newbook-fromscratch

February 29, 2024

So, here's the story of the people who are travelling to a destination from various HomePlanets. But sadly they met with a unexpected accident and some people got transported from the ship. So our job is to find if a person with some details can be transported or stayed in ship.

Let's not wait any minute,

We need some packages to be imported and they are imported here, some may be imported later in the notebook.

```
[2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Our data is brought into the book by these statements.

```
[3]: og_train_data = pd.read_csv('train.csv')
og_test_data = pd.read_csv('test.csv')
data = og_train_data
```

Let's take a peek at the data.

```
[4]: data.head()
```

[4]:		PassengerId	HomePlanet	CryoSleep	Cabi	n Desti	ination	Age	VIP	\	
	0	0001_01	Europa	False	B/0/1	P TRAPI	PIST-1e	39.0	False		
	1	0002_01	Earth	False	F/0/	S TRAPE	PIST-1e	24.0	False		
	2	0003_01	Europa	False	A/O/S	S TRAPI	PIST-1e	58.0	True		
	3	0003_02	Europa	False	A/O/S	S TRAPI	PIST-1e	33.0	False		
	4	0004_01	Earth	False	F/1/	S TRAPI	PIST-1e	16.0	False		
		RoomService	e FoodCourt	t Shopping	gMall	Spa	${\tt VRDeck}$			Name	\
	0	0.0	0.0)	0.0	0.0	0.0	Ma	ham Ofr	acculy	
	1	109.0	9.0)	25.0	549.0	44.0		Juanna	Vines	
	2	43.0	3576.0)	0.0	6715.0	49.0		Altark	Susent	
	3	0.0	1283.0) 3	371.0	3329.0	193.0		Solam	Susent	
	4	303.0	70.0) 1	51.0	565.0	2.0	Will	y Santa	ntines	

Transported

```
0 False
1 True
2 False
3 False
4 True
```

[5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8693 entries, 0 to 8692
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype			
0	PassengerId	8693 non-null	object			
1	HomePlanet	8492 non-null	object			
2	CryoSleep	8476 non-null	object			
3	Cabin	8494 non-null	object			
4	Destination	8511 non-null	object			
5	Age	8514 non-null	float64			
6	VIP	8490 non-null	object			
7	RoomService	8512 non-null	float64			
8	FoodCourt	8510 non-null	float64			
9	ShoppingMall	8485 non-null	float64			
10	Spa	8510 non-null	float64			
11	VRDeck	8505 non-null	float64			
12	Name	8493 non-null	object			
13	Transported	8693 non-null	bool			
<pre>dtypes: bool(1), float64(6), object(7)</pre>						
memoi	ry usage: 891.5	5+ KB				

The data types of the attributes are as follows.

[6]: data.dtypes

```
[6]: PassengerId
                        object
     HomePlanet
                        object
     CryoSleep
                        object
     Cabin
                        object
     Destination
                        object
                       float64
     Age
     VIP
                        object
     RoomService
                       float64
     {\tt FoodCourt}
                       float64
     {\tt ShoppingMall}
                       float64
                       float64
     Spa
     VRDeck
                       float64
     Name
                        object
     Transported
                          bool
```

dtype: object

Are there any duplicated rows in the data?

[7]: data[data.duplicated()]

[7]: Empty DataFrame

Columns: [PassengerId, HomePlanet, CryoSleep, Cabin, Destination, Age, VIP,

RoomService, FoodCourt, ShoppingMall, Spa, VRDeck, Name, Transported]

Index: []

• There are no duplicated rows in the data

How does the data can be described?

[8]: data.describe()

[8]:		Age	RoomService	FoodCourt	${\tt ShoppingMall}$	Spa	,
	count	8514.000000	8512.000000	8510.000000	8485.000000	8510.000000	
	mean	28.827930	224.687617	458.077203	173.729169	311.138778	
	std	14.489021	666.717663	1611.489240	604.696458	1136.705535	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	19.000000	0.000000	0.000000	0.000000	0.000000	
	50%	27.000000	0.000000	0.000000	0.000000	0.000000	
	75%	38.000000	47.000000	76.000000	27.000000	59.000000	
	max	79.000000	14327.000000	29813.000000	23492.000000	22408.000000	

	VRDeck
count	8505.000000
mean	304.854791
std	1145.717189
min	0.000000
25%	0.000000
50%	0.000000
75%	46.000000
max	24133.000000

Are there any missing values in the data? If so, then how many?

[9]: data.isnull().sum()

[9]: PassengerId 0 HomePlanet 201 CryoSleep 217 Cabin 199 ${\tt Destination}$ 182 Age 179 VIP 203 RoomService 181

```
FoodCourt 183
ShoppingMall 208
Spa 183
VRDeck 188
Name 200
Transported 0
dtype: int64
```

What is the shape of the data?

How many unique values are there for the features?

```
[12]: data.nunique()
```

```
[12]: PassengerId
                       8693
      HomePlanet
                          3
      CryoSleep
                          2
      Cabin
                       6560
      Destination
                          3
      Age
                         80
      VIP
                          2
      RoomService
                       1273
      FoodCourt
                       1507
      ShoppingMall
                       1115
      Spa
                       1327
      VRDeck
                       1306
      Name
                       8473
      Transported
                          2
      dtype: int64
```

- I think we can say that the transportation doesn't depend on the 'PassengerId' and 'Name' of the people.
- So, I am going to remove them from the data and store it in a new DataFrame.

```
[13]: lowDim_data = data.drop(columns = ['PassengerId', 'Name'])
```

```
[14]: lowDim_data.head()
```

```
[14]:
        HomePlanet CryoSleep
                              Cabin Destination
                                                           VIP
                                                               RoomService \
                                                   Age
            Europa
                       False
                              B/0/P
                                     TRAPPIST-1e
                                                  39.0
                                                        False
                                                                        0.0
      1
            Earth
                       False
                              F/O/S TRAPPIST-1e
                                                        False
                                                                      109.0
                                                  24.0
      2
            Europa
                       False
                              A/O/S TRAPPIST-1e
                                                  58.0
                                                          True
                                                                       43.0
      3
            Europa
                       False
                              A/O/S TRAPPIST-1e
                                                  33.0 False
                                                                        0.0
      4
             Earth
                       False F/1/S
                                     TRAPPIST-1e
                                                  16.0 False
                                                                      303.0
         FoodCourt
                   ShoppingMall
                                     Spa
                                         VRDeck
                                                  Transported
      0
               0.0
                                             0.0
                             0.0
                                     0.0
                                                         False
               9.0
                            25.0
                                            44.0
                                                          True
      1
                                   549.0
      2
                                                         False
            3576.0
                             0.0 6715.0
                                            49.0
            1283.0
                           371.0
                                           193.0
                                                         False
      3
                                  3329.0
      4
              70.0
                           151.0
                                   565.0
                                             2.0
                                                          True
```

Let's see that how many are from each HomePlanet


```
[16]: data['HomePlanet'].value_counts()
```

[16]: HomePlanet

Earth 4602 Europa 2131 Mars 1759

Name: count, dtype: int64

Maximum people are from Earth. Europa and Mars passengers are close in numbers but far less than the number from earth.

Where do the passengers want to go?

```
[17]: data['Destination'].value_counts().plot(kind = 'bar', title = 'Destination of U speople')
```

[17]: <Axes: title={'center': 'Destination of people'}, xlabel='Destination'>

I'm going to fill the Null values of HomePlanet and Destination with Mode of the Cols

```
[18]: data['Destination'].value_counts()
```

```
[18]: Destination
TRAPPIST-1e 5915
55 Cancri e 1800
PSO J318.5-22 796
Name: count, dtype: int64
```

• Maximum people are going to the TRAPPIST-1e

```
[19]: lowDim_data['HomePlanet'].fillna('Earth', inplace=True) lowDim_data['Destination'].fillna('TRAPPIST-1e', inplace=True)
```

So, how many people are in CryoSleep?

<Figure size 1000x1000 with 0 Axes>

```
[21]: data['CryoSleep'].value_counts()
```

[21]: CryoSleep

False 5439 True 3037

Name: count, dtype: int64

More people are not in CryoSleep

What is the age distribution in passengers?

```
[22]: data['Age'].plot(kind = 'kde', title = 'Age distribution', x = 'Age')
plt.show()
```



```
[23]: data['Age'].value_counts().head(20)
```

```
[23]: Age
      24.0
               324
      18.0
               320
      21.0
               311
      19.0
               293
      23.0
               292
      22.0
               291
      20.0
               277
      26.0
               268
      28.0
               267
      27.0
               259
      25.0
               243
      29.0
               230
      31.0
               202
      32.0
               199
      30.0
               183
      33.0
               178
      36.0
               178
      0.0
               178
```

```
37.0 177
35.0 171
Name: count, dtype: int64
```

We can observe that most people are of from range (15 - 40) approximately.

How many got transported?

```
[24]: data['Transported'].value_counts()
```

[24]: Transported True 4378

False 4315

Name: count, dtype: int64

• Nearly Half of the people got transported.

I'm converting some columns data types to the appropriate types. Because CryoSleep and VIP are actually boolean but in the dataset they are observed as object datatype.

```
[25]: lowDim_data['CryoSleep'] = lowDim_data['CryoSleep'].astype('bool') lowDim_data['VIP'] = lowDim_data['VIP'].astype('bool')
```

And also converting HomePlane, Cabin, Destination to string datatype which are in object datatype.

• Checking that how many null values are there

```
[27]: lowDim_data.isna().sum()
```

```
[27]: HomePlanet
                          0
                          0
      CryoSleep
      Cabin
                          0
      Destination
                          0
      Age
                        179
      VIP
                          0
      RoomService
                        181
      FoodCourt
                        183
                        208
      ShoppingMall
      Spa
                        183
      VRDeck
                        188
      Transported
                          0
      dtype: int64
```

Now i'm going to fill these null values with their median, cause median gives us the middle value of data which is not effected by the outliers.

Note that i didn't removed the outliers.

```
[28]: for i in ['Age','RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']: lowDim_data[i] = lowDim_data[i].fillna(float(lowDim_data[i].median()))
```

Again checking the data for the Null values.

```
[29]: lowDim_data.isnull().sum()
```

```
[29]: HomePlanet
                       0
      CryoSleep
                       0
      Cabin
      Destination
      Age
                       0
      VIP
                       0
      RoomService
                       0
      FoodCourt
                       0
      ShoppingMall
      Spa
      VRDeck
                       0
      Transported
                       0
      dtype: int64
```

Now there are no Null values in the data.

Encoding the columns of the dataframe That is i'm converting the string type values to numerical values for the implementation of the model.

checking the datatypes of the data before model fitting.

```
[31]: lowDim_data.dtypes
```

```
[31]: HomePlanet int32
CryoSleep int64
Cabin int32
Destination int32
Age float64
VIP int64
RoomService float64
```

FoodCourt float64
ShoppingMall float64
Spa float64
VRDeck float64
Transported int64

dtype: object

This is how our data looks after the encoding

151.0

[32]: lowDim_data.head()

[32]:		HomePlanet	CryoSleep	Cabin	De	stinatio	on	Age	VIP	RoomService	\
	0	1	0	149			2	39.0	0	0.0	
	1	0	0	2184			2	24.0	0	109.0	
	2	1	0	1			2	58.0	1	43.0	
	3	1	0	1			2	33.0	0	0.0	
	4	0	0	2186			2	16.0	0	303.0	
		${\tt FoodCourt}$	ShoppingMall	S	pa	VRDeck	-	Transpo	rted		
	0	0.0	0.0	0	.0	0.0			0		
	1	9.0	25.0	549	.0	44.0			1		
	2	3576.0	0.0	6715	.0	49.0			0		
	3	1283.0	371.0	3329	.0	193.0			0		

565.0

2.0

1

How the variables are correlated?

[33]: lowDim_data.corr()

70.0

[33]:		HomePlanet	CryoSleep	Cabin	Destination	Age	\
	HomePlanet	1.000000	0.083239	-0.470328	0.034737	0.133577	
	CryoSleep	0.083239	1.000000	0.112433	-0.094061	-0.073406	
	Cabin	-0.470328	0.112433	1.000000	0.117281	-0.236994	
	Destination	0.034737	-0.094061	0.117281	1.000000	-0.006771	
	Age	0.133577	-0.073406	-0.236994	-0.006771	1.000000	
	VIP	0.085260	-0.050342	-0.094719	-0.035430	0.058490	
	RoomService	0.211751	-0.240750	-0.073802	0.045733	0.068629	
	FoodCourt	0.071454	-0.202675	-0.260056	-0.111057	0.127390	
	ShoppingMall	0.101383	-0.207213	-0.067709	0.024721	0.033148	
	Spa	0.055047	-0.196893	-0.180768	-0.055815	0.120946	
	VRDeck	0.039824	-0.190437	-0.210865	-0.073293	0.099590	
	Transported	0.115461	0.451744	-0.052604	-0.108152	-0.074233	
		VIP R	oomService	FoodCourt	ShoppingMa	ll Spa	١ \
	HomePlanet	0.085260	0.211751	0.071454	0.10138	83 0.055047	•
	CryoSleep	-0.050342	-0.240750	-0.202675	-0.2072	13 -0.196893	3
	Cabin	-0.094719	-0.073802	-0.260056	-0.06770	09 -0.180768	3
	Destination	-0.035430	0.045733	-0.111057	0.02472	21 -0.055815	

```
Age
                    0.058490
                                 0.068629
                                            0.127390
                                                          0.033148
                                                                    0.120946
      VIP
                    1.000000
                                 0.050354
                                            0.088208
                                                         -0.000992
                                                                    0.037896
      RoomService
                    0.050354
                                 1.000000
                                           -0.015126
                                                          0.052337
                                                                    0.009244
      FoodCourt
                    0.088208
                                -0.015126
                                            1.000000
                                                         -0.013717
                                                                    0.221468
      ShoppingMall -0.000992
                                 0.052337
                                           -0.013717
                                                          1.000000 0.014542
      Spa
                    0.037896
                                 0.009244
                                            0.221468
                                                          0.014542 1.000000
     VRDeck
                                -0.018624
                                            0.224572
                                                         -0.007849 0.147658
                    0.087235
      Transported -0.024602
                                -0.241124
                                            0.045583
                                                           0.009391 -0.218545
                      VRDeck
                              Transported
     HomePlanet
                                 0.115461
                    0.039824
      CryoSleep
                   -0.190437
                                 0.451744
      Cabin
                   -0.210865
                                -0.052604
      Destination
                  -0.073293
                                -0.108152
                                -0.074233
      Age
                    0.099590
      VIP
                    0.087235
                                -0.024602
      RoomService -0.018624
                                -0.241124
      FoodCourt
                                 0.045583
                    0.224572
      ShoppingMall -0.007849
                                 0.009391
      Spa
                    0.147658
                                -0.218545
      VRDeck
                                -0.204874
                    1.000000
      Transported -0.204874
                                 1.000000
[34]: fig, ax = plt.subplots(figsize = (10, 10))
      sns.heatmap(lowDim_data.corr(), annot = True, linewidths=.5, ax=ax)
```

[34]: <Axes: >

From the correlation plot we can see that there are no seriously correlated variables in the data. The highest value is between Cryosleep and Transported with 0.45

Splitting training data into train and validate datasets

```
[35]: x = lowDim_data.iloc[:, :-1]
y = lowDim_data.iloc[:, -1]

[36]: from sklearn.model_selection import train_test_split
x_train, x_validate, y_train, y_validate = train_test_split(x, y, test_size=0.2)

[37]: y_validate.head()
```

```
[37]: 6885
              1
      925
              1
      3861
              0
      4631
              1
      1558
              0
      Name: Transported, dtype: int64
     We are using KNN classifier for our data, ofcourse there are other models but KNN is also a
     powerful model.
[38]: from sklearn.neighbors import KNeighborsClassifier
      knn = KNeighborsClassifier(n_neighbors=3)
      knn.fit(x_train, y_train)
[38]: KNeighborsClassifier(n_neighbors=3)
     Importing the test data
[39]: test_data = pd.read_csv('test.csv')
[40]: test_data.head()
[40]:
        PassengerId HomePlanet CryoSleep
                                            Cabin
                                                   Destination
                                                                  Age
                                                                         VIP
            0013 01
                          Earth
                                      True
                                           G/3/S
                                                   TRAPPIST-1e
                                                                 27.0
                                                                       False
      0
      1
            0018_01
                          Earth
                                    False
                                           F/4/S
                                                   TRAPPIST-1e
                                                                 19.0
                                                                       False
      2
            0019_01
                         Europa
                                      True C/O/S
                                                   55 Cancri e
                                                                 31.0 False
      3
            0021_01
                         Europa
                                    False
                                           C/1/S
                                                   TRAPPIST-1e
                                                                 38.0
                                                                       False
      4
            0023_01
                          Earth
                                    False F/5/S
                                                   TRAPPIST-1e
                                                                20.0 False
         RoomService
                      FoodCourt
                                  ShoppingMall
                                                    Spa
                                                         VRDeck
                                                                               Name
      0
                 0.0
                             0.0
                                            0.0
                                                    0.0
                                                             0.0
                                                                   Nelly Carsoning
                 0.0
                             9.0
                                            0.0
                                                 2823.0
                                                             0.0
                                                                    Lerome Peckers
      1
      2
                                                                   Sabih Unhearfus
                 0.0
                             0.0
                                            0.0
                                                    0.0
                                                             0.0
      3
                 0.0
                          6652.0
                                            0.0
                                                  181.0
                                                           585.0 Meratz Caltilter
                             0.0
      4
                10.0
                                          635.0
                                                    0.0
                                                             0.0
                                                                   Brence Harperez
```

Now we'll do all the steps that are done on the train data for the test data to get the test data to the same state as the train data before fitting the model.

```
VIP
                       93
      RoomService
                       82
      FoodCourt
                      106
      ShoppingMall
                       98
      Spa
                      101
      VRDeck
                       80
      dtype: int64
[43]: test_data.dtypes
[43]: HomePlanet
                       object
      CryoSleep
                       object
      Cabin
                       object
      Destination
                       object
                      float64
      Age
      VIP
                       object
      RoomService
                      float64
                      float64
      FoodCourt
      ShoppingMall
                      float64
      Spa
                      float64
      VRDeck
                      float64
      dtype: object
[44]: test_data['CryoSleep'] = test_data['CryoSleep'].astype('bool')
      test_data['VIP'] = test_data['VIP'].astype('bool')
[45]: for i in ['HomePlanet', 'Cabin', 'Destination']:
              test_data[i] = test_data[i].astype('str')
[46]: test_data.isnull().sum()
[46]: HomePlanet
                        0
      CryoSleep
                        0
      Cabin
                        0
      Destination
                        0
      Age
                       91
      VIP
                        0
      RoomService
                       82
      FoodCourt
                      106
                       98
      ShoppingMall
      Spa
                      101
      VRDeck
                       80
      dtype: int64
[47]: for i in ['Age', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']:
          test_data[i] = test_data[i].fillna(float(test_data[i].mode()))
```

```
C:\Users\91970\AppData\Local\Temp\ipykernel_27200\3196287623.py:2:
     FutureWarning: Calling float on a single element Series is deprecated and will
     raise a TypeError in the future. Use float(ser.iloc[0]) instead
       test_data[i] = test_data[i].fillna(float(test_data[i].mode()))
[48]: test_data.isnull().sum()
[48]: HomePlanet
                      0
      CryoSleep
                      0
      Cabin
                      0
      Destination
      Age
      VIP
                      0
      RoomService
                      0
      FoodCourt
                      0
      ShoppingMall
                      0
      Spa
                      0
      VRDeck
                      0
      dtype: int64
[49]: # from sklearn import preprocessing
      # # label_encoder object knows how to understand word labels.
      # label_encoder = preprocessing.LabelEncoder()
      for i in ['HomePlanet', 'CryoSleep', 'Cabin', 'Destination', 'VIP']:
          test_data[i] = label_encoder.fit_transform(test_data[i])
[50]: test_data.dtypes
[50]: HomePlanet
                        int32
      CryoSleep
                        int64
      Cabin
                        int32
      Destination
                        int32
      Age
                      float64
      VIP
                        int64
      RoomService
                      float64
      FoodCourt
                      float64
                      float64
      ShoppingMall
      Spa
                      float64
      VRDeck
                      float64
      dtype: object
[51]: test_data.head()
         HomePlanet CryoSleep Cabin Destination
[51]:
                                                      Age VIP
                                                                RoomService \
                  0
                             1
                                 2784
                                                  2 27.0
                                                                        0.0
      0
                                                             0
```

1	0	0	1867	2	19.0	0	0.0
2	1	1	257	0	31.0	0	0.0
3	1	0	259	2	38.0	0	0.0
4	0	0	1940	2	20.0	0	10.0

	FoodCourt	${\tt ShoppingMall}$	Spa	VRDeck
0	0.0	0.0	0.0	0.0
1	9.0	0.0	2823.0	0.0
2	0.0	0.0	0.0	0.0
3	6652.0	0.0	181.0	585.0
4	0.0	635.0	0.0	0.0

This is how our test data looks after the process

Predicting the Transported values for the test data

- [52]: knn.predict(test_data)
- [52]: array([1, 0, 1, ..., 1, 1], dtype=int64)

Since i dont have the transported values for the test data(actual) i'm taking the validation data from the above splitting and calculate the acuracy score from it.

[53]: validate_y = knn.predict(x_validate)

This is how the values are predicted by our model

- [54]: validate_y
- [54]: array([1, 1, 0, ..., 1, 1, 1], dtype=int64)

Total how many are Transported and not

- [55]: validate_y = pd.DataFrame(validate_y) #converting the numpy array structure to → pandas dataframe
- [56]: validate_y.value_counts() # 1 means transported, 0 means not transported
- [56]: 1 872
 - 0 867

Name: count, dtype: int64

This is how the actual validation data Transported values are:

- [57]: y_validate.value_counts() # 1 means transported, 0 means not transported
- [57]: Transported
 - 0 882
 - 1 857

Name: count, dtype: int64

Formula for accuracy accuracy = (number of correct predictions) / (total number of predictions)

```
[58]: y_validate = np.array(y_validate)
validate_y = np.array(validate_y)
```

- [59]: from sklearn.metrics import accuracy_score
- [60]: print(f"Our model Accuracy is : {accuracy_score(y_validate, validate_y)} which_\(\to \) is not so bad, because we didn't removed the outliers and didn't tuned our \(\to \) hyperparameters")

Our model Accuracy is: 0.7429557216791259 which is not so bad, because we didn't removed the outliers and didn't tuned our hyperparameters