# Adaptive Methane Detection

Author: Kern Ding

Mentor: David Thompson, Lance Christensen

Project Overview

Simulate Methane Distribution

Update Hypothesis Probability

Expected Information Gain to start path planning

### Project Object

- JPL has developed a hand-held methane sniffer that can be deployed on a flying robot.
- To develop an automated system that guides the robot or person carrying the sniffer from first detection to the leak source.
- Input: methane concentration and wind vector at detected location
- Output: direction to the leak source

### Foundation Approach

- The approach is a Bayesian Model
- First, set several hypotheses (leak location, leak concentration)
- Using the collocated data to update the probability of those hypotheses

Project Overview

Simulate Methane Distribution

Update Hypothesis Probability

Expected Information Gain to start path planning

#### Simulate wind turbulence







### Local potential field by obstacle



### Build the map model





### Build a virtual world for hypothesis

- Decompose the map into cells tagged as building, air and ground.
- Make a methane leak location cell and its leak concentration as a hypothesis.
- Distribute methane from cells to cells using Gaussian distribution by calculated wind.

Project Overview

Simulate Methane Distribution

Update Hypothesis Probability

Expected Information Gain to start path planning

# Calculated methane concentration under each hypothesis



We normalized the probability for all the hypotheses in the initialized stage:

 $probability^i = 1/N$ 

For the virtual world according to each hypothesis, calculate the methane concentration in every cell in the map.

We can draw the concentration/coordinate plot as left showing

# Model the likelihood using gamma distribution









## Model the likelihood using gamma distribution

 $Mean^i$  = Concentration under  $i^{th}$  hypothesis

x = Concentration detected in real word

 $likelihood^i = Gamma.pdf(Mean^i, x)$ 

 $Probability_{new}^i = Probability_{old}^i * likehood^i$ 

Repeated the steps for each detection

## Model the likelihood using gamma distribution



Project Overview

Simulate Methane Distribution

Update Hypothesis Probability

Expected Information Gain to start path planning

### Entropy for the set of hypotheses

- Make probability of hypothesis as variable marked as x<sup>i</sup>
- Mark the all hypotheses set as X
- Entropy of the set of hypotheses is:
  - $H(X) = -\sum_{i} P(x^{i}) log_{b} P(x^{i})$

# Update probability in the future under specific assumption

- Prepared a location l as detected candidate in the future
- Assume the  $k^{th}$  hypothesis is true for next detection
- Calculate new probability for each hypothesis under that assumption:
  - $\blacksquare$  likelihood<sup>i</sup><sub>k,l</sub> = Gamma.pdf(Mean<sup>i</sup><sub>l</sub>, Mean<sup>k</sup><sub>l</sub>)
  - $ightharpoonup Probability_{k,l}^i = Probability^i * likelihood_{k,l}^i$

# Expected Information Gain under specific assumption

The new Entropy for the probability updated hypotheses:

$$H(X_{k,l}) = -\sum_{i} P(x_{k,l}^{i}) * \log_{b} P(x_{k,l}^{i})$$

Expected Information Gain:

$$\blacksquare IG_{k,l} = H(X) - H(X_{k,l})$$

# Sum the Expected Information Gain for each assumption

- Assume all the hypotheses are true one hypothesis a time
- Sum all the Expected Information Gain under one true hypothesis assumption weighted by its original probability:

$$\blacksquare IG_l = \sum_k IG_{k,l} * P(x^k)$$

## Choose candidates by Expected Information Gain

- By compared  $IG_l$  for different locations, we can decide which candidate location to move next step in order to get more information.
- It's a start point for path planning

Project Overview

Simulate Methane Distribution

Update Hypothesis Probability

Expected Information Gain to start path planning

#### A virtualization Demo

- Thank David for all his the intelligent ideas and algorithm framework
- Thank Lance for his real world knowledge and practical experience to build our model
- Here is a Demo running on real data collected by Lance.