日本国特許庁 JAPAN PATENT OFFICE

20123, 2001 6

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 7月23日

出願番号

Application Number:

特願2002-214199

[ST.10/C]:

[JP2002-214199]

出 願 人
Applicant(s):

ブラザー工業株式会社

2003年 4月25日

特 許 庁 長 官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

20010781

【あて先】

特許庁長官殿

【国際特許分類】

C09D 11/00

【発明者】

【住所又は居所】

名古屋市瑞穂区苗代町15番1号 ブラザー工業株式会

社内

【氏名】

山崎 秀人

【発明者】

【住所又は居所】

名古屋市瑞穂区苗代町15番1号 ブラザー工業株式会

社内

【氏名】

豊田 嘉人

【発明者】

【住所又は居所】

名古屋市瑞穂区苗代町15番1号 ブラザー工業株式会

社内

【氏名】

青井 紀篤

【発明者】

【住所又は居所】

名古屋市瑞穂区苗代町15番1号 ブラザー工業株式会

社内

【氏名】

津田 政之

【特許出願人】

【識別番号】

000005267

【氏名又は名称】

ブラザー工業株式会社

【代理人】

【識別番号】

100086586

【弁理士】

【氏名又は名称】

安富 康男

【選任した代理人】

【識別番号】

100119529

【弁理士】

【氏名又は名称】 諸田 勝保

【選任した代理人】

【識別番号】 100109195

【弁理士】

【氏名又は名称】 武藤 勝典

【手数料の表示】

【予納台帳番号】 033891

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 9505719

【包括委任状番号】 0018483

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 インクジェット記録用水性インク

【特許請求の範囲】

【請求項1】 自己分散型顔料、グリコールエーテル及び水を含有するインクジェット記録用水性インクであって、

前記グリコールエーテルは、エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への溶解性が1%以上である ことを特徴とするインクジェット記録用水性インク。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、紙面におけるにじみを低減することができ、乾燥性に優れ、かつ、顔 料が安定的に分散したインクジェット記録用水性インクに関するものである。

[0002]

【従来の技術】

インクジェット記録方法は、例えば、静電吸引方法;圧電素子を用いてインクに機械的振動又は変位を与える方法;インクを加熱することにより気泡を発生させ、このときに発生する圧力を利用する方法等のインク吐出方法により、インク小滴を形成し、インク小滴の一部又は全部を紙等の記録媒体に付着させて記録を行うものである。

[0003]

インクジェット記録方法は、現像・定着等のプロセスがなく、カラー化が容易であることから、近年、飛躍的に普及している。最近では、インクジェットプリンタによる印刷の高精細化及び高速化が急速に進み、更には普通紙に印字可能なカラープリンタ等が主流となってきている。

[0004]

このような状況下で、インクジェット記録方法に用いられるインクジェット記録 用水性インクには、例えば、インクジェットプリンタのヘッド先端部やインク流 路内で目詰まりを起こさず安定した噴射が可能であること、鮮明な画像及び色調 であること、画像形成後に退色や変色が発生しないこと等の高い性能が要求される。特に近年は、ランニングコスト及び環境への配慮からインクジェット専用紙よりも普通紙への記録需要が高くなってきており、普通紙に記録しても、にじみのない鮮明な画像が得られることが要求されている。

[0,005]

ここで、インクジェット記録用水性インクは、染料インクと顔料インクとに大別される。染料インクはインクジェット記録方法が開発された当初から使用されてきたインクであり、色数の豊富さ、色相の鮮明さにおいて優れている反面、染料自体が水溶性を呈するものであるため、耐水性及び耐光性に劣るという欠点がある。一方、顔料インクは耐水性及び耐光性は良好であるものの、分散機器によって顔料を水中に細かく分散する必要があるため製造工程が煩雑となる、経時的に水中に分散させた顔料が凝集・沈殿する、色相の鮮やかさに劣る等の欠点がある

[0006]

これら染料インク及び顔料インクの欠点を改良するための研究がなされているが、近年、特に顔料インクの改良が目覚ましく、分散安定性に優れ、凝集・沈殿を起こし難い顔料インクが開発されている。これらの顔料インクとしては、分散剤を改良したもの、分散剤を用いずに電気的又は物理的な反発を発生するよう顔料の表面を処理したもの等がある。前者の顔料インクにおける改良された分散剤は、多くが高分子化合物であり、顔料の表面に高分子化合物が吸着し、立体障害作用によって顔料の凝集を防止する。一方、後者の顔料インクにおける顔料は自己分散型顔料といい、顔料の表面に電荷を有する基等が付与されており、電気的な反発等を利用して顔料の凝集を防止する。

[0007]

このようなインクジェット記録用水性インクにより普通紙に記録を行うと、記録画像のにじみの主な原因となるフェザリングを生じたり、紙面での乾燥性が悪いために記録後の紙を触ったときにインクが手に付着したりする問題等を生じる。なお、フェザリングとは、紙の表面繊維にそってインクが不均一に広がりエッジがキザキザになる現象である。特に、様々な紙の成分からなる再生紙に記録する

場合には、インクの繊維への浸透速度が異なることから、フェザリングや紙面で の乾燥性の問題は、より顕著に現れる。

[0008]

一般的なインクジェット記録用水性インクでは、フェザリングや紙面での乾燥性の問題を解決するために、紙への浸透性を制御する目的で、グリコールエーテル類等の湿潤剤又は浸透剤と呼ばれる水溶性有機溶媒が添加されるが、紙面におけるにじみの低減と乾燥性との両立を図ることは困難であり、更に、分散剤を用いた顔料インクでは、顔料の分散安定性が破壊され、凝集又は増粘してしまうという問題があった。

【発明が解決しようとする課題】

[0009]

本発明は、上述した問題点を解決するためになされたものであり、紙面における にじみを低減することができ、乾燥性に優れ、かつ、顔料が安定的に分散したイ ンクジェット記録用水性インクを提供することを目的とするものである。

[0010]

【課題を解決するための手段】

本発明は、自己分散型顔料、グリコールエーテル及び水を含有するインクジェット記録用水性インクであって、前記グリコールエーテルは、エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への溶解性が1%以上であるインクジェット記録用水性インクである。

以下に本発明を詳述する。

[0011]

本発明のインクジェット記録用水性インクは、自己分散型顔料、グリコールエーテル及び水を含有する。

上記自己分散型顔料は、顔料粒子の表面に親水性の官能基及び/又はその塩が、 直接又は多価の基を介して、化学結合により導入されていることによって、分散 剤なしでも水に分散可能なものである。1つの顔料粒子に導入される親水性の官 能基及び/又はその塩は、1種であってもよく、2種以上であってもよい。上記 顔料粒子に導入される親水性の官能基又はその塩の種類及び数は、インク中での 分散安定性、色の濃度及びインクジェットヘッド前面での乾燥性等に応じて決定 される。

[0012]

上記自己分散型顔料に用いることができる顔料としては特に限定されず、無機顔料及び有機顔料のいずれも使用することができる。これらの自己分散型顔料は、単独で用いられてもよく、2種以上が併用されてもよい。

[0013]

黒色顔料としては、例えば、ファーネスブラック、ランプブラック、アセチレンブラック、チャネルブラック等のカーボンブラック類等の無機顔料;アニリンブラック等の有機顔料を挙げることができる。

[0.014]

黄色顔料としては、例えば、カラーインデックスナンバーピグメントイエロー1、2、3、4、5、6、7、10、11、12、13、14、16、17、24、55、61、61:1、65、73、74、75、81、83、93、94、95、97、98、99、100、108、109、110、113、117、120、123、124、128、129、133、138、139、147、151、153、154、155、156、167、168、172、173、180等を挙げることができる。

[0015]

マゼンタ色顔料としては、例えば、カラーインデックスナンバーピグメントレッド1、2、3、4、5、6、7、8、9、10、11、12、14、15、16、17、18、19、21、22、23、30、31、32、37、38、40、41、42、88、112、114、122、123、144、146、149、150、166、168、170、171、175、176、177、178、179、185、187、188、189、190、194、202、209、214、216、219、220、224、242、245、及び、カラーインデックスナンバーピグメントバイオレット19、23、31、32、33、36、38、43、50等を挙げることができる。

[0016]

シアン色顔料としては、例えば、カラーインデックスナンバーピグメントブルー 15、15:1、15:2、15:3、15:4、15:6、16、17:1、 18、19、21、22、25、56、60、64、65、66等を挙げること ができる。

[0017]

上記官能基及び/又はその塩としては特に限定されないが、例えば、下記式(1)からなる群より選ばれる少なくとも1つの官能基及び/又はその塩が好適に用いられる。

[0018]

【化1】

-OM, -COOM, -CO-, $-SO_3M$, $-SO_2M$, $-SO_2NH_2$, -RS O_2M , $-PO_3HM$, $-PO_3M_2$, $-SO_2NHCOR$, $-NH_3$, $-NR_3$ (1) [0019]

上記式(1)中、Mは、水素原子、アルカリ金属、アンモニウム又は有機アンモニウムを表し、Rは、炭素数1~12のアルキル基、フェニル基、ナフチル基、置換基を有するフェニル基、又は、置換基を有するナフチル基を表す。

[0020]

上記官能基及び/又はその塩を、顔料粒子の表面に直接又は多価の基を介して、 化学結合により導入する方法としては特に限定されず、種々の公知の表面処理方 法を用いることができる。例えば、市販の酸化カーボンブラックにオゾンや次亜 塩素酸ナトリウム溶液を作用させ、カーボンブラックを更に酸化処理することに より、表面をより親水化処理する方法;有機顔料が不溶又は難溶である溶剤中に 有機顔料を分散させ、スルホン化剤により、スルホン基を導入する方法;三酸化 硫黄と錯体を形成する塩基性溶剤中に有機顔料を分散させ、三酸化硫黄を添加す ることにより有機顔料の表面を処理し、スルホン基又はスルホンアミノ基を導入 する方法;アゾカップリング反応によりカーボンブラックに結合させたフェニレ ン基を介して、水可溶化官能基とポリマーとを導入する方法等を挙げることがで きる。

[0021]

本発明のインクジェット記録用水性インクには、更に、色を調節するために水溶性染料が配合されてもよい。

上記水溶性染料としては、例えば、カラーインデックスナンバーベーシックレッ F1, 1:1, 2, 12, 13, 14, 18, 22, 27, 28, 29, 34, 38、39、46、46:1、67、69、70;カラーインデックスナンバー ベーシックバイオレット1、2、3、4、5、7、8、10、11、11:1、 20、33:カラーインデックスナンバーベーシックブルー3、6、7、9、1 1、12、16、17、24、26、41、47、66;カラーインデックスナ ンバーベーシックグリーン1、4、5;カラーインデックスナンバーベーシック \(\square\) \(\s 67、73;カラーインデックスナンバーベーシックオレンジ14、21、22 、32;カラーインデックスナンバーベーシックブラウン1、4;カラーインデ ックスナンバーダイレクトブラック17、19、32、51、71、108、1 4 6、1 5 4、1 6 8;カラーインデックスナンバーダイレクトブルー 6、2 2 - 25、71、86、90、106、199;カラーインデックスナンバーダイ レクトレッド1、4、17、28、83、227;カラーインデックスナンバー ダイレクトイエロー12、24、26、86、98、132、142;カラーイ ンデックスナンバーダイレクトオレンジ34、39、44、46、60;カラー インデックスナンバーダイレクトバイオレット47、48、107;カラーイン デックスナンバーダイレクトブラウン109;カラーインデックスナンバーダイ レクトグリーン59;カラーインデックスナンバーアシッドブラック2、7、2 4、26、31、52、63、112、118;カラーインデックスナンバーア シッドブルー9、22、40、59、93、102、104、113、117、 120、167、229、234;カラーインデックスナンバーアシッドレッド 1, 6, 32, 37, 51, 52, 80, 85, 87, 92, 94, 115, 1 81、256、289、315、317;カラーインデックスナンバーアシッド イエロー11、17、23、25、29、42、61、71;カラーインデック スナンバーアシッドオレンジ7、19;カラーインデックスナンバーアシッドバ イオレット49;カラーインデックスナンバーフードブラック1、2;カラーイ

ンデックスナンバーリアクティブレッド180等を挙げることができる。

[002.2]

上記自己分散型顔料及び/又は水溶性染料の配合量は、所望の色や濃度に応じて決定されるが、本発明のインクジェット記録用水性インクの全量に対して0.0 1~7重量%であることが好ましく、より好ましくは0.1~5.5重量%である。

[0023]

本発明のインクジェット記録用水性インクは、エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への溶解性が1%以上であるグリコールエーテルを含有する。

本発明者らは、鋭意検討した結果、エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への溶解性が1%以上であるグリコールエーテルを配合することにより、紙面におけるにじみの低減と乾燥性とを両立したインクジェット記録用水性インクが得られることを見出し、本発明を完成させるに至った。

[0024]

通常、紙へのインクの浸透には、紙の繊維に浸透してフェザリングを生じる場合と、紙の繊維間の空隙に浸透する場合とがあり、紙面におけるにじみを低減するためには、フェザリングを抑え、繊維間の空隙にインクを浸透させる必要がある

ここで、本発明者らは、インクがグリコールエーテルを含有する場合には、グリコールエーテルのエチレンオキサイド部分の炭素数により、主に紙の繊維に浸透する場合と、主に紙の繊維間の空隙に浸透する場合とに分かれることを見出した。すなわち、エチレンオキサイド部分の炭素数が6以下であると、主に紙の繊維にそって浸透が進んでフェザリングが生じ、エチレンオキサイド部分の炭素数が8以上であると、主に紙の繊維間の空隙に浸透して紙面におけるにじみを低減できる。一方、一般にグリコールエーテルは、エチレンオキサイド部分の炭素数が多くなるほど、疎水性が高くなる。疎水性が高くなると、紙への浸透性が向上して乾燥時間が短くなるので、紙面における乾燥性は向上するが、インクジェット

記録用水性インクに配合するためにはある程度水への溶解性が必要となる。

そこで、エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への溶解性が1%以上であるグリコールエーテルを用いることにより、インクジェット記録用水性インクに配合するのに必要な水への溶解性を有し、インクジェット記録用水性インクの紙面におけるにじみの低減と乾燥性との両立を図ることができる。

[0025]

上記エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への溶解性が1%以上であるグリコールエーテルとしては、例えば、テトラエチレングリコールブチルエーテル、テトラエチレングリコールメチルエーテル、トリプロピレングリコールブチルエーテル、トリプロピレングリコールブチルエーテル、トリプロピレングリコールメチルエーテル等を挙げることができる。なお、上記水への溶解性の測定方法としては特に限定されず、例えば、一定量の水に攪拌下に他の液を滴下し濁りの生じる点を求める方法、任意組成の混合液を作り一定温度に長時間放置し2相に分離した容積を測定して算出する方法等を挙げることができる。

[0026]

上記グリコールエーテルの配合量は、本発明のインクジェット記録用水性インクの全量に対して0.5~20重量%であることが好ましい。この範囲内であれば、紙面におけるにじみの低減と乾燥性とをバランスよく両立することができる。

[0027]

本発明のインクジェット記録用水性インクには、更に、粘度及び表面張力を調節 するために印字性能を損なわない範囲で、上記グリコールエーテル以外の水溶性 有機溶剤が配合されていてもよい。

上記水溶性有機溶剤としては特に限定されず、例えば、ポリアルキレングリコール類、アルキレングリコール類、アルキレングリコールエーテル類、グリセリン、ピロリドン類等を挙げることができる。これらの水溶性有機溶媒は、単独で用いられてもよいし、2種以上が併用されてもよい。

[0028]

上記水溶性有機溶剤の配合量は、本発明のインクジェット記録用水性インクの全量に対して10~45重量%であることが好ましい。10重量%未満であると、湿潤作用が不充分となり析出、乾固等の問題を生じることがある。45重量%を超えると、必要以上に増粘して噴射不能となったり、紙面上での乾燥が極端に遅くなったりすることがある。より好ましくは、15~40重量%である。

[0029]

本発明のインクジェット記録用水性インクは、水を含有する。

上記水としては、一般的にインクジェット記録用水性インクに用いられているカチオン性イオンやアニオン性イオンの含有量の少ない純水や蒸留水等を用いることが好ましい。

上記水の配合量は、本発明のインクジェット記録用水性インク全量に対して50~75重量%であることが好ましい。50重量%未満であると、本発明のインクジェット記録用水性インクは粘度が高くなるため、ノズルにインクを導入しにくくなることがある。75重量%を超えると、揮発成分が蒸発した後のインクの粘度が高くなりすぎてノズル回復性が失われることがある。

[0030]

本発明のインクジェット記録用水性インクは、吐出安定性、プリントヘッドやインクカートリッジ材料との適合性、保存安定性、画像保存性等を向上させる目的に応じて、自己分散顔料の分散安定性を低下させない範囲で、更に、pH調節剤、金属封鎖剤、粘度調整剤、表面張力調整剤、湿潤剤、比抵抗調整剤、皮膜形成剤、紫外線吸収剤、酸化防止剤、退色防止剤、防錆剤、防腐剤等を含有していてもよい。

本発明のインクジェット記録用水性インクを熱エネルギーの作用によってインク を噴射させるインクジェット方式に適用する場合には、比熱、熱膨張係数、熱電 導率等の熱的な物性値が調整されてもよい。

[0031]

本発明のインクジェット記録用水性インクは、エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への溶解性が1%以上であるグリコールエーテルを含有することにより、主に紙の繊維間の空隙に浸透して紙面におけ

るにじみの低減と乾燥性との両立を図ることができ、自己分散型顔料の分散状態 を損なうこともない。

[0032]

【実施例】

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれらの実施例 のみに限定されるものではない。

[0033]

(実施例1~5)

表 1 に示した組成にて混合攪拌後、 2 μ mのメンブランフィルターで濾過を行い、黒インクを調製した。

自己分散型顔料としては、カーボンブラックの表面を処理したCABO-O-JET300(キャボット社製、顔料分15重量%)又はマイクロジェットCW-1(オレエント化学社製、顔料分20重量%)を用いた。

エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への 溶解性が1%以上であるグリコールエーテルとしては、テトラエチレングリコー ルブチルエーテル又はトリプロピレングリコールブチルエーテルを用いた。

なお、テトラエチレングリコールブチルエーテルの25 における水への溶解性は100 以上であり、トリプロピレングリコールブチルエーテルの25 における水への溶解性は1.5 %であった。

[0034]

【表1】

	組成比(重量部)								
	実施例1	実施例2	実施例3	実施例4	実施例5				
CABO-O-JET300	33.3	33.3	33.3	_	33.3				
マイクロジェットCW-1		-		25					
グリセリン	20	20	20	20	-				
ポリエチレングリコール #200	-	-	-	_	20				
2-ピロリドン	-		-	- "	8				
蒸留水	39.7	45.7	38.7	49.5	31.7				
テトラエチレングリコールブチルエーテル	7	-	5		7				
トリプロピレングリコールブチルエーテル		. 1		1	_ `				
ジプロピレングリコールプロピルエーテル		_	3	·-	_				
トリエチレングリコールエチルエーテル				4.5	-				

[0035]

(実施例6)

表2に示した組成にて混合攪拌後、2μmのメンブランフィルターで濾過を行い、イエローインクを調製した。

エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への溶解性が1%以上であるグリコールエーテルとしては、テトラエチレングリコールブチルエーテルを用いた。

イエローの自己分散型顔料は、下記手順により調製した。

- (1) イソインドリノン顔料(ピグメントイエロー110) 20gとキノリン500gとを混合し、ビーズミルを用いて3時間分散させた。
- (2) 上記(1)で得られた混合物を減圧下で、水分をできるだけ除去した。
- (3) 160℃に昇温し、スルホン化ピリジン錯体20gを加え、4時間攪拌を 行った。
- (4)上記(3)で得られたスラリーをキノリンにて洗浄後、水中に注ぎ、更に水洗及び乾燥した後、水にて顔料濃度15重量%に調整し、表面処理されたイソインドリノン顔料の15重量%分散体を得た。

[0036]

【表2】

	組成比(重量部)
インク材料	実施例6
イソインドリノン顔料の15重量%分散体	33, 3
ポリエチレングリコール#200	20
2ーピロリドン	8
蒸留水	31.7
テトラエチレングリコールブチルエーテル	7

[0037]

(実施例7)

表3に示した組成にて混合攪拌後、2μmのメンブランフィルターで濾過を行い、マゼンタインクを調製した。

エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への 溶解性が1%以上であるグリコールエーテルとしては、テトラエチレングリコー ルブチルエーテルを用いた。

マゼンタの自己分散型顔料は、下記手順により調製した。

(1) ジメチルキナクリドン顔料 (ピグメントレッド122) 20gとキノリン500gとを混合し、ビーズミルを用いて3時間分散させた。

- (2)上記(1)で得られた混合物を減圧下で、水分をできるだけ除去した。
- (3) 160℃に昇温し、スルホン化ピリジン錯体20gを加え、4時間攪拌を 行った。
- (4)上記(3)で得られたスラリーをキノリンにて洗浄後、水中に注ぎ、更に水洗及び乾燥した後、水にて顔料濃度15重量%に調整し、表面処理されたジメチルキナクリドン顔料の15重量%分散体を得た。

[0038]

【表3】

	組成比(重量部)
インク材料	実施例7
キナクリドンマザエンタ顔料の15重量%分散体	33.3
ポリエチレングリコール#200	20
2ーピロリドン	8
蒸留水	31.7
テトラエチレングリコールブチルエーテル	7

[0039]

(実施例8)

表4に示した組成にて混合攪拌後、2μmのメンブランフィルターで濾過を行い、シアンインクを調製した。

エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への 溶解性が1%以上であるグリコールエーテルとしては、テトラエチレングリコー ルブチルエーテルを用いた。

シアンの自己分散型顔料は、下記手順により調製した。

- (1) フタロシアニンブルー顔料(ピグメントブルー15:3) 30gとスルファニル酸6.0gとを混合した。
- (2)上記(1)で得られた混合物に0.3重量%亜硝酸ナトリウム水溶液100gを攪拌しながら滴下した。
- (3)70℃で1時間攪拌した後、濾別し水洗いを繰り返して精製した。
- (4)上記(3)で得られたスラリーを乾燥させた後、水200mlに分散し、

額料濃度15重量%に調整し、表面処理されたフタロシアニンブルー顔料の15 重量%分散体を得た。

[0040]

【表4】

	組成比(重量部)
インク材料	実施例8
フタロシアニンブルー顔料の15重量%分散体	33.3
ポリエチレングリコール#200	20
2-ピロリドン	8
蒸留水	31.7
テトラエチレングリコールブチルエーテル	7

[0041]

(比較例1~4)

表 5 に示した組成にて混合攪拌後、0. $7 \mu m のメンブランフィルターで濾過を行い、黒インクを調製した。$

なお、ジエチレングリコールブチルエーテルの25 Cにおける水への溶解性は100 %以上であり、トリエチレングリコールブチルエーテルの25 Cにおける水への溶解性は100 %以上であり、トリエチレングリコールプロピルエーテルの25 Cにおける水への溶解性は100 %以上であり、プロピレングリコールブチルエーテルの25 Cにおける水への溶解性は6.4 %であった。

[0042]

【表5】

	組成比(重量部)						
インク材料	比較例1	比較例2	比較例3	比較例4			
CABO-O-JET300	33.3	33.3	33.3	33.3			
グリセリン	_ 20	20	20	20			
蒸留水	38.7	38.7	39.7	42.7			
ジエチレングリコールブチルエーテル	- 8	_	1	_			
トリエチレングリコールブチルエーテル	<u> </u>	8	-				
トリエチレングリコールプロピルエーテル	-	_	5				
プロピレングリコールブチルエーテル		-	. —	2			

[0043]

(比較例5~8)

表6の組成にて混合攪拌後、2μmのメンブランフィルターで濾過を行い、各色

インクを調製した。

なお、トリエチレングリコールモノブチルエーテルの25℃における水への溶解 性は100%以上であった。

[0044]

【表6】

4 4	組成比(重量部)						
インク材料	比較例5	比較例6	比較例7	比較例8			
CABO-O-JET300	33.3	33.3	-	·—			
実施例6で作製した							
イソインドリノン顔料の15重量%分散体			33.3	33.3			
トリエチレングリコールモノブチルエーテル	6	8.	6	8			
ポリエチレングリコール # 200	24	24	24.	24			
蒸留水	36.7	34.7	36.7	34.7			

[0045]

<評価>

実施例 $1 \sim 8$ 及び比較例 $1 \sim 8$ で調製したインクについて、下記手順により、にじみ及び乾燥性を評価した。

- (1) ピエゾ素子の振動による圧力を与えて液滴を発生させて記録を行うインクジェットプリンタ (ブラザー工業社製、MFC7400J) にてXEROX4200紙に、1mm幅の線、及び、紙送り方向に連続して文字「A」を印字した。
- (2) 1 mm幅の線の線幅を、顕微鏡を用いて観察し、最大線幅(Wmax)の 値を記録し、結果を下記基準によって評価した。
- \bigcirc : W m a x = 1 \sim 1. 1 m m
- $O: Wmax = 1. 1 \sim 1. 2mm$
- Δ : W m a x = 1. 2 \sim 1. 3 m m
- X: Wmax = 1. 3 mm以上
- (3) 文字「A」を印字後、直ちに綿棒で印字箇所を擦り、印字の乱れが観察された箇所からインクの乾燥時間を算出し、結果を下記基準によって評価した。
- ◎:乾燥時間=0.5秒以下
- 〇:乾燥時間=0.5~1秒
- △:乾燥時間=1~1.5秒
- ×:乾燥時間=1.5秒以上

[0046]

評価の結果を表7に示した。

[0047]

【表7】

⇒₽ IFA TE FI		実施例								比較例						
試験項目	1	2	3	4	5	6	7	8	1	2	_3	4	5	6	7	8
にじみ	0	0	0	0	0	0	0	0	Δ	Δ	Δ	0	Δ	Δ	Δ	Δ
乾燥性	0	0	0	0	0	0	0	0	0	0	0	X	0	0	0	Q

[0048]

表7から、グリコールエーテルが、エチレンオキサイド部分の炭素数が8以上で、かつ25℃における水への溶解性が1%以上であるとき、にじみ及び乾燥性の両方を満足できることが分かる。

[0049]

【発明の効果】

本発明によれば、紙面におけるにじみを低減することができ、乾燥性に優れ、かつ、顔料が安定的に分散したインクジェット記録用水性インクを提供することができる。

【書類名】 要約書

【要約】

【課題】 紙面でのフェザリングによる記録画像のにじみを低減することができ、紙面での乾燥性に優れ、かつ、顔料が安定的に分散したインクジェット記録用 水性インクを提供する。

【解決手段】 自己分散型顔料、グリコールエーテル及び水を含有するインクジェット記録用水性インクであって、前記グリコールエーテルは、エチレンオキサイド部分の炭素数が8以上であり、かつ、25℃における水への溶解性が1%以上であるインクジェット記録用水性インク。

【選択図】 なし

認定・付加情報

特許出願の番号

特願2002-214199

受付番号

50201082546

書類名

特許願

担当官

第六担当上席 0095

作成日

平成14年 7月24日

<認定情報・付加情報>

【提出日】

平成14年 7月23日

出願人履歴情報

識別番号

[000005267]

1. 変更年月日 1990年11月 5日

[変更理由] 住所変更

住 所 愛知県名古屋市瑞穂区苗代町15番1号

氏 名 ブラザー工業株式会社