

Обнаружение аномалий в данных телеметрии УЭЦН

Выполнил Острик Петр

Руководитель Абдуракипов Сергей

Специалист по Data Science

программа профессиональной переподготовки

Содержание

Постановка задачи

Обзор данных

Модели поиска аномалий

Анализ результатов

Постановка задачи

- Оборудование электрические погружные насосы
- Сфера применения нефтедобывающий сектор
- **Бизнес задача** снизить количество выходящего из строя оборудования. Для этого необходимо определять аномальные показатели работы
- Задача обнаружение аномалий в данных в многокомпонентных временных рядах (по множеству параметров одновременно)
- Не все насосы оборудованы телеметрическими датчиками на погруженной части
- Необходимо определять аномальные режимы на основании известных показателей установки, расположенной на поверхности

Рис.1 Общая схема погружного насоса

Обзор данных

0

Данные по 17 насосам за месяц (34 дня) с 2019-06 по 2019-07 с шагом в 5 мин

Параметры:

- Наработка двигателя с момента последнего включения, сек
- Время простоя двигателя с момента последнего выключения, сек
- Средняя скорость изменения загрузки двигателя, %/час
- Средняя скорость изменения тока фазы А двигателя в сутки, А/час
- Средняя скорость изменения давления в коллекторе в СУТ, МПа/час
- Давление в коллекторе измерительной установки, Мпа
- Загрузка двигателя, %
- Ток фазы А двигателя, А
- Коэффициент мощности
- Объём жидкости в рабочих условиях за время наработки суточный, м3

Subspace Outlier Detection

Общая идея - найти множество референсных точек, например, ближайших соседей. Используя подмножество признаков создать гиперплоскость вдоль которой лежит максимальное количество признаков. И затем посмотреть как далеко лежит от этой плоскости лежит наша точка.

One-class SVM detector

Основная идея – перевод исходных векторов в пространство более высокой размерности и поиск разделяющей гиперплоскости с максимальным зазором в этом пространстве

Isolation forest

Основная идея - пробуем "изолировать" наблюдение от всех остальных, и посмотреть насколько это легко можно сделать. Если слишком легко, то, скорее всего наблюдение лежит далеко и является выбросом. Если очень тяжело - скорее всего она похожа на многие другие точки и выбросом не является.

Angle-base Outlier Detection

Основная идея - Есть кластер точек. Если точки находятся внутри этого условного кластера, то угол между векторами связывающего данную точку попарно с другими постоянно меняется в зависимости от выбранных точке. Если же точка лежит вне кластера, то перебирая точки угол между векторами меняется незначительно.

Local Outlier Factor

Основная идея – сравнение плотности данных вокруг рассматриваемой точки и вокруг ее соседей. Вокруг выброса гораздо меньшая плотность соседних точек.

Connectivity -Based Local Outlier

Основная идея – доработать LOF, чтобы учитывать не просто плотность точек, а количество граней графа последовательного доступа до ближайших точек.

Clustering -Based Local Outlier

Основная идея - разбить данные на кластеры (на основании алгоритма К-средних), отранжировать на большие и малые кластеры, и для каждой точки из малого кластера потом посчитаем расстояние до ближайшего большого и на основании этого составим счет (anomaly score) и примем решение - аномалия точка или нет.

Histogram -based Outlier Detection

Основная идея – Для каждого измерения d построить одномерную гистограмму, где высота каждой ячейки отражает оценку плотности. Пронормировать, чтобы максимальная гистограмма была 1 и для каждой ячейки произвести расчет показателя аномалии на основе высоты шкалы.

Higher School of Economic

K-Nearest Neighbors Detector

Основная идея – для точки расстояние до К-соседей может рассматриваться как показатель аномалии

Principal Component Analysis

Основная идея – снижаем размерность N-признакового пространства чтобы удобно было разделить признаки гиперплоскостями. Затем как показатель аномалии посчитать расстояние от точки до гиперплоскости

Minimum Covariance Determinant

Основная идея – предполагаем что совокупность наших признаков подчинена многомерному распределению (нормальное) и определяем центр распределения и разброс, при помощи вектора средних и ковариционной матрицы. И определяем точки наиболее далеко расположенные от центра этого распределения.

модели	точки
0	5521
1	2245
2	653
3	453
4	392
5	269
6	185
7	120
8	75
9	43
10	19
11	0

Диаграмма аномалий по итогам ансамблирования методов

N – количество моделей, проголосовавших за аномалию

Сравнение моделей поиска аномалии (id установки = 226000188)

model_name	accuracy_score	recall_score	f1_score	precision_score
knn_an	0.942356	0.797468	0.663546	0.568136
pca_an	0.939950	0.780591	0.649503	0.556112
histogram_an	0.933935	0.738397	0.614394	0.526052
iforest_an	0.932932	0.731364	0.608543	0.521042
svm_an	0.927519	0.693390	0.576946	0.493988
mcd_an	0.925915	0.682138	0.567583	0.485972
lof_an	0.915890	0.611814	0.509070	0.435872
sod_an	0.909273	0.565401	0.470451	0.402806
abod_an	0.876792	0.337553	0.280866	0.240481
cof_an	0.865564	0.258790	0.215331	0.184369
cluster_an	0.844712	0.092827	0.078525	0.068041

Метрики при сравнении предсказания модели и ансамблированного результата для **5** моделей – т.е. считаем что если за точку проголосовало 5 моделей, то это аномалия.

Сравнение моделей поиска аномалии (17 насосов)

model_name	accuracy_score	recall_score	f1_score	precision_score
knn_an	0.940024	0.798447	0.627838	0.529481
svm_an	0.928465	0.706016	0.557811	0.471711
pca_an	0.926297	0.700766	0.548282	0.460870
iforest_an	0.921623	0.662130	0.519861	0.437501
histogram_an	0.921262	0.664575	0.519285	0.435693
mcd_an	0.913973	0.602470	0.473293	0.399268
sod_an	0.907905	0.562947	0.439294	0.368943
lof_an	0.904274	0.525368	0.414058	0.350787
cof_an	0.892047	0.443305	0.343991	0.289667
abod_an	0.876727	0.295276	0.245014	0.213081
cluster_an	0.874128	0.288201	0.231884	0.197118

Метрики при сравнении предсказания модели и ансамблированного результата для **5** моделей – т.е. считаем что если за точку проголосовало 5 моделей, то это аномалия.

Выводы

- Был проведен сравнительный анализ моделей поиска аномалий и дана предварительная оценка качества моделей
- Финальная оценка будет возможна по итогам подтверждения техническим специалистом предполагаемых аномалий
- Лучшими моделями на представленном датасете предварительно показали себя модели:

Mетод KNN (K-Nearest Neighbors Detector) SVM (One-class SVM detector) PCA (Principal Component Analysis)

• Данные модели, или их ансамбль может заменить стандартный подход поиска аномалии по каждому признаку отдельно по выходящим за интервал 3-сигма значениям

Дополнительные материалы

модели	точки
0	5214
1	2102
2	853
3	500
4	355
5	196
6	127
8	89
7	71
9	55
10	32
11	6

модели	точки
0	4958
1	1598
3	719
5	472
2	446
4	394
6	71
9	37
8	13
10	11
7	5
11	1

модели	точки
0	5537
1	2299
2	609
3	423
4	358
5	288
6	184
7	114
8	84
9	49
10	27
11	3

Сравнение моделей поиска аномалии (id установки = 226000188)

model_name	accuracy_score	recall_score	f1_score	precision_score
knn_an	0.924311	0.972763	0.398406	0.250501
svm_an	0.923910	0.964981	0.395219	0.248497
lof_an	0.920702	0.902724	0.369721	0.232465
pca_an	0.919699	0.883268	0.361753	0.227455
iforest_an	0.917694	0.844358	0.345817	0.217435
histogram_an	0.914085	0.774319	0.317131	0.199399
mcd_an	0.910276	0.700389	0.286853	0.180361
sod_an	0.908471	0.665370	0.272510	0.171343
abod_an	0.903058	0.560311	0.229482	0.144289
cof_an	0.897644	0.455253	0.186454	0.117234
cluster_an	0.883409	0.124514	0.052160	0.032990

Метрики при сравнении предсказания модели и ансамблированного результата для **8** моделей – т.е. считаем что если за точку проголосовало 8 моделей, то это аномалия.

Сравнение моделей поиска аномалии (ід установки = 226000188)

model_name	accuracy_score	recall_score	f1_score	precision_score
iforest_an	0.901855	1.000000	0.037365	0.019038
abod_an	0.901855	1.000000	0.037365	0.019038
cof_an	0.901855	1.000000	0.037365	0.019038
knn_an	0.901855	1.000000	0.037365	0.019038
lof_an	0.901855	1.000000	0.037365	0.019038
svm_an	0.901855	1.000000	0.037365	0.019038
pca_an	0.901855	1.000000	0.037365	0.019038
sod_an	0.901855	1.000000	0.037365	0.019038
histogram_an	0.901654	0.947368	0.035398	0.018036
mcd_an	0.901454	0.894737	0.033432	0.017034
cluster_an	0.901454	0.157895	0.006067	0.003093

Метрики при сравнении предсказания модели и ансамблированного результата для **10** моделей – т.е. считаем что если за точку проголосовало 10 моделей, то это аномалия.

Диаграмма аномалий по итогам голосования моделей n=5 (TSNE, uMap)

Сравнение моделей поиска аномалии (17 насосов)

model_name	accuracy_score	recall_score	f1_score	precision_score
knn_an	0.912692	0.980204	0.218371	0.129066
svm_an	0.912690	0.974932	0.218673	0.129295
pca_an	0.911772	0.963185	0.211590	0.124702
iforest_an	0.911136	0.930469	0.205980	0.121523
histogram_an	0.910416	0.929303	0.200275	0.117835
lof_an	0.908975	0.850900	0.187241	0.110723
mcd_an	0.908943	0.797534	0.187258	0.110562
sod_an	0.906140	0.758163	0.163953	0.096557
cof_an	0.905613	0.710605	0.158087	0.093915
abod_an	0.901068	0.447457	0.116536	0.071184
cluster_an	0.896058	0.260001	0.070137	0.041713

Метрики при сравнении предсказания модели и ансамблированного результата для **8** моделей – т.е. считаем что если за точку проголосовало 5 моделей, то это аномалия.

Сравнение моделей поиска аномалии (17 насосов)

model_name	accuracy_score	recall_score	f1_score	precision_score
knn_an	0.902649	0.823529	0.048975	0.026197
svm_an	0.902590	0.823529	0.048952	0.026184
pca_an	0.902578	0.819853	0.048836	0.026125
iforest_an	0.902566	0.807315	0.048721	0.026066
histogram_an	0.902567	0.816139	0.048510	0.025956
lof_an	0.902505	0.816563	0.048154	0.025759
mcd_an	0.902463	0.789389	0.047719	0.025548
abod_an	0.902359	0.687674	0.046643	0.025005
cof_an	0.902174	0.770144	0.044961	0.024104
sod_an	0.902046	0.780168	0.043892	0.023466
cluster_an	0.900372	0.374323	0.019348	0.010184

Метрики при сравнении предсказания модели и ансамблированного результата для **10** моделей – т.е. считаем что если за точку проголосовало 5 моделей, то это аномалия.

Центр непрерывного **Y**andex образования Faculty Computer science

Специалист по Data Science

программа профессиональной переподготовки