MA40042 Measure Theory and Integration

Solutions: Sheet 2, Question 3

A few points about this question:

- This was a hard question, so don't worry if you found it difficult.
- The measure space $(X, \overline{\Sigma}, \overline{\mu})$ we form here is called the completion of (X, Σ, μ) . It's based on the idea that, if something is the subset of a set of measure 0, then (perhaps) it 'ought' to have measure 0 also.
- Take care when dealing with N ∈ N. This N may not be measurable, so is very difficult to work with. The point is, though, that N ⊂ Z for some Z that is measurable. So your reasoning about N should go via reasoning about Z.
- 3. Given a measure space (X, Σ, μ) , we write \mathcal{Z} for the collection of sets with measure zero, and \mathcal{N} for the collection of *null sets* the subsets of sets with measure zero so

$$\begin{split} \mathcal{Z} &:= \{Z \in \Sigma : \mu(Z) = 0\}, \\ \mathcal{N} &:= \{N \subset X : N \subset Z \text{ for some } Z \in \mathcal{Z}\}. \end{split}$$

A measure space is called *complete* if every null set is measurable with measure zero; that is, if $\mathcal{N} = \mathcal{Z}$.

Let (X, Σ, μ) be a (not necessarily complete) measure space.

- (a) Let $\overline{\Sigma} = \{A \cup N : A \in \Sigma, N \in \mathcal{N}\}.$
 - i. Show that $\overline{\Sigma}$ is a σ -algebra.

Solution: We need to check the three usual points.

- 1. The empty set is in \mathcal{Z} and, since $\varnothing \subset \varnothing$ and $\mu(\varnothing) = 0$, also in \mathcal{N} . Hence $\varnothing = \varnothing \cup \varnothing \in \overline{\Sigma}$.
- 2. Let $A \cup N \in \overline{\Sigma}$, with $A \in \Sigma$ and $N \subset Z \in \mathcal{Z}$. Then $(A \cup N)^{c} = A^{c} \cap N^{c}$. Now A^{c} is in Σ ; what can we say

about N^c ? Well, $N \subset Z$, with $Z \in \Sigma$, so it might be helpful to write $N^c = Z^c \cup (Z \setminus N)$. (Draw a picture if this equality isn't obvious.) So we have

$$(A \cup N)^{\mathsf{c}} = A^{\mathsf{c}} \cap \left(Z^{\mathsf{c}} \cup (Z \setminus N) \right) = (A^{\mathsf{c}} \cap Z^{\mathsf{c}}) \cup \left(A^{\mathsf{c}} \cap (Z \setminus N) \right).$$

First, A and Z are in Σ , so $A^{\mathsf{c}} \cap Z^{\mathsf{c}}$ is in Σ also. Second, $Z \setminus N \subset Z$, so $A^{\mathsf{c}} \cap (Z \setminus N) \subset Z$ also, meaning $A^{\mathsf{c}} \cap (Z \setminus N) \in \mathcal{N}$. Thus we have written $(A \cup N)^{\mathsf{c}}$ in the desired form.

3. Let $A_1 \cup N_1, A_2 \cup N_2, \ldots$ be a countably infinite sequence of sets with $A_n \in \Sigma$ and $N_n \subset Z_n \in \mathcal{Z}$ for all n. Then

$$\bigcup_{n=1}^{\infty} (A_n \cup N_n) = \bigcup_{n=1}^{\infty} A_n \cup \bigcup_{n=1}^{\infty} N_n.$$

For the first term, $\bigcup_{n=1}^{\infty} A_n \in \Sigma$, since Σ is a σ -algebra. For the second term, $\bigcup_{n=1}^{\infty} N_n \subset \bigcup_{n=1}^{\infty} Z_n$. By countable subadditivity of μ , the union $\bigcup_{n=1}^{\infty} Z_n$ has measure 0, so is in \mathcal{Z} . Hence, $\bigcup_{n=1}^{\infty} N_n$ is a subset of a measure 0 set, so is in \mathcal{N} . Hence we have written $\bigcup_{n=1}^{\infty} (A_n \cup N_n)$ in the desired form.

ii. Explain why $\overline{\Sigma}$ is the smallest σ -algebra containing Σ and \mathcal{N} .

Solution: Any σ -algebra containing Σ and \mathcal{N} clearly must contain the sets of the form $A \cup N$ for $A \in \Sigma$ and $N \in \mathcal{N}$. Any such σ -algebra will thus contain $\overline{\Sigma}$.

- (b) We define a function $\bar{\mu}$ on $\bar{\Sigma}$ as follows: for $A \in \Sigma$ and $N \in \mathcal{N}$, let $\bar{\mu}(A \cup N) = \mu(A)$.
 - i. Explain why we need to show that $\bar{\mu}$ is 'well-defined'.

Solution: The same set might be able to be written in two different ways as $A_1 \cup N_1$ and as $A_2 \cup N_2$. It's not immediately clear that this will give the same result for $\bar{\mu}$.

ii. Show that $\bar{\mu}$ is well-defined.

Solution: Suppose $A_1 \cup N_1 = A_2 \cup N_2$, with $A_1, A_2 \in \Sigma$, and

 $N_1 \subset Z_1 \in \mathcal{Z}, N_2 \subset Z_2 \in \mathcal{Z}$. Then we have

$$A_1 \subset A_1 \cup N_1 = A_2 \cup N_2 \subset A_2 \cup Z_2.$$

Hence,

$$\mu(A_1) \le \mu(A_2 \cup Z_2) \le \mu(A_2) + \mu(Z_2) = \mu(A_2),$$

where we have used monotonicity, finite subadditivity, and the fact that $\mu(Z_2) = 0$. We have shown that $\mu(A_1) \leq \mu(A_2)$.

The same argument with 1s and 2s swapped over gives $\mu(A_2) \le \mu(A_1)$. Hence $\mu(A_1) = \mu(A_2)$, and we have $\bar{\mu}(A_1 \cup N_1) = \bar{\mu}(A_2 \cup N_2)$.

iii. Show that $\bar{\mu}$ is a measure on $(X, \overline{\Sigma})$.

Solution: We have two points to check.

- 1. Clearly $\bar{\mu}(\varnothing) = \bar{\mu}(\varnothing \cup \varnothing) = \mu(\varnothing) = 0$.
- 2. Let $A_1 \cup N_1, A_2 \cup N_2, \ldots$ be a countably infinite disjoint sequence of sets with $A_n \in \Sigma$ and $N_n \subset Z_n \in \mathcal{Z}$ for all n. Note that the A_n s are also disjoint. First, by monotonicity,

$$\mu\left(\bigcup_{n=1}^{\infty} (A_n \cup N_n)\right) \ge \mu\left(\bigcup_{n=1}^{\infty} A_n\right)$$
$$= \sum_{n=1}^{\infty} \mu(A_n)$$
$$= \sum_{n=1}^{\infty} \bar{\mu}(A_n \cup N_n).$$

Second, we have

$$\bigcup_{n=1}^{\infty} (A_n \cup N_n) = \bigcup_{n=1}^{\infty} A_n \cup \bigcup_{n=1}^{\infty} N_n \subset \bigcup_{n=1}^{\infty} A_n \cup \bigcup_{n=1}^{\infty} Z_n,$$

which gives

$$\mu\left(\bigcup_{n=1}^{\infty} (A_n \cup N_n)\right) \le \mu\left(\bigcup_{n=1}^{\infty} A_n\right) + \mu\left(\bigcup_{n=1}^{\infty} Z_n\right)$$
$$= \mu\left(\bigcup_{n=1}^{\infty} A_n\right)$$

$$= \sum_{n=1}^{\infty} \mu(A_n)$$
$$= \sum_{n=1}^{\infty} \bar{\mu}(A_n \cup N_n).$$

Since we have inequalities both ways, we're done.

iv. Show that $(X, \overline{\Sigma}, \overline{\mu})$ is a complete measure space.

Solution: Let $A \cup N \in \overline{\Sigma}$ with $A \in \Sigma$ and $N \subset Z$ with $Z \in \Sigma$ having μ -measure 0, and assume $\overline{\mu}(A \cup N) = 0$. Let $M \subset A \cup N$. We need to show that $M \in \overline{\Sigma}$. It will then follow by monotonicity that

$$\bar{\mu}(M) \le \bar{\mu}(A \cup N) = 0,$$

and so $\bar{\mu}(M) = 0$.

Note that $\mu(A) = \bar{\mu}(A \cup N) = 0$. Hence $A \cup N \subset A \cup Z$, and since A and Z have μ -measure 0, so does $A \cup Z$. Hence, when we write $B = \varnothing \cup (A \cup N)$, the first term \varnothing is in Σ , and the second term $A \cup N \subset A \cup Z$ is a μ -null set. Thus we have written B in the necessary form for it to be in $\overline{\Sigma}$, and we are done.

(c) Let μ^* be the outer measure on X constructed from $\mathcal{R} = \Sigma$ and $\rho = \mu$ in the standard way. Show that, for $B \in \overline{\Sigma}$, we have $\mu^*(B) = \overline{\mu}(B)$.

Solution: Write $B = A \cup N$, with $A \in \Sigma$, and $N \subset Z \in \mathcal{Z}$. Clearly $\mathcal{C} = \{A, Z\}$ is covering of B. Hence

$$\mu^*(B) \le \mu(A) + \mu(Z) = \mu(A) = \bar{\mu}(A \cup N) = \bar{\mu}(B).$$

Suppose there was a strictly better covering $C = \{C_1, C_2, ...\}$ of B with $\sum_{n=1}^{N} \mu(C_n) < \bar{\mu}(B)$. This C would also be a covering of A, since $A \subset B$. Since $\bar{\mu}(B) = \bar{\mu}(A \cup N) = \mu(A)$, we would have

$$\bigcup_{n=1}^{N} C_n \supset A \quad \text{and} \quad \sum_{n=1}^{N} \mu(C_n) < \mu(A).$$

This contradicts the countable subadditivity and monotonicity of μ . Hence $\mu^*(B) = \bar{\mu}(B)$ also.