Link Layer Discovery Protocol

Overview

Paul Congdon 3/8/03

Background

- The bulk of the text is taken from draft-ietf-ptopomib-pdp-03.txt
- Major modifications include:
 - Defined as an IEEE 802 Slow Protocol
 - Replacement of ASN.1 VarBindList with TLVs
 - Vendor specific TLV extension

Protocol Goals/Objectives

- Provide a means to announce necessary information for the purpose of device discovery and physical topology discovery
- Provide a method to populate the PTOPO MIB (RFC 2922)
- Operate under the constraints of Slow Protocols
- Allow for the ageing of announced information.
- Provide a method to accelerated the clean-up of announced information when shutdown is known.
- Constrain the forwarding of announced information
- Allow for vendor extensions of announced information.

High-Level Operation

What's in the PTOP MIB

- A connectionTable with information about peer nodes off each port
- Basic Info held for each node known is:
 - Remote systems identification
 - Remote systems port identification
 - How this remote system was discovered (e.g. proto)
 - Management Agent Address of Remote System (e.g. IP addr)
 - Whether there are multiple MACs or IPs out there
 - Whether or not this entry is static (not ageable)
 - Time this entry was last verified
- Critical information to communicate in a protocol includes:
 - Remote Node Address
 - Remote Node Name
 - Remote Node Sending Port
- Additional MIB functionality includes polling reduction timestamp, statistics, configuration and trap configuration.

Basic Frame Format

LLDP is a Slow Protocol

- Multicast DA = 01-80-C2-00-00-02
- Type/Length = 88-09
- Subtype = TBD
- Reserved = 00
- LLDP Message = LLDP Header + TLVs

LLDP Message PDU

• One LLDP PDU per 802 Frame

- Version = 01
- Flags = 00 (none currently defined)
- TTL = # of sec info is valid
- TLVs = 3 mandatory types, others are optional

LLDP TLVs

- TLVs must fit completely within a single 802 frame
 - TLVs are 32-bit aligned
 - Type = ChassisId, PortId, MgtAddress, Vendor Specific, ???
 - Length = length of value field in octets (not including pads)
 - Value = binary list of octets + pads for alignment

Chassis ID TLV

- End System Identifier to populate ptopoConnRemoteChassisType and ptopoConnRemoteChassis
 - TLV Type = 01
 - Length <= 34
 - A number of different Chassis ID types based on other MIBs
 - 1. entPhysicalAlias for chassis
 - 2. ifAlias for an interface
 - 3. entPhysicalAlias for port or backplane
 - 4. MAC address for the system
 - 5. A management address for the system

Port ID TLV

0										1										2										3	
0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
+	+-+	+	+	 	+	+	+	 	+	 	 	-	- -	 	- -	+	 	- - +	- -	 	 	⊢ – +	- -	 	+	+	+	- -	- -	 	-+
					7	LÀÏ	рe	=	02	κ2											Ι	Ler	ıgt	:h							
+	+ - +	+	+	 	+	+ – -	+	 	+	 	 	-	-	 	+ – -	+	 	-	 	 	 	⊢ – +	- -	 	+ – -	+	+	- -	- -	 	- +
					Po	ort	t I	ΙD	T	γpe	9										Po	ort	:]	ΙD	St	tr	ing	3 .			•
+	+-+	+	+	+	+ – -	+ – -	+	+ – -	+	+	 	-	+ – -	+ – -	+ – -	+	 	-	⊢ – -	+	 	⊢ – +	- -	+ – -	+ – -	+ – -	+	-	-	+ – -	+-+

- Sending Port Identifier to populate ptopoConnRemotePortType and ptopoConnRemotePort
 - TLV Type = 02
 - Length <= 34
 - A number of different Port ID types based on other MIBs
 - 1. ifAlias for the source port
 - 2. entPhysicalAlias for the port
 - 3. MAC address for the port
 - 4. A management address for the port

Management Address TLV

- Management Address to populate ptopoConnAgentNetAddrType and ptopoConnAgentNetAddr
 - TLV Type = 03
 - Length \leq 24
 - IANA AddressFamily defines a number of address types via ianaAddressFamilyNumbers
 - Address Length is explicitly stated

Vendor Specific TLV

- An extension to allow vendor specific information to be transmitted
 - TLV Type = 04
 - Length > 4, but small enough to fit in PDU
 - Vendor ID is defined by the SMI Network Management Private Enterprise Code
 - Vendor specific string may include subtypes, records, etc...
 - Multiple of these TLVs may exist in a single PDU

Some Significant Variables

AdminStatus	A global enable/disable for the protocol
SuppressEntry	A per-port enable/disable
MessageTxInterval	Time interval on-which to transmit LLDP messages
MessageTxHoldMultiplier	Number of time intervals the remote peer should consider information previously transmitted as valid (i.e. used to calculate TTL)

NOTE: there are others associated with PTOPO MIB Agent

LLDP Frame Transmission

- Slow Protocols Transmission Rules
 - No more than 5 frames-per-seconds
 - No more the 10 slow protocols in operation
 - Attempt to keep the frame small
 - Untagged format only
- Transmit a single LLDP PDU per transmission interval with small amount of intentional jitter
- Set TTL = min(65535, (MessageTxInterval * MessageTxHoldMultiplier))
- Include mandatory TLVs: Chassis ID, Management Addr, Port ID (optional for repeaters?)
- Keep transmission statistics

LLDP Frame Reception

- Subject to the Reception rules for Slow Protocols
 - Discard frames with illegal subtypes
 - Pass frames with LLDP subtype to LLDP
 - Pass frames with other supported subtype to those entities
 - Pass frames with unsupported subtypes to the MAC Client
- Validate Message Headers and increment counters
- Validate TLVs, increment counters, skip unknown TLVs
- Inform clients of protocol that information has been received.

NOTE: Protocol itself is really not responsible for determining if information received is 'new' or not. PTOPO MIB holds the connectionTable.

PTOPO MIB Update

- Locate or create ptopoConnEntry
- Update ptopoConnLastVerifyTime for entry
- If new entry, update ptopoConnTabInserts
- Look for multiple MAC and/or IP addresses and update ptopoConnMultiMACSASeen and/or ptopoConnMultiNetSASeen
- If anything other than ptopConnLastVerifyTime is modified, then update ptopoLastChangeTime

NOTE: Much of this seems to be part of the PTOPO MIB agent, rather than the LLDP Agent. Determine appropriate API.

Interface Shutdown

- If LLDP or the port is administratively disabled, an attempt to inform the peer is made by transmitting a final LLDP message with TTL=0.
- Upon reception of a LLDP message with TTL=0, remove all associated information from PTOPO MIB.

Issues and Questions

- The LLDP MIB is probably not right...
- Is the PTOPO MIB the right thing to populate?
- Where should the interface to the protocol be drawn (above the decoding of new information or below)?
- Does the clean-up shutdown procedure really work? Is it worth it?
- Are there additional TLVs that make sense?
 - sysName, PVID, HW serial numbers, layer-n info, others...
- More efficient PDU field packing?
- Should we use Slow Protocols? (potential issue with repeaters?)
- How to handle LLDP messages larger than a single frame?
- Non-802.3 Slow Protocol Frame encoding
- Any need to be concerned about security?
- Others...