HOCHSCHULE ALBSTADT-SIGMARINGEN Studiengang Technische Informatik

Praktikum Elektrotechnik

Versuch 1 Team 1 Gruppe 1

Steffen Hecht & Florian Lubitz

Inhaltsverzeichnis

1	Einv	Einweggleichrichtung				
	1.1 Einweggleichrichtung mit ohmscher Belastung ohne Kondensator					
		1.1.1	Messaufgaben	4		
		1.1.2	Auswertung			
	1.2	Einwe	ggleichrichtung mit Glättungskondensator	7		
		1.2.1	Messaufgaben	8		
		1.2.2	Auswertung			
2	Brü	ckengle	ichrichtung	10		
	2.1	Brück	engleichrichtung ohne Glättungskondensator	10		
		2.1.1	Messaufgaben	11		
		2.1.2	Auswertung	11		
	2.2	Brück	engleichrichtung mit Glättungskondensator			
		2.2.1	Messaufgaben	14		
		2.2.2	Auswertung	15		
3	Sieb	schaltu	ıngen	16		
	3.1	RC-Si	ebung	16		
		3.1.1				
4	Spa	nnungs	stabilisierung	18		
	4.1	Spann	ungsserienstabilisierung mit einem längsgeregeltem DC/DC-Wandler	18		
		-	Messaufgaben	19		
			Auswerting	20		

1 Einweggleichrichtung

1.1 Einweggleichrichtung mit ohmscher Belastung ohne Kondensator

Messaufbau:

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \Omega$
- 1 Diode V1, Typ 1N4001

1.1.1 Messaufgaben

Messaufgabe 1

Aufgabe: Skizzieren Sie die Spannungs- und Stromverläufe $U_1(t)$, $U_2(t)$ und $I_1(t)$.

Durchführung: Schaltung aufbauen. $U_1 = 16 \text{ V}$ einstellen mit Regler am roten Netztrafo. Oszillograph anschließen. Messen Sie den Diodenstrom $I_D(t)$ indirekt am Messwiderstand R_m .

Abbildung 1.1: Verläufe: Einweggleichrichtung ohne Glättungskondensator

Messaufgabe 2

Aufgabe: Messen sie mit dem Oszillograph und Multimeter

Tabelle 1.1: Messergebnisse Einweggleichrichtung ohne Kondensator

Messgröße		Messergebnis
Frequenz der Eingangsspannung	f	$50\mathrm{Hz}$
${\bf Brummspannungs frequenz}$	f_{br}	50 Hz
Scheitelwerte	$U_{1_{max}}$	$-22{ m V}-22{ m V}$
Scheitelwert	$U_{2_{max}}$	$0\mathrm{V}-21{,}3\mathrm{V}$
Stromflusswinkel	$\alpha[^{\circ}]$	0°
Brummspannung	U_{brmax}	21,3 V
Effektivwert	U_1	16,06 V
Gleichspannung	U_{2-}	6,84 V

1.1.2 Auswertung

Aufgabe 1: Berechnen Sie aus den Messwerten das Verhältnis $\frac{U_1}{U_{2-}}$. Geben Sie den gemessenen und den theoretischen Wert an (mit Herleitung).

Aus den Messwerten errechnet:

$$\frac{U_1}{U_{2-}} = \frac{16,06\,V}{6,84\,V} \approx 2,35$$

Theoretisch gilt:

$$U_{2-} = \frac{U_1}{\sqrt{2}}$$

Daraus folgt:

$$\frac{U_1}{U_{2-}} = \frac{U_1}{\frac{U_1}{\sqrt{2}}} = \sqrt{2} \approx 1,4141$$

Aufgabe 2: Erklären Sie die indirekte Strommessung mit dem Oszillograph, und geben Sie den gemessenen und errechneten Wert an.

$$I_{gemessen} = 22,00 \,\mathrm{mA}$$

 $I_{errechnet} = 21,08 \,\mathrm{mA}$

Begründen Sie den Unterschied zwischen den Werten.

Da der Strom I innerhalb des Schaltkreises die gleich groß ist, lässt er sich über den Spannungsabfall an einem Widerstand errechnen. In unserem Fall haben wir mit dem

Oszillograph am Messwiderstand die Spannung $U_{R_m}=220\,\mathrm{mV}$ gemessen. Damit lässt sich jetzt der Strom folgendermaßen berechnen:

$$I_{gemessen} = rac{U_{R_m}}{R_m}$$
 $I_{gemessen} = rac{22 \, \mathrm{V}}{10 \, \Omega}$ $I_{gemessen} = 22 \, \mathrm{mA}$

Um den Strom ohne eine Messung zu berechnen, benötigen wir die folgenden Größen:

- \bullet den Gesamtwiderstand der Schaltung R_{ges}
- \bullet Spannungsabfall der gesamten Schaltung $U_{ges}=U_1$

Der Gesamtwiderstand R_{ges} setzt sich aus den Einzelwiderständen in der Schaltung zusammen:

$$R_{qes} = R + R_m = 1010 \,\Omega$$

Mit $R_{ges} = 1010 \Omega$ und $(U_{ges}) = U_1 = 22 V$:

$$I_{berechnet} = rac{U_{ges}}{R_{ges}}$$

$$I_{berechnet} = rac{22\,\mathrm{V}}{1010\,\Omega}$$

$$I_{berechnet} = 21,7\,\mathrm{mA}$$

Der Unterschied zwischen den beiden Werten entsteht durch Messfehler und Toleranzen bei den Widerständen. Die Widerstände dürfen eine 10%-ige Abweichung von ihrem angegebenen Wert besitzen. Bei einem Gesamtwiederstand von $1010\,\Omega$ sind $0,63\,\mathrm{mA}$ innerhalb dieser Toleranz.

1.2 Einweggleichrichtung mit Glättungskondensator

Messaufbau

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \Omega$
- 1 Diode V1, Typ 1N4001
- 1 Kondensator $C = 100 \,\mu F, 40 \,VElektrolyt$

1.2.1 Messaufgaben

Messaufgabe 1

Aufgabe: Messen Sie die Spannungs- und Stromverläufe $U_1(t), U_2(t), I_2(t) = \frac{U_2(t)}{R}$ mit dem Oszillographen.

Durchführung: Schaltung aufbauen. $U_1 = 16 V$ einstellen.

Abbildung 1.2: Verlauf: Einweggleichrichtung mit Glättungskondensator

Messaufgabe 2

Aufgabe: Messen sie mit dem Oszillograph und Multimeter

1.2.2 Auswertung

!!!!TODO: Nochmal anschauen !!!!

Tabelle 1.2: Messergebnisse Einweggleichrichtung mit Kondensator

Messgröße		Messergebnis
Frequenz der Eingangsspannung	f	50 Hz
${\bf Brummspannungs frequenz}$	f_{br}	50 Hz
Scheitelwerte	$U_{1_{max}}$	-22, 5V - 22, 5V
Scheitelwert	$U_{2_{max}}$	21 V
Stromflusswinkel	$\alpha[^{\circ}]$	0°
Brummspannung	U_{brmax}	4 V
Effektivwert	U_1	16,04 V
Gleichspannung	U_{2-}	19,18 V

Aufgabe 1: Bestätigen Sie die Näherung $U_2 \approx \sqrt{2} \cdot (U_1 - 0, 65) \cdot \cos(\frac{a}{2})$

$$\begin{aligned} & U_2 \approx \sqrt{2} \cdot (U_1 - 0, 65) \cdot \cos(\frac{a}{2}) \\ & 21 \, V \approx \sqrt{2} \cdot (16, 04 \, V - 0, 65) \cdot \cos(\frac{0^{\circ}}{2}) \\ & 21 \, V \approx \sqrt{2} \cdot 15, 39 \, V \cdot 1 \\ & 21 \, V \approx 21, 76 \, V \end{aligned}$$

Aufgabe 2: Bestimmen Sie den Glättungsfaktor G

$$G = 2 \cdot 3, 14 \cdot f \cdot C \cdot R$$

mit Lastwiderstand $R = 1 k\Omega$,

Kapazität des Glättungskondensator $C = 100 \mu F$ und

Frequenz der Eingangswechselspannung $f=50~\mathrm{Hz}$

$$\begin{aligned} G &= 2 \cdot 3, 14 \cdot f \cdot C \cdot R \\ &= 2 \cdot 3, 14 \cdot 50 \, Hz \cdot 100 \mu F \cdot 1 \, k\Omega \\ &= 31, 4 \end{aligned}$$

2 Brückengleichrichtung

2.1 Brückengleichrichtung ohne Glättungskondensator

Messaufbau:

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \,\Omega$
- \bullet Brückengleichrichter Typ B80 C1000/1500

2.1.1 Messaufgaben

Messaufgabe 1

 ${\sf Aufgabe:}\ \ {\sf Zeichnen}$ Sie die Spannungs- und Stromveräufe $U_1(t), U_2(t)$ und $I_2(t)$ auf

Durchführung: Schaltung aufbauen. $U_1 = 16\,\mathrm{V}$ einstellen. Oszillograph anschließen.

Abbildung 2.1: Verlauf: Brückengleichrichtung ohne Glättungskondensator

Messaufgabe 2

Aufgabe: Messen sie mit dem Oszillograph und Multimeter

2.1.2 Auswertung

Aufgabe 1: Berechnen Sie aus den Messwerten das Verhältnis $\frac{U_1}{U_{2-}}$. Geben Sie den theoretischen Wert an (Herleitung, Diodenspannung vernachlässigt).

Aus den Messwerten errechnet:

$$\frac{U_1}{U_{2-}} = \frac{16,01}{12,97} = 1,234$$

Tabelle 2.1: Messergebnisse Brückengleichrichtung ohne Glättungskondensator

Messgröße		Messergebnis
Frequenz der Eingangsspannung	f	50 Hz
${\bf Brummspannungs frequenz}$	f_{br}	$100\mathrm{Hz}$
Scheitelwerte	$U_{1_{max}}$	$-22{ m V}-22{ m V}$
Scheitelwert	$U_{2_{max}}$	$0\mathrm{V}-21\mathrm{V}$
Stromflusswinkel	$\alpha[^{\circ}]$	0°
Brummspannung	U_{brmax}	21 V
Effektivwert	U_1	16,01 V
Gleichspannung	U_{2-}	12,97 V

Theoretisch:

$$U_{2-} = \sqrt{2} \cdot U_1 \cdot \cos \frac{\alpha}{2}$$
$$\approx \sqrt{2} \cdot U_1 \cdot \cos \frac{0^{\circ}}{2}$$
$$\approx \sqrt{2} \cdot U_1 \cdot 1$$

Damit:

$$\frac{U_1}{U_{2-}} = \frac{U_1}{\sqrt{2} \cdot U_1} = \frac{1}{\sqrt{2}} \approx 0,707$$

2.2 Brückengleichrichtung mit Glättungskondensator

Messaufbau:

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \Omega$
- 1 Kondensator C = 33 μ F, 40 V
- 1 Kondensator $C = 100 \mu F$, 40 V
- 1 Kondensator $C = 220 \mu F$, 40 V
- 1 Kondensator $C = 1000 \mu F$, 40 V
- \bullet Brückengleichrichter Typ B80 C1000/1500

2.2.1 Messaufgaben

Messaufgabe 1

Aufgabe: Messen und skizzieren Sie für C mit 33 μ F die Spannungs- und Stromverläufe von $U_2(t)$ und $I_2(t)$ auf.

Durchführung: Schaltung aufbauen. $U_1 = 16 \,\mathrm{V}$ einstellen. Werte messen und aufschreiben.

$$\begin{aligned} & \textit{U}_2 = 18{,}55\,\mathrm{V} \\ & \textit{I}_2 = \frac{18{,}55\,\mathrm{V}}{1\,\mathrm{k}\Omega} = 18{,}55\,\mathrm{mA} \end{aligned}$$

Abbildung 2.2: Verlauf: Brückengleichrichtung mit Glättungskondensator

Messaufgabe 2

Aufgabe: Protokollieren Sie die Werte für verschiedene Größen des Kondensators C1 in u.a. Tabelle. (Setzen Sie abwechseln die verschiedenen Kondensatoren in die Schaltung ein).

Tabelle 2.2: Messwertetabelle Brückengleichrichtung mit Glättungskondensator

$C [\mu F]$	$33 \mu \mathrm{F}$	$100\mu\mathrm{F}$	$220\mu\mathrm{F}$	$1000\mu\mathrm{F}$
$f_{Eingang}[\mathrm{Hz}]$	50	50	50	50
$f_{br}[\mathrm{Hz}]$	100	100	100	100
$U_{brss}[{ m V}]$	4,4	1,9	1,4	1,1
$rac{U_1}{U_2}$	1,186	1,126	1,119	1,119
$W(10^{-2})$	8,4	$3,\!4$	2,5	2,0
$U_1[{ m V}]$	22	22	22	22
$U_2[V]$	18,55	$19,\!54$	19,65	19,66
G	10,362	31,4	69,08	314

2.2.2 Auswertung

Aufgabe 1: Berechnen Sie die Verhältnisse $\frac{U_1}{U_2}$, $W = \frac{U_{2w}}{U_2}$, sowie den Glättungsfaktor G für obige Messreihe. Rechnen Sie mit $U_{2w} = \frac{U_{2brss}}{2,828}$. Beurteilen Sie die Ergebnisse in Bezug auf die Dimensionierung von Stromversorgungsschaltungen.

Stromversorgungsschaltungen sollten immer einen Kondensator im Verhältnis $\frac{R_{Last}}{C} = \frac{1}{10^{-6}}$ besitzen.

3 Siebschaltungen

3.1 RC-Siebung

Messaufbau:

- 1 Widerstand $R = 470 \,\Omega$
- 1 Widerstand $R_s = ? \Omega$
- 1 Kondensator $C_1 = 22 \,\mu\text{F}, 40 \,\text{V}$
- 1 Kondensator $C_s = ? \mu F, 40 V$
- \bullet Brückengleichrichter Typ B80 C1000/1500

3.1.1 Messaufgaben

Messaufgabe 1

Aufgabe: Für die Gleichrichterschaltung aus 2.2 ist ein RC-Siebglied auszulegen. Dimensionieren Sie den Serienwiderstand R_s (Widerstand, Leistung) und den Siebkondensator C_s so, dass der Siebfaktor $s=\frac{U_{2w}}{U_{3w}}$ ca. 10 beträgt. Rechnen Sie mit der im Anhang angegebenen Näherungsformel für RC-Siebung. Folgende Randbedingungen sind einzuhalten: der zusätzliche Spannungsabfall am Serienwiderstand Rs darf 10 % der Ausgangsspannung (bei Nennstrom) nicht überschreiten. maximale Ausgangslast $R=470\,\Omega$. Messen Sie die Verhältnisse bei einer Belastung von $R=470\,\Omega$ mit dem Oszillograph nach.

Durchführung: Schaltung aufbauen, Messwerte (Restwelligkeit) protokollieren und graphisch darstellen (U_1, U_2, U_3) .

Ergebnisse: Die Näherung für den Siebfaktor lässt sich so umstellen, dass der Kondensator richtig gewählt werden kann. Als Widerstand wählen wir $47\,\Omega$, damit haben wir $10\,\%$ Spannungsabfall.

$$S = 2 \cdot 3, 14 \cdot f_g \cdot C_s \cdot R_s \qquad |: 2 \cdot 3, 14 \cdot f_g \cdot R_s$$

$$C_s = \frac{S}{2 \cdot 3, 14 \cdot f_g \cdot R_s}$$

$$C_s = \frac{10}{2 \cdot 3, 14 \cdot 50 \text{ Hz} \cdot 47 \Omega}$$

$$C_s = 338 \,\mu\text{F}$$

Spannungsverläufe: !!!!TODO: Verläufe einfügen !!!!

4 Spannungsstabilisierung

4.1 Spannungsserienstabilisierung mit einem längsgeregeltem DC/DC-Wandler

Messaufbau:

- 1 Widerstand $R_{Last} = 56 \Omega, 10 \%, 3 W$
- 1 Widerstand $R_{Last} = 220 \,\Omega, 10 \,\%, 3 \,\mathrm{W}$
- 1 Widerstand $R_{Last} = 470 \,\Omega, 10 \,\%, 3 \,\mathrm{W}$
- 1 Widerstand $R_{Last} = 1.2 \,\mathrm{k}\Omega, 10 \,\%, 3 \,\mathrm{W}$
- 1 Widerstand $R_1 = 6.7 \Omega, 10 \%$
- 1 Kondensator $C_1 = 100 \,\mu\text{F}, 40 \,\text{V}$
- 1 Kondensator $C_2 = 22 \,\mu\text{F}, 40\,\text{V}$
- 1 Kondensator $C_3 = 0.47 \,\mu\text{F}, 40 \,\text{V}$
- \bullet Brückengleichrichter Typ B80 C1000/1500
- Spannungsregler IC1, 7805

4.1.1 Messaufgaben

Messaufgabe 1

Aufgabe: Ausgangskennlinie $U_3 = f(R_{Last})$. Messen Sie mit dem Multimeter: U_{2-} und U_{3-} . Beobachten Sie mit dem Oszillograph Ausgangsspannung U_{3-} .

Durchführung: Schaltung aufbauen. $U_1 = 16 \,\mathrm{V}$ einstellen. Messwerte für die verschiedenen Widerstände in die Tabelle 4.1 eintragen.

Tabelle 4.1: Messwertetabelle Spannungsserienstabilisierung

$R_{Last}[\Omega]$	1200	470	220	56
$\overline{U_{2-}[\mathrm{V}]}$	20,29	20,06		17,56
$U_{3-}[\mathrm{V}]$	4,97	4,97	4,97	4,95
$U_{3brss}[\mathrm{mV}]$	4	5	7	16
$P_v[\mathrm{W}]$	0,26	0,64	1,31	3,95
Wirkungsgrad in %	24,49	24,78	25,33	28,19

Messaufgabe 2

Aufgabe: Spannungsregler - Wirkungsgrad. Lastwiderstand $R_{Last} = 100 \,\text{V}$ Messen Sie mit dem Multimeter: U_{2-} und U_{3-} , Werte notieren.

Ergebnis: Die Messung ergibt:

$$U_{2-} = 18,69 \text{ V}$$

 $U_{3-} = 4,96 \text{ V}$

Messaufgabe 3

Aufgabe: Ermitteln Sie die Eingangsspannung U1 bei der die Schaltung für $R_{Last} = 56 \Omega$ noch einwandfrei regelt und geben Sie den Spannungswert an. Beobachten Sie dazu die Ausgangsspannung $U_3(t)$ mit dem Oszillograph.

Ergebnis: Bei einer Eingangsspannung von 3,4 V regelt die Schaltung noch einwandfrei.

4.1.2 Auswertung

Aufgabe 1: Berechnen Sie zu allen Messwerten die Verlustleistung $P_v = P_{ce}$ und den Wirkungsgrad des Spannungsreglers (Eigenverbrauch vernachlässigt). Tragen Sie die Daten in die Tabelle 4.1 ein

Berechnung von P_v :

$$P_v = (U_2 - U_3) * \frac{U_2}{R_{Last}}$$

Berechnung des Wirkungsgrads

$$\eta = \frac{U_3}{U_2}$$

Tabellenverzeichnis

	Messergebnisse Einweggleichrichtung ohne Kondensator	
	Messergebnisse Brückengleichrichtung ohne Glättungskondensator Messwertetabelle Brückengleichrichtung mit Glättungskondensator	
4.1	Messwertetabelle Spannungsserienstabilisierung	19

Abbildungsverzeichnis

1.1	Verläufe: Einweggleichrichtung ohne Glättungskondensator	4
1.2	Verlauf: Einweggleichrichtung mit Glättungskondensator	8
2.1	Verlauf: Brückengleichrichtung ohne Glättungskondensator	11
2.2	Verlauf: Brückengleichrichtung mit Glättungskondensator	14