Tim Cosgrove

Outlin

ect Overv

Motivation

Backgroui

First Order Logic Terminology The Beagle Theorem Prover Term Indexing

Fingerprint Indexing

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Results

Evaluation Metrics Beagle Comparisons Sample Position

Conclusion

Term Indexing for the Beagle Theorem Prover

Tim Cosgrove

COMP4006 Honours Research Project

Research School of Computer Science, Australian National University

u4843619@anu.edu.au

Supervisor: Peter Baumgartner

October 15, 2013

Tim Cosgrove

Outline

Motivation

Motivation

First Order Logic Terminology

The Beagle

Term Indexing Fingerprint Indexing

Implementati

Implementing Fingerprint Indexing Indexing Applications

Beag

Resul

Evaluation Metrics Beagle Comparisons

Conclusio

1 Project Overview Motivation

2 Background

First Order Logic Terminology The Beagle Theorem Prover Term Indexing Fingerprint Indexing

3 Implementation

Implementing Fingerprint Indexing Indexing Applications
Tailoring to Beagle

4 Results

Evaluation Metrics Beagle Comparisons Sample Position Comparisons

6 Conclusion

Tim Cosgrove

Outlin

rainet Ovany

Motivation

Backgroui

First Order Logic Terminology The Beagle Theorem Prover Term Indexing

Indexing

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Results

Evaluation Metrics Beagle Comparisons Sample Position Comparisons

Conclusion

The Beagle Theorem Prover

 Beagle is a First-Order-Logic resolution theorem prover with equality, built to show off the capabilities of the Hierarchic Superposition with Weak Abstraction Calculus.

Tim Cosgrove

Outlin

roject Ovenzi

Motivation

Backgrou

First Order Log Terminology The Beagle Theorem Prove Term Indexing Fingerprint

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Results

Evaluation Metrics Beagle Comparisons Sample Positio Comparisons

Conclusion

The Beagle Theorem Prover

- Beagle is a First-Order-Logic resolution theorem prover with equality, built to show off the capabilities of the Hierarchic Superposition with Weak Abstraction Calculus.
- This calculus is capable of *hierarchic reasoning* by incorporating a *background prover*.
- Background provers act as a black box which can instantly prove known facts. For example integer arithmetic.

Tim Cosgrove

Outlin

roject Overvi

Motivation

Backgrou

First Order Logic Terminology The Beagle Theorem Prover Term Indexing Fingerprint

Implementatio

Implementing Fingerprint Indexing Indexing Applications Tailoring to Beagle

Resul

Metrics
Beagle
Comparisons
Sample Positio
Comparisons

Conclusion

The Beagle Theorem Prover

- Beagle is a First-Order-Logic resolution theorem prover with equality, built to show off the capabilities of the Hierarchic Superposition with Weak Abstraction Calculus.
- This calculus is capable of *hierarchic reasoning* by incorporating a *background prover*.
- Background provers act as a black box which can instantly prove known facts. For example integer arithmetic.
- The calculus is carefully constructed with a process known as weak abstraction in order to ensure consistency and completeness.

Tim Cosgrove

Outline

Project Overv

Motivation

Backgrou

First Order Logic Terminology The Beagle Theorem Prover

Theorem Pro Term Indexin Fingerprint Indexing

Implementatio

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics Beagle Comparisons Sample Posit

Conclusion

Extending Beagle

- Beagle has some major shortcomings which prevent it being more than a proof of concept.
- In particular, it lacks an efficient manner of locating terms for inference.

Tim Cosgrove

Outline

Project Overvi

Motivation

First Order Logic

Terminology
The Beagle
Theorem Pro
Term Indexing
Fingerprint
Indexing

Implementation

Implementing
Fingerprint
Indexing
Indexing
Applications
Tailoring to

Results

Evaluation Metrics Beagle Comparisons Sample Positio

Conclusion

Extending Beagle

- Beagle has some major shortcomings which prevent it being more than a proof of concept.
- In particular, it lacks an efficient manner of locating terms for inference.
- Enter 'Term Indexing', a method for efficiently managing and collecting these terms.

Tim Cosgrove

Outline

Project Overvi Motivation

Backgrou

First Order Logic Terminology The Beagle Theorem Prover Term Indexing Fingerprint Indexing

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to Beagle

Resul

Metrics
Beagle
Comparisons
Sample Position
Comparisons

Conclusion

Extending Beagle

- Beagle has some major shortcomings which prevent it being more than a proof of concept.
- In particular, it lacks an efficient manner of locating terms for inference.
- Enter 'Term Indexing', a method for efficiently managing and collecting these terms.
- Research Questions:
 - How can Term Indexing (in particular Fingerprint Indexing) be implemented and applied to Beagle?
 - How can Fingerprint Indexing be improved; generally and with respect to Beagle's specific calculus?
 - What sort of improvement will this implementation yield in the prover?

Tim Cosgrove

First Order Logic

Terminology

Indexing

Implementing

Tailoring to

Evaluation

Terminology Used in this Presentation

• Position: List of integers indicating a precise subterm. s[u]refers to a term s with a subterm u.

Tim Cosgrove

Outline

Project Over

Rackgroup

First Order Logic

Terminology

The Beagle Theorem F

Term Indexi

Fingerprint Indexing

Implementatio

Implementing Fingerprint Indexing

Applications
Tailoring to

Results

Evaluation Metrics

Beagle Comparison

Sample Position

Conclusion

Terminology Used in this Presentation

- Position: List of integers indicating a precise subterm. s[u] refers to a term s with a subterm u.
- Substitutions:
 - s is 'unifiable' with t: $\sigma s = \sigma t$
 - s 'subsumes' t : $\sigma s = t$

Tim Cosgrove

Outlin

Project Overvi

Motivation

Backgroun

First Order Logic Terminology

The Beagle Theorem Prover

Term Indexir Fingerprint Indexing

Implementation

Implementing Fingerprint Indexing

Indexing Applications Tailoring to

Results

Evaluatio Metrics

Comparisons
Sample Position

Conclusion

The Superposition Calculus

Normal Superposition rule

Positive Superposition

$$\frac{I \approx r \lor C \qquad s[u] \approx t \lor D}{(s[r] \approx t \lor C \lor D)\sigma}$$

Where (i) $\sigma = \text{mgu } (I, u)$, and (ii) u is not a variable.

Tim Cosgrove

Outlin

Project Overv Motivation

First Order Logic

The Beagle Theorem Prover Term Indexing

Term Indexir Fingerprint Indexing

Implementati

Fingerprint Indexing Indexing

Application Tailoring to

D 1

Evaluation Metrics

Comparisons
Sample Positi

Sample Position Comparisons

Conclusion

The Hierarchic Superposition with Weak Abstraction Calculus

 Extension of the Superposition Calculus to accommodate hierarchic reasoning.

Positive Superposition

$$\frac{I \approx r \lor C \qquad s[u] \approx t \lor D}{\mathsf{abstr}((s[r] \approx t \lor C \lor D)\sigma)}$$

Where (i) $\sigma = \text{simple mgu } (I, u)$,

- (ii) u is not a variable,
- (iii) $r\sigma \times l\sigma$.
- (111) 10 2 10
- (iv) $t\sigma \not\succeq s\sigma$,
- (v) / and u are not pure background terms,
- (vi) $(l \approx r)\sigma$ is strictly maximal in $(l \approx r \lor C)\sigma$,
- and (vii) $(s \approx t)\sigma$ is strictly maximal in $(s \approx t \vee D)\sigma$.

Tim Cosgrove

Outline

Project Overvie

Motivation

Backgroui

First Order Logic Terminology The Beagle

Term Indexing Fingerprint

Fingerprint Indexing

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics Beagle Comparisons Sample Position

Conclusion

Term Indexing Techniques

 Term indexers aim to collect all FOL terms which potentially match a 'query' term.

Tim Cosgrove

Outlin

Project Overvi

Backgroun

First Order Logic Terminology The Beagle Theorem Prover

Term Indexing Fingerprint Indexing

Indexing

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Results

Evaluation Metrics Beagle Comparisons Sample Position Comparisons

Conclusion

Term Indexing Techniques

- Term indexers aim to collect all FOL terms which potentially match a 'query' term.
- Top-Symbol Hashing.
- Discrimination Trees.
- Path Indexing.

Tim Cosgrove

Outlin

Project Overvi

Motivation

First Order Logic Terminology The Beagle

Term Indexing

Indexing

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Results

Evaluation Metrics Beagle Comparisons Sample Position

Conclusion

Fingerprint Indexing

• Maintain a collection of *fingerprints* for terms.

Tim Cosgrove

Outline

Project Overvi

Motivation

First Order Logic Terminology The Beagle

Fingerprint Indexing

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics Beagle Comparisons Sample Position

Conclusion

Fingerprint Indexing

- Maintain a collection of *fingerprints* for terms.
- A term fingerprint is an array over $F \cup \{A, B, N\}$, the *Fingerprint Features*.

Tim Cosgrove

Outline

Project Overvie

Motivation

First Order Logic Terminology The Beagle Theorem Prover

Fingerprint Indexing

Implementation

Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics Beagle Comparisons Sample Positio

Conclusion

Fingerprint Indexing

- Maintain a collection of *fingerprints* for terms.
- A term fingerprint is an array over F ∪ {A, B, N}, the Fingerprint Features.

Table: Fingerprint Feature comparison tables for *unification* (left) and *subsumption* (right)

	f_1	f_2	Α	В	N
f_1	Υ	N	Υ	Υ	N
f_2	N	Υ	Υ	Υ	N
Α	Y	Υ	Υ	Υ	N
В	Y	Υ	Υ	Υ	Υ
N	N	N	N	Υ	Υ

	f_1	f_2	Α	В	Ν
f_1	Υ	N	N	N	N
f_2	N	Υ	N	N	N
Α	Υ	Υ	Υ	N	N
В	Υ	Υ	Υ	Υ	Υ
N	N	2	N	Ν	Y

Tim Cosgrove

Outline

Motivation

First Order Logic Terminology The Beagle

Term Indexing
Fingerprint
Indexing

Implementation

Implementin
Fingerprint
Indexing
Indexing
Applications
Tailoring to

Result

Metrics
Beagle
Comparisons
Sample Positio

Conclusion

Fingerprint Indexing

- Maintain a collection of *fingerprints* for terms.
- A term fingerprint is an array over $F \cup \{A, B, N\}$, the *Fingerprint Features*.

Table: Fingerprint Feature comparison tables for *unification* (left) and *subsumption* (right)

	f_1	f ₂	Α	В	N
f_1	Υ	N	Υ	Υ	N
f_2	N	Υ	Υ	Υ	N
Α	Υ	Υ	Υ	Υ	N
В	Υ	Υ	Υ	Υ	Υ
N	N	N	N	Υ	Υ

	f_1	f_2	Α	В	N
f_1	Υ	N	N	N	N
f_2	N	Υ	N	N	N
Α	Y	Υ	Υ	N	N
В	Y	Υ	Υ	Υ	Υ
N	N	2	N	N	Υ

Schulz, Stephan: Fingerprint Indexing for Paramodulation and Rewriting.
 In: Lecture Notes in Computer Science volume 7364 pp. 447–483 (2012).

Tim Cosgrove

Outlin

Project Overv

Motivation

First Order Logic Terminology

Theorem Prove

Fingerprint Indexing

Implementatio

Implementing Fingerprint

Indexing Indexing Applications

Tailoring to

Result

Evaluation Metrics

Sample Posit

. . .

Fingerprint Indexing – Example Fingerprint Index

Tim Cosgrove

Outlin

siect Overvie

Motivation

Backgroui

First Order Logic Terminology

The Beagle Theorem Prove Term Indexing

Fingerprint Indexing

Implementatio

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics Beagle Comparison

Sample Position Comparisons

Conclusion

Why Fingerprint Indexing?

New and not thoroughly tested technique.

Tim Cosgrove

Outline

Project Overvi

11101111111111

Dackgroui

First Order Logic Terminology The Beagle Theorem Prover

Fingerprint Indexing

Implementatio

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Results

Evaluation Metrics Beagle Comparisons Sample Position Comparisons

Conclusion

Why Fingerprint Indexing?

- New and not thoroughly tested technique.
- Currently showing very promising results.

Tim Cosgrove

Outline

Project Overvi

Deal of

First Order Logic Terminology The Beagle Theorem Prover

Fingerprint Indexing

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics Beagle Comparisons Sample Position Comparisons

Conclusion

Why Fingerprint Indexing?

- New and not thoroughly tested technique.
- Currently showing very promising results.
- Highly customisable and configurable.

Tim Cosgrove

Outlin

Project Overvie

Motivation

Backgroui

First Order Logic Terminology The Beagle

Term Indexing

Indexing

Implementatio

Implementing Fingerprint Indexing

Indexing Indexing Applications Tailoring to

Results

Evaluation Metrics Beagle Comparisons Sample Position

Conclusion

Creating the Fingerprint Index

• Two main tasks: Add terms to the index and retrieve them.

Tim Cosgrove

Outlin

Project Overvi

Motivation

Bаскgroui

First Order Logic Terminology The Beagle Theorem Prover

Fingerprint Indexing

Implementation
Implementing

Fingerprint Indexing

Indexing Applications Tailoring to

Results

Evaluation Metrics Beagle Comparisons Sample Position

Conclusion

Creating the Fingerprint Index

- Two main tasks: Add terms to the index and retrieve them.
- Addition requires Fingerprint generation along with implementation and traversal of the Index tree structure.

Tim Cosgrove

Outline

Project Overv

iviotivation

Баскугош

First Order Logic Terminology The Beagle Theorem Prover Term Indexing Fingerprint

Implementation

Fingerprint Indexing Indexing Application

Applications
Tailoring to
Beagle

Results

Evaluation Metrics Beagle Comparisons Sample Posit

Conclusion

Creating the Fingerprint Index

- Two main tasks: Add terms to the index and retrieve them.
- Addition requires Fingerprint generation along with implementation and traversal of the Index tree structure.
- Retrieval requires implementation of the comparison tables and a more complex Index traversal algorithm. We must collect all compatible leaves and union them together.

Tim Cosgrove

Outline

Project Overvi

Motivation

Dackgroui

First Order Logic Terminology The Beagle Theorem Prover Term Indexing

Term Indexir Fingerprint Indexing

Implementation

Indexing

Applications
Tailoring to

Deagn

Evaluation Metrics

Sample Positi

Conclusion

Beagle's Main Procedure

Maintain two Clause Sets, new and old.
 Remove Clauses from new one at a time, simplify them and then attempt inference rules. Results are added to new, simplified Clause is added to old.

Tim Cosgrove

First Order Logic Terminology

Implementing

Indexing Applications

Tailoring to

Beagle's Main Procedure

- Maintain two Clause Sets. new and old. Remove Clauses from *new* one at a time, simplify them and then attempt inference rules. Results are added to new, simplified Clause is added to old.
- Two key areas of improvement:
 - Inferences via the Superposition rules. O(|old|)
 - Simplifying Clauses. O(|old| + |new|)

Tim Cosgrove

Outline

Project Overv

Motivation

First Order Logic Terminology

The Beagle Theorem Prove

Fingerprint

Indexing

Implementation

Implementir Fingerprint

Indexing

Applications

Tailoring to

Reculto

Evaluation Metrics

Comparisons
Sample Position

Sample Positio Comparisons

Conclusion

Indexing Superposition

Positive Superposition

$$\frac{I \approx r \lor C \qquad s[u] \approx t \lor D}{\mathsf{abstr}((s[r] \approx t \lor C \lor D)\sigma)}$$

Where (i) $\sigma = \text{simple mgu } (I, u)$,

(ii) u is not a variable,

(iii) $r\sigma \not\succeq l\sigma$,

(iv) $t\sigma \times s\sigma$.

(v) / and u are not pure background terms,

(vi) $(l \approx r)\sigma$ is strictly maximal in $(l \approx r \lor C)\sigma$,

and (vii) $(s \approx t)\sigma$ is strictly maximal in $(s \approx t \lor D)\sigma$.

• Requires that we index all subterms. Furthermore we must implement two separate cases for *from* and *into*.

Tim Cosgrove

Outlin

Project Overv

Motivation

First Order Logic Terminology The Beagle

Theorem Pro-Term Indexing Fingerprint Indexing

Implementatio

Fingerprint Indexing

Indexing Applications Tailoring to

Reculto

Evaluation Metrics Beagle Comparisons Sample Position

Conclusion

- Simplification rules exist to implement special cases of the rules in the Hierarchic Superposition with Weak Abstraction Calculus.
- These special cases allow redundant Clauses to be removed; preventing clutter in the inference process.

Tim Cosgrove

Outlin

Project Overv

Motivation

First Order Logic Terminology The Beagle Theorem Prover

Theorem Pro Term Indexing Fingerprint Indexing

Implementatio

Indexing

Applications Tailoring to

Reculte

Evaluation Metrics

Sample Position

Conclusion

- Simplification rules exist to implement special cases of the rules in the Hierarchic Superposition with Weak Abstraction Calculus.
- These special cases allow redundant Clauses to be removed; preventing clutter in the inference process.
- The two main simplification rules used by Beagle are *Negative Unit Simplification* and *Demodulation*

Tim Cosgrove

Outlin

Project Overv

Background First Order Logic

Terminology
The Beagle
Theorem Prove
Term Indexing
Fingerprint
Indexing

Implementatio Implementing Fingerprint

Indexing Applications Tailoring to

Beagl

Evaluatio Metrics

Comparisons
Sample Positio
Comparisons

Conclusion

- Simplification rules exist to implement special cases of the rules in the Hierarchic Superposition with Weak Abstraction Calculus.
- These special cases allow redundant Clauses to be removed; preventing clutter in the inference process.
- The two main simplification rules used by Beagle are *Negative Unit Simplification* and *Demodulation*
- These rules operate only on *unit Clauses*, so using our current index clogged with subterms is inefficient.
- Thus we will create new indexes which behave differently depending on a configuration object.

Tim Cosgrove

Outline

Project Overv

Motivation

First Order Log Terminology The Beagle Theorem Prove Term Indexing

Implementatio Implementing Fingerprint

Indexing Applications

Tailorin_i Beagle

Evaluation Metrics Beagle Comparisons

Conclusion

- Simplification rules exist to implement special cases of the rules in the Hierarchic Superposition with Weak Abstraction Calculus.
- These special cases allow redundant Clauses to be removed; preventing clutter in the inference process.
- The two main simplification rules used by Beagle are *Negative Unit Simplification* and *Demodulation*
- These rules operate only on *unit Clauses*, so using our current index clogged with subterms is inefficient.
- Thus we will create new indexes which behave differently depending on a configuration object.
- The rules also require checking for *subsumption*, which requires implementing a new comparison table for Fingerprint Indexing.

Tim Cosgrove

Outline

Project Overvie

Rackgroup

First Order Logic Terminology

The Beagle Theorem Prover

Term Index

Fingerprint Indexing

Implementatio

Implementing

Fingerprint Indexing

Indexing Applications

Tailoring to

Results

Evaluation

Beagle Comparisons

Sample Position

Conclusion

Indexing Negative Unit Simplification

Negative Unit Simplification

$$\frac{1 \not\approx r \qquad s \approx t \vee C}{C}$$

Where (i) $\exists \sigma$ s.t. $(l \approx r)\sigma \equiv s \approx t$.

The clause $s \approx t \vee C$ may be removed.

Tim Cosgrove

Outlin

Project Overv

Backgroun

First Order Logic Terminology The Beagle Theorem Prover Term Indexing

Fingerprint Indexing

Implementatio

Fingerprint

Indexing Applications

Applications
Tailoring to

Results

Metrics
Beagle
Comparisons
Sample Positio

Conclusion

Indexing Negative Unit Simplification

Negative Unit Simplification

$$\frac{1 \not\approx r \qquad s \approx t \vee C}{C}$$

Where (i) $\exists \sigma$ s.t. $(l \approx r)\sigma \equiv s \approx t$.

The clause $s \approx t \vee C$ may be removed.

- Searching for valid subsuming Literals is extremely time consuming.
- Requires an index capable of matching Equations rather than Terms.

Tim Cosgrove

First Order Logic Terminology

Indexing

Implementing

Indexing

Applications

Tailoring to

Evaluation

Indexing Demodulation

$$\frac{I \to r \qquad s[u] \approx t \vee D}{s[r\sigma] \approx t \vee D}$$

Where $l\sigma = \mu$

The clause $s[u] \approx t \vee D$ may be removed.

Tim Cosgrove

First Order Logic

Indexing Applications

Tailoring to

Indexing Demodulation

• For a simple example, with a Literal $X \to f(a)$ we may replace all occurrences of X with f(a).

Tim Cosgrove

Outline

Project Overv

Backgroun

First Order Logic Terminology The Beagle Theorem Prover Term Indexing

Indexing

Implementatio

Implementing Fingerprint

Indexing Applications Tailoring to

Decide

Evaluation
Metrics
Beagle
Comparisons
Sample Position
Comparisons

Conclusion

Indexing Demodulation

Demodulation
$$\frac{l \to r \qquad s[u] \approx t \lor D}{s[r\sigma] \approx t \lor D}$$
 Where $l\sigma = u$ The clause $s[u] \approx t \lor D$ may be removed.

- For a simple example, with a Literal $X \to f(a)$ we may replace all occurrences of X with f(a).
- Like in Negative Unit Simplification, the most costly operation is searching for subsuming / Terms.
- We must perform this search for every possible subterm u of s.

Tim Cosgrove

Outlin

Project Over

Motivation

First Order Logic Terminology The Beagle Theorem Prover

Indexing Implementatio

Fingerprint Indexing Indexing Applications

Applications
Tailoring to

Beagle

Evaluatio

Beagle Comparisons Sample Position

Conclusion

Fingerprint Indexing for the Hierarchic Superposition with Weak Abstraction Calculus

 The Hierarchic Superposition with Weak Abstraction Calculus imposes many restrictions on what can be used for inference.

Tim Cosgrove

Outlin

Mativation

Motivation

First Order Logic Terminology The Beagle Theorem Prover

Term Indexin Fingerprint Indexing

Implementatio

Fingerprint Indexing Indexing

Applications
Tailoring to

Beagle

Evaluatio Metrics

Comparisons Sample Positi

Comparisons

Conclusion

Fingerprint Indexing for the Hierarchic Superposition with Weak Abstraction Calculus

- The Hierarchic Superposition with Weak Abstraction Calculus imposes many restrictions on what can be used for inference.
- We may take advantage of some of these conditions to increase the effectiveness of Fingerprint Indexing.

Tim Cosgrove

Outlin

Motivation

Background

First Order Logic Terminology The Beagle Theorem Prover Term Indexing Fingerprint Indexing

Implementation

Fingerprint Indexing Indexing Applications

Tailoring to Beagle

Evaluation Metrics Beagle

Sample Position Comparisons

Conclusion

Fingerprint Indexing for the Hierarchic Superposition with Weak Abstraction Calculus

- The Hierarchic Superposition with Weak Abstraction Calculus imposes many restrictions on what can be used for inference.
- We may take advantage of some of these conditions to increase the effectiveness of Fingerprint Indexing.

Table: Fingerprint comparison table for unification; extended by considering the term hierarchy.

	f_1	f ₂	Α	В	N	f_1+	f_2+	A+	B+
f_1	Υ	N	Υ	Υ	N	N	N	N	N
f ₂	N	Υ	Υ	Υ	N	N	N	N	N
A	Y	Υ	Υ	Υ	N	Υ	Y	Υ	Υ
В	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
N	N	N	N	Υ	Υ	N	N	N	Y
f_1+	N	N	Υ	Υ	N	Υ	N	Υ	Υ
f ₂ +	N	N	Υ	Υ	N	N	Y	Y	Υ
A +	N	N	Υ	Υ	N	Y	Y	Y	Υ
B+	N	N	Υ	Υ	Υ	Y	Υ	Υ	Y

Tim Cosgrove

Outlin

Project Overv

Backgroui

First Order Logic Terminology The Beagle Theorem Prover Term Indexing Fingerprint

Implementation

Implementin Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics

Beagle Comparisons Sample Position

Conclusion

- We may measure the performance of Fingerprint Indexing by comparing run statistics of a subset of problems from the TPTP (Thousands of Problems for Theorem Provers) library.
- A subset of 50 problems was created; spanning a range of problem categories and difficulties.

Tim Cosgrove

Outlin

Project Overv

Backgroun

First Order Logic Terminology The Beagle Theorem Prover Term Indexing

Implementatio

Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics

Comparisons
Sample Position

Conclusion

- We may measure the performance of Fingerprint Indexing by comparing run statistics of a subset of problems from the TPTP (Thousands of Problems for Theorem Provers) library.
- A subset of 50 problems was created; spanning a range of problem categories and difficulties.
- Total run time Need to be careful to consider all factors.

Tim Cosgrove

Outlin

Project Overv

Backgrou

First Order Log Terminology The Beagle Theorem Prove Term Indexing Fingerprint Indexing

Implementation

Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics

Comparisons
Sample Position

Conclusion

- We may measure the performance of Fingerprint Indexing by comparing run statistics of a subset of problems from the TPTP (Thousands of Problems for Theorem Provers) library.
- A subset of 50 problems was created; spanning a range of problem categories and difficulties.
- Total run time Need to be careful to consider all factors.
- False Positives Relevant, but can be misleading depending on number of positions being sampled.

Tim Cosgrove

Outlin

Project Overv

Rackground

First Order Lo Terminology The Beagle Theorem Prov Term Indexing

Implementation

Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics

Beagle Comparisons Sample Position Comparisons

Conclusion

- We may measure the performance of Fingerprint Indexing by comparing run statistics of a subset of problems from the TPTP (Thousands of Problems for Theorem Provers) library.
- A subset of 50 problems was created; spanning a range of problem categories and difficulties.
- Total run time Need to be careful to consider all factors.
- False Positives Relevant, but can be misleading depending on number of positions being sampled.
- Run time per Inference Most accurate measure of performance.
 Must still take care when interpreting.

Tim Cosgrove

Outline

Motivation

First Order Logic Terminology

The Beagle Theorem Prove Term Indexing Fingerprint Indexing

Implementation

Implementing Fingerprint Indexing Indexing Applications

Applications
Tailoring to
Beagle

Results

Beagle Comparisons

Sample Positio Comparisons

Conclusion

Comparing Varieties of Beagle

Table: Totalled inference counts and indexing statistics for various versions of beagle.

	Inf	erence Cou	ınts	Indexing Results		
Version	Sup	Demod	NegUnit	TotalFound	SupFP	SimpFP
Unmodified 1	414216	29097	1826	0	0	0
Standard	162881	41414	2452	61884768	15525	39778148
Enhanced	146861	35326	1960	58119897	17641	39916687

Table: Totalled timing results for various versions of beagle.

	Time Spent (seconds)							
Version	Indexing	Retrieving	Sup	Demod	NegUnit	Total		
Unmodified 1	0	0	730.44	9.44	31.99	5623.21		
Standard	28.4	38.73	254.17	41.66	3.18	381.36		
Enhanced	18.74	17.58	168.79	30.56	2.12	259.02		

¹This version failed to solve two out of the fifty problems within 8 hours.

Tim Cosgrove

Outlin

oject Overv

Motivation

Backgroui

First Order Logic Terminology The Beagle Theorem Prover Term Indexing

Fingerprint Indexing

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics

Beagle Comparisons

Sample Positi

Conclusion

Time Spent Per Inference

Table: Superposition time for the 6 most extreme problem examples.

Version	Superposition	Demodulation	NegUnit Simplification
Unmodified	1.7ms	0.3ms	17.5ms
Standard	1.5ms	1.0ms	1.3ms
Enhanced	1.1ms	0.8ms	1.0ms

Tim Cosgrove

Outline

Project Overvie

First Order Logic

Terminology
The Beagle
Theorem Pro

Term Indexir Fingerprint Indexing

Indexing

impiementatio

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluatio Metrics Beagle

Comparisons Sample Posit

Conclusion

Time Spent Per Inference

Table: Superposition time for the 6 most extreme problem examples.

Version	Superposition	Demodulation	NegUnit Simplification
Unmodified	1.7ms	0.3ms	17.5ms
Standard	1.5ms	1.0ms	1.3ms
Enhanced	1.1ms	0.8ms	1.0ms

• Most typical application of Demodulation is a Literal like $X \to f(a)$. X will match anything, making fingerprint indexing a waste of time.

Tim Cosgrove

Outline

Project Overv

Backgrou

First Order Logic Terminology The Beagle

Term Indexing Fingerprint Indexing

Implementation

Implementing
Fingerprint
Indexing
Indexing
Applications
Tailoring to

Result

Beagle Comparisons

Sample Positio

Conclusion

Time Spent Per Inference

Table: Superposition time for the 6 most extreme problem examples.

Version	Superposition	Demodulation	NegUnit Simplification
Unmodified	1.7ms	0.3ms	17.5ms
Standard	1.5ms	1.0ms	1.3ms
Enhanced	1.1ms	0.8ms	1.0ms

- Most typical application of Demodulation is a Literal like X → f(a). X will match anything, making fingerprint indexing a waste of time.
- When excluding PUZ037-1.p we have 0.29, 0.39 and 0.31 milliseconds per Demodulation.

Tim Cosgrove

Outlin

D . . . O

Motivation

Backgroup

First Order Logic

Terminology
The Beagle
Theorem Prove
Term Indexing
Fingerprint
Indexing

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics

Beagle Comparisons

Sample Position

Camalinatan

Runtimes under 5 seconds

Tim Cosgrove

Outlin

Project Overv

Motivation

Backgroun

First Order Logic Terminology The Beagle Theorem Prover Term Indexing Fingerprint Indexing

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics

Beagle Comparisons Sample Positi

Sample Position Comparisons

C---!--

Runtimes under 5 seconds

Tim Cosgrove

Motivation

First Order Logic Terminology The Beagle

Term Indexing

Indexing

Implementing Indexing Indexing

Tailoring to

Evaluation Metrics

Beagle Comparisons

Results Analysis

Table: Superposition time for the 6 most extreme problem examples.

Problem	Enhanced	Standard	Unmodified
DAT050=1.p	17.53	31.54	48.62
DAT039=1.p	13.2	22.51	130.77
DAT040=1.p	14.49	21.29	190.71
DAT038=1.p	12.53	24.04	294.86
DAT043=1.p	18.67	26.08	N/A
DAT048=1.p	17.65	35.77	N/A

Tim Cosgrove

Outline

Project Overv

Motivatio

Backgrou

First Order Logic Terminology

The Beagle Theorem Pro

Fingerprint Indexing

Implementatio

Implementin Fingerprint Indexing

Indexing
Indexing
Applications
Tailoring to

Resul

Evaluatio Metrics Beagle

Comparisons Sample Posit

Conclusion

Results Analysis

Table: Superposition time for the 6 most extreme problem examples.

Problem	Enhanced	Standard	Unmodified
DAT050=1.p	17.53	31.54	48.62
DAT039=1.p	13.2	22.51	130.77
DAT040=1.p	14.49	21.29	190.71
DAT038=1.p	12.53	24.04	294.86
DAT043=1.p	18.67	26.08	N/A
DAT048=1.p	17.65	35.77	N/A

 When taking number of inferences into account for DAT038=1.p we observe 1.2 milliseconds per superposition for the full implementation versus 2.2 milliseconds per superposition for unindexed beagle.

Tim Cosgrove

First Order Logic Terminology

Indexing

Implementing Tailoring to

Sample Position Comparisons

Fingerprint Sampling Varieties

 We have yet to consider the impact of varying the configuration for Fingerprint Indexing; in particular the varying the list of positions which we are sampling.

Tim Cosgrove

Outlin

Project Oven

Motivation

Background First Order Logic

Terminology
The Beagle
Theorem Prove
Term Indexing
Fingerprint

Implementatio

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Recult

Evaluation Metrics

Sample Position Comparisons

Conclusion

Fingerprint Sampling Varieties

- We have yet to consider the impact of varying the configuration for Fingerprint Indexing; in particular the varying the list of positions which we are sampling.
- It is important to strike a balance between accuracy and a simple index structure.

Tim Cosgrove

First Order Logic

Terminology

Implementing

Tailoring to

Sample Position Comparisons

Fingerprint Sampling Varieties

- We have yet to consider the impact of varying the configuration for Fingerprint Indexing; in particular the varying the list of positions which we are sampling.
- It is important to strike a balance between accuracy and a simple index structure.
- We present some results for some of the most successful position sets from Shulz's paper.

FP3W: ε. 1. 2

FP4M: ε, 1, 2, 1.1

• FP6M: ε, 1, 2, 3, 1.1, 1.2

• FP7: *ϵ*, 1, 2, 1.1, 1.2, 2.1, 2.2

• FP8X2:ε, 1, 2, 3, 4, 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 1.1.1. 2.1.1

Tim Cosgrove

Outline

Motivation

First Order Logic Terminology The Beagle Theorem Prover Term Indexing Fingerprint

Implementation

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Beagle

Evaluation
Metrics
Beagle
Comparisons
Sample Position
Comparisons

Conclusion

Fingerprint Sampling Varieties

Table: Totalled inference counts and indexing statistics for various Fingerprint sampling sets.

	Inf	erence Cou	ınts	Inde	xing Resul	ts
Sample Set	Sup	Demod	NegUnit	TotalFound	SupFP	SimpFP
FP3W	162218	42402	2472	13913606	69429	1815992
FP4M	147798	35709	1963	13469779	26847	1851515
FP6M	144505	35326	1959	12601762	16406	1694731
FP7	159055	41005	2440	13011130	21281	1596575
FP8X2	159385	40876	2438	12819184	11229	1602033

Table: Totalled timing results for various Fingerprint sampling sets.

		Time Spent (seconds)								
Sample Set	Indexing	Retrieving	Sup	Demod	NegUnit	Total				
FP3W	11.52	14.02	170.37	9.26	1.78	237.75				
FP4M	13.09	14.12	164.95	9.51	1.82	230.68				
FP6M	16.82	16.5	159.93	10.78	2.11	229.59				
FP7	19.98	18.74	170.83	12.37	2.37	249.22				
FP8X2	45.56	32.59	181.43	21.45	4.06	294.8				

Note that for more relevant comparisons these results exclude PUZ037-1.p.

Tim Cosgrove

Outline

Project Overvie

Motivation

First Order Logic Terminology The Beagle

Term Index Fingerprint Indexing

Implementatio

Implementing Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics Beagle Comparisons Sample Position

Conclusion

The Benefits of Indexing Beagle

 The Hierarchic Superposition with Weak Abstraction Calculus is a great leap forward for hierarchic reasoning; and the benefits that it offers are worth exploring thoroughly.

Tim Cosgrove

First Order Logic Terminology

Tailoring to

Conclusion

The Benefits of Indexing Beagle

- The Hierarchic Superposition with Weak Abstraction Calculus is a great leap forward for hierarchic reasoning; and the benefits that it offers are worth exploring thoroughly.
- By adding Fingerprint Indexing to Beagle, this project has made this task far more approachable by greatly increasing the number of logic problems which can be solved within a reasonable timeframe.

Tim Cosgrove

Outline

Project Overvie

First Order Log Terminology The Beagle Theorem Prove

Theorem Prov Term Indexing Fingerprint Indexing

Implementation Implementing

Fingerprint Indexing Indexing Applications Tailoring to

Result

Evaluation Metrics Beagle Comparisons Sample Positio Comparisons

Conclusion

The Benefits of Indexing Beagle

- The Hierarchic Superposition with Weak Abstraction Calculus is a great leap forward for hierarchic reasoning; and the benefits that it offers are worth exploring thoroughly.
- By adding Fingerprint Indexing to Beagle, this project has made this task far more approachable by greatly increasing the number of logic problems which can be solved within a reasonable timeframe.
- We have also shown that tailoring indexing to the specific needs of a calculus is worthwhile; improving results by 50% in some cases.

Tim Cosgrove

Outline

Project Overvi

Motivation

First Order Logic Terminology The Beagle Theorem Prover Term Indexing Fingerprint

Implementation Implementing

Fingerprint Indexing Indexing Applications Tailoring to

Resul

Evaluation Metrics Beagle Comparisons Sample Position Comparisons

Conclusion

The Benefits of Indexing Beagle

- The Hierarchic Superposition with Weak Abstraction Calculus is a great leap forward for hierarchic reasoning; and the benefits that it offers are worth exploring thoroughly.
- By adding Fingerprint Indexing to Beagle, this project has made this task far more approachable by greatly increasing the number of logic problems which can be solved within a reasonable timeframe.
- We have also shown that tailoring indexing to the specific needs of a calculus is worthwhile; improving results by 50% in some cases.
- In Shulz's paper Fingerprint Indexing appeared to be a very promising technique. This project has verified it's viability in the term indexing field and has made Beagle viable as far more than a proof of concept.