Improving NIH Cybersecurity Using MITRE ATT&CK

Jared Stancombe

Civic Digital Fellow, Coding It Forward

National Institutes of Health

Presentation Agenda

About Me

Cybersecurity Experience

- M.S. Cybersecurity Risk Management from Indiana University
- Former Incident Response Analyst, Indiana University
- Research with the NATO Cooperative Cyber Defence Centre of Excellence
- 2019 & 2020 Semifinalist, Atlantic Council Cyber 9/12 Strategy Challenge

Social Impact Work

- Global Health Corps Fellow, Action Africa Help International, Zambia
- William J. Clinton Fellow, American India Foundation
- AmeriCorps Member, City Year Washington, DC
- Board Member, United Way of South Central Indiana

Previous Government Experience

- Management and Program Analyst, DHS USCIS
- Program Officer, USAID DELIVER Project

Projects

Conduct research on how to apply MITRE ATT&CK in the NIST Risk Management Framework assessment and authorization process.

Write a wiki article on using MITRE ATT&CK for cloud service platforms.

Conduct a "Lunch and Learn" presentation with relevant NIH stakeholders on using MITRE ATT&CK to identify threats in Security Assessment Reports (SAR).

Why are these projects important?

MITRE ATT&CK is becoming the language of threat management within the cybersecurity community and NIH does not currently use it.

Current means of threat identification is a "paperwork exercise" and not based upon identifying areas of real risk, but instead used to check a box.

Identifying actual threats can inform how to better identify, detect, and mitigate against them.

NIH InfoSec is heavily siloed. MITRE ATT&CK can encourage inter-team collaboration to improve NIH cybersecurity maturity and efficacy.

NIST RMF: Assessment & Authorization

Assess Controls

- Determines if the controls selected for implementation are:
- implemented correctly
- operating as intended
- producing the *desired outcome* with respect to meeting the *security and privacy requirements* for the system and the organization

Authorize System

• Determine if the security and privacy risk (including supply chain risk) to organizational operations and assets, individuals, other organizations, or the Nation based on the operation of a system or the use of common controls, is acceptable.

Threat Identification in Security Assessment Reports

- Generic identification of physical, environmental, & man-made threats
- Generic categorization of purposeful, unintentional, or environmental threat categories
- **Generic assessment** of threats & risks based upon potential impacts:
 - Modification of data
 - Data destruction
 - Unavailable accurate records
 - Denial of service
- Compliance-oriented

ID	Threat Name	Type Identifier	Description Confiden		Integrity	Availability	
T-1	Alteration	U, P, E	Alteration of data, files, or records.		Modification		
T-2	Audit Compromise	Р	An unauthorized user gains access to the audit trail and could cause audit records to be deleted or modified, or prevents future audit records from being recorded, thus masking a security relevant event.		Modification or Destruction	Unavailable Accurate Records	
T-3	Bomb	Р	An intentional explosion.		Modification or Destruction	Denial of Service	
T-4	Communications Failure	U, E	Cut of fiber optic lines, trees falling on telephone lines.			Denial of Service	
T-5	Compromising Emanations	Р	Eavesdropping can occur via electronic media directed against large scale electronic facilities that do not process classified National Security Information.	Disclosure			
T-6	Cyber Brute Force	Р	Unauthorized user could gain access to the information systems by random or systematic guessing of passwords, possibly supported by password cracking utilities.	Disclosure	Modification or Destruction	Denial of Service	
T-7	Data Disclosure Attack	Р	An attacker uses techniques that could result in the disclosure of sensitive information by exploiting weaknesses in the design or configuration.	Disclosure			
T-8	Data Entry Error	U	Human inattention, lack of knowledge, and failure to cross-check system activities could contribute to errors becoming integrated and ingrained in automated systems.		Modification		

How can we improve the identification of threats to NIH systems?

Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command and Control	Exfiltration	Impact
9 techniques	10 techniques	18 techniques	12 techniques	34 techniques	14 techniques	24 techniques	9 techniques	16 techniques	16 techniques	9 techniques	13 techniques
Drive-by Compromise	Command and Scripting	Account Manipulation (4)	Abuse Elevation	Abuse Elevation Control Mechanism (4)	II Brute Force (4)	Account Discovery (4)	Exploitation of Remote Services	Archive Collected	Application Layer	Automated Exfiltration	Account Access Removal
Exploit Public-Facing Application	Exploitation for Client	BITS Jobs	Mechanism (4)	Access Token	Credentials from Password Stores (3)	Application Window Discovery	Internal Spearphishing	Audio Capture	Communication	Data Transfer Size	Data Destruction
External Remote	Execution	Boot or Logon	Access Token Manipulation (5)	Manipulation (5)	Exploitation for	Browser Bookmark Discovery	Lateral Tool Transfer	Automated Collection	Through Removable Media	Limits	Data Encrypted for
Services	Inter-Process Communication (2)	II Autostart Execution (11)		BITS Jobs	Credential Access	Cloud Service Dashboard		Clipboard Data	Data Encoding (2)	Exfiltration Over Alternative	Impact
Hardware Additions	(4)	(11)	II Autostart	Deobfuscate/Decode Files or	Forced Authentication	Cloud Service Discovery	Session Hijacking (2)	'	3 (2)		II Data Manipulation
II Phishing (3)	Native API	Boot or Logon Initialization	(1.7)	Information	II Input Capture (4)	Domain Trust Discovery	II Remote Services (6)	Data from Cloud Storage Object	Data Obfuscation (3)		II Defacement (2)
Spearphishing	Scheduled Task/Job (5)	Scripts (5)	II Initialization	Direct Volume Access	Man-in-the-Middle (1)	File and Directory Discovery	Replication Through	Data from	Dynamic Resolution (3)	Channel	Disk Wipe (2)
Attachment	Shared Modules	Browser Extensions	Scripts (5)	II Execution Guardrails (1)	Modify	Network Service Scanning	Removable Media	II Information Repositories (2)	Encrypted	Exfiltration Over Other Network	Endpoint Denial of
Spearphishing Link	Software Deployment Tools	Compromise Client Software Binary		Exploitation for Defense Evasion	II Authentication Process (3)	Network Share Discovery	Software Deployment Tools	Data from Local	Channel (2)	Medium (1)	" Service (4)
Spearphishing via Service	II System Services (2)	II Create Account (3)	Event Triggered	File and Directory	Network Sniffing	Network Sniffing	Taint Shared Content	System	Fallback Channels	Exfiltration Over Physical	Firmware Corruption
Replication Through	User Execution (2)	Create or Modify	Execution (15)	Permissions Modification (2)	OS Credential	Password Policy Discovery	Use Alternate	Data from Network Shared Drive	Ingress Tool Transfer	Medium (1)	Inhibit System Recove
Removable Media	- Windows Management	System Process (4)	Exploitation for Privilege Escalation	Group Policy Modification	Dumping (8)	Peripheral Device Discovery	II Authentication	Data from Removable	Multi-Stage Channels	Exfiltration Over Web Service (2)	Network Denial of Service (2)
Supply Chain Compromise (3)	Instrumentation	Event Triggered Execution (15)		II Hide Artifacts (6)	Steal Application Access Token	Permission Groups	Material (4)	Media	Non-Application Layer Protocol	Scheduled Transfer	(2)
Trusted Relationship		External Remote	- Modification	III Hijack Execution Flow (11)	Steal or Forge	Discovery (3)		II Data Staged (2)	Non-Standard Port	Transfer Data to	Service Stop
		Services	Hijack Execution	III Impair Defenses (6)		Process Discovery		II Email Collection (3)		Cloud Account	'
Valid Accounts (4)		Hijack Execution	Flow (11)	III Indicator Removal on Host (6)	Steal Web Session	Query Registry		II Input Capture (4)	Protocol Tunneling		System Shutdown/Reboot
		Flow (11)	II Process Injection (11)	Indirect Command Execution	Cookie	Remote System Discovery		Man in the Browser	Proxy (4)		
		Implant Container Image	Scheduled Task/Job (5)	II Masquerading (6)	Two-Factor Authentication	II Software Discovery (1)	1	II Man-in-the-Middle (1)	Remote Access Software		

12 Tactics, 290+ Techniques, & Sub-Techniques

Comparing Threat Identification Methods

Simple Threat Identification

- Generic identification of physical, environmental, & man-made threats
- Generic categorization of purposeful, unintentional, or environmental threat categories
- **Generic assessment** of threats & risks based upon potential impacts:
 - Modification of data
 - Data destruction
 - Unavailable accurate records
 - Denial of service
- Compliance-oriented

MITRE ATT&CK Cyber Threat Identification

- Identification of specific threat actors based upon real-world observations of tactics, techniques, & procedures (TTPs)
- Used to understand the process of a cyber attack, instead the end result
- Map threat actor TTPs through different stages of cyber attacks
- Threat-oriented
- Actionable

Using MITRE ATT&CK in Security Assessment Reports

- How can artifacts from penetration testing, vulnerability assessments, code reviews, tech support tickets, logs can be mapped to MITRE ATT&CK?
- How can these artifacts be mapped to MITRE ATT&CK tactics, techniques, and procedures (TTPs)?
- How can threats be identified using these TTPs?
- How does this change the assessment of risk to the system that was assessed?
- How can threats from these threat actors be identified and mitigated against?

Using MITRE ATT&CK in the Cloud

Analytics:

- Use security tools to create, collect, and analyze security analytics from sources such as AWS CloudTrail logs, Office365 audit logs, network device logs, and authentication logs
- Analytics can be collected using other methods such as monitoring processes on endpoints and how processes are using network resources

Detection and Mitigation:

- Identify common vectors of attack or indicators of compromise (IOCs)
- Identify how to detect and mitigate against attacks

Security Engineering:

- Identify gaps in security control coverage
- Make risk-informed decisions on security control deployment
- Improve efficiency of security control investments

Penetration Testing:

- Take results of penetration testing and vulnerability assessments and map them to MITRE ATT&CK to identify how to detect and mitigate against attacks
- Emulate adversary behaviors during penetration testing

Project Outcomes

Lunch & Learn Presentation

- Introduced MITRE ATT&CK to over 150 NIH stakeholders and taught them how to use MITRE ATT&CK in Security Assessment Reports
- Opened dialogue between the A&A team and other teams such as Threat Management and Incident Response (TMIR) on using MITRE ATT&CK
- Opened the door for the use of MITRE ATT&CK across NIH

Wiki Article

 Provides the first written internal resource that NIH Information Security stakeholders can reference on MITRE ATT&CK and its applications

A&A Team Experience

- Very supportive staff and supervisors who mentored me throughout the fellowship
- Supervisors also helped me navigate bureaucracy and understand how bureaucracy could impact my projects
- Meetings with staff across NIH InfoSec including the CIO
- Amazing team dynamics! Staff was incredibly supportive and accessible.
- Inspired me to apply to the TechCongress Innovation Scholars Program