TD 1: GRANDEURS THERMODYNAMIQUES DE REACTION

- Chimie pour l'Agrégation -

Exercice 1: Travail et chaleur échangés à Pconstante, à Vconstant

On considère la réaction de combustion totale du carbone graphite dont l'enthalpie standard à 298 K est de -393,5 kJ.mol⁻¹ (on négligera la variation de volume de la phase solide devant celle de la phase gazeuse).

- a. Quel est le travail fourni au système à 298 K
 - si la réaction est réalisée à Pcste ?
 - si la réaction est réalisée à V_{cst} ?
- **b.** Quelle est la chaleur dégagée par le système à 298 K
 - si la réaction est réalisée à P_{cste} ?
 - si la réaction est réalisée à V_{cst} ?

Exercice 2:

Écrire la réaction de combustion de l'octane liquide (C₈H₁₈).

En supposant que la variation de volume de la phase liquide est négligeable devant celle de la phase gazeuse et que les gaz sont parfaits, calculer la variation de volume molaire ΔV à 298K et 1 bar.

La chaleur <u>dégagée</u> par la combustion dans ces conditions est de 5470 kJ.mol⁻¹.

Calculer la variation d'énergie interne molaire ΔU au cours de cette réaction.

Exercice 3 : Enthalpies de formation et enthalpies de réaction

- **a.** Définir l'enthalpie standard de formation et l'enthalpie standard de combustion de l'éthylène C_2H_4 à 298 K
- **b.** Calculer l'enthalpie standard de formation de l'éthylène C_2H_4 et de l'éthane C_2H_6 à 298 K (tous deux gazeux)
 - c. Calculer l'enthalpie standard à 298 K de la réaction : $C_2H_4 + H_2 \rightarrow C_2H_6$.

Données en kJ.mol⁻¹ à 298 K:

 $\Delta_{comb}H^{\circ} (C_2H_4) = -1386,1$ $\Delta_{comb}H^{\circ} (C_2H_6) = -1539,9$ $\Delta_fH^{\circ} (CO_2) = -392,9$ $\Delta_fH^{\circ} (H_2O \ liquide) = -285,9$

Exercice 4:

Le méthanol peut être préparé par synthèse à partir du monoxyde de carbone et de dihydrogène.

$$CO(gaz) + 2H_2(gaz) \rightarrow CH_3OH (liquide)$$

- a. Calculer l'enthalpie standard de la réaction à 298 K.
- **b.** Calculer l'énergie interne standard de réaction à 298 K.

Données à 298 K:

	$H_2(gaz)$	CO (gaz)	CH ₃ OH (liquide)
$\Delta_{\text{comb}} \text{H}^{\circ} (\text{kJ.mol}^{-1})$	- 286	- 283	- 714

Exercice 5 : Enthalpie de réaction

Connaissant les enthalpies standard de formation suivantes à 298 K :

$$\Delta_{\rm f} {\rm H}^{\circ} ({\rm CH_4, gaz}) = -74.8 \ {\rm kJ.mol^{-1}}$$

$$\Delta_f H^{\circ} (NH_3, gaz) = -46.0 \text{ kJ.mol}^{-1}$$

 $\Delta_f H^{\circ} (Adénine, solide) = +91.1 \text{ kJ.mol}^{-1}$

et la variation d'enthalpie standard de la réaction :

$$CH_4(g) + NH_3(g) \rightarrow HCN(g) + 3 H_2(g)$$
 $\Delta_r H^{\circ}_{298} = 251.2 \text{ kJ.mol}^{-1}$

déterminer la variation d'enthalpie standard de la réaction de synthèse à 298 K d'une mole d'adénine solide à partir de 5 moles d'acide cyanhydrique gazeux (HCN).

Adénine :

Exercice 6:

On dissout 1 mole de NH₄Cl solide (cristal ionique NH₄+Cl⁻) dans 1 litre d'eau à 298 K.

- a. Déterminer l'enthalpie molaire de dissolution de NH4Cl dans l'eau à 298 K.
- **b.** S'agit-il d'un phénomène exothermique ou endothermique ? Quelle serait la variation de température consécutive à cette dissolution si elle était effectuée dans une enceinte adiabatique?

$$\begin{array}{ll} \underline{Donn\acute{e}s}: & \Delta_{f}H^{\circ}\;(NH_{4}Cl\;solide) = -\;315,4\;kJ.mol^{-1}\;;\;\Delta_{f}H^{\circ}\;(NH_{4}{}^{+}\;aq) = -\;132,8\;kJ.mol^{-1}\;;\\ \Delta_{f}H^{\circ}\;(Cl^{-}\;aq) = -\;167,4\;kJ.mol^{-1}\;;\;Cp\;(H_{2}O\;liquide) = 75,3\;J.K^{-1}.mol^{-1}\;;\\ Cp\;(NH_{4}{}^{+}\;aq) = 113,4\;J.K^{-1}.mol^{-1}\;;\;Cp\;(Cl^{-}\;aq) = 136,4\;J.K^{-1}.mol^{-1} \end{array}$$

Exercice 7:

Dans les conditions de température et pression suivantes : $T=298~\mathrm{K}$ et P=1 bar, on considère la réaction :

$$ZnO(sol.) + C \rightarrow Zn + CO(gaz)$$

Préciser l'état standard de référence du zinc et du carbone à 298 K. Calculer l'enthalpie standard de cette réaction.

<u>Données</u>: Température de fusion du zinc sous 1 bar = 693 K

Enthalpie standard à 298 K de la réaction :

$$ZnS_{sol} + \frac{3}{2}O_{2gaz} \rightarrow ZnO_{sol} + SO_{2gaz} \qquad \Delta H_1^0 = -441,65 \text{ kJ}$$

Élément ou composé	Enthalpie standard de formation $\Delta_f H^\circ$ à 298 K (kJ.mol ⁻¹)		
ZnS sol	- 205,24		
SO ₂ gaz	- 296,61		
CO gaz	- 110,44		

Exercice 8:

L'enthalpie standard de combustion du méthane gazeux à 298 K vaut - 890,34 kJ.mol⁻¹.

- **a.** Déterminer l'enthalpie standard de combustion du méthane à 100°C dans le cas où l'eau formée est liquide.
 - **b.** Même question à 150°C, l'eau formée étant sous forme vapeur.

$$\begin{array}{ll} \underline{Donn\acute{e}s}: & C_p \; (CO_2) = 37,12 \; J.K^{\text{-1}}.mol^{\text{-1}} \; ; \; C_p \; (CH_4) = 8,5 \; J.K^{\text{-1}}.mol^{\text{-1}} \; ; \\ & C_p \; (O_2) = 29,4 \; J.K^{\text{-1}}.mol^{\text{-1}} \; ; \; C_p (H_2O \; liq) = 75,3 \; J.K^{\text{-1}}.mol^{\text{-1}} \; ; \\ & C_p (H_2O \; gaz) = 33,6 \; J.K^{\text{-1}}.mol^{\text{-1}} \; ; \; \Delta_{vap} H^\circ \; (H_2O) \; \grave{a} \; 100^\circ C = 43,89 \; kJ.mol^{\text{-1}} \end{array}$$

Exercice 9:

On donne: S°_{298} (C $_{grap.}$) = 5,72 J.K⁻¹.mol⁻¹; S°_{298} (Ca $_{sol.}$) = 41,6 J.K⁻¹.mol⁻¹; S°_{298} (O2 $_{gaz}$) = 205 J.K⁻¹.mol⁻¹; S°_{298} (CaO $_{sol.}$) = 39,7 J.K⁻¹.mol⁻¹; S°_{298} (CaCO_{3 sol.}) = 92,8 J.K-1.mol⁻¹; S°_{298} (CO_{2 $_{gaz}$}) = 213,8 J.K⁻¹.mol⁻¹

- **a.** Calculer à 298 K : $\Delta_f S^{\circ}(C_{graph})$, $\Delta_f S^{\circ}(Ca_{sol})$, $\Delta_f S^{\circ}(O_{2 gaz})$, $\Delta_f S^{\circ}(CaO_{sol})$, $\Delta_f S^{\circ}(CaCO_{3 sol})$, $\Delta_f S^{\circ}(CO_{2 gaz})$.
 - **b.** Comparer les entropies de formation aux entropies absolues.
 - **c.** Calculer $\Delta_r S^{\circ}$ de la réaction de décomposition de CaCO₃ en CaO sol et CO_{2 gaz}.
- **d.** Comment déterminer le $\Delta_r S^\circ$ de cette dernière réaction à 500 K ? (seule une réponse littérale est demandée)

Exercice 10:

Quelle est la température maximale <u>théoriquement obtenue</u> à la sortie d'un chalumeau au propane-oxygène fonctionnant à l'air libre, les gaz réactifs étant à 298 K ?

<u>Données</u>: Les C_p sont supposés constants dans le domaine de température considéré.

 $\begin{array}{lll} \Delta_{f}H^{\circ} \; (C_{3}H_{8} \; gaz) = -103,75 \; kJ.mol^{-1} \\ \Delta_{f}H^{\circ} \; (CO_{2}) = -393,14 \; kJ.mol^{-1} \\ \Delta_{f}H^{\circ} \; (H_{2}O \; liq) = -285,56 \; kJ.mol^{-1} \\ \Delta_{f}H^{\circ} \; (H_{2}O \; gaz) = -241,59 \; kJ.mol^{-1} \\ \end{array} \qquad \begin{array}{lll} \Delta_{vap}H^{\circ} \; (H_{2}O) = 43,97 \; kJ.mol^{-1} \; \grave{a} \; 373 \; K \\ C_{p} \; (CO_{2}) = 37,08 \; J.K^{-1}.mol^{-1} \\ C_{p} \; (H_{2}O \; liq) = 75,23 \; J.K^{-1}.mol^{-1} \\ C_{p} \; (H_{2}O \; gaz) = 33,54 \; J.K^{-1}.mol^{-1} \end{array}$

Exercice 11:

Pour déterminer l'énergie calorifique d'un aliment, on le brûle dans un excès d'oxygène sous une pression de 1,5 bar au sein d'un calorimètre de 1 litre parfaitement isolé thermiquement. On se propose de mesurer l'énergie calorifique du glucose $C_6H_{12}O_6$. Pour cela, on dispose d'un calorimètre de capacité calorifique globale 11,29 kJ.K⁻¹ (eau + récipient + accessoires). On y introduit 0,750 g de glucose et on mesure la température avant la combustion, soit $T_i = 20,12^{\circ}C$, et après combustion, soit $T_f = 21,16^{\circ}C$.

Calculer l'enthalpie molaire de combustion du glucose à 20,12 $^{\circ}$ C en supposant les gaz parfaits dans le calorimètre.

$$\frac{\text{Donn\'ees}}{\text{C}_{v}\left(\text{CO}_{2}\right)} = 31,77 \text{ J.K}^{-1}.\text{mol}^{-1} \text{ ; C}_{v}\left(\text{H}_{2}\text{O liq}\right) = 75,24 \text{ J.K}^{-1}.\text{mol}^{-1} \text{ ; } \\ \text{C}_{v}\left(\text{O}_{2}\right) = 18,39 \text{ J.K}^{-1}.\text{mol}^{-1}$$

Exercice 12: Enthalpies de liaison

Calculer l'enthalpie molaire standard de formation de l'éthanol C₂H₅OH gazeux à 298 K. Comparer à la valeur expérimentale : – 238,05 kJ.mol⁻¹

<u>Données</u>: $\Delta_{\text{sub}}\text{H}^{\circ}$ (C_{graphite}) = +713 kJ.mol⁻¹ et enthalpies moyennes de liaison en kJ.mol⁻¹:

0=0	О—Н	Н—Н	С—Н	C—C	С-О
-495	-463	-436	-416	-342	-344

Exercice 13:

- a. Écrire les formules de Lewis du méthanol, du dioxyde de carbone et du monoxyde de carbone.
- **b.** Calculer <u>l'enthalpie de dissociation</u> de la liaison entre C et O dans le dioxyde et le monoxyde de carbone et dans le méthanol.

c. Montrer que l'on peut établir une relation entre <u>l'enthalpie de dissociation</u> et la nature de la liaison.

Données à 298 K : $\Delta_{\text{sub}}H^{\circ}$ (C graphite) = +713 kJ.mol⁻¹

Enthalpies moyennes de liaison en kJ.mol⁻¹:

0=0	О—Н	Н—Н	С-Н	C-C
-495	-463	-436	-416	-342

Enthalpies standard de formation :

	CO	CO_2	CH ₃ OH (gaz)	CH ₃ OH (liquide)
$\Delta_{\rm f} {\rm H}^{\circ} ({\rm kJ.mol^{-1}})$	- 110	- 395	- 201	- 23

Exercice 14: Enthalpie réticulaire

Déterminer l'enthalpie réticulaire du chlorure de magnésium à l'aide des données suivantes à 298 K (en kJ.mol-1) :

$$\begin{split} &\Delta_{f}H^{\circ}(Mg,\,g)=147,7\;;\;\Delta_{f}H^{\circ}(MgCl_{2},\,sd)=-641,3\;;\;\Delta_{dis}H^{\circ}(Cl_{2})=240,0\;;\;\Delta_{att}H^{\circ}(Cl)=-348,6\;;\\ &Mg:\;\Delta_{ion}H^{\circ}{}_{1}=737,7\;;\;\Delta_{ion}H^{\circ}{}_{2}=1451. \end{split}$$

Exercice 15 : Energie de résonance

- **a.** Calculer l'enthalpie standard, $\Delta_r H^{\circ}_{1}(298 \text{ K})$, de la réaction d'hydrogénation du buta-1,3-diène en butane en considérant les liaisons π localisées.
- **b.** On mesure expérimentalement, pour cette réaction, $\Delta_r H^{\circ}_{2}(298 \text{ K}) = -238,9 \text{ kJ.mol}^{-1}$ à 298 K. Déduire de $\Delta_r H^{\circ}_{1}$ et $\Delta_r H^{\circ}_{2}$, l'enthalpie standard de formation du buta-1,3-diène dans chaque cas. Conclusion.

En déduire l'énergie de résonance du buta-1,3-diène.

Données à 298 K (en kJ.mol⁻¹) : $\Delta_f H^{\circ}$ (butane) = - 126,0 ; enthalpie standard de la réaction d'hydrogénation du but-1-ène : $\Delta_r H^{\circ}$ = - 126,8.

Exercice 16 : Proportions non stæchiométriques

On mélange dans une enceinte isolée, une mole de méthane et cinq moles de dioxygène. Une étincelle produit la combustion du méthane.

- a. Quel est l'avancement de la réaction lorsque 1 mole d'eau a été formée ?
- **b.** Quelle est la composition finale du mélange lorsque 1 mole d'eau a été formée ?
- c. Quel est l'avancement maximum de la réaction ?
- **d.** Quelle est la chaleur dégagée par la réaction si 1 mole d'eau est formée ? Et si la réaction est totale ?

Mêmes questions si on mélange cinq moles de méthane et une mole de dioxygène. Mêmes questions si on mélange cinq moles de méthane et trois moles de dioxygène.

Données : $\Delta_{comb}H^{\circ}$ (CH₄) = -802 kJ.mol⁻¹