

C1 - 3 数据类型

// 学习目标

- 认识基本的数据类型
- 掌握数据类型的转换方式
- 了解 ASCII 码

// 思考: 计算机是如何存储数据的呢?

原理上是把各种数据转换成 0 或 1 来进行存储,也就是二进制数。

我们在计算机中打字或者下载一些资料,都会使用到计算机的存储空间(简称 内存)。计算机的本地磁盘里已经预备好了大大的存储空间,先来看我的。

在这里再与大家分享一下数据之间的单位转换:

1 TB = 1024 GB

1 GB = 1024 MB

1 MB = 1024 KB

1 KB = 1024 B

1B=1字节=8bit (位)

// 数据类型分类

C++语言提供了丰富的数据类型:整型、实型、字符型、布尔型。它们都是系统定义的简单数据类型,称为标准数据类型。

以下是几种基本数据类型、后面的数字表示该类型的数据范围。

*注意: 这里的实型是分为单精度浮点型(float)和双精度浮点型(double)单精度浮点型的精度和有效位数都比双精度浮点型的低,一般单精度浮点型可以保留 7 位有效数位(有效数位是能显示出来的,并且是从左往右第一个不为零的数字开始数,比如我们在计算之后得到的结果是 003456 这样的整数,可是结果却只能显示成 3456, 前面的 0 会自动被去掉, 所以它的有效位数只有 4 位), 而双精度浮点型的有效位数可达 15 位。

这段代码即可说明两种类型的优缺点, 当我们都想保留 10 位的精度时, float 只能保留前 7 位, 7 位之后的数字已经不再准确, 而 double 却保留的很完整!

// 如何使用不同种的数据类型呢?

和之前我们定义变量一样,大家都用习惯了 int 这个关键词,现在我们来试试所有的数据类型吧!

```
int a = 123;
double b = 3.1415926;
char c = 'A';
bool d = true;
```

这里写完之后再写一个 cout 语句把它们都输出出来,看看结果是什么呢?如果你有其他有想法的话可以改一些地方,多多探索吧!

.....

// 数据类型之间的转换

不同类型的数据放在一起计算就会发生类型转换,有自动转换和强制转换。

自动转换: 小遇大变大。比如 int 类型和 double 类型的数据一起计算后得到的结果就是 double 类型,这里就是只保留了更大的数据类型!

```
int main() {
   int a = 3;
   double b = 3.14;
   cout << a*b;
   return 0;
}</pre>
```

强制转换: 把一个数据赋值给另一个和自己不同类型的数据里, 就会发生类型转换。

```
int a ;
double b = 1.98;
a = b; // 这里是强制转换
cout << a << endl << b;
return 0;
```

强制转换还有另外一种方式,格式如下:

(需要转换的类型) + 要转换的数据

// 这里是将整数转换为字符

```
int main() {
   int a = 65;
   cout << (char) a;
   return 0;
}</pre>
```

思考:整数转换为字符是怎么回事?依据什么进行转换的?

转换 A 这个字符为整数就会得到 65, 这里是依据 ASCII 码进行转换的。

.....

// ASCII 码表

序号	字符	序号	字符	序号	字符	序号	字符	序号	字符	序号	字符
32	空格	48	0	64	@	80	Р	96	`	112	р
33		49		65	А	81	Q	97		113	q
34	"	50	2	66	В	82	R	98	b	114	r
35		51	3	67	С	83	S	99	С	115	s
36		52		68	D	84	Т	100	d	116	t
37	%	53	5	69	Е	85	U	101	е	117	u
38	&	54	6	70	F	86	V	102	f	118	V
39	1	55	7	71	G	87	W	103	g	119	w
40	(56	8	72	Н	88	X	104	h	120	х
41)	57	9	73		89	Υ	105	i	121	у
42		58	:	74	J	90	Z	106	j	122	z
43	+	59	;	75	K	91	[107	k	123	{
44	,	60	<	76	L	92	١	108	1	124	1
45	-	61	=	77	М	93]	109	m	125	}
46		62	>	78	N	94	۸	110	n	126	~
47	1	63	?	79	0	95	_	111	0	127	deL

ASCII 码表里记录了每一个字符对应的序号,通过观察你会发现,字符转换为整数之后不就是它所对应的序号嘛~ 🍪

// 数据类型简单应用

【与圆相关的计算】

给出圆的半径,求圆的直径、周长和面积。输入圆的半径实数 r,输出圆的直径、周长、面积,每个数保留小数点后 4 位。π 取 3.1415926;

输入

输入包含一个实数 r (0<r<=10000) , 表示圆的半径。

输出

输出一行,包含三个数,分别表示圆的直径、周长、面积,数与数之间以一个空格分开,每个数保留小数点后4位。

输入样例

输出样例

3.0

6.0000 18.8496 28.2743

解析: 此类题需要先分析题目中所包含的数据类型, 这道题中包含的 π 取 3.1415926. 因此我们需要使用 double 类型来计算才能把最终结果完整保留!

代码如下:

```
#include <iostream>
#include <iomanip>
using namespace std ;
int main() {
    double pi = 3.1415926 , r , d , l , s ;
    cin >> r;
    d = 2 * r;
    l = pi * d;
    s = pi * r * r;
    cout << fixed << setprecision (4) << d << l << s;
    return 0 ;
}</pre>
```