SpinDec

Generated by Doxygen 1.6.1

Wed Jun 24 19:58:28 2015

Contents

1	Clas	s Index													1
	1.1	Class H	ierarchy .						 	 		 			1
2	Clas	ss Index													3
	2.1	Class L	ist						 	 		 			3
3	File	Index													5
	3.1	File Lis	t						 	 		 	 •		5
4	Clas	s Docum	entation												7
	4.1	SpinDe	c::Adiabat	ticLabel C	Class Re	ference			 	 		 			7
		4.1.1	Detailed I	Description	on				 	 		 			7
	4.2	SpinDe	c::BoostEi	igen Class	s Refere	nce .			 	 		 			9
		4.2.1	Detailed I	Description	n				 	 		 			9
		4.2.2	Member I	Function 1	Docume	ntation			 	 		 			9
			4.2.2.1	cosAngle	Betwee	n			 	 		 			9
			4.2.2.2	maxAbs	Coeff .				 	 		 			10
			4.2.2.3	partialTra	ace				 	 		 			10
			4.2.2.4	spectral	Decompo	osition			 	 		 			10
			4.2.2.5	tensorPro	oduct .				 	 		 			10
			4.2.2.6	tensorPro	oduct .				 	 		 			10
			4.2.2.7	unitaryS	pectralD	ecomp	ositic	n	 	 		 			10
	4.3	SpinDe	c::CCE Cl	lass Refer	ence				 	 		 			11
		4.3.1	Detailed I	Descriptio	n				 	 		 			11
		4.3.2	Member I	Function 1	Docume	ntation			 	 		 			12
			4.3.2.1	calculate					 	 		 			12
	4.4	SpinDe	c::Cluster	Class Ref	ference				 	 		 			13
		-	Detailed I												13
	4.5		c::Clusterl	•											14

ii CONTENTS

	4.5.1	Detailed Description	15
4.6	SpinDe	ec::ClusterDatabaseEntry Class Reference	16
	4.6.1	Detailed Description	16
4.7	SpinDe	ec::Constants Class Reference	17
	4.7.1	Detailed Description	17
	4.7.2	Member Data Documentation	17
		4.7.2.1 kElectronGyromagneticRatio	17
		4.7.2.2 kPi	17
		4.7.2.3 kPlanck	17
		4.7.2.4 kReducedPlanck	17
4.8	SpinDe	ec::CPMG Class Reference	18
	4.8.1	Detailed Description	18
4.9	SpinDe	ec::CPMGDephasing Class Reference	19
	4.9.1	Detailed Description	19
4.10	SpinDe	ec::CrystalBasis Class Reference	20
	4.10.1	Detailed Description	20
4.11	SpinDe	ec::CrystalStructure Class Reference	21
	4.11.1	Detailed Description	22
	4.11.2	Member Function Documentation	22
		4.11.2.1 fill_site_vectors	22
4.12	SpinDe	ec::CSDProblem Class Reference	23
	4.12.1	Detailed Description	23
	4.12.2	Member Data Documentation	24
		4.12.2.1 system_bath_edges	24
4.13	SpinDe	ec::DensityOperator Class Reference	25
	4.13.1	Detailed Description	25
4.14	SpinDe	ec::DiamondCubic Class Reference	26
	4.14.1	Detailed Description	26
	4.14.2	Member Function Documentation	26
		4.14.2.1 int_range_centred_cube	26
4.15	SpinDe	ec::Dipolar Class Reference	27
	4.15.1	Detailed Description	27
4.16	SpinDe	ec::Eigenspectrum Class Reference	29
	4.16.1	Detailed Description	29
4.17	SpinDe	ec::ElectronSpinParameters Class Reference	30
	4.17.1	Detailed Description	30

CONTENTS

4.18	SpinDec::Errors Class Reference	31
	4.18.1 Detailed Description	31
4.19	SpinDec::EvolutionOperator Class Reference	32
	4.19.1 Detailed Description	32
	4.19.2 Constructor & Destructor Documentation	32
	4.19.2.1 EvolutionOperator	32
	4.19.3 Member Data Documentation	33
	4.19.3.1 eigenvalues	33
	4.19.3.2 eigenvectors	33
4.20	SpinDec::FileProperties Class Reference	34
	4.20.1 Detailed Description	34
4.21	SpinDec::FreeEvolution Class Reference	35
	4.21.1 Detailed Description	35
4.22	SpinDec::HermitianEigenspectrum Class Reference	36
	4.22.1 Detailed Description	36
	4.22.2 Member Function Documentation	36
	4.22.2.1 spectralDecomposition	36
4.23	SpinDec::Hyperfine Class Reference	37
	4.23.1 Detailed Description	37
4.24	SpinDec::HyperfineParameters Class Reference	39
	4.24.1 Detailed Description	39
4.25	SpinDec::IdentityOperator Class Reference	40
	4.25.1 Detailed Description	40
4.26	SpinDec::IdentityPulse Class Reference	41
	4.26.1 Detailed Description	41
4.27	SpinDec::LatticeVectors Class Reference	42
	4.27.1 Detailed Description	42
4.28	SpinDec::MatrixRepresentation Class Reference	43
	4.28.1 Detailed Description	43
4.29	SpinDec::PiPulse Class Reference	44
	4.29.1 Detailed Description	44
	4.29.2 Constructor & Destructor Documentation	44
	4.29.2.1 PiPulse	44
4.30	SpinDec::Pulse Class Reference	45
	4.30.1 Detailed Description	45
4.31	SpinDec::PulseExperiment Class Reference	46

iv CONTENTS

	4.31.1 Detailed Description	46
4.32	SpinDec::PulseSequence Class Reference	47
	4.32.1 Detailed Description	47
4.33	SpinDec::PulseSequenceBase Class Reference	48
	4.33.1 Detailed Description	48
4.34	SpinDec::RandomNumberGenerator Class Reference	49
	4.34.1 Detailed Description	49
	4.34.2 Member Function Documentation	49
	4.34.2.1 uniform_c_rand	49
4.35	SpinDec::ReducedProblem Class Reference	50
	4.35.1 Detailed Description	50
4.36	SpinDec::Sign Class Reference	51
	4.36.1 Detailed Description	51
4.37	SpinDec::SimpleCubicLatticeVectors Class Reference	52
	4.37.1 Detailed Description	52
4.38	SpinDec::SpinBasis Class Reference	53
	4.38.1 Detailed Description	54
	4.38.2 Member Function Documentation	54
	4.38.2.1 operator+	54
	4.38.2.2 operator [∧]	54
4.39	SpinDec::SpinBath Class Reference	55
4.40	SpinDec::SpinDonor Class Reference	56
4.41	SpinDec::SpinDown Class Reference	58
4.42	SpinDec::SpinHalf Class Reference	59
4.43	SpinDec::SpinHalfParameters Class Reference	60
4.44	SpinDec::SpinHalfStates Class Reference	61
4.45	SpinDec::SpinHamiltonian Class Reference	62
4.46	SpinDec::SpinInteraction Class Reference	63
4.47	SpinDec::SpinInteractionEdge Class Reference	64
4.48	SpinDec::SpinInteractionGraph Class Reference	65
4.49	SpinDec::SpinInteractionVertex Class Reference	67
4.50	SpinDec::SpinOperator Class Reference	68
4.51	SpinDec::SpinParameters Class Reference	69
4.52	SpinDec::SpinParametersVector Class Reference	70
4.53	SpinDec::SpinState Class Reference	71
4.54	SpinDec::SpinSystem Class Reference	72

CONTENTS

	4.55	SpinDec::SpinSystemBase Class Reference	73
	4.56	SpinDec::SpinUp Class Reference	75
	4.57	SpinDec::StringOptions Class Reference	76
	4.58	SpinDec::TimeArray Class Reference	77
	4.59	SpinDec::TimeEvolution Class Reference	78
	4.60	SpinDec::TwoStateSuperposition Class Reference	79
		4.60.1 Detailed Description	79
	4.61	SpinDec::UniformMagneticField Class Reference	80
5	File !	Documentation	81
	5.1	/home/sbalian/spindec/include/SpinDec/typedefs.h File Reference	81
		5.1.1 Detailed Description	82

Chapter 1

Class Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

SpinDec::AdiabaticLabel
SpinDec::BoostEigen
SpinDec::CCE 11
SpinDec::Cluster
SpinDec::ClusterDatabase
SpinDec::ClusterDatabaseEntry
SpinDec::Constants
SpinDec::CrystalBasis
SpinDec::CrystalStructure
SpinDec::DiamondCubic
SpinDec::CSDProblem
SpinDec::Eigenspectrum
SpinDec::HermitianEigenspectrum
SpinDec::Errors
SpinDec::FileProperties
SpinDec::HyperfineParameters
SpinDec::LatticeVectors
SpinDec::SimpleCubicLatticeVectors
SpinDec::MatrixRepresentation
SpinDec::SpinOperator
SpinDec::DensityOperator
SpinDec::EvolutionOperator
SpinDec::IdentityOperator
SpinDec::SpinHamiltonian
SpinDec::SpinState
SpinDec::SpinHalfStates
SpinDec::SpinDown
SpinDec::SpinUp
SpinDec::TwoStateSuperposition
SpinDec::Pulse
SpinDec::FreeEvolution
SpinDec::IdentityPulse

2 Class Index

SpinDec::PiPulse	14
SpinDec::PulseExperiment	16
SpinDec::CPMGDephasing	19
SpinDec::PulseSequenceBase	18
SpinDec::CPMG	18
SpinDec::PulseSequence	17
· I	19
1	50
· r	51
- r	53
-r ····-r ·· · · · · · · · · · · · · · ·	55 53
1 1	27 37
T	
	54
T T T T T T T T T T T T T T T T T T T	55 57
T T T T T T T T T T T T T T T T T T T	57 59
	50
	30
r	70
	73
r ·····r	59
1 1 7	72
1 1	56
-r 8-r	76
· F	77
	78
SpinDec::UniformMagneticField	30

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

SpinDec::AdiabaticLabel (Adiabatic eigenstates of a spin donor)	7
SpinDec::BoostEigen (Static methods to extend Eigen functionality)	9
SpinDec::CCE (Solves for a CSD problem using the CCE)	11
SpinDec::Cluster (Contains labels for a cluster of spins)	13
SpinDec::ClusterDatabase (Stores clusters and associated complex time evolutions)	14
SpinDec::ClusterDatabaseEntry (Entry for ClusterDatabase)	16
SpinDec::Constants (Mathematical and physical constants)	17
SpinDec::CPMG (Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence)	18
SpinDec::CPMGDephasing (CPMG pulse sequence)	19
SpinDec::CrystalBasis (Basis vectors for crystal structures in 3D)	20
SpinDec::CrystalStructure $(i\mathbf{a}_1+j\mathbf{a}_2+k\mathbf{a}_3+\sum_n\mathbf{b}_n)$	21
	23
SpinDec::DensityOperator	25
SpinDec::DiamondCubic (Diamond cubic crystal structure)	26
SpinDec::Dipolar (Secular dipolar interaction strength between a pair of spins)	27
SpinDec::Eigenspectrum (Holds the eigenvectors and eigenvalues of a matrix)	29
SpinDec::ElectronSpinParameters (Parameters for an electron spin)	30
	31
SpinDec::EvolutionOperator (Free evolution operator)	32
SpinDec::FileProperties (Static methods for ASCII file properties)	34
SpinDec::FreeEvolution ((Pulse)-free evolution)	35
SpinDec::HermitianEigenspectrum (Diagonalizes a Hermitian matrix)	36
SpinDec::Hyperfine (Calculates the electron-nuclear hyperfine interaction in a lattice)	37
SpinDec::HyperfineParameters	39
SpinDec::IdentityOperator (Identity)	40
SpinDec::IdentityPulse (Identity pulse (no duration))	41
1	42
SpinDec::MatrixRepresentation	43
SpinDec::PiPulse (π -pulse or refocusing pulse)	44
SpinDec::Pulse (Pulses in a pulse sequence)	45
SpinDec::PulseExperiment (Abstract base class for a pulse sequence experiment)	46
	47
SpinDec::PulseSequenceBase (Abstract base class for pulse sequences)	48

4 Class Index

SpinDec::RandomNumberGenerator (Static methods for generating random numbers) 49
SpinDec::ReducedProblem (SpinSystemBase and an order)
SpinDec::Sign (±)
SpinDec::SimpleCubicLatticeVectors (Simple cubic lattice vectors)
SpinDec::SpinBasis (Holds magnetic quantum numbers for (in general) multiple spins) 53
SpinDec::SpinBath
SpinDec::SpinDonor
SpinDec::SpinDown
SpinDec::SpinHalf
SpinDec::SpinHalfParameters
SpinDec::SpinHalfStates
SpinDec::SpinHamiltonian
SpinDec::SpinInteraction
SpinDec::SpinInteractionEdge
SpinDec::SpinInteractionGraph
SpinDec::SpinInteractionVertex
SpinDec::SpinOperator
SpinDec::SpinParameters
SpinDec::SpinParametersVector
SpinDec::SpinState
SpinDec::SpinSystem
SpinDec::SpinSystemBase
SpinDec::SpinUp
SpinDec::StringOptions
SpinDec::TimeArray
SpinDec::TimeEvolution
SpinDec::TwoStateSuperposition (2-level superposition state)
SpinDec::UniformMagneticField80

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

/home/sbalian/spindec/include/SpinDec/AdiabaticLabel.h
/home/sbalian/spindec/include/SpinDec/base.h
/home/sbalian/spindec/include/SpinDec/BoostEigen.h
/home/sbalian/spindec/include/SpinDec/CCE.h
/home/sbalian/spindec/include/SpinDec/Cluster.h
/home/sbalian/spindec/include/SpinDec/ClusterDatabase.h
/home/sbalian/spindec/include/SpinDec/ClusterDatabaseEntry.h
/home/sbalian/spindec/include/SpinDec/Constants.h
/home/sbalian/spindec/include/SpinDec/CPMG.h??
/home/sbalian/spindec/include/SpinDec/CPMGDephasing.h
/home/sbalian/spindec/include/SpinDec/CrystalBasis.h??
/home/sbalian/spindec/include/SpinDec/CrystalStructure.h
/home/sbalian/spindec/include/SpinDec/CSDProblem.h
/home/sbalian/spindec/include/SpinDec/DensityOperator.h
/home/sbalian/spindec/include/SpinDec/DiamondCubic.h
/home/sbalian/spindec/include/SpinDec/ Dipolar.h
/home/sbalian/spindec/include/SpinDec/Eigenspectrum.h
/home/sbalian/spindec/include/SpinDec/ElectronSpinParameters.h
/home/sbalian/spindec/include/SpinDec/Errors.h
/home/sbalian/spindec/include/SpinDec/EvolutionOperator.h
/home/sbalian/spindec/include/SpinDec/FileProperties.h
/home/sbalian/spindec/include/SpinDec/FreeEvolution.h
/home/sbalian/spindec/include/SpinDec/HermitianEigenspectrum.h
/home/sbalian/spindec/include/SpinDec/Hyperfine.h
/home/sbalian/spindec/include/SpinDec/HyperfineParameters.h
/home/sbalian/spindec/include/SpinDec/IdentityOperator.h
/home/sbalian/spindec/include/SpinDec/IdentityPulse.h
/home/sbalian/spindec/include/SpinDec/LatticeVectors.h
/home/sbalian/spindec/include/SpinDec/MatrixRepresentation.h
/home/sbalian/spindec/include/SpinDec/PiPulse.h ??
/home/sbalian/spindec/include/SpinDec/ Pulse.h
/home/sbalian/spindec/include/SpinDec/PulseExperiment.h
/home/sbalian/spindec/include/SpinDec/PulseSequence.h

6 File Index

/home/sbalian/spindec/include/SpinDec/PulseSequenceBase.h
/home/sbalian/spindec/include/SpinDec/RandomNumberGenerator.h
/home/sbalian/spindec/include/SpinDec/ReducedProblem.h
/home/sbalian/spindec/include/SpinDec/Sign.h
/home/sbalian/spindec/include/SpinDec/SimpleCubicLatticeVectors.h
/home/sbalian/spindec/include/SpinDec/SpinBasis.h
/home/sbalian/spindec/include/SpinDec/SpinBath.h
/home/sbalian/spindec/include/SpinDec/SpinDonor.h ??
/home/sbalian/spindec/include/SpinDec/SpinDown.h
/home/sbalian/spindec/include/SpinDec/SpinHalf.h
/home/sbalian/spindec/include/SpinDec/SpinHalfParameters.h
/home/sbalian/spindec/include/SpinDec/SpinHalfStates.h
/home/sbalian/spindec/include/SpinDec/SpinHamiltonian.h
/home/sbalian/spindec/include/SpinDec/SpinInteraction.h
/home/sbalian/spindec/include/SpinDec/SpinInteractionEdge.h
/home/sbalian/spindec/include/SpinDec/SpinInteractionGraph.h
/home/sbalian/spindec/include/SpinDec/SpinInteractionVertex.h
/home/sbalian/spindec/include/SpinDec/SpinOperator.h
/home/sbalian/spindec/include/SpinDec/SpinParameters.h
/home/sbalian/spindec/include/SpinDec/SpinParametersVector.h
/home/sbalian/spindec/include/SpinDec/SpinState.h
/home/sbalian/spindec/include/SpinDec/SpinSystem.h
/home/sbalian/spindec/include/SpinDec/SpinSystemBase.h?
/home/sbalian/spindec/include/SpinDec/SpinUp.h
/home/sbalian/spindec/include/SpinDec/StringOptions.h?
/home/sbalian/spindec/include/SpinDec/TimeArray.h
/home/sbalian/spindec/include/SpinDec/TimeEvolution.h
/home/sbalian/spindec/include/SpinDec/TwoStateSuperposition.h
/home/sbalian/spindec/include/SpinDec/typedefs.h (Typedefs and "usings")
/home/sbalian/spindec/include/SpinDec/UniformMagneticField.h

Chapter 4

Class Documentation

4.1 SpinDec::AdiabaticLabel Class Reference

Adiabatic eigenstates of a spin donor.

#include <AdiabaticLabel.h>

Public Member Functions

- AdiabaticLabel (const Sign &sign, const int quantum_number)
- const Sign & get_sign () const
- $\bullet \ \ int \ \underline{get_quantum_number} \ () \ const$

Private Attributes

• Sign sign_

Plus or minus.

• int quantum_number_

$$m = S + I$$
.

Friends

• std::ostream & operator<< (std::ostream &os, AdiabaticLabel const &label)

Print.

4.1.1 Detailed Description

Adiabatic eigenstates of a spin donor. For a spin donor, the adiabatic energy eigenstates are labeled as follows:

 $|\pm,m\rangle$, where m=S+I is an integer, S and I are the electron and nuclear spin quantum numbers.

- $\bullet \ /home/sbalian/spindec/include/SpinDec/AdiabaticLabel.h$
- /home/sbalian/spindec/src/AdiabaticLabel.cpp

4.2 SpinDec::BoostEigen Class Reference

Static methods to extend Eigen functionality.

#include <BoostEigen.h>

Static Public Member Functions

- static double cosAngleBetween (const ThreeVector &a, const ThreeVector &b) Cosine of angle between real vectors.
- static double maxAbsCoeff (const ThreeVector &a)

 Maximum absolute coefficient.
- static Complex Vector exp (const Complex Vector &a)

 Element-wise exponentiation for complex vectors.
- static ComplexMatrix tensorProduct (const ComplexMatrix &A, const ComplexMatrix &B)

 Tensor product for complex matrices.
- static Complex Vector tensorProduct (const Complex Vector &a, const Complex Vector &b)

 Tensor product for complex vectors.
- static ComplexMatrix partialTrace (const ComplexMatrix &AB, const unsigned int dimension_B) Partial trace for complex matrices.
- static ComplexMatrix spectralDecomposition (const ComplexMatrix & eigenvectors, const ComplexVector & eigenvalues)

Spectral decomposition of a complex matrix.

• static ComplexMatrix unitarySpectralDecomposition (const ComplexMatrix &eigenvectors, const ComplexVector &eigenvalues)

Spectral decomposition of a unitary matrix.

• static bool is Within Distance (const Three Vector &r, const double distance) $Is |\mathbf{r}| \leq d$?

4.2.1 Detailed Description

Static methods to extend Eigen functionality. Note that the naming convention complies with that of Eigen, and is different from the rest of SpinDec. Eigen is for linear algebra and can be obtained for free: http://eigen.tuxfamily.org/.

4.2.2 Member Function Documentation

4.2.2.1 double SpinDec::BoostEigen::cosAngleBetween (const ThreeVector & a, const ThreeVector & b) [static]

Cosine of angle between real vectors. $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$.

4.2.2.2 double SpinDec::BoostEigen::maxAbsCoeff (const ThreeVector & a) [static]

Maximum absolute coefficient. Maximum of $[|a_1|, |a_2|, |a_3|]$ for real vector $\mathbf{a} = (a_1, a_2, a_3)$.

4.2.2.3 ComplexMatrix SpinDec::BoostEigen::partialTrace (const ComplexMatrix & AB, const unsigned int dimension_B) [static]

Partial trace for complex matrices. Given $C = A \otimes B$, and the dimension of B, this method outputs $Tr_B A$.

4.2.2.4 ComplexMatrix SpinDec::BoostEigen::spectralDecomposition (const ComplexMatrix & eigenvectors, const ComplexVector & eigenvalues) [static]

Spectral decomposition of a complex matrix. This is $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$, where \mathbf{D} is the diagonal of eigenvalues of \mathbf{A} and \mathbf{V} is the columnwise eigenvector matrix.

4.2.2.5 ComplexVector SpinDec::BoostEigen::tensorProduct (const ComplexVector & a, const ComplexVector & b) [static]

Tensor product for complex vectors. Evaluates $\mathbf{c} = \mathbf{a} \otimes \mathbf{b}$. For example, for 2-vectors, this is

$$\mathbf{c} = \begin{pmatrix} a_1 b_1 \\ a_1 b_2 \\ a_2 b_1 \\ a_2 b_2 \end{pmatrix}$$

4.2.2.6 ComplexMatrix SpinDec::BoostEigen::tensorProduct (const ComplexMatrix & A, const ComplexMatrix & B) [static]

Tensor product for complex matrices. Evaluates $C = A \otimes B$. For example, for 2×2 matrices, this is

$$\mathbf{C} = \left(\begin{array}{cc} A_{11}\mathbf{B} & A_{12}\mathbf{B} \\ A_{21}\mathbf{B} & A_{22}\mathbf{B} \end{array} \right)$$

4.2.2.7 ComplexMatrix SpinDec::BoostEigen::unitarySpectralDecomposition (const ComplexMatrix & eigenvectors, const ComplexVector & eigenvalues) [static]

Spectral decomposition of a unitary matrix. For a unitary matrix, $\mathbf{A}^{-1} = \mathbf{V}^{\dagger}$

- /home/sbalian/spindec/include/SpinDec/BoostEigen.h
- /home/sbalian/spindec/src/BoostEigen.cpp

4.3 SpinDec::CCE Class Reference

Solves for a CSD problem using the CCE.

#include <CCE.h>

Public Member Functions

- CCE (const UInt max_truncation_order, const auto_ptr< PulseExperiment > &pulse_experiment, const ClusterDatabase &cluster_database, const bool include_one_clusters)
- UInt get_max_truncation_order () const
- void calculate (const UInt order)

Calculate the CCE.

- void calculate (const UInt order, const bool no_divisions)
- void calculate ()

Calls CCE::calculate(const UInt order,false).

• TimeEvolution evolution (const UInt order) const

Get the time evolution (has to be calculated with above method first).

• const ClusterDatabase & get_database () const

Private Member Functions

- void check_order (const UInt order) const
- TimeEvolution reducible_correlation (const Cluster &cluster)
- TimeEvolution true_correlation (const Cluster &cluster)

Private Attributes

- vector< TimeEvolution > product_correlations_by_order_
- UInt max_truncation_order_

Maximum CCE truncation order.

- bool include_one_clusters_
- auto_ptr< PulseExperiment > pulse_experiment_
- ClusterDatabase cluster_database_

4.3.1 Detailed Description

Solves for a CSD problem using the CCE. The cluster correlation expansion (CCE) is used to solve for a central spin decoherence (CSD) problem. Relevant references are:

- Phys. Rev. B 74, 035322 (2006),
- Phys. Rev. B 78, 085315 (2008),
- Phys. Rev. B 78, 129901(E) (2008),
- Phys. Rev. B 79, 115320 (2009),
- Phys. Rev. B 86, 035452 (2012).

4.3.2 Member Function Documentation

4.3.2.1 void SpinDec::CCE::calculate (const UInt order)

Calculate the CCE. Input CCE truncation order to calculate. This input cannot exceed CCE::max_truncation_order_.

- /home/sbalian/spindec/include/SpinDec/CCE.h
- /home/sbalian/spindec/src/CCE.cpp

4.4 SpinDec::Cluster Class Reference

Contains labels for a cluster of spins.

```
#include <Cluster.h>
```

Public Member Functions

- Cluster (const UIntArray &labels)
- void add (const UInt label)
- bool **operator**== (const Cluster &rhs) const
- UInt num_spins () const

Number of labels.

- UInt get_label (const UInt index) const
- const UIntArray & get_labels () const
- vector< Cluster > subsets () const

Get all subsets (exludes the empty set).

vector < Cluster > proper_subsets () const
 Get proper subsets (excludes the empty set).

Private Member Functions

- vector< UIntArray > subsets (const UIntArray &v, const UInt size) const
- vector
< UIntArray > subsets (const UIntArray &v) const

Private Attributes

• UIntArray labels_

Friends

• std::ostream & operator<< (std::ostream &os, Cluster const &cluster)

Print.

4.4.1 Detailed Description

Contains labels for a cluster of spins. Labels are always sorted in increasing order.

- /home/sbalian/spindec/include/SpinDec/Cluster.h
- /home/sbalian/spindec/src/Cluster.cpp

4.5 SpinDec::ClusterDatabase Class Reference

Stores clusters and associated complex time evolutions.

```
#include <ClusterDatabase.h>
```

Public Member Functions

ClusterDatabase (const SpinBath &spin_bath, const UInt max_order, const double cluster_cutoff, const string &build_method)

Build method is "global" or "local".

- const ClusterDatabaseEntry & get_entry (const UInt order, const UInt index) const
- const Cluster & get_cluster (const UInt order, const UInt index) const
- void set_time_evolution (const Cluster &cluster, const TimeEvolution &time_evolution)
- bool is_solved (const Cluster &cluster) const
- UInt get_max_order () const
- UInt num_clusters (const UInt order) const
- const TimeEvolution & get_time_evolution (const Cluster &cluster) const
- void print () const

Private Member Functions

```
• void build_pairs ()
```

Build 2-clusters.

• void build_ones ()

Build 1-clusters.

• void build_with_local_cutoff()

Higher order clusters with local cutoff.

• void build_with_global_cutoff ()

Higher order clusters with global cutoff.

- UInt **get_index** (const **Cluster** &cluster) const
- void add_unsolved_entry (const Cluster &cluster)

Add cluster if it does not exist.

- bool is order built (const UInt order) const
- bool cluster_exists (const Cluster &cluster) const

Private Attributes

• UInt max_order_

Maximum build order.

- SpinBath spin_bath_
- database_map database_

Cluster size (order), vector of database entries. All unique clusters.

• double cluster_cutoff_ In Å.

4.5.1 Detailed Description

Stores clusters and associated complex time evolutions. For use with SpinDec::CCE (cluster correlation expansion). Has two build methods, one with a local cluster cutoff where the maximum separation between any pair of spins in any cluster is cluster_cutoff. The other (global) method builds pairs with cluster_cutoff maximum separation, then adds spins which are at a maximum of cluster_cutoff from any of the two spins to form 3-clusters, and so on for 4-clusters etc.

- /home/sbalian/spindec/include/SpinDec/ClusterDatabase.h
- /home/sbalian/spindec/src/ClusterDatabase.cpp

4.6 SpinDec::ClusterDatabaseEntry Class Reference

Entry for ClusterDatabase.

#include <ClusterDatabaseEntry.h>

Public Member Functions

• ClusterDatabaseEntry (const Cluster &cluster)

```
is\_solved\_ = false.
```

- const Cluster & get_cluster () const
- bool is_solved () const
- const TimeEvolution & get_time_evolution () const
- void **set_time_evolution** (const **TimeEvolution** &time_evolution)

Private Attributes

- Cluster cluster_
- TimeEvolution time_evolution_
- bool is_solved_

4.6.1 Detailed Description

Entry for ClusterDatabase.

- /home/sbalian/spindec/include/SpinDec/ClusterDatabaseEntry.h
- /home/sbalian/spindec/src/ClusterDatabaseEntry.cpp

4.7 SpinDec::Constants Class Reference

Mathematical and physical constants.

```
#include <Constants.h>
```

Static Public Attributes

- static const double kPi = 3.141592653589793 *Pi.*
- static const double kReducedPlanck = 1.054571726e-34 Reduced Planck constant (J s).
- static const double kPlanck = 6.62606957e-34 Plank constant (J s).
- static const double kElectronGyromagneticRatio = 1.760859708e5Electronic gyromagnetic ratio (M rad s⁻¹ T⁻¹).

4.7.1 Detailed Description

Mathematical and physical constants.

4.7.2 Member Data Documentation

4.7.2.1 const double SpinDec::Constants::kElectronGyromagneticRatio = 1.760859708e5 [static]

Electronic gyromagnetic ratio (M rad $s^{-1} T^{-1}$). From CODATA 22/10/2013.

4.7.2.2 const double SpinDec::Constants::kPi = 3.141592653589793 [static]

Pi. From Wikipedia 06/12/2012.

4.7.2.3 const double SpinDec::Constants::kPlanck = 6.62606957e-34 [static]

Plank constant (J s). From CODATA 06/12/2012.

4.7.2.4 const double SpinDec::Constants::kReducedPlanck = 1.054571726e-34 [static]

Reduced Planck constant (J s). From CODATA 06/12/2012.

- /home/sbalian/spindec/include/SpinDec/Constants.h
- /home/sbalian/spindec/src/Constants.cpp

4.8 SpinDec::CPMG Class Reference

Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence.

#include <CPMG.h>Inheritance diagram for SpinDec::CPMG::

Public Member Functions

- CPMG (const UInt order, const EvolutionOperator &evolution_operator, const Pulse &pi_pulse)
- void **set_time** (const double time_value)
- virtual auto_ptr< PulseSequenceBase > clone () const

Private Attributes

- UInt order_
- EvolutionOperator evolution_operator_
- vector< bool > is_unitary_

4.8.1 Detailed Description

Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence.

- Order N = 0 (FID): evolve for duration t.
- N=1 (Hahn): evolve for t/2, π -pulse, evolve for t/2.
- N > 1: [evolve for t/(2N), π -pulse, evolve for t/(2N)]^N.

- /home/sbalian/spindec/include/SpinDec/CPMG.h
- /home/sbalian/spindec/src/CPMG.cpp

4.9 SpinDec::CPMGDephasing Class Reference

CPMG pulse sequence.

#include <CPMGDephasing.h>Inheritance diagram for SpinDec::CPMGDephasing::

Public Member Functions

- **CPMGDephasing** (const **CSDProblem** &csd_problem, const **TimeArray** &time_array, const UInt cpmg_order, const CDouble &c0, const UInt level_label0, const CDouble &c1, const UInt level_label1)
- virtual TimeEvolution time_evolution (const UIntArray bath_indices)
- virtual auto_ptr< PulseExperiment > clone () const

Private Attributes

- UInt cpmg_order_
- TwoStateSuperposition initial_system_state_
- PiPulse system_pi_pulse_
- vector< pair< UInt, Pulse >> pulses_

4.9.1 Detailed Description

CPMG pulse sequence.

- /home/sbalian/spindec/include/SpinDec/CPMGDephasing.h
- /home/sbalian/spindec/src/CPMGDephasing.cpp

4.10 SpinDec::CrystalBasis Class Reference

Basis vectors for crystal structures in 3D.

#include <CrystalBasis.h>

Public Member Functions

- void **add_basis_vector** (const ThreeVector &basis_vector)
- const std::vector< ThreeVector > & get_basis_vectors () const
- const ThreeVector & **get_basis_vector** (const UInt index) const
- UInt num_basis_vectors () const

Protected Attributes

• std::vector< ThreeVector > basis_vectors_

4.10.1 Detailed Description

Basis vectors for crystal structures in 3D. Length units are Å. They are in the basis of lattice vectors $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$, NOT (x, y, z)!

- /home/sbalian/spindec/include/SpinDec/CrystalBasis.h
- /home/sbalian/spindec/src/CrystalBasis.cpp

4.11 SpinDec::CrystalStructure Class Reference

$$i\mathbf{a}_1 + j\mathbf{a}_2 + k\mathbf{a}_3 + \sum_n \mathbf{b}_n$$
.

#include <CrystalStructure.h>Inheritance diagram for SpinDec::CrystalStructure::

Public Member Functions

• CrystalStructure (const LatticeVectors &lattice_vectors, const CrystalBasis &basis, const int min_i, const int max_i, const int min_j, const int max_j, const int min_k, const int max_k, const double min_x, const double max_x, const double min_y, const double max_y, const double min_z, const double max_z, const double fractional_abundance)

Calls fill_site_vectors.

• CrystalStructure (const string &file_name)

Reads from file. Three columns: x, y, z.

- CrystalStructure (const vector < ThreeVector > &site_vectors)
- const std::vector< Three Vector > & get_site_vectors () const
- const ThreeVector & **get_site_vector** (const UInt index) const
- UInt num_site_vectors () const
- double max_site_vector_length () const
- double max_abs_component () const

```
\max[\max(|x_1|, |y_1|, |z_1|), \dots, \max(|x_n|, |y_n|, |z_n|)], \text{ for } n \text{ site vectors.}
```

- double average_site_vector_separation () const
- void write_site_vectors (const string &file_name) const

Protected Member Functions

• void fill_site_vectors (const LatticeVectors &lattice_vectors, const CrystalBasis &basis, const int min_i, const int max_i, const int min_j, const int max_j, const int min_k, const int max_k, const double min_x, const double max_x, const double min_y, const double max_y, const double min_z, const double max_z, const double fractional_abundance)

Fills site vectors.

- void **add_site_vector** (const ThreeVector &site_vector)
- void **scale_site_vectors** (const double scale_factor)
- std::vector< ThreeVector > cartesian_basis_vectors (const LatticeVectors &lattice_vectors, const CrystalBasis &basis) const

Get the basis vectors in Cartesian coordinates.

Protected Attributes

• std::vector< ThreeVector > site_vectors_

Private Member Functions

• void **read_site_vectors** (const string &file_name)

Friends

• std::ostream & operator << (std::ostream &os, CrystalStructure const &crystal_structure) Print with cout (x, y, z).

4.11.1 Detailed Description

 $i\mathbf{a}_1 + j\mathbf{a}_2 + k\mathbf{a}_3 + \sum_n \mathbf{b}_n$. The above = crystal structure, where $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ are linearly independent lattice vectors, the \mathbf{b}_n are n basis vectors and i, j, k are integers.

The length units are Å. Using Cartesian coordinates.

4.11.2 Member Function Documentation

4.11.2.1 void SpinDec::CrystalStructure::fill_site_vectors (const LatticeVectors & lattice_vectors, const CrystalBasis & basis, const int min_i, const int max_i, const int min_j, const int max_j, const int min_k, const int max_k, const double min_x, const double max_x, const double min_y, const double max_y, const double min_z, const double max_z, const double fractional_abundance) [protected]

Fills site vectors. Here, the integer arguments are the i,j,k. The double arguments define the spatial ranges for all the x,y,z components for shaping the final crystal structure. The fractional abundance (converted to parts per million) is the fraction of site vectors added using a uniform distribution (using cstdlib rand(); see RandomNumberGenerator.h). If the fractional abundance is 1.0, then all site vectors are included.

- /home/sbalian/spindec/include/SpinDec/CrystalStructure.h
- /home/sbalian/spindec/src/CrystalStructure.cpp

4.12 SpinDec::CSDProblem Class Reference

Central spin decoherence problem.

#include <CSDProblem.h>

Public Member Functions

- **CSDProblem** (const **CSDProblem** &csd_problem)
- CSDProblem & operator= (const CSDProblem &csd_problem)
- CSDProblem (const auto_ptr< SpinSystemBase > ¢ral_spin_system_base, const SpinBath &spin_bath, const vector< SpinInteractionEdge > &system_bath_edges, const UniformMagnetic-Field &field)
- CSDProblem (const auto_ptr< SpinSystemBase > ¢ral_spin_system_base, const SpinBath &spin bath, const SpinInteractionEdge &system bath edge, const UniformMagneticField &field)
- void set_central_spin_state (const SpinState &spin_state) const
- SpinSystem get_reduced_problem (const UIntArray bath_indices)
- const SpinBath & get_spin_bath () const
- auto_ptr< SpinSystemBase > get_central_spin_system () const

Private Member Functions

- void init (const auto_ptr< SpinSystemBase > ¢ral_spin_system_base, const SpinBath &spin_bath, const vector< SpinInteractionEdge > &system_bath_edges, const UniformMagneticField &field)
- vector< SpinInteractionEdge > make_system_bath_edges (const UInt order, const SpinInteractionEdge &edge) const
- vector< SpinInteractionEdge > make_system_bath_edges (const UInt order) const
- SpinSystem construct_reduced_problem (const UInt order) const
- UIntArray get_bath_vertex_labels (const UInt order) const

Private Attributes

- auto_ptr< SpinSystemBase > central_spin_system_
- SpinBath spin_bath_
- UniformMagneticField field_
- vector< SpinInteractionEdge > system_bath_edges_
- vector< pair< UInt, SpinSystem >> reduced_problems_

4.12.1 Detailed Description

Central spin decoherence problem. Currently supports a single spin bath.

4.12.2 Member Data Documentation

4.12.2.1 vector<SpinInteractionEdge> SpinDec::CSDProblem::system_bath_edges_ [private]

Edges should comply as in the join methods for SpinInteractionGraph, with the first graph being the central spin graph and the second being the graph for a single bath system.

- /home/sbalian/spindec/include/SpinDec/CSDProblem.h
- /home/sbalian/spindec/src/CSDProblem.cpp

4.13 SpinDec::DensityOperator Class Reference

#include <DensityOperator.h>Inheritance diagram for SpinDec::DensityOperator::

Public Member Functions

- DensityOperator (const SpinState &state, const SpinState &state0, const SpinState &state1) State is the combined (tensor product) qubit-other system state.
- DensityOperator reduced () const Return the qubit reduced density matrix.
- CDouble off_diagonal_reduced () const Off-diagonal of reduced density matrix.

Private Member Functions

• **DensityOperator** (const ComplexMatrix &matrix, const SpinBasis &basis, const SpinState &state0, const SpinState &state1)

Private Attributes

- SpinState state0_
- SpinState state1_

4.13.1 Detailed Description

In general, composite density operator for spins in the Zeeman basis. $\rho_{\text{qubit}} \otimes \rho_{\text{other}}$, qubit states $|0\rangle$ and $|1\rangle$.

- /home/sbalian/spindec/include/SpinDec/DensityOperator.h
- /home/sbalian/spindec/src/DensityOperator.cpp

4.14 SpinDec::DiamondCubic Class Reference

Diamond cubic crystal structure.

#include <DiamondCubic.h>Inheritance diagram for SpinDec::DiamondCubic::

Public Member Functions

- DiamondCubic (const double lattice_constant, const double side_length)

 Cubic lattice constant and side length of superlattice cube in Å.
- **DiamondCubic** (const double lattice_constant, const double side_length, const double fractional_abundance)
- void make_sphere (const double radius)
- void **make_shell** (const double min_radius, const double max_radius)

Private Member Functions

- SimpleCubicLatticeVectors construct_lattice_vectors (const double lattice_constant) const Set up and return the lattice vectors.
- CrystalBasis construct_basis_vectors () const Set up and return the basis vectors.
- int int_range_centred_cube (const double side_length, const double lattice_constant) const

4.14.1 Detailed Description

Diamond cubic crystal structure. This is implemented as a simple cubic lattice with 8 basis vectors. Source: http://en.wikipedia.org/wiki/Diamond_cubic.

4.14.2 Member Function Documentation

4.14.2.1 int SpinDec::DiamondCubic::int_range_centred_cube (const double *side_length*, const double *lattice_constant*) const [private]

Get integer range (for constructing crystal structure) in a centred cube given the side length.

- /home/sbalian/spindec/include/SpinDec/DiamondCubic.h
- /home/sbalian/spindec/src/DiamondCubic.cpp

4.15 SpinDec::Dipolar Class Reference

Secular dipolar interaction strength between a pair of spins.

#include <Dipolar.h>Inheritance diagram for SpinDec::Dipolar::

Public Member Functions

• Dipolar ()

If you wish to calculate.

• Dipolar (const double strength)

If you don't wish to calculate.

- virtual void calculate (const SpinParameters &spin_parameters1, const SpinParameters &spin_parameters2, const ThreeVector &position1, const ThreeVector &position2, const UniformMagneticField &field)
- virtual void **fill** (ComplexMatrix *hamiltonian, const SpinParametersVector &spin_parameters_vector, const SpinBasis &basis, const UInt spin_label1, const UInt spin_label2) const
- virtual auto_ptr< SpinInteraction > clone () const
- virtual string get_type () const

4.15.1 Detailed Description

Secular dipolar interaction strength between a pair of spins. For two spins, $\hat{\mathbf{S}}_1$, $\hat{\mathbf{S}}_2$,

$$\hat{H}_D = D\hat{S}_1^z \hat{S}_2^z - \frac{D}{4} [\hat{S}_1^+ \hat{S}_2^- + \hat{S}_1^- \hat{S}_2^+]$$

This class calculates

$$D = \frac{D_0 \gamma_1 \gamma_2 (1 - 3\cos^2[\theta])}{(10^{-10}r)^3}$$

and fills the Hamiltonian matrix elements for the Hamiltonian \hat{H}_D above. The energy units are M rad s⁻¹. The parameters are:

- γ_1, γ_2 [M rad s⁻¹T⁻¹]: gyromagnetic ratios of the two interacting spins.
- θ [rad]: angle between the magnetic field direction and the vector parallel to the line connecting the two spins.
- r [Å]: distance between the two spins.
- $D_0 = 10^6 (\mu_0/(4\pi))\hbar$ [M rad s⁻¹ m³].
- \hbar [J s]: reduced Plank constant.

• $\mu_0/(4\pi) = 10^{-7} \text{ NA}^{-2}$ (μ_0 is the vacuum permeability).

From: arXiv:cond-mat/0211567 (Phys. Rev. B 68, 115322 (2003)).

- /home/sbalian/spindec/include/SpinDec/Dipolar.h
- /home/sbalian/spindec/src/Dipolar.cpp

4.16 SpinDec::Eigenspectrum Class Reference

Holds the eigenvectors and eigenvalues of a matrix.

#include <Eigenspectrum.h>Inheritance diagram for SpinDec::Eigenspectrum::

Public Member Functions

- Eigenspectrum (const ComplexMatrix &matrix)
- const Complex Vector & get_eigenvalues () const
- const ComplexMatrix & get_eigenvectors () const
- CDouble **get_eigenvalue** (const UInt index) const
- ComplexVector **get_eigenvector** (const UInt index) const
- virtual ComplexMatrix spectralDecomposition () const

Note the Eigen naming convention here.

• void set_spectrum (const ComplexMatrix & eigenvectors, const ComplexVector & eigenvalues) NOTE: use with care.

Protected Member Functions

• virtual void diagonalize (const ComplexMatrix &matrix)

Protected Attributes

- ComplexMatrix eigenvectors_
- Complex Vector eigenvalues_

4.16.1 Detailed Description

Holds the eigenvectors and eigenvalues of a matrix. Note: eigenvectors stored columnwise. General complex diagonalizer: ComplexEigenSolver in Eigen.

- /home/sbalian/spindec/include/SpinDec/Eigenspectrum.h
- /home/sbalian/spindec/src/Eigenspectrum.cpp

4.17 SpinDec::ElectronSpinParameters Class Reference

Parameters for an electron spin.

 $\label{lem:line_problem} \mbox{\colorenter} $$ \mbox{\colorenter} = \mbox{\$

Public Member Functions

• ElectronSpinParameters ()

Free electron gyromagnetic ratio.

• ElectronSpinParameters (const double gyromagnetic_ratio)

4.17.1 Detailed Description

Parameters for an electron spin. Gyromagnetic ratio of the free electron by default.

- /home/sbalian/spindec/include/SpinDec/ElectronSpinParameters.h
- /home/sbalian/spindec/src/ElectronSpinParameters.cpp

4.18 SpinDec::Errors Class Reference

Error and warning handling.

#include <Errors.h>

Static Public Member Functions

- static void quit ()
- static void quit (const string &message)
- static void warning (const string &message)

4.18.1 Detailed Description

Error and warning handling.

- /home/sbalian/spindec/include/SpinDec/Errors.h
- /home/sbalian/spindec/src/Errors.cpp

4.19 SpinDec::EvolutionOperator Class Reference

Free evolution operator.

#include <EvolutionOperator.h>Inheritance diagram for SpinDec::EvolutionOperator::

Public Member Functions

- EvolutionOperator (const SpinBasis &basis, const ComplexMatrix &eigenvectors, const RealVector &eigenvalues, const double time)
- void set_time (const double time) *Updates matrix.*
- double get_time () const

Private Member Functions

• void set_matrix ()

Private Attributes

- double time_
- ComplexMatrix eigenvectors_
- RealVector eigenvalues_

4.19.1 Detailed Description

Free evolution operator.

4.19.2 Constructor & Destructor Documentation

4.19.2.1 SpinDec::EvolutionOperator::EvolutionOperator (const SpinBasis & basis, const ComplexMatrix & eigenvectors, const RealVector & eigenvalues, const double time)

Unitary operator

$$\hat{U} = \sum_{n} (|E_n\rangle \exp[-iE_n t] \langle E_n|)$$

- E_n : eigenvalues (real).
- $|E_n\rangle$: eigenvectors.

• t: time (real double) in microseconds (energies in M rad s⁻¹).

For time independent Hamiltonians.

4.19.3 Member Data Documentation

4.19.3.1 RealVector SpinDec::EvolutionOperator::eigenvalues_ [private]

Not for the resulting opertor! These are used to construct the operator, for example from a Hamiltonian.

4.19.3.2 ComplexMatrix SpinDec::EvolutionOperator::eigenvectors_ [private]

Not for the resulting opertor! These are used to construct the operator, for example from a Hamiltonian. The documentation for this class was generated from the following files:

- /home/sbalian/spindec/include/SpinDec/EvolutionOperator.h
- /home/sbalian/spindec/src/EvolutionOperator.cpp

4.20 SpinDec::FileProperties Class Reference

Static methods for ASCII file properties.

#include <FileProperties.h>

Static Public Member Functions

- static bool **exists** (const string file_name)
- static UInt num_lines (const string file_name)

NOTE: empty lines not counted.

4.20.1 Detailed Description

Static methods for ASCII file properties.

- /home/sbalian/spindec/include/SpinDec/FileProperties.h
- /home/sbalian/spindec/src/FileProperties.cpp

4.21 SpinDec::FreeEvolution Class Reference

(Pulse)-free evolution.

#include <FreeEvolution.h>Inheritance diagram for SpinDec::FreeEvolution::

Public Member Functions

• FreeEvolution (const EvolutionOperator &evolution_operator)

"Pulse" duration taken from evolution operator.

4.21.1 Detailed Description

(Pulse)-free evolution.

- /home/sbalian/spindec/include/SpinDec/FreeEvolution.h
- /home/sbalian/spindec/src/FreeEvolution.cpp

4.22 SpinDec::HermitianEigenspectrum Class Reference

Diagonalizes a Hermitian matrix.

#include <HermitianEigenspectrum.h>Inheritance diagram for SpinDec::HermitianEigenspectrum::

Public Member Functions

- HermitianEigenspectrum (const ComplexMatrix &matrix)
- virtual ComplexMatrix spectralDecomposition () const

Private Member Functions

- void diagonalize_eigen (const ComplexMatrix &matrix)

 Diagonalizer.
- virtual void diagonalize (const ComplexMatrix &matrix)

4.22.1 Detailed Description

Diagonalizes a Hermitian matrix. Eigenvectors are orthonormal, eigenvalues are always real.

4.22.2 Member Function Documentation

4.22.2.1 ComplexMatrix SpinDec::HermitianEigenspectrum::spectralDecomposition () const [virtual]

Since eigenvectors orthonormal, $V^{-1} = V^{\dagger}$, use faster (unitary) decomposition.

Reimplemented from SpinDec::Eigenspectrum.

- /home/sbalian/spindec/include/SpinDec/HermitianEigenspectrum.h
- /home/sbalian/spindec/src/HermitianEigenspectrum.cpp

4.23 SpinDec::Hyperfine Class Reference

Calculates the electron-nuclear hyperfine interaction in a lattice.

#include <Hyperfine.h>Inheritance diagram for SpinDec::Hyperfine::

Public Member Functions

- Hyperfine (const HyperfineParameters ¶meters)

 If you wish to calculate.
- Hyperfine (const double strength)

 If you don't wish to calculate.
- virtual void **calculate** (const SpinParameters &electron_parameters, const SpinParameters &nuclear_parameters, const ThreeVector &electron_position, const ThreeVector &nuclear_position, const UniformMagneticField &field)
- virtual void **fill** (ComplexMatrix *hamiltonian, const SpinParametersVector &spin_parameters_vector, const SpinBasis &basis, const UInt spin_label1, const UInt spin_label2) const
- virtual auto_ptr< SpinInteraction > clone () const
- virtual string get_type () const

Private Member Functions

- double **envelope_function** (const UInt index, const ThreeVector &separation) const
- double n parameter () const
- double n_times_a () const
- double **n_times_b** () const
- double **scaled_probability_density** (const ThreeVector &separation) const

Private Attributes

• HyperfineParameters parameters_

4.23.1 Detailed Description

Calculates the electron-nuclear hyperfine interaction in a lattice. The Hamiltonian is

$$\hat{H}_{A} = A\hat{S}^{z}\hat{I}^{z} + \frac{A}{2}\left[\hat{S}^{+}\hat{I}^{-} + \hat{S}^{-}\hat{I}^{+}\right]$$

This class calculates A for the above Hamiltonian, \hat{H}_A , where $\hat{\mathbf{S}}$ and $\hat{\mathbf{I}}$ are the electronic and nuclear spin operators. Also fills the Hamiltonian matrix elements for \hat{H}_A . Uses the Kohn-Luttinger electronic wavefunction. Energy units are M rad s⁻¹.

$$A = pq - D(R)\theta(|R| - na)$$

The first term pq is the isotropic Fermi contact part.

$$p = \frac{16}{9} \pi \hbar \gamma_e \gamma_n \eta$$

where

- \hbar : reduced Planck constant [J s].
- γ_e : electron gyromagnetic ratio [M rad s⁻¹T⁻¹].
- γ_n : nuclear gyromagnetic ratio [M rad s⁻¹T⁻¹].
- η : charge density.

$$q = (10^{30})|F_1(R)\cos(k_0x) + F_3(R)\cos(k_0y) + F_5(R)\cos(k_0z)|^2$$

where

- R: vector between nucleus and electron ((x, y, z)) components) [Å].
- $k_0 = 0.85 \times 2\pi a_0 \, [\mathring{A}^{-1}]$
- $F_{1,2}(R) = \exp[-\sqrt{x^2/(nb)^2 + (y^2 + z^2)/(na)^2}]/\sqrt{\pi(na)^2 nb}$
- $F_{3,4}(R): xyz \rightarrow yzx$.
- $F_{5,6}(R): xyz \rightarrow zxy$.
- $n = \sqrt{0.029/E_i}$, E_i : electron ionization energy [eV].
- a and b are lattice parameters [Å].

The second term $[-D(R)\theta(|R|-na)]$ is the dipolar part which requires the direction of the magnetic field and where θ here is the Heaviside step function. See Dipolar.h for D(R), the dipolar interaction (units M rad s⁻¹).

From: arXiv:cond-mat/0211567 (Phys. Rev. B 68, 115322 (2003)).

- /home/sbalian/spindec/include/SpinDec/Hyperfine.h
- /home/sbalian/spindec/src/Hyperfine.cpp

4.24 SpinDec::HyperfineParameters Class Reference

#include <HyperfineParameters.h>

Public Member Functions

- **HyperfineParameters** (const double lattice_constant, const double lattice_parameter_a, const double lattice_parameter_b, const double electron_ionization_energy, const double charge_density, const bool ising_only, bool fermi_contact_only_)
- double get_lattice_constant () const
- double get_lattice_parameter_a () const
- double **get_lattice_parameter_b** () const
- double get_electron_ionization_energy () const
- double get_charge_density () const
- bool is_ising_only () const
- bool is_fermi_contact_only () const

Private Attributes

- double lattice_constant_ Lattice constant in Å.
- double lattice_parameter_a_ Lattice parameter in Å.
- double lattice_parameter_b_ Lattice parameter in Å.
- double electron_ionization_energy_
 - Donor electron ionization energy in eV.
- double charge_density_ Charge density (dimensionless).
- bool ising_only_ *Ignore flip-flop part of interaction.*
- bool fermi_contact_only_ ignore dipolar part of hyperfine interaction.

4.24.1 Detailed Description

Parameters to cacluate the hyperfine interaction between an electron spin and a nuclear spin in a lattice.

- The documentation for this class was generated from the following files:

 /home/sbalian/spindec/include/SpinDec/HyperfineParameters.h
 - /home/sbalian/spindec/src/HyperfineParameters.cpp

4.25 SpinDec::IdentityOperator Class Reference

Identity.

#include <IdentityOperator.h>Inheritance diagram for SpinDec::IdentityOperator::

Public Member Functions

• IdentityOperator (const SpinBasis &basis)

4.25.1 Detailed Description

Identity.

- /home/sbalian/spindec/include/SpinDec/IdentityOperator.h
- /home/sbalian/spindec/src/IdentityOperator.cpp

4.26 SpinDec::IdentityPulse Class Reference

Identity pulse (no duration).

#include <IdentityPulse.h>Inheritance diagram for SpinDec::IdentityPulse::

Public Member Functions

• IdentityPulse (const SpinBasis &basis)

4.26.1 Detailed Description

Identity pulse (no duration).

- /home/sbalian/spindec/include/SpinDec/IdentityPulse.h
- /home/sbalian/spindec/src/IdentityPulse.cpp

4.27 SpinDec::LatticeVectors Class Reference

Lattice vectors for 3D crystal structures.

#include <LatticeVectors.h>Inheritance diagram for SpinDec::LatticeVectors::

Public Member Functions

- LatticeVectors (const ThreeVector &a1, const ThreeVector &a2, const ThreeVector &a3)
- const ThreeVector & get a1 () const
- const ThreeVector & get_a2 () const
- const ThreeVector & get_a3 () const

Protected Member Functions

- bool linearly_independent () const
- void set_lattice_vectors (const ThreeVector &a1, const ThreeVector &a2, const ThreeVector &a3)

Protected Attributes

- ThreeVector a1
- ThreeVector **a2**
- ThreeVector a3_

4.27.1 Detailed Description

Lattice vectors for 3D crystal structures. Length units: Å. In Cartesian coordinates. Vectors must be linearly independent.

- /home/sbalian/spindec/include/SpinDec/LatticeVectors.h
- /home/sbalian/spindec/src/LatticeVectors.cpp

4.28 SpinDec::MatrixRepresentation Class Reference

#include <MatrixRepresentation.h>Inheritance diagram for SpinDec::MatrixRepresentation::

Public Member Functions

- UInt get_dimension () const
- const SpinBasis & get_basis () const
- bool is_basis_equal (const auto_ptr< MatrixRepresentation > &to_check) const
- virtual void set_zero ()=0

Set all elements to zero.

• virtual auto_ptr< MatrixRepresentation > clone () const =0

Protected Member Functions

- MatrixRepresentation (const SpinBasis &basis)
- virtual void quit_if_dimension_mismatch () const =0
- void quit_if_basis_mismatch (const auto_ptr< MatrixRepresentation > &to_check) const

Protected Attributes

• UInt dimension_ Dimension of Hilbert space.

• SpinBasis basis_

4.28.1 Detailed Description

Abstract base class for spin states and operators in the matrix representation. Has a SpinBasis (Zeeman basis) and a dimension.

- /home/sbalian/spindec/include/SpinDec/MatrixRepresentation.h
- /home/sbalian/spindec/src/MatrixRepresentation.cpp

4.29 SpinDec::PiPulse Class Reference

 π -pulse or refocusing pulse.

#include <PiPulse.h>Inheritance diagram for SpinDec::PiPulse::

Public Member Functions

- PiPulse (const SpinState &state0, const SpinState &state1)
 Instantaneous.
- PiPulse (const SpinState &state0, const SpinState &state1, const vector < SpinState > &states2_plus)

4.29.1 Detailed Description

 π -pulse or refocusing pulse. $|0\rangle\langle 1|+|1\rangle\langle 0|$.

4.29.2 Constructor & Destructor Documentation

4.29.2.1 SpinDec::PiPulse::PiPulse (const SpinState & state0, const SpinState & state1, const vector < SpinState > & states2_plus)

Third parameter: these just add $|n\rangle \langle n|$ for $n=2,3,\ldots$

- /home/sbalian/spindec/include/SpinDec/PiPulse.h
- /home/sbalian/spindec/src/PiPulse.cpp

4.30 SpinDec::Pulse Class Reference

Pulses in a pulse sequence.

#include <Pulse.h>Inheritance diagram for SpinDec::Pulse::

Public Member Functions

- Pulse (const double duration, const SpinOperator &pulse_operator)
- const SpinOperator & get_pulse_operator () const
- double get_duration () const
- Pulse operator* (const Pulse &pulse) const
- Pulse operator (const Pulse &pulse) const

Protected Attributes

- double duration
- SpinOperator pulse_operator_

4.30.1 Detailed Description

Pulses in a pulse sequence. Includes the no-pulse free evolution.

- /home/sbalian/spindec/include/SpinDec/Pulse.h
- /home/sbalian/spindec/src/Pulse.cpp

4.31 SpinDec::PulseExperiment Class Reference

Abstract base class for a pulse sequence experiment.

#include <PulseExperiment.h>Inheritance diagram for SpinDec::PulseExperiment::

Public Member Functions

- PulseExperiment (const CSDProblem &csd_problem, const TimeArray &time_array)
- virtual TimeEvolution time_evolution (const UIntArray bath_indices)=0
- virtual auto_ptr< PulseExperiment > clone () const =0
- const TimeArray & get_time_array () const
- const CSDProblem & get_csd_problem () const

Protected Attributes

- CSDProblem csd problem
- TimeArray time_array_

4.31.1 Detailed Description

Abstract base class for a pulse sequence experiment.

- /home/sbalian/spindec/include/SpinDec/PulseExperiment.h
- /home/sbalian/spindec/src/PulseExperiment.cpp

4.32 SpinDec::PulseSequence Class Reference

Concrete general pulse sequence.

#include <PulseSequence.h>Inheritance diagram for SpinDec::PulseSequence::

Public Member Functions

- void clear ()
- void add_pulse (const Pulse &pulse)
- virtual auto_ptr< PulseSequenceBase > clone () const

4.32.1 Detailed Description

Concrete general pulse sequence.

- /home/sbalian/spindec/include/SpinDec/PulseSequence.h
- /home/sbalian/spindec/src/PulseSequence.cpp

4.33 SpinDec::PulseSequenceBase Class Reference

Abstract base class for pulse sequences.

#include <PulseSequenceBase.h>Inheritance diagram for SpinDec::PulseSequenceBase::

Public Member Functions

- SpinState final_state (const SpinState &initial_state) const
- double **get_duration** () const
- UInt num_pulses () const
- virtual auto_ptr< PulseSequenceBase > clone () const =0

Protected Attributes

- vector< Pulse > pulses_
- double duration

4.33.1 Detailed Description

Abstract base class for pulse sequences.

- /home/sbalian/spindec/include/SpinDec/PulseSequenceBase.h
- /home/sbalian/spindec/src/PulseSequenceBase.cpp

4.34 SpinDec::RandomNumberGenerator Class Reference

Static methods for generating random numbers.

#include <RandomNumberGenerator.h>

Static Public Member Functions

- static int uniform_c_rand (const int min, const int max)
- static void seed_uniform_c_rand (const int seed)

If seed is negative, calls clock_seed_uniform_c_rand().

• static void clock_seed_uniform_c_rand ()

Seed with current time.

• static double **normal_c_rand** (const double mean, const double stdev)

4.34.1 Detailed Description

Static methods for generating random numbers.

4.34.2 Member Function Documentation

4.34.2.1 int SpinDec::RandomNumberGenerator::uniform_c_rand (const int min, const int max) [static]

Random integer $\min \le i \le \max$ from a uniform distribution using cstdlib rand().

- /home/sbalian/spindec/include/SpinDec/RandomNumberGenerator.h
- /home/sbalian/spindec/src/RandomNumberGenerator.cpp

4.35 SpinDec::ReducedProblem Class Reference

SpinSystemBase and an order.

#include <ReducedProblem.h>

Public Member Functions

- **ReducedProblem** (const UInt order, const auto_ptr< SpinSystemBase > &spin_system_base)
- ReducedProblem (const ReducedProblem &rhs)
- ReducedProblem & operator= (const ReducedProblem &rhs)
- UInt get_order () const
- auto_ptr< SpinSystemBase > get_spin_system () const

Private Attributes

- UInt order_
- auto_ptr< SpinSystemBase > spin_system_base_

4.35.1 Detailed Description

SpinSystemBase and an order.

- /home/sbalian/spindec/include/SpinDec/ReducedProblem.h
- /home/sbalian/spindec/src/ReducedProblem.cpp

4.36 SpinDec::Sign Class Reference

±.

#include <Sign.h>

Public Member Functions

- int as_int () const
- bool isPlus () const
- bool isMinus () const
- bool operator== (const Sign &rhs) const

Static Public Attributes

- static const Sign Plus
- static const Sign Minus

Private Member Functions

• Sign (const int value)

Private Attributes

• int value_

Friends

• std::ostream & operator<< (std::ostream &os, Sign const &sign)

Print with cout.

4.36.1 Detailed Description

 \pm .

- /home/sbalian/spindec/include/SpinDec/Sign.h
- /home/sbalian/spindec/src/Sign.cpp

4.37 SpinDec::SimpleCubicLatticeVectors Class Reference

Simple cubic lattice vectors.

 $\label{lem:line_loss} \begin{tabular}{ll} $\#$ include $<$SimpleCubicLatticeVectors.h>$Inheritance$ & diagram & for & Spin-Dec::SimpleCubicLatticeVectors:: \\ \end{tabular}$

SpinDec::LatticeVectors

SpinDec::SimpleCubicLatticeVectors

Public Member Functions

• SimpleCubicLatticeVectors (const double lattice_constant)

Lattice constant a₀ in Å.

4.37.1 Detailed Description

Simple cubic lattice vectors. $|\mathbf{a}_1| = |\mathbf{a}_2| = |\mathbf{a}_3| = a_0$ and $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ mutually orthogonal (parallel to x, y, z respectively in Cartesian coordinates).

Source: http://en.wikipedia.org/wiki/Cubic_crystal_system.

- $\bullet \ / home/sbalian/spindec/include/SpinDec/SimpleCubicLatticeVectors.h$
- /home/sbalian/spindec/src/SimpleCubicLatticeVectors.cpp

4.38 SpinDec::SpinBasis Class Reference

Holds magnetic quantum numbers for (in general) multiple spins.

```
#include <SpinBasis.h>
```

Public Member Functions

- SpinBasis (const SpinParametersVector &spin_parameters_vector)

 Automatically build using spin multiplicities.
- SpinBasis (const SpinParameters &spin_parameters)

 Automatically build using spin multiplicity.
- SpinBasis (const Eigen::ArrayXXd &basis_as_array)
 Custom build.
- const Eigen::ArrayXXd & get_basis_as_array () const
- UInt num_basis_states () const
- UInt num spins () const
- double **get_element** (const UInt index, const UInt slot) const
- SpinBasis operator+ (const SpinBasis &to_append) const
- SpinBasis operator (const SpinBasis &to_combine) const
- bool operator== (const SpinBasis to_compare) const Check if bases are identical.
- bool is_equal (const SpinBasis &basis) const

Private Member Functions

- Eigen::ArrayXXd build (const SpinParametersVector &spin_parameters_vector)

 Automatically build using spin multiplicities.
- Eigen::ArrayXXd build (const SpinParameters &spin_parameters)

 Build using multiplicity.

Private Attributes

• Eigen::ArrayXXd basis_as_array_

Friends

• std::ostream & operator<< (std::ostream &os, SpinBasis const &basis)

Print with cout.

4.38.1 Detailed Description

Holds magnetic quantum numbers for (in general) multiple spins. Implements the Zeeman basis and includes build methods.

Columns: spins. Rows: magnetic quantum numbers.

For example, for two electrons, this is

$$\begin{array}{ccc} 0.5 & 0.5 \\ 0.5 & -0.5 \\ -0.5 & 0.5 \\ -0.5 & 0.5 \end{array}$$

For example, the first row corresponds to $|m_{S1} = 0.5, m_{S2} = 0.5\rangle$.

4.38.2 Member Function Documentation

4.38.2.1 SpinBasis SpinDec::SpinBasis::operator+ (const SpinBasis & to_append) const

For example,

$$basis1 = \begin{array}{c} 0.5 \\ -0.5 \end{array}$$

and

$$basis2 = \begin{array}{c} 4.5 \\ -4.5 \end{array}$$

basis1 + basis2 gives

$$\begin{array}{ccc} 0.5 & 4.5 \\ -0.5 & -4.5 \end{array}$$

4.38.2.2 SpinBasis SpinDec::SpinBasis::operator^ (const SpinBasis & to_combine) const

Like tensor product. For example,

$$basis1 = \begin{array}{c} 4.5 \\ -4.5 \end{array}$$

and

$$basis2 = \begin{array}{c} 0.5 \\ -0.5 \end{array}$$

basis1^(basis2) is

$$\begin{array}{ccc} 4.5 & 0.5 \\ 4.5 & -0.5 \\ -4.5 & 0.5 \\ -4.5 & -0.5 \end{array}$$

- /home/sbalian/spindec/include/SpinDec/SpinBasis.h
- /home/sbalian/spindec/src/SpinBasis.cpp

4.39 SpinDec::SpinBath Class Reference

Public Member Functions

- **SpinBath** (const CrystalStructure &crystal_structure, const auto_ptr< SpinSystemBase > &spin_system_base, const vector< SpinInteractionEdge > &intrabath_edges)
- **SpinBath** (const CrystalStructure &crystal_structure, const auto_ptr< SpinSystemBase > &spin_system_base, const SpinInteractionEdge &intrabath_edge)
- SpinBath (const SpinBath &spin_bath)
- SpinBath & operator= (const SpinBath & spin_bath)
- const SpinState & get_bath_state (const UInt index) const
- UInt num_bath_states () const
- SpinState get_bath_product_state (const UIntArray &indices) const
- const CrystalStructure & get_crystal_structure () const
- const vector< SpinInteractionEdge > & get_intrabath_edges () const
- auto_ptr< SpinSystemBase > get_spin_system () const
- SpinInteractionGraph reduced_problem_graph (const UInt order) const
- ThreeVector **get_position** (const UInt vertex_label, const UInt bath_index) const
- void **set_bath_state** (const UInt index, const UInt level)

Private Member Functions

- void **init** (const CrystalStructure &crystal_structure, const auto_ptr< SpinSystemBase > &spin_-system_base, const vector< SpinInteractionEdge > &intrabath_edges)
- vector< SpinInteractionEdge > make_intrabath_edges (const UInt order, const SpinInteractionEdge &intrabath_edge) const
- vector< SpinInteractionEdge > make_intrabath_edges (const UInt order) const

Private Attributes

- vector< SpinState > bath_states_
- CrystalStructure crystal_structure_
- auto_ptr< SpinSystemBase > spin_system_base_
- vector < SpinInteractionEdge > intrabath_edges_

- /home/sbalian/spindec/include/SpinDec/SpinBath.h
- /home/sbalian/spindec/src/SpinBath.cpp

4.40 SpinDec::SpinDonor Class Reference

Inheritance diagram for SpinDec::SpinDonor::

Public Member Functions

- **SpinDonor** (const double field_strength, const double nuclear_quantum_number, const double electron_gyromagnetic_ratio, const double nuclear_gyromagnetic_ratio, const double hyperfine_strength, const unsigned int lower_level_label, const unsigned int upper_level_label, const Three-Vector &electron_position, const Three-Vector &nuclear_position, const bool complete_basis)
- const ElectronSpinParameters & get_electron_parameters () const
- const SpinParameters & get_nuclear_parameters () const
- const Hyperfine & get_hyperfine () const
- int max_quantum_number () const
- virtual UInt dimension () const
- UInt total_multiplicity () const
- virtual SpinState eigenstate (const UInt level_label)
- virtual double **energy** (const UInt level_label)
- double **polarization** (const UInt level_label) const
- const SpinInteractionVertex & electron vertex () const
- const SpinInteractionVertex & nuclear vertex () const
- const UIntArray get_orthogonal_level_labels () const
- SpinState get_lower_level ()
- SpinState get_upper_level ()
- vector< SpinState > get_orthogonal_levels ()
- virtual PiPulse pi_pulse (const UInt level_label1, const UInt level_label2)
- virtual auto_ptr< SpinSystemBase > clone () const

Private Member Functions

- void sort_level_labels ()
- UInt level_label_index (const UInt level_label) const
- virtual void check_level_label (const UInt level_label) const
- $\bullet \ \ {\rm void} \ \boldsymbol{calc_adiabatic_level_labels} \ ()$
- double delta () const
- double omega () const
- double scaled_omega () const
- double **D** (const int quantum_number) const
- double **O** (const int quantum_number) const
- double **R** (const int quantum_number) const
- double energy (const AdiabaticLabel &adiabatic_level_label) const

- UInt adiabatic_label_to_int_label (const AdiabaticLabel &adiabatic_level_label) const
- AdiabaticLabel int_label_to_adiabatic_label (const UInt level_label) const
- AdiabaticLabel orthogonal adiabatic level label (AdiabaticLabel adiabatic level label) const
- double cos_theta (const int quantum_number) const
- double sin theta (const int quantum number) const
- double a (const int quantum_number) const
- double **b** (const int quantum_number) const
- double polarization (const AdiabaticLabel &adiabatic level label) const
- SpinBasis build_basis (const AdiabaticLabel &adiabatic_level_label) const
- SpinBasis build_basis (const std::vector< AdiabaticLabel > &adiabatic_level_labels) const
- SpinBasis build basis (const UIntArray &level labels) const
- SpinBasis build_truncated_basis () const
- void **set_transition** (const UInt lower_level_label, const UInt upper_level_label)
- void **set_orthogonal_level_labels** (const UInt lower_level_label, const UInt upper_level_label)
- UIntArray **get_orthogonal_level_labels** (const UInt lower_level_label, const UInt upper_level_label) const
- UInt orthogonal_level_label (const UInt level_label) const
- void **init** (const double field_strength, const double nuclear_quantum_number, const double electron_gyromagnetic_ratio, const double nuclear_gyromagnetic_ratio, const double hyperfine_strength, const unsigned int lower_level_label, const unsigned int upper_level_label, const Three-Vector &electron_position, const Three-Vector &nuclear_position, const bool complete_basis)

Private Attributes

- bool complete_basis_
- ElectronSpinParameters electron_parameters_
- SpinParameters nuclear_parameters_
- Hyperfine hyperfine_
- UInt transition_level_labels_[2]
- UIntArray orthogonal_level_labels_
- UIntArray sorted level labels
- std::vector< AdiabaticLabel > adiabatic_level_labels_

- /home/sbalian/spindec/include/SpinDec/SpinDonor.h
- /home/sbalian/spindec/src/SpinDonor.cpp

4.41 SpinDec::SpinDown Class Reference

Inheritance diagram for SpinDec::SpinDown::

Public Member Functions

• SpinDown (const SpinHalfParameters &spin_half_parameters)

Private Member Functions

• virtual void **init** (const double gyromagnetic_ratio)

- /home/sbalian/spindec/include/SpinDec/SpinDown.h
- /home/sbalian/spindec/src/SpinDown.cpp

4.42 SpinDec::SpinHalf Class Reference

Inheritance diagram for SpinDec::SpinHalf::

Public Member Functions

- **SpinHalf** (const double gyromagnetic_ratio, const double field_strength, const ThreeVector &position)
- virtual UInt dimension () const
- virtual auto_ptr< SpinSystemBase > clone () const

Private Member Functions

- virtual void solve once ()
- virtual void check_level_label (const UInt level_label) const

Private Attributes

• double gyromagnetic_ratio_

- /home/sbalian/spindec/include/SpinDec/SpinHalf.h
- /home/sbalian/spindec/src/SpinHalf.cpp

4.43 SpinDec::SpinHalfParameters Class Reference

Inheritance diagram for SpinDec::SpinHalfParameters::

Public Member Functions

• SpinHalfParameters (const double gyromagnetic_ratio)

- /home/sbalian/spindec/include/SpinDec/SpinHalfParameters.h
- /home/sbalian/spindec/src/SpinHalfParameters.cpp

4.44 SpinDec::SpinHalfStates Class Reference

Inheritance diagram for SpinDec::SpinHalfStates::

Protected Member Functions

- virtual void **init** (const double gyromagnetic_ratio)=0
- virtual void **set_state_vector** (const ComplexVector &state_vector)
- virtual void **set_element** (const UInt index, const CDouble & element)
- virtual void **set_element** (const UInt index, const double element)

- /home/sbalian/spindec/include/SpinDec/SpinHalfStates.h
- /home/sbalian/spindec/src/SpinHalfStates.cpp

4.45 SpinDec::SpinHamiltonian Class Reference

Inheritance diagram for SpinDec::SpinHamiltonian::

Public Member Functions

- SpinHamiltonian (const SpinInteractionGraph &graph, const UniformMagneticField &field)
- UniformMagneticField get_field () const
- const SpinInteractionGraph & get_graph () const
- void update_positions (const UIntArray &vertex_labels, const vector < ThreeVector > &positions)

Private Member Functions

- void fill_zeeman ()
- void fill_interactions ()
- void init_terms ()
- void sum_zeeman_terms ()
- void sum_interaction_terms ()
- void fill_zeeman (const UInt vertex_label)
- void **fill_interaction** (const UInt edge_index)

Private Attributes

- UniformMagneticField field_
- SpinInteractionGraph graph_
- vector< ComplexMatrix > zeeman_terms_
- vector< ComplexMatrix > interaction_terms_
- ComplexMatrix zeeman_hamiltonian_
- ComplexMatrix interaction_hamiltonian_

- /home/sbalian/spindec/include/SpinDec/SpinHamiltonian.h
- /home/sbalian/spindec/src/SpinHamiltonian.cpp

4.46 SpinDec::SpinInteraction Class Reference

Inheritance diagram for SpinDec::SpinInteraction::

Public Member Functions

- virtual void calculate (const SpinParameters &spin_parameters1, const SpinParameters &spin_parameters2, const ThreeVector &position1, const ThreeVector &position2, const UniformMagneticField &field)=0
- double get_strength () const
- bool strength_preset () const
- virtual void **fill** (ComplexMatrix *hamiltonian, const SpinParametersVector &spins, const SpinBasis &basis, const UInt spin_label1, const UInt spin_label2) const =0
- virtual auto_ptr< SpinInteraction > clone () const =0
- virtual string **get_type** () const =0

Protected Member Functions

- SpinInteraction (const double strength)
- void **fill_ising_flipflop** (ComplexMatrix *hamiltonian, const SpinParametersVector &spin_parameters_vector, const SpinBasis &basis, const UInt spin_label1, const UInt spin_label2, const bool ising_only, const CDouble &flipflop_form) const
- void warn_if_preset_then_calculated () const

Protected Attributes

- double strength_
- bool strength_preset_

- /home/sbalian/spindec/include/SpinDec/SpinInteraction.h
- /home/sbalian/spindec/src/SpinInteraction.cpp

4.47 SpinDec::SpinInteractionEdge Class Reference

Public Member Functions

- SpinInteractionEdge (const SpinInteractionEdge &other)
- **SpinInteractionEdge** (const UInt label1, const UInt label2, const auto_ptr< **SpinInteraction** > &interaction)
- UInt get_label1 () const
- UInt get_label2 () const
- auto_ptr< SpinInteraction > get_interaction () const
- SpinInteractionEdge & operator= (const SpinInteractionEdge &other)

Private Attributes

- pair< UInt, UInt > labels_
- auto_ptr< SpinInteraction > interaction_

- /home/sbalian/spindec/include/SpinDec/SpinInteractionEdge.h
- /home/sbalian/spindec/src/SpinInteractionEdge.cpp

4.48 SpinDec::SpinInteractionGraph Class Reference

Public Member Functions

- void **set_basis** (const **SpinBasis** &basis)
- void add vertex (const SpinParameters &spin parameters, const ThreeVector &position)
- void add_vertex (const SpinParameters &spin_parameters, const SpinBasis &basis, const Three-Vector &position)
- void add_vertex_appending_basis (const SpinParameters &spin_parameters, const ThreeVector &position)
- void **add_vertex_appending_basis** (const SpinParameters &spin_parameters, const SpinBasis &basis, const ThreeVector &position)
- void add_edge (unsigned int label1, unsigned int label2, const auto_ptr< SpinInteraction > &interaction)
- void add_edges (const vector < SpinInteractionEdge > &edges)
- unsigned int num_vertices () const
- unsigned int num_edges () const
- void clear ()
- const SpinBasis & get_basis () const
- const SpinParameters & get_spin_parameters (const unsigned int label) const
- const ThreeVector & get_position (const unsigned int label) const
- auto_ptr< SpinInteraction > get_interaction (const unsigned int index) const
- void **set_interaction** (const unsigned int index, const auto_ptr< **SpinInteraction** > &interaction)
- SpinParametersVector spin_parameters_vector () const
- const SpinInteractionVertex & get_vertex (const unsigned int label) const
- const SpinInteractionEdge & get_edge (const unsigned int index) const
- void join_in_place (const SpinInteractionGraph &to_join)
- void **join_in_place** (const **SpinInteractionGraph** &to_join, const std::vector< **SpinInteractionEdge** > &edges)
- SpinInteractionGraph join (const SpinInteractionGraph &to_join) const
- SpinInteractionGraph join (const SpinInteractionGraph &to_join, const std::vector< SpinInteractionEdge > &edges) const
- void **set_position** (const UInt label, const ThreeVector &position)
- const SpinInteractionVertex & get_vertex1 (const UInt index) const
- const SpinInteractionVertex & get_vertex2 (const UInt index) const
- void set_positions (const UIntArray &vertex_labels, const vector < ThreeVector > &positions)

Private Member Functions

- void quit_if_vertex_label_out_of_bounds (const unsigned int label) const
- void quit_if_edge_index_out_of_bounds (const unsigned int index) const
- void **set_vertex** (const unsigned int label, const **SpinInteractionVertex** &vertex)
- void **set_edge** (const unsigned int index, const **SpinInteractionEdge** &edge)

Private Attributes

- vector< SpinInteractionVertex > vertices_
- $\bullet \ \ vector < SpinInteractionEdge > edges_ \\$
- SpinBasis basis_

- /home/sbalian/spindec/include/SpinDec/SpinInteractionGraph.h
- /home/sbalian/spindec/src/SpinInteractionGraph.cpp

4.49 SpinDec::SpinInteractionVertex Class Reference

Public Member Functions

- **SpinInteractionVertex** (const UInt label, const **SpinParameters** & spin_parameters, const ThreeVector & position)
- **SpinInteractionVertex** (const UInt label, const **SpinParameters** & spin_parameters, const **SpinBasis** & basis, const ThreeVector & position)
- UInt get_label () const
- const SpinParameters & get_spin_parameters () const
- const SpinBasis & get_basis () const
- const ThreeVector & get_position () const
- void **set_position** (const ThreeVector &position)

Private Attributes

- UInt label
- SpinParameters spin_parameters_
- SpinBasis basis_
- ThreeVector **position**_

- /home/sbalian/spindec/include/SpinDec/SpinInteractionVertex.h
- /home/sbalian/spindec/src/SpinInteractionVertex.cpp

4.50 SpinDec::SpinOperator Class Reference

Inheritance diagram for SpinDec::SpinOperator::

Public Member Functions

- SpinOperator (const ComplexMatrix &matrix, const SpinBasis &basis)
- SpinOperator (const SpinBasis &basis)
- const ComplexMatrix & get_matrix () const
- void **set_matrix** (const ComplexMatrix &matrix)
- const CDouble & **get_element** (const UInt i, const UInt j) const
- void **set_element** (const UInt i, const UInt j, const CDouble & element)
- void **set_element** (const UInt i, const UInt j, const double element)
- void add_to_element (const UInt i, const UInt j, const CDouble &to_add)
- SpinOperator operator (const SpinOperator &rhs) const
- SpinState operator* (const SpinState & operand) const
- SpinOperator operator+ (const SpinOperator &rhs) const
- SpinOperator operator- (const SpinOperator &rhs) const
- virtual void set_zero ()

Set all elements to zero.

• virtual auto_ptr< MatrixRepresentation > clone () const

Protected Member Functions

• virtual void quit if dimension mismatch () const

Protected Attributes

• ComplexMatrix matrix_

Friends

• std::ostream & operator << (std::ostream &os, SpinOperator const &spin_operator)

- /home/sbalian/spindec/include/SpinDec/SpinOperator.h
- /home/sbalian/spindec/src/SpinOperator.cpp

4.51 SpinDec::SpinParameters Class Reference

Inheritance diagram for SpinDec::SpinParameters::

Public Member Functions

- SpinParameters (const double quantum_number, const double gyromagnetic_ratio)
- double get_quantum_number () const
- double get_gyromagnetic_ratio () const
- UInt get_multiplicity () const

Protected Member Functions

• UInt multiplicity (const double quantum_number) const

Protected Attributes

- double quantum_number_
- double gyromagnetic_ratio_
- UInt multiplicity_

Friends

• std::ostream & operator << (std::ostream &os, SpinParameters const &spin_parameters)

- /home/sbalian/spindec/include/SpinDec/SpinParameters.h
- /home/sbalian/spindec/src/SpinParameters.cpp

4.52 SpinDec::SpinParametersVector Class Reference

Public Member Functions

- SpinParametersVector (const SpinParameters &spin_parameters)
- SpinParameters & operator[] (const UInt index)
- const SpinParameters & operator[] (const UInt index) const
- void **push_back** (const **SpinParameters** &spin_parameters)
- UInt size () const
- void clear ()
- UInt multiplicity () const

Private Attributes

• std::vector< SpinParameters > spin_parameters_vector_

- /home/sbalian/spindec/include/SpinDec/SpinParametersVector.h
- /home/sbalian/spindec/src/SpinParametersVector.cpp

4.53 SpinDec::SpinState Class Reference

Inheritance diagram for SpinDec::SpinState::

Public Member Functions

- SpinState (const Complex Vector &state_vector, const SpinBasis &basis)
- SpinState (const SpinBasis &basis)
- const ComplexVector & get_state_vector () const
- virtual void **set_state_vector** (const ComplexVector &state_vector)
- const CDouble & **get_element** (const UInt index) const
- virtual void **set element** (const UInt index, const CDouble & element)
- virtual void **set_element** (const UInt index, const double element)
- SpinState operator[∧] (const SpinState &rhs) const
- CDouble operator* (const SpinState &rhs) const
- SpinOperator operator% (const SpinState &rhs) const
- SpinState operator+ (const SpinState &rhs) const
- SpinState operator- (const SpinState &rhs) const
- SpinState operator* (const CDouble &c) const
- void **time_evolve** (const ComplexMatrix &unitary_evolution_matrix)
- virtual void set zero ()

Set all elements to zero.

- void **normalize** ()
- SpinState normalized () const
- virtual auto_ptr< MatrixRepresentation > clone () const

Protected Member Functions

• virtual void quit_if_dimension_mismatch () const

Protected Attributes

• ComplexVector state_vector_

- /home/sbalian/spindec/include/SpinDec/SpinState.h
- /home/sbalian/spindec/src/SpinState.cpp

4.54 SpinDec::SpinSystem Class Reference

Inheritance diagram for SpinDec::SpinSystem::

Public Member Functions

- SpinSystem (const SpinHamiltonian &hamiltonian)
- virtual UInt dimension () const
- virtual auto_ptr< SpinSystemBase > clone () const

Protected Member Functions

- virtual void solve_once ()
- virtual void check_level_label (const UInt level_label) const

Protected Attributes

• HermitianEigenspectrum eigenspectrum_

- /home/sbalian/spindec/include/SpinDec/SpinSystem.h
- /home/sbalian/spindec/src/SpinSystem.cpp

4.55 SpinDec::SpinSystemBase Class Reference

Inheritance diagram for SpinDec::SpinSystemBase::

Public Member Functions

- SpinSystemBase (const SpinHamiltonian &hamiltonian)
- const SpinHamiltonian & get hamiltonian () const
- virtual SpinState eigenstate (const UInt level_label)
- virtual double **energy** (const UInt level_label)
- void **set_state** (const **SpinState** & state)
- void **set_state** (const UInt level_label)
- void **set_state** (const CDouble &c0, const UInt level_label0, const CDouble &c1, const UInt level_label1)
- const SpinState & get_state () const
- EvolutionOperator evolution_operator (const double time)
- virtual UInt **dimension** () const =0
- const ComplexMatrix & get eigenvector matrix ()
- const RealVector & **get_eigenvalue_vector** ()
- virtual PiPulse pi_pulse (const UInt level_label1, const UInt level_label2)
- void **print** (const char option)
- virtual auto_ptr< SpinSystemBase > clone () const =0
- void **update_positions** (const UIntArray &vertex_labels, const vector < ThreeVector > &positions)

Protected Member Functions

- virtual void solve_once ()=0
- virtual void **check_level_label** (const UInt level_label) const =0

Protected Attributes

- SpinHamiltonian hamiltonian_
- RealVector energies_
- ComplexMatrix eigenstates_
- SpinState state_
- bool is_solved_
- bool is_state_set_

- /home/sbalian/spindec/include/SpinDec/SpinSystemBase.h
- /home/sbalian/spindec/src/SpinSystemBase.cpp

4.56 SpinDec::SpinUp Class Reference

Inheritance diagram for SpinDec::SpinUp::

Public Member Functions

• **SpinUp** (const **SpinHalfParameters** & spin_half_parameters)

Private Member Functions

• virtual void **init** (const double gyromagnetic_ratio)

- /home/sbalian/spindec/include/SpinDec/SpinUp.h
- /home/sbalian/spindec/src/SpinUp.cpp

4.57 SpinDec::StringOptions Class Reference

Public Member Functions

- StringOptions (const string &options)
- bool **found_option** (const char option) const
- bool is_empty () const

Private Attributes

• string options_

- /home/sbalian/spindec/include/SpinDec/StringOptions.h
- /home/sbalian/spindec/src/StringOptions.cpp

4.58 SpinDec::TimeArray Class Reference

Public Member Functions

- TimeArray (const double initial_time, const double final_time, const UInt num_steps)
- TimeArray (const double single_time)
- bool **operator==** (const TimeArray &time_array) const
- void logarithmic_time ()
- double **get_time** (const UInt index) const
- const DoubleArray & get_time_vector () const
- UInt num_steps () const
- UInt get_dimension () const
- void scale_time (const double scalar)

Private Member Functions

- void clear ()
- void initialize (const double initial_time, const double final_time, const UInt num_steps)

Private Attributes

- DoubleArray time_vector_
- UInt dimension_

Friends

• std::ostream & operator << (std::ostream &os, TimeArray const &time_array)

- /home/sbalian/spindec/include/SpinDec/TimeArray.h
- /home/sbalian/spindec/src/TimeArray.cpp

4.59 SpinDec::TimeEvolution Class Reference

Public Member Functions

- TimeEvolution (const TimeArray &time_array, const CDoubleArray &evolution)
- TimeEvolution (const TimeArray &time_array)
- const CDouble & evolution (const UInt index) const
- void set_evolution_zeros ()
- void set_evolution_ones ()
- const CDoubleArray & get_evolution () const
- const TimeArray & get_time_array () const
- UInt dimension () const
- TimeEvolution operator+ (const TimeEvolution &to_add) const
- TimeEvolution operator* (const TimeEvolution &to_multiply) const
- TimeEvolution operator/ (const TimeEvolution &to_divide) const
- void print () const
- void print real () const
- void print_imag () const
- void print_abs () const
- void **print** (const string &file_name) const
- void **print_real** (const string &file_name) const
- void **print_imag** (const string &file_name) const
- void **print_abs** (const string &file_name) const
- void scale_time (const double scalar)
- void finite_zeros ()
- bool has_greater_than_one () const

Private Member Functions

- void **print** (const char option) const
- void **print** (const string &file_name, const char option) const

Private Attributes

- TimeArray time_array_
- CDoubleArray evolution_

- /home/sbalian/spindec/include/SpinDec/TimeEvolution.h
- /home/sbalian/spindec/src/TimeEvolution.cpp

4.60 SpinDec::TwoStateSuperposition Class Reference

2-level superposition state.

 $\label{thm:linear_spin} \mbox{\sc \#include <TwoStateSuperposition.h>Inheritance} \qquad \mbox{\sc diagram} \qquad \mbox{for} \qquad \mbox{\sc Spin-Dec::TwoStateSuperposition::} \\$

Public Member Functions

- TwoStateSuperposition (const CDouble &c0, const SpinState &state0, const CDouble &c1, const SpinState &state1)
- const SpinState & get_state0 () const
- const SpinState & get_state1 () const
- const CDouble & get_c0 () const
- const CDouble & get_c1 () const

Private Attributes

- SpinState state0_
- SpinState state1_
- CDouble c0_
- CDouble c1_

4.60.1 Detailed Description

2-level superposition state.

- /home/sbalian/spindec/include/SpinDec/TwoStateSuperposition.h
- /home/sbalian/spindec/src/TwoStateSuperposition.cpp

4.61 SpinDec::UniformMagneticField Class Reference

Public Member Functions

- UniformMagneticField (const double magnitude)
- UniformMagneticField (const double magnitude, const ThreeVector &direction)
- double get_magnitude () const
- ThreeVector **get_direction** () const
- void **set_magnitude** (const double magnitude)
- void **set_direction** (const ThreeVector &direction)

Private Attributes

- double magnitude_
- ThreeVector direction_

- /home/sbalian/spindec/include/SpinDec/UniformMagneticField.h
- /home/sbalian/spindec/src/UniformMagneticField.cpp

Chapter 5

File Documentation

5.1 /home/sbalian/spindec/include/SpinDec/typedefs.h File Reference

```
typedefs and "usings" #include "SpinDec/config.h"
#include <Eigen/Dense>
#include <complex>
#include <vector>
#include <string>
#include <iostream>
#include <memory>
#include <utility>
#include <map>
```

Typedefs

- typedef unsigned int SpinDec::UInt Unsigned int.
- typedef Eigen::Vector3d SpinDec::ThreeVector Real 3-vector.
- typedef std::complex < double > SpinDec::CDouble Complex double.
- typedef Eigen::MatrixXcd SpinDec::ComplexMatrix Matrix of complex doubles.
- typedef Eigen::VectorXcd SpinDec::ComplexVector Vector of complex doubles.
- typedef Eigen::VectorXd SpinDec::RealVector

File Documentation

Vector of doubles.

• typedef std::vector< double > SpinDec::DoubleArray STL vector of doubles.

• typedef std::vector < int > SpinDec::IntArray STL vector of integers.

• typedef std::vector< unsigned int > SpinDec::UIntArray STL vector of unsigned integers.

• typedef std::vector < CDouble > SpinDec::CDoubleArray STL vector of complex doubles.

5.1.1 Detailed Description

typedefs and "usings" Custom STL and Eigen typedefs for SpinDec. Also includes some usings, all in the SpinDec namespace.

Index

/home/sbalian/spindec/include/SpinDec/typedefs.h,	SpinDec::AdiabaticLabel, 7
81	SpinDec::BoostEigen, 9
	cosAngleBetween, 9
calculate	maxAbsCoeff, 9
SpinDec::CCE, 12	partialTrace, 10
cosAngleBetween	spectralDecomposition, 10
SpinDec::BoostEigen, 9	tensorProduct, 10
	unitarySpectralDecomposition, 10
eigenvalues_	SpinDec::CCE, 11
SpinDec::EvolutionOperator, 33	calculate, 12
eigenvectors_	SpinDec::Cluster, 13
SpinDec::EvolutionOperator, 33	SpinDec::ClusterDatabase, 14
EvolutionOperator	SpinDec::ClusterDatabaseEntry, 16
SpinDec::EvolutionOperator, 32	SpinDec::Constants, 17
	kElectronGyromagneticRatio, 17
fill_site_vectors	kPi, 17
SpinDec::CrystalStructure, 22	kPlanck, 17
	kReducedPlanck, 17
int_range_centred_cube	SpinDec::CPMG, 18
SpinDec::DiamondCubic, 26	SpinDec::CPMGDephasing, 19
	SpinDec::CrystalBasis, 20
kElectronGyromagneticRatio	SpinDec::CrystalStructure, 21
SpinDec::Constants, 17	fill_site_vectors, 22
kPi	SpinDec::CSDProblem, 23
SpinDec::Constants, 17	system_bath_edges_, 24
kPlanck	SpinDec::DensityOperator, 25
SpinDec::Constants, 17	SpinDec::DiamondCubic, 26
kReducedPlanck	int_range_centred_cube, 26
SpinDec::Constants, 17	SpinDec::Dipolar, 27
	SpinDec::Eigenspectrum, 29
maxAbsCoeff	SpinDec::ElectronSpinParameters, 30
SpinDec::BoostEigen, 9	SpinDec::Errors, 31
^	SpinDec::EvolutionOperator, 32
operator^	eigenvalues_, 33
SpinDec::SpinBasis, 54	eigenvectors_, 33
operator+	
SpinDec::SpinBasis, 54	EvolutionOperator, 32
	SpinDecu:FileProperties, 34
partialTrace	SpinDec::FreeEvolution, 35
SpinDec::BoostEigen, 10	SpinDec::HermitianEigenspectrum, 36
PiPulse	spectralDecomposition, 36
SpinDec::PiPulse, 44	SpinDec::Hyperfine, 37
. 15	SpinDec::HyperfineParameters, 39
spectralDecomposition	SpinDec::IdentityOperator, 40
SpinDec::BoostEigen, 10	SpinDec::IdentityPulse, 41
SpinDec::HermitianEigenspectrum, 36	SpinDec::LatticeVectors, 42

84 INDEX

```
SpinDec::MatrixRepresentation, 43
SpinDec::PiPulse, 44
    PiPulse, 44
SpinDec::Pulse, 45
SpinDec::PulseExperiment, 46
SpinDec::PulseSequence, 47
SpinDec::PulseSequenceBase, 48
SpinDec::RandomNumberGenerator, 49
    uniform c rand, 49
SpinDec::ReducedProblem, 50
SpinDec::Sign, 51
SpinDec::SimpleCubicLatticeVectors, 52
SpinDec::SpinBasis, 53
    operator^{\wedge}, 54
    operator+, 54
SpinDec::SpinBath, 55
SpinDec::SpinDonor, 56
SpinDec::SpinDown, 58
SpinDec::SpinHalf, 59
SpinDec::SpinHalfParameters, 60
SpinDec::SpinHalfStates, 61
SpinDec::SpinHamiltonian, 62
SpinDec::SpinInteraction, 63
SpinDec::SpinInteractionEdge, 64
SpinDec::SpinInteractionGraph, 65
SpinDec::SpinInteractionVertex, 67
SpinDec::SpinOperator, 68
SpinDec::SpinParameters, 69
SpinDec::SpinParametersVector, 70
SpinDec::SpinState, 71
SpinDec::SpinSystem, 72
SpinDec::SpinSystemBase, 73
SpinDec::SpinUp, 75
SpinDec::StringOptions, 76
SpinDec::TimeArray, 77
SpinDec::TimeEvolution, 78
SpinDec::TwoStateSuperposition, 79
SpinDec::UniformMagneticField, 80
system_bath_edges_
    SpinDec::CSDProblem, 24
tensorProduct
    SpinDec::BoostEigen, 10
uniform_c_rand
    SpinDec::RandomNumberGenerator, 49
unitarySpectralDecomposition
    SpinDec::BoostEigen, 10
```