Эффекты самоорганизации в рекомендательных системах

 $_{\rm M\Phi T \it M}$ dementev.sa@phystech.edu

Веприков Андрей МФТИ veprikov.as@phystech.edu

Хританков Антон $BШЭ, M\Phi TИ$ akhritankov@hse.ru

Аннотация

В работе исследуются петли скрытой обратной связи в рекомендательных системах. Решается задача поиска условий возникновения положительной обратной связи. Исследуется эффект самоорганизации в рекомендательной системе, в которой "товары"и "пользователи"меняются со временем.

Ключевые слова: Петли обратной связи · Рекомендательные системы · Контролируемое машинное обучение

1 Введение

Безопасные рекомендательные системы и предотвращение feedback loops (петлей обратной связи) критически важны для защиты пользователей, обеспечения этичности алгоритмов и поддержания доверия к цифровым платформам. Исследователи отмечают следующие последсвтяи петель обратной связи:

- 1) Эхо-камеры и фильтрующие пузыри: Алгоритмы, оптимизирующие engagement, сужают контентный кругозор пользователей, усиливая поляризацию. Например, YouTube-алгоритмы создают циклы, где гиперактивные пользователи диктуют тренды, а создатели подстраиваются под них, что искажает реальные предпочтения [2].
- 2) Манипуляция рекомендациями: Злонамеренные агенты могут искусственно «раскручивать» контент через поддельные аккаунты, что дестабилизирует систему.

2 Постановка задачи

В данной работе у нас есть множество пользователей U (users) и товаров I (items), эти множества не наделены никакой структурой, для постановки и решения задачи мы перейдем к E_U и E_I – евклидовым пространствам, в которые переводятся множества U и I, с помощью инъективных отображений ϕ_U и ϕ_I (эти функции сопоставляют каждому пользователю его "эмбеддинг").

Мы хотим исследовать поведение системы из пользователей и товаров с течением времени t, поэтому большинство величин имеет индекс t. Так как мы рассматриваем нашу модель как динамическую систему, то в каждый момент времени мы будем иметь D_t – датасет. Он будет использоваться для обучения всех алгоритмов на шаге t, а также валидации нашей модели.

В нашей рекомендательной системе действует алгоритм рекомендаций $a_{rec}(u,i,\theta)$ – это отображение сопоставляет пользователю u и товару i число из интервала [0;1], которое характеризует вероятность взаимодействия пользователя с товаром. a_{rec} зависит также от θ – некоторых латентных параметров, которые вносят стохастичность в нашу динамическую систему.

Также у нас есть алгоритм a_{choice} — алгоритм выбора товара. Это отображение вида $U \times I^K \to I \cup \{\emptyset\}$, которое сопоставляет паре $(u, (i_1, i_2, ... i_K))$, состоящей из пользователя u и кортежа $(i_1, ... i_K)$ (которые далее будут интерпретироваться как порекомендованные товары), выбор из этих рекомендованных това-

ров, либо вообще не рекомендовать товар. Эта функция будет имитацией выбора товара пользователем, после предложения рекомендации алгоритмом a_{rec} .

Также у нас есть два алгоритма $a_{u'}$ и $a_{i'}$ – эти два алгоритма привносят в нашу динамическую систему новые товары и новых пользователей. Формально это лишь отображения из множества D_t в E_U или E_I .

Введем также распределения f_u^t и f_i^t – это функции плотности распределения пользователей и товаров в пространствах E_U и E_I , соответственно. В данной статье мы будем исследовать эффект самоорганизации в данной модели. То есть эволюцию f_u^t и f_i^t с течением времени и возможное вырождение этих распределений. Например, как показано в статье [1], эти распределения могут стремится дельтараспределению (положительная петля связи) и нулевому распределению (обратная петля связи)

3 Метод

TODO

4 Теория

TODO

5 Вычислительный эксперимент

5.1 Описание данных

В качестве данных мы используем MovieLens 100K movie ratings.

5.2 Модель

Используется следующая модель:

В качестве a_{rec} мы используем нейронную двуслойную сеть с одной функцией активации. Аналогично с a_{choice} . Но в ходе эксперимента a_{choice} обучается только лишь с некоторой периодичностью.

В начальный момент времени мы возьмем выходы некоторой нейронной сети. И критерием того, что эмбеддинги подходят для представления пользователей — это их нормальность. (Она проверяется отдельно с помощью МПГ и теста Колмогорова-Смирнова). Причем, в каждый момент времени мы будем оценивать матрицу ковариации и вектор средних для пользователей, оставшихся в системе. Это и будет параметрами многомерного нормального распределения из которого мы будем генерировать новых пользователей и новые товары.

5.3 Результаты

После запуска эксперимента мы получили, что петля образуется тем быстрее, чем меньше информации доступно алгоритму a_{rec} .

6 Заключение

TODO

Список литературы