Bose-Einstein condensate with higher order interactions: analysis and simulation

Xinran RUAN

Capital Normal University

Joint work with Prof. Weizhu Bao and Prof. Yongyong Cai
Online seminar

1/38

Xinran RUAN (CNU) December 12, 2021

Overview

- Mathematical modelling
- 2 Trapped BEC in 1D and 2D
- Analysis of ground states
- Numerical methods for ground states

Xinran RUAN (CNU)

Outline

- Mathematical modelling
- 2 Trapped BEC in 1D and 2D
- Analysis of ground states
- 4 Numerical methods for ground states

Bose-Einstein condensate (BEC)

What is Bose-Einstein condensation (BEC)?

"Giant matter wave"

Bose-Einstein condensate (BEC)

What is Bose-Einstein condensation (BEC)?

- Predicted by S.N. Bose and A. Einstein in 1924.
- Experimental realization: JILA(1995), NIST, MIT,
 - Nobel prize (2001)

Mathematical modelling

N-body Hamiltonian:

$$H_N = \sum_{j=1}^N \left(-\frac{\hbar^2}{2m} \Delta_j + V(\mathbf{x}_j) \right) + \sum_{1 \le j < k \le N} V_{\text{int}}(\mathbf{x}_j - \mathbf{x}_k).$$

Two key assumptions for mean field model:

- Two-body Fermi contact interaction: $V_{\text{int}}(\mathbf{x}_j \mathbf{x}_k) = g_0 \delta(\mathbf{x}_j \mathbf{x}_k)$.
- Hartree ansatz: $\Psi_N(\mathbf{x}_1,\ldots,\mathbf{x}_N,t)=\prod_{j=1}^N\psi(\mathbf{x}_j,t).$

Mathematical modelling

N-body Hamiltonian:

$$H_N = \sum_{j=1}^N \left(-\frac{\hbar^2}{2m} \Delta_j + V(\mathbf{x}_j) \right) + \sum_{1 \le j < k \le N} V_{\text{int}}(\mathbf{x}_j - \mathbf{x}_k).$$

Two key assumptions for mean field model:

- Two-body Fermi contact interaction: $V_{\rm int}({\bf x}_j-{\bf x}_k)=g_0\delta({\bf x}_j-{\bf x}_k).$
- Hartree ansatz: $\Psi_N(\mathbf{x}_1,\ldots,\mathbf{x}_N,t)=\prod_{j=1}^N\psi(\mathbf{x}_j,t).$

With the assumptions, we get the Gross-Pitaevskii equation (GPE)

$$i\partial_t \psi(\mathbf{x}, t) = \left[-\frac{1}{2} \Delta + V(\mathbf{x}) + \beta |\psi(\mathbf{x}, t)|^2 \right] \psi(\mathbf{x}, t).$$

Mathematical modelling

N-body Hamiltonian:

$$H_N = \sum_{j=1}^N \left(-\frac{\hbar^2}{2m} \Delta_j + V(\mathbf{x}_j) \right) + \sum_{1 \le j < k \le N} V_{\text{int}}(\mathbf{x}_j - \mathbf{x}_k).$$

Two key assumptions for mean field model:

- Two-body Fermi contact interaction: $V_{\rm int}(\mathbf{x}_j \mathbf{x}_k) = g_0 \delta(\mathbf{x}_j \mathbf{x}_k)$.
- Hartree ansatz: $\Psi_N(\mathbf{x}_1,\ldots,\mathbf{x}_N,t)=\prod_{j=1}^N\psi(\mathbf{x}_j,t).$

With the assumptions, we get the Gross-Pitaevskii equation (GPE)

$$i\partial_t \psi(\mathbf{x},t) = \left[-\frac{1}{2}\Delta + V(\mathbf{x}) + \beta |\psi(\mathbf{x},t)|^2 \right] \psi(\mathbf{x},t).$$

Dimension of problem: $3N + 1 \rightarrow 3 + 1$.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - か Q (^)

Higher order correction

Binary interaction with higher order interaction (HOI) correction

$$V_{\rm int}(\mathbf{z}) = g_0 \left[\delta(\mathbf{z}) + \frac{g_2}{2} \left(\delta(\mathbf{z}) \Delta_{\mathbf{z}} + \Delta_{\mathbf{z}} \delta(\mathbf{z}) \right) \right], \ \mathbf{z} = \mathbf{x}_1 - \mathbf{x}_2.$$

 In certain cases, such as for narrow Feshbach resonances, the higher-order corrections of the binary contact interaction is crucial.

Figure: a_s , r_e and g_2 as a function of B field for the narrow 39 K Feshbach resonance. (Phys. Rev. A, 80, 023607)

4 D F 4 D F 4 D F 9 0 C

Modified Gross-Pitaevskii equation

Modified Gross-Pitaevskii equation (MGPE) in 3D

$$i\partial_t \psi = \left[-\frac{1}{2} \Delta + V(\mathbf{x}) + \beta |\psi|^2 - \delta \Delta |\psi|^2 \right] \psi, \quad t \ge 0, \, \mathbf{x} \in \mathbb{R}^3.$$

Energy

$$E(\psi(\cdot,t)) = \int_{\mathbb{R}^d} \left[\frac{1}{2} |\nabla \psi|^2 + V(\mathbf{x}) |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \frac{\delta}{2} |\nabla \psi|^2 |^2 \right] d\mathbf{x}.$$

Outline

- Mathematical modelling
- Trapped BEC in 1D and 2D
- Analysis of ground states
- 4 Numerical methods for ground states

Dimension reduction problem

Harmonic potential

$$V(\mathbf{x}) = (\gamma^2 x^2 + \gamma^2 y^2 + \gamma_z^2 z^2)/2.$$

• Key idea

The motion of a BEC will be frozen in the directions where a sufficiently large trapping frequency is applied.

- Two types
 - Disk-shaped condensate (3D to 2D) : $\gamma_z \gg \gamma$.
 - Cigar-shaped condensate (3D to 1D): $\gamma_z \ll \gamma$.

(a) disk-shaped

(b) cigar-shaped

Dimension reduction: 3D to 1D

• When $\gamma \gg \gamma_z$, approximate $\psi(\mathbf{x},t)$ as

$$\psi(\mathbf{x},t) \approx e^{-i\mu_{2D}t} \chi_{2D}(x,y) \psi_{1D}(z,t),$$

with

$$i\partial_t \psi_{1D}(z,t) = \left[-\frac{1}{2} \partial_{zz} + \frac{\gamma_z^2 z^2}{2} + \beta_1 |\psi_{1D}|^2 - \delta_1 (\partial_{zz} |\psi_{1D}|^2) \right] \psi_{1D},$$

where β_1 and δ_1 depending on $\chi_{2D}(x,y)$.

Xinran RUAN (CNU)

Dimension reduction: 3D to 1D

• When $\gamma \gg \gamma_z$, approximate $\psi(\mathbf{x},t)$ as

$$\psi(\mathbf{x},t) \approx e^{-i\mu_{2D}t} \chi_{2D}(x,y) \psi_{1D}(z,t),$$

with

$$i\partial_t \psi_{1D}(z,t) = \left[-\frac{1}{2} \partial_{zz} + \frac{\gamma_z^2 z^2}{2} + \beta_1 |\psi_{1D}|^2 - \delta_1 (\partial_{zz} |\psi_{1D}|^2) \right] \psi_{1D},$$

where β_1 and δ_1 depending on $\chi_{2D}(x,y)$.

Reduce 3D problem to 1D problem.

Question: What is a good approximation of χ_{2D} ?

(ロト 4回 ト 4 E ト 4 E ト 9 Q O

Two possibilities of $\chi_{\scriptscriptstyle 2D}$

Consider the ground state $\phi_g(x,y,z)=\chi_{\scriptscriptstyle 2D}(x,y)\phi_{\scriptscriptstyle 1D}(z)$, then

$$\mu_{2D}\chi_{2D} = \underbrace{-\frac{1}{2}\Delta_{2D}\chi_{2D}}_{\text{(t1)}} + \underbrace{\frac{\gamma^2r^2}{2}\chi_{2D}}_{\text{(t2)}} + \underbrace{\beta_2|\chi_{2D}|^2\chi_{2D}}_{\text{(t3)}} - \underbrace{\delta_2(\Delta_{2D}|\chi_{2D}|^2)\chi_{2D}}_{\text{(t4)}},$$

where β_2 and δ_2 depends on $\phi_{1D}(z)$.

Xinran RUAN (CNU)

Two possibilities of $\chi_{\scriptscriptstyle 2D}$

Consider the ground state $\phi_g(x,y,z)=\chi_{\scriptscriptstyle 2D}(x,y)\phi_{\scriptscriptstyle 1D}(z)$, then

$$\mu_{\scriptscriptstyle 2D}\chi_{\scriptscriptstyle 2D} = \underbrace{-\frac{1}{2}\Delta_{\scriptscriptstyle 2D}\chi_{\scriptscriptstyle 2D}}_{\text{(t1)}} + \underbrace{\frac{\gamma^2 r^2}{2}\chi_{\scriptscriptstyle 2D}}_{\text{(t2)}} + \underbrace{\beta_2|\chi_{\scriptscriptstyle 2D}|^2\chi_{\scriptscriptstyle 2D}}_{\text{(t3)}} - \underbrace{\delta_2(\Delta_{\scriptscriptstyle 2D}|\chi_{\scriptscriptstyle 2D}|^2)\chi_{\scriptscriptstyle 2D}}_{\text{(t4)}},$$

where β_2 and δ_2 depends on $\phi_{1D}(z)$.

Only two possibilities:

- $(t1)\sim(t2)$ and (t4) can be neglected Gaussian approximation.
- $(t2)\sim(t4)$ and (t1) can be neglected Thomas-Fermi approximation.

ロト (個) (重) (重) (重) の(で

Two possibilities of $\chi_{\scriptscriptstyle 2D}$

Consider the ground state $\phi_g(x,y,z)=\chi_{\scriptscriptstyle 2D}(x,y)\phi_{\scriptscriptstyle 1D}(z)$, then

$$\mu_{\scriptscriptstyle 2D}\chi_{\scriptscriptstyle 2D} = \underbrace{-\frac{1}{2}\Delta_{\scriptscriptstyle 2D}\chi_{\scriptscriptstyle 2D}}_{\text{(t1)}} + \underbrace{\frac{\gamma^2 r^2}{2}\chi_{\scriptscriptstyle 2D}}_{\text{(t2)}} + \underbrace{\beta_2|\chi_{\scriptscriptstyle 2D}|^2\chi_{\scriptscriptstyle 2D}}_{\text{(t3)}} - \underbrace{\delta_2(\Delta_{\scriptscriptstyle 2D}|\chi_{\scriptscriptstyle 2D}|^2)\chi_{\scriptscriptstyle 2D}}_{\text{(t4)}},$$

where β_2 and δ_2 depends on $\phi_{1D}(z)$.

Only two possibilities:

- $(t1)\sim(t2)$ and (t4) can be neglected Gaussian approximation.
- $(t2)\sim(t4)$ and (t1) can be neglected Thomas-Fermi approximation.

(t3) always negligible \Rightarrow Always apply Gaussian approximation when $\delta=0.$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ○臺 ・ 夕久(*)

Self consistent iteration

Introduce $\varepsilon=1/\sqrt{\gamma}$ such that $\varepsilon\to 0^+$, $\tilde r=r/\varepsilon^\alpha$ and $\tilde w(\tilde r)=\varepsilon^\alpha\chi_{_{2D}}(r)$ such that $\tilde r\sim O(1)$ and $\|\tilde w\|=1$, then

$$\mu_{\scriptscriptstyle 2D}\tilde{w} = \underbrace{-\frac{\nabla_{\perp}^2\tilde{w}}{2\varepsilon^{2\alpha}}}_{(\mathrm{t}1)} + \underbrace{\frac{\tilde{r}^2\tilde{w}}{2\varepsilon^{4-2\alpha}}}_{(\mathrm{t}2)} + \underbrace{\frac{\beta_2}{\varepsilon^{2\alpha}}\tilde{w}^3}_{(\mathrm{t}3)} - \underbrace{\frac{\delta_2}{\varepsilon^{4\alpha}}\nabla_{\perp}^2(|\tilde{w}|^2)\tilde{w}}_{(\mathrm{t}4)}.$$

Self consistent iteration

Introduce $\varepsilon=1/\sqrt{\gamma}$ such that $\varepsilon\to 0^+$, $\tilde r=r/\varepsilon^\alpha$ and $\tilde w(\tilde r)=\varepsilon^\alpha\chi_{2D}(r)$ such that $\tilde r\sim O(1)$ and $\|\tilde w\|=1$, then

$$\mu_{\scriptscriptstyle 2D}\tilde{w} = \underbrace{-\frac{\nabla_{\perp}^2\tilde{w}}{2\varepsilon^{2\alpha}}}_{(\mathrm{t}1)} + \underbrace{\frac{\tilde{r}^2\tilde{w}}{2\varepsilon^{4-2\alpha}}}_{(\mathrm{t}2)} + \underbrace{\frac{\beta_2}{\varepsilon^{2\alpha}}\tilde{w}^3}_{(\mathrm{t}3)} - \underbrace{\frac{\delta_2}{\varepsilon^{4\alpha}}\nabla_{\perp}^2(|\tilde{w}|^2)\tilde{w}}_{(\mathrm{t}4)}.$$

Self consistent iteration (case 1):

Results for cigar-shaped condensate

TF approximation should be applied to approximate $\chi_{2D}(x,y)$.

Figure: Red line: TF approximation. Blue line: Gaussian approximation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り♀○

Results for disk-shaped condensate

Gaussian approximation should be applied to approximate $\chi_{_{1D}}(z)$.

Figure: Red line: Gaussian approximation.

Outline

- Mathematical modelling
- 2 Trapped BEC in 1D and 2D
- Analysis of ground states
- 4 Numerical methods for ground states

Ground state

• Minimizer of $E(\cdot)$ under normalization constraint, i.e.

$$\phi_g := \operatorname*{arg\,min}_{\phi \in S} E\left(\phi\right),$$

where

$$E(\phi) = \int_{\mathbb{R}^d} \left[\frac{1}{2} |\nabla \phi|^2 + V(\mathbf{x}) |\phi|^2 + \frac{\beta}{2} |\phi|^4 + \frac{\delta}{2} |\nabla \phi|^2 |^2 \right] d\mathbf{x},$$

and $S := \{ \phi \mid ||\phi|| = 1, \ E(\phi) < \infty \}$.

Ground state

• Minimizer of $E(\cdot)$ under normalization constraint, i.e.

$$\phi_g := \operatorname*{arg\,min}_{\phi \in S} E\left(\phi\right),$$

where

$$E(\phi) = \int_{\mathbb{R}^d} \left[\frac{1}{2} |\nabla \phi|^2 + V(\mathbf{x}) |\phi|^2 + \frac{\beta}{2} |\phi|^4 + \frac{\delta}{2} |\nabla \phi|^2 |^2 \right] d\mathbf{x},$$

and
$$S := \{ \phi \mid ||\phi|| = 1, \ E(\phi) < \infty \}$$
.

ullet ϕ_g satisfies the Euler-Lagrange equation

$$\mu_g \phi_g = \left[-\frac{1}{2} \Delta + V(\mathbf{x}) + \beta |\phi_g|^2 - \delta \Delta (|\phi_g|^2) \right] \phi_g.$$

Xinran RUAN (CNU)

Existence and uniqueness

Theorem (Existence, Uniqueness and Nonexistence)

Suppose $V(\mathbf{x}) \geq 0$ satisfies $\lim_{|\mathbf{x}| \to \infty} V(\mathbf{x}) = +\infty$, then there exists a minimizer $\phi_q \in S$ if one of the following conditions holds

- (i) $\delta > 0$ when d = 1, 2, 3 for all $\beta \in \mathbb{R}$;
- (ii) $\delta=0$ when d=1 for all $\beta\in\mathbb{R}$, when d=3 for $\beta\geq0$, and when d=2 for $\beta>-C_h$.

Furthermore, the ground state can be chosen as positive and the positive ground state is unique if $\delta \geq 0$ and $\beta \geq 0$.

In contrast, there exists no ground state if one of the following holds

- (i') $\delta < 0$;
- (ii') $\delta = 0$ and $\beta < 0$ when d = 3; and $\delta = 0$ and $\beta < -C_b$ when d = 2.

4 D > 4 A > 4 B > 4 B > B 9 Q

Proof of existence

Key Point: (Assume $\delta > 0$)

• Show that $E(\cdot)$ is bounded below via the Nash inequality and the Young inequality as follows,

$$\|\rho\|_{L^2}^2 \le C \|\rho\|_{L^1}^{\frac{4}{d+2}} \|\nabla\rho\|_{L^2}^{\frac{2d}{d+2}} \le \frac{\tilde{C}}{\varepsilon} + \varepsilon \|\nabla\rho\|_{L^2}^2, \quad \forall \varepsilon > 0,$$

where $\rho = |\phi|^2$.

• Strong interaction: neglect the kinetic energy term.

$$E(\phi) = \int_{\mathbb{R}^d} \left[\underbrace{\frac{1}{2} |\nabla \phi|^2}_{\text{kinetic}} + \underbrace{V(\mathbf{x}) |\phi|^2}_{\text{potential}} + \underbrace{\frac{\beta}{2} |\phi|^4 + \frac{\delta}{2} |\nabla |\phi|^2|^2}_{\text{interaction}} \right] d\mathbf{x}.$$

Xinran RUAN (CNU)

• Strong interaction: neglect the kinetic energy term.

$$E(\phi) = \int_{\mathbb{R}^d} \left[\frac{1}{2} |\nabla \phi|^2 + \overbrace{V(\mathbf{x})|\phi|^2}^{\text{potential}} + \underbrace{\frac{\beta}{2} |\phi|^4 + \frac{\delta}{2} |\nabla |\phi|^2|^2}_{\text{interaction}} \right] d\mathbf{x}.$$

• Strong interaction: neglect the kinetic energy term.

$$E(\phi) = \int_{\mathbb{R}^d} \left[\frac{1}{2} |\nabla \phi|^2 + \overbrace{V(\mathbf{x})|\phi|^2}^{\text{potential}} + \underbrace{\frac{\beta}{2} |\phi|^4 + \frac{\delta}{2} |\nabla |\phi|^2|^2}_{\text{interaction}} \right] d\mathbf{x}.$$

• Strong interaction: neglect the kinetic energy term.

$$E(\phi) = \int_{\mathbb{R}^d} \left[\underbrace{\frac{1}{2} |\nabla \phi|^2}_{\text{kinetic}} + \underbrace{V(\mathbf{x}) |\phi|^2}_{\text{potential}} + \underbrace{\frac{\beta}{2} |\phi|^4 + \frac{\delta}{2} |\nabla |\phi|^2|^2}_{\text{interaction}} \right] d\mathbf{x}.$$

• For the MGPE: $|\beta| \gg 1$ or $\delta \gg 1$.

Xinran RUAN (CNU)

Under a harmonic potential

For simplicity, choose $V(\mathbf{x}) = \frac{1}{2}\gamma_0^2\mathbf{x}^2$.

$$\mu\phi = -\frac{1}{2}\Delta\phi + \frac{\gamma_0^2|\mathbf{x}|^2}{2}\phi + \beta|\phi|^2\phi - \delta\Delta(|\phi|^2)\phi$$

$$\downarrow \hat{\mathbf{x}} = \mathbf{x}/x_s, \tilde{\phi}(\hat{\mathbf{x}}) = x_s^{d/2}\phi(\mathbf{x})$$

$$\frac{\mu}{x^2}\tilde{\phi} = -\frac{1}{2x^4}\Delta_{\tilde{\mathbf{x}}}\tilde{\phi} + \frac{\gamma_0^2|\tilde{\mathbf{x}}|^2}{2}\tilde{\phi} + \frac{\beta}{x^{2+d}}\tilde{\phi}^3 - \frac{\delta}{x^{4+d}}\Delta_{\tilde{\mathbf{x}}}(|\tilde{\phi}|^2)\tilde{\phi}.$$
(2)

- Choose x_s such that $\tilde{x} \sim O(1)$ and $\|\tilde{\phi}\| = 1$.
- Balancing $\frac{\beta}{x_s^{2+d}}\sim \frac{\delta}{x_s^{4+d}}\sim O(1)\Rightarrow$ the borderline $\beta=C_0\delta^{\frac{2+d}{4+d}}.$

Phase diagram

Figure: Phase diagram for extreme regimes under a harmonic potential. In the figure, we choose $\beta_0 \gg 1$ and $\delta_0 \gg 1$, and C_0 , C_1 and C_2 positive constants.

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q (*)

In regime III, i.e. $\beta \ll \delta^{\frac{d+2}{d+4}}$,

$$\mu\phi = -\frac{1}{2}\Delta\phi + \frac{\gamma_0^2|\mathbf{x}|^2}{2}\phi + \beta|\phi|^2\phi - \delta\Delta(|\phi|^2)\phi$$
 (3)

In regime III, i.e. $\beta \ll \delta^{\frac{d+2}{d+4}}$,

$$\mu\phi = -\frac{1}{2}\Delta\phi + \frac{\gamma_0^2|\mathbf{x}|^2}{2}\phi + \beta|\phi|^2\phi - \delta\Delta(|\phi|^2)\phi$$
 (3)

In regime III, i.e. $\beta \ll \delta^{\frac{d+2}{d+4}}$,

$$\mu\phi = -\frac{1}{2}\Delta\phi + \frac{\gamma_0^2|\mathbf{x}|^2}{2}\phi + \beta|\phi|^2\phi - \delta\Delta(|\phi|^2)\phi$$
 (3)

In regime III, i.e. $\beta \ll \delta^{\frac{d+2}{d+4}}$,

$$\mu\phi = -\frac{1}{2}\Delta\phi + \frac{\gamma_0^2|\mathbf{x}|^2}{2}\phi + \beta|\phi|^2\phi - \delta\Delta(|\phi|^2)\phi$$
 (3)

The TF density profile:

$$|\phi_{\text{TF}}(\mathbf{x})|^2 = \frac{\gamma_0^2 (R^2 - |\mathbf{x}|^2)_+^2}{8(d+2)\delta},$$
 (4)

where
$$R=\left(\frac{(d+2)^2(d+4)\tilde{C}_d}{\gamma_0^2}\right)^{\frac{1}{d+4}}\delta^{\frac{1}{d+4}}.$$

Example: TF approximation in regime III

In regime III, i.e. $\beta \ll \delta^{\frac{d+2}{d+4}}$,

$$\mu\phi = -\frac{1}{2}\Delta\phi + \frac{\gamma_0^2|\mathbf{x}|^2}{2}\phi + \beta|\phi|^2\phi - \delta\Delta(|\phi|^2)\phi$$
 (3)

The TF density profile:

$$|\phi_{\text{TF}}(\mathbf{x})|^2 = \frac{\gamma_0^2 (R^2 - |\mathbf{x}|^2)_+^2}{8(d+2)\delta},$$
 (4)

where
$$R=\left(rac{(d+2)^2(d+4) ilde{C}_d}{\gamma_0^2}
ight)^{rac{1}{d+4}}\delta^{rac{1}{d+4}}.$$

Set
$$\rho_g^{\varepsilon}(\mathbf{x}) = \varepsilon^{-d} |\phi_g(\mathbf{x}/\varepsilon)|^2$$
 and $\rho_{\infty}(\mathbf{x}) = \varepsilon^{-d} |\phi_{\mathrm{TF}}(\mathbf{x}/\varepsilon)|^2$ with $\varepsilon = \delta^{-\frac{1}{4+d}}$.

$$ho_g^{\varepsilon}(\mathbf{x}) o
ho_{\infty}(\mathbf{x}) \text{ in } H^1 \text{ as } \varepsilon o 0^+ \text{ (i.e. } \delta o +\infty).$$

Numerical verification

Figure: Red line: TF approximation, and shaded area: numerical solution. ($\gamma=2$ and (I) $\beta=1280,\ \delta=1;$ (II) $\beta=828.7,\ \delta=1280;$ (III) $\beta=1,\ \delta=1280;$ (IV) $\beta=-828.7,\ \delta=1280;$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 夕久○

Phase diagram: under a box potential

Box potential:

$$V(\mathbf{x}) = \left\{ \begin{array}{ll} 0, & \mathbf{x} \in \Omega. \\ \infty, & \mathbf{x} \notin \Omega, \end{array} \right.$$

Figure: Phase diagram for extreme regimes under a box potential. In the figure, we choose $\beta_0 \gg 1$ and $\delta_0 \gg 1$, and C_0 , C_1 and C_2 positive constants.

Numerical verification

Figure: Red line: analytical TF approximation, and shaded area: numerical solution. ($\Omega = \{\mathbf{x} \mid 0 \leq |\mathbf{x}| < 2\}$ and (I) $\beta = 1280$, $\delta = 1$; (II) $\beta = 320$, $\delta = 160$; (III) $\beta = 1$, $\delta = 160$; (IV) $\beta = -400$, $\delta = 80$)

4日 → 4周 → 4 三 → 4 三 → 9 Q ○

Outline

- Mathematical modelling
- 2 Trapped BEC in 1D and 2D
- Analysis of ground states
- 4 Numerical methods for ground states

Method I: normalized gradient flow method

Update from t_n to t_{n+1} :

Steep descent

$$\phi_t = -\frac{\delta E}{\delta \bar{\phi}} = \frac{1}{2} \Delta \phi - V(\mathbf{x}) \phi - \beta |\phi|^2 \phi + \delta \Delta (|\phi|^2) \phi.$$

Projection

$$\phi(\mathbf{x}, t_{n+1}) := \phi(\mathbf{x}, t_{n+1}^+) = \frac{\phi(\mathbf{x}, t_{n+1}^-)}{\|\phi(\mathbf{x}, t_{n+1}^-)\|}, \quad \mathbf{x} \in \Omega.$$

Method I: normalized gradient flow method

Update from t_n to t_{n+1} :

• Steep descent

$$\phi_t = -\frac{\delta E}{\delta \bar{\phi}} = \frac{1}{2} \Delta \phi - V(\mathbf{x}) \phi - \beta |\phi|^2 \phi + \delta \Delta (|\phi|^2) \phi.$$

Projection

$$\phi(\mathbf{x}, t_{n+1}) := \phi(\mathbf{x}, t_{n+1}^+) = \frac{\phi(\mathbf{x}, t_{n+1}^-)}{\|\phi(\mathbf{x}, t_{n+1}^-)\|}, \quad \mathbf{x} \in \Omega.$$

High restriction on time step, i.e. $\Delta t \lesssim \Delta x^2$, no matter the δ -term is treated semi-implicitly or explicitly.

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Convex-concave splitting

• Split the δ -term $E_{\mathrm{HOI}}(\phi) := \frac{\delta}{2} \int_{\mathbb{R}^d} |\nabla |\phi|^2 |^2 \, d\mathbf{x}$ as

$$E_{\text{HOI}}(\phi) = E_{1,n}(\phi) + E_{2,n}(\phi),$$

at $t=t_n$, where

$$E_{1,n}(\phi) = 2\delta \int_{\mathbb{R}^d} |\phi|^2 (|\nabla \phi|^2 + |\nabla \phi^n|^2) d\mathbf{x},$$

$$E_{2,n}(\phi) = -2\delta \int_{\mathbb{R}^d} |\phi|^2 |\nabla \phi^n|^2 d\mathbf{x}.$$

• $E_{1,n}(\phi)$ is convex in ϕ , while $E_{2,n}(\phi)$ is concave.

Normalized gradient flow with convex-concave splitting

 Treating the convex term semi-implicitly and the concave part explicitly,

$$\frac{\tilde{\phi}^{n+1} - \phi^n}{\tau} = \left[\left(\frac{1}{2} + \frac{2\delta \rho^n}{\rho^n} \right) \Delta - V(\mathbf{x}) - \beta \rho^n \right] \tilde{\phi}^{n+1} + \frac{2\delta |\nabla \phi^n|^2 \phi^n}{\rho^n},$$

with $\rho^n=|\phi^n|^2$ and

$$\phi^{n+1} = \frac{\tilde{\phi}^{n+1}}{\|\tilde{\phi}^{n+1}\|}.$$

• Much more stable and unconditionally uniquely solvable for each step.

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久 ②

Numerical results: stability test

Figure: The lines denote the borderlines of the stability region and the part below the line corresponds to the region where the scheme is stable.

Method II: via regularized density function formulation

Discretize regularized energy $E^{\varepsilon}(\cdot)$ via the density $\rho(\mathbf{x})$,

$$E^{\varepsilon}(\rho) = \int_{\Omega} \left[\frac{1}{2} |\nabla \sqrt{\rho + \varepsilon}|^2 + V(\mathbf{x})\rho + \frac{\beta}{2}\rho^2 + \frac{\delta}{2} |\nabla \rho|^2 \right] d\mathbf{x}.$$

Method II: via regularized density function formulation

Discretize regularized energy $E^{\varepsilon}(\cdot)$ via the density $\rho(\mathbf{x})$,

$$E^{\varepsilon}(\rho) = \int_{\Omega} \left[\frac{1}{2} |\nabla \sqrt{\rho + \varepsilon}|^2 + V(\mathbf{x})\rho + \frac{\beta}{2} \rho^2 + \frac{\delta}{2} |\nabla \rho|^2 \right] d\mathbf{x}.$$

- Change the problem to be a convex optimization problem.
- Quadratic interaction energy terms.
- Regularization of the kinetic energy term is necessary.

□ト 4個ト 4 差ト 4 差ト 差 9 9 0 0 0

Method II: via regularized density function formulation

Discretize regularized energy $E^{\varepsilon}(\cdot)$ via the density $\rho(\mathbf{x})$,

$$E^{\varepsilon}(\rho) = \int_{\Omega} \left[\frac{1}{2} |\nabla \sqrt{\rho + \varepsilon}|^2 + V(\mathbf{x})\rho + \frac{\beta}{2} \rho^2 + \frac{\delta}{2} |\nabla \rho|^2 \right] d\mathbf{x}.$$

- Change the problem to be a convex optimization problem.
- Quadratic interaction energy terms.
- Regularization of the kinetic energy term is necessary.

$$\rho_g^\varepsilon = \arg\min E^\varepsilon(\rho), \text{ subject to } \|\rho\|_1 := \int_{\mathbb{R}^d} \rho(\mathbf{x}) \, d\mathbf{x} = 1, \text{ and } \rho \geq 0.$$

- ρ_q^{ε} is solvable for any $\varepsilon > 0$, $\beta \ge 0$ and $\delta \ge 0$.
- Optimize via APG- rDF-APG method.

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (~)

Convergence analysis

Question: $\rho_g^{h,\varepsilon} \to \rho_g$?

Convergence results

Theorem 1

When $\delta > 0$, we have $\rho_g^{\varepsilon} \to \rho_g$ in H^1 .

Theorem 2

Fix ε and denote the error to be $e^{\varepsilon}=\tilde{\rho}_g^{\varepsilon}-\rho_g^{h,\varepsilon}$. If $\beta>0$ and $\delta>0$ and $|\rho_g^{\varepsilon}|_{h^2}$ is bounded, then we have

$$|e^{\varepsilon}|_{h^1} := \|\delta_+ e^{\varepsilon}\|_{l_2} = \mathcal{O}(h), \quad \|e^{\varepsilon}\|_{l_2} = \mathcal{O}(h^2),$$

where $\tilde{\rho}_q^{\varepsilon}$ is the interpolation of ρ_q^{ε} at the grid points.

Theorem 3

When $\beta > 0$ and $\delta > 0$, the ground state ρ_q^h exists uniquely and we have

$$\rho_g^{h,0} := \lim_{\varepsilon \to 0^+} \rho_g^{h,\varepsilon} = \rho_g^h.$$

Convergence analysis

Question: $\rho_g^{h,\varepsilon} \to \rho_g$?

Accuracy test: spatial error

Choose $V(x)=x^2/2$ with $\beta=10$ and $\delta=10$.

Error	h = 1/8	h/2	$h/2^{2}$	$h/2^{3}$	$h/2^{4}$
$ E^{\varepsilon}(\rho_{g,h}^{\varepsilon,\mathrm{FD}}) - E^{\varepsilon}(\rho_{g}^{\varepsilon}) $	6.21E-4	1.60E-4	3.97E-5	9.91E-6	2.45E-6
rate	-	1.96	2.01	2.00	2.02
$\ ho_{g,h}^{arepsilon,\mathrm{FD}}- ho_g^arepsilon\ _{l_2}$	8.19E-5	2.04E-5	4.88E-6	9.81E-7	2.42E-7
rate	-	2.00	2.06	2.31	2.02
$\ ho_{q,h}^{arepsilon,\mathrm{FD}}- ho_g^arepsilon\ _{h_1}$	3.54E-3	1.77E-3	8.85E-4	4.42E-4	2.20E-4
rate	-	1.00	1.00	1.00	1.01
$\ ho_{q,h}^{arepsilon,\mathrm{FD}}- ho_g^arepsilon\ _\infty$	9.77E-5	3.12E-5	8.17E-6	1.92E-6	4.01E-7
rate	-	1.65	1.94	2.09	2.26

Table: Spatial resolution of the ground state.

4日 → 4日 → 4 目 → 4 目 → 9 Q ○

Convergence test: $\varepsilon \to 0$

Choose $V(x) = x^2/2$ with $\beta = 10$ and $\delta = 10$.

10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}
1.04E0	2.04E-1	2.84E-2	3.70E-3	4.56E-4	5.62E-5
-	0.71	0.86	0.88	0.90	0.92
1.54E-1	2.45E-2	2.73E-3	2.95E-4	3.08E-5	3.08E-6
-	0.80	0.95	0.97	0.98	1.00
8.64E-2	1.28E-2	1.43E-3	1.54E-4	1.52E-5	1.70E-6
-	0.83	0.95	0.97	1.00	0.95
	1.04E0 - 1.54E-1 - 8.64E-2	1.04E0 2.04E-1 - 0.71 1.54E-1 2.45E-2 - 0.80 8.64E-2 1.28E-2	1.04E0 2.04E-1 2.84E-2 - 0.71 0.86 1.54E-1 2.45E-2 2.73E-3 - 0.80 0.95 8.64E-2 1.28E-2 1.43E-3	1.04E0 2.04E-1 2.84E-2 3.70E-3 - 0.71 0.86 0.88 1.54E-1 2.45E-2 2.73E-3 2.95E-4 - 0.80 0.95 0.97 8.64E-2 1.28E-2 1.43E-3 1.54E-4	1.04E0 2.04E-1 2.84E-2 3.70E-3 4.56E-4 - 0.71 0.86 0.88 0.90 1.54E-1 2.45E-2 2.73E-3 2.95E-4 3.08E-5 - 0.80 0.95 0.97 0.98 8.64E-2 1.28E-2 1.43E-3 1.54E-4 1.52E-5

Table: Convergence test of the ground state densities as $\varepsilon \to 0^+$.

Efficiency test: compare with wave function formulation

	rDF-APG				Regularized Newton method			
δ^{β}	10	10^{2}	10^{3}	10^{4}	10	10^{2}	10^{3}	10^{4}
1	24.11s	10.01s	3.68s	1.81s	1.16s	1.16s	1.61s	75.52s
10	18.34s	12.39s	4.29s	1.67s	4.54s	3.76s	3.47s	3.85s
10^{2}	10.66s	8.66s	3.78s	1.58s	18.79s	13.42s	9.36s	7.62s
10^{3}	5.25s	6.29s	3.66s	1.67s	116.65s	79.41s	45.49s	34.03s
10^{4}	3.31s	3.60s	3.03s	1.66s	224.05s	222.71s	224.89s	144.14s

Table: CPU time through rDF-APG and the regularized Newton method.

Xinran RUAN (CNU)

Conclusions

Conclusions

- Dimension reduction problem
- Existence and uniqueness of ground states
- Thomas-Fermi approximations of ground states
- Two numerical schemes for computing ground states

Future work

- Effect of the HOI on the rotating BEC ...
- Efficient and stable schemes for the dynamics of MGPE.