Independence (Linear and Affine)

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Linear Independence

- Plane P includes origin and three non-zero vectors $\{v, u, w\}$ in P
- If no two of $\{v, u, w\}$ are parallel, then $P=span\{u, v, w\}$
- Any two vectors determines a plane and express the other as a linear combination of those two:

$$w = d_1 u + d_2 v \ (d_1 \& d_2 \ can't \ both \ be \ zero)$$

- $c_1u + c_2v + c_3w = 0$ ______ u, w, v are not all independent.
- Independence is a property of a set of vectors.

Definition

- Geometry:
 - A set of vectors is linear independent if the subspace dimensionality (its span) equals the number of vectors.
 - Example: 1,2,3 vectors spans?

Definition

- Algebra
 - Dependent
 - For at least one $\lambda \neq 0$ $0 = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + ... + \lambda_n \mathbf{v}_n$, $\lambda \in \mathbb{R}$
 - A set of vectors is dependent if at least one vector in the set can be expressed as a linear weighted combination of the other vectors in that set.
 - Independence
 - lacksquare Only when all $\lambda_i = 0$ $\mathbf{0} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + ... + \lambda_n \mathbf{v}_n, \quad \lambda \in \mathbb{R}$
 - No vector in the set is a linear combination of the others (has only the trivial solution)

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

 A set containing only one vector—say, v—is linearly independent if and only if v is not

a.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$
 b. $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

b.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

Characterization of Linearly Dependent sets

Characterization of Linearly Dependent Sets

An indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $\mathbf{v}_1 \neq \mathbf{0}$, then some \mathbf{v}_j (with j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

does not say that every vector

Theorem:

Any set of vectors that contains the zeros vector is guaranteed to be linearly dependent

- The vectors coming from the parametric vector form of the solution of a matrix equation Ax = 0 are linearly independent.
- Example:
 - Vectors related to x_2 and x_3 are linear independent.
 - Columns of A related to to x_2 and x_3 are linear dependent.
 - Span $\{A_1, A_2, A_3\} = Span\{A_1\}$

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{pmatrix}? \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}.$$

If a collection of vectors is linearly dependent, then any superset of it is linearly dependent.

 Any nonempty subset of a linearly independent collection of vectors is linearly independent.

Theorem:

Any set of M > N vectors in $\mathbb{R}^{\mathbb{N}}$ is necessarily linearly dependent.

Any set of $M \leq N$ vectors in \mathbb{R}^{N} could be linearly independent.

Example

a.
$$\begin{bmatrix} 1 \\ 7 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 9 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 8 \end{bmatrix}$

c.
$$\begin{bmatrix} -2 \\ 4 \\ 6 \\ 10 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ -6 \\ -9 \\ 15 \end{bmatrix}$

Linear Dependent Properties

• Suppose vectors v_1, \dots, v_n are linearly dependent:

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$$

with $c_1 \neq 0$. Then:

$$\operatorname{span}\{v_1,\ldots,v_n\}=\operatorname{span}\{v_2,\ldots,v_n\}$$

When we write a vector space as the space of a list of vectors, we would like that list to be as short as possible. This can achieved by iterating.

Linear combinations of linearly independent vectors

■ suppose x is linear combination of linearly independent vectors a_1, \ldots, a_k :

$$x = \beta_1 a_1 + \cdots + \beta_k a_k$$

- the coefficients β_1, \ldots, β_k are *unique*
- proof

Conclusion

- Step 1: Count the number of vectors (call that number M) in the set and compare to N in $\mathbb{R}^{\mathbb{N}}$. As mentioned earlier, if M > N, then the set is necessarily dependent. If $M \leq N$ then you have to move on to step 2.
- Step 2: Check for a vector of all zeros. Any set that contains the zeros vector is a dependent set.
- The rank of a matrix is the estimate of the number of linearly independent rows or columns in a matrix.

Basis

- A set of n linearly independent n-vectors is called a basis
- A basis is the combination of span and independence: A set of vectors $\{v_1, \dots, v_n\}$ forms a basis for some subspace of R^n if it
 - (1) spans that subspace
 - (2) is an independent set of vectors.

Basis

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a **basis** for H if

- (i) \mathcal{B} is a linearly independent set, and
- (ii) the subspace spanned by \mathcal{B} coincides with H; that is,

$$H = \operatorname{Span} \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$$

- Which are unique?
 - express a vector in terms of any particular basis
 - bases for R^2
 - bases with unit length for R²

Functions Linearly Independent

 Let f(t) and g(t) be differentiable functions. Then they are called linearly dependent if there are nonzero constants c1 and c2 with

$$c_1 f(t) + c_2 g(t) = 0$$

for all t. Otherwise they are called linearly independent.

Example: (linearly dependent or independent?)

functions
$$f(t) = 2\sin^2 t$$
 and $g(t) = 1 - \cos^2(t)$
functions $\{\sin^2(x), \cos^2(x), \cos(2x)\} \subset \mathcal{F}$

Vector Space of Polynomials

- Linear independence
 - Example: Are (1-x), (1+x), x^2 linearly independent?

- Basis
 - Standard bases for $P_n(\mathbb{R})$?
 - Example: Are (1-x), (1+x), x^2 basis for $P_2(\mathbb{R})$?

Coordinate Systems

The main reason for selecting a basis for a subspace H; instead of merely a spanning set, is that each vector in H can be written in only one way as a linear combination of the basis vectors.

Suppose the set $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for a subspace H. For each \mathbf{x} in H, the **coordinates of x relative to the basis** \mathcal{B} are the weights c_1, \dots, c_p such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_p \mathbf{b}_p$, and the vector in \mathbb{R}^p

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix}$$

is called the coordinate vector of x (relative to \mathcal{B}) or the \mathcal{B} -coordinate vector of \mathbf{x} .¹

- Example
 - Coordinate vector of $p(x) = 4 x + 3x^2$ respect to basis $\{1, x, x^2\}$

Coordinate axes

Figure 4.3: The familiar Cartesian plane (left) has orthogonal coordinate axes. However, axes in linear algebra are not constrained to be orthogonal (right), and non-orthogonal axes can be advantageous.

Linearly Independent Sets versus Spanning Sets

Theorem 2.2 — Linearly Independent Sets versus Spanning Sets

Let \mathcal{V} be a vector space with a basis B of size n. Then

- a) Any set of more than n vectors in \mathcal{V} must be linearly dependent, and
- **b)** Any set of fewer than n vectors cannot span \mathcal{V} .

Span	vs Lin Indep
Want many vectors in small space	Want few vectors in big space.
Adding vectors to list only helps	Deleting vectors from list only helps
$A = \begin{bmatrix} y_1 & \dots & y_k \end{bmatrix}$ $A = b \text{has soln}$ $b \in \text{Span}\{Y_1, \dots, Y_k\}$	$A \times = 0 \text{has only} $ $+ \text{riv soln} $ $\times = 0$ $\times = 0$ $\times = 0$ In ridep

Dimensions

- The dimensionality of a vector is the number of coordinate axes in which that vector exists.
- If a vector space is spanned by a finite number of vectors, it is said to be finite-dimensional. Otherwise it is infinite-dimensional.
- The number of vectors in a basis for a finitedimensional vector space V is called the dimension of V and denoted dim(V).

Dimensions

Definition 2.3 — Dimension of a Vector Space

A vector space \mathcal{V} is called...

- a) finite-dimensional if it has a finite basis, and its dimension, denoted by $\dim(\mathcal{V})$, is the number of vectors in one of its bases.
- b) infinite-dimensional if it has no finite basis, and we say that $\dim(\mathcal{V}) = \infty$.
- Example: Let's compute the dimension of some vector spaces that we've

	•	,	•
been working w	Vector space	Basis	Dimension
	F^n		
	$P^{\mathcal{P}}$		
	$M_{m,n}$		
	P		
	F (functions)		
	${\it C}$ (continues functions)		
CLIT OF 400000 4 11 AL I			

Dimensionality and Properties of Bases

Let V be a finite dimensional vector space over a field F. Below are some properties of bases:

- 1. Any linearly independent list can be extended to a basis (a maximal linearly independent list is spanning).
- 2. Any spanning list contains a basis (a minimal spanning list is linearly independent).
- 3. Any linearly independent list of length $\dim V$ is a basis.
- 4. Any spanning list of length $\dim V$ is a basis.

We will learn about change of basis in matrix transformation lecture!

Independent ≤ spanning

In a finite-dimensional space,

the length of every linearly independent list of vectors

the length of every spanning list of vectors

proof

Affine Independence

An indexed set of points $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is **affinely dependent** if there exist real numbers c_1, \dots, c_p , not all zero, such that

$$c_1 + \dots + c_p = 0$$
 and $c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p = \mathbf{0}$ (1)

Otherwise, the set is **affinely independent**.

- Example:
 - **■** {*v*₁}

Affine Independence

Given an indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n , with $p \ge 2$, the following statements are logically equivalent. That is, either they are all true statements or they are all false.

- a. S is affinely dependent.
- b. One of the points in S is an affine combination of the other points in S.
- c. The set $\{\mathbf{v}_2 \mathbf{v}_1, \dots, \mathbf{v}_p \mathbf{v}_1\}$ in \mathbb{R}^n is linearly dependent.

Example:

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 7 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 7 \\ 6.5 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 4 \\ 7 \end{bmatrix}$, and $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 14 \\ 6 \end{bmatrix}$, and let $S = {\mathbf{v}_1, \dots, \mathbf{v}_4}$. Is S affinely dependent?

Barycentric Coordinates

THEOREM 6

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be an affinely independent set in \mathbb{R}^n . Then each \mathbf{p} in aff S has a unique representation as an affine combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$. That is, for each \mathbf{p} there exists a unique set of scalars c_1, \dots, c_k such that

$$\mathbf{p} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k \quad \text{and} \quad c_1 + \dots + c_k = 1 \tag{7}$$

DEFINITION

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be an affinely independent set. Then for each point \mathbf{p} in aff S, the coefficients c_1, \dots, c_k in the unique representation (7) of \mathbf{p} are called the **barycentric** (or, sometimes, **affine**) **coordinates** of \mathbf{p} .

Observe that (7) is equivalent to the single equation

$$\begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} \mathbf{v}_1 \\ 1 \end{bmatrix} + \dots + c_k \begin{bmatrix} \mathbf{v}_k \\ 1 \end{bmatrix}$$
 (8)

involving the homogeneous forms of the points. Row reduction of the augmented matrix $\begin{bmatrix} \tilde{\mathbf{v}}_1 & \cdots & \tilde{\mathbf{v}}_k & \tilde{\mathbf{p}} \end{bmatrix}$ for (8) produces the barycentric coordinates of \mathbf{p} .

Barycentric Coordinates

EXAMPLE 4 Let
$$\mathbf{a} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$, and $\mathbf{p} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$. Find the barycentric coordinates of \mathbf{p} determined by the affinely independent set $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$.

Conclusion: Linear and Affine

Conclusion and Review

Reference

- Page 97 LINEAR ALGEBRA: Theory, Intuition,
 Code
- Page 213: David Cherney,
- Page 54: Linear Algebra and Optimization for Machine Learning