a) lu
$$x = 4$$

Ensemble de définition: $x > 0$ $D =]0; +\infty[$
 $x = e^4$ $S = \int e^4 \int$

b)
$$l_{1}(1-x)=0$$

 $EdD: 1-x>0$

$$-x > -2$$

$$x < 2 \implies D = [-\infty; 2[$$

$$ln(2-x) = ln 1$$

$$2-x = 1$$

$$-x = 1-2$$

$$-x = -1$$

$$x = 1 \Rightarrow S = \{1\}$$

c)
$$\ln x = -1$$

 $EdD: x > 0 = 7$ $D = Jo; +\infty[$
 $x = e^{-1} = \frac{1}{e} \Rightarrow S = \{\frac{1}{e}\}$

d)
$$e^{3-2x} = 5$$

$$\ln\left(e^{3-2x}\right) = \ln(5)$$

$$3-2x=ln(5)$$

$$-2x = -3 + \ln(s)$$

$$2x = 3 - ln(5)$$

$$\chi = \frac{3 - l_{v}(s)}{2} \Rightarrow S = \left\{ \frac{3 - l_{v}(s)}{2} \right\}$$

$$e)$$
 $2e^{x} + 10 = 6$

$$e^x = -2 \Rightarrow impossible = 7 S = \phi$$

$$ln \times = -3$$

$$\chi = e^{-3} = \frac{1}{e^3} \Rightarrow S = \left\{ \frac{1}{e^3} \right\}$$