

Agrupamento de dados particional utilizando caminhos mínimos em grafos

Fernando Borges¹, Alexandre Luís Magalhães Levada²

¹Departamento de Estatística, Universidade Federal de São Carlos

²Departamento de Computação, Universidade Federal de São Carlos

Introdução

Os algoritmos de agrupamento de dados são técnicas utilizadas na área de aprendizado de máquina com grande relevância na análise e reconhecimento de padrões em dados. Em geral, o objetivo desses métodos é agrupar observações similares com base nas características intrínsecas ao conjunto de dados, sem a necessidade de rótulos predefinidos.

O algoritmo k-médias é um dos mais conhecidos e utilizados devido à sua simplicidade e eficiência computacional, pois realoca cada ponto ao agrupamento com centroide mais próximo e repete o processo até convergência. No entanto, sua versão tradicional enfrenta diversas limitações em dados de maior dimensionalidade por utilizar a distância euclidiana, que restringe sua capacidade de detectar agrupamentos não lineares [1, 2].

Figura 1: Representação de uma iteração do algoritmo k-médias.

A dificuldade em lidar com dados de alta dimensão e cenários em que há um número de parâmetros muito maior que o de observações presentes no conjunto de dados é um problema comum a esses métodos que recebe o nome de "maldição da dimensionalidade" [3].

Por meio de uma representação dos dados em um grafo de k vizinhos mais próximos, o algoritmo de Dijkstra pode ser utilizado para calcular as distâncias geodésicas entre as observações no algoritmo k-médias. A ideia é que a distância geodésica, ao ser utilizada para definir a proximidade entre os pontos nesse grafo de adjacências induzido pelos dados, permita a detecção de agrupamentos com maior complexidade geométrica em cenários de alta dimensionalidade por diminuir a restrição de agrupamentos circularmente simétricos da distância euclidiana.

Objetivo

O objetivo desse projeto é implementar o algoritmo k-médias topológico, que substitui a distância euclidiana no k-médias por comprimentos de caminhos mínimos em grafos, e compará-lo a sua versão tradicional e ao algoritmo HDBSCAN, um método moderno capaz de detectar agrupamentos de qualquer formato na presença de ruído, com relação às qualidades de seus agrupamentos.

Materiais e métodos

A análise comparativa entre a performance do algoritmo k-médias topológico e a performance dos algoritmos k-médias tradicional e HDBSCAN foi realizada em dois grupos de experimentos contendo (i) dados de alta dimensionalidade e poucas observações e (ii) dados de alta densidade. Os dois grupos de experimentos utilizaram conjuntos de dados provenientes do repositório OpenML, que os disponibiliza gratuitamente para o desenvolvimento de pesquisas na área de ciência de dados.

As métricas escolhidas para medir o desempenho dos métodos com relação à qualidade de seus agrupamentos foram o índice de Rand, a Informação Mútua Ajustada (em inglês, Adjusted Mutual Information) e o índice de Fowlkes-Mallows. Realizou-se um teste de Wilcoxon com nível de significância de 5% para verificar se houve uma diferença significativa de desempenho em cada grupo de experimentos.

Resultados e discussões

O primeiro grupo de experimentos utilizou conjuntos de dados de alta dimensionalidade com poucas observações com o intuito de comparar a performance dos algoritmos k-médias tradicional e topológico na influência da "maldição da dimensionalidade".

Tabela 1: Média das métricas de qualidade de agrupamento após 30 execuções no primeiro grupo.

	K-médias tradicional			K-médias topológico		
Conjunto de dados	Rand	\mathbf{AMI}	\mathbf{FM}	Rand	AMI	\mathbf{FM}
AP_Colon_Kidney	0.574	0.133	0.582	0.691	0.341	0.715
$\mathbf{AP}_{-}\mathbf{Prostate}_{-}\mathbf{Kidney}$	0.634	0.252	0.702	0.678	0.306	0.756
${f AP_Breast_Colon}$	0.509	0.011	0.514	0.582	0.296	0.627
${ m tr} 12.{ m wc}$	0.307	0.039	0.347	0.510	0.154	0.329
${ m tr}31.{ m wc}$	0.366	0.078	0.472	0.488	0.167	0.398
${ m tr}45.{ m wc}$	0.380	0.125	0.315	0.548	0.195	0.299
\mathbf{SRBCT}	0.590	0.143	0.362	0.669	0.283	0.436
pasture	0.711	0.372	0.565	0.677	0.380	0.569
leukemia	0.556	0.108	0.610	0.576	0.124	0.656
\mathbf{GCM}	0.871	0.365	0.331	0.880	0.332	0.301
Média	0.552	0.163	0.479	0.628	0.236	0.508

O segundo grupo de experimentos envolvou a comparação do algoritmo k-médias topológico e o algoritmo HDBSCAN. Com o intuito de comparar a performance dos dois métodos, os conjuntos de dados escolhidos possuem agrupamentos de alta densidade com um alto valor de observações e classes.

Tabela 2: Média das métricas de qualidade de agrupamento após 30 execuções no segundo grupo.

	HDBS	SCAN		K-médias topológico		
Conjunto de dados	Rand	$\overline{\mathbf{AMI}}$	\mathbf{FM}	Rand AMI FM		
digits	0.789	0.636	0.422	0.884 0.543 0.474		
JapaneseVowels	0.192	0.064	0.319	0.781 0.067 0.156		
${f optdigits}$	0.803	0.570	0.413	$0.881 \ 0.582 \ 0.477$		
$\mathbf{satimage}$	0.404	0.265	0.462	$0.797 \ 0.476 \ 0.506$		
waveform-5000	0.341	0.002	0.509	$0.625 \ 0.257 \ 0.570$		
abalone	0.645	0.087	0.225	0.856 0.140 0.122		
semeion	0.502	0.372	0.300	$0.846 \ 0.389 \ 0.306$		
cnae-9	0.206	0.038	0.313	0.659 0.271 0.290		
mfeat-pixel	0.830	0.574	0.450	$0.879 \ 0.597 \ 0.456$		
micro-mass	0.595	0.317	0.334	$0.814\ 0.538\ 0.402$		
Média	0.531	0.293	0.375	$0.812\ 0.386\ 0.376$		

De acordo com os testes de Wilcoxon pareados, ao nível de significância de 5%, há evidências de que o k-médias topológico obteve performances superiores ao kmédias tradicional e ao HDBSCAN em termos do índice de Rand e AMI. Vale ressaltar que o HDBSCAN poderia obter resultados melhores com um ajuste de seus hiperparâmetros a um maior custo computacional. Similarmente, o k-médias topológico se beneficiaria com melhores métodos de inicialização de seus centroides e de seleção do parâmetro na geração do grafo de k vizinhos mais próximos.

Conclusões

Com o intuito de minimizar as limitações presentes no k-médias, a sua versão topológica fez uso da distância geodésica calculada por meio de uma representação em grafo dos dados. Pelos resultados obtidos, observou-se que o algoritmo proposto foi capaz de mitigar a limitação imposta pela distância euclidiana que tornava o método incapaz de detectar agrupamentos não esféricos, além de melhorar sua performance em cenários de alta dimensionalidade. Além de se mostrar como uma alternativa viável e eficiente em cenários nos quais a distância euclidiana pode afetar negativamente a performance do método, o k-médias topológico se equipara a algoritmos modernos, como o HDBSCAN.

Referências

- [1] IKOTUN, A. M. et al. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. **Information Sciences**, v. 622, p. 178-210, dez. 2022.
- [2] JAIN, A. K. Data clustering: 50 years beyond K-means. Pattern **Recognition Letters**, v. 31, n. 8, p. 651-666, jun. 2010.
- [3] DONOHO, D. High-dimensional data analysis: The curses and blessings of dimensionality. Proceedings of the AMS Conference on Math Challenges of the 21st Century, p. 32-56, 2000.