

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS ROOM STANDINGS CUSTOM INVOCATION

A. Make It Zero

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

During Zhongkao examination, Reycloer met an interesting problem, but he cannot come up with a solution immediately. Time is running out! Please help him.

Initially, you are given an array a consisting of $n \geq 2$ integers, and you want to change all elements in it to 0.

In one operation, you select two indices l and r ($1 \le l \le r \le n$) and do the following:

- ullet Let $s=a_l\oplus a_{l+1}\oplus\ldots\oplus a_r$, where \oplus denotes the bitwise XOR operation;
- Then, for all $l \leq i \leq r$, replace a_i with s.

You can use the operation above in any order at most 8 times in total.

Find a sequence of operations, such that after performing the operations in order, all elements in a are equal to a. It can be proven that the solution always exists.

Input

The first line of input contains a single integer t ($1 \le t \le 500$) — the number of test cases. The description of test cases follows.

The first line of each test case contains a single integer n ($2 \le n \le 100$) — the length of the array a.

The second line of each test case contains n integers a_1, a_2, \ldots, a_n ($0 \le a_i \le 100$) — the elements of the array a_i

Output

For each test case, in the first line output a single integer k ($0 \le k \le 8$) — the number of operations you use.

Then print k lines, in the i-th line output two integers l_i and r_i ($1 \le l_i \le r_i \le n$) representing that you select l_i and r_i in the i-th operation.

Note that you ${f do}$ not have to minimize k. If there are multiple solutions, you may output any of them.

Example

Codeforces Round 896 (Div. 2)

Finished

Practice

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you -solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you -solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Clone Contest to Mashup

You can clone this contest to a mashup.

Clone Contest

→ Submit?

Language: GNU G++20 13.2 (64 bit, win ♥

Choose

Choose File No file chosen

Submit

→ Last submissions		
Submission	Time	Verdict
234087745	Nov/24/2023 18:36	Accepted
234085464	Nov/24/2023 18:32	Wrong answer on test 1
234082647	Nov/24/2023 18:27	Wrong answer on test 1
234081259	Nov/24/2023 18:24	Wrong answer on test 1
234079910	Nov/24/2023 18:22	Wrong answer on test 1
234077935	Nov/24/2023 18:19	Wrong answer on test 1

→ Problem tags

constructive algorithms *900

No tag edit access

 \times

×

→ Contest materials

- Announcement (en)
- Tutorial (en)

1 2

In the first test case, since $1 \oplus 2 \oplus 3 \oplus 0 = 0$, after performing the operation on segment [1,4], all the elements in the array are equal to 0.

In the second test case, after the first operation, the array becomes equal to [3, 1, 4, 15, 15, 15, 15, 15, 6], after the second operation, the array becomes equal to [0, 0, 0, 0, 0, 0, 0, 0].

In the third test case:

Operation	a before	a after
1	$[\underline{1,5},4,1,4,7] \rightarrow$	[4,4,4,1,4,7]
2	$[4,4,\underline{4,1},4,7] \rightarrow$	[4,4,5,5,4,7]
3	$[4,4,5,5,\underline{4,7}] \rightarrow$	[4,4,5,5,3,3]
4	$[\underline{4,4,5},5,3,3] \rightarrow$	[5, 5, 5, 5, 3, 3]
5	$[5,5,5,\underline{5,3,3}] \rightarrow$	[5,5,5,5,5,5]
6	$[\underline{5,5,5,5,5,5}] \rightarrow$	[0,0,0,0,0,0]

In the fourth test case, the initial array contains only 0, so we do not need to perform any operations with it.

<u>Codeforces</u> (c) Copyright 2010-2024 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: Jul/07/2024 23:57:37 (k1).

Desktop version, switch to mobile version.

<u>Privacy Policy</u>

Supported by

