R code commentary and appendix

# Contents

| L | Data | a cleani | ing                                                 | 1  |
|---|------|----------|-----------------------------------------------------|----|
|   | 1.1  | Import   | the dataset and check variables                     | 1  |
|   | 1.2  | Adjust   | date.time format                                    | 1  |
|   |      | 1.2.1    | Check the conversion                                | 2  |
|   | 1.3  | Create   | the week variable                                   | 2  |
|   |      | 1.3.1    | Check the variable                                  | 2  |
|   | 1.4  | Create   | the month variable                                  | 3  |
|   |      | 1.4.1    | Check the number of month                           | 3  |
|   | 1.5  | Create   | the trimester variable                              | 3  |
|   |      | 1.5.1    | Check the number of trimesters                      | 4  |
|   | 1.6  | Create   | the year variables                                  | 4  |
|   |      | 1.6.1    | Check the number of years                           | 4  |
|   | 1.7  | Count    | the number of missing values                        | 4  |
|   |      | 1.7.1    | Inspect where are the missings                      | 5  |
|   |      | 1.7.2    | Remove rows with missing tweets                     | 6  |
|   | 1.8  | Check t  | that the variables make sense                       | 6  |
|   |      | 1.8.1    | Adjust the variable genere                          | 7  |
|   |      | 1.8.2    | Verify the substitution                             | 8  |
|   | 1.9  | Create   | a new dataset selecting only necessary informations | 8  |
|   | 1.10 | Create   | the corpus                                          | 8  |
|   | 1.11 | Create   | the DFM                                             | 9  |
|   | 1.12 | Remove   | e the emoji                                         | 10 |

| 2 | Pre | limina  | r analysis                                                                | 11 |
|---|-----|---------|---------------------------------------------------------------------------|----|
|   | 2.1 | Who i   | s inside this dataset?                                                    | 11 |
|   | 2.2 | Topfea  | atures frequency                                                          | 13 |
|   |     | 2.2.1   | Relative frequency of the topfeatures by Party ID                         | 14 |
|   | 2.3 | Most    | common hashtag                                                            | 15 |
|   |     | 2.3.1   | Most common hashtag by Gender                                             | 16 |
|   |     | 2.3.2   | Co-occurrence Plot of hashtags                                            | 17 |
|   | 2.4 | Most    | frequently mentioned usernames                                            | 18 |
|   |     | 2.4.1   | Most frequently mentioned usernames by gender                             | 19 |
|   |     | 2.4.2   | Co-occurrence plot of usernames                                           | 21 |
|   | 2.5 | How n   | nany times a politician cite his/her party                                | 21 |
|   |     | 2.5.1   | Create the variable with the name of the official Twitter account $\ \ .$ | 23 |
|   |     | 2.5.2   | Count for each party how many times a politician cite their respec-       |    |
|   |     |         | tive party                                                                | 23 |
|   | 2.6 | How n   | nany times the party leader is cited by his/her party                     | 24 |
|   |     | 2.6.1   | Create the variable with the official leader's account for every party    | 24 |
|   |     | 2.6.2   | Count for each party how many times a politician cite his/ her party      |    |
|   |     |         | leader                                                                    | 25 |
|   | 2.7 | How n   | nany times a politician cite itself in the tweet                          | 26 |
| 3 | Dic | tionary | analysis                                                                  | 28 |
|   | 3.1 | Create  | e the dictionary                                                          | 28 |
|   |     | 3.1.1   | Group and weight the dfm                                                  | 30 |
|   | 3.2 | Decad   | ri_Boussalis_Grundl                                                       | 31 |
|   |     | 3.2.1   | Transform the DFM into an ordinary dataframe                              | 31 |

|   |     | 3.2.2   | Level of populism in time                                            | 31 |
|---|-----|---------|----------------------------------------------------------------------|----|
|   |     | 3.2.3   | Frequencies of the 3 components of populism for each parliamentary   |    |
|   |     |         | group                                                                | 37 |
|   |     | 3.2.4   | Ranking of parliamentary groups according to their level of populism | 37 |
|   |     | 3.2.5   | Bivariate regression for check t-test                                | 43 |
|   |     | 3.2.6   | Trends in the level of populism for each parliamentary group over    |    |
|   |     |         | time                                                                 | 44 |
|   | 3.3 | Roodu   | ijn_Pauwels_Italian                                                  | 47 |
|   |     | 3.3.1   | Level of populism over time                                          | 47 |
|   |     | 3.3.2   | Ranking of parliamentary groups according their populism level       | 48 |
|   | 3.4 | Grund   | l_Italian_adapted                                                    | 51 |
|   |     | 3.4.1   | Level of populism in time                                            | 51 |
|   |     | 3.4.2   | Most populist parliamentary group                                    | 52 |
|   | 3.5 | Compa   | are the general level of populism over time for the dictionaries     | 55 |
| 4 | Emo | otion a | nalysis                                                              | 56 |
|   | 4.1 | Impor   | t the LIWC2007_Dictionary                                            | 56 |
|   | 4.2 | Group   | and weight the dfm                                                   | 57 |
|   | 4.3 | Apply   | the dictionary                                                       | 58 |
|   |     | 4.3.1   | Transform the DFM into an ordinary dataframe                         | 58 |
|   | 4.4 | Percen  | tage of the emotions in time                                         | 60 |
|   | 4.5 | Main e  | emotion for each parliamentary group                                 | 68 |
|   |     | 4.5.1   | Are the average values of positive/negative emotions for each party  |    |
|   |     |         | statistically different from each other?                             | 74 |
|   | 4.6 | Regres  | sions                                                                | 78 |

| 5 | STI | M Topi | c model analysis                                                | 87  |
|---|-----|--------|-----------------------------------------------------------------|-----|
|   | 5.1 | Prelim | ninary steps                                                    | 87  |
|   |     | 5.1.1  | Load the data                                                   | 87  |
|   |     | 5.1.2  | Import the dictionaries                                         | 87  |
|   |     | 5.1.3  | Remove all the account's mentions                               | 88  |
|   |     | 5.1.4  | Trim the data                                                   | 88  |
|   |     | 5.1.5  | Apply dictionary                                                | 88  |
|   |     | 5.1.6  | Create percentage for each components                           | 89  |
|   |     | 5.1.7  | Add the percentage of populism to the original dfm              | 89  |
|   |     | 5.1.8  | Convert DFM to STM format                                       | 89  |
|   |     | 5.1.9  | Import the original corpus and repeat the same cleanings        | 89  |
|   | 5.2 | Find b | pest number of topics k                                         | 90  |
|   |     | 5.2.1  | Search the best number of Topics comparing coherence and exclu- |     |
|   |     |        | sivity values                                                   | 90  |
|   |     | 5.2.2  | plot results                                                    | 90  |
|   | 5.3 | Run tl | he analysis selecting $k = 10$                                  | 94  |
|   |     | 5.3.1  | Label topics                                                    | 94  |
|   | 5.4 | Run tl | he analysis selecting $k = 18$                                  | 96  |
|   |     | 5.4.1  | Label topics                                                    | 96  |
|   |     | 5.4.2  | Meaningfull labels with the first 10 FREX word associated       | 106 |
|   |     | 5.4.3  | Most frequent topic                                             | 108 |
|   |     | 5.4.4  | Which are the the most likely topics across our documents?      | 109 |
|   |     | 5.4.5  | Save them back in the original corpus                           | 111 |
|   |     | 5.4.6  | Find the most associated document for each topics               | 111 |

| 5.5 | Coeffic | ients                                          |
|-----|---------|------------------------------------------------|
|     | 5.5.1   | 01) Junk topic                                 |
|     | 5.5.2   | 02) Covid-19                                   |
|     | 5.5.3   | 03) Junk topic                                 |
|     | 5.5.4   | 04) Epitaphs                                   |
|     | 5.5.5   | 05) Journals and media                         |
|     | 5.5.6   | 06) Sustainable energy                         |
|     | 5.5.7   | 07) Categories involved in the covid emergency |
|     | 5.5.8   | 08) Economic relaunch                          |
|     | 5.5.9   | 09) Economic hardship and taxes                |
|     | 5.5.10  | 10) Victims of violent deaths                  |
|     | 5.5.11  | 11) Public education                           |
|     | 5.5.12  | 12) Anti-elitism                               |
|     | 5.5.13  | 13) Social and TV live broadcasts              |
|     | 5.5.14  | 14) Junk topic                                 |
|     | 5.5.15  | 15) Junk topic                                 |
|     | 5.5.16  | 16) Olympics game                              |
|     | 5.5.17  | 17) Right-wing parties topic                   |
|     | 5.5.18  | 18) Junk topic                                 |
| 5.6 | Interp  | retation                                       |
|     | 5.6.1   | Correlation between topics                     |
|     | 562     | Topic variation over time                      |

| 6 | FEI | R: Facial Emotion Recognition Analysis                                        | 162    |
|---|-----|-------------------------------------------------------------------------------|--------|
|   | 6.1 | Import the datasets                                                           | 162    |
|   | 6.2 | Conte datasets                                                                | 168    |
|   | 6.3 | Letta datasets                                                                | 172    |
|   | 6.4 | Meloni datasets                                                               | 174    |
|   | 6.5 | Renzi datasets                                                                | 178    |
|   | 6.6 | Salvini datasets                                                              | 180    |
|   | 6.7 | Create dataset with the proportion of the emotions registered for each leader | er 182 |
|   | 6.8 | Results                                                                       | 182    |

# 1 Data cleaning

### 1.1 Import the dataset and check variables

```
# import the data
tw <- read_csv("data/large_files/politicians_final_corrected.csv",</pre>
                 show_col_types = FALSE )
#save(tw,file="data/tw.Rda")
kable(colnames(tw), col.names = "variables")
 variables
 tw_screen_name
 nome
 tweet_testo
 creato_il
 creato\_il\_code
 url
 party_id
 genere
 chamber
 status
```

### 1.2 Adjust date.time format

#### 1.2.1 Check the conversion

```
check_dates <- tw %>% select(creato_il,date)
kable(head(check_dates), col.names = c("Old date", "New date"))
```

| Old date   | New date   |
|------------|------------|
| 2021-02-13 | 2021-02-13 |
| 2021-02-09 | 2021-02-09 |
| 2021-02-07 | 2021-02-07 |
| 2021-01-21 | 2021-01-21 |
| 2021-01-21 | 2021-01-21 |
| 2021-01-20 | 2021-01-20 |
|            |            |

kable(tail(check\_dates), col.names = c("Old date", "New date"))

| Old date                       | New date   |
|--------------------------------|------------|
| Mon Dec 28 09:51:35 +0000 2020 | 2020-12-28 |
| Tue Jul 20 11:15:44 +0000 2021 | 2021-07-20 |
| Thu Nov 26 13:46:51 +0000 2020 | 2020-11-26 |
| Fri Oct 15 17:28:57 +0000 2021 | 2021-10-15 |
| Wed Jun 03 12:22:31 +0000 2020 | 2020-06-03 |
| Fri Dec 03 21:01:20 +0000 2021 | 2021-12-03 |

### 1.3 Create the week variable

```
tw <- tw %>% mutate(week = cut.Date(date, breaks = "1 week", labels = FALSE))
```

#### 1.3.1 Check the variable

Inspect the first and the last dates and check if the number of weeks is correct

```
max(tw$date)

## [1] "2022-04-18"

min(tw$date)

## [1] "2020-01-01"

difftime(max(tw$date), min(tw$date), units = "weeks")

## Time difference of 119.7143 weeks
```

#### 1.4 Create the month variable

```
tw <- tw %>% mutate(month = cut.Date(date, breaks = "1 month", labels = FALSE))
```

#### 1.4.1 Check the number of month

```
max(tw$month)

## [1] 28

length(seq(from = min(tw$date), to = max(tw$date), by = 'month'))

## [1] 28
```

#### 1.5 Create the trimester variable

```
tw <- tw %>% mutate(quarter = cut.Date(date, breaks = "1 quarter", labels = FALSE))
```

#### 1.5.1 Check the number of trimesters

```
max(tw$quarter)

## [1] 10

length(seq.Date(from = min(tw$date), to = max(tw$date), by = 'quarter'))

## [1] 10
```

#### 1.6 Create the year variables

```
tw <- tw %>% mutate(year = cut.Date(date, breaks = "year", labels = FALSE))
```

#### 1.6.1 Check the number of years

```
max(tw$year)

## [1] 3

length(seq.Date(from = min(tw$date), to = max(tw$date), by = 'year'))

## [1] 3
```

### 1.7 Count the number of missing values

```
sum(is.na(tw))
## [1] 154672
```

#### 1.7.1 Inspect where are the missings

```
missings <- c(
sum(is.na(tw$tw_screen_name)),
sum(is.na(tw$nome)),
sum(is.na(tw$tweet_testo)),
sum(is.na(tw$creato_il)),
sum(is.na(tw$creato_il_code)),
sum(is.na(tw$url)),
sum(is.na(tw$party_id)),
sum(is.na(tw$genere)),
sum(is.na(tw$chamber)),
sum(is.na(tw$status)),
sum(is.na(tw$date)),
sum(is.na(tw$week)),
sum(is.na(tw$month)),
sum(is.na(tw$quarter)),
sum(is.na(tw$year)))
missing_df <- data.frame(colnames(tw), missings)</pre>
kable(missing_df)
```

| colnames.tw.   | missings |
|----------------|----------|
| tw_screen_name | 0        |
| nome           | 0        |
| tweet_testo    | 6494     |
| creato_il      | 0        |
| creato_il_code | 0        |
| url            | 148178   |
| party_id       | 0        |
| genere         | 0        |
| chamber        | 0        |
| status         | 0        |
| date           | 0        |
| week           | 0        |
| month          | 0        |
| quarter        | 0        |
| year           | 0        |
|                |          |

# 1.7.2 Remove rows with missing tweets

```
sum(is.na(tw$tweet_testo))

## [1] 6494

tw <- tw %>% drop_na(tweet_testo)
```

### 1.8 Check that the variables make sense

```
unique(tw$party_id)
## [1] "PD"
                      "FDI"
                                     "M5S"
                                                    "FI"
                                                                   "REG LEAGUES"
## [6] "MISTO"
                      "LEGA"
                                     "IV"
                                                    "INDIPENDENTE" "CI"
## [11] "LEU"
unique(tw$genere)
## [1] "male" "female" "male "
unique(tw$chamber)
## [1] "NotParl" "Senate" "Camera"
unique(tw$status)
## [1] "sottosegretario" "presregione" "viceministro"
                                                            "ministro"
## [5] "segretario"
                        "Parl"
1.8.1 Adjust the variable genere
# Remove space from genere variable [RUN ONLY ONCE!]
a <- unique(tw$genere)</pre>
a[3]
## [1] "male "
which(tw$genere == a[3])
## [1] 33300 33301 33302 33303 33304
```

```
tw$genere <- gsub(a[3],"male",tw$genere)</pre>
```

#### 1.8.2 Verify the substitution

```
which(tw$genere == a[3])

## integer(0)

unique(tw$genere)

## [1] "male" "female"
```

Now all the variables are ready for next steps

# 1.9 Create a new dataset selecting only necessary informations

### 1.10 Create the corpus

```
corpus <- corpus(dataset, text = "tweet_testo")
ndoc(corpus)
## [1] 391197</pre>
```

#### 1.11 Create the DFM

```
# Split the corpus into single tokens (remain positional)
doc.tokens <- tokens(corpus,</pre>
                                   remove_punct = TRUE,
                                   remove_numbers = TRUE,
                                   remove_symbols = TRUE,
                                   remove_url = TRUE)
# Import my stopwords
my_word <- as.list(read_csv("data/it_stopwords_new_list.csv",</pre>
                              show_col_types = FALSE))
# Attach unrecognized symbols
my_list <- c(" ","c'è","+"," ", my_word$stopwords,</pre>
              stopwords('italian'), stopwords("english"))
# Save my_list
#save(my_list,file="data/my_list.Rda")
doc.tokens <- tokens select(doc.tokens, my list, selection='remove')</pre>
DFM <- dfm(doc.tokens, tolower = TRUE)</pre>
```

### 1.12 Remove the emoji

```
# Create a copy of the dfm
test <- DFM
# Remove from the copy all the non ASCII carachters
test@Dimnames$features <- gsub("[^\x01-\x7F]", "", test@Dimnames$features)
# Check the difference from the list of features before and after apply gsub
a <- unique(test@Dimnames$features)</pre>
b <- unique(DFM@Dimnames$features)</pre>
setdiff(b,a) #I have selected also words that must not be removed
# Create an object with the features after remove non ASCII characters
c <- test@Dimnames$features</pre>
# Create an object with the original features
d <- DFM@Dimnames$features</pre>
# Create the list of the removed features
diff <- setdiff(d,c)</pre>
emoji <- diff[diff %>% nchar() < 4]</pre>
emoji <- list(emoji)</pre>
# Now i can remove this list from the dfm
DFM <- dfm_remove(DFM, emoji)</pre>
#save(DFM, file="data/dfm.Rda")
```

Now the data are ready for the next analysis



Figure 1: Emoji removed

# 2 Preliminar analysis

#### 2.1 Who is inside this dataset?

```
# Number of parliamentarians
n_parl <- length(unique(dataset$nome))
n_parl

## [1] 730

# How many parliamentarians for each party_id?
n_parl_party <- dataset %>% select(party_id, nome) %>%
    group_by(party_id) %>% unique() %>% count() %>%
    arrange(desc(n))
kable(n_parl_party)
```

| party_id     | n   |
|--------------|-----|
| M5S          | 197 |
| PD           | 144 |
| LEGA         | 134 |
| FI           | 96  |
| MISTO        | 71  |
| FDI          | 39  |
| CI           | 17  |
| LEU          | 15  |
| REG_LEAGUES  | 7   |
| INDIPENDENTE | 6   |
| IV           | 5   |
|              |     |

### # Gender composition

n\_gender <- dataset %>% select(genere, nome) %>%
 group\_by(genere) %>% unique() %>% count()
kable(n\_gender)

| genere | n   |
|--------|-----|
| female | 258 |
| male   | 472 |

### # Wich is the period of analysis?

max(tw\$date)

## [1] "2022-04-18"

min(tw\$date)

## [1] "2020-01-01"

#### 2.2 Topfeatures frequency

```
aspetto campagna scuole passo piazza cose speranza famiglia camera misure servizio guerra maggioranza draghi salvini lavoratori sera proposte davvero comune donna sera proposte davora misure servizio guerra maggioranza draghi sera proposte davvero comune sera proposte davoratori sera proposte da
                                                                                    vacconsignation of the consignation of the consistency of the consistency
                                                                                                                                                                                                              onna #covid 6 #covid 10 #c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           solidarietà vero senso @legasalvini
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          mondo aŭguri green
                                          auguri green

dobbiamo lega italiani paese milioni comunità roma giustizia politico
fatti a donne anni lavoro do città sindase
                                                          sociale @forza_italia
ripartire constant of the context of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              senato bambini
o sinistra
o anno
o #m5s
                                          o .=
possiamo italiano
parlare intervista
                                                                  territorio importante
                                                            istituzioni salute pd voto politica cittadini
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             democrazia
                                                                            possono giornata rai ministro insieme buona forze E #roma
                                                                                                                         d'italia #governo dare @pdnetworksostegno pass sostenere violenza decreto diritti m5 miliardi sistema @stampasgarbi pandemia matteo devono centro#conte europeaemergenza repubblica popolo
                                                                                                                                                                                                                                                                                                                  @giuseppeconteit mattina mattina @giorgiameloni
```

```
# Plot frequency of the topfeatures in the DFM
features_dfm <- textstat_frequency(DFM, n = 50)

# Sort by reverse frequency order
features_dfm$feature <- with(features_dfm, reorder(feature, -frequency))
ggplot(features_dfm, aes(x = feature, y = frequency)) +
    geom_point() +
    theme(axis.text.x = element_text(angle = 90, hjust = 1))</pre>
```



#### 2.2.1 Relative frequency of the topfeatures by Party ID

```
# group and weight the DFM

dfm_party_weight <- dfm_group(DFM, groups = party_id) %>%

    dfm_weight(scheme = "prop")

# Plot relative frequency by party_id

freq_weight <- textstat_frequency(dfm_party_weight, n = 7, groups = party_id)

ggplot(data = freq_weight, aes(x = nrow(freq_weight):1, y = frequency)) +
    geom_point() +
    facet_wrap(~ group, scales = "free") +</pre>
```



### 2.3 Most common hashtag

```
tag_dfm <- dfm_select(DFM, pattern = "#*")
toptag <- names(topfeatures(tag_dfm, 20))
toptag</pre>
```

```
##
    [1] "#coronavirus"
                             "#covid19"
                                                 "#lega"
                                                                      "#governo"
    [5] "#salvini"
                             "#conte"
                                                  "#m5s"
                                                                      "#draghi"
##
    [9] "#fratelliditalia"
                             "#roma"
                                                  "#senato"
                                                                      "#iostoconsalvini"
##
   [13] "#covid"
                             "#greenpass"
                                                  "#italia"
                                                                      "#scuola"
## [17] "#mes"
                             "#covid 19"
                                                 "#pnrr"
                                                                      "#mattarella"
```



#### 2.3.1 Most common hashtag by Gender



#### 2.3.2 Co-occurrence Plot of hashtags



# 2.4 Most frequently mentioned usernames

```
user_dfm <- dfm_select(DFM, pattern = "@*")
topuser <- names(topfeatures(user_dfm, 20, scheme = "docfreq"))
kable(topuser, col.names = "Most mentioned username")</pre>
```

| Most mentioned username |
|-------------------------|
| @matteosalvinimi        |
| @fratelliditalia        |
| @forza_italia           |
| @pdnetwork              |
| @stampasgarbi           |
| @mov5stelle             |
| @legasalvini            |
| @italiaviva             |
| @giuseppeconteit        |
| @giorgiameloni          |
| @montecitorio           |
| @deputatipd             |
| @repubblica             |
| @vocedelpatriota        |
| @legacamera             |
| @berlusconi             |
| @matteorenzi            |
| @fattoquotidiano        |
| @enricoletta            |
| @borghi_claudio         |
|                         |

### 2.4.1 Most frequently mentioned usernames by gender

```
# group and weight the DFM
user_dfm_gender_weight <- dfm_group(user_dfm, groups = genere) %>%
   dfm_weight(scheme = "prop")

user_tstat_freq <- textstat_frequency(
   user_dfm_gender_weight,</pre>
```

```
n = 20,
groups = user_dfm_gender_weight$genere)
```



#### 2.4.2 Co-occurrence plot of usernames



### 2.5 How many times a politician cite his/her party

```
party_citations <- data.frame(first = vector(), second = vector())
system.time(
for (i in unique(tw$party_id))
{
    a <- paste("#", i ,sep = "")
    b <- tw %>% filter(grepl(a,tweet_testo)&party_id== i) %>% count()
    c <- tw %>% filter(party_id == i) %>% count()
    d <- (b/c) * 100
    party_citations <- rbind(party_citations, cbind(i,b,c,d))</pre>
```

"number of tweets", "% of citations"))

| Party        | Number of citations | number of tweets | % of citations |
|--------------|---------------------|------------------|----------------|
| M5S          | 1581                | 54418            | 2.9052887      |
| LEGA         | 511                 | 87162            | 0.5862647      |
| FDI          | 131                 | 36177            | 0.3621085      |
| PD           | 179                 | 91997            | 0.1945716      |
| IV           | 5                   | 3129             | 0.1597955      |
| FI           | 62                  | 65264            | 0.0949988      |
| CI           | 1                   | 6954             | 0.0143802      |
| REG_LEAGUES  | 0                   | 1398             | 0.0000000      |
| MISTO        | 0                   | 34644            | 0.0000000      |
| INDIPENDENTE | 0                   | 2186             | 0.0000000      |
| LEU          | 0                   | 7868             | 0.0000000      |

In the above script i search the # for the parliamentary group, but is very unlikely, for example, that someone use the #IV for talking about the "Italia Viva" party, so i decided to enrich the dataframe creating a new variable with the name of the official twitter page for every party, and repeat the search using it.

I created the variable party\_Page for only those parliamentary group that has a direct connection with a party (i excluded Reg\_leagues, misto and indipendente)

2.5.1 Create the variable with the name of the official Twitter account

2.5.2 Count for each party how many times a politician cite their respective party

| Party            | Number of citations | number of tweets | % of citations |
|------------------|---------------------|------------------|----------------|
| @FratellidItalia | 5842                | 36177            | 16.1483816     |
| @forza_italia    | 5203                | 65264            | 7.9722358      |
| @Mov5Stelle      | 3873                | 54418            | 7.1171304      |
| @ItaliaViva      | 201                 | 3129             | 6.4237776      |
| @pdnetwork       | 4194                | 91997            | 4.5588443      |
| @LegaSalvini     | 3364                | 87162            | 3.8594800      |
| @coraggio_italia | 131                 | 6954             | 1.8838079      |
| @liberi_uguali   | 16                  | 7868             | 0.2033554      |

# 2.6 How many times the party leader is cited by his/her party

#### 2.6.1 Create the variable with the official leader's account for every party

```
tw <- tw %>% mutate(party_leader =
if_else(party_id == "PD" & date < "2021-03-14", "@nzingaretti",
if_else(party_id == "PD" & date > "2021-03-14", "@EnricoLetta",
if_else( party_id == "FDI", "@GiorgiaMeloni",
if_else(party_id == "M5S" &date < "2020-01-22" , "@luigidimaio",
if_else(party_id == "M5S" &date > "2020-01-22" &date < "2021-08-06", "@vitocrimi",
if_else(party_id == "M5S" & date > "2021-08-061", "@GiuseppeConteIT",
if_else(party_id == "FI", "@berlusconi",
```

```
if_else(party_id == "LEGA", "@matteosalvinimi",
if_else(party_id == "IV", "@matteorenzi",
if_else(party_id == "CI", "@LuigiBrugnaro",
if_else(party_id == "LEU", "@robersperanza",
"NA")))))))))))))
```

2.6.2 Count for each party how many times a politician cite his/ her party leader

| Leader           | Number of citations | Number of tweets | % of citations |
|------------------|---------------------|------------------|----------------|
| @matteosalvinimi | 4826                | 87162            | 5.5368165      |
| @GiorgiaMeloni   | 1745                | 36177            | 4.8235066      |
| @GiuseppeConteIT | 444                 | 15517            | 2.8613778      |
| @luigidimaio     | 30                  | 1184             | 2.5337838      |
| @berlusconi      | 1533                | 65264            | 2.3489213      |
| @EnricoLetta     | 709                 | 44520            | 1.5925427      |
| @matteorenzi     | 46                  | 3129             | 1.4701182      |
| @nzingaretti     | 475                 | 47305            | 1.0041222      |
| @robersperanza   | 45                  | 7868             | 0.5719370      |
| @vitocrimi       | 107                 | 37544            | 0.2849989      |
| @LuigiBrugnaro   | 19                  | 6954             | 0.2732240      |

### 2.7 How many times a politician cite itself in the tweet

```
self_citations <- data.frame(first = vector(), second = vector())
system.time(
for (i in unique(tw$tw_screen_name))
{
    a <- paste("@", i ,sep = "")
    b <- tw %>% filter(grepl(a,tweet_testo) & tw_screen_name== i) %>% count()
    c <- tw %>% filter(tw_screen_name == i) %>% count()
    d <- (b/c) * 100
    self_citations <- rbind(self_citations, cbind(i,b,c,d))
}

#save(self_citations, file = "data/self_citations.Rda")</pre>
```

| Politician             | Number of citations | Number of tweets | % of citations |
|------------------------|---------------------|------------------|----------------|
| wandaferro1            | 32                  | 55               | 58.1818182     |
| FrassinettiP           | 32                  | 163              | 19.6319018     |
| albertlaniece          | 51                  | 282              | 18.0851064     |
| Luca_Sut               | 20                  | 341              | 5.8651026      |
| DalilaNesci            | 17                  | 341              | 4.9853372      |
| PatassiniTullio        | 13                  | 714              | 1.8207283      |
| ${\it matteodallosso}$ | 3                   | 170              | 1.7647059      |
| sbonaccini             | 33                  | 2884             | 1.1442441      |
| sfnlcd                 | 9                   | 1308             | 0.6880734      |
| gianluc_ferrara        | 3                   | 560              | 0.5357143      |
| adolfo_urso            | 7                   | 1966             | 0.3560529      |
| gualtierieurope        | 4                   | 1432             | 0.2793296      |
| MassimoUngaro          | 3                   | 1135             | 0.2643172      |
| EugenioGiani           | 3                   | 1235             | 0.2429150      |
| pierofassino           | 3                   | 1255             | 0.2390438      |
| ecdelre                | 4                   | 2113             | 0.1893043      |
| guglielmopicchi        | 3                   | 3234             | 0.0927644      |

# 3 Dictionary analysis

### 3.1 Create the dictionary

I imported the excel file with the words for the dictionaries, excluding NA's.

```
# import dictionaries file
dict <- read excel("data/populism dictionaries.xlsx")</pre>
variable.names(dict)
## [1] "Rooduijn Pauwels Italian"
## [2] "Grundl Italian adapted"
## [3] "Decadri Boussalis"
## [4] "Decadri_Boussalis_Grundl_People"
## [5] "Decadri_Boussalis_Grundl_Common Will"
## [6] "Decadri_Boussalis_Grundl_Elite"
# create the dictionary
Rooduijn Pauwels Italian <-
  dictionary(list(populism =
                     (dict$Rooduijn Pauwels Italian
                      [!is.na(dict$Rooduijn Pauwels Italian)])))
Grundl_Italian_adapted <-</pre>
  dictionary(list(populism =
                     dict$Grundl_Italian_adapted
                   [!is.na(dict$Grundl_Italian_adapted)]))
Decadri_Boussalis_Grundl <-</pre>
  dictionary(list(people =
```

```
dict$Decadri_Boussalis_Grundl_People
[!is.na(dict$Decadri_Boussalis_Grundl_People)],
common_will =
    dict$`Decadri_Boussalis_Grundl_Common Will`
[!is.na(dict$`Decadri_Boussalis_Grundl_Common Will`)],
elite =
    dict$Decadri_Boussalis_Grundl_Elite
[!is.na(dict$Decadri_Boussalis_Grundl_Elite)]))
```

| dictionaries             | n.words |
|--------------------------|---------|
| Rooduijn_Pauwels_Italian | 18      |
| Grundl_Italian_adapted   | 135     |
| Decadri_Boussalis_Grundl | 77      |

# 3.1.1 Group and weight the dfm

```
# By party & quarter

dfm_weigh_p_quart <- dfm_group(DFM, groups = interaction(party_id, quarter))%>%

dfm_weight(scheme = "prop")
```

#### Apply the dictionaries

#### 3.2 Decadri Boussalis Grundl

```
# Dictionary analysis with Decadri_Boussalis_Grundl
# By quarter
dfm_dict1 <- dfm_lookup(dfm_weigh_p_quart, dictionary = Decadri_Boussalis_Grundl)</pre>
```

#### 3.2.1 Transform the DFM into an ordinary dataframe

```
data_dict1 <- dfm_dict1 %>%
  quanteda::convert(to = "data.frame") %>%
  cbind(docvars(dfm_dict1))

# Add variable with general level of populism
data_dict1 <- data_dict1 %>%
  mutate(populism = (people + common_will + elite) * 100)
```

#### 3.2.2 Level of populism in time

The code is only shown for the "PEOPLE" component but is identical for the others

# Populism level over quarters of the 'people' component







# Populism level over quarters of the 'elite' component



# Compare the 3 components of the populism level



```
#Over time general level populism (quarters)

data_quarter_general <- aggregate(x = data_dict1$populism, # Specify data column

by = list(data_dict1$quarter), # Specify group indicator

FUN = mean) # Specify function (i.e. mean)

data_quarter_general$perc <- data_quarter_general$x</pre>
```



# 3.2.3 Frequencies of the 3 components of populism for each parliamentary group



#### 3.2.4 Ranking of parliamentary groups according to their level of populism

The code is only shown for the main "POPULISM" indicator but is identical for the single components

```
ggplot(data=data_party, aes(x=Group.1, y=perc)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
  theme_minimal()+
  geom_jitter(width=0.15)+
  theme(axis.text.x = element_text(angle = 45, hjust=1))+
  ylab("Percentage of populist words") +
  xlab("Parliamentary groups")+
  labs(title = "LEVEL OF POPULISM")
```



Table 1: Populism

| Party        | Perc  |
|--------------|-------|
| FDI          | 0.799 |
| M5S          | 0.763 |
| LEGA         | 0.696 |
| MISTO        | 0.637 |
| FI           | 0.618 |
| PD           | 0.604 |
| LEU          | 0.591 |
| CI           | 0.499 |
| IV           | 0.484 |
| INDIPENDENTE | 0.462 |
| REG_LEAGUES  | 0.418 |

Table 2: People

| Perc  |
|-------|
| 0.539 |
| 0.487 |
| 0.454 |
| 0.449 |
| 0.444 |
| 0.423 |
| 0.422 |
| 0.421 |
| 0.417 |
| 0.392 |
| 0.335 |
|       |





Table 3: Common will

| Party        | Perc  |
|--------------|-------|
| LEGA         | 0.048 |
| M5S          | 0.044 |
| FI           | 0.040 |
| MISTO        | 0.039 |
| LEU          | 0.030 |
| PD           | 0.027 |
| FDI          | 0.025 |
| IV           | 0.010 |
| CI           | 0.008 |
| INDIPENDENTE | 0.004 |
| REG_LEAGUES  | 0.000 |



Table 4: Elite

| Perc  |
|-------|
| 0.287 |
| 0.225 |
| 0.179 |
| 0.175 |
| 0.168 |
| 0.157 |
| 0.129 |
| 0.083 |
| 0.057 |
| 0.048 |
| 0.004 |
|       |



#### 3.2.5 Bivariate regression for check t-test

```
# bivariate regression for check t-test
data_dict1$factor_party <- as.factor(data_dict1$party_id)</pre>
data_dict1$factor_party <- relevel(data_dict1$factor_party, ref = "PD")</pre>
data_dict1$factor_quarter <- as.factor(data_dict1$quarter)</pre>
data dict1$factor quarter <- relevel(data dict1$factor quarter, ref = "8")</pre>
a3 <- lm(populism ~ factor quarter + factor party, data dict1 )
summary(a3)
##
## Call:
## lm(formula = populism ~ factor_quarter + factor_party, data = data_dict1)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
## -0.30617 -0.06571 0.00588 0.05535 0.32599
##
## Coefficients:
##
                             Estimate Std. Error t value Pr(>|t|)
                                         0.05058 12.046 < 2e-16 ***
## (Intercept)
                              0.60934
## factor_quarter1
                              0.04082
                                         0.05058
                                                   0.807 0.421838
                             -0.09418
                                         0.05058 -1.862 0.065878 .
## factor_quarter2
## factor_quarter3
                             0.13606
                                         0.05058
                                                   2.690 0.008522 **
## factor_quarter4
                            -0.04390
                                         0.05058 -0.868 0.387769
                                         0.05058 -2.009 0.047500 *
## factor quarter5
                            -0.10164
                                         0.05058 -1.554 0.123684
## factor quarter6
                            -0.07861
```

```
## factor quarter7
                                       0.05058
                            0.04596
                                                 0.909 0.365971
## factor quarter9
                            0.09022
                                       0.05058
                                                 1.783 0.077879 .
## factor quarter10
                                       0.05058 -0.864 0.390079
                           -0.04369
## factor partyCI
                           -0.10503
                                       0.05305 -1.980 0.050793 .
                            0.19458
                                       0.05305
                                                 3.668 0.000414 ***
## factor partyFDI
                                                 0.256 0.798859
## factor partyFI
                            0.01356
                                       0.05305
## factor partyINDIPENDENTE -0.14233
                                       0.05305 -2.683 0.008687 **
## factor_partyIV
                           -0.12078
                                       0.05305 -2.277 0.025184 *
## factor_partyLEGA
                            0.09147
                                       0.05305
                                                 1.724 0.088134 .
## factor partyLEU
                           -0.01339
                                       0.05305 -0.252 0.801282
## factor partyM5S
                            0.15814
                                       0.05305
                                                 2.981 0.003698 **
## factor partyMISTO
                            0.03265
                                       0.05305
                                                0.615 0.539799
                                       0.05305 -3.514 0.000693 ***
## factor partyREG LEAGUES -0.18644
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1186 on 90 degrees of freedom
## Multiple R-squared: 0.6326, Adjusted R-squared: 0.5551
## F-statistic: 8.157 on 19 and 90 DF, p-value: 1.35e-12
```

#### 3.2.6 Trends in the level of populism for each parliamentary group over time

```
#By party & time (quarters)
parties_time <- data_dict1 %>% select(populism, party_id, quarter)

right_party <- data_dict1 %>% select(populism, party_id, quarter) %>%
  filter(party_id == "FDI"|party_id =="FI"|party_id =="LEGA")

left_party <- data_dict1 %>% select(populism, party_id, quarter) %>%
  filter(party_id == "LEU"|party_id =="M5S"|party_id =="PD"|party_id =="IV")
```

# Level of populism over time for left-wing parties





# 3.3 Rooduijn\_Pauwels\_Italian

#### 3.3.1 Level of populism over time

# General level of populism over quarters



#### 3.3.2 Ranking of parliamentary groups according their populism level

| Group.1      | perc  |
|--------------|-------|
| FDI          | 0.274 |
| LEGA         | 0.216 |
| LEU          | 0.160 |
| MISTO        | 0.157 |
| PD           | 0.149 |
| M5S          | 0.145 |
| FI           | 0.116 |
| REG_LEAGUES  | 0.083 |
| IV           | 0.057 |
| CI           | 0.041 |
| INDIPENDENTE | 0.003 |
|              |       |

```
ggplot(data=data_party2, aes(x=Group.1, y=perc)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
  theme_minimal()+
  ylab("Percentage of populist words")+
  xlab("Parliamentary groups")+
  labs(title = "LEVEL OF POPULISM")
```



# 3.4 Grundl\_Italian\_adapted

#### 3.4.1 Level of populism in time

# General level of populism over quarters



#### 3.4.2 Most populist parliamentary group

| Group.1      | perc  |
|--------------|-------|
| FDI          | 0.255 |
| M5S          | 0.232 |
| MISTO        | 0.227 |
| LEGA         | 0.224 |
| FI           | 0.193 |
| LEU          | 0.188 |
| PD           | 0.174 |
| CI           | 0.160 |
| REG_LEAGUES  | 0.109 |
| INDIPENDENTE | 0.105 |
| IV           | 0.081 |
|              |       |

```
ggplot(data=data_party3, aes(x=Group.1, y=perc)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=perc), vjust=1.6, color="white", size=3.5)+
  theme_minimal()+
  ylab("Percentage of populist words")+
  xlab("Parliamentary groups")+
  labs(title = "LEVEL OF POPULISM")
```



# 3.5 Compare the general level of populism over time for the dictionaries

# Compare how the different dictionaries score



# 4 Emotion analysis

# 4.1 Import the LIWC2007\_Dictionary

```
# Data
load("data/dfm.Rda")
# Dictionary LWIC Complete
LWIC ITA <- dictionary(file = "data/large files/Italian LIWC2007 Dictionary.dic",
                       format = "LIWC")
## note: removing empty key: Formale
## note: removing empty key: Passivo
emotions <- c("Emo_Pos", "Emo_Neg", "Ansia", "Rabbia", "Tristezza", "Ottimismo" )</pre>
# Count the number of words
n.words <- c(
length(LWIC_ITA[["Emo_Pos"]]),
length(LWIC_ITA[["Emo_Neg"]]),
length(LWIC_ITA[["Ansia"]]),
length(LWIC_ITA[["Rabbia"]]),
length(LWIC_ITA[["Tristez"]]),
length(LWIC_ITA[["Ottimis"]])
)
num_words <- data.frame(emotions,n.words)</pre>
# Extracting only the keys we need
```

#### kable(num\_words)

| emotions  | n.words |
|-----------|---------|
| Emo_Pos   | 200     |
| Emo_Neg   | 663     |
| Ansia     | 65      |
| Rabbia    | 227     |
| Tristezza | 226     |
| Ottimismo | 93      |
|           |         |

# 4.2 Group and weight the dfm

```
# By party & quarter

dfm_weigh_p_quart <- dfm_group(DFM, groups = interaction(party_id, quarter))%>%

dfm_weight(scheme = "prop")
```

# 4.3 Apply the dictionary

# Apply Dictionary to DFM

```
DFM_emotions <- dfm_lookup(dfm_weigh_p_quart,</pre>
                            dictionary = myLWIC_ITA)
{\tt DFM\_emotions}
## Document-feature matrix of: 110 documents, 6 features (0.76% sparse) and 3 docvars.
##
                    features
## docs
                        positive
                                    negative
                                                  anxiety
                                                                 anger
                                                                           sadness
     CI.1
                     0.008060854\ 0.02236603\ 0.003405995\ 0.006471390\ 0.004541326
##
##
     FDI.1
                     0.006416312 0.02893245 0.002834199 0.011061250 0.006140765
     FI.1
                     0.006498830 0.02547256 0.003243474 0.007675035 0.006974064
##
     INDIPENDENTE.1 0.005129667 0.01567398 0.001994870 0.005984611 0.003989741
##
##
     IV.1
                     0.008545455 \ 0.02309091 \ 0.003272727 \ 0.009272727 \ 0.006000000
##
     LEGA.1
                     0.006352373 0.02593448 0.003005565 0.008426081 0.006194876
##
                    features
## docs
                       optimism
     CI.1
                     0.01089918
##
##
     FDI.1
                     0.01487955
##
     FI.1
                     0.01447089
##
     INDIPENDENTE.1 0.01025933
##
     IV.1
                     0.01600000
##
     LEGA. 1
                     0.01257350
## [ reached max ndoc ... 104 more documents ]
```

#### 4.3.1 Transform the DFM into an ordinary dataframe

### 4.4 Percentage of the emotions in time

These are the start and end dates of the quarters covered by the analysis

| Trimester | from            | to                |
|-----------|-----------------|-------------------|
| 1         | 01 January 2020 | 31 March 2020     |
| 2         | 01 April 2020   | 30 June 2020      |
| 3         | 01 July 2020    | 30 September 2020 |
| 4         | 01 October 2020 | 31 December 2020  |
| 5         | 01 January 2021 | 31 March 2021     |
| 6         | 01 April 2021   | 30 June 2021      |
| 7         | 01 July 2021    | 30 September 2021 |
| 8         | 01 October 2021 | 31 December 2021  |
| 9         | 01 January 2022 | 31 March 2022     |
| 10        | 01 April 2022   | 18 April 2022     |

The code is only shown for 'positive' but is identical for all emotions















#### Main emotion for each parliamentary group 4.5





The code is only shown for 'positive' but is identical for all emotions

```
# POSITIVE
data party positive <- aggregate(x = data dict emo$positive, # Specify data column
          by = list(data dict emo$party id), # Specify group indicator
          FUN = mean) # Specify function (i.e. mean)
data party positive$perc <- round(data party positive$x,3)</pre>
kable(data_party_positive %>%
        select(Group.1, perc) %>%
        arrange(desc(perc)), caption = "POSITIVE")
```

Table 5: POSITIVE

| Group.1      | perc  |
|--------------|-------|
| LEU          | 0.847 |
| IV           | 0.838 |
| CI           | 0.748 |
| PD           | 0.738 |
| FI           | 0.706 |
| LEGA         | 0.667 |
| MISTO        | 0.616 |
| FDI          | 0.598 |
| M5S          | 0.584 |
| INDIPENDENTE | 0.560 |
| REG_LEAGUES  | 0.554 |

```
ggplot(data=data_party_positive, aes(x=Group.1, y=perc)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=perc), vjust=0, color="black", size=3.5)+
  geom_abline(slope=0, intercept= mean(data_party_positive$perc),lty=2) +
  theme_minimal()+
  xlab("Parliamentary group")+
  labs(title = "Positive Emotion")+
  coord_flip()
```



Table 6: NEGATIVE

| perc  |
|-------|
| 3.006 |
| 2.741 |
| 2.512 |
| 2.509 |
| 2.455 |
| 2.316 |
| 2.257 |
| 2.125 |
| 1.772 |
| 1.734 |
| 1.338 |
|       |





Table 7: ANXIETY

| Group.1      | perc  |
|--------------|-------|
| LEU          | 0.345 |
| FDI          | 0.312 |
| PD           | 0.277 |
| FI           | 0.276 |
| LEGA         | 0.275 |
| MISTO        | 0.258 |
| IV           | 0.243 |
| M5S          | 0.241 |
| REG_LEAGUES  | 0.227 |
| CI           | 0.199 |
| INDIPENDENTE | 0.067 |
|              |       |





Table 8: ANGER

| perc  |
|-------|
| 1.132 |
| 1.068 |
| 0.891 |
| 0.852 |
| 0.805 |
| 0.801 |
| 0.794 |
| 0.793 |
| 0.470 |
| 0.468 |
| 0.345 |
|       |





Table 9: SADNESS

| Group.1      | perc  |
|--------------|-------|
| FDI          | 0.673 |
| FI           | 0.663 |
| PD           | 0.638 |
| M5S          | 0.591 |
| LEU          | 0.587 |
| LEGA         | 0.573 |
| MISTO        | 0.572 |
| IV           | 0.530 |
| CI           | 0.523 |
| REG_LEAGUES  | 0.511 |
| INDIPENDENTE | 0.414 |

## Sadness emotion



# 4.5.1 Are the average values of positive/negative emotions for each party statistically different from each other?

The reference category is PD

```
# bivariate regression for check t-test
# create the factor variables for party and quarter
data dict emo$factor party <- as.factor(data dict emo$party id)</pre>
data dict emo$factor quarter <- as.factor(data dict emo$quarter)</pre>
# Check the mean values
summary(data_dict_emo$positive)
##
                              Mean 3rd Qu.
      Min. 1st Qu. Median
                                               Max.
## 0.3281 0.5863 0.6542 0.6778 0.7546 1.1593
summary(data_dict_emo$negative)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
## 0.9522 1.9364 2.3318 2.2515 2.5867 3.2025
# Set PD as reference category for party_id
data_dict_emo$factor_party <- relevel(data_dict_emo$factor party, ref = "PD")</pre>
# Set 5 as reference category for quarter
data_dict_emo$factor_quarter <- relevel(data_dict_emo$factor_quarter, ref = "5")</pre>
# Run the regressions
# POSITIVE
positive_model <- lm(positive ~ factor_quarter + factor_party, data_dict_emo )</pre>
summary(positive model)
##
## Call:
```

```
## lm(formula = positive ~ factor_quarter + factor_party, data = data_dict_emo)
##
## Residuals:
##
       Min
                  1Q
                      Median
                                   3Q
                                           Max
## -0.26194 -0.06684 0.00093 0.04680
                                       0.33861
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
                            0.710990
                                       0.052210 13.618 < 2e-16 ***
## (Intercept)
## factor_quarter1
                            0.035165
                                       0.052210
                                                 0.674 0.50234
## factor_quarter2
                            0.011541
                                       0.052210
                                                 0.221 0.82556
## factor_quarter3
                            0.039079
                                       0.052210
                                                 0.748 0.45611
## factor quarter4
                                       0.052210
                            0.032630
                                                 0.625
                                                        0.53358
                                       0.052210 - 0.792
## factor_quarter6
                           -0.041367
                                                        0.43026
## factor_quarter7
                            0.030252
                                       0.052210
                                                        0.56376
                                                 0.579
## factor_quarter8
                            0.024362
                                       0.052210
                                                 0.467
                                                         0.64191
                                       0.052210
## factor_quarter9
                            0.052797
                                                 1.011 0.31462
                                       0.052210
                                                 1.734 0.08632 .
## factor_quarter10
                            0.090541
## factor_partyCI
                            0.009462
                                       0.054759
                                                 0.173
                                                        0.86321
## factor_partyFDI
                           -0.140003
                                       0.054759
                                                 -2.557
                                                         0.01224 *
## factor_partyFI
                           -0.032835
                                       0.054759
                                                 -0.600
                                                         0.55026
## factor partyINDIPENDENTE -0.178239
                                       0.054759 -3.255 0.00160 **
                                       0.054759
                                                 1.816
                                                         0.07272 .
## factor partyIV
                            0.099436
## factor partyLEGA
                           -0.071907
                                       0.054759 - 1.313
                                                         0.19247
                                                 1.984
## factor partyLEU
                            0.108649
                                       0.054759
                                                         0.05029 .
## factor_partyM5S
                           -0.154273
                                       0.054759 - 2.817
                                                         0.00595 **
## factor_partyMISTO
                           -0.122489
                                       0.054759
                                                 -2.237 0.02776 *
## factor_partyREG_LEAGUES -0.184902
                                       0.054759 -3.377 0.00109 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.1224 on 90 degrees of freedom
## Multiple R-squared: 0.4781, Adjusted R-squared: 0.3679
## F-statistic: 4.339 on 19 and 90 DF, p-value: 1.009e-06
#NEGATIVE
negative_model <- lm(negative ~ factor_quarter + factor_party, data_dict_emo )</pre>
summary(negative_model)
##
## Call:
## lm(formula = negative ~ factor_quarter + factor_party, data = data_dict_emo)
##
## Residuals:
##
       Min
                  10
                      Median
                                    30
                                            Max
## -0.79357 -0.14849 0.00431 0.15790 0.46872
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             2.560662
                                       0.108714 23.554 < 2e-16 ***
                            0.002167
                                       0.108714
                                                 0.020 0.98414
## factor quarter1
## factor_quarter2
                           -0.077716
                                       0.108714 -0.715 0.47654
## factor_quarter3
                           -0.077039
                                       0.108714 -0.709
                                                         0.48038
## factor_quarter4
                            0.175647
                                       0.108714
                                                 1.616 0.10966
## factor_quarter6
                           -0.225225
                                       0.108714 -2.072 0.04115 *
## factor_quarter7
                           -0.082757
                                       0.108714 -0.761 0.44851
## factor_quarter8
                           -0.012345
                                       0.108714 -0.114 0.90984
## factor_quarter9
                            0.028457
                                       0.108714 0.262 0.79410
                                       0.108714 -2.045 0.04374 *
## factor_quarter10
                           -0.222362
                           -0.739253
                                       0.114020 -6.484 4.70e-09 ***
## factor_partyCI
## factor partyFDI
                                       0.114020 4.341 3.71e-05 ***
                            0.494954
```

```
0.114020 -0.492 0.62366
## factor_partyFI
                          -0.056139
## factor partyINDIPENDENTE -1.173282
                                      0.114020 -10.290 < 2e-16 ***
                                     0.114020 -3.389 0.00104 **
## factor partyIV
                          -0.386425
                        -0.002478
                                     0.114020 -0.022 0.98271
## factor partyLEGA
                           0.229343
                                     0.114020 2.011 0.04727 *
## factor partyLEU
## factor partyM5S
                         -0.254663
                                     0.114020 -2.233 0.02800 *
## factor partyMISTO
                          -0.195756
                                      0.114020 -1.717 0.08944 .
                                     0.114020 -6.817 1.03e-09 ***
## factor_partyREG_LEAGUES -0.777217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.255 on 90 degrees of freedom
## Multiple R-squared: 0.8089, Adjusted R-squared: 0.7685
## F-statistic: 20.05 on 19 and 90 DF, p-value: < 2.2e-16
```

## 4.6 Regressions

# populism, data\_dict\_emo)

summary(negative\_prevalence\_model)

```
##
## Call:
## lm(formula = negative_prevalence ~ factor_party + factor_quarter +
       populism, data = data dict emo)
##
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     30
                                             Max
## -0.83425 -0.13061 -0.01836 0.15555
                                        0.69102
##
## Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
##
                                                   7.423 6.51e-11 ***
## (Intercept)
                              1.457921
                                         0.196396
## factor partyCI
                            -0.687517
                                         0.130189
                                                  -5.281 9.02e-07 ***
                                         0.136636
                                                   3.817 0.000249 ***
## factor partyFDI
                             0.521583
                                         0.127490
                                                   -0.245 0.807208
## factor_partyFI
                            -0.031204
## factor_partyINDIPENDENTE -0.912110
                                         0.132441
                                                   -6.887 7.79e-10 ***
## factor_partyIV
                            -0.415488
                                         0.131061
                                                   -3.170 0.002090 **
## factor_partyLEGA
                             0.016135
                                         0.129531
                                                   0.125 0.901148
                             0.128497
                                         0.127488
                                                   1.008 0.316228
## factor partyLEU
                                                   -1.441 0.153021
## factor partyM5S
                            -0.192532
                                         0.133586
## factor_partyMISTO
                                         0.127711
                                                   -0.723 0.471778
                            -0.092293
## factor partyREG LEAGUES -0.483682
                                         0.135906
                                                   -3.559 0.000600 ***
                                                    0.772 0.441968
## factor quarter5
                             0.095929
                                         0.124208
                                         0.121951
## factor_quarter1
                            -0.020075
                                                   -0.165 0.869623
## factor_quarter2
                             0.002328
                                         0.123831
                                                    0.019 0.985041
## factor_quarter3
                            -0.158689
                                         0.126302
                                                   -1.256 0.212250
## factor_quarter4
                             0.205304
                                         0.122020
                                                   1.683 0.095969 .
```

```
0.123132 -0.823 0.412663
## factor_quarter6
                   -0.101347
## factor_quarter7
                         -0.103082
                                     0.122068 -0.844 0.400675
## factor quarter9
                         -0.040199
                                    0.123641 -0.325 0.745849
## factor quarter10 -0.250742
                                     0.122015 -2.055 0.042810 *
                          0.582670
                                     0.253212 2.301 0.023721 *
## populism
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.285 on 89 degrees of freedom
## Multiple R-squared: 0.7629, Adjusted R-squared: 0.7096
## F-statistic: 14.32 on 20 and 89 DF, p-value: < 2.2e-16
# Negative emotion
negative_model <- lm(negative ~ factor_party +</pre>
                     factor_quarter +
                     populism, data_dict_emo)
summary(negative_model)
##
## Call:
## lm(formula = negative ~ factor_party + factor_quarter + populism,
      data = data_dict_emo)
##
##
## Residuals:
##
       Min
                1Q
                     Median
                                 3Q
                                         Max
## -0.82801 -0.13125 0.00941 0.12134 0.50310
##
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
##
                                     0.171994 13.072 < 2e-16 ***
## (Intercept)
                           2.248269
## factor_partyCI
```

```
## factor_partyFDI
                            0.399141
                                        0.119659
                                                   3.336
                                                         0.00124 **
## factor partyFI
                            -0.062815
                                        0.111649
                                                 -0.563
                                                         0.57511
## factor partyINDIPENDENTE -1.103196
                                        0.115985
                                                 -9.511 3.28e-15 ***
                                                 -2.849 0.00545 **
## factor partyIV
                            -0.326952
                                        0.114777
## factor partyLEGA
                           -0.047517
                                        0.113437
                                                 -0.419
                                                         0.67631
## factor partyLEU
                             0.235937
                                        0.111648
                                                  2.113
                                                         0.03738 *
                            -0.332532
                                        0.116988 -2.842
                                                         0.00555 **
## factor partyM5S
## factor_partyMISTO
                            -0.211835
                                        0.111843
                                                 -1.894
                                                         0.06147 .
                                        0.119020 -5.759 1.19e-07 ***
## factor_partyREG_LEAGUES -0.685412
                             0.062394
                                        0.108775
## factor_quarter5
                                                 0.574 0.56768
## factor_quarter1
                           -0.005587
                                       0.106799
                                                 -0.052
                                                         0.95840
                           -0.018994
                                        0.108445
## factor_quarter2
                                                 -0.175
                                                         0.86136
                           -0.131691
                                       0.110609
## factor quarter3
                                                 -1.191
                                                         0.23698
                                        0.106859
                                                         0.05294 .
## factor quarter4
                            0.209609
                                                  1.962
## factor quarter6
                           -0.174171
                                       0.107833
                                                 -1.615
                                                         0.10981
## factor quarter7
                           -0.093044
                                       0.106902 -0.870
                                                         0.38644
## factor_quarter9
                           -0.003622
                                        0.108279 -0.033
                                                         0.97339
## factor_quarter10
                           -0.188505
                                        0.106855
                                                 -1.764
                                                         0.08114 .
                                                   2.221
## populism
                             0.492414
                                        0.221751
                                                         0.02892 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2496 on 89 degrees of freedom
## Multiple R-squared: 0.8189, Adjusted R-squared: 0.7782
## F-statistic: 20.12 on 20 and 89 DF, p-value: < 2.2e-16
# Anxiety emotion
anxiety model <- lm(anxiety ~ factor party +
                      factor_quarter +
```

populism, data\_dict\_emo)

#### summary(anxiety\_model)

```
##
## Call:
## lm(formula = anxiety ~ factor_party + factor_quarter + populism,
       data = data dict emo)
##
##
## Residuals:
##
         Min
                    1Q
                           Median
                                         30
                                                   Max
## -0.203185 -0.030062 -0.006422 0.031150
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
                                                      5.624 2.13e-07 ***
## (Intercept)
                              0.2688373
                                        0.0478034
## factor partyCI
                             -0.0792116
                                        0.0316883 - 2.500
                                                              0.0143 *
## factor_partyFDI
                              0.0378298
                                        0.0332575
                                                      1.137
                                                              0.2584
## factor_partyFI
                             -0.0006212
                                        0.0310313
                                                    -0.020
                                                              0.9841
## factor_partyINDIPENDENTE -0.2119155
                                                    -6.574 3.24e-09 ***
                                         0.0322366
                                                              0.2656
## factor_partyIV
                             -0.0357351
                                         0.0319007
                                                     -1.120
## factor_partyLEGA
                             -0.0010955
                                         0.0315281
                                                     -0.035
                                                              0.9724
                                                              0.0307 *
## factor_partyLEU
                              0.0681484
                                         0.0310310
                                                      2.196
                             -0.0338173
                                         0.0325152
                                                     -1.040
                                                              0.3011
## factor partyM5S
                                                              0.5583
## factor partyMISTO
                             -0.0182670
                                         0.0310853
                                                     -0.588
## factor partyREG LEAGUES -0.0526060
                                         0.0330799
                                                     -1.590
                                                              0.1153
## factor_quarter5
                              0.0190702
                                         0.0302326
                                                      0.631
                                                              0.5298
## factor quarter1
                              0.0626135
                                         0.0296833
                                                      2.109
                                                              0.0377 *
                                         0.0301407
## factor_quarter2
                              0.0148207
                                                      0.492
                                                              0.6241
## factor_quarter3
                              0.0104310
                                         0.0307423
                                                      0.339
                                                              0.7352
## factor_quarter4
                              0.0509013
                                         0.0297000
                                                      1.714
                                                              0.0900
## factor_quarter6
                             -0.0225554 0.0299707
                                                     -0.753
                                                              0.4537
```

```
## factor_quarter7
                   0.0430576 0.0297118
                                                1.449
                                                        0.1508
## factor_quarter9
                    -0.0079431 0.0300946 -0.264
                                                        0.7924
## factor quarter10 -0.0095388 0.0296988 -0.321
                                                        0.7488
                         -0.0131192 0.0616326 -0.213
                                                        0.8319
## populism
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06936 on 89 degrees of freedom
## Multiple R-squared: 0.5817, Adjusted R-squared: 0.4877
## F-statistic: 6.188 on 20 and 89 DF, p-value: 6.176e-10
# Anger emotion
anger_model <- lm(anger ~ factor_party +</pre>
                  factor quarter +
                  populism, data_dict_emo)
summary(anger_model)
##
## Call:
## lm(formula = anger ~ factor_party + factor_quarter + populism,
      data = data_dict_emo)
##
##
## Residuals:
##
       Min
                1Q
                     Median
                                 3Q
                                         Max
## -0.32401 -0.07952 0.00037 0.06871 0.48334
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
                                     0.09360
                                              9.415 5.19e-15 ***
## (Intercept)
                           0.88129
## factor_partyCI
                         -0.40239
                                    0.06205 -6.485 4.83e-09 ***
## factor_partyFDI
```

```
0.06076 - 1.464 0.14678
## factor_partyFI
                            -0.08894
## factor partyINDIPENDENTE -0.51858
                                       0.06312
                                                -8.215 1.57e-12 ***
                                       0.06246 -1.203 0.23221
## factor partyIV
                            -0.07514
                                       0.06174 -0.922 0.35900
## factor partyLEGA
                           -0.05692
## factor partyLEU
                            0.17934
                                       0.06076
                                                 2.951 0.00404 **
## factor partyM5S
                           -0.12072
                                       0.06367
                                                -1.896 0.06120 .
## factor partyMISTO
                           -0.10324
                                       0.06087
                                                -1.696 0.09337 .
## factor_partyREG_LEAGUES -0.38502
                                       0.06477
                                                -5.944 5.33e-08 ***
                                       0.05920 -1.854 0.06701 .
## factor_quarter5
                           -0.10977
                                       0.05812 -2.028 0.04559 *
## factor_quarter1
                           -0.11785
## factor_quarter2
                           -0.19139
                                       0.05902 -3.243 0.00167 **
                           -0.15128
                                       0.06020 -2.513 0.01377 *
## factor_quarter3
                           -0.04364
                                       0.05816 -0.750 0.45502
## factor quarter4
                                       0.05869 -2.548 0.01256 *
## factor quarter6
                           -0.14951
## factor quarter7
                                       0.05818 -1.573 0.11934
                           -0.09150
## factor quarter9
                          -0.01639
                                       0.05893 -0.278 0.78149
## factor_quarter10
                                                -3.356 0.00116 **
                           -0.19516
                                       0.05815
## populism
                            0.19253
                                       0.12068
                                                 1.595 0.11418
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1358 on 89 degrees of freedom
## Multiple R-squared: 0.8022, Adjusted R-squared: 0.7577
## F-statistic: 18.04 on 20 and 89 DF, p-value: < 2.2e-16
# sadness emotion
sadness_model <- lm(sadness ~ factor_party +</pre>
                     factor_quarter +
                     populism, data_dict_emo)
summary(sadness_model)
```

```
##
## Call:
## lm(formula = sadness ~ factor party + factor quarter + populism,
##
       data = data dict emo)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
## -0.36628 -0.04760 0.00219 0.04560
                                        0.36965
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             0.51962
                                         0.08025
                                                   6.475 5.06e-09 ***
## factor partyCI
                            -0.10570
                                         0.05320 -1.987 0.049995 *
## factor partyFDI
                                         0.05583
                                                   0.341 0.734222
                             0.01902
## factor partyFI
                              0.02387
                                         0.05209
                                                   0.458 0.647930
## factor partyINDIPENDENTE -0.21123
                                         0.05412 -3.903 0.000184 ***
## factor_partyIV
                                         0.05355 -1.818 0.072438 .
                             -0.09736
## factor_partyLEGA
                            -0.07186
                                         0.05293 -1.358 0.178028
## factor_partyLEU
                                         0.05209 -0.943 0.348193
                            -0.04913
## factor_partyM5S
                            -0.06025
                                         0.05459 -1.104 0.272693
## factor_partyMISTO
                             -0.06847
                                         0.05219 -1.312 0.192868
## factor partyREG LEAGUES
                                         0.05553 -1.990 0.049710 *
                            -0.11049
## factor quarter5
                             0.09126
                                         0.05075
                                                   1.798 0.075556 .
## factor quarter1
                             0.04824
                                         0.04983
                                                   0.968 0.335682
## factor quarter2
                                         0.05060
                                                   3.085 0.002710 **
                             0.15611
## factor_quarter3
                             0.08862
                                         0.05161
                                                   1.717 0.089436 .
## factor_quarter4
                             0.11495
                                         0.04986
                                                   2.306 0.023463 *
## factor_quarter6
                             0.04591
                                         0.05031
                                                   0.912 0.363979
## factor_quarter7
                             0.02701
                                         0.04988
                                                   0.542 0.589448
## factor_quarter9
                              0.06648
                                         0.05052
                                                   1.316 0.191568
```

# 5 STM Topic model analysis

# 5.1 Preliminary steps

#### 5.1.1 Load the data

```
load("data/dfm.Rda")
load("data/dataset.Rda")
load("data/tw.Rda")
load("data/corpus.Rda")
```

#### 5.1.2 Import the dictionaries

#### 5.1.3 Remove all the account's mentions

```
DFM@Dimnames$features <- gsub("^@", "", DFM@Dimnames$features)
```

#### 5.1.4 Trim the data

#### 5.1.5 Apply dictionary

```
# Apply Dictionary

DFMdict <- dfm_lookup(DFM, dictionary = Decadri_Boussalis_Grundl)

# Convert to a dataframe

DATAdictDFM <- DFMdict %>%
    quanteda::convert(to = "data.frame")
```

#### 5.1.6 Create percentage for each components

#### 5.1.7 Add the percentage of populism to the original dfm

```
docvars(DFM) <- cbind(docvars(DFM),DATAdictDFM)</pre>
```

#### 5.1.8 Convert DFM to STM format

```
myDFM = DFM
set.seed(123)
DfmStm <- quanteda::convert(myDFM, to = "stm", docvars = docvars(myDFM))
#save(DfmStm, file="data/DfmStm.Rda")</pre>
```

#### 5.1.9 Import the original corpus and repeat the same cleanings

This is for search the documents after find a label for the topics

# 5.2 Find best number of topics k

5.2.1 Search the best number of Topics comparing coherence and exclusivity values

```
K = 5:20
```

#### 5.2.2 plot results

#### **Diagnostic Values by Number of Topics**



## **Coherence - exclusivity**





Number of Topics

# 5.3 Run the analysis selecting k = 10

#### 5.3.1 Label topics

The frequency/exclusivity (FREX) scoring summarizes words according to their probability of appearance under a topic and the exclusivity to that topic. These words provide more semantically intuitive representations of each topic.

| Topic1      | Topic2     | Topic3      | Topic4        | Topic5  |
|-------------|------------|-------------|---------------|---------|
| regione     | pass       | legasalvini | libertà       | domani  |
| covid       | ragazzi    | vittime     | diritti       | città   |
| vaccini     | green      | famiglia    | democrazia    | buona   |
| personale   | viva       | pensiero    | violenza      | auguri  |
| virus       | #greenpass | foto        | minacce       | sindaco |
| medici      | vittoria   | ricordo     | inaccettabile | mattina |
| sanitario   | sport      | memoria     | costituzione  | aspetto |
| numero      | vince      | abbraccio   | #ddlzan       | milano  |
| lombardia   | finale     | pagina      | umani         | vediamo |
| coronavirus | vinto      | legacamera  | esteri        | stasera |

| Topic6           | Topic7          | Topic8           | Topic9       | Topic10    |
|------------------|-----------------|------------------|--------------|------------|
| fratelliditalia  | presidente      | conte            | italiaviva   | imprese    |
| stampasgarbi     | forza_italia    | salvini          | davvero      | euro       |
| giorgiameloni    | pdnetwork       | pd               | giusto       | lavoratori |
| #fratelliditalia | giuseppeconteit | #salvini         | cambiare     | decreto    |
| meloni           | deputatipd      | #conte           | matteorenzi  | misure     |
| vocedelpatriota  | berlusconi      | m5s              | guardare     | piano      |
| fratelli         | #mattarella     | vergogna         | maestro      | risorse    |
| #meloni          | enricoletta     | #iostoconsalvini | l'intervista | miliardi   |
| ilgiornale       | mattarella      | vogliono         | parità       | bilancio   |
| adnkronos        | gruppoficamera  | referendum       | elenabonetti | servono    |

Looking at the FREX words, it is complicated to give a substantive interpretation of the content of the topics. We therefore made a second attempt using  $k\,=\,18$ 

### 5.4 Run the analysis selecting k = 18

#### 5.4.1 Label topics

The frequency/exclusivity (FREX) scoring summarizes words according to their probability of appearance under a topic and the exclusivity to that topic. These words provide more semantically intuitive representations of each topic.

| Topic1         | Topic2           | Topic3            | Topic4                | Topic5          |
|----------------|------------------|-------------------|-----------------------|-----------------|
| great          | dosi             | pubblicata        | maestro               | anzaldi         |
| muto           | dose             | foto              | mancherà              | lastampa        |
| will           | molecolari       | #venetodaamare    | addio                 | intervista      |
| red_marxist    | tamponi          | vicenza           | mancherai             | adnkronos       |
| government     | vaccinale        | italiachiama      | viaggio               | pierosansonetti |
| hope           | terapie          | #abruzzo          | ciao                  | libero_official |
| together       | vaccinati        | laguna            | #enniomorricone       | adginforma      |
| democracy      | vaccinazione     | pubblicato        | musica                | edicola         |
| people         | registrati       | palazzo           | sergio                | ilmessaggeroit  |
| good           | gialla           | chigi             | artista               | corriere        |
| always         | prossima         | d'alfonso         | #gigiproietti         | lapresse_news   |
| us             | vaccino          | #italianinelmondo | natale                | radioradicale   |
| even           | intensive        | treviso           | #davidsassoli         | repubblica      |
| right          | intensiva        | ddl               | #battiato             | avvenire_nei    |
| can            | terapia          | all'unanimità     | curini                | corriere        |
| must           | all'aperto       | senato            | #carlafracci          | fuortes         |
| today          | decessi          | dolomiti          | icona                 | askanews_ita    |
| really         | #vaccino         | ricevo            | amato                 | ilprimaton      |
| one            | ricoveri         | museo             | onomastico            | agenzia_dire    |
| now            | test             | villa             | poeta                 | agenzia_italia  |
| rights         | somministrazioni | canova            | #monicavitti          | ilriformista    |
| years          | rapidi           | ig                | #festadellarepubblica | messaggero      |
| colinphoenix   | settimana        | neve              | carla                 | il_piccolo      |
| get            | zona             | belluno           | lucianoghelfi         | l'intervista    |
| friend         | prenotazioni     | zan               | simonamalpezzi        | cda             |
| newwaveandpunk | contagi          | falsa             | martina_carone        | italpress       |
| welikeduel     | arancione        | camera            | sassoli               | formichenews    |
| make           | guariti          | mostra            | appassionato          | scanzi          |
| work           | ricoverati       | deputati          | #epifani              | mattinodinapoli |
| ever           | l'obbligo        | pdabruzzo         | eletta                | ansaromalazio   |

| Topic6          | Topic7           | Topic8         | Topic9      | Topic10               |
|-----------------|------------------|----------------|-------------|-----------------------|
| rapite          | volontari        | risposte       | pour        | strage                |
| dall'oglio      | vigili           | economica      | iva         | scorta                |
| #padredalloglio | infermieri       | scelte         | bollette    | #foibe                |
| paoladelusa     | #forzearmate     | responsabilità | avec        | uccisi                |
| tornino         | poliziadistato   | decisioni      | fiscali     | attanasio             |
| sostenibilità   | armate           | sanitaria      | autonomi    | ucciso                |
| ecologica       | gdf              | gestire        | du          | #giornodelricordo     |
| transizione     | svolto           | concrete       | cartelle    | tragedia              |
| ambientale      | emergenzavvf     | sociali        | au          | #giornatadellamemoria |
| sostenibile     | ringraziare      | tavolo         | esattoriali | innocenti             |
| climatici       | penitenziaria    | opposizioni    | et          | uccise                |
| pianeta         | ringraziamento   | #lockdown      | perduto     | iacovacci             |
| innovazione     | dell'ordine      | ripresa        | dans        | attentato             |
| dell'ambiente   | #vigilidelfuoco  | affrontare     | cassa       | ferita                |
| cambiamenti     | divisa           | #fase2         | fiscale     | l'orrore              |
| angelazoppo     | sm_difesa        | l'emergenza    | prestiti    | vittime               |
| loops40994697   | _carabinieri_    | necessarie     | fatturato   | #aldomoro             |
| alatigiulio     | italiannavy      | ripartire      | contributi  | foibe                 |
| scureggione     | ministerodifesa  | collaborare    | scadenze    | #congo                |
| l'ambiente      | mamme            | chiare         | credito     | #giornodellamemoria   |
| gfi65           | soccorso         | giuste         | pagamenti   | ucraino               |
| stretto         | svolgono         | soluzioni      | tax         | #falcone              |
| massionline     | compleanno       | esecutivo      | mutui       | odio                  |
| renzo_pisu      | #festadellamamma | uscire         | tasse       | #paoloborsellino      |
| aledeniz        | plauso           | #smartworking  | nous        | violenza              |
| gianni_dragoni  | prezioso         | servono        | liquidità   | uccisa                |
| task            | mille            | messe          | bonus       | l'odio                |
| sviluppo        | #carabinieri     | serve          | sur         | falcone               |
| climatico       | esercito         | fronteggiare   | prezzi      | vittima               |
| ugoarrigo       | nonni            | superare       | #bollette   | persero               |

| Topic11         | Topic12        | Topic13           | Topic14                    | Topic15         |
|-----------------|----------------|-------------------|----------------------------|-----------------|
| l'aggiornamento |                | diretta           | #sanità                    | para            |
| bollettino      | 5s             | seguitemi         | #quirinale                 | por             |
| docenti         | imbarazzante   | aspetto           | regione_sicilia            | el              |
| pittoni         | grillini       | ospite            | #parlamento                | giusvapulejo    |
| scuola          | franferrante   | aggiornamenti     | #quirinale2022             | los             |
| orizzontescuola | imbecille      | streaming         | #presidentedellarepubblica | las             |
| ordinario       | vabbè          | interverrò        | #governomusumeci           | #amala          |
| studenti        | brutta         | rete4             | #verità                    | paolabottelli   |
| orizzonte       | capito         | domattina         | #rassegnastampa            | tommasolabate   |
| didattica       | ridicolo       | parleremo         | #buongiorno                | dispiace        |
| #scuola         | a_lisacorrado  | seguiteci         | #libero                    | italianos       |
| scolastica      | dica           | rassegna          | #salute                    | esta            |
| scolastico      | robdellaseta   | seguite           | #primapagina               | hoy             |
| concorsi        | poltrone       | facebook          | #edicola                   | mariolavia      |
| paritarie       | l'unico        | collegatevi       | #giornali                  | nomfup          |
| insegnanti      | letta          | sull'emergenza    | #tempo                     | juve            |
| asili           | neanche        | canale            | #giornale                  | cottarellicpi   |
| scolastici      | legalemeglio   | parteciperò       | #consultazioni             | exterior        |
| azzolina        | teatrino       | mancate           | #edicolalucidi             | gobierno        |
| campania        | zingaretti     | fb                | coraggio_italia            | adalucde        |
| alunni          | virologo       | vediamo           | #fiducia                   | gianlookingfor  |
| azzolinalucia   | povero         | organizzato       | #lavoro                    | appunto         |
| scuole          | talmente       | seguire           | eleggere                   | gracias         |
| nido            | leu            | link              | #maggioranza               | #inter          |
| precari         | smentisce      | l'audizione       | #leu                       | ardigiorgio     |
| classe          | #arcuri        | #danielasantanche | #europa                    | todos           |
| #azzolina       | giasilvestrini | raitre            | #covid19italia             | mancava         |
| #dad            | doveva         | parlerò           | #infrastrutture            | lauracesaretti1 |
| dell'istruzione | pur            | conoscitiva       | terni                      | grotondi        |
| dad             | monicafrassoni | stasera           | #emergenza                 | il_cappellini   |

```
kable(FREXmySTM18NoG[,16:18], col.names = c("Topic16", "Topic17", "Topic18"))
```

| Topic16               | Topic17            | Topic18    |
|-----------------------|--------------------|------------|
| #tokyo2020            | #iostoconsalvini   | youtube    |
| #italiateam           | molinaririk        | speriamo   |
| medaglie              | maxromeomb         | arrivato   |
| tokyo                 | angelociocca       | all'estero |
| atleti                | #processateancheme | finito     |
| olimpiadi             | #salvinipremier    | confermato |
| azzurri               | patriziarametta    | ricorso    |
| alex                  | votalega           | fatti      |
| medaglia              | lega_senato        | deciso     |
| argento               | sbarchi            | tratta     |
| oro                   | a_gusmeroli        | dato       |
| bronzo                | noiconsalvini      | diversi    |
| podio                 | ponytaele          | germania   |
| #borgonzonipresidente | lacavandoli        | rapporti   |
| #olimpiadi            | Intoscana          | riconosce  |
| #euro2020             | legacamera         | bruxelles  |
| #paralimpiadi         | clandestina        | penale     |
| #paralympics          | massimobitonci     | l'ora      |
| #jacobs               | lucabattanta       | sostengo   |
| #berrettini           | clandestini        | lanciato   |
| #tamberi              | legasalvini        | corruzione |
| vince                 | matteosalvinimi    | sospeso    |
| federica              | #blocconavale      | l'abbiamo  |
| forza                 | #primagliitaliani  | ilpost     |
| azzurro               | massimogara        | tocca      |
| #giochiolimpici       | alex63roy          | strada     |
| fi_ultimissime        | giuliocentemero    | mediazione |
| paralimpiadi          | lampedusa          | passi      |
| #pechino2022          | albertobagnai      | vedono     |
| l'oro                 | alessia_smile6 100 | appello    |
|                       |                    |            |

| Topic1          | Topic2     | Topic3      | Topic4      | Topic5          |
|-----------------|------------|-------------|-------------|-----------------|
| mov5stelle      | covid      | legge       | presidente  | via             |
| leggi           | dati       | commissione | grande      | stampasgarbi    |
| parlamentari    | vaccini    | senato      | anni        | intervista      |
| giorgiameloni   | vaccino    | camera      | buona       | rai             |
| giuseppeconteit | #covid19   | appena      | pdnetwork   | parlato         |
| scritto         | settimana  | foto        | mondo       | repubblica      |
| post            | virus      | aula        | storia      | vocedelpatriota |
| fratelliditalia | vaccinale  | video       | buon        | fattoquotidiano |
| m5s_senato      | #covid     | palazzo     | repubblica  | pubblico        |
| social          | regioni    | voto        | italiana    | politica        |
| italymfa        | #greenpass | lavori      | donna       | matteorenzi     |
| amp             | campagna   | proposta    | famiglia    | sud             |
| cina            | numero     | città       | città       | leggere         |
| tweet           | regione    | deputati    | cultura     | corriere        |
| usa             | vaccinati  | gruppo      | uomo        | draghi          |
| l'ho            | lombardia  | approvato   | festa       | ilgiornale      |
| #m5s            | contagi    | pubblicata  | deputatipd  | recovery        |
| referendum      | tamponi    | testo       | comunità    | anzaldi         |
| luigidimaio     | zona       | #ddlzan     | politica    | adnkronos       |
| fdi_parlamento  | casi       | sede        | enricoletta | direttore       |
| corte           | italia     | venezia     | mattarella  | libero_official |
| costituzionale  | mascherine | milano      | italiano    | lettera         |
| italy           | settimane  | #venezia    | tanti       | quotidiano      |
| news            | positivi   | ddl         | auguri      | giornalisti     |
| letto           | #vaccini   | veneto      | giornata    | parlo           |
| #referendum     | dosi       | firma       | natale      | lastampa        |
| scrivere        | test       | centro      | paese       | riflessione     |
| fake            | #liguria   | giunta      | amico       | nord            |
| trump           | primi      | roma        | persona     | sole            |
| #iovotono       | numeri     | approvata   | simbolo     | articolo        |

| Topic6         | Topic7      | Topic8         | Topic9      | Topic10       |
|----------------|-------------|----------------|-------------|---------------|
| presto         | grazie      | governo        | imprese     | solidarietà   |
| sviluppo       | lavoro      | paese          | milioni     | libertà       |
| territorio     | donne       | cittadini      | euro        | anni          |
| settore        | buon        | crisi          | decreto     | parole        |
| progetto       | auguri      | serve          | miliardi    | diritti       |
| qualità        | forze       | l'italia       | famiglie    | vittime       |
| ricerca        | impegno     | momento        | lavoratori  | democrazia    |
| mondo          | uomini      | dare           | fondo       | violenza      |
| tutela         | servizio    | responsabilità | tasse       | guerra        |
| importante     | giornata    | #coronavirus   | riforma     | giustizia     |
| nuove          | linea       | sicurezza      | bilancio    | popolo        |
| opportunità    | medici      | pandemia       | fiscale     | memoria       |
| crescita       | personale   | salute         | governo     | vicinanza     |
| investimenti   | generale    | misure         | aziende     | morte         |
| comuni         | sicurezza   | bisogna        | sostegno    | minacce       |
| futuro         | cuore       | italiani       | misura      | pensiero      |
| transizione    | civile      | piano          | emendamento | verità        |
| turismo        | tanti       | politiche      | stop        | pace          |
| infrastrutture | ringrazio   | parlamento     | soldi       | dovere        |
| sostenibile    | dell'ordine | emergenza      | dl          | rispetto      |
| progetti       | anni        | lavorare       | aiuti       | diritto       |
| territori      | operatori   | dobbiamo       | difficoltà  | donne         |
| italiana       | protezione  | ripartire      | risorse     | ricordo       |
| modello        | polizia     | economica      | aiutare     | inaccettabile |
| centro         | compleanno  | bene           | de          | tragedia      |
| sociale        | paese       | servono        | approvato   | dolore        |
| digitale       | nazionale   | priorità       | pagare      | ricordare     |
| produzione     | sanitario   | mettere        | bonus       | atto          |
| città          | difesa      | devono         | reddito     | valori        |
| fondamentale   | l'impegno   | lavoro         | mld         | mafia         |

| Topic11         | Topic12      | Topic13       | Topic14         | Topic15       |
|-----------------|--------------|---------------|-----------------|---------------|
| scuola          | conte        | diretta       | paese           | de            |
| giovani         | pd           | domani        | futuro          | vero          |
| scuole          | governo      | consiglio     | #governo        | ragione       |
| ragazzi         | vuole        | punto         | #draghi         | credo         |
| bambini         | m5s          | sera          | sanità          | vedere        |
| settembre       | sinistra     | parlare       | vogliamo        | giusto        |
| regione         | pass         | mattina       | #italia         | bene          |
| figli           | maggioranza  | aspetto       | #senato         | penso         |
| studenti        | partito      | stampa        | pubblica        | porta         |
| #scuola         | andare       | amici         | politica        | carlocalenda  |
| presenza        | green        | intervento    | presidente      | differenza    |
| ministra        | cose         | vediamo       | bisogno         | bravo         |
| #covid19        | draghi       | conferenza    | #m5s            | magari        |
| notizie         | #conte       | ospite        | costruire       | posso         |
| ministero       | dovrebbe     | pagina        | #lavoro         | dico          |
| formazione      | italiani     | gt            | dobbiamo        | serie         |
| ministro        | voto         | stasera       | #leu            | ovviamente    |
| campania        | parlamento   | vista         | #mes            | peggio        |
| classe          | parla        | incontro      | #pnrr           | guidocrosetto |
| distanza        | problema     | link          | l'italia        | gran          |
| famiglie        | destra       | confronto     | riforme         | assolutamente |
| diritto         | votare       | libro         | sistema         | en            |
| studio          | sa           | ministri      | #sicilia        | partita       |
| dell'unità      | capire       | facebook      | #recoveryfund   | resto         |
| bollettino      | casa         | presentazione | riforma         | el            |
| l'aggiornamento | male         | pomeriggio    | forza_italia    | vedo          |
| genitori        | cittadinanza | coronavirus   | italiaviva      | spero         |
| personale       | pensa        | insieme       | giuseppeconteit | persona       |
| scolastico      | bene         | seguire       | #europa         | sbagliato     |
| riapertura      | davvero      | presidente    | visione         | azione_it     |

|              | I                | I            |
|--------------|------------------|--------------|
| Topic16      | Topic17          | Topic18      |
| italia       | lega             | bene         |
| forza        | matteosalvinimi  | politica     |
| forza_italia | salvini          | fatti        |
| sindaco      | #lega            | anni         |
| insieme      | italiani         | dato         |
| roma         | fratelliditalia  | anno         |
| l'italia     | #salvini         | ministro     |
| battaglia    | legasalvini      | europa       |
| viva         | matteo           | strada       |
| notizia      | #fratelliditalia | casa         |
| grande       | ministro         | realtà       |
| bella        | meloni           | parlamento   |
| elettorale   | d'italia         | risposta     |
| complimenti  | processo         | deciso       |
| coraggio     | governo          | tratta       |
| vittoria     | #iostoconsalvini | italiaviva   |
| elezioni     | legacamera       | possibile    |
| sport        | fratelli         | pochi        |
| #roma        | vergogna         | movimento    |
| squadra      | borghi_claudio   | all'estero   |
| berlusconi   | #meloni          | scelta       |
| candidato    | testa            | tante        |
| risultato    | lega_senato      | unico        |
| bocca        | migranti         | speriamo     |
| piazza       | piazza           | arriva       |
| centrodestra | confini          | arrivato     |
| campagna     | casa             | nuova        |
| vincere      | giorgia          | continua     |
| uniti        | clandestini      | roma         |
| regionali    | lamorgese        | rispetto 105 |
|              |                  |              |

# 5.4.2 Meaningfull labels with the first 10 FREX word associated

```
labeledtpic <- labelTopics(mySTM18NoG, n=10)

FREXmySTM18NoG <- t(as.matrix(labeledtpic[["frex"]]))</pre>
```

| 6) Sustainable energy | 7) Categories involved in covid emergency | 8) Economic relaunch |
|-----------------------|-------------------------------------------|----------------------|
| rapite                | volontari                                 | risposte             |
| dall'oglio            | vigili                                    | economica            |
| #padredalloglio       | infermieri                                | scelte               |
| paoladelusa           | #forzearmate                              | responsabilità       |
| tornino               | poliziadistato                            | decisioni            |
| sostenibilità         | armate                                    | sanitaria            |
| ecologica             | gdf                                       | gestire              |
| transizione           | svolto                                    | concrete             |
| ambientale            | emergenzavvf                              | sociali              |
| sostenibile           | ringraziare                               | tavolo               |

| 9) Economic hardship and taxes | 10) Victims of violent deaths | 11) Public education |
|--------------------------------|-------------------------------|----------------------|
| pour                           | strage                        | l'aggiornamento      |
| iva                            | scorta                        | bollettino           |
| bollette                       | #foibe                        | docenti              |
| avec                           | uccisi                        | pittoni              |
| fiscali                        | attanasio                     | scuola               |
| autonomi                       | ucciso                        | orizzontescuola      |
| du                             | #giornodelricordo             | ordinario            |
| cartelle                       | tragedia                      | studenti             |
| au                             | #giornatadellamemoria         | orizzonte            |
| esattoriali                    | innocenti                     | didattica            |

| 2) Covid-19  | 4) Epitaphs     | 5) Journals and media |
|--------------|-----------------|-----------------------|
| dosi         | maestro         | anzaldi               |
| dose         | mancherà        | lastampa              |
| molecolari   | addio           | intervista            |
| tamponi      | mancherai       | adnkronos             |
| vaccinale    | viaggio         | pierosansonetti       |
| terapie      | ciao            | libero_official       |
| vaccinati    | #enniomorricone | adginforma            |
| vaccinazione | musica          | edicola               |
| registrati   | sergio          | ilmessaggeroit        |
| gialla       | artista         | corriere              |

| 12) Anti-elitism | 13) Social and TV live broadcasts | 16) Olympics game | 17) Right-wing party topics |
|------------------|-----------------------------------|-------------------|-----------------------------|
|                  | diretta                           | #tokyo2020        | #iostoconsalvini            |
| 5s               | seguitemi                         | #italiateam       | molinaririk                 |
| imbarazzante     | aspetto                           | medaglie          | maxromeomb                  |
| grillini         | ospite                            | tokyo             | angelociocca                |
| franferrante     | aggiornamenti                     | atleti            | #processateancheme          |
| imbecille        | streaming                         | olimpiadi         | #salvinipremier             |
| vabbè            | interverrò                        | azzurri           | patriziarametta             |
| brutta           | rete4                             | alex              | votalega                    |
| capito           | domattina                         | medaglia          | lega_senato                 |
| ridicolo         | parleremo                         | argento           | sbarchi                     |

### 5.4.3 Most frequent topic

```
plot(mySTM18NoG, type = "summary", xlim = c(0, .3),
    main = "Top Topics - Prob")
```

# **Top Topics - Prob**



```
# plot just frex words for each topic
plot(mySTM18NoG, type = "summary", labeltype = c("frex"), n=5,
    main = "Top Topics - Frex")
```

# **Top Topics - Frex**



5.4.4 Which are the the most likely topics across our documents?

```
"07) Categories involved in the covid emergency",
                   "08) Economic relaunch",
                   "09) Economic hardship and taxes",
                   "10) Victims of violent deaths",
                   "11) Public education",
                   "12) Anti-elitism",
                   "13) Social and TV live broadcasts",
                   "14) Junk topic",
                   "15) Junk topic",
                   "16) Olympics game",
                   "17) Right-wing parties topic",
                   "18) Junk topic")
tab <- as.matrix(tab)</pre>
tab2 <- cbind(topics label,tab)</pre>
tab2 <- as.data.frame(tab2)</pre>
colnames(tab2) <- c("Topic label", "Freq")</pre>
tab2$Freq <- as.numeric(tab2$Freq)</pre>
kable(tab2 %>% arrange(desc(Freq)))
```

|    | Topic label                                    | Freq  |
|----|------------------------------------------------|-------|
| 12 | 12) Anti-elitism                               | 41212 |
| 10 | 10) Victims of violent deaths                  | 38252 |
| 8  | 08) Economic relaunch                          | 31610 |
| 4  | 04) Epitaphs                                   | 30860 |
| 17 | 17) Right-wing parties topic                   | 26510 |
| 16 | 16) Olympics game                              | 23121 |
| 9  | 09) Economic hardship and taxes                | 22513 |
| 2  | 02) Covid-19                                   | 22233 |
| 13 | 13) Social and TV live broadcasts              | 20170 |
| 15 | 15) Junk topic                                 | 19391 |
| 7  | 07) Categories involved in the covid emergency | 17417 |
| 6  | 06) Sustainable energy                         | 16688 |
| 3  | 03) Junk topic                                 | 15645 |
| 5  | 05) Journals and media                         | 14788 |
| 14 | 14) Junk topic                                 | 14516 |
| 1  | 01) Junk topic                                 | 13234 |
| 11 | 11) Public education                           | 9454  |
| 18 | 18) Junk topic                                 | 627   |

## 5.4.5 Save them back in the original corpus

subs\_corpus\$topic <- apply(mySTM18NoG\$theta,1,which.max)</pre>

## 5.4.6 Find the most associated document for each topics

This list of 18 items represent the respective document with highest theta for each topic ordered from 1 to 18.

## apply(mySTM18NoG\$theta,2,which.max)

## [1] 12710 1080 26346 52361 41589 198020 234701 8705 12415 248340 ## [11] 80644 353132 200651 342504 267537 162724 199419 22068

Tweet\_number <- apply(mySTM18NoG\$theta,2,which.max)</pre>

### kable(cbind(topics\_label,Tweet\_number))

| topics_label                                   | Tweet_number |
|------------------------------------------------|--------------|
| 01) Junk topic                                 | 12710        |
| 02) Covid-19                                   | 1080         |
| 03) Junk topic                                 | 26346        |
| 04) Epitaphs                                   | 52361        |
| 05) Journals and media                         | 41589        |
| 06) Sustainable energy                         | 198020       |
| 07) Categories involved in the covid emergency | 234701       |
| 08) Economic relaunch                          | 8705         |
| 09) Economic hardship and taxes                | 12415        |
| 10) Victims of violent deaths                  | 248340       |
| 11) Public education                           | 80644        |
| 12) Anti-elitism                               | 353132       |
| 13) Social and TV live broadcasts              | 200651       |
| 14) Junk topic                                 | 342504       |
| 15) Junk topic                                 | 267537       |
| 16) Olympics game                              | 162724       |
| 17) Right-wing parties topic                   | 199419       |
| 18) Junk topic                                 | 22068        |
|                                                |              |

#### 5.5 Coefficients

Regression coefficients for all topics are shown here

### 5.5.1 01) Junk topic

```
summary(prep K18NoG, topics = 1)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
##
## Topic 1:
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         3.977e-02 7.223e-04 55.061 < 2e-16 ***
## party_idCI
                        -2.106e-02 1.391e-03 -15.147 < 2e-16 ***
## party idFDI
                         4.567e-03 7.736e-04 5.904 3.56e-09 ***
```

```
-4.986e-03 5.682e-04 -8.776 < 2e-16 ***
## party_idFI
## party idINDIPENDENTE -2.388e-02 2.548e-03
                                             -9.373
                                                     < 2e-16 ***
## party idIV
                       -1.826e-02 2.153e-03 -8.483
                                                     < 2e-16 ***
## party idLEGA
                       -1.195e-02 6.512e-04 -18.348
                                                     < 2e-16 ***
## party idLEU
                       -1.537e-02 1.439e-03 -10.684 < 2e-16 ***
## party idM5S
                        2.441e-02 7.343e-04 33.239 < 2e-16 ***
## party idMISTO
                       -3.988e-03 7.314e-04 -5.452 4.98e-08 ***
## party_idREG_LEAGUES
                      -2.672e-02 2.941e-03 -9.088 < 2e-16 ***
## populism
                       -7.230e-05 6.305e-06 -11.468 < 2e-16 ***
## s(quarter)1
                        2.838e-02 1.330e-02
                                              2.133 0.032910 *
## s(quarter)2
                       -1.526e-02 5.622e-03 -2.715 0.006623 **
## s(quarter)3
                        2.575e-02 2.872e-03
                                             8.965 < 2e-16 ***
## s(quarter)4
                        1.151e-02 1.697e-03
                                             6.785 1.17e-11 ***
## s(quarter)5
                       -1.999e-03 1.265e-03 -1.580 0.114110
## s(quarter)6
                        4.490e-03 1.172e-03
                                             3.831 0.000128 ***
## s(quarter)7
                        5.908e-03 1.834e-03
                                             3.221 0.001279 **
## s(quarter)8
                       -6.215e-03 1.769e-03 -3.512 0.000444 ***
## s(quarter)9
                       -7.725e-04 1.587e-03 -0.487 0.626490
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

#### 5.5.2 02) Covid-19

```
summary(prep K18NoG, topics = 2)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 2:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        4.149e-02 8.804e-04 47.128 < 2e-16 ***
## (Intercept)
## party idCI
                        1.805e-03 1.800e-03
                                               1.003 0.316092
## party_idFDI
                       -6.548e-03 9.091e-04 -7.203 5.92e-13 ***
## party idFI
                        1.045e-02 7.290e-04
                                              14.330 < 2e-16 ***
## party idINDIPENDENTE 4.496e-02 3.142e-03
                                              14.307 < 2e-16 ***
## party idIV
                       -1.083e-02 2.378e-03
                                              -4.553 5.29e-06 ***
## party_idLEGA
                        1.983e-02 7.318e-04
                                              27.104 < 2e-16 ***
## party_idLEU
                       -1.509e-02 1.511e-03
                                              -9.987 < 2e-16 ***
## party_idM5S
                        4.103e-04 7.625e-04
                                               0.538 0.590487
## party_idMISTO
                        1.978e-02 1.046e-03
                                              18.907 < 2e-16 ***
## party idREG LEAGUES
                        2.341e-02 3.993e-03
                                               5.862 4.57e-09 ***
## populism
                        7.144e-05 7.879e-06
                                               9.067 < 2e-16 ***
## s(quarter)1
                        1.822e-01 1.280e-02
                                              14.231 < 2e-16 ***
## s(quarter)2
                       -7.048e-02 5.691e-03 -12.386 < 2e-16 ***
                                              7.177 7.12e-13 ***
## s(quarter)3
                        2.315e-02 3.225e-03
## s(quarter)4
                        7.312e-03 2.157e-03 3.391 0.000698 ***
```

#### 5.5.3 03) Junk topic

```
summary(prep K18NoG, topics = 3)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 3:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                         3.148e-02 7.290e-04 43.189 < 2e-16 ***
## (Intercept)
## party idCI
                         7.255e-02 2.136e-03 33.967 < 2e-16 ***
## party idFDI
                        -4.527e-03 8.588e-04 -5.271 1.35e-07 ***
## party idFI
                        -2.892e-03 6.208e-04
                                              -4.659 3.18e-06 ***
## party idINDIPENDENTE -4.268e-03
                                   2.594e-03 -1.645
                                                        0.0999 .
## party idIV
                                   2.222e-03
                                                0.710
                                                        0.4775
                         1.578e-03
## party_idLEGA
                         2.023e-02 6.210e-04
                                               32.571 < 2e-16 ***
## party_idLEU
                        -7.649e-03 1.422e-03
                                              -5.379 7.51e-08 ***
## party_idM5S
                         6.548e-03 7.186e-04
                                                9.113
                                                      < 2e-16 ***
## party_idMISTO
                         1.273e-02 8.906e-04
                                               14.291
                                                       < 2e-16 ***
## party idREG LEAGUES
                         6.262e-03 3.591e-03
                                                1.744
                                                        0.0812 .
                        -7.607e-05 6.703e-06 -11.348
                                                      < 2e-16 ***
## populism
## s(quarter)1
                         1.317e-02 1.193e-02
                                                1.104
                                                        0.2697
## s(quarter)2
                                                       0.0086 **
                        -1.345e-02 5.119e-03 -2.628
## s(quarter)3
                        3.370e-02 2.795e-03 12.060 < 2e-16 ***
## s(quarter)4
                        -9.409e-03 1.669e-03 -5.639 1.71e-08 ***
```

#### 5.5.4 04) Epitaphs

```
summary(prep K18NoG, topics = 4)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 4:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        8.350e-02 9.054e-04 92.228 < 2e-16 ***
## (Intercept)
## party idCI
                        2.128e-02 2.274e-03
                                               9.359
                                                      < 2e-16 ***
## party_idFDI
                       -4.149e-02 9.517e-04 -43.596
                                                      < 2e-16 ***
## party idFI
                       -2.064e-02 8.591e-04 -24.023 < 2e-16 ***
## party idINDIPENDENTE -1.630e-02 3.248e-03 -5.018 5.22e-07 ***
## party idIV
                       -7.150e-03 2.624e-03 -2.725 0.00644 **
## party_idLEGA
                       -4.061e-02 7.099e-04 -57.203 < 2e-16 ***
## party_idLEU
                       -3.341e-02 1.842e-03 -18.137
                                                      < 2e-16 ***
## party_idM5S
                       -3.668e-02 7.732e-04 -47.431 < 2e-16 ***
## party_idMISTO
                       -3.674e-02 9.484e-04 -38.743 < 2e-16 ***
## party idREG LEAGUES
                      -3.186e-02 4.092e-03 -7.787 6.87e-15 ***
## populism
                       -2.239e-04 7.697e-06 -29.090 < 2e-16 ***
## s(quarter)1
                        2.293e-03 1.434e-02
                                               0.160 0.87296
## s(quarter)2
                       -3.785e-03 6.127e-03 -0.618 0.53667
## s(quarter)3
                        2.202e-02 3.421e-03 6.436 1.23e-10 ***
## s(quarter)4
                        1.380e-02 2.040e-03 6.768 1.31e-11 ***
```

#### 5.5.5 05) Journals and media

```
summary(prep K18NoG, topics = 5)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 5:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        4.226e-02 7.212e-04 58.595 < 2e-16 ***
## (Intercept)
## party idCI
                       -2.197e-02 1.400e-03 -15.695 < 2e-16 ***
## party idFDI
                       -5.428e-03 8.091e-04 -6.709 1.97e-11 ***
## party idFI
                       -1.715e-02 6.166e-04 -27.809 < 2e-16 ***
## party idINDIPENDENTE -3.003e-02 2.272e-03 -13.214 < 2e-16 ***
## party idIV
                       -1.346e-02 2.483e-03 -5.420 5.96e-08 ***
## party_idLEGA
                       -2.786e-02 5.344e-04 -52.128 < 2e-16 ***
## party_idLEU
                       -1.237e-02 1.532e-03 -8.071 7.00e-16 ***
## party_idM5S
                       -4.994e-03 6.527e-04 -7.652 1.98e-14 ***
                                              33.487 < 2e-16 ***
## party_idMISTO
                        2.930e-02 8.749e-04
## party idREG LEAGUES -1.077e-02 3.075e-03 -3.502 0.000461 ***
                       -8.650e-05 6.387e-06 -13.544 < 2e-16 ***
## populism
## s(quarter)1
                       -1.629e-02 1.030e-02 -1.581 0.113846
## s(quarter)2
                        1.929e-02 4.629e-03 4.167 3.09e-05 ***
                        4.983e-03 2.462e-03 2.024 0.042993 *
## s(quarter)3
## s(quarter)4
                        1.807e-02 1.587e-03 11.384 < 2e-16 ***
```

#### 5.5.6 06) Sustainable energy

```
summary(prep K18NoG, topics = 6)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 6:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        5.311e-02 8.338e-04 63.690 < 2e-16 ***
## (Intercept)
## party idCI
                        1.070e-02 1.944e-03
                                               5.504 3.72e-08 ***
## party idFDI
                       -2.796e-02 8.096e-04 -34.532 < 2e-16 ***
## party idFI
                       -1.048e-02 8.022e-04 -13.063
                                                      < 2e-16 ***
## party idINDIPENDENTE 4.738e-02 3.749e-03 12.639
                                                      < 2e-16 ***
## party idIV
                        7.649e-03 2.888e-03
                                                      0.00809 **
                                               2.648
## party_idLEGA
                       -1.863e-02 6.418e-04 -29.033
                                                      < 2e-16 ***
## party_idLEU
                        3.994e-02 1.959e-03 20.384
                                                      < 2e-16 ***
## party_idM5S
                        1.562e-02 7.455e-04
                                              20.959
                                                      < 2e-16 ***
                       -1.037e-02 9.232e-04 -11.228
## party_idMISTO
                                                      < 2e-16 ***
## party idREG LEAGUES
                        3.475e-02 5.348e-03
                                               6.498 8.13e-11 ***
## populism
                       -1.442e-04 6.905e-06 -20.888
                                                      < 2e-16 ***
## s(quarter)1
                       -3.316e-02 1.340e-02 -2.475
                                                      0.01333 *
## s(quarter)2
                        1.495e-02 6.120e-03 2.443 0.01456 *
## s(quarter)3
                        2.273e-03 3.150e-03 0.722 0.47043
## s(quarter)4
                       -9.643e-03 2.050e-03 -4.703 2.56e-06 ***
```

#### 5.5.7 07) Categories involved in the covid emergency

```
summary(prep K18NoG, topics = 7)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 7:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        6.786e-02 9.121e-04 74.399 < 2e-16 ***
## (Intercept)
## party idCI
                        9.539e-03 1.780e-03
                                               5.359 8.39e-08 ***
## party idFDI
                       -1.508e-02 8.157e-04 -18.489 < 2e-16 ***
## party_idFI
                        1.429e-03 6.528e-04 2.189 0.028619 *
## party_idINDIPENDENTE 2.077e-02 3.246e-03
                                               6.400 1.55e-10 ***
## party idIV
                        3.286e-02 2.896e-03 11.346 < 2e-16 ***
## party_idLEGA
                       -6.556e-03 6.184e-04 -10.602 < 2e-16 ***
## party_idLEU
                        4.660e-03 1.730e-03
                                               2.694 0.007070 **
## party_idM5S
                        9.556e-03 8.186e-04 11.675 < 2e-16 ***
## party_idMISTO
                       -2.005e-02 8.266e-04 -24.261 < 2e-16 ***
## party idREG LEAGUES
                        4.025e-04 4.271e-03
                                               0.094 0.924923
                       -7.374e-05 6.933e-06 -10.635 < 2e-16 ***
## populism
## s(quarter)1
                        4.349e-02 1.225e-02
                                              3.549 0.000387 ***
## s(quarter)2
                       -2.671e-02 5.392e-03 -4.953 7.30e-07 ***
## s(quarter)3
                       -1.204e-02 2.897e-03 -4.158 3.21e-05 ***
## s(quarter)4
                       -1.431e-02 1.932e-03 -7.404 1.33e-13 ***
```

#### 5.5.8 08) Economic relaunch

```
summary(prep K18NoG, topics = 8)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 8:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        1.096e-01 9.686e-04 113.167 < 2e-16 ***
## (Intercept)
## party idCI
                       -5.213e-03 1.877e-03 -2.778 0.00547 **
## party_idFDI
                        1.038e-03 9.342e-04
                                              1.111 0.26643
                                               9.156 < 2e-16 ***
## party idFI
                        7.875e-03 8.602e-04
## party idINDIPENDENTE -8.187e-03 3.112e-03 -2.631 0.00853 **
## party idIV
                        1.568e-02 2.804e-03
                                               5.591 2.25e-08 ***
## party_idLEGA
                       -2.986e-02 6.855e-04 -43.563 < 2e-16 ***
## party_idLEU
                        1.548e-02 1.883e-03
                                               8.223 < 2e-16 ***
## party_idM5S
                       -4.267e-03 8.624e-04 -4.948 7.50e-07 ***
                       -6.885e-03 8.802e-04 -7.822 5.22e-15 ***
## party idMISTO
## party idREG LEAGUES -4.986e-03 4.336e-03
                                              -1.150 0.25021
## populism
                        1.782e-04 7.433e-06
                                              23.977
                                                      < 2e-16 ***
## s(quarter)1
                        1.763e-01 1.301e-02 13.546
                                                      < 2e-16 ***
## s(quarter)2
                       -6.860e-02 5.605e-03 -12.238 < 2e-16 ***
## s(quarter)3
                       -2.265e-02 3.285e-03 -6.893 5.46e-12 ***
## s(quarter)4
                       -8.239e-03 2.200e-03 -3.745 0.00018 ***
```

#### 5.5.9 09) Economic hardship and taxes

```
summary(prep K18NoG, topics = 9)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 9:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        5.106e-02 9.161e-04 55.741 < 2e-16 ***
## (Intercept)
## party idCI
                       -5.886e-03 1.658e-03
                                              -3.549 0.000386 ***
## party_idFDI
                        9.396e-03 8.949e-04
                                              10.499 < 2e-16 ***
## party idFI
                        2.000e-02 7.295e-04
                                              27.411 < 2e-16 ***
## party idINDIPENDENTE -1.472e-02
                                   2.837e-03 -5.189 2.11e-07 ***
## party idIV
                                   2.843e-03
                                               4.622 3.80e-06 ***
                        1.314e-02
## party_idLEGA
                        1.097e-02
                                   6.776e-04
                                              16.182 < 2e-16 ***
## party_idLEU
                        1.342e-02 1.779e-03
                                               7.542 4.62e-14 ***
## party_idM5S
                        4.032e-02 8.682e-04
                                              46.437 < 2e-16 ***
                        6.231e-03 9.384e-04
## party_idMISTO
                                              6.640 3.15e-11 ***
## party idREG LEAGUES
                        1.114e-02 4.043e-03
                                              2.756 0.005853 **
## populism
                        3.895e-05 8.102e-06
                                               4.808 1.53e-06 ***
## s(quarter)1
                        2.917e-01 1.397e-02
                                              20.880 < 2e-16 ***
## s(quarter)2
                       -9.134e-02 6.136e-03 -14.886 < 2e-16 ***
                        4.468e-02 3.228e-03 13.842 < 2e-16 ***
## s(quarter)3
## s(quarter)4
                       -3.345e-02 1.895e-03 -17.650 < 2e-16 ***
```

#### 5.5.10 10) Victims of violent deaths

```
summary(prep K18NoG, topics = 10)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 10:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        8.042e-02 9.762e-04 82.382 < 2e-16 ***
## (Intercept)
## party idCI
                       -4.190e-02 2.008e-03 -20.862
                                                     < 2e-16 ***
## party idFDI
                       -1.394e-02 1.141e-03 -12.219
                                                      < 2e-16 ***
## party idFI
                       -2.769e-02 8.971e-04 -30.870 < 2e-16 ***
## party idINDIPENDENTE -5.453e-02 3.463e-03 -15.743 < 2e-16 ***
## party idIV
                       -1.428e-03 3.509e-03 -0.407
                                                       0.6841
## party_idLEGA
                       -3.397e-02 8.575e-04 -39.621
                                                      < 2e-16 ***
## party_idLEU
                        2.853e-02 2.569e-03 11.105
                                                      < 2e-16 ***
## party_idM5S
                       -1.284e-02 9.541e-04 -13.453
                                                      < 2e-16 ***
## party idMISTO
                       -2.553e-02 1.196e-03 -21.350 < 2e-16 ***
## party idREG LEAGUES -3.313e-02 4.504e-03 -7.356 1.90e-13 ***
## populism
                        3.117e-04 9.394e-06 33.180
                                                      < 2e-16 ***
## s(quarter)1
                        1.284e-02 1.734e-02
                                              0.741
                                                       0.4588
## s(quarter)2
                       -6.420e-03 7.353e-03 -0.873
                                                       0.3826
## s(quarter)3
                        1.623e-02 3.847e-03 4.220 2.45e-05 ***
## s(quarter)4
                        2.250e-03 2.502e-03 0.899
                                                       0.3685
```

#### 5.5.11 11) Public education

```
summary(prep K18NoG, topics = 11)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 11:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        3.579e-02 6.734e-04 53.141 < 2e-16 ***
## (Intercept)
## party idCI
                       -1.396e-03 1.743e-03 -0.801 0.423143
## party_idFDI
                       -1.331e-02 7.347e-04 -18.116 < 2e-16 ***
## party idFI
                       -6.545e-03 6.718e-04 -9.742 < 2e-16 ***
## party idINDIPENDENTE 8.760e-02 3.871e-03 22.633 < 2e-16 ***
## party idIV
                        2.406e-02 2.361e-03 10.190 < 2e-16 ***
## party_idLEGA
                       -7.458e-03 5.695e-04 -13.097 < 2e-16 ***
## party_idLEU
                       -9.759e-03 1.279e-03 -7.631 2.34e-14 ***
## party_idM5S
                        1.261e-03 6.943e-04
                                               1.817 0.069271 .
## party_idMISTO
                       -1.960e-03 7.556e-04 -2.593 0.009501 **
## party idREG LEAGUES
                      -1.231e-02 3.125e-03
                                              -3.938 8.22e-05 ***
                       -1.265e-04 5.173e-06 -24.457 < 2e-16 ***
## populism
## s(quarter)1
                       -4.459e-02 1.195e-02 -3.731 0.000191 ***
                        3.844e-02 5.047e-03 7.616 2.62e-14 ***
## s(quarter)2
## s(quarter)3
                                              2.610 0.009049 **
                        6.861e-03 2.628e-03
## s(quarter)4
                        7.292e-03 1.760e-03 4.144 3.41e-05 ***
```

#### 5.5.12 12) Anti-elitism

```
summary(prep K18NoG, topics = 12)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 12:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        5.103e-02 8.931e-04 57.138 < 2e-16 ***
## (Intercept)
## party idCI
                       -2.581e-02 1.709e-03 -15.107 < 2e-16 ***
## party_idFDI
                        4.787e-02 1.064e-03 44.994
                                                      < 2e-16 ***
## party idFI
                        2.080e-02 7.766e-04 26.779 < 2e-16 ***
## party idINDIPENDENTE -5.279e-02 2.773e-03 -19.036 < 2e-16 ***
## party idIV
                       -2.936e-02 2.475e-03 -11.860 < 2e-16 ***
## party_idLEGA
                        3.913e-02 7.937e-04 49.294 < 2e-16 ***
## party_idLEU
                        1.075e-02 1.744e-03
                                               6.166 7.01e-10 ***
## party_idM5S
                       -8.031e-03 8.577e-04 -9.363 < 2e-16 ***
## party idMISTO
                        2.991e-02 1.043e-03 28.674 < 2e-16 ***
## party idREG LEAGUES -3.954e-02 3.454e-03 -11.447
                                                      < 2e-16 ***
## populism
                        3.871e-04 9.752e-06 39.697
                                                     < 2e-16 ***
## s(quarter)1
                       -1.084e-01 1.340e-02 -8.090 5.97e-16 ***
## s(quarter)2
                        6.294e-02 5.841e-03 10.776 < 2e-16 ***
## s(quarter)3
                       -3.460e-02 3.066e-03 -11.284 < 2e-16 ***
## s(quarter)4
                        4.570e-02 2.026e-03 22.554 < 2e-16 ***
```

#### 5.5.13 13) Social and TV live broadcasts

```
summary(prep K18NoG, topics = 13)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 13:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        6.452e-02 8.661e-04 74.497 < 2e-16 ***
## (Intercept)
                       -1.142e-02 1.640e-03 -6.958 3.45e-12 ***
## party idCI
## party idFDI
                        2.154e-03 8.446e-04
                                               2.550 0.01077 *
## party idFI
                       -4.556e-03 7.494e-04
                                              -6.080 1.20e-09 ***
## party idINDIPENDENTE 3.917e-02 3.442e-03 11.381 < 2e-16 ***
## party idIV
                        2.117e-02 2.818e-03
                                               7.512 5.85e-14 ***
## party_idLEGA
                       -6.320e-03 6.529e-04
                                              -9.681 < 2e-16 ***
## party_idLEU
                        1.580e-02 1.629e-03
                                              9.696 < 2e-16 ***
## party_idM5S
                        4.571e-03 8.878e-04
                                               5.149 2.62e-07 ***
## party_idMISTO
                        3.904e-03 9.396e-04
                                               4.155 3.25e-05 ***
## party idREG LEAGUES -7.715e-03 3.530e-03
                                              -2.186 0.02882 *
## populism
                       -2.066e-04 6.458e-06 -31.992
                                                      < 2e-16 ***
## s(quarter)1
                       -2.228e-02 1.306e-02 -1.706 0.08796 .
## s(quarter)2
                        1.184e-03 5.736e-03
                                              0.206 0.83652
## s(quarter)3
                       -1.595e-02 3.159e-03 -5.050 4.43e-07 ***
## s(quarter)4
                       -5.063e-03 1.964e-03 -2.578 0.00993 **
```

#### 5.5.14 14) Junk topic

```
summary(prep K18NoG, topics = 14)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 14:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        5.725e-02 9.351e-04 61.222 < 2e-16 ***
## (Intercept)
## party idCI
                        1.926e-02 1.815e-03 10.610 < 2e-16 ***
## party idFDI
                       -1.128e-02 8.600e-04 -13.118
                                                      < 2e-16 ***
                        1.403e-02 8.038e-04 17.457 < 2e-16 ***
## party idFI
## party idINDIPENDENTE 4.828e-03
                                   2.828e-03
                                              1.707 0.087759 .
## party idIV
                        1.091e-02 2.436e-03
                                               4.480 7.46e-06 ***
## party_idLEGA
                       -2.535e-02 6.679e-04 -37.963 < 2e-16 ***
## party_idLEU
                        6.289e-03 1.774e-03
                                               3.545 0.000392 ***
## party_idM5S
                        8.759e-03 7.465e-04 11.733 < 2e-16 ***
## party_idMISTO
                        4.105e-03 8.938e-04
                                               4.593 4.37e-06 ***
## party idREG LEAGUES
                        1.557e-01 4.723e-03 32.978 < 2e-16 ***
## populism
                       -9.792e-06 7.005e-06 -1.398 0.162155
## s(quarter)1
                       -2.033e-01 1.186e-02 -17.143 < 2e-16 ***
## s(quarter)2
                        8.861e-02 5.200e-03 17.041 < 2e-16 ***
## s(quarter)3
                       -5.690e-02 2.785e-03 -20.435 < 2e-16 ***
## s(quarter)4
                        3.977e-02 2.092e-03 19.012 < 2e-16 ***
```

### 5.5.15 15) Junk topic

```
summary(prep K18NoG, topics = 15)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 15:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        5.740e-02 8.020e-04 71.570 < 2e-16 ***
## (Intercept)
## party idCI
                       -1.568e-02 1.712e-03 -9.156 < 2e-16 ***
## party_idFDI
                       -1.548e-03 8.308e-04 -1.863
                                                       0.0624 .
                                               9.677
## party idFI
                        7.207e-03 7.448e-04
                                                      < 2e-16 ***
## party idINDIPENDENTE -3.752e-02 2.499e-03 -15.012 < 2e-16 ***
## party idIV
                       -3.310e-02 2.149e-03 -15.403 < 2e-16 ***
## party_idLEGA
                       -6.455e-03 6.848e-04 -9.426
                                                      < 2e-16 ***
## party_idLEU
                       -2.188e-02 1.427e-03 -15.339
                                                      < 2e-16 ***
## party_idM5S
                       -2.777e-02 7.009e-04 -39.617
                                                      < 2e-16 ***
## party_idMISTO
                        7.864e-03 8.496e-04
                                               9.257
                                                      < 2e-16 ***
## party idREG LEAGUES -2.626e-02 3.237e-03 -8.111 5.02e-16 ***
## populism
                       -1.633e-04 6.565e-06 -24.878
                                                      < 2e-16 ***
## s(quarter)1
                       -2.363e-02 1.208e-02 -1.957
                                                       0.0503 .
## s(quarter)2
                        3.311e-04 5.448e-03
                                               0.061
                                                       0.9515
## s(quarter)3
                       -1.635e-02 2.850e-03 -5.738 9.59e-09 ***
## s(quarter)4
                       -7.078e-04 1.952e-03 -0.363
                                                       0.7169
```

#### 5.5.16 16) Olympics game

```
summary(prep K18NoG, topics = 16)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 16:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        8.277e-02 9.054e-04 91.419 < 2e-16 ***
## (Intercept)
## party idCI
                        2.621e-02 1.945e-03 13.477 < 2e-16 ***
## party idFDI
                       -1.523e-02 9.020e-04 -16.881
                                                      < 2e-16 ***
                        1.093e-02 7.193e-04 15.190 < 2e-16 ***
## party idFI
## party idINDIPENDENTE 2.256e-02 3.454e-03
                                               6.531 6.55e-11 ***
## party idIV
                       -2.612e-03 2.595e-03 -1.007
                                                        0.314
## party_idLEGA
                       -3.736e-03 6.621e-04 -5.643 1.67e-08 ***
## party_idLEU
                       -2.525e-02 1.629e-03 -15.496 < 2e-16 ***
## party_idM5S
                       -2.141e-02 7.393e-04 -28.961
                                                      < 2e-16 ***
## party_idMISTO
                       -2.293e-02 8.429e-04 -27.205
                                                      < 2e-16 ***
## party idREG LEAGUES -3.986e-02 3.363e-03 -11.851 < 2e-16 ***
                                               4.306 1.66e-05 ***
## populism
                        3.233e-05 7.508e-06
## s(quarter)1
                       -2.641e-01 1.345e-02 -19.636 < 2e-16 ***
## s(quarter)2
                        6.577e-02 5.742e-03 11.455 < 2e-16 ***
## s(quarter)3
                       -4.197e-02 2.998e-03 -13.998 < 2e-16 ***
## s(quarter)4
                       -3.347e-02 1.869e-03 -17.914 < 2e-16 ***
```

#### 5.5.17 17) Right-wing parties topic

```
summary(prep K18NoG, topics = 17)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 17:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        2.705e-02 8.315e-04 32.533 < 2e-16 ***
## (Intercept)
## party idCI
                       -7.876e-03 1.513e-03 -5.207 1.92e-07 ***
## party_idFDI
                        9.296e-02 9.446e-04 98.413 < 2e-16 ***
## party idFI
                        4.359e-03 6.370e-04
                                               6.842 7.81e-12 ***
## party idINDIPENDENTE -1.773e-02 2.505e-03 -7.077 1.47e-12 ***
## party idIV
                       -9.605e-03 2.152e-03 -4.463 8.07e-06 ***
## party_idLEGA
                        1.312e-01 7.966e-04 164.679 < 2e-16 ***
## party_idLEU
                        5.859e-03 1.445e-03
                                               4.056 5.00e-05 ***
## party_idM5S
                        3.315e-03 6.693e-04
                                               4.954 7.28e-07 ***
                                              17.909 < 2e-16 ***
## party_idMISTO
                        1.468e-02 8.196e-04
## party idREG LEAGUES
                        5.077e-03 3.389e-03
                                               1.498
                                                       0.1341
## populism
                        1.592e-04 7.516e-06
                                              21.181 < 2e-16 ***
## s(quarter)1
                       -2.743e-02 1.286e-02 -2.133
                                                       0.0329 *
## s(quarter)2
                                                       0.4706
                        4.079e-03 5.654e-03
                                              0.721
## s(quarter)3
                        2.280e-02 3.039e-03 7.500 6.38e-14 ***
## s(quarter)4
                       -3.036e-02 1.906e-03 -15.932 < 2e-16 ***
```

### 5.5.18 18) Junk topic

```
summary(prep K18NoG, topics = 18)
##
## Call:
## estimateEffect(formula = 1:18 ~ party_id + populism + s(quarter),
##
       stmobj = mySTM18NoG, metadata = DfmStm$meta, uncertainty = "Global")
##
##
## Topic 18:
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                        2.362e-02 2.546e-04 92.797 < 2e-16 ***
## (Intercept)
## party idCI
                       -3.237e-03 5.155e-04 -6.280 3.38e-10 ***
## party_idFDI
                       -1.660e-03 2.596e-04 -6.395 1.61e-10 ***
## party idFI
                       -2.114e-03 2.476e-04 -8.537 < 2e-16 ***
## party idINDIPENDENTE -7.411e-03 8.054e-04 -9.202 < 2e-16 ***
## party idIV
                       -1.243e-03 8.439e-04 -1.473 0.140662
## party_idLEGA
                       -2.577e-03
                                   2.084e-04 -12.366 < 2e-16 ***
## party_idLEU
                        1.373e-05 5.064e-04
                                               0.027 0.978365
## party_idM5S
                        1.219e-03 2.349e-04
                                               5.191 2.10e-07 ***
                                              -0.165 0.869045
## party_idMISTO
                       -4.740e-05
                                   2.875e-04
## party idREG LEAGUES
                       -3.446e-03
                                   1.049e-03
                                              -3.285 0.001020 **
                                               1.847 0.064741 .
## populism
                        4.098e-06 2.219e-06
## s(quarter)1
                       -7.076e-03 3.967e-03 -1.784 0.074463 .
## s(quarter)2
                        4.528e-04 1.668e-03
                                              0.272 0.785963
## s(quarter)3
                       -1.972e-03 8.963e-04 -2.200 0.027784 *
## s(quarter)4
                       -1.095e-03 5.735e-04 -1.909 0.056303 .
```

## 5.6 Interpretation

### 5.6.1 Correlation between topics



## 5.6.2 Topic variation over time

### Covid cluster

```
# TOPIC 8 Economic relaunch
plot(prep_K18NoG, "quarter", method = "continuous",
          topics = 8, printlegend = F, main = "8 Economic relaunch")
```

## 8 Economic relaunch



```
# TOPIC 2 Covid 19
plot(prep_K18NoG, "quarter", method = "continuous",
    topics = 2, printlegend = F, main = "2 Covid 19")
```

## **2 Covid 19**



```
# TOPIC 9 Economic hardship and taxes
plot(prep_K18NoG, "quarter", method = "continuous",
     topics = 9, printlegend = F, main = "9 Economic hardship and taxes")
```

# 9 Economic hardship and taxes



# 6 Sustainable energy



```
# Covid cluster

plot(prep_K18NoG, "quarter", method = "continuous",

    topics = c(2,6,8,9), printlegend = T,

ylim = c(0,0.35), main = "Covid cluster")
```

## **Covid cluster**



# Populism cluster

```
# TOPIC 17
plot(prep_K18NoG, "quarter", method = "continuous",
     topics = 17, printlegend = F, main = "17 Right-wing")
```

# 17 Right-wing



```
# TOPIC 12
plot(prep_K18NoG, "quarter", method = "continuous",
     topics = 12, printlegend = F, main = "12 Anti elitism")
```

## 12 Anti elitism



```
# Right-wing theme cluster cluster
plot(prep_K18NoG, "quarter", method = "continuous",
     topics = c(12,17), printlegend = T,
     ylim = c(-0.02,0.1), main = "Right-wing theme cluster")
```

# Right-wing theme cluster



### Communication cluster

```
# TOPIC 5
plot(prep_K18NoG, "quarter", method = "continuous",
     topics = 5, printlegend = F, main = "5 Journals and media")
```

# 5 Journals and media



```
# TOPIC 13
plot(prep_K18NoG, "quarter", method = "continuous",
     topics = 13, printlegend = F, main = "13 Social and TV live broadcasts")
```

## 13 Social and TV live broadcasts



```
# Communication cluster
plot(prep_K18NoG, "quarter", method = "continuous",
          topics = c(5,13), printlegend = T, main = "Communication cluster")
```

# **Communication cluster**



# 6 FER: Facial Emotion Recognition Analysis

Report on the analysis made with FER Python package

### 6.1 Import the datasets

```
# CONTE
Conte_07_03_22_00 <- read_csv("data/video_emotions/Conte_07-03-22 00.csv",</pre>
    col types = cols(angry = col number(),
        disgust = col number(), fear = col number(),
        happy = col number(), sad = col number(),
        surprise = col number(), neutral = col number()))
## New names:
## * `` -> `...1`
Conte 09 03 22 00 <- read csv("data/video emotions/Conte 09-03-22 00.csv",
    col types = cols(angry = col number(),
        disgust = col number(), fear = col number(),
        happy = col_number(), sad = col_number(),
        surprise = col_number(), neutral = col_number()))
## New names:
## * `` -> `...1`
Conte_22_02_22_00 <- read_csv("data/video_emotions/Conte_22-02-22_00.csv",
    col_types = cols(angry = col_number(),
        disgust = col number(), fear = col number(),
        happy = col number(), sad = col number(),
        surprise = col number(), neutral = col number()))
```

```
## New names:
## * `` -> `...1`
Conte_23_02_22_00 <- read_csv("data/video_emotions/Conte_23-02-22_00.csv",
    col_types = cols(angry = col_number(),
        disgust = col number(), fear = col number(),
        happy = col number(), sad = col number(),
        surprise = col number(), neutral = col number()))
## New names:
## * `` -> `...1`
Conte 23 02 22 01 <- read csv("data/video emotions/Conte 23-02-22 01.csv",
    col types = cols(angry = col number(),
        disgust = col_number(), fear = col_number(),
        happy = col_number(), sad = col_number(),
        surprise = col_number(), neutral = col_number()))
## New names:
## * `` -> `...1`
Conte_24_02_22_01 <- read_csv("data/video_emotions/Conte_24-02-22 01.csv",</pre>
    col types = cols(angry = col number(),
        disgust = col number(), fear = col number(),
        happy = col number(), sad = col number(),
        surprise = col number(), neutral = col number()))
## New names:
## * `` -> `...1`
```

```
Conte_28_02_22_00 <- read_csv("data/video_emotions/Conte_28-02-22 00.csv",
    col_types = cols(angry = col_number(),
        disgust = col number(), fear = col number(),
        happy = col number(), sad = col number(),
        surprise = col number(), neutral = col number()))
## New names:
## * `` -> `...1`
# LETTA
Letta_03_03_22_00 <- read_csv("data/video_emotions/Letta_03-03-22_00.csv",
    col_types = cols(angry = col_number(),
        disgust = col_number(), fear = col_number(),
        happy = col number(), sad = col number(),
        surprise = col number(), neutral = col number()))
## New names:
## * `` -> `...1`
Letta_06_04_22_00 <- read_csv("data/video_emotions/Letta_06-04-22_00.csv",
    col types = cols(angry = col number(),
        disgust = col_number(), fear = col_number(),
        happy = col_number(), sad = col_number(),
        surprise = col_number(), neutral = col_number()))
## New names:
## * `` -> `...1`
```

```
# MELONI
Meloni_1_03_2022 <- read_csv("data/video_emotions/Meloni 1-03-2022.csv",</pre>
    col types = cols(angry = col number(),
        disgust = col number(), fear = col number(),
        happy = col number(), sad = col number(),
        surprise = col number(), neutral = col number()))
## New names:
## * `` -> `...1`
Meloni_11_03_2022_02 <- read_csv("data/video_emotions/Meloni_11-03-2022_02.csv",</pre>
    col_types = cols(angry = col_number(),
        disgust = col_number(), fear = col_number(),
        happy = col number(), sad = col number(),
        surprise = col number(), neutral = col number()))
## New names:
## * `` -> `...1`
Meloni_11_03_2022 <- read_csv("data/video_emotions/Meloni_11-03-2022.csv",</pre>
    col types = cols(angry = col number(),
        disgust = col_number(), fear = col_number(),
        happy = col_number(), sad = col_number(),
        surprise = col_number(), neutral = col_number()))
## New names:
## * `` -> `...1`
```

```
Meloni_15_03_2022 <- read_csv("data/video_emotions/Meloni_15-03-2022.csv",</pre>
    col types = cols(angry = col number(),
        disgust = col number(), fear = col number(),
        happy = col number(), sad = col number(),
        surprise = col number(), neutral = col number()))
## New names:
## * `` -> `...1`
Meloni 22 03 2022 <- read csv("data/video emotions/Meloni 22-03-2022.csv",
    col_types = cols(angry = col_number(),
        disgust = col_number(), fear = col_number(),
        happy = col_number(), sad = col_number(),
        surprise = col_number(), neutral = col_number()))
## New names:
## * `` -> `...1`
Meloni 29 03 2022 <- read csv("data/video emotions/Meloni 29-03-2022.csv",
    col types = cols(angry = col number(),
        disgust = col number(), fear = col number(),
        happy = col number(), sad = col_number(),
        surprise = col number(), neutral = col number()))
## New names:
## * `` -> `...1`
Meloni_31_03_2022<- read_csv("data/video_emotions/Meloni_31-03-2022.csv",
    col_types = cols(angry = col_number(),
        disgust = col_number(), fear = col_number(),
```

```
happy = col number(), sad = col number(),
        surprise = col_number(), neutral = col_number()))
## New names:
## * `` -> `...1`
# RENZI
Renzi_19_04_2022 <- read_csv("data/video_emotions/Renzi 19-04-2022.csv",</pre>
    col types = cols(angry = col number(),
        disgust = col number(), fear = col number(),
        happy = col number(), sad = col number(),
        surprise = col_number(), neutral = col_number()))
## New names:
## * `` -> `...1`
Renzi 30 03 2022 <- read csv("data/video emotions/Renzi 30-03-2022.csv",
    col types = cols(angry = col number(),
        disgust = col_number(), fear = col_number(),
        happy = col_number(), sad = col_number(),
        surprise = col_number(), neutral = col_number()))
## New names:
## * `` -> `...1`
# SALVINI
Salvini_08_03_2022 <- read_csv("data/video_emotions/Salvini_08-03-2022.csv",
    col_types = cols(angry = col_number(),
        disgust = col number(), fear = col number(),
        happy = col number(), sad = col number(),
        surprise = col number(), neutral = col number()))
```

```
## New names:
## * `` -> `...1`
Salvini_08_04_2022_02 <- read_csv("data/video_emotions/Salvini_08-04-2022_02.csv",
    col_types = cols(angry = col_number(),
        disgust = col number(), fear = col number(),
        happy = col number(), sad = col number(),
        surprise = col number(), neutral = col number()))
## New names:
## * `` -> `...1`
Salvini 16 03 2022 <- read csv("data/video emotions/Salvini 16-03-2022.csv",
    col types = cols(angry = col number(),
        disgust = col number(), fear = col number(),
        happy = col_number(), sad = col_number(),
        surprise = col_number(), neutral = col_number()))
## New names:
## * `` -> `...1`
```

#### 6.2 Conte datasets

```
#1

# Conte_07_03_22_00

Conte_07_03_22_00_prop <- c(
    angry <- sum(Conte_07_03_22_00$angry),
    disgust <- sum(Conte_07_03_22_00$disgust),
    fear <- sum(Conte_07_03_22_00$fear),
    happy <- sum(Conte_07_03_22_00$happy),
```

```
sad <- sum(Conte_07_03_22_00$sad),
surprise <- sum(Conte_07_03_22_00$surprise),
meutral <- sum(Conte_07_03_22_00$neutral)
)</pre>
```

```
#2

# Conte_09_03_22_00

Conte_09_03_22_00_prop <- c(
    angry <- sum(Conte_09_03_22_00$angry),
    disgust <- sum(Conte_09_03_22_00$disgust),
    fear <- sum(Conte_09_03_22_00$fear),
    happy <- sum(Conte_09_03_22_00$happy),
    sad <- sum(Conte_09_03_22_00$sad),
    surprise <- sum(Conte_09_03_22_00$surprise),
    meutral <- sum(Conte_09_03_22_00$neutral)
)
```

```
#3
# Conte_22_02_22_00
i = Conte_22_02_22_00
Conte_22_02_22_00_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

```
#4
# Conte_23_02_22_00
i = Conte_23_02_22_00
Conte_23_02_22_00_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

```
# Conte_23_02_22_01
i = Conte_23_02_22_01
Conte_23_02_22_01_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

```
#6
# Conte_24_02_22_01
i = Conte_24_02_22_01
Conte_24_02_22_01_prop <- c(
```

```
angry <- sum(i$angry),
disgust <- sum(i$disgust),
fear <- sum(i$fear),
happy <- sum(i$happy),
sad <- sum(i$sad),
surprise <- sum(i$surprise),
meutral <- sum(i$neutral)</pre>
```

```
#7
# Conte_28_02_22_00
i = Conte_28_02_22_00
Conte_28_02_22_00_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

```
emo_label <- colnames(Conte_07_03_22_00)[3:9]
colnames(conte) <- emo label</pre>
conte <- as.data.frame(conte)</pre>
tot conte <- max(Conte 07 03 22 00$...1) +
              max(Conte_09_03_22_00$...1) +
              max(Conte_22_02_22_00$...1) +
              max(Conte_23_02_22_00\$...1) +
              max(Conte_23_02_22_01$...1) +
              max(Conte_24_02_22_01\$...1) +
              max(Conte_28_02_22_00$...1)
conte[8,] <- c(sum(conte$angry)/tot_conte * 100,</pre>
                sum(conte$disgust)/tot_conte *100,
                sum(conte$fear)/tot conte *100,
                sum(conte$happy)/tot_conte *100,
                sum(conte$sad)/tot_conte *100,
                sum(conte$surprise)/tot_conte * 100,
                sum(conte$neutral)/tot_conte *100)
```

#### 6.3 Letta datasets

```
#1

# Letta_03_03_22_00

i = Letta_03_03_22_00

Letta_03_03_22_00_prop <- c(
    angry <- sum(i$angry),
```

```
disgust <- sum(i$disgust),
fear <- sum(i$fear),
happy <- sum(i$happy),
sad <- sum(i$sad),
surprise <- sum(i$surprise),
meutral <- sum(i$neutral)</pre>
```

```
#2
# Letta_06_04_22_00
i = Letta_06_04_22_00
Letta_06_04_22_00_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

## 6.4 Meloni datasets

```
#1
# Meloni_1_03_2022
i = Meloni_1_03_2022
Meloni_1_03_2022_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

```
#2

# Meloni_11_03_2022_02

i = Meloni_11_03_2022_02

Meloni_11_03_2022_02_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
```

```
fear <- sum(i$fear),
happy <- sum(i$happy),
sad <- sum(i$sad),
surprise <- sum(i$surprise),
meutral <- sum(i$neutral)</pre>
```

```
# Meloni_11_03_2022
i = Meloni_11_03_2022
Meloni_11_03_2022_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

```
#4
# Meloni_15_03_2022
i = Meloni_15_03_2022
Meloni_15_03_2022_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),</pre>
```

```
meutral <- sum(i$neutral)
)

#5

# Meloni_22_03_2022

i = Meloni_22_03_2022

Meloni_22_03_2022_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

```
#6
# Meloni_29_03_2022
i = Meloni_29_03_2022
Meloni_29_03_2022_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

```
#7
# Meloni_31_03_2022
i = Meloni 31 03 2022
Meloni 31 03 2022 prop <- c(
  angry <- sum(i$angry),</pre>
  disgust <- sum(i$disgust),</pre>
  fear <- sum(i$fear),</pre>
  happy <- sum(i$happy),</pre>
  sad <- sum(i$sad),</pre>
  surprise <- sum(i$surprise),</pre>
  meutral <- sum(i$neutral)</pre>
meloni <- rbind(Meloni_1_03_2022_prop,</pre>
                 Meloni_11_03_2022_02_prop,
                 Meloni_11_03_2022_prop,
                 Meloni_15_03_2022_prop,
                 Meloni_22_03_2022_prop,
                 Meloni_29_03_2022_prop,
                Meloni_31_03_2022_prop
colnames(meloni) <- emo label</pre>
meloni <- as.data.frame(meloni)</pre>
tot_meloni <- max(Meloni_1_03_2022$...1) +</pre>
               max(Meloni 11 03 2022 02$...1)+
               max(Meloni 11 03 2022$...1)+
```

max(Meloni 15 03 2022\$...1)+

## 6.5 Renzi datasets

```
#1
# Renzi_19_04_2022
i = Renzi_19_04_2022
Renzi_19_04_2022_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

```
#2
# Renzi_30_03_2022
```

```
i = Renzi_30_03_2022
Renzi_30_03_2022_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

## 6.6 Salvini datasets

```
#1
# Salvini_08_03_2022
i = Salvini_08_03_2022
Salvini_08_03_2022_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

```
#2
# Salvini_08_04_2022_02
i = Salvini_08_04_2022_02
Salvini_08_04_2022_02_prop <- c(
    angry <- sum(i$angry),
    disgust <- sum(i$disgust),
    fear <- sum(i$fear),
    happy <- sum(i$happy),
    sad <- sum(i$sad),
    surprise <- sum(i$surprise),
    meutral <- sum(i$neutral)
)</pre>
```

```
#3
# Salvini_16_03_2022
i = Salvini 16 03 2022
Salvini 16 03 2022 prop <- c(
  angry <- sum(i$angry),</pre>
  disgust <- sum(i$disgust),</pre>
  fear <- sum(i$fear),</pre>
  happy <- sum(i$happy),</pre>
  sad <- sum(i$sad),</pre>
  surprise <- sum(i$surprise),</pre>
  meutral <- sum(i$neutral)</pre>
salvini <- rbind(Salvini_08_03_2022_prop,</pre>
                 Salvini_08_04_2022_02_prop,
                Salvini_16_03_2022_prop
colnames(salvini) <- emo_label</pre>
salvini <- as.data.frame(salvini)</pre>
tot_salvini <- max(Salvini_08_03_2022$...1) +</pre>
                 max(Salvini_08_04_2022_02$...1)+
                 max(Salvini_16_03_2022$...1)
salvini[4,] <- c(sum(salvini$angry)/tot_salvini * 100,</pre>
                   sum(salvini$disgust)/tot_salvini * 100,
                 sum(salvini$fear)/tot salvini * 100,
                 sum(salvini$happy)/tot salvini * 100,
```

sum(salvini\$sad)/tot salvini \* 100,

```
sum(salvini$surprise)/tot_salvini * 100,
sum(salvini$neutral)/tot_salvini * 100)
```

# 6.7 Create dataset with the proportion of the emotions registered for each leader

|         | angry    | disgust   | fear      | happy     | sad       | surprise   | neutral  |
|---------|----------|-----------|-----------|-----------|-----------|------------|----------|
| Conte   | 26.82598 | 1.2745357 | 14.453157 | 8.376083  | 33.067107 | 2.0669418  | 13.82099 |
| Letta   | 11.26310 | 0.0342991 | 9.236472  | 32.409459 | 8.532808  | 4.5901150  | 33.91223 |
| Meloni  | 20.63115 | 0.2883622 | 23.570927 | 5.747407  | 20.226604 | 12.6588713 | 16.78353 |
| Renzi   | 24.98139 | 0.3537467 | 17.060469 | 4.398206  | 37.923233 | 2.9666313  | 12.18218 |
| Salvini | 12.85566 | 2.8709759 | 7.116432  | 25.509843 | 28.479119 | 0.3918993  | 22.63165 |

## 6.8 Results

```
legend.text = TRUE,
args.legend = list(x = "topright"),
xlim=c(0,7.5),
main = "Emotion classification for each party leader"
)
```

## **Emotion classification for each party leader**





Un ringraziamento speciale va a tutto il team del progetto POPULITE e in particolare alle Professoresse Silvia Decadri e Fedra Negri che con i puntuali consigli e continuo incoraggiamento hanno reso questo lavoro possibile e a Vanessa Ferrara il cui sostegno è stato fondamentale nel raggiungimento del traguardo. Per ultimo ma di certo non meno importante a Gaia Rebecchi che mi ha aiutato a superare i momenti di sconforto e non ha mai smesso di motivarmi.