UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS

DEPARTAMENTO DE MATEMATICA

Listado 5 : Cálculo I (527140)

- 1.- Considere la parábola $P: y^2-2x=0$, hallar los valores de k para los cuales las rectas de la familia $L_k: x+2y+k=0$
 - (a) cortan a P en dos puntos diferentes. (F)
 - (b) son tangentes a P (P)
 - (c) no intersectan a P en ningún punto.
- 2.- Determine la ecuación y los principales elementos de la elipse E:
 - (a) de centro C(0,0), foco $F_1(2,0)$ y vértice $V_1(3,0)$.
 - (b) de centro C(0,0), vértice $V_1(2,0)$ y eje menor de longitud 3.
 - (c) de focos $F_1(-2,0)$ y $F_2(2,0)$, eje mayor de longitud 8. (P)
- 3.- Determinar las ecuaciones de las rectas tangentes trazadas del punto A(5,0) a la elipse dada por $E: 4x^2 + 9y^2 = 36$.
- 4.- Determine la ecuación y los principales elementos de la hipérbola H:
 - (a) de vértices $V_1(0,3)$ y $V_2(0,-3)$, y focos $F_1(0,5)$ y $F_2(0,-5)$.
 - (b) de centro C(0,0), un vértice $V_1(6,0)$ y una de sus asintotas esta dada por L:4x-3y=0.
 - (c) cuyos focos son $F_1(0,3)$ y $F_2(0,-3)$, y pasa por el punto $\left(\frac{5}{2},\frac{\sqrt{22}}{2}\right)$.
- 5.- Encuentre el área del rectángulo generado por las asíntotas de la hipérbola $9y^2 169x^2 = 1521$ tal que dos de los lados de dicho rectagulo sean tangente a los vértices de dicha hipérbola.
- 6.- Determine la ecuación de la parábola P.
 - (a) cuyo vértice es el punto V(4,2) y su foco el punto F(1,2). (P)
 - (b) cuyo vértice es el punto V(3,1) y su directriz la recta L: y = -1.
- 7.- (F) Dada la parábola $P: x^2 6x 4y + 17 = 0$. Determinar las ecuaciones de las rectas tangentes trazadas del punto A(2, -4) a la parábola P.
- 8.- Considere la elipse $E: x^2+3y^2+3x-4y-3=0$, hallar los valores de k para los cuales las rectas de la familia $L_k: 5x+2y+k=0$
 - (a) cortan a E en dos puntos diferentes.
 - (b) son tangentes a E
 - (c) no intersectan a E en ningún punto.
- 9.- Determine la ecuación y los principales elementos de la hipérbola H con centro C(-4,1), un vértice en $V_1(2,1)$ y semieje imaginario igual 4. (**P**)
- 10.- Determine si la ecuación dada es la ecuación de una cónica. En caso de serlo, identifíquela y determine sus principales elementos.
 - (a) $y^2 6y 8x = -17$

(c) $\frac{x^2}{9} - \frac{y^2}{16} - \frac{4x}{9} + 2y - \frac{149}{9} = 0$. (P)

(b) $x^2 + y^2 - 4x - 32y + 264 = 0$

- (d) $9x^2 + 9y^2 + 16x 16y + 11 = 2y 2x$
- 11.- Realice un bosquejo de las siguientes regiones del plano \mathbb{R}^2 :
 - (a) $A = \{(x, y) \in \mathbb{R}^2 : 1 \le |x| + |y| \le 4\}$
 - (b) $B = \{(x, y) \in \mathbb{R}^2 : 1 \le x < 4 \land 0 \le y \le x\}$
 - (c) $C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 2y \le 3\} \cap \{(x,y) \in \mathbb{R}^2 : 4y^2 > x^2\}$
 - (d) $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 4 \lor x^2 2y^2 \ge 4\}$ (P)

12.- Resuelva los siguientes problemas.

- (a) **(F)** Un túnel de una carretera tiene la forma de un arco parabólico, que tiene 5 metros de ancho y 4 metros de altura, ¿cuál es la altura máxima que puede tener un vehículo de transporte de 3 metros de ancho para poder pasar por el túnel?
- (b) Suponga que un chorro de agua que sale del extremo de un tubo horizontal sigue un arco parabólico con vértice en el extremo del tubo. El tubo está a una altura de 20 metros de la tierra. En un punto a dos metros por debajo del final del tubo, la distancia horizontal horizontal del agua hasta la línea vertical que contiene el final del tubo es de 4 metros. ¿Dónde golpea el agua a la tierra?
- (c) Una rueda de la fortuna tiene un diámetro de 18 metros y su centro se encuentra a 10 metros sobre el nivel del suelo. ¿Cuál es la altura de la canastilla que se encuentra a 3 metros de la izquierda del centro? ¿A qué distancia horizontal de la base se puede encontrar una canastilla que está a 12 metros de altura?