Chapitre

EV de dimension finie

4. Familles de vecteurs

Définition 1.1 : Familles de vecteurs

Soit I un ensemble. On appelle famille de vecteurs de E, une collection de vecteurs de E indexée sur I.

 $F = \{v_i, i \in I\}$

avec $\forall i \in I, v_i \in E$. C'est comme un array.

Définition 1.2 : Combinaison linéaire de vecteur d'une famille

Soit F une famille de vecteurs de E, indexée sur I. On appelle combinaison linéaire de vecteurs de F tout vecteur de E s'écrivant $\lambda_1 \cdot v_{i1} + \lambda_2 \cdot v_{i2} + \cdots + \lambda_n \cdot v_{in}$ avec $N \leq Card(I) \in \mathbb{N}, i_k \in I$.

Si ${\cal N}=0$, la combinaison linéaire vaut le vecteur nul.

On note Vect(F) l'ensemble du résultat des combinaisons linéaires de F (qui vérifient $Vect(F) \subset E$).

π Proposition 1.1

Soit F une famille de vecteurs de E. Alors un Vect(F) est le plus petit sev de E contenant tous les vecteurs de F

Définition 1.3 : Famille génératrice

Soit F une famille de vecteurs de E et G un sev de E.

On dit que F est une famille génétratrice de G \iff Vect(F) = G.

Si on en enlève, il est possible de casser le caractère générateur de la famille

Définition 1.4 : Famille libre/liée

Soit F une famille de vecteurs de E. On dit que la famille F est libere $\iff \forall N \in \mathbb{N}, \forall (i_1 \cdots_N) \in I^\mathbb{N}, i_p \neq i_q \Leftarrow p \neq q, \lambda_1 v_{i1} + \cdots + \lambda_N v_{iN} = 0_E \iff \lambda_N = 0$. On dit alors que les vecteurs de F sont linéairement indépendants.

On dit que F est liée si elle n'est pas libre. On dit que les vecteurs de F sont linéairement dépendants.

Par convention, la famille vide est libre.

Proposition 1.2

Soit F $\{v_1, i \in I\}$ une famille finie. F est libre $\iff \sum_{i \in I} \lambda_i v_i = 0_E \iff \lambda_i = 0 \forall i \in I$

Proposition 1.3

Soit F une famille de vecteur de E.

Si $\exists i \in I, tqv_i = 0_E$, F est liée

Si $\exists i, j \in I, i \neq j, v_i = v_j$ F est liée

Proposition 1.4

Soit F une famille.

F est liée $\iff \exists k \text{ tq } v_k \in Vect(F \setminus v_k).$

Proposition 1.5

Si F est liée, $\exists (i_1,\ldots,i_N) \in I^N$ et $\lambda_1,\ldots,\lambda_N$, λ_i non tous nul

Proposition 1.6

Soit 2 familles de vecteurs de E

- · F est génératrice de Vect(F)
- Si F est génératrice, et $F\subset G$, alors G est aussi génératrice.
- Si G est libre, et $G \subset F$, alors F est libre.
- On suppose F génératrice. Pour $k \in I$, on note $H = \{v_i, i \in I \setminus k\}$, H est génératrice $\iff v_k \in \text{Vect}(H)$.
- On suppose F libre. Soit $v \in E$ et $s \notin I$, alors $v_s = v$ et $H = F \cup \{s\}$. I est libre $\iff v_s \notin Vect(F)$. (preuve en exo)
- Soit $p \in \mathbb{N}$. et F une famille de vecteurs à p éléments. Si G est une famille d'au moins p+1 éléments appartenant à Vect(F), alors G est liée

Définition 1.5: Base

Soit F une famille de vecteurs de et G un sev de E.

F est une base de $G \iff Vect(F) = G$ et F est libre.

4. Espace vectoriel de dimension finie

Définition 2.1 : Espace vectoriel de dimension finie

Soit E un R-ev. E est de dimension finie si il admet une famille génératrice finie. (Il existe un nombre fini de vecteur tel que je peux créer tous les autres à partir de ceux-ci). Dans le cas contraire, E est de dimension infinie.

Soit F une famille finie de vecteurs. Il existe une famille B finie de vecteurs de F telle que B est une base de Vect(F). (Si une famille engendre qqc, on peut enlever des vecteurs de cette famille pour obtenir une famille libre génératrice, une base)

π Proposition 2.2

Soit E un ev de dim finie. Il admet une base finie

Théorème 2.1 : Coordonnées

Soit E un espace vectoriel de dim finie et F une famille finie. F est une base de E $\iff \forall u \in E, \exists ! (\lambda_1, \dots, \lambda_d) \in \mathbb{R}^d t q u = \lambda_1 e_1 + \dots + \lambda_d e_d)$. Les réels λ sont appelés coordonnées du vecteur u dans la base F.

Théorème 2.2 : Dimension

Soit E un espace vectoriel. Si E est de dimension finie, alors toutes les bases de E ont le même nombre d'éléments. Ce nombre est un entier appelé dimension de l'espace noté $\dim(E)$.

Proposition 2.3

Soit E un ev de dimension finie. Soit F une famille de vecteurs de F

Si F est libre $\Rightarrow Card(F) \leq \dim(E)$

 $Card(F) > \dim(E) \Rightarrow F$ est liée

F est générateur $\Rightarrow Card(F) \ge \dim(E)$.

Théorème 2.3 :

Soit E un ev de dim finie et B une famille de vecteurs de E. Alors

- \cdot B est une base
- \iff B est une famille libre avec $Card(B) = \dim(E)$
- \iff B est une famille génératrice avec $Card(B) = \dim(E)$

On n'utilise que la deuxième équivalence

On peut utiliser l'argument de la dimension si uniquement on l'a démontré par ailleur.

Coordonnées

Il ne faut pas confondre le vecteur et ses coordonnées

Proposition 2.4

Soit E un ev et F un sev de E. Alors $\dim(F) \leq \dim(E)$. En particulier, si E est de dimension finie, F est de dimension finie.

Proposition 2.5

E est un ev de dimension finie, F sev de E. Alors F=E \iff $\dim(F) = \dim(E)$.

Exercice : Soit E ev, $\dim(E) < +\infty$. Mq $\forall d \in \{0, \dots, \dim(E)\}, \exists F$, sev de E tq $\dim(F) = d$. (par l'absurde).

Proposition 2.6

E ev de dimension finie. F et G sev de E en somme directe. Alors $\dim(F+G)=\dim(F)+\dim(G)$.

Proposition 2.7: Existence du supplémentaire

E ev de dimension finie, et F sev de E. Alors $\exists G$ sev de E tq G est un supplémentaire de F dans E.

Proposition 2.8 : Formule de Grassmann

E est un ev de dimension finie. Fet G 2 sev de E.

 $\dim(F) + \dim(G) = \dim(F + G) + \dim(F \cap G)$

Proposition 2.9

Soit E un $\mathbb R$ ev de dimension finie et F et G 2 sev de E. Alors les propriétés suivantes sont équivalentes :

- F et G sont supplémentaires dans E
- $F \cap G = \{0_E\}$ et $\dim(F) + \dim(G) = \dim(E)$
- G + F = E et $\dim(F) + \dim(G) = \dim(E)$.

Proposition 2.10

Soit E un ev de dimension finie. Soit L une famille libre de vecteurs de E et G une famille génératrice de vecteurs de E

 $\exists B$ base de E tq $L \subset B \subset L \cup G$

Théorème 2.4 : Théorème de la base incomplète

E ev de dimension finie

- Soit L famille libre de vecteurs de E. Alors $\exists B$ base de E tq $L \subset B$.
- Soit G une famille génératrice de E. Alors $\exists B$ une base tell

 $\mathsf{que}\ B\subset G.$