

Effective EEG Connectivity Analysis of Episodic Memory Retrieval

Chung-Yeon Lee & Byoung-Tak Zhang

Biointellgence Lab
Seoul National University

July 25, 2014

The 36th Annual Meeting of the Cognitive Science Society

Quebec, Canada

Talk Outline

- Background
- Research Goals
- Methods
- Experimental Results
- Conclusion & Discussion

Background

Functional Segregation:

Different areas of the brain are specialized for different functions

Functional Integration:

Networks of interactions among specialized areas → Connectivity

* Hanneke den Ouden 2009, SPM Course at Zurich

Research Goals

- To study the information flows of the human brain network
 - During episodic memory retrieval
 - Partial and direct information within the human brain

- Based on effective connectivity measured from EEG
 - Source localization technique for estimating the activity of the neuronal sources
 - The strength and spectro-anatomical patterns of the inter-areal interactions
 - Direct directed transfer function
 - Time-varying multivariate autoregressive model

Topological interactions across the brain regions

Methods

Behavioral Task

- The episodic memory retrieval game after watching a video
- Participants decide whether the order of the two presented images are correct or incorrect.

EEG Acquisition

- EEG signals were sampled at 1000 Hz using an EEG cap equipped with 128 electrodes
- Timestamp of all sessions are automatically recorded by the game program

Methods

Source Localization

- Fitting dual symmetric equivalent dipole model to each source signal (N = 62)
- Using DIPFIT2 in EEGLAB with a four-shell spherical head model

Methods

- Direct directed transfer function (dDTF)
 - A measure based on the transfer function matrix between channels.
 - Transfer function matrix: an SVD of the cross-spectral density matrix
 - A combination of partial coherence and directed transfer function (DTF)

$$\begin{array}{ll} \text{DTF} & \gamma_{ij}^2(f) = \frac{\left| \gamma_{ij}(f) \right|^2}{\sum_{n=1}^k \left| \gamma_{in}(f) \right|^2} \\ \\ \text{FfDTF} & \eta_{ij}^2(f) = \frac{\left| \gamma_{ij}(f) \right|^2}{\sum_f \sum_{n=1}^k \left| \gamma_{in}(f) \right|^2} \\ \\ \text{Power spectrum} & S(f) = Y(f)VY^*(f), \\ \\ \text{Partial coherence} & \chi_{ij}^2(f) = \frac{R_{ij}^2(f)}{R_{ii}(f)R_{ij}(f)}, \end{array}$$

Time-varying dDTF can be obtained by using a sliding-window MVAR model

 $\delta_{ij}(f) = \chi_{ij}(f) \eta_{ij}(f)$

- Window length: 500 ms, Step size: 10 ms
- → **251 windows** (0-500, 10-510, ..., 2500-3000 ms)

© 2014 Biointelligence Lab., SNU

Mean dDTF Network Graph (threshold = 5e-4)

Active Brain Regions during Retrieval Tasks (Retrieval – Fixation)

Example of the Increased Information Flow

- Information flow from MFG to MTL in retrieval task is higher than in fixation
- Oscillatory powers of MFG in retrieval task is also increased but has no direction
- Which frequency and time bands are significant?

Significant Time-Frequency Zone

- Significantly different dDTF between fixation and retrieval tasks
 - Two-sample *t*-test $\rightarrow p < 0.05$
- Time band: 0 ~ 1000 ms
- Frequency band: 2-30 Hz
- Differences around 1500 ms were not considered
 - Too delayed from the onset of stimuli
 - Irrelative facts

Information Flows are Increased in Active Brain Regions

- Statistically meaningful increases in most of the 90 pairs during retrieval tasks
- $p_{t-test} < 0.05$ (76 pairs in 4 Hz and 80 pairs in 8 Hz)

- **Networks of the Effective Connectivity Shows:**
 - **Topological interactions across the brain regions**
 - **Fixation:** sparse local networks in the frontal and occipital-medial temporal area
 - **Retrieval: densely interconnected network**
 - **Asymmetrical features**
 - PVC-temporal/occipital regions vs PVC-frontal regions
 - PCN→SFG vs PCN←SFG
 - **Hub node: SFG** (globally connected with overall brain regions)

Conclusion & Discussion

Information flows during episodic memory retrieval

- Between frontal cortex, medial temporal, parietal and occipital lobes
- Globally interconnected effective connectivity network
- Across 2~30 Hz frequency band and 0~1000 ms time band

Graph theoretical analysis

- SFG acted as a hub in the network during memory retrieval
- SFG is a key component of the neural network of memory process
- Participation of SFG is triggered by the highest level of executive processing (Boisgueheneuc et al., 2006)

Asymmetric information flows between brain regions

- PVC-temporal/occipital regions vs PVC-frontal regions
- PCN→SFG: non-retrieval; PCN←SFG: retrieval
- The dual process model of attention to memory (Cabeza, 2008)

Nature Reviews | Neuroscience

THANK YOU!