Table 3: Accuracy of action recognition techniques (Numbers are true recognition accuracy given in percentages. * Datasets in which the mean average precision is reported). The column *Type* indicates whether a method is <u>purely Deep-net based(D)</u>, <u>Representation Based(R)</u> or <u>Fused Solution(F)</u>.

Reported Paper	Method	Туре	Dataset						
				UCF101	UCF50	UCF-	Holly-	Olympic	
			HMDB51	UCF101	UCF30	Sports*	wood2*	Sports*	Sports1N
Wang et al. (2011)	Dense Traj (Traj + HOG+HOF+MBH)	R				88.2	58.3		
Kliper-Gross et al. (2012)	Motion Interchange Patterns	R	29.2		68.5				
	General		26.9						
Sadanand and Corso (2012)	Video Wise	R			76.4				
	Group Wise				57.9				
Oneata et al. (2013)	MBH + SIFT + Sqrt + L2 Normalization	R	54.8		90		63.3	82.1	
	Without Human Detector	R	55.9		90.5		63	90.2	
Wang and Schmid (2013)	With Human Detector		57.2		91.2		64.3	91.1	
Jain et al. (2013)	Traj + HoG + HoF + MBH + DCS on w-flow	R	52.1				62.5		
Peng et al. (2014b)	Stacked FVs + FV	R	66.8						
Peng et al. (2014a)	Hybrid-BoW	R	61.1	87.9	92.3				
Kantorov and Laptev (2014)	MPEG-Flow: VLAD encodings of	R	46.3						
Gaidon et al. (2014)	SDT tree ATEP	R	41.3				54.4	85.5	
Simonyan and Zisserman (2014)	Two-stream (CNN-M-2048)	D	59.4	88.0					
	Transfer Learning on Sports 1M			65.4					
Karpathy et al. (2014)	Clip Hit @ 1 - Slow Fusion	D							41.9
	Video Hit @ 1 - Slow Fusion								60.9
Sun et al. (2015)	Factorized Spatio Temporal Conv. Nets	D	59.1	88.1					
	Two-Stream (ClarifaiNet)			88.0					
Wang et al. (2015b)	Two-Stream (GoogLeNet)	D		89. 3					
	Two-Stream (VGG-16)			91.4					
Wang et al. (2015a)	TDD + Wang and Schmid (2013)	F	65.9	91.5					
	TDD (Only)	F	63.2	90.3					
	Conv Pooling Hit@1 (Best)								72.4
Ng et al. (2015)	LSTM Hit@1 (Best)	D							73.1
	Conv Pooling (Image + Opt Flow)			88.2					
	LSTM (Image + Opt Flow)			88.6					
Fernando et al. (2015)	Rank Pooling	R	63.7				73.7		
Donahue et al. (2015)	LRCN- Weighted Avnerage of RBG + Flow	R		82.9					
Wu et al. (2015)	Adaptive Multi-Stream Fusion	D		92.6					
Jiang et al. (2015)	TrajShape+TrajMF	R	48.4	78.5			55.2	80.6	
	TrajShape+TrajMF+ Wang and Schmid (2013)		57.3	87.2			65.4	91	
Lan et al. (2015)	Multi-Skip Feat. Stacking	R	65.1	89.1	94.4		68.0	91.4	
Hoai and Zisserman (2015)	Proposed SSD + RCS	R	62.2				72.7		
Tran et al. (2015)	C3D on SVM	D		85.2					
	C3D + Wang and Schmid (2013) on SVM	F		90.4					
Misra et al. (2016)	ImageNet pretrain + tuple verification	D	29.9						
	HMDB + UCF101 Labels Only		30.6						
Wang et al. (2016)	Proposed Only (RBG + Opt Flow Networks)	D	62	92.4					
Fernando and Gould (2016)	End to End Rank-pooling	D				87	40.6		
Fernando et al. (2016)	Hierarchical Rank-pooling (CNN Features)	D	47.5	78.8			56.8		
	Hierarchical RP on CNN+ Fernando et al.	F	65.0	90.7			74.1		
	(2015)							00.0	
Li et al. (2016)	VLAD ³ VLAD ³ + Wang and Schmid (2013)	F F		84.7 92.2				90.8 96.6	
Varol et al. (2016)	$LTC_{flow+RGB}$	D	64.8	91.7					
	LTC _{flow+RGB} + Wang and Schmid (2013)	F	67.2	92.7					
	Two Stream Fusion (VGG-16)	D	65.4	92.5					
Feichtenhofer et al. (2016)			1	1					1
Feichtenhofer et al. (2016)	Two Stream Fusion (VGG-16) + Wang and	г	co. c	02.5					
Feichtenhofer et al. (2016)		F	69.2	93.5					