Annotating and Spotting in Mathematical Corpora (concepts and tools)

Jan Frederik Schaefer

FAU Erlangen-Nürnberg

Prospects of Formal Mathematics – Bridging between informal and formal Hausdorff Research Institute for Mathematics

Bonn

July 10, 2024

Natural Language Processing and Mathematical Language

- Natural language processing has benefitted from a long tradition of annotation tasks and benchmarks
- STEM documents pose problems: formulae, tables, ... not really unicode strings
- Why care?
 - → Semantic services

- Q 1.5 eV
 - \checkmark with an energy of $1.43 \pm 0.09 \, \text{eV}$
 - which gives $E = 2.4 \cdot 10^{-19} J$

- Q $\sum_{k=-\infty}^{\infty} \exp(-\pi k^2)$
 - $\sum_{n=-\infty}^{\infty} e^{-\pi n^2} = \dots$

Example from [Kri22]

equivalent to Eq. 4 can be written as follows:

$$P_{extcorr} = e^{\alpha(X_{\odot} - 1)} \times P_{meas}, \tag{5}$$

where $\alpha = 0.92103k_{\lambda}$.

Example from [Kri22]

equivalent to Eq. 4 can be written as follows:

Example from [Kri22]

equivalent to Eq. 4 can be written as follows:

$$P_{extcorr} = e^{\alpha(X_{\odot}-1)} \times P_{meas}, \tag{5}$$
 where $\alpha = 0.92103k_{\lambda}$. α : χ_{\odot} (air mass coefficient): 1.3 χ_{\odot} (measured power): 1 kW

For all those services we need semantic annotations!

(full formalization not necessary)

equivalent to Eq. 4 can be written as follows:

For all those services we need semantic annotations!

(full formalization not necessary)

Authors don't provide them → We have to infer them

Accumulating semantic annotations with spotters

Spotter: specialized tool for finding a particular type of annotation

Theorem 1. Let F be a graph with m edges and no isolated vertices. Then, for $k \ge 3$ it holds

$$r_k(F) \le k^{3 \cdot 2^{-1/3} km^{2/3} + k(2m)^{1/3}} 8m.$$

Example from [JP13]

Accumulating semantic annotations with spotters

Spotter: specialized tool for finding a particular type of annotation

Theorem 1. Let F be a graph will **Fixed/frozen corpus** vertices. Then, for $k \ge 3$ it holds

 $r_k(F) \le k^{3 \cdot 2^{-1/3} km^{2/3} + k(2m)^{1/3}} 8n$

Example from [JP13]

What is the problem?

• Getting a corpus:

Working with PDF is difficult

- arXMLiv/ar5iv dataset [Gin20]
- SIGMathLing [SML]

NDA-cooperative to work around licensing issues

- 2 Re-inventing the wheel:
 - Need to obtain plaintext representation
 - Need to store annotations
 - Need to create manual annotations

for training/evaluation

convert tex to html

- **3** Cannot re-use existing annotations/combine results:
 - No agreed-upon annotation format
 - Original documents modified

A *multiset* over a set X is a function $m: X \to \mathbb{N}$.

<div>A multiset over a set <math><mi>X</mi></math> is a ...

A *multiset* over a set X is a function $m: X \to \mathbb{N}$.

Person 1: Modify document

<div>A multiset over

A *multiset* over a set X is a function $m: X \to \mathbb{N}$.

<div>A multiset over a set <math><mi>X</mi></math> is a ...

Person 1: Modify document

<div>A multiset over

Person 2: Make ML dataset

["A multiset over a set MATH is a function MATH.", "multiset"]

A *multiset* over a set X is a function $m: X \to \mathbb{N}$.

```
<div>A <em>multiset</em> over a set <math><mi>X</mi></math> is a ...
```

Person 1: Modify document

```
<div>A <span class="definiendum"> <em>multiset </em>  over
```

Person 2: Make ML dataset

["A multiset over a set MATH is a function MATH.", "multiset"]

Person 3: Store externally

```
{"xpath": ".../div[3]/p/em", "concept": "multiset"}
```

```
A multiset over a set X is a function m: X \to \mathbb{N}.
```

Person 1: Modify document

```
<div>A <span class="definiendum"> <em>multiset </em>  over
```

Person 2: Make ML dataset

["A multiset over a set MATH is a function MATH.", "multiset"]

Person 3: Store externally

```
{"xpath": ".../div[3]/p/em", "concept": "multiset"}
```

Utterly incompatible!

A new annotation standard

- Supports development of re-usable tools, datasets and benchmarks
- Uses RDF (Resource Description Framework)

 ∃ databases, query language (SPARQL), serialization formats
- Based on W3C Web Annotation Recommendations

A new annotation standard

- Supports development of re-usable tools, datasets and benchmarks
- Uses RDF (Resource Description Framework)

 ∃ databases, query language (SPARQL), serialization formats
- Based on W3C Web Annotation Recommendations

RDF Primer

subject-predicate-object triple ex:anno1 rdf:type oa:Annotation

directed graph ex:anno1 rdf:type oa:Annotation

Annotation structure (following W3C Web Annotation Recommendation)

Theorem 2. Let F be a bipartite graph with m edges and isolated vertices. Then for k > 2 it holds

Example from [JP13]

wd:Q174733 (WikiData: bipartite graph)

Annotation Targets

Prototype datasets and imported datasets

- Imported datasets:
 - Quantity expressions dataset [Rab17]
 - Formula grounding dataset [AMA22]
 - Paragraph classification dataset [GM20]
- Generated datasets (prototype spotters)
 - Part-of-speech tags
 - References to math concepts
 - Variable declarations
- Stats from running last two spotters:
 - 100 000 documents
 - 50 million annotations
 - 800 million triples
 - loading into triple store: several hours

Querying

"Papers about group theory that have theorems mentioning rational numbers"

prefix declarations ommitted for conciseness

SELECT DISTINCT ?paper WHERE {

```
# make sure that ?paper is about group theory
?paper sb:isBasedOn/^oa:hasTarget/oa:hasBody/rdf:value arxivcat:math\.GR
# find theorems in ?paper and look up their offsets
?theorem_anno oa:hasBody/rdf:value sbp:Theorem .
?theorem_anno oa:hasTarget [
  oa:hasSource ?paper ;
  oa:hasSelector [ a sb:OffsetSelector ; oa:start ?t_start ; oa:end ?t_end
# Same with mentions of rational numbers (offsets ?q_start, ?q_end)
?q_anno oa:hasBody/rdf:value <a href="http://www.wikidata.org/entity/Q1244890">http://www.wikidata.org/entity/Q1244890> ...
?q_anno oa:hasTarget [
  oa:hasSource ?paper ;
  oa:hasSelector [ a sb:OffsetSelector ; oa:start ?q_start ; oa:end ?q_enc
# make sure that mention is inside theorem
FILTER (?t_start < ?q_start && ?t_end > ?q_end)
```

13 / 17

Manual annotation AnnoTize

Theorem 1. Let \mathbb{R} be a graph with m edges and no isolated vertices. Then, for $\mathbb{R} \geq 3$ it holds $r_k(F) \leq k^{\frac{3 \cdot 2^{-1/3} k m^2/3}{8} + k(2m)} \frac{0}{8m}.$

Further we study the case when F is bipartite and show an upper bound $r_k(F) \leq k^{(1+o(1))2\sqrt{mk}}$

Theorem 2. Let \mathbb{E} be a <u>bipartite graph</u> with \mathbb{m} edges and no isolated vertices. Then, for $\mathbb{E} \geq 2$ it holds

$$r_k(F) \le 2^6 m^{3/2} k^{2\sqrt{km} + 1/2}$$
.

Note that in the case k = 2, Theorem 2 is an improvement of the above mentioned result of

SpotterBase

Code (open source) for

https://github.com/jfschaefer/spotterbase

- Normalizing annotations
- Generating different types of plaintext

Linked to original sources!

- Importing/exporting annotations as JSON
- . .

Workgroup

- Implement a simple example spotter together
- Develop more interesting spotters
- Discuss what annotations would be useful

Proposition 2.1. Let K be a number field. Let W_K be any set of primes of K. Let $S_K \subseteq W_K$ be a finite set. Let $V_K = W_K \setminus S_K$. Then O_{K,V_K} has a Diophantine definition over O_{K,W_K} . (See, for example, [24].)

"Infinite" versions of this proposition are more complicated. Before stating some of them below we introduce new terminology.

Conclusion

An annotation standard for STEM documents

- based on semantic web technologies RDF, SPARQL, Web Annotation Standard
- compatible with a wide range of annotation tasks
- to create diverse, re-usable annotation datasets and benchmarks
- to develop an ecosystem of tools around that standard
- to ultimately enable the development of semantic services

active documents, formula search, ...

References I

- [AMA22] Takuto Asakura, Yusuke Miyao, and Akiko Aizawa. "Building Dataset for Grounding of Formulae Annotating Coreference Relations Among Math Identifiers". In: *Proceedings of the Language Resources and Evaluation Conference*. Marseille, France: European Language Resources Association, 2022, pp. 4851–4858. URL: https://aclanthology.org/2022.lrec-1.519.
- [Gin20] Deyan Ginev. arXMLiv:2020 dataset, an HTML5 conversion of arXiv.org. SIGMathLing Special Interest Group on Math Linguistics. 2020. URL: https://sigmathling.kwarc.info/resources/arxmliv-dataset-2020/.

References II

- [GM20] Deyan Ginev and Bruce R Miller. "Scientific Statement Classification over arXiv.org". English. In: Proceedings of the Twelfth Language Resources and Evaluation Conference. Marseille, France: European Language Resources Association, May 2020, pp. 1219—1226. ISBN: 979-10-95546-34-4. URL: https://aclanthology.org/2020.lrec-1.153.
- [JP13] Kathleen Johst and Yury Person. On the multicolor Ramsey number of a graph with m edges. 2013. arXiv: 1311.5471 [math.CO].
- [Kri22] Kevin Krisciunas. Including Atmospheric Extinction in a Performance Evaluation of a Fixed Grid of Solar Panels. 2022. arXiv: 2107.02876 [astro-ph.IM].

References III

```
[Rab17] Ullrich Rabenstein. "Meaning Extraction and Semantic Services in STEM-Documents – A case study on Quantity Expressions and Units". Master's Thesis. Informatik, FAU Erlangen-Nürnberg, 2017. URL: https://gl.kwarc.info/supervision/MSc-archive/blob/master/2017/urabenstein/Rabenstein.pdf.
[SML] SIGMathLing – Special Interest Group on Maths Linguistics. URL: http://sigmathling.kwarc.info (visited on 12/07/2018).
```