Recap:

- 1. Conjugacy h'= ghg-1 geG.

 C(h) = f ghg-1, bfeGs

 orbors of G acro on G.
- 2 HCG a subgroup. then &Hgt a subgroup.

5 conjugacy clauses

4. class functions: $f \circ G$. $f(hgh^{-1})=f(g)$

character $X_{7}(3) = Tr T(3)$ for matrix rep.

canonical rep. of Sn $[A(\Phi)J_{j}; = S_{j}, \phi(i)] + her.$ Tr $A(\Phi) = \#$ fixed points

5. conjugate hom. $\varphi_1(f) = \widehat{g}_0 \varphi_2(f) \widehat{g}_0^{-1} \quad \forall f \in G$. equivalent rep. $T_2(f) = S T_1(f) S^{-1} \quad \forall f \in G$.

-6.3. Normal subgroups & Quotiens groups

Defition A subgroup $N \subset G$ is called a normal subgroup or an invariant subgroup if $gNg^{-1} = N \quad \forall g \in G.$

densted NAG. (Self-Conjugate subgroups)

*NB. it doesn't mean gng = n Until !

Suppose a subgroup 2 satisfies

g2g1=2 48EG.

 $Z(G) := f + G | +g = g + \forall g \in G$ Z(G) := g + G | +g = g + G Z(G) := f + G | +g = g + GZ(G) := f + G | +g = g + G

Examples.

If Go is abelian all subgroups are normal.

The $f^{\dagger} = (gg^{\dagger})h = h$ the G.

2 The kernel of a homomorphism $\phi: G \longrightarrow G'$

is a normal subgroup.

 $k \in \ker(\Phi)$. $d(k) = 1_{G'}$ $d(gkg^{-1}) = d(g)dg(k)d(g^{-1}) = d(g)d(g)^{-1} = 1 (\forall g \in G)$ $\Rightarrow gkg^{-1} \in \ker(\Phi)$ $\Rightarrow ker \phi \circ G$

Theorem. If $N \land G$, then the set of left cosets $G/N = \S JN$, $J \in GJ$. has a <u>nætural</u> group structure with group multiplication defined as

 $(f_1 \mathcal{N}) \cdot (f_2 \mathcal{N}) := (g_1 g_2) \mathcal{N}$

We call the groups of the form G/K
quotient groups (factor groups)

 $g_1N.g_2N = g_1(g_2g_2^{-1})Ng_2N$ = $g_1g_2(g_2^{-1}ug_2)N$ = g_1g_2N

Corollary . If
$$N = G$$
. then the natural map $d: G \longrightarrow G/N$ $g \longrightarrow 3N$

is a surjective homomorphism. Ker & = N

$$_{\text{D}}$$
 $\phi(\xi_{1})\phi(\xi_{2}) = \xi_{1}\mathcal{N}\cdot\xi_{2}\mathcal{N} = \xi_{1}\xi_{2}\mathcal{N} = \phi(\xi_{1}\xi_{2})$

$$g \in \ker \phi$$
 $\phi(f) = \frac{gN = N}{m} \iff g \in N$

Every normal subgroup is the kernel of some homomorphism.

Example

2. A3 OS3
$$\phi: S_3 \rightarrow P_2$$
 ker $(f) = A_3$

THWJ HCG. [G:H]=2 \Rightarrow HOG discussed earlier

3
$$D_{4} = (a,b \mid a^{4} = b^{2} = (ab)^{2} = 1 > |D_{6}| = 8 = 2^{2}$$
 $D_{4} = (e,a,a^{2},a^{3},b,ab,a^{2}b,a^{3}b > 0$
 $(ba^{n} = b^{3}a^{n} = (ab)^{3}a^{n+1} = aba^{n+1} = a^{2}ba^{n+2})$
 $(ba^{n} = b^{3}a^{n} = (ab)^{3}a^{n+1} = aba^{n+1} = a^{2}ba^{n+2})$
 $(aba^{n} = b^{n}a^{n} = (ab)^{n}a^{n+1} = aba^{n+1} = a^{2}ba^{n+2})$
 $(aba^{n} = aab = a^{2}b, a^{2}b = N_{1})$
 $(aba^{n} = aab = a^{2}b)$
 $(aba^{n} = a$

$$\emptyset$$
 se. b. a^2b , $a^2s = N_1$

$$aba^4 = a \cdot ab = a^2b$$

For
$$\mathbb{D}. \mathbb{D}. \mathbb{D}. |\mathcal{N}| = 4$$
 $|\mathcal{G}/\mathcal{N}| = 2$ $|\mathcal{G}/\mathcal{N}| = 2$
 $\mathbb{D} |\mathcal{N}_1 = \S |\mathcal{C}| = 6$, $\alpha^2 |\mathcal{C}| = 2$
 $|\mathcal{N}_1 = \S |\mathcal{C}| = 6$, $\alpha^2 |\mathcal{C}| = 2$
 $|\mathcal{N}_1 = \mathcal{C}| = 2$
 $|\mathcal{C}| =$

②
$$N_2 = \S e, ab, a^2, a^3b \S \stackrel{\vee}{=} D_2 \quad (A = a^2, b = a^3b)$$

3)
$$N_3 = 8 e.a.a^2.a^3 = 2_4$$

 $D_4/N_5 = 8 N_5.bN_5 = 2_2$

 D_4 is nonabelian. => $D_4/2(D_4)$ non cyclic [HW]: $G_7/2(G)$ cyclic (=> G_7 is abelian.

4. determinent of A in BL(n. K)

 $C_{+}((N, K)) \xrightarrow{det} K$ $A \longmapsto det(A)$

[de+ (AB) = de+ (A) de+ (B)]

ker(det) = SL(n.k)

=> SL(n.k) aGL(n.k)

(det (f A g) = det (A))

@ GL(n.k)/SL(n.k) & Ex MEGL

det 11 = 2 = reio

M= (raeio/n).A AESL

② U(N)/SU(N) $\stackrel{\triangle}{=}$ U(I) U(N), $AA^*=1$ |det A|=1

Su: det = 1

(det P=-1)

S. Euclidean group
$$E'$$
 $g = SR_{a} \mid \overrightarrow{\tau} \rangle \quad g. \overrightarrow{r} = R_{a}.\overrightarrow{r} + \overrightarrow{\tau}$
 $fe \mid \overrightarrow{o}y = SR_{a} \mid \overrightarrow{\tau} \rangle SR_{\beta} \mid \overrightarrow{\tau}' \rangle = FR_{a}R_{\beta} \mid R_{a}\overrightarrow{\tau}' + \overrightarrow{\tau} \rangle$
 $\Rightarrow g^{-1} = SR_{a} \mid -R_{a}\overrightarrow{\tau} \rangle$

Consider the translation subgroup $T:=\langle \vec{t}_1, \vec{t}_2, \vec{t}_3 \rangle$ (\vec{t}_1 primitive lattice vectors) felts $\in T$

 $\begin{aligned}
3R_{a}|\tau \rangle &= |t| \rangle &R_{a}^{T} |-R_{a}^{T}\tau \rangle \\
&= |R_{a}|\tau \rangle &R_{a}^{T} |-R_{a}^{T}\tau + t \rangle \\
&= |R_{a}|\tau \rangle &R_{a}^{T}\tau + t \rangle + \tau \rangle \\
&= |R_{a}|\tau \rangle &E^{T} \\
&= |R_{a}|\tau \rangle &E^{T}$

6 8190 G. G. G. G. trivial normal subgroups

(Def) A group with no nontrivial normal subgroups is called a simple group.

D Zp ¥ μp with p prime HCZp lH1=1 or P H= 819 or Zp @ Atternating groups An

Az YZz Az is simple

D24 NA A4 A4 is not simple

Anzs are simple

6.4 Quotient groups and short exact requences (\$7.4)

Theorem (1st isomorphism theorem) Rotman $\mu: G \to G' \quad homomorphism. \ with kernel \ k$ $\Longrightarrow \quad K \land G \quad , \ and \quad G/K \stackrel{\text{def}}{=} \text{ im}(\mu)$

Proof.
$$\varphi: Gr/k \longrightarrow im \mu$$
 $gk \longmapsto \mu(g)$

9(8.K)=P(8.K)

① ψ is well-defined. $(\$_{1}k = \$_{2}k \Rightarrow \mu(\$_{1}) = \mu(\$_{2}))$ $\$_{1}k = \$_{2}k \Rightarrow \sharp_{1}k \in k$ $\Rightarrow \$_{2}^{-1}\$_{1} = k \in k$ $\Rightarrow \mu(\$_{2}^{-1}\$_{1}) = \mu(\$_{2}^{-1})\mu(\$_{1}) = 1_{\mathfrak{G}}$ $= 2^{-1}\mu(\$_{1}) = \mu(\$_{2})$

1) Y is a homomorphem.

$$\frac{\varphi(8,k\cdot 3,k)}{= \mu(8,82)} = \mu(8,82)$$

$$= \mu(8,)\mu(8) = \mu(8,82)\Psi(8,82)$$

(3) c. in $\varphi = im \mu$ surjective

b. $\varphi(f_1k) = \varphi(f_2k) \Leftrightarrow \mu(f_3) = \mu(g_2)$ injective

PHS $\Leftrightarrow \mu(g_1g_1^{-1}) = 1_{G_1}^{-1}$ $\Rightarrow f_1g_2^{-1} \in k$ $\Rightarrow f_1g_2^{-1} \in k$ $\Rightarrow f_1g_2^{-1} \in k$ $\Rightarrow f_1g_2^{-1} \in k$

Summary:

$$G \xrightarrow{\mu} G' \qquad \mu = \psi \circ \nu \quad commutative$$
 $v: g \mapsto g k \qquad v \qquad f \psi$
 $Surj. G k \qquad v$
 $Surj. G k \qquad v$

Now we introduce a sequence of homomorphisms

G: f_{i-1} G: f_{i-1} G: f_{i+1} G:

The sequence is exact at G_i if $\lim_{t \to \infty} f_{i-1} = \ker f_i$

A short exact sequence (SES) is of the form $1 \rightarrow G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} G_3 \xrightarrow{f_3} 1$

O 1 represents trivial group. \$15

0: abelian groups "t" as group multipliants

② $1 \rightarrow C_1$: inclusion map. $C_3 \rightarrow 1$: trivial homomorphism

Exactness at Gi;

1 G, : Kerfi = 813 => f, is injective

2. G2: kerf2 = imf,

3. G_3 : Kerf, $= G_3 = imf_2 = f_2$ is surjective