

# Dimensionality Reduction

Guillem & Roderic, Summer 2025

#### Goals

- Understand the need and purpose of dimensionality reduction algorithms.
- Giver overview of Principal Components Analysis (PCA).
- See applications of PCA in context.
- Compare to and combine with other algorithms.

#### **Example 1: Hotel Listings**

- Each data point in  $\mathbb{R}^6$  corresponds to a hotel
- Hotels are ranked according to 6 categories:
- Each individual hotel can be represented by a point in

|  | 4.8<br>5<br>5<br>4.8<br>4.7<br>4.8 |
|--|------------------------------------|
|--|------------------------------------|



| 3.8        |
|------------|
| 4.6<br>4.8 |
| 4.8        |
| 4.2        |
| 4.7        |



Cleanliness

Check-in

Communication



$$= \begin{bmatrix} 4.6 \\ 4.7 \\ 4.7 \\ 4.5 \\ 4.1 \end{bmatrix}$$

Accuracy

Location

Value

## Example 2: Grayscale Images

- Each data point corresponds to an image of resolution 4x4
- Each of the 16 pixels is represented with a number from 0 (black) to 1 (white)
- lacksquare Each image can be represented by a point in  $\mathbb{R}^{16}$



#### Example 3: Gene Expression

- Each sample measures expressions of N genes in distincts cells
- ullet Each individual cell can be represented by a point in  $\mathbb{R}^{\mathsf{N}}$

| Sample ID | Gene1 | Gene2 | Gene3 | GeneN |
|-----------|-------|-------|-------|-------|
| Sample1   | 5.2   | 0.1   | 3.4   | 7.6   |
| Sample2   | 4.9   | 0.0   | 3.8   | 6.8   |

$$sample_{1} = \begin{bmatrix} 5.2 \\ 0.1 \\ 3.4 \\ \vdots \\ 7.6 \end{bmatrix} \qquad sample_{2} = \begin{bmatrix} 4.9 \\ 0.0 \\ 3.8 \\ \vdots \\ 6.8 \end{bmatrix}$$

#### **Point Cloud Data**



A point cloud is a collection of data points in  $\mathbb{R}^m$ 

- ullet Each point is represented according to its coordin  $(X_1,X_2,X_3,\ldots,X_m)$
- Each coordinate represents a different numerical feature of each observation:
  - **Hotels in a city** can be represented in R6 according to user ratings of: cleanliness, accuracy, communication, check-in, location, value
  - $\circ$  A **4x4 pixels grayscale image** can be represented in  $\mathbb{R}^1$ 6: each pixel is represented with a unique number according to a scale from black to white
  - $\circ$  Samples of **expressions of 10 genes** in cells can be represented in  $^{
    ho}$ 10

#### Why Dimensional Reduction?

- Is it **practical** to work with high-dimensional data?
- Is there a way to visualize high-dimensional data?
- Is there a way to determine if any features more important than others?
- Are any **combinations of features** more relevant than others?



#### Why Dimensional Reduction?

- Enable visualization (we can only\* visualize in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ )
- Reduce computational complexity
- Reduce redundancy and noise
- Reduce overfitting
- Find correlations between input features

#### What do we need?

- Statistics
- Linear Algebra
- Topology (more advanced)

# **Statistics Basics**

#### **Statistics Measurements**

Suppose we have N measurements of a certain feature:  $X_1, X_2, \ldots, X_N$ 

The **mean** is the central tendency or "average" of a set of numbers:

The **variance** measures how spread out the values are around the mean:



#### Statistics Measurements

Suppose we have N measurements of two features:

$$X_1, X_2, \dots, X_N$$
  
 $Y_1, Y_2, \dots, Y_N$ 

The **covariance** is a measure of how two variables change together—whether they tend to increase or decrease at the same time.

$$\mathrm{Cov}(X,Y)=rac{1}{N}\sum_{i=1}^{N}(X_i-\overline{X})(Y_i-\overline{Y})$$
 to cloud the standardized version of covariance.

The **correlation** is the standardized version of covariance.

#### **Statistics Measurements**

When comparing variances of different numerical features in a dataset, **the higher the** variance the more representative that feature is. For example:

- All hotels are rated with an accuracy between 3 and 5, and
- are rated with a cleanliness between 1 and 5, therefore
- cleanliness is a more important feature!



#### What is true about these plots?







#### What is true about these plots?



$$\operatorname{Cov}(X_A, Y_A) >> \operatorname{Cov}(X_B, Y_B)$$

0%

$$\mathrm{Cov}(X_A,Y_A)<<\mathrm{Cov}(X_B,Y_B)$$

0%

$$\mathrm{Cov}(X_A,Y_A)\simeq \mathrm{Cov}(X_B,Y_B)$$

0%



#### What is true about these plots?





$$\mathrm{Cov}(X_A,Y_A) < 0$$

$$\mathrm{Cov}(X_A,Y_A)\simeq 0$$
0%



# Linear Algebra Basics

#### **Linear Transformations**

Any matrix can be thought of as a function via matrix-vector multiplication. A matrix with m columns and n rows "is" a function from  $\mathbb{R}^m$  to  $\mathbb{R}^n$ .

• Example of a linear transformation from  $\mathbb{R}^3$  to  $\mathbb{R}^2$ :



## **Orthogonal Projections**

- Orthogonal projections are linear transformations (defined by a matrix)
- Let V be a n-dimensional subspace of  $\mathbb{R}^n$  (line in  $\mathbb{R}^2$ , line or plane in  $\mathbb{R}^3$ , etc.)
- Orthogonal projections minimize distance between points and projections.



#### **Orthogonal Projections**

- Projection formula  $\operatorname{proj}(\vec{v}) = (\vec{u}_1 \cdot \vec{v})\vec{u}_1 + (\vec{u}_2 \cdot \vec{v})\vec{u}_2 + \dots + (\vec{u}_k \cdot \vec{v})\vec{u}_k$
- Need a basis of perpendicular unit vectors (orthonormal basis)



### **Eigenvalues & Eigenvectors**

Eigenvectors and eigenvalues are specific properties of square (nxn) matrices.

- Eigenvectors are vectors that scale by a constant when transformed.
- Eigenvalues can be real or complex.
- Not all matrices have the "expected" number of eigenvectors.
- If a matrix has a basis of eigenvectors, then is it diagonalizable

Suppose A is an  $x \times x$  matrix. A nonzero vector  $\vec{v}$  in  $\mathbb{R}^n$  is an **eigenvector** of A of **eigenvalue**  $\lambda$  if

$$A\vec{v} = \lambda \vec{v}$$
.

# Which of these is an eigenvalue-vector pair for the matrix $egin{bmatrix} 1 & 2 \ 2 & 4 \end{bmatrix}$



$$egin{bmatrix} 1 \ 1 \end{bmatrix}$$
 and  $\lambda=1$ 

$$egin{bmatrix} 1 \ 2 \end{bmatrix}$$
 and  $\lambda=5$ 

$$egin{bmatrix} 1 \ -1 \end{bmatrix}$$
 and  $\lambda=0$ 



#### Symmetry, SVD & Eigendecomposition

- A square matrix M is symmetric is  $M^T=M$
- Symmetric matrices satisfy
  - All eigenvalues are real
  - As many (l.i.) eigenvectors as their dimension
  - The eigenvectors can be chosen to be orthogonal
  - o In summary: are orthogonally diagonalizable



#### Linear Algebra Summary

- Projections are linear transformations that require a basis of perpendicular unit vectors (orthonormal basis)
- Symmetric Matrices are orthogonally diagonalizable, that means it has a basis of perpendicular unit eigenvectors.
- Diagonalizing a symmetric matrix is efficient computationally.
- PCA uses symmetric matrices to find directions in which data is more spread, and projection

# Principal Components Analysis

#### **Principal Component Analysis**

- PCA finds the direction(s) in which the data varies the most (i.e., is most spread out), and
- projects the data onto those directions to reduce dimensionality while preserving as much variance as possible.



#### Which of the following is the PCA 2D projection of this cow?









#### Step 0: Gathering The Data

ullet Consider a multidimensional dataset consisting of **N** observations of **m** different characteristics  $X_i$ :

$$(X_1^{(1)}, X_2^{(1)}, X_3^{(1)}, \dots, X_m^{(1)})$$
 $(X_1^{(2)}, X_2^{(2)}, X_3^{(2)}, \dots, X_m^{(2)})$ 
 $\vdots$ 
 $(X_1^{(N)}, X_2^{(N)}, X_3^{(N)}, \dots, X_m^{(N)})$ 

• This data lives in a high-dimensional space  $\mathbb{R}^m$ , that is "impossible" for us to visualize

# Step 1: Standardizing The Data

- ullet Center the data:  $X_i-\overline{X}$
- Standardize (typically):  $X_i \overline{X}$
- Point cloud before/after centering





## Step 1: Standardizing The Data

- Visual: why is it important to standardize?
  - Remove dependency on units
  - Get rid of scaling differences



#### Which of the following is the PCA 2D projection of the standardized cow?







### Step 2: Finding Covariance Matrix

Find the covariance matrix:

$$\operatorname{Cov}(\vec{X}) = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_m) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_m) \\ \vdots & & \ddots & \vdots \\ \operatorname{Cov}(X_m, X_1) & \operatorname{Cov}(X_m, X_2) & \cdots & \operatorname{Var}(X_m) \end{bmatrix}$$

Computational shortcut: if M is the matrix of your standardized data. Then

$$\operatorname{Cov}(\vec{X}) = \frac{1}{N} M^T M$$

### Step 3: Eigenvectors and Eigenvalues

When data is standardized, the eigenvalues of the covariance matrix  $\operatorname{Cov}(\vec{X})$  measure the proportion of the variance in the direction of the corresponding eigenvectors.

$$\sum_{i=1}^{N} \lambda_i = \sum_{i=1}^{N} \operatorname{Var}(X_i) = N$$

Eigenvector of largest eigenvalue <-> first principal component, Eigenvector of second largest eigenvalue <-> second principal component, Etc.

# Step 4: Choose Number of Principal Components

- There are as man principal components as dimensions of your initial data.
- Choose a number N of principal components to project onto
- Pick the eigenvectors with the largest N eigenvalues



# Step 4: Choosing Number of Principal Components

Deciding the number of components onto which the

- For visualization purposes 2 or 3 (obvious reasons)
- Elbow Rule: (shown below)
- Kaiser Rule: pick eigenvectors with eigenvalue greater than 1





#### **Step 5: Project The Data**

Example: a cow from  $\mathbb{R}^3$  to  $\mathbb{R}^2$ 

Projection onto the **first two** principal components.



#### **Step 5: Project The Data**

Example: Classifying 28x28 handwritten digits



# Step 6: Interpretation

• Let  $X_1, X_2, ..., X_n$  in denote the original features in  $\mathbb{R}^n$  and  $Y_1, Y_2, ..., Y_d$ the principal components in  $\mathbb{R}^d$ :

$$\begin{array}{ll} \circ & Y_1 = a_{11} X_1 + a_{12} X_2 + ... + a_{1n} X_n \\ \circ & Y_2 = a_{21} X_1 + a_{22} X_2 + ... + a_{2n} X_n \end{array}$$

$$O$$
 ...  
 $O$   $Y_d = a_{d1}X_1 + a_{d2}X_2 + ... + a_{dn}X_n$ 

Combinations of the **original features** that are more relevant (preserve the maximum variance of the original data)

## **Example: Identifying Mushrooms**

 Predicting whether a mushroom is edible or poisonous according to 22 binary characteristics:

| CapShape | CapSurface | CapColor | Bruises | Odor   | GillAttachment | GillSpacing | GillSize | GillColor | StalkShape | Stall |
|----------|------------|----------|---------|--------|----------------|-------------|----------|-----------|------------|-------|
| convex   | fibrous    | brown    | False   | none   | free           | crowded     | broad    | chocolate | tapering   | equa  |
| convex   | scaly      | brown    | True    | none   | free           | close       | broad    | brown     | tapering   | bulb  |
| convex   | smooth     | yellow   | True    | almond | free           | close       | broad    | gray      | enlarging  | club  |
| flat     | fibrous    | yellow   | False   | foul   | free           | close       | broad    | pink      | enlarging  | bulb  |
| flat     | smooth     | buff     | True    | foul   | free           | close       | broad    | pink      | tapering   | bulb  |

{convex, smooth, brown, True, pungent, free, close, narrow, black, enlarging, equal, smooth,
 smooth, white, white, partial, white, one, pendant, black, scattered, urban} → poisonous
{convex, smooth, yellow, True, almond, free, close, broad, black, enlarging, club, smooth,
 smooth, white, white, partial, white, one, pendant, brown, numerous, grasses} → edible

## **Example: Identifying Mushrooms**

- Which characteristics are more distinguishing between mushrooms?
- First principal component:

Y<sub>1</sub>=0.48\*gill\_color + 0.38\*spore\_print\_color + 0.35\*stalk\_color\_above\_ring + ...



Cap Shape: convex, bell, sunken or flat

Gill color: black, brown, gray, pink, white, chocolate, purple, red, buff, green, yello...

Ring number: 1,2 or 3

Stalk surface: smooth, fibrous, scaly or silky



#### Which characteristics are more distinguishing of mushrooms?



| Cap Shape: convex, bell, sunken or flat                                                            |    |
|----------------------------------------------------------------------------------------------------|----|
|                                                                                                    | 0% |
| Gill color: black, brown, gray, pink, white, chocolate, purple, red, buff, green, yellow or orange |    |
|                                                                                                    | 0% |
| Ring number: 1,2 or 3                                                                              |    |
|                                                                                                    | 0% |
| Stalk surface: smooth, fibrous, scaly or silky                                                     |    |
|                                                                                                    | 0% |



#### Which characteristics are more distinguishing of mushrooms?



| Cap Shape: convex, bell, sunken or flat                                                            |    |
|----------------------------------------------------------------------------------------------------|----|
|                                                                                                    | 0% |
| Gill color: black, brown, gray, pink, white, chocolate, purple, red, buff, green, yellow or orange |    |
|                                                                                                    | 0% |
| Ring number: 1,2 or 3                                                                              |    |
|                                                                                                    | 0% |
| Stalk surface: smooth, fibrous, scaly or silky                                                     |    |
|                                                                                                    | 0% |



## Principal Component Analysis: Summary

- Standardize (or center) each feature
- Compute covariance matrix
- Find eigenvectors and eigenvalues of the covariance matrix
  - The eigenvalues represent the proportion of overall variance in the direction of the eigenvector
  - Select a number of eigenvectors according to their eigenvalues
  - Project the data onto those eigenvectors
  - Read off the combinations of features that are more relevant

### **Subtleties**

- Built-in algorithms will center your data, but (typically) won't standardize it.
- There is a sign ambiguity when choosing the eigenvectors.



# Questions?

PCA + Other Algorithms

# Running Example: Classifying Os and 7s



# **PCA + Logistic Regression**

- First run Logistic Regression
- Then apply PCA
- Timing: 27s

- First apply PCA
- Then run Logistic Regression
- Timing: 1.9s



# PCA + Clustering

- First find 2 clusters
- Apply PCA
- Timing: 2.6s
- Finds 1 cluster (and 1 singleton)

- First apply PCA
- Find 2 clusters
- Timing: 0.5s





# Other Dimensional Reduction Algorithms

### Local vs Global Structure

Local structure captures relationships between a point and its **nearby neighbors**.

- Focuses on small-scale geometry.
- Captures neighborhoods, clusters, density, or local curvature.

Global structure refers to the **overall layout and geometry** of the entire dataset.

- Focuses on long-distance relationships.
- Captures shape, orientation, cluster separation, and topology.

# **Local vs Global Structure**

A circle and a line have the same local structure, but different global structure



# **Local vs Global Structure**

A sphere and an ellipsoid have the same **global structure**.



# **UMAP**

UMAP captures both **local** neighborhoods and some **global** relationships in the data.



# t-SNE

t-SNE is designed to keep similar points close together in the low-dimensional space. It's excellent at revealing clusters and local groupings in complex, high-dimensional data.



# Autoencoder

An autoencoder is a type of **neural network** that automatically identifies main features in data





# **Complicated Geometries**

#### Pathological case I:

- Data is distributed in a spiral
- t-SNE detects the geometry better than PCA





**PCA** 





# **Complicated Geometries**

#### Pathological case II:

- Data is grouped in nested spheres
- UMap detects the geometry better than PCA





# Summary

|                              | PCA                 | t-SNE            | UMAP                 |
|------------------------------|---------------------|------------------|----------------------|
| Туре                         | Linear              | Non-linear       | Non-linear           |
| Preserves                    | Global structure    | Local structure  | Local & some global  |
| Mathematical Basis           | Linear Algebra      | Local Topology   | Global Topology      |
| Speed                        | Fast                | Slow             | Faster than t-SNE    |
| Scalability                  | Good                | Poor             | Good                 |
| Distance<br>Interpretability | Yes                 | No               | Yes*                 |
| Reproducibility              | Yes (deterministic) | No (random init) | No (varies slightly) |