ST590-602 Homework #2

Instructions: please answer the questions below. You are welcome to use output from statistical software to substantiate your answers.

- 1. Reconsider the cornyields and rainfall data. Consider linear regressions of yield (Y) on the following sets of predictor variables $(x_1 \text{ is rainfall}, x_2 = x_1^2 \text{ and } x_3 \text{ is year})$:
 - Model 1: Simple linear regression on rainfall,

$$E(Y|x_1) = \beta_0 + \beta_1 x_1$$

• Model 2: Quadratic regression on rainfall, (a model with x_1 and $x_2 = x_1^2$)

$$E(Y|x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

• Model 3: Regression model in which rainfall, x_1 , and year (x_3) effects are additive

$$E(Y|x_1,x_3) = \beta_0 + \beta_1 x_1 + \beta_3 x_3$$

• Model 4: Quadratic regression on rainfall, x_1 , with non-additive year effects.

$$E(Y|x_1, x_2, x_3) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_3 + \beta_5 x_2 x_3$$

• Model 5: A model selected with the assistance of variable selection software:

$$E(Y|x_1, x_2, x_3) = \beta_0 + \beta_1 x_1 + \beta_4 x_1 x_3 + \beta_5 x_2 x_3$$

• Model 6: A model with non-additive linear rain and year effects

$$E(Y|x_1, x_2, x_3) = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \beta_4 x_1 x_3$$

- (a) Obtain the least squares estimates of the regression coefficients for each model.
- (b) Conduct F-tests comparing the following pairs of models. For each comparison, state the implicit null hypothesis (H_0) being tested and conduct the test at level $\alpha = .05$. Additionally, report the p-value associated with the test/comparison. Using a policy that adopts the reduced/nested model unless there is "significant" evidence against H_0 , speficy the model you'd choose for each comparison.
 - i. Model 1 versus Model 2
 - ii. Model 3 versus Model 4
 - iii. Model 4 versus Model 5
 - iv. Model 1 versus Model 3
 - v. Model 2 versus Model 4
 - vi. Model 6 versus Model 4
- (c) Is Model 2 nested in Model 3?
- (d) Using Models 1 and 6, estimate the increase in mean yield when rainfall increases by one inch in the year 1900.

2. A random sample leads to n=11 bivariate measurements $(y_1,x_1),\ldots,(y_{11},x_{11})$ with sample means and sample variances

$$\bar{x} = 80, \ \bar{y} = 85, s_x^2 = 1, \ s_y^2 = 20.$$

(a) Complete the ANOVA table.

Source	Sum of Squares	d.f.	Mean Square	F-ratio	p-value
Regression	160	1	160	?	
Error	?	?	?		
Corrected Total	200	10			

- (b) Determine the uncorrected total sum of squares, $\sum y_i^2$.
- (c) The sample correlation coefficient was $r_{xy} = -.894$. Report the slope of the least squares regression line.
- (d) Ignoring x, obtain 95% confidence limits for E(Y).
- (e) Consider the subpopulation with x = 80, obtain 95% confidence limits for E(Y|X = 80).
- (f) Consider another observation, Y_{12} .
 - i. Ignoring x, obtain 95% prediction limits for Y_{12} . (Is the interval wider than the one in part (d).)
 - ii. Supposing $x_{12} = 80$, obtain 95% prediction limits for $E(Y_{12}|X=80)$. (Is the interval wider than the one in part (e).)