C Programming on Raspberry Pi

Dogan Ibrahim

• This is an Elektor Publication. Elektor is the media brand of Elektor International Media B.V.

78 York Street

London W1H 1DP, UK

Phone: (+44) (0)20 7692 8344

© Elektor International Media BV 2021
First published in the United Kingdom 2021

- All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication, without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's written permission to reproduce any part of this publication should be addressed to the publishers. The publishers have used their best efforts in ensuring the correctness of the information contained in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other cause.
- British Library Cataloguing in Publication Data
 Catalogue record for this book is available from the British Library

ISBN: 978-3-89576-431-8

EISBN: 978-3-89576-432-5

EPUB: 978-3-89576-433-2

Prepress production: DMC ¦ daverid.com Printed in the Netherlands by Wilco

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers high-quality content - via a variety of media channels (e.g., magazines, video, digital media, and social media) in several languages - relating to electronics design and DIY electronics. www.elektor.com

Table of Contents

• Prerace	. 6
Chapter 1 • Installing the Operating System on Raspberry Pi	12
1.1 ● Overview	12
1.2 ● Raspbian Buster installation steps on Raspberry Pi 4	
1.3 ● Using networked connection	15
1.4 ● Remote access	17
1.5 ● Using Putty	
1.5.1 ● Configuring Putty	19
1.6 ● Remote access of the Desktop	
1.7 ● Static IP address	
1.8 ● Summary	24
Chapter 2 • Raspberry Pi Program Development	25
2.1 ● Overview	
2.2 ● The nano text editor	
2.3 ● Example project	
2.4 • Creating and running a Python program on Raspberry Pi	
2.5 ● Creating and running a C program on Raspberry Pi	
2.0 • Summary	33
Chapter 3 • C Programming for Raspberry Pi	37
3.1 ● Overview	
3.2 ● The C Language	
3.2.1 ● Variables	
3.2.2 ● Screen output and keyboard input	37
3.2.3 ● Comparison	40
3.2.4 ● Operators	40
3.2.5 ● Auto increment/decrement operators	41
3.2.6 ● Logical operators	41
3.2.7 ● Flow control	41
3.2.8 ● Arrays	55
3.2.9 ● String variables	57
3.2.10 ● Arithmetic functions	61
3.2.11 ● String functions	63
3.2.12 ● Character macros	67
3.2.13 ● Alternative numeric input	69
3.2.14 ● User functions	71
3.2.15 ● File processing	
3.2.16 ● Structures	

3.2.17 ● Unions	85
3.2.18 ● Pointers	88
3.3 ● Summary	100
Chapter 4 ◆ Hardware Programming using C	101
4.1 ● Overview	
4.2 ● The general purpose input-output ports (GPIO)	101
4.3 ● Interfacing with GPIO	
4.3.1 ● Loads requiring small currents	102
4.3.2 ● Loads requiring higher currents	103
4.3.3 ● Using relays	105
4.4 ● Project 1: Flashing LED - compilers available	105
4.4.1 ● Using the pigpio library	106
4.4.2 ● Using the wiringPi library	107
4.4.3 ● Other C libraries/compilers for Raspberry Pi	110
4.5 ● Using the Geany editor	
4.6 ● The hardware	
4.7 ● Summary	
Chapter 5 ◆ Hardware Projects using C	114
5.1 ● Overview	
5.2 ● Project 1 – Rotating LEDs	
5.3 ● Project 2 – Christmas lights	
5.4 ● Project 3 – Binary up counter with LEDs	
5.5 ● Project 4 – Binary up/down counter with LEDs	
5.6 • Project 5 – LED dice	
5.7 • Project 6 – LED colour wand	
5.8 ● Project 7 – Changing the brightness of an LED	
5.10 ● Project 9 – Display temperature and relative humidity	
5.11 • Project 10 − ON/OFF temperature controller	
5.12 • Summary	
Chapter 6 • LCD Projects	180
6.1 ● Overview	180
6.2 ● HD44780 LCD module	180
6.3 ● Project 1 – Displaying text	
6.4 ● Project 2 – Second counter	
6.5 ● Project 3 – Creating a custom character	
6.6 ● Project 4 – Creating multiple custom characters	
6.7 ● Project 5 – Displaying current date and time	
6.8 ● Project 6 – Displaying the temperature and humidity	196
U.3 ▼ JUHHHII V	∠∪∪

Chapter 7 ◆ I2C Bus Interface	201
7.1 • Overview	201
7.2 ● The I2C Bus	201
7.3 ● Project 1 – Port expander	203
7.4 ● Project 2 – EEPROM memory	210
7.5 ● Project 3 – TMP102 temperature display	216
7.6 • Project 4 – I2C LCD	223
7.7 ● Project 5 – Using the pigpio library with I2C – TMP102 temperature display	237
7.8 • Summary	239
Chapter 8 • SPI Bus Interface	240
. 8.1 • Overview	
8.2 ● Raspberry Pi SPI pins	
8.3 • Project 1 – Port expander	
8.4 ● Summary	
0.4 • Summary	232
Chapter 9 • Using Analogue to Digital Converters (ADCs)	253
9.1 ● Overview	253
9.2 ● Project 1 – Analogue temperature sensor thermometer	253
9.3 ● Summary	260
Chapter 10 • Using Digital-to-Analogue Converters (DACs)	261
10.1 ● Overview	261
10.2 ● The MCP4921 DAC	
10.3 ● Project 1 - Generating square wave signal with any peak voltage	
10.4 ● Project 2 - Generating sawtooth wave signal	
10.5 ● Summary	
·	
Chapter 11 • Using Serial Communication	
11.1 ● Overview	
11.2 ● Raspberry Pi serial port	274
11.3 ● Project 1 – Serial communication between Raspberry Pi and Arduino Uno	275
11.4 ● Summary	282
Chapter 12 • Other Useful Functions wiringPi	283
12.1 ● Overview	283
12.2 ● Project 1 – Using external interrupts – event counter	283
12.3 ● Project 2 – Using the tone library – generating 1kHz signal	287
12.4 ● Project 3 – Using the tone library – sweep frequency tone generation	290
12.5 ● Project 4 – Using the tone library – reading the frequency from the keyboard	291
12.6 ● Project 5 – Using the tone library – melody maker	293
12.7 ● Timing library	296
12.8 ● Multitasking threads	296
12.9 ● Project 6 - Multi-threading - flashing 3 LEDs at different rates	297
12.10 ● Project 7 – Multi-threading – Two-digit 7-segment LED counter	300
12.11 ● Hardware PWM	308
12.12 ● GPIO utility	309

12.13 ● Support for other chips and add-on boards	310
12.14 ● Summary	310
Chapter 13 • Other Useful Functions - pigpio	311
13.1 • Overview	311
13.2 ● Project 1 – Using external interrupts – event counter	
13.3 ● Timing	
13.4 ● Timer interrupts	
13.5 ● Project 2 – Using timer interrupts – flashing LED	
13.6 ● Project 3 – Using timer interrupts – 2 digit 7-segment LED counter	
13.7 ● Project 4 – Multi-threading - flashing 3 LEDs at different rates	
13.8 ● Project 5 – Hardware PWM- generate 1kHz PWM wave with hardware	
13.9 ● File handling	
13.10 • Waves	
13.11 ● picscope	
13.12 • pigpiod	
13.13 • Summary	
·	
Chapter 14 • Communication Over Wi-Fi	326
14.1 ● Overview	326
14.2 ● UDP and TCP/IP	326
14.3 ● UDP communication	326
14.4 ● Project 1 – Communicating with an Android smartphone using UDP (Ras	
is the server)	327
14.5 ● Project 2 – Sending temperature readings to Android smartphone (Rasp	•
the server)	331
14.6 ● Project 3 – Communicating with an Android smartphone using UDP (Ras	
is the client)	336
14.7 ● Project 4 – Sending time-stamped temperature readings to Android sma	•
(Raspberry Pi is the server)	
14.8 ● Project 5 – Web Server application – controlling two LEDs	
14.9 ● Summary	349
Chapter 15 • Bluetooth Communication	350
15.1 ● Overview	
15.1 ● Overview	
text messages	•
15.3 ● Project 2 – Bluetooth communication with a smartphone – controlling tw	
13.3 • Froject 2 - Bluetooth Communication with a smartphone - Controlling tw	
Chapter 16 • Automatically Running Programs on Startup	358
16.1 ● Overview	358
16.2 ● Scheduling a program to run at specified times	358
Chapter 17 • Sending Data to the Cloud	366
17.1 ● Overview	
17.2 ● Project – Sending temperature and humidity data to the cloud	

Ta	h	lρ	Ωf	Col	nte	nts