Цифровая обработка изображения

9. Генеративные конкурирующие сети (GAN)

Super resolution

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and SSIM are shown in brackets. [$4 \times$ upscaling]

Скрытое представление

KL-divergence

$$\sum_{i=1}^{n} \sigma_i^2 + \mu_i^2 - \log(\sigma_i) - 1$$

KL-divergence + reconstruction

Generative Adversarial Networks (GAN)

GAN

GAN

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

GAN

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

V - функция потерь

х - наблюдение данных (изображение)

z - объект генерирующих данных

D(x) - классификатор дискриминатора

G(z) - выход генератора (изображение)

pdata(x) - распределение исходных данных

pz(z) - распределение генерирующих данных

GAN - обучение модели

GAN - обучение модели

GAN - обучение модели

- выбираем данные для обучения (изображения, текст, аудио, видео).
- подбираем архитектуру модели в соответствии с данными
- фиксируем генератор, обучаем дискриминатор отличать исходные данные от сгенерированных
- фиксируем дискриминатор, обучаем генератор создавать данные похожие на исходные
- повторяем итерацию с переключением генератора и дискриминатора

GAN - предсказание следующего кадра на видео

Ground Truth MSE Adversarial

Архитектуры GAN

DCGAN - Deep Convolutional Ganerative

Adversarial Network

DCGAN - векторное представление изображений

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

DCGAN - векторное представление изображений

DCGAN - векторная арифметика

ACGAN - Auxiliary Classifier GANs

AC GAN - Auxiliary Classifier GANs

AC-GAN

AC GAN - Auxiliary Classifier GANs

monarch butterfly

goldfinch

daisy

redshank

grey whale

- баланс сложности генератора/дискриминатора
- устойчивость процесса тренировки
- определение числа объектов для генерации
- ошибки перспективы модель не получает информации о 3D форме объекта
- ошибки структуры отсутствует информация о свойствах объекта
- возможны ошибки в случае, если пример существенно отличается от обучающей выборки

Problems with Counting

Полезные материалы

- Generative Adversarial Networks (GANs)
- Introductory guide to Generative Adversarial Networks (GANs)
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks