Examen de Teoría de Percepción - Recuperación Primer Parcial ETSINF, Universitat Politècnica de València, Junio de 2013

Apellidos:	Nombre:	
Profesor: 🗆 Carlos Martínez - Jorgo	e Civera \square Roberto Paredes	
Cuestiones (3 puntos, 30 minutos, sin apuntes)		
B ¿Cuál de los siguientes clasificadores no es un clasi A) $c(x) = \arg\max_c \log(p(x,c))$ B) $c(x) = \arg\max_c \log(p(x c))$ C) $c(x) = \arg\max_c \log(p(c x))$ D) $c(x) = \arg\min_c -\log(p(c x))$	ficador de mínimo riesgo o clasificador de Bayes?	
$\boxed{\mathrm{C}}$ Dadas las funciones discriminantes $g_1(\mathbf{x}) = 3x_1 - 3x_1$ asociada?	$2x_2 + 1$ y $g_2(\mathbf{x}) = -x_1 + 2x_2 + 3$, ¿cuál es la frontera de decisión	
A) $x_1 = x_2 - \frac{1}{2}$ B) $x_1 = 2x_2 - 1$ C) $x_1 = x_2 + \frac{1}{2}$ D) $x_1 = x_2 + 1$		
D Supongamos una representación local de imágenes de 5×5 ; en ese caso, la representación de la imagen	le 256 niveles de gris de tamaño 16×16 píxeles, empleando ventana o ocupará:	
 A) Menos de 1000 bytes. B) Entre 1000 y 1999 bytes. C) Entre 2000 y 2999 bytes. D) 3000 o más bytes. 		
C El banco de filtros de Mel se aplica en reconocimies	nto de habla para:	
 A) Pasar del dominio temporal al dominio frecues B) Obtener los marcos (frames) de la señal acúst C) Modelar la percepción de oído humano. D) Poder aplicar el reconocimiento del habla en t 	ica.	
$oxed{f A}$ Indicar cual de los siguientes procesos ${f no}$ se aplica	generalmente en reconocimiento del habla continua:	
 A) Segmentación de traza. B) Preénfasis. C) Transformada de Fourier (FFT). D) Transformada del coseno (DCT). 		
D ¿Qué objetivo persigue la función de ponderación g	global Idf ?	
 A) Enfatizar aquellos tokens que ocurren en mucl B) Atenuar aquellos tokens con baja frecuencia. C) Enfatizar aquellos tokens con alta frecuencia. D) Atenuar aquellos tokens que ocurren en mucho 		

- B Dadas las representaciones bag-of-words y bigramas de un conjunto de correos electrónicos. En general, se puede afirmar que:
 - A) La matriz bag-of-words resultante será más dispersa que la matriz de bigramas.
 - B) La matriz bag-of-words resultante será menos dispersa que la matriz de bigramas.
 - C) La matriz bag-of-words resultante será tan dispersa como la matriz de bigramas.
 - D) Ninguna de las anteriores.
- A | ¿Cuál de estas afirmaciones sobre PCA no es correcta?
 - A) En el espacio proyectado mediante PCA se maximiza la correlación de las componentes.
 - B) El objetivo de PCA es encontrar una proyección lineal que minimice el error de reconstrucción.
 - C) La matriz de proyección lineal está compuesta por los eigenvectores con mayor eigenvalor asociado.
 - D) Los eigenvectores son ortogonales entre sí.
- B Dada la descomposición \mathbb{R}^3 en valores y vectores propios $\lambda_1 = 0.7$ con $\mathbf{w}_1 = (1\ 0\ 0), \ \lambda_2 = 5.2$ con $\mathbf{w}_2 = (0\ 1\ 0), \ y$ $\lambda_3 = 2.7 \text{ con } \mathbf{w}_3 = (0 \ 0 \ 1) :$
 - A) La proyección PCA de \mathbb{R}^3 a \mathbb{R}^2 se llevará a cabo con los vectores propios \mathbf{w}_1 y \mathbf{w}_2 .
 - B) La proyección PCA de \mathbb{R}^3 a \mathbb{R}^2 se llevará a cabo con los vectores propios \mathbf{w}_2 y \mathbf{w}_3 .

 - C) La proyección PCA de \mathbb{R}^3 a \mathbb{R}^1 se llevará a cabo con el vector propio \mathbf{w}_1 . D) La proyección PCA de \mathbb{R}^3 a \mathbb{R}^1 se llevará a cabo con eñ vector propio \mathbf{w}_3 .
- A | En una proyección LDA donde el número de datos totales N es mayor que el número de clases C, i por qué está limitado a C-1 el número máximo de dimensiones a las cuales se pueden proyectar los datos?
 - A) Porque el rango de la matriz $S_b = \sum_{i=1}^C (\bar{\mathbf{x}}_i \bar{\mathbf{x}})(\bar{\mathbf{x}}_i \bar{\mathbf{x}})^t$ es como máximo C-1. B) Porque el rango de la matriz $S_w = \sum_{i=1}^C \Sigma_i$ es C-1.

 - C) Porque el rango de la matriz S_w^{-1} es C-1.
 - D) Porque el número máximo de dimensiones a las cuales se pueden proyectar es siempre C-1.

Examen de Teoría de Percepción - Recuperación Primer Parcial ETSINF, Universitat Politècnica de València, Junio de 2013

Apellidos:	Nombre:	
Profesor: □ Carlos Martínez - Jorge Civera □ Roberto Paredes		
Problemas (4 puntos, 90 minutos, con apuntes)		

1. (1 punto) Se tiene un clasificador en dos clases basado en distribuciones Bernoulli bidimensionales, de forma que para la clase 1 se tiene $p_1 = [0.3 \ 0.2]$, y para la clase 2 se tiene $p_2 = [0.6 \ 0.8]$. Se pide clasificar la muestra $y = [0 \ 1]$ empleando arg $\max_c P(c \mid y)$ sabiendo que la probabilidad condicional $p(y \mid c) = \prod_d (p_{cd} y_d + (1 - p_{cd})(1 - y_d))$ y las probabilidades a priori son idénticas para ambas clases.

Solución:

$$\hat{c}(y) = \operatorname*{arg\,max}_{c} P(c \mid y) \approx \operatorname*{arg\,max}_{c} p(y \mid c) \, p(c)$$

Para la clase 1:

$$p(y = [0 \ 1] \mid c = 1) = (p_{11} y_1 + (1 - p_{11})(1 - y_1)) \cdot (p_{12} y_2 + (1 - p_{12})(1 - y_2))$$

= $(0.3 \cdot 0 + (1 - 0.3) \cdot (1 - 0)) \cdot (0.2 \cdot 1 + (1 - 0.2) \cdot (1 - 1)$
= 0.14

Para la clase 2:

$$p(y = [0 \ 1] \mid c = 2) = (p_{21} y_1 + (1 - p_{21})(1 - y_1)) \cdot (p_{22} y_2 + (1 - p_{22})(1 - y_2))$$
$$= (0.6 \cdot 0 + (1 - 0.6)(1 - 0)) \cdot (0.8 \cdot 1 + (1 - 0.8) \cdot (1 - 1))$$
$$= 0.32$$

Dado que p(c=1)=p(c=2)=0.5, la muestra y se clasifica en la clase 2.

- 2. (1 punto) Calcular el tamaño en bytes que ocuparía cada una de estas señales acústicas, adquiridas en las condiciones indicadas:
 - a) 3 minutos de una señal telefónica, adquirida a 8 KHz con 8 bits por muestra.
 - b) 10 segundos de señal vocal captada por micrófono, adquirida a 16 KHz con 16 bits por muestra.
 - c) 1 minuto de una señal de alta fidelidad para un sistema de audio 5.1, adquirida a 44 KHz con 16 bits por muestra.

Solución:

- a) $3 \cdot 60 \cdot 8000 \cdot 1 = 1440000$ bytes
- b) $10 \cdot 16000 \cdot 2 = 320000$ bytes
- c) $1 \cdot 60 \cdot 6 \cdot 44000 \cdot 2 = 31680000$ bytes

3. (2 puntos) Dada la siguiente matriz de proyección:

$$W = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

y las siguientes muestras etiquetadas $X = \{(\mathbf{x}_1, A), (\mathbf{x}_2, A), (\mathbf{x}_3, B), (\mathbf{x}_4, B)\}$ se pide obtener el error de clasificación en el espacio proyectado al emplear las siguientes funciones discriminantes lineales:

$$g_A(\mathbf{x}) = \mathbf{w}_A \mathbf{x}$$

$$g_B(\mathbf{x}) = \mathbf{w}_B \mathbf{x}$$

donde:

$$\mathbf{x}_1 = (1, 0, -1, 1), \ \mathbf{x}_2 = (1, 1, -2, 0), \ \mathbf{x}_3 = (-1, 2, 2, -1), \ \mathbf{x}_4 = (-1, 2, 2, -2) \ y$$

 $\mathbf{w}_A = (1, 2, 1), \ \mathbf{w}_B = (1, -1, -1)$

Solución: La proyección resultaría:

$$\mathbf{x}'_1 = W\mathbf{x}_1 = (3, 2)$$

 $\mathbf{x}'_2 = W\mathbf{x}_2 = (4, 1)$
 $\mathbf{x}'_3 = W\mathbf{x}_3 = (-2, -2)$
 $\mathbf{x}'_4 = W\mathbf{x}_4 = (-3, -3)$

Para clasificar hay que emplear la notación compacta:

$$\mathbf{x}'_1 = (1, 3, 2)$$

 $\mathbf{x}'_2 = (1, 4, 1)$
 $\mathbf{x}'_3 = (1, -2, -2)$
 $\mathbf{x}'_4 = (1, -3, -3)$

Y aplicar las funciones discriminantes de cada clase:

$$g_A(\mathbf{x}_1') = 9$$
 $g_B(\mathbf{x}_1') = -4$ OK
 $g_A(\mathbf{x}_2') = 10$ $g_B(\mathbf{x}_2') = -4$ OK
 $g_A(\mathbf{x}_3') = -5$ $g_B(\mathbf{x}_3') = 5$ OK
 $g_A(\mathbf{x}_4') = -8$ $g_B(\mathbf{x}_4') = 7$ OK

Por lo tanto se consigue un 0% de error.