7.1 Binary Logistic Regression

Suppose the response variable y is **binary** (or **dichotomous**) variable, that is, it assumes only two possible values, which we will denote by 0 and 1. The relation between y and predictors x_1, \ldots, x_k can't be modeled by a general linear regression because the error terms would not be normally distributed. Instead of modeling y, we model the probability that y is equal to 1. We write $\pi = \mathbb{P}(y = 1)$. Note that π is also the mean of y. Indeed, $\mathbb{E}(y) = (1)(\pi) + (0)(1 - \pi) = \pi$.

Definition. The binary (or dichotomous) logistic regression model with the predictors x_1, \ldots, x_k has the form:

$$\pi = \mathbb{E}(y) = \frac{\exp\{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k\}}{1 + \exp\{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k\}}.$$

The name "logistic" comes from the fact that the distribution with the cdf $F(x) = \frac{e^x}{1 + e^x}$, $-\infty < x < \infty$, is called the **logistic distribution**.

Definition. A generalized linear regression model has the form $g(\mathbb{E}(y)) = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$, where g is called the link function.

The binary logistic regression can be written as

$$\ln \frac{\pi}{1-\pi} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k.$$

Thus, a binary logistic regression is a generalized linear model with the link function $\ln \frac{\pi}{1-\pi}$ which is called the **logit function** of π (from the words "logistic" and "unit").

Further, note that the ratio $\frac{\pi}{1-\pi} = \frac{\mathbb{P}(y=1)}{\mathbb{P}(y=0)}$ represents the odds in favor of the event y=1. The binary logistic regression is a linear model for the natural logarithm of the odds and hence is sometimes called **log-odds model**.

Definition. The fitted binary logistic model has the form

$$\widehat{\pi} = \widehat{\mathbb{E}}(y) = \frac{\exp\{\widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \dots + \widehat{\beta}_k x_k\}}{1 + \exp\{\widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \dots + \widehat{\beta}_k x_k\}},$$

or, written in terms of the estimated odds,

$$\frac{\widehat{\pi}}{1-\widehat{\pi}} = \exp\{\widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \dots + \widehat{\beta}_k x_k\}.$$

Definition. In the binary logistic regression model, the estimated regression coefficients yield the following **interpretation**:

• If a predictor variable x_1 is numeric, then the quantity $(\exp{\{\widehat{\beta}_1\}}-1)\cdot 100\%$ represents the **estimated percent change in odds** when x_1 is increased by one unit, and the other predictors are held fixed. This can be seen by writing:

$$\frac{\frac{\widehat{\pi}|_{x_1+1}}{1-\widehat{\pi}|_{x_1+1}} - \frac{\widehat{\pi}|_{x_1}}{1-\widehat{\pi}|_{x_1}}}{\frac{\widehat{\pi}|_{x_1}}{1-\widehat{\pi}|_{x_1}}} \cdot 100\% = \left(\frac{\frac{\widehat{\pi}|_{x_1+1}}{1-\widehat{\pi}|_{x_1+1}}}{\frac{\widehat{\pi}|_{x_1}}{1-\widehat{\pi}|_{x_1}}} - 1\right) \cdot 100\%$$

$$= \left(\frac{\exp\{\widehat{\beta}_0 + \widehat{\beta}_1(x_1+1) + \widehat{\beta}_2 x_2 + \dots + \widehat{\beta}_k x_k\}}{\exp\{\widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \dots + \widehat{\beta}_k x_k\}} - 1\right) \cdot 100\% = \left(\exp\{\widehat{\beta}_1\} - 1\right) \cdot 100\%.$$

• If a predictor variable x_1 is an **indicator** (or a **0-1**) **variable**, then the quantity $\exp{\{\widehat{\beta}_1\}} \cdot 100\%$ represents the **estimated percent ratio in odds** when $x_1 = 1$ and when $x_1 = 0$, while the other predictors are assumed constant. This can be seen by writing

$$\frac{\frac{\widehat{\pi}|_{x_1=1}}{1-\widehat{\pi}|_{x_1=1}}}{\frac{\widehat{\pi}|_{x_1=0}}{1-\widehat{\pi}|_{x_1=0}}} \cdot 100\% = \frac{\exp\{\widehat{\beta}_0 + \widehat{\beta}_1 \cdot 1 + \widehat{\beta}_2 x_2 + \dots + \widehat{\beta}_k x_k\}}{\exp\{\widehat{\beta}_0 + \widehat{\beta}_1 \cdot 0 + \widehat{\beta}_2 x_2 + \dots + \widehat{\beta}_k x_k\}} \cdot 100\%$$

$$= \exp\{\widehat{\beta}_1\} \cdot 100\%.$$

Definition. In a binary logistic regression, for a specified set of predictors x_1^0, \ldots, x_k^0 , the **predicted probability** π^0 can be found as

$$\pi^0 = \frac{\exp\{\widehat{\beta}_0 + \widehat{\beta}_1 x_1^0 + \dots + \widehat{\beta}_k x_k^0\}}{1 + \exp\{\widehat{\beta}_0 + \widehat{\beta}_1 x_1^0 + \dots + \widehat{\beta}_k x_k^0\}}.$$

Example. A cohort study was conducted to investigate what factors are co-morbidities of pneumonia. The data file "pneumonia_data.csv" contains data on individuals' age, gender, and indicators (1=yes/0=no) of diabetes, asthma, hypertension, cardiovascular disease, obesity, and pneumonia; intensity of tobacco use (0=no/1=light/2=heavy); and PM2.5 measurement for the place of residence (in micro grams per cubic meter). We run SAS and R codes to regress pneumonia on the other variables.

In SAS:

			Analysis	Of Maximu	um Likelihood F	Parameter Estin	nates	
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq
Intercept		1	-5.4991	1.1541	-7.7611	-3.2370	22.70	<.000
age		1	0.0469	0.0178	0.0119	0.0818	6.91	0.008
gender	F	1	0.4683	0.5531	-0.6157	1.5523	0.72	0.397
gender	М	0	0.0000	0.0000	0.0000	0.0000		
diabetes		1	0.9070	0.6459	-0.3590	2.1730	1.97	0.160
asthma		1	1.6495	0.6730	0.3304	2.9686	6.01	0.014
hypertension		1	0.1431	0.6955	-1.2201	1.5064	0.04	0.837
cardiovascular		1	-0.8383	1.2590	-3.3059	1.6293	0.44	0.505
obesity		1	-0.2583	0.6771	-1.5853	1.0687	0.15	0.702
tobacco_use	1	1	1.6605	0.6016	0.4814	2.8397	7.62	0.005
tobacco_use	2	1	4.8892	1.2059	2.5258	7.2527	16.44	<.000
tobacco_use	0	0	0.0000	0.0000	0.0000	0.0000		
PM2_5		1	-0.0013	0.0112	-0.0231	0.0206	0.01	0.910
Scale		0	1.0000	0.0000	1.0000	1.0000		

From this output, significant predictors are age, asthma, and light and heavy tobacco use (the p-values are less than 0.05). The fitted model is

$$\frac{\widehat{\pi}}{1 - \widehat{\pi}} = \exp\{-5.4991 + 0.0469 \cdot age + 0.4683 \cdot female + 0.9070 \cdot diabetes\}$$

 $+1.6495 \cdot asthma + 0.1431 \cdot hypertension - 0.8383 \cdot cardiovascular - 0.2583 \cdot obesity \\ +1.6605 \cdot tobacco\ use\ light + 4.8892 \cdot tobacco\ use\ heavy - 0.0013 \cdot PM2.5 \}.$

As age increases by one year, the estimated odds in favor of pneumonia increase by $(\exp(0.0469) - 1) \cdot 100\% = 4.80172\%$. For individuals with asthma, the estimated odds of pneumonia are $\exp(1.6495) \cdot 100\% = 520.4377\%$ of those without asthma. For light tobacco users, the estimated odds of pneumonia are $\exp(1.6605) \cdot 100\% = 526.1941\%$ of those who don't use tobacco. For heavy tobacco users, the estimated odds of pneumonia are $\exp(4.8892) \cdot 100\% = 13,284.73\%$ of those who don't use tobacco.

In R:

```
pneumonia.data<- read.csv(file="./pneumonia_data.csv", header=TRUE, sep=",")

#specifying reference categories
gender.rel<- relevel(as.factor(pneumonia.data$gender), ref="M")
tobacco.use.rel<- relevel(as.factor(pneumonia.data$tobacco_use), ref="0")

#fitting logistic model
summary(fitted.model<- glm(pneumonia ~ age + gender.rel + diabetes + asthma + hypertension + cardiovascular + obesity + tobacco.use.rel + PM2_5, data=pneumonia.data, family=binomial(link=logit)))
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-5.499074	1.154121	-4.765	1.89e-06
age	0.046856	0.017826	2.629	0.00858
gender.relF	0.468256	0.553071	0.847	0.39719
diabetes	0.906976	0.645933	1.404	0.16028
asthma	1.649520	0.673008	2.451	0.01425
hypertension	0.143117	0.695544	0.206	0.83698
cardiovascular	-0.838314	1.259000	-0.666	0.50550
obesity	-0.258283	0.677056	-0.381	0.70285
tobacco.use.rel1	1.660522	0.601617	2.760	0.00578
${\tt tobacco.use.rel2}$	4.889229	1.205856	4.055	5.02e-05
PM2_5	-0.001255	0.011151	-0.113	0.91037

Next, we use the fitted model to predict the probability of pneumonia for a 55-year old female who is obese, has asthma, and lives in an area with PM2.5

```
of 13.3. We write
```

```
\mathbb{P}^0(pneumonia) =
=\frac{\exp\{-5.4991+0.0469\cdot 55+0.4683+1.6495-0.2583-0.0013\cdot 13.3\}}{1+\exp\{-5.4991+0.0469\cdot 55+0.4683+1.6495-0.2583-0.0013\cdot 13.3\}}=0.254.
In SAS:
/*using fitted model for prediction*/
data prediction;
input age gender$ diabetes asthma hypertension cardiovascular obesity
tobacco_use PM2_5;
cards;
55 F 0 1 0 0 1 0 13.3
data pneumonia;
 set pneumonia prediction;
run;
proc genmod;
class gender tobacco_use;
  model pneumonia(event="1")= age gender diabetes asthma hypertension
    cardiovascular obesity tobaccouse PM2_5/dist=binomial link=logit;
 output out=outdata p=pprob_pneumonia;
run;
proc print data=outdata (firstobs=201) noobs;
var pprob_pneumonia;
run;
                              pprob_pneumonia
```

In R:

0.25366

```
\label{lem:prediction} $$ \texttt{model for prediction} $$ \texttt{print(predict(fitted.model, type="response", data.frame(age=55, gender.rel="F", diabetes=0, asthma=1, hypertension=0, cardiovascular=0, obesity=1, tobacco.use.rel="0", PM2_5=13.3)))$
```

0.2536582