Yuan Gao z5239220 Q5

Determine if f(n) = O(g(n)) or g(n) = O(f(n)) or both (i.e., f(n) = O(g(n))) or neither of the two, for the following pairs of functions

(a)
$$f(n) = (\log_2(n))^2$$
, $g(n) = \log_2(n^{\log_2 n})^2$

(b)
$$f(n) = n^{10}$$
, $g(n) = 2^{10\sqrt{n}}$

(c)
$$f(n) = n^{1+(-1)^n}, g(n) = n$$

a) $g(n) = \log_2 n^{2\log_2 n} = 2(\log_2(n))^2$ $f(n) = (\log_2(n))^2$

- (1) When M=4, $n_0=1$, there are $|g(n)| \leq M|f(n)|$ for all $n \geq n_0$ Therefore, g(n)=O(f(n))
- (2) When c=1, $n_0=1$, there are $|f(n)| \le M|g(n)|$ for all $n \ge n_0$ Therefore, f(n)=O(g(n))

Hence,

$$f(n) = \Theta(g(n))$$

b)

$$f(n) = n^{10}, g(n) = 2^{10\sqrt{n}} = 2^{n^{\frac{1}{10}}}$$

When M=1, $n_0=10$, there are $|g(n)| \le M|f(n)|$ for all $n \ge n_0$ Therefore, g(n)=O(f(n))

c)

(1) If n is odd,

$$f(n) = 1, \ g(n) = n$$

When
$$M=1$$
, $n_0=2$, there are $|f(n)|\leq M|g(n)|$ for all $n\geq n_0$
 Therefore, $f(n)=O(g(n))$

(2) If n is even,

$$f(n) = n^{n+1}, \ g(n) = n$$

When
$$M=1$$
, $n_0=2$, there are $|g(n)|\leq M|f(n)|$ for all $n\geq n_0$
 Therefore, $g(n)=O(f(n))$