浙江工业大学 线性代数期末试卷 答案及评分标准 (2018~2019第一学期)

选课班中编号:

学号:		姓名:		得分:			
题号	_	=	三		Д	4	
得分							
一. 填空题(每	空 3 分, 共 30 分)	4				
1. 已知行列式	$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = m, \begin{vmatrix} a_{12} \\ a_{22} \end{vmatrix}$	$\begin{vmatrix} a_{13} & a_{11} \\ a_{23} & a_{21} \end{vmatrix} = n$,则行	列式				
$\begin{vmatrix} a_{11} & a_{12} + 2a_{13} \\ a_{21} & a_{22} + 2a_{23} \end{vmatrix}$	= m-2n	o					
2. 设向量组 α =	$=(1,0,a)^T, \beta=(2,a)^T$	$(4,3)^T, \gamma = (1,3,2)^T$	线性相关	关,则 <i>a</i>	$=\frac{1}{2}$		
3. 设矩阵 A 的	的秩为 2,且 η_1 =	$= (1,2,3)^T, \eta_2 = (2,3)^T$,1,4) ^T 是三	三元非齐	次线性	方程组	
$AX = \beta$ 的 \mathbb{R}	两 个 特 解	,则方程	组 AX	$=2\beta$	的 通	解为	

学院班级:

任课教师

4. 已知矩阵
$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 4 & 4 & 2 & 5 \\ 3 & a & 2 & 2 \end{bmatrix}$$
的秩 $R(A) < 3$,则 $a = \underline{\qquad 2 \qquad \qquad}$ 。

 $(3,3,7)^T + c(1,-1,1)^T (c \in R)$

5. 矩阵
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
的逆矩阵 $A^{-1} = \begin{bmatrix} -3 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix}$ 。

6. 设矩阵
$$A = \begin{bmatrix} 0 & 10 & 6 \\ 1 & -3 & -3 \\ -2 & 10 & 8 \end{bmatrix}$$
,已知 $\alpha = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ 是它的一个特征向量,则 α 所对应的

特征值为__1___。

- 7. 设向量 α,β 的长度依次为 2 和 3,则向量 $\alpha+\beta$ 与 $\alpha-\beta$ 的内积 $<\alpha+\beta,\alpha-\beta>= -5$ 。
- 8. 设矩阵 A 为三阶方阵,且 A-E, A-2E, 2A+E 均为不可逆矩阵,则 |A|=-1 。
- 9. 已知 $\alpha_1,\alpha_2,\alpha_3$ 与 β_1,β_2,β_3 是三维向量空间 R^3 的两组基,若

$$\beta_1 = \alpha_1 + \alpha_3, \beta_2 = \alpha_1 + \alpha_2 + 2\alpha_3, \beta_3 = \alpha_1 + \alpha_2, \quad \text{MI}(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}.$$

- 二. 单项选择题(每小题 2 分,共 10 分)

本题得分

1. 设矩阵

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad B = \begin{bmatrix} a_{31} & a_{32} & a_{33} \\ a_{11} & a_{12} & a_{13} \\ a_{21} + a_{11} & a_{22} + a_{12} & a_{23} + a_{13} \end{bmatrix},$$

$$P_{1} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad P_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

则必有(D)

(A)
$$AP_1P_2 = B$$
 (B) $AP_2P_1 = B$ (C) $P_1P_2A = B$ (D) $P_2P_1A = B$

- 2. 设 $AX = \beta$ 为非齐次线性方程组,则下列命题正确的有(B)
- (A) 若 AX = O 有非零解,则 $AX = \beta$ 有无穷多解
- (B) 若 $AX = \beta$ 有无穷多解,则 AX = O 必有非零解
- (C) 若 AX = O 只有唯一零解,则 $AX = \beta$ 必有非零解

- (D) 若 $AX = \beta$ 无解,则 AX = O 也无解
- 3. 设 ξ_1, ξ_2, ξ_3 是齐次线性方程组 AX = O 的基础解系,则下列向量组中也是 AX = O 的基础解系的是(B)
- (A) $\xi_1 \xi_2, \xi_2 \xi_3, \xi_3 \xi_1$ (B) $\xi_1 + \xi_2, \xi_2 + \xi_3, \xi_3 + \xi_1$
- (C) $\xi_1 \xi_2 + \xi_3, \xi_1 + 4\xi_2 \xi_3, 2\xi_1 + 3\xi_2$
- (D) $\xi_1 + \xi_2, \xi_2 \xi_3, \xi_3 + \xi_1$
- 4. 设 λ 是 n 阶可逆方阵 A 的特征值,p 为对应的一个特征向量,则以下结论正 确的是(A)
- (A) p 也是矩阵 A^{-1} 的属于特征值 λ^{-1} 的特征向量
- (B) p 也是矩阵 A^T 的属于特征值 λ 的特征向量
- (C) $(A \lambda E)X = O$ 的所有解都是 A 的特征向量
- (D) $(A \lambda E)X = O$ 的所有解都可表示为kp
- 5. 矩阵 $\begin{bmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{bmatrix}$ 与 $\begin{bmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 相似的充分必要条件是(B)
- (A) a=0, b=2 (B) a=0, b 为任意常数
- (C) *a*=2, *b*=0 (D) *a*=2, *b* 为任意常数
- 三、计算题(每题10分,共50分)

1	2	3	4	5	本题总得分

1. 求向量组: $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ 的秩和一个极大无关组,并把

其余向量用该极大无关组线性表示。

$$(\alpha_1,\alpha_2,\alpha_3,\alpha_4) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 0 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -1 \end{bmatrix},$$

------5 分

2. 求一个齐次线性方程组, 使它的基础解系为

$$\xi_1 = \begin{pmatrix} 0, & 1, & 2, & 3 \end{pmatrix}^T, \ \xi_2 = \begin{pmatrix} 3, & 2, & 1, & 0 \end{pmatrix}^T$$

考虑如下线性方程组:

$$\begin{cases} x_2 + 2x_3 + 3x_4 = 0 \\ 3x_1 + 2x_2 + x_3 = 0 \end{cases}, -----5$$

取
$$A = (\eta_1, \eta_2)^T = \begin{bmatrix} 1 & -2 & 1 & 0 \\ 2 & -3 & 0 & 1 \end{bmatrix}$$
,则所求的齐次线性方程组为 $AY = 0$,即

$$\begin{cases} y_1 - 2y_2 + y_3 = 0 \\ 2y_1 - 3y_2 + y_4 = 0 \end{cases}$$
 -----10 \(\frac{\(\frac{1}{2}\)}{2}\)

3. 已知线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + ax_3 - 2x_4 = b \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1 \end{cases}$$

- (1) 问 a、b 满足何种关系时,方程组无解?
- (2) 问 *a、b* 满足何种关系时,方程组有无穷多解?并在此时求出方程组的通解。

增广矩阵
$$\overline{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & a & -2 & b \\ 3 & 2 & 1 & a & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & -1 & -1 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & a+2 & 0 & 1+b \\ 0 & 0 & 0 & a-1 & 0 \end{bmatrix}$$
.------4分

- - (ii) 当a=1时方程组有无穷多解,此时通解为

$$X = \frac{1}{3} \begin{pmatrix} b-2\\1-2b\\b+1\\0 \end{pmatrix} + k \begin{pmatrix} 1\\-2\\0\\1 \end{pmatrix} (k \in R).$$
 ------10 \cancel{D}

4. 若矩阵
$$A = \begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{bmatrix}$$
 相似于对角矩阵 Λ ,试确定常数 a 的值,并求可逆矩阵

P, $otin P^{-1}AP = \Lambda$.

$$|A - \lambda E| = \begin{vmatrix} 2 - \lambda & 2 & 0 \\ 8 & 2 - \lambda & a \\ 0 & 0 & 6 - \lambda \end{vmatrix} = -(\lambda - 6)^2 (\lambda + 2) = 0$$

由于 A 相似于对角矩阵, 所以 R(A-6E)=1, 由此可解出 a=0.-----5 分

因此
$$A = \begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

由此可解得属于 $\lambda = 6$ 的线性无关的特征向量为:

$$\alpha_1 = (1,2,0)^T, \alpha_2 = (0,0,1)^T.$$

属于 $\lambda = -2$ 的特征向量为 $\alpha_3 = (1, -2, 0)^T$. ------9分

因此可逆矩阵 P 可取成
$$P = (\alpha_1, \alpha_2, \alpha_3) = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & -2 \\ 0 & 1 & 0 \end{bmatrix}$$
. ----------------10 分

5. 若 $A^3 = O$,问A + E是否可逆?若可逆,求 $(A + E)^{-1}$ 。

$$A + E$$
可逆,且 $(A + E)^{-1} = A^2 - A + E$ 。 ------10 分

四、证明题(每题5分,共10分)

1	2	本题总得分

1. 设向量组 A 的秩与向量组 B 的秩相等,且向量组 A 可由向量组 B 线性表示,证明向量组 A 与向量组 B 等价。

证明: 因为且向量组 A 可由向量组 B 线性表示,所以 R(B) = R(B|A).

-----2分

又由 R(A) = R(B) 以及 R(A|B) = R(B|A) 可知

 $R(A) = R(A \mid B)$ \circ -----4 \mathcal{A}

因此向量组 B 可由向量组 A 线性表示,即向量组 A 与向量组 B 等价。

-----5 分

2. 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是 4 阶矩阵, A^* 为 A 的伴随矩阵。若 $(1,0,0,1)^T$ 是方程组 AX = O 的一个基础解系。证明: $\alpha_2, \alpha_3, \alpha_4$ 是 $A^*X = O$ 的一个基础解系.

证明: 由 $(1,0,0,1)^T$ 是方程组AX = O的一个基础解系可知

 $\alpha_1 + \alpha_4 = 0 \perp R(A) = R(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 3. \dots (1)$

因此 $R(A^*)=1$, 所以 $A^*X=O$ 的基础解系含有3个线性无关的解向量。

又由 $A^*A=|A|E=O$ 可知 $A^*(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=O$,即 $\alpha_2,\alpha_3,\alpha_4$ 都是 $A^*X=O$ 的解。