Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Рабочий протокол и отчёт по лабораторной работе № 2

Свиридов Фёдор, Александр Слободнюк, Владимир Попов

«Маятник Поля»

Цель работы.

Изучить понятие о резонансной частоте и вынужденных колебаниях.

Задачи, решаемые при выполнении работы.

- 1. Начать колебания и записать процесс на камеру
- 2. Измерить период и амплитуду, соответствующую данной частоте колебаний
- 3. Рассчитать значение частоты и амплитуды при резонансе
- 4. Рассчитать фазовый сдвиг

Объект исследования.

Вынужденные колебания, резонанс

Метод экспериментального исследования.

- 1. Измерение амплитуды установившихся колебаний
- 2. Измерение периода колебаний

Рабочие формулы.

$$\omega = \frac{2\pi}{T} \tag{1}$$

$$\omega_0 = \sqrt{\omega_p^2 + 2\beta^2} \tag{2}$$

$$\Psi = \arctan \frac{-2\beta\omega}{\omega_0^2 - \omega^2} \tag{3}$$

Результаты прямых измерений и их обработки.

I = 0 A				I = 4 A				I = 5 A			
U, B	α , град.	T, c	ω, c^{-1}	U, B	α , град.	T, c	ω , c^{-1}	U, B	α , град.	T, c	ω, c^{-1}
1,3	22,5	3,3	1,9	1,3	25	2,9	2,2	1,3	25	3	2,1
2,1	32,5	1,5	4,2	2,1	45	1,5	4,2	2,1	47,5	1,4	4,5
2,8	75	1	6,2	2,8	85	1,1	5,7	2,8	75	1,1	5,7
3	120	0,9	6,9	3	120	1	6,2	3	120	1	6,2
4,3	17,5	0,6	10,5	4,3	17,5	0,6	10,5	4,3	20	0,7	9

[,] где ω_0 - собственная частота колебательной системы

Расчёт результатов косвенных измерений.

К сожалению, полученных данных не хватает для нормальной экстраполяции полученных точек, поэтому для оценки других физических величин будем считать, что для всех трёх опытов:

$$\omega_p \approx 6,3 \ (c^{-1})$$

$$\alpha_p = 120$$
 град.

Из лабораторной работы №1 знаем, что $\beta_1\approx 0,1;\ \beta_2\approx 0,09;\ \beta_3\approx 0,14.$ Тогда по формуле (2) находим собственную частоту колебательной системы:

$$\omega_{01} = \sqrt{(6,3)^2 + 2 \cdot (0,1)^2} \approx 6,3 \ (c^{-1})$$

$$\omega_{02} = \sqrt{(6,3)^2 + 2 \cdot (0,09)^2} \approx 6,3 \ (c^{-1})$$

$$\omega_{03} = \sqrt{(6,3)^2 + 2 \cdot (0,14)^2} \approx 6,3 \ (c^{-1})$$

Так как данные были получены с очень маленькой точностью, и поэтому почти не отличаются, для оценки сдвига фазы Ψ положим $\beta=0,1;$ $\omega_0=6,3$ (c^{-1}) и возьмём средние значения частот из трёх опытов.

β	ω_0, c^{-1}	ω, c^{-1}	Ψ, рад.
		2,1	-0,01
		4,3	-0,04
0,1	6,3	5,9	-0,24
		6,4	-2,35
		10	-3,11

Выводы и анализ результатов.

Мы получили амплитудно-резонансную кривую. На основе ней и данных из предыдущей работы была построена фазовая резонансная кривая. К нашему сожалению, проводя опыт, мы допустили опибку: взяли очень большой шаг напряжения на электродвигатели, в результате чего полученных точек не хватило для нормальной экстраполяции кривой. Также из-за маленькой точности входных данных полученные физические величины практически не отличались друг от друга, поэтому мы усреднили три опыта, чтобы оценить сдвиг фазы. Несмотря на это, полученные результаты согласуются с ожидаемыми: при $w=w_0$ сдвиг фазы Ψ между угловым смещением маятника и вынуждающей силы равен $-\frac{\pi}{2}$.