Language Technology http://cs.lth.se/edan20/ Dense Representations

Pierre Nugues

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

September 14 and 21, 2023

Dimension Reduction

- One-hot encoding with TFIDF can produce very long vectors: Imagine a vocabulary one million words per language with 100 languages.
- A solution is to produce dense vectors using a dimension reduction.
- Such vectors are also called word embeddings
- The reduction is similar to a principal component analysis (PCA) or a singular value decomposition (SVD)
- The embedding of a word can be constant (static) or depend on the context (contextual)

Creating word embeddings

- We can derive word embeddings from corpora. Their construction is then similar to that of language models;
- We can also introduce an embedding layer as input to a neural network. The embedding parameters are then trainable.
- We can finally pretrain embeddings with a corpus and fine-tune them on an application.

A Data Set: Salammbô

A corpus is a collection – a body – of texts.

Letter Counts

Characters in Salammbô: A small dataset to explain PCA

Chapter	French		English	
	# characters	# A	# characters	# A
Chapter 1	36,961	2,503	35,680	2,217
Chapter 2	43,621	2,992	42,514	2,761
Chapter 3	15,694	1,042	15,162	990
Chapter 4	36,231	2,487	35,298	2,274
Chapter 5	29,945	2,014	29,800	1,865
Chapter 6	40,588	2,805	40,255	2,606
Chapter 7	75,255	5,062	74,532	4,805
Chapter 8	37,709	2,643	37,464	2,396
Chapter 9	30,899	2,126	31,030	1,993
Chapter 10	25,486	1,784	24,843	1,627
Chapter 11	37,497	2,641	36,172	2,375
Chapter 12	40,398	2,766	39,552	2,560
Chapter 13	74,105	5,047	72,545	4,597
Chapter 14	76,725	5,312	75,352	4,871
Chapter 15	18,317	1,215	18,031	1,119

Data set: https://github.com/pnugues/ilppp/tree/master programs/ch04/salammbo

Representing Documents with Bags of Characters

Character counts per chapter, where the fr and en suffixes designate the language, either French or English

Ch.	'a'	'Ъ'	.5.	.q.	'e'	Ŧ	'9'	'h'	7	- 7	'k'	- 4	'm'	'n'	'0'	'p'	'q'	- 7	151	181	101	V	'w'	×	·V	'z'	-31	'8'
01 fr	2503	365	857	1151	4312	264	349	295	1945	65	- 4	1946	726	1896	1372	789	248	1948	2996	1938	1792	414	0	129	94	20	128	36
02 fr	2992	391	1006	1388	4993	319	360	350	2345	81	6	2128	823	2308	1560	977	281	2376	3454	2411	2069	499	0	175	89	23	136	50
03 fr	1042	152	326	489	1785	136	122	126	784	41	7	816	397	778	612	315	102	792	1174	856	707	147	0	42	31	7	39	9
04 fr	2487	303	864	1137	4158	314	331	287	2028	57	3	1796	722	1958	1318	773	274	2000	2792	2031	1734	422	0	138	81	27	110	43
05 fr	2014	268	645	949	3394	223	215	242	1617	67	3	1513	651	1547	1053	672	166	1601	2192	1736	1396	315	1	83	67	18	90	67
06 fr	2805	368	910	1266	4535	332	384	378	2219	97	3	1900	841	2179	1569	868	285	2205	3065	2293	1895	453	0	151	80	39	131	42
07 fr	5062	706	1770	2398	8512	623	622	620	4018	126	19	3726	1596	3851	2823	1532	468	4015	5634	4116	3518	844	0	272	148	71	246	50
08 fr	2643	325	869	1085	4229	307	317	359	2102	85	4	1857	811	2041	1367	833	239	2132	2814	2134	1788	437	0	135	64	30	130	43
09 fr	2126	289	771	920	3599	278	289	279	1805	52	6	1499	619	1711	1130	651	187	1719	2404	1763	1448	348	0	119	58	20	90	24
10 fr	1784	249	546	805	3002	179	202	215	1319	60	5	1462	598	1246	922	557	172	1242	1769	1423	1191	270	0	65	61	11	73	18
11_fr	2641	381	817	1078	4306	263	277	330	1985	114	0	1886	900	1966	1356	763	230	1912	2564	2218	1737	425	0	114	61	25	101	40
12_fr	2766	373	935	1237	4618	329	350	349	2273	65	2	1955	812	2285	1419	865	272	2276	3131	2274	1923	455	0	149	98	37	129	33
13_fr	5047	725	1730	2273	8678	648	566	642	3940	140	22	3746	1597	3984	2736	1550	425	4081	5599	4387	3480	767	0	288	119	41	209	55
14 fr	5312	689	1754	2149	8870	628	630	673	4278	143	2	3780	1610	4255	2713	1599	512	4271	5770	4467	3697	914	0	283	145	41	224	75
15 fr	1215	173	402	582	2195	150	134	148	969	27	- 6	950	387	906	697	417	103	985	1395	1037	893	206	0	63	36	3	48	20
01_en	2217	451	729	1316	3967	596	662	2060	1823	22	200	1204	656	1851	1897	525	19	1764	1942	2547	704	258	653	29	401	18	0	0
02_en	2761	551	777	1548	4543	685	769	2530	2163	13	284	1319	829	2218	2237	606	21	2019	2411	3083	861	295	769	37	475	31	0	0
03_en	990	183	271	557	1570	279	253	875	783	4	82	520	333	816	828	194	13	711	864	1048	298	94	254	8	145	15	0	0
04_en	2274	454	736	1315	3814	595	559	1978	1835	22	198	1073	690	1771	1865	514	33	1726	1918	2704	745	245	663	60	467	19	0	0
05_en	1865	400	553	1135	3210	515	525	1693	1482	7	153	949	571	1468	1586	517	17	1357	1646	2178	663	194	568	26	330	33	0	0
06_en	2606	518	797	1509	4237	687	669	2254	2097	26	216	1239	763	2174	2231	613	25	1931	2192	2955	899	277	733	49	464	37	0	0
07_en	4805	913	1521	2681	7834	1366	1163	4379	3838	42	416	2434	1461	3816	4091	1040	39	3674	4060	5369	1552	465	1332	74	843	52	0	0
08 en	2396	431	702	1416	4014	621	624	2171	2011	24	216	1152	748	2085	1947	527	33	1915	1966	2765	789	266	695	65	379	24	0	0
09_en	1993	408	653	1096	3373	575	517	1766	1648	16	146	861	629	1728	1698	442	20	1561	1626	2442	683	208	560	25	328	18		
10_en	1627	359	451 643	933	2690	477	409 644	1475	1196	.7	131	789	506 799	1266	1369	325	23	1211	1344	1759	502	246	410	31	255	20	0	0
11 en 12 en	2375 2560	437	643 757	1364 1566	3790 4331	610 677	650	2217 2348	1830 2033	16	217 234	1122 1102	799 746	1833 2125	1948 2105	486 581	23 32	1720 1939	1945 2152	2424 3046	767 750	246 278	632 721	20 35	457 418	39 40	0	0
		489			7963					28	432								3894			437		35		40		
13_en	4597	987 948	1462	2689		1254	1201	4278	3634	39 36		2281	1493	3774	3911	1099	49 36	3577	3894	5540	1379	437 539	1374	90	673	49	0	0
14 en 15 en	4871 1119	229	1439	683	8179 1994	1335	281	4534 1108	3829 912	30	427 112	2218 579	1534 351	924	3989 1004	1019	30	863	997	5858 1330	1490 310	108	1377	14	856 150	49	0	0
15 en	1119	229	335	083	1994	323	281	1108	912	y	112	5/9	351	924	1004	305	9	803	997	1330	310	108	330	14	150	9	U	U

Each chapter (document) is modeled by a vector of 40 character

Transposing the Matrix: Character Counts

Character counts per chapter in French, left part, and English, right part

Each character is modeled by a vector of chapters.

Singular Value Decomposition

There are as many as 40 characters: the 26 unaccented letters from a to z and the 14 French accented letters: à, â, é, è, è, ë, etc.

Singular value decomposition (SVD) reduces these dimensions, while keeping the resulting vectors semantically close

X is the $m \times n$ matrix of the letter counts per chapter, in our case, m =30 and n = 40.

We can rewrite X as:

$$X = U\Sigma V^{\mathsf{T}}$$
,

where

- U is a matrix of dimensions $m \times m$.
- Σ , a diagonal matrix of dimensions $m \times n$, and
- V. a matrix of dimensions $n \times n$

The diagonal terms of Σ are called the **singular values** and are traditionally arranged by decreasing value.

To reduce the dimensions, we keep the highest values and set the zero.

Code Example

Jupyter Notebook ch09_PCA.ipynb on the GitHub course repository

Vector Space Model

With the vector space model, we represent:

- Documents in a space of words (the words they contain) or
- Words in a space of documents (the documents that contain them).

Here, the rows are the words in the corpus, and the columns, the documents.

Words\D#	D_1	D_2	D_3	 D_n
w_1	$C(w_1, D_1)$	$C(w_1, D_2)$	$C(w_1, D_3)$	 $C(w_1, D_n)$
<i>W</i> ₂	$C(w_2, D_1)$	$C(w_2, D_2)$	$C(w_2, D_3)$	 $C(w_2, D_n)$
<i>W</i> ₃	$C(w_3, D_1)$	$C(w_3, D_2)$	$C(w_3, D_3)$	 $C(w_3, D_n)$
Wm	$C(w_m, D_1)$	$C(w_m, D_2)$	$C(w_m, D_3)$	 $C(w_m, D_n)$

 $C(w_i, D_j)$ can be Boolean values, counts, $tf \times idf$, or a metric similar to $tf \times idf$ as in **latent semantic indexing**.

We can extend singular value decomposition from characters to

Word Embeddings

A PCA applied to this matrix will result in dense vectors representing the words.

Transposing the matrix, we represent documents with dense vectors We compute the word embeddings with a singular value decomposition, where we truncate the matrix $\mathbf{U}\boldsymbol{\Sigma}$ to 50, 100, 300, or 500 dimensions. The word embeddings are the rows of this matrix.

Word Similarity

Contrary to one-hot encoder words, we can measure the similarity of two dense vectors \mathbf{u} and \mathbf{v} .

We usually measure the similarity between two embeddings ${\bf u}$ and ${\bf v}$ with the cosine similarity:

$$\cos(\mathbf{u},\mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||},$$

ranging from -1 (most dissimilar) to 1 (most similar) or with the cosine distance ranging from 0 (closest) to 2 (most distant):

$$1 - \cos(\mathbf{u}, \mathbf{v}) = 1 - \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||}.$$

Word2vec Embeddings

word2vec is another kind of embeddings that comes in two forms:

CBOW and skipgrams.

CBOW uses a neural network architecture to predict a word given its surrounding context

The set up is similar to fill-the-missing-word questionnaires.

The missing word is called the focus word

CBOW embeddings corresponds to neural network parameters

The embeddings are trained on a corpus

Word2vec Example

Using contexts of five words and training sentences such as: Sing, O goddess, the anger of Achilles son of Peleus,

we generate a training set of contexts deprived of their focus word (X) and the focus word to predict (y):

$$X = \begin{bmatrix} sing & o & the & anger \\ o & goddess & anger & of \\ goddess & the & of & achilles \\ the & anger & achilles & son \\ anger & of & son & of \\ of & achilles & of & peleus \end{bmatrix}; \mathbf{y} = \begin{bmatrix} goddess \\ the \\ anger \\ of \\ achilles \\ son \end{bmatrix}$$

CBOW Architecture

We train a neural network to get the CBOW embeddings: N dimension of the embeddings, V size of the vocabulary. First matrix (V, N), second (N, V).

Examples

Words closest to *he*, *she*, *London*, *table*, and *Monday* with CBOW embeddings trained on a corpus of Dickens novels:

```
he ['she', 'they', 'it', 'be', 'that']
she ['he', 'they', 'it', 'i', 'be']
london ['paris', 'england', 'town', 'india', 'dover']
table ['desk', 'counter', 'box', 'sofa', 'ground']
monday ['sunday', 'thursday', 'saturday', 'noon', 'wednesday']
```


Glove Embeddings

There are many kinds of word embeddings: Global vectors (GloVe) is one of them

We can replace documents by a context of a few words to the left and to the right of the focus word: w_i .

A context C_j is then defined by a window of 2K words centered on the word:

Word: w_i ,

Context: $w_{i-K}, w_{i-K+1}, ..., w_{i-1}, w_{i+1}, ..., w_{i+K-1}, w_{i+K}$

where the context representation uses a bag of words.

We can even reduce the context to a single word to the left or to the right of w_i and use bigrams.

Glove Embeddings

We store counts of word pairs (w_i, w_j) in a matrix:

Words	<i>W</i> ₁	W ₂	W3	 Wn
w_1	X_{11}	X_{12}	X_{13}	 X_{1n}
W_2	X_{21}	X_{22}	X_{23}	 X_{2n}
<i>W</i> 3	$X_{11} \ X_{21} \ X_{31}$	X_{32}	X_{33}	 X_{3n}
Wn	X_{n1}	X_{n2}	X_{n3}	 X_{nn}

 X_{ij} is the number of times word w_j occurs in the context of word w_i , for instance 10 words to the left and 10 to the right

To train the embeddings, we minimize the loss (simplified):

$$J = \sum_{i,j=1}^{V} (\mathbf{w}_i \cdot \mathbf{w}_j - \log X_{ij})^2,$$

where \mathbf{w}_i , resp. \mathbf{w}_i , is the embedding vector of word of index

Using Word Embeddings

We can use word embeddings to replace one-hot vectors as they will make the representation much more compact.

In a text categorization task, for instance, you would use a window of words (for instance the 200 first words of the document), where each word would be represented by its embedding.

The input layer is then called an **embedding layer.**

The embeddings are trainable parameters that you can initialize pre-trained embeddings or random values.

Embedding Layer in PyTorch

PyTorch has an embedding layer. This is just a lookup table. From PyTorch documentation:

```
embedding = nn.Embedding(10, 3)
input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])
embedding(input)
embedding = nn.Embedding(10, 3, padding_idx=0)
input = torch.LongTensor([[0, 2, 0, 5]])
embedding(input)
Loading pretrained embeddings:
embeddings = nn.Embedding.from_pretrained(
  torch.FloatTensor(embedding_matrix),
  freeze=False.
  padding_idx=0)
```

See notebook ch09_pytorch_embeddings.ipynb_

Popular Word Embeddings

Embeddings from large corpora are obtained with iterative techniques Some popular embedding algorithms with open source programs:

word2vec: https://github.com/tmikolov/word2vec

GloVe: Global Vectors for Word Representation

https://nlp.stanford.edu/projects/glove/

fastText: https://fasttext.cc/

To derive word embeddings, you will have to apply these programs on a very large corpus

Embeddings for many languages are also publicly available. You just download them

gensim is a Python library to create word embeddings from a corpus.

https://radimrehurek.com/gensim/index.html