Practical Machine Learning Assignment

Chun-Fu Wang

Loading the Data

```
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
trainData <- read.csv("pml-training.csv")</pre>
testData <- read.csv("pml-testing.csv")</pre>
trainData <- trainData[2:length(trainData)]</pre>
testData <- testData[2:length(testData)]</pre>
dim(trainData)
## [1] 19622
                159
dim(testData)
## [1]
        20 159
```

There are 19622 observations in the training data set and 20 observations in the test data set that we are going to predict.

Exploratory Data Analysis

Removing the near zero variance features as well as the statistically insignificant features.

```
# cleaning up data
dim(trainData)
```

```
## [1] 19622 159
```

```
nzv <- nearZeroVar(trainData)</pre>
filteredTrainData <- trainData[, -nzv]</pre>
filteredTestData <- testData[, -nzv]</pre>
# removed statistically insignificant variables
filteredTrainData <-
    filteredTrainData %>%
    select(-c(user name,
              raw timestamp part 1,
              raw timestamp_part_2,
              cvtd timestamp,
              max_roll_belt:var_yaw_belt,
              var accel arm,
              max picth arm:amplitude yaw arm,
              max roll dumbbell:amplitude pitch dumbbell,
              var accel dumbbell:var yaw dumbbell,
              max picth forearm:amplitude pitch forearm,
              var_accel_forearm))
# remove from test set as well
filteredTestData <-
    filteredTestData %>%
    select(-c(user name,
              raw timestamp part 1,
              raw timestamp part 2,
              cvtd timestamp,
              max_roll_belt:var_yaw_belt,
              var accel arm,
              max_picth_arm:amplitude_yaw_arm,
              max roll dumbbell:amplitude pitch dumbbell,
              var_accel_dumbbell:var_yaw_dumbbell,
              max picth forearm:amplitude pitch forearm,
              var accel forearm))
dim(filteredTrainData)
```

```
## [1] 19622 54
```

```
dim(filteredTestData)
```

```
## [1] 20 54
```

Preprocess

Split the training data into two set of 80% and 20%.

```
set.seed(142678)

dataIndex <- createDataPartition(filteredTrainData$classe, p = 0.8, list = FALSE)
trainSet <- filteredTrainData[dataIndex, ]
testSet <- filteredTrainData[-dataIndex, ]</pre>
```

Machine Learning

```
Using Random Forest and Rpart to train the model.
 library(doMC)
 ## Loading required package: foreach
 ## Loading required package: iterators
 ## Loading required package: parallel
 registerDoMC(cores = 4)
 modelRf <- train(classe ~ ., data = trainSet, model = "rf")</pre>
 ## Loading required package: randomForest
 ## randomForest 4.6-12
 ## Type rfNews() to see new features/changes/bug fixes.
 ##
 ## Attaching package: 'randomForest'
 ## The following object is masked from 'package:ggplot2':
 ##
 ##
        margin
 ## The following object is masked from 'package:dplyr':
 ##
 ##
        combine
 modelRpart <- train(classe ~ ., data = trainSet, model = "rpart")</pre>
 predRf <- predict(modelRf, newdata = testSet)</pre>
 predRpart <- predict(modelRpart, newdata = testSet)</pre>
 C1 <- confusionMatrix(predRf, testSet$classe)</pre>
 print(C1)
```

```
## Confusion Matrix and Statistics
##
##
             Reference
                            C
                                      Ε
## Prediction
                 Α
                      В
##
            A 1115
                       1
                            0
                                      0
            В
                    758
                            2
                                      0
                 0
                                 0
##
##
            C
                 0
                      0
                         682
                                 2
                                      0
            D
                 0
                      0
                               640
                                      0
##
                            0
            Ε
                                 1 721
##
                 1
                      0
                            0
##
## Overall Statistics
##
                  Accuracy: 0.9982
##
                    95% CI: (0.9963, 0.9993)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.9977
##
##
    Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           0.9991
                                    0.9987
                                             0.9971
                                                       0.9953
                                                                1.0000
## Specificity
                           0.9996
                                    0.9994
                                             0.9994
                                                       1.0000
                                                                0.9994
## Pos Pred Value
                           0.9991
                                    0.9974
                                             0.9971
                                                       1.0000
                                                                0.9972
## Neg Pred Value
                                    0.9997
                                             0.9994
                                                       0.9991
                           0.9996
                                                                1.0000
## Prevalence
                           0.2845
                                    0.1935
                                             0.1744
                                                       0.1639
                                                                0.1838
## Detection Rate
                           0.2842
                                    0.1932
                                             0.1738
                                                       0.1631
                                                                0.1838
## Detection Prevalence
                           0.2845
                                    0.1937
                                             0.1744
                                                       0.1631
                                                                0.1843
                                             0.9982
                                                       0.9977
                                                                0.9997
## Balanced Accuracy
                           0.9994
                                    0.9990
```

```
C2 <- confusionMatrix(predRpart, testSet$classe)
print(C2)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 Α
                            C
            A 1115
                       1
                                       0
##
                            0
                     758
            В
                            2
                                  0
                                       0
##
                  0
##
            C
                  0
                       0
                          682
                                  2
                                       0
                                       1
##
            D
                  0
                       0
                            0
                               640
            Ε
##
                       0
                            0
                                  1
                                     720
##
## Overall Statistics
##
##
                   Accuracy: 0.998
                     95% CI: (0.996, 0.9991)
##
##
       No Information Rate: 0.2845
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.9974
    Mcnemar's Test P-Value: NA
##
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
                           0.9991
                                     0.9987
                                              0.9971
                                                        0.9953
                                                                  0.9986
## Sensitivity
## Specificity
                           0.9996
                                     0.9994
                                              0.9994
                                                        0.9997
                                                                  0.9994
## Pos Pred Value
                           0.9991
                                     0.9974
                                              0.9971
                                                        0.9984
                                                                 0.9972
## Neg Pred Value
                                     0.9997
                                              0.9994
                           0.9996
                                                        0.9991
                                                                 0.9997
## Prevalence
                           0.2845
                                     0.1935
                                              0.1744
                                                        0.1639
                                                                 0.1838
## Detection Rate
                           0.2842
                                     0.1932
                                              0.1738
                                                        0.1631
                                                                 0.1835
## Detection Prevalence
                           0.2845
                                     0.1937
                                              0.1744
                                                        0.1634
                                                                  0.1840
## Balanced Accuracy
                           0.9994
                                     0.9990
                                              0.9982
                                                        0.9975
                                                                  0.9990
```

Out of Sample Error

Out of sample error for Random Forest is:

```
print((1 - C1$overall[1]) * 100)

## Accuracy
## 0.1784349
```

Out of sample error for Decision Tree is:

```
print((1 - C2$overall[1]) * 100)

## Accuracy
```

```
Predictin Result
```

0.2039256

Predicting the result using Random Forest models because of the lower out of sample error.

predResult <- predict(modelRf, newdata = filteredTestData)
print(predResult)</pre>

[1] B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E