VERSUCH 18

Hochreine Germanium detektoren in der γ - Spektrometrie

 $Katharina\ Br\"{a}gelmann\\ katharina.braegelmann@tu-dortmund.de$

Lars Kolk lars.kolk@tu-dortmund.de

Durchführung: 09.12.2019 Abgabe: 13.12.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Auswertung					
	1.1	Energiekalibration	3			
	1.2	Vollenergienachweiswahrscheinlichkeit	7			
	1.3	Monoenergetisches Spektrum Cäsium	9			
Lit	teratı	ur	10			

Hier könnte Ihre Werbung stehen. Hier könnte Ihre Werbung stehen. Hier könnte Ihre Werbung stehen.

1 Auswertung

1.1 Energiekalibration

- Spektrum geplottet, Counts gegen Channel
- Errorbars?
- Peaks finden lassen, Peaks markiert
- Literaturwerte Energien rausgesucht mit mind. 1% Emissionswahrscheinlichkeit (Quelle
- Spektrallinien E normiert mit dem größten Wert der Energie: $\frac{E}{max(E)}$
- Channel normiert mit dem letzten Peak $\frac{channel}{max(channel)}$
- Daten mit normierter x-Achse geplottet: norm
(E)-0-Diagramm, norm
(channel)-Count-Diagramm
- Nicht vorhandene Spektrallinien aus E und doppelte aus Peaks entfernt
- Peak-Channel gegen Energien geplottet, Fit:

$$E = m \cdot \text{Channel} + n$$

$$m = (0.20726 \pm 0.00004) \text{ keV/Channel}$$
 $n = (-1.22 \pm 0.17) \text{ keV}$

Tabelle 1: Parameter zu allen vermessenen Peaks des $^{152}Eu\text{-Spektrums}$

Peak	Channel(Peak)	Counts	E_{γ} / keV [1]	rel. Channel Channel Channel(Peak 9)	rel. Energie $\frac{E_{\gamma}}{E_{\gamma}(\text{Peak 9})}$
0	594	1219	121,7817	0,087	0,087
1	1187	196	244,6974	0,175	0,174
2	1667	372	$344,\!2785$	$0,\!245$	$0,\!245$
3	1988	42	411,1165	$0,\!292$	0,292
4	2149	43	443,965	0,316	0,315
5	3765	66	778,9045	$0,\!554$	$0,\!553$
6	4655	41	964,079	0,685	0,685
7	5245	32	1085,837	0,771	0,771
8	5371	33	1112,076	0,790	0,790
9	6801	37	1408,013	1,0	1,0

Abbildung 1: Das aufgenommene Spektrum von ^{152}Eu mit eingezeichneten Peaks.

Abbildung 2: Das aufgenommene Spektrum von ^{152}Eu mit eingezeichneten Peaks und den zugehörigen Literaturwerten nach [1].

Abbildung 3: Ausgleichsrechnung zur Kalibration mithilfe des ^{152}Eu -Spektrums.

1.2 Vollenergienachweiswahrscheinlichkeit

mit $t = (605\,484\,000 \pm 54\,000)\,\mathrm{s}$ und $T_{^{1}\!/_{\!\!2}} = (426.7 \pm 0.5) \cdot 10^{6}\,\mathrm{s}$ [1]

$$A = A_0 \exp\left(-\frac{\ln{(2)}}{T_{1/2}}t\right) = (1545 \pm 29)\frac{1}{s} \tag{1}$$

mit $r=22.5\cdot 10^{-3}\,\mathrm{m}$ und $h=80\cdot 10^{-3}\,\mathrm{m}$

$$\frac{r}{h} = \tan{(\varphi/2)} \Leftrightarrow \varphi = 2\arctan{(\frac{r}{h})}$$

$$\frac{\varOmega}{4\pi} = \sin^2{\frac{\varphi}{2\cdot 4}} = \sin^2{\left(\frac{1}{4}\arctan{(r/h)}\right)} = 0,0069\,\mathrm{sr}$$

und

$$Q = \frac{4\pi}{\Omega} \frac{N_{\text{Peakinhalt}}}{ATP_{E_{\gamma}}} \tag{2}$$

Abbildung 4: Vergrößerung des ersten Peaks mit Ausgleichsfunktion einer Gaußkurve zur Veranschaulichung der Gaußpeaks.

• Unterteilung der Daten in die Abschnitte um die Peaks (channel und counts werden passend abgeschnitten)

Tabelle 2: Parameter zur Berechnung der Vollenergienachweiswahrscheinlichkeit anhand eines $^{152}Eu\text{-Spektrums}.$ Weitere verwendete Größen sind: $A=(1545\pm29)/\text{s},\,\frac{\varOmega}{4\pi}=0,\!0069\,\text{sr},\,T=2134\,\text{s}.$

E_{γ} / keV [1]	P [1]	$P_{\mathrm{Peakinhalt}}$	Q in 10^{-3}
121,7817	28,41	(8233 ± 91)	$(12{,}70\pm0{,}24)$
244,6974	$7,\!55$	(1515 ± 39)	$(8,79 \pm 0,16)$
$344,\!2785$	$26,\!59$	(3152 ± 56)	$(5,19 \pm 0,10)$
$411,\!1165$	2,238	(324 ± 18)	$(6,\!34\pm0,\!12)$
443,965	2,80	(367 ± 19)	$(5,74 \pm 0,11)$
778,9045	12,97	(741 ± 27)	$(2,\!50\pm0,\!05)$
964,079	$14,\!50$	(596 ± 24)	$(1,\!80 \pm 0,\!33)$
$1085,\!837$	10,13	(403 ± 20)	$(1,74 \pm 0,32)$
1112,076	$13,\!41$	(502 ± 22)	$(1,\!64 \pm 0,\!30)$
1408,013	20,85	(586 ± 24)	$(1,\!23\pm0,\!23)$

- Über die Peaks wird eine Gaußkurve gelegt $f(x) = \frac{a}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) + b$
- Klappt bei den meisten Peaks ganz gut, aber manchmal ist der Fehler des Parameters a größer als a :
- Alternative für Inhalt: Aufsummation der Counts in den jeweiligen Intervallen, Fehler über den Poisson-Fehler $(N\pm\sqrt{N})$
- Q berechnet mit A aus (1), $\Omega/4\pi$ aus (??), gesamte Messzeit $T=2134\,\mathrm{s}$, Emissionswahrscheinlichkeit P_{E_γ} aus [1], Peakinhalt $N_{\mathrm{Peakinhalt}}$
- Q gegen E aufgetragen, $Q = aE^b + c$, Parameter:

$$a = (0.113 \pm 0.055) \frac{1}{\text{J}}, \qquad b = (-0.36 \pm 0.17), \qquad c = (-0.0077 \pm 0.0059)$$

Abbildung 5: Ausgleichsrechnung zur Bestimmung der Vollenergienachweiswahrscheinlichkeit Q. Die Fehlerbereiche verschwinden hinter den Datenpunkten und sind zur Übersichtlichkeit nicht aufgeführt.

1.3 Monoenergetisches Spektrum Cäsium

Suche

- Energie des Strahlers (Photo-Energie -> Gauss fitten? mu entspricht dann dem Channel und der Channel einer Energie)
- Fit:

$$f(x) = \frac{a}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) + b$$

• Parameter

$$\mu = (3196, 29 \pm 0, 03)$$
 $\sigma = (4, 35 \pm 0, 03)$ $a = (9011 \pm 44)$ $b = (6, 1 \pm 0, 1)$

- Halbwertsbreite fitten
- Zehntelwertsbreite fitten, FWHM/FWTM(Theorie)=0.549, in den Daten: FWHM/FWTM=0.526

FWHM = 10

FWTM = 19

• Comptonkante ausmessen, bei:

 $Channel = (2.24 \pm 0.22) \cdot 10^3$ noch in Energie umrechnen!

mit den Parametern

$$\begin{array}{c} links & rechts \\ a = (0.0145 \pm 0.0012) & a = (-0.070 \pm 0.005) \\ b = (-11.3 \pm 2.4) & b = (178 \pm 13) \end{array}$$

- Rückstreulinie ausmessen
- Inhalte des Peaks und des Compton-Kontinuums ausmessen (aufsummieren, aaaaber... Anleitung!)

Literatur

[1] Laboratoire National Henri Becquerel. ¹⁵²Eu - Emissions and decay scheme. 2019. URL: http://www.nucleide.org/Laraweb/index.php.