Gene Analysis of Schizophrenia Patient Samples

Rui Xiang Yu & Nairuz Elazzabi (Pavlidis Lab)

Table of contents

Summary	1
Introduction	1
Methods	1
Preview of the Data	1
References	9

Summary

TBF

Introduction

TBF

Methods

TBF

Preview of the Data

The data used is from the Emani et al. (2024) set of cohorts, with its samples. The raw data of the annotated expression matrices can be found here. All the samples come from the prefrontal cortex (PFC). The metadata contains the information of the following 12 cohorts:

- 1. CMC
- 2. DevBrain
- 3. Girgenti-multiome
- 4. IsoHuB
- 5. LIBD
- 6. Ma_et_al (Ma et al. 2022)
- 7. MultiomeBrain
- 8. PTSDBrainomics
- 9. SZBDMulti-Seq
- 10. ROSMAP
- 11. UCLA-ASD
- 12. Velmeshev_et_al (Velmeshev et al. 2019)

However, because no annotated matrices were provided for the ROSMAP cohort, these were filtered out from the metadata.

This is an overview of each cohort:

Table 1: Each cohort with the total patients studied, the mean of the age of death, and disease studied.

Cohort	Patients	$Mean_Age$	Disorder_studied
CMC	100	71	Schizophrenia
DevBrain	16	29	Williams Syndrome, ASD
Girgenti-snMultiome	19	49	None
IsoHuB	4	22	None
LIBD	10	50	None
Ma_et_al	2	57	None
MultiomeBrain	21	42	Schizophrenia, Bipolar Disorder
PTSDBrainomics	19	47	MDD, PTSD
SZBDMulti-Seq	72	65	Bipolar Disorder, Schizophrenia
UCLA-ASD	52	23	ASD
$Velmeshev_et_al$	27	18	ASD

From Table 1, we can see that the CMC cohort has the biggest number of patient samples with 100 samples, followed by SZBDMulti-seq with 72. Ma_et_al has the smallest size, with only 2 samples. CMC and SZBDMulti-seq also have the highest mean of age of death at 71

years and 65 years respectively. Velmeshev_et_al has the lowest one, at 18 years. A variety of diseases are studied in these cohorts, with some cohorts studying none. These diseases include schizophrenia, autism spectrum disorder (ASD), bipolar disorder, major depressive disorder (MDD), post-traumatic stress disorder (PTSD), and Williams Syndrome.

Table 2: Number of patients per condition per cohort. Includes the mean age and the biological sex as well.

Cohort	Disorder	Total	Mean_Age	N_Male	N_Female
CMC	Control	53	71	32	21
CMC	Schizophrenia	47	71	33	14
DevBrain	ASD	9	24	8	1
DevBrain	Control	4	36	4	0
DevBrain	Williams Syndrome	3	31	2	1
Girgenti-snMultiome	Control	19	49	15	4
IsoHuB	Control	4	22	2	2
LIBD	Control	10	50	6	4
Ma_et_al	Control	2	57	1	1
MultiomeBrain	Bipolar Disorder	10	40	6	4
MultiomeBrain	Control	5	39	4	1
MultiomeBrain	Schizophrenia	6	46	3	3
PTSDBrainomics	Control	9	49	7	2
PTSDBrainomics	MDD	4	52	3	1
PTSDBrainomics	PTSD	6	41	5	1
SZBDMulti-Seq	Bipolar Disorder	24	70	12	12
SZBDMulti-Seq	Control	24	62	12	12
SZBDMulti-Seq	Schizophrenia	24	64	12	12
UCLA-ASD	ASD	27	23	22	5
UCLA-ASD	Control	25	24	21	4
$Velmeshev_et_al$	ASD	13	15	10	3
$Velmeshev_et_al$	Control	14	20	9	5

Table 2 indicates the number of patients per condition in each cohort. The CMC cohort has the highest numbers, with 53 control samples and 47 schizophrenia samples. The UCLA-ASD is second, with 27 ASD samples and 25 control samples. The mean of age at death and the distribution of the biological sexes is also shown in this table.

It must be noted that many patients' age at death was marked as "89+". In order to determine the age distribution and the mean age of death, these values were converted to "89". The number of samples that were marked as "89+" from the Schizophrenia cohorts is in Table 3.

Table 3: Number of patients annotated as "89+" in Schizophrenia cohorts.

Cohort	Disorder	Plus89_patients
$\overline{\mathrm{CMC}}$	Control	9
CMC	Schizophrenia	5
SZBDMulti-Seq	Bipolar Disorder	1
SZBDMulti-Seq	Control	1
${\bf SZBDMulti\text{-}Seq}$	Schizophrenia	2

The age distribution of each condition per cohort was also examined.

Figure 1: Age distribution in each cohort.

In Figure 1, the dotted vertical lines are the mean of the age at death for each condition.

The number of genes and single cells per each Schizophrenia cohort was also looked at in Table 4. The number of genes is per sample, whereas the number of cells is the total number for all samples in a cohort.

Table 4: Number of genes and total number of cells per each Schizophrenia cohort.

Cohort	Genes	Total_Cells
CMC	33792	456560
SZBDMulti-Seq MultiomeBrain	34361 33822	603281 134666
MultiomeBrain	33822	134000

The number of genes is quite similar across 3 cohorts. SZBDMulti-Seq has the highest number of total cells, at 603281. MultiomeBrain has the lowest number of total cells, at 134666.

The next thing that was looked into was the number of cells per cell-type per patient. In Figure 2, we can see that L2/3 intratelencephalic excitatory neurons have the highest frequency (279756 in total), especially by the SZBDMulti-Seq cohort. This is followed by oligodendrocytes with 221554 counts in total. Sst Chodl inhibitory neurons have the lowest count at 746 counts. Smooth muscle cells (SMC) have the second lowest count, at 944.

In Figure 3, the sequencing depth of each cell was investigated. These results were grouped together per cell type in the following plot, and colored by cohort.

Lastly, the difference in cell type abundance per condition was investigated in each cohort in Figure 4.

Figure 2: Cells per cell-type per patient in each cohort.

Figure 3: Depth distribution per cell-type per patient in each cohort.

Figure 4: Cell type abundance within conditions across cohorts.

References

- Emani, Prashant S., Jason J. Liu, Declan Clarke, Matthew Jensen, Jonathan Warrell, Chirag Gupta, Ran Meng, et al. 2024. "Single-Cell Genomics and Regulatory Networks for 388 Human Brains." *Science* 384 (6698): eadi5199. https://doi.org/10.1126/science.adi5199.
- Ma, Shaojie, Mario Skarica, Qian Li, Chuan Xu, Ryan D. Risgaard, Andrew T. N. Tebbenkamp, Xoel Mato-Blanco, et al. 2022. "Molecular and Cellular Evolution of the Primate Dorsolateral Prefrontal Cortex." *Science* 377 (6614): eabo7257. https://doi.org/10.1126/science.abo7257.
- Velmeshev, Dmitry, Lucas Schirmer, Diane Jung, Maximilian Haeussler, Yonatan Perez, Simone Mayer, Aparna Bhaduri, Nitasha Goyal, David H. Rowitch, and Arnold R. Kriegstein. 2019. "Single-Cell Genomics Identifies Cell Type—Specific Molecular Changes in Autism." Science 364 (6441): 685–89. https://doi.org/10.1126/science.aav8130.