抛物线的焦点弦

- 1. 准备知识:
- (1). 抛物线弦长计算的基本方法: 设 $A(x_1, y_1)$, $B(x_2, y_2)$

弦长
$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{1 + k^2} \sqrt{(x_1 + x_2)^2 - 4x_1x_2}$$
$$= \sqrt{1 + \frac{1}{k^2}} \sqrt{(y_1 + y_2)^2 - 4y_1y_2}$$

若直线的斜率存在,假设直线方程为 y=kx+m,代入 $y^2=2px$,消去 y 并化简整理得到: $k^2x^2+2(mk-p)x+m^2=0$, $\Delta>0$,最后利用韦达定理,代入弦长公式即可解得弦长.

(2). 由于
$$\frac{\sin \alpha}{\cos \alpha} = \tan \alpha$$
,故 $\tan^2 \alpha = \frac{1 - \cos^2 \alpha}{\cos^2 \alpha} = \frac{\sin^2 \alpha}{1 - \sin^2 \alpha}$,

所以有:
$$\sin^2 \alpha = \frac{\tan^2 \alpha}{1 + \tan^2 \alpha}, \cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha}.$$

2. 抛物线焦点弦的常用结论

抛物线的焦点弦具有丰富的性质,它是对抛物线定义的进一步考察,也是抛物线这节中最 重要的考点之一,下面罗列出常见的抛物线焦点弦性质:

假设抛物线方程为 $y^2=2\,px$. 过抛物线焦点的直线 l 与抛物线交于 A,B 两点,其坐标分别为 $A(x_1,y_1),B(x_2,y_2)$.

性质 1.
$$|AF| = x_A + \frac{p}{2}$$
, $|BF| = x_B + \frac{p}{2}$, $|AB| = x_A + x_B + p$.

证明:性质 1 的证明很简单,由抛物线的定义即可证得.如上图,过 A, B 向准线引垂线,垂足分别为 M, N. 由定义可知: |AM|=|AF|, |BN|=|BF|. 代入坐标即可证得相关结论.

例 1. (2018年全国 2 卷) 设抛物线 C: $y^2 = 4x$ 的焦点为 F , 过 F 且斜率为 k(k > 0) 的直线 l 与 C 交于 A , B 两点, |AB| = 8 .

- (1) 求 l 的方程:
- (2) 求过点 A, B 且与 C 的准线相切的圆的方程.

性质 2. 抛物线 $y^2=2px$ 的焦点为 F, $A(x_1,y_1), B(x_2,y_2)$ 是过 F 的直线与抛物线的两个 交点,求证: $x_1x_2=\frac{p^2}{4}, y_1y_2=-p^2$.

证明:
$$A(\frac{y_1^2}{2p}, y_1), B(\frac{y_2^2}{2p}, y_2)$$
,则 AB 的方程为 $y - y_1 = \frac{2p}{y_1 + y_2}(x - \frac{y_1^2}{2p})$,整理可得:

 $(y-y_1)(y_1+y_2)=2px-y_1^2$, 即可得 AB 的方程为: $(y_1+y_2)\cdot y=2px+y_1y_2$. 最后,由

于直线 AB 过焦点,代入焦点坐标可得 $y_1y_2=-p^2$. 再代入抛物线方程 $x_1x_2=\frac{p^2}{4}$.

性质 3. 已知倾斜角为 α 直线的 l 经过抛物线 $y^2=2\,px$ 的焦点 F ,且与抛物线交于 A,B 两点,则

(1)
$$|AF| = \frac{p}{1 - \cos \alpha}, |BF| = \frac{P}{1 + \cos \alpha}, \frac{1}{|FA|} + \frac{1}{|FB|} = \frac{2}{p}.$$

(2)
$$|AB| = \frac{2p}{\sin^2 \alpha}$$
, $S_{\Delta OAB} = \frac{p^2}{2\sin \alpha}$, $|AB| = 2p(1 + \frac{1}{k^2})$.

证明:略

性质 4. 抛物线的通径

- (1). 通径长为2p.
- (2). 焦点弦中, 通径最短.
- (3). 通径越长, 抛物线开口越大.

性质 5. 已知直线 l 经过抛物线 $y^2=2\,px$ 的焦点 F ,且与抛物线交于 A,B 两点,若弦 AB 中点的坐标为 (x_0,y_0) ,则 $|AB|=2(x_0+\frac{p}{2})$. 证明思路:中点弦问题,点差法即可.

性质 6. 以焦点弦为直径的圆与准线相切.

三. 练习题

- 1. 设抛物线 $C: y^2 = 8x$,过焦点 F 作倾斜角为 30° 的直线交 C 于 A, B 两点,则 |AB|
- A. $\frac{32}{3}$ B. 16 C. 32 D. $4\sqrt{3}$
- 2. 过抛物线 $C: y^2 = 4x$ 的焦点的直线 l 交抛物线于 $P(x_1, y_1), Q(x_2, y_2)$ 两点,如果

 $x_1 + x_2 = 6$, M|PQ| = (

- A. 9 B. 6 C. 7 D. 8
- 3. 已知 F 是抛物线 $y^2=4x$ 的焦点,则过 F 作倾斜角为 60° 的直线分别交抛物线于 A,B (A 在 x 轴上方) 两点,则 $\frac{|AF|}{|BF|}$ 的值为()
- A. $\sqrt{3}$ B. 2 C. 3 D. 4
- **4.** 过抛物线 $y^2 = 2px(p > 0)$ 的焦点 F 作倾斜角为 $\frac{\pi}{6}$ 的直线交抛物线于 A , B 两点,若 $\frac{1}{|AF|} + \frac{1}{|BF|} = 2$,则实数 P 的值为 ()
- A. $\frac{1}{2}$ B. 1 C. $\frac{\sqrt{3}}{2}$ D. $\sqrt{3}$
- 5. 过抛物线 $y^2=4x$ 的焦点 F 且倾斜角为 60° 的直线交抛物线于 A 、 B 两点,以 AF 、 BF 为直径的圆分别与 Y 轴相切于点 M , N ,则 |MN|= ()
- A. $\sqrt{3}$ B. $2\sqrt{3}$ C. $\frac{2\sqrt{3}}{3}$ D. $\frac{4\sqrt{3}}{3}$
- 6. 已知抛物线 $C: y^2 = 4x$ 的焦点 F 和准线 l ,过点 F 的直线交 l 于点 A ,与抛物线的一个交点为 B ,且 $\overrightarrow{FB} = -3\overrightarrow{FA}$,则 |AB| = ()
- A. $\frac{32}{3}$ B. $\frac{16}{3}$ C. $\frac{8}{3}$
- **7.** 已知抛物线 $C: y^2 = 4x$ 的焦点为 F ,过 F 的直线 l 交抛物线 C 于 $A \times B$ 两点,弦 AB 的中点 M 到抛物线 C 的准线的距离为 5,则直线 l 的斜率为(

A. $\pm \frac{\sqrt{6}}{2}$ B. $\pm \frac{\sqrt{6}}{3}$ C. $\pm \frac{\sqrt{2}}{2}$ D. ± 1

8. 过抛物线 $y^2 = 4x$ 的焦点 F 的直线交抛物线于 A、B两点,且 $\left|AF\right| = 3\left|BF\right|$,则直线 AB的斜率为()

A. $\sqrt{2}$

B. $\sqrt{3}$ C. $\sqrt{2}\vec{y} - \sqrt{2}$ D. $\sqrt{3}\vec{y} - \sqrt{3}$

9. 已知 F 为抛物线 $C: y^2 = 4x$ 的焦点,过 F 作两条互相垂直的直线 l_1, l_2 , 直线 l_1 与 C 交于 A, B 两点,直线 l_2 与 C 交于 D, E 两点,则|AB| + |DE| 的最小值为(

A. 16

B. 14

C. 12

D. 10

10. 已知拋物线 $C: y^2 = 4x$ 的焦点为 F ,过 F 的直线 l 交抛物线 C 于 A 、 B 两点,弦 AB的中点M 到抛物线C 的准线的距离为 5,线段AB 的长度为_

11. 已知点 M(-1, 1) 和抛物线 $C: y^2 = 4x$,过 C 的焦点且斜率为 k 的直线与 C 交于 A, B 两 点. 若 ∠AMB = 90°,则 k = ____.

12. (2019 年全国 1 卷) 已知抛物线方程 $C: y^2 = 3x$ 的焦点为 F,斜率为 $\frac{3}{2}$ 的直线 l 与 C 交 于 A, B 两点,与 x 轴交点为 P.

- (1) 若|AF| + |BF| = 4,求l的方程;
- (2) 若 $\overline{AP} = 3\overline{PB}$, 求 |AB|.