Notes of "Closed Bounded Subsets of \mathbb{E}^n "

Jinxin Wang

1 Overview

- Def: Bounded subset of a Euclidean space
- Rmk: The closed and bounded subsets in \mathbb{E}^n are of special interest to us because of their presence
- Def: Open cover and subcover of a topological space
- Examples of open covers and subcovers of topological spaces
 - Eg: An open cover of \mathbb{E}^1 : $\{(k-1,k+1) \mid k \in \mathbb{Z}\}$ and its subcovers
 - Eg: An open cover of \mathbb{E}^2 : $\left\{\mathring{B}((x,1)) \mid x=(a,b) \text{ in which } a,b\in\mathbb{Z}\right\}$ and its subcovers
 - Eg: An open cover of [0,1]: $[0,\frac{1}{5}),$ $(\frac{4}{5},1],$ $\{(\frac{1}{n},1-\frac{1}{n})\mid n\in\mathbb{N}\wedge n>2\}$ and its subcovers
 - Eg: An open cover of (0,1]: $\{(\frac{1}{n},1] \mid n \in \mathbb{N} \land n > 1\}$ and its subcovers
- Thm: A necessary and sufficient condition for a subset of \mathbb{E}^n is closed and bounded in terms of open covers
- Def: Compact topological space
- Rmk: Compactness is a topological property of a space

2 Content

Definition 1 (Bounded subset of a Euclidean space). A subset X of \mathbb{E}^n is bounded if there exists a ball B(O,r) in which O is the origin and r > 0 such that $X \subset B(O,r)$.

Definition 2 (Open cover and subcover of a topological space). Let X be a topological space. A family \mathfrak{F} of open subsets of X is called an open cover of X if the union of the family is X. If \mathfrak{F}' is a subfamily of \mathfrak{F} and $\bigcup \mathfrak{F}' = X$, then \mathfrak{F}' is called a subcover of \mathfrak{F} .

Example 1 (An open cover of \mathbb{E}^1 : $\{(k-1,k+1) \mid k \in \mathbb{Z}\}$ and its subcovers). The family of open subsets of \mathbb{E}^1 $\mathfrak{F} = \{(k-1,k+1) \mid k \in \mathbb{Z}\}$ is clearly an open cover of \mathbb{E}^1 .

Notice that \mathbb{E}^1 is unbounded, and \mathfrak{F} does not have any subcover. Suppose we remove the open interval centred at $k(k \in \mathbb{Z})$ in \mathfrak{F} , then the point x = k is not covered by any other open intervals in \mathfrak{F} since the distance between it and other integer point in \mathbb{E}^1 is greater than or equal to 1.

2 CONTENT 2

Example 2 (An open cover of \mathbb{E}^2 : $\left\{\mathring{B}((x,1)) \mid x=(a,b) \text{ in which } a,b\in\mathbb{Z}\right\}$ and its subcovers). Analogous to the previous example, the family of open subsets of \mathbb{E}^2 $\mathfrak{F}=\left\{\mathring{B}((x,1)) \mid x=(a,b) \text{ in which } a,b\in\mathbb{Z}\right\}$ is an open cover of \mathbb{E}^2 , but it does not have any subcover since removing any open subset in \mathfrak{F} will cause the centre of the removed open subset to be uncovered.

Example 3 (An open cover of [0,1]: $[0,\frac{1}{5})$, $(\frac{4}{5},1]$, $\{(\frac{1}{n},1-\frac{1}{n})\mid n\in\mathbb{N}\wedge n>2\}$ and its subcovers). Let [0,1] have the subspace topology of \mathbb{E}^1 . The family of open sets $\mathfrak{F}=\{[0,\frac{1}{5}),(\frac{4}{5},1]\}\cup\{(\frac{1}{n},1-\frac{1}{n})\mid n\in\mathbb{N}\wedge n>2\}$ is an open cover of [0,1].

Notice that [0,1] is a closed and bounded subset of \mathbb{E}^1 , and \mathfrak{F} has a finite subcover $\mathfrak{F}' = \{[0,\frac{1}{5}), (\frac{4}{5},1], (\frac{1}{3},\frac{2}{3}), (\frac{1}{4},\frac{3}{4}), (\frac{1}{5},\frac{4}{5}), (\frac{1}{6},\frac{5}{6})\}.$

Example 4 (An open cover of (0,1]: $\{(\frac{1}{n},1] \mid n \in \mathbb{N} \land n > 1\}$ and its subcovers). Let (0,1] have the subspace topology of \mathbb{E}^1 . The family of open sets $\mathfrak{F} = \{(\frac{1}{n},1] \mid n \in \mathbb{N} \land n > 1\}$ is an open cover of (0,1].

Notice that (0,1] is not a closed subset of \mathbb{E}^1 , and \mathfrak{F} does not have a finite subcover. Suppose that there is a finite subcover \mathfrak{F}' of \mathfrak{F} , then \mathfrak{F}' consists of finite open intervals with the form $(\frac{1}{n},1]$. Since they are finite we can pick the open interval with the largest n, denoted by n_0 . Then $(0,\frac{1}{n_0})$ is not covered by \mathfrak{F}' , which contradicts that \mathfrak{F} is a subcover. Hence \mathfrak{F} does not have any finite subcover.

Definition 3 (Compact topological space). A topological space X is compact if every open cover of X has a finite subcover.