Data and Computational Biology

UniShare

Davide Cozzi @dlcgold

Indice

1	Inti	roduzione	2				
2	Introduzione alla Biologia Computazionale						
	2.1	Accenni di biologia molecolare	3				
		2.1.1 DNA ed RNA					
		2.1.2 Esoni, Introni e Splicing alternativo	5				
3	Esempio del Repressilator						
	3.1	Il Modello Biologico	13				
		Il Modello Matematico					
4	Studio di Sistemi Biologici 19						
	4.1	Microarrays	20				
	4.2	Next Generation Sequencing	24				
		4.2.1 Dal Sequenziamento alle Analisi					
	4.3	Single-Cell Analysis					
	4.4	Risorse Online					

Capitolo 1

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Capitolo 2

Introduzione alla Biologia Computazionale

Materiale tratto dalla tesi.

2.1 Accenni di biologia molecolare

2.1.1 DNA ed RNA

Prima di iniziare la trattazione più squisitamente computazionale è bene dare un'introduzione, dal punto di vista biologico, di quanto trattato.

Il DNA, sigla corrispondente ad acido desossiribonucleico, è un acido nucleico contenente le informazioni necessarie al corretto sviluppo di un essere vivente. Dal punto di vista chimico questa particolare macromolecola si presenta nella tipica struttura a doppia elica, formata da due lunghe catene di nucleotidi, dette strand. Nel dettaglio i singoli nucleotidi sono formati da un gruppo fosfato, dal desossiribosio, uno zucchero pentoso, e da una base azotata. Si hanno, inoltre, 4 tipi diversi di basi azotate:

- 1. Adenina, indicata con la lettera A
- 2. Citosina, indicata con la lettera C
- 3. Guanina, indicata con la lettera G
- 4. **Timina**, indicata con la lettera T

Si hanno quindi due **strand**, uno detto **forward strand** (indicato solitamente col simbolo "+") e uno detto **backward strand** (indicato solitamente col simbolo "-") che sono direzionati nel verso opposto (in termini tecnici si ha che il forward strand va da 5' UTR a 3' UTR, mentre il backward strand da 3' UTR a 5' UTR) e sono *appaiati* mediante coppie ben precise di basi azotate. Infatti, secondo il **modello di Watson-Crick**, si ha che:

- l'Adenina si appaia con la Timina e viceversa
- la Citosina si appaia con la Guanina e viceversa

Questo accoppiamento permette di poter studiare i due **strand** come uno "complementare" all'altro. Infatti, conoscendo la sequenza di basi azotate di uno **strand**, è possibile ricavare la sequenza dell'altro mediante la tecnica del **Reverse&Complement** dove, preso uno strand, si converte ogni sua base secondo il seguente schema:

- le A diventano T
- le T diventano A
- le C diventano G
- le G diventano C

Esempio 1. Vediamo, per completezza, un esempio di Reverse& Complement.

Prendiamo una sequenza genomica S = "TAGGCCATATGAC" e definiamo la funzione RC(x) come la funzione che, presa in ingresso una stringa x costruita sull'alfabeto $\Sigma = \{A, C, G, T\}$ (quindi una sequenza genomica), restituisce la **Reverse**& Complement della stessa. Si ha quindi che:

$$RC(S) = "ATCCGGTATACTG"$$

Per riferirci al **DNA**, contenuto in una data cellula di un essere vivente, usiamo il termine **genoma**, che a sua volta viene organizzato in diversi **cromosomi**. Si definisce **gene** una particolare regione di un **cromosoma** in grado di codificare una proteina.

Ai fini della trattazione del progetto, è necessario introdurre anche l' \mathbf{RNA} , sigla corrispondente ad **acido ribonucleico** (avendo il **ribosio** come zucchero pentoso), ovvero una molecola, simile al \mathbf{DNA} , dotata di una singola catena nucleotidica, sempre con 4 tipi di basi azotate (anche se si ha l' $\mathbf{Uracile}$, che si indica con la lettera U, al posto della \mathbf{Timina}). Tra i compiti dell' \mathbf{RNA} si ha quello della codifica e decodifica dei \mathbf{geni} .

2.1.2 Esoni, Introni e Splicing alternativo

Per ottenere una **proteina** da un **gene** si hanno 3 passaggi:

- 1. La trascrizione, fase dove la sequenza del gene è copiata nel pre-messenger RNA (pre-mRNA). Nel dettaglio viene selezionato uno dei due strand del gene e un enzima, chiamato RNA Polimerasi, procede alla trascrizione della sequenza selezionata creando il pre-mRNA. In questa fase la *Timina* viene sostituita dall'Uracile. È bene introdurre subito che in questo progetto non si terrà mai conto, a fini di semplificazione, del passaggio tra Timina e Uracile in quanto verrà usata sempre la *Timina*.
- 2. Lo splicing, fase dove vengono rimosse le parti non codificanti dalla molecola di pre-mRNA, formando il messenger RNA (mRNA), detto anche trascritto. Per poter trattare al meglio questa fase bisogna parlare in primis di esoni e introni. In prima analisi si potrebbe dire, peccando di precisione, che gli esoni sono le sezioni codificanti di un gene mentre gli introni sono le porzioni non codificanti. Solo gli esoni formano il trascritto. Si ha, inoltre, che le prime due basi di un introne sono dette 5′, nell'uomo solitamente si ha la coppia GT, mentre le ultime due, solitamente AG nell'uomo, sono dette 3′ e sono meglio identificate come siti di taglio (splice sites). Quindi un esone, in realtà, non coincide esattamente con una regione codificante, detta CDS, a causa di queste particolari coppie di basi. Si notifica però che, come spesso accade, i termini vengono usati in sovrapposizione.
- 3. La **traduzione**, fase dove viene effettivamente codificata la proteina a partire da una sezione dell'**m-RNA**. Bisogna quindi nominare particolari sequenze nucleotidiche di cardinalità 3: i **codoni**. Tali triplette sono tradotte in amminoacidi che, concatenati, formano le proteine. Esistono particolari codoni che sono utili al fine di riconoscere l'inizio e la fine della *sintesi proteica*. In particolare si ha un codone d'inizio, detto **start codon**, che solitamente corrisponde alla tripletta *AUG*, mentre, per il codone di fine, detto **stop codon**, solitamente si ha una tripletta tra *UAA*, *UAG* e *UGA*.

In realtà, un gene è in grado di sintetizzare più di una proteina mediante il cosiddetto **splicing alternativo**, che consiste in diverse varianti dell'evento

di splicing al fine di ottenere diversi trascritti. Si descrivono le principali modalità di splicing alternativo:

- L'exon skipping, ovvero salto dell'esone, dove un esone (o anche più esoni) può essere escluso dal trascritto primario oppure dove un nuovo esone (o più nuovi esoni) può essere incluso nello stesso.
- L'alternative acceptor site, ovvero sito di taglio alternativo 3', dove una parte del secondo esone può essere considerata non codificante o, alternativamente, una porzione dell'introne adiacente può essere considerata codificante.
- L'alternative donor site, ovvero sito di taglio alternativo 5', dove una parte del primo esone viene considerata non codificante o, alternativamente, una porzione di introne adiacente può essere considerata codificante.
- I mutually exclusive exons, ovvero esoni mutuamente esclusivi, dove solo uno di due esoni viene conservato nel trascritto.
- L'intron retention, ovvero *introne trattenuto*, dove un certo introne viene incluso nel trascritto primario.

Le varie modalità di splicing alternativo non si escludono a vicenda, rendendo lo studio di tale fenomeno assai complesso.

La biologia nasce come una disciplina altamente descrittiva mentre altre discipline, come, ad esempio, informatica, matematica o fisica, sono discipline generaliste. In biologia infatti si parte dai dati e dagli esperimenti per descrivere un fenomeno ed inferire la teoria su di esso. Questo è un discorso più di filosofia della scienza.

I biologi propongono **modelli**, come ad esempio i *pathway*, che sono il diretto risultato di osservazioni sperimentali e interpretazione dei risultati.

Definizione 1. Un pathway (percorso) biologico è una serie di interazioni tra molecole in una cellula che porta a un determinato prodotto o un cambiamento in una cellula. Tale percorso può innescare l'assemblaggio di nuove molecole, come un grasso o una proteina. I percorsi possono anche attivare e disattivare i geni o stimolare una cellula a muoversi. I pathway più comuni sono coinvolte nel metabolismo, nella regolazione dell'espressione genica e nella trasmissione dei segnali e svolgono un ruolo chiave negli studi

avanzati di genomica.

Tra le principali categorie si hanno:

- Metabolic pathway
- Genetic pathway
- Signal transduction pathway

Un altro aspetto chiave negli ultimi 25 anni è stato quello della mole di dati prodotti, tramite, ad esempio, Next Generation Sequencing (NGS), con la produzione di *DNAseq* e *RNAseq* (che rispetto alle *DNAseq* sono più semplici da sequenziare e studiare e servono a vedere cosa sintetizza effettivamente una cellula), o alla cosiddetta single-cell analysis, una tecnica più recente, sviluppata negli ultimi 5 anni. I costi di sequenziamento variano a seconda del numero di basi da sequenziare ed è in calo negli anni. Tutte queste tecnologie high-throughput usate in biologia computazionale e in bioinformatica richiedono una forte conoscenza algoritmica, matematica e statistica per la gestione di questa enorme quantità di dati (essendo anche nell'ambito big data) in ambito biomedico. Saper modellare fenomeni biologici è essenziale anche per poter capire come eventualmente funzionano tecniche di machine learning dedicate, come le reti neurali. Ovviamente le conoscenze, i tempi (ma anche gli spazi), gli strumenti da usare e sviluppare etc... variano al variare del tipo di studio. Ad ogni problema è associato un miglior strumento di modellistica.

Un altro aspetto non trascurabile è la scala di misura di ciò che viene studiato, ad esempio:

- organismi, ad esempio per gli organismi multicellulari si passa da $10\mu m$ a 50/85m
- tessuti, ad esempio per i tessuti umani siamo in un range maggiore di $10^4 \mu m^3$
- *cellule*, ad esempio per quelle umane si va da $30\mu m^3$ a $10^6\mu m^3$ con:
 - membrane
 - nuclei
 - ribosomi
 - mitocondri e cloroplasti
 - altri organelli e strutture intracellulari

- proteine
- materiale genomico (DNA e RNA e affini strutture: ad esempio istoni)

— . . .

Parlando di tipi di organismi distinguiamo in primis:

- eucarioti. In questo caso si hanno cellule più complesse, con numerosi organelli e soprattutto il nucleo, dove sono contenute le informazioni. Si hanno i mitocondri, che si occupano di generare energia tramite glicolisi e sono studiati in ambito filogenetico, in quanto provengono unicamente dalla madre, permettendo la filogenesi materna
- **procarioti**, come i *batteri*. In questo caso si hanno cellule piccole e semplici. Non hanno un nucleo ma solo una regione, detta **nucleoide**, dove sono contenute le informazioni

Si hanno cellule nell'uomo, come quelle del sangue, dove non si ha un nucleo e non si ha riproduzione. D'altro canto si hanno anche cellule, come quelle dell'occhio, che non cambiano mai nel corso della vita.

In aggiunta si hanno anche i cosiddetti archaea.

Tratto da Wikipedia.

Gli archèi o archèobatteri, nome scientifico Archaea (dal termine del greco antico che significa antico) o Archaeobacteria che significa "batteri antichi", sono una suddivisione sistematica della vita cellulare. Possono considerarsi regno o dominio a seconda degli schemi classificativi, ma mostrano strutture biochimiche tali da considerarsi un ramo basilare, presto distaccatosi dalle altre forme dei viventi. Nonostante il nome attribuito a questo taxon, gli archaea non sono i procarioti più antichi mai apparsi sulla Terra, ma sono stati preceduti dagli eubatteri. Essendo costituiti da singole cellule mancanti di nucleo, per forma e dimensioni molto simili ai batteri, sono stati in passato classificati come procarioti o monere assieme ad essi. Originariamente furono ritrovati negli ambienti più estremi, ma successivamente sono stati trovati in tutti gli habitat, compreso l'intestino umano, nel caso del Methanobrevibacter smithii.

Nonostante non sia del tutto sicura la filogenesi del gruppo, gli archei sono quindi (insieme agli eucarioti e agli eubatteri) uno dei tre fondamentali gruppi

degli esseri viventi nella classificazione di Woese. Tesi recenti propongono di considerare Archea ed Eukaryota un unico regno, contrapposto ai Bacteria, in quanto all'origine degli eucarioti vi sarebbe l'endosimbiosi mitocondriale.

Per ulteriori informazioni sui tipi di organismi guardare online.

Parlando di DNA si ha che ogni cellula umana contiene circa 2 metri di DNA e un organismo umano contiene moltissime cellule rendendo lo studio del DNA davvero complesso (anche dal punto di vista computazionale si hanno file di genomi davvero molto pesanti, di centinaia di MB). Si hanno migliaia di trilioni di cellule nell'uomo.

Uno dei problemi è "allungare" il DNA che normalmente è incredibilmente avvolto su se stesso (e solo in fase di divisione cellulare si riconosce la forma a "X" dei cromosomi, altrimenti è ancora più avvolto su se stesso).

Dal DNA, nel nucleo, si ottiene l'RNA che esce, verso il citoplasma, dove, nei ribosomi, viene usato per sintetizzare le proteine.

Si hanno alcune specie interessanti dal punto di vista genomico e modellistico:

- Saccharomyces cerevisiae, ovvero il lievito da birra, con un piccolo genoma, 12 Mb
- Caenorhabditis elegans, un "verme" di cui si è studiato l'intero sviluppo. Gli esemplari femmina hanno poco meno di mille cellule, 959, mentre i maschi poco di più, 1033. Si ha un genoma di 97 Mb
- Drosophila melanogaster un altro modello molto usato, con un genoma di $180\ Mb$
- Homo sapiens, con un genoma di 3200 Mb
- Mus musculus, ovvero il topo, che ha un genoma molto simile a quello umano e quindi è molto usato negli studi in laboratorio. Si ha un genoma di 3300 Mb
- Arabidopsis thaliana, ovvero la Veccia, che viene usata come modello base per studiare le piante. Si ha un genoma di 125 Mb
- Fritillaria assyriaca, ovvero la Fritillaria, che ha il più lungo genoma conosciuto, di 120000 Mb. Le piante normalmente hanno un genoma più lungo a causa dell'evoluzione, in quanto conservano molte informazioni che potrebbero essergli utili in futuro, anche in un futuro molto lontano, dovendo sopravvivere anche al fatto che non possono muoversi

Ad essere interessanti non sono solo le dimensioni di ciò che viene studiato ma anche i vari **tempi**. Vediamo una piccola tabella d'esempio:

Proprietà	E. coli	Uomo
diffusione di proteine in una cellula	0.1s	$\sim 100s$
trascrizione di un gene	$\sim 1m \ (80 \frac{bp}{s})$	$\sim 100s$
generazione di una cellula	da $30m$ a ore	da 20 <i>h</i> a statico
transizione di stato proteico	da $1\mu s$ a $100\mu s$	da $1\mu s$ a $100\mu s$
rate di mutazione	$\sim \frac{10^{-9}}{\frac{bp}{generazione}}$	$\sim \frac{10^{-8}}{\frac{bp}{anno}}$

Qualche nota:

- i tempi di trascrizione di un gene umano includono i tempi di preprocessamento dell'mRNA
- per la generazione di una cellula di E. Coli si hanno 30 minuti in presenza di nutrienti

•

Si studiano quindi i vari **modelli** per la biologia computazionale che possono essere di varie tipologie:

- continui, tramite equazioni differenziali ordinarie
- discreti
- stocastici

Si studiano, in ottica analisi di cancro, anche **grafi mutazionali** e **evoluzioni clonali** (tramite Single-cell analysis).

Un aspetto fondamentale è costituito dall'RNA, che trasposta le informazioni dal DNA (contenuto nel nucleo) al citoplasma della cellula, dove funge da intermediario per il processo di sintesi delle proteine.

Teorema 1 (Dogma principale di Francis Crick). Si ha quindi il dogma principale della biologia molecolare:

il flusso d'informazione è unidirezionale

ovvero, in termini più estesi:

... once 'information' has passed into protein it cannot get out again. The transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein, may be possible, but transfer from protein to protein, or from protein to nucleic acid is impossible. Information means here the precise determination of sequence, either of bases in the nucleic acid or of amino acid residues in the protein.

L'unidirezionalità viene parzialmente infranta in caso di mutazioni del DNA ma questo non accade in fase di replicazione. Questa assunzione è una buona ipotesi dal punto di vista pragmatico.

Vediamo anche il pensiero di Sidney Brenner, biologo molto famoso: geni, proteine e cellule sono il *linguaggio macchina* della vita quindi per una corretta simulazione servono questi elementi, altrimenti il programma è una mera imitazione:

... his must not simply be another way of describing the behaviour. For example it is quite easy to write a computer program that will produce a good copy of worms wriggling on a computer screen. But the program, when we examine it, is found to be full of trigonometrical calculations and has nothing in it about neurons or muscles. The program is an imitation; it manipulates the image of a worm rather than the worm object itself. A proper simulation must be couched in the machine language of the object, in genes, proteins and cells.

... The reader may complain that I have said nothing more than 'carry on with conventional biochemistry and physiology'. I have said precisely that, but I want the new information embedded into biochemistry and physiology in a theoretical framework, where the properties at one level can be produced by computation from the level below.

Veniamo quindi alla distinzione delle due branche di studio. Bioinformatica e Biologia (del Sistema) Computazionale sono due aspetti sovrapposti del modo in cui usiamo l'approccio computazionale alla Biologia e alla Medicina, manipolando oggetti simili ma con enfasi diversa e diverse scale spazio-temporali. In entrambe si usano ontologie, formalismi descrittive ma anche, lato più pratico, database. Nel dettaglio:

- la **Bioinformatica** si occupa in primis dell'**analisi di sequenze** ovvero, tra le altre cose, di studio del genoma, RNA folding, folding di proteine e studio dei database necessari a questi studi. Si usano algoritmi di pattern matching e altri metodi di analisi delle stringhe
- la Biologia (del Sistema) Computazionale studia, tra le altre cose:

- modelli e inferenze sulle proprietà dei sistemi, studiando simulazioni e nuove proprietà
- ricostruzione di reti metaboliche e regolatorie e di modelli di progressione

Si usano, ad esempio, metodi di machine learning per l'analisi dei dati prodotti e si simulano modelli biologici in modo sia deterministico che stocastico (tramite ad esempio Gillespie e Monte Carlo) e si fa analisi di raggiungibilità

D'altro canto, tecniche come la **Polymerase chain reaction** (**PCR**) ed altre sono appannaggio di biologi e biotecnologi. L'interesse per un biologo computazionale e per un bioinformatico è quello di aiutare altri ricercatori a svolgere le proprie attività. Ad esempio i biologi traggono vantaggio in ottica di acquisire conoscenze di base o anche al ricevere strumenti atti al progettare e pianificare esperimenti. Gli esperimenti biologici sono costosi sia dal punto di vista dei materiali che di persone e tempo.

In biologia computazionale si è quindi interessati a comprendere, anche in termini computazionali, l'interazione complessiva di:

- processi intracellulari (regolatori e metabolici)
- cellule singole
- popolazioni cellulari

Un altro compito dei biologi computazionali è quello di capire cosa succede quando si ha la possibilità di perturbare un sistema e vedere quali sono gli effetti della perturbazione, in particolare vedere cosa succede usando un dato farmaco piuttosto che un altro per intervenire su una certa patologia, parlando, in questo caso, del cosiddetto **momento traslazionale** della **medicina traslazionale**. Con "momento" ci si riferisce al trasferimento di conoscenze delle attività di pura ricerca alle **attività di produzione**, ovvero all'attività clinica, con il passaggio alla "vita vera". È interessante studiare il comportamento di una popolazione di cellule anche in presenza di una evoluzione tumorale.

Capitolo 3

Esempio del Repressilator

Introduciamo un esempio che rientra nell'ambito della *synthetic biology*, di M. B. Elowitz e S. Leibler¹, che sarà rivisto sotto diversi aspetti durante il corso. Questo è un esempio di un sistema biologico "ingegnerizzato", uno dei primi esempi di sistema biologico, di **biologia sintetica**.

3.1 Il Modello Biologico

In questo sistema si hanno tre geni, che per praticità chiamiamo $gene\ A,\ gene\ B$ e $gene\ C$, ognuno dei quali, dopo essere trascritti e tradotti producono il rispettivo mRNA e poi, nel citoplasma, tali mRNA vengono usati per sintetizzare le tre rispettive proteine.

Quello che succede è che la trascrizione dei 3 geni può partire solo se non c'è proteina attaccata ad una sezione, detta promotrice del processo di trascrizione. Tale proteina è detta anche promotore o inibitore. Diciamo quindi che:

- $\bullet\,$ per il $gene\ A$ non deve esserci la $proteina\ C$ attaccata per avere la trascrizione del gene stesso
- $\bullet\,$ per il gene Bnon deve esserci la proteina Aattaccata per avere la trascrizione del gene stesso
- per il $gene\ C$ non deve esserci la $proteina\ B$ attaccata per avere la trascrizione del gene stesso

È quindi un processo ciclico, che sarebbe discreto ma viene approssimato nel continuo. Nel dettaglio del Repressilator le proteine (prodotte dai rispettivi

¹M. B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature 403(20), January 2000

Figura 3.1: Schema di base del Repressilator, con le frecce bidimensionali che rappresentano l'azione di inibizione delle proteine.

geni che si indicano con la prima lettera minuscola) sono, in ordine (A, B, C):

- TetR prodotta dal gene tetR
- ΛcI prodotta dal gene λcI
- LacI prodotta dal gene lacI

Il punto fondamentale, come visibile in figura 3.1, è capire che se sto producendo una grande quantità di una certa proteina allora sicuramente non avrò produzione di quella di cui tale proteina inibisce la trascrizione del gene e così via. Nel nostro caso se si produce tanta proteina A non avremo produzione di proteina B e di conseguenza avremo produzione della proteina C, ma nel momento in cui questa terza viene prodotta cala la produzione della proteina A comportando la produzione della proteina B etc.... Ho, in pratica, un sistema oscillatorio, con 3 proteine che si reprimono l'una con l'altra.

La rappresentazione "su carta" di questo comportamento è abbastanza semplice, come vedremo, modellandola tramite un insieme di equazioni differenziali. Il problema è passare dalla teoria alla pratica. Questo sistema "ingegnerizzato", di equazioni differenziali, è in grado di confermare quanto visualizzabile poi tramite esperimenti.

Vediamo quindi come viene effettivamente costruito il sistema sperimentale usando delle colonie di E. Coli, sfruttando la loro biologia. Nei batteri il DNA non è, come detto, racchiuso nel nucleo ma "circola" in una regione, detta nucleoide, abbastanza accessibile all'interno del citoplasma. Nei batteri il DNA circola in forme dette **plasmidi** quindi potenzialmente si può sintetizzare un particolare plasmide e inserirlo in un batterio, il quale lo userà per sintetizzare proteine. Prima è stato comunque pensato il modello matematico e poi stato effettivamente costruito l'esperimento (al contrario dell'ordine con cui si stanno ora spiegando quindi).

I due ricercatori hanno costruito due plasmidi (di cui per ora non approfondiamo i dettagli):

- un plasmide che codifica il *Repressilator*, ovvero che contiene i 3 geni che codificano le 3 proteine. Prima di ogni gene si ha attaccata una zona di induzione
- un plasmide che codifica un *Reporter*, che codifica una particolare proteina, detta **green fluorescent protein** (*Gfp*). La *Gfp* è una proteina usata spesso in quanto fa si che un certo sistema diventi fluorescente, di colore verde, una volta che viene illuminato con una certa luce (un laser ad una determinata frequenza). Questo plasmide fa si che, quando *TetR* è presente in abbondanza la trascrizione del gene *gfp* viene bloccata e quindi diminuisce la quantità di *Gfp*. Quindi, come *TetR* oscilla per il sistema di *mutua repressione*, si vedrà al microscopio un'oscillazione della fluorescenza della colonia di batteri.

Ricordiamo che la fluorescenza è in realtà abbastanza comune in natura. Si ha un ulteriore "trucco". Se si lascia una colonia di E. Coli senza alcun controllo si avrebbe che ogni batterio inizierebbe il ciclo per conto suo, in modo non sincrono, impedendo una corretta visualizzazione della fluorescenza. Questo trucco è quello di inibire la produzione di LacI, interferendo con la sua espressione, usando un'ulteriore induttore, detto IPTG (isopropyl β -D-1-thiogalactopyranoside), e ottenendo così la sincronia delle cellule dopo questo impulso iniziale di IPTG (che poi decade velocemente lasciando tutti gli E. Coli nello stesso stato iniziale).

3.2 Il Modello Matematico

Facciamo quindi un passo indietro e vediamo il modello matematico del Repressilator. A partire dal modello matematico si scelgono le proteine da usare e il comportamento da ottenere.

Per prevedere il comportamento complessivo del sistema ingegnerizzato, si è quindi scritto un modello matematico che rappresenta la variazione dell'RNA e delle proteine espresse.

Per farlo indichiamo (questo indice va sistemato):

- α_0 , numero di copie di proteine per cellula prodotte da un certo promotore in presenza del repressore
- α , numero di copie di proteine per cellula prodotte da un certo promotore in assenza del repressore (sarebbe $\alpha + alpha_0$)

- β , rapporto tra la velocità di decadimento dell'mRNA e quella della proteina
- n, coefficiente di cooperatività di Hill (nel caso del Repressilator si ha n=2)
- m_i , i-esimo mRNA
- p_i , i-esima proteina che funge da repressore

L'intero sistema viene modellato con coppie di equazioni differenziali. Si hanno quindi:

 un'equazione che ci rappresenta la velocità di variazione dell'iesimo mRNA:

 $\frac{\mathrm{d}m_i}{\mathrm{d}t} = -m_i + \frac{\alpha}{1 + p_i^n} + \alpha_0$

Tale velocità dipende dalla quantità che già si ha di mRNA, dalla presenza della proteina che lo reprime (essendo sotto nella frazione al crescere il termine tende a zero, mentre al diminuire tende a 1)

• un'equazione che ci rappresenta la velocità di variazione dell'iesima proteina che funge da repressore:

$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = \beta(m_i - p_i)$$

Tale velocità dipende da quanto mRNA si ha a disposizione meno la quantità di proteina che si ha a disposizione in quel dato momento. Maggiore è la quantità di mRNA e maggiore è la produzione fino a che la proteina stessa non supera un certo livello di quantità, avendo che "satura"

In ordine si hanno, per i geni:

	Indice	1	2	3
-	i	lacI	tetR	λcI
	j	λcI	lacI	tetR

Con "velocità di variazione" si intende in pratica un tasso di cambio di concentrazione delle due *specie molecolari*, ovvero un'entità che osserviamo nel modello (in questo caso mRNA o proteina).

Le concentrazioni si esprimono con l'unità di misura K_M , ovvero il numero di

repressori necessari per dimezzare la repressione di un promotore, e il tempo in τ_{mRNA} , ovvero la velocità di trascrizione dell'mRNA, detto **mRNA lifetime**. Integrando numericamente le due equazioni differenziali otteniamo un comportamento periodico.

L'esperimento è stato fatto poi osservando come tutto questo diventa osservabile in una colonia di E. Coli, opportunamente trattata, usando delle foto (dove si è osservato anche un drift verso l'alto nel grafico oscillatorio a causa del fatto che la colonia si espande).

La conoscenza di tipo matematico deve però essere trasferita in un esperimento reale che funzioni (e i ricercatori devono essere in grado di manipolare entrambi gli aspetti, si quello della modellazione matematica che quello più biologico e chimico). In questo caso per ottenere oscillazioni stabili servono determinati prerequisiti:

- usare inibitori artificiali piccoli, con la cosiddetta *low leakiness*. Promotori più corti sono più facili da manipolare e sono più "veloci"
- la velocità di decadimento di proteine e mRNA doveva essere simile, per ottenere l'oscillazione, una meglio: una buona oscillazione. Questo si ottiene attaccando ssrA ad ogni repressore
- servono curve di repressione piuttosto "ripide". Per questo si è usato un promotore con multipli *binding sites* (arrivando alla scelta di quelle date proteine), usando repressori cooperativi (questo è rappresentato con il parametro n)
- usare un *Reporter* non stabile, attaccando una variante di *ssrA* a *Gfp*, altrimenti si avrebbe una fluorescenza costante

Figura 3.2: Grafici relativi al modello del Repressilator ottenuti tramite Mathematica. In primis, a sinistra la quantità di repressore/proteina rispetto al tempo, a destra quella di mRNA (nel primo caso per le 3 proteine e nel secondo per i 3 mRNA). I grafici cambiano drasticamente quando l'insieme dei valori dei parametri viene modificato. In basso le quantità di mRNA (nel caso di tetR) rispetto al repressore/proteina (in questo caso ovviamente TetR) associata rispetto al tempo. Si nota che c'è un piccolo delay nel grafico, che rappresenta il tempo di traduzione. Le scale dei tre grafici sono indicative. I parametri sono specificati nel notebook di Mathematica presente nella pagina Moodle.

Capitolo 4

Studio di Sistemi Biologici

Cerchiamo ora di capire come classificare i problemi, come analizzarli e comprenderli (anche tramite machine learning) e avere coscienza delle risorse online disponibili per la tematica.

Buona parte della ricerca in biologia computazionale ha come obiettivo quello di ottenere il passaggio dai risultati di laboratorio alle applicazioni cliniche (ed è qualcosa di molto complesso). Per quanto ci sia interesse verso tutte le patologie la più interessante e più studiata (soprattutto in questo corso) è il cancro. Un esempio di un sistema particolare dove i tumori si sviluppano è quello delle cosiddette cripte coloniche (colonic crypts), avendo che questo sistema è relativamente semplice da studiare dal punto di vista computazionale.

Le *cripte coloniche* si trovano nell'intestino e sono delle sorta di "pozzetti", morfologicamente divisibili in varie aree. Alla base delle cripte ci sono delle **cellule staminali epiteliali**, che sono quelle che poi danno luogo ai tessuti dell'epitelio.

Dal punto di vista matematico tutti gli essere viventi sono di topologia isomorfa a dei tubi.

Tornando al discorso delle cellule staminali si ha che essere si suddividono e, man mano che si suddividono tendono a spingere verso l'alto le cellule che si trovano "al di sopra" di loro. Man mano che tali cellule vengono spinte anch'esse tendono a dividersi spingendo le altre cellule verso il lumen della cripta. In questo processo di suddivisione queste cellule si differenziano e le cellule staminali danno luogo ad una progenie che possiamo, dal punto di vista in primis computazionale, rappresentare come un albero. Si hanno le cellule di tipo diverso, più o meno differenziate che continuano a salire verso la superficie dell'epitelio e poi tendono a salire su quelli che sono detti i villi intestinali. Questo è un interessante processo che può essere simulato, tra i vari modi, in modo tale che si simuli cosa accade quando le varie differenzia-

zioni non funzionano perché, ad esempio, si ha una cellula che ha acquisito una mutazione, mutazioni che danno luogo ad una crescita non corretta, ad una displasia, che è la fase iniziale da cui poi si sviluppano i tumori del colon. Si vuole quindi fare queste simulazioni e farle in modo il più fedele possibile. Per capire se una cellula si sta comportando in modo corretto o meno dobbiamo misurarne il comportamento. In primis vogliamo misurare due cose, tra le tante:

1. gene expression

2. **gene alterations**, ovvero le varie mutazioni del genome, le cosiddette le *copy number variations* etc...

La tecnologia a disposizione per queste tematiche si è molto evoluta ma tra le tante tecnologie si segnalano:

- microarrays per l'espressione genica, usati però molti anni fa essendo una delle prime tecnologie per misurare, in modo indiretto ma parallelo, l'espressione dei geni
- Next Generation Sequencing (NGS) per praticamente qualsiasi cosa, anche per l'espressione genica, in modo diretto tramite particolari esperimenti (nella rec non ho capito il nome di tali esperimenti). NGS ha avuto molta fama da circa il 2006 in poi, con il monopolio poi di Illumina, anche se di recente si hanno nuove tecnologie che stanno rivoluzionando il settore (che producono read più lunghe)

4.1 Microarrays

Parliamo un secondo dei **microarrays**.

Questa è una tecnologia non più utilizzata, essendo di inizio anni duemila, che però è utile per spiegare come si procede a fare un certo tipo di misure, con una tecnologia che è stata poi ripresa da Illumina.

Questo strumento si basa su una griglia a cui sono attaccate delle "sonde" lunghe circa 25 nucleotidi e venivano usati per caratterizzare i geni. Si producono infatti segnali luminosi di diversa intensità e diversa lunghezza d'onda in una griglia, da cui si può ricavare una griglia numerica che dà informazioni in merito alla luce di ogni punto.

I Microarrays sono prodotti da Affymetrix e hanno circa 10^5 sonde, che caratterizzano tutti i geni che interessano.

Si ottiene quindi un'immagine contiene una griglia, dove in ogni punto si

produce un segnale luminoso di diversa intensità e lunghezza d'onda dalla quale si ricava, misurando i segnali luminosi, una **matrice di espressione**, dove:

- le righe sono i geni/trascritti
- le colonne sono misure numeriche

e si ha, per ogni sonda, quanto e come è luminoso il tal punto nella griglia. Si prende quindi del DNA, lo si "denaturalizza", ovvero lo si sgroviglia, e lo si versa direttamente sulla griglia. Il DNA (ma potrebbe essere anche essere RNA) viene versato sulla griglia e si "attacca", grazie alle sue proprietà chimiche, alle sonde (in pratica le parti di DNA/RNA si attaccano alle sonde a loro complementari). Il trucco è quello di "colorare" i pezzi di DNA e RNA e questo si fa usando, come nel caso del Repressilator, delle proteine fluorescenti, verdi e rosse, usando quindi processi biochimici per attaccare ai pezzi di DNA/RNA queste proteine, che emetteranno fluorescenza una volta colpite da un laser. Si può quindi vedere, in ogni punto della griglia, se si ha un segnale rosso o uno verde, misurandone l'intensità, ottenendo una misura di quanto materiale genico si sia attaccato in ogni punto della griglia.

Vediamo quindi come si utilizza questo tipo di tecnologia per fare delle misure di geni differenzialmente espressi in diverse condizioni.

Si hanno delle cellule in una certa condizione e altre in un'altra condizione (magari, per esempio, una delle due condizione è una crescita in ambiente con pochi nutrienti o in un ambiente con temperature estreme, sia alte che basse con associati shock termici per le cellule). La prima condizione è normalmente uan condizione standard, detta condizione wild-type, mentre la seconda è la condizione che si vuole studiare.

Si hanno due fasi per l'esperimento:

- 1. si estrae dalle cellule nelle due condizioni l'RNA, che descrive ciò che le cellule stanno in quel momento esprimendo, quali proteine stanno sintetizzando, etc... Dall'RNA, che nel dettaglio è mRNA, estraggo il cDNA, al quale poi attacco le proteine per la fluorescenza. Si procede quindi con la cosiddetta ibridazione, ovvero si prende il materiale genetico con fluorescenza e si immerge il microarrays in questa soluzione, procedendo poi alla scansione con il laser
- 2. nella griglia si ottiene quindi che del materiale genico delle cellule nella prima condizione si attaccano ad alcune sonde mentre quella delle seconda condizione ad altre. In ogni punto della griglia o non si attacca niente (non avendo che le cellule esprimono quanto

necessario per quel punto) o si attacca solo l'RNA di una delle due condizioni o si attaccano entrambi. Usando poi i laser per le due fluorescenze si ottiene l'immagine, avendo punti senza luce (nero), alcuni con luce verde, alcuni con luce rossa, a seconda della prevalenza del materiale che viene da una delle due condizioni (se simili si ha una luce tendente al giallo). Una volta prodotta l'immagine si produce l'output numerico delle intensità.

L'esperimento può essere ripetuto più volte, ottenendo una serie di matrici numeriche che possono unite in vari modi, ottenendo la **gene expression** data matrix finale, coi vari **gene expression levels**, i livelli di espressione di ogni gene, ricordando che ogni gene è codificato da più sonde. Per ogni gene ho la differenza di espressione tra le due condizioni.

Definizione 2. Si definiscono due geni come differenzialmente espressi se sono due geni che ho risultano rossi o verdi (???).

Se tale matrice finale è ottenuta variando solo i tempi e mantenendo fisse le altre condizioni sperimentali si ha che essa rappresenta il time-course of genes expression.

Sui risultati si può fare data mining, usando tecniche di machine learning. Si vuole fare clustering di geni o sonde che esibiscono un comportamento simile dato un insieme di condizioni sperimentali o ambientali. Per farlo si hanno vari tool (molti dati disponibili sulla repository NCBI, soprattutto nella sotto-repository GEO) ma molti studi richiedono una sistemazione finale non banale in merito a "rumori" e variazioni di protocollo nei laboratori. Ad esempio, in un esperimento di espressione genica si hanno vari step:

- 1. dopo la "pulizia" della matrice (tramite controllo qualità) si usano alcune analisi standard, ragionando magari su vari *time points* discreti:
 - clustering, tramite K-Means, per ogni punto, ottenendo dei vettori che rappresentano il comportamento di un gene in un certo tempo. Si ottengono cluster di traiettorie. Si raggruppano geni con simile profilo di espressione
 - enrichment, che altro non è l'operazione in cui si prendono i dati e gli si associano informazioni, tramite Gene Ontology (GO) Terms. La GO è un elenco di nomi con ID unico e oggi come oggi i geni noti sono stati

già etichettati coi termini dalla GO. Vengono annotati i termini sovrarappresentati in un cluster. L'etichettatura fa si che quando ho gruppi di geni posso usare tecniche statistiche, come il **test esatto di Fisher**, per estrarre i termini più rappresentativi, quelli più presenti e descrittivi di un gruppo. In questo modo, un cluster può essere associato ad alcuni termini "rappresentativi", che possono indicare una certa caratterizzazione funzionale e ipotesi di associazioni tra geni e un certo comportamento (se questo non fosse già annotato). Questa tecnica è detta **associazione** a **delinquere**, in quanto si "accusano" geni di essere associati ad altri, comportandosi in modo simile

Su slide, parte 2 a pagina 13, grafici di un esperimento e annessi termini da GO.

Vediamo nel dettaglio GO¹ che è appunto un vocabolario controllato/ontologia che è diventato la chiave per condividere le conoscenze biomolecolari, in particolare per i geni e i prodotti genici. È nata negli anni novanta a Berkeley mettendo insieme una serie eterogenea di conoscenze proveniente da vari ambienti. È nata cercando una nomenclatura standard per la genetica della Drosophila. È stata ottenuta con lo sforzo di informatici, biologi, filosofi etc... usando, in primis, l'IA simbolica (usata per le ontologie, ovvero modi di descrivere in modo simbolico una serie di concetti).

Ogni temrine in GO ha un codice numerico univoco.

Si hanno tre sotto-ontologie, ognuna con una struttura gerarchica a DAG (**su slide immagine di struttura**):

- 1. **MF** (*Molecular Function*), per le attività biochimiche il tipo molecolare
- 2. **BP** (Biological Process)
- 3. CC (Cellular Component)

Lato tecnico si ha, sotto GO, un linguaggio logico (stile *Prolog*), con un insieme di relazioni, termini e costanti di un linguaggio.

GO non è l'unica ontologia a disposizione, anzi se ne hanno centinaia ma meno importanti. GO offre delle API e si hanno tool come AmiGO per recuperare informazioni.

¹www.geneontology.org

4.2 Next Generation Sequencing

Dopo aver parlato di microarrays parliamo di Next Generation Sequencing (NGS).

Vediamo quindi le nuove tecnologie di sequenziamento. Diciamo "nuove" perché le prime tecnologie di sequenziamento sono datate anni cinquanta con il metodo Sanger per sequenziare proteine. Più avanti, nei primi anni settanta, si sono sviluppati i primi progetti per sequenziare DNA e RNA, studiando i virus (in quanto molto piccoli). Nel 1995 poi si è riuscito a sequenziare interamente un batterio, l'H. Influenza.

Nel 1990 si svilupparono vari metodi per il sequenziamento high-throughput, progetti che permisero di lanciare lo *Human Genome Project*, che fu completato nel 2000 quando pubblicarono in estate la prima bozza di genoma umano.

Le prime macchine semiautomatiche per il sequenziamento furono le *Biosystems ABI 370* ma oggi si usano i macchinari *Illumina*. Un macchinario *Illumina HiSeq 2000* corrisponde, in termini di prestazioni, a 23648 *Biosystems ABI 3730*, degli anni novanta.

Si hanno due tipi di attività parlando di NGS:

- 1. Wet-Lab Activity, ovvero le attività di raccolta dati/misure del materiale biologico, ovvero del vero e proprio sequenziamento tramite tecniche biochimiche. Si ha quindi la frammentazione e l'estrazione dei frammenti di DNA e RNA, il sequenziamento dei frammenti e la generazione delle read (con le 4 basi e caratteri extra per le ambiguità o i dati mancanti)
- 2. **Dry-Lab Activity**, ovvero le attività di assemblaggio. Si ha il salvataggio delle read, che sono tantissime (con conseguenti problemi di storage), e l'assemblaggio delle read (che sono *short read*) in *contings*, che sono read più lunghe. Dai contings si passa poi alla sequenza più ampia che stiamo sequenziando (anche un intero cromosoma o un intero genoma). Quest'ultimo è un problema prettamente algoritmico

Attualmente le tecnologie NGS producono read di lunghezza limitata (Illumina produce read da 70/150 basi circa) e il costo è proporzionale al numero delle read prodotte. Il parametro più importante è il parametro di **coverage**, ovvero il depth of sequencing, ovvero quante sequenze si hanno che coprono la medesima zona di DNA. Avere un alto coverage riduce il rischio di errore di sequenziamento ma un alto coverage implica alti costi e quindi è un parametro che va "bilanciato". Sono limiti tecnologici.

Il costo di sequenziamento, dal 2006, è sceso di molto e siamo ora intorno ai 1000 dollari per genoma (mentre nel 2000 eravamo intorno ai 100000 dollari). Nel 2006/2007 sono state infatti introdotte le tecnologie Illumina, molto più economiche. Anche nel 2015 si ha avuto un abbassamento e ora siamo in un plateau sui 1000 dollari. Inoltre, rispetto alla **legge di Moore**, il costo per genoma è sceso molto rispetto alla **legge** stessa.

Si hanno anche nuovi macchinari di sequenziamento, con una diversa tecnologia di base rispetto ad Illumina:

- Single Molecule Real Time (SMRT) sequencing, che sequenzia una molecola di DNA o RNA per volta
- Nano Sensing sequencing, che permette di avere un sequenziatore piccolissimo collegabile via USB al proprio computer. Si hanno problemi relative al software che ricostruisce le sequenze, avendo percentuali di errore veramente molto (con errori di natura diversa da quelli di Illumina, che sono comunque percentualmente molto minori)

Tra i tipi di sequenziamento abbiamo:

- Whole-Genome Sequencing, per interi genomi, anche de-novo (ovvero senza un reference preesistente)
- Exome Sequencing, per solo le parti di genoma codificanti (infatti solo alcune parti, poche, del genoma codificano le proteine mentre il resto del genoma non si sa bene a cosa serva)
- Target (re)sequencing, per zone specifiche del genoma, spesso sono misure secondarie dopo un Whole-Genome Sequencing per zone "dubbie" o che servono in quantità maggiore (magari perché legate a certe proteine)
- RNA-seq, sequenziando RNA, usando le tecnologie NGS per determinare l'attività dell'espressione genica (studiando che proteine sta generando una cellula etc...), caratterizzando i trascrittomi. Si evitano i vari passaggi che si facevano con i microarrays, che davano una misura indiretta per di più (l'intensità della luce etc...). Qui basta sequenziare e poi contare le read di un particolare RNA
- si hanno ora molte altre *-seq in letteratura. Ad esempio ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing), che è legato allo studio della conformazione tri-dimensionale del DNA, delle aperture/chiusure della cromatina, studiando cosa è trascrivibile in un dato istante oppure no

4.2.1 Dal Sequenziamento alle Analisi

Dopo il sequenziamento vogliamo vedere come tutte queste informazioni possono essere usate per fare analisi su come si comportano alcuni processi biologici, in particolare il **comportamento dei tumori**.

Una delle cose che si possono fare è prendere campioni di tumori da più pazienti e ricostruire le parti comuni dei tumori stessi, per ottenere i vari sottotipi del tumore. Questo studio è legato a certi tipi di tumore (si hanno circa 40 tipi di tumore in totale con i relativi sottotipi).

Un'altra cosa che si può fare è analizzare il tumore di un individuo che si è poi suddiviso in *primario* e *metastatico*, costruendo una **filogenia tumorale**. Per farlo si prendono campioni del tumore e si fa una cosiddetta **bulk analysis**, ovvero un'analisi aggregata prendendo un tessuto ed estraendo il DNA dal tessuto, ottenendo materiale genico da diverse cellule (perdendo l'individualità di ogni cellula ottenendo una misura "media"). Si hanno poi vari algoritmi per ottenere la filogenia, più o meno complessi, ricostruendo l'albero della filogenia tumorale, che parte da un tumore iniziale e poi presenta le varie differenziazioni che si sono sviluppate di quel tumore.

4.3 Single-Cell Analysis

In merito all'ultimo aspetto della sezione precedente, più di recente, si sono sviluppate tecnologie più sofisticate dal punto di vista chimico e fisico, per isolare singole celle prese da un campione. In questo modo si ha una rappresentazione più precisa di come sono fatte le popolazioni di cellule in un campione. Si usano poi algoritmi di filogenia per ricostruire le evoluzioni clonali. Questa tecniche sono dette appuntotecniche di Single-Cell Analysis. Si parte quindi sempre da un sequenziamento ma associato a singole cellule.

La Single-Cell Analysis è cruciale in questo periodo e può essere usata per tantissimi progetti. In Bicocca si hanno progetti di **Metagenomica**, dove si isolano organismi da popolazione di organismi, sequenziando il singolo organismo (ma sequenziandone tanti). Viene fatto per studiare le popolazioni microbiche nelle falde acquifere o negli acquedotti. Si isolano organismi noti da organismi non noti, per riuscire poi a distinguerli e catalogarli, etichettandoli con il rispettivo materiale genico (il *corredo genomico*). Questo non era possibile con questa facilità prima dell'uso della Single-Cell Analysis.

Attualmente è comunque una tecnica molto costosa (contando che in un esperimento si sequenziano migliaia di singole cellule).

4.4 Risorse Online

Vediamo quindi una breve carrellata di risorse online importanti:

- NCBI (National Center for Biotechnology Informationy), dove si hanno tutte le varie risorse più usate, ad esempio PubMed (per la ricerca di paper), Blast (uno dei più famosi allineatori di sequenze, nonché uno dei software informatici più usati al mondo), Gene (un importante database) etc... Si hanno inoltre modalità per trasmettere i risultati di ricerche, scaricare dati, informazioni su come interfacciarsi senza usare l'interfaccia web (per fare programmaticamente analisi più ampie tramite API), varie risorse per imparare le tecnologie, tutorial etc...
- **BioModels**, dove si trovano modelli di sistemi biologici di varia natura (come vari modelli per il Repressilator). Tali modelli sono disponibili in vari formati (ad esempio per MATLAB etc...) e sono simulabili
- **BioCyc**, un database storico che contiene una rappresentazione di tutte le reazioni metaboliche di un organismo. Era nato originariamente per il metabolismo di E. Coli ed è stato poi generalizzato a vari organismi
- KEGG (*Kyoto Encyclopedia of Genes and Genomes*), un portale giapponese che fornisce un insieme di database relativi a vari dati di carattere biologico. Fornisce delle API, di recente riscritte per usare la terminologia REST, e altri tool
- Pathway Commons, un database per pathway metaboliche o regolatorie pubbliche
- Firehose e Firebrowse, un'interfaccia semplificata ad un database complesso chiamato TCGA (*The Cancer Genome Atlas*). TCGA è un database, ora parte di NCBI, che raccoglie i dati di esperimenti che hanno misurato variazioni nel genoma relativi a tumori, e permette di scaricare in modo semplificato i vari dati relativi a tali tumori

Ovviamente questa lista è solo introduttiva.