Baskent University, Faculty of Engineering BME 222-01 – Electronics (Spring Semester 2004/2005) Quiz 2 – April 25, 2005

Student Name	
aculty No:	
	+5 V
	<u>, , , , , , , , , , , , , , , , , , , </u>
	≥ 2 kΩ ≥ 10 μF
	10 μF
	$\beta = 50$
	≶ 180 kΩ
	15°V

For the fixed-bias circuit determine: I_B, I_{CQ}, V_{CEQ}, V_B, V_C, V_{BC}.

6 points.
Good Luck!

For the fixed-bias circuit determine: IB, Ica, VCEa, VB, Vc, VBC (6 points)

Solution

$$I_{B} \cdot R_{B} + V_{BE} - 15 = 0$$

$$V_{BE} = 0.7V$$

$$I_{B} = \frac{15 - 0.7}{R_{B}} = \frac{14.3}{180.10^{3}} = 0.079 \cdot 10^{-3} =$$

2).
$$I_{ca} = \beta I_{e} = 50.79.10^{-6} = 3950.10^{-6} = 3.95 \text{ m A}$$

$$\frac{15 - \text{Ve}_{\text{Eq}} - \text{I}_{\text{c}} \text{Re} + 5}{15 - \text{Ve}_{\text{Eq}} - \text{I}_{\text{c}} \text{Re} + 5} = 0$$

$$15 - \text{Ve}_{\text{Eq}} = 20 - \text{I}_{\text{c}} \text{Re} = 20 - 3.5510^{3} \cdot 2.10^{3} = 20 - 7.9 = (2.1 \text{ V})$$

4.
$$V_B = -I_B R_B = -79.10^{-6} \cdot 180.10^3 = -14.220.10^3 = (-14.22)$$

5.
$$V_c = V_E + V_{cE} = -15 + 12.1 = (-2.9 \text{ V})$$

6.
$$V_{BC} = V_{B} - V_{C} = -14.22 - (-2.5) = (-14.32 \text{ V})$$