Dear Referee,

We would like to submit a manuscript, "Ultrafast Transient Absorption Measurements of Photocarrier Dynamics in PdSe₂", for your kind consideration.

In this manuscript, we report the dynamical properties of photocarriers in PdSe₂ layered crystals using transient absorption microscopy. Since 2004, the successful preparation of graphene has aroused great interest in two-dimensional layered materials. In particular, layered transition metal dichalcogenides (TMDCs), such as MoS₂, with excellent charge transport and thermoelectric properties, layer-dependent electronic band structures, and good air stability have received extensive attention from researchers over the past decade. However, their bandgap range in visible (1.2-1.9 eV) limits optimal use in optoelectronic devices, especially in the IR range.

Here we show that PdSe₂, a narrow-bandgap layered material, possesses superior photocarrier properties. We report a photocarrier lifetime of 210 ps and a diffusion coefficient of 7.3 cm² s⁻¹. Based on these results, we deduce a diffusion length is approximately 400 nm and the photocarrier mobility of approximately 300 cm² V⁻¹s⁻¹. These findings contribute to a better understanding of the optoelectronic properties of PdSe₂.

We believe that the reported photocarrier dynamical properties in PdSe₂ are highly interesting to researchers working on nanoscale optoelectronics. Furthermore, PdSe₂ is a layered transition metal dichalcogenide with unique electronic and optical properties, featuring a novel pentagonal structure and many new characteristics such as high air stability and in-plane optical anisotropy. Therefore, understanding the dynamical properties of photocarriers in this new material is crucial for designing and optimizing future field-effect transistors (FETs) and optoelectronic detectors based on PdSe₂ and its heterostructures. We also believe that our work would stimulate more studies on the photocarriers and optical properties of this elusive material.

Thank you very much for your consideration!

Yours Sincerely,

Professor Dawei He School of Physical Science and Engineering Beijing Jiaotong University E-mail: dwhe@bjtu.edu.cn