

To play or not to play...

id	Rains	Temp	Homework	Team Members	Equipment	Ground	Played
1	0	38	1	15	0	600	1
2	0	25	1	15	1	800	1
3	0	26	1	15	1	1000	1
4	5	27	1	10	1	600	0
5	20	23	0	8	1	1800	0
6	30	22	0	6	0	600	0

□ Features:

- * Rains in millimeter
- ❖ Temperature in ° C
- ❖ Homework completed? 0 : No; 1: Yes
- Team members: How many team members are ready to play?
- Is cricket equipment available?
- ❖ Ground: per hour rent in Rupees/hour

11/17/2023 **pra-sâmi**

Weights

- □ Each of the feature has different importance
- ☐ To assign importance to each of the feature, we use weights!
- Values of each features are in different order of magnitude
 - Summation is not going to work
 - Scale the features between 0 and 1

id	Rains	Temp	Homework	Team Members	Equipment	Ground	Played
1	0	38	1	15	0	600	1
2	0	25	1	15	1	800	1
3	0	26	1	15	1	1000	1
4	5	27	1	10	1	600	0
5	20	23	0	8	1	1800	0
6	30	22	0	6	0	600	0

- Note:
 - Variation in features have different bearing on the results
 - ❖ Team members → higher the better
 - ❖ Ground cost → lower the better

11/17/2023

pra-sâmi

Perceptron

- □ In MP Neuron Model,
 - All inputs had same weights
 - $life Threshold 'w_0'$ could take limited values
 - Every feature needed to be [0,1]
- □ Perceptron model introduced different weights to different inputs features
- □ Real values are also accepted
 - Temperatures are in tens and ground rent is in hundreds.
 - Min Max Scaler to compensate for huge difference is values
- $\ \square$ Threshold ' w_0 ' can take any value
- □ Outputs are still [0, 1]

11/17/202

,

Perceptron

- □ Loss Function:
 - * A correction is applied on the outputs
 - \star To adjust values of ' w_i ' to reach right results
 - * It would also give us indications of what weights to be fixed to arrive at the solution
- \Box Activation function g(x) is applied as follows:

 - $\Rightarrow \ \text{If } \sum x_i \cdot w_i < w_0 \Rightarrow \hat{y} = 0$

11/17/2023

pra-sâmi

Perceptron – Data Preprocessing

□ Lets consider "Ground" and "Team Members" as features and its associated weights to arrive at the solution.

id	Rains	Temp	Homework	Team Members	Equipment	Ground	Played
1	0	38	1	15	0	600	1
2	0	25	1	15	1	800	1
3	0	26	1	15	1	1000	1
4	5	27	1	10	1	600	0
5	20	23	0	8	1	1800	0
6	30	22	0	6	0	600	0

11/17/2023

Perceptron – Data Preprocessing

□ Scaled Data (all columns to be between 0 and 1)

id	Rains	Temp	Homework	Team Members	Equipment	Ground	Played
1	0.00	0.00	1.00	1.00	0.00	1.00	1
2	0.00	0.81	1.00	1.00	1.00	0.83	1
3	0.00	0.75	1.00	1.00	1.00	0.67	1
4	-0.17	0.69	1.00	0.44	1.00	1.00	0
5	-0.67	0.94	0.00	0.22	1.00	0.00	0
6	-1.00	1.00	0.00	0.00	0.00	1.00	0

- What about reverse correlation
- ☐ Two option to address reverse correlation
 - ❖ Take negative of values
 - Use negative weight

11/17/2023

pra-sâmi

10

Perceptron – Weights

□ Weights – consider importance of each of the feature

id	Threshold	Team IV	lembers	Ground		Calculations	Likely	Played	Loss
	w0	x1	w1	x2	w2	w0+x1*w1+x 2*w2	(y_hat)	(y)	(y-y_hat)^2
1	-1.00	1.00	1.10	1.00	1.00	1.10	1	1	0
2	-1.00	1.00	1.10	0.83	1.00	0.93	1	1	0
3	-1.00	1.00	1.10	0.67	1.00	0.77	1	1	0
4	-1.00	0.44	1.10	1.00	1.00	0.49	1	0	1
5	-1.00	0.22	1.10	0.00	1.00	-0.76	0	0	0
6	-1.00	0.00	1.10	1.00	1.00	0.00	1	0	1

11/17/2023

Perceptron – Weights and Loss

- □ Our best solution would be where ground truth and predicted values are same
- □ Loss is some function of ground truth and predicted values
- ☐ And we want it to be cumulative, Square of difference looks promising

 - Our overall loss was 2.
- \square By adjusting weights (w_1, w_2) and threshold (w_0) we can bring the loss to minimum (zero in this case)

id	Threshold	Team N	lembers	Ground		Calculations	Likely	Played	Loss
	w0	x1	w1	x2	w2	w0+x1*w1+x 2*w2	(y_hat)	(y)	(y-y_hat)^2
1	-2.00	1.00	1.10	1.00	1.40	0.50	1	1	0
2	-2.00	1.00	1.10	0.83	1.40	0.27	1	1	0
3	-2.00	1.00	1.10	0.67	1.40	0.03	1	1	0
4	-2.00	0.44	1.10	1.00	1.40	-0.11	0	0	0
5	-2.00	0.22	1.10	0.00	1.40	-1.76	0	0	0
6	-2.00	0.00	1 10	1.00	1 40	-0.60	0	0	0

11/17/2023 pra-sâmi

Perceptron – Gradient Descent

- \square w_0 , w_1 , w_2 need to be adjusted to arrive at most optimal solution i.e. lowest point on the graph.
- \square Assume that w_0 is fixed at -2, and w_1 at 1.1 and w_2 varies from 0 to 3 (only one variable considered to make plotting simple)
- ☐ From point A to B, slope is positive hence w₂ value needs to be decreased
- $\ \square$ From point C to D slope is negative hence $\mathbf{w_2}$ needs to be increased.

11/17/2023

pra-sâmi

Perceptron – Activation Function

□ So we based our entire calculations on:

 $z = w_0 + x_1 * w_1 + x_2 * w_2$

But that's an equation of straight line! What happened to all those 'inhibitory' features?

11/17/2023

Consider Single Path... Loss Function

- □ A function used to evaluate a candidate solution
- □ Helps to maximize or minimize the objective function

- □ Estimates how closely the distribution of predictions made by a model matches the ground truth (maximum likelihood)
- □ Under maximum likelihood framework , the error between two probability distributions is measured using cross-entropy
 - **♦** Hence $\ell(\hat{y}, y) = -[y * \log(\hat{y}) + (1 y) * \log(1 \hat{y})]$

11/17/2023

pra-sâmi

25

Cost Function

$$\Box \hat{y} = \sigma (\Sigma W * X + b)$$

- \Box Where σ (z) = $\frac{1}{1+e^{-z}}$
- □ Loss function:
 - A parameter which defines how good our outputs are i.e.
 - \Leftrightarrow How far our predicted values 'ŷ' (y hat) were from ground truth 'y'
- □ For logistic regression
 - * Loss(\hat{y} , y) = (y . log \hat{y} + (1 y) . log (1 \hat{y})
 - Loss function is for an instance
 - ❖ In case of binary classification, Loss(ŷ, y) = - y . log ŷ

 Cost Function: Its a sum of losses for all instances

$$\Rightarrow$$
 J (W, b)= $\frac{1}{m}$ (Σ Loss(\hat{y} , y))

* =
$$-\frac{1}{m}$$
 (Σ (y . log \hat{y} + (1 – y) . log (1 - \hat{y}))

☐ For binary classification:

$$\Rightarrow$$
 J (W, b) = $\frac{1}{m}$ (Σ Loss(\hat{y} , y))

$$= -\frac{1}{m} (\Sigma (y . \log \hat{y}))$$

11/17/2023

Reflect... □ Which of the following is/are Limitations of deep □ How many type of layers Deep Learning learning? Algorithms have? a. Data labeling a. 2 b. Obtain huge training datasets b. 3 c. Both A and B c. 4 d. None of the above d. 5 □ Answer:c □ Answer: b □ Deep learning algorithms are accurate than machine learning algorithm in □ The first layer is called the? image classification. a. Input Layer a. 33% b. Output Layer b. 37% c. Hidden Layer c. 40% d. 41% d. None of The Above □ Answer:d □ Answer:a 11/17/2023 pra-sâmi

Reflect... ☐ In which of the following applications can we use ■ What is a perceptron? deep learning to solve the problem a. A type of neural network a. Protein structure prediction b. A reinforcement learning algorithm b. Prediction of chemical reactions c. Detection of exotic particles c. A clustering algorithm d. All of the above d. A regression algorithm □ Answer:d □ Answer:a ☐ The number of nodes in the input layer is 10 and the hidden layer is 5. The maximum number of □ Who is credited with the invention of the connections from the input layer to the hidden perceptron? layer are: a. Geoffrey Hinton a. 50 b. Yann LeCun b. less than 50 c. more than 50 c. Frank Rosenblatt d. It is an arbitrary value d. Andrew Ng □ Answer:a □ Answer:c pra-sâmi

Reflect...

- What is the basic building block of a perceptron?
 - a. Neuron
 - b. Weight
 - c. Activation function
 - d. Bias
- □ Answer: a
- □ In a perceptron, what is the purpose of the activation function?
 - a. To compute the weighted sum of inputs
 - b. To introduce non-linearity
 - c. To adjust the weights during training
 - d. To add a bias to the output
- □ Answer: b

What is the primary purpose of training a perceptron?

- a. To optimize the activation function
- b. To minimize the error in the output
- c. To increase the number of neurons
- d. To add more layers to the network
- □ Answer: b
- In a binary classification problem, what is the output of a perceptron?
 - a. Real number
 - b. Probability
 - c. Binary value (0 or 1)
 - d. Vector
- □ Answer: c

11/17/2023

pra-sâmi

Reflect...

- □ What is the perceptron learning rule used for?
 - a. a. Updating weights to reduce prediction error
 - b. b. Adjusting the learning rate during training
 - c. c. Initializing weights in the network
 - d. d. Selecting the appropriate activation function
- Answer: a
- □ What happens if a perceptron is unable to learn a linearly separable function?
 - a. a. It converges quickly
 - b. b. It converges slowly
 - c. c. It never converges
 - d. d. It always converges
- □ Answer: c

- Which of the following statements about the perceptron is true?
 - a. a. It can only be used for linearly separable problems
 - b. b. It is suitable for any type of problem
 - c. c. It can only have one layer
 - d. d. It has no weights
- Answer: a
- What is the main limitation of a single-layer perceptron?
 - a. a. It cannot learn non-linearly separable functions
 - b. b. It requires a large amount of training data
 - c. c. It is computationally expensive
 - d. d. It is not suitable for classification tasks
- Answer: a

11/17/202

