### Derivative



>Two or more derivatives of the same function are called Gradients.

An algorithm which uses gradient to descent to the lowest point of a loss function.









We get the **Predicted Height**, the point on the line...

...by plugging

Weight = 0.5 into the
equation for the line...

**Predicted Height** =  $0 + 0.64 \times 0.5$ 

















Sum of squared residuals =  $(1.4 - (intercept + 0.64 \times 0.5))^2$ 

+ (**1.9** - (intercept + 0.64 × **2.3**))<sup>2</sup> + (**3.2** - (intercept + 0.64 × **2.9**))<sup>2</sup>

So let's take the derivative of the Sum of the Sum of the Squared Residuals with respect to the **Intercept**.







NOTE: If we were using Least
Squares to solve for the optimal
value for the Intercept, we would,
simply find where the the slope of
the curve = 0.



reaches the best value.



$$\frac{d}{d \text{ intercept}} \text{ Sum of squared residuals} = -2(\mathbf{1.4} - (\text{intercept} + 0.64 \times \mathbf{0.5})) + -2(\mathbf{1.9} - (\text{intercept} + 0.64 \times \mathbf{2.3})) + -2(\mathbf{3.2} - (\text{intercept} + 0.64 \times \mathbf{2.9}))$$

This makes **Gradient Descent** very useful when it is not possible to solve for where the derivative = **0**, and this is why **Gradient Descent** can be used in so many different situations.



Sum of squared residuals = 
$$-2(\mathbf{1.4} - (0 + 0.64 \times \mathbf{0.5}))$$
  
+  $-2(\mathbf{1.9} - (0 + 0.64 \times \mathbf{2.3}))$   
+  $-2(\mathbf{3.2} - (0 + 0.64 \times \mathbf{2.9}))$   
=  $-5.7$ 

So when the Intercept =  $\mathbf{0}$ , the slope of the curve = -5.7.



Sum of squared residuals = 
$$-2(\mathbf{1.4} - (0 + 0.64 \times \mathbf{0.5}))$$
  
+  $-2(\mathbf{1.9} - (0 + 0.64 \times \mathbf{2.3}))$   
+  $-2(\mathbf{3.2} - (0 + 0.64 \times \mathbf{2.9}))$   
=  $-5.7$ 













Gradient Descent stops when the Step Size is Very Close To 0.

Step Size = Slope × Learning Rate



In practice, the Minimum Step Size = 0.001 or smaller.

Step Size = Slope × Learning Rate



That said, **Gradient Descent** also includes a
limit on the number of steps
it will take before giving up.

In practice, the Maximum Number of Steps = 1,000 or greater.



```
Sum of squared residuals = (1.4 - (intercept + slope \times 0.5))^2
                          + (1.9 - (intercept + slope × 2.3))2
                          + (3.2 - (intercept + slope × 2.9))2
                                  ...this axis represents
                                 different values for the
                                         Slope...
```

Sum of squared residuals =  $(1.4 - (intercept + slope \times 0.5))^2$ + (1.9 - (intercept + slope × 2.3))<sup>2</sup> + (3.2 - (intercept + slope × 2.9))2 We want to find the values for the Intercept and Slope that give us the minimum

Sum of the Squared

Residuals.

Sum of squared residuals = 
$$-2(\mathbf{1.4} - (\text{intercept} + \text{slope} \times \mathbf{0.5}) + -2(\mathbf{1.9} - (\text{intercept} + \text{slope} \times \mathbf{2.3})) + -2(\mathbf{3.2} - (\text{intercept} + \text{slope} \times \mathbf{2.9}))$$
Here's the derivative of the Squared Residuals with respect to the Intercept...

 $\frac{d}{d \text{ slope}}$  Sum of squared residuals =  $-2 \times \mathbf{0.5}(\mathbf{1.4} - (\text{intercept} + \text{slope} \times \mathbf{0.5}))$   $+ -2 \times \mathbf{2.9}(\mathbf{3.2} - (\text{intercept} + \text{slope} \times \mathbf{2.9}))^2$   $+ -2 \times \mathbf{2.3}(\mathbf{1.9} - (\text{intercept} + \text{slope} \times \mathbf{2.3}))^2$ 

...and here's the derivative

```
Sum of squared residuals =
-2(\mathbf{1.4} - (\text{intercept} + \text{slope} \times \mathbf{0.5}))
+ -2(\mathbf{1.9} - (\text{intercept} + \text{slope} \times \mathbf{2.3}))
+ -2(\mathbf{3.2} - (\text{intercept} + \text{slope} \times \mathbf{2.9}))
```

Now let's plug in 0 for the Intercept and 1 for the Slope...

Sum of squared residuals 
$$-2 \times \mathbf{0.5}(\mathbf{1.4} - (\text{intercept} + \text{slope} \times \mathbf{0.5}))$$
$$+ -2 \times \mathbf{2.9}(\mathbf{3.2} - (\text{intercept} + \text{slope} \times \mathbf{2.9}))^{2}$$
$$+ -2 \times \mathbf{2.3}(\mathbf{1.9} - (\text{intercept} + \text{slope} \times \mathbf{2.3}))^{2}$$

Sum of squared residuals =
$$-2(\mathbf{1.4} - (0 + 1 \times \mathbf{0.5}))$$

$$+ -2(\mathbf{1.9} - (0 + 1 \times \mathbf{2.3}))$$

$$+ -2(\mathbf{3.2} - (0 + 1 \times \mathbf{2.9}))$$

$$= -1.6$$
Step Size<sub>Intercept</sub> = -1.6 × Learning Rate

...now we plug the Slopes into the Step Size formulas...

Sum of squared residuals = Step Size<sub>Slope</sub> = -0.8 × Learning Rate 
$$-2 \times 0.5(1.4 - (0 + 1 \times 0.5))$$
 +  $-2 \times 2.9(3.2 - (0 + 1 \times 2.9))^2$  +  $-2 \times 2.3(1.9 - (0 + 1 \times 2.3))^2$  = -0.8

Step Size $Intercept = -1.6 \times 0.01$ 

**NOTE:** The larger **Learning Rate** that we used in the first example doesn't work this time. Even after a bunch of steps, **Gradient Descent** doesn't arrive at the correct answer.

**Step Size**Intercept =  $-1.6 \times 0.01 = -0.016$ 



Anyway, we do the math and get two **Step Sizes**.



**Step Size**<sub>Slope</sub> = 
$$-0.8 \times 0.01 = -0.008$$

Step Size<sub>Slope</sub> =  $-0.8 \times 0.01$ 

This means that **Gradient Descent** can be very sensitive to the **Learning Rate**.

**Step Size**<sub>Intercept</sub> = 
$$-1.6 \times 0.01 =$$
 **-0.016**  
**New Intercept** = 0 - (-0.016)

...and the Step Sizes...

Step Size<sub>Slope</sub> = 
$$-0.8 \times 0.01 = -0.008$$
  
New Slope = 1 - (-0.008)







Now we just repeat what we did until all of the **Steps Sizes** are very small or we reach the **Maximum Number of Steps**.





If we had more parameters, then we'd just take more derivatives and everything else stays the same.

```
Sum of squared residuals = (1.4 - (intercept + 0.64 \times 0.5))^2 + (1.9 - (intercept + 0.64 \times 2.3))^2 + (3.2 - (intercept + 0.64 \times 2.9))^2
```

However, there are tons of other Loss Functions that work with other types of data.

Regardless of which Loss Function you use, Gradient Descent works the same way.



#### **Regression Losses**

Mean Square Error/Quadratic Loss/L2 Loss

Mathematical formulation :-

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

Mean Squared Error

Mean Absolute Error/L1 Loss

Mathematical formulation :-

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

Mean absolute error

Mathematical formulation :-

$$MBE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)}{n}$$

Mean bias error

Mathematical formulation :-

$$SVMLoss = \sum_{j \neq y_i} max(0, s_j - s_{y_i} + 1)$$

SVM Loss or Hinge Loss

Mathematical formulation :-

$$CrossEntropyLoss = -(y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i))$$
Cross entropy loss

# Steps in Gradient Descent

Step 1: Take the derivative of the Loss Function for each parameter in it. In fancy Machine Learning Lingo, take the Gradient of the Loss Function.

Step 2: Pick random values for the parameters.

Step 3: Plug the parameter values into the derivatives (ahem, the Gradient).

Step 4: Calculate the Step Sizes: Step Size = Slope × Learning Rate

Step 5: Calculate the New Parameters:

New Parameter = Old Parameter - Step Size





...but when you have millions of data points, it can take a long time.

# Stochastic Gradient Descent (SGD)



So there is a thing called

Stochastic Gradient Descent
that uses a randomly selected
subset of the data at every step
rather than the full dataset.