Unequal standard deviations

The two-sample t-test tools assume either

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2)$$
 or $Z_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2)$

depending on whether we were working on the original scale (Y) or log scale (Z), respectively.

But what if we don't believe the variances in the two populations are equal, e.g. in the log transformed miles per gallon data set?

Instead compare

$$Y_{ij} \overset{ind}{\sim} N(\mu_j, \sigma_j^2)$$
 or $Z_{ij} \overset{ind}{\sim} N(\mu_j, \sigma_j^2)$,

i.e. the populations have unequal variances. But still test H_0 : $\mu_1=\mu_2$ vs H_1 : $\mu_1\neq\mu_2$ or construct a confidence interval for $\mu_2-\mu_1$.

Welch's SE with Satterthwaite's approximation to df

Estimate of $(\mu_2 - \mu_1)$:

$$\overline{Y}_2 - \overline{Y}_1$$

Standard error:

$$SE_W\left(\overline{Y}_2 - \overline{Y}_1\right) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Degrees of freedom using the Satterthwaite's approximation:

$$df_W = \frac{SE_W \left(\overline{Y}_2 - \overline{Y}_1\right)^4}{\frac{SE(\overline{Y}_2)^4}{n_2 - 1} + \frac{SE(\overline{Y}_1)^4}{n_1 - 1}}$$

where

$$SE\left(\overline{Y}_{2}\right)=rac{s_{2}}{\sqrt{n_{2}}} \qquad ext{ and } \qquad SE\left(\overline{Y}_{1}\right)=rac{s_{1}}{\sqrt{n_{1}}}$$

(which is the same formula as in the paired t-test)

Welch's t-test and CI

Welch's t-test has test statistic:

$$t = \frac{\left(\mathsf{Estimate\text{-}Parameter}\right)}{\mathsf{SE}(\mathsf{Estimate})} = \frac{\overline{Y}_2 - \overline{Y}_1 - (\mu_2 - \mu_1)}{\mathit{SE}_W\left(\overline{Y}_2 - \overline{Y}_1\right)}$$

which has a t distribution with (approximately) df_W degrees of freedom if the null hypothesis is true. Calculate the pvalue

- Two-sided $(H_1: \mu_2 \neq \mu_1)$: $p = 2P(t_{df_W} < -|t|)$
- One-sided $(H_1: \mu_2 > \mu_1)$: $p = P(t_{df_W} < -t)$
- One-sided $(H_1 : \mu_2 < \mu_1)$: $p = P(t_{df_W} < t)$

Two-sided $100(1-\alpha)\%$ confidence interval for $\mu_2 - \mu_1$:

$$\overline{Y}_2 - \overline{Y}_1 \pm t_{df_W} (1 - \alpha/2) SE_W (\overline{Y}_2 - \overline{Y}_1)$$

Are the variances equal?

Suppose

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma_j^2)$$

and you want to test H_0 : $\sigma_1 = \sigma_2$ vs H_1 : $\sigma_1 \neq \sigma_2$.

You can use an F-test and its associated pvalue. If the pvalue is small, e.g. less than 0.05, then we reject H_0 . If the pvalue is not small, then we fail to reject H_0 , but this does not mean the variances are not equal.

(Section 4.5.3) discusses another approach called Levene's test

Welch's test and CI using R

```
var.test(mpg~country,d) # F-test
F test to compare two variances
data: mpg by country
F = 0.9066, num df = 78, denom df = 248, p-value = 0.6194
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.6423 1.3246
sample estimates:
ratio of variances
            0.9066
(t=t.test(mpg~country, d, var.equal=FALSE))
Welch Two Sample t-test
data: mpg by country
t = 12.95, df = 136.9, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 8.758 11.915
sample estimates:
mean in group Japan mean in group US
             30.48
                                  20.14
```

SAS code for two-sample t-test

```
DATA mpg;
    INFILE 'mpg.csv' DELIMITER=',' FIRSTOBS=2;
    INPUT mpg country $;
PROC TTEST DATA=mpg;
    CLASS country;
    VAR mpg;
    RUN;
```

SAS output for t-test

The TTEST Procedure

Variable: mpg

count	ry N	Mean	Std Dev	Std Err	Minimum	Maximum	
Japan 79		30.4810	6.1077	0.6872	18.0000	47.0000	
US	US 249		6.4147	0.4065	9.0000	39.0000	
Diff (1-2)		10.3364	6.3426	0.8190			
country	Method	Mean	95% CI	Mean	Std Dev	95% CL Std Dev	,
country	riectiou	riean	35% CI	riean	Std Dev	33% OF BUG Dev	
Japan		30.4810	29.1130	31.8491	6.1077	5.2814 7.242	29
US		20.1446	19.3439	20.9452	6.4147	5.8964 7.033	36
Diff (1-2)	Pooled	10.3364	8.7252	11.9477	6.3426	5.8909 6.869	99
Diff (1-2)	Satterthwaite	10.3364	8.7576	11.9152			
	Method	Variance	es o	lf t Value	Pr > t		
	Pooled	Equal	32	26 12.62			
	Satterthwait	te Unequal	136.8	12.95			
	Method	Num df	Den df	F Value	Pr > F		
	Folded	F 248	78	1.10	0.6194		

```
var.test(log(mpg)~country,d)
F test to compare two variances
data: log(mpg) by country
F = 0.4617, num df = 78, denom df = 248, p-value = 0.0001055
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.3271 0.6745
sample estimates:
ratio of variances
            0.4617
(t = t.test(log(mpg)~country, d, var.equal=FALSE))
Welch Two Sample t-test
data: log(mpg) by country
t = 14.46, df = 193.3, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.3809 0.5013
sample estimates:
mean in group Japan
                    mean in group US
              3.396
                                  2.955
exp(t$conf.int)
```

[1] 1.464 1.651 attr(,"conf.level")

SAS code for t-test using logarithms

```
DATA mpg;
  INFILE 'mpg.csv' DELIMITER=',' FIRSTOBS=2;
  INPUT mpg country $;
PROC TTEST DATA=mpg TEST=ratio;
CLASS country;
VAR mpg;
run;
```

SAS output for t-test using logarithms

The TTEST Procedure

Variable: mpg

	country	N	Geometri Mea			Minimum		Maximum			
	Japan	79	29.852	:5	0.2111			47.0000			
	US	249	19.205	1	0.3147			39.0000			
	Ratio (1/2)		1.554	4	0.2928						
		Geor	netric			C	oefficient				
country	Method		Mean	95% CL	Mean	of	Variation	95% C	L CV		
Japan		29	9.8525	28.4887	31.2817		0.2111	0.1820	0.2514		
US		19	9.2051	18.4825	19.9560		0.3147	0.2882	0.3467		
Ratio (1/2)	Pooled		1.5544	1.4452	1.6719		0.2928	0.2712	0.3183		
Ratio (1/2)	Satterthwaite		1.5544	1.4636	1.6508						
Coefficients											
	Method	of Variation		.on	DF t	Value Pr >		tl			
	Pooled	I	Equal		326	11.91	<.000	01			
	Satterthwait		Jnequal	193	.33	14.46	<.000	01			
Equality of Variances											
Method Num DF Den DF F Value Pr > F											

Folded F

248

2.17

0.0001

78

Summary

Two-sample t tools assumptions

- Normality
 - No skewness (take logs?)
 - No heavy tails
- Equal variances
 - Test: F-test or Levene's test
 - Use Welch's two-sample t-test and CI
- Independence (use random effects or avoid)
 - Cluster
 - Serial
 - Spatial