

Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ)

Κεφάλαιο 10: Μελέτη Ροών Φορτίου

Μάθημα στις 7/12/2022

Παύλος Σ. Γεωργιλάκης Αν. Καθ. ΕΜΠ

Εισαγωγή

Το πρόγραμμα υπολογισμού ροών ισχύος (ροών φορτίου) είναι το πιο συνηθισμένο καθημερινό εργαλείο των αναλυτών ΣΗΕ γιατί οι μελέτες ροών φορτίου είναι απαραίτητες:

- 1. Για την πλέον οικονομική λειτουργία των γεννητριών
- 2. Για τον έλεγχο των τάσεων και των ροών ισχύος
- 3. Για τη μελέτη των επιπτώσεων ενδεχόμενων διαταραχών
- 4. Σε μελέτες ανάπτυξης και επέκτασης του ΣΗΕ

$$\mathbf{Z}_{km} = jX_{km}$$

$$\mathbf{V}_{k} - jX_{km} \cdot \mathbf{I}_{km} - \mathbf{V}_{m} = 0 \Longrightarrow \qquad \mathbf{I}_{km} = \frac{\mathbf{V}_{k} - \mathbf{V}_{m}}{jX_{km}}$$
(10.1)

$$\boxed{\mathbf{S}_{km} = \mathbf{V}_k \cdot \mathbf{I}_{km}^* \qquad (10.2)} \qquad \qquad \mathbf{V}_k = V_k \angle \delta_k \qquad (10.3) \qquad \qquad \mathbf{V}_m = V_m \angle \delta_m \qquad (10.4)$$

$$\mathbf{S}_{km} = \mathbf{V}_{k} \cdot \mathbf{I}_{km}^{*} = \mathbf{V}_{k} \cdot \left(\frac{\mathbf{V}_{k} - \mathbf{V}_{m}}{jX_{km}}\right)^{*} = \frac{\mathbf{V}_{k} \cdot \left(\mathbf{V}_{k}^{*} - \mathbf{V}_{m}^{*}\right)}{-jX_{km}} = \frac{\mathbf{V}_{k} \cdot \mathbf{V}_{k}^{*} - \mathbf{V}_{k} \cdot \mathbf{V}_{m}^{*}}{-jX_{km}} \Longrightarrow$$

$$\mathbf{S}_{km} = \frac{V_k^2 - (V_k \angle \delta_k) \cdot (V_m \angle \delta_m)^*}{-jX_{km}} = \frac{V_k^2 - V_k \cdot V_m \angle (\delta_k - \delta_m)}{-jX_{km}} \Longrightarrow$$

$$\mathbf{S}_{km} = \frac{V_k^2 - V_k \cdot V_m \cdot \cos(\delta_k - \delta_m) - jV_k \cdot V_m \cdot \sin(\delta_k - \delta_m)}{-jX_{km}} \Longrightarrow$$

$$\mathbf{S}_{km} = \frac{jV_k^2 - jV_k \cdot V_m \cdot cos(\delta_k - \delta_m) + V_k \cdot V_m \cdot sin(\delta_k - \delta_m)}{X_{km}} = P_{km} + jQ_{km} \Rightarrow$$

$$P_{km} = \frac{V_k \cdot V_m}{X_{km}} \cdot \sin(\delta_k - \delta_m) \qquad (10.5)$$

$$Q_{km} = \frac{V_k^2}{X_{km}} - \frac{V_k \cdot V_m}{X_{km}} \cdot cos(\delta_k - \delta_m)$$
 (10.6)

$$P_{mk} = \frac{V_k \cdot V_m}{X_{km}} \cdot \sin(\delta_m - \delta_k) \qquad (10.7)$$

$$Q_{mk} = \frac{V_m^2}{X_{km}} - \frac{V_k \cdot V_m}{X_{km}} \cdot cos(\delta_m - \delta_k)$$
 (10.8)

$$P_{mk} = -P_{km} (10.9) Q_{mk} \neq -Q_{km} (10.10)$$

$$|PLoss_{km} = P_{km} + P_{mk} = 0 (10.11)|$$

$$QLoss_{km} = Q_{km} + Q_{mk} \neq 0 \qquad (10.12)$$

Γραμμή Μεταφοράς

$$\mathbf{y}_{km} = g_{km} + jb_{km}$$

$$\mathbf{y}_{skm} = g_{skm} + jb_{skm}$$

$$\mathbf{y}_{smk} = g_{sm\kappa} + jb_{smk}$$

Εγκάρσιος Πυκνωτής και Πηνίο

Μετασχηματιστής (Μ/Σ)

Γεννήτρια

Στις μελέτες ροών φορτίου, οι σύγχρονες γεννήτριες έχουν συνήθως σταθερή τερματική τάση (μέτρο τάσης V_k) και σταθερή παραγωγή πραγματικής ισχύος (P_{Gk}) , για αυτό οι ζυγοί αυτοί ονομάζονται ζυγοί PV ή ζυγοί παραγωγής.

Φορτίο

Φορτίο σταθερής ενεργού και αέργου ισχύος

Φορτίο σταθερής σύνθετης αγωγιμότητας

12

Εξισώσεις Ροών Φορτίου

Πίνακας Αγωγιμοτήτων

Εξισώσεις Ροών Φορτίου

Μιγαδική Εξίσωση Ροής Φορτίου

$$\mathbf{S}_{k} = \mathbf{S}_{Gk} - \mathbf{S}_{Dk} = \mathbf{Y}_{kk}^{*} \cdot V_{k}^{2} + \mathbf{V}_{k} \cdot \sum_{m \in A(k)} \mathbf{Y}_{km}^{*} \cdot \mathbf{V}_{m}^{*}$$
(10.13)

$$\mathbf{V}_k = V_k \cdot e^{j\delta_k} = V_k \angle \delta_k$$

$$\mathbf{V}_m = V_m \cdot e^{j\delta_m} = V_m \angle \delta_m$$

$$\mathbf{S}_{Gk} = P_{Gk} + jQ_{Gk}$$

$$\mathbf{S}_{Dk} = P_{Dk} + jQ_{Dk}$$

$$\mathbf{Y}_{kk} = G_{kk} + jB_{kk}$$

$$\mathbf{Y}_{km} = G_{km} + jB_{km}$$

Εξισώσεις Ροών Φορτίου

Εξισώσεις Ενεργού και Αέργου Ισχύος

$$P_{Gk} - P_{Dk} = G_{kk} \cdot V_k^2 + V_k \cdot \sum_{m \in A(k)} V_m \cdot G_{km} \cdot cos(\delta_k - \delta_m) + V_k \cdot \sum_{m \in A(k)} V_m \cdot B_{km} \cdot sin(\delta_k - \delta_m)$$
(10.14)

$$Q_{Gk} - Q_{Dk} = -B_{kk} \cdot V_k^2 + V_k \cdot \sum_{m \in A(k)} V_m \cdot G_{km} \cdot sin(\delta_k - \delta_m) - V_k \cdot \sum_{m \in A(k)} V_m \cdot B_{km} \cdot cos(\delta_k - \delta_m)$$
(10.15)

Τύποι Ζυγών Ροής Φορτίου

- 1. Ζυγός ταλάντωσης ή ζυγός αναφοράς
 - **Ορισμός**: Γνωστά το μέτρο (V) και η γωνία της τάσης (δ) του ζυγού.
- 2. Ζυγός φορτίου ή ζυγός PQ
 - Ορισμός: Γνωστά η έγχυση ενεργού ισχύος (P_G-P_D) και η έγχυση αέργου ισχύος (Q_G-Q_D) του ζυγού
 - Παρατήρηση: αν ένας ζυγός δεν έχει πάνω του ούτε γεννήτρια ούτε φορτίο, τότε είναι ζυγός PQ
- 3. Ζυγός παραγωγής ή ζυγός PV
 - Ορισμός: Γνωστά η έγχυση ενεργού ισχύος (P_G-P_D) και το μέτρο της τάσης (V) του ζυγού
 - Παρατήρηση: αν ένας ζυγός έχει πάνω του γεννήτρια, δεν σημαίνει ότι είναι υποχρεωτικά ζυγός PV

Διάνυσμα Κατάστασης

Έστω η ακόλουθη αρίθμηση ζυγών ενός ΣΗΕ:

- 1. Ο Ζυγός 1 είναι ο ζυγός ταλάντωσης
- 2. Οι Ζυγοί 2 έως η-μ είναι οι ζυγοί παραγωγής
- 3. Ot Zuyoí n-m+1 έως n είναι οι ζυγοί φορτίου

Στην παραπάνω αρίθμηση:

- Ο συνολικός αριθμός των ζυγών είναι n
- Ο συνολικός αριθμός των ζυγών φορτίου είναι m

Διάνυσμα Κατάστασης

• Ζητούμενο του προβλήματος ροών φορτίου είναι να υπολογιστούν τα μέτρα των τάσεων (V_i) και οι γωνίες των τάσεων (δ_i) , όλων των ζυγών του ΣΗΕ, όπου $\mathbf{V}_i = V_i \angle \delta_i$. Αυτό σημαίνει ότι θα πρέπει να υπολογιστούν τα:

$$\circ$$
 $V_1, V_2, ..., V_n$

$$\circ$$
 $\delta_1, \delta_2, ..., \delta_n$

- Όμως, στον ζυγό ταλάντωσης 1 είναι γνωστά τα V_1, δ_1 .
- Όμως, στους ζυγούς παραγωγής 2 έως n-m είναι γνωστά τα μέτρα των τάσεων, δηλαδή είναι γνωστά τα V_2 , V_3 , ..., V_{n-m}

Διάνυσμα Κατάστασης

- Αυτό σημαίνει ότι το διάνυσμα κατάστασης (οι άγνωστοι του προβλήματος ροών φορτίου) είναι:
 - $\circ V_{n-m+1}$ έως V_n , δηλαδή m άγνωστα μέτρα τάσεων
 - ο δ_2 έως δ_n , δηλαδή n-1 άγνωστες γωνίες τάσεων
- Συνεπώς, οι συνολικοί άγνωστοι είναι n+m-1
- Συνεπώς, απαιτούνται *n+m-1* γραμμικά ανεξάρτητες εξισώσεις

Διάνυσμα Κατάστασης

Οι *n+m-1* γραμμικά ανεξάρτητες εξισώσεις που απαιτούνται είναι οι ακόλουθες:

ο **n-1 εξισώσεις** του ισοζυγίου πραγματικής ισχύος, μία για κάθε ζυγό εκτός από τον ζυγό ταλάντωσης:

$$P_{Gk} - P_{Dk} = G_{kk} \cdot V_k^2 + V_k \cdot \sum_{m \in A(k)} V_m \cdot G_{km} \cdot \cos(\delta_k - \delta_m) + V_k \cdot \sum_{m \in A(k)} V_m \cdot B_{km} \cdot \sin(\delta_k - \delta_m)$$
(10.14)

ο **m εξισώσεις** του ισοζυγίου αέργου ισχύος, μία για κάθε ζυγό φορτίου:

$$Q_{Gk} - Q_{Dk} = -B_{kk} \cdot V_k^2 + V_k \cdot \sum_{m \in A(k)} V_m \cdot G_{km} \cdot sin(\delta_k - \delta_m) - V_k \cdot \sum_{m \in A(k)} V_m \cdot B_{km} \cdot cos(\delta_k - \delta_m)$$
(10.15)