Ejercicios para practicar para el final de Álgebra y Geometría Analítica

Trabajo Práctico 1

- 1. Sea el conjunto $M = \{z \in C / Re(iz) 2[Im(z)]^2 2Re(z^2) \ge -i^{38} \}$
 - a. Graficar el conjunto M.
 - b. Indicar si alguna de las raíces de la ecuación $z^4 8iz = 0$ pertenece al conjunto M. Justificar.
- 2. Sea el conjunto $N = \{z \in C/|z-2-i| < 2, |z-i| > 1\}$
 - a. Graficar el conjunto N.
 - b. Sea el polinomio $p(t) = t^3 4t^2 + 13t$. Indicar si la siguiente afirmación es verdadera o falsa:

"Todas las raíces de p(t) pertenecen al conjunto N"

- c. Hallar la expresión del único polinomio s(t) de grado dos con coeficientes reales que tiene a t=-2i como raíz y verifica s(1)=4.
- d. Sea el polinomio q(t) = p(t). s(t), escribir su descomposición factorial en C[t].

Trabajo Práctico 2

1. Dadas las matrices
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & k-1 \\ -1 & k & 1 \end{pmatrix}$$
 y $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 1 & 4 \end{pmatrix}$, se pide:

- a. Hallar todos los valores de $k \in R$ para los cuales la matriz A.B resulta inversible.
- b. Considerar k=1 en la matriz A del ítem a. y calcular, utilizando propiedades, el determinante de la matriz $C = \frac{1}{2}A^{T}.B^{5}$.
- 2. Dada la matriz $M = \begin{pmatrix} 0 & 1 & 5 \\ 1 & 0 & -1 \\ 5 & -1 & 0 \end{pmatrix}$, se pide:
 - a. Indicar si la siguiente afirmación es verdadera o falsa, justificando adecuadamente:

"Si $A = M^{T}$. N, siendo la matriz $N \in R^{3x3}$ tal que det(N) = 7, $X \in R^{3x1}$, el sistema

$$A.X = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
tiene única solución."

b. Hallar todos los valores de
$$m \in R$$
 para los cuales $X = \begin{pmatrix} -m-1 \\ m+2 \\ 1 \end{pmatrix}$ sea solución del

sistema M.X =
$$\begin{pmatrix} 3 \\ 2 \\ 17 \end{pmatrix}$$

Trabajo Práctico 3

- 1. Dados el plano α : 3x-2y+z=5 y la recta r: $\frac{x-3}{2}=y-2=z$, se pide:
 - a. Hallar el punto P que resulta de la intersección entre el plano α y la recta r.
 - b. Sea el plano β : x + y 2z = 0. Hallar el punto del plano β más próximo a P.
- 2. Sea el subespacio $S = \{(x, y, z) \in \mathbb{R}^3 / x + y = 0\}$
 - a. Dar una base y la dimensión del subespacio S. Graficar S.
 - b. Hallar el simétrico del punto A = (1,0,0) respecto del complemento ortogonal de S.

Trabajo Práctico 4

- 1. Sea T:R³ \rightarrow R³ tal que T(x₁,x₂,x₃)=(x₁-3x₂,-2x₁+6x₂,0)
 - a. Dar una base del conjunto Im(T). Graficar Im(T).
 - b. Determinar los valores de a y b reales tales que el vector (-a+b, a+b, b) pertenezca al Nu(T).
- 2. Sean $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal que verifica T(1, 0, 0) = (3, 0, 0), T(0, 1, 0) = (0, 1, 1), T(0, 0, 1) = (1, -1, 1) y $A \in \mathbb{R}^{3\times3}$ la matriz asociada a la transformación lineal en la base canónica de \mathbb{R}^3 .
 - a. Hallar los autovalores de A y los autovectores asociados.
 - b. Indicar si la siguiente afirmación es verdadera o falsa. Justificar.

"El subespacio generado por los autovectores asociados al autovalor $\lambda = 3$ es una recta en R^3 "

Trabajo Práctico 5

- 1. Dada la superficie cuádrica de ecuación $z + 1 = 9x^2 + y^2$, se pide:
 - a. Determinar sus intersecciones con los planos coordenados y con el plano z=8. Representar gráficamente cada intersección sobre el correspondiente plano. Identificar la superficie.
 - b. Determinar si el punto de intersección entre la superficie dada y el eje z pertenece al plano de ecuación x 3y z = 1.
- 2. Dada la cónica de ecuación $4 x^2 y^2 + 6y + 8x = 6$ se pide:
 - a. Expresarla en forma canónica, identificarla y representarla gráficamente.

