GFortran と Co-array Fortran

Yuma Osada

$\mathrm{Feb}\ 3,\ 2022$

目次

1	最初に失敗話	1
2	実行環境	2
3	Co-array Fortran	3
4.1 4.2	gfortran で Co-array Fortran を使う方法 apt を使う方法	3 5
5 5.1 5.2	実行 apt から	6 7 7
5.3	速度の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
6	結論	8
7	参考	8

1 最初に失敗話

私の PC では最初に Co-array Fortran を使っても高速化しなかった. おそらく, gfortran や mpirun などの PATH がめちゃくちゃだったせい.(再現ができないので原

因が分からない...)環境の整理をしたら直った.

2 実行環境

- Ubuntu20.04
- Ubuntu20.04 on VirtualBox6.1.14

```
echo ${PATH} | sed -s "s=${HOME}=~=g"
  ~/.nvm/versions/node/v16.3.0/bin:~/.cabal/bin:/usr/local/gcc-11.2.0/bin:/opt/bin/:~
1 which gfortran
  /usr/local/gcc-11.2.0/bin/gfortran
 gfortran --version
  GNU Fortran (GCC) 11.2.0
  Copyright (C) 2021 Free Software Foundation, Inc.
  This is free software; see the source for copying conditions. There is NO
  warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
1 which mpirun
  /usr/local/gcc-11.2.0/bin/mpirun
1 mpirun --version
  mpirun (Open MPI) 4.1.2
  Report bugs to http://www.open-mpi.org/community/help/
```

3 Co-array Fortran

Co-array Fortran は Fortran の言語仕様の一部に組込まれているが、gfortran のみでは使えない. この記事は Co-array で書かれたプログラムを gfortran により実行するためのメモである. Ubuntu20.04 では apt を使う方法とソースからビルドする方法がある. apt を使う方法はインストールが楽だがコンパイルが面倒. ソースからビルドするとラッパースクリプトの caf と cafrun が手に入るためコンパイルは楽になる.

4 gfortran で Co-array Fortran を使う方法

Co-array Fortran のコンパイルのテスト用ファイル.

```
program coarrays_test

implicit none

integer :: my_image, n_images

my_image = this_image()

n_images = num_images()

print*, "I'm ", my_image, "/", n_images

end program coarrays_test
```

4.1 apt を使う方法

まずは apt で検索をかけてみる.

```
apt search coarrays
```

ソート中...

全文検索...

libcaf-mpich-3/focal 2.8.0-1 amd64
Co-Array Fortran libraries (MPICH)

libcaf-openmpi-3/focal,now 2.8.0-1 amd64 [インストール済み、自動]

Co-Array Fortran libraries (OpenMPI)

libcoarrays-dev/focal,now 2.8.0-1 amd64 [インストール済み] Co-Array Fortran libraries

libcoarrays-mpich-dev/focal 2.8.0-1 amd64
Co-Array Fortran libraries for - development files (MPICH)

libcoarrays-openmpi-dev/focal,now 2.8.0-1 amd64 [インストール済み] Co-Array Fortran libraries - development files (OpenMPI)

mpich と openmpi がある. openmpi を使うならば.

 $_{1}$ sudo apt install -y libcoarrays-openmpi-dev

実行するには必要なライブラリをリンクする必要があるが、pkg-config を使えば良い. インストールされた.pc ファイルを検索すると

dpkg -L libcoarrays-openmpi-dev | grep -e '\.pc\$'

/usr/lib/x86_64-linux-gnu/pkgconfig/caf-openmpi.pc /usr/lib/x86_64-linux-gnu/open-coarrays/openmpi/pkgconfig/caf-openmpi.pc /usr/lib/x86_64-linux-gnu/open-coarrays/openmpi/pkgconfig/caf.pc

OpenMPI を使う場合は, caf-openmpi.pc を利用する.

- gfortran -o coarrays_test.out -fcoarray=lib coarrays_test.f90 \$(pkg-config --libs
 → --cflags caf-openmpi)
- 2 mpirun -np 2 ./coarrays_test.out

I'm 1 / 2

I'm 2 / 2

おそらく, -lcaf_openmpi だけで十分.

gfortran -o coarrays_test.out -fcoarray=lib coarrays_test.f90 -lcaf_openmpi

pirun -np 2 ./coarrays_test.out

I'm 1 / 2

I'm 2 / 2

4.2 ソースからビルドする方法

http://www.opencoarrays.org/ の https://github.com/sourceryinstitute/ OpenCoarrays/tree/master からソースコードをクローンする.

- git clone https://github.com/sourceryinstitute/OpenCoarrays.git
- cd OpenCoarrays/

cmake を使ってビルドとインストールをする.

- 1 FC=/usr/local/gcc-11.2.0/bin/gfortran cmake -B _build -DBUILD_TYPE=Release
 - → ¬DCMAKE_INSTALL_PREFIX=/usr/local/gcc-11.2.0
- 2 cmake --build _build
- 3 cmake --build _build --target install

これでラッパースクリプトの caf と cafrun が /usr/local/gcc-11.2.0 にインストールされる. FC や PREFIX を変えれば好きな場所にインストールできる. caf が何をラップしているかを知るためには

caf -w

caf wraps /usr/local/gcc-11.2.0/bin/gfortran-11.2.0

caf の version を知るためには

caf -v

OpenCoarrays Coarray Fortran Compiler Wrapper (caf version 2.9.2-13-g235167d)

Copyright (C) 2015-2020 Sourcery Institute

Copyright (C) 2015-2020 Sourcery, Inc.

OpenCoarrays comes with NO WARRANTY, to the extent permitted by law. You may redistribute copies of OpenCoarrays under the terms of the BSD 3-Clause License. For more information about these matters, see the file named LICENSE that is distributed with OpenCoarrays.

を実行すればよい.

```
caf -o coarrays_test_caf.out coarrays_test.f90
cafrun -np 2 ./coarrays_test_caf.out
```

I'm 1 / 2 I'm 2 / 2

5 実行

ソースコードは NAG のチュートリアルからダウンロード https://www.nag-j.co.jp/fortran/coarray/coarrayTutorial_3.html.

```
[ -f quad1.f90 ] || wget https://www.nag-j.co.jp/fortran/coarray/code/quad1.f90

[ -f coquad1.f90 ] || wget https://www.nag-j.co.jp/fortran/coarray/code/coquad1.f90

[ -f coarrays.f90 ] || wget https://www.nag-j.co.jp/fortran/coarray/code/coarrays.f90

gfortran -fcoarray=lib -o coarrays.out quad1.f90 coquad1.f90 coarrays.f90 -lcaf_openmpi

caf -o coarrays_caf.out quad1.f90 coquad1.f90 coarrays.f90
```

5.1 apt から

1 mpirun -np 1 ./coarrays.out

Time taken 9.620 seconds by 1 images, = 9.62 computing power

mpirun -np 4 ./coarrays.out

Calculated value: 0.90000000000022018
True value (approx): 0.9000000000000002
Relative error 2.4461913975907617E-013

Time taken 2.742 seconds by 4 images, = 10.97 computing power

5.2 caf

cafrun -np 1 ./coarrays_caf.out

Calculated value: 0.9000000000031166
True value (approx): 0.9000000000000002
Relative error 3.4626622556920158E-013

Time taken 9.626 seconds by 1 images, = 9.63 computing power

cafrun -np 4 ./coarrays_caf.out

Calculated value: 0.9000000000022018
True value (approx): 0.9000000000000002
Relative error 2.4461913975907617E-013

Time taken 2.644 seconds by 4 images, = 10.58 computing power

5.3 速度の比較

	time	speedup
mpirun -np 1	9.620	1
mpirun -np 4	2.742	3.5083880
cafrun -np 1	9.626	1
cafrun -np 4	2.644	3.6406959

6 結論

どちらの方法でも速度は大して変わらない. おおよそコア数分のスピードアップをしている.

ビルドの手間とコンパイルの手間を天秤にかけると、コンパイルが楽な caf を使った方が良いだろう.

7 参考

• OpenCoarrays

http://www.opencoarrays.org/

https://github.com/sourceryinstitute/OpenCoarrays/tree/master

• NAG のチュートリアル

https://www.nag-j.co.jp/fortran/coarray/coarrayTutorial_3.html