SI231 Matrix Analysis and Computations Singular Value Decomposition

Ziping Zhao

Spring Term 2022–2023

School of Information Science and Technology ShanghaiTech University, Shanghai, China

http://si231.sist.shanghaitech.edu.cn

Singular Value Decomposition

- singular values, singular vectors, and singular value decomposition
- matrix norms
- linear systems
- least squares, pseudo-inverse, orthogonal projections
- low-rank matrix approximation
- variational characterizations for singular values
- singular value inequalities
- computations of the SVD

Main Results

ullet any matrix $\mathbf{A} \in \mathbb{R}^{m imes n}$ admits a singular value decomposition

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthogonal, and $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ has $[\mathbf{\Sigma}]_{ij} = 0$ for all $i \neq j$ and $[\mathbf{\Sigma}]_{ii} = \sigma_i$ for all i, with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min\{m,n\}} \geq 0$.

- matrix 2-norm: $\|\mathbf{A}\|_2 = \sigma_1$
- let r be the number of nonzero σ_i 's, partition $\mathbf{U} = [\mathbf{U}_1 \ \mathbf{U}_2]$, $\mathbf{V} = [\mathbf{V}_1 \ \mathbf{V}_2]$, and let $\tilde{\Sigma} = \mathrm{Diag}(\sigma_1, \ldots, \sigma_r)$
 - thin SVD: $\mathbf{A} = \mathbf{U}_1 \tilde{\mathbf{\Sigma}} \mathbf{V}_1^T$
 - pseudo-inverse: $\mathbf{A}^\dagger = \mathbf{V}_1 ilde{\mathbf{\Sigma}}^{-1} \mathbf{U}_1^T$
 - linear system solution: $\mathbf{x} = \mathbf{A}^\dagger \mathbf{y} + \boldsymbol{\eta}$ for any $\boldsymbol{\eta} \in \mathcal{R}(\mathbf{V}_2)$ and $\mathbf{U}_2^T \mathbf{y} = \mathbf{0}$
 - least squares solution: $\mathbf{x} = \mathbf{A}^\dagger \mathbf{y} + \boldsymbol{\eta}$ for any $\boldsymbol{\eta} \in \mathcal{R}(\mathbf{V}_2)$
 - orthogonal projection: $\mathbf{P}_{\mathbf{A}} = \mathbf{U}_1 \mathbf{U}_1^T$

Main Results

• low-rank matrix approximation: given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $k \in \{1, \dots, \min\{m, n\}\}$, the problem

$$\min_{\mathbf{B} \in \mathbb{R}^{m \times n}, \text{ rank}(\mathbf{B}) \le k} \|\mathbf{A} - \mathbf{B}\|_F^2$$

has a solution given by $\mathbf{B}^\star = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T$

• in this lecture, we will deal with the real matrices—the complex case follows along the same lines

Ziping Zhao

Singular Values, Singular Vectors, and Singular Value Decomposition

Theorem 1. Given any $\mathbf{A} \in \mathbb{R}^{m \times n}$, there exists a 3-tuple $(\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}) \in \mathbb{R}^{m \times m} \times \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times n}$ such that

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$
,

 ${f U}$ and ${f V}$ are orthogonal, and ${f \Sigma}$ takes the form

$$[\mathbf{\Sigma}]_{ij} = \begin{cases} \sigma_i, & i = j \\ 0, & i \neq j \end{cases}, \qquad \sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0, \ p = \min\{m, n\}.$$

(requires a proof)

- the above decomposition is called the singular value decomposition (SVD)
- σ_i is called the ith singular value (always nonnegative even for complex matrices)
- \mathbf{u}_i and \mathbf{v}_i are called the *i*th left and right singular vectors, resp. $\mathbf{u}_i^T \mathbf{A} = \sigma_i \mathbf{v}_i^T \iff \mathbf{U}^T \mathbf{A} = \mathbf{\Sigma} \mathbf{V}^T \iff \mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$

$$\iff$$
 AV = **U** $\Sigma \implies$ **Av**_i = σ_i **u**_i for $i = 1, ..., p$

 ${f U}$ and ${f V}$ are called the left and right singular vector matrices, resp.

• the following notations may be used to denote singular values of a given A

$$\sigma_{\max}(\mathbf{A}) = \sigma_1(\mathbf{A}) \ge \sigma_2(\mathbf{A}) \ge \ldots \ge \sigma_p(\mathbf{A}) = \sigma_{\min}(\mathbf{A})$$

Singular Spectrum and Singular Subspace

- The set $\{\sigma_1, \ldots, \sigma_p\}$ is called the singular spectrum of ${\bf A}$
- A pair of k-dimensional subspaces \mathcal{U} and \mathcal{V} are called left and right singular subspaces of \mathbf{A} , resp., if

$$\mathbf{A}\mathbf{v} \in \mathcal{U}$$
 for all $\mathbf{v} \in \mathcal{V}$

and

$$\mathbf{A}^T \mathbf{u} \in \mathcal{V}$$
 for all $\mathbf{u} \in \mathcal{U}$.

We also write this as $\mathbf{A}\mathcal{V} \subset \mathcal{U}$ and $\mathbf{A}^T\mathcal{U} \subset \mathcal{V}$.

- The simplest example is when \mathcal{U} and \mathcal{V} are spanned by a single pair of singular vectors \mathbf{u}_i and \mathbf{v}_i of \mathbf{A} , respectively.
- More generally, any pair of singular subspaces can be spanned by a subset of the singular vectors of \mathbf{A} , although the spanning vectors do not have to be singular vectors themselves.

Different Ways of Writing out SVD

- thin SVD: only compute the first $p = \min\{m, n\}$ columns of **U** and **V**
 - for $m \leq n$: $(\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}) \in \mathbb{R}^{m \times m} \times \mathbb{R}^{m \times m} \times \mathbb{R}^{m \times n}$
 - for $n \leq m$: $(\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}$
- partitioned form of the full SVD: let r be the number of nonzero singular values, and note $\sigma_1 \ge ... \ge \sigma_r > 0$, $\sigma_{r+1} = ... = \sigma_p = 0$. Then,

$$\mathbf{A} = egin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} egin{bmatrix} \mathbf{ ilde{\Sigma}} & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{bmatrix} egin{bmatrix} \mathbf{V}_1^T \ \mathbf{V}_2^T \end{bmatrix},$$

where

- $-\tilde{\Sigma} = \mathrm{Diag}(\sigma_1, \ldots, \sigma_r),$
- $-\mathbf{U}_1=[\mathbf{u}_1,\ldots,\mathbf{u}_r^-]\in\mathbb{R}^{m imes r}$, $\mathbf{U}_2=[\mathbf{u}_{r+1},\ldots,\mathbf{u}_m^-]\in\mathbb{R}^{m imes (m-r)}$,
- $\mathbf{V}_1=[\ \mathbf{v}_1,\ldots,\mathbf{v}_r\]\in\mathbb{R}^{n imes r}$, $\mathbf{V}_2=[\ \mathbf{v}_{r+1},\ldots,\mathbf{v}_n\]\in\mathbb{R}^{n imes (n-r)}$.
- compact SVD: $\mathbf{A} = \mathbf{U}_1 \tilde{\mathbf{\Sigma}} \mathbf{V}_1^T$
 - both thin SVD and compact SVD are reduced SVD forms; in contrast, the one in Theorem 1 is also called full SVD
- outer-product form (i.e., dyadic decomposition): $\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$

Ziping Zhao

SVD and **Eigendecomposition**

From the SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, we see that

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{D}_1\mathbf{U}^T, \qquad \mathbf{D}_1 = \mathbf{\Sigma}\mathbf{\Sigma}^T = \mathrm{Diag}(\sigma_1^2, \dots, \sigma_p^2, \underbrace{0, \dots, 0}_{m-p \text{ zeros}})$$
 (*)

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{D}_2 \mathbf{V}^T, \qquad \mathbf{D}_2 = \mathbf{\Sigma}^T \mathbf{\Sigma} = \operatorname{Diag}(\sigma_1^2, \dots, \sigma_p^2, \underbrace{0, \dots, 0}_{n-p \text{ zeros}})$$
 (**)

Observations:

- (*) and (**) are the SVD's of AA^T and A^TA , resp.
- (*) and (**) are the eigendecompositions of AA^T and A^TA , resp.
- ullet the left singular matrix ${f U}$ of ${f A}$ is the eigenvector matrix of ${f A}{f A}^T$
- ullet the right singular matrix ${f V}$ of ${f A}$ is the eigenvector matrix of ${f A}^T{f A}$
- the squares of nonzero singular values of A, $\sigma_1^2, \ldots, \sigma_r^2$, are the nonzero eigenvalues of both AA^T and A^TA .
- the relation between SVD and eigendec. can be used for analysis and computations

Insights of the Proof of SVD

- the proof of SVD is constructive
- to see the insights, consider the special case of square nonsingular A
- \bullet $\mathbf{A}\mathbf{A}^T$ is PD, and denote its eigendecomposition by

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T$$
, with $\lambda_1 \geq \ldots \geq \lambda_n > 0$.

- let $\Sigma = \text{Diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_m})$, $\mathbf{V} = \mathbf{A}^T \mathbf{U} \Sigma^{-1}$
- ullet it can be verified that $\mathbf{U} oldsymbol{\Sigma} \mathbf{V}^T = \mathbf{A}$, $\mathbf{V}^T \mathbf{V} = \mathbf{I}$
- how to prove the SVD in the general case? (requires a proof)

Uniqueness of SVD

- the singular values σ_i 's are uniquely determined and the nonzero singular values are the positive square roots of the eigenvalues of $\mathbf{A}\mathbf{A}^T$ or, equivalently, of $\mathbf{A}^T\mathbf{A}$
- the multiplicity of a singular value σ of $\bf A$ is the multiplicity of σ^2 as an eigenvalue of $\bf A \bf A^T$ or, equivalently, of $\bf A^T \bf A$
- a singular value σ of \mathbf{A} is simple (algebraic multiplicity is 1) if σ^2 is a simple eigenvalue of $\mathbf{A}\mathbf{A}^T$ or, equivalently, of $\mathbf{A}^T\mathbf{A}$

uniqueness of SVD is highly related to the multiplicity of singular values and zero singular values of **A** and there are different kinds of characterizations; see Theorem 2.6.5 in [Horn-Johnson'12].

Ziping Zhao 9

Matrix Equivalences

Given $\mathbf{A},\ \mathbf{B} \in \mathbb{R}^{m \times n}$, they are called equivalent if

$$\mathbf{B} = \mathbf{Q}^{-1} \mathbf{A} \mathbf{P}$$

for some invertible P and Q, which are called the equivalence transformations.

- Two matrices are equivalent if and only if they have the same rank.
- not be confused with matrix similarity, which is only defined for square matrices

Suppose \mathbf{Q} and \mathbf{P} are unitary matrices, i.e., $\mathbf{Q}^{-1} = \mathbf{Q}^H$ and $\mathbf{P}^{-1} = \mathbf{P}^H$. We say that \mathbf{B} is unitarily (orthogonally) equivalent to \mathbf{A} , where \mathbf{Q} and \mathbf{P} are unitary (orthogonal) equivalence transformations.

- B has the same singular values as A.
- If \mathbf{u} and \mathbf{v} are left and right singular vectors of \mathbf{A} , resp., so that $\mathbf{A}\mathbf{v} = \sigma\mathbf{u}$ and $\mathbf{A}^H\mathbf{u} = \sigma\mathbf{v}$, then $\mathbf{Q}^H\mathbf{u}$ and $\mathbf{P}^H\mathbf{v}$ are left and right singular vectors of \mathbf{B} , resp.

Properties of SVD

Property 1. The following properties hold:

- (a) $\mathbf{A}^T = \mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T$
- (b) \mathbf{A} , \mathbf{A}^* , \mathbf{A}^T , and \mathbf{A}^H have the same singular values
- (c) $\mathbf{u}_i^T \mathbf{A} \mathbf{v}_i = \sigma_i$ for $i = 1, \dots, p$, or, equivalently, in matrix form $\mathbf{U}^T \mathbf{A} \mathbf{V} = \mathbf{\Sigma}$
- (d) $\operatorname{tr}(\mathbf{A}^T \mathbf{A}) = \operatorname{tr}(\mathbf{A} \mathbf{A}^T) = \sum_{i=1}^p \sigma_i^2$
- (e) let $\mathbf{A} \in \mathbb{R}^{n \times n}$, $|\det(\mathbf{A})| = |\det(\mathbf{\Sigma})| = \prod_{i=1}^n \sigma_i$
- (f) $rank(\mathbf{A}) < q$ (singular for square \mathbf{A}) if and only if 0 is one singular value of \mathbf{A}
- (g) $rank(\mathbf{A}) = number of nonzero singular values$
- (h) let $\mathbf{A} \in \mathbb{S}^n$, the singular values are the absolute values of eigenvalues of \mathbf{A}
- (i) if **A** is invertible, $\mathbf{A}^{-1} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$ (can be used to compute matrix inversion)
- (j) for othogonal \mathbf{P} and \mathbf{Q} , SVD of $\mathbf{P}\mathbf{A}\mathbf{Q}^T$ is given by $\tilde{\mathbf{U}}\mathbf{\Sigma}\tilde{\mathbf{V}}^T$ where $\tilde{\mathbf{U}}=\mathbf{P}\mathbf{U}$ and $\tilde{\mathbf{V}}=\mathbf{Q}\mathbf{V}$, i.e., singular values are orthogonally invariant (i.e., $\sigma_i(\mathbf{A})=\sigma_i(\mathbf{P}\mathbf{A}\mathbf{Q}^T)$) but singular vectors not

Properties of SVD

Property 2. The following properties hold:

(a)
$$\mathcal{R}(\mathbf{A}) = \mathcal{N}(\mathbf{A}^T)^{\perp} = \mathcal{R}(\mathbf{U}_1)$$
, $\mathcal{R}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^T) = \mathcal{R}(\mathbf{U}_2)$;

(b)
$$\mathcal{R}(\mathbf{A}^T) = \mathcal{N}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{V}_1)$$
, $\mathcal{R}(\mathbf{A}^T)^{\perp} = \mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{V}_2)$;

(c) $rank(\mathbf{A}) = r$ (the number of nonzero singular values).

(Proof as a Quiz)

Note:

- in practice, SVD can be used a numerical tool for computing bases of $\mathcal{R}(\mathbf{A})$, $\mathcal{N}(\mathbf{A}^T)$, $\mathcal{R}(\mathbf{A}^T)$, $\mathcal{N}(\mathbf{A})$
- we have previously learnt the following properties
 - $-\operatorname{rank}(\mathbf{A}^T) = \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}\mathbf{A}^T) = \operatorname{rank}(\mathbf{A}^T\mathbf{A})$
 - $\operatorname{rank}(\mathbf{A}) + \operatorname{nullity}(\mathbf{A}) = n$

By SVD, the above properties are easily seen to be true

SVD can also be used as a numerical tool to compute the rank of a matrix