

Bäume

- ☐ Sie wissen, was Bäume in der Informatik sind
- ☐ Sie kennen das Besucher-Entwurfsmuster
- ☐ Sie kennen Binärbäume
- ☐ Sie können die Bäume auf unterschiedliche Arten traversieren
- ☐ Sie wissen, wie man in Binärbäumen Elemente löscht

Bäume, Anwendung und Begriffe

Beispiel 1: Dateisystem

Beispiel 2: XML- Dokument

□ Ein XML Dokument besteht aus einem Wurzelelement an dem beliebig viele Nachfolgeelemente angehängt sind, an denen wiederum Nachfolgeelemente hängen können.

Beispiel 3: Ausdruck-Baum

Der Ausdruck-Baum (expression tree) wird eingesetzt um arithmetische Ausdrücke auszuwerten: der Ausdruck wird zuerst in einen Baum umgeformt und dann ausgewertet.

Definition Baum (rekursiv)

ein Baum ist leer

oder

er besteht aus einem Knoten mit keinem, einem oder mehreren disjunkten Teilbäumen T1, T2, ... Tk.

Baum = leer

Baum = Knoten (Baum)*

Definition Baum (nicht rekursiv)

Ein Baum T=(V,E) besteht aus eine Menge von **Knoten V** und einer Menge von **gerichteten Kanten E**. Der *root*-Knoten $r \in V$ hat nur Ausgangskanten. Alle anderen Knoten $n \in V$ haben genau eine Eingangskante, wobei für alle Kanten gilt: e=(v1,v2) und v1!=v2.

☐ Hinweis:

- Knoten werden auch vertices bzw. vertex genannt.
- Kanten heissen auch edges bzw. edge.

Eigenschaften und Begriffe

- Alle Knoten ausser Wurzel (root) sind Nachfolger (descendant, child) genau eines Vorgänger-Knotens (ancestor, parent).
- Knoten mit Nachfolger werden innerer Knoten bezeichnet
- □ Knoten ohne Nachfolger sind Blattknoten.
- Knoten mit dem gleichen Vorgänger-Knoten sind Geschwisterknoten (sibling).
- Es gibt genau einen Pfad vom Wurzel-Knoten zu jedem anderen Knoten.
- Die Anzahl der Kanten, denen wir folgen müssen, ist die Weglänge (path length).
- □ Die Tiefe (oder Höhe) eines Baumes gibt an, wie weit die "tiefsten" Blätter von der Wurzel entfernt sind: Anzahl Kanten + 1.
- □ Die **Gewicht** ist die Anzahl der Knoten des (Teil-)Baumes

Übung

root-Node =

Tiefe =

Gewicht =

Nachfolger von B =

Nachfolger von A =

Vorgänger von K =

Blattknoten =

Geschwister von C =

Geschwister von H =

Ein Knoten hat direkte Vorgänger-Knoten.

Ein Knoten kann direkte Nachfolger haben.

Knoten Implementation


```
class TreeNode<T> {
    T element;
    List<TreeNode<T>> edges;

TreeNode(T theElement) {
    element = theElement;
    }
}
```

- Jeder Knoten hat Zeiger auf jeden Nachfolger in Array gespeichert
- ☐ Die Zahl der Nachfolger pro Knoten kann *stark variieren* und ist meist *nicht zum voraus bekannt* -> nicht effizient.
- □ mögliche bessere Lösung: Zeiger in *Liste* verwalten.

Binärbaum

Der Binärbaum

□ Die am häufigsten verwendete Art von Bäumen: beim Binärbaum hat ein Knoten maximal **2 Nachfolger.**

□ Definition (rekursiv):

Ein Binärbaum ist entweder leer, oder besteht aus einem Wurzel-Knoten und aus einem linken und einem rechten disjunkten Teilbaum.

Baum = leer

Baum = Knoten (Baum Baum)

Die Datenstruktur des Binärbaums


```
class TreeNode<T> {
   T element;
   TreeNode<T> left;
   TreeNode<T> right;

TreeNode (T theElement) {
   element = theElement;
  }
}
```


Eigenschaften

- ☐ Tiefe/Höhe: k
- □ auf jedem Niveau 2ⁿ Knoten oder 2^(k-1)
- Maximal Anzahl 2 k- 1 Knoten

- Ein Binärbaum heisst voll (oder vollständig), wenn ausser der letzten alle seinen Ebenen vollständig besetzt sind.
- □ Aufgabe: Leiten Sie eine Formel für die Höhe des vollen Baumes her und bestimmen Sie die Tiefe eines vollen Binärbaums mit 37 Knoten?
- ☐ Hinweis log_an = In n / In a

Traversierungen

Ausgeben aller Elemente


```
Baum = leer
Baum = Element (Baum Baum)
```

```
public class TreeNode<T>
{
   T element;
   TreeNode<T> left;
   TreeNode<T> right;
}
```

☐ Übung: Schreiben Sie eine rekursive Methode printTree, die alle Elemente eines Baumes ausgibt

Hinweis: Ausgeben einer Liste mit einer rekursiven Methode:

```
void printList(ListNode node) {
   if (node != null)
        System.out.println(node.element);
        printList(node.next)
   }
}
```

Traversieren

Das (rekursive) Besuchen aller Knoten in einem Baum wird als durchlaufen oder **traversieren** bezeichnet.

Die Art der Traversierung bestimmt die Reihenfolge, in welcher die Knoten besucht werden.

Dadurch sind die Knoten "linear geordnet"

Die möglichen Arten von Traversierung (beim Binärbaum) sind:

Preorder Knoten zuerst: n, A, B

Inorder Knoten in der Mitte: A, n, B

Postorder Knoten am Schluss: A, B, n

Levelorder: n, a₀, b₀, a₁, a₂, b₁, b₂, ...

Klassen zur rekursiven Traversierung

Rückruf Prinzip & Besucher Entwurfsmuster:

die visit Methode des übergebenen Visitors wird für jeden Knoten aufgerufen

Klassen zur Traversierung eines Baumes


```
interface Tree<T> {
   Traversal<T> traversal();
   void add(T o);
   void remove(T o);
}
```

Schnittstelle mit den grundlegenden Operationen

```
class TreeNode<T> {
   T element;
   TreeNode<T> left,right;
}
```

Knotenelement

```
interface Traversal<T> {
    void preorder(Visitor<T> vistor);
    void inorder(Visitor<T> visitor);
    void postorder(Visitor<T> visitor);
    void levelOrder} (Visitor<T> visitor);
}
```

Interface mit traversal Methode(n)

```
interface Visitor<T> {
   void visit(T o)
}
Interface des "Besuchers"

class MyCVisitor implements Visitor<T>{
   visit(T o) {
      System.out.println(c);
   }
}
```

Implementation des "Besuchers"

Implementation Preorder

- □ Verarbeitung am Anfang
 - Besuche die Wurzel.
 - Traversiere den linken Teilbaum (in Preorder).
 - Traversiere den rechten Teilbaum (in Preorder).

```
interface Visitor<T> {
 void visit(T obj);
class MyCVisitor implements Visitor<T> {
 public void visit (T obj) {System.out.println(obj);}
class TreeTraversal<T> implements Traversal<T> {
 TreeNode<T> root:
 private void preorder(TreeNode<T> node, Visitor<T> visitor) {
    if (node != null) {
      visitor.visit(node.element);
      preorder(node.left, visitor);
     preorder(node.right, visitor);
                                           call-back (Hollywood) Prinzip
 public void preorder(Visitor<T> visitor) {
     preorder (root, visitor)
```

Implementation Postorder

- ☐ Verarbeitung am Schluss
 - Traversiere den linken Teilbaum (in Postorder).
 - Traversiere den rechten Teilbaum (in Postorder).
 - Besuche die Wurzel.

```
private void postorder(TreeNode<T> node, Visitor<T> visitor) {
  if (node != null) {
    postorder(node.left,visitor);
    postorder(node.right,visitor);
    visitor.visit(node.element);
}
```

- ☐ Zuerst werden die Nachfolger abgearbeitet und dann der Knoten selber (von unten nach oben)
- ☐ somit sind left und right-Teilbaum verarbeitet und die Verweise können "verändert"bzw. anderweitig gesetzt werden.
 - □ kann z.B. ausgenutzt werden, wenn der Baum umgespeichert werden muss
 - □ z..B bei Expression-Tree: Umwanldung von Infix -> Prefix Notation

Implementation Inorder

- ☐ Verarbeitung in der Mitte
 - Traversiere den linken Teilbaum (in Inorder).
 - Besuche die Wurzel.
 - Traversiere den rechten Teilbaum (in Inorder).

```
private void inorder(TreeNode<T> node, Visitor<T> visitor) {
  if (node != null) {
    inorder(node.left,visitor);
    visitor.visit(node.element);
    inorder(node.right,visitor);
}
```

☐ Der Baum wird quasi von links nach rechts abgearbeitet

Implementation Preorder mit explizitem Stack

- Es wird nicht der Aufrufstack verwendet
- Kindelemente werden auf den Stack abgelegt und im nächsten Durchgang verarbeitet

```
void preorder(TreeNode<T> node, Visitor<T> visitor) {
   Stack s = new Stack();
   if (node != null) s.push(node);
   while (!s.isEmpty()) {
      node = s.pop();
      visitor.visit(node.element);
      if (node.right != null) s.push(node.right);
      if (node.left !=null) s.push(node.left);
   }
}
```

Implementation Levelorder

- ☐ Besuche die Knoten schichtenweise:
 - zuerst die Wurzel,
 - dann die Wurzel des linken und rechten Teilbaumes,
 - dann die nächste Schicht, usw. ...

```
void levelorder(TreeNode<T> node, Visitor<T> visitor) {
   Queue q = new Queue();
   if (node != null) q.enqueue(node);
   while (!q.isEmpty()) {
      node = q.dequeue();
      visitor.visit(node.element);
      if (node.left !=null) q.enqueue(node.left);
      if (node.right != null) q.enqueue(node.right);
   }
}
```

Aufgerufene Methode (Lambda Ausdruck)

Methode ist in einer Klasse die das Interface imlementiert

```
Traversal {
    preorder(Visitor<T> visitor);
    ...
}

class MyCVisitor implements Visitor<T> {
    public void visit (T obj) {System.out.println(obj);}
}

tree.traversal().preorder(new MyCVisitor());
```

Kann auch als Annonyme Klasse "inline" implementiert werden

Noch eleganter als Java 8 Lambda Ausdruck

```
tree.traversal().preorder(obj -> {System.out.println(obj);})
```

Übung

Zeigen Sie die Reihenfolge bei den verschiedenen Traversierungsarten auf

Übung

- Preorder-Traversierung: 10, 3, 1, 4, 2, 9, 7, 5, 8
- Inorder-Traversierung: 3, 4, 1, 10, 9, 7, 2, 8, 5

☐ Zeichnen und stellen Sie den Baum anhand dieser Informationen wieder her.

Mutationen von (sortieren) Bäumen

Übung Anfügen an Liste

Zum Einfügen stellt man sich Bäume am einfachsten als erweiterte Listen vor

□ **Übung**: Schreiben Sie eine rekursive Methode **insertAt**, die ein neues Element am Schluss einer Liste anhängt.

Einfügen unsortiert

- a) freie Stelle finden
- b) neuen Knoten einfügen

```
class BinaryTree<T> implements Tree<T>{
   private TreeNode<T> root;

private TreeNode insertAt(TreeNode node, T x) {
   if (node == null) {
      return new TreeNode(x);
   }
   else {
      node.right = insertAt(node.right, x);
      // or
      // node.left = insertAt(node.left, x);
   return node;
   }
}

public void insert (T x) {
   root = insertAt(root, x);
}
```

Sortierte Binärbäume

☐ Beim binären Suchbaum werden die Objekte anhand ihres (Schlüssel-) Werts geordnet eingefügt:

☐ in Java: Interface Comparable<T>

Definition:

Für jeden Knoten gilt

im linken Unterbaum sind alle kleineren Elemente $K_L <= * k$ im rechten Unterbaum sind alle grösseren Elemente: $K_R > * k$

* manchmal auch < und >=

Beispiel eines sortierten Binärbaums

Der sortierte Binärbaum hat nach dem Einfügen von "BAUMBEISPIEL"

Übung

- Numerieren Sie die Knoten entsprechend ihrer Reihenfolge beim Einfügen
- Geben Sie an, welche Zeichenkette bei einer Inorder Traversierung ausgegeben wird
- Welche Traversierung muss angewendet werden, damit die Knoten in alphabetischer Reihenfolge ausgegeben werden?
- ☐ Zeichnen Sie den Baum auf, bei dem man die Zeichenkette rückwärts eingefügt hat, d.h. L,E,I, ...
- Zeichnen sie den Baum auf, der beim Einfügen von A,B,B,E,E,I,I,L,M,P,S,U entsteht

Einfügen sortiert

Beim Einfügen muss links eingefügt werden, wenn das neue Element kleiner oder gleich ist, sonst rechts

```
class BinaryTree<T extends Comparable<T>> implements
Tree<T>{
 private TreeNode<T> root;
 private TreeNode<T> insertAt(TreeNode<T> node, T x) {
    if (node == null) {
      return new TreeNode(x);
    else
      if (x.compareTo(element) <= 0)</pre>
        node.left = insertAt(node.left, x);
      else
         node.right = insertAt(node.right, x);
      return node;
 public void add (T x) {
    root = insertAt(root, x);
```

Löschen: einfache Fälle

- a) den zu entfernenden Knoten suchen
- b) Knoten löschen. Dabei gibt es 3 Fälle:
 - 1) der Knoten hat keinen Teilbaum ⇒ Knoten löschen
 - 2) der Knoten hat einen Teilbaum
 - 3) der Knoten hat zwei Teilbäume (später)

Löschen: komplizierter Fall

- a) den zu entfernenden Knoten suchen
- b) Knoten löschen. Dabei gibt es 3 Fälle:
 - 1) der Knoten hat keinen Teilbaum ⇒ Knoten löschen √
 - 2) der Knoten hat einen Teilbaum 🗸
 - 3) der Knoten hat zwei Teilbäume

Fall 3: Es muss ein Ersatzknoten mit Schlüssel k gefunden werden, so dass gilt: $K_L \le k$ und $K_R > k$

Lösung: der Knoten, der im linken Teilbaum ganz rechts liegt.

Frage: wieso dürfen wir diesen Knoten entfernen?

Löschen Beispiel

☐ Es soll M gelöscht werden.

□ vom linken Teilbaum wir das Element ganz rechts als Ersatz genommen, i.e. L.

☐ L kann einfach aus seiner ursprünglichen Position herausgelöst werden, da es maximal einen Nachfolger hat.

Finden von Ersatzknoten


```
// find node to replace
TreeNode<T> rep;
 private TreeNode<T> findRepAt(TreeNode<T> node, TreeNode<T> rep) {
       if (node.right != null) {
                node.right = findRepAt(node.right,rep);
       } else {
                rep.element = node.element;
                node = node.left
                               ersetzen des
                               Knotens
       return node;
                               dadurch wird
                               Knoten aus
                               Baum
                               entfernt
                                                            K_R
                                                 K_{l}
```

Löschen Code


```
// remove node
private TreeNode<T> removeAt(TreeNode<T> node,
                        T x,TreeNode<T> removed )
     if (node == null) {
      return null:
     } else {
      if (x.compareTo(node.element) == 0) {
          // found
          removed.element = node.element;
          if (node.left == null) {
           node = node.right;
          } else if (node.right == null) {
            node = node.left;
          } else {
            node.left =
findRepAt(node.left, node);
      } else if (x.compareTo(node.element) < 0) {</pre>
          // search left
          node.left = removeAt(node.left, x,
removed);
      } else {
          // search right
          node.right = removeAt(node.right, x,
removed);
      return node;
```

Suchen (Ausblick)

Suche x im Baum B:

- \square Wenn x == Wurzelelement gilt, haben wir x gefunden.
- Wenn x > Wurzelelement gilt, wird die Suche im rechten Teilbaum von B fortgesetzt, sonst im linken Teilbaum.

```
public Object search(TreeNode<T> node, T x) {
  if (node == null) return node;
  else if (x.compareTo(node.element) == 0)
    return node;
  else if (x.compareTo(node.element) <= 0)
    return search(node.left,x);
  else
    return search(node.left,x);
}</pre>
```

- ☐ Bei einem vollen Binärbaum müssen lediglich Log₂ Schritte durchgeführt werden bis Element gefunden wird.
- Entspricht Aufwand des Binäres Suchen
- sehr effizient Bsp: 1000 Elemente -> 10 Schritte

Zusammenfassung

- □ Allgemeine Bäume
 - rekursive Definition
 - □ Knoten (Vertex) und Kanten (Edge)
 - Eigenschaften von Bäumen
- □ Binärbäume: Bäume mit maximal zwei Nachfolgern
 - Traversal, Visitor
 - verschiedene Traversierungsarten
 - Inorder, Preorder, Postorder, Levelorder
- sortierte Binärbäume Einführung
 - Einfügen
 - □ Löschen
 - Suchen