Лабораторная работа №1 RL- и RC-цепи, четырёхточечная схема измерений

Иван Протасов Национальный исследовательский университет

5 мая 2024 г.

«Высшая школа экономики»

1. Введение

1.1. Цель работы

В данной работе исследуются интегрирующие и дифференцирующие схемы делителей напряжения, которые являются фильтрами низких и высоких частот, строятся АЧХ и ФЧХ для данных схем. Полученные частотные зависимости сходятся с теоретически ожидаемыми зависимостями. используемых элементов цепочки. Также измеряется сопротивление трубки от пылесоса методом 4-х точечной схемы, что позволяет измерять малые сопротивления.

1.2. Оборудование

Осциллограф Keysight DSOX 1102G с щупами, коаксиальный кабель с BNC-разъёмами на концах, переходник BNC-клеммы, контактная макетная плата, набор соединительных проводов, резистор, катушка, пленочный конденсатор, универсальный источник питания gophert, мультиметр keysight 34450A, кабели переходные ("крокодил" — banana plug, "крокодил" — вилка), щупы мультиметра, линейка, штангенциркуль.

2. Ход работы

2.1. Дифференцирующая RL-цепь

Рис. 1: Дифференцирующая RL-цепь

Соберём на макетной плате цепь, изображённую на рис. 1. Используем резистор R=1 кOм и ка-

тушку L=4.7 мГн. Выходное напряжение равно напряжению на катушке:

$$U_{out} = U_L = L \frac{dI}{dt}.$$

По закону Ома сила тока в цепи:

$$I = \frac{U_{in} - U_{out}}{R},$$

$$U_{out} = \frac{L}{R} \frac{d(U_{in} - U_{out})}{dt},$$

$$U_{in} \gg U_{out} :$$

$$U_{out} \approx \frac{L}{R} \frac{dU_{in}}{dt} = \tau_{RL} \frac{dU_{in}}{dt}.$$

Величина $au_{RL} = rac{L}{R}$ равна 4.7 мкс. Таким образом, выходное напряжение оказывается пропорционально производной по времени от входного, поэтому такую цепь и называют дифференцирующей.

С генератора сигналов осциллографа подадим на вход цепи треугольный (пилообразный) сигнал амплитудой 6В и значением симметрии $\alpha=50\%$ (это число показывает, в течение какой доли периода сигнал нарастает). Для сигнала периодов $T_1=5$ мкс $\approx \tau_{RL}, T_2=20$ мкс $>\tau_{RL}$ и $T_3=100$ мкс $>\tau_{RL}$ снимем зависимость входного (здесь и далее - жёлтый график) и выходного (здесь и далее - зелёный график) напряжения от времени.

Цепь лучше всего дифференцирует на рис. 4, то есть при $T_3=100\,$ мкс. Так как на вход подается пилообразный сигнал, на выходе получаем почти постоянный сигнал. То есть на рисунке рис. 4 схема лучше дифференцируема на малых частотах и из «пилы» получаем прямоугольный сигнал, что соответствует теоретическому ожиданию. В случае больших частот делитель напряжения хуже дифференцирует входной сигнал, что мы можем видеть на рисунке рис. 2.

Рис. 2: $T_1 = 5 \ \text{мкc}$

Рис. 3: $T_2 = 20 \ \text{мкс}$

Рис. 4: $T_3 = 100$ мкс

2.2. Интегрирующая RC-цепь

Рис. 5: Интегрирующая RC-цепь

Соберём на макетной плате интегрирующую RC-цепь, изображённую на рис. 5. Используем резистор R=1 кOм и конденсатор C=1 мк Φ . Выходное напряжение равно напряжению на конденсаторе:

$$U_{out} = U_C = \frac{q}{C} = \frac{1}{C} \int I dt.$$

По закону Ома сила тока в цепи:

$$I = \frac{U_{in} - U_{out}}{R},$$

$$U_{out} = \frac{1}{RC} \int (U_{in} - U_{out}) dt,$$

$$U_{in} \gg U_{out}$$
:

$$U_{out} \approx \frac{1}{RC} \int U_{in} dt = \frac{1}{\tau_{RC}} \int U_{in} dt,$$

то есть выходное напряжение оказывается пропорциональным интегралу по времени от входного, поэтому такую цепь и называют интегрирующей. Величина $\tau_{RC}=RC$ равна 1 мс.

С генератора сигналов осциллографа подадим на вход цепи прямоугольный импульс амплитудой 6В и коэффициентом заполнения $\alpha=50\%$. Для сигнала периодов $T_1=0.5~{\rm Mc}\approx \tau_{RC},\, T_2=2~{\rm Mc}>\tau_{RL}$ и $T_3=10~{\rm Mc}\gg \tau_{RL}$ снимем зависимость входного и выходного напряжения от времени.

Как можно видеть на рис. 6, схема лучше интегрируема на больших частотах и из прямоугольного получаем пилообразный, что соответствует теоретическому ожиданию. В случае малых частот делитель напряжения хуже интегрирует сигнал, что мы можем видеть на рис. 8.

Рис. 6: $T_1 = 0.5 \ \text{м}c$

Рис. 7: $T_2 = 2 \ \text{мc}$

Рис. 8: $T_3 = 10 \ \text{мc}$

2.3 RL- и RC- цепи как фильтры

2.3.1 Комплексные амплитуды

Зависимость отношения амплитуд выходного и входного сигналов от частоты называется амплитудоно-частотной характеристикой (АЧХ) цепи, а зависимость отношения сдвига фаз от частоты — фазово-частотной характеристикой (Φ ЧХ) цепи.

Рассмотрим действительный гармонический сигнал:

$$X(t) = A\cos(\omega t + \varphi),$$

где A - амплитуда, ω - частота, φ - фаза. С математической точки зрения удобнее работать с комплексными гармоническими сигналами вида:

$$\hat{X}(t) = \hat{A}e^{i\omega t},$$

где $\hat{A}=Ae^{i\varphi}$ - комплексная амплитуда, модуль которой является амплитудой действительного сигнала, а аргумент - фазой. Откликом на такой сигнал будет какой-то другой комплексный сигнал с той же частотой $\hat{Y}(t)=\hat{B}e^{i\omega t}$. Обозначим буквой \hat{K} комплексное число, равное отношению комплексных амплитуд сигналов на входе и на выходе:

$$\hat{K} = \frac{\hat{B}}{\hat{A}} = \frac{|\hat{B}|}{|\hat{A}|} e^{i(argB - argA)}.$$

Это число будем называть коэффициентом усиления или коэффициентом передачи цепи. Как видно из приведённого уравнения, модуль коэффициента усиления, равен отношению амплитуд выходного и входного сигналов, а его зависимость от частоты — это, фактически, АЧХ цепи. Аргумент же коэффицента усиления равен разности фаз выходного и входного сигналов, поэтому его зависимость от частоты — это ФЧХ цепи.

Цепи, состоящие только из резисторов, конденсаторов и катушек, являются линейными. Пусть на вход цепи подан комплексный гармонический сигнал. По закону Ома напряжение на резисторе: U=IR. Для катушки: $U=L\frac{dI}{dt}$, тогда в случае комплексного гармонического сигнала: $\hat{U}=i\omega L\hat{I}$. Полученное соотношение является законом Ома для обычного резистора, если положить сопротивление катушки равным величине $Z_L=i\omega L$, которая называется комплексным импедансом катушки. Аналогично, комплексный импеданс конденсатора равен $Z_C=\frac{1}{i\omega C}$.

2.3.2 Делитель напряжения

Рис. 9: Делитель напряжения

Делитель напряжения (рис. 9) — это электрическая цепь, состоящая из двух соединённых последовательно участков, называемых верхним и нижним плечом делителя. Коэффициент усиления такой схемы равен $\hat{K} = \frac{\hat{U_2}}{\hat{U_1}}$, а ток в цепи равен $\hat{I} = \frac{\hat{U_1}}{Z_1 + Z_2}$, так что

$$\hat{K}(\omega) = \frac{Z_2(\omega)}{Z_1(\omega) + Z_2(\omega)}.$$

2.3.3 Фильтр нижних частот

Интегрирующие RC- и RL-цепочки можно также рассматривать как делители напряжения. Для RC-цепочки $Z_1=R,~Z_2=\frac{1}{i\omega C}.$ Тогда модуль коэффициента усиления равен

$$|\hat{K}(\omega)| = \frac{1}{1 + i\omega RC} = \frac{1}{1 + i\omega \tau} = \frac{1}{\sqrt{1 + \omega^2 \tau^2}},$$

а его фаза равна

$$arg\hat{K}(\omega) = -\arctan(\omega\tau).$$

При достаточно малых частотах модуль коэффициента усиления мало отличается от единицы, а его аргумент практически нулевой. Это означает, что интегрирующая цепь пропускает сигналы малой частоты $\omega \ll \frac{1}{\tau}$ без искажений. Напротив, на высоких частотах $\omega \gg \tau$ модуль коэффициента усиления мал по сравнению с единицей, то есть

интегрирующая цепь подавляет высокочастотные сигналы. В этой связи такую цепь называют фильтром низких частот.

Соберём на макетной плате интегрирующую RC-цепь, изображённую на рис. 5. Используем резистор R=1 кОм и конденсатор C=1 мкФ. C генератора сигналов осциллографа подадим на вход цепи синусоидальный сигнал амплитудой 6В. Снимем АЧХ и ФЧХ цепи в диапазоне частот от $10~\Gamma$ ц до $10~\kappa\Gamma$ п.

Рис. 10: АЧХ фильтра нижних частот

Рис. 11: ФЧХ фильтра нижних частот

Полученная зависимость сходится с теоретическим предсказанием.

2.3.4 Фильтр верхних частот

Дифференцирующие цепочки, напротив, являются фильтрами верхних частот: они без искажений пропускают гармонические сигналы высоких частот и ослабляют сигналы низких частот. Для RLцепочки $Z_1=R,\,Z_2=i\omega L.$ Тогда модуль коэффициента усиления равен

$$|\hat{K}(\omega)| = \frac{1}{1 - i\frac{R}{\omega L}} = \frac{i\omega\tau}{1 - i\omega\tau} = \frac{\omega\tau}{\sqrt{1 + \omega^2\tau^2}},$$

а его фаза равна

$$arg\hat{K}(\omega) = arg(i\omega\tau) - arg(1-i\omega\tau) = \frac{\pi}{2} - \arctan(\omega\tau).$$

Соберём на макетной плате дифференцирующую RL-цепь, изображённую на рис. 1. Используем ре-

зистор R=1 кОм и катушку L=4.7 мГн. С генератора сигналов осциллографа подадим на вход цепи синусоидальный сигнал амплитудой 6В. Снимем АЧХ и ФЧХ цепи в диапазоне частот от 100 Γ п до 500 к Γ п.

Рис. 12: АЧХ фильтра верхних частот

Рис. 13: ФЧХ фильтра верхних частот

Рис. 14: АЧХ фильтра верхних частот, логарифмический масштаб

Вопреки предсказанию теории, разность фаз на низких частотах стремится не к $\frac{\pi}{2}$, а к 0. Причина в том, что при низких частотах импеданс катушки стремится к нулю и сопротивление других элементов цепи даёт больший вклад.

Также ответим на вопрос: "Почему модуль коэффициента усиления не стремится к 0 при $\omega \to 0$, а выходит на постоянное значение?"

Рассмотрим формулу для модуля коэффициента

усиления для фильтра верхних частот:

$$|\hat{K(\omega)}| = \frac{\omega \tau}{\sqrt{1 + \omega^2 \tau^2}}.$$

При малых частотах $|K(\omega)| \approx \omega \tau$, а при достаточно больших частотах $|K(\omega)| \to 1 = const$. Поэтому модуль коэффициента усиления выходит на постоянное значение, равное 1.

3. Измерение малого сопротивления

Если сопротивление объекта достаточно мало, то для его измерения необходимо применить четырёхточечную схему.

Соберём четырёхточечную схему (рис. 9) для измерения сопротивления металлической трубы. В качестве источника тока используем универсальный источник питания gophert, в качестве вольтметра — мультиметр keysight 34405а.

Рис. 15: Четырёхточечная схема измерений: вольтметр и источник тока независимо подключаются к объекту

Результаты измерений представлены в таблице:

І, мА	200	400	600	800	1000	1200	1400	1600	1800	2000
U, мВ	0.003	0.007	0.01	0.012	0.016	0.019	0.023	0.026	0.03	0.032
U мВ	0.003	0.008	0.011	0.015	0.018	0.02	0.022	0.025	0.027	0.03

Рис. 16: ВАХ для трубы, прямая полярность

Рис. 17: ВАХ для трубы, обратная полярность

Измерим геометрические параметры объекта: площадь поперечного сечения и расстояние между точками подключения проводов от вольтметра: $d_{outer}=36.9~{\rm mm},~d_{inner}=4.3~{\rm mm},~l=7~{\rm cm}$

Из вольт-амперной характеристики (рис. 10, 11) найдем сопротивление: $R=\frac{U}{I}$, оно составляет примерно $0.017~{\rm mOm}$.

Тогда найдём удельное сопротивление трубы по формуле:

$$\begin{split} \rho &= \frac{Rs}{l} = \frac{R\pi (d_{outer}^2 - d_{inner}^2)}{4l}, \\ \rho &= \frac{0.017 \cdot 10^{-3} \cdot 3.14 \cdot (36.9^2 - 4.3^2)}{4 \cdot 7 \cdot 10^{-2}} \frac{Ohm \cdot mm^2}{m}, \\ \rho &\approx 1.0242 \frac{Ohm \cdot mm^2}{m}, \end{split}$$

что соответствует удельному сопротивлению нихрома.