Билет 9

Получение оксидов

Оксиды — сложные вещества, состоящие из атомов кислорода и некоторого химического элемента. Оксиды — бинарные соединения, в составе которых присутствует кислород с СТОК -2.

І. Горение в кислороде

1. Простых веществ

$$C+O_2 \rightarrow CO$$

$$\rightarrow CO_2$$

$$S+O_2 \rightarrow SO_2$$

$$Fe+O_2 \rightarrow Fe_3O_4$$

$$P+O_2 \rightarrow P_2O_3$$

$$\rightarrow P_2O_5$$

2. Доокисление оксидов в невысшей СТОК элементов

$$P_2O_5 + O_2 \rightarrow P_2O_5$$

$$SO_2 + \frac{1}{2}O_2 \stackrel{Fe}{\rightarrow} SO_3$$

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

3. Горение сложных веществ

$$2PH_{3} + 2O_{2} \rightarrow P_{2}O_{5} + 3H_{2}O$$

$$2NH_{3} + \frac{3}{2}O_{2} \rightarrow N_{2} + 3H_{2}O$$

$$2NH_{3} + 5O_{2} \stackrel{Pt}{\rightarrow} 2NO + 3H_{2}O$$

$$2FeS + \frac{7}{2}O_{2} \rightarrow Fe_{2}O_{3} + 2SO_{2}$$

Хорошо горят водородные соединения и сульфиды

II. Разложение сложных веществ

1. Нерастворимых оснований и амфотерных гидроксидов

$$Cu(OH)_{2} \xrightarrow{T} CuO + H_{2}O$$

$$2 Fe(OH)_{3} \xrightarrow{T} Fe_{2}O_{3} + 3 H_{2}O$$

2. Разложение неустойчивых кислот

$$H_2CO_3 \rightarrow H_2O + CO_2 \uparrow$$
 $H_2SO_3 \stackrel{T}{\rightarrow} H_2O + SO_2 \uparrow$
 $H_2SiO_3 \stackrel{T}{\rightarrow} H_2O + SiO_2 \downarrow$
 $4 HNO_3 \rightarrow 4 NO_2 \uparrow + O_2 + 2 H_2O$
конц. бурый газ

3. Разложение солей

а) Соли с кислотным остатком CO_3^{2-} , SO_3^{2-} , SiO_3^{2-} , если Ме не в ${\rm I_A}$ подгруппе ниже ${\rm Li}$

$$CaCO_3 \stackrel{800^{\circ}C}{\rightarrow} CaO + CO_2$$

 $CaSiO_3 \stackrel{800^{\circ}C}{\rightarrow} CaO + SiO_2$
 $CaSO_3 \stackrel{800^{\circ}C}{\rightarrow} CaO + SO_2$

b) Нитраты разлагаются по отдельной схеме (при нагревании) $MeNO_3$:

Ме - щелочь ниже Li	→	$MeNO_2 + O_2$
За Си в ряду стандартных электронных потенциалов	→	$Me + NO_2 + O_2$
Остальные	→	$MeO NO_2 + O_2$