WHAT IS CLAIMED IS:

1. In a signal processor for processing at least two measured signals S_1 and S_2 each containing a primary signal portion s and a secondary signal portion n, said signals S_1 and S_2 being in accordance with the following relationship:

$$S_1 = S_1 + n_1$$

$$S_2 = S_2 + n_2$$

where s_1 and s_2 , and n_1 and n_2 are related by:

$$s_1 = r_s s_2$$
 and $n_1 = r_s n_2$

and where r_a and r_v are coefficients,

a method comprising the steps of:

10

5

determining a values for the coefficient r_a which minimizes correlation between s_1 and n_1 ;

calculating the blood oxygen saturation from said value of r_a, and

displaying the blood oxygen saturation on a display.

15

2. In a signal processor for processing at least two measured signals S_1 and S_2 each containing a primary signal portion s and a secondary signal portion n, said signals S_1 and S_2 being in accordance with the following relationship:

$$S_1 = S_1 + n_1$$

$$S_2 = S_2 + n_2$$

where s_1 and s_2 , and n_1 and n_2 are related by:

$$s_1 = r_a s_2$$
 and $n_1 = r_v n_2$

and where r, and r, are coefficients,

a method comprising the steps of:

determining a value the coefficients r_a which minimize correlation between s_i and n_i ; and

5

10

15

20

25

processing at least one of the first and second signals using the determined value for r_a to significantly reduce n from at least one of the first or second measured signal to form a clean signal.

- 3. The method of Claim 2, further comprising the step of displaying the resulting clean signal on a display.
 - 4. The method of Claim 2, wherein said first and second signals are physiological signals, further comprising the step of processing said clean signal to determine a physiological parameter from said first and second measured signals.
 - 5. The method of Claim 4, wherein said physiological parameter is arterial oxygen saturation.
 - 6. The method of Claim 4, wherein said physiological parameter is an ECG signal.
 - 7. The method of Claim 2, wherein the first portion of said measured signals is indicative of a heart plethysmograph, further comprising the step of calculating the pulse rate.
 - 8. A physiological monitor comprising:
 - a first input configured to receive a first measured signal S_1 having a primary portion, s_1 , and a secondary portion n_1 ;
 - a second input configured to received a second measured signal S_2 having a primary portion s_2 and a secondary portion n_2 , said first and said second measured signals S_1 and S_2 being in accordance with the following relationship:

$$S_1 = S_1 + n_1$$

$$S_2 = S_2 + n_2$$

where s_1 and s_2 , and n_1 and n_2 are related by:

$$s_1 = r_a s_2$$
 and $n_1 = r_v n_2$

30 and where r_a and r_v are coefficients;

5

10

15

20

25

30

a scan reference processor, said scan reference processor responsive to a plurality of possible values for r_{a} , to multiply said second measured signal by each of said possible values for r_{a} and for each of the resulting values, to subtract the resulting values from the first measured signal to provide a plurality of output signals;

a correlation canceler having a first input configured to receive said first measured signal, and having a second input configured to receive the plurality of output signals from said saturation scan reference processor, said correlation canceler providing a plurality of output vectors corresponding to the correlation cancellation between the plurality or output signals and the first measured signal;

an integrator having-an input configured-to-receivethe plurality of output vectors from the correlation canceler, the integrator responsive to the plurality of output vectors to determine a corresponding power for each output vectors; and

a extremum detector coupled at its input to the output of the integrator, said extremum detector responsive to said corresponding power for each output vector to detect a selected power.

- 9. The physiological monitor of Claim 8, wherein said plurality of possible values correspond to a plurality of possible values for a selected blood constituent.
- 10. The physiological monitor of Claim 9, wherein said selected blood constituent is arterial blood oxygen saturation.
- 11. The physiological monitor of Claim 9, wherein said selected blood constituent is venous blood oxygen saturation.
- 12. The physiological monitor of Claim 9, wherein said selected blood constituent is carbon monoxide.

5

10

15

20

- 13. The physiological monitor of Claim 8, wherein said plurality of possible values correspond to a physiological concentration.
 - 14. A physiological monitor comprising:
 - a first input configured to receive a first measured signal S_1 having a primary portion, S_1 , and a secondary portion n_1 ;
 - a second input configured to received a second measured signal S_2 having a primary portion s_2 and a secondary portion n_2 , said first and said second measured signals S_1 and S_2 being in accordance with the following relationship:

$$S_1 = S_1 + n_1$$

$$S_2 = S_2 + n_2$$

where s₁ and s₂, and n₂ and n₃ are related by:

$$s_1 = r_a s_2$$
 and $n_1 = r_v n_2$

and where r_a and r_v are coefficients;

- a transform module, said saturation transform module responsive to said first and said second measured signals and responsive to a plurality of possible values for r_a to provide at least one power curve as an output;
- an extremum calculation module, said extremum calculation module responsive to said at least one power curve to select a value for r_a which minimizes the correlation between s and n, and to calculate from said value for r_a a corresponding saturation value as an output; and
- a display module, said display module responsive to the output of said saturation calculation to display said saturation value.