COMPUTER SCIENCE

Database Management System

FD's & Normalization

Membership Set & Equality Between FD Sets

Lecture_04

Finding Candidate keys

Membership Set

RDBMS Concept

FD Concept

FD Type

Attoibute closure

key Concept

Super Key

L) Condidate key

Primary key
Arternate receivedary key

Keys Concept

Super key

Minimal

-) Candidate key (Assume y C.k.

I Select as Primary Cay

All C. Kexcept Alternate / secondary
Poimary tory

How to find multiple Candidate key.

N. V. V. V. J. Zav

IB XAttoibute - (Prime Attoibute)

then Multiple Candidate log are possible.

R(ABCDEF) $\{A \rightarrow B, B \rightarrow C, D \rightarrow CEF\}$

Find candidate keys for the relation R?

AD is composite key. AD Ang

key with two or Mure Attribute. is called composite key.

Poince Attorbute - [A, D]

Il XAHOBULE [Poine Attobate]

No Multiple Candidate key

R(ABCDE) {AB \rightarrow C, C \rightarrow D, D \rightarrow E, B \rightarrow A, C \rightarrow B} Find candidate keys for the relation R?

R(ABCD) $\{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$ Find candidate keys for the relation R?

(A) = [ABCD]

$$D \rightarrow A$$

$$C \rightarrow D$$

AB

key concept

Super key

All CICOUR Subserbey but all Subserbey are Not Candidak I cey.

orly Candidate key is Minimed of super key.

Minimal

1 ck select as Primary key

-> Candidate key

Remaining CK, Albernak Secondary key

R(ABCDEF) $\{A \rightarrow BCDE, BC \rightarrow AD, D \rightarrow EF\}$ Find candidate keys for the relation R?

Candidak key = [A, BC] Ang

R(ABCD) F: {AB \rightarrow C, B \rightarrow D, C \rightarrow B, D \rightarrow B}

Find all candidate key of R?

$$\begin{array}{c}
A \\
D \rightarrow B \\
D \uparrow = [DB]
\end{array}$$

$$\begin{array}{c}
D \rightarrow B \\
D \uparrow = [DB]
\end{array}$$

A
$$C \rightarrow B$$

$$A \subset J^{\dagger} = (A \subset BD)$$

$$C \cap C \subset BD$$

$$A \subset S \subset K - (3)$$

RIABCD) Subject (cey: Any subject set ab AB, AD, AC. PAB, ABC, ABD, ABCD AD. ADC. ADB, ADRC Superlays AC, ACB, ACD, ACRD

Consider the following relational schema R(ABCDEF) with functional dependency {AB \rightarrow C, C \rightarrow D, D \rightarrow E, E \rightarrow F, F \rightarrow B}

The number of candidate keys for relation R? R(ABCDEF) $(AB \rightarrow C, C \rightarrow D, D \rightarrow E, E \rightarrow F, F \rightarrow B)$ $(AB \rightarrow C, C \rightarrow D, D \rightarrow E, E \rightarrow F, F \rightarrow B)$ $(AB \rightarrow C, C \rightarrow D, D \rightarrow E, E \rightarrow F, F \rightarrow B)$ $(AB \rightarrow C, C \rightarrow D, D \rightarrow E, E \rightarrow F, F \rightarrow B)$

AB is Condidate (cey

EN(AE) = [AEFBCD] (AC) = [ACDEFB] (E) = (EFB]

AF, is Condidate key -(3)

(c) - (CDEFR)

AC is condidate key

If XAHribute -> (Prime Affribute)

MADI (ADEFBC) (D)t. (DEFB) (2) AD is Canadidate key. (4)

$R(ABCDE) : \{AB \rightarrow C, BC \rightarrow D\}$

Find Candidate keys for the Relation R?

Not getting E

AB is Not Candidate key

Beccause all Attaibutes Not determined

Brom (AB)

Not subset key

(E is Not Derived)

Whenever Any attribute Not Pregent in the FD then Make a Part or

ADD in Condidate key.

ABF is Super key

(ABF is compuldate key) & De

No Multiplecie

$R(ABCDEFG) : \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow E, F \rightarrow G\}$

Find Candidate keys for the Relation R?

No Multiple Candidate key.
Only AF is CK Ang

Q. 9

$R(ABCDEFGH) : \{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$

R(ABDCPT), $\{B\rightarrow PT, T\rightarrow L, A\rightarrow D\}$

R(ABCDEFGHIJ) = {AB \rightarrow C, A \rightarrow DE} B \rightarrow F, F \rightarrow GH, D \rightarrow IJ]

Find candidate keys for the relation R?

No Multiple Candidate key.

Only AR is C.K Are

R(ABCDEFG)

$$[A \rightarrow B, B \rightarrow A, C \rightarrow D, D \rightarrow E, E \rightarrow FG]$$

R(ABCDEFG) {AB \rightarrow CDEF, C \rightarrow ADE, D \rightarrow EBF, F \rightarrow DA, BE \rightarrow AF}

Find candidate keys for the relation R?

CAADE

R(ABCDEFG) $\{AB \rightarrow CDEF, C \rightarrow ADE, D \rightarrow EBF, F \rightarrow DA, BE \rightarrow AF\}$

Find candidate keys for the relation R?

RIABCOFFG) [AB-)CDEF, C-)ADE, D-)EBF, F-)DA, RE-)AF]

DAERF

R(ABCDEDFGH) $\{A \rightarrow BC, B \rightarrow DEF, DE \rightarrow AGH\}$

R(ABCDE) $\{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$

R(ABCDEFGH)

 $\{AB \rightarrow CD, D \rightarrow EG, F \rightarrow H, C \rightarrow EF, H \rightarrow A, G \rightarrow B, A \rightarrow B\}$

Q.

Consider the relation scheme R(A,B,C) with the following W functional dependencies

$$AB \rightarrow C$$

$$C \rightarrow A$$

Determine the minimal keys of relations R. [1995: 2 Marks]

Let R = (A,B,C,D,E,F) be a relation scheme with the following Vdependencies $C \rightarrow F$, $E \rightarrow A$, $EC \rightarrow D$, $A \rightarrow B$. Which of the following is a key for R?

[1999: 1 Mark]

CD

EC

AE

The relation scheme student Performance (name course No, vollNo, grade) has the following functional dependencies:

name, courseNo → grade

[1999: 1 Mark]

RollNo, courseNo → grade

name \rightarrow rollNo

 $rollNo \rightarrow name$

Find candidate keys?

Q.

Consider a relation scheme R = (A, B, C, D, E, H) on which of the Wood following functional dependencies hold:

$$\{A \rightarrow B, BC \rightarrow D, E \rightarrow C, D \rightarrow A\}$$

What are the candidate keys of R? [2005: 2 Marks]

- A AE, BE
- B AE, BE, DE
- C AEH, BEH, BCH
- D AEH, BEH, DEH

Q.

Let R(A,B,C,D,E,F,P,G) be a relational schema in which of the W following functional dependencies are known to hold:

$$A \rightarrow BCD$$
, $DE \rightarrow P$, $C \rightarrow E$, $P \rightarrow C$ and $B \rightarrow G$.

Find candidate key of Relations R?

Consider a relation R with five attributes V, W, X, Y, and Z. The following functional dependencies hold : VY \rightarrow W, WX \rightarrow Z, and ZY \rightarrow V. Which of the following is a candidate key for R?

[2006: 2 Marks]

- A VXZ
- B VXY
- C VWXY
- D VWXYZ

Q.

Relation R has eight attributes ABCDEFGH. Fields of R contain only atomic values.

 $F = \{CH \rightarrow G, A \rightarrow BC, B \rightarrow CFH, E \rightarrow A, F \rightarrow EG\}$ is a set of functional dependencies (FDs) so that F is exactly the set of FDs that hold for R.

How many candidate keys does the relation R have? [2013: 2 Marks]

A

B 4

C 5

D (

Consider the relation scheme R = (E, F, G, H, I, J, K, L, M, N) and W the set of functional dependencies $\{EF\} \rightarrow \{G\}, \{F\} \rightarrow \{I,J\}, \{E,H\} \rightarrow \{K,L\},\{K\} \rightarrow \{M\},\{L\} \rightarrow \{N\}$ no R. What is the key of R?

 $\{E,F\}$ [2014: 1 Mark]

C $\{E,F,H,K,L\}$ D $\{E\}$

A prime attribute of a relation scheme R is an attribute that appears

[2014: 1 Mark]

- A In all candidate keys of R.
- B In some candidate key of R.
- C In a foreign key of R.
- Only in the primary key of R.

Which of the following is NOT a superkey in a relational schema with attributes V, W, X, Y, Z and primary key VY? [2016: 1 Mark]

- A VXYZ
- B VWXZ
- C VWXY
- D VWXYZ

Any Doubt ?

