POKHARA UNIVERSITY

Level: Bachelor Programme: BE

Semester: Spring

Year : 2019

Full Marks: 100

Course: Image Processing and Pattern Recognition

Pass Marks: 45

Time : 3hrs.

8

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Attempt all the questions.

- Define digital image. Explain the process of image sampling and quantization in the digital image representation with figures.
 - Write the algorithm and pseudo code for average filtering and apply 2D Average filtering on the given image. Use 3 x 3 sampling window and Keep border values unchanged.

1	4	0	1	3	1
2	2	4	2	2	3
1	0	1	0	1	0
1	2	1	0	2	2
2	5	3	1	2	5
1	1	4	2	5	0

- a) What is histograms equalization? Write the algorithm and pseudo code for histogram equalization with suitable example.
 - b) Compute the 2-D discrete Walsh-Hadamard transform of the given image block below:

5	6	8	10
6	6	5	7
4	5	3	6
7	8	3	5

- 3. a) What are the usages of derivative based filters. Derive mask for Laplacian second order derivative based.
 - b) What is Image Restoration? Compare it with image enhancement.

a) Construct Huffman code for each gray level.

Gray (r)	0	1	2	3	4	5	6	7
n(r)	60	100	260	20	150	90	110	234

Where, r = Gray level

n(r) = No. of Pixels having r^{th} grav level

- b) Explain the working principles of lossy predictive coding with necessary block diagram.
- 5. a) What is morphological image processing? With necessary figures, explain the opening and closing.
 - a) How can you detect edges with gradient filters? Give different first order derivative based (gradient) filters.
- 6. a) What do you mean by image segmentation, give the algorithm for basic adaptive thresholding.
 - b) Explain Minimum Distance Classifier for Pattern Classification with necessary equations and an example.

2×5

- 7. Write short notes on: (Any two)
 - a) Shape Numbers
 - b) Pattern with Pattern Class
 - c) Gray level slicing