CS483 Analysis of Algorithms **Lecture 08 – NP-completeness**

Jyh-Ming Lien

July 17, 2017

Hard Problems
Hard Problems

Search Problems

Complexity Class

- ☐ Search problems (formal definition later):
 - Search for shortest path in a graph
 - Search for values of x, y and z to satisfy: $x^2y^{\frac{1}{2}}z xz^2 = 7$
 - Search for a path in 3D space among obstacles
 - ...
- □ Success on solving these hard problems in polynomial time
 - Greedy properties: without looking backward or forward, MST, shortest paths
 - Optimality from subproblems: divide and conquer, dynamic programming
 - Convexity: gradient decent/hill climbing, linear programming
- □ Success on solving these hard problems is based on some **special properties** of the problems

Hard Problems

Hard Problems

Search Problems

Complexity Class

- □ Failures
 - Many problems require 2^n , n! or even n^n (intractable)
 - For some (clearly formalized) problems we don't even have algorithms to solve them
 - (not to mention those problems that we can not even formalize)
- \Box In this lecture, we will look at
 - What are these problems? (Search Problems)
 - Terminology to classify *problems*: **P vs. NP**
 - How do you know if a *problem* can be solved efficiently?
 (Problem Reduction)
 - Do we have any hope of solving these *problems* efficiently?

Hard Problems

Search Problems

What Are Search

Problems?

Optimization Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

Reductions

Search Problems

What Are Search Problems?

Hard Problems

Hard Problems

Search Problems

What Are Search

Problems?

Optimization Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

Reductions

- ☐ A Search problem has
 - An instance of problem I that is input data specifying the problem
 - Asked to find a solution S that meets a particular specification
 - Polynomial-time Checkable: There most be an algorithm C that takes I and S and checks for correctness *efficiently*, i.e., in polynomial time
- ☐ Example: Satisfability problem

$$s:(x\vee y\vee z)(x\vee \bar{y})$$

$$- t : \{x = T, y = F, z = T\}$$

$$-B(s,t):(T\vee F\vee T)(T\vee \overline{F})$$

☐ Example: Traveling salesman problem

$$- s: G = \{V, E\}$$

$$- t: \{v_i, v_k, \cdots, v_i\}$$

$$- B(s,t)$$
:

Optimization Problems

Hard Problems

Hard Problems

Search Problems

What Are Search

Problems?

Optimization Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

Reductions

- ☐ We convert an optimization problem to a search problem
 - by introduce a **budge** b
 - Budget does not make the problem harder or easier.
- \square Example: Traveling salesman problem with budget b

$$- s: G = \{V, E\}, b$$

$$- t: \{v_i, v_k, \cdots, v_i\}$$

-
$$B(s,t)$$
:

□ Why do we convert an optimization problem to a search problem?

Hard Problems
Hard Problems

Search Problems

What Are Search Problems?

Optimization Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

- Many problems we studied in the previous chapters are search problems, e.g., all-pairs shortest paths problem, single-source shortest paths problem, minimum spanning tree, maximum flow minimum cut, matching, ...
 - But why are these problem tractable? These problems seem to have Very Large search spaces
 - Many algorithms seem to defeat the curse of expoentiality!
- □ Now, after we have seen the most brilliant successes, it's about time for us to face some failure in this quest.
 - Satisfability (SAT, 2SAT, 3SAT)
 - MST and TSP (traveling salesman problem) with or without budget b
 - Euler and Rudrata
 - Minimum cuts and balanced cuts
 - Integer linear programming or ILP ($Ax \le b$) and Zero-one Equations or ZOE (Ax = 1)
 - Three dimensional matching
 - Independent set, vertex cover, clique problem (with budget *b*)
 - Longest path

Hard Problems

Hard Problems

Search Problems

What Are Search Problems?

Optimization Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

- □ Satisfability problems (Horn-SAT, 2SAT, 3SAT, KSAT)
- ☐ Horn's formula
 - Implications: $(z \wedge w) \Rightarrow u$
 - Pure negative clauses: $(\bar{u} \vee \bar{v} \vee \bar{y})$
 - Horn-SAT: Solvable using greedy algorithm in linear time
- \Box 2SAT
 - in conjunctive normal form (CNF)
 - Each clause has two literals
 - example: $(x \vee y) \wedge (\bar{x} \vee z) \wedge (x \vee \bar{w})$
 - Can be solve in polynomial time (using implication graph + Strongly connected components)
- \Box 3SAT
 - in conjunctive normal form (CNF)
 - Each clause has 3 literals
 - example: $(x \lor y \lor w) \land (\bar{x} \lor z \lor \bar{y}) \land (x \lor u \lor \bar{w})$
 - No polynomial time algorithm

Hard Problems

Hard Problems

Search Problems

What Are Search

Problems?

Optimization Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

Reductions

☐ Euler's tour and Rudrata's problem

Euler's tour visit all edges without repeating Solvable in polynomial time

Rudrata's problem (aka Hamiltonian path/cyc visit all vertices without repeating

No polynomial time algorithm

Hard Problems

Hard Problems

Search Problems

What Are Search

Problems?

Optimization Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

- Longest path (Taxicab rip-off problem)
 - Give a graph and two nodes s and t, find a path with length at least bfrom s to t without repeating vertices.
 - no polynomial time algorithm
- Minimum cuts and balanced cuts
 - Find cuts that split the graph into two sets S and T
 - Minimum cuts problem can be solved using linear programming
 - Balanced cuts: $|S| \ge n/3 |T| \ge n/3$ and there are at most b edges between S and T
 - Balanced cuts problem has no polynomial time algorithm

Hard Problems

Hard Problems

Search Problems

What Are Search

Problems?

Optimization Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

Reductions

☐ Three dimensional matching

- \Box Independent set, vertex cover, clique problem (with budget b)
 - Independent set: A set of b vertices that are not adjacent to each other
 - vertex cover: A set of b vertices that are incident to all edges
 - clique: A set of b vertices that have all possible connections

Hard Problems

Hard Problems

Search Problems

What Are Search Problems?

Optimization Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

- ☐ Knapsack problem and Subset sum
 - In subset sum, each item has same value and weight
 - Both problems have no polynomial time algorithms

- □ Integer linear programming or ILP $(Ax \le b)$ and Zero-one Equations or ZOE (Ax = 1)
 - Simplex method is not polynomial but LP can be solved in polynomial time
 - ILP requires the values of all variables to be integer
 - ZOE is a special type of ILP where all values in A are 0 or 1
 - Both problems have no polynomial time algorithms

Hard Problems

Search Problems

Complexity Class

Problem Complexity

P vs. NP

P vs. NP vs. NP hard vs.

NP complete

P vs. NP vs. NP hard vs.

NP complete

Reductions

Complexity Class

Problem Complexity

Hard Problems
Hard Problems

Search Problems

Complexity Class

Problem Complexity

P vs. NP

P vs. NP vs. NP hard vs. NP complete P vs. NP vs. NP hard vs. NP complete

Reductions

- ☐ **Tractable**: a problem is tractable if there is an algorithm can solve the problem deterministically in *polynomial time*
- ☐ Is a problem tractable or intractable?
 - yes (given an algorithm to support this answer)
 - no
 - because it's been proved that no algorithm exists at all (e.g., Turing's **Halting Problem**.)
 - because it's been be proved that any algorithm takes exponential time (Traveling Salesman Problem)

we have no idea...

P vs. NP

Hard Problems Hard problems, easy problems Hard Problems Hard problems **NP-complete** Easy problems **P** Search Problems SAT, 3SAT 2SAT Complexity Class Traveling Salesman Problem, Rudrata path Chinese Postman Problem, Euler path **Problem Complexity** 3D matching Bipartite matching \triangleright P vs. NP P vs. NP vs. NP hard vs. Independent set Independent set on trees NP complete Integer linear programming Linear programming P vs. NP vs. NP hard vs. NP complete Balance cut Minimum cut **P**: polynomial Reductions Given an instance I, we can find a polynomial time algorithm to find an solution S**NP**: nondeterministic polynomial Given an instance I and a proposed solution S, we can find a polynomial time algorithm C to check if S is an solution of IRemember: A problem in **NP** does **NOT** mean it is a hard problem **NP hard**: all problems in NP can be **reduced** to a NP hard problem A NP hard problem is at least as hard as the hardest problem in NP **NP complete**: in NP and also in NP hard

P vs. NP vs. NP hard vs. NP complete

Hard Problems
Hard Problems

Search Problems

Complexity Class

Problem Complexity

P vs. NP

P vs. NP vs. NP hard vs. NP complete

P vs. NP vs. NP hard vs.

NP complete

Reductions

☐ Their relationship

P vs. NP vs. NP hard vs. NP complete

Hard Problems Search Problems Complexity Class Problem Complexity P vs. NP P vs. NP vs. NP hard vs. NP complete P vs. NP vs. NP hard vs. NP complete Reductions	□ Problems in P sorting, MST,
	□ Problems in NP complete SAT, TSP, ILP,
	□ Problems in NP but not in P or in NP complete factoring, graph isomorphism
	□ Problems not in NP Halting problem, counting the number of perfect matching, matrix permanent,
	 □ P=NP? (Most Computer Scientists believe P ≠ NP) □ There are many more complexity classes than these three (PSpace, Co-NP, ExpTime, ExpSpace,) In fact, there are 462 complexity classes according to the "Complexity zoo" http://qwiki.caltech.edu/wiki/Complexity_Zoo (maintained by Scott Aaronson and Greg Kuperberg)

Hard Problems

Search Problems

Complexity Class

> Reductions

Reductions

Reductions

 $TSP \rightarrow TSP$ with budget b

Rudrata (s, t)-Path \rightarrow

Rudrata cycle

 $3SAT \rightarrow Independent Set$

Independent Set \rightarrow Vertex

Cover

Independent Set \rightarrow Clique

 $SAT \rightarrow 3SAT$

 $3SAT \rightarrow 3D$ Match

3D Match \rightarrow ZOE

 $ZOE \rightarrow Rudrata$

Rudrata \rightarrow TSP

All Problems in NP \rightarrow

SAT

Reductions

Hard Problems

Hard Problems

Search Problems

Complexity Class

Reductions

Reductions

Reductions

 $TSP \rightarrow TSP$ with budget b

Rudrata (s, t)-Path \rightarrow

Rudrata cycle

 $3SAT \rightarrow Independent Set$

Independent Set \rightarrow Vertex

Cover

Independent Set \rightarrow Clique

 $SAT \rightarrow 3SAT$

 $3SAT \rightarrow 3D$ Match

3D Match \rightarrow ZOE

 $ZOE \rightarrow Rudrata$

Rudrata \rightarrow TSP

All Problems in NP \rightarrow

SAT

- If we reduce a problem A to a problem B in polynomial time (denoted as $A \rightarrow B$, we can say that B is as hard as A if not harder
 - If $A \rightarrow B$ and A is NP-complete then we know that B is also NP-complete

Algorithm for A

Reductions

Hard Problems

Hard Problems

Search Problems

Complexity Class

Reductions

Reductions

> Reductions

 $TSP \rightarrow TSP$ with budget b

Rudrata (s, t)-Path \rightarrow

Rudrata cycle

 $3SAT \rightarrow Independent \, Set$

Independent Set \rightarrow Vertex

Cover

Independent Set \rightarrow Clique

 $SAT \rightarrow 3SAT$

 $3SAT \rightarrow 3D$ Match

3D Match \rightarrow ZOE

 $ZOE \rightarrow Rudrata$

Rudrata \rightarrow TSP

All Problems in NP \rightarrow

SAT

Reductions between NP-complete problems All of NP SAT 3SAT3D matching Independent set VERTEX COVER CLIQUE ZOE ILPSubset sum Rudrata cycle TSP