CSE-433 Midterm - Fall 2024

gla@postech

Out: 01:01am, Nov 29 Due: 11:59pm, Dec 1

1 Definition of the simple language

The simple language uses the following definition of terms:

$$t ::=$$
true | false | if t then t else t | 0 | S t | P t | iszero t

A judgment bvalue t means that t is a boolean value (which cannot be further reduced):

$$\overline{bvalue \ \mathbf{true}}$$
 btrue $\overline{bvalue \ \mathbf{false}}$ bfalse

A judgment $nvalue\ t$ means that t is a natural number value:

$$\frac{}{nvalue \ \mathbf{0}} \ \ \mathrm{nzero} \qquad \frac{nvalue \ t}{nvalue \ \mathbf{S} \ t} \ \ \mathrm{nsucc}$$

A judgment value t means that t is a value (either a natural number value or a boolean value):

$$\frac{nvalue\ t}{value\ t}$$
 natv $\frac{bvalue\ t}{value\ t}$ booleanv

The small-step semantics uses a reduction judgment $t \mapsto t'$ which means that term t reduces to term t' in a single step. Reduction rules for the small-step semantics are given as follows:

We say that a term t is in normal form if it does not reduce to another term, and use a judgment $normal\ t$:

normal $t \iff$ There exists no term t' such that $t \mapsto t'$.

All the above definitions are given in the Coq script.

2 Deterministic reduction

We want to prove that the reduction of a term is always deterministic.

Lemma 2.1. If bvalue t, then normal t.

Lemma 2.2. If nvalue t, then normal t.

Lemma 2.3. If value t, then normal t.

Theorem 2.4. If $t \mapsto t'$ and $t \mapsto t''$, then t' = t''.

Prove Theorem 2.4 in Coq.

3 Verifying the interpreter

We write \mapsto^* for the reflexive and transitive closure of \mapsto :

$$\frac{}{t \mapsto^* t} \text{ refl} \qquad \frac{t \mapsto t' \quad t' \mapsto^* u}{t \mapsto^* u} \text{ step}$$

The definition of the interpreter **interp** is given in the Coq script. The specification for the interpreter **interp** is as follows:

• interp t returns t' if and only if $t \mapsto^* t'$ and there is no term t'' such that $t' \mapsto t''$.

We want to formally verify the definition of **interp**.

Theorem 3.1. For every term t, we have $t \mapsto^*$ **interp** t.

Theorem 3.2. For every term t, interp t is in normal form, i.e., normal interp t holds.

Prove Theorems 3.1 and 3.2 in Coq.