Newtonian gravitation from scratch, for C++ programmers

S. Halayka*

Monday 2nd December, 2024 14:10

Abstract

This paper contains a short introduction to Newtonian gravitation. The main focus is on some C++ code.

1 Introduction

In this paper, we cover the following seven subjects:

- 1. Typedefs that can be used to specify the precision of the floating point variables.
- 2. A custom 3D vector class that is used to encapsulate the data and member functions using object-oriented paradigms.
- 3. Some constants that are used throughout the paper.
- 4. A brute force integer field line intersection count function.
- 5. A heuristic real field line intersection count function.
- 6. An application is demonstrated, where we model Mercury's orbit by using numerical integration. A full code is given.
- 7. Conclusion: general relativity versus Newtonian gravitation.

The main goal is to acquaint the coder with the basic mathematics behind Mercury's orbit due to Newtonian gravitation.

The following two assumptions are made:

1. Like with the irradiance of light (e.g. WiFi strength) and the intensity of sound, we assume in this paper that the acceleration in Newton's gravity follows an inverse-square law:

$$g_N \propto \frac{1}{R^2}.$$
 (1)

See Fig. 1.

^{*}sjhalayka@gmail.com

Figure 1: Inverse-square law visualized. The gravitational acceleration is $g_N \propto 1/R^2$.

2. The other assumption that we make in this paper is that the gravitational field line count is given by the holographic principle [1,2], for lack of a better method.

2 Typedefs

In this tutorial, we leave the real number type up to the coder. For instance, we can use quad-precision long doubles (e.g. 16-byte floating point variables on Ubuntu):

```
typedef long double real_type;
```

On the other hand, we can use the Boost multiprecision library just as easily. Here we can use oct-precision variables (e.g. 32-byte floating point variables on all platforms):

```
// + 1 sign bit =
// 256 bits (32 bytes)

typedef cpp_bin_float_oct real_type;
```

3 Custom 3D vector class

The tutorial also makes use of a 3D vector class:

```
class vector_3
public:
        real_type x, y, z;
        // Overloaded operators go here
        real_type dot(const vector_3& rhs) const
                 return x*rhs.x + y*rhs.y + z*rhs.z;
        real_type self_dot(void) const
                 \mathbf{return} \ \ x*x \ + \ y*y \ + \ z*z;
        real_type length(void) const
                 return sqrt(self_dot());
        vector_3& normalize(void)
                 const real_type len = length();
                 if(len != 0)
                          x /= len;
                          y = len;
                          z /= len;
                 return *this;
```

4 Constants

The following constants will be used in this tutorial:

```
const real_type pi = 4.0 * atan(1.0);
```


Figure 2: The emitter is spherical. The field line starting positions are placed pseudorandomly on a 2-sphere, and the normals (e.g. field line directions) are calculated using the same positions.

5 Brute force: integer field line count

The main idea behind this tutorial is that there is a finite number of field lines extending out from a gravitating body. See Fig. 2.

We use the field line intersection count to signify field strength, from which we can obtain the gradient.

Where r is the receiver radius, R is the distance from the centre of the emitter, β is the get intersecting line count function, and n is the field line count, the gradient (e.g. directional derivative) is:

$$\alpha = \frac{\beta(R+\epsilon) - \beta(R)}{\epsilon}.$$
 (2)

The gradient strength is:

$$g = \frac{-\alpha}{r^2}. (3)$$

```
long long unsigned int get_intersecting_line_count(
      const vector<vector_3>& unit_vectors,
```

```
const vector_3& sphere_location,
        const real_type sphere_radius)
        long long unsigned int count = 0;
        // Get cross-section edge direction
        vector_3 cross_section_edge_dir(sphere_location.x, sphere_radius, 0);
        cross_section_edge_dir.normalize();
        // Get receiver direction
        vector_3 receiver_dir(sphere_location.x, 0, 0);
        receiver_dir.normalize();
        // The minimum threshold for intersection
        const real_type min_dot = cross_section_edge_dir.dot(receiver_dir);
        for (size_t i = 0; i < unit_vectors.size(); i++)
                if (unit_vectors[i].dot(receiver_dir) >= min_dot)
                        count++; // Intersection occurred
        return count;
int main(int argc, char** argv)
        // Field line count
        const size_t n = 10000000000;
        cout << "Allocating memory for field lines" << endl;</pre>
        vector<vector_3> unit_vectors(n);
        for (size_t i = 0; i < n; i++)
                unit_vectors[i] = pseudorandom_unit_vector();
                static const size_t output_mod = 10000;
                if (i % output_mod = 0)
                        cout << "Getting pseudorandom locations: "
                        << static_cast < float > (i) / n << endl;
        }
        string filename = "newton.txt";
        ofstream out_file(filename.c_str());
        out_file << setprecision(30);
        const real_type start_distance = 10.0;
        const real_type end_distance = 100.0;
        const size_t distance_res = 1000;
        const real_type distance_step_size =
                (end_distance - start_distance)
                / (distance_res - 1);
```

```
for (size_t step_index = 0; step_index < distance_res; step_index++)
        const real_type r =
                start_distance +
                step_index * distance_step_size;
        const vector_3 receiver_pos(r, 0, 0);
        const real_type receiver_radius = 1.0;
        const real_type epsilon = 1.0;
        vector_3 receiver_pos_plus = receiver_pos;
        receiver_pos_plus.x += epsilon;
        const long long signed int collision_count_plus =
                get_intersecting_line_count(
                        unit_vectors,
                        receiver_pos_plus,
                        receiver_radius);
        const long long signed int collision_count =
                get_intersecting_line_count(
                        unit_vectors,
                        receiver_pos,
                        receiver_radius);
        const real_type gradient =
                static_cast < real_type >
                (collision_count_plus - collision_count)
                / epsilon;
        const real_type gradient_strength =
                -gradient
                / (receiver_radius * receiver_radius);
        cout << "r: " << r << " gradient strength: "
        << gradient_strength << endl;</pre>
        out_file << r << " " << gradient_strength << endl;
}
out_file.close();
return 0;
```

While this method works, it is both memory and processor intensive. This method is meant to be a stepping stone for the next section.

6 Heuristic: real field line count

Rather than allocating gigabytes of RAM to store some unit vectors, we can instead use a heuristic approach to solve the problem from the previous section. This heuristic solution instead uses basic geometry to obtain the intersection count.

Where r is the receiver radius, R is the distance from the centre of the emitter, β is the get intersecting line count function, and n is the field line count, the gradient is:

$$\alpha = \frac{\beta(R+\epsilon) - \beta(R)}{\epsilon}.$$
 (4)

Here we assume that the number of field lines is given by the holographic principle:

$$n = \frac{Akc^3}{4G\hbar \log 2}. (5)$$

The gradient strength is:

$$g = \frac{-\alpha}{r^2} \approx \frac{n}{2R^3}.$$
(6)

From this we can get the Newtonian gradient, in terms of either n, g, A, or GM:

$$g_N = \frac{nc\hbar \log 2}{k4\pi MR^2} = \frac{gRc\hbar \log 2}{k2\pi M} = \frac{Ac^4}{16\pi GMR^2} = \frac{GM}{R^2}.$$
 (7)

We will use $g_N = GM/R^2$, the simplest version of g_N , in the next section.

```
const real_type n =
        (k * c3 * emitter_area)
        / (\log (2.0) * 4.0 * G * hbar);
const real_type emitter_mass = c2 * emitter_radius / (2.0 * G);
// 2.39545e47 is the 't Hooft-Susskind constant:
// the number of field lines for a black hole of
// unit Schwarzschild radius
//const\ real_type\ G_- =
       (k * c3 * pi)
        / (log(2.0) * hbar * 2.39545e47);
const string filename = "newton.txt";
ofstream out_file(filename.c_str());
out_file << setprecision (30);
const real_type start_distance = 10.0;
const real_type end_distance = 100.0;
const size_t distance_res = 1000;
const real_type distance_step_size =
        (end_distance - start_distance)
        / (distance_res - 1);
for (size_t step_index = 0; step_index < distance_res; step_index++)</pre>
        const real_type r =
                start_distance + step_index * distance_step_size;
        const vector_3 receiver_pos(r, 0, 0);
        const real_type receiver_radius = 1.0;
        const real_type epsilon = 1.0;
        vector_3 receiver_pos_plus = receiver_pos;
        receiver_pos_plus.x += epsilon;
        const real_type collision_count_plus =
                get_intersecting_line_count(
                        receiver_pos_plus,
                        receiver_radius);
        const real_type collision_count =
                get_intersecting_line_count(
                        receiver_pos,
                        receiver_radius);
        const real_type gradient =
                (collision_count_plus - collision_count)
                / epsilon;
```

This method is faster and less memory intensive when compared to the integer field count method. This method is meant to be a stepping stone for the next section.

For reference, if you know n, and you wish to know the emitter radius from that, then the equation is:

$$r_{emitter} = \sqrt{\frac{nG\hbar \log 2}{kc^3\pi}}. (8)$$

Using this radius, one can ensure that the results from this section match the results of the previous section, where n is relatively small anyway (e.g. $n=10^7$). As for predictability, for instance where $n=10^7$ (e.g. $r_{emitter}=6.46109\times 10^{-21}$ metres), it is found that at a distance of 170.521 metres that the gradient $-\alpha=0.999615$ dips below 1.0. This distance value depends entirely on our use of the holographic principle.

7 Application: modeling Mercury's orbit using numerical integration

In essence, the numerical calculation of the Newtonian orbit of Mercury is as follows:

- 1. Place Mercury at the aphelion to start.
- 2. Calculate the orbit path by repeatedly taking steps in time.

The constant time step is:

Figure 3: A diagram of the Euler integration of velocity.

```
const real type dt = 10000; // 2.77777 hours
```

The initial conditions are:

```
vector_3 Mercury_pos(0, 69817079000.0, 0); // Aphelion location vector_3 Mercury_vel(-38860, 0, 0); // Aphelion velocity
```

The orbit code is as follows. Here we use Eq. 7 (e.g. $g_N = GM/R^2$) to calculate the acceleration from Newtonian gravitation:

```
vector_3 Newtonian_acceleration(
    const real_type emitter_mass,
    const vector_3& pos, // Receiver pos
    const real_type G)
{
    // Sun's position is fixed at the origin
    vector_3 grav_dir = vector_3(0, 0, 0) - pos;
    const real_type distance = grav_dir.length();
    grav_dir.normalize();

    vector_3 accel = grav_dir * G * emitter_mass / pow(distance, 2.0);

    return accel;
}
```

Here we show the Euler integration, which is extremely simple. The acceleration is calculated, then it is added (e.g. integrated) to the velocity. Once that's done, the velocity is added to the position. See Figs. 3 and 4.

Figure 4: A diagram of the Euler integration of position.

```
pos ,
G);

vel += accel * dt;
pos += vel * dt;
}
```

The passage of time is computed whenever the window manager (e.g. OpenGL/GLUT) is not busy drawing or processing input:

```
void idle_func(void)
{
          proceed_Euler(Mercury_pos, Mercury_vel, G, dt);
}
```

On the other hand, rather than using Euler integration, the 4th-order symplectic integration does a better job at conserving energy, but at a speed cost:

```
1.0 / (2.0 - cr2),
        -cr2 / (2.0 - cr2),
        1.0 / (2.0 - cr2),
        0.0
};
pos += vel * c[0] * dt;
vel += Newtonian_acceleration (
                emitter_mass,
                pos,
                G) * d[0] * dt;
pos += vel * c[1] * dt;
vel += Newtonian_acceleration(
                emitter_mass,
                pos,
                G) * d[1] * dt;
pos += vel * c[2] * dt;
vel += Newtonian_acceleration (
                emitter_mass,
                G) * d[2] * dt;
pos += vel * c[3] * dt;
// last element d[3] is always 0
```

See Fig. 5.

A final code, which models the orbit of Mercury, is at: https://github.com/sjhalayka/mercury_orbit_glut

8 Conclusion: general relativity versus Newtonian gravitation

In Newtonian gravity, the isotropic emitter ensures that space is curved. This is not quite the same as what happens in general relativity [3]. In general relativity, time is also curved. In order to compensate for this, one can convert the field lines into field cylinders. The overlap of the cylinders only occurs if the cylinder radii are larger than the Planck scale. This overlap would have to be useful, somehow, for calculating the gravitational time dilation $d\tau/dt = \sqrt{1 - r_{emitter}/R}$.

References

- [1] 't Hooft. Dimensional reduction in quantum gravity. (1993)
- [2] Susskind. The World as a Hologram. (1994)
- [3] Misner et al. Gravitation. (1970)

Figure 5: Mercury in orbit around the Sun. Note that the orbit path is slightly elliptical.