Systematic uncertainty

Missing closure point

$$\bigcirc$$
 μ + jets \rightarrow e + jets (0 b-tags)

 \times μ + jets \rightarrow e + jets (1 b-tags)

$$□$$
 μ + jets \rightarrow e + jets (\ge 2 b-tags)

 \wedge 0 b-tags \rightarrow 1 b-tag (μ + jets)

\oplus 1 b-tags \rightarrow \geq 2 b-tag (μ + jets)

 \Rightarrow e + jets $\rightarrow \gamma$ + jets (0 b-tags)

$$\nabla$$
 e + jets $\rightarrow \gamma$ + jets (1 b-tags)

 $\Diamond \mu + \text{jets} \rightarrow \mu \mu + \text{jets} (0 \text{ b-tags})$

$$\psi \mu + \text{jets} \rightarrow \mu \mu + \text{jets} (0 \text{ b-tags})$$

 $\psi \mu + \text{jets} \rightarrow \mu \mu + \text{jets} (1 \text{ b-tags})$

 \star ee + jets $\rightarrow \gamma$ + jets (0 b-tags)

+ ee + jets
$$\rightarrow \gamma$$
 + jets (1 b-tags)

 \times N_{iet} = 2 \rightarrow N_{iet} = 3 (e + jets)

$$\bigcirc$$
 N_{jet} = 2 \rightarrow N_{jet} = 3 (ee + jets)

ht40_nJet40_eq_2_0 eq2j

ht40_nJet40_eq_2_Asym_0 eq2a

mht40_pt_nJet40_eq_2_ht40_ge_200.0_ht40_lt_250.0_0 eq2j $(N_{obs} - N_{pred}) / N_{pred}$ **CMS** Preliminary $L_{int} = 3.0 | fb|^{-1}, \sqrt{s} = 13 \text{ TeV}$ 8.0 $n_{jet} = 2$ 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 50 100 150 200 250 300 MHT (GeV)

mht40_pt_nJet40_eq_2_ht40_ge_250.0_ht40_lt_300.0_0 eq2j $(N_{obs} - N_{pred})/N_{pred}$ CMS Preliminary $L_{int} = 3.0 \text{ fb}^{-1}, \sqrt{s} = 13 \text{ TeV}$ 8.0 $n_{jet} = 2$ 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 200 50 100 150 250 300 MHT (GeV)

mht40_pt_nJet40_eq_2_ht40_ge_300.0_ht40_lt_350.0_0 eq2j $(N_{obs} - N_{pred}) / N_{pred}$ **CMS Preliminary** $L_{int} = 3.0 |fb|^{1}, |\sqrt{s} = 13 \text{ TeV}$ 8.0 $n_{jet} = 2$ 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 50 100 150 200 250 300 350 400 MHT (GeV)

mht40_pt_nJet40_eq_2_ht40_ge_600.0_ht40_lt_800.0_0 eq2j N_{pred})/ N_{pred} CMS Preliminary $|\mathbf{L}_{\text{int}}| = 3.0 \text{ fb} |\mathbf{V}| = 13 \text{ TeV}$ 8.0 0.6 N Sqo 0.2 -0.2 -0.4 -0.6 -0.8 100 200 300 400 500 MHT (GeV)

ht40_nJet40_eq_3_0 eq3j

ht40_nJet40_eq_3_Asym_0 eq3a

mht40_pt_nJet40_eq_3_ht40_ge_200.0_ht40_lt_250.0_0 eq3j

mht40_pt_nJet40_eq_3_ht40_ge_250.0_ht40_lt_300.0_0 eq3j $(N_{obs} - N_{pred}) / N_{pred}$ **CMS Preliminary** $L_{int} = 3.0 | fb_i^{-1}, \sqrt{s} = 13 \text{ TeV}$ 8.0 $n_{jet} = 3$ 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 50 100 150 200 250 300 MHT (GeV)

mht40_pt_nJet40_eq_3_ht40_ge_350.0_ht40_lt_400.0_0 eq3j $(N_{obs} - N_{pred})/N_{pred}$ **CMS Preliminary** $L_{int} = 3.0 |fb|^{1}, |\sqrt{s} = 13 \text{ TeV}$ 8.0 $n_{jet} = 3$ 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 250 50 100 150 200 300 350 400 MHT (GeV)

mht40_pt_nJet40_eq_3_ht40_ge_350.0_ht40_lt_400.0_Asym_0 eq3a

mht40_pt_nJet40_eq_3_ht40_ge_400.0_ht40_lt_600.0_Asym_0 eq3a

mht40_pt_nJet40_eq_3_ht40_ge_600.0_ht40_lt_800.0_0 eq3j $(N_{obs} - N_{pred})/N_{pred}$ **CMS Preliminary** $|\mathbf{L}_{\text{int}}| = 3.0 \text{ fb}_{|}^{-1}, |\sqrt{s} = 13 \text{ TeV}$ 8.0 n_{jet} = 3 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 100 200 300 400 500 MHT (GeV)

mht40_pt_nJet40_eq_3_ht40_ge_600.0_ht40_lt_800.0_Asym_0 eq3a

mht40_pt_nJet40_eq_3_ht40_ge_800.0_ht40_lt_99999.0_0 eq3j $(N_{obs} - N_{pred})/N_{pred}$ CMS Preliminary $-\frac{1}{100} = 3.0 \text{ fb}^{-1}, \text{ s} = 13 \text{ TeV}$ 8.0 0.6 0.2 -0.2 -0.4 -0.6 -0.8 100 200 300 400 500 600 700 MHT (GeV)

mht40_pt_nJet40_eq_3_ht40_ge_800.0_ht40_lt_99999.0_Asym_0 eq3a $(N_{obs} - N_{pred}) / N_{pred}$ CMS **Prel**iminary 3.0 fb⁻¹, $\sqrt{s} = 13 \text{ TeV}$ 8.0 n_{jet} = 3 asym 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 200 400 100 300 500 600 700 MHT (GeV)

mht40_pt_nJet40_eq_3_ht40_ge_400.0_ht40_lt_600.0_0_Integrated eq3j_Integrated $(N_{obs} - N_{pred}) / N_{pred}$ CMS Preliminary $L_{int} = 3.0 \text{ fb}^{-1}, |\sqrt{s} = 13 \text{ TeV}$ 8.0 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 100 200 300 400 500 MHT (GeV)

Systematic uncertainty

Missing closure point

 \bigcirc μ + jets \rightarrow e + jets (0 b-tags)

 \times μ + jets \rightarrow e + jets (1 b-tags)

 \square μ + jets \rightarrow e + jets (\ge 2 b-tags)

 \wedge 0 b-tags \rightarrow 1 b-tag (μ + jets)

 \oplus 1 b-tags \rightarrow \geq 2 b-tag (μ + jets)

 \Rightarrow e + jets $\rightarrow \gamma$ + jets (0 b-tags)

 ∇ e + jets $\rightarrow \gamma$ + jets (1 b-tags)

 $\Diamond \mu + \text{jets} \rightarrow \mu \mu + \text{jets} (0 \text{ b-tags})$

 \times μ + jets \rightarrow $\mu\mu$ + jets (1 b-tags) \star ee + jets $\rightarrow \gamma$ + jets (0 b-tags)

+ ee + jets $\rightarrow \gamma$ + jets (1 b-tags)

N_{iet} = 4 \rightarrow N_{iet} \geq 5 (e + jets)

 \bigcirc N_{iet} = 4 \rightarrow N_{iet} \ge 5 (ee + jets)

ht40_nJet40_eq_4_0 eq4j

ht40_nJet40_eq_4_Asym_0 eq4a

mht40_pt_nJet40_eq_4_ht40_ge_200.0_ht40_lt_250.0_Asym_0 eq4a

mht40_pt_nJet40_eq_4_ht40_ge_250.0_ht40_lt_300.0_0 eq4j

mht40_pt_nJet40_eq_4_ht40_ge_250.0_ht40_lt_300.0_Asym_0 eq4a

mht40_pt_nJet40_eq_4_ht40_ge_300.0_ht40_lt_350.0_0 eq4j $(N_{obs} - N_{pred}) / N_{pred}$ CMS Preliminary $L_{int} = 3.0 \text{ fb}^{-1}, \text{ vs} = 13 \text{ TeV}$ 8.0 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 50 250 100 150 200 300 350 400 MHT (GeV)

mht40_pt_nJet40_eq_4_ht40_ge_400.0_ht40_lt_600.0_Asym_0 eq4a

mht40_pt_nJet40_eq_4_ht40_ge_600.0_ht40_lt_800.0_Asym_0 eq4a

mht40_pt_nJet40_eq_4_ht40_ge_800.0_ht40_lt_99999.0_0 eq4j CMS Preliminary $(N_{obs} - N_{pred})/N_{pred}$ _{int} = 3.0 fb⁻¹, vs = 13 TeV 8.0 0.6 0.2 -0.2 -0.4 -0.6 -0.8 100 200 300 400 500 600 700 MHT (GeV)

mht40_pt_nJet40_eq_4_ht40_ge_400.0_ht40_lt_600.0_0_Integrated eq4j_Integrated $(N_{obs} - N_{pred})/N_{pred}$ **CMS Preliminary** $L_{int} = 3.0 \text{ fb}^{-1}, || \sqrt{s} = 13 \text{ TeV}$ 8.0 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 100 200 300 400 500 MHT (GeV)

ht40_nJet40_ge_5_0 ge5j

ht40_nJet40_ge_5_Asym_0 ge5a

mht40_pt_nJet40_ge_5_ht40_ge_250.0_ht40_lt_300.0_Asym_0 ge5a

mht40_pt_nJet40_ge_5_ht40_ge_300.0_ht40_lt_350.0_0 ge5j

mht40_pt_nJet40_ge_5_ht40_ge_300.0_ht40_lt_350.0_Asym_0 ge5a

mht40_pt_nJet40_ge_5_ht40_ge_350.0_ht40_lt_400.0_0 ge5j

mht40_pt_nJet40_ge_5_ht40_ge_350.0_ht40_lt_400.0_Asym_0 ge5a

mht40_pt_nJet40_ge_5_ht40_ge_400.0_ht40_lt_600.0_Asym_0 ge5a

mht40_pt_nJet40_ge_5_ht40_ge_600.0_ht40_lt_800.0_Asym_0 ge5a

mht40_pt_nJet40_ge_5_ht40_ge_800.0_ht40_lt_99999.0_Asym_0 ge5a

mht40_pt_nJet40_ge_5_ht40_ge_400.0_ht40_lt_600.0_0_Integrated ge5j_Integrated $(N_{obs} - N_{pred}) / N_{pred}$ CMS Preliminary $L_{int} = 3.0 \text{ fb} / |s| = 13 \text{ TeV}$ 8.0 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 100 200 300 400 500 MHT (GeV)

