Tratamento Estatístico de Dados em Física Experimental - Atividade 05

Determinação analítica de parâmetros de funções densidade de probabilidade

Faça as questões abaixo e depois transcreva suas respostas para o formulário do Google Forms correspondente https://forms.gle/pnZQAtTj5vdLrU3w8 (para ter acesso ao formulário é preciso estar logado no Google com uma conta da USP). Essa atividade deve ser entregue até às **23h59** do dia 22/09 (quarta-feira). Até o final do prazo de entrega é possível revisar as respostas, exceto pela questão 0 que não permite substituir o arquivo enviado.

Para possibilitar análise posterior dos resultados e evitar perda de informação, <u>escreva</u> todos os resultados numéricos com 4 algarismos significativos.

Recomenda-se iniciar o gerador de números aleatórios com a semente igual ao seu número USP. No Python, isso é feito pelo comando np.random.seed(nU) onde nU é o seu número USP.

Questão 0) A resposta deste item consiste em enviar para o *formulário de respostas* uma foto da dedução solicitada, de acordo com último dígito do seu número USP.

ATENÇÃO: uma vez enviado o arquivo no formulário, ele não poderá mais ser substituído.

1) Considere a função densidade de probabilidade f(x), definida abaixo:

$$f(x) = \begin{cases} \frac{3}{4}(1 - x^2) & \text{se } |x| \le 1\\ 0 & \text{caso contrário} \end{cases}$$

Cujo valor esperado, x_0 , é zero por simetria.

Parte A - Determine analiticamente:

1.A.i) o desvio padrão verdadeiro de x, σ_0 . Escreva o valor de σ_0 com 4 algarismos significativos no formulário de respostas.

Alunos com números USP terminados em 0, 1, 2, 3 e 4 precisarão enviar foto da dedução deste item como a "questão 0" do formulário de respostas.

- **1.A.ii**) a expressão para a função de probabilidade acumulada, $g(x) = \int_{-\infty}^{x} f(u) du$ para $|x| \le 1$. Escrever a função obtida em termos de x no formulário de respostas. Por exemplo: se o exercício fosse sobre uma distribuição uniforme entre -1 e +1, f(z) = 0.5 para |z| <= 1, a função de probabilidade acumulada para |z| <= 1 seria g(z) = (z+1)/2, de modo que a resposta no formulário deveria ser simplesmente "(z+1)/2".
- **1.A.iii**) a probabilidade, P_1 , de se medir um valor de x no intervalo $[x_0 \sigma_0; x_0 + \sigma_0]$. Escreva o valor de P_1 com 4 algarismos significativos no formulário de respostas.

<u>Parte B</u> - Escreva uma rotina para gerar dados que sigam a função densidade de probabilidade f(x) e gere um conjunto de N=10.000 valores de x. Em seguida, responda os itens abaixo:

- **1.B.i**) Calcule o desvio-padrão amostral dos N valores de x, σ_x . Escreva o valor obtido para σ_x com 4 algarismos significativos no formulário de respostas.
- **1.B.ii**) Determine quantos dos N dados foram obtidos no intervalo entre $x_0 \sigma_0$ e $x_0 + \sigma_0$ e calcule a frequência relativa correspondente, F_1 . Escreva o valor de F_1 com 4 algarismos significativos no formulário de respostas.
- 2) Considere a função densidade de probabilidade f(y), definida abaixo:

$$f(y) = \begin{cases} \frac{1}{2}cos(y) & se |y| \le \frac{\pi}{2} \\ 0 & caso \ contrário \end{cases}$$

Cujo valor esperado, y_0 , também é zero por simetria.

Parte A - Determine analiticamente:

- **2.A.i**) o desvio padrão verdadeiro de y, σ_0 . Escreva o valor de σ_0 com 4 algarismos significativos no formulário de respostas.
- **2.A.ii**) a expressão da função de probabilidade acumulada, $g(y) = \int_{-\infty}^{y} f(u) du$ para $|y| \le \frac{\pi}{2}$. Escrever a função obtida em termos de y no formulário de respostas.

Alunos com números USP terminados em 5, 6, 7, 8 e 9 precisarão enviar foto da dedução deste item como a "questão 0" do formulário de respostas.

- **2.A.iii**) a probabilidade, P_1 , de se medir um valor de y no intervalo $[y_0 \sigma_0; y_0 + \sigma_0]$. Escreva o valor de P_1 com 4 algarismos significativos no formulário de respostas.
- <u>Parte B</u> Escreva uma rotina para gerar dados que sigam a função densidade de probabilidade f(y) e gere um conjunto de N=10.000 valores de y. Em seguida, responda os itens abaixo:
 - **2.B.i**) Calcule o desvio-padrão amostral dos N valores de y, σ_y . Escreva o valor obtido para σ_y com 4 algarismos significativos no formulário de respostas.
 - **2.B.ii**) Determine quantos dos N dados foram obtidos no intervalo entre $y_0 \sigma_0$ e $y_0 + \sigma_0$ e calcule a frequência relativa correspondente, F_1 . Escreva o valor de F_1 com 4 algarismos significativos no formulário de respostas.