Partie 2: Classification

Dans cette partie, le problème d'apprentissage consiste à prédire la variable cible, c'est-à-dire le prix (Elevé, Bas), en fonction des caractéristiques du véhicule.

```
In [31]:
```

```
Importation des données et les trransformer du nominales vers des données numérique
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read excel('C:/Users/utulisateur/Downloads/mini-projet/CaracteristiquesVehicules.
xls')
from sklearn.preprocessing import LabelEncoder
enc=LabelEncoder()
df.Carosserie=enc.fit transform(df["Carosserie"])
df.Nombre_cylindres=enc.fit_transform(df["Nombre_cylindres"])
#valeurs caractéristiques et valeur cible
X = df.iloc[:,:-1].values
y = df.iloc[:,-1].values
print(y.shape)
print(X.shape)
print("==>Opération terminée avec succé")
(58,)
(58, 7)
==>Opération terminée avec succé
In [32]:
from sklearn import svm
from sklearn.metrics import plot confusion matrix
from sklearn.model selection import train test split
```

In [33]:

```
#transformation de données nominales vers des données numériques
from sklearn.preprocessing import LabelEncoder
enc=LabelEncoder()
df.Carosserie=enc.fit_transform(df["Carosserie"])
df.Nombre_cylindres=enc.fit_transform(df["Nombre_cylindres"])
print("-> La transformation des données nominales vers des données numérique à été bien t
erminée")
df
```

-> La transformation des données nominales vers des données numérique à été bien terminée

Out[33]:

	Identifiant	Carosserie	Empattement	longueur	Nombre_cylindres	Puissance	KilometrageMoyen	Prix
0	0	0	88.6	168.8	2	111	21	Bas
1	1	0	88.6	168.8	2	111	21	Bas
2	2	2	94.5	171.2	3	154	19	Bas
3	3	3	99.8	176.6	2	102	24	Bas
4	4	3	99.4	176.6	1	115	18	Bas
5	5	3	99.8	177.3	1	110	19	Bas
6	6	4	105.8	192.7	1	110	19	Bas
7	9	3	101.2	176.8	2	101	23	Bas
8	10	3	101.2	176.8	2	101	23	Bas

9	Identifianţ	Carosserie	Empattement	longueur 176.8	Nombre_cylindres	Puissange	KilometrageMoyen	Bris
10	13	3	103.5	189.0	3	182	16	Elevé
11	14	3	103.5	193.8	3	182	16	Elevé
12	15	3	110.0	197.0	3	182	15	Elevé
13	16	2	88.4	141.1	4	48	47	Bas
14	17	2	94.5	155.9	2	70	38	Bas
15	18	3	94.5	158.8	2	70	38	Bas
16	19	2	93.7	157.3	2	68	31	Bas
17	20	2	93.7	157.3	2	68	31	Bas
18	27	4	96.5	157.1	2	76	30	Bas
19	28	3	96.5	175.4	2	101	24	Bas
20	29	3	96.5	169.1	2	100	25	Bas
21	30	3	94.3	170.7	2	78	24	Bas
22	33	3	113.0	199.6	3	176	15	Elevé
23	34	3	113.0	199.6	3	176	15	Elevé
24	35	3	102.0	191.7	5	262	13	Elevé
25	36	2	93.1	159.1	2	68	30	Bas
26	37	2	93.1	159.1	2	68	31	Bas
27	38	2	93.1	159.1	2	68	31	Bas
28	39	2	95.3	169.0	6	101	17	Bas
29	43	3	104.9	175.0	2	72	31	Bas
30	44	3	110.0	190.9	1	123	22	Elevé
31	45	4	110.0	190.9	1	123	22	Elevé
32	46	3	120.9	208.1	0	184	14	Elevé
33	47	1	112.0	199.2	0	184	14	Elevé
34	49	2	93.7	157.3	2	68	37	Bas
35	50	2	93.7	157.3	2	68	31	Bas
36	51	3		172.4	2		25	Bas
37	52	3	96.3	172.4	2		25	Bas
38	53	3	94.5	165.3	2		45	Bas
39	54	3	94.5	165.3	2		31	Bas
40	55	3	94.5	165.3	2		31	Bas
41	56	4	94.5	170.2	2		31	Bas
42	57	3	100.4	184.6	3		19	Bas
43	61	1	89.5	168.9	3	207		Elevé
44	62	0	89.5	168.9	3			Elevé
45	66	2	95.7	158.7	2		35	Bas
46	67	2	95.7	158.7	2		31	Bas
47	68	2		158.7	2		31	Bas
48	69	4	95.7	169.7	2		31	Bas
49	70	4	95.7	169.7	2		27	Bas
50	71	4	95.7	169.7	2		27	Bas
51	79	4	104.5	187.8	3		19	Bas
52	80	3	97.3	171.7	2	52	37	Bas
53	81	3	97.3	171.7	2	85	27	Bas

```
Identifiant Carosserie Empattement longueur Nombre_cylindres Puissange KilometrageMoyen
                                                                                                      Bris
                                   97.3
                                             171.7
                                                                   2
                                                                            100
55
           86
                        3
                                                                                                26
                                                                                                      Bas
                                   104.3
                                             188.8
                                                                   2
                                                                            114
56
           87
                                                                                                23
                                                                                                      Bas
57
           88
                        4
                                  104.3
                                             188.8
                                                                   2
                                                                                                23
                                                                                                      Bas
                                                                            114
```

```
In [34]:
```

```
#fractionner dataset:
X train1, X test1, y train1, y test1 = train test split(X, y, test size=0.2, random stat
e = 0)
```

Test de l'algorithmes de classification supervisée SVM

```
In [35]:
    Calculer la SVM , On commence par importer la bilbiothèque nécessaire pour les SVM :
   puis on applique la SVM sur le jeu de données :
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn import svm
from sklearn.svm import SVC
clf = svm.SVC()
#training
clf.fit(X train1, y train1)
clf.predict(X_test1)
Out[35]:
array(['Bas', 'Bas', 'Bas', 'Elevé', 'Bas', 'Elevé', 'Bas',
       'Elevé', 'Bas', 'Elevé'], dtype=object)
In [36]:
# calcule du score:
print('Le score de cet Algorithme est : ')
clf.score(X train1, y train1)
Le score de cet Algorithme est :
Out[36]:
0.9347826086956522
In [37]:
# affichage du matrice :
clf.support vectors
Out[37]:
                3., 104.3, 188.8,
                                     2., 114., 23.],
array([[ 87.,
                3., 99.8, 177.3,
      [ 5.,
                                     1., 110.,
                                                 19.],
       [ 79.,
                4., 104.5, 187.8,
                                     3., 156.,
                                                 19.],
      [ 88. ,
                4. , 104.3, 188.8,
                                     2., 114.,
                                                 23.],
      [ 6.,
                4., 105.8, 192.7,
                                     1. , 110. ,
                                                 19.],
      [ 11. ,
                3., 101.2, 176.8,
                                     3., 121.,
                                                 21. ],
       ſ O.,
                0., 88.6, 168.8,
                                     2., 111.,
                                                 21.],
      [ 46.,
                3., 120.9, 208.1,
                                     0., 184.,
                                                 14.],
               4. , 110. , 190.9,
      [ 45.,
                                     1., 123.,
                                                 22.],
      [ 44. ,
                3., 110., 190.9,
                                     1., 123.,
                                                 22.],
      [ 61. ,
                1., 89.5, 168.9,
                                                 17.],
                                     3., 207.,
      [ 15. ,
                3., 110., 197.,
                                     3., 182.,
                                                 15.],
```

3., 176.,

3., 207., 17.]])

15.],

3. , 113. , 199.6,

0., 89.5, 168.9,

[34.,

[62.,

```
In [38]:
clf.support_
Out[38]:
array([ 9, 15, 27, 31, 33, 38, 42, 2, 7, 16, 25, 30, 34, 45])
In [39]:
# Prédire la classe de données par la SVM
clf.predict(X test1)
Out[39]:
array(['Bas', 'Bas', 'Bas', 'Elevé', 'Bas', 'Elevé', 'Bas',
       'Elevé', 'Bas', 'Bas', 'Elevé'], dtype=object)
In [40]:
# Matrice de Confusion pour le model SVM
plot_confusion_matrix(lr, X_test1, y_test1)
plt.show()
                                      6
             7
   Bas
True label
                                     - 2
  Elevé ·
            Bas
                         Elevé
               Predicted label
```

Test de l'algorithmes de classification supervisée les régression logistique

puis on applique la régression logistique sur le jeu de données :

In [41]:

```
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

lr = LogisticRegression(max_iter=1000).fit(X_train1, y_train1)

In [42]:

print('Le score de cet Algorithme est : ')
lr.score(X_train1, y_train1)

Le score de cet Algorithme est :

Out[42]:
1.0

In [43]:

lr.predict(X_test1)
```

On commence par importer la bilbiothèque nécessaire pour les régression logistique :

Test de l'algorithmes de classification supervisée le modél Naïve bayes

```
In [45]:
   On commence par importer la bilbiothèque nécessaire pour le modél Naïve bayes:
from sklearn.naive bayes import GaussianNB
from sklearn.model selection import train test split
gnb = GaussianNB().fit(X train1, y train1)
In [46]:
print('Le score de cet Algorithme est : ')
gnb.score(X train1, y train1)
Le score de cet Algorithme est :
Out[46]:
0.9347826086956522
In [47]:
gnb.predict(X_test1)
Out[47]:
array(['Bas', 'Bas', 'Elevé', 'Bas', 'Elevé', 'Bas', 'Elevé', 'Bas',
       'Elevé', 'Bas', 'Bas', 'Elevé'], dtype='<U5')
In [48]:
plot confusion matrix(gnb, X test1, y test1)
plt.show()
   Bas
```


Bas

Predicted label

Elevé

Test de l'algorithmes de classification supervisée le modél KNN KNeighborsClassifier

```
In [49]:
# On commence par importer la bilbiothèque nécessaire pour le modéle KNN KNeighborsClass
ifier:
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n neighbors = 1).fit(X train1,y train1)
In [50]:
print('Le score de cet Algorithme est : ')
neigh.score(X_train1,y_train1)
Le score de cet Algorithme est :
Out[50]:
1.0
----> On remarque : dès que le nombre de voisin augmente , le score diminue
In [51]:
neigh.predict(X test1)
Out[51]:
array(['Bas', 'Bas', 'Bas', 'Elevé', 'Bas', 'Elevé', 'Bas',
       'Elevé', 'Bas', 'Elevé'], dtype=object)
In [52]:
# Matrice de confusion:
plot confusion matrix (neigh, X test1, y test1)
plt.show()
   Bas
                                    - 5
Frue label
  Elevé
```

Test de l'algorithmes de classification supervisée le modél

arpres de decision

Bas

In [58]:

Predicted label

Elevé

```
In [53]:
    On commence par importer la bilbiothèque nécessaire pour le modéle arbres de décision
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import cross val score
dtc = DecisionTreeClassifier(random state=0).fit(X train1,y train1)
In [54]:
print('Le score de cet Algorithme est : ')
dtc.score(X train1, y train1)
Le score de cet Algorithme est :
Out[54]:
1.0
In [55]:
dtc.predict(X_test1)
Out[55]:
array(['Bas', 'Bas', 'Elevé', 'Bas', 'Elevé', 'Elevé', 'Bas',
       'Elevé', 'Bas', 'Elevé'], dtype=object)
plot confusion matrix(dtc, X test1, y test1)
plt.show()
                                   - 5
   Bas
                                   - 3
  Elevé
```

Test de l'algorithmes de classification supervisée le modél Multilayer Perceptron

```
In [57]:
# On commence par importer la bilbiothèque nécessaire pour le modéle Multilayer Percep
tron:
from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=
1).fit(X_train1, y_train1)
```

```
print('Le score de cet Algorithme est : ')
```

```
mlp.score(X_train1, y_train1)
Le score de cet Algorithme est :
Out[58]:
0.8260869565217391
In [59]:
mlp.predict(X test1)
Out [59]:
array(['Bas', 'Bas', 'B
                                                     'Bas', 'Bas', 'Bas'], dtype='<U5')
 In [60]:
  plot confusion matrix (mlp, X test1, y test1)
 plt.show()
                                                                                                                                                                                                                                                                   - 7
                         Bas
                                                                                           8
                                                                                                                                                                                                                                                                    - 6
                                                                                                                                                                                                                                                                   - 5
    True label
                                                                                                                                                                                                                                                                   - 2
                 Elevé ·
                                                                                                                                                                              Elevé
                                                                                                            Predicted label
```

Test de l'algorithmes de classification supervisée le modél Adaboost

```
In [61]:
   On commence par importer la bilbiothèque nécessaire pour le modéle Adaboost:
from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import make classification
ab = AdaBoostClassifier(n estimators=100, random state=0).fit(X train1, y train1)
In [62]:
print('Le score de cet Algorithme est : ')
ab.score(X train1, y train1)
Le score de cet Algorithme est :
Out[62]:
1.0
In [63]:
ab.predict(X test1)
Out[63]:
array(['Bas', 'Bas', 'Elevé', 'Bas', 'Elevé', 'Elevé', 'Elevé', 'Bas',
       'Elevé', 'Bas', 'Bas', 'Elevé'], dtype=object)
```

```
In [64]:
plot confusion matrix(ab, X test1, y test1)
plt.show()
   Bas
Frue label
  Elevé ·
           Bas
                       Elevé
              Predicted label
Test de l'algorithmes de classification supervisée le modél
Random Forest
In [65]:
    On commence par importer la bilbiothèque nécessaire pour le modéle Random Forest:
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make classification
rfc = RandomForestClassifier(max depth=2, random state=0).fit(X train1,y train1)
In [66]:
print('Le score de cet Algorithme est : ')
rfc.score(X train1, y train1)
Le score de cet Algorithme est :
Out[66]:
1.0
In [67]:
rfc.predict(X_test1)
Out[67]:
array(['Bas', 'Bas', 'Bas', 'Elevé', 'Bas', 'Elevé', 'Bas',
       'Elevé', 'Bas', 'Bas', 'Elevé'], dtype=object)
In [68]:
plot confusion_matrix(rfc, X_test1, y_test1)
```

- 6 - 5

plt.show()

Bas

Frue label

Résumé des scores : SVM : 0.8620689655172413 LogisticRegression : 0.7586206896551724 Naïve Bayes : 0.8620689655172413 KNN : 0.8620689655172413 (Nombre de voisin = 1 sinon le score diminue) DecisionTree : 0.8620689655172413 Multilayer Perceptron : 0.10344827586206896 AdaBoost : 0.6206896551724138 RandomForest : 0.7931034482758621 Les enseignements que nous avons tiré : Les algorithmes baysiens naïfs sont en effet les plus rapides (et pas si mauvais) ; SVM (ici LinearSVC) est effectivement plus efficace, et les performances se tiennent avec les autres algorithmes ; Nous avons également tenté d'utiliser de l'apprentissage profond, mais ici, ça n'a pas fonctionné mieux que SVM. Nous n'avons pas tout construit nous-mêmes, mais utlisé les fonctionnalités de scikit-learn : les lettres MLP dans le MLPClassifier signifient "Multi Layer Perceptron", c'est-à-dire un réseau de neurones relativement simple dans son fonctionnement : ====> On recommande d'utiliser l'algorithme SVM

In []: