مطابق شکل سیم رسانای یکنواختی که سطح مقطع آن ۴cm $^{
m r}$ است و از مادهای به چگالی $^{
m r}$ ساخته شده در $^{
m r}$ یک میدان مغناطیسی یکنواخت درون سو به بزرگی ۳ تسلا قرار دارد. از سیم چه جریانی در جهت نشان داده شده بگذرد $(g = l \circ N/kg)$ روبه بالا بگیرد؟ rm/s^{γ} تا سیم شتاب

 \vec{B} M

× × × × × ×

- ۴A (۲
- ۶A (۳
- ۴) بدون داشتن طول سیم نمیتوان مسئله را حل کرد.

روی $oldsymbol{\mathrm{M}}$ برآیند میدانهای حاصل از آهنربای $oldsymbol{\mathrm{A}}$ و $oldsymbol{\mathrm{B}}$ باشد کدام گزینه درست است؟ $oldsymbol{\mathrm{M}}$ عمودمنصف خط واصل دو آهنربا قرار دارد)

- یر است. \mathbf{B} هستند و \mathbf{B} قوی \mathbf{S} تر است.
- . هر دو قطب N هستند و A قوی تر است γ
- ی A قطب B قطب B قطب B قویتر است.
- و A قطب B ،S قطب A (۴ قطب A

t=0 شکل زیر یک حلقهٔ مربعشکل را در t=0 در یک میدان مغناطیسی نشان میدهد. اگر معادلهٔ میدان مغناطیسی در ا

- ۱) ساعتگرد ساعتگرد
- ۲) ساعتگرد پادساعتگرد
- ۳) پادساعتگرد ساعتگرد
- ۴) پادساعتگرد پادساعتگرد

یک سیم رسانا که حامل جریان I است در میدان مغناطیسی یکنواختی بهطور معلق قرارگرفته است. اگر از سیمی با Iهمان جنس و همان طول ولی سطح مقطع متفاوت استفاده کنیم و همان جریان I را از آن عبور دهیم، سیم شتاب $(g = \log m/s^{r})$ رو به بالا خواهد گرفت. سطح مقطع سیم جدید نسبت به سیم اولیه m/s^{r}

- ۲) حدوداً ۳۳ درصد بیشتر است. ۱) حدوداً ۳۳ درصد کمتر است.
- ۴) حدوداً ۲۵ درصد بیشتر است. ۳) حدوداً ۲۵ درصد کمتر است.