Universal Analytic Größner Bases and Tropical Geometry

Tristan Vaccon¹ Thibaut Verron²

International Symposium on Symbolic and Algebraic Computation, 27 July 2023

- 1. Université de Limoges, XLIM, Limoges, France
- 2. Johannes Kepler University, Institute for Algebra, Linz, Austria

TROPICAL VARIETIES

K field with valuation (e.g. $\mathbb{Q}((t))$, \mathbb{Q}_p ...) $I \subseteq K[X]$ ideal

Definition with valuation:

$$trop(I) = clo\{val(\mathbf{x}) : \mathbf{x} \in V(I)\}$$

Newton-Puiseux, Hensel, etc. **Fund. th. of tropical geometry**

$$x = \alpha t^1 + \dots, y = \beta t^1 + \dots$$

$$f(x, y) = \frac{\alpha^2 t^2}{\alpha^2 t^2} + \beta^2 t^4 - t^4 + \dots$$

$$= \alpha^2 t^2 + \dots \neq 0$$

$$init_{(1,1)}(I) = \langle x^2 \rangle$$

(1, 1)

$$x = \alpha t^{2} + \dots, y = \beta t^{2} + \dots$$

$$f(x, y) = \frac{\alpha^{2} t^{4} + \beta^{2} t^{6} - t^{4} + \dots}{(\alpha^{2} - 1) t^{4} + \dots}$$

$$= 0 \implies \alpha^{2} - 1 = 0$$

$$init_{(2,2)}(I) = \langle x^{2} - t^{4} \rangle$$

(2, 1)

$$f = x^2 + t^2 y^2 - t^4 \in \mathbb{Q}((t))[x, y]$$
$$I = \langle f \rangle$$

Definition with initial forms:

System of weights: $\mathbf{w} = (w_0, \dots, w_n) \in \mathbb{R}^n$ \mathbf{w} -valuation: $\operatorname{val}_{\mathbf{w}}(aX_n^{\alpha_1} \cdots X_n^{\alpha_n}) = w_0 \operatorname{val}(a) + w_1 \alpha_1 + \dots + w_n \alpha_n$ $\operatorname{init}_{\mathbf{w}}(f) = \operatorname{sum} \text{ of terms with minimal } \mathbf{w}$ -valuation $\operatorname{init}_{\mathbf{w}}(I) = (\operatorname{init}_{\mathbf{w}}(f) : f \in I)$

 $trop(I) = \{ \mathbf{w} \text{ such that init}_{\mathbf{w}}(I) \text{ does not contain a monomial} \}$

CONNECTION WITH THE GRÖBNER FAN

Gröbner fan:

• Partition of \mathbb{R}^n according to

$$\boldsymbol{a} \sim \boldsymbol{b} \iff \operatorname{init}_{\boldsymbol{a}}(I) = \operatorname{init}_{\boldsymbol{b}}(I)$$

- · Finite union of rational cones
- · Maximal dim. = term orders
- Lower dim. = boundaries = collisions
- · Contains the tropical variety

Tropical variety of / (without valuations)

- 1. Compute a universal GB of I
- 2. Compute its Newton polytope
- 3. Compute the Gröbner fan of I
- 4. For each non-maximal cone C, pick a $\mathbf{w} \in C$ and test if $\text{init}_{\mathbf{w}}(I)$ contains a monomial

In practice: traverse only the necessary parts of the Gröbner fan
[Bogard Jensen Speyer Sturmfels Thomas 2006]

TATE SERIES

Definition: convergent series with coefficients in a valued field or ring $(\mathbb{Q}(t), \mathbb{Q}((t)), \mathbb{Q}_p ...)$

$$K\{\boldsymbol{X};\boldsymbol{r}\} = \left\{ \sum_{\alpha \in \mathbb{N}^n} a_\alpha \boldsymbol{X}^\alpha \text{ with val}(a_\alpha) - \alpha \cdot \boldsymbol{r} \xrightarrow{|\alpha| \to \infty} \infty \right\}$$
$$\boldsymbol{r} = (r_1, \dots, r_n): \text{ convergence radii}$$

- If r = (0, ..., 0), equivalent: $a_{\alpha} \rightarrow 0$
- If $\mathbf{r} \in \mathbb{Z}^n$, equivalent to change of variable $K\{\mathbf{X}; \mathbf{r}\} = K\{(X_i/p^{r_i}); (0)\}$
- $K[X] = K\{X; \infty\}$ (everywhere convergent)

Term ordering:

$$a\mathbf{X}^{\alpha} <_{\mathbf{r}} b\mathbf{X}^{\beta} \iff \begin{cases} \operatorname{val}(a) - \mathbf{r} \cdot \alpha > \operatorname{val}(b) - \mathbf{r} \cdot \beta \\ \operatorname{or they are equal and } \mathbf{X}^{\alpha} < \mathbf{X}^{\beta} \end{cases}$$

- · Every Tate series has a leading term
- · Every Tate series ideal has a finite Gröbner basis
- ullet Different $oldsymbol{r}$ give different leading terms and Gröbner bases

OVERCONVERGENCE

Fact: If $r \le s$, then $K\{X; s\} \subseteq K\{X; r\}$:

$$K\{X; (4,3)\} \subseteq K\{X; (1,2)\}$$

$$K\{\boldsymbol{X};(\infty,\infty)\}=K[\boldsymbol{X}]\subseteq K\{\boldsymbol{X};(1,2)\}$$

OVERCONVERGENCE

Fact: If $r \le s$, then $K\{X; s\} \subseteq K\{X; r\}$:

$$K\{X; (4,3)\} \subseteq K\{X; (1,2)\}$$

 $K\{X; (\infty, \infty)\} = K[X] \subseteq K\{X; (1, 2)\}$

Theorem (Caruso, Vaccon, V. 2022)

Let $r \ge s$, $I \subset K\{X; r\}$ and $I_s = K\{X; s\}I$ (completion of the ideal).

Then I_s admits a Gröbner basis comprised only of elements of $K\{X;r\}$.

In particular, the completion of a polynomial ideal has a polynomial basis.

Key component: Mora's reduction algorithm

Input: $G \subset K\{X; r\}, f \in K\{X; r\}$

Output: $h, u \in K\{X; r\}$, such that:

- uf reduces to h and is irreducible modulo G (in $K\{X; s\}$)
- $LT_s(u) = 1$, or equivalently, u is invertible in $K\{X; s\}$

,

CONVERGENCE RADII AND TROPICAL GEOMETRY

$$f = \underbrace{a_0 \mathbf{X}^{\alpha_0} + a_1 \mathbf{X}^{\alpha_1} + \dots + a_k \mathbf{X}^{\alpha_k}}_{\text{minimal val}(a_i) - \alpha_i \cdot \mathbf{r}} + a_{k+1} \mathbf{X}^{\alpha_{k+1}} + \dots \text{ with val}(a_i) - \alpha_i \cdot \mathbf{r} \xrightarrow{|\alpha_i| \to \infty} \infty$$

CONVERGENCE RADII AND TROPICAL GEOMETRY

$$f = \frac{a_0 \mathbf{X}^{\alpha_0} + a_1 \mathbf{X}^{\alpha_1} + \dots + a_k \mathbf{X}^{\alpha_k}}{a_0 \mathbf{X}^{\alpha_0} + a_1 \mathbf{X}^{\alpha_1} + \dots + a_k \mathbf{X}^{\alpha_k}} + a_{k+1} \mathbf{X}^{\alpha_{k+1}} + \dots \text{ with } \operatorname{val}(a_i) - \alpha_i \cdot \mathbf{r} \xrightarrow{|\alpha_i| \to \infty} \infty$$

$$\text{minimal } \operatorname{val}(a_i) - \alpha_i \cdot \mathbf{r} = \operatorname{init}_{(-1,\mathbf{r})}(f)$$

Theorem (Vaccon, V. 2023)

Let $I \subseteq K[X]$, and $\mathbf{w} \in \mathbb{Q}^{n+1}$ a system of weights.

Let $\mathbf{r} = (-w_1/w_0, ..., -w_n/w_0)$ and $I_{\mathbf{r}} = IK\{\mathbf{X}; \mathbf{r}\}$ the corresponding completion, then

$$\operatorname{init}_{\mathbf{w}}(I) = \operatorname{init}_{\mathbf{w}}(I_r) \cap K[X].$$

This is a local result, which translates globally as:

$$V_{\text{trop}}(I) = \bigcup_{\mathbf{s} \in \mathbb{O}^n} \text{trop}(I_{\mathbf{s}}).$$

Theorem (Vaccon, V. 2023)

Let G be a Gröbner basis of I_r , then

$$\operatorname{init}_{\mathbf{w}}(I_{\mathbf{r}}) = \langle \operatorname{init}_{\mathbf{w}}(g) : g \in G \rangle.$$

Universal analytic Gröbner bases

Theorem (Caruso, Vaccon, V. 2022; Vaccon, V. 2023)

Let $I \subseteq K[X]$ be a homogeneous ideal.

There exists a finite subset $G \subseteq I$ s.t. for all $r \in \mathbb{Q}^n$, G is a Gröbner basis of $I_r = I K\{X; r\}$. Furthermore:

- this is independent of the order used for breaking ties
- · G can be computed

As a consequence, a homogeneous polynomial ideal always has a finite Gröbner fan.

Why homogeneous?

- Key question: how does $init_a(I) = init_b(I)$ relate to $init_a(G) = init_b(G)$?
- Usually, this is answered by taking reduced Gröbner bases
- We can have reduced GB (with the usual algorithm),
 or overconvergent GB (using Mora's algorithm)... but not both in general
- For homogeneous ideals, reduced overconvergent bases exist

Tropical variety with valuation

- I. $I \subseteq K[X]$ homogeneous ideal.
- **O**. the tropical variety of *I*, given as a union of rational cones
- 1. compute a universal analytic Gröbner basis G of I
- 2. get all the maximal dimensional cones in the Gröbner fan
- 3. compute the rest of the cones
- 4. for each non-maximal cone ${\cal C}$
 - 4.1 pick a $\mathbf{w} = (-1, \mathbf{r}) \in C$
 - 4.2 Then $init_{\mathbf{w}}(G)$ is a Gröbner basis of $init_{\mathbf{w}}(I_{\mathbf{r}})$
 - 4.3 test if init_w(I) contains a monomial
 - 4.4 conclude whether $\mathbf{w} \in \text{trop}(I)$ and therefore $\mathcal{C} \subseteq \text{trop}(I)$.

Tropical variety with valuation

- I. $I \subseteq K[X]$ homogeneous ideal.
- **O**. the tropical variety of *I*, given as a union of rational cones
- 1. compute a universal analytic Gröbner basis ${\it G}$ of ${\it I}$
- 2. get all the maximal dimensional cones in the Gröbner fan
- 3. compute the rest of the cones
- 4. for each non-maximal cone $\ensuremath{\mathcal{C}}$
 - 4.1 pick a $\mathbf{w} = (-1, \mathbf{r}) \in C$
 - 4.2 Then $init_{\mathbf{w}}(G)$ is a Gröbner basis of $init_{\mathbf{w}}(I_{\mathbf{r}})$
 - 4.3 test if $init_{\mathbf{w}}(I)$ contains a monomial
 - 4.4 conclude whether $\mathbf{w} \in \text{trop}(I)$ and therefore $C \subseteq \text{trop}(I)$.

Mora's reduction UAGB algo.

Tropical variety with valuation

- I. $I \subseteq K[X]$ homogeneous ideal.
- **O**. the tropical variety of *I*, given as a union of rational cones
- 1. compute a universal analytic Gröbner basis ${\it G}$ of ${\it I}$
- 2. get all the maximal dimensional cones in the Gröbner fan $\,$
- 3. compute the rest of the cones
- 4. for each non-maximal cone $\ensuremath{\mathcal{C}}$
 - 4.1 pick a $\mathbf{w} = (-1, \mathbf{r}) \in C$
 - 4.2 Then $init_{\mathbf{w}}(G)$ is a Gröbner basis of $init_{\mathbf{w}}(I_{\mathbf{r}})$
 - 4.3 test if $init_{\mathbf{w}}(I)$ contains a monomial
 - 4.4 conclude whether $\mathbf{w} \in \text{trop}(I)$ and therefore $\mathcal{C} \subseteq \text{trop}(I)$.

Mora's reduction UAGB algo.

Newton polytope Discrete geometry

Tropical variety with valuation

- I. $I \subseteq K[X]$ homogeneous ideal.
- **O**. the tropical variety of *I*, given as a union of rational cones
- 1. compute a universal analytic Gröbner basis G of I
- 2. get all the maximal dimensional cones in the Gröbner fan
- 3. compute the rest of the cones
- 4. for each non-maximal cone ${\cal C}$

4.1 pick a $w = (-1, r) \in C$

- 4.2 Then $init_{\mathbf{w}}(G)$ is a Gröbner basis of $init_{\mathbf{w}}(I_{\mathbf{r}})$
- 4.3 test if $init_{\mathbf{w}}(I)$ contains a monomial
- 4.4 conclude whether $\mathbf{w} \in \text{trop}(I)$ and therefore $C \subseteq \text{trop}(I)$.

Mora's reduction UAGB algo.

Newton polytope
Discrete geometry

Th. on Tate GB Saturation

Tropical variety with valuation

- I. $I \subseteq K[X]$ homogeneous ideal.
- **O**. the tropical variety of *I*, given as a union of rational cones
- 1. compute a universal analytic Gröbner basis G of I
- 2. get all the maximal dimensional cones in the Gröbner fan
- 3. compute the rest of the cones
- 4. for each non-maximal cone ${\cal C}$

4.1 pick a $w = (-1, r) \in C$

- 4.2 Then $init_{\mathbf{w}}(G)$ is a Gröbner basis of $init_{\mathbf{w}}(I_{\mathbf{r}})$
- 4.3 test if init_w(I) contains a monomial
- 4.4 conclude whether $\mathbf{w} \in \text{trop}(I)$ and therefore $C \subseteq \text{trop}(I)$.

Mora's reduction UAGB algo.

Newton polytope
Discrete geometry

Th. on Tate GB Saturation

- Proof of concept showing that the main algorithmic ingredients are in place: universal Gröbner basis, Gröbner fan, connection to the tropical variety
- · Next task: transposing the advanced traversal techniques used in the classical setting

So far, we have shown that for (poly)disks:

- We can compute overconvergent Gröbner bases
- We can compute a universal analytic Gröbner basis

What about more general convergence conditions?

Questions:

- Local: can we compute overconvergent Gröbner bases?
- Global: Can we compute a universal analytic Gröbner basis?

So far, we have shown that for (poly)disks:

- We can compute overconvergent Gröbner bases
- We can compute a universal analytic Gröbner basis

Example: upper polyhedral domains:

Questions:

- · Local: can we compute overconvergent Gröbner bases?
- Global: Can we compute a universal analytic Gröbner basis?

Th. (Vaccon V. 2023) YES

So far, we have shown that for (poly)disks:

- We can compute overconvergent Gröbner bases
- We can compute a universal analytic Gröbner basis

Example: annuli (with Laurent terms):

Questions:

- Local: can we compute overconvergent Gröbner bases?
- Global: Can we compute a universal analytic Gröbner basis?

So far, we have shown that for (poly)disks:

- We can compute overconvergent Gröbner bases
- · We can compute a universal analytic Gröbner basis

Example: annuli (with Laurent terms):

Questions:

- · Local: can we compute overconvergent Gröbner bases?
- Global: Can we compute a universal analytic Gröbner basis?

Thank you for your attention!