

上节可的内容:
7+4+6
7中运算规律:封闭性,交换律。。。
4个特出元素:单位元,逆元,。。。
6类运算保持:满同态保持结合律,。。。

-伽罗瓦

1811-1832

伽罗瓦

- 于18岁时发表了第一篇论文。
- 伽罗瓦很早就开始了方程理论的研究,并提出了群的理论
- 伽罗瓦在解决代数方程的根式解问题中提出的群论,开辟了代数学的一个崭新的天地。

天才的童年

·伽罗瓦的双亲都受过良好的教育。在父母的熏陶下,伽罗瓦童年时代就表现出有才能、认真、热心等良好的品格。

·1823年10月伽罗瓦年满12岁时,离开了双亲,考入有名的略易,勒·格兰皇家中学。从他的老师们保存的有关他在中学生活的回忆录和笔记中,记载着伽罗瓦是位具有"杰出的才干","举止不凡",但又"为人乖僻、古怪、过分多嘴"性格的人。

数学世界的顽强斗士

□ 伽罗瓦通过改进数等大师检督明日的思想,即设法绕过拉民预解式,但又 从拉格朗日那里维承了问题转化的思想,即把预解式的构成同置换群联系 起来的思想,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部 问题转化或归结为置换群及其子群结构的分析。

天才的陨落

□ 伽罗瓦诞生在拿破仑帝国时代,经历了被旁王朝的复辟时期,又赶上路易,腓力浦朝代初期,他是当时最先进的革命政治集团——共和派的秘密组织"人民之友"的成员。

·伽罗瓦敢于对政治上的动摇分子和两面派进行顽强的斗争,年轻热情的伽罗瓦对师范大学教育组织极为不满。

·在监狱中伽罗瓦一方面与官方进行不妥协的斗争,另一面他 还抓紧时间刻苦钻研敷学。尽管牢房里条件很差,生活艰苦, 他仍能静下心来在数学王国里思考。

群论——跨时代的创造

□ 伽罗瓦最主要的成就是提出了群的概念,并用群论彻底解决了根 式求解代数方程的问题,而且由此发展了一整套关于群和域的理 论,为了纪念他。人们称之为伽罗瓦理论。正是这套理论创立了 抽象代数学,把代数学的研究推向了一个新的里程。正是这套理 论为数学研究工作提供了新的数学工具一群论。它对数学分析、 几何学的发展有很大影响,并标志着数学发展现代阶段的开始。

Chapter 5

群 Group theory

2022/3/2

§ 5.1 半群

(1)

5.1.1 半群的定义

定义

设 <S,*> 是一个代数系统,如果 * 运算满足结合律,则称 <S,*> 是一个半群。

挙例: <N,+>,<N,×>,<Z,+>, <Z,×>,<R,+><N,->,<N,÷>,<Z,->,

§ 5.1 半群

举例: < $M_n(R)$, + > , n是大于等于1的正整数。 举例: < $M_n(R)$, \bullet > , n是大于等于1的正整数。 举例: < P(S), \oplus > , S 非空集合, \oplus 是集合的对称差。 举例: < A^A , \circ > , A 非空集合, \oplus 是函数的复合运算。 以上系统都可以组成半群。

§ 5.1 半群

(2)

例: 假设 $S=\{a,b,c\}$, 在S上定义运算 Δ , 如 运算表给出。证明<S, A>是半群。

验证Δ运算是可结合的。

Δ	a	b	с
a	a	b	с
b	a	b	c
c	a	b	c

(à Δ b) Δ c= aΔ c=c $a \Delta (b\Delta c) = a \Delta c = c$ $(a \dot{\Delta} b) \dot{\Delta} c = a \dot{\Delta} (b \Delta c)$ (b Δ a) Δ c=b Δ (a Δ c)等

§ 5.1 半群

(2)

例: <N, 。>, 在N上定义运算。, 如下: a。b=a+b+a*b,证明<N,。> 是半群;

∘定义如下: a ∘ b=a+b - a*b, 如何?

 $(a \circ b) \circ c = (a \circ b) + c + (a \circ b) * c$ $(a \circ b) \circ c = (a \circ b) + c - (a \circ b) * c$ =(a+b+a*b)+c+(a+b+a*b)*c=a+b+c+a*b+a*c+b*c+a*b*c

=(a+b-a*b)+c+(a+b-a*b)*c=a+b+c-a*b+a*c+b*c-a*b*c

a o (b o c)=? 封闭性

 $a \circ (b \circ c) = \cdots = (a \circ b) \circ c$

§ 5.1 半群

(3)

5.1.1 半群的定义

定义:

假设 <S,*> 是一个半群, a∈S, n 是正整数,则 aⁿ表示 n 个 a 的计算结果,即 aⁿ = a_{*}a_{*...*}a 对任意的正整数 m,n;

 $a^m \cdot a^n = a^{m+n}, (a^m)^n = a^{mn}$

2022/3/29

§ 5.1 半群

(4)

5.1.2 交换半群

定义,

如果半群 <S,*> 中的 * 运算满足交换律,则 称 <S,*> 为交换半群。

在交换半群 <S,*> 中, 若a,b∈S, n.是任 意正整数,则(a*b)n = an * bn

§5.1 半群 (5)

5.1.3 独异点(含幺半群)

定义:

假设 <S,*> 是一个半群, 如果 <S,*> 中有单 位元,则称 <S,*> 是独异点,或含幺半群。

<N,+>,<N, × >,<Z,+>, <Z, ×>,<R,+>是独异点吗? <N-{0},+>,<N-{0}, × >是独异点吗?

独异点(含幺半群)

举例: $< M_n(R), + >$, n是大于等于1的正整数。 举例: < M_n(R), ● > , n是大于等于1的正整数。

举例: <A^,°>, A非空集合, °是函数的复合运算。

§ 5.1 半群 (7) 5.1.4 子半群 定义: 假设 < S,* > 是一个半群,若 T⊆S,且在*运 算下也构成半群,则称 < T,* > 是 < S,* > 的子半群。

§ 5.1 半群

(10)

例: 设 $\langle S, * \rangle$ 是可交换的含幺半群, T= $\{a | a \in S, La*a=a\}$,则 $\langle T, * \rangle$ 是 $\langle S, * \rangle$ 的子含幺半群。

解:

- 〔1〕封闭 ∵ a,b∈T a*a=a, b*b=b,(a*b)*(a*b)=a*<mark>a*b</mark>*b=a*b ∴ a*b ∈T
- (2)可结合.*本来就是可结合的.
- (3)单位元与S是同一个··e*e=e; ··e∈T

2022/3/29

§ 5.2 群的概念及其性质

(1)

5.2.1 群的基本概念

定义:

- 设 <G,*> 是一代数系统,如果满足以下几点:
- (1) 运算是可结合的;
- (2) 存在单位元 e;
- (3) 对任意元素 a 都存在逆元 a-1;

则称 <G,*> 是一个群。|G|表示群的阶

2022/3/29

例: <R,+>, <R-{0}, ×>,构成群

- (1)运算是封闭的
- (2) 运算是可结合的;
- (3) 存在单位元 e;
- (4) 对任意元素 a 都存在逆元 a 1;

2022/3/29

| 举例: | < M_n(R), + > , n是大于等于1的正整数。 | \

举例: $< M_n(R), \bullet >$,n是大于等于1的正整数。 >

举例: <P(S),⊕>, S非空集合, ⊕是集合的对称差。 √

举例: <P(S),∩>, <P(S),∪> ×

举例: <A^A, °>, A非空集合, °是函数的复合运算。后续分析

§ 5.2 群的概念及其性质 (2)

例:假设R={0,60,120,180,240,300}表示平面几何上图形绕形心顺时针旋转的角度集合。*是定义在R上的运算。定义如下:对任意的a,b∈R,a*b表示图形顺时针旋转a角度,再顺时针旋转b角度得到的总旋转度数。并规定旋转360度等于原来的状态,即该运算是模360的。整个运算可以用运算表表示。

2022/3/29

§ 5.2 群的概念及其性质

	100		100	4.0	400	100	
*	0	60	120	180	240	300	
0	0	60	120	180	240	300	
60	60	120	180	240	300	0	
120	120	180	240	300	0	60	
180	180	240	300	0	60	120	
240	240	300	0	60	120	180	
300	300	0	60	120	180	240	

2022/3/29

设 <R,*> 是一代数系统,满足以下几点:

- (1)运算*"顺时针旋转的角度"是封闭的
- (2) 运算*"顺时针旋转的角度"是可结合的;
- (3) 存在单位元 e=0;
- (4) 对任意元素 a 都存在逆元 a-1;

0*0=0; 60*300=0; 120*240=0; 180*180=0

0-1=0; 60-1=300; 120-1=240; 180-1=180

<G,*> 是一个群。|G|=6, 六阶群

2022/3/29

§ 5.2 群的概念及其性质

例: A是非空集合, $F = \{f | f : A \rightarrow A\}$,双射集

运算"。"是函数的复合运算,

则<F,。>是群

2022/3/29

例1: A={1,2,3}

解: 双射的个数 31 , $F = \{f_1, f_2, f_3, f_4, f_5, f_6\}$,

$$\begin{split} f_1 &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_2 &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \\ f_3 &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, f_4 &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \\ f_5 &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_6 &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}. \end{split}$$

2022/3/29

0	\mathbf{f}_1	\mathbf{f}_2	\mathbf{f}_3	f_4	f_5	f_6	1	1	÷	
\mathbf{f}_1	f_1	f ₂ f ₁ f ₅ f ₆ f ₃ f ₄	f_3	f_4	f ₅	f_6		- [-]		- [-]
\mathbf{f}_2	f ₂	\mathbf{f}_1	f_6	f_5	f_4	\mathbf{f}_3	- [-	100	÷	
f_3	f ₃	\mathbf{f}_5	\mathbf{f}_1	f_6	\mathbf{f}_2	f_4		- [-]		- [- [
f_4	f_4	f_6	\mathbf{f}_5	\mathbf{f}_1	\mathbf{f}_3	\mathbf{f}_2	11.	1.1	÷	
f_5	f_5	f_3	f_4	\mathbf{f}_2	f_6	\mathbf{f}_1			÷	
f_6	f_6	f_4	\mathbf{f}_2	\mathbf{f}_3	\mathbf{f}_1	f_5		- [-]		- [- [
f_2 o	$f_3 =$	$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 3 \end{pmatrix}$	$r = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$	= (1 2 3 1	3 2,) =	f_6
f_3 • .	$f_2 =$	$\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	$\binom{1}{2}$	$\begin{pmatrix} 2 & 3 \\ 1 & 3 \end{pmatrix}$	= (1 2 2	3) =	f_5
f_4 o .	$f_4 =$	$\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$	= (1 2	3 3	=	f_1

۰	f_1	\mathbf{f}_2	\mathbf{f}_3	f_4	\mathbf{f}_5	f_6
f_1	\mathbf{f}_1	f_2	f_3	f_4	f ₅	f_6
\mathbf{f}_2	f_2	\mathbf{f}_1	f_6	f_5	f_4	\mathbf{f}_3
f_3	f_3	\mathbf{f}_5	\mathbf{f}_1	f_6	\mathbf{f}_2	f_4
f_4	f_4	f_6	\mathbf{f}_5	\mathbf{f}_1	\mathbf{f}_3	\mathbf{f}_2
f_5	f_5	\mathbf{f}_3	f_4	\mathbf{f}_2	f_6	\mathbf{f}_1
f ₆	f ₆	f ₂ f ₂ f ₁ f ₅ f ₆ f ₃ f ₄	\mathbf{f}_2	\mathbf{f}_3	\mathbf{f}_1	f_5

- (1) 运算是可结合的:
- (2) 存在单位元 e; f1=IA
- (3) 对任意元素 a 都存在逆元 a 1;

f1,f2,f3,f4自身为逆元,f5,f6互为逆元

§ 5.2 群的概念及其性质

5.2.1 群的基本概念

一个群如果运算满足交换律,则称该群 为交换群,或Abel群(阿贝尔)。

∀a,b ∈G **有a*b=b*a**

勒让德、拉普拉斯、傅立叶、泊松、柯西。

例 (Z5,+5) 是可交换群。 (Zm,+m) 也是可交换群

[0]

[1]

[2] [3]

+5 [0][1][2][3][4]

[0] [1] [2] [3] [4]

[1] [2] [3] [4] [0]

[2][3][4][0][1]

[3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

(5)

(1) \forall [i],[j],[k] \in **Z**₅ $([i]+_5[j])+_5[k]=$ $[i]+_5([j]+_5[k])=$ [(i+j+k)mod 5]

(2) e=[0]

(3) ∀[i] **∈z**₅ $[[i]^{:1}=[[-i]]=[5-i]$

(4) ∀[i],[j] **∈Z**₅

 $[i]+_{5}[j]=[j]+_{5}[i]=[(i+j) \mod 5]$

§ 5.2 群的概念及其性质

5.2.2 群的性质

(1) 任何群都没有零元。

证明:反证,群中有零元,即 $\exists \theta \in A, \forall x \in A$,都有 $\theta * x = x * \theta = \theta$

又因为群中任何元素的逆元都存在,

设θ的逆元为θ-1. ∈**A**.;.

∴ θ=e 矛盾

·. 群中没有零元

§ 5.2 群的概念及其性质

5.2.2 群的性质

(2) 设 <G,*> 是群,则 G 中消去律成立。

证明: ∀a,b,c∈**G,a*b=a*c**

:群中任何元素的逆元都存在,设a的逆元是a-1

∴ $a^{-1*}(a*b)=a^{-1*}(a*c)$ 即 $(a^{-1*}a)*b=(a^{-1*}a)*c$)

(6)

∴e*b=e*c, b=c

同理 若 b*a=c*a 则 b=c

: 群中消去律成立

§ 5.2 群的概念及其性质

(5)

5.2.2 群的性质

(3) 设 <G,*> 是群,单位元e是 G 中的唯一 幂等元。

证明: : e*e=e : e是群中幂等元,

又设a∈G,且 a*a=a ,a是群中另一幂等元

∵ a-1*a*a=a-1*a=e

∴ a=e

∴ e是群中唯一幂等元

§ 5.2 群的概念及其性质

5.2.2 群的性质

(4) 设<G,*>,<H,。>是群,f是 G 到 H 的同态,若 e 为 <G,*>的单位元,则 f(e) 是<H,。> 的单位元,并且对

任意 a∈G, 有 f(a⁻¹)= f(a 证明: ∵ f是 G 到 H 的同态

 $f(e) \cdot f(e) = f(e*e) = f(e)$

从而f(e)是群<H,。>中幂等元,

∴ f(e)是群<H,。>的单位元

Xf(a), $f(a^{-1})=f(a*a^{-1})=f(e)$

 $f(a^{-1}) \cdot f(a) = f(a^{-1}*a) = f(e)$

∴ f(a) 与f(a-1)互为逆元

§ 5.2 群的概念及其性质

(6)

5.2.2 群的性质

(5) 设<G,*>是群, <H,。>是任意代数系统,若存在 G 到 H 的满同态映射,则<H,。>必是群。

证明: :满同态映射具有"6保持"; 保持结合律,单 位元,逆元 : H必是群,

§ 5.2 群的概念及其性质

5.2.3 有限群的性质

定理: 设 <G,*> 是一个 n 阶有限群,它的运算表中的 每一行(每一列)都是G中元素的一个全排列。

证明:设G中的n个不同元素为 $a_1,a_2,...,a_n$

即 $G=\{a_1,a_2,...,a_n\}$ 其中任意 $a_i\neq a_i$ ($i\neq j$)

其运算表中的第i行为 a,a,, a,a2,..., a,a,

要说明是一个全排列,只要说明每个元素都不相同,

若a_ia_i=a_ia_k(j≠k)

由群众消去律成立则a_i=a_k,矛盾

∴ a_ia₁, a_ia₂,..., a_ia_n 是n个元素的全排列

§ 5.2 群的概念及其性质

(10)

5.2.3 有限群的性质

一阶群

e a

二阶群

b

三阶群

§ 5.2 群的概念及其性质

5.2.3 有限群的性质

填e 9 X h

> e a

b

填a

(10)

填b

三阶群(唯一)

§ 5.2 群的概念及其性质

5.2.3 有限群的性质

(11)

§ 5.2 群的概念及其性质

例: ⟨G,*⟩ 是可交换(ABEL)群的充要条件是 ∀a,b ∈ G 有 (a*b)*(a*b)=(a*a)*(b*b)

X

解: 充分性: ∀a,b'∈G 有(a*b)*(a*b)=(a*a)*(b*b) 则(G,*) 是可交换(ABEL)群。

例: 任何阶数是1,2,3,4阶的群都是可交换 (ABEL)群。

1阶群是可交換(ABEL)群, G={e}.
2阶群是可交換(ABEL)群, G={e,a}.
3阶群是可交換(ABEL)群, G={e,a,b}.
茶a*b=a.pia**a*b=a**a = e, b=e
若a*b=b.pia*b*b*1=b*b*1=e, a=e
只有 a*b=e,b*a=b*a*e=b*a* (b*b*1)
-b* (a*b) *b*1) = b*e*b*1=b*b*1=e

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

a*b=b*a

4阶的群都是可交换(ABEL)群。

4阶群是可交换(ABEL)群,G={e,a,b,c} (1)a,b,c自为逆元, 则a*b=b*a=c; b*c=c*b=a; c*a=a*c=b 交換律構足

(2) a,b,c两个元素互为逆元,如a,b互为逆元 若a*b=b*a=e 则c*c =e, a*c≠e, a*c=b 同理c*a=b 所以a*c=c*a, 同理 b*c=c*b

§ 5.2 群的概念及其性质

例: 假设<G,*>是一个二阶群,则 $<G\times G,*>$ 是一个Klein群(克莱恩)。且是可交换(abel)群。

G={e,a}

G×G={<e,e>,<e,a>,<a,e>,<a,a>,} <e,e>*<e,e>=<e*e,e*e>=<e,e> <e,e>*<e,a>=<e*e,e*a>=<e,a> <a,a>*<a,a>=<a*a,a*a>=<e,e>

§ 5.2 群的概念及其性质

	*	<e< th=""><th>,e></th><th><e,a< th=""><th>> <</th><th>a,e></th><th><a,a></a,a></th><th></th></e,a<></th></e<>	,e>	<e,a< th=""><th>> <</th><th>a,e></th><th><a,a></a,a></th><th></th></e,a<>	> <	a,e>	<a,a></a,a>	
<e,e< th=""><th>></th><th><e.< th=""><th>,e></th><th><e,a< th=""><th>> <</th><th>a,e></th><th><a,a></a,a></th><th></th></e,a<></th></e.<></th></e,e<>	>	<e.< th=""><th>,e></th><th><e,a< th=""><th>> <</th><th>a,e></th><th><a,a></a,a></th><th></th></e,a<></th></e.<>	,e>	<e,a< th=""><th>> <</th><th>a,e></th><th><a,a></a,a></th><th></th></e,a<>	> <	a,e>	<a,a></a,a>	
<e,a< th=""><th>></th><th><e.< th=""><th>,a></th><th><e,e:< th=""><th>> <</th><th>a,a></th><th><a,e></a,e></th><th></th></e,e:<></th></e.<></th></e,a<>	>	<e.< th=""><th>,a></th><th><e,e:< th=""><th>> <</th><th>a,a></th><th><a,e></a,e></th><th></th></e,e:<></th></e.<>	,a>	<e,e:< th=""><th>> <</th><th>a,a></th><th><a,e></a,e></th><th></th></e,e:<>	> <	a,a>	<a,e></a,e>	
<a,e< th=""><th>> </th><th><a< th=""><th>,e></th><th><a,a< th=""><th>> <</th><th>e,e></th><th><e,a></e,a></th><th></th></a,a<></th></a<></th></a,e<>	>	<a< th=""><th>,e></th><th><a,a< th=""><th>> <</th><th>e,e></th><th><e,a></e,a></th><th></th></a,a<></th></a<>	,e>	<a,a< th=""><th>> <</th><th>e,e></th><th><e,a></e,a></th><th></th></a,a<>	> <	e,e>	<e,a></e,a>	
<a,a< th=""><th>></th><th><a< th=""><th>,a></th><th><a,e< th=""><th>> <</th><th>e,a></th><th><e,e></e,e></th><th></th></a,e<></th></a<></th></a,a<>	>	<a< th=""><th>,a></th><th><a,e< th=""><th>> <</th><th>e,a></th><th><e,e></e,e></th><th></th></a,e<></th></a<>	,a>	<a,e< th=""><th>> <</th><th>e,a></th><th><e,e></e,e></th><th></th></a,e<>	> <	e,a>	<e,e></e,e>	

* e a b c
e e a b c
a a c b
b b c e a
c c b a e

 $G \rightarrow G \times G$;定义如下双射 $e \rightarrow < e, e >$, $a \rightarrow < e, a >$, $b \rightarrow < a, e >$, $c \rightarrow < a, a >$

§ 5.2 群的概念及其性质

(7)

5.2.4 半群与群

- (1) 假设<G,*>是半群,并且
 - ① <G,*>中有一左单位元 e, 使得对任意的 a∈G; 有 e * a = a; ② <G,*>中任意元素 a 都有 "左逆元" a¹, 使得 a¹* a = e。 则 <G,*> 是群。

 $a^{-1}* a = e, \quad fa^{-1} \in G, \quad (a^{-1})^{-1} \in G$

 $aa^{-1} = e (aa^{-1}) = ((a^{-1})^{-1} a^{-1}) a a^{-1} = e 右逆元存在$

ae= a(a-1a.)=ea=e . 右单位元存在

§ 5.2 群的概念及其性质

(8)

5.2.4 半群与群

(2) 有限半群,如果消去律成立,则必为群。

*	e	a	b
e	e	a	b
a	a	?	?
b	b	?	?

§ 5.3 子群与元素周期

5.3.1 子群

定义:

设 <G,*> 是一个群,非空集合 H⊆G。如果 H 在 G 的运算下也构成群,则称 <H,*> 是 <G,*> 的子群。

§ 5.3 子群与元素周期

H0={e} H1={e,a} H2={e,b} H3={e,c}

H4={e,a,b}?不 能构成**G**的子群

§ 5.3 子群与元素周期

5.3.1 子群

定理:

设 <H,*> 是 <G,*> 的子群,则

(1) <H,*> 的单位元 e_H一定是 <G,*> 的单位元,

即: e_H = e_G。

分析: 'é́́́h*é́́g = é́g = é́́́́́́h

(2) 对 a∈H, a 在 H 中的逆元 a', 一定是a 在 G 中的逆元。

(2)

§ 5.3 子群与元素周期

(3)

5.3.2 由子集构成子群的条件

(1) 设 日 是群 < G,*> 中 G 的非空子集,则 日构成 < G,*> 子群的充要条件是:

① 对 ∀a,b∈H, 有 a*b∈H;

② 对 ∀a∈H, 有a-1∈H。

分析: 由① 对 ∀a,b∈H, 有 a*b∈H, 封闭性

② 对 ∀a∈H,**有**a⁻¹∈H。 a* a⁻¹ ∈H; e ∈H 单位无 逆元存在,可结合性

§ 5.3 子群与元素周期

(4)

5.3.2 由子集构成子群的条件

(2) 推论(子群的判定条件)

假设 <G,*> 是群, H 是 G 的非空子集,则 <H,*> 是 <G,*> 子群的充要条件是; 对 ∀a,b∈H,有 a*b¹eH。

分析: 对 ∀a,b∈H, 有 a*b⁻¹∈H。 有 a*a⁻¹∈H(逆元); e∈H(单位元);

对∀a,b∈H, b-¹∈H, a*b= a*(b-¹)-¹∈H(封闭性)

§ 5.3 子群与元素周期 5.3.2 由子集构成子群的条件

(5)

(3) (子群的判定条件)

假设 < G, * > 是一个群,H 是 G 的非空<mark>有限子集,则 < H, * > 是 < G, * > 子群的<mark>充要条件</mark>是:
对 ∀a, b ∈ H,有 a * b ∈ H。</mark>

N ∀a,D∈⊓, A a b

分析证明。多种思路

5.3.2 由子集构成子群的条件

假设 <G.* > 是一个群,H 是 G 的非空有限子集,则 <H.*> 是 < G.*> 子群的充要条件是。对 $\forall a.b \in H$,有 $a*b \in H$ 。

证明: 充分性, H≠Ø, H⊆G,且|H |=m, 若a∈ H

则 $a_*a \in H$, $a_*a_*a \in H$

即 $a,a^2,...a^m,a^{m+1}\in H(a^0=e)$,而日只有m个元素;

:: a的m+1个幂元素中至少有两个相等,

不妨设 $\mathbf{a}^{t} = \mathbf{a}^{s}$ (1 $\leq t < s \leq m+1$),

 $\therefore a^t = a^s = a^{s-t} * a^t$

5.3.2 由子集构成子群的条件

即 a⁰*a^t = a^{s-t}*a^t, 由削去律得

则有 $a^{s,t} = a^0(e) \in H(有单位元)$

设 r=s -t 则e=a^r=a^{r-1}*a = a*a^{r-1}

则a与ar-1互为逆元

:: H为G的子群

必要性: 略

§ 5.3 子群与元素周期

(6)

5.3.3 元素的周期

(1) 群中元素的幂运算

假设 <G,*> 是一个群, a∈G。

则 $a^0 = e$; $a^{i+1} = a^i * a$;

(a) $-1 = a^{-1} = (a^{-1})(a^{-1})...(a^{-1})$

 $= (a^{-1})^i \quad (i \geq 0);$

 $a^m * a^n = a^{m+n};$

(a^m)n'= a^{mn'} (m,n**为整数)**。

§ 5.3 子群与元素周期

(Ż)

[0] [1] [2] [3] [4]

[0] [1] [2] [3] [4]

[1] [2] [3] [4] [0]

[2] [3] [4] [0] [1]

[3] [4] [0] [1] [2]

[4] [0] [1] [2] [3]

+5

[0]

.[1]

[2]

[3]

[4]

5.3.3 元素的周期

(2) 元素的周期

定义: 设<G,*>是一个群, $a \in G$ 。若存在正整数n, 使得 an=·e,则将满足该条件的最小正整数n称为元素a的周期 或阶。若这样的n不存在,则称元素a的周期无限。元素a的 周期记为: |a|

5.3.3 元素的周期

例: <Z4,+4>是一个群,其中 $Z_4 = \{[0],[1],[2],[3]\},$

其运算表如右图。

 $[0]^{1}=[0]$

[2]=[0] $[3]^4 = [0]$

1[0]1=1 [1]4=[0] [[1]]=4

1[2]]=2

[0] [1] [2] [3] [0] [0] [1] [2] [3] [1] [1] [2] [3] [0]

[2] [2] [3] [0] [1] [3] | [3] [0] [1] [2]

[3][=4

元素的周期有三种: 1, 2, 4

例: <Z₅,+₅>**是一个群,其**

 $[0]^1 = [0]$

 $[1]^5 = [0]$

 $[3]^5 = [0]$ ||T3]|=5

[4]5=[0]

元素的周期有二种: 1,5

5.3.3 元素的周期

中Z₅ ={[0],[1],[2],[3], [4]},其运算表如右图。

|[0]|=1

|[1]|=5 [2]5=[0] |[2]|=5

-[[4][=5

13

5.3.3 元素的周期

例: 群<Z4,+4>的子群。

子群: <Z₁,+₄>; <Z₄,+₄> $Z_1 = \{[0]\},$ $Z_4 = \{[0],[1],[2],[3]\}$

子群: <Z₂,+₄> $Z_2 = \{[0],[2]\}$

元素的周期有三种: 1, 2, 4; 有三类子群

ì					
	+4	[0]	[1]	[2]	[3]
	[0]	[0]	[1]	[2]	[3]
	[1]	[1]	[2]	[3]	[0]
	[2]	[2]	[3]	[0]	[1]
	[3]	[3]	[0]	[1]	[2]

5.3.3 元素的周期

例: 群<Z₅,+₅>的子群。

子群: <Z₁,+₅>, · <Z₅,+₅> $Z_5 = \{[0], [1], [2], [3], [4]\},$ $Z_1 = \{[0]\},\$

元素的周期有二种: 1,5;也有两类子群

 $Z_2 = \{[0], [2]\}$? $\langle Z_2, +_5 \rangle$, 不封闭所以不是!

5.3.3 元素的周期

定义:循环群(下节)

设 <G,*> 是一个群, 若在 G 中存在一个元素 a, 使得 G 中任意元素都由 a 的幂组成, 即 G = (a) = {aⁱ | i∈Z}, 则称该群为循环群, 元素 a 称为 循环群的生成元。

5.3.3 元素的周期

例: <Z₄,+₄>群 $Z_4 = \{[0], [1], [2], [3]\},$

循环(子)群

 $Z_1 = \{[0]\} = ([0]) = \{[0]^0\},$ $Z_2 = ([2]) = \{[2]^0, [2]^1\}$ ={[0],[2]}

[0] [1] [2] [3] +4 [0] [1] [2] [3] [1] [1] [2] [3] [0] [2] [2] [3] [0] [1] [3] [3] [0] [1] [2]

 $[1]^1=[1], [1]^2=[2], [1]^3=[3], [1]^4=[4]$ ([1])= {[1]+, [1]2, [1]3, [1]4}=Z4, [1]是Z4生成元

5.3.3 元素的周期

例: <Z₅,+₅>是一个群,

其中 Z₅ ={[0],[1],[2],[3],[4]},

 $[1]^1=[1], [1]^2=[2], [1]^3=[3], [1]^4=[4], [1]^5=[0]$ ([1])= {[1], [1]², [1]³, [1]⁴, [1]⁵}=Z5 ; [1]是生成元

 $[2]^{1}=[2], [2]^{2}=[4], [2]^{3}=[1], [2]^{4}=[3],$ [2]5=[0] · 所以([2])= Z₅ · [2]是生成元

 $([3]) = Z_5 \quad ([4]) = Z_5$

对 < Z5, +5 > #除[0]外其它元素都是生成元 (每个非单位元都

5.3.3 元素的周期

例: <Z₄,+₄>群 $Z_4 = \{[0], [1], [2], [3]\},$

|([0])|=元素[0]生成的循环群的阶为1 |[0]|=[0]元素的周=1

所以有」[0]|=|([0])|=1 同样有"|[2]|=|([2])|=2"

结论: a 的周期等于 a 生成的循环子群(a)的阶。 即 |a| = |(a)|;

5.3.3 元素的周期

```
例: 群R={0,60,120,180,240,300}
(60) =R,
(120)={120<sup>0</sup>,120<sup>1</sup>,120<sup>2</sup>}={0,120,240}
|60|=6,|(60)|=6,|120|=3,|(120)|=3
|60|=|(60)|=6
|120|=|(120)|=3
満足, a 的周期等于 a 生成的循环子群(a)
```

的阶。 即 |a| = |(a)|;

5.3.3 元素的周期

(3) 元素周期的性质

设<G;*>是一个群, $a \in$ G。 ① a 的周期等于 a 生成的循环子群(a)的阶。 即 |a| = |(a)|;

② 者 a 的周期为 n, 则 a^m = e 的充分必要条件 是 n|m。

5.3.3 元素的周期

```
设<G,*シ是一个群, â=G
① â的周期等于 â 生成的循环子群(â)的阶。即 |a| = |(â)|
证明:

災a的周期为有限n, 即 |a| = n, (a) = {a<sup>0</sup>,a<sup>1</sup>,a<sup>2</sup>,...a<sup>n-1</sup>}

∀a<sup>1</sup>∈ (a), 则i=kn+r, 其中k,r∈Z, 0≤r<n

a<sup>1</sup>=a<sup>kn+r</sup>=â<sup>kn</sup>a<sup>r</sup>=(a<sup>n</sup>)<sup>k</sup>a<sup>r</sup>=(e<sup>n</sup>)<sup>k</sup>a<sup>r</sup>=a<sup>r</sup>

a<sup>1</sup>∈ {â<sup>0</sup>,â<sup>1</sup>,â<sup>2</sup>,...a<sup>n-1</sup>} 所以(a) ⊆ {a<sup>0</sup>,a<sup>1</sup>,â<sup>2</sup>,...â<sup>n-1</sup>}成立

又因为{a<sup>0</sup>,a<sup>1</sup>,a<sup>2</sup>,...a<sup>n-1</sup>} ⊆ (a)虽然成立

所以 (a)={a<sup>0</sup>,a<sup>1</sup>,a<sup>2</sup>,...a<sup>n-1</sup>}
```

5.3.3 元素的周期

```
{a<sup>0</sup>,a<sup>1</sup>,a<sup>2</sup>,...a<sup>n-1</sup>} = (a) |a|=n, |(a)|=n?

煮a<sup>i</sup>=a<sup>i</sup>, 0≤i,j<n, i≠j

则a<sup>i,j</sup>=e,0<i-j<n,与a的周期为n矛盾

所以a<sup>0</sup>,a<sup>1</sup>,a<sup>2</sup>,...a<sup>n-1</sup>互不相同

|(a)|=n,又|a|=n

|(a)|=ia|
```

5.3.3 元素的周期

```
②者a 的周期为 n,则 a<sup>m</sup> = e 的充分必要条件是 n [m. 证明: 必要性: 者 n | m. 有 a<sup>m</sup> = e 者 n | m. 有 a<sup>m</sup> = e 者 n | m. 夜 m = e 者 n | m. 夜 m = e n, w = e n | m. e n | m.
```

5.3.3 元素的周期

(3) 元素周期的性质

推论

设 <G,*> 是一个群,a∈G。若 a的周期为 n,则 (a)= {a⁰,a¹,...,aⁿ⁻¹}。

5.3.3 元素的周期

例1 假设<G,*>是一个群,|G|=2n,证明G中至少有一个周期为2的元素。 (在偶数阶群中至少有一个周期为2的元素)

G={元素与元素的逆元不同} U (元素与元素的逆元相同(自身为逆元)}

证明。因为群 $<G_i$ *>中的任何元素的逆元都存在,即元素a的逆元是 a^{-1} , a^{-1} 的逆元是a。因而G中逆元不等于自身的元素必为偶数个(包括零个)。

但是G有偶数个元素,因此G的逆元等于自身的元素个数也必为偶数个,而G的单位元e的逆元是其本身,所以G中至少还有另一个元素。 其逆元是它本身,即a⁻¹=a。

从而. $a^2=a*a=a*a^{-1}=e$,并且 $e \neq a$ 。即 a是一个周期为2 的元素 所以至少存在一个周期为2的元素。

5.3.3 元素的周期

例2 〈G, *>是群、a∈G,则元素a的周期与a¹的周期相同。

证明:设元素a的周期为r,元素a-1的周期为t, a'=e, (a-1) t=e

则 (a⁻!) ^r=(a^r) ⁻!=e⁻!=e;因为元素a⁻!的周期为t; 所以t≤r 另t|r

又有 $a^t = (a^{-t})^{-1} = ((a^{-1})^t)^{-1} = e^{-1} = e$,因为元 素a的周期为r,所以 $r \le t$ $\operatorname{Sr}_1 t$

所以 r≐t

5.3.3 元素的周期

例3 假设<G,*>是可交换群,a,b ∈G, |a|=2,|b|=3 证明 |a*b|=6

证明: 因为(a*b)⁶=a⁶*b⁶= (a²) *⁵** (b³) *²=e 故 a*b必有有限周期, 设 a*b|=n, 则n|6

故 n有4种可能,即n=1,2,3,6

若n=1,则a*b=e,所以 b=a⁻¹, b²=(a⁻¹)²=(a²) ⁻¹=e, b²=e 矛盾

者n=2,则(a*b)²=a²*b²=b²=e,b²=e矛盾

若n=3,则(a*b)³=a³*b³=a³=a*a²=a=e,a=e 矛盾

因此, n=6。

子群与元素周期 小结

- 1.子群
- 2 由子集构成子群的条件

∀a,beH, 有 a*beH. ② 对 ∀aeH. 有 a*eH. (2) 假设 <G,*> 是票, H 是 G 的非空子集, 则 <H,*> 是 <G,*> 于胖的充要条件是, 对 ∀a,beH, 有 a*b-*eH.

(3) 假说 <G,* > 是一个群,H 是 G 的非空有限于集,则 <H,* > 是 <G;* > 于群的充要条件是。对 ∀a,bèH,有 a*bèH。

3 元素的周期 |a|

子群与元素周期 小结

元素周期的性质

设<G,*>是一个群, a∈G。

- ① a 的周期等于 a 生成的循环子群(a)的阶。 即 |a| = |(a)|;
- ② 若 a 的周期为 n,则 $a^m = e$ 的充分必要条件是 $n \mid m$ 。

小结

- 1、群的阶 |G| 有限/无限
- 2、子群 S ⊆ G 如 S={e}
- **3、群中元素的周期 ∀a∈**G [a]=n n可以是自然数〔奇,偶数〕 也可能是无限
- **4、<G,*>群中,** ∀a∈G, [a] = [(a)]

| a |=|a⁻¹|,在偶数阶群中至少有一个周期为2的元素。。。?, 群中任何元素的周期一定是群的阶的正因子? 循环群,置换群,群同态?

§ 5.4 循环群

(1)

5.4.1 定义

设 <G,*> 是一个群,若在 G 中存在一个元素 a,使得 G 中任意元素都由 a 的幂组成,即 G = (a) = $\{a^i$ | $i \in Z\}$,则称该群为循环群,元素 a 称为循环群的生成元。

例: 群R={0,60,120,180,240,300} (60)=R,生成元是60

例: $< Z_n, +_n >$, 生成元是1, ([1])= Z_n 还有其它生成元?

* e a b
e e a b

b

a⁰=e a¹=a a²=b * e a b c
e e a b c
a a e c b
b c a e e c b
c c b e a

生成元是a或b (a)=G;(b)=G 生成元是b或c a为什么不(b)=G;(c)=G 是生成元。

例: <G, x,>是一个群; 即<Z,-{[0]}, x,> 其中G={[1],[2],[3],[4],[5],[6]}, 其运算表如图。 是否是循环群? 生成元是什么?

× ₇ .	[1][2][3][4][5][6]	[3] ⁰ =[1] (e)
[1]	[1] [2] [3] [4] [5][6]	[3] ¹ =[3]
[2]	[2] [4] [6] [1] [3][5]	[3]2=[2]
1	[3] [6] [2] [5] [1] [4]	[3]3=[6]
[4]	[4] [1][5] [2] [6] [3]	
[5]	[5] [3][1] [6] [4] [2]	[3]4=[4]
[6]	[6] [5][4] [3] [2] [1]	[3]5=[5]

还有其它生成元吗?

单选题 3分 **例:** <G, x₇>是一个群, 即<Z₇.{[0]}, x₇> 其中G={[1],[2],[3],[4],[5],[6]},其运算表如图。 [1] [2] [3] [4] [5][6] △ [5]是群的生成元 ·[1] [1] [2] [3] [4] [5][6] [2] [4] [6] [1] [3][5] [2] [6]是群的生成元 [3] [3] [6] [2] [5] [1] [4] [5],[6]都是群的生成元 [4] [4] [1][5] [2] [6] [3] [5] [5] [3][1] [6] [4] [2] [6] [6] [5][4] [3] [2] [1] [5],[6]都不是群的生成元

例: <Z,+>是循环群,生成元有几个?

(2) ={2i|i ∈Z} ≠Z 所以2不是生成元

另外-1是生成元吗?

§ 5.4 循环群 5.4.2 循环群的性质

(1) 设 <G,*> 是一个循环群。

① 若 <G,*> 是 n 阶有限群循环群, 则 <G,* $> \cong <$ Z_n,+_n>;

② 若 <G,*> 是无限群循环群,则 <G,*> ≅ <Z,+>。

§ 5.4 循环群

(1) 设 <G,*> 是一个循环群。 ① 若 < G,* > 是 n 阶有限群,则 $< G, *> = < Z_n, +_n > ;$ G是n解有限循环群,则一定存在生成元a, $G = (a) = \{a^i \mid i \in N\} = \{a^0, i \in N\} = \{a^0, i \in N\}$

a¹ , ...a } 定义映射 $f:[i] \rightarrow a^i$, $\forall [i] \in Z_n$

显然f是满射.

若 $i \neq j$ 即 $[i] \neq [j]$,并有 $a^i \neq a^j$ 所以f也是单射

所以f是双射

 $f([i]+_n[j])=f([i+j])=a^{i+j}=a^{i}*a^{j}=f([i])*f([j])$

所以G与 Z_n 同构 $(G \cong Z_n)$

无限循环群同构于整数加群。证明类似

§ 5.4 循环群

5.4.2 循环群的性质

(2) 循环群的子群必为循环群

例: $\langle Z_6, +_6 \rangle$ 群 $Z_6 = \{[0], [1], [2], [3], [4], [5]\}$, 循环(子)群: $([0]) = \{[0]\},$ $([2]) = \{[0], [2], [4]\} = \{[2]^0, [2]^1, [2]^2\}$

§ 5.4 循环群

证明: 循环群的子群必为循环群

G是循环群,则一定存在生成元a, G = (a)设H是其子群,

(1) 若H={e}={a⁰},e是H的生成元

(2) 若H ≠{e} 则H={aⁿ¹, aⁿ², aⁿ³,....}.

 $\diamond l_0 = min\{n_i | a^n \in H, n_i > 0\}$ (只要证明 $H = (a^{i_0})$)

对于∀ a ∈ H, i>i₀

则 $i=ki_0+r$, $0 \le r < i_0$, $k \in N$

§ 5.4 循环群

 $a^i = a^{ki_0+r} = a^{ki_0}a^r$ a^r=a^{-ki₀}aⁱ 由封闭性可知a^r∈ H 因为0≤r<i₀且 i₀是最小正指数, 所以r=0 $a^{i} = a^{ki_{0}} = (a^{i_{0}})^{k}$ 所以出=($a^{i_{0}}$)

§ 5.4 循环群

5.4.2 循环群的性质

(3) 设 <G,*> 是 n 阶循环群, m 是正整数, 并且 m|n, 则 G 中存在唯一一个m阶子群。

例: <Z₆,+₆>群 Z₆ ={[0],[1],[2],[3],[4],[5]}, 其子群: 六阶循环群必有1阶、2阶、3阶、6阶(循环)子群。 ([0])={[0]}, ([2])={[0],[2],[4]}

其2阶子群是谁? {[0],[3]}

§ 5.4 循环群

5.4.2 循环群的性质

设 <G.*> 是 n 阶循环群, m 是正整数, 并且 m|n, 则 G 中存在唯一一个m阶字群。

因为m|n , 设n=dm, (a^d) m=a^{dm}=aⁿ=e, (a^d的周期是m?)

对于♥ h∈ N,若0<h<m 则0<dh<dm=n

(ad)h=adh ≠ e,所以ad的周期是m(说明m是最小的)

所以 a^{4} 作为生成元生成的是m阶子群, $A=(a^{d})$,|A|=m ;找到了m 阶子群,唯一吗?

§ 5.4 循环群

设H是0的另一m阶子群,即 H = (a'), (a') = a' = e.

所以有n | im 即 dm | im 所以有d | i
设 i=kd, a'=a'=(a') \

所以有a'∈A, 对于j ∈Z, (a') i∈ A

H_CA, 因为H和A=(a') 均有m个元素, H=A, H = (a')
设 ⟨G,*> 是 n 阶循环群,m 是正整数,并且 m | n,则

对于n的每个正因子m都存在唯一一个m阶子群。

n阶循环群的子群个数恰为n的正因子数。

G 中存在唯一一个m阶子群。

§ 5.4 循环群

例1 证明循环群的同态像必为循环群。

解: 〈G,*〉是循环群, a是生成元, f是同态映射, 则〈f(G),*〉是同态像

 $\forall a^n$, $a^m \in G$, 有 $f(a^n*a^m) = f(a^n) * f(a^m)$

n=1时 f(a)=f(a)

n=2Ff $f(a^2)=f(a)*f(a)=(f(a))^{-2}$

n=k-1 By $f(a^{k-1})=(f(a))^{-k-1}$

 $f(a^k) = f(a^{k-1}*a) = f(a^{k-1}) * f(a) = (f(a))^{-k-1}*f(a) = (f(a))^{-k-1}$

所以f(G)中的每个元都可以表示成f(a)的若干次幂

即 (f(a)) =f(G)

§ 5.4 循环群

例2〈G, *〉是无限循环群,则只有两个生成元a和a-1。

解: ∀ b∈G=(a),则∃n∈Z,有b=aⁿ

b=(a⁻ⁿ)⁻¹=(a⁻¹)⁻ⁿ=(a⁻¹)ⁿ¹其中n1=-neZ

a-1也是群的生成元

若c是另一生成元,则∃k,m∈Z c=a^k (1)a=c^m(2)

(2) 代入(1) 所以 c=ckm 即ckm-1=e

若km≠1则有削去律可知c的阶是有限的,这与G是无线阶群矛盾

若km =1 k=m=1或k=m=-1

所以 c=a或c=a-1

群只有两个生成元a和a-1

§ 5.5 置换群

5.5.1 置换及其运算

(1) 有限集 S 到其自身的双射称为 S 上的一个置换。当 |S| = n 时, S 上的置换称为 n 次置换。

§ 5.5 置换群

5.5.1 置换及其运算

(2) 定义:设 S 上有如下置换

$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_{i-1} & a_i & a_{i+1} & \dots & a_n \\ a_2 & a_3 & \dots & a_i & a_1 & a_{i+1} & \dots & a_{n-1} \end{pmatrix}$$

称该置换为循环置换,记为 $(a_1,a_2,...,a_l)$.. i为循环长度。当 i=2 时称为对换。

单位置换,即恒等映射也视为循环置换,记为 (1) 或 (n)

§ 5.5 置换群

5.5.2 置换群

(1) 定义: 一个阶为n的有限集合S上所有的置换所组成的集合S_n及其复合运算[°]构成群,称 <S_n,° > 为 n 次对称群(symmetric group of degree n),而 <S_n,° > 的任意子群称为 n 次置换群。 n 次对称群的阶[°] [S_n]= ? 1

2022/3/29

§ 5.5 置换群

5.5.2 置换群

例1: 假设 S={1,2,3}, 写出 S 的 3 次对称群和所有的 3 次置换群。

解: $S_3 = \{f_1, f_2, f_3, f_4, f_5, f_6\}$,并且 $f_1 = (1), f_2 = (1, 2), f_3 = (1, 3), f_4 = (2, 3),$ $f_8 = (1, 2, 3), f_6 = (1, 3, 2)$

2022/3/29

$$f_1 = (1) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \qquad f_2 = (1,2) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$f_3 = (1,3) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \quad f_4 = (2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix},$$

$$f_5 = (1,2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad f_6 = (1,3,2) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

 f_1 f_6 \mathbf{f}_2 f_2 f_3 f_3 f_5 f_1 f_6 f_2 f_4 f_4 f_6 f_5 f_1 f_3 \mathbf{f}_2 f_5 f_5 \mathbf{f}_3 f_4 f_2 f_6 \mathbf{f}_1 \mathbf{f}_1

 f_1 是单位元, $(f_1) = \{f_1\}$ 群中元素 f_2 , f_3 , f_4 的阶是2, $(f_2) = \{f_2, f_2^2\} = \{f_1, f_2\}$ $(f_3) = \{f_3, f_2^3\} = \{f_1, f_3\}$ $(f_4) = \{f_4, f_4^2\} = \{f_1, f_4\}$ 元素 f_5 , f_6 的阶是3, $(f_5) = \{f_5, f_5^2, f_5^3\} = \{f_1, f_5, f_6\}$ $\{f_6\} = \{f_6, f_6^2, f_6^3\} = \{f_1, f_5, f_6\}$ $\{f_1\}$, $\{f_1, f_2\}$, $\{f_1, f_3\}$, $\{f_1, f_4\}$ $\{f_1, f_5, f_6\}$ 是子群,即3次置换群

但3次置换群的阶有1,2,3阶

例: 有那些置換群是可交換群 (ABEL群) ? 「解: {f₁}, {f₁, f₂}, {f₁, f₃}, {f₁, f₄} {f₁, f₅, f₆} 是子群, 即3次置換群

都是可交换群 (ABEL群)

§5.5 置换群

5.5.2 置换群

(2) 性质: (Cayley 凯利定理)

任意 n 阶群必同构于一个 n 次置换群。

2022/3/29

§ 5.6 陪集 (2)

5.6.1 左同余关系(左陪集关系)

定理:

设 <H,*> 是 <G,*> 的一个子群,则 G 中模 H 左同余 关系是等价关系。

(1)自反(2)对称(3)传递 R_H={<a,b>|a,beG,b-1*aeH}

<a,a> \in R_H, \dot{a} 1* a \in H 月是子群 <a,b> \in R_H, \dot{b} 1* a \in H 日是子群。(\dot{b} 1* a) 1 eH, \dot{a} 1* b \in H, <b,c> \in R_H, <b,c> \in R_H, \dot{b} 1* a \in H, \dot{c} 1* b \in H, \dot{c} 1* a \in H <a,c> \in R_H

§ 5.6 陪集

5.6.2 左陪集

定义:

设 <H,*>是<G,*>的一个子群,则 a∈G为代 表元的模H同余关系的等价类[a]= $\{a*h|h\in H\}$, 称为H在G内由a确定的左陪集。

(3)

简记为: aH=[a]={...}。 陪集着实有些抽象!

§ 5.6 陪集 (3)

例1: 设G=R×R, R是实数集, G上的二元运算定义如下; ∀⟨x,y⟩∈R×R代表平面坐标系中的一点, $\langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle$

则<G,+> 是群。

设H={<x,y>|y=2x},H是G的子群。

取 $a = \langle x_0, y_0 \rangle$,**aH,Ha的意义是什么?**

§ 5.6 陪集 5.6.2 左陪集	(5)
例3: 设 <z<sub>6,+₆>是一个 试写出<z<sub>6,+₆>中每个引</z<sub></z<sub>	群, Z ₆ = {[0],[1],[2],[3],[4],[5]}, 群及相应的左陪集。
· · · · · · · · · · H1={[0]}· · · · · · ·	+ [0] [1] [2] [3] [4] [5]
H2={[0],[3]}	[0] [0] [1] [2] [3] [4] [5]
H3={[0],[2],[4]}	[1] [1] [2] [3] [4] [5] [0]
	[2] [2] [3] [4] [5] [0] [1] "."
	[3] [3] [4] [5] [0] [1] [2]
	[4] [4] [5] [0] [1] [2] [3]
	[5] [5] [0] [1] [2] [3] [4] .

§ 5.6 陪集 5.6.2 左陪集 **定理:** 投 <H,*> 是 <G,*> 的一个子群,则: (1) eH = H; (2) 对∀a,b∈G, aH = bH ⇔ b:1*a∈H (3) 对∀a∈G, aH = H ⇔ a∈H

证明: 设 <H,*> **是** <G;*> **的一个子群,则:**(1) eH = H; ∀x∈eH,∃h₁∈H.有x=eh₁=h₁∈H,
所以有eH⊆H; 又 H⊆eH, 所以eH = H

证明: 设 <H,*> 是 <G,*> 的一个子群,则:

(2) $\forall \forall a,b \in G$; $aH = bH \Leftrightarrow b^{-1}*aH = b^{-1}*bH$ $\Leftrightarrow b^{-1}*aH = eH \Leftrightarrow b^{-1}*aH = H \Leftrightarrow b^{-1}*a \in H$

证明.: (3) 対∀a∈G, aH = H ⇔ a∈H.
则∃ h₁, h₂∈H 有 ah₁ =h₂ a = h₂h₁¹ ∈H a∈H.
若a∈H 由运算封闭性 aH = H.

另法 利用(1)(2) aH = H =eH⇔ e⁻¹*a∈H ⇔ a∈H

§ 5.6 陪集 (4)

所以 aH = bH

定理:

设 <H,*> 是 <G,*> 的一个子群,则:

- (1) eH = H;
- (2) 对 $\forall a,b \in G$,aH = bH $\Leftrightarrow b^{-1}*a \in H$
- (3) 对∀a∈G, aH = H ⇔ a∈H
- (1)单位元的陪集还是子群自身
- (2)两个元素的陪集相同,则两个元素有模H左同余关系(等价关系)
- (3)某元素的陪集与子群相同,则该元素一定是子群中的元素。

§ 5.6 陪集

(6)

5.6.3 左商集和右商集

定义.

设 <H,*> 是 <G,*> 的一个子群,由 H 所确定的 G 上所有元素的左陪集构成的集合称为 G 对 H 的左商集,记为: $S_i=\{$ a $H|a\in G$ $\}$,所有右陪集构成的集合称为 G 对 H 的右商集,记为: $S_R=\{$ $Ha|a\in G$ $\}$

(3) 左、右商集 $S_i = \{aH | a \in G\}$ 、 $S_R = \{Ha | a \in G\}$

例: 设<Z₆,+₆>是一个群, Z₆ ={[0],[1],[2],[3],[4],[5]}, 运算表如下: [1] [2] [3] [4] [5] [0] $H1 = \{[0]\}$ [0] [1] [2] [3] [4] [5] H2={[0],[3]} [1] [1] [2] [3] [4] [5] [0] H3={[0],[2],[4]} [2] [2] [3] [4] [5] [0] [1] [3] [3] [4] [5] [0] [1] [2] [4] [4] [5] [0] [1] [2] [3] [5] [5] [0] [1] [2] [3] [4]

§ 5.6 陪集 - 5.6.3 左商集和右商集

定理:

设 <H,*> 是任意群 <G,*> 的子群,则 G 关于 H 的左、右商集必等势。 定义映射 f;S_L→S_R, 对∀a∈G, f(aH)=Ha-1 \$ 5.6 陪集 (8)
 5.6.3 左商集和右商集
 定义: 设 <H,*> 是群 <G,*> 的子群, S_L的
 基数称为 H 在G 内的指数。记为:

 [G:H]=|S_L| 或 [G:H]=|S_R|

(d) *(G={e,a,b,c,d,f})。
(d) *(D 右頭集 (d) *(D 右顶μ (d) *(D 右面μ (d) *(D a) *(D a)

例: 设<Z₆,+₆>**是一个群**, Z₆ ={[0],[1],[2],[3],[4],[5]}, 运算表如下: $H1 = \{[0]\}$ + [0] [1] [2] [3] [4] [5] H2={ [0],[3]} [0] [1] [2] [3] [4] [5] H3={[0],[2],[4]} [1] [1] [2] [3] [4] [5] [0] [2] [2] [3] [4] [5] [0] [1] [3] [3] [4] [5] [0] [1] [2] [4] [4] [5] [0] [1] [2] [3] [5] [5] [0] [1] [2] [3] [4] $[Z_6:\{[0]\}]=6$ · H₁={[0]}, Si={{[0]}; {[1]}, {{2}}, {[3]}, {[4]}; {[5]}} Sk={{[0]}; {[1]}, {[2]}, {[3]}, {[4]}; {[5]}} [Z₆:H1]= [S₁]=6 $[Z_6:H2]=3$ $[Z_6:H3]=2$

§ 5.6 陪集 § 5.6 陪集 (9) (10) 5.6.3 左商集和右商集 5.6.4 Lagrange 定理 定理: 定理: 设 <日,*> 是群 <G,*> 的子群,日 假设 <G,*> 是有限群, <H,*> 是 的任意左陪集(右陪集)与 H 等势。 <G, *> 的子群,则 H 的阶必整除 G 的 ∀a∈G, [aH]=[H] 或 [Ha]=[H] 阶,并且 |G|=[G:H]|H|。 n阶群的子群的阶一定是n的因子。 §5.6 陪集 § 5.6 陪集 (11) (11) 5.6.4 Lagrange 定理 (1) 任何素数阶的群不可能有非平凡的子群。 <mark>平凡的子群 S⊆G,S=G,或S=</mark>{e} (1) 任何素数阶的群不可能有非平凡的子群。 由拉格朗日定理得,素数阶群的子群的阶只能是1或 (2) 素数阶的群必为循环群。 素数自身,所以。。。 (3) 假设<G,*>是 n 阶有限群,则对 ∀a∈G, |a|| n (形象表述?)。 (4) 假设<G,*>是 n 阶有限群,则对 $\forall a \in G, a^n = e_{\bullet}$

§ 5.6 陪集 (11) (3) 假设<G,*>是 n 阶有限群,则对 ∀a∈G, |a| | n (形象表述?)。 (4) 假设<G,*>是 n 阶有限群,则对 ∀a∈G,aⁿ = e。 (4) 假设<G,*>是 n 阶有限群,则对 ∀a∈G,aⁿ = e。

§ 5.6 陪集

例1: 证明素数阶循环群的每个非单位元都 是生成元。(素数阶的群必为循环群)

证明: 设<G,*>是p阶循环群, p是素数。 对G中任一非单位元a。设a的阶为k,则k≠1

由拉格朗日定理,k是p的正整数因子。因为p 是素数,故k=p。a的阶就是p,即群G的阶。 故a是G的生成元。

§ 5.6 陪集

例1: 证明素数阶循环群的每个非单位元都 是生成元。(素数阶的群必为循环群)

证明: |G|=n且p是素数,p>1, a∈G a ≠e 设|(a)|=m,则m>1由拉格朗日定理知m|p 因为p是素数,所以m=p,(a)是p阶循环群 即G的p个元素都在(a)中,(a)=G

§ 5.6 陪集

(11)

例2:证明9阶群必有3阶子群。

证明,设a是9阶群的一个非单位元元素 则a的周期只能是3或9 如果a的周期是3,则(a)= $\{a^1, a^2, a^3\}$ 是3阶子群 如果a的周期是9,则(a³)= $\{a^3, a^6, a^9\}$ ={a³, (a³)², (a³)³}是3阶子群

例3: G是有限群,K是G的子群, H是K的子群 则 [G:H]=[G:K][K:H]

证明, K是G的子群, |G|=[G:K]|K| 又H是K的子群 |K| = [K:H]|H|又H是G的子群 |G|=[G:H]|H| 则 [G:H]=[G:K][K:H]

例4: G是群, H是G的子群, ♦**M**={**x**|**x** ∈**G**,xHx⁻¹=H}, 则M也是G的子群

 $M = \{x \mid x \in G, xHx^{-1} = H\},$

证明: (1)M**≠** Φ ,因为e ∈ G, 且 eHe-1=H, e ∈ M

(2) ∀ x,y·∈ M·,有M的定义得, xHx·1=H, yHy·1=H· x-1Hx=H, y-1Hy=H

 $xy^{-1}H(xy^{-1})^{-1} = xy^{-1}H(y^{-1})^{-1}x^{-1} = xy^{-1}Hyx^{-1} = XHX^{-1} = H$

..xy ¹ ∈M

'M是G的子群,

§ 5.7 正规子群

(1)

5.7.1 正规子群的定义

设 <H,*> 是群 <G,*> 的子群,如果对 ∀a∈G 有 aH = Ha,则称 <H,*> 是<G,*> 的 正规子群(不变子群)。 例: 假设 S={1,2,3},S₃={f₁,f₂,..,f₆}

 $<\{f_1\}, o>, <\{f_1,f_2\}, o>, <\{f_1,f_3\}, o>, <\{f_1,f_4\}, o>, <\{f_1,f_5,f_6\}, o>, <S_3, o>, <$

是三次置换群,是三次对称群的子群,是否为正规子群?

٠,		. '		٠.								. '		٠	
														Ŀ	
	٥		f	f	2	1	F ₃	f	4	1	f ₅	f	6		
	f ₁ f ₂ f ₃ f ₄ f ₅ f ₆		f	f	2		f ₃	f	4		f ₅	f	6		
	f_2		f_2	f	1	1	f ₆	f	5	1	F4	f	3		
	f_3	ı	f3	f	5	1	f ₁	f,	6	1	F ₂	f	4		
	f_4		f4	f	6	1	f ₅	f	1	1	F ₃	f	2		
	f_5		f ₅	f	3	1	F ₄	f	2	1	6	f	1		
	f_6		fe	f	4	1	f_2	f	3	1	f ₁	f	5		

 $H_1=\{\Pi_1\}$ 、 $\forall a\in S_3$,是否都有 $aH_1=H_1a$. $H_1=\{f_1\}$ 是 S_3 ,的正规子牌 $H_2=\{f_1,f_2\}$ 、 $\forall a\in S_3$ 是否都有 $aH_2=H_2a$ $f_1\{\{f_1,f_2\}=\{f_1,f_2\}=f_2\{f_1,f_2\}$, $\{f_1,f_2\}=\{$

 $\begin{aligned} & \{f_1, f_2\} f_3 = \{f_3, f_6\} = \{f_1, f_2\} f_6 \\ & \{f_4, f_1, f_2\} = \{f_4, f_6\} = \{f_1, f_2\} f_6 \\ & \{f_4, f_1, f_2\} = \{f_4, f_6\} = f_6 \{f_1, f_2\}, \\ & \{f_1, f_2\} f_4 = \{f_4, f_5\} = \{f_1, f_2\} f_5 \end{aligned}$

 $f_3\{f_1,f_2\} = \{f_3,f_5\} \neq \{f_3,f_6\} = \{f_1,f_2\}f_3$ $f_4\{f_1,f_2\} = \{f_4,f_6\} \neq \{f_4,f_5\} = \{f_1,f_2\}f_4$

 $H_2 = \{f_1, f_2\}$ 不是 S_3 的正规子群,但 H_2 是可交换群。

§ 5.7 正规子群

(4)

5.7.2 判定正规子群的条件

设 <H,*>是群<G,*>的一个子群,则以下条件等价:

- (1) 对∀a∈G, aH=Ha (2) 对∀a∈G, h∈H,必存在h'∈H,使 h*a=a*h'
- (3) 对∀a∈G,h∈H; a*h*a-1∈H; 或者 a ¹*h*a ∈H

设 <H,*>是群<G,*>的一个子群,则以下条件等价: (1) 对∀a∈G, aH=Ha (2) 对∀a∈G,h∈H,必存在h'∈H,使

- h*a=a*h'
- (3) 对∀a∈G,h∈H, a*h*a-1∈H,
- . (1)→(2)対∀a∈G,h∈H, h*a∈Ha, aH=Ha, h*a ∈aH ∃h′∈H, 所以 h*a=a*h′
- (2)→(3)对∀a∈G,h∈H, ∃h′∈H aH=Ha, a*h*a-1=Haa-1, 所以 a*h*a-1=H, a*h*a-1_EH

§ 5.7 正规子群

(3)

5.7.2 判定正规子群的条件

定理:

群 <G,*> 的子群 <H,*> 是正规子群的充要 条件是:

对 ∀a∈G,h∈H 有 a*h*a-¹∈H, 或者 a-1*h*a ∈H。

⇒对 ∀a∈G,h∈H 有 a*h*a-1∈H, $\forall x \in aH$, $\exists h \in H, x = ah, x = ah(a^{-1}a) = (aha^{-1})a = h'a$

∴ x ∈ Ha

аНсНа 同理 НасаН ∴ На = аН

 \blacksquare Ha = aH $X \forall a \in G, h \in H$, ah $\in aH$, aH = Ha, ah ∈Ha, ∃h'∈H, ∴ ah=h'a $h' = aha^{-1}$, $aha^{-1} \in H$

§ 5.7 正规子群

(3)

5.7.3 商群

定义:

子群 <H,*>是群<G,*> 的正规子群在G/H上 定义新的运算 o:

对 ∀a,b∈G, 有 aHobH=(a*b)H, 称为G对H的商群。

G/H={不同陪集作为元素}

- (1)封闭性 aHobH=(a*b)H
- (2)可结合 (aHobH)ocH = aHo(bHocH) =(a*b*c)H
- (3)单位元 eH eHobH=(e*b)H = bH
- (4) 逆元 aH的逆元a-1HaHoa-1H=(a*a-1)H = eH

§ 5.7 正规子群

(4)

он

ОН

1H

ОН

1H

1H

он

5.7.3 商群

例: $\langle N_6, +_6 \rangle$, $H = \{0, 2, 4\}$, $H \rightarrow N_6$ 的正规子群, 故有<mark>商群</mark>

 $N_6/H = \langle \{0H,1H\}, o \rangle$

 $0H=0+_{6}\{0,2,4\}=\{0,2,4\}=H(=2H,4H);$

 $1H=0+_{6}\{0,2,4\}=\{1,3,5\}(3H,5H)$

其运算如下: (OH) o(OH)=(O+6O)H=OH;

(1H) o(1H)=2H=0H;

 $(0H) \circ (1H) = (1H) \circ (0H) = 1H;$

(0H)-1=0-1H=0H:

(1H)-1=1-1H=5H=1H.

5.7.3 商群

例:三次置换群 $<\{f_1,f_5,f_6\}$,o>所产生的商 集 $S_3/H_3 = \{f_1H_3, f_2H_3\},$

 $f_1H_3=f_1\circ\{f_1,f_5,f_6\}=H_3$

 $f_2H_3=f_2\cdot\{f_1,f_5,f_6\}=\{f_2,f_3,f_4\}$

 $f_3H_3=f_3 \cdot \{f_1,f_5,f_6\} = \{f_2,f_3,f_4\}$

 $f_4H_3=f_4\cdot\{f_1,f_5,f_6\}=\{f_2,f_3,f_4\}$

 $f_5H_3=f_4\cdot\{f_1,f_5,f_6\}=\{f_1,f_5,f_6\}$

 $f_6H_3=f_4\circ\{f_1,f_5,f_6\}=\{f_1,f_5,f_6\}$

§ 5.7 正规子群

 $H_3 = \{f_1, f_5, f_6\}$

 f_1 f, f₆ $f_2 \\$ f_2 f_4 f_1 f_6 f4 $f_6 \qquad f_5 \qquad f_1 \qquad f_3 \qquad f_2$ f_5 f₃ f₄ f₂ f₆ f₁ f_5 f_6 f_4 f_2

§ 5.7 正规子群

5.7.3 商群

三次置换群 $<{f_1,f_5,f_6}$, o>所产生的商集

S₃/H₃={f₁H₃,f₂H₃} 关于运算 Δ 构成一个商群。

在S₃/H₃上所定义 的运算如右表所示:

Δ	f_1H_3	f_2H_3
f_1H_3	f_1H_3	f_2H_3
f_2H_3	f_2H_3	f_1H_3

例: 设<Z₆,+₆>是一个群, Z₆={[0],[1],[2],[3],[4],[5]},

运算表如下: H={[0],[3]}是其子群.

[3] [4] [5] [0] [1] [2]

[1]

[2] [2] [3]

[3]

[4] [5] [0] [1]

H={[0],[3]}, **左陪集**:[0]H={[0],[3]}, [3]H={[0],[3]}, [0] [1] [2] [3] [4] [5] [2] [3] [4]

[1]H=[4]H={[1],[4]}, [2]H=[5]H={[2],[5]} 右陪集: H[0]={[0],[3]}, H[3]={[0],[3]}, [3] [4] [5] [0]

 $H[1]=H[4]=\{[1],[4]\}, H[2]=H[5]=\{[2],[5]\}$

[4] [4] [5] [0] [1] [2] [3] $Z_6/H = \{[0]H, [1]H, [2]H\}$ [5] [6] [1] [2] [3] [4] 欢 $\forall a_b \in Z_6/H$,有 $aHobH = (a+_6b)H$

 $[0]Ho[1]H = ([0]+_{6}[1])H=[1]H = ([0]+_{6}[2])H=[2]H$

 $[1] H_0[2] H = ([1] +_{\delta}[2]) H = [3] H + [2] H_0[1] H = ([2] +_{\delta}[1]) H = [3] H$

0H1H 2H OH 1H 2H 0H0H1H 2H 2H 2H 0H1H

[0]H自身为逆元 [1]H, [2]H互为逆元

构造了一个三阶商群, <Z₆/H, o> 商群的运算对象是陪集。

§ 5.7 正规子群

5.7.4 子集的乘积

(1) 定义

假设 <G,*> 是一个群, A,B 是 G的子集, 集合 $\{ab \mid a \in A, b \in B\}$

(5)

称为A,B的乘积,记为A*B或AB。

§ 5.7 正规子群 5.7.4 子集的乘积 (2) 性质 (I) 子集的乘积满足结合律。即 (A*B)*C=A*(B*C) (II) 在子集的运算下,任何子群都为幂 等元,即HH=H。

第五章 作业

```
フ題ー 1,3
ヲ趣ニ 2,5,6
ヲ趣三 3,4,6,7
ヲ趣四 1,2,4
ヲ趣五 1,3
ヲ趣六 1,3,5,7
```