

Silicon Nanophotonics

- 现代工程与应用科学学院
 - 2020-4-22

主要内容

- ●简介
- ●器件及应用
- ●小结

主要内容

- ●简介
- ●器件及应用
- ●小结

背景介绍

摩尔定律

1984 J.P. Goodman提出光互 联(Ge, InP, GaAs, Si...)

Si光互联可能是最有 前景的方法

制备工艺与微电子工艺兼容

成本低

在通信波段损耗低

折射率高(3.4) →

小尺寸

早期工作

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-22, NO. 6, JUNE 1986

All-Silicon Active and Passive Guided-Wave Components for $\lambda = 1.3$ and $1.6 \mu m$

Loss: 5-20 dB/cm

RICHARD A. SOREF, SENIOR MEMBER, IEEE, AND JOSEPH P. LORENZO

OPTICAL CHANNEL WAVEGUIDES IN SILICON DIFFUSED FROM GeSi ALLOY

Indexing terms: Optoelectronics, Optical waveguides, Silicon

A technique for fabricating low-loss and polarisationindependent channel waveguides in silicon is reported. The waveguides are obtained by Ge-indiffusion using either a GeSi alloy or a system of alternating Ge and Si layers. Typical fabrication parameters for single-mode waveguides are given.

Loss: 4 dB/cm

ELECTRONICS LETTERS 26th October 1989 Vol. 25 No. 22

研究现状

每年出版的文献数

每年的引文数

关键词: Silicon Photonics (ISI Web of Knowledge)

Building blocks

Intel

主要内容

- ●简介
- ●器件及应用
- ●小结

SOI wafer

Silicon On Insulator Wafers (SOI)

光源-硅基激光

硅的局限 (最大问题)

Energy band diagrams in InP and silicon crystals

解决方法

拉曼激光,外延生产、复合结构

光源-硅基激光 拉曼激光

Demonstration of a silicon Raman laser

2004.10

Ozdal Boyraz and Bahram Jalali

第一个硅拉曼激光

Optoelectronic Circuits and Systems Laboratory
University of California, Los Angeles
Los Angeles, CA 90095-1594

光源-硅基激光

拉曼激光

An all-silicon Raman laser

Haisheng Rong¹, Ansheng Liu¹, Richard Jones¹, Oded Cohen², Dani Hak², Remus Nicolaescu¹, Alexander Fanq¹ & Mario Paniccia¹

2005.1

Frequency (GHz)

Pulse pump: 130 ns, 10 KHz

Cavity length: 4.8 cm

光源-硅基激光 拉曼激光

A continuous-wave Raman silicon laser

2005.2

Haisheng Rong¹, Richard Jones¹, Ansheng Liu¹, Oded Cohen², Dani Hak², Alexander Fang¹ & Mario Paniccia¹

Threshold: 180 mW

Cavity length: 4.8 cm

H. Rong et. al., Natute 433, 725 (2005).

光源-硅基激光 拉曼激光

Low-threshold continuous-wave

Raman silicon laser

2007.4

Cavity length: 3.0, 1.5 cm

Figure 5 Raman silicon laser spectrum. The laser spectrum was measured with a grating-based optical spectrum analyser with a resolution of 0.01 nm, showing single-mode lasing with side-mode suppression of >80 dB.

Threshold: \sim 20 mW

Pump light: On resonance

H. Rong et. al., Nat. Photon. 1, 232 (2007).

光源-硅基激光 拉曼激光

A cascaded silicon Raman laser

2008.3

HAISHENG RONG^{1*}, SHENGBO XU¹, ODED COHEN², OMRI RADAY², MINDY LEE¹, VANESSA SIH¹ AND MARIO PANICCIA¹

Cavity length: 3.0 cm

 $Q: 3.4*10^6$

Threshold: 80 mW, first order raman 120 mW, second order raman

Near to mid-IR

Pump light: On resonance

Frequency (THz)

15.6 THz

Y. Takahashi et. al., Nature. 498, 470 (2013).

光源-硅基激光 拉曼激光

Threshold: ${\sim}1\,\mu\text{W}$

光源-硅基激光

Ge-on-Si laser

Energy band engineering of Ge

Direct- and Indirect-Bandgap Semiconductors

Semiconductors for which the conduction-band minimum energy and the valence-band maximum energy correspond to the same value of the wavenumber k (same momentum) are called **direct-bandgap** materials. Semiconductors for which this is not the case are known as **indirect-bandgap** materials.

Difference: 136 meV

Reduce: 115 meV

Heavy n-doping

光源-硅基激光

Ge-on-Si laser

Ge-on-Si laser operating at room temperature

Pump: 1064 nm, 1.5 ns, 1 kHz

Threshold: 30 kW/cm²

光源-硅基激光

Ge-on-Si laser

An electrically pumped germanium laser

光源-直接生长的量子点激光器

Epitaxial growth and structural characterization of QD lasers.

光源-直接生长的量子点激光器

Fabricated III-V laser directly grown on a silicon substrate

Silicon laser performance characterization

示意图

光源-复合激光器

(c) 3 µm

BCB InP-InGaAsP

Si
SiO₂

500 nm

J. V. Campenhout et. al., Opt. Express. 15, 6744 (2007).

硅基光波导

Silicon waveguide or SOI waveguide

SEM照片

电场分布

Fabrication: e-beam or optical lighography + reactive ion etching

硅基光波导

损耗

SEM照片

损耗主要来自侧壁粗糙度

减低损耗的办法:

- 1. 减小侧壁的粗糙度;
- 2. 优化波导结构,波导模场与侧壁的相互作用

硅基光波导

Fabrication of ultralow-loss Si/SiO₂ waveguides by roughness reduction

硅基光波导

Low loss etchless silicon photonic waveguides

 $\alpha = 30 \text{ dB/m}$

硅基光波导

Ultralow-loss silicon ring resonators

A. Biberman et. al., Opt. Lett. 26, 4236 (2012).

硅基光波导

7mm

 α = 27.4 dB/m

P. Dong et. al., Opt. Express. **18**, 14474 (2010).

Record!

 α = 2.6 dB/m

G. Li et. al., Opt. Express. **20**, 12035 (2012).

硅基光波导

氮化硅光波导-1

LPCVD

Si₃N₄ thickness:35 nm

Length: 1m

 $\alpha = 0.045 \text{ dB/m} @ 1580 \text{ nm}$

硅基光波导

氮化硅光波导-1

 $Q=3.7 \times 10^7$ $\alpha = 0.8 \text{ dB/m}$

硅基光波导

氧化硅回音 壁模光波导

