Dr.-Ing. Kartik Jain

Senior Scientist, University of Stuttgart, GERMANY

2 +49 (0) 176 770 51530, ⊠ kartik.jain@icp.uni-stuttgart.de
Google Scholar, ORCiD ResearcherID
Birth: 05.Dec.1986, New Delhi, Nationality: Indian
Marital Status: Single

Employment

08/18 – present	University of Stuttgart, Germany Position: Senior Scientist, Institute for Computational Physics
08/16 - 07/18	University of Zürich, Switzerland Position: Postdoctoral researcher, Institute of Physiology, Faculty of Medicine
02/13 - 07/16	University of Siegen, Germany Position: Scientist, Simulation Techniques & Scientific Computing
03/11 - 01/13	German Research School for Simulation Sciences GmbH, Aachen Position: Student research assistant within the RWTH Aachen University
07/07 - 09/10	Tech Mahindra Ltd., India Position: Software developer and analyst in the projects of BT and AT&T
Education	
02/13 - 08/16	Doctor of Engineering (DrIng.) summa cum laude (with distinction) University of Siegen, GERMANY Date of defense: 22.08.2016, Advisor: Prof. Sabine Roller
10/10 - 11/12	Master of Science (MSc) Mechanical Engineering, RWTH Aachen University, GERMANY Major field of study: Simulation Sciences Aggregate GPA: 1.8/5.0 – US equivalent of 3.36 MS Thesis Advisor: Prof. Sabine Roller
08/03 - 06/07	Bachelor of Technology (B.Tech) Kurukshetra University, India Major field of study: Instrumentation and Control Engineering Aggregate score: 75.6% (First class and honors)

Academic Competence

Lattice Boltzmann Hydrodynamics, High Performance Computing, Multiscale Scientific Computing, Reduced order modeling, Finite Element/Volume methods, Numerical optimization, High performance matrix computations, MPI and OpenMP programming, Fortran, C, Python, Lua, Matlab, LaTeX, Musubi

Computing Resource Grants

2017	Modeling of flow and transport in renal vasculature received 1.5 million CPU hours on the Piz Daint supercomputer, Swiss National Supercomputing Center, Lugano, SWITZERLAND
2015	Simulation of cerebrospinal fluid in the spinal canal received 5 million CPU hours on NEC SX-ACE machine installed at the Tohoku University, Japan
2013	$\label{local-model} \begin{tabular}{ll} Multiscale modeling of physiological flow and thrombosis in stented Intracranial Aneurysms received 20 million CPU hours on the SuperMUC, Leibniz Supercomputing Center, Munich, GERMANY \end{tabular}$

Research Stays

May-Jun 15	Conquer Chiari Research Center, University of Akron, Akron, Ohio, USA
Oct 14	Center for Biomedical Computing, Simula Research Lab, Oslo, NORWAY

Invited Talks

May 18	Lecture at the Zürich University of Applied Sciences (ZHAW), Wädenswil, SWITZERLAND
Feb 18	International Neurovascular Exploratory Workshop - i NEW'2018, Zürich, SWITZERLAND
Sep 17	Institute of Nuclear Waste Management, Paul Scherrer Institute, Villigen, SWITZERLAND
Jul 14	LRZ Review meeting, Munich, GERMANY

Outreach

- Kidney project showcased to general public during Scientifica, 2017
- Project Simulating Transitional Hemodynamics in Intracranial Aneurysms at Extreme Scale advertised by the Gauss Center for Supercomputing
- Musubi LBM solver is one of the most scalable solvers, advertised by the Research Center Jülich

Publications

Doctoral Dissertation

[Jain, 2016] Jain, K. (2016). Transition to Turbulence in Physiological Flows: Direct Numerical Simulation of Hemodynamics in Intracranial Aneurysms and Cerebrospinal Fluid Hydrodynamics in the Spinal Canal. PhD thesis, Universität Siegen, Germany.

TOP 10 PEER REVIEWED PUBLICATIONS

- [1] V. C. Frostelid, **Kartik Jain**, A. Jensen, and K.-A. Mardal. Experimental investigation of transitional flow in cerebral aneurysms. 3(0):674 677, 2017. 2017 Computational and Mathematical Biomedical Engineering.
- [2] H. Klimach, **Kartik Jain**, and S. Roller. End-to-end parallel simulations with apes. In *Parallel Computing: Accelerating Computational Science and Engineering (CSE)*, volume 25 of *Advances in Parallel Computing*, pages 703–711, Munich, Germany, September 2014. IOS Press.
- [3] J. Qi, Kartik Jain, H. Klimach, and S. Roller. Performance evaluation of the LBM solver Musubi on various HPC architectures. In *Advances in Parallel Computing: On the Road to Exascale*, volume 27 of *Advances in Parallel Computing*, pages 807–816. IOS Press, March 2016.
- [4] Kartik Jain, J. Jiang, C. Strother, and K.-A. Mardal. Transitional hemodynamics in intracranial aneurysms comparative velocity investigations with high resolution lattice Boltzmann simulations, normal resolution ANSYS simulations and MR imaging. *Medical Physics*, 43:6186–6198, 2016.
- [5] **Kartik Jain** and K.-A. Mardal. Exploring the critical reynolds number for transition in intracranial aneurysms highly resolved simulations below Kolmogorov scales. 3(0):560 563, 2015. 2015 Computational and Mathematical Biomedical Engineering.
- [6] Kartik Jain, G. Ringstad, P.-K. Eide, and K.-A. Mardal. Direct numerical simulation of transitional hydrodynamics of the cerebrospinal fluid in chiari I malformation: The role of cranio-vertebral junction. *International journal for numerical methods in biomedical engineering*, 33(9), 2017.
- [7] Kartik Jain, S. Roller, and K.-A. Mardal. Transitional flow in intracranial aneurysms—a space and time refinement study below the Kolmogorov scales using lattice Boltzmann method. *Computers & Fluids*, 127:36–46, 2016.
- [8] Kartik Jain, S. Zimny, H. Klimach, and S. Roller. Thrombosis modeling in stented cerebral aneurysms with lattice Boltzmann method. In *Proceedings of the 26th Nordic Seminar on Computational Mechanics*, pages 206–209, Oslo, Norway, 2013.
- [9] K. Valen-Sendstad, A. W. Bergersen, others, **Kartik Jain**, and more. Real-world variability in the prediction of intracranial aneurysm wall shear stress: the 2015 international aneurysm cfd challenge. *Cardiovascular Engineering and Technology*, pages 1–21, 2018.
- [10] S. Zimny, B. Chopard, O. Malaspinas, E. Lorenz, Kartik Jain, S. Roller, and J. Bernsdorf. A multiscale approach for the coupled simulation of blood flow and thrombus formation in intracranial aneurysms. *Procedia Computer Science*, 18:1006–1015, 2013.