Maximal Couplings of the Metropolis–Hastings Algorithm

Guanyang Wang (Rutgers Stats)

joint work with

John O'Leary Harvard Stats
Pierre E. Jacob Harvard Stats

AISTATS 2021

Outline

Introduction

Status Quo: Johnson's Coupling

Maximal Couplings

Numerical Examples

Concluding Remarks

What is a coupling?

Informal Definition: Given two random variables $X \sim p, Y \sim q$, a coupling of X and Y means a joint distribution such that its first marginal is p and second marginal is q.

What is a coupling?

Informal Definition: Given two random variables $X \sim p, Y \sim q$, a coupling of X and Y means a joint distribution such that its first marginal is p and second marginal is q.

Formal Definition: Let p,q be two probability measures on the same measurable space (S,\mathcal{S}) . A coupling of (p,q) is a probability measure γ on $(S\times S,\mathcal{S}\times \mathcal{S})$ such that for every $A\in\mathcal{S}$:

$$\gamma(A \times S) = p(A)$$
 and $\gamma(S \times A) = q(A)$.

What is a coupling?

Informal Definition: Given two random variables $X \sim p, Y \sim q$, a coupling of X and Y means a joint distribution such that its first marginal is p and second marginal is q.

Formal Definition: Let p,q be two probability measures on the same measurable space (S,\mathcal{S}) . A coupling of (p,q) is a probability measure γ on $(S\times S,\mathcal{S}\times \mathcal{S})$ such that for every $A\in\mathcal{S}$:

$$\gamma(A\times S)=p(A)\qquad\text{and}\qquad \gamma(S\times A)=q(A).$$

Example: If X and Y are both (fair) coin flips, then

- ▶ Identity coupling: Flip a coin once, and set X = Y = the outcome
- Negation coupling: Flip a coin once, and set X =the outcome = 1 Y
- ▶ Independent coupling: Flip a coin twice, X = outcome of the first flip, Y = outcome of the second flip.

Coupling inequality and maximal coupling

The Coupling Inequality: Let γ be any coupling of p and q, the coupling inequality says:

$$\mathbb{P}_{\gamma}(X = Y) \le 1 - d_{\mathsf{TV}}(p, q)$$

▶ $1 - d_{\mathsf{TV}}(p,q)$ is the area of the shaded region

Coupling inequality and maximal coupling

The Coupling Inequality: Let γ be any coupling of p and q, the coupling inequality says:

$$\mathbb{P}_{\gamma}(X = Y) \le 1 - d_{\mathsf{TV}}(p, q)$$

- ▶ $1 d_{\mathsf{TV}}(p,q)$ is the area of the shaded region
- A coupling γ_0 is called a maximal coupling if

$$\mathbb{P}_{\gamma_0}(X=Y) = 1 - d_{\mathsf{TV}}(p,q)$$

Coupling and Markov chain Monte Carlo

Coupling plays a central role in MCMC theory and methods. People use coupling for

- Analyzing convergence rates
- Perfect sampling
- Unbiased estimation
- Convergence diagnosis
- **.** . . .

Coupling and Markov chain Monte Carlo

Coupling plays a central role in MCMC theory and methods. Coupling has been used for

- Analyzing convergence rates
- Perfect sampling
- Unbiased estimation
- Convergence diagnosis
- **.** . . .

In many cases, better coupling design ≈ shorter meeting time

Outline

Introduction

Status Quo: Johnson's Coupling

Maximal Couplings

Numerical Examples

Concluding Remarks

▶ Theorists can construct any virtual coupling algorithm as long as it is mathematically correct. In practice, it is important for coupling algorithm to be implementable.

- ▶ Theorists can construct any virtual coupling algorithm as long as it is mathematically correct. In practice, it is important for coupling algorithm to be implementable.
- ► The state of the art implementable coupling of Metropolis-Hastings (MH) transition kernels is introduced in Johnson [3] and used in Jacob, O'Leary, and Atchadé [2].

- ▶ Theorists can construct any virtual coupling algorithm as long as it is mathematically correct. In practice, it is important for coupling algorithm to be implementable.
- ► The state of the art implementable coupling of Metropolis-Hastings (MH) transition kernels is introduced in Johnson [3] and used in Jacob, O'Leary, and Atchadé [2].
- Idea of Johnson's coupling: a maximal coupling of the proposal distribution followed by a maximal coupling of the acceptance/rejection step.

- ▶ Theorists can construct any virtual coupling algorithm as long as it is mathematically correct. In practice, it is important for coupling algorithm to be implementable.
- ► The state of the art implementable coupling of Metropolis-Hastings (MH) transition kernels is introduced in Johnson [3] and used in Jacob, O'Leary, and Atchadé [2].
- Idea of Johnson's coupling: a maximal coupling of the proposal distribution followed by a maximal coupling of the acceptance/rejection step.
 - Works for very general MH algorithms, easy to implement
 - Not a maximal coupling: Max proposal coupling ×
 Max acceptance/rejection coupling ≠ Max transition kernel coupling
 (which may result in slower meeting time)

- ► Theorists can construct any virtual coupling algorithm as long as it is mathematically correct. In practice, it is important for coupling algorithm to be implementable.
- ► The state of the art implementable coupling of Metropolis-Hastings (MH) transition kernels is introduced in Johnson [3] and used in Jacob, O'Leary, and Atchadé [2].
- Idea of Johnson's coupling: a maximal coupling of the proposal distribution followed by a maximal coupling of the acceptance/rejection step.
 - Works for very general MH algorithms, easy to implement 🙂
 - Not a maximal coupling: Max proposal coupling \times Max acceptance/rejection coupling \neq Max transition kernel coupling (which may result in slower meeting time)
- Our contribution: We design three classes of implementable maximal couplings of the MH transition kernel.

Outline

Introduction

Status Quo: Johnson's Coupling

Maximal Couplings

Numerical Examples

Concluding Remarks

High level idea: go to a higher dimension

Sample
$$X \sim p \Leftrightarrow \mathsf{Sample}\ (X, H) \sim \mathrm{Unif}(S)$$
, $S := \{(x, h) | h \leq p(x)\}$

A simple algorithm to sample from Unif(S):

- ▶ Sample $x \sim p$
- ▶ Sample $u \sim \text{Unif}[0, 1]$
- $\blacktriangleright \mathsf{Set}\ h = u \cdot p(x)$
- \blacktriangleright $(x,h) \sim \mathrm{Unif}(S)$

Maximally couple $P(x,\cdot)$ and $P(y,\cdot)\Leftrightarrow$ Couple everything in area A

Maximally couple $P(x,\cdot)$ and $P(y,\cdot)\Leftrightarrow$ Couple everything in area A

A heuristic algorithm:

- ▶ Sample $x' \sim P(x, \cdot)$
- ► Sample h' such that $(x', h') \sim \text{Unif}(A \cup B)$
- ▶ If (x',h') in A: Set y'=x' and we are done
- ▶ Otherwise: Sample $(y', h'') \sim \text{Unif}(C)$

Maximally couple $P(x,\cdot)$ and $P(y,\cdot)\Leftrightarrow$ Couple everything in area A

A heuristic algorithm:

- ▶ Sample $x' \sim P(x, \cdot)$
- ► Sample h' such that $(x', h') \sim \text{Unif}(A \cup B)$
- ▶ If (x',h') in A: Set y'=x' and we are done
- ▶ Otherwise: Sample $(y', h'') \sim \text{Unif}(C)$

The last step still needs to be carefully designed. The easiest way is to repeatedly sample $(y_{\text{new}}, h_{\text{new}}) \sim \text{Unif}(A \cup C)$ until it falls into C. Many other choices are available.

- ▶ In our paper, we introduce three classes of maximal couplings: $\bar{P}_{\rm MI}$, $\bar{P}_{\rm MR}$, $\bar{P}_{\rm C}$
- ightharpoonup Numerical examples suggest $ar{P}_{C}$ works best when proposal has suitable symmetricity.
- ▶ Big idea: $\bar{P}_{\rm C}$ uses reflection coupling for the proposal + conditional acceptance coupling depending on the region.
- In some regions, the acceptance probability is higher than the standard MH rate, while in some other regions is lower.

Outline

Introduction

Status Quo: Johnson's Coupling

Maximal Couplings

Numerical Examples

Concluding Remarks

▶ Question: In practice, is maximal coupling a big improvement?

▶ Question: In practice, is maximal coupling a big improvement?

► Answer: Sometimes, but not always!

Question: In practice, is maximal coupling a big improvement?

- ► Answer: Sometimes, but not always!
 - In low dimensional cases, the maximal couplings will outperform non-maximal couplings,
 - In high dimensional cases, the advantage of maximal coupling is limited. Sometimes the non-maximal coupling perform better than than maximal couplings.

Example (Biased Random Walk MH)

- ► Take $\pi = \text{Expo}(1)$ and $Q(z, \cdot) = \text{N}(z + \kappa, \sigma^2)$ with $\kappa > 0$.
- ► Q tends to propose increasing values while a favors decreasing ones.
- ▶ We set $\kappa = \sigma^2 = 3$, draw $X_0, Y_0 \stackrel{iid}{\sim} \pi$, run 10,000 replications for each coupling, and record the meeting times.

Coupling	Avg. Meeting Time	S.E.
Non-maximal	74.0	0.94
Maximal	61.3	0.87

Example (Dimension Scaling with a Normal Target)

- ▶ Take $\pi = N(0, I_d)$ and $Q(z, \cdot) = N(z, I_d \sigma_d^2)$, $\sigma_d^2 = \frac{2.38^2}{d}$
- ▶ Upper plot: we draw $X_0, Y_0 \stackrel{iid}{\sim} \pi$, run 1,000 replications for each coupling, and record the meeting times for $d \in \{1, 2, \cdots, 10\}$.
- Lower plot: we draw $X_0, Y_0 \stackrel{iid}{\sim} \pi$, run 1,000 replications for each coupling, and record the distance $||X_t Y_t||$ for d = 100.
- In low dimensions they all perform similarly, in high dimensions $\bar{P}_{\rm C}$ performs best while $\bar{P}_{\rm MI}$ performs worst.

Outline

Introduction

Status Quo: Johnson's Coupling

Maximal Couplings

Numerical Examples

Concluding Remarks

► We introduce three classes of implementable maximal couplings of MH transition kernels.

- We introduce three classes of implementable maximal couplings of MH transition kernels.
- ▶ Their cost is roughly the same as the non-maximal couplings.

- We introduce three classes of implementable maximal couplings of MH transition kernels.
- ▶ Their cost is roughly the same as the non-maximal couplings.
- They have advantages: easy to implement; can naturally generalize to other methods such as Metropolis-adjusted Langevin algorithm, pseudo-marginal Monte Carlo, MH-within-Gibbs; outperforms previous methods at least in low dimensional settings.
- ► They have limitations: The improvement in high-dimensional settings are very limited, sometimes not as good as previous methods.

- We introduce three classes of implementable maximal couplings of MH transition kernels.
- ▶ Their cost is roughly the same as the non-maximal couplings.
- They have advantages: easy to implement; can naturally generalize to other methods such as Metropolis-adjusted Langevin algorithm, pseudo-marginal Monte Carlo, MH-within-Gibbs; outperforms previous methods at least in low dimensional settings.
- ► They have limitations: The improvement in high-dimensional settings are very limited, sometimes not as good as previous methods.
- What we have learned:
 - Maximizing contraction rates (the whole process) may be more important than maximizing the single step meeting probability (every single step).

► Formal descriptions of algorithms, more theory and discussions are in our paper:

"Maximal couplings of the Metropolis–Hastings algorithm." by O'Leary, Wang, and Jacob (2020).

Code available on Github:

https://github.com/johnoleary/mh-max-couplings

➤ To learn more about coupling and Monte Carlo, please check out Pierre's excellent lecture notes:

Couplings and Monte Carlo

Thanks!

Lecture notes: Couplings and monte carlo.

Pierre E Jacob, John O'Leary, and Yves F Atchadé.

Unbiased Markov chain Monte Carlo methods with couplings. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(3):543–600, 2020.

Valen E Johnson.

A coupling-regeneration scheme for diagnosing convergence in markov chain monte carlo algorithms.

Journal of the American Statistical Association, 93(441):238–248, 1998.

John O'Leary, Guanyang Wang, and Pierre E Jacob.

Maximal couplings of the Metropolis-Hastings algorithm.

arXiv preprint arXiv:2010.08573, 2020.