

Five separate force-couple systems act at the corners of a metal block, which has been machined into the shape shown. Determine which of these systems is equivalent to a force $\mathbf{F} = (10 \text{ N})\mathbf{j}$ and a couple of moment $\mathbf{M} = (6 \text{ N} \cdot \text{m})\mathbf{i} + (4 \text{ N} \cdot \text{m})\mathbf{k}$ located at point A.

SOLUTION

The equivalent force-couple system at *A* for each of the five force-couple systems will be determined. Each will then be compared to the given force-couple system to determine if they are equivalent.

Force-couple system at B

Have
$$\Sigma \mathbf{F}$$
: $(10 \text{ N})\mathbf{j} = \mathbf{F}$

or
$$\mathbf{F} = (10 \text{ N})\mathbf{j}$$

and
$$\Sigma \mathbf{M}_A$$
: $\Sigma \mathbf{M}_B + (\mathbf{r}_{B/A} \times \mathbf{F}) = \mathbf{M}$

$$(4 \text{ N} \cdot \text{m})\mathbf{i} + (2 \text{ N} \cdot \text{m})\mathbf{k} + (0.2 \text{ m})\mathbf{i} \times (10 \text{ N})\mathbf{j} = \mathbf{M}$$

$$\mathbf{M} = (4 \, \mathbf{N} \cdot \mathbf{m})\mathbf{i} + (4 \, \mathbf{N} \cdot \mathbf{m})\mathbf{k}$$

Comparing to given force-couple system at A, Is Not Equivalent \triangleleft

Force-couple system at C

Have
$$\Sigma \mathbf{F}$$
: $(10 \text{ N})\mathbf{j} = \mathbf{F}$

or
$$\mathbf{F} = (10 \text{ N})\mathbf{j}$$

and
$$\Sigma \mathbf{M}_A$$
: $\mathbf{M}_C + (\mathbf{r}_{C/A} \times \mathbf{F}) = \mathbf{M}$

$$(8.5 \text{ N} \cdot \text{m})\mathbf{i} + [(0.2 \text{ m})\mathbf{i} + (0.25 \text{ m})\mathbf{k}] \times (10 \text{ N})\mathbf{j} = \mathbf{M}$$

 $\mathbf{M} = (6 \text{ N} \cdot \text{m})\mathbf{i} + (2.0 \text{ N} \cdot \text{m})\mathbf{k}$

Comparing to given force-couple system at *A*,

Is Not Equivalent

PROBLEM 3.101 CONTINUED

Force-couple system at E

Have
$$\Sigma \mathbf{F}$$
: $(10 \text{ N})\mathbf{j} = \mathbf{F}$

or
$$\mathbf{F} = (10 \text{ N})\mathbf{j}$$

and
$$\Sigma M_A$$
: $\mathbf{M}_E + (\mathbf{r}_{E/A} \times \mathbf{F}) = \mathbf{M}$

$$\left(6\;N\!\cdot\!m\right)\!\mathbf{i} + \left[\left(0.4\;m\right)\!\mathbf{i} - \left(0.08\;m\right)\!\mathbf{j}\right] \times \left(10\;N\right)\!\mathbf{j} = \mathbf{M}$$

$$\mathbf{M} = (6 \,\mathrm{N} \cdot \mathrm{m})\mathbf{i} + (4 \,\mathrm{N} \cdot \mathrm{m})\mathbf{k}$$

Comparing to given force-couple system at A,

Is Equivalent ◀

Force-couple system at G

$$\Sigma \mathbf{F}$$
: $(10 \text{ N})\mathbf{i} + (10 \text{ N})\mathbf{j} = \mathbf{F}$

$$\mathbf{F} = (10 \text{ N})\mathbf{i} + (10 \text{ N})\mathbf{j}$$

F has two force components

 \therefore force-couple system at G

Is Not Equivalent ◀

Force-couple system at I

Have

$$\Sigma \mathbf{F}$$
: $(10 \text{ N})\mathbf{j} = \mathbf{F}$

or

$$\mathbf{F} = (10 \text{ N})\mathbf{j}$$

and

$$\Sigma \mathbf{M}_A$$
: $\Sigma \mathbf{M}_I + (\mathbf{r}_{I/A} \times \mathbf{F}) = \mathbf{M}$

$$(10 \text{ N} \cdot \text{m})\mathbf{i} - (2 \text{ N} \cdot \text{m})\mathbf{k}$$

$$+\lceil (0.4 \text{ m})\mathbf{i} - (0.2 \text{ m})\mathbf{j} + (0.4 \text{ m})\mathbf{k} \rceil \times (10 \text{ N})\mathbf{j} = \mathbf{M}$$

or

$$\mathbf{M} = (6 \,\mathrm{N} \cdot \mathrm{m})\mathbf{i} + (2 \,\mathrm{N} \cdot \mathrm{m})\mathbf{k}$$

Comparing to given force-couple system at A,

Is Not Equivalent◀

The masses of two children sitting at ends A and B of a seesaw are 38 kg and 29 kg, respectively. Where should a third child sit so that the resultant of the weights of the three children will pass through C if she has a mass of (a) 27 kg, (b) 24 kg.

SOLUTION

$$W_A = m_A g = (38 \text{ kg})g$$

$$W_B = m_B g = (29 \text{ kg})g$$

$$W_C = m_C g = (27 \text{ kg})g$$

For resultant weight to act at C,

$$\Sigma M_C = 0$$

Then
$$[(38 \text{ kg})g](2 \text{ m}) - [(27 \text{ kg})g](d) - [(29 \text{ kg})g](2 \text{ m}) = 0$$

$$d = \frac{76 - 58}{27} = 0.66667 \text{ m}$$

or d = 0.667 m

$$(b) W_C = m_C g = (24 \text{ kg})g$$

For resultant weight to act at *C*,

$$\Sigma M_C = 0$$

Then
$$[(38 \text{ kg})g](2 \text{ m}) - [(24 \text{ kg})g](d) - [(29 \text{ kg})g](2 \text{ m}) = 0$$

$$d = \frac{76 - 58}{24} = 0.75 \text{ m}$$

or d = 0.750 m

Three stage lights are mounted on a pipe as shown. The mass of each light is $m_A = m_B = 1.8 \text{ kg}$ and $m_C = 1.6 \text{ kg}$. (a) If d = 0.75 m, determine the distance from D to the line of action of the resultant of the weights of the three lights. (b) Determine the value of d so that the resultant of the weights passes through the midpoint of the pipe.

SOLUTION

First

$$W_A = W_B = m_A g = (1.8 \text{ kg})g$$

$$W_C = m_C g = (1.6 \text{ kg})g$$

$$d = 0.75 \text{ m}$$

$$R = W_A + W_B + W_C$$

$$R = \left[(1.8 + 1.8 + 1.6) \text{kg} \right] g$$

or

$$\mathbf{R} = (5.2g) \,\mathrm{N} \downarrow$$

Have

$$\Sigma M_D$$
: $-1.8g(0.3 \text{ m}) - 1.8g(1.3 \text{ m}) - 1.6g(2.05 \text{ m}) = -5.2g(D)$

$$D = 1.18462 \text{ m}$$

or D = 1.185 m

$$D = \frac{L}{2} = 1.25 \text{ m}$$

Have

$$\Sigma M_D$$
: $-(1.8g)(0.3 \text{ m}) - (1.8g)(1.3 \text{ m}) - (1.6g)(1.3 \text{ m} + d)$
= $-(5.2g)(1.25 \text{ m})$

$$d = 0.9625 \text{ m}$$

or $d = 0.963 \,\text{m}$

Three hikers are shown crossing a footbridge. Knowing that the weights of the hikers at points C, D, and E are 800 N, 700 N, and 540 N, respectively, determine (a) the horizontal distance from A to the line of action of the resultant of the three weights when a = 1.1 m, (b) the value of a so that the loads on the bridge supports at A and B are equal.

SOLUTION

(a) a = 1.1 m

Have $\Sigma F: -W_C - W_D - W_E = R$

$$\therefore R = -800 \text{ N} - 700 \text{ N} - 540 \text{ N}$$

$$R = 2040 \text{ N}$$

or $\mathbf{R} = 2040 \text{ N} \downarrow$

Have

$$\Sigma M_A$$
: $-(800 \text{ N})(1.5 \text{ m}) - (700 \text{ N})(2.6 \text{ m}) - (540 \text{ N})(4.25 \text{ m})$
= $-R(d)$

$$\therefore$$
 -5315 N·m = -(2040 N)d

and
$$d = 2.6054 \text{ m}$$

or d = 2.61 m to the right of $A \triangleleft$

(b) For equal reaction forces at A and B, the resultant, \mathbf{R} , must act at the center of the span.

From $\Sigma M_A = -R\left(\frac{L}{2}\right)$

$$-(800 \text{ N})(1.5 \text{ m}) - (700 \text{ N})(1.5 \text{ m} + a) - (540 \text{ N})(1.5 \text{ m} + 2.5a)$$
$$= -(2040 \text{ N})(3 \text{ m})$$

$$3060 + 2050a = 6120$$

and
$$a = 1.49268 \text{ m}$$

or $a = 1.493 \,\text{m}$

Gear C is rigidly attached to arm AB. If the forces and couple shown can be reduced to a single equivalent force at A, determine the equivalent force and the magnitude of the couple M.

SOLUTION

For equivalence

$$\Sigma F_x$$
: $-(90 \text{ N})\sin 30^\circ + (125 \text{ N})\cos 40^\circ = R_x$

or $R_x = 50.756 \text{ N}$

$$\Sigma F_{v}$$
: $-(90 \text{ N})\cos 30^{\circ} - 200 \text{ N} - (125 \text{ N})\sin 40^{\circ} = R_{v}$

or $R_y = -358.29 \text{ N}$

Then
$$R = \sqrt{(50.756)^2 + (-358.29)^2} = 361.87 \text{ N}$$

and
$$\tan \theta = \frac{R_y}{R_x} = \frac{-358.29}{50.756} = -7.0591$$
 $\therefore \theta = -81.937^{\circ}$

or **R** = $362 \text{ N} \le 81.9^{\circ} \blacktriangleleft$

Also

$$\Sigma M_A$$
: $M - [(90 \text{ N})\sin 35^\circ](0.6 \text{ m}) - [(200 \text{ N})\cos 25^\circ](0.85 \text{ m}) - [(125 \text{ N})\sin 65^\circ](1.25 \text{ m}) = 0$

$$\therefore M = 326.66 \text{ N} \cdot \text{m}$$

or $M = 327 \text{ N} \cdot \text{m} \blacktriangleleft$

To test the strength of a 25×20 -in suitcase, forces are applied as shown. If P = 18 lb, (a) determine the resultant of the applied forces, (b) locate the two points where the line of action of the resultant intersects the edge of the suitcase.

SOLUTION

(a) P = 18 lb

Have

$$\Sigma \mathbf{F}$$
: $-(20 \text{ lb})\mathbf{i} + \frac{42 \text{ lb}}{\sqrt{13}}(-3\mathbf{i} + 2\mathbf{j}) + (18 \text{ lb})\mathbf{j} + (36 \text{ lb})\mathbf{i} = R_x \mathbf{i} + R_y \mathbf{j}$

:.
$$-(18.9461 \text{ lb})\mathbf{i} + (41.297 \text{ lb})\mathbf{j} = R_x \mathbf{i} + R_y \mathbf{j}$$

or

$$\mathbf{R} = -(18.95 \text{ lb})\mathbf{i} + (41.3 \text{ lb})\mathbf{j}$$

$$R = \sqrt{R_x^2 + R_y^2} = \sqrt{(18.9461)^2 + (41.297)^2} = 45.436 \text{ lb}$$

$$\theta_x = \tan^{-1} \left(\frac{R_y}{R_x} \right) = \tan^{-1} \left(\frac{41.297}{-18.9461} \right) = -65.355^{\circ}$$

or **R** = $45.4 \text{ lb} \le 65.4^{\circ} \blacktriangleleft$

(b) Have

$$\Sigma \mathbf{M}_{R} = \mathbf{M}_{R}$$

$$\mathbf{M}_{B} = (4 \text{ in.})\mathbf{j} \times (-20 \text{ lb})\mathbf{i} + (21 \text{ in.})\mathbf{i} \times \left[\frac{42 \text{ lb}}{\sqrt{13}}(-3\mathbf{i} + 2\mathbf{j})\right] + (12 \text{ in.})\mathbf{j} \times (36 \text{ lb})\mathbf{i} + (3 \text{ in.})\mathbf{i} \times (18 \text{ lb})\mathbf{j}$$

$$\therefore \mathbf{M}_B = (191.246 \text{ lb} \cdot \text{in.}) \mathbf{k}$$

PROBLEM 3.106 CONTINUED

$$\mathbf{M}_B = \mathbf{r}_B \times \mathbf{R}$$

$$\therefore (191.246 \text{ lb} \cdot \text{in.})\mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & 0 \\ -18.9461 & 41.297 & 0 \end{vmatrix} = (41.297x + 18.9461y)\mathbf{k}$$

$$y = 0$$
, $x = \frac{191.246}{41.297} = 4.6310$ in.

or
$$x = 4.63$$
 in.

$$x = 0$$
, $y = \frac{191.246}{18.9461} = 10.0942$ in.

or
$$y = 10.09 \text{ in.} \blacktriangleleft$$

Solve Problem 3.106 assuming that P = 28 lb.

Problem 3.106: To test the strength of a 25×20 -in suitcase, forces are applied as shown. If P = 18 lb, (a) determine the resultant of the applied forces, (b) locate the two points where the line of action of the resultant intersects the edge of the suitcase.

SOLUTION

(a) P = 28 lb

$$\Sigma \mathbf{F}$$
: $-(20 \text{ lb})\mathbf{i} + \frac{42}{\sqrt{13}}(-3\mathbf{i} + 2\mathbf{j}) + (28 \text{ lb})\mathbf{j} + (36 \text{ lb})\mathbf{i} = R_x\mathbf{i} + R_y\mathbf{j}$

$$\therefore -(18.9461 \text{ lb})\mathbf{i} + (51.297 \text{ lb})\mathbf{j} = R_x \mathbf{i} + R_y \mathbf{j}$$

or

$$\mathbf{R} = -(18.95 \text{ lb})\mathbf{i} + (51.3 \text{ lb})\mathbf{j}$$

$$R = \sqrt{R_x^2 + R_y^2} = \sqrt{(18.9461)^2 + (51.297)^2} = 54.684 \text{ lb}$$

$$\theta_x = \tan^{-1} \left(\frac{R_y}{R_x} \right) = \tan^{-1} \left(\frac{51.297}{-18.9461} \right) = -69.729^{\circ}$$

or **R** = $54.7 \text{ lb} \le 69.7^{\circ} \blacktriangleleft$

(b) Have

$$\Sigma \mathbf{M}_{R} = \mathbf{M}_{R}$$

$$\mathbf{M}_{B} = (4 \text{ in.})\mathbf{j} \times (-20 \text{ lb})\mathbf{i} + (21 \text{ in.})\mathbf{i} \times \left[\frac{42 \text{ lb}}{\sqrt{13}}(-3\mathbf{i} + 2\mathbf{j})\right] + (12 \text{ in.})\mathbf{j} \times (36 \text{ lb})\mathbf{i} + (3 \text{ in.})\mathbf{i} \times (28 \text{ lb})\mathbf{j}$$

$$\therefore \mathbf{M}_B = (221.246 \text{ lb} \cdot \text{in.}) \mathbf{k}$$

PROBLEM 3.107 CONTINUED

Since

$$\mathbf{M}_B = \mathbf{r}_B \times \mathbf{R}$$

$$\therefore (221.246 \text{ lb} \cdot \text{in.})\mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & 0 \\ -18.9461 & 51.297 & 0 \end{vmatrix} = (51.297x + 18.9461y)\mathbf{k}$$

For

$$y = 0$$
, $x = \frac{221.246}{51.297} = 4.3130$ in.

or $x = 4.31 \text{ in.} \blacktriangleleft$

For

$$x = 0$$
, $y = \frac{221.246}{18.9461} = 11.6776$ in.

or $y = 11.68 \text{ in.} \blacktriangleleft$