$$G(s)H(s) = \frac{1}{(1+0.5s)(1+2s)}$$

$$G(j\omega)H(j\omega) = \frac{1}{(1+\frac{j\omega}{2})(1+\frac{j\omega}{0.5})}$$

$$\omega_1 = 0.5 rad / sec$$
 $L_{0.5} = -20 \log \sqrt{1 + \left(\frac{\omega}{0.5}\right)^2}$

$$\omega_2 = 2rad / \sec L_2 = -20 \log \sqrt{1 + \left(\frac{\omega}{2}\right)^2}$$

	0.5	2
L0.5	-3.0103	-12.3045
L2	-0.2633	-3.0103
dB	-3.2736	-15.3148

$$\varphi(\omega) = -tg^{-1} \left(\frac{\omega}{0.5}\right) - tg^{-1} \left(\frac{\omega}{2}\right)$$

0.1	0.2	0.5	1	2	5	
-14.17	-27.51	-59.04	-90	-120.96	-152.49	

$$G(s)H(s) = \frac{(1+0.5s)}{s^2}$$

$$G(j\omega)H(j\omega) = \frac{(1+\frac{j\omega}{2})}{j\omega^2}$$

$$\omega_1 = 2rad / \sec L_2 = -20 \log \sqrt{1 + \left(\frac{\omega}{2}\right)^2}$$

$$L_I = -20\log\omega \quad L_I = -20\log\omega$$

	2
L2	3.0103
LI	-6.02
LI	-6.02
dB	9.03

$$\varphi(\omega) = tg^{-1} \left(\frac{\omega}{2}\right) - 90 - 90$$

2
-135

$$G(s)H(s) = \frac{s+10}{s^2 + 6s + 10}$$

$$G(j\omega)H(j\omega) = \frac{(1+\frac{j\omega}{10})}{\left(1-\left(\frac{\omega}{\sqrt{10}}\right)^2\right) + \frac{j6\omega}{10}}$$

$$\omega_1 = 10 rad / sec$$
 $L_{10} = 20 log \sqrt{1 + \left(\frac{\omega}{10}\right)^2}$

$$\omega_2 = \sqrt{10} \, rad \, / \sec \, \zeta = \frac{3}{\sqrt{10}}$$

$$L_2 = -20\log\sqrt{\left[1 - \left(\frac{\omega}{\sqrt{10}}\right)^2\right]^2 + \left(\frac{6\omega}{10}\right)^2}$$

	2	3.1623	4	10
L _{3.1623}	-2.5527	-5.563	-7.8675	-20.682
L_{10}	0.1703	0.4139	0.6446	3.0103
dB	-2.3824	-5.1491	-7.2229	-17.672

$\omega < \sqrt{10}$	$\varphi(\omega) = tg^{-1}0.1\omega - tg^{-1}\frac{6\omega/10}{1 - \omega^2/10}$											
ω	0.2	0.2 0.5 1 2 3 3.1623										
$\varphi(\omega)$	-5.72	-5.72 -14.24 -27.98 -52.13 -70.12 -72.45										
$\omega > \sqrt{10}$	$\varphi(\omega) = tg^{-1}0.1\omega - 180^{\circ} + tg^{-1} \frac{6\omega/10}{1 - \omega^2/10}$											
ω	4	4 5 10 20 30 50 100										
$\varphi(\omega)$	-82.23	-90	-101.3	-99.46	-97	-94.44	-92.27					

$$G(s)H(s) = \frac{30(s+8)}{s(s+2)(s+4)}$$

$$G(j\omega)H(j\omega) = \frac{30(j\frac{\omega}{8}+1)}{j\omega(j\frac{\omega}{2}+1)(j\frac{\omega}{4}+1)}$$

$$\omega_1 = 2rad / \sec L_2 = -20\log\sqrt{1+\left(\frac{\omega}{2}\right)^2}$$

$$\omega_2 = 4rad / \sec L_4 = -20\log\sqrt{1+\left(\frac{\omega}{4}\right)^2}$$

$$\omega_3 = 8rad / \sec L_8 = 20\log\sqrt{1+\left(\frac{\omega}{8}\right)^2}$$

积分环节 $L_{\rm I} = 20\log \omega$

	2	4	8
L2	-3.01	-6.99	-12.3
L4	-0.97	-3.01	-6.99
L8	0.26	0.97	3.01
LI	-6.02	-12.04	-18.06
	-9.74	-21.07	-34.34
LK	29.54	29.54	29.54
	19.80	8.47	-4.8

$$\varphi(\omega) = tg^{-1}\left(\frac{\omega}{8}\right) - tg^{-1}\left(\frac{\omega}{4}\right) - tg^{-1}\left(\frac{\omega}{2}\right) - 90^{\circ}$$

	$\varphi(\omega) = tg^{-1} \left(\frac{\omega}{8}\right) - tg^{-1} \left(\frac{\omega}{4}\right) - tg^{-1} \left(\frac{\omega}{2}\right) - 90^{\circ}$									
ω	0.2	0.2 0.5 1 2 5 8 10 20 50 100								
$\varphi(\omega)$	-97.1409	-107.58	-123.48	-147.53	-177.53	-184.4	-185.55	-184.78	-182.23	-181.14

习题 2

[s]

[s]

$$\sigma$$
 $\xrightarrow{B'}$ $\xrightarrow{A'}$ $\xrightarrow{C'}$ u

$$E: S = 0$$

P=0 N=0 Z=N+P=0 系统稳定

P=0 N=2 Z=N+P=2 系统不稳定

$$A: s = \infty e^{-j90^{\circ}}$$
 $A': G(s)H(s) = \frac{K}{s^2}$

$$= \frac{K}{\infty e^{-j90^{\circ} \times 2}} = 0e^{j180^{\circ}}$$

$$B: s = 0e^{-j90^{\circ}}$$
 $B': G(s)H(s) = e^{j0^{\circ}}$

$$C: s = 0e^{j90^{\circ}}$$
 $C': G(s)H(s) = e^{j0^{\circ}}$

$$D: s = \infty e^{j90^{\circ}}$$
 $D': G(s)H(s) = 0e^{-j180^{\circ}}$

$$E: s = \infty e^{j0^{\circ}}$$
 $E': G(s)H(s) = 0e^{j0^{\circ}}$

$$A: s = \infty e^{-j90^{\circ}}$$
 $A': G(s)H(s) = \frac{0.5}{s}$
= $\frac{0.5}{\infty e^{-j90^{\circ}}} = 0e^{j90^{\circ}}$

$$B: s = \varepsilon e^{-j90^{\circ}}$$
 $B': G(s)H(s) = \frac{1}{s^2} = \infty e^{j180^{\circ}}$

$$C: s = \varepsilon e^{j0^{\circ}}$$
 $C': G(s)H(s) = \infty e^{j0^{\circ}}$

$$D: s = \varepsilon e^{j90^{\circ}}$$
 $D': G(s)H(s) = \infty e^{-j180^{\circ}}$

$$E: s = \infty e^{j90^{\circ}}$$
 $E': G(s)H(s) = 0e^{-j90^{\circ}}$

$$A: s = \infty e^{-j90^{\circ}}$$
 $A': G(s)H(s) = \frac{1}{s}$

$$= \frac{1}{\infty e^{-j90^{\circ}}} = 0e^{j90^{\circ}}$$

$$B: s = 0e^{-j90^{\circ}}$$
 $B': G(s)H(s) = 1$

$$C: s = 0e^{j90^{\circ}}$$
 $C': G(s)H(s) = 1$

$$D: s = \infty e^{j90^{\circ}}$$
 $D': G(s)H(s) = 0e^{-j90^{\circ}}$

$$E: s = \infty e^{j0^{\circ}}$$
 $E': G(s)H(s) = 0e^{j0^{\circ}}$

$$A: s = \infty e^{-j90^{\circ}}$$
 $A': G(s)H(s) = \frac{30}{s^2}$

$$=\frac{30}{\infty e^{-j2\times 90^{\circ}}}=0e^{j180^{\circ}}$$

$$B: s = \varepsilon e^{-j90^{\circ}} \qquad B': G(s)H(s) = \frac{1}{s} = \infty e^{j90^{\circ}}$$

$$C: s = \varepsilon e^{j0^{\circ}} \qquad C': G(s)H(s) = \infty e^{j0^{\circ}}$$

$$C: s = \varepsilon e^{j0^{\circ}}$$
 $C': G(s)H(s) = \infty e^{j0^{\circ}}$

$$D: s = \varepsilon e^{j90^{\circ}} \qquad D': G(s)H(s) = \infty e^{-j90^{\circ}}$$

$$E: s = \infty e^{j90^{\circ}}$$
 $E': G(s)H(s) = 0e^{-j180^{\circ}}$

$$G(s) = \frac{30*(s+8)}{s(s+2)(s+4)} \Rightarrow G(j\omega) = \frac{30*(j\omega+8)}{j\omega(j\omega+2)(j\omega+4)}$$

$$\operatorname{Im}(G(j\omega)) = \frac{-30(2\omega^3 + 64\omega)}{\omega^6 + 20\omega^4 + 36\omega^2} = 0 \Rightarrow \omega^2 = 32$$

$$|\operatorname{Re}(G(j\omega)) = \frac{-30\omega^2(40 + \omega^2)}{\omega^6 + 20\omega^4 + 36\omega^2} \bigg|_{\omega^2 = 32} = -1.25$$

习题3

$$A: s = \infty e^{-j90^{\circ}}$$
 $A': G(s)H(s) = \frac{K}{s^3}$

$$=\frac{30}{\infty e^{-j90^{\circ} \times 3}}=0 e^{j270^{\circ}}$$

$$B: s = \varepsilon e^{-j90^{\circ}} \qquad B': G(s)H(s) = \frac{1}{s} = \infty e^{j90^{\circ}}$$

$$C: s = \varepsilon e^{j0^{\circ}} \qquad C': G(s)H(s) = \infty e^{j0^{\circ}}$$

$$C: s = \varepsilon e^{j0^{\circ}} \qquad C': G(s)H(s) = \infty e^{j0^{\circ}}$$

$$D: s = \varepsilon e^{j90^{\circ}}$$
 $D': G(s)H(s) = \infty e^{-j90^{\circ}}$

$$E: s = \infty e^{j90^{\circ}}$$
 $E': G(s)H(s) = 0e^{-j270^{\circ}}$

与实轴的交点:

$$G(j\omega)H(j\omega) = \frac{K}{j\omega(-\omega^{2} + j\omega + 4)} = \frac{K}{-\omega^{2} + j\omega(4 - \omega^{2})} = \frac{K[-\omega^{2} - j\omega(4 - \omega^{2})]}{\omega^{4} - \omega^{2}(4 - \omega^{2})^{2}}$$

$$\operatorname{Im}[G(j\omega)H(j\omega)] = 0 \Rightarrow 4 - \omega^2 = 0 \Rightarrow \omega = \pm 2$$

$$\operatorname{Re}[G(j\omega)H(j\omega)] = \frac{-K\omega^2}{\omega^4 - \omega^2(4 - \omega^2)^2} \bigg|_{\omega=2} = -\frac{K}{4}$$

当 K>=4 时, P=0, N=2, Z=N+P=2 系统不稳定

当 K<4 时, P=0, N=0, Z=N+P=0 系统稳定

$$A: s = \infty e^{-j90^{\circ}}$$
 $A': G(s)H(s) = \frac{K}{s^2}$

$$= \frac{30}{\infty e^{-j90^{\circ} \times 2}} = 0e^{j180^{\circ}}$$

$$B: s = \varepsilon e^{-j90^{\circ}}$$
 $B': G(s)H(s) = \frac{1}{s^2} = \infty e^{j180^{\circ}}$

$$C: s = \varepsilon e^{j0^{\circ}}$$
 $C': G(s)H(s) = \infty e^{j0^{\circ}}$

$$D: s = \varepsilon e^{j90^{\circ}}$$
 $D': G(s)H(s) = \infty e^{-j180^{\circ}}$

$$E: s = \infty e^{j90^{\circ}}$$
 $E': G(s)H(s) = 0e^{-j180^{\circ}}$

显然, Nyquist 曲线不包围(-1,0)点, 因此当系统 K>0 时, 系统稳定

习题 4

- (1) 如果 P=0, N=2, Z=N+P=2, 系统不稳定, 闭环在右半平面中有 2 个特征根
- (2) 如果 P=0, N=0, Z=N+P=0, 系统 稳定, 闭环在右半平面中有 0 个特征根

习题 5

$$\varphi(\omega) = -90^{\circ} - tg^{-1}(\omega) - tg^{-1}(\omega/2) = 180^{\circ}$$

$$\Rightarrow tg^{-1}(\omega) + tg^{-1}(\omega/2) = -90^{\circ} \Rightarrow tg^{-1}\frac{\omega + \omega/2}{1 - \omega^2/2} = -90^{\circ} \Rightarrow 1 - \omega^2/2 = 0 \Rightarrow \omega = \pm\sqrt{2}$$

$$|g(j\omega)| = \frac{2}{|j\omega||j\omega + 1|\frac{j\omega}{2} + 1|} = \frac{2}{\sqrt{2}\sqrt{2+1}\sqrt{\frac{1}{2}+1}} = \frac{2}{3}$$

$$A(\omega) = -20\log|g(j\omega)| = 3.5218dB$$

(2)
$$A(\omega) = -20\log|g(j\omega)| = 16dB \Rightarrow -20\log\frac{K/2}{|j\omega||j\omega + 1|\frac{j\omega}{2} + 1|} = 16dB$$

$$\Rightarrow \log\frac{K/2}{|j\omega||j\omega + 1|\frac{j\omega}{2} + 1|} = -0.8 \Rightarrow \frac{K/2}{|j\omega||j\omega + 1|\frac{j\omega}{2} + 1|} = 10^{-0.8}$$

$$\Rightarrow K = 0.9509$$
(3)
$$|g(j\omega_c)| = \frac{\sqrt{10}/2}{|j\omega_c||j\omega_c + 1|\frac{j\omega_c}{2} + 1|} = 1 \Rightarrow \frac{\sqrt{10}}{\sqrt{\omega_c^2(1 + \omega_c^2)(\omega_c^2 + 4)}} = 1 \Rightarrow \omega_c^6 + 5\omega_c^4 + 4\omega_c^2 = 10$$

$$\Rightarrow \omega_c^2 = 1 \Rightarrow \omega_c = 1 rad / sec$$

$$\varphi(\omega_c) = -90^{\circ} - tg^{-1}(\omega_c) - tg^{-1}(\omega_c/2)\Big|_{\omega_c=1} = -161.57^{\circ}$$

$$\gamma = 180^\circ + \varphi(\omega_c) = 18.43^\circ$$

方法一: 时域分析法得特征方程为

$$1 + \frac{50 \times \frac{30}{s^2(0.1s+1)}}{1 + \frac{120s}{s^2(0.1s+1)}} = 0 \implies 0.1s^3 + s^2 + 120s + 1500 = 0$$
统不稳定。

::120<1500×0.1 :: 系统不稳定。

方法二: 采用频域分析法计算。开环传递函数为

$$G_k(s) = \frac{1500(0.08s+1)}{s^2(0.1s+1)}$$

计算幅值穿越频率

$$L(\omega) = \begin{cases} 20 \lg \frac{1500}{\omega^2} & (\omega \le 10) \\ 20 \lg \frac{1500}{\omega^2 \times 0.1\omega} & (10 \le \omega \le 12.5) \implies 20 \lg \frac{1500 \times 0.08\omega_c}{\omega_c^2 \times 0.1\omega_c} = 0 \implies \omega_c = 34.64 \\ 20 \lg \frac{1500 \times 0.08\omega}{\omega^2 \times 0.1\omega} & (\omega \ge 12.5) \end{cases}$$

计算相角裕量

$$\gamma = 180^{\circ} - 2 \times 90^{\circ} - tg^{-1} \ 0.1 \times 34.64 - tg^{-1} \ 0.08 \times 34.64 = -144.1^{\circ} < 0$$

结论:系统不稳定。

