The group G is isomorphic to the group labelled by ["could not identify G"] in the Small Groups library. Ordinary character table of $G \cong M11$:

	1a	2a	3a	4a	5a	6a	8a	8b	11 <i>a</i>	11 <i>b</i>
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	10	2	1	2	0	-1	0	0	-1	-1
χ_3	10	-2	1	0	0	1	$E(8) + E(8)^{} 3$	$-E(8) - E(8)^3$	-1	-1
χ_4	10	-2	1	0	0	1	$-E(8) - E(8)^3$	$E(8) + E(8)^{} 3$	-1	-1
χ_5	11	3	2	-1	1	0	-1	-1	0	0
χ_6	16	0	-2	0	1	0	0	0	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^10$
χ_7	16	0	-2	0	1	0	0	0	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^10$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$
χ_8	44	4	-1	0	-1	1	0	0	0	0
χ_9	45	-3	0	1	0	0	-1	-1	1	1
χ_{10}	55	-1	1	-1	0	-1	1	1	0	0

Trivial source character table of $G \cong M11$ at p = 2

invital bource character table of G = Mil at p														
$Normalisers N_i$			N_1		I	N_2	N_3	<i>1</i>	V_4	N_5	N_6	N_7	. \	V_8
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$			P_1		I I	P_2	P_3	1	P_4	P_5	P_6	P_7	F	$\overline{P_8}$
Representatives $n_j \in N_i$	1a 3a	5a	11a	11b	1a	3a	1a	1 <i>a</i>	3a	1a	1a	1a	3a 1	\overline{a}
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	112 4	2	2	2	0	0	0	0	0	0	0	0	0 (0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	96 6	1	-3	-3	0	0	0	0	0	0	0	0	0 (0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	16 - 2	2 1	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^10$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	0	0	0	0	0	0	0	0	0 (0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	16 - 2	2 1	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^10$	0	0	0	0	0	0	0	0	0 (0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	144 0	-1	1	1	0	0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 2 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	200 2	0	2	2	8	2	0	0	0	0	0	0	0 (0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	120 - 3	0	-1	-1	8	-1	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 2 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 2 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	220 4	0	0	0	12	0	4	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	12 3	2	1	1	4	1	0	2	2	0	0	0	0 (0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	44 - 1	1	0	0	4	1	0	2	-1	0	0	0	0 (0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	110 2	0	0	0	6	0	2	0	0	2	0	0	0 (0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	22 4	2	0	0	6	0	2	2	2	0	2	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	90 0	0	2	2	2	2	2	0	0	0	0	2	2	0
$ \left 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} \right $	10 1	0	-1	-1	2	-1	2	0	0	0	0	2	-1	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1
```

 $P_2 = Group([(2,9)(3,7)(5,11)(6,10)]) \cong C2$

 $P_3 = Group([(2,9)(3,7)(5,11)(6,10),(2,7,9,3)(5,6,11,10)]) \cong C4$

 $P_4 = Group([(2,9)(3,7)(5,11)(6,10),(3,7)(4,8)(5,10)(6,11)]) \cong C2 \times C2$

 $P_5 = Group([(2,9)(3,7)(5,11)(6,10),(2,5,3,10,9,11,7,6)(4,8),(2,7,9,3)(5,6,11,10)]) \cong C8$

 $P_6 = Group([(2,9)(3,7)(5,11)(6,10),(3,7)(4,8)(5,10)(6,11),(2,7,9,3)(5,6,11,10)]) \cong D8$

 $P_7 = Group([(2,5,9,11)(3,6,7,10),(2,9)(3,7)(5,11)(6,10),(2,7,9,3)(5,6,11,10)]) \cong \mathbb{Q}8$

 $P_8 = Group([(2,5,9,11)(3,6,7,10),(2,9)(3,7)(5,11)(6,10),(2,7)(3,9)(4,8)(6,10),(2,7,9,3)(5,6,11,10)]) \cong QD16$

 $N_1 = Group([(1,4,3,8)(2,5,6,9),(2,10)(4,11)(5,7)(8,9)]) \cong M11$

 $N_2 = Group([(2,9)(3,7)(5,11)(6,10),(1,4)(3,5)(6,10)(7,11),(2,11,9,5)(3,10,7,6),(3,7)(4,8)(5,10)(6,11)]) \cong GL(2,3)$

 $N_3 = Group([(2,9)(3,7)(5,11)(6,10),(2,11,9,5)(3,10,7,6),(3,7)(4,8)(5,10)(6,11),(2,7,9,3)(5,6,11,10)]) \cong \mathrm{QD}16$

 $N_4 = Group([(2,8)(3,7)(4,9)(10,11),(2,9)(3,7)(5,11)(6,10),(2,7)(3,9)(4,8)(6,10),(3,7)(4,8)(5,10)(6,11)]) \cong S4$

 $N_5 = Group([(2,9)(3,7)(5,11)(6,10),(2,5,3,10,9,11,7,6)(4,8),(3,7)(4,8)(5,10)(6,11),(2,7,9,3)(5,6,11,10)]) \cong \text{QD16}$

 $N_6 = Group([(2,9)(3,7)(5,11)(6,10),(2,11,9,5)(3,10,7,6),(3,7)(4,8)(5,10)(6,11),(2,7,9,3)(5,6,11,10)]) \cong QD16$

 $N_7 = Group([(2,5,9,11)(3,6,7,10),(1,8,4)(3,10,11)(5,7,6),(2,9)(3,7)(5,11)(6,10),(3,7)(4,8)(5,10)(6,11),(2,7,9,3)(5,6,11,10)]) \cong GL(2,3)$

 $N_8 = Group([(2,5,9,11)(3,6,7,10),(2,9)(3,7)(5,11)(6,10),(2,7)(3,9)(4,8)(6,10),(3,7)(4,8)(5,10)(6,11),(2,7,9,3)(5,6,11,10)]) \cong QD16$