

Algorithmen I - Tutorium 4

Sebastian Schmidt - isibboi@gmail.com

Arbeitsgruppe Kryptographie und Sicherheit

Wahrscheinlichkeitstheorie


```
Hash-Beispiel
                                                           Hash-Funktionen \{0..m-1\}^{\text{Key}}
Elementarereignisse \Omega
Ereignisse: Teilmengen von \Omega
                                                                \mathcal{E}_{42} = \{ h \in \Omega : h(4) = h(2) \}
p_x =Wahrscheinlichkeit von x \in \Omega. \sum_x p_x = 1!
Gleichverteilung: p_x = \frac{1}{|\Omega|}
                                                                                      p_h = m^{-|Key|}
\mathbb{P}[\mathscr{E}] = \sum_{\mathsf{x} \in \mathscr{E}} p_{\mathsf{x}}
                                                                                        \mathbb{P}[\mathcal{E}_{42}] = \frac{1}{m}
                                                                  X = |\{e \in M : h(e) = 0\}|
Zufallsvariable (ZV) X_0: \Omega \to \mathbb{R}
0-1-Zufallsvariable (Indikator-ZV) I: \Omega \rightarrow \{0,1\}
                                                                                         E[X] = \frac{|M|}{m}
Erwartungswert E[X] = \sum_{y \in \Omega} p_y X(y)
Linearität des Erwartungswerts: E[X + Y] = E[X] + E[Y]
```


- Hashtabelle mit $h_n(x) := x \mod n$

- Hashtabelle mit $h_n(x) := x \mod n$
 - Wie groß sollte die Hashtabelle sein?

- Hashtabelle mit $h_n(x) := x \mod n$
 - Wie groß sollte die Hashtabelle sein?
 - Gegeben {36, 78, 50, 1, 92, 15, 43, 99, 64}. Füge diese Zahlen in eine Hashtabelle mit Hashfunktion h_5 und h_7 ein.

- Hashtabelle mit $h_n(x) := x \mod n$
 - Wie groß sollte die Hashtabelle sein?
 - Gegeben $\{36, 78, 50, 1, 92, 15, 43, 99, 64\}$. Füge diese Zahlen in eine Hashtabelle mit Hashfunktion h_5 und h_7 ein.
- Gebt Beispiele für gute und schlechte Hashfunktionen
- Laufzeiten: insert, find und remove

- Hashtabelle mit $h_n(x) := x \mod n$
 - Wie groß sollte die Hashtabelle sein?
 - Gegeben $\{36, 78, 50, 1, 92, 15, 43, 99, 64\}$. Füge diese Zahlen in eine Hashtabelle mit Hashfunktion h_5 und h_7 ein.
- Gebt Beispiele für gute und schlechte Hashfunktionen
- Laufzeiten: insert, find und remove

Anwendungsbeispiele für Hashtabellen

Hashtabellen sind besser als Bäume, wenn man die erwartete Laufzeit betrachtet.

Fallen euch konkrete Beispiele oder Gegenbeispiele ein?

Anwendungsbeispiele für Hashtabellen

Hashtabellen sind besser als Bäume, wenn man die erwartete Laufzeit betrachtet.

Fallen euch konkrete Beispiele oder Gegenbeispiele ein?

Beweis über Worst-Case

Seien $m, n \in \mathbb{N}$. n ist die Anzahl der Elemente, die in eine Hashtabelle der Größe *m* eingefügt werden.

Sei *U* ein Universum mit |U| > mn.

Zeige, dass eine Teilmenge $M \subset U$ existiert mit $|M| \geq n$, sodass alle Elemente aus *M* dem selben Slot der Hashtabelle zugeordnet werden.

Verbesserung des Worst-Case

"Nach dem dritten Glas Bier behauptet ein Kommilitone, man könne Hashing mit verketteten Listen entscheidend verbessern, indem man die verketteten Listen stets sortiert halte."

■ Wie ändert sich dadurch die Worst-Case Laufzeit von insert, find und remove?