Using Intrelab to Quickly Prototype Interface Algorithms

Paul Kuberry

Sandia National Laboratories

Trilinos User Group, CSRI 90 October 29, 2014

SAND2014-19921 C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Domain Layout

Domain Layout

Linear Elasticity on Ω

Governing Equations

$$ho rac{\partial^2 oldsymbol{\eta}}{\partial t^2} -
abla \cdot \sigma(oldsymbol{\eta}) = f \ \ ext{in } \Omega$$

• We get a variational form by multiplying by a test function, integrating over Ω , and discretizing in time by the central difference scheme (explicit) and in space with \mathbb{P}^1 finite elements,

$$\textstyle \int_{\Omega} \rho \frac{(\boldsymbol{\eta}_h^{n+1} - 2\boldsymbol{\eta}_h^n + \boldsymbol{\eta}_h^{n-1})}{\Delta t^2} \cdot \boldsymbol{\xi}_h \ + \sigma(\boldsymbol{\eta}_h^n) : \nabla \boldsymbol{\xi}_h \ dx = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{\xi}_h \ dx \ \ \forall \boldsymbol{\xi}_h \in \boldsymbol{V}^h \subset \boldsymbol{H}^1(\Omega)$$

- To create a light framework for implementing interface algorithms we at least will require
 - Basis functions (Values, Gradients, Divergence)
 - Jacobians and their determinants
 - Quadrature rules

Workflow

[mesh] = RectGrid(xmin, xmax, ymin, ymax, nxint, nyint, 'Triangle'); intrepid_getNumCubaturePoints('Triangle', cubDegree); intrepid_getCubature(cubPoints, cubWeights, 'Triangle', cubDegree);

generateProbSpecificData (Reference Cell Evaluations)

```
% evaluate basis (value, gradient)
val_at_cub_points = zeros(numCubPoints, numFields);
grad_at_cub_points = zeros(spaceDim, numCubPoints, numFields);
intrepid_getBasisValues(val_at_cub_points, cubPoints, ...
       'OPERATOR_VALUE', 'Triangle', 1);
intrepid_getBasisValues(grad_at_cub_points, cubPoints, ...
       'OPERATOR_GRAD', 'Triangle', 1);
% compute cell measures
weighted\_measure = zeros(numCubPoints, numCells);
intrepid_computeCellMeasure(weighted_measure, ...
       cellJacobianDets, cubWeights);
% compute cell volumes
```


cell_volumes = sum(weighted_measure,1);

generateProbSpecificData (Transform Values)

$$\int_{Phys(\mathcal{T})} \phi_j \cdot \phi_i \ dx = \int_{Ref(\mathcal{T})} \hat{\phi_j} \cdot \hat{\phi_i} \ det(J) d\hat{x}$$

% transform values

 $transformed_val_at_cub_points = ...$ zeros(numCubPoints, numFields, numCells); intrepid_HGRADtransformVALUE(transformed_val_at_cub_points, ... val_at_cub_points);

% combine transformed values with measures

weighted_transformed_val_at_cub_points = ...zeros(numCubPoints, numFields, numCells); intrepid_multiplyMeasure(weighted_transformed_val_at_cub_points, ... weighted_measure, transformed_val_at_cub_points);

generateProbSpecificData (Transform Gradient Values)

$$\int_{Phys(\mathcal{T})} \nabla \phi_j : \nabla \phi_i \ dx = \int_{Ref(\mathcal{T})} J^{-T} \hat{\nabla} \hat{\phi}_j : J^{-T} \hat{\nabla} \hat{\phi}_i \ det(J) d\hat{x}$$

% transform gradients

transformed_grad_at_cub_points = zeros(spaceDim, numCubPoints, ...
 numFields, numCells);

% combine transformed gradients with measures

 $\label{eq:weighted_transformed_grad_at_cub_points} weighted_transformed_grad_at_cub_points = zeros(spaceDim, ... \\ numCubPoints, numFields, numCells);$

generateProbSpecificData (Mass Matrix)

$$\int_{Phys(\mathcal{T})} \phi_j \cdot \phi_i \ dx = \int_{Ref(\mathcal{T})} \hat{\phi}_j \cdot \hat{\phi}_i \ \det(J) d\hat{x}$$

```
% integrate mass matrix
```

weighted_transformed_val_at_cub_points, 'COMP_BLAS');

% build global mass matrix

```
cell\_mass\_matrices\_reshape = ...
```

```
reshape (cell\_mass\_matrices, 1, numel (cell\_mass\_matrices)); \\ mass\_mat = sparse (ildxVertices, jldxVertices, ldxVertices, ldxVertice
```

repmat(cell_mass_matrices_reshape',2,1));

generateProbSpecificData (Stiffness Matrix)

$$\int_{Phys(\mathcal{T})} \nabla \phi_j : \nabla \phi_i \ dx = \int_{Ref(\mathcal{T})} J^{-T} \hat{\nabla} \hat{\phi}_j : J^{-T} \hat{\nabla} \hat{\phi}_i \ det(J) d\hat{x}$$

% integrate stiffness matrix

cell_deformation_matrices = zeros(numFields, numFields, numCells); intrepid_integrate(cell_deformation_matrices, ...

transformed_grad_at_cub_points, ...

weighted_transformed_grad_at_cub_points, 'COMP_BLAS');

% build global stiffness matrix

```
cell_deformation_matrices_reshape = ...
```

 $reshape (cell_deformation_matrices, \ 1, \ \dots$

numel(cell_deformation_matrices));

 $deformation_mat = sparse(ildxVertices, jldxVertices, ...$

repmat(cell_deformation_matrices_reshape',2,1));

Rewriting the weak form of the problem

We now have our Mass Matrix (M) and our Stiffness Matrix (K) and we can rewrite

$$\textstyle \int_{\Omega} \rho \frac{(\boldsymbol{\eta}_h^{n+1} - 2\boldsymbol{\eta}_h^n + \boldsymbol{\eta}_h^{n-1})}{\Delta t^2} \cdot \boldsymbol{\xi}_h \ + \sigma(\boldsymbol{\eta}_h^n) : \nabla \boldsymbol{\xi}_h \ dx = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{\xi}_h \ dx \ \ \forall \boldsymbol{\xi}_h \in \boldsymbol{V}^h \subset \boldsymbol{H}^1(\Omega)$$

as

$$rac{
ho}{\Delta t^2} \mathbf{M} ec{m{\eta}}^{n+1} = rac{
ho}{\Delta t^2} \mathbf{M} (2 ec{m{\eta}}^n - ec{m{\eta}}^{n-1}) - \mathcal{K} ec{m{\eta}}^n + \mathbf{M} ec{m{f}}^n$$

We use a diagonal mass matrix (nodal quadrature), and therefore we can take care of boundary conditions by using this relation for all non-Dirichlet boundary nodes, and use the prescribed value at Dirichlet boundary nodes.

- Calculate initial conditions
- exchange interface information
- Loop over time steps using relation

$$rac{
ho}{\Delta t^2} \mathbf{M} ec{m{\eta}}^{n+1} = rac{
ho}{\Delta t^2} \mathbf{M} (2 ec{m{\eta}}^n - ec{m{\eta}}^{n-1}) - K ec{m{\eta}}^n + \mathbf{M} ec{m{f}}^n$$

• End with computeError if there is a known solution

computeError

% set up more accurate numerical integration cubDegree = 6;

Then, get

- cubature points and weights
- Jacobians, Jacobian inverses, and determinants of Jacobians
- values and gradients on reference cells
- transformed values and gradients
- combined transformed values and gradients with measures
- ...

Computional Meshes

Convergence Rates

(Using P1 Elements)								
LEFT	mesh	L2 error	L2 ratio	L2 rate	-1	H1 error	H1 ratio	H1 rate
	0016x0010	4.45e-02	-	-	ı	1.62e+00	-	-
	0024x0015	2.51e-02	0.56	1.42	- 1	1.10e+00	0.68	0.96
	0032x0020	1.64e-02	0.65	1.48	- 1	8.17e-01	0.74	1.04
	0048x0030	9.18e-03	0.56	1.43	- 1	5.54e-01	0.68	0.96
	0064x0040	5.56e-03	0.61	1.74	- 1	4.05e-01	0.73	1.09
	0096x0060	2.99e-03	0.54	1.53	- 1	2.70e-01	0.67	0.99
	0144x0090	1.44e-03	0.48	1.80	- 1	1.76e-01	0.65	1.06
	0208x0130	5.94e-04	0.41	2.40	1	1.17e-01	0.66	1.11
RIGH	T mesh	L2 error	L2 ratio	L2 rate	1	H1 error	H1 ratio	H1 rate
	0014x0016	8.97e-02	-	-		3.87e+00		-
	0021x0024	4.28e-02	0.48	1.83	- 1	2.46e+00	0.64	1.11
	0028x0032	2.68e-02	0.63	1.63	- 1	1.87e+00	0.76	0.95
	0042x0048	1.27e-02	0.47	1.85	- 1	1.23e+00	0.66	1.04
	0056x0064	7.73e-03	0.61	1.72	- 1	9.31e-01	0.76	0.96
	0084x0096	3.83e-03	0.50	1.73	- 1	6.18e-01	0.66	1.01
	0126x0144	1.71e-03	0.45	2.00	- 1	4.09e-01	0.66	1.02
	0182x0208	6.99e-04	0.41	2.42	1	2.79e-01	0.68	1.03
FULL	mesh	L2 error	L2 ratio	L2 rate	1	H1 error	H1 ratio	H1 rate
	0030x0016	7.51e-02	-	-	1	3.62e+00	-	-
	0045x0024	3.40e-02	0.45	1.95	- 1	2.35e+00	0.65	1.07
	0060x0032	1.93e-02	0.57	1.98	- 1	1.75e+00	0.74	1.03
	0090x0048	8.61e-03	0.45	1.99	- 1	1.16e+00	0.66	1.02
	0120x0064	4.86e-03	0.56	1.99	- 1	8.65e-01	0.75	1.01
	0180x0096	2.17e-03	0.45	1.99	- 1	5.76e-01	0.67	1.00
	0270x0144	9.72e-04	0.45	1.98	- 1	3.84e-01	0.67	1.00
	0390x0208	4.73e-04	0.49	1.96	- 1	2.66e-01	0.69	1.00

