Homework #4

Sam Fleischer

February 12, 2016

Problem 1	 						•		 					•				 	•	•		2
Problem 2	 	 				 			 													2
Problem 3	 	 				 			 		 •											3
Problem 4	 	 				 			 		 •							 				3
Problem 5	 	 				 			 									 				3

Problem 1

The following nonhomogeneous IBVP describes heat flow in a rod whose ends are held at temperatures u_0 , u_1 :

$$u_t = u_{xx}$$
 $0 < x < 1$, $t > 0$
 $u(0, t) = u_0$, $u(1, t) = u_1$
 $u(x, 0) = f(x)$

(a) Find te steady state temperature U(x) taht satisfies

$$U_{xx} = 0$$
 $0 < x < 1$
 $U(0) = u_0$, $U(1) = u_1$

- **(b)** Write u(x, t) = U(x) + v(x, t) and find the corresponding IBVP for v. Use separation of variables to solve for v and hence u.
- (c) How does u(x, t) behave as $t \to \infty$?

Problem 2

Define a first-order differential operator with complex coefficients acting $L^2(0,2\pi)$ by

$$A = -i\frac{\mathrm{d}}{\mathrm{d}x}.$$

- (a) Show that A is formally self-adjoint.
- **(b)** Show that A with periodic boundary conditions $u(0) = u(2\pi)$ is self-adjoint, and find the eigenvalues and eigenfunctions of the corresponding eigenvalue problem

$$-iu'=\lambda u, \qquad u(0)=u(2\pi).$$

(c) What are the adjoint boundary conditions to the Dirichlet condition u(0) = 0 at x = 0? Is A with this Dirichlet boundary condition self-adjoint? Find all eigenvalues and eigenfunctions of the corresponding eigenvalue problem

$$-iu' = \lambda u, \qquad u(0) = 0.$$

How does your result compare with the properties of finite-dimensional eigenvalue problems for matrices?

Problem 3

Let A be a Sturm-Liouville operator, given by

$$Au = -(pu')' + qu,$$

acting in $L^2(a,b)$. Verify that A with the Robin boundary conditions

$$\alpha u'(a) + u(a) = 0,$$
 $u;(b) + \beta u(b) = 0$

is self adjoint.

Problem 4

Show that the eigenvalues of the Sturm-Lioville problem

$$-u'' = \lambda u$$
 $0 < x < 1$
 $u(0) = 0$, $u'(1) + \beta u(1) = 0$

are given by $\lambda = k^2$ where k > 0 satisfies the equation

$$\beta \tan k + k = 0$$
.

Show graphically that there is an infinite sequence of simple eigenvalues $\lambda_1 < \lambda_2 < \dots < \lambda_n < \dots$ with $\lambda_n \to \infty$ as $n \to \infty$. What is the asymptotic behavior of λ_n as $n \to \infty$?

Problem 5

THe following IBVP describes heat flow in a rod whose left end is held at temperature 0 and whose right end loses heat to the surroundings according to Newton's law of cooling (heat flux is proportional to the temperature difference):

$$u_t = u_{xx}$$
 $0 < x < 1, t > 0$
 $u(0, t) = 0,$ $u'(1, t) = -\beta u(1, t)$
 $u(x, 0) = f(x)$

Solve this IBVP by the method of separation of variables.