Vision Vanguards: A Computer Vision-Based Karaoke Experience

Team Members: Athulya Ganesh, Stephanie Mullins, Rob Kelly Advisor: Jillian Aurisano

Goals

Our team wishes to implement a web-based karaoke application that utilizes a mixture of Computer Vision and audio processing techniques. Our aim is for the user experience to feel like a blend of Just Dance and Karaoke, allowing them to both sing and perform poses to a given song.

- Some examples of use cases that we wish to cover for consumers:
 - Enable users to access the application and utilize both the audio and video portions of the application to perform a wide variety of songs
 - Allow users to save their score via a leaderboard and compare it with their peers
 - Permit users to visit the website, pick a song, and use only the video portion of the application, which would allow them to enjoy the game without worrying about singing
 - Allow for users to access the application and only perform using the audio portion of the application, allowing them to perform without the need for a video camera

Intellectual Merits

- Integration of Computer Vision and Audio Processing
 - Seamless integration of computer vision and audio processing technologies
 - Enables immersive karaoke experience combining singing and dance routines
- Gesture and Skeletal Tracking
 - Innovative implementation of gesture recognition and full-body skeletal tracking
 - Enhances user interaction and experience with intuitive controls
- Scoring Algorithm
 - Development of a composite scoring system based on audio and visual inputs
 - Evaluates both singing accuracy and dance movements for comprehensive feedback
- Web Application Development
 - Utilization of web technologies for scalability and accessibility
 - Frontend and backend frameworks ensure a robust and user-friendly platform
- User-Centric Design
 - Tailored to diverse user personas including casual singers and shy performers
 - Prioritizes user engagement and satisfaction for an enjoyable karaoke experience

Broader Impacts

- Entertainment
 - Provides a fun outlet for game night
 - Practice singing and dancing in a nonconventional way
- Collaboration
 - Brings together friends and family with a fun activity
- Technological Innovations
 - Introduces another genre of usage for Computer Vision technologies, focusing more on a consumer-friendly product as opposed to more commercial usages (hospitals, agriculture, etc.)

Design Specifications

- Project Overview
 - Develop an integrated karaoke and movement web application
 - Combine computer vision and audio processing technologies
 - Objectives: Gesture and skeletal tracking, audio pitch accuracy
- Computer Vision Tasks
 - Research gesture recognition and skeleton tracking
 - Implement hand signal recognition and tracking
 - Develop skeleton detection and tracking algorithms
 - Ensure correctness of skeletal tracking for graded scoring

Design Specifications (cont.)

- Audio Processing Tasks
 - Research and select audio processing libraries
 - Implement chosen library and integrate it
 - Develop audio to text transcription and pitch detection
 - Assess lyrical and pitch accuracy for composite scoring
- Web Interface Tasks
 - Research frontend/backend technologies and database options
 - Create wireframes and prototypes using Figma
 - Set up development environment and infrastructure
 - Develop web app structure, navigation, and features
 - Implement scoring, leaderboard, and user management

Design Specifications (cont.)

- Combined Tasks:
 - Integrate audio processing into the web app
 - Combine computer vision with audio and website
 - Implement algorithm for composite performance scoring

Technologies

- Computer Vision
 - OpenCV
 - Camera input and video manipulation
 - MediaPipe
 - Pose estimation of the camera input
- Audio Processing
 - Librosa
 - Implemented primarily for extracting pitches from audio tracks
 - PyAudio
 - Used for recording and opening audio files
 - PyGame
 - Utilized for loading and playing music tracks
 - SpeechRecognition
 - Employed for transcribing audio tracks to text

Technologies (cont.)

- Web Interface
 - React JS Framework
 - Used to create the frontend and backend of the web interface
 - Firebase
 - Used for authenticating users as well as maintaining a list of users and high scores

Milestones

	October	November	December	January	February	March
Computer Vision	Research software and begin environment setup	Complete gesture recognition. Start full body still images skeletal detection	Finish still image full body detection. Begin work on live video with skeletal detection	Implement recognition of human body movements with inputted movements	Finish full body skeletal movements and scoring of user movements	Integrate Computer Vision feature into web application
Audio Processing	Research audio processing libraries	Implement chosen audio processing library	Research audio-to-text transcription and pitch detection methods	Implement lyrical and pitch accuracy features	Compute composite accuracy algorithm and begin integration with web application	Finish integration with web application
Web Interface	Determine choice of technology, UI design, and environment setup	Finish web application skeleton and database setup	Create performance interfaces, lyrics module, and gesture guidance	Implement scoring, restart, leaderboard, and user management pages	Testing and refinement of web application	Integrate web application with CV and audio processing

Results

- Completed
 - Computer vision logic (pose estimation)
 - Audio processing logic
 - 75% of website properly set up
 - User authentication logic
- Work in progress
 - Hook computer vision and audio portions into web app
 - Complete Firebase database implementation for leaderboard
 - Implement all components for game demo
 - Hardcoding poses for game to correlate to specific songs

Challenges (Computer Vision)

- Computer Vision
 - OpenPose: Installation problems and compatibility issues with laptop
 - Solution: Tried to debug installation problems and looked at documentation. Ended up moving to another library because of computer hardware compatibility
 - MediaPipe: Finding right methods within library, performance slowness
 - Solution: Researched documentation and tried different pose estimation approaches within MediaPipe's library

Challenges (Audio Processing)

- Audio Processing
 - Pitch matching algorithm worked, but did not account for different singing tones; notes sung would be correct but register as incorrect
 - Solution: Implementing an octave-matching algorithm allowed for different tones to be taken into account with scoring
 - Copyright and integration issues with Spotify API did not allow for us to properly implement as wide of a variety of songs as we intended
 - Solution: We decided to instead focus on a couple of hard-coded songs that users could perform, and as the project grows in the future, this will be further fleshed out and copyright problems will be worked out

Challenges (Web Interface)

- Web Interface
 - Issues with firebase connecting to the web application
 - Solution: Debug Firebase Integration thoroughly by checking SDK installation, configuration settings, and authentication setup, using Firebase documentation for guidance
 - Responsive design, especially when dealing with multiple complex components
 Solution: Implement Responsive Component Design using a Mobile-First approach,
 Flexbox, CSS Grid, Media Queries, and modular component breakdown, while ensuring accessibility considerations are met through testing across devices