Aluna: Gabriela Barrozo Guedes

Matricula: 16/0121612

Atividade 1 - Conteúdo 5

Resolva o seguinte problema manualmente:

Problema 1

A distribuição do componente x da velocidade u de um fluído próximo à superfície é medida em flueño da distância y a proficie da superfície:

A tensão de cisalhamento τ_{yz} no fluido é descrita pela equação de Newton:

$$\tau_{yx} = \mu \frac{\partial u}{\partial y}$$

onde μ é o coeficiente de viscosidade dinâmica. A viscosidade pode ser pensada como sendo uma medida da fricção interna no fluido. Fluidos que obedecem à equação constitutiva de Newton são chamados de fluidos Newtonianos. Calcule a tensão de cisalhamento em y=0 usando as aproximações de diferenças (i)progressiva com dois pontos e (ii) progressiva com três pontos para a derivada.

$$\mu = 0.002 \text{ N-s/m}^2$$

Obs.1: Utilize pelo menos seis algarismos significativos com arredondamento para fazer os cálculos.

Resolva o seguinte problema utilizando linguagem de programação:

Problema 2

A carga no capacitor do circuito RLC mostrado na figura ao lado em vários instantes de tempo após o fechamento da chave em t = 0 é dada na tabela a seguir. A corrente I em função do tempo é dada por $N(t) = \frac{dQ}{dt}$. Determine a corrente fazendo a diferenciação numérica dos dados e trace um gráfico de I versus t.

1(m)	6,00	1,99	7,98	11,97	15,96	29,94	28,98	27,92	11,91	35,90	29,88	41,88	47,87	51,86
Q(C) x 10°	6,00	6,67	26,93	23,38	27,64	29,02	29,58	29,29	27,17	24,58	21,43	18,56	16,61	16,01
1(m)	55,84	59,83	69,92	67,81	71,80	25,79	29,71	10,77	17,76	91,74	15,73	99,72	109,71	107,70
Q(C) x 33°	16,87	18,06	19,51	21,42	22,99	24,05	24,12	23,35	22,5	21,50	20,33	19,44	19,98	19,36

Obs.2: Utilize diferenças finitas com erros da ordem de (h²).

```
PROBLEMAL
  Diferença progressiva (2 pontos)
          f(x_i) = f(x_{i-1}) - f(x_i)
 \mu = 0,002
f(x) = 0
f'(x) = \frac{du}{dy}
      h = x, - x.
                          f(0,002) = 0,00018
      h=0,002-0
      h= 0,007
      f(10) = 0,006 18 -0
0,002
      $ (0) = 3,09000
 Try= 0,002. 3.09000 = 0,00618
 Try=6, 18000. 50-3
Defence progress (3 pontos) h=x_1-x_0=0.002

f'(x_i)=-3f(x_i)+4f(x_i+s)-f(x_i+z) f'(0,004)=0.033956
f (0) = -3.0+4(0,00658)-0,055756
7.0,002
$ '(0) = 3,24200
                  Txy = 0,002 . 324100 = 6,48200, 510-3
```

Problema 2 — O método escolhido foi o método do ponto central com dois pontos. Veja abaixo o gráfico gerado:

