Deep Generative Models

Lecture 7

Roman Isachenko

2024, Spring

Recap of previous lecture

Deterministic variational posterior

$$q(c_{ij} = k^* | \mathbf{x}, \phi) =$$

$$\begin{cases} 1, & \text{for } k^* = \arg\min_k \|[\mathbf{z}_e]_{ij} - \mathbf{e}_k\|; \\ 0, & \text{otherwise.} \end{cases}$$

ELBO

$$\mathcal{L}(\phi, \theta) = \mathbb{E}_{q(c|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{e}_c, \theta) - \log K = \log p(\mathbf{x}|\mathbf{z}_q, \theta) - \log K.$$

Straight-through gradient estimation

$$\frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \boldsymbol{\phi}} = \frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \mathbf{z}_q} \cdot \frac{\partial \mathbf{z}_q}{\partial \boldsymbol{\phi}} \approx \frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \mathbf{z}_q} \cdot \frac{\partial \mathbf{z}_e}{\partial \boldsymbol{\phi}}$$

Recap of previous lecture

Gumbel-max trick

Let $g_k \sim \mathsf{Gumbel}(0,1)$ for $k=1,\ldots,K$. Then

$$c = \arg\max_k [\log \pi_k + g_k]$$

has a categorical distribution $c \sim \mathsf{Categorical}(\pi)$.

Gumbel-softmax relaxation

Concrete distribution = **con**tinuous + dis**crete**

$$\hat{c}_k = \frac{\exp\left(\frac{\log q(k|\mathbf{x},\phi) + g_k}{\tau}\right)}{\sum_{j=1}^K \exp\left(\frac{\log q(j|\mathbf{x},\phi) + g_j}{\tau}\right)}, \quad k = 1, \dots, K.$$

Reparametrization trick

$$\nabla_{\phi} \mathbb{E}_{q(c|\mathbf{x},\phi)} \log p(\mathbf{x}|\mathbf{e}_{c},\theta) = \mathbb{E}_{\mathsf{Gumbel}(0,1)} \nabla_{\phi} \log p(\mathbf{x}|\mathbf{z},\theta),$$

where $\mathbf{z} = \sum_{k=1}^{K} \hat{c}_k \mathbf{e}_k$ (all operations are differentiable now).

Maddison C. J., Mnih A., Teh Y. W. The Concrete distribution: A continuous relaxation of discrete random variables, 2016

Jang E., Gu S., Poole B. Categorical reparameterization with Gumbel-Softmax, 2016

Recap of previous lecture

Likelihood-free learning

- Likelihood is not a perfect quality measure for generative model.
- Likelihood could be intractable.

Imagine we have two sets of samples

- \triangleright $S_1 = \{\mathbf{x}_i\}_{i=1}^{n_1} \sim \pi(\mathbf{x})$ real samples;
- \triangleright $S_2 = \{\mathbf{x}_i\}_{i=1}^{n_2} \sim p(\mathbf{x}|\boldsymbol{\theta})$ generated (or fake) samples.

Let define discriminative model (classifier):

$$p(y = 1|\mathbf{x}) = P(\{\mathbf{x} \sim \pi(\mathbf{x})\}); \quad p(y = 0|\mathbf{x}) = P(\{\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta})\})$$

Assumption

Generative distribution $p(\mathbf{x}|\boldsymbol{\theta})$ equals to the true distribution $\pi(\mathbf{x})$ if we can not distinguish them using discriminative model $p(y|\mathbf{x})$. It means that $p(y=1|\mathbf{x})=0.5$ for each sample \mathbf{x} .

1. Generative adversarial networks (GAN)

2. Wasserstein distance

1. Generative adversarial networks (GAN)

2. Wasserstein distance

Generative models zoo

GAN optimality

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z})))}_{V(G,D)} \right]$$

has the global optimum $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, in this case $D^*(\mathbf{x}) = 0.5$.

Proof (fixed G)

$$V(G, D) = \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\theta})} \log(1 - D(\mathbf{x}))$$

$$= \int \underbrace{\left[\pi(\mathbf{x}) \log D(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta}) \log(1 - D(\mathbf{x})\right]}_{y(D)} d\mathbf{x}$$

$$\frac{dy(D)}{dD} = \frac{\pi(\mathbf{x})}{D(\mathbf{x})} - \frac{p(\mathbf{x}|\boldsymbol{\theta})}{1 - D(\mathbf{x})} = 0 \quad \Rightarrow \quad D^*(\mathbf{x}) = \frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}$$

GAN optimality

Proof continued (fixed $D = D^*$)

$$\begin{split} V(G, D^*) &= \mathbb{E}_{\pi(\mathbf{x})} \log \left(\frac{\pi(\mathbf{x})}{\pi(\mathbf{x}) + \rho(\mathbf{x}|\boldsymbol{\theta})} \right) + \mathbb{E}_{\rho(\mathbf{x}|\boldsymbol{\theta})} \log \left(\frac{\rho(\mathbf{x}|\boldsymbol{\theta})}{\pi(\mathbf{x}) + \rho(\mathbf{x}|\boldsymbol{\theta})} \right) \\ &= \mathit{KL} \left(\pi(\mathbf{x}) || \frac{\pi(\mathbf{x}) + \rho(\mathbf{x}|\boldsymbol{\theta})}{2} \right) + \mathit{KL} \left(\rho(\mathbf{x}|\boldsymbol{\theta}) || \frac{\pi(\mathbf{x}) + \rho(\mathbf{x}|\boldsymbol{\theta})}{2} \right) - 2 \log 2 \\ &= 2 \mathit{JSD}(\pi(\mathbf{x}) || \rho(\mathbf{x}|\boldsymbol{\theta})) - 2 \log 2. \end{split}$$

Jensen-Shannon divergence (symmetric KL divergence)

$$JSD(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \frac{1}{2} \left[KL\left(\pi(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2}\right) + KL\left(p(\mathbf{x}|\boldsymbol{\theta})||\frac{\pi(\mathbf{x}) + p(\mathbf{x}|\boldsymbol{\theta})}{2}\right) \right]$$

Could be used as a distance measure!

$$V(G^*, D^*) = -2 \log 2$$
, $\pi(\mathbf{x}) = p(\mathbf{x}|\theta)$, $D^*(\mathbf{x}) = 0.5$.

GAN optimality

Theorem

The minimax game

$$\min_{G} \max_{D} \left[\underbrace{\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z})))}_{V(G,D)} \right]$$

has the global optimum $\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta})$, in this case $D^*(\mathbf{x}) = 0.5$. Expectations

If the generator could be **any** function and the discriminator is **optimal** at every step, then the generator is **guaranteed to converge** to the data distribution.

Reality

- Generator updates are made in parameter space, discriminator is not optimal at every step.
- Generator and discriminator loss keeps oscillating during GAN training.

GAN training

Let further assume that generator and discriminator are parametric models: $D_{\phi}(\mathbf{x})$ and $G_{\theta}(\mathbf{z})$.

Objective

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D_{\boldsymbol{\phi}}(\mathbf{x}) + \mathbb{E}_{\rho(\mathbf{z})} \log (1 - D_{\boldsymbol{\phi}}(G_{\boldsymbol{\theta}}(\mathbf{z}))) \right]$$

- ightharpoonup $z \sim p(z)$ is a latent variable.
- $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} G_{\boldsymbol{\theta}}(\mathbf{z}))$ is deterministic decoder (like NF).
- ▶ We do not have encoder at all.

Mode collapse

The phenomena where the generator of a GAN collapses to one or few distribution modes.

Alternate architectures, adding regularization terms, injecting small noise perturbations and other millions bags and tricks are used to avoid the mode collapse.

Goodfellow I. J. et al. Generative Adversarial Networks, 2014 Metz L. et al. Unrolled Generative Adversarial Networks, 2016

Jensen-Shannon vs Kullback-Leibler

- $\blacktriangleright \pi(\mathbf{x})$ is a fixed mixture of 2 gaussians.
- \triangleright $p(\mathbf{x}|\mu,\sigma) \mathcal{N}(\mu,\sigma^2)$.

Mode covering vs mode seeking

$$\mathit{KL}(\pi||p) = \int \pi(\mathbf{x}) \log rac{\pi(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x}, \quad \mathit{KL}(p||\pi) = \int p(\mathbf{x}) \log rac{p(\mathbf{x})}{\pi(\mathbf{x})} d\mathbf{x}$$

$$JSD(\pi||p) = \frac{1}{2} \left[KL\left(\pi(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x})}{2}\right) + KL\left(p(\mathbf{x})||\frac{\pi(\mathbf{x}) + p(\mathbf{x})}{2}\right) \right]$$

1. Generative adversarial networks (GAN)

2. Wasserstein distance

Informal theoretical results

- Since z usually has lower dimensionality compared to x, manifold $G_{\theta}(z)$ has a measure 0 in x space. Hence, support of $p(x|\theta)$ lies on low-dimensional manifold.
- ▶ Distribution of real images $\pi(\mathbf{x})$ is also concentrated on a low dimensional manifold.

- If $\pi(\mathbf{x})$ and $p(\mathbf{x}|\boldsymbol{\theta})$ have disjoint supports, then there is a smooth optimal discriminator. We are not able to learn anything by backproping through it.
- For such low-dimensional disjoint manifolds

$$KL(\pi||p) = KL(p||\pi) = \infty$$
, $JSD(\pi||p) = \log 2$

Adding continuous noise to the inputs of the discriminator smoothes the distributions of the probability mass.

Weng L. From GAN to WGAN, 2019 Arjovsky M., Bottou L. Towards Principled Methods for Training Generative Adversarial Networks, 2017

Wasserstein distance (discrete)

A.k.a. **Earth Mover's distance**. The minimum cost of moving and transforming a pile of dirt in the shape of one probability distribution to the shape of the other distribution.

$$W(P,Q) = 2(\text{step } 1) + 2(\text{step } 2) + 1(\text{step } 3) = 5$$

Wasserstein distance (continuous)

$$W(\pi, p) = \inf_{\gamma \in \Gamma(\pi, p)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi, p)} \int \|\mathbf{x} - \mathbf{y}\|_{\gamma} (\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

 $\gamma(x, y)$ – transportation plan (the amount of "dirt" that should be transported from point x to point y)

$$\int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} = p(\mathbf{y}); \quad \int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \pi(\mathbf{x}).$$

- ▶ $\Gamma(\pi, p)$ the set of all joint distributions $\gamma(\mathbf{x}, \mathbf{y})$ with marginals π and p.
- $ightharpoonup \gamma(x,y)$ the amount, ||x-y|| the distance.

For better understanding of transportation plan function γ , try to write down the plan for previous discrete case.

Wasserstein distance vs KL vs JSD

Consider 2d distributions

$$\pi(x, y) = (0, U[0, 1])$$
$$p(x, y|\theta) = (\theta, U[0, 1])$$

 $\theta = 0$. Distributions are the same

$$KL(\pi||p) = KL(p||\pi) = JSD(p||\pi) = W(\pi, p) = 0$$

 $\theta \neq 0$

$$\mathit{KL}(\pi||p) = \int_{\mathit{U}[0,1]} 1\lograc{1}{0} dy = \infty = \mathit{KL}(p||\pi)$$

$$JSD(\pi||p) = \frac{1}{2} \left(\int_{U[0,1]} 1 \log \frac{1}{1/2} dy + \int_{U[0,1]} 1 \log \frac{1}{1/2} dy \right) = \log 2$$

$$W(\pi, p) = |\theta|$$

Wasserstein distance vs KL vs JSD

Theorem 1

Let $G_{\theta}(\mathbf{z})$ be (almost) any feedforward neural network, and $p(\mathbf{z})$ a prior over \mathbf{z} such that $\mathbb{E}_{p(\mathbf{z})} \|\mathbf{z}\| < \infty$. Then therefore $W(\pi, p)$ is continuous everywhere and differentiable almost everywhere.

Theorem 2

Let π be a distribution on a compact space \mathcal{X} and $\{p_t\}_{t=1}^{\infty}$ be a sequence of distributions on \mathcal{X} .

$$KL(\pi||p_t) \to 0 \text{ (or } KL(p_t||\pi) \to 0)$$
 (1)

$$JSD(\pi||p_t) \to 0$$
 (2)

$$W(\pi||p_t) \to 0 \tag{3}$$

Then, considering limits as $t \to \infty$, (1) implies (2), (2) implies (3).

Wasserstein distance

$$W(\pi||p) = \inf_{\gamma \in \Gamma(\pi,p)} \mathbb{E}_{(\mathbf{x},\mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi,p)} \int \|\mathbf{x} - \mathbf{y}\| \gamma(\mathbf{x},\mathbf{y}) d\mathbf{x} d\mathbf{y}$$

The infimum across all possible joint distributions in $\Gamma(\pi, p)$ is intractable.

Theorem (Kantorovich-Rubinstein duality)

$$W(\pi||p) = rac{1}{K} \max_{\|f\|_{L} \leq K} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x})
ight],$$

where $||f||_L \leq K$ are K-Lipschitz continuous functions $(f: \mathcal{X} \to \mathbb{R})$

$$|f(\mathbf{x}_1) - f(\mathbf{x}_2)| \le K \|\mathbf{x}_1 - \mathbf{x}_2\|, \quad \text{for all } \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}.$$

Now we need only samples to get Monte Carlo estimate for $W(\pi||p)$.

1. Generative adversarial networks (GAN)

2. Wasserstein distance

1. Generative adversarial networks (GAN)

2. Wasserstein distance

Theorem (Kantorovich-Rubinstein duality)

$$W(\pi||p) = rac{1}{K} \max_{\|f\|_{L} \leq K} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \right],$$

- Now we have to ensure that f is K-Lipschitz continuous.
- Let $f_{\phi}(\mathbf{x})$ be a feedforward neural network parametrized by ϕ .
- ▶ If parameters ϕ lie in a compact set Φ then $f_{\phi}(\mathbf{x})$ will be K-Lipschitz continuous function.
- Let the parameters be clamped to a fixed box $\Phi \in [-c, c]^d$ (e.x. c = 0.01) after each gradient update.

$$\begin{split} K \cdot W(\pi||p) &= \max_{\|f\|_{L} \le K} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \right] \ge \\ &\geq \max_{\phi \in \mathbf{\Phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} f_{\phi}(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f_{\phi}(\mathbf{x}) \right] \end{split}$$

Standard GAN objective

$$\min_{m{ heta}} \max_{m{\phi}} \mathbb{E}_{\pi(\mathbf{z})} \log D_{m{\phi}}(\mathbf{z}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D_{m{\phi}}(G_{m{ heta}}(\mathbf{z})))$$

WGAN objective

$$\min_{\boldsymbol{\theta}} W(\pi||p) \approx \min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi} \in \boldsymbol{\Phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} f_{\boldsymbol{\phi}}(\mathbf{x}) - \mathbb{E}_{p(\mathbf{z})} f_{\boldsymbol{\phi}}(G_{\boldsymbol{\theta}}(\mathbf{z})) \right].$$

- ▶ Discriminator D is similar to the function f, but not the same (it is not a classifier anymore). In the WGAN model, function f is usually called critic.
- ▶ "Weight clipping is a clearly terrible way to enforce a Lipschitz constraint". If the clipping parameter c is too large, it is hard to train the critic till optimality. If the clipping parameter c is too small, it could lead to vanishing gradients.

- WGAN has non-zero gradients for disjoint supports.
- ► $JSD(\pi||p)$ correlates poorly with the sample quality. Stays constast nearly maximum value $\log 2 \approx 0.69$.
- $W(\pi||p)$ is highly correlated with the sample quality.

1. Generative adversarial networks (GAN)

2. Wasserstein distance

Wasserstein GAN with Gradient Penalty

Weight clipping analysis

- ▶ The gradients either grow or decay exponentially.
- ▶ Gradient penalty makes the gradients more stable.

Wasserstein GAN with Gradient Penalty

Theorem

Let $\pi(\mathbf{x})$ and $p(\mathbf{x})$ be two distribution in \mathcal{X} , a compact metric space. Let γ be the optimal transportation plan between $\pi(\mathbf{x})$ and $p(\mathbf{x})$. Then

1. there is 1-Lipschitz function f^* which is the optimal solution of

$$\max_{\|f\|_{I} \leq 1} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \right].$$

2. if f^* is differentiable, $\gamma(\mathbf{y} = \mathbf{z}) = 0$ and $\hat{\mathbf{x}}_t = t\mathbf{y} + (1 - t)\mathbf{z}$ with $\mathbf{y} \sim \pi(\mathbf{x})$, $\mathbf{z} \sim p(\mathbf{x}|\boldsymbol{\theta})$, $t \in [0,1]$ it holds that

$$\mathbb{P}_{(\mathbf{y},\mathbf{z})\sim\gamma}\left[\nabla f^*(\hat{\mathbf{x}}_t) = \frac{\mathbf{z} - \hat{\mathbf{x}}_t}{\|\mathbf{z} - \hat{\mathbf{x}}_t\|}\right] = 1.$$

Corollary

 f^* has gradient norm 1 almost everywhere under $\pi(\mathbf{x})$ and $p(\mathbf{x})$.

Wasserstein GAN with Gradient Penalty

A differentiable function is 1-Lipschtiz if and only if it has gradients with norm at most 1 everywhere.

Gradient penalty

$$W(\pi||p) = \underbrace{\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x})}_{\text{original critic loss}} + \lambda \underbrace{\mathbb{E}_{U[0,1]} \left[(\|\nabla f(\hat{\mathbf{x}})\|_2 - 1)^2 \right]}_{\text{gradient penalty}},$$

- Samples $\hat{\mathbf{x}}_t = t\mathbf{y} + (1-t)\mathbf{z}$ with $t \in [0,1]$ are uniformly sampled along straight lines between pairs of points: \mathbf{y} from the data distribution $\pi(\mathbf{x})$ and \mathbf{z} from the generator distribution $p(\mathbf{x}|\boldsymbol{\theta})$.
- ► Enforcing the unit gradient norm constraint everywhere is intractable, it turns out to be sifficient to enforce it only along these straight lines.

Summary

- GAN tries to optimize Jensen-Shannon divergence (in theory).
- Mode collapse is one of the main problems of vanilla GAN. Lots of tips and tricks has to be used to make the GAN training is stable and scalable.
- ► KL and JS divergences work poorly as model objective in the case of disjoint supports.
- ► Earth-Mover distance is a more appropriate objective function for distribution matching problem.
- Kantorovich-Rubinstein duality gives the way to calculate the EM distance using only samples.
- Wasserstein GAN uses Kantorovich-Rubinstein duality for getting Earth Mover distance as model objective.
- Weight clipping is a terrible way to enforce Lipschitzness. Gradient Penalty adds regularizer to loss that uses neccessary conditions for optimal critic.