MSDS 6372 Project 2

3/16/2020

Ellen Lull Fred Poon Sanjay Pillay Jordan Salsman

Project Professor: Dr Jacob Turner

Citations

Document all citations here

INTRODUCTION	2
DATA DESCRIPTION	2
Objective 1 EDA/Feature selection	4
EDA	5
Feature Selection	5
Final Logistic Regression model (I) with no Interactions	6
Lack Of Fit Test	7
Objective 2	7
Logistic Regression Model II	7
LDA Model	8
Random Forest	8
Conclusion And Summary	9
APPENDIX	10
PCA Analysis	10
Odds Ratio	10
Proportion Plots	16
Code for Portion Plots	17
Histogram (Before / after Xformation)	17
Box Plot	18
Correlation Plot Of Continuous Variables	19
LDA Separation Plot	21
LASSO Feature Selection with all variables	21
LASSO Plot with significant variables	22
LASSO plots to compare models with lduration	23
LASSO Simple Model Coefficients	25
LASSO Final Simple model Odds ratio	26
ROC Curves With Cutoff	27
Lack of Fit Result	28
Code Train/Test split	28
Odds Ratio code	29
LDA Code	29
Random Forest Code	30
Code LR I & II Feature Selection	31

INTRODUCTION

Problem Statement: Direct marketing campaigns often produce mixed results. In this project, we compare several models to analyze and predict the outcome of a customer subscription for a term deposit based on previous recorded data. The models used are Logistic regression, LDA and a non parametric Random Forest. The main goal is to have a higher sensitivity that is identifying a potential customer who would subscribe for a term deposit.

DATA DESCRIPTION

We are using the Bank Marketing <u>dataset</u>. The data contains the phone call based marketing campaigns of a Portuguese banking institution. More than one phone call may have been made to a client.

Variable	Summary	Description
у	no: 36548 yes: 4640	yes=subscribed to deposit no=did not subscribed
Age	Group.1 "yes" "no" x.Min. "17.00000" "17.00000" x.1st Qu "31.00000" "32.00000" x.Median "37.00000" "38.00000" x.Mean "40.91315" "39.91119" x.3rd Qu. "50.00000" "47.00000" x.Max. "98.00000" "95.00000"	numeric
Job	Admin: 10422 Blue-collar: 9254 technician: 6743 services: 3969 management 2924 retired: 1720 (Other): 6156	Type of Job (categorical) Values: 'admin.' ,'blue-collar' ,'entrepreneur ','housemaid', 'management', 'retired', 'self-employed', 'services', 'student', 'technician', 'unemployed', 'unknown'
marital	divorced: 4612 married: 24928 single: 11568 unknown: 80	Marital Status (categorical) Values: 'divorced', 'married', 'single', 'unknown' note: 'divorced' means divorced or widowed
education	university.degr :12168 high.school : 9515 basic.9y : 6045	Education (categorical) Values: 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree'

	Professi.course: 5243 basic.4y : 4176 basic.6y : 2292 (Other) : 1749	,'unknown'
default	no : 32588 unknown: 8597 yes : 3	Has Credit in Default (categorical) Values 'no', 'yes', 'unknown'
housing	no : 18622 unknown: 990 yes : 2 1576	Has housing loan? (categorical) Values: : 'no', 'yes', 'unknown'
loan	No: 33950 unknown: 990 yes: 6248	Has personal loan? (categorical) Values: : 'no', 'yes', 'unknown'
contact	cellular : 26144 Telephone: 15044	Contact communication type (categorical: 'cellular','telephone')
month		Last contact month of year (categorical) Values: 'jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct',, 'nov', 'dec'
Day_of_ week		Last contact day of the week (categorical) Values: : 'mon', 'tue', 'wed', 'thu', 'fri'
duration	Group.1 "yes" "no" x.Min. " 37.0000" " 0.0000" x.1st Qu. " 253.0000" " 95.0000" x.Median " 449.0000" " 163.5000" x.Mean " 553.1912" " 220.8448" x.3rd Qu. " 741.2500" " 279.0000" x.Max. "4199.0000" "4918.0000"	Last contact duration, in seconds (numeric).
campaign	Group.1 "yes" "no" x.Min. "1.000000" "1.000000" x.1st Qu. "1.000000" "1.000000" x.Median "2.000000" "2.000000" x.Mean "2.051724" "2.633085" x.3rd Qu. "2.000000" "3.000000" x.Max. "23.000000" "56.000000"	Number of contacts performed during this campaign and for this client (numeric, includes last contact)
pdays	Min.: 0.0 1st Qu.: 999.0 Median: 999.0 Mean: 962.5 3rd Qu.: 999.0 Max.: 999.0	Number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
previous	Min. : 0.000 1st Qu.: 0.000 Median :0.000	Number of contacts performed before this campaign and for this client (numeric)

	Mean : 0.173 3rd Qu.: 0.000 Max. : 7.000	
poutcome	failure : 4252 Nonexistent: 35563 success : 1373	Outcome of the previous marketing campaign (categorical) Values: 'failure', 'nonexistent', 'success'
emp.var.r ate	Group.1 "yes" "no" x.Min. "-3.4000" "-3.4000" x.1st Qu. "-1.8000" "-1.8000" x.Median "-1.8000" " 1.1000" x.Mean "-1.2334" " 0.2488" x.3rd Qu. "-0.1000" " 1.4000" x.Max. " 1.40000" " 1.4000"	Employment variation rate - quarterly indicator (numeric)
cons.price .idx	Group.1 "yes" "no" x.Min. "92.20100" "92.20100" x.1st Qu. "92.89300" "93.07500" x.Median "93.20000" "93.91800" x.Mean "93.35439" "93.60376" x.3rd Qu. "93.91800" "93.99400" x.Max. "94.76700" "94.76700"	Consumer price index - monthly indicator (numeric)
cons.conf.	Group.1 "yes" "no" x.Min. "-50.80000" "-50.80000" x.1st Qu. "-46.20000" "-42.70000" x.Median "-40.40000" "-41.80000" x.Mean "-39.78978" "-40.59310" x.3rd Qu . "-36.10000" "-36.40000" x.Max. "-26.90000" "-26.90000"	Consumer confidence index - monthly indicator (numeric)
euribor3m	Group.1 "yes" "no" x.Min. "0.634000" "0.634000" x.1st Qu. "0.849000" "1.405000" x.Median "1.266000" "4.857000" x.Mean "2.123135" "3.811491" x.3rd Qu. "4.406000" "4.962000" x.Max. "5.045000" "5.045000"	Euribor 3 month rate - daily indicator (numeric)
nr.employ ed	x.Min. "4963.600" "4963.600" x.1st Qu. "5017.500" "5099.100" x.Median "5099.100" "5195.800" x.Mean "5095.116" "5176.167" x.3rd Qu. "5191.000" "5228.100" x.Max. "5228.100" "5228.100"	Number of employees - quarterly indicator (numeric)

Objective 1 EDA/Feature selection

Tools such as Odds ratio, histograms, heat maps etc to analyze the data and lasso/forward selection techniques to select appropriate features were used to build models as follows.

EDA

Response y is unbalanced with 11% responding yes and 89% responding no. The additional market related variables helped boost the prediction so were included in further analysis, especially Emp.var.rate odds ratio listed below. Correlation plots and PCA Analysis show some correlation between continuous variables although in PCA there is significant overlap. The Proportions, BoxPlot and Odds ratio Histogram (normalization helped significantly on LDA) highlight the following

Education: The odds of 9y and 6y with respect to 4y is1. 27 and 1.34 times higher respectively. basic.4y 1.0000000 NA NA basic.6y 1.2780036 1.0678958 1.5294499 basic.9y 1.3452226 1.1728135 1.5429767	Previous Outcome: The odds of a previously successful customer are less by 8% than unsuccessful and for unknow the odds are 1.71 times higher. failure 1.00000000 NA NA unknown 1.71234581 1.55948111 1.8801947 Success 0.08888278 0.07723805 0.1022831
Job: The odds are double for Blue collar workers and about 1.6 higher for entrepreneurs and 1.68 more for service workers compared to Admin. admin 1.0000000 NA NA Bluecollar 2.0130493 1.8239432 2.2217619 entrp 1.6012235 1.3205930 1.9414889 services 1.6826103 1.4814508 1.9110844	Emp.var.rate: Odds are significantly higher when emp.var.rate increases3.4 1.0000000 NA NA -0.2 6.6223663 0.8360372 52.4566816 -0.1 10.9452998 9.1433360 13.1023937 1.1 23.0648433 19.3300854 27.5211924 1.4 13.0578041 11.3611343 15.0078543

Duration: Box plot and number summary indicates as duration increases the yes response is higher, and average campaign is less for folks responding yes. T.test confirms this with a p-value of < 2.2e-16, also we log transformed it.

Convert pdays value of 999 to -1 and log transform duration (Iduration) to have it normally distributed.

Assumptions: During the EDA we noticed an unbalanced bias of positive outcomes (11% to 89%), so positive results were boosted. Models took into account market indicators which improved the predictability and should be used cautiously as these indicators tend to vary with time. For the LDA model we used logtrans formed duration/pdays to normalize the spread. For Logistic regression/Random Forest we opted not to use log transformed data as there is no assumption required for normalized spread and it becomes easier to interpret the model.

All Models used a common splitting mechanism of <u>80% train and 20% test</u>. The split was randomly selected using the same proportions of yes/no from the full dataset

Feature Selection

Forward: Our first feature selection technique we attempted was forward selection. Specifically we were looking for a model that produced the best AIC. We prioritized AIC at the start because that metric penalizes unhelpful parameters in the model. By trimming the features down at the start we were able to build from that both a highly predictive logistic model and a highly interpretable model. The forward model is:

 $\ln(p(X)/1 - p(X)) = \beta_0 + \beta_1$ job + β_2 contact + β_3 default + β_4 month + β_5 day_of_week + β_6 pdays + β_7 poutcome + β_8 emp.var.rate + β_9 cons.conf.indx + β_{10} nr.employed + β_{11} cons.price.idx + β_{12} euribor3m

This model is still a little complex but it gives us a nice jumping off point. Next we performed a lasso selection to further penalize variables. AIC:

LASSO: The <u>LASSO feature selection analysis</u> resulted in selecting the 10 features listed <u>here</u>. After further analysis below, we decided that taking the log of the duration field smoothed the data out because it contained outliers. In order to account for values of 0 in duration, we added .1 to all values before taking the log.

Additional Variable Selection: We removed day_of_week from the final model. It is the day the customer was last contacted and doesn't have a valid business reason to impact the customer's default probability. We ran a Variable Importance Factor Analysis (VIF) and determined that it did not indicate any additional multicollinearity issues.

Unlogged duration	Logged duration (Selected Model)
Residual deviance: 13737 on 32913 degrees of freedom	Residual deviance: 12946 on 32913 degrees of freedom
AIC: 13811	AIC: 13020

Final Logistic Regression model (I) with no Interactions

 $\ln(p(X)/1 - p(X)) = \beta_0 + \beta_1$ job + β_2 education + β_3 default + β_4 month + $\beta_5 \ln(\text{duration}) + \beta_6$ pdays + β_7 poutcome + β_8 emp.var.rate + β_9 cons.conf.indx + β_{10} nr.employed

Model Coefficients: The complete list of the coefficients are <u>here</u>. Below are couple.

	coef	Std err	z-score	p-value
(Intercept)	-38.1271765579882	3.29669619872448	-11.5652684565657	6.17977150134818E-31
jobblue-collar	0.301525948613872	0.0891539697586221	3.38208101591249	0.000719389250157612

nr.employed 0.	0.010361985242364	0.000639020301099465	16.2154241806335	3.92359335404881E-59
----------------	-------------------	----------------------	------------------	----------------------

Odds ratio for above Complete list is <u>here</u>

	Odds ratio	2.5%	97.5%
(Intercept)	2.76425185887642E-17	4.3194128748611E-20	1.76901087269817E-14
jobblue-collar	1.35192019513809	1.13517562972499	1.6100488472123
nr.employed	1.0104158565218	1.00915114649882	1.01168215153177

Interpretation: (Categorical) The odds of a positive sale is 35% more when a person has a blue collar job keeping other conditions same with a 95% confidence interval of $(13.3 \sim 61 \%)$.

(Continuous) The odds of a positive sale increases by 10.4 % for every 1000 point increase in the nr.employed index with a 95 % interval of $(9 \sim 11.7)$

Model Summary

Model	Accuracy	Sensitivity	Specificity	СМ
Logistic I (Simple) 80% cutoff	89%	78%	90%	Truth p yes no yes 728 690 no 200 6620

Lack Of Fit Test

The lack of fit test for the model showed a very low <u>p-value</u> indicating a bad fit but we ignore this due to the large number of observations and use this model.

Objective 2

Logistic Regression Model II

The complex model is built for predictability and not for interpretability. The logistic model we came up with is:

 $\ln(p(X)/1 - p(X)) = \beta_0 + \beta_1 \text{ month*day_of_week} + \beta_2 \text{ age*duration} + \beta_3 \text{ campaign} + \beta_4 \text{ month} + \beta_5 \text{ day_of_week} + \beta_6 \text{ age} + \beta_7 \text{ duration} + \beta_8 \text{ emp.var.rate} + \beta_9 \text{ pdays} + \beta_{10} \text{ cons.price.idx} + \beta_{11} \text{ cons.conf.idx}$

This model is more convoluted and harder to interpret than the other. The interaction terms and extra terms are to increase the amount of information our model is using and increase prediction power. The biggest challenge is to maximize our data without overfitting it. This model led to an increase in prediction accuracy as compared to the

LDA and simpler logistic model.

Model Summary

Model	Accuracy	Sensitivity	Specificity	СМ
Logistic II (complex) 85% cutoff	88.3%	82.97%	88.9%	Truth pred yes no yes 770 809 no 153 6501

LDA Model

<u>PCA Analysis</u> on using continuous variables (previous, age, campaign, Iduration, cons.price.idx) shows a potential separation which we can use for LDA.

LDA is performed (Iduration, campaign, emp.var.rate, cons.price.idx, euribor3m, cons.conf.idx, nr.employed), LDA plot <u>here</u>. The <u>ROC Curve</u> indicated that to have a Sensitivity of 70% we need to balance on yes / no to 90%/10%. **Increasing Sensitivity is critical in this case as we do not want to lose a potential sale opportunity.**

Model Summary

Model	Accuracy	Sensitivity	Specificity	СМ
LDA 90% cutoff	85.4%	76%	86.6%	Truth pred yes no yes 707 982 no 221 6328

Random Forest

As we can see, the random forest model provided some solid results. First, it requires us to adjust the hyperparameter, mtry. This parameter is the number of variables randomly sampled at each node or split. Mtry was tuned by cross validation on the training set by tuning values. Based on out-of-bag (OOB) error, mtry was set to 11 for the random forest model. As indicated in, the AUC for the Random Forest training set is 0.946. The ROC curve indicated that to have a sensitivity of 88.5%

Model Summary

Model	Accuracy	Sensitivity	Specificity	СМ
RM 80% cutoff	88%	88.5%	87%	Truth p yes no yes 821 885 no 107 6425

Conclusion And Summary

Model	AUC	Accuracy	Sensitivity	Specificity	Pr Cutoff	CM
LDA	91.3	85.4%	76%	86.6%	90	Truth pred yes no yes 707 982 no 221 6328
LR Simple	93.4	89%	78%	90%	80	Truth p yes no yes 728 690 no 200 6620
LR Complex	93.4	88.3%	82.97%	88.9%	85	Truth pred yes no yes 770 809 no 153 6501
RM	94.6	88%	88.5%	88%	80	Truth p yes no yes 821 885 no 107 6425

Of the four models Random Forest performed the best for prediction of new deposits with an overall accuracy of 94%, as the random forest algorithm consists of many decision trees and uses bagging as well as continuous/categorical feature at random (mtry) when building each individual tree to create an uncorrelated forest of trees for prediction.

The simpler Logistic Regression (I) model allows better interpretation of factors that influence the sales of new deposits based on the customer profile and market conditions. The interpretation is easier to valida with the EDA done. The complex Logistic Regression model or the random forest would be harder to do the same interpretation.

LDA model was not upto the mark as many of the critical predictors with this data set were categorical, which do not perform very well in an LDA model. Although <u>PCA analysis</u> showed separation a closer look indicates overlap of negatives with positives.

APPENDIX

PCA Analysis

Odds Ratio

Education Response Treatment Yes No Total basic.4y 428 3748 4176 basic.6y 188 2104 2292 basic.9y 473 5572 6045 HS 1031 8484 9515 illitrate 4 14 18 professional 595 4648 5243 degree 1670 10498 12168 unknown 251 1480 1731 Total 4640 36548 41188 odds ratio with 95% C.I. Treatment estimate lower upper basic.4y 1.0000000 NA NA basic.6y 1.2780036 1.0678958 1.5294499 basic.9y 1.3452226 1.1728135 1.5429767 HS 0.9396934 0.8342039 1.0585226 illitrate 0.3996798 0.1309713 1.2196871 professional 0.8920585 0.7821659 1.0173908 degree 0.7178510 0.6414405 0.8033637 unknown 0.6733365 0.5697575 0.7957457 two-sided

Treatment	midp.exact	fisher.exact	chi.square
Basic.4y	NA	NA	NA
basic.6y	6.862098e-03	7.842591e-03	7.317806e-03
basic.9y	2.414000e-05	2.378896e-05	2.140607e-05
HS	3.059994e-01	3.208936e-01	3.058580e-01
illitrate	1.376313e-01	1.063542e-01	9.539739e-02
professional	8.824505e-02	8.926469e-02	8.845913e-02
degree	3.414443e-09	4.114282e-09	6.896878e-09
unknown	4.787954e-06	4.680671e-06	3.122762e-06

Loan

Response

Treatment Yes No Total 3850 30100 33950 no unknown 107 883 990 683 5565 6248 yes Total 4640 36548 41188

odds ratio with 95% C.I.

Treatment estimate lower upper no 1.000000 NA NA unknown 1.055531 0.8612505 1.293638

```
ves 1.042170 0.9560448 1.136055
    two-sided
Treatment midp.exact fisher.exact chi.square
           NA
                      NA
                                NA
Unknown 0.6093112 0.6470181 0.6025085
yes
          Housing
   Response
Treatment Yes
               No
                      Total
         2026 16596
                     18622
unknown 107
               883
                       990
yes
         2507 19069
                      21576
Total
         4640 36548
                      41188
    odds ratio with 95% C.I.
Treatment estimate
                        lower
                                  upper
no
         1.0000000
                        NA
                                  NA
Unknown 1.0074255
                     0.8199887 1.2377075
          0.9285592
                     0.8726153 0.9880897
yes
   two-sided
Treatment midp.exact fisher.exact chi.square
                 NA
                          NA
                                     NA
unknown 0.95364204 1.00000000 0.94384730
           0.01931128  0.02010454  0.01937352
yes
Previous Outcome
    Response
Treatment Yes
                 No
                      Total
failure
                      4252
          605
                3647
Unknown 3141 32422
                      35563
success 894
                 479
                       1373
Total
         4640 36548
                       41188
    odds ratio with 95% C.I.
Treatment
              estimate
                         lower
                                     upper
failure
            1.00000000
                           NA
                                      NA
unknown
           1.71234581 1.55948111 1.8801947
success 0.08888278 0.07723805 0.1022831
   two-sided
Treatment midp.exact fisher.exact chi.square
failure
           NA
                   NA
                           NA
unknown
           0 5.185674e-27 4.623383e-30
           0 2.512956e-277 6.454682e-301
success
```

```
Default
    Response
Treatment
            Yes
                   No
                          Total
NoDef
           4197 28391
                         32588
                          8597
unknown
            443
                 8154
Default
            0
                  3
                          3
Total
           4640 36548
                         41188
    odds ratio with 95% C.I.
Treatment estimate
                      lower
                              upper
NoDef
          1.000000
                       NA
                              NA
unknown 2.720979 2.459679 3.010039
Default
           Inf
                       NaN
                              Inf
    two-sided
                                     chi.square
Treatment midp.exact
                       fisher.exact
NoDef
             NA
                           NA
                                     NA
unknown
                      4.445019e-105
                                     2.498371e-90
             0.000000
Default
             0.661273
                       1.000000e+00 5.054478e-01
Iob
Treatment
            Yes
                  No
                       Total
admin
           1352 9070 10422
            638 8616 9254
bluecollar
                 1332 1456
entrp
            124
                 954 1060
household
            106
mgmt
             328 2596 2924
retired
            434 1286 1720
selfempl
             149 1272 1421
services
             323 3646 3969
student
             275
                   600
                        875
tech
             730
                  6013 6743
unempyl
                   870 1014
            144
unknown
             37
                    293
                        330
Total
            4640 36548 41188
     odds ratio with 95% C.I.
            estimate
                       lower
                                upper
Treatment
                        NA
                                 NA
admin
          1.0000000
Bluecollar 2.0130493 1.8239432 2.2217619
entrp 1.6012235 1.3205930 1.9414889
household 1.3415656 1.0889291 1.6528149
mgmt
          1.1797779 1.0377384 1.3412588
retired
          0.4416931 0.3906140 0.4994516
selfempl 1.2725365 1.0638996 1.5220883
services 1.6826103 1.4814508 1.9110844
student
           0.3252280 \quad 0.2788812 \quad 0.3792772
```

```
1.2278286 1.1157291 1.3511909
unempyl 0.9005880 0.7482156 1.0839907
unknown 1.1804166 0.8345775 1.6695672
     two-sided
Treatment
             midp.exact
                           fisher.exact
                                        chi.square
admin
                NA
                           NA
                                         NA
                          2.729347e-46
bluecollar 0.000000e+00
                                        3.120888e-45
entrp
            4.805827e-07
                          5.306567e-07
                                        1.378229e-06
household 4.530089e-03
                          4.958458e-03
                                        5.617877e-03
mgmt
            1.070385e-02 1.159229e-02
                                        1.146458e-02
retired
            0.000000e+00 1.044831e-35
                                        2.327082e-40
selfempl
            7.069561e-03 8.353710e-03 8.204699e-03
services
            0.000000e+00 9.060952e-17
                                        6.361062e-16
student
            0.000000e+00 4.359868e-41
                                        1.964089e-50
tech
            2.336320e-05 2.499718e-05
                                       2.587670e-05
unempyl
            2.694425e-01 2.622230e-01 2.680245e-01
unknown
            3.505887e-01 4.041298e-01 3.478713e-01
emp.var.rate
   Response
Treatment Yes
                No Total
 -3.4
          454
               617
                    1071
 -3
           88
                 84
                      172
 -2.9
          594 1069
                    1663
 -1.8
         1461 7723 9184
               370
 -1.7
          403
                     773
 -1.1
          301
                334
                      635
 -0.2
            1
                  9
                       10
          232 3451 3683
 -0.1
 1.1
          240 7523 7763
 1.4
          866 15368 16234
 Total
         4640 36548 41188
    odds ratio with 95% C.I.
Treatment estimate lower
                             upper
  -3.4 1.0000000
                    NA
  -3 0.7023722 0.5087016 0.9697762
  -2.9 1.3242255 1.1314645 1.5498261
  -1.8 3.8896140 3.4036226 4.4449984
  -1.7 0.6755654 0.5608952 0.8136788
  -1.1 0.8164896 0.6702521 0.9946336
  -0.2 6.6223663 0.8360372 52.4566816
  -0.1 10.9452998 9.1433360 13.1023937
  1.1 23.0648433 19.3300854 27.5211924
  1.4 13.0578041 11.3611343 15.0078543
```

two-sided

Treatment midp.exact fisher.exact chi.square

- -3.4 NA NA NA
- -3 3.235779e-02 3.815583e-02 3.127379e-02
- -2.9 4.764073e-04 5.270172e-04 4.610587e-04
- -1.8 0.000000e+00 1.046073e-81 2.499875e-98
- -1.7 3.541249e-05 3.819646e-05 3.478245e-05
- -1.1 4.434708e-02 4.921799e-02 4.396230e-02
- -0.2 3.856410e-02 5.147350e-02 3.891873e-02
- -0.1 0.000000e+00 4.620380e-161 2.326047e-192
- 1.1 0.000000e+00 4.137114e-276 0.000000e+00
- 1.4 0.000000e+00 4.729083e-243 0.000000e+00

Marital

\$data

Response

Treatment Yes No Total

divorced 4 2 6

married 3 1 4

single 2 4 6

unknown 1 3 4

Total 10 10 20

\$measure

odds ratio with 95% C.I.

Treatment estimate lower upper

divorced 1.0000000 NA NA

married 0.6666667 0.03938267 11.28528

single 4.0000000 0.36270644 44.11281

unknown 6.0000000 0.35444402 101.56752

\$p.value

two-sided

Treatment midp.exact fisher.exact chi.square

divorced NA NA NA

married 0.8333333 1.0000000 0.7781597 single 0.3235931 0.5670996 0.2482131

unknown 0.2857143 0.5238095 0.1967056

Proportion Plots

Code for Portion Plots

Histogram (Before / after Xformation)

Box Plot

Correlation Plot Of Continuous Variables

LDA Separation Plot

LASSO Feature Selection with all variables

jobblue-collar	0.051904030
monthmar	-0.961838597
monthmay	0.704319465
2	
duration	-0.001060742
poutcomesuccess	-1.348045851
emp.var.rate	0.121429717
cons.price.idx	
cons.conf.idx	-0.004573949
euribor3m	•
nr.employed	0.009802255
Til Tollipio y Ca	0.0000000000000000000000000000000000000

LASSO Plot with significant variables

(Intercept)	-47.829667030
jobblue-collar	0.045243803
jobretired	-0.010516931
monthmar	-0.886586432
monthmay	0.672462611
duration	-0.004
019688	
poutcomesuccess	-1.357381492
emp.var.rate	0.127125642
cons.conf.idx	-0.001022818
nr.employed	0.009959558

LASSO plots to compare models with Iduration

LASSO Simple Model Coefficients

•				
(Intercept)	-38.1271765579882	3.29669619872448	-11.5652684565657	6.17977150134818E-31
jobblue-collar	0.301525948613872	0.0891539697586221	3.38208101591249	0.000719389250157612
jobentrepreneur	0.192328437708624	0.138873046749135	1.38492272050496	0.166076098811776
jobhousemaid	-0.0258987236642298	0.161187759856626	-0.160674257693427	0.872349965360261
jobmanagement	0.0205254647669419	0.0951706341985803	0.215670148042873	0.829244872010658
jobretired	-0.289698103398291	0.106277499315421	-2.72586488451799	0.00641332458223137
jobself-employed	0.254150633651443	0.136525901938481	1.86155615925514	0.0626656777383371
jobservices	0.17993426506937	0.0957573747622527	1.87906430722555	0.0602357130173233
jobstudent	-0.238058636819166	0.12487233505079	-1.90641615472586	0.0565962344214376
jobtechnician	0.0542956820091201	0.0806458972955719	0.67326031242635	0.500781696908322
jobunemployed	-0.030236197811495	0.14691280214012	-0.205810503720818	0.836938936064014
jobunknown	0.0930628528320411	0.280723477632275	0.331510757906561	0.74025871634227
educationbasic.6y	-0.156835636875934	0.132880709231791	-1.18027392977228	0.237891283460038
educationbasic.9y	-0.0721359627338958	0.105032553769389	-0.686796237405393	0.492211141176713
educationhigh.school	-0.0643270551002235	0.101946748070557	-0.63098682711981	0.528049137607345
educationilliterate	-1.96231959732695	0.842559523197666	-2.32899818149297	0.0198591620399206
educationprofessional .course	-0.127663409945473	0.114077317421132	-1.11909547692278	0.263099409263502
educationuniversity.d egree	-0.204958184827845	0.102241269620645	-2.00465218779383	0.0450002432705523
educationunknown	-0.15581868641533	0.135566470994815	-1.14938955976283	0.250395383099233
defaultunknown	0.247204511890438	0.0721072436129707	3.42828957957798	0.000607397190797454
defaultyes	6.24775983494382	111.09751769365	0.0562367185572224	0.95515323025491
monthaug	-0.544830799177488	0.112890902321565	-4.82617100203134	1.39183014580649E-06
monthdec	-0.194828488699295	0.234794677864553	-0.829782388899319	0.406661829681739
monthjul	-0.508300527311468	0.101085634460851	-5.02841506632007	4.94550475605961E-07

monthjun	-0.498701639030732	0.0996545298405914	-5.00430476997344	5.6063998090923E-07
monthmar	-1.73450314150615	0.143587122850758	-12.0797959250773	1.35054503872453E-33
monthmay	0.69365806722682	0.0844146683480911	8.2172693537865	2.08189118566575E-16
monthnov	0.0758546985461704	0.106917145829632	0.709471787313154	0.478031753146433
monthoct	-0.358317538650363	0.147446150828014	-2.43015864868738	0.0150922149839444
monthsep	-0.0698155151813263	0.161366051534118	-0.432653055073142	0.665266839439887
lduration	-2.23048346499739	0.0388937422472897	-57.3481320160912	0
pdays	-0.0181389436981929	0.0153293110614431	-1.18328499079236	0.236696219190689
poutcomenonexistent	-0.494458077647385	0.0734534245503573	-6.73158645324154	1.67823067413197E-11
poutcomesuccess	-1.82611269983879	0.131102297056199	-13.9289146021294	4.22730812076736E-44
emp.var.rate	0.259652129184094	0.0285565969614239	9.09254451904226	9.6747827966631E-20
cons.conf.idx	-0.0074533443807301	0.00534005254557788	-1.39574364055691	0.162791707553395
nr.employed	0.010361985242364	0.000639020301099465	16.2154241806335	3.92359335404881E-59

LASSO Final Simple model Odds ratio

	Odds ratio	2.5%	97.5%
(Intercept)	2.76425185887642E-17	4.3194128748611E-20	1.76901087269817E-14
jobblue-collar	1.35192019513809	1.13517562972499	1.6100488472123
jobentrepreneur	1.21206854061251	0.92324768532877	1.59124162506769
jobhousemaid	0.974433771693433	0.710475419763334	1.33645886825048
jobmanagement	1.02073756075634	0.847041532546868	1.23005204338212
jobretired	0.748489499909185	0.607746044388376	0.921826701542934
jobself-employed	1.28936601155073	0.986654632591004	1.68495100192913
jobservices	1.19713866670808	0.99228318794407	1.44428627305169
jobstudent	0.78815647475011	0.617050805188338	1.00670904805143
jobtechnician	1.05579673610676	0.901434971874563	1.23659141563548
jobunemployed	0.970216343505468	0.72747183251828	1.29396041348648
jobunknown	1.097530716014	0.633088502052431	1.90269396567628
educationbasic.6y	0.854844552192593	0.658838369278988	1.10916310052354
educationbasic.9y	0.930404386887081	0.757299861820174	1.14307735519471
educationhigh.school	0.937698270373	0.767866791336154	1.14509190419668
educationilliterate	0.14053206475817	0.026951780483653	0.732762766347587
educationprofessional.cours e	0.880149578887653	0.703807186222352	1.10067543551818
educationuniversity.degree	0.814681381741415	0.66674514934609	0.995441443266637
educationunknown	0.855714328938662	0.656046185968662	1.11615161921835
defaultunknown	1.28044095140237	1.11168503231329	1.47481434252697
defaultyes	516.853689251938	1.40277853698365E-92	1.9043471870318E+97
monthaug	0.579939901347104	0.464825644436628	0.723562250060715

monthdec	0.822975795601483	0.519432919928546	1.30390110861488
monthjul	0.601516972317392	0.493405104090408	0.733317643020538
monthjun	0.607318666896056	0.499563316875944	0.738316747248267
monthmar	0.176487868001589	0.133196642062133	0.233849495524195
monthmay	2.00102203438339	1.6958911544299	2.36105316760961
monthnov	1.07880581071588	0.874853306310915	1.33030528528487
monthoct	0.6988511275261	0.523453706188012	0.933020232106413
monthsep	0.93256584827857	0.679711276393965	1.27948305637857
lduration	0.107476456468336	0.0995879805357026	0.115989787450797
pdays	0.982024576752287	0.952958577841785	1.0119771118799
poutcomenonexistent	0.60990133692199	0.528124015873507	0.704341460715405
poutcomesuccess	0.161038357047995	0.124547453839732	0.208220655189698
emp.var.rate	1.29647900100267	1.22590853168057	1.3711119195301
cons.conf.idx	0.992574362910437	0.982239947211808	1.00301750982911
nr.employed	1.0104158565218	1.00915114649882	1.01168215153177

ROC Curves With Cutoff

Lack of Fit Result

Hosmer and Lemeshow goodness of fit (GOF) test

data: lasso.finalmodel\$y, fitted(lasso.finalmodel) X-squared = 405.57, df = 8, p-value < 2.2e-16

Code Train/Test split

```
setwd("/Users/sanjaypillay/MS_DS/stat-applied/Project2")
bankdata<- read.csv("data/bank-additional-full.csv", sep=";")
# adjust durtion for 0 so when log transformed it does no tend up in Inf value
bankdata = bankdata %>% mutate(duration=duration + .1)
# log transform duration, adjust for pdays of 999
bankdata = bankdata %>% mutate(lduration=log(duration), pdays = ifelse(pdays == 999, -1, pdays))
#flip factor for y to make it easy for analysis
bankdata$y <-relevel(bankdata$y, ref = "yes")</pre>
#split datasets yes/no
bankY = bankdata %>% filter(y == "yes")
bankN = bankdata %>% filter(y == "no")
#Train and Test Split 80%/20%, with a seed of 10 so all members of the group can use to compare results on the same
#The split wa done using the bankdataN and bankdataY by taking the sampe propertion (keeping it unbalanced)
# of yes and no as the original data set.
set.seed(10)
trainInd = sample(seg(1,dim(bankY)[1],1),round(.8*dim(bankY)[1]))
trainY = bankY[trainInd,]
testY = bankY[-trainInd,]
trainInd = sample(seg(1,dim(bankN)[1],1),round(.8*dim(bankN)[1]))
train = bankN[trainInd,]
test = bankN[-trainInd,]
train = rbind(train,trainY)
test = rbind(test,testY)
table(test$v)
table(train$y)
```

Odds Ratio code

```
#Common method for calculating odds ration
getOddsRation <- function(dmxl,colName){</pre>
 d1 = dmxl %>% filter(y=='no')
 d2 = dmxl \%>\% filter(y=='yes')
 x = as.character(eval(substitute(colName), d2))
 d3=as.data.frame(cbind(x,d2$n,d1$n))
 v1=1
 for (row in 1:nrow(d3))
   v1<-cbind(v1,as.integer(d3[row,2]),as.integer(d3[row,3]) )
 mvmatl = matrix(v1[.-1].nrow(d3),2.bvrow=T)
 dimnames(mymatl)<-list("Treatment"=as.vector(d3$x),
             "Response"=c("Yes","No"))
 #Odds Ratio Intervals
 o =oddsratio.wald(mymatl)
 print(o)
 #prop.table(mymatl,margin=1)
 #prop.test(mymatl,correct=TRUE)
#Prop / Odds ration for Education
bd = bankdata[,c('education','y')]
dmx = bd %>% group_by(education,y) %>% summarize(n = n())
getOddsRation(dmx,education)
#Prop / Odds ration for loan
bd = bankdata[,c('y','loan')]
dmx = bd %>% group_by(loan, y) %>% summarize(n = n())
getOddsRation(dmx,loan)
#Prop / Odds ration for housing
bd = bankdata[,c('y','housing')]
dmx = bd %>% group_by(housing,y) %>% summarize(n = n())
getOddsRation(dmx,housing)
#Prop / Odds ration for poutcome
bd = bankdata[,c('poutcome','y')]
dmx = bd %>% group_by(poutcome,y) %>% summarize(n = n())
getOddsRation(dmx,poutcome)
#Odds ration for Job
bd = bankdata[,c('y','job')]
dmx = bd %>% group_by(job,y) %>% summarize(n = n())
getOddsRation(dmx,job)
#Odds ration for emp.var.rate
distinct(bankdata, bankdata$emp.var.rate)
dmx = bankdata %>% group_by(emp.var.rate) %>% count(y)
getOddsRation(dmx,emp.var.rate)
```

LDA Code

```
pred <-relevel(pred, ref = "yes")</pre>
Truth<-test$y
#table(pred)
x<-as.matrix(table(pred,Truth)) # Creating a confusion matrix
CM = confusionMatrix(x)
CM
## ROC curve for LDA train set
pred.lda <- predict(mylda, newdata = train)</pre>
lda.preds <- pred.lda$posterior
lda.preds <- as.data.frame(lda.preds)
lda.pred <- prediction(lda.preds[,2],train$y)</pre>
lda.roc.perf = performance(lda.pred, measure = "fnr", x.measure = "tnr")
lda.auc.train <- performance(lda.pred, measure = "auc")
lda.auc.train <- lda.auc.train@y.values
plot(lda.roc.perf)
abline(a=0, b= 1)
text(x = .40, y = .6,paste("AUC = ", 1 -round(lda.auc.train[[1]],3), sep = ""))
plot(lda.roc.perf, colorize = TRUE)
# ROC curve for LDA using test set
pred.ldat <- predict(mylda, newdata = test)</pre>
predst <- pred.ldat$posterior
predst <- as.data.frame(predst)
predt <- prediction(predst[,2],test$y)</pre>
roc.perft = performance(predt, measure = "fnr", x.measure = "tnr")
auc.traint <- performance(predt, measure = "auc")</pre>
auc.traint <- auc.traint@y.values
#plot(roc.perft)
\#abline(a=0, b=1)
plot(roc.perft,col="orange")
abline(a=0, b= 1)
text(x = .40, y = .6, paste("AUC = ", 1 - round(auc.traint[[1]], 3), sep = ""))
\#\text{text}(x = .40, y = .6, \text{paste}(\text{"AUC} = \text{", round}(\text{auc.traint}[[1]], 3), \text{sep} = \text{""}))
plot( roc.perft, colorize = TRUE)
#######End LDA###############
```

Random Forest Code

```
######Random Forest
train.rf<-randomForest(y~.,data=train,mtry=11,ntree=500,importance=T)
#rf.fit.pred<-data.frame(predict(train.rf,newdata=train,type="prob"))</pre>
#fit.pred = fit.pred %>% mutate(pred = ifelse(yes>0.3, "yes", "no"))
######ROC On test set
rf.fit.pred<-data.frame(predict(train.rf,newdata=test,type="prob"))
#fit.pred = fit.pred %>% mutate(pred = ifelse(yes>0.3, "yes", "no"))
rf.pred <- prediction(rf.fit.pred$yes, test$y)
rf.roc.perf = performance(rf.pred, measure = "tpr", x.measure = "fpr")
rf.auc.train <- performance(rf.pred, measure = "auc")
rf.auc.train <- rf.auc.train@y.values
plot(rf.roc.perf)
abline(a=0, b= 1)
text(x = .40, y = .6, paste("AUC = ", round(rf.auc.train[[1]], 3), sep = ""))
plot(rf.roc.perf, colorize = TRUE)
#########Predict RM
#prediction on test
rf.fit.pred<-data.frame(predict(train.rf,newdata=test,type="prob"))
rf.fit.pred = rf.fit.pred %>% mutate(pred = ifelse(yes >0.2, "yes", "no"))
table(rf.fit.pred$pred)
p = as.factor(rf.fit.pred$pred)
p <-relevel(p, ref = "yes")
Truth<-test$y
x = as.matrix(table(p,Truth))
CM = confusionMatrix(x)
```

Code LR I & II Feature Selection

```
####Simple LR using Lasso feature selection and simple model I
lasso1.dat.train.y<-train[,c("y")]</pre>
lasso1.dat.train.x <- model.matrix(v~..train)
lasso1.cvfit <- cv.glmnet(lasso1.dat.train.x, lasso1.dat.train.y, family = "binomial", type.measure = "class", nlambda =
1000)
plot(lasso1.cvfit)
#Optimal penalty
lasso1.cvfit$lambda.min
coef(lasso1.cvfit)
#based on coefficients and EDA we keep only required varibles(remove dayswk)
lasso1.dat.train.x <- model.matrix(y~job+education+default+month+duration+pdays+poutcome+emp.var.rate
               +cons.conf.idx+nr.employed,train)
lasso.final.cvfit <- cv.glmnet(lasso1.dat.train.x, lasso1.dat.train.y, family = "binomial", type.measure = "class", nlambda =
1000)
plot(lasso.final.cvfit)
#Optimal penalty
lasso.final.cvfit$lambda.min
coef(lasso.final.cvfit)
#Prediciton and ROC curve
#lasso.finalmodel<-glmnet(lasso1.dat.train.x, lasso1.dat.train.y, family = "binomial",lambda=cvfit$lambda.min)
#In addition to LASSO, if we are concerned that the biased estiamtes are affecting our model, we can go back and refit
using regular
#regression removing the variables that have no importance.
lassomodel2<-glm(y~job+education+default+month+duration+pdays+poutcome+emp.var.rate
         +cons.conf.idx+nr.employed,data=train,family=binomial)
(vif(lassomodel2)[,3])^2
summary(lassomodel2)
plot(lassomodel2)
lasso.finalmodel<-glm(y~job+education+default+month+lduration+pdays+poutcome+emp.var.rate
            +cons.conf.idx+nr.employed,data=train,family=binomial)
e = exp(cbind("Odds ratio" = coef(lasso.finalmodel), confint.default(lasso.finalmodel, level = 0.95)))
write.csv(e, "output.csv", row.names = TRUE)
####Lack of fit test
hoslem.test(lasso.finalmodel$y, fitted(lasso.finalmodel), g=10)
e = summary(lasso.finalmodel)
write.csv(e$coefficients, "output.csv", row.names = TRUE)
coef(lasso.finalmodel)
plot(lasso.finalmodel)
# with Iduration
#Get training set predictions...We know they are biased but lets create ROC's.
#These are predicted probabilities from logistic model exp(b)/(1+exp(b))
lasso.fit.pred <- data.frame(predict(lasso.finalmodel, newdx = lasso1.dat.train.x, type = "response"))
#Create ROC curves (Remember if you have a test data set, you can use that to compare models)
lasso.pred <- prediction(lasso.fit.pred[,1], train$y)</pre>
lasso.roc.perf = performance(lasso.pred, measure = "fnr", x.measure = "tnr")
lasso.auc.train <- performance(lasso.pred, measure = "auc")
lasso.auc.train <- lasso.auc.train@y.values
#Plot ROC for train (we will remove it)
plot(lasso.roc.perf,main="LASSO")
abline(a=0, b= 1) #Ref line indicating poor performance
text(x = .40, y = .6, paste("AUC = ", 1 - round(lasso.auc.train[[1]], 3), sep = ""))
```

```
## Do same for test
lasso.fit.pred <- data.frame(predict(lasso.finalmodel, newdata = test, type = "response"))
lasso.pred <- prediction(lasso.fit.pred[,1], test$y)</pre>
lasso.roc.perf = performance(lasso.pred, measure = "fnr", x.measure = "tnr")
lasso.auc.train <- performance(lasso.pred, measure = "auc")
lasso.auc.train <- lasso.auc.train@y.values
plot(lasso.roc.perf,main="LASSO")
abline(a=0, b= 1) #Ref line indicating poor performance
text(x = .40, y = .6,paste("AUC = ", 1 -round(lasso.auc.train[[1]],3), sep = ""))
plot( lasso.roc.perf, colorize = TRUE)
#prediction on test
#lasso.fit.pred
lasso.fit.pred = lasso.fit.pred %>% mutate(pred = ifelse(lasso.fit.pred <0.8, "yes", "no"))
table(lasso.fit.pred$pred)
p = as.factor(lasso.fit.pred$pred)
p <-relevel(p, ref = "yes")
Truth<-test$y
x = as.matrix(table(p,Truth))
CM = confusionMatrix(x)
CM
########Complex LR model
lr.complex.finalmodel<- glm(y~ contact + month*day_of_week + age*duration + campaign + pdays +
           emp.var.rate*cons.price.idx + cons.conf.idx + euribor3m + log(nr.employed), data=train, family=binomial)
lr.complex.fit.pred <- data.frame(predict(lr.complex.finalmodel, newdata = test, type = "response"))
lr.complex.pred <- prediction(lr.complex.fit.pred[,1], test$y)</pre>
lr.complex.roc.perf = performance(lr.complex.pred, measure = "fnr", x.measure = "tnr")
lr.complex.auc.train <- performance(lr.complex.pred, measure = "auc") lr.complex.auc.train <- lr.complex.auc.train@y.values
plot(lr.complex.roc.perf,main="LASSO")
abline(a=0, b= 1) #Ref line indicating poor performance
text(x = .40, y = .6, paste("AUC = ", 1 - round(lr.complex.auc.train[[1]], 3), sep = ""))
plot( lr.complex.roc.perf, colorize = TRUE)
#prediction on test
lr.complex.fit.pred = lr.complex.fit.pred %>% mutate(pred = ifelse(lr.complex.fit.pred <0.7, "yes", "no"))
table(lr.complex.fit.pred$pred)
p = as.factor(lr.complex.fit.pred$pred)
p <-relevel(p, ref = "yes")
Truth<-test$y
x = as.matrix(table(p,Truth))
CM = confusionMatrix(x)
CM
###Comparative ROC curve
plot(lda.roc.perf)
plot(lasso.roc.perf,col="orange", add = TRUE)
plot(rf.roc.perf,col="red", add = TRUE)
plot(lr.complex.roc.perf,col="blue", add = TRUE)
rfauc = round(rf.auc.train[[1]],3)
rflabel = paste("RF:", rfauc)
ldaauc = 1 - round(lda.auc.train[[1]],3)
ldalabel = paste("LDA:" , ldaauc)
lassoauc = 1 -round(lasso.auc.train[[1]],3)
lassolabel = paste("LR I:" , lassoauc)
lassoauc2 = 1 -round(lr.complex.auc.train[[1]],3)
lassolabel2 = paste("LR II:", lassoauc2)
legend("bottomright",legend=c(ldalabel,lassolabel, lassolabel2, rflabel),col=c("black","orange","blue","red"),lty=1,lwd=1)
abline(a=0, b= 1)
```