## HW #2 CSc 137, Harvey **Total (16 pts)**

1.6 What is the biggest positive FP number (in Decimal) that can be represented in 16-bit format using 1-bit sign, 4-bit biased exponent, and 11-bit fraction, where bias offset is 7? (4 pts)

sign largest mention blue exponent fraccional bits = 14 - 7

(III reserved for 
$$\infty$$
) = 7

Bin arg 2 to Decimal

(1. 
$$\frac{|1|}{|1|}\frac{|1|}{|1|}$$
 × 2

 $\frac{(|-1|)}{|1|}\frac{|1|}{|1|}$  × 2

 $\frac{(|-1|)}{|1|}\frac{|1|}{|1|}$  × 2

 $\frac{(|-1|)}{|1|}\frac{|1|}{|1|}$  × 2

 $\frac{(|-1|)}{|1|}\frac{|1|}{|1|}$  × 2

 $\frac{(|-1|)}{|1|}$  × 2

 $\frac{(|-1|)}{|1|}$  + 2

 $\frac{(|-1|)$ 

- 1.8 Do the following assuming 16-bit FP numbers with 4-bit bias exponent, bias offset = 7, and 11-bit fraction: (4 pts)
  - a) What real number does an FP number with sign= 0, bias exponent =1 and fraction = 0 represent? (Answer in 4 decimal places)

biased exp = cnbiased exp - Diosed offset

| = unbiased exp - 7

unbiased exp = -6

(|)<sub>2</sub> × 2

(0.00000])<sub>2</sub>

binary<sub>2</sub> 
$$\rightarrow$$
 decimal

(0.000001)<sub>2</sub>

= 0+0+0+0+0+0+26

= 0.615625

≈ O. 0 156

2.4 Proof Demorgan's Theorem 
$$x + y = xy$$
 by creating truth tables for  $f = x + y$  and  $g = xy$ . Are

the two truth tables identical? (4 pts)

| × | თ | × | 15 | ×+9 | ×fy | X·ŷ            |
|---|---|---|----|-----|-----|----------------|
| 0 | 0 | - | -  | 0   | 1   | _              |
| 0 | 1 | - | ß  | 1   | 0   | <mark>O</mark> |
| 1 | 0 | 0 | ١  |     | 0   | 0              |
| l | 1 | 0 | 0  | 1   | O   | 0              |

2.5 **(4 pts)** Draw the circuit schematic for f = x + yz and then convert the schematic to NAND gates y using the steps illustrated in the textbook.



## convert to NAND gates

