算法 & 数学碎碎念

sun123zxy

2023-06-21*

摘要 现场赛公式模板库,亦可作为小而精的总结性学习材料参考. 无需单独成文或暂不完善的内容会放在这里.

目录

1	数论	•	3
	1.1	ExGCD	3
	1.2	CRT	3
		ExCRT	4
	1.3	BSGS	4
	1.4	Miller-Rabin [TODO]	4
	1.5	Pollard-Rho 【TODO】	4
	1.6	原根、Euler 定理等	4
	1.7	Lucas 定理	5
	1.8	Legendre 公式和 Kummer 定理	5
	1.9	扩展 Euler 定理	6
	1.10	Lagrange 定理	6
	1.11	Wilson 定理	6
	1.12	线性预处理	7
		线性求逆元	7
		线性阶乘逆	7
2	积性		7
	2.1	整除分块	7
		上取整整除分块	7
	2.2	杜教筛	7
	2.3	杂式	9

^{*}最后更新于 2024-03-10.

目录 2

3	组合		ę
	3.1	容斥 / 二项式反演	Ć
		形式一	Ć
		形式二	Ć
		应用	1(
	3.2	球盒问题	11
		通用性质	12
	3.3		12
		, <u> </u>	12
		h () h	12
			13
			13
			14
	3.4	74 4 7 M = -	14
	3.5	., = 1,30	14
	3.6		15
			15
			15
			15
			15
		2-21.	15
			15
		4 11 4 11 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2	16
			16
	3.7	, , , , , , , , , , , , , , , , , , , ,	$\frac{16}{17}$
	3.7		$\frac{17}{17}$
		x = 1	$\frac{1}{17}$
	3.8	Polya 计数	
	3.9	2 0.5 a 7 x 2	
	0.0		18
	3.10		19
			19
			19
			19
4	多项		19
	4.1		19
	4.2	V = V	19
	4.0		20
	4.3		20
	4.4		21
		倍增法一(原创)	21

		倍增法二	21
	4.5	多项式开方【TODO】	22
	4.6	多项式 ln	22
	4.7	多项式 exp【TODO】	22
	4.8	多项式快速幂	22
5	集合	幂级数【TODO】	23
6	矩阵	i	23
	6.1	矩阵乘法	23
	6.2	矩阵快速幂	23
	6.3	行列式	23
7	字符	F串 $/$ 自动机	23
8		[TODO]	24
	8.1	最短路	24
	8.2	强连通分量	24
	8.3	网络流	24
9	杂项	į	24
	9.1	表	24
		质数表	24
		典列	24
	9.2	对拍	25
		Windows Batch	25
		Linux Shell	25
	9.3	模板	26
		model.cpp	26
		model_temp.cpp	36
	前斗	半部分主要为公式、推导、证明等速成提纲,大部分实现、模板、表格放在文末.	
_	der s	•	

1 数论

1.1 ExGCD

定理 1.1 (ExGCD) 给定线性方程组 $ax + by = \gcd(a, b)$, 其解可递归地由下式求得

$$ay_1 + b\left(x_1 - \left\lfloor \frac{a}{b} \right\rfloor y_1\right) = \gcd(b, a \bmod b)$$

其中 x_1, y_1 是 $bx + (a \mod b)y = \gcd(b, a \mod b)$ 的一组解.

1.2 CRT

定理 1.2 (CRT) 给定 n 个同余方程

$$x \equiv a_i \pmod{m_i} \quad (i = 1, \dots, n)$$

其中各 m_i 两两互质,则上式等价于

$$x \equiv \sum_{i=1}^{n} a_i M_i \operatorname{inv}_{m_i}(M_i) \pmod{M}$$

其中 $M = \prod_{i=1}^n m_i$, $M_i = \frac{M}{m_i}$.

注记

$$M_i \operatorname{inv}_{m_i}(M_i) \mod m_j = [i = j]$$

ExCRT

对一般的情况,考虑合并两个同余方程.给定2个同余方程

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \end{cases}$$

考虑化为不定方程形式

$$x = k_1 m_1 + a_1$$
$$x = k_2 m_2 + a_2$$

合并得到

$$k_1 m_1 + a_1 = k_2 m_2 + a_2$$

即

$$k_1 m_1 - k_2 m_2 = a_2 - a_1$$

此即关于 k_1, k_2 的不定方程. 若 $gcd(m_1, m_2) \mid a_2 - a_1$,则可应用 ExGCD 求得方程的一组解,带回即得

$$x \equiv k_1 m_1 + a_1 \pmod{\operatorname{lcm}(m_1, m_2)}$$

否则同余方程组无解.

注记 若一组同余方程两两可合并,则全部均可合并. 当判断大规模同余方程组是否有解时可能用到.

1.3 BSGS

求 $a^x \equiv b \pmod{m}$ 的一个特解, 其中 $\gcd(a, m) = 1$.

实质是非常暴力的根号分治. 根据 Euler 定理,只需检测连续 $\varphi(m)$ 个 x 就可判定是否有解. 令 $x=q\lceil \sqrt{m}\rceil-r$,其中 $q,r\in [1,\lceil \sqrt{m}\rceil]$,于是 $x\in [0,\lceil \sqrt{m}\rceil^2)$.代人原方程移项即得 $a^{q\lceil \sqrt{m}\rceil}\equiv ba^r\pmod{m}$,右边使用 map 提前存下即可.时间复杂度 $O(\sqrt{m})$.

- 1.4 Miller-Rabin [TODO]
- 1.5 Pollard-Rho [TODO]
- 1.6 原根、Euler 定理等

见 FFT/NTT 讲稿.

1.7 Lucas 定理

定理 1.3 (Lucas 定理)

$$\binom{n}{m} \equiv \prod_{i} \binom{n_i}{m_i} \equiv \binom{\lfloor n/p \rfloor}{\lfloor m/p \rfloor} \binom{n \bmod p}{n \bmod p} \pmod{p}$$

其中 p 是质数, n_i 和 m_i 是 n 和 m 的 p 进制表示下的各数位.

证明的要点有二: 一是 $\binom{p^i}{m}$ mod $p=[m=0 \land m=p^i]$,即 $(1+x)^{p^i}\equiv 1+x^{p^i}\pmod{p}$; 二是 Vandermonde 卷积按 p 进制拆分. 生成函数食用风味更佳.

参考:

- Lucas's theorem Wikipedia
- 卢卡斯定理 OI Wiki

1.8 Legendre 公式和 Kummer 定理

定理 1.4 (Legendre 公式)

$$\nu_p(n!) = \sum_{i=1}^{+\infty} \left\lfloor \frac{n}{p^i} \right\rfloor = \frac{n - S_p(n)}{p - 1}$$

其中 p 是质数, $S_p(n)$ 是 n 在 p 进制下各数位数字之和. $\nu_p(n!)$ 为 n! 中质因子 p 的含量,即所谓的 p-adic valuation of n!.

左侧显然, 按和式统计贡献即证. 对于右侧,

$$\begin{split} \sum_{i=1}^{+\infty} \left\lfloor \frac{n}{p^i} \right\rfloor &= \sum_{i=1}^{+\infty} \sum_{k=0}^{+\infty} n_{k+i} p^k \\ &= \sum_{j=1}^{+\infty} n_j \sum_{k=0}^{j-1} p^k \\ &= \sum_{j=1}^{+\infty} n_j \frac{p^j - 1}{p - 1} \\ &= \frac{1}{p - 1} \left(\sum_{j=1}^{+\infty} n_j p^j - \sum_{j=1}^{+\infty} n_j \right) \\ &= \frac{1}{p - 1} \left(\sum_{j=0}^{+\infty} n_j p^j - \sum_{j=0}^{+\infty} n_j \right) \\ &= \frac{n - S_p(n)}{p - 1} \end{split}$$

定理 1.5 (Kummer 定理) $\binom{a+b}{a}$ 中质因子 p 的含量等于 p 进制下加法 a+b 发生的进位 次数,也可表示为

$$\nu_p\left(\binom{a+b}{a}\right) = \frac{S_p(a) + S_p(b) - S_p(a+b)}{p-1}$$

大力使用定理 1.4 考察 $\binom{a+b}{a}$ 的含 p 量:

$$\nu_p\left(\binom{a+b}{a}\right) = \nu_p((a+b)!) - \nu_p(a!) - \nu_p(b!)$$
$$= \sum_{k=1}^{\infty} \left(\left| \frac{a+b}{p^k} \right| - \left| \frac{a}{p^k} \right| - \left| \frac{b}{p^k} \right| \right)$$

该公式恰好对 a+b 在 p 进制计算过程中每一位发生的进位进行了求和. 定理的 S_p 形式容易通过定理 1.4 的另一形式得到.

研究该定理 $a+b=p^m$ 的特例. 用下降阶乘幂形式考虑二项式系数中 k 递增的过程,注意 到 $\nu_p(p^m-k)=\nu_p(k)$,可以发现分子新增的 n-k+1 和分母新增的 k 恰好错一位,于是

$$\nu_p\left(\binom{p^m}{k}\right) = m - \nu_p(k), \quad k = 1, 2, \dots, p^m$$

作为 Kummer 定理和上述特殊情况的推论, 我们有

$$\gcd_{k=1}^{n-1} \binom{n}{k} = \begin{cases} p & n = p^m \\ 1 & \text{otherwise} \end{cases}$$

其中 p 是某一质数. 这符合 Kummer 定理的直观描述. 得到 p^m 的加法必然会出现进位,在加法 $p^{m-1}+(p-1)p^{m-1}$ 时达到最小进位次数 1;否则在任一质数进制 p 下,都可以取加法 lowbit $_p(n)+(n-\operatorname{lowbit}_p(n))$ 使得不发生进位.

参考:

- Legendre's formula Wikipedia
- Kummer's theorem Wikipedia

1.9 扩展 Euler 定理

$$a^b \equiv a^{b \bmod \varphi(m) + \varphi(m)} \pmod{m}$$

进入循环所需步骤其实很少,一定小于 $\varphi(m)$. (疑似量级在 $\log m$ 以下,存疑,见 FFT 讲稿)

1.10 Lagrange 定理

定理 1.6 (Lagrange 定理) 设 p 是质数, $A(x) \in \mathbb{Z}_p[x]$. 同余方程 $A(x) \equiv 0 \pmod{p}$ 只有至多 $\deg A(x)$ 个模 p 意义下不同的整数解,除非这多项式的系数在模 p 意义下全为零.

这是域上的多项式理论在模 p 整数域上的应用.

1.11 Wilson 定理

定理 1.7 (Wilson 定理) 对质数 p,

$$(p-1)! \equiv -1 \pmod{p}$$

p=2 容易特判证明. 现在只考虑 p 是奇质数的情况.

(p-1)! 中, 互为逆元的数相互抵消, 仅剩下逆元为自身的数 ± 1 , 立得上述定理.

另一种证法注意到 $x^{p-1}-1=\prod_{k=1}^{p-1}(x-k)$. 这是因为 Fermat 小定理指出 1 至 p-1 的所有数的 p-1 次幂均为 1,而 Lagrange 定理又保证了多项式点值到系数映射的唯一性. 随后代入 x=0 立得结论.

参见 Wilson's theorem - Wikipedia.

2 积性函数 7

1.12 线性预处理

线性求逆元

现欲求出 a 模质数 p 意义下的逆元 a^{-1} . 用 a 对 p 做带余除法,p=qa+r,于是 $-qa\equiv r\pmod p$. 两侧同时乘 r 的逆元 r^{-1} 得 $-qr^{-1}a\equiv 1\pmod p$,故

$$a^{-1} = -qr^{-1} = -\left|\frac{p}{a}\right| \cdot (p \bmod a)^{-1}$$

线性阶乘逆

$$\frac{1}{n!} = (n+1) \cdot \frac{1}{(n+1)!}$$

2 积性函数

2.1 整除分块

```
11 ans=0;
for(ll l=1,r,d;l<=N;l=r+1){
    d=N/l, r=N/d;
    ans+=(S_mu(r)-S_mu(l-1))*d;
}</pre>
```

此 $O(\sqrt{n})$ 较满,极大劣于因子个数的 $O(\sqrt{n})$. 另有变种枚举 $\left|\frac{n}{n}\right|$ 的整除分块如下,复杂度为 $O(n^{1/3})$.

```
11 ans=0;
for(l1 l=1,r,d;l*l<=N;l=r+1){
    d=N/(l*l),r=sqrt(N/d);
    ans+=(S_mu(r)-S_mu(l-1))*d;
}</pre>
```

上取整整除分块

```
11 cdiv(ll a,ll b){ //ceil(a/b)
    return (a<0||a%b==0)?a/b:a/b+1;
}
11 ans=0;
for(ll l,r=N,d;r>=1;r=l-1){
    d=cdiv(N,r), l=cdiv(N,d);
    ans+=(S_mu(r)-S_mu(l-1))*d;
}
```

2.2 杜教筛

设 f 为一数论函数,我们希望快速求得其前缀和 $\hat{f}(n) = \sum_{i=1}^n f(i)$. 考虑数论函数 g 和 h = g * f ,

$$h(n) = \sum_{d|n} g(d) f(\frac{n}{d})$$

2 积性函数 8

两端做前缀和得

$$\hat{h}(n) = \sum_{i=1}^{n} h(i)$$

$$= \sum_{i=1}^{n} \sum_{d|i} g(d) f(\frac{i}{d})$$

$$= \sum_{d=1}^{n} g(d) \sum_{i=1}^{\left\lfloor \frac{n}{d} \right\rfloor} f(i)$$

$$= \sum_{d=1}^{n} g(d) \hat{f}(\left\lfloor \frac{n}{d} \right\rfloor)$$

$$= g(1) \hat{f}(n) + \sum_{d=2}^{n} g(d) \hat{f}(\left\lfloor \frac{n}{d} \right\rfloor)$$

因此

$$\hat{f}(n) = \frac{1}{g(1)} \left(\hat{h}(n) - \sum_{d=2}^{n} g(d) \hat{f}(\left\lfloor \frac{n}{d} \right\rfloor) \right)$$

故若 g、h 的前缀和可 O(1) 算得,根据上式整除分块即可递归地计算出 f 的前缀和. 预处理前 $O(n^{2/3})$ 项并记忆化得到的时间复杂度为 $O(n^{2/3})$. 外层整除分块不会增加时间复杂度.

关于时间复杂度证明可参考 sun123zxy's blog - OI 数论中的上界估计与时间复杂度证明 # 杜教筛.

$$f = \mu, g = I, h = \varepsilon$$

$$f = \varphi, g = I, h = id$$

$$f = id^k \mu, g = id^k, h = \varepsilon$$

$$f = id^k \varphi, g = id^k, h = id^{k+1}$$

注记 杜教筛的这种化法事实上也是 Eratosthenes 筛法的应用. 一般的我们有

$$\sum_{d=1}^{n} f(d)\hat{g}(\left\lfloor \frac{n}{d} \right\rfloor) = \sum_{i=1}^{n} \sum_{d|i} f(d)g(\frac{i}{d}) = \sum_{i=1}^{n} \sum_{d|i} f(\frac{i}{d})g(d) = \sum_{d=1}^{n} g(d)\hat{f}(\left\lfloor \frac{n}{d} \right\rfloor)$$

```
unordered_map<11,11> s_mu;

11 S_mu(ll n){
    if(n<=MXG){
        return mu[n]; // already accumulated
    }else if(s_mu.count(n)){
        return s_mu[n];
    }
    ll ans=0;
    for(ll l=2,r,d;l<=n;l=r+1){
        d=n/1,r=n/d;
        ans+=S_mu(d)*(r-l+1);
    }
    return s_mu[n]=1-ans;
}</pre>
```

2.3 杂式

无平方因子数计数:

$$\sum_{i=1}^{n} \mu^{2}(i) = \sum_{i=1}^{\left\lfloor \sqrt{n} \right\rfloor} \mu(i) \left\lfloor \frac{n}{i^{2}} \right\rfloor$$

约数个数函数的一个性质:

$$d(ab) = \sum_{x|a} \sum_{y|b} [\gcd(x,y) = 1]$$

$$d(abc) = \sum_{x|a} \sum_{y|b} \sum_{z|c} [\gcd(x,y) = 1] [\gcd(y,z) = 1] [\gcd(x,z) = 1]$$

广义约数个数函数性质扩展:

$$\sigma_k(ab) = \sum_{x|a} \sum_{y|b} [\gcd(x,y) = 1] (x\frac{b}{y})^k = \sum_{x|a} \sum_{y|b} [\gcd(x,\frac{b}{y}) = 1] (xy)^k$$

$$\sigma_k(abc) = \sum_{x|a} \sum_{y|b} \sum_{z|c} [\gcd(x,\frac{b}{y}) = 1] [\gcd(y,\frac{c}{z}) = 1] [\gcd(x,\frac{c}{z} = 1)] (xyz)^k$$

3 组合

3.1 容斥 / 二项式反演

形式一

容斥原理的第一种形式给出了"子集和变换"的逆变换.

定理 3.1 (容斥原理,形式一,集合)

$$g(S) = \sum_{T \subset S} f(T) \iff f(S) = \sum_{T \subset S} (-1)^{|S| - |T|} g(T)$$

证明的关键是 $\sum_{k=0}^{n} {n \choose k} (-1)^k = (1-1)^n = [n=0].$

定理 3.2 (容斥原理,形式一,二项式反演)

$$g(n) = \sum_{k=0}^{n} \binom{n}{k} f(k) \iff f(n) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} g(k)$$

若设 F(x) 和 G(x) 分别为 f(n) 和 g(n) 的指数生成函数 (EGF), 则结论可等价地表示为

$$G(x) = e^x F(x) \iff F(x) = e^{-x} G(x)$$

生成函数的形式使我们可在 $O(n \log n)$ 的优秀时间复杂度之内在 f(n) 和 g(n) 间做出变换.

形式二

形式一的补集形式,给出了全集 U 下"超集和变换"的逆变换.

定理 3.3 (容斥原理,形式二,集合)

$$g(S) = \sum_{S \subset T \subset U} f(T) \iff f(S) = \sum_{S \subset T \subset U} (-1)^{|T| - |S|} g(T)$$

定理 3.4 (容斥原理,形式二,二项式反演)

$$g(n) = \sum_{k=0}^{N-n} \binom{N-n}{k} f(n+k) \iff f(n) = \sum_{k=0}^{N-n} (-1)^k \binom{N-n}{k} g(n+k)$$

应用

例 3.1 (不太常见的"容斥原理") 满足全部性质的元素数量可容斥地通过下式计算

$$\operatorname{card}\left(\bigcap_{i \in U} A_i\right) = \sum_{k=0}^{|U|} (-1)^{|U|-k} \sum_{|S|=k} \operatorname{card}\left(A - \bigcup_{i \in U - S} A_i\right)$$

$$= \sum_{k=0}^{|U|} (-1)^{|U|-k} \sum_{|S|=k} \operatorname{card}\left(\bigcup_{i \in S} A_i\right)$$

$$= \sum_{k=0}^{|U|} (-1)^{|U|-k} \sum_{i_1 < \dots < i_k} \operatorname{card}\left(A_{i_1} \cup \dots \cup A_{i_k}\right)$$

其中 A 代表全集, A_i 代表满足第 i 个性质的元素构成的集合, U 是非空有限的性质指标集.

证明 令 f(S) 为恰好只满足 S 中各性质的元素数量,g(S) 为至多只满足 S 中各性质的元素数量,即

$$f(S) := \operatorname{card}\left(\left(A \cap \bigcap_{i \in S} A_i\right) - \bigcup_{i \in U - S} A_i\right)$$
$$g(S) := \operatorname{card}\left(A - \bigcup_{i \in U - S} A_i\right) = \operatorname{card}\left(A - \bigcup_{i \in U} A_i\right) + \operatorname{card}\left(\bigcup_{i \in S} A_i\right)$$

取 S = U 代入定理 3.1 右侧就得到结论第一行的等式. 继续化简

$$\operatorname{card}\left(\bigcap_{i \in U} A_i\right) = \sum_{k=0}^{|U|} (-1)^{|U|-k} \sum_{|S|=k} \operatorname{card}\left(A - \bigcup_{i \in U - S} A_i\right)$$

$$= \sum_{k=0}^{|U|} (-1)^{|U|-k} \sum_{|S|=k} \left(\operatorname{card}\left(A - \bigcup_{i \in U} A_i\right) + \operatorname{card}\left(\bigcup_{i \in S} A_i\right)\right)$$

$$= \operatorname{card}\left(A - \bigcup_{i \in U} A_i\right) \sum_{k=0}^{|U|} (-1)^{|U|-k} \binom{|U|}{k} + \sum_{k=0}^{|U|} (-1)^{|U|-k} \sum_{|S|=k} \operatorname{card}\left(\bigcup_{i \in S} A_i\right)$$

注意到

$$\sum_{k=0}^{|U|} (-1)^{|U|-k} \binom{|U|}{k} = [|U| = 0]$$

而 $U \neq \emptyset$, 故上式左项为 0, 即得结论式第二行.

例 3.2 (有点常见的"容斥原理") 不满足任何性质的元素数量可容斥地通过下式计算

$$\operatorname{card}\left(A - \bigcup_{i \in U} A_i\right) = \sum_{k=0}^{|U|} (-1)^k \sum_{|S|=k} \operatorname{card}\left(A \cap \bigcap_{i \in S} A_i\right)$$

$$= \operatorname{card} A + \sum_{k=1}^{|U|} (-1)^k \sum_{|S|=k} \operatorname{card}\left(\bigcap_{i \in S} A_i\right)$$

$$= \operatorname{card} A + \sum_{k=1}^{|U|} (-1)^k \sum_{i_1 < \dots < i_k} \operatorname{card}\left(A_{i_1} \cap \dots \cap A_{i_k}\right)$$

其中 A 代表全集, A_i 代表满足第 i 个性质的元素构成的集合, U 是非空有限的性质指标集.

证明 令 f(S) 为恰好只满足 S 中各性质的元素数量,g(S) 为至少满足 S 中各性质的元素数量,即

$$\begin{split} f(S) := \operatorname{card}\left(\left(A \cap \bigcap_{i \in S} A_i\right) - \bigcup_{i \in U - S} A_i\right) \\ g(S) := \operatorname{card}\left(A \cap \bigcap_{i \in S} A_i\right) = \begin{cases} \operatorname{card} A & S = \varnothing \\ \operatorname{card}\left(\bigcap_{i \in S} A_i\right) & \text{otherwise} \end{cases} \end{split}$$

取 $S = \emptyset$ 代入定理 3.3 右侧就得到结论.

习题 3.1 (错排) 计算 n 元错排的数量.

解 设 A_i 表示第 i 个位置配对正确的置换构成的集合. 直接应用例 3.2 立得

$$\operatorname{card}\left(A - \bigcup_{i \in U} A_i\right) = \sum_{k=0}^{|U|} (-1)^k \sum_{|S|=k} \operatorname{card}\left(A \cap \bigcap_{i \in S} A_i\right)$$
$$= \sum_{k=0}^{|U|} (-1)^k \binom{n}{k} (n-k)!$$
$$= n! \sum_{k=0}^{|U|} (-1)^k \frac{1}{k!} \sim \frac{n!}{e}$$

这说明随机取一排列,其错排的概率趋近于 1/8.

例 3.3 (常见的"容斥原理") 满足至少 1 个性质的元素数量可容斥地通过下式计算

$$\operatorname{card}\left(\bigcup_{i \in U} A_i\right) = \sum_{k=1}^{|U|} (-1)^{k-1} \sum_{|S|=k} \operatorname{card}\left(\bigcap_{i \in S} A_i\right)$$
$$= \sum_{k=1}^{|U|} (-1)^{k-1} \sum_{i_1 < \dots < i_k} \operatorname{card}\left(A_{i_1} \cap \dots \cap A_{i_k}\right)$$

其中 A_i 代表满足第 i 个性质的元素构成的集合, $i \in U$.

证明 对例 3.2 做简单移项即得.

3.2 球盒问题

组合数学的万恶之源.

以后我们约定:

- 形如 BB_{1,1,0} 的记号表示代号 1,1,0 对应球盒问题的方案数;
- 形如 $EGF_n^{1,1,0}(x)$ 代表代号 1,1,0 对应 n 球球盒问题的指数生成函数;
- 形如 $\mathrm{EGF}_{r}^{1,1,0}(x)$ 代表代号 1,1,0 对应 r 球球盒问题的指数生成函数;
- 普通生成函数 $OGF_{r}^{1,1,0}(x)$ 同理

在不至混淆的情况下,也可省略下标或上标上的代号.

通用性质

命题 3.1 (非空盒数量不限制)

$$BB_{*,*/\Sigma,1}(n) = \sum_{k=0}^{n} BB_{*,*,1}(n,k)$$
$$EGF^{*,*/\Sigma,1}(x) = \sum_{k=0}^{+\infty} EGF_{r=k}^{*,*,1}(x)$$

命题 3.2 (有标号盒空置)

$$BB_{*,1,0}(n,r) = \sum_{k=0}^{r} {r \choose k} BB_{*,1,1}(n,k)$$
$$EGF_{n}^{*,1,0}(x) = e^{x} EGF_{n}^{*,1,1}(x)$$

对有标号盒的二项式反演. 在 1,1,0-球盒问题中,上式体现为第二类 Stirling 数的通项公式;在 0,1,0-球盒问题中,上式体现为 Vandermonde 卷积.

命题 3.3 (无标号盒空置)

$$BB_{*,0,0}(n,r) = \sum_{k=0}^{r} BB_{*,0,1}(n,k)$$
$$OGF_{n}^{*,0,0}(x) = \frac{1}{1-x} OGF_{n}^{*,0,1}(x)$$

对无标号盒,直接求和即可.

3.3 第二类 Stirling 数

第二类 Stirling 数的组合定义即 1,0,1-球盒问题的方案数 $BB_{1,0,1}(n,r) = {n \brace r}$,亦作将 n 个元素划分入 r 个集合的方案数.

递推

由组合意义,考虑在已有 n 个球时加入新球,此时面临将其放入原有的 r 个集合或新开辟一个集合的两种选择,由此得递推式

$${n+1 \brace r} = r {n \brace r} + {n \brace r-1}$$

边界在

$$\binom{n}{0} = [n=0], \quad \binom{n}{n} = 1$$

第二类 Striling 数同行计算: $\mathrm{OGF}_n^{1,0,1}(x)$ 或 $\mathrm{EGF}_n^{1,1,1}(x)$

来考虑用两种方法得到 1,1,1-球盒问题的方案数.

我们的第一种方法注意到,上述问题的方案数恰好是 1,0,1-球盒问题方案数 r! 倍——这是对后者的盒进行标号的结果. 我们得到

$$BB_{1,1,1}(n,r) = r!BB_{1,0,1}(n,r) = r! \begin{Bmatrix} n \\ r \end{Bmatrix}$$

第二种方法考虑用容斥非空盒的方法与 1,1,0-球盒问题 $\mathrm{BB}_{1,1,0}(n,r)=r^n$ 建立联系. 我们有

$$BB_{1,1,0}(n,r) = \sum_{k=0}^{r} {r \choose k} BB_{1,1,1}(n,k)$$

即

$$r^{n} = \sum_{k=0}^{r} \binom{r}{k} k! \binom{n}{k}$$

二项式反演即得

$$r! \begin{Bmatrix} n \\ r \end{Bmatrix} = \sum_{k=0}^{r} (-1)^{r-k} \binom{r}{k} k^n$$

即

$$\binom{n}{r} = \sum_{k=0}^{r} \frac{(-1)^{r-k} k^n}{k! (r-k)!} = \sum_{k=0}^{r} \frac{k^n}{k!} \cdot \frac{(-1)^{r-k}}{(r-k)!}$$

这正是第二类 Stirling 数的通项公式. 注意到其具有卷积的形式,由此可快速计算出同一行的第二类 Stirling 数. 事实上,二项式反演的生成函数形式已向我们道尽一切

$$\mathrm{OGF}_{n}^{1,0,1}(x) = \mathrm{EGF}_{n}^{1,1,1}(x) = e^{-x} \mathrm{EGF}_{n}^{1,1,0}(x) = e^{-x} \sum_{k=0}^{+\infty} k^{n} \frac{x^{k}}{k!}$$

第二类 Striling 数同列计算: $\mathrm{EGF}_r^{1,0,1}(x)$, $\mathrm{EGF}_r^{1,1,0}(x)$ 与 $\mathrm{EGF}^{1,0/\Sigma,1}(x)$

为快速计算同一列的第二类 Stirling 数,考虑用生成函数的思路构造 1,1,0-球盒问题和 1,0,1-球盒问题的方案数. 前者将大小为 n 的有标号集合划分为 r 个有标号等价类,这相当于有序拼接 r 个非空有标号集合;后者则是前者除掉 r! 消序的版本.写成生成函数即

$$EGF_r^{1,1,0}(x) = (e^x - 1)^r$$

$$EGF_r^{1,0,1}(x) = \frac{(e^x - 1)^r}{r!}$$
(1)

Bell 数

Bell 数 B(n) 的组合定义即 $1,0/\Sigma,1$ -球盒问题的方案数 $BB_{1,0/\Sigma,1},$ 亦可描述为 n 元集合上等价关系(划分)的数量.

注意到 1,0,1-球盒问题和 $1,0/\Sigma,1$ -球盒问题的关系

$$BB_{1,0/\Sigma,1}(n) = \sum_{r=0}^{n} BB_{1,0,1}(n,r) = \sum_{r=0}^{+\infty} BB_{1,0,1}(n,r)$$

我们首先有

$$B(n) = \sum_{r=0}^{n} \begin{Bmatrix} n \\ r \end{Bmatrix}$$

其次,根据式1写出此关系的 EGF 形式就有

$$EGF^{1,0/\Sigma,1}(x) = \sum_{r=0}^{+\infty} EGF_r^{1,0,1}(x) = \sum_{r=0}^{+\infty} \frac{(e^x - 1)^r}{r!} = e^{e^x - 1}$$

我们得到 Bell 数的可用于快速计算的 EGF.

注记 有标号集合的无序划分是指数型生成函数的一类重要应用. 例如,有标号连通图计数可视为对有标号一般图的无序划分,故有标号连通图的 EGF G(x) 和有标号一般图的 EGF F(x) 间有着 $e^{G(x)} = F(x)$ 的关系.

Bell 数还有递推形式

$$B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(k)$$

边界 B(0) = 1. 组合的解释是,枚举第 n+1 个元素被放入的集合的大小,再对除该集合之外的元素进行划分. 从指数生成函数的角度来看,设 B(n) 的 EGF 为 F(x),由 EGF 的移位性质和二项式反演的 EGF 形式,上式等价于 $F'(x) = e^x F(x)$,解此微分方程也能得到 Bell 数的生成函数.

第一类 Stirling 数、Stirling 数与阶乘幂【TODO】

更多参考:

- Stirling number Wikipedia
- 斯特林数 OI Wiki

3.4 分拆数【TODO】

关于 k 部分拆数,

By taking conjugates, the number $p_k(n)$ of partitions of n into exactly k parts is equal to the number of partitions of n in which the largest part has size k.

- Partition (number theory) Wikipedia
- 分拆数 OI Wiki
- 组合数学 (2) 分拆数 知乎

3.5 背包计数

通式:

$$\prod_{i=1}^{n} (1 + s_i x^{v_i})^{m_i} = \exp \sum_{i=1}^{n} m_i \ln(1 + s_i x^{v_i}) = \exp \sum_{i=1}^{n} m_i \sum_{k=1}^{+\infty} (-1)^{k-1} \frac{s_i^k}{k} x^{kv_i}$$

其中 v_i 互不相同(相同者体现在 m_i 上). 后者可以埃筛调和级数计算贡献 + 多项式 exp 地在 $O(t \log t)$ (这里的 t 指我们所关心的体积上限)内快速计算.

下面问题的 OGF 都可化归至通式,从而 $O(t \log t)$ 地得到计算.

设有 n 种可区分的物品,体积分别为 v_i . 当每种物品只有一件时,方案数 OGF 为

$$\prod_{i=1}^{n} (1 + x^{v_i})$$

当每种物品有无限件时,方案数 OGF 为

$$\prod_{i=1}^{n} (1 + x^{v_i} + x^{2v_i} + \dots) = \prod_{i=1}^{n} (1 - x^{v_i})^{-1}$$

当每种物品分别有 c_i 件时, 方案数 OGF 为

$$\prod_{i=1}^{n} (1 + x^{v_i} + x^{2v_i} + \dots + x^{c_i v_i}) = \prod_{i=1}^{n} \frac{1 - x^{(c_i + 1)v_i}}{1 - x^{v_i}} = \prod_{i=1}^{n} (1 - x^{(c_i + 1)v_i}) \prod_{i=1}^{n} (1 - x^{v_i})^{-1}$$

ex: 普通的最优化背包也有卷积视角的理解, 见 Knapsack, Subset Sum and the (max,+) Convolution - Codeforces.

3.6 各种图计数

有(无)标号有(无)根树计数【TODO】

有标号 DAG 计数

$$f_n = \sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} 2^{i(n-i)} f_{n-i}$$

思路是对 DAG 的入度为零的点做容斥. 进一步推导可拆出卷积形式,再用类似分治 FFT 的生成函数方法可得封闭形式.

- Wikipedia
- OEIS
- OI-Wiki
- cjyyb 题解

有标号偏序图计数

问得好,但这是个著名的 open problem. 各种类型的偏序图计数参考 Partially ordered set - Wikipedia # Number of partial orders.

- Stack Exchange
- OEIS
- Erné, M., Stege, K. Counting finite posets and topologies. Order 8, 247–265 (1991) (内有研究历史综述)

有标号连通图计数

标准的有标号无序划分. EGF 是有标号一般图计数 EGF 的 ln.

竞赛图

强连通的竞赛图一定存在 Hamilton 回路 (归纳证明); 无环的竞赛图是全序图. 两者结合可推出竞赛图一定存在 Hamilton 路径. 同时,强连通竞赛图中存在所有大小的环路.

有标号划分为 k 个全序图

Lah 数

$$L(n,k) = \frac{n!}{k!} \binom{n-1}{k-1}$$

思路是先 n! 排个大序, 再无标号球入非空有标号桶, 再除 k! 给桶消序.

生成函数的思路是,考虑非空全序计数的 EGF 为 $\frac{1}{1-x} - 1 = \frac{x}{1-x}$, k 次有序拼接再消序即得

$$\sum_{n \ge k} L(n,k) \frac{x^n}{n!} = \frac{1}{k!} \left(\frac{x}{1-x} \right)^k$$

更多信息参考 Wikipedia.

有根树拓扑序计数

对于外向树, $\frac{n!}{\prod_{u \in V} \operatorname{size}(u)}$,其中 V 是所有节点的集合,n 是树大小, $\operatorname{size}(u)$ 是以 u 为根的子树大小.

树形 DP 风格的归纳证明是可以的. 下面的链接中提供了一个有趣的组合理解, 其思路是从全序出发, 逐步按照拓扑序的要求对每个节点下的子树消序.

题目常见要求对每个节点作为根节点求出方案数,换根 DP 即可.

注意到每个合法的外向树拓扑序 reverse 后立刻与内向树拓扑序形成一一对应,故内向树拓扑序计数与外向树相同.

• [Insight] Number of Topological Orderings of a Directed Tree - Codeforces

DAG 拓扑序计数

对一般的 DAG 上的拓扑序计数,其本质上是偏序上线性扩张的计数问题,这被证明是 #P-complete 的问题(总之就是很困难).

- How many topological orderings exist for a graph? Mathematics Stack Exchange
- Topological sorting Wikipedia # Relation to partial orders
- Linear extension Wikipedia

无向图的色多项式 (chromatic polynomial) 和无环定向 (acyclic orientations)

色多项式是对图的 k-colorings 的数量在 $k=0,1,\ldots,n$ 进行 Lagrange 插值后得到的多项式. k>n 的 k-colorings 的数量也可通过在色多项式的 x=k 处求值得到. 这一证明主要依赖所谓的 deletion—contraction 递推关系式.

对一般的图而言,色多项式的大部分系数和求值问题都是"NP"相关的,但在一些特殊的图上有好的形式:

- 完全图 K_n : x^n (下降阶乘幂)
- 链 / 树: P_n : $x(x-1)^{n-1}$
- \mathfrak{F} : $(x-1)^n + (-1)^n(x-1)$

多个连通分量拼接时,色多项式满足乘法性.

关于图的无环定向的方案数,Richard Stanley 在一篇 1973 年的论文中证明其恰为图的色多项式在 -1 处的取值.

- Chromatic Polynomial from Wolfram MathWorld
- Chromatic polynomial Wikipedia
- Orientation (graph theory) Wikipedia
- Stanley, R. P. "Acyclic Orientations of Graphs." Disc. Math. 5, 171-178, 1973.

3.7 矩阵树定理

无向图的情形

对无向图, 度数矩阵 $D = \text{diag}\{\text{deg}(i)\}$, 邻接矩阵 A 定义为

$$A_{i,j} = \begin{cases} 0 & i = j \\ e(i,j) & i \neq j \end{cases}$$

其中 e(i,j) 表示点 i 到点 j 的边的数量 (对无向图, e(i,j) = e(j,i)).

定义 Laplace 矩阵 (Kirchhoff 矩阵) L = D - A.

Laplace 矩阵有性质 $L = BB^T$, 其中关联矩阵 B 按如下方式定义

$$B_{i,j} = \begin{cases} 1 & \text{node } i \text{ is the ID-smaller endpoint of edge } j \\ -1 & \text{node } i \text{ is the ID-larger endpoint of edge } j \\ 0 & \text{otherwise} \end{cases}$$

这里 1 与 -1 的引入完成了一种对边的"手动定向", 其用途将在后文介绍.

定理 3.5 (矩阵树定理, **无向图)** n 点无向图的生成树的个数与该图的 Laplace 矩阵 L 的任意主子式的值相等. 其也与 L 所有 n-1 个非零特征值乘积的 $\frac{1}{n}$ 倍相等.

Laplace 矩阵同行的代数余子式均相等(这性质由行和为 0 得到),因此去掉任意一行一列均可得到正确的无向图生成树计数. 此外,由于 $L = BB^T$ 至少半正定,L 的所有特征值非负.

证明的要点在于对 $L = BB^T$ 的某个主子式(一般选择去掉第一行第一列)应用 Cauchy-Binet 公式,随后说明行列式的组合意义中,环的情况一定相互抵消. 关于特征值的结论可从特征多项式、各 n-1 阶主子式与韦达定理的关系中得到(依此方法能进一步得到有关 k - 生成森林的一些结论).

事实上,去掉第i7行第i列,即是统计以i3为根的根向生成树的数量. 先前定义关联矩阵 B时 "手动定向",是为了使换向过程中环的情况相互抵消,只留下树的唯一一种情况. 当然,因为是无向图,这里树的朝向和根的具体位置并不重要.

有向图的情形

对有向图,我们明确统计的对象为根向(或叶向)生成树的数量. 根向树形图与出度 Laplace 矩阵相关, $L^{out} = D^{out} - A$,其中 D^{out} 是出度矩阵.

为体现有向图的要求,出度 Laplace 矩阵对应的关联矩阵需要一些修改. 令矩阵 B 满足

$$B_{i,j} = \begin{cases} 1 & \text{node } i \text{ is the head of edge } j \\ 0 & \text{otherwise} \end{cases}$$

矩阵 C 满足

$$C_{i,j} = \begin{cases} 1 & \text{node } i \text{ is the head of edge } j \\ -1 & \text{node } i \text{ is the tail of edge } j \\ 0 & \text{otherwise} \end{cases}$$

则出度 Laplace 矩阵满足性质 $L^{out} = BC^T$. 我们构造的矩阵 B 体现了对出边方向的要求,在此基础上矩阵 C 进一步完成了"手动定向"的工作.

定理 3.6 (矩阵树定理,根向树形图) n 点有向图以 i 为根的生成根向树形图的数量与该图出度 Laplace 矩阵 L^{out} 去掉第 i 行第 i 列的 n-1 阶主子式的值相等. 该有向图的所有生成根向树形图的数量也与 L^{out} 的所有 n-1 个非零特征值的乘积相等.

由于 L^{out} 的行和仍为 0,其同行代数余子式仍然相等.

关于叶向树形图, 我们有类似的结论:

定理 3.7 (矩阵树定理,叶向树形图) n 点有向图以 i 为根的生成叶向树形图的数量与该图入度 Laplace 矩阵 L^{in} 去掉第 i 行第 i 列的 n-1 阶主子式的值相等. 该有向图的所有生成根向树形图的数量也与 L^{in} 的所有 n-1 个非零特征值的乘积相等.

由于 L^{in} 的列和(而非行和)为 0,其同列(而非同行)代数余子式均相等. 更多内容,参考

- Laplacian matrix Wikipedia
- 矩阵树定理 OI Wiki
- Kirchhoff's theorem Wikipedia

3.8 Polya 计数

定理 3.8 (Burnside)

$$= \frac{1}{|G|} \sum_{f \in G} |C(f)|$$

其中 G 是等价操作群,C(f) 是操作 f 下的不动点集合.

3.9 杂数选提

Catalan 数

$$C_n = \binom{2n}{n} - \binom{2n}{n+1} = \frac{1}{n+1} \binom{2n}{n} = \prod_{k=2}^n \frac{n+k}{k}$$

Segner's recurrence relation:

$$C_0 = 1;$$
 $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$

OGF:

$$A(z) = 1 + zA^{2}(z) \implies A(z) = \frac{1 - \sqrt{1 - 4z}}{2z}$$

注意下面组合意义间的前后逻辑顺序.

- number of full binary tree with n interior nodes / n + 1 leaves / 2n + 1 nodes
 在数内点意义下可以导出 Catalan 数的生成函数.
- number of ways of associating n binary operators / parenthesizing n+1 factors completely
- number of proper parenthesis sequences with n pairs of parentheses
 【TODO】暂时不知道怎么从上面推过来的. 另一种理解是长度为 n 的出栈序列的数量.

4 多项式 19

- number of ordered trees with n+1 vertices 最外层要补一对括号.
- number of binary trees with *n* vertices by left-child right-sibling encoding of ordered trees. 最后删去只有左儿子的根. 该组合意义可以导出 Catalan 数的生成函数.

Catalan 数的组合意义并不止如此几种. cf. Wikipedia

3.10 代数组合【TODO】

q-analog

有限域上的线性空间

有限群构型计数

4 多项式

此部分详细介绍请移步 FFT/NTT 讲稿.

4.1 通用

4.2 FFT / FNTT / 卷积

- DFT: (本原) 单位根构造 $\omega_n = e^{\frac{2\pi}{n}i}$.
- NTT: $P = 998244353 = 7 \times 17 \times 2^{23} + 1$, PR = 3 是它的一个原根. (本原) 单位根构造 $\omega_n = PR^{\frac{P-1}{n}} \bmod P$.
- $P = 1004535809 = 479 \times 2^{21} + 1$, PR = 3
- $P = 469762049 = 7 \times 2^{26} + 1$, PR = 3

考虑将待变换多项式

$$A(x) = \sum_{k=0}^{2n-1} a_k x^k$$

奇偶分项为两个多项式

$$A(x) = A_0(x^2) + xA_1(x^2)$$

其中

$$A_0(x) = \sum_{k=0}^{n-1} a_{2k} x^k$$
$$A_1(x) = \sum_{k=0}^{n-1} a_{2k+1} x^k$$

代入 $x=\omega_{2n}^k$ $(k=0,\ldots,2n-1)$,用单位根消去 / 折半性质 $(\omega_{2n}^{2k}=\omega_n^k)$

$$A(\omega_{2n}^k) = A_0(\omega_n^k) + \omega_{2n}^k A_1(\omega_n^k)$$

4 多项式 20

用 $\omega_{2n}^{n+k} = -\omega_{2n}^k$

$$A(\omega_{2n}^{k}) = A_0(\omega_n^{k}) + \omega_{2n}^{k} A_1(\omega_n^{k}) A(\omega_{2n}^{n+k}) = A_0(\omega_n^{k}) - \omega_{2n}^{k} A_1(\omega_n^{k})$$
 $(k = 0, \dots, n-1)$

即得 FFT/FNTT 递归算法. 用单位根求和性质

$$\frac{1}{n} \sum_{k=0}^{n-1} \omega^{ik} = [i \mid n]$$

可知 DFT/NTT 变换矩阵 $F = \left(\omega_n^{ij}\right)_{(i,j)\in n\times n}$ 满足 $FF^H = F^HF = nI_n$,故 $F^{-1} = \frac{1}{n}F^H = \left(\frac{1}{n}\omega_n^{-ij}\right)_{(i,j)\in n\times n}$,此即 DFT/NTT 逆变换矩阵.

蝶形运算与迭代算法

为使用迭代算法,需要快速得到递归算法向下深入过程中 $\{a_n\}$ 置换后的最终结果. 观察知该置换是位逆序置换,可按如下方法线性求出.

rev[0]=0; for(11 i=1;i<(1<<n);i++) rev[i]=(rev[i>>1]>>1)+((i&1)<<(n-1));

4.3 多项式方程求解 (Newton 迭代法) 【TODO】

给定一多项式 A(x), 求解满足 $A(B(x)) = 0 \pmod{x^n}$ 的多项式 B(x). 显然 B(x) 只有前 n 项有效. 目前我们尚不清楚解的存在性、唯一性等性质,但注意到

$$A(B(x)) = 0 \pmod{x^{2n}} \implies A(B(x)) = 0 \pmod{x^n}$$

故考虑递推求解. 首先,边界条件 $A(b_0) = 0$ 需要单独求解. 在确定某一 b_0 的基础上,我们开始递推. 考虑已经获得 $A(B(x)) = 0 \pmod{x^n}$ 的一个解 $B(x) = B_0(x)$,下面尝试得到方程 $A(B(x)) = 0 \pmod{x^{2n}}$ 的解.

将待求解方程 $A(B(x)) = 0 \pmod{x^{2n}}$ 左式多项式 A 在 B_0 处 Taylor 展开

$$A(B(x)) = A(B_0(x)) + A'(B_0(x))(B(x) - B_0(x)) + \frac{A''(B_0(x))}{2!}(B(x) - B_0(x))^2 + \dots = 0 \pmod{x^{2n}}$$

假若 $B(x) - B_0(x) = 0 \pmod{x^n}$,那么模 x^{2n} 意义下二次方以上的项可以舍去,上式等价于

$$A(B_0(x)) + A'(B_0(x))(B(x) - B_0(x)) = 0 \pmod{x^{2n}}$$

移项即可解出待求 B(x)

$$B(x) = B_0(x) - \frac{A(B_0(x))}{A'(B_0(x))} \pmod{x^{2n}}$$

这里要求 $A'(B_0(x))$ 需在 x^{2n} 意义下可逆,即

$$[x^{0}]A'(B_{0}(x)) = [x^{0}]A'(b_{0}) = \sum_{k=0}^{\infty} ([x^{k}]A') b_{0}^{k}$$
$$= \sum_{k=0}^{\infty} (k+1)a_{k+1}b_{0}^{k} \neq 0 \pmod{x^{2n}}$$

注意到 $B(x) - B_0(x) = -\frac{A(B_0(x))}{A'(B_0(x))} = 0 \pmod{x^n}$,故满足上述"假若"的解存在且唯一. 然而,若不要求这一"假若"成立,则每步迭代解的唯一性无法得到保证. 考虑到边界条件 b_0 的解亦不一定唯一,故一般的 Newton 迭代法解唯一性的讨论较为复杂. 当然,上述推导至少为我们提供了一种寻找特解的方法.

Newton 迭代法作为通用求解框架,可涵盖几乎所有多项式初等运算. 【TODO】

4.4 多项式求逆

给定一多项式 A(x), 求解满足 $A(x)B(x) = 1 \pmod{x^n}$ 的多项式 B(x).

多项式逆元存在的充分必要条件是其常数项非零(这是因为边界条件 $b_0 = \frac{1}{a_0}$),若存在则在模意义下一定唯一. 这结论可直接由下述求解方法得到. 不失一般性,我们只研究 A(x) 的次数为奇数 2n-1 的情况. 设

$$A(x) = A_0(x) + x^n A_1(x)$$

$$B(x) = B_0(x) + x^n B_1(x)$$

下述两种方法均递归地在已知

$$A(x)B_0(x) = A_0(x)B_0(x) = 1 \pmod{x^n}$$

的基础上求解 A(x) 的逆元. 时间复杂度均为

$$T(n) = T(\frac{n}{2}) + O(n\log n) = O(n\log n)$$

以下简记 A(x) 为 A, 其它多项式同理.

倍增法一 (原创)

$$AB = 1 \pmod{x^{2n}}$$

$$\iff (A_0 + x^n A_1)(B_0 + x^n B_1) = 1 \pmod{x^{2n}}$$

$$\iff x^n (A_1 B_0 + A_0 B_1) + A_0 B_0 = 1 \pmod{x^{2n}}$$

$$\iff A_1 B_0 + A_0 B_1 + \left\lfloor \frac{A_0 B_0}{x^n} \right\rfloor = 0 \pmod{x^n}$$

$$\iff A_0 B_1 = -\left\lfloor \frac{A_0 B_0}{x^n} \right\rfloor - A_1 B_0 \pmod{x^n}$$

$$\iff B_1 = -B_0 \left(\left\lfloor \frac{A_0 B_0}{x^n} \right\rfloor + A_1 B_0 \right) \pmod{x^n}$$

常数偏大,这里就不放代码了.

倍增法二

注意到

$$\begin{cases} AB_0 = 1 \pmod{x^n} \\ AB = 1 \pmod{x^n} \end{cases} \implies A(B - B_0) = 0 \pmod{x^n}$$

由于 A 的常数项非零,故

$$B - B_0 = 0 \pmod{x^n}$$

(这证明了逆元在不同模数下的前缀保持一致)

4 多项式

22

两边平方得

$$B^2 - 2BB_0 + B_0^2 = 0 \pmod{x^{2n}}$$

两侧同乘 A 并移项得

$$B = 2B_0 - AB_0^2 \pmod{x^{2n}}$$

4.5 多项式开方【TODO】

和多项式求逆类似的推导可得递推方程

$$B = \frac{1}{2} \left(\frac{A}{B_0} + B_0 \right) \pmod{x^{2n}}$$

有一些和 Newton 法一样麻烦的边界条件讨论,也会出现复杂的多解情况. $a_0 = 1$ 时 $b_0 = \pm 1$,按 $b_0 = 1$ 的实现如下.

亦可 $\sqrt{A} = \exp\left(\frac{1}{2}\ln A\right)$, 此法可处理多项式任意幂指数运算.

4.6 多项式 ln

给定一多项式 A(x), 求解满足 $B(x) = \ln A(x) \pmod{x^n}$ 的多项式 B(x).

次数为 $+\infty$ 的多项式 \ln 存在的充分必要条件为其常数项非零(这是因为边界条件 $b_0 = \ln a_0$),同样一旦存在则唯一.注意到仅整数 $a_0 = 1$ 时, $\ln a_0$ 可取得整数,故合理的 a_0 只能是 1.另一种解释参见多项式初等函数 - OI Wiki # 多项式对数函数 & 指数函数.

推导是容易的. 方程两侧同时求导得

$$B'(x) = \frac{A'(x)}{A(x)} \pmod{x^{n-1}}$$

两侧再积分得

$$B(x) = \int \frac{A'(x)}{A(x)} dx + C \pmod{x^n}$$

其中 $C = \ln a_0$. 多项式求逆、求导、积分即可. 时间复杂度 $O(n \log n)$.

4.7 多项式 exp【TODO】

Newton 迭代法可推出

$$B = B(1 - \ln B_0 + A) \pmod{x^{2n}}$$

时间复杂度

$$T(n) = T(\frac{n}{2}) + O(n\log n) = O(n\log n)$$

存在的充要条件是 $a_0 = 0$. 唯一性证明暂不明确.

4.8 多项式快速幂

普通的多项式快速幂实现当然是 $O(n \log n \log k)$ 的. 下面介绍基于指对数性质的 $O(n \log n)$ 求法.

对常数项 $a_0 = 1$ 的 n-1 次多项式 A(x),

$$A^k(x) = e^{k \ln A(x)}$$

我们指出,在系数对质数 p 取模的意义下,当我们关心的多项式长度 $n \le p$ 时,有

$$A^p(x) \equiv a_0 \equiv 1 \pmod{p}$$

这是因为

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

故

$$A^{p}(x) = (a_0 + xA_1(x))^{p} \equiv a_0^{p} + x^{p}A_1^{p}(x) \pmod{p}$$

由费马小定理, $a_0^p=a_0$,而 $n\leq p$ 表明 $x^pA_1^p(x)$ 一项可被忽略,故上述结论得到证明. 这些讨论可用于处理幂指数 $k\geq p$ 的情况.

一般的, 当常数项非 1 时, 为满足多项式 ln 的要求, 设多项式 A(x) 的最低次项为 $a_t x^t$, 则

$$A^{k}(x) = (a_{t}x^{t})^{k} \left(\frac{A(x)}{a_{t}x^{t}}\right)^{k}$$

右侧的多项式常数项归一,故可再应用上述方法计算.

关于多项式, 更代数的内容参考 Formal power series - Wikipedia

- 5 集合幂级数【TODO】
- 6 矩阵
- 6.1 矩阵乘法

普通的 $O(n^3)$ 实现.

6.2 矩阵快速幂

普通的 $O(n^3 \log k)$ 实现.

6.3 行列式

普通的实现是使用逆元进行高斯消元,可用于域上的线性空间。若求解逆元的时间复杂度为 $O(\log p)$,则时间复杂度为 $O(n^3 + n^2 \log p)$.

这里给出另一种做法. 该做法在消去时使用辗转相除法,可用于任意 Euclid 整环 (Euclidean domain,有带余除法的无零因子的交换幺环)上的模(环上的线性空间),且时间复杂度不会增加. 一个常见的应用是模 m 整数环 \mathbb{Z}_m 上的行列式求值,其中 m 不是质数.

消去各目标行第 c 列元素时,以第 c 行的 $a_{c,c}$ 为除数与目标行的第 c 列元素辗转相除,最终使 $a_{c,c}$ 变为 0,再做一次行交换将其换至目标行,就完成了一次行消去过程. 注意到当 $a_{c,c}$ 非零时,一次行消去操作结束后 $a_{c,c}$ 单调不增,且过程中 $a_{c,c}$ 不会从非零变为零,故辗转相除带来的 $\log p$ 次额外操作开销被分摊到整轮对第 c 列的消去过程中,因此时间复杂度仍为 $O(n^3 + n^2 \log p)$.

7 字符串 / 自动机

基于 DFA 理论,OI-Wiki 上有对 KMP / AC 自动机,SAM / GSAM 和 PAM 简明扼要的概括. OI-Wiki 的后缀自动机讲解亦值得参考.

8 图论【TODO】 24

8 图论【TODO】

- 8.1 最短路
- 8.2 强连通分量
- 8.3 网络流
- 9 杂项
- 9.1 表

质数表

典列

```
index 0 1 2 3 4 5 6 7 8 9 10

Catalan 1 1 2 5 14 42 132 429 1430 4862 16796

Bell 1 1 2 5 15 52 203 877 4140 21147 115975

partition 1 1 2 3 5 7 11 15 22 30 42

group 0 1 1 1 2 1 2 1 5 5 2 2
```

```
binomial
x 0 1 2 3 4 5
0 | 1
1 | 1 1
2 | 1 2 1
3 | 1 3 3 1
4 | 1 4 6 4 1
5 | 1 5 10 10 5 1
Stirling I
x 0 1 2 3 4 5
0 | 1
1 |
   1
2 | 1 1
3 | 2 3 1
4 | 6 11 6 1
```

```
5 | 24 50 355 10 1
Stirling II
x 0 1 2 3 4 5
0 | 1
1 |
     1
2 | 1 1
3 | 1 3 1
4 | 1 7 6 1
5 | 1 15 25 10 1
Lah
x \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5
0 | 1
1 | 1
2 | 2 1
3 | 6 6 1
4 | 24 36 12 1
5 | 120 240 120 20 1
k-partition
0 1 2 3 4 5
0 | 1
1 | 1
     1 1
2 |
3 | 1 1 1
4 | 1 2 1 1
5 | 1 2 2 1 1
```

9.2 对拍

Windows Batch

```
:loop
    gen.exe>dat.in
    my.exe<dat.in>my.out
    std.exe<dat.in>std.out
    fc my.out std.out
    if not errorlevel 1 goto loop
pause
```

Linux Shell

```
while true; do
    ./gen>dat.in
    ./std<dat.in>std.out
    ./my<dat.in>my.out
    if diff std.out my.out; then
```

```
printf OK
else
    printf DIFF
    exit 0
fi
done
```

9.3 模板

见 model.cpp, model_temp.cpp.

model.cpp

```
#include<bits/stdc++.h>
using namespace std;
typedef unsigned int uint;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
// --- read ---
template<typename T=11>
T rd(){ // for bigint read}
    T ans=0; bool sgn=0; char c=getchar();
    while(c<'0'||c>'9'){if(c=='-') sgn=1; c=getchar();}
    while (c \ge 0' \& c \le 9') \{ans = ans *10 + T\{c - 0'\}; c = getchar(); \}
    if(sgn) ans=-ans;
    return ans;
// --- variable mod ---
const int MOD=998244353,PR=3;
#define pmod_m(x,mod) ((x)<(mod)?(x):(x)-(mod))
#define nmod_m(x,mod) ((x)<0?(x)+(mod):(x))
#define hmod_m(x,mod) nmod_m((x)\%(mod),(mod)) // slow!
#define pmod(x) pmod_m(x,MOD)
#define nmod(x) nmod_m(x,MOD)
#define hmod(x) hmod_m(x,MOD)
template<typename T=int,typename U=11>
T qpow(U x,11 up,T mod){
    x=hmod_m(x,mod); T ans=1;
    for(;up;up>>=1,x=U(x)*x\mbox{\mbox{\mbox{$mod$}}}) if(up\&1) ans=U(ans)*x\mbox{\mbox{\mbox{$mod$}}};
    return ans;
template<typename T=int,typename U=11>
ll inv(T x,T mod){return qpow<T,U>(x,mod-2);} // assume mod prime
// --- Number Theory ---
```

```
11 gcd(11 a,11 b){return b==0?a:gcd(b,a%b);}
11 lcm(ll a,ll b){return a*b/gcd(a,b);}
tuple<11,11,11> exgcd(11 a,11 b){ // capable of +/- integers
    if(b==0) return {1,0,a};
    11 x1,y1,d; tie(x1,y1,d)=exgcd(b,a%b);
    return {y1,x1-(a/b)*y1,d};
11 inv(ll a,ll m){
    11 x,y,d; tie(x,y,d)=exgcd(a,m);
    return d==1?hmod_m(x,m):0;
tuple<11,11,bool> solve_equ(11 a,11 b,11 c){ // return solution with min non-negative x
    11 x,y,d; tie(x,y,d)=exgcd(a,b);
    if(d==0) return {0,0,c==0}; // !!!
    if(c%d!=0) return {0,0,false};
    x*=c/d; y*=c/d; ll dx=b/d, dy=-a/d;
    if(dx<0) dx=-dx,dy=-dy; // ensure dx positive
    ll t=(hmod_m(x,dx)-x)/dx; x+=t*dx; y+=t*dy;
    return {x,y,true};
// CAUTION __int128
pair<11,11> excrt(pair<11,11> p1,pair<11,11> p2){ // merge (a1,m1) (a2,m2)
    11 a1,m1,a2,m2; tie(a1,m1)=p1; tie(a2,m2)=p2;
    ll x,y; bool ok; tie(x,y,ok)=solve_equ(m1,m2,a2-a1);
    if(!ok) return {0,0};
    11 l=lcm(m1,m2); return {hmod_m(x*m1+a1,1),1};
ll bsgs(ll a,ll b,ll m){ // solve a^x=b mod m, gcd(a,m)=1
    unordered_map<11,bool> mp; 11 sqrtM=ceil(sqrt(m));
    ll cur=1;
    for(ll r=1;r<=sqrtM;r++){</pre>
        cur=cur*a%m;
        mp[b*cur%m]=r;
    }
    11 nw=cur;
    for(ll q=1;q<=sqrtM;q++){</pre>
        if(mp[nw]) return q*sqrtM-mp[nw];
        nw=nw*cur%m;
    }
    return -1;
// --- CAUTION uncensored / __int128 / rand() ---
bool is_prime(ll n){ // miller rabin
    if (n \le 2 | |n|^2 = 0) return n = 2;
    11 u=n-1, t=0; while(u%2==0) u/=2, t++;
    11 test_time=10; while(test_time--){
        11 a=rand()\%(n-2)+2,v=qpow<11,\__int128>(a,u,n);
        if(v==1) continue;
        bool ok=0;
```

```
for(11 s=0; s< t; s++){
            if(v==n-1){ok=1;break;}
            v = _{int128}(v) *v%n;
        } if(!ok) return false;
    } return true;
// --- CAUTION uncensored __int128 rand() ---
ll pollard_rho(ll n) {
    auto f=[\&](11 x,11 c)->11{return (__int128(x)*x+c)%n;};
    11 c=rand()\%(n-1)+1;
    11 t=f(0,c);
    11 r=f(f(0,c),c);
    while (t!=r) {
       11 d=gcd(abs(t-r),n);
        if(d>1) return d;
        t=f(t,c);
        r=f(f(r,c),c);
    } return n;
} 11 get_factor(ll n){
    if(n==1||is_prime(n)) return 0;
    if(n==4) return 2;
    11 d=n; while(d==n) d=pollard_rho(n);
    return d;
void _prime_test(){
    srand(time(0));
    11 N=rd();
    cout<<(is_prime(N)?"YES":"NO")<<" "<<get_factor(N);</pre>
// --- constant mod, can be modified to be variable ---
template<typename T, typename U>
class ModInt{public:
    static inline ModInt uroot(T n){return qpow(ModInt(PR),(MOD-1)/n);}
    T dat; ModInt():dat{0}{}
    ModInt(initializer_list<T> lst):dat{*lst.begin()}{} // for mod-free number, use this
    ModInt(U dat):dat{T(hmod(dat))}{} // implicit conversion, slow!
    explicit operator T const(){return dat;}
    friend ostream& operator << (ostream &out,const ModInt& mi){out<<mi.dat; return out;}</pre>
    // negative number version
    // friend ostream& operator << (ostream &out,const ModInt& mi){out<<(mi.dat+mi.dat<MOD?mi.dat:mi.dat-MOD)
    friend ModInt operator + (const ModInt a,const ModInt b){return {pmod(a.dat+b.dat)};}
    friend ModInt operator - (const ModInt a){return {nmod(-a.dat)};}
    friend ModInt operator - (const ModInt a,const ModInt b){return {nmod(a.dat-b.dat)};}
    friend ModInt operator * (const ModInt a,const ModInt b){return {T(U{a.dat}*b.dat%MOD)};}
    friend ModInt operator / (const ModInt a, const ModInt b) {return {a.dat/b.dat};} // Euclidean division
    friend ModInt operator % (const ModInt a,const ModInt b){return {a.dat%b.dat};} // Euclidean division
    friend ModInt qpow(ModInt x,ll up){
```

```
\label{eq:modInt} \mbox{ModInt ans=1; for(;up;up>>=1,x=x*x) if(up&1) ans=ans*x; return ans;}
    } friend inline ModInt inv(ModInt a){return {qpow(a,MOD-2)};} // assume MOD is prime
    void operator += (const ModInt other){*this=*this+other;}
    void operator -= (const ModInt other){*this=*this-other;}
    void operator *= (const ModInt other){*this=*this*other;}
    void operator /= (const ModInt other){*this=*this/other;}
    void operator %= (const ModInt other){*this=*this%other;}
    friend bool operator == (const ModInt a,const ModInt b){return a.dat==b.dat;}
    friend bool operator != (const ModInt a,const ModInt b){return a.dat!=b.dat;}
};
typedef ModInt<int,ll> MI;
// --- linear init ---
vector<MI> fac,facinv,inv_s;
void linear_init(int n){
    fac.resize(n+1); facinv.resize(n+1); inv_s.resize(n+1);
    inv_s[1]=1; for(int i=1;i<=n;i++) inv_s[i]=-(MOD/i)*inv_s[MOD%i];</pre>
    fac[0]=1; for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i;
    facinv[n]=inv(MI(fac[n])); for(int i=n-1;i>=0;i--) facinv[i]=facinv[i+1]*(i+1);
// --- polynomial ---
int log2ceil(int n){int cnt=0; for(int t=1;t<n;t<<=1) cnt++; return cnt;}</pre>
vector<int> rev;
void spawn_rev(int n){ // n=log2ceil(N)
    rev.resize(1<<n); rev[0]=0;
    class Poly : public vector<MI>{ public:
    using vector<MI>::vector;
    inline int len() const {return size();} // to avoid strange glitches caused by size_t
    Poly subpoly(int 1,int r) const { // [1,r), zero padded (support negative number)
        Poly B; for(int i=1;i<r;i++) B.push_back(i>=0&&i<len()?at(i):0); return B;
    friend ostream& operator << (ostream &out,const Poly& A){for(int i=0;i<A.len();i++) out<<A[i]<<' '; return
    friend Poly operator + (Poly A, const Poly& B){
        int n=max(A.len(),B.len()); A.resize(n);
        for(int i=0;i<n;i++) A[i]+=i<B.len()?B[i]:0; return A;</pre>
    friend Poly operator - (Poly A){for(int i=0;i<A.len();i++) A[i]=-A[i]; return A;}</pre>
    friend Poly operator - (const Poly& A,const Poly &B){return A+(-B);}
    friend Poly operator * (Poly A,MI c){for(int i=0;i<A.len();i++) A[i]=A[i]*c; return A;}</pre>
    void DFT(int typ){ // to be called by opt() only (with proper length and rev array)
        int n=len();
        for(int i=0;i<n;i++) if(i<rev[i]) std::swap(at(i),at(rev[i]));</pre>
        for(int hf=1;hf<n;hf<<=1){</pre>
            MI w=MI::uroot(hf<<1); if(typ==-1) w=inv(w);</pre>
            for(int i=0;i<n;i+=hf<<1){</pre>
                MI wk=1;
```

```
for(int k=0;k<hf;k++){</pre>
                 MI x=at(i+k),y=wk*at(i+hf+k);
                 at(i+k)=x+y; at(i+hf+k)=x-y;
                 wk*=w;
             }
        }
    }
    if(typ==-1)\{MI \ inv_n=inv(MI\{n\}); \ for(int \ i=0;i < n;i++) \ at(i)=at(i)*inv_n;\}
friend Poly opt(Poly A,Poly B,int len,function<MI(MI a,MI b)> func){
    int n=log2ceil(len); spawn_rev(n); n=1<<n;</pre>
    A.resize(n); A.DFT(n); B.resize(n); B.DFT(n);
    Poly C(n); for(ll i=0;i<n;i++) C[i]=func(A[i],B[i]);</pre>
    C.DFT(-1); C.resize(len); return C;
friend Poly operator * (const Poly& A,const Poly& B){
    return opt(A,B,A.len()+B.len()-1,[](MI a,MI b){return a*b;});
}
friend Poly inv(const Poly &A){
    int n=A.len(); Poly B={inv(A[0])};
    for(int hf=1;hf<n;hf<<=1){</pre>
        B=opt(A.subpoly(0,hf*2),B,hf*4,[](MI a,MI b){return (2-a*b)*b;});
        B.resize(hf*2);
    } B.resize(n); return B;
}
friend Poly sqrt(const Poly &A){
    int n=A.len(); Poly B=\{1\}; // assume a_0 = 1 and b_0 positive
    for(int hf=1;hf<n;hf<<=1){</pre>
        B=(A.subpoly(0,2*hf)*inv(B.subpoly(0,2*hf))+B)*inv(MI\{2\});
        B.resize(hf*2);
    } B.resize(n); return B;
}
friend Poly drv(Poly A){ // derivative
    for(int i=0;i<A.len();i++) A[i]=(i+1)*A[i+1];</pre>
    A.pop_back(); return A;
friend Poly itg(Poly A,MI c){ // integral
     \texttt{A.push\_back(0)}; \ \texttt{for(int} \ i=\texttt{A.len()-1}; i>=\texttt{1}; i--) \ \texttt{A[i]=A[i-1]}*inv(\texttt{MI\{i\}}); 
    A[0]=c; return A;
}
friend inline Poly ln(const Poly &A){
    \texttt{return itg((drv(A)*inv(A)).subpoly(0,A.len()-1),0/*log(A[0])*/);}\\
}
friend Poly exp(const Poly &A){
    int n=A.len(); Poly B={1/*exp(A[0])*/};
    for(int hf=1;hf<n;hf<<=1){</pre>
        B=B*(Poly{1}-ln(B.subpoly(0,hf*2))+A.subpoly(0,hf*2)); B.resize(hf*2);
    } B.resize(n);
    return B;
```

```
friend inline Poly qpow(const Poly &A,MI up){return exp(ln(A)*up);} // assume a_0 = 1
    static void _test(){
       11 N=rd()+1, M=rd()+1;
        Poly A(N),B(M);
        for(ll i=0; i<N; i++) A[i]=rd();</pre>
        for(ll i=0; i<M; i++) B[i]=rd();</pre>
        Poly C=A*B; cout<<C;</pre>
        /*ll N=rd(); Poly A(N);
        for(ll i=0;i<N;i++) A[i]=rd();</pre>
        A=inv(A); cout<<A;*/
   }
};
namespace divntt{
    Poly A,B,C;
    void divntt(ll l,ll r){ // capable of non-negative [l,r), "i<j" order
        if(l+1==r) return;
        11 \text{ mid}=(1+r)/2;
        Poly T=A.subpoly(1,mid)*B.subpoly(mid,r);
        for(ll k=0; k<T.len()&&l+mid+k<C.len(); k++){ // CAUTION: time complexity
            C[1+mid+k]+=T[k];
        }
        divntt(1,mid); divntt(mid,r);
    }
}
// --- matrix ---
class Matrix : public vector<MI>{public:
    static Matrix I(int n){
        Matrix A(n,n); for(int i=0;i<n;i++) A(i,i)=1;
        return A;
    }
    int row,col;
    template<typename... Args>
    {\tt Matrix(int\ row,int\ col,Args...\ args)\ :\ row\{row\},col\{col\},vector<MI>(row*col,args...)\{\}}
    Matrix(int row,int col,initializer_list<MI> lst) : row{row},col{col},vector<MI>(lst){}
    MI& at(int i,int j){return vector<MI>::at(i*col+j);}
    MI cat(int i,int j)const{return *(cbegin()+i*col+j);}
    MI& operator () (int i,int j){return at(i,j);}
    Matrix submat(int sr,int sc,int tr,int tc){
        Matrix A(tr-sr,tc-sc,{});
        return A;
    }
    friend ostream& operator << (ostream &out,const Matrix& A){</pre>
        for(\textbf{int} \ i=0; i<A.row; i++) \{for(\textbf{int} \ j=0; j<A.col; j++) \ cout<<A.cat(i,j)<<' \ '; cout<<'\n'; \} \ return \ out; \}
    }
```

```
friend Matrix operator * (const Matrix &A,const Matrix &B){
        Matrix C(A.row,B.col); if(A.col!=B.row) return Matrix(0,0);
        for(int i=0;i<A.row;i++)</pre>
            for(int j=0; j<B.col; j++)</pre>
                 for(int k=0;k<A.col;k++)
                     C(i,j)+=A.cat(i,k)*B.cat(k,j);
        return C;
    }
    friend Matrix qpow(Matrix X,ll up){
        Matrix A=Matrix::I(X.row); if(X.row!=X.col) return Matrix(0,0);
        for(;up;up>>=1,X=X*X) if(up&1) A=A*X; return A;
    bool stair(){ // row reduce to upper stair matrix, return swap time % 2. capable of any ring
        bool swp=0;
        for(int c=0,p=0;c<min(row,col);c++){</pre>
            auto swpl=[&](int a,int b){
                 swp^=1; for(int k=c;k<col;k++) std::swap(at(a,k),at(b,k));</pre>
            };
            for(int r=p+1;r<row;r++){</pre>
                 while (at(p,c)!=0) {
                     MI factor=at(r,c)/at(p,c);
                     for(int k=c;k<col;k++) at(r,k)-=at(p,k)*factor;</pre>
                     swpl(p,r);
                 } swpl(p,r);
            } if(at(p,c)!=0) p++;
        } return swp;
    }
    friend MI det(Matrix A){
        int n=A.row; if(A.row!=A.col) return 0;
        bool opt=A.stair();
        MI ans=1; for(int c=0; c<n; c++) ans*=A(c,c);
        return opt?-ans:ans;
    }
    friend int rk(Matrix A){ // rank (confuse with std::rank)
        A.stair();
        for(int r=A.row-1;r>=0;r--)
            for(int c=0;c<A.col;c++)</pre>
                if (A(r,c)!=0) return r+1;
        return 0;
    }
    static void _test(){
        11 N=rd(),M=rd(); Matrix A(N,M,{});
        for(ll \ i=0; i<N; i++) \ for(ll \ j=0; j<M; j++) \ A.push\_back(rd());
        A.stair(); cout<<A;
    }
};
// --- automata ---
```

```
template <int PTN,int STRN,int CHAR,char OFFSET>
class ACAutomation{public: // id: 0 is null, 1 is start
    struct Vtx{
        int fail;
        array<int,CHAR> ch;
    }vtx[PTN];
    int last[STRN];
    int vn,sn;
    ACAutomation(){
        sn=0; vn=0; vtx[++vn]={0};
        for(int c=0; c<CHAR; c++) vtx[0].ch[c]=1;</pre>
    void insert(string s){
        int p=1;
        for(char c : s){ c-=0FFSET;
             if(!vtx[p].ch[c]) vtx[p].ch[c]=++vn;
             p=vtx[p].ch[c];
        } last[++sn]=p;
    }
    void buildFail(){
        queue<int> que; que.push(1);
        while(!que.empty()){
             int p=que.front(),f=vtx[p].fail; que.pop();
             for(int c=0;c<CHAR;c++){ int q=vtx[p].ch[c];</pre>
                 if(q) vtx[q].fail=vtx[f].ch[c],que.push(q);
                 else vtx[p].ch[c]=vtx[f].ch[c];
             }
        }
    }
    // below: subject to problem Lugou P5357
    int cnt[PTN];
    void match(string s){
        for(int i=1;i<=vn;i++) cnt[i]=0;</pre>
        int p=1;
        for(char c : s){ c-=0FFSET;
             p=vtx[p].ch[c];
             cnt[p]++;
        }
    }
    vector<int> edge[PTN];
    void buildTree(){ // fail tree
        for(int u=1;u<=vn;u++) edge[u].clear();</pre>
        for(int u=2;u<=vn;u++) edge[vtx[u].fail].push_back(u);</pre>
        \texttt{function} < \texttt{void}(\texttt{int}) > \ \texttt{dfs} = \texttt{[\&]}(\texttt{int}\ u) \{
             for(int v : edge[u]) dfs(v),cnt[u]+=cnt[v];
        }; dfs(1);
    void answer(){
        for(int i=1;i<=sn;i++) cout<<cnt[last[i]]<<'\n';</pre>
```

```
};
typedef ACAutomation<int(1E6+5),int(1E6+5),26,'a'> ACAM;
template<int PTN> // 2 * length of string suffices
class SuffixAutomation{public: // id: 0 is null, 1 is start
    struct Vtx{
         int fa,len; bool real;
         map<char,int> ch; // feel free to modify to array<int,26>
    }vtx[PTN];
    int n,last;
    SuffixAutomation() \{n=last=0; \ vtx[++n]=\{0,0,true\}; \ last=n;\}
    void insert(char c){
         int p=last,cur=++n; vtx[cur]={0,vtx[last].len+1,true};
         \label{for:chic} \texttt{for}(\texttt{;}p\&\&!\,\texttt{vtx}[p]\,.\,\texttt{ch}[c]\,\texttt{;}p=\texttt{vtx}[p]\,.\,\texttt{fa})\ \ \texttt{vtx}[p]\,.\,\texttt{ch}[c]=\texttt{cur}\,\texttt{;}
         int q=vtx[p].ch[c];
         if(!p) vtx[cur].fa=1;
         else if(vtx[q].len==vtx[p].len+1) vtx[cur].fa=q;
         else{ // vtx[q].len>vtx[p].len+1, partition needed
              vtx[++n]=vtx[q]; vtx[n].real=false; vtx[n].len=vtx[p].len+1;
              for(;p&&vtx[p].ch[c]==q;p=vtx[p].fa) vtx[p].ch[c]=n;
              vtx[cur].fa=vtx[q].fa=n;
         }
         last=cur;
    ll LCSWith(string s){ // as an example of matching
         11 p=1; 11 ans=0, cnt=0;
         for(char c : s){
              if(vtx[p].ch[c]) cnt++;
              else{
                   for(;p&&!vtx[p].ch[c];p=vtx[p].fa);
                  cnt=p?vtx[p].len+1:0;
              } ans=max(ans,cnt);
              p=p?vtx[p].ch[c]:1;
         } return ans;
    }
    // below: subject to problem Luogu P3804
    vector<int> edge[PTN]; int sz[PTN];
    void buildTree(){
         for(int u=1;u<=n;u++) edge[u].clear();</pre>
         \label{eq:condition} \mbox{for($\inf$ $u$=2;$u$<=n;$u$++) $edge[$vtx[$u].$fa].$push_back($u$);}
         function<void(int)> dfs=[&](int u){
              sz[u]=vtx[u].real;
              for(int v : edge[u]) dfs(v),sz[u]+=sz[v];
         }; dfs(1);
    }
    11 answer(){
         ll ans=0;
         for(ll u=1;u\leq n;u++) if(sz[u]>1) ans=max(ans,1LL*sz[u]*vtx[u].len);
```

```
return ans;
    }
};
typedef SuffixAutomation<int(2E6+5)> SAM;
template <int PTN>
class PalindromicAutomation{public: // id: 1 is odd root, 0 is even root (as fallback)
    struct Vtx{
        int fail,len;
        map<char,int> ch; // feel free to modify to array<int,26>
    }vtx[PTN];
    int vn,sn,last; char s[PTN];
    int cnt[PTN]; // subject to problem Luogu P5496
    PalindromicAutomation(){
        vn=1; vtx[0]=\{1,0\}; vtx[1]=\{0,-1\}; // fail[even]=odd, fail[odd]=even
        last=0; sn=0;
    int getValid(int p){ // even is never valid, odd is always valid
        for(;s[sn-vtx[p].len-1]!=s[sn];p=vtx[p].fail);
        return p;
    void insert(char c){
        s[++sn]=c; int p=getValid(last);
        if(!vtx[p].ch[c]){
            int f=getValid(vtx[p].fail); // when p=odd, fail[p]=even, then f is still odd
            vtx[++vn]={vtx[f].ch[c],vtx[p].len+2}; // len[odd]=-1 useful here
                                                    // vtx[f].ch[c]=0 only happens when p=odd
                                                    // for s[sn-vtx[p].len-1..sn] is already a palindrome
            vtx[p].ch[c]=vn;
            cnt[vn]=cnt[vtx[vn].fail]+1; // subject...
        } last=vtx[p].ch[c];
        cout << cnt[last] << " "; // subject...</pre>
    }
};
typedef PalindromicAutomation<int(1E6+5)> PAM;
void entry(){
int main(){
    //freopen("t1.in","r",stdin);
    //freopen("t1.out","w",stdout);
    //ll T=rd(); while(T--){
        entry();
    //}
    return 0;
```

model_temp.cpp

```
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
// --- CAUTION uncensored ---
namespace MaxFlow{
    const int INF=999999999;
    const int PTN=20005,EDN=400005;
    struct Edge{
        int u,v,w;int nxt;
    }edge[EDN];
    int graN,graM,last[PTN];
    void GraphInit(){graM=0;for(int i=0;i<PTN;i++) last[i]=0;}</pre>
    void AddBscEdge(int u,int v,int w){
        edge[++graM]=(Edge){u,v,w,last[u]};
        last[u]=graM;
    }
    void AddNetEdge(int u,int v,int w){
        AddBscEdge(u,v,w); AddBscEdge(v,u,0);
    }
    int Un(int x)\{if(x\%2==0) return x-1; else return x+1;\}
    int ST,ED;int dis[PTN],gap[PTN],cur[PTN];
    bool bomb;
    int Send(int u,int ret){
        if(u==ED) return ret;
        int gone=0;
        for(int& i=cur[u];i!=0;i=edge[i].nxt){
            int v=edge[i].v,w=edge[i].w;
            if(w==0||dis[u]-1!=dis[v]) continue;
            int tmp=Send(v,min(ret,w));
            edge[i].w-=tmp;
            edge[Un(i)].w+=tmp;
            ret-=tmp;gone+=tmp;
            if(ret==0||bomb) return gone;
        if(--gap[dis[u]]==0) bomb=1;
        gap[++dis[u]]++;
        return gone;
    }
    int ISAP(int st,int ed){
        ST=st;ED=ed;
        for(int i=1;i<=graN;i++) dis[i]=0,gap[i]=0;</pre>
        gap[0]=graN;
        bomb=0;int mxFlow=0;
        while(!bomb){
            for(int i=1;i<=graN;i++) cur[i]=last[i];</pre>
            mxFlow+=Send(ST,INF);
```

```
return mxFlow;
    }
namespace CostFlow{
    const int INF=999999999;
    const int PTN=10005,EDN=200005;
    struct Edge{
        int u,v,w,c;int nxt;
    }edge[EDN];
    int graN,graM,last[PTN];
    void GraphInit(){graM=0;for(int i=0;i<PTN;i++) last[i]=0;}</pre>
    void AddBscEdge(int u,int v,int w,int c){
         \texttt{edge[++graM]=(Edge)}\{\texttt{u},\texttt{v},\texttt{w},\texttt{c},\texttt{last[u]}\};
         last[u]=graM;
    }
    void AddNetEdge(int u,int v,int w,int c){
         AddBscEdge(u,v,w,c); AddBscEdge(v,u,\textcolor{red}{0},-c);\\
    }
    int Un(int x)\{if(x\%2==0) return x-1; else return x+1;\}
    int mxFlow,miCost,ST,ED;
    int dis[PTN],isQ[PTN],pre[PTN];
    int Q[10*PTN],hd,tl;
    bool SPFA(){
        for(int i=1;i<=graN;i++) dis[i]=INF,isQ[i]=0;</pre>
         hd=1;tl=0;
         dis[ST]=0; isQ[ST]=1;Q[++t1]=ST;
         while(hd<=tl){</pre>
             int u=Q[hd++];isQ[u]=0;
             for(int i=last[u];i!=0;i=edge[i].nxt){
                 int v=edge[i].v,w=edge[i].w,c=edge[i].c;
                 if(w==0) continue;
                 if(dis[v]>dis[u]+c){
                      dis[v]=dis[u]+c;pre[v]=i;
                      if(!isQ[v]){
                          isQ[v]=1;
                           Q[++t1]=v;
                 }
             }
         }
         if(dis[ED]>=INF) return 0;
         return 1;
    }
    void Adjust(){
         int dlt=INF;
         for(int v=ED;v!=ST;v=edge[pre[v]].u)
             dlt=min(dlt,edge[pre[v]].w);
```

```
for(int v=ED;v!=ST;v=edge[pre[v]].u){
            edge[pre[v]].w-=dlt;
            edge[Un(pre[v])].w+=dlt;
        mxFlow+=dlt;miCost+=dlt*dis[ED];
    }
    void EK(int st,int ed){
        ST=st,ED=ed;
        mxFlow=miCost=0;
        while(SPFA()) Adjust();
    }
namespace Tarjan{
    const 11 PTN=1E6+5,EDN=2E6+5;
    11 N;
    struct Edge{ll u,v;bool w;ll nxt;};
    Edge edge[EDN];
    11 graM,last[PTN];
    void GraphInit(){graM=0;for(ll i=0;i<PTN;i++) last[i]=0;}</pre>
    void AddBscEdge(ll u,ll v,bool w){
        edge[++graM]=(Edge){u,v,w,last[u]};
        last[u]=graM;
    }
    ll bel[PTN],cN,rps[PTN]; //belong, number of components, representative vertax of the component
    11 dfn[PTN],low[PTN],dN;
    11 stk[PTN],tp;bool isI[PTN];
    void Tarjan(ll u){
        dfn[u]=low[u]=++dN;
        stk[++tp]=u; isI[u]=1;
        for(11 i=last[u];i!=0;i=edge[i].nxt){
            11 v=edge[i].v;
            if(isI[v]){
                low[u]=min(low[u],dfn[v]);
            }else if(!dfn[v]){
                Tarjan(v);
                low[u]=min(low[u],low[v]);
            }
        }
        if(dfn[u]==low[u]){
            rps[++cN]=u;ll t;
            do{
                t=stk[tp--];
                isI[t]=0;bel[t]=cN;
            {\tt } {\tt while(t!=u)} \; ;
        }
    }
```