Follow your Nose: Using General Value Functions for Directed Exploration in Reinforcement Learning

Somjit Nath ¹ Omkar Shelke ¹ Durgesh Kalwar ¹ Hardik Meisheri ¹ Harshad Khadilkar ^{1, 2}

¹TCS Research, Mumbai, India ²IIT Bombay, India

Contribution

- We extend upon temporally extended version of the ε-greedy exploration strategy by using auxiliary task learning with the help of General Value Functions (GVF) to perform directed exploration thereby further improving state space coverage during exploration.
- This is generalized formulation to include domain knowledge about the environment by providing GVF cumulant which also improves latent representation.

Pseudocode

```
Function DEZ-greedy (\epsilon, Z_{max}):
w \leftarrow -1
while True do
     Observe state s
     if z == 0 then
         if random() < \epsilon then
               Sample duration: z \sim [1, Z_{max}]
               Sample GVF: g \sim [0, M]
              if a == 0 then
                    Sample action: w \leftarrow U(A)
                   a \leftarrow w
              else
                   a \leftarrow argmax(Q_{\alpha}^{GVF})
          else
              a \leftarrow argmax(Q^{Main})
     else
         if g == 0 then
          else
             a \leftarrow argmax(Q_{_{o}}^{GVF})
     Take Action a
```

 Z_{max} is maximum persistence value

Off-policy Divergence

Off-policy divergence with generic GVF algorithms for 11x11 SubGoal Two Rooms. The heatmap shows Q values of the GVF that gets a reward of +1 on collecting the red dot. The values are much more bounded for DEZ-greedy exploration.

Environment

SubGoal Two Rooms Environment

Results

Senstivity to Z_{max}

