

Time Series Management

Michele Linardi Ph.D.

michele.linardi@orange.fr

Q2 Q3

Syllabus

- Time series data mining
- Motif primitive
- Discord (Outlier)
- Matrix profile Algorithm
- Algorithm Python code DEMO

Data Series Motifs

 Motif discovery is one of the most useful primitives for data series mining

• Given a time series T, a motif is the pair of subsequences of length & with the smallest Euclidean distance.

Data Series Discords

- Discords are used to detect anomalous/interesting patterns
 - usually represent the most unusual subsequences within a time series

• Given a time series T, a discord is the subsequence of length ℓ that has the largest Euclidean distance to its nearest neighbor.

Matrix Profile - Motif and Discord Discovery

Distance Matrix: a symmetric matrix, which contains the pairwise subsequences (of length ℓ) distances in T.

Excluding Trivial matches: = distances of any sequence pair having indexes (e.g., i and j) closer than a given threshold

Matrix Profile: a vector of distance between each subsequence and its nearest neighbor

Matrix Profile - Motif and Discord Discovery

Matrix Profile - Motif and Discord Discovery

Euclidean distance metrics

Given two time series

$$x = x_1...x_n$$

and

$$y = y_1...y_n$$

their z-Normalized Euclidean distance is defined as:

$$\widehat{x_i} = \frac{x_i - \mu_x}{\sigma_x} \qquad \widehat{y_i} = \frac{y_i - \mu_y}{\sigma_y}$$

function y = zNorm(x)
y = (x-mean(x))/std(x,1);

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (\widehat{x}_i - \widehat{y}_i)^2}$$

function d = EuclideanDistance(x,y)
d = sqrt(sum((x-y).^2));

Pearson correlation coefficient

- Given two time series x and y of length m.
- Correlation Coefficient:

$$corr(\mathbf{x}, \mathbf{y}) = \frac{(E(\mathbf{x}) - \mu_{x})(E(\mathbf{y}) - \mu_{y})}{\sigma_{x}\sigma_{y}} = \frac{\sum_{i=1}^{m} x_{i}y_{i} - m\mu_{x}\mu_{y}}{m\sigma_{x}\sigma_{y}}$$

• Where
$$\mu_x = \frac{\sum_{i=1}^{m} x_i}{m}$$
 and $\sigma_x^2 = \frac{\sum_{i=1}^{m} x_i^2}{m} - \mu_x^2$

Sufficient Statistics:

$$\sum_{i=1}^{m} x_i y_i \quad \sum_{i=1}^{m} x_i \quad \sum_{i=1}^{m} y_i \quad \sum_{i=1}^{m} x_i^2 \quad \sum_{i=1}^{m} y_i^2$$

The sufficient statistics can be calculated in one linear scan. Given the sufficient statistics, correlation coefficient is a constant operation. Note the use of the dot product, which is the key component of many lockstep measures.

Correlation – Euclidean Distance relationship

Z-normalized Euclideand distance m := number of data points

$$d(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \sqrt{2m(1 - corr(\mathbf{x}, \mathbf{y}))}$$

- Correlation coefficient does not obey triangular inequality, while Euclidean distance does
- Maximizing correlation coefficient can be achieved by minimizing normalized Euclidean distance and vice versa
- Correlation coefficient is bounded between

 1 and 1, while z-normalized Euclidean
 distance is bounded between zero and a positive number dependent on m

Mueen's Algorithm for Similarity Search (MASS)

- MASS uses a convolution based method to calculate sliding dot products in $O(n \log n)$
- Convolution: If x and y are vectors of polynomial coefficients, convolving them is equivalent to multiplying the two polynomials.
- We can use convolution to compute all of the sliding dot products between the query and sliding windows.

Convolution can be computed in the frequency domain, using the Fast Fourier
 Transform.

Matrix profile algorithm – STOMP (1/6)

Scalable Time series Ordered Matrix Profile

O(n²) time, O(n) space algorithm to compute the matrix profile.

Matrix profile algorithm – STOMP (2/6)

Scalable Time series Ordered Matrix Profile

Z-normalized Euclideand distance
$$m:=$$
 number of data points
$$d_{i,j}=\sqrt{2m\left(1-\frac{T_iT_j-m\mu_i\mu_j}{m\sigma_i\sigma_j}\right)}$$

- We can precompute and store the means and standard deviations in O(n) space and time
- Once we know Ti,Tj, it takes O(1) time to compute the distance di,j

Matrix profile algorithm – STOMP (3/6)

Scalable Time series Ordered Matrix Profile

• The relationship between TiTj and Ti+1Tj+1

$$T_{i+1}T_{j+1} = T_iT_j - t_it_j + t_{i+m}t_{j+m}$$

0(1) time complexity

Matrix profile algorithm – STOMP (4/6)

Scalable Time series Ordered Matrix Profile

1) All means and standard deviations are precomputed. This costs linear time and space.

μ_1	μ_2	μ_3	 μ_{n-m+1}
σ_1	σ_2	σ_3	 σ_{n-m+1}

Matrix profile algorithm – STOMP (5/6)

Scalable Time series Ordered Matrix Profile

2) The first column and row of the matrix are identical and pre-computed by MASS.

Matrix profile algorithm – STOMP (6/6)

Scalable Time series Ordered Matrix Profile

3) The algorithm iterates through the rows. The previous row is maintained as a local array to feed dot products.

Notebook motif discovery

 https://github.com/target/matrixprofilets/blob/master/docs/examples/Motif%20Discovery.ipynb

Matrix Profile library:

https://github.com/target/matrixprofile-ts/tree/master

Haptics DATA

Data are taken from 5 people entering their passgraph (a code to access a system protected by a graphical authentication system) on a touchscreen. The data are the x-axis movement only.

Assignment

Open the Python Notebook

TS_MotifDiscovery.ipynb

Load the modules in the folder

Instruction are contained in the notebook

References

- Time Series Data Mining Using the Matrix Profile: A Unifying View of Motif Discovery, Anomaly Detection, Segmentation, Classification, Clustering and Similarity Joins www.cs.ucr.edu/~eamonn/MatrixProfile.html
- https://stumpy.readthedocs.io/en/latest/Tutorial The Matrix Profile.html
- Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets https://ieeexplore.ieee.org/document/7837992
- https://github.com/matrix-profile-foundation