Divertical asymptote: X=c if f(x) >t x as x >c'or x >c 2) horizontal asymptote: y=L if linf(x)=L or lin f(x)=L

https://assessment.casa.uh.edu/Assessment/Print

 $U f(x) \rightarrow f(x) \rightarrow f(x) + f(x) = 0$ Question 3

 $\Rightarrow X=\pm 1.$  (Vertical.)

Find the vertical and horizontal asymptotes of  $f(x) = \frac{x}{x^2}$ 

(2)  $\lim_{x\to\infty} f(x) = 0$   $\lim_{x\to\infty} f(x) = 0$   $\lim_{x\to\infty} f(x) = 0$ 

**b)** wertical asymptote:  $x=\pm 1$  ; horizontal asymptote: y=0 .

c) wertical asymptote:  $x = \pm 1$ ; no horizontal asymptote.

d) vertical asymptote: x=0; horizontal asymptote:  $y=\pm 1$ 

e) on vertical asymptote; horizontal asymptote:  $y = \sqrt{(1x-6)(1x-6)}$ 

Question 2

Question 1

- a) vertical asymptote: x = 0; no horizontal asymptote.
- **b)** wertical asymptote:  $x = \pm 36$ ; horizontal asymptote: y = 3.
- c) vertical asymptote: x = 36; horizontal asymptote: y = 0.
- d) on vertical asymptote; horizontal asymptote:  $y=\pm \frac{1}{2}$  .

e) vertical asymptote: x=0; horizontal asymptote: y=

Find the vertical and horizontal asymptotes of  $f(x) = \frac{6 \sin(x) + 3}{\sin(x) + 3}$ .

a) weak = 0 vertical asymptote:  $y = \pm 1$ .

b) vertical asymptote:  $x = \frac{3\pi}{2} + 2\pi n$ ; horizontal asymptote: y = 1

vertical asymptote:  $x = \frac{3\pi}{2} + 2\pi n_i$  no horizontal asymptote.

- **d)** on vertical asymptote; horizontal asymptote:  $y = \pm 1$ .
- e) vertical asymptote:  $x = \frac{3\pi}{2} + 2\pi n$ ; horizontal asymptote: y = 0.

## **Question 4**

Determine whether or not the graph of  $f(x)=2(x-4)^{4/5}$  has a vertical tangent or vertical cusp at x=4.

- a) vertical tangent  $= \sqrt{f(x)} = \infty$  or  $f(x) = -\infty$
- b) vertical cusp  $\Rightarrow \lim_{x \to a} f(x) = +\infty$  and  $\lim_{x \to a} f(x) = +\infty$

Determine whether or not the graph of  $f(x) = 9x^{3/5} - 7x^{6/5}$  has a vertical

5, fon=9x3-7x3 fon=27x3-42 Print Test tangent or vertical cusp at x = 0.  $\lim_{x \to 0} f(x) = \infty$   $\lim_{x \to 0} f(x) = \infty$ > Vertical Langout a) neither b) vertical cusp  $(6, f(x) = +\frac{3}{7}(6-x)^{7} = \frac{3}{7}\frac{1}{16-x^{\frac{5}{7}}}$ c) both d) vertical tangent Question 6 Determine whether or not the graph of  $f(x) = 8 - (6-x)^{3/7}$  has a vertical tangent or vertical cusp at x = 6.  $\lim_{x \to 6} f(x) = \infty \quad \lim_{x \to 6} f(x) = \infty$ a) vertical cusp > Vertical tangent b) both c) neither f(x)=9(x-8)3+3X11x213 d) vertical tangent Question 7 Determine whether or not the graph of  $f(x) = 9x\sqrt[3]{x-8}$  has a vertical tangent or vertical cusp at x = 8. linf(x)= x, lin f(x)= x a) vertical cusp b) vertical tangent = Vertical tangent

8, DH=[x+0], fa= 16x-==; f(x)=16+4== d) both Which of the following is true about the graph of  $f(x) = 8x^2$ a)  $\bigcirc f(x)$  is increasing on the interval  $(-\infty,0)$ b)  $\mathcal{D} f(x)$  has a vertical asymptote at x=2.  $X \Rightarrow \text{Vertical cusp}$  at X=0c) f(x) is concave down on the interval  $(0,\infty)$ .  $\Rightarrow (-\frac{1}{3\sqrt{4}},0)$ d) f(x) has a point of inflection at the point (0, -4). e)  $\bigcirc f(x)$  has a local minimum at the point  $\left(\frac{1}{2},2\right)$ . Question 9  $f(x) = |+2\cos(2x)|$ ;  $f'(x) = -4\sin(2x)$ Which of the following is true about the graph of f(x) = x + son the interval  $[0,\pi]$ ? Critical point  $f(x)=0 \Rightarrow \cos(2x)=-\frac{1}{2}$ a) 0 f(x) has a point of inflection at the point (0, 4)  $3 \neq x = \frac{1}{3}$ c) f(x) has a local maximum at the point  $\left(\frac{\pi}{3}, \frac{\pi}{3} + \frac{\sqrt{3}}{2} + 4\right)$ . d)  $\bigcirc f(x)$  is concave up on the interval  $\left(0, \frac{2\pi}{3}\right)$ .  $\times \left(\frac{\sqrt{2}}{2}, \sqrt{1}\right)$ . point of Inflection,  $f(x)=0 \Rightarrow 5ih(2x)=0$  2x=0,  $\pi_1 \ge \pi_2 \Rightarrow x=0$ Number line of

c) neither

e)  $\bigcirc f(x)$  is increasing on the interval  $\left(\frac{\pi}{3}, \frac{2\pi}{3}\right)$ .  $\left(0, \frac{\pi}{3}\right) \cup \left(\frac{2\pi}{3}, \frac{\pi}{3}\right)$ 

## Question 10

The graph of f'(x) is shown below. Which of the following could represent the graph of f(x)?









7 of 7 03/01/2015 01:53 PM