EXP 9: STUDY OF ATTENTUATION AND PROPAGA
TION CHARACTERISTICS OF OPTICAL

FIBER CABLE

1. Attentuation in fibers.

Aim: i) To determine the attentuation for the given obtical fiber.

hence the acceptance angle of the given fiber cables.

Apparatus Required: Fibes offic light source, offic frown meter and fiber cables (Im & 5m),

Numerical aferture measurement JIG, offical fiber cable with source, screen.

Principle:

The propagation of light down dielectric waveguides bears some similarity to the propagation of microvaocs down metal waveguides. If a beam of Power Pi is launched into one end of an optical fiber and if Pp is the power remaining after a length Lkm has been traversed, then the

Attentuation = 10 [log (Pi/Pg)] / LdB | km

attentuation is given by,

Jornula: Attentuation = 10 [log (Pi /Pf)] / L dB | km Fiber Optic AC Light Source Fiber Cable DMM. Power (200mV) fig. Set-up for loss measurement Acceptance fig . Numerical sperature cone

DETERMINATION OF ATTENTUATION FOR OPT-

Source	Power Output for Im table (Pi)	Power Output for 5m cable (Pg)	Attentuation # = 10[log(Pe)]/Ld[kn]
Min	- 32·2	-30.5	58.89
Mase	-8.8	-7.4	188 - 12

MEASUREMENT OF NUMERICAL APERTURE

Circle	Distance b/w source & screen L (mm)	Diameter of the sport W (mm)	NA = W THL2+W2	9
Бm	10	11	0.4819	28.82
	20	19	0.4290	25.40
	3D	29.	0.4351	25.78
	40	39	0.4382	26.98
	Mean		0.4460	26,49
lm	10	10	0.4472	26.55
	20	19	0.4290	25-40
	30	27	0.4103	24.20.
	40	39 .	0.4382	25.98
	Mean		0 . 4311	a6.53

Calculations:

Determination of Attentuation

min:

$$P_{1}^{2} = -32.2$$
 $P_{1} = -30.5$
 $L = 4 \times 10^{3} \text{km}$

Attentuation =
$$\frac{10}{4 \times 10^{-3}} \log \left(\frac{P_i}{P_c} \right) db/km$$

$$= \frac{10}{4 \times 10^{-3}} \log \left[\frac{-32.2}{-30.5.} \right]$$

$$= 2.5 \times 10^{3} \log \left(\frac{32.2}{30.5}\right)$$

2. max:

$$P_{k}^{\circ} = -8.8$$
 $P_{g} = -7.4$
 $L = 4 \times 10^{-3} \text{ km}$

Attentiation =
$$\frac{10}{4 \times 10^{-3}} \log \left(\frac{-8.8}{-7.4} \right)$$

=
$$2.5 \times 10^3 \cdot \log \left(\frac{8.8}{7.4} \right)$$

Measurement of Numerical aperture

$$W = 10$$
 $W = 11$

$$NA_1 = \frac{W}{\sqrt{4L^2 + W^2}}$$

$$=\frac{11}{\sqrt{400+121}}$$

$$\theta = Sin^{-1}(NA)$$
= $Sin^{-1}(0.4819)$
= 28.82

2.
$$L = 40$$

 $W = 19$

$$NA_2 = \frac{19}{\sqrt{4(40)^2 + (19)^2}}$$

$$\theta = \sin^{-1}(0.4290)$$

$$= 25.40$$

$$1. L = 10$$

 $W = 10$

$$NA_3 = \frac{10}{\sqrt{4(10)^2 + (10)^2}}$$

$$\theta = \sin^{-1}(0.4472)$$

$$\lambda = 40$$

 $W = 39$

$$NA_{4} = \frac{39}{\sqrt{4(40)^{2} + (39)^{2}}}$$

$$\theta = 800^{-1}(0.4382)$$

e de la compania del compania del compania de la compania del compania de la compania del compania de la compania de la compania de la compania de la compania del compania

Mean

$$\frac{\text{mean} = NA_1 + NA_2 + NA_3 + NA_4}{4}$$

$$\theta$$
 mean = $28.80 + 25.40 + 25.79 + 25.98$

$$NA_{mean} = 0.4472 + 0.4290 + 0.4103 + 0.4382$$

$$\theta$$
 mean = $26.56 + 25.40 + 24.22 + 25.99$

Result:

- 1. Attentuation at source level A [min] = 58.89 dB|km.
- 2. Attentuation at source level B [max] = 188.12 dB/km.
- 3. The numerical aperture of fiber is measured as:

$$\rightarrow 5m = 0.4460$$

$$\rightarrow 1m = 0.4311$$

4. The acceptance angle is calculated as:

$$\rightarrow 5m = 26.49$$

$$\rightarrow lm = a5.54$$