TRIANGLES

A **triangle** is a **polygon** with 3 sides (edges) formed by three **vertices** (corners).

Angles of a Triangle

There are 3 **angles** inside a triangle. The sum of those angles is 180°.

Sum of Angles $\angle A + \angle B + \angle C = 180^{\circ}$

Perimeter of a Triangle

The sum of the 3 sides of a triangle is the **perimeter**.

Perimeter of a Triangle
$$a+b+c$$

ALTITUDES OF A TRIANGLE

An **altitude** is a **perpendicular** line segment extending from a **vertex** to the side opposite that vertex. It is also called the **height** of a triangle.

Perpendicular \perp means the segments form a 90° angle (right angle).

ALTITUDES OF ACUTE TRIANGLES

Triangles have three altitudes. If the triangle is **acute**, all three altitudes are *inside the triangle*.

Acute triangles have three **acute** angles.

ALTITUDES OF OBTUSE TRIANGLES

If the triangle is **obtuse**, two of the altitudes are *outside the triangle*.

To draw the altitude, extend the line segment opposite the vertex.

Obtuse triangles have one **obtuse angle** (greater than 90°).

ALTITUDES OF RIGHT TRIANGLES

Two of the altitudes of a **right triangle** are the **legs** of the triangle.

- **Right triangles** have one **right angle** (equal to 90°).
- The **hypotenuse** of a right triangle is the side opposite the right angle.
- The **legs** are the two sides which form the right angle.

Area of a Triangle

To find the **area** of a triangle, we will use the formula for the area of a rectangle.

Area of a Rectangle
$$A=l imes w$$

Types of Triangles

The **height** of each triangle is an **altitude** denoted by **h**.

❖ Find the area A of a right triangle.

1 Observe that the dashed lines form a rectangle whose area is $\mathbf{A} = \mathbf{b} \times \mathbf{h}$.

$$\mathbf{A} = \mathbf{b} \times \mathbf{h}$$

2 The area of the triangle **A** is *one half* of the area **A** of the rectangle.

$$\mathbf{A} = \frac{1}{2} \mathbf{A}$$

3 Recall that $\mathbf{A} = \mathbf{b} \times \mathbf{h}$.

$$A = \frac{1}{2} b \times h$$

Find the area A of an acute triangle.

1 Observe that the dashed lines form a rectangle whose area is $\mathbf{A} = \mathbf{b} \times \mathbf{h}$.

- **2** The dashed lines also form two smaller rectangles with areas A_1 and A_2 .
- **3** The area **A** of the larger rectangle is given by $\mathbf{A} = A_1 + A_2$.

4 The area of the triangle **A** is the sum of *one half* of the areas A_1 and A_2 .

$$\mathbf{A} = \frac{1}{2} A_1 + \frac{1}{2} A_2$$

$$\mathbf{A} = \frac{1}{2} \left(A_1 + A_2 \right)$$

$$\mathbf{A} = \frac{1}{2} \mathbf{A}$$

$$\mathbf{A} = \frac{1}{2} \mathbf{b} \times \mathbf{h}$$

Area of a Triangle

$$A = \frac{1}{2} b \times h$$