Authentication

Prof. Dr. Helene Dörksen

helene.doerksen@th-owl.de

Current Information

Due to very important business trip

next week 28.06.2021 no lecture/exercises/labs

Learned before

Combinatorial Refinement of Feature Weighting for Linear Classification

$$h(x) = a_1x_1 + a_2x_2 + \dots + a_ix_i + a_{i+1}x_{i+1} + \dots + a_dx_d + c_h$$
 (I)

$$h(x) = \sum_{j \in I_1} a_j x_j + \sum_{j \in I_2} a_j x_j + c_h$$

$$\alpha \qquad \beta$$
(II)

Dimensionality Reduction: d summands \rightarrow 2 summands, but classification rules of (I) and (II) are equivalent!

Combination of classifiers:

Multiple Classifier: initial (linear) classifier h (in feature space x_1, \dots, x_d) and refinement (linear) classifier g (in feature space α, β)

We are able to improve accuracy without increasing complexity!

Lecture 10:

Margin-based Refinement for Support-Vector-Machine Classification

OUTLINE

- > Introduction
- > Approach
- > Experimental Results
- > Summary

INTRODUCTION

- Classification task
- Supervised / unsupervised learning
- Decision-making procedure
- Taxonomy

Wikipedia says: "...Taxonomy is the practice and science of classification... The word finds its roots in the Greek language τάξις, *taxis* (meaning 'order', 'arrangement') and νόμος, *nomos* ('law' or 'science')..."

Iris versicolor

Iris virginica

© palass.org

INTRODUCTION

Problem: poor generalisation of classification

Known: Input,
Information, Data,
Features...

Class, Cluster, Output, Knowledge, Decision,...

Unknown: Input, Information, Data, Features...

Application of Rules

Class, Cluster, Output, Knowledge, Decision,...

➤ The reason for poor generalisation might be e.g. incomplete training samples

poor generalisation:

MOTIVATION

We consider "poor generalisation" problem for incomplete/small training samples, because of at least 4 reasons:

- scientifically challenging problem
- > suitable to not well-balanced samples (high relations to reality)
- > industrially attractive for resource-efficient environments
- important for authentication task

PRELIMINARIES

Primary basics for **good generalisation** 1) of a classifier:

- > simple models (Occam's razor principle)
- > regularisation (e.g. large classification margin like SVM)

Secondary basics (methods) might be **good for generalisation** ¹⁾ of a classifier, e.g.:

- dimensionality reduction
- multiple classifier
- > ...

¹⁾ E. Alpaydın, Introduction to Machine Learning, 2nd ed. Cambridge: The MIT Press, 2010.

PRELIMINARIES

All features are **equally relevant** for the classification boundary calculation, **but**:

Principles of the **feature extraction** 1):

- > a helpful feature may be less relevant by itself;
- combination of individually irrelevant features may become relevant

¹⁾ I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing). Secaucus and NJ and USA: Springer-Verlag New York, Inc, 2006.

SUPPORT-VECTOR-MACHINE CLASSIFICATION

© google

© datascience.columbia.edu

Wikipedia says: "... As of February 2017, he has an *h-index* of 115 and, overall, his publications have been cited close to **180,000** times. His book on "Statistical Learning Theory" alone has been cited close to **60,000** times..."

"Very simple" geometrical interpretation:

- margin-based refinement means increasing generalisation by margin
- \succ steepness (absolute value of slope) of "line" is key factor for ρ_{ref}
- ➤ <u>infinitely</u> many "lines"!
- > why is it might work (especially well) for incomplete/small samples?
- how to select the right "line"?

Margin-based refinement considered as a special case of:

Combinatorial Refinement (ComRef)¹

- > a helpful summand may be less relevant by itself
- a fusion of individually irrelevant summands may become relevant

¹⁾ H. Dörksen and V. Lohweg, "Combinatorial Refinement of Feature Weighting for Linear Classification," in 19th IEEE Int. Conf. on Emerging Technologies and Factory Automation (ETFA 2014), 2014.

$$h(x) = \underbrace{a_1x_1 + a_2x_2 + \dots + a_i x_i}_{\text{fusion of summands}} + \underbrace{a_{i+1}x_{i+1} + \dots + a_d x_d}_{\text{fusion of summands}} + c_h \qquad (I)$$

$$\underbrace{1, \dots, i}_{i} \qquad \underbrace{i+1, \dots, d}_{j=i+1} \qquad \underbrace{\sum_{j=i+1}^{d} a_j x_j}_{j=i+1} + c_h \qquad (II)$$

$$h(x) = \underbrace{\sum_{j \in I_1} a_j x_j}_{j \in I_2} + \underbrace{\sum_{j \in I_2} a_j x_j}_{j=i+1} + c_h \qquad (II)$$

Dimensionality Reduction: d summands $\rightarrow 2$ summands, but classification rules of (I) and (II) are equivalent!

SVM for classes \square and \square of **SEEDS** 1): $h(x) = \sum_{i=1}^{a} a_i x_i + c_h \quad (d=7)$

classification rate of *h* for both reductions: **95**. **71**%

classification rate of *h* is 95.71%

classification rate of g: 96.43%

classification rate of g: 97.85%

- ComRef is able to increase generalisation ability
- ➤ Number of fusions of summands is <u>finite!</u>

$$\rho = \frac{2}{\|\mathbf{a}\|} = \frac{2}{\sqrt{a_1^2 + \dots + a_d^2}}.$$

- We choose candidates for "lines" by ComRef's fusions of summands
- > Refinement corresponds to:

$$b_1 \sum_{i \in I_1} a_i x_i + \dots + b_j \sum_{i \in I_j} a_i x_i - \tilde{c} = 0$$

$$\rho_{ref} = \frac{2}{\sqrt{b_1^2 \sum_{i \in I_1} a_i^2 + \dots + b_j^2 \sum_{i \in I_j} a_i^2}}$$

$$\rho = \frac{2}{\|\mathbf{a}\|} = \frac{2}{\sqrt{a_1^2 + \dots + a_d^2}}.$$

$$\rho_{ref} = \frac{2}{\sqrt{b_1^2 \sum_{i \in I_1} a_i^2 + \dots + b_j^2 \sum_{i \in I_j} a_i^2}}$$

Nominator

$$\rho = \frac{2}{\|\mathbf{a}\|} = \frac{2}{\sqrt{a_1^2 + \dots + a_d^2}}.$$

$$\rho_{ref} = \frac{2}{\sqrt{b_1^2 \sum_{i \in I_1} a_i^2 + \dots + b_j^2 \sum_{i \in I_j} a_i^2}}$$

Nominator needs to be as small as possible!

If for each $k=1,\cdots,j$ holds $b_k^2\leq 1$ then $\rho_{ref}\geq \rho$.

➤ We define "MIN/MAX RULE" 1) to overcome combinatorial nature of ComRef

Min/Max Rules for Margin-based Refinement

- i. Compute initial SVM hyperplane $h(\mathbf{x})$
- ii. Find set I_k of two indices from $\{1, \dots, d\}$ such that $\sum_{i \in I_k} a_i^2$ is minimal/maximal, i.e. choose from $|a_1|, \dots, |a_d|$ two with minimal/maximal values.
- iii. Recalculate *SVM* refinement $g(\mathbf{u})$ for $\mathbf{u} = (a_1x_1, \dots, \sum_{i \in I_k} a_ix_i, \dots, a_dx_d)$.

¹⁾ Dörksen, H.; Lohweg, V.: Margin-based Refinement for Support-Vector-Machine Classification. Proceedings of 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM2017), Porto, Portugal, 2017

real-world industrial application: Motor Drive Diagnosis

- condition monitoring of running motors in industry
- two classes considered: intact and anomaly
- typical anomalies: ball bearings, axle displacement or inclination of gear-wheels
- tests on two samples:
 Motor-I (M-I) 52 features and 5,318 objects (total)
 Motor-II (M-II) 72 features and 10,638 objects (total)
- due to different environmental conditions (e.g. stable/unstable position of the motor, air temperature/humidity, life/running time, etc.), real <u>completeness/balance</u> of sample is assumed to be <u>unknown</u>

© inIT

real-world industrial application: Motor Drive Diagnosis

Benchmarking:

K-fold	SVM	RefMIN	$t_{K-1}MIN$	ρ_{ref} MIN
M-I ($K = 30$)	92.26	93.88	7.69	2.80
M-I ($K = 100$)	88.77	90.37	8.85	2.67
M-II ($K = 30$)	96.00	97.08	15.25	2.84
M-II ($K = 100$)	94.39	95.45	10.24	2.83

- > K-fold cv paired t test with K = 30 and K = 100
- $\succ t_{K-1}$ -statistic for comparing of two classification algorithms is key value resp. generalisation: threshold $t_{29}=2.05$ or higher

UCI Samples

Benchmarking:

dataset	# features	# objects	SVM	RefMIN	$t_{K-1}MIN$	ρ_{ref} MIN
CNAE (classes 6 vs. 7)*	299	240	79.35	86.52	2.89	1.89
CNAE (classes 7 vs. 9)	333	240	86.75	92.96	2.92	1.70
Ecoli*	6	220	95.22	96.47	2.52	2.17
Heart	13	270	74.89	77.44	3.91	2.49
Promoters	57	212	74.64	78.32	5.45	2.30
Seeds	7	140	91.66	93.49	5.81	2.54
Splice (classes E vs. I)*	60	1535	84.66	87.13	7.04	2.16
Splice (classes I vs. N)*	60	2423	81.72	84.54	6.25	2.09

- > K-fold cv paired t test with K = 10
- $\succ t_{K-1}$ -statistic for comparing of two classification algorithms is key value resp. generalisation: threshold $t_9=2.26$ or higher

UCI Samples (Fertility and Hepatitis are not well-balanced originally, other samples balanced artificially)

Benchmarking:

dataset	# features	# objects	balance	$F_{SVM}(T^+ / T^-)$	$F_{RefMIN}(T^+ / T^-)$
Fertility	9	100	7.3	0.12 / 0.82	0.16 / 0.83
Hepatitis	16	80	5.2	0.32 / 0.84	0.35 / 0.85
Heart	13	150	4.0	0.47 / 0.84	0.51 / 0.84
Mammography	5	628	4.6	0.67 / 0.91	0.69 / 0.92
Pima	8	331	4.3	0.45 / 0.83	0.49 / 0.84
Promoters	57	120	7.6	0.04 / 0.93	0.14 / 0.93
Vertebral	6	244	6.2	0.40 / 0.86	0.44 / 0.86

- ➤ balance of sample as number of objects of one class divided by number of objects of other
- ➤ **F**-measures are scores based on true positives and false negatives for each class

SUMMARY

- Margin-based refinement is based on dimensionality reduction
- "MIN/MAX RULE" allows fast calculation (linear time complexity)
- Margin-based refinement with "MIN/MAX RULE" is able to improve generalisation of classification
- Approach works especially well on incomplete/small and not well-balanced samples

Homework: Exercises and Labs

for the next week prepare practical exercises and labs from **Exercises Lec 10** (you will find it in the download area)

Online-Exercises coming now

We will discuss **Exercises Lec 9**