Digital Logic Circuits 'Combinational Logic' ELEC2200 Summer 2009

David J. Broderick brodedj@auburn.edu http://www.auburn.edu/~brodedj Office: Broun 360

Boolean Algebra Examples

- A+B·C
- $=\overline{A}\cdot\overline{B}\cdot\overline{C}$ (DeMorgan's)
- = $\overline{A} \cdot (\overline{B} + \overline{C})$ (DeMorgan's)
- $=\overline{A}\cdot\overline{B}+\overline{A}\cdot\overline{C}$ (Distributivity)

Both expressions are implementations of the same switching function

Boolean Algebra Examples

- A·(B+C)+A'·B
- A·B+A·C+A'·B (Distributivity)
- B+A·C (Absorption)
- B·A·C (DeMorgan's)
- $\overline{B} \cdot (\overline{A} + \overline{C})$ (DeMorgan's)
- $\overline{B} \cdot \overline{A} + \overline{B} \cdot \overline{C}$ (Distributivity)

Boolean Algebra Examples

- A·B·C+A·D+B·D+C·D
- A·B·C+(A+B)·D+C·D (Absorption)
- A·B·C+A·B·D+C·D (DeMorgan's)
- A·B·C+A·B·D (Consensus)
- A·B·C+(A+B)·D (DeMorgan's)
- A·B·C+A·D+B·D (Absorption)

Boolean Algebra

- Application of Boolean algebra does simplify expressions
- Requires some creativity, some vigilance, and a little luck
- Can a better method be developed?

Algebraic Forms

Literal: A variable or its inverse

A, B, C,
$$\overline{A}$$
, B', \overline{C}

Product term: Two literals joined by an AND

$$A \cdot B$$
, $\overline{B} \cdot C$, $B \cdot \overline{C}$, $\overline{A} \cdot \overline{C}$

Sum term: Two literals joined by an OR

A+B,
$$\overline{B}+C$$
, B+ \overline{C} , $\overline{A}+\overline{C}$

 Sum of Products(SOP): Multiple product terms joined by ORs

$$A \cdot B + \overline{B} \cdot C + B \cdot \overline{C} + \overline{A} \cdot \overline{C}$$

 Product of Sums(POS): Multiple sum terms joined by ANDs

$$(A+B)\cdot(\overline{B}+C)\cdot(B+\overline{C})\cdot(\overline{A}+\overline{C})$$

- Minterm: A product term in which each variable, or its complement, appears exactly once
- Maxterm: A sum term in which each variable, or its complement, appears exactly once
- Canonical SOP: A SOP expressed using only minterms
- Canonical POS: A POS expressed using only maxterms

Canonical SOP Example:

$$f(A,B,C)=A\cdot B\cdot C+A\cdot \overline{B}\cdot C+A\cdot B\cdot \overline{C}+\overline{A}\cdot B\cdot \overline{C}$$

Canonical POS Example:

$$f(A,B,C)=(A+B+C)\cdot(A+\overline{B}+C)\cdot(A+B+\overline{C})\cdot(\overline{A}+B+\overline{C})$$

- Canonical expressions remove ambiguity in representing a particular switching function
 - There is only one canonical expression of a switching function
- Canonical expressions allow for simplified expression with a familiar form

Examining our switching functions (n=2) and selecting f_B(A,B) for an example

Α	В	f	f	f	f	f	f	f	f	f	f	f	f	f	f	f	f
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

- Each input case that produces an output of 1 can be expressed as an individual minterm
- $f_B(A,B) = \overline{A} \cdot \overline{B} + \overline{A} \cdot B + A \cdot B$
- $f_{B}(A,B)=\sum m(0,1,3)$

• $f_B(A,B) = \overline{A} \cdot \overline{B} + \overline{A} \cdot B + A \cdot B$

Α	В	Ā	\overline{B}	Ā٠	<u>A</u> .	A٠	$\overline{A} \cdot \overline{B} + \overline{A} \cdot B + A \cdot B$
				\overline{B}	В	В	
0	0	1	1	1	0	0	1
0	1	1	0	0	1	0	1
1	0	0	1	0	0	0	0
1	1	0	0	0	0	1	1

Minterms for f(A,B,C)

Row#	Inputs	Minterm #	Minterm
0	000	m(0)	$\overline{A} \cdot \overline{B} \cdot \overline{C}$
1	001	m(1)	$\overline{A} \cdot \overline{B} \cdot C$
2	010	m(2)	$\overline{A} \cdot \overline{B} \cdot \overline{C}$
3	011	m(3)	A·B·C
4	100	m(4)	$A \cdot \overline{B} \cdot \overline{C}$
5	101	m(5)	A·B·C
6	110	m(6)	A·B· C
7	111	m(7)	A·B·C

Examining our switching functions (n=2) and selecting f₂(A,B) for an example

Α	В	f	f	f	f	f	f	f	f	f	f	f	f	f	f	f	f
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

- Each input case that produces an output of 0 can be expressed as an individual maxterm
- $f_2(A,B)=(A+B)\cdot(\overline{A}+B)\cdot(\overline{A}+\overline{B})$
- $f_2(A,B)=\Pi M(0,2,3)$

• $f_2(A,B)=(A+B)\cdot(\overline{A}+B)\cdot(\overline{A}+\overline{B})$

Α	В	A	\overline{B}	A+	A+	$\overline{A}+\overline{B}$	$(A+B)\cdot(\overline{A}+$
				B	В	1	$B)\cdot(\overline{A}+\overline{B})$
0	0	1	1	0	1	1	0
0	1	1	0	1	1	1	1
1	0	0	1	1	0	1	0
1	1	0	0	1	1	0	0

Maxterms for f(A,B,C)

Row#	Inputs	Maxterm #	Maxte <mark>rm</mark>
0	000	M(0)	A+B+C
1	001	M(1)	A+B+ C
2	010	M(2)	A+B+C
3	011	M(3)	A+B+C
4	100	M(4)	A+B+C
5	101	M(5)	A+B+C
6	110	M(6)	Ā+B+C
7	111	M(7)	$\overline{A}+\overline{B}+\overline{C}$

Canonical Forms

 What is the canonical SOP expression for f(A,B,C)=∑m(1,2,5,7)?

 What is the canonical POS expression for f(A,B,C)=ΠM(0,3,4,6)?

Canonical Forms

- What is the canonical SOP expression for f(A,B,C)=∑m(1,2,5,7)?
 - $f(A,B,C)=\overline{A}\cdot\overline{B}\cdot C+\overline{A}\cdot B\cdot \overline{C}+A\cdot \overline{B}\cdot C+A\cdot B\cdot C$

- What is the canonical POS expression for f(A,B,C)=ΠM(0,3,4,6)?
 - $f(A,B,C)=(A+B+C)\cdot(A+\overline{B}+\overline{C})\cdot(\overline{A}+B+C)\cdot(\overline{A}+\overline{B}+C)$

Minimization

- We have looked at heuristic methods
 - Boolean Algebra
 - May result in suboptimal expression
- Now a look at methodical methods
 - Karnaugh maps
 - Quine-McCluskey method
 - Petrick's method
 - Generalized Consensus
 - More consistent, optimal results

Minimization

- Our goal: find an SOP/POS expression that contains the fewest terms and literals for a particular switching function
- Minimum SOP(MSOP): fewest product terms
- Minimum POS(MPOS): fewest sum terms

- Method of minimization
- Useful for up to 6 variables
- An n-variable K-map has 2ⁿ cells that correspond to the 2ⁿ rows of a truth table
- Arrangement of cells is important
- Output of switching function is then used to fill in cells

The 2 variable K-map

A\B	0	1		
0	Z_0	Z ₁		
1	Z	Z_3		

Row	Α	В	Z		
0	0	0	Z_{0}		
1	0	1	Z ₁		
2	1	0	Z ₂		
3	1	1	Z_3		

 Cell are positioned so that adjacent cells correspond to a one-bit change in input

3 variable K-map

AB\C	0	1
00	Z_0	Z ₁
01	Z ₂	Z_3
11	Z ₆	Z ₇
10	Z ₄	Z ₅

Row		Α	В	С	Z
0	0	0	0	Z_{0}	
1	1		0	1	Z ₁
2		0	1	0	Z_{2}
3		0	1	1	Z_3
4		1	0	0	Z ₄
5		1	0	1	Z ₅
6	1	1	0	Z_{6}	
7	1	1	1	Z ₇	

- Note reordering in K-Map
- Note wrapping of 1-bit change

4 variable K-map

AB\C	D	00	01	11	10
	00	Z_{0}	Z_{1}	Z_3	Z_2
	01	Z ₄	Z ₅	Z ₇	Z_{6}
	11	Z ₁₂	Z ₁₃	Z ₁₅	Z ₁₄
	10	Z ₈	Z ₉	Z ₁₁	Z ₁₀

5 variable K-map

A=0

BC\DE	00	01	11	10
00	Z_0	Z ₁	Z_3	Z ₂
01	Z ₄	Z_{5}	Z ₇	Z ₆
11	Z ₁₂	Z ₁₃	Z ₁₅	Z ₁₄
10	Z ₈	Z_9	Z ₁₁	Z ₁₀

A <mark>=1</mark>	BC\DE	00	01	11	10
	00	Z ₁₆	Z ₁₇	Z ₁₉	Z ₁₈
	01	Z ₂₀	Z ₂₁	Z ₂₃	Z ₂₂
	11	Z ₂₈	Z ₂₉	Z ₃₁	Z ₃₀
	10	Z ₈	Z ₉	Z ₁₁	Z ₁₀

• 6 variable K-map

A=0	CD\EF	00	01	11	10
B=0	00	Z ₀	Z ₁	Z_3	Z_2
	01	Z ₄	Z ₅	Z ₇	Z ₆
	11	Z ₁₂	Z ₁₃	Z ₁₅	Z ₁₄
	10	Z ₈	Z ₉	Z ₁₁	Z ₁₀

A=0	CD\EF	00	01	11	10
B=1	00	Z ₁₆	Z ₁₇	Z ₁₉	Z ₁₈
				Z ₂₃	
	11	Z ₂₈	Z ₂₉	Z ₃₁	Z ₃₀
	10	Z ₂₄	Z ₂₅	Z ₂₇	Z ₂₆

A=1	CD\EF	00	01	11	<mark>1</mark> 0
B=1	00	Z ₄₈	Z ₄₉	Z ₅₁	Z ₅₀
	01	Z ₅₂	Z ₅₃	Z ₅₅	Z ₅₄
	11	Z ₆₀	Z ₆₁	Z ₆₃	Z ₆₂
	10	Z ₅₆	Z ₅₇		Z ₅₈

	CD\EF	00	01	11	10
B=0	00	Z ₃₂	Z ₃₃	Z ₃₅	Z ₃₄
	01	Z ₃₆	Z ₃₇	Z ₃₉	Z ₃₈
-	11	Z ₄₄	Z ₄₅	Z ₄₇	Z ₄₆
_	10	Z ₄₀	Z ₄₁	Z ₄₃	Z ₄₂

 Let's populate a K-map f(A,B,C,D)= ∑m(1,2,3,6,8,9,10,12,13,14)

AB\CD	00	01	11	10
00				
01				
11				
10				

Row	Α	В	С	D	Z
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

 Let's populate a K-map f(A,B,C,D)=
 ∑m(1,2,3,6,8,9,10,12,13,14)

AB\CD	00	01	11	10
00		1	1	1
01				1
11	1	1		1
10	1	1		1

Row	Α	В	С	D	Z
0	0	0	0	0	0
1 2 3	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

- We now group the cells with 1's together
- Taking a simple group:
- The two minterms
 associated with this
 group are:

•	A·	B-	$\overline{\mathbb{C}}$ - $ $	D+/	4-1	B-(C-1	D
---	----	----	-------------------------------	-----	-----	-----	-----	---

AB\	CD	00	01	11	10
	00		1	1	1
	01				1
	11	1	1		1
	10	1	1		1

- Recall Shannon's Expansion Theorem
- $f(A,B,C,D)=C\cdot f(A,B,1,D)+C\cdot f(A,B,0,D)$
- A·B·C·D+A·B·C·D
- $\overline{C} \cdot \overline{A} \cdot \overline{B} \cdot D + C \cdot \overline{A} \cdot \overline{B} \cdot D$
- $(\overline{C}+C)\cdot\overline{A}\cdot\overline{B}\cdot D$
- A·B·D

AB\CD	00	01	11	10
00		1	1	1
01				1
11	1	1		1
10	1	1		1

This is minimal product term for this group

- Applying this to other groups
- $\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + \overline{A} \cdot B \cdot C \cdot \overline{D}$
- A·C·D
- A·B·C·D+A·B·C·D
- A.C.D
- A·C·D+A·C·D

•	(A	+ A) - (C·	D
---	----	------------	-------	----	---

•	$C \cdot \overline{D} \leftarrow Minimal$	product	term	for	two	group)S
	together						

AB\CD	00	01	11	10
00		1	1	1
01				1
11	1	1		1
10	1	1		1

- Rules for grouping K-map cells:
 - Groups must contain 2ⁿ cells
 - Groups must be rectangular
 - All cells must contain equivalent values (1,0,d)
 - A group must cover a cell that is not covered by any other group
 - The larger the groups, the simpler the expression
 - Fewer groups results in fewer terms

- Another look at our example
- 3 groups=3 terms
- A·B·D
- C-<u>D</u>
- A · C
- $f(A,B,C,D)=\sum m(1,2,3,6,8,9,10,12,13,14)$
- f(A,B,C,D)=A·B·C·D+A
- $f(A,B,C,D)=\overline{A}\cdot\overline{B}\cdot D+C\cdot\overline{D}+A\cdot\overline{C}$

- If you can't see the expression corresponding to a group:
- Write all input combinations, order doesn't matter
- If column contains multiple values, cross it out
- Use what's left to form term

AB\CD	00	01	11	10
00		1	1	1
01				1
11	1	1		1
10	1	1		1

- We can minimize POS expressions too
- $f(A,B,C,D)=\Pi M(0,2,8,10,12,14)$
- Maxterm, fill in zeros

AB\CD		00	01	11	10
	00	0			0
	01				
	11	0			0
	10	0			0

- We can minimize POS expressions too
- $f(A,B,C,D)=\Pi M(0,2,8,10,12,14)$
- Worst case, 6 groups

AB\CD	00	01	11	10
00	0			0
01				
11	0			0
10	0			0

- $f(A,B,C,D)=(A+B+C+D)\cdot(A+B+\overline{C}+D)\cdot(\overline{A}+\overline{B}+C+D)\cdot(\overline{A}+B+C+D)\cdot(\overline{A}+B+C+D)$ +C+D)·(A+B+C+D)·(A+B+C+D)
- This is the canonical POS expression

- We can minimize POS expressions too
- $f(A,B,C,D)=\Pi M(0,2,8,10,12,14)$
- A reasonable guess, 4 groups

AB\CD	00	01	11	10
00	0			0
01				
11	0			0
10	0			0

- $f(A,B,C,D)=(A+B+C+D)\cdot(A+B+\overline{C}+D)\cdot(\overline{A}+C+D)\cdot(\overline{A}+\overline{C}+D)$
- An improvement, but we can do better

- We can minimize POS expressions too
- $f(A,B,C,D)=\Pi M(0,2,8,10,12,14)$
- Remember wrapping, 2 groups!

AB\CD	00	01	11	10
00	0			0
01				
11	0			0
10	0			0

- $f(A,B,C,D)=(B+D)\cdot(\overline{A}+D)$
- This is the MPOS expression

- All expressions implement the same switching function
- $f(A,B,C,D)=(A+B+C+D)\cdot(A+B+\overline{C}+D)\cdot(\overline{A}+\overline{B}+C+D)\cdot(\overline{A}+B+C+D)\cdot(\overline{A}+B+C+D)$ +C+D)·(A+B+C+D)·(A+B+C+D)
- $f(A,B,C,D)=(A+B+C+D)\cdot(A+B+\overline{C}+D)\cdot(\overline{A}+C+D)\cdot(\overline{A}+\overline{C}+D)$
- $f(A,B,C,D)=(B+D)\cdot(\overline{A}+D)$
- Simplicity=Lower cost, faster response, smaller circuit, etc...
- We'll define these metrics more formally shortly

It's Okay to Not Care

- Sometimes input combinations are of no concern
 - They may not exist.
 - BCD uses only 10 of 16 possible inputs
- If we don't care, output can be either a 1 or a 0
- We can choose whichever one results in the simplest expression

'Don't Cares'

- How do we denote a don't care condition
 - Minterm: $f(A,B,C)=\sum m(1,3,6,7)+d(2)$
 - Maxterm: $f(A,B,C)=\Pi M(0,4,5)+d(2)$
- In truth tables and K-maps
 - x,d,-,2 represent a don't care condition
 - x is probably most common
- Let's look at the minterm expresison

'Don't Care'

• $Z=f(A,B,C)=\sum m(1,3,6,7)+d(2)$

Α	В	С	Z
0	0	0	
0	0	1	1
0	1	0	X
0	1	1	1
1	0	0	
1	0	1	
1	1	0	1
1	1	1	1

A\BC	00	01	11	10
0		1	1	X
1	7		1	1

'Don't Care'

- If we don't use don't care condition
 - A·C+A·B
 - Two terms
 - 4 literals

A\BC	00	01	11	10
0		1	1	X
1			1	1

- If we include the don't care cell
 - A-C+B
 - Still two terms
 - 3 literals

A\BC	00	01	11	10
0		1	1	Х
1			1	1

- Common Display Method
- A segment is 'on' if a '1' is present
- 4 inputs (BCD value)
- 7 outputs (Segment value)
- 7 individual expressions

- All inputs shared by all 7 circuits
- Each circuit → One truth table column
- Each circuit → One K-map

Digit	In3	ln2	ln1	In0	а	b	С	d	е	f	g	
0	0	0	0	0	1	1	1	1	1	1	0	
1	0	0	0	1	0	4	-	0	0	0	0	
2	0	0	1	0	1	4	0	1	1	0	1	
3	0	0	1	1	1	1	1	1	0	0	1	
4	0	1	0	0	0	1	1	0	0	1	1	
5	0	1	0	1	1	0	1	1	0	1	1	
6	0	1	1	0	1	0	1	1	1	1	1	
7	0	1	1	1	1	1	1	0	0	0	0	
8	1	0	0	0	1	1	1	1	1	1	1	
9	1	0	0	1	1	1	1	0	0	1	1	
Α	1	0	1	0	Х	Х	Х	Х	Х	Х	Х	
В	1	0	1	1	Х	Х	Х	х	Х	Х	Х	
С	1	1	0	0	Х	Χ	Х	Х	Х	Х	Х	
D	1	1	0	1	Х	Х	Х	Х	Х	Х	Х	
Е	1	1	1	0	Х	Χ	Х	Х	Х	Х	Х	
F	1	1	1	1	Х	Х	Х	Х	Х	Х	Х	

- After we have expressions we must
 - Draw logic diagram
 - Analyze size and performance
 - Simulate for design validation
 - Optimize
 - Re-simulate optimized desing

