Introduction to Computer Graphics 3. Viewing in 3D

I-Chen Lin

National Chiao Tung University

Textbook: E.Angel, D. Shreiner Interactive Computer Graphics, 6th Ed., Pearson Ref: D.D. Hearn, M. P. Baker, W. Carithers, Computer Graphics with OpenGL, 4th Ed., Pearson

Outline

Classical views

Computer viewing

Projection matrices

Classical Viewing

- Viewing requires three basic elements
 - One or more objects
 - A viewer with a projection surface
 - Projectors that go from the object(s) to the projection surface

- Each object is assumed to constructed from flat principal faces
 - ▶ Buildings, polyhedra, manufactured objects 多面體

Planar Geometric Projections

Standard projections project onto a plane.

- Projectors are lines that either
 - converge at a center of projection
 - are parallel
- Such projections preserve lines
 - but not necessarily angles
- When do we need non-planar projections?

Classical Projections

Perspective vs. Parallel

- Classical viewing developed different techniques for drawing each type of projection
- Mathematically parallel viewing is the limit of perspective viewing
- Computer graphics treats all projections the same and implements them with a single pipeline

Taxonomy of Planar Geometric Projections

Perspective Projection

Parallel Projection

Orthographic Projection 正交投影法(直接xy投影)

Projectors are orthogonal to projection surface

Multi-view Orthographic Projection

- Projection plane parallel to principal faces
- Usually form front, top, side views

isometric (not multiview orthographic view)

in CAD and architecture, we often display three multiviews plus isometric

Top

Front

Side

Advantages and Disadvantages

- Preserves both distances and angles
 - Shapes preserved
 - ► Can be used for measurements
 - Building plans
 - Manuals
- Cannot see what object really looks like because many surfaces hidden from view
 - Often we add the isometric

Axonometric Projections

Allow projection plane to move relative to an object

classify by how many angles of a corner of a projected cube are the same

θ

none: trimetric

two: dimetric

three: isometric

做出等角

Projection Plane

Types of Axonometric Projections

Advantages and Disadvantages

- Lines are scaled (foreshortened) but can find scaling factors
- Lines preserved but angles are not
 - Projection of a circle in a plane not parallel to the projection plane is an ellipse

- Does not look real because far objects are scaled the same as near objects
- Used in CAD applications

Oblique Projection 斜投影

Arbitrary relationship between projectors and projection plane

Advantages and Disadvantages

- Can pick the angles to emphasize a particular face
 - ▶ Architecture: plan oblique, elevation oblique 不是real world會出現的
- Angles in faces parallel to the projection plane are preserved while we can still see "around" side

Perspective Projection

Projectors' coverage at the center of projection

Vanishing Points

- Parallel lines (not parallel to the projection plan):
 - converge at a single point in the projection (the vanishing point)
- Drawing simple perspectives by hand uses these vanishing point(s)

Three-Point Perspective

- No principal face parallel to projection plane
- ► Three vanishing points for a cube

Two-Point Perspective

- On principal direction parallel to projection plane
- ► Two vanishing points for a cube

One-Point Perspective

- One principal face parallel to projection plane
- One vanishing point for a cube

Advantages and Disadvantages

- Diminution:
 - Objects further from viewer are projected smaller (Looks realistic)
- Nonuniform foreshortening:
 - Equal distances along a line are not projected into equal distances
- Angles preserved only in planes parallel to the projection plane
- More difficult to construct by hand than parallel projections

Computer Viewing

Computer Viewing

- ► Three aspects of the viewing process implemented in the pipeline:
 - Positioning the camera
 - ► Setting the *model-view matrix*
 - Selecting a lens
 - Setting the <u>projection matrix</u>
 - Clipping
 - ▶ Setting the *view volume* 僅保存視野內的模型

The OpenGL Camera

- In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
- The camera is located at origin and points in the negative z direction

- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity

Pipeline View

Let's skip the clipping details temporarily!

Moving the Camera Frame

- If we want to visualize object with both positive and negative z values we can either
 - ▶ Move the camera in the positive z direction
 - ▶ Translate the camera frame
 - Move the objects in the negative z direction
 - ► Translate the world frame
- ▶ Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation (glTranslatef(0.0,0.0,-d);)
 - \rightarrow d \rightarrow 0

Moving Camera back from Origin

default frames

frames after translation by -dd > 0

相機也屬於物體,也可以有rotation和translation 相機與世界的動作方向相反(就像自己看鏡子裡的自己那樣)

EX:若相機: Ry(45度)Td(3m) => 則物體: Td(-3m)Ry(-45度)

Td(0, 0, 3)

!=Ry(-45度)Td(-3m)

Moving the Camera

We can move the camera to any desired position by a sequence of rotations and translations

- Example: side view
 - Move it away from origin
 - Rotate the camera
 - ► Model-view matrix C = T'R'

gluLookAt

camera的z軸

camera的y軸

glLookAt eyex, eyex, eyex, atx, atx, atx, upx, upx, upx, upx

設定相機位置(相對WC)

相機看的方向

By Coordinate Transformations gllookAt

從自己的座標軸轉回世界座標軸

$$\begin{bmatrix} x_{wc} \\ y_{wc} \\ z_{wc} \\ 1 \end{bmatrix} = \begin{bmatrix} u'_x & v'_x & w'_x & 0 \\ u'_y & v'_y & w'_y & 0 \\ u'_z & v'_z & w'_z & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x'_{vc} \\ y'_{vc} \\ z'_{vc} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -c_x \\ 0 & 1 & 0 & -c_x \\ 0 & 0 & 1 & -c_y \\ 0 & 0 & 1 & -c_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{vc} \\ y_{vc} \\ z_{vc} \\ 1 \end{bmatrix}$$

Projections and Normalization

將其他運算的東西放到一個cube裡

- ► The default projection in the eye (camera) frame is orthogonal 從相機投影到畫面=>正交投影(orthogonal)
- ► For points within the default view volume

$$X_p = X$$

$$y_p = y$$

$$z_p = 0$$

- Most graphics systems use view normalization
 - ► All other views are converted to the default view by transformations that determine the projection matrix
 - ► Allows use of the same pipeline for all views

Homogeneous Coordinate Representation

default orthographic projection

In practice, we can let M = I and set the z term to zero later

Taking Clipping into Account

► After the view transformation, a simple projection and viewport transformation can generate screen coordinate.

However, projecting all vertices are usually unnecessary.

Clipping with 3D volume.

設立視野:不去計算看不到或太遠的model

Associating projection with clipping and normalization.

Orthogonal Viewing Volume 不在乎場景以外或太遠的物件,在view volume外的東西都砍掉

不在乎場景以外或太遠的物件,

distance

Ortho(left, right, bottom, top, near, far)

最近或最遠的物體突然跑出來或不見。 基本上near = 0,避免相機後方的東西突然跑出來

實際看出去的空間是負的 (相機面向負z軸)

near : distance Znear:z方向

Orthogonal Normalization glViewport:投影回螢幕

glOrtho(left,right,bottom,top,near,far)

將相機的座標系統乘上一個matrix,直接壓到我們要的平面上,基本上壓在 $-1\sim+1$ 之間

normalization \Rightarrow find transformation to convert specified clipping volume to default

Orthogonal Matrix

- Two steps
 - T: Move the volume center to origin
 - S: Scale to have sides of length 2

The matrix maps the near clipping plane, $z = -near = Z_{near}$, to the plane z = -1 and the far clipping plane, $z = -far = Z_{far}$, to the plane z = 1.

Final Projection cube = MpMvMm*(物體)

- \triangleright Set z = 0
- Equivalent to the homogeneous coordinate transformation

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

► Hence, general orthogonal projection in 4D is

$$P = M_{orth}ST$$

Oblique Projection

傾斜

► The OpenGL projection functions cannot produce general

parallel projections such as

How to efficiently produce such views?

Shear parallel to the x and y axes

Applying Shear Matrix

xy shear (z values unchanged)

$$H(\theta,\phi) = egin{bmatrix} 1 & 0 & -\cot\theta & 0 \ 0 & 1 & -\cot\phi & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$
把原來直投影的東西,
先將空間扭曲(shear)

Projection matrix

$$\mathbf{P} = \mathbf{M}_{\text{orth}} \mathbf{H}(\theta, \phi)$$

General case: $\mathbf{P} = \mathbf{M}_{\text{orth}} \mathbf{STH}(\theta, \phi)$

Simple Perspective

- Center of projection at the origin
- ▶ Projection plane z = d, d < 0

Perspective Equations 相似三角形

$$x_{\rm p} = \frac{x}{7/d}$$

$$y_{\rm p} = \frac{y}{z/d}$$

$$z_{\rm p} = d$$

Homogeneous Coordinate Form

$$\mathbf{M} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{vmatrix}$$

goal: matrix
$$dx/z
dy/z
dy/z
d
1$$

$$p = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Rightarrow q = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

投影時整條射線等價

Perspective Division

- ► However $w \neq 1$, so we must divide by w to return from homogeneous coordinates
- ► This *perspective division* yields

$$x_{\rm p} = \frac{x}{z/d}$$
 $y_{\rm p} = \frac{y}{z/d}$ $z_{\rm p} = d$

the desired perspective equations

Perspective Viewing Volume frustum: 截頭錐形體

Clipping for Perspective Views

Normalization

▶ Rather than derive a different projection matrix for each type of projection, we can <u>convert all</u> <u>projections to orthogonal projections</u> with the <u>default view volume</u>.

This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping.

Normalization OpenGL處理p.47周圍四個平面: 將空間扭曲=>使用orthogonal做投影

Fig. from: M. Stamminger, G. Drettakis, Perspective Shadow Maps, Proc. ACM SIGGRAPH 2002.

原本的射線轉換後變成水平線 前後關係不變,所以遮蔽演算法一樣能work

Perspective-Projection Trans.

After perspective division, the point (x,y,z,1) goes to

$$x_{p} = x \left(\frac{-z_{near}}{-z} \right)$$

$$y_{p} = y \left(\frac{-z_{near}}{-z} \right)$$

$$z_{p} = \frac{s_{z}z + t_{z}}{-z} = -\left(s_{z} + \frac{t_{z}}{z} \right)$$

Find s_z , t_z To make $-1 \le z_p \le 1$

變數

$$Zp_near = -(Sz + Tz/Znear)$$
 $Sz = (Znear + Zfar)/(Znear - Zfar)$
 $=>$ $Tz = (-2ZnearZfar)/(Znear - Zfar)$

Perspective-Projection Trans.

Further Normalization

Notes

Normalization let us clip against a simple cube regardless of type of projection

- Delay final "projection" until end
 - ► Important for *hidden-surface removal* to retain depth information as long as possible

保持順序性原因=>要把後方物件remove掉

Normalization and Hidden-Surface Removal

- if $z_1 > z_2$ in the original clipping volume then the for the transformed points $z_1' < z_2'$
- Hidden surface removal works if we first apply the normalization transformation
- b However, the formula $z'' = -(s_z + t_z/z)$ implies that the distances are distorted by the normalization which can cause <u>numerical problems</u> especially if the near distance is small $\frac{1}{2}$

Why do we do it this way?

- Normalization allows for a <u>single pipeline</u> for both perspective and orthogonal viewing
- We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
- Clipping is now "easiler".

Viewport Transformation

glViewport只要比例不要設錯就可以變回原來的圖

From the working coordinate to the coordinate of display device.

By 2D scaling and translation

Viewing in 3D

(Summary and Example)

Pipeline View

Loading an Object

$$(x_o, y_o, z_o, 1)^t$$

Modeling Transformation

 $(x_m, y_m, z_m, 1)^t = M_m(x_o, y_o, z_o, 1)^t$ where $M_m = T_m R_m S_m$

Put a Virtual Camera

Move a camera from the origin (by $T_{\nu}R_{\nu}$)

Virtual Camera's Coordinate

- Change the object's coordinate
- $(x_v, y_v, z_v, 1)^t = M_{view} (x_m, y_m, z_m, 1)^t$

Virtual Camera's Coordinate

Perspective Proj.

$$M_{pers} = \begin{bmatrix} -z_{near} & 0 & 0 & 0\\ 0 & -z_{near} & 0 & 0\\ 0 & 0 & \frac{z_{near} + z_{far}}{z_{near} - z_{far}} & \frac{-2z_{near}z_{far}}{z_{near} - z_{far}}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

This matrix is usually combined with the normalization matrix.

Projection + Normalization

Projection+

Normalization

- $(x_h, y_h, z_h, h)^t = M_{normpers}(x_v, y_v, z_v, 1)^t$
- Don't divide h at this step.

Clipping

- Perform clipping with $(x_h, y_h, z_h, h)^t$
- Avoid unnecessary division $-h \le x_h \le h, -h \le y_h \le h, -h \le z_h \le h$
- Use parametric forms for intersection

$$x_h = x_{ha} + (x_{hb} - x_{ha})u$$

$$y_h = y_{ha} + (y_{hb} - y_{ha})u$$

$$z_h = z_{ha} + (z_{hb} - z_{ha})u$$

$$h = h_a + (h_b - h_a)u$$

Viewport Transformation

$$M_{viewport} = \begin{bmatrix} \frac{x_{d \max} - x_{d \min}}{2} & 0 & 0 & \frac{x_{d \max} + x_{d \min}}{2} \\ 0 & \frac{y_{d \max} - y_{d \min}}{2} & 0 & \frac{y_{d \max} + y_{d \min}}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(x_d, y_d, z_d, 1)^t = M_{viewport} (x_h, y_h, z_h, h)^t$$
OR

Rasterization

► Line drawing or polygon filling with

$$(x_d, y_d, z_d, 1)^t$$
 or $(x_d, y_d)^t$ and z_h

