Práctica 1. Estudio empírico del Algoritmo de Búsqueda_Secuencial Hoja de trabajo del estudiante en el LABORATORIO

Datos de los estudiantes

Apellidos, Nombre (estudiante 1) | Arias Fuentes Javier

LA ENTREGA DE ESTA PRÁCTICA DEBE REALIZARSE ANTES DE LA SIGUIENTE PRÁCTICA

Actividad 1

1.1. Copia y pega la tabla con los resultados y el gráfico de la Actividad 1 (tiempos)

Tamaño del Vector	Mejor Tiempo (μs)	Peor Tiempo (µs)	Tiempo Medio (µs)
1000	0.8	3	1.93
2000	2.3	6.1	4.36
3000	1.2	27	6.32
4000	1	29.5	6.43
5000	0.5	12.8	4.96
6000	0.7	25.9	6.02
7000	3.5	51.2	19.35
8000	6.9	36.2	15.29
9000	3	49.9	18.38
10000	0.5	42.5	18.1

1.2. Haz un pequeño comentario interpretando los resultados obtenidos:

Podemos ver que el mejor tiempo, aunque no es del todo preciso con el estudio teórico, sí que sigue la tendencia. Son unos resultados aceptables.

Tanto el tiempo medio como el peor tiempo, por lo general, siguen la tendencia teórica, aunque, al ser una prueba empírica, podemos ver que en algunos casos se sale de la tendencia

El único cambio que he hecho es poner los valores de iteraciones del algoritmo como constantes globales para facilitar el trabajo en las siguientes dos actividades.

Actividad 2

2.1. Qué conclusiones puedes extraer después de haber realizado los experimentos de la Actividad 2

Cuando aumentamos el número de búsquedas:

La varianza del tiempo medio y mejor tiempo se aplana bastante y llegan a ser casi idénticos a la línea de tendencia

Cuando aumentamos el tamaño de los vectores:

Con tantas tallas podemos observar que la complejidad del algoritmo se cumple más o menos de forma correcta O(n)

Actividad 2-1

Tamaño del Vector	Mejor Tiempo (μs)	Peor Tiempo (µs)	Tiempo Medio (µs)
1000	0.2	2.3	1.254
2000	0.2	23.4	3.658
3000	0.2	6.5	3.295
4000	0.2	8.9	4.525
5000	0.1	11.2	5.972
6000	0.1	30.5	7.685
7000	0.6	15.3	7.842
8000	0.3	34.9	9.382
9000	0.2	18.8	9.344
10000	0.3	21.1	9.819

Actividad 2-2

Tamaño del Vector	Mejor Tiempo (µs)	Peor Tiempo (μs)	Tiempo Medio (µs)
1000	0.4	2.5	1.41
2000	0.6	8.4	3.23
3000	1.2	6.8	4.17
4000	0.2	8.4	4.19
5000	0.3	7.9	3.96
6000	1.4	22.7	6.04
7000	1.3	14.6	7.34
8000	2.5	17.7	10.35
9000	2.3	18.1	10.9
10000	0.7	17.2	9.48
11000	6	25.1	14.69
12000	3.5	21.9	11.42
13000	6.5	21.6	13.92
14000	1.5	21.3	10.28
15000	8.4	27.4	15.13
16000	7.3	39.1	18.55
17000	1.3	34.2	15.37
18000	4.2	33.9	23.67
19000	0.1	36.9	17.98
20000	0.9	38	16.57
21000	1.2	41.2	19.52
22000	1.8	41	15.43
23000	7.6	46.3	26.21
24000	1.2	43.9	20.96
25000	1.6	51.5	23.6
26000	1.8	54.6	34.85
27000	0.3	54.3	24.69
28000	0.8	52.7	31.84
29000	2.8	85.1	39.33
30000	0.2	59.1	24.23
31000	5	63.5	35.74
32000	3.6	61.1	26.64
33000	2.8	87.9	34.68
34000	11	67.2	34.88
35000	14.9	74.7	43.79
36000	11.6	78	45.18
37000	4.6	59	27.14
38000	2.9	64.6	42.67
39000	0.4	70.3	29.55
40000	20.6	97.9	58.4
41000	15.6	86.3	45.64
42000	37.2	90.3	66.66
43000	9.8	84.4	51.97
44000	10	88.9	68.05
45000	18.7	92.8	63.53
46000	0.6	97.8	51.05

47000	3.1	95.9	36.15
48000	15.4	101	70.21
49000	3.3	79.9	41.01
50000	24.2	98.6	57.44
51000	12.5	98.2	54.65
52000	4.5	99.1	53.83
53000	5.2	107.2	67.46
54000	8.7	89.9	53.8
55000	0.7	104.8	56.23
56000	2.8	110.7	61.4
57000	7.2	107.9	59.27
58000	4.7	107.8	55.87
59000	11.6	108	67.25
60000	5.8	126.2	47.23
61000	11.5	116.4	79.35
62000	12.1	121.5	61.42
63000	5.6	145.6	74.59
64000	5.8	131.2	63.64
65000	1.9	123.6	52.82
66000	9.4	200.4	70.7
67000	12	128.2	87.88
68000	75.3	216.2	134
69000	3.4	267.8	109
70000	0.3	146	56.82
71000	3.8	110	65.63
72000	5.5	112.1	66.81
73000	13.7	155.9	94.78
74000	8.9	273.3	113.55
75000	5.7	87	52.04
76000	12.2	150.5	109.14
77000	20.3	116.4	64.51
78000	32.4	153.5	92.47
79000	30.4	164	94.91
80000	6.7	151	76.65
81000	19.2	164.2	100.27
82000	4	166.3	100.55
83000	37.6	168.3	92.26
84000	30.3	149.4	89.06
85000	48.1	223.7	115.97
86000	6.7	164.5	90.93
87000	10.2	157.3	100.85
88000	0.2	141.1	84.06
89000	7.9	145.4	101.69
90000	24.8	183.5	111.84
91000	8.3	184.2	91.02
92000	26	176.3	102.82
93000	3.1	150.5	67.66
94000	0.4	186.3	98.21
95000	42	187.7	111.66
96000	7.8	180.4	85.53
30000	7.0	100.4	00.00

97000	12.5	196	129.69
98000	9.8	194	92.96
99000	9.7	178.8	104.25
100000	18.7	206.6	116.14

Actividad 3

3.1. Copia y pega la tabla con los resultados y el gráfico de la Actividad 3 (Operaciones elementales)

Tamaño del	Total operaciones Mejor	Total operaciones Peor	Total operaciones Caso
Vector	Caso	Caso	Medio
1000	547	2215	1195
2000	373	4843	2473
3000	2278	8422	5250
4000	46	10771	6570
5000	7	14422	6615
6000	4093	17488	10246
7000	1888	20980	11603
8000	1393	19663	10788
9000	2107	25540	12516
10000	6901	28693	14545

3.2. Haz un pequeño comentario interpretando los resultados obtenidos:

Podemos ver cómo, a medida que aumenta la talla, la diferencia de operaciones entre mejor y peor caso aumenta significativamente.