MATH 211

Online Asynchronous Survey in Calculus and Analytical Geometry

Dr. Ahmed Kaffel

Department of Mathematical Sciences University of Wisconsin Milwaukee

Spring 2023

If f'(x) > 0 on an interval, then f is increasing on that interval. If f'(x) < 0 on an interval, then f is decreasing on that interval.

Where is
$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$
 increasing/decreasing?
$$f'(x) = 12x^3 - 12x^2 - 24x = 12x(x-2)(x+1)$$

Interval	12 <i>x</i>	x-2	x+1	f'(x)	
x < -1	-	-	-	-	decreasing on $(-\infty, -1)$
-1 < x < 0	-	-	+	+	increasing on $(-1,0)$
0 < x < 2	+	-	+	-	decreasing on (0,2)
2 < x	+	+	+	+	increasing on $(2, \infty)$

Recall Fermat's Theorem

If f has a local extremum at c, then c is a critical number.

But not ever critical number is an extremum. We need a test!

First Derivative Test

Suppose that c is a critical number of a continuous function f.

- ▶ If f' changes the sign from positive to negative, then f has a local maximum at c.
- If f' changes the sign from negative to positive, then f has a local minimum at c.
- If f' does not change sign at c, then f has no local extremum at c.

What are the local extrema of $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$?

$$f'(x) = 12x(x-2)(x+1)$$

The critical numbers are: -1, 0 and 2.

We have already seen that:

Interval	12 <i>x</i>	<i>x</i> − 2	x + 1	f'(x)	
x < -1	-	-	-	-	decreasing on $(-\infty, -1)$
-1 < x < 0	-	-	+	+	increasing on $(-1,0)$
0 < x < 2	+	-	+	-	decreasing on (0,2)
2 < x	+	+	+	+	increasing on $(2, \infty)$

We have:

- ▶ f(-1) = 0 is a local minimum (f' changes from to +)
- ► f(0) = 5 is a local maximum (f' changes from + to -)
- ▶ f(2) = -27 is a local minimum (f' changes from to +)

What are the local extrema of $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$?

$$f'(x) = 12x(x-2)(x+1)$$

The critical numbers are: -1, 0 and 2.

We have:

- ▶ f(-1) = 0 is a local minimum (f' changes from to +)
- ► f(0) = 5 is a local maximum (f' changes from + to -)
- ► f(2) = -27 is a local minimum (f' changes from to +)

What are the local extrema of

$$f(x) = x + 2\sin x \qquad \qquad 0 \le x \le 2\pi \quad ?$$

We have

$$f'(x) = 1 + 2\cos x$$

 $f'(x) = 0 \iff \cos x = -\frac{1}{2} \iff x = \frac{2\pi}{3} \text{ or } x = \frac{4\pi}{3}$

As f' is defined everywhere these are the only critical numbers.

Interval	f'(x)	
$0 < x < \frac{2\pi}{3}$	+	increasing on $(0, \frac{2\pi}{3})$
$\frac{2\pi}{3} < X < \frac{4\pi}{3}$	-	decreasing on $(\frac{2\pi}{3}, \frac{4\pi}{3})$
$\frac{4\pi}{3} < x < 2\pi$	+	increasing on $(\frac{4\pi}{3}, 2\pi)$

As a consequence:

- $f(\frac{2\pi}{3}) = \frac{2\pi}{3} + \sqrt{3}$ is a local maximum (f' from + to -)
- $f(\frac{4\pi}{3}) = \frac{4\pi}{3} \sqrt{3}$ is a local minimum (f' from to +)

What are the local extrema of

$$f(x) = x + 2\sin x$$

$$0 \le x \le 2\pi$$
 ?

We have

$$f'(x) = 1 + 2\cos x$$

 $f'(x) = 0 \iff \cos x = -\frac{1}{2} \iff x = \frac{2\pi}{3} \text{ or } x = \frac{4\pi}{3}$

As f' is defined everywhere these are the only critical numbers.

As a consequence:

•
$$f(\frac{2\pi}{3}) = \frac{2\pi}{3} + \sqrt{3}$$
 is a local maximum $(f' \text{ from } + \text{ to } -)$

•
$$f(\frac{4\pi}{3}) = \frac{4\pi}{3} - \sqrt{3}$$
 is a local minimum $(f' \text{ from } - \text{ to } +)$

Let *I* be an interval. If the graph of *f* is called

- concave up on I if it it lies above all its tangents on I
- concave down on I if it it lies below all its tangents on I

Imagine the graph as a street & a car driving from left to right:

- then concave upward = turning left (increasing slope)
- then concave downward = turning right (decreasing slope)

On which interval is the curve concave up / concave down?

- ► on (a,b) concave downward
- on (b,c) concave upward
- on (c,d) concave downward
- on (d,e) concave upward
- on (e,f) concave upward
- on (f,g) concave downward

Concavity Test

If f''(x) > 0 for all x in I, then f is concave upward on I.

If f''(x) < 0 for all x in I, then f is concave downward on I.

A point P on a curve f(x) is called **inflection point** if f is continuous at this point and the curve

- changes from concave upward to downward at P, or
- changes from concave downward to upward at P.

Where are inflection points of $f(x) = x^4 - 4x^3$?

$$f'(x) = 4x^3 - 12x^2$$

$$f''(x) = 12x^2 - 24x = 12x(x-2)$$

Thus f''(x) = 0 for x = 0 and x = 2.

Interval	f''(x)	
<i>x</i> < 0	+	concave upward on $(-\infty, 0)$
0 < x < 2	-	concave downward on (0,2)
2 < <i>x</i>	+	concave upward on $(2, \infty)$

Thus the inflection points are:

- ▶ (0,0) since the curve changes from concave up to down
- \triangleright (2, -16) since the curve changes from concave down to up

Second Derivative Test

Suppose f'' is continuous near c.

- ▶ If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
- ▶ If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

Where does
$$f(x)=x^4-4x^3$$
 have local extrema?
$$f'(x)=4x^3-12x^2=4x^2(x-3)$$

$$f''(x)=12x^2-24x=12x(x-2)$$
 Thus $f'(x)=0$ for $x=0$ and $x=3$. Second Derivative Test:

f''(0) = 0 f''(3) = 36 > 0 Thus f(3) = -27 is a local minimum as f'(3) = 0 and f''(3) > 0.

The Second Derivative Test gives no information for f''(0) = 0.

However, the First Derivative Test ... yields that f(0) = 0 is no extremum since f'(x) < 0 for x < 0 and 0 < x < 3.

Curve Sketching

$$f(x) = x^4 - 4x^3 = x^3(x - 4)$$
 $f'(x) = 4x^2(x - 3)$

- $f(x) = 0 \iff x = 0 \text{ or } x = 4$
- ▶ local minimum at (3, -27) and f'(0) = 0
- inflection points (0,0) and (2,−16)
- ▶ decreasing on $(-\infty,0)$ and (0,3), increasing on $(3,\infty)$
- ▶ concave up on $(-\infty,0)$, down on (0,2), up on $(2,\infty)$

Summary: Finding Local Extrema

Find critical numbers c: f'(c) = 0 or f'(c) does not exist.

First **Derivative Test** (*f* needs to be continuous at *c*):

- ▶ If f' changes from + to at $c \implies$ local maximum
- ▶ If f' changes from to + at $c \implies$ local minimum
- ▶ If f' does not change sign at $c \Longrightarrow$ no local extremum

The **Second Derivative Test**:

- 1. f'(c) = 0 and $f''(c) > 0 \implies$ local minimum
- 2. f'(c) = 0 and $f''(c) < 0 \implies$ local maximum
- 3. f'(c) or f''(c) does not exist or f''(c) = 0 \implies use the First Derivative Test