Rank-73797 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_0^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(4)$ is 1498768733

General information

Number of lines	3
Number of points	25
Number of singular points	1
Number of Eckardt points	1
Number of double points	0
Number of single points	12
Number of points off lines	12
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{3}
Type of lines on points	$3, 1^{12}, 0^{12}$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_1 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \mathbf{Pl}(0, 1, 1, 0, 0, 0)_6$$

Rank of lines: (16, 356, 100)

Rank of points on Klein quadric: (2, 1, 6)

Eckardt Points

The surface has 1 Eckardt points: $0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0).$

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 12 single points: The single points on the surface are:

0: $P_0 = (1,0,0,0)$ lies on line ℓ_0 1: $P_3 = (0,0,0,1)$ lies on line ℓ_1 2: $P_8 = (1,0,1,0)$ lies on line ℓ_0 3: $P_9 = (2,0,1,0)$ lies on line ℓ_0 4: $P_{10} = (3,0,1,0)$ lies on line ℓ_0 5: $P_{23} = (1,0,0,1)$ lies on line ℓ_2 6: $P_{38} = (0,0,1,1)$ lies on line ℓ_1

The single points on the surface are:

Points on surface but on no line

The surface has 12 points not on any line: The points on the surface but not on lines are:

 $\begin{aligned} 0: \ P_4 &= (1,1,1,1) \\ 1: \ P_{12} &= (1,1,1,0) \\ 2: \ P_{18} &= (3,2,1,0) \\ 3: \ P_{21} &= (2,3,1,0) \\ 4: \ P_{28} &= (2,1,0,1) \\ 5: \ P_{29} &= (3,1,0,1) \\ 6: \ P_{32} &= (2,2,0,1) \end{aligned}$

7: $P_{39} = (1, 0, 1, 1)$ lies on line ℓ_2 8: $P_{53} = (0, 0, 2, 1)$ lies on line ℓ_1 9: $P_{54} = (1, 0, 2, 1)$ lies on line ℓ_2 10: $P_{69} = (0, 0, 3, 1)$ lies on line ℓ_1 11: $P_{70} = (1, 0, 3, 1)$ lies on line ℓ_2

7: $P_{33} = (3, 2, 0, 1)$ 8: $P_{36} = (2, 3, 0, 1)$

9: $P_{37} = (3, 3, 0, 1)$

10: $P_{66} = (1, 3, 2, 1)$

11: $P_{78} = (1, 2, 3, 1)$

Line Intersection Graph

$$\begin{array}{c|c} & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_2	P_2

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_2	P_2

The surface has 25 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$9: P_{21} = (2,3,1,0)$	18: $P_{39} = (1, 0, 1, 1)$
$1: P_2 = (0, 0, 1, 0)$	$10: P_{23} = (1,0,0,1)$	19: $P_{53} = (0, 0, 2, 1)$
$2: P_3 = (0,0,0,1)$	$11: P_{28} = (2, 1, 0, 1)$	$20: P_{54} = (1,0,2,1)$
$3: P_4 = (1,1,1,1)$	$12: P_{29} = (3, 1, 0, 1)$	$21: P_{66} = (1, 3, 2, 1)$
$4: P_8 = (1,0,1,0)$	$13: P_{32} = (2, 2, 0, 1)$	$22: P_{69} = (0,0,3,1)$
$5: P_9 = (2,0,1,0)$	$14: P_{33} = (3, 2, 0, 1)$	$23: P_{70} = (1,0,3,1)$
$6: P_{10} = (3, 0, 1, 0)$	15: $P_{36} = (2, 3, 0, 1)$	$24: P_{78} = (1, 2, 3, 1)$
$7: P_{12} = (1, 1, 1, 0)$	16: $P_{37} = (3, 3, 0, 1)$	
$8: P_{18} = (3, 2, 1, 0)$	17: $P_{38} = (0, 0, 1, 1)$	