PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-136776

(43) Date of publication of application: 14.05.2002

(51)Int.CI.

A63H 23/10 A63H 11/00 A63H 30/04 B25J 13/08 B25J 19/00

H04B 13/00

(21)Application number : 2000-336478

(71)Applicant: MITSUBISHI HEAVY IND LTD

(22) Date of filing:

02.11.2000

(72)Inventor: YAMAMOTO IKUO

TERADA IKUJI

(54) FISH ROBOT AND UNDERWATER COMMUNICATION APPARATUS

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a fish robot which has plural fins and more realistically simulating fishes having fins at its tail.

SOLUTION: This fish robot includes a fish robot body (11) which is provided with a first turning shaft (25) and second turning shafts (191 and 192), a first vane (17) which is pivoted to the first turning shaft (25) and turns around the first turning shaft (25) and second vanes (121 and 122) which are pivoted to the second turning shafts (191 and 192) and turn around the second turning shafts (191 and 192). The first vane (17) is disposed at the tail of the fish robot body (11).

LEGAL STATUS

[Date of request for examination]

07.05.2002

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

Best Available Copy

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against

examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-136776 (P2002-136776A)

(43)公開日 平成14年5月14日(2002.5.14)

(51) Int.Cl.7		識別記号		FΙ			ī	-マコード(参考)
A 6 3 H	23/10			A63H	I 23/10		Z	2C150
	11/00				11/00		Z	3F059
	30/04				30/04		Α	3 F O 6 O
B 2 5 J	13/08			B 2 5 J	13/08		Z	
	19/00				19/00		K	
			審査請求	未請求 謂	求項の数9	OL	(全 8 頁)	最終頁に続く

特願2000-336478(P2000-336478) (21)出願番号

(22)出題日 平成12年11月2日(2000.11.2) (71)出願人 000006208

三菱重工業株式会社

東京都千代田区丸の内二丁目5番1号

(72) 発明者 山本 郁夫

長崎県長崎市深堀町五丁目717番1号 三

菱重工業株式会社長崎研究所内

(72)発明者 寺田 郁二

兵庫県神戸市兵庫区和田崎町一丁目1番1

号 三菱重工業株式会社神戸造船所内

(74)代理人 100102864

弁理士 工藤 実 (外1名)

最終頁に続く

(54) 【発明の名称】 魚口ボット及び水中通信装置

(57)【要約】

【課題】 複数のひれを持ち、且つ、尾部にひれを有す る魚を、よりリアルに模擬する魚口ボットを提供するこ とにある。

【解決手段】 本発明による魚口ボットは、第1回動軸 (25)と第2回動軸(191、192他)とが設けら れた魚口ボット本体(11)と、第1回動軸(25)に 枢着され、第1回動軸(25)の回りに回動する第1翼 (17)と、第2回動軸(191、192)に枢着さ れ、第2回動軸 $(19_1, 19_2)$ 他) の回りに回動する 第2翼(121、122)とを具備する。第1翼(1 1)は、魚口ボット本体(11)の尾部に設けられてい る。

【特許請求の範囲】

【請求項1】 第1回動軸と第2回動軸とが設けられた 魚口ボット本体と、

前記第1回動軸に枢着され、前記第1回動軸の回りに回動する第1翼と、

前記第2回動軸に枢着され、前記第2回動軸の回りに回動する第2翼とを具備し、

前記第1翼は、前記魚ロボット本体の尾部に設けられた魚口ボット。

【請求項2】 請求項1の魚口ボットにおいて、

前記第2翼が動く自由度は、単一である魚口ボット。

【請求項3】 請求項1の魚ロボットにおいて、

当該魚口ボットは、実質的に、前記第1翼のみにより推進され、

当該魚口ボットの姿勢は、前記第1翼と前記第2翼により制御される魚口ボット。

【請求項4】 請求項1の魚ロボットにおいて、 前記第1翼は、

第1振動翼と、

第3回動軸と第2振動翼とを含み、

前記第1振動翼の一端は、前記第1回動軸に枢着され、 且つ、前記第1振動翼は、前記第1回動軸の回りに回動

前記第3回動軸は、前記第1振動翼の他端に接合され、 前記第2振動翼は、前記第3回動軸に枢着され、且つ、 前記第3回動軸の回りに回動する魚口ボット。

【請求項5】 請求項4の魚ロボットにおいて、

前記第1振動翼と前記第2振動翼が振動する振動数は、前記魚ロボット本体の速度と、当該魚ロボットが動く方向と垂直な方向の、前記魚ロボット本体の幅とに基づいて定められた魚ロボット。

【請求項6】 回動軸と翼とが設けられた魚口ボット本体と、

水中を伝搬する電波を受信する受信機とを具備し、前記 翼は、前記電波に応答して前記回動軸の回りに回動する 魚口ボット。

【請求項7】 請求項5の魚ロボットにおいて、

前記電波は、FM電波である魚口ボット。

【請求項8】 FM変調された電波を水の中に発信する 発信機と、

前記水の中に設けられ、前記電波を受信する受信機とを 具備する水中通信装置。

【請求項9】 請求項8の水中通信装置において、

前記受信機は、前記電波から情報を取得し、且つ、前記 情報を伝送する他の電波を前記発信機に発信する水中通 信装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、魚ロボットに関する。

[0002]

【従来の技術】魚のひれのように翼を振動させ、推進と 舵取りとを、その翼のみで行う水中航走体が公開特許公 報(特開平11-152085)に知られている。

【0003】公知のその水中航走体は、図5に示されているように、翼101a、101bを備えている。翼101a、101bは、直列に接続されている。翼101a、101bは、それぞれ、回動軸104、105の回りに回動する。翼101a、101bの振動は協調制御され、翼101a、101bは、全体として魚の尾びれのようにしなやかに作動する。これにより、公知のその水中航走体は推力を得る。更に、公知のその水中航走体は、翼101a、101bの振動は協調制御され、舵取りが行われる。更に、公知のその水中航走体は、タンク107を含む。公知のその水中航走体の浮沈制御は、タンク107への注排水により行われる。

【0004】他の水中航走体が、前述の公開特許公報 (特開平11-152085)に知られている。公知の その水中航走体は、図6に示されているように、本体122の両端に、複数の振動翼121を備えている。振動 翼121は、第1アクチュエータ124により駆動され、竪軸125の回りに往復回動する。更に、振動翼121は、第2アクチュエータ123により駆動され、横軸126の回りに回動し、角度が調整される。公知のその水中航走体は、複数の振動翼121により、推進と舵取りとが行われる。いずれの振動翼121も、推進と舵取りの両方を行う。

【0005】このような水中航走体の応用分野の一として、魚口ボット(人工魚)がある。このような魚口ボットはエンターテイメント性が高く、新しいアミューズメント施設としてニーズが高い。とりわけ、シーラカンスのように現存しない古代魚が遊泳されたアミューズメント施設は、集客効果が大いに期待できる。

【0006】シーラカンスは、複数のひれを有し、且つ、尾部に推進力を得るためのひれを有する。シーラカンスのように、複数のひれを有し、且つ、尾部にひれを有する魚類の動きをよりリアルに表現する魚口ボットが提供されることが望ましい。更に、このような魚口ボットは、よりコンパクトであることが望ましい。

[0007]

【発明が解決しようとする課題】本発明の目的は、複数 のひれを持ち、且つ、尾部にひれを有する魚を、よりリ アルに模擬する魚口ボットを提供することにある。

【0008】本発明の目的は、複数のひれを持つ魚を模擬した魚ロボットを、よりコンパクトにすることにある。

【課題を解決するための手段】その課題を解決するための手段は、下記のように表現される。その表現中に現れる技術的事項には、括弧()つきで、番号、記号等が添記されている。その番号、記号等は、本発明の複数の実

施の形態のうちの、少なくとも1つの実施の形態を構成 する技術的事項、特に、その実施の形態に対応する図面 に表現されている技術的事項に付せられている参照番 号、参照記号等に一致している。このような参照番号、 参照記号は、請求項記載の技術的事項と実施の形態の技 術的事項との対応・橋渡しを明確にしている。このよう な対応・橋渡しは、請求項記載の技術的事項が実施の形 態の技術的事項に限定されて解釈されることを意味しな い。

【0009】本発明による魚口ボットは、第1回動軸 (25)と第2回動軸 (19 $_1$ 、19 $_2$ 他)とが設けられた魚口ボット本体 (11)と、第1回動軸 (25)に 枢着され、第1回動軸 (25)の回りに回動する第1翼 (17)と、第2回動軸 (19 $_1$ 、19 $_2$)に枢着され、第2回動軸 (19 $_1$ 、19 $_2$)の回りに回動する第2翼 (12 $_1$ 、12 $_2$)とを具備する。第1翼 (17)は、魚口ボット本体 (11)の尾部に設けられている。当該魚口ボットは、シーラカンスのように、多数のひれを持ち、且つ、その尾部にひれを持つ魚を表現できる。【0010】このとき、第2翼 (12 $_1$ 、12 $_2$)が動く自由度は、単一であることが望ましい。これにより、第2翼 (12 $_1$ 、12 $_2$)を駆動する機構をコンパクトにすることができる。

【0011】また、当該魚口ボットは、当該魚口ボットは、実質的に、第1翼(17)のみにより推進され、当該魚口ボットの姿勢は、第1翼(17)と第2翼(121、122)により制御されることが望ましい。このような動きは、実際の魚の動きに近く、魚口ボットの動きがよりリアルになる。

【0012】また、第1翼(17)は、第1振動翼(1 7_1)と、第3回動軸(27)と、第2振動翼(1 7_2)とを含むことが望ましい。その第1振動翼(1 7_1)の一端は、第1回動軸(25)に枢着されている。第1振動翼(17_1)は、第1回動軸(25)の回りに回動する。第3回動軸(27)は、第1振動翼(17_2)は、前記第3回動軸に枢着され、且つ、前記第3回動軸の回りに回動する。このような構造を有する第1翼(17_1)は、実際の魚のひれをよりリアルに表現できる。【0013】また、第1振動翼(17_1)と第2振動翼

【0013】また、第1振動翼(17_1)と第2振動翼(17_2)とが振動する振動数(f)は、当該魚ロボットの速度と、当該魚ロボットが動く方向と垂直な方向の、魚ロボット本体(11)の幅とに基づいて定められることが望ましい。これにより、実際の魚のひれをよりリアルに表現できる。

【0014】本発明による魚口ボットは、回動軸 (191、192、25)と翼 (121、122、17)とが設けられた魚口ボット本体 (11)と、水中を伝搬する電波 (7)を受信する受信機 (30)とを具備する。翼 (121、122、17)は、電波 (7)に応答して回

動軸(19_1 、 19_2 、25)の回りに回動する。当該 魚ロボットは、ケーブルをつなぐ必要がなく、魚をより リアルに表現できる。

【0015】このとき、電波(7)は、FM波であることが望ましい。これにより、水中を伝搬する際の減衰の影響を小さくすることができる。

【0016】本発明による水中通信装置は、FM変調された電波(7)を水の中に発信する発信機(3、6)と、その水の中に設けられた受信機(30)とを具備する。これにより、水中での電波による通信を実現できる。

【0017】当該水中通信装置において、受信機(30)は、電波(7)から情報を取得し、且つ、前記情報を伝送する他の電波(8)を発信機(30)に発信することが望ましい。水中の通信においては、情報の誤りが発生しやすい。これにより、受信機(30)が正しい情報を取得したか否かが判断できる。

[0018]

【発明の実施の形態】以下、添付図面を参照しながら、 本発明による実施の一形態の魚ロボットを説明する。

【0019】図1は、本実施の形態による魚ロボットとその制御系とを示す。水槽2の中にある魚ロボット1は、マニュアル制御装置3とオート制御装置4とにより制御される。マニュアル制御装置3とオート制御装置4とのいずれにより魚ロボット1が制御されるかは、マニュアル制御装置3に設けられた切り替えスイッチ5により切り替えられる。

【0020】マニュアル制御装置3には、魚ロボット1に制御電波7を発信するアンテナ6が設けられている。制御電波7は、水槽2の中の水を伝搬して、魚ロボット1に到達する。魚ロボット1は、制御電波7に応答して動作する。更に魚ロボット1は、エコー電波8を発信する。エコー電波8は、制御電波7が正常に送信されたか否かを判断することに使用される。アンテナ6は、エコー電波8を受信する。

【0021】図2は、魚ロボット1の構成を示す。魚口ボット1は、シーラカンスの形態を模擬している。シーラカンスが多数のひれを持つことに対応して、魚ロボット1には、ひれが多数備えられている。

【0022】図2(a)は、魚口ボット1の外観の平面図であり、図2(b)は、魚口ボット1の外観の側面図である。魚口ボット1は、魚口ボット本体11を備えている。魚口ボット本体11には、2つの胸びれ1 2_1 、1 2_2 、2つの腹びれ1 3_1 、1 3_2 、第1背びれ14、第2背びれ15、第1しりびれ16が接続されている。魚口ボット本体11の尾部には、第2しりびれ17が接続されている。第2しりびれ17には、尾びれ18が接続されている。胸びれ1 2_1 、1 2_2 、腹びれ1 3_1 、1 3_2 、第1背びれ14、第2背びれ15、第1しりびれ16、第2しりびれ17及び尾びれ18は、いず

れも、表面が弾力性を有する軟質のプラスチックにより被覆された金属板で形成されている。

【0023】図3(a)は、魚ロボット1の内部構造を示す平面図である。図3(a)に示されているように、胸びれ 12_1 、 12_2 は、それぞれ、回動軸 19_1 、 19_2 に枢着されている。胸びれ 12_1 は、モータ 20_1 に駆動され、回動軸 19_1 の回りに、且つ、矢 21_1 が示す方向に振動する。胸びれ 12_2 は、モータ 20_2 に駆動されて、回動軸 19_2 の回りに、且つ、矢 21_2 が示す方向に振動する。

【0024】腹びれ 13_1 、 13_2 も同様に、それぞれ一の回動軸(図示されない)に枢着されている。腹びれ 13_1 、 13_2 は、それぞれ、図3(b)に示されているモータ 20_3 、 20_4 により駆動される。腹びれ 13_1 、 13_2 は、それぞれ、図1(a)の矢 22_1 、 22_2 が示す方向に振動する。

【0025】更に、第2背びれ15、第1七りびれ16も同様に、それぞれ一の回転軸(図示されない)に枢着されている。第2背びれ15、第1しりびれ16は、それぞれ、図3(b)に示されているモータ 20_5 、 20_6 により駆動され、それぞれ矢23、24が示す方向に振動する。

【0026】第1背びれ14は、固定されている。第1 背びれ14は、魚ロボット1の姿勢を安定にする。

【0027】第2しりびれ17は、振動翼 17_1 と振動 翼 17_2 とを含む。振動翼 17_1 の一端は、図3(a) に示されているように、回動軸25に枢着されている。振動翼 17_1 は、モータ 20_7 により駆動され、回動軸25の回りに、矢26が示す方向に振動する。振動翼 17_1 の他端は、回動軸27に接続されている。振動翼 17_2 の一端は、回動軸27に枢着されている。振動翼 17_2 は、回動軸27の回りに、矢26が示す方向に振動する。

【0028】振動翼 17_1 と振動翼 17_2 との振動の位相はずらされており、振動翼 17_1 と振動翼 17_2 とは、あたかもシーラカンスの実物のようにしなやかに波打つ。

【0029】振動翼 17_1 と振動翼 17_2 とが行う振動の振動数 f は、次式:

 $f = S \cdot (U/D)$

D: 魚ロボット本体11の幅D(図2(a)参照)

U:魚口ボット1の速度

S:定数

により定められる。Sは、実物の魚の動き及び形状から 定められる。このようにfを定めることにより、第2し りびれ17は、あたかも本物の魚のように振動する。

【0030】第2しりびれ17には、図3(b)に示されているように、尾びれ18が接続されている。尾びれ18は、図示されない回動軸の回りに回動する。尾びれ18は、図示されない回動軸の回りに、矢26が示す方

向に振動する。

【0031】魚口ボット1の推進力は、実質的に、第2 しりびれ17のみにより発生される。上述の胸びれ12 $1 \times 12_2 \times$ 腹びれ $13_1 \times 13_2 \times$ 第2背びれ $15 \times$ 第1しりびれ16、及び尾びれ18は、実質的に、魚口 ボット1の推進力を生み出さない。一方、魚口ボット1 の姿勢は、胸びれ121、122、腹びれ131、13 2、第2背びれ15、及び第1しりびれ16、並びに、 第2しりびれ17及び尾びれ18の全てにより行われ る。このようにして推進力が発生され、更に姿勢が制御 される態様は、現実のシーラカンスのそれと同様であ り、魚口ボット1のリアリティが高められている。 【0032】ここで、胸びれ12,、12,、腹びれ1 31、132、第2背びれ15、及び第1しりびれ1 6、尾びれ18は、それぞれ、一の回動軸の回りのみ回 動し、その自由度は単一である。胸びれ121、1 22、腹びれ131、132、第2背びれ15、第1し りびれ16、及び尾びれ18は、それぞれ一のモータに より駆動される。実質的に、魚口ボット1の姿勢の制御 のみに使用される胸びれ 12_1 、 12_2 、腹びれ131、132、第2背びれ15、第1しりびれ16、及 び尾びれ18は、必ずしも複雑な動きを表現する必要は ない。そこで、胸びれ 12_1 、 12_2 、腹びれ 13_1 、 132、第2背びれ15、第1しりびれ16、及び尾び れ18の自由度は単一とされ、それらを駆動する機構の コンパクト化が図られている。

【0033】魚ロボット1は、更に、図3(b)に示されているように、ポンプ 28_1 、 28_2 とタンク 29_1 、 29_2 とを含む。タンク 29_1 は、魚ロボット1の頭部に位置する。タンク 29_2 は、前述のモータ 20_8 を挟むように位置する。

【0034】ポンプ 28_1 、 28_2 は、タンク 29_1 、 29_2 に水を注入し、又は、水を排出する。魚口ボット1の重力方向の位置は、タンクの内部にある水の量により調節される。タンク 29_1 、 29_2 に水が注入され、又は、水が排出されることにより、魚口ボット1は重力方向に浮沈し、また、魚口ボット1の姿勢が制御される。このように複数のタンク 29_1 、 29_2 が備えられていることは、魚口ボット1の姿勢の制御を容易にする。

【0035】更に魚ロボット1は、送受信機30を含む。送受信機30は、魚ロボット1の動作を指示する制御電波7を受信する。制御電波7は、モータ $20_1 \sim 2$ 0 $_8$ 及びポンプ 28_1 、 28_2 それぞれの制御量の情報を含んでいる。モータ $20_1 \sim 20_8$ 及びポンプ 28_1 、 28_2 は、その制御電波7に応答して動作する。即ち、上述の胸びれ1 2_1 、 12_2 、腹びれ1 3_1 、 13_2 、第2背びれ15、第1しりびれ16、第2しりびれ17、及び尾びれ18の振動の周波数、位相及び振幅は、その制御電波7により制御される。

【0036】このように、魚口ボット1は、ケーブルに接続されることなく航走が可能である。魚口ボット1がケーブルに接続されることなく航走することにより、魚口ボット1のリアリティが高められている。

【0037】更に、送受信機30は、制御電波7により伝達されたモータ $20_1 \sim 20_8$ 及びポンプ 28_1 、 28_2 それぞれの制御量の情報をエコー電波8により発信する。水中を伝搬する制御電波7は、制御量を誤って伝える可能性がある。エコー電波8は、モータ $20_1 \sim 20_8$ 及びポンプ 28_1 、 28_2 それぞれに、正しい制御量が伝達されたかを確認するのに使用される。

【0038】更に魚ロボット1は、電池31を含む。電池31は、魚ロボット1の全体に電源電圧を供給する。

【0039】図4は、魚口ボット1の動作を指示する制御系統を示している。前述されているように、魚口ボット1の動作は、マニュアル制御装置3と、オート制御装置4とのいずれかにより制御される。マニュアル制御装置3と、オート制御装置4とのいずれにより魚口ボット1が制御されるかは、切り替えスイッチ5により切り替えられる。

【0040】マニュアル制御装置 3は、魚ロボット 1を操作する者が、魚ロボット 1の動作を指示するのに使用される。切り替えスイッチ 5によりマニュアル制御装置 3が選択されている場合、操作者がマニュアル制御装置 3に行った操作に応じて、魚ロボット 1 に含まれるポンプ 28_1 、 28_2 、及びモータ 20_1 ~ 20_8 の制御量が定められる。その制御量は、制御電波 7により魚ロボット 1に伝達される。

【0041】切り替えスイッチ5によりオート制御装置 4が選択されている場合、オート制御装置 4は、それに搭載されているソフトウエアに記載されているアルゴリズムに従って、魚ロボット1を制御する。オート制御装置 4は、魚ロボット1に含まれるポンプ 28_1 、 28_2 、及びモータ 20_1 ~ 20_8 の制御量を定める。その制御量は、制御信号 9によりマニュアル制御装置 3に 伝達され、更に、マニュアル制御装置 3が発信する制御電波 7により魚ロボット 1に伝達される。

【0042】制御電波7は、制御量に比例した振幅を有する電気信号を周波数変調 (FM: Frequency Modulation) することにより生成されたF

M波である。制御電波7がFM波であることにより、制御電波7が水中で減衰されても、制御量が誤って伝達されることが発生しにくい。

【0043】制御電波7は、送受信機30により受信される。送受信機30は、制御電波7により伝達された、ポンプ 28_1 、 28_2 、及びモータ 20_1 ~ 20_8 の制御量を、それぞれ、ポンプ 28_1 、 28_2 、及びモータ 20_1 ~ 20_8 に伝える。但し、図4には、ポンプ 28_1 、 28_2 、並びにモータ 20_1 、 20_1 及びモ 20_7 、 20_8 のみしか図示されていない。ポンプ 20_8

 8_1 、 28_2 は、伝えられた制御量に従って、タンク2 9_1 、 29_2 に注排水する。モータ 20_1 ~ 20_8 は、伝えられた制御量に従って、その変位を定める。モータ 20_1 ~ 20_8 は、それぞれ、胸びれ 12_1 、 12_2 、腹びれ 13_1 、 13_2 、第1背びれ14、第2背びれ15、第1しりびれ16、第2しりびれ17の第1振動翼 17_1 、及び第2振動翼 17_2 を振動させる。このようにして、魚ロボット1は、マニュアル制御装置3又は、オート制御装置4により制御される。

【0044】更に、送受信機30は、制御電波7により伝達された制御量を、エコー電波8によりマニュアル制御装置3に送信する。マニュアル制御装置3は、エコー電波8により送信された制御量をエコー信号10によりオート制御装置4に伝える。オート制御装置4は、エコー信号10に基づいて、送信されるべき制御量が正しく送信されたかを判断する。その判断に基づいて、オート制御装置4は、以後、魚ロボット1に送信するべきポンプ281、282、及びモータ201~208の制御量を定める。

【0045】なお、本実施の形態において、アンテナ6の代わりに超音波発信機が使用されることも可能である。この場合、魚ロボット1を制御する制御電波7の代わりに、超音波による信号が使用されることになる。しかし、魚ロボット1の内部での信号処理を迅速に行う観点から、本実施の形態のように、制御電波7を使用して魚ロボット1の制御を行うことが望ましい。

【0046】電波により水中で信号を送信することは、水中での電波の減衰率が大きいことから一般に困難であると考えられており、水中で信号を送信する場合には、一般に、超音波を使用することが多い。しかし、水中を伝搬する電波により信号を送信することは現実に可能である。というのも、電波の水中の減衰率は、周波数が100Mzの場合、約10dB/mであり、これは10m以内の距離であれば、電波による2点間の通信は充分に可能であることを意味している。但し、電波の水中の減衰率は、概ね、周波数が高いほど大きくなることから、制御電波7は100MHz以下であることが望ましい。

[0047]

【発明の効果】本発明により、複数のひれを持ち、且 つ、尾部にひれを有する魚をよりリアルに模擬する魚ロ ボットが提供される。

【0048】また、本発明により、複数のひれを持つ魚を模擬した魚ロボットが、よりコンパクトになる。

【図面の簡単な説明】

【図1】図1は、本実施の形態による魚ロボットとその 制御系とを示す。

【図2】図2は、本実施の形態による魚口ボットの外観を示す。

【図3】図3は、本実施の形態による魚ロボットの内部の構造を示す。

【図4】図4は、本実施の形態の魚口ボットの制御系統を示す。

【図5】図5は、従来の水中航走体を示す。

【図6】図6は、従来の他の水中航走体を示す。

【符号の説明】

1:魚口ボット

2:水槽

3:マニュアル制御装置

4:オート制御装置

5:切り替えスイッチ

6:アンテナ

11:魚口ボット本体

12₁、12₂:胸びれ

131、132:腹びれ

14:第1背びれ

15:第2背びれ

16:第1しりびれ

17:第2しりびれ

171:第1振動翼

172:第2振動翼

18:尾びれ

191、192、25、27:回動軸

 $20_{1} \sim 20_{8} : \pm -9$

281、282:ポンプ

 $29_{1}, 29_{2}: 920$

30:送受信機

31:電池

【図1】

【図2】

【図5】

【図3】

【図4】

【図6】

フロントページの続き

(51) Int. Cl. ⁷

識別記号

FI H04B 13/00 テーマコード(参考)

H O 4 B 13/00

Fターム(参考) 2C150 AA14 CA02 DA19 DA23 DA37

DJ08 DK02 EA07 EB01 EG12

FA01 FA04 FA42

3F059 AA00 DD08 FB22

3F060 AA00 AA09

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES.

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
☐ BLACK BORDERS				
\square IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS				
☐ GRAY SCALE DOCUMENTS				
☐ LINES OR MARKS ON ORIGINAL DOCUMENT				
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.