Kapitel 7

Erwartungswert und Varianz von Zufallsvariablen

Im Folgenden sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis II). Zunächst wird der Erwartungswert für sogenannte Elementare Zufallsvariablen definiert.

Definition 7.1 Eine Zufallsvariable $X: \Omega \to \mathbb{R}$ heißt **elementar**, falls sie eine Darstellung

$$X(\omega) = \sum_{i=1}^{m} \alpha_i \cdot 1_{A_i}(\omega)$$

besitzt, mit $A_i \in \mathcal{A}$, $\alpha_i \in \mathbb{R}_+, m \in \mathbb{N}$. M^E sei die Menge aller elementaren Zufallsvariablen auf dem Warscheinlichkeitsraum.

 $F\ddot{u}rX \in M^{E}$ sei das Integral von X bezüglich P definiert durch $\int XdP := \int_{i=1}^{n} \alpha_{i}P(A_{i})$

Bemerkung 7.1 a) $\int XdP$ ist unabhängig von der gewählten Darstellung von X (vgl. Analysis II)

b) Sei X eine diskrete Zufallsvariable. Wir führen das Zufallsexperiment n-mal druch (n groß). Welchen Wert erhält man im Mittel für X? Der Wert x_k tritt bei dem Experiment n_k -mal auf ($\sum_{k=0}^{\infty} n_k = n$). Mittelwert: $\frac{1}{n} \sum_{k=0}^{\infty} n_k x_k$

Jetzt wird der Integralbegriff erweitert. Sei $M^+ := \{X : \Omega - > \mathbb{R}_+ | X \text{ ist Zufallsvariable}\}.$ Für $X \in M^+$ betrachte die Folge $(X_n)_{n \in \mathbb{N}}$ mit

$$X_n := \sum_{i=0}^{n-2^n} \frac{i}{2^n} 1_{A_i^n} \text{ mit } A_i^n = \begin{cases} \{\frac{i}{2^n} \le X \le \frac{i+1}{2^n}\} & \text{, falls } i = 0, 1, \dots, n \cdot 2^n - 1 \\ \{X \ge 1\} & \text{, falls } i = n \cdot 2^n \end{cases}$$

Offenbar ist $X_n \in M^E$ und $x_n(\omega) \leq x_{n+1}(\omega) \ \forall \omega \in \Omega$. Außerdem gilt $X_n(\omega) \uparrow X(\omega)$ punktweise $\forall \omega \in \Omega$.

$$\int XdP := \lim_{n \to \infty} \int X_n dP.$$

Bemerkung 7.2 a) Der Grenzwert existiert wegen der Monotonie

b) Der Grenzwert ist unabhängig von der gewählten Folge $(X_n)_{x\in\mathbb{N}}$: Sei $(Y_n)_{n\in\mathbb{N}}$ eine weitere Folge elementarer Zufallsvariablen, die monoton wachsend gegen X konvergiert, so gilt $\lim_{n\to\infty}\int X_ndP=\lim_{n\to\infty}Y_ndP$ (vergleiche Analysis II).

Für eine beliebige Zufallsvariable $X: \Omega \to \mathbb{R}$ gilt: $X = X^+ - X^-$ wobei $X^+ = \max\{X,0\}$ und $X^- = -\min\{X,0\}$, also $X^+, X^- \in M^+$. Wir definieren durch

$$\int XdP = \int X^+dP - \int X^-dP =: \int_{\Omega} X(\omega)dP(\omega) =: EX$$

den **Erwartungswert** von X. X heißt integrierbar, falls $\int X^+ dP < \infty$ und $\int X^- dP < \infty$, d.h. wenn $\int |X| dP < \infty$

Bemerkung 7.3 a) Für $A \in \mathcal{A}$ sei $\int XdP := \int_{\Omega} X1_A dP$

b) In Stochastik II wird das Thema weiter vertieft.

Satz 7.1

Es seien X, Y Zufallsvariablen mit existierendem Erwartungswert und $a, b \in \mathbb{R}$

a) Dann existiert auch E(aX + bY) und es gilt:

$$E(aX + bY) = aEX + bEY$$
 "Linearität"

b) Gilt $X \leq Y$, d.h. $X(\omega) \leq Y(\omega) \quad \forall \omega \in \Omega$, so folgt:

$$EX \le EY$$
 "Monotonie"

Beweis vgl. Analysis II

Satz 7.2 Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}$ eine Zufallsvariable mit Verteiltung P_X . $g : \mathbb{R} \to \mathbb{R}$ sei messbar (Zufallsvariable). Dann ist (im Falle der Existenz):

$$Eg(X) = \int_{\Omega} g(X)dP = \int_{\mathbb{R}} gdP_X$$

Beweis Sei nunächst $g \in M^E$, also $g(\omega) = \sum_{i=0}^m \alpha_i 1_{B_i}(\omega)$ für $m \in \mathbb{N}, \alpha \in \mathbb{R}_+, B_i \in \mathfrak{B}$ somit $g(X) = \sum_{i=1}^m \alpha_i \cdot 1_{A_i}, A_i = X^{-1}(B_i)$ und $\int_{\Omega} g(x) dP = \sum_{i=1}^m \alpha_i \cdot P(A_i) = \sum_{i=1}^m \alpha_i P_X(B_i) = \int_{\mathbb{R}} g dP_X$.

Falls $g \geq 0$, wähle $\{g_n\} \subset M^E$ mit $g_n \uparrow g$. Die Gleichung gilt für jedes g_n , Grenzübergang liefert die Gleichheit für g. Falls g beliebig, betrachte $g = g^+ - g^- \Rightarrow$ Behauptung.

Wir unterscheiden jetzt die beiden Fälle dass X diskret bzw. absolutstetig ist. Hier ergeben sich relativ einfache Formeln.

Satz 7.3 Sei X eine diskrete Zufallsvariable mit Werten x_0, x_1, x_2, \ldots und Zähldichte $\{P_X^{(k)}\}_{k\in\mathbb{N}_0}$. $g: \mathbb{R} \to \mathbb{R}$ sei messbar. Dann existiert Eg(X), falls $\sum_{k=0}^{\infty} |g(x_k)| P_X(k) < \infty$ und es gilt:

$$Eg(X) = \sum_{k=0}^{\infty} g(x_k) P_X(k)$$

Beweis Sei zunächst $g \in M^E$, also $g = \sum_{i=1}^m \alpha_i 1_{B_i}$ für $m \in \mathbb{N}, \alpha_i \in \mathbb{R}_+, B_i \in \mathfrak{B}$. Es gilt (vgl. Beweis vorher): $Eg(X) = \sum_{i=0}^m \alpha_i P_X(B_i) = \sum_{i=1}^m \alpha_i \left(\sum_{x_k \in B_i} P_X(k)\right) =$

$$\sum_{i=1}^{m} \alpha_i \sum_{k=0}^{\infty} 1_{B_i}(x_k) P_X(k) = \sum_{k=0}^{\infty} \sum_{k=0}^{m} \alpha_i 1_{B_i}(x_k) P_X(k) = \sum_{k=0}^{\infty} g(x_k) P_X(k). \text{ All-}$$

gemeines g wie im Beweis von Satz 7.2

Beispiel 7.1 Sei $X \sim B(n, p)$ (binomialverteilt). Dann gilt:

$$P_X(k) = \binom{n}{k} p^k (1-p)^{n-k} \quad k = 0, 1, \dots, n$$

Also folgt:

$$EX = \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k} = np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)} =$$

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} = np$$

$$= (p+(1-p))^{n-1} = 1$$

Satz 7.4 Sei nun $X: \Omega \to \mathbb{R}$ eine absolut stetige Zufallsvariable mit Dichte f_X . $g: \mathbb{R} \to \mathbb{R}$ sei messbar. Dann existiert Eg(X), falls $\int_{-\infty}^{\infty} |g(x)| f_X(x) dx < \infty$ und es gilt:

$$Eg(X) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Beweis ähnlich wie in Satz 7.3

Beispiel 7.2 Sei $X \sim N(\mu, \sigma^2)$ (X normalverteilt). Also ist

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2})$$

Es folgt:

$$\begin{split} EX &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} x \, \exp(-\frac{(x-\mu)^2}{2\sigma^2}) \, dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\sigma u + \mu) \exp(-\frac{1}{2}u^2) \, du \\ &= \frac{1}{\sqrt{2\pi}} \underbrace{\int_{-\infty}^{\infty} \sigma u \, \exp(-\frac{1}{2}u^2) \, du}_{=0 \text{ wg. Symmetrie}} + \mu \underbrace{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-\frac{1}{2}u^2) \, du}_{=1, \text{ da Dichte}} = \mu \end{split}$$

Definition 7.2 Sei X eine Zufallsvariable

- a) Ist $k \in \mathbb{N}$ und existiert $E|X|^k$, dann heißt EX^k , **k-tes Moment von X** und $E(X EX)^k$, **k-tes zentriertes Moment von X**
- b) Das zweite zentrierte Moment heißt auch Varianz von X. Wir schreiben: $Var(X) = E(X EX)^2$ $\sigma(X) := \sqrt{Var(X)}$ heißt Standardabweichung

Bemerkung 7.4 Die Varianz misst die mittlere quadratische Abweichung der Zufallsvariable X von ihrem Mittelwert. $\sigma(X)$ hat die gleiche Dimension wie X.

Satz 7.5 Sei X eine Zufallsvariable. Falls die entsprechenden Größen existieren, gilt:

- a) $Var(X) = EX^2 (EX)^2$
- b) $Var(aX + b) = a^2 Var(X)$ für $a, b \in \mathbb{R}$
- c) $Var(X) \ge 0$ und $Var(X) = 0 \Leftrightarrow P(X = c) = 1$ für ein $c \in \mathbb{R}$

Beweis a) $Var(X) = E(X^2 - 2XEX + (EX)^2) \stackrel{\text{Satz 7.2a}}{=} EX^2 - 2(EX)^2 + (EX)^2 = EX^2 - (EX)^2$

- b) Wir verwenden a): $Var(aX + b) = E(aX + b)^2 (aEX + b)^2 =$ = $E(a^2X^2 + 2abX + b^2) - a^2(EX)^2 - 2abEX - b^2 =$ = $a^2EX^2 + 2abEX + b^2 - a^2(EX)^2 - 2abEX - b^2 =$ = $a^2(EX^2 - (EX)^2) = a^2Var(X)$
- c) Da $0 \le (X EX)^2 \stackrel{7.2b}{\Rightarrow} \operatorname{Var}(X) \ge 0$ Ist X diskret, so gilt: $\operatorname{Var}(X) = \sum_{k=1}^{\infty} (x_k - EX)^2 P(X = x_k)$ $\operatorname{Var}(X) = 0 \Leftrightarrow X$ nimmt nur den Wert $x_1 = EX$ $(x_k = EX \ \forall \ k \in \mathbb{N})$ an. Analog im stetigen Fall.

Beispiel 7.3 Sei $X \sim N(\mu, \sigma^2)$ Bsp. $7.2 \Rightarrow EX = \mu$

Also:
$$\operatorname{Var}(X) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x-\mu)^2 \exp(-\frac{(x-\mu)^2}{2\sigma^2}) dx = \dots = \sigma^2$$

 $(\rightarrow \ddot{\mathrm{U}}\mathrm{bung})$

Die folgende Ungleichung ist wegen ihrer Allgemeinheit nützlich:

Satz 7.6 (Tschebyscheff-Ungleichung)

Sei X eine Zufallsvariable mit $E|X| < \infty$ und $\varepsilon > 0$. Dann gilt:

$$P(|X - EX| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \operatorname{Var}(X)$$

Beweis

Betrachte:

$$g: \mathbb{R} \to \{0,1\} \qquad g(x) = \left\{ \begin{array}{l} 1 & , & \text{falls} \quad |x - EX| \geq \varepsilon \\ 0 & , & \text{sonst} \end{array} \right.$$
 und
$$h: \mathbb{R} \to \mathbb{R} \qquad h(x) = \frac{1}{\varepsilon^2} (x - EX)^2$$

Offenbar gilt $g(x) \leq h(x) \, \forall \, x \in \mathbb{R}$ Also folgt $g(X) \leq h(X)$ und mit Satz 7.2 b

$$P(|X - EX| \ge \varepsilon) = Eg(X) \le Eh(X) = \frac{1}{\varepsilon^2} Var(X)$$