Table 3-12. Formulation of parameters for summary products

Summary product unmodified over mission

Minimally revised summary product

Fundamentally revised summary product

New summary product

Depreciated summary product (available in CRISM CAT)

#	NAME	STATUS	PARAMETER	FORMULATION	KERNEL WIDTH	RATIONALE	CAVEATS		
Su	Surface Parameters (calculated using TRDR, MRDR, TER, MTRDR Lambert albedo)								
1	R770	V	0.77-µm reflectance	R770	R770: 5	Higher value more dusty or icy	Sensitive to slope effects, clouds		
2	RBR	√	Red/blue ratio	R770/R440	R440: 5 R770: 5	Higher value has more npFeOx	Sensitive to dust in atmosphere		
	BD530	х	0.53-µm band depth	$1 - \left(\frac{R530}{a * R709 + b * R440}\right)$	R440: 5 R530: 5 R709: 5	_	-		
3	BD530_2	V	0.53-µm band depth	$1 - \left(\frac{R530}{a * R614 + b * R440}\right)$	R440: 5 R530: 5 R614: 5	Higher value has more crystalline hematite	-		
	SH600	х	0.6-µm shoulder height	$1 - \left(\frac{a * R530 + b * R709}{R600}\right)$	-	-	_		
4	SH600_2	V	0.6-µm shoulder height	$1 - \left(\frac{a * R533 + b * R716}{R600}\right)$	R533: 5 R600: 5 R716: 3	Select ferric minerals, or compacted texture	Sensitive to high opacity in atmosphere		
5	SH770	V	0.77-µm shoulder height	$1 - \left(\frac{a * R716 + b * R860}{R775}\right)$	R716: 3 R775: 5 R860: 5	Select ferric minerals, less sensitive to LCP than SH600_2	Sensitive to high opacity in atmosphere		
	BD640	х	0.64-µm band depth	$1 - \left(\frac{R648}{a * R600 + b * R709}\right)$	R600: 5 R648: 5 R709: 5	Select ferric minerals (esp. maghemite)	Obscured by VNIR detector artifact		
6	BD640_2	\checkmark	0.64-µm band depth	$1 - \left(\frac{R624}{a * R600 + b * R760}\right)$	R600: 5 R624: 3 R760: 5	Select ferric minerals (esp. maghemite)	Obscured by VNIR detector artifact		
	BD860	х	0.86-µm band depth	$1 - \left(\frac{R860}{a * R800 + b * R984}\right)$	_	_	_		
7	BD860_2	V	0.86-µm band depth	$1 - \left(\frac{R860}{a * R755 + b * R977}\right)$	R755: 5 R860: 5 R977: 5	Select ferric minerals (esp. hematite)	-		
	BD920	х	0.92 µm band depth	$1 - \left(\frac{R920}{a * R800 + b * R984}\right)$	-	_	-		
8	BD920_2	1	0.92 µm band depth	$1 - \left(\frac{R920}{a * R807 + b * R984}\right)$	R807: 5 R920: 5 R984: 5	Low-Ca pyroxene, crystalline ferric minerals	-		
9	RPEAK1 *	V	Reflectance peak 1	wavelength where 1st derivative=0 of 5th order polynomial fit to R442, R533, R600, R710, R740, R775, R800, R833, R860, R892, R925		Longer wavelength peak in dust	-		
10	BDI1000VIS	V	1-µm integrated band depth; VNIR wavelengths	divide R833, R860, R892, R925, R951, R984, R1023 by RPEAK1 then integrate over (1 – normalized radiances) to get integrated band depth		Crystalline ferrous silicates	_		

#	NAME	STATUS	PARAMETER	FORMULATION	KERNEL WIDTH	RATIONALE	CAVEATS
11	BDI1000IR	√	1-µm integrated band depth; IR wavelengths	divide R1030, R1050, R1080, R1150 by linear fit from peak R (of the 15) between 1.3-1.87µm to R2530 extrapolated backwards, then integrate over (1 – normalized radiances) to get integrated band depth		Ferrous silicate once corrected for aerosol induced slope	-
12	IRA	\checkmark	IR albedo	R1330	R1330: 11	IR albedo	_
	OLINDEX2 (beginning with TRR3)	x	Olivine index 2	(RB1080*0.1) + (RB1210*0.1) + (RB1330*0.4) + (RB1470*0.4) Where RB#### = (RC### - R####)/RC####. RC#### denotes the value of a point at a wavelength of #### nm along a modeled line that follows the average slope of the spectrum. Slope for RC#### anchored at R1750 and R2400.	R1080: 7 R1210: 7 R1330: 7 R1470: 7	Olivines strongly > 0	Also sensitive to HCP, Fe- phyllosilicates
13	OLINDEX3 (beginning with TER, MTRDR)	V	Olivine index 3	RB1080 * 0.03 + RB1152 * 0.03 + RB1210 * 0.03 + RB1250 * 0.03 + RB1263 * 0.07 + RB1276 * 0.07 + RB1330 * 0.12 + RB1368 * 0.12 + RB1395 * 0.14 + RB1427 * 0.18 + RB1470 * 0.18 Slope for RC#### anchored at R1750 and R2400.		Olivines strongly > 0	Also sensitive to HCP, Fe- phyllosilicates
	LCPINDEX	х	LCP index	$\left(\frac{R1330 - R1050}{R1330 + R1050}\right) * \left(\frac{R1330 - R1815}{R1330 + R1815}\right)$	_	Pyroxene is strongly +; Favors LCP	-
14	LCPINDEX2 (beginning with TER, MTRDR)	V	Detect broad absorption centered at 1.81 µm (LCP index 2)	RB1690 * 0.20 + RB1750 * 0.20 + RB1810 * 0.30 + RB1870 * 0.30 Slope for RC#### anchored at R1560 and R2450.	R1560: 7 R1690: 7 R1750: 7 R1810: 7 R1870: 7 R2450: 7	Pyroxene is strongly +; Favors LCP	-
	HCPINDEX	х	HCP index	$\left(\frac{R1470 - R1050}{R1470 + R1050}\right) * \left(\frac{R1470 - R2067}{R1470 + R2067}\right)$	-	Pyroxene is strongly +; Favors HCP	LCP
15	HCPINDEX2 (beginning with MTRDR)	V	Detect broad absorption centered at 2.12 µm (HCP index 2)	RB2120 * 0.10 + RB2140 * 0.10 + RB2230 * 0.15 + RB2250 * 0.30 + RB2430 * 0.20 + RB2460 * 0.15 Slope for RC#### anchored at R1810 and R2530.	R1810: 7 R2120: 5 R2140: 7 R2230: 7 R2250: 7 R2430: 7 R2460: 7 R2530: 7	Pyroxene is strongly +; Favors HCP	-
16	BD1300	V	1.3-µm absorption associated with Fe ²⁺ substitution in plagioclase	$1 - \left(\frac{R1320}{a * R1080 + b * R1750}\right)$	R1080: 5 R1320: 15 R1750: 5	Plagioclase with Fe ²⁺ substitution	Fe-rich olivine can be > 0
17	VAR	٧	1.0-2.3-µm spectral variance	Fit a line from 1-2.3 microns and find variance of observed values from fit values by summing in quadrature over the # intervening wavelengths	-	OI & Px will have high values; (to be used w/ OL, PX indices)	-
18	ISLOPE1	V	Spectral slope 1	$\left(\frac{R1815 - R2530}{W2530 - W1815}\right)$	R1815: 5 R2530: 5	ferric coating on dark rock	Sensitive to atmospheric hazes

#	NAME	STATUS	PARAMETER	FORMULATION	KERNEL WIDTH	RATIONALE	CAVEATS
19	BD1400	V	1.4-µm H₂O & -OH band depth	$1 - \left(\frac{R1395}{a*R1330 + b*R1467}\right)$	R1330: 5 R1395: 3 R1467: 5	Hydrated & hydroxylated minerals	-
20	BD1435	V	1.435-µm CO₂ ice band depth	$1 - \left(\frac{R1435}{a*R1370 + b*R1470}\right)$	R1370: 3 R1432: 1 R1470: 3	CO2 ice, some hydrated minerals	-
	BD1500	x	1.5-µm H₂O ice band depth	$1 - \left(\frac{R1505 + R1558}{R1808 + R1367}\right)$	-	H2O ice	-
21	BD1500_2	√	1.5-µm H₂O ice band depth	$1 - \left(\frac{R1525}{a * R1367 + b * R1808}\right)$	R1367: 5 R1525: 11 R1808: 5	H2O ice	-
	ICER1	√	CO ₂ and H ₂ O ice band depth ratio	R1510/R1430	R1510: 5 R1430: 5	CO2-H2O ice mixtures; > 1 for more CO2, < 1 for more water	-
22	ICER1_2	V	CO ₂ and H ₂ O ice band depth ratio	$1-\left(\!\frac{\left(\frac{R1510}{RC1510}\right)}{\left(\frac{R1435}{RC1435}\right)}\!\right)$ Slope for RC#### anchored at R1850 and R2060.	R1850: 5 R1510: 5 R1435: 5 R2060: 5	CO2-H2O ice mixtures; > 1 for more CO2, < 1 for more water	-
	BD1750	х	1.7-µm H₂O band depth	$1 - \left(\frac{R1750}{a * R1550 + b * R1815}\right)$	-	Gypsum Alunite	-
23	BD1750_2	V	1.7-µm H₂O band depth	$1 - \left(\frac{R1750}{a * R1690 + b * R1815}\right)$	R1690: 5 R1750: 3 R1815: 5	Gypsum Alunite	Don't use on pre- MRDR, TER, MTRDR products
	BD1900	х	1.9-µm H₂O band depth	$1 - \left(\frac{\left(\frac{R1930 + R1985}{2}\right)}{a * 1875 + b * 2067}\right)$	-	H2O in minerals	Weakly sensitive to lo-Ca pyroxene, glass, H2O ice
24	BD1900_2	V	1.9-µm H2O band depth	$0.5 * \left(1 - \left(\frac{R1930}{a * R1850 + b * R2067}\right)\right) + 0.5$ $* \left(1 - \left(\frac{R1985}{a * R1850 + b * R2067}\right)\right)$	R1850: 5 R1930: 5 R1985: 5 R2067: 5	H2O in minerals	Weakly sensitive to lo-Ca pyroxene, glass, H2O ice
	BD1900r	7	1.95-µm H₂O band depth	$1 - \left(\frac{R1908 + R1914 + R1921 + R1928 + R1934 + R1941}{R1862 + R1869 + R1875 + R2112 + R2120 + R2126}\right)$	R1862: 1 R1869: 1 R1875: 1 R1908: 1 R1914: 1 R1921: 1 R1928: 1 R1934: 1 R1934: 1 R2112: 1 R2112: 1 R2120: 1	H2O in minerals	Weakly sensitive to lo-Ca pyroxene, glass, H2O ice
25	BD1900r2	√	1.95-µm H₂O band depth	$1 - \begin{pmatrix} \frac{R1908}{RC1908} + \frac{R1914}{RC1914} + \frac{R1921}{RC1921} + \frac{R1928}{RC1928} + \frac{R1934}{RC1934} + \frac{R1941}{RC1941} \\ \frac{R1862}{RC1862} + \frac{R1869}{RC1869} + \frac{R1875}{RC1875} + \frac{R2112}{RC2112} + \frac{R2120}{RC2120} + \frac{R2126}{RC2126} \end{pmatrix}$ Slope for RC#### anchored at R1850 and R2060.	R1850: 1 R1862: 1 R1869: 1 R1875: 1 R1908: 1 R1914: 1 R1921: 1 R1928: 1 R1934: 1 R1941: 1 R2112: 1 R2120: 1 R2126: 1 R2060: 1	H2O in minerals	Weakly sensitive to lo-Ca pyroxene, glass, H2O ice
26	BDI2000	√	2-µm integrated band depth	divide R1660, R1811, R2009, R2141, R2206, R2253, R2292, R2318, R2352, R2391, R2431, R2457 by linear fit from peak R (of 15) between 1.3-1.87μm to R2530, then integrate over (1 – normalized radiances) to get integrated band depth	_	Pyroxene, glass	Weakly sensitive to H2O ice

#	NAME	STATUS	PARAMETER	FORMULATION	KERNEL WIDTH	RATIONALE	CAVEATS
	BD2100	х	2.1-µm shifted H ₂ O band depth (multispectral)	$1 - \left(\frac{\frac{(R2120 + R2130)}{2}}{a*R1930 + b*R2250}\right)$	-	H2O in monohydrated sulfate	Alunite, Serpentine
27	BD2100_2	V	2.1-µm shifted H ₂ O band depth (hyperspectral)	$1 - \left(\frac{R2132}{a*R1930 + b*R2250}\right)$	R1930: 5 R2132: 5 R2250: 5	H2O in monohydrated sulfates	Alunite, Serpentine
28	BD2165	V	2.165-µm Al-OH band depth	$1 - \left(\frac{R2165}{a * R2120 + b * R2230}\right)$	R2120: 5 R2165: 3 R2230: 3	Pyrophyllite Kaolinite-group	Beidellite Allophane Imogolite
29	BD2190	√	2.190-µm Al-OH band depth	$1 - \left(\frac{R2185}{a * R2120 + b * R2250}\right)$	R2120: 5 R2185: 3 R2250: 3	Beidellite Allophane Imogolite	Kaolinite-group
30	D2200	V	2.2-µm dropoff	$1 - \left(\frac{\frac{R2210}{RC2210} + \frac{R2230}{RC2230}}{2*\frac{R2165}{RC2165}}\right)$ Slope for RC#### anchored at R1815 and R2430.	R1815: 7 R2165: 5 R2210: 7 R2230: 7 R2430: 7	Al-OH minerals	Chlorite, Prehnite/Pumpell yite
	DOUB2200 H	x	2.16-µm Si-OH band depth and 2.21-µm H-bound Si-OH band depth (doublet)	$1 - \left(\frac{R2205 + R2258}{R2172 + R2311}\right)$	R2172: 5 R2205: 3 R2258: 3 R2311: 5	Opal and other Si-OH phases	-
31	MIN2200	V	2.16-µm Si-OH band depth and 2.21-µm H-bound Si-OH band depth (doublet)	$minimum \left[\left(1 - \left(\frac{R2165}{a * R2120 + b * R2350} \right) \right), \left(1 - \left(\frac{R2210}{a * R2120 + b * R2350} \right) \right) \right]$	R2120: 5 R2165: 3 R2120: 3 R2350: 5	Kaolinite group	-
	BD2210	х	2.21-µm Al-OH band depth	$1 - \left(\frac{R2210}{a*R2120 + b*R2250}\right)$	R2120: 5 R2210: 3 R2250: 5	Al-OH minerals	Gypsum, Alunite
32	BD2210_2	V	2.21-µm Al-OH band depth	$1 - \left(\frac{R2210}{a*R2165 + b*R2290}\right)$	R2165: 5 R2210: 5 R2290: 5	Al-OH minerals	Gypsum, Alunite
33	BD2230	V	2.23-µm band depth	$1 - \left(\frac{R2235}{a*R2210 + b*R2252}\right)$	R2210: 3 R2230: 3 R2252: 3	Hydroxylated ferric sulfate	Al-OH minerals
34	BD2250	V	2.25-µm broad Al- OH and Si-OH band depth	$1 - \left(\frac{R2245}{a * R2120 + b * R2340}\right)$	R2120: 5 R2245: 7 R2340: 3	Opal and other Si-OH minerals	-
35	MIN2250 (beginning with TER, MTRDR)	V	2.21-µm Si-OH band depth and 2.26-µm H-bound Si-OH band depth	$minimum \left[\left(1 - \left(\frac{R2210}{a*R2165 + b*R2350} \right) \right), \left(1 - \left(\frac{R2265}{a*R2165 + b*R2350} \right) \right) \right]$	R2165: 5 R2210: 3 R2265: 3 R2350: 5	Opal	-
36	BD2265 (beginning with TER, MTRDR)	√	2.265-µm band depth	$1 - \left(\frac{R2265}{a * R2210 + b * R2295}\right)$	R2210: 5 R2265: 3 R2295: 5	Jarosite Gibbsite Acid-treated nontronite	-
37	BD2290	V	2.3-µm Mg,Fe-OH band depth / 2.292-µm CO2 ice band depth	$1 - \left(\frac{R2290}{a * R2250 + b * R2350}\right)$	R2250: 5 R2290: 5 R2350: 5	Mg,Fe-OH minerals	Mg-Carbonate; Also CO2 ice
38	D2300	٧	2.3-μm dropoff	$1 - \begin{pmatrix} \frac{R2290}{RC2290} + \frac{R2320}{RC2320} + \frac{R2330}{RC2330} \\ \frac{R2120}{RC2120} + \frac{R2170}{RC2170} + \frac{R2210}{RC2210} \end{pmatrix}$ Slope for RC#### anchored at R1815 and R2530.	R1815: 5 R2120: 5 R2170: 5 R2210: 5 R2290: 3 R2320: 3 R2330: 3 R2530: 5	Mg,Fe-OH minerals	Mg-Carbonate; Also CO2 ice

#	NAME	STATUS	PARAMETER	FORMULATION	KERNEL WIDTH	RATIONALE	CAVEATS
39	BD2355	V	2.35-µm band depth	$1 - \left(\frac{R2355}{a*R2300 + b*R2450}\right)$	R2300: 5 R2355: 5 R2450: 5	Chlorite Prehnite Pumpellyite	Requires normalization of atmo. CO absorption
	SINDEX	х	Detects convexity at 2.29 µm due to absorptions at 1.9/2.1 µm & 2.4 µm	$1 - \left(\frac{R2100 + R2400}{2 * R2290}\right)$	-	Mono and polyhydrated sulfates) will be > 0	-
40	SINDEX2	√	Inverse lever rule to detect convexity at 2.29 µm due to absorptions at 1.9/2.1 µm & 2.4 µm	$1 - \left(\frac{a * R2120 + b * R2400}{R2290}\right)$	R2120: 5 R2290: 7 R2400: 3	Mono and polyhydrated sulfates) will be > 0	-
	ICER2	x	2.7-µm CO2 ice band	R2530/R2600	-	CO2 vs water ice /soil; CO2 will be >>1, water and soil will be ~1	-
41	ICER2	V	2.7-µm CO2 ice band	RB2600 Where RB#### = (RC#### - R####)/RC####. RC#### denotes the value of a point at a wavelength of #### nm along a modeled line that follows the average slope of the spectrum. Slope for RC#### anchored at R2456 and R2530.	R2456: 5 R2530: 5 R2600: 5	CO2 vs water ice /soil; CO2 will be >>0, water and soil will be ~0	-
	BDCARB	х	Carbonate overtone band depth, or metal- OH band	$1 - \sqrt{\left(\frac{R2330}{a*R2230 + b*R2390}\right)*\left(\frac{R2530}{c*R2390 + d*R2600}\right)}$	-	Carbonates; both overtones need to be present to increase parameter value	Many hydroxylated silicate phases
42	MIN2295_ 2480 (beginning with TER, MTRDR)	V	Mg Carbonate overtone band depth and metal- OH band	$minimum \left[\left(1 - \left(\frac{R2295}{a * R2165 + b * R2364} \right) \right), \left(1 - \left(\frac{R2480}{a * R2364 + b * R2570} \right) \right) \right]$	R2165: 5 R2295: 5 R2364: 5 R2480: 5 R2570: 5	Mg -carbonates or hydroxylated silicate; both overtones need to be present to increase parameter value	-
43	MIN2345_25 37 (beginning with MTRDR)	V	Ca/Fe Carbonate overtone band depth and metal- OH band	$minimum \left[\left(1 - \left(\frac{R2345}{a * R2250 + b * R2430} \right) \right), \left(1 - \left(\frac{R2537}{a * R2430 + b * R2602} \right) \right) \right]$	R2250: 5 R2345: 5 R2430: 5 R2537: 5 R2602: 5	Ca/Fe - carbonates or hydroxylated silicate; both overtones need to be present to increase parameter value	Prehnite, Serpentine
	BD2500H	х	Mg Carbonate overtone band depth	$1 - \left(\frac{R2500 + R2510}{R2540 + R2380}\right)$	R2380: 5 R2500: 5 R2510: 5 R2540: 5	Mg-carbonates	Some zeolites
44	BD2500_2	√	Mg Carbonate overtone band depth	$1 - \left(\frac{R2480}{a * R2364 + b * R2570}\right)$	R2364: 5 R2480: 5 R2570: 5	Mg-carbonates	Some zeolites
45	BD3000	V	3-µm H2O band depth	$1 - \left(\frac{R3000}{R2530 * \left(\frac{R2530}{R2210}\right)}\right)$	R2210: 5 R2530: 5 R3000: 5	bound H2O (accounts for spectral slope)	-
46	BD3100	√	3.1-µm H2O ice band depth	$1 - \left(\frac{R3120}{a*R3000 + b*R3250}\right)$	R3000: 5 R3120: 5 R3250: 5	H2O ice	-
47	BD3200	√	3.2-µm CO2 ice band depth	$1 - \left(\frac{R3320}{a*R3250 + b*R3390}\right)$	R3250: 5 R3320: 5 R3390: 5	CO2 ice	-
48	BD3400	V	3.4-µm carbonate band depth	$1 - \left(\frac{a*R3390 + b*R3500}{c*R3250 + d*R3630}\right)$	-	carbonates	-

#	NAME	STATUS	PARAMETER	FORMULATION	KERNEL WIDTH	RATIONALE	CAVEATS	
49	BD3400_2	V	3.4-µm carbonate band depth	$1 - \left(\frac{R3420}{a * R3250 + b * R3630}\right)$	R3250: 10 R3420: 15 R3630: 10	carbonates	-	
50	CINDEX	7	3.9-µm carbonate index	$\left(\frac{R3750 + \frac{(R3750 - R3630)}{(3750 - 3630)*(3950 - 3750)}}{R3950}\right) - 1$	_	carbonates will be > 'bkgrnd' values > 0	-	
51	CINDEX2	√	Inverse lever rule to detect convexity at 3.6 µm due to absorptions at 3.4 µm & 3.9 µm	$1 - \left(\frac{a * R3450 + b * R3875}{R3610}\right)$	R3450: 9 R3610: 11 R3875: 7	carbonates will be > 'bkgrnd' values > 0	-	
Atn	Atmospheric Parameters (calculated using TRDR, MRDR, TER, MTRDR photometrically corrected I/F)							
52	R440	√	0.44-µm reflectance	R440	R440: 5	Clouds/Hazes	-	
53	IRR1	√	IR ratio 1	R800/R1020	R800: 5 R1020: 5	Aphelion ice clouds (>1) vs. seasonal or dust (< 1)	-	
54	BD2600	V	2.6-µm H2O band depth	$1 - \left(\frac{R2600}{a * R2530 + b * R2630}\right)$	R2530: 5 R2600: 5 R2630: 5	H2O vapor (accounts for spectral slope)	-	
55	IRR2	V	IR ratio 2	R2530/R2210	R2210: 5 R2350: 5	aphelion ice clouds vs. seasonal or dust	_	
56	IRR3	√	IR ratio 3	R3500/R3390	R3390: 7 R3500: 7	aphelion ice clouds (higher values) vs. seasonal or dust	-	