

CONTROL ID: 947725

TITLE: Atmospheric Airborne Pressure Measurements using the Oxygen A Band for the ASCENDS Mission

PRESENTATION TYPE: Assigned by Committee (Oral or Poster)

CURRENT SECTION/FOCUS GROUP: Atmospheric Sciences (A)

CURRENT SESSION: A35. Greenhouse Gas Measurements Using Active Optical Remote Sensing

AUTHORS (FIRST NAME, LAST NAME): Haris Riris¹, Mike Rodriguez², Mark Stephen¹, William Hasselbrack², Graham Allan², Jianping Mao³, Stephan R Kawa¹, Clark j Weaver³

INSTITUTIONS (ALL): 1. GSFC, Greenbelt, MD, United States.

2. Sigma Space, Lanham, MD, United States.

3. UMBC, Baltimore, MD, United States.

Title of Team:

ABSTRACT BODY: We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO₂ Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO₂ on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change.

The ultimate goal of a CO₂ remote sensing mission, such as ASCENDS, is to derive the CO₂ concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air.

Therefore, both CO₂ and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O₂ is a stable molecule and uniformly mixed in the atmosphere. Measuring the O₂ absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO₂ concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO₂ retrievals.

Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O₂ absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O₂ absorptions in the Oxygen A-band. Our retrieval algorithm fits the O₂ lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

INDEX TERMS: [0300] ATMOSPHERIC COMPOSITION AND STRUCTURE, [0350] ATMOSPHERIC COMPOSITION AND STRUCTURE / Pressure, density, and temperature, [0322] ATMOSPHERIC COMPOSITION AND STRUCTURE / Constituent sources and sinks.

(No Table Selected)

(No Image Selected)