TD n°1 Théorie des catégories

Hugo SALOU
Dept. Informatique

9 avril 2025

Table des matières

Exercice 1.	3
Exercice 2.	4
Exercice 3.	5
Exercice 4.	6
Exercice 5. 5.A Stabilité de « plein » par isomorphisme	7 7 8 8
Exercice 6.	9
Exercice 7.	10
Exercice 8.	11
Exercice 9.	12
Exercice 10.	14
Exercice 11.	16

Exercice 1.

Montrer que la composition de deux monomorphismes est un monomorphisme. Énoncer et prouver l'énoncé dual.

Soit **C** une catégorie. Soient $u,v:A\to B$ deux morphismes et soient $f:B\to C$ et $g:C\to D$ deux monomorphismes.

Supposons que $g \circ f \circ u = g \circ f \circ v$, alors (par associativité de \circ et monomorphisme g) on a $f \circ u = f \circ v$. Mais, par le monomorphisme f, on en déduit que u = v. Ceci montre que l'on $g \circ f$ est un monomorphisme.

La propriété duale est que la composition de deux épimorphismes est un épimorphisme. Par dualité de la preuve précédente, on obtient le résultat.

Exercice 2.

Soit $F: \mathbf{C} \to \mathbf{D}$ et $G: \mathbf{D} \to \mathbf{E}$ deux foncteurs contravariants. Montrer que $G \circ F: \mathbf{C} \to \mathbf{E}$ est covariant.

Soient u et v deux morphismes composables de ${\bf C}$. On calcule

$$G \circ F(u \circ v) = G(F(v) \circ F(u)) = G(F(u)) \circ G(F(v)).$$

On en déduit donc que le foncteur $G\circ F$ est covariant.

Exercice 3.

Montrer que si F est un foncteur fidèle et si F(f) est un monomorphisme alors f est un monomorphisme.

Soit $F: \mathbf{C} \to \mathbf{D}$ un foncteur fidèle. Soit de plus $(f: B \to C) \in \mathbf{C}_1$ tel que F(f) soit un monomorphisme. Soient $u, v: A \to B$ deux morphismes de \mathbf{C} .

$$A \xrightarrow{v} B \xrightarrow{f} C$$

$$F(u) \xrightarrow{F(v)} F(B) \xrightarrow{F(f)} F(C)$$

Supposons que $F(u) \circ F(f) = F(v) \circ F(f)$. On sait donc, par le monomorphisme F(f), que F(u) = F(v). Et par fidélité de F (injectivité pour les morphismes), on en déduit que u = v.

On en déduit que f est un monomorphisme.

$$A \xrightarrow{v} B \xrightarrow{f} C$$

$$F(A) \xrightarrow{F(v)} F(B) \xrightarrow{F(f)} F(C)$$

Exercice 4.

Soient C et D deux catégories. Définir une catégorie [C, D] (aussi notée Fun(C, D)) telle que ses objets sont les foncteurs de C vers D, et ses morphismes sont les transformations naturelles entre ces foncteurs.

On définit la catégorie [C, D] par

- \triangleright ses objets sont les foncteurs de \mathbf{C} vers \mathbf{D} ;
- ▷ ses morphismes sont les transformations naturelles entre foncteurs;
- \triangleright sa loi de composition est, pour η et ε deux transformations naturelles, $(\varepsilon \circ \eta)_A = \varepsilon_A \circ \eta_A$ quel que soit $A \in ob(\mathbf{C})$.

Nous devons montrer que l'opération $\circ_{[C,D]}$ est associative et unitaire. Mais, ces propriétés découlent clairement de l'associativité et de l'unitarité de la loi \circ_{C} .

Exercice 5.

Soient $F,G: \mathbf{C} \to \mathbf{D}$ deux foncteurs. On suppose que F et G sont isomorphes (il existe un isomorphisme naturel entre F et G). Montrer que F est plein, ou fidèle, ou quasi-inversible si, et seulement si, G l'est.

On procède en trois temps. Pour chaque propriété, on ne démontre qu'une implication mais, vue la symétrie des propriétés (et car l'inverse d'un isomorphisme est un isomorphisme), ceci démontre l'équivalence.

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\downarrow^{\eta_A} \qquad \downarrow^{\eta_B}$$

$$G(A) \xrightarrow{G(f)} G(B)$$

$$(5.1)$$

On note ici $\eta_A: F(A) \rightsquigarrow G(A)$ lorsque η_A est un isomorphisme de F(A) à G(A).

5.A Stabilité de « plein » par isomorphisme.

Supposons F plein.

Soit $\alpha: A \to B$ un morphisme de **D**. Par surjectivité, il existe un morphisme f tel que $F(f) = \alpha$. On pose $g = \eta_A^{-1} \circ f \circ \eta_B$ de telle sorte que l'on ait $Gg = \alpha$ (c.f. diagramme commutatif 5.1).

D'où, G est plein.

Hugo Salou – L3 ens lyon Théorie des catégories

5.B Stabilité de « fidèle » par isomorphisme.

Supposons F fidèle.

Soient $f, g: A \to B$ dans ${\bf C}$ tels que G(f) = G(g) (on notera l'hypothèse (\star)). Montrons que f = g.

On calcule

$$\eta_B \circ F(g) =_{(5.1)} G(g) \circ \eta_A =_{(\star)} G(f) \circ \eta_B =_{(5.1)} \eta_B \circ F(f).$$

D'où, F(g) = F(f) car η_A et η_B sont des isomorphismes donc des monomorphismes. On en déduit que f = g, car F est supposé fidèle.

On en déduit que G est fidèle.

5.C Stabilité de « quasi-inversible » par isomorphisme.

Supposons F quasi-inversible. Par le théorème de caractérisation des équivalences, on sait que F est pleinement fidèle et essentiellement surjective. Pour montrer que G est quasi-inversible, il suffit de montrer que:

- \triangleright G est plein (prouvé en 5.A);
- \triangleright G est fidèle (prouvé en 5.B);
- \triangleright G est essentiellement surjectif.

Il ne reste que le dernier point à démontrer. Soit Y un objet de \mathbf{D} , montrons qu'il existe $X \in ob(\mathbf{C})$ tel que G(X) et Y sont isomorphes dans **D**. On sait qu'il existe $X \in ob(\mathbf{C})$ tel que G(X) et Y sont isomorphes; soit un tel X.

$$Y \xrightarrow{} F(X) \xrightarrow{\eta_X} G(X)$$
.

Ainsi, par composition d'isomorphismes, on sait que Y et G(X) sont isomorphes.

On en conclut que G est quasi-inversible.

Exercice 6.

Soit \mathbb{C} une catégorie possédant un objet final \mathbb{F} . Montrer que tout morphisme $f: \mathbb{F} \to X$ est un monomorphisme. Énoncer et prouver l'énoncé dual.

Comme \mathbb{F} est final, on sait donc que $\# \operatorname{Hom}(X, \mathbb{F}) = 1$ quel que soit l'objet $X \in \operatorname{ob}(\mathbf{C})$. Soit $f : \mathbb{F} \to Z$ et soient $u, v : X \to \mathbb{F}$ des morphismes quelconques. Supposons que $f \circ u = f \circ v$.

$$X \xrightarrow{v} \mathbb{F} \xrightarrow{f} Z .$$

Comme $u,v\in \operatorname{Hom}(X,\mathbb{F})$ de cardinal 1, on en déduit que u=v.

D'où f est un monomorphisme.

$$X \xrightarrow{v} \mathbb{F} \xrightarrow{f} Z$$
.

L'énoncé dual est : tout morphisme $g:X\to\mathbb{I}$ est un épimorphisme, où \mathbb{I} est un objet initial de \mathbf{C} . Pour le démontrer, il suffit de procéder par dualité : le dual d'un objet initial est un objet final et le dual d'un épimorphisme est un monomorphisme.

$$X \xrightarrow{g} \mathbb{I} \xrightarrow{v} Z$$
.

Exercice 7.

Soit $\mathbf{Ens_f}$ la sous-catégorie pleine de \mathbf{Ens} dont les objets sont des ensembles finis. On définit une sous-catérorie pleine \mathbf{C} de $\mathbf{Ens_f}$ dont les objets sont les sous-ensembles de \mathbb{N} de la forme $[\![1,n]\!] = \{1,\ldots,n\}$. Prouver que le foncteur d'inclusion de \mathbf{C} dans $\mathbf{Ens_f}$ est une équivalence, de sorte que \mathbf{C} soit un squelette de $\mathbf{Ens_f}$.

Soit

$$F: \mathbf{C} \longrightarrow \mathbf{Ens_f}$$

$$A \longmapsto A$$

$$(u: A \to B) \longmapsto (u: A \to B)$$

le foncteur d'inclusion de ${\bf C}$ dans ${\bf Ens_f}$. On applique le critère d'équivalence. Pour cela, il suffit de montrer que F est pleinement fidèle et essentiellement surjectif.

 \triangleright Le foncteur F est pleinement fidèle. En effet, l'application

$$\operatorname{id}_{\operatorname{Hom}(A,B)} : \operatorname{Hom}(A,B) \longrightarrow \operatorname{Hom}(F(A),F(B)) = \operatorname{Hom}(A,B)$$

$$f \longmapsto f$$

est trivialement injective et surjective.

▷ Le foncteur F est essentiellement surjectif. En effet, soit un ensemble fini $Y \in \text{ob}(\mathbf{Ens_f})$. On pose la partie X = [1, n] de \mathbb{N} où n = #Y (qui existe car Y fini). On conclut par

$$F(X) = [1, \#Y] \cong Y.$$

On en déduit que F définit une équivalence.

Pour justifier que **C** est un squelette, il suffit de remarquer que l'on a $[1, n] \cong S$ si, et seulement si n = #S où $S \in \text{ob}(\mathbf{Ens_f})$.

Exercice 8.

Montrer que **Ens** n'est pas équivalente à **Ens**^{op}.

Par l'absurde, supposons les deux catégories équivalentes.

Soit $F: \mathbf{Ens} \to \mathbf{Ens}^{\mathrm{op}}$ un foncteur d'équivalence et soit Y un ensemble fini non-vide.

Remarquons que

- \triangleright il existe une unique fonction de l'ensemble vide \emptyset vers un autre ensemble quelconque Y;
- \triangleright il n'existe aucune fonction de Y vers \emptyset .

Par équivalence et car un isomorphisme conserve le cardinal,

$$\#\operatorname{Hom}_{\mathbf{Ens}}(\emptyset, Y) = \#\operatorname{Hom}_{\mathbf{Ens}^{\operatorname{op}}}(\emptyset, Y) = \#\operatorname{Hom}_{\mathbf{Ens}}(Y, \emptyset).$$

Mais, ceci est absurde : $\#\mathrm{Hom}_{\mathbf{Ens}}(\emptyset,Y)=1$ et $\#\mathrm{Hom}_{\mathbf{Ens}}(Y,\emptyset)=0$ (car Y supposé non vide).

Exercice 9.

- 1. Montrer que l'application qui, à un groupe G associe son centre, et à un morphisme sa restriction au centre, n'est pas un foncteur.
- **2.** Construire un foncteur $\mathbf{Grp} \to \mathbf{Ab}$ envoyant un groupe G sur son « abélianisé » $G^{\mathrm{ab}} = G/D(G)$ où

$$D(G) = \langle ghg^{-1}h^{-1} \mid g, h \in G \rangle.$$

1. On procède par l'absurde. On considère l'application

$$\varphi: \operatorname{GL}_2(\mathbb{R}) \longrightarrow \operatorname{GL}_3(\mathbb{R})$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Or, on sait que le centre de $GL_n(\mathbb{R})$ est l'ensemble des matrices de la forme $\lambda \mathbf{I}_n$ où $\lambda \in \mathbb{R}^*$. Ainsi, l'application $\varphi|_{Z(GL_2(\mathbb{R}))}$ n'est **pas** à valeur dans $Z(GL_3(\mathbb{R}))$.

Par exemple, la matrice $\mathbf{A} = 2\mathbf{I}_2$ est dans le centre de $GL_2(\mathbb{R})$ mais la matrice

$$oldsymbol{B} = egin{pmatrix} oldsymbol{A} & oldsymbol{0}_{2 imes 1} \ oldsymbol{0}_{1 imes 2} & oldsymbol{I}_1 \end{pmatrix}$$

n'y est pas.

2. On pose l'application

$$\Psi: \mathbf{Grp} \longrightarrow \mathbf{Ab}$$

$$G \longmapsto G^{\mathrm{ab}} = G/D(G)$$

$$(u: G \to H) \longmapsto (\Psi(u): G^{\mathrm{ab}} \to H^{\mathrm{ab}}).$$

$$- 12/18 -$$

Hugo Salou – L3 ens lyon

Théorie des catégories

Justifions de la construction de $\Phi(u)$. On note $\pi_G: G \to G^{ab}$ et $\pi_H: H \to H^{ab}$ les projections canoniques sur G^{ab} et H^{ab} respectivement. On pose $f = \pi_H \circ u: G \to H^{ab}$. Et, on factorise le morphisme f par D(G):

Ceci peut être effectué car :

- \triangleright on a $D(G) \triangleleft G$;
- \triangleright on a $D(G) \subseteq \ker f$ car, pour $g, h \in G$, on a

$$u(g h g^{-1} h^{-1}) = u(g) u(h) u(g)^{-1} u(h)^{-1} \in D(H),$$

d'où $\ker f = \ker(\pi_H \circ u) \supseteq D(G)$.

Il ne reste que deux points à vérifier :

- u $\Psi(\mathrm{id}_G) = \mathrm{id}_{G^{\mathrm{ab}}}$, ce qui découle clairement de la définition de Ψ pour les morphismes.
- $\forall \Psi(u \circ v) = \Psi(u) \circ \Psi(v), \text{ où } v : G \to H \text{ et } u : H \to K.$

$$G \xrightarrow{v} H \xrightarrow{u} K$$

$$\downarrow^{\pi_G} \qquad \downarrow^{\pi_H} \qquad \downarrow^{\pi_K}$$

$$\Psi(G) \xrightarrow{\Psi(v)} \Psi(H) \xrightarrow{\Psi(y)} \Psi(K)$$

$$\downarrow^{\Psi(u) \circ \Psi(v)} \qquad \downarrow^{\Psi(K)}$$

Pour démontrer l'égalité souhaitée, il suffit de remarquer que

$$(\Psi(v) \circ \Psi(u))(g \ D(G)) = \Psi(v)(\Psi(u)(g \ D(G)))$$

= $\Psi(v)(u(q) \ D(H)) = v(u(q)) \ D(K),$

car l'égalité $\Psi(u)(g D(G)) = u(g) D(H)$ est vérifiée (et de même pour v).

Exercice 10.

Soit G un groupe. On considère la catégorie (encore notée G) où le seul objet est \bullet , et où $\text{Hom}(\bullet, \bullet) = G$. Plus précisément, les morphismes sont indexés par G, et si $g,h: \bullet \to \bullet$ sont deux morphismes, leur composé est $g \circ h = gh: \bullet \to \bullet$. Soient G et H deux groupes vus comme des catégories.

- 1. Décrire les foncteurs de G vers H.
- **2.** Soit S et T deux foncteurs $G \to H$. Montrer qu'il existe une transformation naturelle $S \Rightarrow T$ si, et seulement si, S et T sont conjugués (i.e. il existe $h \in H$ tel que, pour tout $g \in G$, on ait $T(g) = h S(g) h^{-1}$).
- 1. Les foncteurs F de G vers H vérifient :

$$ightharpoonup F(1_G) = 1_H;$$

$$\triangleright F(gh) = F(g \circ h) = F(g) \circ F(h) = F(g) F(h);$$

$$F(q^{-1}) = (F(q))^{-1}$$
, en effet :

$$F(g^{-1}) \circ F(g) = F(g^{-1}g) = F(1_G) = F(gg^{-1}) = F(g) \circ F(g^{-1}).$$

Ce sont donc les homomorphismes de groupes de G vers H.

2. On procède par équivalence.

On a une transformation naturelle $\varphi: S \Rightarrow T$ si, et seulement si le diagramme

$$\begin{array}{ccc}
\bullet & \xrightarrow{S(g)} & \bullet \\
\downarrow \varphi_{\bullet} & & \downarrow \varphi_{\bullet} \\
\bullet & \xrightarrow{T(g)} & \bullet
\end{array}$$

commute, ce qui est vrai si, et seulement si $\varphi_{\bullet} \circ T(g) = S(g) \circ \varphi_{\bullet}$. Et, par définition de la catégorie G et que φ_{\bullet} est un morphisme

Hugo Salou – L3 Ens lyon Théorie des catégories de la catégorie G, il existe donc $h \in G$ tel que $\varphi_{\bullet} = h$. Ceci termine l'équivalence :

$$\varphi: S \Rightarrow T \iff h T(g) = S(g) h \iff T(g) = h S(g) h^{-1}.$$

Exercice 11.

Soient A et B deux ensembles, leur ensemble des parties peuvent être minis de l'ordre partiel \subseteq . On peut alors considérer leur catégorie posétale, toujours notées $\wp(A)$ et $\wp(B)$.

- 1. Représenter sous forme d'un graphe la catégorie $\wp(\{1,2,3\})$ (faire un dessin avec des points et des flèches).
- **2.** Soit $f: A \to B$ une application. Montrer que l'image directe et l'image réciproque définies ci-dessous définissent des foncteurs entre ces catégories :

$$\begin{split} f:\wp(A) &\longrightarrow \wp(B) & f^{-1}:\wp(B) \longrightarrow \wp(A) \\ S &\longmapsto \{f(a) \mid a \in S\} & S &\longmapsto \{a \in A \mid f(a) \in S\}. \end{split}$$

(N'oubliez pas de définir l'action de f et f^{-1} sur les morphismes de ces catégories!)

- 3. Conclure que l'ensemble des parties ℘ peut être vu comme un foncteur covariant Ens → Cat, ou un foncteur contravariant Ens → Cat en fonction de l'action sur les morphismes choisie.
- 1. On dessine le graphe (simplifié par la transitivité et réflexivité

Théorie des catégories

Hugo Salou – L3 ens lyon de \subseteq):

- 2. Procédons en deux temps. On se rappelle que l'on considère une catégorie *posétale*.
 - ▷ On définit

$$f: \mathbf{Ens} \longrightarrow \mathbf{Ens}$$

 $A \longmapsto f(A)$
 $(u: A \to B) \longmapsto (f(u): f(A) \to f(B)).$

Montrons que c'est un foncteur covariant.

- On a $f(id_A) = id_{f(A)}$ car $Hom(A, A) = \{u_{A,A} = id_A\}$ et $Hom(f(A), f(A)) = \{u_{f(A), f(A)} = id_{f(A)}\}.$
- Si on a $a:X\to Y$ et $b:Y\to Z$, alors on a l'égalité $f(b\circ a)=f(b)\circ f(a)$. En effet, en langage ensembliste, on a $X\subseteq Y\subseteq Z$ et on doit montrer que

$$f(X) \subseteq f(Y) \subseteq f(Z)$$
,

ce qui est vrai par croissance (pour \subseteq) de l'image directe.

On en conclut que f est un foncteur covariant.

▷ On définit

$$f^{-1}: \mathbf{Ens} \longrightarrow \mathbf{Ens}$$

 $A \longmapsto f^{-1}(A)$
 $(u: A \to B) \longmapsto (f^{-1}(u): f^{-1}(A) \to f^{-1}(B)).$

Montrons que c'est un foncteur covariant.

Théorie des catégories

Hugo Salou –
$$L3$$
 ENS LYON
– On a $f^{-1}(\mathrm{id}_A) = \mathrm{id}_{f^{-1}(A)}$ car

$$\operatorname{Hom}(A, A) = \{u_{A,A} = \operatorname{id}_A\}$$

et

$$\operatorname{Hom}(f^{-1}(A), f^{-1}(A)) = \{u_{f^{-1}(A), f^{-1}(A)} = \operatorname{id}_{f^{-1}(A)}\}.$$

– Si on a $a: X \to Y$ et $b: Y \to Z$, alors on a l'égalité $f^{-1}(b \circ a) = f^{-1}(b) \circ f^{-1}(a)$. En effet, en langage ensembliste, on a $X \subseteq Y \subseteq Z$ et on doit montrer que

$$f^{-1}(X) \subseteq f^{-1}(Y) \subseteq f^{-1}(Z),$$

ce qui est vrai par croissance (pour \subseteq) de l'image réciproque.

On en conclut que f^{-1} est un foncteur covariant.

3. On pose le foncteur

$$\wp : \mathbf{Ens} \longrightarrow \mathbf{Cat}$$

$$A \longmapsto \wp(A)$$

$$(u : A \to B) \longmapsto ?$$

- Avec $? = (\wp(u) : \wp(A) \to \wp(B))$ défini comme l'image directe, on définit un foncteur \wp covariant.
- ▷ Avec $? = (\wp(u) : \wp(B) \to \wp(A))$ défini comme l'image réciproque, on définit un foncteur \wp contravariant.