

P14informe.pdf

FernandoFdez

Computación II

2º Grado en Física

Facultad de Ciencias
Universidad Autónoma de Madrid

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

DEMASIADO BUENO PARA EXPLICARLO CON PALABRAS

REAL MAGIC, COCA-COLA ZERO son marcas registradas de The Coca-Cola Company.

Práctica 14

Ecuaciones diferenciales de primer orden con condiciones iniciales

Fernando Fernández del Cerro

13 de diciembre de 2020

1. Ecuaciones del movimiento

Un paracaidista salta de un avión y antes de que se abra el paracaídas la resistencia del aire es proporcional al cuadrado de la velocidad del paracaidista. Es decir, $a=\frac{dv}{dt}=g-\gamma v^2$. Suponemos que la velocidad inicial es igual a cero, $v(t_0=0)=0$, e ignoramos el movimiento horizontal. Tomamos $g=9.8~\mathrm{m/s^2}$.

Sabemos que la velocidad límite de caída en estas condiciones es de $v_{\text{lím}} = 57 \text{ m/s}$, por lo tanto, $\gamma = \frac{g}{v_{\text{lim}}^2}$.

2. Procedimientos

2.1. Método de Euler

Resolvemos primero utilizando el método de Euler para resolver ecuaciones diferenciales ordinarias de primer orden desde t=0 hasta t=40 s con salto de integración h=0,1. El método de Euler consiste en la ecuación de recurrencia

$$y_{i+1} = y_i + f(x_i, y_i)h$$

2.2. Método de Runge-Kutta de cuarto orden

Ahora resolvemos el mismo problema utilizando el método de Runge-Kutta de cuarto orden con salto de integración h = 0.1.

El procedimiento consiste en la relación:

$$y_{i+1} = y_i + \frac{1}{6} (l_1 + 2l_2 + 2l_3 + l_4) h$$

con

$$\begin{cases} l_1 = f(x_i, y_i) \\ l_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}l_1h) \\ l_3 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}l_2h) \\ l_4 = f(x_i + h, y_i + l_3h) \end{cases}$$

3. Resultados

Finalmente, las soluciones gráficas obtenidas por ambos procedimientos son:

Figura 1: Velocidad en función del tiempo calculada con los métodos de Euler y Runge-Kutta.

Y el error es:

Figura 2: Diferencia entre la solución por el método de Euler y la exacta.

Figura 3: Diferencia entre la solución por el método de Runge-Kutta y la exacta.