ЭЛЕМЕНТЫ ОБЩЕЙ АЛГЕБРЫ Полугруппы и группы

Определение 6.1. Бинарная операция * называется:

Определение 6.1. Бинарная операция * называется:

1) ассоциативной, если для любых $x\,,y\,,z$

$$(x*y)*z = x*(y*z);$$

Определение 6.1. Бинарная операция * называется:

1) ассоциативной, если для любых x, y, z

$$(x*y)*z = x*(y*z);$$

2) коммутативной, если для любых x, y

$$x * y = y * x;$$

Определение 6.1. Бинарная операция * называется:

1) ассоциативной, если для любых x, y, z

$$(x*y)*z = x*(y*z);$$

2) коммутативной, если для любых x, y

$$x * y = y * x;$$

3) идемпотентной, если для любого x

$$x * x = x$$
.

$$(A \cup B) \cup C = A \cup (B \cup C);$$

$$(A \cup B) \cup C = A \cup (B \cup C);$$

 $(A \cap B) \cap C = A \cap (B \cap C);$

$$(A \cup B) \cup C = A \cup (B \cup C);$$

 $(A \cap B) \cap C = A \cap (B \cap C);$

коммутативными, так как

$$(A \cup B) \cup C = A \cup (B \cup C);$$

 $(A \cap B) \cap C = A \cap (B \cap C);$

коммутативными, так как

$$A \cup B = B \cup A$$
;

$$(A \cup B) \cup C = A \cup (B \cup C);$$

 $(A \cap B) \cap C = A \cap (B \cap C);$

коммутативными, так как

$$A \cup B = B \cup A;$$

$$A \cap B = B \cap A;$$

$$(A \cup B) \cup C = A \cup (B \cup C);$$

 $(A \cap B) \cap C = A \cap (B \cap C);$

коммутативными, так как

$$A \cup B = B \cup A;$$

 $A \cap B = B \cap A;$

и идемпотентными, так как

$$(A \cup B) \cup C = A \cup (B \cup C);$$

 $(A \cap B) \cap C = A \cap (B \cap C);$

коммутативными, так как

$$A \cup B = B \cup A;$$

 $A \cap B = B \cap A;$

и идемпотентными, так как

$$A \cup A = A$$
;

$$(A \cup B) \cup C = A \cup (B \cup C);$$

$$(A \cap B) \cap C = A \cap (B \cap C);$$

коммутативными, так как

$$A \cup B = B \cup A;$$

$$A \cap B = B \cap A;$$

и идемпотентными, так как

$$A \cup A = A;$$

 $A \cap A = A;$

$$(A \cup B) \cup C = A \cup (B \cup C);$$

$$(A \cap B) \cap C = A \cap (B \cap C);$$

коммутативными, так как

$$A \cup B = B \cup A;$$

$$A \cap B = B \cap A;$$

и идемпотентными, так как

$$A \cup A = A;$$

 $A \cap A = A;$

б) Операция \ разности не является ассоциативной, так как

$$A \setminus (B \setminus C) \neq (A \setminus B) \setminus C$$
.

Ассоциативна ли операция \odot на множестве M, если:

(a) $M = \mathbb{N}, \quad x \odot y = 2xy$;

First • 1

Nex

ast • Go E

▶ Full Scre€

Close

• Quit

Ассоциативна ли операция \odot на множестве M, если:

- (a) $M = \mathbb{N}, \quad x \odot y = 2xy$;
- (6) $M = \mathbb{Z}, \quad x \odot y = x^2 + y^2;$

Ассоциативна ли операция \odot на множестве M, если:

(a)
$$M = \mathbb{N}, \quad x \odot y = 2xy$$
;

(6)
$$M = \mathbb{Z}, \quad x \odot y = x^2 + y^2;$$

(B)
$$M = \mathbb{R}, \quad x \odot y = \sin(x) \cdot \sin(y)$$
;

First

Prev

Next

Last

Go Bac

• Full Scre

Close

Quit

Ассоциативна ли операция \odot на множестве M, если:

(a)
$$M = \mathbb{N}, \quad x \odot y = 2xy$$
;

(6)
$$M = \mathbb{Z}, \quad x \odot y = x^2 + y^2;$$

(B)
$$M = \mathbb{R}, \quad x \odot y = \sin(x) \cdot \sin(y)$$
;

(
$$\Gamma$$
) $M = \mathbb{R}$, $x \odot y = x - y$.

First

rev • No

• Las

• Go Bacl

• Full Scre

• Close

• Quit

Определение 6.2. Элемент 0 множества A называется **левым** (правым) нулем относительно данной операции, если для любого $x \in A$ 0 * x = 0 (x * 0 = 0). Нуль, который является одновременно левым и правым, называется просто нулем.

t ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close

Определение 6.2. Элемент 0 множества A называется **левым** (правым) нулем относительно данной операции, если для любого $x \in A$ 0 * x = 0 (x * 0 = 0). Нуль, который является одновременно левым и правым, называется просто нулем.

Определение 6.3. Элемент 1 множества A называется левым (правым) нейтральным элементом относительно данной операции, если для любого $x \in A$ 1*x = x (x*1 = x). Нейтральный элемент, который является одновременно левым и правым, называется просто нейтральным элементом. Нейтральный элемент часто называют единицей.

st • Prev • Next • Last • Go Back • Full Screen • Close

$$A \cap \varnothing = \varnothing$$

'irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

$$A \cap \varnothing = \varnothing$$

и единицей относительно объединения, так как

$$A \cup \emptyset = A$$
.

st ullet Prev ullet Next ullet Last ullet Go Back ullet Full Screen ullet ullet

$$A \cap \varnothing = \varnothing$$

и единицей относительно объединения, так как

$$A \cup \emptyset = A$$
.

Универсальное множество U есть $\mathit{нуль}$ относительно объединения так как

$$A \cup U = U$$
,

$$A \cap \emptyset = \emptyset$$

и единицей относительно объединения, так как

$$A \cup \emptyset = A$$
.

Универсальное множество U есть $\mathit{нуль}$ относительно объединения так как

$$A \cup U = U$$
,

и единица относительно пересечения, так как

$$A \cap U = A$$
.

Prev
 Next
 Last
 Go Back
 Full Screen
 (

Группоид, операция которого ассоциативна, называется **полугруппой**.

Группоид, операция которого ассоциативна, называется **полугруппой**.

Пример 2.

а) Множество натуральных чисел с операцией сложения будет полугруппой, поскольку (a+b)+c=a+(b+c).

st • Prev • Next • Last • Go Back • Full Screen • Close • (

Группоид, операция которого ассоциативна, называется **полугруппой**.

Пример 2.

- а) Множество натуральных чисел с операцией сложения будет полугруппой, поскольку (a+b)+c=a+(b+c).
- б) Множество 2^A всех подмножеств множества A с операцией теоретико-множественной разности \ только группоид, но не полугруппа, поскольку операция \ не ассоциативна.

Задача 2. На множестве M определена операция \circ по правилу $x \circ y = x$. Доказать, что (M, \circ) — полугруппа. Что можно сказать о нейтральных элементах этой полугруппы?

irst • Prev • Next • Last • Go Back • Full Screen • Close • Qui

Задача 2. На множестве M определена операция \circ по правилу $x \circ y = x$. Доказать, что (M, \circ) — полугруппа. Что можно сказать о нейтральных элементах этой полугруппы?

Задача 3. На множестве M^2 , где M — некоторое множество, определена операция \circ по правилу $(x,y)\circ(z,t)=(x,t)$. Является ли (M^2,\circ) полугруппой? Существует ли в ней нейтральный элемент?

rst • Prev • Next • Last • Go Back • Full Screen • Close

Задача 2. На множестве M определена операция \circ по правилу $x \circ y = x$. Доказать, что (M, \circ) — полугруппа. Что можно сказать о нейтральных элементах этой полугруппы?

Задача 3. На множестве M^2 , где M — некоторое множество, определена операция \circ по правилу $(x,y)\circ(z,t)=(x,t)$. Является ли (M^2,\circ) полугруппой? Существует ли в ней нейтральный элемент?

Задача 4. Пусть S — полугруппа матриц вида $\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$, $x,y \in \mathbb{R}$ с операцией умножения. Существуют ли в этой полугруппе левый или правый нейтральные элементы.

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Определение 6.5. Полугруппа называется моноидом, если в ней существует нейтральный элемент относительно операции (единица).

Определение 6.5. Полугруппа называется моноидом, если в ней существует нейтральный элемент относительно операции (единица).

Пример 3. а) Алгебра $(2^A, \cup)$ является моноидом, поскольку операция \cup ассоциативна и \varnothing — нейтральный элемент относительно операции объединения множеств.

Определение 6.5. Полугруппа называется моноидом, если в ней существует нейтральный элемент относительно операции (единица).

Пример 3. а) Алгебра $(2^A, \cup)$ является моноидом, поскольку операция \cup ассоциативна и \varnothing — нейтральный элемент относительно операции объединения множеств.

б) Множество всех бинарных отношений на множестве A с операцией композиции будет моноидом, поскольку операция композиции бинарных отношений ассоциативна ($(\rho \circ \tau) \circ \sigma = \rho \circ (\tau \circ \sigma)$), а единицей служит диагональ id_A ($\mathrm{id}_A \circ \rho = \rho \circ \mathrm{id}_A = \rho$).

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Определение 6.5. Полугруппа называется моноидом, если в ней существует нейтральный элемент относительно операции (единица).

Пример 3. а) Алгебра $(2^A, \cup)$ является моноидом, поскольку операция \cup ассоциативна и \varnothing — нейтральный элемент относительно операции объединения множеств.

б) Множество всех бинарных отношений на множестве A с операцией композиции будет моноидом, поскольку операция композиции бинарных отношений ассоциативна ($(\rho \circ \tau) \circ \sigma = \rho \circ (\tau \circ \sigma)$), а единицей служит диагональ id_A ($\mathrm{id}_A \circ \rho = \rho \circ \mathrm{id}_A = \rho$).

Задача 5. Пусть $A = \{x,y,z\}$ — множество букв, а A^* — множество всех слов, которые можно составить из этих букв с повторениями. Конкатенацией двух слов называется слово, полученное их "склеиванием", например: xxy + yzxx = xxyyzxx. Пустое слово обозначают λ . Показать, что $(A^*, +)$ — моноид.

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Определение 6.7. Моноид называется группой, если в нем для каждого элемента существует обратный.

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Qu

Определение 6.7. Моноид называется группой, если в нем для каждого элемента существует обратный.

Чтобы проверить, что алгебра (A, *) является группой, нужно

Определение 6.7. Моноид называется группой, если в нем для каждого элемента существует обратный.

Чтобы проверить, что алгебра (A, *) является группой, нужно 1) проверить ассоциативность операции * на множестве A;

Определение 6.7. Моноид называется группой, если в нем для каждого элемента существует обратный.

Чтобы проверить, что алгебра (A,*) является группой, нужно

- 1) проверить ассоциативность операции * на множестве A;
- 2) найти элемент множества A единицу относительно операции *;

Определение 6.7. Моноид называется группой, если в нем для каждого элемента существует обратный.

Чтобы проверить, что алгебра (A, *) является группой, нужно

- 1) проверить ассоциативность операции * на множестве A;
- 2) найти элемент множества A единицу относительно операции *;
- 3) убедиться, что для каждого элемента из A существует обратный.

Определение 6.7. Моноид называется группой, если в нем для каждого элемента существует обратный.

Чтобы проверить, что алгебра (A, *) является группой, нужно

- 1) проверить ассоциативность операции * на множестве A;
- 2) найти элемент множества A единицу относительно операции *;
- 3) убедиться, что для каждого элемента из A существует обратный.

Полугруппа (в частности, группа) называется **коммутативной** (абелевой), если ее операция коммутативна.

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Операция симметрической разности

1) ассоциативна ($(A \triangle B) \triangle C = A \triangle (B \triangle C)$) ;

t • Prev • Next • Last • Go Back • Full Screen • Close

Операция симметрической разности

- 1) ассоциативна ($(A \triangle B) \triangle C = A \triangle (B \triangle C)$);
- 2) для любого $X\subseteq A$ $X\bigtriangleup\varnothing=X$, т.е. \varnothing единица относительно данной операции;

Операция симметрической разности

- 1) ассоциативна ($(A \triangle B) \triangle C = A \triangle (B \triangle C)$);
- 2) для любого $X\subseteq A$ $X\bigtriangleup\varnothing=X$, т.е. \varnothing единица относительно данной операции;
- 3) $X \triangle Y = \emptyset$ тогда и только тогда, когда X = Y, т.е. каждый элемент X является обратным сам к себе.

Операция симметрической разности

- 1) ассоциативна ($(A \triangle B) \triangle C = A \triangle (B \triangle C)$);
- 2) для любого $X\subseteq A$ $X\bigtriangleup\varnothing=X$, т.е. \varnothing единица относительно данной операции;
- 3) $X \triangle Y = \emptyset$ тогда и только тогда, когда X = Y, т.е. каждый элемент X является обратным сам к себе.

Следовательно, данная алгебра является группой.

Операция симметрической разности

- 1) ассоциативна ($(A \triangle B) \triangle C = A \triangle (B \triangle C)$);
- 2) для любого $X\subseteq A$ $X\bigtriangleup\varnothing=X$, т.е. \varnothing единица относительно данной операции;
- 3) $X \triangle Y = \emptyset$ тогда и только тогда, когда X = Y, т.е. каждый элемент X является обратным сам к себе.

Следовательно, данная алгебра является группой.

Поскольку операция \triangle коммутативна ($A \triangle B = B \triangle A$), то данная алгебра является aбелевой группой.

Операция симметрической разности

- 1) ассоциативна ($(A \triangle B) \triangle C = A \triangle (B \triangle C)$);
- 2) для любого $X\subseteq A$ $X\bigtriangleup\varnothing=X$, т.е. \varnothing единица относительно данной операции;
- 3) $X \triangle Y = \emptyset$ тогда и только тогда, когда X = Y, т.е. каждый элемент X является обратным сам к себе.

Следовательно, данная алгебра является группой.

Поскольку операция \triangle коммутативна ($A \triangle B = B \triangle A$), то данная алгебра является aбелевой группой.

Операция симметрической разности

- 1) ассоциативна ($(A \triangle B) \triangle C = A \triangle (B \triangle C)$);
- 2) для любого $X\subseteq A$ $X\bigtriangleup\varnothing=X$, т.е. \varnothing единица относительно данной операции;
- 3) $X \triangle Y = \varnothing$ тогда и только тогда, когда X = Y, т.е. каждый элемент X является обратным сам к себе.

Следовательно, данная алгебра является группой.

Поскольку операция \triangle коммутативна ($A \triangle B = B \triangle A$), то данная алгебра является aбелевой группой.

(a)
$$(\mathbb{N}, +)$$
;

Операция симметрической разности

- 1) ассоциативна ($(A \triangle B) \triangle C = A \triangle (B \triangle C)$);
- 2) для любого $X\subseteq A$ $X\bigtriangleup\varnothing=X$, т.е. \varnothing единица относительно данной операции;
- 3) $X \triangle Y = \emptyset$ тогда и только тогда, когда X = Y, т.е. каждый элемент X является обратным сам к себе.

Следовательно, данная алгебра является группой.

Поскольку операция \triangle коммутативна ($A \triangle B = B \triangle A$), то данная алгебра является aбелевой группой.

- (a) (N, +);
- $(6) (\mathbb{Q}, +);$

Операция симметрической разности

- 1) ассоциативна ($(A \triangle B) \triangle C = A \triangle (B \triangle C)$);
- 2) для любого $X\subseteq A$ $X\bigtriangleup\varnothing=X$, т.е. \varnothing единица относительно данной операции;
- 3) $X \triangle Y = \emptyset$ тогда и только тогда, когда X = Y, т.е. каждый элемент X является обратным сам к себе.

Следовательно, данная алгебра является группой.

Поскольку операция \triangle коммутативна ($A \triangle B = B \triangle A$), то данная алгебра является aбелевой группой.

- (a) (N, +);
- $(6) (\mathbb{Q}, +);$
- (B) $(\mathbb{R} \setminus \{0\}, \cdot)$.

'irst • Prev • Next • Last • Go Back • Full Screen • Close • Quit

(а) множество невырожденных матриц относительно умножения?

- (а) множество невырожденных матриц относительно умножения?
- (б) множество невырожденных матриц относительно сложения?

- (а) множество невырожденных матриц относительно умножения?
- (б) множество невырожденных матриц относительно сложения?
- (в) множество диагональных матриц одного порядка (включая нулевую) относительно сложения?

- Задача 7. Какие из указанных множеств квадратных вещественных матриц образуют группу:
- (а) множество невырожденных матриц относительно умножения?
- (б) множество невырожденных матриц относительно сложения?
- (в) множество диагональных матриц одного порядка (включая нулевую) относительно сложения?
- (г) множество диагональных матриц одного порядка, исключая нулевую, относительно умножения?

- **Задача 7.** Какие из указанных множеств квадратных вещественных матриц образуют группу:
- (а) множество невырожденных матриц относительно умножения?
- (б) множество невырожденных матриц относительно сложения?
- (в) множество диагональных матриц одного порядка (включая нулевую) относительно сложения?
- (г) множество диагональных матриц одного порядка, исключая нулевую, относительно умножения?
- **Задача 8.** Пусть M некоторое множество. Является ли группой алгебра
- (a) $(2^M, \cap)$;

- **Задача 7.** Какие из указанных множеств квадратных вещественных матриц образуют группу:
- (а) множество невырожденных матриц относительно умножения?
- (б) множество невырожденных матриц относительно сложения?
- (в) множество диагональных матриц одного порядка (включая нулевую) относительно сложения?
- (г) множество диагональных матриц одного порядка, исключая нулевую, относительно умножения?
- **Задача 8.** Пусть M некоторое множество. Является ли группой алгебра
- (a) $(2^M, \cap)$;
- (6) $(2^M, \cup)$?

t • Prev • Next • Last • Go Back • Full Screen • Close • G

Теорема 1. В любой группе \mathcal{G} любое уравнение вида $a \cdot x = b$ или $x \cdot a = b$ имеет единственное решение.

st • Prev • Next • Last • Go Back • Full Screen • Close • Qui

Теорема 1. В любой группе \mathcal{G} любое уравнение вида $a \cdot x = b$ или $x \cdot a = b$ имеет единственное решение.

Решение имеет вид:

$$x = a^{-1} \cdot b$$
 или $x = b \cdot a^{-1}$.

Теорема 1. В любой группе \mathcal{G} любое уравнение вида $a \cdot x = b$ или $x \cdot a = b$ имеет единственное решение.

Решение имеет вид:

$$x = a^{-1} \cdot b$$
 или $x = b \cdot a^{-1}$.

t • Prev • Next • Last • Go Back • Full Screen • C

В группе S_3 решим следующее уравнение

$$\left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \circ X \circ \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right).$$

В группе S_3 решим следующее уравнение

$$\left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \circ X \circ \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right).$$

Умножим уравнение слева на

$$\left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right),$$

получим:

В группе S_3 решим следующее уравнение

$$\left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \circ X \circ \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right).$$

Умножим уравнение слева на

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right),$$

получим:

$$X \circ \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right).$$

В группе S_3 решим следующее уравнение

$$\left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \circ X \circ \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right).$$

Умножим уравнение слева на

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right),$$

получим:

$$X \circ \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right).$$

Далее, умножая полученное уравнение справа на

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)$$

В группе S_3 решим следующее уравнение

$$\left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \circ X \circ \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right).$$

Умножим уравнение слева на

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right),$$

получим:

$$X \circ \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right).$$

Далее, умножая полученное уравнение справа на

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)$$

окончательно получим

$$X = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (23).$$

Задача 9. Решить уравнение в группе S_4 :

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} X \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} = (1 \ 2);$$

First ullet Prev ullet Next ullet I

Go Back

▶ Full Scree

llose 🔍 Q

Задача 9. Решить уравнение в группе S_4 :

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} X \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} = (1 \ 2);$$

(6)
$$(1\ 2)(3\ 4)X(1\ 3) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}.$$

'irst ● Prev ● Next

Last • G

Full Scree

Close

Задача 9. Решить уравнение в группе S_4 :

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} X \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} = (1 \ 2);$$

(6)
$$(1\ 2)(3\ 4)X(1\ 3) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}.$$

Задача 10.

Выписать таблицу Кэли для множества подстановок $\{\varepsilon, (12)(34), (13)(24), (14)(23)\}$ с операцией композиции подстановок.

rst • Prev • Next • Last • Go Back • Full Scree