

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/58

Video Solution on YouTube:- https://youtu.be/OFgk-LWI6UI

- Q 1. The change in momentum of a molecule moving with momentum p colliding stationary wall of the container can not be
 - (a) p/2
- (b) 2p
- (c) 3p
- (d) p
- Q 2. A gas is kept in a closed container, a small hole is made in container and due to hole gas is leaking out (Temperature of sample is constant).

		, ,	1 1/ 1/ 1			
	Column I		Column II			
(A)	Pressure of gas	(P)	Increases			
(B)	Frequency of collisions of a molecule with wall of container	(q)	Decreases			
(C)	Momentum transferred to wall by a molecule per collision	(r)	Remain constant			
(D)	Energy of gas sample	(s)	Zero			
		/ /				

- N molecules each of mass (m) of gas (A) and 2N molecules, each of mass (2m) of gas Q 3. (B) are contained in the same vessel which maintained at a temperature (T). The mean square of the velocity of molecules of (B) type is denoted by (v^2) and the mean square of the (X) component of the velocity of (A) type is denoted by (w^2) then w^2/v^2 is -
 - (a) 2°
- (b) 1
- (c) 1/3
- (d) 2/3
- Cooking gas container are kept in a lorry moving with uniform speed. The Q 4. temperature of the gas molecules inside will –
 - (a) Increase
 - (b) Decrease
 - (c) Remain same
 - (d) Decrease for some, while increase for others
- The mass of hydrogen molecule is 3.32×10^{-27} kg. If 10^{23} hydrogen molecules strike Q 5. per second at 2 cm² area of a rigid wall at an angle of 45⁰ from the normal and rebound back with a speed of 1000 m/s, then the pressure exerted on the wall is
 - (a) 2.34×10^3 Pascal
 - (b) 0.23×10^{3} Pascal
 - (c) 0.23×10^{3} Pascal
 - (d) 23. 4×10^3 Pascal
- When a gas is forced in a smaller volume without change in temperature, its Q 6. pressure increases because its molecules -
 - (a) Strike the unit area of the container walls more often.

hysicsaholics

- (b) Strike the unit area of the container walls at higher speed.
- (c) Strike the unit area of the container wall with greater momentum.
- (d) Have more energy.
- Q 7. A sample of a gas is kept in a closed container and temperature is increased. Which of the following is true?
 - (a) Pressure is increased because momentum transferred per collision to wall is increased
 - (b) Pressure is decreased
 - (c) Pressure is increased because frequency of collision is decreased
 - (d) Both (1) & (3) are correct
- Q 8. A vessel is partitioned in two equal halves by a fixed diathermic separator. Two different ideal gases are filled in left (L) and right (R) halves. The rms speed of the molecules in L part is equal to the mean speed of molecules in the R part. Then the ratio of the mass of a molecules in L part to that of a molecules in R part is

- Maxwell's velocity distribution curve is given for the same quantity two different Q 9. temperatures. For the given curves.

- Q 10. The ratio of r.m.s. speed to the r.ms. angular speed of a diatomic gas at certain temperature is: (assume m = mass of one molecule, M = molecular mass, I = moment of inertia of the molecules)
 - (a) $\sqrt{\frac{3}{2}}$
- (b) $\sqrt{\frac{3I}{2M}}$ (c) $\sqrt{\frac{3I}{2m}}$
- (d) 1
- The average velocity of molecules of a gas of molecular weight M at temperature T is:
 (a) 0 (b) $\sqrt{\frac{3RT}{M}}$ (c) $\sqrt{\frac{8RT}{\pi M}}$ (d) $\sqrt{\frac{2RT}{M}}$

- Q 12. The velocities of three molecules are 3v, 4v and 12v respectively. Their rms speed will be

hysicsaholics

- (a) 3.1v
- (b) 17 v
- (c) 7.5 v
- (d) Cannot say temperature is not provide
- Q 13. Maxwell distribution function is shown in figure from different gases, which of the following is correct matching?

- (a) $A \rightarrow Ne$, $B \rightarrow O_2$, $C \rightarrow He$
- (b) A \rightarrow Ne, B \rightarrow He, C \rightarrow O₂
- (c) $A \rightarrow O_2$, $B \rightarrow He$, $C \rightarrow Ne$
- (d) $A \rightarrow O_2$, $B \rightarrow Ne$, $C \rightarrow He$
- Q 14. The root mean square (rms) speed of hydrogen molecules at a certain temperature is 300 m/s. If temperature is doubled and hydrogen gas dissociates into atomic hydrogen the r.m.s. speed will become:
 - (a) 424.26 m/s
- (b) 300 m/s
- (c) 600 m/s
- (d) 150 m/s.
- Q 15. Let v, v_{ms} and v_p respectively denote the mean speed, root mean square speed and most probable speed of the molecules of an ideal monoatomic gas at absolute temperature T. Mass of a gas molecule is m. Then:
 - (a) no molecule can have a speed greater than $\sqrt{2}v_{rms}$
 - (b) no molecule can have speed less than $v_p/\sqrt{2}$
 - (c) $v_p < v < v_{rms}$
 - (d) the average kinetic energy of a molecule is $\frac{3}{4}mv_p^2$.
- Q 16. On increasing temperature area under maxwells speed distribution curve of a gas sample
 - (a) increases

(b) decreases

(c) Remains same

- (d) none of these
- Q 17. Three closed vessels A, B and C are at the same temperature and contain gases which obey the Maxwellian distribution of velocities. Vessel A contain only O₂, B only N₂ and C a mixture of equal quantities of O₂ and N₂. If the average speed of O₂ molecules in vessel A is v₁, that of the N₂ molecules in vessel B is v₂, the average speed of the O₂ molecules in vessel C is
 - $(a)(v_1 + v_2)/2$
- (b) v₁
- $(c) (v_1 v_2)^{1/2}$
- (d) $\sqrt{(3kT/M)}$

Answer Key

Q.1 c	Q.2 A(q), B(r), C(r), D(q)	Q.3	d	Q.4	c	Q.5	a
Q.6 a	Q.7 a	Q.8	d	Q.9	b	Q.10	c
Q.11 a	Q.12 a	Q.13	S _d	Q.14	C	Q.15	c,d
Q.16 c	Q.17 b						
			U				