Class Field Theory

David Wiedemann

Table des matières

1	Mo	tivation	4
2	Inte	erlude : Inverse Limits	6
3	Gal	ois Theory and profinite groups	6
4	Loc	al Fields	9
5	Col	nomology of finite groups	20
	5.1	The exact sequence of Cohomology	24
	5.2	The cup-product	27
	5.3	Cohomology of (finite) cyclic groups	30
	5.4	A theorem of Tate	33
\mathbf{L}	ist	of Theorems	
	1	Definition	4
	2	Corollary	4
	4	Lemma	5
	5	Theorem (Artin Reciprocity)	5
	6	Theorem (Abelian polynomial theorem)	5
	7	Theorem	6
	2	Definition (Inverse System)	6
	10	Lemma	7
	3	Definition (Profinite space)	7
	11	Lemma	7
	4	Definition (Profinite group)	8
	5	Definition (Krull Topology)	8
	13	Proposition	8
	14	Corollary	8
	15	Theorem (Fundamental Theorem of Galois Theory (Cool version))	8
	6	Definition (Local Field)	9

7	Definition	Ć
8	Definition (Equivalent metrics)	10
19	Proposition	10
20	Theorem (Approximation Theorem)	11
22	Proposition	11
9	Definition (Complete Field)	12
24	Theorem (Ostrowski)	12
10	Definition	13
11	Definition	13
12	Definition (Non-archimedean local field)	13
13	Definition	13
25	Proposition	13
26	Lemma (Hensel)	14
28	Theorem (Classification of non-archimedean local fields)	15
29	Theorem	15
30	Theorem	16
31	Theorem	16
32	Lemma	16
33	Corollary	17
14	Definition	17
34	Proposition	17
15	Definition	18
36	Proposition	18
16	Definition	19
37	Theorem	19
17	Definition	20
39	Lemma	20
40	Lemma	21
18	Definition (Fixed module)	21
19	Definition	21
20	Definition	21
21	Definition (Resolution)	22
43	Lemma	23
44	Theorem	24
45	Theorem	24
46	Theorem	25
47	Theorem	25
48	Corollary	26
22	Definition	26
49	Theorem (Shapiro's lemma)	26
23	Definition	27

50	Theorem	28
51	Theorem	28
52	Theorem	28
53	Lemma	28
54	Lemma	29
55	Theorem	30
56	Theorem (Cohomology of cyclic groups)	30
24	Definition (Herbrand quotient)	31
57	Theorem	31
58	Theorem	32
59	Lemma	32
60	Theorem	32
61	Theorem (Chevalley)	33
62	Theorem	33
64	Theorem	3/1

Lecture 1: Intro

Mon 10 Oct

1 Motivation

Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial and a p a prime. Look at $f_p(x) \in \mathbb{F}_p[x]$, in general, f_p is not irreducible so we can study it's factorizations.

Definition 1

We say f splits completely mod p if f_p factors into distinct linear factors. We write $Spl(f) = \{p | f_p = \prod (x - \alpha_i)\alpha_i \neq \alpha_j \forall i \neq j\}$

Problem

Given f, describe the factorisations behaviour of f_p as a function of p. Or at least give a rule determining Spl(f).

An answer to this illposed problem is a Reciprocity Law.

Example

Let $f(x) = x^2 - q \ q > 2$ prime.

Observe that

- 1. $f_p(x) = (x \alpha_p)^2$, but this happens iff p = 2, q
- 2. $f_p(x) = (x \alpha_p)(x + \alpha_p)$ iff $p \in Spl(f)$ iff $(\frac{q}{p}) = 1$
- 3. $f_p(x)$ is irreducible iff $(\frac{q}{p}) = -1$

To get a rule, we need to compute $\binom{q}{p}$, to do so, we use quadratic reciprocity. For us, quadratic reciprocity translates to

Corollary 2

$$(\frac{q}{p}) = \begin{cases} (\frac{p}{q}) & \text{if } p \equiv 1 \mod 4 \\ -(\frac{p}{q}) & \text{if } p \equiv 3 \mod 4 \end{cases}$$

So $Spl(X^2-q)$ is determined by congruence conditions modula 4q.

Example

Let Φ_n be the nth cyclotomic polynomial, then

$$Spl(\Phi_n) = \{p | p \equiv 1 \mod n\}$$

What about general polynomials?

Over \mathbb{C} , we can always factor polynomials and so we write $K_f = \mathbb{Q}(\alpha_1, \dots, \alpha_n)$

for the splitting field of K_f over \mathbb{Q} .

 $K_f \supset \mathbb{Q}$ is a Galois extension and $\mathcal{O} = \mathcal{O}_{K_f}$ is it's ring of integers.

As \mathcal{O} is a dedekind domain, we have

$$p\mathcal{O}=\prod_{i=1}^n\beta_i^e, \mathcal{O}_{/\beta_i}\supset \mathbb{Z}/(p)$$
 a finite extension of \mathbb{Z}/p

We understand finite extensions of \mathbb{F}_p , there Galois group is generated by the Frobenius automorphism.

If p does not ramify ($e_p = 1 \iff p \not| D_{K_f}$) then we define the Artin-Symbol $\sigma_{\beta_i} \in Galf(K_f|\mathbb{Q})$ by

$$\sigma_{\beta_i}(\alpha) \equiv \alpha^p \mod \beta_i \forall a \in \mathcal{O}$$

Fact:

If $\beta_i \neq \beta_j$, then there is $\zeta \in Gal(K_f|\mathbb{Q})$ such that $\zeta(\beta_i) = \beta_j$, then $\sigma_{\beta_j} = \zeta \sigma_{\beta_i} \zeta^{-1}$.

The Artin symbol of p is $\sigma_p = C_{\text{Gal}}(\sigma_{\beta_i})$.

For now we suppose $Gal(K_f|\mathbb{Q})$ is an abelian group, in this case, we can turn the Artin Symbols into a map

$$\mathbb{Q}^* \supset \Gamma_{D_{K_f}} = \langle p \not| D_{K_f} \rangle \to \operatorname{Gal}(K_f | \mathbb{Q})$$

by sending $p \to \sigma_p$

Lemma 4

If $Gal(K_f|\mathbb{Q})$ is abelian, then, up to finitely many extensions,

$$p \in Spl(f) \iff \sigma_p = 1$$

Theorem 5 (Artin Reciprocity)

For K_f/\mathbb{Q} abelian, the Artin map $\sigma: \Gamma_{D_{K_f}} \to \operatorname{Gal}(K_f|\mathbb{Q})$ is surjective and it's kernel contains the "ray class group".

Here the ray class group is

$$\Gamma_a^{(ray)} = \left\{ r \in \mathbb{Q}^* | r = \frac{c}{d}(ca, d) = 1, c \equiv d \mod a \right\}$$

For a suitable a tant consists of ramified primes.

Define $\tilde{Spl}(f) = Spl(f) \setminus \{p|a\} \cup \{p \equiv 1 \mod a\}$.

Theorem 6 (Abelian polynomial theorem)

If f is abelian, then $\tilde{Spl}(f)$ can be described by congruence conditions wrt a modulus depending only on f.

Conversely, if $\tilde{Spl}(f)$ is described by congruence conditions, then $Gal(K_f|\mathbb{Q})$ is abelian.

Theorem 7

Let f, g be polynomials (monic irreducible), then

$$K_f \subset K_g \iff Spl(g) \subset^* Spl(f)$$

This enters in the proof of the converse part of the abelian polynomail theorem.

2 Interlude: Inverse Limits

Let I be a directed ordered set $(i, j \in I \implies \exists k \text{ such that } i \leq k, j \leq k)$

Definition 2 (Inverse System)

A inverse system consists of data

$$\{X_i, f_{i,j} | i, j \in I, i \le j\}$$

 X_i are objects (topological spaces, groups, etc) and the $f_{i,j}: X_j \to X_i$ such that $f_{i,i} = \operatorname{Id}$ and $f_{j,k} \circ f_{k,i} = f_{j,i}$

Example

Take $X_i = \mathbb{Z}_{p^j\mathbb{Z}} \to \mathbb{Z}_{p^i\mathbb{Z}}, i \leq j$. Then, the inverse limit is defined by

$$X = \varprojlim_{i \in I} X_i = \left\{ (x_i) \in \prod X_i | f_{ij}(x_j) = x_i \forall i \le j \right\} \subset \prod_{i \in I} X_i$$

Lecture 2: Infinite galois theory

Thu 13 Oct

3 Galois Theory and profinite groups

Example

$$\mathbb{F}_p \subset \mathbb{F}_{p^n} \subset \overline{\mathbb{F}_p}$$
.

Though the extension is infinite, we can look at $\operatorname{Gal}(\overline{\mathbb{F}_p}|\mathbb{F}_p)$ and it still contains the frobenius $\phi(x) = x^p$.

Let
$$H = \{\phi^n | n \in \mathbb{Z}\} = \langle \phi_n \rangle \subset \operatorname{Gal}(\overline{\mathbb{F}_p} | \mathbb{F}_p)$$
.
Note that $\overline{\mathbb{F}_p}^H = \mathbb{F}_p \ BUT \ H \subsetneq \operatorname{Gal}(\overline{\mathbb{F}_p} | \mathbb{F}_p)$

Lemma 10

Let T be a Hausdorff topological space.

The following are equivalent

- T is an inverse limit of finite discrete spaces
- T is compact and every point in T has a basis of neighborhoods of subsets that are clopen
- T is compact and totally disconnected

Proof (Sketch)

 $1 \implies 2$ follows from construction (exercise)

 $2 \implies 3$ Take $x \in T$ and let C_x be the connected component of x.

Then

$$C_x = \bigcap_{x \in U, \ clopen} \ U = \{x\}$$

because X is Hausdorff.

 $3 \implies 1 \text{ Let } I = \left\{ \begin{array}{l} \widetilde{equivalence \ relation} \ R \subset T \times T|^T/R \ is \ finite \ discrete} \end{array} \right\}$

Then, consider $\phi: T \to \varprojlim^T /_R$, one then checks this is a homeomorphism. (exercise again)

Definition 3 (Profinite space)

A profinite space is a totally disconnected, compact and Hausdorff space.

Lemma 11

Let G be a Hausdorff topological group.

Then the following are equivalent

- G is the inverse limit of discrete finite groups
- G is compact and the identity in G has a basis of neighborhoods consisting of normal clopen subgroups.
- G is compact and totally disconnected.

Proof

 $1 \implies 3$ see course notes

 $2 \implies 1$ We want to show that $\phi: G \to \varprojlim^G /_U$ where the limit is taken over all normal clopen subgroups.

 $3 \implies 2$ We take a basis for e as in the lemma above.

We take a basis of clopen neighborhoods U and then define

$$V = \left\{v \in U | Uv \subset U\right\} \ \text{ and } H = \left\{h \in V | h^{-1} \in V\right\}$$

and one can show that H is a normal finite subgroup of finite index.

Definition 4 (Profinite group)

A totally disconnected compact Hausdorff topological group is called a profinite group.

Example

$$-\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n \mathbb{Z}$$

$$-\hat{\mathbb{Z}} = \lim_{n \in \mathbb{N}} \mathbb{Z}/N\mathbb{Z}$$
 where the inverse system is given by divisibility

Now we try to fix the fundamental theorem of Galois theory.

Let F be a field with algebraic closur \overline{F} .

Write $G_E = \operatorname{Gal}(\overline{F}|E)$ for a field extension $F \subset E \subset \overline{F}$.

In particular, G_F is just the absolute Galois group of F

Definition 5 (Krull Topology)

For some element $\sigma \in G_F$, define a absis of (open) neighborhoods to be

$$\{\sigma G_E|F\subset E \text{ finite normal }\}$$

Proposition 13

 G_F equipped with the Krull topology is a profinite group. We have

$$G_F = \varprojlim \operatorname{Gal}(E/F)$$

where E runs over finite Galois extensions of E

Corollary 14

$$G_{\mathbb{F}_p} \simeq \varprojlim_n \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \simeq \hat{\mathbb{Z}}$$

Theorem 15 (Fundamental Theorem of Galois Theory (Cool version))

The assignment

$$K \to \operatorname{Gal}(\overline{F}|K)$$

is a one-to-one correspondence between extensions $F \subset K \subset \overline{F}$ and closed subgroups of G_F .

The open subgroups of G_F correspond to finite extensions of F.

Proof

- 1. First, notice that an open subgroup of G_F is closed.
- 2. Finite extensions correspond to open subgroup (essentially by definition, one needs to take the normal closure)

3. Now, for an arbitrary field extensionf

$$\operatorname{Gal}(\overline{F}|K) = \bigcap_{i} \operatorname{Gal}(\overline{F}|K_{i})$$

as K_i varies over all finite subextensions of K

- 4. This assignment is injective as K is the fixed field of $Gal(\overline{F}|K)$
- 5. This assignment is surjective :

Take $H \subset G_F$ a closed subgroup and let $K = \overline{F}^H$, so that $H \subset \operatorname{Gal}(\overline{F}|K)$.

To see that this is in fact an equality, we take $\sigma \in \operatorname{Gal}(\overline{F}|K)$ and we show that $\sigma \in \overline{H} = H$.

Take some finite extension $K \subset L \subset \overline{F}$ so that $\sigma \operatorname{Gal}(\overline{F}|L)$ is a neighborhood of σ .

We need to show that

$$H \cap \sigma \operatorname{Gal}(\overline{F}|L) \neq \emptyset$$

To do this, we have to show $\tau \in H$ such that $\tau|_L = \sigma|_L$.

$$p: G_K \to \operatorname{Gal}(L/K)$$

is surjective and $p(H) \subset \operatorname{Gal}(L/K)$.

Since K is the fixed field of H, $L^{p(H)} = K$, we have $p|_H : H \to Gal(L/K)$ is surjective.

4 Local Fields

Example

 \mathbb{R} and \mathbb{C} are local fields for us

Definition 6 (Local Field)

A local field is a topological field which is locally compact but not discrete.

Definition 7

Let F be a field. An absolute value on F is a map $|\cdot|: F \to \mathbb{R}$ such that

- 1. $|x| \ge 0$ and |x| = 0 and $|x| = 0 \iff x = 0$
- 2. |xy| = |x||y|
- 3. $|x+y| \le |x| + |y|$

Example

- \mathbb{R} and \mathbb{C} with euclidean norm

— If O is a DVR, $F = \frac{1}{O}$, then $|x| = c^{-\nu(x)}$ with c > 1 defines an absolute value.

Lecture 3: Local Fields

Mon 17 Oct

Remark

- 1. On a local field, we get a metric d(x,y) = |x-y| which induces a topology on our field F
- 2. We could define the discrete metric which induces the discrete topology, but we always exclude it

Definition 8 (Equivalent metrics)

- 1. We call $|\cdot|_1$ and $|\cdot|_2$ equivalent if they induce the same topology.
- 2. If $|x+y| \leq \max(|x|,|y|) \leq |x|+|y|$ holds, then we call $|\cdot|$ nonarchimedean.

Observe that, if $|\cdot|_1$ and $|\cdot|_2$ are equivalent absolute values, then

$$|x|_1 < 1 \implies x^n \to 0 \text{ in } |\cdot|_1 \implies x^n \to 0 \text{ in } |\cdot|_2 \implies |x|_2 < 1.$$

Proposition 19

Two absolute values $|\cdot|_1, |\cdot|_2$ are equivalent iff there is s>0 such that

$$|\cdot|_1 = |\cdot|_2^s$$

The implication from right to left is easy. Fix $y \in F^{\times}$ with $|y|_1 > 1$. For any $x \in F^{\times}$ there is $\alpha \in \mathbb{R}$ such that

$$|x|_1 = |y|_1^{\alpha}$$

Take a rational approximation from above $\frac{m_i}{n_i} \to \alpha$, we get $|\frac{x^{n_1}}{y^{m_1}}|_1 < 1 \implies |\frac{x^{n_1}}{y^{m_1}}|_2 < 1$

Thus $|x|_2 \le |y|_2^{\frac{m_i}{n_i}} \Longrightarrow |x|_2 \le |y|_2^{\alpha}$.

Doing the same with an approximation of α from below we get $|x|_2 = |y|_2^{\alpha}$.

$$0 < s = \frac{\log |y|_1}{\log |y|_2} = \frac{\log |x|_1}{\log |x|_2}$$

Theorem 20 (Approximation Theorem)

Let $|\cdot|_1, \ldots, |\cdot|_n$ be pairwise inequivalent absolute values.

For all $a_1, \ldots, a_n \in F$ and every $\epsilon > 0$, there is $x \in F$ such that

$$|x - a_i|_i < \epsilon$$

Remark

Taking $F = \mathbb{Q}$ and p, q primes.

There are valuations v_p, v_q which induce absolute values $|\cdot|_p = p^{-v_p(\cdot)}$ which are non-archimedean and inequivalent.

A special case of the theorem above says that for each $a_1, a_2 \in \mathbb{Z}$ and all $\epsilon > 0$ there is $x \in \mathbb{Q}$ such that $|a_1 - x|_p < \epsilon$ and $|a_2 - x|_q < \epsilon$

Proof

We claim: There is $z \in F$ such that $|z|_1 > 1$ and $|z|_j < 1$ for $j = 2, \ldots, n$. First, take $\alpha, \beta \in F$ such that

$$|\alpha|_1 < 1 \le |\alpha|_n \text{ and } |\beta|_1 \ge 1 > |\beta|_n$$

Put $y = \frac{\beta}{\alpha}$.

The case n = 2 follows from this (with z = y).

By induction, for n > 2 we argue by induction. Say z' satisfies the claim for

If $|z'|_n \leq 1$, take $z = (z')^m y$ for m large enough.

$$t_m = \frac{(z')^m}{1 + z'^m}$$

 t_m will converge to 1 for j = 1, n and 0 if not.

Take $z = t_m y$ for m large enough.

By the same argument we find $z_i \in F$ such that $|z_i|_i > 1$ and $|z_i|_j < 1$ for

Put $x=a_1z_1^{m_1}+\ldots+a_nz_n^{m_n}$ for $m_1,\ldots,m_n\in\mathbb{N}$ large enough. Look at

$$|x - a_1|_1 \le |a_1|_1 \qquad \qquad \square$$

Proposition 22

An absolute value $|\cdot|$ on a field F is non-archimedean iff $(|n|)_{n\in\mathbb{N}}$ is bounded.

Proof

" ⇒ "
$$|n| = |1 + ... + 1| \le \max(|1|, ...) = 1$$

" ⇐ " $Say |n| \le N$, $look at |x + y|^l \le \sum_{v=0}^l |\binom{l}{v}| \underbrace{|x|^v |y|^{l-v}}_{\le \max(|x|, |y|)^l}$

Taking l -th roots, we get $|x + y| \le N^{\frac{1}{l}} (1 + l)^{\frac{N}{l}} \max(|x|, |y|)$

Definition 9 (Complete Field)

We call $(F, |\cdot|)$ complete if every Cauchy sequence has a limit in F.

Any valued field has a completion $(\hat{F}, |\cdot|)$.

Example

$$(\mathbb{Q}, |\cdot|) \xrightarrow{completion} (\mathbb{R}, |\cdot|_{\infty}).$$

We can do the same for the p-adic absolute values $(\mathbb{Q}, |\cdot|_p) \xrightarrow{completion} (\mathbb{Q}_p, |\cdot|_p)$.

Theorem 24 (Ostrowski)

Let F be a complete valued field such that $|\cdot|$ is archimedean.

Then there is an isomorphism $\sigma: F \to \mathbb{R}$ or \mathbb{C} such that $|x| = |\sigma(x)|_{\infty}^{s} \forall x \in F$

Proof

As $|\cdot|$ is archimedean, the sequence (n) is unbounded and hence char(F) = 0. Hence $\mathbb{Q} \to \hat{\mathbb{Q}} \to F$ and thus $\mathbb{R} \subset F$.

Take $a \in F$, we want to find a quadratic polynomial in $\mathbb{R}[x]$ that a satisfies.

Define $f(z) = |a^2 - Tr_{\mathbb{C}|\mathbb{R}}(z)a + Nr_{\mathbb{C}|\mathbb{R}}(z)$ for $z \in \mathbb{C}$.

Note that $f: \mathbb{C} \to [0, \infty)$ and $f(z) \to \infty$ as $|z| \to \infty$.

So $m = \min_{z \in \mathbb{C}} f(z)$ is attained in $S = \{z \in \mathbb{C} | f(z) = m\}$.

We claim m = 0.

Take $z_0 \in S$ and suppose $m = f(z_0) > 0$, consider

$$g(x) = x^2 - Tr_{\mathbb{C}|\mathbb{R}}(z_0)x + Nr_{\mathbb{C}|\mathbb{R}}(z_0) + \epsilon \in \mathbb{R}[x]$$

Let z_1, z'_1 be complex roots of g, we must have

$$z_1 z_1' = N r_{\mathbb{C}|\mathbb{R}}(z_0) + \epsilon$$

and in particular $|z_1| > |z_0|$.

Consider $G(x) = [g(x) - \epsilon]^n - (-\epsilon)^n = \prod_{i=1}^n (x - \alpha_i)$ and assume $\alpha_1 = z_1$

$$|G(a)|^2 = \prod_{i=1}^{2n} f(\alpha_i) \ge f(z_1)|m|^{2n-1}$$

and

$$|G(a)| \le f(z_0)^n + \epsilon^n = m^n + \epsilon^n$$

Rearranging

$$\frac{f(z_1)}{m} \le (1 + (\frac{\epsilon}{m})^n)^2 \to 1$$

 $as \ n \to \infty$

Rearranging $f(z_1) \leq m = f(z_0)$

Definition 10

The fields \mathbb{R} and \mathbb{C} are called archimedean local fields.

Let $|\cdot|$ be non-archimedean

Definition 11

Let $\mathcal{O} = \{x \in F | |x| \le 1\}$ be the "valuation ring".

$$p = \{x \in F | |x| < 1\}$$

is the unique maximal ideal of p.

Then $\mathcal{O}^{\times} = \{x \in F | |x| = 1\}$ are the units and $k = \mathcal{O}_p$ is the residue field.

Definition 12 (Non-archimedean local field)

A non-archimedean local field is a complete valued field such that $|\cdot|$ is non-archimedean and k is finite.

Definition 13

The valuation v defined by $v(x) = -\log(|x|)$ is called discrete if there is a > 0 such that $v(F^{\times}) \subset s\mathbb{Z}$.

We say v is normalized if $v(F^{\times}) = \mathbb{Z}$

Proposition 25

Let $(F, |\cdot|)$ be a non-archimedean valued field with completion $(\hat{F}, |\cdot|)$, then

$$\hat{\mathcal{O}}_{/\hat{p}} \simeq \mathcal{O}_{/p}$$

Further, if $|\cdot|$ has discrete valuation then

$$\hat{\mathcal{O}}_{p^n} \simeq \mathcal{O}_{p^n}$$
 and $\hat{\mathcal{O}} = \lim \mathcal{O}_{p^n}$

Similarly

$$\hat{\mathcal{O}}^{\times = \lim^{\mathcal{O}^{\times}} / U^n}$$

for $U^n = 1 + p^n$

Lecture 4: Local fields

Thu 20 Oct

Lemma 26 (Hensel)

Let $(F, |\cdot|)$ be a non-archimedean complete valued field.

Let $f \in \mathcal{O}[x]$ and assume $f = \overline{g}\overline{h} \mod p$ with \overline{g} and \overline{h} coprime over $\mathcal{O}_p[x]$, then this factorization lifts to \mathcal{O} and $\exists g,h \in \mathcal{O}[x]$ such that $g \mod p = \overline{g}$, $h \mod p = \overline{h} \deg g = \deg \overline{g}$

Proof

Let $d = \deg f, m = \deg \overline{g}$.

Define g_0 to be a lift of \overline{g} to $\mathcal{O}[x]$ and h_0 a lift of h with same degree.

Look at $f - g_0 h_0$, take $a, b \in \mathcal{O}[x]$ such that $ag - +bh_0 \equiv 1 \mod p\mathcal{O}[x]$ and look at $ag_0 + bh_0 - 1$.

Define ω to be any element of p that divides $f - g_0h_0$, $ag_0 + bh_0 - 1$.

We will construct (g_n, h_n) such that $\deg g_n = m$, $\omega^n | g_n - g_{n-1}$ and $\omega^n | h_n - h_{n-1}$ such that $\omega^{n+1} | f - g_n h_n$.

Suppose we've constructed g_{n-1}, h_{n-1} we want to find $g_n = g_{n-1} + \omega^n p_m$ and $h_n = h_{n-1} + \omega^n q_m$. We'll be able to take $\deg p_m < m$.

Write

$$f - g_n h_n \equiv (f - g_{n-1} h_{n-1}) - \omega^n (p_n h_{n-1} + q_n g_{n-1}) \mod \omega^{n+1}$$
$$\equiv \omega^n (\frac{f - g_{n-1} h_{n-1}}{\omega^n} - p_n h_{n-1} - q_n g_{n-1})$$

We work with ω now, so we want

$$p_n h_0 + q_m g_0 \equiv \underbrace{\frac{f - g_{n-1} h_{n-1}}{\omega^n}}_{=f_n} \mod \omega$$

We have $bh_0 + ag_0 \equiv 1 \mod \omega$ and thus

$$(bf_n)h_0 + (af_n)g_0 \equiv f_n \mod \omega$$

Write $bf_n = qg_0 + p_n$ with $\deg p_n < m$.

Letting $q_n := af_n + ph_0$, all the conditions hold and we get our g_n, h_n .

The factors of the respective sequences converge in $\mathcal{O}[x]$ because the coefficients are Cauchy and \mathcal{O} is complete.

Example

- 1. If $f \in \mathcal{O}[x]$ and $\overline{a} \in \mathcal{O}_p$ such that $f(a) \equiv 0 \mod p$, $f'(a) \in \mathcal{O}^{\times}$ then $\exists a \in 0, a \equiv \overline{a} \mod p$ such that f(a) = 0
- 2. $f \in K[x]$ such that f is irreducible $f(0) \in \mathcal{O}$ then $f \in \mathcal{O}[x]$

Theorem 28 (Classification of non-archimedean local fields)

The non-archimedean local fields are the finite extensions of \mathbb{Q}_p and $\mathbb{F}_p((t))$

Theorem 29

Let $(F, |\cdot|)$ be complete valued, then $|\cdot|$ has a unique extension to \overline{F} . If $E/F < \infty$, then $|\cdot|$ is given by

$$|\alpha|_E = |N_{E/F}(\alpha)|_F^{\frac{1}{[E:F]}}$$

and E is again complete for $|\cdot|$.

Proof

We can assume that F is non-archimedean.

It suffices to show $\exists!$ extension to E (a finite extension).

1. Does $|N_{E/F}|^{\frac{1}{[E:F]}}$ define an absolute value?

Multiplicativity and $\alpha = 0 \iff |\alpha| = 0$ is clear.

We want to show that $|\alpha| \leq 1 \implies |\alpha + 1| \leq 1$.

Fix such an α and look at the minimal polynomial of α , say f.

Then $(f(0))^{\frac{1}{|E:F|}} = N_{E|F}(\alpha)$, thus $|f(0)|_F \leq 1$, $f(0) \in \mathcal{O}_F \implies f \in$ $\mathcal{O}_F[x]$ thus $f \in \mathcal{O}_F[x]$.

Hence $f(x-1) \in \mathcal{O}_F[x]$ which is just the minimal polynomial of $\alpha+1$, thus $N(\alpha+1) \in \mathcal{O}_F \implies |\alpha+1|_E \leq 1$

2. We show uniqueness.

Suppose $|\cdot|'$ is another absolute value on E extending F.

We'll show that $\mathcal{O}_E := \{ \alpha \in E : N_{E|F}(\alpha) \in \mathcal{O}_p \} \subset \mathcal{O}_E'$.

Suppose not, take $\alpha \in \mathcal{O}_E \setminus \mathcal{O}_E'$, thus $\alpha^{-1} \in p_E'$.

Let f be the minimal polynomial of α , $f = x^d + a_{d-1}x^{d-1} + \dots$,

 $f(\alpha) = 0 \implies 1 + a_{d-1}\alpha^{-1} + \dots + a_0\alpha^{-d} = 0 \in 1 + \mathcal{O}_F p_E' = 1 + p_E' \not\ni 0.$ Thus $\mathcal{O}_E \subset \mathcal{O}'_E$.

Thus $|\alpha|_E \leq 1 \implies |\alpha|_E' \leq 1$.

Hence, if both norms were inequivalent, there would exist $\alpha \in E$ with $|\alpha| \le \frac{1}{100}, |\alpha|' \ge 100, \text{ which is impossible.}$

It now suffices to show that E is a complete valued field.

Fact: If F is a complete valued field, V is a finite dimensional vector space over F, then any two norms on V are equivalent.

We use this with $|\cdot|_E$ and a norm coming from a linear isomorphism with $F^{[E:F]}$

We now prove the classification of local fields

Proof

Fact : On \mathbb{Q} , the non-archimedean absolute values are $|\cdot|_p$ (up to equivalence) Take F a non-archimedean local field and suppose $\mathbb{Q} \subset F$.

We know $|\cdot|_{\mathbb{Q}} = |\cdot|_p$ for some p and thus $\mathbb{Q}_p \subset F$.

Local compactness implies that $F/\mathbb{Q}_p < \infty$.

Assume charF = p > 0, thus $\mathbb{F}_p \subset F$, take $t \in F$ with |t| < 1.

We claim that t is transcendental, if not $\exists N \text{ such that } t^N = 1 \implies |t| = 1$.

Thus
$$\mathbb{F}_p((t)) \subset F \implies F/\mathbb{F}_p((t)) < \infty$$
.

Theorem 30

Let F be a non-archimedean local field and $\omega \in F^{\times}$ a uniformizer for \mathcal{O} . Then $\mathcal{O}^{\times} \times \omega^{\mathbb{Z}} \to F^{\times}$ is an isomorphism.

Consider $1 \to \mathcal{O}^{\times} \to F^{\times} \to \mathbb{Z} \to 0$, this ses splits with $s : \mathbb{Z} \to F^{\times}$ sending n to ω^n .

Theorem 31

Let F be a non-archimedean local field, then $\mathcal{O}^{\times} \subset F^{\times}$ is compact open and F^{\times} is locally compact.

Proof

 $Look\ at\ F^\times \to \{(a,b): ab=1\} \subset F^2\ sending\ a \to (a,\tfrac{1}{a}).$

We get everything just by topological considerations.

Recall $U^n = 0$ if n = 0 and $1 + p^n$ if $n \ge 1$.

Then $\mathcal{O}^{\times} = \bigcup_{a \mod p \neq 0} a + p$.

All these p are open compact and thus \mathcal{O}^{\times} is too.

Take $\alpha \in F^{\times}$, then $\alpha \mathcal{O}^{\times}$ is a compact open neighborhood of α .

Lemma 32

Let F be a non-archimedean local field.

The maps $x \to x^m$ with m an integers sends $U^m \to U^{n+v(m)}$ and induces an isomorphism for m large enough (depending on m)

Proof

Take $a \in U^n$, $a = 1 + \omega^n b$, then $a^m = 1 + m\omega^n b + \omega^{2n} c$ for some $c \in \mathcal{O}$.

$$= 1 + \omega^{v(m)}\omega^n b + \omega^{2n} c \in 1 + \omega^{v(m)+m} \mathcal{O}$$

for $n \geq v(M)$.

We show injectivity.

There exist finitely many n-th roots of unity in F.

For n >> 1, $U^n \ni an m$ -th root of unity $\neq 1$

To show surjectivity, take $a \in \mathcal{O}^{\times}$, we want to find $x \in \mathcal{O}$ such that

$$(1 + x\omega^n)^m = 1 + a\omega^{n+v(m)}$$

Thus $1 + b\omega^{v(m)}x\omega^n + \omega^{2n}f(x) = 1 + a\omega^{n+v(m)}$ where $m = b\omega^{v(m)}$. $x + \omega^{n-v(m)}f(x) = a$ when n > v(m).

Modulo ω , this becomes x = a.

By Hensel, this lifts to a solution $x \in \mathcal{O}$ because $(x-a)' = 1 \neq 0$.

Corollary 33

Let F be non-archimedean local, then $(F^{\times})^m \subset F^{\times}$ is an open subgroup.

$$\bigcap_m (F^\times)^m = \{1\}$$

Proof

It suffices to show $1 \in (F^{\times})^m$ has an open neighborhood, indeed, take U^m a large enough n.

For the second part, take $a \in \bigcap_m (F^{\times})^m$, $v(a) \in m\mathbb{Z} \forall m \implies v(a) = 0$ and we know that $a \in U^n$ for all n.

Thus
$$a-1 \in \bigcap_i p^i = 0$$

Lecture 5: Cohomology a la Tate

Mon 24 Oct

If F is a non-archimedean local field with normalized valuation v_f and E/F is a finite extension of degree n, then E is again a non-archimedean local field with respect to a unique absolute value extending $|\cdot|_F$.

The valuation associated to $|\cdot|_E$ is w_E and

$$|x|_E = |N_{E|F}(x)|^{\frac{1}{n}}$$

We have $\mathbb{Z} = v_F(F^{\times}) \subset w_e(E^{\times}) \subset \frac{1}{n}\mathbb{Z}$.

We have an extension of residue fields k_E/k_F

Definition 14

We define $e = e(E|F) = [\omega_E(E^{\times}) : v_F(F^{\times})]$ and $f = f(E|F) = [k_E : k_F]$.

Proposition 34

Let E|F be a finite extension of non-archimedean local fields.

Then $[E:F] = n = e \cdot f$

Remark

 $n \ge e \cdot f$ holds in great generality (we don't need it to be a local field) but equality needs completeness.

Proof

Let ϖ_E be a generator of $p_E \subset \mathcal{O}_E$.

Choose $\omega_1, \ldots, \omega_f \in \mathcal{O}_E^{\times}$ such that they reduce to a basis of k_E over k_F .

We claim that $\{\omega_j \varpi_E^i | j=1,\ldots,f \text{ and } i=0,\ldots,e-1\}$ is linearly independent.

Take

$$S = \sum_{i=0}^{e-1} \sum_{j=1}^{f} a_{ij} \,\omega_j \,\varpi_E^i$$

Suppose S = 0 with the coefficients not all zero.

Let $\alpha_i = \min_{j \in [f], a_{ij} \neq 0} v_F(a_{ij}).$

Then notice that $\varpi_F^{-\alpha_i}S_i$ has at least one coefficient in \mathcal{O}_F^{\times} .

Reducing mod p_E gives a linear in $k_E \sum_{j=1}^f \tilde{a_{ij}} \omega_j$ and thus at least one of the $\tilde{a_{ij}} \neq 0$.

Thus $S_i \neq 0$ and even more $w_E(S_i) \in v_F(F^{\times})$.

Since S=0 there must be $0 \le i, j \le e-1$ with $i \ne j$ such that $w_E(S_i\varpi_E^i) =$ $w_E(S_i\varpi_E^j)$.

Thus $w_E(\varpi_E^i) \in w_E(\varpi_E^j) + \mathbb{Z}$.

But this can only happen if i = j.

Now, define $M = \sum_{i=0}^{e-1} \sum_{j=1}^{f} \mathcal{O}_F \omega_j \, \varpi_E^i$ an \mathcal{O}_F module.

We claim that $M = \mathcal{O}_E$.

We start with some observations $\mathcal{O}_E = N + \varpi_E \mathcal{O}_E = N + \varpi_E N + \varpi_E^2 N + \varpi_E N + \varpi_E$ $\ldots + \varpi_E^e \mathcal{O}_E = M + p_F \mathcal{O}_E.$

Thus $\mathcal{O}_E = M + p_F^v \mathcal{O}_E$ for $v \ge 1$ and thus M is dense in \mathcal{O}_E .

But M is also closed

Definition 15

If E/F is a finite extension, then it is called unramified if $[k_E:k_F]=n$

A non-finite extension is called unramified if k_E/k_F is separable and E is a union of finite unramified extensions.

Proposition 36

Let E/F and F'/F be two finite extensions of non-archimedean local fields and let E' = EF'. Then

- E/F unramified, then E'/F' is unramified
- subextensions of unramified extensions are unramified
- compositions of unramified extensions are unramified.

Proof

The second and third property follow from the first one, so we only show the first one.

 k_E/k_F is generated by $\overline{\alpha}$.

We can lift $\overline{\alpha}$ to $\alpha \in \mathcal{O}_E$ and take the minimal polynomial $f \in \mathcal{O}_F[x]$ for α over F.

We compute $[k_E:k_F] \leq \deg(\overline{f}) = \deg f = [F(\alpha):F] \leq [E:F] = [k_E:k_F].$

Thus $E = F(\alpha)$ and \overline{f} is the minimal polynomial of $\overline{\alpha}$ and $E = F'(\alpha)$.

Consider the minimal polynomial $g \in \mathcal{O}_{F'}[x]$ of α over F'.

Note that \overline{g} is irreducible by Hensel's lemma (and \overline{g} has no multiple roots as $\overline{g}|\overline{f}$).

 $Now [k_E : k_{F'}] \le [E' : F'] = \deg g = \deg \overline{g} - [k_{F'}(\overline{\alpha}) : k_{F'}] \le [k_{E'} : k_{F'}]$

Why are unramified extensions so nice?

— If E|F is unramified, then there is a morphism of galois groups $Gal(E/F) \rightarrow Gal(k_E|k_F)$ sending $\sigma \rightarrow \overline{\sigma}$ by defining $\overline{\sigma}(x+p_E) = \sigma(x) + p_E$ and this is an isomorphism.

As $Gal(k_E|k_F)$ is generated by the frobenius, sending $\overline{x} \to \overline{x}^{q_F}$ where $\#k_F = q_F$.

Definition 16

The automorphism $\phi_{E|F} \in \operatorname{Gal}(E|F)$ that induces the frobenius via the isomorphism above is called the frobenius automorphism.

Theorem 37

If $L \supset E \supset F$ are unramified finite extensions of F, we have

$$\phi_{E|F} = \phi_{L|F}|_E$$

and $\phi_{L|F}^{[E:F]} = \phi_{L|E}$

Interlude: Relevance to the classical situation

If L|K is a finite extension of algbraic number fields and $p \in \mathcal{O}_K$.

Then this prime induces a normalized valuation v_p on K.

Let k_p be the completion and write $p\mathcal{O}_L = \beta_1^{e_1} \dots \beta_r^{e_r}$.

Then, we get valuations $\omega_{\beta_i} = \frac{1}{e_i} v_{\beta_i}$ extending v_p .

Completing with respect to these different valuations, we get L_i 's for every i.

Then $f_j = f(L_j/K_p)$, $e_i = e(L_i|K_p)$ and one has $\sum_{i=1}^r e_i f_i = n$.

If L|K is a Galois extension, we obtain maps $L_{\beta} \to L_{\sigma\beta}$.

In particular, if $\sigma\beta = \sigma$, then $L_{\beta} \xrightarrow{\sigma} L_{\beta}$ defines an element in $\operatorname{Gal}(L_{\beta}/K_p)$. And we get a morphism $G(\beta) = \{\sigma \in \operatorname{Gal}(L/K) | \sigma\beta = \beta\} \to \operatorname{Gal}(L_{\beta}|K_p)$. If p is unramified, then this is an isomorphism and we can pull back the frobenius.

Lecture 6: Cohomology of groups

Thu 27 Oct

5 Cohomology of finite groups

Let G be a finite group.

Definition 17

A G-module A is an abelian group on which G acts

- 1. $1_G \cdot a = a$
- 2. $\sigma(a+b) = \sigma a + \sigma b$
- 3. $(\sigma \zeta)a = \sigma(\zeta a)$

Example

- 1. $\mathbb{Z}[G]$
- 2. If G = Gal(L/K), then G acts on L^{\times} and on L.

The group ring has additional structure, there is a map.

$$\epsilon: \mathbb{Z}[G] \to \mathbb{Z}$$

sending $\sum_{\sigma \in G} n_{\sigma} \sigma \to \sum_{\sigma \in G} n_{\sigma}$ called augmentation.

We call $I_G = \ker \epsilon$ the augmentation ideal.

There is the norm element $N_G = \sum_{\sigma \in G} \sigma$.

This gives rise to a map $\mu : \mathbb{Z} \to \mathbb{Z}[G]$ sending $n \mapsto n \times N_G$.

As any element acts trivially oon the norm, the image of μ is an ideal and we can form $J_G = \mathbb{Z}[G]/\mathbb{Z}N_G$.

We get two short exact sequences

$$0 \to I_G \to \mathbb{Z}[G] \xrightarrow{\epsilon} \mathbb{Z} \to 0$$

and

$$0 \to \mathbb{Z} \xrightarrow{\mu} \mathbb{Z} \to J_G \to 0$$

Lemma 39

- As a group, I_G is the free abelian group generated by $\sigma 1$ as σ runs over $G \setminus 1$.
- As a group, J_G is the free abelian group generated by $\sigma \mod \mathbb{Z}N_G$

as σ runs over $G \setminus 1$

— We have $\mathbb{Z}[G] \simeq I_G \oplus \mathbb{Z} \simeq J_G \oplus \mathbb{Z}$.

Proof

$$x = \sum_{\sigma \in G} n_{\sigma} \sigma = \sum_{1 \neq \sigma \in G} n_{\sigma} (\sigma - 1) + (\sum_{\sigma \in G} n_{\sigma}) 1_{G} = \sum_{1 \neq \sigma \in G} (n_{\sigma} - n_{1}) \sigma + n_{1} N_{G}$$

Lemma 40

 $I_G = Ann(\mathbb{Z}N_G)$ and $\mathbb{Z}N_G = Ann(I_G)$

Proof

 $x = \sum_{\sigma \in G} n_{\sigma} \sigma \in \mathbb{Z}[G]$, if x is in the annihilator,

$$xN_G = \sum_{\sigma} n_{\sigma} \sigma N_G = \sum_{\sigma} n_{\sigma} N_G \implies (\sum_{\sigma \in G} n_{\sigma}) = 0 \qquad \Box$$

Definition 18 (Fixed module)

$$A^G = \{a \in A | \sigma a = a \forall \sigma \in G\}.$$

We also write

$$N_G A = \{ a \in A | N_G a = 0 \}$$

and

$$I_G A = \left\{ \sum n_{\sigma} (\sigma a_{\sigma} - a_{\sigma}) | a_{\sigma} \in A, n_{\sigma} \in \mathbb{Z} \right\}$$

Definition 19

If A, B are two G-modules, then we can turn $hom_{\mathbb{Z}}(A, B) (= hom(A, B))$ into a G-module by letting

$$\sigma f = \sigma \circ f \circ \sigma^{-1}$$

 $In\ particular,$

$$hom_G(A, B) = hom(A, B)^G$$

Definition 20

If A, B are as before, then $A \otimes B$ is a G-module by $\sigma(a \otimes b) = \sigma a \otimes \sigma b$

Remark

In general,

$$(A \otimes B)^G \neq A^G \otimes B^G$$

Remark

Given two G-homomorphisms $A \xrightarrow{h} A', B \xrightarrow{g} B'$, we get

$$(h,g): \hom(A',B) \to \hom(A,B')$$

by pre/post-composition and

$$h \otimes g : A \otimes B \to A' \otimes B'$$

Definition 21 (Resolution)

Let G be a finite group. A complete \underline{free} resolution of the (trivial) G-module $\mathbb Z$ is an exact sequence

$$\stackrel{d_{-2}}{\longleftarrow} X_{-2} \stackrel{d_{-1}}{\longleftarrow} X_{-1} \stackrel{d_0}{\longleftarrow} X_0 \stackrel{d_1}{\longleftarrow} X_1 \dots$$

of free G-modules X_q such that

$$X_0 \xrightarrow{\epsilon} \mathbb{Z} \xrightarrow{\mu} X_{-1}$$

is exact and fits into the above exact sequence.

All the maps are G-homomorphisms.

We define the following standard resolution

$$-X_0 = X_{-1} = \mathbb{Z}[G]$$

—
$$X_q = \bigoplus_{(\sigma_1, \dots, \sigma_q) \in G^q} \mathbb{Z}[G] \cdot (\sigma_1, \dots, \sigma_q) = X_{-q-1}$$

To define our G-homomorphisms d_q , it suffices to define them on the generators.

We define $d_0(1) = N_G$ and $d_1(\sigma) = \sigma - 1$.

For q > 1, define

$$d(q)(\sigma_1, \dots, \sigma_q) = \sigma_1(\sigma_2, \dots, \sigma_q)$$

$$+ \sum_{i=1}^{q-1} (-1)^i (\sigma_1, \dots, \sigma_{i-1}, \sigma_i \sigma_{i+1}, \dots, \sigma_q)$$

$$+ (-1)^q (\sigma_1, \dots, \sigma_{q-1})$$

Furthermore $d_{-1}(1) = \sigma_{\sigma \in G}[\sigma^{-1}(\sigma) - (\sigma)]$ and

$$d_{-q-1}(\sigma_1, \dots, \sigma_q) = \sum_{\sigma \in G} \sigma^{-1}(\sigma, \sigma_1)$$

$$+ \sum_{\sigma \in G} \sum_{i=1}^q (-1)^i (\sigma_1, \dots, \sigma_{i-1}, \sigma_1 \sigma, \sigma^{-1}, \sigma_{i+1}, \dots, \sigma_q)$$

$$+ \sum_{\sigma \in G} (-1)^{q+1} (\sigma_1, \dots, \sigma_q, \sigma)$$

Lemma 43

This is a complete free resolution of \mathbb{Z} .

Proof

Nope.

Now, we are ready to define the (Tate) cohomology groups! Define $A_q = \hom_G(X_q, A)$ (and call an element $x: X_q \to A$ in A_q a q-cochain). We get a complex

$$\dots \xrightarrow{\partial_{-2}} A_{-2} \xrightarrow{\partial_{-1}} A_{-1} \xrightarrow{\partial_0} A_0 \xrightarrow{\partial_1} A_1 \to \dots$$

which is not necessarily exact but $\partial_{q+1} \circ \partial_q = 0$.

Now $Z_q = \ker \partial_{q+1}$ are the q-cocycles, $R_q = \operatorname{Im} \partial_q$ are q-coboundaries.

The qth cohomology group of the G-module A is the quotient $H^q(G, A) = Z_q/R_q$

Lecture 7: group cohomology

Mon 31 Oct

We'll write $A_q = \text{hom}_G(X_q, A)$.

Recall $A_q = A_{-q-1} \simeq \{x : G \times \ldots \times G \to A\}.$

The maps ∂_q are given by

$$-\partial_0 x = N_G x$$
 for $x \in A_{-1} = A$

$$- [\partial_1 x](\sigma) = \sigma x - x$$

$$- \partial_{-1} x = \sum_{\sigma \in G} (\sigma^{-1} x(\sigma) - x(\sigma)) \in A$$

— For
$$q \ge 1$$
,

$$\partial_q x(\sigma_1, \dots, \sigma_q) = \sigma_1 x(\sigma_2, \dots, \sigma_q) + \sum_{i=1}^{q-1} (-1)^i x(\sigma_1, \dots, \sigma_i \sigma_{i+1}, \dots, \sigma_q) + (-1)^q x(\sigma_1, \dots, \sigma_{q-1})$$

— And

$$\partial_{-q-1}x(\sigma_1,\ldots,\sigma_q) = \sum_{\sigma\in G} [\sigma^{-1}x(\sigma,\sigma_1,\ldots,\sigma_q) + \sum_{i=1}^q (-1)^i x(\sigma_1,\ldots,\sigma_{i-1},\sigma_i\sigma) + \ldots]$$

In low degree, we can compute these groups

1.

$$H^{-1}(G,A) = \frac{\ker \partial_0}{\lim \partial_{-1}} = {^{N_G}A}/{I_GA}$$

2.

$$H^0(G, A) = \frac{\ker \partial_1}{\operatorname{Im} \partial_0} = {}^{AG}/N_G A$$

3. Looking at 1-cocycles, we see that they are maps $x: G \to A$ with

$$\partial_2 x = 0 \iff x(\sigma \tau) = \sigma x(\tau) + x(\sigma)$$

If G operates trivialy on A, then these are just $\hom(G, A) = H^1(G, A)$. In particular, if $A = \mathbb{Q}_{\mathbb{Z}} = \hom(G, \mathbb{Q}_{\mathbb{Z}}) = \chi(G)$ is the "character group".

In general, given an exact sequence $0 \to A \to B \to C \to 0$, then $0 \to A^G \to B^G \to C^G \xrightarrow{\delta} H^1(G,A)$ is exact.

The group $H^2(G, A)$ has the following interpretation, extensions \hat{G} of a G module A by G are uniquely determined by a G-module structure on A and a class $x(\sigma, \tau)$ of "factor systems".

These factor systems are uniquely determined by elements in $H^2(G, A)$.

We have interpretations of q = -1, 0, 1, 2, later we will see what q = -2 does (under some mild assumptions).

5.1 The exact sequence of Cohomology

Given A, B two G-modules and $f: A \to B$ some G-hom, then this induces a map $\overline{f_q}: H^q(G,A) \to H^q(G,B)$ sending $[c] \to [f_q c]$. We observe that f_{\bullet} is indeed a chain-map.

Theorem 44

Let $0 \to A \to B \to C \to 0$ be exact.

Then there is a canonical homomorphism $\delta_q: H^q(G,C) \to H^{q+1}(G,A)$

Lecture 8: maps in cohomology

Mon 07 Nov

Theorem 45

Let A be a G-module, $H \subset G$ normal, then

Proof

If $x: G/_H \to A^H$ is a 1-cocyle, assume $\inf(x) = \sigma a - a$ is a coboundary.

But then $(\sigma \tau a - a = \sigma a - a \forall \tau \in H)$ thus $a \in A^H$.

We check exactness at $H^1(G, A)$.

It is clear that $res \circ inf = 0$.

For the other inclusion, if $x: G \to A$ is a 1-cocycle such that $x(\tau) = \tau a - a$ with $a \in A$ for all $\tau \in H$.

Let $p: G \to A$ be defined by sending $\sigma \mapsto \sigma a - a$.

Put x' = x - p and observe $x'(\tau) = 0$ for $\tau \in H, [x] = [x'] \in H^1(G, A)$.

Compute $x'(\sigma\tau) = x'(\sigma) + \sigma x'(\tau) = x'(\sigma)$ and $x'(\tau\sigma) = x'(\tau) + \tau x'(\sigma)$.

So we define $y: G_H \to A$ by $y(\sigma H) = x'(\sigma)$

Theorem 46

Let A be a G-module and $H \subset G$ normal.

Suppose $H^1(H, A) = 0$ for $i = 1, \dots, q - 1$, then

$$0 \to H^q(G_{/H}, A^H) \xrightarrow{inf} H^q(G, A) \xrightarrow{res} H^q(H, A)$$

is exact.

Proof

By induction on q, the case q=1 follows from the above.

Consider

$$0 \to A \to \mathbb{Z}[G] \otimes A \to J_G \otimes A \to 0$$

We have that $0 \to A^H \to B^H \to C^H \to 0$ is exact because $H^1(H, A) = 0$.

We get a map of diagrams induced by connecting homomorphisms from

$$0 \rightarrow H^{q-1}({}^{\raisebox{-.4ex}{$\tiny f$}}\hspace{-.1ex}/_{H}, C^{H}) \rightarrow H^{q-1}(G,C) \rightarrow H^{q-1}(H,C)$$

to

$$0 \to H^q({}^{\!C}\!\!/_{\!H},A^H) \to \qquad \qquad \square$$

Lecture 9: stuff

Thu 10 Nov

Recall $H^q(G,A)$ are torsion groups, so there is a decomposition $\bigoplus_p H^q(G,A)_p$.

Theorem 47

Let A be a G-module and G_p a p-Sylow subgroup of G, then

$$Res_q H^q(G,A)_p \to H^q(G_p,A)$$

is injective and $Cores_q: H^q(G_p, A) \to H^q(G, A)_p$ is surjective.

Proof

 $[G:G_p]$ is coprime to p, so

$$H^q(G,A)_p \xrightarrow{cores \circ Res} H^q(G,A)_p$$

is an automorphism as $coRes \circ Res$ is just multiplication by $[G:G_p]$.

So restriction is injective.

Orders of elements in $H^q(G_p, A)$ are powers of p so $cores(H^q(G_p, A)) \subset H^q(G, A)_p$.

 $Surjectivity\ follows\ as\ above.$

Corollary 48

Let G_p be a p-Sylow group for G.

Suppose that $H^q(G_p, A) = 0$, then $H^q(G, A) = 0$.

Proof

Because $Res: H^q(G, A) \to H^q(G_p, A)$ is injective.

Definition 22

Let G be a finite group, $H \subset G$ a subgroup. Then a G-module A is called $G_{/H}$ -induced if it has a representation

$$A = \bigoplus_{\sigma \in G/_H} \sigma D$$

where $D \subset A$ is an H-module.

Theorem 49 (Shapiro's lemma)

Suppose $A = \bigoplus_{\sigma \in G_{/H}} \sigma D$ is $G_{/H}$ -induced, then

$$H^q(G,A) = H^q(H,D)$$

Proof

Write $G_H = \{ [\sigma_1], \dots, [\sigma_m] \}.$

For q = 0, we consider the map

$$A^G/_{N_GA} \xrightarrow{Res} A^H/_{N_HA} \xrightarrow{\pi} D^H/_{N_HD}$$

where π is induced by the projection onto [e]D.

This is an isomorphism with inverse sending $\nu: d+N_HD \mapsto \sum_{i=1}^m \sigma_i d+N_GA$.

One verifies that $\pi \circ Res \circ \nu = Id = \nu \circ \pi \circ Res$.

For the general case, we want to shift dimensions

$$A^{q} = \begin{cases} J_{G} \otimes \ldots \otimes J_{G} \otimes A & \text{if } q \geq 0 \\ I_{G} \otimes \ldots \otimes I_{G} \otimes A & \text{if } q < 0 \end{cases}$$

 $D_*^q = \begin{cases} J_G \otimes \ldots \otimes J_G \otimes D & \text{if } q \ge 0 \\ I_G \otimes \ldots \otimes I_G \otimes D & \text{if } q < 0 \end{cases}$

and

$$D^{q} = \begin{cases} J_{H} \otimes \ldots \otimes J_{H} \otimes D & \text{if } q \geq 0 \\ I_{H} \otimes \ldots \otimes I_{H} \otimes D & \text{if } q < 0 \end{cases}$$

Note $A^{[]}q = \bigoplus_{i=1}^{m} \sigma_i D_*^q$. Compute that

$$J_G = J_H \oplus K_1 \text{ for } K_1 = \bigoplus_{\tau \in H} \tau \left(\sum_{i=2}^m \mathbb{Z} \sigma_i \right)$$
$$I_G = I_H \oplus K_{-1} \text{ for } K_{-1} = \bigoplus_{\tau \in H} \tau \left(\sum_{i=2}^m \mathbb{Z} (\sigma_i - 1) \right)$$

So $D^q_* = D^q \oplus C^q$ where C^q is H-induced. We get the diagram

$$H^0(G, A^q) \xrightarrow{Res_0} H^0(H, A^q) \xrightarrow{\pi} H^0(H, D_*^q) \xrightarrow{p} H^0(H, D^q)$$

and then something happens...

5.2 The cup-product

Let A, B be G-modules, there is a map

$$A^G \times B^G \to (A \otimes B)^G$$

and $N_G A \times N_G B \to N_G (A \otimes B)$.

We get an induced map

$$H^0(G,A) \times H^0(G,B) \xrightarrow{\cup} H^0(G,A \otimes B)$$

We call this the cup product.

Definition 23

There is a unique family of billinear maps

$$\cup: H^p(G,A) \times H^q(G,B) \to H^{p+q}(G,A \otimes B)$$

called the cup product, satisfying

- 1. For p = q = 0 it is the cup product defined above
- 2. $H^p(G, A'') \times H^q(G, B) \to H^{p+q}(G, A'' \otimes B) \xrightarrow{\delta} H^{p+q+1}(G, A \otimes B)$ and

$$H^p(G, A^H) \times H^q(G, B) \xrightarrow{(\delta, 1)} H^{p+1}(G, A) \times H^q(G, B) \xrightarrow{\cup} H^{p+q+1}(G, A \otimes B)$$

where

$$0 \to A \to A' \to A'' \to 0$$

 $is\ exact\ and$

$$0 \to A \otimes B \to A' \otimes B \to A'' \otimes B \to 0$$

 $is\ too$

3. If
$$0 \to B \to B' \to B'' \to 0$$
 and $0 \to A \otimes B \to A \otimes B' \to A \otimes B'' \to 0$ is exact, then

$$H^p(G,A) \times H^q(G,B'') \xrightarrow{\cup} H^{p+q}(G,A \otimes B'') \xrightarrow{(-1)^p \delta} H^{p+q+1}(G,A \otimes B)$$

and

$$H^p(G,A) \times H^q(G,B'') \xrightarrow{(1,\delta)} H^p(G,A) \times H^{q+1}(G,B) \xrightarrow{\cup} H^{p+q+1}(G,A \otimes B)$$

Proof (Existence of the cup product)

Nope.

Theorem 50

Let $f: A \to A', g: B \to B'$, we have

$$\overline{f}[a] \cup \overline{g}[b] = \overline{f \otimes g}([a] \cup [b])$$

Theorem 51

Let A, B be G-modules, $H \subset G$ a subgroup. If $[a] \in H^p(G, A), [b] \in H^q(G, B), [c] \in H^q(H, B),$ then

$$Res([a] \cup [b]) = (Res[a]) \cup (Res[b])$$

and

$$Cores(Res[a] \cup [c]) = [a] \cup cores[c]$$

Theorem 52

Take $[a] \in H^p(G, A), [b] \in H^q(G, B), [c] \in H^r(G, C).$

Then

$$- ([a] \cup [b]) \cup [c] = [a] \cup ([b] \cup [c])$$

$$- [a] \cup [b] = (-1)^{pq}[b] \cup [a]$$

Lemma 53

 $[a_1] \cup [b_{-1}] \in H^0(G, A \otimes B)$ is given by

$$\sum_{\tau \in G} a_1(\tau) \otimes \tau b_{-1}$$

Lecture 10: stuff

Mon 14 Nov

Proof

Consider

$$0 \to A \xrightarrow{i} A \otimes \mathbb{Z}[G] \to A'' \to 0$$

and

$$0 \to A \otimes B \xrightarrow{i'} A' \otimes B \to A'' \otimes B \to 0$$

two exact sequences.

Note $H^1(G, A') = 0$, so $i(a_1) = \partial a'_0$.

Put $a_0'' = j(a_0')$.

By definition of δ we have $[a_1] = \delta(a_0'')$.

Now we can compute

$$[a_{1}] \cup [b_{-1}] = \delta[a_{0}''] \cup [b_{-1}]$$

$$= \delta([a_{0}''] \cup b_{-1})$$

$$= \delta([a_{0}'' \otimes b_{-1}])$$

$$= [\partial_{0}(a_{0}' \otimes b_{-1})]$$

$$= [N_{G}(a_{0}' \otimes b_{-1})]$$

$$= [\sum_{\tau \in G} a_{1}(\tau) \otimes \tau b_{-1}] + [a_{0}' \otimes N_{G}b_{-1}]$$

Lemma 54

$$[a_1] \cup [\sigma] = [z_{-1}] \in H^{-1}(G, A)$$

We can take $z_{-1} = a_1(\sigma)$

Proof

There is an isomorphism $H^{-1}(G,A) \simeq H^0(G,A \otimes I_G)$.

It suffices to show that $\delta([a_1] \cup [\sigma]) = \delta([a_1(\sigma)])$.

First, note that $\delta[a_1(\sigma)] = [x_0]$ for $x_0 = \sum_{\tau \in G} \tau a_1(\sigma) \otimes \tau$.

Recall that we have $\delta[\sigma] = [\sigma - 1] \in H^{-1}(G, I_G)$, so

$$\delta([a_1] \cup [\sigma]) = ([a_1] \cup \delta[\sigma]) = -[a_1] \cup [\sigma - 1] = [y_0]$$

We will use that a_1 is a crossed homomorphism, we get

$$y_0 = -\sum_{\tau \in G} a_1(\tau) \otimes \tau(\sigma - 1)$$
$$= \sum_{\tau \in G} a_1(\tau) \otimes \tau - \sum_{\tau \in G} a_1(\tau) \otimes \tau \sigma$$

$$= \sum_{\tau \in G} a_1(\tau) \otimes \tau - \sum_{\tau i n G} a_1(\tau \sigma) \otimes \tau \sigma + \sum_{\tau \in G} \tau a_1(\sigma) \otimes \tau \sigma$$
$$= \sum_{\tau \in G} \tau a_1(\sigma) \otimes \tau \sigma$$

where we used that $a_1(\tau) = a_1(\tau\sigma) - \tau a_1(\sigma)$.

Finally, we can look at

$$y_0 - x_0 = \sum_{\tau \in G} (\tau a_1(\sigma) \otimes \tau(\sigma - 1)) = N_G(a_1(\sigma) \otimes (\sigma - 1))$$

hence $[x_1] = [y_0]$

Theorem 55

$$[a_2] \cup [\sigma] = \left[\sum_{\tau \in G} a_2(\tau, \sigma)\right] \in H^0(G, A)$$

As before, $A' = \mathbb{Z}[G] \otimes A$ and $0 \to A \to A' \to A'' \to 0$ exact.

Then
$$a_{2} = \partial a'_{1}, a_{2}(\tau, \sigma) = \tau a'_{1}(\sigma) - a'_{1}(\tau \sigma) + a'_{1}(\tau)$$
.
Then $[a_{2}] \cup [\sigma] = \delta([a''_{1}] \cup [\sigma]) = [\sum_{\tau} \tau a'_{1}(\sigma)] = [\sum_{\tau \in G} a_{2}(\tau, \sigma)] + [\sum_{\tau \in G} a'_{1}(\tau, \sigma) - \sum_{\tau \in G} a'_{1}(\tau)]$

5.3Cohomology of (finite) cyclic groups

Let G be a cyclic group of order n with generator σ .

Now
$$\mathbb{Z}[G] = \bigoplus_{i=0}^{n-1} \mathbb{Z}\sigma^i$$
, $N_G = 1 + \sigma + \ldots + \sigma^{n-1}$ and

$$\sigma^{k} - 1 = (\sigma - 1)(\sigma^{k-1} + \ldots + \sigma + 1)$$

In particular $I_G = \mathbb{Z}[G](\sigma - 1) = (\sigma - 1)\mathbb{Z}[G]$ is a principal ideal.

Theorem 56 (Cohomology of cyclic groups)

In the situation before, $H^q(G, A) \simeq H^{q+2}(G, A)$.

It suffices to prove the result for q = -1 and then it follows by dimension shifting as

$$H^q(G,A) \simeq H^{-1}(G,A^{q+1}) \simeq H^1(G,A^{q+1}) \simeq H^{q+2}(G,A)$$

Let Z_1 be the set of 1-cocycles. These are crossed homomorphisms

$$x(\sigma^k) = \sigma x(\sigma^{k-1}) + x(\sigma) = \dots = \sum_{i=0}^{k-1} \sigma^i x(\sigma)$$

Observe that x is fully determined by its value on σ .

Compute $N_G x(\sigma) = x(\sigma^n) = x(1) = 0$, hence $x(\sigma) \in N_G A$.

We can define $Z_1 \to Z_{-1} = {}_{N_G}A$ sending $x \to x(\sigma)$, this is an isomorphism.

Since it respects coboundaries, it descends to an isomorphism of cohomology groups.

If
$$x \in R_1$$
, $x(\sigma^k) = \sigma^k a - a$ for some $a \in A$, $\iff x(\sigma) \in I_G A = R_{-1}$.

Given an exact sequence $0 \to A \to B \to C \to 0$ of G-modules

$$H^{-1}(G,A) \to H^{-1}(G,B) \to H^{-1}(G,C) \xrightarrow{\delta} H^0(G,A) \to H^0(G,B) \to H_0(G,C) \to H^1(G,A) \simeq H^{-1}(G,A)$$

Definition 24 (Herbrand quotient)

Let A be an abelian group and f, g two endomorphisms of A such that $f \circ g = g \circ f = 0$.

Then the Herbrand quotient is defined by

$$q_{f,g}(A) = \frac{[\ker f : \operatorname{Im} g]}{[\ker g : \operatorname{Im} f]}$$

An important special case of this is $f = D = \sigma - 1, g = N = 1 + \sigma + \ldots + \sigma^{n-1}$ with A a G-module.

Clearly, $D\circ N=N\circ D=0,$ then $q_{D,N}(A)=\frac{\#H^0(G,A)}{\#H^{-1}(G,A)}$

If the context is clear, we write $q_{D,N}(A) = h(A)$.

Theorem 57

Let G be a cyclic group and $0 \to A \to B \to C \to 0$ be an exact sequence of G-modules, then h(B) = h(A)h(C).

Proof

Look at the exact hexagon and call the maps $f_1, f_2, f_3, f_4, f_5, f_6$.

Define $F_i = \# \operatorname{Im} f_i$.

And now, "combinatorics"...

Lecture 11: herbrand quotients

Thu 17 Nov

Theorem 58

If G is cyclic of order n.

If A is finite, then $q_{f,g}(A) = 1$.

If A is a submodule of B with finite index, then h(B) = h(A).

Proof

If $f: A \to A$, then

$$\#A = \# \ker f \# \operatorname{Im} f = \# \ker g \# \operatorname{Im} g$$

for finite A.

Lemma 59

Let f, g be commuting endomorphisms of A, then

$$q_{0,g \circ f} = q_{0,g}(A)q_{0,f}(A)$$

Theorem 60

Let G be a cyclic group of order p and let A be a G-module.

Suppose that $q_{0,p}(A)$ is defined, then $q_{0,p}(A^G)$ and h(A) are defined and

$$h(A)^{p-1} = \frac{q_{0,p}(A^G)^p}{q_{0,p}(A)}$$

Proof

Let σ be a generator of G and $D = \sigma - 1$, then $0 \to A^G \to A \xrightarrow{D} I_G A \to 0$ is exact.

We have $q_{0,p}(A) = q_{0,p}(A^G)q_{0,p}(I_GA)$.

We have to compute $q_{0,p}(I_GA)$.

Recall that $\mathbb{Z}N_G = \mathbb{Z}\sum_{i=0}^{p-1} \sigma^i$ annihilates I_GA .

Thus, we can view I_GA as a $\mathbb{Z}[G]/\mathbb{Z}N_G$ -module.

But we have ring isomorphisms

$$\mathbb{Z}[G]/\mathbb{Z}N_G \simeq \mathbb{Z}[x]/(1+x+\ldots+x^{p-1}) \simeq \mathbb{Z}[\zeta]$$

In $\mathbb{Z}[\zeta]$, we know that $p = (\zeta - 1)^{p-1} \cdot e$ for a unit $e \in \mathbb{Z}[\zeta]^{\times}$ and $p = (\sigma - 1)^{p-1} \cdot \epsilon$ for a unit $\epsilon \in \mathbb{Z}[G]/\mathbb{Z}N_G$.

In particular multiplication by ϵ is an automorphism of I_GA and $q_{0,\epsilon}(I_GA)=1$.

We have

$$q_{0,p}(I_G A) = q_{0,D^{p-1}}(I_G A)q_{0,\epsilon}(I_G A) = q_{0,D}(I_G A)^{p-1}$$

Theorem 61 (Chevalley)

Let G be a cyclic group of order p and let A be a G-module, then

$$h(A) = p^{\frac{p\beta - \alpha}{p-1}}$$

where α is the rank of A and β is the rank of A^G .

Proof

Write $A = A_0 \oplus A_1$ where A_1 is torsion free.

Then $rankA = rankA_1 = \alpha$ and $A^G = A_0^G \oplus A_1^G$, thus $rankA^G = rankA_1^G = \beta$.

We get

$$h(A)^{p-1} = h(A_1)^{p-1} = \frac{q_{0,p}(A_1^G)^p}{q_{0,p}(A_1)} = p^{p\beta - \alpha}$$

5.4 A theorem of Tate

G no longer is necessarily is cyclic.

Theorem 62

Let A be a G-module.

Suppose there is $q_0 \in \mathbb{Z}$ such that

$$H^{q_0}(H,A) = H^{q_0+1}(H,A) = 0$$

for all subgroups $H \subset G$.

Then A has trivial cohomology.

Remark

This is clear for G cyclic.

Proof

We can assume $q_0 = 1$ by dimension shifting.

We need to show that if $H_1(H,A) = H^2(H,A) = 0$ then $H^0(H,A) = H^3(H,A) = 0$.

We prove this by induction on #G.

If #G = 1 there is nothing to prove.

By induction hypothesis, we can assume $H^0(H, A) = H^3(H, A) = 0$ for all proper subgroups $H \subseteq G$.

We can assume that G is a p-group.

There is a normal subgroup $H \subset G$ such that G/H is cyclic of power p.

By induction hypothesis, we have $H^{i}(H, A) = 0$ for i = 0, 1, 2, 3.

Now, we know that

$$0 \to H^q(G/H, A^H) \xrightarrow{inf} H^q(G, A) \xrightarrow{res} H^q(H, A)$$

In our case, $H^q(H, A) = 0$ hence inflation is an isomorphism.

Now,
$$H^1(G,A) = 0 \implies H^1(G/H,A^H) = 0 \implies H^3(G/H,A^H) = 0 \implies H^3(G,A) = 0$$
 because G/H is cyclic.

Similarly,
$$H^2(G,A) = 0 \implies H^2(G/H,A^H) \implies H^0(G/H,A^H) = 0$$
.

We conclude by observing that

$$A^G = N_{G|H}A^H = N_{G|H}N_HA = N_GA$$

Lecture 12: Tate's theorem

Mon 21 Nov

Theorem 64

Let a be a G-module and assume that for each subgroup $H \subset G$, we have

1.
$$H^{-1}(H,A) = 0$$

2.
$$H^0(H,A)$$
 is cyclic of order $\#H$

Let $[a_0]$ be a generator of $H^0(G, A)$, then $[a_0] \cup \cdot$ is an isomorphism for all $q \in \mathbb{Z}$.

Proof

The inclusion $i: A \to A \oplus \mathbb{Z}[G]$ induces an isomorphism $\bar{i}: H^q(H, A) \to H^q(H, B)$ because $0 \to A \to A \oplus \mathbb{Z}[G] \to \mathbb{Z}[G] \to 0$ is exact and the last term has trivial cohomologyy.

Consider $f: \mathbb{Z} \to B$ sending $n \to a_0 \cdot n + N_G N$.

This map induces a homomorphism $\overline{f}: H^q(H,\mathbb{Z}) \to H^q(H,B)$ which fits into the diagram $H^q(G,\mathbb{Z}) \xrightarrow{[a_0] \cup} H^q(G,A) \to H^q(G,B)$ which is equal to the map \overline{f} .

To see that the compositions do agree, notice that for q = 0, we have that $z_q \in \mathbb{Z}$ gets sent to $[a_0 \otimes z_q] = [z_q a_0]$ which gets sent to $bqa_0 + N_G A$.

It now suffices to show that \overline{f} is an isomorphism.

Look at

$$0 \to \mathbb{Z} \xrightarrow{f} B \to C \to 0$$

The corresponding long exact sequence of cohomology groupsthen is

$$H^{-1}(H,B) \to H^{-1}(H,C) \xrightarrow{\delta} H^0(H,Z) \xrightarrow{\overline{f}} H^0(H,B) \to H^0(H,C) \to H^1(H,\mathbb{Z})$$

We know that $H^{-1}(H,B)=H^1(H,\mathbb{Z})=0$ and we want to show that $H^{-1}(H,C)=H^0(H,C)=0$.

We want to show that $H^q(H,C) = 0 \forall q$, as this will show that \overline{f} is an isomorphism.