

- 1. Graphical Models
- 2. Bayesian Networks
- 3. Conditional Independence

Introduction to Probabilistic Machine Learning

- 1. Graphical Models
- 2. Bayesian Networks
- 3. Conditional Independence

Introduction to Probabilistic Machine Learning

Graphical Models

- Challenge: How to formulate complex likelihoods/data models & priors for actual data?
 - **Example 1**: Match outcomes $y \in \{-1,1\}$ (data) for a head-to-head match between two players
 - **Prior**: $p(s) = \mathcal{N}(s_1; \mu_1, \sigma_1^2) \cdot \mathcal{N}(s_2; \mu_2, \sigma_2^2)$ skill belief
 - **Likelihood**: $p(y|s) = \int \mathcal{N}(p_1; s_1, \beta^2) \cdot \mathcal{N}(p_2; s_2, \beta^2) \cdot \mathbb{I}(y(p_1 p_2) > 0) dp_1 dp_2$ marginalization Match outcome

Example 2: Time series y of temperatures

Prior: $p(w) = \mathcal{N}(w; \mu, \sigma^2)$ External state mapping parameter belief

Likelihood: $p(y|w, X) = \int \mathcal{N}(z_1; w \cdot x_1, \tau^2) \cdot \mathcal{N}(y_1; z_1, \beta^2) \cdot \mathcal{N}(z_2; z_1 + w \cdot x_2, \tau^2) \cdots d\mathbf{z}$ Introduction to Probabilistic Machine Learning

Dynamics model

Observed temperature model

Conditional hidden state model

Player performance

Graphical Models

- Observation: The product structure of the probabilities seems crucial
- Idea: Define a graph where each of the variables are nodes and edges indicate factor relationships between variables

$$\mathcal{N}(s_1; \mu_1, \sigma_1^2) \cdot \mathcal{N}(s_2; \mu_2, \sigma_2^2) \cdot \mathcal{N}(p_1; s_1, \beta^2) \cdot \mathcal{N}(p_2; s_2, \beta^2) \cdot \mathbb{I}(y(p_1 - p_2) > 0)$$

$$\mathcal{N}(w;\mu,\sigma^2)\cdot\mathcal{N}(z_1;\,w\cdot x_1,\tau^2)\cdot\mathcal{N}(y_1;z_1,\beta^2)\cdot\mathcal{N}(z_2;z_1+w\cdot x_2,\tau^2)\cdot\mathcal{N}(y_2;z_2,\beta^2)\cdots$$

Introduction to Probabilistic Machine Learning

- Advantages: Simple way to visualize factor structure of the joint probability
 - Bayesian Networks: Insights into (conditional) independence based on graph properties
 - Factor Graphs: Insights into efficient inference and approximation algorithms

- 1. Graphical Models
- 2. Bayesian Networks
- 3. Conditional Independence

Introduction to Probabilistic Machine Learning

Observation. Any joint distribution $p(x_1, ..., x_n)$ can be written as

$$p(x_1, ..., x_n) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$

Bayesian Network. Given a joint distribution

$$p(x_1, ..., x_n) = \prod_{i=1}^{n} p(x_i | \mathbf{x}_{parents_i})$$

a Bayesian network is a graph with a node for every variable X_i , and a directed edge from every variable X_i , $j \in parent_i$ to X_i .

Examples: For 3 variables, we have these four generic Bayesian networks

 $p(x_1, x_2, x_3) = p(x_1) \cdot \prod_{i=2}^{3} p(x_i | x_1) \qquad p(x_1, x_2, x_3) = p(x_1) \cdot \prod_{i=2}^{3} p(x_i | x_{i-1}) \quad p(x_1, x_2, x_3) = p(x_3 | x_1, x_2) \cdot \prod_{i=1}^{2} p(x_i | x_i)$

star

$$p(x_1, x_2, x_3) = p(x_1) \cdot \prod_{i=2}^{3} p(x_i | x_{i-1})$$

sink

$$p(x_1, x_2, x_3) = p(x_3 | x_1, x_2) \cdot \prod_{i=1}^{2} p(x_i)$$

Introduction to **Probabilistic Machine** Learning

Unit 3 - Graphical Models: Independence

7/20

full mesh

Bayesian Network Models

- Plate. If a subset of variables has the same relation only differing in their index, we use a "plate" to collapse them into a single graphical element.
 - Increase readability of models for large amounts of parameters and data
- A Bayesian network must always be a directed acyclic graph because only those have a topological order corresponding to a variable order.
- Observed Variables. If a subset of variables has been observed ("data"), the variable nodes are usually shaded ("clamped").
 - Example: Discriminatory Models

Introduction to Probabilistic Machine Learning

Unit 3 – Graphical Models: Independence

Representation Complexity

For simplicity, let us assume that $x_i \in \{1, ..., K\}$

Naive

$$p(x_1, \dots, x_n)$$

$p(x_1,$	$\dots, x_n)$
----------	---------------

x_1	x_2	<i>x</i> ₃	x_4	$p(x_1, x_2, x_3, x_4)$	
1	1	1	1	p_{1111}	
1	1	1	2	p_{1112}	
:					
1	1	1	K	p_{111K}	
1	1	2	1	p_{1121}	
:					
K	K	K	K	$1-\sum$	

$$K^4 - 1$$

Bayesian Network

$$p(x_1) \cdot p(x_2|x_1) \cdot p(x_3|x_1,x_2) \cdot p(x_4|x_1,x_2,x_3)$$

x_1	$p(x_1)$	x_2	x_1	$p(x_2 x_1)$
1	p_1	1	1	p_{11}
2	p_2	2	1	p_{21}
	:			:
K	$1 - \sum$	K	1	$1 - \sum$
		1	2	p_{12}
				:
		K	K	1 – ∑

x_3	x_1	x_2	$p(x_3 x_1,x_2)$		
1	1	1	p_{111}		
2	1	1	p_{211}		
K	1	1	$1 - \sum$		
1	1	2	p_{112}		
:					
K	K	K	$1-\sum$		

<i>x</i> ₄	<i>x</i> ₁	x_2	x_3	$p(x_4 x_1,x_2,x_3)$		
1	1	1	1	p_{1111}		
2	1	1	1	p_{2111}		
	:					
K	1	1	1	$1 - \sum$		
1	1	1	2	p_{1112}		
:						
K	K	K	K	$1 - \sum$		

$$K-1$$

$$(K-1)\cdot K$$

$$(K-1)\cdot K \qquad (K-1)\cdot K^2$$

$$(K-1) \cdot (1+K+K^2+K^3) = (K+K^2+K^3+K^4) - (1+K+K^2+K^3)$$

= K^4-1

• One advantage of a Bayesian network is the ability to sample $p(x_1, ..., x_n)$

Ancestral Sampling

- 1. Topologically sort all variables $X_1, ..., X_n$ into $X_{(1)}, ..., X_{(n)}$
- 2. Sample each variable $X_{(i)}$ using distribution $p(X_{(i)}|X_{(1)},...,X_{(i-1)})$

Assumption

- 1. Sampling from the conditional distributions is simpler than from the joint distribution
- 2. There are no clamped nodes, that is, we do not condition on any variable

Problems

- 1. Sampling is *sequential* one variable at the time
- 2. Conditioning happens only on frequent events because for samples $x_{j,1}, ..., x_{j,n}$

Introduction to Probabilistic Machine Learning

Unit 3 – Graphical Models: Independence

$$\frac{\left|\left\{\left(x_{j,1}, \dots, x_{j,n}\right) \mid x_{j,1} = x_1 \land \dots \land x_{j,n} = x_n\right\}\right|}{\left|\left\{x_{j,n} = x_n\right\}\right|} \approx \frac{p(x_1, \dots, x_n)}{p(x_n)} = p(x_1, \dots, x_{n-1} | x_n)$$

Sampling a Bayesian Network: Example


```
\mathcal{N}(s_1; \mu_1, \sigma_1^2) \cdot \mathcal{N}(s_2; \mu_2, \sigma_2^2) \cdot \mathcal{N}(p_1; s_1, \beta^2) \cdot \mathcal{N}(p_2; s_2, \beta^2) \cdot \mathbb{I}(y(p_1 - p_2) > 0)
```

$$\mu_1 = \mu_2$$

```
# samples from the TrueSkill graphical model

/ function sample(; n = 100000, μ1=0.0, σ1=1.0, μ2=0.0, σ2=1.0, β=1.0)

samples = Vector{Vector{Float64}}(undef, n)

for i in 1:n

s1 = rand(Normal(μ1, σ1))

s2 = rand(Normal(μ2, σ2))

p1 = rand(Normal(s1, β))

p2 = rand(Normal(s2, β))

y = p1 > p2 ? 1.0 : -1.0

samples[i] = [s1, s2, p1, p2, y]

end

return samples
end
```

Without match outcome

With match outcome (y = 1)

Introduction to Probabilistic Machine Learning

Unit 3 – Graphical Models: Independence

Sampling a Bayesian Network: Example (ctd)

$$\mathcal{N}(s_1; \mu_1, \sigma_1^2) \cdot \mathcal{N}(s_2; \mu_2, \sigma_2^2) \cdot \mathcal{N}(p_1; s_1, \beta^2) \cdot \mathcal{N}(p_2; s_2, \beta^2) \cdot \mathbb{I}(y(p_1 - p_2) > 0)$$

$$\mu_1 \ll \mu_2$$

With match outcome (y=1) S_{2} $S_{3,0}$ $S_{3,0}$

- 1. Graphical Models
- 2. Bayesian Networks
- 3. Conditional Independence

Introduction to Probabilistic Machine Learning

Conditional Independence

- In modelling specific data, domain experts often know whether two (latent) measurements can affect each other or not (i.e., are independent)
 - Examples:
 - Skills of two players in a video game are not dependent if they never played before
 - Skills of two players in a video game are dependent if they have played many times!

Philip Dawid (1946–)

- Bayesian networks are useful to determine conditional independence.
- **Conditional Independence**. A random variable X_i is conditionally independent of a random variable X_i given the variable X_k if for all values X_k

$$p(X_i = x_i | X_j = x_j, X_k = x_k) = p(X_i = x_i | X_k = x_k)$$

- Equivalent definition: $p(X_i = x_i, X_j = x_j | X_k = x_k) = p(X_i = x_i | X_k = x_k) \cdot p(X_j = x_j | X_k = x_k)$
- □ Shorthand notation (Dawid, 1979): $X_i \perp X_j | X_k$

Introduction to Probabilistic Machine Learning

Conditional Independence: Warm-Up I

Tail-to-Tail Node (x_1) : $p(x_1, x_2, x_3) = p(x_1) \cdot p(x_2|x_1) \cdot p(x_3|x_1)$

$$p(x_2, x_3) = \sum_{\{x_1\}} p(x_1) \cdot p(x_2 | x_1) \cdot p(x_3 | x_1) \neq p(x_2) \cdot p(x_3)$$

not independent

$$p(x_2, x_3 | x_1) = \frac{p(x_1) \cdot p(x_2 | x_1) \cdot p(x_3 | x_1)}{p(x_1)} = p(x_2 | x_1) \cdot p(x_3 | x_1)$$

conditionally independent

■ Head-to-Tail Node (x_2) : $p(x_1, x_2, x_3) = p(x_1) \cdot p(x_2|x_1) \cdot p(x_3|x_2)$

$$p(x_1, x_3) = p(x_1) \cdot \sum_{\{x_2\}} p(x_2 | x_1) \cdot p(x_3 | x_2) = p(x_1) \cdot p(x_3 | x_1) \neq p(x_1) \cdot p(x_3)$$

not independent

$$p(x_1, x_3 | x_2) = \frac{p(x_2 | x_1) \cdot p(x_1)}{p(x_2)} \cdot p(x_3 | x_2) = p(x_1 | x_2) \cdot p(x_3 | x_2)$$

conditionally independent

Introduction to Probabilistic Machine Learning

Unit 3 – Graphical Models: Independence

Conditional Independence: Warm-Up II

Head-to-Head Node (x_1) : $p(x_1, x_2, x_3) = p(x_2) \cdot p(x_3) \cdot p(x_1 | x_2, x_3)$

$$p(x_2, x_3) = \sum_{\{x_1\}} p(x_1 | x_2, x_3) \cdot p(x_2) \cdot p(x_3) = p(x_2) \cdot p(x_3)$$

independent

$$p(x_2, x_3 | x_1) = \frac{p(x_1 | x_2, x_3) \cdot p(x_2) \cdot p(x_3)}{p(x_1)} \neq p(x_2 | x_1) \cdot p(x_3 | x_1)$$

not (always) conditionally independent

- It can be shown that the path between X_2 and X_3 are only independent if *none* of the *descendant* node from X_1 (that can be reached in the directed graph) is observed!
- **Skill Example (ctd)**: Consider the performance of two players

Before match: P_1 and P_2 are independent

After match: P_1 and P_2 are **not** independent

Introduction to Probabilistic Machine Learning

Unit 3 – Graphical Models: Independence

Conditional Independence: d-separation

- Blocked Node. A node in a Bayesian network is said to be blocked if
 - It's a head-to-tail or tail-to-tail node and the node is observed.
 - It's a head-to-head node and neither the node nor any of its descendants are observed.

Judea Pearl (1936–)

- **d-separation**. Given a Bayesian network and a subset of observed variables, two non-observed variables X_i and X_j are conditionally independent (that is, d-separated) if every undirected path between X_i and X_j contains at least one blocked node.
- Examples.

 X_1 and X_4 are not independent

 X_1 and X_4 are independent

Introduction to Probabilistic Machine Learning

Unit 3 – Graphical Models: Independence

Conditional Independence: Skill Example

Skill Example (ctd): Consider the skills of two players

Before match

 S_1 and S_2 are independent

After match

 S_1 and S_2 are **not** independent

Intuitive because

- Before the match there is no information that "links" the skill of two players
- After the match, if the skill of the winning player goes down (e.g., due to a loss in a subsequent match) then the skill of the opponent also needs to go down (or otherwise the observed match outcome would not have been possible)

Introduction to Probabilistic Machine Learning

Summary

1. Graphical Models

- Simple way to visualize the product structure of a joint probability distribution
- Useful for modelling real-life data generating processes
- Allows both to test for conditional independence and efficient marginalization (next week)

2. Bayesian Networks

- A directed acyclic graph where each edge points from a conditioning to a conditioned variable in the model
- An alternative representation (parameterization) of a joint probability (often easier to formulate for experts)
- A generative model of the data that can be easily sampled from (ancestral sampling)

3. Conditional Independence

- d-separation is a set of simple rules ("blocking") to read off conditional independence
- d-separation reduces conditional independence (exponentially hard complexity) to graph properties (polynomial complexity in sparse graphs)

Introduction to Probabilistic Machine Learning

See you next week!