第9章 树

- 9.1 无向树的定义及性质
- 9.2 生成树
- 9.3 环路空间
- 9.4 断集空间
- 9.5 根树

无向树(trees)

■ 无向树: 连通(connected)无回路(acyclic)图

无向树

- 树(tree): 常用T表示树
- 森林(forest): 无向图至少有两个连通分支且 每个连通分支都是树
- 平凡树: 平凡图(无树叶,无分支点)
- 树叶(leaf): 树中1度顶点,d(v)=1
- 分支点: 树中2度以上顶点,d(v)≥2

树的等价定义

- 定理1: 设G=<V,E>是n阶m边无向图,则(1) G是树(连通无回)
- ⇔ (2) G中任何2顶点之间有唯一路径
- ⇔ (3) G无圈 ∧ m=n-1
- ⇔ (4) G连通 ∧ m=n-1
- ⇔ (5) G极小连通:连通 ∧ 所有边是桥
- ⇔ (6) G极大无回: 无圈 ∧ 增加任何新边得唯一圈

定理1(证明(1)⇒(2))

■ 证明:

- (1) G是树(连通无回)
- (2) G中任何2顶点之间有唯一路径
- (1)⇒(2): ∀u,v∈V, G连通, u,v之间的短程线是路径. 如果u,v之间的路径不唯一, 则G中有回路, 矛盾!

定理1(证明(2)⇒(3))

- (2) G中任何2顶点之间有唯一路径
- (3) G无圈 ^ m=n-1
- 证明(续): (2)⇒(3): 证明G中无圈(反证法): 若G中有v的环,则v到v有长度为0和1的两条路径.若G中存在长度大于等于2的圈,则圈上任何两个不同顶点存在两条不同路径,与已知矛盾!

m=n-1(归纳法): n=1时,m=0. 设n≤k时成立, 当n=k+1时,任选1边e, G-e有2个连通分支, m= $m_1+m_2+1=(n_1-1)+(n_2-1)+1=n_1+n_2-1=n-1$.

$$(m_1=n_1-1)$$
 e $(m_2=n_2-1)$

定理1(证明(3)⇒(4))

- (3) G无圈 ∧ m=n-1
- (4) G连通 ∧ m=n-1
- 证明(续): 证明G连通用反证法: 假设G有s个连通分支, 则每个连通分支都是树, 所以

$$m=m_1+m_2+...+m_s=(n_1-1)+(n_2-1)+...+(n_s-1)$$
 $=n_1+n_2+...+n_s-s=n-s=n-1$, 所以 $s=1$.

$$(m_1=n_1-1)$$

$$(m_2 = n_2 - 1)$$

$$(\widehat{m_s} = n_s - 1)$$

定理1(证明(4)⇒(5))

- (4) G连通 ∧ m=n-1
- (5) 连通 ^ 所有边是桥(G极小连通)
- 证明(续): 所有边是桥: ∀e∈E, G-e是n阶(n-2)边图,
 一定不连通(定理7.9 连通⇒m≥n-1), 所以e是割边.

定理1(证明(5)⇒(6))

- (5) G极小连通:连通 ^ 所有边是桥
- (6) G极大无回: 无圈 / 增加任何新边得唯一圈
- 证明(续): G中每条边均为桥,因而G中不可能含圈. ∀u,v∈V, G连通, u,v之间有唯一路径Γ,则Γ∪(u,v)是唯一的圈.

定理1(证明(6)⇒(1))

- (6) G极大无回: 无圈 / 增加任何新边得唯一圈
- (1) G是树(连通无回)
- 证明(续):证明G连通: ∀u,v∈V, G∪(u,v)有唯一的圈C, C-(u,v)是u,v之间的路径.

定理9.2

- 定理9.2: n阶非平凡树至少有2个树叶
- 证明: 设T有x个树叶, 由定理9.1和握手定理,

$$2m = 2(n-1) = 2n-2 = \Sigma d(v)$$

$$= \Sigma_{v \in M} d(v) + \Sigma_{v \in D} d(v)$$

$$\geq x + 2(n-x) = 2n-x$$
, 所以 $x \geq 2$. #

*无向树的计数(counting): t_n

- t_n: n(≥1)阶非同构无向树的个数
- t_n的生成函数(generating function):

$$t(x) = t_1x + t_2x^2 + t_3x^3 + ... + t_nx^n + ...$$

■ Otter公式:

$$t(x) = r(x) - (r(x)^2 - r(x^2)) / 2$$

■ r(x)的递推公式:

$$r(x) = x\Pi_{i=1}^{\infty} (1-x^{i})^{-ri}$$

$$r(x) = r_{1}x + r_{2}x^{2} + r_{3}x^{3} + ... + r_{n}x^{n} + ...$$

t_n 表

n	t _n	n	t _n	n	t _n	n	t _n
1	1	9	47	17	48,629	25	104,636,890
2	1	10	106	18	123,867	26	279,793,450
3	1	11	235	19	317,955	27	751,065,460
4	2	12	551	20	823,065	28	2,023,443,032
5	3	13	1,301	21	2,144,505	29	5,469,566,585
6	6	14	3,159	22	5,623,756	30	14,830,871,802
7	11	15	7,741	23	14,828,074	31	40,330,829,030
8	23	16	19,320	24	39,299,897	32	109,972,410,221

无向树的枚举(enumeration)

■ 画出所有非同构的n阶无向树

$$\bigcirc$$
 \bigcirc \bigcirc \bigcirc

6阶非同构无向树

= n=6: t_6 =6

7阶非同构无向树

$-n=7: t_7=11$

8阶非同构无向树

 $n=8: t_8=23$

8阶非同构无向树(续)

 $n=8: t_8=23$

8阶非同构无向树(解法2)

■ n=8: 度数列有11种: $(1)^{1}$ 1 1 1 1 1 1 1 7 $(7)^{1}$ 1 1 1 1 1 3 3 3 $(2)^{1}$ 1 1 1 1 1 1 2 6 $(8)^{5}$ 1 1 1 1 2 2 3 3 $(3)^{1}$ 1 1 1 1 1 1 3 5 $(9)^{3}$ 1 1 1 1 2 2 2 4 $(4)^{1}$ 1 1 1 1 1 1 4 4 $(10)^{4}$ 1 1 1 2 2 2 2 3 $(5)^2$ 1 1 1 1 1 2 2 5 $(11)^1$ 1 1 2 2 2 2 2 2 $(6)^3$ 1 1 1 1 1 2 3 4

8阶非同构无向树(解法2)

■ n=8: 度数列有11种:

 $(8)^5$ 1 1 1 1 2 2 3 3 $(10)^4$ 1 1 1 2 2 2 2 3

星(star)

n阶星型图: 1个分支点带n-1片树叶的n阶无向图. S_n

星心: 分支点

生成树(spanning tree)

- 生成树: T⊆G ∧ V(T)=V(G) ∧ T是树
- 树枝(tree edge): e∈E(T), n-1条
- 弦(chord): e∈E(G)-E(T), m-n+1条
- 余树: G[E(G)-E(T)] = T

定理9.3

- 定理9.3: 无向图G连通 ⇔ G有生成树
- 证明: (←) 显然. (⇒) 破圈法. #

若G无圈,则G为自己的生成树.若G中含圈, 任取一个圈C,随便删除C上任何一条边, 所得图仍然是连通的,继续这一过程,直到 最后得到的图无圈为止,设最后的图为T, 则T是连通的且是G的生成子图。

推论

- 推论1: G是n阶m边无向连通图 ⇒ m≥n-1.
- 推论2: T是n阶m边无向连通图G的生成树 ⇒ |E(T)|=m-n+1.
- 推论3: T是连通图G中一棵生成树,T是T的余树,C 为G中任意一圈,则E(T) \cap E(C) $\neq\emptyset$.
- 证明:(反证法)如果E(T)∩E(C)=Ø,则 E(C)⊆E(T),T中有回路与T是树矛盾!#

定理9.4 弦与圈

- 定理9.4:T是G的生成树,e为T的任意一条弦,则T∪e中含G的只含一条弦其余边均为树枝的圈,而且不同的弦对应的圈是不同的.
- 证明:设e=(u,v),则u,v之间在T中存在唯一的路径P(u,v),则P(u,v)∪e为G中只含弦e其余边均为树枝的圈.当 e_1 , e_2 不同时, e_2 不在 e_1 对应的圈 C_{e_1} , e_1 不在 e_2 对应的圈 C_{e_2} .

例9.1

■ 设G是无向连通图, G'⊆G, G'无圈,则G中存在生成树T, G'⊆T⊆G.

证明: 若G是树,结论显然成立.若G不是树,则含圈为 C_1 .则 $3e_1 \in E(C_1)-E(G')$,令 $G_1=G-\{e_1\}$.若 G_1 还有圈 C_2 ,则 $3e_2 \in E(C_2)-E(G')$,令 $G_2=G_1-\{e_2\}=G-\{e_1,e_2\}$.重复进行,直到 $G_k=G-\{e_1,e_2,...,e_k\}$ 无圈为止, $T=G_k$.#

割集与生成树

- 定理9.13: 设T是连通图G的生成树, S是G中的割集, 则E(T) S≠Ø. (每个割集至少包含G的每棵生成树的一个树枝)
- 证明: (反证) 若E(T)∩S=Ø, 则
 T⊆G-S,则G-S连通, S是割集, 矛盾! #

树枝与割集

- 定理9.5: 设G是连通图, T是G的生成树, e是T的树枝, 则G中存在由树枝e和其他弦组成的割集, 并且不同的树枝对应不同的割集.
- 证明: e是T的桥, 设T-e的两个连通分支是 T_1 与 T_2 , 则 S_e ={e|e \in E(G)且e的两个端点分别属于 $V(T_1)$ 和 $V(T_2)$ }中,除e外的元素都是弦, S_e 是割集. 设 e_1 , e_2 是不同的树枝,对应的割集是 S_{e1} , S_{e2} , 则 e_1 \in S_{e1} - S_{e2} , e_2 \in S_{e2} - S_{e1} , 所以 S_{e1} \neq S_{e2} . #

定义9.3

- 设G是n阶m边无向连通图, T是G的生成树, T={e'₁,e'₂,...,e'_{m-n+1}}
- 基本(fundamental)回路: T∪e'r中的唯一回路Cr
- 基本回路系统: {C₁,C₂,...,C_{m-n+1}}
- 圏秩ξ(G): ξ(G)=m-n+1

基本割集

- 设G是n阶m边无向连通图, T是G的生成树, T={e₁,e₂,...,e_{n-1}}
- 基本割集: e_r对应的唯一割集S_r
- 基本割集系统: {S₁,S₂,...,S_{n-1}}
- 割集秩η(G): η(G)=n-1 (η: eta)

例9.2

- 例9.2: G如图,T={a,b,c,e,i}是G的生成树,求对应T的基本回路系统和基本割集系统.
- 解: T={d,f,g,h}, 基本回路: C_d =dcb, C_f =fcai, C_g =gebai, C_h =heba, 基本回路系统: { C_d , C_f , C_g , C_h }.

基本割集: S_a ={a,h,g,f}, S_b ={b,d,g,h}, S_c ={c,d,f}, S_e ={e,g,h}, S_i ={i,g,f}, 基本割集系统: { S_a , S_b , S_c , S_e , S_i }. #

生成树的计数: τ(G)

- τ(G): 标定图G的生成树的个数
- 若 $E(T_1)\neq E(T_2)$,则认为 $T_1\neq T_2$
- G-e: 删除(deletion)
- G\e: 收缩(contraction)
- **定理9.6**: n阶无向连通标定图,对G的任意非环边e, $\tau(G) = \tau(G-e) + \tau(G\backslash e)$

定理9.6(证明)

- 正明: ∀e非环,
- (1) 不含e的G的生成树个数: τ(G-e),
- (2) 含e的G的生成树个数: τ(G\e). #

■注意: 由于环不在任何生成树中,因而在 计算过程中若出现环应自动将环去掉

例9.3

$$\tau = \tau + \tau$$

$$= 1 + \tau + \tau$$

$$= 1 + 1 + \tau + \tau$$

$$= 1 + 1 + 1 + 1 = 4. \#$$
© Peking University

Cayley公式

- 定理7(Cayley公式): $n \ge 2 \Rightarrow \tau(K_n) = n^{n-2}$.
- 证明: 令 $V(K_n)$ ={1,2,...,n}, 用V中元素构造长度为(n-2)的序列,有 n^{n-2} 个不同序列,这些序列与 K_n 的生成树是一一对应的.

Cayley公式(证明(1))

■ 证明(续): (1) 由树构造序列: 设T是任意生成树. $k_1 = \min\{ r \mid d_T(r) = 1 \}, N_T(k_1) = \{ l_1 \},$ $k_2 = \min\{ r \mid d_{T-\{k_1\}}(r) = 1 \}, N_{T-\{k_1\}}(k_2) = \{ l_2 \},$ $k_{n-2}=\min\{r\mid d_{T-\{k_1,k_2,...k_{n-3}\}}(r)=1\},$ $N_{T-\{k_1,k_2,...k_{n-3}\}}(k_{n-2}) = \{ l_{n-2} \},$ 得到序列 ($I_1,I_2,...,I_{n-2}$).

Cayley公式(证明(1)举例)

Cayley公式(证明(2))

■ 证明(续): (2) 由序列构造树: 设(I₁,I₂,...,I_{n-2})是任意序 列. 今 $k_1 = \min\{ r \mid r \in V - \{|l_1, l_2, ..., l_{n-2}\} \},$ $k_2 = \min\{ r \mid r \in V - \{k_1, l_2, ..., l_{n-2}\} \},$ $k_{n-2}=\min\{ r \mid r \in V - \{k_1, k_2, ..., k_{n-3}, l_{n-2}\} \},$ $k_{n-1} = \min\{ r \mid r \in V - \{k_1, k_2, ..., k_{n-3}, k_{n-2}\} \},$ $I_{n-1} = \min\{ r \mid r \in V - \{k_1, k_2, ..., k_{n-2}, k_{n-2}, k_{n-1} \} \}.$ $E(T) = \{ (k_i, l_i) \mid i = 1, 2, ..., n-1 \}.$

Cayley公式(证明(2)举例)

- **(**3,2,7,8,2,5)
- $k_1=\min(V-\{3,2,7,8,2,5\})=\min\{1,4,6\}=1,$ $k_2 = \min(V - \{1, 2, 7, 8, 2, 5\}) = \min\{3, 4, 6\} = 3,$ $k_3 = \min(V - \{1, 3, 7, 8, 2, 5\}) = \min\{4, 6\} = 4,$ $k_{4}=\min(V-\{1,3,4,8,2,5\})=\min\{6,7\}=6,$ $k_5 = \min(V - \{1, 3, 4, 6, 2, 5\}) = \min\{7, 8\} = 7,$ $k_6 = \min(V - \{1, 3, 4, 6, 7, 5\}) = \min\{2, 8\} = 2,$ $k_7 = \min(V - \{1, 3, 4, 6, 7, 2\}) = \min\{5, 8\} = 5,$ $I_7 = min(V - \{1, 3, 4, 6, 7, 2, 5\}) = min\{8\} = 8$

Cayley公式(证明(2)举例)

- **(3,2,7,8,2,5)**
- (1,3,4,6,7,2,5) (3,2,7,8,2,5,8)

Cayley公式(证明(2)续)

- 定理7(Cayley公式): $n \ge 2 \Rightarrow \tau(K_n) = n^{n-2}$.
- 证明(续): 可以证明, 上述(1)和(2)建立的对应关系是双射: 每个树都得出序列, 每个序列都得出树; 由不同的树得出不同的序列, 由不同的序列得出不同的树. #

概述

- ■连通图----生成树----树枝,弦
- 回路---弦---基本回路----环路
- ■割集----树枝----基本割集----断集

环路

■环路: 若干个边不重的圈之并, 或∅

圈、简单回路都是环路,环路不一定是回路,因为环路可以不连通 © Peking University 4

环路与环和

- 定理: 两个环路的环和还是环路
- $E(G_1 \oplus G_2) = E(G_1) \oplus E(G_2)$ (对称差)

断集

- 断集: 无向图G=<V,E>, \emptyset ≠ V_1 \subset V, \overline{V}_1 =V- V_1 , (\overline{V}_1,V_1) =E \cap (\overline{V}_1 & V_1)称为断集
- 例: $V_1 = \{1\}$, $(V_1, V_1) = \{a,b\}$, $V_2 = \{4,7\}$, $(\overline{V}_2, V_2) = \{c,d,h,i\}$, $V_3 = \{2,4\}$, $(\overline{V}_3, V_3) = \{a,c,e,h,f,i\}$ (非割集). #

割集是断集

断集不一定是割集

根树(rooted tree)

- 有向树: 基图是树的有向图
- 根树(rooted tree): 若有向树T是平凡树或 顶点的入度为0,其余顶点的入度均为1.
 - 树根:入度为0的顶点
 - ■树叶:入度为1出度为0的顶点
 - ■内点:入度为1出度不为0的顶点
 - 分支点: 树根和内点
 - ■层数:树根到v的路径长度
 - 树高: 层数最大的顶点的层数

儿子,父亲,兄弟

■儿子: u在上方与v相邻, v是u的儿子

■父亲: u在上方与v相邻, u是v的父亲

■兄弟: u与v有相同父亲, u是v的兄弟

■ 祖先:从u可达v, u是v的祖先

■后代:从u可达v, u是v的后代

有序树(ordered tree)

■ 有序树: 给相同层数的顶点标上次序的根 树

r叉树(t-ary tree)

- r叉树:每个分支点至多有r个儿子
- 正则(regular)r叉树:每个分支点恰好有r个儿子
- 完全(complete)正则r叉树: 树叶的层数均为树 高的r叉正则树
- 有序r叉树,有序正则r叉树,有序完全正则r叉树

根子树(rooted subtree)

- 根子树: T是根树, $v \in V(T)$, 由v本身及 其所有后代导出的子图 T_v
- 左子树,右子树:二叉树中分支点的左右 两个儿子导出的根子树

根树的周游(travesal)

- 根树的周游: 列出根树的所有顶点, 每个 顶点恰好出现一次
- ■中序行遍: 左子树, 根, 右子树
- ■前序行遍:根,左子树,右子树
- 后序行遍: 左子树, 右子树, 根
- 例: 中序: dbigjehacf

前序: abdegijhcf

后序: dijghebfca

例9.7

((a*(b+c))*d-e)÷(f+g)÷(h*(i+j))

中缀法,前缀法,后缀法(例)

总结

- ■无向树
 - ■无向树的计数: t_n
 - ■无向树的枚举
- ■生成树
 - ■基本割集系统,基本回路系统
 - ■生成树的计数: τ(G)
- ■环路、断集
- ■根树

作业

■ P155: 2, 6, 10, 11