Support Vector Machines, Constrained Optimization

CSci 5525: Machine Learning

Instructor: Paul Schrater

Linear SVM

- Distance of central hyperplane from origin $= \frac{|b|}{\|\mathbf{w}\|}$
- \bullet Distance of parallel hyperplanes are $\frac{|b-1|}{\|\mathbf{w}\|}$ and $\frac{|b+1|}{\|\mathbf{w}\|}$
- Distance between hyperplanes = $\frac{2}{\|\mathbf{w}\|}$
- Main Idea:

Choose w to maximize class separation

Linear SVM: Separable Case

The Main Idea can be formulated as

$$\min \ \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{such that} \quad y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, \forall i$$

- The choice of "1" as a constant is wlog
 - Any other choice can be reduced to the above form
- The main problem is a "quadratic program"
 (∀ : for all, ∃: there exists, wlog: without loss of generality)

Linear SVM: Non-Separable Case

Linear SVM: Non-Separable Case

- Separability assumption: $\exists \mathbf{w}, \forall i \ y_i(\mathbf{w}^T\mathbf{x}_i + b) \geq 1$
- If not true, the problem formulation is infeasible
- For the general case, we will introduce slack variables

$$y_i(\mathbf{w}^T\mathbf{x}_i+b) \geq 1-\xi_i, \ \xi_i \geq 0, \forall i$$

- Note that $\sum_{i} \xi_{i}$ is an upper bound on the training error
- In general, the problem can be formulated as

$$\min \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i$$
 such that $y_i f(\mathbf{x}_i) \ge 1 - \xi_i, \xi_i \ge 0$

Perspective: constrained optimization

SVM loss, Revisited

- The prediction $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$
- The (primal) non-separable case

$$\min_{\mathbf{w},\{\xi_i\}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i \right\} \text{ such that } y_i f(\mathbf{x}_i) \ge 1 - \xi_i, \xi_i \ge 0$$

Alternative viewpoint as a regularized hinge loss

$$\min_{\mathbf{w}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i f(\mathbf{x}_i)\} + \lambda \|\mathbf{w}\|^2 \right\}$$

- Regularized loss minimization with two terms
 - First term: Margin loss on the training set
 - Second term: Regularization
- Perspective: unconstrained "non-smooth" optimization

The Hinge Loss

• The goal is to minimize

$$\min_{\mathbf{w}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i f(\mathbf{x}_i)\} + \lambda \|\mathbf{w}\|^2 \right\}$$

• The hinge-loss:
$$h(\mathbf{x}_i, y_i, f) = \max\{0, 1 - y_i f(\mathbf{x}_i)\}$$

Upper Bounds on Training Error

- SVM maximizes minimum margin
- ullet SVM is a L_2 regularized fit using hinge loss
- Logistic and Hinge losses are very similar

Constrained Optimization

The equality & inequality constrained optimization problem

minimize
$$f(\mathbf{x})$$

subject to $h_i(\mathbf{x}) = 0$ $i = 1, ..., m$
 $g_j(\mathbf{x}) \le 0$ $j = 1, ..., n$

- Domain $\mathcal{D} = \operatorname{dom}(f) \cap \bigcap_{i=1}^m \operatorname{dom}(h_i) \cap \bigcap_{j=1}^n \operatorname{dom}(g_j)$
- Called the "primal" or primal problem
- Feasible set $\mathcal{F} \subseteq \mathcal{D}$: $\mathbf{x} \in \mathcal{F}$ satisfies $h_i(\mathbf{x}) = 0, g_j(\mathbf{x}) \leq 0$
- The Lagrangian

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \boldsymbol{\lambda}^{T} h(\mathbf{x}) + \boldsymbol{\nu}^{T} g(\mathbf{x})$$
$$= f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i} h_{i}(\mathbf{x}) + \sum_{j=1}^{n} \nu_{j} g_{j}(\mathbf{x})$$

- Domain dom $(L) = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^n$
- $\{\lambda_i\}_{i=1}^m, \{\nu_j\}_{j=1}^n$ are the Lagrange multipliers

Background: Convex Functions

• f is convex if $\forall x_1, x_2 \in dom(f), \forall t \in [0, 1]$

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

If f is differentiable, then

$$f(x_1) \ge f(x_2) + (x_1 - x_2)^T \nabla f(x_2)$$

- Examples: $f(x) = \frac{1}{2}||x||_2^2$, $f(x) = -\log x$, $f(x) = ||x||_1$
- f is concave if -f is convex

Lagrange Dual

The Lagrange dual function

$$L^*(\lambda, \nu) = \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \lambda, \nu)$$

$$= \inf_{\mathbf{x} \in \mathcal{D}} \left(f(\mathbf{x}) + \sum_{i=1}^m \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^n \nu_j g_j(\mathbf{x}) \right)$$

- Let p^* be the constrained optimum of f(x)
- The Lagrange dual L^* is
 - A concave function, even when original problem is not convex
 - A lower bound to the optimum p*:

$$L^*(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq p^*$$
, $\forall \boldsymbol{\nu} \geq 0$

• How close is the maximum of $L^*(\lambda, \nu)$ to p^* ?

Lagrange Dual: Concave, Lower Bound to Primal

- $L^*(\lambda, \nu)$ is a concave function
 - Consider a function

$$\eta^*(\mathbf{v}) = \sup_{\mathbf{x} \in \mathcal{D}} \left(\langle \mathbf{v}, \phi(\mathbf{x}) \rangle - f(\mathbf{x}) \right)$$

- Vectors $\mathbf{v} = [\lambda \quad \nu]$ and $\phi(\mathbf{x}) = [-\mathbf{h}(\mathbf{x}) \quad -\mathbf{g}(\mathbf{x})]$
- Then, $\eta^*(\mathbf{v})$ is always convex: sup of affine functions
- Hence, $L^*(\boldsymbol{\lambda}, \boldsymbol{
 u}) = -\eta^*(\mathbf{v})$ is concave
- Lower bound: for $\nu \geq 0$, $L^*(\lambda, \nu) \leq \rho^*$
 - When **x** is feasible, i.e., $\mathbf{x} \in \mathcal{F}$, $h_i(\mathbf{x}) = 0, g_i(\mathbf{x}) \leq 0$
 - When $\mathbf{x} \in \mathcal{F}$, since $\nu_j \geq 0$

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^{n} \nu_j g_j(\mathbf{x}) \leq f(\mathbf{x})$$

 $\bullet \ \ \mathsf{When} \ \mathbf{x} \in \mathcal{D} \mathsf{, \ since} \ \mathcal{F} \subseteq \mathcal{D}$

$$\inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \lambda, \nu) \leq \inf_{\mathbf{x} \in \mathcal{F}} L(\mathbf{x}, \lambda, \nu) \leq \inf_{\mathbf{x} \in \mathcal{F}} f(\mathbf{x}) = p^*$$

• As a result: $L^*(\lambda, \nu) \leq p^*$

Example: Quadratic Problems with equality constraints

minimize
$$\mathbf{x}^T \mathbf{x}$$
 subject to $A\mathbf{x} = b$

- Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\lambda}^T (A\mathbf{x} b)$
- Recall that $L^*(\lambda) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda)$
- Setting gradient to 0, $\mathbf{x} = -\frac{1}{2}A^T \lambda$
- Hence, the dual

$$L^*(\lambda) = L\left(-\frac{1}{2}A^T\lambda, \lambda\right) = -\frac{1}{4}\lambda^TAA^T\lambda - \lambda^Tb$$

• $L^*(\lambda)$ is a lower bounding concave function

Example: General Quadratic Programs

minimize
$$\mathbf{x}^T \mathbf{x}$$
 subject to $A\mathbf{x} \leq \mathbf{b}$

Lagrange dual

$$L^*(\boldsymbol{\nu}) = \inf_{\mathbf{x}} \left(\mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (A\mathbf{x} - \mathbf{b}) \right) = -\frac{1}{4} \boldsymbol{\nu}^T A A^T \boldsymbol{\nu} - b^T \boldsymbol{\nu}$$

Dual problem

maximize
$$-\frac{1}{4}\nu^T A A^T \nu - b^T \nu$$

subject to $\nu \ge 0$

The Lagrange Dual Problem

maximize
$$L^*(\lambda, \nu)$$
 subject to $\nu \geq 0$

- Best lower bound to p^* , the optimal of the primal
- ullet Concave optimization problem with maximum d^*
- ullet Constraints are $oldsymbol{
 u} \geq 0$ and $(oldsymbol{\lambda}, oldsymbol{
 u}) \in \mathsf{dom}(L^*)$
- For example, in quadratic programming

minimize
$$\mathbf{x}^T \mathbf{x}$$
 maximize $-\frac{1}{4} \boldsymbol{\lambda}^T A A^T \boldsymbol{\lambda} - b^T \boldsymbol{\lambda}$ subject to $A \mathbf{x} \leq \mathbf{b}$ subject to $\nu \geq 0$

Weak and Strong Duality

- Weak Duality: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms
- Strong Duality: $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if holds?
- Constraint Qualification
 - Normally true on convex problems
 - True if the convex problem is strictly feasible, e.g.,

```
\exists x \in \text{relint}(\mathcal{D}) s.t. Ax = b, g_j(x) < 0, for (non-affine) g_j
```

- Slater's Condition for strong duality
- Example: Quadratic programs

Complementary Slackness

ullet If strong duality holds, $oldsymbol{x}^*$ for primal, $(oldsymbol{\lambda}^*, oldsymbol{
u}^*)$ for dual

$$f(\mathbf{x}^*) = L^*(\lambda^*, \boldsymbol{\nu}^*) = \inf_{\mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* h_i(\mathbf{x}) + \sum_{j=1}^n \nu_j^* g_j(\mathbf{x}) \right)$$

$$\leq f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* h_i(\mathbf{x}^*) + \sum_{j=1}^n \nu_j^* g_j(\mathbf{x}^*)$$

$$\leq f(\mathbf{x}^*)$$

- The two inequalities must hold with equality
 - \mathbf{x}^* minimizes the Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$
 - $\nu_i^* g_j(\mathbf{x}^*) = 0$ for all $j = 1, \ldots, n$ so that

$$u_j^* > 0 \Rightarrow g_j(\mathbf{x}^*) = 0, \quad \text{and} \quad g_j(\mathbf{x}^*) < 0 \Rightarrow \nu_j^* = 0$$

Karush-Kuhn-Tucker (KKT) Conditions

Necessary conditions satisfied by any primal and dual optimal pairs $\tilde{\mathbf{x}}$ and $(\tilde{\lambda}, \tilde{\nu})$

• Primal Feasibility:

$$h_i(\tilde{\mathbf{x}}) = 0, i = 1, \dots, n, \quad g_j(\tilde{\mathbf{x}}) \leq 0, j = 1, \dots, m$$

Dual Feasibility:

$$\tilde{\nu}_j \geq 0, j = 1, \ldots, m$$

Complementary Slackness:

$$\tilde{\nu}_j g_j(\tilde{\mathbf{x}}) = 0, j = 1, \dots, m$$

Gradient condition:

$$\nabla f(\tilde{\mathbf{x}}) + \sum_{i=1}^{n} \tilde{\lambda}_{i} \nabla h_{i}(\tilde{\mathbf{x}}) + \sum_{j=1}^{m} \tilde{\nu}_{j} \nabla g_{j}(\tilde{\mathbf{x}}) = 0$$

• The conditions are <u>sufficient</u> for a convex problem

SVM Lagrange Dual: Separable Case

The Lagrangian

$$L([\mathbf{w} \ b], \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i} \alpha_i y_i (\mathbf{w}^T \mathbf{x}_i + b) + \sum_{i} \alpha_i$$

• Setting gradient w.r.t. $[\mathbf{w} \ b]$ to 0, we get

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \qquad \sum_{i} \alpha_{i} y_{i} = 0$$

ullet Substituting these back, we get the Lagrange dual $(lpha \geq 0)$

$$L^*(\alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$$

Constraints for the dual optimization

$$\alpha_i \geq 0, \forall i \\
\sum_i \alpha_i y_i = 0.$$

Learning and Prediction: Separable Case

ullet The Lagrange dual $(lpha \geq 0)$

$$L^*(\alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$$

• Recall complementary slackness $\alpha_i g_i(\mathbf{x}) = 0$ for $g_i(\mathbf{x}) \leq 0$

$$\alpha_i > 0 \Rightarrow y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$$

Otherwise $y_i(\mathbf{w}^T \mathbf{x}_i + b) > 1$

x_i is a support vectorx_i is not a support vector

- If $\alpha_i > 0$, the constraint holds with equality
- The resulting w is given by

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} = \sum_{i:\alpha_{i} > 0} \alpha_{i} y_{i} \mathbf{x}_{i}$$

- b can be obtained using complimentary slackness
- For any future point x, prediction is

$$sign(\mathbf{w}^T\mathbf{x} + b)$$

Linear SVM: Non-Separable Case

$$\min \frac{1}{2} \|\mathbf{w}\|^2 + C \sum \xi_i$$
 such that $y_i f(\mathbf{x}_i) \ge 1 - \xi_i, \xi_i \ge 0$

Lagrange Dual: Non-Separable Case

The Lagrangian

$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i - \sum_i \alpha_i (y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i) - \sum_i \mu_i \xi_i$$

• Setting gradient w.r.t. [**w** $b \xi$] to 0, we get

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \qquad \sum_{i} \alpha_{i} y_{i} = 0 \qquad 0 \leq \alpha_{i} \leq C$$

ullet Substituting, we get the Lagrange dual $(0 \leq lpha \leq \mathcal{C})$

$$L^*(\alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$$

• One additional set of box constraints on α_i

The KKT Conditions

• Primal feasibility:

$$y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) - 1 + \xi_i \ge 0$$

 $\xi_i \ge 0$

• Dual feasibility:

$$\alpha_i \geq 0$$
 $\mu_i \geq 0$

Complementary slackness:

$$\alpha_i(y_i(\mathbf{w}^T\mathbf{x}_i+b)-1+\xi_i)=0$$
$$\mu_i\xi_i=0$$

Gradient condition:

$$\mathbf{w} - \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} = 0$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} + \mu_{i} - C = 0$$

Prediction

- The set of support vectors have $\alpha_i > 0$
- The trained classifier has weight

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} = \sum_{i:\alpha_{i} > 0} \alpha_{i} y_{i} \mathbf{x}_{i}$$

- KKT conditions can be used to compute b
- The prediction on a new point x

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i:\alpha_i > 0} \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b$$

- The prediction is in terms of dot-products $\mathbf{x}_i^T \mathbf{x}$
- The dual was also in terms of dot-products $\mathbf{x}_i^T \mathbf{x}_j$

