Practice: Gamma distribution as Exponential Family

1/1 point (graded)

Recall from the slides that the Gamma distribution can be reparameterized using the two parameters a, the shape parameter, and μ , the mean. The pdf looks like

$$f_{(a,\mu)}\left(y
ight) \;=\; rac{1}{\Gamma\left(a
ight)}igg(rac{a}{\mu}igg)^a\,y^{a-1}\,e^{-rac{ay}{\mu}}$$

Let $m{ heta} = m{a} \choose {\mu}$ and rewrite this as the pdf of a **2**-parameter exponential family. Enter $m{\eta} \left(m{ heta} \right) \cdot \mathbf{T} \left(\mathbf{y} \right)$ below.

$$\boldsymbol{\eta}\left(\boldsymbol{\theta}\right)\cdot\mathbf{T}\left(\mathbf{y}\right)=$$

$$(a-1)*ln(y)-a/mu*y$$

✓ Answer: -a*y/mu+(a-1)*ln(y)

STANDARD NOTATION

Solution:

$$egin{aligned} f_{(a,\mu)}\left(y
ight) &=& rac{1}{\Gamma\left(a
ight)}igg(rac{a}{\mu}igg)^a\,y^{a-1}\,e^{-rac{ay}{\mu}} \ &=& \exp\left(\left(-rac{ay}{\mu}+\left(a-1
ight)\ln\left(y
ight)
ight)+\left(a\ln\left(rac{a}{\mu}
ight)-\ln\left(\Gamma\left(a
ight)
ight)
ight) \end{aligned}$$

Hence, we have
$$m{\eta}\left(m{ heta}
ight)\cdot\mathbf{T}\left(\mathbf{y}
ight)=\left(-rac{ay}{\mu}+\left(a-1
ight)\ln\left(y
ight)
ight),$$
 where possibly $m{\eta}=\left(egin{array}{c} -rac{a}{\mu} \\ a-1 \end{array}
ight)$ and

 $\mathbf{T}(\mathbf{y}) = \begin{pmatrix} y \\ \ln{(y)} \end{pmatrix}$. Here, $m{\eta}$ and \mathbf{T} are not unique since we can multiple $m{\eta}$ by an overall scalar and divide \mathbf{T} by the same.

On the other hand, $B\left(oldsymbol{ heta}
ight) = -\left(a\ln\left(rac{a}{\mu}
ight) - \ln\left(\Gamma\left(a
ight)
ight)
ight)$.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem