

# Adaptive Self-Training Framework for Fine-grained Scene Graph Generation -ICLR 2024 Poster-

Kibum Kim\*, Kanghoon Yoon\*, Yeonjun In, Jinyoung Moon, Donghyun Kim, Chanyoung Park<sup>†</sup>

**Presenter: Kibum Kim** 

Ph.D Student
Department of Industrial & Systems Engineering
KAIST



## **CONTENT**

- Introduction of Scene Graph Generation
- Motivation
- Method
- Experiment
- Conclusion

## WHAT IS SCENE GRAPH GENERATION (SGG)?

- SGG aims to represent observable knowledges in an image in the form of a graph
- The knowledge includes 1) object information and 2) their relation information, which is mapped to a scene graph
  - E.g., Object information: {man, horse, glasses, bucket}
  - E.g., Relationship information between objects: {feeding, wearing, ..., holding, eat from}



### MOTIVATION: INHERENT PROBLEMS IN SGG DATASETS

- Inherent Problems in SGG datasets (e.g., Visual Genome [1])
  - 1. Long-tailed Predicate Distribution
    - It leads to biased predictions towards head classes which are uninformative



1. Long-tailed Predicate Distribution

#### • 2. Missing Annotations of Predicate

- In right figure, walking in is annotated for one instance of person → sidewalk, but not for the other instance.
- Among overall relationships, only 4.5% relationship is annotated
  - = 95.5% relationship is not annotated



#### **MOTIVATION: INHERENT PROBLEMS IN SGG DATASETS**

- Inherent Problems in SGG datasets (e.g., Visual Genome [1])
  - 1. Long-tailed Predicate Distribution
    - It leads to biased predictions towards head classes which are uninformative



- 2. Missing Annotations of Predicate
  - In right figure, walking in is annotated for one instance of person → sidewalk,
     but not for the other instance.
  - Among overall relationships, only 4.5% relationship is annotated
    - = 95.5% relationship is not annotated



We aim to assign pseudo-labels to missing annotations to address the long-tailed problem

via Self-Training Framework

#### CHALLENGES OF APPLYING SELF-TRAINING FRAMEWORK FOR SGG

- It is challenging to apply existing self-training framework from image classification to SGG task.
  - 1. Extreme Long-tailedness: Biased SGG models are likely to assign pseudo-labels of head classes.
  - 2. Semantic Ambiguity: To assign pseudo-labels through the model's prediction probability, it is necessary to recognize "Confident Samples". Semantic Ambiguity makes it difficult to define confident samples.
    - E.g., in image classification task, the samples above 0.95 probability are assigned with pseudo-labels, but it is difficult on SGG



# METHOD: ADAPTIVE SELF-TRAINING FRAMEWORK FOR SGG (1/3)

- Goal: We find suitable thresholds for each predicate class to apply self-training to SGG task.
  - (1) Class-specific Adaptive Thresholding Increase threshold for each class
    - Through Exponential Moving Average (EMA), we set thresholds based on the overall prediction probability.



# METHOD: ADAPTIVE SELF-TRAINING FRAMEWORK FOR SGG (2/3)

- Goal: We find suitable thresholds for each predicate class to apply self-training to SGG task.
  - (2) Class-specific Momentum (Increase): It rapidly increase the threshold for head classes, while slowly increasing the threshold for tail classes.
    - → It enables pseudo-labeling primarily for tail predicate classes.



- *N<sub>c</sub>*: # instances of *c* classes
- E.g.,  $N_1(Head)$ =50,  $N_2$ =40,  $N_3(Tail)$ =10

# METHOD: ADAPTIVE SELF-TRAINING FRAMEWORK FOR SGG (1/3)

- Goal: We find suitable thresholds for each predicate class to apply self-training to SGG task.
  - (1) Class-specific Adaptive Thresholding Decrease threshold for each class
    - If predictions of predicate c are made at the current step t while no pseudo-label is assigned with those instances, we decrease



# METHOD: ADAPTIVE SELF-TRAINING FRAMEWORK FOR SGG (3/3)

- Goal: We find suitable thresholds for each predicate class to apply self-training to SGG task.
  - (2) Class-specific Momentum (Decrease): It slowly decreases the threshold for head classes, while rapidly decreasing the threshold for tail classes.



E.g.,  $N_1(Head) = 50$ ,  $N_2 = 40$ ,  $N_3(Tail) = 10$ 

10

#### **EXPERIMENT WITHIN VISUAL GENOME DATASET**

#### Metric

- R@K: Performance of Head classes ↑ → R@K ↑
- mR@K: Performance of Tail classes ↑ → mR@K ↑
- F@K: Harmonic average of R@K and mR@K

| Method         |                 | PredCls     |             |             | SGCIs       |             |             | SGDet       |             |             |
|----------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                |                 | R@50/100    | mR@50 / 100 | F@50/100    | R@50 / 100  | mR@50/100   | F@50/100    | R@50/100    | mR@50 / 100 | F@50 / 100  |
| · O            | DT2-ACBS [4]    | 23.3 / 25.6 | 35.9 / 39.7 | 28.3 / 31.1 | 16.2 / 17.6 | 24.8 / 27.5 | 19.6 / 21.5 | 15.0 / 16.3 | 22.0 / 24.0 | 17.8 / 19.4 |
| Specific       | PCPL [6]        | 50.8 / 52.6 | 35.2 / 37.8 | 41.6 / 44.0 | 27.6 / 28.4 | 18.6 / 19.6 | 22.2 / 23.2 | 14.6 / 18.6 | 9.5 / 11.7  | 11.5 / 14.4 |
|                | KERN (34)       | 65.8 / 67.6 | 17.7 / 19.2 | 27.9 / 29.9 | 36.7/37.4   | 9.4 / 10.0  | 15.0 / 15.8 | 27.1 / 29.8 | 6.4 / 7.3   | 10.4 / 11.7 |
|                | GBNet [33]      | 66.6 / 68.2 | 22.1 / 24.0 | 33.2 / 35.5 | 37.3 / 38.0 | 12.7 / 13.4 | 18.9 / 19.8 | 26.3 / 29.9 | 7.1 / 8.5   | 11.2 / 13.2 |
| Model-Agnostic | Motif (22)      | 65.3 / 67.1 | 17.8 / 19.2 | 28.0 / 29.9 | 36.9 / 38.1 | 9.0 / 9.6   | 14.5 / 15.3 | 31.9 / 36.4 | 6.4 / 7.6   | 10.7 / 12.6 |
|                | +ST-SGG         | 63.4 / 65.4 | 22.4 / 24.1 | 33.1 / 35.2 | 36.8 / 37.8 | 12.1 / 12.8 | 18.2 / 19.1 | 29.7 / 34.8 | 8.5 / 10.1  | 13.2 / 15.7 |
|                | +Resam. [3]     | 62.3 / 64.3 | 26.1 / 28.5 | 36.8 / 39.5 | 36.1 / 37.0 | 13.7 / 14.7 | 19.9 / 21.0 | 30.4 / 34.8 | 10.5 / 12.3 | 15.6 / 18.2 |
|                | +Resam.+ST-SGG  | 53.9 / 57.7 | 28.1 / 31.5 | 36.9 / 40.8 | 33,4/34.9   | 16.9 / 18.0 | 22.4 / 23.8 | 26.7 / 30.7 | 11.6 / 14.2 | 16.2 / 19.4 |
|                | +TDE [8]        | 46.2 / 51.4 | 25.5 / 29.1 | 32.9 / 37.2 | 27.7 / 29.9 | 13.1 / 14.9 | 17.8 / 19.9 | 16.9 / 20.3 | 8.2 / 9.8   | 11.0 / 13.2 |
|                | +DLFE (40)      | 52.5 / 54.2 | 26.9 / 28.8 | 35.6 / 37.6 | 32.3 / 33.1 | 15.2 / 15.9 | 20.7 / 21.5 | 25.4 / 29.4 | 11.7 / 13.8 | 16.0 / 18.8 |
|                | +NICE [36]      | 55.1 / 57.2 | 29.9 / 32.3 | 38.8 / 41.3 | 33.1 / 34.0 | 16.6 / 17.9 | 22.1 / 23.5 | 27.8 / 31.8 | 12.2 / 14.4 | 17.0 / 19.8 |
|                | +IE-Trans (H2)  | 54.7 / 56.7 | 30.9 / 33.6 | 39.5 / 42.2 | 32.5 / 33.4 | 16.8 / 17.9 | 22.2 / 23.3 | 26.4 / 30.6 | 12.4 / 14.9 | 16.9 / 20.0 |
|                | +I-Trans [12]   | 55.2 / 57.1 | 29.1/31.9   | 38.1 / 40.9 | 32.5 / 33.4 | 15.7 / 16.9 | 21.2 / 22.4 | 27.0 / 31.3 | 11.4 / 14.0 | 16.0 / 19.3 |
|                | +I-Trans+ST-SGG | 50.5 / 52.8 | 32.5 / 35.1 | 41.7 / 42.5 | 31.2 / 32.1 | 18.0 / 19.3 | 22.8 / 24.1 | 25.7 / 29.8 | 12.9 / 15.8 | 17.2 / 20.7 |
|                | VCTree [23]     | 65.5 / 67.2 | 17.2 / 18.6 | 27.3 / 29.1 | 38.1 / 38.8 | 9.6 / 10.2  | 15.3 / 16.2 | 31.4 / 35.7 | 7.3 / 8.6   | 11.9 / 13.9 |
|                | +ST-SGG         | 64.2 / 66.2 | 21.5 / 22.9 | 32.2 / 34.0 | 37.5 / 38.4 | 12.0 / 12.5 | 18.2 / 18.9 | 30.4 / 34.7 | 8.7 / 10.1  | 13.5 / 15.6 |
|                | +Resam. [3]     | 61.2 / 63.5 | 27.2 / 29.2 | 37.7 / 40.0 | 35,7/36.5   | 13.8 / 14.4 | 19.9 / 20.7 | 29.7 / 33.9 | 10.2 / 11.8 | 15.2 / 17.5 |
|                | +Resam.+ST-SGG  | 54.0 / 57.0 | 32.2 / 34.6 | 40.3 / 43.0 | 32.2/33.4   | 16.9 / 18.3 | 22.2 / 23.6 | 24.6 / 29.6 | 12.3 / 14.8 | 16.4 / 19.7 |
|                | +TDE [8]        | 47.2 / 51.6 | 25.4 / 28.7 | 33.0 / 36.9 | 25.4/27.9   | 12.2 / 14.0 | 16.5 / 18.6 | 19.4 / 23.2 | 9.3 / 11.1  | 12.6 / 15.0 |
|                | +DLFE [40]      | 51.8 / 53.5 | 25.3 / 27.1 | 34.0 / 36.0 | 33.5 / 34.6 | 18.9 / 20.0 | 24.2 / 25.3 | 22,7 / 26.3 | 11.8 / 13.8 | 15.5 / 18.1 |
|                | +NICE [36]      | 55.0 / 56.9 | 30.7 / 33.0 | 39.4 / 41.8 | 37.8 / 39.0 | 19.9 / 21.3 | 26.1 / 27.6 | 27.0 / 30.8 | 11.9 / 14.1 | 16.5 / 19.3 |
|                | +IE-Trans [12]  | 53.0 / 55.0 | 30.3 / 33.9 | 38.6 / 41.9 | 32.9 / 33.8 | 16.5 / 18.1 | 22.0 / 23.6 | 25.4 / 29.3 | 11.5 / 14.0 | 15.8 / 18.9 |
|                | +I-Trans [12]   | 54.0 / 55.9 | 30.2 / 33.1 | 38.7 / 41.6 | 37.2 / 38.3 | 19.0 / 20.6 | 25.1 / 26.8 | 25.5 / 29.4 | 11.2 / 13.7 | 15.6 / 18.7 |
|                | +I-Trans+ST-SGG | 52.5 / 54.3 | 32.7 / 35.6 | 40.3 / 43.0 | 36.3 / 37.3 | 21.0 / 22.4 | 26.6 / 27.9 | 20.7 / 24.9 | 12.6 / 15.1 | 15.7 / 18.8 |

**Performance Comparison with baselines** 

- ST-SGG is applicable to other model
  - Performance increase on Motif+ST-SGG / VCTree + ST-SGG
- Combining ST-SGG with debiasing method outperforms
   SOTA baselines
  - ST-SGG is adopted to Resampling or I-Trans method

For more experiments, please refer to main paper

### **CONCLUSION**

 ST-SGG aims to address long-tailed problem by annotating pseudo-labels on unannotated relationships via self-training framework

- We identify challenges of applying existing self-training framework to SGG task
  - It stems from 1) extreme long-tailed problem and 2) semantic ambiguity

• To this end, we propose novel self-training framework for SGG, which consists of *class-specific adaptive* thresholding with *class-specific momentum* 

Our proposed framework outperforms state-of-the-arts baseline in terms of F@K and mR@K

## **THANK YOU**

Paper: <a href="https://openreview.net/pdf?id=WipsLtH77t">https://openreview.net/pdf?id=WipsLtH77t</a>

• Code: <a href="https://github.com/rlqja1107/torch-ST-SGG">https://github.com/rlqja1107/torch-ST-SGG</a>



