Projekt

ROBOTY MOBILNE

Założenia projektowe

Robot typu Linefollower Kaszmir

 ${\it Skład grupy:} \\ {\it Krystian Mirek, 242053}$

Termin: śrTN18

 $\begin{tabular}{ll} $Prowadzący: \\ mgr inż. Arkadiusz MIELCZAREK \end{tabular}$

Spis treści

1	Opis projektu	2
2	Założenia projektowe	2
3	Schemat 3.1 Płytka główna	2 2 3
4	Projekt PCB	3
5	Model 3D mechaniki	4
6	Harmonogram pracy	5
7	Podsumowanie	6
$\mathbf{B}^{\mathbf{i}}$	ibilografia	6

1 Opis projektu

Projekt zakłada stworzenie robota turniejowego typu Linefollower wg wytycznych regulaminu zawodów "Robotic Arena".

2 Założenia projektowe

Pomiar linii będzie się odbywał za pomocą 11 czujników odbiciowych.

Sercem całego robota będzie mikrokontroler stm32. Stworzony zostanie dedykowany obwód drukowany na którym znajdzie się elektronika i który jednocześnie będzie bazą mechaniczną konstrukcji. Całość napędzana będzie dwoma silnikami szczotkowymi z przekładnią oraz enkoderem.

Dodatkowo robot będzie posiadał IMU do funkcji wspomagających oraz komunikację bezprzewodową do zdalnego rozpoczęcia i zakończenia przejazdu.

3 Schemat

3.1 Płytka główna

Schemat elektryczny został wykonany w programie KiCad. Przy tworzeniu układu zadbano o zabezpieczenie przed odwrotną polaryzacją. Zamiast bardzo często wykorzystywanych stabilizatorów liniowych wykorzystano przetwornicę dla uzyskania lepszej sprawności i dla wyeliminowania grzejących się podzespołów. Układ również posiada dodatkowe dwa przyciski i dwie diody w celach łatwiejszego debugowania. Sercem projektu jest mikrokontroler z rodziny STM32F103, jako mostek silników posłużą dwa dwukanałowe układy DRV8835, ich wyjścia zostały połączone dla większej wydajności prądowej. Komunikacja z robotem będzie realizowana za pomocą interfejsu BlueTooth, którego działanie umożliwi moduł HM10.

Rysunek 1: Schemat płytki głównej

3.2 Czujniki

Czujniki wykrywające linie to 10 czujników odbiciowych KTIR711, które zostały umieszczone na osobnej płytce na samym przodzie robota. Sygnały będą przekazywane do płytki głównej taśmą FPC raster $0.5 \, \mathrm{mm}$.

Rysunek 2: Schemat płytki z czujnikami

4 Projekt PCB

Płytka posłuży jednocześnie za podwozie robota do którego będą mocowane silniki. Większość elementów elektronicznych zostanie zamontowana w w technologi SMT.

Rysunek 3: PCB płytki głównej

Rysunek 4: PCB płytki z czujnikami

5 Model 3D mechaniki

Model robota został wykonany w oprogramowaniu Auto Desk Inventor 2021 w którym połączono wyeksportowane modele PCB z silnikami, kołami i elementami mocującymi.

Rysunek 5: Złożenie modeli robota

6 Harmonogram pracy

7 Podsumowanie

Wszystkie zdania wyszczególnione w obrębie drugiego etapu projketu zostały wykonane co widać po materiałach umieszczonych w tym raporcie. Wszystkie części oraz podzespoły zostały już zakupione, co pozwoli na szybki rozwój prac po dotarciu przesyłki z PCB.

Literatura