(1001919) Métodos computacionalmente intensivos

Lista de fixação 2

Exercício 1. Considere que $(\theta_1, \theta_2) \sim N(\mu, \Sigma)$, com $\mu = (0, 0)$, $\Sigma_{i,i} = 1$ e $\Sigma_{1,2} = \rho$.

- (a) Determine $f(\theta_2|\theta_1)$
- (b) Utilize o amostrador de Gibbs para simular de (θ_1, θ_2) quando $\rho = 0.01, \rho = 0.5$ e $\rho = 0.99$
- (c) Indique qual amostrador foi mais eficiente. Argumente porque este é o caso apesar de a probabilidade de aceitação ser 1 para todos os amostradores.

Exercício 2. Considere que $\lambda \sim N(0,1)$, $(\mu_1, \mu_2)|\lambda$ são i.i.d., $\mu_i|\lambda \sim N(\lambda,1)$, $X_{i,1}, \ldots, X_{i,n_i}|\mu_i$ são i.i.d., e $X_{i,j}|\mu_i \sim N(\mu_i,1)$.

- (a) Determine $f(\lambda|\mu_1, \mu_2, \mathbf{X})$, $f(\mu_1|\lambda, \mu_2, \mathbf{X})$, $e f(\mu_2|\lambda, \mu_1, \mathbf{X})$.
- (b) Utilize o amostrador de Gibbs para simular de (λ, μ_1, μ_2) quando $\bar{x}_1 = 10.2$, $\bar{x}_2 = 5.7$, e $n_1 = n_2 = 100$. Exibe uma estimativa da densidade de $\lambda | x$
- (c) Determine $f(\lambda|x)$ e compare com a simulação anterior.

Exercício 3. Considere que X_1, \ldots, X_n são i.i.d., $X_i \sim Bernoulli(0.5)$, (θ_0, θ_1) são i.i.d., $\theta_i \sim Beta(1, 1)$, Y_1, \ldots, Y_n são independentes dado X e θ , $Y_i|X_i, \theta \sim Bernoulli(\theta_{X_i})$. Implemente um amostrador de Gibbs para $f(\theta_0, \theta_1|Y, X)$ quando X = (0, 1, 0, NA, 1, NA), Y = (0, 1, 0, 1, 1, 0), e as observações em X são faltantes ao acaso.

Exercício 4. Considere que, (α_1, α_2) são i.i.d., $\alpha_i \sim Gamma(1, 1)$, e X_1, \ldots, X_n são i.i.d. dado (α_1, α_2) , e $X_i | \alpha_1, \alpha_2 \sim Beta(\alpha_1, \alpha_2)$. Implemente um amostrador de Gibbs com propostas de Metropolis quando X = (0.21, 0.35, 0.23, 0.27, 0.31, 0.29, 0.24).

Exercício 5. Considere o modelo de imagem aleatória em que $A = \{0, 1, ..., 10\}^2$, temos $(Z_{i,j})_{(i,j)\in A}$, $V(i,j) = \{(i^*, j^*) : |i^* - i| + |j^* - j| = 1\}$, e

$$f(z) \propto \prod_{(i,j)\in A} \exp\left(-\lambda \sum_{(i^*,j^*)\in V(i,j)} (Z_{i^*,j^*} - Z_{i,j})^2\right)$$

Implemente o amostrador de Gibbs para simular de Z. Para tal, determine $f(z_{i,j}|z_{-(i,j)})$ quando

- (a) cada $Z_{i,j} \in \{0,1\}$
- (b) cada $Z_{i,j} \in \{0, 1, \dots, 255\}$
- (c) cada $Z_{i,j} \in \Re$

Referências