Böhm Trees as Higher-Order Recursion Schemes

Pierre Clairambault University of Cambridge Andrzej Murawski University of Warwick

June 4, 2013

Background and motivations

- Description of our construction
 - Formal statement of the result
 - Derivation of the construction
 - Extension to PCF_f

3 Consequences and conclusions

I. BACKGROUND AND MOTIVATIONS

Higher-order recursion schemes are an abstract form of functional programs, often used as generators for infinite trees.

Example

With:

- Non-terminals $S: o, F: (o \rightarrow o) \rightarrow o \rightarrow o, G: (o \rightarrow o) \rightarrow o$,
- Terminals $a:o\to o,\ b:o\to o\to o,\ c:o.$

$$S = G a$$

$$F f x = f (f x)$$

$$G f = b (f c) (G (F f))$$

S

Higher-order recursion schemes are an abstract form of functional programs, often used as generators for infinite trees.

Example

With:

- Non-terminals $S: o, F: (o \rightarrow o) \rightarrow o \rightarrow o, G: (o \rightarrow o) \rightarrow o,$
- Terminals $a:o\to o,\ b:o\to o\to o,\ c:o.$

$$S = G a$$

$$F f x = f (f x)$$

$$G f = b (f c) (G (F f))$$

Ga

Higher-order recursion schemes are an abstract form of functional programs, often used as generators for infinite trees.

Example

- Non-terminals $S: o, F: (o \rightarrow o) \rightarrow o \rightarrow o, G: (o \rightarrow o) \rightarrow o,$
- Terminals $a:o\to o,\ b:o\to o\to o,\ c:o.$

$$S = G a$$

$$F f x = f (f x)$$

$$G f = b (f c) (G (F f))$$

Higher-order recursion schemes are an abstract form of functional programs, often used as generators for infinite trees.

Example

- Non-terminals $S: o, F: (o \rightarrow o) \rightarrow o \rightarrow o, G: (o \rightarrow o) \rightarrow o,$
- Terminals $a:o\to o,\ b:o\to o\to o,\ c:o.$

$$S = G a$$

$$F f x = f (f x)$$

$$G f = b (f c) (G (F f))$$

Higher-order recursion schemes are an abstract form of functional programs, often used as generators for infinite trees.

Example

- Non-terminals $S: o, F: (o \rightarrow o) \rightarrow o \rightarrow o, G: (o \rightarrow o) \rightarrow o,$
- Terminals $a: o \rightarrow o$, $b: o \rightarrow o \rightarrow o$, c: o.

$$S = G a$$

$$F f x = f (f x)$$

$$G f = b (f c) (G (F f))$$

Higher-order recursion schemes are an abstract form of functional programs, often used as generators for infinite trees.

Example

- Non-terminals $S: o, F: (o \rightarrow o) \rightarrow o \rightarrow o, G: (o \rightarrow o) \rightarrow o,$
- Terminals $a: o \rightarrow o$, $b: o \rightarrow o \rightarrow o$, c: o.

$$S = G a$$

$$F f x = f (f x)$$

$$G f = b (f c) (G (F f))$$

Alternative presentation : the λY -calculus

Types. Simple types on one atom o.

$$\theta, \theta' ::= o \mid \theta \to \theta'$$

Terms.

$$M, N ::= x \mid \lambda x^{\theta}.M \mid M \mid Y_{\theta}$$

Typing rules.

$$\frac{\Gamma, x : \theta \vdash x : \theta}{\Gamma, x : \theta \vdash x : \theta} \qquad \frac{\Gamma, x : \theta \vdash M : \theta'}{\Gamma \vdash \lambda x^{\theta} . M : \theta \to \theta'}$$

$$\frac{\Gamma \vdash M : \theta \to \theta' \qquad \Gamma \vdash N : \theta}{\Gamma \vdash M N : \theta'}$$

Reduction.

$$(\lambda x^{\theta}.M) \ N \rightarrow_{\beta} M[N/x]$$

$$Y_{\theta} M \rightarrow_{\delta} M (Y_{\theta} M)$$

$$M \rightarrow_{\eta} \lambda x^{\theta}.M x$$

(in the last, $x \notin fv(M)$ and M has type $\theta \to \theta'$)

$$S = G a$$

$$F f x = f (f x)$$

$$G f = b (f c) (G (F f))$$

Example

S = G a

 $F = \lambda f.\lambda x.f(fx)$

 $G = \lambda f.b (f c) (G (F f))$

$$S = G a$$

$$G = \lambda f.b (f c) (G (\lambda x.f (f x)))$$

$$S = G a$$

$$G \quad = \quad Y \; (\lambda G.\lambda f.\mathrm{b} \; (f \; \mathrm{c}) \; (G \; (\lambda x.f \; (f \; x))))$$

$$S \quad = \quad Y \; (\lambda G. \lambda f. \mathbf{b} \; (f \; \mathbf{c}) \; (G \; (\lambda x. f \; (f \; x)))) \; \mathbf{a}$$

Example

$$S = Y (\lambda G.\lambda f.b (f c) (G (\lambda x.f (f x)))) a$$

Which is a λY -term of type o in context

a:
$$o \rightarrow o, b: o \rightarrow o \rightarrow o, c: o$$

We write $\Gamma_{\leqslant 1}$ for such contexts of <u>order</u> less than 1.

Example

$$S = Y (\lambda G.\lambda f.b (f c) (G (\lambda x.f (f x)))) a$$

Which is a λY -term of type o in context

$$a:o\rightarrow o,b:o\rightarrow o\rightarrow o,c:o$$

We write $\Gamma_{\leqslant 1}$ for such contexts of <u>order</u> less than 1.

Proposition (Salvati, Walukiewicz)

There is a correspondence between HORS and λY -terms:

$$\Gamma_{\leqslant 1} \vdash M : o$$

Applications to program verification (Kobayashi)

Theorem (Ong, 06)

Monadic Second-Order logic (MSO) is decidable on infinite trees generated by HORS.

Example (Kobayashi)

Application to verification of correct resource usage.

let rec g() = if _ then close() else (read(); g()) in g()
$$Y \ (\lambda G. \lambda k. \mathrm{br} \ (\mathrm{close} \ k) \ (\mathrm{read} \ (G \ k))) \bullet$$

with terminals:

br :
$$o \rightarrow o \rightarrow o$$

read : $o \rightarrow o$
close : $o \rightarrow o$

One can automatically check that all finite paths have the form $\operatorname{read}^*\operatorname{close}$.

Higher-order model checking for open programs?

Closed programs vs. open programs. HORS naturally represent the behaviour of closed programs.

Higher-order model checking for open programs?

Closed programs vs. open programs. HORS naturally represent the behaviour of closed programs.

Higher-order model checking for open programs?

Closed programs vs. open programs. HORS naturally represent the behaviour of closed programs.

Question

Can we represent **open** simply-typed functional programs as HORS?

What representation for open programs?

Representation of open programs

Game semantics.

- Computation is a game between the program and the environment.
- A program M is represented as a strategy describing all its interactions against arbitrary environments.
- A purely functional program M is represented as an innocent strategy.

Innocent strategies and Böhm trees.

• Innocent strategies are abstract representations of Böhm trees.

- Böhm trees are notions of infinite normal forms for recursive higher-order open programs.
- We want to generate Böhm trees as HORS.

Böhm trees

Consider the term:

$$g:o\to o\to o\vdash \lambda f^{(o\to o)\to o}.Y_o\;(\lambda y^o.f\;(\lambda x^o.g\;x\;y)):((o\to o)\to o)\to o$$

Its Böhm tree starts with:

Böhm trees

Consider the term:

$$g:o\to o\to o\vdash \lambda f^{(o\to o)\to o}.Y_o\;(\lambda y^o.f\;(\lambda x^o.g\;x\;y)):((o\to o)\to o)\to o$$

Its Böhm tree starts with:

How can we generate representations of pointers within HORS?

De Bruijn levels

Definition

De Bruijn levels are a variable naming convention where:

- Variable names are natural numbers,
- Each variable is given the smallest index not yet present in the context.

Example

The term

$$g: o \rightarrow o \rightarrow o \vdash \lambda f. f (\lambda x. g \times (f (\lambda x. g \times (f \times x))))$$

is represented by:

$$0: o \to o \to o \vdash \lambda 1.1 \ (\lambda 2.0 \ 2 \ (1 \ (\lambda 3.0 \ 3 \ (1 \ 3))))$$

Proposition

Two terms M and M' have the same De Bruijn levels representation iff they are α -equivalent.

(not to be confused with De Bruijn indices)

Our result

Question

Can we relate HORS and arbitrary Böhm trees?

Theorem

For any λY -term $\Gamma \vdash M : \theta$ there is a term:

$$\Gamma_{rep} \vdash M_{rep} : o$$

with

$$\Gamma_{rep} = \{ \, z : o, \; succ : o \rightarrow o, \; var : o \rightarrow o, \; app : o \rightarrow o \rightarrow o, \; lam : o \rightarrow o \rightarrow o \}$$

such that M_{rep} evaluates a representation of the Böhm tree of M where binders are represented by **De Bruijn levels**.

We also prove the same result for terms of finitary PCF (PCF_f).

II. OUR CONSTRUCTION

II.1 Formal statement of the result

Partial terms and Böhm trees

Definition

- The $\lambda\perp$ -calculus is the simply-typed λ -calculus over a base type o and a constant $\perp:o$.
- If $\Gamma \vdash M : \theta$ is a $\lambda \perp$ -term, its **Böhm tree** BT(M) is its η -long β -normal form.
- The $\lambda\perp^{\infty}$ -calculus consists of (potentially) infinite $\lambda\perp$ -terms. Terms of the $\lambda\perp^{\infty}$ -calculus forms a *complete partial order*.

Definition

If $\Gamma \vdash M : \theta$ is a λY -term, its *n*-th approximation is the $\lambda \bot$ -term defined as:

Definition

If $\Gamma \vdash M : \theta$ is a λY -term, its **Böhm tree** is defined as:

$$BT(M) = \bigsqcup_{n} BT(M \upharpoonright n)$$

Representation of De Bruijn terms in λY

We represent terms with binders as Böhm trees of type o in the context:

$$\Gamma_{rep} = \{\, z : o, \; succ : o \rightarrow o, \; var : o \rightarrow o, \; app : o \rightarrow o \rightarrow o, \; lam : o \rightarrow o \rightarrow o \,\}$$

Definition

Let $\nu:\Gamma\to\mathbb{N}$ associate a index to all free variables of M. Writing $\overline{n}=succ^n\ z$, we define

$$\begin{array}{rcl} \operatorname{rep}_{\nu}(\bot,n) & = & \bot \\ \operatorname{rep}_{\nu}(\lambda x.M,n) & = & \operatorname{lam}\,\overline{n+1}\,\operatorname{rep}_{\nu \oplus \{x \mapsto n+1\}}(M,n+1) \\ \operatorname{rep}_{\nu}(x,n) & = & \operatorname{var}\,\overline{\nu(x)} \\ \operatorname{rep}_{\nu}(MN,n) & = & \operatorname{app}\,\operatorname{rep}_{\nu}(M,n)\,\operatorname{rep}_{\nu}(N,n) \end{array}$$

For $\Gamma \vdash M : \theta$ with $\Gamma = \{x_1 : \theta_1, \dots, x_n : \theta_n\}$, setting $\nu(x_i) = i - 1$, we define

$$\operatorname{rep}(M) = \operatorname{rep}_{\nu}(M, n)$$

Example

Representation of $g: o \rightarrow o \rightarrow o \vdash \lambda f.f \ (\lambda x.g \ x \ (f \ (\lambda x.g \ x \ (f \ x)).$

(Keeping in mind that $\overline{n} = succ (succ ... (succ z)...)$)

Formal statement

Theorem

Let $\Gamma \vdash M : \theta$ be a λY -term. There exists a λY -term $\Gamma_{rep} \vdash M_{rep} : o$ (a HORS) such that:

$$BT(M_{rep}) = rep(BT(M))$$

Write θ^* for $\theta[o \to o/o]$ and $M^* = M[o \to o/o]$. There is a finite λ -term:

$$\Gamma_{rep} \vdash \downarrow_{\theta} : \theta^* \to o \to o$$

Such that for $\vdash M : \theta$, setting:

$$M_{rep} = \downarrow_{\theta} M^* \overline{0}$$

validates the above theorem.

II.2 Derivation of the construction

Normalization by evaluation

Semantic technique for computing normal forms of λ -terms.

Theorem (Berger, Schwichtenberg)

There is a set-theoretic interpretation of the simply-typed λ -calculus:

$$\llbracket - \rrbracket : \Lambda \to \operatorname{Set}$$

and for each type θ , a function

$$\mathrm{nbe}: \llbracket \theta \rrbracket \to \mathsf{\Lambda}$$

such that for each term $\vdash M : \theta$,

$$\operatorname{nbe}(\llbracket M \rrbracket) \cong_{\beta\eta} M$$

is the β -normal η -long form of M.

Normalization by evaluation for the simply-typed λ -calculus

Step 1: Interpretation. Let E be a set containing representations of terms.

Where all the right hand side operations are operations on sets and functions.

Step 2: Reification. The normal form of $\vdash M : \theta$ can be **extracted** from $\llbracket M \rrbracket$ by the following:

$$\begin{array}{rcl} \psi_{\theta} & : & \llbracket \theta \rrbracket \to E \\ \psi_{o} \, x & = & x \\ \psi_{\theta_{1} \to \theta_{2}} \, x & = & lam \; n \; \; \psi_{\theta_{2}} \left(x \; \left(\Uparrow_{\theta_{1}} \; (\textit{var} \; n) \right) \right) \; \; \left(n \; \text{fresh} \right) \\ & & & \uparrow_{\theta} \; : \; E \to \llbracket \theta \rrbracket \\ & & & \uparrow_{\theta_{1} \to \theta_{2}} \; e \; = \; \lambda x^{\llbracket \theta_{1} \rrbracket} . \; \Uparrow_{\theta_{2}} \; \textit{app} \; e \; \left(\psi_{\theta_{2}} \; x \right) \end{array}$$

by setting $nbe(M) = \Downarrow_{\theta} \llbracket M \rrbracket$.

Example

```
\begin{array}{lll} \Downarrow_{\sigma \to \sigma \to \sigma} \left[\!\!\left[\lambda x^{\sigma}.\lambda y^{\sigma}.x\right]\!\!\right] &=& lam \; 0 \; (\Downarrow_{\sigma \to \sigma} \left[\!\!\left[\lambda x^{\sigma}.\lambda y^{\sigma}.x\right]\!\!\right] \; (\Uparrow_{\sigma} \; (var \; 0))) \\ &=& lam \; 0 \; (\Downarrow_{\sigma \to \sigma} \left[\!\!\left[\lambda x^{\sigma}.\lambda y^{\sigma}.x\right]\!\!\right] \; (var \; 0)) \\ &=& lam \; 0 \; (lam \; 1 \; (\Downarrow_{\sigma} \left[\!\!\left[\lambda x^{\sigma}.\lambda y^{\sigma}.x\right]\!\!\right] \; (var \; 0) \; (\Uparrow_{\sigma} \; (var \; 1)))) \\ &=& lam \; 0 \; (lam \; 1 \; (\left[\!\!\left[\lambda x^{\sigma}.\lambda b^{E}.a\right] \; (var \; 0) \; (var \; 1)))) \\ &=& lam \; 0 \; (lam \; 1 \; (var \; 0)) \end{array}
```

Remarks.

- Normal form obtained by evaluation in the model,
- Need for generation of fresh variable indices.

Generating De Bruijn levels (Berger, Schwichtenberg)

Expressions. $e \in E$ are replaced with **indexed expressions**

$$f \in \mathbb{N} \to E = \hat{E}$$

Constructors. var, lam, app are replaced with compositional variants.

$$\begin{array}{rcl} \widehat{\textit{var}} & = & \lambda \textit{v}^{N}.\lambda \textit{n}^{N}.\textit{var}\;\textit{v}:\textit{N} \rightarrow \widehat{E} \\ \widehat{\textit{app}} & = & \lambda e_{1}^{\widehat{E}}.\lambda e_{2}^{\widehat{E}}.\lambda \textit{n}^{N}.\textit{app}\;(e_{1}\;\textit{n})\;(e_{2}\;\textit{n}):\widehat{E} \rightarrow \widehat{E} \rightarrow \widehat{E} \\ \widehat{\textit{lam}} & = & \lambda \textit{f}^{N \rightarrow \widehat{E}}.\lambda \textit{n}^{N}.\textit{lam}\;\textit{n}\;(\textit{f}\;\textit{n}\;(\textit{succ}\;\textit{n})):(\textit{N} \rightarrow \widehat{E}) \rightarrow \widehat{E} \end{array}$$

Reify and reflect. They are generalized:

$$\begin{array}{rclcrcl} \Downarrow_{o} x & = & x & & \Downarrow_{\theta_{1} \rightarrow \theta_{2}} x & = & \widehat{lam} \left(\lambda n^{N}. \Downarrow_{\theta_{2}} \left(x \left(\Uparrow_{\theta_{1}} \widehat{var} \ n \right) \right) \right) \\ \Uparrow_{o} e & = & e & & \Uparrow_{\theta_{1} \rightarrow \theta_{2}} e & = & \lambda x^{\llbracket \theta_{1} \rrbracket}. \Uparrow_{\theta_{2}} \widehat{app} \ e \left(\Downarrow_{\theta_{2}} x \right) \end{array}$$

Normalization by evaluation. The interpretation $\llbracket - \rrbracket$ is now based on \widehat{E} instead of E. NBE is obtained for $\vdash M : \theta$ by:

$$nbe(M) = \Downarrow_{\theta} \llbracket M \rrbracket \ 0$$

Continuity and NBE for λY

Model. Standard pointed ω -cpo model of the λY -calculus:

where ${\it E}$ is the pointed $\omega{\rm -cpo}$ of possibly infinite expressions.

Normalization by evaluation. From a λY -term $\vdash M : \theta$,

$$\mathrm{nbe}(M)=\Downarrow_{\theta} \, \llbracket M \rrbracket \,\, 0 \in E$$

→ Obtain an infinite normal form.

Proof. By continuity, and validity of NBE on the λ -calculus.

Internalization

The semantic ingredients used in NBE for λY can be expressed within the λY -calculus.

Expressions are terms of λY :

$$\Gamma_{rep} \vdash M : o$$

Term families is the type $\hat{E} = o \rightarrow o$.

Interpretation is the substitution $\theta^* = \theta[o \to o/o]$ and $M^* = M[o \to o/o]$.

Term formers are the following:

$$\widehat{lam} = \lambda v^{\circ}.\lambda n^{\circ}.var v$$

$$\widehat{lam} = \lambda f^{\circ \to \circ}.\lambda n^{\circ}.lam n (f n (succ n))$$

$$\widehat{app} = \lambda e_{1}^{\circ}.\lambda e_{2}^{\circ}.\lambda n^{\circ}.app (e_{1} n) (e_{2} n)$$

Reify/reflect are now terms of the λY -calculus:

$$\downarrow_{o} = \lambda x^{o}.x \qquad \qquad \downarrow_{\theta_{1} \to \theta_{2}} = \lambda x^{\theta_{1}^{*} \to \theta_{2}^{*}}.\widehat{lam} (\lambda n^{N}. \downarrow_{\theta_{2}} (x (\uparrow_{\theta_{1}} \widehat{var} n)))$$

$$\uparrow_{o} = \lambda e^{o}.e \qquad \qquad \uparrow_{\theta_{1} \to \theta_{2}} = \lambda e^{o}.\lambda x^{\theta_{1}^{*}}. \uparrow_{\theta_{2}} \widehat{app} e (\downarrow_{\theta_{2}} x)$$

Internalization

Theorem

If $\vdash M : \theta$ is a λY -term, then the term M_{rep} defined as:

$$\Gamma_{rep} \vdash \downarrow_{\theta} M^* \overline{0} : o$$

satisfies:

$$BT(M_{rep}) = rep(BT(M))$$

Proof.

г

Internalization

Theorem

If $\vdash M : \theta$ is a λY -term, then the term M_{rep} defined as:

$$\Gamma_{rep} \vdash \downarrow_{\theta} M^* \overline{0} : o$$

satisfies:

$$BT(M_{rep}) = rep(BT(M))$$

Proof.

г

II.3 Extension to PCF_f

Extension to PCF_f

Definition

The types and terms of PCF_f are defined as follows.

$$\begin{array}{rcl} \theta, \theta' & ::= & \mathbf{B} \mid \theta \to \theta' \\ M, N & ::= & x \mid \lambda x^{\theta}.M \mid M \mid N \mid Y_{\theta} \\ & & tt \mid ff \mid \text{if } M \text{ then } N \text{ else } N' \end{array}$$

equipped with the standard operational semantics.

Definition (PCF Böhm trees)

The notion of (infinite) normal forms we consider is:

$$\frac{\Gamma \vdash \bot : B}{\Gamma \vdash tt : B} \qquad \frac{\Gamma \vdash ff : B}{\Gamma \vdash ff : B} \qquad \frac{\Gamma, x_1 : A_1, \dots, x_n : A_n \vdash M : B}{\Gamma \vdash \lambda \overrightarrow{x} . M : \overrightarrow{A} \to B}$$

$$\frac{\Gamma \vdash M_i : \theta_i \ (1 \leqslant i \leqslant n) \quad \Gamma \vdash N_1 : \mathbf{B} \quad \Gamma \vdash N_2 : \mathbf{B} \quad (x : \overrightarrow{\theta} \to \mathbf{B}) \in \Gamma}{\Gamma \vdash \text{if } x \ \overrightarrow{M} \text{ then } N_1 \text{ else } N_2 : \mathbf{B}}$$

They correspond to innocent strategies.

The NBE translation for PCF_f

Representation. In the ω -cpo E of infinitary terms $\Gamma_{pcf} \vdash M : o$, with:

$$\Gamma_{pcf} = \Gamma_{rep} \cup \{tt: o, ff: o, if: o \rightarrow o \rightarrow o \rightarrow o\}$$

Semantics. Standard domain semantics of PCF, based on:

$$[\![\mathrm{B}]\!] = \hat{E} \to \hat{E} \to \hat{E}$$

Reflect and reify. Direct adaptations of those for λY .

Internalization. Follows the same lines as for λY .

Normal forms. The normal forms generated are infinitary PCF Böhm trees, or equivalently, innocent strategies.

III. CONSEQUENCES AND CONCLUSIONS

Consequences

Corollary

The following problems are equivalent:

- (1) Equivalence of HORS,
- (2) Böhm tree equivalence for λY ,
- (3) Game semantics equivalence for PCF_f ,
- (4) Distinguishability by contexts with state and control operators for terms of PCF_f.

By MSO model-checking on HORS, we also get:

Corollary

The following problems are decidable for PCF_f and λY terms:

- (1) Normalizability, solvability,
- (2) Finiteness,
- (3) Finite prefix.

Conclusions

Contributions.

- Representation of arbitrary Böhm trees as HORS,
- NBE: internalization of NBE for $\lambda Y/PCF_f$ inside λY .

Future work.

- Transport decidability/undecidability results,
- Model-checking strategies, compositional model-checking,
- Similar representation results for other notions of observation.

Thank you.