Part 1 BuildingNewFunctions

BNF1.tex

Exercise 1 Let f be a function defined by $f(x) = x^2$ and g be a function defined by g(x) = -5x+3. Use the pair of functions f and g to find the following values, if they exist. If the value does not exist, enter DNE.

- (a) $(f+g)(2) = \boxed{-3}$
- (b) $(f-g)(-1) = \boxed{-7}$
- (c) $(g-f)(1) = \boxed{-3}$
- (d) $(f \cdot g) \left(\frac{1}{2}\right) = \boxed{\frac{1}{8}}$
- (e) $\left(\frac{f}{g}\right)(0) = \boxed{0}$
- (f) $\left(\frac{g}{f}\right)(-2) = \boxed{\frac{13}{4}}$

BNF2.tex

Exercise 2 Let f be a function defined by f(x) = 3x and g be a function defined by $g(x) = \frac{1}{3x+1}$. Use the pair of functions f and g to find the following values, if they exist. If the value does not exist, enter DNE.

- (a) $(f+g)(2) = \boxed{\frac{43}{7}}$
- (b) $(f-g)(-1) = -\frac{5}{2}$
- (c) $(g-f)(1) = \boxed{-\frac{11}{4}}$
- (d) $(f \cdot g) \left(\frac{1}{2}\right) = \boxed{\frac{3}{5}}$
- (e) $\left(\frac{f}{g}\right)(-2) = \boxed{30}$
- (f) $\left(\frac{g}{f}\right)(0) = \boxed{DNE}$

BNF3.tex

Exercise 3 Let f be a function defined by $f(x) = x^3$ and g be a function defined by $g(x) = \frac{1}{x^3}$. Use the pair of functions f and g to find the following values, if they exist. If the value does not exist, enter DNE.

(a)
$$(f+g)(2) = 65/8$$

(b)
$$(f-g)(-1) = \boxed{0}$$

(c)
$$(g-f)(1) = \boxed{0}$$

(d)
$$(f \cdot g) \left(\frac{1}{2}\right) = \boxed{1}$$

(e)
$$\left(\frac{f}{g}\right)(0) = \boxed{DNE}$$

(f)
$$\left(\frac{g}{f}\right)(-2) = \boxed{\frac{1}{64}}$$

BNF4.tex

Exercise 4 Consider the functions f and g defined by the table of values below.

x	f(x)
-3	2
-2	4
-1	0
0	2
1	2
2	3
3	-2

x	g(x)
-3	-3
-2	-1
-1	-3
0	0
1	3
2	1
3	2

Use the pair of functions f and g to find the following values, if they exist. If the value does not exist, enter DNE.

(a)
$$(f+g)(-3) = \boxed{-1}$$

(b)
$$(f-g)(2) = \boxed{2}$$

(c)
$$(f \cdot g)(-1) = \boxed{0}$$

(d)
$$(g-f)(1) = \boxed{1}$$

(e)
$$\left(\frac{f}{q}\right)(0) = \boxed{DNE}$$

(f)
$$\left(\frac{f}{g}\right)(3) = \boxed{-1}$$

(g)
$$\left(\frac{g}{f}\right)(-1) = \boxed{DNE}$$

(h)
$$(g \cdot f)(-2) = \boxed{-4}$$

BNF5.tex

Exercise 5 Say a store sells various fruits. Let B(t) represent the number of bananas sold on day t and M(t) represent the number of mangos sold on day t. Say P(t) represents the price of bananas on day t and Q(t) represents the price of mangos on day t.

(a) Which of the following represents the total number of bananas and manges sold on day t?

Multiple Choice:

(i)
$$(B+M)(t)$$
 \checkmark

(ii)
$$(B-M)(t)$$

(iii)
$$(B \cdot M)(t)$$

(iv)
$$\left(\frac{B}{M}\right)(t)$$

(b) Which of the following represents the total money R(t) made by selling bananas on day t?

(i)
$$(B+P)(t)$$

(ii)
$$(B-P)(t)$$

(iii)
$$(B \cdot P)(t) \checkmark$$

(iv)
$$\left(\frac{B}{P}\right)(t)$$

(c) Which of the following represents the total money S(t) made by selling mangos on day t?

Multiple Choice:

- (i) (M+Q)(t)
- (ii) (Q-M)(t)
- (iii) $(M \cdot Q)(t)$ \checkmark
- (iv) $\left(\frac{M}{Q}\right)(t)$

Which of the following represents the total money made by selling bananas and mangos on day t?

Multiple Choice:

- (a) (R+S)(t) \checkmark
- (b) (R S)(t)
- (c) $(R \cdot S)(t)$
- (d) $\left(\frac{R}{S}\right)(t)$

BNF6.tex

Exercise 6

Let h be a function defined by $h(x) = \frac{2\sin(3x)}{5\sqrt{3x^2}}$. Which of the following definitions of f and g satisfy $(f \cdot g)(x) = h(x)$?

(a)
$$f(x) = 2\sin(3x)$$
 and $g(x) = 5\sqrt{3x^2}$

(b)
$$f(x) = \frac{1}{2\sin(3x)}$$
 and $g(x) = 5\sqrt{3x^2}$

(c)
$$f(x) = \sin(3x)$$
 and $g(x) = \frac{10}{\sqrt{3x^2}}$

(d)
$$f(x) = \frac{2\sin(3x)}{5}$$
 and $g(x) = \frac{1}{\sqrt{3x^2}} \checkmark$

Let h be a function defined by $h(x) = 2x^2 + 2x - 2$. Which of the following definitions of f and g satisfy (f + g)(x) = h(x)?

Multiple Choice:

(a)
$$f(x) = 2x^2$$
 and $g(x) = 2x + 2$

(b)
$$f(x) = x^2$$
 and $g(x) = x^2 + 2x$

(c)
$$f(x) = x^2 + x - 1$$
 and $g(x) = x^2 + x - 1$ \checkmark

(d)
$$f(x) = x^2$$
 and $g(x) = x^2 + 2x - 1$

Let h be a function defined by $h(x) = \sin(x) - \cos(x)$. Which of the following definitions of f and g satisfy (f - g)(x) = h(x)?

Multiple Choice:

(a)
$$f(x) = \sin(x) + \cos(x)$$
 and $g(x) = 2\cos(x)$ \checkmark

(b)
$$f(x) = 2\sin(x)$$
 and $g(x) = \cos(x)$

(c)
$$f(x) = \sin(x)$$
 and $g(x) = -\cos(x)$

(d)
$$f(x) = -\cos(x)$$
 and $g(x) = \sin(x)$

BNF7.tex

Exercise 7

Let h be a function defined by $h(x) = 5\tan(x)$. Which of the following definitions of f and g satisfy $\left(\frac{f}{g}\right)(x) = h(x)$?

(a)
$$f(x) = 5\sin(x)$$
 and $g(x) = 5\cos(x)$

(b)
$$f(x) = \sin(x)$$
 and $g(x) = \cos(x)$

(c)
$$f(x) = \sin(x)$$
 and $g(x) = \frac{\cos(x)}{5}$

(d)
$$f(x) = 5\sin(x)$$
 and $g(x) = \frac{1}{5\cos(x)}$

Let h be a function defined by $h(x) = 2\tan(x)$. Which of the following definitions of f and g satisfy $(f \cdot g)(x) = h(x)$?

Multiple Choice:

(a)
$$f(x) = \tan(x)$$
 and $g(x) = 2\cos(x)$

(b)
$$f(x) = 2\sin(x)$$
 and $g(x) = \frac{1}{\cos(x)}$

(c)
$$f(x) = \cos(x)$$
 and $g(x) = 2\sin(x)$

(d)
$$f(x) = \frac{2}{\sin(x)}$$
 and $g(x) = \cos(x)$

Let h be a function defined by $h(x) = \sin(x)\tan(x)$. Which of the following definitions of f and g satisfy $(f \cdot g)(x) = h(x)$?

Multiple Choice:

(a)
$$f(x) = (\sin(x))^2$$
 and $g(x) = \cos(x)$

(b)
$$f(x) = \sin(x)$$
 and $g(x) = \frac{1}{\cos(x)}$

(c)
$$f(x) = (\sin(x))^2$$
 and $g(x) = \frac{1}{\cos(x)}$

(d)
$$f(x) = \cos(x)$$
 and $g(x) = \left(\frac{1}{\sin(x)}\right)^2$

BNF8.tex

Exercise 8 Let's discuss some of the properties of the tangent function.

(a) Recall that the sine function is odd and the cosine function is even. Using the fact that $\tan(x) = \frac{\sin(x)}{\cos(x)}$, we can deduce that tangent is

- (i) odd. ✓
- (ii) even.

- (iii) neither odd nor even.
- (b) Recall that the tangent function has period π . Using the fact that $\tan\left(-\frac{\pi}{3}\right) = -\sqrt{3}$, answer the following questions.

What is $\tan\left(\frac{2\pi}{3}\right)$?

Multiple Choice:

- (i) $\sqrt{3}$
- (ii) $-\sqrt{3}$ \checkmark
- (iii) 3
- (iv) -3
- (v) -1.72

What is $\tan\left(\frac{\pi}{3}\right)$?

Multiple Choice:

- (i) $\sqrt{3}$ \checkmark
- (ii) $-\sqrt{3}$
- (iii) 3
- (iv) -3
- (v) -1.72

BNF9.tex

Exercise 9 Look at the following graphs of the functions f (on the left) and g (on the right).

Which of the following is the graph of $f \cdot g$?

- (a) Graph $A \checkmark$
- (b) Graph B
- (c) Graph C
- (d) Graph D