CvP - Werkcollege 7

Exercise 1 Consider the λ -term $M = (\lambda x.xy)(\lambda z.z(xy))$.

- (a) Compute the free variables free(M) of M.
- (b) Use an α -conversion to ensure that every occurrence of x in M is free.
- (c) Use β -reductions to compute a beta normal form of M.

Exercise 2 A λ -term possibly reduces in multiple different ways. The *Church-Rosser property* states that each reduction can lead to the same λ -term: If \to^* is the transitive closure of \to , $M \to^* A$ and $M \to^* B$, then there exists some λ -term N, such that $A \to^* N$ and $B \to^* N$.

Consider the λ -term $M = (\lambda x.((\lambda y.yx)z))w$.

- (a) Give two different β -reductions of M.
- (b) Show that both reductions lead to same beta normal form.

Exercise 3 The *Church-Rosser property* ensures that the beta normal form is unique. We can, therefore, speak about *the* beta normal form. However, the beta normal need not necessarily exist.

Consider the λ -term $\omega = \lambda x.xx$. Show that $\Omega = \omega \omega$ has no beta normal form.

Exercise 4 Consider the λ -term $Y = \lambda g.(\lambda x.g(xx))(\lambda x.g(xx))$, which is called the *fixed-point combinator*. Show that YF and F(YF) both reduce to the same λ -term.

Exercise 5 What do the following Scheme functions do?