VIZUALIZAREA DATELOR MASIVE IN TIMP REAL

DUMITRIȚA MUNTEANU - SISTEME INTERACTIVE - 2015 MASTER AN I - IVA

OVERVIEW

- Introducere
- Surse de date pentru hărți
- OpenStreetMap XML & POSTGRES/POSTGIS
- Mapnik Rendering Toolkit
- OpenLayers Library
- Concluzii

INTRODUCERE

- ☐ Trăim într-un secol al informațiilor, iar multe dintre aceste informații pot fi reprezentate geografic.
- □ Acesta poate fi unul dintre motivele pentru care Geographic Information System (GIS) a devenit unul dintre cele mai importante aspecte al multor aplicaţii web.
- □ Lucru cu date geospaţiale poate deveni complicat, deoarece acest proces implică, printre altele, şi utilizarea modelelor matematice avansate pentru reprezentarea suprafeţei Pământului.

SURSE DE DATE PENTRU HĂRȚI

- Mapscape furnizor de hărți digitale de înaltă calitate contra cost.
 - **GoogleMaps** o oferă un API prin care hărțile pot fi incorporate în aplicății web third-party.
- **BingMaps** servicii asemănătoare GoogleMaps, oferite de Microsoft.
- MapQuest furnizor de hărți digitale, oferite de AOL.
- OpenStreetMap proiect colaborativ pentru creerea hărților digitale ale lumii, în mod gratuit.

OPEN STREET MAP (OSM) - XML

Elements (also **data primitives**) are the basic components of OSM's conceptual data model of the physical world. They consist of <u>nodes</u> (defining points in space), <u>ways</u> (defining linear features and area boundaries), and <u>relations</u> (which are sometimes used to explain how other elements work together).

```
<node id="2382079818" version="1" timestamp="2013-07-12T07:53:00Z" uid="1637579"</pre>
       user="kalya" changeset="16922581" lat="46.7786598" lon="23.6138854"/>
<node id="2383718069" version="1" timestamp="2013-07-13T22:01:13Z" uid="281087"</p>
      user="mdomnita" changeset="16942436" lat="46.7702349" lon="23.5832606">
 <tag k="addr:housenumber" v="7"/>
 <tag k="addr:street" v="Cl. Iuliu Hossu"/>
 <tag k="amenity" v="cafe"/>
 <tag k="cuisine" v="coffee shop"/>
 <tag k="name" v="Mozart Cafe"/>
</node>
<way id="7742924" version="30" timestamp="2012-11-23T11:58:39Z" uid="205643" user="raluga" changeset="13997812">
 <nd ref="292023836"/>
 <nd ref="56447905"/>
 <nd ref="90402987"/>
 <nd ref="90402988"/>
 <nd ref="90402990"/>
 <nd ref="2027929958"/>
 <tag k="highway" v="primary"/>
 <tag k="int ref" v="E60"/>
 <tag k="is in:city" v="Cluj-Napoca"/>
 <tag k="lanes" v="2"/>
 <tag k="maxspeed" v="50"/>
 <tag k="name" v="Strada Frunzisului"/>
 <tag k="name:hu" v="Lomb utca"/>
 <tag k="oneway" v="no"/>
</way>
```

OSM AS A DATABASE

- OSM xml data can be imported into a database, using some importing tools which convert the xml format, into a data base format.
- ☐ Example of such tools: osm2pg, osmosis.
- Why would we need OSM as a database? Because using an XML files, it would be difficult to perform spatial querries, like retrieving all the streets from a certain bounding box.
- □ Databases which allow OSM storage Postgres.
- □ Postgres comes with PostGIS extension which can perform spatial queries.

OSM IN POSTGRES/POSTGIS

Baza de date OSM care conține harta Clujului importată cu in Postgres osm2pgsql:

☐ The main tables are:

- planet_osm_line contains all the lines (pedestrian, motoway, etc)
- planet_osm_point contiens the POIs.
- planet_osm_polygon contains all the polygons(buildings, parks,etc)
- planet_osm_roads similar to planet_osm_line, but it contians only the main roads.

MAPNIK - RENDERING TOOLKIT

Intrări:

- 1. OSM data source (in our case POSTGRES DB)
- XML Style File it says what (lines/polygons) to render and how (which color, what kind of line, etc) to render.

leşiri: Raster Image of the map.

```
//-----//
// load map style as exported from tilemill
mapnik::Map map;
load_default_map_style(map);

//------//
// build a custom road style and add it to the default map style
std::vector<long long> osm_id_vector;
osm_id_vector.push_back(61924590);
osm_id_vector.push_back(41947506);

//------//
// create new style
mapnik::feature_type_style road_blocked_style;
create_map_style(road_blocked_style, osm_id_vector);

//------//
// add the new style to the map
map.insert_style("road_blocked_style", road_blocked_style);
```


OPEN LAYERS

- Librarie Javascript, care ruleaza pe partea de client a unei aplicații client-server.
- Este un motor de hărți, care oferă un API care poate fi utilizat pentru a dezvolta propriile aplicații web care incorporează renderarea unei hărți.
- Open Layers "consuma" date de tip raster provenite de la diferite servere de hărți.
- Open Layers poate de asemena sa rendereze pe partea de client, trăsături definite static sau provenite de la servere remote WFS (web feature server).
- Principiul de bază al tuturor acestor servere este că permit specificarea arieri care se doreste vizualizată, iar apoi serverul trimite către client imaginea ariei solicitate.

OPEN LAYERS – HELLO WORLD MAP

```
<!doctype html>
-<html lang="en">
   <head>
     <link rel="stylesheet" href="http://openlayers.org/en/v3.5.0/css/ol.css" type="text/css">
     <style> .map { height: 400px; width: 100%; } </style>
     <script src="http://openlayers.org/en/v3.5.0/build/ol.js" type="text/jayascript"></script>
     <title>OpenLayers 3 example</title>
   </head>
   <body>
     <h2>My Map</h2>
     <div id="map" class="map"></div>
     <script type="text/javascript">
       var map = new ol.Map({
                 target: 'map', layers: [ new ol.layer.Tile({ source: new ol.source.OSM({layer: 'sat'}) }) ],
                 view: new ol.View({
                  center: ol.proj.transform([23.5833, 46.7667], 'EPSG:4326', 'EPSG:3857'), zoom: 12 }) });
     </script>
   </body>
  </html>
```


OPEN LAYERS – RASTER DATA

- Layerele pot fi de două tipuri: raster and vector.
- Layerele Raster pot sa aiba surse de date independente: Statemen, OSM, MapQuest, TileJSON, BingMaps.

OPENLAYERS – VECTOR DATA

- Layerele de tip vectori de trasaturi sunt de obicei adaugate peste layerele de tip raster.
- Vectorii de trăsaturi pot fi obtinuti de la servere remote (ol.source.ServerVector) sau definiti static in formate multiple precum GeoJSON, GPS, KML, OSMXML, TopoJSON.

OPEN LAYERS – RASTER + VECTOR DATA

```
var vectorSource = new ol.source.GeoJSON({
object:{
        'type': 'FeatureCollection',
        'crs': { 'type': 'name', 'properties': {'nam ': 'EPSG:4326'} },
        'features': [
                        {"type": "Feature", "id": "ROU", " roperties": { "name": "Romania" }, "ge metry": { "typ
                        [24.402056,47.981878],[24.86631,47.737526],[25.207743,47.891056],[25.945941
                        [26.924176,48.123264],[27.233873 47.826771],[27.551166,47.405117],[28.12803,
                        [28.233554,45.488283], [28.679779, 5.304031], [29.149725,45.464925], [29.603289,
                        [28.837858,44.913874], [28.558081,4.707462], [27.970107,43.812468], [27.2424,44
                        [24.100679,43.741051],[23.332302,43 397011],[22.944832,43.823785 722.65715,4
        projection: 'EPSG:3857'
    );
var vectorLayer = new ol.layer.Vector({ source: vectorSource, style styleFunction });
var map = new ol.Map({ layers: [ new ol.layer.Tile({ source: new ol.source.OSM() }), vectorLayer ],
                       target: 'map',
                       view: new ol. View({ center: [0, 0], zoom: 1 })
```


OPEN LAYERS - OPTIMIZĂRI

Serverele pot avea tileurile pre-renderate într-un sistem de cache. Pot servi aceleasi tileuri mai multor clienţi.
Tileurile se pot încarca în afara hărții, astfel încat acestea sa fie încarcate înainte ca userul sa navigheze pe hartă în direcția respectivă.
Se pot utiliza setari diferite ale dimensiunii tileurilor.
Dimensiuni mai mari înseamnă mai puține cereri către server, dar mai multe calcule de efectuat pentru a genera o imagine mai mare.
Un tile de dimensiuni mai mici înseamna mai multe cerințe către server, dar mai puțin timp pentru a calcula imagini mai mici.
Serverele oferite de Google Maps sau OpenStreetMap, ignora acesta proprietate pentru că aceste servicii au imaginile precalculate de 256x256 pixeli.

CONCLUZII

- □ OpenLayers are capacitatea de a rendera date raster care au ca sursa de date formate precum OSM, Bing, MapBox, Statem, MapQuest sau orice alta sursa XYZ.
- □ Poate rendera vectori de trăsături, specificate în formate precum GeoJSON, TopoJSON, KML, GML.
- □ OpenLayers oferă de asemena suport pentru aplicaţiile mobile.
- □ OpenLayers este cel mai complet framework utilizat pentru crearea aplicaţiilor web cu hărţi geografice interactive.
- □ Poate fi intergrat în orice proiect, având o licență BSD 2 Clause.