Fouilles de données et Medias sociaux

Master 2 DAC - FDMS

Sylvain Lamprier

UPMC

Fouille de Données et Media Sociaux

Classification / Etiquetage dans les Réseaux

Classification / Etiquetage dans les Réseaux

- Classification classique
 - Hypothèse de données i.i.d.
 - Corrélations entre les labels des objets et leurs attributs observés
- Dans les réseaux:
 - Corrélations entre les labels des objets et leurs attributs observés;
 - Corrélations entre les labels des objets et les attributs des objets de leur entourage (objets qui leur sont connectés);
 - Corrélations entre les labels des objets interconnectés.
 - ⇒ Abandon de l'hypothèse i.i.d.

Classification / Etiquetage dans les Réseaux

Modèles relationnels et inférence collective :

- De gauche à droite :
 - Modèle intrinsèque : les attributs d'un élément ne dépendent que de sa classe;
 - Modèle relationnel : les attributs d'un élément dépendent de la classe de cet élément et de celles des éléments connectés (distants d'au maximum L liens);
 - Modèle collectif : les attributs d'un élément dépendent de sa classe, elle même dépendante des classes des éléments connectés :
 - Modèle relationnel collectif: les attributs d'un élément dépendent de sa classe et de celles de son entourage, les labels de ces objets étant eux-mêmes interdépendants:

- Modèles relationnels
 - Initialement prévus pour modéliser des objets relationnels

- ⇒ Comment aggréger les attributs relationnels ?
- ⇒ Comment représenter les dépendences entre les attributs ?

- Modèles relationnels
 - Dépendances probabilistes entre attributs d'objets relationnels
 - ⇒ Réseau Bayésien

$$\begin{split} P(\mathcal{I} \mid \sigma, \mathcal{S}, \theta_{\mathcal{S}}) &= \\ \prod_{X_i} \prod_{A \in \mathcal{A}(X_i)} \prod_{x \in \mathcal{O}^{\sigma}(X_i)} P(\mathcal{I}_{x.a} \mid \mathcal{I}_{\mathbf{Pa}(x.a)}) \end{split}$$

- Modèles relationnels: application aux réseaux
 - Dépendances probabilistes entre noeuds
 - ⇒ Réseau Bayésien

Classification dans les réseaux: Modèles relationnels

- Modèle relationnel probabiliste (PRM) pour la classification dans les réseaux [McDowell & Aha, 2013]
 - Extension de Naive Bayes aux objets relationnels
 - Hypothèse d'indépendence des attributs \vec{x}_i de i et de ceux de son voisinage $X_{\mathcal{N}_i}$ conditionnellement à sa classe y_i :

$$\begin{split} p(y_i|\vec{x_i}, X_{\mathcal{N}_i}) &= p(y_i) \frac{p(\vec{x_i}, X_{\mathcal{N}_i}|y_i)}{p(\vec{x_i}, X_{\mathcal{N}_i})} \\ &= p(y_i) \frac{p(\vec{x_i}|y_i)}{p(\vec{x_i}, X_{\mathcal{N}_i})} \prod_{v_j \in \mathcal{N}_i} p(\vec{x_j}|y_i) \\ &\propto p(y_i) p(\vec{x_i}|y_i) \prod_{v_i \in \mathcal{N}_i} p(\vec{x_j}|y_i) \end{split}$$

Classification dans les réseaux: Modèles relationnels

- Modèle relationnel probabiliste (PRM) pour la classification dans les réseaux [McDowell & Aha, 2013]
 - Extension de Naive Bayes aux objets relationnels
 - Hypothèse d'indépendence des attributs \vec{x}_i de i et de ceux de son voisinage $X_{\mathcal{N}_i}$ conditionnellement à sa classe y_i :

$$\begin{split} p(y_i|\vec{x_i}, X_{\mathcal{N}_i}) &= p(y_i) \frac{p(\vec{x_i}, X_{\mathcal{N}_i}|y_i)}{p(\vec{x_i}, X_{\mathcal{N}_i})} \\ &= p(y_i) \frac{p(\vec{x_i}|y_i)}{p(\vec{x_i}, X_{\mathcal{N}_i})} \prod_{v_j \in \mathcal{N}_i} p(\vec{x_j}|y_i) \\ &\propto p(y_i) p(\vec{x_i}|y_i) \prod_{v_j \in \mathcal{N}_i} p(\vec{x_j}|y_i) \end{split}$$

⇒ Mais si les attributs ne sont pas indépendants ?

Dans les réseaux sociaux

⇒ Et si les classes des noeuds connectés ne sont pas indépendantes ?

Classification dans les réseaux: Modèles relationnels

Représentation de dépendances non-dirigées

- Modèles graphiques :
 - Réseaux de Markov relationnels (Relational Markov Random Fields)
 - Probabilité d'une instanciation X:

$$P(X=x) = \frac{1}{Z} \prod_{k} \phi_{k}(x_{k})$$

Avec trois cliques ABD, DE et EC de potentiel ϕ

- Réseaux de dépendance relationnels
 - Probabilité d'une instanciation X:

$$P(X = x) = P(A = x_A | x_B, x_D) \times P(B = x_B | x_A, x_D)$$

 $\times P(C = x_C | x_E) \times P(D = x_D | x_A, x_B, x_E) \times P(x_E | x_D, x_C)$

Fouille de Données et Media Sociaux

Inférence Collective

Classification dans les réseaux: Inférence Collective

- Inférence Collective [Sen et al., 2008]
 - Processus itératif d'étiquetage de graphe
 - Dépendence entre les labels
 - Modèles transductifs généralement

- Modèles d'inférence collective :
 - Iterative Classification (ICA)
 - Gibbs sampling
 - Loopy belief propagation
 - Modèle de Propagation de labels régularisé

Classification dans les Réseaux: Inférence collective

Graphe partiellement étiqueté (deux étiquettes)

Graphe étiqueté sans prise en compte de la structure

Graphe étiqueté avec prise en compte de la structure

Fouille de Données et Media Sociaux

Inférence Collective:ICA

- Iterative Classification
 - Aggrège les labels des noeuds connectés
 - Différents types d'aggrégation: Mode, Count, Proportion, etc...

- Apprend un classifieur selon les labels connus
- Etiquetage des noeuds i selon leurs attributs et leur voisinage \mathcal{N}_i

Algorithm 1 Iterative Classification Algorithm (ICA)

```
For each node Y_i \in \mathcal{Y} do // bootstrapping // compute label using only observed nodes in \mathcal{N}_i compute \vec{a}_i using only \mathcal{X} \cap \mathcal{N}_i y_i \leftarrow f(\vec{a}_i) end for repeat // iterative classification generate ordering \mathcal{O} over nodes in \mathcal{Y} for each node Y_i \in \mathcal{O} do // compute new estimate of y_i compute \vec{a}_i using current assignments to \mathcal{N}_i y_i \leftarrow f(\vec{a}_i) end for
```

until all class labels have stabilized or a threshold number of iterations have elapsed

Inférence Collective: ICA multi-relations

Cas Multi-Relations

Inférence Collective: ICA multi-labels multi-relations

IMMCA [Peters et al., 2012] = Iterative Multi-Labels Multi-Relational Classification

```
Algorithm 1 IMMCA Inference algorithm
  1: procedure Inference(\mathcal{G}, \mathcal{L})
          for all n_i \in \mathcal{N}_u, l \in \mathcal{L} do
                                                                  ▶ Intialization
               y_i^{l,(t)} \leftarrow random
 3:
          end for
 4.
          t \leftarrow 1
 5.
          while t \leq maxt do
                                                           Choose n_i \in \mathcal{N}_u at random
               for all l \in \mathcal{L} do \triangleright Compute scores for all labels
 8:
                    y_i^{l,(t)} \leftarrow f_{\theta}(n_i, l, \mathcal{S}^{(t-1)}(n_i))
 9.
10:
               end for
11:
               for all n_i \neq n_i, l \in \mathcal{L} do
                    y_i^{l,(t)} \leftarrow y_i^{l,(t-1)}
12:
13:
               end for
```

 $t \leftarrow t + 1$

return $\{y_i^{l,(maxt)}\}_{n_i \in \mathcal{N}}$

end while

17: end procedure

14:

15:

- Inférence collective par ICA
 - Étiquetage du graphe avec prise en compte locale de dépendances connues
 - Basé sur un modèle de dépendances f entre éléments connectés
- Comment apprendre le modèle de dépendances?
 - Apprentissage a priori
 - Modèle fixe
 - Requiert une large part de labels connus
 - Biais d'apprentissage: pas représentatif des situations d'inférence

- Inférence collective par ICA
 - Étiquetage du graphe avec prise en compte locale de dépendances connues
 - Basé sur un modèle de dépendances f entre éléments connectés
- Comment apprendre le modèle de dépendances?
 - Apprentissage itératif ?
 - Prise en compte des étiquettes inférées
 - ⇒ Propagation des connaissances
 - Réduction du biais d'apprentissage: situations en apprentissage et en inférence mieux connectées
 - .. Mais risque de divergence

Simulated ICA Learning algorithm [Maes et al., 2009]

```
Input: A labeled graph (G, Y)
Input: A learning algorithm A
Output: A classifier f
repeat
    // Bootstrapping
    foreach x_i \in X do
        compute \vec{a}_i using current assignments to \mathcal{N}_i
        y_i \leftarrow f(\vec{a}_i)
    end
    // Iterative Classification
    repeat
        Generate ordering O over nodes of G.
        for
each i \in \mathcal{O} do
             compute \vec{a}_i using current assignments to \mathcal{N}_i
             y_i \leftarrow f(\vec{a}_i)
             submit training example (\vec{a}_i, y_i) to A
    until iterative classification terminates
until learning has converged or a threshold number of iterations have elapsed
return the classifier trained by A
```

Fouille de Données et Media Sociaux

Inférence Collective: Gibbs Sampling

- Gibbs Sampling
 - Processus d'échantillonnage itératif permettant de tirer aléatoirement un élément de Ω selon une loi jointe multivariée π
 - Couramment utilisé lorsqu'un tirage direct est trop complexe
 - Idée : Il est plus simple d'échantillonner à partir d'une distribution conditionnelle que considérer l'integration de la loi jointe

$$p(x_j|x_1,...,x_{j-1},x_{j+1},...,x_n) = \frac{p(x_1,...,x_n)}{p(x_1,...,x_{j-1},x_{j+1},...,x_n)} \propto p(x_1,...,x_n)$$

- \Rightarrow A partir d'un état courant, \vec{x} :
 - \bigcirc On choisit une variable x_i aléatoirement
 - On tire une nouvelle valeur v pour x_j proportionnellement à la propabilité conditionnelle : $p(x_i = v | x_1, ..., x_{j-1}, x_{j+1}, ..., x_n)$

Application à un réseau de dépendances locales

- Estimation de probabilité postérieure par Gibbs Sampling
- Deux phases
 - Periode de *burn-in* durant laquelle on tire itérativement de nouvelles valeurs pour les variables de \vec{x}
 - Objectif: Atteindre un échantillon probable selon la loi jointe
 - Période de comptage durant laquelle on compte les affectations successives des valeurs des variables de \vec{x}
 - Les compteurs d'affectation permettent finalement d'estimer les probabilité d'observation des différentes valeurs possibles pour chaque variable de x
- Inférence collective par Gibbs Sampling
 - On cherche à estimer les probabilités des différents labels pour les noeuds du graphe
 - Sampling des valeurs par échantillonages successifs des labels conditionnellement à tous les voisins dans le graphe

Algorithm 1: Collective Gibbs Sampling Algorithm

```
1 // Bootstrap
 2 for each node x_i \in \mathcal{X} do
         v_i \leftarrow \text{Sample uniformly } I \text{ from } \mathcal{L}
 4 end
 5 // Burn-in
 6 for it = 1 to nbltBurnIn do
         for each node x_i \in \mathcal{X} do
               y_i \leftarrow \text{Sample } I \text{ from } \mathcal{L} \text{ w.r.t. } P_{\theta}(y_i = I \mid x_i, Y \setminus y_i)
         end
10 end
11 // Init counts
12 for each node x_i \in \mathcal{X} do
         for each label l \in \mathcal{L} do
               c[i, I] \leftarrow 0
          end
16 end
17 // Collect Samples
18 for it = 1 to nblt do
         for each node x_i \in \mathcal{X} do
              y_i \leftarrow \text{Sample } I \text{ from } \mathcal{L} \text{ w.r.t. } P_{\theta}(y_i = I \mid x_i, Y \setminus y_i)
20
              c[i, y_i] \leftarrow c[i, y_i] + 1
21
          end
22
23 end
24 // Compute Posteriors
25 for each node x_i \in \mathcal{X} do
         for each label l \in \mathcal{L} do
               c[i, y_i] \leftarrow c[i, y_i]/nblt
27
          end
29 end
```

- Algorithme très proche de ICA mais :
 - Non déterministe (sampling)
 - Prise en compte de la vraissemblance des voisins:

$$P_{\theta}(y_{i} = I \mid X, Y \setminus y_{i}) \propto P_{\theta}(y_{i} = I, Y \setminus y_{i} \mid X)$$

$$f_{\theta}(I, x_{i}, Y(\mathcal{N}_{i})) \prod_{j \in \mathcal{N}_{i}} f_{\theta}(y_{j}, x_{j}, Y(\mathcal{N}_{j} \setminus i) \cup \{y_{i} = I\})$$

$$\propto \frac{\sum_{l' \in \mathcal{L}} f_{\theta}(l', x_{i}, Y(\mathcal{N}_{i})) \prod_{j \in \mathcal{N}_{i}} \sum_{l' \in \mathcal{L}} f_{\theta}(l', x_{j}, Y(\mathcal{N}_{j} \setminus i) \cup \{y_{i} = I\})}{f_{\theta}(I', x_{i}, Y(\mathcal{N}_{i})) \prod_{j \in \mathcal{N}_{i}} \sum_{l' \in \mathcal{L}} f_{\theta}(I', x_{j}, Y(\mathcal{N}_{j} \setminus i) \cup \{y_{i} = I\})}$$

Avec par exemple $f_{\theta}(l, x_i, Y) = <\theta, \vec{a}_i > \text{où } \vec{a}_i \text{ est une}$ représentation vectorielle du noeud i et de l'étiquetage de son voisinage (comme dans ICA).

Algorithm 2: Collective Gibbs Sampling with iterative learning

```
1 // Bootstrap
 2 for each node x_i \in \mathcal{X} do
          v_i \leftarrow \text{Sample uniformly } I \text{ from } \mathcal{L}
 4 end
 5 // Burn-in
 6 for it = 1 to nbltBurnIn do
          for each node x_i \in \mathcal{X} do
               y_i \leftarrow \text{Sample } I \text{ from } \mathcal{L} \text{ w.r.t. } P_{\theta}(y_i = I \mid x_i, Y \setminus y_i)
          end
 9
         // Likelihood maximization
          \theta = \operatorname{arg\,max} P_{\theta'}(Y|X)
11
12 end
13 // Init counts
14 for each node x_i \in \mathcal{X} do
          for each label l \in \mathcal{L} do
               c[i, I] \leftarrow 0
17
          end
18 end
19 // Collect Samples
20 for it = 1 to nblt do
          for each node x_i \in \mathcal{X} do
21
              y_i \leftarrow \text{Sample } I \text{ from } \mathcal{L} \text{ w.r.t. } P_{\theta}(y_i = I \mid x_i, Y \setminus y_i)
22
              c[i, y_i] \leftarrow c[i, y_i] + 1
24
          end
25 end
26 // Compute Posteriors
27 for each node x_i \in \mathcal{X} do
          for each label l \in \mathcal{L} do
28
               c[i, y_i] \leftarrow c[i, y_i]/nblt
29
30
          end
31 end
```

Fouille de Données et Media Sociaux

Inférence Collective: Loopy Belief Propagation

- Inférence dans Markov Random Field
 - Réseau de Markov = Graphe de dépendances non dirigées
 - Dépendances plus complexes que les modèles précédents

Découpage en cliques : ABD, DE et EC

• Probabilité d'une instanciation *X*:

$$P(X=x) = \frac{1}{Z} \prod_{k} \phi_{k}(x_{k})$$

- x_k est l'instantiation de la k-ième clique du graphe
- φ_k est la fonction potentiel définie pour cette clique k (compatibilité des éléments d'une instantiation de cette clique)
- $Z = \sum_{x \in X} \prod_k \phi_k(x_k)$ est une constante de normalisation calculée sur toutes les configurations possibles X

Relationnal Markov Random Field

- Application aux données relationnelles [Taskar et al., 2007]
 - ullet On définit un ensemble de templates de cliques ${\mathscr C}$

Exemple:

```
SELECT d1.label, d2.label
FROM doc d1, doc d2
WHERE link.from = d1
AND
link.to = d2;
```

- Pour chaque template de clique $C \in \mathscr{C}$
 - On calcule les cliques $c \in C$
 - On définit le potentiel $\phi_C(x_c)$ qui retourne la compatibilité des valeurs attribuées pour les noeuds d'une clique c
- On pose alors la probabilité d'un étiquetage y par :

$$P(X=x) = \frac{1}{Z} \prod_{C \in \mathscr{C}} \prod_{C \in C} \phi_C(x_C)$$

- $Z = \sum_{x \in X} \prod_{C \in \mathscr{C}} \prod_{c \in C} \phi_C(x_c)$ est la constante de normalisation calculée sur toutes les configurations possibles X
- $\phi_C(x_C)$ peut être de la forme $exp(< w, g(x_C)>)$, afin de ré-ecrire P(X=x) sous forme d'un modèle log-linéaire

pairwise Markov Random Field

- pairwise Markov Random Field
 - On connait des valeurs de potentiel (apprises a priori) pour:
 - Les priors de étiquettes
 - Les adéquations du contenu avec les labels
 - Des compatibilités label-label pour les noeuds connectés
 - On pose p(y|x) la probabilité d'un étiquetage y parmi l'ensemble des étiquetages possibles pour les labels non observés des noeuds de x:

- Belief Propagation
 - Inventé dans [Pearl, 1982] pour le calcul de probabilités marginales dans les arbres
 - Algorithme de passage de messages entre variables suivant une loi jointe
 - Croyance d'une variable de l'etat dans lequel doit être une variable liée
- Loopy Belief Propagation
 - Application de Belief Propagation dans les graphes généraux
 - Approximation de marginales dans les Bayesian Networks ou Markov Random Fields

Application au pairwise Markov Random Field :

- $m_{i \to j}(y_j)$: message de Y_i à Y_j sur sa croyance de la classe y_j pour le noeud Y_j
- $b_i(y_i)$: "belief" (croyance) de la classe y_i pour le noeud Y_i = probabilité marginale $p(Y_i = y_i)$

Algorithm 3 Loopy belief propagation (LBP)

```
for each (Y_i, Y_i) \in E(G) s.t. Y_i, Y_i \in \mathcal{Y} do
    for each y_i \in \mathcal{L} do
       m_{i \to j}(y_i) \leftarrow 1
   end for
end for
repeat // perform message passing
    for each (Y_i, Y_i) \in E(G) s.t. Y_i, Y_i \in \mathcal{Y} do
        for each y_i \in \mathcal{L} do
           m_{i \to j}(y_j) \leftarrow \alpha \sum_{y_i} \psi_{ij}(y_i, y_j) \phi_i(y_i) \prod_{Y_k \in \mathcal{N}_i \cap \mathcal{Y} \setminus Y_i} m_{k \to i}(y_i)
        end for
   end for
until all m_{i\rightarrow j}(y_i) stop showing any change
for each Y_i \in \mathcal{Y} do // compute beliefs
    for each y_i \in \mathcal{L} do
        b_i(y_i) \leftarrow \alpha \phi_i(y_i) \prod_{Y_i \in \mathcal{N}_i \cap \mathcal{Y}} m_{j \to i}(y_i)
   end for
end for
```

Relationnal Markov Random Field

- Relationnal Markov Random Field : Apprentissage
 - $\phi_C(x_c)$ peut être de la forme $exp(< w, g(x_c) >)$:

$$\log P(X=x) = \sum_{C \in \mathscr{C}} \sum_{c \in C} \langle w, g(x_c) \rangle - \log Z$$

Avec un prior sur les paramètres

$$p(w_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-w_i^2/2\sigma^2}$$
, le MAP est donné par :

$$L = \sum_{C \in \mathscr{C}} \sum_{C \in C} \langle w, g(x_C) \rangle - \log Z - \frac{||w||_2^2}{2\sigma^2} + C$$

Modèle log-linéaire dont le gradient est donné par:

$$\nabla_{w}L = \sum_{C \in \mathscr{C}} \sum_{c \in C} g(x_c) - E_{Pw}[g(X)] - \frac{w}{\sigma^2}$$

Avec $E_{Pw}[g(X)] = \sum_{x \in X} Pw(x) \sum_{C \in \mathscr{C}} \sum_{c \in C} g(x_c)$ l'espérance de potentiel pour les étiquetages possibles du graphe.

- Calcul de $E_{Pw}[g(X)]$ impossible (trop complexe)
 - ⇒ Approximation (e.g. par Gibbs Sampling)

Fouille de Données et Media Sociaux

Inférence Collective: Modèle régularisé

Apprentissage régularisé selon graphe

- Modèle régularisé selon un graphe
- Problème d'apprentissage transductif :
 - Ensemble de données $X = (x_1, ..., x_n)$ avec $X = X_l \cup X_u$.
 - Arcs $E: X^2 \to \mathbb{R}^+$ tel que: E(i,j) est le poids de l'arc (i,j)
 - Ensemble d'étiquettes $Y = (y_1, ..., y_l)$ connues pour les données de X_l
 - On cherche les étiquettes restantes $(y_{l+1},...,y_n)$
 - ⇒ La structure du graphe correspond à une régularité sur la fonction de prédiction $f_\theta: X \to Y$ à définir.
- Fonction f_{θ} :
 - Comportements similaires pour données au contenu proche
 - Comportements similaires pour données fortement connectées
- ⇒ Propagation de labels

Risque régularisé classique:

$$L = \sum_{x_i \in X_l} \Delta(f_{\theta}(x_i), y_i) + \lambda ||\theta||^2$$

Modèle transductif pour les graphes [Belkin et al., 2004]:

$$argmin_f \sum_{X_i \in X_I} (y_i - f_i)^2 + \beta \sum_{i,j \in E} E(i,j) (f_i - f_j)^2$$

Modèle résultant [Denoyer & Gallinari, 2010]:

$$argmin_{\theta} \sum_{x_i \in X_l} \Delta(f\theta(x_i), y_i) + \beta \sum_{i, j \in E} E(i, j) (f_{\theta}(x_i) - f_{\theta}(x_j))^2 + \lambda ||\theta||^2$$

Risque régularisé classique:

$$L = \sum_{x_i \in X_l} \Delta(f_{\theta}(x_i), y_i) + \lambda ||\theta||^2$$

Modèle transductif pour les graphes [Belkin et al., 2004]:

$$argmin_f \sum_{X_i \in X_I} (y_i - f_i)^2 + \beta \sum_{i,j \in E} E(i,j) (f_i - f_j)^2$$

Modèle résultant [Denoyer & Gallinari, 2010]:

$$argmin_{\theta} \sum_{x_i \in X_l} \Delta(f\theta(x_i), y_i) + \beta \sum_{i, j \in E} E(i, j) (f_{\theta}(x_i) - f_{\theta}(x_j))^2 + \lambda ||\theta||^2$$

 \Rightarrow Mais comment déterminer les poids E(i,j)?

- Et si l'hypothèse de smoothness (sur le graphe ou sur la similarité utilisée) est mauvaise ?
 - → Alors le modèle marchera mal.....
- Et si la smoothness n'est pas garantie sur tout le graphe ?
 - → Alors le modèle marchera mal.....
- Et si je ne connais pas les pondérations à appliquer pour la smoothness ?
 - ⇒ Alors le modèle marchera mal.....

La smoothness peut être apprise directement à partir des données étiquetés.

...et donc déduire où/pourquoi les données respectent cette hypothèse.

• On définit un sous ensemble E_l de E tel que:

$$E_I = \{(i,j) \in E/x_i \in X_I \text{ et } x_j \in X_I\}$$

On définit un ensemble d'étiquettes sur les liens

$$\forall (i,j) \in E_i, y_{(i,j)} = \begin{cases} 1 & \text{si } y_i = y_j \\ 0 & \text{sinon} \end{cases}$$

On est alors capable d'apprendre un classifieur sur les liens $g_{\omega}: (i,j) \in E \to [0;1]$

On définit une nouvelle fonction objective comme:

$$\begin{split} L &= \sum_{x_i \in X_i} \Delta(f_{\theta}(x_i), y_i) \\ &+ \alpha \sum_{(i,j) \in E_i} \Delta'(g_{\omega}(i,j), y_{(i,j)}) \\ &+ \beta \sum_{(i,j) \in E} g_{\omega}(i,j) (f(x_i) - f(x_j))^2 \\ &+ \lambda ||\theta||^2 \\ &+ \lambda' ||\omega||^2 \end{split}$$

Cette fonction se minimise en fonction de θ et ω par une descente de gradient classique.

Fonction g_{ω} :

$$g_{\omega}(i,j) = g'(\langle \omega; \Phi(i,j) \rangle)$$

- Cas mono-relationnel:
 - $\Phi(i,j) \in \mathbb{R}^1$

$$\Phi(i,j) = \begin{cases} 1 & \text{si } (i,j) \in E \\ 0 & \text{sinon} \end{cases}$$

Fonction g_{ω} :

$$g_{\omega}(i,j) = g'(\langle \omega; \Phi(i,j) \rangle)$$

- Cas mono-relationnel:
 - $\Phi(i,j) \in \mathbb{R}^1$

$$\Phi(i,j) = \begin{cases} 1 & \text{si } (i,j) \in E \\ 0 & \text{sinon} \end{cases}$$

- ⇒ Le modèle est capable d'apprendre l'importance des étiquettes voisines à inclure dans la fonction à optimiser
- ⇒ Pondération uniforme permettant d'ajuster l'importance de la smoothness sur l'ensemble du graphe

Fonction g_{ω} :

$$g_{\omega}(i,j) = g'(\langle \omega; \Phi(i,j) \rangle)$$

- Cas multi-relationnel:
 - $\Phi(i,j) \in \mathbb{R}^r$ où r est le nombre de relations entre les données
 - E^{j} , $j \in [1; r]$ est l'ensemble des arcs pour la relation j

$$\Phi^{k}(i,j) = \begin{cases} 1 & \text{si } (i,j) \in E^{k} \\ 0 & \text{sinon} \end{cases}$$

Fonction g_{ω} :

$$g_{\omega}(i,j) = g'(\langle \omega; \Phi(i,j) \rangle)$$

- Cas multi-relationnel:
 - $\Phi(i,j) \in \mathbb{R}^r$ où r est le nombre de relations entre les données
 - E^{j} , $j \in [1; r]$ est l'ensemble des arcs pour la relation j

$$\Phi^{k}(i,j) = \begin{cases} 1 & \text{si } (i,j) \in E^{k} \\ 0 & \text{sinon} \end{cases}$$

- ⇒ Le modèle obtenu est un modèle capable d'apprendre par relation, à quel point un arc entraine de la smoothness. Le modèle découvre donc les relations pertinentes (au sens de la smoothness).
- ⇒ Pondération uniforme sur les différents arcs de même type (mais un poids différent par type de relation)

Fonction g_{ω} :

$$g_{\omega}(i,j) = g'(\langle \omega; \Phi(i,j) \rangle)$$

- Fonction du contenu
- On peut imaginer plusieurs représentations:

$$\Phi(i,j) = \frac{x_i + x_j}{2}$$

$$\Phi(i,j) = x_i - x_j$$

$$\Phi(i,j) = \begin{pmatrix} x_i \\ x_j \end{pmatrix}$$

Fonction g_{ω} :

$$g_{\omega}(i,j) = g'(\langle \omega; \Phi(i,j) \rangle)$$

- Fonction du contenu
- On peut imaginer plusieurs représentations:
 - $\Phi(i,j) = \frac{x_i + x_j}{2}$
 - $\Phi(i,j) = x_i x_j$
 - $\Phi(i,j) = \binom{x_i}{x_i}$
- ⇒ Le modèle obtenu est un modèle capable d'apprendre l'importance des étiquettes voisines en fonction de la ressemblance de leur contenu
- ⇒ Pondération différente par relation en fonction du contenu des noeuds connectés

Fonction g_{ω} :

$$g_{\omega}(i,j) = g'(\langle \omega; \Phi(i,j) \rangle)$$

- Fonction du contenu
- On peut imaginer plusieurs représentations:
 - $\Phi(i,j) = \frac{x_i + x_j}{2}$
 - $\Phi(i,j) = x_i x_j$
 - $\Phi(i,j) = \begin{pmatrix} x_i \\ x_i \end{pmatrix}$
- ⇒ Le modèle obtenu est un modèle capable d'apprendre l'importance des étiquettes voisines en fonction de la ressemblance de leur contenu
- ⇒ Pondération différente par relation en fonction du contenu des noeuds connectés
- \Rightarrow Si pas de graphe: Modification de la frontière f_{θ} pour que celle-ci passe par des regions peu "denses" de l'espace;

Fonction g_{ω} :

$$g_{\omega}(i,j) = g'(\langle \omega; \Phi(i,j) \rangle)$$

- Fonction noyau $K(x_i, x_j)$
 - $\Phi(i,j) = \left(\phi_{(i,j)}^k\right)$ où $\phi^k(i,j) = K^k(x_i,x_j)$
 - $K^k(x_i, x_j)$ peut prendre diverses formes (noyau Gaussien, polynomial, etc...)
 - ... et intégrer diverses informations (contenu, profil, nombre de voisins communs, existence d'un arc pendant une periode donnée, etc...)

Fonction g_{ω} :

$$g_{\omega}(i,j) = g'(\langle \omega; \Phi(i,j) \rangle)$$

- Fonction noyau $K(x_i, x_j)$
 - $\Phi(i,j) = \left(\phi_{(i,j)}^k\right)$ où $\phi^k(i,j) = K^k(x_i,x_j)$
 - $K^k(x_i, x_j)$ peut prendre diverses formes (noyau Gaussien, polynomial, etc...)
 - ... et intégrer diverses informations (contenu, profil, nombre de voisins communs, existence d'un arc pendant une periode donnée, etc...)
- ⇒ Pondération différente par relation en fonction de la valeur de la fonction noyau sur les noeuds connectés
- ⇒ Smoothness dépendente des noyaux définis sur les paires de noeuds

Références

- [Belkin et al., 2004] Mikhail Belkin, Irina Matveeva, Partha Niyogi: Regularization and Semi-supervised Learning on Large Graphs. COLT 2004: 624–638
- [Friedman et al., 1999] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models. In Thomas Dean, editor, IJCAI, pages 1300–1309. Morgan Kaufmann, 1999.
- [Ludovic Denoyer & Patrick Gallinari, 2010] Ludovic Denoyer and Patrick Gallinari. A Ranking Based Model for Automatic Image Annotation in a Social Network. ICWSM 2010.
- [McDowell & Aha, 2013] Luke K. McDowell and David W. Aha. 2013. Labels or attributes?: rethinking the neighbors for collective classification in sparsely-labeled networks. In Proceedings of the 22nd ACM international conference on Conference on information & knowledge management (CIKM '13). ACM, New York, NY, USA, 847–852
- [Maes et al., 2009] Francis Maes, Stéphane Peters, Ludovic Denoyer, Patrick Gallinari: Simulated Iterative Classification A New Learning Procedure for Graph Labeling. ECML/PKDD (2) 2009: 47-62
- [Neville & Jensen, 2002] Jennifer Neville and David Jensen. Relational dependency networks. Journal of Machine Learning Research, 8:653–692, 2007.
- [Pearl, 1982] Pearl, Judea (1982). "Proceedings of the Second National Conference on Artificial Intelligence". AAAI-82: Pittsburgh, PA. Menlo Park, California: AAAI Press. pp. 133–136. Retrieved 2009-03-28.
- [Peters et al., 2012] Stéphane Peters, Yann Jacob, Ludovic Denoyer, Patrick Gallinari: Iterative Multi-label Multi-relational Classification Algorithm for complex social networks. Social Netw. Analys. Mining 2(1): 17-29 (2012)
- [Sen et al., 2008] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, Tina Eliassi-Rad: Collective Classification in Network Data. Al Magazine 29(3): 93–106 (2008)
- [Taskar et al., 2002] Benjamin Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probabilistic models
 for relational data. In Adnan Darwiche and Nir Friedman, pages 485–492. Morgan Kaufmann, 2002.
- [Taskar et al., 2007] Taskar, B., Abbeel, P., Wong, M.-F., and Koller, D. Relational markov networks. In Getoor, L. and Taskar, B. (eds.), Introduction to Statistical Relational Learning. MIT Press, 2007.