Block Diagram

Datapath – dataflow Control signals

· Describe operation

使用 AXI Lite 介面來接收 Tap 參數並將其寫入 BRAM。在地址方面需要注意,由於 Tap 參數位於 0x20-FF,因此將這些地址減去 0x20 後,即可正確映射到要寫入的 BRAM 地址。資料輸入理論上也是使用相同的形式,但資料輸入是透過 AXI Stream 進行傳輸。為了方便,我在 FIR 濾波器中使用了 shift register 來存儲 Tap 參數和資料輸入。當需要使用 RAM 中的值時,只需提供地址和啟用信號,在兩個時脈周期後,tap_Do 和 data_Do 就會輸出所需的值。在接收每個資料時,我會先暫停接收資料,經過 11 個時脈周期進行 x*h的運算來計算 sm_tdata,輸出 sm_tdata 後,再繼續接收下一個資料並進行一次計算,以此類推。

· How to receive data-in and tap parameters and place into SRAM

是用 axi-lite 來收取 tap parameters,同時將其寫至 bram,須注意在 address 的部分,因為 tap parameters 是 0x20-FF,所以我們將這些 address 減 0x20 後,即可正確對應到我們想填寫的 bram address。而 data-in 理論上也是用同樣的形式即可,但 data-in 是藉由 axi-stream 進行傳輸。

How to access shiftram and tapRAM to do computation

為了方便,我在 fir 裡有 shiftregister 來存 tap_parameter 和 data-in,想要用 ram 裡面的值時,只須給 address 和 en,等兩個 clk 後,tap_Do、data_Do, 即為所需。我在收到每一筆 data 時,會先暫停收 data,經過 11 個 clk 來做 x^*h 的運算來算 sm_t data,輸出 sm_t data 後,進行收取下一筆 data,再算一 次,以此類推。

How ap_done is generated.

Ap_done 我是用 counter 去判斷,當我做 610 次的運算時,即會發出 ap_done 的訊號來說明 fir 已經完成運算,ap 是包含在 rdata 的後 3 個 bit。

FF, LUT, BRAM:

+			+	+
Used	Fixed	Prohibited	Available	Util%
353	0	0	53200	0.66
353	0	0	53200	0.66
0	0	0	17400	0.00
765	0	0	106400	0.72
761	0	0	106400	0.72
4	0	0	106400	<0.01
0	0	0	26600	0.00
0	0	0	13300	0.00
	353 353 0 765 761 4 0	353 0 353 0 0 0 765 0 761 0 4 0	353 0 0 353 0 0 0 0 0 765 0 0 761 0 0 4 0 0	353 0 53200 0 0 17400 765 0 0 106400 761 0 0 106400 4 0 0 106400 0 0 26600

2. Memory					
	•	Fixed	Prohibited	Available	Util%
Block RAM Tile	•		0	140	0.00
RAMB36/FIFO*	0	0	0	140	0.00
RAMB18	0	0	0	280	0.00
+	+	+		+	+

3. DSP					
Site Type	Used	Fixed	Prohibited	Available	Util%
DSP48E1 only	3 3	0 	0	220 	1.36
+	+	+	·	+	

Timing:

Clk cycle:12.9ns

Critical path:

Simulation Waveform, show

Coefficient program, and read back

Data-in stream-in

· Data-out stream-out

RAM access control

