Predicting Weather at RDU using Time Series Modeling

Danny Ross Andrew Jin Diya Mirji

Agenda

- **01** Data
- 02 Data Analysis
- 03 Feature Engineering
- 04 Linear Regression
- 05 Random Forest
- 06 Model Performance

Data

Hourly Temperature from RDU

- Hourly weather data from RDU Airport
 - Meteostat's bulk data
- Temperature, Humidity, Precipitation, etc.
- Only kept temperature and year-month-day-hour -> Datetime index

Data from past years

- Pulled all data from January 1, 2020 to September 30, 2025
 - o Similar trend in temperature for each year

Train and Test Split

- Test Dataset: September 17, 2025 September 30, 2025
- Train Dataset: January 1, 2020 September 16, 2025

Training data size: 50064 samples

Testing data size: **336 samples**

- No missing data
- Roughly symmetric distribution with slight left skew
- Seasonal Decomposition of temperature during September 17, 2024 September 30, 2024
 - o Non linear trend and daily seasonality

Autocorrelation

Autocorrelation

Autocorrelation

Feature Engineering

Pure Calendar Features

- Year (2020-2025)
- Month (1-12)
- Day (1-31)
- Hour (0-23)
- Day of Year (1-336)
- Day of Week (0-6)

Sine / Cosine Transformation

Cyclical Calendar Features

- captures seasonal cycle
- recognizes consecutive seasons
- hour_sin, hour_cos
 - smooth cycle of daily temperature
 - even between hour 23 and hour 0
- doy_sin, doy_cos
 - smooth cycle of temperature over year
 - even between day 365 and day 1
- month_sin, month_cos
 - smooth cycle of monthly temperature
 - even between month 12 and month 1

Harmonic Calendar Features

- captures multiple peaks per cycle
- hour_sin_2, hour_cos_2
 - 2x-daily peaks pattern
- hour_sin_3, hour_cos_3
 - o 3 peaks in a day pattern
- doy_sin_2, doy_cos_2
 - 2-annual pattern
- doy_sin_3, doy_cos_3
 - 3 peaks per year pattern

Feature Engineering

Autocorrelation Lags

- previous_hour_temp
 - previous hour's temperature
- previous_day_temp
 - o previous day's temperature at same hour
- previous_year_temp
 - previous year's temperature at same month/day/hour

Linear Regression Model

• Most important features: the temperature from the **previous hour** (w=0.972), the **cosine of the hour** (w=-0.821), and the **sine of the hour** (w=-0.791).

Kyoto Model

Feature Engineering pt2

More Lag Features

• Lag at hours 1, 3, 6, 12, 24, 48

Rolling Statistics

- captures short-term trends
- aggregates temperature over multiple hours instead of one instance
- 24 hour rolling mean and standard deviation
 - weather trend over a day
- 168 hour rolling mean
 - o weather trend over the week

Random Forest Model

- Uses multiple decision trees in order to model complex interactions and autoregression
- Hyperparameters: n_estimators = 100, max_depth = 12, min_sample_leaves = 2

Evaluation Approach

How did we evaluate the performance of the models?

1

Checked linear Assumptions 2

Compared with the baseline Linear Regression model

3

Used Time Series Cross Validation to finetune Random Forest hyperparameters 4

Analyzed and compared MSE, MAE, R-squared

Linear Assumptions

- Linearity: residuals have a pattern
- Homeodascicity: variance of residuals are somewhat equally distributed

Performance

	Linear Regression	Linear Regression (Kyoto)	Random Forest
MSE	1.11	43.95	0.952
MAE	0.82	5.58	0.756
\mathbb{R}^2	0.94	-1.28	0.95

Thank you