Examples with importance weights

- Sometimes some examples are more important.
- Importance weights pop up in: boosting, differing train/test distributions, active learning, etc.
- John can reduce everything to importance weighted binary classification.

Principle

Having an example with importance weight h should be equivalent to having the example h times in the dataset.

What is $s(\cdot)$?

- Losses for linear models $\ell(w^\top x, y)$. $\nabla_w \ell = \frac{\partial \ell(p, y)}{\partial p} x$
- Update must be given by

$$w_{t+1} = w_t - s(h)x$$

s(h) must satisfy

$$s(h + \epsilon) = s(h) + \epsilon \eta \left. \frac{\partial \ell(p, y)}{\partial p} \right|_{p = (w_t - s(h)x)^\top x}$$

$$s'(h) = \eta \left. \frac{\partial \ell(p, y)}{\partial p} \right|_{p = (w_t - s(h)x)^\top x}$$

Finally

$$s(0) = 0$$

Many loss functions

Loss	$\ell(p,y)$	Update s(h)
Squared	$(y-p)^2$	$\frac{p-y}{x^{\top}x}\left(1-e^{-h\eta x^{\top}x}\right)$
Logistic	$\log(1 + e^{-yp})$	$\frac{W(e^{h\eta x^\top x + yp + e^{yp}}) - h\eta x^\top x - e^{yp}}{yx^\top x} \text{ for } y \in \{-1, 1\}$
Exponential	e ^{-yp}	$\frac{\rho y - \log(h\eta x^{\top}x + e^{\rho y})}{x^{\top}xy}$ for $y \in \{-1, 1\}$
Logarithmic	$y\log\frac{y}{p}+(1-y)\log\frac{1-y}{1-p}$	if $y = 0$ $\frac{p-1+\sqrt{(p-1)^2+2h\eta x^\top x}}{\sqrt[p-1]{p^2+2h\eta x^\top x}}$ if $y = 1$ $\frac{p-\sqrt{p^2+2h\eta x^\top x}}{\sqrt[x]{x}}$
Hellinger	$(\sqrt{p}-\sqrt{y})^2-(\sqrt{1-p}-\sqrt{1-y})^2$	if $y = 0$ $\frac{\rho - 1 + \frac{1}{4}(12h\eta x^{\top} x + 8(1-\rho)^{3/2})^{2/3}}{x^{\top} x + 8(1-\rho)^{3/2}}$ if $y = 1$ $\frac{\rho - \frac{1}{4}(12h\eta x^{\top} x + 8\rho^{3/2})^{2/3}}{x^{\top} x}$
Hinge	$\max(0, 1-yp)$	$-y \min \left(h\eta, \frac{1-yp}{x^{\top}x}\right)$ for $y \in \{-1, 1\}$
au-Quantile	if $y > p$ $\tau(y - p)$ if $y \le p$ $(1 - \tau)(p - y)$	$\begin{array}{ll} \text{if } y > p & -\tau \min(h\eta, \frac{y-p}{\tau x^\top x}) \\ \text{if } y \leq p & (1-\tau) \min(h\eta, \frac{p-y}{(1-\tau)x^\top x}) \end{array}$

Robust results for unweighted problems

And now something completely different

- Adaptive, individual learning rates in VW.
- It's really GD separately on each coordinate i with

$$\eta_{t,i} = rac{1}{\sqrt{\sum_{s=1}^{t} \left(rac{\partial \ell(w_s^ op x_s, y_s)}{\partial w_{s,i}}
ight)^2}}$$

- Coordinate-wise scaling of the data less of an issue
- Can state this formally (Duchi, Hazan, and Singer / McMahan and Streeter, COLT 2010)

Some tricks involved

- Store sum of squared gradients w.r.t w_i near w_i .
- float InvSqrt(float x){ float xhalf = 0.5f * x; int i = *(int*)&x: i = 0x5f3759d5 - (i >> 1);x = *(float*)&i: x = x*(1.5f - xhalf*x*x);return x; Special SSE rsqrt instruction is a little better

Experiments

Raw Data

```
./vw --adaptive -b 24 --compressed -d tmp/spam_train.gz
average loss = 0.02878
./vw -b 24 --compressed -d tmp/spam_train.gz -l 100
average loss = 0.03267
```

TFIDF scaled data

```
./vw --adaptive -b 24 --compressed -d tmp/rcv1_train.gz -l 1
average loss = 0.04079
./vw -b 24 --compressed -d tmp/rcv1_train.gz -l 256
average loss = 0.04465
```