A számításelmélet alapjai I. (Második gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. február 20.

Tematika

- A generatív grammatika fogalma, generatív grammatikák típusai.
- A levezetés fogalma (közvetlen (egylépéses) levezetés, *k* lépéses levezetés, levezetés, mondatforma), generált nyelv.
- Chomsky-féle hierarchia.
- Nyelvosztályok zártsági tulajdonságai.

Generatív grammatika

Példa 1

Generatív grammatikák-e a következők? Indokoljuk!

- $\textbf{2} \quad \textit{G}_2 = (\{\textit{S},\textit{A},\textit{B}\},\{\textit{a},\textit{b}\},\{\textit{S}\rightarrow\textit{\varepsilon},\textit{S}\rightarrow\textit{AB},\textit{A}\rightarrow\textit{aA},\textit{B}\rightarrow\textit{ab},\textit{abb}\rightarrow\textit{aSb}\},\textit{S}).$

Generatív grammatika

Példa 1

- IGEN (G_1 az \emptyset nyelvet generálja).
- ② NEM, G_2 $abb \rightarrow aSb$ szabály miatt nem generatív grammatika (minden szabály bal oldalán legalább egy nemterminálisnak szerepelnie kell).
- \odot NEM, G_3 nem generatív grammatika, mert nem adtuk meg a szabályhalmazát.
- IGEN, $N = \{S\}$, $T = \{a, b\}$, $P = \{S \rightarrow \varepsilon, S \rightarrow SS, S \rightarrow aSb, S \rightarrow bSa\}$ szabályai megfelelő alakúak (minden szabály bal oldalán legalább egy nemterminális szerepel), S a kezdőszimbólum.

Definíció

Legyen $G = \langle N, \Sigma, P, S \rangle$ egy tetszőleges grammatika. A G által **generált nyelv** alatt az $L(G) := \{ w \, | \, S \Rightarrow_G^* w, w \in \Sigma^* \}$ szavakból álló halmazt értjük.

Példa 2

Milyen nyelvet generálnak a következő grammatikák? Adjunk példát egy-egy lehetséges levezetésre!

- ② $G_2 = (N, T, P, S)$, ahol $N = \{S\}$, $T = \{a, b\}$ és $P = \{S \rightarrow \varepsilon, S \rightarrow aSa, S \rightarrow bSb\}$.
- **3** $G_3 = (N, T, P, S)$, ahol $N = \{S, A, B\}$, $T = \{a, b, c\}$ és $P = \{S \rightarrow \varepsilon, S \rightarrow AB, A \rightarrow \varepsilon, A \rightarrow aAb, B \rightarrow \varepsilon, B \rightarrow bBc\}$.

Példa 2

- $L(G_1) = \{u \in \{a,b\}^* \mid |u|_a \geq |u|_b\}$, ahol $|u|_a$, $|u|_b$ a és b u-beli előfordulásainak számát jelöli. Példa egy lehetséges G_1 -beli levezetésre: $S \Longrightarrow_{G_1} SS \Longrightarrow_{G_1} aSS \Longrightarrow_{G_1} aaSbS \Longrightarrow_{G_1} aabS \Longrightarrow_{G_1} aabS$.
- 2 $L(G_2) = \{uu^R \mid u \in \{a, b\}^*\}$. Példa egy lehetséges G_2 -beli levezetésre: $S \Longrightarrow_{G_2} aSa \Longrightarrow_{G_2} aaSaa \Longrightarrow_{G_2} aabSbaa \Longrightarrow_{G_2} aabbaa$.
- **3** $L(G_3) = \{a^k b^{k+l} c^l \mid k, l \geq 0\}$. Példa egy lehetséges G_3 -beli levezetésre: $S \Longrightarrow_{G_3} AB \Longrightarrow_{G_3}^k a^k Ab^k B \Longrightarrow_{G_3}^l a^k Ab^k b^l Bc^l \Longrightarrow_{G_3} a^k b^k b^l Bc^l \Longrightarrow_{G_3} a^k b^k b^l b^l c^l = a^k b^{k+l} c^l (k$ és I-lépéses levezetéseket alkalmaztunk, $k, l \geq 0$).

Példa 3

Legyen $G_4 = (N, T, P, S)$, ahol $N = \{S\}$, $T = \{a, b\}$ és $P = \{S \to \varepsilon, S \to SS, S \to aSb, S \to bSa\}$. Milyen nyelvet generál a G_4 grammatika? Bizonyítsuk!

Példa 3

A generált nyelv: $L(G_4) = \{u \in \{a, b\}^* \mid |u|_a = |u|_b\}$, ahol $|u|_a$, $|u|_b$ a és b u-beli előfordulásainak számát jelöli. Bizonyítás (vázlat):

• \subseteq : A levezetés hosszára vonatkozó teljes indukcióval belátjuk, hogy minden levezetett $p \in \{a, b, S\}^*$ mondatformára $|p|_a = |p|_b$. Az n = 0 eset nyilvánvaló. Tegyük fel, hogy minden n-nél rövidebb levezetésre igaz az állítás. Legyen $S \Longrightarrow^n p$. Ekkor létezik egy olyan $q \in \{a, b, S\}^*$ mondatforma, hogy $S \Longrightarrow^{n-1} q \Longrightarrow p$. Az indukciós feltevés alapján $|q|_a = |q|_b$. Mivel $q \Longrightarrow p$, ezért léteznek olyan $y_1, y_2 \in \{a, b, S\}^*$ mondatformák, amelyekre $q = y_1 Sy_2, p = y_1 wy_2$, ahol $w \in \{\varepsilon, SS, aSb, bSa\}$. Az első és második esetben $|q|_a = |p|_a$ és $|q|_b = |p|_b$, míg a harmadik és negyedik esetben $|p|_a = |q|_a + 1$ és $|p|_b = |q|_b + 1$, vagyis $|p|_a = |p|_b$ mind a négy esetben.

Példa 3

• \supseteq : Legyen $u \in L_4 = \{\{a,b\}^* \mid |u|_a = |u|_b\}$. u hosszára vonatkozó teljes indukcióval bizonyítjuk, hogy u levezethető. Ha |u| = 0, akkor az állítás triviális. Tegyük fel, hogy minden u-nál rövidebb L_4 -beli szó levezethető. Négy eset lehetséges: $u = \varepsilon$, u = avb, u = bva (ekkor v nyilván L_4 -beli), vagy pedig létezik $u_1, u_2 \in L_4, u_1 \neq \varepsilon, u_2 \neq \varepsilon$: $u = u_1u_2$. Ekkor az indukciós feltevés alapján $S \Longrightarrow^* u_1$ és $S \Longrightarrow^* u_2$, tehát $S \Longrightarrow SS \Longrightarrow^* u_1S \Longrightarrow^* u_1u_2 = u$.