CS 584 - MACHINE LEARNING

TOPIC: CLASSIFIER EVALUATION

♦ http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

TASK

- Given a labeled dataset $\mathcal{D} = \{\langle x_i, y_i \rangle\}$, where x_i is the input and y_i is the discrete output
- Train a classifier $f: \mathcal{X} \to \mathcal{Y}$ using \mathcal{D}
- \circ The purpose of f is to perform "well" on unseen data
- How do we define "well"?

0/1 Error & Accuracy

- The simplest measure is "is the prediction correct?"
- Examples
 - Given an email, the model predicts it's spam. Is it correct?
 - Given a patient, the model predicts the patient is suffering from Heart disease. Is it correct?
 - Given a loan application, the model recommends reject. Is the recommendation correct?
- Given a dataset, accuracy is the percentage of objects the model's predictions are correct

SOME PROBLEMS WITH ACCURACY

- All mistakes are considered equal; for example
 - Misclassifying a ham email as spam, and misclassifying a spam email as ham are considered equally bad
 - Approving a loan application that should have been rejected, and rejecting a loan application that should have been approved are considered equally bad
- If a class is dominant, it's often easy to get high accuracy by simply predicting every object as the dominant class; for example
 - If 80% of the emails are ham, a classifier that classifies every email as ham will have 80% accuracy
- All cases are considered equal; for example, email from your family, boss, bank, social media updates, ... are all considered equally important, which might or might not be true

Types of Errors – Classification

- Assume a target/positive class
 - Spam, HasHeartDisease, Approve, etc.
 - This step is important; positive does not mean "good"; positive mean the concept of interest and you decide which class is positive
 - For example, positive covid test does not mean "good" news

• False positive

- Falsely classifying an object as positive
 - E.g., classifying a ham email as spam, diagnosing a healthy patient as having heart disease, approving a loan that should have been rejected, and so on
- Also called *Type I* error

• False negative

- Falsely classifying an object as negative
 - E.g., classifying a spam email as ham, claiming that a heart-disease patient is healthy, rejecting a loan that should have been approved, and so on
- Also called *Type II* error

CONFUSION MATRIX

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

ACCURACY

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$Accuracy = \frac{Num\ Correct}{Data\ Size} = \frac{TP + TN}{TP + TN + FP + FN}$$

PRECISION

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$Precision = \frac{True\ Positive}{Predicted\ Positive} = \frac{TP}{TP + FP}$$

True Positive Rate – Recall – Sensitivity

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$TPR = Recall = \frac{True\ Positive}{Actual\ Positive} = \frac{TP}{TP + FN}$$

True Negative Rate – Specificity

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$TNR = Specificity = \frac{True\ Negative}{Actual\ Negative} = \frac{TN}{TN + FP}$$

False Positive Rate — Fall-out

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$FPR = FallOut = \frac{False\ Positive}{Actual\ Negative} = \frac{FP}{TN + FP}$$

False Negative Rate – Miss Rate

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$FNR = Miss\ Rate = rac{False\ Negative}{Actual\ Positive} = rac{FN}{TP + FN}$$

F1

		Predicted Class	
		Positive	Negative
Actual Class	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$F1 = \frac{2 * Precision * Recall}{Precision + Recall}$$

OTHER MEASURES BASED ON CONFUSION MATRIX

- False discovery rate = FP/PP
- False omission rate = FN/PN
- Negative predictive value = TN/PN
- Positive likelihood ratio = TPR/FPR
- Negative likelihood ratio = FNR/TNR
- Diagnostic odd ratio = PLR / NLR
- **o** ...

Making a Classification Decision

- Given a probabilistic output for an object, say $\langle p, 1-p \rangle$, how do we decide which class to assign to this object?
- The simplest approach is check whether p > 0.5 and make a decision accordingly
- This assumes each mistakes (False Positives and False Negatives) are equally costly

EQUAL MISCLASSIFICATION COSTS?

- Which one is worse for you:
 - Delivering a spam email into your Inbox (False Negative), or
 - Delivering a legitimate email into your Spam folder (False Positive)?
- If one is worse than the other, then, should we use 0.5 as the decision threshold or should we adjust it to your preference?

COST MATRIX

		Predicted Class	
		Positive	Negative
Actual Class	Positive	0	a
	Negative	b	0

Given a probability distribution of $\langle p, 1-p \rangle$ for $\langle Positive, Negative \rangle$ respectively, and given the above cost matrix, under what conditions (in terms of a, b, and p) would you classify an object as *Positive*?

AREA UNDER THE CURVE (AUC)

- Area Under the Curve
- What curve? ROC Curve
 - Receiving Operating Characteristic
 - The X axis is False Positive Rate
 - The Y axis is True Positive Rate
 - The curve is plotted by varying the "decision" threshold

AUC EXAMPLE

- Assume 10 actual positives and 20 actual negatives
- Plot the ROC curve and compute the area under it for the following cases:
 - P, P, ..., P, N, N, ..., N
 - P, N, N, P, N, N, ..., P, N, N

ESTIMATING FUTURE PERFORMANCE

- Training performance is useful but misleading
 - Why?
- How can we evaluate performance on unseen data?

SPLITTING THE DATASET

- 1. Train-test splits
- 2. Train-validation-test splits
- 3. Cross-validation

TRAIN-TEST SPLIT

- Randomly split the data into two disjoint sets
- A typical approach: 2/3 for train and 1/3 for test
- Train your model on training data and evaluate it on the test data
 - Use your favorite performance metric
- Report your performance as the expected performance on unseen data
- Caveats:
 - You need a large dataset for this to work
 - You cannot tune your parameters on the test data

TRAIN-VALIDATION-TEST SPLIT

- Split your data into three disjoint sets
 - Train, validation, test
- Train your model(s) on the training data
- Evaluate your model(s) on the validation data
- Pick the model that performs best on the validation data
- Test the model on the test data, and report its performance
- Caveat:
 - You need a really big dataset for this to work

CROSS-VALIDATION

- Split your data into k disjoint sets
- Each time, one set is the test set and the rest is the training set
- See OneNote for more detailed explanation and illustration

REAL LIFE MEASURES

- Not as clean as the ones we discussed
- Imagine self-driving cars, medical diagnosis,
 crime prediction, fraud detection, and so on
- Usually, there is not a single performance measure
- Performance is handled on a case-by-case basis;
 not on an aggregate level