Homework 01 Joseph Blubaugh jblubau1@tamu.edu

2.1

Rows: Fathers Profession, Cols: Sons Profession

	farm	operative	craftsman	sales	professional
farm	0.018	0.035	0.031	0.008	0.018
operative	0.002	0.112	0.064	0.032	0.069
craftsman	0.001	0.066	0.094	0.032	0.084
sales	0.001	0.018	0.019	0.010	0.051
professional	0.001	0.029	0.032	0.043	0.130

a) Fathers marginal density

rowSums(jobs)

${ t farm}$	operative	craftsman	sales p	rofessional
0.110	0.279	0.277	0.099	0.235

b) Sons marginal density

colSums(jobs)

farm	operative	craftsman	sales p	rofessional
0.023	0.260	0.240	0.125	0.352

c) P(Son Profession | Father = Farmer)

```
jobs[1, ] / rowSums(jobs)[1]
```

farm operative craftsman sales professional farm 0.1636364 0.3181818 0.2818182 0.07272727 0.1636364

d) P(Father Profession | Son = Farmer)

farm 0.78260870 operative 0.08695652 craftsman 0.04347826 professional 0.04347826

2.2

a)
$$\begin{split} E[a_1Y_1+a_2Y_2]&=a_1E[Y_1]+a_2E[Y_2]\\ Var[a_1Y_1+a_2Y_2]&=a_1^2Var[Y_1]+a_2^2Var[Y_2] \end{split}$$

b)
$$E[a_1Y_1-a_2Y_2]=a_1E[Y_1]-a_2E[Y_2] \\ Var[a_1Y_1-a_2Y_2]=a_1^2Var[Y_1]+a_2^2Var[Y_2]$$

2.3

a)
$$P(X|Y) = P(X)$$
; $P(X|Y,Z) = P(X,Z) \approx f(X,Z)$

b)
$$P(Y|X) = P(Y)$$
; $P(Y|X,Z) = P(Y,Z) \approx f(Y,Z)$

2.5

a)

Rows: X, Cols: Y

	Green	Red	Marginal.X
Head	0.2	0.3	0.5
Tail	0.3	0.2	0.5
Marginal.Y	0.5	0.5	1.0

b)
$$E[Y] = .5$$

 $P[Y = G|X = H] = .2$
 $P[Y = G|X = T] = .3$
 $P[Y = G] = .5$

c)
$$Var[Y|X=0] = 0^2(.2) + 1^2(.3) = .3$$
 $Var[Y|X=1] = 0^2(.3) + 1^2(.2) = .2$

The difference in variance is because we are essentially comparing the following conditional probabilities: P(Y=1|X=0)=.3 and P(Y=1|X=1)=.2. The smaller probability will have smaller variation than the larger probability because we are more certain that the smaller probability will occur less often than the larger probability.

d)
$$P(X=0|Y=1) = .2/.5 = .4$$

2.6

Under this scenario the following are conditionally dependent. $P(A \perp B|C); P(A^c \perp B|C); P(A \perp B^c|C)$ and A^c, B^c are the same area. $P(A \perp B|C^c)$ are not conditionally independent because A and B intersect outside of C.

С	BnC	В
		C^c
AnC	C^c	
C^c		
A		AnB