	http://www.dma.unifi.it/~poggiolini/didattica/2020-21-An2Pro.php
	Analici Matematica II Probabilità
	Marco Bramanti, Carlo D. Pagani, Sandro Salsa, Analisi Matematica 2, Zanichelli Editore Sandro Salsa, Annamaria Squellati, Esercizi di Analisi Matematica 2, Zanichelli Editore
	Argoment. L. Analisi MaTematica
,	funtioni di variable reale a valori velbriali
	y: teIcR+D y(t)eRm I inTervallo
	(c,d) [d,e) (d,e)
	I chiusan d' I [2, +0) (0, +0)
	(d,c-) [d,c-) (d,c-) ((d,c-)
	int(I) o I injuro di I
	(a,b) (a,+0) o (-0,b)
	·
	Se tè il Tempo
	η: te[a,b] = γ(t)eR3 χ(t) = (γ,(t), γ2(t), γ3(t)) = (×(t), γ(t), 2(t))
	y(+) = Rm y(+) = (f,(+), -, fm(+))
	j: teIcRho j(t)eR tj=1, _,m
	m=2 y(t)=(f,(t), f2(t))=(x(t), y(t)) m=3 y(t)=(f,(t), f2(t), f3(t))=(x(t), y(t), 2(t))
	m= 3 }(t)= 1 f,(t), f2(t), f3(t)) = (x(t), y(t), 2(t))

M32 p.te[0,1] =
$$p(t) = (x(t), y(t)) \in \mathbb{R}^2$$

Gr(p) = $p(t) \in \mathbb{R}^3$: $p(t) \in \mathbb{R}^3$

n generico $f(x) = f(x_1 - x_n)$
f: (x1,, xn) e Ac Pr > f(x1_, xn) e R
n=2 Pox P=(x,y) F:(x,y)eAcRLb F(x,y)eR
n=3 Pox P=(x,y,t) f:(x,y,t) eAc R3 Lp f(x,y,z) eR
n=2 DONINO DI +, A GRAFICO DI +
Grance Sil
FUNTIONI VETTORIAU DI VARIABILE VETTORIAGE
I: xeAcR' LD E(x)ePm
$\times = (\times_1 - \times_n)$
$\overline{\Phi}(x_1, -, x_n) = (\overline{\Phi}(x_1 - x_n), - x_n)$
Se n=m vi Licono CAMPI VETTORIALI
SERIE DI POTENHE
$\sum_{n=3}^{\infty} a_n (x-x_n) $ $\int_{n>0}^{\infty} successione a wolon; reali$
N=3 XOER PSIDE
Déterminare l'insienne degli xell Tr. la serie calcult in x converge:
« dia INSIENE M CONVERGENTA
Se indico con I l'inheme di convergente
So indice can I I inherne dicentergonde $f: x \in I \text{in } f(x) := \sum_{n} a_n(x_n x_n)^n \in \mathbb{R}$
f: xeI 1-0 f(x):= \sum_{n=0}^{2} 2n(x-xo)^n \in \mathbb{R}
f: xeI 1-0 f(x):= \sum_{n=0}^{2} 2n(x-xo)^n \in \mathbb{R}
f: xeI 1-0 f(x):= \sum_{n=0}^{2} 2n(x-xo)^n \in \mathbb{R}
f: xeI 1-0 f(x):= \sum_{n=0}^{2} 2n(x-xo)^n \in \mathbb{R}

FUNTIONI VETTORIAU DI VARIABILE REALE
I intervallo d. R
Y: teIcR - gu) = Rm
LINITE (DET)
Sia toe I e via pe Rm P= (P, Pm)
Dico de lim j(t) = p t-oto
t-pto V
se lim 7(t)-p =0
e-v _c s
11 g(t)-p11 eTR g(t) = (g(t), g2(t),, gm(t))
P= (P1, P2, -, Pm)
yth)- p = (41(t)-p, 12(t)-p, /2(t)-pm)
11 g(t1-p1 = \ \frac{1}{2} (t1-p)^2
· ·
lim 11 glt/-pl=> wed dire lim \ \frac{\int_{-0} \int_{0}}{\tau_{-0} \tau_{0}} \left(\frac{\int_{-0}}{\tau_{0}} \right)^{2} = 0
F-060 Vi=1
$q(x) = \sqrt{x}$
= v vad die lim [(fill)-pi = = = = = = = = = = = = = = = = = = =
E-060 C=1
4820 76. HEIN(to-5, to+5) c. he
1 (1:(t)-Pi) < E
co-e-
- E C [(gi(t)-pi) 2 E
Sempre somma d'quatet:
sempre somma d'quadelli

