An introduction to Sum-Product Networks (SPNs): A new deep probabilistic architecture

Felix McGregor Prof Johan du Preez

What are SPNs?

- Poon and Domingos, (UAI 2011 Best Paper)
- Acyclic directed graphs os sums and products

Two views of SPNs

1. Deep architecture

- Product node as activation function
- Clear semantics
- Reason meaningfully about relationships between variables as we are calculating probabilities with respect to some features

Two views of SPNs

2. Probabilistic graphical models

- Tractable inference can calculate partition
- Inference in linear time to the size of the network

Bayesian Networks

Markov Random Fields

Probabilistic inference

An SPN represents

 a joint distribution
 over a set of
 variables

• $P(X_1 = 1, X_2 = 0)$?

Marginal Inference

• $P(X_1 = 1)$?

MPE Inference

• What is the most likely state?

Conditions for a valid SPN

 Complete: children of sum are of the same scope
 (Mixtures of distributions)

 Decomposable: children of a product node are of different scopes (Distributions that factorise)

What does this mean?

Parameter estimation

- Lends itself naturally to backpropagation
- Vanishing gradient / gradient diffusion
- "Hard" gradient

Parameter estimation

Update	Soft Inference	Hard Inference
Gen. GD	$\Delta w = \eta \frac{\partial S[\boldsymbol{x}, \boldsymbol{y}]}{\partial w}$	$\Delta w_i = \eta \frac{c_i}{w_i}$
	$P(H_k = i \mathbf{x}, \mathbf{y}) \propto w_{ki} \frac{\partial S[\mathbf{x}, \mathbf{y}]}{\partial S_k}$	$P(\mathbf{H_k} = \mathbf{i} \mathbf{x}, \mathbf{y}) = \begin{cases} 1 & : w_{ki} \in W \\ 0 & : \text{otherwise} \end{cases}$
Disc. GD	$\Delta w = \eta \left(\frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{\partial w} - \frac{1}{S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]} \frac{\partial S[\boldsymbol{y}, \boldsymbol{1} \boldsymbol{x}]}{$	$\Delta w_i = \eta \frac{\Delta c_i}{w_i}$
	$\frac{1}{S[1,1 \boldsymbol{x}]} \frac{\partial S[1,1 \boldsymbol{x}]}{\partial w}$	

Structure learning: LearnSPN

Cool applications: Face completion

Cool applications

- 83.96% on CIFAR 10 Discriminative Learning of Sum-Product Networks (NIPS 2012)
- Satellite image classification

Resources

- Best place for all things SPN
 - https://github.com/arranger1044/awesome-spn
- Some video lecture sites
 - http://techtalks.tv/
 - http://videolectures.net/
- My Github
 - https://github.com/felixmcgregor/Sum-Product-Networks