Sample solution to HW 1

- (1) and (2) are pretty standard, so their solutions are omitted. For (1), the number of equivalence classes in \sim_n is |n|, where |n| denotes the absolute number of n.
- (3) Prove Lemma 1.1 in lecture note 1.
 - [x]_∼ = [y]_∼ if and only if x ~ y.
 ("if") Suppose x ~ y. By definition, for every z ∈ [x]_∼, z ~ x. Thus, by transitivity and reflexivity, for every z ∈ [x]_∼, z ~ y, i.e., z ∈ [y]_∼. Therefore, [x]_∼ ⊆ [y]_∼.
 In a similar manner, for every z ∈ [y]_∼, z ∈ [x]_∼, i.e., [y]_∼ ⊆ [x]_∼. Thus, we get [x]_∼ = [y]_∼.
 ("only if") Suppose [x]_∼ = [y]_∼. By reflexivity, x ~ x, thus, x ∈ [x]_∼. Since [x]_∼ = [y]_∼, x ∈ [y]_∼, and hence, by definition, x ~ y.
 - If $[x]_{\sim} \neq [y]_{\sim}$, then $[x]_{\sim} \cap [y]_{\sim} = \emptyset$. Suppose $[x]_{\sim} \neq [y]_{\sim}$ and $[x]_{\sim} \cap [y]_{\sim} \neq \emptyset$. Let $z \in [x]_{\sim} \cap [y]_{\sim}$. By definition, $z \sim x$ and $z \sim y$. By reflexivity and transitivity, $x \sim y$. By the first bullet above, $[x]_{\sim} = [y]_{\sim}$, which contradicts our assumption that $[x]_{\sim} \neq [y]_{\sim}$.
 - (4) Prove Theorem 1.2 in lecture note 1.
 - By reflexivity of \sim , every element $x \in X$ belongs to $[x]_{\sim}$, thus, x belongs to at least one equivalence class. Moreover, by Lemma 1.1, every element $x \in X$ belongs to at most one equivalence class. Therefore, every element $x \in X$ belongs to exactly one equivalence class.