1

Se considera el siguiente problema de optimización:

(P) min 
$$2x_1 + x_2$$
  
sujecto a  $x_1^2 + x_2^2 \le 4$ ,

- (a) Obtenga gráficamente la solución del problema (P).
- (b) Obtenga el problema dual (D) de (P).
- (c) Resuelva el problema dual (D) obtenido y demuestre que los valores óptimos de (P) y (D) coinciden.

(a)

El problema tiene un minimo en  $\left(-\frac{4}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)$ , como se ve en la figura.



Figure 1: Solución gráfica del problema.

(b)

El problema dual de (P) se puede escribir como

$$\max_{u \ge 0} \inf_{(x_1, x_2) \in \mathbb{R}^2} 2x_1 + x_2 + u(x_1^2 + x_2^2 - 4).$$

(c)

En el caso en que  $x_1^2 + x_2^2 > 4$  entonces cuando  $u \to \infty$  el valor del problema tiende a  $\infty$ , si  $x_1^2 + x_2^2 \le 4$  entonces el máximo se alcanza cuando u = 0. Por tanto el problema dual es equivalente al primal

(D) inf 
$$2x_1 + x_2$$
  
sujecto a  $x_1^2 + x_2^2 \le 4$ ,

y sus valores óptimos coinciden.

Para encontrar el valor optimo, planteamos el sistema de condiciones KKT

$$2 + 2u_1x_1 = 0,$$
  

$$2 + 2u_1x_2 = 0,$$
  

$$x_1^2 + x_2^2 - 4 = 0,$$
  

$$u_1 \ge 0,$$

de la primera ecuacion tenemos que  $x_1=-\frac{1}{u_1}$  de la segunda  $x_2=-\frac{1}{2u_1}$ , substituyendo en la tercera igualdad

$$\frac{1}{u_1^2} + \frac{1}{4u_1^2} - 4 = 0 \Rightarrow u_1 = \frac{\sqrt{5}}{4},$$

por tanto  $\left(-\frac{4}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)$  es un mínimo del problema, como la función  $f(x_1, x_2) = 2x_1 + x_2$  es afín y la función  $g_1(x_1, x_2) = x_1^2 + x_2^2 - 4$  es convexa, por el Teorema 5.17 del libro de texto  $\left(-\frac{4}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)$  es solución del problema con valor  $-\frac{10}{\sqrt{5}}$ .

 $\mathbf{2}$ 

Determine la solución (máximo) del problema dual asociado al siguiente problema primal

(P) min 
$$x_1 + 2(x_2 - 1)^2$$
  
sujecto a  $-x_1 - x_2 + 1 \le 0$ ,  
 $x_1, x_2 \in \mathbb{R}$ .

El problema dual asociado a (P) se puede escribir como

$$\max_{u \ge 0} \inf_{(x_1, x_2) \in \mathbb{R}^2} x_1 + 2(x_2 - 1)^2 - u(x_1 + x_2 - 1),$$

que es equivalente a

$$\max_{u \ge 0} \inf_{(x_1, x_2) \in \mathbb{R}^2} 2x_2^2 - 4x_2 + 2 + u(1 - x_2) + (1 - u)(x_1),$$

vemos que si u < 1 y  $x_1 \to -\infty$  la function anterior tiende a  $-\infty$ , por tanto  $u \ge 1$ , pero si u > 1 entonces el ínfimo se alcanzaría cuando  $x_1 \to \infty$  valiendo  $-\infty$ , de modo que u = 1. Y tenemos el problema

$$\min_{(x_1, x_2) \in \mathbb{R}^2} 2x_2^2 - 5x_2 + 3,$$

que tiene como mínimo  $-\frac{1}{8}$ , y por tanto la solución del problema dual es  $-\frac{1}{8}$ .