ESTIMATION

BUDDHANANDA BANERJEE

Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ be the observed/ realized values of a set of i.i.d. random variables $\mathbf{X} = (X_1, X_2, \dots, X_n)$ where $X_i \stackrel{iid}{\sim} f_{\theta}$ for some $\theta \in \Theta$. Here a family of distributions is denoted by

$$\mathcal{F} = \{ f(x|\theta) | \theta \in \Theta \} \text{ or } \{ F(x|\theta) | \theta \in \Theta \}$$

Parametric Estimation: In a parametric inference problem it is assumed that the family of the distribution is known but the particular value of the parameter is unknown. We estimate the value of the parameter θ as a function of the observations \mathbf{x} . The ultimate goal is to approximate the p.d.f f_{θ} or F_{θ} through the estimation of θ itself. Parametric estimation has two aspects, namely,

> Point estimation

- (a) Definition of an estimator
- (b) Good properties of an estimator
- (c) Methods of estimation (MME and MLE)

> Interval estimation

- (a) Definition of confidence interval
- (b) Construction of confidence interval

Date: Last updated April 23, 2024.

Definition 1. Statistic: A statistic is a function of random variables and it is free from any unknown parameter. Being a (measurable) function, $T(\mathbf{X})$ say, of random variables it is also a random variable.

Definition 2. Estimator: If the statistic $T(\mathbf{X})$ is used to estimate a parametric function $g(\theta)$ then T(X) is said to be {an estimator of $g(\theta)$. And a realized value of it for $\mathbf{X} = \mathbf{x}$ i.e. $T(\mathbf{x})$ is know as **an estimate** of θ . We often abuse the notation as $g(\hat{\theta}) = T(\mathbf{x})$ and $g(\hat{\theta}) = T(\mathbf{X})$ which are understood from the context.

1. Properties

Definition 3. Unbiased estimator: An estimator $T(\mathbf{X})$ is said to be an unbiased estimator of a parametric function $g(\theta)$ if $E(T(\mathbf{X}) - g(\theta)) = 0 \ \forall \ \theta \in \Theta$.

Remark 1. It does not require $T(\mathbf{x}) = g(\theta)$ to be hold or it may hold with probability zero.

Definition 4. Asymptotically unbiased estimator: Denoting $T_n = T(X_1, X_2, \dots, X_n)$ an estimator T_n is said to be asymptotically unbiased of $g(\theta)$ if

$$\lim_{n \to \infty} B_{g(\theta)}(T_n) = \lim_{n \to \infty} E(T_n - g(\theta)) = 0$$

sample size 25

sample size 50

sample size 500

Unbiasedness

N = 40000 Bandwidth = 0.02158

sample size 25

sample size 50

sample size 500

Asymptotic Unbiasedness

N = 40000 Bandwidth = 0.003945

Definition 5. Consistent estimator: An estimator T_n is said to be consistent estimator $g(\theta)$ if $T_n \stackrel{P}{\longrightarrow} g(\theta)$ i.e.

$$\lim_{n\to\infty} P(|T_n - g(\theta)| < \epsilon) = 1 \ \forall \ \theta \in \Theta, \epsilon > 0$$

Consistency

2. Accuracy Measures

Definition 6. Bias: The bias of an estimator $T(\mathbf{X})$ while estimating a parametric function $g(\theta)$ is $B_{g(\theta)}(T(\mathbf{X})) = E(T(\mathbf{X}) - g(\theta)) \ \forall \ \theta \in \Theta$.

Definition 7. Mean squared error (MSE): The MSE of an estimator $T(\mathbf{X})$ while estimating a parametric function $g(\theta)$ is

$$MSE_{g(\theta)}(T(\mathbf{X})) = E[(T(\mathbf{X}) - g(\theta))^2] \ \forall \ \theta \in \Theta.$$

$$Remark\ 2.\ MSE_{g(\theta)}(T(\mathbf{X})) = Var(T(\mathbf{X})) + B_{g(\theta)}^2(T(\mathbf{X}))$$

Remark 3. If $MSE_{g(\theta)}(T_n(\mathbf{X})) \downarrow 0$ as $n \uparrow \infty$ then show that $(T_n(\mathbf{X}))$ is a consistent estimator.

Remark 4. Asymptotic unbiasedness and consistency are large sample properties and both are based on L_1 norm. MSE is defined based on L_2 norm.

Exercise 1. Let (X_1, X_2, \dots, X_n) be i.i.d random variables with $E(X) = \mu$ and $Var(X) = \sigma^2$. and define $T_n(\mathbf{X}) = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ and $S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$. Show that

- $\triangleright T_n(\mathbf{X})$ is an unbiased estimator of μ .
- $\,\triangleright\, S_1^2$ is an unbiased estimator of σ^2
- $ightharpoonup S_2^2$ is an asymptotically unbiased estimator of σ^2 .

Remark 5. Let $(X_1, X_2, \dots, X_n) \stackrel{iid}{\sim} N(\mu, \sigma^2)$ then $MSE(S_2^2) < MSE(S_1^2)$. Unbiased estimator need not have minimum MSE.

3. METHOD OF MOMENTS

Method of Moment for Estimation (MME): Consider $\mathbf{x} = (x_1, x_2, \dots, x_n)$ be the observed/ realized values of a set of i.i.d. random variables $\mathbf{X} = (X_1, X_2, \dots, X_n)$ where $X_i \stackrel{iid}{\sim} f_{\theta}$ for some $\theta \in \Theta$. Then

Step 1: Computer theoretical moments from the p.d.f.

Step 2: Computer empirical moments from the data.

Step 3: Construct k equations if you have k unknown parameters.

Step 4: Solve the equations for the parameters.

Histogram of x

True mean= 1.3 estimated mean= 1.246376
True sigma= 2 estimated sigma= 2.021477

Remark 6. We can not use MME to estimate the parameters of $C(\mu, \sigma)$, because the moments does not exists for Cauchy distribution.

4. Maximum likelihood estimate

Maximum Likelihood Estimator: Consider $\mathbf{x} = (x_1, x_2, \dots, x_n)$ be the observed/ realized values of a set of i.i.d. random variables $\mathbf{X} = (X_1, X_2, \dots, X_n)$ where $X_i \stackrel{iid}{\sim} f_{\theta}$ for some $\theta \in \Theta$. Then the joint p.d.f. of $\mathbf{X} = (X_1, X_2, \dots, X_n)$ is a function of \mathbf{x} when the parameter value is fixed i.e.

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} f(x_i, \theta)$$

and the likelihood of a function of parameter for a given set of data $\mathbf{X} = \mathbf{x}$ i.e.

$$\ell(\theta|\mathbf{x}) = \prod_{i=1}^{n} f(x_i, \theta).$$

Hence the maximum likelihood estimator of θ is

$$\hat{\theta}_{mle} = \arg\max_{\theta \in \Theta} \ell(\theta|\mathbf{x}) = \arg\max_{\theta \in \Theta} \log \ell(\theta|\mathbf{x})$$

Remark 7. Finding the maxima through differentiation is possible only if ℓ is a smoothly differentiable function w.r.t θ . Otherwise it has to be maximized by some other methods. Differentiation is not the only way of finding maxima or minima.

Propertied of MLE:

- ▷ MLE need not be unique.
- > MLE is always a consistent estimator.
- ► MLE is asymptotically normally distributed up to some location and scale when some {regularity condition} satisfied like
 - (1) Range of the random variable is free from parameter.
 - (2) Likelihood is smoothly differentiable for up to 3rd order and corresponding expectations exists.

##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]
##	[1,]	4	6	6	6	7	7	8	8	8	9
##	[2,]	5	6	6	7	7	7	8	8	8	9
##	[3,]	5	6	6	7	7	7	8	8	9	9
##	[4,]	5	6	6	7	7	8	8	8	9	10
##	[5,]	5	6	6	7	7	8	8	8	9	10

MLE1= 0.72 MLE2= 0.72

Interval Estimation: Consider a pair of statistic $(L(\mathbf{X}), U(\mathbf{X}))$ such that for a parameter θ ,

$$P_{\theta}(\theta \in [L(\mathbf{X}), U(\mathbf{X})]) = 1 - \alpha$$

Then a $100(1-\alpha)\%$ confidence interval of θ is considered to be $[L(\mathbf{X}),U(\mathbf{X})].$

Example 1. If $X_1, X_2, ..., X_n$ are i.i.d random variables with $N(\mu, \sigma^2)$ distribution with known value of σ^2 . Then a $100(1-\alpha)\%$ CI of μ is

$$\left[L(\mathbf{X}) = \overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, U(\mathbf{X}) = \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right]$$

True mean need not be in the confidence interval always

Example 2. If $X_1, X_2, ..., X_n$ are i.i.d random variables with $N(\mu, \sigma^2)$ distribution . Then a $100(1-\alpha)\%$ CI of μ is

$$\left[L(\mathbf{X}) = \overline{X} - \frac{\hat{\sigma_u}}{\sqrt{n}} \tau_{\alpha/2, n-1}, U(\mathbf{X}) = \overline{X} + \frac{\hat{\sigma_u}}{\sqrt{n}} \tau_{\alpha/2, n-1}\right]$$

 $\hat{\sigma}_u^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is an unbiased estimator of unknown variance and a $100(1-\alpha)\%$ CI of σ^2 is

$$\left[L(\mathbf{X}) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\chi_{\alpha/2,(n-1)}^2}, U(\mathbf{X}) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\chi_{1-\alpha/2,(n-1)}^2}\right]$$

R Code

```
##############
#####Data######
###############
nn<-1000000
mu<-0
sd=1
x<-rnorm(nn,0,1)
n1<-25
n2<-50
n3<-500
x1 < -matrix(x, nrow = n1)
x2<-matrix(x,nrow = n2)</pre>
x3 < -matrix(x, nrow = n3)
#####Estimation of MEAN######
##### Unbiased estimator #####
m1<-apply(x1, MARGIN = 2, mean)</pre>
m2<-apply(x2, MARGIN = 2, mean)</pre>
m3<-apply(x3, MARGIN = 2, mean)
par(mfrow=c(1,1))
tt<-paste("sample size",n1)</pre>
hist(m1,probability = T, col="lightblue", main = tt, breaks = 50, xlim=c(-0.7,0.7))
abline(v=mu, col=2, lwd=2)
points(mean(m1),0, col="blue")
tt<-paste("sample size",n2)</pre>
```

```
hist(m2,probability = T, col="lightgreen", main = tt,breaks = 20, xlim=c(-0.7,0.7))
abline(v=mu, col=2, lwd=2)
points(mean(m2),0, col="blue")
tt<-paste("sample size",n3)</pre>
hist(m3,probability = T, col="lightgray", main = tt,breaks = 20, xlim=c(-0.7,0.7))
abline(v=mu, col=2, lwd=2)
points(mean(m1),0, col="blue")
plot(density(m1), col="blue", ylim=c(0,10), main='Unbiasedness')
lines(density(m2), col="green")
lines(density(m3), col="black")
abline(v=mu, col=2, lwd=2)
##### Estimation of square of MEAN########
##### Asymptotically Unbiased estimator ###
par(mfrow=c(1,1))
tt<-paste("sample size",n1)</pre>
hist(m1^2, probability = T, col="lightblue", main = tt, breaks = 50, xlim=c(-0.1,0.4))
abline(v=mu, col=2, lwd=2)
points(mean(m1^2),0, col="blue")
tt<-paste("sample size",n2)</pre>
hist(m2^2,probability = T, col="lightgreen", main = tt,breaks = 20, xlim=c(-0.1,0.4))
abline(v=mu, col=2, lwd=2)
points(mean(m2^2),0, col="blue")
tt<-paste("sample size",n3)</pre>
```

```
hist(m3^2,probability = T, col="lightgray", main = tt,breaks = 20, xlim=c(-0.1,0.4))
abline(v=mu, col=2, lwd=2)
points(mean(m3^2),0, col="blue")
plot(density(m1^2), xlim=c(-0.05,0.2), main="Asymptotic Unbiasedness")
points(mean(m1^2),0, col="blue", main='consistency')
points(mean(m2^2),0, col="green", main='consistency')
points(mean(m3^2),0, col="black", main='consistency')
abline(v=mu, col=2, lwd=2)
##### Estimation of MEAN#######
##### Consistency ###
n<-750
xsample<-sample(x,n,replace = F)</pre>
cummean<-cumsum(xsample)/(1:n)</pre>
plot(cummean, type='l', col="gray", ylim=c(-1,1) )
abline(h=mu,col=2,lwd=2,lty=2)
for( i in 2 :10){
xsample<-sample(x,n,replace = F)</pre>
cummean<-cumsum(xsample)/(1:n)</pre>
lines(cummean,type='l',col="gray")
abline(h=mu,col=2,lwd=2,lty=2)
abline(v=25, col="blue")
```

```
abline(v=50, col="green")
abline(v=500, col="black")
lines(-3/sqrt((1:n)))
lines(3/sqrt((1:n)))
par(mfrow=c(1,1))
plot(density(m1), col="blue", ylim=c(0,10), main='Consistency')
lines(density(m2), col="green")
lines(density(m3), col="black")
abline(v=mu, col=2, lwd=2)
#############################
# Method of Moments
# # Distribution : Normal
mu<-1.3 # mean
s<- 2 # sigma
n<- 200 # sample size
x < - rnorm(n, mean = mu, sd = s) # data
xmin<- min(x) # min of data</pre>
xmax<-max(x) # max data</pre>
1<- seq(xmin-0.5, xmax+0.5, length=100)</pre>
######## Estimation ########
muh<-mean(x)</pre>
sh < -sd(x)
cat("True mean=", mu, "estimated mean=", muh,"\n")
```

```
cat("True sigma=", s, "estimated sigma=", sh,"\n")
plot(pnorm(q = 1,mean = mu,sd = s)~1, type = '1', col=1, lwd=2, ylab = "CDF", xlab
     = 'x'
lines(pnorm(q = 1,mean = muh,sd = sh)~1, type = '1', col=2, lwd=2)
\#lines(ecdf(x),col=3, lty=2)
legend("bottomright",legend = c("True", "Estimated"), col = c(1,2), lwd = c(2,2))
hist(x,probability = T, xlab
     ='x')
lines(dnorm(x = 1,mean = mu,sd = s)~1, type = '1', col=1, lwd=2, ylab = "PDF")
lines(dnorm(x=1,mean = muh,sd = sh)~1, type = '1', col=2, lwd=2)
legend("topright",legend = c("True", "Estimated"), col = c(1,2), lwd = c(2,2))
###################################
# MLE of binomal parameter
set.seed(12)
n<-10 # size of binomial
x<- sort(rbinom (50, n, 0.7)) # sample given
x < -matrix(x, ncol = 10)
print(x)
# MLE finding
p < -seq(0.01, 0.99, by = 0.01)
1<-array(0,dim=c(length(p)))</pre>
```

```
for (i in 1 : length(p)){
        [i]<-prod(dbinom(x,n,p[i]))  # product of likelihood
}

plot(l^p, type='l', col=4, lwd=2)
mle1<-p[which(l==max(1))]

abline(v=mle1)
L<-array(0,dim=c(length(p)))
for (i in 1 : length(p)){
        L[i]<-sum(log(dbinom(x,n,p[i])))  #sum of log likelihood
}

plot(L^p,type='l', col=2, lwd=2)
mle2<-p[which(L==max(L))]
abline(v=mle2)

cat("MLE1=",mle1,"MLE2=",mle2,"\n")</pre>
```

DEPARTMENT OF MATHEMATICS, IIT KGARAGPUR

 URL : https://sites.google.com/site/buddhanandastat/

E-mail address: bbanerjee@maths.iitkgp.ac.in