Foundations of Agents: Practical Assignment 1

Kevin Trebing (i6192338)

October 6, 2018

1 Tower of Hanoi problem

In a Tower of Hanoi problem the agent needs to move disks of different sizes from one pin to another pin. Furthermore, the disks need to be in the order that a smaller disk needs to be on top of a bigger one. Only one disk can be moved at a time and only the topmost disk can be moved. In our problem we have 3 pins and two disks. The starting position is pin 1 and the smaller disk is on the bigger disk. The goal is to move the disks to pin 3.

1.1 Description of States

Notation:

- a = small disk,
- b = big disk,
- 1 = pin1,

- 2 = pin2,
- 3 = pin3,
- \bullet ab = a is on b

We have 12 different possible states:

State		Pin	
s_0	ab1	2	3
s_1	1	ab2	3
s_2	1	2	ab3
s_3	ba1	2	3
s_4	1	ba2	3
s_5	1	2	ba3
s_6	b1	a2	3
s_7	a1	b2	3
s_8	b1	2	a3
s_9	a1	2	b3
s_{10}	1	a2	b3
s_{11}	1	b2	a3

1.2 Description of Actions

We have 6 different actions that the agent can take.

Action	effect
$\overline{a_1}$	move a to pin1
a_2	move a to pin2
a_3	move a to pin3
b_1	move b to pin1
b_2	move b to pin2
b_3	move b to pin3

2 How the agent learns the optimal result for every initial state

Given an infinite amount of runs every state will also be visited infinitely many times and thus the optimal policy will also be optimal.

3 Optimal policy

The optimal policy describes for every state the best action the agent should take.

- $\pi(s_0) = a_2$
- $\pi(s_1) = a_1$
- $\pi(s_2) = a_1$
- $\pi(s_3) = b_3$
- $\pi(s_4) = b_1$
- $\pi(s_5) = b_1$

- $\pi(s_6) = b_3$
- $\pi(s_7) = b_3$
- $\pi(s_8) = a_2$
- $\pi(s_9) = a_3$
- $\pi(s_{10}) = a_3$
- $\pi(s_{11}) = a_1$

4 Q-values

The q-values of of the states given the optimal policy:

- $u(s_0) = 73.81$
- $u(s_1) = 72.15$
- $u(s_2) = 0.00$
- $u(s_3) = 86.72$
- $u(s_4) = 76.17$
- $u(s_5) = 62.67$

- $u(s_6) = 84.82$
- $u(s_7) = 85.83$
- $u(s_8) = 73.65$
- $u(s_9) = 98.84$
- $u(s_{10}) = 98.77$
- $u(s_{11}) = 61.55$

5 Difference to value and policy iteration

The major difference is that the results could differ a lot due to randomness. The q-values sometimes are very similar to the utility values calculated from the previous assignment.

6 Convergence speed

TODO

7 Note

The Hanoi.py file requires Python 3.6.