第三节 随机变量的函数 及其分布(2)

(两个随机变量的函数的分布)

- 🦥 一、问题的引出
- 二、离散型随机变量的函数的分布
- 三、连续型随机变量的函数的分布

一、问题的引出

有一大群人,令X和Y分别表示一个人的年龄和体重,Z表示该人的血压并且已知Z与X,Y的函数关系Z = f(X,Y),如何通过(X,Y)的分布确定Z的分布.

为了解决类似的问题,下面我们讨论二维随机变量函数的分布的求法.

二、离散型随机变量函数的分布

例1 设随机变量(X,Y)的分布律

XY	-2	-1	0	
1	1	1	3 12	
-1	12	12	12	
1	2	1	0	
$\overline{2}$	12	12	V	
3	2	0	2	
	12	U	12	

求 (1)X + Y, (2)|X - Y|的分布律.

解

 \boldsymbol{X}

-2

0

12

1 12

3 **12**

2

 $\frac{2}{12}$ $\frac{2}{12}$

 $\frac{1}{12}$

 $\frac{2}{12}$

等价于

所以X+Y, |X-Y|的分布律分别为

所以X+Y, |X-Y|的分布律分别为

$$X + Y \begin{vmatrix} -3 & -2 & -\frac{3}{2} & -1 & -\frac{1}{2} & 1 & 3 \end{vmatrix}$$

$$P = \begin{bmatrix} \frac{1}{12} & \frac{1}{12} & \frac{2}{12} & \frac{3}{12} & \frac{1}{12} & \frac{2}{12} & \frac{2}{12} \end{bmatrix}$$

结论

若二维离散型随机变量的联合分布律为

$$p{X = x_i, Y = y_j} = p_{ij}, i, j = 1,2,$$

则随机变量函数Z = f(X,Y)的分布律为

$$P{Z = z_k} = P{f(X,Y) = z_k}$$

$$= \sum_{z_k=f(x_i,y_j)} p_{ij} \qquad k=1,2\cdots$$

其中 "
$$\sum_{z_k = f(x_i, y_j)} p_{ij}$$
 "是关于 $f(x_i, y_j) = z_k$

的 (x_i, y_j) 求和.

例2 设两个独立的随机变量X 与Y的分布律为

X	1	3	<u>Y</u>	2	4	
P_{X}	0.3	0.7	P_{Y}	0.6	0.4	7

求随机变量 Z=X+Y 的分布律.

解 因为X与Y相互独立,所以

$$P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\},$$

得 X 2 4 1 0.18 0.12 3 0.42 0.28

所以
$$Z = X + Y$$
 3 5 7 P 0.18 0.54 0.28

三、二维连续型随机变量函数的分布

几种特殊形式的随机变量函数的分布

$$(1)$$
和的分布 $Z = X + Y$ 的分布

(2)商的分布
$$Z = \frac{X}{Y}$$
的分布

(3) 极值分布,
$$M = \max\{X,Y\}$$
及
$$N = \min\{X,Y\}$$
的分布.

注: 研究方法仍然沿用分布函数法.

(1)Z = X + Y的分布

设(X,Y)的概率密度为p(x,y),求Z = X + Y的概率密度 $p_z(z)$.

推导 $\forall z \in R$

$$F_{Z}(z) = P\{Z \le z\}$$

$$= P\{X + Y \le z\}$$

$$= \iint_{x+y \le z} p(x,y) dx dy$$

$$= \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} p(x,y) dy$$

$$= \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} p(x, y) dy$$

$$= \underbrace{\sum_{-\infty}^{+\infty} dx}_{-\infty} \int_{-\infty}^{z-x} p(x, y) dy$$

$$F_{Z}(z) = \int_{-\infty}^{+\infty} \mathrm{d}x \int_{-\infty}^{z} p(x, u - x) \mathrm{d}u$$

$$= \int_{-\infty}^{z} du \int_{-\infty}^{+\infty} p(x, u - x) dx$$
$$= \int_{-\infty}^{z} \left[\int_{-\infty}^{+\infty} p(x, u - x) dx \right] du$$

$$\int_{-\infty}^{z} f(u)du]' = f(z)$$

$$\therefore p_Z(z) = \frac{\mathrm{d}F_Z(z)}{\mathrm{d}z} = \int_{-\infty}^{+\infty} p(x, z - x) dx$$

结论

$$p_{Z}(z) = \int_{-\infty}^{+\infty} p(x, z - x) dx$$

$$= \int_{-\infty}^{+\infty} p(z - y, y) dy$$

$$x + y = z$$

若X与Y独立时,

$$p_{Z}(z) = \int_{-\infty}^{+\infty} p_{X}(x) p_{Y}(z - x) dx$$
$$= \int_{-\infty}^{+\infty} p_{X}(z - y) p_{Y}(y) dy$$

例5 设两个独立的随机变量 X 与Y 都服从标准正态分布,求 Z=X+Y 的概率密度.

解 由
$$p_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, -\infty < x < +\infty$$

$$p_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, -\infty < y < +\infty$$

可知,Z的取值也在-∞<z<∞,

由公式
$$p_Z(z) = \int_{-\infty}^{+\infty} p_X(x) p_Y(z-x) dx$$

于是
$$p_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{-\frac{x^2}{2}} e^{-\frac{(z-x)^2}{2}} dx$$

$$= \frac{1}{2\pi} e^{-\frac{z^2}{4}} \int_{-\infty}^{+\infty} e^{-(x-\frac{z}{2})^2} dx$$

$$= \frac{1}{2\pi} e^{-4} \int_{-\infty}^{+\infty} e^{-(x-\frac{z}{2})^2} dx$$

$$= \frac{1}{\sqrt{2}\sqrt{2\pi}} e^{-\frac{z^2}{4}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sqrt{\frac{1}{2}}} e^{-\frac{(x-\frac{z}{2})^2}{2\times\frac{1}{2}}} dx = \frac{1}{2\sqrt{\pi}} e^{-\frac{z^2}{4}}$$
即 Z 服从 $N(0,2)$ 分布.

本例结论的延伸

一般,设X,Y相互独立且

$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$$

则Z = X + Y 仍然服从正态分布,

且有
$$Z \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
.

继续延伸

有限个相互独立的正态随机变量的线性组合仍然服从正态分布。

$$X_1, X_2, \dots, X_n$$
相互独立,且 $X_i \sim N(\mu_i, \sigma_i^2), \quad i = 1, 2, \dots, n$

则有
$$a_1X_1 + a_2X_2 + \cdots + a_nX_n + b$$
 $\sim N(a_1\mu_1 + a_2\mu_2 + \cdots + a_n\mu_n + b, \sum_{i=1}^n a_i^2\sigma_i^2).$

例6 在一简单电路中,两电阻X和Y串联联接,设X,Y相互独立,它们的概率密度均为

$$p(x) = \begin{cases} \frac{10-x}{50}, & 0 \le x \le 10, \\ 0, & \text{ 其他.} \end{cases}$$

求电阻Z = X + Y的概率密度.

解由题意知Z的概率密度为

$$p_{Z}(z) = \int_{-\infty}^{+\infty} p(x)p(z-x) dx.$$

当
$$\begin{cases} 0 < x < 10, \\ 0 < z - x < 10, \end{cases}$$
 即 $\begin{cases} 0 < x < 10, \\ z - 10 < x < z, \end{cases}$ 时,

$$p_Z(z) = \int_{-\infty}^{+\infty} p(x)p(z-x)dx$$
 中被积函数不为零.

此时
$$p_{z}(z) = \begin{cases} \int_{0}^{z} p(x)p(z-x)dx, & 0 \le z < 10, \\ \int_{z-10}^{10} p(x)p(z-x)dx, & 10 \le z \le 20, \\ 0, & \\ 4 \ge 0. \end{cases}$$
其它.

将
$$p(x) = \begin{cases} \frac{10-x}{50}, & 0 \le x \le 10, \\ 0, & \text{其它.} \end{cases}$$

$$p(z-x) = \begin{cases} \frac{10-(z-x)}{50}, & 0 \le z-x \le 10, \\ 0, & \text{其它.} \end{cases}$$
代入 (1) 式得

$(2)Z = \frac{X}{Y}$ 的分布

设 (X, Y) 的概率密度为p(x,y),则求 $Z = \frac{X}{Y}$ 的密度函数.

推导
$$\forall z \in R$$
, $D = \{(x,y) \mid \frac{x}{y} \le z\}$

$$F_Z(z) = P\{Z \le z\} = P\{\frac{X}{Y} \le z\} = \iint_D p(x,y) dxdy$$

① 当
$$z \leq 0$$
时,

$$F_Z(z) = \iint_D p(x, y) \mathrm{d}x \mathrm{d}y$$

$$= \int_{-\infty}^{0} dy \int_{zy}^{+\infty} p(x,y) dx$$

$$+ \int_0^{+\infty} \mathrm{d}y \int_{-\infty}^{zy} p(x,y) \mathrm{d}x$$

$$D = \{(x,y) \mid \frac{x}{y} \le z\}$$

$$\begin{array}{c|c}
x \leq zy \\
y > 0
\end{array}$$

$$\begin{array}{c|c}
x = zy \\
y < 0
\end{array}$$

$$= \int_{-\infty}^{0} dy \int_{z}^{-\infty} p(yu, y) y du + \int_{0}^{+\infty} dy \int_{-\infty}^{z} p(yu, y) y du$$

$$= \int_{z}^{-\infty} du \int_{-\infty}^{0} p(yu, y) y dy + \int_{-\infty}^{z} du \int_{0}^{+\infty} p(yu, y) y dy$$

$$p_{Z}(z) = \frac{dF_{Z}(z)}{dz}$$

$$= -\int_{-\infty}^{0} p(yz, y) y dy + \int_{0}^{+\infty} p(yz, y) y dy$$

$$= \int_{-\infty}^{+\infty} |y| p(yz, y) dy$$

② 当
$$z > 0$$
时,

$$F_Z(z) = \iint_D p(x, y) dxdy$$

$$= \int_{-\infty}^{0} dy \int_{zy}^{\infty} p(x,y) dx$$

$$+ \int_0^{+\infty} dy \int_{-\infty}^{zy} p(x, y) dx$$

$$D = \{(x,y) \mid \frac{x}{y} \le z\}$$

$$\Rightarrow u = \frac{x}{y} \int_{-\infty}^{0} dy \int_{z}^{-\infty} p(yu, y) y du + \int_{0}^{+\infty} dy \int_{-\infty}^{z} p(yu, y) y du$$

$$= \int_{-\infty}^{0} dy \int_{z}^{-\infty} p(yu, y) y du + \int_{0}^{+\infty} dy \int_{-\infty}^{z} p(yu, y) y du$$

$$= \int_{z}^{-\infty} du \int_{-\infty}^{0} p(yu, y) y dy + \int_{-\infty}^{z} du \int_{0}^{+\infty} p(yu, y) y dy$$

$$p_{Z}(z) = \frac{\mathrm{d}F_{Z}(z)}{\mathrm{d}z} = -\int_{-\infty}^{0} p(yz, y)y\mathrm{d}y + \int_{0}^{+\infty} p(yz, y)y\mathrm{d}y$$
$$= \int_{-\infty}^{+\infty} |y| p(yz, y)\mathrm{d}y$$

综上,
$$p_Z(z) = \int_{-\infty}^{+\infty} |y| p(yz, y) dy$$

当X与Y独立时,

$$p_Z(z) = \int_{-\infty}^{+\infty} |y| p_X(yz) p_Y(y) dy$$

例7 设X,Y分别表示两只不同型号的灯泡的寿命,

X,Y相互独立,它们的概率密度分别为

$$p(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & \text{ i.e.} \end{cases} \qquad p(y) = \begin{cases} 2e^{-2y}, & y > 0, \\ 0, & \text{ i.e.} \end{cases}$$

试求 $Z = \frac{X}{Y}$ 的概率密度函数

解 当
$$z \leq 0$$
时, $p_Z(z) = 0$,

当z > 0时,

由公式
$$p_z(z) = \int_{-\infty}^{+\infty} |y| p(yz, y) dy$$

当
$$\begin{cases} yz > 0, \\ y > 0, \end{cases} \quad \mathbb{P} y > 0 \text{ 时},$$

$$p_z(z) = \int_{-\infty}^{+\infty} |y| p(yz, y) dy$$
 中被积函数不为零.

得所求密度函数
$$p_Z(z) = \int_0^{+\infty} 2y e^{-yz} e^{-2y} dy$$

= $\int_0^{+\infty} 2y e^{-y(2+z)} dy = \frac{2}{(2+z)^2}$,

得
$$p_Z(z) = \begin{cases} \frac{2}{(2+z)^2}, z > 0, \\ 0, z \leq 0. \end{cases}$$

(3) 极值分布,即 $M = \max\{X,Y\}$,

 $N = \min\{X,Y\}$ 的分布.

设X,Y是两个相互独立的随机变量,它们的分布函数分别为 $F_X(x)$ 和 $F_Y(y)$,求M,N的分布.

推导
$$F_M(z) = P\{M \le z\}$$

$$= P\{X \le z, Y \le z\}$$

$$= P\{X \le z\} \cdot P\{Y \le z\} \qquad (X = Y)$$

$$= F_X(z)F_Y(z)$$

$$F_{N}(z) = P\{N \le z\} = 1 - P\{N > z\}$$

$$= 1 - P\{X > z, Y > z\}$$

$$= 1 - P\{X > z\} \cdot P\{Y > z\}$$

$$= 1 - [1 - F_{X}(z)][1 - F_{Y}(z)]$$

因此有

① 当X, Y相互独立时,有

$$F_M(z) = F_X(z)F_Y(z)$$

$$F_N(z) = 1 - [1 - F_X(z)][1 - F_Y(z)]$$

② 当X, Y相互独立且同分布时, 有

$$F_M(z) = F^2(z)$$

$$F_N(z) = 1 - [1 - F(z)]^2$$

推广: 一般地,设

$$M = \max\{X_1, X_2, \cdots X_n\},\$$

$$N = \min\{X_1, X_2, \cdots X_n\},\$$

则当 X_1, X_2, \cdots, X_n 相互独立且同分布时,

有
$$F_M(z) = F^n(z)$$

$$F_N(z) = 1 - [1 - F(z)]^n$$

其中
$$F(z) = P\{X_1 \leq z\}.$$

例8 对某种电子装置的输出测量了 5 次,得到的观察值为 X_1, X_2, X_3, X_4, X_5 设它们是相互独立的随机变量,且都服从同一分布

$$F(z) = \begin{cases} 1 - e^{-\frac{2ze^2}{8}}, & z \ge 0, \\ 0, & \sharp \text{他.} \end{cases}$$

试求 $\max\{X_1, X_2, X_3, X_4, X_5\} > 4$ 的概率.

解 设
$$D = \max(X_1, X_2, X_3, X_4, X_5)$$

因为
$$F_{\text{max}}(z) = [F(z)]^5$$
,

所以 $P\{D > 4\} = 1 - P\{D \le 4\}$
 $= 1 - F_{\text{max}}(4)$
 $= 1 - [F(4)]^5$
 $= 1 - (1 - e^{-e^2})^5$.

例8-1 设系统L由两个相互独立的子系统L₁,L₂ 联接而成,连接的方式分别为(i)串联,(ii)并联,(iii)备用(当系统L₁损坏时,系统L₂开始工作),如图所示

设 L_1, L_2 的寿命分别为 X, Y,已知它们的概率密度分别为

$$p_X(x) = \begin{cases} \alpha e^{-\alpha x}, & x > 0, \\ 0, & x \le 0. \end{cases} p_Y(y) = \begin{cases} \beta e^{-\beta y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

其中 $\alpha > 0$, $\beta > 0$ 且 $\alpha \neq \beta$. 试分别就以上三种联接方式写出L的寿命Z的概率密度.

解 (i)串联情况

由于当 L_1, L_2 中有一个损坏时,系统L就停止工作, 所以这时L的寿命为 $Z = \min(X,Y)$.

$$\exists p_X(x) = \begin{cases} \alpha e^{-\alpha x}, & x > 0, \\ 0, & x \le 0. \end{cases} \Rightarrow F_X(x) = \begin{cases} 1 - e^{-\alpha x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

$$F_{\min}(z) = 1 - [1 - F_X(z)][1 - F_Y(z)]$$

$$= \begin{cases} 1 - e^{-(\alpha+\beta)z}, & z > 0, \\ 0, & z \leq 0. \end{cases}$$

$$\Rightarrow f_{\min}(z) = \begin{cases} (\alpha + \beta)e^{-(\alpha + \beta)z}, & z > 0, \\ 0, & z \le 0. \end{cases}$$

(ii)并联情况

由于当且仅当 L₁, L₂ 都损坏时,系统 L 才停止工作,

所以这时 L 的寿命为 $Z = \max(X,Y)$.

 $Z = \max(X, Y)$ 的分布函数为

$$F_{\max}(z) = F_X(z) \cdot F_Y(z) = \begin{cases} (1 - e^{-\alpha z})(1 - e^{-\beta z}), & z > 0, \\ 0, & z \le 0. \end{cases}$$

$$p_{\max}(z) = \begin{cases} \alpha e^{-\alpha z} + \beta e^{-\beta z} - (\alpha + \beta) e^{-(\alpha + \beta)z}, & z > 0, \\ 0, & z \le 0. \end{cases}$$

(iii)备用的情况

由于这时当系统 L_1 损坏时,系统 L_2 才开始工作, 因此整个系统 L 的寿命 Z 是 L_1 , L_2 两者之和,即

$$Z = X + Y$$

当z > 0时, Z = X + Y的概率密度为

$$p(z) = \int_{-\infty}^{+\infty} p_X(z - y) p_Y(y) dy = \int_0^z \alpha e^{-\alpha(z - y)} \beta e^{-\beta y} dy$$
$$= \alpha \beta e^{-\alpha z} \int_0^z e^{-(\beta - \alpha)y} dy$$

$$= \frac{\alpha\beta}{\beta - \alpha} [e^{-\alpha z} - e^{-\beta z}]$$

当z < 0时,f(z) = 0,

于是 Z = X + Y 的概率密度为

$$p(z) = \begin{cases} \frac{\alpha \beta}{\beta - \alpha} [e^{-\alpha z} - e^{-\beta z}], & z > 0, \\ 0, & z \le 0. \end{cases}$$

例8-2

随机变量X的概率分布为 $P\{X=0\}=P\{X=2\}=\frac{1}{2}$,随机变量Y与X相互独立,且Y的概率密度函数为

$$f(y) = \begin{cases} 2y, & 0 < y < 1 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

求Z = X + Y的概率密度函数。

解
$$F_Z(z) = P(Z \le z) = P(X + Y \le z)$$

= $P(X + Y \le z, X = 0) + P(X + Y \le z, X = 2)$
= $P(Y \le z, X = 0) + P(Y \le z - 2, X = 2)$

$$= P(Y \le z, X = 0) + P(Y \le z - 2, X = 2)$$

$$= P(X = 0)P(Y \le z) + P(X = 2)P(Y \le z - 2)$$

$$= \frac{1}{2}P(Y \le z) + \frac{1}{2}P(Y \le z - 2)$$

$$F_z(z) = \frac{1}{2}P(Y \le z) + \frac{1}{2}P(Y \le z - 2)$$

$$= \frac{1}{2}F_{Y}(z) + \frac{1}{2}F_{Y}(z-2)$$

$$f_{Y}(y) = \begin{cases} 2y, & 0 < y < 1 \\ 0, & 其它 \end{cases}$$

$$f_Z(z) = \frac{1}{2} f_Y(z) + \frac{1}{2} f_Y(z-2)$$

$$z < 0,$$

$$z < 0,$$

$$z < 1$$

$$\begin{vmatrix} 1 & 1 \leq z < 2 \\ (z-2) & 2 \leq z < 3 \\ 0 & z \geq 3 \end{vmatrix}$$

$$f_{z}(z) = \begin{cases} z, & 0 \le z < 1 \\ z - 2, & 2 \le z < 3 \\ 0, & \text{#} \end{cases}$$

内容小结

1. 离散型随机变量函数的分布律

若二维离散型随机变量的联合分布律为

$$P{X = x_i, Y = y_j} = p_{ij}, i, j = 1, 2, \dots$$

则随机变量函数 Z = f(X,Y)的分布律为

$$P\{Z = z_k\} = P\{f(X,Y) = z_k\}$$

$$= \sum_{z_k = f(x_i, y_i)} p_{ij} \qquad k = 1, 2, \dots$$

2. 连续型随机变量函数的分布

$$(1)Z = X + Y$$
的分布

$$(2)Z = \frac{X}{Y}$$
的分布

$$(3)M = \max(X,Y)$$
及 $N = \min(X,Y)$ 的分布

备用题

例3-1设相互独立的两个随机变量 X, Y 具有同一分布律,且 X 的分布律为

X	0	1
P	0.5	0.5

试求: $Z = \max(X, Y)$ 的分布律.

解 因为X与Y相互独立,

所以
$$p{X = x_i, Y = y_j} = p{X = x_i}p{Y = y_j},$$

$$p\{\max(X,Y) = i\}$$

$$= P\{X = i, Y < i\}$$

$$+ P\{X \le i, Y = i\}$$

$$\Rightarrow P\{\max(X,Y)=0\}=P\{0,0\}=\frac{1}{2^2},$$

$$P{\max(X,Y) = 1} = P{1,0} + P{0,1} + P{1,1}$$

$$=\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=\frac{3}{2^2}.$$

故
$$Z = \max(X, Y)$$
 Z 0 1 的分布律为 P $\frac{1}{4}$ $\frac{3}{4}$

例4-1 设随机变量X与Y独立,且

$$P{X = 1} = P{Y = 1} = p > 0,$$
 $P{X = 0} = P{Y = 0} = 1 - p > 0,$
 $\Rightarrow Z = \begin{cases} 1, & X + Y \Rightarrow A \end{cases}$
 $\Rightarrow Z = \begin{cases} 1, & X + Y \Rightarrow A \end{cases}$

要使X与Z独立,则 $p = ____2$

解

P	2p(1-p)	$p^2 + (1-p)^2$
(X,Y)	(0,1),(1,0)	(0,0),(1,1)
Z	0	1

若X与Z独立,则

$$Z = 0 \leftrightarrow \begin{cases} (X,Y) = (0,1) \\ (X,Y) = (1,0) \end{cases}$$

$$P{X = 0, Z = 0} = P{X = 0} \cdot P{Z = 0}$$

: 事件
$$\{X=0, Z=0\}=\{X=0, Y=1\}$$

$$P\{X = 0, Z = 0\} = P\{X = 0, Y = 1\}$$

$$= P\{X = 0\} \cdot P\{Y = 1\}$$

$$= (1 - p) \cdot p$$

从而
$$(1-p) \cdot p = (1-p) \cdot 2p(1-p)$$

$$\therefore 1-p>0 \therefore 2(1-p)=1 \quad \therefore p=\frac{1}{2}$$

例6-1 设随机变量 X 与 Y 相互独立,且其分布密度分别为

$$p_X(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, &$$
其它. $p_Y(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, &$ 其它.

求随机变量 Z=2X+Y 的分布密度.

解 由于X与Y相互独立,所以(X,Y)的分布密度函数为

$$p(x,y) = p_X(x) \cdot p_Y(y) = \begin{cases} e^{-y}, & 0 \le x \le 1, y > 0, \\ 0, & \sharp \stackrel{\sim}{\Sigma}. \end{cases}$$

随机变量Z的分布函数为

$$F_{Z}(z) = P\{Z \le z\}$$

$$= P\{2X + Y \le z\}$$

$$= \iint p(x, y) dx dy$$

$$= \iint e^{-y} dx dy.$$

$$= 2X + Y \le z$$

$$(0 \le x \le 1, y > 0)$$

$$F_{Z}(z) = \begin{cases} 0, & z \le 0, \\ \int_{0}^{\frac{z}{2}} (1 - e^{2x - z}) dx, & 0 < z \le 2, \\ \int_{0}^{1} (1 - e^{2x - z}) dx, & z > 2. \end{cases}$$

所以随机变量 Z 的分布密度为

$$p_{Z}(z) = F'_{Z}(z) = \begin{cases} 0, & z \le 0, \\ (1 - e^{-z})/2, & 0 < z \le 2, \\ (e^{2} - 1)e^{-z}/2, & z \ge 2. \end{cases}$$

例6-2 若X和Y独立,具有共同的概率密度

$$p(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & \text{其它.} \end{cases}$$
 求 $Z = X + Y$ 的概率密度.

解 由卷积公式

$$p_Z(z) = \int_{-\infty}^{+\infty} p_X(x) p_Y(z - x) dx$$

为确定积分限,先找出使被积函数不为0的区域

$$\begin{cases} 0 \le x \le 1, \\ 0 \le z - x \le 1, \end{cases}$$

$$\begin{cases} 0 \le x \le 1, \\ z - 1 \le x \le z, \end{cases}$$

$$p_Z(z) = \int_{-\infty}^{+\infty} p_X(x) p_Y(z - x) dx$$

为确定积分限,先找出使被积函数不为0的区域

$$\begin{cases} 0 \le x \le 1, \\ 0 \le z - x \le 1, \end{cases} \quad \text{then} \quad \begin{cases} 0 \le x \le 1, \\ z - 1 \le x \le z, \end{cases}$$

如图示:

于是

$$p_{Z}(z) = \begin{cases} \int_{0}^{z} dx = z, & 0 \le z \le 1, \\ \int_{z-1}^{1} dx = 2 - z, & 1 \le z < 2, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

