ESc201: Introduction to Electronics

Digital Circuits

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

Digital Circuits

Combinational Circuits

x _____ cc _____ w

Output is determined by current values of inputs only.

Sequential Circuits

Output is determined in general by current values of inputs and past values of inputs/outputs as well.

NOR SR Latch (Set-Reset Latch) (recap)

$$Q = 1; \overline{Q} = 0$$
 Set State

$$\frac{1}{Q} = 0; \overline{Q} = 1 \quad \text{Re set State}$$

S	R	Q	Q	State
1	0	1	0	SET

NOR SR Latch (recap)

$$Q = 1; \overline{Q} = 0$$
 Set State

$$Q = 0; \overline{Q} = 1$$
 Re set State

S	R	Q	Q	State
1	0	1	0	SET
0	1	0	1	RESET

HOLD State (recap)

S	R	Q	Q	State
1	0	1	0	SET
0	0	1	0	HOLD
0	1	0	1	RESET
0	0	0	1	HOLD

S	R	Q	Q	State
1	0	1	0	SET
0	1	0	1	RESET
0	0	Q	Q	HOLD
1	1	0	0	INVALID

1 bit memory?

NAND Latch

S	R	Q	Q	State
0	1	1	0	SET
1	0	0	1	RESET
1	1	Q	Q	HOLD
0	0	1	1	INVALID

RS NAND Latch with Enable

Hold State

Enable	S R	QQ	State
0	хх	Q	Hold
1	1 0	1 0	Set
1	0 1	0 1	Reset
1	0 0	QQ	Hold
1	1 1	0 0	Invalid

D latch

Enable	S R	<u>Q</u>	State
0	хх	<u>а</u>	Hold
1	1 0	1 0	Set
1	0 1	0 1	Reset
1	0 0	QQ	Hold
1	1 1	0 0	Invalid

If EN = 1 then Q = D otherwise the latch is in Hold state

Latch with clock

Circuits are designed with the idea there would be single change in output or memory state in single clock cycle.

Edge Triggered Latch or Flip-flop

Positive edge triggered flipflop

Negative Edge Triggered Latch or Flip-flop

Master-Slave D Flip-flop

Characteristic table

Given a input and the present state of the flip-flop, what is the next state of the flip-flop

Inputs	(D)	Q(t+1)
	0	0
	1	1

Characteristic equation: Q(t+1) = D

JK Flip-flop

Inputs J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

Characteristic equation: Q(t+1) = JQ(t) + KQ(t)

JK flip flop is refinement of RS flip flop where indeterminate state of RS flip flop is defined in JK Flip Flop

JK Flip-flop (characteristic equation)

Q	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$Q(t+1) = J\overline{Q}(t) + \overline{K}Q(t)$$

Toggle or T Flip-flop

Inputs (T)	Q(t+1)
0	Q(t)
1	Q(t)

Characteristic equation:
$$Q(t+1) = T \oplus Q(t)$$

T	Q(t)	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Toggle or T Flip-flop

Inputs	(T)	Q(t+1)
	0	Q(t)
	1	Q(t)

Characteristic equation:

$$Q(t+1) = T \oplus Q(t)$$

Excitation Table

What inputs are required to effect a particular state change

Q	Т	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Excitation	Table	Inputs
-------------------	--------------	--------

Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

JK Flip-flop excitation table

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

Characteristic Table

Inputs

Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

Excitation Table

Q	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0