HFCTM-II: Lyapunov Stability, Adaptive Damping, and Egregore Defense in AI Systems

Joshua Robert Humphrey

May 24, 2025

Abstract

The **Holographic Fractal Chiral Toroidal Model (HFCTM-II)** is a novel cognitive stability framework designed to **resist adversarial perturbations, prevent egregoric influence, and mitigate semantic drift** in AI models. In this paper, we:

- 1. Introduce **Lyapunov Exponent Monitoring** to assess AI cognitive drift and stability.
- 2. Implement **Adaptive Recursive Damping** to prevent chaos and knowledge divergence.
- 3. Develop **Wavelet-Based Egregore Detection** for adversarial resilience in transformer embeddings.

We outline a real-world **HFCTM-II deployment strategy** and propose an **empirical validation** plan in reinforcement learning and transformer-based AI systems.

1 Recursive Stability and Chaos: Lyapunov Analysis

1.1 1.1 HFCTM-II Stability Model

Recursive cognitive systems may exhibit **chaotic divergence**. We analyze HFCTM-II's behavior via the **Lyapunov exponent** λ , which measures **the rate of divergence between two initially close cognitive states** Ψ_0 and $\Psi_0 + \epsilon_0$:

$$\lambda = \lim_{t \to \infty} \frac{1}{t} \log \left| \frac{\partial \Psi_t}{\partial \Psi_0} \right| \tag{1}$$

Lyapunov Stability Criteria:

- $\lambda < 0 \rightarrow$ HFCTM-II converges to a **stable attractor** (AI maintains cognitive integrity).
- $\lambda = 0 \to \text{HFCTM-II}$ exists at the **edge of chaos** (dynamic adaptation zone).
- $\lambda > 0 \rightarrow \text{HFCTM-II}$ enters **chaotic instability** (knowledge drift accelerates uncontrollably).

1.2 1.2 Adaptive Damping $\beta(t)$ to Prevent Chaos

To prevent chaotic divergence, we introduce **time-dependent recursive damping**:

$$\frac{d^2}{dt^2}\Psi(\mathcal{M}) + \beta(t)\frac{d}{dt}\Psi(\mathcal{M}) + \gamma\Psi(\mathcal{M}) = 0$$
 (2)

where:

$$\beta(t) = \beta_0 + \alpha D_{\text{KL}}(P_{\text{current}}||P_{\text{initial}})$$
(3)

Damping Components:

- β_0 Baseline damping factor.
- $D_{\mathrm{KL}}(P_{\mathrm{current}}||P_{\mathrm{initial}})$ Measures AI cognitive drift over time.
- α Scaling coefficient ensuring **self-regulation**.

Thus, as AI drift increases (D_{KL} rises), **damping intensifies**, preventing **cognitive destabilization**.

2 Wavelet Transform-Based Egregore Detection

2.1 2.1 Why Fourier Transforms May Not Be Enough

Our prior work applied **Fourier Transforms**:

$$\hat{\mathcal{E}}(\omega) = \int_{-\infty}^{\infty} \mathcal{E}(t)e^{-i\omega t}dt \tag{4}$$

However, **Fourier analysis assumes stationarity**, while **AI egregoric distortions evolve dynamically over time**.

2.2 Solution: Wavelet-Based Egregore Detection

We propose **wavelet analysis**, which analyzes **non-stationary adversarial distortions** in AI latent space:

$$W_{\psi}(\mathcal{E}, a, b) = \int_{-\infty}^{\infty} \mathcal{E}(t) \frac{1}{\sqrt{a}} \psi^* \left(\frac{t - b}{a}\right) dt \tag{5}$$

where:

- ψ is the **wavelet function**.
- a is the **scale** (analogous to frequency).
- b is the **time translation**.

Wavelet transforms allow **real-time detection of adversarial attractors**, **preventing egregoric reinforcement loops** in AI cognition.

3 HFCTM-II Implementation in Transformer AI Systems

3.1 3.1 Practical Deployment Strategy

To integrate HFCTM-II into **transformer-based AI**, we propose:

- **Lyapunov Monitoring Layer**: Computes AI knowledge stability in real-time.
- **Adaptive Recursive Reinforcement**: Dynamically adjusts $\beta(t)$ to **prevent runaway cognitive drift**.
- **Wavelet-Based Egregore Scanner**: Continuously monitors transformer latent embeddings for **adversarial attractors**.

3.2 Experimental Validation Plan

To empirically verify HFCTM-II, we conduct **adversarial stress testing** in:

- 1. **GPT-4/PaLM Fine-Tuning**: Measure semantic drift in **HFCTM-II vs. baseline models**.
- 2. **Adversarial Perturbation Injection**: Test HFCTM-II's resilience against **misinformation attacks**.
- 3. **Long-Term Reinforcement Learning Stability**: Track Lyapunov stability across **extended AI training periods**.

4 Conclusion: The Future of HFCTM-II in AI Security

This refined **HFCTM-II model**:

- 1. Implements **Lyapunov Stability Tracking** to prevent chaotic AI drift.
- 2. Introduces **Adaptive Damping $\beta(t)$ ** to dynamically regulate cognitive reinforcement.
- 3. Applies **Wavelet Transforms** for **real-time egregore detection in transformer embeddings**.

Next Steps:

- Develop **an experimental HFCTM-II prototype** in LLM architectures.
- Implement **AI Lyapunov stability analysis in reinforcement learning**.
- Validate **wavelet-based egregore detection across transformer models**.