CS443

Name: Ibrahim BERBER 191211018

ID:

Digital Image Processing

Assignment #1

E1 Part (a) (i)

```
📙 ▶ D: ▶ MyStorage ▶ Polyspace ▶ R2019a ▶ bin ▶
     Editor-C:\Users\ibrah\Desktop\HW1\homework1\_E1\_a\_i.m
Current Folder
      homework1_E1_a_i.m × +
          % El Part (a) (i)
          I = imread('Figl.tif'); % reading image and storing in 'I'
   3 -
                                     % displaying 'I'
          imshow(I)
          J = intrans(I, 'neg'); % storing negative of 'I' into 'J'
                                     % displaying 'J'
          figure, imshow(J)
```

MATLAB Code 1: Image negative on Fig1 with intrans function

Figure 1: Original image (a) and Image negative (b)

(ii)

```
🔷 🔷 🛅 🛜 📙 ▶ D: ▶ MyStorage ▶ Polyspace ▶ R2019a ▶ bin ▶
  Editor - C:\Users\ibrah\Desktop\HW1\homework1_E1_a_ii.m
     homework1_E1_a_ii.m × +
   1
          % El Part (a) (ii)
   2
          I = imread('Fig2.tif');
                                      % reading image and storing in 'I'
          imshow(I)
                                        % displaying 'I'
   5
          % applying logarithmic transform with parameters of 1, 4 and 8
          J1 = intrans(I, 'log', 1);
          J2 = intrans(I, 'log', 4);
          J3 = intrans(I, 'log', 8);
  10
          % displaying J1, J2 and J3
          figure, imshow(J1)
          figure, imshow(J2)
  13 -
          figure, imshow(J3)
   15
```

MATLAB Code 2: Log transformation on Fig2 with intrans function

Figure 2: Original image (a),
Logarithmic transform with parameter **c** = **1** (b),
Logarithmic transform with parameter **c** = **4** (c) and
Logarithmic transform with parameter **c** = **8** (d)

(iii)

```
▶ D: ▶ MyStorage ▶ Polyspace ▶ R2019a ▶ bin ▶
  Editor - C:\Users\ibrah\Desktop\HW1\homework1_E1_a_iii.m
   homework1_E1_a_iii.m 💥
        % El Part (a) (iii)
 1
 2
        I = imread('Fig3.tif');
                                      % reading image and storing in 'I'
        % applying gamma transform with parameters of 1, 0.3, 0.4, 0.6 and 2.5
        J1 = intrans(I, 'gamma', 1);
        J2 = intrans(I, 'gamma', 0.3);
        J3 = intrans(I, 'gamma', 0.4);
        J4 = intrans(I, 'gamma', 0.6);
10 -
        J5 = intrans(I, 'gamma', 2.5);
12
        % displaying J1, J2, J3, J4 and J5
        figure, imshow(J1)
13 -
        figure, imshow(J2)
15 -
        figure, imshow(J3)
16
        figure, imshow(J4)
        figure, imshow(J5)
17 -
```

MATLAB Code 3: Gamma transformation on **Fig3** with **intrans** function having given parameters for gamma

(b)

(c) (d) Page | 4

Figure 3: Original image ($\gamma = 1$) (a), Gamma transform with parameter $\gamma = 0.3$ (b), Gamma transform with parameter $\gamma = 0.4$ (c), Gamma transform with parameter $\gamma = 0.6$ (d) and Gamma transform with parameter $\gamma = 2.5$ (e),

(iv)

```
D: ► MyStorage ► Polyspace ► R2019a ► bin ►
   Editor - C:\Users\ibrah\Desktop\HW1\homework1_E1_a_iv.m
Current Folder
      homework1_E1_a_iv.m × +
    1
           % El Part (a) (iv)
    2
    3 -
           x = imread('Figl.tif');
                                         % reading image and storing in 'x'
    4
             contrast stretching on Figl using given statement
           y = intrans(x, 'stretch', mean2(im2double(x)), 0.9);
    5 -
           figure, imshow(y)
                                        % displaying 'y'
```

MATLAB Code 4: Contrast stretching on Fig1 with intrans function

Figure 4: Original image (a) and Contrast stretched image (b)

E1 Part (b)

```
🔷 🔷 🛅 🛜 📙 ▶ D: ▶ MyStorage ▶ Polyspace ▶ R2019a ▶ bin ▶
   Editor - C:\Users\ibrah\Desktop\HW1\homework1_E1_b.m.
Current Folder
      homework1_E1_b.m × +
   1
          % El Part (b)
   2
   3 -
          I = imread('Figl.tif');
                                            % reading image and storing in 'I'
          J = imadjust(I, [0 1], [1 0]); % taking negative with 'imadjust'
   5
   6
          % displaying 'I' and 'J'
          imshow(I)
   8
          figure, imshow(J)
```

MATLAB Code 5: Performing image negative on Fig1 with imadjust function

Figure 5: Original image (a) and image negative image (b)

E2 Part (a)

Fig316a.tif

MATLAB Code 6: Displaying imhist, bar, stem and plot operations on Fig316a.tif

Figure 6.1: Image file Fig316a.tif

Figure 6.2: imhist of Fig316a.tif

Figure 6.3: bar of Fig316a.tif

Figure 6.4: **stem** of **Fig316a.tif**

Figure 6.5: plot of Fig316a.tif

Fig316b.tif

MATLAB Code 7: Displaying imhist, bar, stem and plot operations on Fig316b.tif

Figure 7.1: Image file Fig316b.tif

Figure 7.2: imhist of Fig316b.tif

Figure 7.3: bar of Fig316b.tif

Figure 7.4: **stem** of **Fig316b.tif**

Figure 7.5: plot of Fig316b.tif

Fig316c.tif

MATLAB Code 8: Displaying imhist, bar, stem and plot operations on Fig316c.tif

Figure 8.1: Image file Fig316c.tif

Figure 8.2: imhist of Fig316c.tif

Figure 8.3: bar of Fig316c.tif

Figure 8.4: **stem** of **Fig316c.tif**

Figure 8.5: plot of Fig316c.tif

Fig316d.tif

MATLAB Code 9: Displaying imhist, bar, stem and plot operations on Fig316d.tif

Figure 9.1: Image file Fig316d.tif

Figure 9.2: imhist of Fig316d.tif

Figure 9.3: bar of Fig316d.tif

Figure 9.4: **stem** of **Fig316d.tif**

Figure 9.5: plot of Fig316d.tif

E2 Part (b)

Fig316a.tif Equalization

```
🔷 🔷 🛅 🛜 📙 ▶ D: ▶ MyStorage ▶ Polyspace ▶ R2019a ▶ bin ▶
   Editor - C:\Users\ibrah\Desktop\HW1\homework1_E2_B_a.m
Current Folder
     homework1_E2_B_a.m × +
   1
           % E2 Part (b) Fig316a Equalization
   2
           I = imread('Fig316a.tif'); % reading image and storing in 'I'
           x = histeq(I); % applying 'histeq' to 'I'
           % displaying 'I', 'x' and their 'imhist'
    8 -
           figure, imshow(I);
           figure, imhist(I);
           figure, imshow(x);
           figure, imhist(x);
   11 -
```

MATLAB Code 10: Displaying histogram equalization with **histeq**, and **imhist** operations on **Fig316a.tif**

Figure 10.1: Image file Fig316a.tif

Figure 10.2: Histogram plot of Fig316a.tif

Figure 10.3: Histogram equalized image of Fig316a.tif

Figure 10.4: Histogram of Histogram equalized image of Fig316a.tif

Fig316b.tif Equalization

```
Editor - C:\Users\ibrah\Desktop\HW1\homework1_E2_B_b.m

| homework1_E2_B_a.m | homework1_E2_B_b.m | homework1_E2_B
```

MATLAB Code 11: Displaying histogram equalization with **histeq**, and **imhist** operations on **Fig316b.tif**

Figure 11.1: Image file Fig316b.tif

Figure 11.2: Histogram plot of Fig316b.tif

Figure 11.3: Histogram equalized image of Fig316b.tif

Figure 11.4: Histogram of Histogram equalized image of Fig316b.tif

Fig316c.tif Equalization

```
🔷 🔷 🛅 🋜 📙 ▶ D: ▶ MyStorage ▶ Polyspace ▶ R2019a ▶ bin ▶
  Editor - C:\Users\ibrah\Desktop\HW1\homework1_E2_B_c.m
      homework1_E2_B_c.m × +
   1
          % E2 Part (b) Fig316c Equalization
   3 -
          I = imread('Fig316c.tif'); % reading image and storing in 'I'
          x = histeq(I); % applying 'histeq' to 'I'
          % displaying 'I', 'x' and their 'imhist'
          figure, imshow(I);
          figure, imhist(I);
          figure, imshow(x);
   10 -
           figure, imhist(x);
   12
   13
```

MATLAB Code 12: Displaying histogram equalization with **histeq**, and **imhist** operations on **Fig316c.tif**

Figure 12.1: Image file Fig316c.tif

Figure 12.2: Histogram plot of Fig316c.tif

Figure 12.3: Histogram equalized image of Fig316c.tif

Figure 12.4: Histogram of Histogram equalized image of Fig316c.tif

Fig316d.tif Equalization

MATLAB Code 13: Displaying histogram equalization with **histeq**, and **imhist** operations on **Fig316d.tif**

Figure 13.1: Image file Fig316d.tif

Figure 13.2: Histogram plot of Fig316d.tif

Figure 13.3: Histogram equalized image of Fig316d.tif

Figure 13.4: Histogram of Histogram equalized image of Fig316d.tif

E3

Discussion of E1

Part (a)

(i)

Given image **Fig1.tif** has been converted into its *negative* version using the **intrans** function with parameter of 'neg', in image processing toolbox in **MATLAB**. What this function does is that for each and every pixel, their grayscale value will be transformed into corresponding negative value.

(ii)

This part requires the use of *log transformation* on **Fig2.tif**, and this can be accomplished with use of **intrans** function having **log** in the second parameter. Here, the logarithmic transform is applied for values of **1**, **4** and **8**. As seen in the Figure 2, increase in **c** value yields brighter image. Comparing high and low values, some of the details in high **c** values makes the details possible to see.

(iii)

For the file **Fig3.tif**, it is asked to apply *gamma transformation*, and this can be done by use of **intrans** with parameter of **gamma**. The values of gamma will either brighten or darken the image depending on its value being greater than or less than **1**. As it is shown in Figure 3, gamma values of **1**, **0.3**, **0.4**, **0.6** and **2.5** is applied and the corresponding image results confirm that as values gets lower than **1**, image becomes brighter and vice versa.

(iv)

Here, the given code has been executed, which performs contrast stretching operation on **Fig1.tif**. this will result in having more intense values for white areas. The details such as legs and arms become visible in the processed image.

Part (b)

Here, the negative of the image has been obtained with **imadjust**. This operation converts white areas into black and vice versa. Processed image will look as the same as the one in E1 part a i.

Discussion of E1

Part (a)

For a given image, imhist, bar, stem and plot operations has been performed for files Fig316a.tif, Fig316b.tif, Fig316c.tif and Fig316d.tif

- The Fig316a.tif file is darkened which resulted in the histograms located towards left.
- The **Fig316b.tif** file is lightened which resulted in the histograms located towards right.

The darkened image contains a greater number of pixels which has darker value and lightened image contains a grater number of pixels which has lighter value.

- The **Fig316c.tif** file have lower contrast which resulted in the histograms to be shrinked.
- The **Fig316d.tif** file have good contrast level as well as proper brightness which resulted in the histograms having distributed properly.

If the image has lower contrast, as in **Fig316c.tif**, then pixels of that image contains values that are close to each other.

If the image has higher contrast, as in **Fig316d.tif**, then pixels of that image contains values that are not close to each other.

Part (b)

For images Fig316a.tif, Fig316b.tif, Fig316c.tif and Fig316d.tif, the operation of histeq and imhist are applied. As a result, their distribution of histogram has become more evenly distributed and the quality of the images have been enhanced.