Katedra Systemów Transportowych Mobilność

dr inż. Rafał Kucharski¹

¹ Katedra Systemów Transportowych Politechnika Krakowska

Kraków, 2018

Mobilność

Definicje

Nateżenie ruchu

Liczba pojazdów przejeżdżająca przez dany odcinek drogi w określonym czasie, np. 2 000 pojazdów na godzinę szczytu na kierunek w Alejach (Jubilat)

Potok pasażerski

Liczba pasażerów używających pojazdów komunikacji zbiorowej na danym odcinku w danym czasie.

np. 18 000 pasażerów na kierunek pomiędzy stacją metra Centrum a Świętokrzyska w Warszawie w godzinie szczytu.

Czas przejazdu

Średni czas przejazdu odcinka (miedzy kolejnymi skrzyżowaniami, lub przystankami) lub relacji skrętnej (od dołączenia do kolejki do opuszczenia tarczy) w godzinie szczytu, np. 15 minut pomiędzy przystankiem Politechnika a Nowy Kleparz o godzinie 16:15

Mobilność

Definicje

Podróż

- rano z domu po bułki
- z domu do pracy
- z pracy na spotkanie
- ze szkoły na gimnastykę
- z pracy po dzieci z przedszkola
- ...

Mobilność

Potrzeba użytkowników (klientów) systemu transportowego przemieszczania się: znalezienia się w innym miejscu przy jak najmniejszej uciążliwości.

Podstawowa przyczyna dla której potrzebne są systemy transportowe (podaż).

Aktywności

Aktywność

Przebywanie w określonym miejscu przez pewien okres czasu w związku z realizacją potrzeby.

Podstawowe aktywności:

- DOM (sen, rodzina, posiłki, zabawa, odpoczynek, wizyty, ...)
- PRACA
- SZKOŁA oraz
- zakupy
- sprawy urzędowe
- rozrywka
- sport
- wizyta
- jedzenie
- odwożenie, odprowadzanie
- ...

Łańcuch

Dobowy Łańcuch Aktywności

Łańcuch aktywności

Sekwencja aktywności realizowanych przed daną osobę w ciągu doby

Cylinder czasoprzestrzenny

Łańcuchy podróży

Łańcuch zazwyczaj kończy i zaczyna się w domu.

Podstawowe łańcuchy trójelementowe

- Dom -> Praca -> Dom (pracujący)
- Dom -> Szkoła -> Dom (uczniowie)
- Dom -> Zakupy -> Dom (bezrobotni, emeryci, niepracujący, urlop, itp.)

Dodatkowa aktywność po podstawowej

- Dom -> Praca -> Zakupy -> Dom
- Dom -> Szkoła -> Rozrywka -> Dom
- Dom -> Lekarz -> Odbieranie -> Dom

Dodatkowa aktywność przed podstawową

- Dom -> Odwożenie -> Praca -> Zakupy -> Dom
- Dom -> Sport -> Szkoła -> Dom
- Dom -> Odwożenie -> Lekarz -> Dom

łańcuch | liczba podróży | udział

7 / 46

łańcuch	liczba podróży	udział
DPD	5342	36.46%

łańcuch	liczba podróży	udział
DPD	5342	36.46%
DSD	2382	16.26%

łańcuch	liczba podróży	udział
DPD	5342	36.46%
DSD	2382	16.26%
DID	2032	13.87%

łańcuch	liczba podróży	udział
DPD	5342	36.46%
DSD	2382	16.26%
DID	2032	13.87%
DUD	1031	7.04%

łańcuch	liczba podróży	udział
DPD	5342	36.46%
DSD	2382	16.26%
DID	2032	13.87%
DUD	1031	7.04%
DPDID	347	2.37%

łańcuch	liczba podróży	udział
DPD	5342	36.46%
DSD	2382	16.26%
DID	2032	13.87%
DUD	1031	7.04%
DPDID	347	2.37%
DPDUD	211	1.44%

łańcuch	liczba podróży	udział
DPD	5342	36.46%
DSD	2382	16.26%
DID	2032	13.87%
DUD	1031	7.04%
DPDID	347	2.37%
DPDUD	211	1.44%
DSDID	181	1.24%

łańcuch	liczba podróży	udział
DPD	5342	36.46%
DSD	2382	16.26%
DID	2032	13.87%
DUD	1031	7.04%
DPDID	347	2.37%
DPDUD	211	1.44%
DSDID	181	1.24%
DIDID	178	1.21%

łańcuch	liczba podróży	udział
DPD	5342	36.46%
DSD	2382	16.26%
DID	2032	13.87%
DUD	1031	7.04%
DPDID	347	2.37%
DPDUD	211	1.44%
DSDID	181	1.24%
DIDID	178	1.21%
DIID	156	1.06%

łańcuch	liczba podróży	udział
DPD	5342	36.46%
DSD	2382	16.26%
DID	2032	13.87%
DUD	1031	7.04%
DPDID	347	2.37%
DPDUD	211	1.44%
DSDID	181	1.24%
DIDID	178	1.21%
DIID	156	1.06%
DPID	149	1.02%

łańcuch	liczba podróży	udział
DPD	5342	36.46%
DSD	2382	16.26%
DID	2032	13.87%
DUD	1031	7.04%
DPDID	347	2.37%
DPDUD	211	1.44%
DSDID	181	1.24%
DIDID	178	1.21%
DIID	156	1.06%
DPID	149	1.02%
DPUD	96	0.66%

Macierz motywacji podróży

Liczebnoś	ć								
				motyv	vacja końc	a podróży			
		do domu	do pracy	do szkoły	uczelnię	w WOH	poza WOH	inne	Ogółem
motyw acj	dom	13	7865	1511	638	711	1342	3004	1508
a 	praca	7244	334	7	20	241	338	568	8752
początku podróży	szkoła	1472	1	5	0	5	12	44	1539
podrozy	wyższa uczelnia	560	20	0	13	15	22	49	679
	WOH	988	16	2	0	24	1 <i>7</i>	47	1094
	poza WOH	1691	49	2	2	23	112	95	1974
	inne	3211	326	15	15	78	142	465	4252
Ogółem		15179	8611	1542	688	1097	1985	4272	33374

WBR 2015

Doba - aktywnosci i podroze

Aktywnosci

10 / 46

Rozkład dobowy podróży

Rozklad dobowy podrozy (temporal trip ditribution)

4□ > 4ⓓ > 4≧ > 4≧ > ½ 90

Rozkład dobowy podróży

Rozkład dobowy podróży

od	do	D-P	P-D	D-N	N-D	D-I	I-D	NZD
	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
0	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
1	2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
2	3	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
3	4	0.3%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%
4	5	3.5%	0.0%	0.1%	0.0%	0.3%	0.1%	0.1%
5	6	16.0%	0.2%	0.5%	0.0%	1.0%	0.1%	0.3%
6	7	28.7%	0.3%	12.3%	0.0%	3.9%	0.3%	1.3%
7	8	28.2%	0.2%	26.0%	0.2%	8.6%	1.2%	5.8%
8	9	9.5%	0.2%	22.6%	0.6%	10.1%	2.6%	5.3%
9	10	4.3%	0.3%	22.1%	0.3%	14.0%	3.6%	6.3%
10	11	1.9%	0.4%	8.0%	1.2%	10.9%	6.7%	9.3%
11	12	1.3%	1.2%	2.4%	4.7%	7.6%	8.7%	10.4%
12	13	1.4%	1.9%	1.8%	11.0%	4.9%	9.1%	8.3%
13	14	1.4%	5.8%	1.0%	22.4%	4.9%	7.8%	9.9%
14	15	0.9%	17.6%	0.6%	27.5%	4.6%	7.6%	10.6%
15	16	0.5%	26.8%	0.4%	14.3%	5.8%	7.8%	11.7%
16	17	0.5%	18.8%	1.2%	8.3%	7.5%	9.1%	7.6%
17	18	0.7%	10.7%	0.8%	4.0%	7.1%	8.4%	5.1%
18	19	0.3%	5.7%	0.3%	2.8%	4.3%	8.0%	3.6%
19	20	0.1%	3.8%	0.1%	2.0%	2.6%	8.2%	2.3%
20	21	0.2%	2.4%	0.0%	0.3%	1.1%	5.5%	1.2%
21	22	0.2%	2.3%	0.0%	0.3%	0.4%	3.3%	0.5%
22	23	0.0%	1.2%	0.0%	0.1%	0.1%	1.4%	0.2%
23	24	0.0%	0.2%	0.0%	0.0%	0.0%	0.6%	0.1%

14 / 46

Wprowadzenie

- analityczny
- zgodny z KBR
- czytelny
- powtarzalny
- wartości średnie (oczekiwane)
- opisuje podróże (nie łańcuchy)

1	czy?/jak często?	produkcja i atrakcja rejonów	q_o, q_d	generacja podróży
2	dokąd?	więźba ruchu	q_{od}	grawitacja
3	czym?	udziały środków transportu	p_{od}	wybór środka transportu
4	którędy?	obciążenia ścieżek	q_a	wybór trasy

- **1** Na etapie **generacji ruchu** określamy liczbę podróży rozpoczynanych q_o i kończonych q_d w każdym rejonie używając formuł generacji zgodnie z zagospodarowaniem (zmienne rejonu X_o) i parametrami określonymi w KBR.
- Na etapie wyboru celu podróży określamy liczbę podróży między rejonami qod na podstawie:
 - produkcji w źródle q_o,
 - atrakcii u celu a_d
 - odległości pomiędzy rejonami (koszt c_{od} , lub czas t_{od}
- Na etapie wyboru środka transportu dla każdej pary rejonów określamy prawdopodobieństwa p_{od} wyboru każdego z rozważanych środków transportu:
 - pieszo,
 - komunikacia zbiorowa.
 - samochodem,
 -
- Na etapie wyboru trasy dla każdej pary źródło cel określ optymalną trasę: pieszą, komunikacją zbiorową, samochodem.

$$\{q_o, q_d\} \to q_{od} \to q_{od} \times p_m \to q_a$$
 (1)

Generacja Ruchu

Generacja ruchu

Ujęcie statystyczne

Produkcja

Liczba podróży rozpoczynanych w danym okresie czasu w danym obszarze w danej motywacji. np. Liczba podróży rozpoczynanych w dobie na Osiedlu Kościuszkowskim z domu do pracy

Atrakcja

Liczba podróży kończonych w danym okresie czasu w danym obszarze w danej motywacji. np. Liczba podróży kończonych w dobie na Politechnice Krakowskiej z domu na uczelnię.

Ruchliwość

Średnia liczba podrózy wykonywana przez osobę w dobie.

Liczba podróży

Najogólniej - ruchliwość razy liczba mieszkańców

$$T = \alpha \times LM_i$$

Czas wykonywania aktywności

Wybór celu podróży

21 / 46

Wybór celu podróży

Sytuacja

Wiemy gdzie i ile podróży rozpoczyna się (generacja) i kończy (atrakcja)
Nie wiemy jakie to są podróże, nie wiemy jak początki łączą się z końcami.

Wybór

Podróżny:

- jest w określonym miejscu (początek)
- z określoną potrzebą (kolejną aktywnością w łańcuchu)
- podejmuje decyzję gdzie zaspokoi potrzebę wybiera koniec podróży

Wybór celu podróży Przykład

Cztery rejony (1-4) generują podróże, w sumie 1000 podróży które mogą być zaspokojone w dwóch rejonach, bliższym nr 5 i dalszym nr 6.

6

Wybór celu podróży

Przykład

6

Р	Α
100	-
200	-
300	-
400	-
-	200
-	800
	100 200 300

Podróże fakultatywne o dużym oporze przestrzeni

np. na zakupy do najbliższej Biedronki

o, d,	5	6
1	90	10
2	200	0
3	270	30
4	400	0

Wybór celu podróży

Przykład

(1

2

6

5

(3

4

o, d	Р	Α
1	100	-
2	200	-
3	300	-
4	400	-
5	-	200
6	-	800

Podróże fakultatywne o istotnej atrakcyjności celu podróży

np. do galerii handlowej przy dużej różnicy oferty (uwzględnione w atrakcji)

o, d,	5	6
1	20	80
2	40	160
3	60	240
4	80	320

Wybór celu podróży

(1

2

6

Przykład

5

(3

4

o, d	Р	Α
1	100	-
2	200	-
3	300	-
4	400	-
5	-	200
6	-	800

Podróże obligatoryjne o ograniczone pojemności celu podróży

np. do pracy przy określonej liczbie miejsc pracy (górna granica liczby podróży)

o, d,	5	6
1	20	80
2	40	160
3	60	240
4	80	320

Wybór celu podróży

Przykład

)

5

3

o, d	Р	A
1	100	-
2	200	-
3	300	-
4	400	-
5	-	200 -> 800
6	-	800 -> 200

Podróże obligatoryjne gdzie podaż zdążyła dopasować się do popytu

np. do przedszkola

o, d,	5	6
1	80	20
2	1600	40
3	240	60
4	320	80

Faktyczna struktura przemieszczeń

Ujawniona np. w śladach telefonów komórkowych

イロト イ団ト イミト イミト

Potrzeba modelowania

Model stanu istniejącego

Jest zupełnie niepotrzebny, bezużyteczny.

Możemy zmierzyć/zbadać/zaobserwować praktycznie każdą z miar uzyskiwanych w modelu. Nie ma potrzeby jej modelować, można ją zmierzyć.

Jeśli jedyne nasze pytania o system transportowy dotyczą stanu istniejącego, to model jest zbędny.

Model prognostyczny

Model jest za to konieczny do określenia stanu sieci w przyszłości, w szczególności:

- po otwarciu nowej drogi
- linii tramwajowej
- ścieżki rowerowej
- wprowadzeniu strefy płatnego parkowania
- budowie nowego osiedla/fabryki/galerii

Przykład

Dzisiaj otwarto nową linie tramwajową w Krakowie.

Łączy ona Mistrzejowice, przez Park Wodny, Rondo Młyńskie, Wieczystą i dalej do Ronda Mogilskiego.

Pierwszego dnia po otwarciu kursem o 07:43 podróżuje 100 pasażerów.

Skąd oni się wzięli?

Przykład

Kraków, 2018

Net Type number tram

Przykład

Net
Type number
tram
car/samochód
bus

— bike/rower

Przykład

Net
Type number
tram
car/samochôd

Przykład

Kraków, 2018

Model 4 stadiowy

wykorzystanie w prognozowaniu

1	generacja podróży	zwiększenie liczby podróży	nowe zmienne objaśniające
			(miejsca pracy, ludność, po-
			wierzchnia handlowa)
2	grawitacja	zmiana celów podróży	wzrost liczby podróży na
			usprawnionych relacjach
3	wybór środka transportu	zmiana w wyborze	większe udziały usprawnionych
			środków transportu
4	wybór trasy	obciążenie innych ścieżek	pojawienie się ścieżek o niższym
			koszcie

Model 4 stadiowy

wykorzystanie w prognozowaniu

Kto wybierze nową linię tramwajową:

1	nowi mieszkańcy	
2	podróżujący w nowych kierunkach	
3	przesiadający się z innych środków transportu	
4	przesiadający się z innych tras	

Wybór trasy

Wybór ścieżki w sieci drogowej

Dla przedstawionej poniżej sieci drogowej określmy obciążenie (liczbę pojazdów q_a) na moście (odcinek przerywany) i wynikający z niego czasu przejazdu (t_a) . Wartości w rejonach oznaczają liczbę pojazdów jaka w ciągu godziny szczytu porannego chce dojechać do celu podróży. Załóż, że wszystkie odcinki są równe i czas przejazdu każdego z nich w ruchu swobodnym wynosi 1 minutę.

- 1 załóż, że przepustowość wszystkich odcinków jest nieograniczona.
- $footnote{0}$ załóż, że przepustowość (Q_a) mostu (odcinek przerywany) wynosi 500 pojazdów na godzinę, pozostałe odcinki mają nieograniczoną przepustowość. Czas przejazdu oszacuj korzystając z funkcji: $t_a=t_a^0\cdot(1+(q_a/Q_a)^2)$. Podaj szacunkową wartość zbliżoną do warunków równowagi Wardop'a.

Wybór ścieżki w sieci

przykład

A: przepustowość wszystkich odcinków jest nieograniczona.

Wybór ścieżki w sieci

przykład

B: przepustowość (Q_a) mostu (odcinek przerywany) wynosi 500 pojazdów na godzinę, pozostałe odcinki mają nieograniczoną przepustowość. Czas przejazdu oszacuj korzystając z funkcji: $t_a=t_a^0\cdot(1+(q_a/Q_a)^2)$. Podaj szacunkową wartość zbliżoną do warunków równowagi Wardop'a.

Efektywność

Efektywność ekonomiczna

$$E = \frac{B}{C}$$

iloraz kosztów (C) i korzyści (C). Powinien być większy od 1, a więc B > C.

Koszty

inwestycji, przygotowania, utrzymania, amortyzacji, eksploatacji, gruntów, ...

Korzyści

spadek emisji, hałasu, wypadków, ale głównie oszczędności czasu - uzyskiwane z modelu

Efektywność ekonomiczna

Praca przewozowa

Pojazdogodziny, pasażerogodziny

$$C_t = \sum_{p \in P} t_p = \sum_{a \in A} q_a \times t_a$$

Całkowity czas wszystkich podróży w sieci (w godzinie szczytu)

Korzyści

Spadek w pojazdogodzinach względem wariantu bezinwestycyjnego (0) względem analizowanego wariantu inwestycyjnego (i):

$$B_i = C_{t,0} - C_{t,i}$$

Efektywność ekonomiczna

Korzyści

$$B_i = 300pojh/h_{szczytu}$$

$$= 300pojh/h_{szczytu} \times 30zł/h = 9000zł$$

$$= 9000zl/10\% = 90000zl/dobę$$

$$= 90000zl/dobę \times 300dni/rok = 27mlnzl/rok$$

$$= 27mlnzl/rok \times 25lat = 675mlnzl/okresanalizy$$

Podsumowanie

Dziękuję za uwagę

 ${\sf Rafal\ Kucharski,\ rkucharski(at)pk.edu.pl}$

