Redes Neurais Artificiais Pedro H A Konzen 28 de junho de 2023

Licença

CA 94042, USA.

ii

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View,

Prefácio

Nestas notas de aula são abordados tópicos introdutórios sobre redes neurais artificiais Como ferramenta computacional de apoio, vários exemplos de aplicação de códigos Python+PyTorch são apresentados.

Agradeço a todas e todos que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

50

Conteúdo

Capa	i
Licença	ii
Prefácio	iii
Sumário	v
1 Introdução	1
2 Perceptron	3
2.1 Unidade de Processamento	3
2.1.1 Um problema de classificação	4
2.1.2 Problema de regressão	
2.1.3 Exercícios	
2.2 Algoritmo de Treinamento	
2.2.1 Método do Gradiente Descendente	
2.2.2 Método do Gradiente Estocástico	
2.2.3 Exercícios	21
3 Perceptron Multicamadas	22
3.1 Modelo MLP	
3.1.1 Treinamento	
3.1.2 Aplicação: Problema de Classificação XOR	
3.1.3 Exercícios	
3.2 Aplicação: Aproximação de Funções	
3.2.1 Função unidimensional	
3.2.2 Função bidimensional	30

iv

bt 100 150 200 250 300 350 400 450 500 550 600

CONTEÚDO	V
3.2.3 Exercícios	32
3.2.3 Exercícios	32
3.3.1 Exercícios	
Respostas dos Exercícios	38
Referências Bibliográficas	39

Capítulo 1

Introdução

Uma rede neural artificial é um modelo de aprendizagem profunda (deep learning), uma área da aprendizagem de máquina (machine learning). O termo tem origem no início dos desenvolvimentos de inteligência artificial, em que modelos matemáticos e computacionais foram inspirados no cérebro biológico (tanto de humanos como de outros animais). Muitas vezes desenvolvidos com o objetivo de compreender o funcionamento do cérebro, também tinham a intensão de emular a inteligência.

Nestas notas de aula, estudamos um dos modelos de redes neurais usualmente aplicados. A unidade básica de processamento data do modelo de neurônio de McCulloch-Pitts (McCulloch and Pitts, 1943), conhecido como perceptron (Rosenblatt, 1958, 1962), o primeiro com um algoritmo de treinamento para problemas de classificação linearmente separável. Um modelo similiar é o ADALINE (do inglês, adaptive linear element, Widrow and Hoff, 1960), desenvolvido para a predição de números reais. Pela questão histórica, vamos usar o termo perceptron para designar a unidade básica (o neurônio), mesmo que o modelo de neurônio a ser estudado não seja restrito ao original.

Métodos de aprendizagem profunda são técnicas de treinamento (calibração) de composições em múltiplos níveis, aplicáveis a problemas de aprendizagem de máquina que, muitas vezes, não têm relação com o cérebro ou neurônios biológicos. Um exemplo, é a rede neural que mais vamos explorar nas notas, o perceptron multicamada (MLP, em inglês multilayer percep-

tron), um modelo de progressão (em inglês, feedfoward) de rede profunda em que a informação é processada pela composição de camadas de perceptrons. Embora a ideia de fazer com que a informação seja processada através da conexão de múltiplos neurônios tenha inspiração biológica, usualmente a escolha da disposição dos neurônios em uma MLP é feita por questões algorítmicas e computacionais. I.e., baseada na eficiente utilização da arquitetura dos computadores atuais.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

pt 100 150 200 250 300 350 400 450 500 550 600

Capítulo 2

Perceptron

2.1 Unidade de Processamento

A unidade básica de processamento (neurônio artificial) que exploramos nestas notas é baseada no perceptron (consultemos a Fig. 2.1). Consiste na composição de uma função de ativação $f: \mathbb{R} \to \mathbb{R}$ com a préativação

$$z = \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.1}$$

$$= w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b \tag{2.2}$$

onde, $\boldsymbol{x} \in \mathbb{R}^n$ é o vetor de entrada, $\boldsymbol{w} \in \mathbb{R}^n$ é o vetor de pesos e $b \in \mathbb{R}$ é o **bias**. Escolhida uma função de ativação, a **saída do neurônio** é dada por

$$y := \mathcal{N}\left(\boldsymbol{x}; (\boldsymbol{w}, b)\right) \tag{2.3}$$

$$= f(z) = f(\boldsymbol{w} \cdot \boldsymbol{x} + b) \tag{2.4}$$

O treinamento (calibração) consiste em determinar os parâmetros (\boldsymbol{w},b) de forma que o neurônio forneça as saídas y esperadas com base em algum critério predeterminado.

Figura 2.1: Esquema de um perceptron: unidade de processamento.

Uma das vantagens deste modelo de neurônio é sua generalidade, i.e. pode ser aplicado a diferentes problemas. Na sequência, vamos aplicá-lo na resolução de um problema de classificação e noutro de regressão.

2.1.1 Um problema de classificação

Vamos desenvolver um perceptron que emule a operação \land (e-lógico). I.e, receba como entrada dois valores lógicos A_1 e A_2 (V, verdadeiro ou F, falso) e forneça como saída o valor lógico $R = A_1 \land A_2$. Consultamos a seguinte tabela verdade:

$$\begin{array}{c|ccc} A_1 & A_2 & R \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & F \end{array}$$

Modelo

Nosso modelo de neurônio será um perceptron com duas entradas $x \in \{-1,1\}^2$ e a função sinal

$$f(z) = \operatorname{sign}(z) = \begin{cases} 1, z > 0 \\ 0, z = 0 \\ -1, z < 0 \end{cases}$$
 (2.5)

como função de ativação, i.e.

$$\mathcal{N}(\boldsymbol{x}; (\boldsymbol{w}, b)) = \operatorname{sign}(\boldsymbol{w} \cdot \boldsymbol{x} + b), \tag{2.6}$$

onde $\boldsymbol{w} \in \mathbb{R}^2$ e $b \in \mathbb{R}$ são parâmetros a determinar.

Pré-processamento

Uma vez que nosso modelo recebe valores $\boldsymbol{x} \in \{-1,1\}^2$ e retorna $\boldsymbol{y} \in \{-1,1\}$, precisamos (pre)processar os dados do problema de forma a utilizálo. Uma forma, é assumir que todo valor negativo está associado ao valor lógico F (falso) e positivo ao valor lógico V (verdadeiro). Desta forma, os dados podem ser interpretados como na tabela abaixo.

Treinamento

Agora, nos falta treinar nosso neurônio para fornecer o valor de y esperado para cada dada entrada \boldsymbol{x} . Isso consiste em um método para escolhermos os parâmetros (\boldsymbol{w},b) que sejam adequados para esta tarefa. Vamos explorar mais sobre isso na sequência do texto e, aqui, apenas escolhemos

$$\boldsymbol{w} = [1, 1] \tag{2.7}$$

$$b = -1 \tag{2.8}$$

Com isso, nosso perceptron é

$$\mathcal{N}(\mathbf{x}) = \operatorname{sign}(x_1 + x_2 - 1) \tag{2.9}$$

Verifique que ele satisfaz a tabela verdade acima!

Implementação

Código 2.1: perceptron.py

1 import torch

```
2
3
   # modelo
   class Perceptron(torch.nn.Module):
       def __init__(self):
6
           super().__init__()
7
           self.linear = torch.nn.Linear(2,1)
8
9
       def forward(self, x):
10
           z = self.linear(x)
           y = torch.sign(z)
11
12
           return y
13
14 model = Perceptron()
  W = torch.Tensor([[1., 1.]])
16 b = torch.Tensor([-1.])
   with torch.no_grad():
       model.linear.weight = torch.nn.Parameter(W)
18
       model.linear.bias = torch.nn.Parameter(b)
19
20
21 # dados de entrada
22 X = torch.tensor([[1., 1.],
                      [1., -1.],
23
24
                      [-1., 1.],
                      [-1., -1.]])
25
26
  print(f"\nDados de entrada\n{X}")
27
28
29
30 # forward (aplicação do modelo)
31
  y = model(X)
32
33 print(f"Valores estimados\n{y}")
```

Interpretação geométrica

Empregamos o seguinte modelo de neurônio

$$\mathcal{N}(\boldsymbol{x};(\boldsymbol{w},b)) = \operatorname{sign}(w_1 x_1 + w_2 x_2 + b) \tag{2.10}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

00

50 |---

nn 📖

 $\frac{1}{50}$

-350

400

450

500

0

Observamos que

$$w_1 x_1 + w_2 x_2 + b = 0 (2.11)$$

corresponde à equação geral de uma reta no plano $\tau: x_1 \times x_2$. Esta reta divide o plano em dois semiplanos

$$\tau^{+} = \{ \boldsymbol{x} \in \mathbb{R}^{2} : w_{1}x_{1} + w_{2}x_{2} + b > 0 \}$$
(2.12)

$$\tau^{-} = \{ \mathbf{x} \in \mathbb{R}^2 : w_1 x_1 + w_2 x_2 + b < 0 \}$$
(2.13)

O primeiro está na direção do vetor normal a reta $\mathbf{n} = (w_1, w_2)$ e o segundo na sua direção oposta. Com isso, o problema de treinar nosso neurônio para nosso problema de classificação consiste em encontrar a reta

$$w_1 x_1 + w_2 x_2 + b = 0 (2.14)$$

de forma que o ponto (1,1) esteja no semiplano positivo τ^+ e os demais pontos no semiplano negativo τ^- . Consulte a Figura 2.2.

Figura 2.2: Interpretação geométrica do perceptron aplicado ao problema de classificação relacionado à operação lógica \land (e-lógico).

Algoritmo de treinamento: perceptron

O algoritmo de treinamento perceptron permite calibrar os pesos de um neurônio para fazer a classificação de dados linearmente separáveis. Trata-se de um algoritmo para o **treinamento supervisionado** de um neurônio, i.e. a calibração dos pesos é feita com base em um dado **conjunto de amostras de treinamento**.

Seja dado um **conjunto de treinamento** $\{x^{(s)},y^{(s)}\}_{s=1}^{n_s}$, onde n_s é o número de amostras. O algoritmo consiste no seguinte:

```
1. \boldsymbol{w} \leftarrow \boldsymbol{0}, b \leftarrow 0.

2. Para e \leftarrow 1, \dots, n_e:

(a) Para s \leftarrow 1, \dots, n_s:

i. Se y^{(s)} \mathcal{N} \left( \boldsymbol{x}^{(s)} \right) \leq 0:

A. \boldsymbol{w} \leftarrow \boldsymbol{w} + y^{(s)} \boldsymbol{x}^{(s)}

B. b \leftarrow b + y^{(s)}
```

onde, n_e é um dado número de épocas¹.

```
1
   import torch
2
3
   # modelo
4
5
   class Perceptron(torch.nn.Module):
6
       def __init__(self):
7
            super().__init__()
8
            self.linear = torch.nn.Linear(2,1)
9
       def forward(self, x):
10
11
            z = self.linear(x)
12
            y = torch.sign(z)
13
            return y
14
15
   model = Perceptron()
16
   with torch.no_grad():
       W = model.linear.weight
17
```

 $^{^1\}mathrm{N\'u}$ mero de vezes que as amostrar serão per
corridas para realizar a correção dos pesos.

```
b = model.linear.bias
18
20 # dados de treinamento
21 X_train = torch.tensor([[1., 1.],
22
                       [1., -1.],
23
                       [-1., 1.],
24
                       [-1., -1.]
25 y_train = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
26
27 ## número de amostras
28 \text{ ns} = y_{train.size}(0)
29
30 print("\nDados de treinamento")
31 print("X_train =")
32 print(X_train)
33 print("y_train = ")
34 print(y_train)
35
36 # treinamento
37
38 ## num max épocas
39 nepochs = 100
40
41
   for epoch in range(nepochs):
42
43
       # update
       not_updated = True
44
45
       for s in range(ns):
            y_est = model(X_train[s:s+1,:])
46
            if (y_est*y_train[s] <= 0.):</pre>
47
                with torch.no_grad():
48
49
                    W += y_train[s]*X_train[s,:]
50
                    b += y_train[s]
51
                    not_updated = False
52
53
       if (not_updated):
            print('Training ended.')
54
55
            break
56
57
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

 pt

```
58 # verificação

59 print(f'W =\n{W}')

60 print(f'b =\n{b}')

61 y = model(X_train)

62 print(f'y =\n{y}')
```

2.1.2 Problema de regressão

Vamos treinar um perceptron para resolver o problema de regressão linear para os seguintes dados

S	$x^{(s)}$	$y^{(s)}$
1	0.5	1.2
2	1.0	2.1
3	1.5	2.6
4	2.0	3.6

Modelo

Vamos determinar o perceptron²

$$\tilde{y} = \mathcal{N}(x; (w, b)) = wx + b \tag{2.15}$$

que melhor se ajusta a este conjunto de dados $\{(x^{(s)}, y^{(s)})\}_{s=1}^{n_s}, n_s = 4.$

Treinamento

A ideia é que o perceptron seja tal que minimize o erro quadrático médio (MSE, do inglês, *Mean Squared Error*), i.e.

$$\min_{w,b} \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.16}$$

Vamos denotar a **função erro** (em inglês, loss function) por

$$\varepsilon(w,b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2 \tag{2.17}$$

²Escolhendo f(z) = z como função de ativação.

$$= \frac{1}{n_s} \sum_{s=1}^{n_s} \left(wx^{(s)} + b - y^{(s)} \right)^2$$
 (2.18)

Observamos que o problema (2.16) é equivalente a um problema linear de mínimos quadrados. A solução é obtida resolvendo-se a equação normal³

$$M^T M \boldsymbol{c} = M^T \boldsymbol{y}, \tag{2.19}$$

onde $\boldsymbol{c}=(w,p)$ é o vetor dos parâmetros a determinar e M é a matriz $n_s\times 2$ dada por

$$M = \begin{bmatrix} \mathbf{x} & \mathbf{1} \end{bmatrix} \tag{2.20}$$

Implementação

Código 2.2: perceptron_mq.py

```
import torch
2
   # modelo
3
4
   class Perceptron(torch.nn.Module):
5
6
       def __init__(self):
            super().__init__()
7
            self.linear = torch.nn.Linear(1,1)
8
9
10
       def forward(self, x):
11
                 self.linear(x)
12
            return z
13
   model = Perceptron()
   with torch.no_grad():
15
16
       W = model.linear.weight
17
       b = model.linear.bias
18
19
   # dados de treinamento
   X train = torch.tensor([0.5,
21
                             1.0,
22
                             1.5,
```

³Consulte o Exercício 2.1.4.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

pt

100+

60 -

0

300

-350

4

50

500 —

550

-600

```
23
                              [2.0]).reshape(-1,1)
24
   y_train = torch.tensor([1.2,
25
26
                              2.6,
27
                              3.6]).reshape(-1,1)
28
29
  ## número de amostras
30 \text{ ns} = y_{train.size}(0)
31
32 print("\nDados de treinamento")
33 print("X_train =")
34 print(X_train)
35 print("y_train = ")
  print(y_train)
36
37
38
  # treinamento
39
40 ## matriz
41 M = torch.cat((X_train,
42
                    torch.ones((ns,1))), dim=1)
43
  ## solucão M.Q.
44 c = torch.linalg.lstsq(M, y_train)[0]
45 with torch.no_grad():
46
       W = c[0]
47
       b = c[1]
48
49 # verificação
50 print(f'W =\n{W}')
51 print(f'b =\n{b}')
52 y = model(X_train)
53 \text{ print}(f'y = n\{y\}')
```

Resultado

Nosso perceptron corresponde ao modelo

$$\mathcal{N}(x;(w,b)) = wx + b \tag{2.21}$$

com os pesos treinados w=1.54 e b=0.45. Ele corresponde à reta que melhor se ajusta ao conjunto de dados de $\{x^{(s)}, y^{(s)}\}$. Consulte a Figura 2.3.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

bt 100 150 200 250 300 350 400 450 500 550 600

Figura 2.3: Interpretação geométrica do perceptron aplicado ao problema de regressão linear.

2.1.3 Exercícios

Exercício 2.1.1. Crie um Perceptron que emule a operação lógica do \lor (ou-lógico).

A_1	A_2	$A_1 \vee A_2$
V	V	V
V	F	V
F	V	V
F	F	F

Exercício 2.1.2. Busque criar um Perceptron que emule a operação lógica do xor.

A_1	A_2	A_1 xor A_2
V	V	F
V	F	V
F	V	V
F	F	F

É possível? Justifique sua resposta.

Exercício 2.1.3. Assumindo o modelo de neurônio (2.15), mostre que (2.17) é função convexa.

Exercício 2.1.4. Mostre que a solução do problema (2.16) é dada por (2.19).

Exercício 2.1.5. Crie um Perceptron com função de ativação $f(x) = \tanh(x)$ que melhor se ajuste ao seguinte conjunto de dados:

S	$x^{(s)}$	$y^{(s)}$
1	-1,0	-0,8
2	-0,7	-0,7
3	-0,3	-0,5
4	0,0	-0,4
5	0,2	-0,2
6	0,5	0,0
7	1,0	0,3

2.2 Algoritmo de Treinamento

Na seção anterior, desenvolvemos dois modelos de neurônios para problemas diferentes, um de classificação e outro de regressão. Em cada caso, utilizamos algoritmos de treinamento diferentes. Agora, vamos estudar algoritmos de treinamentos mais gerais⁴, que podem ser aplicados a ambos os problemas.

Ao longo da seção, vamos considerar o **modelo** de neurônio

$$\tilde{y} = \mathcal{N}(\boldsymbol{x}; (\boldsymbol{w}, b)) = f(\underline{\boldsymbol{w} \cdot \boldsymbol{x} + b}),$$
(2.22)

com dada função de ativação $f: \mathbb{R} \to \mathbb{R}$, sendo os vetores de entrada \boldsymbol{x} e dos pesos \boldsymbol{w} de tamanho n_{in} . A pré-ativação do neurônio é denotada por

$$z := \boldsymbol{w} \cdot \boldsymbol{x} + b \tag{2.23}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Pь

---1

200 -

50

n H

350 -

400 —

450

500

550

--60

 $^{^4\}mathrm{Aqui},$ vamos explorar apenas algoritmos de treinamento supervisionado.

Fornecido um **conjunto de treinamento** $\{(\boldsymbol{x}^{(s)}, y^{(s)})\}_{1}^{n_{s}}$, com n_{s} amostras, o objetivo é calcular os parâmetros (\boldsymbol{w}, b) que minimizam a **função erro quadrático médio**

$$\varepsilon(\boldsymbol{w}, b) := \frac{1}{n_s} \sum_{s=1}^{n_s} \left(\tilde{y}^{(s)} - y^{(s)} \right)^2$$
 (2.24)

$$=\frac{1}{n_s}\sum_{s=1}^{n_s}\varepsilon^{(s)}\tag{2.25}$$

onde $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}; (\boldsymbol{w}, b)\right)$ é o valor estimado pelo modelo e $y^{(s)}$ é o valor esperado para a s-ésima amostra. A função erro para a s-ésima amostra é

$$\varepsilon^{(s)} := (\tilde{y}^{(s)} - y^{(s)})^2.$$
 (2.26)

Ou seja, o treinamento consiste em resolver o seguinte **problema de oti- mização**

$$\min_{(\boldsymbol{w},b)} \varepsilon(\boldsymbol{w},b) \tag{2.27}$$

Para resolver este problema de otimização, vamos empregar o Método do Gradiente Descendente.

2.2.1 Método do Gradiente Descendente

O Método do Gradiente Descendente (GD, em inglês, *Gradiente Descent Method*) é um método de declive. Aplicado ao nosso modelo de Perceptron consiste no seguinte algoritmo:

- 1. (\boldsymbol{w}, b) aproximação inicial.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

(a)
$$(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)}$$

onde, n_e é o **número de épocas**, l_r é uma dada **taxa de aprendizagem** $(l_r, do inglês, learning rate)$ e o **gradiente** é

$$\frac{\partial \varepsilon}{\partial (\boldsymbol{w}, b)} := \left(\frac{\partial \varepsilon}{\partial w_1}, \dots, \frac{\partial \varepsilon}{\partial w_{n_{in}}}, \frac{\partial \varepsilon}{\partial b}\right) \tag{2.28}$$

O cálculo do gradiente para os pesos \boldsymbol{w} pode ser feito como segue

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{\partial}{\partial \boldsymbol{w}} \left[\frac{1}{n_s} \sum_{s=1}^{n_s} \varepsilon^{(s)} \right]$$
 (2.29)

$$= \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial \boldsymbol{w}}$$
 (2.30)

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial \boldsymbol{w}}$$
(2.31)

Observando que

$$\frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} = 2\left(\tilde{y}^{(s)} - y^{(s)}\right) \tag{2.32}$$

$$\frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} = f'\left(z^{(s)}\right) \tag{2.33}$$

$$\frac{\partial z^{(s)}}{\partial \boldsymbol{w}} = \boldsymbol{x}^{(s)} \tag{2.34}$$

obtemos

$$\frac{\partial \varepsilon}{\partial \boldsymbol{w}} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \boldsymbol{x}^{(s)}$$
(2.35)

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{ns} \sum_{s=1}^{ns} \frac{\partial \varepsilon^{(s)}}{\partial \tilde{y}^{(s)}} \frac{\partial \tilde{y}^{(s)}}{\partial z^{(s)}} \frac{\partial z^{(s)}}{\partial b}$$
(2.36)

$$\frac{\partial \varepsilon}{\partial b} = \frac{1}{n_s} \sum_{s=1}^{n_s} 2\left(\tilde{y}^{(s)} - y^{(s)}\right) f'\left(z^{(s)}\right) \cdot 1 \tag{2.37}$$

Aplicação: Problema de Classificação

Na Subseção 2.1.1, treinamos um Perceptron para o problema de classificação do e-lógico. A função de ativação f(x) = sign(x) não é adequada para a aplicação do Método GD, pois $f'(x) \equiv 0$ para $x \neq 0$. Aqui, vamos usar

$$f(x) = \tanh(x). \tag{2.38}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рı

70

0

0

50

300 -

-350

100

450 -

00

-550

Código 2.3: perceptron_gd.py

```
import torch
  # modelo
3
4
  class Perceptron(torch.nn.Module):
       def __init__(self):
6
            super().__init__()
7
            self.linear = torch.nn.Linear(2,1)
8
9
       def forward(self, x):
10
11
            z = self.linear(x)
12
            y = torch.tanh(z)
13
            return y
14
15 model = Perceptron()
16
17 # treinamento
18
19 ## optimizador
   optim = torch.optim.SGD(model.parameters(), lr=1e-1)
21
22 ## função erro
23 loss_fun = torch.nn.MSELoss()
24
25 ## dados de treinamento
26 \text{ X\_train} = \text{torch.tensor}([[1., 1.],
27
                       [1., -1.],
                       [-1., 1.],
28
29
                       [-1., -1.]])
30 \ y_{train} = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
31
32 print("\nDados de treinamento")
33 print("X train =")
34 print(X_train)
35 print("y_train = ")
36 print(y_train)
37
38 ## num max épocas
39 nepochs = 5000
```

```
40
   tol = 1e-3
41
42
   for epoch in range(nepochs):
43
44
        # forward
45
        y_est = model(X_train)
46
47
        # erro
48
        loss = loss_fun(y_est, y_train)
49
        print(f'{epoch}: {loss.item():.4e}')
50
51
        # critério de parada
52
        if (loss.item() < tol):</pre>
53
54
            break
55
        # backward
56
        optim.zero_grad()
57
58
        loss.backward()
59
        optim.step()
60
61
62
   # verificação
63
   y = model(X_train)
  print(f'y_est = {y}')
```

2.2.2 Método do Gradiente Estocástico

O Método do Gradiente Estocástico (SGD, do inglês, Stochastic Gradient Descent Method) é um variação do Método GD. A ideia é atualizar os parâmetros do modelo com base no gradiente do erro de cada amostra (ou um subconjunto de amostras). A estocasticidade é obtida da randomização com que as amostras são escolhidas a cada época. O algoritmos consiste no seguinte:

- 1. **w**, b aproximações inicial.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рu

00 -

.50 -

00

50

300 -

350

-400

450 —

500

550

-600

1.1. Para $s \leftarrow \mathtt{random}(1, \ldots, n_s)$:

$$(\boldsymbol{w}, b) \leftarrow (\boldsymbol{w}, b) - l_r \frac{\partial \varepsilon^{(s)}}{\partial (\boldsymbol{w}, b)}$$
 (2.39)

Aplicação: Problema de Classificação

Código 2.4: perceptron_sgd.py

```
1 import torch
2 import numpy as np
4
  # modelo
6
   class Perceptron(torch.nn.Module):
       def __init__(self):
7
8
           super().__init__()
9
           self.linear = torch.nn.Linear(2,1)
10
11
       def forward(self, x):
12
           z = self.linear(x)
13
           y = torch.tanh(z)
14
           return y
15
16 model = Perceptron()
17
18
   # treinamento
19
20 ## optimizador
21 optim = torch.optim.SGD(model.parameters(), lr=1e-1)
22
23 ## função erro
24 loss_fun = torch.nn.MSELoss()
25
26 ## dados de treinamento
27 X_train = torch.tensor([[1., 1.],
28
                      [1., -1.],
29
                      [-1., 1.],
                      [-1., -1.]])
30
31 y_train = torch.tensor([1., -1., -1., -1.]).reshape(-1,1)
32
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

 pt

```
33 ## num de amostras
34 ns = y_train.size(0)
35
36 print("\nDados de treinamento")
37 print("X_train =")
38 print(X_train)
39 print("y_train = ")
40 print(y_train)
41
42 ## num max épocas
43 nepochs = 5000
44 \text{ tol} = 1e-3
45
46
  for epoch in range(nepochs):
47
48
       # forward
49
       y_est = model(X_train)
50
51
       # erro
       loss = loss_fun(y_est, y_train)
52
53
54
       print(f'{epoch}: {loss.item():.4e}')
55
56
       # critério de parada
57
       if (loss.item() < tol):</pre>
58
            break
59
       # backward
60
61
       for s in torch.randperm(ns):
62
            loss_s = (y_est[s,:] - y_train[s,:])**2
63
            optim.zero_grad()
64
            loss_s.backward()
65
            optim.step()
66
            y_est = model(X_train)
67
68
69 # verificação
70 y = model(X_train)
71 print(f'y_est = {y}')
```

2.2.3 Exercícios

Exercício 2.2.1. Calcule a derivada da função de ativação

$$f(x) = \tanh(x). \tag{2.40}$$

Exercício 2.2.2. Crie um Perceptron para emular a operação lógica \land (e-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Exercício 2.2.3. Crie um Perceptron para emular a operação lógica \vee (ou-lógico). No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

Exercício 2.2.4. Crie um Perceptron que se ajuste ao seguinte conjunto de dados:

S	$x^{(s)}$	$y^{(s)}$
1	0.5	1.2
2	1.0	2.1
3	1.5	2.6
4	2.0	3.6

No treinamento, use como otimizador:

- a) Método GD.
- b) Método SGD.

22 Capítulo 3 Perceptron Multicamadas Modelo MLP 3.1 Uma Perceptron Multicamadas (MLP, do inglês, Multilayer Perceptron) é um tipo de Rede Neural Artificial formada por composições de camadas de perceptrons. Consulte a Figura 3.1.

Figura 3.1: Estrutura de uma rede do tipo Perceptron Multicamadas (MLP).

Denotamos uma MLP de n camadas por

$$\boldsymbol{y} = \mathcal{N}\left(\boldsymbol{x}; \left(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)}\right)_{l=1}^{n}\right), \tag{3.1}$$

onde $(W^{(l)}, \boldsymbol{b}^{(l)}, f^{(l)})$ é a tripa de pesos, bias e função de ativação da l-ésima camada da rede, $l=1,2,\ldots,n$.

A saída da rede é calculada por iteradas composições das camadas, i.e.

$$\boldsymbol{a}^{(l)} = f^{(l)} \underbrace{\left(W^{(l)} \boldsymbol{a}^{(l-1)} + \boldsymbol{b}^{(l-1)}\right)}_{\boldsymbol{z}^{(l)}}, \tag{3.2}$$

para $l = 1, 2, \dots, n$, denotando $\boldsymbol{a}^{(0)} := \boldsymbol{x} \in \boldsymbol{a}^{(n)} := \boldsymbol{y}$.

3.1.1 Treinamento

Fornecido um conjunto de treinamento $\{\boldsymbol{x}^{(s)}\}_{s=1}^{n_s}$, com n_s amostras, o treinamento da rede consiste em resolver o problema de minimização

$$\min_{(W,\boldsymbol{b})} \varepsilon \left(\boldsymbol{y}^{(s)} \right) \tag{3.3}$$

onde ε é uma dada função erro.

O problema de minimização pode ser resolvido por um Método de Declive e, de forma geral, consiste em:

- 1. \boldsymbol{w}, b aproximações iniciais.
- 2. Para $e \leftarrow 1, \ldots, n_e$:

(a)
$$(W, \boldsymbol{b}) \leftarrow (W, \boldsymbol{b}) - l_r \boldsymbol{d}$$

onde, n_e é o **número de épocas**, l_r é uma dada **taxa de aprendizagem**¹ e o vetor direção \boldsymbol{d} depende dos gradientes

$$\nabla_{W,\mathbf{b}}\varepsilon := \left(\frac{\partial \varepsilon}{\partial W}, \frac{\partial \varepsilon}{\partial \mathbf{b}}\right). \tag{3.4}$$

O cálculo dos gradientes pode ser feito **de trás para frente**, i.e. para os pesos da última camada, temos

$$\frac{\partial \varepsilon}{\partial W^{(n)}} = \frac{\partial \varepsilon}{\partial y} \frac{\partial y}{\partial z^{(n)}} \frac{\partial z^{(n)}}{\partial W^{(n)}}, \tag{3.5}$$

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{y}} f' \left(W^{(n)} \boldsymbol{a}^{(n-1)} + \boldsymbol{b}^{(n)} \right) \boldsymbol{a}^{(n-1)}. \tag{3.6}$$

Para os pesos da penúltima, temos

$$\frac{\partial \varepsilon}{\partial W^{(n-1)}} = \frac{\partial \varepsilon}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}^{(n)}} \frac{\partial \mathbf{z}^{(n)}}{\partial W^{(n-1)}},$$
(3.7)

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{y}} f'\left(\boldsymbol{z}^{(n)}\right) \frac{\partial \boldsymbol{z}^{(n)}}{\partial \boldsymbol{a}^{(n-1)}} \frac{\partial \boldsymbol{a}^{(n-1)}}{\partial \boldsymbol{z}^{(n-1)}} \frac{\partial \boldsymbol{z}^{(n-1)}}{\partial W^{(n-1)}}$$
(3.8)

$$= \frac{\partial \varepsilon}{\partial \boldsymbol{v}} f'\left(\boldsymbol{z}^{(n)}\right) W^{(n)} f'\left(\boldsymbol{z}^{(n-1)}\right) \boldsymbol{a}^{(n-2)}$$
(3.9)

e assim, sucessivamente para as demais camadas da rede. Os gradientes em relação aos *biases* podem ser analogamente calculados.

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

рь

¹Em inglês, learning rate.

3.1.2 Aplicação: Problema de Classificação XOR

Vamos desenvolver uma MLP que faça a operação xor (ou exclusivo). I.e, receba como entrada dois valores lógicos A_1 e A_2 (V, verdadeiro ou F, falso) e forneça como saída o valor lógico $R = A_1xorA_2$. Consultamos a seguinte tabela verdade:

$$\begin{array}{c|cccc} A_1 & A_2 & R \\ \hline V & V & F \\ V & F & V \\ F & V & V \\ F & F & F \\ \end{array}$$

Assumindo V = 1 e F = -1, podemos modelar o problema tendo entradas $\mathbf{x} = (x_1, x_2)$ e saída y como na seguinte tabela:

Modelo

Vamos usar uma MLP de estrutura 2-2-1 e com funções de ativação $f^{(1)}(\boldsymbol{x}) = \tanh(\boldsymbol{x})$ e $f^{(2)}(\boldsymbol{x}) = id(\boldsymbol{x})$. Ou seja, nossa rede tem duas entradas, uma camada escondida com 2 unidades (função de ativação tangente hiperbólica) e uma unidade de saída (função de ativação identidade).

Treinamento

Para o treinamento, vamos usar a função erro quadrático médio

$$\varepsilon := \frac{1}{n_s} \sum_{s=1}^{n_s} \left| \tilde{y}^{(s)} - y^{(s)} \right|^2, \tag{3.10}$$

onde os valores estimados $\tilde{y}^{(s)} = \mathcal{N}\left(\boldsymbol{x}^{(s)}\right) \in \left\{\boldsymbol{x}^{(s)}, y^{(s)}\right\}_{s=1}^{n_s}, n_s = 4$, conforme na tabela acima.

Implementação

O seguinte código implementa a MLP e usa o Método do Gradiente Descendente (DG) no algoritmo de treinamento.

```
Código 3.1: mlp_xor.py
```

```
1
   import torch
2
3
  # modelo
4
5 model = torch.nn.Sequential(
       torch.nn.Linear(2,2),
       torch.nn.Tanh(),
7
8
       torch.nn.Linear(2,1)
9
10
   # treinamento
11
12
13
  ## optimizador
  optim = torch.optim.SGD(model.parameters(), lr=1e-2)
15
  ## função erro
16
17
   loss_fun = torch.nn.MSELoss()
18
19
  ## dados de treinamento
  X_train = torch.tensor([[1., 1.],
20
21
                       [1., -1.],
22
                       [-1., 1.],
                       [-1., -1.]])
23
24 y_train = torch.tensor([-1., 1., 1., -1.]).reshape(-1,1)
25
26 print("\nDados de treinamento")
  print("X_train =")
27
  print(X_train)
29 print("y_train = ")
30 print(y_train)
31
32 ## num max épocas
33 nepochs = 5000
34 \text{ tol} = 1e-3
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

) 6

```
35
36
   for epoch in range (nepochs):
37
        # forward
38
39
        y_est = model(X_train)
40
41
        # erro
        loss = loss_fun(y_est, y_train)
42
43
        print(f'{epoch}: {loss.item():.4e}')
44
45
46
        # critério de parada
        if (loss.item() < tol):</pre>
47
48
            break
49
50
        # backward
        optim.zero_grad()
51
        loss.backward()
52
53
        optim.step()
54
55
   # verificação
56
57 y = model(X_train)
  print(f'y_est = {y}')
```

3.1.3 Exercícios

[[tag::construcao]]

3.2 Aplicação: Aproximação de Funções

Redes Perceptron Multicamadas (MLP) são aproximadoras universais. Nesta seção, vamos aplicá-las na aproximação de funções uni- e bidimensionais.

3.2.1 Função unidimensional

Vamos criar uma MLP para aproximar a função gaussiana

$$y = e^{-x^2},$$
 (3.11)

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

рь

```
para x \in [-1,1].
                    Código 3.2: mlp_gaussiana_1d.py
1 import torch
2 import matplotlib.pyplot as plt
4 # modelo
5
6 model = torch.nn.Sequential(
7
       torch.nn.Linear(1,25),
       torch.nn.Tanh(),
       torch.nn.Linear(25,1)
9
10
11
12 # treinamento
13
14 ## fun obj
15 fobj = lambda x: torch.exp(-x**2)
16 \ a = -1.
17 b = 1.
18
19 ## optimizador
20 optim = torch.optim.SGD(model.parameters(),
21
                             lr=1e-2, momentum=0.9)
22
23 ## função erro
24 loss_fun = torch.nn.MSELoss()
25
26 ## num de amostras por época
27 \text{ ns} = 100
28 ## num max épocas
29 nepochs = 5000
30 ## tolerância
31 \text{ tol} = 1e-5
32
33 for epoch in range (nepochs):
34
35
       # amostras
36
       X_{train} = (a - b) * torch.rand((ns,1)) + b
37
       y_train = fobj(X_train)
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Ьr

```
38
        # forward
39
40
        y_est = model(X_train)
41
42
        # erro
43
        loss = loss_fun(y_est, y_train)
44
        print(f'{epoch}: {loss.item():.4e}')
45
46
        # critério de parada
47
48
        if (loss.item() < tol):</pre>
49
            break
50
        # backward
51
52
        optim.zero_grad()
53
        loss.backward()
54
        optim.step()
55
56
57 # verificação
58 fig = plt.figure()
59 ax = fig.add_subplot()
60
61 x = torch.linspace(a, b,
62
                         steps=50).reshape(-1,1)
63
64 \text{ y_esp} = \text{fobj(x)}
65 ax.plot(x, y_esp, label='fobj')
66
67 \text{ y_est} = \text{model(x)}
68 ax.plot(x, y_est.detach(), label='model')
69
70 ax.legend()
71 ax.grid()
72 ax.set_xlabel('x')
73 ax.set_ylabel('y')
74 plt.show()
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

LŲU

150+

00

-30

-350

400

450

00

50

-600

3.2.2 Função bidimensional

Vamos criar uma MLP para aproximar a função gaussiana

```
y = e^{-(x_1^2 + x_2^2)},		(3.12)
```

para $\mathbf{x} = (x_1, x_2) \in [-1, 1]^2$.

Código 3.3: mlp_gaussiana_2d.py

```
import torch
  import matplotlib.pyplot as plt
4
   # modelo
6
   model = torch.nn.Sequential(
7
       torch.nn.Linear(2,50),
8
       torch.nn.Tanh(),
9
       torch.nn.Linear(50,25),
10
       torch.nn.Tanh(),
11
       torch.nn.Linear(25,5),
12
       torch.nn.Tanh(),
13
       torch.nn.Linear(5,1)
14
15
16
  # treinamento
17
18
   ## fun obj
19 \ a = -1.
20
  b = 1.
21
   def fobj(x):
22
       y = torch.exp(-x[:,0]**2 - x[:,1]**2)
23
       return y.reshape(-1,1)
24
25
  ## optimizador
26
  optim = torch.optim.SGD(model.parameters(),
27
                             lr=1e-1, momentum=0.9)
28
29 ## função erro
30 loss_fun = torch.nn.MSELoss()
31
32
  ## num de amostras por eixo por época
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

Ьr

```
33 \text{ ns} = 100
34 ## num max épocas
35 nepochs = 5000
36 ## tolerância
37 \text{ tol} = 1e-5
38
39 for epoch in range (nepochs):
40
41
        # amostras
42
        x0 = (a - b) * torch.rand(ns) + b
        x1 = (a - b) * torch.rand(ns) + b
43
44
       X0, X1 = torch.meshgrid(x0, x1)
45
        X_train = torch.cat((X0.reshape(-1,1),
                               X1.reshape(-1,1)),
46
47
                              dim=1)
48
        y_train = fobj(X_train)
49
50
        # forward
        y_est = model(X_train)
51
52
53
        # erro
        loss = loss_fun(y_est, y_train)
54
55
56
       print(f'{epoch}: {loss.item():.4e}')
57
58
        # critério de parada
59
        if (loss.item() < tol):</pre>
            break
60
61
62
        # backward
        optim.zero_grad()
63
        loss.backward()
64
65
        optim.step()
66
67
68 # verificação
69 fig = plt.figure()
70 ax = fig.add_subplot()
71
72 n = 50
```

```
73 x0 = torch.linspace(a, b, steps=n)
74 x1 = torch.linspace(a, b, steps=n)
75 X0, X1 = torch.meshgrid(x0, x1)
76 X = torch.cat((X0.reshape(-1,1),
77
                    X1.reshape(-1,1)),
78
                   dim=1)
79
80 \text{ y_esp} = \text{fobj(X)}
81 Y = y_{esp.reshape}((n,n))
82 levels = torch.linspace(0., 1., 10)
  c = ax.contour(X0, X1, Y, levels=levels, colors='white')
84
  ax.clabel(c)
85
86 \text{ y_est} = \text{model(X)}
87 Y = y_{est.reshape((n,n))}
88 ax.contourf(XO, X1, Y.detach(), levels=levels)
89
90 \text{ ax.grid()}
91 ax.set_xlabel('x_1')
92 ax.set_ylabel('x_2')
93 plt.show()
```

3.2.3 Exercícios

[[tag::construcao]]

3.3 Aplicação: Equação de Laplace

Vamos criar uma MLP para resolver

$$-\Delta u = f, \quad \mathbf{x} \in D = (-1, 1)^2,$$
 (3.13a)
 $u = 0, \quad \mathbf{x} \in \partial D.$ (3.13b)

Para validação, vamos considerar um problema com solução manufaturada

$$u(\mathbf{x}) = \operatorname{sen}(\pi x_1) \operatorname{sen}(\pi x_2) \tag{3.14}$$

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

þг

+--15

- 200

-250-

300 -

-350

400

450 —

500

-550

-600

```
o que nos fornece
        f = \pi^2 \operatorname{sen}(\pi x_1) \operatorname{sen}(\pi x_2).
                                                               (3.15)
                       Código 3.4: mlp_eqlaplace.py
1 import torch
 2 import matplotlib.pyplot as plt
3
4 # modelo
5
6 model = torch.nn.Sequential(
7
        torch.nn.Linear(2,500),
        torch.nn.Tanh(),
8
9
        torch.nn.Linear (500,250),
10
        torch.nn.Tanh(),
11
        torch.nn.Linear (250,50),
12
        torch.nn.Tanh(),
        torch.nn.Linear(50,1)
13
14
        )
15
16 # treinamento
17
18 ## fun obj
19 \ a = -1.
20 \, b = 1.
21 \text{ def } exact(x):
        y = torch.sin(torch.pi*x[:,0])*torch.sin(torch.pi*x[:,1])
        return y.reshape(-1,1)
23
24
25 \text{ def } rhs(x):
        y = torch.pi**2*torch.sin(torch.pi*x[:,0])*torch.sin(torch.pi*x[:,1])
26
        return y.reshape(-1,1)
27
28
29 ## optimizador
30 optim = torch.optim.SGD(model.parameters(),
31
                               lr=1e-2, momentum=0.85)
32 ## scheaduler
33 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optim,
34
                                                                   factor = 0.6,
35
                                                                   min_lr = 1e-6,
```

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA $4.0\,$

pt

```
36
37 ## num de amostras pts internos
38 \, n_{in} = 200
39 ## num de amostras pts fronteira
40 \text{ n_bound} = 50
41 ## num max épocas
42 nepochs = 5000
43 ## tolerância
44 \text{ tol} = 1e-5
45 ## output freq
46 \text{ eout} = 100
47
  def loss_fun(X_in, X_bound, model=model):
48
49
50
        ## pontos internos
51
        n_{in} = X_{in.size}(0)
52
        1_{in} = 0.
53
        for s in range(n_in):
54
            x = X_{in}[s:s+1,:].detach()
55
            x.requires_grad = True
            u = model(x)
56
57
            grad_u = torch.autograd.grad(u, x,
58
                                            create_graph = True,
59
                                            retain_graph = True)[0]
60
            u x = grad u [0,0]
61
            u_y = grad_u[0,1]
62
63
            u_xx = torch.autograd.grad(u_x, x,
64
                                          create_graph = True,
65
                                          retain_graph = True)[0][0,0]
66
            u_yy = torch.autograd.grad(u_y, x,
67
                                          create_graph = True,
68
                                          retain_graph = True)[0][0,1]
69
            l_{in} = torch.add(l_{in}, (u_xx + u_yy + rhs(x))**2)
70
        l_in /= n_in
71
72
73
        ## pontos de contorno
74
        n_bound = X_bound.size(0)
75
        1 bound = 0.
```

```
76
        for s in range(n_bound):
 77
             x = X_bound[s:s+1,:]
             u = model(x)
 78
 79
             1_bound = torch.add(1_bound, u**2)
 80
        l_bound /= n_bound
 81
 82
        return l_in + l_bound
 83
84
 85 # pts de fronteira
 86 X_bound = torch.empty((4*n_bound, 2))
 87 # pts internos
 88 X_{in} = torch.empty((n_{in}, 2))
 89
 90 # épocas
 91 for epoch in range (nepochs):
 92
         # amostras: pts internos
 93
 94
        for s in range(n_in):
             X_{in}[s,:] = (a-b)*torch.rand(2) + b
 95
         # amostras: pst fronteira
 96
        s = 0
 97
 98
        for i in range(n_bound):
99
             \# \ a <= x0 <= b, x1 = 0
100
             X_{bound}[s,0] = (a-b)*torch.rand(1) + b
101
             X_{bound}[s,1] = a
102
             s += 1
103
             # x0 = b, a <= x1 <= b
104
105
             X_{bound}[s,0] = b
106
             X_{bound}[s,1] = (a-b)*torch.rand(1) + b
107
             s += 1
108
             # x0 = a, a \le x1 \le b
109
110
             X_bound[s,0] = a
             X_{bound}[s,1] = (a-b)*torch.rand(1) + b
111
112
             s += 1
113
114
             \# \ a <= x0 <= b, x1 = b
             X_{bound}[s,0] = (a-b)*torch.rand(1) + b
115
```

t 100 150 200 250 300 350 400 450 500 550 600

```
116
            X_bound[s,1] = b
117
            s += 1
118
119
        # erro
120
        loss = loss_fun(X_in, X_bound)
121
122
        print(f'{epoch}: loss = {loss.item():.4e}, lr = {optim.param_group
123
        if ((epoch+1) % eout == 0):
124
             # verificação
            fig = plt.figure()
125
126
            ax = fig.add_subplot()
127
128
            ns = 50
129
            x0 = torch.linspace(a, b, steps=ns)
            x1 = torch.linspace(a, b, steps=ns)
130
131
            X0, X1 = torch.meshgrid(x0, x1)
132
            X = torch.cat((X0.reshape(-1,1),
133
                             X1.reshape(-1,1)),
134
                            dim=1)
135
136
            y_{esp} = exact(X)
            Y = y_esp.reshape((ns,ns))
137
138
            c = ax.contour(X0, X1, Y, levels=10, colors='white')
139
            ax.clabel(c)
140
141
            y_est = model(X)
142
            Y = y est.reshape((ns,ns))
143
            cf = ax.contourf(X0, X1, Y.detach(), levels=10, cmap='coolwarm
144
            plt.colorbar(cf)
145
146
             # amostras
            ax.plot(X_in[:,0].detach(), X_in[:,1].detach(), ls='', marker=
147
148
            ax.plot(X_bound[:,0].detach(), X_bound[:,1].detach(), ls='', r
149
150
            ax.grid()
151
            ax.set_xlabel('$x_1$')
            ax.set_ylabel('$x_2$')
152
153
            plt.show()
154
155
```

t 100 150 200 250 300 350 400 450 500 550 600

```
# critério de parada
156
         if (loss.item() < tol):</pre>
157
158
             break
159
         # backward
160
         optim.zero_grad()
161
         loss.backward()
162
         optim.step()
163
         scheduler.step(loss)
164
```

3.3.1 Exercícios

[[tag::construcao]]

Notas de Aula - Pedro Konzen */* Licença CC-BY-SA 4.0

pt

.00

200

-250-

300 -

350

50

00

550

Resposta dos Exercícios

Exercício 2.1.3. Dica: verifique que sua matriz hessiana é positiva definida.

Exercício 2.1.4. Dica: consulte a ligação Notas de Aula: Matemática Numérica: 7.1 Problemas lineares.

Exercício 2.2.1. $(\tanh x)' = 1 - \tanh^2 x$

Bibliografia

[1] I. Goodfellow, Y. Bengio, and A. Courville. *Deep learning*. MIT Press, Cambridge, MA, 2016.