

Iguana: An End-to-End Open-Source Linux-capable RISC-V SoC in 130nm CMOS

Integrated Systems Laboratory (ETH Zürich)

Thomas Benz
Paul Scheffler
Jannis Schönleber

tbenz@iis.ee.ethz.ch paulsc@iis.ee.ethz.ch janniss@iis.ee.ethz.ch

PULP Platform

Open Source Hardware, the way it should be!

Situation and Challenges

FOS RTL established

 Led to a major increase in hardware research output

FOS Synthesis + Backend

- Under development
- Will be the next frontier

Fully open hardware?

- Caravel (Skywater) 10 mm²
- Small designs, limited IO
- What about European solutions?

Our Contributions

- Implementing Iguana in IHP's 130nm node
 - Tapeout through Europractice in July 2023
 - First end-to-end FOS ASIC capable of running Linux
 - Custom padframe allowing us full control over IO
 - IHP's **open European** PDK and fab
- Building Iguana from industry-grade IPs
 - **Cheshire** SoC framework
 - Including 2 fully digital off-chip interfaces
 - HyperBus off-chip **DRAM** interface
 - Chip-to-chip link
- Providing full peripheral IO → Desktop Linux minicomputer
- Verifying Linux boot through FPGA and silicon demonstrator

Architecture

P

- Goal: Linux Desktop computer
- CVA6: RV64GC
- AXI4 and Regbus used in interconnect
- AXI4-based last-level cache / SPM
- Peripherals
- Standalone boot
 - SPI (SD Card GPT)
 - 12C
- FOS, digital-only, PHYs
 - HyperBus off-chip memory interface
 - Chip-2-Chip link

The Cheshire Concept & Silicon Demonstrator

Iguana is built using Cheshire

- Silicon-proven Linux SoC framework, FPGA port
- Parametrizable top
- iHLS (IP-based high-level synthesis)
 - Template-based assembly of parametrizable IPs
 - Complex top-levels

github.com/pulp-platform/cheshire

Silicon Demonstrator

- Neo tapeout in 2021
- TSMC 65nm node, closed toolchain
- Similar SoC, different DRAM controller
- Tested and is working standalone ©

Our Flow: In-house Tools

Bender

- Source management
- Script generation
- Similar to FuseSoC
- Resolve project dependencies

Morty

- Source pickler → single file, single context
- Macro expansion

SVase

- Parameter and generate pre-elaboration
- Human-readable simplification of SV
- Uses the slang SystemVerilog parser

github.com/pulp-platform/bender

github.com/pulp-platform/morty

github.com/pulp-platform/svase

Frontend: RTL to Netlist

- Bender and Morty to handle sources
- SVase: parameter elaboration & simplification
- SV2V to transform the remaining SV constructs
- Yosys synthesis

Backend

OpenRoad and Klayout

- Custom TCL-only flow
 - Based on our traditional flow called "cockpit"
 - Simpler, in-line with our teaching
 - Inspired by the OpenRoad flow scripts
- Top-down design hierarchy
 - Most of the area is occupied by CVA6
- High turnaround time of ~33h
 - Many steps are single-threaded

github.com/The-OpenROAD-Project

Results

Contribution to the FOS Flow

- Bugfixes and improvements to the tools
- Demonstrate a complex FOS design
- Improve IHP's open standard cells
 - Hackathon at ETH
 - Cooperation with HS RheinMain

Targeting fully-open GDS

- SRAM macros and I/O cells are still closed
 - Opening immanent
- 40mm² in IHP 130nm
- > 50 MHz (WC, conservative)

Conclusion and Outlook

PU

- Linux-capable RV64GC RISC-V SoC
- FOS off-chip DRAM and chip-2-chip link
- Industry-grade SystemVerilog IPs
- OpenRoad backend with "cockpit" flow
- Tapeout through Europractice in July 2023
 - First end-to-end FOS Linux-capable ASIC
 - Establish FOS flow for complex designs
- Future Tapeouts are planned
 - Tegu and Komodo: will carry scientific work loads
 - Multicore CVA6, real time SoC, side channel prevention

PULP Platform

Open Source Hardware, the way it should be!

Thomas Benz
Paul Scheffler
Jannis Schönleber

tbenz@iis.ee.ethz.ch paulsc@iis.ee.ethz.ch janniss@iis.ee.ethz.ch

Institut für Integrierte Systeme – ETH Zürich

Gloriastrasse 35 Zürich, Switzerland

DEI – Universitá di Bologna

Viale del Risorgimento 2 Bologna. Italy

github.com/pulp-platform/iguana

