Himalayan expeditions Analysis

Contexte

A tense context on the slopes of the Himalayas:

- → Constant increase in the number of climbers each year.
- → Increased need for data management and analysis to ensure the safety and success of expeditions.
- → Creation of the Union of Himalayan Agencies (UHA) bringing together the main trekking agencies

Objective

⇒ UHA has commissioned me for a freelance mission with a clear objective:

Analyze the success and risk factors of Himalayan expeditions to improve the planning and safety of future expeditions.

This study aims to provide crucial data for more sustainable and secure expedition management, thus preserving the beauty and integrity of these mythical peaks for future generations.

Trello: Kanban method

Steps the project stages were managed using the Kanban method and a Trello board

Let's start the expedition...

follow the guide

01

Data Gathering

3 types of data sources

Flat File

The mean dataset
was found on Kaggle
based on the
expedition archives of
Elizabeth Hawley

API

Nominatim API was used to collect GPS coordinates of the peaks

Web scraping

The Topchinatravel
website was used to
scrape temperature and
weather tables by season
for Mount Everest.

02 **Data** Cleaning

DataFrame: expeditions_df

- Expedition_df.shape: (10364, 16)
- expedition_df.duplicated().sum(): 0
- expedition_df.head():

expedition_id	peak_id	peak_name	year	season	basecamp_date	highpoint_date	termination_date	termination_reason	highpoint_metres	members i
ANN260101	ANN2	Annapurna II	1960	Spring	1960-03-15	1960-05-17	NaT	Success (main peak)	7937.0	10
ANN269301	ANN2	Annapurna II	1969	Autumn	1969-09-25	1969-10-22	1969-10-26	Success (main peak)	7937.0	10
ANN273101	ANN2	Annapurna II	1973	Spring	1973-03-16	1973-05-06	NaT	Success (main peak)	7937.0	6

DataFrame: expeditions_df Managing null values

peak_name	1
basecamp_date	1095
highpoint_date	650
termination_date	2380
highpoint_metres	414
trekking_agency	1710

- Replace NaN by median for numerical column
- > Replace NaN by "Unknown" for categorical column
- manage NaN basecamp_date (avg date per year + season)
- manage NaN hightpoint_date (avf diff)
- manage NaN termination_date (avg diff)
- > Drop remaining NaN

DataFrame: peaks_df

- Peaks_df.shape: (468, 8)
- peaks_df.duplicated().sum(): 0
- peaks_df.isna().sum():

```
peak_alternative_name 223
first_ascent_year 132
first_ascent_country 132
first_ascent_expedition_id 135
```

Replace null value by "Unknown" for categorical column

DataFrame: members_df

- Members_df.shape : (76519, 21)
- members_df.duplicated().sum(): 0
- members_df.head():

expedition_id	member_id	peak_id	peak_name	year	season	sex	age	citizenship	expedition_role	 highpoint_metres	success	solo	oxygen_used
AMAD78301	AMAD78301- 01	AMAD	Ama Dablam	1978	Autumn	М	40.0	France	Leader	 NaN	False	False	False
AMAD78301	AMAD78301- 02	AMAD	Ama Dablam	1978	Autumn	М	41.0	France	Deputy Leader	 6000.0	False	False	False
AMAD78301	AMAD78301- 03	AMAD	Ama Dablam	1978	Autumn	М	27.0	France	Climber	 NaN	False	False	False
AMAD78301	AMAD78301- 04	AMAD	Ama Dablam	1978	Autumn	М	40.0	France	Exp Doctor	 6000.0	False	False	False

DataFrame: members_df Managing null value

peak_name	15	
sex	2	
age	3497	
citizenship	10	
expedition_role	21	
highpoint_metres	21833	
death_cause	75413	
death_height_metres	75451	
injury_type	74807	
injury_height_metres	75510	

- replace missing values by 0 for 'death_height_metres' et 'injury_height_metres'
- replace missing values by median for 'age' et 'highpoint_metres'
- Replace null value by "Unknown" for other categorical column
- Drop remaining null values for sex column

API

- Using the Nominatim API to retrieve longitude and latitude based on the peak names
- Merging the newly created dataframe (containing the geographic coordinates) with the existing peak dataframe
- Approximately 50% of the coordinates were captured using the API.

Web scraping

2 tables created

	season	climate	windows_date	peak_id
0	Summer	Very Wet	June 7 to Sep 30	EVER
1	Autumn Window	Dry, Warm, Calm	Oct 1 to Oct 20	EVER
2	Autumn	Very Windy, Cold, Very Dry, Dark	Oct 20 to Nov 30	EVER
3	Winter	Very Windy, Very Cold, Dry, Dark	Dec 1 to Feb 28	EVER
4	Spring	Windy, Cold, Dry	Mar 1 to May 20	EVER
5	Spring Window	Dry, Warm, Calm	May 20 to June 6	EVER

	Туре	Celsius	Fahrenheit	peak_id
1	July	-18.0	-0.4	EVER
2	Aug	-18.0	-0.4	EVER
3	Sept	-21.0	-5.8	EVER
4	Oct	-27.0	-16.6	EVER
5	Nov	-30.0	-22.0	EVER
6	Dec	-34.0	-29.2	EVER
7	Jan	-36.0	-32.8	EVER
8	Feb	-35.0	-31.0	EVER
9	Mar	-32.0	-25.6	EVER
10	Apr	-31.0	-23.8	EVER
11	May	-25.0	-13.0	EVER
12	Jun	-20.0	-4.0	EVER

ERD

Some queries:

Selected most popular trekking agency to expose it in the API (route: /statistics):

```
harmonized_agency_name,
count(distinct expedition_id) as nb_expedition,
sum(is_success)/count(distinct expedition_id) as success_rate
FROM himalaya.expedition
WHERE harmonized_agency_name != 'Unknown'
GROUP BY harmonized_agency_name
ORDER BY nb_expedition desc
```


harmonized_agency_name	nb_expedition	success_rate
Asian Trekking	832	0.5433
Thamserku Trekking	754	0.5159
Himalayan Guides	321	0.7227
Cosmo Treks	277	0.5307
Seven Summit Treks	274	0.6496
Monterosa Treks	230	0.4565
Cho Oyu Trekking	196	0.5408
Arun Treks	151	0.6954
Prestige Adventure	142	0.5563

Some queries:

Create table with all of death detail from members table

```
Create table death
SELECT
expedition_id,
member id,
m.peak_id,
m.peak name,
year,
season,
sex,
age,
citizenship,
hired,
highpoint_metres,
solo,
oxygen_used,
death_cause,
death_height_metres,
p.longitude,
p.latitude
FROM himalaya.members m
LEFT JOIN himalaya.peaks p ON m.peak_id = p.peak_id
```


expedition_id	member_id	peak_id	peak_name	year	season	sex	age	citizenship	hired	highpoint_metres	solo	oxygen_used	death_cause
AMAD79302	AMAD79302-04	AMAD	Ama Dablam	1979	Autumn	M	23	New Zealand	0	6100	0	0	Avalanche
AMAD83301	AMAD83301-01	AMAD	Ama Dablam	1983	Autumn	M	31	Switzerland	0	7400	0	0	Fall
AMAD83301	AMAD83301-13	AMAD	Ama Dablam	1983	Autumn	F	28	Switzerland	0	7400	0	0	Fall
AMAD85102	AMAD85102-03	AMAD	Ama Dablam	1985	Spring	M	32	Japan	0	6814	0	0	Fall
AMAD88102	AMAD88102-04	AMAD	Ama Dablam	1988	Spring	M	33	Canada	0	6300	0	0	Fall
AMAD92102	AMAD92102-01	AMAD	Ama Dablam	1992	Spring	M	36	Spain	0	6814	0	0	Fall
ANN 170 10 1	ANN 170 10 1-05	ANN1	Annapurna I	1970	Spring	M	32	UK	0	7315	0	0	Falling rock / ice

Flask API Development for Data Exposure

endpoints description parameters Return all the Page, page_size, /peaks information about the include_detail, peak in Himalaya height_min Return all the /peaks/<id> information about the peak_id peak filtering by ID Return all the /expeditions information about Page, page_size, year expeditions

Demo: http://127.0.0.1:8080/

EDA & Visualization

EDA & Visualization

EDA & Visualization

EDA & Visualization

EDA & **Visualization**

The Himalayan peak detail:

This dashboard, based on the Himalaya dataset, will allow us to dive into the risk and success factors of Himalayan expeditions.

Select a mountain in the filter below or click directly on the desired peak on the adjacent map

Turn on your oxygen for the last steps

Heatmap correlation

Feature & Target declaration

```
features = combined_df[['hired', 'oxygen_used', 'Spring', 'Summer',
    'Winter', 'Autumn', 'age', 'F', 'M', 'height_metres', 'solo',
    'members', 'hired_staff', 'expedition_duration']]

target = combined_df['success']
```

I tested various combinations of features and this one yielded the best results

Modeling:

- I developed a function to test multiple machine learning models with different hyperparameters
- The function evaluates each model using normalized data and records performance scores (accuracy, precision, recall, F1-score) for each tested model
- The models tested include Random Forest, AdaBoost, Gradient Boosting, and Bagging Classifier

Evaluation

- For each model, hyperparameters were adjusted to maximize performance scores
- The evaluation results were compiled into a DataFrame for easy comparison and in-depth analysis

	Model	Accuracy	Precision	Recall	F1 Score
0	Random Forest (100, 20, 2, 1, auto)	0.809592	0.776824	0.706900	0.740214
1	Random Forest (150, 25, 5, 2, sqrt)	0.811876	0.777823	0.713595	0.744326
2	Random Forest (200, 15, 10, 4, log2)	0.792321	0.759302	0.671750	0.712848
3	Bagging Classifier	0.780759	0.741665	0.657802	0.697221
4	Ada Boost	0.789252	0.733616	0.707830	0.720492
5	Gradient Boosting	0.800171	0.741337	0.736098	0.738708

Streamlit: the Himalayan Expedition Success Prediction Application

To help the UHA anticipate risks, we developed a Streamlit application based on our model. This app predicts the success or failure of expeditions using specific parameters

Key Features:

- Data-Driven Predictions
- User-Friendly Interface
- Real-Time Analysis

Demo: http://localhost:8501/

Benefits:

- Helps in planning safer expeditions
- Optimizes the use of resources
- Assists in minimizing the ecological footprint

Challenge:

- Inability to retrieve historical weather data in the Himalayas via an API
- Difficulty in creating a high-performing model in the Streamlit
- Difficulty managing my time with the amount of work

Conclusion

1- Risk and Evolution:

 Significant increase in the number of climbers and the use of oxygen leading to a multiplication of risk factors on high peaks.

2- Contribution of the Project:

 quipping the Union of Himalayan Agencies with advanced predictive tools to enhance sustainable and safe expedition management.

3- Vision for the Future:

- Maintaining access to the highest peaks responsibly for an authentic Himalayan mountaineering experience.
- Ensuring an exceptional experience for future generations.
- Reducing ecological footprint while maximizing climber safety.

Thank You

Any questions?