

Customer churn is the measure of how many customers stop using a product.

churn = change + turn

Why is it so important?

 Acquiring a new customer can cost up to 5x more than retaining an existing one.

 Unhappy customers are more likely to speak negatively and therefore harm your brand. 10,000

Bank Clients

10 features

Binary target

20% churned

80% retained

Classification Supervised

The **goal** is to build a model that can distinguish customers who are likely to churn.

>80%

Model prediction score

Removed in train so model can generalize better

Interquartile Range (Tukey's rule)

4% removed

5,740 train dataset > 1,000

Even up dataset of 80% retained vs 20% churned

Slightly > 1,000 Original Dataset Random Under-Sampling 4000 3000 2000 1000 0 1 Ó target target

Try different train, validation and test % samples.

50_35_15	Train	Val	Test
Random Forest	76,05%	85,14%	84,87%
Gradient Boosting	74,95%	83,49%	83,60%
XGBoost	74,79%	85,37%	86,00%
Decission Tree	72,11%	83,43%	84,40%
Naive Bayes	71,90%	81,37%	82,00%
Logistic Regression	71,64%	80,89%	81,53%
kNN	67,54%	80,86%	80,40%

60_20_20	Train	Val	Test
Random Forest	76,18%	85,00%	85,40%
XGBoost	75,44%	85,40%	85,95%
Gradient Boosting	74,69%	83,25%	83,00%
Logistic Regression	72,72%	80,90%	80,55%
Decission Tree	72,46%	82,25%	83,75%
Naive Bayes	72,07%	81,35%	82,35%
kNN	68,61%	81,65%	80,50%

70_15_15	Train	Val	Test
Random Forest	77,06%	85,40%	85,67%
XGBoost	76,83%	85,60%	84,93%
Gradient Boosting	75,38%	83,40%	82,93%
Logistic Regression	72,41%	79,47%	80,40%
Naive Bayes	71,65%	81,53%	80,73%
Decission Tree	71,27%	83,80%	82,73%
kNN	69,83%	79,40%	79,13%

■train ■val ■test

■train
■val
■test

Timeline Divided into train, Random Under Sampling Scaling validation and test. Building Models OUTLIERS SPLIT RUS One-hot Model Removed as had One-hot encoding Save Model for Future Feature Importance sufficient data Testing

Thank you!

I am Ignacio García-Barrero I am a Data Science student You can find me at github.com/IgnacioGB1990

