$T \in L(E,F)$ is called a <u>lattice homomorphism</u> if |Tf| = T|f| holds for all $f \in E$. Lattice homomorphisms are alternatively characterized by any one of the following conditions:

(a)	$(\mathbf{T}f)^+ = \mathbf{T}(f^+)$	(f	€	E)	
(a')	$(\mathrm{Tf})^- = \mathrm{T}(\mathrm{f}^-)$	(f	€	E)	
(b)	$T(f \lor g) = Tf \lor Tg$	(f	€	E)	
(b')	$T(f_g) = Tf_Tg$	(f	€	E)	
(c)	$T(f^{+}) \wedge T(f^{-}) = 0$	(f	ϵ	E)	

The kernel of a lattice homomorphism is an ideal. If T is bijective, then T is a lattice homomorphism if and only if T and \mathtt{T}^{-1} are positive.

7. COMPLEX BANACH LATTICES

Although the notion of a Banach lattice is intrinsically related to the real number system, it is possible and often desirable to extend discussions to complexifications of Banach lattices in such a way that the order-related terms introduced in the real situation essentially retain their meaning. Thus we define a complex Banach lattice E to be the complexification of a real Banach lattice $E_{\mathbb{R}}$ in the sense that

$$E = E_{R} \oplus iE_{R}$$

which means more exactly $E = E_{\mathbb{R}} \times E_{\mathbb{R}}$ with scalar multiplication $(\alpha+i\beta)(x,y)=(\alpha x-\beta y,\beta x+\alpha y)$. $E_{\mathbb{R}}$ will sometimes be called the underlying real Banach lattice or the real part of E . The classical complex Banach spaces C(X) , $L^{p}(\mu)$ are complex Banach lattices in this sense, the underlying real Banach lattices being the corresponding (real) subspaces of real-valued functions. We want to extend the formation of absolute values, which is a priori defined only in the real part of E , in such a way that in the classical situation E = C(X) or $E = L^{p}(\mu)$ the usual absolute value of a function is obtained. This is in fact possible by putting, for h = f + ig in E

$$|h| = \sup\{ \operatorname{Re}(e^{i\theta}h) : 0 \le \theta \le 2\pi \},$$

only problem with this definition being the existence of the right hand side without the assumption of order-completeness on