X

Regularization

5 questions

1.

You are training a classification model with logistic

regression. Which of the following statements are true? Check

all that apply.

- Introducing regularization to the model always results in equal or better performance on the training set.
- Introducing regularization to the model always results in equal or better performance on examples not in the training set.
- Adding a new feature to the model always results in equal or better performance on examples not in the training set.
- Adding many new features to the model makes it more likely to overfit the training set.

2.

Suppose you ran logistic regression twice, once with $\lambda=0$, and once with $\lambda=1$. One of the times, you got

parameters $heta = \left[rac{23.4}{37.9}
ight]$, and the other time you got

$$heta = egin{bmatrix} 1.03 \\ 0.28 \end{bmatrix}$$
 . However, you forgot which value of

 λ corresponds to which value of θ . Which one do you

think corresponds to $\lambda = 1$?

- $\mathbf{O} \quad \theta = \begin{bmatrix} 23.4 \\ 37.9 \end{bmatrix}$ $\mathbf{O} \quad \theta = \begin{bmatrix} 1.03 \\ 0.28 \end{bmatrix}$

true? Check all that apply.

- 3. Which of the following statements about regularization are
 - Because regularization causes $J(\theta)$ to no longer be convex, gradient descent may not always converge to the global minimum (when $\lambda > 0$, and when using an appropriate learning rate α).
 - Using too large a value of λ can cause your hypothesis to underfit the data.
 - Using a very large value of λ cannot hurt the performance of your hypothesis; the only reason we do not set λ to be too large is to avoid numerical problems.
- Because logistic regression outputs values $0 \le h_{\theta}(x) \le 1$, it's range of output values can only be "shrunk" slightly by regularization anyway, so regularization is generally not helpful for it.
- 4. In which one of the following figures do you think the hypothesis has overfit the training set?

Figure:

O Figure:

O Figure:

O Figure:

- 5. In which one of the following figures do you think the hypothesis has underfit the training set?
 - O Figure:

O Figure:

O Figure:

O Figure:

Submit Quiz

