A Bi-level Stackelberg Game Model for Multi-Energy Retail Package Optimization

Hongjun Gao, *Senior Member, IEEE*, Hongjin Pan, Rui An, Hao Xiao, *Member, IEEE*, Yanhong Yang, *Member, IEEE*, Shuaijia He and Junyong Liu, *Member, IEEE*

Optimization ^s	variables	Other variable	<i>2S</i>
$Q_{i,k}^{\mathrm{B}}$	Electricity purchased from bilateral contract <i>k</i> of retailer <i>i</i> .	$C^{ ext{E,Re}}_{i,\omega}$	The cost of purchasing electricity for retailer i in scenario ω .
$Q_{\iota,i,\omega}^{ ext{Spot}}$	Electricity purchased from spot market of retailer i at period t in scenario ω .	$C_i^{ ext{G,Re}}$	The cost of purchasing natural-gas for retailer i .
$G_{i,k}^{ ext{Re,B}}$	Natural-gas purchased from bilateral contract k of retailer i .	$B_{i,m}$	The income of retailer i by package m .
$G_{t,j,k,n}^{ ext{User,B}}$	Natural-gas purchased by type n end- user j from bilateral contract k at period	$C_{i,j,m}^{ ext{E,User}}$ /	The cost of purchasing electricity/natural-gas from retailer <i>i</i> by package <i>m</i>
$Q_{t,i,j,n}^{\mathrm{User}}/G_{t,i,j,n}^{\mathrm{User}}$	t. Electricity/natural-gas purchased by type	$C_{i,j,m}^{ ext{G,User}}$	for end-user j .
	n end-user j from retailer i at period t .	$C_j^{ m G,User,B}$	The cost of purchasing natural-gas by bilateral contracts for end-user <i>j</i> .
$p_{k,n}^{E,1} / p_{f,n}^{E,1} /$ $p_{v,n}^{E,1}$	The electricity price of type <i>n</i> end-user at peak/flat/valley period in package 1.	$Q_{i,j,n}^{ ext{User,Ex,2}}$	The excess quantity of night-time electricity demand of type n end-user j in package 2 provided by retailer i .
$p_{t,n}^{\mathrm{E},1}/p_{t,n}^{\mathrm{G},1}$	The electricity/natural-gas price of type n end-user at period t in package 1.	$\mathcal{E}_{i,j,n}$	The peak-valley excess coefficient of type n end-user j in package 3 provided
$p_{\mathrm{day},n}^{\mathrm{E},2}$ /	The electricity price of type n end-user at	$Q_{i,j,n}^{ m Month}$ /	by retailer <i>i</i> . Monthly electricity/natural-gas
$p_{\mathrm{night},n}^{\mathrm{E},2}$	day/night period in package 2.	$G^{ m Month}_{i,j,n}$	purchased of type n end-user j from retailer i .
$p_{t,n}^{\mathrm{E},2}$	The electricity price of type n end-user at period t in package 2.	$Q_{t,j,n}^{ ext{Total}} / G_{t,j,n}^{ ext{Total}}$	The total electricity/natural-gas demand of type n end-user j at period t .
$p_{\mathrm{ba},n}^{\mathrm{E},3}$ / $p_{\mathrm{re},n}^{\mathrm{E},3}$ /	The basic/reward/penalty electricity price of type <i>n</i> end-user in package 3.	$B_i^{\mathrm{Re}} / PR_i^{\mathrm{Re}}$	The income/profit of retailer i .
$p_{\mathrm{pe},n}^{\mathrm{E},3}$	price of type went user in package s.	$R_i^{\mathrm{VaR}} / R_i^{\mathrm{CVaR}}$	The CVaR/VaR value of retailer <i>i</i> .
$p_{1\text{st},n}^{\text{E},4} / p_{2\text{nd},n}^{\text{E},4} /$	The electricity price of type <i>n</i> end-user at first/second/third level in package 4.	$C_{i,\omega}^{\mathrm{R}}/F_i(y,\omega)$	The cost/risk loss function of retailer i in scenario ω .
$p_{3\mathrm{rd},n}^{\mathrm{E},4}$	ms/second/unitalevel in package 4.	$\delta_{i}/x_{i,\omega}$	Auxiliary variables of retailer <i>i</i> for measuring risk by CVaR.
$p_{\mathrm{ba},n}^{\mathrm{G,4}}$ / $p_{\mathrm{re},n}^{\mathrm{G,4}}$ /	The basic/reward/penalty natural-gas	$S_j^{ ext{E,Com}} / S_j^{ ext{E,Eco}}$	The electricity comfort /economy satisfaction of end-user <i>j</i> .
$p_{\mathrm{pe},n}^{\mathrm{G,4}}$	price of type n end-user in package 4.	$S_j^{ ext{G,Com}} / S_j^{ ext{G,Eco}}$	The natural-gas comfort /economy satisfaction of end-user <i>j</i> .
$p_n^{\mathrm{E},5}/p_n^{\mathrm{G},5}$	The electricity/natural-gas price of type n end-user in package 5.	$S_j^{ m Energy}$	The overall energy satisfaction of enduser j .

 $Q_{t,j,n}^{\mathrm{In}}/G_{t,j,n}^{\mathrm{In}}$

The initial electricity/natural-gas demand of type n end-user j at period t.

 $C_j^{ ext{E,In}} / C_j^{ ext{G,In}}$

The initial electricity/natural-gas cost of end-user *j*.

TABLE I*

QUOTATION PARAMETERS

Quotation Parameters	Value
Power generation company 1 (\$/kWh)	0.035
Power generation company 2 (\$/kWh)	0.026
Natural gas company 1 to retailers (\$/m³)	0.20
Natural gas company 2 to retailers (\$/m³)	0.22
Natural gas company 1 to residential/commercial/	0.35/0.45/0.4
industrial end-users (\$/m³)	
Natural gas company 2 to residential/commercial/	0.4/0.5/0.45
industrial end-users (\$/m ³)	

Fig. 1* MCP scenarios in the spot market

Fig. 2* Initial electricity demand of end-users

Fig. 3* Initial natural-gas demand of end-users

TABLE II*
PACKAGE PARAMETERS

Package	Parameters	Value	
2	Bundled sale proportion	0.5	
	Limit value of night-time electricity demand	800	
	(kWh)		
	Limit value of electricity demand at peak period	1200	
	(kWh)	1200	
3	Limit value of electricity demand at valley	1000	
3	period (kWh)		
	Boundary value of peak-valley excess	800	
	coefficient (kWh)		
	The first level of electricity demand (kWh)	80000	
4	The second level of electricity demand (kWh)	100000	
	The natural-gas quota value (m³)	8000	

 $\label{thm:table III*}$ Other Parameters involved in Solving the Model

Other Parameters	Value
Risk factor weight of each retailer	0.4
The confidence level	0.95
The size of PSO population	30
The number of iterations	101
The acceleration factors in PSO	2
The iteration precision	10-3
Satisfaction weights of end-users for electricity	0.1/0.4
comfort/economy	