

Nonparametric Bayesian Methods: Models, Algorithms, and Applications

Tamara Broderick

ITT Career Development Assistant Professor Electrical Engineering & Computer Science MIT

Bayesian methods that are not parametric

• Bayesian methods that are not parametric (wait!)

- Bayesian methods that are not parametric
- Bayesian

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian methods that are not parametric
- Bayesian
 - $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$
- Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

1

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

"Wikipedia phenomenon"

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

1

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

[wikipedia.org]

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

0.20 0.15 0.10 0.05 0.00 1 [Escobar, West 1995; Ghosal et al 1999]

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian methods that are not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

A theoretical motivation: De Finetti's Theorem

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence $X_1, X_2, ...$ is infinitely exchangeable if and only if, for all N and some distribution P:

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence X_1, X_2, \ldots is infinitely exchangeable if and only if, for all N and some distribution P:

$$p(X_1, \dots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n | \theta) P(d\theta)$$

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence $X_1, X_2, ...$ is infinitely exchangeable if and only if, for all N and some distribution P:

$$p(X_1, \dots, X_N) = \int_{\theta} \prod_{n=1}^N p(X_n | \theta) P(d\theta)$$

Motivates:

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence $X_1, X_2, ...$ is infinitely exchangeable if and only if, for all N and some distribution P:

Stribution
$$P$$
:
$$p(X_1, \dots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n | \theta) P(d\theta)$$

- Motivates:
 - Parameters and likelihoods

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence $X_1, X_2, ...$ is infinitely exchangeable if and only if, for all N and some distribution P:

Stribution
$$P$$
:
$$p(X_1, \dots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n | \theta) P(d\theta)$$

- Motivates:
 - Parameters and likelihoods
 - Priors

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence $X_1, X_2, ...$ is infinitely exchangeable if and only if, for all N and some distribution P:

Stribution
$$P$$
:
$$p(X_1, \dots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n | \theta) P(d\theta)$$

- Motivates:
 - Parameters and likelihoods
 - Priors
 - "Nonparametric Bayesian" priors

• Example problem: clustering

- Example problem: clustering
- Example NPBayes model: Dirichlet process

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes?
 - What does an infinite/growing number of parameters really mean (in NPBayes)?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes?
 - What does an infinite/growing number of parameters really mean (in NPBayes)?
 - Why is NPBayes challenging but practical?

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

• Finite Gaussian mixture model (K=2 clusters) $z_n \overset{iid}{\sim} \mathrm{Categorical}(\rho_1, \rho_2)$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

• Finite Gaussian mixture model (K=2 clusters) $z_n \stackrel{iid}{\sim} \mathrm{Categorical}(\rho_1, \rho_2)$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$

 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Finite Gaussian mixture model (K=2 clusters)

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$

 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

• Don't know μ_1, μ_2

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Finite Gaussian mixture model (K=2 clusters)

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$

 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

• Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$

 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know ρ_1, ρ_2

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$

 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know $ho_1,
 ho_2$ $ho_1 \sim \operatorname{Beta}(a_1, a_2)$ $ho_2 = 1
 ho_1$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Finite Gaussian mixture model (K=2 clusters)

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$
 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

• Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$

• Don't know
$$ho_1,
ho_2$$

$$ho_1 \sim \operatorname{Beta}(a_1, a_2)$$

$$ho_2 = 1 -
ho_1$$

 Inference goal: assignments of data points to clusters, cluster parameters

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$
 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know $ho_1,
 ho_2$ $ho_1 \sim \operatorname{Beta}(a_1, a_2)$ $ho_2 = 1
 ho_1$
- Inference goal: assignments of data points to clusters, cluster parameters

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$
 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know $ho_1,
 ho_2$ $ho_1 \sim \mathrm{Beta}(a_1, a_2)$ $ho_2 = 1
 ho_1$
- Inference goal: assignments of data points to clusters, cluster parameters

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$
 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know $ho_1,
 ho_2$ $ho_1 \sim \operatorname{Beta}(a_1, a_2)$ $ho_2 = 1
 ho_1$
- Inference goal: assignments of data points to clusters, cluster parameters

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 ho_1 ho_2

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$

 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know $ho_1,
 ho_2$ $ho_1 \sim \operatorname{Beta}(a_1, a_2)$ $ho_2 = 1
 ho_1$
- Inference goal: assignments of data points to clusters, cluster parameters

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

• Gamma function Γ

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $\rho_1 \in (0, 1)$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $\rho_1 \in (0, 1)$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$

[demo]

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $a_1, a_2 > 0$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$

[demo]

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $a_1, a_2 > 0$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - $a_1 > a_2$

[demo]

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $a_1, a_2 > 0$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - \bullet $a_1 > a_2$

[demo]

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - \bullet $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

$$p(\rho_1,z) \propto$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

$$p(\rho_1, z) \propto \rho_1^{\mathbf{1}\{z=1\}} (1 - \rho_1)^{\mathbf{1}\{z=2\}}$$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - \bullet $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - \bullet $a_1 > a_2$

[demo]

$$p(\rho_1, z) \propto \rho_1^{\mathbf{1}\{z=1\}} (1 - \rho_1)^{\mathbf{1}\{z=2\}} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - \bullet $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

$$p(\rho_1, z) \propto \rho_1^{\mathbf{1}\{z=1\}} (1 - \rho_1)^{\mathbf{1}\{z=2\}} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

 $p(\rho_1|z) \propto$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - \bullet $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

$$p(\rho_1, z) \propto \rho_1^{\mathbf{1}\{z=1\}} (1 - \rho_1)^{\mathbf{1}\{z=2\}} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
$$p(\rho_1|z) \propto \rho_1^{a_1 + \mathbf{1}\{z=1\} - 1} (1 - \rho_1)^{a_2 + \mathbf{1}\{z=2\} - 1}$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m+1) = m!$
 - for x > 0: $\Gamma(x+1) = x\Gamma(x)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a = a_1 = a_2 \to \infty$
 - \bullet $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

$$p(\rho_1, z) \propto \rho_1^{\mathbf{1}\{z=1\}} (1 - \rho_1)^{\mathbf{1}\{z=2\}} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$p(\rho_1|z) \propto \rho_1^{a_1 + \mathbf{1}\{z=1\} - 1} (1 - \rho_1)^{a_2 + \mathbf{1}\{z=2\} - 1} \propto \text{Beta}(\rho_1|a_1 + \mathbf{1}\{z=1\}, a_2 + \mathbf{1}\{z=2\})$$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$$

Generative model

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Finite Gaussian mixture model (K clusters)

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

Generative model

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Finite Gaussian mixture model (K clusters)

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho_{1:K})$$

Generative model

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Finite Gaussian mixture model (K clusters)

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho_{1:K})$$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k-1}$$

 $a_k > 0$

Dirichlet distribution review
$$a_k > 0$$

Dirichlet $(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^K a_k)}{\prod_{k=1}^K \Gamma(a_k)} \prod_{k=1}^K \rho_k^{a_k-1}$ $\sum_{l=1}^{k} \rho_k = 1$

$$a_k > 0$$

$$\rho_k \in (0, 1)$$

$$\sum \rho_k = 1$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

$$\rho_k \in (0,1)$$

$$\sum \rho_k = 1$$

• What happens?

$$a_k > 0$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

$$\rho_k \in (0, 1]$$

$$\rho_k \in (0,1) \\
\sum_k \rho_k = 1$$

$$a = (0.5, 0.5, 0.5)$$

$$a = (5,5,5)$$

$$a = (40, 10, 10)$$

What happens?

$$a_k > 0$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

$$\rho_k \in (0,1]$$

$$\rho_k \in (0,1)$$

$$\sum_k \rho_k = 1$$

$$a = (0.5, 0.5, 0.5)$$

$$a = (5,5,5)$$

$$a = (40, 10, 10)$$

• What happens?
$$a = a_k = 1$$

$$a = a_k = 1$$

$$a_k > 0$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

$$\rho_k \in (0,1)$$

$$\sum_{k} \rho_k = 1$$

$$a = (0.5, 0.5, 0.5)$$

$$a = (5,5,5)$$

$$a = (40, 10, 10)$$

• What happens?
$$a = a_k = 1$$

$$a = a_k = 1$$

$$a_k > 0$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

$$\rho_k \in (0,1)$$

$$\sum_{k} \rho_k = 1$$

$$a = (0.5, 0.5, 0.5)$$

$$a = (5,5,5)$$

$$a = (40, 10, 10)$$

• What happens?
$$a = a_k = 1$$
 $a = a_k \to 0$

$$a = a_k = 1$$

$$a = a_k \rightarrow 0$$

$$a_k > 0$$

$$\rho_k \in (0,1)$$

$$\rho_k \in (0, 1]$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

$$\sum_{k} \rho_k = 1$$

$$a = (0.5, 0.5, 0.5)$$

$$a = (5,5,5)$$

$$a = (40, 10, 10)$$

• What happens?
$$a = a_k = 1$$
 $a = a_k \to 0$ $a = a_k \to \infty$

$$a = a_k = 1$$

$$a = a_k \rightarrow 0$$

$$a = a_k \to \infty$$
 [demo]

$$a_k > 0$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

$$\rho_k \in (0,1)$$

$$\sum_{k} \rho_k = 1$$

$$a = (0.5, 0.5, 0.5)$$

$$a = (5,5,5)$$

$$a = (40, 10, 10)$$

• What happens? $a = a_k = 1$ $a = a_k \to 0$ $a = a_k \to \infty$

$$a = a_k = 1$$

$$a = a_k \rightarrow 0$$

$$a = a_k \to \infty$$

Dirichlet is conjugate to Categorical

$$a_k > 0$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

$$\rho_k \in (0,1)$$

$$\sum_{k} \rho_k = 1$$

$$a = (0.5, 0.5, 0.5)$$

$$a = (5,5,5)$$

$$a = (40, 10, 10)$$

• What happens? $a = a_k = 1$ $a = a_k \to 0$

$$a = a_k = 1$$

$$a = a_k \rightarrow 0$$

$$a=a_k\to\infty$$

 Dirichlet is conjugate to Categorical $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z \sim \text{Cat}(\rho_{1:K})$

$$a_k > 0$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

$$\sum \rho_k \in (0,1)$$

$$\sum \rho_k = 1$$

$$a = (5,5,5)$$

$$a = (40, 10, 10)$$

• What happens? $a = a_k = 1$ $a = a_k \to 0$

$$a = a_k = 1$$

$$a = a_k \rightarrow 0$$

$$a = a_k \to \infty$$

Dirichlet is conjugate to Categorical

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z \sim \text{Cat}(\rho_{1:K})$$

$$\rho_{1:K}|z \stackrel{d}{=} \text{Dirichlet}(a'_{1:K}), a'_k = a_k + \mathbf{1}\{z = k\}$$

 e.g. species sampling, topic modeling, groups on a social network, etc.

Components: number of latent groups

- Components: number of latent groups
- Clusters: number of components represented in the data

- Components: number of latent groups
- Clusters: number of components represented in the data
- [demo 1, demo 2]

- Components: number of latent groups
- Clusters: number of components represented in the data
- [demo 1, demo 2]
- Number of clusters for N data points is < K and random

- Components: number of latent groups
- Clusters: number of components represented in the data
- [demo 1, demo 2]
- Number of clusters for N data points is < K and random
- Number of clusters grows with N

• Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data

• Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1)$$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1)$$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

"Stick breaking"

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

"Stick breaking"

 $V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$
 $V_2 \sim \text{Beta}(a_2, a_3 + a_4)$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$ $\rho_2 \sim \text{Beta}(a_2, a_3 + a_4)$ $\rho_2 = (1 - V_1)V_2$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$ $V_2 \sim \text{Beta}(a_2, a_3 + a_4)$ $\rho_2 = (1 - V_1)V_2$ $V_3 \sim \text{Beta}(a_3, a_4)$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$
 $V_2 \sim \text{Beta}(a_2, a_3 + a_4)$ $\rho_2 = (1 - V_1)V_2$
 $V_3 \sim \text{Beta}(a_3, a_4)$ $\rho_3 = (1 - V_1)(1 - V_2)V_3$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Leftrightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$
 $V_2 \sim \text{Beta}(a_2, a_3 + a_4)$ $\rho_2 = (1 - V_1)V_2$
 $V_3 \sim \text{Beta}(a_3, a_4)$ $\rho_3 = (1 - V_1)(1 - V_2)V_3$
 $\rho_4 = 1 - \sum_{k=1}^{3} \rho_k$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

$$V_1 \sim \text{Beta}(a_1, b_1)$$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

$$V_1 \sim \text{Beta}(a_1, b_1)$$
 $\rho_1 = V_1$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

$$V_1 \sim \text{Beta}(a_1, b_1)$$
 $\rho_1 = V_1$
 $V_2 \sim \text{Beta}(a_2, b_2)$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

 $V_k \sim \text{Beta}(a_k, b_k)$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Dirichlet process stick-breaking: $a_k = 1, b_k = \alpha > 0$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Dirichlet process stick-breaking: $a_k = 1, b_k = \alpha > 0$
 - Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

[McCloskey 1965; Engen 1975; Patil and Taillie 1977; Ewens 1987; Sethuraman 1994; Ishwaran, James 2001]

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Dirichlet process stick-breaking: $a_k = 1, b_k = \alpha > 0$
 - Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

[McCloskey 1965; Engen 1975; Patil and Taillie 1977; Ewens 1987; Sethuraman 1994; Ishwaran, James 2001]

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Dirichlet process stick-breaking: $a_k = 1, b_k = \alpha > 0$
 - Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

[McCloskey 1965; Engen 1975; Patil and Taillie 1977; Ewens 1987; Sethuraman 1994; Ishwaran, James 2001]

 Beta → random distribution over 1,2

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet process stick-breaking → random distribution over 1, 2, . . .

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet process stick-breaking → random distribution over 1, 2, . . .

- Infinity of parameters: components
- Growing number of parameters: clusters

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes?
 - What does an infinite/growing number of parameters really mean (in NPBayes)?
 - Why is NPBayes challenging but practical?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes?
 - What does an infinite/growing number of parameters really mean (in NPBayes)?
 - Why is NPBayes challenging but practical?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes?
 - What does an infinite/growing number of parameters really mean (in NPBayes)?
 - Why is NPBayes challenging but practical?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes? Learn more as acquire more data
 - What does an infinite/growing number of parameters really mean (in NPBayes)?
 - Why is NPBayes challenging but practical?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes? Learn more as acquire more data
 - What does an infinite/growing number of parameters really mean (in NPBayes)? Components vs. clusters; latent vs. realized
 - Why is NPBayes challenging but practical?

- Example problem: clustering
- Example NPBayes model: Dirichlet process
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why NPBayes? Learn more as acquire more data
 - What does an infinite/growing number of parameters really mean (in NPBayes)? Components vs. clusters; latent vs. realized
 - Why is NPBayes challenging but practical? Infinite dimensional parameter; more on this next session!

[slides, code: www.tamarabroderick.com/tutorials.html]

Prove the beta (Dirichlet) is conjugate to the categorical

- Prove the beta (Dirichlet) is conjugate to the categorical
 - What is the posterior after N data points?

[slides, code: EXEICISES [Slides, code. www.tamarabroderick.com/tutorials.html]

- Prove the beta (Dirichlet) is conjugate to the categorical
 - What is the posterior after N data points?
- Code your own GEM simulator for ρ ; why is this hard?

- Prove the beta (Dirichlet) is conjugate to the categorical
 - What is the posterior after N data points?
- Code your own GEM simulator for ρ ; why is this hard?
- Simulate drawing cluster indicators (z) from your ρ

[slides, code: www.tamarabroderick.com/tutorials.html]

- Prove the beta (Dirichlet) is conjugate to the categorical
 - What is the posterior after N data points?
- Code your own GEM simulator for ρ ; why is this hard?
- Simulate drawing cluster indicators (z) from your ρ

 Compare the number of clusters as N changes in the GEM with the growth for K=1000

- Prove the beta (Dirichlet) is conjugate to the categorical
 - What is the posterior after N data points?
- Code your own GEM simulator for ρ ; why is this hard?
- Simulate drawing cluster indicators (z) from your ρ

- Compare the number of clusters as N changes in the GEM with the growth for K=1000
- How does the growth in N change when you change α ?

- Prove the beta (Dirichlet) is conjugate to the categorical
 - What is the posterior after N data points?
- Code your own GEM simulator for ρ ; why is this hard?
- Simulate drawing cluster indicators (z) from your ρ

- Compare the number of clusters as N changes in the GEM with the growth for K=1000
- How does the growth in N change when you change α ?
- How does the distribution of # clusters at N change with α ?

- Prove the beta (Dirichlet) is conjugate to the categorical
 - What is the posterior after N data points?
- Code your own GEM simulator for ρ ; why is this hard?
- Simulate drawing cluster indicators (z) from your ρ

- Compare the number of clusters as N changes in the GEM with the growth for K=1000
- How does the growth in N change when you change α ?
- How does the distribution of # clusters at N change with α ?
- Suppose $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$; prove equivalence to

$$\rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

[slides, code: www.tamarabroderick.com/tutorials.html]

- Prove the beta (Dirichlet) is conjugate to the categorical
 - What is the posterior after N data points?
- Code your own GEM simulator for ρ ; why is this hard?
- Simulate drawing cluster indicators (z) from your ρ

- Compare the number of clusters as N changes in the GEM with the growth for K=1000
- How does the growth in N change when you change α ?
- How does the distribution of # clusters at N change with α ?
- Suppose $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$; prove equivalence to

$$\rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

• For which stick-breaking (a_k,b_k) can you prove $\sum \rho_k=1$?

References

A full reference list is provided at the end of the "Part III" slides.