Perth Modern School

Year 12 Mathematics Methods

Page | 1

Лате:

Calculator Assumed One page notes allowed TIME: 45 minutes working TEST 1 Friday 22 February 2019 Year 12 Methods

39 marks 7 Questions

Exceptional schooling. Exceptional students. **PERTH MODERN SCHOOL**

Note: All part questions worth more than 2 marks require working to obtain full marks.

(4 marks) Question 1

ī	7	7-	ī	3
0	Ţ	1-	7	7
ī-	7-	ī	3	τ
(x), 6	(x)6	(x), J	(x) J	х

Teacher:

(S marks)

(a) Define $h(x) = \frac{f(x)}{g(x)}$, use the table to find the value for h'(z).

(b) Define $I(x) = [g(x)]^s$, use the table to find the value for $I(x) = [g(x)]^s$ (S marks)

> Perth Modern School Year 12 Mathematics Methods 8 | 9 g e 4

Question Number: Supplementary Page

Page | 2

Year 12 Mathematics Methods

Perth Modern School

Question 2 (3 marks)

Find the equation of the line tangent to the function $y=(3x^2-2)^3$ at the point (2,2). Give your answer in the gradient-intercept form.

Question 3 (3 marks)

If $\frac{dy}{dx} = (5x+3)^3$, and y = 50 when x = 1, determine the expression of y in terms of x.

Page | 7 Year 12 Mathematics Methods Perth Modern School

b) Determine the time(s) that the velocity is zero.

(2 marks)

c) Determine the position of the train when the acceleration is $12ms^{-2}$. (2 marks)

_	.s., determine the least area of metal require m thin sheet metal in order that it will have a	container fro				
rinder in terms of r. (2 marks)	he expression for the surface area of the cy	(d) Hence, find t				
(1 mark)						
(a) Let the radius of the cylindrical base be ${\tt r}$. Find the expression for the height h in terms of ${\tt r}$.						
make a closed cylindrical container	asing a type of thin sheet metal required to 1 σ	A company is purcha With a capacity of 40				
Question 4 (7 marks)						
Perth Modern School	Year 12 Mathematics Methods	Page 3				

P a g e \mid 6 Year 12 Mathematics Methods Perth Modern School

Question 7 (8 marks)

The position of a train on a straight mono rail, X metres at time L seconds, is modelled by the following formula for the velocity, V in metres/second, $^V = pt^2 - 12t + q$ where $^P \& q$ are constants.

The deceleration of the train is $8ms^{-2}$ when t=1, has a position x=2 and is initially at the deceleration of the train is $8ms^{-2}$ when t=1, has a position x=2.

a) Determine the values of the constants $p \otimes q$. (4 marks)

Page | 4 Year 12 Mathematics Methods Perth Modern School

Question 5 (6 marks)

P a g e | 5 Year 12 Mathematics Methods Perth Modern School

Question 6 (8 marks)

The volume, V in cubic metres and radius R metres, of a spherical balloon are changing with time, $V = \frac{4\pi R^3}{3}$ t seconds. $V = \frac{4\pi R^3}{3}$. The radius of the balloon at any time is given by $R = 2t(t+3)^3$.

Determine the following:

a) The value of
$$\frac{dR}{dt}$$
 when $t=1$. (3 marks)

b) The value of
$$\frac{dV}{dt}$$
 when $t=1$. (3 marks)

Consider the volume of the balloon at t=1.

c) Use the incremental formula to estimate the change in volume 0.1 seconds later (i.e t =1.1) (2 marks)