### Statistical Inference Notes

Tazmilur Saad

February 9, 2021

My notes based entirely on the book  $\it Statistical\ Inference$  written by George Casella and Roger L. Berger.

# Contents

| 1 | Probability Theory |                    |   |  |
|---|--------------------|--------------------|---|--|
|   | 1.1                | Probability Theory |   |  |
|   | 1.2                | Random Variables   | ŀ |  |

4 CONTENTS

### Chapter 1

## Probability Theory

#### 1.1 Probability Theory

**Theorem 1.1.1.** Given a sample space S and an associated  $\sigma$ -algebra B, a probability function is a function P with domain B that satisfies

- 1.  $P(A) \ge 0$  for all  $A \in \mathcal{B}$
- 2. P(S) = 1
- 3. if  $A_1, A_2, \dots \in \mathcal{B}$  are pairwise disjoint, then  $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ .

#### 1.2 Random Variables

**Definition 1.2.1** (Random Variable). A random variable is a function from a sample space S into the real numbers.

Assume we have a sample space  $S = \{s_1, \ldots, s_n\}$  with a probability function P. We can define a random variable X with range  $\mathcal{X} = \{x_1, \ldots, x_m\}$ . We can define a probability function  $P_x$  on  $\mathcal{X}$  in the following way:  $X = x_i$  if and only if the outcome of the random experiment is an  $s_i \in \mathcal{S}$  such that  $X(s_i) = x_i$ .

$$P_X(X = x_i) = P(\{s_j \in \mathcal{S} : X(s_j) = x_i\})$$

 $P_X$  is the induced probability function on  $\mathcal{X}$ , defined in terms of the original function P. We can show that the induced probability function satisfies the Kolmogorov axioms.

Proof. Asdas  $\Box$