

Implémentation d'un modèle de scoring

Etudiant : Raphaël PUIG

Evaluateur : Mously DIAW

Mise en contexte

- L'entreprise *Prêt à dépenser* propose des crédit à la consommation à des clients ayant peu ou pas du tout d'historique de prêt.
- → Nécessité d'estimer le risque d'échec de remboursement.
- ☐ Objectifs:
 - 1 Implémenter un modèle prédictif de la probabilité de non remboursement
 - 2 Rendre les résultats accessibles via une application interactive

Plan

- Présentation des données
- ☐ Réduction de la base de données
- Sélection du modèle
- Choix des variables d'intérêt
- Optimisation du modèle
- ☐ Présentation de l'application web
- Conclusion et perspectives

Présentation des données

- Données initiales exploitables :
 - 8 tableaux de données au format CSV (Home Credit Default Risk | Kaggle)
 - ☐ Informations strictement financières : revenus, montant du prêt, mensualités, etc.
 - ☐ Informations "étendues" : âge, secteur professionnel, statut marital, type de logement, etc.
 - □ Variable cible TARGET binaire : 0 = crédit remboursé, 1 = échec de remboursement.
- → Des centaines de variables qu'il convient d'agréger en une seule base.
 - ☐ Certaines base comptent plusieurs lignes par client → à résumer en une seule ligne
 - Limiter la perte d'information lors du processus (occurrence, minimum, maximum, moyenne)

Après agrégation : ~ 1900 variables ⇒ nécessité de réduire la base de données

Réduction de la base de données

- ☐ Suppression des variables vides à +75%
 - ☐ Seulement 90 variables supprimées (peu efficace)
 - Choix arbitraire
- ☐ Suppression des variables corrélées à +90%
 - □ Variables faisant en quelque sorte "double emploi"
 - ☐ Beaucoup plus de variables supprimées (~700)

Base de données réduite à ~1100 variables → encore trop large ⇒ faire un choix

Sélection du modèle

- Plusieurs modèles essayés a priori sur la base application_train.csv
- Modèles de classification basés sur des arbres de décisions de faible profondeur (apprenants dits "faibles").

Modèles séquentiels	Modèles parallèles
AdaBoost	Extra Trees
GradientBoosting	Random Forest
Light Gradient Boosted Machine	Autre : DecisionTree

Sélection du modèle

Modèles séquentiels (boosting)

Un seul modèle est créé puis successivement amélioré en pénalisant les coefficients qui réduisent ses performances.

Modèles parallèles (random forest)

Un très grand nombre de sous modèles est créé simultanément puis moyenné pour créer un modèle final.

Sélection du modèle

- □ Critères de décision :
 - ☐ Performance sur la base de validation (valeur moyenne du *ROC AUC score*)
 - ☐ Écart de performance entre la phase d'entraînement et de validation (*train-valid gap*)
 - ☐ 1 Temps de calcul 1

	Ada Boost	Gradient Boosting	LGBM	Decision Tree	Extra Trees	Random Forest
Validation ROC AUC score	0.740	0.749	0.752	0.537	0.702	0.713
Train-valid gap	0.006	0.009	0.049	0.463	0.298	0.287
Computation time	3' 20"	13' 36"	0' 19"	1' 00"	4' 43"	3' 53"

Temps de calcul très avantageux pour Light Gradient Boosted Machine Classifier.

Choix des variables d'intérêt

- Utilisation de la fonctionnalité Features importance
- Valeurs par défaut des hyperparamètres du modèle
- Succession entraînement + validation → identification des variables d'importance nulle → suppression des variables concernées
- Réduction progressive de la base jusqu'à stabilisation
 (i.e. aucune variable identifiée comme d'importance nulle)

Base réduite à 498 variables → la base est à présent exploitable.

Choix des variables d'intérêt

- ☐ LGBMClassifier (hyperparamètres par défaut) + 498 variables.
 - ROC AUC score moyen (validation): 0.776
 - ROC AUC score gap (train vs valid): 0.051
 - ☐ Temps de calcul : 2'30"
- Objectif : identifier la combinaison des hyperparamètres permettant
 - Réduire autant que possible le *gap* entre la phase d'entraînement et de validation.
 - ☐ Augmenter (si possible) le ROC AUC score de validation.
- Le nombre d'hyperparamètres à ajuster est trop important pour une recherche systématique (temps de calcul vraiment prohibitif).

- Recherche en deux temps :
 - Une recherche sur un nombre limité de combinaison composées aléatoirement.
 - ☐ Une recherche systématique autour de la combinaison la plus prometteuse.
- Nécessité de passer par un échantillon de la base de données.
 - Le résultat de la random search dépend de la taille de l'échantillon.
 - ☐ Plusieurs échantillons sont considérés : (3,25%), 10% et 20% de la base.
- Des compromis sont nécessaires :
 - ☐ Taille de l'échantillon d'entraînement
 - Nombre de combinaisons
 - ☐ 1 Temps de calcul 1

10 %

100 points 23 min

| O 25 |

100 points 40 min

20 %

1000 points 3 h 50 min

Scatter plot of indicators

Scatter plot of indicators

1000 points 6 h 30 min

10 %

100 points 2 h 13 min

100 points 12 h 57 min

20 %

1000 points 5 h 52 min

Scatter plot of indicators

1000 points 14 h 19 min

Jeu de paramètres sélectionné : 1				
boosting_type	goss			
objective	binary			
num_leaves	5			
n_estimators	82			
learning_rate	0.092			
reg_alpha	0.82			
reg_lambda	0.4			
subsample	1.0			
colsample_bytree	0.57			
is_unbalance	False			

Application web

- Objectifs:
 - Afficher les prédictions et les variables les plus importantes des clients de toute la base.
 - Permettre le calcul et l'affichage de prédictions effectuées sur des nouveaux clients.
 - Déployer l'application sur un serveur de manière à la rendre accessible depuis n'importe où.
- → Préalables :
 - Constituer une base de donnée des clients et leur prédiction.
 - Exporter le modèle et les utilitaires (standardiseur et imputeur de données manquantes).
 - ☐ Constituer des échantillons de clients (test du prédicteur).
- ☐ Interface de programmation : iii plotly | Dash Déploiement : 片 некоки

Application web / homepage

- Page d'accueil à partir de laquelle l'utilisateur peut sélectionner la fonctionnalité désirée.
- Changement de page par clic sur le titre.

Application web / dashboard

- Kernel density
 estimators des
 principales variables
 du modèle et
 probabilité d'échec de
 remboursement.
- Choix du client par menu déroulant ou directement en tapant son identifiant.
- Le repère en pointillé se déplace en fonction du client.

Application web / predictor

- Chargement d'un fichier client au format csv ou xls en cliquant sur UPLOAD FILE.
- Affichage des principales variables et de la prédiction associé à chaque client.
- Possibilité de classer par ordre croissant ou décroissant chaque variable.
- Code couleur pour faciliter la lecture.

Conclusions et perspectives

- ☐ Travail réalisé à ce stade :
 - Bases de données éparses agrégées en une seule.
 - ☐ Choix de l'algorithme de classification LGBM Classifier.
 - Réduction de la base (abandon des variables corrélées et identification des variables d'intérêt).
 - Optimisation du modèle par *random search* puis *grid search*.
 - ☐ Mise à disposition des résultats et du modèle prédictif *via* une application web.
- Améliorations possibles :
 - ☐ Implémentation d'un *early stopping* pour réduire le temps de calcul des *random* et *grid search*.
 - ☐ Changement de l'algorithme d'optimisation pour une optimisation Bayésienne.

Merci de votre attention.

Annexe 1: ROC-AUC score

- Métrique adaptée au classification binaire.
- □ Receiver Operating Characteristic Area Under (the) Curve.

	Prédit 0	Prédit 1
Réel 0	Vrai nég. (TP)	Faux pos. (FP)
Réel 1	Faux nég. (FN)	Vrai pos. (TP)

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

ROC-AUC score 1 > ROC-AUC score 2

Annexe 2 : Fonction de coût

- Fonction coût de LGBM Classifier = valeur moyenne de la fonction de perte.
- Fonction de perte dans une classification binaire : logistic loss function

fct logistique :
$$\hat{y}_i = g(\mathbf{w}.\mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{w}.\mathbf{x}_i}}$$

$$\phi(x) = \frac{1}{1 + e^{-x}}$$

fct de perte : $L_{log}(y, \hat{y}) = -(y \cdot log(\hat{y}) + (1 - y) \cdot log(1 - \hat{y})) \leftarrow à minimiser (ou min. local)$

fct de coût :
$$J(w) = \frac{-1}{N} \sum_{i=1}^{N} [y_i . \log(\hat{y}_i) + (1 - y_i) . \log(1 - \hat{y}_i)]$$