Software Project Lab-1

Machine Learning Algorithms

Name: Abir Ashab Niloy

ID: BSSE-1315

Supervisor:

Kishan Kumar Ganguly
Assistant Professor,
Institute of Information Technology,
University of Dhaka

Machine Learning

- Machine learning is one of the most sought after technologies in the modern world.
- It is used to make predictions about a data. It generally takes a training dataset to train itself and then check the accuracy on test dataset.

Finally it takes the input to predict about it.

OBJECTIVES

There are several algorithms regarding machine learning in which some of them are widely used. Here I will construct some introductory and widely used ML algorithms using C,C++ which will make my road of learning ML easier and will build a strong base for doing something bigger in future. The algorithms I will construct are given below:

- -Logistic regression
- -Decision tree
- -Random forest
- -K-Nearest Neighbor(KNN)
- -K-means

Decision Tree

Decision Tree Algorithm classifies a dataset based on some splitting criteria.

• It decreases the randomness of the data in each stage and specifies the categories to classify the data.

Random Forest

- Random forest is a combination of multiple decision tree. This is used to solve the problem of over specification/overfitting.

• The program makes several decision trees, each time with different criteria and then gives the average result of all the trees.

K-Nearest Neighbours

• Here the K-nearest neighbours algorithm work by calculating distance of all the data point from the unknown data point And then sort them to find k number of neighbours to the test data and then returns the class with highest frequency among those k neighbours.

Here the algorithm will return B for k=3 and A for k=7.

K-Means

It divides all the data points in k different clusters. Here k = 3.

Logistic Regression

Logistic regression is used in various fields including ML, mostly in medical fields and social science.

Progress till now....

I have worked on KNN, K-Means and Decision Tree algorithms.

KNN: Here I took some data point as well as their class as input (i take the class as 1, 0 where 1 means dog and 0 means cat). After taking input I put an unknown point (2.3, 3.0) for knowing the class of this point (0 or 1).

The number of times I take different k, the class of the unknown data point might differ also. Here is the input and output for my KNN Algorithm -

```
Input:

10
4.2 2.8 1
4.0 2.0 1
3.8 0.5 1
2.0 1.5 1
2.7 2.5 1
1.7 3.2 0
2.7 4.0 0
1.2 5.2 0
2.2 6.2 0
0.3 6.2 0
2.3 3.0
```

```
When k=3 The value classified to unknown point is cat When k=5 The value classified to unknown point is dog
```

```
int KNN(Point arr[], int n, int k, Point p) {
27
         for (int i = 0; i < n; i++) {
             double q1 = (arr[i].x - p.x) * (arr[i].x - p.x);
29
             double q2 = (arr[i].y - p.y) * (arr[i].y - p.y);
31
             arr[i].distance = sqrt((q1 + q2));
32
         Sort(arr, n);
         for(int i = 0; i < n; ++i) {
37
         int freq1 = 0;
         int freq2 = 0;
41
         for (int i = 0; i < k; i++)
42
43
             if (arr[i].val == 0)
44
                 freq1++;
             else if (arr[i].val == 1)
47
                 freq2++;
50
51
         if(freq1 > freq2)
52
         return 0;
         else return 1;
```

kNN function

Knn function

Progress till now....

K-Means: Here i take the data point as input

```
8 point \rightarrow (1,2),(2,4),(3,6),(4,8),(5,10,)(6,12),(7,14),(8,16)
```

And take pass the values along with k = 3 to the function K-means. Here i used euclidean equation for getting distance between two point.

```
8  double euclideanDistance(DataPoint a, DataPoint b) {
9    return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
10 }
```

Output is:

```
Cluster 1:
(1, 2)
(2, 4)
(3, 6)
Cluster 2:
(4, 8)
(5, 10)
Cluster 3:
(6, 12)
(7, 14)
(8, 16)
```

```
vector<DataPoint> centroids(k);
for (int i = 0; i < k; i++) {
    centroids[i] = data[rand() % data.size()];
vector<vector<DataPoint>> clusters(k);
while (true) {
    for (DataPoint point : data) {
        double minDistance = DBL_MAX;
        int nearestCentroid = 0;
        for (int i = 0; i < k; i++) {
            double distance = euclideanDistance(point, centroids[i]);
            if (distance < minDistance) {
                minDistance = distance;
                nearestCentroid = i;
        clusters[nearestCentroid].push_back(point);
    bool converged = true;
    for (int i = 0; i < k; i++) {
        DataPoint newCentroid = {0, 0};
        for (DataPoint point : clusters[i]) {
            newCentroid.x += point.x;
            newCentroid.y += point.y;
        newCentroid.x /= clusters[i].size();
        newCentroid.y /= clusters[i].size();
        if (euclideanDistance(newCentroid, centroids[i]) > 0.0001) {
            converged = false;
            centroids[i] = newCentroid;
    if (converged) {
for (int i = 0; i < k; i++) {
    cout << "Cluster " << i << ":" << endl;</pre>
    for (DataPoint point : clusters[i]) {
        cout << "(" << point.x << ", " << point.y << ")" << endl;
```

K-Means Function

Progress till now....

Decision tree: Here i used ID3 (Iterative Dichotomiser 3) algorithm for building a decision tree. The tree I used as sample is:

Entropy formula
$$-\sum_{i=1}^{c} P(x_i) log_b P(x_i)$$

Here 'Pi' is simply the frequentist probability of an element/class 'i' in our data.

Gain formula
$$Gain(T, a) = Entropy(T) - \sum_{i=1}^{|a|} \frac{|a_i|}{|T|} Entropy(a_i)$$

Entropy & Gain

To be continued...

- My future goals regarding this project is to implement rest of the algorithms (Random forest, Logistic regression)
- Increasing productivity of each of these algorithms.
- Here is my Repository link for spl-1: https://github.com/Abir-Ashab/SPL-1

