Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Pré-processamento de Dados

Prof. Tiago A. Almeida

Pré-processamento

- Benefícios:
 - Facilitar o posterior uso de técnicas de AM
 - Ou tornar mais adequado para a técnica
 - Ex. algumas trabalham somente com entradas numéricas
 - Obtenção de modelos mais fiéis à distribuição dos dados
 - Melhorar qualidade
 - Redução de complexidade computacional
 - Tempo e custo
 - Tornar mais fáceis e rápidos ajustes de parâmetros
 - Facilitar a interpretação dos padrões extraídos

Pré-processamento

- Desempenho de técnicas de AM é afetado pela qualidade dos dados
- Conjuntos de dados podem ter diferentes características, dimensões ou formatos
 - Atributos numéricos vs simbólicos
 - Limpos vs com ruídos e imperfeições
 - Valores incorretos, inconsistentes, duplicados ou ausentes
 - Atributos independentes vs relacionados
 - Poucos vs muitos objetos e/ou atributos

Pré-processamento: minimizar/eliminar problemas nos dados; tornar dados mais adequados para uso por um determinado algoritmo de AM

Pré-processamento

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Observação: não existe ordem fixa para aplicação das diferentes técnicas de pré-processamento

Pré-processamento

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Alguns atributos não possuem relação com o problema sendo solucionado

Ex. RG em diagnóstico

Pré-processamento

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade \u20e1
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Algoritmos de AM podem ter dificuldades quando precisam lidar com uma grande quantidade de dados (objetos, atributos ou ambos)

Ex. redundância e inconsistência

Pré-processamento

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados -
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Diferentes conjuntos de dados integrados: pode levar a inconsistências e redundâncias

Pré-processamento

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Conjunto de dados desbalanceado: proporção de exemplos em algumas classes pode ser muito maior do que em outras

Alguns algoritmos de AM têm dificuldade neste cenário

Pré-processamento

Grupos de tarefas de pré-processamento:

- Eliminação manual de atributos
- Integração de dados
- Amostragem de dados
- Redução de dimensionalidade
- Balanceamento de dados
- Limpeza de dados
- Transformação de dados

Presença de ruídos, dados incompletos e inconsistentes pode afetar desempenho dos algoritmos de AM

Alguns são incapazes de lidar com dados incompletos

Integração de Dados

- Dados podem vir de diferentes fontes
 - ⇒ integração de diferentes conjuntos de dados
 - Cada um pode ter atributos diferentes para os mesmos objetos
- Identificação de entidade
 - Identificar os objetos em comum
 - Normalmente por busca por atributos comuns nos conjuntos
 - Que tenham valor único para cada objeto
 - Ex. identificação de paciente

Pré-processamento Grupos de tarefas de pré-processamento: • Eliminação manual de atributos • Integração de dados • Amostragem de dados • Redução de dimensionalidade • Balanceamento de dados • Limpeza de dados • Transformação de dados • Transformação de dados • Transformação de dados

Integração de Dados

- Dificuldades:
 - Atributos correspondentes com nomes diferentes
 - Dados podem ter sido atualizados em momentos diferentes

Comum usar metadados para minimizar esses problemas

Metadados: dados sobre os dados, que descrevem suas principais características

Eliminação manual de atributos

- Há atributos que claramente não contribuem para o aprendizado
- Ex. conjunto de dados hospital

ld.	Nome	ldade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Grandes	38,0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	M	92	Grandes	38,0	2	RS	Saudável
1920	José	18	M	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	M	67	Médias	38,4	2	GO	Saudável

Não contribuem para estimar se um paciente tem doença ou não

Eliminação manual de atributos

- Ex. conjunto de dados hospital
- Após eliminação manual dos atributos

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	M	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	M	67	Médias	38,4	2	Saudável

Eliminação manual de atributos

- Normalmente, o conjunto de atributos é definido de acordo com a experiência de especialista
- Ex. conjunto de dados hospital

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
28	М	79	Grandes	38,0	2	SP	Doente
18	F	67	Pequenas	39,5	4	MG	Doente
49	M	92	Grandes	38,0	2	RS	Saudável
18	M	43	Grandes	38,5	20	MG	Doente
21	F	52	Médias	37,6	1	PE	Saudável
22	F	72	Pequenas	38,0	3	RJ	Doente
19	F	87	Grandes	39,0	6	AM	Doente
34	М	67	Médias	38,4	2	GO	Saudável

Médico pode decidir que atributo associado ao estado de origem do paciente também não é relevante para seu diagnóstico clínico

Eliminação manual de atributos

- Outro atributo irrelevante facilmente detectado:
 - Atributo que possui o mesmo valor para todos objetos
 - Não traz informação para ajudar a distinguí-los
- Há ainda atributos irrelevantes de identificação não tão clara
- Técnicas de seleção de atributos podem ajudar a identificar

Tiago A. A

Amostragem de dados

- Algoritmos de AM podem ter dificuldades em lidar com um número grande de objetos
 - Saturação de memória
 - Aumento do tempo computacional para ajustar os parâmetros do modelo
- Contudo, quanto mais dados, maior tende a ser a acurácia do modelo

Procurar balanço entre eficiência computacional e acurácia do modelo

Amostragem de dados

- Amostra dos dados
- Pode levar ao mesmo desempenho do conjunto completo, a menor custo computacional
- Deve ser representativa

Amostragem de dados

Técnicas de amostragem:

Amostragem aleatória simples

 Variações: com e sem reposição de exemplos (semelhantes quando tamanho da amostra é bem menor que o do conjunto original)

Amostragem estratificada

- Quando classes têm propriedades diferentes (ex. números de objetos diferentes)
- Variações: manter o mesmo número de objetos para cada classe ou manter o número proporcional ao original

Amostragem progressiva

• Começa com amostra pequena e vai aumentando enquanto acurácia preditiva continuar a melhorar

Amostragem de dados

- Especialista também pode auxiliar a decidir subconjunto de objetos a serem usados
- Ex.: somente pacientes do sexo feminino

Dados Desbalanceados

- Acurácia preditiva de classificador deve ser maior que a obtida atribuindo um novo objeto à classe majoritária
 - Vários algoritmos de AM têm o desempenho prejudicado para dados muito desbalanceados
 - Tendem a favorecer a classificação na classe majoritária

Dados Desbalanceados

- Tópico da classificação de dados
- Número de objetos varia para as diferentes classes
 - Típico da aplicação
 - Ex. 80% dos pacientes que vão a um hospital estão doentes
 - Problema na geração/coleta dos dados

Classe majoritária

 Contém a maior parte dos exemplos

Classe minoritária

 Tem o menor número de exemplos no conjunto

Tiago A. A

Dados Desbalanceados

- Alternativas para lidar com dados desbalanceados:
 - Obter novos dados para a classe minoritária
 - Na maioria dos casos não é possível...
 - Balancear artificialmente o conjunto de dados:
 - Redefinir o tamanho do conjunto de dados
 - Usar diferentes custos de classificação para as classes
 - Induzir um modelo para uma classe

Dados Desbalanceados

Técnicas de rebalanceamento:

Redefinir tamanho do conjunto de dados

- Acréscimo/eliminação de exemplos na classe minoritária/majoritária
- Acréscimo: risco de objetos que não representam situações reais e overfitting
- Eliminação: risco de perda de objetos importantes e underfitting

Usar custos de classificação diferentes para as classes

- Dificuldades: definição dos custos, incorporar custos em alguns algoritmos de AM
- Pode apresentar baixo desempenho quando muitos objetos da classe majoritária são semelhantes

Limpeza de Dados

- Qualidade dos dados:
 - Em geral, dados não foram produzidos para uso em AM
 - Exemplos de problemas:
 - Ruídos: erros ou valores diferentes do esperado
 - Inconsistências: não combinam/contradizem valores de outros atributos no mesmo objeto
 - Redundâncias: objetos/atributos com mesmos valores
 - Dados incompletos: ausência de valores de atributos

Principal dificuldade: detecção de dados ruidosos

Dados Desbalanceados

Técnicas de rebalanceamento:

Induzir modelo para uma única classe

- Técnicas de classificação para uma classe, treinadas usando somente exemplos de uma classe
- Aprendem classe(s) separadamente

Outros usos de one-class classification:

- Detecção de novidades (ex. falhas em máquinas)
- Detecção de *outliers*
- Comparação de conjuntos de dados (evitar retreinar classificadores para dados semelhantes)

Limpeza de Dados

- Exemplos de causas de erros:
- Falha humana
- Falha no processo de coleta de dados
- Limitações do dispositivo de medição
- Má fé
- Valor de atributo muda com o tempo

Alguns erros são sistemáticos e mais fáceis de detectar e corrigir

Limpeza de Dados

- Consequências:
- Valores ou objetos inteiros podem ser perdidos
- Objetos espúrios ou duplicados podem ser obtidos
 - Ex. diferentes registros para mesma pessoa que morou em endereços diferentes
- Inconsistências
 - Ex.: pessoa com 2 m pesando 10 Kg

Dados incompletos

- Ausência de valores para alguns atributos de alguns objetos
 - Ex. conjunto de dados hospital

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
	M	79		38,0		Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18		43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Limpeza de Dados

- Algumas técnicas de AM conseguem lidar com algumas imperfeições nos dados
- Outras não conseguem ou apresentam dificuldades
- Porém de forma geral, qualidade das análises pode ser deteriorada

Todas as técnicas se beneficiam de melhora na qualidade dos dados, que pode ser obtida por meio de etapa de **limpeza**

Tiago A. A

Dados incompletos

- Possíveis causas:
 - Atributo n\u00e3o era importante quando primeiros dados foram coletados
 - Ex. e-mail na década de 90
 - Desconhecimento do valor do atributo
 - Ex. não saber tipo sanguíneo de paciente em seu cadastro
 - Falta de necessidade/obrigação de apresentar valor
 - Ex. salário em hospital
 - Inexistência de valor para o atributo
 - Ex. número de partos para pacientes do sexo masculino
 - Problema com equipamento para coleta, transmissão e armazenamento de dados

Dados incompletos

- Algumas técnicas de AM são incapazes de lidar com valores ausentes
- Geram erro de execução
- Alternativas para lidar com valores ausentes:
 - Eliminar os objetos com valores ausentes
 - Definir e preencher manualmente os valores ausentes
 - Utilizar método/heurística para definir valores automaticamente
 - Empregar algoritmos de AM que lidam internamente com valores ausentes

Dados incompletos

Técnicas para definição automática de valores:

Criar valor "desconhecido"

Comum a todos ou diferente para cada atributo

Utilizar média/moda/mediana dos valores conhecidos

- Usando todos os objetos ou somente aqueles da mesma classe
- Variação: usar valor mais frequente entre k vizinhos mais próximos

Usar indutor para estimar o valor

- · Valor a ser definido passa a ser o atributo alvo
- Usa informação dos outros atributos para inferior o ausente

Dados incompletos

Técnicas:

Eliminar objetos

- Mais empregada quando classe está ausente
- Não indicada quando número de atributos com valores ausentes varia muito entre os objetos ou quando muitos objetos têm valores ausentes

Definir/preencher manualmente

 Não é factível para muitos valores ausentes

Usar heurística

· Alternativa mais usada

Dados incompletos

- Usando média/moda
- Ex. conjunto de dados hospital

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
27	M	79	Grandes	38,0	4	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	F	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
27	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Pode gerar inconsistências. Ex. paciente de 2 anos com 60 kg

Dados inconsistentes

- Possuem valores conflitantes em seus atributos
- Nos atributos de entrada
 - Ex. 3 anos de idade e 120 kg
- Entre entradas iguais e saída diferente
 - Ex. conjunto de dados hospital

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	M	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
-22	F	72	Pequenas	38,0	3	Saudável

Dados inconsistentes

- Algumas inconsistências são de fácil detecção:
 - Violação de relações conhecidas entre atributos
 - Ex.: Valor de atributo A é sempre menor que valor de atributo B
 - Valor inválido para o atributo
 - Ex.: altura com valor negativo
 - Em outros casos, informações adicionais precisam ser verificadas

Dados inconsistentes

- Possíveis causas:
 - Erro/engano
 - Presença de ruídos nos dados
 - Proposital (fraude)
 - Problemas na integração dos dados
 - Ex. conjuntos de dados com escalas diferentes para uma mesma medida

Tiago A. Al

Dados redundantes

- Valores que não trazem informação nova
 - Objetos redundantes
 - Muito semelhante a outro(s) no conjunto de dados
 - Ex.: Pessoas em diferentes BDs com mesmo endereço e pequenas diferenças nos nomes
 - Atributos redundantes
 - Valor pode ser deduzido a partir do valor de um ou mais atributos
- Possíveis causas:
- Problemas na coleta, entrada, armazenamento, integração ou transmissão

Tiago A. A

Dados redundantes

Ex. conjunto de dados hospital

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	F	67	Pequenas	39,5	4	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	M	67	Médias	38,4	2	Saudável

Duplicação

Dados redundantes

- Atributo redundante: valor pode ser estimado a partir de pelo menos um dos demais atributos
 - Atributos com a mesma informação preditiva
 - Ex. atributos idade e data de nascimento.
 - Ex. atributos quantidade de vendas, valor por venda e venda total
- Atributo redundante pode supervalorizar um dado aspecto dos dados
- Pode também tornar mais lento o processo de indução

Atributos redundantes são geralmente eliminados por técnicas de seleção de atributos

Dados redundantes

- Objetos redundantes participam mais de uma vez do ajuste do modelo
- Pode assim ser considerado um perfil mais importante que o dos outros
- Pode também aumentar custo computacional
- Passos para eliminar objetos redundantes:
 - Identificar as redundâncias
 - Eliminar as redundâncias
 - Remoção ou combinação dos valores

Tiago A

Dados redundantes

- Redundância de atributo está relacionada à sua correlação com um ou mais dos demais atributos
- Dois atributos estão correlacionados quando têm perfil de variação semelhante para diferentes objetos
 - Ex. conjunto de dados hospital

ldade	Sexo	Peso	Manchas	Temp.	# Int.	# Vis.	Diagnóstico
28	М	79	Grandes	38,0	2	2	Doente
18	F	67	Pequenas	39,5	4	4	Doente
49	M	92	Grandes	38,0	2	2	Saudável
18	M	43	Grandes	38,5	20	20	Doente
21	F	52	Médias	37,6	1	1	Saudável
22	F	72	Pequenas	38,0	3	3	Doente
19	F	87	Grandes	39,0	6	6	Doente
- 34	M	67	Médias	38,4	2	2	Saudável

Ruídos

- Objetos que aparentemente não pertencem à distribuição que gerou os dados
- Várias causas possíveis
- Podem levar a superajuste do modelo
 - Algoritmo pode se ater às especificidades dos ruídos
- Mas eliminação pode levar à perda de informação importante
 - Algumas regiões do espaço de atributos podem não ser consideradas

Ruídos Doente Saudável Dados sem ruído Dados com ruído

Outliers

- Valores que estão além dos limites aceitáveis ou são muito diferentes dos demais (exceções)
 - Podem ser valores legítimos
 - Ex. conjunto de dados hospital

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	300	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	M	43	Pequenas	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	M	67	Médias	38,4	2	Saudável

Ruídos

- Algumas técnicas de pré-processamento:
- Técnicas baseadas em distribuição
- Técnicas de encestamento
- Técnicas baseadas em agrupamento dos dados
- Técnicas baseadas em distância
- Técnicas baseadas em regressão ou classificação

Ruídos

Técnicas:

Agrupamento

- · Agrupa objetos/atributos de acordo com semelhança
- Atributos/objetos que não formam grupo são ruídos ou outliers
- Objetos colocados em um grupo que pertence a outra classe também são considerados ruídos

Baseadas em distâncias

- Presença de ruído em atributo frequentemente faz com que ele se distancie dos demais objetos de sua classe
- ⇒ verificar a que classe pertencem os vizinhos mais próximos de x
- Se são de classe diferente, **x** pode ser ruído ou *borderline* (próximo à fronteira de separação das classes, podem ser inseguros)

Ruídos

Técnicas:

Baseadas em distribuição

- Ruídos identificados como observações que diferem de uma distribuição usada na modelagem dos dados
- Problema: distribuição dos dados normalmente não é conhecida a priori

Encestamento

- Suavizam valor de atributo
- 1º: Ordena valores de atributo:
- 2º: Divide em cestas (faixas), cada uma com o mesmo número de valores
- 3º: Substitui valores em uma mesma cesta, por ex., por média/moda

Ruídos

Técnicas:

Baseadas em regressão/classificação

• Usam função de regressão ou classificação para, dado um valor com ruído, estimar seu valor verdadeiro (regressão para atributo contínuo e classificação para simbólico)

ago A. Alm

Transformação de Dados

- Algumas técnicas de AM são limitadas à manipulação de valores de determinado tipo
- Apenas numéricos ou simbólicos
- Algumas técnicas de AM têm desempenho influenciado pela variação dos valores numéricos

Conversão simbólico-numérico

- Atributo nominal com mais valores
- Inexistência de relação de ordem deve ser mantida
 - Diferença entre quaisquer dois valores numéricos deve ser a mesma
- Codificação canônica: uso de c bits para c valores
 - Cada posição na sequência binária corresponde a um valor possível do atributo nominal
 - Cada sequência possui apenas um bit com valor 1
 - Distância de Hamming entre quaisquer dois valores é 2

Conversão simbólico-numérico

- Atributo simbólico com dois valores
- Um dígito binário é suficiente
 - Ex. presença/ausência = 1/0
 - Se ordinal, 0 indica o menor valor e 1 o maior valor
- Atributo simbólico com mais valores
- Conversão depende se o atributo é nominal ou ordinal

Conversão simbólico-numérico

- Ex. conjunto de dados hospital
 - Conversão de atributo Sexo para numérico

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	0	79	Grandes	38,0	2	Doente
18	1	67	Pequenas	39,5	4	Doente
49	0	92	Grandes	38,0	2	Saudável
18	0	43	Grandes	38,5	20	Doente
21	1	52	Médias	37,6	1	Saudável
22	1	72	Pequenas	38,0	3	Doente
19	1	87	Grandes	39,0	6	Doente
34	0	67	Médias	38,4	2	Saudável
	1					

M = 0 F = 1

Conversão simbólico-numérico Atributo nominal com mais que dois valores Ex. codificação canônica (1-para-c ou topológica) Atributo Código 1-para-c Azul 100000 Amarelo 010000 Verde 001000 Preto 000100

Dependendo do número de valores nominais, pode gerar cadeias muito grandes de bits. Ex.: 193 nomes de países

000010

000001

Conversão simbólico-numérico

Ex. conjunto de dados hospital

Marrom

Branco

Conversão de atributo ordinal Manchas

	ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
	28	М	79	3	38,0	2	Doente
	18	F	67	1	39,5	4	Doente
	49	M	92	3	38,0	2	Saudável
	18	M	43	3	38,5	20	Doente
	21	F	52	2	37,6	1	Saudável
	22	F	72	1	38,0	3	Doente
	19	F	87	3	39,0	6	Doente
	34	M	67	2	38,4	2	Saudável
			G	3randes =	3		
Ì			N	/lédias = 2	2		
			F	Pequenas	= 1		

Conversão simbólico-numérico

- Atributo ordinal com mais que dois valores
- Relação de ordem deve ser preservada
- Ordenar valores ordinais e codificar cada um de acordo com sua posição na ordem com inteiro ou real

Atributo	Valor inteiro
Primeiro	0
Segundo	1
Terceiro	2
Quarto	3
Quinto	4
Sexto	5

Distância entre valores varia de acordo com proximidade entre eles

Transformação de atributos numéricos

- Algumas vezes é necessário transformar o valor de um atributo numérico em outro valor numérico
 - Quando o intervalo de valores são muito diferentes, levando a grande variação
 - Quando vários atributos estão em escalas diferentes
 - Para evitar que um atributo predomine sobre outro
- Porém, em alguns casos pode ser importante preservar a variação

Tiann A Al

Transformação de atributos numéricos

- Transformação é aplicada aos valores de um dado atributo de todos os objetos
- Uma transformação muito usada: normalização
- Faz com que conjunto de valores de um atributo tenha uma determinada propriedade
- Quando escalas de valores de atributos distintos são muito diferentes
 - Evita que um atributo predomine sobre o outro
 - A menos que isso seja importante

Normalização por reescala

- Reescalar: adicionar/subtrair/multiplicar/dividir por uma constante
- Normalização min-max
 - São definidos inicialmente mínimo e máximo para os novos valores
 - Depois, para cada atributo aplica:

$$v_{\text{novo}} = \min + v_{\text{atual}} - \text{menor} \cdot (\text{max} - \text{min})$$

Normalização

Deve ser aplicada a cada atributo individualmente

Duas formas:

Por amplitude

- Por reescala: define nova escala (máximo e mínimo) de valores para atributos
- Por padronização: define um valor central e de espalhamento comuns para todos os atributos

Por distribuição

- · Muda a escala de valores
- Ex. Ordena valores dos atributos e substitui cada valor por sua posição no *ranking* (valores 1, 5, 9, e 3 viram 1, 3, 4 e 2)
- Se valores originais forem distintos, resultado é distribuição uniforme

Normalização por reescala

- Ex. conjunto de dados hospital
- Normalização de Idade entre 0 (min) e 1 (max)

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	M	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	M	67	Médias	38,4	2	Saudável

Maior = 49 Menor = 18

Normalização por reescala

- Ex. conjunto de dados hospital
- Normalização de Idade entre 0 (min) e 1 (max)

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	M	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	M	67	Médias	38,4	2	Saudável
			_			

$$v_{\text{novo}} = v_{\text{atual}} - 18$$

$$49 - 18$$

Normalização por reescala

- Ex. conjunto de dados hospital
- Normalização de # Int. entre 0 (min) e 1 (max)

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	M	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	M	67	Médias	38,4	2	Saudável

Maior = 20 Menor = 1

Normalização por reescala

- Ex. conjunto de dados hospital
- Normalização de Idade entre 0 (min) e 1 (max)

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,32	M	79	Grandes	38,0	2	Doente
0	F	67	Pequenas	39,5	4	Doente
1	M	92	Grandes	38,0	2	Saudável
0	M	43	Grandes	38,5	20	Doente
0,1	F	52	Médias	37,6	1	Saudável
0,13	F	72	Pequenas	38,0	3	Doente
0,03	F	87	Grandes	39,0	6	Doente
0,52	M	67	Médias	38,4	2	Saudável

Normalização por reescala

- Ex. conjunto de dados hospital
 - Normalização de # Int. entre 0 (min) e 1 (max)

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	M	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

 $v_{\text{novo}} = \frac{v_{\text{atual}} - 1}{20 - 1}$

Normalização por reescala

- Ex. conjunto de dados hospital
- Normalização de # Int. entre 0 (min) e 1 (max)

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,32	М	79	Grandes	38,0	0,05	Doente
0	F	67	Pequenas	39,5	0,16	Doente
1	M	92	Grandes	38,0	0,05	Saudável
0	M	43	Grandes	38,5	1	Doente
0,1	F	52	Médias	37,6	0	Saudável
0,13	F	72	Pequenas	38,0	0,11	Doente
0,03	F	87	Grandes	39,0	0,26	Doente
0,52	М	67	Médias	38,4	0,05	Saudável

Normalização por padronização

- Para padronizar valores de atributos basta:
- Adicionar/subtrair por uma medida de localização
- Multiplicar/dividir por uma medida de escala
- Lida melhor com outliers
- Ex. atributos com média 0 e variância 1:

$$v_{\text{novo}} = v_{\text{atual}} - \text{media}(\mathbf{x}^{i})$$

$$desv_{\text{pad}}(\mathbf{x}^{i})$$

Diferentes atributos podem ter limites superiores e inferiores diferentes, mas terão os mesmos valores para as medidas de escala e espalhamento

Normalização por reescala

- Ex. conjunto de dados hospital
 - Efeito de outlier

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,32	M	79	Grandes	38,0	0,05	Doente
0	F	67	Pequenas	39,5	0,16	Doente
1	M	92	Grandes	38,0	0,05	Saudável
0	M	43	Grandes	38,5	1	Doente
0,1	F	52	Médias	37,6	0	Saudável
0,13	F	72	Pequenas	38,0	0,11	Doente
0,03	F	87	Grandes	39,0	0,26	Doente
0,52	M	67	Médias	38,4	0,05	Saudável

Normalização por padronização

- Ex. conjunto de dados hospital
 - Padronização de Idade com média 0 e variância 1

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	M	92	Grandes	38,0	2	Saudável
18	M	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	M	67	Médias	38,4	2	Saudável

Média = 26,12 Desv pad = 10,79

Normalização por padronização

- Ex. conjunto de dados hospital
- Padronização de Idade com média 0 e variância 1

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
28	М	79	Grandes	38,0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	М	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	M	67	Médias	38,4	2	Saudável
$\overline{\bot}$						

$$v_{\text{novo}} = \frac{v_{\text{atual}} - 26,12}{10,79}$$

Normalização por padronização

- Ex. conjunto de dados hospital
 - Padronização de # Int. com média 0 e desvio-padrão 1

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,6	М	79	Grandes	38,0	2	Doente
-0,32	F	67	Pequenas	39,5	4	Doente
2,55	M	92	Grandes	38,0	2	Saudável
-0,32	M	43	Grandes	38,5	20	Doente
-0,05	F	52	Médias	37,6	1	Saudável
0,05	F	72	Pequenas	38,0	3	Doente
-0,23	F	87	Grandes	39,0	6	Doente
1,16	M	67	Médias	38,4	2	Saudável

Média = 5 desv_pad = 6,26

Normalização por padronização

- Ex. conjunto de dados hospital
 - Padronização de Idade com média 0 e variância 1

gnóstico
nte
nte
dável
nte
dável
nte
nte
dável

Média = 0 Desv pad = 1

Normalização por padronização

- Ex. conjunto de dados hospital
 - Padronização de # Int. com média 0 e desvio-padrão 1

ldade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,6	М	79	Grandes	38,0	2	Doente
-0,32	F	67	Pequenas	39,5	4	Doente
2,55	M	92	Grandes	38,0	2	Saudável
-0,32	M	43	Grandes	38,5	20	Doente
-0,05	F	52	Médias	37,6	1	Saudável
0,05	F	72	Pequenas	38,0	3	Doente
-0,23	F	87	Grandes	39,0	6	Doente
1,16	M	67	Médias	38,4	2	Saudável

 $v_{\text{novo}} = \frac{v_{\text{atual}} - 5}{6.26}$

Normalização por padronização Ex. conjunto de dados hospital Padronização de # Int. com média 0 e desvio-padrão 1 Peso Manchas Temp. # Int. Diagnóstico Grandes 38 -0.48 Doente -0,75 67 Pequenas 39,5 -0,16 Doente -0,48 Saudável Doente -0,64 Saudável Doente Doente -0,48 Saudável Média = 0Desv pad = 1

Transformação de atributos numéricos

- Outro tipo de transformação: tradução
- Valor é traduzido por um mais facilmente manipulável
 - Ex. converter data de nascimento para idade
 - Ex. converter temperatura de F para C
 - Ex. localização por GPS para código postal

Normalização por padronização

Ex. conjunto de dados hospital

Efeito de outlier

Idade	Sexo	Peso	Manchas	Temp.	# Int.	Diagnóstico
0,17	М	79	Grandes	38	-0,48	Doente
-0,75	F	67	Pequenas	39,5	-0,16	Doente
2,12	M	92	Grandes	38	-0,48	Saudável
-0,75	M	43	Grandes	38,5	2,4	Doente
-0,48	F	52	Médias	37,6	-0,64	Saudável
-0,38	F	72	Pequenas	38	-0,32	Doente
-0,66	F	87	Grandes	39	0,16	Doente
0,73	М	67	Médias	38,4	-0,48	Saudável

Transformação de atributos numéricos

Outro tipo de transformação: aplicação de função simples

- Aplicação a cada valor do atributo
 - Ex. log, exp, raiz, seno, 1/x, abs
 - Ex. apenas magnitude dos valores é importante ⇒ converter para valor absoluto
- Funções raiz, log e 1/x: aproximam uma distribuição Gaussiana
- Função log: comprimir dados com grande intervalo de valores

Considerações finais

- Pré-processamento:
 - Amostragem
 - Limpeza de dados
 - Transformação de dados

Referências Softwares utilizados: Weka Outras referências: http://prlab.tudelft.nl/content/one-class-classification

Referências Illustrações utilizadas: http://well.blogs.nytimes.com/2008/04/10/mammograms-new-and-old/ http://investmentdirections.com/2011/01/27/the-feds-unbalanced-decision-stockholders-win-bondholders-lose/ http://www.inb.uni-luebeck.de/tools-demos/novelty-detection/novelty-detection http://www.cs.utah.edu/~suyash/pubs/denoising_mri/ http://www.quasimondo.com/archives/000658.php