Pra-PSPM Biology KML (2023/2024)

1. **FIGURE 1** shows two cells **X** and **Y**, in a flowering plant. The parent cell has 4 chromosomes. Each cell shows the chromosomal behaviour during the process of cell division.

a)	Identify the stage that takes place in Cell X and Cell Y during the cell division.	[2 marks]
b)	State the chromosomal behaviour for Cell X and Cell Y .	[2 marks]

c) FIGURE 2 shows the phases in cell cycle.

FIGURE 2

(1)	If the amount of DNA in G_1 phase is 18, predi	ct the amount of DNA in G_2 phase. Explain your
	answer.	[2 marks

	(ii)	Give ONE factor that may cause a cell at G ₁ entering the resting state. [1 mark
2. a)		pod shape trait is observed in a cross of two true-breeding pea plant varieties, the dominant and the possive varieties. In this cross, the trait is seen to be either smooth (P) or constricted (p). If this cross obeys Mendelian inheritance, determine the possible genotypic ratio if the F ₁ generation are self – crossed. [1 mark]
	(ii)	In a following experiment using the same true – breeding pea plants (dominant and recessive varieties, the pod shape is also observed with an additional trait i.e. seed colour. The second trait is seen to be either yellow (G) or green (g). If this cross also obeys Mendelian inheritance, construct a genetic diagram to show the possible outcome if the F ₁ generation are self – crossed. Use Punne square to show the process. [4 marks]
	(iii)	In a separate experiment observing the two traits of the same pea plant varieties, the F_1 generation is seen to exhibit smooth pod shape and yellow seed colour. However, when the F_1 generation is crossed with a true breeding recessive of the same pea plant varieties, the F_2 progenies produce do not seem to exhibit a relatively similar proportion among each other. Construct a genetic diagram to depict to the possible explanation to this finding. [3 marks]

	b)	th all	Muscular dystrophy is a sex-linked disorder that involves muscle weakness and loss of mat get worse over time. Muscular dystrophy is expressed in the recessive allele with tallele being "normal" or without muscular dystrophy. A normal man who has a brother with M.D. marries a homozygous normal woman.	he dominant What is the
			probability that any of their children will have M.D.? Show your explanation by us square.	ing a Punnet [3 marks]
		(ii)	A female carrier has children with a male who has M.D. What is the percentage that the a child who is both male and has M.D?	ney will have [2 <i>marks</i>]
3.	A	ppro	oximately 4% of a tortoise population in a pond shows the recessive phenotype long no	se.
	c		Calculate frequencies of dominant and recessive alleles in the population.	[2 marks]
		d)	If the original number of the tortoises in the population is 5000, and then 120 of the tolong nose were suddenly removed, calculate the new allele frequencies.	ortoises with [4 marks]

a)	If the gene for DNA polymerase I was mutated, how would that affect DNA replication? [2 marks]
b)	Explain why half of the DNA is replicated in a discontinuous way? [2 marks]
c)	Given that the sequence of the template strand is 5' ATTCCGTAGC 3'. What is the sequence of
C)	the new strand formed? [1 mark]
d)	FIGURE 3 shows the processes involved in the synthesis of a protein coded by Gene X. 5' Strand A T A C A A A T G T G G G C C C T A T A G G A T C A T G T T T A C A C C C G G G A T A T C C T A G Strand B
	Gene X E P A
	5. A 0 G 0 0 0 A C A C C C G G G A 0 A 0 C C 0 A G mRNA
	FIGURE 3
(i)	Which of the two DNA strands of Gene X will be used as a template during transcription? [1 mark
(ii)	Explain what happens following the binding of RNA polymerase on Gene X. [1 mark]
iii)	On the mRNA in FIGURE 3 , circle the codon where the translation process is initiated. [1 mark

Name the stage of translation shown in FIGURE 3 . State the reason for your answer.						[2 mai	
Based on FIGURE 3 , explain the discontinuation of addition of more amino acids by the ribosome to the polypeptide chain at the end of translation. [1 <i>mark</i>]							
FIGURE 4 shows the <i>lac</i> operon model.							
Promoter							
lacI	RNA F	Polymeras	Operator	lacZ lacY	/ lacA		
Repressor							
FIGURE 4							
no glucose but has lactose.							
i) How would the mutation in <i>lacZ</i> gene affect the <i>lac</i> operon?						[1 mark]	
FIGURE 5 shows the mRNA codon sequence of a normal and an abnormal haemoglobin.							
_						3' 3'	
Tonormai naemogioom	5	ACU		GUG	GAA	3*	
FIGURE 5							
The mutation in FIGUR							
	FIGURE 4 shows the lace lace lace lace lace lace lace lac	FIGURE 4 shows the <i>lac</i> operor Repressor Briefly explain the mechanism on glucose but has lactose. How would the mutation in <i>lac2</i> GURE 5 shows the mRNA code formal haemoglobin 5'	FIGURE 4 shows the lac operon model. Promoter RNA Polymeras Repressor F Briefly explain the mechanism of the lac of no glucose but has lactose. How would the mutation in lacZ gene affection of the lac of	FIGURE 4 shows the lac operon model. Promoter RNA Polymerase Repressor FIGURE 4 Briefly explain the mechanism of the lac operon involve no glucose but has lactose. How would the mutation in lacZ gene affect the lac operon Gure 5 shows the mRNA codon sequence of a normal formal haemoglobin 5' ACU CCU	FIGURE 4 shows the lac operon model. Promoter RNA Polymerase Repressor FIGURE 4 Briefly explain the mechanism of the lac operon involved if E. coli cul no glucose but has lactose. How would the mutation in lacZ gene affect the lac operon? GURE 5 shows the mRNA codon sequence of a normal and an abnormal formal haemoglobin 5' ACU CCU GAG	FIGURE 4 shows the lac operon model. Promoter lacl	

b) The table below shows the amino acid sequence of a polypeptide chain from four different, but related species. Assuming that species I is the ancestral species of the group.

Species	Amino acid sequence
I	Val – His – Leu – Val – Glu – Glu – His – Val – Glu – His
II	Val – His – Leu – Val – Glu – Glu – His – Val – Glu – His
III	Val – His – Leu – Val – Glu – Glu – His – Val
IV	Val – His – Leu – Val – Arg – Trp – Ala – Cys – Met – Asp

(i)	According to the table above, identify the most likely genetic change that produced th	ie
	polypeptide in species IV. Explain your answer.	[2 marks]

Based on the table above, what type of mutation has occurred in species III. Give your reason.

(ii)

[3 marks]

c) **FIGURE 6** shows the karyotype of a patient with a mutation that involves chromosomes 9 and 22 indicated by the arrows.

FIGURE 6

(i) Name the genetic disorder caused by the mutation shown in **FIGURE 6** and state the type of mutation involved. [2 *marks*]

(ii)	Differentiate between the genetic disorder in (i) and Monosomy 21.	[2 marks]
6. a)	FIGURE 7 below shows a segment of DNA involved in gene cloning.	
	5′ G <mark>AATTC 3′</mark> 3′ CTTAA <mark>G 5</mark> ′	
	3′CTTAAG5′	
	FIGURE 7	
(i)	Based on FIGURE 7 , explain how restriction endonuclease, <i>Eco</i> RI function.	[2 marks]
(ii)	Under relaxed conditions, there are normally 10 to 700 copies of plasmids present in State the characteristic of plasmid related to this condition.	n the host cell. [1 mark]
(iii)	Recombinant DNA is transformed into the host cell, <i>E. coli</i> in gene cloning. State the host cell that allows this step to occur.	one feature of [1 mark]
b)	Explain the production of cDNA.	[5 marks]

		mRNA for human insulin extracted	
		I	
		cDNA of gene codes for insulin are produced Cloning Vector X	
		II	
		Recombinant plasmid formed	
		Recombinant plasmid inserted into bacterium	
	<i>(</i> 1)	FIGURE 8	
	(i)	Based on FIGURE 8 , explain the function of the enzyme used in step I . [1 magestable]	ırk]
	(ii)	Why is it more advantageous to use mRNA instead of nuclear DNA to synthesize insulin? [1 m	 ark1
	(11)	Wify is it more advantageous to use interval instead of indefeat D17/1 to syndicize insulin.	arkj
	(iii)	What will happen if the enzyme involved in step II is non-functional? $[1 n]$	mark]
	(111)	The state of the control of the state of the	ici i k
	<i>(</i> ')		
	(iv)	In what way has the production of human insulin by recombinant DNA technology given significant medical advantages for diabetic patients compared to insulin that is taken from animal sources? [1 n	ıark]
7.		Name and explain the phase in ovarian cycle that leads to negative feedback mechanism and state mportance. [6 ma	
	_		
	_		

b)	Explain the events involved in acrosomal reaction. [2 marks
c)	Jenny is 41 weeks pregnant but she only experienced a few mild contractions (each lasting about 15-20 seconds); Her cervix is only 2 cm dilated, and the amniotic sac is intact. Jenny is therefore admitted to the birthing unit and given an IV infusion of Pitocin, a synthetic hormone which will increase the frequency and strength of her uterine contractions.
(i)	Name TWO hormones that have similar functions as Pitocin. [1 mark
(ii)	How does the level of the two hormones mentioned in c(i) cause a longer labour duration? [1 mark
(iii)	What is the hormone that is detectable in the blood and urine of a pregnant individual? [1 mark
(iv)	Premature birth or preterm birth occurs when a baby is born before completing 37 weeks of pregnancy. In a healthy pregnancy, premature birth can be avoided by the involvement of two hormones. Name the TWO hormones and explain their respective roles in a healthy pregnancy. [3 mark.]

d) **FIGURE 9** shows a growth pattern in humans.

(i) Determine the growth pattern shown in **FIGURE 9**.

[1 *mark*]

(ii) Based on **FIGURE 9**, differentiate between the growth rate of head and lymphoid organ. [1 *mark*]