Assignment 1

CS7.601 Deep Learning: Theory and Practices Spring 2020

Submission Deadline: 5.00 PM, 18/02/2020 Submission Venue: F-20, Machine Learning Lab, KRB, IIIT-H

Instructions

- All questions are compulsory to solve.
- Total marks are 35.
- Only handwritten submissions are allowed.

Problems

Problem 1. [8 Marks] Anti-symmetric sigmoidal activation function can be described as follows.

$$f(net) = a \tanh(b net) = a \frac{[1 - e^{b net}]}{[1 + e^{b net}]}$$
$$= \frac{2a}{1 + e^{b net}} - a \tag{1}$$

Show that the Anti-symmetric sigmoidal activation function acts to transmit the maximum information if its inputs are distributed normally. Recall that the entropy (a measure of information) is defined as $H = -\int p(y) \log p(y) dy$.

- 1. Consider a continuous input variable x drawn from the density $p(x) \sim \mathcal{N}(0, c^2)$ (normal distribution with mean 0 and variance c^2). What is entropy for this distribution? [2 Marks]
- 2. Suppose samples x are passed through an anti-symmetric sigmoidal function to give y = f(x), where the zero crossing of the sigmoid occurs at the peak of the Gaussian input, and the effective width of the linear region of sigmoidal equals to the range -c < x < c. What are the values of a and b in Eq.1 insures this? [2 Marks]
- 3. Calculate the entropy of the output distribution p(y). [2 Marks]

4. Suppose instead that the transfer function were a Dirac delta function $\delta(x-\theta)$. What is the entropy of the resulting output distribution p(y)? [2 Marks]

Problem 2. [3 Marks] Consider the sigmoidal transfer function described in Eq.1.

- 1. Show that its derivative f'(net) can be written simply in terms of f(net) itself. [1 Mark]
- 2. What are f(net), f'(net) and f''(net) at $net = -\infty$, $0, \infty$? [1 Mark]
- 3. For which value of net is the second derivative f''(net) extremal? [1 Mark]

Problem 3. [3 Marks] Consider a standard three-layer back-propagation net with d input units, n_H hidden units, c output units, and bias. Let the activation function used be antisymmetric sigmoid (Eq.1).

- 1. How many weights are in the net?[1 Mark]
- 2. Consider the symmetry in the value of the weights. In particular, show that if the sign is flipped on every weight, the network function is unaltered. [2 Marks]

Problem 4. [8 Marks] Assume that the criterion function $J(\mathbf{w})$ is well described to second order by a Hessian matrix H.

- 1. Show that convergence of learning is assured if the learning rate obeys $\eta < \frac{2}{\lambda_{max}}$, where λ_{max} is the largest eigenvalue of H. [3 Marks]
- 2. Show that the learning time is thus dependent upon the ratio of the largest to the smallest non-negligible eigenvalue of H. [3 Marks]
- 3. Explain why "standardizing" the training data can therefore reduce learning time. [2 Mark]

Problem 5. [6 Mark)] Consider a quadratic error function of the form

$$E = E_0 + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T H(\mathbf{w} - \mathbf{w}^*)$$

where \mathbf{w}^* represents the minimum, and the Hessian matrix H is positive definite and constant. Suppose the initial weight vector $\mathbf{w}^{(0)}$ is chosen to be at the origin and is updated using simple gradient descent

$$\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \rho \nabla E$$

where τ denotes the iteration number, and ρ is the learning rate (which is assumed to be small).

1. Show that, after τ steps, the components of the weight vector parallel to the eigenvectors of H can be written

$$w_i^{(\tau)} = \{1 - (1 - \rho \eta_j)^{\tau}\} w_i^*$$

where $w_j = \mathbf{w}^T \mathbf{u}_j$, and \mathbf{u}_j and η_j are the eigenvectors and eigenvalues, respectively, of H so that $H\mathbf{u}_j = \eta_j \mathbf{u}_j$. [2 Marks]

- 2. Show that as $\tau \to \infty$, this gives $\mathbf{w}^{(\tau)} \to \mathbf{w}^*$ as expected, provided $|1 \rho \eta_j| < 1$. [2 Marks]
- 3. Now suppose that training is halted after a finite number τ of steps. Show that the components of the weight vector parallel to the eigenvectors of the Hessian satisfy (a) $w_i^{(\tau)} \simeq w_j^*$ when $\eta >> (\rho \tau)^{-1}$, (b) $|w_j^{(\tau)}| << |w_j^*|$ when $\eta << (\rho \tau)^{-1}$. [2 Marks]

Problem 6. [2 Marks] Show that if the transfer function of the hidden units is linear, a three-layer network is equivalent to a two-layer one. Explain why, therefore, that a three-layer network with linear hidden units cannot solve a non-linearly separable problem such as XOR or *n*-bit parity.

Problem 7. [5 Marks]

- 1. Let \mathcal{F} be a finite function class. Then VC-dimension of \mathcal{F} is less than or equal to $\log |\mathcal{F}|$. [1 Mark]
- 2. Let M_n denotes the hypothesis space of monomial concepts defined on $\{0,1\}^n$. Find the upper bound on the VC dimension of M_n . Also, find the lower bound on the VC dimension of M_n . [2 Marks]
- 3. Let \mathcal{F} represents all rectangle shaped classifiers in 2 dimension. Show that the VC-dimension of \mathcal{F} is 4. [2 Mark]