大M法

两阶段法

当约束条件中有等式约束,而系数矩阵中没有单位矩阵时,可添加人工变量法来人为地在系数矩阵中构造一个单位矩阵,以它为初始可行基,而约束条件是大于等于型的不等式时,先变成等式再用人工变量法。

大M法

$$\min z = -3x_1 + x_2 + x_3$$

$$\begin{cases} x_1 - 2x_2 + x_3 \le 11 \\ -4x_1 + x_2 + 2x_3 \ge 3 \\ -2x_1 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

化为标准型为

$$\max z = 3x_1 - x_2 - x_3 - Mx_6 - Mx_7$$

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 &= 11 \\ -4x_1 + x_2 + 2x_3 - x_5 + x_6 &= 3 \\ -2x_1 + x_3 + x_7 &= 1 \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$$

变成标准型后,约束方 程组的系数矩阵中没有 3阶单位矩阵,因此在 第2个约束方程的左边 加入一个人工变量,约 束条件和目标函数变为 标准型,其中M代表一 个充分大的数,这样, 由于人工变量在目标函 数中的系数是-M,它的 取值若不为0,目标函 数就不能极大化。具体 求解过程如下:

$c_{j} \rightarrow$	3	-1	-1	0 0	-N	1 –	\overline{M}
c_i 基 b_i	\mathcal{X}_1	x_2	x_3	x_4	\mathcal{X}_{5}	x_6	\mathcal{X}_7
$0 x_4 11$	1	2	1	1	0	0	0
$-\mathbf{M} x_6 3$	-4	1	2	0	-1	1	0
$-\mathbf{M} x_7 1$	-2	0	(1)	0	0	0	1
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	3-6M	-1+M	-1+	-3M 0	-M	0	0
$0 x_4 10$	3	-2	0	1	0	0	-1
$-\mathbf{M} x_6 1$	0	(1)	0	0	-1	1	-2
$-1 x_3 1$	-2	0	1	0	0	0	1
$oldsymbol{\sigma}_{j}$	1	-1+M	0	0	-M	0	1-3M
0 x_4 12	3	0	0	1	2	2	5
$-1 x_2 1$	0	1	0	0	-1	1	-2
$-1 x_3 1$	-2	0	1	0	0	0	1
$\sigma_{\scriptscriptstyle j}$	1	0	0	0	-1	1-M	-1-M
$3 x_1 4$	1	0	0	1/3	-2/3	2/3	-5/3
$-1 x_2 1$	0	1	0	0	-1	1	-2
$-1 x_3 9$	0	0	1	2/3	-4/3	4/3	-7/3
$oldsymbol{\sigma}_{j}$	0	0	0	-1/3	-1/3	1/3-M	2/3-M

最优解为

$$x^* = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 9 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$z^* = 2$$

大M法

$$\max z = -3x_1 + x_3$$

$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \\ 3x_2 + x_3 = 9 \end{cases}$$

$$x_1, x_2, x_3 \ge 0$$
化为标准型为
$$\max z = -3x_1 + x_3 - Mx_6 - Mx_7$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 & = 1 \\ 3x_2 + x_3 & + x_7 = 9 \end{cases}$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$$

变成标准型后,约束方 程组的系数矩阵中没有 3阶单位矩阵,因此在 第2个约束方程的左边 加入一个人工变量,约 束条件和目标函数变为 标准型,其中M代表一 个充分大的数,这样, 由于人工变量在目标函 数中的系数是-M,它的 取值若不为0,目标函 数就不能极大化。具体 求解过程如下:

两阶段法

$$\max z = -3x_1 + x_3$$

$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

化为标准型为,添加人工变量得

$$\max z = -3x_1 + 0x_2 + x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 &= 1 \\ 3x_2 + x_3 &+ x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

第一阶段

$$\min z = x_6 + x_7$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 &= 1 \\ 3x_2 + x_3 &+ x_7 = 9 \\ x_j \ge 0, j = 1, \dots \end{cases}$$

用单纯形法求得最终单纯形表

$0 x_4 0$	0	0	0 1/3	1	-1/2	1/2	-1/2
$0 x_2 3$	0	1	1/3	0	0	0	1/3
$0 x_1 1$	1	0	2/3	0	1/2	-1/2	1/6
$\sigma_{_j}$	0	0	0	0	0	-1	-1

两阶段法

第二阶段:将上阶段中的人工变量除去,目标函数变为 $\max z = -3x_1 + 0x_2 + x_3 + 0x_4 + 0x_5$ 再从其最终单纯形表出发,继续用单纯形法计算

$c_j \rightarrow$	-3	0	1	0	О
c_i 基 b_i	x_1	x_2	X_3	\mathcal{X}_4	X_5
$0 x_4 0$	0	0	0	1	-1/2
$0 x_2 3$	0	1	1/3	0	0
$-3 x_1 1$	1	0	2/3	0	1/2
σ_j	0	0	3	0	3/2
$0 x_4 0$	0	0	0	1	-1/2
$0 x_2 5/2$	-1/2	1	0	0	-1/4
1 x_3 3/2	3/2	0	1	0	43/
$\sigma_{_j}$	-2/3	0	0	0	-3/4

单纯形法的近一步讨论——解的判别

(1) 唯一最优解

用单纯形法求解得到的最终单纯形表中,当所有 基变量的检验数都为零,所有的非基变量的检验 数都小于零时,得到的是唯一最优解。

(2) 无穷多最优解

如果在单纯形表中,某个非基变量的检验数为零,则将其换入基变量中,如仍是最优解,就说明有两个基本可行解是最优解,则两点连线上的点也是最优解,即有无穷多最优解。(例)

用单纯形法求解并得到最终单纯形表

$$\max z = 2x_1 + 4x_2$$

$$\begin{cases} 2x_1 + 2x_2 \le 12 \\ x_1 + 2x_2 \le 8 \end{cases}$$

$$3x_2 \le 9$$

$$x_1, x_2 \ge 0$$

作为非基变量的x3的检验数为零,把x3换入基变量中得:

$c_j \rightarrow$	-3	O	1	0	0
c_i 基 b_i	x_1	\mathcal{X}_2	x_3	\mathcal{X}_4	X_5
$0 x_5 3$	0	0	[3/2]	-3	1
$2 x_1 4$	1	0	1	-1	0
$4 x_2 2$	0	1	-1/2	1	0
$\sigma_{_j}$	0	0	0	-2	0
$0 x_3 2$	0	0	1	-2	2/3
$2 x_1 2$	1	0	0	1	-2/3
$4 x_2 3$	0	1	0	0	1/3
$\sigma_{_j}$	0	0	0	-2	0

无界解和无解

(3)单纯形法求解时,如果存在某个 $\sigma_j > 0$,而且向量 p_j 的所有元素 $a_{ij} \leq 0$,则有无界解。

max

$$z = 2x_1 + 3x_2$$
 $c_j \rightarrow$
 -3 0 1 0

$$\begin{cases} x_1 - x_2 + x_3 = 1 \\ x_1 + x_4 = 2 \\ x_j \ge 0, j = 1, \cdots, 5 \end{cases}$$

$$\begin{cases} c_i \not \sqsubseteq b_i \\ 0 x_3 & 3 & 1 & -1 & 1 & 0 \\ 2 x_4 & 4 & 1 & 0 & 0 & 1 \\ \hline \sigma_j & 2 & 3 & 0 & 0 \end{cases}$$

表中 $\sigma_j > 0$,但 x_2 列数字为0,即 x_2 的取值可无限增大而不受限制。 由此目标函数值也可无限增大,说明问题无界。