Week of 10/9 Deliverables

Team cobalt

Last week's goals

- ✓ <u>Jupyter notebook</u> for summing intensity by region of ARA
- ✓ Create <u>python package</u> for blob detection metrics
- ✓ Write pseudocode for 2 unsupervised algorithms from literature
 - ✓ Ensemble methods
 - ✓ 2D Analysis + 2D Pseudocode
 - ✓ 3D Reconstruction
 - ✓ Code
 - ✓ FARSIGHT
 - ✓ A benchmarks.md thing

Summing intensity by region

- Simple proxy for cell count and can be used as a sanity check
- Notebook <u>here</u>

BlobMetrics Python Package

- Wrote a python package ("BlobMetrics") to evaluate the results of a blob detector
 - Usage Documentation, Source Code, Notebook
- In process of making the package pip installable

```
$ pip install blob-metrics
```

- Given the ground truth values and the predicted values the package computes
 - Accuracy
 - Precision
 - o **Recall**
 - F-Measure
 - G-Measure
 - Mean Square Error

BlobMetrics Python Package - Visualization

Identified unsupervised algorithm

- Estimation of Small Blob Detection based on Local Convexity, Intensity and shape information
 - Pre-processing involves identifying blob candidate regions based on local convexity.
 - Regional blobness and regional flatness is extracted and HDoG (Hessian-based Difference of Gaussian) is applied

Hysteresis Thresholding

- The hysteresis mode uses a hysteresis loop to provide a more connected result. Any pixel above the upper threshold is turned white.
- The surround pixels are then searched recursively. If the values are greater than the lower threshold they are also turned white.
- The expected result is that there are many fewer specks of white in the resulting image.

Ensemble Methods implementation

- 2D Segmentation
- 3D Reconstruction

3D Reconstruction

Pseudocode

Algorithm

Pseudocode:

Inputs:

- img_stack
- z_dim, y_dim, x_dim

Psuedocode:

For every z_slice in the image stack:

- 1. Adaptive Threshold
- 2. Otsu's binarization to get binary image
- 3. Perform morphological erosion with kernal of radius of 5 voxels
- 4. Perform morphological opening with kernal of radius of 5 voxels
- 5. Get connected components using union-find
- 6. Compute centroids of each component

TODO: k-means for segmentation refinement

input:

• z comps: a collection of components for all the z slice

pseudocode:

for each set of components for each z slice: for each component in this set:

1. If nearest centroids in z planes above and below the current plane are within a specified x-y radius, then current centroid is a part of that blob, so put it in that blob's collection

Compute Centroid of all centroids associated with a blob

return list of blob centroids

2D Blob Detection

Yousef's automatic cell detection pseudo code

- In-depth description:
 https://github.com/NeuroDataDesign/clarity-f17s18/blob/master/docs/jyim6/Automatic%20nuclei%20segmentation%2
 opipeline%20(Yousef).md
- Yousef's algorithm is actually a pipeline of running multiple algorithms to do cell detection and segmentation
- The data medium: histopathology cells are also different than ours. We detail the steps of the algorithm relevant to us:
 - a. **Binarization/Threshold:** Fit the data to a bimodal poisson mixture model, i.e. find the threshold parameter. Get the bi-modal poisson PDF for whether a cell is in the foreground or not
 - b. **Labeling/large blob detection:** Run a max-flow/min-cut algorithm to discover the connected components (i.e. large blobs)
 - c. **Edge detection:** Run the multiscale LoG for different scales and construct a response map.
 - d. **Cell/small blob detection:** Find the local maximas in the response map.
 - e. **Cell segmentation:** Run watershed or some clustering algorithm to do an initial cell segmentation.
- The rest of the steps in the actual pipeline include refining the cell segmentation and doing a graph coloring

Benchmarking

• More in depth: https://github.com/NeuroDataDesign/clarity-f17s18/blob/master/docs/jyim6/week6_deliverables.md

Next week

- Determine how to remove inhomogeneity in light sheet images (for registration)
- Identify 1 paper for each of the following in cell detection workflow:
 - Preprocessing
 - Thresholding/binarization
 - Edge detection/blob detection
 - Clustering /refinement
- Implement algorithm in this <u>paper</u>
- Make blob-metrics pip installable