

MODULE 3: CLUSTERING 2

DAT405 / DIT407, 2022-2023, READING PERIOD 4

Topics

- DBSCAN clustering
- Hierarchical clustering
- Validating clusterings

Limitations of K-means clustering

K-means: result depends on initialization

DBSCAN clustering

Steven Bierwagen

DBSCAN

• <u>Density-Based Spatial Clustering of Applications with Noise</u>

• From 1996

Ingredients for DBSCAN

- A distance measure (or metric or similarity measure)
 - often Euclidean distance

- A number defining the meaning of neighbor
 - epsilon: the max distance between two points considered neighbors.

- A number defining the meaning of cluster (vs outlier or noise)
 - minpts: the minimum number of points in a cluster.

scanning radius

min points inside radius

Two hyperparameters

Labeling step

All points in dataset labeled as one of these:

- Core point
- Boarder point
- Noise point

Neighbors

Core points

Border points

Noise points

Clustering step

Clusters all core points and border points. Outliers will not be clustered!

Start by picking a new color c and an uncoloured core point p.

Clustering step

Put an edge between core points that are neighbors.
Color those connected components with c

Also color the border points of those nodes with c

Clustering step

Algorithm

Algorithm 8.4 DBSCAN algorithm.

- Label all points as core, border, or noise points.
- Eliminate noise points.
- Put an edge between all core points that are within Eps of each other.
- Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

Clusterings created by DBSCAN

Using DBSCAN

Large = core point

Small = border point

Black = outlier

Note: data is standardised (scaled to range -2 – 2). This facilitates parameter search for epsilon.

K-means vs. DBSCAN

• K-means assigns all points to a cluster, whereas DBSCAN doesn't necessarily do this. DBSCAN treats outliers as outliers.

 K-means works best when clusters are basically spherical. DBSCAN can find arbitrarily-shaped clusters.

• DBSCAN doesn't require the number of clusters to be specified by the user.

Hierarchical clustering

Luis Serrano

A new set of points

Suppose we want to cluster these addresses by proximity. No pizza parlors involved this time!

Dendrogram

A dendrogram shows the entire hierarchichal clustering process (without STOP)

Dendrogram

Dendrogram

If we have a space with billions of points in thousands of dimensions, the dendrogram is still a 2D graph!

For example the tree of life!

Hierarchichal clustering gives more than a clustering: a hierarchy (or taxonomy)

The tree of life

Hierarchical clustering

 Sometimes called agglomerative clustering, when done bottom-up

 From one extreme case (many clusters, each containing one item) to another (one cluster that contains all items)

Distance matrix

Edit distances between protein sequences (strings)

- a. Human haemoglobin alpha chain
- b. Human haemoglobin beta chain
- c. Horse haemoglobin alpha chain
- d. Horse haemoglobin beta chain
- e. Marine bloodworm haemoglobin
- f. Yellow lupine leghaemoglobin

D	а	b	С	d	е	f
а	0	84	18	86	112	121
b	84	0	85	26	117	119
С	18	85	0	84	112	125
d	86	26	84	0	113	121
е	112	117	112	113	0	119
f	121	119	125	121	119	0

Six proteins with a common evolutionary ancestor

Amino acid sequences of six proteins

> human alpha

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR

> human beta

VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

> horse alpha

VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHGKKVADGLTLAVGHLDDLPGALSDLSNLHAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR

> horse beta

VQLSGEEKAAVLALWDKVNEEEVGGEALGRLLVVYPWTQRFFDSFGDLSNPGAVMGNPKVKAHGKKVLHSFGEGVHHLDNLKGTFAALSELHCDKLHVDPENFRLLGNVLALVVARHFGKDFTPELQASYQKVVAGVANALAHKYH

> marine_bloodworm

GLSAAQRQVIAATWKDIAGADNGAGVGKKCLIKFLSAHPQMAAVFGFSGASDPGVAALGAKVLAQIGVAVSHLGDEGKMVAQMKAVGVRHKGYGNKHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS

> yellow_lupine

GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNNPELQAHAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHVSKGVADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA

Edit distance is the number of single character operations that are required to change one string into another.

Merging clusters

- When clusters **u** and **v** are merged, how do we calculate the distance between the merged cluster and each of the other clusters?
- Various algorithms to choose from, e.g.
 - complete linkage (furthest inter-cluster distance) max(dist(u[i]), v[j]))
 - single linkage (closest inter-cluster distance) min(dist(u[i]), v[j])
 - average linkage
 - Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
 - Weighted Pair Group Method with Arithmetic Mean (WPGMA)
 - ... and many more

See e.g.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage

Example: merging clusters

D	а	b	С	d	е	f
а	0	84	(18)	86	112	121
b		0	85	26	117	119
С			0	84	112	125
d				0	113	121
е					0	119
f						0

- 1) Shortest distance a c
- 2) Merge {a,c}
- 3) Recompute distance matrix, use max distance (complete linkage)

D	a,c	b	d	е	f
a,c	0	85	86	112	125
b		0	26	117	119
d			0	113	121
е				0	119
f					0

- a. Human haemoglobin alpha chain
- b. Human haemoglobin beta chain
- c. Horse haemoglobin alpha chain
- d. Horse haemoglobin beta chain
- e. Marine bloodworm haemoglobin
- f. Yellow lupine leghaemoglobin

Example: merging clusters

D	а	b	С	d	е	f
а	0	84	(18)	86	112	121
b		0	85	26	117	119
С			0	84	112	125
d				0	113	121
е					0	119
f						0

- 1) Shortest distance a c
- 2) Merge {a,c}
- 3) Recompute distance matrix, use max distance between points

D	a,c	b	d	е	f
a,c	0	85	86	112	121
b		0	26	117	119
d			0	113	121
е				0	119
f					0

- 1) Shortest distance b d
- 2) Merge {b,d}
- 3) Recompute distance matric

- a. Human haemoglobin alpha chain
- b. Human haemoglobin beta chain
- c. Horse haemoglobin alpha chain
- d. Horse haemoglobin beta chain
- e. Marine bloodworm haemoglobin
- f. Yellow lupine leghaemoglobin

Example: merging clusters

D	а	b	С	d	е	f
а	0	84	(18)	86	112	121
b		0	85	26	117	119
С			0	84	112	125
d				0	113	121
е					0	119
f						0

- a. Human haemoglobin alpha chain
- b. Human haemoglobin beta chain
- c. Horse haemoglobin alpha chain
- d. Horse haemoglobin beta chain
- e. Marine bloodworm haemoglobin
- f. Yellow lupine leghaemoglobin

- 1) Shortest distance a c
- 2) Merge {a,c}
- 3) Recompute distance matrix, use max distance between points

D	a,c	b	d	е	f
a,c	0	85	86	112	121
b		0	(26)	117	119
d			0	113	121
е				0	119
f					0

- 1) Shortest distance b d
- 2) Merge {b,d}
- 3) Recompute distance matric

D	a,c	b,d	е	f
a,c	0	86	112	121
b,d		0	117	121
е			0	119
f				0

Validating clustering

Stability on subsets

Clustering stable if removing a proportion of random points does not change the clustering fundamentally

Stability on subsets

Note colors change as labeling clusters into first, second, third ... changes!

Co-occurrence

For all pairs (i,j) count how frequently i and j are in the same cluster.

Co-occurrence

Silhouette coefficient

a: The mean distance between a sample and all other points in the same class.

b: The mean distance between a sample and all other points in the *next* nearest cluster.

$$s = \frac{b - a}{\max(a, b)}$$

Ranges between -1 and 1. High value indicate good separation between clusters.

Clustering clustering algorithms

Combining clustering and classification

Take a dataset with handwritten digits

Provide only one label per digit (10 labels for the whole dataset)

 Use 10-means with the ten labeled images as starting points for clustering the whole dataset.

Then use 1nn for classifying new handwritten digits.

Reflections on clustering

Clustering is successful, but difficult

Inherent vagueness in the definition of a cluster

Can be difficult to define an appropriate similarity measure

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

Are the framed cases as desired?

Assignment 3

- Using K-means and density-based clustering to cluster the main chain conformations of amino acid residues in proteins.
- If curious for more information on the problem domain, look at:
 - http://bioinformatics.org/molvis/phipsi/
 - http://tinyurl.com/RamachandranPrincipleYouTube

Protein main chain

Ramachandran plot

Around 100000 data points shown here