Dano

Пока только первую часть написал, остальное допишу. Вопросы лучше в общий чат писать, как сделаете первую часть кидайте ссылку на colab с кодом.

Часть 1: Общий анализ данных

Первую часть нужно выполнить всем, даю небольшие подсказки что-бы начать

- По каждому пункту нужно написать вывод, можно лаконично
- Графики должны быть красиво визуализированы, должны быть подписаны оси, функции и значения цветов
- Ваш код должен запускаться в colab, проверьте перед отправкой

Анализ и обработка пропусков и выбросов

Если в ходе работы добавляете новые фичи, по ним тоже нужно сделать пункты анализ.

- Id-фичи можно не визуализировать и практически не проводить по ним анализа, но немного проверить все-же стоит, тут решайте сами
- Может быть фича у которой только одно значение, по ней тоже особо ничего делать не нужно, но сказать про это стоит

Посмотреть пропуски по данным

df.info()

Если есть пропуски их нужно заменить, придумайте как, на среднее например или медиану для числовых, пустая строка для string.

Посмотреть типы данных

Тоже используя команду df.info() Смотрим какого типа каждая из фичей и их реальные значения, должны совпадать типы, может быть тип object у числовых данных из-за пропусков. Что-бы привести к нужному типу используем

```
df['column'].astype(type)
```

Посмотреть выбросы в данных

Получить список значений и их количество по каждой фиче можно например так:

```
df['column'].value_counts()
```

Глазами находим выбросы если они есть их нужно заменить как пропуски в данных. Данные нужно визуализировать, самый простой способ:

```
df.plot.bar(x='x_label', y='y_label')
```

Но лучше попробовать использовать либу для визуализации.

Определение типа данных

Нужно понять по каждой числовой фиче к какому типу данных она относится:

- Категориальная мало значений без порядка (регион)
- Бинарная категориальная с двумя значениями (пол)
- Порядковая категориальная упорядоченная (уровень образования)
- Количественная много значений, числовая (возраст)
- **Временная** дата или время Категориальных у Вас вроде нет, но проверить стоит.

Анализ корреляция и зависимостей фичей Корреляция Пирсона

$$\mathbf{r}_{XY} = rac{\mathbf{cov}_{XY}}{\sigma_X \sigma_Y} = rac{\sum (X - ar{X})(Y - ar{Y})}{\sqrt{\sum (X - ar{X})^2 \sum (Y - ar{Y})^2}}.$$

Если совсем незнакомы, немного почитать про корреляцию немного.

Что-бы получить матрицу корреляции используем:

df.corr()

Нужно красиво визуализировать эти значения, самый простой способ с помощью библиотеки seaborn используя функцию heatmap, посмотрите как она работает.

Корреляция Спирмена (опционально)

Аналогично сделать матрицу корреляции, вроде функция spearmanr в scipy stats, нужно чуть внимательнее посмотреть и разобраться.

Добавление фичей

Стоит придумать какие фичи можно добавить.

Сумма всей корзины

Это просто пример, вроде у Bac Good_cnt = 1 всегда, но если не так, то добавляем:

```
df['total_price'] = df['Good_cnt'] * df['Good_price']
```

Цена товара к доходу клиента

Вроде уже интереснее:

```
df['price_per_income'] = df['Good_price'] /
df['Monthly_income_amt']
```

Другие фичи

Тут нужно проявить немного креативности, мб что-то интересное можно сделать из признаков. Как минимум нужно проверить что Education_level это порядковая фича над ['SCH', 'GRD', 'UGR', 'PGR', 'ACD'].

Визуализация пар фичей

Каждая фича должна быть визуализирована хоть в одной паре. Посмотрите примеры с seaborn, можно выбрать какая визуализация вам больше нравиться.

Визуализация двух числовых фичей

Например можно использовать relplot, придумайте какие фичи интереснее визуализировать.

Визуализация категориальной и числовой фичи

Если не знаете с чего начать, можно выбрать bar, тут из библиотеки matplotlib, если хотите seaborn нужно самим выбрать.

Остальные пары

Тут нужно самим посмотреть как визуализировать, например если есть временная фича удобно строить графики lineplot, или из matplotlib чтото взять

Часть 2: Углубленный анализ и визуализация

Тут каждому будет выбрано личное задание, после выполнения первого пункта, чем раньше сдадите работу тем больше будет выбор что поделать.

Часть 3: Анализ гипотез

Тут каждый выберет одну из гипотез и будет по ней работать, работаем в парах.

Часть 4: Итоговый анализ

Тут будут смешиваться результаты разных гипотез и будем получать какие-то выводы, работаем вместе.

Полезные ссылки

- 1. Google Colab можно тут запускать свой код, если не хотите локально
- 2. Seaborn- документация библиотеки seaborn
- 3. Matplotlib- документация библиотеки matplotlib
- 4. Pandas- документация библиотеки pandas
- 5. PEP 8- стараемся придерживаться такого стиля кода

Успехов!