Math 5050 – Special Topics: Manifolds– Spring 2025 w/Professor Berchenko-Kogan

Paul Carmody Assignment 2 – Februaray 20, 2025

Section 3: 1, 2, 3, 7, 8, 9

3.1. A basis for k-tensors

Let V be a vector space of dimension n with basis e_i, \ldots, e_n . Let $\alpha^1, \ldots, \alpha^n$ be the dual basis in V^{\vee} Show that a basis for the space $L_k(V)$ of k-linear functions on V is $\{\alpha^{i_1} \otimes \cdots \otimes \alpha^{i_k}\}$ for all multi-indices (i_1, \ldots, i_k) (not just the strictly ascending multi-indices as for $A_k(L)$). In particular, this show that $\dim L_k(V) = n^k$. (This problem generalizes Problem 3.1..)

Let $\Phi = \{\alpha^{i_1} \otimes \cdots \otimes \alpha^{i_k}\}$ where $i_1, \dots, i_k = 1, \dots, n$. We want to show

• WTS Φ is a linearly independent set.

Let
$$x = \alpha^{i_1} \otimes \cdots \otimes \alpha^{i_k}$$
, for some set $\{i_k\}$, $i_k \in [1, n]$ and $y = \alpha^{j_1} \otimes \cdots \otimes \alpha^{j_k}$, for some set $\{j_k\}$, $j_k \in [1, n]$ where $\{i_k\} \neq \{j_k\}$

then for any non-zero vectors $v_1, \ldots, v_n \in V$ where $v_i = (v_i^1, \ldots, v_i^n)$ and any $A, B \in \mathbb{R}$ where Ax + By = 0

$$(Ax + By)(v_1, \dots, v_k) = A\left(\left(\alpha^{i_1} \otimes \dots \otimes \alpha^{i_k}\right)(v_1, \dots, v_k)\right) + B\left(\left(\alpha^{j_1} \otimes \dots \otimes \alpha^{j_k}(v_1, \dots, v_k)\right)\right)$$

$$= A\left(\prod_{m=1}^k \alpha^{i_m}(v_m)\right) + B\left(\prod_{p=1}^k \alpha^{j_p}(v_p)\right)$$

$$= A\left(\prod_{m=1}^k v_m^{i_m}\right) + B\left(\prod_{p=1}^k (v_p)^{j_p}\right)$$

$$\stackrel{\neq 0}{\longrightarrow} 0$$

thus A=B=0 and the elements of Φ are linearly independent.

• WTS Φ is surjective over $L_k(V)$. Given any $f \in L_k(V)$, we can define all of the actions of f based on how it effects the basis vectors. Thus, $f(e_{i_1}, \ldots, e_{i_k}) = f_{i_i, \ldots, i_k}$ where each f_{i_1, \ldots, i_k} is a scalar associated with the tensor product of the dual basis vectors. Therefore,

$$f = \sum_{i_1, \dots, i_k} f_{i_1, \dots, i_k} (\alpha^{i_i} \otimes \dots \otimes \alpha^{i_k})$$

This holds for all multi-indices j_1, \ldots, j_k , independent of order. Hence, Φ is surjective over $L_k(V)$.