О проблеме сходимости минимизации оптического потенциала

При выполнении подбора параметров оптического потенциала под набор экспериментальных данных была обнаружена следующая проблема: минимизатор Minuit находил некоторый минимум χ^2 , но при этом сообщал, что сходимость не достигнута (" MIGRAD TERMINATED WITHOUT CONVERGENCE."). Для решения этой проблемы была написана тестовая программа, выполняющая подбор параметров оптического потенциала к тестовому набору данных – результату вычислений для 12 С с параметрами "по умолчанию" (представлены на Рис. 1.)

Рис. 1. Результаты расчетов в Talys для 12 С с параметрами "по умолчанию" (сохранены в TalysLib_/tutorials/C12-Koning.root)

"По умолчанию" расчеты производятся в приближении Кенинга.

Table 1: Параметры оптического потенциала для 12С "по умолчанию"

v1	59.012
v2	0.00721024
v 3	1.97E-05
v4	7.1E-09
w1	12.3954
w2	74.504
d1	16
d2	0.0218
d3	11.5
vso1	5.958
vso2	0.004
wso1	-3.1
wso2	160

Существенной проблемой при поиске параметров является ограничение на их точность, т.к. в Talys есть ограничение на количество значащих цифр, разное для каждого из параметров. Также, по-видимому, где-то внутри Talys происходят округления, ограничивающие точность получаемого результата. Для выяснения допустимых значений шага для каждого параметра потенциала при численном расчете градиентов были построены графики, показывающие

зависимость частной производной $\frac{d(\chi^2)}{dp_i}$ от шага сетки ϵ . Эти графики приведены на

Рис.2. Зависимости частных производных $\frac{d(\chi^2)}{dp_i}$ от от шага сетки ϵ в окрестности минимума χ^2 .

Из Рис. 2 можно сделать следующий вывод: существует нижний предел для величины ϵ , свой для каждого из параметров, условием которого является неравенство нулю частной производной.

При выполнении минимизации можно добиться сообщения об успешном схождении при соблюдении следующих условий:

- 1) Вычисление градиента выполняется минимизатором, а не пользовательской функцией.
- 2) Задан подходящий начальный размер шага минимизации каждого из используемых параметров.
- 3) В процессе подбора параметров не происходит выхода шага минимизации в область, приводящую к обнулению частной производной (в частности, для решения этой проблемы, пришлось искусственно увеличить шаг для параметра v1 в 100 раз).

- 4) В минимизации не участвует мнимая часть спин-орбитальной компоненты потенциала (wso1).
- 5) Параметры v1,w1,d1,vso1,rV являются «хорошими», т. е. для них удалось добиться схождения. Добавление к этому списку других параметров в рамках одной минимизации приводит к несхождению. Также к несхождению приводит замена каких-либо параметров в этом списке другими.

Не удалось добиться схождения минимизации при использовании для вычисления градиентов пользовательской функции, что может быть связано с неоптимальной величиной ϵ на заключительном этапе расчетов (когда градиент считается средствами Minuit, то происходит подбор оптимального шага сетки).

Возможный способ решения проблемы – находить минимум с помощью пользовательской функции (существенно быстрее, чем средствами Minuit), и затем запускать вторую минимизацию с найденными ранее параметрами. Что делать с «плохими параметрами» (wso1, aV, rD, aD, rSO, aSO) – пока непонятно.