Thème : Ondes et Signaux Séquence 2 : Son et Électricité

SPC - Seconde GT

Année scolaire 2019 - 2020

Plan de la séquence

- Chp 4 : Émission et perception d'un son (*Chp 14 du livre*)
 - Act. Exp. 4.1 : Enregistrer et visualiser un son
 - Act. Exp. 4.2 : Créer un son avec un microcontrôleur, l'analyser. Manipuler du code
 - Cours et exercices
 - Évaluation courte
- Chp 5 : Circuits électriques (Chp 17 du livre)
 - Act. Exp. 5.1:
 - Act. Exp. 5.2:
 - Cours et exercices
 - Évaluation courte
- Chp 6 : Capteurs électriques (Chp 17 du livre)
 - Act. Exp. 6.1:
 - Cours et exercices
 - Évaluation courte

Pré requis de la séquence

- Maths: Puissance de 10 et écriture scientifique. Savoir reconnaître une situation de proportionnalité.
- Chapitre 4: Fréquence d'un son ; lien entre vitesse, distance parcourue et temps de parcours ; domaine de fréquences pour les infrasons, les sons audibles et les ultrasons.
- Chapitre 5 : Sens de circulation du courant électrique. Intensité et tension électriques et leur mesure. Loi d'Ohm. Association en série et en dérivation.
- Chapitre 6 : Intensité et tension électriques et leur mesure. Loi d'Ohm.

Attendus de fin de séquence chapitre 4

- Connaitre la vitesse de propagation du son dans l'air
- Savoir décrire la nature et le principe de propagation d'une onde sonore
- Oéterminer la période et la fréquence d'un son
- Savoir définir hauteur, timbre, intensité sonore et niveau d'intensité sonore
- Savoir caractériser un son
- Savoir relier la hauteur et le timbre à des fréquences du son
- Utiliser un microcontrôleur (carte Arduino)

Attendus de fin de séquence chapitre 5

- Exploiter la loi des mailles et la loi des nœuds
- Utiliser la loi d'Ohm
- Représenter un nuage de points associé à une caractéristique et modéliser une caractéristique
- Exploiter la caractéristique d'un dipôle : point de fonctionnement et modélisation
- Utiliser un dispositif avec un microcontrôleur

Attendus de fin de séquence chapitre 6

- Mesurer une grandeur physique à l'aide d'un capteur
- Utiliser un dispositif avec un microcontrôleur et des capteurs

Chapitre 4 : Émission et perception d'un son

- I Le son et sa propagation
- II Caractéristique d'un signal sonore
- III Le son et l'oreille

Chp 4 : I - Le son et sa propagation (1/2)

- Un signal sonore résulte de la mise en vibration des molécules ou des atomes d'un milieu de propagation.
- Un signal sonore est un phénomène de déplacement d'une perturbation de proche en proche dans un milieu matériel et sans transport effectif de matière.
- Un son ne peut donc exister que dans un milieu matériel. La vitesse de propagation du son dépend du milieu de propagation.

•	Milieu	Air	Eau liquide	Verre	Acier
	$v(m\cdots^{-1})$ à 20°C	340	1500	5300	5800

Chp 4 : I - Le son et sa propagation (2/2)

Animation: Propagation d'une onde sonore plane

http://www.ostralo.net/3_animations/swf/onde_sonore_plane.swf

Chp 4 : II - Caractéristique d'un signal sonore (1/2)

- La période T : la plus petite durée (en secondes) pour laquelle le signal se reproduit identique à lui-même.
- La **fréquence** $f: f = \frac{1}{T}$ exprimée n hetz (Hz) et T en secondes. C'est le nombre de périodes en une seconde.
- La hauteur d'un son complexe, notée f₁ est la fréquence la plus basse (le fondamental), qui multipliée par un entier donnera la fréquence des harmoniques.
- Le **timbre** d'un son complexe est composé des harmoniques de fréquence $f_n = n \cdot f_1$ et d'intensités différentes. Il est caractéristique de la source sonore émettrice (piano, violon, etc).

Chp 4 : II - Caractéristique d'un signal sonore (2/2)

Ces graphiques représentent deux signaux sonores de périodes T_1 et T_2 distinctes et de timbres différents. Le temps est en abscisse.

Chp 4 : III - Le son et l'oreille (1/2)

Un son ne sera entendu par l'oreille humaine que si :

 son niveau d'intensité sonore (en dB) est suffisant, mais sans dépasser certaines valeurs dommageables pour l'oreille;

Échelle d'intensité en décibels (dB)

• sa fréquence doit se trouver dans le domaine de sensibilité de l'oreille

Chp 4 : III - Le son et l'oreille (2/2)

Plus la fréquence d'un son est élevée, plus le son est haut, plus il est aigu.

Chapitre 5 : Circuits électriques

- I La loi des nœuds
- II La loi des mailles

Chp 5 : I - La loi des nœuds

La somme des intensités des courants qui arrivent à un nœud est égale à la somme des intensités des courants qui partent de ce nœud.

Dans le nœud ci-centre, la loi s'écrit : $I_1 + I_2 = I_3 + I_4$

Chp 5 : II - La loi des mailles (1/3)

Soit le circuit électrique :

Chp 5 : II - La loi des mailles (2/3)

La loi des mailles : la somme des tensions des dipôles le long d'une maille est égale à 0 V.

En parcourant la maille (AGFEDCBA), on peut écrire $U_{AA}=0$ V soit :

$$U_{AG} + U_{GF} + U_{FE} + U_{ED} + U_{DC} + U_{CB} + U_{BA} = 0 \text{ V}$$

et en s'appuyant sur le schéma :

$$0 + 0 - U_{FE} - U_{DE} + 0 + 0 + U_{BA} = 0 \text{ V}$$

donc : $U_{BA} = U_{DE} + U_{EF}$

On retrouve ici la loi d'additivité des tensions pour des dipôles en série.

Chp 5 : II - La loi des mailles (3/3)

En parcourant la maille (ABCGA), on peut écrire $U_{AA}=0$ V soit :

$$U_{AB} + U_{BC} + U_{CG} + U_{GA} = 0 \text{ V}$$

et en s'appuyant sur le schéma du circuit :

$$U_{AB} + 0 + U_{CG} + 0 = 0 \text{ V}$$

d'où : $U_{BA} = U_{CG}$?

On retrouve ici la loi d'unicité des tensions sur deux branches en dérivation.

Chapitre 6 : Capteurs électriques

Chaîne instrumentale dans laquelle prend place un capteur et par un microcontrôleur (carte Arduino) :

Chp 6 : Les limites de la modélisation (1/2)

Le capteur délivre en sortie une tension électrique qui dépend de la grandeur mesurée en entrée. Le signal délivré en sortie peut être "faussé" de multiples manières :

- les variations de température, de pression, d'humidité ou encore une perturbation par un champ magnétique extérieur (présence d'un aimant au voisinage immédiat du capteur, etc.) peuvent modifier la valeur mesurée;
- chaque capteur possède un temps de réaction propre. Il peut être nécessaire d'espacer dans le temps des mesures successives;
- les capteurs ont une précision et une plage de mesure dépendant de leur technologie et de leur prix. Il convient de trouver un compromis coût/efficacité, selon les mesures à effectuer et la précision attendue.

Chp 6 : Les limites de la modélisation (2/2)

Notons également que le microcontrôleur Arduino peut convertir un signal d'entrée analogique en un signal numérique. Cette opération appelée conversion analogique/ numérique est limitée à des signaux de fréquence 1 kHz maximum pour Arduino.