

Part III: Modern Physics

Chapter 40

Introduction to Quantum Physics

Dr. Saif M. H. Qaid

1 PHYS 111 - KSU Dr. Saif Qaid

LECTURE OUTLINE

- 40.1 Blackbody Radiation and Planck's Hypothesis
- 40.2 The Photoelectric Effect
- 40.5 The Wave Properties of Particles

Need for Quantum Physics

- Problems remained from classical mechanics that the special theory of relativity didn't explain.
- •Attempts to apply the laws of classical physics to explain the behavior of matter on the atomic scale were consistently unsuccessful.
- •Problems included:
 - Blackbody radiation
 - The electromagnetic radiation emitted by a heated object
 - Photoelectric effect
 - Emission of electrons by an illuminated metal

Quantum Mechanics Revolution

- •Between 1900 and 1930, another revolution took place in physics.
- •A new theory called *quantum mechanics* was successful in explaining the behavior of particles of microscopic size.
- •The first explanation using quantum theory was introduced by Max Planck.
 - Many other physicists were involved in other subsequent developments

Quantum Mechanics Revolution

Blackbody Radiation

- •An object at any temperature is known to emit thermal radiation.
 - Characteristics depend on the temperature and surface properties.
 - The thermal radiation consists of a continuous distribution of wavelengths from all portions of the em spectrum.
- •At room temperature, the wavelengths of the thermal radiation are mainly in the infrared region.
- •As the surface temperature increases, the wavelength changes.
 - It will glow red and eventually white.

Blackbody Radiation, cont.

- •The basic problem was in understanding the observed distribution in the radiation emitted by a black body.
 - Classical physics didn't adequately describe the observed distribution.
- •A **black body** is an ideal system that absorbs all radiation incident on it.
- •The electromagnetic radiation emitted by a black body is called **blackbody radiation**.

Blackbody Approximation

- •A good approximation of a black body is a small hole leading to the inside of a hollow object.
- •The hole acts as a perfect absorber.
- •The nature of the radiation leaving the cavity through the hole depends only on the temperature of the cavity ction 40.1

The opening to a cavity inside a hollow object is a good approximation of a black body: the hole acts as a perfect absorber.

Blackbody Experiment Results

- •The total power of the emitted radiation increases with temperature.
 - Stefan's law :

$$P = \sigma A e T^4$$

- The emissivity, e, of a black body is 1, exactly
- •The peak of the wavelength distribution shifts to shorter wavelengths as the temperature increases.
 - Wien's displacement law
 - $-\lambda_{max}T = 2.898 \times 10^{-3} \text{ m} \cdot \text{K}$

Intensity of Blackbody Radiation, Summary

- •The intensity increases with increasing temperature.
- •The amount of radiation emitted increases with increasing temperature.
 - The area under the curve
- •The peak wavelength decreases with increasing temperature.

Rayleigh-Jeans Law

•An early classical attempt to explain blackbody radiation was the **Rayleigh-Jeans law.**

$$I(\lambda,T) = \frac{2\pi c k_B T}{\lambda^4}$$

•At long wavelengths, the law matched experimental results fairly well.

Rayleigh-Jeans Law, cont.

- •At short wavelengths, there was a major disagreement between the Rayleigh-Jeans law and experiment.
- •This mismatch became known as the *ultraviolet* catastrophe.
 - You would have infinite energy as the wavelength approaches zero.

The classical theory (red-brown curve) shows intensity growing without bound for short wavelengths, unlike the experimental data (blue curve).

Section 40.1

Max Planck

- $\bullet 1858 1847$
- German physicist
- •Introduced the concept of "quantum of action"
- •In 1918 he was awarded the Nobel Prize for the discovery of the quantized nature of energy.

Planck's Theory of Blackbody Radiation

- •In 1900 Planck developed a theory of blackbody radiation that leads to an equation for the intensity of the radiation.
- •This equation is in complete agreement with experimental observations.
- •He assumed the cavity radiation came from atomic oscillations in the cavity walls.
- •Planck made two assumptions about the nature of the oscillators in the cavity walls.

Planck's Assumption, 1

•The energy of an oscillator can have only certain discrete values E_n

$$-E_n = nhf$$

- n is a positive integer called the quantum number
- f is the frequency of oscillation
- h is Planck's constant
- This says the energy is quantized.
- Each discrete energy value corresponds to a different quantum state.
 - Each quantum state is represented by the quantum number, *n*.

 Section 40.1

Planck's Assumption, 2

- •The oscillators emit or absorb energy when making a transition from one quantum state to another.
 - The entire energy difference between the initial and final states in the transition is emitted or absorbed as a single quantum of radiation.
 - An oscillator emits or absorbs energy only when it changes quantum states.
 - The energy carried by the quantum of radiation is E = h f.

Energy-Level Diagram

- •An energy-level diagram shows the quantized energy levels and allowed transitions.
- •Energy is on the vertical axis.
- •Horizontal lines represent the allowed energy levels.
- •The double-headed arrows indicate allowed transitions.

Section 40.1

More About Planck's Model

- •The average energy of a wave is the average energy difference between levels of the oscillator, weighted according to the probability of the wave being emitted.

 •The average energy of a wave is the average energy of the energy of the energy of the average energy of a wave is the average energy of the energy of the average energy of the energy of
- •This weighting is described by the Boltzmann distribution law and gives the probability of a state being occupied as being proportional to where *E* is the energy of the state.

Planck's Model, Graph

Section 40.1

Planck's Wavelength Distribution Function

•Planck generated a theoretical expression for the wavelength distribution.

$$I(\lambda,T) = \frac{2\pi hc^2}{\lambda^5 \left(e^{hc/\lambda k_B T} - 1\right)}$$

- $h = 6.626 \times 10^{-34} J \cdot s$
- h is a fundamental constant of nature.
- •At long wavelengths, Planck's equation reduces to the Rayleigh-Jeans expression.
- •At short wavelengths, it predicts an exponential decrease in intensity with decreasing wavelength.
 - This is in agreement with experimental results.

Einstein and Planck's Results

- •Einstein rederived Planck's results by assuming the oscillations of the electromagnetic field were themselves quantized.
- •In other words, Einstein proposed that quantization is a fundamental property of light and other electromagnetic radiation.
- This led to the concept of photons.

Photoelectric Effect

- •The **photoelectric effect** occurs when light incident on certain metallic surfaces causes electrons to be emitted from those surfaces.
 - The emitted electrons are called **photoelectrons**.
 - They are no different than other electrons.
 - The name is given because of their ejection from a metal by light in the photoelectric effect

Photoelectric Effect Apparatus

- •When the tube is kept in the dark, the ammeter reads zero.
- •When plate E is illuminated by light having an appropriate wavelength, a current is detected by the ammeter.
- •The current arises from photoelectrons emitted from the negative plate and collected at the positive plate.

 Section 40.2

When light strikes plate E (the emitter), photoelectrons are ejected from the plate.

Electrons moving from plate E to plate C (the collector) constitute a current in the circuit.

Photoelectric Effect, Results

- •At large values of ΔV , the current reaches a maximum value.
 - All the electrons emitted at E are collected at C.
- •The maximum current increases as the intensity of the incident light increases.
- •When ΔV is negative, the current drops.
- •When ΔV is equal to or more negative than ΔV_s , the current is zero.

Dependence of photoelectron kinetic energy on light intensity

- Classical Prediction
 - Electrons should absorb energy continually from the electromagnetic waves.
 - As the light intensity incident on the metal is increased, the electrons should be ejected with more kinetic energy.

Experimental Result

- The maximum kinetic energy is independent of light intensity.
- The maximum kinetic energy is proportional to the stopping potential (ΔV_s) .

Time interval between incidence of light and ejection of photoelectrons

Classical Prediction

- At low light intensities, a measurable time interval should pass between the instant the light is turned on and the time an electron is ejected from the metal.
- This time interval is required for the electron to absorb the incident radiation before it acquires enough energy to escape from the metal.

- Experimental Result

• Electrons are emitted almost instantaneously, even at very low light intensities.

Dependence of ejection of electrons on light frequency

- Classical Prediction
 - Electrons should be ejected at any frequency as long as the light intensity is high enough.
- Experimental Result
 - No electrons are emitted if the incident light falls below some cutoff frequency, f_c.
 - The cutoff frequency is characteristic of the material being illuminated.
 - No electrons are ejected below the cutoff frequency regardless of intensity.

- Dependence of photoelectron kinetic energy on light frequency
 - Classical Prediction
 - There should be no relationship between the frequency of the light and the electric kinetic energy.
 - The kinetic energy should be related to the intensity of the light.
 - Experimental Result
 - The maximum kinetic energy of the photoelectrons increases with increasing light frequency.

Photoelectric Effect Features, Summary

- •The experimental results contradict all four classical predictions.
- •Einstein extended Planck's concept of quantization to electromagnetic waves.
- •All electromagnetic radiation of frequency f from any source can be considered a stream of quanta, now called *photons*.
- •Each photon has an energy *E* and moves at the speed of light in a vacuum.
 - -E = hf
- •A photon of incident light gives all its energy to a single electron in the metal. 40.2

Photoelectric Effect, Work Function

•Electrons ejected from the surface of the metal and not making collisions with other metal atoms before escaping possess the maximum kinetic energy $K_{\text{max.}}$

•
$$K_{max} = hf - \varphi$$

- $-\phi$ is called the work function of the metal.
- The work function represents the minimum energy with which an electron is bound in the metal.

Some Work Function Values

TABLE 40.1

Work Functions of Selected Metals

Metal	ϕ (eV)	
Na	2.46	
Al	4.08	
Fe	4.50	
Cu	4.70	
Zn	4.31	
Ag	4.73	
Pt	6.35	
Pb	4.14	

Note: Values are typical for metals listed. Actual values may vary depending on whether the metal is a single crystal or polycrystalline. Values may also depend on the face from which electrons are ejected from crystalline metals. Furthermore, different experimental procedures may produce differing values.

Photon Model Explanation of the Photoelectric Effect

- Dependence of photoelectron kinetic energy on light intensity
 - K_{max} is independent of light intensity.
 - K depends on the light frequency and the work function.
- •Time interval between incidence of light and ejection of the photoelectron
 - Each photon can have enough energy to eject an electron immediately.
- Dependence of ejection of electrons on light frequency
 - There is a failure to observe photoelectric effect below a certain cutoff frequency, which indicates the photon must have more energy than the work function in order to eject an electron.
 - Without enough energy, an electron cannot be ejected, regardless of the fact that many photons per unit time are incident on the metal in a very intense light beam.

Photon Model Explanation of the Photoelectric Effect, cont.

- Dependence of photoelectron kinetic energy on light frequency
 - Since $K_{max} = hf \varphi$
 - A photon of higher frequency carries more energy.
 - A photoelectron is ejected with higher kinetic energy.
 - Once the energy of the work function is exceeded
 - There is a linear relationship between the maximum electron kinetic energy and the frequency.

Cutoff Frequency

- •The lines show the linear relationship between *K* and f.
- •The slope of each line is *h*.
- •The *x*-intercept is the cutoff frequency.
 - This is the frequency below which no photoelectrons are emitted.

Section 40.2

Cutoff Frequency and Wavelength

- •The cutoff frequency is related to the work function through $f_c = \varphi / h$.
- •The cutoff frequency corresponds to a **cutoff** wavelength.

$$\lambda_c = \frac{c}{f_c} = \frac{hc}{\varphi}$$

•Wavelengths greater than λ_c incident on a material having a work function ϕ do not result in the emission of photoelectrons.

Louis de Broglie

- $\bullet 1892 1987$
- French physicist
- Originally studied history
- •Was awarded the Nobel Prize in 1929 for his prediction of the wave nature of electrons

Wave Properties of Particles

- •Louis de Broglie postulated that because photons have both wave and particle characteristics, perhaps all forms of matter have both properties.
- The de Broglie wavelength of a particle is

$$\lambda = \frac{h}{p} = \frac{h}{mu}$$

Frequency of a Particle

•In an analogy with photons, de Broglie postulated that a particle would also have a frequency associated with it

$$f = \frac{E}{h}$$

- •These equations present the dual nature of matter:
 - Particle nature, p and E
 - Wave nature, \(\lambda \) and \(f \)
 Section 40.5

Complementarity

- •The **principle of complementarity** states that the wave and particle models of either matter or radiation complement each other.
- Neither model can be used exclusively to describe matter or radiation adequately.

Davisson-Germer Experiment

- •If particles have a wave nature, then under the correct conditions, they should exhibit diffraction effects.
- Davisson and Germer measured the wavelength of electrons.
- •This provided experimental confirmation of the matter waves proposed by de Broglie.

Wave Properties of Particles

- •Mechanical waves have materials that are "waving" and can be described in terms of physical variables.
 - A string may be vibrating.
 - Sound waves are produced by molecules of a material vibrating.
 - Electromagnetic waves are associated with electric and magnetic fields.
- •Waves associated with particles cannot be associated with a physical variable.

Electron Microscope

- •The electron microscope relies on the wave characteristics of electrons.
- •Shown is a *transmission* electron microscope
 - Used for viewing flat, thin samples
- •The electron microscope has a high resolving power because it has a very short wavelength.
- •Typically, the wavelengths of the electrons are about 100 times shorter than that of visible light.

Thank You

