Advanced Quantitative Methods

Course for the master programme in peace and conflict studies, Uppsala University March–May 2019

Håvard Hegre, Mihai Croicu and David Randahl

April 11, 2019

The logistic regression model I

- What if the dependent variable is dichotomous?
- The logistic regression model:

$$ln(\frac{p}{1-p}) = \beta_0 + \beta_1 X_1$$

where
$$p = Pr(Y = 1)$$

- Link function: the 'logit' $ln(\frac{p}{1-p})$ is the log odds of Y=1
- Inverting the logit:

$$Pr(Y = 1) = p = \frac{exp(Xb)}{1 + exp(Xb)}$$

The logistic regression model II

■ This gives

$$Pr(Y = 1) = \frac{exp(\beta_0 + \beta_1 X_1)}{1 + exp(\beta_0 + \beta_1 X_1)}$$

- Interpretation of β_1 : How much the logit (log odds of Y = 1) increases when X increases by one unit
- Interpretation of $exp(\beta_1)$: Odds ratio: How much the odds of Y = 1 increases when X increases by one unit
- It may be shown that:

$$Pr(Y_i = 0) = \frac{exp(0)}{1 + exp(b_0 + b_1 X_i)}$$

Multinomial logistic regression model I

 \blacksquare What if a categorical Y has more than two categories?

■ Example: Conflict and resource scarcity

Scarcity	A: No conflict	B: Minor conflict	C: Major conflict
No	0.9	0.08	0.02
Yes	0.8	0.15	0.05

- Odds is the probability of something happening divided by the probability something else happens
- e.g., odds of major conflict relative to no conflict with no scarcity is $o_{CA,1} = \frac{0.02}{0.9} = 0.0222$
- odds of major conflict relative to no conflict with scarcity is $o_{CA,2} = \frac{0.05}{0.8} = 0.0625$
- The odds ratio (of major conflict relative to no conflict comparing scarcity and no scarcity): $OR_{CA} = \frac{0.0625}{0.0222} = 2.81$

Multinomial logistic regression model II

- We can construct a similar set of odds and odds ratios for minor conflict versus no conflict
- We set 'no conflict' as the **reference outcome**
- If there are three values (0,1,2) we have to say something about the probability that Y=1 as well as Y=2 relative to the probability n pr(Y=0) the reference outcome
- This formulation allows us to treat the problem as two related logistic regression problems:
 - Major conflict vs. no conflict, ignoring minor conflicts
 - Minor conflict vs. no conflict, ignoring major conflicts
- The linear expression $a_0 + a_1 X_i$ is related to the probability that Y = A
- \blacksquare and $b_0 + b_1 X_i$ to the probability that Y = B

Multinomial logistic regression model III

■ The multinomial logistic regression model is then:

$$Pr(Y_i = A) = \frac{exp(a_0 + a_1 X_i)}{1 + exp(a_0 + a_1 X_i) + exp(b_0 + b_1 X_i)}$$

$$Pr(Y_i = B) = \frac{exp(b_0 + b_1 X_i)}{1 + exp(a_0 + a_1 X_i) + exp(b_0 + b_1 X_i)}$$

$$Pr(Y_i = C) = \frac{exp(0)}{1 + exp(a_0 + a_1 X_i) + exp(b_0 + b_1 X_i)}$$

- This means we are estimating two models A and B, one for each comparison with the reference outcome
- Interpretation of β_A s: Change in log odds of outcome A relative to outcome C when X is increased by one unit

Number of linear expressions in model

- When we estimate a multinomial model for a dependent variable with K categories, we estimate K-1 linear expressions (e.g. $a_0 + a_1X_i$ and $b_0 + b_1X_i$)
- Logistic regression is the special case where K=2
- The linear expression $a_0 + a_1 X_i$ says more precisely what is the probability of Y = A relative to that of Y = C
- Correspondingly, $b_0 + b_1 X_i$ models the probability of Y = B relative to the probability of Y = C
- We do not need a corresponding expression for the probability of Y = C since this is given when we know the other two
- There are *two* 'free' probabilities

☐The multinomial model

Conflict level as function of average income level

		Conflict level				
	0: None	1: Minor	2: Major	Total		
Income						
Low	777	363	230	1370		
	56.72	26.50	16.79	100.00		
	1.000	0.467	0.296			
Medium	2718	630	275	3623		
	75.02	17.39	7.59	100.00		
	1.000	0.232	0.101			
High	2805	203	76	3084		
	90.95	6.58	2.46	100.00		
	1.000	0.072	0.027			
Total	6300	1196	581	8077		
	78.00	14.81	7.19	100.00		

Table 1: Conflict level vs income level, country years 1950–2005. Values in cells: counts, row percentages, odds relative to no conflict

Lecture 4 4.4.2019

The multinomial model

Multinomial model Conflict level vs categorical incompletellevel

Variable	Coefficient	(Std. Err.)				
Equation 1 : Minor conflict						
Low income	1.865	(0.097)				
Medium income	1.164	(0.085)				
Intercept	-2.626	(0.073)				
Equation 2 : Major conflict						
Low income	2.391	(0.138)				
Medium income	1.318	(0.132)				
Intercept	-3.608	(0.116)				
N	80)77				
Log-likelihood	-5025.239					
$\chi^{2}_{(4)}$	707	.479				

The multinomial model

Interpretation

- Estimate for 'Low income' in 'Minor conflict' equation $a_1 = 1.865$: relative risk of being in minor vs. no conflict is exp(1.865) = 6.5 times higher for low-income as for high-income countries (reference category)
- I.e., 0.467/0.072 = 6.5
- Estimate for 'Medium income' in 'Minor conflict' equation $b_1 = 1.164$: relative risk of being in minor vs. no conflict is exp(1.164) = 3.2 times higher for medium-income as for high-income countries
- In both equations, the estimate for 'Low income' is larger than for 'Medium income'. Possibly, the relationship is monotonically increasing with lower income levels?

Hegre, Croicu and Randahl: Advanced Quantitative Methods. Lectures, Spring 2019

Lecture 4 4.4.2019

_The multinomial model

De Rouen and Sobek 2004

Table I. Multinomial Logit: Civil War Terminations, 1944-97

	Outcomes				
Variable	Government	Rebel	Truce	Treaty	
Bureaucracy	38	-7.09**	1.36	40	
•	.84	2.81	2.21	.65	
Democracy	21	.13	17	.08	
	.18	.27	.34	.13	
Army	.26**	.31**	.57***	.29*	
,	.11	.14	.139	.10	
Duration	12*	03	.06	14*	
	.06	.11	.09	.06	
Duration ²	.0002	0003	00008	.000	
	.0002	.0006	.00028	.000	
Exports	53.75*	80.59	427.00***	59.31*	
•	31.04	35.90	118.65	30.33	
Gini	.12	.25	-2.12***	.06	
	.20	.22	.66	.18	
Borders	1.17**	3.20***	3.86***	.93*	
	.53	1.03	1.11	.48	
Ethnicity	03	18***	15***	00	
,	.03	.06	.05	.02	
War type	-3.58	-17.92***	46.55***	-2.45	
71	2.51	6.99	14.37	2.43	
UN	1.88	-9.76	53.44***	6.23*	
	2,49	6.56	15.21	2.18	
Forest	12*	57**	77***	12*	
	.07	.27	.24	.07	
Mountain	18**	.26**	.69***	10	
	.09	.11	.24	.07	
Africa	-14.86***	3.08	-37.89***	-9.92*	
	4.13	5.79	9.91	3.69	
Log population	1.59	.37	6.09***	.83	
01.1	.98	1.52	1.83	1.03	
Log income	-5.26***	-4.78*	-14.14***	-3.78*	

Lecture 4 4.4.2019 LThe multinomial model

De Rouen and Sobek reanalysis

Table 2: Simplification of Table 1, DeRouen and Sobek 2004

		Dependent vari	iable:	
	1	2	3	4
	Government	Rebel	Truce	Treaty
	(1)	(2)	(3)	(4)
Bureaucracy	0.001	-0.529	0.961	0.188
	(0.505)	(0.570)	(0.587)	(0.430)
Democracy	-0.045	-0.004	-0.037	0.075
	(0.098)	(0.105)	(0.116)	(0.092)
Army size	0.066	0.071	0.078	0.034
-	(0.061)	(0.061)	(0.061)	(0.061)
Duration	-0.022***	-0.028***	-0.022**	-0.007
	(0.007)	(0.009)	(0.009)	(0.007)
Exports	2.865	$-1.122^{'}$	3.392	5.265
•	(6.637)	(7.070)	(7.205)	(6.513)
Borders	$-0.244^{'}$	$-0.099^{'}$	$-0.210^{'}$	-0.167
	(0.241)	(0.254)	(0.308)	(0.227)
Log population	0.745**	0.323	0.310	-0.120
0	(0.339)	(0.363)	(0.406)	(0.340)
Log income	$-0.565^{'}$	-0.163	$-0.317^{'}$	-0.514
_	(0.747)	(0.778)	(0.873)	(0.724)
Constant	-4.281	$-0.117^{'}$	$-2.956^{'}$	6.396
	(5.453)	(5.961)	(6.897)	(5.778)
Akaike Inf. Crit.	277.231	277.231	277.231	277.231

Note:

Lecture 4 4.4.2019

└The multinomial model

De Rouen and Sobek reanalysis

Table 3: DeRouen and Sobek 2004 model further simplified

		$Dependent\ variable:$			
	1	2	3	4	
	Government	Rebel	Truce	Treaty	
	(1)	(2)	(3)	(4)	
Bureaucracy	-0.041	-0.491	0.917	0.175	
	(0.496)	(0.555)	(0.574)	(0.418)	
Democracy	-0.014	0.011	-0.016	0.085	
-	(0.090)	(0.097)	(0.107)	(0.084)	
Army size	0.073	0.074	0.083	0.041	
•	(0.061)	(0.062)	(0.062)	(0.062)	
Duration	-0.023***	-0.028***	-0.022***	-0.008	
	(0.007)	(0.009)	(0.008)	(0.007)	
Log population	0.659**	0.358	0.214	-0.227	
	(0.273)	(0.291)	(0.314)	(0.302)	
Log income	-0.382	-0.106	-0.125	-0.345	
	(0.659)	(0.694)	(0.773)	(0.644)	
Constant	-5.184	-1.966	-3.428	6.741	
	(3.258)	(3.782)	(4.777)	(4.283)	
Akaike Inf. Crit.	265.526	265.526	265.526	265.526	

Note: *p<0.1; **p<0.05; ***p<0.01

Log-likelihood: -104.7629, df=344 Table created using Stargazer (Hlavac, 2015)

Significance testing

- We may test whether each parameter is different from 0 with a standard z test.
- The ratio $\frac{b_1}{se(b_1)}$ is distributed N(0,1) when N is large
- Log population is significant in the equation for government
- But is log population significant overall does it contribute significantly to the fit of the model?

Likelihood ratio tests I

- The MLE algorithm computes a log likelihood for the estimated model
- The log likelihood is functionally similar to the χ^2 in a crosstabulation
- The exact value of the likelihood function depends on (1) data x, y, (2) the model m^* and (3) parameters θ
- \blacksquare If we had a larger dataset with same distribution, L would have been lower but maximum at same value
- $L(\hat{\theta}|Y, m^*) \equiv L(\hat{\theta}|Y) = k(y)Pr(Y|\hat{\theta})$
- The probability of observing these data given the model and the estimated parameters
- \blacksquare The logarithm of L is called log likelihood: LL

Likelihood ratio tests II

- We can compare the log likelihood of models that are **nested**:
 - Are based on exactly the same observations
 - The nested model has fewer parameters than the outer model
 - The outer model includes all the parameters of the nested model
- The difference in log likelihood of these models multiplied by 2 has a χ^2 distribution with degrees of freedom equal to the number of parameters dropped in the nested (reduced) model
- This likelihood ratio test is useful to assess the joint impact of multiple parameters

Likelihood ratio test, DeRouen and Sobek (2004)

- Model 1: Log likelihood: -102.6144, df=336
- Model 2: Log-likelihood: -104.7629, df=344
- Difference in log likelihood: 2.1485
- $2(\ln L_1 \ln L_2) = 4.297$
- Comparing this to the CDF of χ^2 with d.f.=8: 1-pchisq(4.297,8) gives 0.17 (the critical value for a 95% test is 15.51 (qchisq(0.95,8))
- Simplified model preferable; the Borders and Exports variables do not contribute significantly

Is the multinomal logit model ineffective?

	Conflict level				
	0: None	1: Minor	2: Major	Total	
Income					
Low	777	363	230	1370	
	56.72	26.50	16.79	100.00	
Medium	2718	630	275	3623	
	75.02	17.39	7.59	100.00	
High	2805	203	76	3084	
	90.95	6.58	2.46	100.00	
Total	6300	1196	581	8077	
	78.00	14.81	7.19	100.00	

Table 4: Conflict level vs income level

- The effect of income stronger for major conflict than for minor?
- It makes sense to think of the conflict variable as ordered
- Can this be used to formulate a simpler model?

Cumulative probabilities

- Call the conflict levels j there are J=3 categories:
 - None: i = 1
 - Minor: j=2
 - Major: j = 3
- Cumulative probabilities:

$$P(Y \le j) = p_1 + \dots + p_j$$

- For j = 1: $P(Y \le 1) = p_1$
- For j = 2: $P(Y \le 2) = p_1 + p_2$
- For j = 3: $P(Y \le 3) = p_1 + p_2 + p_3 = 1$

Cumulative odds and logits

- The cumulative probabilities reflect the order of the party variable
- Cumulative odds for first J-1 categories:

$$Odds(Y > j) = \frac{P(Y > j)}{P(Y \le j)} = \frac{1 - P(Y \le j)}{P(Y \le j)} = \frac{p_{j+1} + \dots + p_J}{p_1 + \dots + p_j}$$

■ Cumulative log odds for first J-1 categories:

$$logit(Y > j) = ln(\frac{P(Y > j)}{P(Y \le j)}) = ln(\frac{p_{j+1} + \dots + p_J}{p_1 + \dots + p_j})$$

Ordered models I

- Again, odds is the probability of something happening divided by the probability something else happens
- We can define this as odds of a conflict of a given intensity relative to a lesser intensity
- Two possibilities exist here (for the no scarcity row):
 - Odds of major conflict vs minor conflict or less: $o_{C,1} = \frac{0.02}{0.02} = 0.020$
 - Odds of major or minor conflict vs no conflict: $o_{C,1} = \frac{0.10}{0.0} = 0.11$
- Correspondingly for the scarcity row:
 - Odds of major conflict vs minor conflict or less: $o_{B,2} = \frac{0.05}{0.95} = 0.053$
 - Odds of major or minor conflict vs no conflict: $o_{B,2} = \frac{0.20}{0.80} = 0.25$

Ordered models II

- In an ordered logistic regression model, we estimate a single odds ratio for the independent variable, assuming that it changes these two odds by the same amount
- Here, the first odds changes by $OR_C = \frac{0.053}{0.020} = 2.58 \simeq OR_B = \frac{0.25}{0.11} = 2.25$
- This smoothing allows us to estimate only one parameter per independent variable plus a set of threshold terms τ

Cumulative odds and odds ratios

 TIL CLICCOL .	C C CLCLC CULL CL	0 010101010	
Scarcity	A: No conflict	B: Minor conflict	C: Major conflict
No	0.9	0.08	0.02
Yes	0.8	0.15	0.05

■ Cumulative logits for no scarcity:

$$L_{01} = logit(Y > 1) = log(\frac{p_2 + p_3}{p_1}) = log(\frac{.10}{.90}) = -2.20$$

$$L_{02} = logit(Y > 2) = log(\frac{p_3}{p_1 + p_2}) = log(\frac{.02}{.98}) = -3.89$$

■ Cumulative logits for scarcity:

$$L_{11} = logit(Y > 1) = log(\frac{p_2 + p_3}{p_1}) = log(\frac{.20}{.80}) = -1.39$$

$$L_{12} = logit(Y > 2) = log(\frac{p_3}{p_1 + p_2}) = log(\frac{.05}{.95}) = -2.94$$

Proportional odds model

■ Cumulative logits for j = 1:

$$0: L_{01} = logit(Y > 1) = log(\frac{p_2 + p_3}{p_1}) = log(\frac{.10}{.90}) = -2.20$$

1:
$$L_{11} = logit(Y > 1) = log(\frac{p_2 + p_3}{p_1}) = log(\frac{.20}{.80}) = -1.39$$

- We can calculate log oddsratio for these logits: $LOR_1 = L_{11} L_{01} = -1.39 (-2.20) = 0.81$
- Cumulative logits for j = 2:

$$0: L_{02} = logit(Y > 2) = log(\frac{p_3}{p_1 + p_2}) = log(\frac{.02}{.98}) = -3.89$$

$$1: L_{12} = logit(Y > 2) = log(\frac{p_3}{p_1 + p_2}) = log(\frac{.05}{.95}) = -2.94$$

■ Log oddsratio:

$$LOR_2 = L_{12} - L_{02} = -2.94 - (-3.89) = 0.95$$

■ $LOR_1 = 0.81 \rightarrow \text{odds ratio of } 2.25, LOR_2 = 0.95 \rightarrow \text{OR} = 2.59$

Proportional odds model

- For j = 1, $LOR_1 = .81$, for j = 2, $LOR_2 = .95$
- lacktriangle This is the change in cumulative logits when X increases by one unit
- It seems reasonable to assume that $LOR_1 = LOR_2 = b_1$?
- This is the same as specifying a proportional odds model: $logit(Y > j) = a_j + b_1X; j = 1, ...J 1$
- Note: This is a simplification relative to the contingency table

Grouped continuous dependent variable

- The dependent variable 'conflict' (none, minor, major) is a grouping of an underlying continuous variable
- We may think of conflict as a latent but unmeasured variable Y^*
- The latent variable has been captured by a categorical variable with three categories, split by two threshold values a_0 and a_1
- The latent variable might have had four categories as in the figure below, or two as in logistic regression

. .

Figure 5.2. Distribution of y^* Given x for the Ordered Regression Model

Ordered models I

Think of the dependent variable as a latent continuous variable, but where we observe only whether the response falls in a given category

$$Y = \begin{cases} 1 & \text{if } Y^* < \tau_1 \\ 2 & \text{if } \tau_1 \le Y^* < \tau_2 \\ 3 & \text{if } \tau_2 \le Y^* < \tau_3 \\ \vdots \\ k & \text{if } Y^* \ge \tau_K \end{cases}$$

Ordered models II

Figure 1: Illustration of the dependent variable in an ordered model

Ordered models I

- Ordered logistic regression model
 - Can be interpreted as 'cumulative odds ratios'
- Example: Probability of minor, major, or no armed conflict as a function of resource scarcity

Scarcity	A: No conflict	B: Minor conflict	C: Major conflict
No	0.9	0.08	0.02
Yes	0.8	0.15	0.05

Hegre, Croicu and Randahl: Advanced Quantitative Methods. Lectures, Spring 2019 Lecture 4 4.4.2019

- Ordered probit regression model
- Latent variable has a cumulative normal distribution
- The standard deviation of the assumed distribution can be adjusted to affect the scale of the τ parameters
- Interpretation analogous to logistic regression model

Example I

- Rearrange the dependent variable in DeRouen and Sobek (2004) to capture the extent to which the outcome is favorable to the rebels:
 - 1 Government victory
 - 2 Continued fighting
 - 3 Truce/treaty
 - 4 Rebel victory
- First estimate a multinomial logit version for comparison
- Then ordered logistic and probit models

Lecture 4 4.4.2019

Relation to linear regression

Example II

Table 5: Multinomial logit, ordered recoding of Table 1, DeRouen and Sobek 2004

	$Dependent\ variable:$			
•	2	3	4	
	Continued	Truce/treaty	Rebel victory	
	(1)	(2)	(3)	
Bureaucracy	0.175	0.478	-0.451	
	(0.495)	(0.318)	(0.387)	
Democracy	0.001	0.073	0.022	
	(0.088)	(0.054)	(0.061)	
Army size	-0.055	0.006	0.003	
-	(0.060)	(0.008)	(0.012)	
Duration	0.021***	0.010**	-0.006	
	(0.007)	(0.004)	(0.007)	
Log population	$-0.553^{'}$	-0.644^{***}	$-0.309^{'}$	
	(0.437)	(0.217)	(0.222)	
Log income	0.293	$-0.034^{'}$	0.268	
	(0.760)	(0.407)	(0.423)	
Constant	3.883	8.443*	3.431	
	(9.032)	(4.880)	(5.124)	
Akaike Inf. Crit.	224.243	224.243	224.243	

Note:

*p<0.1; **p<0.05; ***p<0.01

Relation to linear regression

Example III

Table 6: Ordered logit, ordered recoding of Table 1, DeRouen and Sobek 2004

	Depender	nt variable:
	ordered	l.outcome
	ordered logistic Ordered logit	ordered probit Ordered probit
	(1)	(2)
Bureaucracy	-0.120 (0.191)	-0.072 (0.114)
Democracy	0.031 (0.035)	0.016 (0.021)
Army size	0.003 (0.005)	0.002 (0.003)
Duration	0.0003 (0.002)	0.00001 (0.001)
Log population	-0.313^{**} (0.135)	-0.175** (0.080)
Log income	0.203 (0.283)	0.108 (0.161)

Count models I

- \blacksquare Count data: Data that can equal (0, 1, 2, ...)
 - Number of traffic accidents in a location and/or time interval
 - Number of battle-related deaths in a country during a time period
- Poisson regresson model:

$$y_i \sim Poisson(\theta_i)$$

where

$$\theta_i = exp(X_i\beta)$$

Count models II

■ Example from Gelman & Hill:

$$y_i \sim Poisson(exp(2.8 + 0.012X_{1i} - 0.20X_{2i})$$

where X_1 is speed limit at intersection and X_2 has the value 1 if there is a traffic signal

- Constant term/intercept of model: Prediction if $X_{1i} = X_{2i} = 0$
- The coefficient of X_{1i} is the expected difference in y (on a logarithmic scale) for each additional mph of speed
- Expected multiplicative increase is $e^{0.012} = 1.012$, or a 1.2% positive difference in the rate of traffic accidents per mph

Count models III

- Coefficient of X_{2i} : the predictive difference of having a traffic signal is found by multiplying the accident rate by exp(-0.20) = 0.82 a reduction of 18%
- If the mean of the Poisson process is relatively high, OLS models of log counts perform well

Over-dispersion

Distribution of battle-related deaths, country months, zeros included I

└Over-dispersion

Distribution of battle-related deaths for months with at least 5 deaths I

Histogram of positives\$ged_best_sb

Overdispersion I

- Challenge: Many zeroes, high variance
- Fatalities in war may have a power-law distribution
- Under the Poisson distribution, the variance is equal to the mean
- Mathematically, $E(y_i) = u_i \theta_i$ and $sd(y_i) = \sqrt{u_i \theta_i}$
- Standardizing, residuals are

$$z_i = \frac{y_i - \hat{y}_i}{sd(\hat{y}_i)}$$

- If the Poisson model is true, the standardized residuals should have mean 0 and standard deviation 0
- If there is **overdispersion**, the standard deviation of the standardized residuals is larger than 1

Overdispersion II

- Script for testing for over-dispersion in Gelman & Hill p. 115
- Overdispersed-Poisson or Negative binomial model:

$$y_i \sim overdispersedPoisson(u_i exp(X_i\beta), \omega)$$

lacktriangledown where ω is the overdispersion parameter

Zero-inflated models I

- Even more zeroes than in an overdispersed Poisson?
- A DGP with two separate systematic processes:
 - 1 A process deciding whether an observation produces a zero or a positive count
 - 2 A process deciding the actual count
- Variants:
 - 1 zero-inflated Poisson
 - 2 zero-inflated Negative binomial
 - 3 zero-inflated OLS (hurdle model)

└The probit model

The probit model I

Figure 2: Link functions: logit and probit

└The probit model

The probit model II

- The logit function maps numbers from a distribution Z ranging from $-\infty$ to ∞ to a distribution p ranging from 0 to 1
- We can think of Z as a latent variable one that we observe only if it is larger than a given value corresponding to p=0.5
- Recall that a cumulative distribution function does the same type of mapping
- The probability of observing 1 may then be formulated as coming from a normal CDF rather than the inverse logit
- Simulating the probit model: Y <- rbinom(n, 1, pnorm(b0 + b1*X)

└The probit model

The probit model III

■ Estimating the probit model: model <- glm(Y \sim X, family = binomial (link = probit)

Hegre, Croicu and Randahl: Advanced Quantitative Methods. Lectures, Spring 2019 Bibliography

Bibliography I

DeRouen, Karl and David Sobek. 2004. "The Dynamics of Civil War Duration and Outcome." Journal of Peace Research 41(3):303-320.

Hlavac, Marek. 2015. "stargazer: Well-Formatted Regression and Summary Statistics Tables. R package version 5.2.".

URL: http://CRAN.R-project.org/package=stargazer