МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

Факультет прикладной математики, информатики и механники Кафедра программного обеспечения и администрирования информационных систем

Анализ существующих подходов к тестированию JVM приложений

Магистерская диссертация
Направление 02.03.03. Математическое обеспечение и администрирование информационных систем
Профиль Информационные системы и базы данных

Зав. кафедрой	 д. ф-м. н. проф.	М. А. Артёмов	2021 г.
Обучающийся		А. С. Пахомов	
Руководитель	 д. ф-м. н. проф.	М. А. Артёмов	

Аннотация

Аннотация — краткое содержание работы, отражающее ее особенно- сти. В тексте аннотации могут быть представлены: цель работы, метод исследования и полученные результаты, их область применения и внедрения. Изложение материала в аннотации должно быть кратким и точным. Рекомендуемый объем аннотации 500—1000 печатных знаков.

Содержание

Введени	e		4	
Глава 1.	Анализ существующих подходов к генерации тестового кода.			
1.1.	Введе	ведение в тестирование программного обеспечения		
1.2.	. Лексическая генерация случайных входных данных		5	
	1.2.1.	Fuzzing: Breaking Things with Random Inputs	5	
	1.2.2.	Code Coverage	5	
	1.2.3.	Mutation-Based Fuzzing	6	
	1.2.4.	Greybox Fuzzing	6	
	1.2.5.	Search-Based Fuzzing	6	
	1.2.6.	Mutation Analysis	6	
1.3.	Синта	ксическая генерация случайных входных данных	6	
	1.3.1.	Fuzzing with Grammars	6	
	1.3.2.	Efficient Grammar Fuzzing	6	
	1.3.3.	Grammar Coverage	6	
	1.3.4.	Parsing Inputs	6	
	1.3.5.	Probabilistic Grammar Fuzzing	6	
	1.3.6.	Fuzzing with Generators	6	
	1.3.7.	Greybox Fuzzing with Grammars	6	
	1.3.8.	Reducing Failure-Inducing Inputs	6	
1.4.	Семан	тическая генерация случайных входных данных	7	
	1.4.1.	Mining Input Grammarss	7	
	1.4.2.	Tracking Information Flow	7	
	1.4.3.	Concolic Fuzzing	7	
	1.4.4.	Symbolic Fuzzing	7	
	1.4.5.	Mining Function Specifications	7	
1.5.	Домен	ная генерация случайных входных данных	7	
	1.5.1.	Testing Configurations	7	
	1.5.2.	Fuzzing APIs	7	
	1.5.3.	Carving Unit Tests	7	
	1.5.4.	Testing Web Applications	7	
	1.5.5.	Testing Graphical User Interfaces	7	
Глава 2.	Поста	Постановка задачи		
Глава 3.	Реализация			
3.1.	Средс	тва реализации	9	

3.2. Требования к программному и аппаратному обеспечению	9	
3.3. Реализация	9	
3.4. План тестирования	9	
Заключение	10	
Список литературы		
Приложение А. Листинг кода	12	

Введение

Введение содержит в сжатой форме положения, обоснованию кото- рых посвящена магистерская диссертация: актуальность выбранной темы; степень её разработанности; цель и содержание поставленных задач; объект и предмет исследования; методы исследования; научная новизна (при наличии), практическая значимость. Обоснованию актуальности выбранной темы предшествует краткое описание проблемной ситуации.

Глава 1. Анализ существующих подходов к генерации тестового кода

Первая глава формируется на основе изучения имеющейся отечественной зарубежной научной и специальной литературы по исследуемой теме (с обязательными ссылками на источники!), а также нормативных материалов. В ней содержится описание объекта и предмета исследования посредством различных теоретических концепций, принятых понятий и их классификации, а также степени проработанности проблемы в России и за ее пределами. Автор должен продемонстрировать глубину погружения в проблему, владение знаниями о текущем состоянии ее решения путем анализа максимально возможного количества источников. В редкой ситуации полной новизны, тем не менее, необходимо проанализировать состояние выбранной предметной области с последующими выводами об актуальности заявленных исследований. В первой главе могут рассматриваться существующие подходы к решению задач исследования, проводиться их сравнительный анализ с ис- пользованием системы критериев. Результаты анализа могут быть пред- ставлены в виде таблиц, графиков, диаграмм, схем для того, чтобы сделать выводы о сильных и слабых сторонах имеющихся решений и обосновать собственные предложения и подходы. Кроме того, может быть предложен собственный понятийный аппарат (при необходимости). Первая глава, по сути, служит теоретическим обоснованием исследований, проведенных автором. Последующие главы магистерской диссертации строятся ПО схеме: математическое, алгоритмическое, программное обеспечение.

1.1. Введение в тестирование программного обеспечения **TBD**

1.2. Лексическая генерация случайных входных данных

1.2.1. Fuzzing: Breaking Things with Random Inputs

TBD

1.2.2. Code Coverage

TBD

1.2.3. Mutation-Based Fuzzing
TBD
1.2.4. Greybox Fuzzing
TBD
1.2.5. Search-Based Fuzzing
TBD
1.2.6. Mutation Analysis
TBD
1.3. Синтаксическая генерация случайных входных данных
1.3.1. Fuzzing with Grammars
TBD
1.3.2. Efficient Grammar Fuzzing
TBD
1.3.3. Grammar Coverage
TBD
1.3.4. Parsing Inputs
TBD
1.3.5. Probabilistic Grammar Fuzzing
TBD
1.3.6. Fuzzing with Generators
TBD
1.3.7. Greybox Fuzzing with Grammars
TBD
1.3.8. Reducing Failure-Inducing Inputs
TBD

1.4. Семантическая генерация случайных входных данных
1.4.1. Mining Input Grammarss
TBD
1.4.2. Tracking Information Flow
TBD
1.4.3. Concolic Fuzzing
TBD
1.4.4. Symbolic Fuzzing
TBD
1.4.5. Mining Function Specifications
TBD
1.5. Доменная генерация случайных входных данных
1.5.1. Testing Configurations
TBD
1.5.2. Fuzzing APIs
TBD
1.5.3. Carving Unit Tests
TBD
1.5.4. Testing Web Applications
TBD
1.5.5. Testing Graphical User Interfaces
TBD

Глава 2. Постановка задачи

Во второй главе приводится постановка задачи, ее содержательное и формализованное описание. Например, если работа связана с разработкой информационных си- стем и использованием информационных технологий, содержательной постановке приводятся ссылки на регламентирующие процесс функционирования информационной системы, основные показатели, ко- торые должны быть достигнуты в условиях эксплуатации информационной системы; ограничения на время решения поставленной задачи, сроки выдачи информации, способы организации диалога человека с инфор- мационной системой средствами имеющегося инструментария, описание входной и выходной информации (форма представления сообщений, описа- ние структурных единиц, периодичность выдачи информации или частота поступления), требования к организации сбора и передачи входной инфор- мации, ее контроль и корректировка. В математической постановке (при наличии) выполняется формализация задачи, в результате которой определяется состав переменных, кон- стант, их классификация, виды ограничений на переменные и математиче- ские зависимости между переменными. Устанавливается класс, к которому относится решаемая задача, и приводится сравнительный анализ методов решения для выбора наиболее эффективного метода. Приводится обоснова- ние выбора метода решения. Вместо математической модели для формализации задачи может быть выбран любой иной вид моделей, в том числе функциональные, информа- ционные, событийные, структурные. Могут быть представлены модели «как есть» и «как должно быть». В этом случае также следует предложить спо- собы перехода. В целом, во второй главе определяется общая последовательность решения задачи. Здесь же приводятся результаты теоретических исследова- ний. Описание разработанных алгоритмов, анализ их эффективности мо- жет присутствовать как во второй главе, так и вынесено в отдельную главу (алгоритмическое обеспечение). Все зависит от объема представляемого материала.

Глава 3. Реализация

3.1. Средства реализации

TBD

- Intellij IDEA 2019.1;
- система контроля версий Git;
- TBD

3.2. Требования к программному и аппаратному обеспечению

Требования к аппаратному и программному обеспечению:

- RAM: 1 Гб минимум, 2 Гб рекомендовано;
- свободное место на диске: 300 Мб + не менее 1 Гб для кэша;
- минимальное разрешение экрана 1024×768;
- JDK 8 и выше; TBD
- Intellij IDEA 9 и выше.

3.3. Реализация

TBD

3.4. План тестирования

TBD

Заключение

В заключении логически последовательно излагаются теоретические и практические выводы, результаты и предложения, которые получены в результате исследования. Они должны быть краткими, четкими, дающими полное представление о содержании, значимости, обоснованности и эффек- тивности исследований и разработок. Кроме того, в заключении можно представить практическую значи- мость и результаты реализации работы, подразумевающие разработку ма- тематического, алгоритмического, программного обеспечения для решения определенной задачи или класса задач, наличие внедрения в учебный, ис- следовательский, производственный процесс, регистрацию программных средств, наличие патента, рекомендации к использованию. В заключении приводится список публикаций автора и апробация ра- боты на конференциях различного уровня.

Список литературы

1. Куроуз, Джеймс. Компьютерные сети : Нисходящий подход. / Джеймс Куроуз, Кит Росс — 6-е изд. — Москва : Издательство «Э», 2016. — 127 с.

Приложение А. Листинг кода

TBD