Question 7.	
the goal is to go to ome of the four corn	ner.
S. S. S. The Production system is Similar to go to one	of
S8 S9 four corner.	
57 56 S5 We assume go to the east north corne	r.
52 -> North	
Sq -> East	
l → Nil	
Question 2	
$f = \begin{cases} 1 & \text{if } \sum_{i=1}^{s} x_i w_i > 1 \end{cases}$	
o , other wise	
weight = (1.1, 3.1, -1, -2, 0.5) = W	
input (x1, x2, x3, x4, x5). = I	
$I \cdot W^{T} = 1.1 \times_{1} + 3.1 \times_{2} - 2 \times_{4} + 0.5 \times_{5}$	
	egative.
when x2 is true, only if x3 and x4 both true, the result v	
when only X, is true, Xz is false, Xz and X4 should be box	
f = X1-X2 + X1X2 X3 X4 + X1 X2 X3 X4 + X1 X2 X	
+ x1 x2 x3 x4	
$f = \chi_1 \cdot \chi_2 + \chi_1 \overline{\chi_2} \overline{\chi_3} \overline{\chi_4} + \overline{\chi_1} \cdot \chi_2 \cdot (\overline{\chi_3} + \overline{\chi_4})$	
Question 3. : Code is in the Project folder	
Question 3. : Code is in the Project folder. (D) fitness function \(\sum_{i=1}^{100} \) \(f(w_i, x_i) \)	
	0)
$f(w_i, X_i) = \{ i, \text{ when } (\sum_{j=0}^{q} w_j x_j) - 0 > 0 \text{ and } .$	(=1)

or $\left(\left(\sum_{j=0}^{q} w_{ij} x_{ij} - \theta < 0 \text{ and } l=0\right)\right)$
j=0
0, otherwise
if the prediction is right get I points, if the
prediction is wrong, get O point.
And Sum them together.
D. K point cross over operator. LA better solution on
father [Wf1, Wf2 Wfq, Of]
mother [Wm, Wms Wmg, Om].
we random choice 6/4 parameters from father
and 4/6 parameters from mother to form
two child
[Child 17 [contains 6 father's P + 4's mothers]
[Child 2] = [contains 6 father's p + 4's mothers] Child 2] = [contains 4 father's + 6's mothers]
3 By using the original one, by using the best 30%
4 In this Thershold detection case, this is not a must.
But I try to random choice on a larger scale
to mutate
5. I use size of 100 population, because it would
not take too much of CPU resource

6 Two case: a. Reach the maximum iteration (1000 my program) b. Reach the maximum fitness (100 in my program). It is combination of two. (a+b). generaltion: 946 our best generation: [[-0.29496322 -0.47577166 -1.58555814 0.75852582 0.48983128 -0.45629136 0.70400125 -0.70826961 0.45445577 -0.26631093] 1) my best fitness score: 95 accurac = 95/100. Q4 O Boolean Expression: f = Siss. Ss. Ss. Sc. Sc. S7. Ss + 51.52.53.54.55.56.57.58 and from others f = (S1 + S8) · S2 · S3 @ In Code. and the threshold function is similar Q5. O. In Code 1 Yes, we can. By making 4 Training Set: As we use go "Directions. EAST " as example.: we can considering different Situation: Input (Sz. S4, S6, S8, S2, 54, 56, S8 0 $S_2 = 1$ and $S_4 = 0$ Go East. (d=1). N, E, S, W, d. 1 52,=0 and 54=0 and 56=0 and 58=0 and S=1 and 54=1 Go East. (d=1) 3 S4=1 Not go East (d=0) weight _ E = [1, -3,0,0,0,1,0,0,0,0,1,0,1] So we can construct a training datasets. for South/North EAST/WEST. And we can do Error - Correction on this.

As we	describe in	Question 4		(T, Tz, T North East South
				Fost 38m
Production	System:	$T_i \rightarrow \lambda$		
		$T_2 \rightarrow F$		
		$T_3 \rightarrow$	2	
		T4 -3		
		->	<i>N</i> .	