Вольняга Максим ИУ756Б (14_КОТ)

Трансляционная модель в генерации фрагментов музыкальных произведений

ОПРЕДЕЛЕНИЯ

В настоящей расчетно-пояснительной записке применяют следующие термины с соответствующими определениями.

Трансляционные модели — это генерация музыкальных произведений на основе немузыкальных данных, таких как графические образы или текст. Процесс может быть случайным или основываться на определенных правилах мелодической структуры, с использованием нейросетевых технологий для преобразования и распознавания исходных данных [1].

Музыкальный тон — это устойчивый периодический звук. Музыкальный тон характеризуется его длительностью, высотой, интенсивностью (или громкостью) и тембром (или качество).[2]

Темп (итал. tempo) — это скорость движения в музыке, мера времени в музыке.[2]

1 Аналитический раздел

Создание музыки творческий процесс, его автоматизация сложна из-за важной роли композитора и труднопонимаемой эмоциональности в музыке [3]. Для автоматической генерации музыкальных композиций с учетом эмоционального состояния пользователя-композитора можно использовать трансляционные модели[4].

1.1 Трансляция изображений в звуки

Генерация звуков из изображения представляет собой преобразование визуальных данных в последовательности нот с определенным тоном и темпом [5]. Тональность и темп — являются ключевыми параметрами для трансляции изображения в звуки, поскольку они формируют эмоциональную составляющую произведения, и должны быть определены путем анализа цветовой гаммы изображения. Для этого нужно установить соответствие между цветовыми и музыкальными характеристиками [4] (таблица 1.1). Затем следует определить схему соотнесения цвета и ноты[4]. В статье [6] описывается множество подобных схем, например соотнесение цветов и нот по И. Ньютону, он искал связь между солнечным спектром и музыкальной октавой, сопоставляя длины разноцветных участков спектра и частоту колебаний звуков гаммы, таблица 1.2.

Таблица 1.1 – Соотношение цветовых и музыкальных характеристик

Цветовые характеристики	Музыкальные характеристики
Оттенок (красный, синий, желтый)	Нота (до, до-диез, ре, ре-диез)
Цветовая группа (теплый/холодный)	Музыкальный лад (мажор/минор)
Яркость	Октава ноты
Насыщенность	Длительность ноты

Таблица 1.2 – Соотнесение цветов и нот по И. Ньютону

Цвет	Нота
Красный	До
Фиолетовый Синий	Ре Ми
Голубой	Фа
Зеленый	Соль
Желтый Оранжевый	Ля Си

1.1.1 Алгоритм определения тональности

Определение тональности основывается на проведении анализа изображения и использовании таблицы 1.1, состоит из следующих шагов, описанных в [4]:

- 1. преобразовать входное изображение из цветового пространства RGB в HSV. Данный шаг позволяет преобразовать изображение к более удобному виду, поскольку HSV пространство уже содержит необходимые характеристики название цвета (определяется по параметру hue), насыщенность (параметр saturation) и яркость (параметр brightness);
- 2. определить преобладающий цвет изображения;
- 3. определить название и цветовую группу преимущественного цвета;
- 4. согласно выбранной схеме соотнесения цветов и нот, а также результатах, полученных на предыдущих шагах, определяем тональность произведения.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. В. Е. Малахов Г. Г. Р. Применение декомпозиции для изучения процессов при создании генеративной музыки. 2022.
- 2. $\mathit{Миланич}\ E.,\ \mathit{Лойко}\ O.\$ Учебно-методический комплекс по учебной дисциплине «Элементарная теория музыки». 2017.
- 3. Hикитин H. A. Модели, методы и средства компьютерного синтезирования музыки по цветовому изображению. 2022.
- 4. *Никитин Н. А.*, *Розалиев В. Л.*, *Орлова Ю. А.* Разработка веб-сервиса для генерации музыкальной последовательности по изображению // Молодой ученый. 2019. Т. 51, № 289. С. 27—30. URL: https://moluch.ru/archive/289/65648/; дата обращения: 06.10.2023.
- 5. Никитин Н. А., Орлова Ю. А., Розалиев В. Л. Алгоритм генерации музыкальных композиций с использованием интуитивного и эмоционального подходов // Молодой ученый. 2021. Т. 24, № 366. С. 35—39. URL: https://moluch.ru/archive/366/82308/; дата обращения: 06.10.2023.
- 6. Abdullayev E. An Experimental Model Of Color And Sound Correlation // Eurasian music science journal. 2020. URL: https://core.ac.uk/download/pdf/336866842.pdf; дата обращения: 07.10.2023.