III. MULTIPLEXAGEM

Quando um canal possui uma capacidade muito superior ao débito de uma fonte, pode utilizar-se o canal para transportar os sinais de várias fontes, ou seja multiplexar o canal.

III. MULTIPLEXAGEM

- Quando um canal possui uma capacidade muito superior ao débito de uma fonte, pode utilizar-se o canal para transportar os sinais de várias fontes, ou seja multiplexar o canal.
- Como? Várias técnicas, neste capítulo são referidas duas das principais:
 - multiplexagem por divisão de tempo (TDM);
 - multiplexagem por divisão de frequência (FDM);
 - soluções híbridas (e.g. TDM + FDM);
 - muitas variantes de TDM e FDM;
 - ... e outras técnicas.

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

- Técnica em que cada fonte ocupa uma fração da largura de banda disponível durante todo o tempo.
- Método mais antigo.
- Método que surgiu inicialmente associado à transmissão analógica.
- Exemplo:
 - transmissão e sintonização de estações de rádio;
 espaço livre constitui o meio comum de transmissão que é multiplexado em frequência.

III. MULTIPLEXAGEM

TDM (Multiplexagem por Divisão de Tempo)

- Cada fonte ocupa toda a largura de banda disponível durante parte do tempo.
- Ganhou relevância com a crescente. digitalização das comunicações, porquê?
- Mais apropriado para transmissões digitais.
- Diferentes tipos de TDM:
 - com diferentes características e aplicações;
 - a ver mais tarde....

III. MULTIPLEXAGEM

TDM - Exemplo de Multiplexagem por Divisão de Tempo

III. MULTIPLEXAGEM

 Se neste exemplo todas as fontes produzirem sinais com a mesma largura de banda (B) comutador deverá rodar a ao ritmo f_a ≥ 2B.

- Neste exemplo uma trama será um conjunto, ordenado no tempo, com uma amostra de cada entrada.
- Ritmo de pulsos PAM no canal será de r_c= N* f_a ≥ N*2*B.
- Se fosse considerado o processo digitalização completo no canal estariam os bits representativos de cada uma das amostras.

III. MULTIPLEXAGEM

TDM - Noção de sincronização

- No exemplo anterior, corresponde à necessidade de cada amostra ser entregue ao destino correto no instante devido.
- Necessidade da existência de marcas entre cada grupo de amostras ou tramas.
- No contexto do exemplo anterior:

III. MULTIPLEXAGEM

TDM

Noção de Canal Virtual (ou lógico)

- O canal de transmissão é visto como a agregação de vários canais virtuais.
- cada canal virtual é um par emissor-recetor.
- No contexto do exemplo anterior:

III. MULTIPLEXAGEM

TDM

Exemplo antes apresentado: os símbolos são contíguos no tempo; ocorrem sem interrupção; se fonte deixa de transmitir os intervalos de tempo que lhe estão atribuídos tem de decorrer porque

1. TDM Síncrono

Assume a **ordenação temporal** e **continuidade dos canais** (i.e. cada canal tem um "espaço" próprio reservado para transmitir os seus dados).

III. MULTIPLEXAGEM

TDM

2. TDM Assincrono

- Quando não se exige ordenação nem continuidade;
- Em muitos cenários melhor desempenho devido ao aproveitamento do tempo desperdiçado por alguns canais;
- Multiplexadores estatísticos seguem esta filosofia
- Processo também designado por Multiplexagem Estatística.

III. MULTIPLEXAGEM

Alguns Fundamentos TDM SÍNCRONO

- Como se estruturam as tramas?
 - [a) organização das tramas]
- Como se deteta o inicio de uma trama?
 - [b) alinhamento de tramas]
- Como se integra informação de controlo nas tramas?
 - [c) sinalização]
- Exemplos concretos?
 - [e.g. d) hierarquias de multiplexagem PDH e SONET]

Mestrado Integrado em Engenharia Informática

Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Fundamentos TDM SÍNCRONO

- Organização das tramas que multiplexam diversos canais binários após digitalização das fontes.
- Trama multiplexa N canais básicos de K bits.
- Trama organizada em canais entrelaçados ou dígitos entrelaçados:

III. MULTIPLEXAGEM

Fundamentos TDM SÍNCRONO

ALINHAMENTO DAS TRAMAS

- Necessidade de deteção do início da trama.
- Utilização de um determinado padrão de vários bits transportados pela trama.
- Quando o recetor perde o alinhamento de trama:
 - procura esse padrão de bits de modo a realinhar num curto intervalo de tempo;
 - diz-se que o recetor está em modo "caça".

III. MULTIPLEXAGEM

Fundamentos TDM SÍNCRONO

ALINHAMENTO DAS TRAMAS

- PADRÃO AGRUPADO

Os bits de alinhamento formam um conjunto consecutivo no início da trama

- PADRÃO DISTRIBUÍDO

Os bits de alinhamento são espalhados pela trama e ao longo de várias tramas

III. MULTIPLEXAGEM

Fundamentos TDM SÍNCRONO

SINALIZAÇÃO

- Consiste na transmissão de informação auxiliar entre os equipamentos de multiplexagem para efeitos de controlo ou informação auxiliar dos próprios canais.
- Informação de sinalização possui semântica própria (comandos, confirmações etc.), ao contrário da informação transportada entre as fontes e destinos que é transferida de forma transparente.

III. MULTIPLEXAGEM

Fundamentos TDM SÍNCRONO

SINALIZAÇÃO - Exemplos:

IN-BAND

Dentro do Octeto – bit menos significativo do octeto é usado (a cada X octetos) para sinalização; utilização problemática para a transmissão de dados no canal.

OUT-BAND

Fora do Octeto – a cada canal de informação estão atribuídos um ou mais dígitos de sinalização, num canal separado, mediante regras de atribuição pré-estabelecidas.

CANAL COMUM

Reservado um canal por trama para sinalização, atribuído ocasionalmente de acordo com as necessidades a um ou outro canal (uso de etiquetas para identificação do canal a que dizem respeito).

III. MULTIPLEXAGEM

TDM SÍNCRONO

Sistemas de Multiplexagem PCM
 Primeira forma de TDM apareceu com a digitalização PCM do sistema telefónico para a transmissão de voz.

Outros sistemas de Multiplexagem: SDH, SONET

Sistemas de multiplexagem melhor adaptados à transmissão de sinais de informação multimédia modernos e que melhor tiram partido da tecnologia de transmissão (geralmente fibra ótica), visando obtenção de débitos mais elevados e manutenção mais eficiente dos sistemas de multiplexagem.

III. MULTIPLEXAGEM

Sistemas de Multiplexagem PCM

- Necessidade de uniformizar os diversos parâmetros (ritmo, canais, sinalização, etc...) levou à normalização da multiplexagem PCM.
- Normas Americanas e Europeias especificadas em recomendações da ITU (International Telecommunications Union):
 - Trama PCM primária de 2 Mbps (sistema EU);
 - Trama PCM primária de 1.5 Mbps (sistema EUA);
 - Hierarquias de Multiplexagem...

III. MULTIPLEXAGEM

Exemplo de Trama PCM Primária de 2 Mbps

Figura 6.6: Estrutura da trama de multiplexagem PCM de 2 Mbps

III. MULTIPLEXAGEM

Exemplo de Trama PCM Primária de 1.5 Mbps

Figura 6.9: Estrutura da trama de multiplexagem PCM de 1.5 Mbps

III. MULTIPLEXAGEM

Hierarquia de Multiplexagem

- Para multiplexar um maior número de canais básicos do que aquele que o sistema primário admite recorre-se à hierarquização de multiplexadores numa cascata de multiplexadores.
- As saídas dos multiplexadores de primeira ordem são multiplexadas em multiplexadores de segunda ordem, e assim sucessivamente...
- Estes procedimentos de hierarquização da multiplexagem também são normalizados, como, por exemplo, no Sistema de Multiplexagem PDH.

III. MULTIPLEXAGEM

Figura 6 11: Exêmplo de Ama multiplexagem PDH Europeia

Tabel 6.1: Hierarquias de Multiplexagem PDH

ordem dos multiplexadores		\prod		Sistema Europeu ITU-T G.732		Sistema Americano ITU-T G.733			
	Orde	m	En	ntradas	Ritmo de (Kbps		Entradas	Ritmo de (Kbps	
	1	/		30	2 048	E1	24	1 544	T1
	2	′/		4	8 448	E2	4	$6\ 312$	T2
	3	/		4	$34 \ 368$	E3	7	44 736	Т3
	4			4	$139\ 264$	E4	6	$274\ 176$	T4
	5			4	564 992	E5			

III. MULTIPLEXAGEM

Outras Hierarquias de Multiplexagem SDH/SONET

- Motivadas pela necessidade de repensar e melhorar as normalizações TDM anteriores;
- Motivadas pela evolução e crescente disponibilidade da tecnologia ótica;
- Objetivo da continuação da hierarquia até e para além do gigabit por segundo (Gbps);
- Necessidade de enriquecer a estrutura de sinalização para melhorar serviços de administração.

III. MULTIPLEXAGEM

SDH/SONET

Sistema SDH/SONET é constituído por multiplexadores, repetidores/regeneradores, comutadores, etc. ...

Segmento de fibra ótica ininterrupta que interliga quaisquer dos dispositivos é designada por **secção**; trajeto entre dois multiplexadores (com ou sem repetidores) é designado por **linha**; trajeto entre equipamentos terminais é designado por **caminho** (ou *path*).

III. MULTIPLEXAGEM

Exemplo de Trama Básica SONET

- Tramas constituídas por blocos de 810 bytes;
- Cada trama tem a duração de 125 microseg. (coincide com o período de amostragem PCM);
- 8000 tramas por segundo;
- Cada trama pode ser vista como uma matriz de bytes (90 colunas, 9 linhas);
- 90 * 9 = 810 bytes * 8000 = 51.84 Mbps ritmo do canal básico SONET (trama STS-1);
- Todos os restantes ritmos SONET são múltiplos do STS-1.

III. MULTIPLEXAGEM Exemplo de Trama Básica SONET (STS-1)

III. MULTIPLEXAGEM

Hierarquias de Multiplexagem SDH/SONET

- SONET OC-i: sinal STS-i transmitido sob forma ótica.
- SDH: só é aplicado ao contexto de sinais óticos.

Tabela 6.2: Hierarquias de Multiplexagem SDH e SONET

SONET		SDH	Ritmo binário (Mb		Mbps)
Eléctrico	Óptico	Óptico	Bruto	SPE	Útil
STS-1	OC-1		51.84	50.112	49.536
STS-3	OC-3	STM-1	155.52	150.336	148.608
STS-9	OC-9	STM-3	466.56	451.008	445.824
STS-12	OC-12	STM-4	622.08	601.344	594.432
STS-18	OC-18	STM-6	933.12	902.016	891.648
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728

etc..... etc

Notas:

- ✓ Só alguns dos níveis identificados na tabela é que são mais frequentemente usados;
- ✓ Existem mais níveis, por exemplo: OC-768 com débito de aprox. 40 Gbps.

Mestrado Integrado em Engenharia Informática

Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Exemplo de um cenário de multiplexagem SDH

Figura 6.17: Multiplexagem hierárquica SDH

III. MULTIPLEXAGEM

TDM ESTATÍSTICO

- Multiplexagem síncrona é mais apropriada para transmissão digitalizada de fontes que produzem informação a um ritmo constante, sem interrupções, mas existem cenários em que tal não é usual.
- Tráfego produzido pelas aplicações computacionais é muitas vezes de natureza aleatória (tráfego Internet?)...
- Outros tipos de multiplexagem são, por isso, mais apropriadas...

III. MULTIPLEXAGEM

TDM ESTATÍSTICO

Exemplo de tráfego de natureza aleatória

o valor médio de λ_i é o número médio de DUs produzidas por segundo

 Será mais vantajoso, nestes casos, a alocação dinâmica de ranhuras temporais às fontes que tenham ou não tráfego para enviar.

III. MULTIPLEXAGEM

TDM Estatístico vs TDM Síncrono

TDM estatístico - nem todos os equipamentos estão a transmitir ao mesmo tempo, ou seja, o ritmo de saída pode ser inferior à soma dos ritmos nominais das entradas.

III. MULTIPLEXAGEM

TDM ESTATÍSTICO

Situações de pico de tráfego?

- Tráfego de entrada excede capacidade de saída, logo existe a necessidade de buffers (filas de espera);
- Filas grandes = Atrasos grandes
 Filas pequenas = Perdas
 (consequências para diferentes tipos de tráfego?)
- Ritmo de saída importante para o desempenho do sistema;
- Necessidade de estudar comportamento do TDM estatístico com modelos matemáticos de filas de espera.

III. MULTIPLEXAGEM

MODELAÇÃO DE TRÁFEGO

- Modelo de Filas de Espera é identificado pela notação A/B/m/K (ou apenas A/B/m):
 - A, distribuição dos tempos entre chegadas
 - B, distribuição dos tempos de serviço
 - m, número de servidores
 - K, tamanho das tramas em bits
- Vamos usar o exemplo modelo M/D/1 para estudar os multiplexadores estatísticos:
 - intervalos entre chegadas seguem uma exponencial negativa;
 - tempos de serviço determinísticos (fixos);
 - 1 servidor

Mestrado Integrado em Engenharia Informática

Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Modelação de tráfego em multiplexadores estatísticos

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – MODELO M/D/1

- Ritmo Médio de Chegadas, λ
 Numero médio de mensagens/tramas/pacotes que chegam ao multiplexador por segundo.
- Um multiplexador com N linhas de entrada com um ritmo binário de entrada r_{be}, tamanho das mensagens K e fator de utilização das linhas α (ou ocupação média 0%-100%) então:

$$\lambda = N\alpha \frac{r_{be}}{k}$$

 Se as linhas de entrada tiverem ritmos e ocupações diferentes:

$$\lambda = [\alpha_1 rbe1 + \alpha_2 rbe2 + ... + \alpha_N rbeN] / K$$

III. MULTIPLEXAGEM

TDM ESTATÍSTICO - MODELO M/D/1

• Tempo médio de Serviço, \overline{S}

Tamanho das mensagens: K bits

Ritmo de saída: r_{bs} bits/seg

$$\overline{S} = \frac{k}{r_{bs}}$$
 seg/DU

$$\rho = \lambda \overline{S}$$

*se **p < 1** então sistema está em equilíbrio... pelo menos em situações normais de funcionamento...

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – MODELO M/D/1

• Tempo médio de atraso de uma DU (no multiplexador):

Número médio de DUs (no multiplexador):

III. MULTIPLEXAGEM MODELO M/D/1 - Exemplo de Resultados

III. MULTIPLEXAGEM MODELO M/D/1 - Exemplo de Resultados

III. MULTIPLEXAGEM

- Com as fórmulas apresentadas anteriormente é possível obter valores médios para a ocupação dos buffers...
- No entanto, durante a operação do multiplexador os valores de ocupação podem exceder bastante a média...
- Como obter valores para as probabilidades de sobrelotação para um determinado tamanho de buffer?

III. MULTIPLEXAGEM MODELO M/D/1 - Probabilidade de Sobrelotação

Comprimento do buffer (unidades de dados)

Comunicação de Dados

Mestrado Integrado em Engenharia Informática Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Exercício

Um router encaminha pacotes de dados de 1500 bits de 6 linhas de entrada com ritmos binários de entrada de 1 Mbps cada uma, para uma linha de saída também a 1 Mbps. O número médio de chegadas de pacotes a cada linha de entrada é de 500 pacotes cada 5 segundos. Pretende-se estudar o comportamento deste router recorrendo ao modelo M/D/1.

- Pode-se afirmar que este sistema está em equilíbrio o que implica que o número de pacotes em fila de espera é constante ao longo **A1** do tempo.
- O tempo médio de atraso dos pacotes no router é de 8.25 milisegundos.
- Se o router tivesse uma fila de espera com capacidade para armazenar 30 pacotes seria perdido, aproximadamente, um pacote por cada cem mil recebidos.
- **D4** A ocupação média de cada linha de entrada é inferior a 20%.

$$\overline{t}_q = \overline{S} + \frac{\rho \, \overline{S}}{2(1-\rho)}$$

$$\lambda = N\alpha \frac{r_{be}}{k}$$

$$\overline{n}_q = \rho + \frac{\rho^2}{2(1-\rho)}$$

$$\rho = \lambda \overline{S}$$

$$\overline{S} \ = \frac{k}{r_{bs}}$$

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

- A base teórica dos modelos de filas de espera é importante para o estudo/implementação de diversos equipamentos de rede, como os encaminhadores (ou *routers*).
- Os mecanismos de gestão de filas de espera e estratégias de escalonamento de pacotes são essenciais para o tratamento dos pacotes e afetam a forma/qualidade como o tráfego é gerido na rede.

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Modelo duma arquitetura de um router

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Estratégias de escalonamento e de gestão de filas afetam as diferentes classes de tráfego:

- Débitos obtidos, perdas, atrasos, ...
- Qualidade de Serviço (QoS) obtida pelas aplicações Internet...

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Exemplo do comportamento duma classe de tráfego:

Generic Service Class

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Para conseguir algum tipo de diferenciação de tráfego pode ser necessária a utilização de estratégias para:

- gestão de filas espera e
- mecanismos de escalonamento.

Por exemplo:

- Todos os pacotes partilham uma única fila de espera, ou
- Pacotes de diferentes classes s\u00e3o armazenados em diferentes filas de espera.

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Gestão de filas:

Fila única (a) vs. várias filas de espera (b)

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Gestão de filas

- Como lidar com insuficiência de recursos?
 - drop tail quando a fila está cheia os pacotes são perdidos;
 - push-out possibilidade de retirar pacotes que já estão na fila para entrarem outros;
 - random early detection possibilidade de eliminação de pacotes mesmo quando a fila não está cheia;

• ...

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Estratégias de escalonamento de pacotes

Classificação:

- work conserving: escalonador só não transmite pacotes no caso das filas estarem vazias;
- non-work-conserving: em alguns casos o escalonador pode não transmitir mesmo tendo pacotes em fila.

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Estratégias de escalonamento de pacotes:

- strict priority filas/classes com prioridades mais altas têm sempre prioridade sobre os outros pacotes;
- round robin em cada ciclo transmitir um pacote de cada fila/classe;
- weight fair queuing, weighted round robin, etc. definição de "pesos" para cada uma das classes/filas; as filas/classes são servidas de acordo com esses valores; isto é uma forma de alocar diferentes débitos de saída a cada uma das classes.

Mestrado Integrado em Engenharia Informática

Departamento de Informática, Universidade do Minho

III. MULTIPLEXAGEM

Estratégias de escalonamento

III. MULTIPLEXAGEM

Estratégias de escalonamento

Alguns exemplos de objetivos

Exemplo #1:

e.g. garantir atraso mínimo a uma determinada classe de tráfego [tráfego de voz, tráfego de tempo real, etc.]

Exemplo #2:

e.g. garantir a uma determinada classe/fila uma percentagem de débito no link de saída.

III. MULTIPLEXAGEM

Estratégias de escalonamento

Cenário do Exemplo #1, e.g. garantir atraso mínimo a uma determinada classe de tráfego (voz, tempo real, etc.):

III. MULTIPLEXAGEM

Estratégias de escalonamento

Cenário do Exemplo #2, e.g. garantir uma determinada percentagem de débito no link de saída a uma classe/fila:

III. MULTIPLEXAGEM

Estratégias de escalonamento combinadas/híbridas

Exemplo: **WRR** trabalha com duas classes de tráfego e garante uma determinada distribuição do débito; uma das classes é composta por 2 subclasses (em que uma tem prioridade absoluta sobre a outra).

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Outras Estratégias de escalonamento

> Diferenciação Relativa/Proporcional de tráfego

- Não são dadas "garantias" a nenhuma classe/fila mas garante-se que as filas mais prioritárias vão ter melhor qualidade que as filas menos prioritárias;
- Ou seja, os atrasos/perdas das classes mais prioritárias vão ser "n" vezes inferiores às sentidas pelas classes menos prioritárias.

III. MULTIPLEXAGEM

Exemplo ilustrativo de diferenciação relativa de tráfego:

- Gestão de n filas dinâmicas + Escalonamento pacotes aplicando modelos de proporcionalidade;
- Cada classe de tráfego tem associados 2 parâmetros:
 - parâmetro U_i vai influenciar a forma como os pacotes da classe/fila são selecionados para transmissão (atrasos);
 - parâmetro L_i vai influenciar as perdas de pacotes que afetam a classe/fila;
- •Classes mais prioritárias devem ter valores **U**_{i,} **L**_i mais elevados.

III. MULTIPLEXAGEM

Gestão de filas de espera

Escalonamento

Escalonamento: pacote da classe com maior P_i é selecionada para transmissão

Gestão filas: em caso de buffer overflow é eliminado um pacote da classe com menor P_i

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Exemplo ilustrativo de diferenciação relativa de tráfego com 3 classes de tráfego (I):

Proportional loss and proportional delay differentiation models for $(L_A, L_B, L_C) = (16, 4, 1)$ and $(U_A, U_B, U_C) = (16, 4, 1)$.

III. MULTIPLEXAGEM

TDM ESTATÍSTICO – Questões Relacionadas

Exemplo ilustrativo de diferenciação relativa de tráfego com 3 classes de tráfego (II):

Proportional loss and proportional delay differentiation models for $(L_A, L_B, L_C) = (16, 4, 1)$ and $(U_A, U_B, U_C) = (8, 1, 1)$.

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

- Técnica em que cada fonte ocupa uma fração da largura de banda disponível durante todo o tempo (No TDM cada fonte ocupa toda a largura de banda disponível durante parte do tempo);
- Método mais antigo;
- Método que surgiu inicialmente associado à transmissão analógica (Rádio FM, por exemplo).

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

- No mesmo suporte físico coexistem simultaneamente vários canais FDM;
- Sinais de cada canal são modulados em portadoras de diferentes frequências:
- Na receção, o sinal composto é apresentado a um conjunto de N filtros passa banda que permitem isolar cada uma das suas componentes (canais);
- Em cada canal efetua-se uma desmodulação permitindo a recuperação do sinal original desse canal.

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

... na transmissão:

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

... na receção:

III. MULTIPLEXAGEM

FDM (Multiplexagem por Divisão de Frequências)

Tal como no caso do TDM, existem especificações de hierarquias de multiplexagem FDM, como, por exemplo, as que assumem como canal básico de referência o canal de voz (com B=4KHz) definindo-se depois vários níveis de hierarquias.

Nível 1 – multiplexa 12 canais de 4KHz em sub-portadoras de 64, 68, 72,, 108 KHz, resultando num sinal composto com largura de banda de 48KHz.

Nível 2 – multiplexa 5 entradas do nível anterior.

Nível 3

III. MULTIPLEXAGEM

Esquemas combinados FDM/TDM

Possibilidade da utilização esquemas híbridos envolvendo TDM e FDM como, por exemplo, num sistema de comunicação entre uma estação base e diversos dispositivos (utilizadores):

- Estação base divide a banda de transmissão disponível do canal em várias sub-bandas;
- Temporalmente define também "intervalos" (time slots) que, no seu conjunto, formam uma trama;
- A cada dispositivo é atribuída uma frequência e um *time slot.*

III. MULTIPLEXAGEM

Esquemas combinados FDM + TDM

Exemplo de esquema resultante da divisão da banda de transmissão em 4 sub-bandas e da divisão temporal em 10 *time slots* por trama.

III. MULTIPLEXAGEM

Exemplos de outras Técnicas

Alguns métodos de acesso ao canal são baseados noutros paradigmas que não FDM ou TDM como, por exemplo, uma das versões do método de acesso a um canal partilhado denominado por CDMA (Code Division Multiple Access):

- Possibilidade do canal ser usado por diversos intervenientes ao mesmo tempo e na mesma gama de frequências;
- A interferência entre as comunicações é controlada;
- Cada dispositivo interveniente na comunicação possui um "código" que permite codificar/descodificar os dados por si enviados.

III. MULTIPLEXAGEM

TDM vs FDM vs CDMA

Analogia - imaginar uma sala com vários pares/grupos de pessoas a conversarem....

- TDM por turnos, fala um par de cada vez;
- FDM cada par fala em frequências diferentes;
- CDMA cada par fala em linguagens diferentes (mesmo que ao mesmo tempo e nas mesmas frequências); só os intervenientes que falam a mesma linguagem podem comunicar entre si, não conseguindo entender os outros intervenientes.

III. MULTIPLEXAGEM

Outras Técnicas de Multiplexagem

Wavelength-Division Multiplexing (WDM)

- Utilizado em sistemas de comunicação com fibras óticas;
- Permite a transmissão vários sinais óticos sobre uma mesma fibra;
- Cada sinal (luz) é transmitido utilizando diferentes comprimentos de onda (daí que, por vezes, se refira "diferentes cores");
- WDM semelhante ao FDM (frequência e comprimento de onda estão relacionados) mas WDM é um termo mais usado em contextos de transmissão ótica.

III. MULTIPLEXAGEM

WDM

- Sistemas WDM são comuns nas companhias de telecomunicações pois permitem aumentar a capacidade da rede sem necessidade de acrescentar mais fibra.
- Capacidade dos links pode ser aumentada simplesmente atualizando os multiplexadores (de)multiplexadores nas terminações da fibra.

wavelength-division multiplexing (WDM)

