Sprawozdanie

Jakub Kleszcz, Informatyka Techniczna

Grupa projektowa nr 2

1. Zadanie 1, belka:

• Wariant dla podstawowej belki gdzie srodek kwadratu znajduje się 1500mm od krawędzi:

	Symulacja	Odległość środka kwadratu [mm]	Max naprężenie wg Misesa [MPa]	Współczynnik bezpieczeństwa	Max przemieszczenie wypadkowe [mm]
	1	1500	63,35	2,612	9,035
ſ	2	1900	79,17	2,09	13,67

Testowane wartości to: 1400, 1750, 1900

Naprężenie wg Misesa:

Współczynnik bezpieczeństwa:

Przemieszczenie wypadkowe:

• Wariant dla kwadratu przesuniętego o wartość X(szukaną)

Naprężenie wg Misesa:

Współczynnik bezpieczeństwa:

Przemieszczenie wypadkowe:

2. Zadanie 2, skrzydło:

• Rozkład siatki MES i ciśnienia dla pierwszego wariantu:

• Zrzut ekranu wyników siły nośnej i oporu z symulacji parametrycznej:

	Design Point 1	Design Point 2	Design Point 3	Design Point 4	Design Point 5	Design Point 6
Velocity in X direction[m/s]	40	60	80	100	120	140
GG Force (X) 1 [N]	42,25863873	96,3952807	164,4415093	306,11017	458,9145101	592,20414
GG Force (Y) 2 [N]	459,370779	1037,751524	1736,319842	2780,947885	4062,486313	4727,954728

Wykresy zależności siły nośnej/oporu od prędkości:

Wykres siły nośnej/oporu od prędkości

• Komentarz do wyników:

Wraz ze wzrostem prędkości skrzydła siła nośna oraz siła oporu rośnie.

• Odpowiedź na pytanie na podstawie uzyskanych wyników symulacji: przy jakiej minimalnej wartości prędkości samolot wzniesie się w powietrze jeżeli jest obciążony ciężarem 370 kg

Obliczenie wymaganej siły nośnej:

Masa skrzydła: 370 kg

Siła grawitacji: $g = 9.81 \text{ m/s}^2$

Wymagana siła nośna $L = m \cdot g = 370 \text{ kg} \cdot 9.81 \text{ m/s}^2 = 3629.7 \text{ N}$

Z tych wyników widzimy, że przy prędkości około 120 m/s siła nośna przekracza wymaganą wartość 3629.7 N. Dlatego minimalna prędkość, przy której samolot wzniesie się w powietrze przy obciążeniu 370 kg, wynosi **120 m/s.**