On considère deux archers A_1 et A_2 qui tirent chacun sur une cible de manière indépendante. L'archer A_1 (respectivement A_2) touche sa cible avec une probabilité p_1 (respectivement p_2) strictement comprise entre 0 et 1. On suppose de plus que les tirs des joueurs sont indépendants les uns des autres. On appelle X_1 (respectivement X_2) la variable aléatoire donnant le nombre de tirs nécessaires à l'archer A_1 (respectivement A_2) pour qu'il touche sa cible pour la première fois. On note $q_1 = 1 - p_1$ et $q_2 = 1 - p_2$

- 1. Déterminer les valeurs possibles prises par X_1
- 2. On introduit, pour tout entier naturel non nul i, l'événement E_i : « Le joeur A_1 touche la cible à son i-ème tir » . Exprimer, pour tout $k \in \mathbb{N}^*$ l'événement $(X_1 = k)$ à l'aide des événements E_i , $i \in \mathbb{N}^*$
- 3. En déduire la loi de X_1
 - (a) Pour tout entier naturel non nul k, calculer $P(X_1 > k)$ (on pourra s'intéresser à l'événement contraire)
 - (b) En déduire que

$$\forall (n,m) \in \mathbb{N}^{*2}, \quad P_{(X_1 > m)}(X_1 > n + m) = P(X_1 > n)$$

4. Calculer $P(X_1 = X_2)$ (un peu difficile, il faut considérer des limites..., soit $(u_n)_{n \in \mathbb{N}}$ une suite on pourra noter $\lim_{k \to \infty} \sum_{k=1}^{n} u_k$ de la manière suivante $\sum_{k=1}^{\infty} u_k$, il faudra évidemment s'assurer que la limite existe avant de faire ce genre de chose)