On high dimensional regression: computational and statistical perspectives

Joseph Salmon

"One" motivation: M/EEG inverse problem

- ▶ sensors: magneto- and electro-encephalogram measurements
- sources: brain locations

(Tribute to **A. Gramfort**)

The M/EEG inverse problem

Dimensions involved:

- ▶ n: number of sensors
- q: number of time instants
- ▶ *p*: number of vertices, mesh discretization (features)
- $Y \in \mathbb{R}^{n \times q}$: measurements matrix
- $lacksquare X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}$: matrix describing physical models
- $\beta^* \in \mathbb{R}^{p \times q}$: source activity matrix
- $\mathbf{r} \in \mathbb{R}^{n \times q}$ additive white noise

The M/EEG inverse problem

Challenging ill-posed problem with particular "constraints":

- multi-task problem
- regularization must handle specific structures
- ▶ heteroscedastic noise (2/3 types of sensors)
- signal might be complex (not only real)
- **...**

"La (vraie) vie, c'est pas du gâteau", let us focus on the simplest sparse linear regression model:

$$y = X\beta^* + \varepsilon$$

where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, $\|\beta^*\|_0 \ll \min(p, n)$, (q = 1 time/task)

The M/EEG inverse problem

Challenging ill-posed problem with particular "constraints":

- multi-task problem
- regularization must handle specific structures
- ▶ heteroscedastic noise (2/3 types of sensors)
- signal might be complex (not only real)
- **...**

"La (vraie) vie, c'est pas du gâteau", let us focus on the simplest sparse linear regression model:

$$y = X\beta^* + \varepsilon$$

where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, $\|\beta^*\|_0 \ll \min(p, n)$, (q = 1 time/task)

The Lasso and variations

Vocabulary: "Modern least squares" Candès et al. (2008)

- Statistics: Lasso Tibshirani (1996)
- ► Signal processing variant: Basis Pursuit Chen et al. (1998)
- ▶ Geophysics: Taylor *et al.* (1979) "Deconvolution with the ℓ_1 norm"

$$\hat{\beta}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|y - X\beta\|^2}_{\text{data fitting term}} \quad + \quad \underbrace{\lambda \|\beta\|_1}_{\text{sparsity-inducing penalty}} \right)$$

lacktriangle parameter $\lambda>0$ controlling sparsity/data-fitting trade-off

 $\underline{\mathsf{Rem}}$: usual column normalization $\|\mathbf{x}_j\|^2 = n$ or $\|\mathbf{x}_j\| = 1$

Rem: convex problem, possibly non-uniqueness Tibshirani (2013)

Theory is now (fairly) well understood

Theorem Bickel et al. (2009), Dalalyan et al. (2017), Giraud (2014)

For Gaussian noise model with X satisfying the "Restricted Eigenvalue" property and $\lambda=2n\sigma\sqrt{\frac{2\log{(p/\delta)}}{n}}$, then

$$\frac{1}{n} \|X(\beta^* - \hat{\beta}^{(\lambda)})\|^2 \le \frac{18}{\kappa_s^2} \frac{\sigma^2 s}{n} \log\left(\frac{p}{\delta}\right)$$

with probability $1-\delta$, where $\hat{\beta}^{(\lambda)}$ is a Lasso solution and $s=\|\beta^*\|_0$

Rem: under the "Restricted Eigenvalue" property, κ_s^2 is a measure of strong convexity of the (quadratic part of the) objective function obtained when extracting s columns of X

Table of Contents

Optimization and fast solvers

Safe Screening Rules

Active set: aggressive screening

Refitting strategies: image processing intermission (without Lena)

Concomitant estimation of the noise: towards heteroscedastic

Other contributions

The Lasso: algorithmic point of view

Commonly used algorithms for solving this **convex** program:

- Homotopy method LARS: efficient for small p Osborne et al. (2000), Efron et al. (2004) and full path (i.e., compute solution for "all" λ's). Specific to Lasso (not flexible) + instabilities Mairal and Yu (2012)
- ▶ (F)ISTA, Forward Backward, proximal(s) algorithm: useful in signal processing where $r \to X^{\top}r$ is cheap to compute (e.g., FFT, Fast Wavelet Transform, etc.) Daubechies et al. (2004), Beck and Teboulle (2009), Combettes and Pesquet (2011)

The Lasso: algorithmic point of view

Commonly used algorithms for solving this **convex** program:

- ► Homotopy method LARS:

 efficient for small *p* Osborne *et al.* (2000), Efron *et al.* (2004) and full path (*i.e.*, compute solution for "all" λ's). Specific to Lasso (not flexible) + instabilities Mairal and Yu (2012)
- ▶ (F)ISTA, Forward Backward, proximal(s) algorithm: useful in signal processing where $r \to X^\top r$ is cheap to compute (e.g., FFT, Fast Wavelet Transform, etc.) Daubechies et al. (2004), Beck and Teboulle (2009), Combettes and Pesquet (2011)
- Coordinate descent (CD): useful for large p and unstructured and/or sparse matrix X, e.g., for text encoding Friedman et al. (2007)

The Lasso: algorithmic point of view

Commonly used algorithms for solving this **convex** program:

- Homotopy method LARS: efficient for small p Osborne et al. (2000), Efron et al. (2004) and full path (i.e., compute solution for "all" λ's). Specific to Lasso (not flexible) + instabilities Mairal and Yu (2012)
- ▶ (F)ISTA, Forward Backward, proximal(s) algorithm: useful in signal processing where $r \to X^{\top}r$ is cheap to compute (e.g., FFT, Fast Wavelet Transform, etc.) Daubechies et al. (2004), Beck and Teboulle (2009), Combettes and Pesquet (2011)
- ► Coordinate descent (CD):

 useful for large p and unstructured and/or sparse matrix X,
 e.g., for text encoding Friedman et al. (2007)

Objective: speed-up Lasso solvers with screening

▶ Sequential constraint: compute Lassos for $\lambda_0 > \cdots > \lambda_{T-1}$, possibly for many T's, i.e., get $\hat{\beta}^{(\lambda_0)}, \ldots, \hat{\beta}^{(\lambda_{T-1})}$ (e.g., for choosing the best by Cross-Validation)

Rem: standard grid is geometric from $\lambda_{\max} := \|X^\top y\|_{\infty}$ to $\lambda_{\min} = \alpha \lambda_{\max}$ (default in R-glmnet / Python-sklearn: $T = 100, \alpha = 0.001$)

► Flexible schemes: adapt to most iterative solvers and various Lasso-type problems, in particular for (block) coordinate descent (well suited for screening)

Dual problem Kim et al. (2007)

Primal function :
$$P_{\lambda}(\beta) = \frac{1}{2} ||y - X\beta||^2 + \lambda ||\beta||_1$$

Dual problem :
$$\hat{\theta}^{(\lambda)} = \argmax_{\theta \in \Delta_X} \underbrace{\frac{1}{2} \|y\|^2 - \frac{\lambda^2}{2} \left\|\theta - \frac{y}{\lambda}\right\|^2}_{=D_{\lambda}(\theta)}$$

Dual feasible set :
$$\Delta_X = \left\{ \theta \in \mathbb{R}^n \ : \ |\mathbf{x}_j^ op \theta| \leq 1, orall j \in [p]
ight\}$$

is a closed convex set (finite intersection of half-spaces)

▶ The (unique) dual solution is the **projection** of y/λ over Δ_X :

$$\hat{\theta}^{(\lambda)} = \operatorname*{arg\,min}_{\theta \in \Delta_X} \left\| \frac{y}{\lambda} - \theta \right\|^2 := \Pi_{\Delta_X} \left(\frac{y}{\lambda} \right)$$

Geometric interpretation

The dual optimal solution is the projection of y/λ over the dual feasible set $\Delta_X = \left\{\theta \in \mathbb{R}^n : \|X^\top \theta\|_\infty \leq 1\right\} : \hat{\theta}^{(\lambda)} = \Pi_{\Delta_X}(y/\lambda)$

$$\bullet$$
 $\frac{y}{\lambda}$

 $^{0} \bullet$

Geometric interpretation

The dual optimal solution is the projection of y/λ over the dual feasible set $\Delta_X = \left\{\theta \in \mathbb{R}^n : \|X^\top \theta\|_\infty \leq 1\right\} : \hat{\theta}^{(\lambda)} = \Pi_{\Delta_X}(y/\lambda)$

$$\bullet$$
 $\frac{y}{\lambda}$

Geometric interpretation

The dual optimal solution is the projection of y/λ over the dual feasible set $\Delta_X = \left\{\theta \in \mathbb{R}^n : \|X^\top \theta\|_\infty \leq 1\right\} : \hat{\theta}^{(\lambda)} = \Pi_{\Delta_X}(y/\lambda)$

Fermat rule / KKT conditions

▶ Primal solution : $\hat{\beta}^{(\lambda)} \in \mathbb{R}^p$

▶ **Dual solution** : $\hat{\theta}^{(\lambda)} \in \Delta_X \subset \mathbb{R}^n$

Primal/Dual link:
$$y = X \hat{\beta}^{(\lambda)} + \lambda \hat{\theta}^{(\lambda)}$$

Necessary and sufficient optimality conditions:

$$\mathsf{KKT/Fermat:} \quad \forall j \in [p], \ \mathbf{x}_j^\top \hat{\theta}^{(\lambda)} \in \begin{cases} \{\mathrm{sign}(\hat{\beta}_j^{(\lambda)})\} & \text{if} \quad \hat{\beta}_j^{(\lambda)} \neq 0, \\ [-1,1] & \text{if} \quad \hat{\beta}_j^{(\lambda)} = 0. \end{cases}$$

"Mother of safe rules": Fermat's rule yields $\lambda \ge \lambda_{\max} = \|X^{\top}y\|_{\infty} = \max_{j \in [p]} |\mathbf{x}_{j}^{\top}\hat{\theta}^{(\lambda)}| \Rightarrow \hat{\beta}^{(\lambda)} = 0 \in \mathbb{R}^{p}$

Geometric interpretation (II)

A simple dual (feasible) point: $\frac{y}{\lambda_{\max}} \in \Delta_X$ where $\lambda_{\max} = \|X^\top y\|_{\infty}$

Rem: $(y - X \cdot 0)/\lambda \in \Delta_X$ if $\lambda \ge \lambda_{\max}$, hence $\hat{\theta}^{(\lambda)} = y/\lambda$, $\hat{\beta}^{(\lambda)} = 0$

Table of Contents

Optimization and fast solvers

Safe Screening Rules

Active set: aggressive screening

Refitting strategies: image processing intermission (without Lena)

Concomitant estimation of the noise: towards heteroscedastic

Other contributions

Safe screening rules contributions

Joint work with **A. Gramfort**, **O. Fercoq**, **E. Ndiaye**, **V. Leclère** Fercoq *et al.* (2015), Ndiaye *et al.* (2015), Ndiaye *et al.* (2016), Ndiaye *et al.* (2017)

Safe rules El Ghaoui et al. (2012)

Motivation: leverage targeted sparsity to reduce computation

Screening thanks to Fermat's Rule: If
$$|\mathbf{x}_j^{ op}\hat{\theta}^{(\lambda)}| < 1$$
 then, $\hat{\beta}_j^{(\lambda)} = 0$

BUT: $\hat{\theta}^{(\lambda)}$ is intrinsically **unknown**, not practical

Yet, having a safe region $\mathcal{C} \subset \mathbb{R}^n$ containing $\hat{\theta}^{(\lambda)}$, i.e., $\hat{\theta}^{(\lambda)} \in \mathcal{C}$:

Remove from the optimization problem the x_i 's satisfying the test!

Goal: find a safe region $\mathcal C$

- \blacktriangleright as narrow as possible containing $\hat{\theta}^{(\lambda)}$
- $\qquad \qquad \mathsf{with} \ \begin{cases} \mathbb{R}^n & \mapsto \mathbb{R}^+ \\ \mathbf{x} & \to \sup_{\theta \in \mathcal{C}} |\mathbf{x}^\top \theta| \end{cases} \ \mathsf{cheap to compute}$

Safe sphere rules

Let $\mathcal{C} = B(c, r)$ be a ball of **center** $c \in \mathbb{R}^n$ and **radius** r > 0, then

$$\sup_{\theta \in \mathcal{C}} |\mathbf{x}^{\top} \theta| = |\mathbf{x}^{\top} c| + r ||\mathbf{x}||$$

Screening cost for one feature: one dot product (of size n)

safe sphere rule: If
$$\|\mathbf{x}_j^{\top} c\| + r \|\mathbf{x}_j\| < 1$$
 then $\hat{\beta}_j^{(\lambda)} = 0$

New objective:

- find r as small as possible
- find c as close to $\hat{\theta}^{(\lambda)}$ as possible

Static safe rules: El Ghaoui et al. (2012)

Static safe rules/variable selection

Static safe region: useful prior any optimization

$$C = B(c, r) = B\left(\frac{y}{\lambda}, \left\| \frac{y}{\lambda_{\text{max}}} - \frac{y}{\lambda} \right\| \right)$$

Interpretation: static rules = statistical (correlation) "screening":

If
$$|\mathbf{x}_j^\top y| < \lambda (1 - \|y/\lambda_{\max} - y/\lambda\| \|\mathbf{x}_j\|)$$
 then $\hat{\beta}_j^{(\lambda)} = 0$ \iff (for normalized $\mathbf{x}_j' s$)

If
$$|\mathbf{x}_j^{ op}y| < C_{X,y}$$
 then $\hat{eta}_j^{(\lambda)} = 0$ (and \mathbf{x}_j can be discarded)

Rem: the corresponding safe test becomes useless when

$$\frac{\lambda}{\lambda_{\max}} \leq C_{X,y}' = \min_{j \in [p]} \left(\frac{1 + |\mathbf{x}_j^\top y| / (\|\mathbf{x}_j\| \|y\|)}{1 + \lambda_{\max} / (\|\mathbf{x}_j\| \|y\|)} \right)$$

Dynamic safe rules Bonnefoy et al. (2014)

Dynamic safe rules Bonnefoy et al. (2014)

Dynamic safe rules Bonnefoy et al. (2014)

Dynamic safe rule

<u>Dynamic rules</u>: build iteratively $\theta_k \in \Delta_X$, as the solver proceeds to get refined safe regions and improve screening Bonnefoy *et al.* (2014, 2015)

Primal-dual link at optimality : $\lambda \hat{\theta}^{(\lambda)} = y - X \hat{\beta}^{(\lambda)}$

Current residual for primal point β_k : $\rho_k = y - X\beta_k$

<u>Dual candidate</u>: choose θ_k as (rescaled) residual

e.g.,
$$\theta_k = \frac{\rho_k}{\lambda \vee \|X^\top \rho_k\|_{\infty}} \in \Delta_X$$

Limits of previous dynamic rules

If $B(c,r)=B(\theta_k,r_k)$ with $r_k=\|\theta_k-y/\lambda\|$, r_k does not converge to zero, even if $\beta_k\to\hat{\beta}^{(\lambda)}$ and $\theta_k\to\hat{\theta}^{(\lambda)}$. Limiting safe sphere:

Limits of previous dynamic rules

If $B(c,r)=B(\theta_k,r_k)$ with $r_k=\|\theta_k-y/\lambda\|$, r_k does not converge to zero, even if $\beta_k\to\hat{\beta}^{(\lambda)}$ and $\theta_k\to\hat{\theta}^{(\lambda)}$. Limiting safe sphere:

Limits of previous dynamic rules

If $B(c,r)=B(\theta_k,r_k)$ with $r_k=\|\theta_k-y/\lambda\|$, r_k does not converge to zero, even if $\beta_k\to\hat{\beta}^{(\lambda)}$ and $\theta_k\to\hat{\theta}^{(\lambda)}$. Limiting safe sphere:

Duality Gap properties

▶ Primal objective : P_{λ} ▶ Primal solution : $\hat{\beta}^{(\lambda)} \in \mathbb{R}^p$

▶ Dual objective : D_{λ} ▶ Dual solution : $\hat{\theta}^{(\lambda)} \in \Delta_X \subset \mathbb{R}^n$,

Duality gap: for any $\beta \in \mathbb{R}^p$, $\theta \in \Delta_X$, $G_{\lambda}(\beta, \theta) = P_{\lambda}(\beta) - D_{\lambda}(\theta)$

$$G_{\lambda}(\beta, \theta) = \frac{1}{2} \|X\beta - y\|^2 + \lambda \|\beta\|_1 - \left(\frac{1}{2} \|y\|^2 - \frac{\lambda^2}{2} \|\theta - \frac{y}{\lambda}\|^2\right)$$

Strong duality: for any $\beta \in \mathbb{R}^p, \theta \in \Delta_X$,

$$D_{\lambda}(\theta) \le D_{\lambda}(\hat{\theta}^{(\lambda)}) = P_{\lambda}(\hat{\beta}^{(\lambda)}) \le P_{\lambda}(\beta)$$

Consequences:

- $G_{\lambda}(\beta, \theta) \geq 0$, for any $\beta \in \mathbb{R}^p, \theta \in \Delta_X$
- $G_{\lambda}(\beta, \theta) \le \epsilon \Rightarrow P_{\lambda}(\beta) P_{\lambda}(\hat{\beta}^{(\lambda)}) \le \epsilon$ (stopping criterion)

Gap Safe sphere

For any $\beta \in \mathbb{R}^p, \theta \in \Delta_X$, $G_{\lambda}(\beta, \theta) = P_{\lambda}(\beta) - D_{\lambda}(\theta)$

Gap Safe ball:
$$B(\theta, r_{\lambda}(\beta, \theta))$$
, where $r_{\lambda}(\beta, \theta) = \sqrt{2G_{\lambda}(\beta, \theta)}/\lambda$

Rem: if $\beta_k \to \hat{\beta}^{(\lambda)}$ and $\theta_k \to \hat{\theta}^{(\lambda)}$ (e.g., by residual scaling) then $G_{\lambda}(\beta_k,\theta_k) \to 0$: converging solvers lead to a converging safe rules, i.e., the limiting safe spheres converge to $\{\hat{\theta}^{(\lambda)}\}$

Rem: at optimality, one recovers the equicorrelation set

$$E = \left\{ j \in \llbracket p \rrbracket : \left| \frac{\mathbf{x}_j^\top (y - X\beta^{(\lambda)})}{\lambda} \right| = 1 \right\} \supseteq \operatorname{supp}(\beta^{(\lambda)})$$

Dynamic safe sphere Bonnefoy et al. (2014)

Dynamic safe sphere Fercoq et al. (2015)

Dynamic safe sphere Fercoq et al. (2015)

Dynamic safe sphere Fercoq et al. (2015)

Dynamic safe sphere Fercoq et al. (2015)

Sequential safe rule Wang et al. (2013)

Warm start main idea: to compute the Lasso for T different λ 's, say $\lambda_0,\ldots,\lambda_{T-1}$, re-use computation done at λ_{t-1} to get $\hat{\beta}^{(\lambda_t)}$

- ▶ Primal warm start: standard trick to accelerate iterative solvers: initialize with $\hat{\beta}^{(\lambda_{t-1})}$ to compute $\hat{\beta}^{(\lambda_t)}$
- ▶ Dual warm start: sequential safe rules use $\hat{\theta}^{(\lambda_{t-1})}$ to help screening for $\hat{\beta}^{(\lambda_t)}$

Major issue: in prior works $\hat{\theta}^{(\lambda_{t-1})}$ needed to be **known exactly**! Unrealistic except for $\lambda_{t-1} = \lambda_{\max}$, $\hat{\theta}^{(\lambda_0)} = \frac{y}{\lambda_{\max}} = \frac{y}{\|X^\top y\|_{\infty}}$

Gap safe rules are sequential: use $\tilde{\theta}^{(\lambda_{t-1})} \approx \hat{\theta}^{(\lambda_{t-1})}$ (dual feasible)

Computing time for standard grid with T = 100

Time to reach convergence (Leukemia dataset: n=72, p=7129) for 100 values on a standard grid of λ 's

Table of Contents

Optimization and fast solvers

Safe Screening Rules

Active set: aggressive screening

Refitting strategies: image processing intermission (without Lena)

Concomitant estimation of the noise: towards heteroscedastic models

Other contributions

Active set: aggressive screening

Joint work with M. Massias, A. Gramfort, Massias et al. (2017)

Gap safe rules revisited

Theorem

$$\text{If } d_j(\theta) := \underbrace{\frac{1 - \left|\mathbf{x}_j^\top \theta\right|}{\|\mathbf{x}_j\|}}_{\text{test statistic}} > \underbrace{\sqrt{\frac{2}{\lambda^2} G_{\lambda}(\beta, \theta)}}_{\text{threshold}} \text{ then } \hat{\beta}_j = 0$$

for any primal point β and any dual feasible point $\theta \in \Delta_X$

<u>reminder</u>: $G_{\lambda}(\beta, \theta) = P_{\lambda}(\beta) - D_{\lambda}(\theta)$ is the duality gap

Sequential safe rules - strong rules reminder

$$d_j(\theta) := \frac{1 - \left| \mathbf{x}_j^\top \theta \right|}{\|\mathbf{x}_j\|}$$

Assume $\hat{\beta}^{(\lambda')}, \hat{\theta}^{(\lambda')}$ approximated by $\tilde{\beta}^{(\lambda')}, \tilde{\theta}^{(\lambda')}$ and $\lambda' > \lambda$

Sequential safe rules (Wang *et al.* 2013): perform safe screening rule with the safe ball $\mathcal{C} = \mathcal{B}\left(\tilde{\theta}^{(\lambda')}, \left\|\frac{Y}{\lambda} - \frac{Y}{\lambda'}\right\|\right)$:

If
$$d_j(\tilde{\theta}^{(\lambda')})>\|Y\|\left|\frac{1}{\lambda}-\frac{1}{\lambda'}\right|$$
 then $\tilde{\beta}_j^{(\lambda)}=0$

Strong rules (Tibshirani et al. 2012): relax test to

If
$$d_j(\tilde{\theta}^{(\lambda')}) > \frac{2}{\|\mathbf{x}_i\|} \frac{|\lambda' - \lambda|}{\lambda'}$$
 then $\tilde{\beta}_j^{(\lambda)} = 0$

Rem: "wrong" screening is possible, post-processing needed

Gap Safe rules: from many to few features

Drawback: all features included when starting

<u>Idea</u>: to reduce the number of features, drop the safety

Gap Safe: exclude feature \mathbf{x}_j if $d_j(\theta^k) > \sqrt{\frac{2}{\lambda^2} G_{\lambda}(\beta^k, \theta^k)}$

Idea: to reduce the number of features, drop the safety

Gap Safe: exclude feature
$$\mathbf{x}_j$$
 if $d_j(\theta^k) > \sqrt{\frac{2}{\lambda^2} G_{\lambda}(\beta^k, \theta^k)}$

Aggressive Gap: **include** feature \mathbf{x}_j if $d_j(\theta^k) < r\sqrt{\frac{2}{\lambda^2}G_\lambda(\beta^k, \theta^k)}$ for some $r \in [0,1]$ to be chosen (Jonhson and Guestrin, 2015,16)

• outer loop: only include few features with the smallest $d_i(\theta^k)$

<u>Idea</u>: to reduce the number of features, drop the safety

Gap Safe: exclude feature
$$\mathbf{x}_j$$
 if $d_j(\theta^k) > \sqrt{\frac{2}{\lambda^2} G_{\lambda}(\beta^k, \theta^k)}$

Aggressive Gap: **include** feature \mathbf{x}_j if $d_j(\theta^k) < r\sqrt{\frac{2}{\lambda^2}G_\lambda(\beta^k, \theta^k)}$ for some $r \in [0,1]$ to be chosen (Jonhson and Guestrin, 2015,16)

- ▶ outer loop: only include few features with the smallest $d_i(\theta^k)$
- ▶ inner loop: solve subproblem keeping only these features (fast)

<u>Idea</u>: to reduce the number of features, drop the safety

Gap Safe: exclude feature
$$\mathbf{x}_j$$
 if $d_j(\theta^k) > \sqrt{\frac{2}{\lambda^2} G_{\lambda}(\beta^k, \theta^k)}$

Aggressive Gap: **include** feature \mathbf{x}_j if $d_j(\theta^k) < r\sqrt{\frac{2}{\lambda^2}G_\lambda(\beta^k,\theta^k)}$ for some $r \in [0,1]$ to be chosen (Jonhson and Guestrin, 2015,16)

- ▶ outer loop: only include few features with the smallest $d_i(\theta^k)$
- ▶ inner loop: solve subproblem keeping only these features (fast)
- repeat

Idea: to reduce the number of features, drop the safety

Gap Safe: exclude feature
$$\mathbf{x}_j$$
 if $d_j(\theta^k) > \sqrt{\frac{2}{\lambda^2} G_{\lambda}(\beta^k, \theta^k)}$

Aggressive Gap: **include** feature \mathbf{x}_j if $d_j(\theta^k) < r\sqrt{\frac{2}{\lambda^2}G_\lambda(\beta^k, \theta^k)}$ for some $r \in [0, 1]$ to be chosen (Jonhson and Guestrin, 2015,16)

- ightharpoonup outer loop: only include few features with the smallest $d_i(\theta^k)$
- ▶ inner loop: solve subproblem keeping only these features (fast)
- repeat

<u>Idea</u>: to reduce the number of features, drop the safety

Gap Safe: exclude feature
$$\mathbf{x}_j$$
 if $d_j(\theta^k) > \sqrt{\frac{2}{\lambda^2} G_{\lambda}(\beta^k, \theta^k)}$

Aggressive Gap: **include** feature \mathbf{x}_j if $d_j(\theta^k) < r\sqrt{\frac{2}{\lambda^2}G_\lambda(\beta^k,\theta^k)}$ for some $r \in [0,1]$ to be chosen (Jonhson and Guestrin, 2015,16)

- outer loop: only include few features with the smallest $d_i(\theta^k)$
- ▶ inner loop: solve subproblem keeping only these features (fast)
- repeat

Working/active set strategies for Lasso-type/SVM problems: (Joachims 1998), (Roth *et al.* 2008), (Kim & Park, 2010), (Kowalski *et al.* 2011), etc.

AGGressive Gap Greedy with Gram (A5G)

Algorithm: A5G

```
input : X, y, \lambda
param: \beta_0 = 0_{p,q}, \overline{\epsilon} = 10^{-6}, r \in ]0,1[
// Outer loop:
for k = 1, \ldots, K do
     Compute dual point \theta^k and dual gap g^k
     if q^k < \overline{\epsilon} then
     □ Break
     for j = 1, \ldots, p do
         Compute d_i^k = (1 - |\mathbf{x}_i^{\top} \theta^k|) / ||\mathbf{x}_i||
     \mathcal{W}^k = \{ j \in [p] : d_i^k < r\sqrt{2g^k}/\lambda \cup \{ j : \beta_i^{k-1} \neq 0 \} \}
     // Inner loop:
     Approximately solve problem restricted to \mathcal{W}^k and get \beta^k
```

return β^k

AGGressive Gap Greedy with Gram (A5G)

```
Algorithm: A5G
input : X, y, \lambda
param: \beta_0 = 0_{p,q}, \overline{\epsilon} =
           10^{-6}, r = 100 (or other guess)
// Outer loop:
for k = 1, \ldots, K do
     Compute dual point \theta^k and dual gap q^k
    if q^k < \overline{\epsilon} then
     □ Break
     for j = 1, \ldots, p do
     Compute d_i^k = (1 - |\mathbf{x}_i^{\top} \theta^k|) / ||\mathbf{x}_i||
    p^k = \max(p_0, \min(2\|\beta^{k-1}\|_0, p)) // clipping
    \mathcal{W}^k = \{j \in [p] : d_i^k \text{ among } p^k/2 \text{ smallest ones}\} \cup \{j : p^k = 1\}
      \beta_i^{k-1} \neq 0
     // Inner loop:
     Approximately solve problem restricted to \mathcal{W}^k and get \beta^k
```

return β^k

Limiting size of sub-problems solved

(Leukemia n = 72, p = 7129)

Smaller subproblems solved \to Gram matrix $X_{\mathcal{W}^k}^{\top} X_{\mathcal{W}^k}$ fits in! Rem: fast inner solver on sub-problems (e.g., Greedy BCD)

Results on MEG data (Multi-task Lasso)

 $10 \times$ speed-up w.r.t. <u>multi-task</u> Lasso solver from scikit-learn (Pedregosa *et al.* 2011)

Table of Contents

Optimization and fast solvers

Safe Screening Rules

Active set: aggressive screening

Refitting strategies: image processing intermission (without Lena)

Concomitant estimation of the noise: towards heteroscedastic models

Other contributions

Acknowledgments

Joint work with C.-A. Deledalle, N. Papadakis and S. Vaiter Deledalle *et al.* (2015), Deledalle *et al.* (2017)

Lasso and its bias

Gaussian random design (with $\rho=0.5$)

Lasso and its bias

Gaussian random design (with $\rho=0.5$) LSLasso: least-squares over estimated support

Interest for CV

Potentially helps selecting a larger λ (sparser solutions), counter-act the "too small λ issue" of CV-Lasso for selection

$$\hat{\beta}_{AnisoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - \beta\|^2 + \lambda \|D^{\top}\beta\|_1$$

 D^{\top} : discrete gradient (incidence matrix over the path graph) Rudin *et al.* (1992), Mammen and van de Geer (1997)

True signal

$$\hat{\beta}_{AnisoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \left\| y - \beta \right\|^2 + \lambda \left\| D^\top \beta \right\|_1$$

 D^{\top} : discrete gradient (incidence matrix over the path graph) Rudin *et al.* (1992), Mammen and van de Geer (1997)

Noisy signal

$$\hat{\beta}_{AnisoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - \beta\|^2 + \lambda \|D^{\top}\beta\|_1$$

 D^{\top} : discrete gradient (incidence matrix over the path graph) Rudin *et al.* (1992), Mammen and van de Geer (1997)

$$\hat{\beta}_{AnisoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - \beta\|^2 + \lambda \|D^{\top}\beta\|_1$$

 D^{\top} : discrete gradient (incidence matrix over the path graph) Rudin *et al.* (1992), Mammen and van de Geer (1997)

LSTV: Perform least-squares over estimated constant part

$$\hat{\beta}_{AnisoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - \beta\|^2 + \lambda \|D^{\top}\beta\|_1$$

 D^{\top} : discrete gradient (incidence matrix over the path graph) Rudin *et al.* (1992), Mammen and van de Geer (1997)

LSTV: Perform least-squares over estimated constant part

$$\hat{\beta}_{AnisoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - \beta\|^2 + \lambda \|D^{\top}\beta\|_1$$

True signal

$$\hat{\beta}_{AnisoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - \beta\|^2 + \lambda \|D^{\top}\beta\|_1$$

Noisy signal

$$\hat{\beta}_{AnisoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - \beta\|^2 + \lambda \|D^{\top}\beta\|_1$$

$$\hat{\beta}_{AnisoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - \beta\|^2 + \lambda \|D^{\top}\beta\|_1$$

 D^{\top} : discrete gradient (incidence matrix over the path graph)

LSIsoTV: Perform least-squares over estimated constant part

Invariant refitting strategy

Definition

The invariant re-fitting associated to an a.e. differentiable estimator $y\mapsto \hat{\beta}(y)$ is given for $y\in\mathbb{R}^n$ by

$$\mathcal{R}^{\mathsf{inv}}_{\hat{\beta}}(y) = \hat{\beta}(y) + J(XJ)^+(y - X\hat{\beta}(y)) \in \mathop{\arg\min}_{\beta \in \mathcal{M}_{\hat{\beta}}(y)} \|X\beta - y\|^2 \ ,$$

where $J=J_{\hat{\beta}}(y)$ is the Jacobian matrix of $\hat{\beta}$ at y, and the model (affine) space is $\mathcal{M}_{\hat{\beta}}(y)=y+\mathrm{Im}\left[J_{\hat{\beta}}(y)\right]$.

Motivation: extend least-squares refitting from the Lasso case

$$\hat{\beta}_{IsoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - \beta\|^2 + \lambda \|D^{\top}\beta\|_{1,2}$$

True signal

$$\hat{\beta}_{IsoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \left\| y - \beta \right\|^2 + \lambda \left\| D^{\top} \beta \right\|_{1,2}$$

Noisy signal

(Isotropic) 2D-Total Variation and its bias

$$\hat{\beta}_{IsoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \left\| y - \beta \right\|^2 + \lambda \left\| D^{\top} \beta \right\|_{1,2}$$

 D^{\top} : discrete gradient (incidence matrix over the path graph)

(Isotropic) 2D-Total Variation and its bias

$$\hat{\beta}_{IsoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y - \beta\|^2 + \lambda \|D^{\top}\beta\|_{1,2}$$

 D^{\top} : discrete gradient (incidence matrix over the path graph)

LSIsoTV: Perform least-squares over estimated constant part

(Isotropic) 2D-Total Variation and its bias

$$\hat{\beta}_{IsoTV}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{1}{2} \left\| y - \beta \right\|^2 + \lambda \left\| D^{\top} \beta \right\|_{1,2}$$

 D^{\top} : discrete gradient (incidence matrix over the path graph)

CLEAR: Perform least-squares covariant refitting

CLEAR Refitting strategy

Definition

The Covariant LEast-square Re-fitting associated to an a.e. differentiable estimator $y \mapsto \hat{\beta}(y)$ is, for $y \in \mathbb{R}^n$, given by

$$\begin{split} \mathcal{R}_{\hat{\beta}}(y) &= \hat{\beta}(y) + \rho J(y - X \hat{\beta}(y)) \\ \text{with} \quad \rho &= \begin{cases} \frac{\langle XJ\delta,\delta \rangle}{\|XJ\delta\|^2} & \text{if } XJ\delta \neq 0 \;, \\ 1 & \text{otherwise} \;\;, \end{cases} \end{split}$$

where $\delta=y-X\hat{\beta}(y)$ is the residual and $J=J_{\hat{\beta}}(y)$ is the Jacobian matrix of $\hat{\beta}$ at y

<u>Rem</u>: the Jacobian matrix of the original and refitted estimators are preserved, up to a constant (covariant)

Rem: note that for Lasso and AnisoTV, CLEAR simply reads $\mathcal{R}_{\hat{\beta}}(y) = Jy$ and for Iso-TV, $\mathcal{R}_{\hat{\beta}}(y) = (1-\rho)\hat{\beta}(y) + \rho Jy$

True image

Noisy image

Iso-TV denoising

Iso-TV with invariant refitting

Iso-TV with CLEAR refitting

True image

Algorithms for CLEAR

Possible numerical schemes:

- Algorithmic differentiation
- Finite difference based differentiation
- ► Two-step computation for the general case

Rem: it can be applied to other methods, not only variational ones, e.g., NL-Means Buades et al. (2005), DDID Knaus and Zwicker (2013), etc.

LSLasso with Coordinate Descent

Algorithm: CD EPOCH FOR CLEAR LASSO (OR LSLASSO)

<u>Benefits</u>: limit instabilities from two step approach when stopping before support identification

One step further: handling sign constraints

Definition: SLSLasso (Sign Least Squares Lasso)

Constrain the sign not to change after refitting

$$\hat{\beta}_E^{\text{SLSLasso}} \in \mathop{\arg\min}_{\beta_E \in \mathbb{R}^{|E|}: \rho_E^{\lambda_1} \odot \beta_E \geq 0} \|y - X_E \beta_E\|^2 \ ,$$

where the equicorrelation set Tibshirani (2013) is

$$E = \{j \in [p] : |\rho_j^{\lambda}| = 1\}$$
 where $\rho^{\lambda} = \frac{X^{\top}(y - X\beta^{(\lambda)})}{\lambda}$

Rem: recover Bregman regularization scheme Brinkmann et al. (2016) (used for TV), analyzed for Lasso Chzhen et al. (2017)

SLSLasso

SLSLasso

SLSLasso

Table of Contents

Optimization and fast solvers

Safe Screening Rules

Active set: aggressive screening

Refitting strategies: image processing intermission (without Lena)

Concomitant estimation of the noise: towards heteroscedastic models

Other contributions

Acknowledgments

This part takes its roots in a collaboration with **A. Dalalyan**, **K. Meziani**, **M. Hebiri**, Dalalyan *et al.* (2013)

Recently revisited with:

- ► A. Gramfort, O. Fercoq, V. Leclère, E. Ndiaye (optimization aspects) Ndiaye et al. (2017)
- ► C. Boyer and Y. De Castro (super-resolution) Boyer *et al.* (2017)
- M. Massias, A. Gramfort and O. Fercoq (heteroscedastic extensions to address problems in neuro-imaging) Massias et al. (2017)

The Concomitant Lasso

$$\left((\hat{\beta}^{(\lambda)}, \sigma^{(\lambda)}) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p, \sigma > 0} \left(\frac{1}{2n\sigma} \|y - X\beta\|^2 + \frac{\sigma}{2} + \lambda \|\beta\|_1 \right) \right)$$

- ▶ Jointly convex method, introduced by Owen (2007)
- ► Analyzed by Sun and Zhang (2012) as "Scaled-Lasso" beware: different from Scaled-Lasso by Städler et al. (2010)
- ► Constraint not closed, might get $\sigma \to 0$: use Fenchel bi-conjugate, so objective accept $\sigma = 0$ for $y = X\beta$ see also Combettes and Müller (2016), Combettes (2016)
- ► Roots in Huber (1981)'s work

$$\underset{\beta \in \mathbb{R}^{p}, \sigma > 0}{\arg\min} \, \frac{1}{n} \sum_{i=1}^{n} \sigma \cdot \ell \left(\frac{y_{i} - \langle X_{i,:}, \beta \rangle}{\sigma} \right) + \frac{\sigma}{2}$$

Link with the $\sqrt{\text{Lasso}}$ Belloni *et al.* (2011)

▶ Independently, Belloni *et al.* (2011) analyzed $\sqrt{\text{Lasso}}$ to get " σ free" choice of λ (in theoretical bounds)

$$\widehat{\beta_{\sqrt{\text{Lasso}}}^{(\lambda)}} \in \underset{\beta \in \mathbb{R}^p}{\arg\min} \left(\frac{1}{\sqrt{n}} \|y - X\beta\| + \lambda \|\beta\|_1 \right)$$

▶ Connexions with Concomitant Lasso: $\left(\hat{\beta}_{\sqrt{\text{Lasso}}}^{(\lambda)}, \hat{\sigma}_{\sqrt{\text{Lasso}}}^{(\lambda)}\right)$ is solution of the Concomitant Lasso for

$$\hat{\sigma}_{\sqrt{\text{Lasso}}}^{(\lambda)} = \frac{\left\| y - X \hat{\beta}_{\sqrt{\text{Lasso}}}^{(\lambda)} \right\|}{\sqrt{n}}$$

The Smoothed Concomitant Lasso Ndiaye *et al.* (2016)

To remove issues for small λ (and σ), we have introduced:

$$\hat{\beta}^{(\lambda,\sigma_0)}, \hat{\sigma}^{(\lambda,\sigma_0)} \in \underset{\beta \in \mathbb{R}^p, \sigma \ge \sigma_0}{\operatorname{arg\,min}} \frac{\|y - X\beta\|^2}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_1$$

- ▶ With prior information on the minimal noise level, one can set σ_0 as this bound (and both estimators are the same)
- ▶ Setting $\sigma_0 = \epsilon$, smoothing theory asserts that $\frac{\epsilon}{2}$ -solutions for the smoothed problem provide ϵ -solutions for the original one Nesterov (2005)

Smoothing aparté Nesterov (2005), Beck and Teboulle (2012)

If f is non-smooth, then make it smooth, using for some $\mu > 0$, f_{μ} :

$$f_{\mu} = \mu \omega \left(\frac{\cdot}{\mu}\right) \Box f$$

where $f\Box g(x)=\inf_{u}f(u)+g(x-u)$ for a predefined function ω

"Huberization":
$$f(\beta) = \frac{\|y - X\beta\|}{\sqrt{n}}$$
, $\mu = \sigma_0$, $\omega(\beta) = \frac{\|\beta\|^2}{2} + \frac{1}{2}$

$$f_{\sigma_0}(\beta) = \begin{cases} \frac{\|y - X\beta\|^2}{2n\sigma_0} + \frac{\sigma_0}{2} & \text{if } \frac{\|y - X\beta\|}{\sqrt{n}} \le \sigma_0\\ \frac{\|y - X\beta\|}{\sqrt{n}} & \text{if } \frac{\|y - X\beta\|}{\sqrt{n}} > \sigma_0 \end{cases}$$
$$= \min_{\sigma \ge \sigma_0} \frac{\|y - X\beta\|^2}{2n\sigma} + \frac{\sigma}{2}$$

Coordinate Descent for Smoothed Concomitant Lasso

Algorithm: CD FOR SMOOTHED CONCOMITANT LASSO

$$\begin{aligned} & \text{input} \, : X, y, \lambda, \sigma_0 \\ & \text{param:} \, \beta = 0_p, \, \forall j \in \llbracket p \rrbracket, L_j = \lVert \mathbf{x}_j \rVert^2, \, \sigma = \sigma_0 \vee \frac{\lVert y - X\beta \rVert}{\sqrt{n}} \\ & \text{for} \quad j = 1, \dots, p \text{ do} \\ & \qquad \qquad \beta_j \leftarrow \mathrm{ST} \left(\beta_j - \frac{1}{L_j} \mathbf{x}_j^\top (X\beta - y), \frac{n\sigma\lambda}{L_j}\right) & \text{// coefficient} \\ & \qquad \qquad \qquad \text{update} \\ & \qquad \qquad \sigma \leftarrow \sigma_0 \vee \frac{\lVert y - X\beta \rVert}{\sqrt{n}} & \text{// standard deviation update} \\ & \text{return } \beta, \sigma \end{aligned}$$

Rem: previous screening strategies apply straightforwardly; e.g., critical value for $\lambda > \lambda_{\max}$, $\hat{\beta}^{(\lambda)} = 0$

$$\lambda_{\max} = \frac{\left\| X^{\top} y \right\|_{\infty}}{\|y\| \sqrt{n}} = \max_{j=1,\dots,p} \left| \left\langle \mathbf{x}_j, \frac{y}{\|y\| \sqrt{n}} \right\rangle \right|$$

Heteroscedastic ... and more

Motivation: unknown noise level with a piecewise structure e.g., in M/EEG three types of sensors are aggregated Massias et al. (2017)

We proposed the convex formulation (works for diagonal Σ):

$$\underset{\beta \in \mathbb{R}^p, \Sigma \in \mathbb{S}^n_{++}}{\operatorname{arg\,min}} \frac{1}{2n} (y - X\beta)^{\top} \Sigma^{-1} (y - X\beta) + \frac{1}{2n} \operatorname{tr}(\Sigma) + \lambda \|\beta\|_{1}$$

<u>Rem</u>: on going work for handling general correlated model, need more math for covariance update

Rem: alternative to SOCP formulation from Dalalyan et al. (2013)

Table of Contents

Optimization and fast solvers

Safe Screening Rules

Active set: aggressive screening

Refitting strategies: image processing intermission (without Lena)

Concomitant estimation of the noise: towards heteroscedastic

Other contributions

Other projects involving Phd students

- Matrix completion: Jean Lafond, co-supervised with E. Moulines
- Gossip algorithms for decentralized machine learning: Igor
 Colin, co-supervised with S. Clemençon
- ► Extreme multi-label classification: **Evgenii Chzhen**, co-supervised with M. Hebiri

Rem: Eugène Ndiaye (co-supervised with O. Fercoq) and Mathurin Massias (co-supervised with A. Gramfort and O. Cappé) already mentioned

Rem: Simon Amar and Jérôme-Alexis Chevalier (co-supervised with B. Thirion) soon to start!

Other projects involving Phd students

- Matrix completion: Jean Lafond, co-supervised with E. Moulines
- Gossip algorithms for decentralized machine learning: Igor
 Colin, co-supervised with S. Clemençon
- ► Extreme multi-label classification: **Evgenii Chzhen**, co-supervised with M. Hebiri

Rem: Eugène Ndiaye (co-supervised with O. Fercoq) and Mathurin Massias (co-supervised with A. Gramfort and O. Cappé) already mentioned

Rem: **Simon Amar** and **Jérôme-Alexis Chevalier** (co-supervised with B. Thirion) soon to start!

References I

- ► E.-M. Brinkmann, M. Burger, J. Rasch, and C. Sutour. Bias-Reduction in Variational Regularization.

 **ArXiv e-prints*, 2016.
- A. Buades, B. Coll, and J.-M. Morel. A review of image denoising algorithms, with a new one. Multiscale Model. Simul., 4(2):490–530, 2005.
- ► A. Belloni, V. Chernozhukov, and L. Wang. Square-root Lasso: pivotal recovery of sparse signals via conic programming. Biometrika, 98(4):791–806, 2011.
- C. Boyer, Y. De Castro, and J. Salmon.
 Adapting to unknown noise level in sparse deconvolution.
 Information and Inference, 6(3):310–348, 2017.
- A. Bonnefoy, V. Emiya, L. Ralaivola, and R. Gribonval.
 A dynamic screening principle for the lasso.
 In EUSIPCO, 2014.

References II

A. Bonnefoy, V. Emiya, L. Ralaivola, and R. Gribonval.
 Dynamic screening: accelerating first-order algorithms for the Lasso and Group-Lasso.

IEEE Trans. Signal Process., 63(19):20, 2015.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist., 37(4):1705–1732, 2009.

A. Beck and M. Teboulle.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM J. Imaging Sci.*, 2(1):183–202, 2009.

- A. Beck and M. Teboulle.
 Smoothing and first order methods: A unified framework.
 SIAM J. Optim., 22(2):557–580, 2012.
- ► S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 20(1):33–61, 1998.

References III

E. Chzhen, M. Hebiri, and J. Salmon. On Lasso refitting strategies. ArXiv e-prints, 2017.

▶ P. L. Combettes and C. L. Müller.

Perspective functions: Proximal calculus and applications in high-dimensional statistics.

J. Math. Anal. Appl., 2016.

P. L. Combettes.

Perspective functions: Properties, constructions, and examples. arXiv preprint arXiv:1610.01552, 2016.

▶ P. L. Combettes and J.-C. Pesquet.

Proximal splitting methods in signal processing.

In Fixed-point algorithms for inverse problems in science and engineering, volume 49 of Springer Optim. Appl., pages 185–212. Springer, New York, 2011.

References IV

► E. J. Candès, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted l₁ minimization. J. Fourier Anal. Applicat., 14(5-6):877-905, 2008.

▶ I. Daubechies, M. Defrise, and C. De Mol.

An iterative thresholding algorithm for linear inverse problems with a sparsity constraint.

Comm. Pure Appl. Math., 57(11):1413-1457, 2004.

- A. S. Dalalyan, M. Hebiri, and J. Lederer.
 On the prediction performance of the Lasso.
 Bernoulli, 23(1):552–581, 2017.
- A. S. Dalalyan, M. Hebiri, K. Meziani, and J. Salmon.
 Learning heteroscedastic models by convex programming under group sparsity.

In ICML, 2013.

References V

► C.-A. Deledalle, N. Papadakis, and J. Salmon.

On debiasing restoration algorithms: applications to total-variation and nonlocal-means.

In *SSVM*, pages 129–141, 2015.

C.-A. Deledalle, N. Papadakis, J. Salmon, and S. Vaiter.

CLEAR: Covariant LEAst-square Re-fitting with applications to image restoration.

SIAM J. Imaging Sci., 10(1):243–284, 2017.

B. Efron, T. J. Hastie, I. M. Johnstone, and R. Tibshirani.
 Least angle regression.

Ann. Statist., 32(2):407–499, 2004. With discussion, and a rejoinder by the authors.

► L. El Ghaoui, V. Viallon, and T. Rabbani. Safe feature elimination in sparse supervised learning. J. Pacific Optim., 8(4):667–698, 2012.

References VI

- O. Fercoq, A. Gramfort, and J. Salmon.
 Mind the duality gap: safer rules for the lasso.
 In ICML, pages 333–342, 2015.
- ► J. Friedman, T. J. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization.

 Ann. Appl. Stat., 1(2):302–332, 2007.
- C. Giraud.
 Introduction to high-dimensional statistics, volume 138.
 CRC Press, 2014.
- P. J. Huber.
 Robust Statistics.
 John Wiley & Sons Inc., 1981.

References VII

▶ T. Joachims.

Text categorization with support vector machines: Learning with many relevant features.

In Claire Nédellec and Céline Rouveirol, editors, *Machine Learning: ECML-98*, volume 1398 of *Lecture Notes in Computer Science*, pages 137–142. Springer Berlin Heidelberg, 1998.

- ► S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky.

 An interior-point method for large-scale ℓ₁-regularized least squares.

 IEEE J. Sel. Topics Signal Process., 1(4):606–617, 2007.
- J. Kim and H. Park.
 Fast active-set-type algorithms for I1-regularized linear regression.
 In AISTATS, pages 397–404, 2010.
- M. Kowalski, P. Weiss, A. Gramfort, and S. Anthoine.
 Accelerating ISTA with an active set strategy.
 In OPT 2011: 4th International Workshop on Optimization for Machine Learning, page 7, 2011.

References VIII

C. Knaus and M. Zwicker.
 Dual-domain image denoising.

In ICIP, pages 440–444, 2013.

 M. Massias, O. Fercoq, A. Gramfort, and J. Salmon.
 Heteroscedastic concomitant lasso for sparse multimodal electromagnetic brain imaging.

In AISTATS, 2018.

- M. Massias, A. Gramfort, and J. Salmon.
 From safe screening rules to working sets for faster lasso-type solvers.
 In NIPS-OPT, 2017.
- ► E. Mammen and S. van de Geer. Locally adaptive regression splines. Ann. Statist., 25(1):387–413, 1997.
- ► J. Mairal and B. Yu.

 Complexity analysis of the lasso regularization path.

 In *ICML*, pages 353–360, 2012.

References IX

Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–152, 2005.

E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclère, and J. Salmon.
 Efficient smoothed concomitant lasso estimation for high dimensional regression.

Journal of Physics: Conference Series, 904(1):012006, 2017.

- E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon.
 Gap safe screening rules for sparse multi-task and multi-class models.
 In NIPS, pages 811–819, 2015.
- E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon. GAP safe screening rules for sparse-group-lasso. In NIPS, 2016.
- E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon.
 Gap safe screening rules for sparsity enforcing penalties.
 J. Mach. Learn. Res., 18(128):1–33, 2017.

References X

M. R. Osborne, B. Presnell, and B. A. Turlach.
 A new approach to variable selection in least squares problems.
 IMA J. Numer. Anal., 20(3):389–403, 2000.

A. B. Owen.

A robust hybrid of lasso and ridge regression.

Contemporary Mathematics, 443:59-72, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
 Scikit-learn: Machine learning in Python.

J. Mach. Learn. Res., 12:2825-2830, 2011.

▶ V. Roth and B. Fischer.

The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms.

In ICML, pages 848-855, 2008.

References XI

► L. I. Rudin, S. Osher, and E. Fatemi.

Nonlinear total variation based noise removal algorithms.

Phys. D, 60(1-4):259–268, 1992.

N. Städler, P. Bühlmann, and S. van de Geer. ℓ₁-penalization for mixture regression models. TEST, 19(2):209–256, 2010.

► T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, 99(4):879–898, 2012.

R. Tibshirani, J. Bien, J. Friedman, T. J. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani.

Strong rules for discarding predictors in lasso-type problems.

J. R. Stat. Soc. Ser. B Stat. Methodol., 74(2):245–266, 2012.

► H. L. Taylor, S. C. Banks, and J. F. McCoy. Deconvolution with the \(\ell_1\) norm. Geophysics, 44(1):39–52, 1979.

References XII

R. Tibshirani.

Regression shrinkage and selection via the lasso.

J. R. Stat. Soc. Ser. B Stat. Methodol., 58(1):267-288, 1996.

R. J. Tibshirani.

The lasso problem and uniqueness.

Electron. J. Stat., 7:1456-1490, 2013.

J. Wang, J. Zhou, P. Wonka, and J. Ye.
 Lasso screening rules via dual polytope projection.
 In NIPS, pages 1070–1078, 2013.

The Gap safe sphere is safe (proof)

- ▶ $D_{\lambda}(\hat{\theta}^{(\lambda)}) \leq P_{\lambda}(\beta_k)$ (weak duality)
- ▶ D_{λ} is λ^2 -strongly concave so for any $\theta_1, \theta_2 \in \mathbb{R}^n$,

$$D_{\lambda}(\theta_1) \le D_{\lambda}(\theta_2) + \langle \nabla D_{\lambda}(\theta_2), \theta_1 - \theta_2 \rangle - \frac{\lambda^2}{2} \|\theta_1 - \theta_2\|^2$$

• $\hat{\theta}^{(\lambda)}$ maximizes D_{λ} over Δ_X , so **Fermat's rule** yields

$$\forall \theta \in \Delta_X, \qquad \langle \nabla D_{\lambda}(\hat{\theta}^{(\lambda)}), \theta - \hat{\theta}^{(\lambda)} \rangle \leq 0$$

To conclude, for any $\theta \in \Delta_X$:

$$\frac{\lambda^2}{2} \left\| \theta - \hat{\theta}^{(\lambda)} \right\|^2 \le D_{\lambda}(\hat{\theta}^{(\lambda)}) - D_{\lambda}(\theta) + \langle \nabla D_{\lambda}(\hat{\theta}^{(\lambda)}), \theta - \hat{\theta}^{(\lambda)} \rangle$$
$$\le P_{\lambda}(\beta_k) - D_{\lambda}(\theta)$$