R. 402

Transmissions Numériques Avancées

Synoptique d'une chaîne de transmission numérique

Support physique:

- câble,
- fibre optique,
- atmosphère.

Chaîne de transmission

- Source analogique
- Numérisation
- Compression
- Cryptage
- Code correcteur
- Mise en forme / modulation
- Multiplexage

- Décodeur de source
- Unité de décryptage
- Décodeur canal
- Détecteur
- Démodulateur
- Contrôleur d'accès
- Récepteur

Deux étapes supplémentaires

- Accès multiple (multiplexage): gestionnaire d'accès à la ressource de communication; partage de la ressource avec d'autres sources d'information.
- Spread Spectrum : dispositif à étalement de spectre, transforme un signal de largeur de bande B en signal de largeur de bande B_{ss} très grande devant B.

- I. La ligne de transmission sans support physique, présentation et problèmes
- II. Multiplexage
- III. Étalement de spectre OFDM et CDMA
- IV. Principe du MIMO

La ligne de transmission sans support physique

L'air

- Pas de support physique, le support de transmission est immatériel.
- Rayons infrarouges;
- Rayons lasers;
- Ondes électromagnétiques :
 - Transmission longues distances,
 - Transmission courtes distances,
 - Transmission par satellites.

Infra-rouge

- Télécommandes ;
- 36 ou 38 kHz;
- Pour des distances < 1 km ;
- Pas d'obstacle au faisceau ;
- Solution la moins coûteuse lorsqu'il n'y a pas la possibilité d'établir une ligne.

Courtes distances

- GSM (~1,5 GHz), Wifi (~3 GHz);
- Puissance d'émission faible ;
- Sur 100 300 m jusqu'à qques km.

Longues distances

- Paraboles d'émission et de réception en hauteur;
- Un faisceau hertzien entre 2 antennes en vue directe => plusieurs km.

Satellites

- Satellites géostationnaires (36000 km);
- Temps de transmission non négligeables (200 à 300 ns);
- Avec des fréquences autour de 5 GHz.

Le spectre des fréquences

Cf tableau ANFR Spectre des fréquences

Le spectre des fréquences

- 900 MHz bande historique du GSM
- 1800 MHz bande d'extension du GSM
- 2,1 GHz bande UMTS
- Pour la 4G, en plus :
 - 2,6 GHz (anciennement armée)
 - 800 MHz (anciennement télévision analogique)

Le spectre des fréquences

- Pour la 5G, en plus :
 - 3400 . 3800 MHz (3,5 GHz)
 - Bientôt 26 GHz

Les problèmes posés par la ligne de transmission sans support physique

Atténuation

- Commune à TOUS les supports de transmission.
- Mais plus ou moins problématique ...
 - autour de 18 dB/100 m à la fréquence
 f = 800 MHz pour un câble coaxial;
 - 0,2 dB/100 km pour une fibre optique!
- Non mesurable pour une transmission hertzienne!

Atténuation

 La puissance reçue, en espace libre, s'exprime :

$$P_r(d) = P_e G_e G_r \left(\frac{\lambda}{4\pi d}\right)^2$$

- Donc l'atténuation
 - est proportionnelle au carré de la distance (en LOS : Line Of Sight) ;
 - augmente avec la fréquence du signal transmis.

Réflexion d'une OEM

 C'est le brusque changement de direction de l'onde à l'interface de deux milieux.

Réfraction d'une OEM

 Toute l'énergie de l'OEM n'est pas obligatoirement réfléchie par l'obstacle.

Diffusion

 Elle est générée par un ensemble d'objets de forme irrégulière (surfaces rugueuses, meubles, véhicules, arbres ...)

Elle entraîne une atténuation du signal reçu.

Réflexion: trajets multiples

- Les trajets de propagation n'ont pas la même longueur.
- L'onde se propage à la vitesse $C = 3.10^8 \,\text{m/s}$
- Le récepteur reçoit le signal au bout d'un temps Δt = distance parcourue / C
- Le récepteur ne verra pas les impulsions en même temps!

- Différence de temps de propagation :
 - de 3 à 6 μs en milieu urbain,
 - jusqu'à 20 μs à la campagne
 - Interférences entre symboles si la durée d'un symbole est petite devant la durée du retard ;

- Différence de temps de propagation :
 - de 3 à 6 μs en milieu urbain,
 - jusqu'à 20 μs à la campagne
 - Interférences entre symboles si la durée d'un symbole est petite devant la durée du retard ;
 - > Pour y remédier : augmenter la durée d'un symbole.

Fading de Rayleigh :

- Fading de Rayleigh :
 - résulte des variations aléatoires des phases dans le temps ;
 - évanouissement de l'amplitude tous les $\lambda/2$;
 - en fonction de la fréquence du signal émis,
 l'amplitude du signal reçu sera différente.
- Le signal reçu peut varier de 40 dB autour du signal moyen;

- Fading de Rayleigh :
 - résulte des variations aléatoires des phases dans le temps ;
 - évanouissement de l'amplitude tous les $\lambda/2$;
 - En fonction de la fréquence du signal émis, l'amplitude du signal reçue sera différente.
- Le signal reçu peut varier de 40 dB autour du signal moyen;
 - > Pour y remédier : diversité en fréquence et diversité spatiale.

Trajets multiples

Pas seulement des inconvénients!

 Ils permettent que la communication soit possible même lorsque l'émetteur et le récepteur ne sont pas en vision

directe!

Adaptation des signaux aux supports

- Le spectre du signal doit être compris dans la bande passante du canal;
- La transmission d'un signal à spectre étroit sur un support à large bande passante provoque une sous utilisation des supports de transmission.
- Et elle peut entraîner aussi une perte quasicomplète du signal!

Multiplexage

Intéret

Le multiplexage permet d'augmenter le débit sur un canal en faisant circuler plusieurs signaux sur le même canal.

1. Introduction Différents types de multiplexage

Multiplexage Fréquentiel

- FDMA: Frequency Division Multiple Access
- AMRF : Accès Multiple par Répartition en Fréquence
- Application : bouquet numérique de chaînes de télévision

Multiplexage Fréquentiel

Multiplexage par longueur d'ondes

- WDM: Wavelenght Division Multiplexing
- Sur Fibre Optique.
- Chaque « couleur » transporte un signal.
- Permet d'augmenter le débit sur une fibre optique en faisant circuler plusieurs signaux de longueurs d'onde différentes sur une seule fibre

Multiplexage Temporel

- TDMA: Time Division Multiple Access
- AMRT : Accès Multiple par Répartition dans le Temps
- Application: GSM, MIC 30 (téléphonie fixe)

Principe du multiplexage temporel

0	1	0	0	0	1	0	0	1	0	1	1	0	1	1	1	0	1	0	0	1	
1	0	1	0	0	1	0	0	1	0	1	0	1	0	1	1	1	1	0	1	0	
1	0	0	1	0	0	1	1	0	0	1	0	1	0	1	0	1	1	0	1		

t

Principe du multiplexage temporel

0	1	0		0	0	1	0	0	1	0	1	1	0	1	1	1	0	1	0	0	1.	
1	0	1		0	0	1	0	0	1	0	1	0	1	0	1	1	1	1	0	1	0.	••
1	0	0		1	0	0	1	1	0	0	1	0	1	0	1	0	1	1	0	1		
0100	010001001101001001100100110																					

t

Principe du multiplexage temporel

IV

Etalement de spectre

Principe

 Un signal à bande étroite avec une concentration élevée de l'information est transformé en un signal à bande large avec une basse concentration de l'information.

Pourquoi?

 A cause du fading de Rayleigh, le signal reçu, à une certaine fréquence, peut être d'amplitude très faible voire nulle.

Pourquoi?

- Seule une petite partie du signal est perdue ;
- On pourra reconstituer le message à partir de la « grande » partie récupérée.

Deux types d'étalement de spectre

- Étalement par multiplication de fréquence
 - OFDM (Orthogonal Frequency Division Multiplexing)
- Étalement par séquence directe
 - CDMA (Code Division Multiple Access)

1. OFDM

- Transmettre simultanément plusieurs symboles en parallèle sur différentes porteuses.
- Application :
 - radiodiffusion numérique : DAB (Digital Audio Broadcasting) et DVBT (Digital Video Broadcasting Terrestrial)
 - Wireless LAN (IEEE 802.11), Wimax (IEEE 802.16)
 - Téléphonie mobile 4G (LTE), 5G

Principe de l'OFDM Exemple

- OFDM avec une modulation QPSK :
- Les bits sont regroupés par paquets, chaque paquet est modulé avec une porteuse différente, on envoie la somme de chacun de ces signaux.

Fréquences orthogonales

• Le spectre du signal modulé s'annule pour $f = f_P \pm k / T_U = f_P \pm k R$

•
$$\Delta f = 1 / T_U = R$$

Spectre du signal OFDM

Intérêt de l'OFDM

- Le débit pour chaque porteuse diminue ;
- La durée du symbole devient grande devant la différence de temps de propagation entre tous les chemins;
- Les IES sont largement diminués.

Intérêt de l'OFDM Diminution des IES

Intérêt de l'OFDM Diminution des IES

Intérêt de l'OFDM

 On rajoute éventuellement un Intervalle de Garde, il doit être plus grand que le plus grand des retards.

Mais alors le débit diminue !

• Avant $D = qN/T_{U}$

• Après $D = qN / (T_u + \Delta)$

Entrelacement fréquentiel

- Entrelaceur : table qui fait correspondre à chaque bit une position sur une porteuse donnée.
- Sélectivité en fréquence : le signal porté par une porteuse risque d'être plus dégradé que le signal porté par une deuxième porteuse.

Entrelacement fréquentiel

Codage convolutionnel de rendement ½ : chaque donnée indicée i produit 2 données indicées i et i2.

Entrelacement très simple : les indices 3i, 3i+1, 3i+2 sont regroupés

Dans cet exemple, a₃₁ et a₄₂ sont très affaiblis, mais peuvent être retrouvés au décodage du code convolutif grâce a₃₂ et a₄₁ qui sont dans une zone d'amplifacation

Amélioration: OFDMA

- Même principe que l'OFDM mais avec accès multiple.
- En LTE (Long Term Evolution) avec 1200 porteuses.
 - Durée IG de 4,7 μs pour des petites cellules, jusqu'à 16,6 μs.
 - Débit de données 3 à 4 fois plus grand qu'avec l'UMTS; du coup, on peut utiliser des codes correcteurs d'erreurs plus performants.

Amélioration: OFDMA

2. CDMA

Principe du CDMA

 Chaque bit d'information est remplacé par une série de chips.

Intérêts du CDMA (1)

• Si la série comporte 10 chips, le débit est multiplié par 10 ; l'occupation spectrale est aussi multipliée par 10 !

Intérêts du CDMA (2)

 En utilisant des codes orthogonaux, on peut transmettre en même temps des signaux différents.

Exemples de codes

• Code 1:

$$-$$
 +1 +1 +1 +1

• Code 2:

$$-$$
 +1 -1 +1 -1

• Code 3:

$$-$$
 + 1 +1 -1 -1

• Code 4:

$$-$$
 +1 -1 -1 +1

Intérêts du CDMA (2)

- En utilisant des codes orthogonaux, on peut transmettre en même temps des signaux différents.
- En réception, on multiplie le signal reçu par le code : tous les autres signaux (y compris les interférences) sont étalés et donc sont assimilables à du bruit.

Intérêts du CDMA (3)

- Lutte contre les brouilleurs ;
- Camoufle l'information :
 - Interception délicate,
 - Décodage difficile si le code n'est pas connu.

V

Principe du MIMO

Définitions

- MIMO : Multiple Input Multiple Output
- SISO: Single Input Single Output
- SIMO (DISO), MISO.

Principe

- C'est la réponse au problème des trajets multiples (fading de Rayleigh)
- Utilisation de plusieurs antennes au niveau du point d'accès ; on commute alors sur l'antenne qui procure le signal le plus élevé.
- Amélioration : MRC (Maximum Ratio Combining)

Longueur d'ondes

• $\lambda = C / f$

- f = 900 MHz; $\lambda = 33 \text{ cm}$
- f = 1800 MHz; $\lambda = 16.6 \text{ cm}$
- f = 2100 MHz; $\lambda = 14,3 \text{ cm}$
- f = 2.4 GHz; $\lambda = 12.5 \text{ cm}$

Différentes techniques à l'émission

- Diversité spatiale : on transmet simultanément un même message sur différentes antennes à l'émission.
- Multiplexage spatial : chaque message est découpé en sous-messages, on transmet simultanément les différents sous-messages sur chacune des antennes.
- Un mix des 2!

Comment encore améliorer la transmission?

Modulation Adaptive

- AMC : Adaptive Modulation Codage
- Elle consiste à faire varier de manière dynamique certains paramètres d'un lien de communication afin d'atteindre un débit de transmission maximal.

AMC, les paramètres modifiables

- La modulation utilisée (valence);
- Le type et les différents paramètres du code correcteur d'erreurs;
- La durée des symboles ;
- La puissance d'émission.

Schéma d'un lien de communication adaptatif

Attention!

Ne peut fonctionner que si le canal ne varie pas vite dans le temps, si ses paramètres sont stables dans le temps.