# RcppArmadillo CHEAT SHEET

Combine power of Rcpp, C++ and Armadillo to achieve efficiency! Cheatsheet for arma functions.



### Generating

### linspace(start, end, n)

Generate vector with linearly spaced elements

### eye(n\_rows, n\_cols)

Generate identity matrix

### one(n\_rows, n\_cols)

Generate object filled with ones

### zeros(n\_rows, n\_cols)

Generate object filled with zeros

### randu / randn(n\_rows, n\_cols)

Generate object with random values (uniform and normal distributions)

### n\_rows

number of rows

### n\_cols

number of columns

### **Functions**

### abs(x)

Obtain magnitude of each element

### all(x)

Check whether all elements are non-zero, or satisfy a relational condition

### Χ

Matrix

### any(x)

Check whether any element is non-zero, or satisfies a relational condition

### conv\_to<type>(x)

Convert between matrix types

### cross(A,B)

Cross product

### <u>A,B</u>

Matrixes

### **Functions**

### det(x)

Determinant

### diagmat(x)

Diagonal matrix from given matrix or vector

### index\_min / index\_max(x)

Indices of extremum values

### min / max(x)

Return extremum values

### norm(X,p)

Various norms of vectors and matrices

### <u>p</u>

Intiger >= 1 or '-inf', 'inf', 'fro'

### reshape(X, n\_row, n\_col)

Change size while keeping elements

### sum(x)

Return sum

### trace(x)

Sum of diagonal elements

# RcppArmadillo CHEAT SHEET

Combine power of Rcpp, C++ and Armadillo to achieve efficiency! Cheatsheet for arma functions.



### Decompositions, Factorisations, Inverses and Equation Solvers

# chol(x) Cholesky decomposition X Matrix

inv(x)
Inverse of general square matrix
pinv(x)

Pseudo-inverse

lu(x)
Lower-upper decomposition

solve(A,B)

Solve systems of linear equations

<u>A,B</u>

A\*X=B

### **Statistics & Clustering**

# cov(x,y) Covariance cor(x,y) Correlation hist(x, centers) Histogram of counts centers Vector of increasing values kmeans(x) Cluster data into disjoint sets princomp(x) Principal component analysis (PCA) X Matrix

### **Functions**

det(x) Determinant diagmat(x) Diagonal matrix from given matrix or vector index\_min / index\_max(x) Indices of extremum values min / max(x)Return extremum values norm(x, p)Various norms of vectors and matrices Intiger >= 1 or '-inf', 'inf', 'fro' reshape(X, n\_row, n\_col) Change size while keeping elements sum(x)Return sum trace(x)

Sum of diagonal elements