

Programmazione Lineare Intera: Introduzione

Daniele Vigo

D.E.I. – Università di Bologna daniele.vigo@unibo.it

rev. 1.0 - 2023

Programmazione Lineare Intera

(P)
$$z_P = \min c^T x$$

 $A \ x \ge d$
 $x \ge 0$, intere

- vincoli di interezza: non lineari
 - x intera
- $\Leftrightarrow \sin \pi x = 0$
- x binaria
- $\Leftrightarrow x(x-1) = x^2 x = 0$
- PLI ≈ NLP
- in realtà la non linearità del problema è "concentrata" nella prescrizione di interezza

Rilassamento continuo di PLI

rimuovendo il vincolo di interezza:

rilassamento continuo C(P) "associato" a P

$$Z_{C(P)} \leq Z_P$$

Dim.: ampio

si cerca il minimo in un insieme più

Rilassamento continuo (2)

Th.: se la soluzione del rilassamento continuo è ammissibile per P (= è intera), allora è ottima per P

Dim.:

- 1) $Z_{C(P)} \leq Z_P$
- 2) $x_{C(P)}$ è ammissibile per P

$$\Rightarrow z_{C(P)} = c^T x_{C(P)} \ge z_P \Rightarrow z_{C(P)} = z_P$$

Problemi ed algoritmi

- Algoritmo esatto: determina la soluzione ottima
 - Se il problema è "difficile" il tempo di calcolo necessario ad un algoritmo esatto cresce molto rapidamente (= esponenzialmente) con la dimensione del problema
 - Si risolvono in modo esatto problemi "piccoli"
 - Molti problemi reali sono "difficili" e "grandi"
- Algoritmo euristico o approssimato:
 - determina in tempo ragionevole una soluzione ammissibile di "buona" qualità
 - Si risolvono problemi "grandi"
 - In alcuni casi è possibile dare garanzie sulla qualità della soluzione ottenuta (Es. al più il 1.5 volte la soluzione ottima)

Algoritmo (euristico) per PLI

```
begin
```

```
determina con simplesso la soluzione x di C(P)
if C(P) impossibile then STOP (P impossibile)
else
   if C(P) illimitate then STOP
         (P illimitato, salvo casi particolari)
   else
      if x intero then STOP (x sol. ottima di P)
      else
         "arrotonda" ogni x_i frazionaria all' intero più vicino
```

end

Che soluzioni produce questo algoritmo?

CASO 1: soluzioni utili

- Problemi per cui i valori delle variabili della soluzione ottima sono molto elevati
- Es. pezzi da produrre (elevata quantità)

	C(P)	C(P) arrotondato
$x_1 =$	2449.51	2450
$x_2 =$	14301.1	14301
$x_3 =$	7800.92	7801
$\max x_1 + x_2 + x_3$	24551.53	24552
$3x_1 + x_2 \le 21650$	21649.63	21651

CASO 2: soluzioni inutili

- Problemi in cui i valori delle variabili decisionali all' ottimo sono molto piccoli:
 - Numero di edifici da realizzare
 - Numero di veicoli da assegnare ad un servizio
 - Opportunità di una scelta
 - uso o meno di un tratto di strada in un percorso (sì/no)
 -
- La parte frazionaria non è trascurabile e l'arrotondamento può produrre facilmente soluzioni non ammissibili

CASO 2: soluzioni inutili (2)

 Soluzione intera e continua possono essere molto "lontane"

CASO 3: soluzioni non ammissibili

Nessuno dei quattro punti interi attorno a x_{C(P)}
 è ammissibile per P

Formulazioni equivalenti

• dato $z_P = min \{c^T x : x \in X\}$ esistono molte formulazioni equivalenti:

$$z_P = min \{c^T x : Ax \ge d, x \ge 0, x \text{ intero}\}$$

 i corrispondenti rilassamenti continui non sono però equivalenti!

Confronto di formulazioni

- Esistono formulazioni migliori di altre ?
- Una formulazione $Q^1 = \{A^1x = d^1, x \ge 0\}$ valida per P è migliore di una formulazione $Q^2 = \{A^2x = d^2, x \ge 0\}$ se $Q^1 \subset Q^2$

Se Q^1 e Q^2 sono due formulazioni di un problema di min con $Q^1 \subset Q^2$, allora $z_{C(Q1)} \ge z_{C(Q2)}$

Esempio: Knapsack 0-1

- Dati n oggetti, ciascuno con peso w_j e profitto p_j, j=1,...,n ed un contenitore di capacità W, determinare il sottoinsieme S di oggetti di profitto massimo inseribili nel contenitore.
- Esempio: dato W = 6 e $w = \{4, 3, 2\}$ si ha: $X = \{(0,0,0),(1,0,0),(1,0,1),(0,1,0),(0,1,1),(0,0,1)\}$ $Q^1 = \{x \in \mathbb{R}^3 : 0 \le x \le 1, 4x_1 + 3x_2 + 2x_3 \le 6\}$ $Q^2 = \{x \in \mathbb{R}^3 : 0 \le x \le 1, 4x_1 + 3x_2 + 2x_3 \le 6\}$
- $Q^2 = \{x \in \mathbb{R}^3 : 0 \le x \le 1, 4x_1 + 3x_2 + 2x_3 \le 6, x_1 + x_2 \le 1\}$
- è facile verificare che $Q^2 \subset Q^1$

Formulazione "ideale" di PLI

Esiste una formulazione "ideale" di PLI ?
 Def.: Dato un insieme S ⊆ Rⁿ si dice convex hull (guscio convesso) di S il più piccolo insieme convesso conv(S) che contiene S

• Se X è un insieme di punti interi, conv(X) è un politopo \tilde{P} i cui vertici sono tutti punti *interi*

Formulazione "ideale" di PLI (2)

- conv(X): politopo \tilde{P} i cui vertici sono tutti punti *interi*
- $\exists \tilde{A}, \tilde{d}, \text{ tali che } \tilde{P} = \{x \in \mathbb{R}^n : \tilde{A} \times \tilde{d}, x \geq 0\} = \text{conv}(X) \Rightarrow \min\{ c^T x : x \in X\} = \min\{ c^T x : \tilde{A} \times \tilde{d}, x \geq 0\}$
- PLI può essere risolto con l'algoritmo del simplesso
- Purtroppo determinare conv(X) è molto difficile:
 - il sistema $\tilde{A} \times \tilde{d}$ ha generalmente un numero molto elevato di vincoli (esponenziale nella dimensione di P)
- Esistono casi in cui una formulazione naturale di PLI coincide con la formulazione ideale?

Unimodularità

Def. 1: una matrice quadrata $B(n \times n)$ intera è unimodulare (UM) se $det(B)=\pm 1$

Def. 2: una matrice rettangolare *A* (*m*×*n*) intera è totalmente unimodulare (TUM) se ogni sua sottomatrice quadrata non singolare è UM

Unimodularità (2)

Th.1: $A \text{ TUM} \Rightarrow \text{vertici di } \{x: Ax = d, x \ge 0\}$ interi $\forall d \text{ intero}$

Dim:

- B = matrice corr. ad una base qualsiasi di A
- Soluzione base :

$$x = B^{-1}d = \frac{B^a}{\det(B)}d$$

dove $B^a = aggiunta$ di $B : b_{ij}^a = (-1)^{i+j}$ minore (b_{ij})

• A è $TUM \Rightarrow B$ è $UM \Rightarrow x$ è intero

Unimodularità (3)

Th. 2: A TUM \Rightarrow vertici di $\{x : Ax \le d, x \ge 0\}$ interi \forall d intero

Dim: dimostriamo che se A è TUM, (A|I) è TUM.

C = sottomatrice quadrata non singolare di (A|I):

permutiamo la righe di
$$C \Rightarrow \widetilde{C} = \begin{bmatrix} B & 0 \\ D & I \end{bmatrix}$$

$$det(\tilde{C}) = det(B) \Rightarrow det(C) = \pm det(\tilde{C}) = \pm 1$$

- Quindi : se A è TUM, l' ILP si può risolvere col simplesso
- ∃ condizioni sufficienti per verificare se *A* è *TUM*

Algoritmi generali per PLI

- Metodi esatti tradizionali (anni 60-oggi):
 - Metodo dei piani di taglio (cutting planes)
 - Branch-and-Bound
 - Programmazione Dinamica
- •
- Metodi esatti più avanzati (anni 90-oggi):
 - Branch-and-Bound + Cutting planes =
 Branch-and-Cut
 - Branch-and-Price/Column generation