This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

. !

- 1. (Currently amended) A photo-catalyst containing titanium fluoride nitride comprising, $Ti(IV)O_aN_bF_c$ or a compound represented by MeTi(IV)O_aN_bF_c prepared by doping at least one metal Me selected from the group consisting of alkali or alkaline earth metals on $Ti(IV)O_aN_bF_c$, wherein, [b] \underline{b} is 0.1 to 1, [c] \underline{c} is 0.1 to 1 and [a] \underline{a} is a value to maintain Ti(IV) and is decided in relation to [b] \underline{b} and [c] \underline{c} .
- 2. (Original) The photo-catalyst containing titanium fluoride nitride of claim 1 to which at least one promoter selected from the group consisting of Pt, Ni and Pd is loaded.
- 3. (Original) The photo-catalyst containing titanium fluoride nitride of claim 1, wherein Ti(IV)O_aN_bF_c possesses anataze structure and MeTi(IV)O_aN_bF_c possesses perovskite to anataze structure.
- 4. (Original) The photo-catalyst containing titanium fluoride nitride of claim 3 to which at least one promoter selected from the group consisting of Pt, Ni and Pd is loaded.

- 5. (Currently amended) A photo-catalyst for water splitting containing titanium fluoride nitride comprising, $Ti(IV)O_aN_bF_c$ or a compound represented by MeTi(IV)O_aN_bF_c prepared by doping at least one metal Me selected from the from the group consisting of alkali or alkaline earth metals on $Ti(IV)O_aN_bF_c$, wherein, [b] \underline{b} is 0.1 to 1, [c] \underline{c} is 0.1 to 1 and [a] \underline{a} is a value to maintain Ti(IV) and is decided in relation with [b] \underline{b} and [c] \underline{c} .
- 6. (Original) The photo-catalyst for water splitting containing titanium fluoride nitride of claim 5 to which at least one promoter selected from the group consisting of Pt, Ni, Ru and Pd is loaded.
- 7. (Previously presented) The photo-catalyst for water splitting containing titanium fluoride nitride of claim 5, wherein Ti(IV)O_aN_bF_c possesses anataze structure and MeTi(IV)O_aN_bF_c possesses perovskite to anataze structure.
- 8. (Original) The photo-catalyst for water splitting containing titanium fluoride nitride of claim 7 to which at least one promoter selected from the group consisting of Pt, Ni and Pd is loaded.
- 9. (Previously presented) A method for preparation of a photo-catalyst represented by Ti(IV)OaNbFc, wherein a, b and c are

. . .

same as to claim 1 by baking titanium di-ammonium fluoride halide represented by (HH₄)₂TiF₄X₆₋₄, wherein, d is integer of 1-6, which contains at least F and ammonium halide by the ratio of equimolar or by the ratio of slightly excess of ammonium halide at the maximum temperature from 200 to 500 so as to form a starting material, then said starting material is nitrogenated by thermal synthesis in ammonia atmosphere containing from 0.02% to 10.00% of oxygen, air or water to ammonia by reduced mass to oxygen atom at the maximum temperature from 350 to 700 for over than 5 hours.

photo-catalyst represented by SrTi(IV)O₈N₂F₀, wherein, a, b and c are same as to claim 1, by baking titanium di-ammonium fluoride halide represented by TiF_xX_{6-x} and/or (HH₄)₂TiF₀X_{6-d}, wherein x and d are integer of 1-6, which contains at least F and at least one compound selected from the group consisting of SrO, SrOH and SrX so as to form a starting material or SrTiF₆, then said starting material or SrTiF₆ is nitrogenated by thermal synthesis in ammonia atmosphere containing from 0.02% to 10.00% of oxygen, air or water to ammonia by reduced mass to oxygen atom at the maximum temperature from 350 to 700 for over than 5 hours.