Experiment- 4 Integration Using SCILAB Built-in-Functions & Gauss Legendre Quadrature Method

- 1. At t=0 a particle of unit mass is at rest at the origin. If it is acted upon by a force $\vec{F}=100te^{-2t}\hat{i}$, determine both analytically and computationally, the change in momentum of the particle in going from t=1 to t=2. Also, plot the velocity of the particle as a function of time in steps of 0.1s. What would be the velocity after a long time has elapsed? (Use intg())
- 2. FRESNEL INTEGRALS are defined as

$$C(\omega) = \int_0^\omega \cos(\frac{\pi q^2}{2}) dq$$

$$S(\omega) = \int_0^\omega \sin(\frac{\pi q^2}{2}) dq$$

have applications in analysis of Fresnel diffraction patterns.

- (a) Compute the integrals (Use integrate()) for whying between 0 and 5 in step size of 0.1 and display your results as $|\omega| C(\omega) |S(\omega)|$
- (b) Verify the following properties of Fresnel Integrals taking 3 different values of $\omega = 2, 4, 7$.

i.
$$C(-\omega) = -C(\omega)$$

ii.
$$S(-\omega) = -S(\omega)$$

(c) Verify the following properties of Fresnel Integrals.

i.
$$C(-\infty) = S(-\infty) = \frac{-1}{2}$$

ii. $C(\infty) = S(\infty) = \frac{1}{2}$

ii.
$$C(\infty) = S(\infty) = \frac{1}{2}$$

- (d) Plot $y = S(\omega)$ & $x = C(\omega)$ for ω lying between -5 to +5 in step size of 0.1.
- 3. Write a SCILAB code to obtain an estimate of the integral $I = \int_0^2 \frac{e^x sinx}{1+x^2} dx$ using the five-point Gauss-Legendre Quadrature formula.

4. Employ two-through six-point Gauss-Legendre formulae to solve

Interpret your results in light of **truncation error** in the given approximation.

5. Using the SCILAB built-in functions **inttrap()** & **intsplin()** compute the distance travelled for the following data.

t(min)	1	2	3	4	5	6	7	8	9	10
$v(m \ s^{-1})$	5	6	5.5	7	8.5	8	6	7	7	5

6. A rod of length L has a non-uniform density λ , the mass per unit length of the rod varies as $\lambda = \lambda_o(\frac{x^2}{L})$, where λ_o is a constant and x is the distance from the lighter end of the rod. If $L=6, \ \bar{\lambda_o}=0.5$, compute the Centre of Mass of the rod.

1