第三章 时序逻辑

1. 写出触发器的次态方程,并根据已给波形画出输出 Q 的波形。

2. 说明由 RS 触发器组成的防抖动电路的工作原理, 画出对应输入输出波形

3. 已知 JK 信号如图,请画出负边沿 JK 触发器的输出波形(设触发器的初态为0)

- 4. 写出下图所示个触发器次态方程,指出 CP 脉冲到来时,触发器置"1"的条件。
- 解: (1) $D = A\overline{B} + \overline{AB}$, 若使触发器置"1",则A、B取值相异。
- (2) $J = \overline{K} = A \oplus B \oplus C \oplus D$, 若使触发器置 "1", 则 A、B、C、D 取值为 奇数个 1。
- 5. 写出各触发器的次态方程,并按所给的 CP 信号,画出各触发器的输出波形(设初态为 0)

解:

6. 设计实现 8 位数据的串行→并行转换器。

7. 分析下图所示同步计数电路

解: 先写出激励方程, 然后求得状态方程

Q_1^n	Q_2^n	Q_3^n	Q_1^{n+1}	$Q_2^{\ n+1}$	Q_3^{n+1}
0	0	0	1	0	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	0	1	1

状态图如下:

该计数器是五进制计数器,可以自启动。

8. 作出状态转移表和状态图,确定其输出序列。

解: 求得状态方程如下

故输出序列为: 00011

9. 用 D 触发器构成按循环码(000→001→011→111→101→100→000)规律工作 的六进制同步计数器

解: 先列出真值表, 然后求得激励方程

	PS			NS		输出
Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	N
0	0	0	0	0	1	0
0	0	1	0	1	1	0
0	1	1	1	1	1	0
1	1	1	1	0	1	0
1	0	1	1	0	0	0
1	0	0	0	0	0	1

化简得:

$$Z=Q_{2}^{n}\overline{Q_{0}^{n}}$$
 $Q_{2}^{n+1}=Q_{1}^{n}+Q_{2}^{n}Q_{0}^{n}$
 $Q_{1}^{n+1}=\overline{Q_{2}^{n}}Q_{0}^{n}$
 $Q_{0}^{n+1}=\overline{Q_{2}^{n}}+Q_{1}^{n}$
 $D_{2}=Q_{2}^{n+1}=Q_{1}^{n}+Q_{2}^{n}Q_{0}^{n}$
 $D_{1}=Q_{1}^{n+1}=\overline{Q_{2}^{n}}Q_{0}^{n}$
 $D_{0}=Q_{0}^{n+1}=\overline{Q_{2}^{n}}+Q_{1}^{n}$
逻辑电路图如下:

CP 10. 用 D 触发器设计 3 位二进制加法计数器,并画出波形图。

解: 真值表如下

	У ΙΔ.	74711				_
\mathbb{Q}_2^n	Q_1^n	$\mathbf{Q_0^n}$	Q_2^{n+1}	Q_2^{n+1}	$\mathbf{Q_0}^{\mathbf{n+1}}$	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	0	

建立激励方程:

$$D_2 = Q_2 \overline{Q_0} + (Q_2 \oplus Q_1)Q_0$$

$$D_1 = Q_1 \oplus Q_0$$

$$D_0 = \overline{Q_0}$$

11. 用下图所示的电路结构构成五路脉冲分配器,试分别用简与非门电路及74LS138集成译码器构成这个译码器,并画出连线图。

解: 先写出激励方程, 然后求得状态方程

$$Q_1^{n+1} = Q_1^n + Q_3^n Q_1^n = Q_1^n + Q_3^n$$

$$Q_2^{n+1} = Q_2^n + Q_1^n Q_2^n = Q_2^n + Q_1^n$$

$$Q_3^{n+1} = Q_1^n Q_3^n + Q_2^n Q_3^n$$

得真值表

Q_1^n	Q_2^n	Q_3^n	Q_1^{n+1}	Q_2^{n+1}	Q_3^{n+1}
0	0	0	1	1	0
0	0	1	1	1	0
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	1	1	1
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	0	1	1

得状态图

译码器功能表

Q_1^n	Q_2^n	Q_3^{n}	$\mathbf{Y_0} \mathbf{Y_1} \mathbf{Y_2} \mathbf{Y_3} \mathbf{Y_4}$
0	1	0	1 0 0 0 0
1	0	0	0 1 0 0 0
1	1	1	0 0 1 0 0
0	1	1	0 0 0 1 0
1	0	1	0 0 0 0 1
0	0	0	
1	1	0	Φ
0	0	1	_

若用与非门实现,译码器输出端的逻辑函数为:

$$Y_0 = \overline{Q_1} \overline{Q_3}$$

$$Y_1 = Q_1 \overline{Q_3}$$

$$Y_2 = Q_1 Q_2$$

$$Y_3 = \overline{Q_1}Q_3$$

$$Y_4 = \overline{Q_2}Q_3$$

若用译码器 74LS138 实现, 译码器输出端的逻辑函数为:

$$Y_0 = \overline{Q_1} Q_2 \overline{Q_3}$$

$$Y_1 = Q_1 \overline{Q_2} \overline{Q_3}$$

$$Y_2 = Q_1 Q_2 Q_3$$

$$Y_3 = \overline{Q_1}Q_2Q_3$$

$$Y_4 = Q_1 \overline{Q_2} Q_3$$

12 若将下图接成 12 进制加法器, 预置值应为多少? 画出状态图及输出波形图。

解: 预置值应 C=0, B=1, A=1。

序号	$Q_{\rm D} Q_{\rm O}$	$\mathbf{Q}_{\mathbf{B}}$	Q,	<u> </u>
0	0 0	0	0	$\overline{}$
1	0 0	0	1	
1 2 3	0 0	1	0	
	0 0	1	1	—
4 5	0 1	0	0	
5	0 1	0	1	
6	0 1	1	0	
7	0 1	1	1	
8	1 0	0	0	$\overline{}$
9	1 0	0	1	
10	1 0	1	0	
11	1 0	1	1	—
12	1 1	0	0	
13	1 1	0	1	
14	1 1	1	0	
15	1 1	1	1	

13. 分析下图所示同步时序逻辑电路,作出状态转移表和状态图,说明它是 Mealy 型电路还是 Moore 型电路以及电路的功能。

解: 电路的状态方程和输出方程为:

$$Q_{\scriptscriptstyle 1}^{\scriptscriptstyle n+1}=\overline{Q_{\scriptscriptstyle 1}^{\scriptscriptstyle n}}$$

$$Q_{2}^{n+1} = (X \oplus Q_{1}^{n})\overline{Q_{2}^{n}} + \overline{(X \oplus Q_{1}^{n})}Q_{2}^{n}$$

$$Z = \overline{Q_{_{1}}^{^{n}}Q_{_{2}}^{^{n}}}$$

$\mathbf{Q_1}^{\mathbf{n}} \mathbf{Q_2}^{\mathbf{n}}$	$Q_1^{n+1}Q_2^{n+1}/Z$		
$Q_1 Q_2$	X =0	X =1	
0 0	10 / 1	11/1	
0 1	11/1	10/1	
1 0	01 / 1	00/1	
1 1	00 / 0	01/0	

该电路是 Moore 型电路。

当 X=0 时, 电路为模 4 加法计数器;

当 X=1 时, 电路为模 4 减法计数器

14. 分析下图所示同步时序逻辑电路,作出状态转移表和状态图,说明这个电路能对何种序列进行检测?

解: 电路的状态方程和输出方程为:

0,00,0	$Q_2^{n+1}Q_1^{n+1}/Z$		
$\mathbf{Q_2^n} \mathbf{Q_1^n}$	X =0	X =1	
0 0	00/0	01/0	
0 1	00 / 1	11/0	
1 0	00 / 0	11/0	
1 1	00/1	11/0	

由此可见,凡输入序列 "110",输出就为"1"。

15. 作"101"序列信号检测器的状态表,凡收到输入序列 101 时,输出为 1;并规定检测的 101 序列不重叠。

解: 根据题意分析,输入为二进制序列 x,输出为 Z;且电路应具有 3 个状态: S0、S1、S2。列状态图和状态表如下:

PS	NS / Z		
	X =0	X =1	
S ₀ S ₁	S ₀ / 0 S ₂ / 0	S ₁ /0 S ₁ /0	
S ₂	$S_0/0$	S ₀ / 1	

16. 某计数器的波形如图示。

解: (1) 确定计数器的状态

计数器循环中有7个状态。

(2) 真值表如下

Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	
0	0	0	ф	ф	ф	
0	0	1	0	1	1	
0	1	0	1	0	1	
0	1	1	1	1	1	
1	0	0	0	1	0	
1	0	1	0	0	1	
1	1	0	1	0	0	
1	1	1	1	1	0	

(3) 得状态方程、激励方程

$$\begin{aligned} Q_{3}^{n+1} &= D_{3} = Q_{2}^{n} \\ Q_{2}^{n+1} &= D_{2} = \overline{Q_{3}^{n}} Q_{1}^{n} + Q_{2}^{n} Q_{1}^{n} + \overline{Q_{2}^{n}} \overline{Q_{1}^{n}} \\ Q_{1}^{n+1} &= D_{1} = \overline{Q_{3}^{n}} + \overline{Q_{2}^{n}} Q_{1}^{n} \end{aligned}$$

17. 对状态表进行编码,并做出状态转移表,用 D 触发器和与非门实现。解: $\{B,F\}$, $\{D,E\}$ 为等价状态,化简后的状态表为

PS	NS,	Z
13	X =0	X =1
A	C,1	D,1
В	B,0	C,1
C	C,1	A,0
D	D,0	C,0

若状态编码 A=00, B=01, C=10, D=11, 则

Ω n Ω n	$Q_1^{n+1}Q_2^{n+1}/Z$		
$Q_1^n Q_2^n$	X =0	X =1	
0 0	10 / 1	11/1	
0 1	01/0	10 / 1	
1 0	10 / 1	00 / 0	
1 1	11/0	10 / 0	

电路的状态方程和输出方程为

18. 某时序机状态图如下图所示。请用"一对一法"设计其电路解:

19. 某时序机状态图如下所示,用"计数器法"设计该电路

解:

则

$Q_1^{n}Q_2^{n}$	$Q_1^{n+1} Q_2^{n+1}$	
	k =0	k =1
0 0	00	01
0 1	01	11
1 1	10	11
1 0	10	00

$$Q_{1}^{n+1} = \overline{K}Q_{1}^{n} + KQ_{2}^{n}$$

$$Q_{1}^{n+1} = \overline{K}Q_{1}^{n} + KQ_{2}^{n}$$

 $Q_2^{n+1} = K\overline{Q_1^n} + KQ_2^n + \overline{Q_1^n}Q_2^n$ 次态方程为: