Supporting Information for:

Dynamics of Proteins Encapsulated in Silica Sol-gel Glasses Studied with IR Vibrational Echo Spectroscopy

Aaron M. Massari, Ilya J. Finkelstein, and Michael D. Fayer *

Department of Chemistry, Stanford University, Stanford, CA 94305, USA

*email: fayer@stanford.edu

Best fit frequency-frequency correlation function (FFCF) parameters

	Δ_0 (cm ⁻¹)	Δ_1 (cm ⁻¹)	τ ₁ (ps)	Δ_2 (cm ⁻¹)	τ ₂ (ps)
MbCO aqueous (A1)	0.50	5.34	0.25	3.41	11.98
MbCO sol-gel (A1)	1.25	5.33	0.18	3.24	16.22
HbCO aqueous (CIII)	2.29	5.56	0.18	2.32	8.39
HbCO sol-gel (CIII)	2.24	6.01	0.14	2.28	9.79

Table S1. Best fit FFCF parameters for MbCO and HbCO in aqueous and sol-gel environments. The functional form of the FFCF, C(t), is a biexponential plus a constant:

$$C(t) = \Delta_0^2 + \Delta_1^2 \exp(-t/\tau_1) + \Delta_2^2 \exp(-t/\tau_2)$$

These values simultaneously reproduce the experimentally measured linear IR spectra and the vibrational echo decays at several T_w delay times.