

TODS Overview: Fusion of Glider Profiles, Satellite and Numerical Models to support AQS24 Operations

"Defining the optical environment for Navy Systems"

Vertical Optical Profiles (Glider, BSP, etc.)

Nowcast / Forecast Satellite Optics BioCast/OpCast

Nowcast / Forecast Circulation Models

Optical Volume/Profiles & 3D Diver Visibility

AQS24 Performance Model (EODES)

Beam Attenuation Coefficient (c)

In situ Physics/Optics Used to Tune Coeffs in 3DOG

Nowcast/Forecast Performance Surface Image Quality & Optimal System Towing Altitude

NAVO Operational Inputs

Overview of TODS Components

- 1) Display
- 2) OPCAST 2D / BioCast 3D
- 3) 3D and Performance Surfaces

Real-Time Visualization/Display of Nowcast/Forecast Products

- Fusion of Satellite and Model - provides real-time visual display interface for time series animations (pan + zoom)
 - MODIS, SEAWiFS, MERIS, OCM, NPP, AVHRR satellite imagery
 - (dive vis, beam attenuation (c), laser

Modeling, Sensing and Forecasting Ocean Optical Products for Navy Systems- TODS

FY13-14 Major Objectives & Milestones

MS Event/Action/Improvement Objective	Completion and/or Delivery Quarter/FY	Description of Capability Completed and/or Delivered
Optical Forecast - BioCast v1.0	Delivered w/ VTR 1QFY14 OPTEST to start soon	Provides forecasts of surface coastal optical properties for water clarity, diver visibility (visual detection/vulnerability) and lidar penetration depth
Bathygen v1.0	Development Completed and delivered 1QFY14	Software developed to consistently generate bathymetry from supplied DBDB2 and GEBCO databases to match satellite grid from AOPS for BioCast and 3DOG.
3D Optical Volume Generator v1.0 3DOG	VTR 3QFY14 OPTEST to follow	Provides forecasts of the 3D optical environment by fusing gliders, satellites and ocean models in support MIW diver and laser imaging operations.
EODES v1.0 (AQS-24)	Delivery 4QFY14	Provides performance surfaces to support underwater laser imaging systems (AQS/EODES) for AQS24, airborne laser systems (ALMDS), EO bathy systems, and diver operations (visibility/vulnerability)

Transition of BioCast for Optical Forecasting (Surface Only) - Version 1.0

BioCast VTR -

- Capability to forecast surface bio-optical properties in support of shallow water Mine Warfare Operations (diver, laser imaging system performance – AQS24, lidar penetration depth and water clarity)
- Delivered to NAVO December 2013 (1QFY14)
- NAVO POC stated “VTR is acceptable and currently in the process of being accepted”

VTR Highlights:

~~Optical Test~~ planned to start soon

- 27 pages
- Test Case 1: Optical forecast validation in Miss Bight (Dec 2011- Oct 2012) with comparisons to OpCast v2.0 (2D advection)
- Results show BioCast had better error distributions
- Test Cast 2: Optical forecast (24 Hr) validation during Trident Warrior 2013.
- Results show forecast better than persistence.

Naval Research Laboratory

Stennis Space Center, MS 39529-5004

NRL/MR/7330 -- xx- xxxx

Validation Test Report for the BioCast Optical Forecast Model Version 1.0

SHERWIN LADNER

JASON JOLLIFF

SERGIO DERADA

*Bio-Optical/Physical Processes and Remote Sensing Section
Ocean Sciences Branch*

BRANDON CASEY

JENNIFER BOWERS

TODD LOVITT

QinetiQ North America

ROBERT ARNONE

University of Southern Mississippi

Last modified on December 16, 2013

Trident Warrior July 2013

2D/3D Underwater Optics Forecast

U.S. East Coast Chesapeake Bay Virginia

OBJECTIVES:

1. *Produce 3D optical distributions for the exercise area:*
 - *Couple surface satellite ocean color imagery with glider data, model results (MLD depth, intensity) - 3D Optical Generator (3DOG).*
 - *Deploy gliders to tune vertical coefficients in 3D optical model.*
 - *Evaluate 3DOG software operationally.*
 - *Validate 3DOG Optical Volumes (VTR).*
2. *Forecast short-term surface optical distributions:*
 - *Run and evaluate BIOCAST operationally (24hr surface forecast vs. persistence).*

Forecasting Surface Bio-Optical Properties Trident Warrior 13 Merging Satellite Bio-Optical Properties and Modeled Currents - BIOCAST v1.0

19, 2013 MODIS Aqua Chlorophyll Initialization Field
w/ Model Currents & SSH Contours

0.270605 m/s / projects/opsupport/RELO/areas/tridentwarrior13/ncom_relo_nest1_2013071900_t018.nc, timestep 0
Contour #:1: surf_el in meters from /projects/opsupport/RELO/areas/tridentwarrior13/ncom_relo_nest1_2013071900_t018.nc
chl_loc3 (provisional)
EastCoast CBay Virginia TW13 (MODIS-AQUA-PM)
Version 10 (APS v3.4.6.2-TODS_v2.0-rc2)

19, 2013 MODIS Aqua Chlorophyll
Hour (Hourly) Forecast - Animation

chl_loc3
Sensor Frame
Code 7330/Ocean Sciences
Naval Research Laboratory
Stennis Space Center, MS

Forecasting Surface Bio-Optical Properties

Trident Warrior - Chesapeake Bay, VA – July 18, 2013

Seed the Model
with Satellite Bio-
Optical Products

Advect Satellite
Properties forward
(hourly steps)
Conservative Tracers

Compare with Next
Days Satellite Bio-
Optical Products

c531nm / Optical Field

July 18, 2013
Seed /
Initialization
Field

Turbidity plume
expansion out of
Oregon Inlet, NC

12 Hour
Forecast

24 Hour
Forecast
For
July 19, 2013

Actual
Satellite
Image
July 19, 2013

BioCast vs Persistence

**Bull's-eye = no
error**

Statistical summary diagram compares 30-day latest pixel composites (persistence) against the next-day MODIS satellite product (black) and BIOCAST 24-hour forecast against the same next-day MODIS product (red). Statistics are generated from 60-days of 'next-day' comparisons (1 July - 30 August 2013).

Predicting the 3D Optical Environment by Fusing Satellite, Gliders and Models during Trident Warrior July 2013

- Selected optical profiles (20) were used to generate/tune coefficients for 3D optical model
- Non-selected optical profiles (330) are being used for validation
- NAVO glider omitted from 3DOG evaluation due to issue with elevated optics in deep ocean.

3DOG Glider Optimization - Tuning Coefficients

Trident Warrior - July 17, 2013

3DOG Predicted Beam Attenuation 531nm Profiles Defining Regional Optical/Physical Relationship

Trident Warrior 2013 July 17, 2013

3DOG Volume - Beam Attenuation 531nm

Preliminary Results Suggest:

- Coastal/shelf overturning, mixing, resuspension/sedimentation/nephloid layers
- Optical layers migrating up the shelf
- Interactions between surface features and subsurface
- Need to validate

U.S. East Coast

Virginia
Capes

3DOG Validation - Trident Warrior 13 - July 17, 2013

Preliminary Validation Results

- An optical (beam attenuation 531nm) layer is observed in glider profiles near bottom. Preliminary 3DOG results mimic the same optical layer.
- The relationship between the observed and modeled optical fields is dependent on the fidelity of the physical model to the observations.
- Differences between observed and predicted possibly due to model bathy (flat bottom) and vertical resolution (5-10m bins > 10m) not capturing fine scale details in observations, MLD selection and bottom turbulence/sediment resuspension.
- Observations span 24 hours whereas satellite and model are coincident/static (time of satellite overpass) in 3DOG.
- Currently in process of evaluating datasets for 3 clear satellite days (July 17, 18 and 19, 2013)

