GOVERNMENT COLLEGE OF ENGINEERING ERODE

B.E Electronics and Communication Engineering AIR QUALITY MONITORING

Done By: ABISHIEK T 731121106301

Under the mentor of

Dr.M.Sathyakala Department of Information Technology(IT)

Department of Electronics and Communication Engineering

Government College of Engineering Erode ,PO ,near Vasavi College,TamilNadu-638316, Affiliated to Anna University ,Chennai.

AQM:

In Air Quality Monitoring calculating the Air Quality Index is Important. The air quality index is an index for reporting air quality on a daily basis. In other words, it is a measure of how air pollution affects one's health within a short time of period. The AQI is calculated based on the average concentration of a particular pollutant measured over a standard time interval. Generally, the time interval is 24 hours for most pollutants, and 8 hours for carbon monoxide and ozone.

DATASET:

AQI LEVEL	AQI RANGE	Description of Air Quality
Good	0 - 50	Air quality is satisfactory, and
		air pollution poses little or no
		risk.
Moderate	51 - 100	Air quality is acceptable.
		However, there may be a risk
		for some people, particularly
		those who are unusually
		sensitive to air pollution.
Unhealthy for	101 - 150	Members of sensitive groups
Sensitive Groups		may experience health effects.
		The general public is less
		likely to be affected.
Unhealthy	151 - 200	Some members of the general
		public may experience health
		effects; members of sensitive
		groups may experience more
		serious health effects
Very Unhealthy	201 - 300	Health alert; The risk of health
		effects is increased for
		everyone.
Hazardous	301 above	Health warning of Emergency
		conditions everyone is more
		likely to be affected.

CODING:

```
#define BLYNK_TEMPLATE_ID "TMPLgwKssgggsnFXp"
#define BLYNK_DEVICE_NAME "Air Quality Monitoring"
#define BLYNK_AUTH_TOKEN "k03gT6nJosdsfsffesrJV_S5SXEAdgdsdghhgPZvXEwSKDfj"
#define BLYNK_PRINT Serial
#include <WiFi.h>
#include <BlynkSimpleEsp8266.h>
#include <DHT.h>
//#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 16, 2);
  byte degree_symbol[8] =
                0b00111,
                0b00101,
                0b00111,
                0b00000,
                0b00000,
                0b00000,
                0b00000,
                0b00000
              };
char auth[] = BLYNK_AUTH_TOKEN;
char ssid[] = ""; // type your wifi name
char pass[] = ""; // type your wifi password
BlynkTimer timer;
int gas = A0;
int sensorThreshold = 100;
#define DHTPIN 2 //Connect Out pin to D2 in NODE MCU
#define DHTTYPE DHT22
DHT dht(DHTPIN, DHTTYPE);
void sendSensor()
{
  float h = dht.readHumidity();
```

```
float t = dht.readTemperature(); // or dht.readTemperature(true) for
Fahrenheit
     if (isnan(h) || isnan(t)) {
    Serial.println("Failed to read from DHT sensor!");
    return;
  }
   int analogSensor = analogRead(gas);
  Blynk.virtualWrite(V2, analogSensor);
  Serial.print("Gas Value: ");
    Serial.println(analogSensor);
  // You can send any value at any time.
  // Please don't send more that 10 values per second.
    Blynk.virtualWrite(V0, t);
    Blynk.virtualWrite(V1, h);
    Serial.print("Temperature : ");
    Serial.print(t);
    Serial.print("
                     Humidity : ");
    Serial.println(h);
void setup()
  Serial.begin(115200);
 //pinMode(gas, INPUT);
  Blynk.begin(auth, ssid, pass);
  dht.begin();
  timer.setInterval(30000L, sendSensor);
 //Wire.begin();
   lcd.begin();
// lcd.backlight();
 // lcd.clear();
  lcd.setCursor(3,0);
  lcd.print("Air Quality");
  lcd.setCursor(3,1);
  lcd.print("Monitoring");
  delay(2000);
  lcd.clear();
  }
void loop()
```

```
{
  Blynk.run();
  timer.run();
 float h = dht.readHumidity();
  float t = dht.readTemperature(); // or dht.readTemperature(true) for
Fahrenheit
    int gasValue = analogRead(gas);
  lcd.setCursor(0,0);
  lcd.print("Temperature ");
  lcd.setCursor(0,1);
  lcd.print(t);
  lcd.setCursor(6,1);
  lcd.write(1);
  lcd.createChar(1, degree_symbol);
  lcd.setCursor(7,1);
  lcd.print("C");
  delay(4000);
  lcd.clear();
  lcd.setCursor(0, 0);
  lcd.print("Humidity ");
  lcd.print(h);
  lcd.print("%");
  delay(4000);
  lcd.clear();
 //lcd.setCursor(0,0);
 // lcd.print(gasValue);
 // lcd.clear();
  if(gasValue<600)</pre>
  {
    lcd.setCursor(0,0);
    lcd.print("Gas Value: ");
    lcd.print(gasValue);
    lcd.setCursor(0, 1);
    lcd.print("Fresh Air");
    Serial.println("Fresh Air");
    delay(4000);
    lcd.clear();
  }
  else if(gasValue>600)
    lcd.setCursor(0,0);
    lcd.print(gasValue);
    lcd.setCursor(0, 1);
    lcd.print("Bad Air");
    Serial.println("Bad Air");
    delay(4000);
    lcd.clear();
  }
```

```
if(gasValue > 600){
   //Blynk.email("mithunkumaran79@gmail.com", "Alert", "Bad Air!");
   Blynk.logEvent("pollution_alert", "Bad Air");
}
```

CONCLUSION:

The conclusion of air quality monitoring depends on the specific data and findings of the monitoring efforts. It typically involves summarizing key observations, identifying trends, and assessing the impact of air quality on human health and environment. Conclusions may also suggest recommendations for mitigating air quality issues, such as reducing emission, implementing regulatory measures, or promoting public awareness and action to improve air quality. The specific conclusion will vary depending on the location, time frame, and purpose of the air quality monitoring study.