

Detection of Software Vulnerabilities: Static Analysis

Lucas Cordeiro Department of Computer Science

lucas.cordeiro@manchester.ac.uk

Detection of Software Vulnerabilities

- Lucas Cordeiro (Formal Methods Group)
 - lucas.cordeiro@manchester.ac.uk
 - Office: 2.28
 - Office hours: 15-16 Tuesday, 14-15 Wednesday
- Textbook:
 - Model checking (Chapter 14)
 - Exploiting Software: How to Break Code (Chapter 7)
 - C How to Program (Chapter 1)

Rashid et al.: *The Cyber Security Body of Knowledge*, CyBOK, v1.0, 2019

Intended learning outcomes

- Understand soundness and completeness concerning detection techniques
- Emphasize the difference between static analysis and testing / simulation
- Explain Bounded and Unbounded Model
 Checking
- Provide practical examples to detect software vulnerabilities statically

Intended learning outcomes

- Understand soundness and completeness concerning detection techniques
- Emphasize the difference between static analysis and testing / simulation
- Explain Bounded and Unbounded Model Checking
- Provide practical examples to detect software vulnerabilities statically

Motivating Example

- functionality demanded increased significantly
 - peer reviewing and testing
- multi-core processors with scalable shared memory / message passing
 - software model checking and testing

```
void *threadA(void *arg) {
                                    void *threadB(void *arg) {
                                      ock(&mutex);
 lock(&mutex);
                                     y++;
 X++;
                                        \sqrt{\phantom{0}} = 1) lock(&lock); (CS2)
 if (x == 1) lock(\&lock);
                             Deadlock ock(&mutex);
 unlock(&mutex); (CS1)
                                        κιαmutex);
 lock(&mutex);
 X--;
 if (x == 0) unlock(&lock);
                                     if (y == 0) unlock(&lock);
                                     unlock(&mutex);
 unlock(&mutex);
```

Detection of Vulnerabilities

- Detect the presence of vulnerabilities in the code during the development, testing and maintenance
- Techniques to detect vulnerabilities must make tradeoffs between soundness and completeness
 - A detection technique is **sound** for a given category if it concludes that a given program has no vulnerabilities
 - o An unsound detection technique may have *false negatives*, i.e., actual vulnerabilities that the detection technique fails to find
 - A detection technique is complete for a given category, if any vulnerability it finds is an actual vulnerability
 - o An incomplete detection technique may have *false positives*, i.e. it may detect issues that do not turn out to be actual vulnerabilities

Detection of Vulnerabilities

- Achieving soundness requires reasoning about all executions of a program (usually an infinite number)
 - This is can done by static checking of the program code while making suitable abstractions of the executions
- Achieving completeness can be done by performing actual, concrete executions of a program that are witnesses to any vulnerability reported
 - The analysis technique has to come up with concrete inputs for the program that trigger a vulnerability
 - o A common dynamic approach is software testing: the tester writes test cases with concrete inputs, and specific checks for the outputs

Detection of Vulnerabilities

In practice, detection tools can use a hybrid combination of static and dynamic analysis techniques to achieve a good trade-off between soundness and completeness

Intended learning outcomes

- Understand soundness and completeness concerning detection techniques
- Emphasize the difference between static analysis and testing / simulation
- Explain Bounded and Unbounded Model Checking
- Provide practical examples to detect software vulnerabilities statically

Static analysis vs Testing/ Simulation

- Checks only some of the system executions
- May miss errors

Static analysis vs Testing/ Simulation

- Exhaustively explores all executions
- Report errors as traces

Avoiding state space explosion

- Bounded Model Checking (BMC)
 - Breadth-first search (BFS) approach

- Symbolic Execution
 - Depth-first search (DFS) approach

Bounded Model Checking

- Bounded model checkers explore the state space in depth
- Can only prove correctness if all states are reachable within the bound

Symbolic Execution

 Symbolic execution explores all paths individually

 Can only prove correctness if all paths are explored

Intended learning outcomes

- Understand soundness and completeness concerning detection techniques
- Emphasize the difference between static analysis and testing / simulation
- Explain Bounded and Unbounded Model
 Checking
- Provide practical examples to detect software vulnerabilities statically

Bounded Model Checking

Basic Idea: check negation of given property up to given depth

- transition system M unrolled k times
 - for programs: unroll loops, unfold arrays, ...
- translated into verification condition ψ such that ψ satisfiable iff ϕ has counterexample of max. depth k
- has been applied successfully to verify (sequential) software

Difficulties in proving the correctness of programs with loops in BMC

- BMC techniques can falsify properties up to a given depth k
- they can prove correctness only if an upper bound of k is known (unwinding assertion)
 - » BMC tools typically fail to verify programs that contain bounded and unbounded loops

BMC of Multi-threaded Software

- concurrency bugs are tricky to reproduce/debug because they usually occur under specific thread interleavings
 - most common errors: 67% related to atomicity and order violations, 30% related to deadlock [Lu et al.' 08]
- problem: the number of interleavings grows exponentially with the number of threads (n) and program statements (s)
 - number of executions: O(n^s)
 - context switches among threads increase the number of possible executions

BMC of single- and multi-threaded software

Bounded Model Checking of Software:

- symbolically executes programs into SSA, produces QF formulae
- unrolls loops and recursions up to a maximum bound k
- check whether corresponding formula is satisfiable
 - safety properties (array bounds, pointer dereferences, overflows,...)
 - user-specified properties

multi-threaded programs:

- combines explicit-state with symbolic model checking
- symbolic state hashing & monotonic POR
- context-bounded analysis (optional context bound)

Satisfiability Modulo Theories (1)

SMT decides the **satisfiability** of first-order logic formulae using the combination of different **background theories** (building-in operators)

Theory	Example
Equality	$x_1 = x_2 \land \neg (x_1 = x_3) \Rightarrow \neg (x_1 = x_3)$
Bit-vectors	(b >> i) & 1 = 1
Linear arithmetic	$(4y_1 + 3y_2 \ge 4) \lor (y_2 - 3y_3 \le 3)$
Arrays	$(j = k \land a[k]=2) \Rightarrow a[j]=2$
Combined theories	$(j \le k \land a[j]=2) \Rightarrow a[i] < 3$

Satisfiability Modulo Theories (2)

- Given
 - a decidable ∑-theory T
 - a quantifier-free formula φ

 φ is T-satisfiable iff $T \cup \{\varphi\}$ is satisfiable, i.e., there exists a structure that satisfies both formula and sentences of T

- Given
 - a set $\Gamma \cup \{\varphi\}$ of first-order formulae over T
 - ϕ is a T-consequence of Γ ($\Gamma \models_{\mathsf{T}} \phi$) iff every model of $\mathsf{T} \cup \Gamma$ is also a model of ϕ
- Checking $\Gamma \models_T \varphi$ can be reduced in the usual way to checking the T-satisfiability of $\Gamma \cup \{\neg \varphi\}$

Satisfiability Modulo Theories (3)

• let **a** be an array, **b**, **c** and **d** be signed bit-vectors of width 16, 32 and 32 respectively, and let **g** be an unary function.

$$g(select(store(a, c, 12)), SignExt(b, 16) + 3)$$

$$\neq g(SignExt(b, 16) - c + 4) \land SignExt(b, 16) = c - 3 \land c + 1 = d - 4$$

b' extends **b** to the signed equivalent bit-vector of size 32

$$step 1: g(select(store(a, c, 12), b'+3)) \neq g(b'-c+4) \land b' = c-3 \land c+1 = d-4$$

□ replace b' by c−3 in the inequality

$$step 2: g(select(store(a, c, 12), c - 3 + 3)) \neq g(c - 3 - c + 4) \land c - 3 = c - 3 \land c + 1 = d - 4$$

using facts about bit-vector arithmetic

$$step 3: g(select(store(a, c, 12), c)) \neq g(1) \land c - 3 = c - 3 \land c + 1 = d - 4$$

Satisfiability Modulo Theories (4)

$$step 3: g(select(store(a, c, 12), c)) \neq g(1) \land c - 3 = c - 3 \land c + 1 = d - 4$$

applying the theory of arrays

$$step 4: g(12) \neq g(1) \land c - 3 \land c + 1 = d - 4$$

The function g implies that for all x and y, if x = y, then g (x) = g (y) (congruence rule).

$$step 5: SAT (c = 5, d = 10)$$

- SMT solvers also apply:
 - standard algebraic reduction rules
 - contextual simplification

$$r \land false \mapsto false$$

$$a = 7 \land p(a) \mapsto a = 7 \land p(7)$$

BMC of Software

- program modelled as state transition system
 - state: program counter and program variables
 - derived from control-flow graph
 - checked safety properties give extra nodes
- program unfolded up to given bounds
 - loop iterations
 - context switches
- unfolded program optimized to reduce blow-up
 - constant propagation crucial
 - forward substitutions

```
int main() {
  int a[2], i, x;
  if (x==0)
   a[i]=0;
  else
   a[i+2]=1;
  assert(a[i+1]==1);
}
```


BMC of Software

- program modelled as state transition system
 - state: program counter and program variables
 - derived from control-flow graph
 - checked safety properties give extra nodes
- program unfolded up to given bounds
 - loop iterations
 - context switches
- unfolded program optimized to reduce blow-up
 - constant propagationforward substitutions
- front-end converts unrolled and optimized program into SSA

```
int main() {
  int a[2], i, x;
  if (x==0)
   a[i]=0;
  else
   a[i+2]=1;
  assert(a[i+1]==1);
}
```



```
g_1 = x_1 == 0

a_1 = a_0 WITH [i_0:=0]

a_2 = a_0

a_3 = a_2 WITH [2+i_0:=1]

a_4 = g_1 ? a_1: a_3

t_1 = a_4[1+i_0] == 1
```

BMC of Software

- program modelled as state transition system
 - state: program counter and program variables
 - derived from control-flow graph
 - checked safety properties give extra nodes
- program unfolded up to given bounds
 - loop iterations
 - context switches
- unfolded program optimized to reduce blow-up
 - constant propagationforward substitutions
- front-end converts unrolled and optimized program into SSA
- extraction of constraints C and properties P
 - specific to selected SMT solver, uses theories
- satisfiability check of C ∧ ¬P

```
int main() {
 int a[2], i, x;
 if (x==0)
  a[i]=0;
 else
  a[i+2]=1;
 assert(a[i+1]==1);
```


$$C := \begin{cases} g_1 := (x_1 = 0) \\ \land a_1 := store(a_0, i_0, 0) \\ \land a_2 := a_0 \\ \land a_3 := store(a_2, 2 + i_0, 1) \\ \land a_4 := ite(g_1, a_1, a_3) \end{cases}$$

$$P := \begin{bmatrix} i_0 \ge 0 \land i_0 < 2 \\ \land \ 2 + i_0 \ge 0 \land 2 + i_0 < 2 \\ \land \ 1 + i_0 \ge 0 \land 1 + i_0 < 2 \\ \land \ select(a_4, i_0 + 1) = 1 \end{bmatrix}$$

Encoding of Numeric Types

- SMT solvers typically provide different encodings for numbers:
 - abstract domains (Z, R)
 - fixed-width bit vectors (unsigned int, ...)
 - ▷ "internalized bit-blasting"
- verification results can depend on encodings

$$(a > 0) \land (b > 0) \Rightarrow (a + b > 0)$$

valid in abstract domains such as \mathbb{Z} or \mathbb{R}

doesn't hold for bitvectors, due to possible overflows

- majority of VCs solved faster if numeric types are modelled by abstract domains but possible loss of precision
- ESBMC supports both types of encoding and also combines them to improve scalability and precision

Encoding Numeric Types as Bitvectors

Bitvector encodings need to handle

- type casts and implicit conversions
 - arithmetic conversions implemented using word-level functions (part of the bitvector theory: Extract, SignExt, ...)
 - o different conversions for every pair of types
 - o uses type information provided by front-end
 - conversion to / from bool via if-then-else operator
 t = ite(v ≠ k, true, false) //conversion to bool
 v = ite(t, 1, 0) //conversion from bool
- arithmetic over- / underflow
 - standard requires modulo-arithmetic for unsigned integer unsigned_overflow ⇔ (r – (r mod 2^w)) < 2^w
 - define error literals to detect over- / underflow for other types
 res_op ⇔ ¬ overflow(x, y) ∧ ¬ underflow(x, y)
 - o similar to conversions

Floating-Point Numbers

- Over-approximate floating-point by fixed-point numbers
 - encode the integral (i) and fractional (f) parts
- **Binary encoding:** get a new bit-vector b = i @ f with the same bitwidth before and after the radix point of a.

Rational encoding: convert a to a rational number

$$a = \begin{cases} \left(i * p + \left(\frac{f * p}{2^n} + 1\right)\right) & \text{// } p = \text{number of decimal places} \\ p & \text{:} \quad f \neq 0 \end{cases}$$

$$i : \text{otherwise}$$

Encoding of Pointers

- arrays and records / tuples typically handled directly by SMT-solver
- pointers modelled as tuples

Store object at position 0

```
p_1 := store(p_0, 0, &a[0])
int main() {
                                          \land p_2 := store(p_1, 1, 0)
 int a[2], i, x, *p;
                                          \wedge g_2 := (x_2 = 2)
                                          \land a_1 := store(a_0, i) Store index at
 p=a;
 if (x==0)
                                                                        position 1
                                      Update index
   a[i]=0;
                                          rac{1}{\sqrt{a_3}} e(a_2, 1+ i_0, 1)
 else
                                         \land a_4 := \text{ite}(g_1, a_1, a_3)

\land p_3 := \text{store}(p_2, 1, \text{select}(p_2, 1) + 2)
   a[i+1]=1;
 assert(*(p+2)==1);
```

Encoding of Pointers

- arrays and records / tuples typically handled directly by SMT-solver
- pointers modelled as tuples

Encoding of Memory Allocation

- model memory just as an array of bytes (array theories)
 - read and write operations to the memory array on the logic level
- each dynamic object d_o consists of

 - $-\rho \triangleq unique identifier$
 - $-\upsilon$ \triangleq indicate whether the object is still alive
- to detect invalid reads/writes, we check whether
 - d_o is a dynamic object
 - i is within the bounds of the memory array

$$l_{is_dynamic_object} \Leftrightarrow \left(\bigvee_{j=1}^{k} d_o.\rho = j\right) \land \left(0 \le i < n\right)$$

Encoding of Memory Allocation

- to check for invalid objects, we
 - set v to true when the function malloc is called (d_o is alive)
 - set υ to false when the function free is called (d $_{\rm o}$ is not longer alive)

$$I_{valid_object} \Leftrightarrow (I_{is_dynamic_object} \Rightarrow d_o.v)$$

- to detect forgotten memory, at the end of the (unrolled) program we check
 - whether the d_o has been deallocated by the function free

$$I_{deallocated_object} \Leftrightarrow (I_{is_dynamic_object} \Rightarrow \neg d_o.v)$$

Example of Memory Allocation

Example of Memory Allocation

```
#include <stdlib.h>
void main() {
  char *p = malloc(5); // \rho = 1
  char *q = malloc(5); // \rho = 2
P:= (\neg d_{o1}.v \land \neg d_{o2}.v \neg d_{o3}.v)
  p=q;
  free(p)
  p = malloc(5); 	 // \rho = 3
  free(p)
        \begin{pmatrix} d_{o1}.\rho=1 \ \land \ d_{o1}.s=5 \ \land \ d_{o1}.\upsilon=true \ \land \ p=d_{o1} \\ \land \ d_{o2}.\rho=2 \ \land \ d_{o2}.s=5 \ \land \ d_{o2}.\upsilon=true \ \land \ q=d_{o2} \end{pmatrix} 
C:= \bigwedge p=d_{o2} \land d_{o2}.v=false

\bigwedge d_{o3}.\rho=3 \land d_{o3}.s=5 \land d_{o3}.v=true \land p=d_{o3}

\bigwedge d_{o3}.v=false
```

Example of Memory Allocation

```
#include <stdlib.h>
void main() {
  char *p = malloc(5); // \rho = 1
  char *q = malloc(5); // \rho = 2
P:= (\neg d_{o1} \cdot v \land \neg d_{o2} \cdot v \neg d_{o3} \cdot v)
  p=q;
  free(p)
  p = malloc(5); 	 // \rho = 3
  free(p)
        \begin{pmatrix} d_{o1}.\rho=1 \ \land \ d_{o1}.s=5 \ \land \ \mathbf{d_{o1}.v=true} \ \land \ p=d_{o1} \\ \land \ d_{o2}.\rho=2 \ \land \ d_{o2}.s=5 \ \land \ d_{o2}.v=true \ \land \ q=d_{o2} \end{pmatrix} 
C:= \bigwedge p=d_{o2} \land d_{o2}.v=false

\bigwedge d_{o3}.\rho=3 \land d_{o3}.s=5 \land d_{o3}.v=true \land p=d_{o3}

\bigwedge d_{o3}.v=false
```