Lecture 9

Preprocessing for Microarray Data (Affymetrix array)

MCB 416A/516A Statistical Bioinformatics and Genomic Analysis

Prof. Lingling An Univ of Arizona

Outline

- Why data preprocessing, i.e., signal processing?
- Preprocessing Affymetrix array data

Data preprocessing

- Images to meaningful data
- What to do with "meaningful" data? -
 - Need to obtain meaningful quantitative measure of gene expression from probe-level data -
 - Make measure "meaningful" by removing artificial and technical sources of variability
 - ◆ look at what's there because of biology

Image analysis

- Map region of the chip to a probe and convert pixel intensities in *numeric* expressions for each probe
 - This is a crucial step in the analysis pipeline

cDNA array

Affymetrix array

Scatter plot: M vs A (recommended)

Note: M vs A is basically a rotation of the log₂R vs log₂G scatter plot.

Why: Now the quantity of interest, i.e. the *fold change*, is contained in *one variable*, namely M!

If M > 0, up-regulated.
If M < 0, downregulated.

non-differentially expressed genes are now along the horizontal line:

$$M = 0$$

$$\log_2 R - \log_2 G = 0$$

$$R = G$$

Transformed data $\{(M,A)_i\}$:

$$M = \log_2(\mathbb{R}) - \log_2(\mathbb{G}) \text{ (minus)}$$

$$A = \frac{1}{2} \left[\log_2(\mathbb{R}) + \log_2(\mathbb{G}) \right] \text{ (add)}$$

Normalization

- Expectation: Most genes are non-differentially expressed, i.e. most of the data points should be around M=0.
- Idea: draw various exploratory plots to see if this assumption is met, e.g., M vs A plot

Normalization -2

Result: We commonly observe something else:

Measured value = real value + systematic errors + noise

Correction: If so, *normalize* the data such that the expectations are met:

Corrected value = real value + systematic errors + noise

Normalization -3

- The experimental goal is to identify biological variation (expression changes between samples)
- Technical variation can hide the real data
- Unavoidable systematic bias should be recognized and corrected – the process referred to as normalization
- Normalization is necessary to effectively make comparisons between chips – and sometimes within a single chip

Normalization assumptions and approaches

- Some genes exhibit constant mRNA levels:
 - Housekeeping genes
- The level of some mRNAs are known:
 - Spike-in controls
- The total of all mRNA remains constant:
 - Global median and mean; Lowess
- The distribution of expression levels is constant
 - quantile

Assessing data - Some plots

- Plots are useful tools to analyze both, raw and normalized microarray data.
- We use them to:
 - Unravel artifacts in the raw data which are not due to biological reasons.
 - Assess whether the normalization steps have succeeded in correcting them.

Global median normalization

- Procedure: Transform all expression values to produce a constant median
- More robust than using the mean

Variance normalization

- Different chips may have the same median or mean but still very different standard deviations
- If we assume the chips should have common standard deviations, they may be transformed in that manner

Quantile normalization

- Different chips may have the same standard deviation but different distributions
- If we assume the chips should have common distributions, they may be transformed in that manner

Lowess normalization

- Some 2-color arrays exhibit a systematic intensity-dependent bias
- As a result, the normalization factor needs to change with spot intensity
- Lowess(locally weighted scatterplot smoothing) uses local regression to address this

Local normalization

- Sometimes global within-array normalization may not correct all systematic unwanted variation
 - Examples: print tip differences, degradation in chip regions, thumbprints
- Local normalization adjusts intensities according to chip geography
- It's best to avoid technologies that require these "excessive" transformations

Normalization - summary

- Normalization removes technical variation and improves power of comparisons
- The assumption(s) you make determine the normalization technique to use
- Always look at all the data before and after normalization
- Spike-in controls can help show which method may be best

Pre-processing microarray data

The core of the Bioconductor functionality is provided by the Biobase package which is loaded into a R session:

```
>library(Biobase)
```

Note: If you need to install this package use the code below:

```
>source("http://www.bioconductor.org/biocLite.R")
>biocLite("Biobase")
```

Note: only need to install it once!

Pre-processing packages

- affy: Affymetrix oligonucleotide chips.
- marray, limma: Spotted cDNA microarrays.
- vsn: Variance stabilization for both types of arrays.
 - Reading in intensity data, diagnostic plots, normalization, computation of expression measures.
- The packages start with very different data structures, but produce similar objects of class exprSet.
- One can then use other Bioconductor and R packages, e.g., mva, genefilter, geneplotter, for more analysis for the data.

Structure of Affymetrix data

- Raw image data from Affymetrix arrays are stored in .DAT files
- The intensity data generated by processing .DAT file are saved as .CEL files. These are imported into an AffyBatch object by using ReadAffy function.
- > library (affy)
- Data <- ReadAffy()</p>
- Warning: This command reads all .CEL files in the working directory and returns the probe-level data in object of class.

Affymetrix GeneChip® technology

Probe: an oligonucleotide of 25 base-pairs, i.e., a 25-mer.

Perfect match (PM): A 25-mer complementary to a reference sequence of interest gene

Mismatch (MM): same as PM but with base change for the middle (13th) base

Probe-pair: a (PM,MM) pair.

Probe set: a collection of probe-pairs (11 to 20) related to a common gene

Quality Assessment

- Chip images 2D spatial color images of log intensities (AffyBatch,Cel).
- Boxplots/density plot of log intensities
- MA plots scatter plot with fitted curves
- RNA degradation
- Absent/present calls: Low percentages indicate low quality and the percentages should be similar to one another.

Pre-processing Affymetrix data: affy package

- Background correction
 - Adjust for random noise
- Normalization
 - Calibrate measurements of different arrays
 - Which probes / probesets are used?
- How to treat PM and MM values?
 - Adjust for non-specific RNA binding
- Summarization
 - For each probeset summarize levels of corresponding PM and MM probes to a single expression measure

Preprocessing for Affymetrix GeneChips®

How do start?

Install package:

```
>library(affy)

### Note: you need to install it if it's your first
time to use it:
   source("http://www.bioconductor.org/biocLite.R")
biocLite("affy")
```

- Two ways for changing the current directory to D:\MCB
 - Click "file" and then "change dir" then browse D drive and then MCB folder
 - Or setwd("D:\MCB")
- Run the following script to download our example data (6 .CEL files) to your current directory

```
>source("http://eh3.uc.edu/affy/
downloadAffy.R")
```

Check what files are in D:/MCB

```
>dir()
```

How do my data look? -- explore probe level data

- Load CEL files into R
 - > harvard.rawData = ReadAffy()
- Take a first look at the experiment data

```
>harvard.rawData (only see the description
information)
```

```
AffyBatch object
size of arrays=640x640 features (18 kb)
cdf=HG_U95Av2 (12625 affyids)
number of samples=6
number of genes=12625
annotation=hgu95av2
```

Plot an image of an array image (harvard.rawData[,1])

- We can grab a glimpse of the PM (Perfect Match) and MM (Mis-Match) probe intensities for any particular probe set by specifying the probe set name as the second parameter in the following input:
- > geneNames (harvard.rawData) [1:10]
- > pm(harvard.rawData, "100 g at")
- > mm(harvard.rawData, "100 g at")

> pm(harvard.rawData, "100_g_at")

	adeno1.CEL	adeno2.CEL	adeno3.CEL	${\tt normal1.CEL}$	$\verb"normal2.CEL"$	normal3.CEL
100_g_at1	222.0	218.0	358. 3	244.0	321.5	63.0
100_g_at2	1313.0	939.8	1452. 3	862.8	948.0	178. 3
100_g_at3	1844. 5	1546.0	2168.0	1306.0	1450.0	286. 0
100_g_at4	176.8	142.0	213.0	108.0	199. 0	49.0
100_g_at5	604. 3	790.3	1093.3	437. 3	632.3	89.0
100_g_at6	177.8	165. 3	220.0	152.0	215. 5	54. 3
100_g_at7	2182.5	2087.0	3321.5	1801. 5	2188.0	283.0
100_g_at8	992.0	1332.5	2033. 0	790.0	957.0	135. 0
100_g_at9	285.0	267.0	394. 3	204. 0	298. 5	61.0
100_g_at10	204.0	201.8	282. 3	210. 3	295. 5	67.3
100_g_at11	502.8	649.0	885. 5	473.0	919. 3	102.0
100_g_at12	777.0	743.3	1191.0	680.0	858.3	121.0
100_g_at13	204.0	274.3	417. 3	184. 5	273. 0	56.0
100_g_at14	1750. 3	4966.0	2573.0	860.0	2865. 5	118.0
100_g_at15	3216.0	6202.5	3723.0	1495.5	3216.0	203.0
100_g_at16	129.8	139.8	213.8	126. 0	132.0	60.0

Diagnostic Tools – density plot

- Plot the log intensity distribution each curve shows the distribution of each array
 - > hist(harvard.rawData, main =
 "Harvard data")

Diagnostic Tools – boxplot

- boxplot the log intensity each box shows the distribution of expression values of each array
- >boxplot(harvard.rawData, col=c(2,2,2,3,3,3))

Diagnostic Tools -- Plot a probe set

>plot(probeset(harvard.rawData,
geneNames(harvard.rawData)[1])
[[1]])

Diagnostic Tools - RNA degradation

- RNA is degraded from the 5' end of a sequence, therefore intensities of probes at the 3' end of a probeset are higher than those at the 5' end.
- The degradation plot shows the (shifted and scaled) mean intensity for each position within a probeset
- High slopes indicate degradation
- More important than the slope is the agreement between arrays

RNA degradation plot

- > RNAdeg<-AffyRNAdeg(harvard.rawData)
- > plotAffyRNAdeg(RNAdeg)

Diagnostic Tools: present calls

- >library(simpleaffy)
- > h. qc=qc (harvard. rawData)
- > avbg(h.qc) ##(quality control for average background across arrays)

```
adeno1. CEL adeno2. CEL adeno3. CEL normal1. CEL normal2. CEL normal3. CEL 84. 16235 92. 25578 94. 81327 68. 61812 88. 12901 40. 52041
```

> percent. present (h. qc)

adeno1. CEL. present adeno2. CEL. present adeno3. CEL. present normal1. CEL. present normal2. CEL. present normal3. CEL. present

```
      38. 35248
      38. 15446
      36. 41188

      42. 32079
      38. 55050
      29. 94059
```

Diagnostic Tools -- MvA plots

```
>MAplot (harvard. rawData,
plot.method="smoothScatter", pair=TRUE)
> par (mfrow=c(2,3)) ## note: layout of 2X3 plots
> MAplot (harvard. rawData,
plot.method="smoothScatter") - use the
reference array
      M_{ijq} = \log_2(PM_{ijq}) - \log_2(PM_{*jq})
      Difference between array i and a reference array *
      A_{ijg} = [\log_2(PM_{ijg}) + \log_2(PM_{*jg})]/2
      Average intensity
      where PM_{*jq} is the probe-wise median over all arrays
```

MVA plot

Preprocess1: Background correction

```
>harvard.rmaBG <- bg.correct(harvard.rawData, "rma")
>par(mfrow=c(2,3))
>MAplot(harvard.rmaBG, plot.method="smoothScatter")
```


Preprocess 2: Normalization

```
>harvard.rmaNorm <- normalize(harvard.rmaBG, "quantiles")
>par(mfrow=c(2,3))
>MAplot(harvard.rmaNorm,plot.method="smoothScatter")
```


other normalization options, such as: "constant", "contrasts", "invariantset", "loess", "qspline", "quantiles.robust"

Preprocess 3: PM correction

```
Harvard.rmaPMcorr <-
pmcorrect.pmonly(harvard.rmaNorm)</pre>
```

other correction methods are mas and subtractmm

Arguments against PM - MM

- Difference is more variable. Is there a gain in bias to compensate for the loss of precision?
- Subtraction of MM is not strong enough to remove probe effects
- MM detects signal as well as PM

Preprocess 4: Summary methods

- expression level values are calculated from probe level data by methods:
 - avgdiff
 - liwong
 - mas
 - medianpolish (RMA)
 - playerout

so that one gene is represented by one expression value now

But, "expresso" – does it all at once


```
harvard.exprData <- expresso(harvard.rawData,
bgcorrect.method = "rma", normalize.method = "constant",
pmcorrect.method = "pmonly", summary.method = "avgdiff")</pre>
```

preprocessing may be done one step at a time, examining effects of each step, just as what we showed

Two "standard" methods – wrapper of expresso

- MAS 5.0 (now GCOS/GDAS) by Affymetrix
- RMA by Speed group (UC Berkeley)
- >harvard<-mas5 (harvard.rawData)</pre>
- >harvard<-rma (harvard.rawData)</pre>

Summary and outlook

- Gene expression microarray data is the result of a complex process of measuring and many different processing steps. Normalization is one important topic.
- There is no best normalization method. The selection of an appropriate method depends on the intention of a study.
 - But there is evidence that
 - ◆ MAS 5.0 is not a good idea
 - RMA is a much better alternative
 - ◆ Other, model-based approaches work well (e.g. GCRMA, VSN)
- It is important to balance between accuracy and precision (bias variance trade off)

Note:

Affymetrix

- Normalization done across arrays
- After normalization, the expression data matrix shows absolute expression intensities.

cDNA

- Normalization between two colors in an array.
- After normalization, the expression data matrix shows comparative expression intensities (log-ratios).

Other common functions in probe analysis

```
probe level matrix
  intensity (harvard.rawData)
— PM values
  pm (harvard.rawData) [1:10,1]
— MM values
  mm (harvard.rawData) [1:10,1]
— probe names
  probeNames (harvard.rawData) [1:10]
— gene names
  geneNames (harvard.rawData) [1:10]
```