Electromagnetism and Relativity

Notes by Christopher Shen

Winter 2023 - Summer 2024

Contents

1	Suffix notation														
2	Car	Cartesian tensors													
	2.1	True tensors	4												
		2.1.1 Rank 2 quotient theorem	4												
		2.1.2 General quotient theorem	4												
	2.2	Matrices as tensors	5												
	2.3	Pseudotensors	5												
	2.4	Invariant tensors	5												
	2.5	Rotation tensors	5												
	2.6	Reflections, inversions and projections	5												
	2.7	Inertia tensors	5												
3	Tav	lor expansions	6												
•	3.1	1D expansions	6												
	3.2	3D expansions	7												
4	Voc	tor calculus	8												
4	4.1	Vector operators	8												
	4.1	4.1.1 Gradient	8												
		4.1.2 Divergence	8												
		4.1.3 Curl	8												
	4.9	Integrals theorems	8												
	4.2	9	8												
		4.2.1 Line, volume and surface integrals													
		4.2.2 Divergence theorem	8												
_	~	Curvilinear coordinates 9													
5															
	5.1	Orthogonal curvilinear coordinates	9												
		5.1.1 Scale factors and basis vectors	9												
		5.1.2 Cylindrical coordinates	9												
		5.1.3 Spherical coordinates	10												
	5.2	Length, area and volume	11												
		5.2.1 Vector and arc length	11												
		5.2.2 Vector area	12												
		5.2.3 Volume	12												
	5.3	Vector operators in OCCs	13												
		5.3.1 Gradient	13												
6	Elec	etrostatics	14												
	6.1	Dirac delta function	14												
	6.2	Coulomb's law	15												
	6.3	Electrostatic Maxwell's equations	16												
		631 Curl equation	16												

		6.3.2 D	ivergence equa	tion									17
	6.4	Electric o	lipoles										18
		6.4.1 P	otential and ele	ectric fiel	d .								18
		6.4.2 Fe	orce, torque an	d energy									19
		6.4.3 M	lultidipole expa	ansion .									20
	6.5	Gauss's l	aw										21
		6.5.1 B	oundaries										21
		6.5.2 C	onductors										21
	6.6	Poisson's	equation \cdot .										22
		6.6.1 E	xistence and u	niqueness	of	solı	ıtio	ns					22
		6.6.2 M	lethod of image	es									22
	6.7	Electrost	atic energy .										22
	6.8	Capacito	rs										23
		6.8.1 P	arallel plates.										23
		6.8.2 C	oncentric spher	res									23
7	Mag	gnetostat	ics										24
	•	Currents											24

1 Suffix notation

2 Cartesian tensors

2.1 True tensors

tensor algebra

2.1.1 Rank 2 quotient theorem

The **quotient theorem** is as an alternative definition for tensors. In the context of $\underline{\text{rank } 2}$ tensors it states that if b_i always transforms as a $\underline{\text{vector}}$ in

$$b_i = T_{ij}a_j$$

and that a_j is also a vector then T_{ij} is a rank 2 tensor.

Proof. We egregiously define entity T_{ij} in frame S and T'_{ij} in frame S'.

The usual transformation laws apply, namely $e'_i = \ell_{ij}e_j$. By definition:

$$b'_{i} = T'_{ij}a'_{j}$$
$$= T'_{ij}\ell_{jk}a_{k}$$

Also directly from transformation laws:

$$b_i' = \ell_{ij}b_j$$
$$= \ell_{ij}T_{jk}a_k$$

$$\therefore (T'_{ij}\ell_{jk} - \ell_{ij}T_{jk})a_k = 0$$

Since a_k are constants of our vector it must then be that:

$$T'_{ij}\ell_{jk} = \ell_{ij}T_{jk}$$

$$T'_{ij}\ell_{jk}\ell_{mk} = \ell_{ij}\ell_{mk}T_{jk}$$

Where here we aim to eliminate the first two ℓ s. Finally:

$$T'_{im} = \ell_{ij}\ell_{mk}T_{jk}$$

2.1.2 General quotient theorem

Let $R_{ij...r}$ be a rank m tensor, and $T_{ij...s}$ be a set of 3^n numbers where n > m.

If $R_{ij...r}T_{ij...s}$ is a rank n-m tensor then $T_{ij...s}$ is a rank n tensor.

symmetric and anti symmetric tensors

2.2 Matrices as tensors

2.3 Pseudotensors

Firstly note that $\det L = +1$ for <u>rotations</u>, and $\det L = -1$ for <u>reflections</u> and <u>inversions</u>. Recall the transformation law $e'_i = \ell_{ij}e_j$.

A <u>second</u> rank **pseudotensor** is defined:

$$T'_{ij} = (\det L)\ell_{ip}\ell_{jq}T_{pq}.$$

Furthermore a $\underline{\text{rank } 1}$ pseudotensor is a **pseudovector** and is defined as:

$$T_i' = (\det L)\ell_{ip}T_p.$$

Finally a **pseudoscalar** is a <u>rank 0</u> pseudotensor:

$$a' = (\det L) \cdot a,$$

and changes sign under transformation.

2.4 Invariant tensors

2.5 Rotation tensors

2.6 Reflections, inversions and projections

active and passive transformations

maybe merge with rotations?

2.7 Inertia tensors

- 3 Taylor expansions
- 3.1 1D expansions

3.2 3D expansions

4 Vector calculus

4.1 Vector operators

- 4.1.1 Gradient
- 4.1.2 Divergence
- 4.1.3 Curl

chain rules, important identities

4.2 Integrals theorems

4.2.1 Line, volume and surface integrals

4.2.2 Divergence theorem

Consider <u>closed</u> surface S with volume V. We have that:

$$\int_{V} \mathbf{\nabla} \cdot \mathbf{E} dV = \oint_{S} \mathbf{E} \cdot d\mathbf{S}.$$

4.2.3 Stokes's theorem

Consider open surface S with line C as its boundary. We then have that:

$$\int_{S} \mathbf{\nabla} \times \mathbf{E} \cdot d\mathbf{S} = \oint_{C} \mathbf{E} \cdot d\mathbf{r}.$$

5 Curvilinear coordinates

5.1 Orthogonal curvilinear coordinates

5.1.1 Scale factors and basis vectors

Consider change of variables:

$$(x_1, x_2, x_3) \leftrightarrow (u_1, u_2, u_3)$$

where u_i are our curvilinear coordinates, and

$$u_i = u_i(x_1, x_2, x_3)$$

$$x_i = x_i(u_1, u_2, u_3).$$

Then we define:

$$d\mathbf{r}_i = \frac{\partial \mathbf{r}}{\partial u_i} du_i$$
$$= h_i \mathbf{e}_i du_i$$

where $h_i = \left| \frac{\partial \mathbf{r}}{\partial u_i} \right|$ is our scale factor and

$$\boldsymbol{e}_i = \frac{1}{h_i} \frac{\partial \boldsymbol{r}}{\partial u_i}$$

is our **basis vector** of unit length for a specific set of curvilinear coordinates.

Now if the basis vectors satisfy

$$e_i \cdot e_j = \delta_{ij}$$

we have an orthogonal set of curvilinear coordinates.

5.1.2 Cylindrical coordinates

We define cylindrical coordinates as

$$(u_1, u_2, u_3) = (\rho, \phi, z)$$

and with the following relation to Cartesian coordinates:

$$r = \rho \cos \phi e_x + \rho \sin \phi e_y + z e_z.$$

Furthermore:

$$h_{\rho} = 1$$
 and $e_{\rho} = \cos \phi e_x + \sin \phi e_y$
 $h_{\phi} = \rho$ and $e_{\phi} = -\sin \phi e_x + \cos \phi e_y$
 $h_z = 1$ and $e_z = e_z$.

Here ϕ is the <u>anticlockwise</u> rotation of the xy-plane.

5.1.3 Spherical coordinates

We define the spherical coordinates as

$$(u_1, u_2, u_3) = (r, \theta, \phi)$$

$$r = r \sin \theta \cos \phi e_x + r \sin \theta \sin \phi e_y + r \cos \theta e_z$$

where $\boldsymbol{e}_x,\,\boldsymbol{e}_y$ and \boldsymbol{e}_z represent the Cartesian unit vectors.

Now $\phi \in [0,2\pi]$ is the <u>rotation</u> angle in xy-plane, and $\theta \in [0,\pi]$ in z-plane. We also have that:

$$h_r = 1$$
 and $e_r = \sin \theta \cos \phi e_x + \sin \theta \sin \phi e_y + \cos \theta e_z$

$$h_{\theta} = r$$
 and $e_{\theta} = \cos \theta \cos \phi e_x + \cos \theta \sin \phi e_y - \sin \theta e_z$

$$h_{\phi} = r \sin \theta$$
 and $e_{\phi} = -\sin \phi e_x + \cos \phi e_y$.

We note that spherical coordinates are orthonoral:

$$e_r \times e_\theta = e_\phi$$
, $e_\theta \times e_\phi = e_r$ and $e_\phi \times e_r = e_\theta$.

5.2 Length, area and volume

5.2.1 Vector and arc length

Firstly the vector length due to infinitesimal change in all directions is

$$\mathrm{d}\boldsymbol{r} = \sum_{i=1}^{3} h_i \mathrm{d}u_i \boldsymbol{e}_i.$$

It is important to note that summation notation does not work here.

Now the arc length of dr is:

$$ds = |d\mathbf{r}|$$
$$= \sqrt{d\mathbf{r} \cdot d\mathbf{r}}$$

and we define the \mathbf{metric} tensor as

$$g_{ij} = \frac{\partial x_k}{\partial u_i} \frac{\partial x_k}{\partial u_j}$$
$$= \frac{\partial \mathbf{r}}{\partial u_i} \cdot \frac{\partial \mathbf{r}}{\partial u_j}.$$

Since $d\mathbf{r} = dx_k$ we then the following relation:

$$(\mathrm{d}s)^2 = g_{ij}\mathrm{d}u_i\mathrm{d}u_j.$$

5.2.2 Vector area

5.2.3 Volume

The volume of the infinitesimal parallelepiped defined by $\mathrm{d} \boldsymbol{r}_1,\,\mathrm{d} \boldsymbol{r}_2$ and $\mathrm{d} \boldsymbol{r}_3$ is:

$$dV = |(d\mathbf{r}_1 \times d\mathbf{r}_2) \cdot d\mathbf{r}_3|$$

$$= h_1 h_2 h_3 du_1 du_2 du_3 |(\mathbf{e}_1 \times \mathbf{e}_2) \cdot \mathbf{e}_3|$$

$$= \sqrt{g} du_1 du_2 du_3$$

where g is the <u>determinant</u> of the metric tensor.

5.3 Vector operators in OCCs

5.3.1 Gradient

Let $\mathbf{r} = \mathbf{r}(u_1, u_2, u_3)$. The gradient of a scalar field in terms of this OCC is:

$$\nabla f(r) = \frac{1}{h_1} \frac{\partial f}{\partial u_1} e_1 + \frac{1}{h_2} \frac{\partial f}{\partial u_2} e_2 + \frac{1}{h_3} \frac{\partial f}{\partial u_3} e_3.$$

So let there be the following infinitesimal change:

$$u_1 \to u_1 + du_1, \quad u_2 \to u_2 + du_2, \quad u_3 \to u_3 + du_3$$

and consider the following:

$$df(\mathbf{r}) = \nabla f(\mathbf{r}) \cdot d\mathbf{r}$$

$$= \frac{\partial f}{\partial u_1} du_1 + \frac{\partial f}{\partial u_2} du_2 + \frac{\partial f}{\partial u_3} du_3$$

$$= \left[\frac{1}{h_1} \frac{\partial f}{\partial u_1} e_1 + \frac{1}{h_2} \frac{\partial f}{\partial u_2} e_2 + \frac{1}{h_3} \frac{\partial f}{\partial u_3} e_3 \right] \cdot \left[h_1 e_1 du_1 + h_2 e_2 du_2 + h_3 e_3 du_3 \right]$$

$$= \left[\frac{1}{h_1} \frac{\partial f}{\partial u_1} e_1 + \frac{1}{h_2} \frac{\partial f}{\partial u_2} e_2 + \frac{1}{h_3} \frac{\partial f}{\partial u_3} e_3 \right] \cdot d\mathbf{r}$$

and our claim follows from equating terms.

Here h_i are our <u>scale factors</u> and e_i our **orthogonal** basis vectors.

6 Electrostatics

6.1 Dirac delta function

The one dimensional **Dirac delta** is defined:

$$\delta(x) = \begin{cases} \infty & x = 0\\ 0 & x \neq 0, \end{cases}$$

and can be thought of as infinitely sharp at x = 0 and zero elsewhere.

It satisfies some useful properties:

•
$$\delta(x-a) = \lim_{\sigma \to 0} \left[\frac{1}{|\sigma|\sqrt{\pi}} \exp\left(-\frac{(x-a)^2}{\sigma^2}\right) \right]$$

i.e. an infinitely sharp Gaussian. (generalised functions)

• Sift property

$$\int_{\mathbb{R}} f(x)\delta(x-a)dx = f(a)$$

• Let x_i be the solutions to $g(x_i) = 0$. Then:

$$\int_{\mathbb{R}} f(x)\delta[g(x)]dx = \sum_{i} \frac{f(x_i)}{|g'(x_i)|}$$

Now we consider the **3D Dirac delta**, which is defined as follows:

$$\delta(\mathbf{r} - \mathbf{r}_0) = \delta(x - x_0)\delta(y - y_0)\delta(z - z_0)$$

given Cartesian coordinates (x_1, x_2, x_3) . It also satisfies the **sift** property:

$$\int_{\mathbb{R}^3} f(\boldsymbol{r}) \delta(\boldsymbol{r} - \boldsymbol{r}_0) = f(\boldsymbol{r}_0).$$

The three dimensional Dirac delta defined in a orthogonal <u>curvilinear</u> coordinate system (u_1, u_2, u_3) is as follows:

$$\delta(\mathbf{r} - \mathbf{a}) = \frac{1}{h_1 h_2 h_3} \delta(u_1 - a_1) \delta(u_2 - a_2) \delta(u_3 - a_3)$$

for h_1, h_2 and h_3 are the scale factors.

6.2 Coulomb's law

Consider the force on charge q at r due to charge q_1 at r_1 :

$$\boldsymbol{F}_1(\boldsymbol{r}) = \frac{1}{4\pi\epsilon_0} \frac{qq_1(\boldsymbol{r} - \boldsymbol{r}_1)}{|\boldsymbol{r} - \boldsymbol{r}_1|^3},$$

for here $\epsilon_0 = 8.85 \times 10^{-12} C^2 N^{-1} m^{-2}$ in vacuum.

Physically, like charges $(qq_1 > 0)$ repel while opposite charges $(qq_1 < 0)$ attract.

We then define an **electric field** as the force on a small positive test charge:

$$\boldsymbol{E}(\boldsymbol{r}) = \lim_{q \to 0} \left(\frac{1}{q} \boldsymbol{F}(\boldsymbol{r}) \right).$$

The force on a charge q at r from the origin in this electric field is:

$$F(r) = qE(r).$$

A negative point charge is a sink whereas a positive point charge is a source.

Consider a collection of charges q_i at position r_i . The **principle of superposition** tells us that:

$$E(r) = \frac{1}{4\pi\epsilon_0} \sum_i \left(\frac{q_i(r - r_i)}{|r - r_i|^3} \right).$$

Now consider a continuous charged object with volume V and **charge density** $\rho(\mathbf{r}')$. It generates the following electric field:

$$E(r) = \frac{1}{4\pi\epsilon_0} \int_V \rho(r') \frac{r - r'}{|r - r'|^3} dV'.$$

Returning to the electric field generated by a point charge q_1 at position r_1 :

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{q_1}{4\pi\epsilon_0} \frac{\boldsymbol{r} - \boldsymbol{r}_1}{|\boldsymbol{r} - \boldsymbol{r}_1|^3},$$

this is a conservative field, and we may write it as:

$$\boldsymbol{E}(\boldsymbol{r}) = -\boldsymbol{\nabla}\phi(\boldsymbol{r}),$$

where:

$$\phi(\boldsymbol{r}) = \frac{q_1}{4\pi\epsilon_0} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}_1|}.$$

Conservative fields have zero curl, and their line integrals are path independent. This namely applies to finding work done.

6.3 Electrostatic Maxwell's equations

6.3.1 Curl equation

For a continuous charge distribution:

$$E(\mathbf{r}) = -\frac{1}{4\pi\epsilon_0} \int_V \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} dV'$$
$$= -\nabla \left(\frac{1}{4\pi\epsilon_0} \int_V \rho(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} dV' \right)$$

and therefore $\nabla \times E = 0$ for static electric fields.

Hence electrostatic fields are conversative fields:

$$\int_{C_1} \mathbf{E} \cdot \mathrm{d} \mathbf{r} = \int_{C_2} \mathbf{E} \cdot \mathrm{d} \mathbf{r}$$

and we have a generalisation of the fundamental theorem of calculus:

$$-\int_a^b \mathbf{E} \cdot d\mathbf{r} = \phi(b) - \phi(a)$$

where $\boldsymbol{E}(\boldsymbol{r}) = -\boldsymbol{\nabla}\phi(\boldsymbol{r})$. Therefore our potential takes the expression:

$$\phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_V \rho(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} dV'$$

and has units <u>Volts</u> V or JC^{-1} . We define the **potential difference**:

$$V_{A \to B} = \phi_B - \phi_A$$
$$= -\int_C \mathbf{E} \cdot d\mathbf{r}$$

and is the energy per unit charge to move small test charge from A to B:

$$V_{A \to B} = \lim_{q \to 0} \frac{1}{q} W_{A \to B} = -\frac{1}{q} \int_C \mathbf{F} \cdot d\mathbf{r}$$

for here work is done against force.

Now consider charge q at r subject to <u>external electrostatic</u> field.

$$\therefore \boldsymbol{E}_{ext}(\boldsymbol{r}) = -\boldsymbol{\nabla}\phi_{ext}(\boldsymbol{r})$$

$$\therefore W_{ext} = \int_{V} \rho(\boldsymbol{r}) \phi_{ext}(\boldsymbol{r}) dV$$

Note that W_{ext} is the interaction energy.

6.3.2 Divergence equation

Now consider:

$$\begin{split} \boldsymbol{\nabla} \cdot \boldsymbol{E} &= \boldsymbol{\nabla} \cdot \left[- \boldsymbol{\nabla} \phi(\boldsymbol{r}) \right] \\ &= - \boldsymbol{\nabla}^2 \phi(\boldsymbol{r}) \\ &= - \boldsymbol{\nabla}^2 \left(\frac{1}{4\pi\epsilon_0} \int_V \rho(\boldsymbol{r}') \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \mathrm{d}V' \right) \\ &= - \frac{1}{4\pi\epsilon_0} \int_V \rho(\boldsymbol{r}') \mathrm{d}V' \left[\boldsymbol{\nabla}^2 \left(\frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \right) \right] \\ &= - \frac{1}{4\pi\epsilon_0} \int_V \rho(\boldsymbol{r}') \mathrm{d}V' \left[-4\pi\delta(\boldsymbol{r} - \boldsymbol{r}') \right] \\ &= \frac{\rho(\boldsymbol{r})}{\epsilon_0} \end{split}$$

due to the sift and symmetric properties of the delta delta function.

Now previously we also used the following result:

$$\mathbf{\nabla}^2 \left(rac{1}{m{r}}
ight) = -4\pi \delta(m{r}).$$

When $r \neq 0$ we have that:

$$\nabla^2 \left[\frac{1}{r} \right] = \frac{\partial}{\partial x_i} \left[-\frac{x_i}{r^3} \right]$$
$$= \left[-\frac{1}{r^3} \delta_{ii} - x_i \frac{3}{2} r^{-5} 2x_i \right]$$
$$= 0.$$

Now if r = 0 consider the following volume integral of an ϵ sized sphere:

$$\begin{split} \int_{V_{\epsilon}} \mathbf{\nabla}^2 \left[\frac{1}{r} \right] \mathrm{d}V &= -\int_{V_{\epsilon}} \mathbf{\nabla} \cdot \left[\frac{\mathbf{r}}{r^3} \right] \mathrm{d}V \\ &= -\int_{S_{\epsilon}} \frac{\mathbf{r}}{r^3} \cdot \mathrm{d}\mathbf{S} \end{split}$$

where in the final step we used the divergence theorem. On the surface of our sphere, $\mathbf{r} = \epsilon \mathbf{e}_r$ and since:

$$d\mathbf{S} = \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right) du dv$$
$$= r^2 \sin \theta \mathbf{e}_r d\theta d\phi$$

evaluating our surface integral yields -4π . We then deduce the Dirac delta because at $\mathbf{r} = \mathbf{0}$ the charge is unbounded.

6.4 Electric dipoles

6.4.1 Potential and electric field

Dipoles consist of two equal and opposite point charges that are d apart.

An **ideal dipole** is defined as when the following **dipole limit** is <u>finite</u> and <u>constant</u>:

$$m{p} = \lim_{\substack{q o \infty \ m{d} o 0}} q m{d}.$$

A dipole moment is simply p = qd. The dipole potential at r_0 is:

$$\begin{split} \phi(\mathbf{r}) &= \frac{q}{4\pi\epsilon_0} \left(\frac{1}{|\mathbf{r} - \mathbf{r}_0 - \mathbf{d}|} - \frac{1}{|\mathbf{r} - \mathbf{r}_0|} \right) \\ &= \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot (\mathbf{r} - \mathbf{r}_0)}{|\mathbf{r} - \mathbf{r}_0|^3}, \end{split}$$

where we have Taylor expanded the <u>first term</u> about $|r - r_0|$. For simplicity we set $r_0 = 0$. Then the **electric field** generated by our dipole at the origin is:

$$E(r) = \frac{1}{4\pi\epsilon_0} \left(\frac{3p \cdot r}{r^5} r - \frac{1}{r^3} p \right),$$

since $E = -\nabla \phi(r)$. Note that these formulae are in <u>Cartesian</u> coordinates.

Now let our dipole with moment $p = pe_z$ be at:

$$r = r \sin \theta \cos \phi e_x + r \sin \theta \sin \phi e_y + r \cos \theta e_z$$
.

Then in spherical coordinates (r, θ, χ) we have that:

$$\phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \mathbf{r}}{r^3}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{p\cos\theta}{r^2}$$

and

$$\begin{split} \boldsymbol{E}(\boldsymbol{r}) &= -\boldsymbol{\nabla}\phi(\boldsymbol{r}) \\ &= -\left(\frac{\partial\phi}{\partial r}\boldsymbol{e}_r + \frac{1}{r}\frac{\partial\phi}{\partial\theta}\boldsymbol{e}_\theta + \frac{1}{r\sin\theta}\frac{\partial\phi}{\partial\chi}\boldsymbol{e}_\chi\right) \\ &= \frac{1}{4\pi\epsilon_0}\frac{p}{r^3}\Big[2\cos\theta\boldsymbol{e}_r + \sin\theta\boldsymbol{e}_\theta\Big] \end{split}$$

where χ represents the anticlockwise rotation in the xy-plane.

6.4.2 Force, torque and energy

Consider a dipole at r with moment p = qd.

The force on this dipole due to an external electric field \boldsymbol{E}_{ext} is:

$$egin{aligned} oldsymbol{F}(oldsymbol{r}) &= oldsymbol{F}_{-q} + oldsymbol{F}_{+q} \ &= -q oldsymbol{E}_{ext}(oldsymbol{r}) + q oldsymbol{E}_{ext}(oldsymbol{r} + oldsymbol{d}) \end{aligned}$$

where we have -q at r and -q at r+d. Now in the dipole limit:

$$m{F}(m{r}) = (m{p} \cdot m{
abla}) m{E}_{ext}(m{r})$$

since $d \to 0$ and we use the three dimensional Taylor expansion.

The torque on our dipole from external electric field is:

$$G(r) = p \times E_{ext}(r)$$
.

The interaction energy is the following:

$$W = -q\phi_{ext}(\mathbf{r}) + q\phi_{ext}(\mathbf{r} + \mathbf{d})$$
$$= -\mathbf{p} \cdot \mathbf{E}_{ext}(\mathbf{r})$$

where we Taylor expand the second expression.

6.4.3 Multidipole expansion

potential

work done

6.5 Gauss's law

Gauss's law is the integral form of Maxwell's first equation:

$$\int_{S} \mathbf{E} \cdot d\mathbf{S} = \frac{Q_{enc}}{\epsilon_0}$$

where Q_{enc} is the total charge enclosed by volume V. This result follows from the application of the divergence theorem and is useful in problems with symmetry.

6.5.1 Boundaries

Consider surface S with charge density σ separating electric fields E_1 and E_2 . Firstly consider the <u>normal</u> component:

6.5.2 Conductors

special case for electrostatics

6.6 Poisson's equation

In electrostatics we have:

$$\nabla^2 \phi = \frac{\rho}{\epsilon_0}$$

where ρ is our charge density. This is the **Poisson's equation** and is a consequence of the fact that $\nabla \times E = \mathbf{0}$ and $\nabla \cdot E = \frac{\rho}{\epsilon_0}$.

6.6.1 Existence and uniqueness of solutions

The existence of solutions is given by the fact that:

$$\boldsymbol{E} = -\boldsymbol{\nabla}\phi.$$

Poisson's equation has **unique** solution ϕ if we have volume V bounded by surface S and one of the following boundary conditions:

1.

6.6.2 Method of images

6.7 Electrostatic energy

- 6.8 Capacitors
- 6.8.1 Parallel plates
- 6.8.2 Concentric spheres

7 Magnetostatics

```
charge distribution \implies electric field current \implies magnetic field
```

7.1 Currents

Elementary current

Bulk current density

Surface current density

Line current

units!

Infinitesimal current element (dependent on material)

units: $Cs^{-1}m = Am$

Note that $J = Am^{-2}$.

Current flowing through surface and line.