Supplementary Figures

Supplementary Figure 1: Thebaine synthetic pathway in plants. The asterisk indicates an unknown enzyme. 4'OMT, 3'-hydroxy-*N*-methylcoclaurine 4'-*O*-methyltransferase; CNMT, coclaurine *N*-methyltransferase; 6OMT, norcoclaurine 6-*O*-methyltransferase; CYP80B, *N*-methylcoclaurine 3'-hydroxylase; NCS, norcoclaurine synthase; SalAT, salutaridinol 7-*O*-acetyltransferase; SalR, salutaridine reductase; SalS, salutaridine synthase; STORR, epimerase of (*S*)- to (*R*)-reticuline; TH, tyrosine hydroxylase; TYDC, tyrosine/dopa decarboxylase; TYRAT, tyrosine aminotransferase.

Supplementary Figure 2: **6OMT activity of 4'OMT.** LC-MS analysis of monomethyl-THP (m/z=302) in 4'OMT (**a**) or 6OMT (**b**) reactions. **c**, LC-MS analysis of dimethyl-THP (m/z=316) in 4'OMT (red) and 6OMT (blue) reactions. Experiments were conducted at least three times, and the same tendency was observed.

Supplementary Figure 3: STORR activity in *E. coli.* **a**, Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of STORR and STORRNcut. Lanes 1 and 2: insoluble fraction of sonicated samples; lanes 3 and 4: soluble fraction of sonicated samples; lanes 1 and 3: full-length STORR; lanes 2 and 4: STORRNcut. Arrow: ATR2, triangle: expressed STORRNcut. The chirality analysis of pure (R,S)-reticuline (b), the products from the culture of AN1989 without 5-ALA (c), the products from the culture of AN1991 without 5-ALA (d), the products from the culture of AN1989 with 5-ALA (e), and the products from the culture of AN1991 with 5-ALA (f). The arrow in **f** indicates the R-form of reticuline. Experiments were conducted three times, and the same tendency was observed.

Supplementary Figure 4: SalS expression and productivity of the salutaridine reaction. a, SDS-PAGE analysis of four SalS constructs expressed with ATR2. Lanes 1 and 4: empty vector; lanes 2 and 5: SalS; lanes 3 and 6: SalSNcut. Lanes 1–3: insoluble fractions of sonicated samples; lanes 4–6: soluble fractions of sonicated samples. Arrow: ATR2, triangle: expressed SalSNcut. **b**, LC-MS analysis of the salutaridine content in the culture of each SalS-expressing strain. Asterisk: ambiguous peaks. The peak indicated by arrows was analysed for their MS/MS fragment pattern in **c**. **c**, MS/MS fragment pattern of the salutaridine standard (lower panel), and the products from the culture of SalSNcut-expressing strain (upper panel). Experiments were conducted three times, and the same tendency was observed.

Supplementary Figure 5: Effects of glucose, IPTG and 5-ALA on the baine production from authentic (R,S)-reticuline. ND, not detectable. The error bar indicates the standard deviation of three independent experiments.

Supplementary Figure 6: Effects of glucose and IPTG on (*R*,*S*)-reticuline production during the third step culture. ND, not detectable. Experiments were conducted at least three times, and the same tendency was observed.

Supplementary Figure 7: Plasmids construction for opioids production. The colors correspond to those in Figs. 1 and 4.

4'OMT (3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase of Coptis japonica; UniProtKB: Q9LEL5).

ATGGCATTCCACGGCAAAGACGACGTTCTGGACATCAAAGCACAGGCACACGTTTGGAAAATCATCTATGGCTTCGCTGACTCGCTGGTGCTTGCGCGGTTGAACTG ${\tt GGTATTGTCGATATTATCGACAACAATAATCAGCCGATGGCCCTGGCCGATCTGGC}$ AAGTAAACTGCCGGTTTCCGATGTCAATTGTGACAACCTGTATCGTATTCTGCGCTA $\operatorname{CCTGGTCAAAATGGAAATCCTGCGCGTGGAAAAAAGCGATGACGGTCAGAAAAAA$ TATGCGCTGGAACCGATTGCCACCCTGCTGTCACGTAATGCCAAACGCTCGATGGT GCCGATGATCCTGGGCATGACCCAAAAAGATTTTATGACGCCGTGGCATAGCATGA AAGATGGTCTGTCTGACAATGGCACCGCGTTCGAAAAAGCCATGGGTATGACGATC TGGGAATACCTGGAAGGCCACCCGGATCAGAGCCAACTGTTTAACGAGGGTATGG ${\tt CAGGCGAAACCCGTCTGCTGACGAGCTCTCTGATTTCAGGTTCGCGCGATATGTTC}$ ${\sf CAGGGCATCGATAGTCTGGTGGACGTTGGCGGTGGCAACGGTACCACGGTTAAAG}$ ${\sf CAATTTCCGATGCTTTTCCGCATATCAAATGCACCTGTTCGACCTGCCGCACGTGA}$ ${\tt TTGCTAATTCTTATGATCTGCCGAACATTGAACGTATCGGTGGCGACATGTTTAAAA}$ GCGTTCCGTCTGCACAGGCTATTATCCTGAAACTGATCCTGCATGATTGGAACGAT GAAGACTCAATCAAAATCCTGAAACAATGTCGCAACGCAGTTCCGAAAGATGGTGG ${\sf CAAAGTCATTATCGTCGATGTGGCTCTGGACGAAGAATCGGATCACGAACTGAGTT}$ ${\tt CCACCGTCTGATTCTGGATATCGACATGCTGGTGAATACCGGTGGCAAAGAACGC}$ ACGAAAGAAGTGTGGGAAAAAATTGTTAAAAGCGCGGGCTTCTCTGGCTGTAAAAT CCGTCACATCGCCGCTATTCAGTCCGTCATCGAAGTGTTTCCGTAA

GGACGCCATTATGATGAAATGTATCCTGCACGATTGGGATGACAAAGAATGCATTG
AAATCCTGAAACGTTGTAAAGAAGCAGTCCCGGTGAAAGGTGGCAAAGTGATTATC
GTTGACATTGTCCTGAACGTGCAATCAGAACATCCGTATACCAAAATGCGTCTGAC
GCTGGATCTGGACATGATGCTGAATACCGGTGGCAAAGAACGCACGGAAGAAGAA
TGGAAAAAACTGATCCACGATGCCGGTTACAAAGGTCATAAAATCACGCAAATCAC
CGCAGTCCAGAGTGTCATTGAAGCCTACCCGTATTGA

ATR2 (NADPH--cytochrome P450 reductase 2 of Arabidopsis thaliana; UniProtKB: Q9SUM3)

ATGAGCAGCAGCAGTAGCTCTTCCACCAGCATGATTGACCTGATGGCAGCCATTATCAAAGGCGAACCGGTTATTGTTAGCGACCCGGCGAACGCATCAGCTTATGAATCGG ${\sf TGGCGGCCGAACTGAGCTCTATGCTGATTGAAAATCGTCAGTTTGCGATGATTGTC}$ ACCACGAGTATCGCCGTGCTGATTGGCTGCATCGTTATGCTGGTCTGGCGTCGCAG ${\tt CGGCTCTGGTAACTCCAAACGCGTTGAACCGCTGAAACCGCTGGTCATTAAGCCGC}$ $\operatorname{GTGAAGAAAACGATGACGGCCGCAAAAAGGTTACGATTTTCTTTGGTACCCAG$ ${\sf ACGGGCACCGCGAAGGTTTCGCGAAAGCCCTGGGTGAAGAAGCAAAGGCTCGTT}$ ATGAAAAAACCCGCTTTAAGATCGTTGATCTGGATGACTATGCAGCTGATGACGAT ${\sf TGGCGATGGTGAACCGACCGACAATGCGGCCCGTTTCTACAAATGGTTTACCGAAG}$ GCAACGATCGCGGTGAATGGCTGAAAAATCTGAAGTATGGCGTGTTCGGCCTGGG TAACCGTCAGTACGAACATTTTAATAAAGTGGCAAAGGTGGTTGACGATATTCTGG TTGAACAGGGTGCGCAACGCCTGGTTCAGGTCGGCCTGGGTGACGATGACCAATGTATTGAAGATGACTTTACCGCCTGGCGTGAAGCCCTGTGGCCGGAACTGGACACGA ${f TCCTGCGCGAAGAAGGTGATACCGCCGTGGCAACCCCGTATACCGCAGCTGTCCT}$ GGAATACCGTGTGAGCATTCATGATTCTGAAGACGCAAAATTCAACGACATCAATAT GGCTAACGGCAATGGTTATACGGTTTTTGATGCGCAGCACCCGTACAAAGCGAACG ${\tt TGGCCGTTAAGCGTGAACTGCATACCCCGGAATCAGACCGCTCGTGCATTCACCTG}$ GAATTTGATATCGCCGGCTCAGGTCTGACGTATGAAACCGGCGATCATGTCGGCGT GCTGTGCGACAATCTGTCGGAAACCGTGGATGAAGCCCTGCGCCTGCTGGATATGT ${\tt CACCGGACACGTACTTCTCGCTGCACGCCGAAAAAGAAGATGGCACCCCGATTAGT}$ ${f TCCAGCCTGCCGCCGTTTCCGCCGTGCAACCTGCGTACGGCACTGACCCGCT}$ ${\tt ATGCTTGTCTGCTGTCGAGCCCGAAAAAGAGCGCACTGGTGGCTCTGGCCGCACA}$ AAAGATGAATACTCGAAGTGGGTCGTGGAAAGCCAGCGTAGCCTGCTGGAAGTTATGGCGGAATTCCCGAGCGCCAAACCGCCGCTGGGCGTTTTCTTTGCGGGTGTTGCT ${\tt CCGCGTCTGCAACCGCGTTTTTATAGCATTTCTAGTTCCCCGAAAATTGCGGAAAC}$

GCGTATCCATGTGACCTGCGCCCTGGTTTACGAAAAAATGCCGACGGGCCGCATCC
ACAAGGGTGTCTGCAGTACCTGGATGAAAAACGCCGTGCCGTATGAAAAAGTCCGA
AAATTGTTCATCGGCACCGATTTTCGTCCGTCAGAGCAATTTTAAACTGCCGAGTG
ATTCCAAGGTGCCGATTATCATGATTGGTCCGGGTACCGGTCTGGCACCGTTCCGT
GGCTTTCTGCAAGAACGCCTGGCTCTGGTGGAAAGCGGCGTTGAACTGGGTCCGT
CTGTGCTGTTCTTTGGTTGCCGTAACCGTCGCATGGATTTCATTTATGAAGAAGAA
CTGCAGCGTTTTGTTGAATCTGGCGCACTGGCTGAACTGAGTGTCGCGTTTTCCCG
CGAAGGTCCGACCAAAGAATACGTTCAGCATAAAATGATGGATAAGGCGAGTGACA
TTTGGAATATGATCTCCCAAGGCGCCTATCTGTATGTTTGCGGCGAACGCAAAGGGT
ATGGCTCGTGATGTTCATCGCAGCCTGCACACGATCGCGCAGGAACAAGGTAGTAT
GGATTCCACCAAAGCGGAAGGCTTTGTGAAAAATCTGCAAACGAGTGGTCGCTATC
TGCGTGATGTCTGGTGA

CNMT (Coclaurine-N-methyltransferase of Coptis. japonica; UniProtKB: Q948P7)

AACTGGAACTGGGCCTGGTGCCGTATGATGATATTAAACAACTGATCCGTCGCGAA ${\tt CTGGCACGTCGCCTGCAGTGGGGTTATAAACCGACCTACGAAGAACAGATTGCGG}$ AAATCCAAAACCTGACGCATTCACTGCGCCAAATGAAAATTGCCACCGAAGTGGAA ${\tt ACGCTGGATTCGCAGCTGTATGAAATTCCGATCGAATTTCTGAAAATCATGAACGG}$ TAGCAATCTGAAAGGCTCTTGCTGTTATTTCAAAGAAGATAGCACCACGCTGGACG AAGCGGAAATTGCCATGCTGGATCTGTACTGCGAACGCGCGCAGATCCAAGATGG ${\tt CCAGTCTGTGCTGGACCTGGGCTGTGGTCAAGGCGCACTGACCCTGCACGTTGCT}$ ${\sf CAGAAATATAAAAACTGCCGTGTTACCGCCGTCACGAATAGCGTGTCTCAGAAAGA}$ ATACATTGAAGAAGAAGCCGTCGCCGTAACCTGCTGAATGTCGAAGTGAAACTGG ${\tt CGGATATCACCACGCATGAAATGGCCGAAACCTATGACCGCATTCTGGTTATCGAA}$ ${\tt CTGTTTGAACACATGAAAAACTACGAACTGCTGCTGCTAAAATTTCAGAATGGAT}$ ${\tt CTCGAAAGATGGTCTGCTGTTTCTGGAACATATTTGTCACAAAACCTTCGCCTATCA}$ ${\tt CGATGATTATCCCGAGTGCTTCCTTTTTCCTGTACTTTCAGGATGACGTCTCAGTGG}$ AAACGTCTGGATGCAAATCTGGACGTCATTAAACCGATGTTTGAAACCCTGATGGG ${\sf CAACGAAGAAGAGCGGTGAAACTGATCAATTATTGGCGTGGTTTCTGCCTGTCCG}$ TTCAAAAAAAAATAA

COR (NADPH-dependent codeinone reductase 1.5 of Papaver somniferum; UniProtKB:

BQVRJ2)

ATGGAGTCAAATGGCGTGCCCATGATCACCTTGAGCAGCGGCATTCGCATGCCTGC ${\tt TCTGGGGATGGGTACTGTCGAAACGATGGAGAAAGGCACAGAACGCGAGAAACTC}$ GCCTTTCTGAAAGCGATTGAAGTGGGGTATCGTCACTTTGATACCGCCGCGGCGTA TCAGACGGAAGAATGTCTGGGTGAAGCCATTGCAGAAGCTCTGCAACTGGGCCTG ${\tt ATCAAATCTCGCGATGAACTGTTCATCACGTCCAAACTGTGGTGTGCTGATGCGCA}$ TGCGGATCTTGTTCTGCCGGCGTTGCAGAACTCGTTGCGCAATCTCAAACTGGATT ATCTGGATCTGTACCTCATCCACCATCCGGTTAGTCTGAAACCAGGCAAATTCGTG ${\sf AATGAAATCCCGAAAGACCACATTCTGCCGATGGACTACAAGAGCGTTTGGGCAGC}$ ${\tt TATGGAAGAGTGTCAAACGCTGGGCTTTACCCGTGCAATTGGCGTGTGCAACTTTT}$ ${\tt CCTGCAAGAAACTGCAGGAACTCATGGCCACCGCCAATTCGCCACCTGTGGTCAAT}$ ${\sf CAGGTGGAAATGAGTCCCACCTTGCATCAGAAGAACTTACGCGAATACTGCAAAGC}$ ${\tt GTACTAAAGCGGTTATGCATAGCAAGGTACTGCACCAAATTGCGGTCGCACGTGGT}$ AAATCGGTCGCCCAGGTATCTATGCGGTGGGTATATCAGCAGGGTGCCTCTTTAGTGGTGAAAAGCTTCAACGAGGCACGCATGAAAGAAAACCTGAAAATTTTCGACTGG GAACTTACTGCCGAAGATATGGAAAAGATTTCCGAGATCCCGCAATCACGTACCTC ATCGGCAGCATTCCTTTTAAGCCCGACAGGACCGTTTAAAACGGAAGAGGAATTTTGGGATGAGAAAGACTAA

MAO (Monoamine oxidase of Micrococcus luteus; UniProtKB: C5CB11)

ATGAGCAACCCGCATGTGGTGATTGTGGGTGCAGGTTTTGCAGGCCTGGTGGCGG
CGCGTGAACTGCAGATGGCCGGTGTGGATGTGGAAATTGTGGAAGCGCGTGATCG
TGTGGGCGGCCGTGCATGGACCGAAGAACGTATGGGTCGTCCGCTGGAACTGGGT
GCAACCTGGGTGCATTGGATGCAGCCGCATGTGTGGAGCGAAATTACCCGTTATGA
TCAGAGCATTTATCCGAGCCCGTTTTGCGATGATGCGTATTGGATTACCGGCGGCC
GTGTGGAACATGGTACCGAAGCAGATCTGGATGCAGCACTGGCACGTCCGATGGC
GAAAATTTTTGAAGATAGCCGTGAATTTTTCCCGTATCCGTATGAACCGCTGCATGT
GCTGGATGAAAGCAGCGGCAGCACCCCGGAACTGCGTGAACGTTTTCGTGCGGCG
GATCAGGGCAGCGTGCTGGATTGCCTGAAAGGCGGCGATCTTTACCCAGGAAGAAC
GTGATCTGTGCGATGCGTATTGGAGCGCGGCGTATATTTGGCGATCCGCATCAGGGC
AGCCCGCTGATGGCGAAACAGTGGGCGGCGCTGAGCGATCATCGTCTGAGCCTGG
TGGATGAACAGACCCTGCGTTTTAAACTGACCCATGGCATGCGTGGCCTGTATGAA
AACATTGCGGCGGATCTGCCTTGCCCGATTCGTCTGAACACCCCCGGTGACCGCAG
TGGATCATCGTAGCGATGGTGCAACCGTGACCCTGGCTACCGACCATTGAATTTAC

CCCGGGTCTGCCGAGCGGTATGCGTACCGTGATTGATCAGCGTTGGAACAGCACC
GGCTGCAAAATTTGGGTGAAAGTGAAAGGCCATCATAGCATTCTGGGCTATGCGCC
GACCCCGCATAAAGCGGCGGTGTTTCGTAGCGAATTTTTCATGGATGATGATACCA
CCATTTGCGTGGGCTTTGGCAGCCATCATGATGCGGTGGATCTGACCGATCCGCGT
GATGCGCAGGCGATTGTGGATCAGTGGCGTCCGGATCTGGAAGTGGTGGATTGCA
CCGGTCATGATTGGGTGGCAGATCGTTGGAGCGGTCAGGCATCGGCG
TAGCGGCCAGTTTACCAACGGCTGGCATCATTTTCGTAGCACCGATAGCCGTCTGC
GTTTTGCAGGTGCAGATTGGGCGCGTGGCTGGCGTGGTGGTGGATGTGC
AATTGAAACCGGTCTGAGCACCGCGCGTGATGTGCTGCTTATTTCGTGCGTAA

morB (Morphinone reductase of Psedomonus putida; UniProtKB: Q51990)

ATGCCGGATACCAGCTTTTCTAATCCGGGTCTGTTCACGCCGCTGCAGCTGGGTAG A TAGCGTTCCGGGCCGTCTGCAGCAAATCTATTACGGCCAGCGCGCAAGCGCTGGT ${\tt CCCGGGTATCTGGACGGATGCCCAGGAAGCAGGCTGGAAAGGTGTGGTTGAAGCT}$ GTGCATGCGAAAGGCGGTCGTATTGCGCTGCAGCTGTGGCATGTGGGCCGCGTTT ${\tt CCCACGAACTGGTTCAACCGGATGGTCAGCAACCGGTCGCCCCGTCAGCACTGAA}$ AGCTGAAGGCGCGGAATGCTTTGTTGAATTCGAAGATGGTACCGCCGGTCTGCAC ${\tt CCGACCTCGACGCCGCGTGCCCTGGAAACCGATGAAATTCCGGGCATCGTCGAAG}$ ${f ACTATCGTCAGGCCGCACAACGTGCAAAACGTGCAGGTTTTGATATGGTTGAAGTC}$ ${\tt CACGCAGCTAACGCCTGTCTGCCGAATCAGTTCCTGGCAACCGGTACGAACCGTC}$ GCACCGATCAATACGGCGGTAGTATTGAAAATCGTGCCCGCTTTCCGCTGGAAGTC $\operatorname{GTGGATGCCGTTGCCGAAGTGTTTGGTCCGGAACGTGTGGGTATCCGCCTGACCC$ ${\tt CGTTTCTGGAACTGTTCGGCCTGACGGATGACGAACCGGAAGCAATGGCTTTTTAT}$ ${
m CTGGCTGGCGAACTGGATCGTCGCGGTCTGGCATACCTGCATTTTAACGAACCGGA}$ ${\tt TTGGATTGGCGGTGACATCACCTATCCGGAAGGTTTTCGTGAACAGATGCGTCAAC}$ GCTTCAAAGGCGGTCTGATTTATTGCGGCAACTATGATGCGGGTCGTGCCCAGGCA ${f TCTACCTTTTATGGCGGTGCGGAAGTTGGTTATACGGACTACCCGTTCCTGGATAAT$ GGCCACGACCGTCTGGGTTAA

PsCPR (NADPH--cytochrome P450 reductase of Papaver somuniferum; UniProtKB: 024424)

ATGGTCGACCTCGAGTTAATTAACGTACATATGGGCTCCAACAATCTGGCCAACTCT

 ${\bf ATTGAATCAATGCTGGGTATCAGCATCGGCTCTGAATACATTTCCGATCCGATCTTT}$ ATCATGGTGACCACCGTGGCTAGCATGCTGATTGGCTTTTGGCTTCTTTGCGTGCATGAAGTCCAGTAGCTCCCAGAGTAAACCGATTGAAACCTATAAGCCTATCATTGACA AAGAAGAAGAGGAAATCGAAGTCGATCCGGGTAAAATTAAACTGACTATCTTCTTCGGCACACAAACCGGTACTGCCGAGGGGTTTGCGAAAGCTTTGGCGGAGGAGATCAAAGCCAAATACAAGAAAGCAGTCGTAAAAGTCGTGGATCTGGATGATTATGCCGCT ${\sf GAGGATGATCAGTACGAAGAGAGCTGAAAAAAGAATCTCTCGTGTTCTTCATGGT}$ AGCCACTTATGGTGATGGTGAACCGACCGATAACGCCGCGCGCTTTTACAAATGGTTTACCCAAGAACATGAACGTGGTGAATGGCTGCAACAGCTGACTTATGGGGTGTTTGGTTTAGGCAATCGTCAGTATGAGCACTTTAACAAAATTGCGGTAGACGTAGATGA ${\sf ACAGCTGGGCAAACAGGGTGCGAAACGCATCGTTCAGGTCGGCCTCGGGGATGAC}$ GATCAGTGCATTGAGGATGATTTTACGGCATGGCGTGAATTATTGTGGACCGAACT GGACCAGCTGTTGAAAGACGAAGATGCGGCACCGTCGGTTGCAACGCCGTACATC ${\tt GCCACAGTGCCTGAATATCGCGTTGTGATTCACGAAACGACCGTGGCGGCCTTGG}$ ${\sf ACGATAAACACATCAATACGGCGAATGGCGATGTTGCATTTGATATCCTGCATCCAT}$ ${\tt GCCGGACCATTGTGGCGCAACAGCGTGAACTGCACAAACCGAAAAGCGACCGTTC}$ ACCATGTAGGTGTATGCTGAGAATTGCGATGAAACCGTCGAGGAAGCGGGAAA ACTTCTGGGTCAGCCCCTTGACCTCCTGTTTTCAATCCATACGGACAAGGAGGATG GCAGCCCACAAGGAAGCTCCTTGCCTCCGCCGTTCCCGGGGGCCGTGTACGCTGCG ${\tt CTCTGCACTGGCTCGCTATGCCGACCTGTTAAACCCGCCACGCAAGGCCAGCTTAA}$ ${\tt TCGCCCTGTCTGCGCATGCTAGTGTGCCGAGCGAAGCGGAACGCTTACGCTTCCT}$ GAGTAGCCCGTTAGGCAAGAACGAATATTCGAAATGGGTGGTCGGATCACAACGCT $\operatorname{CGCTTCTGGAGATTATGGCCGAATTTCCGTCAGCAAAACCGCCCTTGGGTGTTTC$ ${\tt TTCGCAGCGGTAGCGCGCGTCTGCCACCGCGCTATTACAGCATTTCGTCCAGTCC}$ ${\tt CAAATTTGCCCCGAGCCGTATCCACGTGACGTGTGCACTGGTCTATGGCCAGAGCC}$ ${\tt CTACAGGACGTGTTCATCGCGGGGTGTGTTCGACCTGGATGAAACATGCAGTTCCC}$ ${\tt CCCGTCGACACCAATCATTATGGTTGGACCTGGCACCGGTCTGGCTCCCTTTCGTG}$ GCTTCCTTCAGGAACGCATGGCACTCAAAGAGAATGGCGCGCAACTTGGTCCAGC AAGGCGAAAAGAAGAATACGTTCAGCATAAAATGATGGAGAAAGCGACCGATGTTTGGAACGTGATTAGCGGCGATGGCTACCTCTACGTCTGTGGGGATGCGAAAGGCAT GGCCCGTGATGTACATCGTACCCTGCACACGATTGCCCAAGAACAGGGTCCGATGG AATCCTCAGCAGCAGAGGCGGCCGTGAAGAAATTACAAGTTGAAGAGCGGTATTT

RnCPR (NADPH--cytochrome P450 reductase of Rattus novergicus; UniProtKB: P00388)

ATGGGCGATAGCCACGAAGATACCTCAGCGACGATGCCGGAAGCGGTTGCCGAAG AAGTCTCACTGTTCAGCACGACGGACATGGTCCTGTTTAGCCTGATTGTGGGTGTT ${
m CTGACCTACTGGTTCATCTTCCGTAAGAAAAAAGAAGAAATCCCGGAATTCTCTAA}$ AATCCAGACCACGGCGCCGCCGGTCAAAGAAAGCTCTTTCGTGGAAAAAATGAAG AAAACCGGCCGCAACATTATCGTGTTTTACGGTAGCCAGACCGGCACGGCAGAAG AATTCGCTAATCGTCTGAGCAAAGATGCCCATCGTTATGGTATGCGCGGCATGTCT GCTGACCCGGAAGAATACGACCTGGCGGATCTGAGTTCCCTGCCGGAAATTGATAA AAGCCTGGTGGTGTTTTGCATGGCTACCTATGGCGAAGGTGACCCGACGGATAACG $\operatorname{CGCAAGACTTCTACGATTGGCTGCAGGAAACCGACGTGGATCTGACGGGTGTGAA$ ATTTGCCGTTTTCGGCCTGGGTAACAAAACCTATGAACATTTCAACGCAATGGGTA ${\tt CCTGGGTGATGACGATGGCAATCTGGAAGAAGATTTTATCACCTGGCGCGAACAAT}$ ${\tt TCTGGCCGGCCGTTTGTGAATTTTTCGGTGTCGAAGCAACGGGCGAAGAATCATCG}$ $\operatorname{ATTCGCCAGTATGAACTGGTCGTGCACGAAGACATGGATGTCGCGAAAGTGTATAC$ CGGTGAAATGGGCCGTCTGAAAAGCTACGAAAAACCAAAAACCGCCGTTTGATGCTA AAAATCCGTTCCTGGCGGCCGTTACCGCGAACCGTAAACTGAATCAGGGTACGGAA CGCCATCTGATGCACCTGGAACTGGACATTAGCGATTCTAAAATCCGTTATGAAAG TGGCGATCATGTCGCGGTGTACCCGGCCAACGACTCCGCACTGGTCAATCAGATTG GTGAAATCCTGGGCGCCGACCTGGATGTTATTATGTCACTGAACAATCTGGATGAA GAATCGAACAAAAAACACCCGTTTCCGTGCCCGACCACGTATCGCACCGCACTGAC GTATTACCTGGATATCACCAACCCGCCGCGTACGAATGTGCTGTATGAACTGGCGC AATACGCCAGTGAACCGTCCGAACAGGAACATCTGCACAAAATGGCGAGCTCTAGT ${\tt GGCGAGGGTAAAGAACTGTATCTGTCATGGGTTGTCGAAGCTCGTCGCCATATTCT}$ ${
m GGCGATCCTGCAAGATTACCCGTCGCTGCGTCCGCCGATTGACCACCTGTGCGAAC}$ TGCTGCCGCGTCTGCAGGCACGCTATTACTCAATTGCATCCTCATCGAAAGTGCAT ${\tt CCGAATTCGGTTCACATCTGTGCAGTTGCTGTCGAATATGAAGCCAAAAGTGGTCG}$ TGTCAACAAAGGCGTGGCAACCTCCTGGCTGCGCGCTAAAGAACCGGCGGGTGAA ${\tt AATGGCGGTCGTGCCTGGTTCCGATGTTTGTCCGTAAAAGCCAGTTTCGCCTGCC}$ $\operatorname{GTTCAAATCTACCACGCCGGTTATCATGGTCGGCCCGGGTACCGGCATTGCTCCGT$ TTATGGGCTTCATCCAAGAACGTGCGTGGCTGCGCGAACAGGGTAAAGAAGTGGG CGAAACGCTGCTGTATTACGGTTGCCGTCGCAGTGACGAAGATTATCTGTACCGTG AAGAACTGGCCGCTTTCATAAAGATGGCGCACTGACCCAGCTGAACGTTGCTTTC

SalAT (Salutaridinol 7-O acetyltransferase of Papaver somniferum L. cv. Ikkanshu)

ATGGCGACCATGTATAGCGCGGCGGTGGAAGTGATCAGCAAAGAAACCATTAAACCGACCACCCGACCCGAGCCAGCTGAAAAATTTTAACCTGAGCCTGTTAGATCAGT GCTTTCCGCTGTATTACTATGTACCGATTATCCTGTTTTATCCGGCCACGGCGGCGA ATTCTACGGGCTCTAGCAACCATCACGACGATCTGGATCTGCTGAAAAGCTCTCTG GTGGATTGCCACGATCAGGGGATTAATTTTTATAAAGTTAAAATCCGTGGCAAAATG TGTGATTTCATGAGCCAGCCGGATGTGCCGCTGAGCCAGCTGTTACCAAGCGAAGTTGTGAGCGCGTCTGTTCCGAAAGAAGCGCTGGTGATTGTGCAGGTTAATATGTTTG ${\tt ATTGCGGAGGCACCGCGATTTGCAGCTCTGTGAGCCATAAAATAGCCGATGCGGCG}$ ACCATGAGCACCTTTATTCATAGCTGGGCGAGCACCACCAAAACCAGCCGTTCTGG ${\tt CGGCGCAACCGCGAGCGTTACCGATCAGAAACTGATTCCGAGCTTTGATAGCGCGT}$ ${\tt CTCTGTTTCCACCGAGCGAACGTCTGACCAGCCCGTCTGGGATGAGCGAGATTCC}$ GTTTAGCTCTACCCCTGAAGATACCGAGGATGATAAAACCGTGAGCAAACGCTTCG TGTTTGATTTTGCGAAAATTACGAGCGTGCGTGAAAAACTGCAGGTTCTCATGCAG ${\tt GATAACTATAAAAGCCGCCGTCCAACCCGTGTGGAAGTTGTGACCAGCCTGATTTG}$ GAAAAGCGTGATGAAAAGCACCCCGGCGGGTTTTCTGCCGGTTGTGGATCATGCG $\tt GTGAACCTGCGTAAGAAATGGACCCGCCGCTGCAGGATGTGAGCTTCGGTAACC$ TGAGCGTGACCGTGAGCGCGTTTCTGCCGGCGACAACCACCACGACTACCAACGCTGTGAACAGACCATTAACAGCACCAGCTCTGAAAGCCAAGTGGTGCTGCATGAAC TGCACGATTTTATCGCTCAGATGCGCAGCGAAATTGATAAAGTGAAAGGTGATAAA GGCAGCCTGGAGAAAGTGATTCAGAACTTTGCGAGCGGCCATGATGCGAGCATTA ${f AGAAAATTAACGATGTGGAAGTGATTAACTTTTGGATCTCTAGCTGGTGTCGTATG}$ GGCCTGTATGAAATCGACTTTGGCTGGGGTAAACCGATTTGGGTGACCGTGGATCC GAACATTAAACCGAATAAAAATTGCTTCTTTATGAACGATACCAAATGCGGCGAAG GCATCGAAGTCTGGGCGAGCTTTCTGGAAGATGACATGGCGAAATTTGAACTGCAC CTGAGCGAAATTCTGGAACTGATTTAA

SalR (Saluteridine reductase of Papaver somniferum L. cv. Ikkanshu)
ATGCCGGAAACCTGCCCAAACACCGTGACCAAACGTCGCTGCGCGGTAGTGACCG

GTGGCAACAAAGGTATTGGCTTTGAAATCTGCAAACAGCTGAGCTCTAATGGCATT ATGGTTGTGCTGACTTGCCGTGATGTGACCAAAGGCCTTGGAAGCGGTGGAGAAACTGAAAAATAGCAACCATGAAAATGTGGTCTTTCATCAGCTGGATGTGACCGATCCG GTGACCACCATGTCTAGCCTGGCGGATTTTATCAAAACCCATTTTGGCAAATTAGAT ATCCTGGTCAATAATGCGGGCGTGGCGGGCTTTAGCGTGGATGCCGATCGTTTTAA AGCGATGATCAGCGATATTGGCGAAGACAGCGAAGAACTGGTGAAAATCTATGAAA AACCGGAAGCCCAGGAACTGATGACCGAAACCTATGAACTGGCGGAGGAATGCCTGACCATTAACTATTATGGTGTGAAATCCGTGACAGAAGTACTGATTCCGCTGTTACA GCTGAGCGATAGCCCGCGTATTGTGAACGTGAGCTCTAGCACCGGCAGCCTGAAAT ATGTGAGCAACGAAACCGCGCTGGAAATTCTGGGCGATGCGGACGCGCTGACCGAAGAGCGTATCGATATGGTTGTGAATATGCTGTTAAAGGATTTCAAAGAAAACCTGAT ${\sf CGAAACCAATCGTTGGCCGAGCTTTGGTGCAGCGTATACCACCAGCAAAGCGTGTC}$ TGAACGCCTATACCCGTGTGTTTGCGAAAAAGATTCCGAAATTTCAGGTTAATTGC $\operatorname{GTGTGTCCGGGTCTGGTGAAAACCGAAATGAATTATGGCATTGGGAATTATACCGC$ $\operatorname{CGATGAAGGTGCGAAACATGTGGTTCGTATTGCGCTGTTTCCGGATGATGGCCCGA$ GCGGCTTTTTCTATGATTGTAGCGAACTGTCTGCGTTTTAA

SalS (Salutaridine synthetase of Papaver somniferum L. cv. Ikkanshu)

ATGGCGCCGATCAACATTGAAGGCAACGATTTTTGGATGATTGCGTGCACCGTGATTATTGTGTTTGCGCTGGTGAAATTTATGTTCTCGAAAATTAGCTTTTATCAGAGCGC ${\tt GAATACCACCGAATGGCCGGCCGGGCCCGAAAACCCTGCCGATCATTGGCAACCTG}$ ${\tt CATCAGCTGGGTGGCGTGCCGCTGCAGGTGGCACTGGCGAATCTGGCGAAAG}$ TGTATGGCGGTGCGTTTACCATTTGGATTGGTAGCTGGGTGCCGATGATTGTGATC AGCGATATTGATAACGCGCGTGAAGTGCTGGTTAACAAAAGCGCGGATTATAGCGC GCGTGATGTGCCGGACATCCTGAAAATTATTACCGCGAATGGCAAAAACATTGCGG ATTGCGATAGCGGCCCGTTTTGGCATAACCTGAAAAAAGGCCTGCAAAGCTGTATT AACCCGAGCAACGTGATGAGCCTGAGCCGTCTGCAGGAAAAAGATATGCAGAACC TGATTAAAAGCATGCAGGAACGTGCGAGCCAGCATAACGGCATCATTAAACCGCTG GATCATGCGAAAGAAGCGAGCATGCGTCTGCTGAGCCGTGTGATTTTTGGCCACGA $\operatorname{TTTTAGCAACGAAGATCTGGTGATTGGCGTGAAAGATGCGCTGGATGAAATGGTGC$ GCATTAGCGGCCTGGCGAGCCTGGCGGATGCCTTTAAAATTGCGAAATATCTGCCG TCTCAGCGTAAAAACATTCGCGATATGTATGCCACGCGTGATCGTGTGTATAACCTG ${\tt ATTCAGCCGCACATTGTGCCGAACCTGCCGGAAAACAGCTTTCTGCATTTCCTGAC}$ ${\tt CAGCCAGGATTATAGCGATGAGATTATTTATAGCATGGTGCTGGAAATTTTTTGGTCT}$ GGGCGTGGATAGCACCGCAGCGACCGCGGTGTGGGCGCTGAGCTTTCTGGTGGGC

GAACAGGAAATTCAGGAAAAACTGTATCGTGAAATTAACAACCGTACCGGTGGCCA
GCGTCCGGTGAAAGTTGTGGATCTGAAAGAACTGCCGTATCTGCAGGCGGTGATG
AAAGAAACCCTGCGTATGAAACCGATTGCGCCGTTAGCGGTGCCGCATGTGGCGG
CGAAAGATACGACCTTTAAAGGCCGTCGCATTGTGAAAGGGACCAAAGTGATGGTC
AACCTGTATGCGATCCATCATGATCCGAACGTGTTCCCAGCGCCGTACAAATTTATG
CCGGAACGTTTTCTGAAAGATGTGAACTCTGATGGCCGTTTTGGCGATATTAACAC
CATGGAAAGCAGCCTGATTCCGTTTGGCGCGGGCATCTGCGGCGGTGTT
GAACTGGCGAAACAGATGGTTGCGTTCGCACTGGCGAGCATGTGAACGAATTTA
AATGGGATTGCGTTAGCGAAGGCAAACTGCCGGATCTGAGCGAAGCGATCAGCTTT
ATTCTGTATATGAAAAAACCCGCTGGAAGCGAAAATTACCCCCGCGCACCAAACCGTT
TCGTCAGTAA

STORR (Bifunctional protein STORR of Papaver somniferum; UniProtKB: P0DKI7)

ATGGAACTGCAATACATCTCCTACTTTCAACCGACCTCGTCTGTGGTGGCACTGCTGCTGGCTCTGGTGTCTATCCTGTCTAGCGTCGTGGTTCTGCGTAAAACCTTTCTGA ACAATTATAGCTCTAGTCCGGCATCCTCAACCAAAACGGCTGTGCTGTCCCATCAG ${\tt CGCCAGCAATCATGCGCCCTGCCGATTTCGGGTCTGCTGCATATCTTCATGAATAA}$ AAACGGCCTGATCCACGTTACCCTGGGTAATATGGCAGATAAATACGGCCCGATTT ${\tt TTAGCTTCCCGACCGGTTCACACCGTACGCTGGTCGAGCTGGGAAATGGT}$ ${\tt GAAAGAATGTTTTACCGGCAACAATGACACGGCGTTCTCTAACCGCCCGATTCCGC}$ GTGTTCCGTATGGCAAATACTGGCGTGAACTGCGCAAAGTCTGTGTGCATAATCTG ${\tt CTGAGCAACCAGCAACTGCTGAAATTTCGTCACCTGATTATCTCGCAGGTGGACAC}$ CAGCTTCAATAAACTGTATGAACTGTGCAAAAACTCTGAAGATAATCATGGTAACTA GAACTGAGTTTAATGTGATTGGCCGCATCGTTTGTGGTTTCCAGTCTGGCCCGAA ${\tt AACCGGTGCCCCGAGTCGTGTGGAACAATTCAAAGAAGCAATCAACGAAGCTTCCT}$ ${\tt ATTTCATGTCTACGAGTCCGGTCTCAGACAACGTGCCGATGCTGGGTTGGATTGAT}$ ${\tt CAGCTGACCGGCCTGACGCGCAATATGAAACATTGCGGTAAAAAACTGGACCTGGT}$ TGTCGAATCGATTATCAACGATCACCGTCAGAAACGTCGCTTTAGCCGCACCAAAG ATGGAACAGCCGCAACTGCCGGGCAACAATAACCCGAGCCAGATTCCGATCAAATCTATTGTGCTGGACATGATCGGCGGTGGCACCGATACCACGAAACTGACCACGATTT GGACGCTGTCCTGCTGCATAACCCGCATGTCCTGGACAAAGCGAAACAGGA AGTGGATGCCCACTTTCGTACCAAACGTCGCTCAACGAATGACGCAGCTGCGGCC

GTGGTTGATTCGATGACATTCGCAACCTGGTGTACATCCAAGCAATCATCAAAGA ATCAATGCGTCTGTATCCGGCTAGCCCGGTTGTGGAACGTCTGAGCGGTGAAGATTGCGTTGTCGGTGGCTTTCACGTTCCGGCAGGCACCCGTCTGTGGGCTAATGTCTG ${\tt GAAAATGCAGCGCGATCCGAAAGTGTGGGATGACCCGCTGGTTTTTCGTCCGGAT}$ ${\tt CGCTTCCTGTCTGACGAACAGAAAATGGTTGATGTCCGTGGTCAAAACTATGAACT}$ $\operatorname{GCTGCCGTTTGGTGCCGGTCGTCGCGTTTGCCCGGGCGTCTCCTTCTCACTGGATC$ TGATGCAGCTGGTGCTGACCCGCCTGATTCTGGAATTTGAAATGAAATCGCCGAGC GGTAAAGTGGACATGACCGCCACGCCGGGCCTGATGAGCTACAAAGTTATTCCGCT GGATATCCTGCTGACGCATCGTCGCATCAAACCGTGTGTTCAGTCCGCAGCTTCAG AACGTGATATGGAATCCTCAGGTGTGCCGGTTATTACCCTGGGTTCCGGCAAAGTC ATGCCGGTGCTGGGTATGGGCACGTTTGAAAAAGTGGGTAAAGGCTCAGAACGTG AACGCCTGGCGATTCTGAAAGCCATCGAAGTTGGCTATCGTTACTTCGATACCGCGGCCGCGTATGAAACGGAAGAAGTCCTGGGTGAAGCCATCGCAGAAGCTCTGCAGC ${\sf TGGGCCTGGTGAAAAGCCGCGATGAACTGTTTATTTCGAGCATGCTGTGGTGCACC}$ GATGCCCATGCGGACCGTGTTCTGCTGGCACTGCAAAATTCGCTGCGCAACCTGAA ACTGGAATATGTCGATCTGTACATGCTGCCGTTCCCGGCCAGCCTGAAACCGGGTA AAATTACCATGGATATCCCGGAAGAAGACATTTGCCGTATGGATTATCGCTCTGTGT GGGCTGCGATGGAAGAATGTCAGAATCTGGGCTTTACCAAAAGTATCGGTGTTTCG AACTTCAGCTGCAAAAAACTGCAGGAACTGATGGCAACGGCTAATATTCCGCCGGC GGTTAACCAAGTCGAAATGTCGCCGGCCTTTCAGCAGAAAAAACTGCGCGAATACT ${\tt GTAACGCAAATAACATTCTGGTCTCTGCTATCAGTGTGCTGGGTAGCAATGGCACC}$ ${\tt CCGTGGGGCAGTAACGCGGTTCTGGGTTCCGAAGTCCTGAAGAAAATTGCGATGG}$ ${\tt CCAAGGGTAAATCTGTGGCCCAAGTTAGTATGCGTTGGGTGTATGAACAAGGCGCA}$ ${\tt TCCCTGGTGGTTAAATCTTTTAGTGAAGAACGTCTGCGCGAAAATCTGAACATCTT}$ CGACTGGGAACTGACCAAAGAAGATCATGAAAAAATTGGCGAAATCCCGCAGTGT $\operatorname{CGCATTCTGAGCGCGTACTTTCTGGTTAGCCCGAATGGCCCGTTCAAATCTCAAGA$ AGAACTGTGGGACGACGAAGCCTGA

T6ODM (Thebaine 6-O-demethylase of Papaver somniferum; UniProtKB: D4N500)

ATGGAAAAAGCGAAACTGATGAAACTGGGCAATGGCATGGAAATCCCGTCTGTGC
AAGAACTGGCGAAACTGACCCTGGCTGAAATCCCGTCACGTTATGTTTGCGCAAAC
GAAAATCTGCTGCTGCCGATGGGTGCTTCGGTCATTAACGATCATGAAACCATCCC
GGTGATTGACATCGAAAATCTGCTGAGCCCGGAACCGATTATCGGCAAACTGGAAC
TGGATCGCCTGCATTTTGCGTGTAAAGAATGGGGCTTTTTCCAGGTGGTTAACCAC
GGCGTCGATGCCAGCCTGGTGGACAGTGTTAAATCCGAAATTCAGGGCTTTTTCAA

CCTGTCTATGGATGAAAAAACCAAATACGAACAGGAAGATGGCGACGTGGAAGGC
TTTGGTCAGGGCTTCATTGAAAGTGAAGACCAAACCCTGGATTGGGCAGACATCTT
TATGATGTTCACGCTGCCGCTGCATCTGCGTAAACCGCACCTGTTTAGCAAACTGC
CGGTTCCGCTGCGCGAAACCATCGAAAGTTACAGCTCTGAAATGAAAAAACTGAGC
ATGGTGCTGTTTAACAAAATGGAAAAAGCGCTGCAAGTCCAAGCGGCCGAAATTAA
AGGCATGTCTGAAGTGTTCATCGATGGCACGCAGGCAATGCGTATGAACTATTACC
CGCCGTGCCCGCAACCGAATCTGGCTATTGGTCTGACCTCACATTCGGACTTTGGC
GGTCTGACGATTCTGCTGCAAATCAACGAAGTGGAAGGTCTGCAAATTAAACGCGA
AGGCACCTGGATCAGTGTTAAACCGCTGCCGAACGCGTTCGTCGTGAATGTCGGT
GATATTCTGGAAATCATGACGAATGGCATTTATCATTCCGTGGACCACCGTGCGGTT
GTCAACAGCACCAATGAACGCCTGTCTATCGCCACGTTTCACGATCCGTCACTGGA
ATCGGTTATTGGCCCGATCAGTTCCCTGATTACCCCGGAAACGCCGGCCCTGTTCA
AAAGCGGTTCTACCTACGGCGATCTGGTTGAAGAATGTAAAACCCGTAAACTGGAT
GGCAAATCGTTCCTGGATAGTATGCGTATTTAA

TYR (Tyrosinase of Ralstonia solanacearum; UniProtKB: Q8Y2J8)

ATGGTCGTTCGCACGGTTCTGAAAGCAATCGCAGGCACCTCGGTCGCCACGG ${\tt TCTTCGCAGGCAAACTGACGGGTCTGTCGGCAGTCGCAGCAGATGCAGCTCCGCT}$ GCGTGTGCGTCGCATCTGCATGGTATGAAAATGGATGACCCGGATCTGTCAGCCT ATCGCGAATTTGTGGGTATTATGAAAGGCAAAGATCAGACGCAAGCGCTGTCGTGG ${
m CTGGGTTTCGCCAACCAGCACGGCACCCTGAATGGCGGTTATAAATACTGCCGCA}$ TGGTGATTGGTATTTTCTGCCGTGGCACCGTGGCTTCGTCCTGATGTACGAACGTG ${\tt CAGTGGCAGCACTGACCGGTTATAAAACGTTTGCTATGCCGTACTGGAACTGGACG}$ GAAGATCGTCTGCTGCCGGAAGCATTCACCGCTAAAACGTATAACGGCAAAACCAA TCCGCTGTACGTGCCGAACCGCAATGAACTGACCGGTCCGTATGCACTGACGGATG $\operatorname{CTATTGTGGGCCAAAAAGAAGTTATGGACAAAATCTACGCCGAAACGAACTTTGAA$ GTTTTCGGCACCAGCCGTTCTGTCGATCGTAGCGTGCGTCCGCCGCTGGTTCAGAA TTCTCTGGACCCGAAATGGGTCCCGATGGGCGGTGGCAACCAAGGTATTCTGGAA $\operatorname{CGTACCCGGCATAATACGGTTCACAACAATATCGGCGCGTTTATGCCGACCGCAGC$ ${\tt TTCTCCGCGCGATCCGGTGTTCATGATGCATCACGGTAATATTGACCGTGTTTGGG}$ CGACGTGGAACGCCCTGGGTCGCAAAAATAGCACCGATCCGCTGTGGCTGGGCAT ${\tt GAAATTTCCGAACAATTATATCGATCCGCAGGGTCGTTATTACACGCAAGGCGTTTC}$ ${\sf AGACCTGCTGTCGACCGAAGCGCTGGGCTATCGTTACGATGTCATGCCGCGTGCG}$ GACAACAAGTGGTTAACAATGCACGCGCTGAACATCTGCTGGCACTGTTTAAAAC ${\tt CGGTGATAGTGTCAAACTGGCTGACCATATTCGTCTGCGCTCCGTGCTGAAAGGCG}$ AACACCCGGTTGCAACCGCAGTCGAACCGCTGAATAGTGCAGTTCAGTTCGAAGC

TGGTACCGTCACGGGTGCGCTGGGTGCAGATGTGGGTACCGGCAGCACCACGGAA
GTCGTGGCACTGATCAAAAACATCCGTATCCCGTACAACGTTATCTCTATCCGCGTT
TTTGTCAACCTGCCGAACGCGAATCTGGATGTGCCGGAAACCGACCCGCATTTTGT
TACGAGTCTGTCCTTCCTGACCCATGCGGCCGGTCACGATCATCACGCACTGCCGA
GTACGATGGTGAACCTGACCGACACGCTGAAAGCGCTGAATATTCGCGATGACAAC
TTCTCCATCAATCTGGTGGCCGTTCCGCAGCCGGGCGTGGCTGTTGAAAGCAGTG
GCGGTGTGACCCCGGAATCCATTGAAGTTGCGGTTATCTGA

Supplementary Figure 8: E. coli codon optimized genes used in this study

SalS (DDBJ accession number: LC100140)

ATGGCTCCGATTAATATAGAGGGGAATGATTTTTTGGATGATAGCATGCACTGTCATA ATAGTATTTGCATTGGTGAAGTTCATGTTTTTCCAAAATATCTTTTTATCAATCTGCAAATACAACGGAATGGCCAGCAGGTCCAAAAACATTACCCATAATTGGAAATCTTCATCAGTTGGGAGGAGGTGTGCCCTTACAGGTTGCTTTGGCAAACTTAGCTAAAGTTTATGGAGGTGCATTTACAATTTGGATTGGAAGCTGGGTTCCAATGATCGTCATAAGCGA TATCGATAACGCTCGGGAAGTTCTTGTTAATAAATCTGCTGATTATTCCGCTAGAGA TGTACCTGATATTCTTAAAATCATCACAGCAAATGGGAAGAATATTGCTGATTGTGA ${f TTCTGGTCCATTTTGGCATAATTTAAAGAAAGGTCTTCAAAGTTGTATAAATCCATC}$ AAATGTTATGTCTCTATCTCGTTTACAGGAAAAAGACATGCAAAATCTCATCAAATC CATGCAAGAAAGAGCGTCACAGCATAATGGAATTATAAAACCTCTTGATCATGCCA AAGAAGCGTCTATGCGATTGCTGAGTAGAGTTATATTTTGGTCACGACTTTTCAAATGAGGATCTCGTTATTGGTGTGAAAGACGCCCTCGATGAGATGGTACGCATAAGTGGG TTGGCAAGTTTAGCTGATGCTTTTAAAATTGCTAAATATTTACCAAGCCAGAGAAAA AATATTCGGGATATGTACGCCACAAGAGACAGAGTATATAATTTGATTCAACCACATATCGTCCCTAATCTTCCTGAAAATTCTTTCTTACATCTTACATCTCAAGATTACA ${\tt GTGATGAAATTATTTACTCAATGGTACTTGAAATTTTTTGGTTTGGGAGTAGATAGTA}$ ${
m CTGCAGCAACGGCAGTTTGGGCACTCTCCTTTTTAGTCGGCGAGCAGGAAATTCAA}$ GAAAAACTTTACCGCGAAATCAACAACCGGACGGGTGGGCAAAGACCAGTGAAAG ${\bf ATGAAACCCATCGCACCACTAGCGGTCCCTCATGTAGCAGCAAAAGATACTACATT}$ ${\tt CAAGGGGGGGAGAATCGTTAAAGGTACAAAAGTAATGGTGAATCTGTACGCTATCC}$ ATCACGACCCTAACGTTTTCCCTGCACCGTATAAATTCATGCCAGAGAGATTCTTAAAGGATGTTAATAGTGATGGACGTTTTGGTGATATCAACACAATGGAAAGTTCGTTG A TACCATTTGGTGCTGGTATGAGAATTTGTGGAGGTGTAGAATTAGCCAAGCAGATGGTAGCTTTTGCTCTTGCAAGTATGGTCAACGAATTCAAATGGGATTGTGTTTCCG AGGGGAAATTGCCTGATCTTAGTGAAGCTATTAGCTTCATTCTCTACATGAAAAACCCACTTGAAGCCAAAATTACTCCTCGTACAAAACCTTTTCGACAGTAG

SalR (DDBJ accession number: LC100141)

ATGCCTGAAACATGTCCAAATACTGTTACAAAGAGGAGGTGTGCAGTTGTTACTGG
CGGAAACAAGGGTATTGGATTTGAGATTTGTAAGCAATTATCTTCTAATGGAATCAT
GGTTGTTTTAACTTGTAGAGATGTAACTAAAGGTCTTGAAGCTGTTGAAAAACTCA
AAAATTCTAATCATGAGAATGTGGTTTTTCATCAACTTGATGTTACGGATCCAGTTA
CTACTATGTCTTCTTTAGCGGATTTCATTAAAACACACTTCGGAAAGCTTGATATCT
TGGTAAACAATGCTGGGGTTTGCAGGTTTTTCAGTTGATGCTGATCGTTTCAAGGCA

SalAT (DDBJ accession number: LC100142)

ATGGCAACAATGTATAGTGCTGCTGTTGAAGTGATCTCTAAGGAAACCATTAAACC ${\sf CACAACTCCAACCCCATCTCAACTTAAAAACTTCAATCTGTCACTTCTCGATCAATG}$ TTTTCCTTTATATTATTATGTTCCAATCATTCTTTTCTACCCAGCCACCGCCGCTAAT ${f AGTACCGGTAGCAGTAACCATCATGATGATCTTGACTTGCTTAAGAGTTCTCTTTCC}$ AAAACACTAGTTCACTTTTATCCAATGGCTGGTAGGATGATAGACAATATTCTGGTC GACTGTCATGACCAAGGGATTAACTTTTACAAAGTTAAAATTAGAGGTAAAATGTGT ${\tt TTCCGCGAGTGTCCCTAAGGAAGCACTGGTGATCGTTCAAGTGAACATGTTTGACT}$ ${\tt GTGGTGGAACAGCCATTTGCTCGAGTGTATCACATAAGATTGCCGATGCAGCTACA}$ ATGAGTACGTTCATTCATAGTTGGGCAAGCACCACTAAAACATCTCGTAGTGGGGG ${\sf TGCAACTGCTTCCGTTACAGATCAGAAACTGATTCCTTCTTTCGACTCGGCATCTCT}$ ATTCCCACCTAGTGAACGATTGACATCTCCATCAGGGATGTCAGAGATACCATTTTC ${\sf CAGTACCCCAGAGGATACAGAAGATGATAAAACTGTCAGCAAGAGATTTGTGTTCG}$ ATTTTGCAAAGATAACATCTGTACGTGAAAAGTTGCAAGTATTGATGCAGGATAACT ${\sf ACAAAAGCCGCAGGCCAACAAGGGTTGAGGTGGTTACTTCTCTAATATGGAAGTCC}$ ${\tt GTGATGAAATCCACTCCAGCCGGTTTTTTACCAGTGGTAGATCATGCCGTGAACCT}$ TGTTTCGGCGTTCTTACCAGCAACAACAACGACAACAACAACGGTCAACAAGA CAATCAATAGTACGAGTAGTGAATCGCAAGTGGTACTTCATGAGTTACATGATTTTA TAGCTCAGATGAGGAGTGAAATAGATAAGGTCAAGGGTGATAAAGGTAGCTTGGAG AAAGTCATTCAAAATTTTGCTTCTGGTCATGATGCTTCAATAAAGAAAATCAATGATGTTGAAGTGATAAACTTTTGGATAAGTAGCTGGTGCAGGATGGGGGTTATACGAGAT TGATTTTGGTTGGGGAAAGCCAATTTGGGTAACAGTTGATCCAAATATCAAGCCGA

 $\label{eq:condition} A CAAGAATTGTTTTTCATGAATGATACGAAATGTGGTGAAGGAATAGAAGTTTGG\\ GCGAGCTTTCTTGAGGATGATATGGCTAAGTTCGAGCTTCACCTAAGTGAAATCCT\\ TGAATTGATTTGA$

Supplementary Figure 9: Original sequences of SalS, SalR and SalAT from Papaver somniferum L. cv. Ikkanshu

Supplementary Tables

Supplementary Table 1: CPRs activity toward bovine cytochrome c

	Reductase activity toward Cyt c
	$({ m OD}_{550} \ { m x} \ 10^{-2} \ / { m min})$
ATR2	8.2 ± 2.5
ATR2Ncut	6.8 ± 1.8
PsCPR	1.4 ± 0.48
RnCPR	5.8 ± 0.92
Empty vector	0.95 ± 0.35

Supplementary Table 2: Plasmids used in this study

Name	Genotype	Description (reference)
pAN0023	pCOLADuet-1- <i>tyrAfbr-aroGfbr-t ktA-ppsA</i>	The gene set for L-tyrosine over-production (1)
pAN0349	pET23a- <i>RsTYR-DODC</i>	The gene set for conversion of L-tyrosine to dopamine (2)
pAN0465	pGS21a- <i>MAO</i>	Monoamine oxidase for conversion of dopamine to (R,S) -THP supplied from Genscript (2)
pAN0466	pET23a- <i>CNMT</i>	CNMT was amplified with the primer set 5BglT7-pr102 from pUC57-CNMT supplied from Genscript, and cloned into BglII-BamHI sites of pET23 with a ligation method.
pAN0467	pET23a- <i>4'OMT</i>	4'OMT was amplified with the primer set 5BglT7-pr101 from pUC57-4'OMT supplied from Genscript, and cloned into BglII-BamHI sites of pET23 with a ligation method.
pAN0490	pET23a- <i>6OMT</i>	6OMT was amplified with the primer set 5BglT7-pr100 from pUC57-6OMT supplied from Genscript, and cloned into BglII-BamHI sites of pET23 with a ligation method.
pAN0840	pET23a- <i>SalR</i>	SalR was amplified with the primer set pr 342 -pr 343 from pUC57-SalR supplied from Genscript.
pAN1001	pET23a- <i>SalSNcut</i>	SalSNcut was amplified with the primer set pr224-pr226 from pUC57-SalSN7 supplied from Genscript.
pAN1058	pCDF23-ATR2	ATR2 was amplified with the primer set pr198-5BglT7 from pUC57-ATR2 supplied from Genscript, and cloned into NdeI-BamHI sites of pCDF23 with a ligation method.
pAN1060	pCDF23-ATR2Neut	ATR2Ncut was amplified with the primer set, pr198-pr239 from pUC57-ATR2 supplied from Genscript, and cloned into BgIII-BamHI sites of pCDF23 with a ligation method.
pAN1062	pCDF23- <i>RnCPR</i>	RnCPR was digested from pUC57-RnCPR supplied from Genscript, and cloned into NdeI-BamHI sites of pCDF23 with a ligation method.
pAN1079	pCDF23-PsCPR	<i>PsCPR</i> was digested from pUC57- <i>PsCPR</i> supplied from Genscript, and cloned into NdeI-BamHI sites of pCDF23 with a ligation method.

pAN1183	pCOLA23- <i>T6ODM</i>	T6ODM was amplified with the primer set pr301-pr302 from pUC57-T6ODM supplied from Genscript.
pAN1255	pCOLA23- <i>COR</i>	COR was amplified with the primer set pr352-pr353 from pUC57- COR supplied from Genscript.
pAN1413	pET23a- <i>SalS</i>	SalS was amplified with the primer set pr223-pr226 from pUC57-SalS supplied from Genscript.
pAN1589	pET23a- <i>CNMT-4'OMT</i>	4'OMT was amplified with the primer set pr339 pr379 from pAN0467, and cloned into pAN0466.
pAN1643	pET23a-CNMT-4'OMT-6OMT	6OMT was amplified with the primer set pr339-pr379 from pAN0490, and cloned into pAN1589.
pAN1649	pET23a- <i>SalAT</i>	SalAT was amplified with the primer set pr194-pr335 from pUC57-SalAT supplied from Genscript, and cloned into NdeI-BamHI sites of pCDF23 with a ligation method.
pAN1653	pAC23- <i>morB</i>	morB was amplified with the primer set pr339-pr379 from pUC57-morB supplied from Genscript.
pAN1664	pCOLA23- <i>T6ODM-morB</i>	morB was amplified with the primer set pr339-pr379 from pUC57-morB supplied from Genscript. This fragment was cloned into pAN1183.
pAN1786	pCDF23- <i>ATR2</i> SalAT-SalR	SalAT and SalR were amplified with the primer set pr339-pr379 from the cognate plasmids, pAN0840 and pAN1649, respectively. These fragments were sequentially coloned into pAN1058.
pAN1975	pET23a- <i>STORR</i>	STORR was amplified with the primer set pr506-pr509 from pUC57-STORR supplied from Genscript.
pAN1979	pET23a-STORRNeut	STORRNcut was amplified with the primer set pr507-pr509 from pUC57-STORR supplied from Genscript.
pAN1986	pET23a- <i>CNMT-4'OMT</i> - SalSNcut	SalSNcut was amplified with the primer set pr339 pr379 from pAN1001, and cloned into pAN1589.

Supplementary Table 3: E. coli strains used in this study

	Genotype	Description (reference)
BL21(DE3)	F- ompT hsdSB(rB-, mB-) gal dcm (DE3)	Supplied from Novagen
AN1028	BL21(DE3) harboring pAN0467	4'OMT over-expression strain
AN1055	BL21(DE3) harboring pAN0465	(R,S)-THP producer (2)
AN1067	BL21(DE3) harboring pAN1058	ATR2 expression strain
AN1068	BL21(DE3) harboring pAN1060	ATR2Ncut expression strain
AN1069	BL21(DE3) harboring pAN1079	PsCPR expression strain
AN1070	BL21(DE3) harboring pAN1062	RnCPR expression strain
AN1096	BL21(DE3) harboring pAN1058 and pAN1001	Salutaridine producer (SalSNcut)
AN1126	BL21(DE3) $\it tyrR$ null harboring pAN0023 and pAN0349	Dopamine producer (2)
AN1304	BL21(DE3) harboring pAN1255	Crude extract of this strain was used for preparation of hydrocodone standard.
AN1420	BL21(DE3) harboring pAN1058 and pAN1413	Salutaridine producer (SalS)
AN1472	BL21(DE3) harboring pAN490	6OMT over-expression strain
AN1600	BL21(DE3) harboring pAN1589	(R,S)-reticuline producer

AN1685	BL21(DE3) harboring pAN1653	Crude extract of this strain was used for preparation of hydrocodone standard.
AN1752	BL21(DE3) harboring pAN1643	Three methyltransferases expression strain
AN1829	BL21(DE3) harboring pAN1001 and pAN1786	Thebaine producer
AN1942	AN1829 harboring pAN1664	Hydrocodone producer
AN1989	BL21(DE3) harboring pAN1058 and pAN1975	STORR and ATR2 co-expression strain
AN1990	BL21(DE3) harboring pAN1058 and pAN1979	STORRNcut and ATR2 co-expression strain
AN1998	BL21(DE3) harboring pAN1786 and pAN1986	Thebaine producer in three-step culture

Supplementary Table 4: Primers used in this study

Name	Sequence	Target DNA
5BglT 7	CCCAGATCTGATCCCGCGAAATTAATACGA	6OMT, 4'OMT, CNMT, ATR2
pr100	ATTGGATCCTTAATATGGATAAGCCTC	6OMT
pr101	ATTGGATCCTTATGGAAAAACCTCAAT	4'OMT
pr102	GCCGGATCCTTATTTTTTTTTGAACAG	CNMT
pr194	ATTCATATGGCGACCATGTATAGC	SalAT
pr198	CAAGGATCCTCACCAGACATCACG	ATR2
pr198	CAAGGATCCTCACCAGACATCACG	ATR2Ncut
pr205	GGGAGAGCGTCGAGATCC	pCDF23, pCOLA23, pAC23
pr206	CCGCTGAGCAATAACTAGC	pCDF23, pCOLA23, pAC23
pr207	${\tt TCTCGACGCTCTCCCAGATCTGATCCCGCGAAATTAATACGA}$	Pro-MCS-Ter of pET23a
pr208	GTTATTGCTCAGCGGTGG	Pro-MCS-Ter of pET23a
pr223	ATACATATGGCGCCGATCAACATTG	SalS
pr224	CCCCATATGAAAATTAGCTTTTATCAG	SalSNcut
pr226	ACTGGATCCTTACTGACGAAACGGTTTGG	SalS, SalSNcut
pr239	CCTCATATGCTGATTGAAAATCG	ATR2Ncut
pr301	AAGGAGATATACATATGGAAAAAGCGAAACTGATG	T6ODM
pr302	GCTCGAATTCGGATCCTTAAATACGCATACTATCC	T6ODM
pr335	GCTCGAATTCGGATCCTTAAATCAGTTCCAGAATTTC	SalAT
pr339	GGTGGTGCTCGAGTGCGGCCGCAAGCTTGTCG	Tandem construction
pr342	AAGGAGATATACATATGCCGGAAACCTGCCCAAAC	SalR

pr343	GCTCGAATTCGGATCCTTAAAACGCAGACAGTTCG	SalR
pr352	AAGGAGATATACATATGGAGTCAAATGGCGTGC	COR
pr353	GCTCGAATTCGGATCCTTAGTCTTTCTCATCCC	COR
pr379	${\tt TGCGGCCGCACTCGACGATCCCGCGAAATTAATACGA}$	Tandem construction
pr506	AAGGAGATATACATATGGAACTGCAATACATCTCC	STORR
pr507	AAGGAGATATACATATGCGTAAAACCTTTCTGAAC	STORRNcut
pr509	GCTCGAATTCGGATCCTCAGGCTTCGTCGTCCCACAG	STORR, STORRNuct
PsSalATCncA	TCATGATTACGGAACACATGTAG	PsIKSalAT
PsSalATNncS	GTATCATCTACCATTATCAATCCTG	PsIKSalAT
PsSalRedCncA	TGCTGCACTATACGCTGAATC	PsIKSalR
PsSalRedNncS	CTTACGTTGATTTTCATTGCTTGAG	PsIKSalR
PsSalSCncA	GATCAAGCATCTTCACCCTTG	PsIKSalS
PsSalSNncS	CCCCAATCTTTGCAAACCGTC	PsIKSalS

Supplementary note 1

In current study, (R)-reticuline could be produced without 6OMT. However, we did not know why the R-form of reticuline was produced by the CNMT and 4'OMT expression strain. We previously demonstrated that (R)-reticuline formation by three metyltransferases was inhibited by larger amounts of (R,S)-THP, suggesting that one or more of the methyltransferases have a preference for the S-form of substrates, presumably in a competitive inhibition manner¹. 6OMT from *P. somniferum* and *C.* japonica do not have stereospecificity toward norprotosinomenine³ and norcoclaurine⁴, respectively. Moreover, partially purified 6OMT from Argemone platyceras has equivalent activity toward (R)- and (S)-THP⁵. Together with the fact that an S-form preference was still observed in the absence of 6OMT (Fig. 2d), CNMT and/or 4'OMT must prefer S-form substrates. 4'OMT from Berberis koetineana is an S-form-specific enzyme⁶; therefore, 4'OMT from *C. japonica*, which was used in this study, might have an S-form preference. In this (R,S)-reticuline production system, the substrates recognized by CNMT and 4'OMT would differ from the original substrates, 6-O-methyl THP and 6-O-N-dimethyl THP, which were formerly synthesized by 6OMT from THP. Therefore, the degree of S-form preference of CNMT and/or 4'OMT might differ between substrates. Alternatively, the S-form preference might differ between the

4'OMT and 6OMT activities of 4'OMT. Regardless, further investigations are required to resolve this issue.

Supplementary references

- Nakagawa, A. *et al.* A bacterial platform for fermentative production of plant alkaloids. *Nat Commun* **2**, 326 (2011).
- Nakagawa, A. *et al.* (*R,S*)-tetrahydropapaveroline production by stepwise fermentation using engineered *Escherichia coli. Sci Rep* **4**, 6695 (2014).
- Ounaroon, A., Decker, G., Schmidt, J., Lottspeich, F. & Kutchan, T. M. (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 36, 808-819 (2003).
- Sato, F., Tsujita, T., Katagiri, Y., Yoshida, S. & Yamada, Y. Purification and characterization of S-adenosyl-L-methionine: norcoclaurine 6-*O*-methyltransferase from cultured *Coptis japonica* cells. *Eur J Biochem* **225**, 125-131 (1994).
- Rueffer, M., Nagakura, N. & Zenk, M. H. Partial Purification and Properties of S-Adenosylmethionine: (R), (S)-Norlaudanosoline-6-O-Methyltransferase from Argemone platyceras Cell Cultures. Planta Med 49, 131-137 (1983).
- Frenzel, T. & Zenk, M. H. S-adenosyl-l-methionine: 3'-hydroxy-N-methyl-(S)-coclaurine-4'-O-methyl transferase, a regio- and stereoselective enzyme of the (S)-reticuline pathway. Phytochemistry 29, 3505-3511 (1990).