AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS

- 1. (currently amended) A <u>portable</u> digital <u>camera</u> apparatus comprising a red-eye filter for modifying an area within a <u>digital digitized</u> image <u>acquired by the apparatus</u>, the <u>area being</u> indicative of a red-eye phenomenon, the modifying being based on <u>detecting</u> the red eye phenomenon including analyzing an analysis of a subsample resolution representation of selected regions of said digitized image wherein a degree of subsampling of the subsample resolution representation is based upon complexity of calculation of the red-eye filter and on an analysis of meta-data information, and on data obtained from the camera relating to image processing analysis of a precapture image.
- 2. (original) The apparatus of claim 1, wherein the analysis is performed at least in part for determining said area.
- 3. (original) The apparatus of claim 1, wherein the analysis is performed at least in part for determining said modifying.
- 4. (original) The apparatus of claim 1, wherein said selected regions of said digitized image comprise the entire image.
- 5. (original) The apparatus of claim 1, wherein said selected regions of said digitized image comprise multi resolution encoding of said image.
- 6. (original) The apparatus of claim 1, wherein at least one region of the entire image is not included among said selected regions of said image.

- 7. (original) The apparatus of claim 1, wherein said analysis is performed in part on a full resolution image and in part on a subsample resolution of said digital image.
- 8. (original) The apparatus of claim 1, further comprising a module for changing the degree of said subsampling.
- 9. (original) The apparatus of claim 8, wherein said changing the degree of said subsampling is determined empirically.
- 10. (original) The apparatus of claim 8, wherein said changing the degree of said subsampling is determined based on a size of said image.
- 11. (original) The apparatus of claim 8, wherein said changing the degree of said subsampling is determined based on a size of selected regions of the image.
- 12. (original) The apparatus of claim 8, wherein said changing the degree of said subsampling is determined based on data obtained from the camera relating to the settings of the camera at the time of image capture.
- 13. (original) The apparatus of claim 12, wherein the data obtained from the camera includes an aperture setting or focus of the camera, or both.
- 14. (original) The apparatus of claim 12, wherein the data obtained from the camera includes the distance of the subject from the camera.

- 15. (previously presented) The apparatus of claim 8, wherein said changing the degree of said subsampling is determined based on digitized image metadata information.
- 16. (original) The apparatus of claim 8, wherein said modifying the area is performed including the full resolution of said digital image.
- 17. (original) The apparatus of claim 8, wherein said red-eye filter comprises of a plurality of sub filters.
- 18. (previously presented) The apparatus of claim 17, wherein said subsampling for said sub filters operating on selected regions of said image is determined by image size, suspected as red eye region size, filter computation complexity, empirical success rate of said sub filter, empirical false detection rate of said sub filter, falsing probability of said sub filter, relations between said suspected regions as red eye, or results of previous analysis of other said sub filters, or combinations thereof.
- 19. (original) The apparatus of claim 1, further comprising memory for saving said digitized image after applying said filter for modifying pixels as a modified image.
- 20. (original) The apparatus of claim 1, further comprising memory for saving said subsample representation of said image.
- 21. (previously presented) The apparatus of claim 1, wherein said subsample resolution representation of selected regions of said image is determined in hardware.

- 22. (original) The apparatus of claim 1, wherein said analysis is performed in part on the full resolution image and in part on a subsample resolution of said image.
- 23. (original) The apparatus of claim 1, further comprising means for changing the degree of said subsampling.
- 24. (original) The apparatus of claim 23, wherein said changing the degree of said subsampling is determined empirically.
- 25. (original) The apparatus of claim 23, wherein said changing the degree of said subsampling is determined based on a size of said image.
- 26. (original) The apparatus of claim 23, wherein said changing the degree of said subsampling is determined based on a region size.
- 27. (original) The apparatus of claim 23, wherein said changing the degree of said subsampling is determined based on a complexity of calculation for said filter.
- 28. (previously presented) The apparatus of claim 1, wherein said subsample resolution representation is determined using spline interpolation.
- 29. (original) The apparatus of claim 1, wherein said subsample representation is determined using bi-cubic interpolation.

- 30. (original) The apparatus of claim 1, wherein said modifying the area is performed on the full resolution of said image.
- 31. (original) The apparatus of claim 1, wherein said red-eye filter comprises a plurality of sub-filters.
- 32. (previously presented) The apparatus according to claim 31, wherein said subsampling for said sub-filters operating on selected regions of said image is determined by image size, a suspected red eye region size, filter computation complexity, empirical success rate of said sub-filter, empirical false detection rate of said sub-filter, falsing probability of said sub-filter, relations between said suspected red eye regions, or results of previous analysis of one or more other sub-filters, or combinations thereof.
 - 33-56 (cancelled).
- 57. (currently amended) A method of filtering a red eye phenomenon from a digital digitized image captured by a portable digital camera device, comprising a multiplicity of pixels indicative of color, the method comprising using a processor of the portable digital camera device in determining whether one or more regions within a subsample resolution representation of said digital digitized image are suspected as including red eye artifact wherein a degree of subsampling is based upon a complexity of calculation of the red-eye filter and on an analysis of meta-data information, and on data obtained from the portable digital camera device relating to image processing analysis of a precapture image, and correcting within the portable digital camera device the red eye artifact determined within the one or more regions.

- 58. (previously presented) The method of claim 57, further comprising varying a degree of subsampling for each region of said one or more regions based on said image.
- 59. (previously presented) The method of claim 57, further comprising generating the subsample resolution representation based on said image.
- 60. (previously presented) The method of claim 57, further comprising generating the subsample resolution representation utilizing a hardware-implemented subsampling engine.
- 61. (previously presented) The method of claim 57, further comprising testing one or more regions within said subsample resolution representation determined as including red eye artifact for determining any false redeye groupings.
 - 62. (previously presented) The method of claim 57, further comprising
- (c) associating said one or more regions within said subsample resolution representation of said image with one or more corresponding regions within said image; and
 - (d) modifying said one or more corresponding regions within said image.
- 63. (original) The method of claim 57, wherein the determining comprises analyzing meta-data information including image acquisition device-specific information.
- 64. (previously presented) The method of claim 57, further comprising analyzing the subsample resolution representation of selected regions of said digitized image, and modifying an area determined to include red eye artifact.
- 65. (original) The method of claim 64, wherein the analysis is performed at least in part for determining said area.

- 66. (original) The method of claim 64, wherein the analysis is performed at least in part for determining said modifying.
- 67. (original) The method of claim 64, wherein said selected regions of said digitized image comprise the entire image.
- · 68. (original) The method of claim 64, wherein said selected regions of said digitized image comprise multi resolution encoding of said image.
- 69. (original) The method of claim 64, wherein at least one region of the entire image is not included among said selected regions of said image.
- 70. (original) The method of claim 64, wherein said analyzing is performed in part on a full resolution image and in part on a subsample resolution of said image.
- 71. (original) The method of claim 64, further comprising changing the degree of said subsampling.
- 72. (original) The method of claim 71, wherein said changing the degree of said subsampling is determined empirically.
- 73. (original) The method of claim 71, wherein said changing the degree of said subsampling is determined based on a size of said image.

- 74. (original) The method of claim 71, wherein said changing the degree of said subsampling is determined based on a size of selected regions.
- 75. (original) The method of claim 64, further comprising saving said digitized image after applying said filter for modifying pixels as a modified image.
- 76. (previously presented) The method of claim 64, further comprising saving said subsample resolution representation of said image.
- 77. (previously presented) The method of claim 64, further comprising determining said subsample resolution representation of said image in hardware.
- 78. (previously presented) The method of claim 64, further comprising determining said subsample resolution representation using spline interpolation.
- 79. (previously presented) The method of claim 64, further comprising determining said subsample resolution representation using bi-cubic interpolation.
- 80. (original) The method of claim 64, wherein said modifying of the area is performed including the full resolution of said image.
- 81. (previously presented) The method of claim 57, further comprising determining said subsample resolution representation utilizing a plurality of sub-filters.

- 82. (previously presented) The method of claim 81, wherein said subsampling for said sub-filters operating on selected regions of said image is determined by image size, a suspected red eye region size, filter computation complexity, empirical success rate of said sub-filter, empirical false detection rate of said sub-filter, falsing probability of said sub-filter, relations between said suspected red eye regions, or results of previous analysis of one or more other sub-filters, or combinations thereof.
- 83. (previously presented) The apparatus of claim 1, wherein the metadata information comprises image acquisition device-specific information.
- 84. (previously presented) The apparatus of claim 83, wherein the metadata information comprises digitized image metadata.
- 85. (previously presented) The apparatus of claim 1, wherein the metadata information comprises digitized image metadata.

86-88. (cancelled).

- 89. (previously presented) The method of claim 57, wherein the analysis of metadata information comprises analysis of digitized meta-data.
- 90. (previously presented) The method of claim 89, wherein the analysis of metadata information comprises analysis of image acquisition-device specific metadata.
- 91. (previously presented) The method of claim 57, wherein the analysis of metadata information comprises analysis of image acquisition-device specific metadata.
- 92. (previously presented) The apparatus of claim 1, wherein said image processing analysis is based on histogram data obtained from said pre-capture image.

- 93. (previously presented) The apparatus of claim 1, wherein said image processing analysis is based on color correlogram data obtained from said pre-capture image.
- 94. (previously presented) The apparatus of claim 1, wherein said image processing analysis is based on global luminance or white balance image data, or both, obtained from said pre-capture image.
- 95. (previously presented) The apparatus of claim 1, wherein said image processing analysis is based on face detection analysis of said pre-capture image.
- 96. (previously presented) The apparatus of claim 1, wherein said image processing analysis is based on determining pixel regions with a color characteristic indicative of redeye.
- 97. (previously presented) The apparatus of claim 1, wherein said image processing analysis is performed in hardware.
- 98. (previously presented) The method of claim 57, wherein said image processing analysis is based on histogram data obtained from said pre-capture image.
- 99. (previously presented) The method of claim 57, wherein said image processing analysis is based on color correlogram data obtained from said pre-capture image.

- 100. (previously presented) The method of claim 57, wherein said image processing analysis is based on global luminance or white balance image data, or both, obtained from said pre-capture image.
- 101. (previously presented) The method of claim 57, wherein said image processing analysis is based on face detection analysis of said pre-capture image.
- 102. (previously presented) The method of claim 57, wherein said image processing analysis is based on determining pixel regions with a color characteristic indicative of redeye.
- 103. (previously presented) The method of claim 57, wherein said image processing analysis is performed in hardware.
- digital image acquired with a portable digital camera device, the digital image comprising a multiplicity of pixels indicative of color, the method comprising using a processor on the portable digital camera device for determining whether one or more regions within a subsample representation of said digital image are suspected as including red eye artifact, wherein the subsample representation comprises an eye region suspected as indicative of red eye, and wherein a degree of subsampling is based upon a complexity of calculation of a the red-eye filter and on an analysis of meta-data information each performed on the portable digital camera device, and on data obtained from the portable digital camera device relating to image processing analysis of a precapture image.