Emerging Methods For Early Detection Of Forest Fires

Project Report

1. INTRODUCTION

- 1.1Project Overview
- 1.2Purpose

2. LITERATURE SURVEY

- 2.1Existing problem
- 2.2References
- 2.3Problem Statement Definition

3. IDEATION & PROPOSEDSOLUTION

- 3.1Empathy Map Canvas
- 13.2deation & Brainstorming
- 3.3Proposed Solution
- 3.4Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1Functional requirement
- 4.2Non-Functional requirements

5. PROJECT DESIGN

- 5.1Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1Sprint Planning & Estimation
- 6.2Sprint Delivery Schedule
- 6.3Reports from JIRA

7. CODING & SOLUTION

- 7.1Feature 1
- 7.2Feature 2

8. TESTING

T8.1est Cases & User Acceptance Testing

9. RESULTS

- 9.1Performance Metrics
 - 10. ADVANTAGES & DISADVANTAGES
 - 11. CONCLUSION
 - 12. FUTURE SCOPE

13. APPENDIX

13.1Source Code 13.2GitHub & Project Demo Link

Emerging Methods For Early Detection Of Forest Fires

1. INTRODUCTION:

1.1 PROJECT OVERVIEW:

Fires are a major environmental issue, creating economic and ecological damage while endangering human lives. There are typically about 100,000 wildfires in the United States every year. Over 9 million acres of land have been destroyed due to treacherous wildfires. It is difficult to predict and detect Forest Fire in a sparsely populated forest area and it is more difficult if the prediction is done using ground-based methods like Camera or Video-Based approach. Satellites can be an important source of data prior to and also during the Fire due to its reliability and efficiency. The various real-time forest fire detection and prediction approaches, with the goal of informing the local fire authorities.

1.2 PURPOSE:

The main objective of this project is to detect the forest fire asa early as possible. Early detection allows for an early response, meaning we have the best chance to keep fires small before they become big and possibly out of control. We can detect a minimal amount of smoke and respond early with both helicopter and ground-based firefighting resources"

2. LITERATURE SURVEY:

2.1 EXISTING PROBLEM:

Temperature Sensor Setup (TSS) and GPS Module are kept in a glass case/ box which are designed to withstand a high temperature and are located few feet above the ground. The TSS consists of Wired/Wireless temperature sensor and its associated circuitry, LNA (low noise amplifier) and power amplifier. Both the TSS and GPS Module are interfaced with the Microcontroller. This arrangement is connected to a Secondary transmitter. The function of the Secondary transmitter is to transmit the data/signals from Microcontroller to the Main transmitter cum antenna. The data from the main transmitter will be communicated to an orbiting small satellite. The main antenna's function is to transmit the signals to the satellite.

The satellite receives all the data from all such transmitters and transmits to the ground station where continuous monitoring of the data/signal takes place. At the ground station, the co-ordinates from the GPS and the TSS reading are decoded.

2.2 REFERENCE:

Hristov, G., Raychev, J., Kinaneva, D., & Zahariev, P. (2018, September). Emerging methods for early detection of forest fires using unmanned aerial vehicles and lorawan sensor networks. In *2018 28th EAEEIE annual conference (EAEEIE)* (pp. 1-9). IEEE.

Alkhatib, A. A. (2014). A review on forest fire detection techniques. *International Journal of Distributed Sensor Networks*, *10*(3), 597368.

2.3 Problem Statement Definition:

To reduce the amount of forest cover destroyed due to forest fires. To reduce the amount of carbon di oxide emission due to forest fires

3.IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas:

SAYS, • Brand • Size from previous one	THINKS, • Wasting time? • Why is this hard?		
DOES, • Makes decision • Pros and Cons • More research	FEELS, • Fear • Anxious		

3.2 Ideation and BrainStroming

Brainstorm & idea prioritization

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

(S) 10 minutes to prepare

1 hour to collaborate

2-8 people recommended

8

Open article -->

0

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feesible.

After you collaborate
You can export the mural as an image or gafto share with members of your company who ingret find it negts.

Quick add-one

Describe most

Describe most

Describe most into the most orbit statebasis to keep

that in the map execute access of the secont

Bepetitionwal
 Super analyse of the montane Pittle PST residents
amon, relation state, at some in passions.

Keep moving forward

3.3 Proposed Solution:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	A forest fire risk prediction algorithm, based onsupport vector machines, is presented. The algorithm depends on previous weather conditions in order to predict the fire hazard level of a day.
2.	Idea / Solution description	Use computer vision methods for recognitionand detection of smoke or fire, based on the still images or the video input from the drone cameras.
3.	Novelty / Uniqueness	Real time computer program detect forest fire in earliest before it spread to larger area.
4.	Social Impact / Customer Satisfaction	Blocked roads and railway lines, electricity, mobile and land telephone lines cut, destruction of homes and industries.
5.	Business Model (Revenue Model)	The proposed method was implemented using the Python programming language on a Core i3 or greater (CPU and 4GB RAM.)
6.	Scalability of the Solution	Computer vision models enable land coverclassification and smoke detection from satellite and ground cameras

3.4 Proposed Solution Fit:

The problem solution fit simply means that you have found a problem with your customer and that the solution you have realised for it actually solves the customer problem. It helps the entrepreneurs, markets and corporate inovators identify behavioral patterns and recognize what would work and why.

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement	Sub Requirement (Story/
	(Epic)	Sub-Task)
FR-1	User Registration	Registration through Gmail
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User Login	Login using credentials
FR-4	User Search	Search for Info on forest fire occurrence
FR-5	User Profile	User shall be givena live feed of the forest
FR-6	User Application	User is alerted if there is a forestfire occurrence intheir surroundings

4.2 Non-Functional requirements

FR No	Non-Functional Requirement	Description
NFR-1	Usability	Alerts according to the user
		location
NFR-2	Security	Instant live feed withalert of
		the situation
NFR-3	Reliability	Theprediction of the forest
		fire is 87% accurate
NFR-4	Performance	The feed and the alert
		message an
		immediate
		action without a lag
NFR-5	Availability	Theapplication gives alerts
		and livefeeds 24/7

NFR-6	Early detection and alerting	
	usersare done efficiently	
	and	
	ina faster means	

5 PROJECT DESIGN

5.1 Data Flow Diagrams

6 Solution & Technical Architecture

S.No	Component	Description	Technology
1	User Interface	The user uses theconsole to access theinterface	Python/HTML,CSS ,Javascript and react.Js
2	Input	Video Feed	Web Camera/Videoon a site
3	Conversion	Video inputted isconverted into Frames	Frame Converter
4	Feeding the Model	The Frames are sentto the Deeplearning model	OurModel
5	Dataset	Using Test set andtrainset, train the model	Data set fromCloud Storage , Database
6	Cloud Database	The model is trained in the cloud more precise with detections more images can be added later on.	IBM Cloudant ,PythonFlask.
7	Infrastructure (Server / Cloud),API	Application Deployment on LocalSystem/ Cloud Local ,Cloud Server Configuration, TwilioAPI to send messages	Java/python ,React.Js,JavaScript ,HTML,CSS,IBM Cloud,OPENCV ,Anaconda Navigator ,Local.

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1	Open-	Python Flask	Technology
	Source	framework is	of
	Frameworks	used	Opensource
			framework
2	Security	Mandatory Access	e.g. SHA-256,
	Implementations	Control (MAC) and	Encryptions, IAM
		Preventative Security	Controls, OWASPetc.
		Control is used	
3	Scalable Architecture	High scalability	Webserver – HTML
		with3-tier	,CSS ,JavaScript
		architecture	Application server
			-Python ,
			Anaconda
			Database server
			-IBM DB2
4	Availability	Use of load	IBMload balancer
		balancingto	
		distribute traffic	
		across servers	
5	Performance	Enhance the	IBM Content Delivery
		performance by	Network
		using	
		IBMCDN	

User Stories:

User Type	Functional Requirement (Epic)	User Story Number	User Story I Task	Acceptance criteria	Priority	Release
Environmenta list	Collect the data	USN-1	As an Environmentalist.it is necessary to collect the data of the forest which includes temperature,humidity,wind and rain of the forest	It is necessary to collect the right data else the prediction may become wrona	High	Sprint-1
		USN-2	Identify algorithms that can be used for prediction	To collect the algorithm to identify the accuracy level of each algorithms	Medium	Sprint-2
	Implement Algorithm	USN-3	Identify the accuracy of each algorithms	Accuracy of each algorithm-calculated so that it is easy to obtain the most accurate output	High	Sprint-2
		USN-4	Evaluate the Dataset	Data is evaluated before processing	Medium	Sprint-1
	Evaluate Accuracy of Algorithm	USN-5	Identify accuracy, precision, recall of each algorithms	These values are important for obtaining the riaht output	High	Sprint-3

Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	22 October 2022
Team ID	PNT2022TMID20340
Project Name	Emerging methods of early detection of forest fire
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Download data set	USN-1	The data is downloaded from the Kaggle website and then the data set is classified into training and testing images.	10	High	S.Vijaya Preetha S.Arun Prasath Ponmaran Muthu Akalya

Sprint-2	Training image	USN-2	In this training phase the ImageDataGenerator arguments is applied to the training images and the model is tested with several images and the model is saved.	20	High	S.Vijaya Preetha S.Arun Prasath Ponmaran Muthu Akalya
Sprint-3	Testing image and prediction	USN-3	In this testing phase the Image processing techniques is applied to the testing images and executed for prediction.	20	High	S.Vijaya Preetha S.Arun Prasath Ponmaran Muthu Akalya

Sprint-4	Video analysis	USN-4	In this phase video is given as input and fire is	20	High	S.Vijaya Preetha
	Sending Alert message		detected when the fire is detected alert message is			S.Arun Prasath
	and web application		sent using twilio service and a frontend application			Ponmaran
			is created.			Muthu Akalya

6.3Reports from JIRA

Burndown Chart:

7 CODING & SOLUTION

7.1Feature 1

In Feature 1 module we have made data collection and Image preprocessing for and Model training.

importing RequiredLibraries:

import keras from
keras.preprocessing.imageimport
ImageDataGenerator
import matplotlib.pyplot as plt
import numpy as np
batch_size = 32

image resizingand preprocessing:

```
train_datagen = ImageDataGenerator( shear_range=0.2,
rotation_range=180, zoom_range=0.2,
horizontal_flip=True, ) val_datagen = ImageDataGenerator(rescale=1./255
)
train_generator = train_datagen.flow_from_directory( 'train_set/', target_size=(150, 150),batch_size=batch_size, class_mode='binary' )
val_generator = val_datagen.flow_from_directory( 'test_set/', target_size=(150, 150),batch_size=batch_size, class_mode='binary' )
```

Creating the sequential

model:from

keras.models

import Sequential from

keras.layersimport Convolution2D

from keras.layersimport

MaxPooling2D from keras.layers

import Activation from

keras.layers import Dropout from

```
keras.layers importFlatten from
keras.layers
import Dense model=Sequential()
model.add(Convolution2D(32,(3,3),input_shape=(150,150,3)))
#Convolutional 2D Layer model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2))) # MaxPooling
Layermodel.add(Flatten()) #Flatten Layer to make a array
model.add(Dense(150))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile( loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
Model summary:
```

model.summary()

Model: "sequential"

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	148, 148, 32)	896
activation (Activation)	(None,	148, 148, 32)	0
max_pooling2d (MaxPooling2D)	(None,	74, 74, 32)	0
flatten (Flatten)	(None,	175232)	0
dense (Dense)	(None,	150)	26284950
activation_1 (Activation)	(None,	150)	0
dropout (Dropout)	(None,	150)	0
dense_1 (Dense)	(None,	1)	151
activation_2 (Activation)	(None,	1)	0

Total params: 26,285,997 Trainable params: 26,285,997 Non-trainable params: 0

7.2 Feature 2

import cv2 import numpy as np from keras.preprocessing import image from keras.models import

```
load model from twilio.rest
importClient from playsound
import playsound
model=load_model('forest1.h
5')
video=cv2.VideoCapture(0)
name=['forest','with fire']
while(True):
 ret,frame=video.read()
 cv2.imshow('frame',frame)
 cv2.imwrite('image.jpg',frame)
 img=image.load_img('train_set/forest/NoFi
 re
(1).bmp',target_size=(64,64))
 x=image.img_to_array(img)
 x=np.expand_dims(x,axis=0)
 pred=model.predict(x)
   index=np.argmax
   (pred)if
   index==0:
account_sid='AC50d663c8a7c2d8b35b1fc09dfda93bda
    auth_token='86f345babfa094d1015a0e1137dbb679
    'client =Client(account_sid,auth_token)
    message=client.messages \
    .create(body='-----Fire is detected, Stay Alert !!!------',
           from_='+19457581434',to='+916369 659 356')
    print(message.sid)
    print('Fire detected')
    print("Alert Message
    sent!")
    playsound('tornado-siren.mp3')
  else:
    print('No Danger')
    cv2.imshow("image.jpg",fr
    ame) if
    cv2.waitkey(2)&0xff ==
    ord('q'):
        break
video.release()
cv2.destroyAllWindo
ws()
```

```
SM20002510dflefe889005ac80731425ff
Fire detected
Alert Message sent!
]:
```

8)TESTING

8.1) Test Cases & User Acceptance Testing Testing with input video recording from user end:

```
import cv2
import numpy as np
from keras.preprocessing
import image from
keras.models
import load_model from
twilio.restimport Client from
playsound import playsound
model=load_model('forest1.h
5')
video=cv2.VideoCapture(0)
name=['forest','with fire']
while(True):
  ret,frame=video.read()
  cv2.imshow('frame',fra
  me)
  cv2.imwrite('image.jpg',f
  rame)
  img=image.load_img('train_set/forest/NoFire (1).bmp',target_size=(64,64))
  x=image.img_to_array(img)
  x=np.expand_dims(x,axis=0)
  pred=model.pred
  ict(x)
  index=np.argmax
  (pred)if
  index==0:
    account sid='AC50d663c8a7c2d8b35b1fc09dfda93
    auth_token='86f345babfa094d1015a0e1137dbb679
    'client =Client(account_sid,auth_token)
    message=client.messages \
    .create(body='-----Fire is detected,Stay Alert !!!------',
         from_='+19457581434',to='+916369 659 356')
    print(message.sid)
    print('Fire detected')
```

```
print("Alert
   Messagesent!")
   playsound('tornado-siren.mp3')

else:
   print('No Danger')
   cv2.imshow("image.jpg",fr
   ame) if
   cv2.waitkey(2)&0xff ==
   ord('q'):
        break

video.release()
   cv2.destroyAllWindows()
```

OUTPUT

9 Result

9.1 Performance Metrics

```
loss: 0.3438 - acci
loss: 0.3816 - acci
loss: 0.4068 - acci
loss: 0.3312 - acci
```

10 ADVANTAGES & DISADVANTAGES

Advantages:

- 1. Easily detect and Estimatethe Forest Fire.
- 2. Most Accurate
- 3. Flexible Model which can give maximized outcome
- 4. No Specific Requirements neededto implement the model

Disadvanatges:

- 5. Training model is time consuming process.
- 6. Error in CV can cause damageto camera
- 7. Access of camera are prohibited due to personalissues

11 CONCLUSION:

Thus we have constructed a model that can identify the effects of the forest fire and it can analyse the forest fire by advanced AI techniques and CNN Algorithm then the Prediction model is Checked and then the model is connected with Twilio account credentials of the Developer consisting of phone numbers of the persons in the surroundings of the people in the area of easy forest fire zone then an security sound alert system is developed to make a alert sound which is downloaded from internet then the entire model is deployed to the IBM Cloud account that we have created was made with the studies we have done.

12 FUTURE SCOPES:

- 1. It can be developed as a Web or AndroidApplication.
- 2. In future Alternate Advancedtechnologies can be Implemented.
- 3. The Identification and tracking systemcan be implemented if possible.