Dernière mise à jour	SLCI2	Denis DEFAUCHY
05/10/2022	Linéarisation – Réduction	Résumé

Systèmes Linéaires Continus Invariants

SLC12 - Réduction de modèle

Résumé

Programme PSI/MP 2022 (<u>LIEN</u>)			
Id	Compétence développée	Connaissances associées	
	B3-02 Préciser les limites de validité d'un modèle.	Point de fonctionnement.	
B3-02		Non-linéarités (courbure, hystérésis, saturation,	
		seuil) et retard pur.	
B2-08 Simplifier un modèle.	Linéarisation d'un modèle autour d'un point de		
	fonctionnement.		
	Simpliner dir modele.	Pôles dominants et réduction de l'ordre du modèle :	
		– principe ; – justification ; – limites.	

Dernière mise à jour	SLCI2	Denis DEFAUCHY
05/10/2022	Linéarisation – Réduction	Résumé

Réduction de modèles et réponse temporelle

$$H(p) = \frac{K}{p^{\alpha}} \frac{\prod (1 + T_i p) \prod \left(1 + \frac{2z_i}{\omega_{0_i}} p + \frac{p^2}{{\omega_{0_i}}^2}\right)}{\prod (1 + T_i p) \prod \left(1 + \frac{2z_i}{\omega_{0_i}} p + \frac{p^2}{{\omega_{0_i}}^2}\right)}$$

Le système est stable, il ne possède aucun pôle à partie réelle positive ou nulle. On définit le **pôle dominant** de la FT comme le pôle réel ou l'ensemble des pôles complexes conjugués de plus faible partie réelle en valeur absolue.

Dernière mise à jourSLCI2Denis DEFAUCHY05/10/2022Linéarisation – RéductionRésumé

Dernière mise à jour	SLCI2	Denis DEFAUCHY
05/10/2022	Linéarisation – Réduction	Résumé

Réduction de modèles et diagramme de Bode

$$H(p) = \frac{K}{p^{\alpha}} \frac{\prod (1 + T_i p) \prod \left(1 + \frac{2z_i}{\omega_{0_i}} p + \frac{p^2}{\omega_{0_i}^2}\right)}{\prod (1 + T_i p) \prod \left(1 + \frac{2z_i}{\omega_{0_i}} p + \frac{p^2}{\omega_{0_i}^2}\right)}$$

$$G = G_0 + G_1^n + G_2^n - G_1^d - G_2^d - G_{\alpha}$$
; $\varphi = \varphi_1^n + \varphi_2^n - \varphi_1^d - \varphi_2^d - \varphi_{\alpha}$

Avec n pour numérateur, d pour dénominateur, 1 pour premier ordre, 2 pour second ordre, $G_0 = 0$ $20 \log K$, $G_{\alpha} = \alpha 20 \log \omega$, $\varphi_{\alpha} = \alpha \frac{\pi}{2}$

Sur le diagramme de Bode, lorsque l'on ne s'intéresse qu'à une plage de pulsations du type $[0, \omega_e]$, on peut négliger tous les gains et toutes les phase négligeables dans cette plage.

Exemple

$$H(p) = K \frac{\left(1 + \frac{1}{10}p\right)}{\left(1 + \frac{1}{100}p\right)\left(1 + \frac{1}{1000}p\right)}$$

$$\omega_e = 50 \, rd/s$$

$$\omega_e$$

$$\omega_e = 50 \, rd/s \qquad \qquad \omega_e = 500 \, rd/s$$

$$H(p) \underset{\omega < \omega_e}{\approx} K\left(1 + \frac{1}{10}p\right) \qquad H(p) \underset{\omega < \omega_e}{\approx} K\left(1 + \frac{1}{10}p\right)$$

Applications

$$\frac{H(p)}{10} \frac{10}{(1+0.1p)(1+0.001p)(1+0.02p+0.0001p^2)}$$

Est-ce que sa bande passante respecte le critère BP = [0,5]

Pour les 1° ordres : $\omega_{c_1}=10$, $\omega_{c_2}=1000$ Pour le second ordre : $\omega_0=100$

$$H(p) \underset{\omega \leq 10}{\approx} \frac{10}{(1+0.1p)}$$
$$BP = [0,10]$$

Critère vérifié

Il y a un effet sur la réponse temporelle

$H(p) = \frac{\left(1 + \frac{1}{10}p\right)}{\left(1 + \frac{1}{11}p\right)\left(1 + \frac{1}{100}p\right)}$	$H(p) = \frac{1}{1 + \frac{1}{100}p}$
	-