Presentation of written exercise 1

Anders Hørsted – s082382

02433 Hidden Markov Models

May 31th 2012

Quick remarks

• I forgot to put a hat on the parameter estimates. The estimate of Γ should have been denoted $\widehat{\Gamma}$ etc.

Dataset for the exercise

Count data so Poisson seems natural. But $\bar{x}=5.44$ and $s^2=15.40$, so the data is overdispersed. Also the data is serially correlated so a simple Poisson mixture will not work. HMM to the rescue.

Poisson HMM

2-, 3- and 4-state Poisson HMM was fitted to the data.

	μ	σ^2	ρ_1	ρ_2	ρ_3	ρ_4	ρ_5	ρ_6	ρ_7
Sample	5.442	15.401	0.392	0.250	0.178	0.136	0.038	0.044	0.052
2-states	5.429	13.784	0.329	0.178	0.097	0.052	0.028	0.015	0.008
3-states	5.421	14.721	0.407	0.268	0.178	0.120	0.081	0.055	0.037
4-states	5.418	14.779	0.380	0.241	0.157	0.103	0.067	0.044	0.029

	AIC	BIC
2-states	1245.337	1259.292
3-states	1239.043	1270.444
4-states	1240.528	1296.351

The 3-state model has the best AIC and the 2-state model has the best BIC. Better correspondence between the sample correlations and the correlations for the 3-state model makes the 3-state model the winner.

The 3-state model

$$\Gamma = \begin{pmatrix} 0.864 & 0.117 & 0.019 \\ 0.445 & 0.538 & 0.017 \\ 0.000 & 0.298 & 0.702 \end{pmatrix} \qquad \lambda = \begin{pmatrix} 3.736 & 8.443 & 14.927 \end{pmatrix}$$
$$\delta = \begin{pmatrix} 0.722 & 0.220 & 0.058 \end{pmatrix}$$

and still no hats on the parameter estimates

Direct maximmization vs EM

Comparing direct maximization (DM) vs EM was the main focus of the exercise

- Similar parameter estimates was obtained
- The likelihood for the EM algorithm was a bit higher as expected, since stationarity was assumed for DM but not for EM
- In principle EM solves a harder problem, but δ_0 can be shown to be a unit vector, and m different simpler maximizations can be performed.
- For some initial parameter values the nlm function gave NA values when using the DM method.

Direct maximmization vs EM performance

- In report it is concluded that no significant difference in performance is noticed. This was a qualitative remark.
- In section 4.4 in the course text book the DM method is mentioned to converge faster than EM.
- Let's try to time the performance of the two methods using the system.time function in R.

Comparing performance of Direct Maximization vs EM

Runtime for the two algorithms. Each run is done with 9 different initial values.

Direct maximization

user system elapsed 3.732 0.000 3.740

user system elapsed 28.602 0.136 28.763

user system elapsed 60.595 0.092 60.747

EM algorithm

```
user system elapsed 3.784 0.008 3.795
```

```
user system elapsed
20.326 0.020 20.363
```

```
user system elapsed
26.138 0.076 26.234
```


Conclusion?

- Large difference in performance for 3-state and especially 4-state models.
- EM is seen to perform much better than DM for 4-states.
- Opposite of the remarks in section 4.4 in Zucchini 09

Questions

Time for some questions...