Probabilistic Arguments in Reverse Mathematics

Wei Wang

Institute of Logic and Cognition, Sun Yat-sen University

Sendai Logic School, Tokyo, Feb. 2014

Basics of Ramsey Theory

 $[X]^r$ is the set of *r*-element subsets of X.

A c-coloring is a function with range contained in $c = \{0, 1, \dots, c-1\}$.

If a coloring f is constant on $[H]^r$ then H is homogeneous for f.

Theorem (Ramsey)

For every finite r and c, every $f: [\omega]^r \to c$ admits an infinite homogeneous set.

 RT_c^r is the instance of Ramsey's Theorem for fixed r, c.

An Old Result

We identify a set of natural numbers with an element of 2^{ω} . The (Lebesgue) measure on 2^{ω} is induced by the following function:

$$m\{X \in 2^{\omega} : \sigma \prec X\} = 2^{-|\sigma|}, \sigma \in 2^{<\omega}.$$

Theorem (Sacks)

If X is not recursive then $m\{Y: X \leq_T Y\} = 0$

Corollary (Jockusch)

There exists a recursive $f: [\omega]^3 \to 2$ s.t.

$$m\{X: (\exists Y \leq_T X)(Y \text{ is infinite and homogeneous for } f)\} = 0.$$

Proof

There exists a recursive $f: [\omega]^3 \to 2$ s.t. every infinite f-homogeneous set computes the halting problem.

An Old Result

We identify a set of natural numbers with an element of 2^{ω} . The (Lebesgue) measure on 2^{ω} is induced by the following function:

$$m\{X \in 2^{\omega} : \sigma \prec X\} = 2^{-|\sigma|}, \sigma \in 2^{<\omega}.$$

Theorem (Sacks)

If X is not recursive then $m\{Y: X \leq_T Y\} = 0$.

Corollary (Jockusch)

There exists a recursive $f: [\omega]^3 \to 2$ s.t.

 $m\{X: (\exists Y \leq_T X)(Y \text{ is infinite and homogeneous for } f)\} = 0.$

Proof.

There exists a recursive $f: [\omega]^3 \to 2$ s.t. every infinite f-homogeneous set computes the halting problem.

An Old Result

We identify a set of natural numbers with an element of 2^{ω} . The (Lebesgue) measure on 2^{ω} is induced by the following function:

$$m\{X \in 2^{\omega} : \sigma \prec X\} = 2^{-|\sigma|}, \sigma \in 2^{<\omega}.$$

Theorem (Sacks)

If X is not recursive then $m\{Y: X \leq_T Y\} = 0$.

Corollary (Jockusch)

There exists a recursive $f: [\omega]^3 \to 2$ s.t.

$$m\{X: (\exists Y \leq_T X)(Y \text{ is infinite and homogeneous for } f)\} = 0.$$

Proof.

There exists a recursive $f:[\omega]^3\to 2$ s.t. every infinite f-homogeneous set computes the halting problem.

Homogeneous Sets for Colorings of Pairs

A coloring $f : [\omega]^2 \to c$ is stable iff $\lim_y f(x, y)$ exists for all x.

Theorem (Mileti)

There exists a recursive stable $f: [\omega]^2 \to 2$ s.t.

 $m\{X: (\exists Y \leq_T X)(Y \text{ is infinite and homogeneous for } f)\} = 0.$

Homogeneous Sets for Colorings of Pairs

A coloring $f : [\omega]^2 \to c$ is stable iff $\lim_y f(x, y)$ exists for all x.

Theorem (Mileti)

There exists a recursive stable $f: [\omega]^2 \to 2$ s.t.

 $m\{X: (\exists Y \leq_T X)(Y \text{ is infinite and homogeneous for } f)\} = 0.$

Rainbow Ramsey Theorem

A coloring $f: [\omega]^r \to \omega$ is 2-bounded iff $|f^{-1}(c)| \le 2$ for all c.

If f is injective on $[H]^r$ then H is a rainbow for f.

 RRT_2^r : every 2-bounded $f:[\omega]^r \to \omega$ admits an infinite rainbow.

Theorem (Galvin) $RCA_0 \vdash RT_2^r \rightarrow RRT_2^r$

Rainbow Ramsey Theorem

```
A coloring f: [\omega]^r \to \omega is 2-bounded iff |f^{-1}(c)| \le 2 for all c.
```

If f is injective on $[H]^r$ then H is a rainbow for f.

 RRT^r_2 : every 2-bounded $f:[\omega]^r \to \omega$ admits an infinite rainbow.

Theorem (Galvin) $RCA_0 \vdash RT_2^r \rightarrow RRT_2^r$.

RRT_2^2

A theorem of Csima and Mileti

```
Theorem (Csima and Mileti) If f: [\omega]^2 \to \omega is recursive and 2-bounded then:
```

$$m\{X: (\exists Y \leq_T X)(Y \text{ is an infinite rainbow for } f)\} = 1.$$

SRT₂²: RT₂² for stable colorings. Corollary (Csima and Mileti) RCA₀ + RRT₂² $\not\vdash$ SRT₂².

RRT_2^2

A theorem of Csima and Mileti

Theorem (Csima and Mileti)

If $f: [\omega]^2 \to \omega$ is recursive and 2-bounded then:

 $m\{X: (\exists Y \leq_T X)(Y \text{ is an infinite rainbow for } f)\} = 1.$

 SRT_2^2 : RT_2^2 for stable colorings.

Corollary (Csima and Mileti)

 $\mathsf{RCA}_0 + \mathsf{RRT}_2^2 \not\vdash \mathsf{SRT}_2^2.$

A theorem of Csima and Mileti: Proof

It suffices to prove the theorem for recursive and 2-bounded f s.t.

$$(\forall (x,y),(x',y')\in [\omega]^2)(y\neq y'\to f(x,y)\neq f(x',y')).$$

Define a recursive tree $T \subset [\omega]^{<\omega}$ by induction:

- 1. $\emptyset \in T$;
- 2. Let $V(\sigma) = \{x : \sigma\langle x \rangle \text{ is a rainbow for } f\}$ for each σ . If $\sigma \in T$ and x is among the first $\min\{2^b : 2^b \geq 2^{|\sigma|+1}(|\sigma|+1)\varepsilon^{-1}\}$ many elements in $V(\sigma)$ then $\sigma\langle x \rangle \in T$.

Applying the pigeonhole principle, we can show that T is recursively isomorphic to a recursively enumerable tree $S\subseteq 2^{<\omega}$ s.t. $m[S]>1-\varepsilon$ and every $X\in[S]$ computes an infinite f-rainbow.

It suffices to prove the theorem for recursive and 2-bounded f s.t.

$$(\forall (x,y),(x',y')\in [\omega]^2)(y\neq y'\rightarrow f(x,y)\neq f(x',y')).$$

Define a recursive tree $T \subset [\omega]^{<\omega}$ by induction:

- 1. $\emptyset \in T$;
- 2. Let $V(\sigma) = \{x : \sigma\langle x \rangle \text{ is a rainbow for } f\}$ for each σ . If $\sigma \in T$ and x is among the first $\min\{2^b : 2^b \geq 2^{|\sigma|+1}(|\sigma|+1)\varepsilon^{-1}\}$ many elements in $V(\sigma)$ then $\sigma\langle x \rangle \in T$.

Applying the pigeonhole principle, we can show that T is recursively isomorphic to a recursively enumerable tree $S\subseteq 2^{<\omega}$ s.t. $m[S]>1-\varepsilon$ and every $X\in[S]$ computes an infinite f-rainbow.

It suffices to prove the theorem for recursive and 2-bounded f s.t.

$$(\forall (x,y),(x',y')\in [\omega]^2)(y\neq y'\rightarrow f(x,y)\neq f(x',y')).$$

Define a recursive tree $T \subset [\omega]^{<\omega}$ by induction:

- 1. $\emptyset \in T$;
- 2. Let $V(\sigma) = \{x : \sigma\langle x \rangle \text{ is a rainbow for } f\}$ for each σ . If $\sigma \in T$ and x is among the first $\min\{2^b : 2^b \geq 2^{|\sigma|+1}(|\sigma|+1)\varepsilon^{-1}\}$ many elements in $V(\sigma)$ then $\sigma\langle x \rangle \in T$.

Applying the pigeonhole principle, we can show that T is recursively isomorphic to a recursively enumerable tree $S\subseteq 2^{<\omega}$ s.t. $m[S]>1-\varepsilon$ and every $X\in[S]$ computes an infinite f-rainbow.

Theorem (WW)

Every recursive 2-bounded $f: [\omega]^3 \to \omega$ admits an infinite rainbow which does not compute the halting problem.

We know that $RCA_0 \vdash RT_2^3 \leftrightarrow ACA_0$ by Jockusch.

Corollary (WW)

 $RCA_0 + RRT_2^3 \not\vdash ACA_0$.

The key is the following theorem.

Theorem (WW)

Every 2-bounded coloring of pairs admits an infinite rainbow which does not compute the halting problem.

Theorem (WW)

Every recursive 2-bounded $f: [\omega]^3 \to \omega$ admits an infinite rainbow which does not compute the halting problem.

We know that $RCA_0 \vdash RT_2^3 \leftrightarrow ACA_0$ by Jockusch.

Corollary (WW)

 $\mathsf{RCA}_0 + \mathsf{RRT}_2^3 \not\vdash \mathsf{ACA}_0.$

The key is the following theorem.

Theorem (WW)

Every 2-bounded coloring of pairs admits an infinite rainbow which does not compute the halting problem.

Theorem (WW)

Every recursive 2-bounded $f: [\omega]^3 \to \omega$ admits an infinite rainbow which does not compute the halting problem.

We know that $RCA_0 \vdash RT_2^3 \leftrightarrow ACA_0$ by Jockusch.

Corollary (WW)

 $RCA_0 + RRT_2^3 \not\vdash ACA_0$.

The key is the following theorem.

Theorem (WW)

Every 2-bounded coloring of pairs admits an infinite rainbow which does not compute the halting problem.

Theorem (Folklore)

Every \vec{R} admits a cohesive set not computing the halting problem.

$$f(x,y,z) = \min\{\langle u,v,z\rangle \le \langle x,y,z\rangle : f(u,v,z) = f(x,y,z)\}.$$

Let \vec{R} be the sequence of $R_{u,v,x,y}=\{z:f(x,y,z)=\langle u,v,z\rangle\}.$

Let C be \vec{R} -cohesive with $K \not\leq_{\mathcal{T}} C$. Define

$$\bar{f}(x,y) = \lim_{z \in C} f(x,y,z), \text{ for } (x,y) \in [C]^2$$

Theorem (Folklore)

Every \vec{R} admits a cohesive set not computing the halting problem.

Fix a recursive 2-bounded f. We may assume that for all (x, y, z),

$$f(x,y,z) = \min\{\langle u,v,z\rangle \le \langle x,y,z\rangle : f(u,v,z) = f(x,y,z)\}.$$

Let \vec{R} be the sequence of $R_{u,v,x,y}=\{z:f(x,y,z)=\langle u,v,z\rangle\}.$

Let C be \vec{R} -cohesive with $K \not\leq_{\mathcal{T}} C$. Define

$$\bar{f}(x,y) = \lim_{z \in C} f(x,y,z), \text{ for } (x,y) \in [C]^2$$

Theorem (Folklore)

Every \vec{R} admits a cohesive set not computing the halting problem.

Fix a recursive 2-bounded f. We may assume that for all (x, y, z),

$$f(x,y,z) = \min\{\langle u,v,z\rangle \le \langle x,y,z\rangle : f(u,v,z) = f(x,y,z)\}.$$

Let \vec{R} be the sequence of $R_{u,v,x,y} = \{z : f(x,y,z) = \langle u,v,z \rangle\}.$

Let C be \tilde{R} -cohesive with $K \not\leq_T C$. Define

$$\bar{f}(x,y) = \lim_{z \in C} f(x,y,z), \text{ for } (x,y) \in [C]^2$$

Theorem (Folklore)

Every \vec{R} admits a cohesive set not computing the halting problem.

Fix a recursive 2-bounded f. We may assume that for all (x, y, z),

$$f(x,y,z) = \min\{\langle u,v,z\rangle \le \langle x,y,z\rangle : f(u,v,z) = f(x,y,z)\}.$$

Let \vec{R} be the sequence of $R_{u,v,x,y} = \{z : f(x,y,z) = \langle u,v,z \rangle\}.$

Let C be \vec{R} -cohesive with $K \not\leq_T C$. Define

$$\overline{f}(x,y) = \lim_{z \in C} f(x,y,z), \text{ for } (x,y) \in [C]^2.$$

Theorem (Folklore)

Every \vec{R} admits a cohesive set not computing the halting problem.

Fix a recursive 2-bounded f. We may assume that for all (x, y, z),

$$f(x,y,z) = \min\{\langle u,v,z\rangle \le \langle x,y,z\rangle : f(u,v,z) = f(x,y,z)\}.$$

Let \vec{R} be the sequence of $R_{u,v,x,y} = \{z : f(x,y,z) = \langle u,v,z \rangle\}.$

Let C be \vec{R} -cohesive with $K \not\leq_T C$. Define

$$\bar{f}(x,y) = \lim_{z \in C} f(x,y,z), \text{ for } (x,y) \in [C]^2.$$

Theorem (WW)

Every 2-bounded coloring of pairs admits an infinite rainbow which does not compute the halting problem.

We sketch a proof for 2-bounded f s.t

$$f(x,y) = \min\{\langle u, y \rangle \le \langle x, y \rangle : f(u,y) = f(x,y)\}$$

for all $(x, y) \in [\omega]^2$.

We need

Theorem (Dzhafarov and Jockusch

Every $f: \omega \to c$ for finite c admits an infinite homogeneous set which does not compute the halting problem.

Theorem (WW)

Every 2-bounded coloring of pairs admits an infinite rainbow which does not compute the halting problem.

We sketch a proof for 2-bounded f s.t.

$$f(x,y) = \min\{\langle u,y \rangle \le \langle x,y \rangle : f(u,y) = f(x,y)\}$$

for all $(x, y) \in [\omega]^2$.

We need

Theorem (Dzhafarov and Jockusch)

Every $f: \omega \to c$ for finite c admits an infinite homogeneous set which does not compute the halting problem.

Theorem (WW)

Every 2-bounded coloring of pairs admits an infinite rainbow which does not compute the halting problem.

We sketch a proof for 2-bounded f s.t.

$$f(x,y) = \min\{\langle u,y \rangle \le \langle x,y \rangle : f(u,y) = f(x,y)\}$$

for all $(x, y) \in [\omega]^2$.

We need:

Theorem (Dzhafarov and Jockusch)

Every $f: \omega \to c$ for finite c admits an infinite homogeneous set which does not compute the halting problem.

Mathias conditions

A Mathias condition is a pair $(\sigma, X) \in [\omega]^{<\omega} \times [\omega]^{\omega}$ s.t. $\max \sigma < \min X$. (σ, X) is identified with

$$\{Y \in [\omega]^\omega : \sigma \subset Y \subseteq \sigma \cup X\}.$$

$$(\tau, Y) \leq_M (\sigma, X)$$
 iff $(\tau, Y) \subseteq (\sigma, X)$.

 (σ, X) is admissible iff

- 1. X does not compute the halting problem;
- 2. $\sigma\langle x\rangle$ is an f-rainbow for all $x\in X$.

We shall build a descending (w.r.t. \leq_M) sequence $((\sigma_n, X_n) : n < \omega)$ of admissible Mathias conditions and get the desired f-rainbow $G = \bigcup_n \sigma_n$

Mathias conditions

A Mathias condition is a pair $(\sigma, X) \in [\omega]^{<\omega} \times [\omega]^{\omega}$ s.t. $\max \sigma < \min X$. (σ, X) is identified with

$$\{Y \in [\omega]^{\omega} : \sigma \subset Y \subseteq \sigma \cup X\}.$$

$$(\tau, Y) \leq_M (\sigma, X)$$
 iff $(\tau, Y) \subseteq (\sigma, X)$.

 (σ, X) is admissible iff

- 1. X does not compute the halting problem;
- 2. $\sigma\langle x\rangle$ is an *f*-rainbow for all $x\in X$.

We shall build a descending (w.r.t. \leq_M) sequence $((\sigma_n, X_n) : n < \omega)$ of admissible Mathias conditions and get the desired f-rainbow $G = \bigcup_n \sigma_n$

Mathias conditions

A Mathias condition is a pair $(\sigma, X) \in [\omega]^{<\omega} \times [\omega]^{\omega}$ s.t. $\max \sigma < \min X$. (σ, X) is identified with

$$\{Y \in [\omega]^{\omega} : \sigma \subset Y \subseteq \sigma \cup X\}.$$

$$(\tau, Y) \leq_M (\sigma, X)$$
 iff $(\tau, Y) \subseteq (\sigma, X)$.

 (σ, X) is admissible iff

- 1. X does not compute the halting problem;
- 2. $\sigma\langle x\rangle$ is an *f*-rainbow for all $x\in X$.

We shall build a descending (w.r.t. \leq_M) sequence ((σ_n, X_n) : $n < \omega$) of admissible Mathias conditions and get the desired f-rainbow $G = \bigcup_n \sigma_n$.

Subsets of colorings

Let \mathcal{F} be the set of 2-bounded colorings g s.t.

$$g(x,y) = \min\{\langle u,y \rangle \le \langle x,y \rangle : g(u,y) = g(x,y)\}$$

for all $(x,y) \in [\omega]^2$. Then \mathcal{F} is Π_1^0 and compact.

For each (σ, X) , let $\mathcal{F}_{\sigma, X}$ be the set of $g \in \mathcal{F}$ s.t. $\sigma \langle x \rangle$ is a g-rainbow for each $x \in X$. Then $\mathcal{F}_{\sigma, X}$ is Π_1^X .

If (σ, X) is admissible then $f \in \mathcal{F}_{\sigma, X}$.

Subsets of colorings

Let \mathcal{F} be the set of 2-bounded colorings g s.t.

$$g(x,y) = \min\{\langle u,y \rangle \le \langle x,y \rangle : g(u,y) = g(x,y)\}$$

for all $(x, y) \in [\omega]^2$. Then \mathcal{F} is Π_1^0 and compact.

For each (σ, X) , let $\mathcal{F}_{\sigma, X}$ be the set of $g \in \mathcal{F}$ s.t. $\sigma \langle x \rangle$ is a g-rainbow for each $x \in X$. Then $\mathcal{F}_{\sigma, X}$ is Π_1^X .

If (σ, X) is admissible then $f \in \mathcal{F}_{\sigma, X}$.

Subsets of colorings

Let \mathcal{F} be the set of 2-bounded colorings g s.t.

$$g(x,y) = \min\{\langle u,y \rangle \le \langle x,y \rangle : g(u,y) = g(x,y)\}$$

for all $(x,y) \in [\omega]^2$. Then \mathcal{F} is Π_1^0 and compact.

For each (σ, X) , let $\mathcal{F}_{\sigma, X}$ be the set of $g \in \mathcal{F}$ s.t. $\sigma \langle x \rangle$ is a g-rainbow for each $x \in X$. Then $\mathcal{F}_{\sigma, X}$ is Π_1^X .

If (σ, X) is admissible then $f \in \mathcal{F}_{\sigma, X}$.

A probability measure

For each finite tree $T \subset [\omega]^{<\omega}$, let

$$[T] = {\sigma \in T : (\forall x)(\sigma \langle x \rangle \notin T)} = \text{ the set of leaves of } T.$$

We define

$$m_T(\emptyset) = 1,$$
 $m_T(\sigma\langle x \rangle) = \frac{m_T(\sigma)}{|\{y : \sigma\langle y \rangle \in T\}|}, \text{ if } \sigma\langle x \rangle \in T.$

If $S \subseteq [T]$ then

$$m_T S = \sum_{\sigma \in S} m_T(\sigma)$$

We write $(P_T\sigma>\varepsilon)\varphi$ for $m_T\{\sigma\in[T]:\varphi(\tau)\}>\varepsilon$ etc

A probability measure

For each finite tree $T \subset [\omega]^{<\omega}$, let

$$[T] = \{ \sigma \in T : (\forall x) (\sigma \langle x \rangle \not\in T) \} = \text{ the set of leaves of } T.$$

We define

$$m_T(\emptyset) = 1,$$
 $m_T(\sigma\langle x \rangle) = \frac{m_T(\sigma)}{|\{y : \sigma\langle y \rangle \in T\}|}, \text{ if } \sigma\langle x \rangle \in T.$

If $S \subseteq [T]$ then

$$m_T S = \sum_{\sigma \in S} m_T(\sigma)$$

We write $(P_T\sigma > \varepsilon)\varphi$ for $m_T\{\sigma \in [T] : \varphi(\tau)\} > \varepsilon$ etc.

A probability measure

For each finite tree $T \subset [\omega]^{<\omega}$, let

$$[T] = {\sigma \in T : (\forall x)(\sigma \langle x \rangle \notin T)} = \text{ the set of leaves of } T.$$

We define

$$m_T(\emptyset) = 1,$$
 $m_T(\sigma\langle x \rangle) = \frac{m_T(\sigma)}{|\{y : \sigma\langle y \rangle \in T\}|}, \text{ if } \sigma\langle x \rangle \in T.$

If $S \subseteq [T]$ then

$$m_T S = \sum_{\sigma \in S} m_T(\sigma).$$

We write $(P_T\sigma > \varepsilon)\varphi$ for $m_T\{\sigma \in [T] : \varphi(\tau)\} > \varepsilon$ etc

A probability measure

For each finite tree $T \subset [\omega]^{<\omega}$, let

$$[T] = {\sigma \in T : (\forall x)(\sigma \langle x \rangle \notin T)} = \text{ the set of leaves of } T.$$

We define

$$m_T(\emptyset) = 1,$$
 $m_T(\sigma\langle x \rangle) = \frac{m_T(\sigma)}{|\{y : \sigma\langle y \rangle \in T\}|}, \text{ if } \sigma\langle x \rangle \in T.$

If $S \subseteq [T]$ then

$$m_T S = \sum_{\sigma \in S} m_T(\sigma).$$

We write $(P_T\sigma > \varepsilon)\varphi$ for $m_T\{\sigma \in [T] : \varphi(\tau)\} > \varepsilon$ etc.

Trees of rainbows

For $g \in \mathcal{F}_{\sigma,X}$, let $\mathcal{T}(\sigma,X,g)$ be the set of finite trees $\mathcal{T} \subset [\omega]^{<\omega}$ s.t.

- 1. $\sigma \tau$ is a *g*-rainbow for each $\tau \in T$;
- 2. If $\tau \in T$ is not a leaf then

$$|\{x:\tau\langle x\rangle\in T\}|\geq \min\{2^b:2^b\geq 2^{|\tau|+3}|\sigma\tau|\}.$$

Lemma If $T \in \mathcal{T}(\sigma, X, g)$ then

$$(\forall^{\infty} x \in X)(P_{T}\tau \geq \frac{3}{4})(\sigma\tau\langle x \rangle \text{ is a rainbow for g})$$

and

$$(P_{T^{\mathcal{T}}} \geq rac{3}{4})(\exists^{\infty}x \in X)(\sigma au \langle x
angle$$
 is a rainbow for $g)$

Trees of rainbows

For $g \in \mathcal{F}_{\sigma,X}$, let $\mathcal{T}(\sigma,X,g)$ be the set of finite trees $\mathcal{T} \subset [\omega]^{<\omega}$ s.t.

- 1. $\sigma \tau$ is a *g*-rainbow for each $\tau \in T$;
- 2. If $\tau \in T$ is not a leaf then

$$|\{x:\tau\langle x\rangle\in T\}|\geq \min\{2^b:2^b\geq 2^{|\tau|+3}|\sigma\tau|\}.$$

Lemma If $T \in \mathcal{T}(\sigma, X, g)$ then

and

$$(P_T \tau \geq \frac{3}{4})(\exists^{\infty} x \in X)(\sigma \tau \langle x \rangle \text{ is a rainbow for } g).$$

Extending an admissible condition

Lemma

Every admissible (σ, X) can be extended to an admissible (τ, Y) with $|\tau| > |\sigma|$.

Let $T \subseteq [X]^{\leq 1}$ be a tree in $\mathcal{T}(\sigma, X, f)$. For sufficiently large $x \in X$, let $h(x) = \{ \xi \in [T] : \sigma \xi \langle x \rangle \text{ is not a rainbow for } f \}.$

Then $m_T h(x) \leq \frac{1}{4}$ for sufficiently large $x \in X$.

By the theorem of Dzhafarov and Jockusch, pick $Y \in [X]^{\omega}$ and $\xi \in [T]$ s.t. Y is h-homogeneous, $K \not\leq_T Y$ and $\xi \notin h(Y)$.

Then $(\sigma \xi, Y)$ is as desired

Extending an admissible condition

Lemma

Every admissible (σ, X) can be extended to an admissible (τ, Y) with $|\tau| > |\sigma|$.

Let $T \subseteq [X]^{\leq 1}$ be a tree in $\mathcal{T}(\sigma, X, f)$. For sufficiently large $x \in X$, let $h(x) = \{ \xi \in [T] : \sigma \xi \langle x \rangle \text{ is not a rainbow for } f \}.$

Then $m_T h(x) \leq \frac{1}{4}$ for sufficiently large $x \in X$.

By the theorem of Dzhafarov and Jockusch, pick $Y \in [X]^{\omega}$ and $\xi \in [T]$ s.t. Y is h-homogeneous, $K \not\leq_T Y$ and $\xi \notin h(Y)$.

Then $(\sigma \xi, Y)$ is as desired

Extending an admissible condition

Lemma

Every admissible (σ, X) can be extended to an admissible (τ, Y) with $|\tau| > |\sigma|$.

Let $T \subseteq [X]^{\leq 1}$ be a tree in $\mathcal{T}(\sigma, X, f)$. For sufficiently large $x \in X$, let $h(x) = \{ \xi \in [T] : \sigma \xi \langle x \rangle \text{ is not a rainbow for } f \}.$

Then $m_T h(x) \leq \frac{1}{4}$ for sufficiently large $x \in X$.

By the theorem of Dzhafarov and Jockusch, pick $Y \in [X]^{\omega}$ and $\xi \in [T]$ s.t. Y is h-homogeneous, $K \not\leq_T Y$ and $\xi \notin h(Y)$.

Then $(\sigma \xi, Y)$ is as desired.

The key lemma

Lemma

For each admissible (σ, X) and e there exists an admissible $(\tau, Y) \leq_M (\sigma, X)$ s.t. $K \neq \Phi_e(Z)$ for all $Z \in (\tau, Y)$.

- 1. As f is of arbitrary complexity, we cannot directly consult f when finding (τ, Y) .
- 2. Instead of asking questions about f, we ask questions like: whether $\mathcal{F}_{\sigma,X}$ contains some element satisfying certain Π^0_1 property (say φ).
- 3. If $\mathcal{F}_{\sigma,X}$ does contain such an element, then we can pick $g \in \mathcal{F}_{\sigma,X}$ not computing K. With g, we can obtain an admissible extension which forces some Π^0_1 statement $(\Phi_e(Z;x)\uparrow)$.
- 4. Otherwise, f is a particular element of $\mathcal{F}_{\sigma,X}$ which satisfies a Σ^0_1 property $(\neg \varphi)$. From this fact, we can extend (σ,X) in a finitary way to force a Σ^0_1 statement.

The key lemma

Lemma

For each admissible (σ, X) and e there exists an admissible $(\tau, Y) \leq_M (\sigma, X)$ s.t. $K \neq \Phi_e(Z)$ for all $Z \in (\tau, Y)$.

- 1. As f is of arbitrary complexity, we cannot directly consult f when finding (τ, Y) .
- 2. Instead of asking questions about f, we ask questions like: whether $\mathcal{F}_{\sigma,X}$ contains some element satisfying certain Π_1^0 property (say φ).
- 3. If $\mathcal{F}_{\sigma,X}$ does contain such an element, then we can pick $g \in \mathcal{F}_{\sigma,X}$ not computing K. With g, we can obtain an admissible extension which forces some Π_1^0 statement $(\Phi_e(Z;x)\uparrow)$.
- 4. Otherwise, f is a particular element of $\mathcal{F}_{\sigma,X}$ which satisfies a Σ^0_1 property $(\neg \varphi)$. From this fact, we can extend (σ,X) in a finitary way to force a Σ^0_1 statement.

The key lemma

Lemma

For each admissible (σ, X) and e there exists an admissible $(\tau, Y) \leq_M (\sigma, X)$ s.t. $K \neq \Phi_e(Z)$ for all $Z \in (\tau, Y)$.

- 1. As f is of arbitrary complexity, we cannot directly consult f when finding (τ, Y) .
- 2. Instead of asking questions about f, we ask questions like: whether $\mathcal{F}_{\sigma,X}$ contains some element satisfying certain Π_1^0 property (say φ).
- 3. If $\mathcal{F}_{\sigma,X}$ does contain such an element, then we can pick $g \in \mathcal{F}_{\sigma,X}$ not computing K. With g, we can obtain an admissible extension which forces some Π_1^0 statement $(\Phi_e(Z;x)\uparrow)$.
- 4. Otherwise, f is a particular element of $\mathcal{F}_{\sigma,X}$ which satisfies a Σ^0_1 property $(\neg \varphi)$. From this fact, we can extend (σ,X) in a finitary way to force a Σ^0_1 statement.

The key lemma

Lemma

For each admissible (σ, X) and e there exists an admissible $(\tau, Y) \leq_M (\sigma, X)$ s.t. $K \neq \Phi_e(Z)$ for all $Z \in (\tau, Y)$.

- 1. As f is of arbitrary complexity, we cannot directly consult f when finding (τ, Y) .
- 2. Instead of asking questions about f, we ask questions like: whether $\mathcal{F}_{\sigma,X}$ contains some element satisfying certain Π_1^0 property (say φ).
- 3. If $\mathcal{F}_{\sigma,X}$ does contain such an element, then we can pick $g \in \mathcal{F}_{\sigma,X}$ not computing K. With g, we can obtain an admissible extension which forces some Π^0_1 statement $(\Phi_e(Z;x)\uparrow)$.
- 4. Otherwise, f is a particular element of $\mathcal{F}_{\sigma,X}$ which satisfies a Σ^0_1 property $(\neg \varphi)$. From this fact, we can extend (σ,X) in a finitary way to force a Σ^0_1 statement.

The key lemma

Lemma

For each admissible (σ, X) and e there exists an admissible $(\tau, Y) \leq_M (\sigma, X)$ s.t. $K \neq \Phi_e(Z)$ for all $Z \in (\tau, Y)$.

- 1. As f is of arbitrary complexity, we cannot directly consult f when finding (τ, Y) .
- 2. Instead of asking questions about f, we ask questions like: whether $\mathcal{F}_{\sigma,X}$ contains some element satisfying certain Π_1^0 property (say φ).
- 3. If $\mathcal{F}_{\sigma,X}$ does contain such an element, then we can pick $g \in \mathcal{F}_{\sigma,X}$ not computing K. With g, we can obtain an admissible extension which forces some Π^0_1 statement $(\Phi_e(Z;x)\uparrow)$.
- 4. Otherwise, f is a particular element of $\mathcal{F}_{\sigma,X}$ which satisfies a Σ^0_1 property $(\neg \varphi)$. From this fact, we can extend (σ,X) in a finitary way to force a Σ^0_1 statement.

The key lemma: splittings

A pair (η_0, η_1) e-splits over σ iff

$$(\exists x)(\Phi_e(\sigma\eta_0;x)\downarrow\neq\Phi_e(\sigma\eta_1;x)\downarrow).$$

Let $\mathcal U$ be the set of $g\in\mathcal F_{\sigma,X}$ s.t.

$$(\forall T \in \mathcal{T}(\sigma, X, g))(P_T \tau < \frac{1}{2})(\tau \text{ contains a pair } e\text{-splitting over } \sigma)$$

Then $\mathcal{U} \in \Pi_1^X$.

The key lemma: splittings

A pair (η_0, η_1) e-splits over σ iff

$$(\exists x)(\Phi_e(\sigma\eta_0;x)\downarrow\neq\Phi_e(\sigma\eta_1;x)\downarrow).$$

Let \mathcal{U} be the set of $g \in \mathcal{F}_{\sigma,X}$ s.t.

$$(\forall T \in \mathcal{T}(\sigma, X, g))(P_T \tau < \frac{1}{2})(\tau \text{ contains a pair } e\text{-splitting over } \sigma)$$

Then $\mathcal{U} \in \Pi_1^X$.

The key lemma: splittings

A pair (η_0, η_1) e-splits over σ iff

$$(\exists x)(\Phi_e(\sigma\eta_0;x)\downarrow\neq\Phi_e(\sigma\eta_1;x)\downarrow).$$

Let \mathcal{U} be the set of $g \in \mathcal{F}_{\sigma,X}$ s.t.

$$(\forall T \in \mathcal{T}(\sigma, X, g))(P_T \tau < \frac{1}{2})(\tau \text{ contains a pair } e\text{-splitting over } \sigma)$$

Then $\mathcal{U} \in \Pi_1^X$.

The key lemma: Case 1

Case 1: $\mathcal{U} \neq \emptyset$.

Let $g \in \mathcal{U}$ be s.t. $K \nleq_{\mathcal{T}} X \oplus g$. By relativizing the theorem of Csima and Mileti, let $R \in [X]^{\omega}$ be s.t. R is a g-rainbow and $K \nleq_{\mathcal{T}} X \oplus R$.

We can build a $g \oplus R$ -recursive tree T s.t. $T_I \in \mathcal{T}(\sigma, R, g)$ and every leaf of T_I is of length I where $T_I = T \cap [R]^{\leq I}$. Let

$$S = \{ au \in T : au \text{ contains no pair } e \text{-splitting over } \sigma \}.$$

Then $(P_{T_i}\tau > \frac{1}{2})(\exists Y \in [S])(\tau \prec Y)$ for all I.

So we can pick $Y \in [S]$ s.t. $K \not\leq_{\mathcal{T}} Y$.

As (σ, X) is admissible and $Y \subseteq X$, (σ, Y) is admissible

The key lemma: Case 1

Case 1: $\mathcal{U} \neq \emptyset$.

Let $g \in \mathcal{U}$ be s.t. $K \nleq_{\mathcal{T}} X \oplus g$. By relativizing the theorem of Csima and Mileti, let $R \in [X]^{\omega}$ be s.t. R is a g-rainbow and $K \nleq_{\mathcal{T}} X \oplus R$.

We can build a $g \oplus R$ -recursive tree T s.t. $T_I \in \mathcal{T}(\sigma, R, g)$ and every leaf of T_I is of length I where $T_I = T \cap [R]^{\leq I}$. Let

$$S = \{ \tau \in T : \tau \text{ contains no pair } e \text{-splitting over } \sigma \}$$

Then $(P_{T_l}\tau > \frac{1}{2})(\exists Y \in [S])(\tau \prec Y)$ for all I.

So we can pick $Y \in [S]$ s.t. $K \not\leq_T Y$.

As (σ, X) is admissible and $Y \subseteq X$, (σ, Y) is admissible

The key lemma: Case 1

Case 1: $\mathcal{U} \neq \emptyset$.

Let $g \in \mathcal{U}$ be s.t. $K \nleq_{\mathcal{T}} X \oplus g$. By relativizing the theorem of Csima and Mileti, let $R \in [X]^{\omega}$ be s.t. R is a g-rainbow and $K \nleq_{\mathcal{T}} X \oplus R$.

We can build a $g \oplus R$ -recursive tree T s.t. $T_I \in \mathcal{T}(\sigma, R, g)$ and every leaf of T_I is of length I where $T_I = T \cap [R]^{\leq I}$. Let

 $S = \{\tau \in \mathit{T} : \tau \text{ contains } \text{no pair } \textit{e-splitting over } \sigma\}.$

Then $(P_{T_i}\tau > \frac{1}{2})(\exists Y \in [S])(\tau \prec Y)$ for all I.

So we can pick $Y \in [S]$ s.t. $K \not\leq_T Y$.

As (σ, X) is admissible and $Y \subseteq X$, (σ, Y) is admissible

The key lemma: Case 1

Case 1: $\mathcal{U} \neq \emptyset$.

Let $g \in \mathcal{U}$ be s.t. $K \nleq_{\mathcal{T}} X \oplus g$. By relativizing the theorem of Csima and Mileti, let $R \in [X]^{\omega}$ be s.t. R is a g-rainbow and $K \nleq_{\mathcal{T}} X \oplus R$.

We can build a $g \oplus R$ -recursive tree T s.t. $T_I \in \mathcal{T}(\sigma, R, g)$ and every leaf of T_I is of length I where $T_I = T \cap [R]^{\leq I}$. Let

 $S = \{\tau \in \mathit{T} : \tau \text{ contains no pair e-splitting over } \sigma\}.$

Then $(P_{T_I}\tau > \frac{1}{2})(\exists Y \in [S])(\tau \prec Y)$ for all I.

So we can pick $Y \in [S]$ s.t. $K \not\leq_T Y$.

As (σ, X) is admissible and $Y \subseteq X$, (σ, Y) is admissible

The key lemma: Case 1

Case 1: $\mathcal{U} \neq \emptyset$.

Let $g \in \mathcal{U}$ be s.t. $K \nleq_{\mathcal{T}} X \oplus g$. By relativizing the theorem of Csima and Mileti, let $R \in [X]^{\omega}$ be s.t. R is a g-rainbow and $K \nleq_{\mathcal{T}} X \oplus R$.

We can build a $g \oplus R$ -recursive tree T s.t. $T_I \in \mathcal{T}(\sigma, R, g)$ and every leaf of T_I is of length I where $T_I = T \cap [R]^{\leq I}$. Let

 $S = \{\tau \in \mathit{T} : \tau \text{ contains } \text{no pair } \textit{e-splitting over } \sigma\}.$

Then $(P_{T_i}\tau > \frac{1}{2})(\exists Y \in [S])(\tau \prec Y)$ for all I.

So we can pick $Y \in [S]$ s.t. $K \not\leq_T Y$.

As (σ, X) is admissible and $Y \subseteq X$, (σ, Y) is admissible

The key lemma: Case 1

Case 1: $\mathcal{U} \neq \emptyset$.

Let $g \in \mathcal{U}$ be s.t. $K \nleq_{\mathcal{T}} X \oplus g$. By relativizing the theorem of Csima and Mileti, let $R \in [X]^{\omega}$ be s.t. R is a g-rainbow and $K \nleq_{\mathcal{T}} X \oplus R$.

We can build a $g \oplus R$ -recursive tree T s.t. $T_I \in \mathcal{T}(\sigma, R, g)$ and every leaf of T_I is of length I where $T_I = T \cap [R]^{\leq I}$. Let

 $S = \{\tau \in \mathit{T} : \tau \text{ contains no pair } \mathit{e}\text{-splitting over } \sigma\}.$

Then $(P_{T_i}\tau > \frac{1}{2})(\exists Y \in [S])(\tau \prec Y)$ for all I.

So we can pick $Y \in [S]$ s.t. $K \not\leq_T Y$.

As (σ, X) is admissible and $Y \subseteq X$, (σ, Y) is admissible.

The key lemma: Case 1

Case 1: $\mathcal{U} \neq \emptyset$.

Let $g \in \mathcal{U}$ be s.t. $K \nleq_{\mathcal{T}} X \oplus g$. By relativizing the theorem of Csima and Mileti, let $R \in [X]^{\omega}$ be s.t. R is a g-rainbow and $K \nleq_{\mathcal{T}} X \oplus R$.

We can build a $g \oplus R$ -recursive tree T s.t. $T_I \in \mathcal{T}(\sigma, R, g)$ and every leaf of T_I is of length I where $T_I = T \cap [R]^{\leq I}$. Let

 $S = \{\tau \in \mathit{T} : \tau \text{ contains } \mathbf{no} \text{ pair } \mathit{e}\text{-splitting over } \sigma\}.$

Then $(P_{T_i}\tau > \frac{1}{2})(\exists Y \in [S])(\tau \prec Y)$ for all I.

So we can pick $Y \in [S]$ s.t. $K \not\leq_T Y$.

As (σ, X) is admissible and $Y \subseteq X$, (σ, Y) is admissible.

The key lemma: Case 2

Case 2. $\mathcal{U} = \emptyset$. In particular $f \notin \mathcal{U}$.

Pick $T \in \mathcal{T}(\sigma, X, f)$ s.t.

$$(P_T au \geq rac{1}{2})(au$$
 contains a pair *e*-splitting over σ).

For each $x \in X$, let

$$h(x) = \{ \tau \in [T] : \sigma \tau \langle x \rangle \text{ is not a rainbow for } f \}$$

So h is a finite coloring and $m_T h(x) \leq \frac{1}{4}$ for each $x \in X$.

By the theorem of Dzhafarov and Jockusch, pick an h-homogeneous $Y \in [X]^{\omega}$ with $K \not\leq_{\mathcal{T}} Y$, and let τ be s.t. $\tau \in [T] - h(x)$ for all $x \in Y$ and τ contains a pair e-splitting over σ .

Let $\xi \subseteq \tau$ and x be s.t. $\Phi_e(\sigma \xi; x) \downarrow \neq K(x)$. Then $(\sigma \xi, Y)$ is as desired

The key lemma: Case 2

Case 2. $\mathcal{U} = \emptyset$. In particular $f \notin \mathcal{U}$.

Pick $T \in \mathcal{T}(\sigma, X, f)$ s.t.

$$(P_T \tau \geq \frac{1}{2})(\tau \text{ contains a pair } e\text{-splitting over } \sigma).$$

For each $x \in X$, let

$$h(x) = \{ \tau \in [T] : \sigma \tau \langle x \rangle \text{ is not a rainbow for } f \}$$

So h is a finite coloring and $m_T h(x) \leq \frac{1}{4}$ for each $x \in X$.

By the theorem of Dzhafarov and Jockusch, pick an h-homogeneous $Y \in [X]^{\omega}$ with $K \not\leq_T Y$, and let τ be s.t. $\tau \in [T] - h(x)$ for all $x \in Y$ and τ contains a pair e-splitting over σ .

Let $\xi \subseteq \tau$ and x be s.t. $\Phi_e(\sigma \xi; x) \downarrow \neq K(x)$. Then $(\sigma \xi, Y)$ is as desired

The key lemma: Case 2

Case 2. $\mathcal{U} = \emptyset$. In particular $f \notin \mathcal{U}$.

Pick $T \in \mathcal{T}(\sigma, X, f)$ s.t.

$$(P_T \tau \geq \frac{1}{2})(\tau \text{ contains a pair } e \text{-splitting over } \sigma).$$

For each $x \in X$, let

$$h(x) = \{ \tau \in [T] : \sigma \tau \langle x \rangle \text{ is not a rainbow for } f \}.$$

So h is a finite coloring and $m_T h(x) \leq \frac{1}{4}$ for each $x \in X$.

By the theorem of Dzhafarov and Jockusch, pick an h-homogeneous $Y \in [X]^{\omega}$ with $K \not\leq_{\mathcal{T}} Y$, and let τ be s.t. $\tau \in [T] - h(x)$ for all $x \in Y$ and τ contains a pair e-splitting over σ .

Let $\xi \subseteq \tau$ and x be s.t. $\Phi_e(\sigma \xi; x) \downarrow \neq K(x)$. Then $(\sigma \xi, Y)$ is as desired

The key lemma: Case 2

Case 2. $\mathcal{U} = \emptyset$. In particular $f \notin \mathcal{U}$.

Pick $T \in \mathcal{T}(\sigma, X, f)$ s.t.

$$(P_T \tau \geq \frac{1}{2})(\tau \text{ contains a pair } e\text{-splitting over } \sigma).$$

For each $x \in X$, let

$$h(x) = \{ \tau \in [T] : \sigma \tau \langle x \rangle \text{ is not a rainbow for } f \}.$$

So h is a finite coloring and $m_T h(x) \leq \frac{1}{4}$ for each $x \in X$.

By the theorem of Dzhafarov and Jockusch, pick an h-homogeneous $Y \in [X]^{\omega}$ with $K \not\leq_{\mathcal{T}} Y$, and let τ be s.t. $\tau \in [T] - h(x)$ for all $x \in Y$ and τ contains a pair e-splitting over σ .

Let $\xi \subseteq \tau$ and x be s.t. $\Phi_e(\sigma \xi; x) \downarrow \neq K(x)$. Then $(\sigma \xi, Y)$ is as desired.

The key lemma: Case 2

Case 2. $\mathcal{U} = \emptyset$. In particular $f \notin \mathcal{U}$.

Pick $T \in \mathcal{T}(\sigma, X, f)$ s.t.

$$(P_T \tau \geq \frac{1}{2})(\tau \text{ contains a pair } e\text{-splitting over } \sigma).$$

For each $x \in X$, let

$$h(x) = \{ \tau \in [T] : \sigma \tau \langle x \rangle \text{ is not a rainbow for } f \}.$$

So h is a finite coloring and $m_T h(x) \leq \frac{1}{4}$ for each $x \in X$.

By the theorem of Dzhafarov and Jockusch, pick an h-homogeneous $Y \in [X]^{\omega}$ with $K \not\leq_{\mathcal{T}} Y$, and let τ be s.t. $\tau \in [T] - h(x)$ for all $x \in Y$ and τ contains a pair e-splitting over σ .

Let $\xi \subseteq \tau$ and x be s.t. $\Phi_e(\sigma \xi; x) \downarrow \neq K(x)$. Then $(\sigma \xi, Y)$ is as desired.

Theorem (Csima and Mileti) $RCA_0 + RT_2^2 \not\vdash RRT_2^3$. Consequently, $RCA_0 + RRT_2^2 \not\vdash RRT_2^3$.

Theorem (WW) $RCA_0 + RRT_2^3 \not\vdash RRT_2^4$.

We reduce the above theorem to a theorem about iterated jumps of rainbows.

We reduce the above theorem to a theorem about iterated jumps of rainbows.

Theorem (Csima and Mileti) $RCA_0 + RT_2^2 \not\vdash RRT_2^3$. Consequently, $RCA_0 + RRT_2^2 \not\vdash RRT_2^3$.

Theorem (WW)

 $\mathsf{RCA}_0 + \mathsf{RRT}_2^3 \not\vdash \mathsf{RRT}_2^4.$

We reduce the above theorem to a theorem about iterated jumps of rainbows.

Triples Jumps of Rainbows

A set X is
$$low_n$$
 iff $X^{(n)} \equiv_T \emptyset^{(n)}$.

Theorem (WW, Triple Jump Theorem)

Every \emptyset' -recursive 2-bounded coloring of pairs admits a low₃ infinite rainbow G.

With the above theorem, we can separate RRT_2^3 and RRT_2^4 .

Proof of $RCA_0 + RRT_2^3 \not\vdash RRT_2^4$.

By Cholak, Jockusch and Slaman, every recursive R admits a low₂ cohesive set. Combine this and the triple jump theorem, we get an ω -model $\mathcal{M} \models \mathsf{RCA}_0 + \mathsf{RRT}_2^3$ which is bounded by $\emptyset^{(3)}$.

Triples Jumps of Rainbows

A set X is low_n iff $X^{(n)} \equiv_T \emptyset^{(n)}$.

Theorem (WW, Triple Jump Theorem)

Every \emptyset' -recursive 2-bounded coloring of pairs admits a low₃ infinite rainbow G.

With the above theorem, we can separate RRT_2^3 and RRT_2^4 .

Proof of $RCA_0 + RRT_2^3 \not\vdash RRT_2^4$.

By Cholak, Jockusch and Slaman, every recursive R admits a low₂ cohesive set. Combine this and the triple jump theorem, we get ar ω -model $\mathcal{M} \models \mathsf{RCA}_0 + \mathsf{RRT}_2^3$ which is bounded by $\emptyset^{(3)}$.

Triples Jumps of Rainbows

A set X is low_n iff $X^{(n)} \equiv_T \emptyset^{(n)}$.

Theorem (WW, Triple Jump Theorem)

Every \emptyset' -recursive 2-bounded coloring of pairs admits a low₃ infinite rainbow G.

With the above theorem, we can separate RRT_2^3 and RRT_2^4 .

Proof of $RCA_0 + RRT_2^3 \not\vdash RRT_2^4$.

By Cholak, Jockusch and Slaman, every recursive R admits a low₂ cohesive set. Combine this and the triple jump theorem, we get an ω -model $\mathcal{M} \models \mathsf{RCA}_0 + \mathsf{RRT}_2^3$ which is bounded by $\emptyset^{(3)}$.

Triples Jumps of Rainbows

A set X is low_n iff $X^{(n)} \equiv_T \emptyset^{(n)}$.

Theorem (WW, Triple Jump Theorem)

Every \emptyset' -recursive 2-bounded coloring of pairs admits a low₃ infinite rainbow G.

With the above theorem, we can separate $\ensuremath{\mathsf{RRT}}^3_2$ and $\ensuremath{\mathsf{RRT}}^4_2.$

Proof of $RCA_0 + RRT_2^3 \not\vdash RRT_2^4$.

By Cholak, Jockusch and Slaman, every recursive \vec{R} admits a low₂ cohesive set. Combine this and the triple jump theorem, we get an ω -model $\mathcal{M} \models \mathsf{RCA}_0 + \mathsf{RRT}_2^3$ which is bounded by $\emptyset^{(3)}$.

Triples Jumps of Rainbows

A set X is low_n iff $X^{(n)} \equiv_T \emptyset^{(n)}$.

Theorem (WW, Triple Jump Theorem)

Every \emptyset' -recursive 2-bounded coloring of pairs admits a low₃ infinite rainbow G.

With the above theorem, we can separate \mbox{RRT}_2^3 and $\mbox{RRT}_2^4.$

Proof of $RCA_0 + RRT_2^3 \not\vdash RRT_2^4$.

By Cholak, Jockusch and Slaman, every recursive \vec{R} admits a low₂ cohesive set. Combine this and the triple jump theorem, we get an ω -model $\mathcal{M} \models \mathsf{RCA}_0 + \mathsf{RRT}_2^3$ which is bounded by $\emptyset^{(3)}$.

Double Jumps of Rainbows

Theorem (WW)

Every \emptyset' -recursive \vec{R} admits a low₃ cohesive set.

Then we can reduce the triple jump theorem to:

Theorem (WW, Double Jump Theorem)

If f is a \emptyset' -recursive 2-bounded coloring of pairs s.t.

$$(\forall (x,y))(f(x,y) = \min\{\langle u,y\rangle : f(u,y) = f(x,y)\})$$

and $\lim_{y} f(x, y)$ exists for all x, then there exists a \log_2 infinite f-rainbow.

Double Jumps of Rainbows

Theorem (WW)

Every \emptyset' -recursive \vec{R} admits a low₃ cohesive set.

Then we can reduce the triple jump theorem to:

Theorem (WW, Double Jump Theorem)

If f is a \emptyset' -recursive 2-bounded coloring of pairs s.t.

$$(\forall (x,y))(f(x,y) = \min\{\langle u,y\rangle : f(u,y) = f(x,y)\})$$

and $\lim_{y} f(x, y)$ exists for all x, then there exists a \log_2 infinite f-rainbow.

Double Jump Theorem

The forcing notion

We fix f as in the Double Jump Theorem.

Recall that $\mathcal{F}_{\sigma,X}$ is the set of 2-bounded g of pairs s.t.

$$(\forall (x,y))(g(x,y) = \min\{\langle u,y\rangle : g(u,y) = g(x,y)\})$$

and $\sigma\langle x\rangle$ is a g-rainbow for all $x\in X$.

We build a desired rainbow G by forcing with conditions (σ, X, \vec{g}) s.t. (σ, X) is a Mathias condition with $f \in \mathcal{F}_{\sigma, X}$, \vec{g} is a finite sequence of colorings in $\mathcal{F}_{\sigma, X}$ and $X \oplus \vec{g}$ is low.

$$(au,Y,ec{h}) \leq (\sigma,X,ec{g})$$
 iff $(au,Y) \leq_{M} (\sigma,X)$ and $ec{g} \subseteq ec{h}$.

A \vec{g} -rainbow is a set which is a rainbow for every $g \in \vec{g}$. A condition (σ, X, \vec{g}) is meant to represent the following set:

$$\{G \in (\sigma, X) : G \text{ is a rainbow for } \vec{g}\}$$

Double Jump Theorem

The forcing notion

We fix f as in the Double Jump Theorem.

Recall that $\mathcal{F}_{\sigma,X}$ is the set of 2-bounded g of pairs s.t.

$$(\forall (x,y))(g(x,y)=\min\{\langle u,y\rangle:g(u,y)=g(x,y)\})$$

and $\sigma\langle x\rangle$ is a *g*-rainbow for all $x\in X$.

We build a desired rainbow G by forcing with conditions (σ, X, \vec{g}) s.t. (σ, X) is a Mathias condition with $f \in \mathcal{F}_{\sigma, X}$, \vec{g} is a finite sequence of colorings in $\mathcal{F}_{\sigma, X}$ and $X \oplus \vec{g}$ is low.

$$(au,Y,ec{h}) \leq (\sigma,X,ec{g}) ext{ iff } (au,Y) \leq_M (\sigma,X) ext{ and } ec{g} \subseteq ec{h}.$$

A \vec{g} -rainbow is a set which is a rainbow for every $g \in \vec{g}$. A condition (σ, X, \vec{g}) is meant to represent the following set:

$$\{G \in (\sigma, X) : G \text{ is a rainbow for } \vec{g}\}$$

The forcing notion

We fix f as in the Double Jump Theorem.

Recall that $\mathcal{F}_{\sigma,X}$ is the set of 2-bounded g of pairs s.t.

$$(\forall (x,y))(g(x,y)=\min\{\langle u,y\rangle:g(u,y)=g(x,y)\})$$

and $\sigma\langle x\rangle$ is a g-rainbow for all $x\in X$.

We build a desired rainbow G by forcing with conditions (σ, X, \vec{g}) s.t. (σ, X) is a Mathias condition with $f \in \mathcal{F}_{\sigma, X}$, \vec{g} is a finite sequence of colorings in $\mathcal{F}_{\sigma, X}$ and $X \oplus \vec{g}$ is low.

$$(\tau, Y, \vec{h}) \le (\sigma, X, \vec{g})$$
 iff $(\tau, Y) \le_M (\sigma, X)$ and $\vec{g} \subseteq \vec{h}$.

A \vec{g} -rainbow is a set which is a rainbow for every $g \in \vec{g}$. A condition (σ, X, \vec{g}) is meant to represent the following set:

$$\{G \in (\sigma, X) : G \text{ is a rainbow for } \vec{g}\}$$

The forcing notion

We fix f as in the Double Jump Theorem.

Recall that $\mathcal{F}_{\sigma,X}$ is the set of 2-bounded g of pairs s.t.

$$(\forall (x,y))(g(x,y)=\min\{\langle u,y\rangle:g(u,y)=g(x,y)\})$$

and $\sigma\langle x\rangle$ is a g-rainbow for all $x\in X$.

We build a desired rainbow G by forcing with conditions (σ, X, \vec{g}) s.t. (σ, X) is a Mathias condition with $f \in \mathcal{F}_{\sigma, X}$, \vec{g} is a finite sequence of colorings in $\mathcal{F}_{\sigma, X}$ and $X \oplus \vec{g}$ is low.

$$(\tau, Y, \vec{h}) \leq (\sigma, X, \vec{g}) \text{ iff } (\tau, Y) \leq_M (\sigma, X) \text{ and } \vec{g} \subseteq \vec{h}.$$

A \vec{g} -rainbow is a set which is a rainbow for every $g \in \vec{g}$. A condition (σ, X, \vec{g}) is meant to represent the following set:

$$\{G \in (\sigma, X) : G \text{ is a rainbow for } \vec{g}\}$$

The forcing notion

We fix f as in the Double Jump Theorem.

Recall that $\mathcal{F}_{\sigma,X}$ is the set of 2-bounded g of pairs s.t.

$$(\forall (x,y))(g(x,y)=\min\{\langle u,y\rangle:g(u,y)=g(x,y)\})$$

and $\sigma\langle x\rangle$ is a g-rainbow for all $x\in X$.

We build a desired rainbow G by forcing with conditions (σ, X, \vec{g}) s.t. (σ, X) is a Mathias condition with $f \in \mathcal{F}_{\sigma, X}$, \vec{g} is a finite sequence of colorings in $\mathcal{F}_{\sigma, X}$ and $X \oplus \vec{g}$ is low.

$$(\tau, Y, \vec{h}) \leq (\sigma, X, \vec{g}) \text{ iff } (\tau, Y) \leq_M (\sigma, X) \text{ and } \vec{g} \subseteq \vec{h}.$$

A \vec{g} -rainbow is a set which is a rainbow for every $g \in \vec{g}$. A condition (σ, X, \vec{g}) is meant to represent the following set:

$$\{G \in (\sigma, X) : G \text{ is a rainbow for } \vec{g}\}.$$

Fast growing trees

Let $\mathcal{T}(n, a, b)$ be the set of all finite trees $\mathcal{T} \subset [\omega]^{<\omega}$ s.t.

$$\sigma \in T - [T] \to |\{x : \sigma\langle x\rangle \in T\}| \ge 2^{(n+1)(n+|\sigma|+1)+b+1}(a+|\sigma|+1)^b.$$

Lemma (Fast Growing Lemma)

Let $T \in \mathcal{T}(n+m,a,b)$ and $P \subseteq [T]$ be s.t. $m_T P \ge 2^{-m}$. Then there exists $S \in \mathcal{T}(n,a,b)$ s.t. $[S] \subseteq P$ and $m_T(P-[S]) < 2^{-m}$.

Fast growing trees

Let $\mathcal{T}(n,a,b)$ be the set of all finite trees $\mathcal{T}\subset [\omega]^{<\omega}$ s.t.

$$\sigma \in T - [T] \to |\{x : \sigma\langle x\rangle \in T\}| \ge 2^{(n+1)(n+|\sigma|+1)+b+1}(a+|\sigma|+1)^b.$$

Lemma (Fast Growing Lemma)

Let $T \in \mathcal{T}(n+m,a,b)$ and $P \subseteq [T]$ be s.t. $m_T P \ge 2^{-m}$. Then there exists $S \in \mathcal{T}(n,a,b)$ s.t. $[S] \subseteq P$ and $m_T(P-[S]) < 2^{-m}$.

Fast growing trees of rainbows

Let
$$\mathcal{T}_R^X(n,\sigma,\vec{g})$$
 be the set of $T\in\mathcal{T}(n,|\sigma|,|\vec{g}|)$ s.t.

$$T \subset [X]^{<\omega} \wedge (\forall \tau \in T)(\sigma \tau \text{ is a rainbow for } \vec{g}).$$

Lemma

Suppose that (σ, X) is a Mathias condition, \vec{g} is a finite sequence from $\mathcal{F}_{\sigma, X}$ and $T \in \mathcal{T}_R^X(n, \sigma, \vec{g})$. Then

$$(\forall^{\infty}x \in X)(P_{T}\tau > 1 - 2^{-n})(\sigma\tau\langle x \rangle \text{ is a rainbow for } \vec{g})$$

Hence

$$(P_T \tau > 1 - 2^{-n})(\exists^{\infty} x \in X)(\sigma \tau \langle x \rangle \text{ is a rainbow for } \vec{g})$$

Fast growing trees of rainbows

Let
$$\mathcal{T}_R^X(n,\sigma,\vec{g})$$
 be the set of $T\in\mathcal{T}(n,|\sigma|,|\vec{g}|)$ s.t.

$$T \subset [X]^{<\omega} \wedge (\forall \tau \in T)(\sigma \tau \text{ is a rainbow for } \vec{g}).$$

Lemma

Suppose that (σ, X) is a Mathias condition, \vec{g} is a finite sequence from $\mathcal{F}_{\sigma, X}$ and $T \in \mathcal{T}_{R}^{X}(n, \sigma, \vec{g})$. Then

$$(\forall^{\infty}x\in X)(P_{T} au>1-2^{-n})(\sigma au\langle x
angle$$
 is a rainbow for $ec{g}$).

Hence

$$(P_T \tau > 1 - 2^{-n})(\exists^{\infty} x \in X)(\sigma \tau \langle x \rangle \text{ is a rainbow for } \vec{g}).$$

Deciding one instance of Double jump: motivation

Deciding G'' is equivalent to deciding whether $\Phi_e(G)$ is total for each e. Given a condition $p=(\sigma,X,\vec{g})$, we are to extend it to a condition that decides the totality of $\Phi_e(G)$ for some e.

To decide the totality of $\Phi_e(G)$, we need an answer for: whether there are $q=(\sigma\tau,Y,\vec{g}\,\vec{h})\leq p$ and x s.t. q forces $\Phi_e(G;x)\uparrow$. To get such a q we need τ which can be extended infinite often (i.e., we can get Y infinite). But the existence of such τ is too complicated.

To walk around this complicated question, instead we ask: whether for some x there is a large probability to find a suitable q.

Deciding one instance of Double jump: motivation

Deciding G'' is equivalent to deciding whether $\Phi_e(G)$ is total for each e. Given a condition $p=(\sigma,X,\vec{g})$, we are to extend it to a condition that decides the totality of $\Phi_e(G)$ for some e.

To decide the totality of $\Phi_e(G)$, we need an answer for: whether there are $q=(\sigma\tau,Y,\vec{g}\,\vec{h})\leq p$ and x s.t. q forces $\Phi_e(G;x)\uparrow$. To get such a q, we need τ which can be extended infinite often (i.e., we can get Y infinite). But the existence of such τ is too complicated.

To walk around this complicated question, instead we ask: whether for some x there is a large probability to find a suitable q.

Deciding one instance of Double jump: motivation

Deciding G'' is equivalent to deciding whether $\Phi_e(G)$ is total for each e. Given a condition $p=(\sigma,X,\vec{g})$, we are to extend it to a condition that decides the totality of $\Phi_e(G)$ for some e.

To decide the totality of $\Phi_e(G)$, we need an answer for: whether there are $q=(\sigma\tau,Y,\vec{g}\,\vec{h})\leq p$ and x s.t. q forces $\Phi_e(G;x)\uparrow$. To get such a q, we need τ which can be extended infinite often (i.e., we can get Y infinite). But the existence of such τ is too complicated.

To walk around this complicated question, instead we ask: whether for some x there is a large probability to find a suitable q.

Deciding one instance of Double jump: a test

 $\mathbf{p} = (\sigma, X, \vec{g})$ passes the *e*-test at *y*, if there exist $S \in \mathcal{T}_R^X(n+6, \sigma, f\vec{g})$, m, large c and $\vec{h} \subset \mathcal{F}_{\sigma, X \cap (c, \infty)}$ such that $m \geq n+6$,

$$\forall z \in X \cap (c,\infty) (P_S \tau > 1 - 2^{-d-4}) (\sigma \tau \langle z \rangle \text{ is a } \vec{g} \vec{h} \text{-rainbow})$$

(It is very likely that a leaf of S gives us an extension of p.)

and

$$(P_S\tau \geq 2^{-1})\forall T \in \mathcal{T}_R^{X\cap(c,\infty)}(m+|\tau|,\sigma\tau,\vec{g}\vec{h})(P_T\rho > 2^{-1})\Phi_e(\sigma\tau\rho;x) \uparrow .$$

(Very likely that extending σ by a leaf of S will likely force $\Phi_e(G;x)\uparrow$.)

It is uniformly $(\vec{g} \oplus X)''$ -decidable whether (σ, X, \vec{g}) passes the *e*-test at y, if (σ, X, \vec{g}) has some good property.

Deciding one instance of Double jump: a test

 $\mathbf{p} = (\sigma, X, \vec{g})$ passes the *e*-test at *y*, if there exist $S \in \mathcal{T}_R^X(n+6, \sigma, f\vec{g})$, m, large c and $\vec{h} \subset \mathcal{F}_{\sigma, X \cap (c, \infty)}$ such that $m \geq n+6$,

$$\forall z \in X \cap (c,\infty) (P_S \tau > 1 - 2^{-d-4}) (\sigma \tau \langle z \rangle \text{ is a } \vec{g} \vec{h} \text{-rainbow})$$

(It is very likely that a leaf of S gives us an extension of p.)

and

$$(P_{S}\tau \geq 2^{-1})\forall T \in \mathcal{T}_{R}^{X\cap(c,\infty)}(m+|\tau|,\sigma\tau,\vec{g}\vec{h})(P_{T}\rho > 2^{-1})\Phi_{e}(\sigma\tau\rho;x)\uparrow.$$

(Very likely that extending σ by a leaf of S will likely force $\Phi_e(G; x) \uparrow$.)

It is uniformly $(\vec{g} \oplus X)''$ -decidable whether (σ, X, \vec{g}) passes the *e*-test at y, if (σ, X, \vec{g}) has some good property.

Deciding one instance of Double jump: a test

 $\mathbf{p} = (\sigma, X, \vec{g})$ passes the *e*-test at *y*, if there exist $S \in \mathcal{T}_R^X(n+6, \sigma, f\vec{g})$, m, large c and $\vec{h} \subset \mathcal{F}_{\sigma, X \cap (c, \infty)}$ such that $m \geq n+6$,

$$\forall z \in X \cap (c,\infty) (P_S \tau > 1 - 2^{-d-4}) (\sigma \tau \langle z \rangle \text{ is a } \vec{g} \vec{h} \text{-rainbow})$$

(It is very likely that a leaf of S gives us an extension of p.)

and

$$(P_{S}\tau \geq 2^{-1})\forall T \in \mathcal{T}_{R}^{X\cap(c,\infty)}(m+|\tau|,\sigma\tau,\vec{g}\vec{h})(P_{T}\rho > 2^{-1})\Phi_{e}(\sigma\tau\rho;x)\uparrow.$$

(Very likely that extending σ by a leaf of S will likely force $\Phi_{\rm e}(G;x)\uparrow$.)

It is uniformly $(\vec{g} \oplus X)''$ -decidable whether (σ, X, \vec{g}) passes the *e*-test at y, if (σ, X, \vec{g}) has some good property.

Large conditions

A condition (σ, X, \vec{g}) is (\vec{e}_0, \vec{e}_1) -large at \vec{x} (where $|\vec{e}_0| = |\vec{x}|$) iff there exists a largeness witness (n, d) s.t.

(L1) for all
$$S \in \mathcal{T}_R^X(n, \sigma, \vec{g})$$
, $(P_S \tau > 2^{-1}) \Phi_{\vec{e}_0}(\sigma \tau; \vec{x}) \uparrow$;

(L2) for all
$$S \in \mathcal{T}_R^X(n, \sigma, f\vec{g})$$
, $m \ge n$, x , large c and $\vec{h} \subset \mathcal{F}_{\sigma, X}$, if

$$(\forall y \in Y)(P_S \tau > 1 - 2^{-d})(\sigma \tau \langle y \rangle \text{ is a rainbow for } \vec{g} \vec{h})$$

where $Y = X \cap (c, \infty)$, then

$$(P_S\tau > 2^{-1})(\exists T \in \mathcal{T}_R^Y(m + |\tau|, \sigma\tau, \vec{g}\,\vec{h}))$$
$$(P_T\rho > 2^{-1})(\forall e \in \vec{e}_1)\Phi_e(\sigma\tau\rho; x) \downarrow.$$

If (n, d) is known then being large is a Π_2^0 property.

Large conditions: Intuition for (L1)

(L1) For all
$$S \in \mathcal{T}_R^X(\mathbf{n}, \sigma, \vec{\mathbf{g}})$$
, $(P_S \tau > 2^{-1}) \Phi_{\vec{\mathbf{e}}_0}(\sigma \tau; \vec{\mathbf{x}}) \uparrow;$

 $\Phi_{\vec{e}_0}(\sigma \tau; \vec{x}) \uparrow$: if e is the i-th number of \vec{e}_0 and x is the i-th number of \vec{x} for $i < |\vec{e}_0| = |\vec{x}|$ then $\Phi_e(\sigma \tau; x) \uparrow$.

By the Fast Growing Lemma, this means that for G almost everywhere in (σ, X) if G is a rainbow for \vec{g} then $\Phi_e(G)$ is partial for every $e \in \vec{e}_0$.

Large conditions: Intuition for (L1)

(L1) For all
$$S \in \mathcal{T}_R^X(\mathbf{n}, \sigma, \vec{\mathbf{g}})$$
, $(P_S \tau > 2^{-1}) \Phi_{\vec{\mathbf{e}}_0}(\sigma \tau; \vec{\mathbf{x}}) \uparrow;$

 $\Phi_{\vec{e}_0}(\sigma \tau; \vec{x}) \uparrow$: if e is the i-th number of \vec{e}_0 and x is the i-th number of \vec{x} for $i < |\vec{e}_0| = |\vec{x}|$ then $\Phi_e(\sigma \tau; x) \uparrow$.

By the Fast Growing Lemma, this means that for G almost everywhere in (σ, X) if G is a rainbow for \vec{g} then $\Phi_e(G)$ is partial for every $e \in \vec{e}_0$.

Large conditions: Intuition for (L1)

(L1) For all
$$S \in \mathcal{T}_R^X(\mathbf{n}, \sigma, \vec{\mathbf{g}})$$
, $(P_S \tau > 2^{-1}) \Phi_{\vec{\mathbf{e}}_0}(\sigma \tau; \vec{\mathbf{x}}) \uparrow;$

 $\Phi_{\vec{e}_0}(\sigma \tau; \vec{x}) \uparrow$: if e is the i-th number of \vec{e}_0 and x is the i-th number of \vec{x} for $i < |\vec{e}_0| = |\vec{x}|$ then $\Phi_e(\sigma \tau; x) \uparrow$.

By the Fast Growing Lemma, this means that for G almost everywhere in (σ, X) if G is a rainbow for \vec{g} then $\Phi_e(G)$ is partial for every $e \in \vec{e}_0$.

Large conditions: Intuition for (L1)

(L1) For all
$$S \in \mathcal{T}^X_R(\mathbf{n}, \sigma, \vec{\mathbf{g}})$$
, $(P_S \tau > 2^{-1}) \Phi_{\vec{\mathbf{e}}_0}(\sigma \tau; \vec{\mathbf{x}}) \uparrow;$

 $\Phi_{\vec{e}_0}(\sigma \tau; \vec{x}) \uparrow$: if e is the i-th number of \vec{e}_0 and x is the i-th number of \vec{x} for $i < |\vec{e}_0| = |\vec{x}|$ then $\Phi_e(\sigma \tau; x) \uparrow$.

By the Fast Growing Lemma, this means that for G almost everywhere in (σ, X) if G is a rainbow for \vec{g} then $\Phi_e(G)$ is partial for every $e \in \vec{e}_0$.

Large conditions: Intuition for (L2)

(L2) for all
$$S \in \mathcal{T}_R^X(n,\sigma,f\vec{g}), \ m \geq n, \ x, \ \text{large } c \ \text{and} \ \vec{h} \subset \mathcal{F}_{\sigma,X}, \ \text{if}$$

$$(\forall y \in Y)(P_S\tau > 1 - 2^{-d})(\sigma\tau\langle y\rangle \ \text{is a rainbow for} \ \vec{g}\vec{h})$$
 where $Y = X \cap (c,\infty)$, then
$$(P_S\tau > 2^{-1})(\exists T \in \mathcal{T}_R^Y(m+|\tau|,\sigma\tau,\vec{g}\vec{h}))(P_T\rho > 2^{-1})(\forall e \in \vec{e}_1)\Phi_e(\sigma\tau\rho;x) \downarrow.$$

The first part means that: for a large probability, $\tau \in [S]$ and \vec{h} give us something like an extension $(\sigma\tau, Y, \vec{g}\vec{h})$ of (σ, X, \vec{g}) .

The second part means that: for a large probability, $\sigma\tau$ admits many extensions $\sigma\tau\rho$ s.t. $\sigma\tau\rho$ is a \vec{g} -rainbow and $\Phi_{e}(\sigma\tau\rho;\chi)\downarrow$.

Large conditions: Intuition for (L2)

(L2) for all
$$S \in \mathcal{T}_R^X(n,\sigma,f\vec{g}), \ m \geq n, \ x, \ \text{large } c \ \text{and} \ \vec{h} \subset \mathcal{F}_{\sigma,X}, \ \text{if}$$

$$(\forall y \in Y)(P_S\tau > 1 - 2^{-d})(\sigma\tau\langle y\rangle \ \text{is a rainbow for} \ \vec{g}\vec{h})$$
 where $Y = X \cap (c,\infty)$, then
$$(P_S\tau > 2^{-1})(\exists T \in \mathcal{T}_R^Y(m+|\tau|,\sigma\tau,\vec{g}\vec{h}))(P_T\rho > 2^{-1})(\forall e \in \vec{e}_1)\Phi_e(\sigma\tau\rho;x) \downarrow.$$

The first part means that: for a large probability, $\tau \in [S]$ and \vec{h} give us something like an extension $(\sigma\tau, Y, \vec{g}\vec{h})$ of (σ, X, \vec{g}) .

The second part means that: for a large probability, $\sigma\tau$ admits many extensions $\sigma\tau\rho$ s.t. $\sigma\tau\rho$ is a \vec{g} -rainbow and $\Phi_e(\sigma\tau\rho;\chi) \downarrow$.

Large conditions: Intuition for (L2)

(L2) for all
$$S \in \mathcal{T}_R^X(n,\sigma,f\vec{g}), \ m \geq n, \ x, \ \text{large } c \ \text{and} \ \vec{h} \subset \mathcal{F}_{\sigma,X}, \ \text{if}$$

$$(\forall y \in Y)(P_S\tau > 1 - 2^{-d})(\sigma\tau\langle y\rangle \ \text{is a rainbow for} \ \vec{g}\vec{h})$$
 where $Y = X \cap (c,\infty)$, then
$$(P_S\tau > 2^{-1})(\exists T \in \mathcal{T}_R^Y(m+|\tau|,\sigma\tau,\vec{g}\vec{h}))(P_T\rho > 2^{-1})(\forall e \in \vec{e}_1)\Phi_e(\sigma\tau\rho;x) \downarrow.$$

The first part means that: for a large probability, $\tau \in [S]$ and \vec{h} give us something like an extension $(\sigma\tau, Y, \vec{g}\vec{h})$ of (σ, X, \vec{g}) .

The second part means that: for a large probability, $\sigma \tau$ admits many extensions $\sigma \tau \rho$ s.t. $\sigma \tau \rho$ is a \vec{g} -rainbow and $\Phi_{e}(\sigma \tau \rho; x) \downarrow$.

Large conditions: Intuition for (L2)

(L2) for all
$$S \in \mathcal{T}_R^X(n,\sigma,f\vec{g}), \ m \geq n, \ x$$
, large c and $\vec{h} \subset \mathcal{F}_{\sigma,X}$, if
$$(\forall y \in Y)(P_S\tau > 1 - 2^{-d})(\sigma\tau\langle y\rangle \text{ is a rainbow for } \vec{g}\vec{h})$$
 where $Y = X \cap (c,\infty)$, then

$$(P_S\tau > 2^{-1})(\exists T \in \mathcal{T}_R^Y(m+|\tau|,\sigma\tau,\vec{g}\,\vec{h}))(P_T\rho > 2^{-1})(\forall e \in \vec{e}_1)\Phi_e(\sigma\tau\rho;x) \downarrow.$$

The first part means that: for a large probability, $\tau \in [S]$ and \vec{h} give us something like an extension $(\sigma\tau, Y, \vec{g}\vec{h})$ of (σ, X, \vec{g}) .

The second part means that: for a large probability, $\sigma\tau$ admits many extensions $\sigma\tau\rho$ s.t. $\sigma\tau\rho$ is a \vec{g} -rainbow and $\Phi_e(\sigma\tau\rho;x)\downarrow$.

Approximating Π_2^0 properties

Lemma

If a condition $p=(\sigma,X,\vec{g})$ is (\vec{e}_0,\vec{e}_1) -large at \vec{x} , then for every x there exists $q=(\tau,Y,\vec{g})\leq p$ s.t. q is (\vec{e}_0,\vec{e}_1) -large at \vec{x} and $\Phi_e(\tau;x)\downarrow$ for all $e\in\vec{e}_1$.

Moreover, τ and a lowness index of $\vec{g} \oplus Y$ can be obtained from $(\sigma, x, \vec{e}_0, \vec{e}_1, \vec{x})$ and a lowness index of $\vec{g} \oplus X$, in a uniformly \emptyset'' -recursive way.

Deciding new Σ_2^0/Π_2^0 properties

Lemma

Let (σ, X, \vec{g}) be (\vec{e}_0, \vec{e}_1) -large at \vec{x} . For each e, one of the followings holds:

- (1) there exist y and $q = (\tau, Y, \vec{h}) \leq (\sigma, X, \vec{g})$ s.t. q is $(\vec{e}_0 \langle e \rangle, \vec{e}_1)$ -large at $\vec{x} \langle y \rangle$; (so a new Σ_2^0 property is forced)
- (2) (σ, X, \vec{g}) is $(\vec{e}_0, \vec{e}_1 \langle e \rangle)$ -large at \vec{x} . (so a new Π_2^0 property is forced)

Moreover, it is \emptyset'' -decidable whether (1) or (2) holds; and in (1), τ and a lowness index of $\vec{h} \oplus Y$ can be obtained from $(\sigma, \vec{e}_0, \vec{e}_1, \vec{x}, e, y)$ and a lowness index of $\vec{g} \oplus X$, in a uniformly \emptyset'' -recursive manner.

The effectiveness here is by the effectiveness of the test that we introduced before.

- 1. It is shown that RRT_2^r is always strictly weaker than ACA_0 . Do RRT_2^r 's for positive r's give us a proper hierarchy of combinatorial principles below ACA_0 ?
- Recent development shows that there are many other consequences (FS^r, TS^r) of RT^r₂ strictly weaker than ACA₀. Do they give rise to some proper hierarchies below ACA₀?
- 3. If f is a recursive 2-bounded coloring of $[\omega]^r$, does f admit a low infinite rainbow? (True for r = 2, 3)
- 4. Does every $\emptyset^{(n)}$ -recursive \bar{R} admit a low_{n+2} cohesive set? (True for n=0,1)
- 5. Does every $\emptyset^{(n)}$ -recursive finite partition of ω admit a low_{n+1} infinite homogeneous set? (True for n=0,1)

- 1. It is shown that RRT_2^r is always strictly weaker than ACA_0 . Do RRT_2^r 's for positive r's give us a proper hierarchy of combinatorial principles below ACA_0 ?
- Recent development shows that there are many other consequences (FS^r, TS^r) of RT^r₂ strictly weaker than ACA₀. Do they give rise to some proper hierarchies below ACA₀?
- 3. If f is a recursive 2-bounded coloring of $[\omega]^r$, does f admit a low infinite rainbow? (True for r = 2, 3)
- 4. Does every $\emptyset^{(n)}$ -recursive \vec{R} admit a low_{n+2} cohesive set? (True for n=0,1)
- 5. Does every $\emptyset^{(n)}$ -recursive finite partition of ω admit a low_{n+1} infinite homogeneous set? (True for n=0,1)

- 1. It is shown that RRT_2^r is always strictly weaker than ACA_0 . Do RRT_2^r 's for positive r's give us a proper hierarchy of combinatorial principles below ACA_0 ?
- Recent development shows that there are many other consequences (FS', TS') of RT'₂ strictly weaker than ACA₀. Do they give rise to some proper hierarchies below ACA₀?
- 3. If f is a recursive 2-bounded coloring of $[\omega]^r$, does f admit a low infinite rainbow? (True for r = 2, 3)
- 4. Does every $\emptyset^{(n)}$ -recursive \bar{R} admit a low_{n+2} cohesive set? (True for n=0,1)
- 5. Does every $\emptyset^{(n)}$ -recursive finite partition of ω admit a low_{n+1} infinite homogeneous set? (True for n=0,1)

- 1. It is shown that RRT_2^r is always strictly weaker than ACA_0 . Do RRT_2^r 's for positive r's give us a proper hierarchy of combinatorial principles below ACA_0 ?
- Recent development shows that there are many other consequences (FS^r, TS^r) of RT^r₂ strictly weaker than ACA₀. Do they give rise to some proper hierarchies below ACA₀?
- 3. If f is a recursive 2-bounded coloring of $[\omega]^r$, does f admit a low infinite rainbow? (True for r = 2, 3)
- 4. Does every $\emptyset^{(n)}$ -recursive \vec{R} admit a low $_{n+2}$ cohesive set? (True for n=0,1)
- 5. Does every $\emptyset^{(n)}$ -recursive finite partition of ω admit a low_{n+1} infinite homogeneous set? (True for n=0,1)

- 1. It is shown that RRT_2^r is always strictly weaker than ACA_0 . Do RRT_2^r 's for positive r's give us a proper hierarchy of combinatorial principles below ACA_0 ?
- Recent development shows that there are many other consequences (FS^r, TS^r) of RT^r₂ strictly weaker than ACA₀. Do they give rise to some proper hierarchies below ACA₀?
- 3. If f is a recursive 2-bounded coloring of $[\omega]^r$, does f admit a low infinite rainbow? (True for r = 2, 3)
- 4. Does every $\emptyset^{(n)}$ -recursive \vec{R} admit a low $_{n+2}$ cohesive set? (True for n=0,1)
- 5. Does every $\emptyset^{(n)}$ -recursive finite partition of ω admit a low_{n+1} infinite homogeneous set? (True for n=0,1)

Mathias forcing and randomness

Theorem (WW)

If \vec{R} is a recursive sequence admitting no recursive cohesive set, then \vec{R} admits no cohesive set recursive in sufficiently random (Cohen generic) oracles.

Roughly, Mathias forcing and random (Cohen) forcing are incompatible.

Question

To develop an effective measure theory (of Baire space) compatible with Mathias forcing.

Mathias forcing and randomness

Theorem (WW)

If \vec{R} is a recursive sequence admitting no recursive cohesive set, then \vec{R} admits no cohesive set recursive in sufficiently random (Cohen generic) oracles.

Roughly, Mathias forcing and random (Cohen) forcing are incompatible.

Question

To develop an effective measure theory (of Baire space) compatible with Mathias forcing.

Thanks!