Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

15	Ger	naic	202	21 -	9:00
1	ESA	\mathbf{ME}	ON	LIN	Æ

0	
Z	_

۷.	
a)	Scrivere la function LUnopivot.m che, presa in input una matrice A, restituisce in output le matrice L e U associate al metodo di eliminazione gaussiana senza pivoting. Punti: 4
b)	Scrivere la function che implementa il metodo delle sostituzioni all'indietro per risolvere un sistem lineare con matrice dei coefficienti triangolare superiore. Punti: 2.5
c)	Scrivere la function che implementa il metodo delle sostituzioni in avanti per risolvere un sistem lineare con matrice dei coefficienti triangolare inferiore. Punti: 2.5
d)	Scrivere lo script Matlab es2.m in cui si sfruttano la fattorizzazione LU di $\bf A$ e le function implementation b) e c) per calcolare le soluzioni dei sistemi lineari ${\bf A}^T{\bf x}={\bf b} \qquad {\bf e} \qquad {\bf A}^2{\bf x}={\bf c}$
e)	con $\mathbf{A} = pascal(n), \qquad \mathbf{b} = \mathbf{A}^T * ones(n,1), \qquad \mathbf{c} = \mathbf{A}^2 * ones(n,1)$ per tutti i valori di n tali che $5 \le n \le 10$. Punti: 5 Relativamente alla risoluzione del sistema lineare con matrice \mathbf{A}^2 , il procedimento indicato al punt d) ha qualche vantaggio? Motivare la risposta.
	Totale: 16