Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Test 18

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^{2} - 6z + 10 = (3+i)^{2} - 6(3+i) + 10 = 9 + 6i + i^{2} - 18 - 6i + 10 =$	3p
	=9+(-1)-8=0	2p
2.	$f(x) = g(x) \Leftrightarrow x^2 - 4x = x^2 + 2x - 6 \Leftrightarrow -6x = -6$	3p
	x = 1	2p
3.	$2x + 3 = (x + 1)^2 \Rightarrow 2x + 3 = x^2 + 2x + 1 \Rightarrow x^2 = 2$	2p
	$x = -\sqrt{2}$, care nu convine sau $x = \sqrt{2}$, care convine	3p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Numerele naturale de două cifre care au produsul cifrelor un număr prim sunt 12, 21, 13, 31, 15, 51, 17 și 71, deci sunt 8 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{8}{90} = \frac{4}{45}$	1p
5.	<i>B</i> este mijlocul segmentului $AM \Rightarrow x_B = \frac{x_A + x_M}{2}$ și $y_B = \frac{y_A + y_M}{2}$, deci $M(7, -4)$	2p
	M este mijlocul segmentului $BN \Rightarrow x_M = \frac{x_B + x_N}{2}$ și $y_M = \frac{y_B + y_N}{2}$, deci $N(11,-7)$	3p
6.	$\sin x + \cos x = \cos 2x \Leftrightarrow \sin x + \cos x = \cos^2 x - \sin^2 x \Leftrightarrow \sin x + \cos x = (\cos x + \sin x)(\cos x - \sin x)$	3p
	Cum $x \in \left[0, \frac{\pi}{2}\right]$, obținem $\cos x - \sin x = 1$, deci $\sin x - \cos x = -1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = $ $= 2 + 0 + 0 - 0 - 0 - 0 = 2$	2p 3p
b)	$A(x) \cdot A(y) = \begin{pmatrix} 2^x & 0 & 0 \\ 0 & 1 & 2x \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2^y & 0 & 0 \\ 0 & 1 & 2y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 1 & 2y + 2x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 1 & 2y + 2x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x \cdot 2^y & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	2 p
	$= \begin{pmatrix} 2^{x+y} & 0 & 0 \\ 0 & 1 & 2(x+y) \\ 0 & 0 & 1 \end{pmatrix} = A(x+y), \text{ pentru orice numere reale } x \text{ si } y$	3p

c)	$B = A(1+2+3) - I_3 = A(6) - I_3 = \begin{pmatrix} 2^6 - 1 & 0 & 0 \\ 0 & 0 & 12 \\ 0 & 0 & 0 \end{pmatrix}$	2p
	Cum det $B = 0$ și $\begin{vmatrix} 2^6 - 1 & 0 \\ 0 & 12 \end{vmatrix} = 12(2^6 - 1) \neq 0$, obținem că rangul matricei B este egal cu 2	3 p
2.a)	$1*1=1^2 \cdot 1^2 - 2 \cdot 1^2 - 2 \cdot 1^2 + 6 =$	3 p
	=1-2-2+6=3	2p
b)	$x^{2}y^{2} - 2x^{2} - 2y^{2} + 6 = 2 \Leftrightarrow x^{2}(y^{2} - 2) - 2(y^{2} - 2) = 0 \Leftrightarrow (x^{2} - 2)(y^{2} - 2) = 0$	3p
	$x^2 = 2$ sau $y^2 = 2$, ceea ce este imposibil pentru orice numere raționale x și y , deci $x * y \ne 2$	2p
c)	$m^2n^2 - 2m^2 - 2n^2 + 6 = 3 \Leftrightarrow m^2n^2 - 2m^2 - 2n^2 + 4 = 1 \Leftrightarrow (m^2 - 2)(n^2 - 2) = 1$	2p
	$m ext{ și } n ext{ sunt numere întregi} \Rightarrow m^2 - 2 = n^2 - 2 = -1 ext{ sau } m^2 - 2 = n^2 - 2 = 1, ext{ deci } m^2 = n^2 = 1 $ sau $m^2 = n^2 = 3$, de unde obținem perechile de numere întregi $\left(-1, -1\right), \left(-1, 1\right), \left(1, -1\right), \left(1, 1\right)$	3p

SUBJECTUL al III-lea

(30 de nuncte)

SORII	ECTUL al III-lea (30 de pui	ncte)
1.a)	$f'(x) = 2x + 2 - \frac{2}{x+1} =$	3p
	$= \frac{2x^2 + 4x + 2 - 2}{x + 1} = \frac{2x(x + 2)}{x + 1}, \ x \in (-1, +\infty)$	2 p
b)	Tangenta la graficul funcției f în punctul $A(a, f(a))$ are panta egală cu $f'(a)$ și, cum dreapta de ecuație $y = 3x + 2020$ are panta egală cu 3, obținem $f'(a) = 3$	2p
	$\frac{2a(a+2)}{a+1} = 3 \Leftrightarrow 2a^2 + a - 3 = 0 \text{ si, cum } a \in (-1, +\infty), \text{ obținem } a = 1$	3 p
c)	$f'(x) \le 0$, pentru orice $x \in (-1,0] \Rightarrow f$ este descrescătoare pe $(-1,0]$ și $f'(x) \ge 0$, pentru orice $x \in [0,+\infty) \Rightarrow f$ este crescătoare pe $[0,+\infty) \Rightarrow f(x) \ge f(0)$, pentru orice $x \in (-1,+\infty)$ și, cum $f(0) = 0$, obținem $f(x) \ge 0$, pentru orice $x \in (-1,+\infty)$	3 p
	$x^2 + 2x \ge 2\ln(x+1) \Leftrightarrow (x+1)^2 \ge 2\ln(x+1) + 1$, pentru orice $x \in (-1, +\infty)$	2p
2.a)	$\int_{0}^{3} f^{2}(x)dx = \int_{0}^{3} (x^{2} + 2)dx = \left(\frac{x^{3}}{3} + 2x\right)\Big _{0}^{3} =$	3p
	=9+6=15	2 p
b)	$0 \le I_n = \int_0^1 x^n f(x) dx = \int_0^1 x^n \sqrt{x^2 + 2} dx \le \sqrt{3} \int_0^1 x^n dx = \sqrt{3} \cdot \frac{x^{n+1}}{n+1} \Big _0^1 = \frac{\sqrt{3}}{n+1} , \text{ pentru orice număr natural nenul } n$	3 p
	Cum $\lim_{n \to +\infty} \frac{\sqrt{3}}{n+1} = 0$, obţinem $\lim_{n \to +\infty} I_n = 0$	2p
c)	$I_n = \int_0^1 x^n \sqrt{x^2 + 2} dx = \int_0^1 \frac{x^n (x^2 + 2)}{\sqrt{x^2 + 2}} dx = \int_0^1 x^{n+1} \cdot \frac{x}{\sqrt{x^2 + 2}} dx + 2 \int_0^1 x^{n-1} \cdot \frac{x}{\sqrt{x^2 + 2}} dx = \int_0^1 x^n \sqrt{x^2 + 2} dx = \int_0^1 x^n x^2 $	2p
	$= \int_{0}^{1} x^{n+1} \left(\sqrt{x^2 + 2} \right) dx + 2 \int_{0}^{1} x^{n-1} \left(\sqrt{x^2 + 2} \right) dx = \sqrt{3} - (n+1)I_n + 2\sqrt{3} - 2(n-1)I_{n-2} $ şi obţinem	3 p
	$(n+2)I_n + 2(n-1)I_{n-2} = 3\sqrt{3}$, pentru orice număr natural n , $n \ge 3$	