

Escalamiento de variables

Dr. Gaddiel Desirena López

Contenido

Estandarización

Normalización basada en la media

Escalamiento de valores máximo y mínimo

Escalamiento de máximo absoluto

Escalamiento por cuantiles

Escalamiento de variables

- Muchos algoritmos de aprendizaje automático son sensibles a la escala y magnitud de las características.
 - Modelos lineales
 - ▶ Modelos que dependen de los cálculos de la distancia.

Las entidades con rangos de valores más grandes tienden a dominar las entidades con rangos más pequeños.

- Comparar la importancia de cada característica.
- Ayuda a que los algoritmos converjan más rápido.

Estandarización

- Centrar los datos en cero.
- Escalar los datos por medio de la desviación estándar

Estas manipulaciones se utilizan generalmente para mejorar la estabilidad numérica de algunos cálculos.

Para estandarizar las observaciones, se resta la media a cada una de ellas y se divide por la desviación estándar

$$Z = \frac{X - \bar{x}}{\sigma}$$

donde \bar{x} es la media aritmética y σ es la desviación estándar.

La desventaja de estas transformaciones es la pérdida de interpretabilidad de los valores individuales, ya que los datos ya no están en las unidades originales.

Normalización basada en la media

- Centramos la media de la variable en cero.
- Escalamos de la distribución al rango de valores.

$$z = \frac{X - \bar{x}}{\max(X) - \min(X)}.$$

Esta transformación da como resultado una distribución centrada en 0, con sus valores mínimo y máximo dentro del rango de -1 a 1.

Figura 1: Normalización basada en la media.

Escalamiento de valores máximo y mínimo

El escalamiento mínimo-máximo comprime (o estira) todos los valores de características para que estén dentro del intervalo cerrado de [0,1].

Figura 2: Escalamiento de valores máximo y mínimo.

Escalamiento de valores máximo y mínimo

El escalamiento mínimo-máximo comprime (o estira) todos los valores de características para que estén dentro del intervalo cerrado de [0,1].

Figura 2: Escalamiento de valores máximo y mínimo.

$$z = \frac{X - \min(X)}{\max(X) - \min(X)}$$

Escalamiento de máximo absoluto

- ► Esta transformación, mapea los valores de X hasta un máximo de 1.
- Conserva la posición relativa de todas las observaciones.

Figura 3: Escalamiento de máximo absoluto.

Escalamiento de máximo absoluto

Se consigue dividiendo los datos entre el máximo

$$z = \frac{X}{\max|X|}$$

► Se recomienda usar esta transformación sobre datos centrados en cero o en un data—set con pocos datos.

Escalamiento por cuantiles

Consiste en centrar las observaciones en cero usando la mediana y escalar el resultado por el rango intercuartílico (IQR)

$$z = \frac{X - \bar{x}}{Q_3 - Q_1}$$

donde \bar{x} es la mediana de X y $Q_1,\ Q_3$ corresponden a los cuartiles uno y tres.

Figura 4: Escalamiento por cuantiles.

Escalamiento por cuantiles

Este método se conoce como **escalamiento robusto** porque produce estimaciones más robustas para el centro y el rango de valores de la variable.

► Se recomienda si los datos contienen valores atípicos.