RELASI

(Bagian I)

2.1. Hasil Kali Cartesius (Cartesian Product)

Hasil kali Cartesius dari himpunan A ke himpunan B, $A \times B$, adalah himpunan semua pasangan terurut (a,b) dengan $a \in A$ dan $b \in B$; dapat pula dituliskan sebagai berikut:

$$A \times B = \{(a,b) \mid a \in A \text{ dan } b \in B\}$$

Kardinalitas dari $A \times B$ dapat ditentukan sebagai berikut:

$$n(A \times B) = n(A) \times n(B)$$

Contoh 1:

Diketahui $A = \{1, 2, 3\}$ dan $B = \{x, y\}$. Tentukanlah $A \times B$ dan $B \times A$! Jawab:

$$A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$$

$$B \times A = \{(x,1),(x,2),(x,3),(y,1),(y,2),(y,3)\}$$

2.2. Definisi Relasi

Relasi merupakan himpunan yang anggotanya adalah pasangan terurut. Relasi *N*-ary merupakan relasi antar *N* himpunan; sebagai contoh:

- \triangleright jika N=2, relasinya disebut relasi binar, yaitu himpunan bagian dari $A\times B$,
- \triangleright jika N=3, relasinya disebut relasi trinar, yaitu himpunan bagian dari $A \times B \times C$,
- \triangleright jika N=4, relasinya disebut relasi kuartnar, yaitu himpunan bagian dari $A \times B \times C \times D$.

Dalam bab ini, relasi yang akan dipelajari adalah relasi binar.

2.3. Relasi Binar

Relasi binar, katakanlah R, dari himpunan A ke himpunan B disimbolkan $R \subseteq A \times B$. Sementara relasi binar pada himpunan A disimbolkan sebagai $R \subseteq A \times A$.

Sebagai contoh, jika diketahui himpunan $T = \{1, 2, 4, 16\}$. Maka, beberapa contoh relasi binar pada himpunan T adalah:

a.
$$R_1 = \{(x, y) | x \text{ adalah kuadrat dari } y\}$$

$$= \{(1,1), (4,2), (16,4)\}$$

b.
$$R_2 = \{(x, y) | x \text{ habis membagi } y\}$$

$$= \{(1,1),(1,2),(1,4),(1,16),(2,2),(2,4),(2,16),(4,4),(4,16),(16,16)\}$$

c.
$$R_3 = \{(x, y) | x - y = 5\}$$

Dari ketiga contoh di atas, perhatikan bahwa R_1 , R_2 , dan R_3 merupakan himpunan bagian dari $T \times T$. Dengan kata lain, $R_1 \subseteq T \times T$, $R_2 \subseteq T \times T$, dan $R_3 \subseteq T \times T$.

Catatan penting terkait relasi binar.

Misalkan A dan B adalah sebarang himpunan. Maka,

- 1. banyaknya relasi binar dari himpunan A ke himpunan B adalah $2^{n(A \times B)}$.
- 2. banyaknya relasi binar pada himpunan A adalah $2^{n(A \times A)}$.

Mulai dari sekarang dan seterusnya, istilah relasi binar dalam bab ini akan disebut sebagai relasi saja.

2.4. Penyajian Relasi

Penyajian relasi dari himpunan A ke himpunan B ada empat cara, yaitu:

- 1. penyajian dalam bentuk himpunan titik pada bidang Cartesius,
- 2. penyajian dalam bentuk diagram panah,
- 3. penyajian dalam bentuk matriks,
- 4. penyajian dalam bentuk digraf (graf berarah).

Perhatikan contoh berikut. Misalkan himpunan $A = \{1,2,3\}$ dan $B = \{p,q\}$. Diketahui suatu relasi dari A ke B dengan $R = \{(1,p),(1,q),(2,q),(3,p)\}$. Penyajian relasi R tersebut dinyatakan sebagai berikut:

a. dalam bentuk himpunan titik pada bidang Cartesius; himpunan pertama sebagai sumbu-*x*, sementara himpunan kedua sebagai sumbu-*y*

 dalam bentuk diagram panah;
 himpunan pertama sebagai daerah asal (domain), sementara himpunan kedua sebagai daerah kawan (kodomain)

c. dalam bentuk matriks;

himpunan pertama sebagai baris, sementara himpunan kedua sebagai kolom, dengan ketentuan sebagai berikut

$$M_{ij} = \left\{ \begin{array}{c} 1 \; ; \; i,j \; \text{ada relasi} \\ 0 \; ; \; i,j \; \text{tidak ada relasi} \end{array} \right.$$

$$M_R = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

d. dalam bentuk digraf (graf berarah);

2.5. Tanda Keanggotaan Relasi

Bentuk penulisan keanggotaan dalam suatu relasi ada beberapa macam, yaitu; jika x berelasi dengan y, penulisannya adalah:

$$(x, y) \in R$$
 atau $x R y$ atau $x \xrightarrow{R} y$

Sebagai contoh, misal diberikan himpunan $A = \{1, 2, 4, 16\}$ dengan relasi $R = \{(x, y) \mid x \text{ adalah kuadrat dari } y\}$. Maka,

 $(1,1) \in R$ (1 berelasi dengan 1)

 $(4,2) \in R$ (4 berelasi dengan 2)

 $(2,4) \notin R$ (2 tidak berelasi dengan 4)

 $(4,16) \notin R$ (4 *tidak* berelasi dengan 16)

2.6. Relasi Invers

Diberikan suatu relasi R dari himpunan A ke himpunan B, $R = \{(x, y) | x \in A \text{ dan } y \in B\}$. Maka, relasi inversnya didefinisikan sebagai berikut:

$$R^{-1} = \{(y, x) \mid y \in B \text{ dan } x \in A\}$$

Contoh 2:

Diketahui himpunan $A = \{1, 2, 4, 16\}$ dengan relasi $R = \{(x, y) | x \text{ adalah kuadrat dari } y\}$.

Tentukanlah relasi invers dari R!

Jawab:

 $R = \{(x, y) \mid x \text{ adalah kuadrat dari } y\} = \{(1, 1), (4, 2), (16, 4)\}$

 $R^{-1} = \{(y, x) \mid y \text{ adalah akar kuadrat dari } x\} = \{(1, 1), (2, 4), (4, 16)\}$

Seperti yang sudah dijelaskan pada Subbab 2.4, penyajian relasi invers pun dapat disajikan dalam empat cara, yaitu:

- 1. dalam bentuk himpunan titik pada bidang Cartesius; Jika $R \subseteq A \times B$, maka $R^{-1} \subseteq B \times A$. Artinya, pada relasi invers, himpunan kedua (B) sebagai sumbu-x, sementara himpunan pertama (A) sebagai sumbu-y.
- 2. dalam bentuk diagram panah;

Jika $R \subseteq A \times B$, maka $R^{-1} \subseteq B \times A$. Artinya, pada relasi invers, himpunan kedua (B) sebagai daerah asal (domain), sementara himpunan pertama (A) sebagai daerah kawan (kodomain).

3. dalam bentuk matriks;

Jika $R \subseteq A \times B$, maka $R^{-1} \subseteq B \times A$. Artinya, pada relasi invers, himpunan kedua (B) sebagai baris, sementara himpunan pertama (A) sebagai kolom. Selain itu, jika diketahui M_R adalah suatu matriks relasi, maka matriks relasi inversnya adalah transpos dari M_R , yaitu $M_{R^{-1}} = M_R^T$.

4. dalam bentuk digraf (graf berarah); Jika relasi *R* disajikan dalam bentuk digraf, maka relasi inversnya dapat diperoleh dengan mengubah arah setiap busur pada digraf *R*.

2.7. Komposisi Relasi

Diketahui R merupakan suatu relasi dari himpunan A ke himpunan B ($R \subseteq A \times B$) dan S merupakan suatu relasi dari himpunan B ke himpunan C ($S \subseteq B \times C$). Maka, suatu relasi baru dari himpunan A ke himpunan C, $S \circ R$, didefinisikan sebagai semua pasangan terurut (a,c) dengan syarat bahwa ada $b \in B$ yang memenuhi $(a,b) \in R$ sehingga $(b,c) \in S$. Secara singkat,

$$S \circ R \subseteq A \times C \text{ dengan}$$

$$S \circ R = \{(a,c) \mid \text{ada } b \in B \text{ yang memenuhi } (a,b) \in R \text{ sehingga } (b,c) \in S\}$$

Contoh 3:

Diberikan himpunan $A = \{1, 2, 3, 4\}$, $B = \{p, q, r, s\}$, dan $C = \{x, y, z\}$. Diketahui:

$$R \subseteq A \times B$$
 dengan $R = \{(1, p), (2, s), (3, p), (3, q), (4, s)\}$
 $S \subseteq B \times C$ dengan $S = \{(q, x), (q, z), (r, y), (s, z)\}$

Tentukanlah $S \circ R$!

Jawab:

$$S \circ R = \{(2, z), (3, x), (3, z), (4, z)\}$$

Catatan penting terkait komposisi relasi.

- 1. Jika M_R adalah matriks relasi R ($R \subseteq A \times B$) dan M_S adalah matriks relasi S ($S \subseteq B \times C$), maka matriks relasi $S \circ R$, disimbolkan $M_{S \circ R}$, dapat dicari dengan $M_{S \circ R} = M_R \cdot M_S$.
- 2. Komposisi relasi bersifat asosiatif. Artinya, $T \circ (S \circ R) = (T \circ S) \circ R$.
- 3. $R^2 = R \circ R$; $R^3 = R \circ R \circ R$; $R^4 = R \circ R \circ R \circ R$; dan seterusnya.

Contoh 4:

Jika diketahui matriks relasi R dari himpunan A ke himpunan B adalah $M_R = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

dan matriks relasi S dari himpunan B ke himpunan C adalah $M_S = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, tuliskanlah

 $S \circ R$ dalam bentuk matriks! Jawab:

$$\boldsymbol{M}_{S \circ R} = \boldsymbol{M}_R \cdot \boldsymbol{M}_S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

2.8. Sifat Relasi

2.8.1. Refleksif

Suatu relasi R pada himpunan A dikatakan refleksif jika $(a,a) \in R$ untuk setiap $a \in A$. Dengan kata lain, suatu relasi pada himpunan A disebut refleksif jika setiap anggota pada A berelasi dengan dirinya sendiri.

2.8.2. Simetris

Suatu relasi R pada himpunan A dikatakan simetris jika $(a,b) \in R$, maka berlaku $(b,a) \in R$. Dengan kata lain, suatu relasi pada himpunan A disebut simetris jika dan hanya jika a berelasi dengan b, maka b haruslah berelasi dengan a.

2.8.3. Transitif

Suatu relasi R pada himpunan A dikatakan transitif jika $(a,b) \in R$ dan $(b,c) \in R$, maka berlaku $(a,c) \in R$ untuk setiap $a,b,c \in A$.

2.8.4 Antisimetris

Suatu relasi R pada himpunan A dikatakan antisimetris jika $(a,b) \in R$ dan $(b,a) \in R$, maka berlaku a=b untuk setiap $a,b \in A$. Dengan kata lain, satu-satunya cara untuk menyatakan a berelasi dengan b dan b berelasi dengan a ialah a dan b harus merupakan anggota yang sama; a=b.

2.8.5. Irrefleksif

Suatu relasi R pada himpunan A dikatakan irrefleksif jika $(a,a) \notin R$ untuk setiap $a \in A$. Dengan kata lain, suatu relasi pada himpunan A disebut irrefleksif jika setiap anggota pada A tidak berelasi dengan dirinya sendiri.

2.8.6. Asimetris

Suatu relasi R pada himpunan A dikatakan asimetris jika $(a,b) \in R$, maka berlaku $(b,a) \notin R$. Dengan kata lain, suatu relasi pada himpunan A disebut asimetris jika dan hanya jika a berelasi dengan b, maka b tidak boleh berelasi dengan a.

Contoh 5:

Diberikan himpunan $A = \{1, 2, 3, 4\}$ dengan beberapa relasi pada A sebagai berikut:

$$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\},\$$

$$R_2 = \{(1,1), (1,2), (2,1)\},\$$

$$R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\},\$$

$$R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\},\$$

$$R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\},\$$

$$R_6 = \{(3,4)\}.$$

Tentukanlah relasi mana saja yang memenuhi sifat refleksif, simetris, transitif, antisimetris, irrefleksif, dan asimetris!

Jawab:

Refleksif : R_3 , R_5

Simetris : R_2 , R_3

Transitif : R_4 , R_5 , R_6

Antisimetris : R_4 , R_5 , R_6

Irrefleksif : R_4 , R_6

Asimetris : R_4 , R_6

LATIHAN SOAL

- 1. Misalkan himpunan $A = \{1,2,3,4,5,6\}$ dan R adalah suatu relasi pada himpunan A dengan $R = \{(x, y) \mid x + y = 5\}$. Nyatakanlah R dalam:
 - a. bidang Cartesius

c. matriks

b. diagram panah

- d. digraf
- 2. Diketahui $A = \{1,2,3\}$ dan $B = \{1,2,3,4\}$. Diketahui pula relasi-relasi dari himpunan A ke himpunan B sebagai berikut:

$$R_1 = \{(1,1), (2,2), (3,3)\}$$

$$R_2 = \{(1,1), (1,2), (1,3), (1,4)\}$$

Tentukan:

a. $R_1 \cup R_2$

c. $R_2 - R_1$

b. $R_1 \cap R_2$

- d. $R_2 \oplus R_1$
- 3. Perhatikanlah gambar berikut!

Jika $R \subseteq A \times B$, nyatakanlah R^{-1} dalam bentuk matriks dan digraf!

- 4. Diketahui himpunan $A = \{a \mid a \text{ adalah faktor dari } 24\}$ dan R merupakan suatu relasi pada himpunan A dengan $R = \{(x, y) \mid x \le y\}$. Tentukanlah sifat-sifat dari relasi R tersebut!
- 5. Jika relasi R pada suatu himpunan disajikan dalam matriks berikut:

$$M_R = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Tentukanlah:

- a. matriks yang merepresentasikan R^{-1} !
- b. matriks yang merepresentasikan R^{C} !
- c. matriks yang merepresentasikan R^2 !
- 6. Misalkan relasi $R = \{(1,2),(1,3),(2,3),(2,4),(3,1)\}$ dan relasi $S = \{(2,1),(3,1),(3,2),(4,2)\}$. Tentukanlah $S \circ R$!