Prof. Marcelo Veiga Neves marcelo.neves@pucrs.br

- Speedup
 - Fator de aceleração:

$$Sp_n = \frac{T_S}{T_n}$$

- n = número de unidades de processamento
- Ts = Melhor tempo sequencial
- Tn = Tempo paralelo executando em n processadores

- Análise de Speedup
 - Normalmente obtemos Sp < n
 - devido ao overhead de comunicação
 - Speedup ideal/linear (Sp = n)
 - Speedup superlinear (Sp > n)
 - Normalmente efeito de cache

- Lei de Amdahl
 - Usada para encontrar o maior Speedup para uma aplicação onde apenas uma parte do sistema foi paralelizada.
 - O Speedup é limitado pelo tempo necessário para execução da parte sequencial
 - P = Parte paralelizável
 - (1-P) = Parte sequencial

$$MaxSp_n = \frac{1}{(1-P) + \frac{P}{n}}$$

- Análise de Eficiência
 - Medida de utilização do processador
 - Normalmente expresso como porcentagem

$$E_n = \frac{Sp_n}{n}$$

Exemplo de análise de Desempenho

- Exercício: O tempo para execução em paralelo de um programa para multiplicação de duas matrizes de dimensão 5000 esta representado na tabela abaixo. Complete a tabela com o Speedup e a eficiência para cada número de processadores
- Tempos de execução feitos no cluster IC1 da universidade de Karlsruhe, Alemanha:
 - 200 nodos Intel Xeon com 8 cores e 16 GB de memória por nodo
 - InfiniBand 4X DDR Interconnect com ConnectX Dual Port DDR HCAs
 - □ Posição top500:
 - 104 novembro 2007
 - 265 junho 2008

Nr proc	T. Exec	speedup	Efic.
1	25,64	1	1
2	15,28		
4	8,37		
6	6,3483		
8	5,4437		
10	5,01		
12	4,69		
14	4,85		

Exemplo de análise de Desempenho

número de processadores	Tempo de execução	Speedup	Eficiência
1	25,64	1	1
2	15,28	1,67801	0,839005
4	8,37	3,063321	0,76583
6	6,3483	4,038877	0,673146
8	5,4437	4,710032	0,588754
10	5,01	5,117764	0,511776
12	4,69	5,466951	0,455579
14	4,85	5,286598	0,377614

