Section: F2 Graded Lab 4

Genetic Algorithm (Continued)

Genetic algorithms are usually used to identify optimal solutions to complex problems. This can clearly be easily mapped to search methods, which are aiming toward a similar goal. Genetic algorithms can thus be used to search for solutions to multi-value problems where the closeness of any attempted solution to the actual solution (**fitness**) can be readily evaluated. In short, a **population** of possible solutions (**chromosomes**) is generated, and a fitness value for each chromosome is determined. This fitness is used to determine the likelihood that a given chromosome will survive to the next generation or reproduce. Reproduction is done by applying **crossover** to two (or more) chromosomes, whereby features (**genes**) of each chromosome are combined together. Mutation is also applied, which involves making random changes to particular genes.

Lab Tasks

Exercise 12.1.

Consider the <u>problem from the last lab</u> focusing on maximizing the following function and Perform the mentioned modifications.

$$f(x) = \frac{-x^2}{10} + 3x$$

where x is allowed to vary between 0 and 31. You must perform following tasks in the code.

a. Representation of states (solutions): To solve this using a genetic algorithm, we must encode the possible values of x as chromosomes. For this problem, we will encode x as a binary integer of length 5. Thus, the chromosomes for our genetic algorithm will be sequences of 0's and 1's with a length of 5 bits, and have a range from 0 (00000) to 31 (11111).

b. Fitness function:

The fitness function for it will be:

$$f(x) = \frac{-x^2}{10} + 3x$$

To begin the algorithm, we select an initial population of 10 chromosomes at random. The resulting initial population of chromosomes is shown in Table 1. Next we take the x-value that each chromosome represents and test its fitness with the fitness function. The resulting fitness values are recorded in the third column of Table 1.

Chromosome Number	Initial Population	<i>x</i> -Value	Fitness Value $f(x)$	Selection Probability
1	01011	11	20.9	0.1416

Section: F2 Graded Lab 4

2	11010	26	10.4	0.0705
3	00010	2	5.6	0.0379
4	01110	14	22.4	0.1518
5	01100	12	21.6	0.1463
6	11110	30	0	0
7	10110	22	17.6	0.1192
8	01001	9	18.9	0.1280
9	00011	3	8.1	0.0549
10	10001	17	22.1	0.1497

c. Operators:

- i. Apply cross over in every generation.
- ii. Apply mutation after every 3 generations.
- **d. Termination criteria:** Your loop should stop when the value of one of your candidate's fitness functions is greater or equal to 90%.

Your Task is to modify the implementation according to the given instructions:

- 1- Now take 6 bit binary i.e. range from 0 to 63 (000000 111111), take 7 random values from 0 to 63 as initial population.
- 2- Change the parent selection method from Roulette wheel to
 - i. Rank Selection
 - ii. Random Selection
- 3- Modify the cross over to 2-point cross over.

Exercise 12.2.

Suppose a genetic algorithm uses chromosomes of the form x = abcdefgh with a fixed length of eight genes. Each gene can be any digit between 0 and 9. Let the fitness of individual x be calculated as:

$$f(x) = (a + b) - (c + d) + (e + f) - (g + h)$$

and let the initial population consist of four individuals with the following chromosomes:

$$x1 = 65413532$$

$$x2 = 87126601$$

$$x3 = 23921285$$

$$x4 = 41852094$$

- a) Evaluate the fitness of each individual and arrange them in order with the fittest first and the least fit last.
- b) Cross the first and third fittest individuals (ranked 1st and 4th) using a uniform crossover.
- c) Produce 6 new chromosomes and the solution should have a chromosome that gives the maximum of the fitness function