Context-Free Grammars

Chanathip Namprempre

Computer Science Reed College

Outline

Pushdown Automata

Outline

Pushdown Automata

Pushdown Automata

A pushdown automata is a non-deterministic, finite state machine with access to a stack.

Definition

A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where Q, Σ, Γ , and F are all finite sets, and

- \mathbf{Q} is a set of states
- \mathbf{Q} Σ is the input alphabet
- Γ is the stack alphabet
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Sigma_{\varepsilon})$ is the transition function
- $oldsymbol{0}$ $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Example 1

$$L_1=L(0^*1^*)$$

Example 2

$$L_2 = \{0^n 1^n \mid n \ge 0\}$$

Example 3

$$L_3 = \{0^n 1^{2n} \mid n \ge 0\}$$

Formal definition of computation

Let $m \in \mathbb{Z}^+$, $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a pushdown automaton.

Definition

M accepts w if w can be written as $y_1y_2...y_m$ where each $y_i \in \Sigma_{\varepsilon}$, and a sequence of states $r_0, r_1, ..., r_m \in Q$ and string $s_o, s_1, ..., s_m \in \Gamma^*$ exist with the following three conditions:

- 1. [M starts in the start state.] $r_0 = q_0$ and $s_0 = \varepsilon$,
- 2. [M moves according to δ , state, stack, and input symbol.] For $i=0,\ldots,m-1$, we have $(r_{i+1},b)\in\delta(r_i,y_{i+1},a)$ where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_\varepsilon$ and $t\in\Gamma^*$,
- 3. [M ends up in an accept state.] $r_m \in F$.

Equivalence of PDA and CFG

Theorem: PDA and CFG are equivalent

A language is context free if and only if some pushdown automaton recognizes it.

There are two directions that need to be proved:

[⇒] If a language is a context free language, i.e., has a CFG generating it, then there is a PDA recognizing it.

(Easy)

[If a language has a PDA recognizing it, then it has a CFG generating it.

(Hairy)