Как пользоваться командами из mechmath.sty

Хочется	Реализация
$a_1 + a_2 + a_3 + a_4 + \dots$	\[\rad a4\]
$\alpha_{N^2+1} + \alpha_{N^2+2} + \alpha_{N^2+3} + \dots$	\[\raD {\alpha}3{N^2+}\]
$\left(\frac{1}{1}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{4}\right)^2 + \dots + \left(\frac{1}{15N}\right)^2$	\[\crad{\left(\frac1}{15N}{\right)^2}4\]
$\left(\frac{1}{j_1-r}\right)^9 + \left(\frac{1}{j_2-r}\right)^9 + \left(\frac{1}{j_3-r}\right)^9 + \ldots + \left(\frac{1}{j_N-r}\right)^9$	\[\craD{\left(\frac1}{N}% {\right)^9}{3}{j_}{-r}\]
$1 - 1 + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} + \dots$	\[1-1\tfT{+\frac12}2\tfT{-\frac12}2\tfT{+\frac13}3\tfT{-\frac13}3+\ldots\]
$a_1b_1 \leqslant a_2b_2 \leqslant a_3b_3 \leqslant \ldots \leqslant a_nb_n$	\[\dI anbn{\le}3\]
$x^1y_1 \otimes x^2y_2 \otimes x^3y_3 \otimes \cdots \otimes x^ky_k$	\[\DI{x^}k{y_}k{\otimes}3\]
$a_1b_2 + a_2b_1; x_1y_5 + x_2y_4 + x_3y_3 + x_4y_2 + x_5y_1$	\[\iSum ab2; \iSum xy5\]
$\left\{a_{n_j}\right\}_{j=1}^{\infty}; \left\{b_{i_j}\right\}_{j=k}^{\infty}$	\[\podP anj1; \podP bijk\]
$\left\{a_{n_j}\right\}_{j=1}^{\infty}$	\[\poDP anj\]
$\int_{1}^{\infty} f(x) dx; \int_{x_0}^{\infty} g(x) dx$	\$\iY f(x)dx; \iY[x_0]g(x)dx\$
$\int_{a}^{b} f(x) dx$	\$\IY abf(x)dx\$
$\sum_{n=1}^{\infty} a_n; \sum_{n=1}^{\infty} a_n ; \sum_{l=1}^{L} c_l; \sum_{n=N+1}^{\infty} a_n.$	\[\ry an; \rY n a_n ; \RY 11L c_1; \RY n{N+1}{\infty}a_n.\]
$\left\{\left S_{n}^{A}\right \right\}_{n=m}^{N}; \left\{\left S_{n}^{B}\right \right\}_{n=1}^{\infty}.$	$\label{local_n_A } $$ \prod_{n=m}{N}; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

$$f(x) \xrightarrow[n \to \infty]{x \in P} A(x); \quad f(x) \xrightarrow[n \to \infty]{x \in P} A(x)$$