#### EDAN95

# Applied Machine Learning http://cs.lth.se/edan95/

Lecture 10: Spark / GPU

#### **Marcus Klang**

With contributions from: Peter Exner

**Lund University** 

Marcus.Klang@cs.lth.se
http://cs.lth.se/marcus\_klang/



### Overview

- Big Data frameworks:
   Hadoop, Apache Spark, Apache Flink, Dask
- (Py)Spark: RDD, SQL
- GPU computation in Tensorflow/Keras



# The structure spectrum

#### **Structured**

**Semi-structured** 

**Unstructured** 

Relational Databases

HTML

Plain text

Parquet

**XML** 

Generic media

Formatted Messages

**JSON** 



# Assignment 5

- Use tools for reading one large corpus: Wikipedia
- Process the corpus:
   Transform, Extract, Count
- Cluster top 10,000 words from Wikipedia into 100 clusters.
- Use Glove 6B embeddings to represent and transform the words into 2D space for visualization.

# Big Data



4,087,467,519

Internet Users in the world



1,935,671,223

Total number of Websites



204,424,528,207

Emails sent today

g

5,078,772,978

Google searches today



4,807,522

Blog posts written today



592,354,253

Tweets sent today



5,470,544,674

Videos viewed today on YouTube



63,131,725

Photos uploaded today on Instagram



104,349,544

Tumbir posts today

http://www.internetlivestats.com/ (2018-12-03)



# Big Data



4,087,467,519

Internet Users in the world



1,935,671,223

Total number of Websites



204,424,528,207

Emails sent today

### How do you store big data?



5,078,772,978

Google searches today



4,807,522

Blog posts written today



592,354,253

Tweets sent today

### How do you compute big data?



5,470,544,674

Videos viewed today on YouTube



63,131,725

Photos uploaded today on Instagram



104,349,544

Tumbir posts today

http://www.internetlivestats.com/ (2018-12-03)



# The Big Data solution

### Scale up

(fewer, larger servers)

#### Scale out

(more, smaller servers)



VS



### Frameworks

- Apache Hadoop
- Apache Spark
- Apache Flink
- Dask
- Many more...







# Hadoop

- Backbone of all Hadoop ecosystem projects
- Infrastructure for data storage
   Hadoop Distributed Filesystem (HDFS)
- Infrastructure for serialization (Writable)
   Hadoop Common
- MapReduce Implementation Hadoop MapReduce
- YARN System for managing distributed application (Spark can run on YARN)



# Apache Flink



Source: https://flink.apache.org/

Focused on streaming (Java/Scala)



### Dask



Source: https://docs.dask.org/en/latest/

- Native Python
- Numpy/Pandas integration (faster for specific workloads)
- Flexible, rich and simple API: huge amount of features in short time.
- During testing for this course: not yet ready for prime time.
   (1.0 released 28 november 2018), maybe next time.





- Answer to Hadoops MapReduce
- Prioritizes memory over disk for performance.
- Functional API which constructs a DAG (Directed Acyclic Graph) from a pipeline description.
  - Maximizes parallelism when possible by fusing multiple stages together which can be run in sequence
- Available in common cluster solutions such as:
   Cloudera, Hortonworks, Amazon EMR, Google Cloud: Cloud Dataproc
- Supports many languages: Python/Java/Scala/R



## Development Environment

 Jupyter Notebook / Lab: <a href="https://jupyterlab.readthedocs.io/en/stable/">https://jupyterlab.readthedocs.io/en/stable/</a>

Python
Scala with Spark is available via
Apache Toree <a href="https://toree.apache.org/">https://toree.apache.org/</a>

 Apache Zeppelin: <a href="https://zeppelin.apache.org/">https://zeppelin.apache.org/</a>

A full solution with Spark, with integration between many languages such as Python, Scala, R, SQL, and more.



# Programming with Python Spark (pySpark)

- We will use Python's interface to Spark called pySpark
- A driver program accesses the Spark environment through a SparkContext object.
- The key concept in Spark are datasets called RDDs
- We load our data into RDDs and perform some operations



### Functional Primer

Definitions:

```
data = [1,3,5,7,9]

f(x) = x*x

p(x) = x > 5

g(x,y) = x+y

(commutative: g(x,y) == g(y,x) and g(g(z,y),x) == g(x,g(y,z))
```

- map(f, data) = [f(1), f(3), f(5), f(7), f(9)] = [1, 9, 25, 49, 81]
- filter(p, data) = [for all x where p(x) is True] = [7,9]
- reduce(g, data) = g(1, g(9, g(g(3, 5),7)) = 1+(9+((3+5)+7))= 25



# First Program!

```
sc = SparkContext(master="local[*]")
lines = sc.textFile("README.md", 4)
lines.count()

pythonLines = lines.filter(lambda line : "Python" in line)

pythonLines.first()
```



### RDD

- Resilient Distributed Dateset (RDD)
- Contains distributed data, spread across partitions
- Enables operations to be performed in parallel
- Are immutable
- Recomputes data in case of loss



# Creating RDDs

#### Three ways:

Loading an external dataset

```
>>> lines = sc.textFile("README.md", 4)
```

• Distributing a collection of objects, e.g. a list

```
>>> lines = sc.parallelize([1, 2, 3])
```

Transforming an existing RDD

```
>>> pyLines = lines.filter(lambda line : "Python" in line)
```

# Operations on RDDs

- Transformations
  - creates a new RDD from a previous one
  - E.g. map()
- Actions
  - computes a result based on an existing RDD
  - E.g. count()



# Functional programming with Python

- Many transformations and some actions expect a function
- These can be defined functions for complex operations
- For simple functions, lambda expressions are convenient
  - >>> lambda line: "Python" in line



# map()

- Reads one element at a time
- Takes one value, creates a new value

```
>>> rdd = sc.parallelize([1, 2, 3, 4])
>>> rdd.map(lambda x: x * 2)
Out[1]: [2, 4, 6, 8]
```



# filter()

- Reads one element at a time
- Evaluates each element
- Returns the elements that pass the filter()

```
>>> rdd = sc.parallelize([1, 2, 3, 4])
```



# flatMap()

Produce multiple elements for each input element

```
>>> rdd = sc.parallelize([1, 2, 3])
>>  rdd.map(lambda x: [x, x * 2])
Out[1]: [[1, 2], [2, 4], [3, 6]]
>>> rdd.flatMap(lambda x: [x, x * 2])
Out[2]: [1, 2, 2, 4, 3, 6]
```



## Transformations are lazy!

 A transformed RDD is only executed when actions run on it

```
>>> pyLines = lines.filter(lambda line: "Python" in line)
```

```
>>> pyLines.first()
```

 No need for Spark to load all the lines containing "Python" into memory!



### Actions

- Actions cause transformations to be executed on RDDs
- Actions return results to either the driver program or to an external storage
- RDDs are recomputed for every action
- RDDs can be cached for reuse, rdd.persist()



# count()

```
>>> rdd = sc.parallelize([1, 2, 3, 4])
>>> rdd.count()
Out[1]: 4
```



# collect()

- collect() retrieves the entire RDD
- Useful for inspecting small datasets locally and for unit tests

#### Results must fit in memory on the local machine!

```
>>> rdd = sc.parallelize([1, 2, 3])
>>> rdd.collect()

[1, 2, 3]
```



### take(), first(), top(), takeSample()

- take(n) returns n elements from an RDD
- take(n) may be biased! Suitable for testing, debugging
- takeSample() more suitable for taking a sample
- Use takeOrdered(), top(n) for ordered return



## takeOrdered()

```
>>> rdd = sc.parallelize([5, 1, 3, 2])
>>> rdd.takeOrdered(4)
Out[1]: [1, 2, 3, 5]
>>> rdd.takeOrdered(4, lambda n: -n)
Out[2]: [5, 3, 2, 1]
```



# reduce()

 Takes two elements of the same type and returns one new element

```
>>> rdd = sc.parallelize([1, 2, 3])
>>> rdd.reduce(lambda x, y: x * y)
Out[1]: 6
```



# Building a pipeline of RDD operations

```
>>> lines = sc.textFile("README.md")
>>> lines.map(...).filter(...).count(...)
>>> (lines
    .map(...)
    .filter(...)
    .count(...))
```



### RDD workflow

```
parallelize()
                   map()
                               collect()
   textFile()
                 filter()
                                count()
                        Transformed
Data
             RDD
                                         Results
                          RDD
Source
```

AHA! moment of insight!



### Working with key/value pairs

- Many entities can naturally be represented as keys
  - e.g. event time, customer id etc...
- In Python, tuples are used to form key/value pairs
  - E.g. ("fox", 1), ("bear", 3)



### Pair RDDs

 RDDs containing key/value pairs are called Pair RDDs and are composed of tuples:

```
>>> pairs = sc.parallelize([("a", 2), ("b", 6)])

Equivalent to:
>>> pairs = sc.parallelize(list({"a":2, "b":6}.items()))
```

- Spark offers special operations on Pair RDDs
  - examples: reduceByKey, sortByKey, joins
  - Require passing of functions that operate on tuples
- Pair RDDs support same functions as regular RDDs



# reduceByKey()

- Runs several parallel reduce operations one for each key in the dataset
- Each reduce combines values having the same key
- reduceByKey() is not an action like reduce()
- Returns a new RDD, not a value!



# reduceByKey()

```
>>> rdd = sc.parallelize([("a", 2), ("b", 4), ("b", 6)])
>>> rdd.reduceByKey(lambda x, y: x + y)
Out[1]: [("a", 2), ("b", 10)]
```



#### MapReduce Word Count



#### MapReduce Word Count



#### Partitions

- Every RDD is split up into a number of partitions
- Parallelism is determined by the number of partitions
- rdd.getNumberOfPartitions()



# RDD partitions





# Setting the number of partitions

Some operators accept a second parameter

```
>>> sc.textFile(path, 8)
```

- repartition() may be used to create a new set of partitions
- useful when you the expected key distribution is known before-hand



# Data partitioning

- use partitionBy on large datasets to partition by hash function
- keys with same hash value will be placed on the same node
- Don't forget to persist the partitioned RDD!



#### Partitions

change the number of partitions of records via a shuffle

>>> rdd.repartition(numPartitions)

change the number of partitions with optional shuffling

>>> rdd.coalesce(numPartitions,
shuffle=False)



#### Partitions

- Small amount of partitions: (low overhead, high throughput per core, low parallelism)
- Huge numbers of partitions: (high overhead, low throughput per core, high parallelism)
- Optimal number of partitions: (low overhead, high throughput per core, optimal parallelism)

# Spark: mapPartitions

 Apply a single function over the entire partition and output the results

```
>>> rdd = sc.parallelize([0,1,2,3,4],2)
>>> rdd.mapPartitions(lambda partition: [sum(partition)]
).collect()
[1,9]
```



# Spark: mapPartitions





# Spark: zipWithIndex

- Append a record index, starting from the first record in the partition to the last record in the last partition
- >>> rdd = sc.parallelize([4,3,2,1,0],2)
- >>> rdd.zipWithIndex().collect()[(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)]



# Spark: fold

- Combine many values into a single one fold(initial, op)
- >>> rdd = sc.parallelize([1, 2, 3, 4, 5])
  - >>> from operator import add
    >>> rdd.fold(0, add)
    15
- Ordering is not guaranteed, assumes that the function is associative and commutative i.e f(x,y) = f(y,x) and f(f(x,y),z) = f(f(x,z),y)



# Spark

Your application Worker Node Knows the cluster Executor Cache Task Task Driver Program SparkContext Cluster Manager Worker Node Executor Cache Task Task

Source: https://spark.apache.org/docs/latest/cluster-overview.html





Knows where files are located



ld Large binary block of data, might be partial files.

Knows where files are located



Data is read locally if possible.



#### CPU vs GPU



Source: https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg



#### CPU vs GPU

- CPU: Quick, but does not scale.
- GPU: Scales, is optimized for heavy parallelism which yields many factors greater performance over CPU under optimal loads
- No magic: Performance is ultimately limited by communication and/or available computation units.
- Parallelism: Limited by overhead and/or the possibility for independent fused operations (many operations in sequence only dependent on input data)

#### Tensorflow: GPU

- Generally, install suitable drivers for your GPU
- Install the Tensorflow GPU version matching your drivers
- GPU support is transparent and will accelerate computations where possible.
- CPU is freed for other tasks when the GPU computes, such as data prefetching.



#### Tensorflow Code

```
n = 8000
 dtype = tf.float32
 with tf.device("/CPU:0"):
     matrix1 = tf.Variable(tf.ones((n, n), dtype=dtype))
     matrix2 = tf.Variable(tf.ones((n, n), dtype=dtype))
     product = tf.matmul(matrix1, matrix2)
n = 8000
dtype = tf.float32
with tf.device("/GPU:0"):
    matrix1 = tf.Variable(tf.ones((n, n), dtype=dtype))
    matrix2 = tf.Variable(tf.ones((n, n), dtype=dtype))
    product = tf.matmul(matrix1, matrix2)
```

#### Keras == No difference (in general automatic)



#### CUDA API

Under the hood



Source: https://commons.wikimedia.org/wiki/File:CUDA\_processing\_flow\_(En).PNG

Read more: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html



# Benchmarking CPU vs GPU (cheaper hardware)

**Time Taken** 

Intel i5 – 4210U 1.7GHz (2014) GeForce Nvidia 1060 6GB GDDR5 (2016)

Speedup

Matrix Multiplication of 8000×8000

16 seconds at 63.36 G ops/sec

0.29 seconds at 3588.87 G ops/sec

55,1x

Training of MNIST (60,000 images)

27 minutes 47 seconds

1 min 1 seconds

27.3x

Source: https://www.analyticsindiamag.com/deep-learning-tensorflow-benchmark-intel-i5-4210u-vs-geforce-nvidia-1060-6gb/



# Benchmarking CPU vs GPU (expensive hardware)

**Time Taken** 

Intel Xeon E5-2643 3.4 GHz (2014)

**Geforce GTX TITAN X 12 GB GDDR5** (2015)

Speedup

**Matrix** Multiplication of 8000×8000

1.68 seconds at 609.85G ops/sec

0.21 seconds at 4791.65G ops/sec

8x

Training of MNIST 5 min 4 sec (60,000 images)

1 min 15 second

4x

Environment: Ubuntu 16.04, Tensorflow 1.12, CUDA 9.0

#### Method used:

https://www.analyticsindiamag.com/deep-learning-tensorflow-benchmark-intel-i5-4210u-vsgeforce-nvidia-1060-6gb/