Matrici simili

Definizione

Siano $A, B \in \mathcal{M}_n(K)$ (matrici quadrate di ordine n).

A è simile a B quando esiste una matrice N non singolare tale che

$$N^{-1}BN = A$$

o equivalentemente BN = NA o $N^{-1}B = AN^{-1}$.

Quando A è simile a B, si scrive $A \sim B$.

Esempio.

Sia
$$B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
. La matrice $N = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ -1 & -1 & 1 \end{pmatrix}$ è invertibile. Allora la

matrice $A = N^{-1}BN$ è simile ad B:

$$\begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ -1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$N^{-1} \qquad B \qquad N \qquad = A$$

Similitudine

La relazione di similitudine tra matrici è una relazione di equivalenza nell'insieme $\mathcal{M}_n(K)$.

Infatti valgono le seguenti proprietà:

- Riflessiva: $A \in \text{simile a se stessa}$: $A = I^{-1}AI$.
- Simmetrica: se $A \sim B$, allora esiste N invertibile tale che $A = N^{-1}BN$; segue che

$$N^{-1}BN = A \Leftrightarrow NN^{-1}BNN^{-1} = NAN^{-1} \Leftrightarrow B = NAN^{-1} = (N^{-1})^{-1}AN^{-1}$$

Dunque $B \sim A$.

• Transitiva: se $A \sim B$ e $B \sim C$ esistono matrici invertibili N ed M tali che

$$A = N^{-1}BN$$
 $B = M^{-1}CM$

Dunque si ha

$$A = N^{-1}BN = N^{-1}(M^{-1}CM)N = (MN)^{-1}C(MN)$$

e quindi $A \sim C$.

Data una matrice $A \in \mathcal{M}_n(K)$, la sua classe di equivalenza è data da

$$[A]_{\sim} = \{B \in \mathcal{M}_n(K) : B \sim A\}$$

Similitudine e endomorfismi

Teorema

Siano $A, B \in \mathcal{M}_n(K)$.

 $A \sim B \Leftrightarrow \text{esistono } V \text{ spazio vettoriale su } K \text{ di dimensione } n, f: V \to V \text{ e } \mathcal{B} \text{ e } \mathcal{B}' \text{ basi di } V \text{ tali che } A = M^{\mathcal{B}}_{\mathcal{B}}(f) \text{ e } B = M^{\mathcal{B}'}_{\mathcal{B}'}(f)$

 \Rightarrow Siano A e B simili. Allora esiste N non singolare tale che $B=N^{-1}AN$. Siano $V=K^n$ e $f:K^n\to K^n$ la funzione lineare associata a A rispetto alla base canonica $\mathcal{B}=\mathcal{C}$ di K^n , ossia $A=M_{\mathcal{C}}^{\mathcal{C}}(f)$. Allora se si indica con \mathcal{B}' la base formata dalle colonne di N, si ha $N=M_{\mathcal{C}}^{\mathcal{C}}(i_V)$.

Allora, poichè la rappresentazione di f rispetto alla base \mathcal{B}' si ottiene da:

$$M_{\mathcal{B}'}^{\mathcal{B}'}(f) = M_{\mathcal{B}'}^{\mathcal{C}}(i_V)M_{\mathcal{C}}^{\mathcal{C}}(f)M_{\mathcal{C}}^{\mathcal{B}'}(i_V) = N^{-1}AN = B$$

segue che $B = M_{\mathcal{B}'}^{\mathcal{B}'}(f)$.

 \Leftarrow Se viceversa esistono V spazio vettoriale su K, $f:V\to V$ e \mathfrak{B} e \mathfrak{B}' basi di V tali che $A=M^{\mathfrak{B}}_{\mathfrak{B}}(f)$ e $B=M^{\mathfrak{B}'}_{\mathfrak{B}'}(f)$, allora vale che

$$B = M_{\mathbb{B}'}^{\mathbb{B}'}(f) = M_{\mathbb{B}'}^{\mathbb{B}}(i_{V})M_{\mathbb{B}}^{\mathbb{B}}(f)M_{\mathbb{B}}^{\mathbb{B}'}(i_{V}) = M_{\mathbb{B}'}^{\mathbb{B}}(i_{V})AM_{\mathbb{B}}^{\mathbb{B}'}(i_{V})$$

Poichè $N=M_{\mathbb{B}}^{\mathbf{B}'}(i_V)$ è invertibile con inversa $M_{\mathbf{B}'}^{\mathbf{B}}(i_V)$ allora A e B sono simili.

Osservazione: La classe di equivalenza di A è l'insieme di tutte le matrici che rappresentano lo stesso endomorfismo di K^n rispetto ad ogni possibile base.

Similitudine e applicazioni lineari

Il teorema precedente suggerisce che per studiare le proprietà di un endoformismo, è sufficiente studiare la classe di equivalenza delle matrici che rappresentano l'endomorfismo rispetto a ogni possibile base.

Per questo studiamo le propietà di matrici simili.

Proprietà delle matrici simili I

Se A ~ B, allora A e B hanno uguale determinante. Infatti se A ~ B, esiste N invertibile tale che A = N⁻¹BN. Passando ai determinanti e applicando il teorema di Binet (sono matrici quadrate):

$$det(A) = det(N^{-1}BN) = det(N^{-1}) det(B) det(N) = det(N^{-1}N) det(B)$$
$$= det(I) det(B) = det(B)$$

Si ricorda che la traccia di una matrice è la somma dei suoi elementi diagonali:

$$tr(A) = a_{11} + a_{22} + ... + a_{nn}$$

Per ogni $A, B \in \mathcal{M}_n(K)$ e $\alpha \in K$, vale che

- $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
- $\operatorname{tr}(\alpha A) = \alpha \operatorname{tr}(A)$
- $\operatorname{tr}(A^T) = \operatorname{tr}(A)$
- tr(AB) = tr(BA)

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ji} a_{ij} = \sum_{j=1}^{n} (BA)_{jj} = \operatorname{tr}(BA)$$

Proprietà delle matrici simili II

Se $A \sim B$, allora tr(A) = tr(B).

Infatti se $A \sim B$, esiste N invertibile tale che $A = N^{-1}BN$; dunque

$$\operatorname{tr}(A) = \operatorname{tr}(N^{-1}BN) = \operatorname{tr}(NN^{-1}B) = \operatorname{tr}(B)$$

3 Se $A \sim B$, allora r(A) = r(B).

 $\mathbf{B} = \{v_1, ..., v_n\} \text{ e } \mathbf{B}' = \{w_1, ..., w_n\} \text{ tali che } A = M_{\mathbf{B}}^{\mathbf{B}}(f) = [f(v_1)_{\mathbf{B}}, ..., f(v_n)_{\mathbf{B}}] \text{ e}$

Infatti se $A \sim B$, esiste una applicazione lineare $f: V \to V$ e due basi

 $B = M_{B'}^{B'}(f) = [f(w_1)_{B'}, ..., f(w_n)_{B'}].$

 $B = M_{\mathcal{B}'}^{\mathcal{B}}(t) = [t(w_1)_{\mathcal{B}'}, ..., t(w_n)_{\mathcal{B}'}].$

Poichè dim(Imm(f)) è invariante rispetto alla base scelta ed è uguale sia a r(A) che a r(B), segue r(A) = r(B).

Dunque se A e B sono simili hanno uguale determinante, traccia e rango.

Non vale il viceversa.

Infatti, date $A=I_2$, $B=\begin{pmatrix}1&1\\0&1\end{pmatrix}$, le due matrici hanno stesso determinante, traccia e rango, ma non sono simili, poichè l'unica matrice simile a I_2 è I_2 stessa $(N^{-1}I_2N=I_2$ per ogni N invertibile).

Autovalori e autovettori di una matrice quadrata

Definizione

Sia $A \in \mathcal{M}_n(K)$.

 $\lambda \in K$ è autovalore di A se esiste un vettore $x \in K^n$, $x \neq 0$, tale che

$$Ax = \lambda x$$

Ciò equivale a $f_A(x) = \lambda x$, se f_A è l'endomorfismo $K^n \to K^n$ associato ad A rispetto alla base canonica.

Nella pratica, un autovettore è un vettore x per cui il prodotto di A per x vale un multiplo o sottomultiplo di x stesso, ossia x e Ax generano lo stesso sottospazio di K^n . Nella definizione si richiede $x \neq 0$, altrimenti ogni scalare sarebbe autovettore: $A \ 0 = \lambda 0$, per ogni $\lambda \neq 0$.

Osservazione.

Lo scalare $0 \in K$ può essere autovalore di A. Infatti $0 \in K$ è autovalore di $A \Leftrightarrow$ esiste $x \neq 0$ tale che $Ax = 0x \Leftrightarrow \ker(A) \neq \{0\}$ (\Leftrightarrow l'endomorfismo associato ad A non è iniettivo).

La diagonalizzazione di una matrice

Ci poniamo ora il problema della diagonalizzazione di una matrice.

Esso è strettamente connesso alla determinazione di autovalori e autovettori di una matrice.

Si dice che una matrice A è **diagonalizzabile** se esiste una matrice N tale che $D = N^{-1}AN$, con D diagonale, o equivalentemente ND = AN.

Equivalentemente, A è diagonalizzabile se è simile a una matrice diagonale D.

Problema della diagonalizzazione

Una matrice A di ordine n è diagonalizzabile se esiste una base di elementi $\{N^1,...,N^n\}$ di K^n (autovettori di A) tale che l'applicazione lineare associata $f_A:K^n\to K^n$ rispetto a tale base è rappresentata da una matrice diagonale, ossia

$$AN^1 = \lambda_1 N^1 \quad \dots \quad AN^n = \lambda_n N^n$$

$$A[N^1 \ N^2 \ \ N^n] = [\lambda_1 N^1 \ \lambda_2 N^2 \ \ \lambda_n N^n] \Leftrightarrow AN = ND$$

A è diagonalizzabile \Leftrightarrow esiste una matrice invertibile N tale che $N^{-1}AN$ è diagonale, ossia se e solo se A è simile a una matrice diagonale. N è la matrice che diagonalizza A.

In altre parole:

A è diagonalizzabile (oppure f è diagonalizzabile) se e solo se la classe di equivalenza di $[A]_{\sim}$ contiene almeno una matrice diagonale.

Autovalori e autovettori per matrici l

Teorema

Sia $A \in \mathcal{M}_n(K)$.

A è diagonalizzabile (ossia A è simile a una matrice diagonale D) se e solo se esiste una base $\{N^1, ..., N^n\}$ di K^n formata da autovettori di A.

Gli elementi diagonali di D si dicono autovalori di A. Se N è la matrice le cui colonne sono gli autovettori, allora $D = N^{-1}AN$.

Vale che

$$AN = ND$$
 $A = NDN^{-1}$

L'ultima uguaglianza si dice decomposizione spettrale di A.

Dunque per vedere se una matrice è diagonalizzabile dobbiamo cercare autovalori e autovettori

Autovalori e autovettori

Definizione di V_{λ}

• Sia $A \in \mathcal{M}_n(K)$ e sia $\lambda \in K$. $V_{\lambda} = \{v \in K^n : Av = \lambda v\}$ è un sottoinsieme di K^n dato da tutti gli autovettori associati all'autovalore λ .

Teorema

 V_{λ} è un sottospazio di K^n .

Se λ è autovalore di A, V_{λ} si dice autospazio di A.

Dimostrazione.

Infatti presi $v_1, v_2 \in V_{\lambda}$ e $c \in K$, si ha che $Av_1 = \lambda v_1$ e $Av_2 = \lambda v_2$. Occorre mostrare che $cv_1 - v_2$ è un elemento di V_{λ} . Infatti si ha

$$A(cv_1 - v_2) = cAv_1 - Av_2 = c\lambda v_1 - \lambda v_2 = \lambda(cv_1 - v_2)$$

Dunque $cv_1 - v_2 \in V_{\lambda}$.

Osservazioni

- λ è autovalore di A (o di f) se e solo se $V_{\lambda} \neq \{0\}$.
- La dimensione di V_{λ} è maggiore o uguale a 1.
- Se 0 è autovalore di A, $V_0 = \{v \in K^n : Av = 0v\} = \{v \in K^n : Av = 0\} = \ker(A)$

Proprietà degli autovettori

Teorema

Sia A una matrice quadrata.

Un vettore v non può essere autovettore di A associato a due autovalori distinti.

Dimostrazione.

Supponiamo per assurdo che v sia un autovettore di A associato a due autovalori λ_1 e λ_2 , con $\lambda_1 \neq \lambda_2$, ossia $Av = \lambda_1 v$ e $Av = \lambda_2 v$. Allora

$$0 = \lambda_1 v - \lambda_2 v = (\lambda_1 - \lambda_2) v$$

con $v \neq 0$. Dunque $\lambda_1 - \lambda_2 = 0$, da cui $\lambda_1 = \lambda_2$.

Pertanto autospazi associati ad autovalori distinti hanno intersezione dato dal solo vettore nullo:

$$\lambda_1 \neq \lambda_2 \Rightarrow V_{\lambda_1} \cap V_{\lambda_2} = \{0\}$$

Proprietà degli autovettori I

Teorema

Autovettori associati ad autovalori distinti sono linearmente indipendenti.

In altre parole, se $v_1,...,v_m$ sono autovettori di A associati a $\lambda_1,...,\lambda_m$ a due a due distinti, allora i vettori $v_1,...,v_m$ sono **linearmente indipendenti**.

Dimostrazione.

Si dimostra per induzione su m.

- Se m=1, v_1 è linearmente indipendente perchè è non nullo.
- Supponiamo che la proprietà sia vera per m-1 ($v_1,...,v_{m-1}$ associati a $\lambda_1,...,\lambda_{m-1}$ a due a due distinti sono linearmente indipendenti) e lo dimostriamo per m.

Si consideri

$$a_1v_1+...+a_mv_m=0$$

Applicando A ad ambo i membri si ottiene:

$$A(a_1v_1 + ... + a_mv_m) = A(0) = 0$$

$$a_1Av_1 + ... + a_mAv_m = 0$$

$$a_1\lambda_1v_1 + ... + a_m\lambda_mv_m = 0$$

Proprietà degli autovettori II

Se si moltiplica $a_1v_1 + ... + a_mv_m = 0$ per λ_m e si sottrae il risultato dall'ultima equazione, si ottiene:

$$a_{1}\lambda_{1}v_{1} + ... + a_{m}\lambda_{m}v_{m} - \lambda_{m}(a_{1}v_{1} + ... + a_{m}v_{m}) = 0$$

$$a_{1}(\lambda_{1} - \lambda_{m})v_{1} + ... + a_{m-1}(\lambda_{m-1} - \lambda_{m})v_{m-1} + a_{m}\underbrace{(\lambda_{m} - \lambda_{m})}_{=0} \cdot v_{m} = 0$$

$$a_{1}(\lambda_{1} - \lambda_{m})v_{1} + ... + a_{m-1}(\lambda_{m-1} - \lambda_{m})v_{m-1} = 0$$

Siccome per ipotesi induttiva $v_1,...,v_{m-1}$ sono linearmente indipendenti e $\lambda_i - \lambda_m \neq 0, \ i=1,...,m-1$, segue

$$a_1 = ... = a_{m-1} = 0$$

Segue allora da

$$\underbrace{a_1v_1 + ... + a_{m-1}v_{m-1}}_{=0} + a_mv_m = 0$$

che $a_m = 0$ perchè $v_m \neq 0$.

Proprietà degli autovettori III

In K^n si hanno al massimo n vettori linearmente indipendenti.

Di conseguenza, una matrice di ordine n non può avere più di n autovalori distinti.

Conseguenza

Sia A una matrice di ordine n. Se A ha n autovalori distinti, allora A è diagonalizzabile.

Questo è un primo criterio perchè una matrice sia diagonalizzabile. Infatti in tal caso esistono n autovettori di A linearmente indipendenti che formano una matrice N. Dunque si ha AN = DN, ove D è la matrice diagonale degli n autovalori distinti.

Non è vero il contrario.

Per esempio l'identità di ordine 2 è diagonalizzabile ma ha due autovalori uguali.

Determinare autovalori e autospazi di

$$A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 2 \end{array}\right)$$

 λ è autovalore di A se e solo se esiste $x \in \mathbb{R}^2$, $x \neq 0$ tale che $Ax = \lambda x$. Ciò equivale a dire che esiste $(x_1, x_2)^T \neq (0, 0)^T$ tale che

$$A\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$\begin{pmatrix} x_1 + 2x_2 \\ 3x_1 + 2x_2 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \end{pmatrix}$$
$$\begin{cases} (\lambda - 1)x_1 - 2x_2 = 0 \\ -3x_1 + (\lambda - 2)x_2 = 0 \end{cases} \Leftrightarrow (\lambda I - A)x = 0$$

Il sistema deve avere soluzioni non banali e dunque il determinante della matrice deve essere nullo:

$$\begin{vmatrix} \lambda - 1 & -2 \\ -3 & \lambda - 2 \end{vmatrix} = 0 \Leftrightarrow \lambda^2 - 3\lambda - 4 = 0 \Leftrightarrow \lambda = -1, \lambda = 4$$

Esempio II

Dunque gli autovalori sono $\lambda_1 = -1$ e $\lambda_2 = 4$.

Si determina l'autospazio V_{-1} relativo all'autovalore $\lambda_1 = -1$:

$$\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \Leftrightarrow \begin{array}{c} x_1 + 2x_2 = -x_1 \\ 3x_1 + 2x_2 = -x_2 \end{array}$$

$$V_{-1} = \{(x_1, x_2)^T \in \mathbb{R}^2 : -2x_1 - 2x_2 = 0; -3x_1 - 3x_2 = 0\} = \{(x_1, -x_1)^T\} = [(1, -1)^T]$$

In modo analogo, per $\lambda_2 = 4$ si ha:

$$\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 4 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \Leftrightarrow \begin{aligned} x_1 + 2x_2 &= 4x_1 \\ 3x_1 + 2x_2 &= 4x_2 \end{aligned}$$

$$V_4 = \{(x_1, x_2)^T \in \mathbb{R}^2 : 3x_1 - 2x_2 = 0; -3x_1 + 2x_2 = 0\} = \{(x_1, \frac{3}{2}x_1)^T\} = [(2, 3)^T]$$

Poichè A di ordine 2 ha due autovalori distinti, essa è diagonalizzabile. In particolare, $\mathcal{B}' = \{(1,-1)^T,(2,3)^T\}$ è una base di \mathbb{R}^2 formata da autovettori di A che la rendono diagonale attraverso la matrice $N = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$:

$$D = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix} = N^{-1}AN \Leftrightarrow AN = ND$$

Esempio III

$$\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}$$

Formalizziamo l'esempio.

Polinomio caratteristico

Definizioni

Si dice matrice caratteristica di A la matrice $\lambda I - A$, con I identità di ordine n e λ una indeterminata (incognita).

Si dice **polinomio caratteristico** di A il determinante di $\lambda I - A$ e si indica con $\Delta_A(\lambda) = |\lambda I - A|$.

Si dice equazione caratteristica di A l'equazione $\Delta_A(\lambda) = 0$.

Se A è una matrice di ordine n, allora

$$\Delta_A(\lambda) = \left| \begin{array}{cccc} \lambda - a_{11} & \dots & -a_{in} \\ \vdots & & \vdots \\ -a_{n1} & \dots & \lambda - a_{nn} \end{array} \right|$$

E' facile mostrare che il polinomio caratteristico $\Delta_A(\lambda)$:

- ha grado n
- è monico: il coefficiente di λ^n è 1
- il coefficiente di λ^{n-1} è -tr(A)
- il termine noto è $(-1)^n |A|$

$$\lambda^{n} - \operatorname{tr}(A)\lambda^{n-1} + \dots + (-1)^{n}|A|$$

Calcolo di autovalori e autovettori di una matrice

Teorema

Sia $A \in \mathcal{M}_n(K)$.

 $\lambda \in K$ è autovalore di A se e solo se è soluzione del'equazione caratteristica di A:

$$\Delta_A(\lambda)=0$$

Dimostrazione

Lo scalare $\lambda \in K$ è autovalore di $A \Leftrightarrow$ esiste $x \in K^n$, $x \neq 0$, tale che $Ax = \lambda x \Leftrightarrow$ esiste $x \in K^n$, $x \neq 0$, tale che $(\lambda I - A)x = 0 \Leftrightarrow$

il sistema lineare associato ad $\lambda I - A$ ammette soluzione non banale \Leftrightarrow

in sistema lineare associato ad $\lambda I - A$ animette soluzione non banale \Leftrightarrow $|\lambda I - A| = 0 \Leftrightarrow \Delta_A(\lambda) = 0 \Leftrightarrow \lambda$ è soluzione dell'equazione caratteristica di A.

Se λ è autovalore di A, allora si ha che

$$V_{\lambda} = \{x \in K^n : Ax = \lambda x\} = \{x \in K^n : (A - \lambda I)x = 0\}$$

ossia l'autospazio V_{λ} è l'insieme delle soluzioni del sistema omogeneo la cui matrice dei coefficienti è la matrice caratteristica $\lambda I - A$.

Esempio

Determinare autovalori e autospazi di $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$.

Consideriamo l'equazione caratteristica di A, cioè $\Delta_A(\lambda) = 0$:

$$\Delta_A(\lambda) = \left| \begin{array}{cc} \lambda - 1 & -2 \\ -3 & \lambda - 2 \end{array} \right| = (\lambda - 1)(\lambda - 2) - 6 = \lambda^2 - 3\lambda - 4 = 0$$

Le soluzioni di $\Delta_A(\lambda)=0$, ossia di $\lambda^2-3\lambda-4=0$ sono gli autovalori di A. Dunque gli autovalori sono $\lambda_1=-1$ e $\lambda_2=4$.

Si determina V_{-1} . Occorre risolvere il sistema lineare omogeneo (-1I - A)x = 0:

$$V_{-1} = \{(x_1, x_2)^T \in \mathbb{R}^2 : -2x_1 - 2x_2 = 0; -3x_1 - 3x_2 = 0\} = \{(x_1, -x_1)^T\} = [(1, -1)^T]$$

ove la matrice dei coefficienti è stata ottenuta sostituendo a λ il valore -1 nella matrice caratteristica di A.

In modo analogo, si ha:

$$V_4 = \{(x_1, x_2)^T \in \mathbb{R}^2 : 3x_1 - 2x_2 = 0; -3x_1 + 2x_2 = 0\} = \{(x_1, \frac{3}{2}x_1)^T\} = [(2, 3)^T]$$

Teorema di Cayley-Hamilton

Teorema

Ogni matrice $A \in \mathcal{M}_n(K)$ è radice del suo polinomio caratteristico, cioè $\Delta_A(A) = 0$.

Dimostrazione.

Si fornisce la dimostrazione nel caso in cui A è diagonalizzabile.

Sia $A \in M_n(K)$ una matrice diagonalizzabile e siano $v_1, ..., v_n$ una base di K^n formata da autovettori di A. Indicati con $\lambda_1, ..., \lambda_n$ i corrispondenti autovalori, si ha:

$$\Delta_A(\lambda) = (\lambda - \lambda_1)...(\lambda - \lambda_n)$$
 $\Delta_A(\lambda) \in P_n(\mathbb{R})$

e quindi

$$\Delta_A(A) = (A - \lambda_1 I)...(A - \lambda_n I)$$

Poichè in questo caso i prodotti commutano (ossia $(A - \lambda_i I)(A - \lambda_i I) =$ $(A - \lambda_i I)(A - \lambda_i I)$, si ha che per ogni autovettore v_i vale

$$\Delta_{A}(A)v_{i} = (A - \lambda_{1}I)...(A - \lambda_{n}I)v_{i} = (A - \lambda_{1}I)...(A - \lambda_{n}I)(A - \lambda_{i}I)v_{i} = 0$$

perchè $Av_i = \lambda_i v_i$, per i = 1, ...n. Questo accade per ogni i = 1, ..., n.

Pertanto detta $N = [v_1, ..., v_n]$ la matrice non singolare avente per colonne gli autovettori $v_1, ..., v_n$, si ha che

$$\Delta_A(A)[v_1 \dots v_n] = \Delta_A(A)N = 0 \Rightarrow \Delta_A(A) = 0$$

Calcolo di autovalori e autovettori I

Teorema

Siano $A, B \in \mathcal{M}_n(K)$.

Se $A \sim B$ allora $\Delta_A(\lambda) = \Delta_B(\lambda)$.

Dimostrazione.

Se $A \sim B$, esiste una matrice invertibile $N \in \mathcal{M}_n(K)$ tale che $A = N^{-1}BN$. Allora

$$\Delta_{A}(\lambda) = |\lambda I - A| = |\lambda I - N^{-1}BN| = |\lambda N^{-1}N - N^{-1}BN| = |N^{-1}\lambda IN - N^{-1}BN|$$
$$= |N^{-1}(\lambda I - B)N| = |N^{-1}||\lambda I - B||N| = |N^{-1}N||\lambda I - B| = \Delta_{B}(\lambda)$$

Osservazione.

Le matrici $A = I_2$ e $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ hanno lo stesso polinomio caratteristico ma, come già osservato non sono simili. Quindi la conclusione del teorema non si può invertire.

Molteplicità algebrica e geometrica

Definizione

Sia $A \in \mathcal{M}_n(K)$.

Si dice molteplicità algebrica dell'autovalore λ_i la molteplicità di λ_i in quanto soluzione dell'equazione caratteristica di A.

Si dice che λ_i ha molteplicità h se $\Delta_A(\lambda)$ è divisibile per $(\lambda - \lambda_i)^h$ ma non è divisibile per $(\lambda - \lambda_i)^{h+1}$.

Si dice molteplicità geometrica dell'autovalore λ_i la dimensione dell'autospazio V_{λ_i} .

Esempio I

Sia $V=\mathbb{R}^3$ e $f:\mathbb{R}^3\to\mathbb{R}^3$ tale che $f(x_1,x_2,x_3)=(x_1,x_2,x_1+4x_3)^T$. Trovare la matrice associata rispetto alla base canonica, autovalori (con molteplicità algebrica e geometrica) e autospazi.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 4 \end{pmatrix}$$
$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda - 1 & 0 \\ -1 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 4)$$

Molteplicità algebrica di $\lambda_1 = 1$ è 2. Molteplicità algebrica di $\lambda_2 = 4$ è 1.

$$V_1 = \{(x_1, x_2, x_3)^T : -x_1 - 3x_3 = 0\} =$$

$$= \{(-3x_3, x_2, x_3)^T\} =$$

$$= [(0, 1, 0)^T, (-3, 0, 1)^T]$$

Molteplicità geometrica di $\lambda_1 = 1$ è 2.

Esempio II

Analogamente

$$V_4 = \{(x_1, x_2, x_3)^T : 3x_1 = 0, 3x_2 = 0, -x_1 = 0\} =$$

= $\{(0, 0, x_3)^T\} = [(0, 0, 1)^T]$

Molteplicità geometrica di $\lambda_2 = 4$ è 1.

Relazione tra le molteplicità I

Teorema

Sia $A \in \mathcal{M}_n(K)$.

Sia λ_i un autovalore di A. Allora la molteplicità algebrica di λ_i è maggiore o uguale alla molteplicità geometrica di λ_i .

Dimostrazione.

Sia λ_i un autovalore di A e sia f_A l'endomorfismo associato ad A; siano

 $h = molteplicità geometrica di <math>\lambda_i$

 $ar{h} = \mathsf{molteplicita}$ algebrica di λ_i

Occorre provare che $h \leq \bar{h}$.

La dimensione di V_{λ_i} vale h. Dunque esistono h vettori $v_1,...,v_h$ che formano una base di V_{λ_i} . E' sempre possibile trovare altri n-h vettori di \mathbb{R}^n , $v_{h+1},...,v_n$ che insieme ai precedenti formano una base di \mathbb{R}^n .

Relazione tra le molteplicità II

Si può allora scrivere che:

$$Av_{1} = \lambda_{i}v_{1}$$
...
$$Av_{h} = \lambda_{i}v_{h}$$

$$Av_{h+1} = c_{1,h+1}v_{1} + ... + c_{h,h+1}v_{h} + c_{h+1h+1}v_{h+1} + ... + c_{nh+1}v_{n}$$
...
$$Av_{n} = c_{1,n}v_{1} + ... + c_{h,n}v_{h} + c_{h+1n}v_{h+1} + ... + c_{nn}v_{n}$$

Relazione tra le molteplicità III

Se N è la matrice le cui colonne sono $v_1, v_2, ..., v_h, v_{h+1}, ..., v_n$, si può scrivere:

$$A \underbrace{[v_{1}, v_{2}, ..., v_{h}, v_{h+1}, ..., v_{n}]}_{N} = \underbrace{\begin{bmatrix} \lambda_{i} & 0 & ... & 0 & c_{1h+1} & ... & c_{1n} \\ 0 & \lambda_{i} & ... & 0 & c_{2h+1} & ... & c_{2n} \\ \vdots & & \ddots & \vdots & \vdots & & \vdots \\ 0 & 0 & ... & \lambda_{i} & c_{hh+1} & ... & c_{hn} \\ 0 & 0 & ... & 0 & c_{h+1h+1} & ... & c_{h+1n} \\ \vdots & & & \vdots & \vdots & & \vdots \\ 0 & 0 & ... & 0 & c_{nh+1} & ... & c_{nn} \end{bmatrix}}$$

AN = NB

o anche $N^{-1}AN=B$. Allora, poichè A e B sono simili hanno lo stesso polinomio caratteristico:

$$\Delta_A(\lambda) = |\lambda I - A| = |\lambda I - B| = (\lambda - \lambda_i)^h \Delta_{\overline{B}}(\lambda)$$

ove

$$\overline{B} = \left(\begin{array}{ccc} c_{h+1h+1} & \dots & c_{h+1n} \\ \vdots & & \vdots \\ c_{nh+1} & \dots & c_{nn} \end{array} \right)$$

Relazione tra le molteplicità IV

Ne segue che la molteplicità algebrica è almeno h ed è **esattamente** h se λ_i non è soluzione di $\Delta_{\overline{B}}(\lambda)=0$, mentre è **maggiore** di h se λ_i è soluzione anche di $\Delta_{\overline{B}}(\lambda)=0$. Quindi $\overline{h}\geq h$.

La dimostrazione non dipende dalla base scelta, perchè cambiando base si ottiene una matrice simile, che ha lo stesso polinomio caratteristico.

Osservazione.

Se λ_i è un autovalore con molteplicità algebrica 1, allora anche la molteplicità geometrica è 1.

Diagonalizzazione I

Il criterio di diagonalizzazione:

Teorema fondamentale della diagonalizzazione

Sia $A \in \mathcal{M}_n(K)$.

Allora A è diagonalizzabile \Leftrightarrow la somma delle molteplicità algebriche degli autovalori è n e, per ogni autovalore, la molteplicità algebrica e quella geometrica coincidono.

Dimostrazione.

 \Rightarrow Sia A una matrice diagonalizzabile ($A=NDN^{-1}$) e siano $\lambda_1,...\lambda_r$ gli autovalori distinti di A.

Poichè A è diagonalizzabile, esiste una base di K^n formata da autovettori di A (le colonne di N). Sia $\mathcal{B} = \{v_1,...,v_{h_1},...,u_1,...,u_{h_r}\}$ tale base, con

 $v_1,...,v_{h_1}$ vettori di ${\mathcal B}$ associati a λ_1

. . .

 $u_1,...,u_{h_r}$ vettori di $\mathcal B$ associati a λ_r

Poichè A è simile alla matrice diagonale D che sulla diagonale ha λ_1 replicato h_1 volte,... λ_r replicato h_r volte, segue che

$$\Delta_{A}(\lambda) = \Delta_{D}(\lambda) = (\lambda - \lambda_{1})^{h_{1}}...(\lambda - \lambda_{r})^{h_{r}}$$

Pertanto la molteplicità algebrica di λ_1 è $h_1,...$, la molteplicità algebrica di λ_r è h_r e vale $h_1 + ... + h_r = n$.

Diagonalizzazione II

Poichè $v_1,...v_{h_1}$ sono linearmente indipendenti e appartengono a V_{λ_1} , la molteplicità geometrica di λ_1 è almeno h_1 ; poichè non può essere superiore a h_1 , segue che h_1 è uguale sia alla molteplicità geometrica che a quella algebrica. Analogamente per gli altri autovalori.

 \Leftarrow Siano $\lambda_1,...\lambda_r$ gli autovalori distinti di A aventi tutti molteplicità geometrica uguale alla molteplicità algebrica e siano $h_1,...,h_r$ queste molteplicità. E'

$$h_1 + h_2 + ... + h_r = n.$$

Sia

 $v_1,...,v_{h_1}$ una base di V_{λ_1}

..

 $u_1, ..., u_{h_r}$ una base di V_{λ_r}

Si dimostra che $N=(v_1,...,v_{h_1},...,u_1,...,u_{h_r})$ è una matrice non singolare. Basta provare che le colonne di N sono linearmente indipendenti.

Sia

$$\underbrace{a_1v_1 + \ldots + a_{h_1}v_{h_1}}_{=z_1} + \ldots + \underbrace{b_1u_1 + \ldots + b_{h_r}u_{h_r}}_{=z_r} = 0$$

La relazione si può riscrivere come:

$$z_1 + ... + z_r = 0$$

Diagonalizzazione III

con

$$z_1 = a_1v_1 + ... + a_{h_1}v_{h_1}, ..., z_r = b_1u_1 + ... + b_{h_r}u_{h_r}$$

E' $z_i \in V_{\lambda_i}$, quindi z_i è un autovettore di A associato a λ_i oppure $z_i = 0$. Necessariamente $z_1 = \ldots = z_r = 0$ altrimenti ci sarebbe uno z_j che si scrive come combinazione di autovettori associati ad autovalori distinti e autovettori associati ad autovalori distinti sono linearmente indipendenti. Segue che

$$z_1 = a_1v_1 + ... + a_{h_1}v_{h_1} = 0 \Rightarrow a_1 = 0, ..., a_{h_1} = 0$$
...
$$z_r = b_1u_1 + ... + b_{h_r}u_{h_r} = 0 \Rightarrow b_1 = 0, ..., b_{h_r} = 0$$

Allora $\{v_1,...,v_{h_1},...,u_1,...,u_{h_r}\}$ e una base di K^n formata da autovettori di A. Pertanto A è diagonalizzabile.

Conseguenze

Una conseguenza è data al seguente teorema.

Teorema

Sia $K = \mathbb{C}$.

A è diagonalizzabile ⇔ per ogni autovalore, la molteplicità algebrica e quella geometrica coincidono.

Basta osservare che per il teorema fondamentale dell'algebra, ogni polinomio di grado n a coefficienti complessi ha esattamente n zeri in \mathbb{C} . Nel caso di matrici di ordine n a coefficienti reali, occorre anche verificare che la somma delle molteplicità sia n.

• Dire se la seguente matrice è diagonalizzabile e in tal caso diagonalizzarla:

$$A = \left(\begin{array}{ccc} 2 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -2 \end{array}\right)$$

Si determinano gli autovalori di A, risolvendo l'equazione caratteristica:

$$\Delta_A(\lambda) = \begin{vmatrix} \lambda - 2 & -2 & 0 \\ -2 & \lambda + 1 & 0 \\ 0 & 0 & \lambda + 2 \end{vmatrix} = (\lambda + 2)((\lambda - 2)(\lambda + 1) - 4)$$
$$= (\lambda + 2)(\lambda^2 - \lambda - 6) = (\lambda + 2)^2(\lambda - 3)$$

Gli autovalori sono $\lambda_1=-2$ con molteplicità algebrica 2 e $\lambda_2=3$ con molteplicità algebrica 1. Per vedere se A è diagonalizzabile è sufficiente vedere se la molteplicità geometrica di -2 è uguale a 2:

$$V_{-2} = \{(x, y, z)^T \in \mathbb{R}^3 : -4x - 2y = 0; -2x - y = 0; 0 = 0\} = \{(x, -2x, z)^T\}$$

Poichè la base di V_{-2} è data da $(1,-2,0)^T$ e $(0,0,1)^T$, la dimensione di V_{-2} è 2. Ne consegue che A è diagonalizzabile.

Per diagonalizzarla è sufficiente trovare una base anche per V_3 :

$$V_3 = \{(x, y, z)^T \in \mathbb{R}^3 : x - 2y = 0; -2x + 4y = 0; 5z = 0\}$$

= \{(2y, y, 0)^T\} = \[(2, 1, 0)^T\]

Pertanto la matrice che diagonalizza A è data da una base di \mathbb{R}^3 formata dagli autovettori di A:

$$N = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Quindi

$$N^{-1}AN = \left(\begin{array}{ccc} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array}\right)$$

• Dire se la seguente matrice è diagonalizzabile e in tal caso diagonalizzarla:

$$A = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array}\right)$$

Si determinano gli autovalori di A, risolvendo l'equazione caratteristica:

$$\Delta_A(\lambda) = \left| egin{array}{ccc} \lambda - 1 & -1 & -1 \ 0 & \lambda - 2 & -1 \ 0 & 0 & \lambda - 2 \end{array}
ight| = (\lambda - 2)^2 (\lambda - 1)$$

Gli autovalori sono $\lambda_1=2$ con molteplicità algebrica 2 e $\lambda_2=1$ con molteplicità algebrica 1. Per vedere se A è diagonalizzabile è sufficiente vedere se la molteplicità geometrica di $\lambda_1=2$ è uguale a 2:

$$V_2 = \{(x, y, z)^T \in \mathbb{R}^3 : x - y - z = 0; z = 0; 0 = 0\} = \{(x, x, 0)^T\}$$

Poichè la base di V_2 è data da $(1,1,0)^T$, la dimensione di V_2 è 1. Ne consegue che A non è diagonalizzabile.

Esempi IV

• Dire se la seguente matrice è diagonalizzabile:

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$$

Si determinano gli autovalori di A, risolvendo l'equazione caratteristica:

$$\Delta_{A}(\lambda) = \left| egin{array}{cc} \lambda & -1 \ 1 & \lambda \end{array}
ight| = \lambda^2 + 1$$

Pertanto A come matrice a elementi in $\mathbb R$ non ha autovalori e quindi non è diagonalizzabile, mentre A come matrice a elementi in $\mathbb C$ ha due autovalori distinti, precisamente i e -i ed è quindi diagonalizzabile in $\mathbb C$.

Matrici simmetriche I

Teorema

Sia $A \in \mathcal{M}_n(\mathbb{R})$ una matrice **simmetrica**.

Esiste una matrice non singolare $N \in \mathcal{M}_n(\mathbb{R})$ tale che $N^{-1}AN$ è diagonale (con elementi diagonali reali).

Ciò equivale a dire che una matrice simmetrica di ordine n ha sempre n autovalori reali (contati con molteplicità) e n autovettori linearmente indipendenti, ossia

$$A = NDN^{-1}$$
 decomposizione spettrale

Esempio.

Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1, x_1)^T$.

La matrice associata rispetto alla base canonica è simmetrica:

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right)$$

Matrici simmetriche II

Gli autovalori sono le soluzioni dell'equazione caratteristica:

$$\Delta_A(\lambda) = \left| egin{array}{ccc} \lambda-1 & -1 & -1 \ -1 & \lambda & 0 \ -1 & 0 & \lambda \end{array} \right| = \lambda(\lambda^2-\lambda-1) - \lambda = \lambda(\lambda-2)(\lambda+1) = 0$$

Gli autovalori sono $\lambda_1=0$ con molteplicità algebrica e geometrica uguale a 1, $\lambda_2=2$ con molteplicità algebrica e geometrica uguale a 1, $\lambda_3=-1$ con molteplicità algebrica e geometrica uguale a 1.

La matrice è diagonalizzabile:

$$V_{0} = \{(x, y, z)^{T} : -x - y - z = 0; -x = 0\} = \{x = 0; y = -z\} = [(0, 1, -1)^{T}]$$

$$V_{2} = \{(x, y, z)^{T} : x - y - z = 0; -x + 2y = 0; -x + 2z = 0\} = \{y = z; x = 2z\} = [(2, 1, 1)^{T}]$$

$$V_{-1} = \{(x, y, z)^{T} : -2x - y - z = 0; -x - y = 0; -x - z = 0\} = \{y = z; x = -z\}$$

La matrice diagonalizzante è

$$N = \left(\begin{array}{ccc} 0 & 2 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{array}\right)$$