Stochastic Boolean Satisfiability Decision Procedures, Generalization, and Applications

Nian-Ze Lee

Advisor: Prof. Jie-Hong Roland Jiang

Graduate Institute of Electronics Engineering, National Taiwan University

Doctoral Dissertation Oral Defense, 2nd June 2021

- Introduction
- 2 Background
- Probabilistic Design Evaluation
- Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

- Introduction
- 2 Background
- Probabilistic Design Evaluation
- Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

- Introduction
 - Motivation
 - Contributions
 - Overview
- 2 Background
- Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Satisfiability Solving: A Success Story

- Satisfiability solvers [6] have succeeded in various fields
 - Artificial intelligence [50, 55]
 - Electronic design automation [43, 65]
 - Formal verification [4, 27]

Satisfiability beyond Propositional Logic

This Dissertation in a Nutshell

Decision Making under Uncertainty

- Stochastic Boolean satisfiability (SSAT)
 - Games against nature [51]
 - Randomized quantifier $\forall^p x$: $\Pr[x = \text{TRUE}] = p$
 - Logical formalism for problems with uncertainty
 - Probabilistic planning [40–42] and POMDP [56]

Decision Making under Uncertainty

- Stochastic Boolean satisfiability (SSAT)
 - Games against nature [51]
 - Randomized quantifier $\forall^p x$: Pr[x = TRUE] = p
 - Logical formalism for problems with uncertainty
 - Probabilistic planning [40–42] and POMDP [56]
- Application to VLSI systems?
 - Conventionally: error detection [15] or correction [46]
 - Post-Moore: probabilistic behavior of devices [12]

Accepting Device Imperfection

- New computational paradigms
 - Approximate design: deterministic deviation
 - E.g., neural-network deployment to edge devices
 - Circuit architectures [28, 29, 66]
 - Performance analysis [38, 64]
 - Automatic synthesis [44, 45, 48, 53, 63]
 - Probabilistic design: nondeterministic deviation
 - E.g., low-power video decoding
 - Energy consumption vs. correct switching of probabilistic CMOS [12]

Analyzing Probabilistic Design

- Circuit reliability analysis
 - Permanent defects or transient faults
 - Error probability at primary outputs
 - Monte Carlo simulation [47] or statistical methods [3, 31, 54]
 - Inadequate to analyze probabilistic design
 - Single-gate failure
 - Average error rate

Analyzing Probabilistic Design

- Circuit reliability analysis
 - Permanent defects or transient faults
 - Error probability at primary outputs
 - Monte Carlo simulation [47] or statistical methods [3, 31, 54]
 - Inadequate to analyze probabilistic design
 - Single-gate failure
 - Average error rate
- Research need: a framework to analyze probabilistic design
 - Design space exploration
 - Fault-tolerant applications
 - Intrinsically probabilistic systems
 - SSAT is a suitable logical formalism

- DPLL search [19]
 - MAXPLAN [41]: pure variables and unit propagation
 - ZANDER [42]: threshold-pruning heuristics and memorization
 - DC-SSAT [40]: divide-and-conquer (structure of planning problems)

- DPLL search [19]
 - MAXPLAN [41]: pure variables and unit propagation
 - ZANDER [42]: threshold-pruning heuristics and memorization
 - DC-SSAT [40]: divide-and-conquer (structure of planning problems)
- Knowledge compilation [18]
 - ComPlan [26]: deterministic, decomposable NNF (d-DNNF) [16, 17]

- DPLL search [19]
 - MAXPLAN [41]: pure variables and unit propagation
 - ZANDER [42]: threshold-pruning heuristics and memorization
 - DC-SSAT [40]: divide-and-conquer (structure of planning problems)
- Knowledge compilation [18]
 - ComPlan [26]: deterministic, decomposable NNF (d-DNNF) [16, 17]
- Closely related to model counting (MAJSAT) and QBF
 - Randomized quantifier: weighted summation of satisfying assignments
 - PSPACE-complete [61]: the same as QBF

- DPLL search [19]
 - MAXPLAN [41]: pure variables and unit propagation
 - ZANDER [42]: threshold-pruning heuristics and memorization
 - DC-SSAT [40]: divide-and-conquer (structure of planning problems)
- Knowledge compilation [18]
 - ComPlan [26]: deterministic, decomposable NNF (d-DNNF) [16, 17]
- Closely related to model counting (MAJSAT) and QBF
 - Randomized quantifier: weighted summation of satisfying assignments
 - PSPACE-complete [61]: the same as QBF
- Research need: novel algorithms for SSAT solving
 - Leverage advancements of other formalisms

Problems beyond PSPACE-Completeness

SSAT is limited within PSPACE-completeness

Problems beyond PSPACE-Completeness

- SSAT is limited within PSPACE-completeness
- NEXPTIME-complete [52] problems with randomness
 - E.g., decentralized POMDP (Dec-POMDP) [5]
 - Difficult to obtain succinct encodings using SSAT

Problems beyond PSPACE-Completeness

- SSAT is limited within PSPACE-completeness
- NEXPTIME-complete [52] problems with randomness
 - E.g., decentralized POMDP (Dec-POMDP) [5]
 - Difficult to obtain succinct encodings using SSAT
- Research need: modeling NEXPTIME problems with uncertainty
 - Extend DQBF to stochastic domain

Difficulty in Algorithm Comparison

- Most SSAT work was done before 2005 [39–42]
 - Open-source solvers and formula instances are barely available

Difficulty in Algorithm Comparison

- Most SSAT work was done before 2005 [39–42]
 - Open-source solvers and formula instances are barely available
- Research need: public SSAT solvers and instances
 - Convenient comparison of different algorithms

- Introduction
 - Motivation
 - Contributions
 - Overview
- 2 Background
- Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

- Probabilistic-design analysis: probabilistic property evaluation
 - Random-exist/Exist-random SSAT for average-/worst-case analysis

¹https://github.com/NTU-ALComLab/ssatABC

²https://github.com/NTU-ALComLab/ssat-benchmarks 👍 🗸 📵 🔻 📵 🔻 🚉 🔻 🔩 🤉

- Probabilistic-design analysis: probabilistic property evaluation
 - Random-exist/Exist-random SSAT for average-/worst-case analysis
- Novel algorithms: random-exist (RE) and exist-random (ER) SSAT
 - Modern techniques of SAT, model counting, and QBF
 - Approximate SSAT solving

¹https://github.com/NTU-ALComLab/ssatABC

²https://github.com/NTU-ALComLab/ssat-benchmarks

- Probabilistic-design analysis: probabilistic property evaluation
 - Random-exist/Exist-random SSAT for average-/worst-case analysis
- Novel algorithms: random-exist (RE) and exist-random (ER) SSAT
 - Modern techniques of SAT, model counting, and QBF
 - Approximate SSAT solving
- NEXPTIME problems with uncertainty: dependency SSAT
 - The same NEXPTIME-complete complexity as DQBF
 - Applications to probabilistic/approximate design and Dec-POMDP

¹https://github.com/NTU-ALComLab/ssatABC

²https://github.com/NTU-ALComLab/ssat-benchmarks 🐶 📭 📵 📵 💂 🖘

- Probabilistic-design analysis: probabilistic property evaluation
 - Random-exist/Exist-random SSAT for average-/worst-case analysis
- Novel algorithms: random-exist (RE) and exist-random (ER) SSAT
 - Modern techniques of SAT, model counting, and QBF
 - Approximate SSAT solving
- NEXPTIME problems with uncertainty: dependency SSAT
 - The same NEXPTIME-complete complexity as DQBF
 - Applications to probabilistic/approximate design and Dec-POMDP
- Algorithm evaluation: open-source solver¹ and benchmark set²
 - Benchmark set will become public after necessary licenses are added

¹https://github.com/NTU-ALComLab/ssatABC

²https://github.com/NTU-ALComLab/ssat-benchmarks

- Introduction
 - Motivation
 - Contributions
 - Overview
- 2 Background
- Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Dissertation Structure

- The dissertation is based on the following publications
 - Chapter 4: probabilistic property evaluation
 - Published at ICCAD '14 [33] and in Trans. Computers '18 [34]
 - Chapter 5: random-exist quantified SSAT solving
 - Published at IJCAI '17 [36]
 - Chapter 6: exist-random quantified SSAT solving
 - Published at IJCAI'18 [37]
 - Chapter 7: dependency SSAT
 - Published at AAAI '21 [35]

Dissertation Structure

- The dissertation is based on the following publications
 - Chapter 4: probabilistic property evaluation
 - Published at ICCAD '14 [33] and in Trans. Computers '18 [34]
 - Chapter 5: random-exist quantified SSAT solving
 - Published at IJCAI '17 [36]
 - Chapter 6: exist-random quantified SSAT solving
 - Published at IJCAI'18 [37]
 - Chapter 7: dependency SSAT
 - Published at AAAI '21 [35]
- Repeat the experiments with BenchExec³
 - Precise measurement: reproducibility
 - Data visualization

https://github.com/sosy-lab/benchexec

- Introduction
- 2 Background
- Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- 5 Exist-Random Quantified SSAT
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

- Introduction
- Background
 - Propositional Logic
 - Stochastic Boolean Satisfiability
 - Model Counting
- 3 Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Propositional Logic

Symbol	Description
$\overline{\tau}$	An assignment (a mapping from a variable set to \mathbb{B})
ϕ	A quantifier-free formula
$\tau \models \phi$	$ au$ satisfies ϕ
$\phi _{x}, \phi _{\neg x}$	Positive and negative cofactors of ϕ w.r.t. x
$\phi _{ au}$	The resultant formula after cofactoring ϕ with $ au$

- Introduction
- Background
 - Propositional Logic
 - Stochastic Boolean Satisfiability
 - Model Counting
- 3 Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- 5 Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Stochastic Boolean Satisfiability

Definition: SSAT

Given a quantified formula $\Phi = Q_1 x_1, \dots, Q_n x_n.\phi$:

- Q_1x_1, \ldots, Q_nx_n : quantification structure, $Q_i \in \{\exists^p, \exists\}$ (prefix)
- ϕ : quantifier-free formula over $\{x_1, \ldots, x_n\}$ (matrix)

Stochastic Boolean Satisfiability

Definition: SSAT

Given a quantified formula $\Phi = Q_1 x_1, \dots, Q_n x_n.\phi$:

- Q_1x_1, \ldots, Q_nx_n : quantification structure, $Q_i \in \{\exists^p, \exists\}$ (prefix)
- ϕ : quantifier-free formula over $\{x_1, \ldots, x_n\}$ (matrix)

Definition: Satisfying Probability of SSAT

Given an SSAT formula Φ , $Pr[\Phi]$ is computed by:

- ② $Pr[\bot] = 0$
- **③** Pr[Φ] = max{Pr[Φ|_{¬x}], Pr[Φ|_x]}, if x is quantified by ∃
- $\Pr[\Phi] = (1-p)\Pr[\Phi|_{\neg x}] + p\Pr[\Phi|_x]$, if x is quantified by \exists^p

Stochastic Boolean Satisfiability

Example: Satisfying Probability of SSAT

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \vee \neg y_1)(\neg x_1 \vee y_1)(\neg x_1 \vee \neg x_2 \vee y_2)(x_1 \vee \neg y_2)(x_2 \vee \neg y_2)$$

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

$$abla^{0.5}x_1$$

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

$$Pr[\Phi] = 1$$

Game-Theoretical Interpretations of SSAT

- $\Phi = Q_1 x_1, \dots, Q_n x_n, \phi, Q_i \in \{ \exists^p, \exists \}$
 - ∀^p: nondeterministic factors
 - ∃: an agent who plays under uncertainty
 - ϕ : game matrix
 - $Pr[\Phi]$: the maximum winning probability of the agent
 - Skolem functions: a strategy of the agent
 - Optimal Skolem functions: maximize the winning probability

Game-Theoretical Interpretations of SSAT

Example: Optimal Skolem Functions

$$\Phi = \exists^{0.5} x_1, \exists y_1, \exists^{0.5} x_2, \exists y_2. \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

• Variable y_1 : $f_1(x_1) = x_1$; variable y_2 : $f_2(x_1, x_2) = x_1 \wedge x_2$

Outline

- Introduction
- 2 Background
 - Propositional Logic
 - Stochastic Boolean Satisfiability
 - Model Counting
- Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Definition: Unweighted Model Counting

Given a Boolean formula ϕ :

• Exact: find $\#\phi$

• Approximate: $\Pr[(1+\epsilon)^{-1}\#\phi \le A \le (1+\epsilon)\#\phi] \ge 1-\delta$

Definition: Unweighted Model Counting

Given a Boolean formula ϕ :

- Exact: find $\#\phi$
- Approximate: $\Pr[(1+\epsilon)^{-1}\#\phi \leq A \leq (1+\epsilon)\#\phi] \geq 1-\delta$

Definition: Weighted Model Counting

Given ϕ and ω : vars $(\phi) \mapsto [0,1]$:

- Weight of ϕ : sum of the weights of the satisfying assignments
 - Weight of x: $\omega(x)$
 - Weight of $\neg x$: $1 \omega(x)$
 - ullet Weight of au: product of the weights of the individual literals

- Exact
 - Cachet [57, 58]: DPLL search plus subformula caching
 - c2d [16, 17]: CNF-to-d-DNNF compilation
 - DPMC [20]: project-join tree and arithmetic decision diagrams

- Exact
 - Cachet [57, 58]: DPLL search plus subformula caching
 - c2d [16, 17]: CNF-to-d-DNNF compilation
 - DPMC [20]: project-join tree and arithmetic decision diagrams
- Approximate
 - ApproxMC [10, 11]: sampling with XOR constraints

- Exact
 - Cachet [57, 58]: DPLL search plus subformula caching
 - c2d [16, 17]: CNF-to-d-DNNF compilation
 - DPMC [20]: project-join tree and arithmetic decision diagrams
- Approximate
 - ApproxMC [10, 11]: sampling with XOR constraints
- Variants: expressible by SSAT
 - Weighted model counting [13, 59]
 - Projected model counting [2]
 - Maximum model counting [23]
 - Weighted projected model counting
 - ProCount [21]: ordering of projected and non-projected variables

Express Model-Counting Variants with SSAT

Variant	SSAT encoding
Unweighted	
Weighted	$\exists^{p_1}x_1,\ldots,\exists^{p_n}x_n.\phi$
Projected	$\exists 0.5 x_1, \dots, \exists 0.5 x_n, \exists y_1, \dots, \exists y_m. \phi$
Maximum	$\exists x_1, \ldots, \exists x_n, \exists^{0.5} y_1, \ldots, \exists^{0.5} y_m. \phi$
Weighted projected	$\exists P^1 x_1, \ldots, \exists P^n x_n, \exists y_1, \ldots, \exists y_m. \phi$
Maximum weighted	$\exists x_1, \ldots, \exists x_n, \exists^{p_1} y_1, \ldots, \exists^{p_m} y_m. \phi$

Outline

- Introduction
- 2 Background
- Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- 5 Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Outline

- Introduction
- 2 Background
- 3 Probabilistic Design Evaluation
 - Modeling Probabilistic Design
 - Probabilistic Property Evaluation
 - Evaluation
- 4 Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Modeling Probabilistic Design

Example: Probabilistic Boolean Network and Standardization

A PBN with $V_1 = \{x_1, x_2, x_3\}$ and $V_0 = \{o\}$:

• $p_{x_1} = p_{x_2} = p_{x_3} = 0.5$; $p_{y_1} = 0.25$; $p_{y_2} = p_o = 0$

After standardization:

• $p_{z_1} = 0.25$; $p_{y'_1} = p_{y_3} = 0$

Outline

- Introduction
- 2 Background
- 3 Probabilistic Design Evaluation
 - Modeling Probabilistic Design
 - Probabilistic Property Evaluation
 - Evaluation
- 4 Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Probabilistic Property Evaluation

Definition: Property Violation Probability

- MPPE: the maximum violation probability $\exists x_1, \dots, \exists x_n, \exists^{p_{z_1}} z_1, \dots, \exists^{p_{z_l}} z_l, \exists^{p_{w_1}} w_1, \dots, \exists^{p_{w_q}} w_q, \exists y_1, \dots, \exists y_m.\phi_M$

Probabilistic Property Evaluation

Example: Probabilistic Equivalence Checking

- PEC: the average difference probability under $\pi: X \mapsto [0,1]$ $\exists X, \exists Z, \exists Y. (F(X,Z) \not\equiv G(X))$
- MPEC: the maximum difference probability $\exists X, \exists Y. (F(X, Z) \not\equiv G(X))$

Solving MPPE and PPE

- MPPE: SSAT
 - CNF-based
 - BDD-based: graph traversal

Solving MPPE and PPE

- MPPE: SSAT
 - CNF-based
 - BDD-based: graph traversal
- PPE: model counting
 - Weighted model counting
 - Unweighted model counting with formula rewriting
 - Approximate model counting mostly focuses on unweighted instances
 - Express a weight of the form $\frac{k}{2^n}$ with additional variables and clauses

Outline

- Introduction
- Background
- 3 Probabilistic Design Evaluation
 - Modeling Probabilistic Design
 - Probabilistic Property Evaluation
 - Evaluation
- 4 Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Evaluation

- Compared approaches
 - SSAT formulation (MPPE and PPE)
 - BDDsp: C language using CUDD [60] inside ABC [7]
 - BDDsp-nr: BDDsp without variable reordering
 - DC-SSAT: state-of-the-art CNF-based solver
 - Model-counting formulation (PPE)
 - Cachet: exact weighted model counter
 - ApproxMC-4.0.1: epsilon=0.99 and delta=0.01

Evaluation

- Compared approaches
 - SSAT formulation (MPPE and PPE)
 - BDDsp: C language using CUDD [60] inside ABC [7]
 - BDDsp-nr: BDDsp without variable reordering
 - DC-SSAT: state-of-the-art CNF-based solver
 - Model-counting formulation (PPE)
 - Cachet: exact weighted model counter
 - ApproxMC-4.0.1: epsilon=0.99 and delta=0.01
- Experimental setup
 - A machine with one 2.2 GHz CPU (Intel Xeon Silver 4210) with 40 processing units and 134 616 MB of RAM
 - Ubuntu 20.04 (64 bit), running Linux 5.4
 - CPU time: 15 min; memory: 15 GB

Benchmark Set

Probabilistic equivalence checking

Average case: PECWorst case: MPEC

Benchmark Set

- Probabilistic equivalence checking
 - Average case: PEC
 - Worst case: MPEC
- ISCAS '85 [8] and EPFL [1] benchmark suites
 - And-inverter graphs (AIGs)
 - 30 circuits with sizes from 100 to 100K gates
 - Error rate: $\epsilon = 0.125$
 - Defect rate: $\delta = 0.01$ and 0.1

Implications from the Results

BDDsp performs the best for small- and medium-sized circuits

Implications from the Results

- BDDsp performs the best for small- and medium-sized circuits
- ApproxMC uniquely solves large instances

Implications from the Results

- BDDsp performs the best for small- and medium-sized circuits
- ApproxMC uniquely solves large instances
- Cachet and DC-SSAT do not scale well

Results for PEC $(\delta = 0.01)$

	BDDsp		DC-SSAT		Cachet		ApproxMC	
CIRCUIT	T (s)	Pr						
adder	3.71e-1	7.28e - 1	-	-	-	-	6.70e+2	7.19e-
bar	7.04e + 0	9.85e - 1	-	-	-	-	5.84e + 2	1.00e + 0
c1355	5.20e + 0	4.32e - 1	_	_	_	_	2.95e + 1	4.30e-
c1908	4.93e - 1	6.25e - 2	_	_	_	_	1.35e + 1	6.05e-
c2670	2.67e - 1	3.10e - 1	_	_	_	_	4.75e + 2	3.13e -
c3540	8.26e + 0	2.28e - 1	_	_	_	_	4.39e + 1	2.30e-
c432	6.19e - 2	3.15e - 2	_	_	2.87e - 1	3.15e - 2	1.17e + 1	3.13e -
c499	2.14e + 0	2.62e - 1	_	_	_	_	1.98e + 1	2.66e-
c5315	6.57e + 1	6.53e - 1	_	_	_	_	4.52e + 2	6.56e -
c6288	-	-	-	-	-	-	6.93e + 1	9.06e-
c7552	-	-	-	-	-	-	6.54e+2	7.03e-
c880	6.31e - 1	1.23e - 1	_	_	1.10e + 1	1.23e - 1	3.17e + 1	1.25e -
cavlc	4.86e - 2	4.96e - 2	1.51e - 1	4.96e - 2	1.06e - 1	4.96e - 2	1.76e + 1	4.98e-
ctrl	4.44e - 2	1.87e - 1	9.67e - 3	1.87e - 1	3.52e - 2	1.87e - 1	1.05e + 0	1.88e -
dec	4.32e - 2	6.56e - 1	6.66e - 3	6.56e - 1	3.74e - 2	6.56e - 1	6.03e + 0	6.56e -
i2c	8.01e - 2	4.33e - 1	_	_	7.42e + 2	4.33e - 1	3.12e + 2	4.22e -
int2float	4.20e - 2	6.39e - 3	1.12e - 2	6.39e - 3	3.95e - 2	6.39e - 3	1.04e + 0	6.47e -
priority	1.16e - 1	3.93e - 1	_	_	_	_	1.70e + 2	3.91e-
router	5.06e - 2	9.40e - 4	_	_	6.84e + 0	9.40e - 4	3.69e + 1	9.16e -
sin	_	_	_	_	_ `	_	4.90e + 2	1.00e +

Results for MPEC ($\delta = 0.01$)

BDDsp		Osp	BDDs	p-nr	DC-SSAT	
Circuit	T (s)	Pr	T (s)	Pr	T (s)	Pr
adder	3.65e+0	7.99e-1	-	-	-	_
c1355	2.23e+1	$6.56e{-1}$	1.58e+0	6.56e - 1	-	-
c1908	9.23e - 1	4.14e - 1	2.32e - 1	4.14e - 1	4.78e + 1	4.14e - 1
c2670	3.15e - 1	5.51e - 1	_	_	_	_
c3540	2.82e + 1	6.07e - 1	1.92e + 1	6.07e - 1	_	_
c432	6.40e - 2	2.34e - 1	4.99e - 2	2.34e - 1	_	_
c499	3.32e + 0	4.14e - 1	3.91e - 1	4.14e - 1	_	_
c880	6.71e - 1	3.30e - 1	9.85e - 1	3.30e - 1	_	_
cavlc	1.51e + 0	5.42e - 1	4.58e - 2	5.42e - 1	1.46e - 1	5.42e-1
ctrl	4.53e - 2	2.34e - 1	4.45e - 2	2.34e - 1	7.27e - 3	2.34e - 1
dec	4.55e - 2	6.56e - 1	4.55e - 2	6.56e - 1	6.06e - 3	6.56e-1
i2c	-	-	3.65e - 1	8.57e - 1	-	-
int2float	4.63e-2	2.34e - 1	4.14e - 2	2.34e - 1	1.31e - 2	2.34 <i>e</i> -1
priority	1.78e + 0	6.34e - 1	6.86e - 2	6.34e - 1	_	_
router	5.39e - 2	5.42e - 1	4.84e - 2	5.42e - 1	_	_

Outline

- Introduction
- Background
- 3 Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- 5 Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Outline

- Introduction
- 2 Background
- 3 Probabilistic Design Evaluation
- Random-Exist Quantified SSAT
 - Preliminaries
 - Decision Procedure
 - Evaluation
- 5 Exist-Random Quantified SSAT
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Preliminaries

Definition: RE-SSAT

- $\Phi = \exists X, \exists Y. \phi(X, Y)$:
 - X and Y: two disjoint sets of Boolean variables
 - $\phi(X, Y)$: a CNF formula

Preliminaries

Definition: RE-SSAT

- $\Phi = \exists X, \exists Y. \phi(X, Y)$:
 - X and Y: two disjoint sets of Boolean variables
 - $\phi(X, Y)$: a CNF formula

Definition: SAT/UNSAT Minterms and Cubes

Given $\Phi = \exists X, \exists Y. \phi(X, Y)$ and an assignment τ over X:

- $\phi(X,Y)|_{\tau}$ is satisfiable: τ is a SAT minterm of ϕ over X
- $\phi(X,Y)|_{\tau}$ is unsatisfiable: τ is an UNSAT minterm of ϕ over X
- ullet au is a partial assignment: au is a SAT or an UNSAT cube

Generalization of SAT and UNSAT Minterms

- Given $\Phi = \exists X, \exists Y. \phi(X, Y)$
 - SAT minterm τ over X
 - ullet Find a minimum subset of literals from au that satisfy all clauses
 - Also known as minimum hitting set
 - UNSAT minterm τ over X
 - Modern SAT solvers: conflict analysis
 - $\phi(X,Y)|_{\tau}$ is UNSAT: a subset of literals from τ
 - Also known as minimum UNSAT core

Outline

- Introduction
- Background
- 3 Probabilistic Design Evaluation
- Random-Exist Quantified SSAT
 - Preliminaries
 - Decision Procedure
 - Evaluation
- 5 Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

- Given $\Phi = \exists X, \exists Y. \phi(X, Y)$, $Pr[\Phi]$ equals
 - Sum of weights of all SAT minterms over X
 - One minus sum of weights of all UNSAT minterms over X

- Given $\Phi = \exists X, \exists Y. \phi(X, Y)$, $Pr[\Phi]$ equals
 - Sum of weights of all SAT minterms over X
 - One minus sum of weights of all UNSAT minterms over X
- Avoid exhaustive enumeration by minterm generalization
 - Overlapping cubes: weights cannot be summed up directly
 - Handle overlap by weighted model counting

- Given $\Phi = \exists X, \exists Y. \phi(X, Y), \Pr[\Phi]$ equals
 - Sum of weights of all SAT minterms over X
 - One minus sum of weights of all UNSAT minterms over X
- Avoid exhaustive enumeration by minterm generalization
 - Overlapping cubes: weights cannot be summed up directly
 - Handle overlap by weighted model counting
- The collected cubes reflect bounds of $Pr[\Phi]$
 - SAT cubes: lower bound
 - UNSAT cubes: upper bound

Example: RE-SSAT Solving

Consider $\exists^{0.5}r_1, \exists^{0.5}r_2, \exists^{0.5}r_3, \exists e_1, \exists e_2, \exists e_3. \phi$ with

$$C_1: (r_1 \lor r_2 \lor e_1); \ C_2: (r_1 \lor \neg r_3 \lor e_2); \ C_3: (r_2 \lor \neg r_3 \lor \neg e_1 \lor \neg e_2)$$

Example: RE-SSAT Solving

Consider $\exists^{0.5}r_1, \exists^{0.5}r_2, \exists^{0.5}r_3, \exists e_1, \exists e_2, \exists e_3. \phi$ with

$$C_1: (r_1 \lor r_2 \lor e_1); \ C_2: (r_1 \lor \neg r_3 \lor e_2); \ C_3: (r_2 \lor \neg r_3 \lor \neg e_1 \lor \neg e_2)$$

Assignment	Minterm Type	Generalization	UB	LB
$\tau_1 = \neg r_1 \neg r_2 \neg r_3$	UNSAT	$\tau_1^+ = \neg r_3$	0.5	0

Example: RE-SSAT Solving

Consider $\exists^{0.5}r_1, \exists^{0.5}r_2, \exists^{0.5}r_3, \exists e_1, \exists e_2, \exists e_3. \phi$ with

$$C_1: (r_1 \vee r_2 \vee e_1); \ C_2: (r_1 \vee \neg r_3 \vee e_2); \ C_3: (r_2 \vee \neg r_3 \vee \neg e_1 \vee \neg e_2)$$

Assignment	Minterm Type	Generalization	UB	LB
$\tau_1 = \neg r_1 \neg r_2 \neg r_3$	UNSAT	$ au_1^+ = \neg r_3$	0.5	0
$\tau_2 = \neg r_1 \neg r_2 r_3$	UNSAT	$\tau_2^+ = \neg r_1 \neg r_2$	0.375	0

Example: RE-SSAT Solving

Consider $\exists^{0.5}r_1, \exists^{0.5}r_2, \exists^{0.5}r_3, \exists e_1, \exists e_2, \exists e_3. \phi$ with

$$C_1: (r_1 \lor r_2 \lor e_1); \ C_2: (r_1 \lor \neg r_3 \lor e_2); \ C_3: (r_2 \lor \neg r_3 \lor \neg e_1 \lor \neg e_2)$$

Assignment	Minterm Type	Generalization	UB	LB
$\tau_1 = \neg r_1 \neg r_2 \neg r_3$	UNSAT	$ au_1^+ = \neg r_3$	0.5	0
$\tau_2 = \neg r_1 \neg r_2 r_3$	UNSAT	$\tau_2^+ = \neg r_1 \neg r_2$	0.375	0
$\tau_3 = \neg r_1 r_2 r_3$	SAT	$\tau_3^+ = r_2 r_3$	0.375	0.25

Example: RE-SSAT Solving

Consider $\exists^{0.5}r_1, \exists^{0.5}r_2, \exists^{0.5}r_3, \exists e_1, \exists e_2, \exists e_3. \phi$ with

$$C_1: (r_1 \lor r_2 \lor e_1); \ C_2: (r_1 \lor \neg r_3 \lor e_2); \ C_3: (r_2 \lor \neg r_3 \lor \neg e_1 \lor \neg e_2)$$

Assignment	Minterm Type	Generalization	UB	LB
$\tau_1 = \neg r_1 \neg r_2 \neg r_3$	UNSAT	$ au_1^+ = \neg r_3$	0.5	0
$\tau_2 = \neg r_1 \neg r_2 r_3$	UNSAT	$\tau_2^+ = \neg r_1 \neg r_2$	0.375	0
$\tau_3 = \neg r_1 r_2 r_3$	SAT	$\tau_3^+ = r_2 r_3$	0.375	0.25
$\tau_4 = r_1 \neg r_2 r_3$	SAT	$\tau_4^+ = r_1 r_3$	0.375	0.375

Example: RE-SSAT Solving

Consider $\exists^{0.5}r_1, \exists^{0.5}r_2, \exists^{0.5}r_3, \exists e_1, \exists e_2, \exists e_3.\phi$ with

$$C_1: (r_1 \lor r_2 \lor e_1); \ C_2: (r_1 \lor \neg r_3 \lor e_2); \ C_3: (r_2 \lor \neg r_3 \lor \neg e_1 \lor \neg e_2)$$

Assignment	Minterm Type	Generalization	UB	LB
$\tau_1 = \neg r_1 \neg r_2 \neg r_3$	UNSAT	$ au_1^+ = \neg r_3$	0.5	0
$\tau_2 = \neg r_1 \neg r_2 r_3$	UNSAT	$\tau_2^+ = \neg r_1 \neg r_2$	0.375	0
$\tau_3 = \neg r_1 r_2 r_3$	SAT	$\tau_3^+ = r_2 r_3$	0.375	0.25
$\tau_4 = r_1 \neg r_2 r_3$	SAT	$\tau_4^+ = r_1 r_3$	0.375	0.375

- $C_{\perp} = \{\tau_1^+, \tau_2^+\} = \{\neg r_3, \neg r_1 \neg r_2\}$
- $C_{\top} = \{\tau_3^+, \tau_4^+\} = \{r_2r_3, r_1r_3\}$
- $Pr[\Phi] = 0.375$

Outline

- Introduction
- Background
- 3 Probabilistic Design Evaluation
- Random-Exist Quantified SSAT
 - Preliminaries
 - Decision Procedure
 - Evaluation
- 5 Exist-Random Quantified SSAT
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Evaluation

- Compared solvers
 - reSSAT: C++ language inside ABC environment [7]
 - SAT solver: MiniSat-2.2 [22]
 - Weighted model counter: Cachet [57]
 - reSSAT-b: reSSAT without minterm generalization
 - DC-SSAT: state-of-the-art DPLL-based SSAT solver

Evaluation

- Compared solvers
 - reSSAT: C++ language inside ABC environment [7]
 - SAT solver: MiniSat-2.2 [22]
 - Weighted model counter: Cachet [57]
 - reSSAT-b: reSSAT without minterm generalization
 - DC-SSAT: state-of-the-art DPLL-based SSAT solver
- Experimental setup
 - A machine with one 2.2 GHz CPU (Intel Xeon Silver 4210) with 40 processing units and 134 616 MB of RAM
 - Ubuntu 20.04 (64 bit), running Linux 5.4
 - CPU time: 15 min; memory: 15 GB

Benchmark Set

- Random k-CNF formulas (by CNFgen [32])
 - $k \in \{3, \dots, 9\}, n \in \{10, 20, \dots, 50\}, \frac{m}{n} = \{k-1, k, k+1, k+2\}$
 - Quantify half variables randomly and others existentially
 - 5 samples per configuration: 700 formulas

Benchmark Set

- Random k-CNF formulas (by CNFgen [32])
 - $k \in \{3, \dots, 9\}, n \in \{10, 20, \dots, 50\}, \frac{m}{n} = \{k 1, k, k + 1, k + 2\}$
 - · Quantify half variables randomly and others existentially
 - 5 samples per configuration: 700 formulas
- Strategic-company [9] formulas
 - Forall-exist QBF: decide whether a company is *strategic*
 - Replace universal quantifiers with randomized ones
 - From QBFLIB [49]: 60 formulas

Benchmark Set

- Random k-CNF formulas (by CNFgen [32])
 - $k \in \{3, \dots, 9\}, n \in \{10, 20, \dots, 50\}, \frac{m}{n} = \{k 1, k, k + 1, k + 2\}$
 - · Quantify half variables randomly and others existentially
 - 5 samples per configuration: 700 formulas
- Strategic-company [9] formulas
 - Forall-exist QBF: decide whether a company is strategic
 - Replace universal quantifiers with randomized ones
 - From QBFLIB [49]: 60 formulas
- PEC formulas: 60 formulas

Implications from the Results

reSSAT outperforms DC-SSAT on random and strategic formulas

Implications from the Results

- reSSAT outperforms DC-SSAT on random and strategic formulas
- reSSAT is able to derive non-trivial bounds when DC-SSAT timeouts

Implications from the Results

- reSSAT outperforms DC-SSAT on random and strategic formulas
- reSSAT is able to derive non-trivial bounds when DC-SSAT timeouts
- Minterm generalization is crucial to the performance of reSSAT

Quantile Plot for Random Formulas

Quantile Plot for Strategic-Company Formulas

Results for PEC Formulas ($\delta = 0.01$)

	DC-SSAT			reSSAT		reSSAT-b		
Formula	T (s)	Pr	T (s)	Pr	UB	T (s)	Pr	UB
adder	-	-	-	-	7.98e-1	-	-	-
bar	-	-	-	-	9.98e - 1	-	-	-
c1908	_	-	_	_	_	_	_	2.65e -
c2670	_	-	_	-	5.03e - 1	_	_	1.00e +
c3540	_	-	_	_	2.98e - 1	_	_	9.96e-
c432	_	-	_	_	3.15e - 2	_	_	5.92e-
c5315	_	-	_	-	9.66e - 1	_	_	_
c6288	_	-	_	_	1.00e + 0	_	_	1.00e +
c880	_	-	_	-	1.74e - 1	_	_	8.83e-
cavlc	1.60e - 1	4.96e - 2	_	-	4.96e - 2	_	_	4.96e-
ctrl	1.20e - 2	1.87e - 1	7.65e - 2	1.87e - 1	-	7.94e - 2	1.87e - 1	-
dec	9.19e - 3	6.56e - 1	7.46e-2	6.56e - 1	-	1.00e + 1	6.56e - 1	-
i2c	_	-	_	_	8.18e - 1	_	_	8.07e -
int2float	1.84e - 2	6.39e - 3	8.49e - 2	6.39e - 3	_	1.08e - 1	6.39e - 3	_
max	_	-	_	-	9.74e - 1	_	_	_
priority	_	-	_	_	7.61e - 1	_	_	_
router	_	_	_	_	1.41e - 3	_	_	2.41e-

Outline

- Introduction
- 2 Background
- Probabilistic Design Evaluation
- Random-Exist Quantified SSAT
- 5 Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Outline

- Introduction
- 2 Background
- Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- 5 Exist-Random Quantified SSAT
 - Preliminaries
 - Decision Procedure
 - Evaluation
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Preliminaries

Definition: ER-SSAT (E-MAJSAT)

- $\Phi = \exists X, \exists Y. \phi(X, Y):$
 - X and Y: two disjoint sets of Boolean variables
 - $\phi(X, Y)$: a CNF formula

Preliminaries

Definition: ER-SSAT (E-MAJSAT)

- $\Phi = \exists X, \exists Y. \phi(X, Y)$:
 - X and Y: two disjoint sets of Boolean variables
 - $\phi(X, Y)$: a CNF formula

Definition: Clause Selection

Given a CNF formula $\phi(X, Y)$:

- $C = C^X \vee C^Y$
- An assignment τ over X selects C if τ falsifies every literal in C^X
- Selection variable: $s_C \equiv \neg C^X$
- Selection relation: $\psi(X,S) = \bigwedge_{C \in \phi} (s_C \equiv \neg C^X)$

Outline

- Introduction
- Background
- Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- 5 Exist-Random Quantified SSAT
 - Preliminaries
 - Decision Procedure
 - Evaluation
- 6 Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

- Given $\Phi = \exists X, \exists Y. \phi(X, Y)$, $Pr[\Phi]$ equals
 - \bullet The maximum conditional satisfying probability $\Pr[\Phi|_{\tau^*}]$

- Given $\Phi = \exists X, \exists Y. \phi(X, Y), \Pr[\Phi]$ equals
 - ullet The maximum conditional satisfying probability $\Pr[\Phi|_{ au^*}]$
- Clause-containment learning
 - Prune assignments that select a superset of the selected clauses
 - An assignments τ_1 selects a set of clauses $\phi|_{\tau_1}$
 - $\phi|_{\tau_1} \subseteq \phi|_{\tau_2} \Longrightarrow (\phi|_{\tau_2} \to \phi|_{\tau_1}) \Longrightarrow \Pr[\Phi|_{\tau_2}] \le \Pr[\Phi|_{\tau_1}]$
 - Learnt clause: $\bigvee_{C \in \phi|_{\mathcal{T}_1}} \neg s_C$

Example: E-MAJSAT Solving

Consider $\Phi=\exists e_1,\exists e_2,\exists e_3, \exists^{0.5} r_1, \exists^{0.5} r_2, \exists^{0.5} r_3. \phi$ with

$$\textit{C}_{1}:\left(\textit{e}_{1} \lor \textit{r}_{1} \lor \textit{r}_{2}\right) \; \textit{C}_{2}:\left(\textit{e}_{1} \lor \textit{e}_{2} \lor \textit{r}_{1} \lor \textit{r}_{2} \lor \neg \textit{r}_{3}\right)$$

$$C_3: (\neg e_2 \lor \neg e_3 \lor r_2 \lor \neg r_3) \ C_4: (\neg e_1 \lor e_3 \lor r_3)$$

Example: E-MAJSAT Solving

Consider $\Phi = \exists e_1, \exists e_2, \exists e_3, \exists^{0.5} r_1, \exists^{0.5} r_2, \exists^{0.5} r_3. \phi$ with

$$\textit{C}_{1}:\left(\textit{e}_{1} \lor \textit{r}_{1} \lor \textit{r}_{2}\right) \; \textit{C}_{2}:\left(\textit{e}_{1} \lor \textit{e}_{2} \lor \textit{r}_{1} \lor \textit{r}_{2} \lor \neg \textit{r}_{3}\right)$$

$$C_3: (\neg e_2 \lor \neg e_3 \lor r_2 \lor \neg r_3) \ C_4: (\neg e_1 \lor e_3 \lor r_3)$$

$$(s_1 \equiv \neg e_1) \wedge (s_2 \equiv \neg e_1 \wedge \neg e_2) \wedge (s_3 \equiv e_2 \wedge e_3) \wedge (s_4 \equiv e_1 \wedge \neg e_3)$$

Example: E-MAJSAT Solving

Consider $\Phi=\exists \textit{e}_1,\exists \textit{e}_2,\exists \textit{e}_3, \exists^{0.5}\textit{r}_1, \exists^{0.5}\textit{r}_2, \exists^{0.5}\textit{r}_3.\phi$ with

$$C_1: (e_1 \vee r_1 \vee r_2) \ C_2: (e_1 \vee e_2 \vee r_1 \vee r_2 \vee \neg r_3)$$

$$C_3: (\neg e_2 \lor \neg e_3 \lor r_2 \lor \neg r_3) \ C_4: (\neg e_1 \lor e_3 \lor r_3)$$

$$(s_1 \equiv \neg e_1) \wedge (s_2 \equiv \neg e_1 \wedge \neg e_2) \wedge (s_3 \equiv e_2 \wedge e_3) \wedge (s_4 \equiv e_1 \wedge \neg e_3)$$

Assignment	Selected Clauses	$ Pr[\Phi _{ au}]$	Learnt Clause	LB
$\tau_1 = \neg e_1 \neg e_2 \neg e_3$	$\{C_1,C_2\}$	0.75	$(\neg s_1 \lor \neg s_2)$	0.75

Example: E-MAJSAT Solving

Consider $\Phi = \exists e_1, \exists e_2, \exists e_3, \exists^{0.5} r_1, \exists^{0.5} r_2, \exists^{0.5} r_3. \phi$ with

$$\textit{C}_{1}:\left(\textit{e}_{1} \lor \textit{r}_{1} \lor \textit{r}_{2}\right) \; \textit{C}_{2}:\left(\textit{e}_{1} \lor \textit{e}_{2} \lor \textit{r}_{1} \lor \textit{r}_{2} \lor \neg \textit{r}_{3}\right)$$

$$C_3: (\neg e_2 \vee \neg e_3 \vee r_2 \vee \neg r_3) \ C_4: (\neg e_1 \vee e_3 \vee r_3)$$

$$(s_1 \equiv \neg e_1) \wedge (s_2 \equiv \neg e_1 \wedge \neg e_2) \wedge (s_3 \equiv e_2 \wedge e_3) \wedge (s_4 \equiv e_1 \wedge \neg e_3)$$

Assignment	Selected Clauses	$ Pr[\Phi _{ au}]$	Learnt Clause	LB
$\tau_1 = \neg e_1 \neg e_2 \neg e_3$	$\{C_1, C_2\}$	0.75	$(\neg s_1 \lor \neg s_2)$	0.75
$\tau_2 = \neg e_1 e_2 \neg e_3$	$\{C_1\}$	0.75	$(\neg s_1)$	0.75

Example: E-MAJSAT Solving

Consider $\Phi = \exists e_1, \exists e_2, \exists e_3, \exists^{0.5} r_1, \exists^{0.5} r_2, \exists^{0.5} r_3. \phi$ with

$$C_1: (e_1 \lor r_1 \lor r_2) \ C_2: (e_1 \lor e_2 \lor r_1 \lor r_2 \lor \neg r_3)$$

$$C_3: (\neg e_2 \lor \neg e_3 \lor r_2 \lor \neg r_3) \ C_4: (\neg e_1 \lor e_3 \lor r_3)$$

$$(s_1 \equiv \neg e_1) \wedge (s_2 \equiv \neg e_1 \wedge \neg e_2) \wedge (s_3 \equiv e_2 \wedge e_3) \wedge (s_4 \equiv e_1 \wedge \neg e_3)$$

Assignment	Selected Clauses	$ Pr[\Phi _{ au}]$	Learnt Clause	LB
$\tau_1 = \neg e_1 \neg e_2 \neg e_3$	$\{C_1, C_2\}$	0.75	$(\neg s_1 \lor \neg s_2)$	0.75
$\tau_2 = \neg e_1 e_2 \neg e_3$	$\{C_1\}$	0.75	$(\neg s_1)$	0.75
$\tau_3 = e_1 e_2 \neg e_3$	$\{C_4\}$	0.5	$(\neg s_4)$	0.75

Example: E-MAJSAT Solving

Consider $\Phi = \exists e_1, \exists e_2, \exists e_3, \exists^{0.5} r_1, \exists^{0.5} r_2, \exists^{0.5} r_3. \phi$ with

$$\textit{C}_{1}:\left(\textit{e}_{1} \lor \textit{r}_{1} \lor \textit{r}_{2}\right) \; \textit{C}_{2}:\left(\textit{e}_{1} \lor \textit{e}_{2} \lor \textit{r}_{1} \lor \textit{r}_{2} \lor \neg \textit{r}_{3}\right)$$

$$C_3: (\neg e_2 \lor \neg e_3 \lor r_2 \lor \neg r_3) \ C_4: (\neg e_1 \lor e_3 \lor r_3)$$

$$(s_1 \equiv \neg e_1) \wedge (s_2 \equiv \neg e_1 \wedge \neg e_2) \wedge (s_3 \equiv e_2 \wedge e_3) \wedge (s_4 \equiv e_1 \wedge \neg e_3)$$

Assignment	Selected Clauses	$ \Pr[\Phi _{ au}]$	Learnt Clause	LB
$\tau_1 = \neg e_1 \neg e_2 \neg e_3$	$\{C_1, C_2\}$	0.75	$(\neg s_1 \lor \neg s_2)$	0.75
$\tau_2 = \neg e_1 e_2 \neg e_3$	$\{C_1\}$	0.75	$(\neg s_1)$	0.75
$\tau_3 = e_1 e_2 \neg e_3$	$\{C_4\}$	0.5	$(\neg s_4)$	0.75
$\tau_4 = e_1 e_2 e_3$	{ <i>C</i> ₃ }	0.75	$(\neg s_3)$	0.75

Example: E-MAJSAT Solving

Consider $\Phi = \exists e_1, \exists e_2, \exists e_3, \exists^{0.5} r_1, \exists^{0.5} r_2, \exists^{0.5} r_3. \phi$ with

$$\textit{C}_{1}:\left(\textit{e}_{1} \lor \textit{r}_{1} \lor \textit{r}_{2}\right) \; \textit{C}_{2}:\left(\textit{e}_{1} \lor \textit{e}_{2} \lor \textit{r}_{1} \lor \textit{r}_{2} \lor \neg \textit{r}_{3}\right)$$

$$C_3: (\neg e_2 \lor \neg e_3 \lor r_2 \lor \neg r_3) \ C_4: (\neg e_1 \lor e_3 \lor r_3)$$

$$(s_1 \equiv \neg e_1) \wedge (s_2 \equiv \neg e_1 \wedge \neg e_2) \wedge (s_3 \equiv e_2 \wedge e_3) \wedge (s_4 \equiv e_1 \wedge \neg e_3)$$

Assignment	Selected Clauses	$ Pr[\Phi _{ au}]$	Learnt Clause	LB
$\tau_1 = \neg e_1 \neg e_2 \neg e_3$	$\{C_1, C_2\}$	0.75	$(\neg s_1 \lor \neg s_2)$	0.75
$\tau_2 = \neg e_1 e_2 \neg e_3$	$\{C_1\}$	0.75	$(\neg s_1)$	0.75
$\tau_3 = e_1 e_2 \neg e_3$	$\{C_4\}$	0.5	$(\neg s_4)$	0.75
$\tau_4 = e_1 e_2 e_3$	{ <i>C</i> ₃ }	0.75	$(\neg s_3)$	0.75
$\tau_5 = e_1 \neg e_2 e_3$	{}	1	()	1

Example: E-MAJSAT Solving

Consider $\Phi = \exists e_1, \exists e_2, \exists e_3, \exists^{0.5} r_1, \exists^{0.5} r_2, \exists^{0.5} r_3. \phi$ with

$$\textit{C}_{1}:\left(\textit{e}_{1} \lor \textit{r}_{1} \lor \textit{r}_{2}\right) \; \textit{C}_{2}:\left(\textit{e}_{1} \lor \textit{e}_{2} \lor \textit{r}_{1} \lor \textit{r}_{2} \lor \neg \textit{r}_{3}\right)$$

$$C_3: (\neg e_2 \lor \neg e_3 \lor r_2 \lor \neg r_3) \ C_4: (\neg e_1 \lor e_3 \lor r_3)$$

$$(s_1 \equiv \neg e_1) \wedge (s_2 \equiv \neg e_1 \wedge \neg e_2) \wedge (s_3 \equiv e_2 \wedge e_3) \wedge (s_4 \equiv e_1 \wedge \neg e_3)$$

Assignment	Selected Clauses	$ Pr[\Phi _{ au}]$	Learnt Clause	LB
$\tau_1 = \neg e_1 \neg e_2 \neg e_3$	$\{C_1, C_2\}$	0.75	$(\neg s_1 \lor \neg s_2)$	0.75
$\tau_2 = \neg e_1 e_2 \neg e_3$	$\{C_1\}$	0.75	$(\neg s_1)$	0.75
$\tau_3 = e_1 e_2 \neg e_3$	$\{C_4\}$	0.5	$(\neg s_4)$	0.75
$\tau_4 = e_1 e_2 e_3$	{ <i>C</i> ₃ }	0.75	$(\neg s_3)$	0.75
$\tau_5 = e_1 \neg e_2 e_3$	{}	1	()	1

Heuristics to Strengthen Learnt Clauses

- A shorter learnt clause prunes more search space
 - Minimal clause selection: SAT solving
 - Induced clause subsumption: syntax checking
 - Partial assignment pruning: model counting

Heuristics to Strengthen Learnt Clauses

- A shorter learnt clause prunes more search space
 - Minimal clause selection: SAT solving
 - Induced clause subsumption: syntax checking
 - Partial assignment pruning: model counting
- Extra reasoning effort vs. Effectiveness of strengthened learnt clauses

Outline

- Introduction
- 2 Background
- 3 Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- 5 Exist-Random Quantified SSAT
 - Preliminaries
 - Decision Procedure
 - Evaluation
- Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Evaluation

- Compared solvers
 - erSSAT: C++ language inside ABC [7]
 - SAT solver: MiniSat-2.2 [22]
 - Weighted model counter: Cachet [57] and CUDD [18]
 - erSSAT-b: erSSAT without heuristics to strengthen learnt clauses
 - DC-SSAT: state-of-the-art DPLL-based SSAT solver

Evaluation

- Compared solvers
 - erSSAT: C++ language inside ABC [7]
 - SAT solver: MiniSat-2.2 [22]
 - Weighted model counter: Cachet [57] and CUDD [18]
 - erSSAT-b: erSSAT without heuristics to strengthen learnt clauses
 - DC-SSAT: state-of-the-art DPLL-based SSAT solver
- Experimental setup
 - A machine with one 2.2 GHz CPU (Intel Xeon Silver 4210) with 40 processing units and 134 616 MB of RAM
 - Ubuntu 20.04 (64 bit), running Linux 5.4
 - CPU time: 15 min; memory: 15 GB

Benchmark Set

- Random k-CNF formulas (by CNFgen [32])
 - $k \in \{3, \dots, 9\}, n \in \{10, 20, \dots, 50\}, \frac{m}{n} = \{k 1, k, k + 1, k + 2\}$
 - Quantify half variables existentially and others randomly
 - 5 samples per configuration: 700 formulas

Benchmark Set

- Random k-CNF formulas (by CNFgen [32])
 - $k \in \{3, \dots, 9\}, n \in \{10, 20, \dots, 50\}, \frac{m}{n} = \{k-1, k, k+1, k+2\}$
 - Quantify half variables existentially and others randomly
 - 5 samples per configuration: 700 formulas
- Application formulas: 212 formulas

Family	Description	Number
Toilet-A	Adapted from exist-forall QBFs [49]	77
Conformant	Adapted from exist-forall QBFs [49]	24
Sand-Castle	A probabilistic planning problem [41]	25
Max-Count	Adapted from maximum model counting [23]	26
MPEC	Maximum probabilistic equivalence checking	60

Implications from the Results

erSSAT performs similarly as DC-SSAT on random formulas

Implications from the Results

- erSSAT performs similarly as DC-SSAT on random formulas
- erSSAT is not suitable for certain application formulas
 - Clause-containment learning might degenerate to brute-force search
 - Overhead incurred by the heuristics to strengthen learnt clauses

Implications from the Results

- erSSAT performs similarly as DC-SSAT on random formulas
- erSSAT is not suitable for certain application formulas
 - Clause-containment learning might degenerate to brute-force search
 - Overhead incurred by the heuristics to strengthen learnt clauses
- erSSAT is good at deriving tight lower bounds for large formulas

Quantile Plot for Random Formulas

Quantile Plot for Application Formulas

Summary of Results for Application Formulas

Algorithm	DC-SSAT	erSSAT	erSSAT-b
Solved formulas	78	59	65
Toilet-A	44	38	46
Conformant	1	2	1
Sand-Castle	22	13	14
Max-Count	3	3	1
MPEC	8	3	3
Timeouts	85	141	129
Out of memory	38	0	0
Other inconclusive	11	12	18

Summary of Results for Application Formulas

Algorithm	DC-SSAT	erSSAT	erSSAT-b
Solved formulas	78	59	65
Toilet-A	44	38	46
Conformant	1	2	1
Sand-Castle	22	13	14
Max-Count	3	3	1
MPEC	8	3	3
Timeouts	85	141	129
Out of memory	38	0	0
Other inconclusive	11	12	18

- An agent wants to build a sand castle within finite stages
 - At each stage: either dig a moat or erect a castle

- An agent wants to build a sand castle within finite stages
 - At each stage: either dig a moat or erect a castle
- Conformant planning: E-MAJSAT
 - Existentially quantified variables: policy selection
 - Randomly quantified variables: probabilistic mechanism

- An agent wants to build a sand castle within finite stages
 - At each stage: either dig a moat or erect a castle
- Conformant planning: E-MAJSAT
 - Existentially quantified variables: policy selection
 - Randomly quantified variables: probabilistic mechanism
- Two-stage formula: $(\neg d_1 \lor \phi_d^{(1)})(\neg e_1 \lor \phi_e^{(1)})(\neg d_2 \lor \phi_d^{(2)})(\neg e_2 \lor \phi_e^{(2)})$
 - Dig at stage 1 and erect at stage 2: $\phi_d^{(1)} \wedge \phi_e^{(2)}$
 - Each policy selects a distinct set of clauses
 - Clause-containment learning degenerates to brute-force search

- An agent wants to build a sand castle within finite stages
 - At each stage: either dig a moat or erect a castle
- Conformant planning: E-MAJSAT
 - Existentially quantified variables: policy selection
 - Randomly quantified variables: probabilistic mechanism
- Two-stage formula: $(\neg d_1 \lor \phi_d^{(1)})(\neg e_1 \lor \phi_e^{(1)})(\neg d_2 \lor \phi_d^{(2)})(\neg e_2 \lor \phi_e^{(2)})$
 - Dig at stage 1 and erect at stage 2: $\phi_d^{(1)} \wedge \phi_e^{(2)}$
 - Each policy selects a distinct set of clauses
 - Clause-containment learning degenerates to brute-force search
- Sand-Castle favors DC-SSAT: same subformulas across the stages

Approximate E-MAJSAT Solving: erSSAT on MPEC

	DC-S	SSAT		erS	SAT	
FORMULA	T (s)	Pr	T (s)	Pr	LB	T-LB (s)
c1355-0.01	-	-	-	-	$4.14e{-1}$	6.76e+2
c1908-0.01	$4.80e{+1}$	$4.14e{-1}$	_	_	$3.18e{-1}$	5.87e + 2
c2670-0.01	_	_	_	_	$4.87e{-1}$	1.46e + 2
c3540-0.01	_	_	_	_	_	_
c432-0.01	_	-	_	_	$2.34e{-1}$	1.41e + 2
c499-0.01	_	-	_	_	$4.14e{-1}$	$3.33e{+1}$
c880-0.01	_	-	_	_	$3.30e{-1}$	4.14e + 0
cavlc-0.01	$1.49e{-1}$	$5.42e{-1}$	_	_	_	_
ctrl-0.01	8.87e - 3	$2.34e{-1}$	7.01e-2	2.34e - 1	-	-
ctrl-0.10	5.77 <i>e</i> -2	$8.65e{-1}$	_	_	_	_
dec-0.01	$8.50e{-3}$	$6.56e{-1}$	4.28e-2	$6.56e{-1}$	_	_
dec-0.10	1.81e + 2	$9.88e{-1}$	_	_	_	_
i2c-0.01	_	-	_	_	_	_
int2float-0.01	$1.17e{-2}$	$2.34e{-1}$	1.31e + 0	$2.34e{-1}$	_	_
int2float-0.10	4.22e + 0	$9.01e{-1}$	_	_	_	_
priority-0.01	_	_	_	_	$4.45e{-1}$	1.40e + 2
router-0.01	-	-	-	-	$1.25e{-1}$	$3.60e{-1}$

Outline

- Introduction
- 2 Background
- Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
- Conclusion and Future Work

Outline

- Introduction
- 2 Background
- 3 Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- 5 Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
 - Preliminaries
 - Lifting SSAT to NEXPTIME-Completeness
 - Applications
- Conclusion and Future Work

Preliminaries

Definition: Dependency QBF (DQBF)

- $\Phi = \forall x_1, \ldots, \forall x_n, \exists y_1(D_{y_1}), \ldots, \exists y_m(D_{y_m}). \phi$
 - $D_{y_j} \subseteq \{x_1, \dots, x_n\}$: the dependency set of y_j
 - Φ is satisfiable if
 - **1** A Boolean function f_j over variables in D_{y_i} exists for each y_j
 - **2** ϕ becomes a tautology over $\{x_1,\ldots,x_n\}$ after substituting y_j with f_j

Preliminaries

Definition: Dependency QBF (DQBF)

- $\Phi = \forall x_1, \ldots, \forall x_n, \exists y_1(D_{y_1}), \ldots, \exists y_m(D_{y_m}).\phi$
 - $D_{y_j} \subseteq \{x_1, \dots, x_n\}$: the dependency set of y_j
 - Φ is satisfiable if
 - **1** A Boolean function f_j over variables in D_{y_i} exists for each y_j
 - **2** ϕ becomes a tautology over $\{x_1, \ldots, x_n\}$ after substituting y_j with f_j

Example: DQBF

$$\Phi = \forall x_1, \forall x_2, \exists y_1(\{x_1\}), \exists y_2(\{x_1, x_2\}).\phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

• Φ is satisfiable: $f_1(x_1) = x_1$; $f_2(x_1, x_2) = x_1 \wedge x_2$

Outline

- Introduction
- Background
- 3 Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- 5 Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
 - Preliminaries
 - Lifting SSAT to NEXPTIME-Completeness
 - Applications
- Conclusion and Future Work

Formulation

Definition: Dependency SSAT (DSSAT)

$$\Phi = \exists^{p_1} x_1, \dots, \exists^{p_n} x_n, \exists y_1(D_{v_1}), \dots, \exists y_m(D_{v_m}). \phi$$

ullet Satisfying probability of Φ with respect to $\mathcal{F} = \{f_1, \dots, f_m\}$

$$\Pr[\Phi|_{\mathcal{F}}] = \Pr[\exists^{p_1} x_1, \dots, \exists^{p_n} x_n. \phi|_{\mathcal{F}}]$$

- Decision version: given Φ and θ decide if $\Pr[\Phi|_{\mathcal{F}}] \geq \theta$ for some \mathcal{F}
- ullet Optimization version: find ${\mathcal F}$ to maximize $\Pr[\Phi|_{{\mathcal F}}]$

Formulation

Example: DSSAT

$$\Phi = \exists^{0.5} x_1, \exists^{0.5} x_2, \exists y_1(\{x_1\}), \exists y_2(\{x_2\}). \phi$$

$$\phi = (x_1 \lor \neg y_1)(\neg x_1 \lor y_1)(\neg x_1 \lor \neg x_2 \lor y_2)(x_1 \lor \neg y_2)(x_2 \lor \neg y_2)$$

$$\mathcal{F} = \{f_1(x_1) = x_1, f_2(x_2) = x_2\}$$

• $\Pr[\Phi|_{\mathcal{F}}] = \Pr[\exists^{0.5} x_1, \exists^{0.5} x_2.(x_1 \lor \neg x_2)] = 0.75$

Complexity

Theorem: NEXPTIME-Completeness of DSSAT

The decision version of DSSAT is NEXPTIME-complete

- ullet NEXPTIME: guess ${\cal F}$ in exponential time
- NEXPTIME-hard: DQBF \leq_P DSSAT

Benefits of DSSAT over DQBF

- Optimization vs. Decision
 - DSSAT: maximum satisfying probability
 - DQBF: satisfiability
 - Similar scenario: SSAT vs. QBF

Benefits of DSSAT over DQBF

- Optimization vs. Decision
 - DSSAT: maximum satisfying probability
 - DQBF: satisfiability
 - Similar scenario: SSAT vs. QBF
- Stochastic vs. Deterministic
 - DSSAT: natural encoding for NEXPTIME problems with uncertainty
 - DQBF: less straightforward for problems with probabilities

Outline

- Introduction
- 2 Background
- 3 Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- 5 Exist-Random Quantified SSAT
- 6 Dependency Stochastic Boolean Satisfiability
 - Preliminaries
 - Lifting SSAT to NEXPTIME-Completeness
 - Applications
- Conclusion and Future Work

Analyzing Probabilistic/Approximate Partial Design

- Partial design problem [25] of probabilistic design
 - ullet Synthesize black-box outputs T to realize specification
 - Constraints on inputs to black boxes: $D_i \subseteq X \cup Y$

$$\exists X, \exists Z, \forall Y, \exists T(D).(Y \equiv E(X)) \rightarrow (F(X, Z, T) \equiv G(X))$$

Example: Dec-POMDP

$$\mathcal{M} = (\{1,2\}, \{s_p, s_q\}, \{a_p, a_q\}, T, \rho, \{o_p, o_q\}, \Omega, \Delta_0, h)$$

- $T(s_p, a_p, a_p, s_p) = T(s_p, a_p, a_p, s_q) = 0.5$
- $\rho(s_p, a_p, a_p) = 1$; $\rho(s_p, a_q, A_2) = \rho(s_p, A_1, a_q) = -1$
- $\Omega(s_p, o_p) = \Pr[o_p | s_p]$

- Optimal joint policy to maximize the expected total reward
 - An agent can only base its actions on its own observations
 - NEXPTIME-completeness [5]

- Optimal joint policy to maximize the expected total reward
 - An agent can only base its actions on its own observations
 - NEXPTIME-completeness [5]
- Policy selection for an individual agent [56]
 - Agent 1: $\exists x_a^{1,0}, \exists x_o^{1,0}, \exists x_a^{1,1}, \exists x_o^{1,1}, \exists x_o^{1,1}, \dots$
 - Agent 2: $\exists x_a^{2,0}, \exists x_o^{2,0}, \exists x_a^{2,1}, \exists x_o^{2,1}, \exists x_a^{2,2}, \dots$
 - A linearly ordered prefix for all agents?

- Optimal joint policy to maximize the expected total reward
 - An agent can only base its actions on its own observations
 - NEXPTIME-completeness [5]
- Policy selection for an individual agent [56]
 - Agent 1: $\exists x_a^{1,0}, \exists x_o^{1,0}, \exists x_a^{1,1}, \exists x_o^{1,1}, \exists x_a^{1,2}, \dots$
 - Agent 2: $\exists x_a^{2,0}, \exists x_o^{2,0}, \exists x_a^{2,1}, \exists x_o^{2,1}, \exists x_a^{2,2}, \dots$
 - A linearly ordered prefix for all agents?
- Explicitly specify dependency sets in DSSAT
 - $\exists x_o^{1,0}, \exists x_o^{2,0}, \exists x_o^{1,1}, \exists x_o^{2,1}, \exists x_a^{1,0}, \exists x_a^{1,1}(\{x_o^{1,0}\}), \exists x_a^{1,2}(\{x_o^{1,0}, x_o^{1,1}\}), \dots$

Outline

- Introduction
- 2 Background
- Probabilistic Design Evaluation
- 4 Random-Exist Quantified SSAT
- Exist-Random Quantified SSAT
- Dependency Stochastic Boolean Satisfiability
- 7 Conclusion and Future Work

Probabilistic property evaluation

Average case: RE-SSAT

Worst case: ER-SSAT

- Probabilistic property evaluation
 - Average case: RE-SSAT
 - Worst case: ER-SSAT
- Novel algorithms for RE/ER-SSAT
 - Model counting
 - Minterm generalization from SAT
 - Clause selection from QBF

- Probabilistic property evaluation
 - Average case: RE-SSAT
 - Worst case: ER-SSAT
- Novel algorithms for RE/ER-SSAT
 - Model counting
 - Minterm generalization from SAT
 - Clause selection from QBF
- Dependency SSAT
 - NEXPTIME-completeness
 - Applications to probabilistic partial design and Dec-POMDP

- Probabilistic property evaluation
 - Average case: RE-SSAT
 - Worst case: ER-SSAT
- Novel algorithms for RE/ER-SSAT
 - Model counting
 - Minterm generalization from SAT
 - Clause selection from QBF
- Dependency SSAT
 - NEXPTIME-completeness
 - Applications to probabilistic partial design and Dec-POMDP
- Open-source solvers and instances

- Approximate analysis for probabilistic design based on simulation
 - Monte Carlo method
 - Symbolic sampling [30]

- Approximate analysis for probabilistic design based on simulation
 - Monte Carlo method
 - Symbolic sampling [30]
- General SSAT and DSSAT formulas
 - Clause selection for SSAT [14] and DQBF [62]

- Approximate analysis for probabilistic design based on simulation
 - Monte Carlo method
 - Symbolic sampling [30]
- General SSAT and DSSAT formulas
 - Clause selection for SSAT [14] and DQBF [62]
- Tighter integration of model-counting component
 - More advanced data structure, e.g., d-DNNF [17]
 - Incremental model counting

- Approximate analysis for probabilistic design based on simulation
 - Monte Carlo method
 - Symbolic sampling [30]
- General SSAT and DSSAT formulas
 - Clause selection for SSAT [14] and DQBF [62]
- Tighter integration of model-counting component
 - More advanced data structure, e.g., d-DNNF [17]
 - Incremental model counting
- Approximate SSAT solving
 - Trade inexactness for scalability

- Approximate analysis for probabilistic design based on simulation
 - Monte Carlo method
 - Symbolic sampling [30]
- General SSAT and DSSAT formulas
 - Clause selection for SSAT [14] and DQBF [62]
- Tighter integration of model-counting component
 - More advanced data structure, e.g., d-DNNF [17]
 - Incremental model counting
- Approximate SSAT solving
 - Trade inexactness for scalability
- Machine-learning applications
 - Verify fairness of supervised learning [24]

References I

- [1] L. Amarú, P.-E. Gaillardon, and G. De Micheli. 2015. The EPFL combinational benchmark suite. In *Proc. IWLS*. https: //www.epfl.ch/labs/lsi/page-102566-en-html/benchmarks/
- [2] R. A. Aziz, G. Chu, C. J. Muise, and P. J. Stuckey. 2015. #∃SAT: Projected model counting. In *Proc. SAT (LNCS 9340)*. Springer, 121–137. https://doi.org/10.1007/978-3-319-24318-4_10
- [3] R. I. Bahar, J. L. Mundy, and J. Chen. 2003. A probabilistic-based design methodology for nanoscale computation. In *Proc. ICCAD*. IEEE Computer Society / ACM, 480–486. https://doi.org/10.1109/ICCAD.2003.1257854
- [4] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and P. Schnoebelen. 2013. Systems and Software Verification: Model-Checking Techniques and Tools (1st ed.). Springer. https://doi.org/10.1007/978-3-662-04558-9

References II

- [5] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. 2002. The complexity of decentralized control of Markov decision processes. Mathematics of Operations Research 27, 4 (2002), 819–840. https://doi.org/10.1287/moor.27.4.819.297
- [6] A. Biere, M. Heule, H. van Maaren, and T. Walsh (Eds.). 2009. Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, Vol. 185. IOS Press.
- [7] R. K. Brayton and A. Mishchenko. 2010. ABC: An academic industrial-strength verification tool. In Proc. CAV (LNCS 6174). Springer, 24–40. https://doi.org/10.1007/978-3-642-14295-6_5 Latest version
 - available at: https://github.com/berkeley-abc/abc.
- [8] F. Brglez and H. Fujiwara. 1985. A neutral netlist of 10 combinational benchmark circuits. In *Proc. ISCAS*. IEEE, 695–698. https: //people.engr.ncsu.edu/brglez/CBL/benchmarks/index.html

References III

- [9] M. Cadoli, T. Eiter, and G. Gottlob. 1997. Default logic as a query language. *IEEE Transactions on Knowledge and Data Engineering* 9, 3 (1997), 448–463. https://doi.org/10.1109/69.599933
- [10] S. Chakraborty, K. S. Meel, and M. Y. Vardi. 2013. A scalable approximate model counter. In *Proc. CP (LNCS 8124)*. Springer, 200–216. https://doi.org/10.1007/978-3-642-40627-0_18
- [11] S. Chakraborty, K. S. Meel, and M. Y. Vardi. 2016. Algorithmic improvements in approximate counting for probabilistic inference: From linear to logarithmic SAT calls. In *Proc. IJCAI*. IJCAI/AAAI Press, 3569–3576. http://www.ijcai.org/Abstract/16/503
- [12] L. N. B. Chakrapani, J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. 2006. Probabilistic design: A survey of probabilistic CMOS technology and future directions for terascale IC design. In *Proc. VLSI-SoC (IFIP 249)*. Springer, 101–118. https://doi.org/10.1007/978-0-387-74909-9_7

References IV

- [13] M. Chavira and A. Darwiche. 2008. On probabilistic inference by weighted model counting. Artificial Intelligence 172, 6-7 (2008), 772-799. https://doi.org/10.1016/j.artint.2007.11.002
- [14] P.-W. Chen, Y.-C. Huang, and J.-H. R. Jiang. 2021. A sharp leap from quantified Boolean formula to stochastic Boolean satisfiability solving. In *Proc. AAAI*. AAAI Press.
- [15] C. Constantinescu. 2003. Trends and challenges in VLSI circuit reliability. *IEEE Micro* 23, 4 (2003), 14–19. https://doi.org/10.1109/MM.2003.1225959
- [16] A. Darwiche. 2001. Decomposable negation normal form. J. ACM 48, 4 (2001), 608-647. https://doi.org/10.1145/502090.502091
- [17] A. Darwiche. 2002. A compiler for deterministic, decomposable negation normal form. In *Proc. AAAI*. AAAI Press / The MIT Press, 627–634.
 - http://www.aaai.org/Library/AAAI/2002/aaai02-094.php

References V

- [18] A. Darwiche and P. Marquis. 2002. A knowledge compilation map. Journal of Artificial Intelligence Research 17 (2002), 229–264. https://doi.org/10.1613/jair.989
- [19] M. Davis, G. Logemann, and D. W. Loveland. 1962. A machine program for theorem-proving. *Commun. ACM* 5, 7 (1962), 394–397. https://doi.org/10.1145/368273.368557
- [20] J. M. Dudek, V. H. N. Phan, and M. Y. Vardi. 2020. DPMC: Weighted Model Counting by Dynamic Programming on Project-Join Trees. In *Proc. CP (LNCS 12333)*. Springer, 211–230. https://doi.org/10.1007/978-3-030-58475-7_13
- [21] J. M. Dudek, V. H. N. Phan, and M. Y. Vardi. 2021. ProCount: Weighted Projected Model Counting with Graded Project-Join Trees. In Proc. SAT.

References VI

- [22] N. Eén and N. Sörensson. 2003. An extensible SAT-solver. In *Proc. SAT (LNCS 2919)*. Springer, 502–518. https://doi.org/10.1007/978-3-540-24605-3_37
- [23] D. J. Fremont, M. N. Rabe, and S. A. Seshia. 2017. Maximum model counting. In *Proc. AAAI*. AAAI Press, 3885-3892. http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14968
- [24] B. Ghosh, D. Basu, and K. S. Meel. 2020. Justicia: A Stochastic SAT Approach to Formally Verify Fairness. CoRR abs/2009.06516 (2020). arXiv:2009.06516 https://arxiv.org/abs/2009.06516
- [25] K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, and B. Becker. 2013. Equivalence checking of partial designs using dependency quantified Boolean formulae. In *Proc. ICCD*. 396–403. https://doi.org/10.1109/ICCD.2013.6657071

References VII

- [26] J. Huang. 2006. Combining knowledge compilation and search for conformant probabilistic planning. In *Proc. ICAPS*. AAAI, 253–262. http://www.aaai.org/Library/ICAPS/2006/icaps06-026.php
- [27] R. Jhala and R. Majumdar. 2009. Software model checking. Comput. Surveys 41, 4 (2009), 21:1–21:54. https://doi.org/10.1145/1592434.1592438
- [28] A. B. Kahng and S. Kang. 2012. Accuracy-configurable adder for approximate arithmetic designs. In *Proc. DAC*. ACM, 820–825. https://doi.org/10.1145/2228360.2228509
- [29] Y. Kim, Y. Zhang, and P. Li. 2013. An energy efficient approximate adder with carry skip for error resilient neuromorphic VLSI systems. In *Proc. ICCAD*. IEEE, 130–137. https://doi.org/10.1109/ICCAD.2013.6691108
 - 100pb.//doi.org/10.1100/100hb.2010.0001100

References VIII

- [30] V. N. Kravets, N.-Z. Lee, and J.-H. R. Jiang. 2019. Comprehensive search for ECO rectification using symbolic sampling. In Proc. DAC. ACM, 71:1-71:6. https://doi.org/10.1145/3316781.3317790
- [31] S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P. Hayes. 2005. Accurate reliability evaluation and enhancement via probabilistic transfer matrices. In *Proc. DATE*. IEEE Computer Society, 282-287. https://doi.org/10.1109/DATE.2005.47
- [32] M. Lauria, J. Elffers, J. Nordström, and M. Vinyals. 2017. CNFgen: A generator of crafted benchmarks. In Proc. SAT (LNCS 10491). Springer, 464–473. https://doi.org/10.1007/978-3-319-66263-3_30
- [33] N.-Z. Lee and J.-H. R. Jiang. 2014. Towards formal evaluation and verification of probabilistic design. In *Proc. ICCAD*. IEEE, 340–347. https://doi.org/10.1109/ICCAD.2014.7001372

95 / 120

References IX

- [34] N.-Z. Lee and J.-H. R. Jiang. 2018. Towards formal evaluation and verification of probabilistic design. *IEEE Trans. Comput.* 67, 8 (2018), 1202–1216. https://doi.org/10.1109/TC.2018.2807431
- [35] N.-Z. Lee and J.-H. R. Jiang. 2021. Dependency stochastic Boolean satisfiability: A logical formalism for NEXPTIME decision problems with uncertainty. In *Proc. AAAI*. AAAI Press.
- [36] N.-Z. Lee, Y.-S. Wang, and J.-H. R. Jiang. 2017. Solving stochastic Boolean satisfiability under random-exist quantification. In *Proc. IJCAI*. IJCAI Organization, 688–694. https://doi.org/10.24963/ijcai.2017/96
- [37] N.-Z. Lee, Y.-S. Wang, and J.-H. R. Jiang. 2018. Solving exist-random quantified stochastic Boolean satisfiability via clause selection. In *Proc. IJCAI*. IJCAI Organization, 1339–1345. https://doi.org/10.24963/ijcai.2018/186

References X

- [38] L. Li and H. Zhou. 2014. On error modeling and analysis of approximate adders. In *Proc. ICCAD*. IEEE, 511–518. https://doi.org/10.1109/ICCAD.2014.7001399
- [39] S. M. Majercik. 2004. Nonchronological backtracking in stochastic Boolean satisfiability. In *Proc. ICTAI*. IEEE Computer Society, 498–507. https://doi.org/10.1109/ICTAI.2004.94
- [40] S. M. Majercik and B. Boots. 2005. DC-SSAT: A divide-and-conquer approach to solving stochastic satisfiability problems efficiently. In Proc. AAAI. AAAI Press / The MIT Press, 416–422. http://www.aaai.org/Library/AAAI/2005/aaai05-066.php
- [41] S. M. Majercik and M. L. Littman. 1998. MAXPLAN: A new approach to probabilistic planning. In *Proc. AIPS*. AAAI, 86–93. http://www.aaai.org/Library/AIPS/1998/aips98-011.php

References XI

- [42] S. M. Majercik and M. L. Littman. 2003. Contingent planning under uncertainty via stochastic satisfiability. Artificial Intelligence 147, 1-2 (2003), 119–162.
 - https://doi.org/10.1016/S0004-3702(02)00379-X
- [43] J. P. Marques-Silva and K. A. Sakallah. 2000. Boolean satisfiability in electronic design automation. In *Proc. DAC*. ACM, 675–680. https://doi.org/10.1145/337292.337611
- [44] J. Miao, A. Gerstlauer, and M. Orshansky. 2013. Approximate logic synthesis under general error magnitude and frequency constraints. In Proc. ICCAD. IEEE, 779–786.
 - https://doi.org/10.1109/ICCAD.2013.6691202

https://doi.org/10.1109/ICCAD.2014.7001398

[45] J. Miao, A. Gerstlauer, and M. Orshansky. 2014. Multi-level approximate logic synthesis under general error constraints. In Proc. ICCAD. IEEE. 504-510.

References XII

- [46] S. Mitra, M. Zhang, S. Waqas, N. Seifert, B. S. Gill, and K. S. Kim. 2006. Combinational logic soft error correction. In *Proc. ITC*. IEEE Computer Society, 1–9.
 - https://doi.org/10.1109/TEST.2006.297681
- [47] K. Mohanram and N. A. Touba. 2003. Cost-effective approach for reducing soft error failure rate in logic circuits. In *Proc. ITC*. IEEE Computer Society, 893–901.
 - https://doi.org/10.1109/TEST.2003.1271075
- [48] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasícek, and K. Roy. 2016. Design of power-efficient approximate multipliers for approximate artificial neural networks. In *Proc. ICCAD*. ACM, 81:1–81:7. https://doi.org/10.1145/2966986.2967021
- [49] M. Narizzano, L. Pulina, and A. Tacchella. 2006. The QBFEVAL web portal. In *Proc. JELIA (LNCS 4160)*. Springer, 494–497. https://doi.org/10.1007/11853886_45

References XIII

- [50] N. J. Nilsson. 2014. Principles of Artificial Intelligence. Morgan Kaufmann.
- [51] C. H. Papadimitriou. 1985. Games against nature. J. Comput. System Sci. 31, 2 (1985), 288–301. https://doi.org/10.1016/0022-0000(85)90045-5
- [52] G. L. Peterson and J. H. Reif. 1979. Multiple-person alternation. In Proc. FOCS. IEEE Computer Society, 348–363. https://doi.org/10.1109/SFCS.1979.25
- [53] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel. 2016. Architectural-space exploration of approximate multipliers. In Proc. ICCAD. ACM, 80:1–80:8. https://doi.org/10.1145/2966986.2967005
- [54] T. Rejimon and S. Bhanja. 2005. Scalable probabilistic computing models using Bayesian networks. In *Proc. MWSCAS*. IEEE, 712–715. https://doi.org/10.1109/MWSCAS.2005.1594200

References XIV

- [55] S. J. Russell and P. Norvig. 2020. Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
- [56] R. Salmon and P. Poupart. 2020. On the relationship between stochastic satisfiability and Markov decision processes. In *Proc. UAI*. PMLR, 1105–1115.
 - http://proceedings.mlr.press/v115/salmon20a.html
- [57] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi. 2004. Combining component caching and clause learning for effective model counting. In *Proc. SAT*. 20–28. http://www.satisfiability.org/SAT04/programme/21.pdf
- [58] T. Sang, P. Beame, and H. A. Kautz. 2005. Heuristics for fast exact model counting. In *Proc. SAT (LNCS 3569)*. Springer, 226–240. https://doi.org/10.1007/11499107_17

References XV

- [59] T. Sang, P. Beame, and H. A. Kautz. 2005. Performing Bayesian inference by weighted model counting. In *Proc. AAAI*. AAAI Press / The MIT Press, 475–482. http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
- [60] F. Somenzi. [n.d.]. CUDD: CU decision diagram package. http://vlsi.colorado.edu/ fabio/.
- [61] L. J. Stockmeyer and A. R. Meyer. 1973. Word problems requiring exponential time: Preliminary report. In *Proc. STOC*. ACM, 1–9. https://doi.org/10.1145/800125.804029
- [62] L. Tentrup and M. N. Rabe. 2019. Clausal abstraction for DQBF. In Proc. SAT (LNCS 11628). Springer, 388–405. https://doi.org/10.1007/978-3-030-24258-9_27

References XVI

- [63] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and A. Raghunathan. 2012. SALSA: Systematic logic synthesis of approximate circuits. In *Proc. DAC*. ACM, 796–801. https://doi.org/10.1145/2228360.2228504
- [64] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan. 2011. MACACO: Modeling and analysis of circuits for approximate computing. In *Proc. ICCAD*. IEEE Computer Society, 667–673. https://doi.org/10.1109/ICCAD.2011.6105401
- [65] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng. 2009. Electronic Design Automation: Synthesis, Verification, and Test (1st ed.). Morgan Kaufmann.
- [66] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. 2013. On reconfiguration-oriented approximate adder design and its application. In *Proc. ICCAD*. IEEE, 48–54. https://doi.org/10.1109/ICCAD.2013.6691096

Thanks for your attention! Questions?

BDD-Based SSAT Solving

```
Input: An ROBDD node N and a prefix Q
Output: Pr[N = T] under Q
 1: if (N is a terminal node) then
      return N.sp
 3. end if
 4: if (N.visited = FALSE) then
      if (Q(N.var) = \exists^p) then
      N.sp :=
6:
         (1-p) \cdot \text{BddSsatRecur}(N.\text{else}, Q) + p \cdot \text{BddSsatRecur}(N.\text{then}, Q)
7:
    else
         N.sp := max\{BddSsatRecur(N.else, Q), BddSsatRecur(N.then, Q)\}
8:
      end if
Q٠
   N.visited := TRUE
10:
11: end if
12: return N.sp
```

Rewriting WMC into Unweighted MC

Example: WMC Rewriting

Express $p_{z_1} = 0.25$ with $z_1 \equiv z_2 \wedge z_3$:

• Unweighted: $p_{x_1} = p_{x_2} = p_{x_3} = p_{z_2} = p_{z_3} = 0.5$

WMC Rewriting Procedure

```
Input: A formula \phi, a base set X_d for \phi, a wt. func. \omega s.t. \forall x \in X_d . \omega(x) = \frac{k}{2n}
Output: A formula \phi', a base set X'_d for \phi', a wt. func. \omega' s.t. \forall x \in X'_d \cdot \omega'(x) = \frac{1}{2}
 1: \phi' := \phi, X'_d := X_d
2: for all (x \in X_d) do
 3:
        var := x, wt := \omega(x)
 4:
       while (wt \neq \frac{1}{2}) do
5:
        inv ·= |
6: if (wt > \frac{1}{2}) then 7: wt := 1 - wt,
                   wt := \overline{1} - wt, inv := \overline{\top}
8:
          end if
9:
           \phi' := \phi' \wedge ((inv \oplus var) \equiv (v_{var} \wedge z_{var}))
10:
          X'_d := X'_d \setminus \{var\} \cup \{y_{var}\}
11:
          \omega'(y_{var}) = \frac{1}{2}
12:
               var = z_{var}, \overline{wt} = 2 \cdot wt
13:
          end while
14:
          X'_d := X'_d \cup \{var\}, \omega'(var) = \frac{1}{2}
15: end for
16: return (\phi', X'_d, \omega')
```

Results for PEC ($\delta = 0.1$)

	BDDsp		DC-SSAT		Cachet		ApproxMC	
Circuit	T (s)	Pr						
adder	1.77e+0	1.00e+0	_	_	_	_	_	_
c1355	_	-	_	-	_	-	2.92e + 2	9.22e - 1
c1908	_	-	_	_	-	-	2.49e + 2	9.22e - 1
c432	1.12e + 1	4.99e - 1	_	_	-	-	7.13e + 1	4.84e - 1
c499	_	-	_	-	_	-	1.89e + 2	8.13e - 1
c880	_	-	_	_	-	-	1.85e + 2	8.75e - 1
cavlc	2.58e - 1	6.89e - 1	_	_	1.77e + 0	6.89e - 1	3.32e + 2	6.72e - 1
ctrl	4.57e - 2	8.22e - 1	4.88e - 2	8.22e - 1	5.01e - 2	8.22e - 1	3.33e+1	8.28e - 1
dec	5.38e - 2	9.87e - 1	1.84e + 2	9.87e - 1	1.34e + 0	9.87e - 1	8.17e + 1	1.00e + 0
int2float	5.70e - 2	4.32e - 1	4.30e + 0	4.32e - 1	3.55e - 1	4.32e - 1	7.27e + 1	4.30e-
router	3.60e - 1	1.76e - 1	_	_	_	_	1.56e + 2	1.76e-

Results for MPEC ($\delta = 0.1$)

	BDI	Dsp	BDDs	p-nr	DC-SSAT		
Circuit	T (s)	Pr	T (s)	Pr	T (s)	Pr	
cavlc	_	-	5.62e-2	9.78e-1	-	_	
ctrl	4.87e - 2	8.65e - 1	4.61e - 2	8.65e - 1	5.83e - 2	8.65e - 1	
dec	6.10e - 2	9.88e - 1	4.85e - 2	9.88e - 1	1.81e + 2	9.88e - 1	
int2float	_	_	4.70e - 2	9.01e - 1	4.21e+0	9.01e - 1	
router	-	-	2.75e + 0	$8.96e{-1}$	-	-	

Generalization of SAT Minterms

Example: SAT Generalization

Consider $\exists^{0.5}r_1, \exists^{0.5}r_2, \exists^{0.5}r_3, \exists e_1, \exists e_2, \exists e_3. \phi$ with ϕ consisting of the following clauses, and $\tau = \neg r_1 r_2 r_3$:

$$C_1 : (r_1 \lor r_2 \lor e_1); C_2 : (r_1 \lor \neg r_3 \lor e_2); C_3 : (r_2 \lor \neg r_3 \lor \neg e_1 \lor \neg e_2)$$

 $C_4 : (r_3 \lor e_3); C_5 : (r_3 \lor \neg e_3)$

- au is a SAT minterm: ϕ is satisfiable with au and $\mu = \neg e_1 e_2 \neg e_3$
- Generalize au to a SAT cube $au^+ = r_2 r_3$

Generalization of UNSAT Minterms

Example: UNSAT Generalization

Consider $\exists^{0.5}r_1, \exists^{0.5}r_2, \exists^{0.5}r_3, \exists e_1, \exists e_2, \exists e_3. \phi$ with ϕ consisting of the following clauses, and $\tau = \neg r_1 \neg r_2 \neg r_3$:

$$C_1 : (r_1 \lor r_2 \lor e_1); C_2 : (r_1 \lor \neg r_3 \lor e_2); C_3 : (r_2 \lor \neg r_3 \lor \neg e_1 \lor \neg e_2)$$

 $C_4 : (r_3 \lor e_3); C_5 : (r_3 \lor \neg e_3)$

- τ is an UNSAT minterm: C_4 and C_5 conflict
- Generalize τ to an UNSAT cube $\tau^+ = \neg r_3$

RE-SSAT Solving

```
Input: \Phi = \exists X, \exists Y. \phi(X, Y) and a run-time limit TO
Output: Lower and upper bounds (P_L, P_U) of Pr[\Phi]
 1: \psi(X) := \top
2: C_{\top} := \emptyset
 3: C_{\perp} := \emptyset
 4: while (SAT(\psi) and run-time < TO) do
 5:
       \tau := \psi.\mathsf{model}
 6: if (SAT(\phi|_{\tau})) then
 7:
       \tau^+ := \mathtt{MinimalSatisfying}(\phi, \tau)
8:
            C_{\top} := C_{\top} \cup \{\tau^+\}
9:
        else
10:
             \tau^+ := \text{MinimalConflicting}(\phi, \tau)
11:
              C_{\perp} := C_{\perp} \cup \{\tau^{+}\}\
12:
         end if
13:
         \psi := \psi \wedge \neg \tau^+
14: end while
15: return (ComputeWeight(C_{\perp}), 1 - ComputeWeight(C_{\perp}))
```

Results for PEC Formulas ($\delta = 0.1$)

DC-SSAT				reSSAT			reSSAT-b		
FORMULA	T (s)	Pr	T (s)	Pr	UB	T (s)	Pr	UB	
c1908	_	_	_	_	1.00e+0	_	_	_	
c3540	_	_	_	_	1.00e + 0	_	_	_	
c432	_	_	_	_	7.81e - 1	_	_	9.76e-	
c880	_	-	_	_	9.98e - 1	_	_	_	
cavlc	_	-	_	_	7.66e - 1	_	_	8.88e-	
ctrl	5.27e - 2	8.22e - 1	-	-	8.49e - 1	-	-	8.73e-	
dec	1.85e + 2	9.87e - 1	_	-	9.88e - 1	_	_	9.99e - 1	
i2c	_	-	_	_	9.98e - 1	_	_	_	
int2float	4.33e+0	4.32e - 1	_	-	5.22e - 1	_	_	6.46e -	
max	_	-	_	_	1.00e + 0	_	_	_	
priority	_	_	-	-	1.00e + 0	-	-	-	
router	_	_	_	_	2.41e - 1	_	-	3.10e-	

Minimal Clause Selection

- Iteratively solve $\psi(X, S)$ to select a minimal set of clauses
- Recall $\Phi = \exists e_1, \exists e_2, \exists e_3, \exists^{0.5} r_1, \exists^{0.5} r_2, \exists^{0.5} r_3. \phi$ with $C_1 : (e_1 \lor r_1 \lor r_2) \ C_2 : (e_1 \lor e_2 \lor r_1 \lor r_2 \lor \neg r_3) \ C_3 : (\neg e_2 \lor \neg e_3 \lor r_2 \lor \neg r_3) \ C_4 : (\neg e_1 \lor e_3 \lor r_3)$
- $\tau_1 = \neg e_1 \neg e_2 \neg e_3$ selects $\{C_1, C_2\}$
- Solve $\psi \wedge (\neg s_1 \vee \neg s_2)$ under assumptions $s_3 \wedge s_4$
 - $\tau_2 = \neg e_1 e_2 \neg e_3$, which only selects $\{C_1\}$
 - Replace an expensive model-counting call with a SAT call

Induced Clause Subsumption

- C_1 subsumes C_2 if $C_1 \subseteq C_2$ (treat C_1 and C_2 as sets of literals)
- Subsumed clauses can be removed from a CNF formula
- Recall $\Phi = \exists e_1, \exists e_2, \exists e_3, \exists^{0.5} r_1, \exists^{0.5} r_2, \exists^{0.5} r_3. \phi$ with $C_1 : (e_1 \lor r_1 \lor r_2) \ C_2 : (e_1 \lor e_2 \lor r_1 \lor r_2 \lor \neg r_3) \ C_3 : (\neg e_2 \lor \neg e_3 \lor r_2 \lor \neg r_3) \ C_4 : (\neg e_1 \lor e_3 \lor r_3)$
- $\tau_1 = \neg e_1 \neg e_2 \neg e_3$ selects $\{C_1, C_2\}$
- C_1^Y subsumes C_2^Y : remove C_2 from the set of selected clauses
 - Strengthen the learnt clause to $(\neg s_1)$
- ullet Subsumption among C^Y clauses is induced by clause selection

Partial Assignment Pruning

•
$$C_L = \bigvee_{C \in \phi|_{\tau}} \neg s_C = \bigvee_{C \in \phi|_{\tau}} C^X$$

- ullet Discard literals from C_L by model counting
- Recall $\Phi = \exists e_1, \exists e_2, \exists e_3, \exists^{0.5} r_1, \exists^{0.5} r_2, \exists^{0.5} r_3. \phi$ with

$$C_1 : (e_1 \lor r_1 \lor r_2) \ C_2 : (e_1 \lor e_2 \lor r_1 \lor r_2 \lor \neg r_3)$$

 $C_3 : (\neg e_2 \lor \neg e_3 \lor r_2 \lor \neg r_3) \ C_4 : (\neg e_1 \lor e_3 \lor r_3)$

- $\tau_1 = \neg e_1 \neg e_2 \neg e_3$: $C_L = (\neg s_1 \lor \neg s_2) = (e_1 \lor e_2), \Pr[\Phi|_{\tau_1}] = 0.75$
 - Can we discard e_2 from C_L ?
 - (e_1) blocks τ that selects C_1 : $\Pr[\Phi|_{\tau}] \leq \Pr[C_1] = 0.75 \leq \Pr[\Phi|_{\tau_1}]$
- Count weight of selected clauses and compare to current maximum

ER-SSAT Solving

```
Input: \Phi = \exists X, \exists Y. \phi(X, Y)
Output: Pr[Φ]
1: \psi(X,S) := \bigwedge_{C \in \phi} (s_C \equiv \neg C^X) \land \bigwedge_{\text{pure liver}(I)}
                                          pure l:var(I) \in X
 2: prob := 0
 3: s-table := BuildSubsumptionTable(\phi)
 4: while (SAT(\psi)) do
 5:
      \tau := \psi.model (discarding the selection variables)
 6:
       if (SAT(\phi|_{\tau})) then
 7:
        \tau' := \mathtt{SelectMinimalClauses}(\phi, \psi)
8:
             \varphi := \text{RemoveSubsumedClauses}(\phi|_{\tau'}, \text{s-table})
9:
             prob := \max\{prob, \texttt{ComputeWeight}(\exists Y.\varphi)\}
10:
             C_S := \bigvee \neg s_C
11:
             C_L := \text{DiscardLiterals}(\phi, C_S, prob)
12:
         else
13:
              C_{l} := MinimalConflicting(\phi, \tau)
14:
         end if
15:
       \psi := \psi \wedge C_{\iota}
16: end while
17: return prob
```

Approximate E-MAJSAT Solving: erSSAT-b on MPEC

	DC-S	SSAT	erSSAT-b				
FORMULA	T (s)	Pr	T (s)	Pr	LB	T-LB (s)	
c1355-0.01	_	_	_	_	$6.56e{-1}$	4.10 <i>e</i> +1	
c1908-0.01	4.80e + 1	$4.14e{-1}$	_	_	$4.14e{-1}$	2.23e + 1	
c2670-0.01	_	_	_	_	$5.51e{-1}$	5.74e + 0	
c3540-0.01	_	_	_	_	$5.51e{-1}$	7.20e + 1	
c432-0.01	_	-	-	-	$2.34e{-1}$	2.91e + 0	
c499-0.01	_	-	_	_	$4.14e{-1}$	$3.80e{-1}$	
c880-0.01	_	-	_	_	$3.30e{-1}$	6.17e + 0	
cavlc-0.01	$1.49e{-1}$	$5.42e{-1}$	_	_	_	_	
ctrl-0.01	8.87e - 3	$2.34e{-1}$	$8.98e{-2}$	$2.34e{-1}$	_	_	
ctrl-0.10	5.77e - 2	$8.65e{-1}$	_	_	_	_	
dec-0.01	$8.50e{-3}$	$6.56e{-1}$	$4.58e{-2}$	$6.56e{-1}$	_	_	
dec-0.10	1.81e + 2	$9.88e{-1}$	_	_	_	_	
i2c-0.01	_	_	_	_	$7.21e{-1}$	1.75e + 2	
int2float-0.01	$1.17e{-2}$	$2.34e{-1}$	$4.45e{-1}$	$2.34e{-1}$	-	_	
int2float-0.10	4.22e + 0	$9.01e{-1}$	-	-	-	_	
priority-0.01	_	-	-	-	$5.89e{-1}$	5.57e + 2	
router-0.01	-	-	-	-	$1.25e{-1}$	$3.80e{-1}$	

Computational Complexity of DSSAT

Theorem: NEXPTIME-Completeness of DSSAT

The decision version of DSSAT is NEXPTIME-complete

- DSSAT is NEXPTIME
- DSSAT is NEXPTIME-hard

Proof Sketch

- NEXPTIME
 - f 0 nondeterministically construct a set of Skolem functions ${\cal F}$
 - 2 compute $\Pr[\Phi|_{\mathcal{F}}]$ and compare it with the threshold θ
- NEXPTIME-hard: DQBF \leq_P DSSAT

$$\Phi_Q = \forall x_1, \dots, \forall x_n, \exists y_1(D_{y_1}), \dots, \exists y_m(D_{y_m}).\phi$$

$$\Phi_S = \exists^{0.5} x_1, \dots, \exists^{0.5} x_n, \exists y_1(D_{y_1}), \dots, \exists y_m(D_{y_m}).\phi$$

Claim: Φ_Q is satisfiable if and only if $\Pr[\Phi_S|_{\mathcal{F}}] \geq 1$ for some \mathcal{F}

Modeling Decentralized POMDP

$$\bigwedge_{0 \leq t \leq h-2} [x_p^t \equiv \bot \to \bigwedge_{i \in I} x_o^{i,t} \equiv 0 \land x_s^{t+1} \equiv 0 \land x_p^{t+1} \equiv \bot]$$

$$x_p^{h-1} \equiv \bot$$

$$\bigwedge_{s \in S} \bigwedge_{\vec{a} \in \vec{A}} [x_p^0 \equiv \bot \land x_s^0 \equiv s \land \bigwedge_{i \in I} x_a^{i,0} \equiv a_i \to x_r^0 \equiv N_r(s, \vec{a})]$$

$$\bigwedge_{1 \leq t \leq h-1} \bigwedge_{s \in S} \bigwedge_{\vec{a} \in \vec{A}} [x_p^{t-1} \equiv \top \land x_p^t \equiv \bot \land x_s^t \equiv s \land \bigwedge_{i \in I} x_a^{i,t} \equiv a_i \to x_r^t \equiv N_r(s, \vec{a})]$$

$$\bigwedge_{0 \leq t \leq h-2} \bigwedge_{s \in S} \bigwedge_{\vec{a} \in \vec{A}} \bigwedge_{s' \in S} [x_p^t \equiv \top \land x_s^t \equiv s \land \bigwedge_{i \in I} x_a^{i,t} \equiv a_i \land x_s^{t+1} \equiv s' \to x_{T_s,\vec{a}}^t \equiv s']$$

$$\bigwedge_{0 \leq t \leq h-2} \bigwedge_{s' \in S} \bigwedge_{\vec{a} \in \vec{A}} \bigwedge_{\vec{a} \in \vec{O}} [x_p^t \equiv \top \land x_s^{t+1} \equiv s' \land \bigwedge_{i \in I} x_a^{i,t} \equiv a_i \land \bigwedge_{i \in I} x_o^{i,t} \equiv o_i \to x_{\Omega_{s'},\vec{a}}^t \equiv N_{\Omega}(\vec{o})]$$