

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 02094693 A

(43) Date of publication of application: 05 . 04 . 90

(51) Int. CI

H05K 1/11

(21) Application number: 63246941

(71) Applicant:

NEC CORP

(22) Date of filing: 30 . 09 . 88

(72) Inventor:

SAWANO ISATAKE

(54) PRINTED WIRING BOARD HAVING COAXIAL THROUGH-HOLE

(57) Abstract:

PURPOSE: To match characteristic impedance of all the signal transmission pathes inside a printed wiring board readily and to improve high frequency characteristics by making a through-hole of coaxial structure.

CONSTITUTION: Signal wiring patterns 4, 14 are strip lines located apart a fixed distance from a ground layer 15. The mutual connection is made by a through-hole 3. The through-hole 3 is enclosed by a tubular external conductor 2 which is coaxial with a center axis 7 of the through-hole 3 through an insulating layer 8 of a fixed thickness. The tubular external conductor 2 is connected electrically with a ground layer 15 and ground electric potential is supplied. Therefore, a coaxial through-hole 1 is constituted by the through-hole 3 and the tubular external conductor 2. According to this constitution, it is possible to make characteristic impedance of the coaxial through-hole 1 the same as characteristic impedance $\bar{Z_0}$ of a strip line by selecting an appropriate thickness of the insulating layer 8, thus realizing a good high frequency characteristics.

COPYRIGHT: (C)1990, JPO& Japio

⑨日本国特許庁(JP)

① 特許出願公開

@ 公開特許公報(A) 平2-94693

Sint. Cl. 5

識別記号

庁内整理番号 Н

❸公開 平成2年(1990)4月5日

H 05 K 1/11

8727-5E

審査請求 未請求 請求項の数 1 (全3頁)

60発明の名称

同軸形スルーホールを有するブリント配線板

②特 顧 昭63-246941

匈出 顧 昭63(1988) 9月30日

@発 明 者 襞 武 東京都港区芝 5 丁目33番 1号 日本電気株式会社内

東京都港区芝5丁目33番1号

勿出 顋 人 日本電気株式会社

四代 理 人 弁理士 井ノロ 壽

Committee of the second

1.発明の名称

同軸形スルーホールを有するブリント配線板 2.特許請求の顧問

スルーホールと、前記スルーホールの中心軸 と同軸な円筒形外部導体とからなる同軸形スル

ーホールを有するブリント配線板。

B発明の詳細な説明

(産薬上の利用分野)

本発明はブリント配線板に設けられるスルー ホール。さらに詳しく云えは萬周使特性の改善 を考慮したスルーホールに関する。

(従来の技術)

高周辺信号を伝送するブリント配級板では、 信号配額パターンをストリップライン化あるい はマイクロストリップライン化して高周仮修性 の劣化を防止している。

(発明が解決しようとする課題)

しかしながらブリント配額板の異なる層間の

信号配線パターンを相互接続するためのスルー ホール(メツキ貫通孔)には、何んら高周波特 性の設計が施されていたかつた。

そのため、伝送信号速度が上昇すると、スルー ホール部が伝送信号仮形を劣化させ。高品質な 伝送が困難であるという欠点があつた。

この従来の欠点を図面によつて説明する。 舞4 図は従来のスルーホールを施こしたブリン ト配線板の斜視図である。

プリント配線板6の中間層に接地層5が設けら れている。信号配線パターン41かよび42は 一定原の船級層71と72を介して配置されて いる.

よつて、信号配線パターン41および42はス トリップライン化されており、その特性インビ ーダンスは規定される。

一方、スルーホール 3 は単に中空な導体である ので、インダクティブな業子と見なされる。こ れらの信号配額パターン41、42およびスル ーポール 3 紅餌 6 図の分布足数等価回路で扱わ

特開平2-94693(2)

すことができる。

この 等価回路は、 特性インピー ダンス 2 。を有 **丁る信号配線パターン41の寄価回路61。イ** ンダクタンスLを有するスルーホール3 の等価 回路 6 3 むよび等性インピーダンス 2 o を有す る信号配線パターン 4 2 の等価回路 6 2 が凝続 接続されたものである。

このような回路では、スルーホール3のインダ クタンスLと信号配線パターン41、42の特 性インピーダンスZ。とのインピーダンス不整 **台により、 馬 耐放 特性を良好に保つことができ** ない。したがつて、高速度なデイジタル信号波 形を劣化させ。高品質伝送が期待できたい。

本兇明の目的は上記欠点を除去した、高周波 特性の優れたスルーホールを有するブリント配 緞板を提供することにある。

(鉄蹬を解決するための手段)

新記目的を達成するために本発明による同徳 形スルーホールを有するブリント配線板はスル - ホールと、肛犯スルーホールの中心軸と同軸

ル1の特性インピーダンスは絶録層8の厚さを 適切に選択することにより。ストリップライン の特性インピーダンス20と同一にすることが

第2図は第1図の信号配線バターンおよび同 動形スルーホールの等価回路である。

信号配線パターン4.14および同軸形スルー ホール1は特性インピーダンス20をもつ信号 配線パターン等価回路11、13および特性イ ンピーダンス Ζο をもつ同軸形スルーホール等 価回路12で表わされる。

このような回路により、各級路の特性インピー ダンスを斃合させることができるので、 良好な 髙岡仮特性を選成できる。

. 第3図は同軸形スルーホール1の製作方法を 説明するための図である。

第3図(a)から(f)までは製作工程を示す図である。 まず、第3図(a)に示すように、接地磨15の中 間層を有するブリント基板9を用意する。

次に、この基板の所足の位置に円孔をおけ、さ

な円筒形外部導体とからなる同軸形スルーホー ルを有している。

(実施例)

以下、図面を参照して本発明をさらに詳しく 説明する。

第 1 図は本発明による同軸形スルーホールを有 するブリント配線板の一奥施例で。一部破断し て示した斜視図である。 第2図は第1図の配線 パターン、スルーホールの等価回路である。 第1図において、信号配線パターン4および! 4 仕扱地暦 1 5 から一定距離離れて配置された ストリップラインであり、その相互扱統はスル

--ホール3によつて行なわれている。 スルーホール3は、一定厚の絶縁暦8を狭んで スルーホール3の中心軸7と同軸な円筒形外部 導体2によつて囲まれている。

円筒形外部導体 2 紅 接地層 1 5 と電気的に接続 され、接地電位が供給される。したがつて、ス ルーホール 3 と円筒形外部 準体 2 とで同 髄形ス ルーホール 1 が郷成される。 同軸形スルーホー

らにメッキを施こし、円筒形外配導体 2 を第 3 図(b)のように作成する。とのとき、接地増15 と円筒形外那導体でとはメッキにより電気的被 紀がなされる。

次に、円簡形外配導体2の中空部にエポキシ等 の絶級体が詰められ、熱加工され、第3図(c)の ように、絶縁暦8が形成される。

次に、第 3 図(d)に示すようにブリント基板 9 の 両面に。鋼張蒸板93と96を各々接着する。 次いで第3図(e)に示すように、信号配線パター ン4と14をエッチングにより形成する。 さらに、円筒形外部導体2の中心にスルーホー

ル3を設け、第3図(I)のような同軸形スルーホ - ル1が完成する。

(発明の効果)

以上、説明したように本発明は、スルーホー ルを问謝化構造に丁ることにより、ブリント配 線板内の全ての信号伝送路の特性インビーダン スを容易に整合させることができるので。高周 放将性の優れた伝送路を有するブリント配線板 を提供できる。

4.図面の簡単な説明

第1図は本発明による同軸形スルーホールが 施こされたブリント配板の一実施例を示す一 郵破断斜視図。第2図は本発明の同軸形スルー ホールおよびブリント配線パターンの等価回路 図。第3四は本発明にかかるブリント配線板の 製作工程図、無4回は従来のスルーホールが施 こされたブリント配線板の研視図。第5図は従 来のスルーホールおよびブリント配線パターン の等価回路図である。

1…同軸形スルーホール

2…円億形外部導体 3…スルーホール

4 . 1 4 . 4 1 . 4 2 …信号配線パターン

5 , 15 … 接地層

6.9 ... ブリント配線板 7 ... 中心軸

8 … 絶縁屆

将肝出血人 日本锡気株式会社

代理人 弁理士 井 ノ ロ は

(古) 新花林 (大川·木·儿) (中山 動) (大川·木·儿) (大川·木·北) (大川·木·北

* | 🖾

≯3⊠

