Introduction
Motivation
Model Formulation
Preliminary Results
Possible Expansions
Thank You

The Ecological Effects of Trait Variation in a *u*-Predator, *v*-Prey System

Sam Fleischer, Pablo Chavarria

March 14, 2015

Advisors

- Dr. Jing Li
 Assistant Professor, CSU Northridge
 Department of Mathematics
- Dr. Casey terHorst
 Assistant Professor, CSU Northridge
 Biology Department

Funding

National Science Foundation
 Pacific Math Alliance
 Preparing Undergraduates through Mentoring towards PhDs (PUMP)

Introduction

Motivation

Model Formulation

Preliminary Results

Possible Expansions

Thank You

Observations

- Predator/Prey interactions are prevalent in nature
 - Crab vs. gastropod
 - Protist vs. bacteria
- There is trait variation within species
 - Thickness of plant cuticula
 - Strength of gastropod shell
- Incorporating trait variation provides richer dynamics than classical Lotka-Volterra models

Classical Lotka-Volterra Model

$$\frac{dN}{dt} = N(r - \alpha M)$$
$$\frac{dM}{dt} = M(e\alpha N - d)$$

Variables

- N ≡ Prey Density
- $M \equiv \text{Predator Density}$

- $\alpha \equiv$ Attack rate
- $r \equiv \text{Prey birth rate}$
- $e \equiv \text{Efficiency}$
- $d \equiv \text{Predator death rate}$

Classical Lotka-Volterra Model

$$\frac{dN}{dt} = N(r - \alpha M)$$
$$\frac{dM}{dt} = M(e\alpha N - d)$$

Variables

- N ≡ Prey Density
- $M \equiv \text{Predator Density}$

- $\alpha \equiv$ Attack rate \leftarrow *No variation!*
- $r \equiv \text{Prey birth rate}$
- $e \equiv \text{Efficiency}$
- $d \equiv \text{Predator death rate}$

Schreiber, Bürger, and Bolnick's Extension

$$a(m) = \alpha \exp \left[-\frac{(m-\theta)^2}{2\tau^2} \right]$$

Variables

- $N \equiv \text{Prey Density}$
- $M \equiv \text{Predator Density}$
- $m \equiv \text{Predator Character (Trait Value)}$

- $\alpha \equiv \text{Maximum attack rate}$
- $\theta \equiv Optimal trait value$
- $\tau \equiv$ Specialization Constant

Schreiber, Bürger, and Bolnick's Extension

$$a(m) = \alpha \exp\left[-\frac{(m-\theta)^2}{2\tau^2}\right]$$

Variables

- $N \equiv \text{Prey Density}$
- $M \equiv \text{Predator Density}$
- No Prey Character
- $m \equiv \text{Predator Character (Trait Value)}$

- $\alpha \equiv \text{Maximum attack rate}$
- $\theta \equiv \text{Optimal trait value} \quad \longleftarrow \text{No variation!}$
- $oldsymbol{ au} au \equiv {\sf Specialization} \ {\sf Constant}$

Our Extension

$$a(m,n) = \alpha \exp \left[-\frac{(m-n-\theta)^2}{2\tau^2} \right]$$

Variables

- $N \equiv \text{Prey Density}$
- $M \equiv \text{Predator Density}$
- $n \equiv \text{Prey Character (Trait Value)}$
- $m \equiv \text{Predator Character (Trait Value)}$

- $\alpha \equiv \text{Maximum attack rate}$
- $\theta \equiv \text{Optimal trait } \frac{\text{difference}}{\text{difference}}$
- $oldsymbol{ au} au \equiv {\sf Specialization} \ {\sf Constant}$

Distribution Assumptions

Trait values are normally distributed over the populations

$$p(n, \overline{n}) = \frac{1}{\sqrt{2\pi\beta^2}} \exp\left[-\frac{(n-\overline{n})^2}{2\beta^2}\right]$$
$$p(m, \overline{m}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(m-\overline{m})^2}{2\sigma^2}\right]$$

Variables

- N ≡ Prey Density
- $\overline{n} \equiv$ Mean Prey Character
- $M \equiv \text{Predator Density}$
- ullet $\overline{m} \equiv$ Mean Predator Character

- $\beta^2 \equiv \text{Prey Trait Variance}$
- $\sigma^2 \equiv \text{Predator Trait Variance}$

Average Attack Rate

$$\overline{a}(\overline{m}, \overline{n}) = \int_{-\infty}^{\infty} \int_{\infty}^{\infty} a(m, n) \cdot p(m, \overline{m}) \cdot p(n, \overline{n}) dm dn$$

$$= \frac{\alpha \tau}{\sqrt{\sigma^2 + \beta^2 + \tau^2}} \exp \left[-\frac{(\overline{m} - \overline{n} - \theta)^2}{2(\sigma^2 + \beta^2 + \tau^2)} \right]$$

Variables

- N ≡ Prey Density
- $\overline{n} \equiv$ Mean Prey Character
- $M \equiv \text{Predator Density}$
- $\overline{m} \equiv$ Mean Predator Character

- $\beta^2 \equiv \text{Prey Trait Variance}$
- $\sigma^2 \equiv \text{Predator Trait Variance}$
- $\alpha \equiv \text{Maximum attack rate}$
- $\theta \equiv Optimal trait difference$
- $\tau \equiv \text{Specialization Constant}$

Fitness Assumptions

- Prey experiences logistic growth in absence of predator
- Predator experiences exponential decay in absence of prey

$$Y(m, n, M, N) = r\left(1 - \frac{N}{K}\right) - Ma(m, n)$$

$$W(m, n, N) = eNa(m, n) - d$$

Variables

- $N \equiv \text{Prey Density}$
- $n \equiv \text{Prey Character}$
- $M \equiv \text{Predator Density}$
- m ≡ Predator Character

- $r \equiv$ Intrinsic Prey Growth Rate
- $K \equiv \text{Prey Carrying Capacity}$
- $d \equiv \text{Predator Death Rate}$
- $e \equiv \text{Efficiency}$

Average Fitness

$$\overline{Y}(\overline{m}, \overline{n}, M, N) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} Y(m, n, M, N) \cdot p(m, \overline{m}) \cdot p(n, \overline{n}) dm dn$$

$$= r \left(1 - \frac{N}{K} \right) - M \overline{a}(\overline{m}, \overline{n})$$

$$\overline{W}(\overline{m}, \overline{n}, N) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(m, n, N) \cdot p(m, \overline{m}) \cdot p(n, \overline{n}) dm dn$$

$$= eN \overline{a}(\overline{m}, \overline{n}) - d$$

Variables

- N ≡ Prey Density
- $\overline{n} \equiv$ Mean Prey Character
- $M \equiv Predator Density$
- ullet $\overline{m} \equiv$ Mean Predator Character

- $r \equiv$ Intrinsic Prey Growth Rate
- $K \equiv \text{Prey Carrying Capacity}$

Ecological Components

$$\frac{dN}{dt} = N \cdot \overline{Y}(\overline{m}, \overline{n}, M, N) = N \left[r \left(1 - \frac{N}{K} \right) - M \overline{a}(\overline{m}, \overline{n}) \right]$$

$$\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}, N) = M [eN \overline{a}(\overline{m}, \overline{n}) - d]$$

Variables

- N ≡ Prey Density
- $\overline{n} \equiv$ Mean Prey Character
- $M \equiv \text{Predator Density}$
- $\overline{m} \equiv$ Mean Predator Character

- $r \equiv Intrinsic Prey Growth Rate$
- $K \equiv \text{Prey Carrying Capacity}$
- $d \equiv \text{Predator Death Rate}$
- $e \equiv \text{Efficiency}$

Evolutionary Components

• The evolution of the mean character is always in the direction which increases the mean fitness in the population.

$$\frac{d\overline{n}}{dt} = \beta_{\mathsf{G}}^2 \frac{\partial \overline{Y}}{\partial \overline{n}} = \beta_{\mathsf{G}}^2 \frac{M(\theta + \overline{n} - \overline{m})}{\sigma^2 + \beta^2 + \tau^2} \overline{a}(\overline{m}, \overline{n})$$

$$\frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial W}{\partial \overline{m}} = \sigma_G^2 \frac{eN(\theta + \overline{n} - \overline{m})}{\sigma^2 + \beta^2 + \tau^2} \overline{a}(\overline{m}, \overline{n})$$

Variables

- N ≡ Prey Density
- $\overline{n} \equiv$ Mean Prey Character
- $M \equiv \text{Predator Density}$
- ullet $\overline{m} \equiv$ Mean Predator Character

- $\beta_G^2 \equiv \text{Prey genetic variance}$
- $\sigma_G^2 \equiv$ Predator genetic variance

The Complete 1×1 Model (One Predator Species, One Prey Species)

Ecological Components

$$\frac{dN}{dt} = N \cdot \overline{Y}(\overline{m}, \overline{n}, M, N) = N \left[r \left(1 - \frac{N}{K} \right) - M \overline{a}(\overline{m}, \overline{n}) \right]$$

$$\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}, N) = M[eN \overline{a}(\overline{m}, \overline{n}) - d]$$

Evolutionary Components

$$\begin{split} \frac{d\overline{n}}{dt} &= \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}} = \beta_G^2 \frac{M(\theta + \overline{n} - \overline{m})}{\sigma^2 + \beta^2 + \tau^2} \overline{a}(\overline{m}, \overline{n}) \\ \frac{d\overline{m}}{dt} &= \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}} = \sigma_G^2 \frac{eN(\theta + \overline{n} - \overline{m})}{\sigma^2 + \beta^2 + \tau^2} \overline{a}(\overline{m}, \overline{n}) \end{split}$$

Prey Fitness

$$Y(m, n, M, N) = r\left(1 - \frac{N}{K}\right) - Ma(m, n)$$

Predator Fitness

$$W(m, n, N) = eNa(m, n) - d$$

Prey Fitness

$$Y(m, n, M, N) = r \left(1 - \frac{N}{K}\right) - Ma(m, n)$$

$$\downarrow$$

$$Y_{j}([m_{i}]_{i=1}^{u}, n_{j}, [M_{i}]_{i=1}^{u}, N_{j}) = r_{j}\left(1 - \frac{N_{j}}{K_{j}}\right) - \sum_{i=1}^{u} M_{i} a_{ij}(m_{i}, n_{j})$$

Predator Fitness

$$W(m, n, N) = eNa(m, n) - d$$

Notation

$$[x_i]_{i=1}^u = x_1, \dots, x_u$$

Prey Fitness

$$Y(m, n, M, N) = r \left(1 - \frac{N}{K}\right) - Ma(m, n)$$

$$\downarrow$$

$$Y_{j}([m_{i}]_{i=1}^{u}, n_{j}, [M_{i}]_{i=1}^{u}, N_{j}) = r_{j} \left(1 - \frac{N_{j}}{K_{j}}\right) - \sum_{i=1}^{u} M_{i} a_{ij}(m_{i}, n_{j})$$

Predator Fitness

$$W(m, n, N) = eNa(m, n) - d$$

$$\downarrow$$

$$W_i(m_i, [n_j]_{j=1}^v, [N_j]_{j=1}^v) = \sum_{j=1}^v \left[e_{ij} N_j a_{ij}(m_i, n_j) \right] - d_i$$

Notation

$$[x_i]_{i=1}^u = x_1, \dots, x_u$$

Average Fitness

$$\begin{split} \overline{Y}_{j}([\overline{m}_{i}]_{i=1}^{u}, \overline{n}_{j}, [M_{i}]_{i=1}^{u}, N_{j}) \\ &= \int_{\mathbb{R}^{u+1}} Y_{j} \cdot \prod_{i=1}^{u} \left[p_{i}(m_{i}, \overline{m_{i}}) \right] \cdot p(n, \overline{n}) \prod_{i=1}^{u} \left[dm_{i} \right] dn_{j} \\ &= r_{j} \left(1 - \frac{N_{j}}{K_{j}} \right) - \sum_{i=1}^{u} M_{i} \overline{a}_{ij}(\overline{m}_{i}, \overline{n}_{j}) \end{split}$$

$$\begin{split} \overline{W}_{i}(\overline{m}_{i}, [\overline{n}_{j}]_{j=1}^{\nu}, [N_{j}]_{j=1}^{\nu}) \\ &= \int_{\mathbb{R}^{u+1}} W_{i} \cdot p_{i}(m_{i}, \overline{m_{i}}) \cdot \prod_{j=1}^{v} \left[p(n_{j}, \overline{n}_{j}) \right] dm_{i} \prod_{j=1}^{v} \left[dn_{j} \right] \\ &= \sum_{j=1}^{v} \left[e_{ij} N_{j} \overline{a}_{ij}(\overline{m}_{i}, \overline{n}_{j}) \right] - d_{i} \end{split}$$

The Complete $u \times v$ Model (u Predator Species, v Prey Species)

Ecological Components

$$\frac{dN_{j}}{dt} = N_{j}\overline{Y}_{j} = N_{j} \left[r_{j} \left(1 - \frac{N_{j}}{K_{j}} \right) - \sum_{i=1}^{u} M_{i}\overline{a}_{ij}(\overline{m}_{i}, \overline{n}_{j}) \right]$$

$$\frac{dM_i}{dt} = M_i \overline{W}_i = M_i \left[\sum_{j=1}^{v} \left[e_{ij} N_j \overline{a}_{ij} (\overline{m}_i, \overline{n}_j) \right] - d_i \right]$$

Evolutionary Components

$$\frac{d\overline{n}_j}{dt} = \beta_{Gj}^2 \frac{\partial \overline{Y}_j}{\partial \overline{n}_j} = \beta_{Gj}^2 \sum_{i=1}^u \left[\frac{M_i(\theta_{ij} + \overline{n}_j - \overline{m}_i)}{\sigma_i^2 + \beta_j^2 + \tau_{ij}^2} \overline{a}_{ij}(\overline{m}_i, \overline{n}_j) \right]$$

$$\frac{d\overline{m}_{i}}{dt} = \sigma_{Gi}^{2} \frac{\partial \overline{W}_{i}}{\partial \overline{m}_{i}} = \sigma_{Gi}^{2} \sum_{i=1}^{v} \left[\frac{e_{ij} N_{j} (\theta_{ij} + \overline{n_{j}} - \overline{m_{i}})}{\sigma_{i}^{2} + \beta_{j}^{2} + \tau_{ij}^{2}} \overline{a}_{ij} (\overline{m_{i}}, \overline{n_{j}}) \right]$$

$$\frac{dN}{dt} = N \cdot \overline{Y}(\overline{m}, \overline{n}, M, N) \qquad \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}} \\
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}, N) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Extinction

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (0, 0, _, _)$$

Exclusion

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (K, 0, \underline{\hspace{1em}}, \underline{\hspace{1em}})$$

$$\frac{dN}{dt} = N \cdot \overline{Y}(\overline{m}, \overline{n}, M, N) \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}}
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}, N) \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Extinction *Unstable*

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (0, 0, _, _)$$

Exclusion

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (K, 0, \underline{\hspace{1em}}, \underline{\hspace{1em}})$$

$$\frac{dN}{dt} = N \cdot \overline{Y}(\overline{m}, \overline{n}, M, N) \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}}
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}, N) \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Extinction *Unstable*

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (0, 0, _, _)$$

Exclusion | Stable under certain conditions

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (K, 0, _, _)$$

$$\frac{dN}{dt} = N \cdot \overline{Y}(\overline{m}, \overline{n}, M, N) \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}}
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}, N) \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Extinction *Unstable*

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (0, 0, _, _)$$

Exclusion | Stable under certain conditions

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (K, 0, \underline{\hspace{1em}}, \underline{\hspace{1em}})$$

Necessary Conditions for Stable Exclusion:

- $d > e\overline{a}(\overline{m}^*, \overline{n}^*)K$
- $(\overline{m}^* \overline{n}^* \theta)^2 < \sigma^2 + \beta^2 + \tau^2$

$$\frac{dN}{dt} = N \cdot \overline{Y}(\overline{m}, \overline{n}, M, N) \qquad \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}} \\
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}, N) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Coexistence

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (\frac{d\sqrt{A}}{e\alpha\tau}, \frac{r\sqrt{A}}{\alpha\tau} \left(1 - \frac{d\sqrt{A}}{Ke\alpha\tau}\right), \mu^*, \mu^* - \theta)$$
 where $A = \sigma^2 + \beta^2 + \tau^2$ and μ^* is an arbitrary value.

$$\frac{dN}{dt} = N \cdot \overline{Y}(\overline{m}, \overline{n}, M, N) \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}}
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}, N) \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Coexistence | Stable under certain conditions

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (\frac{d\sqrt{A}}{e\alpha\tau} , \frac{r\sqrt{A}}{\alpha\tau} \left(1 - \frac{d\sqrt{A}}{Ke\alpha\tau}\right) , \mu^* , \mu^* - \theta)$$
 where $A = \sigma^2 + \beta^2 + \tau^2$ and μ^* is an arbitrary value.

$$\frac{dN}{dt} = N \cdot \overline{Y}(\overline{m}, \overline{n}, M, N) \qquad \frac{d\overline{n}}{dt} = \beta_G^2 \frac{\partial \overline{Y}}{\partial \overline{n}}
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}, N) \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Coexistence Stable under certain conditions

$$(N^*, M^*, \overline{n}^*, \overline{m}^*) = (\frac{d\sqrt{A}}{e\alpha\tau}, \frac{r\sqrt{A}}{\alpha\tau} \left(1 - \frac{d\sqrt{A}}{Ke\alpha\tau}\right), \mu^*, \mu^* - \theta)$$

where $A = \sigma^2 + \beta^2 + \tau^2$ and μ^* is an arbitrary value.

Necessary Condition for Stable Coexistence:

•
$$d\sigma_G^2 > r\beta_G^2 \left(1 - \frac{d\sqrt{A}}{Ke\alpha\tau}\right)$$

Figures - 1×1

Exclusion

Figures - 1×1

Stable Coexistence

Figures - 1×1

Unstable Coexistence

$$\frac{dN_1}{dt} = N_1 \cdot \overline{Y}_1(\overline{m}, \overline{n}_1, M, N_1) \qquad \qquad \frac{d\overline{n}_1}{dt} = \beta_{G1}^2 \frac{\partial Y_1}{\partial \overline{n}_1} \\
\frac{dN_2}{dt} = N_2 \cdot \overline{Y}_2(\overline{m}, \overline{n}_2, M, N_2) \qquad \qquad \frac{d\overline{n}_2}{dt} = \beta_{G2}^2 \frac{\partial \overline{Y}_2}{\partial \overline{n}_2} \\
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}_1, \overline{n}_2, N_1, N_2) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

$$\frac{dN_1}{dt} = N_1 \cdot \overline{Y}_1(\overline{m}, \overline{n}_1, M, N_1) \qquad \qquad \frac{d\overline{n}_1}{dt} = \beta_{G1}^2 \frac{\partial \overline{Y}_1}{\partial \overline{n}_1} \\
\frac{dN_2}{dt} = N_2 \cdot \overline{Y}_2(\overline{m}, \overline{n}_2, M, N_2) \qquad \qquad \frac{d\overline{n}_2}{dt} = \beta_{G2}^2 \frac{\partial \overline{Y}_2}{\partial \overline{n}_2} \\
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}_1, \overline{n}_2, N_1, N_2) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Extinction

$$(N_1^*,N_2^*,M^*,\overline{n}_1^*,\overline{n}_2^*,\overline{m}^*)=(0,0,0,_,_,_)$$

$$\frac{dN_1}{dt} = N_1 \cdot \overline{Y}_1(\overline{m}, \overline{n}_1, M, N_1) \qquad \qquad \frac{d\overline{n}_1}{dt} = \beta_{G1}^2 \frac{\partial \overline{Y}_1}{\partial \overline{n}_1} \\
\frac{dN_2}{dt} = N_2 \cdot \overline{Y}_2(\overline{m}, \overline{n}_2, M, N_2) \qquad \qquad \frac{d\overline{n}_2}{dt} = \beta_{G2}^2 \frac{\partial \overline{Y}_2}{\partial \overline{n}_2} \\
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}_1, \overline{n}_2, N_1, N_2) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Extinction *Unstable*

$$(N_1^*,N_2^*,M^*,\overline{n}_1^*,\overline{n}_2^*,\overline{m}^*)=(0,0,0,_,_,_)$$

$$\begin{split} \frac{dN_1}{dt} &= N_1 \cdot \overline{Y}_1(\overline{m}, \overline{n}_1, M, N_1) & \frac{d\overline{n}_1}{dt} &= \beta_{G1}^2 \frac{\partial \overline{Y}_1}{\partial \overline{n}_1} \\ \frac{dN_2}{dt} &= N_2 \cdot \overline{Y}_2(\overline{m}, \overline{n}_2, M, N_2) & \frac{d\overline{n}_2}{dt} &= \beta_{G2}^2 \frac{\partial \overline{Y}_2}{\partial \overline{n}_2} \\ \frac{dM}{dt} &= M \cdot \overline{W}(\overline{m}, \overline{n}_1, \overline{n}_2, N_1, N_2) & \frac{d\overline{m}}{dt} &= \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}} \end{split}$$

Extinction *Unstable*

$$(N_1^*,N_2^*,M^*,\overline{n}_1^*,\overline{n}_2^*,\overline{m}^*)=(0,0,0,_,_,_)$$

Exclusion

$$(N_1^*,N_2^*,M^*,\overline{n}_1^*,\overline{n}_2^*,\overline{m}^*)=(K_1,K_2,0,_,_,_)$$

$$\begin{split} \frac{dN_1}{dt} &= N_1 \cdot \overline{Y}_1(\overline{m}, \overline{n}_1, M, N_1) & \frac{d\overline{n}_1}{dt} &= \beta_{G1}^2 \frac{\partial \overline{Y}_1}{\partial \overline{n}_1} \\ \frac{dN_2}{dt} &= N_2 \cdot \overline{Y}_2(\overline{m}, \overline{n}_2, M, N_2) & \frac{d\overline{n}_2}{dt} &= \beta_{G2}^2 \frac{\partial \overline{Y}_2}{\partial \overline{n}_2} \\ \frac{dM}{dt} &= M \cdot \overline{W}(\overline{m}, \overline{n}_1, \overline{n}_2, N_1, N_2) & \frac{d\overline{m}}{dt} &= \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}} \end{split}$$

Extinction *Unstable*

$$(N_1^*, N_2^*, M^*, \overline{n}_1^*, \overline{n}_2^*, \overline{m}^*) = (0, 0, 0, _, _, _)$$

Exclusion Stable under certain conditions

$$(N_1^*, N_2^*, M^*, \overline{n}_1^*, \overline{n}_2^*, \overline{m}^*) = (K_1, K_2, 0, _, _, _)$$

$$\frac{dN_1}{dt} = N_1 \cdot \overline{Y}_1(\overline{m}, \overline{n}_1, M, N_1) \qquad \qquad \frac{d\overline{n}_1}{dt} = \beta_{G1}^2 \frac{\partial Y_1}{\partial \overline{n}_1} \\
\frac{dN_2}{dt} = N_2 \cdot \overline{Y}_2(\overline{m}, \overline{n}_2, M, N_2) \qquad \qquad \frac{d\overline{n}_2}{dt} = \beta_{G2}^2 \frac{\partial \overline{Y}_2}{\partial \overline{n}_2} \\
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}_1, \overline{n}_2, N_1, N_2) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Equilibria - 1×2

$$\frac{dN_1}{dt} = N_1 \cdot \overline{Y}_1(\overline{m}, \overline{n}_1, M, N_1) \qquad \qquad \frac{d\overline{n}_1}{dt} = \beta_{G1}^2 \frac{\partial \overline{Y}_1}{\partial \overline{n}_1} \\
\frac{dN_2}{dt} = N_2 \cdot \overline{Y}_2(\overline{m}, \overline{n}_2, M, N_2) \qquad \qquad \frac{d\overline{n}_2}{dt} = \beta_{G2}^2 \frac{\partial \overline{Y}_2}{\partial \overline{n}_2} \\
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}_1, \overline{n}_2, N_1, N_2) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Generalist Becomes Specialist

$$\begin{array}{l} \left(N_{1}^{*} \quad , \; N_{2}^{*} \; , \; M^{*} \qquad \qquad , \; \overline{n}_{1}^{*} \; , \; \overline{n}_{2}^{*} \; , \; \overline{m}^{*} \quad \right) \\ \\ = \left(\frac{d\sqrt{A_{1}}}{e_{1}\alpha_{1}\tau_{1}} \; , \; K_{2} \; , \; \frac{r_{1}\sqrt{A_{1}}}{\alpha_{1}\tau_{1}} \left(1 - \frac{d\sqrt{A_{1}}}{K_{1}e_{1}\alpha_{1}\tau_{1}}\right) \; , \; \mu_{1}^{*} \; , \; \mu_{2}^{*} \; , \; \mu_{1}^{*} - \theta_{1}\right) \\ \end{array}$$

where $A_1 = \sigma^2 + \beta_1^2 + \tau_1^2$, μ_1^* is an arbitrary value, and μ_2^* is sufficiently far from $\mu_1^* - \theta_1$.

Equilibria - 1×2

$$\frac{dN_1}{dt} = N_1 \cdot \overline{Y}_1(\overline{m}, \overline{n}_1, M, N_1) \qquad \qquad \frac{d\overline{n}_1}{dt} = \beta_{G1}^2 \frac{\partial \overline{Y}_1}{\partial \overline{n}_1} \\
\frac{dN_2}{dt} = N_2 \cdot \overline{Y}_2(\overline{m}, \overline{n}_2, M, N_2) \qquad \qquad \frac{d\overline{n}_2}{dt} = \beta_{G2}^2 \frac{\partial \overline{Y}_2}{\partial \overline{n}_2} \\
\frac{dM}{dt} = M \cdot \overline{W}(\overline{m}, \overline{n}_1, \overline{n}_2, N_1, N_2) \qquad \qquad \frac{d\overline{m}}{dt} = \sigma_G^2 \frac{\partial \overline{W}}{\partial \overline{m}}$$

Generalist Becomes Specialist | Stable under certain conditions???

where $A_1 = \sigma^2 + \beta_1^2 + \tau_1^2$, μ_1^* is an arbitrary value, and μ_2^* is sufficiently far from $\mu_1^* - \theta_1$.

Figures - 1×2

Generalist Becomes Specialist

Figures - 1×2

Unstable Coexistence

• Two Predators competing for One Prey

- Two Predators competing for One Prey
- One Specialist Predator Competing with One Generalist Predator for Two Prey Species

- Two Predators competing for One Prey
- One Specialist Predator Competing with One Generalist Predator for Two Prey Species
- Two Specialist Predators Competing with One Generalist Predator for Two Prey Species

- Two Predators competing for One Prey
- One Specialist Predator Competing with One Generalist Predator for Two Prey Species
- Two Specialist Predators Competing with One Generalist Predator for Two Prey Species
- Further Analysis of the General $u \times v$ Model

- Two Predators competing for One Prey
- One Specialist Predator Competing with One Generalist Predator for Two Prey Species
- Two Specialist Predators Competing with One Generalist Predator for Two Prey Species
- Further Analysis of the General $u \times v$ Model
- Intra-Guild Predation

- Two Predators competing for One Prey
- One Specialist Predator Competing with One Generalist Predator for Two Prey Species
- Two Specialist Predators Competing with One Generalist Predator for Two Prey Species
- Further Analysis of the General $u \times v$ Model
- Intra-Guild Predation
- Adding Evolutionary Cost to Prey

- Two Predators competing for One Prey
- One Specialist Predator Competing with One Generalist Predator for Two Prey Species
- Two Specialist Predators Competing with One Generalist Predator for Two Prey Species
- Further Analysis of the General $u \times v$ Model
- Intra-Guild Predation
- Adding Evolutionary Cost to Prey
- Adding Evolutionary Cost to Predator

hello