Thermo and Differentials

· Take an ideal gas with constant specific heat

du = ta + tw

Vag + ND = DB

DO = CV dT + NEBT dV = A(T,V) dT + B(T,V) dV

ot Q is not exact:

 $\frac{\partial A}{\partial \sqrt{+}} = \frac{\partial B}{\partial T}$

· But notice;

AO = CV AT + NKB dV = A' AT + B' dV is exact

So there is a function S(T, V) Which is

a property of the equilibrium

ds = 20 We will begin to interpret

S(T, V), as the entropy

From a thermodynamic perspective (and for ideal gas)
$dS = C_{V} dT + Nk_{B} dV \qquad (ideal gas)$
T
and (ideal gas only)
$\Delta S = S_{g} - S_{\bar{i}} = C_{V} \ln \left(\frac{T_{f}}{T_{\bar{i}}} \right) + Nk_{B} \ln \left(\frac{V_{f}}{V_{i}} \right)$
entropy of ideal gas. + constant C
At least from a mathematical perspective, the
relation from the carnot cycle is clear
J. C.
$P = \begin{cases} A = 0 \end{cases}$
P $a = 0$ $A = 0$ $A = 0$
TH It is a closed loop:
It is a closed loop:
CTC CTC
Qc Y DS = QH + O + Qc + O = O
TH TC T
↑
USab DSbc DScd USda
as oc co wat