Числовые функции одной действительной переменной

Понятие числовой функции

Пусть X и Y— два произвольных (не обязательно числовых) множества. Если известен закон, по которому каждому элементу множества X поставлен в соответствие некоторый элемент множества Y, то говорят, что задано <u>отображение</u> множества X в множество Y и обозначают это: $f: X \to Y$.

Отображение f называют <u>числовой функцией одной действительной</u> переменной, если $X,Y \subset \mathbb{R}$. Таким образом, если каждому действительному числу $x \in X$ поставлено в соответствие некоторое вполне определённое действительное число y = f(x), $y \in Y$, то говорят, что на множестве X определена числовая функция f. Множество X называют множеством задания функции (область определения), а множество Y — множеством значений функции (область значений).

Способы задания функций

Аналитический способ. Если y = f(x), где f(x) – аналитическое выражение, то говорят, что функция f задана аналитически или формулой. Это <u>явное задание</u> функции.

Если функция задана формулой F(x, f(x)) = 0, например, $x^2 + y^2 = 4$, то говорят, что функция задана <u>неявно</u>.

Пусть на множестве $T \subset \mathbb{R}$ заданы две явные функции $x = \varphi(t)$, $y = \psi(t)$, $t \in T$, где $x \in X$, $y \in Y$, $X, Y \subset \mathbb{R}$ В этом случае отображение $f: X \to Y$ или функция y = f(x) задается с помощью параметра t или параметрически.

Например, параметрические уравнения окружности радиуса a с центром в начале координат имеют вид:

$$\begin{cases} x = a \cos t, \\ y = a \sin t. \end{cases}$$

Здесь t — величина дуги окружности от точки A(a;0) до точки M(x,y) в радианах (рис. 3.1).

<u>Табличный способ.</u> В этом случае функция задается с помощью таблицы, в которую помещаются значения аргумента $x_1, x_2, ..., x_n$ и соответствующие им значения функции $y_1, y_2, ..., y_n$. Этот способ широко применяется на практике в случаях, когда значения функции определяются в результате эксперимента.

<u>Графический способ.</u> Это способ задания функции с помощью геометрического изображения графика функции в некоторой системе координат. Графиком функции называют множество точек M(x,y) плоскости \mathbb{R}^2 , координаты которых связаны зависимостью y = f(x).

Обратная и сложная функции

Пусть функция $f: X \to Y$ такова, что для $\forall x_1, x_2 \in X$ таких, что $x_1 \neq x_2$, следует, что $f(x_1) \neq f(x_2)$. В этом случае всякому числу $y \in Y$ может быть поставлено в соответствие некоторое число $x \in X$ такое, что f(x) = y. Тем самым определена новая функция $f^{-1}: Y \to X$, которая называется обратной для f. Например, $f(x) = e^x$, $f^{-1}(x) = \ln x$.

Графики функций f и f^{-1} , построенные в декартовой системе координат, симметричны относительно биссектрисы первого и третьего координатного углов (рис. 3.2).

Рис. 3.2

Если $f: X \to Y$, а $\varphi: Y \to U$, то функция $F: X \to U$ такая, что $F(x) = \varphi(f(x))$ называется композицией функций φ и f или сложной функцией.

Например, $f(x) = \sqrt{x^2 + 2}$, $\varphi(y) = \sin y$, тогда сложная функция $F(x) = \varphi(f(x))$ имеет вид $F(x) = \sin \sqrt{x^2 + 2}$.

Элементарные функции

Основными элементарными функциями называют следующие:

- 1) степенная функция: $y = x^{\alpha}$, $\alpha \in R$;
- 2) показательная функция: $y = a^x$, a > 0, $a \ne 1$;
- 3) логарифмическая функция: $y = \log_a x$, a > 0, $a \ne 1$;
- 4) тригонометрические функции: $y = \sin x$, $y = \cos x$, $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$;
- 5) обратные тригонометрические функции: $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$.

Элементарной функцией называется функция, которая может быть представлена формулой y = f(x), составленной из основных элементарных функций и постоянных при помощи конечного числа операций сложения, вычитания, умножения, деления, взятия функции от функции.

Например, $y = \sin^4 \log_7 \arctan \left\{ \frac{10}{x} - 14^{1 + \cos^2 x} - \text{элементарная функция, а} \right.$ функция $y = \text{sign } x = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}$ не является элементарной.

Существует следующая классификация элементарных функций:

1) Целая рациональная функция, или многочлен степени n:

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
, где $n \in \mathbb{N} \cup \{0\}$, $a_0, a_1, \ldots, a_n \in \mathbb{R}$.

Многочлен первой степени называют линейной функцией.

2) Дробно-рациональная функция

$$\frac{P_n(x)}{Q_m(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}.$$

Совокупность рациональных и дробно-рациональных функций составляет класс рациональных функций.

- 3) Иррациональные функции, т.е. функции, полученные с помощью арифметических действий и конечного числа суперпозиций над степенными функциями.
- 4) Трансцендентные функции, т.е. функции, не являющиеся алгебраическими.

Предел числовой последовательности

Определения предела числовой последовательности

<u>Числовая последовательность</u> (ЧП) $\{x_n\}$ представляет собой функцию, определенную на множестве натуральных чисел и принимающую значения из некоторого множества вещественных чисел, то есть (ЧП) — это функция натурального аргумента.

Последовательность часто задается формулой общего члена, например, $x_n=2^n+5,\ n=1,\ 2,\ \dots$ или с помощью рекуррентного отношения $x_n=\sqrt{2x_{n-1}+a}\ ,\ n=2,\ 3,\ \dots,$ где $x_1=\sqrt{a}$.

Определение 1. Точка a (конечная или бесконечно удаленная) называется пределом $\overline{\Psi\Pi}$, если, какова бы ни была окрестность точки a, она содержит все члены $\overline{\Psi\Pi}$, начиная с некоторого номера.

Так как окрестность точки определяется заданием некоторого числа $\varepsilon > 0$, то определение предела ЧП можно переформулировать следующим образом.

Определение 2. Точка a (конечная или бесконечно удаленная) называется пределом $\Psi\Pi$ $\{x_n\}$, если для любого $\varepsilon>0$ существует такой номер n_{ε} , что для всех номеров $n>n_{\varepsilon}$ члены $x_n\in U_{\varepsilon}(a)$.

В этом случае пишут $\lim_{n\to\infty} x_n = a$ или $x_n \to a$ при $n\to\infty$.

С помощью логических символов определение предела ЧП можно записать следующим образом:

$$a = \lim_{n \to \infty} x_n \Leftrightarrow \forall \varepsilon > 0 \ \exists n_{\varepsilon} \ \forall n > n_{\varepsilon} : x_n \in U_{\varepsilon}.$$

Если ЧП имеет конечный предел, то она называется <u>сходящейся</u>. В противном случае она называется <u>расходящейся</u>.

Для случая конечного предела определения 2 можно записать в виде:

$$a = \lim_{n \to \infty} x_n \iff \forall \varepsilon > 0 \ \exists n_{\varepsilon} \ \forall n > n_{\varepsilon} : |x_n - a| < \varepsilon.$$

Приме 1. Последовательность $x_n = \frac{(-1)^n}{n^2} \to 0$, так как для $\forall \varepsilon > 0$

$$\exists n_{\mathcal{E}} = \left[\frac{1}{\sqrt{\mathcal{E}}}\right]$$
, что для $\forall n > n_{\mathcal{E}} : \left|\frac{(-1)^n}{n^2}\right| < \mathcal{E}$. Пусть $\mathcal{E} = 0,1$, тогда $n_{\mathcal{E}} = \left[\sqrt{10}\right]$.

Последовательность, пределом которой является 0, называется <u>бесконечно малой</u>. Если пределом ЧП является бесконечность, то она <u>бесконечно большой</u>.

Понятие конечного предела ЧП связано в определённом смысле с встречающейся на практике задачей получения значения некоторой интересующей нас величины с наперед заданной фиксированной точностью $\varepsilon > 0$. Последовательные приближенные вычисления x_n рассматриваемой проведения каких-либо величины МОГУТ получаться В результате экспериментов или вычисления по каким-нибудь рекуррентным формулам. Эта задача будет, очевидно, решена, если найдётся номер n_{ε} , начиная с значения x_n будут отклоняться все OT точного значения рассматриваемой величины в пределах заданной точности.

Свойства сходящихся числовых последовательностей

 1^0 Числовая последовательность имеет только один предел.

 2^{0} Сходящаяся числовая последовательность ограничена, т.е. $\exists M > 0 : |x_{n}| \leq M \ \forall n \in N$.

 3^0 Если $\lim_{n\to\infty} x_n = a \neq 0$ то, начиная с некоторого номера, члены ЧП сохраняют знак числа a.

 4^0 Если $x_n \to a, y_n \to b, n \to \infty$ и a < b, то начиная с некоторого номера $x_n < y_n$.

 5^0 Пусть $x_n \to a, y_n \to b$ при $n \to \infty$ и начиная с некоторого номера $x_n \le y_n$, тогда $a \le b$, т.е. $\lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n$ если $x_n \le y_n$, $\forall n > n_{\mathcal{E}}$.

 6^0 <u>Лемма о сжатой переменной</u>. Если, начиная с некоторого номера $x_n \leq y_n$ и $x_n \to a, y_n \to a$ при $n \to \infty$, то $x_n \to a$ при $n \to \infty$.

$$7^0$$
 Если $x_n \to a$, $y_n \to b$ при $n \to \infty$, то

- 1) $x_n \pm y_n \rightarrow a \pm b$ при $n \rightarrow \infty$;
- 2) $x_n \cdot y_n \to a \cdot b$ при $n \to \infty$;
- 3) $\alpha \cdot x_n \to \alpha \cdot a$ при $n \to \infty$, $\alpha \in R$;

4)
$$\frac{x_n}{y_n} \to \frac{a}{b}$$
 при $n \to \infty, (y_n \neq 0 \forall n, b \neq 0).$

Монотонные последовательности. Критерий сходимостимонотонной последовательности

Последовательность $\{x_n\}$ называется возрастающей (убывающей), если для каждого $n=1,\,2,\,\ldots$ выполняется неравенство $x_n \leq x_{n+1}(x_n \geq x_{n+1})$. Возрастающие и убывающие последовательности называются монотонными.

Имеет место следующая

<u>**Teopema**</u> 1 (Больцано-Вейерштрасса – критерий сходимости монотонной последовательности).

Для того чтобы монотонная последовательность $\{x_n\}$ сходилась, необходимо и достаточно, чтобы она была ограничена, причем, если $\{x_n\}$ — монотонно возрастает (убывает), то $\lim_{n\to\infty} x_n = \sup\{x_n\}$ $\left(\lim_{n\to\infty} x_n = \inf\{x_n\}\right)$.

<u>Необходимость</u>. В силу свойства 2^0 сходящаяся последовательность является ограниченной.

<u>Достаточность</u>. Пусть для определённости $\{x_n\}$ — монотонно возрастающая последовательность и $a = \sup\{x_n\}$. По определению верхней грани имеем:

- 1) для любого номера $n \in N$ справедливо неравенство $x_n \le a$;
- 2) для $\forall \varepsilon > 0 \ \exists n_0$, что $x_{n0} > a \varepsilon$.

Тогда, в силу возрастания последовательности $\{x_n\}$, заключаем, что ля всех номеров $n>n_0$ выполняется неравенство

$$a-\varepsilon < x_{n_0} \le x_{n_0+1} \le ... \le a < a+\varepsilon\,,$$

т.е. начиная с номера n_0 все члены последовательности $\{x_n\}$ удовлетворяют неравенству $|x_n-a|<\varepsilon$. Значит, $a=\sup\{x_n\}=\lim_{x\to\infty}x_n$. Аналогично проводится доказательство и для монотонно убывающей числовой последовательности.

Пример 2. Число е.

Пусть $x_n = \left(1 + \frac{1}{n}\right)^n$, $n = 1, 2, \dots$ Покажем, что эта последовательность возрастающая и ограниченная сверху. Применив формулу бинома Ньютона, получим

$$x_n = \left(1 + \frac{1}{n}\right)^n = 1 + C_n^1 \frac{1}{n} + C_n^2 \frac{1}{n^2} + \dots + C_n^{n-1} \frac{1}{n^{n-1}} + \frac{1}{n^n} =$$

$$= 1 + \frac{n}{1!} \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \dots + \frac{n(n-1)\dots(n-k+1)}{k!} \cdot \frac{1}{n^k} + \dots +$$

$$+\frac{n(n-1)...(n-n+1)}{n!} \cdot \frac{1}{n^n} = 2 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + ... + \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) ... \left(1 - \frac{k-1}{n}\right) + ... + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) ... \left(1 - \frac{n-1}{n}\right).$$

$$(1)$$

Аналогично

$$x_{n+1} = 2 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \dots + \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \dots \left(1 - \frac{k-1}{n+1} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \dots \left(1 - \frac{n-1}{n+1} \right) + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \dots \left(1 - \frac{n}{n+1} \right).$$

$$(2)$$

Сравним соотношения (1) и (2). В формуле (2) каждое слагаемое больше, чем соответствующее слагаемое в (1) и, кроме того, имеется на одно положительное слагаемое больше поэтому $x_n < x_{n+1}$, $\forall n \in \mathbb{N}$.

Из равенства (1) видно, что $x_n > 2$. Оценим $\{x_n\}$ сверху. Имеем из формулы (1):

$$x_n < 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} < 2 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 1 + \left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} + \dots\right) = 1 + \frac{1}{1 - \frac{1}{2}} = 3.$$

В результате получаем $2 < x_n < 3$. Таким образом, $\{x_n\}$ – монотонно возрастает и ограниченна, значит, по теореме Больцано-Вейерштрасса она имеет конечный предел.

Этот предел ЧП
$$\{x_n\}$$
 обозначается буквой $e,\ e=\lim_{n\to\infty}\Bigl(1+\frac{1}{n}\Bigr)^n$, причём $e{\approx}2.71828182459045$

– иррациональное число и, более того, трансцендентное, т.е. не является корнем никакого алгебраического уравнения с целыми коэффициентами.