

MATEMATIKAI ÉS INFORMATIKAI INTÉZET

A mesterséges intelligencia alkalmazási lehetőségei a haderőben

Készítette

Dobozy Dániel programtervező informatikus

Témavezető

Dr. Tómács Tibor egyetemi docens

Tartalomjegyzék

Bevezetés		3	
1.	Az amerikai stratégia előzményei		5
	1.1.	Az amerikai technológiai fölény átalakulása	5
	1.2.	Az MI stratégia kiemelése az amerikai védelemben	6
	1.3.	Az MI stratégia és az amerikai védelem új kihívásai	7
2.	A mesterséges intelligencia stratégiai programja		9
	2.1.	Stratégiai irányok	9
	2.2.	Konkrét Területek az MI Alkalmazásában	11
Összegzés		15	
Irodalomjegyzék			16

Bevezetés

Az elmúlt évtized során az információs technológiákat célzó tudományos fejlődés, illetve az azokból fakadó technológiai modernizáció eredményeképpen felforgató változásnak lehettünk szemtanúi, amely a jövő technológiai lehetőségeit oly mértékben átformálta, hogy az adott kor technológiai szintjén képességek birtokosává válni kívánó szereplőktől folyamatos fejlődést, technológiakövetést, bizonyos technológiai területeken pedig – amelyek közül kiemelt a mesterséges intelligencia – folyamatos fejlesztést követel. Alapvetően a műszaki megoldások folyamatos evolúciója tette lehetővé ezt a változást, melynek során az elektronikai alkatrészek technológiájában egyre újabb és újabb digitális jelfeldolgozó processzorok folyamatosan egyre kisebb méretekben és egyre olcsóbban váltak elérhetővé, miközben az új processzorok egymást követő generációi a rohamosan növekvő jelfeldolgozási kapacitásaik, sebességük miatt korábban elérhetetlennek tűnő számítási képességet tettek egyre könnyebben hozzáférhetővé mindenki számára. A rendelkezésünkre álló hatalmas, többnyire feldolgozatlan adatmennyiség az információs technológiához kötődően időszakonként újabb és újabb "hot topic"-okat eredményez, melyekre mind a tudományos élet szereplőinek, mind az ipari szférának újabb és újabb megoldásokat kellett keresnie, kidolgoznia.

0.1. Definíció. A Mesterséges Intelligencia (MI) az a terület, amely a számítógépek által végzett feladatokra és tevékenységekre utal, amelyeknek általában emberi intelligenciához köthetőek.

Ez a kutatási terület az elmúlt évszázad második felében indult fejlődésnek, és eleinte a "nagy mennyiségű adatok" (Big-Data) feldolgozására fókuszált, ráirányítva a figyelmet arra a területre, hogy a gigantikus mennyiségű adatot a korábbi megoldásainkkal nem lehetett hatékonyan kezelni és feldolgozni. Hamarosan erre a problémahalmazra felültetve erősödött fel a "gépi tanulás" (Machine Learning) lehetőségeinek kérdése, illetve kapott az utóbbi időben egyre nagyobb figyelmet az MI (A 0.1. definíció) tudományterülete is, mely a közeljövőben minden, a műszaki tudományterület jelenleg aktív, fontosabb szereplői, így a haderő számára is várhatóan kihívásokat fog jelenteni.

Az MI területének a felkapottsága az utóbbi 3-4 év technológiai fejlődésének eredményeként különösen felerősödött. A jelenlegi fejlesztésben a civil piaci szereplők mellett óriási szerepet kapnak a katonai alkalmazási lehetőségek kutatói is, és ebből adódóan a kormányzati erőfeszítések egyre szélesebb spektrumban keresik és találják meg a kutatási témák irányait.

A 2. fejezet a témára vonatkozó fontos részleteket tartalmazza. A 9. oldalon kezdődik a fejezet.

1. fejezet

Az amerikai stratégia előzményei

1.1. Az amerikai technológiai fölény átalakulása

Ez egy példa szöveg, amely tartalmaz lábjegyzeteket. Itt van egy másik mondat, amely szintén tartalmaz egy lábjegyzetet. 2

A hidegháború vége óta az Amerikai Egyesült Államok a nemzetközi rendben gyakorlatilag egyedüli szuperhatalomnak tekinthető. Ennek egyik fontos pillére a páratlan katonai technológiai fölény. Az amerikai katonai erőfölényt a múltban alátámasztó technológiák azonban – mint például a precíziós irányítású fegyverek – a versenytársak számára is elérhetővé váltak. Kína és Oroszország is olyan képességeket fejlesztett ki, amelyek egyre inkább kihívást jelentenek az amerikai katonai fölénnyel szemben. Kína kutatásai az MI területén elsősorban a gyorsabb és tájékozottabb döntéshozatal elősegítésére, valamint az autonóm katonai járművek kifejlesztésére koncentrálnak, Oroszország MI-fejlesztései pedig elsősorban a robotika területére fókuszálnak.

Az Amerikai Egyesült Államok Védelmi Minisztériuma először 2016-ban adta ki az MI stratégiáját, melyet első ízben 2018-ban vizsgáltak felül.³ A kiadott dokumentumok egyértelműen leírják, hogy ezen a műszaki területen a főbb versenytársaik (Kína és Oroszország) olyan erős kutatási folyamatokat indítottak be, melyek elengedhetetlenné teszik a téma kiemelt kezelését az amerikai stratégiában is.

¹ Ez az első lábjegyzet, amely teljes mondatból áll.

² Ez pedig a második lábjegyzet, ugyancsak egy teljes mondat.

³ US Department of Defense: Summary of the 2018 Artificial Intelligence Strategy – Harnessing AI to Advance our Security and Prosperity.

1.2. Az MI stratégia kiemelése az amerikai védelemben

A 2018. évi védelmi stratégia arra hívja fel a figyelmet, hogy az MI valószínűleg megváltoztatja a háború jellegét.⁴ A kormányzati MI-prioritások erősödésével több szinten is szervezeti módosításokat hajtottak végre, így többek között a DARPA⁵ mellé – amely kifejezetten a védelmi szféra kutatószervezete – erre a célra egy új kutatóközpont (IARPA⁶) létrehozásáról intézkedtek, melynek felelősségi körébe az MI területéhez kapcsolódó kutatás-fejlesztési témák vezetése tartozik.

A védelmi szektorban a 2016 októberében Ashton Carter védelmi miniszter által létrehozott Védelmi Innovációs Tanács (DIB⁷) kiemelt ajánlásaként szerepelt egy "központosított, koncentrált, jól finanszírozott szervezet létrehozása a Védelmi Minisztériumban, amely a mesterséges intelligencia és a gépi tanulás lehetőségeinek vizsgálatára fókuszál". Az ajánlás alapján 2018. június végén megalapították az Összhaderőnemi Mesterségesintelligencia-központot (JAIC⁸).

A JAIC az Amerikai Egyesült Államok Védelmi Minisztériumának MI-központ Kiválósági Központja, amely szakembereivel segítheti a haderő mesterséges intelligencia alkalmazására irányuló törekvéseinek megvalósítását, és célja a haderőn belül a mesterséges intelligenciával kapcsolatos problémák megoldása, valamint a megoldások elterjesztése, elsősorban a missziós feladatok végrehajtása során.

A Pentagon által 2018. június 27-én kiadott memorandumban⁹ a védelmi miniszter helyettese – Patrick M. Shanahan – meghatározza a JAIC konkrét feladatait és a Védelmi Minisztérium információs főnökének alárendeltségébe utalja a szervezetet. Az új szervezet elsődleges feladatként a mesterséges intelligenciával összefüggő katonai kutatások összehangolását, felgyorsítását, illetve kutatási, oktatási és civil programok becsatolását, valamint új partnerek felkutatását kapta.

A memorandum szerint a JAIC átfogó célja, hogy felgyorsítsa a mesterséges intelligenciára épülő képességek kialakítását. Figyelemre méltó, hogy a JAIC középpontjában az etika, a humanitárius megfontolások, valamint a rövid és a hosszú távú MI-biztonság is szerepelnek.

Az elképzelések szerint a JAIC globálisan fontos modellként szolgálhat más hasonló technológiákat alkalmazó szervezetek számára, amennyiben bizonyítja, hogy a biztonságtudatos és etikai megközelítés az MI-hoz nem veszélyezteti a nemzetbiztonságot.

A JAIC tevékenysége nyomán, illetve vele együttműködve az Amerikai Szárazföl-

⁴ US Department of Defense: Summary of the 2018 National Defense Strategy – Sharpening the American Military's Competitive Edge.

⁵ Defense Advanced Research Projects Agency.

⁶ Intelligence Advanced Research Projects Activity.

⁷ Defense Innovation Board.

⁸ Joint Artificial Intelligence Center.

⁹ Memorandum. Subject: Establishment of Joint Artificial Intelligence Center. 27. 06. 2018.

di Haderő 2018-ban megalapította a JAIC MI kutatási tevékenységének támogatására a Szárazföldi Mesterségesintelligencia-kutató Központot (Army Artificial Intelligence Task Force in Support of the Department of Defense Joint Artificial Intelligence Center), amelyet egy 2018. október 2-án kelt memorandumban jelentettek be.

A Központ tevékenységének az alapját a Védelmi Minisztérium MI-stratégiája¹⁰ és a védelmi miniszter helyettese által kiadott memorandum¹¹ jelentették. Az új szervezet célja elősegíteni a jelenlegi technológiák alkalmazásának javítását és csökkenteni az MI-képességek hiányát, ezzel is segítve a béke megőrzését vagy a győzelem kivívásának lehetőségét.

A Kongresszusi Kutatószolgálat (CRS¹²) 2019 elején frissítette a mesterséges intelligenciával és a nemzetbiztonsággal foglalkozó összefoglalóját, amelyből további részletek derülnek ki az amerikai kutatási programokról.

A CRS hiteles, bizalmas és objektív politikai és jogi elemzéseket biztosít a bizottságok, a parlament és a Szenátus tagjai számára, függetlenül a pártoktól. A Kongresszusi Könyvtár jogalkotói ügynökségeként a CRS több mint egy évszázadig értékelt és tiszteletben tartott erőforrás volt a politikai döntéshozói körökben, és azt támasztja alá, hogy a mesterséges intelligenciával kapcsolatos amerikai kutatások és fejlesztések a kínai és az orosz nyilatkozatokra és tervekre reflektálnak.

1.3. Az MI stratégia és az amerikai védelem új kihívásai

Konkrétumokról nyílt forrásból elég keveset lehet hallani, de viszonylag széles körű nyilvánosságot kapott az egyik úttörő 2017-es projekt, 13 amelynek során az MI segítette az Iszlám Állam elleni harcot Irakban és Szíriában. A Maven-projekt fő területeit az információgyűjtés és -elemzés, a logisztika, a számítógépes műveletek, az információs rendszerek üzemeltetése, irányítása, ellenőrzése, valamint a különböző autonóm és félautonóm járművek alkalmazásai jelentették.

A védelmi szféra már az elmúlt években is számos lehetséges problémát vetett fel. Ezek költségeinek fedezésére a Pentagon már 2017-ben jelentős összegeket tervezett, és a következő lényeges kérdésekre kereste a választ:

- Mi a megfelelő arány a katonai MI-fejlesztéseknél a kereskedelmi és kormányzati finanszírozás tekintetében?
- Hogyan befolyásolja döntéseivel a Kongresszus a katonai MI-fejlesztéseket?

 $^{^{10}\,\}rm US$ Department of Defense: Summary of the 2018 Artificial Intelligence Strategy – Harnessing AI to Advance our Security and Prosperity.

¹¹ Memorandum. Subject: Establishment of Joint Artificial Intelligence Center. 27. 06. 2018.

¹² Congressional Research Service.

¹³ CNN: "Project Maven".

- Milyen változások szükségesek az ellenőrzés területén (Kongresszus és Védelmi Minisztérium)?
- Milyen etikai megfontolásokat kell figyelembe venni (és egyensúlyba hozni) az MI-fejlesztések és az autonóm rendszerek esetében?
- Milyen jogalkotási változások szükségesek a katonai MI-alkalmazások tekintetében?
- Milyen intézkedéseket hozhat a Kongresszus, hogy segítse az MI-verseny globális kezelését?

2. fejezet

A mesterséges intelligencia stratégiai programja

A 2018-ban kiadott stratégia első és legfontosabb üzenete az, hogy az Amerikai Egyesült Államok Védelmi Minisztériuma azonnali lépéseket akar tenni a mesterséges intelligencia lehetséges előnyeinek kihasználására.

2.1. ábra. A MI alkalmazási lehetőségei a haderőben

Ennek érdekében szerveztek egy sor kezdeményezést, amelyek azt célozták, hogy az MI gyorsan, iteratívan és felelősségteljesen beépüljön a katonai döntéshozatalba a missziós területen folytatott műveletek hatékonyabbá tétele érdekében. A minisztérium azt is meghatározta, hogy ezek a kezdeményezések milyen konkrét feladatokat foglalnak magukban, és azok milyen kulcsfontosságú platformokon keresztül valósíthatók meg. Ezek között szerepel a közös alapokon nyugvó adatok megosztásának lehetősége, az újrafelhasználható eszközök létrehozása, a szabványok pontosítása, a felhő- és a széles sávú szolgáltatások elérésének szabályozása. Ezzel párhuzamosan lépéseket határoztak meg az MI-alkalmazások folyamatainak előkészítésére digitalizálással és intelligens automatizálással.

2.1. Stratégiai irányok

A stratégia módosítása alapvetően nyolc irányt rögzített:

- 1. Hosszú távú beruházások szükségesek az MI-tárgyú K+F-területen, ezek elsődlegesen kerülnek végrehajtásra, és a prioritásokat a költségvetés tervezésénél is figyelembe kell venni.
- 2. Kiemelt terület a hatékony megoldások fejlesztése az ember és az MI együttműködésének optimalizálására.
 - a) A fő fókusz a kapcsolathoz szükséges kommunikáció és a valós helyzetkép átadhatóságának kérdése.
 - Erős fejlesztésre van szükség például a vizualizációs technikák, a hatékony nyelvfeldolgozás és az emberi képességek kiegészítését biztosító technológiák területén.
- 3. Az *MI-rendszerek etikai, jogi és társadalmi vonzatainak fejlesztése* olyan megoldások keresése, amelyek ezt a kérdéskört támogatni képesek.
 - a) Ez egy rendkívül összetett, több tudományterület ötvözését igénylő feladat.
- 4. Az *MI-rendszerek biztonságának, védelmének erősítése* olyan MI-alapú rendszerek fejlesztését kell megcélozni, melyek biztonságosak, ellenállók, megbízhatóak és hitelesek.
 - a) Ezeket a követelményeket a fejlesztéseknél érvényesíteni kell ahhoz, hogy a technológia ténylegesen hasznosítható lehessen.
 - Ehhez olyan kutatási témákat indított a DARPA és az IARPA, melyek az MI-rendszerek, illetve a velük szembeni követelmények pontosításához a megbízhatóságot, a támadások elleni sebezhetetlenségek erősítését és ezek hitelesítését irányozzák elő.
- 5. Megosztott, *nyilvános adatkészlet és környezet fejlesztése* oktatásra és tesztelésre, vagyis a fejlesztések és az oktatás nem fog tudni működni a megfelelő környezet elérhetősége nélkül.
 - a) Erre szövetségi és a részt vevő ipari, illetve szolgáltatói szereplők biztosítanak hozzáférést a rendelkezésre álló adathalmazokból nagy mennyiségű adatokhoz (közlekedési szenzoroktól származó adatok, egészségügyhöz kapcsolódó adatok stb.).
- 6. Az MI-technológiák mérése és értékelése azaz szabványokon és egységes mérőszámokon alapuló mérések végrehajtása során ki kell alakítani a megoldások széles spektrumát az összehasonlításhoz, a független értékeléshez.

- a) Ehhez egyrészt fejleszteni kell a standardok kialakíthatóságát, másrészt erőfeszítéseket kell tenni egy mérőszámokon alapuló összehasonlíthatóság, értékelhetőség kialakításához.
 - Fejleszteni kell az MI-környezeteket a kutatók munkájának segítésére.
- 7. Az MI területén aktív fejlesztők szükségleteinek jobb megértése és fejlesztése, vagyis lehetőség szerint fejleszteni szükséges a nemzeti K+F-képességet, és kiemelt hangsúlyt kell fektetni a fejlesztő- és kutatóállomány toborzására és megtartására.
- 8. Az MI fejlesztése érdekében fejleszteni kell a kapcsolatrendszert a nyilvános szereplőkkel, azaz minél szélesebb körű érdekeltséget kell elérni, mert rendkívül széles a technológiai terület, továbbá a kutatási befektetések döntő hányada nem a kormányzati szektorból jön, így az eredmények érdekében az erőfeszítéseket össze kell hangolni.

$$h: R \setminus \left\{ \frac{\pi}{3} k : k \in \mathbb{Z} \right\} \to \mathbb{R}, \quad h(x) := \begin{cases} \frac{\operatorname{arcctg}(x+2\pi)}{\sin(3x)}, & \text{ha } x \leq -\frac{2}{3}, \\ \lg^{3}(3x+2), & \text{k\"{u}l\"{o}nben.} \end{cases}$$
(2.1)

A képletre itt 2.1 lehet hivatkozni.

2.2. Konkrét Területek az MI Alkalmazásában

A kiadott stratégia részletesen foglalkozik a megvalósítás kérdéseivel is. Azon belül kiemelt kérdésként tárgyalja, hogy milyen kulcsfontosságú küldetésekkel kell foglalkozni az MI-képes funkciók megvalósításával. Ezek a területek nemcsak a missziós tevékenységekre terjednek ki, de felölelik a békevezetés területeit is. A stratégia szerint az MI-alkalmazások lehetséges területei:

- A helyzettudatosság és a döntéshozatal javítása. Ebbe a körbe tartoznak azok az MI-alkalmazások, amelyek képesek a vezetőket ellátni helyzetinformációkkal (pl. képelemzés), ezáltal segítve az optimális cselekvési utak kiválasztását, tehát a döntéshozatalt.
- A műveletbe bevont eszközök, berendezések biztonságának növelése. Lényegében meg kell teremteni a lehetőséget az MI segítségével, hogy a bonyolult helyzetekben is fokozzák a repülőgépek, a hajók és más járművek biztonságát azáltal, hogy az MI figyelmeztetést küld az üzemeltetőknek.
- A prediktív karbantartás és ellátás megvalósítása. Az adatokra és a berendezések állapotára alapozva az MI-t használjuk a kritikus alkatrészek meghibásodásának

előrejelzésére, a diagnosztika automatizálására és a karbantartás megtervezésére. Hasonló technológiákat fognak használni a pótalkatrészek készítésének irányítására és a készletszintek optimalizálására. Ezek az előrelépések biztosítják a megfelelő készletszinteket, segítenek a hibaelhárításban, valamint lehetővé teszik alkalmazkodó erők gyorsabb és olcsóbb telepítését. A végrehajtás úgy történhet, hogy a mesterséges intelligencián alapuló megoldások az egyedi berendezések vezérlőjén keresztül gyűjtik össze, elemzik és használják fel az adatokat, hogy meghosszabbítsák a berendezés élettartamát és a leállások megelőzése érdekében észleljék a hibákat. A nyers adatok begyűjtésének folyamatát már automatizálták, és ezt már teljes egészében a gépeken belül az "Edge" mellett működő új, mesterséges intelligencián alapuló vezérlő végzi az adatok megbízhatóságának és egységességének érdekében. Ráadásul a vezérlő az összefüggések elemzése alapján automatikus adatmodellezést végez és ellenőrzi a berendezés állapotát.

– A végrehajtás egyszerűsítése. Az MI-t azzal a céllal fogják használni, hogy csök-kentse a manuális, ismétlődő és gyakori feladatokra fordított időt. Az automatizált feladatok felügyeletének lehetővé tétele révén az MI képes csökkenteni a hibák számát és így a költségeket, növelni a teljesítményt és a mozgékonyságot, valamint előmozdítani a Védelmi Minisztérium erőforrásainak elosztását magasabb értékű tevékenységekre és a feltörekvő missziós prioritásokra.

[1, 4]

Listing 2.1. Példa kód

A felsorolt konkrét tevékenységeket mintegy akciótervként értelmezve körvonalazódik, hogy milyen alapelveket kívánnak követni az amerikai védelmi szférában az MI-fejlesztések során:

– Átfogó megközelítés. A társadalom egészét érintő jelentős globális kihívások (humanitárius segítségnyújtás, erdőtüzek, hurrikánok, földrengések, katasztrófák) MI

segítségével történő kezelése nyitott MI-küldetések kialakításával. Ezek a feladatok kihívást jelentenek egy széles körű közösség számára, és így összefogva az egyetemeket és az ipar szereplőit elősegítheti a fő védelmi feladatok megvalósítását is.

- A partnerség erősítése a tudományos élet szereplőivel és új MI innovációs körzetek elterjesztése. A stratégia szerint az egyetemek számára hosszabb távú stabil finanszírozást biztosítanak, hogy a legjobb tudósokat vonzzák a kritikus védelmi területekkel kapcsolatos hosszú távú kutatásba, valamint biztosítsák az MI-fejlesztés területén tehetséges szakemberek következő generációjának oktatását. Ez magában foglalja a meglévő csatornákon például a DARPA, az IARPA és a haderőnemi kutatólaboratóriumok segítségével történő beruházások növelését, valamint a minisztérium szempontjából releváns hosszú távú felfedezések támogatását.
- A partnerség megerősítése az Amerikai Egyesült Államok iparával. A stratégia kimondja, hogy az MI-technológia ökoszisztémájának bevonása és megerősítése megköveteli, hogy számos tradicionálistól eltérő partnerségi modellel kísérletezzenek. Ezek közé tartoznak merész új MI-kezdeményezések nagy ipari partnerekkel, induló kis- és közepes vállalkozásokkal, valamint kockázatitőkebefektetőkkel. Emellett lépéseket tesznek annak érdekében, hogy az MI-közösség tagjai könnyebben részt vehessenek a folyamatokban, például fel kell gyorsítani a fontosabb partnerségi folyamatokat és csökkenteni szükséges az adminisztratív akadályokat. Létrehoznak egy központosított MI-portált a potenciális partnerek számára, amely részletezi a kulcsfontosságú folyamatokat, az érdeklődésre számot tartó témákat és a kapcsolatokat a szerződések és a beszerzés egyszerűsítése érdekében.
- Fejlődő nemzetközi szövetségek és partnerségek. Kölcsönösen előnyös szövetségek és partnerségek kiterjesztett hálózata az együttműködés révén tartós eszköz a globális MI-kihívások leküzdésére, az agresszió megakadályozására és a stabilitás támogatására. A külföldi szövetségesek és partnerek olyan perspektívákat és tehetségeket kínálnak, amelyek során a résztvevők bevonása, a kombinált portfóliótervezés és az együttműködésen alapuló MI-fejlesztések kiépítéséből származó átjárhatóság bizalmat hozhat létre
- Kapcsolatok ápolása a nyílt forráskódú közösséggel. A nyílt forráskódú közösség a tehetséges egyének és átalakító ötletek globális inkubátora. Adatainkat, kihívásainkat, kutatásainkat és technológiáinkat hozzáadva ehhez a közösséghez a nyílt forráskódú ökoszisztémával együttműködve ez a leghatékonyabb eszköze a tehetségek bevonzásának, illetve a fejlesztések során törekedni lehet az új védelmi

technológiákat átalakító új MI-technológiák azonosítására, valamint az elérhető technológiai bázis bővítésére is. Ez a terület természetesen számtalan biztonsági kérdést generál, amelyek vizsgálatára a stratégia később egy külön részben tér ki.

Összegzés

Az alkalmazási lehetőségek kutatása a mesterséges intelligencia terén rendkívül sokrétű és kiemelkedően fontos a haderő szempontjából. Az ilyen kutatások és fejlesztések átfogó hatást gyakorolnak a katonai tevékenységekre és az ország biztonságára. A mesterséges intelligencia terén elért előrelépések segíthetnek az autonóm rendszerek fejlesztésében, a döntéstámogatás hatékonyságának növelésében, valamint a gépi tanulás alkalmazásában az adatok elemzésére és az információk gyors feldolgozására.

Ezen technológiák alkalmazása lehetővé teszi az új stratégiák kidolgozását, az ellenséges tevékenységek korai észlelését és az azonnali reagálást a változó körülményekre. Az önállóan működő, mesterséges intelligenciával felvértezett eszközök képesek lehetnek az emberi beavatkozás nélküli, precíz működésre, így minimalizálva a kockázatokat és az emberi életek veszélyeztetését a hadműveletek során.

Ezen túlmenően, az ilyen technológiák fejlesztése hozzájárulhat az adatbiztonság növeléséhez és az információs rendszerek védelméhez, ami kritikus fontosságú a modern háborús környezetben. A mesterséges intelligencia alkalmazása a haderőben így nemcsak a katonai tevékenységek hatékonyságát növeli, hanem hozzájárul a nemzet biztonságának és védelmének megerősítéséhez is.

Irodalomjegyzék

- [1] ALLEN, GREG CHAN, TANIEL: Artificial Intelligence and National Security, July 2017. Cambridge, Harvard Kennedy School, Belfer Center. Available at: https://www.belfercenter.org/sites/default/files/files/publication/AI%20NatSec%20-%20final.pdf
- [2] CONGRESSIONAL RESEARCH SERVICE: Artificial Intelligence and National Security (2019), January 30, 2019. Available at: https://crsreports.congress.gov/product/pdf/R/R45178
- [3] Defense Innovation Board: https://innovation.defense.gov
- [4] GOODFELLOW, IAN J. POUGET-ABADIE, JEAN MIRZA, MEHDI XU, BING WARDE-FARLEY, DAVID OZAIR, SHERJIL COURVILLE, AARON BENGIO, YOSHUA: Generative Adversarial Nets, June 10, 2014. Available at: https://arxiv.org/pdf/1406.2661.pdf
- [5] LEUNG, JADE FISCHER, SOPHIE-CHARLOTTE: JAIC: Pentagon debuts artificial intelligence hub, August 8, 2018. Available at: https://thebulletin.org/2018/ 08/jaic-pentagon-debuts-artificial-intelligence-hub/
- [6] US DEPARTMENT OF DEFENSE: Summary of the 2018 Artificial Intelligence Strategy Harnessing AI to Advance our Security and Prosperity. Available at: https://media.defense.gov/2019/Feb/12/2002088963/1/-1/1/SUMMARY-OF-DOD-AI-STRATEGY.PDF
- [7] US DEPARTMENT OF DEFENSE: Summary of the 2018 National Defense Strategy Sharpening the American Military's Competitive Edge.

 Available at: https://dod.defense.gov/Portals/1/Documents/pubs/2018National-Defense-Strategy-Summary.pdf?mod=article_inline

Nyilatkozat

Alulírott *Dobozy Dániel*, büntetőjogi felelősségem tudatában kijelentem, hogy az általam benyújtott, *A mesterséges intelligencia alkalmazási lehetőségei a haderőben* című szakdolgozat önálló szellemi termékem. Amennyiben mások munkáját felhasználtam, azokra megfelelően hivatkozom, beleértve a nyomtatott és az internetes forrásokat is.

Aláírásommal igazolom, hogy az elektronikusan feltöltött és a papíralapú szakdolgozatom formai és tartalmi szempontból mindenben megegyezik.

Eger, 2024. január 7.

Dobozy Dániel