

23CSE212 – Principle of Functional Languages BTech Computer Science and Engineering

Semester – 4

Lab Report

Academic Term: Jan – July 2025

Submitted by:

AM.SC.U4CSE23305

AMAN V SHAFEEQ

Criteria	Excellent	Good	Poor
Timely Submission			
Correctness of lab assignment			
Total Marks			
Signed By Lab Instructor			

Lab Session No: 5		
Date: 11/3/25 Question 1:		
Generate a list of squares of numbers from 1 to 5		
CO 2		
Code	Testcases (Input & Output)	
[x*x x<-[15]]	[1,4,9,16,25]	
Question 2: Genrate a list of even numbers from m to n		
Code	Testcases (Input & Output)	
$[x*x \mid x<-[15], \text{ mod } x \ 2 == 0]$	[4,16]	
Question 3: Generate a list of first n odd numbers CO2		
Code	Testcases (Input & Output)	
n_odd :: Int->[Int] n_odd n = take n [x x<-[1], mod x 2 /= 0]	*Main> n_odd 5 [1,3,5,7,9]	
Question 4: Generate a list of numbers from m to n that are divisible by 3 CO 2		
Code	Testcases (Input & Output)	
div_three :: Int -> Int -> [Int] div_three m n = [x x<-[mn], mod x 3 ==0]	*Main> div_three 1 10 [3,6,9]	
Question 5: Generate all ordered pairs (x,y) from x if from xs and y is from ys lists CO 2		
Code	Testcases (Input & Output)	

23C3E212 – Finicipies 0	T T TOGTONINING Eungauges
ordered_pairs :: [Int] -> [Int] -> [(Int,Int)] ordered_pairs xs ys = [(x,y) x<-xs, y<-ys]	*Main> ordered_pairs [1,2,3] [5,6,7] [(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7)]
Question 6 : Generate all pairs (x,y) from xs a even CO 2	and ys but only include pairs where x+y is
Code	Testcases (Input & Output)
ordered_even :: [Int] -> [Int] -> [(Int,Int)] ordered_even xs ys = [(x,y) x<-xs, y<-ys, (x+y) `mod` 2 == 0]	*Main> ordered_even [1,2,3] [5,6,7] [(1,5),(1,7),(2,6),(3,5),(3,7)]
Question 7: Flatten a nested list	
CO 2	T. 4 . 0 . 0 . 4 . 0
Code	Testcases (Input & Output)
flatten :: [[Int]]->[Int] flatten xs = foldr (++) [] xs	*Main> flatten [[1,2],[4,3]] [1,2,4, <u>3</u>]
Question 8 : Define a function duplicate which new list CO 2	ch will duplicate the list 3 times and produce a
Code	Testcases (Input & Output)
pyth_triplet :: Int->Int->[[Int]] pyth_triplet m n = [[x,y,z] x<-[mn], y<- [mn], z<-[mn], x^2 + y^2==z^2]	*Main> pyth_triplet 1 20 [[3,4,5],[4,3,5],[5,12,13],[6,8,10],[8,6,10],[8,15,17],[9,12,15],[12,5,13],[12,9,15],[12,16,20],[15,8,17],[16,12,20]]
Question 9	
CO 2	
Code	Testcases (Input & Output)
odd_even_digits = [x x<-[1099], (x mod 10) mod 2 == 0 && (x div 10) mod 2 /= 0]	*Main> odd_even_digits [10,12,14,16,18,30,32,34,36,38,50,52,54,56,58,70,72,74,76,78,90,92,94,96,98] *Main> •
Question 10 CO 2	
Code	Testcases (Input & Output)
extract_dig :: String->String	
extract_dig xs = [x x<-xs, isDigit x == True]	*Main> extract_dig "Hello2134h45" "213445 <u>"</u>
Question 11 CO 2	
Code	Testcases (Input & Output)
nested_list_sum :: [[Int]]->[Int]	
nested_list_sum xss = [sum xs xs<-xss]	*Main> nested_list_sum [[1,2,3],[4,5],[6,7,8,9]] [6,9,30]
Question 12 CO 2	
Code	Testcases (Input & Output)
triplets :: [Int]->Int->[(Int, Int, Int)] triplets xs s = [(x,y,z) x<-xs, y<-xs, z<-xs, x+y+z == s]	*Main> triplets [15] 10 [(1,4,5),(1,5,4),(2,3,5),(2,4,4),(2,5,3),(3,2,5),(3,3,4),(3,4,3),(3,5,2),(4,1,5),(4,2,4),(4,3,3),(4,4,2),(4,5,1),(5,1,4),(5,2,3),(5,3,2),(5,4,1)]
Question 13: CO 2	

Code	Testcases (Input & Output)
divisors :: Int->[Int]	
divisors $n = [x x < -[1n], n \text{ `mod` } x == 0]$	*Main> divisors 12 [1,2,3, <mark>4</mark> ,6,12]
Question 14:	
CO 2	
Code	Testcases (Input & Output)
isPrime k = if k > 1 then null [x x <- [2k - 1], k 'mod' x == 0] else False factors :: Int->[Int] factors n = [x x<-[1n], n 'mod' x == 0 && isPrime x == True]	*Main> factors 28 [2,7]
Question 15:	<u> </u>
Code	Testcases (Input & Output)
IsPrime_148 $k = if k > 1$ then null [$x \mid x < -$ [2k - 1], k 'mod' $x == 0$] else False	ghci> isPrime_148 7 True ghci> isPrime_148 10 False

Question 16:	
CO 2	
Code	Testcases (Input & Output)
extractVowels_148 :: [String] -> [String]	<pre>ghci> extractVowels_148 ["Haskell","Functional","Magic"] ["ae","uioa","ai"]</pre>
extractVowels_148 words = $[[c \mid c \leftarrow word,$	[40 , 424 , 42]
c `elem` "aeiouAEIOU"] word <- words]	
Question 17:	
CO 2	
Code	Testcases (Input & Output)
cartesianProduct_148 :: Int -> Int -> [(Int,	ghci> cartesianProduct_148 2 3
Int)] cartesianProduct 148 m n = $[(x, y) x]$	[(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)]
<-[1m], y <- [1n]]	Inh a da III
Question 18:	
CO 2	
Code	Testcases (Input & Output)
	ghci> multiplicationTable_148 5
multiplicationTable 148 :: Int -> [Int]	[5,10,15,20,25,30,35,40,45,50]
multiplication Table 148 n = $\lceil n * x \mid x < -$	ghci> multiplicationTable_148 6
[110]]	[6,12,18,24,30,36,42,48,54,60]
[[]]	[0,12,10,24,30,30,42,40,34,00]
Overtion 10.	
Question 19:	
CO 2	
Code	Testcases (Input & Output)

triangularNumbers_148 :: Int -> [Int] triangularNumbers_148 n = [sum [1x] x <- [1n]] Question 20:	ghci> triangularNumbers_148 5 [1,3,6,10,15] ghci> triangularNumbers_148 10 [1,3,6,10,15,21,28,36,45,55]
CO 2	T (((((((((((((((((((
commonElements_148 :: Eq a => [a] -> [a] -> [a] commonElements_148 xs ys = [x x <- xs, x 'elem' ys]	Testcases (Input & Output) ghci> commonElements_148 [1,2,3,4,5] [3,4,5,6,7] [3,4,5] ghci> commonElements_148 [1,2,11,5] [3,11,7] [11]
Question 21: CO 2	
Code	Testcases (Input & Output)
sumPairs_148 :: [Int] -> [Int] -> [Int] sumPairs_148 xs ys = [x + y (x, y) <- zip xs ys]	ghci> sumPairs_148 [1,2,3] [4,5,6] [5,7,9] ghci> sumPairs_148 [10,2,30] [4,50,6] [14,52,36]
Question 22: CO 2	
Code	Testcases (Input & Output)
multiplyPairs_148 :: [Int] -> [Int] -> [Int] multiplyPairs_148 xs ys = [x * y (x, y) <- zip xs ys]	ghci> multiplyPairs_148 [1,2,3] [4,5,6] [4,10,18] ghci> multiplyPairs_148 [5,2,6] [10,7,9] [50,14,54]
Question 23: CO 2	
Code	Testcases (Input & Output)
pairConsecutive_148 :: [a] -> [(a, a)] pairConsecutive_148 xs = zip xs (tail xs)	ghci> pairConsecutive_148 [1,2,3,4,5] [(1,2),(2,3),(3,4),(4,5)] ghci> pairConsecutive_148 [3,4,5,6] [(3,4),(4,5),(5,6)]
Question 24: CO 2	1
Code	Testcases (Input & Output)
differences_148 :: [Int] -> [Int] differences_148 xs = [abs (x - y) (x, y) <- zip xs (tail xs)]	ghci> differences_148 [1,2,15,30,25] [1,13,15,5] ghci> differences_148 [1,2,135,30,25] [1,133,105,5]
Question 20: CO 2	
Code	Testcases (Input & Output)

Lab Report

23CSE212 – Principles of Programming Languages

```
reversePairs_148 :: [a] -> [(a, a)]
reversePairs_148 xs = zip xs (reverse xs)
```

```
ghci> reversePairs_148 [1,2,3,4,5]

[(1,5),(2,4),(3,3),(4,2),(5,1)]

ghci> reversePairs_148 [1,2,4,5]

[(1,5),(2,4),(4,2),(5,1)]
```