Signals and Systems (Lab)

Project 2: OFDM Technology

Dr. Wu Guang

Email: wug@sustech.edu.cn

Electrical & Electronic Engineering Southern University of Science and Technology

Overview

Wireless channel model:

- Multipath propagation
- Equivalent Channel model

OFDM Introduction:

- The basic principle of OFDM
- How to design the OFDM receiver ?

Project Tasks:

OFDM receiver design

Part I: Wireless channel model

Multi-path propagation

Wireless Channel Model:

$$y[n] = 0.8 x[n-1] + 0.6 x[n-2] + 0.4 x[n-3]$$

Receiver

y[n]

Multipath delay spread

Inter-Symbol Interference: ISI

Let's begin with a wireless system

Equivalent Channel model

Part II: OFDM Introduction

How to deliver signals without ISI?

- How to deliver signals without inter-symbol interference?
 - Suppose the duration of delay spread is ΔH seconds
- Approach 1: Send data on every ΔH seconds
- Approach 2: Channel equalizer

- Approach 3: Orthogonal Frequency Division Multiplexing
 - Pre-processing at the transmitter + post-processing at the receiver

The basic principle of OFDM

OFDM at first glance

- Signals are loaded in frequency domain
- Some mechanism is necessary to generate the effect of periodic convolution

How to design the block "?"?

- How to detect $\{a_k | \forall k\}$ from $\{\widetilde{Y}[k] | \forall k\}$?
- How to design the blocks "?" ?

Convolution=Periodic convolution?

Part III: Project Tasks

OFDM transceiver model

Bit Sequence Transmission Detected Bit Sequence **Equivalent DT OFDM OFDM Wireless Channel Transmitter** Receiver h[n]**DAC+ Transmitter Receiver Radio** Radio Frequency **Actual Wireless** Frequency Front Channel End + ADC Front End

Block 1 and Block 2

Block 1

Block 2

Tips: Function of CP

OFDM Symbol: $\{x[N-M], ..., x[N-1], x[0], x[1], ..., x[N-1]\}$

Block 3: DAC Transmitter + RF-front end

Analysis for the Block 3

- Suppose the input signal to the RF front end is x[n]
- Convert to impulse train: $x_p(t) = \sum_n x[n]\delta(t nT)$
- After DAC: $x_c(t) = \sum_n x[n]c(t nT)$
 - c(t) is a rectangular wave
- Real part: $x_r(t) = real[x_c(t)]$
- imaginary part: $x_i(t) = imag[x_c(t)]$
- After modulation
 - $-x_{cos}(t) = x_r(t)cos\omega_c t$
 - $-x_{sin}(t) = x_i(t)sin\omega_c t$
- After summation: $x_{tx}(t) = x_r(t)cos\omega_c t + x_i(t)sin\omega_c t$

Actual wireless channel

 In this project, the wireless channel is approximated as a continuoustime LTI systems

The impulse response is a causal finite-length continuous-time function

Assume the channel impulse response is

$$-h(t) = 0.5\delta(t) + 0.4\delta(t - 1.5T) + 0.35\delta(t - 2.5T) + 0.3\delta(t - 3T)$$

T is the sampling period

Your tasks

- Design the receiver's RF front-end + ADC (Block 4), explain why your design can lead to correct signal detection
- b. Derive h[n] and discuss the relation between h(t) and h[n] (see Page 3), determine the length of CP
- c. Randomly generate two discrete time signals $\{xp[0], xp[1], ..., xp[31]\}$ (pilot) and $\{x[0], x[1], ..., x[31]\}$ (data), transmit these two signals by two OFDM symbols, and at least show the following items (in the simulation, T=1us and carrier frequence $\omega_c = 100MHz$)
 - Plot the highlighted signals in the block 1, block 2 and block 3.
 - ➤ Plot and discuss the Fourier transform of signal highlighted in the block 3.
 - ➤ Plot how the signal changes in the block 4 step-by-step.
 - > Compare the final detected signal with the original transmitted signal.
- d. Elaborate on the applications of OFDM technology
 - Any practical communication system using OFDM? Why?

Report

- Abstract
 - What you have done in this report
- Introduction
 - Elaborate on the baseband of OFDM (Block 1&2)
 - Elaborate on the DAC + RF front-end of the transmitter (Block 3)
- Receiver Design and Analysis
 - Task a: Elaborate on your design of receiver RF front-end + ADC (Block 4)
 - Task b: Elaborate on the relation between h(t) and h[n]
- Simulations
 - Task c: show how the signal transforms step-by-step with figures
- Discussions
 - Task d: elaborate on the advantages of OFDM systems (>300 words)
- Please attach the matlab code in your report

Reference

Reference:

- www.gaussianwaves.com/2011/05/introduction-to-ofdm-orthogonal-frequency-division-multiplexing-2/
- www.wirelesscommunication.nl/reference/chaptr05/ofdm/ofdmmath.
 htm
- home.deib.polimi.it/spalvier/sistemi_di_comunicazione/integrazione_ lezioni/ofdm_tutorial.htm

Tips on receiver design

- In order to demodulate the signal, receiver should
 - Multiple the received signal with carrier: $cos\omega_c t$ and $sin\omega_c t$
 - Use an ideal lowpass filter

- After demodulation, the receiver should
 - Use integrator to accumulate the received power: $y_{int}(t) = \int_{t-T}^{t} y_{dem}(\tau) \ d\tau$
 - Use ADC to generate DT signal for further processing: $y_{int}(nT)$ keeps all the necessary information

实部连续脉冲和脉冲成形

有效数据恢复

Questions

