מבוא למערכות לומדות – תרגיל 2

תרגיל מחייב – נקודות ראויות לציון

• היות וסדר הפעולות חשוב, מצוינות פה הפעולות לפי סדר הופעתן בקוד:

:Data Splitting .1

- .a בצענו פיצול לשם שמירת הסטים המקוריים בקובץ נפרד.
- המלא (ללא פיצול) dataFrame- שמרנו את אינדקסי הפיצול על-מנת שנוכל להמשיך לעבוד על ה-dataFrame המלא (ללא פיצול) ולפצל לאותן הקבוצות בעתיד.

:Type/Value modification .2

.a הפכנו את כל הערכים למיספריים בצורה אוטומטית (על-גבי כל ה-data, ללא חלוקה לסטים).

.a הסרנו ערכים שליליים מהמערכת על-ידי הפיכתם ל-NaN, מתוך הנחה כי כל הערכים אמורים .a להיות אי-שליליים.

:Imputation .4

- a. פצלנו את ה-data ל-train/validation/test בשנית (עם אותם אינדקסים, כך שהדוגמאות בכל oo נשארו זהות).
 - b. השלמנו בסט האימון את הערכים החסרים בצורה הבאה:
 - .i לערך float השתמשנו ב-median של אותו הפיצ'ר בסט.
 - .ii השתמשנו ב-most common של אותו הפיצ'ר בסט.
- c השלמנו בסטים הנותרים (validation/test) את הערכים באופן דומה, אך באמצעות ערכי הmedian וה-most common שנלקחו מתוך סט האימון.

:Outlier Detection .5

a. השתמשנו ב-LocalOutlierFactor מהחבילה sklearn מהחבילה LocalOutliers ויצרנו crain ב- outliers ויצרנו train_without_outliers בשם train_without_outliers בה השתמשנו בשלבים coutliers בה השתמשנו בשלבים.

:Normalization .6

- a. לכל עמודה ב-train_without_outliers, השתמשנו ב-SciPy מהחבילה SciPy על מנת לבדוק האם איברי העמודה בעלי התפלגות נורמלית.
 - לכל אחד min-max עמודות שמתפלגות נורמלית נורמלו על-ידי z-score, והאחרות על-ידי .b מהסטים הדרושים.

:Feature Selection .7

1. הרצנו VarianceThreshold מ-sklearn בצורה שמרנית על sklearn, ושמרנו ב-train_without_outliers, ושמרנו ב-train_without_outliers

Voting_Time
Financial balance score (0-1)

2. בצורה דומה, הרצנו על rain_without_outliers את Relief את train_without_outliers. הרחבה על הנ"ל במשר. Relief סינו פיצ'ר יחיד:

Number of differnt parties voted for

אחריו, SFS בחר חמישה פיצ'רים לקבוצה הסופית:

Avg_education_importance
Number_of_valued_Kneset_members
Avg_monthly_income_all_years
Avg_government_satisfaction
Last school grades

3. כעת, הורדנו 8 תכונות כאשר 5 מתוכן סווגו כטובות וה-3 הנותרות סווגו כמיותרות. יצרנו וקטור עם SelectKBest ו- chi2 ילכל שאר התכונות והרצנו SelectFwe ,Feature Importance Forest לפי 'train_without_outliers . כל לפי השנשאר מ-sklearn, כולם מ-sklearn על-גבי מה שנשאר מ-wutual_info_classifier לפי אחד מה-wrappers הללו החזיר 1 עבור ה-features שהיו חשובים לדעתו. לבסוף בחרנו ב-features שקבלו לפחות 2 קולות. נבחרו 13 ה-features הבאים:

Avg_monthly_expense_when_under_age_21
AVG_lottary_expanses
Most_Important_Issue
Avg_monthly_expense_on_pets_or_plants
Avg_environmental_importance
Married
Avg_Residancy_Altitude
Avg_Satisfaction_with_previous_vote
Avg_monthly_household_cost
Phone_minutes_10_years
Avg_size_per_room
Weighted_education_rank
Political_interest_Total_Score

4. לסיכום, נבחרו בסך הכל features 18 מתוך 37 שהתקבלו, כאשר הסט הסופי הוא:

Avg education importance

Number_of_valued_Kneset_members

Avg monthly income all years

Avg_government_satisfaction

Last_school_grades

Avg_monthly_expense_when_under_age_21

AVG_lottary_expanses

Most Important Issue

Avg_monthly_expense_on_pets_or_plants

Avg_environmental_importance

Married

Avg_Residancy_Altitude

Avg_Satisfaction_with_previous_vote

Avg_monthly_household_cost

Phone minutes 10 years

Avg_size_per_room

Weighted_education_rank

Political_interest_Total_Score

תרגילי בונום - הרחבה

משימת בונוס לזוגות:

A. בחלק זה ביצענו מספר פעולות. בהתחלה, יצרנו מטריצת קורלציות של ה-features ביחס ל-label. קבענו סף של 0.1 ומצאנו את כל ה-features שעבורם הקורלציה הנ"ל גבוהה מ-0.1 בערך מוחלט, לאחר השלמת ערכים חסרים, הסרת ערכים שליליים והתעלמות מ-outliers. ה-features שהתקבלו הם:

Avg_monthly_income_all_years
AVG_lottary_expanses
Number_of_valued_Kneset_members
Avg_monthly_expense_when_under_age_21
Avg_monthly_expense_on_pets_or_plants
Weighted_education_rank

את כל הפיצ'רים הנ"ל שמרנו בתור בקרה על פעולות ההמשך ולא הסרנו אותם מסט האימון. לאחר ביצוע features 18, נבחרו ע"י שקלול הפעולות שפירטנו features 18. כבקרה, בדקנו את הימצאותם של הפיצ'רים בעלי הקורלציה הגבוהה ל-Vote ואכן נוכחנו לדעת שכל השישה שנמצאו אכן נמצאים בסט שהתקבל כאשר מתוך השישה הנ"ל, שני features נבחרו ע"י SFS והארבעה הנותרים נבחרו בשלב האחרון ע"י לפחות שני אלגוריתמים.

B. מימוש אלגוריתם Relief מופיע בקוד.

שיטת הפעולה של האלגוריתם היא ביצוע איטרציות, כאשר בכל איטרציה נדגמת אקראית דוגמה מסט האימון. לאחר מכן, האלגוריתם מחפש את הדוגמה הקרובה ביותר לדוגמה שנדגמה המסווגת עם label עם אותו (nearest hit) label ואת הדוגמה הקרובה ביותר לדוגמה שנדגמה המסווגת עם שונה (nearest miss). כעת, האלגוריתם מחשב משקלים עבור הפיצ'רים לפי שקלול המרחק מהדוגמאות. לבסוף, מתקבל וקטור משקלים עם משקל משוקלל לכל פיצ'ר וניתן לבחור אותם לפי סף מסוים.

מעצם שיטת פעולתו של האלגוריתם, יש לו חסרון הנובע מאקראיות בחירת הדוגמאות. בפרט, ככל שמספר האיטרציות נמוך, כך חיסרון זה בולט יותר עבור מדגם דוגמאות מפוזר.

חסרון נוסף של האלגוריתם כ-filter method הוא שהוא אינו מתחשב במודלים אחרים אלא רק בחישוב המבוצע על ידיו.

לעומת זאת, יתרון של Relief, כמו רוב שיטות ה-filter, הוא בזמן ריצתו שהוא יחסית מהיר לאיטרציה בודדת ועל כן מאפשר לבצע מספר איטרציות רב ולקבל תוצאות יותר אמינות סטטיסטית (בעיקר בהתחשב בעובדה שהוא בוחר דוגמאות באופן אקראי).

את האלגוריתם הרצנו על סט האימון שהוצאנו ממנו את ה-outliers לאחר שעבר נרמול. הרצנו את האלגוריתם עשר פעמים כאשר בכל פעם האלגוריתם ביצע 100 איטרציות. בכל ריצה יצרנו קבוצה האלגוריתם עשר פעמים כאשר בכל פעם האלגוריתם הציע לסנן לפי סף שהוגדר כ-0.1. לבסוף, מצאנו את הפיצ'רים המופיעים בחיתוך תוצאות כל הריצות והורדנו אותם מ-train_without_outliers. הפיצ'ר אותו בחר Relief להוריד הוא:

Number_of_differnt_parties_voted_for

כלומר, לא features. כלומר, לא השתנתה בחירת 18 ה-features. כלומר, לא Relief.
 היו features שנבחרו או לא נבחרו רק ע"י

Triplets Mandatory Assignment

A. מימוש האלגוריתם SFS מופיע בקוד.

שיטת הפעולה של האלגוריתם היא חמדנית ופועלת בצורת forward selection. כלומר, האלגוריתם מתחיל את פעולתו עם סט features ריק ובאופן חמדני בכל פעם מבצע הוספת features ובודק את התוצאה לפי המסווג שאיתו הוא עובד.

באופן ישיר מאופן פעולתו החמדני, אחד החסרונות הבולטים של האלגוריתם הוא שלאחר בחירת תכונה מסוימת לא ניתן להסירה מהקבוצה הנבחרת. בנוסף, כאלגוריתם חמדני האלגוריתם מסתכל אך ורק על הצעד הנוכחי ולכן לא מאפשר צעדים מרעים שיתכן ובתוצאה הסופית היו משפיעים לטובה.

נוסף על כך, בדומה לרוב אלגוריתמי ה-wrapper, זמן ריצת האלגוריתם הינו ארוך.

לעומת זאת, לאלגוריתם קיימים גם יתרונות, ביניהם התממשקותו עם אלגוריתמי סיווג. כך ניתן לדעת ממה מושפעת תוצאת אלגוריתם ה-SFS בהתאם לאופן פעולת המסווג.

את האלגוריתם הפעלנו עם מספר מסווגים: Random Forest ,KNN, עץ החלטה, ExtraTree ו- SVM. עבור כל אחד מהמסווגים הנ"ל, יצרנו בעת ריצת האלגוריתם קבוצה המכילה את כל הפיצ'רים שעברו את הסף שהוגדר כ-0.000001.

לבסוף, מצאנו את ה-features שנבחרו על ידי לפחות ארבעה מתוך חמשת המסווגים, הוספנו אותם לקבוצה הסופית והסרנו אותם מ-train_without_outliers.

כלומר, לא היו features. כלומר, לא היו SFS. לא השתנתה בחירת 18 ה-features. כלומר, לא היו SFS.
 ע"ד features שנבחרו או לא נבחרו רק ע"י

מסווג Decision Tree בחר את שמונת הפיצ'רים הבאים:

AVG_lottary_expanses
Last_school_grades
Avg_education_importance
Avg_monthly_household_cost
Phone_minutes_10_years
Avg_size_per_room
Number_of_valued_Kneset_members
Avg_monthly_income_all_years

מסווג Extra Tree בחר את ששת הפיצ'רים הבאים:

Last_school_grades
Avg_education_importance
Avg_Satisfaction_with_previous_vote
Number_of_valued_Kneset_members
Avg_government_satisfaction
Avg_monthly_income_all_years

וראת ששת הפיצ'רים הבאים: KNN

Married

Avg_education_importance

Avg_Satisfaction_with_previous_vote

Most_Important_Issue

Avg_government_satisfaction

Avg monthly income all years

SVM בחר את שמונת הפיצ'רים הבאים:

AVG_lottary_expanses

Last_school_grades

Avg_monthly_expense_when_under_age_21

Avg_environmental_importance

Avg_education_importance

Phone_minutes_10_years

Number_of_valued_Kneset_members

Avg_government_satisfaction

:בחר את תשעת הפיצ'רים הבאים Random Forest

Last_school_grades

Avg_environmental_importance

Avg_education_importance

Avg monthly household cost

%Of Household Income

Avg_size_per_room

Number_of_valued_Kneset_members

Avg government satisfaction

Avg_monthly_income_all_years

כאמור, החלטנו לבחור את כל הפיצ'רים שנבחרו ע"י לפחות ארבעה מתוך חמשת המסווגים שנבדקו. פיצ'ר יחיד נבחר ע"י כל המסווגים, והוא:

Avg_education_importance

ארבעה פיצ'רים נבחרו ע"י ארבעה מתוך חמשת המסווגים, והם:

Number_of_valued_Kneset_members

Avg_monthly_income_all_years

Avg_government_satisfaction

Last_school_grades

ולכן הורדנו את חמשת הפיצ'רים הנ"ל מהקבוצה וסימנו אותם בתור נבחרים.