练习题

一、填空题

1. 函数 $f(X) = 2x_1^2 + 3x_2^2$ 在 $X = (0,1)^T$ 处的牛顿方向为 ______.

3. 设 $f(X)=X^TQX+b^TX+c$,且 $Q=Q^T$, $X\in R^n$, $b\in R^n$, $c\in R$,考虑问题 $\min_{t>0}f(X^k+tP^k)$,则 X^k 在方向 P^k 上的最优步长 $t^*=$ ______.

4. 判断下面的函数是否为凸函数:

$$m{f}_1(m{X}) = 2m{x}_1^2 + m{x}_2^2 - 2m{x}_1m{x}_2$$
 , $m{f}_2(m{X}) = m{e}^{x_1 + x_2}$, $m{f}_3(m{X}) = m{f}_1(m{X}) + m{f}_2(m{X})$, $m{f}_4(m{X}) = 3m{f}(m{X})$

- 6. 在两阶段(单纯形)法中,若辅助线性规划的最优值不为零,那么原线性规划的最优解情况为______.
- 7. 若目标函数 f(X) 一次连续可微,那么在迭代点 X^k 处沿下降方向 P^k 进行精确一维搜索后, $abla f(X^{k+1})^T P^k =$.
- 9. 设 $f(x) = (x 3/2)^2$,若用黄金分割法求解此问题,设初始搜索区间为[0,2],则第一次迭代后得到的搜索区间为______.
- 10. 若算法得到的迭代点列为 $\{a^{2^k}\}$,0 < a < 1,则其收敛速度为______.

二、单纯形法:

$$\begin{aligned} & \min - 3\pmb{x}_1 - 5\pmb{x}_2 \\ \pmb{s.t.} \\ & \pmb{x}_1 \leq 4 \\ & \pmb{x}_2 \leq 6 \\ & 3\pmb{x}_1 + 2\pmb{x}_2 \leq 18 \\ & \pmb{x}_j \geq 0, \pmb{i} = 1, 2. \end{aligned}$$

三、考虑线性规划

$$egin{aligned} \min \, m{f}(m{X}) &= m{x}_{\!\! 1} + m{eta} m{x}_{\!\! 2} \ s.t. \ &- m{x}_{\!\! 1} + m{x}_{\!\! 2} \leq 1 \ &- m{x}_{\!\! 1} + 2 m{x}_{\!\! 2} \leq 4 \ &m{x}_{\!\! i} \geq 0, m{i} = 1, 2. \end{aligned}$$

试用图解法讨论,当 β 取何值时,(1)以 $(2,3)^T$ 为唯一最优解;(2)具有无穷多个最优解;(3)不存在有界的最优解。

四、两阶段法:

$$egin{align} \min &-m{x}_{\!_1} + 2m{x}_{\!_2} + m{x}_{\!_3} \ & m{s.t.} \ & 2m{x}_{\!_1} - m{x}_{\!_2} + m{x}_{\!_3} - m{x}_{\!_4} = -4 \ & m{x}_{\!_1} + 2m{x}_{\!_2} = 6 \ & m{x}_{\!_j} \geq 0, m{i} = 1, \cdots, 4. \end{array}$$

五、已知用单纯形方法求解某一线性规划的初始单纯形表:

P_1	P_2	P_3	P_4	P_5	b
b	c	d	1	0	6
-1	3	e	0	1	1
\overline{a}	-1	2	0	0	
和最终单纯形表					
P_1	P_2	P_3	$ extbf{ extit{P}}_4$	P_5	b
g	2	-1	1/2	0	f
h	$m{i}$	1	1/2	1	4
0	-7	j	\boldsymbol{k}	1	

试求 $a \sim l$.

六、试用外点法求解如下约束优化问题

$$egin{aligned} \min m{f}(m{X}) &= m{x}_1^2 + m{x}_2^2 \ m{s.t.} & 2m{x}_1 + m{x}_2 - 4 \geq 0 \ m{x}_1 &\geq 0 \ m{x}_2 &\geq 0 \end{aligned}$$

七、已知下面线性规划的对偶规划的最优解为 $(5/3,7/3)^T$,试利用对偶理论求下面问题的最优解.

$$egin{aligned} \min \ 4m{x}_1 + 3m{x}_2 + m{x}_3 \ s.t. \ & m{x}_1 - m{x}_2 + m{x}_3 \geq 1 \ & m{x}_1 + 2m{x}_2 - 3m{x}_3 \geq 2 \ & m{x}_i \geq 0, m{i} = 1, 2, 3. \end{aligned}$$

八、试叙述惩罚函数法的基本思想及其优缺点;并用外部惩罚函数法求解下面的优化问题:

$$egin{aligned} \min & m{x_1}^2 + m{x_2}^2 \ s.t. & 2m{x_1} + m{x_2} \leq 2 \ m{x_2} & \geq 1 \end{aligned}$$

九、Fletcher - Reeves 共轭梯度法: 这里 $X^0 = (5,5)^T$.

min
$$x_1^2 + 2x_2^2$$

十、写出Rosen梯度投影法:这里 $X^0 = (2,0)^T$.

$$\min_{m{f}(m{X}) = m{x}_1^2 + m{x}_2^2 + 2m{x}_2} \qquad \min_{m{f}(m{X}) = m{x}_1^2 + m{x}_2^2 + 6m{x}_2} \ m{x_1} - 2m{x}_2 \ge 0 \qquad \qquad m{x}_j \ge 0, m{j} = 1, 2.$$

十一、求出下面问题的KT点.

$$\begin{array}{c} \min -14\boldsymbol{x}_1 + \boldsymbol{x}_1^2 - 6\boldsymbol{x}_2 + \boldsymbol{x}_2^2 & \min -\boldsymbol{x}_2 \\ \boldsymbol{s.t.} & \boldsymbol{s.t.} \\ -\boldsymbol{x}_1 - \boldsymbol{x}_2 + 2 \geq 0; & (3 - \boldsymbol{x}_1)^2 - (\boldsymbol{x}_2 - 2) \geq 0; \\ -\boldsymbol{x}_1 - 2\boldsymbol{x}_2 + 3 \geq 0. & 3\boldsymbol{x}_1 + \boldsymbol{x}_2 \geq 9. \end{array}$$