COMBINATIONAL ICs

- REPRESENTATION OF BINARY VARIABLES AT THE PHYS-ICAL LEVEL
- BASIC SWITCH. STRUCTURE OF GATES AND THEIR OP-ERATION
- REALIZATION OF GATES USING CMOS CIRCUITS
- CHARACTERISTICS OF CIRCUITS: LOAD FACTORS AND FANOUT FACTORS, PROPAGATION DELAYS, TRANSITION TIMES, AND EFFECT OF LOAD

more ...

- THREE-STATE GATES (DRIVERS) AND BUSES
- NOISE AND NOISE MARGINS
- EVOLUTION OF ICs. VLSI CIRCUIT-LEVEL DESIGN STYLES
- PACKAGING LEVELS: CHIPS, BOARDS AND CABINETS.

REPRESENTATION OF BINARY VARIABLES

- REPRESENTATION OF 0 AND 1 BY ELECTRICAL SIGNALS
 - VOLTAGES
 - CURRENTS
 - ELECTRICAL CHARGES
- REALIZATION OF CIRCUITS THAT OPERATE ON THESE SIGNALS TO IMPLEMENT DESIRED SWITCHING FUNCTIONS

TYPICAL VALUES FOR A 3.3V CMOS TECHNOLOGY

 V_{Hmax} 3.3V V_{Lmax} 0.8V V_{Hmin} 2.0V V_{Lmin} 0.0V

Figure 3.1: VOLTAGE REGIONS.

Figure 3.2:

 $\begin{array}{c} POSITIVE\ LOGIC \\ V_{H} \longleftrightarrow \mathbf{1} \\ V_{L} \longleftrightarrow \mathbf{0} \end{array}$

 $\begin{array}{l} NEGATIVE\ LOGIC \\ V_{H} \longleftrightarrow \mathbf{0} \\ V_{L} \longleftrightarrow \mathbf{1} \end{array}$

Input		Output	Positive		Negative			
voltages		voltage	logic		logic			
x	y	z	x	\overline{y}	z	x	\overline{y}	z
V_L	V_L	V_L	0	0	0	1	1	1
V_L	V_H	V_L	0	1	0	1	0	1
V_H	V_L	V_L	1	0	0	0	1	1
V_H	V_H	V_H	1	1	$\mid 1 \mid$	0	0	0
			f	=	AND	f	=	OR

Figure 3.3: a) N-TYPE AND P-TYPE CONTROLLED SWITCHES. b) NMOS AND PMOS TRANSISTORS.

SWITCH AND MOS TRANSISTORS

N-TYPE:

OPEN (OFF) if $V_{CA} < V_{Tn}$ closed (ON) if $V_{CA} > V_{Tn}$ V_{Tn} – The Threshold voltage for N-Type switch

P-TYPE:

OPEN (OFF) if $V_{BC} < V_{Tp}$ closed (ON) if $V_{BC} > V_{Tp}$ V_{Tp} – The threshold voltage for P-type switch

COMPLEMENTARY MOS CIRCUIT

Figure 3.4: CIRCUIT, I/O CHARACTERISTIC, AND SYMBOL

OPERATION OF NOT GATE

$$egin{aligned} V_{BC} &= V_{DD} - v_{in} \; (V_{DD} = V_{BC} + v_{in}) \ 1. \; v_{in} &< V_{Tn} \implies V_{CA} &< V_{Tn} \ \implies & \text{N-SWITCH OPEN} \ If \; V_{DD} &> V_{Tn} + V_{Tp} \; \text{then} \; V_{BC} &> V_{Tp} \ \implies & \text{P-SWITCH CLOSED AND} \; v_{out} &= V_{DD} \end{aligned}$$

2.
$$v_{in} > V_{DD} - V_{Tp} \implies V_{BC} < V_{Tp}$$
 \implies P-SWITCH IS OPEN
If $V_{DD} > V_{Tn} + V_{Tp}$ then $V_{CA} > V_{Tn}$
 \implies N-SWITCH IS CLOSED AND $v_{out} = 0$

OPERATION (cont.)

CIRCUIT OPERATES AS NOT GATE IF

$$V_{Lmax} < V_{Tn}$$

$$V_{Hmin} > V_{DD} - V_{Tp}$$

$$V_{DD} > V_{Tn} + V_{Tp}$$

[°] no static current in stable state

Figure 3.5:

^{=&}gt; low power dissipation

[°] faster transitions

 $\label{eq:Figure 3.5: CIRCUITS FOR NAND and NOR GATES.}$

NAND and NOR GATES (cont.)

		Circuit 1	Circuit 2
x y	y	z	z
0 (0	1	1
0 :	1	1	0
1 (0	1	0
1	1	0	0

Figure 3.6: CIRCUITS FOR AND and OR GATES.

AND-OR-INVERT (AOI)

OR-AND-INVERT (OAI)

Figure 3.7: COMPLEX GATES.

Figure 3.7: EXAMPLES OF COMPLEX GATES.

C	n-switch	p-switch	z
0	off	off	Z
1	on	on	$\boldsymbol{\mathcal{X}}$

Z - high impedance state

(a)

Figure 3.8: a) TRANSMISSION GATE

Figure 3.8: b) XOR GATE

y	TG1	TG2	z
0	ON	OFF	x
1	OFF	ON	x'

MUX WITH TRANSMISSION GATES

Figure 3.8: c) 2-INPUT MUX.

$$z = \text{MUX}(x_1, x_0, s) = x_1 s + x_0 s'$$

$$\begin{vmatrix} s & TG1 & TG2 & z \\ 0 & \text{ON OFF } & x_0 \\ 1 & \text{OFF ON } & x_1 \end{vmatrix}$$

TIMING PARAMETERS

Figure 3.9: a) PROPAGATION DELAY. b) RISE AND FALL TIMES.

EFFECT OF LOAD

Figure 3.10: A GATE NETWORK

Figure 3.11: EQUIVALENT CIRCUIT FOR GATE INPUT.

Figure 3.12: EFFECT OF LOAD ON PROPAGATION DELAY.

Figure 3.13: OUTPUT LOAD OF GATE 1.

VOLTAGE VARIATIONS AND NOISE MARGINS

Figure 3.14: NOISE MARGINS.

NOISE MARGINS: EXAMPLE

LEVELS			NOISE MARGIN
HIGH	$V_{Hmin}({ t OUT})$	2.4 V	0.4 V
	$V_{Hmin}({ m IN})$	2.0 V	
LOW	$V_{Lmax}(\text{OUT})$	0.4 V	0.4 V
	$V_{Lmax}({ m in})$	0.8 V	

Figure 3.15: GATE NETWORK FOR SELECTING A MODULE OUTPUT.

THREE-STATE DRIVER (BUFFER)

 $\rm Figure~3.16:~c)$ EXAMPLE OF USE OF THREE-STATE DRIVERS

Figure 3.16: a) THREE-STATE GATE: SYMBOL AND FUNCTION. b) CIRCUIT AND OPERATION.

(b)

Table 3.2: Characteristics of a family of CMOS gates

Gate	Fan-	Propagation delays		Load factor	Size
type	in	t_{pLH}	t_{pHL}		
		[ns]	[ns]	[standard	[equiv.
				loads]	gates]
AND	2	0.15 + 0.037L	0.16 + 0.017L	1.0	2
AND	3	0.20 + 0.038L	0.18 + 0.018L	1.0	2
OR	2	0.12 + 0.037L	0.20 + 0.019L	1.0	2
OR	3	0.12 + 0.038L	0.34 + 0.022L	1.0	2
NOT	1	0.02 + 0.038L	0.05 + 0.017L	1.0	1
NAND	2	0.05 + 0.038L	0.08 + 0.027L	1.0	1
NAND	3	0.07 + 0.038L	0.09 + 0.039L	1.0	2
NAND	8	0.24 + 0.038L	0.42 + 0.019L	1.0	6
NOR	2	0.06 + 0.075L	0.07 + 0.016L	1.0	1
NOR	3	0.16 + 0.111L	0.08 + 0.017L	1.0	2
NOR	8	0.54 + 0.038L	0.23 + 0.018L	1.0	6
XOR	2*	0.30 + 0.036L	0.30 + 0.021L	1.1	3
		0.16 + 0.036L	0.15 + 0.020L	2.0	
XOR	3*	0.50 + 0.038L	0.49 + 0.027L	1.1	6
		0.28 + 0.039L	0.27 + 0.027L	2.4	
		0.19 + 0.036L	0.17 + 0.025L	2.1	
XNOR	2*	0.30 + 0.036L	0.30 + 0.021L	1.1	3
		0.16 + 0.036L	0.15 + 0.020L	2.0	
XNOR	3*	0.50 + 0.038L	0.49 + 0.027L	1.1	6
		0.28 + 0.039L	0.27 + 0.027L	2.3	
		0.19 + 0.036L	0.17 + 0.025L	1.3	
2-OR/NAND2	4	0.17 + 0.075L	0.10 + 0.028L	1.0	2
2-AND/NOR2	4	0.17 + 0.075L	0.10 + 0.028L	1.0	2

VLSI CIRCUIT-LEVEL DESIGN STYLES

- FULL-CUSTOM
- SEMI-CUSTOM (standard cells)
- GATE-ARRAY; FIELD-PROGRAMMABLE GATE ARRAY (FPGA)

FPGAs DISCUSSED IN CHAPTER 12

Figure 3.17: EXAMPLE OF GATE ARRAY.

Figure 3.18: SILICON WAFER, CHIP AND INTEGRATED CIRCUIT PACKAGE

Figure 3.19: PACKAGING LEVELS

IBM 3081 central processing unit:

Level of	Number of	Size	
Packaging	Components	$[mm \times mm]$	
Module	100-133 chips		
PC Board	6 – 9 modules	600×700	
Subsystem (processor)	3 boards		
System (CPU)	2 subsystems		