

PCI Express (PCIe) Overview

Peter Onufryk
Sr. Director, Product Development
PMC-Sierra

NVMe and PCIe Layering

NVMe

- Driver interface (registers)
- Queuing interface
- Command set
- Command processing model

PCle

- Reliable memory read/write transactions
- Discovery and configuration
- Switching & routing
- Physical layer

PCIe Characteristics

- Specification defined by PCI-SIG
 - www.pcisig.com
- Packet based protocol over serial links
 - Software compatible with PCI and PCI-X
 - Reliable in-order packet transfer
- High performance and scalable from consumer to enterprise
 - Scalable link speed (2.5 GT/s, 5.0 GT/s, 8.0 GT/s)
 - Scalable link width (x1, x2, x4, x32)
- Primary application is as an I/O interconnect
 - Not a CPU interconnect
 - Some multi-host applications (NTB, MR-IOV)
 - Some outside the box applications (PCIe cable)

PCIe and Server Architecture

*Source - Intel

PCIe is Everywhere

PCIe Fabric Topology

Data Transfers

PCIe and NVMe

PCIe Layers

Physical Layer

- Scalable Speed
 - Gen1 2.5 GT/s
 - Gen2 5.0 GT/s
 - Gen3 8.0 GT/s
- Scalable Width
 - x1, x2, x4, x8, x12, x16, x32
- Encoding
 - 8b10b: 2.5 GT/s & 5.0 GT/s
 - 128b/130b: 8 GT/s

PCIe Performance

Generation	Raw Bit Rate	Bandwidth Per Lane Each Direction	Total x16 Link Bandwidth#
Gen 1	2.5 GT/s	~ 250 MB/s	~ 8 GB/s
Gen 2	5.0 GT/s	~500 MB/s	~16 GB/s
Gen 3	8 GT/s	~ 1 GB/s	~ 32 GB/s

[#] Link bandwidth in each direction x 2 (full duplex)

Source - PCI-SIG PCI Express 3.0 FAQ

Data Link Layer

- Primary Function
 - Reliable exchange of Transaction Layer Packets (TLPs) between the two components of a Link
- Other Functions
 - Initialization (flow control credits)
 - Power management
 - Track and report link state to transaction layer (i.e., DL_up & DL_Down)

Transaction Layer

Primary Function

 Assembly and disassembly of Transaction Layer Packets (TLPs) for read and write transactions

Other Functions

- Event signaling (e.g., interrupts, power management, errors)
- Management of TLP credit based flow control

Address Spaces

Address Space	Function
Memory	Data transfer to/from memory mapped locations - 64-bit memory address space
I/O	Data transfer to/from IO-mapped locations - 32-bit I/O space
Configuration	Device Function configuration & setup - 16-bit configuration space
Message	Event signaling & general purpose messaging

Functions and Configuration Space

- Function an addressable entity in configuration space
 - Architecturally visible (i.e., can be discovered and configured)
 - Capable of issuing requests and generating completions

Type 0 and Type 1 Functions

Function Config. Space Registers

PCIe Switches and I/O Fan-out

PCIe Switch

PCIe Switch Physical View

PCIe Switch Logical View

Non-Transparent Bridge (NTB)

PCIe Multi-Path Usage Model

PCIe Overview Summary

- PCle is ubiquitous
- PCIe provides a scalable interface for SSDs
 - Scalable link width and speed
- PCle is not a bottleneck
 - Highest performance standard I/O attach point
- PCIe switches provide I/O fan-out
 - Allows multiple SSDs to be connected to a Root Port
- NVMe works within the standard PCIe framework.
 - Allows use of off-the-shelf Root Complexes and Switches
- PCIe may be used to connect multiple hosts to an SSD

