# Optimization Theory and Algorithms

Instructor: Prof. LIAO, Guocheng (廖国成)

Email: liaogch6@mail.sysu.edu.cn

School of Software Engineering Sun Yat-sen University

### **Outline**

- Affine set
- Convex set
- Convexity-preserving operations
- Separating and supporting hyperplane theorem

#### Affine set

Definition: a set  $S \subseteq \mathbb{R}^n$  is an affine set, if

for any 
$$x,y \in S$$
,  $\theta x + (1-\theta)y \in S$ , for all  $\theta \in \mathbb{R}$ .



A line through x,y, if  $x \neq y$ .



Affine set contains the line through any two distinct points in the set.

Example:  $\{x | Ax = b\}$ , i.e., solution set of linear equations.

Generalization to more than two points:

Affine combination of  $x_1$ ,  $x_2$ ,...,  $x_k \in \mathbb{R}^n$ :

$$\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$
, where  $\sum_{i=1}^k \theta_i = 1$ .

Affine set contains the every affine combination of its points in the set.

# Affine set: Interpretation

A set  $S \subseteq \mathbb{R}^n$  is an affine set



*S* is the translation of some linear subspace  $V \subseteq \mathbb{R}^n$ , i.e., *S* is of the form  $\{x\} + V = \{x + v : v \in V\}$  for some  $x \in \mathbb{R}^n$ .

for any  $v_1, v_2 \in V$ ,  $\alpha, \beta \in \mathbb{R}$ ,  $\alpha v_1 + \beta v_2 \in V$ 

Affine set = subspace + offset

#### Convex set

Definition: a set  $S \subseteq \mathbb{R}^n$  is a convex set, if

for any 
$$x,y \in S$$
,  $\theta x + (1-\theta)y \in S$ , for  $\theta \in [0,1]$ .



Line segment between x,y, if  $x \neq y$ .







Convex set contains the line segment between any two distinct points in the set.

Generalization to more than two points:

Convex combination of  $x_1, x_2, ..., x_k \in \mathbb{R}^n$ :

 $\sum_{i=1}^k \theta_i x_i$ , where  $\sum_{i=1}^k \theta_i = 1$ , and  $\theta_i \ge 0$  for all i.

Convex set contains the every convex combination of its points in the set.

#### Convex hull

The convex hull of a set S is the set of all convex combinations of points in S:

$$conv(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \sum_{i=1}^k \theta_i = 1, \text{ and } \theta_i \ge 0 \text{ for all } i \right\}$$



The convex hull of a set S is the smallest convex set that contains S.

### Convex set: examples

- Simple examples: empty set  $\emptyset$ ; any single point; line; the whole space  $\mathbb{R}^n$ .
- Hyperplane  $\{x \in \mathbb{R}^n | a^T x = b\}$   $(a \in \mathbb{R}^n, a \neq \mathbf{0}, b \in \mathbb{R})$ .



• Halfspace  $\{x \in \mathbb{R}^n | a^T x \le b\}$   $(a \in \mathbb{R}^n, a \ne \mathbf{0}, b \in \mathbb{R})$ .

### Convex set: examples

Polyhedron: solution set of finite linear equalities and inequalities



Polyhedron is intersection of finite number of halfspaces and hyperplanes.

### Convex set: examples

Euclidean ball

$$B(x_c, r) = \{x | ||x - x_c||_2 \le r\} = \{x_c + ru | ||u||_2 \le 1\}$$

Ellipsoids

$$E(x_c, Q) = \{x | (x - x_c)^T Q (x - x_c) \le 1\}$$

 $x_c$  is the center of the ellipsoid; Q > 0, i.e., positive definite matrix.



#### Cone

A set  $S \subseteq \mathbb{R}^n$  is a cone, if

for any  $x \in S$ ,  $\theta x \in S$ , for  $\theta \ge 0$ .



A set  $S \subseteq \mathbb{R}^n$  is a convex cone, if

for any  $x_1, x_2 \in S$ ,  $\theta_1 x_1 + \theta_2 x_2 \in S$ , for  $\theta_1, \theta_2 \ge 0$ .



Generalization to more than two points:

Conic combination of  $x_1, x_2, ..., x_k \in \mathbb{R}^n$ :  $\sum_{i=1}^k \theta_i x_i$ , where  $\theta_i \ge 0$  for all i. Convex cone contains the every conic combination of its points in the set.

#### Conic hull

The conic hull of a set S is the set of all conic combinations of points in S:

$$conv(S) = \left\{ \sum_{i=1}^{k} \theta_i x_i \mid x_i \in S, \text{ and } \theta_i \ge 0 \text{ for all } i \right\}$$



The conic hull of a set S is the smallest convex cone that contains S.

# Convex cone: example

• Non-negative orthant:  $\mathbb{R}^n_+ \triangleq \{(x_1, x_2, ..., x_n) | x_i \geq 0, i = 1, ..., n\}$ 



### Convex cone: example

• Norm cone:  $\{(x,t)| ||x|| \le t\} \subseteq \mathbb{R}^{n+1}$ , for a norm  $||\cdot||$ .

For a I2-norm (Euclidean norm)  $\|\cdot\|_2$ :

 $\{(x,t)| \|x\|_2 \le t\}$  is second-order cone, also called ice cream cone.



Boundary of second-order cone in  $\mathbb{R}^3$ ,  $\{(x_1, x_2, t) | (x_1^2 + x_2^2)^{1/2} \le t\}$ .

# Convex cone: positive semidefinite cone

• Positive semidefinite matrix  $S_+^n \triangleq \{X \in S^n | X \geq 0\}$ .

$$z^T X z \ge 0$$
 for all  $z \in \mathbb{R}^n$ 

• Example: positive semidefinite cone in  $S_+^2$ 

$$X = \begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{n} \Leftrightarrow x \ge 0, z \ge 0, xz \ge y^{2}. \quad ^{\circ} ^{0.5}$$



Boundary in  $\mathbb{R}^3$ 

### Operations that preserve convexity

Intersection: the intersection of convex sets is convex.

$$\{x | a_i^T x \le b_i, i = 1, ..., m, c_j^T x = d_i, j = 1, ..., p\}$$



Polyhedron is intersection of finite number of halfspaces and hyperplanes.

# Operations that preserve convexity

• Affine mapping: f(x) = Ax + b where  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ , i.e.,  $f: \mathbb{R}^n \to \mathbb{R}^m$ 

$$S \subseteq \mathbb{R}^n$$
 is convex  $\implies f(S) = \{f(x) | x \in S\}$  is convex  $T \subseteq \mathbb{R}^n$  is convex  $\implies f^{-1}(T) = \{x | f(x) \in T\}$  is convex

- Examples:
- $\triangleright$  Scaling ( $\{\alpha x | x \in S\}$ ), translation ( $\{x + x_0 | x \in S\}$ ), projection ( $\{x_1 | [x_1, x_2]^T \in S\}$ )
- ightharpoonup Convexity of ellipsoid:  $E(x_c, Q) = \{x | (x x_c)^T Q (x x_c) \le 1\}$

Eclidean ball 
$$B(0,r)=\{x|x^Tx\leq r^2\}$$
 is convex Let  $f(x)=rQ^{-1/2}x+x_c$ 

$$f(B(0,r)) = \{f(x)|x^Tx \le r^2\} = \{x|(x-x_c)^TQ(x-x_c) \le 1\}$$
 is convex

# Projection onto closed convex sets

Theorem: Let  $S \subseteq \mathbb{R}^n$  be non-empty, closed and convex. Then, for every  $x \in \mathbb{R}^n$ , there exists a unique point  $z^* \in S$  that is closest to (in Euclidean norm) x.



Theorem: Let  $S \subseteq \mathbb{R}^n$  be non-empty, closed and convex. Given any  $x \in \mathbb{R}^n$ , we have  $z^* = \Pi_S(x)$  iff  $z^* \in S$  and  $(z - z^*)^T (x - z^*) \le 0$  for all  $z \in S$ .



# Separating hyperplane theorem

Theorem: If C and D are non-empty, disjoint (i.e.,  $C \cap D = \emptyset$ ) convex set, there exists  $a \neq 0$  and b such that:

 $a^T x \leq b$  for all  $x \in C$  and  $a^T x \geq b$  for all  $x \in D$ .



Hyperplane  $\{x | a^T x = b\}$ separates C and D

 $a^Tx < b$  for all  $x \in C$  and  $a^Tx > b$  for all  $x \in D$  strictly separates C and D

Theorem (point-set separation): Let  $S \subseteq \mathbb{R}^n$  be non-empty, closed and convex. Let  $x \in \mathbb{R}^n \backslash S$ . There exists an  $a \in \mathbb{R}^n$  such that  $\max_{z \in S} a^T z < a^T x$ .

# Supporting hyperplane theorem

Let  $x_0 \in \mathbf{bd}(S)$ . If  $a \neq 0$  satisfies  $a^T x \leq a^T x_0$  for all x in S, then the following hyperplane is a supporting hyperplane to S at the point  $x_0$ :

boundary

$$\{x|a^Tx = a^Tx_0\}$$

Theorem: If S is non-empty convex set, there exists a *supporting hyperplane* at every boundary of S.

Interior point: A point  $x \in S$  is an interior point of set S, if there exists an  $\varepsilon > 0$  such that

$$\{y \mid ||x - y||_2 \le \varepsilon\} \subseteq S.$$



A ball centered at x that lies entirely in S.

Interior of set S int(S): the set of all interior points.

Closure of set 
$$S$$
: **cl**  $(S) \triangleq \mathbb{R}^n \setminus \text{int } (\mathbb{R}^n \setminus S)$ , i.e., set  $S$  + its boundary



