

EJERCICIOS DEL TEMA 2 - PARTE 2

Composición de rotaciones básicas

Ejercicio 1. Un sistema de referencia OXYZ se gira 45º con respecto a su eje X y posteriormente otros 45º con respecto a su eje Z' intrínseco o relativo (ya girado).

- a) Construye las matrices básicas de rotación con respecto a cada eje, y calcula la matriz final de rotación R que representa ambos giros.
- b) Representa gráficamente la orientación del sistema final girado basándote en las columnas de la matriz de rotación.
- c) Comprueba el resultado mediante la aplicación Rotation Viewer para MATLAB.
- d) Realiza las rotaciones en orden inverso e indica si el resultado es el mismo.

Ejercicio 2. Un sistema de referencia OXYZ se gira 90° con respecto a su eje Z y posteriormente otros -90° con respecto a sus eje X', seguido un giro final de 90° con respecto a Y'' (rotaciones intrínsecas o relativas).

- a) Construye las matrices básicas de rotación con respecto a cada eje, y calcula la matriz final de rotación R que representa ambos giros.
- b) Representa gráficamente la orientación del sistema final girado basándote en las columnas de la matriz de rotación.
- c) ¿Hay algún eje que permanezca en la misma orientación?
- d) Comprueba el resultado mediante la aplicación Rotation Viewer para MATLAB.

Coordenadas homogéneas. Matrices de trasformación

Ejercicio 3. Un sistema de referencia O'UVW se ha trasladado un vector p = (3,-4,0) con respecto a otro sistema fijo OXYZ, sin realizar ninguna rotación. Si las coordenadas de un vector r en el sistema O'UVW son $r_{uvw} = (4. -5, -11)$, calcula las coordenadas de dicho vector en el sistema OXYZ.

Ejercicio 4. Un sistema de referencia OUVW se ha girado -30° alrededor del eje OZ de un sistema fijo OXYZ, sin ninguna traslación Si r_{uvw} = (-3, 4, 15), calcula las coordenadas del r en el sistema OXYZ.

Ejercicio 5. Un sistema de referencia O'UVW se gira 90° alrededor del eje OX de un sistema fijo OXYZ y posteriormente se traslada un vector p = (8 - 4, 12) también con respecto a OXYZ. Si r_{uvw} = (-3, 4, -11), calcula las coordenadas del r en el sistema OXYZ utilizando matrices de transformación y coordenadas homogéneas.

Ejercicio 6. Obtén la matriz de transformación T que representa las siguientes transformaciones concatenadas sobre un sistema de referencia OXYZ fijo: traslación de un vector $p_{xyz} = (-3,10,10)$, un giro de -90° sobre el eje O'U del sistema trasladado y por último un giro de 90° sobre el eje O'V del sistema girado.

Robotics System Toolbox de MATLAB. Representación de la rotación mediante cuaterniones.

Para resolver los ejercicios de este apartado se utilizarán las herramientas del Robotics System Toolbox de MATLAB (https://es.mathworks.com/help/robotics/index.html)

Puedes encontrar toda la información sobre las herramientas disponibles en el Toolbox para representar rotaciones y traslaciones utilizando cuaterniones, transformaciones homogéneas (incluyendo traslaciones y rotaciones individuales), ángulos de Euler y eje/ángulo en el siguiente enlace:

https://es.mathworks.com/help/robotics/ug/coordinate-transformations-in-robotics.html

Ejercicio 7. Calcula utilizando las expresiones vistas en teoría el cuaternión que representa una rotación de 90º sobre el eje dado por el vector u = (3, -2, 1). Comprueba el resultado utilizando MATLAB.

Ejercicio 8. Utiliza MATLAB para obtener el vector resultante de aplicar la rotación representada por el cuaternión del ejercicio anterior al vector r = (5, 2, -6)

Ejercicio 9. Utiliza MATLAB para obtener la matriz de transformación equivalente a la rotación representada por el cuaternión del ejercicio 7.

Ejercicio 10. Utiliza MATLAB para obtener los tres ángulos de Euler, en grados, equivalentes a la rotación representada por el cuaternión del ejercicio 7, en las secuencias de rotación de ejes "XYZ" y "ZYZ". ¿Hay alguna diferencia entre ambas opciones de rotación de ejes?

Ejercicio 11. Sea el movimiento consistente en trasladar un sistema de referencia OXYZ mediante el vector (4, 2, 8), seguido de girarlo 30º entorno al vector (1,1,0), y trasladarlo nuevamente según el vector (1, 0, 1) convirtiéndose en el sistema OUVW, y estando estas transformaciones definidas en el sistema de referencia móvil.

- a) Utilizando cuaterniones, calcula la representación del vector v_{UVW}(3, -1, 2) visto en el sistema fijo.
- b) Utilizando matrices de transformación homogenea, calcula la representación del vector $v_{UVW}(3, -1, 2)$ visto en el sistema fijo.
- c) Comprueba que ambas formulaciones dan el mismo resultado