

Fig. 1. Variation of the concentration expressed as absorbance/mg of delivered ASA in time for the granules one with 15% of POVIAC1 and 2.5% of ASA.

FIGURE 2/4

Fig. 2. Microscopic image of a grain of HAP-200 (left) and the surface layer achieved with the "composite" of POVIAC (right).

Fig. 3. Radiography of implants of HAP-200 in radio of primates (up) and of HAP-200 with POVIAC (below) to the 6 months of postoperative evolution where excellent incorporation from the biomaterial to the tissue environment is observed.

Fig. 4. Variation of the chemical composition expressed by the molar ratio Ca/P of two types of granules (G2 and G5) implanted in bone tissue of rats at different times. It is also pointed out the value corresponding to the implanted bone (mean value of 2).