[국제캠퍼스 실험 전용]

단순 조화 운동

Objective

주기 운동 중에서 가장 단순한 형태인 단순 조화 운동에 대해 이론적으로 학습한 후, 용수철 진자와 단진자의 운동을 관찰하고 운동 주기를 측정한다.

Theory

Reference -----

Young & Freedman, *University Physics* (14th ed.), Pearson, 2016 14.2 Simple Harmonic Motion (p.459~466)

14.4 Applications of SHM – Vertical SHM (p.470~471)

14.5 The Simple Pendulum (p.474~475)

일정 시간 간격으로 동일한 상태가 반복되는 운동을 주기 운동(periodic motion) 또는 진동(oscillation)이라고 한다. 용 수철 끝에서 진동하는 물체의 운동은 주기 운동의 대표적 인 형태이다.

그림 1b 와 같이 물체에 힘이 작용하지 않는 상태를 평형상태라고 한다. 만약, 그림 1a, 1c 와 같이 어떤 힘이 작용하여 물체가 평형 상태에서 벗어나면, 용수철은 물체를 평형상태로 되돌리려고 하는 복원력(restoring force) F_x 를 작용하게 된다.

훅의 법칙(Hooke's law)을 만족하는 이상적인 용수철에서, 복원력 F_x 는 평형 상태로부터의 변위 x 에 비례한다. 복원력과 변위의 관계는 용수철 상수(spring constant) k 를 사용하여 다음과 같이 표현한다.

$$F_{x} = -kx \tag{1}$$

x = 0: The relaxed spring exerts no force on the glider, so the glider has zero acceleration.

Fig. 1 Model for periodic motion. When the body is displaced from its equilibrium position at x=0, the spring exerts a restoring force back toward the equilibrium position.

식(1)과 같이 복원력이 변위에 비례하는 주기 운동을 단순 조화 운동(simple harmonic motion, SHM)이라고 한다.

대부분의 주기 운동은 단순 조화 운동이 아니며, 복원력 F_x 는 식(1)보다 복잡하게 작용한다. 그런데 변위 x 가 매우 작을 때에는 복원력이 근사적으로 변위에 비례하므로, 진폭이 충분히 작은 주기 운동은 단순 조화 운동으로 설명할 수 있다.

뉴턴의 제 2 법칙 $F_x = ma_x$ 을 식(1)에 적용하면, 질량 m 인 물체가 단순 조화 운동을 할 때의 가속도 a_x 를 다음과 같이 표현할 수 있다.

$$a_x = \frac{d^2x}{dt^2} = -\frac{k}{m}x\tag{2}$$

식(2)를 정리하면 시간 t 에 대한 변위 x 의 미분 방정식 이 된다.

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0\tag{3}$$

각진동수(angular frequency) ω 를 식(4)와 같이 정의하면, 식(3)의 해는 식(5) 또는 식(6)과 같이 표현할 수 있다.

$$\omega = \sqrt{\frac{k}{m}} \tag{4}$$

$$x = a\cos\omega t + b\sin\omega t \tag{5}$$

$$x = A\cos(\omega t + \phi) \tag{6}$$

따라서, 단순 조화 운동을 하는 물체의 진동수(frequency) f 와 주기(period) T 는 각각 다음과 같다.

$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \tag{7}$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}} \tag{8}$$

용수철 진자가 수직 방향으로 운동할 때에도 동일한 결과 를 얻을 수 있다.

그림 2 와 같이 용수철 상수가 k 인 용수철에 질량 m 인물체가 매달았을 때 용수철이 Δl 만큼 늘어나서 평형 상태를 유지하면, 물체에서 작용하는 복원력과 물체의 무게의크기가 같으므로 $k\Delta l=mg$ 가 된다.

물체가 평형 상태(x=0)에서 위쪽 방향으로 x 만큼 이동하면, 용수철이 늘어난 길이는 $\Delta l-x$ 가 된다. 이 때, 용수철이 물체에 작용하는 복원력은 $k(\Delta l-x)$ 이며, 물체에 작용하는 힘은 $F_{\rm net}=k(\Delta l-x)+(-mg)=-kx$ 이다.

따라서, 수직 방향으로 걸려있는 용수철의 운동은 수평 방향 용수철의 운동과 평형 상태의 위치만 다를 뿐 본질적으로 동일하다.

Fig. 2 A body attached to a hanging spring

단진자(simple pendulum)는 질량이 없고 늘어나지 않는 줄에 매달린 점질량으로 구성된 이상적인 진자이다.

단진자는 질량이 고정점으로부터 연직 아래의 지점에 위치할 때 평형 상태가 된다. 이 위치에서 질량을 한 쪽으로 당긴 후 놓으면, 질량은 평형점을 중심으로 진동한다.

질량의 경로는 그림 3 과 같이 직선이 아닌 반지름 L 인원호이므로, 좌표축을 원호를 따라서 측정한 거리 x 로 정한다. 만약 복원력이 x 또는 $\theta=x/L$ 에 비례하면 이 운동은 이 운동이 단순 조화 운동이 된다.

질량에는 장력과 중력이 작용한다. 장력은 질량이 원호를 따라 움직일 수 있도록 미약하게 작용한다. 중력은 원호의 접선 성분과 지름 성분으로 나타낼 수 있는데, 복원력 F_{θ} 는 중력의 접선 성분의 힘이며 식(9)와 같다.

$$F_{\theta} = -mg\sin\theta \tag{9}$$

식(9)와 같이 복원력 F_{θ} 는 θ 에 비례하는 것이라 아니라 $\sin\theta$ 에 비례한다. 따라서 단진자의 운동은 단순 조화 운동이 아니다. 그러나 θ 가 작을 경우에는 $\sin\theta\approx\theta$ 의 근사를 적용할 수 있으므로 식(9)를 다음과 같이 정리할 수 있다.

$$F_{\theta} = -mg\theta = -mg\frac{x}{L}$$
 or $F_{\theta} = -\frac{mg}{L}x$ (10)

식(10)에서 복원력은 변위 x 에 비례하므로, 진동 각도가 작을 경우 단진자는 단순 조화 운동을 한다고 할 수 있다.

식(10)과 식(1)을 비교하면 k=mg/L 이다. 이를 식(4)에 대입하면, 작은 각도에서 단진자의 각진동수 ω 를 다음과 같이 구할 수 있다.

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{mg/L}{m}} = \sqrt{\frac{g}{L}} \tag{11}$$

따라서, 단진자의 진동수와 주기는 각각 다음과 같다.

$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{g}{L}} \tag{12}$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{L}{g}} \tag{13}$$

식(11), (12), (13)에서 나타난 바와 같이 단진자의 진동수와 주기는 질량과 무관하며 줄의 길이 L 에 의해 결정된다. 진자의 길이가 늘어나면 주기가 길어진다.

단진자 운동은 근사적으로만 단순 조화 운동이다. 진폭이 클 경우 단진자의 운동은 더 이상 단순 조화 운동이 아니다. 진자의 최대 각변위가 Θ 일 때, 주기를 무한 급수로 정확히 표현하면 다음과 같다.

$$T = 2\pi \sqrt{\frac{L}{g}} \left(1 + \frac{1^2}{2^2} \sin^2 \frac{\Theta}{2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} \sin^4 \frac{\Theta}{2} + \cdots \right)$$
 (14)

식(13)과 식(14)를 비교하면, $\Theta = 15^{\circ}$ 일 때 실제 주기는 0.5% 정도 길어지는 것을 알 수 있다.

Fig. 3 An idealized simple pendulum

Equipment

1. 실험장비

장비	수량	용도 및 비고
컴퓨터 및 소프트웨어 동영상분석: SG PRO	1	물체의 운동을 촬영하고 영상으로 저장한다. 물체의 궤적을 분석한다.
카메라 삼각대 스크린	1 set	물체의 운동을 촬영한다. 카메라를 고정하고 위치를 조정한다. 영상 촬영 시 배경으로 사용한다.
자	1	진자의 길이 또는 위치를 측정한다.
용수철	1	물체의 변위에 비례하는 복원력을 작용한다.
추걸이	1	용수철 상수 측정 시 사용하는 질량 5g 의 추걸이 이며, 다양한 질량의 원판형 추를 걸 수 있다.
추 (원판형)	1 set	용수철 상수 측정 시 사용하는 추 세트이다. 5g,10g,20g(×2),50g 등 4종 5개로 구성된다.
추 (원통형)	1	용수철 진자를 구성할 때 사용한다. 영상 분석 시 위 치 추적을 위해 노란색 밴드가 부착되어 있다.
추 (구형)	1	단진자를 구성할 때 사용한다. 영상 분석 시 위치 추 적을 위해 녹색 플라스틱으로 구성되어 있다.
실가위	공용	단진자를 구성할 때 사용한다.

	장비	수량	용도 및 비고	
막대 클램프		1	용수철 진자 또는 단진자를 걸어준다.	
멀티클램프		1	실험 장비를 다양한 방법으로 고정한다.	
A 형 베이스 지지막대 (1100mm)		1 set	실험 장비를 다양한 방법으로 고정한다.	
전자저울		공용	0~2200.00g 범위의 질량을 0.01g 단위로 측정한다.	

Setup

Setup1. Equipment setup

실험에서 사용하는 추의 용도와 형태는 다음과 같다.

	원판형	원통형	구형
용도	실험 1 . 용수철 상수 측정	실험 2. 용수철 진자의 운동	실험 3 . 단진자의 운동
형태	• 납작한 원판형 • 추걸이용 구멍	고리 부착노란색 밴드(영상 추적용)	고리 부착녹색 플라스틱 (영상 추적용)
사진	98		

Setup2. Software Setup (SG PRO)

SG PRO 프로그램 사용 방법은 "강체의 공간운동" 실험 매뉴얼을 참고한다.

Procedure

실험 1. 용수철 상수 측정

(1) 추걸이와 원판형 추의 질량을 측정한다.

전자저울을 사용하여 정확한 질량을 측정한다.

- 추걸이 : 약 5g

- 추(원판형): 각각 약 5g,10g,20g(×2),50g

(2) 용수철 진자를 구성한다.

집게 클램프에 용수철 진자를 끼운 후 추걸이를 걸어준다.

(3) 측정 기준점을 설정한다.

측정하기 편한 위치를 선택하여 측정 기준점을 설정한다.

(4) 용수철 길이의 변량을 측정한다.

원판형 추를 조합하여 질량을 증가시키면서 기준점의 위치를 측정한다. <u>추걸이의 질량 5g</u>을 합산하여 계산한다.

추의 질량을 40~80g 의 범위에서 5g 간격으로 변경해 가면서 용수철 길이의 변량을 측정한다.

m (kg)	F = mg(N)	x (m)
0.040		
0.045		
0.050		
0.055		
0.060		
0.065		
0.070		
0.075		
0.080		

Note

실험에서 사용하는 용수철(인장스프링)은 코일을 밀착 시키기 위해 용수철 자체에 어느 정도의 초기 장력 (initial tension)이 가해지도록 제작된다. 즉, 초기 장력보 다 작은 힘이 작용할 때에는 용수철 길이가 증가하지 않으며 이보다 큰 힘이 가해져야 선형적으로 증가한다.

(5) 용수철 상수 k 를 계산한다.

F-x 그래프를 작성하고, 최소자승법을 사용하여 F=kx 그래프의 기울기 k 를 계산한다. (최소자승법은 "자유낙하 운동과 포물체 운동" 실험 매뉴얼을 참고한다.)

(6) 측정을 반복한다.

순서(4)~(5)를 3회 이상 반복하여 용수철 상수를 결정한다.

실험 2. 용수철 진자의 운동

(1) 고리형 추의 질량을 측정한다.

전자저울을 사용하여 질량을 측정한다. (추의 표면에 표기된 질량은 무시한다.)

(2) 실험 장비를 구성한다.

- ① 자(600mm)를 돌려서 치운다. (영상 분석 또는 진자의 운동에 방해가 될 수 있다.)
- ② 카메라와 스크린을 설치한다.
- ③ 용수철에 고리형 추를 끼운 후 집게 클램프에 걸어준다.

(3) 동영상 분석 프로그램(SG PRO)을 시작한다.

사용 방법은 "강체의 공간운동" 실험 매뉴얼을 참고한다.

길이가 아닌 시간을 측정할 것이므로, <u>좌표축 보정을 할</u>필요는 없다.

(4) 용수철 진자를 진동시킨다.

추를 연직 방향으로 가볍게 당겼다가 놓아준다. <u>평형 상태</u>로부터 <u>2cm 이내에서 진동</u>시킨다.

(5) 동영상을 저장한다.

적절한 길이의 영상을 저장한다. (5~6회 진동)

(6) 영상을 분석하여 추의 진동주기를 측정한다.

- ① 그래프는 [T-Y] (시간-y축) 그래프를 선택한다.
- ② 그래프의 [표시방법]을 [선]으로 변경한다.

③ 그래프 상에 마우스 오른쪽 버튼을 클릭한 후, [십자선 추가]를 선택한다. 그 후 적절한 영역을 클릭하면 십자선이 생성되며, 드래그하여 십자선을 적절한 위치로 이동시킨다. 시간축(x축) 상에 십자선에 대한 시간이 표시된다.

④ 변위의 특정 지점을 선택하여 모든 시간 간격을 확인한 후, 평균값을 주기 T 로 결정한다.

(7) 실험을 반복한다.

순서(4) \sim (6)을 3 회 이상 반복하여 실험한 후, 평균값을 주 기 T 로 결정한다.

(8) 이론값과 실험값을 비교하고 오차를 분석한다.

실험 1 에서 측정한 용수철 상수 k 와 순서(1)에서 측정한 추의 질량 m 및 식(8)을 사용하여 주기 T 의 이론값을 계산한 후 실험 결과와 비교하고 오차를 분석한다.

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{8}$$

실험 3. 단진자의 운동

실험 2 와 동일한 방법으로 진행한다.

(1) 실험 장비를 구성한다.

녹색의 구형 추를 실로 묶어서 단진자를 구성한다.

(2) 단진자의 길이 L 을 측정한다.

(3) 단진자를 진동시킨다.

평형 상태로부터 5° 이내에서 진자를 진동시킨다.

(4) 영상을 촬영하여 분석한다.

[T-X] (시간-x축) 그래프에서 주기를 측정한 후, 식(13)의 이론값과 비교하고 오차를 분석한다.

$$T = 2\pi \sqrt{\frac{L}{g}} \tag{13}$$

(5) 단진자의 길이 L 을 변경하여 실험을 반복한다.

(6) (Optional) 진폭이 클 때의 단진자의 운동을 관찰한다.

진자의 최대 각변위 Θ 가 상대적으로 클 경우에 단진자의 주기가 식(13)이 아닌 식(14)에 따라 증가함을 확인한다.

$$T = 2\pi \sqrt{\frac{L}{g}} \left(1 + \frac{1^2}{2^2} \sin^2 \frac{\Theta}{2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} \sin^4 \frac{\Theta}{2} + \cdots \right)$$
 (14)

Result & Discussion

조교의 안내에 따라 실험 결과를 정리하고 분석한 후 결과 보고서를 작성한다.

End of LAB Checklist

실험을 완료하면 반드시 실험 장비를 정리한 후 조교의 확인을 받고 퇴실한다.

- □ 실험용 컴퓨터에 저장한 **실험 데이터 파일**을 모두 삭제하고 휴지통을 비운다.
- □ 컴퓨터와 인터페이스 장치를 끈다.
- □ 스크린은 파손되지 않도록 주의하고, 사용 후 실험실 앞에 모아서 보관한다.
- □ 카메라/삼각대는 넘어지지 않도록 주의해서 보관한다.
- □ 용수철이 변형되지 않도록 특별히 주의한다.(탄성 한계 이상 늘이거나 강제로 변형시키지 않는다.)

