Foundations of Statistical Inference

J. Berestycki & D. Sejdinovic

Department of Statistics University of Oxford

MT 2019

Chapter 10: Hierarchical Models

Basic idea

- ► The need to capture structure beyond what a single prior distribution on model parameters.
- ► Hierarchical modes: view parameters of a prior distribution as random variables that can be estimated from data.
- Motivation comes from joint inference on multiple parameters $\{\theta_1, \dots, \theta_I\}$ which are related or connected by the structure of the problem, but not identical.

Example

Data from neonatal cardiac surgery in 12 hospitals. The number of operations in hospital i is n_i and the number of mortalities is y_i .

	А	В	С	D	Е	F	G	Н	I	J	К	L	Σ
y_i	0	18	8	46	8	13	9	31	14	8	29	24	208
n_i	47	148	119	810	211	196	148	215	207	97	256	360	2814

Three approaches

- ▶ **Identical parameters:** All the θ 's are identical, in which case all the data can be pooled and the individual units ignored.
- ▶ Independent parameters: All the θ 's are entirely unrelated, in which case the results from each unit can be analysed independently individual estimates of θ_i are likely to be highly variable.
- **Exchangeable parameters:** The θ 's are assumed to be 'similar' in the sense that the 'labels' convey no information.

ML estimates

1. the number of deaths $Y_i \sim \text{Bin}(n_i, \theta)$, ML estimate for all hospitals:

$$\hat{\theta} = \frac{\sum_{i} y_i}{\sum_{i} n_i} = 0.0739.$$

- ▶ Could the θ_i 's all be equal? Variability in y_i suggests that this is not the case. For example, a test of $H_0: \theta_H = 0.0739$ would reject at level $\alpha \ll 0.05/12$.
- 2. the number of deaths $Y_i \sim \text{Bin}(n_i, \theta_i)$, ML estimates: $\hat{\theta}_A = 0$, $\hat{\theta}_H = 0.1442$.
 - Should we really ignore data from all other hospitals when estimating θ_H ? What if y_H was missing?

Different but related parameters

Allow for a different failure probability θ_i for each hospital i, but let θ_i come from the same distribution.

$$(y_i \mid \theta_i) \sim \mathsf{Binomial}(n_i, \theta_i) \quad \mathsf{where} \quad \theta_i \sim \mathsf{Beta}(\alpha, \beta)$$

- ▶ But how would we specify the values for α and β ?
- ▶ Say $\alpha=4$, $\beta=46$ (roughly "empirical Bayes" values), one obtains: $\hat{\theta}_A=0.0412,~\hat{\theta}_H=0.1321$
- ▶ Bayesian estimates are 'pushed' towards the prior mean $\alpha/(\alpha+\beta)=0.08$, to an extent depending on the 'denominator' n_i .

Empirical Bayes

- ▶ Calculate crude failure rates y_i/n_i
- lacktriangle Calculate the sample mean and variance of the 12 values y_i/n_i
- Solve for $\widehat{\alpha}$ and $\widehat{\beta}$ to obtain a beta distribution with this mean and variance
- ▶ Using Beta $(\widehat{\alpha}, \widehat{\beta})$ as a prior, apply Bayes theorem to obtain posteriors for true failure rates θ_i , $p(\theta_i | \widehat{\alpha}, \widehat{\beta}, y_1, y_2, \dots, y_I)$
 - uses the same data twice overestimating precision
 - just one choice of (α, β) ignoring uncertainty

Hierarchical Bayes

- Assume a *joint probability model* for the entire set of parameters (θ, α, β)
- ▶ Assign known prior distribution $\pi(\alpha, \beta)$ to α, β .
- ▶ Apply Bayes theorem to calculate the joint posterior distribution of all the unknown quantities simultaneously.

```
Level 1: y_i \sim Binomial(n_i, \theta_i), independently for each i
```

Level 2: $\theta_i \sim Beta(\alpha, \beta)$, independently for each i

Level 3: hyperprior $\pi(\alpha, \beta)$

Hierarchical Bayes

Hierarchical Bayes

- ► Hierarchical modelling requires specification of conditional distributions which is natural in Bayesian approaches.
- ▶ Typical setting involves J experiments, observations y_1, \ldots, y_J with likelihoods $p(y_i|\theta_i)$.
- A full probabilistic model for the θ_j 's is require. If the data is symmetric (i.e. there is no order on the experiments), then natural to assume that the distribution of the vector $(\theta_1, \dots, \theta_J)$ is symetric, i.e. exchangeable (invariant under relabelling by a permutation).

- ► Symmetry among model parameters in the prior invariant to permutations of the indices.
- ▶ When no information available to distinguish model parameters.
- ► True if drawn independently from a common distribution governed by a (hyper)parameter:

$$p(\theta_1, \theta_2, \dots, \theta_I) = \int p(\phi) \prod_{i=1}^{I} p(\theta_i | \phi) d\phi.$$

converse - De Finetti's theorem

Definition

A sequence of random variables (Y_1, \cdots, Y_n) is called exchangeable iff for all permutation σ of $\{1, \cdots, n\}$

$$(Y_{\sigma(1)}, \cdots, Y_{\sigma(n)}) \stackrel{\mathcal{D}}{=} (Y_1, \cdots, Y_n).$$
 (1)

An infinite sequence of random variables $\{Y_i\}_{i\in\mathbb{N}}$ is called exchangeable iff (1) is true for all $n\in\mathbb{N}$.

Theorem (De Finetti)

An infinite sequence $\{Y_i\}_i$ is exchangeable iff there exists a random probability distribution P such that :

- ► Conditionally on P, $\{Y_i\}_i | P \stackrel{i.i.d.}{\sim} P$
- $P \sim \Pi$

In the setting of the J experiments:

► If

$$Y_j|\theta_j \stackrel{ind}{\sim} f_j(Y_j|\theta_j), \quad \theta_j \stackrel{i.i.d}{\sim} G$$

The $(Y_j)_j$ are not exchangeable

► If

$$|Y_j|\theta_j \stackrel{ind}{\sim} f(Y_j|\theta_j), \quad \theta_j \stackrel{i.i.d}{\sim} G$$
 (2)

The $(Y_j)_j$ are exchangeable

(2) is the hierarchical representation of the model

$$f(y_1, \dots, y_J|G) = \int_{\Theta} g(\theta) \prod_{j=1}^J f(y_j|\theta) d\theta.$$

In the setting of the J experiments:

► If

$$Y_j|\theta_j \stackrel{ind}{\sim} f_j(Y_j|\theta_j), \quad \theta_j \stackrel{i.i.d}{\sim} G$$

The $(Y_i)_i$ are not exchangeable

▶ If

$$|Y_j|\theta_j \stackrel{ind}{\sim} f(Y_j|\theta_j), \quad \theta_j \stackrel{i.i.d}{\sim} G$$
 (2)

The $(Y_j)_j$ are exchangeable

(2) is the hierarchical representation of the model

$$f(y_1, \dots, y_J|G) = \int_{\Theta} g(\theta) \prod_{j=1}^J f(y_j|\theta) d\theta.$$

The prior has parameters which again have a probability distribution.

- ▶ Data y have a density $f(y|\theta)$. (In example : $y \sim B(n,\theta)$)
- ▶ The prior dist. of θ is $p(\theta|\psi)$. (In example: $\psi = (\alpha, \beta)$ and $\theta \sim Beta(\psi)$)
- lacksquare ψ has a prior distribution $g(\psi)$, for $\psi \in \Psi$. New

- ▶ Joint prior: $p(\theta, \psi) = p(\theta|\psi)g(\psi)$
- ▶ Joint posterior: $p(\theta, \psi|y) \propto f(y|\theta)p(\theta|\psi)g(\psi)$,
- θ prior: $p(\theta) = \int p(\theta|\psi)g(\psi)d\psi$
- θ posterior $p(\theta|y) = \int_{\Psi} p(\theta, \psi|y) d\psi \propto f(y|\theta) p(\theta)$

The prior has parameters which again have a probability distribution.

- ▶ Data y have a density $f(y|\theta)$. (In example : $y \sim B(n,\theta)$)
- ▶ The prior dist. of θ is $p(\theta|\psi)$. (In example: $\psi = (\alpha, \beta)$ and $\theta \sim Beta(\psi)$)
- lacksquare ψ has a prior distribution $g(\psi)$, for $\psi \in \Psi$. New

- ▶ Joint prior: $p(\theta, \psi) = p(\theta|\psi)g(\psi)$
- ▶ Joint posterior: $p(\theta, \psi|y) \propto f(y|\theta)p(\theta|\psi)g(\psi)$,
- ightharpoonup heta prior: $p(\theta) = \int p(\theta|\psi)g(\psi)d\psi$
- θ posterior $p(\theta|y) = \int_{\Psi} p(\theta, \psi|y) d\psi \propto f(y|\theta) p(\theta)$

The prior has parameters which again have a probability distribution.

- ▶ Data y have a density $f(y|\theta)$. (In example : $y \sim B(n,\theta)$)
- ▶ The prior dist. of θ is $p(\theta|\psi)$. (In example: $\psi = (\alpha, \beta)$ and $\theta \sim Beta(\psi)$)
- lacksquare ψ has a prior distribution $g(\psi)$, for $\psi \in \Psi$. New

- ▶ Joint prior: $p(\theta, \psi) = p(\theta|\psi)g(\psi)$
- ▶ Joint posterior: $p(\theta, \psi|y) \propto f(y|\theta)p(\theta|\psi)g(\psi)$,
- θ prior: $p(\theta) = \int p(\theta|\psi)g(\psi)d\psi$
- θ posterior $p(\theta|y) = \int_{\Psi} p(\theta, \psi|y) d\psi \propto f(y|\theta) p(\theta)$

The prior has parameters which again have a probability distribution.

- ▶ Data y have a density $f(y|\theta)$. (In example : $y \sim B(n,\theta)$)
- ▶ The prior dist. of θ is $p(\theta|\psi)$. (In example: $\psi = (\alpha, \beta)$ and $\theta \sim Beta(\psi)$)
- lacksquare ψ has a prior distribution $g(\psi)$, for $\psi \in \Psi$. New

- ▶ Joint prior: $p(\theta, \psi) = p(\theta|\psi)g(\psi)$
- ▶ Joint posterior: $p(\theta, \psi|y) \propto f(y|\theta)p(\theta|\psi)g(\psi)$,
- θ prior: $p(\theta) = \int p(\theta|\psi)g(\psi)d\psi$
- ▶ θ posterior $p(\theta|y) = \int_{\Psi} p(\theta, \psi|y) d\psi \propto f(y|\theta) p(\theta)$

The prior has parameters which again have a probability distribution.

- ▶ Data y have a density $f(y|\theta)$. (In example : $y \sim B(n,\theta)$)
- ▶ The prior dist. of θ is $p(\theta|\psi)$. (In example: $\psi = (\alpha, \beta)$ and $\theta \sim Beta(\psi)$)
- ψ has a prior distribution $g(\psi)$, for $\psi \in \Psi$. New

- ▶ Joint prior: $p(\theta, \psi) = p(\theta|\psi)g(\psi)$
- ▶ Joint posterior: $p(\theta, \psi|y) \propto f(y|\theta)p(\theta|\psi)g(\psi)$,
- ightharpoonup heta prior: $p(\theta) = \int p(\theta|\psi)g(\psi)d\psi$
- ▶ θ posterior $p(\theta|y) = \int_{\Psi} p(\theta, \psi|y) d\psi \propto f(y|\theta) p(\theta)$

The prior has parameters which again have a probability distribution.

- ▶ Data y have a density $f(y|\theta)$. (In example : $y \sim B(n,\theta)$)
- ▶ The prior dist. of θ is $p(\theta|\psi)$. (In example: $\psi = (\alpha, \beta)$ and $\theta \sim Beta(\psi)$)
- ψ has a prior distribution $g(\psi)$, for $\psi \in \Psi$. New

- ▶ Joint prior: $p(\theta, \psi) = p(\theta|\psi)g(\psi)$
- ▶ Joint posterior: $p(\theta, \psi|y) \propto f(y|\theta)p(\theta|\psi)g(\psi)$,
- ightharpoonup heta prior: $p(\theta) = \int p(\theta|\psi)g(\psi)d\psi$
- ▶ θ posterior $p(\theta|y) = \int_{\Psi} p(\theta, \psi|y) d\psi \propto f(y|\theta) p(\theta)$

The prior has parameters which again have a probability distribution.

- ▶ Data y have a density $f(y|\theta)$. (In example : $y \sim B(n,\theta)$)
- ▶ The prior dist. of θ is $p(\theta|\psi)$. (In example: $\psi = (\alpha, \beta)$ and $\theta \sim Beta(\psi)$)
- ψ has a prior distribution $g(\psi)$, for $\psi \in \Psi$. New

- ▶ Joint prior: $p(\theta, \psi) = p(\theta|\psi)g(\psi)$
- ▶ Joint posterior: $p(\theta, \psi|y) \propto f(y|\theta)p(\theta|\psi)g(\psi)$,
- θ prior: $p(\theta) = \int p(\theta|\psi)g(\psi)d\psi$
- θ posterior $p(\theta|y) = \int_{\mathbb{T}} p(\theta, \psi|y) d\psi \propto f(y|\theta) p(\theta)$

The prior has parameters which again have a probability distribution.

- ▶ Data y have a density $f(y|\theta)$. (In example : $y \sim B(n,\theta)$)
- ▶ The prior dist. of θ is $p(\theta|\psi)$. (In example: $\psi = (\alpha, \beta)$ and $\theta \sim Beta(\psi)$)
- lacksquare ψ has a prior distribution $g(\psi)$, for $\psi \in \Psi$. New

- ▶ Joint prior: $p(\theta, \psi) = p(\theta|\psi)g(\psi)$
- ▶ Joint posterior: $p(\theta, \psi|y) \propto f(y|\theta)p(\theta|\psi)g(\psi)$,
- ightharpoonup heta prior: $p(\theta) = \int p(\theta|\psi)g(\psi)d\psi$
- θ posterior $p(\theta|y) = \int_{\Psi} p(\theta, \psi|y) d\psi \propto f(y|\theta) p(\theta)$

The prior has parameters which again have a probability distribution.

- ▶ Data y have a density $f(y|\theta)$. (In example : $y \sim B(n,\theta)$)
- ▶ The prior dist. of θ is $p(\theta|\psi)$. (In example: $\psi = (\alpha, \beta)$ and $\theta \sim Beta(\psi)$)
- ψ has a prior distribution $g(\psi)$, for $\psi \in \Psi$. New

- ▶ Joint prior: $p(\theta, \psi) = p(\theta|\psi)g(\psi)$
- ▶ Joint posterior: $p(\theta, \psi|y) \propto f(y|\theta)p(\theta|\psi)g(\psi)$,
- θ prior: $p(\theta) = \int p(\theta|\psi)g(\psi)d\psi$
- ▶ θ posterior $p(\theta|y) = \int_{\Psi} p(\theta, \psi|y) d\psi \propto f(y|\theta) p(\theta)$

The prior has parameters which again have a probability distribution.

- ▶ Data y have a density $f(y|\theta)$. (In example : $y \sim B(n,\theta)$)
- ▶ The prior dist. of θ is $p(\theta|\psi)$. (In example: $\psi = (\alpha, \beta)$ and $\theta \sim Beta(\psi)$)
- ψ has a prior distribution $g(\psi)$, for $\psi \in \Psi$. New

- ▶ Joint prior: $p(\theta, \psi) = p(\theta|\psi)g(\psi)$
- ▶ Joint posterior: $p(\theta, \psi|y) \propto f(y|\theta)p(\theta|\psi)g(\psi)$,
- θ prior: $p(\theta) = \int p(\theta|\psi)g(\psi)d\psi$
- θ posterior $p(\theta|y) = \int_{\text{Tr}} p(\theta, \psi|y) d\psi \propto f(y|\theta) p(\theta)$

To analyze a hierarchical model:

- 1. Write the joint posterior $p(\theta,\psi|y)$, in unnormalized form as the product $p(y|\theta) \times p(\theta|\psi) \times g(\psi)$.
- 2. Determine $p(\theta|\psi,y)$ (the conditional posterior density of θ given ψ for fixed observation y.
- 3. Obtain $p(\psi|y)$ the posterior marginal distribution of hyper parameter ψ given the observation y.

$$p(\psi|y) = \frac{p(\theta, \psi|y)}{p(\theta|\psi, y)}$$

To analyze a hierarchical model:

- 1. Write the joint posterior $p(\theta, \psi|y)$, in unnormalized form as the product $p(y|\theta) \times p(\theta|\psi) \times g(\psi)$.
- 2. Determine $p(\theta|\psi,y)$ (the conditional posterior density of θ given ψ for fixed observation y.
- 3. Obtain $p(\psi|y)$ the posterior marginal distribution of hyper parameter ψ given the observation y.

$$p(\psi|y) = \frac{p(\theta, \psi|y)}{p(\theta|\psi, y)}$$

To analyze a hierarchical model:

- 1. Write the joint posterior $p(\theta,\psi|y)$, in unnormalized form as the product $p(y|\theta) \times p(\theta|\psi) \times g(\psi)$.
- 2. Determine $p(\theta|\psi,y)$ (the conditional posterior density of θ given ψ for fixed observation y.
- 3. Obtain $p(\psi|y)$ the posterior marginal distribution of hyper parameter ψ given the observation y.

$$p(\psi|y) = \frac{p(\theta, \psi|y)}{p(\theta|\psi, y)}$$

To analyze a hierarchical model:

- 1. Write the joint posterior $p(\theta,\psi|y)$, in unnormalized form as the product $p(y|\theta) \times p(\theta|\psi) \times g(\psi)$.
- 2. Determine $p(\theta|\psi,y)$ (the conditional posterior density of θ given ψ for fixed observation y.
- 3. Obtain $p(\psi|y)$ the posterior marginal distribution of hyper parameter ψ given the observation y.

$$p(\psi|y) = \frac{p(\theta, \psi|y)}{p(\theta|\psi, y)}$$

To analyze a hierarchical model:

- 1. Write the joint posterior $p(\theta,\psi|y)$, in unnormalized form as the product $p(y|\theta)\times p(\theta|\psi)\times g(\psi)$.
- 2. Determine $p(\theta|\psi,y)$ (the conditional posterior density of θ given ψ for fixed observation y.
- 3. Obtain $p(\psi|y)$ the posterior marginal distribution of hyper parameter ψ given the observation y.

$$p(\psi|y) = \frac{p(\theta, \psi|y)}{p(\theta|\psi, y)}.$$

To analyze a hierarchical model:

- 1. Write the joint posterior $p(\theta,\psi|y)$, in unnormalized form as the product $p(y|\theta) \times p(\theta|\psi) \times g(\psi)$. Immediate
- 2. Determine $p(\theta|\psi,y)$ (the conditional posterior density of θ given ψ for fixed observation y.
- 3. Obtain $p(\psi|y)$ the posterior marginal distribution of hyper parameter ψ given the observation y.

$$p(\psi|y) = \frac{p(\theta, \psi|y)}{p(\theta|\psi, y)}.$$

To analyze a hierarchical model:

- 1. Write the joint posterior $p(\theta, \psi|y)$, in unnormalized form as the product $p(y|\theta) \times p(\theta|\psi) \times g(\psi)$. Immediate
- 2. Determine $p(\theta|\psi,y)$ (the conditional posterior density of θ given ψ for fixed observation y. Easy for conjugate models since θ_j are iid cond. on ψ
- 3. Obtain $p(\psi|y)$ the posterior marginal distribution of hyper parameter ψ given the observation y.

$$p(\psi|y) = \frac{p(\theta, \psi|y)}{p(\theta|\psi, y)}.$$

To analyze a hierarchical model:

- 1. Write the joint posterior $p(\theta,\psi|y)$, in unnormalized form as the product $p(y|\theta) \times p(\theta|\psi) \times g(\psi)$. Immediate
- 2. Determine $p(\theta|\psi,y)$ (the conditional posterior density of θ given ψ for fixed observation y. Easy for conjugate models since θ_j are iid cond. on ψ
- 3. Obtain $p(\psi|y)$ the posterior marginal distribution of hyper parameter ψ given the observation y. Integrate joint posterior over θ

$$p(\psi|y) = \frac{p(\theta, \psi|y)}{p(\theta|\psi, y)}.$$

To analyze a hierarchical model:

- 1. Write the joint posterior $p(\theta,\psi|y)$, in unnormalized form as the product $p(y|\theta) \times p(\theta|\psi) \times g(\psi)$. Immediate
- 2. Determine $p(\theta|\psi,y)$ (the conditional posterior density of θ given ψ for fixed observation y. Easy for conjugate models since θ_j are iid cond. on ψ
- 3. Obtain $p(\psi|y)$ the posterior marginal distribution of hyper parameter ψ given the observation y. Integrate joint posterior over θ

For the last step, observe that

$$p(\psi|y) = \frac{p(\theta, \psi|y)}{p(\theta|\psi, y)}.$$

Careful about normalizing factor.

Example cont'd

Full probability model:

- ▶ the y_j are independent with $y_j \sim B(n_j, \theta_j)$.
- the θ_j are i.i.d. Beta (α, β)
- $\psi = (\alpha, \beta)$ follows an uninformative prior to be specified.

We now perform the three steps of the analysis.

Step1: Joint posterior

$$p(\theta, \alpha, \beta|y) \propto p(\alpha, \beta)p(\theta|\alpha, \beta)p(y|\theta, \alpha, \beta)$$

$$\propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha - 1} (1 - \theta_j)^{\beta - 1} \prod_{j=1}^{J} \theta_j^{y_j} (1 - \theta_j)^{n_j - y_j}.$$

Step2: Posterior density of θ given (α, β)

$$p(\theta|\alpha,\beta,y) = \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta+n_j)}{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)} \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+n_j-y_j-1}$$

Example cont'd

Full probability model:

- ▶ the y_j are independent with $y_j \sim B(n_j, \theta_j)$.
- the θ_j are i.i.d. Beta (α, β)
- $\psi = (\alpha, \beta)$ follows an uninformative prior to be specified.

We now perform the three steps of the analysis.

Step1: Joint posterior

$$\begin{split} p(\theta,\alpha,\beta|y) &\propto p(\alpha,\beta) p(\theta|\alpha,\beta) p(y|\theta,\alpha,\beta) \\ &\propto p(\alpha,\beta) \prod_{j=1}^J \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha-1} (1-\theta_j)^{\beta-1} \prod_{j=1}^J \theta_j^{y_j} (1-\theta_j)^{n_j-y_j}. \end{split}$$

Step2: Posterior density of θ given (α, β)

$$p(\theta|\alpha,\beta,y) = \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta+n_j)}{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)} \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+n_j-y_j-1}$$

Example cont'd

Full probability model:

- ▶ the y_j are independent with $y_j \sim B(n_j, \theta_j)$.
- the θ_j are i.i.d. Beta (α, β)
- $\psi = (\alpha, \beta)$ follows an uninformative prior to be specified.

We now perform the three steps of the analysis.

Step1: Joint posterior

$$p(\theta, \alpha, \beta|y) \propto p(\alpha, \beta)p(\theta|\alpha, \beta)p(y|\theta, \alpha, \beta)$$

$$\propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha - 1} (1 - \theta_j)^{\beta - 1} \prod_{j=1}^{J} \theta_j^{y_j} (1 - \theta_j)^{n_j - y_j}.$$

Step2: Posterior density of θ given (α, β)

$$p(\theta|\alpha,\beta,y) = \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta+n_j)}{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)} \theta_j^{\alpha+y_j-1} (1-\theta_j)^{\beta+n_j-y_j-1}$$

Example cont'd

Step3: Posterior of α, β using $p(\phi|y) = p(\theta, \phi|y)/p(\theta|\phi, y)$

$$p(\alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)}{\Gamma(\alpha+\beta+n_j)}.$$

Possible noninformative prior for α, β

- ▶ Uniform in α, β : $p(\alpha, \beta) \propto 1$. Does it yield a proper posterior? No
- ▶ Recall that mean is $\alpha/(\alpha+\beta)$ and that $\alpha+\beta$ is 'sample size'. Take logit and \log to put them on a $(-\infty,\infty)$ scale and then assign a uniform prior: $p(\log(\alpha/\beta),\log(\alpha+\beta))\propto 1$ No
- ▶ A reasonable choice of diffuse hyperprior density is uniform on $(\alpha/(\alpha+\beta), (\alpha+\beta)^{-1/2})$ which translates to $p(\alpha, \beta) \propto (\alpha+\beta)^{-5/2}$, and yields a proper posterior.

Example cont'd

Step3: Posterior of α, β using $p(\phi|y) = p(\theta, \phi|y)/p(\theta|\phi, y)$

$$p(\alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_j)\Gamma(\beta+n_j-y_j)}{\Gamma(\alpha+\beta+n_j)}.$$

Possible noninformative prior for α, β

- ▶ Uniform in α, β : $p(\alpha, \beta) \propto 1$. Does it yield a proper posterior? No
- ▶ Recall that mean is $\alpha/(\alpha+\beta)$ and that $\alpha+\beta$ is 'sample size'. Take logit and \log to put them on a $(-\infty,\infty)$ scale and then assign a uniform prior: $p(\log(\alpha/\beta),\log(\alpha+\beta))\propto 1$ No
- ▶ A reasonable choice of diffuse hyperprior density is uniform on $(\alpha/(\alpha+\beta), (\alpha+\beta)^{-1/2})$ which translates to $p(\alpha, \beta) \propto (\alpha+\beta)^{-5/2}$, and yields a proper posterior.

Simulating from the posterior

- ▶ Draw (α, β) from $p(\alpha, \beta|y)$
- ▶ Draw θ from $p(\theta|\alpha,\beta,y)$ given the drawn value of (α,β) . Since $p(\theta|\alpha,\beta,y) = \prod_i p(\theta_i|\alpha,\beta,y)$, components θ_i can be drawn independently.
- ▶ Predictive values \tilde{y} can be drawn from $p(\tilde{y}|\theta)$, given the drawn θ .

Posterior $p(\alpha, \beta|y)$

Posterior $p(\theta|y)$

Advantages

The posterior distribution for each θ_i

- 'borrows strength' from the likelihood contributions for all hospitals, via their joint influence on the estimate of the unknown population (prior) parameters α and β
- ightharpoonup reflects our full uncertainty about the true values of lpha and eta

Example: Normal data – ANOVA type model

For i=1,2,...,J we make n_i observations $X_{i,1},X_{i,2},...,X_{i,n_i}$ on population i, with $X_{ij}\sim N(\theta_i,\sigma^2)$. The θ_i are the unknown means for observations on the i'th population but σ^2 is known.

Question: what sort of estimates for θ given the (y_{ij}) ?

- lacksquare Simple natural idea: $\hat{ heta}_j = ar{y}_{\cdot j} = rac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$
- If the J experiments are very close might prefer $\hat{\theta}_j = \hat{\theta} = \bar{y}$.. = $\frac{1}{N} \sum_{i,j=1}^{n_j,J} y_{ij}$

To decide which to use, usually ANOVA F-test.

Example: Normal data – ANOVA type model

For i=1,2,...,J we make n_i observations $X_{i,1},X_{i,2},...,X_{i,n_i}$ on population i, with $X_{ij}\sim N(\theta_i,\sigma^2)$. The θ_i are the unknown means for observations on the i'th population but σ^2 is known.

Question: what sort of estimates for θ given the (y_{ij}) ?

- lacksquare Simple natural idea: $\hat{ heta}_j = ar{y}_{\cdot j} = rac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$
- If the J experiments are very close might prefer $\hat{\theta}_j = \hat{\theta} = \bar{y}$.. = $\frac{1}{N} \sum_{i,j=1}^{n_j,J} y_{ij}$

To decide which to use, usually ANOVA F-test.

Example: Normal data – ANOVA type model

For i=1,2,...,J we make n_i observations $X_{i,1},X_{i,2},...,X_{i,n_i}$ on population i, with $X_{ij}\sim N(\theta_i,\sigma^2)$. The θ_i are the unknown means for observations on the i'th population but σ^2 is known.

Question: what sort of estimates for θ given the (y_{ij}) ?

- lacksquare Simple natural idea: $\hat{ heta}_j = ar{y}_{\cdot j} = rac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$
- ▶ If the J experiments are very close might prefer $\hat{\theta}_j = \hat{\theta} = \bar{y}_{\cdot \cdot} = \frac{1}{N} \sum_{i,j=1}^{n_j,J} y_{ij}$

To decide which to use, usually ANOVA F-test.

Example: Normal data

But we could also interpolate

$$\hat{\theta}_j = \lambda_j \bar{y}_{\cdot j} + (1 - \lambda_j) \bar{y}_{\cdot \cdot \cdot}$$

- 1. The unpooled estimate $\hat{\theta}_j=\bar{y}_{\cdot j}, \lambda_j=1$ corresponds to θ_j having independent uniform priors
- 2. The pooled estimate $\lambda_j=0$ corresponds to the θ_j restricted to be equal with uniform prior.
- 3. The weighted estimates $\lambda_j \in (0,1)$ corresponds to the case where the θ_j are iid normal.

Example: Normal data

But we could also interpolate

$$\hat{\theta}_j = \lambda_j \bar{y}_{\cdot j} + (1 - \lambda_j) \bar{y}_{\cdot \cdot \cdot}$$

- 1. The unpooled estimate $\hat{\theta}_j=\bar{y}_{\cdot j}, \lambda_j=1$ corresponds to θ_j having independent uniform priors
- 2. The pooled estimate $\lambda_j = 0$ corresponds to the θ_j restricted to be equal with uniform prior.
- 3. The weighted estimates $\lambda_j \in (0,1)$ corresponds to the case where the θ_j are iid normal.

For i=1,2,...,k we make n_i observations $X_{i,1},X_{i,2},...,X_{i,n_i}$ on population i, with $X_{ij}\sim N(\theta_i,\sigma^2)$. The θ_i are the unknown means for observations on the i'th population but σ^2 is known. Suppose the prior model for the θ_i is iid normal, $\theta_i\sim N(\phi,\tau^2)$.

$$X_{1,1},...,X_{1,n_1} \sim N(\theta_1,\sigma^2)$$
 θ_1

$$X_{2,1},...,X_{2,n_2} \sim N(\theta_2,\sigma^2)$$
 θ_2

$$\vdots$$

$$X_{k,1},...,X_{k,n_k} \sim N(\theta_k,\sigma^2)$$
 θ_k

For i=1,2,...,k we make n_i observations $X_{i,1},X_{i,2},...,X_{i,n_i}$ on population i, with $X_{ij}\sim N(\theta_i,\sigma^2)$. The θ_i are the unknown means for observations on the i'th population but σ^2 is known. Suppose the prior model for the θ_i is iid normal, $\theta_i\sim N(\phi,\tau^2)$.

$$X_{1,1},...,X_{1,n_1} \sim N(\theta_1,\sigma^2)$$
 θ_1

$$X_{2,1},...,X_{2,n_2} \sim N(\theta_2,\sigma^2)$$
 θ_2

$$\vdots$$

$$X_{k,1},...,X_{k,n_k} \sim N(\theta_k,\sigma^2)$$
 θ_k

Example: Hierarchical model for normal data If $\psi = (\phi, \tau^2)$

$$\pi(\theta_1, \dots, \theta_k | \psi) = \prod_{i=1}^k (2\pi\tau^2)^{-1/2} \exp\left\{-\frac{1}{2\tau^2} (\theta_i - \phi)^2\right\},$$

Now we need a prior for ϕ and τ^2 . Suppose we take

$$g(\phi, \tau^2) = p(\phi|\tau)p(\tau) \propto p(\tau),$$

i.e. ϕ is uniform conditionally on τ . Keep $p(\tau)$ for later.

The joint posterior of the parameters i

$$\pi(\theta, \psi | x) \propto f(x; \theta) \pi(\theta | \psi) g(\psi)$$

$$\propto g(\psi) \prod_{i=1}^{J} N(\theta_{i} | \phi, \tau^{2}) \prod_{i=1}^{J} N(\bar{y}_{\cdot j} | \theta_{j}, \sigma_{j}^{2}$$

where $\sigma_j^2 = \sigma^2/n_j$

Example: Hierarchical model for normal data If $\psi = (\phi, \tau^2)$

$$\pi(\theta_1, \dots, \theta_k | \psi) = \prod_{i=1}^k (2\pi\tau^2)^{-1/2} \exp\left\{-\frac{1}{2\tau^2} (\theta_i - \phi)^2\right\},$$

Now we need a prior for ϕ and τ^2 . Suppose we take

$$g(\phi, \tau^2) = p(\phi|\tau)p(\tau) \propto p(\tau),$$

i.e. ϕ is uniform conditionally on τ . Keep $p(\tau)$ for later.

The joint posterior of the parameters is

$$\pi(\theta, \psi | x) \propto f(x; \theta) \pi(\theta | \psi) g(\psi)$$

$$\propto g(\psi) \prod_{i=1}^{J} N(\theta_i | \phi, \tau^2) \prod_{i=1}^{J} N(\bar{y}_{\cdot j} | \theta_j, \sigma_j^2)$$

where $\sigma_j^2 = \sigma^2/n_j$

Example: Hierarchical model for normal data If $\psi = (\phi, \tau^2)$

$$\pi(\theta_1, \dots, \theta_k | \psi) = \prod_{i=1}^k (2\pi\tau^2)^{-1/2} \exp\left\{-\frac{1}{2\tau^2} (\theta_i - \phi)^2\right\},$$

Now we need a prior for ϕ and τ^2 . Suppose we take

$$g(\phi, \tau^2) = p(\phi|\tau)p(\tau) \propto p(\tau),$$

i.e. ϕ is uniform conditionally on τ . Keep $p(\tau)$ for later.

The joint posterior of the parameters is

$$\pi(\theta, \psi | x) \propto f(x; \theta) \pi(\theta | \psi) g(\psi)$$

$$\propto g(\psi) \prod_{i=1}^{J} N(\theta_{i} | \phi, \tau^{2}) \prod_{i=1}^{J} N(\bar{y}_{\cdot j} | \theta_{j}, \sigma_{j}^{2})$$

where $\sigma_j^2 = \sigma^2/n_j$

Step 2: Now we want to fix ψ and write the conditional posterior of θ . Because conditionally on ψ the θ_j are iid we can treat each θ_j in turn

$$\theta_j | \phi, \tau^2, y \sim N(\hat{\theta}_j, V_j)$$

with

$$\hat{ heta}_j = rac{\sigma_j^{-2} ar{y}_{\cdot j} + au^{-2} \phi}{\sigma_j^{-2} + au^{-2}}$$
 and $V_j = \left(\sigma_j^{-2} + au^{-2}
ight)^{-1}$.

Step 3 Now we go full Bayesian on the hyperparameters.

$$p(\phi, \tau|y) \propto g(\phi, \tau)p(y|\phi, \tau).$$

In general this expression is no help because $p(y|\phi,\tau)$ doesn't have a closed form. But here

$$p(\phi, \tau|y) \propto g(\phi, \tau) \prod_{i=1}^{J} N(\bar{y}_{\cdot j}|\phi, \tau^2 + \sigma^2)$$

Step 2: Now we want to fix ψ and write the conditional posterior of θ . Because conditionally on ψ the θ_j are iid we can treat each θ_j in turn

$$\theta_j | \phi, \tau^2, y \sim N(\hat{\theta}_j, V_j)$$

with

$$\hat{ heta}_j = rac{\sigma_j^{-2} ar{y}_{\cdot j} + au^{-2} \phi}{\sigma_j^{-2} + au^{-2}}$$
 and $V_j = \left(\sigma_j^{-2} + au^{-2}
ight)^{-1}$.

Step 3 Now we go full Bayesian on the hyperparameters.

$$p(\phi, \tau|y) \propto g(\phi, \tau)p(y|\phi, \tau).$$

In general this expression is no help because $p(y|\phi,\tau)$ doesn't have a closed form. But here

$$p(\phi, \tau|y) \propto g(\phi, \tau) \prod_{i=1}^{J} N(\bar{y}_{\cdot j}|\phi, \tau^2 + \sigma^2)$$

Step 2: Now we want to fix ψ and write the conditional posterior of θ . Because conditionally on ψ the θ_i are iid we can treat each θ_i in turn

$$\theta_j | \phi, \tau^2, y \sim N(\hat{\theta}_j, V_j)$$

with

$$\hat{ heta}_j = rac{\sigma_j^{-2} ar{y}_{\cdot j} + au^{-2} \phi}{\sigma_j^{-2} + au^{-2}} ext{ and } V_j = \left(\sigma_j^{-2} + au^{-2}
ight)^{-1}.$$

Step 3 Now we go full Bayesian on the hyperparameters.

$$p(\phi, \tau|y) \propto g(\phi, \tau)p(y|\phi, \tau).$$

In general this expression is no help because $p(y|\phi,\tau)$ doesn't have a closed form. But here

$$p(\phi, \tau|y) \propto g(\phi, \tau) \prod_{i=1}^{J} N(\bar{y}_{\cdot j}|\phi, \tau^2 + \sigma^2).$$

$$p(\phi, \tau|y) \propto g(\phi, \tau) \prod_{j=1}^{J} N(\bar{y}_{\cdot j}|\phi, \tau^2 + \sigma^2).$$

Start by fixing τ and compute $p(\phi|\tau,y)$. Using that $g(\phi,\tau^2) \propto p(\tau)$ we see that $\log p(\phi|\tau,y)$ is quadratic in ϕ and thus

$$\phi | \tau, y \sim N(\hat{\phi}, V_{\phi}) \quad \text{ where } \quad \hat{\phi} = \frac{\sum_{j=1}^{J} \frac{\bar{y}_{\cdot,j}}{\sigma_{j}^{2} + \tau^{2}}}{\sum_{j=1}^{J} \frac{1}{\sigma_{j}^{2} + \tau^{2}}} \quad V_{\phi}^{-1} = \left(\sum_{j=1}^{J} \frac{1}{\sigma_{j}^{2} + \tau^{2}}\right)^{-1}$$

This is a proper posterior for ϕ given τ . Using $p(\phi, \tau|y) = p(\phi|\tau, y)p(\tau|y)$ we get

$$p(au|y) \propto rac{p(au) \prod_{j=1}^J N(ar{y}_{\cdot j}|\phi, au^2 + \sigma_j^2)}{N(\phi|\hat{\phi}, V_{\epsilon})}$$

$$p(\phi, \tau|y) \propto g(\phi, \tau) \prod_{j=1}^{J} N(\bar{y}_{\cdot j}|\phi, \tau^2 + \sigma^2).$$

Start by fixing τ and compute $p(\phi|\tau,y)$. Using that $g(\phi,\tau^2) \propto p(\tau)$ we see that $\log p(\phi|\tau,y)$ is quadratic in ϕ and thus

$$\phi | \tau, y \sim N(\hat{\phi}, V_{\phi}) \quad \text{ where } \quad \hat{\phi} = \frac{\sum_{j=1}^{J} \frac{y_{\cdot,j}}{\sigma_{j}^{2} + \tau^{2}}}{\sum_{j=1}^{J} \frac{1}{\sigma_{j}^{2} + \tau^{2}}} \quad V_{\phi}^{-1} = \left(\sum_{j=1}^{J} \frac{1}{\sigma_{j}^{2} + \tau^{2}}\right)^{-1}$$

This is a proper posterior for ϕ given τ .

Using $p(\phi, \tau|y) = p(\phi|\tau, y)p(\tau|y)$ we get

$$p(\tau|y) \propto \frac{p(\tau) \prod_{j=1}^{J} N(\bar{y}_{\cdot j}|\phi, \tau^2 + \sigma_j^2)}{N(\phi|\hat{\phi}, V_{\phi})}$$

$$p(\phi, \tau|y) \propto g(\phi, \tau) \prod_{j=1}^{J} N(\bar{y}_{\cdot j}|\phi, \tau^2 + \sigma^2).$$

Start by fixing τ and compute $p(\phi|\tau,y)$. Using that $g(\phi,\tau^2) \propto p(\tau)$ we see that $\log p(\phi|\tau,y)$ is quadratic in ϕ and thus

$$\phi | \tau, y \sim N(\hat{\phi}, V_{\phi}) \quad \text{ where } \quad \hat{\phi} = \frac{\sum_{j=1}^{J} \frac{y_{\cdot j}}{\sigma_{j}^{2} + \tau^{2}}}{\sum_{j=1}^{J} \frac{1}{\sigma_{j}^{2} + \tau^{2}}} \quad V_{\phi}^{-1} = \left(\sum_{j=1}^{J} \frac{1}{\sigma_{j}^{2} + \tau^{2}}\right)^{-1}$$

This is a proper posterior for ϕ given τ . Using $p(\phi, \tau | y) = p(\phi | \tau, y)p(\tau | y)$ we get

$$p(\tau|y) \propto rac{p(au) \prod_{j=1}^{J} N(ar{y}_{\cdot j} | \phi, au^2 + \sigma_j^2)}{N(\phi|\hat{\phi}|V_{\star})}$$

Using $p(\phi,\tau|y)=p(\phi|\tau,y)p(\tau|y)$ we get

$$p(\tau|y) \propto rac{p(au) \prod_{j=1}^{J} N(\bar{y}_{\cdot j}|\phi, au^2 + \sigma_j^2)}{N(\phi|\hat{\phi}, V_{\phi})}$$

Trick: Must hold for any value of μ so all μ terms must simplify away. In particular, must hold for $\mu = \hat{\mu}$.

$$p(\tau|y) \propto p(\tau) V_{\phi}^{1/2} \prod_{j=1}^{J} (\tau^2 + \sigma_j^2)^{-1/2} \exp \left\{ -\frac{(\bar{y} \cdot_j - \hat{\phi})^2}{2(\sigma_j^2 + \tau^2)} \right\}$$

Both $\hat{\phi}$ and V_{ϕ} are functions of au.

Using $p(\phi,\tau|y)=p(\phi|\tau,y)p(\tau|y)$ we get

$$p(\tau|y) \propto \frac{p(\tau) \prod_{j=1}^{J} N(\bar{y}_{\cdot j}|\phi, \tau^2 + \sigma_j^2)}{N(\phi|\hat{\phi}, V_{\phi})}$$

Trick: Must hold for any value of μ so all μ terms must simplify away. In particular, must hold for $\mu = \hat{\mu}$.

$$p(\tau|y) \propto p(\tau) V_{\phi}^{1/2} \prod_{j=1}^{J} (\tau^2 + \sigma_j^2)^{-1/2} \exp \left\{ -\frac{(\bar{y} \cdot_j - \hat{\phi})^2}{2(\sigma_j^2 + \tau^2)} \right\}$$

Both $\hat{\phi}$ and V_{ϕ} are functions of τ .

Using $p(\phi, \tau|y) = p(\phi|\tau, y)p(\tau|y)$ we get

$$p(\tau|y) \propto \frac{p(\tau) \prod_{j=1}^{J} N(\bar{y}_{\cdot j}|\phi, \tau^2 + \sigma_j^2)}{N(\phi|\hat{\phi}, V_{\phi})}$$

Trick: Must hold for any value of μ so all μ terms must simplify away. In particular, must hold for $\mu = \hat{\mu}$.

$$p(\tau|y) \propto p(\tau) V_{\phi}^{1/2} \prod_{j=1}^{J} (\tau^2 + \sigma_j^2)^{-1/2} \exp\left\{ -\frac{(\bar{y} \cdot j - \hat{\phi})^2}{2(\sigma_j^2 + \tau^2)} \right\}$$

Both $\hat{\phi}$ and V_{ϕ} are functions of τ .

We now want the posterior of θ given the observations y.

Eithe

$$p(heta|y) = \int p(heta|y,(\phi, au))p(\phi, au|y)d\phi d au = \int ext{step 2} imes ext{step 3}$$

01

$$p(\theta|y) = \int p(\theta, (\phi, \tau)|y) d\phi d\tau$$

$$\pi(\theta, \phi, \tau^2 | x) \propto \left[\prod_{j=1}^{J} \exp \left\{ -\frac{1}{2\sigma_j^2} (\bar{y}_{\cdot j} - \theta_j)^2 \right\} \right]$$

$$\times \tau^{-a} \left[\prod_{j=1}^{J} \tau^{-1} \exp \left\{ -\frac{1}{2\tau^2} (\theta_j - \phi)^2 \right\} \right]$$

We now want the posterior of θ given the observations y. Either

$$p(heta|y) = \int p(heta|y,(\phi, au))p(\phi, au|y)d\phi d au = \int ext{step 2} imes ext{step 3}$$

or

$$p(\theta|y) = \int p(\theta, (\phi, \tau)|y) d\phi d\tau$$

$$\pi(\theta, \phi, \tau^2 | x) \propto \left[\prod_{j=1}^{J} \exp \left\{ -\frac{1}{2\sigma_j^2} (\bar{y}_{\cdot j} - \theta_j)^2 \right\} \right]$$

$$\times \tau^{-a} \left[\prod_{j=1}^{J} \tau^{-1} \exp \left\{ -\frac{1}{2\tau^2} (\theta_j - \phi)^2 \right\} \right]$$

We now want the posterior of θ given the observations y. Either

$$p(heta|y) = \int p(heta|y, (\phi, au)) p(\phi, au|y) d\phi d au = \int \mathsf{step} \ 2 imes \mathsf{step} \ 3$$

01

$$p(\theta|y) = \int p(\theta, (\phi, \tau)|y) d\phi d\tau$$

$$\pi(\theta, \phi, \tau^2 | x) \propto \left[\prod_{j=1}^{J} \exp \left\{ -\frac{1}{2\sigma_j^2} (\bar{y}_{\cdot j} - \theta_j)^2 \right\} \right]$$

$$\times \tau^{-a} \left[\prod_{j=1}^{J} \tau^{-1} \exp \left\{ -\frac{1}{2\tau^2} (\theta_j - \phi)^2 \right\} \right]$$

We now want the posterior of θ given the observations y. Either

$$p(\theta|y) = \int p(\theta|y, (\phi, \tau)) p(\phi, \tau|y) d\phi d\tau = \int \text{step 2} \times \text{step 3}$$

or

$$p(\theta|y) = \int p(\theta, (\phi, \tau)|y) d\phi d\tau$$

$$\pi(\theta, \phi, \tau^2 | x) \propto \left[\prod_{j=1}^{J} \exp \left\{ -\frac{1}{2\sigma_j^2} (\bar{y}_{\cdot j} - \theta_j)^2 \right\} \right]$$

$$\times \tau^{-a} \left[\prod_{j=1}^{J} \tau^{-1} \exp \left\{ -\frac{1}{2\tau^2} (\theta_j - \phi)^2 \right\} \right]$$

We now want the posterior of θ given the observations y. Either

$$p(heta|y) = \int p(heta|y,(\phi, au))p(\phi, au|y)d\phi d au = \int \mathsf{step} \ 2 imes \mathsf{step} \ 3$$

or

$$p(\theta|y) = \int p(\theta, (\phi, \tau)|y) d\phi d\tau$$

$$\pi(\theta, \phi, \tau^2 | x) \propto \left[\prod_{j=1}^{J} \exp \left\{ -\frac{1}{2\sigma_j^2} (\bar{y}_{\cdot j} - \theta_j)^2 \right\} \right]$$

$$\times \tau^{-a} \left[\prod_{j=1}^{J} \tau^{-1} \exp \left\{ -\frac{1}{2\tau^2} (\theta_j - \phi)^2 \right\} \right]$$

We now want the posterior of θ given the observations y. Either

$$p(\theta|y) = \int p(\theta|y,(\phi, au))p(\phi, au|y)d\phi d au = \int {\sf step } \ 2 imes {\sf step } \ 3$$

or

$$p(\theta|y) = \int p(\theta, (\phi, \tau)|y) d\phi d\tau$$

$$\pi(\theta, \phi, \tau^2 | x) \propto \left[\prod_{j=1}^{J} \exp \left\{ -\frac{1}{2\sigma_j^2} (\bar{y}_{\cdot j} - \theta_j)^2 \right\} \right]$$

$$\times \tau^{-a} \left[\prod_{j=1}^{J} \tau^{-1} \exp \left\{ -\frac{1}{2\tau^2} (\theta_j - \phi)^2 \right\} \right]$$

$$\pi(\theta, \phi, \tau^2 | x) \propto \left[\prod_{j=1}^{J} \exp \left\{ -\frac{1}{2\sigma_j^2} (\bar{y}_{\cdot j} - \theta_j)^2 \right\} \right]$$

$$\times \tau^{-a} \left[\prod_{j=1}^{J} \tau^{-1} \exp \left\{ -\frac{1}{2\tau^2} (\theta_j - \phi)^2 \right\} \right]$$

Integrate out wrt ϕ and τ^2 to obtain $\pi(\theta|x)$.

Exercise Integrating the last factor wrt ϕ gives a term proportional to

$$\tau^{1-J-a} \exp \left\{ -\frac{1}{2\tau^2} \sum_{j} (\theta_j - \bar{\theta})^2 \right\}.$$

Exercise Then the integral wrt τ gives a term proportional to

$$\left[\sum (\theta_j - \bar{\theta})^2\right]^{1 - (J+a)/2}$$

$$\pi(\theta, \phi, \tau^2 | x) \propto \left[\prod_{j=1}^{J} \exp \left\{ -\frac{1}{2\sigma_j^2} (\bar{y}_{\cdot j} - \theta_j)^2 \right\} \right]$$

$$\times \tau^{-a} \left[\prod_{j=1}^{J} \tau^{-1} \exp \left\{ -\frac{1}{2\tau^2} (\theta_j - \phi)^2 \right\} \right]$$

Integrate out wrt ϕ and τ^2 to obtain $\pi(\theta|x)$.

Exercise Integrating the last factor wrt ϕ gives a term proportional to

$$\tau^{1-J-a} \exp \left\{ -\frac{1}{2\tau^2} \sum_{j} (\theta_j - \bar{\theta})^2 \right\}.$$

Exercise Then the integral wrt au gives a term proportional to

$$\left[\sum (\theta_j - \bar{\theta})^2\right]^{1 - (J+a)/2}$$

$$\pi(\theta, \phi, \tau^2 | x) \propto \left[\prod_{j=1}^{J} \exp \left\{ -\frac{1}{2\sigma_j^2} (\bar{y}_{\cdot j} - \theta_j)^2 \right\} \right]$$

$$\times \tau^{-a} \left[\prod_{j=1}^{J} \tau^{-1} \exp \left\{ -\frac{1}{2\tau^2} (\theta_j - \phi)^2 \right\} \right]$$

Integrate out wrt ϕ and τ^2 to obtain $\pi(\theta|x)$.

Exercise Integrating the last factor wrt ϕ gives a term proportional to

$$\tau^{1-J-a} \exp \left\{ -\frac{1}{2\tau^2} \sum_{j} (\theta_j - \bar{\theta})^2 \right\}.$$

Exercise Then the integral wrt τ gives a term proportional to

$$\left[\sum (\theta_j - \bar{\theta})^2\right]^{1 - (J+a)/2}.$$

Thus the posterior distribution of θ is

$$\pi(\theta|x) \propto \left[\prod_{i=1}^{J} \exp \left\{ -\frac{1}{2\sigma_j^2} (\bar{y}_{\cdot j} - \theta_j)^2 \right\} \right] \cdot \left[\sum (\theta_j - \bar{\theta})^2 \right]^{1 - (J + a)/2}$$

Integrable iff J + a - 2 > J - 1 iff a > -1.

If the θ_j were unrelated then $\hat{\theta}_j = \bar{y}_{\cdot j}$. The model modifies the estimate by pulling it towards the mean of the estimated θ_i s.

Another kind of interpolation model.

Thus the posterior distribution of θ is

$$\pi(\theta|x) \propto \left[\prod_{i=1}^{J} \exp\left\{-\frac{1}{2\sigma_j^2}(\bar{y}_{\cdot j} - \theta_j)^2\right\}\right] \cdot \left[\sum (\theta_j - \bar{\theta})^2\right]^{1 - (J + a)/2}$$

Integrable iff J + a - 2 > J - 1 iff a > -1.

If the θ_j were unrelated then $\hat{\theta}_j = \bar{y}_{\cdot j}$. The model modifies the estimate by pulling it towards the mean of the estimated θ_i s.

Another kind of interpolation model.