HF noise studies in UL

L. Thomas (ULB)

April 5th 2021

1/11

Introduction

- ullet Development of a new HF noise tagging working point, with η dependent conditions.
- Using several selections to measure the performances of HF jets. ($|\eta| > 2.99$, $p_T > 100$ GeV, passing tight jet ID)
- Low MET Z+jets/ γ +jets to measure the efficiency in data.
 - Exactly one $Z(\mu\mu)$ or a tight γ
 - $\Delta \phi(Z/\gamma, jet) > 2.7$; $0.5 < p_T(Z/\gamma)/p_T(jet) < 1.5$
 - PFMET<50 GeV
- VBF $\to H \to \gamma \gamma$ (removing jets matched to photons) for efficiency in MC.
 - Two tight γ with $|\eta| < 2.5$ and $115 < M(\gamma \gamma) < 135$
- Monojet events from the MET dataset to assess the noise passing rate.
 - PFMET>100 GeV
 - Exactly one HF jet with $p_T > 100$ GeV.
 - No extra jet with $p_T > 30$ GeV.
 - No lepton with $p_T > 10$ GeV.
 - N.B. Assuming here that the contamination from good jets is negligible (probably true, but a bit concerned with the large passing rate at high $|\eta|$ and low p_T)

η strip size

• Proposed cut: remove jets with central η strip size \geq 3.

April 5th 2021

- Some hot spots in noise enriched region at low $\sigma_{\eta\eta}$, $\sigma_{\phi\phi}$, more visible at high η . Beam halos? (see next slide)
- Testing customized cut at very high $|\eta|(>4)$ as the noise seems to shift to higher $\sigma_{\eta\eta}$ values (maybe not really needed?)

$\sigma_{\eta\eta}$ vs $\sigma_{\phi\phi}$: 2017 vs 2018

- Similar trend for $|\eta| < 4$
- ullet Low $\sigma_{\phi\phi}$ spots much more pronounced in 2018 for $|\eta|>4$

Jet phi distribution: 2017 vs 2018

April 5th 2021

Efficiency (2018)

Efficiency (2017)

8/11

Noise tagging rate (2017/2018)

9/11

Summary

- New working point developed.
 - ullet η dependent conditions to account for different noise source (pure HF noise vs beam halos)
- Tighter with respect to previous working point.
- To be applied on jets back to back with MET! (Should strongly limit the impact on signal)
- Efficiency, scale factor and noise passing rate available at: https://lathomas.web.cern.ch/lathomas/JetMETStuff/HFNoiseStudy/ EffcySFandNoisePassRate.root

$\overline{\sigma_{\eta\eta}}$ vs $\sigma_{\phi\phi}$: 2017 vs 2018

- ullet Similar trend for $|\eta| < 4$
- ullet Low $\sigma_{\phi\phi}$ spots much more pronounced in 2018 for $|\eta|>4$

