	X(s)	x(t) ou $x(k)$	X(z)
1	1	$\delta\!(t)$	1
2	e^{-kTs}	$\delta(t-kT)$	z^{-k}
3	$\frac{1}{s}$	1(<i>t</i>)	$\frac{z}{z-1} = \frac{1}{1-z^{-1}}$
4	$\frac{1}{s+a}$	e^{-at}	$\frac{z}{z - e^{-aT}}$
5	$\frac{1}{s^2}$	t	$\frac{Tz}{(z-1)^2}$
6	$\frac{2}{s^3}$	t^2	$\frac{T^2z(z+1)}{(z-1)^3}$
7	$\frac{6}{s^4}$	t^3	$\frac{T^{2}z(z+1)}{(z-1)^{3}}$ $\frac{T^{3}z(z^{2}+4z+1)}{(z-1)^{4}}$
8	$\frac{a}{s(s+a)}$	$1-e^{-at}$	$\frac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$ $\frac{Tze^{-aT}}{(z-e^{-aT})^2}$ $\frac{T^2ze^{-aT}(z-e^{-aT})}{(z-e^{-aT})^3}$
9	$\frac{1}{(s+a)^2}$	te ^{-at}	$\frac{Tze^{-aT}}{\left(z-e^{-aT}\right)^2}$
10	$\frac{2}{(s+a)^3}$	t^2e^{-at}	$\frac{T^2 z e^{-aT} \left(z - e^{-aT}\right)}{\left(z - e^{-aT}\right)^3}$
11	$\frac{\omega}{s^2 + \omega^2}$	$\sin(\omega t)$	$\frac{z\sin(\omega T)}{z^2 - 2z\cos(\omega T) + 1}$
12	$\frac{s}{s^2 + \omega^2}$	$\cos(\omega t)$	$\frac{z(z-\cos(\omega T))}{z^2-2z\cos(\omega T)+1}$
13	$\frac{\omega}{(s+a)^2+\omega^2}$	$e^{-at}\sin(\omega t)$	$\frac{ze^{-aT}\sin(\omega T)}{z^2 - 2ze^{-aT}\cos(\omega T) + e^{-2aT}}$
14	$\frac{s+a}{(s+a)^2+\omega^2}$	$e^{-at}\cos(\omega t)$	$\frac{z^2 - ze^{-aT}\cos(\omega T)}{z^2 - 2ze^{-aT}\cos(\omega T) + e^{-2aT}}$
15	-	a^k	$\frac{z}{z-a} = \frac{1}{1-az^{-1}}$
16	-	ka ^k	$\frac{az}{(z-a)^2}$
17	-	k^2a^k	$\frac{az(z+a)}{(z-a)^3}$
18	-	$\frac{k(k-1)}{2!}a^{k-2}$	$\frac{z}{(z-a)^3}$
19	-	$a^k\cos(k\pi)$	$\frac{z}{z+a}$

Tabela 1: Transformadas dos Z mais comuns

	x(t) ou $x(k)$	Z[x(t)] ou $Z[x(k)]$	
1	ax(t)	aX(z)	
2	$ax_1(t) + bx_2(t)$	$aX_1(z) + bX_2(z)$	
3	x(t+T) ou $x(k+1)$	zX(z) - zx(0)	
4	x(t+2T)	$z^2X(z) - z^2x(0) - zx(T)$	
5	x(k+2)	$z^2X(z) - z^2x(0) - zx(1)$	
6	x(t+kT)	$z^{k}X(z) - z^{k}x(0) - z^{k-1}x(T) - \dots - zx(kT - T)$	
7	x(t-kT)	$z^{-k}X(z)$	
8	x(k+m)	$z^{m}X(z) - z^{m}x(0) - z^{m-1}x(1) - \dots - zx(m-1)$	
9	tx(t)	$-Tz\frac{d}{dz}[X(z)]$	
10	kx(k)	$-z\frac{d}{dz}[X(z)]$	
11	$e^{-at}x(t)$	$X(ze^{aT})$	
12	$e^{-ak}x(k)$	$X(ze^a)$	
13	$a^k x(k)$	$X\left(\frac{z}{a}\right)$	
14	$ka^kx(k)$	$-z\frac{d}{dz}\left[X\left(\frac{z}{a}\right)\right]$	
15	<i>x</i> (0)	$\lim_{z\to\infty} X(z) \text{ se o limite existe}$	
16	$x(\infty)$	$\lim_{z \to 1} [(z-1)X(z)] \text{ se } \frac{z-1}{z}X(z) \text{ \'e anal\'etica sobre e for a do circulo unit\'ario}$	
17	$\sum_{k=0}^{n} x(k)$	$\frac{1}{1-z^{-1}}X(z)$	
18	$k^m x(k)$	$\left(-z\frac{d}{dz}\right)^m X(z)$	
19	$\sum_{k=0}^{n} x(kT)y(nT - kT)$	X(z)Y(z)	
20	$\sum_{k=0}^{\infty} x(k)$	X(1)	

Tabela 2: Propriedades da Transformada dos Z