Lecture 4: Basic Operations on Signals EE213 - Introduction to Signal Processing

Semester 1, 2019

Outline

- Mathematical models of some basic operations on signals
- Their implementation in analogue and digital domains.

Amplitude Scaling

Continuous signals

$$y(t) = cx(t)$$

Analogue implementation:

A voltage divider Inverting Amplifier

Non-inverting Amplifier

Digital signals

$$y[n] = cx[n]$$

 Digital implementation: floating point operations in digital computing systems.

Analogue Amplitude Scaling

Figure 1: A voltage divider.

Figure 2: Inverting Amplifier.

Figure 3: Non-inverting Amplifier.

$$V_{\mathrm{out}} = \frac{V_{\mathrm{in}}}{R_1 + R_2} \times R_2 = \frac{R_2}{R_1 + R_2} \times V_{\mathrm{in}}$$

$$V_2=V_3,\,V_3=0$$

$$\frac{V_{\rm out}}{R_2}=-\frac{V_{\rm in}}{R_1}\Rightarrow V_{\rm out}=-\frac{R_2}{R_1}V_{\rm in}$$

$$\begin{split} &V_2 = V_3 = V_{in} \\ &\frac{V_{\text{out}} - V_{\text{in}}}{R_2} = \frac{V_{\text{in}}}{R_1} \Rightarrow \frac{V_{\text{out}}}{R_2} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right) V_{\text{in}} \\ &\Rightarrow V_{\text{out}} = \frac{R_1 + R_2}{R_1} V_{\text{in}} \end{split}$$

Preliminary about Operational Amplifier

Operational Amplifier

 $u_0 = A(u_+ - u_-)$ A is a very big factor

Visual Short

$$\begin{array}{c} u_{\scriptscriptstyle 0} = A_{\scriptscriptstyle 0}(u_{\scriptscriptstyle +} - u_{\scriptscriptstyle -}) \\ u_{\scriptscriptstyle +} - u_{\scriptscriptstyle -} = \frac{u_{\scriptscriptstyle 0}}{A_{\scriptscriptstyle 0}} \approx 0 \\ A_{\scriptscriptstyle 0} \approx \infty \end{array} \right\} \begin{array}{c} u_{\scriptscriptstyle +} \approx u_{\scriptscriptstyle -} \\ \text{\mathbb{R} is \mathbb{N}} \end{array}$$

Visual Open

$$i_{1} = \frac{u_{-} - u_{+}}{r_{id}} \approx 0$$

$$r_{id} \approx \infty$$

Addition

Continuous signals

$$y(t) = x_1(t) + x_2(t)$$

Analogue implementation

Inverting Summing Amplifier

Non-inverting Summing Amplifier

Digital signals

$$y[n] = x_1[n] + x_2[n]$$

Digital implementation: Adder

Figure 4: Inverting Summing Amplifier.

$$\begin{split} V_2 &= V_3 = 0 \\ \text{Part1:} \quad V_{out} = & -\frac{V_1}{R_1} \times R_4 \\ \text{Part2:} \quad V_{out} = & -\frac{V_2}{R_2} \times R_4 \\ \text{Part3:} \quad V_{out} = & -\frac{V_3}{R_3} \times R_4 \\ \\ \text{SUM:} \quad V_{\text{Out}} = & -R_4 \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \end{split}$$

Figure 5: Non-inverting Summing Amplifier.

$$V_{\rm out} = \left(1 + \frac{Rf_2}{Rf_1}\right) \left(\frac{R_2}{R_1 + R_2} V_1 + \frac{R_1}{R_1 + R_2} V_2\right)$$

Multiplication: Digital Signals

Digital signals

$$y[n] = x_1[n]x_2[n]$$

 Digital implementation: floating-point algorithms in digital processors.

Multiplication

Continuous signals

$$y(t) = x_1(t)x_2(t)$$

- Used in audio mixer, analogue modulation.
- -Implementation: commonly through the log domain:

$$\log(y(t)) = \log(x_1(t)) + \log(x_2(t))$$

Logarithmic Converter

$$\frac{v_1}{R} = \dot{I}_S = e^{aV_A}$$

$$v_A = \frac{1}{a} \ln \left(\frac{v_1}{R} \right)$$

$$v_A = \frac{1}{a} \ln \left(\frac{v_1}{R} \right)$$

Antilogarithmic Converter

$$e^{av_A} \cdot R = v_b$$

Differentiation

Applied to continuous signals

$$y(t) = \frac{d}{dt}x(t) = x'(t)$$

Implementation:

Exercise

Exercise: Compute the differentiated signals for the signals plotted in Fig. 4.

Solution: The differentiated signals are given in the figure below.

Note that we don't define the differentiation for discrete signals. The reason is simple. Discrete signals are not continuous, so the definition of differentiation does not exist.

Integration

Applied to continuous signal

$$y(t) = \int_{-\infty}^{t} x(u) du$$

Implementation

$$I \, = \, \frac{V_{\rm in}}{R} \hspace{1cm} V_{\rm out} = \frac{1}{C} \int I dt = \frac{1}{RC} \int V_{\rm in} dt \label{eq:Vout}$$

$$V_{\rm out} = \frac{1}{C} \int I dt = \frac{1}{RC} \int V_R dt \approx \frac{1}{RC} \int V_{\rm in} dt$$

Time Scaling: Continuous Signals

For continuous signals

$$y(t) = x(at)$$

where a is a positive constant.

- Two cases
 - -a > 1: compression
 - -0 < a < 1: expansion

Time Scaling: Discrete Signals

For discrete signals, the compressed signal is generated as

$$y[n] = x[kn]$$

where k is an integer number.

- \rightarrow This extracts every kth sample of x[n]
- Intermediate samples are lost
- The sequence is shorter.

This is called **downsampling**.

Time Scaling: Discrete Signals

• For a discrete signal x[n], the **expanded signal** is generated as

$$y[n] = x[n/k]$$

where k is an integer number.

- The intermediate samples must be synthesized (set to zero, or interpolated)
- → The sequence is longer

This is called upsampling

Reflection

- Also known as time reversal.
- Continuous signals

$$y(t) = x(-t) \tag{1}$$

Discrete signals

$$y[n] = x[-n] \tag{2}$$

• Same as time scaling with a = -1.

Time Shifting

• For a continuous-time signal x(t) and a time t_0 , the time shifted signal of x(t) is expressed as

$$y(t) = x(t - t_0) \tag{3}$$

- Consider two cases
 - $t_0 > 0$: the signal $y(t) = x(t t_0)$ is shifted to the right, which gives rise to a delayed signal.
 - $t_0 < 0$: the signal $y(t) = x(t t_0)$ is shifted to the left, which gives rise to an advanced signal.

Time Shifting...

• For a discrete time signal x[n] and an integer n_0 , the time shifted signal of x[n] is expressed as

$$y[n] = x[n - n_0] \tag{4}$$

- Consider two cases
 - $n_0 > 0$: the signal $y[n] = x[n n_0]$ is shifted to the right, which gives rise to a delayed signal.
 - $n_0 < 0$: the signal $y[n] = x[n n_0]$ is shifted to the left, which gives rise to an advanced signal.

Combination of Time Scaling and Time Shifting

- Time scaling, shifting, and reversal can all be combined
- Operation can be performed in any order, but care is required
- This may cause confusion

Example

Given the signal x(t) below

create the signal x(2t - 2).

Example (continued)

→Scale first, then shift: Compress by 2, shift by 1

→Shift first, then scale: Shift by I, compress by 2 → incorrect

→Shift first, then scale: Shift by 2, scale by 2

Example

Consider the rectangular pulse x(t) of unit amplitude and a duration of 2 time units, depict in (a). Find

$$y(t) = x(2t+3)$$

Answer:

Example

Consider a discrete-time signal

$$X[n] = \begin{cases} 1, & 1 \le n \le 2 \\ -1, & -2 \le n \le -1 \\ 0, & otherwise \end{cases}$$

Find
$$y[n] = x[3n-2]$$

Answer:

