

Ayudantía 8

Profesor: Mircea Petrache Ayudante: Diego Milla

Problema 1

Determine si el vector $v=\begin{bmatrix}1&2\\4&1\end{bmatrix}\in M_2(\mathbb{R})$ es combinación lineal de los vectores que se indican

$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 4 \\ -1 & 0 \end{bmatrix}.$$

Problema 2

Sea $\{u_1, u_2, u_3\}$ un conjunto L.I. en \mathbb{R}^4 . Considere las matrices

$$A_1 = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \quad A_2 = \begin{bmatrix} u_2 & u_1 & u_3 \end{bmatrix} \quad A_3 = \begin{bmatrix} u_2 & u_3 & u_1 \end{bmatrix}$$

Demuestre que $S=\{A_1,A_2,A_3\}$ es un conjunto L.I. en $M_{4\times 3}(\mathbb{R}).$

Problema 3

Dado $C = \{1, 1 + x^2, 1 - x - 2x^2\}$. Determine si es una base del espacio vectorial $P_2(\mathbb{R})$.

Problema 4

Sea
$$A = \begin{bmatrix} 1 & 0 & 1 & b^2 - 3b \\ b^2 - 2 & 3 & 0 & -2 \\ 1 & 2 & b^2 & -4 \\ -1 & 1 & -1 & 1 \end{bmatrix}$$
, determine qué condiciones debe cumplir b para que $\begin{bmatrix} 1 \end{bmatrix}$

$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \in Nul(A), \text{ con estas condiciones determine una base para el espacio columna de } A.$$