said entry in said queue.
	1	37. The method of claim 36 further comprising the steps of:
	2	for said second type instruction, reading from said link stack a second address
	3	stored at a stack entry at said second current value of said first pointer.
	1	38. The method of claim 36 wherein said first type instruction is a "push" type
	2	instruction an said second type instruction is a "pop" type instruction.
	1	39. The method of claim 36 wherein said steps recited therein are performed in
	2	response to a fetch of a corresponding one of said first type instruction and said
	3	second type instruction.
	1	40. The method of claim 36, for a third type instruction comprising the steps of:
	2	receiving a pointer value from, said pointer value operable for pointing into
	3	said queue; and
	4	setting a current pointer value of said first pointer to a value in said

- 5 second portion of an entry pointed to by said pointer value.
- 1 41. The method of claim 40 wherein said third type instruction is a "flush" type
- 2 instruction.

1	42.	A data processing system comprising:
2		a central processing unit (CPU), said CPU including:
3		a link stack;
4		a queue having a plurality of entries, said queue operable for tracking
5		instructions; and
6		first logic operable for, for a first type instruction, setting a first
7	addres	ss into a stack entry in said link stack at a current value of a first pointer and
8	setting	g a current value of said first pointer into a first portion of an entry in said
9	queue	•
1	43.	The system of claim 42, wherein said CPU further comprises, second logic
2	opera	ble for, for a second type instruction, setting a second current value of said first
3		er in said second portion of said entry in said queue.
1	44.	The system of claim 43, wherein said second logic, for said second type
2	instru	ction, is further operable to read from said link stack a second address stored at
3		k entry at said second current value of said first pointer.
1	45.	The system of claim 42, wherein said first type instruction is a "push" type
2		ection.
1	46.	The system of claim 43, wherein said second type instruction is a "pop" type
2	instru	action.

2

AT9-98-538 PATENT

1	47. The system of claim 42, wherein said CPU further comprises, third logic
2	operable for, for a third type operation, receiving a pointer value, said pointer value
3	operable for pointing into said queue and setting a current pointer value of said first
4	pointer to a value in said second portion of an entry pointed to by said pointer value.

48. The system of claim 47, wherein said third type instruction is a "flush" type instruction.