

DEUTSCHES PATENTAMT

(71) Anmelder:

(74) Vertreter:

Aargau, CH

₀₀ DE 3305225 A1

(21) Aktenzeichen:

P 33 05 225.5

Anmeldetag: Offenlegungstag:

BBC Aktiengesellschaft Brown, Boveri & Cie., Baden,

Kempe, W., Dipl.-Phys. Dr.rer.nat., 6800 Mannheim;

Dipl.-Ing., Pat.-Anw., 6701 Hochdorf-Assenheim

Dahlmann, G., Dipl.-Ing., 6940 Weinheim; Fritsch, K.,

16. 2.83

16. 8.84

@ Erfinder:

Kanngießer, Karl-Werner, 6806 Viernheim, DE

(5) Recherchenergebnisse nach § 43 Abs. 1 PatG:

DE-AS 24 46 623 DE-Z: ETZ-A 89, 1968, S.174; US-Z: IEEE Transactions on industry and g neral applications, Vol. IGA-2, No.5, 1966, S.334-340;

HGÜ-Kraftwerkstation in Blockschaltung

Bei dieser HGÜ-Kraftwerkstation in Blockschaltung ist der Generator (2) direkt, d. h. ohne Stromrichtertransformator, mit einer HGÜ Kurzkupplung (3) verbunden. Die Kurzkupplung ist über einen Netztransformator (4) und eine Drehstromleitung (5) an ein Verteilungsnetz (6) angeschlossen. Der Generator (2) weist zwei getrennte Drehstrom-Ständerwicklungen (9, 10) für jeweils die halbe Nennleistung auf, die räumlich so versetzt angeordnet sind, daß zwei um 30" elektrisch gegeneinander phasenverschobene Drehstromsysteme entstehen, die mit den Eingangsklemmen je einer als Gleichrichter (3a) der Kurzkupplung dienenden Drehstrom brückenschaltung (11, 12) verbindbar sind. Zur Bildung einer 12-Puls-Blockschaltung können die beiden Brücken (11, 12) parallel oder in Serie geschaltet sein.

Б

10

 $\langle \cdot \cdot \cdot \rangle$

(: :

Ansprüche

- HGÜ-Kraftwerkstation in Blockschaltung mit mindestens einem Generator und mindestens einem aus zwei Drehstrombrückenschaltungen bestehenden 12-Puls-Stromrichter, dadurch gekennzeichnet, daß der Generator (2) direkt mit dem als HGÜ-Kurzkupplung (3) ausgebildeten Stromrichter verbunden ist und zwei getrennte Drehstrom-Ständerwicklungen (9,10) für jeweils die halbe Nennleistung aufweist, die räumlich so versetzt angeordnet sind, daß zwei um 30° elektrisch gegeneinander phasenverschobene Drehstromsysteme entstehen, die mit den Eingangsklemmen je einer Drehstrombrückenschaltung (11,12) verbindbar sind.
- 2. HGÜ-Kraftwerkstation nach Anspruch 1, dadurch gekennzeichnet, daß zur Bildung einer 12-Puls-Blockschaltung die Gleichstromseiten der beiden Brücken (11,12) parallelgeschaltet sind.
 - 3. HGÜ-Kraftwerkstation nach Anspruch 1, dadurch gekennzeichnet, daß zur Bildung einer 12-Puls-Blockschaltung die Gleichstromseiten der beiden Brücken (11,12) in Serie geschaltet sind.
- 4. HGÜ-Kraftwerkstation nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die HGÜ-Kurzkupplung (3) mehrere parallele, elektrisch getrennte Gleichstromkreise aufweist.

BROWN, BOVERI & CIE Mannheim AKTIENGESELLSCHAFT

11. Febr. 1983

ZPT/P3-Pn/Bt

Mp.-Nr.:511/83

10

15

30

35

1

Ų.,

HGI - Kraftwerkstation in Blockschaltung

Die Erfindung bezieht sich auf eine HGÜ-Kraftwerkstation in Blockschaltung gemäß dem Oberbegriff des Ansbruchs 1.

Eine solche HGÜ-Kraftwerkstation ist aus F. Hölters,
K.W. Kanngießer und W. Ziegler: "Technik und Einsatzmöglichkeiten der Hochspannungs-Gleichstrom-Übertragung";
etz-A 89 (1968), Heft 8 bekannt. Im bekannten Fall sind
mehrere Generatoren über Stromrichtertransformatoren mit
in Serie liegenden Gleichrichtern einer HGÜ zu einer
Einheit verbunden.

Gegenüber einer konventionellen Anordnung hat dies den Vorteil, daß eine Drehstromschaltanlage sowie Filter-kreise in Wegfall kommen. Aus wirtschaftlichen Gründen kommt vorzugsweise eine Doppelblockschaltung, d.h. eine Anordnung mit 12-pulsiger Rückwirkung in Frage, weil nur dann der Generator in seiner Leistung annähernd voll ausgenutzt werden kann.

Bei der Verbindung eines Generators mit einer HGf werden

20

30

35

(....)

normalerweise Gleichrichter- und Wechselrichterstation getrennt aufgestellt, um die technischen und wirtschaftlichen Vorteile einer Gleichstromleitung im Vergleich zu einer Drehstromleitung ausnützen zu können. Es ist aber durchaus sinnvoll, einen Generator mit einer HGÜ-Kurz-kupplung, bei der Gleich- und Wechselrichter in einer Station vereinigt sind, zu kuppeln, weil auch bei dieser Anordnung die technischen Vorteile der HGÜ, nämlich die asynchrone Kupplung, die Nichtübertragung von Kurz-schlußleistung und die schnelle und genaue Regelbarkeit voll genutzt werden können.

Ein Vorteil der Kurzkupplung ist, daß die Daten des Gleichstromkreises frei von den Gesetzmäßigkeiten einer Freileitung nach technisch-wirtschaftlichen Gesichts-punkten optimiert werden können. Im allgemeinen wird man den Nenngleichstrom so wählen, daß die größtverfügbaren Leistungsthyristoren strommäßig gerade voll ausgenutzt sind und wird sich in der Gleichspannung dann entsprechend der Nennleistung anpassen.

Als Nachteil eines Einsatzes einer HGÜ-Kurzkupplung ist jedoch der erhebliche Kostenaufwand zu nennen.

Der Erfindung liegt davon ausgehend die Aufgabe zugrunde, eine für 12-Puls-Betrieb geeignete HGÜ-Kraftwerkstation in Blockschaltung der eingangs genannten Art anzugeben, bei der der Kostenaufwand erheblich reduziert ist.

Diese Aufgabe wird durch die im Anspruch 1 gekennzeichneten Merkmale gelöst.

Die mit der Erfindung erzielbaren Vorteile liegen insbesondere darin, daß durch Fortfall des üblicherweise zwischen Generator und Stromrichter angeordneten Stromrich-

tertransformators neben der erheblichen Einsparung an Kosten auch der Raumbedarf der HGÜ-Kraftwerkstation reduziert und der Wirkungsgrad verb ssert wird. Weitere Vorteile sind aus der Beschreibung ersichtlich.

Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert.

Es zeigen:

15

(,,,

(* 7

- Fig. 1 ein Wechselstrom-Mbertragungssystem mit einer Blockschaltung von Generator und HGÜ-Kurzkupplung ohne zwischengeschalteten Transformator,
- Fig. 2 eine 12-Puls-Blockschaltung mit zwei parallelgeschalteten Stromrichterbrücken,
- Fig. 3 eine 12-Puls-Blockschaltung mit zwei in Serie geschalteten Stromrichterbrücken,
- 20 Fig. 4 eine 12-Puls-Blockschaltung mit mehreren parallelen elektrisch getrennten Gleichstromkreisen.
 - Fig. 5 die zu regelnden Größen der Blockschaltung.
- In Fig. 1 ist ein Wechselstrom-übertragungssystem mit einer Blockschaltung von Generator und HGÜ-Kurzkupplung ohne zwischengeschalteten Transformator dargestellt.

 Eine Dampf-, Gas- oder Wasserturbine 1 treibt über eine Welle einen Drehstromgenerator 2 an. Der Generator 2 speist über eine HGÜ-Kurzkupplung 3, einen Netztransformator 4 und eine Drehstromleitung 5 in ein Verteilungsnetz 6 ein.
- An die Drehstromleitung 5 sind Filterkreise 7 zur Kompensation der von der HGÜ-Kurzkupplung 3 verursachten Oberwellen angeschlossen. Die HGÜ-Kurzkupplung 3 besteht

aus einem Gleichrichter 3a mit nachgeschaltetem Wechselrichter 3b, wobei Gleich- und Wechselrichter über einen Gleichstromzwischenkreis miteinander verbunden und jeweils als Drehstrombrücken ausgebildet sind. Durch den Einsatz der HGÜ-Kurzkupplung 3 ist es möglich, die Generatordrehzahl und damit auch die Turbinendrehzahl unabhängig von der Frequenz des Wechsel- bzw. Drehstromnetzes 6 nach optimalen Gesichtspunkten unter Berücksichtigung des Wirkungsgrades, der Kosten und der Raumerfordernisse auszuwählen. Bei einem Pumpspeicherwerk sind z.B. somit zwei verschiedene Drehzahlen für Pumpund Turbinenbetrieb möglich. Bei Wasserkraftwerken kann die Drehzahl in Abhängigkeit des Wasserstandes ausgewählt werden.

15

20

In Fig. 2 ist eine 12-Puls-Blockschaltung mit zwei parallelgeschalteten Stromrichterbrücken dargestellt. Die Läuferwicklung (Erregerwicklung) des Generators 2 ist dabei mit 8 bezeichnet. Der Generator 2 weist zwei getrennte, jeweils in Stern geschaltete Drehstrom-Ständerwicklungen 9 und 10 auf, die jeweils für die halbe Nennleistung ausgelegt und räumlich so versetzt angeordnet sind, daß zwei um 30° elektrisch gegeneinander phasenverschobene Drehstromsysteme gebildet werden, die mit den Eingangsklemmen (Wechselstromklemmen) je einer Drehstrombrückenschaltung 11 und 12 verbunden sind. Die sonstigen wesentlichen Eigenschaften und Merkmale des Generators 2 werden vorteilhaft wie bei einem üblichen Generator beibehalten.

30

35

(E.

Die Drehstrombrücken 11 und 12 sind ausgangsseitig (gleichstromseitig) parallelgeschaltet. Die Drehstrombrücke 11 ist dabei über eine Drossel 13 mit dem positiven Pol und über eine Dross l 14 mit dem negativen Pol des Gleichstromzwischenkreises verbunden. Die Drehstrombrücke 12 ist über eine Drossel 15 an den positiven Pol

.....

 C_{i}

und über eine Drossel 16 an den negativen Pol angeschlossen.

In Fig. 3 ist eine 12-Puls-Blockschaltung dargestellt,
bei der die Drehstrombrücken 11 und 12 gleichstromseitig
in Serie geschaltet sind. Die Drehstrombrücke 11 ist
dabei über eine Drossel 17 mit dem positiven Pol und die
Drehstrombrücke 12 über eine Drossel 18 mit dem negativen Pol des Gleichstromzwischenkreises verbunden. Die
Anordnung der Ständerwicklungen 9 und 10 sowie deren
Verschaltung mit den Drehstrombrücken 11 und 12 ist wie
unter Fig. 2 beschrieben.

In den Fig. 2 und 3 sind jeweils nur die Gleichrichterbrücken 3a der HGÜ-Kurzkupplung 3 dargestellt, die zugehörigen Wechselrichterbrücken 3b sind in gleicher Weise, d.h. entweder parallel oder in Serie verschaltet.

Die Drehstrombrücken der Gleichrichter 3a können wahlweise mit Thyristoren oder mit Dioden ausgerüstet sein. 20 Im zweiten Fall erfolgt die Regelung nur durch den Generator und den Wechselrichter, während im ersten Fall auch die Thyristoren des Gleichrichters bestimmte Regelfunktionen erfüllen können. Die Vorteile eines Thyristor-Gleichrichters 3a sind die sehr schnelle Generator-25 stromregelung sowie der wirksame Schutz durch Strombegrenzung, durch eine Stromunterbrechung innerhalb einer Periode und durch eine schnelle Wiedereinschaltung. Ferner kann auf einen Generatorschalter und einen Gleichstromleistungsschalter verzichtet werden. Die Vor-30 teile eines Dioden-Gleichrichters 3a sind die reduzierten Kosten der Ventile, die niedrigeren Verluste und der Fortfall der Ventilregelkreise. Bei einer Bestückung des Gleichrichters 3a mit Dioden ist allerdings zur Abschaltung von Fehlerströmen ein Gleichstromleistungsschalter 35 oder ein Generatorschalter notwendig.

F

Bei einer Bestückung des Gleichrichters 3a mit Thyristoren kann jeder Fehlerstrom auf der Leitung (z.B. Kurzschlußstrom) vom Generator 2 ferngehalten werden. Der Stromanstieg wird dabei von den Drosseln 13 bis 18 des Gleichstromzwischenkreises begrenzt. In Verbindung mit der Stromregelung des Gleichrichters kann der Fehlerstrom im nichtkritischen Bereich des Generators gehalten werden.

10

(3

5

Bei Auftreten eines internen Stromrichterfehlers (z.B. Überschlag über ein Stromrichterventil) wirkt der thyristorbestückte Gleichrichter wie ein innerhalb einer Periode schaltender Leistungsschalter und reduziert die Anzahl der Drehmomentstöße im Generator auf 1. Bei einem diodenbestückten Gleichrichter muß bei einem solchen Fehlerfall der Generatorschalter eingreifen, unterstützt durch die Generator-Schnellentregung.

Die Blockschaltung ohne Stromrichtertransformator be-20 dingt wegen der aus Isolationsgründen auf etwa 25 kV begrenzten Generatorspannung bei großen Leistungen sehr hohe Gleichströme. Diese können nicht mehr durch einen einzelnen Thyristor je Ventilzweig bewältigt werden, es müßten vielmehr eine größere Anzahl Thyristoren parallel 25 geschaltet werden. Die direkte Parallelschaltung von Thyristoren hat eine gleichmäßige Stromaufteilung in allen Betriebs- und Störungsfällen zur Bedingung. Dies setzt geringe Toleranzen in den Thyristorparametern sowie einen konstruktiven Ventilaufbau mit gleichen Streu-30 induktivitäten der Leitungsführung voraus. Diese Bedingungen und Einschränkungen kann man umgehen, wenn mehrere getrennte, aus Gleich- und Wechselrichter bestehende, Gleichstromkreise mit jeweils eigener Stromregelung vorges hen w rden. 35 ·

. .

\$

In Fig. 4 ist als Beispiel hierzu eine 12-Puls-Blockschaltung mit mehreren elektrisch getrennten Gleichstromkreisen dargestellt. Die erste Drehstromständerwicklung des Generators 2 ist mit n (n = ganze Zahl)
Drehstrombrücken 11...11n verbunden, während die zweit

- Drehstrombrücken 11...11n verbunden, während die zweite Drehstrom-Ständerwicklung n Drehstrombrücken 12...12n speist. Die Drehstrombrücken 11....11n, 12...12n sind jeweils als Gleichrichter gesteuert. Wie in Fig. 3 dargestellt, sind jeweils zwei Drehstrombrücken
- 10 11,12;...;11n,12n in Serie geschaltet und speisen über Drosseln 17,18;...;17n,18n einen eigenen Gleichstrom-kreis. Es ergeben sich somit n elektrisch getrennte Gleichstromkreise.
- An jedem der Gleichstromkreise sind jeweils zwei in Serie liegende und als Wechselrichter gesteuerte Drehstrombrücken 19,20;...;19n,20n angeschlossen. Die Drehstrombrücken 19...19n sind ausgangsseitig mit einer ersten Drehstromschiene 21 und die Drehstrombrücken
- 20 20...20n sind mit einer zweiten Drehstromschiene 22 verbunden. Die Drehstromschienen 21 bzw. 22 sind an die erste bzw. zweite Primärwicklung 23 bzw. 24 eines Dreiwickler-Drehstromtransformators 25 (entspricht dem Transformator 4 gemäß Fig. 1) angeschlossen. Über die
- 25 Sekundärwicklung 26 des Transformators 25 wird in die Drehstromleitung 5 eingespeist.

Durch den Einsatz mehrerer elektrisch getrennter Gleichstromkreise mit jeweils eigener Stromregelung wird eine genaue Stromaufteilung unter allen Betriebsbedingungen und unabhängig vom mechanischen Aufbau erreicht. Jeder Gleichstromkreis ist mit eigenen Regel- und Schutzeinrichtungen ausgerüstet, dadurch wird ein hoher Grad an Sicherheit und Redundanz erzielt.

35

In Fig. 5 sind die zu regelnden Größen der Blockschal-

A

tung dargestellt. In das Verteilungsnetz 6 sollen über den Transformator 4 und die Drehstromleitung 5 eine vorgegebene Wirkleistung P und eine vorgegebene Blindleistung Q eingespeist werden, wobei die Drehspannung des Netzes 6 den Wert U~ aufweisen soll. Zur Regelung dieser vorgegebenen Größen werden durch Verstellung des Steuerwinkels & des Gleichrichters 3a und des Löschwinkels & des Wechselrichters 3b eine entsprechende Gleichspannung U_d und ein entsprechender Gleichstrom I_d im Gleichstromzwischenkreis bzw. in den Gleichstromzwischenkreisen eingestellt. Die an den Ständerwicklungen des Generators 2 abgreifende Generatorspannung UG wird durch entsprechende Einstellung des Erregerstromes Ig für die Läuferwicklung 8 des Generators 2, der Drehzahl n der Turbine 1 bzw. des Generatorläufers (Generatorfrequenz) und der Turbinenleistung P_T auf einen gewünschten Wert geregelt. Die Einstellung des Erregerstromes $\mathbf{I}_{\mathbf{E}}$ erfolgt dabei z.B. mittels eines Stromrichters 27.

20

15

5

10

25

()

30

ð.

Fig. 5

