Выбор моделей пространства состояний в задаче нейронного декодирования

Владимиров Э.А.

Московский физико-технический институт

14 июня 2023 г.

Нейронное декодирование

Проблема

Аггрегирование информации во времени

Задача

Выбор модели пространства состояний

Решение

Сделать выбор на основе анализа свойств моделей

Модель пространства состояний

Непрерывная модель пр-ва состояний

$$x'(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + \frac{Du(t)}{}$$

Дискретная модель пр-ва состояний

$$x_k = Ax_{k-1} + Bu_k$$
$$y_k = Cx_k + \frac{Du_k}{Du_k}$$

Нейронное декодирование

 $\mathbf{X} \in \mathbb{R}^{M imes N imes T} - M$ измерений ЭКГ, где N — число электродов, T — число элементов временного ряда $Y \in \{0,1\}^M$ — целевая переменная Критерий качества — бинарная кросс-энтропия

$$L(\mathbf{w}) = -\frac{1}{M} \sum_{m=1}^{M} y_m \log(f(\mathbf{w}, \mathbf{x})) + (1 - y_m) \log(1 - f(\mathbf{w}, \mathbf{x}))$$

Оптимизационная задача: $\hat{\mathbf{w}} = \arg\max_{\mathbf{w}} L(\mathbf{w})$

Реккурентные нейронные сети

$$\mathbf{x}_t = \sigma(W_x \mathbf{x}_{t-1} + W_u \mathbf{u}_t)$$
$$\mathbf{y}_t = W_y \mathbf{x}_t,$$

где $\mathbf{u}_i \in \mathbb{R}^d$, $\mathbf{x}_i \in \mathbb{R}^K$ $\mathbf{y}_i \in \mathbb{R}^s$ $\sigma: \mathbb{R}^K \to \mathbb{R}^K$ — функция активации $W_x \in \mathbb{R}^{K \times K}, W_u \in \mathbb{R}^{s \times K}, W_y \in \mathbb{R}^{K \times d}$ — матрицы весов

¹Medsker L. R., Jain L. C. Recurrent neural networks //Design and Applications. – 2001. – T. 5. – C. 64-67.

Сравнение РНС с моделью пространства состояний

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + B\mathbf{u}_t$$

$$\mathbf{y}_t = C\mathbf{x}_t$$

Рекуррентная нейронная сеть

$$\mathbf{x}_t = \sigma(W_{\mathsf{x}}\mathbf{x}_{t-1} + W_{\mathsf{u}}\mathbf{u}_t)$$

$$\mathbf{y}_t = W_y \mathbf{x}_t$$

Нейронные контролируемые дифференциальные уравнения

где $\mathbf{u}_i \in \mathbb{R}^d, \ \mathbf{y}_i \in \mathbb{R}^s$ $\mathbf{x}: [t_1,t_n] \to \mathbb{R}^K$ — функция скрытого состояния $U: [t_1,t_n] \to \mathbb{R}^{d+1}$ — кубический сплайн $\zeta: \mathbb{R}^{d+1} \to \mathbb{R}^K$ — проектор в скрытое пространство $f: \mathbb{R}^K \to \mathbb{R}^{K imes (d+1)}$ — динамика скрытого состояния $g: \mathbb{R}^K \to \mathbb{R}^s$ — линейное отображение

$$\begin{cases} \mathbf{x}(t_1) = \zeta(\mathbf{u}_1, t_1) \\ \mathbf{x}(t) = \mathbf{x}(t_1) + \int_{t_1}^{t} \mathbf{f}(\mathbf{x}(\tau)) dU(\tau) \\ \mathbf{y}_i = g(\mathbf{x}(t_i)) \end{cases}$$

Сравнение НКДУ с моделью пространства состояний

Модель пространства состояний Нейронные КДУ $\mathbf{x}(t_1) = Const$ $\mathbf{x}(t_1) = A\mathbf{u}(t_1) + f(t_1)$ $\mathbf{x}'(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$ $\mathbf{x}'(t) = BU'(t) \cdot \mathbf{x}(t)$ $\mathbf{y}(t) = C\mathbf{x}(t)$

¹Kidger P. et al. Neural controlled differential equations for irregular time series //Advances in Neural Information Processing Systems. – 2020. – T. 33. – C. 6696-6707

Модели струтурированного пространства состояний

$$x'(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$

$$x_k = \overline{A}x_{k-1} + \overline{B}u_k$$

$$y_k = Cx_k$$

$$x_k = A_1A_0x_{k-1} + 2A_1Bu_k$$

$$y_k = Cx_k$$
HiPPO initialization
$$x_k = A_1A_0x_{k-1} + 2A_1Bu_k$$

$$y_k = Cx_k$$

$$u_k=u(k\Delta)$$
 $A=\Lambda-PQ^*-$ диаг. $+$ ранг 1 $A=(I-rac{\Delta}{2}A)^{-1}(I+rac{\Delta}{2}A)$ $A=(I-rac{\Delta}{2}A)^{-1}\Delta B$ $A=\Lambda-PQ^*-$ диаг. $+$ ранг 1 $A=(I-rac{\Delta}{2}A)^{-1}(I+rac{\Delta}{2}A)$ $A=(I-rac{\Delta}{2}A)^{-1}\Delta B$ $A=(I-PQ^*-$ диаг. $+$ ранг 1 $A=(I-PQ^*-$ диаг. $+$ диа

¹Gu, Albert, Karan Goel, and Christopher Ré Efficiently modeling long sequences with structured state spaces //arXiv preprint arXiv:2111.00396. – 2021

Итоговое сравнение моделей

- L длина последовательности
- d размерность исходного пространства
- *K* размерность скрытого пространства
- s размерность целевого пространства
- $M = \max(d, K, s)$

	Parameters	Forward
RNN	O(KM)	O(KML)
Neural CDE	$O(K^2d + Ks)$	$O(K^2dL)$
S4	O(Kd + Ks)	O(KML)

Вычислительный эксперимент

Цель

На примере задачи классификации сигналов ЭКГ сравнить работу различных моделей пространства состояний

Основная модель — HTNet

Анализ ошибки

	Parameters	Time per epoch (sec)	Accuracy
RNN	34.2k	5.86	0.506 ± 0.027
S4	33.3k	10.07	0.521 ± 0.049
Neural CDE	31.5k	37.23	0.546 ± 0.026

Заключение

- 1 Показано, что рекуррентные нейронные сети, нейронные контролируемые уравнения и модель S4 являются частными случаями модели пространства состояний
- 2 Продемонстрировано, что NeuralCDE имеет лучшее качество на тестовой выборке по сравнению с другими моделями, однако её время обучения сильно превышает время обучения других моделей