3 A liquid is placed inside a closed container. Some of the liquid evaporates.

The pressure of the vapour above the surface of the liquid increases to a maximum value. This maximum pressure is called the saturated vapour pressure.

(a) The table shows data for the saturated vapour pressure P at different absolute temperatures T.

P / kPa	<i>T /</i> K
7.8	308
17.0	323
34.6	338
66.1	353
120.1	368
208.1	383

(i) Plot a graph of $\log P$ against $\frac{1}{T}$ on the grid opposite. Use the additional columns for your processed data.

(6)

(ii)	Determine	the	gradient	of the	graph.

(3)

 	• • • • • • • • • •	 	 	 							

Gradient =

(iii) The gradient of the graph of $\log P$ against $\frac{1}{T}$ is given by

gradient =
$$-\frac{X}{2.30k}$$

where X is a constant with unit joules, and k is the Boltzmann constant.

Determine the value of X in joules.

.....

(3)

V — I

(b) Liquids boil when the saturated vapour pressure is equal to atmospheric pressure.

Determine the boiling point of the liquid in ${}^{\circ}C$ when the atmospheric pressure is $100\,kPa$.

(3)

Boiling point =°C

(Total for Question 3 = 15 marks)