One-Way Analysis of Variance

$$SS_{T} = \sum_{j} \sum_{i} (x_{ij} - \bar{x})^{2}$$

$$SS_{W} = \sum_{j} SS_{j} = \sum_{j} \sum_{i} (x_{ij} - \bar{x}_{j})^{2}$$

$$SS_{B} = \sum_{j} n_{j} (\bar{x}_{j} - \bar{x})^{2}$$

Two-Way Analysis of Variance

Replicate Measurments

$SS_T = \sum_k \sum_j \sum_i (x_{ijk} - \bar{x})^2$	$df_T = n - 1$	$MS_T = SS_T/df_T$
$SS_A = mc \sum_i (\bar{x}_i - \bar{x})^2$	$df_A = r - 1$	$MS_A = SS_A/df_A$
$SS_B = mr \sum_{j} (\bar{x}_j - \bar{x})^2$	$df_B = c - 1$	$MS_B = SS_B/df_B$
$SS_{AB} = m \sum_{j} \sum_{i} (\bar{x}_{ij} - \bar{x}_i - \bar{x}_j + \bar{x})^2$	$df_{AB} = (r-1)(c-1)$	$MS_{AB} = SS_{AB}/df_{AB}$
$SS_W = \sum_k \sum_j \sum_i (x_{ijk} - \bar{x}_{ij})^2$	$df_W = n - rc$	$MS_W = SS_W/df_W$