Ch 05. Non-parametric Method

Part 1 Parzen Window Estimation

Approaches to Pattern Classification

- Approach 1: Estimate class-conditional probability density p(x | ω_i)
 - Through $p(\mathbf{x} \mid \omega_i)$ and $P(\omega_i)$, calculate posterior probability $P(\omega_i \mid \mathbf{x})$ with Bayes' rule, then make decisions with maximum posterior probability
 - Two Methods
 - Method 1a: Parameter estimation of probability density
 Based on parametric description of p(x | ω_i)
 - Method 1b: Non-parametric estimation of probability density Based on non-parametric description of $p(\mathbf{x} \mid \omega_i)$
- Approach 2: Estimate posterior probability P(0, 1 x)
 - Don't have to estimate p(x | ω_i) in advance
- Approach 3: Compute discrimination function
 - Don't have to estimate p(x | ω_i) or P(ω_i | x)

Possible Problems of Parameter Estimation

- The form of the probability density function is unknown
- The classical density function cannot describe the real data well
 - The parametric form of the classical density function is generally unimodular
 - Real data is often multimodal
 - Some complex data are difficult to model in parametric form

Solution: non-parametric method (非参数方法)

Non-parametric Method

- can handle any probability density
- don't have to assume the parametric form of the density function
- No Free Lunch!
 - The training samples required by non-parametric methods to obtain better results are generally much larger than those of parametric methods

Non-parametric Density Estimation

- Suppose the probability density of x is p(x), then the probability of any x falling into region \mathbf{R} is $P = \int p(\mathbf{x}) d\mathbf{x}$
- The basic idea of non-parametric density estimation
 - Estimate p of x by estimating the probability of a small region R around x
- Suppose there are n i.i.d. samples, and the probability of k samples falling into R is

$$P_k = {n \choose k} P^k (1-P)^{n-k}$$
 binomial distribution

- The expectation value of k E[k] = nP
- When the amount of data n is large, P_K has a very significant peak near nP, and E(k) can be replaced by the observed value of k $P = \frac{E[k]}{k} = \frac{k}{n}$

Non-parametric Density Estimation

Non-parametric Density Estimation

Mean value theorem of integrals

$$P = \int_{\mathcal{R}} p(\mathbf{x}) d\mathbf{x} = p(\mathbf{x}') V$$

- V = ∫dx is the measure of the size of region R (length, area,
 volume, etc.)
- x' is a certain point of R
- If R is small enough so that the change in p of x is small in R, then P ≈ p(x) V
 - x is any point in R
- Put $P = \frac{E[k]}{n} \approx \frac{k}{n}$ into, get

$$\frac{k}{n} \approx p(\mathbf{x}) V$$
 or $p(\mathbf{x}) \approx \frac{k/n}{V}$

The Choice of V

- In the case of a finite number of samples n
 - V is too large p(x) is smoothed
 - V approaches 0
 - If there are no sample points in R, then $p(\mathbf{x}) = \frac{k/n}{V_k/n} = 0$ If there happens to be a sample in R,then $p(\mathbf{x}) = \frac{k/n}{V} \approx \infty$
- Suppose number of samples can be unlimited
 - Construct a series of regions containing **x**: $R_1, R_2, ...$
 - R₁ uses one sample
 - R₂ uses two samples

The number of samples that fall into R_n Estimate by R_n

The Choice of V

- If $p_n(x) \rightarrow p(x)$, the following conditions must be satisfied
 - $\bullet \quad \lim_{n \to \infty} V_n = 0$

The smoothed P/V can converge to p(x)

 $\lim_{n\to\infty} k_n = \infty$

The ratio of frequency k/n can converge to P

Even if the samples falling in R tend to infinity, their proportion in the entire data set is still small

The Choice of V

- Two approaches
 - To gradually shrink a given initial interval according to a given volume function, e.g $V_n = 1/\sqrt{n}$

Parzen window method

• Identify k_n as some function of n $k_n = \sqrt{n}$

k_n-nearest neighbor method

A simple example

- Given a data set containing n samples D = {x₁, x₂, ..., x_n}
- Use histograms to simulate p(x)

$$P(|x-x_j| \le \frac{h}{2}) \approx p(x) h$$

 Suppose k samples fall into a small bar (width h) with x as the midpoint. If n is large enough, then

$$P(|x-x_j| \leq \frac{h}{2}) \approx \frac{k}{n}$$

According to the above two approximations, get

$$p(x) \approx \frac{k/n}{h}$$

A simple example

Define window function (kernel function, potential function)

$$\varphi(u) = \begin{cases} 1 & |u| \le 1/2 \\ 0 & \text{otherwise} \end{cases}$$

 The number of samples that fall into bars of width h and midpoint x

$$k = \sum_{j=1}^{n} \phi \left(\frac{x - x_{j}}{h} \right)$$

Non-parametric simulation of p(x)

$$p(x) \approx \frac{k/n}{h} = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{h} \phi \left(\frac{x - x_j}{h} \right)$$
 The mean of a certain function of x_j

- Suppose R is a d-dimensional hypercube with side length h, then the volume of R is V = h^d
- Define window function

$$\phi(\boldsymbol{u}) = \begin{cases} 1 & \quad \left| u_i \right| \leq 1/2 \quad \text{for all } 1 \leq i \leq d \\ 0 & \quad \text{otherwise} \end{cases}$$

The number of samples that fall into R

$$k = \sum_{j=1}^{n} \phi \left(\frac{\mathbf{x} - \mathbf{x}_{j}}{h} \right)$$

Approximate p(x) with n samples

$$p(\mathbf{x}) \approx \hat{p}_n(\mathbf{x}) = \frac{k/n}{V} = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{V} \phi \left(\frac{\mathbf{x} - \mathbf{x}_j}{h} \right)$$

• Define $\delta(\mathbf{x}) \equiv \frac{1}{V} \phi\left(\frac{\mathbf{x}}{h}\right)$

Then the approximation to p(x) can be rewritten as

$$p(\mathbf{x}) \approx \frac{1}{n} \sum_{j=1}^{n} \delta(\mathbf{x} - \mathbf{x}_j)$$
 interpolation function

- Basic idea
 - Each sample x_j makes a contribution to the estimation of p(x), which is represented by some form of interpolation function based on the distance from x_i to x
- Generalization: examples of interpolation functions

• Because $\varphi(\mathbf{u}) \ge 0$ and $\int \varphi(\mathbf{u}) d\mathbf{u} = 1$, so

$$\hat{p}_n(\mathbf{x}) = \frac{1}{n} \sum_{j=1}^n \frac{1}{V} \phi \left(\frac{\mathbf{x} - \mathbf{x}_j}{h} \right) \geq 0$$

$$\int \hat{p}_{n}(\mathbf{x}) d\mathbf{x} = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{V} \int \phi \left(\frac{\mathbf{x} - \mathbf{x}_{j}}{h} \right) d\mathbf{x} = \frac{1}{n} \sum_{j=1}^{n} \frac{h^{d}}{V} \int \phi(\mathbf{u}) d\mathbf{u} = 1$$

It shows that the estimated $\hat{p}_n(\mathbf{x})$ is a reasonable probability density function

- Discreteness
 - if $\varphi(\mathbf{u})$ is discrete, then $\hat{p}_n(\mathbf{x})$ is discrete
 - if $\varphi(\mathbf{u})$ is continuous, then $\hat{p}_n(\mathbf{x})$ is continuous

$$\delta(\mathbf{x}) \equiv \frac{1}{V} \, \phi\!\!\left(\frac{\mathbf{x}}{\mathsf{h}}\right)$$

$$\delta(\mathbf{x}) \equiv \frac{1}{V} \phi\left(\frac{\mathbf{x}}{h}\right) \qquad p(\mathbf{x}) \approx \frac{1}{n} \sum_{j=1}^{n} \delta(\mathbf{x} - \mathbf{x}_{j})$$

$$\delta(\mathbf{x}) \equiv \frac{1}{V} \phi\left(\frac{\mathbf{x}}{h}\right) \qquad p(\mathbf{x}) \approx \frac{1}{n} \sum_{j=1}^{n} \delta(\mathbf{x} - \mathbf{x}_{j})$$

- The effect of h(or V) on p̂_n(x)
 - When **h** is very large, the distance between x_j and x has little effect on $\delta(x x_j)$
 - $\hat{p}_n(x)$ is the sum of n wide, slowly varying functions
 - $\hat{p}_n(\mathbf{x})$ is a very smooth estimate of p(x) -- the defocus estimate
 - The resolution of the estimated results is low
 - When **h** is very small, the peak of $\delta(\mathbf{x} \mathbf{x}_i)$ is very sharp
 - $\hat{p}_n(x)$ is the superposition of n sharp pulses centered on sample points
 - $\hat{p}_n(x)$ is a noisy estimate of p(x)
 - · The statistical stability of the estimated results is insufficient

- Under the constraint of finite number of samples n, h (or V) should take some acceptable compromise
- With the increase of n, h (or V) should be reduced gradually to make the estimate of P (x) more accurate

Generalization of the window function

$$p(\boldsymbol{x}) \approx \hat{p}_n(\boldsymbol{x}) = \frac{k/n}{V} = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{V} \phi\left(\frac{\boldsymbol{x} - \boldsymbol{x}_j}{h}\right)$$

 Don't have to specify R as a hypercube, but rather some generalized form defined by the window function, which satisfies the conditions

$$\varphi(\mathbf{u}) \ge 0$$
 $\int \varphi(\mathbf{u}) d\mathbf{u} = 1$

to make $\hat{p}_n(\mathbf{x})$ be a reasonable probability density function

h: the width of window

Example One

- p(x) is a normal distribution of zero mean value, unit variance and univariate
- window function is

$$\varphi(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}$$

the volume

$$V_n = h_n = h_1 / \sqrt{n}$$

Parzen window estimation

$$p_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h_n} \varphi\left(\frac{x - x_i}{h_n}\right)$$

Example One

Example One: The Two-dimensional Case

Example One: The Two-dimensional Case

Example Two

 p(x) is a mixed distribution of a uniform distribution and a triangular distribution

the window function

$$\varphi(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}$$

the width of window

$$h_n = h_1 / \sqrt{n}$$

Example Two

Classification

- The classifier based on Parzen window estimation
 - for each class, use the Parzen window to estimate the class-conditional probability density $p(\omega_i | \mathbf{x})$
 - then, calculate the posterior probability $p(\mathbf{x} \mid \omega_i)$ by using Bayes formula
 - Classification according to the principle of "maximum posterior probability" (MAP)

Classification

Parzen window classifier's decision domain and window function

small window width

large window width

Advantages vs. Disadvantages

Non-parametric method

Advantages

- Generality: It is possible to estimate distributions without knowing their forms
- When training samples are sufficient, no matter what the form of the actual probability density function is, a reliable convergence result will definitely be obtained in the end

Disadvantages

- A large number of training samples are required, which are often much larger than the number of training samples required for parameter estimation given the parametric form of the distribution
- The curse of dimensionality (维数灾难) for the number of training samples increases exponentially with the dimensionality of the feature space