

Al Imam Mohammad Ibn Saud Islamic University College of Computer and Information Sciences

Information Systems Department

Course I itle:	Decision Support System	ms			
Course Code:	IS350				
Course Instructor:	Pavlos Nikolaidis, Moza	Pavlos Nikolaidis, Mozaherul Hoque			
Exam:	Project				
Semester:	Spring 2022				
Due Date:	7/05/2022				
Marks:	20				
Privileges:	□ Open Book	☐ Open Notes			
	☐ Calculator Permitted	☐ Laptop Permitted			

Group No:	4
Section ID:	22903
Section No.:	171

Instructions:

- I. Answer all requirements; there are (4) requirements in (3) pages.
- 2. Upload on the Blackboard a zip file of your project folder (report included).
- 3. You are required to have a project presentation (discussion) with your instructor (date TBA)

Official Use Only							
Question	Student Marks	Question Marks					
Task 1 (a)		4					
Task 1 (b)		6					
Task 2 (a)		6					
Task 2 (b)		4					
Total		20					

In this project you will solve a Linear Programming problem using Excel Solver.

Olympic Bike company is introducing two new lightweight bicycle frames, the Deluxe and the Professional, to be made from special aluminium and steel alloys. The anticipated unit profits are \$100 for the Deluxe, \$150 for the Professional and \$200 for Supreme. The number of kilograms of each alloy needed per bike frame is summarized in the table below. A supplier delivers 100 kg of the aluminium alloy and 80 kg of the steel alloy weekly. The requirement for making aluminium and steel alloys per bike are given below:

	Aluminium Alloy (kg)	Steel Alloy (kg)
Deluxe	2	3
Professional	4	2
Supreme	2	1

Total sales of Deluxe and Professional bikes together must be at least 25 units whereas Supreme bikes can be sold at most 10 units. Olympic Bikes wants to determine the optimal number of bikes it should produce to maximize the profit.

> Task 1

- **a.** Model the above problem as an optimization problem maximizing the weekly profit contribution:
 - 1) define the decision variables [1 mark]
- X1: Number of deluxe frames produced weekly.
- X2 : Number of professional frames produced weekly.
- X3: Number of supreme frames produced weekly.
 - 2) define the objective function [1 mark]

Maximize Z = 100 x1 + 150 x2 + 200 x3

3) state <u>ALL</u> the constraints [2 marks]

 $2x1 + 4x2 + 2x3 \le 100$ kg aluminium alloy

 $3x1 + 2x2 + 1x3 \le 80$ kg of steel alloy

x1+x2 >= 25 units

x3 <= 10 unit

x1, x2, x3 >= 0

b. Solve the problem using Excel Solver [6 marks]

	Α	В	С	D	Е	F	G	Н		
4										
5										
6										
7										
8										
9										
10			Ta	sk 1-B						
11		X1: Number of delu	xe frames	produced we	ekly.					
12										
13		X2 : Number of professional frames produced weekly.								
14										
15		X3: Number of supr								
16										
17		Maximize Z =100x1 +	+ 150x2 + 2	200x3						
18										
19			Deluxe	Professional	Supreme					
20			X1	X2	X3	total		limit		
21	Dec	cision variables	15	12.5	10					
22	Objective 100 150 200 \$ 5,375					\$ 5,375				
23		nnium alloy (Kg) 2 4 2 100						100		
24	Steel alloy (Kg) 3 2 1 80						<=	80		
							>=	25		
26						<=	10			
27	nonnegativity restrictions x1, x2, x3 >= 0									
28										
29		Solution:								
30		- 1	X1	X2	X3	Z				
31		Results:	15	12.5	10	5375				

- ➤ Task 2 (Consider question a and b are independent)
 - **a.** If the company gives a discount on Supreme bikes which will reduce the profit to \$100 per unit, the sales can be increased to at most 20 units of Supreme.
 - 1) Is the above solution in Task 1 (the value of the decision variables) will still remain the same if they give the discount?

The new solution values of decision variables will not be the same for the new solution when the company gives discount.

2) Do you suggest the company should give this discount? Justify your answer. [1+2 marks]

No, the number of total sales is increasing but, the total profit is decreasing, the total profit before the discount was \$5375 and the new profit after discount is \$4500 which is less than the first profit, they should not give discounts!

3) Provide the updated model

[2 marks]

- ,) Trovide die op aanse moder							
	Α	В	С	D	Е	F	G	Н
1								
2								
3								
4								
5								
6								
7								
8								
9								
10			Ta	ask 2-A				
11		X1 : Number of delu	ixe frames	produced we	ekly.			
12								
13		X2: Number of professional frames produced weekly.						
14								
15	X3: Number of supreme frames produced weekly.							
16								
17		Maximize Z = 100x1 +	+ 150x2 + :	100x3				
18								
19			Deluxe	Professional	Supreme			
20			X1	X2	X3	total		limit
21	Dec	ision variables	15	10	15			
22		Objective	100	150	100			
23		nnium alloy (Kg)	2	4	2	100	<=	100
24	Steel alloy (Kg) 3 2 1 80						<=	80
	sales of Deluxe and Professional 1 1 25						>=	25
26		es of Supreme	1 2 2 2			15	<=	20
27	nonneg	gativity restrictions	x1,x2,x3>=0					
28			C.	olution:				
30			X1	X2	Х3	Z		
31		Results:	15	10	15	4500		
31	I	nesuits.	13	10	13	4300		

- **b.** Suppose the company wants to increase the aluminium supply by 100 extra kilograms.
 - 1) What is your suggestion for the company? Justify your answer. [1+2 marks]

When we increase the Aluminium alloy by 100kg, we only use extra 60kg and 40kg is not being used, the company should increase the aluminium alloy by 60kg which will increase the profit by \$1875 and the total profit will be \$7250.

2) Provide the updated model

[1 mark]

	Α	В	С	D	Е	F	G	Н	
7									
8									
9									
10			Ta	sk 2-B					
11		X1 : Number of delu	ixe frames	produced we	ekly.				
12									
13		X2: Number of prof	fessional fi	rames produce	ed weekly.				
14									
15		X3: Number of supr	reme fram	es produced v	veekly.				
16									
17		Maximize Z = 100x1 +	+ 150x2 + 2	200x3					
18									
19			Deluxe	Professional	Supreme				
20			X1	X2	X3	total		limit	
21	Dec	cision variables	0	35	10				
22		Objective	100	150	200	\$ 7,250			
23		nnium alloy (Kg)	2	4	2	160	<=	200	
24		teel alloy (Kg)	3	2	1	80	<=	80	
	sales of Deluxe and Professional 1 1 35					>=	25		
26		les of Supreme			1	10	<=	10	
27	nonneg	gativity restrictions	x1,x2,x3>=0						
28									
29	Solution:								
30			X1	X2	X3	Z			
31		Results:	0	35	10	7250			

Submission Guidelines:

- 1. Write your answer in this Word file.
- 2. Make all the updated models in a single Excel file.
- 3. Submit the Word and Excel files in LMS