Technologies for Private Machine Learning

Morten Dahl

IFIP Summer School, August 2018

Why?

Machine Learning Process

IM ... GENET

Skin Cancer Image Classification

Brett Kuprel

12:30-12:40pm

Join Brett Kuprel, and see how TensorFlow was used by the artificial intelligence lab and medical school of Stanford to classify skin cancer images. He'll describe the project steps: from acquiring a dataset, training a deep network, and evaluating of the results. To wrap up, Brett will give his take on the future of skin cancer image classification.

Potential Bottlenecks

Differential Privacy

Secure Computation

Hybrid

Secure Computation

Technologies

	Homomorphic Encryption	Secret Sharing	Garbled Circuits
Computation	heavy	light	medium
Communication	light	heavy	medium
Encoding	number + binary	number + binary	binary only

Linear Regression

Prediction with Linear Regression Model

Using Homomorphic Encryption

Paillier Homomorphic Encryption

Paillier Homomorphic Encryption

Private Addition in Paillier

```
\operatorname{Enc}(\mathbf{x}, \mathbf{r}) * \operatorname{Enc}(\mathbf{y}, \mathbf{s})
= (g^x * r^n \mod n^2) * (g^y * s^n \mod n^2)
           = g^{(x + y)} * (r * s)^n \mod n^2
                        = \operatorname{Enc}(x+y, r*s)
                       Enc(5, 2) * Enc(5, 4)
                              = 718 * 674
                                   = 57
                           = 36^10 * 8^35
                             = \operatorname{Enc}(10, 8)
```

Public Multiplication in Paillier

Using Secret Sharing

Using Secret Sharing

SPDZ Secret Sharing

```
public parameter
           Sharel(x, r) = r \mod m
           Share2(x, \mathbf{r}) = \mathbf{x} - \mathbf{r} \mod \mathbf{m}
x = Sharel(x, r) + Sharel(x, r) mod m
                     Share1(5, 7) = 7 \mod 10 = 7
   m = 10
                     Share 2(5, 7) = 5 - 7 \mod 10 = 8
                         7 + 8 = 15 = 5 \mod 10
```

Private Addition in SPDZ

 ${
m sl}$

$$ul = sl + tl$$

s2

t2

$$u2 = s2 + t2$$

$$x = s1 + s2$$

$$y = t1 + t2$$

$$= (s1 + s2) + (t1 + t2)$$

= $(s1 + t1) + (s2 + t2)$
= $u1 + u2$

Public Multiplication in SPDZ

sl

 \mathcal{N}

$$ul = sl * w$$

s2

M

$$u2 = s2 * w$$

$$x = s1 + s2$$

$$x * W$$

= $(sl + s2) * W$
= $(sl * w) + (s2 * w)$
= $ul + u2$

Convolutional Neural Networks

Digit Classification with CNNs

Secret Sharing Images

$$Sharel(x, r) = r$$

Digit Classification with Secret Sharing

```
feature_layers = [
   Conv2D(32, (3, 3), padding='same', input_shape=(28, 28, 1)),
   Activation('relu'),
   Conv2D(32, (3, 3), padding='same'),
   Activation('relu'),
   MaxPooling2D(pool_size=(2,2)),
   Dropout(.25),
    Flatten()
classification_layers = [
   Dense(128),
   Activation('relu'),
   Dropout(.50),
   Dense(NUM_CLASSES),
   Activation('softmax')
model = Sequential(feature_layers + classification_layers)
```


Digit Classification with Secret Sharing

```
feature_layers = [
  feature_layers = [
      Conv2D(32, (3, 3), padding='same', input_shape=(28, 28, 1)),
      Activation('sigmoid'),
      Conv2D(32, (3, 3), padding='same'),
      Activation('sigmoid'),
      AveragePooling2D(pool_size=(2,2)),
      Dropout(.25),
      Flatten()
cl
  classification_layers = [
      Dense(128),
      Activation('sigmoid'),
      Dropout(.50),
      Dense(5),
      Activation('softmax')
mc
  model = Sequential(feature_layers + classification_layers)
```


Sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid via Polynomial Approximation

$$f(x) = c7*x^7 + c5*x^5 + ... + c1*x + c0$$

Private Multiplication in SPDZ

Making It Accessible

Projects and Literature

Recent research papers using secure computation

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy, Dowlin et al.

SecureML: A System for Scalable Privacy-Preserving Machine Learning, Mohassel and Zhang

DeepSecure: Scalable Provably-Secure Deep Learning, Rouhani et al.

Gazelle: A Low Latency Framework for Secure Neural Network Inference, Juvekar et al.

SecureNN: Efficient and Private Neural Network Training, Wagh et al.

(great summary in https://eprint.iacr.org/2017/1190)

Specialised projects

OpenMined (https://openmined.org)

tf-encrypted (https://github.com/mortendahl/tf-encrypted)

Secure computation frameworks

SCALE-MAMBA (https://homes.esat.kuleuven.be/~nsmart/SCALE/)

ABY (https://github.com/encryptogroup/ABY)

OblivC (http://oblivc.org/)

(much more at https://github.com/rdragos/awesome-mpc)

OpenMined

OpenMined is a community focused on researching, developing, and spreading tools for secure, privacy-preserving, and value-aligned artificial intelligence

tf-encrypted

platform on top of TensorFlow for experimenting with private machine learning

integrates with TensorFlow for easy mix with existing functionality

aims at being extendable by both cryptographers and machine learners

benefits from TensorFlow's interface and backend for ease and efficiency

Logistic Regression

Easy Expression

```
with tfe.protocol.Pond(server0, server1, crypto_producer) as prot:
    w = prot.define_private_input(weights_input)
    x = prot.define_private_input(prediction_input)
    # compute prediction
    y = prot.sigmoid(prot.dot(x, w))
    prediction_op = prot.define_output(y, prediction_output)
    with config.session() as sess:
        # init
        tfe.run(sess, tf.global_variables_initializer())
        # run encrypted prediction
        tfe.run(sess, prediction_op)
```

Compilation to Graphs

Compilation to Graphs

Input Integration

```
class WeightsInputProvider(tfe.io.InputProvider):
    def provide_input(self) -> tf.Tensor:
        raw_w = np.array([1, 2, 3, 4]).reshape((2,2))
        return tf.constant(raw_w)
```

```
class PredictionInputProvider(tfe.io.InputProvider):
    def provide_input(self) -> tf.Tensor:
        raw_x = np.array([5, 5, 5, 5]).reshape((2,2))
        return tf.constant(raw_x)
```

Performance

100 features, servers on Google cloud (2 vCPU, 10 GB)

Secure Computations as Dataflow Programs Implementing the SPDZ Protocol using TensorFlow Private Deep Learning Implementing the SPDZ Protocol using TensorFlow Private Image Analysis with MPC Private Deep Learning Implementing The SPDZ Protocol using TensorFlow Private Image Analysis With MPC Training Enn's on Sensitive Eata by with surface and protocol for the secure work of the Private Image Analysis With MPC Talk we take a typical ON doep learning under one encrypted data. Using fever lost study and resolved by a recent begrowth to the secure work of the Private Image Im

mortendahl.github.io @mortendahlcs

Thank you!