Mining Time-Series Data

Time-Series

- Patabase Consists of sequences of values or events obtained over repeated measurements of time (weekly, hourly...)
 - Stock market analysis, economic and sales forecasting, scientific and engineering experiments, medical treatments etc.
- Can also be considered as a Sequence database
 - A sequence database is any database that consists of sequences of ordered events, with or without concrete notions of time.
 - Examples: Web page Traversal, Customer shopping transaction sequences
- Time-Series data can be analyzed to:
 - Identify correlations within time-series data
 - Analyze huge data to find similar / regular patterns, trends, outliers, bursts

Trend Analysis

Time Series involving a variable Y can be represented as a function of time t, Y = F(t) Goals of Time-Series Analysis

Modeling time series - To gain insight into the mechanism or underlying forces that generate the time series

Forecasting time series - To predict the future values of the time-series variables

Analysis Major Components / Movements for Characterizing time-series data

Long-term or trend movements (trend curve): general direction in which a time series is moving over a long interval of time

Typical methods for determining a trend curve or trend line include the weighted moving average method and the least squares method

Cyclic movements or cycle variations: long term oscillations about a trend line or curve e.g., business cycles, may or may not be periodic

The cycles need not necessarily follow exactly similar patterns after equal intervals of time.

Analysis Major Components / Movements for Characterizing time-series data

Seasonal movements or seasonal variations

i.e, almost identical patterns that a time series appears to follow during corresponding months of successive years.

Ex: sudden increase in sales of department store items before Christmas.

Irregular or random movements - labor disputes, floods, or announced personnel changes within companies

Time series analysis: decomposition of a time series into these four basic movements

Additive Model: TS = T + C + S + I

Multiplicative Model: $TS = T \times C \times S \times I$

Trend Analysis

Analysis asonal fluctuations

- Given a series of measurements y₁, y₂, y₃... influences of the data that are systematic / calendar related must be removed
 - Fluctuations conceal true underlying movement of the series and non-seasonal characteristics
 - De-seasonalize the data (or adjusted for seasonal variations)
- Seasonal Index set of numbers showing the relative values of a variable during the months of a year
 - Sales during Oct, Nov, Dec 80%, 120% and 140% of average monthly sales Seasonal index 80, 120, 140
 - Dividing original monthly data by seasonal index De-seasonalizes data
- Auto-Correlation Analysis
 - To detect correlations between ith element and (i-k)th element k-
 - and eused between $\langle y_1, y_2, ... y_{N-k} \rangle$ and $\langle y_{k+1}, y_{k+2}, ... y_N \rangle$

Are there other ways to estimate the trend?

Apain Sting Trend Curves

- The freehand method
 - An approximate curve or line is drawn to fit a set of data based on the user's own judgement
 - Costly and barely reliable for large-scaled data mining
- The least-square method
- The moving-average method

Are there other ways to estimate the trend?

Apailysting Trend Curves

- The least-square method
 - Find the curve minimizing the sum of the squares of the deviation d_i of points y_i on the curve from the corresponding data points

$$\sum_{i=1}^n d_i^2.$$

$$err = \sum_{i=1}^{\text{# data points}} (y_i - f(x_i))^2 = \sum_{i=1}^{\text{# data points}} (y_i - (ax_i + b))^2$$

Estimate the Temp (10 Years) given precipitation Model is represented using Equation 2 Temp New input data (Precipitation) 2 Temperature

Trend Anaily Sisrage Method

"How can we determine the trend of the

data"

The process of replacing the time series by its moving average eliminates unwanted fluctuations - referred to as the smoothing of time series

A common method for determining trend is to calculate a moving average of order *n* as

$$\frac{y_1 + y_2 + \dots + y_n}{n}$$
, $\frac{y_2 + y_3 + \dots + y_{n+1}}{n}$, $\frac{y_3 + y_4 + \dots + y_{n+2}}{n}$, ...

Temp
Jan 1 2, 3, Feb 1, 2...
Jan 1, 2,3,4,5 6
Jan 2, 3,4,5,6 7

A moving average tends to reduce the amount of variations present in the dat Jan 3, 4,5,6,7 8

It smoothes the data

Eliminates cyclic, seasonal and irregular movements

Loses the data at the beginning or end of a series

If weighted arithmetic means are used, the resulting sequence is called a weighted moving average of

order n

Sensitive to outliers (can be reduced by Weighted Moving Average)

Assigns greater weight to center elements to eliminate smoothing

effects

Trend Awad Moving Average Method

"How can we determine the trend of the data?"

If weighted arithmetic means are used, the resulting sequence is called a weighted moving average of order *n*

- Loses the data at the beginning or end of a series
- Sometimes generate cycles or other movements that are not present in the original data;
 and
- may be strongly affected by the presence of extreme values
- The influence of extreme values can be reduced by employing a weighted moving average with appropriate Weights
- An appropriate moving average can help smooth out irregular variations in the data

"How can we determine the trend of the data?"

Moving Average Wethod – Example

$$\frac{y_1 + y_2 + \dots + y_n}{n}$$
, $\frac{y_2 + y_3 + \dots + y_{n+1}}{n}$, $\frac{y_3 + y_4 + \dots + y_{n+2}}{n}$, ...

Given a sequence of nine values, we can compute its moving average of order 3, and its weighted moving average of order 3 using the weights (1, 4, 1).

The weighted average typically assigns greater weights to the central elements in order to offset the smoothing effect

- Anaproofice hoving average will smooth out the irregular variations. This leaves us with only cyclic variations for further analysis
- Once trends are detected data can be divided by corresponding trend values
- Cyclic Variations can be handled using Cyclic Indexes

Time-Series Forecasting

- Finds a mathematical formula that will approximately generate the historical patterns in a time series
- Used to make Long term / Short term predictions of future values
- Several models are available for forecasting:

Popular Method : ARIMA – Auto-Regressive Integrated Moving Average (also known as the Box-Jenkins method)

Powerful, complex, quality of results depends on the User's level of experience

TS1

TS2

Similarity

September database query finds exact match

Similarity search finds data sequences that differ only slightly from the given query sequence

Two categories of similarity queries
Whole matching: find a sequence that is similar to the query sequence

Subsequence matching: find all pairs of similar sequences

Given a set of time-series sequences, S, there are two types of similarity searches: subsequence matching and whole sequence matching.

Subsequence matching finds the sequences in S that contain **subsequences** that are similar to a given query sequence x, while whole sequence matching finds a set of sequences in S that are similar to each other (as a whole).

Similarity

Stypical Applications

- Financial market
- Market basket data analysis
- □ Scientific databases
- Medical diagnosis

Data Reduction and

Trains Series data Othigh-dimensional data – each point of time can be viewed as a dimension

- Dimensionality Reduction techniques
 - Signal Processing techniques
 - Discrete Fourier Transform
 - Discrete Wavelet Transform
 - Singular Value Decomposition based on
 - Random projection-based Sketches
 - Time Series data is transformed and strongest coefficients features
 - Techniques may require values in Frequency domain
 - Distance preserving Ortho-normal transformations
 - The distance between two signals in the time domain is the same as their Euclidean distance in the frequency domain

- 1. Due to the tremendous size and high-dimensionality of time-series data, data reduction often serves as the first step in time-series analysis.
- 2. Data reduction leads to not only much smaller storage space but also much faster processing

PCA

Image Dataset = 10 x 10

Dim = 100 points (real numbers)

PCA

Input ② Eigen values

Pick only the highest eigen values

Ex: 50 eigen values (50 dim)

100 2 50 dimensions
Used as input features

Attribute Selection

Dataset = Temp, outlook, Humidity, Windy (4)

Approach – only the relevant and important attributes Final = Outlook, Windy (2)

4 2 dimensions
Used as input attributes

Indexing methods for Similarity Search

"Once the data are transformed by DFT, how can we provide support for efficient search in time-series data?"

- Multi-dimensional index can be constructed using the first few Fourier godfieitheindex to retrieve the sequences that are at most a certain small distance away from the query sequence
 - Perform post-processing by computing the actual distance between sequences in the time domain and discard any false matches
- Indexing techniques
 - R-trees, R*-trees, Suffix trees etc

Subsequence

- Matchin Break each sequence into a set of pieces of window with length w
 - Extract the features of the subsequence inside the window
 - Map each sequence to a "trail" in the feature space
 - Divide the trail of each sequence into "subtrails" and represent each of them with minimum bounding rectangle
 - Use a multi-piece assembly algorithm to search for longer sequence matches
 - Uses Euclidean distance (Sensitive to outliers)

Similarity Search

- Methods
 Practically there maybe differences in the baseline and scale
 - Distance from one baseline to another offset
 - Data has to be normalized
 - Sequence $X = \langle x_1, x_2, ... x_n \rangle$ can be replaced by $X' = \langle x_1', x_2', ... x_n' \rangle$ where $x_i' = x_i \mu$ / σ
 - Two subsequences are considered similar if one lies within an envelope of ε width around the other, ignoring outliers
 - Two sequences are said to be similar if they have enough non- overlapping time-ordered pairs of similar subsequences Parameters specified by a user or
 - expert: sliding window size, width of an envelope for similarity, maximum gap, and matching fraction

Similarity Search

Similarity Search Method

- Atomic matching
 - Find all pairs of gap-free windows of a small length that are similar
- Window stitching
 - Stitch similar windows to form pairs of large similar subsequences allowing gaps between atomic matches
- Subsequence Ordering
 - Linearly order the subsequence matches to determine whether enough similar pieces exist

Query Languages for Time

Secretal Procedurery language

- Should be able to specify sophisticated queries
 LikeFind all of the sequences that are similar to some sequence in class A, but not similar to any sequence in class B
- Should be able to support various kinds of queries: range queries,
 all- pair queries, and nearest neighbor queries
- Shape definition language
 - Allows users to define and query the overall shape of time
 - sequences Uses human readable series of sequence transitions or
 - macros Ignores the specific details
 - E.g., the pattern up, Up, UP can be used to describe increasing degrees of rising slopes
 - Macros: spike, valley, etc.