

# Bias against English-Speaking Africans in Automated Speech Recognition

William Lu and Aditya Singh



#### **Motivation**



- → Automated Speech Recognition (ASR) systems are widely used in various applications such as virtual assistants (e.g., Siri, Alexa), voice commands on mobile devices, and automated job interview processes.
- → Research indicates that ASR technology tends to be less effective for African Americans and other English-speaking African groups, demonstrating a higher error rate in recognizing their speech compared to white speakers.
- → Addressing these biases is crucial, underscoring the need for increased research efforts to make ASR systems more equitable and inclusive.
- → Improve the accuracy of ASR systems for African English speakers to ensure equitable technology access.



#### Research Question



→ How can the performance of Automated Speech Recognition (ASR) systems be improved for African English speakers through the fine-tuning of OpenAI's Whisper ASR system?

## Approach



- → Fine tuning Whisper Small ASR model with AfriSpeech-200 dataset (South African English + English accent)
- → Why the use of AfriSpeech-200 data?
  - ◆ To compensate the lack of representation of English spoken by African
- Preprocessing
  - ◆ A Whisper Feature Extractor
    - Audio samples were standardized to a sampling rate of 16kHz, consistent with Whisper-small, to maintain correct audio speed.
    - Audio samples were either padded or truncated to ensure each has a consistent length of 30 seconds
    - Converted the adjusted audio samples into log-Mel spectrograms, which better mimic the human auditory range, facilitating more effective model training.
- → Model Building
  - Whisper-small uses a sequence-to-sequence architecture, converting audio spectrogram features into sequences of tokens
    - It utilizes a Whisper feature extractor to transform input audios into log-Mel format.
    - Encoder blocks process these log-Mel audios into hidden states. Decoders predict tokens and use cross-attention complete transcriptions.
    - A data collector was implemented to transform preprocessed data into PyTorch tensors for model training
- → Evaluation Metric
  - ◆ Word Error Rate (WER): # correct words/# total words



## Results



| Model                                  | With Fine Tuning | Without Fine Tuning |
|----------------------------------------|------------------|---------------------|
| South African English<br>Accent Audios | 23.65            | 25.53               |
| English Accent Audios                  | 53.28            | 49.13               |

## Conclusion + Future Steps



#### → Conclusion

- Fine tuning with more underrepresented data can improve ASR performance overall
- Data quality matters

#### **→** Future Steps

- Fine tuning Whisper-small with more data
- Train the ASR system with more representative data at first





## Thank You!

