

TABLE OF CONTENTS

1. INTRODUCTION	5
2. TUNER	5
2.1 General description of UV1316:	5
2.2 Features of UV1316:	
2.3 Pinning:	
3. AUDIO AMPLIFIER STAGE WITH MP7722	
3.1 General Description	
3.2 Features	
3.3 Applications	7
3.4 Absolute Ratings	
3.5 Pinning	
4. POWER STAGE	7
5. MICROCONTROLLER (VCTP)	8
5.1 General Features	
5.2 Multistandard Sound Processor (MSP) Features	9
5.3 Video Features	
5.4 Controller Features	10
5.5 OSD & Teletext Features	
5.6 Port Allocation	
6. DRX 3961A	
6.1 General Description	
6.2 Features	
7. SERIAL 64K I2C EEPROM M24C64WBN6	
7.1 General Description	21
7.2 Features	
7.3 Absolute Maximum Ratings	
7.4 Pinning	
8. CLASS AB STEREO HEADPHONE DRIVER TDA1308	22
8.1. General Description	
8.2 Features	
8.3. Pinning	23
9. SAW FILTER X6966M	
9.1 Features:	
9.2 Pin configuration:	
9.3 Frequency response:	
10. IC DESCRIPTIONS AND INTERNAL BLOCK DIAGRAM	
10.1. LM1117	25
10.1.1. General Description	
10.1.2. Features	
10.1.3. Applications	
10.1.4. Absolute Maximum Ratings	
10.1.5. Pinning	
10.2. LM1086	
10.2.1. General Description	
10.2.2. Features	
10.2.3. Applications	
10.2.4. Absolute Maximum Ratings	
10.2.5. Pinning	
10.3. MP1593	
10.3.1. General Description	
r	

10.3.2. Features	
10.3.3. Applications	28
10.3.4. Absolute Maximum Ratings	28
10.3.5. Electrical Characteristics	29
10.3.6. Pinning	29
10.4. FDC642P	30
10.4.1. General Description	30
10.4.2 . Features	
10.4.3. Absolute Maximum Ratings	
10.4.4. Pinning	
10.5. SIL9011	
10.5.1 Features	
10.6. 24LC02	
10.6.1. General Description	
10.6.2 Features	
10.6.3 Pinning	
10.7. μPA672T	
10.7.1. General Description.	
10.7.2. Features	
10.7.3 Absolute Maximum Ratings	
10.7.4 Pinning	
10.7.4 1 mining 10.8. M74HC4052	
10.8.1. General Description.	
10.8.2. Features	
10.8.3 Absolute Maximum Ratings	
10.8.4 Pinning	
10.9. Max 809	
10.9.1. General Description.	
10.9.2. Features	
10.9.3 Absolute Maximum Ratings	
10.9.4 Pinning	
10.9.4 Filling	
10.10.1 General Description	
<u>*</u>	
10.10.3 Absolute Maximum Ratings	
10.10.4 Pinning	
11.1. Video Setup	
11.2. AudioSetup	
11.3. Options 1	
11.4. Options 2	
11.5. Service Scan/Tuning Setup	
11.6. External Source Settings	
11.7. Picture Mode	
11.8. Reset TV-Set	
12. SOFTWARE UPDATE DESCRIPTION	
12.1 Analog Software Update Via I ² C	
12.2 Analog Software Update Via UART	
13. BLOCK DIAGRAMS	
13.1. General Block Diagram	
13.2. Power Management	45

13.3. DRX (IF Demodulator) Block Diagram	. 46
13.4. VCTP	
13.4.1. General Block Diagram	
13.4.2. MSP Block Diagram	
13.4.3 Video Processor of VCT 6wxyP Block Diagram	

1. INTRODUCTION

17MB22 Main Board consists of Micronas concept, VCTP as controller. This IC is capable of handling Audio processing, video processing, motion adaptive upconversion(MAU), Scaling-Display processing and FPD control (DPS),unified memory for audio video and Text, 3D comb filter-PC connectivity, OSD and text processing. TV supports PAL, SECAM, NTSC colour standards and multiple transmission standards as B/G, D/K, I/I', and L/L' including German and NICAM stereo.

Sound system output is supplying 2x8W (10%THD) for stereo 8Ω speakers. Supported peripherals are:

- 1 RF input VHF1, VHF3, UHF @ 750hm
- 1 FAV input
- 2 SCART sockets
- 1 SVHS input
- 1 Stereo Headphone input
- 1 YPbPr
- 1 PC input
- 1 HDMI input
- 1 Stereo audio input for PC

2. TUNER

As the thickness of the TV set has a limit, a horizontal mounted tuner is used in the product, which is suitable for CCIR systems B/G, H, L/ L', I/I', and D/K. The tuning is available through the digitally controlled I2C bus (PLL). Below you will find info on the Tuner in use.

2.1 General description of UV1316:

The UV1316 tuner belongs to the UV 1300 family of tuners, which are designed to meet a wide range of applications. It is a combined VHF, UHF tuner suitable for CCIR systems B/G, H, L, L', I and I'. The low IF output impedance has been designed for direct drive of a wide variety of SAW filters with sufficient suppression of triple transient.

2.2 Features of UV1316:

- Member of the UV1300 family small sized UHF/VHF tuners
- Systems CCIR: B/G, H, L, L', I and I'; OIRT: D/K
- Digitally controlled (PLL) tuning via I2C-bus
- Off-air channels, S-cable channels and Hyper band
- Compact size
- Complies with the requirements of radiation, signal handling capability and immunity conforming to European standards "CENELEC EN55020" and "EN55013".

2.3 Pinning:

SYMBOL	PIN	DESCRIPTION			
AGC	1	Automatic Gain Control Voltage			
TU	2	Tuning voltage monitor (output)			
AS	3	I ² C-Bus Address Select			
SCL	4	I ² C-Bus Serial Clock			
SDA	5	I ² C-Bus Serial Data			
n.c.	6	Not Connected			
V _s	7	Supply Voltage +5V			
ADC	8	ADC Input (5)			
V _{ST}	9	Fixed tuning Supply Voltage +33V			
I.F out 2 / d.n.c	10	Symmetrical I.F output 2 / Do not connect for asymmetrical		Symmetrical I.F output 2 / Do not connect for asymmetrical	
I.F out 1	11	Asymmetrical I.F Output / Symmetrical I.F output 1			
GND	M1,M2,M3,M4	Mounting Tags (Ground)			

3. AUDIO AMPLIFIER STAGE WITH MP7722

3.1 General Description

The MP7722 is a stereo 20W Class D Audio amplifier, intended for use as low frequency power amplifier in a wide range of applications in radio and TV sets. It uses a minimum number of external components to complete a stereo Class D audio amplifier.

- 2 x 20W Output at VDD = 24V into a 4Ω load
- THD+N = 0.06% at 1W, 8Ω
- 93% Efficiency at 20W
- Low Noise (190µV Typical)
- Switching Frequency Up to 1MHz
- 9.5V to 24V Operation from a Single Supply
- Integrated Startup and Shutdown Pop Elimination Circuit
- Thermal and Short Circuit Protection
- Integrated 180mΩ Switches
- Mute/Standby Modes (Sleep)
- Thermally Enhanced 20-Pin TSSOP Package with Exposed Pad

3.3 Applications

- Surround Sound DVD Systems
- Televisions
- Flat Panel Monitors
- Multimedia Computers
- Home Stereo Systems

3.4 Absolute Ratings

Supply Voltage VDD	26V
	$V_{SW} - 0.3V$ to $V_{SW} + 6.5V$
Enable Voltage V _{EN}	0.3V to +6V
V _{SW} , V _{PIN} , V _{NIN}	
AGND to PGND	0.3V to +0.3V
Junction Temperature.	150°C
Lead Temperature	260°C
	65°C to +150°C
Recommended Ope	erating Conditions ⁽²⁾
Supply Voltage V _{DD}	9.5V to 24V
Operating Temperature	e T _A 40°C to +85°C
Thermal Resistance	$\boldsymbol{\theta}^{(3)}$ $\boldsymbol{\theta}_{JA}$ $\boldsymbol{\theta}_{JC}$
TSSOP20F	40 6 °C/W

3.5 Pinning

4. POWER STAGE

The DC voltages required at various parts of the chassis and inverters are provided by a main power supply unit and power interface board. The main power supply unit is designed for 24V and 12V DC supply. Power stage which is on-chasis generates +24V for audio amplifier, 1.8V and 3.3V stand by voltage and 8V, 12V, 5V and 3.3V supplies for other different parts of the chassis.

5. MICROCONTROLLER (VCTP)

5.1 General Features

The VCT 6wxyP is dedicated to high-quality FPD and double-scan TV sets. The VCT 6wxyP family is based on functional blocks contained and approved in existing products like VCT 49xxI, VSP 94x5B, and DPS 94xxA.

Each member of the family contains the entire audio, video, up-conversion processing for 4:3 and 16:9 50/

60 Hz progressive or 100/120 Hz interlaced stereo TV sets and the control/data interface for flat-panel displays. The integrated microcontroller is supported by a powerful OSD and graphics generator with integrated teletext acquisition.

Controller:

- High-performance 8-bit microcontroller, 8051 compatible
- Up to 512 kByte in system program Flash
- WST, PDC, VPS, and WSS acquisition
- Closed caption and V-chip acquisition
- Up to 10 page on chip teletext memory
- Up to 1000 pages with internal memory
- Up to 30 GPIO

Audio:

- Multistandard TV-sound demodulation:
 - -All A2/NICAM standards
 - -BTSC/SAP with DBX
 - -EIA-J
- Baseband sound processing for loudspeaker channel:
 - -Volume, bass, treble, loudness, balance
 - -Spatial effect (e.g. pseudo stereo)
 - -Micronas AROUND

(Virtual Dolby Surround optional)

- -Micronas BASS
- -BBE
- -SRS WOW
- -SRS TruSurround XT
- -Lipsync function

Video:

- CVBS, S-VHS, YCrCb and RGB inputs
- HDTV YPrPb and RGB inputs
- ITU656 input
- Linedoubling with vertical detail enhancement (without internal memory)
- State of the art motion adaptive up conversion (with internal memory)
- 4H adaptive comb filter for PAL/NTSC (without internal memory)
- 3D comb filter for PAL/NTSC (with internal memory) (Optional)
- Internal SDR RAM interface
- Powerful horizontal and vertical scaling inclusive
- Nonlinear horizontal scaling "panorama vision"
- picture adaptive image improvements (DCE, LSE, CTI, SCE, NCE)

- non-linear colorspace enhancement (NCE) with 32 programmable slopes and sections per RGB component (blue stretch, static black stretch, gamma correction).
- Dynamic contrast enhancement (DCE) (histogram based black stretch with peak black and activity detection and contrast adaption)
- Luma sharpness enhancement (LSE)
- Color transient improvement (CTI)
- Selective color enhancement (SCE) for skin tone correction, blue and green stretch

5.2 Multistandard Sound Processor (MSP) Features

The MSP receives the analog Sound IF signal from the tuner and converts it to digital with its internal SIF-AD converter. The MSP is able to demodulate all TV sound standards worldwide including the digital NICAM system. TV stereo sound standards that are unavailable for a specific **VCTP** version are processed in analog mono sound of the standard. In that case, stereo or bilingual processing will not be possible.

- Sound IF input
- Worldwide FM/AM-mono sound demodulation
- FM stereo sound demodulation (A2, EIA-J)
- BTSC/SAP demodulation with DBX
- NICAM demodulation
- FM radio & RDS/RBDS demodulation
- Automatic standard detection
- automatic volume correction (AVC)
- Automatic sound select
- Baseband processing for loudspeaker channel:

volume, bass, treble, loudness, balance

- -spatial effect (e.g. pseudo stereo)
- -Micronas AROUND
- -Micronas BASS
- -SRS WOW (optional)
- -SRS TruSurround XT (optional)
- -delayline for lipsync function (shared memory)
- -Virtual Dolby Surround (optional)
- 1 I2S input for external ATSC/DVD decoder
- 1 I2S interface for audio delayline
- 1 SPDIF output
- Audio i/o switches
 - -4 analog stereo line inputs and 2 analog stereo line outputs (configurable 5 analog stereo line inputs and 1 analog stereo line output)
 - -1 analog stereo loudspeaker output
 - -1 analog subwoofer output
 - -1 analog stereo headphone output

5.3 Video Features

The TVT is a Teletext decoder for decoding World System Teletext data, as well as Video Programming System (VPS), Program Delivery Control (PDC), and Wide-Screen Signalling (WSS) data used for PALplus transmissions (line 23). The device also supports Closed Caption acquisition and decoding.

The TVT provides an integrated general-purpose, fully 8051-compatible microcontroller with television-specific hardware features. The microcontroller has been enhanced to provide powerful features such as memory banking, data pointer, additional interrupts, shared memory access etc.

The TVT has an internal XRAM of 32 KB and a BOOT ROM of 4 KB. For operation the code is fetched from a 16bit FLASH, which can be addressed up to 1 MByte.

The controller with dedicated hardware does most of the internal TTX acquisition processing, transfers data to/from external memory interface, and receives/transmits data via I2C-bus interface. In combination with dedicated hardware, the slicer stores TTX data in a VBI buffer of 1 KB. The microcontroller firmware performs all the acquisition tasks (hamming and parity checks, page search, and evaluation of header control bits) once per field. Additionally, the firmware can provide high-end Teletext features like Packet-26 handling, FLOF/TOP and list-pages. The interface-to-user software is optimized for minimal overhead. TVT is realized in deep submicron technology with 1.8 V supply voltage and 3.3 V I/O (TTL compatible).

- 16 analog video inputs (4xCVBS/Y/C + 3xRGB/YCrCb/YPrPb)
- Video input switch matrix
- 3 analog video outputs (integrated Y+C adder)
- 24-bit RGB/H/V/clk input (e.g. ext. DVI decoder) or 656 8bit input
- 656 8bit input/output (e. g. for external high-end up conversion by FRCA)
- Multi-standard color decoder PAL/NTSC/SECAM including all substandards
- 2D adaptive comb filter for PAL/NTSC with vertical peaking
- 3D-comb filter for PAL/NTSC (Optional)
- Macrovision compliant multi-standard sync processing
- Trilevel sync slicer for HDTV
- Macrovision detection
- High-quality soft mixer controlled by Fast Blank (alpha blending)
- Fastblank monitor via I2C
- Noise measurement
- Letterbox detection (auto-wide)
- Split screen (OSD and video side by side) and AV PIP

5.4 Controller Features

The TVT is a Teletext decoder for decoding World System Teletext data, as well as Video Programming System (VPS), Program Delivery Control (PDC), and Wide-Screen Signalling (WSS) data used for PALplus transmissions (line 23). The device also supports Closed Caption acquisition and decoding.

The TVT provides an integrated general-purpose, fully 8051-compatible microcontroller with television-specific hardware features. The microcontroller has been enhanced to provide powerful features such as memory banking, data pointer, additional interrupts, shared memory access etc.

- High performance 8-bit microcontroller, 8051 instruction set compatible
- 81 MHz system clock, two machine cycles per instruction
- On-chip debug support (OCDS)
- Up to 512 kByte in system program Flash
- 256 byte on-chip program RAM
- 128 byte on-chip extended stack RAM

- 4-level, 24-input interrupt controller
- Patch module for 16 ROM locations
- Two 16-bit reloadable timers
- Capture compare timer for infrared decoding
- Watchdog timer
- Uart
- Real time clock
- PWM units (2 channels 14-bit, 6 channels 8-bit)
- 8-bit ADC (4 channels)
- I2C bus master/slave interface
- Up to 32 programmable I/O ports

5.5 OSD & Teletext Features

The on-chip display unit for displaying Level 1.5 Teletext data can also be used for customer-defined onscreen displays.

The TVT has an internal XRAM of 32 KB and a BOOT ROM of 4 KB. For operation the code is fetched from a 16bit FLASH, which can be addressed up to 1 MByte.

In combination with dedicated hardware, the slicer stores TTX data in a VBI buffer of 1 KB. The microcontroller firmware performs all the acquisition tasks (hamming and parity checks, page search, and evaluation of header control bits) once per field. Additionally, the firmware can provide high-end Teletext features like Packet-26 handling, FLOF/TOP and list-pages. The interface-to-user software is optimized for minimal overhead.

5.6 Port Allocation

	Pin No.	Pin Name	Туре	Connection	Short Description
PLQFP 208-1				(If not used)	
1		656O6 P4_6 TDOFW	IN/OUT	RtoGND	Digital 656 Bit 6 Output Port 4, Bit 6 Input/Output JTAG Interface Data Output (FW Controller)
2		656O5 P4_5 TDIFW	IN/OUT	RtoGND	Digital 656 Bit 5 Output Port 4, Bit 5 Input/Output JTAG Interface Data Input (FW Controller)
3		656O4 P4_4 TMSFW	IN/OUT	RtoGND	Digital 656 Bit 4 Output Port 4, Bit 4 Input/Output JTAG Interface Mode Select Input (FW Contr.)
4		656O3 P4_3 TCLK	IN/OUT	RtoSUP	Digital 656 Bit 3 Output Port 4, Bit 3 Input/Output JTAG Interface Clock Input (TV Controller)
5		656O2 P4_2 TDO	IN/OUT	RtoGND	Digital 656 Bit 2 Output Port 4, Bit 2 Input/Output JTAG Interface Data Output (TV Controller)

VCTP	Pin No.	Pin Name	Туре	Connection	Short Description
PLQFP 208-1				(If not used)	
6		656O1 P4_1 TDI	IN/OUT	RtoGND	Digital 656 Bit 1 Output Port 4, Bit 1 Input/Output JTAG Interface Data Input (TV Controller)
7		656O0 P4_0 TMS	IN/OUT	RtoGND	Digital 656 Bit 0 Output (LSB) Port 4, Bit 0 Input/Output JTAG Interface Mode Select Input (TV Contr.)
8		RESETQ	IN/OUT	OBL	Reset Input/Output
9		AIN1R	IN	LV	Analog Audio 1 Input, Right
10		AIN1L	IN	LV	Analog Audio 1 Input, Left
11		AIN2R	IN	LV	Analog Audio 2 Input, Right
12		AIN2L	IN	LV	Analog Audio 2 Input, Left
13		AIN3R	IN	LV	Analog Audio 3 Input, Right
14		AIN3L	IN	LV	Analog Audio 3 Input, Left
15		AIN4R	IN	LV	Analog Audio 4 Input, Right
16		AIN4L	IN	LV	Analog Audio 4 Input, Left
17		VREFAU	ANA	OBL	Reference Voltage, Audio
18		VSUP8.0AU	SUPPLY	OBL	Supply Voltage Analog Audio, 8.0 V
19		GNDA	SUPPLY	OBL	Ground Analog Audio, Platform Ground
20		SGND	ANA	OBL	Analog Signal GND
21		AOUT2R AIN5R	IN/OUT	LV	Analog Audio 2 Output, Right Analog Audio 5 Input, Right
22		AOUT2L AIN5L	IN/OUT	LV	Analog Audio 2 Output, Left Analog Audio 5 Input, Left
23		AOUT1R	OUT	LV	Analog Audio 1 Output, Right
24		AOUT1L	OUT	LV	Analog Audio 1 Output, Left
25		HEADPHONER	OUT	LV	Analog Headphone Output, Right
26		HEADPHONEL	OUT	LV	Analog Headphone Output, Left
27		SPEAKERR	OUT	LV	Analog Loudspeaker Output, Right
28		SPEAKERL	OUT	LV	Analog Loudspeaker Output, Left
29		SUBWOOFER TEST	IN/OUT	LV	Analog SUBWOOFER Output Test Input
30		VREFSIF	ANA	OBL	Reference Voltage, Audio SIF
31		SIFIN+	IN	GND	Differential Sound IF Input
32		SIFIN-	IN	GND	Differential Sound IF Input
33		VSUP5.0	SUPPLY	OBL	Supply Voltage Analog, 5.0 V

VCTP Pin No.	Pin Name	Туре	Connection (If not used)	Short Description
208-1			, ,	
34	GNDA	SUPPLY	OBL	Ground Analog, Platform Ground
35	GND3.3DIG	SUPPLY	OBL	Ground Digital Interfaces
36	VSUP3.3DIG	SUPPLY	OBL	Supply Voltage Digital Interfaces, 3.3 V
37	SPDIF_OUT	OUT	LV	SPDIF Output
38	I2S_DA_IN	IN	GND	Audio Bus Data Input
39	I2S_CL	IN	GND	Audio Bus Clock Input
40	I2S_WS	IN	GND	Audio Bus Word Strobe Input
41	I2S_DEL_OUT	OUT/IN	LV	Audio Delay Line Bus Data Output/Input
42	I2S_DEL_IN	IN/OUT	GND	Audio Delay Line Bus Data Input/Output
43	I2S_DEL_CL	OUT/IN	LV	Audio Delay Line Bus Clock Output/Input
44	I2S_DEL_WS	OUT/IN	LV	Audio Delay Line Word Strobe Output/Input
45	VSUP3.3RAM	SUPPLY	OBL	Supply Voltage Ram, 3.3 V
46	GND3.3RAM	SUPPLY	OBL	Ground Ram
47	DVS	IN	GND	Digital or Analog Video VSYNC HD Input
48	DEN	IN	GND	Digital Video Enable Input
49	DCLK	IN	GND	Digital Video Clock Input
50	DRI7	IN	GND	Digital Video Red 7 Input
51	DRI6	IN	GND	Digital Video Red 6 Input
52	DRI5	IN	GND	Digital Video Red 5 Input
53	DRI4	IN	GND	Digital Video Red 4 Input
54	DRI3	IN	GND	Digital Video Red 3 Input
55	DRI2	IN	GND	Digital Video Red 2 Input
56	DRI1	IN	GND	Digital Video Red 1 Input
57	DRIo	IN	GND	Digital Video Red 0 Input (LSB)
58	DGI7	IN	GND	Digital Video Green 7 Input
59	DGI6	IN	GND	Digital Video Green 6 Input
60	DGI5	IN	GND	Digital Video Green 5 Input
61	DGI4	IN	GND	Digital Video Green 4 Input
62	DGI3	IN	GND	Digital Video Green 3 Input
63	DGI2	IN	GND	Digital Video Green 2 Input
64	DGI1	IN	GND	Digital Video Green 1 Input
			1	I

	Pin No.	Pin Name	Туре	Connection	Short Description
PLQFP 208-1				(If not used)	
65		DGI0	IN	GND	Digital Video Green o Input (LSB)
66		DBI7	IN	GND	Digital Video Blue 7 Input
67		DBI6	IN	GND	Digital Video Blue 6 Input
68		DBI5	IN	GND	Digital Video Blue 5 Input
69		DBI4	IN	GND	Digital Video Blue 4 Input
70		DBI3	IN	GND	Digital Video Blue 3 Input
71		DBI2	IN	GND	Digital Video Blue 2 Input
72		DBI1	IN	GND	Digital Video Blue 1 Input
73		DBI0	IN	GND	Digital Video Blue 0 Input (LSB)
74		GND3.3DRI	SUPPLY	OBL	Ground Digital Ram Interface
75		VSUP3.3DRI	SUPPLY	OBL	Supply Voltage Digital Ram Interface, 3.3 V
76		GND3.3COM	SUPPLY	OBL	Ground Common
77		VSUP3.3COM	SUPPLY	OBL	Supply Voltage Common, 3.3V
78		XTALIN	IN	OBL	Analog Crystal Input
79		XTALOUT	OUT	OBL	Analog Crystal Output
80		CLKOUT	OUT	RtoGND	Digital 20MHz Clock Output
81		VSO	OUT	RtoGND	Vertical Sync Output, Frontend
82		HSO	OUT	RtoGND	Horizontal Sync Output, Frontend
83		SCL	IN/OUT	OBL	I ² C Bus Clock Input/Output
84		SDA	IN/OUT	OBL	I ² C Bus Data Input/Output
85		GND3.3FL	SUPPLY	OBL	Ground Flash
86		VSUP3.3FL	SUPPLY	OBL	Supply Voltage Flash, 3.3 V
87		P2_0	IN/OUT	RtoGND	Port 2, Bit 0 Input/Output
88		P2_1	IN/OUT	RtoGND	Port 2, Bit 1 Input/Output
89		P2_2	IN/OUT	RtoGND	Port 2, Bit 2 Input/Output
90		P2_3	IN/OUT	RtoGND	Port 2, Bit 3 Input/Output
91		P2_4 TDI	IN/OUT	RtoGND	Port 2, Bit 4 Input/Output JTAG Interface Data Input
92		P2_5 TMS	IN/OUT	RtoGND	Port 2, Bit 5 Input/Output JTAG Interface Mode Select Input
93		OSDV DBO2_0	IN/OUT	RtoGND	Graphic Vertical Sync Input/Output Channel 2 Digital o Blue Output (LSB)

VCTP	Pin No.	Pin Name	Type	Connection	Short Description
PLQFP 208-1				(If not used)	
94		OSDH DBO2_1	IN/OUT	RtoGND	Graphic Horizontal Sync Input/Output Channel 2 Digital 1 Blue Output
95		GND3.3IO1	SUPPLY	OBL	Ground Digital Input/Output Port 1
96		VSUP3.3IO1	SUPPLY	OBL	Supply Voltage Input/Output Port 1, 3.3 V
97		OSDCLK DBO2_2	IN/OUT	RtoGND	Graphic Clock Input/Output Channel 2 Digital 2 Blue Output
98		OSDFSW DBO2_3	IN/OUT	RtoGND	Graphic Fast Switch Input/Output Channel 2 Digital 3 Blue Output
99		OSDHCS1 P3_6 DBO2_4	IN/OUT	RtoGND	Graphic Half Contrast 1 Input/Output Port 3, Bit 6 Input/Output Channel 2 Digital 4 Blue Output
100		OSDHCS0 P3_7 DBO2_5	IN/OUT	RtoGND	Graphic Half Contrast 0 Input/Output (LSB) Port 3, Bit 7 Input/Output Channel 2 Digital 5 Blue Output
101		OSDB3 P3_5 DBO2_6	IN/OUT	RtoGND	Graphic Blue 3 Input/Output (MSB) Port 3, Bit 5 Input/Output Channel 2 Digital 6 Blue Output
102		OSDB2 P3_4 DBO2_7	IN/OUT	RtoGND	Graphic Blue 2 Input/Output Port 3, Bit 4 Input/Output Channel 2 Digital 7 Blue Output (MSB)
103		OSDB1 DGO2_0	IN/OUT	RtoGND	Graphic Blue 1 Input/Output Channel 2 Digital 0 Green Output (LSB)
104		OSDB0 DGO2_1	IN/OUT	RtoGND	Graphic Blue 0 Input/Output Channel 2 Digital 1 Green Output
105		OSDG3 P3_3 DGO2_2	IN/OUT	RtoGND	Graphic Green 3 Input/Output (MSB) Port 3, Bit 3 Input/Output Channel 2 Digital 2 Green Output
106		OSDG2 P3_2 DGO2_3	IN/OUT	RtoGND	Graphic Green 2 Input/Output Port 3, Bit 2 Input/Output Channel 2 Digital 3 Green Output
107		OSDG1 DGO2_4	IN/OUT	RtoGND	Graphic Green 1 Input/Output Channel 2 Digital 4 Green Output
108		OSDG0 DGO2_5	IN/OUT	RtoGND	Graphic Green o Input/Output Channel 2 Digital 5 Green Output
109		OSDR3 P3_1 DGO2_6	IN/OUT	RtoGND	Graphic Red 3 Input/Output (MSB) Port 3, Bit 1 Input/Output Channel 2 Digital 6 Green Output
110		OSDR2 P3_0 DGO2_7	IN/OUT	RtoGND	Graphic Red 2 Input/Output Port 3, Bit 0 Input/Output Channel 2 Digital 7 Green Output (MSB)
111		OSDR1 DRO2_0	IN/OUT	RtoGND	Graphic Red 1 Input/Output Channel 2 Digital 0 Red Output (LSB)

VCTP Pin No. PLQFP 208-1	Pin Name	Туре	Connection (If not used)	Short Description
112	OSDR0 DRO2_1	IN/OUT	RtoGND	Graphic Red o Input/Output (LSB) Channel 2 Digital 1 Red Output
113	GND3.3IO1	SUPPLY	OBL	Ground Digital Input/Output Port 1
114	VSUP3.3IO1	SUPPLY	OBL	Supply Voltage Input/Output Port 1, 3.3 V
115	PCS5 P2_7	IN/OUT	RtoGND	Flat Panel Control Select 5 Output Port 2, Bit 7 Input/Output
116	PCS4 P2_6	IN/OUT	RtoGND	Flat Panel Control Select 4 Output Port 2, Bit 6 Input/Output
117	PCS3 P4_1	IN/OUT	RtoGND	Flat Panel Control Select 3 DE2 Output Port 4, Bit 1 Input/Output
118	PCS2 P4_0	IN/OUT	RtoGND	Flat Panel Control Select 2 DE1 Output Port 4, Bit 0 Input/Output
119	PCS1 P4_3	IN/OUT	RtoGND	Flat Panel Control Select 1 H Output Port 4, Bit 3 Input/Output
120	PCS0 P4_2	IN/OUT	RtoGND	Flat Panel Control Select o V Output Port 4, Bit 2 Input/Output
121	PCLK2	OUT	LV	Flat Panel Control Clock 2 Output
122	PCLK1	OUT	LV	Flat Panel Control Clock 1 Output
123	GND1.8DIG	SUPPLY	OBL	Ground Digital Core
124	VSUP1.8DIG	SUPPLY	OBL	Supply Voltage Digital Core, 1.8 V
125	DBO1_0 DRO2_2 LVDSA_4P	OUT	LV	Channel 1 Digital o Blue Output ¹⁾ (LSB) Channel 2 Digital 2 Red Output ¹⁾ LVDS Channel 1 bit 4 Positive Output ²⁾
126	DBO1_1 DRO2_3 LVDSA_4N	OUT	LV	Channel 1 Digital 1 Blue Output ¹⁾ Channel 2 Digital 3 Red Output ¹⁾ LVDS Channel 1 bit 4 Negative Output ²⁾
127	DBO1_2 DRO2_4 VSUP3.3LVDS	OUT	LV OBL	Channel 1 Digital 2 Blue Output ¹⁾ Channel 2 Digital 4 Red Output ¹⁾ Supply Digital Voltage LVDS ²⁾ Port, 3.3 V
128	DBO1_3 DRO2_5 LVDSA_3P	OUT	LV	Channel 1 Digital 3 Blue Output ¹⁾ Channel 2 Digital 5 Red Output ¹⁾ LVDS Channel 1 bit 3 Positive Output ²⁾
129	DBO1_4 DRO2_6 LVDSA_3N	OUT	LV	Channel 1 Digital 4 Blue Output ¹⁾ Channel 2 Digital 6 Red Output ¹⁾ LVDS Channel 1 bit 3 Negative Output ²⁾
130	DBO1_5 DRO2_7 GND3.3LVDS	OUT SUPPLY	LV OBL	Channel 1 Digital 5 Blue Output ¹⁾ Channel 2 Digital 7 Red Output ¹⁾ (MSB) Ground Digital LVDS ²⁾ , 3.3 V
131	DBO1_6 DBO1_0 LVDSA_CLKP	OUT	LV	Channel 1 Digital 6 Blue Output ¹⁾ Channel 1 Digital 0 Blue Output ¹⁾ (LSB) LVDS Channel 1 Clock Positive Output ²⁾

VCTP	Pin No.	Pin Name	Туре	Connection	Short Description
PLQFP 208-1			1,500	(If not used)	ones Seconpuon
132		DBO1_7 DBO1_1 LVDSA_CLKN	OUT	LV	Channel 1 Digital 7 Blue Output ¹⁾ Channel 1 Digital 1 Blue Output ¹⁾ LVDS Channel 1 Clock Negative Output ²⁾
133		VSUP3.3IO2 VSUP3.3LVDS	SUPPLY	OBL	Supply Digital Output ¹⁾ Port 2 Supply Digital Voltage LVDS ²⁾ , 3.3 V
134		GND3.3IO2 LVDSA_2P	SUPPLY OUT	OBL LV	Ground Voltage Output ¹⁾ Port 2, 3.3 V LVDS Channel 1 bit 2 Positive Output ²⁾
135		DBO1_8 DBO1_2 LVDSA_2N	OUT	LV	Channel 1 Digital 8 Blue Output ¹⁾ Channel 1 Digital 2 Blue Output ¹⁾ LVDS Channel 1 bit 2 Negative Output ²⁾
136		DBO1_9 DBO1_3 GND3.3LVDS	OUT SUPPLY	LV OBL	Channel 1 Digital 9 Blue Output ¹⁾ (MSB) Channel 1 Digital 3 Blue Output ¹⁾ Ground Digital LVDS ²⁾ , 3.3 V
137		DGO1_0 DBO1_4 LVDSA_1P	OUT	LV	Channel 1 Digital 0 Green Output ¹⁾ (LSB) Channel 1 Digital 4 Blue Output ¹⁾ LVDS Channel 1 bit 1 Positive Output ²⁾
138		DGO1_1 DBO1_5 LVDSA_1N	OUT	LV	Channel 1 Digital 1 Green Output ¹⁾ Channel 1 Digital 5 Blue Output ¹⁾ LVDS Channel 1 bit 1 Negative Output ²⁾
139		DGO1_2 DBO1_6 VSUP3.3LVDS	OUT SUPPLY	LV OBL	Channel 1 Digital 2 Green Output ¹⁾ Channel 1 Digital 6 Blue Output ¹⁾ Supply Digital Voltage LVDS ²⁾ , 3.3 V
140		DGO1_3 DBO1_7 LVDSA_0P	OUT	LV	Channel 1 Digital 3 Green Output ¹⁾ Channel 1 Digital 7 Blue Output ¹⁾ (MSB) LVDS Channel 1 bit 0 Positive Output ²⁾
141		DGO1_4 DGO1_0 LVDSA_0N	OUT	LV	Channel 1 Digital 4 Green Output ¹⁾ Channel 1 Digital 0 Green Output ¹⁾ (LSB) LVDS Channel 1 bit 0 Negative Output ²⁾
142		DGO1_5 DGO1_1 VSUP1.8LVDS	OUT SUPPLY	LV OBL	Channel 1 Digital 5 Green Output ¹⁾ Channel 1 Digital 1 Green Output ¹⁾ Supply Analog Voltage LVDS ²⁾ , 1.8 V
143		DGO1_6 DGO1_2 REXT	OUT	LV OBL	Channel 1 Digital 6 Green Output ¹⁾ Channel 1 Digital 2 Green Output ¹⁾ LVDS External Resistor ²⁾
144		DGO1_7 DGO1_3 GND1.8LVDS	OUT	LV OBL	Channel 1 Digital 7 Green Output ¹⁾ Channel 1 Digital 3 Green Output ¹⁾ Ground Analog LVDS ²⁾ , 1.8 V
145		DGO1_8 DGO1_4 LVDSB_3P	OUT	LV	Channel 1 Digital 8 Green Output ¹⁾ Channel 1 Digital 4 Green Output ¹⁾ Dual-LVDS Channel 2 bit 3 Positive Output ²⁾
146		DGO1_9 DGO1_5 LVDSB_3N	OUT	LV	Channel 1 Digital 9 Green Output ¹⁾ (MSB) Channel 1 Digital 5 Green Output ¹⁾ Dual-LVDS Channel 2 bit 3 Negative Output ²⁾

VCTP Pin No. Pin		Pin Name	Туре	Connection	Short Description
PLQFP 208-1				(If not used)	
147		DRO1_0 DGO1_6 GND3.3LVDS	OUT	LV OBL	Channel 1 Digital 0 Red Output ¹⁾ (LSB) Channel 1 Digital 6 Green Output ¹⁾ Ground Digital LVDS ²⁾ , 3.3 V
148		DRO1_1 DGO1_7 LVDSBCLKP	OUT	LV	Channel 1 Digital 1 Red Output ¹⁾ Channel 1 Digital 7 Green Output ¹⁾ (MSB) Dual-LVDS Channel 2 Clock Positive Output ²⁾
149		GND3.3IO2 LVDSBCLKN	SUPPLY OUT	OBL LV	Ground Digital Output ¹⁾ Port 2 Dual-LVDS Channel 2 Clock Negative Output ²⁾
150		VSUP3.3IO2 VSUP3.3LVDS	SUPPLY	OBL	Supply Voltage Output ¹⁾ Port 2, 3.3 V Supply Digital Voltage LVDS ²⁾ , 3.3 V
151		DRO1_2 DRO1_0 LVDSB_2P	OUT	LV	Channel 1 Digital 2 Red Output ¹⁾ Channel 1 Digital 0 Red Output ¹⁾ (LSB) Dual-LVDS Channel 2 bit 2 Positive Output ²⁾
152		DRO1_3 DRO1_1 LVDSB_2N	OUT	LV	Channel 1 Digital 3 Red Output ¹⁾ Channel 1 Digital 1 Red Output ¹⁾ Dual-LVDS Channel 2 bit 2 Negative Output ²⁾
153		DRO1_4 DRO1_2 GND3.3LVDS	OUT SUPPLY	LV OBL	Channel 1 Digital 4 Red Output ¹⁾ Channel 1 Digital 2 Red Output ¹⁾ Ground Digital LVDS ²⁾ , 3.3 V
154		DRO1_5 DRO1_3 LVDSB_1P	OUT	LV	Channel 1 Digital 5 Red Output ¹⁾ Channel 1 Digital 3 Red Output ¹⁾ Dual-LVDS Channel 2 bit 1 Positive Output ²⁾
155		DRO1_6 DRO1_4 LVDSB_1N	OUT	LV	Channel 1 Digital 6 Red Output ¹⁾ Channel 1 Digital 4 Red Output ¹⁾ Dual-LVDS Channel 2 bit 1 Negative Output ²⁾
156		DRO1_7 DRO1_5 VSUP3.3LVDS	OUT SUPPLY	LV OBL	Channel 1 Digital 7 Red Output ¹⁾ Channel 1 Digital 5 Red Output ¹⁾ Supply Digital Voltage LVDS ²⁾ , 3.3 V
157		DRO1_8 DRO1_6 LVDSB_0P	OUT	LV	Channel 1 Digital 8 Red Output ¹⁾ Channel 1 Digital 6 Red Output ¹⁾ Dual-LVDS Channel 2 bit 0 Positive Output ²⁾
158		DRO1_9 DRO1_7 LVDSB_0N	OUT	LV	Channel 1 Digital 9 Red Output ¹⁾ (MSB) Channel 1 Digital 7 Red Output ¹⁾ (MSB) Dual-LVDS Channel 2 bit 0 Negative Output ²⁾
159		P1_7 TDO	IN/OUT	RtoGND	Port 1, Bit 7 Input/Output JTAG Interface Data Output
160		P1_6 TCLK	IN/OUT	RtoSUP	Port 1, Bit 6 Input/Output JTAG Interface Clock Input
161		P1_5	IN/OUT	RtoGND	Port 1, Bit 5 Input/Output
162		P1_4	IN/OUT	RtoGND	Port 1, Bit 4 Input/Output
163		GND3.3DAC	SUPPLY	OBL	Ground DAC
164		VSUP3.3DAC	SUPPLY	OBL	Supply Voltage DAC, 3.3V

VCTP PLQFP 208-1	Pin No.	Pin Name	Туре	Connection (If not used)	Short Description
165		P1_3 ROUT PWM3	IN/OUT	RtoGND	Port 1, Bit 3 Input/Output Analog Red Output PWM Bit 3 Output
166		P1_2 GOUT PWM2	IN/OUT	RtoGND	Port 1, Bit 2 Input/Output Analog Green Output PWM Bit 2 Output
167		P1_1 BOUT PWM1	IN/OUT	RtoGND	Port 1, Bit 1 Input/Output Analog Blue Output PWM Bit 1 Output
168		P1_0 SVMOUT REV	IN/OUT	RtoGND	Port 1, Bit 0 Input/Output Scan Velocity Modulation Output REV Output
169		VSUP1.8FE	SUPPLY	OBL	Supply Voltage Analog Video Frontend, 1.8 V
170		VSUP3.3FE	SUPPLY	OBL	Supply Voltage Analog Video Frontend, 3.3 V
171		VIN22 DHS	IN	LV	Analog Video 22 H-Sync Input Digital Video H-Sync Input
172		VIN21	IN	LV	Analog Video 21 B HD Input
173		VIN20	IN	LV	Analog Video 20 G HD Input
174		VIN19	IN	LV	Analog Video 19 R HD Input
175		VIN18	IN	LV	Analog Video 18 Fast Blank 2 Input
176		VIN17	IN	LV	Analog Video 17 B HD Input
177		VIN16	IN	LV	Analog Video 16 G HD Input
178		VIN15	IN	LV	Analog Video 15 R HD Input
179		VIN13	IN	LV	Analog Video 13 B HD Input
180		VIN12	IN	LV	Analog Video 12 G HD Input
181		VIN11	IN	LV	Analog Video 11 R HD Input
182		VIN9	IN	LV	Analog Video 9 Y or B SD Input
183		VIN8	IN	LV	Analog Video 8 C or Fast Blank 1 Input
184		VIN7	IN	LV	Analog Video 7 Y or G SD Input
185		VSUP1.8FE	SUPPLY	OBL	Supply Voltage Analog Video Frontend, 1.8 V
186		GNDA	SUPPLY	OBL	Analog Video Frontend, Platform Ground
187		VIN6	IN	LV	Analog Video 6 C or R SD Input
188		VIN5	IN	LV	Analog Video 5 Y/CVBS Input
189		VIN3	IN	LV	Analog Video 3 CVBS Input
190		VIN2	IN	LV	Analog Video 2 CVBS Input

VCTP PLQFP 208-1	Pin No.	Pin Name	Туре	Connection (If not used)		
191		VIN1	IN	LV	Analog Video 1 CVBS Input	
192		VSUP3.3VO	SUPPLY	OBL	Supply Voltage Analog Video Output, 3.3 V	
193		VOUT3	OUT	LV	Analog CVBS Video 3 Output	
194		VOUT2	OUT	LV	Analog CVBS Video 2 Output	
195		VOUT1	OUT	LV	Analog CVBS Video 1 Output	
196		GND3.3IO3	SUPPLY	OBL	Ground Digital Input/Output Port 1	
197		VSUP3.3IO3	SUPPLY	OBL	Supply Voltage Input/Output Port 1, 3.3 V	
198		656l0 P3_0	IN/OUT	RtoGND	Digital 656 Bit o Input (LSB) Port 3, Bit o Input/Output	
199		656l1 P3_1	IN/OUT	RtoGND	Digital 656 Bit 1 Input Port 3, Bit 1 Input/Output	
200		656l2 P3_2	IN/OUT	RtoGND	Digital 656 Bit 2 Input Port 3, Bit 2 Input∕Output	
201		656l3 P3_3	IN/OUT	RtoGND	Digital 656 Bit 3 Input Port 3, Bit 3 Input/Output	
202		656l4 P3_4	IN/OUT	RtoGND	Digital 656 Bit 4 Input Port 3, Bit 4 Input/Output	
203		656l5 P3_5	IN/OUT	RtoGND	Digital 656 Bit 5 Input Port 3, Bit 5 Input/Output	
204		656l6 P3_6	IN/OUT	RtoGND	Digital 656 Bit 6 Input Port 3, Bit 6 Input/Output	
205		656l7 P3_7	IN/OUT	RtoGND	Digital 656 Bit 7 Input Port 3, Bit 7 Input/Output	
206		656CLKI	IN	GND	Digital 656 Clock Input	
207		656CLKO	OUT	LV	Digital 656 Clock Output	
208		65607 P4_7 TCLKFW	IN/OUT	RtoSUP	Digital 656 Bit 7 Output Port 4, Bit 7 Input/Output JTAG Interface Clock Input (FW Controller)	

¹⁾ TTL output version only

6. DRX 3961A

6.1 General Desription

The DSP-based Analog TV IF Demodulator DRX 396xA performs the entire multistandard Quasi Split Sound (QSS) TV IF processing, AGC, video demodulation, and generation of the sound IF (SIF), requiring only one SAW filter. The IC is designed for applications in TV sets, VCRs, PC cards, and TV tuners.

The alignment-free DRX 396xA does not need special external components. All control functions and status registers are accessible via I2C bus interface.

- Multistandard QSS IF processing with a single SAW
- Highly reduced amount of external components (no tank circuit, no potentiometers, no SAW switching)

²⁾ LVDS output version only

- Programmable IF frequency (38.9 MHz, 45.75 MHz, 32.9 MHz, 58.75 MHz, 36.125 MHz etc.)
- Digital IF processing for the following standards: B/G, D/K, I, L/L', and M/N
- Standard specific digital post filtering
- Standard specific digital video/audio splitting
- Standard specific digital picture carrier recovery:
 - -Alignment-free
 - -Quartz-stable and accurate
 - -Stable frequency lock at 100% modulation and overmodulation up to 150%
 - -Quartz-accurate AFC information
- Programmable standard specific digital group delay equalization
- Automatically frequency-adjusted Nyquist slope, therefore optimum picture and sound performance over complete lock in frequency range
- Standard-specific digital AGC and delayed tuner AGC with programmable tuner take-over point
- Fast AGC due to linear structure
- Adaptive back porch control, therefore fast positive modulation AGC
- No sound traps needed at video output
- SIF output with standard-dependent pre-filtering and amplitude-controlled output level
- Optimal sound SNR due to carrier recovery without quadrature distortions
- FM radio capability without external components and with standard TV tuner
- Prepared for digital TV (DVB-C, DVB-T, ATSC)
- I2C bus interface

7. SERIAL 64K I2C EEPROM M24C64WBN6

7.1 General Description

M24C64WBN6 is a 64 Kbit Electrically Erasable PROM. These I2C-compatible electrically erasable programmable memory (EEPROM) devices are organized as 8192x8 bits. It supports 400kHz Protocol I2C uses a two-wire serial interface, comprising a bi-directional data line and a clock line.

The M24C64WBN6 is available in the standard 8-pin (Vcc, WC, SDA (i2c data), SCL (i2c clock), Vss,E0,E1,E2). WC pin is critical pin. If WP is high, writing is not possible to EEPROM. If WP is low, writing is possible to EEPROM.

- Two-Wire I2C Serial Interface Supports 400kHz Protocol
- Single Supply Voltage:
 - 4.5 to 5.5V for M24Cxx
 - 2.5 to 5.5V for M24Cxx-W
 - 1.8 to 5.5V for M24Cxx-R
- Write Control Input
- BYTE and PAGE WRITE (up to 32 Bytes)

- RANDOM and SEQUENTIAL READ Modes
- Self-Timed Programming Cycle
- Automatic Address Incrementing
- Enhanced ESD/Latch-Up Protection
- More than 1 Million Erase/Write Cycles
- More than 40-Year Data Retention

7.3 Absolute Maximum Ratings

Symbol	Parameter	Min.	Max.	Unit
T _{STG}	Storage Temperature	-65	150	°C
T _{LEAD}	Lead Temperature during Soldering	See note ¹		°C
V _{IO}	Input or Output range	-0.50	6.5	V
Vcc	Supply Voltage	-0.50	6.5	٧
V _{ESD}	Electrostatic Discharge Voltage (Human Body model) ²	-4000	4000	V

7.4 Pinning

	24C64 24C32
E0 [1	8 VCC
E1 [2	7 WC
E2 [3	6 SCL
V _{SS} [4	5 SDA

E0, E1, E2	Chip Enable
SDA	Serial Data
SCL	Serial Clock
wc	Write Control
Vcc	Supply Voltage
Vss	Ground

8. CLASS AB STEREO HEADPHONE DRIVER TDA1308

8.1. General Description

The TDA1308 is an integrated class AB stereo headphone driver contained in an SO8 or a DIP8 plastic package. The device is fabricated in a 1 mm CMOS process and has been primarily developed for portable digital audio applications. It gets its input from two analog audio outputs (DACA_L and DACA_R) of MSP 34x0G. The gain of the output is adjustable by the feedback resistor between the inputs and outputs.

- Wide temperature range
- No switch ON/OFF clicks
- Excellent power supply ripple rejection
- Low power consumption
- Short-circuit resistant
- High performance
- High signal-to-noise ratio

- High slew rate
- Low distortion
- Large output voltage swing.
- Power supply maximum 60 mW to 32Ω (THD<0.1%)
- 5V single supply
- SNR 110 dB
- Power supply ripple rejection
- Typically 3 mA supply current at no load

8.3. Pinning

SYMBOL	PIN	DESCRIPTION
OUTA	1	Output A
INA(neg)	2	Inverting input A
INA(pos)	3	Non-inverting input A
V _{SS}	4	Negative supply
INB(pos)	5	Non-inverting input B
INB(neg)	6	Inverting input B
OUTB	7	Output B
V _{DD}	8	Positive supply

9. SAW FILTER X6966M

9.1 Features:

- IF filter for digital cable TV
- Plastic package SIP5K

9.2 Pin configuration:

- 1 Input
- 2 Input ground3 Chip carrier ground
- 4 Output
- 5 Output

9.3 Frequency response:

10. IC DESCRIPTIONS AND INTERNAL BLOCK DIAGRAM

LM1117

LM1086

MP1593

FDC642P

SIL9011

24LC02

μPA672T

M74HC4052

Max809

24LC21

10.1. LM1117

10.1.1. General Description

The LM1117 is a series of low dropout voltage regulators with a dropout of 1.2V at 800mA of load current. It has the same pin-out as National Semiconductor's industry standard LM317. The LM1117 is available in an adjustable version, which can set the output voltage from 1.25V to 13.8V with only two external resistors. In addition, it is also available in five fixed voltages, 1.8V, 2.5V, 2.85V, 3.3V, and 5V. The LM1117 offers current limiting and thermal shutdown. Its circuit includes a zener trimmed bandgap reference to as-sure output voltage accuracy to within $\pm 1\%$. The LM1117 series is available in SOT- 223, TO-220, and TO-252 D-PAK packages. A minimum of 10μ F tantalum capacitor is required at the output to improve the transient response and stability.

10.1.2. Features

- Available in 1.8V, 2.5V, 2.85V, 3.3V, 5V, and Adjustable Versions
- Space Saving SOT-223 Package
- Current Limiting and Thermal Protection
- Output Current 800mA
- Line Regulation 0.2% (Max)
- Load Regulation 0.4% (Max)
- Temperature Range
- LM1117 0°C to 125°C
- LM1117I -40°C to 125°C

10.1.3. Applications

- 2.85V Model for SCSI-2 Active Termination
- Post Regulator for Switching DC/DC Converter
- High Efficiency Linear Regulators 15
- 32" TFT TV Service Manual 10/01/2005
- Battery Charger
- Battery Powered Instrumentation

10.1.4. Absolute Maximum Ratings

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
DC Input Voltage	V_{IN}		7	V
Lead Temperature (Soldering, 5 Seconds)	T _{SOL}		260	C
Storage Temperature Range	T _{STG}	-65	150	Ĵ
Operating Junction Temperature Range	T _{OPR}	0	125	°C

10.1.5. Pinning

10.2. LM1086

10.2.1. General Description

The LM1086 is a low dropout three terminal regulator with 1.5A output current capability. The output voltage is adjustable with the use of a resistor divider. Dropout is guaranteed at a maximum of 500 mV at maximum output current. It's low dropout voltage and fast transient response make it ideal for low voltage microprocessor applications. Internal current and thermal limiting provides protection against any overload condition that would create excessive junction temperature.

10.2.2. Features

- Low Dropout Voltage 500mV at 1.5A Output Current
- Fast Transient Response
- 0.015% Line Regulation
- 0.1% Load Regulation
- Current Limiting and Thermal Protection.
- Adjustable or Fixed Output Voltage(1.8, 2.5, 2.85, 3.0, 3.3, 3.45, 5.0V)
- Surface Mount Package SOT-223 & TO-263 (D2 Package)
- 100% Thermal Limit Burn-in

10.2.3. Applications

- · Battery Charger
- Adjustable Power Supplies
- Constant Current Regulators
- Portable Instrumentation
- High Efficiency Linear Power Supplies

- High Efficiency "Green" Computer Systems
- SMPS Post-Regulator
- Power PC Supplies
- Powering VGA & Sound Card

10.2.4. Absolute Maximum Ratings

CHARACTERISTIC	SYMBOL	VALUE	UNIT
Supply Voltage	Vin	7	V
Operating Junction Temperature Range	Topr	0~125	ಭ
Storage Temperature Range	Tstg	-65~150	J
Thermal Resistance Junction to Case TO-263	Tjc	з	C/W
Thermal Resistance Junction to Ambient TO-263	Tja	60	C/W
Lead Temperature (Soldering) 10 sec.	Tsol	300	ಭಿ
Maximum Output Current	Imax	1.5	А

10.2.5. Pinning

10.3. MP1593

10.3.1. General Description

The MP1593 is a step-down regulator with an internal Power MOSFET. It achieves 3A continuous output current over a wide input supply range with excellent load and line regulation. Current mode operation provides fast transient response and eases loop stabilization. Fault condition protection includes cycle-by-cycle current limiting and thermal shutdown. Adjustable soft-start reduces the stress on the input source at turnon. In shutdown mode the regulator draws 20µA of supply current. The MP1593 requires a minimum number of readily available external components to complete a 3A step down DC to DC converter solution.

10.3.2. Features

- 3A Output Current
- Programmable Soft-Start
- 100mΩ Internal Power MOSFET Switch
- Stable with Low ESR Output Ceramic Capacitors
- Up to 95% Efficiency
- 20µA Shutdown Mode
- Fixed 385KHz Frequency
- Thermal Shutdown
- Cycle-by-Cycle Over Current Protection
- Wide 4.75 to 28V Operating Input Range
- Output Adjustable from 1.22V
- Under Voltage Lockout
- Available in 8-Pin SOIC Package

10.3.3. Applications

- Distributed Power Systems
- Battery Chargers
- Pre-Regulator for Linear Regulators
- Flat Panel TVs
- Set-Top Boxes
- Cigarette Lighter Powered Devices
- DVD/PVR Devices

10.3.4. Absolute Maximum Ratings

Supply Voltage VIN	0.3V to 30V
Switch Voltage Vsw	0.5V to V _{IN} +0.3V
Boost Voltage V _{BS}	V _{SW} -0.3V to V _{SW} +6V
All Other Pins	–0.3V to 6V
Junction Temperature	150°C
Lead Temperature	260°C
Storage Temperature	65°C to 150°C

10.3.5. Electrical Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Units
Shutdown Supply Current		V _{EN} = 0V		20	30	μΑ
Supply Current		V _{EN} = 2.6V; V _{FB} = 1.4V		1.0	1.2	mA
Feedback Voltage	V _{FB}	4.75V ≤ V _{IN} ≤ 28V; V _{COMP} < 2V	1.194	1.222	1.250	V
Error Amplifier Voltage Gain	A _{EA}			400		V/V
Error Amplifier Transconductance	GEA	$\Delta I_{COMP} = \pm 10 \mu A$	500	800	1120	μΑ/V
High Side Switch On Resistance	R _{DS(ON)1}			100	140	mΩ
Low Side Switch On Resistance	R _{DS(ON)2}			10		Ω
High Side Switch Leakage Current		V _{EN} = 0V; V _{SW} = 0V		0	10	μΑ
Current Limit			3.3	4.7	6.5	Α
Current Sense to COMP Transconductance	Gcs			6.2		Α/V
Oscillation Frequency	fosc1		335	385	435	KHz
Short Circuit Oscillation Frequency	f _{OSC2}	V _{FB} = 0V	25	45	60	KHz
Maximum Duty Cycle	D _{MAX}	V _{FB} = 1.0V		90		%
Minimum Duty Cycle	D _{MIN}	V _{FB} = 1.5V			0	%
EN Threshold Voltage			0.9	1.2	1.5	V

10.3.6. Pinning

Pin1:BS

High-Side Gate Drive Boost Input. BS supplies the drive for the high-side N-Channel MOSFET switch. Connect a 10nF or greater capacitor from SW to BS to power the high side switch.

Pin2:IN

Power Input. IN supplies the power to the IC, as well as the step-down converter switches. Drive IN with a 4.75V to 28V power source. Bypass IN to GND with a suitably large capacitor to eliminate noise on the input to the IC.

Pin3:SW

Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load. Note that a capacitor is required from SW to BS to power the high-side switch.

Pin4:GND

Ground.

Pin5:FB

Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB with a resistive voltage divider from the output voltage. The feedback threshold is 1.222V.

Pin6-COMP

Compensation Node. COMP is used to compensate the regulation control loop. Connect a series RC network from COMP to GND to compensate the regulation control loop. In some cases, an additional capacitor from COMP to GND is required.

Pin7:EN

Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the regulator, drive EN low to turn it off. An Under Voltage Lockout (UVLO) function can be implemented by the addition of a resistor divider from VIN to GND. For complete low current shutdown its needs to be less than 0.7V. For automatic startup, leave EN unconnected.

Pin8:SS

Soft-Start Control Input. SS controls the soft-start period. Connect a capacitor from SS to GND to set the soft-start period. A $0.1\mu F$ capacitor sets the soft-start period to 10ms. To disable the soft-start feature, leave SS unconnected.

10.4. FDC642P

10.4.1. General Description

This p-channel 2.5V specified MOSFET is produced using Fairchild's advanced PowerTrench process that has been especially tailored to minimize on state resistance and yet maintain low gate charge for superior switching performance.

10.4.2 . Features

• -4 A, -20 V.
$$R_{DS(ON)} = 0.065 \Omega$$
 @ $V_{GS} = -4.5 V$ $R_{DS(ON)} = 0.100 \Omega$ @ $V_{GS} = -2.5 V$

- · Fast switching speed.
- Low gate charge (7.2nC typical).
- High performance trench technology for extremely low R_{DS(ON)}.
- SuperSOTTM-6 package: small footprint (72% smaller than standard SO-8); low profile (1mm thick).

10.4.3. Absolute Maximum Ratings

Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain-Source Voltage		-20	٧
V _{GSS}	Gate-Source Voltage		±8	٧
ID	Drain Current - Continuous	(Note 1)	-4	А
	Drain Current - Pulsed	(Note 1a)	-20	Ī
P _D	Power Dissipation for Single Operation	(Note 1a)	1.6	W
		(Note 1b)	0.8	Ī
T _J , T _{stg}	Operating and Storage Junction Temperatur	re Range	-55 to +150	°C

10.4.4. Pinning

10.5. SIL9011

The Sil 9011 is a third generation HDMI receiver compatible with the HDMI 1.1 specification. Backwards compatibility with DVI 1.0 allows HDMI systems to connect to existing DVI 1.0 hosts over a single cable.

The Sil 9011 is capable of receiving and outputting 2 to 8 channels of digital audio of up to 192kHz. An industry-standard I²S port allows direct connection to low-cost audio DACs. An S/PDIF port supports up to 96kHz audio.

Silicon Image's HDMI receivers use the latest generation of PanelLink TMDS core technology. These PanelLink cores pass all HDMI compliance tests.

10.5.1 Features

- HDMI 1.1, HDCP 1.1 and DVI 1.0 compliant receiver
- Integrated PanelLink core supports:

DTV resolutions (480i/576i/480p/576p/720p/1080i)

PC resolutions (VGA, SVGA, XGA, SXGA, UXGA) up to 165MHz.

Digital video interface supports video processors:

24-bit and 48-bit RGB/ YCbCr 4:4:4

16/20/24-bit YCbCr 4:2:2

8/10/12-bit YCbCr 4:2:2 (ITU BT.656)

- S/PDIF output supports bothIEC 60958 and IEC 67937 for PCM, Dolby Digital, DTS digital or any S/PDIF type audio transmission (32-96kHz Fs)
- Four Programmable I²S outputs for connection to low-cost audio DACs.
- Sample rates up to 192kHz
- Auto audio error detection with programmable soft mute.
- Integrated HDCP decryption engine for receiving protected audio and video content
- Pre-programmed HDCP keys provide highest level of key security, simplifies manufacturing

10.6. 24LC02

10.6.1. General Description

24AA02/24LC02B (24XX02*) is a 2 Kbit Electrically Erasable PROM. The device is organized as one block of 256 x 8-bit memory with a 2-wire serial interface. Low-voltage design permits operation down to 1.8V, with standby and active currents of only 1 μ A and 1mA, respectively. The 24XX02 also has a page write capability for up to 8 bytes of data.

- Single supply with operation down to 1.8V
- Low-power CMOS technology
 - -1mA active current typical
 - -1µA standby current typical (I-temp)

- Organized as 1 block of 256 bytes (1 x 256 x 8)
- 2-wire serial interface bus, I²C[™] compatible
- Schmitt Trigger inputs for noise suppression
- Output slope control to eliminate ground bounce
- 100 kHz (24AA02) and 400 kHz (24LC02B) compatibility
- Self-timed write cycle (including auto-erase)
- Page write buffer for up to 8 bytes
- 2ms typical write cycle time for page write
- Hardware write-protect for entire memory
- Can be operated as a serial ROM
- Factory programming (QTP) available
- ESD protection > 4,000V
- 1,000,000 erase/write cycles
- Data retention > 200 years
- 8-lead PDIP, SOIC, TSSOP and MSOP packages
- 5-lead SOT-23 package
- Pb-free finish available
- Available for extended temperature ranges:
 - -Industrial (I): -40°C to +85°C
 - -Automotive (E): -40°C to +125°C

10.6.3 Pinning

Name	PDIP	SOIC	TSSOP	MSOP	SOT23	Description	
A0	1	1	1	1	_	Not Connected	
A1	2	2	2	2	 Not Connected 		
A2	3	3	3	3	_	Not Connected	
Vss	4	4	4	4	2	Ground	
SDA	5	5	5	5	3	Serial Address/Data I/O	
SCL	6	6	6	6	1	Serial Clock	
WP	7	7	7	7	5	Write-Protect Input	
Vcc	8	8	8	8	4	+1.8V to 5.5V Power Supply	

10.7. μPA672T

10.7.1. General Description

N-channel Mos-Fet array for switching. The μ PA672T is a super-mini-mold device provided with two MOS FET elements. It achieves high-density mounting and saves mounting costs.

10.7.2. Features

- Two MOS FET circuits in package the same size as SC-70
- Automatic mounting supported

10.7.3 Absolute Maximum Ratings

PARAMETER	SYMBOL	TEST CONDITIONS	RATINGS	UNIT
Drain to Source Voltage	Voss		50	V
Gate to Source Voltage	Vass		±7.0	V
Drain Current (DC)	ID(DC)		100	mA
Drain Current (pulse)	ID(pulse)	PW ≤ 10 ms, Duty Cycle ≤ 50 %	200	mA
Total Power Dissipation	PT		200 (Total)	mW
Channel Temperature	Tch		150	°C
Storage Temperature	Tstg		-55 to +150	°C

10.7.4 Pinning

10.8. M74HC4052

10.8.1. General Description

The M74HC4052 is a dual four-channel analog MULTIPLEXER/DEMULTIPLEXER fabricated with silicon gate C2MOS technology and it is pin to pin compatible with the equivalent metal gate CMOS4000B series. It contains 8 bidirectional and digitally controlled analog switches.

10.8.2. Features

- LOW POWER DISSIPATION: ICC = 4mA(MAX.) at TA=25°C
- LOGIC LEVEL TRANSLATION TO ENABLE 5V LOGIC SIGNAL TO COMMUNICATE
- WITH ±5V ANALOG SIGNAL
- LOW "ON" RESISTANCE:

70W TYP. (VCC - VEE = 4.5V) 50W TYP. (VCC - VEE = 9V)

- WIDE ANALOG INPUT VOLTAGE RANGE: ±6V
- FAST SWITCHING: tpd = 15ns (TYP.) at TA = 25 °C
- LOW CROSSTALK BETWEEN SWITCHES
- HIGH ON/OFF OUTPUT VOLTAGE RATIO
- WIDE OPERATING SUPPLY VOLTAGE RANGE (VCC VEE) = 2V TO 12V
- LOW SINE WAVE DISTORTION: 0.02% at VCC VEE = 9V
- HIGH NOISE IMMUNITY: VNIH = VNIL = 28 % VCC (MIN.)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 4052

10.8.3 Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
V _{CC} - V _{EE}	Supply Voltage	-0.5 to +13	V
VI	Control Input Voltage	-0.5 to V _{CC} + 0.5	V
V _{I/O}	Switch I/O Voltage	V _{EE} -0.5 to V _{CC} + 0.5	V
I _{CK}	Control Input Diode Current	± 20	mA
I _{IOK}	I/O Diode Current	± 20	mA
Ι _Τ	Switch Through Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P _D	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

10.8.4 Pinning

VEE supply pin is provided for analog input signals. It has an inhibit (INH) input terminal to disable all the switches when high. For operation as a digital multiplexer/demultiplexer, VEE is connected to GND.

A and B control inputs select one channel out of four in each section. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

10.9. Max809

10.9.1. General Description

The MAX809 and MAX810 are cost-effective system supervisor circuits designed to monitor VCC in digital systems and provide a reset signal to the host processor when necessary. No external components are required.

The reset output is driven active within 10 _sec of VCC falling through the reset voltage threshold. Reset is aintained active for a timeout period which is trimmed by the factory after VCC rises above the reset threshold. The MAX810 has an active-high RESET output while the MAX809 has an active-low RESET output. Both devices are available in SOT-23 and SC-70 packages.

10.9.2. Features

- Precision VCC Monitor for 1.5 V, 1.8 V, 2.5 V, 3.0 V, 3.3 V, and 5.0 V Supplies
- Precision Monitoring Voltages from 1.2 V to 4.9 V Available in 100 mV Steps
- Four Guaranteed Minimum Power-On Reset Pulse Width Available (1 ms, 20 ms, 100 ms, and 140 ms)
- RESET Output Guaranteed to VCC = 1.0 V.
- Low Supply Current
- Compatible with Hot Plug Applications
- VCC Transient Immunity
- No External Components
- Wide Operating Temperature: -40°C to 105°C
- Pb-Free Packages are Available

10.9.3 Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Power Supply Voltage (V _{CC} to GND)	V _{CC}	-0.3 to 6.0	V
RESET Output Voltage (CMOS)		-0.3 to (V _{CC} + 0.3)	V
Input Current, V _{CC}		20	mA
Output Current, RESET		20	mA
dV/dt (V _{CC})		100	V/µsec
Thermal Resistance, Junction-to-Air (Note 1) SOT- SC-	· •0JA	301 314	°C/W
Operating Junction Temperature Range	TJ	-40 to +105	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (Soldering, 10 Seconds)	T _{sol}	+260	°C
ESD Protection Human Body Model (HBM): Following Specification JESD22-A ^o Machine Model (MM): Following Specification JESD22-A ^o		2000 200	V
Latchup Current Maximum Rating: Following Specification JESD78 Class II Posit Negat		200 200	mA

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,

- damage may occur and reliability may be affected.

 1. This based on a 35x35x1.6mm FR4 PCB with 10mm² of 1 oz copper traces under natural convention conditions and a single component
- characterization.

 2. The maximum package power dissipation limit must not be exceeded. $P_{D} = \frac{T_{J}(max) T_{A}}{max} \quad \text{with } T_{J}(max) = 150^{\circ}\text{C}$

$$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$$
 with $T_{J(max)} = 150$ °C

10.9.4 Pinning

10.10. 24LC21

10.10.1. General Description

The 24LC21 is a 1K bit electrically erasable programmable memory (EEPROM), organized by 8 bits. This device can operate in two modes: Transmit Only mode and I2C bidirectional mode. When powered, the device is in Transmit Only mode with EEPROM data clocked out from the rising edge of the signal applied on VCLK.

10.10.2. Features

- 1 MILLION ERASE/WRITE CYCLES
- 40 YEARS DATA RETENTION
- 2.5V to 5.5V SINGLE SUPPLY VOLTAGE
- 400k Hz COMPATIBILITY OVER the FULL RANGE of SUPPLY VOLTAGE
- TWO WIRE SERIAL INTERFACE I2C BUS COMPATIBLE
- PAGE WRITE (up to 8 BYTES)
- BYTE, RANDOM and SEQUENTIAL READ MODES
- SELF TIMED PROGRAMMING CYCLE
- AUTOMATIC ADDRESS INCREMENTING
- ENHANCED ESD/LATCH UP PERFORMANCES

10.10.3 Absolute Maximum Ratings

Symbol	Parameter		Value	Unit	
TA	Ambient Operating Temperature grade 1		grade 1	0 to 70	°C
Тѕтс	Storage Temperature		-65 to 150	°C	
T _{LEAD}	Lead Temperature, Soldering	(SO8 package) (PSDIP8 package)	40 sec 10 sec	215 260	°C
V _{IO}	Input or Output Voltages			-0.3 to 6.5	V
Vcc	Supply Voltage		-0.3 to 6.5	٧	
VESD	Electrostatic Discharge Voltage (Human Body model) (2)		4000	٧	
	Electrostatic Discharge Voltage (Machine model) (3)			500	٧

10.10.4 Pinning

SDA	Serial Data Address Input/Output
SCL	Serial Clock (I ² C mode)
Vcc	Supply Voltage
V _{SS}	Ground
VCLK	Clock Transmit only mode

11.SERVICE MENU SETTINGS

In order to reach service menu,

- First Press "MENU"
- Then press the remote control code, which is "4725"

11.1. Video Setup

- Panel Select <.....>
 - CHI MEI 16/9 32 inch
 - LG 16/9 26 inch
 - SAMSUNG 16/9 32 inch
- Picture Mute <.....>

If "Yes" selected, "Picture mute" feature is active.

• Blue Screen <.....>

If "Yes" selected, "Blue Background" item is seen in "Feature" menu.

- YC Delay <.....>
 - Tuner PAL <.....> Value between -8 to+7
 - Ext PAL <.....> Value between -8 to+7
 - **SECAM <.....>** Value between -8 to+7
 - NTSC <.....> Value between -8 to+7
- AGC (dB) <.....> Value between 0 to+8

11.2. AudioSetup

• Equalizer <.....>

If "Yes" selected, "Equalizer" item is seen in "Sound" menu.

- BBE
- SRS WOW
- Virtual Dolby Surround <....>

If "Yes" selected, Virtual Dolby Surround feature is seen in "Sound" menu with selected Virtual Dolby Text.

- Virtual Dolby Text The selected item is seen as Virtual Dolby Srround Text.
 - 3DS
 - Virtual Dolby
 - 3D Panorama
- AVL <.....>

If "Yes" selected, "AVL" item is seen in "Sound" menu.

• Carrier Mute <.....>

If "Yes" selected. "Carrier mute" feature is active.

- Audio Delay Offset
- Prescale
- FM Presc. AVL On <.....> Value between 0 to +127
- AM Presc. AVL On <.....> Value between 0 to +127
- NICAM Presc. AVL On <.....> Value between 0 to +127
- I2S Presc. AVL On <.....> Value between 0 to +127
- SCART Presc. AVL On <.....> Value between 0 to +127
- FM Presc. AVL Off <.....> Value between 0 to +127
- AM Presc. AVL Off <.....> Value between 0 to +127
- NICAM Presc. AVL Off <......> Value between 0 to +127
- I2S Presc. AVL Off <.....> Value between 0 to +127
- SCART Presc. AVL Off <......> Value between 0 to +127
- Dynamic Bass <.....>

If "Yes" selected, "Dynamic Bass" item is seen in "Sound" menu.

Subwoofer <....>

If "Yes" selected, "Subwoofer" item is seen in "Sound" menu.

11.3. Options 1

- VCTP Version <.....>
 - Basic+
 - Basic
- Double Digit <.....>

If "Yes" selected, "**Double Digit**" button is active for channel selection.

TEA6415C Available <....>

If "Yes" selected, video switch IC is active on hardware.

TEA642X Available<.....>

If "Yes" selected, audio switch IC is active on hardware.

- Power-Up Mode <.....>
 - StandBy If selected, TV opens in stand by mode.
 - L.State If selected, TV opens in Last State mode.
- TV Open Mode <.....>
 - Source
 - 1st TV
 - Last TV

		> "Yes" selected languages are seen as option under
the " Langu a		Feature" menu
•	Language S	_
	0	German <>
	0	French <>
	0	•
		Italian <>
	_	Danish <>
	_	Finnish <> Swedish <>
-	○ Language S	
_	canguage 3	Greek <>
	•	Norwegian <>
		Dutch <>
		Portuguse <>
		Polish <>
		Turkish <>
	0	Russian <>
	0	Czech <>
•	Language S	Set 3
	0	Hungarian <>
	0	Slovak <>
	0	Slovenian <>
		Romanian <>
		Bulgarian <>
	0	Croatian <>
	0	
	0	Hebrew <>
• First APS <		
• FIISLAFS		s" selected, first time TV opens by asking APS.
• APS Volum		e between 0 to+63
Burn In Mo		e between o totos
• Buill III WO		s" selected, TV opens with Burn-In mode. This mode is
		nanufacturing.
 APS Test 	acca min	ianaraotannig.
• HDMI WP <	>	
• 1101111111		s" selected, HDMI EDID ROM is write protected.
11.4. Options 2		
• Autostore <		
		s" selected, Channel is automatically stored.
Led Type <		
•	1 Led 1 Cold	
•	1 Led 2 Cold	
	2 Led 2 Cold	ours
• PC PIP <		
 PC Stand B 	₿ y <>	

11.5. Service Scan/Tuning Setup

- Search for L/L' <.....>
- Pref. Search Standard <.....>
 - BG, DK, I
 - L/L'
 - M
- Station Ident <.....>
- ATS Delay Time (ms) <.....> Value between 20 to 250
- Color Killer Threshold <......> Value between 0 to +255
- Tuner Options <.....>
 - Control Byte <.....> Value between 0 to +255
 - Low-Mid Low Byte <......> Value between 0 to +255
 - Low-Mid High Byte <.....> Value between 0 to +255
 - Mid-High Low Byte <.....> Value between 0 to +255
 - Mid-High High Byte <.....> Value between 0 to +255
 - **BSW1 <......>** Value between 0 to +255
 - **BSW2 <......>** Value between 0 to +255
 - **BSW3 <.....>** Value between 0 to +255

11.6. External Source Settings

- DTV <.....>
- DVD <.....>
- Ext 2 S-Video <.....>
- Ext 3 <.....>
- Ext 3 S-Video <.....>
- FAV <.....>
- BAV <.....>
- S-Video <.....>
- HDMI 1 <.....>
- HDMI 2 <.....>
- YPbPr <.....>
- PC <.....>

11.7. Picture Mode

- Sources <.....>
 - Tuner
 - CVBS
 - RGB
 - SVHS
 - HDMI
 - YPbPr
 - PC
 - PIP
- Picture Mode <.....>
 - Dynamic
 - Natural
 - Cinema

- Colour Temp <.....>
 - Cool
 - Normal
 - Warm
- Contrast <.....> Value between 0 to +63
- **Brightness <.....>** Value between 0 to +63
- Sharpness <.....> Value between 0 to +15
- Colour <.....> Value between 0 to +63
- **Backlight <.....>** Value between 0 to +255
- R <.....> Value between -63 to +63
- **G** <.....> Value between -63 to +63
- **B** < > Value between -63 to +63

11.8. Reset TV-Set

• Initialize NVM from ROM

Press green button to reset the NVM from ROM

12. SOFTWARE UPDATE DESCRIPTION

12.1 Analog Software Update Via f²C

Step.1

Short the second and third pins of PL_406. Power ON and keep shorting the pins 3-5 seconds.

Step.2

Then connect the I²C update tool to parallel port of PC.

Step.3

Connect the other end of the tool to PL_406.

Step.4

Run Cosima VCTP Visual I²C software update program.

Step.5

When you click to box near "0" at "Bootloader Version" item, you will see "40".

If you couldn't see "40" or a "No Acknowledge from Slave!" is appeared,

There may be a connection problem sourced from PC port, or update tool. Or you may forget to power ON.

Step.6

After "40" is seen, Click "Erase Flash"

Step.7

Select the bin. file from near the "Load Bin"

Step.8

Click "Load Bin" and load the required bin. file.

Step.9

Unpick the I²C cable from Chasis

Step.10

Power off and on again TV set to produce hard reset.

Step.11

Initialize the NVM from "Reset TV-set" item from service menu

12.2 Analog Software Update Via UART

Step.1

Connect the serial cable from PC Com port to PL104 connector on 17PRG01 module card.

Step.2

Connect the programming cable from PL 102 connector on 17PRG01 module card to PL408 connector on TV chassis side. The arrow sign " Δ " on the connector must see the PCB side of the chassis. If TV is seen from the back cover, arrow sign must see the TVs back cover

Step.3

Run a RS232 terminal tool like Hyper Terminal.

Step.4

Following settings of the terminal tool are necessary:

Protocol: Xmodem

Port: COMx

Baud Rate: 115200

Data Bits: 8 Parity: none Stop Bits: 1

Com. Control: none

Step.5

Load the bin file from "Browse" and Click "Send"

Step.6

Power off and on again TV set to produce hard reset.

13. BLOCK DIAGRAMS

13.1. General Block Diagram

13.2. Power Management

13.3. DRX (IF Demodulator) Block Diagram

13.4. VCTP

13.4.1. General Block Diagram

13.4.2. MSP Block Diagram

13.4.3 Video Processor of VCT 6wxyP Block Diagram

