

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE FÍSICA

Física II

Cursos: Licenciatura em Engenharia Mecânica, Eléctrica, Electrónica, Química, Ambiente, Civil e Gestão Industrial

Regente - Félix Tomo

Assitentes - Fernando Mucomole, Esménio Macassa, Tomásio Januário, Graça Massimbe & Valdemiro Sultane

2022 - Aula Prática # 5 - Corrente elétrica contínua e Resistência

- 1. Explique resumidamente o significado das grandezas R, ρ e σ . Escreva também as equações que relacionam as grandezas acima indicadas.
- 2. O fusível de um circuito eléctrico é projectado de tal modo que ele funde, abrindo o circuito, se a corrente ultrapassar um determinado valor. Suponha que o material a ser usado em um fusível funde quando a densidade de corrente for de $400\,A$ / cm^2 . Que diâmetro de fio cilíndrico deve ser usado para fazer um fusível que limite a corrente a $0.50\,A$?
- 3. A corrente eléctrica num condutor varia uniformemente de $I_i=0$ até $I_f=5.0\,A$, durante um intervalo de tempo de $10\,s$. (a) Determine a carga que atravessa o condutor. (b) Sabendo que quando uma corrente atravessa um condutor ocorre o efeito de Joule, caracterizado pela dissipação de energia sob a taxa temporal $P=I^2R$, determine a energia dissipada num resistor de $10\,\Omega$ (despreze a dependência térmica da resistência do condutor) durante o intervalo de tempo considerado.
- 4. Dois capacitores planos e idênticos (S,d_0) , carregados inicialmente com carga Q, são associados em paralelo. A distância entre as placas do primeiro capacitor começa a aumentar segundo a lei $d_1 = d_0 + v_0 t$, enquanto que o segundo capacitor começa a diminuir em conformidade com a lei $d_2 = d_0 v_0 t$. Determine a corrente eléctrica no circuíto fechado contendo os dois capacitores.
- 5. A resistência do enrolamento de um motor eléctrico (fio de cobre) é igual a 50Ω á $20^{\circ}C$ (enquanto o motor estiver desligado). Após várias horas de funcionamento, a resistência aumenta para $58\,\Omega$. Determine a temperatura do enrolamento se o coeficiente térmico do cobre é igual a 3.8×10^{-3} / °C.

- 6. A corrente eléctrica num condutor é dada por $I=4+2t^2$, com I dada em Amperes e t em segundos. Determine o valor médio rqm (raiz quadrada média) da corrente entre $t_0=0$ e $t_1=10$ s.
- 7. Demonstrar que a resistência equivalente da rede infinita da Figura 1 é igual a $(1+\sqrt{3})R$.

Figura 1.

8. Um anel é feito de um pedaço de fio (Figura 2), com resistência total de 10Ω . Qual deve ser a relação entre os comprimentos A e B, para que a resistência de substituição do anel seja de 1.0Ω ?

Figura 2.

9. Determine a resistência equivalente da associação representada pela Figura 3., assim como a corrente e a diferença de potencial em cada resistor. Use $R_1 = R_2 = \cdots = R_5 = 10 \Omega$ e $I_0 = 20 A$.

Figura 3.

10. Determine a resistência equivalente da associação, a corrente e a diferença de potencial em cada resistor do circuíto, como mostrado na Figura 4. (os valores dos resistores estão em Ω).

Figura 4.