A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware

This code can be used as supplemental material for three papers:

- Principle of spatio-temporal ANN-to-SNN conversion:
 - "A Novel Conversion Method for Spiking Neural Network using Median Quantization", IEEE ISCAS, October, 2020.
- Spatial conversion and mapping on PAICore2.0 (Scatter-and-Gather, SG):
 - "A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware", Frontiers in Neuroscience, October, 2021.
- Temporal conversion and mapping on PAICore1.0 (Store-and-Release, SR):
 - "Modular Building Blocks for Mapping Spiking Neural Networks onto a Programmable Neuromorphic Processor". (Elsevier Microelectronics Journal, revised, October, 2022.

Citation:

To be completed.

Features:

This supplemental material gives a reproduction function of ANN training, testing and converted SNN
inference experiments in our paper. Besides, visualized results for spiking sparsity and synaptic
operations (SOPs) are provided.

File overview:

- README.md this readme file.
- video for demonstration.webm a video for demonstration using PAICore1.0 (PKU-NC64C).
- LeNet the project folder for LeNet.
- VGG- the project folder for VGG-Net.

Requirements

Dependencies and Libraries:

- python 3.5 (https://www.python.org/ or https://www.anaconda.com/)
- tensorflow_gpu 1.2.1 (https://github.com/tensorflow)
- tensorlayer 1.8.5 (https://github.com/tensorlayer)
- CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
- GPU: Tesla V100

Installation:

To install requirements,

```
pip install -r requirements.txt
```

Datasets:

- MNIST: dataset, preprocessing
- CIFAR10/100: dataset, preprocessing

ANN Training

Before running:

- Please installing the required package Tensorflow and Tensorlayer (using our modified version)
- Please note your default dataset folder will be workspace/data, such as Spatio_temporal_SNNs/LeNet/data
- Select the index of GPU in the training scripts (0 by default)

Run the code:

for example (ANN training, k=0, B=1, LeNet, MNIST):

```
$ cd LeNet
$ python Quant_LeNet_MNIST.py --k 0 --B 1 --resume False --learning_rate 0.001 --
mode 'training'
```

ANN Inference

Run the code:

for example (ANN inference, k=0, B=1, LeNet, MNIST):

```
$ python Quant_LeNet_MNIST.py --k 0 --B 1 --resume True --mode 'inference'
```

SNN inference

Run the code:

for example (SNN inference, k=0, B=1, LeNet, MNIST):

```
$ python Spiking_LeNet_MNIST.py --k 0 --B 1 --noise_ratio 0
```

it will generate the corresponding log files including: accuracy.txt, sop_num.txt, spike_collect.txt and spike_num.txt in ./figs/k0B1.

Others

• We do not consider the synaptic operations in the input encoding layer and the spike output in the last classification layer (membrane potential accumulation) for both original ANN counterparts and converted SNNs.

 More instructions for running the code can be found in the respective workspace folder (LeNet/README_LeNet.md, VGG/README_VGG.md).

Results

Our proposed methods achieve the following performances on MNIST, CIFAR10/100:

MNIST:

Quantization Precision	Network Size	Epochs	ANN	SNN	Time Steps
Full-precision	16C5-P2-16C5-P2-256	200	99.52%	N/A	N/A
k=0, B=1	16C5-P2-16C5-P2-256	200	99.27%	99.27%	1
k=0, B=2	16C5-P2-16C5-P2-256	200	99.32%	99.32%	1
k=0, B=4	16C5-P2-16C5-P2-256	200	99.43%	99.43%	1
k=1, B=1	16C5-P2-16C5-P2-256	200	99.30%	99.30%	1
k=1, B=2	16C5-P2-16C5-P2-256	200	99.37%	99.37%	1
k=1, B=4	16C5-P2-16C5-P2-256	200	99.50%	99.50%	1

CIFAR10:

Quantization Level	Network Size	Epochs	ANN	SNN	Time Steps
full-precision	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	92.85%	N/A	N/A
k=0, B=1	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	89.12%	89.12%	1
k=0, B=2	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	90.95%	90.95%	1
k=0, B=4	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	91.65%	91.65%	1
k=1, B=1	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	90.14%	90.14%	1
k=1, B=2	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	91.91%	91.91%	1

Quantization Level	Network Size	Epochs	ANN	SNN	Time Steps
k=1, B=4	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	92.27%	92.27%	1

CIFAR100:

Quantization Level	Network Size	Epochs	ANN	SNN	Time Steps
full-precision	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	67.4%	N/A	N/A
k=0, B=1	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	56.1%	56.1%	1
k=0, B=2	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	62.5%	62.5%	1
k=0, B=4	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	65.6%	65.6%	1
k=1, B=1	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	59.2%	59.2%	1
k=1, B=2	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	65.0%	65.0%	1
k=1, B=4	64C3*2-2P2-128C3*2-P2-256C3*2-P2- 512C3-512	400	66.2%	66.2%	1

More question:

- There might be a little difference of results for multiple training repetitions, because of the randomization.
- Please feel free to reach out here or email: 1801111301@pku.edu.cn, if you have any questions or difficulties. I'm happy to help guide you.