CIS 242 Final Project

Predictive Modelling and Decision Support System for Home Equity Line of Credit (HELOC)

Team Members:

Yi Lu,

Yibo Hu,

Yuanzhuo. Wang

Ziwei Shi

Apr. 2019

Agenda

Project Overview

- 1. Executive Summary
- 2. Data Insight

N. SVC: Decision Function

- 1. SVC Parameters
- 2. Linear Equation
- 3. Output

II. Data Cleaning

- 1. Special Value Cleaning
- 2. Categorial Variable Handling

V. Interactive Interface & Explanation

- 1. Default Risk and Variable Weights
- 2. Demo

III. Scaling & Model Selection

- 1. 5 Scaling Models & 7 Leaning Models
- 2. Model Comparison

VI. Key Features

Project Overview & Data Insight

AIM: Predict the credit risk of HELOC

HELOC Data Set

Special value cleaning Categorical variable handling Feature scaling Cleaned and Standardized Data Set

Interactive Interface by ipywidgets

Default Risk

Supervised Learning Classification Problem

Input: 23 Variables

Output: Good or Bad (Credit Risk Performance)

Extra Output: Default Risk

Outliers: 800/10,000 on Average Each Attribute

Cross Validation 8
Hyperparameter
Tuning

Percentage Transformation Linear SVC Model for Final Prediction

Model Performance Comparison

7 Learning Models

Data Cleaning

1. Drop Empty Rolls

- Drop 588 out of 10,459 rows with special value "-9"
- 323 of dropped applications were bad
- 256 of dropped applications were good

3. Clean the Special Value in Data Set

- -9: only 10 rows left; dropped rows with -9
- Mean and Median Methods
- Four combinations (median -7, median -8),
 (median -7, mean-8), (mean -7, median -8),
 (mean -7, mean -7)
- Median for -7; Mean for -8 (Highest Accuracy)

2. Frequency Count Table for Occurrence of Special Values

- Three special values "-7", "-8", "-9"
- -7: condition not met (no info of the type)
- -8 : no useable/valid trades or inquiries (no usable info)
- -9: no bureau record or no investigation *

4. Convert and Store All Attributes to Indicator Variables

- Convert all Categorical Variables to Dummy Variables
- Converted Dummy Variables has binary values

Scaling and Model Selection

Scaling and Model Selection

Two Combinations with Highest Test
Score After Hyperparameter Tuning:

SVM with StandardScaler
 Test Score: 0.7210

LR with MaxAbsScaler
 Test Score: 0.7226

SVM VS. LR

- SVM minimizes hinge loss
- LR minimizes logistic loss
- Logistic loss diverges faster than hinge loss
- LR will be more sensitive to outliers
- In our scenario, we have a large number of outliers (800 per attribute)
- Therefore, we use SVM as the classifier for final decision model

SVC: Decision Function

Final SVC Parameters:

- [0.1, 1] used as penalty
- "linear" as kernel

Linear Equation and Calculating Functions:

- $Y = a + bx_1 + cx_2 + dx_3 + ...$
- X in this equation is standardized input variable
- "final_best_model.coef()" finds b, c, d,
- "final_best_model.intercept()" finds a
- "final_model.decision_function()" finds Y

Output and Explanation:

- Y is the final output indicates the risk of loans
- Y (variable "result") mostly ranges in (-5, 5)
- Positive Y means Good risk performance
- Negative Y means Bad risk performance
- More positive Y means <u>Better</u> risk performance
- More negative Y means <u>Worse</u> risk performance

• Can the output be quantified?

Interactive Interface & Explanation

User Interface Model:

- Ipywidgets
- No coding background required for users
- Input variables by dragging the bar
- Output in **Default Risk**
- 5 major <u>contributing attributes</u> to the output will be shown

Contribution:

- Each attribute has a contribution rating to the output
- 5 attributes will be in the order of the extent of affection
- The contribution is calculated by
 Standardized input value * model coefficient

Default Risk:

- The chance that companies or individuals will not make the required payment
- Calculated by inputting Y into sigmoid function
- Range from 0% to 100%

Equation Explanation:

Demos

Part of Input Interface:

Final Output Example:

```
1 # Demo 1: Good
2 input_demo(10)
3 test_demo(5)
```

Decision function result: 0.5539094320020761

Default Risk: 36.50% Good

Key attributes that determine the prediction result: [Order by importance]

	Order of Importance	Attribute	Value	Contribution in Decision
0	1.	ExternalRiskEstimate	82	0.408455
1	2.	NumInqLast6M	0	0.405448
2	3.	NetFractionRevolvingBurden	15	0.180792
3	4.	MaxDelq2PublicRecLast12M	7	0.124925
4	5.	NumBank2NatlTradesWHighUtilization	0	0.106290

Key Features

- Using tables to gain data insights into special values.
- Data cleaning methods of handling special values.
- Hyper-parameter tuning to find the best model by comparing test scores.
- Difference between Linear SVC and LR—sensitivity to outliers.
- Interactive interface by "lpywidgets".
- Explanations of our result by giving users a probability of Default Risk and 5 most significant contributing factors based on different user inputs.

Thank You!

Apr. 2019

Here is so much blank IDK what to write here Yaron is a good professor You guys are good Good luck with finals

First Class Yaron: "It's ok if you have no coding background. I'll go over the basics"

Then finished CIS 191 in 2 and half hours

PowerPoint Design: Ziwei Shi