I - Recherche d'extremum

Exercice 1: (Formes cannoniques)

- (a) On considère la fonction f définie sur \mathbb{R} par : $f(x) = 5\left(x + \frac{9}{2}\right)^2 \frac{441}{4}$. Déterminer l'extremum de la fonction f ainsi que son image.
- (b) On considère la fonction f définie sur \mathbb{R} par : $f(x) = -3(x+5)^2 + 68$. Déterminer l'extremum de la fonction f ainsi que son image.
- (c) On considère la fonction f définie sur \mathbb{R} par : $f(x) = 4\left(x + \frac{9}{2}\right)^2 84$. Déterminer l'extremum de la fonction f ainsi que son image.
- (d) On considère la fonction f définie sur \mathbb{R} par : $f(x) = -(x-5)^2 + 22$. Déterminer l'extremum de la fonction f ainsi que son image.

Exercice 2 : (Formes développées)

- (a) On considère la fonction f définie sur \mathbb{R} par : $f(x) = 5x^2 + 45x 9$. Déterminer l'extremum de la fonction f ainsi que son image.
- (b) On considère la fonction f définie sur \mathbb{R} par : $f(x) = -3x^2 30x 7$. Déterminer l'extremum de la fonction f ainsi que son image.
- (c) On considère la fonction f définie sur $\mathbb R$ par : $f(x) = 4x^2 + 36x 3$. Déterminer l'extremum de la fonction f ainsi que son image.
- (d) On considère la fonction f définie sur \mathbb{R} par : $f(x) = -x^2 + 10x 3$. Déterminer l'extremum de la fonction f ainsi que son image.

Exercice 3 : (Formes factorisées)

- (a) On considère la fonction f définie sur \mathbb{R} par : f(x) = -3(x-5)(x-9). Déterminer l'extremum de la fonction f ainsi que son image.
- (b) On considère la fonction f définie sur \mathbb{R} par : f(x) = -2(x-1)(x-7). Déterminer l'extremum de la fonction f ainsi que son image.
- (c) On considère la fonction f définie sur \mathbb{R} par : f(x) = 2(x-3)(x-5). Déterminer l'extremum de la fonction f ainsi que son image.
- (d) On considère la fonction f définie sur \mathbb{R} par : f(x) = 3(x+1)(x-1). Déterminer l'extremum de la fonction f ainsi que son image.

II - Lecture graphique

Exercice 4 : (Répondre à ces questions par lecture graphique.)

1. Quelles sont les coordonnées du sommet de la fonction polynomiale du second degré représentée ci-dessous ?

3. Quelles sont les coordonnées du sommet de la fonction polynomiale du second degré représentée ci-dessous ?

2. Quelles sont les coordonnées du sommet de la fonction polynomiale du second degré représentée ci-dessous ?

4. Quelles sont les coordonnées du sommet de la fonction polynomiale du second degré représentée ci-dessous ?

III - Tableaux de variations

Exercice 5 : (Exercice Corrigé.)

On considère la fonction f définie sur \mathbb{R} par : $f(x) = 4x^2 - 20x - 6$.

Dresser le tableau de variations de la fonction f sur \mathbb{R} .

Correction.

- (1) On reconnaît la forme développée d'une fonction polynôme du second degré $ax^2 + bx + c$ avec $a=4,\,b=-20$ et c=-6.
- (2) Comme a > 0, la fonction est d'abord décroissante puis croissante.
- (3) Le changement de variation s'opère en $\alpha = -\frac{b}{2a} = \frac{-(-20)}{2 \times 4} = \frac{5}{2}$.
- (4) De plus, $f\left(\frac{5}{2}\right) = 4 \times \left(\frac{5}{2}\right)^2 20 \times \frac{5}{2} 6 = -31$.
- (5) On en déduit le tableau de variations de f sur $\mathbb R$:

Exercice 6: (Tableaux de variations sur \mathbb{R})

- (a) On considère la fonction f définie sur \mathbb{R} par : $f(x) = -x^2 7x + 4$. Dresser le tableau de variations de la fonction f sur \mathbb{R} .
- (b) On considère la fonction f définie sur \mathbb{R} par : f(x) = 3x(x+2). Dresser le tableau de variations de la fonction f sur \mathbb{R} .
- (c) On considère la fonction f définie sur \mathbb{R} par : $f(x) = 5\left(x \frac{3}{2}\right)^2 \frac{41}{4}$. Dresser le tableau de variations de la fonction f sur \mathbb{R} .
- (d) On considère la fonction f définie sur \mathbb{R} par : $f(x) = -5(x-5)^2 + 119$. Dresser le tableau de variations de la fonction f sur \mathbb{R} .
- (e) On considère la fonction f définie sur \mathbb{R} par : f(x) = 3(x+1)(x-5). Dresser le tableau de variations de la fonction f sur \mathbb{R} .

Exercice 7 : (Tableaux de variations sur un intervalle borné)

(a) On considère la fonction f définie sur [3; 10] par : $f(x) = -x^2 - 7x + 4$. Dresser le tableau de variations de la fonction f sur [3; 10].

(b) On considère la fonction f définie sur [1; 6] par : f(x) = 3x(x+2). Dresser le tableau de variations de la fonction f sur [1; 6].

(c) On considère la fonction f définie sur [5; 10] par : $f(x) = 5\left(x - \frac{3}{2}\right)^2 - \frac{41}{4}$. Dresser le tableau de variations de la fonction f sur [5; 10].

(d) On considère la fonction f définie sur [0; 7] par : $f(x) = -5(x-5)^2 + 119$. Dresser le tableau de variations de la fonction f sur [0; 7].

(e) On considère la fonction f définie sur [4; 6] par : f(x) = 3(x+1)(x-5). Dresser le tableau de variations de la fonction f sur [4; 6].

Exercice 8 : (Étude d'une fonction polynomiale)

Soit $f(x) = (x+3)^2 - 19$ un polynôme du second degré définie sur \mathbb{R} .

1. Déterminer le sens de variation de f sur \mathbb{R} .

2. Déterminer l'extremum de la fonction f puis calculer son image.

3. Dresser le tableau de variation de la fonction f sur \mathbb{R} .

4. Dans un repère orthonormé direct, représenter la fonction f sur l'intervalle [-7; 1]

Exercice 9: (Étude d'une fonction polynomiale)

Soit $f(x) = 2x^2 - 2x - 10$ un polynôme du second degré définie sur \mathbb{R} .

1. Déterminer le sens de variation de f sur \mathbb{R} .

2. Déterminer l'extremum de la fonction f puis calculer son image.

3. Dresser le tableau de variation de la fonction f sur \mathbb{R} .

4. Dans un repère orthonormé direct, représenter la fonction f sur l'intervalle [-4;4]

Exercice 10 : (Étude d'une fonction polynomiale)

Soit f(x) = -2(x+1)(x-1) un polynôme du second degré définie sur \mathbb{R} .

1. Déterminer le sens de variation de f sur \mathbb{R} .

2. Déterminer l'extremum de la fonction f puis calculer son image.

3. Dresser le tableau de variation de la fonction f sur \mathbb{R} .

4. Dans un repère orthonormé direct, représenter la fonction f sur l'intervalle [-4;4]