Lec-24. 假设检验

主讲教师: 吴利苏 (wulisu@sdust.edu.cn)

主 页: wulisu.cn

本次课内容

假设检验

• 假设检验的相关概念

假设检验

- 假设检验. 首先提出关于总体的假设, 然后根据样本对所提出的假设作出决策(接受 or 拒绝).
- 如何利用样本值对一个具体的假设进行推验?

例

某车间用一台包装机包装葡萄糖,包得的袋装糖重是一个随机变量,服从正态分布. 当机器正常时,其均值为 0.5 kg,标准差为 0.015 kg. 某日开工后检验包装机是否正常,随机地抽取它所包装地 9 袋糖,称得净重为

0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512

问机器是否正常?

 $X \sim N(\mu, 0.015^2)$, 其中 μ 未知.

$$X \sim N(\mu, 0.015^2)$$
, 其中 μ 未知.

• 如何根据样本值判断 $\mu = 0.5$ 还是 $\mu \neq 0.5$?

$$X \sim N(\mu, 0.015^2)$$
, 其中 μ 未知.

- 如何根据样本值判断 $\mu = 0.5$ 还是 $\mu \neq 0.5$?
 - 提出两个对立假设 $H_0: \mu = \mu_0 = 0.5$ 和 $H_1: \mu \neq \mu_0$;

$$X \sim N(\mu, 0.015^2)$$
, 其中 μ 未知.

- 如何根据样本值判断 $\mu = 0.5$ 还是 $\mu \neq 0.5$?
 - 提出两个对立假设 $H_0: \mu = \mu_0 = 0.5$ 和 $H_1: \mu \neq \mu_0$;
 - 根据一个合理的法则, 利用已知样本作出决策: 接受 H_0 or 拒绝 H_0 .

$$X \sim N(\mu, 0.015^2)$$
, 其中 μ 未知.

- 如何根据样本值判断 $\mu = 0.5$ 还是 $\mu \neq 0.5$?
 - 提出两个对立假设 $H_0: \mu = \mu_0 = 0.5$ 和 $H_1: \mu \neq \mu_0$;
 - 根据一个合理的法则, 利用已知样本作出决策: 接 \mathcal{G} H_0 or 拒绝 H_0 .
 - 如果作出的判断是接受 H_0 , 则 $\mu = \mu_0$, 则认为机器是正常的, 否则认为不正常的.

由于要检验的假设涉及总体均值,故可借助于样本均值.

- X 是 μ 的无偏估计量, X 的观察值 \bar{x} 一定程度 上可以反映 μ 的大小. 因此若 H_0 为真, 则 $|\bar{x}-\mu_0|$ 不应该太大. 考虑 $\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}$.
- 当 H₀ 为真时,

$$\frac{X - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1).$$

选定一个适当的正数 k.

- $\stackrel{\overline{x}-\mu_0}{\sigma/\sqrt{n}} \geq k$, 则拒绝假设 H_0 ;
- $\ddot{x} = \frac{|\bar{x} \mu_0|}{\sigma/\sqrt{n}} < k$, 则接受假设 H_0 .

这里的 k 的取值应该保证:

$$H_0$$
 为真, 做出拒绝 H_0 的决策

是一个小概率事件.

给定一个较小的数 $\alpha(0 < \alpha < 1)$, 考虑 $P\{$ 拒绝 $H_0 \mid H_0$ 为真 $\} < \alpha$.

即

$$P\left\{\frac{|\bar{X} - \mu_0|}{\sigma/\sqrt{n}} \ge k \mid H_0 为 真\right\} \le \alpha.$$

为确定 k, 取等号

$$P\left\{\frac{|X-\mu_0|}{\sigma/\sqrt{n}} \geq k \mid H_0 为 真\right\} = \alpha.$$
 因为当 H_0 为真时, $Z = \frac{|\bar{X}-\mu_0|}{\sigma/\sqrt{n}} \sim N(0,1)$, 所以

 $k=z_{\alpha/2}$.

6/28

因此,

- 若 $\frac{|\bar{x}-\mu_0|}{\sigma/\sqrt{n}} \geq z_{\alpha/2}$, 则拒绝假设 H_0 ;
- 若 $\frac{|\bar{x}-\mu_0|}{\sigma/\sqrt{n}} < z_{\alpha/2}$, 则接受假设 H_0 .

包装机假设检验得过程如下:

解: 取 $\alpha = 0.05$, 则 $k = z_{\alpha/2} = z_{0.025} = 1.96$.

n = 9, $\sigma = 0.015$, $\bar{x} = 0.511$.

所以

$$\frac{|\bar{x} - \mu_0|}{\sigma/\sqrt{n}} = 2.2 > 1.96.$$

所以拒绝 H_0 , 认为包装机工作不正常.

⁷/28

以上所采取得检验法是符合实际推断原理的.由于 α 通常取得很小, 一般取 $\alpha = 0.01, 0.05$. 因此当 H_0 为真 (即 $\mu = \mu_0$) 时, $\left\{\frac{|\bar{X} - \mu_0|}{\sigma/\sqrt{n}} \geq z_{\alpha/2}\right\}$ 是一个小概率事件.

根据实际推断原理, 就可以认为:

如果
$$H_0$$
 为真, 由一次试验得到不等式
$$\frac{|\bar{X}-\mu_0|}{\sigma/\sqrt{n}} \geq z_{\alpha/2}$$
 观察值 \bar{x} , 几乎是不会发生的.

在一次试验中,

• 若

$$\frac{|\bar{x} - \mu_0|}{\sigma/\sqrt{n}} \ge z_{\alpha/2},$$

则有理由怀疑原来的假设 H_0 的正确性, 因而拒绝 H_0 .

• 若

$$\frac{|\bar{x} - \mu_0|}{\sigma/\sqrt{n}} < z_{\alpha/2},$$

则没有理由拒绝 H_0 , 因而接受 H_0 .

显著性水平

在上例中, 当样本容量 n 固定, 选定 α 后, 就可以确定阈值 $k=z_{\alpha/2}$.

- 若 $|z| = \frac{|\bar{x} \mu_0|}{\sigma/\sqrt{n}} \ge k$, 则称 \bar{x} 与 μ_0 的差异是显著的, 此时拒绝 H_0 .
- $\ddot{z} = \frac{|\bar{x} \mu_0|}{\sigma/\sqrt{n}} < k$, 则称 $\bar{x} = \mu_0$ 的差异是不显著的, 此时接受 H_0 .
- α 称为显著性水平. \bar{x} 与 μ 的有无显著差异的 判断是在显著性水平 α 之下作出的.
- 检验统计量 $Z = \frac{\bar{X} \mu_0}{\sigma/\sqrt{n}}$.

原假设与备择假设

假设检验问题常叙述为:

在显著性水平 α 下,检验假设

$$H_0: \mu = \mu_0, \qquad H_1: \mu \neq \mu_0.$$

或称为"在显著水平 α 下, 针对 H_1 检验 H_0 ".

- H₀ 称为原假设或零假设;
- H₁ 称为备择假设.
 (意指在原假设被拒绝后可供选择的假设)

拒绝域与临界点

- 当检验统计量取某个区域 C 中的值时, 我们拒绝原假设 H_0 , 则称区域 C 为拒绝域.
- 拒绝域的边界点称为临界点.

如前面的实例中, 拒绝域为

$$\frac{|\bar{x} - \mu_0|}{\sigma/\sqrt{n}} \ge z_{\alpha/2},$$

临界点为 $z=z_{\alpha/2}$.

两类错误

由于样本的随机性,任一检验规则在应用时,都有可能发生错误的判断——两类错误.

	原假设为真	原假设不真
根据样本拒绝原假设	第 类错误	正确
根据样本接受原假设	正确	第 类错误

- 第 | 类错误: 拒绝真实的原假设 (弃真).
- 第 || 类错误: 接受错误的原假设 (取伪).

$$P_1 = P\{$$
第 | 类错误}
= $P\{$ 拒绝 $H_0 \mid H_0$ 为真 $\} = \alpha$

 $P_2 = P\{$ 第 || 类错误 | = $P\{$ 接受 $H_0 \mid H_0 \mid T_0 \mid T_0$

在确定检验法则时, 我们应尽可能使 P_1 , P_2 都较小. 当样本容量一定时, P_1 , P_2 往往相互制约. 若减少犯第一类错误的概率, 则犯第二类错误的概率往往增大.

所以要使犯两类错误的概率都减小, 只能增加样本容量.

一个记号

$$P_1 = P\{\hat{\mathbf{x}} \mid \text{ 类错误}\}$$

= $P\{H_0 \text{ 为真时拒绝 } H_0\}$
= $P\{\text{拒绝 } H_0 \mid H_0 \text{ 为真}\}$
= $P_{\mu_0}\{\text{拒绝 } H_0\}$
= $P_{\mu \in H_0}\{\text{拒绝 } H_0\}$

- * $P_{\mu_0}\{\bullet\}$ 表示参数 $\mu = \mu_0$ 时, 事件 $\{\bullet\}$ 的概率.
- * $P_{\mu \in H_0} \{ \bullet \}$ 表示参数 μ 取 H_0 规定的值时, 事件 $\{ \bullet \}$ 的概率.

显著性检验

只对犯第一类错误的概率加以控制,而不考虑 犯第二类错误的概率的检验,称为显著性检验.

双边备择假设与双边假设检验

在 $H_0: \mu = \mu_0$, 和 $H_1: \mu \neq \mu_0$ 中,

- 备择假设 H_1 表示, μ 可能大于 μ_0 , 也可能小于 μ_0 , 称为双边备择假设.
- 这样的假设检验称为双边假设检验.

单边检验

但有时, 我们只关心总体均值是否增大或减少,

- 形如 $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$ 的假设检验称为右边检验.
- 形如 $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$ 的假设检验称为左边检验.
- 右边与左边检验统称为单边检验.

单边检验的拒绝域

设总体 $X \sim N(\mu.\sigma^2)$, σ^2 为已知, $X_1, ..., X_n$ 是来自 X 的样本. 给定显著性水平 α .

• 右边检验 $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$ 的拒绝域

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha}.$$

• 左边检验 $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$ 的拒绝域 $\bar{x} - \mu_0$

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \le -z_\alpha.$$

证: 右边检验的情况

 H_0 中的全部 μ 都比 H_1 中的 μ 要小, 当 H_1 为真时, 观察值往往偏大, 拒绝域

 $\bar{x} > k$.

 $P\{$ 拒绝 $H_0 \mid H_0$ 为真 $\} = P_{\mu < \mu_0}\{\bar{x} \ge k\}$ $= P_{\mu \le \mu_0} \left\{ \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \ge \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\}$ $\leq P_{\mu \leq \mu_0} \left\{ \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \geq \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\}.$

要控制 $P\{$ 拒绝 $H_0 \mid H_0$ 为真 $\} \leq \alpha$, 只需令

$$P_{\mu \le \mu_0} \left\{ \frac{X - \mu}{\sigma / \sqrt{n}} \ge \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\} = \alpha,$$

则
$$\frac{k-\mu_0}{\sigma/\sqrt{n}}=z_{\alpha}\Rightarrow k=\mu_0+\frac{\sigma}{\sqrt{n}}z_{\alpha}$$
. 拒绝域为

$$ar{x} \geq \mu_0 + rac{\sigma}{\sqrt{n}} z_{\alpha}, \qquad \mathbb{P} z = rac{ar{x} - \mu_0}{\sigma/\sqrt{n}} \geq z_{\alpha}.$$
 类似, 左边检验 $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$ 的拒绝域

类似, 左边检验 $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$ 的拒绝域为 $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \leq -z_\alpha.$

21/28

假设检验的一般步骤

- **1** 根据实际问题的要求, 提出原假设 H_0 与备择假设 H_1 ;
- **2** 给定显著性水平 α 以及样本容量 n;
- 3 确定检验统计量以及拒绝域形式;
- 4 按 $P\{\exists H_0$ 为真时拒绝 $H_0\} = \alpha$ 求出拒绝域;
- **5** 取样, 根据样本观察值确定接受还是拒绝 H_0 .

原假设的提出一般参考以下几个方面

- 保护原假设.如果错误地拒绝假设 A 比错误地拒绝假设 B 带来更严重的后果——A 选作原假设!
- 原假设为维持现状.为解释某些现象或效果的存在性,原假设常取为"无效果"、"无改进"、"无差异"等,拒绝原假设表示有较强的理由支持备择假设.
- 原假设取简单假设. 把只有一个参数 (或分布) 的假设取为原假设.

例

公司从生产商购买牛奶,公司怀疑生产商在牛奶中 掺水以牟利, 通过测定牛奶的冰点, 可以检验出牛 奶是否掺水, 天然牛奶的冰点温度近似服从正态分 布, 均值 $\mu_0 = -0.545$ °C, 标准差 $\sigma = 0.008$ °C, 牛奶 掺水可使冰点温度升高而接近水的冰点温度 (0 ℃), 测得生产商提交得 5 批牛奶得冰点温度, 其均值为 $\bar{x} = -0.535$ °C. 问是否可以认为生厂商在牛奶中掺 水? 取 $\alpha = 0.05$.

解: 假设检验

$$H_0: \mu \le \mu_0 = -0.545$$
(即牛奶未掺水),

$$H_1: \mu \geq \mu_0$$
 (即牛奶掺水),

这是右边检验问题, 其拒绝域为

$$z = \frac{x - \mu_0}{\sigma / \sqrt{n}} \ge z_{0.05} = 1.645$$

z = 2.7951 > 1.645. z 的值落在拒绝域中, 所以在显著性水平 $\alpha = 0.05$ 下拒绝 H_0 , 即认为生产商中掺了水

例

设 $(X_1,...,X_n)$ 是来自正态总体 $N(\mu,9)$ 的一个样本, 其中 μ 为未知参数, 检验

$$H_0: \mu = \mu_0, \qquad H_1: \mu \neq \mu_0$$

拒绝域

$$w_1 = \{(x_1, ..., x_n) | |\bar{x} - \mu_0| \ge C \}.$$

(1) 确定常数 C, 使得显著性水平为 $\alpha = 0.05$.

(2) 在固定样本容量 n = 25 的情况下, 分析犯两类错误的概率 α 和 β 之间的关系.

26/28

$$P\{(x_1, ..., x_n) \in w_1\} = P\{|\bar{X} - \mu_0| \ge C\}$$
$$= P\left\{\frac{|\bar{X} - \mu_0|}{3/\sqrt{n}} \ge \frac{C}{3/\sqrt{n}}\right\}$$

= 0.05

解: (1) 若 H_0 成立, 则 $\frac{X-\mu_0}{3/\sqrt{n}} \sim N(0,1)$.

 $\frac{C}{3/\sqrt{n}} = z_{0.025} = 1.96$, \mathbb{N} $C = \frac{5.88}{\sqrt{n}}$.

(2) n = 25, 若 H_0 成立, 则

$$P\{(x_1,...,x_n) \in w_1\} = 2(1 - \Phi(\frac{5C}{2})) = \alpha.$$

$$1 \{(x_1, ..., x_n) \in w_1\} - 2(1 - \Psi(\frac{\pi}{3})) = \alpha.$$

若
$$H_0$$
 不成立, 不妨假设 $\mu = \mu_1 \neq \mu_0$.

$$\beta = P\{(x_1, ..., x_n) \notin w_1\}$$

$$= P\{|\bar{x} - \mu_0| < C\}$$

$$= P\{-C + \mu_0 < \bar{x} < C + \mu_0\}$$

$$= P\left\{\frac{5}{3}(-C + \mu_0 - \mu) < \frac{5}{3}(\bar{X} - \mu) < \frac{5}{3}(C + \mu_0 - \mu)\right\}$$

$$=\Phi\left(\frac{5}{3}(C+\mu_0-\mu_1)\right)-\Phi\left(\frac{5}{3}(-C+\mu_0-\mu_1)\right).$$

当 C 较小时, α 较大, β 较小. 当 C 较大时, α 较小, β 较大.