Algebra

June 18, 2017

1 Group theory

1.1 Week 1

Def 1. A non-empty set G with a binary function $f: G \times G \to G, (a,b) \mapsto ab$ is a **group** if it satisfies

- 1. (ab)c = a(bc).
- 2. $\exists 1 \in G \text{ s.t. } 1a = a1 = a, \forall a \in G.$
- 3. $\exists a^{-1} \in G \text{ s.t. } aa^{-1} = a^{-1}a = 1.$

CONCON

Def 2. Let G be a group. Then G is said to be **abelian** if $\forall a, b \in G, ab = ba$.

Ex 1.1.1. Let G be a semigroup. Then TFAE (the following are equivalent)

- 1. G is a group.
- 2. For all $a, b \in G$ and the equations bx = a, yb = a, each of them has a solution in G.
- 3. $\exists e \in G \text{ s.t. } ae = a \ \forall \ a \in G \text{ and if we fix such } e, \text{ then } \forall \ b \in G \ \exists \ b' \in G \text{ s.t. } bb' = e.$

Ex 1.1.2. Let G be a group. Show that

- 1. $\forall a \in G, a^2 = 1$, then G is abelian.
- 2. G is abelian $\iff \forall a, b \in G, (ab)^n = a^n b^n$ for three consecutive integer n.

Def 3. Let G be a group and $H \subseteq G, H \neq \emptyset$. Then H is said to be a subgroup of G, denoted by $H \subseteq G$, if

- 1. $\forall a, b \in H, ab \in H$.
- 2. $1 \in H$.
- 3. $\forall a \in H, a^{-1} \in H$.

useful criterion: $H \leq G \iff \forall a, b \in H, ab^{-1} \in H$.

Proof.

- \Rightarrow $b \in H \implies b^{-1} \in H$, and $a \in H$, so $ab^{-1} \in H$.
- \Leftarrow 1. $H \neq \emptyset \implies \exists a \in H \implies aa^{-1} = 1 \in H$.
 - 2. $1, a \in H \implies 1a^{-1} = a^{-1} \in H$.
 - 3. $a, b^{-1} \in H \implies a(b^{-1})^{-1} = ab \in H$.

Eg 1.1.1. $(\mathbb{Z}, +, 0) \le (\mathbb{Q}, +, 0) \le (\mathbb{R}, +, 0) \le (\mathbb{C}, +, 0)$; $(\mathbb{Q}^{\times}, \times, 1) \le (\mathbb{R}^{\times}, \times, 1) \le (\mathbb{C}^{\times}, \times, 1)$

Eg 1.1.2.

- Special linear group $SL(n, \mathbb{F}) = \{ A \in GL(n, \mathbb{F}) \mid \det A = 1 \}$
- Orthogonal group $O(n) = \{ A \in GL(n, \mathbb{R}) \mid A^t A = I_n \}$
- Unitary group $U(n) = \{ A \in GL(n, \mathbb{C}) \mid A^*A = I_n \}$
- Special orthogonal group $SO(n) = SL(n, \mathbb{R}) \cap O(n)$

• Special unitary group $SU(n) = SL(n, \mathbb{C}) \cap U(n)$

Def 4. Let $f: G_1 \to G_2$. f is called an **isomorphism** if

- 1. f is 1-1 and onto.
- 2. $\forall a, b \in G_1, f(ab) = f(a)f(b)$. (homomorphism)

, denoted by $G_1 \cong G_2$.

Remark 1. (practice)

- 1. f(1) = 1.
- 2. $f(a^{-1}) = f(a)^{-1}$.
- 3. If f is an isomorphism, then $\exists f^{-1}$ is also a homomorphism.

Eg 1.1.3.

- $U(1) = \{ z \in \mathbb{C}^{\times} \mid \bar{z}z = 1 \}, z = \cos \theta + \sin \theta i \}$
- $SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbb{R} \right\}$

notice that $U(1) \cong SO(2)$. $S^1 = \{(a,b) \in \mathbb{R}^2 \mid a^2 + b^2 = 1\}$, 可被賦予群的結構.

Eg 1.1.4. Let
$$A \in SU(2) \implies A = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}, \alpha\bar{\alpha} + \beta\bar{\beta} = 1, \alpha, \beta \in \mathbb{C}.$$

Quaternion(四元數): $\mathbb{H} = \{ a + bi + cj + dk \mid a, b, c, d \in \mathbb{R} \}$ with $i^2 = j^2 = k^2 = -1, ij = k, jk = i, ki = j \implies ij = -ji \}$.

Let x = a + bi + cj + dk, $\bar{x} = a - bi - cj - dk$, then $N(x) = x\bar{x} = a^2 + b^2 + c^2 + d^2$, For $x \neq 0, N(x) \neq 0, x^{-1} = \frac{1}{N(x)}\bar{x}$

Now, for x = a + bi + cj + dk = (a + bi) + (c + di)j. So SU(2) $\cong \{x \in \mathbb{H}^{\times} \mid N(x) = 1\}$. $S^3 = \{(a, b, c, d) \in \mathbb{R}^4 \mid a^2 + b^2 + c^2 + d^2 = 1\}$, 可被賦予群的結構.

★ The only spheres with continuous group law are S^1, S^3 .

Ex 1.1.3. Find a way to regard $M_{n\times n}(\mathbb{H})$ as a subset of $M_{2n\times 2n}(\mathbb{C})$, which preserves addition and multiplication, and then there is a way to characterize $GL(n, \mathbb{H})$.

Def 5 (symplectic group). $\operatorname{Sp}(n,\mathbb{F}) = \{ A \in \operatorname{GL}(2n,\mathbb{F}) \mid A^{\operatorname{t}}JA = J \}$ where $J = \begin{pmatrix} O & I_n \\ -I_n & O \end{pmatrix}$. $(A^{\operatorname{t}}JA = J \text{ preserving non-degenerate skew-symmetric forms})$ $\operatorname{Sp}(n) = \{ A \in \operatorname{GL}(n,\mathbb{H}) \mid A^*A = I_n \}.$

2

Ex 1.1.4. Show $\operatorname{Sp}(n) \cong \operatorname{U}(2n) \cap \operatorname{Sp}(n, \mathbb{C})$.

Ques: Find the smallest subgroup of SU(2) containing $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.

1.2 Week 2

1.2.1 Permutation groups and Dihedral groups

Def 6. A permutation of a set B is a 1-1 and onto function from B to B.

Let $S_B :=$ the set of permutations of B. Then $(S_B, \cdot, \mathrm{Id}_B)$ forms a group.

If $B = \{a_1, \ldots, a_n\}$, then $S_B \cong S_{\{1,\ldots,n\}}$ and write $S_n = S_{\{1,\ldots,n\}}$, called the symmetric group of degree n.

Theorem 1 (Cayley theorem). Any group is isomorphic to a subgroup of some permutation group.

(Hint): Let G be a group. Set B=G. Consider $a\in G$ as $\sigma_a:G\to G, x\mapsto ax$. Then $\sigma_a\in S_G\implies G\le S_G$.

Fact 1.2.1. S_n is a finite group of order n!, i.e. $|S_n| = n!$.

$$Proof. EASY = O$$

Cyclic notation:
$$\sigma \in S_5$$
, say $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix}$. Write $\sigma = (1\ 4)(2\ 3\ 5)$.

⇒ Any permutation can be written as a product of disjoint cycles.

Eg 1.2.1. In
$$S_7$$
, $\sigma_1 = (1\ 2\ 3)(4\ 5\ 6)(7)$, $\sigma_2 = (1\ 3\ 5\ 6)(2\ 4\ 7)$.

Then $\sigma_1 \sigma_2 = (2\ 5\ 4\ 7\ 3\ 6), \sigma_1^{-1} = (1\ 3\ 2)(4\ 6\ 5).$

Def 7. A 2 cycle is called a **transposition**.

Eg 1.2.2.
$$(1\ 2\ 3) = (1\ 3)(1\ 2), (1\ 2\ 3\ 4\ 5) = (1\ 5)(1\ 4)(1\ 3)(1\ 2).$$

Any permutation is a product of 2 cycles.

Useful formula:
$$\sigma \in S_n$$
, $\sigma(j_1 \dots j_m)\sigma^{-1} = (\sigma(j_1) \dots \sigma(j_m))$.

Eg 1.2.3. Let
$$\sigma = (1\ 2\ 3)(4\ 5\ 6\ 7), \ \sigma(2\ 3\ 4)\sigma^{-1} = (3\ 1\ 5).$$

Proof. Note that both sides are functions. For $i \in \{1, ..., n\}$,

Case 1: $\exists k \text{ s.t. } \sigma(j_k) = i, \text{ CONCON}$

Case 2: Otherwise, CONCON

Fact 1.2.2.
$$S_n = \langle (1 \ 2), \dots, (1 \ n) \rangle$$
.

Proof.
$$(1 i)^{-1} = (1 i)$$
 and $(i j) = (1 i)(1 j)(1 i)^{-1}$.

Def 8. Let G be a group and $S \subset G$. The subgroup generated by S defined to be the smallest subgroup of G which contains S, denoted by $\langle S \rangle$.

Ex 1.2.1.

1. $S_n = \langle (1\ 2), (2\ 3), \dots, (n-1\ n) \rangle, \quad n \geq 2.$

2.
$$S_n = \langle (1 \ 2), (1 \ 2 \ \dots \ n) \rangle, \quad n \ge 2.$$

Def 9. $A_n = \{\text{even permutations of } S_n\} \leq S_n, |A_n| = \frac{n!}{2}.$

Ex 1.2.2.

1. $A_n = \langle (1\ 2\ 3), (1\ 2\ 4), \dots, (1\ 2\ n) \rangle, n \geq 3.$

2.
$$A_n = \langle (1\ 2\ 3), (2\ 3\ 4), \dots, (n-2\ n-1\ n) \rangle, n \geq 3.$$

Remark 2.
$$\langle S \rangle = \bigcap_{S \subseteq H < G} H = \{a_1 a_2 \dots a_k \mid k \in \mathbb{N}, a_i \in S \cup S^{-1}\} \cup \{1\}$$

The orthogonal transformations on \mathbb{R}^2 : O(2).

Let
$$A = \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \in \mathcal{O}(2)$$
.

略... (這邊討論旋轉和反射的矩陣)

<u>Case 1</u>: $A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ is counterclockwise roration w.r.t. α .

<u>Case 2</u>: $A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$ is the reflection. $A^2 = I_2 \implies$ eigenvalues are ± 1 .

Easy to show that $L_A(v) = v - 2\langle v, v_2 \rangle v_2$.

 $O(2) = \{ \text{rotations} \} \cup \{ \text{reflections} \}.$

Def 10. The dihedral group D_n is the group of symmetries of a regular n-gon.

In general,
$$D_n = \langle T, R \mid T^n = 1, R^2 = 1, TR = RT^{-1} \rangle \le O(2) \le S_n, |D_n| = 2n$$
.

Def 11. Let T be a linear transformation from $\mathbb{R}^n \to \mathbb{R}^n$.

- T is called a rotation if \exists a T-invariant subspace $W \subseteq \mathbb{R}^n$ with dim W = 2 s.t. $\begin{cases} T|_W \text{ is a rotation} \\ T|_{W^{\perp}} = \mathrm{id}_{W^{\perp}} \end{cases}$
- T is called a reflection if \exists a T-invariant subspace $W \subseteq \mathbb{R}^n$ with dim W = 1 s.t. $\begin{cases} T|_W = -\mathrm{id}_W \\ T|_{W^{\perp}} = \mathrm{id}_{W^{\perp}} \end{cases}$

<u>Main result</u>: the group of orthogonal transformations = $\langle \text{rotations}, \text{reflections} \rangle$.

Prop 1.2.1. For $T: \mathbb{R}^n \to \mathbb{R}^n$, \exists a T-invariant subspace $W \subseteq \mathbb{R}^n$ with $1 \leq \dim W \leq 2$.

Proof. Let $A = [T]_{\alpha} \in M_{n \times n}(\mathbb{R}) \subseteq M_{n \times n}(\mathbb{C})$. Consider $\widetilde{L_A} : \mathbb{C}^n \to \mathbb{C}^n, v \mapsto Av$.

Then \exists an eigenvalue $\lambda \in \mathbb{C}$ and an eigenvector $v \in \mathbb{C}^n$ for $\widetilde{L_A}$. Let $\lambda = \lambda_1 + \lambda_2 i, v = v_1 + v_2 i$. By definition, we have

$$Av = \widetilde{L_A}(v) = \lambda v = (\lambda_1 + \lambda_2 i)(v_1 + v_2 i) \implies \begin{cases} Av_1 = \lambda_1 v_1 - \lambda_2 v_2 \\ Av_1 = \lambda_2 v_1 + \lambda_1 v_2 \end{cases},$$

so
$$W = \langle v_1, v_2 \rangle$$
.

Ex 1.2.3.

- 1. If T is orthogonal, then W^{\perp} is also T-invariant.
- 2. Use induction on n to show the main result.

For
$$n = 3, A \in \mathcal{O}(3)$$
, we have $A \sim \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ & \pm 1 \end{pmatrix}$.

1.2.2 Cyclic groups and internal direct product

Def 12. If $G = \langle a \rangle = \{\dots, a^{-2}, a^{-1}, a, 1, a, a^2, \dots\} = \{a^n \mid n \in \mathbb{Z}\}$, then G is a cyclic group generated by a.

Eg 1.2.4.
$$\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$$
.

Eg 1.2.5. Let
$$A = \begin{pmatrix} \cos\frac{2\pi}{n} & -\sin\frac{2\pi}{n} \\ \sin\frac{2\pi}{n} & \cos\frac{2\pi}{n} \end{pmatrix} \in SO(2)$$
. Then $\langle A \rangle = \{I_2, A, A^2, \dots, A^{n-1}\}$ and $A^n = I_2, A^m = A^r$ where $m \equiv r \pmod{n}$.

Eg 1.2.6.
$$\mathbb{Z}/n\mathbb{Z} = {\overline{0}, \overline{1}, \dots, \overline{(n-1)}}$$
 with $\overline{j} = {m \in \mathbb{Z} \mid m \equiv j \pmod{n}}$.

Define
$$\bar{i} + \bar{j} = \begin{cases} \overline{i+j} & \text{if } 0 \leq i+j \leq n \\ \overline{i+j-n} & \text{otherwise} \end{cases} \implies (\mathbb{Z}/n\mathbb{Z}, +, \overline{0}) \text{ forms a group.}$$

Remark 3. $\overline{i} \times \overline{j} = \overline{i \times j}$.

- 略
- If $gcd(j, n) = d, \exists h, k \in \mathbb{Z} \text{ s.t. } hj + kn = d.$

Def 13.
$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ j \in \mathbb{Z}/n\mathbb{Z} \mid \gcd(j,n) = 1 \} \implies ((\mathbb{Z}/n\mathbb{Z})^{\times}, \times, \overline{1}) \text{ forms a group.}$$

Eg 1.2.7. 略... 簡化剩餘系, 原根 (generator) $(1,2,4,p^k,2p^k,p)$ is an odd prime)

Def 14.

- The **order** of a finite gorup G is the number of elements in G, denoted by |G|.
- Let $a \in G$, the order of a is defined to be the least positive integer n s.t. $a^n = 1$, denoted by ord(a) = n.
- If $a^n \neq 1 \quad \forall n \in \mathbb{N}$, then we call "a has infinte order".

Prop 1.2.2. Let $G = \langle a \rangle$ with ord(a) = n. Then

1.
$$a^m = 1 \iff n \mid m$$
.

Proof.

$$\Leftarrow$$
: Let $m = dn$, then $a^m = (a^n)^d = 1$.

$$\Rightarrow$$
: Let $m = qn + r, 0 \le r < n$. If $r \ne 0$, then $a^r = a^{m-qn} = (a^m)(a^n)^{-q} = 1$. But $r < n$, which is a contradiction. Hence $r = 0 \implies n \mid m$.

2.
$$\operatorname{ord}(a^r) = n/\gcd(r, n)$$
.

Proof. Let gcd(r, n) = d, n = dn', r = dr' with gcd(n', r') = 1. Plan to show "ord(a^r) = n'."

- $(a^r)^{n'} = a^{r'dn'} = (a^n)^{r'} = 1 \implies \operatorname{ord}(a^r) \mid n'.$
- $1 = (a^r)^{\operatorname{ord}(a^r)} = a^{r \operatorname{ord}(a^r)} \implies n \mid r \operatorname{ord}(a^r) \implies n' \mid r' \operatorname{ord}(a^r) \implies n' \mid \operatorname{ord}(a^r).$

Prop 1.2.3. Any subgroup of a cyclic group is cyclic.

Proof. Let $G = \langle a \rangle$ and $H \leq G$. If $H = \{1\}$, then $H = \langle 1 \rangle$, done!

Otherwise, $d = \min\{m \in \mathbb{N} \mid a^m \in H\}$, by well-ordering axiom. Claim $H = \langle a^d \rangle$.

- $\supset: a^d \in H$ by the definition of d.
- \subset : $\forall a^m \in H$, write $m = qd + r, 0 \le r < d$. If $r \ne 0$, then $a^r = a^{m-qd} = a^m(a^d)^{-q} \in H$, which is a contradiction. Hence $r = 0 \implies d \mid m$.

Ex 1.2.4.

- 1. $\operatorname{ord}(a) = \operatorname{ord}(a^{-1}) = n$.
- 2. $\langle a^r \rangle = \langle a^{\gcd(n,r)} \rangle$.
- 3. $\langle a^{r_1} \rangle = \langle a^{r_2} \rangle \iff \gcd(n, r_1) = \gcd(n, r_2).$
- 4. $\forall m \mid n, \exists ! H \leq \langle a \rangle$ s.t. |H| = m. Conversely, if $H \leq \langle a \rangle$, then $|H| \mid n$.

Prop 1.2.4. Let $G = \langle a \rangle$. Then

- 1. $\operatorname{ord}(a) = n \implies G \cong \mathbb{Z}/n\mathbb{Z}$
- 2. $\operatorname{ord}(a) = \infty \implies G \cong \mathbb{Z}$

Ex 1.2.5. Show Prop 1.2.4.

Def 15. Let $G_1, G_2 \leq G$. G is the internal direct product of G_1, G_2 if $G_1 \times G_2 \to G$, $(g_1, g_2) \mapsto g_1g_2$ is an isom.

Remark 4. In this case, we find that

- $G = G_1G_2 = \{ g_1g_2 \mid g_1 \in G_1, g_2 \in G_2 \}.$
- $G_1 \cap G_2 = \{1\}$. (consider $a \neq 1 \in G_1 \cap G_2$, then $(1, a) \mapsto a, (a, 1) \mapsto a$, but the function is 1-1, which is a contradiction.)
- If $a \in G$ with $a = g_1g_2 = g_1'g_2'$, then $(g_1')^{-1}g_1 = (g_2')g_2^{-1} \in G_1 \cap G_2 = \{1\} \implies \begin{cases} g_1 = g_1' \\ g_2 = g_2' \end{cases}$.
- For $g_1 \in G_1, g_2 \in G_2, (g_1, g_2) = (g_1, 1)(1, g_2) = (1, g_2)(g_1, 1) \implies g_1g_2 = g_2g_1.$

Ex 1.2.6. TFAE

- 1. G is the internal direct product of G_1, G_2 .
- $2. \ \forall \, a \in G, \exists \, !g_1 \in G_1, g_2 \in G_2 \text{ s.t. } a = g_1g_2 \; ; \, \forall \, g_1 \in G_1, g_2 \in G_2, g_1g_2 = g_2g_1.$
- 3. $G_1 \cap G_2 = \{1\}$; $G = G_1G_2$; $\forall g_1 \in G_1, g_2 \in G_2, g_1g_2 = g_2g_1$.

Eg 1.2.8.

- 1. $G = \mathbb{Z}/6\mathbb{Z} = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}}, G_1 = {\overline{0}, \overline{3}}, G_2 = {\overline{0}, \overline{2}, \overline{4}}.$ We have $G \cong G_1 \times G_2$.
- 2. $G = S_3, G_1 = \langle (1\ 2) \rangle, G_2 = \langle (1\ 2\ 3) \rangle$. We have $G_1 \times G_2 \not\cong G$ since $(1\ 2)(1\ 2\ 3) \neq (1\ 2\ 3)(1\ 2)$.

Eg 1.2.9. $G = S_3, G_1 = \langle (1 \ 2) \rangle, G_2 = \langle (2 \ 3) \rangle, G_1 G_2 = \{1, (1 \ 2), (2 \ 3), (1 \ 2 \ 3)\} \not\leq G$ since $(1\ 3\ 2) = (1\ 2\ 3)^{-1} \notin G_1G_2.$

Prop 1.2.5. Let $H, K \leq G$. Then $HK \leq G \iff HK = KH$.

Proof.

$$\Rightarrow: \begin{cases} H \leq HK \\ K \leq HK \end{cases} \implies KH \subseteq HK \; ; \; \forall \; hk \in HK, \exists \; h'k' \in HK \; \text{s.t.} \; \; (hk)(h'k') = 1 \; \implies \; hk = \\ (k')^{-1}(h')^{-1} \in KH \; \implies \; HK \subseteq KH. \end{cases}$$

 \Leftarrow : For $h_1k_1, h_2k_2 \in HK$, $(h_1k_1)(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1} = h_1h'k' \in HK$.

1.3 Week 3

1.3.1 Coset and Quotient Group

Let $f: G_1 \to G_2$ be a group homo. Define Im $f:=f(G_1)$.

Notice that Im $f \leq G_2$.

Proof. Let
$$z_1 = f(a_1), z_2 = f(a_2)$$
, then $z_1 z_2^{-1} = f(a_1) f(a_2)^{-1} = f(a_1) f(a_2^{-1}) = f(a_1 a_2^{-1}) \in \text{Im } f$.

Def 16. $\ker f := \{ x \in G_1 \mid f(x) = 1 \} \le G_1.$

Fact 1.3.1.

- 1. $x \in (\ker f)a \iff f(x) = f(a)$.
- 2. $\ker f = \{1\} \iff f \text{ is 1-1.}$

Def 17. Let $H \leq G$, $\forall a \in G$, Ha is called a **right coset** of H in G.

Fact 1.3.2.

- 1. For 2 right cosets Ha, Hb, either Ha = Hb or $Ha \cap Hb = \emptyset$ must hold.
- 2. $\{Ha : a \in G\}$ forms a partition of G.

Theorem 2 (Lagrange). Let $|G| < \infty$ and $H \le G$, $|H| \mid |G|$.

Remark 5. r is called the **index** of H in G, denoted by [G:H]. (The concept of index can be extended to infinite G, H.)

Ex 1.3.1. no subgroup of A_4 has order 6. (converse of Lagrange thm. is false.)

Coro 1.3.1. If |G| = p is a prime in \mathbb{Z} , then G is cyclic.

Coro 1.3.2. If $|G| < \infty, a \in G$, then $a^{|G|} = 1$.

Remark 6.

- 1. Let $H \leq G, a \in G, aH$ is called a **left coset**.
- 2. {right cosets of H} \leftrightarrow {right cosets of H} by $Ha \mapsto a^{-1}H$.

Ques: How to make $\{aH : a \in G\}$ to be a group? For aH, bH, we must have (aH)(bH) = abH. In general, (aH)(bH) = abH is not well-defined.

Eg 1.3.1. Let
$$H = \langle (1\ 2) \rangle \leq S_3$$
. $a_1 = (1\ 3), a_2 = (1\ 2\ 3), b_1 = (1\ 3\ 2), b_2 = (2\ 3)$. 出慘點

If we hope $a_1b_1H = a_2b_2H$, then we need $(a_1b_1)^{-1}a_2b_2 \in H$.

$$b_1^{-1}a_1^{-1}a_2b_2 = b_1^{-1}b_2b_2^{-1}a_1^{-1}a_2b_2$$

Notice that $b_1^{-1}b_2, a_1^{-1}a_2 \in H$, so we need $b_2^{-1}a_1^{-1}a_2b_2 \in H$.

Def 18. Let $H \leq G$. H is said to be **normal subgroup** of G if $\forall g \in G, h \in H, g^{-1}hg \in H$ (or $g^{-1}Hg \subseteq H$), denoted by $H \triangleleft G$.

Def 19. Let $H \triangleleft G$. The set $\{aH \mid a \in G\}$ forms a group under $(aH)(bH) = abH, a, b \in G$. We call it the **quotient group** of G by H, denoted by G/H.

(Note: The indentity is H = hH and $(aH)^{-1} = a^{-1}H$.)

Remark 7. Define $q: G \to G/H, a \mapsto aH$, called the quotient homomorphism.

Ex 1.3.2. Let $H \leq G$. Then TFAE

- (a) $H \triangleleft G$.
- (b) $\forall x \in G, xHx^{-1} = H.$
- (c) $\forall x \in G, xH = Hx$.
- (d) $\forall x, y \in G, (xH)(yH) = (xy)H.$

Ques: How to find a normal subgroup of G?

Prop 1.3.1.

- 1. If G is abelian, then $\forall H \leq G \rightsquigarrow H \triangleleft G$. (done by (c))
- 2. If $H \leq G$ with [G:H] = 2, then $H \triangleleft G$.

Eg 1.3.2.
$$n \le 3, [S_n : A_n] = 2 \implies A_n \triangleleft S_n.$$

Proof. We can write $G = H \cup Ha = H \cup aH \implies aH = Ha, \forall a \notin H.$

Def 20. Define the center of G to be $Z_G = \{ a \in G \mid ax = xa, \forall x \in G \} \leq G$.

Prop 1.3.2.

- 1. $Z_G \triangleleft G$. (by (c) and def.)
- 2. If G/Z_G is cyclic, then G is abelian.

$$Proof.$$
 Let $G/Z_G = \langle aZ_G \rangle$, (let $\overline{a} := aZ_G$) for some $a \in G$. For $x_1, x_2 \in G$, let $x_1 = a^{k_1}z_1, x_2 = a^{k_2}z_2$, then $x_1x_2 = a^{k_1+k_2}z_1z_2 = x_2x_1$. (z_i 可以各種交換)

Def 21. The commutator of G is define to be $[G,G] = \langle xyx^{-1}y^{-1} \mid x,y \in G \rangle$.

Prop 1.3.3. $[G,G] \triangleleft G$; $[G,G] = 1 \iff G$ is abelian.

Proof.
$$\forall x \in G, a \in [G, G], xax^{-1} = xax^{-1}a^{-1}a \text{ and } xax^{-1}a^{-1}, a \in [G, G].$$

Ex 1.3.3.

1. If $H \leq S_n$ and $\exists \sigma \in H$ is odd, then $[H : H \cap A_n] = 2$.

2. For $n \ge 3$, $[S_n, S_n] = A_n$.

Ex 1.3.4. Let $H \leq G$. Then $H \triangleleft G$ and G/H is abelian $\iff [G,G] \leq H$. (hint: G/[G,G] is "max" among all abelian quotient groups)

1.3.2 Isomorphism theorems & Factor theorem

Theorem 3 (1st isomorphism theorem). Let $f: G_1 \to G_2$ be a group homo. Then $G_1/\ker f \cong \operatorname{Im} f$.

Proof. Define $\varphi : a \ker f \mapsto f(a)$.

- well-defined: $a \ker f = b \ker f \implies a^{-1}b \in \ker f \implies f(a^{-1}b) = 1 \implies f(a)^{-1}f(b) = 1 \implies f(a) = f(b)$.
- group homo: $\varphi((a \ker f)(b \ker f)) = \varphi(ab \ker f) = f(ab) = f(a)f(b) = \varphi(a \ker f)\varphi(b \ker f)$.
- onto: by def. of $\operatorname{Im} f$.
- 1-1: $f(a) = f(b) \implies a \ker f = b \ker f$ (easy).

Theorem 4 (Factor theorem). Let $f: G_1 \to G_2$ be a group homo. and $H \triangleleft G_1, H \leq \ker f$. Then \exists a group homo. $\varphi: G/H \to G_2$ s.t.

Eg 1.3.3. Let $G = \langle a \rangle$ with ord(a) = n. Then $G \cong \mathbb{Z}/n\mathbb{Z}$. (1st isom. thm.)

Eg 1.3.4. $\varphi: \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}, 4\mathbb{Z} \leq 2\mathbb{Z}$, so by factor thm., $\mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$.

 $\mathbf{Eg}\ \mathbf{1.3.5.}\quad \det: \mathrm{GL}(n,\mathbb{F}) \to \mathbb{F}^{\times} \implies \mathrm{GL}(n,\mathbb{F})/\mathrm{SL}(n,\mathbb{F}) \cong \mathbb{F}^{\times}$

Eg 1.3.6. $sgn: S_n \to \{\pm 1\} \implies S_n/A_n \cong \{\pm 1\}$

Theorem 5 (2nd isomorphism theorem). Let $H \leq G, K \triangleleft G$. Then $HK/K \cong H/H \cap K$.

$$\textit{Proof. } \text{First, } \begin{cases} H \leq G \\ K \lhd G \end{cases} \implies HK = KH \implies HK \leq G \text{ ; } K \lhd G \implies K \lhd HK.$$

Define $\varphi: H \to HK/K, h \mapsto hK$. which is a group homo.

- onto: $\forall (hk)K, hkK = hK, \text{ so } \varphi(h) = hK = hkK.$
- Find $\ker \varphi \colon a \in \ker \varphi \iff \begin{cases} a \in H \\ aK = K \end{cases} \iff a \in H \cap K$, so $\ker \varphi = H \cap K$.

Then by 1st isom. thm.

Eg 1.3.7. $G = GL(2, \mathbb{C}), H = SL(2, \mathbb{C}), K = \mathbb{C}^{\times} I_2 = Z_G \triangleleft G.$ By 2nd isom. thm., $G/K \cong H/\{\pm I_2\}.$ $(G = HK, \{\pm I_2\} = H \cap K)$ projective linear group: $\operatorname{PGL}(2,\mathbb{C}) = G/K$. projective special linear group: $\operatorname{PSL}(2,\mathbb{C}) = H/H \cap K$.

齊次座標...OTL

Ex 1.3.5.

- 1. Let $H_1 \triangleleft G_1, H_2 \triangleleft G_2$. Then $(H_1 \times H_2) \triangleleft (G_1 \times G_2)$ and $G_1 \times G_2/H_1 \times H_2 \cong G_1/H_1 \times G_2/H_2$.
- 2. Let $H \triangleleft G, K \triangleleft G$ s.t. G = HK. Then $G/H \cap K \cong G/H \times G/K$.

Ex 1.3.6. Let $H \triangleleft G$ with [G : H] = p, which is a prime in \mathbb{Z} . Then $\forall K \leq G$, either (1) $K \leq H$ or (2) G = HK and $[K : K \cap H] = p$.

Theorem 6 (3rd isomorphism theorem). Let $K \triangleleft G$.

1. There is a 1-1 correspondence between $\{H \leq G \mid K \leq H\}$ and $\{\text{subgroups of } G/K\}$. $(H \triangleleft G \dots \text{ normal})$

Proof. Define $\varphi: H \mapsto H/K$. $(H/K \le G/K)$

- 1-1: Assume $H_1/K = H_2/K$. For $a \in H_1$, $aK \in H_1/K = H_2/K$. so $\exists b \in H_2$ s.t. $aK = bK \implies b^{-1}a \in K \leq H_2 \implies a \in bH_2 = H_2$. So $H_1 \leq H_2$. By symmetry, $H_2 \leq H_1$, and thus $H_1 = H_2$.
- onto: Given a subgroup Q of G/K, consider $H = q^{-1}(Q)$ where $q: G \to G/K$.

 - $-K \le H$: $\forall a \in K, q(a) = aK = K \in Q \implies a \in H \implies K \le H$.
 - $-Q = H/K \colon \forall \, aK \in Q, aK = q(a) \implies a \in H \implies aK \in H/K \implies Q \subseteq H/K.$ And $\forall \, aK \in H/K (a \in H), q(a) \in Q \implies H/K \subseteq Q.$ So Q = H/K.

- $H \triangleleft G, K \leq H \iff \forall g \in G, gHg^{-1} = H, K \leq H \iff \forall \overline{g} \in G/K, \overline{g}(H/K)\overline{g}^{-1} = H/K \iff H/K \triangleleft G/K.$
- 2. If $H \triangleleft G$ with $K \leq H$, then $(G/K)/(H/K) \cong G/H$.

Proof. Define $\varphi: G \to (G/K)/(H/K)$ with $\varphi: a \mapsto aK(H/K)$.

- onto: ... easy.
- Find $\ker \varphi \colon a \in \ker \varphi \iff aK(H/K) = H/K \iff aK \in H/K \iff a \in H$.

By 1st isom. thm., $(G/K)/(H/K) \cong G/H$.

Eg 1.3.8. $m\mathbb{Z} + n\mathbb{Z}/m\mathbb{Z} \cong n\mathbb{Z}/m\mathbb{Z} \cap n\mathbb{Z}$. $(m\mathbb{Z} + n\mathbb{Z} = \gcd(m, n)\mathbb{Z}, m\mathbb{Z} \cap n\mathbb{Z} = \operatorname{lcm}(m, n)\mathbb{Z})$

Ques: $G/K \cong G'/K'$ and $K \cong K' \implies G \cong G'$.

Eg 1.3.9. Q_8 and D_4 交給陳力

Extension problem: given two groups A, B, how to find G and $K \triangleleft G$, s.t. $K \cong A, G/K \cong B$? $(1 \rightarrow H \rightarrow G \rightarrow G/H \rightarrow 1$, short exact sequence)

(e.g.
$$G = A \times B, K = A \times \{1\}$$
)

1.4 Week 4

1.4.1 Universal property and direct sum & product

In general, let $f_1: G_1 \to G, f_2: G_2 \to G$ are group homo. $f_1 \times f_2: G_1 \times G_2 \to G, (a,b) \mapsto f_1(a)f_2(b)$. But we have (a,b)=(a,1)(1,b)=(1,b)(a,1), so $f_1(a)f_2(b)=f_2(b)f_1(a) \Longrightarrow$ need G to be abelian.

So we intend to define the direct sum in the category of abelian group.

<u>Notation</u>: For abelian groups, we use "+" to denote the group operation and "0" to denote the identity.

Def 22. Given a non-empty family of abelian groups $\{G_s \mid s \in \Lambda\}$, a (external) direct sum of $\{G_s \mid s \in \Lambda\}$ is an abelian group $\bigoplus_{s \in \Lambda} G_s$ with the embedding mappings $i_{s_0} : G_{s_0} \to \bigoplus_{s \in \Lambda} G_s, \forall s_0 \in \Lambda$ satisfying the universal property:

for any abelian group H and group homo. $\varphi_s:G_s\to H \forall s\in\Lambda,\quad\exists\,!$ group homo. $\varphi:\bigoplus_{s\in\Lambda}G_s\to H$ s.t. 又一個 z 圖

Theorem 7. $\bigoplus_{s \in \Lambda} G_s$ exists and is unique up to isomorphisms.

Proof. Existence: $\bigoplus_{s \in \Lambda} G_s = \{ (g_s)_{s \in \Lambda} \mid g_s \in G_s, \text{ almost all of the } g_s' \text{ are } 0 \}$ and

$$i_{s_0}: G_{s_0} \to \bigoplus_{s \in \Lambda} G_s, a_{s_0} \mapsto (g_{s_0})_{s \in \Lambda} \text{ with } g_{s_0} = a_{s_0}, g_s = 0, \forall s \neq s_0.$$

group operaion: $(g_s)_{s\in\Lambda}+(g_s')_{s\in\Lambda}:=(g_s+g_s')_{s\in\Lambda}\in\bigoplus_{s\in\Lambda}G_s$. 這邊也一個 τ 圖

Uniqueness: Assume \exists another G satisfies the universal property, 一個大 τ 圖 $(G, \bigoplus_{s \in \Lambda} G_s$ 互相有唯一個映射可以 keep $i_{s_0}, \varphi \circ \psi = \mathrm{id}_{G}, \psi \circ \varphi = \mathrm{id}_{\bigoplus_{s \in \Lambda} G_s}$

Def 23. Given a non-empty family of groups $\{G_s \mid s \in \Lambda\}$, a direct product of $\{G_s \mid s \in \Lambda\}$ is a group $\prod_{s \in \Lambda} G_s$ with projections $p_{s_0} : \prod_{s \in \Lambda} G_s \to G_{s_0}, \forall s_0 \in \Lambda$ satisfying the following universal property:

for any group H with group homo. $\varphi_s: H \to G_s, \forall s \in \Lambda, \exists ! \varphi: H \to \prod_{s \in \Lambda} G_s \text{ s.t. } 又一個 <math>\tau$ 圖

Theorem 8. $\prod_{s \in \Lambda} G_s$ exists and is unique up to isomorphisms.

Proof. Existence: $\prod_{s \in \Lambda} G_s = \{ (g_s)_{s \in \Lambda} \mid g_s \in G_s \}$ and

$$p_{s_0}: \prod_{s\in\Lambda} G_s \to G_{s_0}, (g_{s_0})_{s\in\Lambda} \mapsto g_{s_0}, \forall s_0 \in \Lambda$$

- group operaion: $(g_s)_{s \in \Lambda} \cdot (g'_s)_{s \in \Lambda} := (g_s g'_s)_{s \in \Lambda} \in \prod_{s \in \Lambda} G_s$.
- Define φ : 這邊也一個で圖 which is uniquely defined.

Uniqueness: Assume \exists another G satisfies the universal property, 一個大 τ 圖 $(G, \prod_{s \in \Lambda} G_s)$ 互相有唯一個映射可以 keep $i_{s_0}, \varphi \circ \psi = \mathrm{id}_{G}, \psi \circ \varphi = \mathrm{id}_{\prod_{s \in \Lambda} G_s}$

Ex 1.4.1. Google the definition of the direct limit and show the existence and uniqueness.

Ex 1.4.2. Google the definition of the inverse limit and show the existence and uniqueness.

Motivation: ζ_m is called an *m*-th root of unity if $\zeta_m^m = 1$.

$$\lim_{n \to \infty} \mathbb{Z}/2^n \mathbb{Z} \cong \{ 2^n \text{-th roots of unity} : n \in \mathbb{N} \}$$

$$\varinjlim_{n} \mathbb{Z}/2^{n}\mathbb{Z} = (\bigoplus_{n \in \mathbb{N}} \mathbb{Z}/2^{n}\mathbb{Z})/\langle i_{k}(a) - i_{j}(f_{kj}(a)) \mid k \leq j, a \in \mathbb{Z}/2^{k}\mathbb{Z}\rangle$$

where $f_{kj}: \mathbb{Z}/2^k\mathbb{Z} \to \mathbb{Z}/2^j\mathbb{Z}$.

Inverse limit:

$$\varprojlim \mathbb{Z}/2^n \mathbb{Z} = \left\{ (n_1, n_2, \dots) \in \prod_n \mathbb{Z}/2^n \mathbb{Z} \middle| \forall i < j, n_i \equiv n_j \pmod{2}^{i+1} \right\}$$

1.4.2 Rings and fields

Def 24. A ring is sa non-empty set R with two operations $R \times R \to R$

$$(a,b) \mapsto a+b$$
 and $(a,b) \mapsto ab$

satisfying

- 1. (R, +, 0) is an abelian group.
- 2. (R,\cdot) is a semigroup. (if it is a monoid, then it is called "a ring with 1.")

3. (Distributive laws)
$$\forall a,b,c \in \mathbb{R}, \begin{cases} a(b+c)=ab+ac\\ (b+c)a=ba+ca \end{cases}$$

Eg 1.4.1. $\mathbb{Z}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/n\mathbb{Z}, M_{n \times n}(\mathbb{F})$

Eg 1.4.2. Let G be an abelian group. Define (endomorphism, automorphism)

$$\operatorname{End}(G) := \{ \operatorname{group homo.} G \to G \} \quad \operatorname{Aut}(G) := \{ \operatorname{group isom.} G \to G \}$$

A natural ring structure on End(G) is:

$$\forall a \in G, \begin{cases} (f+g)(a) := f(a)g(a) \\ (f \cdot g)(a) := f(g(a)) \end{cases}$$

Eg 1.4.3.
$$\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\right\} \subset \mathbb{R}$$
.

Def 25. Let R be a ring with 1.

- (a) $\forall a \in R, a \neq 0$, a in called a unit if $\exists a^{-1} \in R$.
- (b) $(R^{\times} = \{\text{units in } R\}, \cdot, 1))$ forms a group.
- (c) R is called a division ring if $R \setminus \{0\} = R^{\times}$.
- (d) R is said to be commutative if $ab = ba, \forall a, b \in R$.
- (e) R is a field if R is a commutative division ring.
- (f) $a \neq 0$ is called a left zero divisor if $\exists b \in R, b \neq 0$ s.t. ab = 0.
- (g) a is called a zero divisor if a is either a left or right zero divisor.
- (h) R is called an integral domain if R is a commutative ring without zero divisors.

Fact:

- 1. fields \implies integral domains.
- 2. finite + integral domain \implies fields.

Proof. Let
$$R = \{0, a_1, \dots, a_n\}$$
, for $a \in R, a \neq 0$, $aa_i = aa_j \implies a(a_i - a_j) = 0 \implies i = j$.
So $\{0, aa_1, \dots, aa_n\} = R \implies \exists a_i \text{ s.t. } aa_i = 1$.

Prop 1.4.1. TFAE

- 1. $\mathbb{Z}/n\mathbb{Z}$ is an integral domain.
- 2. $\mathbb{Z}/n\mathbb{Z}$ is a field.
- 3. n = p is a prime.

easy to prove.

Def 26.

- $f: R_1 \to R_2$ is called a ring homomorphism if $\forall a, b \in R, \begin{cases} f(a+b) &= f(a) + f(b) \\ f(ab) &= f(a)f(b) \end{cases}$.
- Im f is a subring of R_2 .
- $\ker f = \{x \in R_1 \mid f(x) = 0\}$ is an additive group of R_1 and $\forall r \in R_1, x \in \ker f, f(rx) = f(r)f(x) = f(r)0 = 0 \implies rx \in \ker f, xr \in \ker f.$
- $R_1/\ker f$ is an additive group and $R_1/\ker f \cong \operatorname{Im} f$ (additive isomorphism).

Def 27. Let I be an additive subgroup of R. I is called an ideal if $\forall r \in R, x \in I, rx \in I, xr \in I$. $(R/I, +, \cdot)$ forms a quotient ring under

$$\forall r_1, r_2 \in R, (r_1 + I)(r_2 + I) = r_1r_2 + I$$

well-defined: easy to show.

Ex 1.4.3. State and show the isomorphism theorems and the factor theorem.

Prop 1.4.2. If R is a ring with 1, then \exists ! ring homo. $\varphi: \mathbb{Z} \to R$ s.t. $\varphi(1) = 1$.

Proof. Let $\varphi : \mathbb{Z} \to R$ is a ring homo. s.t. $\varphi(1) = 1$. Then $\forall n \in \mathbb{Z}, \varphi(n) = \varphi(1) + \cdots + \varphi(1) = n1$. Now $\forall n, m \in \mathbb{Z}, \varphi(n)\varphi(m) = (n1)(m1) = n(m1) = (nm)1$ by the distributive law. So φ is well-defined and unique.

Def 28. In Prop 1.4.2, $\ker \varphi = m\mathbb{Z}$ for some m > 0. We call m the characteristic of R, denoted by $\operatorname{char} R = m$.

Prop 1.4.3.

- 1. If R is an integral domain, then char R = 0 or p, where p is a prime. (try to prove this)
- 2. In the case of char R = p, $\forall a, b \in R$, $(a + b)^p = a^p + b^p$.

Proof.

$$(a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \dots + b^p = a^p + b^p$$

because $p \mid {p \choose 1} \implies {p \choose i} a^{p-i} b^i = 0$.

Ex 1.4.4. Let F be a field. Show that

- 1. if char F = 0, then $\mathbb{Q} \hookrightarrow \text{subfield of } F$.
- 2. if char F = p, then $\mathbb{Z}/p\mathbb{Z} \hookrightarrow \text{subfield of } F$.

Theorem 9. If F is a finite field, then $|F| = p^n$ for some $n \in \mathbb{N}$ and p is a prime.

Proof. By Ex. 1.4.4, char F = p, p is a prime and $\mathbb{Z}/p\mathbb{Z} \hookrightarrow F$.

We have $\mathbb{Z}/p\mathbb{Z} \times F \to F$, $(r, v) \mapsto rv$. F can be rearded as a vector space over $\mathbb{Z}/p\mathbb{Z}$.

Let
$$\dim_{\mathbb{Z}/p\mathbb{Z}} F = n$$
, then $F \cong (\mathbb{Z}/p\mathbb{Z})^n \implies |F| = p^n$.

Theorem 10. Let F be a field. Then any finite subgroup G of $(F^{\times}, \cdot, 1)$ is cyclic.

Proof. Let |G| = n. Define h to be the max order of an element in G, say $a^h = 1$.

If
$$h = n$$
, then $|\langle a \rangle| = h = n = |G|$ and $\langle a \rangle \subseteq G$, so $G = \langle a \rangle$.

Otherwise, h < n. We know that $x^h - 1$ has at most h roots. So $\exists b \in G$ is not a root of $x^h - 1$. Let $\operatorname{ord}(b) = h'$, so $h' \mid n$ and $h' \nmid h$. So \exists a prime p s.t. $p' \mid h'$ but $p'' \nmid h$.

Write $h = mp^s$, s < r and $gcd(m, p) = 1 \implies ord(a^{p^s}) = m$.

Write $h' = qp^r \implies \operatorname{ord}(b^q) = p^r$.

Since $gcd(m, p^r) = 1$, ord $(a^{p^s}b^q) = mp^r > mp^s = h$, which is a contradiction.

Ex 1.4.5.

- 1. Let $a, b \in G$ with ab = ba and ord(a) = m, ord(b) = n. If gcd(m, n) = 1, then ord(ab) = mn. In general, is the order of ab equal to lcm(m, n)?
- 2. Let G be a finite group and $H, K \leq G$. Then $|HK| = \frac{|H||K|}{|H \cap K|}$.

1.5 Week 5

1.5.1 Group actions I

Def 29. A group G is said to act on a nonempty set X if \exists a map $G \times X \to X$ with $(g, x) \mapsto gx$ s.t.

- 1. 1x = x
- 2. $(g_1g_2)x = g_1(g_2x) \quad \forall g_1, g_2 \in G$

Prop 1.5.1. {actions of G} \leftrightarrow {group homo. $G \rightarrow S_X$ }

Proof. Given an action $(g, x) \mapsto gx$, consider $\varphi : G \to S_X$ s.t. $\varphi : g \mapsto (\tau_g : x \mapsto gx)$.

- 1-1: $gx = gy \implies g^{-1}(gx) = y \implies x = y$.
- onto: $\forall y \in X$, let $x = g^{-1}y$, then y = gx.
- group homo.: $\varphi(gg') = (\tau_{gg'} : x \mapsto gg'x) = \tau_g \circ \tau'_g = \varphi(g)\varphi(g')$.

Conversely, given a group homo. $\varphi: G \to S_X$, consider $(g, x) \mapsto \varphi(g)(x)$.

- $1x = \varphi(1)(x) = \text{Id}(x) = x$.
- $g_1g_2x = \varphi(g_1g_2)(x) = \varphi(g_1) \circ \varphi(g_2)(x) = g_1(g_2x).$

Def 30. A representation of G on a vector space V is a group action of G on V linearly. i.e. \exists group homo. $\varphi: G \to \operatorname{GL}(V)$.

Eg 1.5.1.

$$\mathbb{Z}/m\mathbb{Z} \to \mathrm{SO}(2), \quad \overline{k} \mapsto \begin{pmatrix} \cos\frac{2k\pi}{m} & -\sin\frac{2k\pi}{m} \\ \sin\frac{2k\pi}{m} & \cos\frac{2k\pi}{m} \end{pmatrix}$$

Eg 1.5.2.

$$S_n \to \mathrm{GL}(n,\mathbb{R}), \quad \sigma \mapsto (\tau_\sigma : e_i \mapsto e_{\sigma(i)})$$

Remark 8.

- 1. An action $G \times X \to X$ is said to be faithful if the corresponding group homo. $\varphi : G \hookrightarrow S_X$, denoted by $G \curvearrowright X$.
- 2. In general, $\ker \varphi = \{ g \in G \mid gx = x \quad \forall x \in X \} = \bigcap_{x \in X} \{ g \mid gx = x \}.$ Define $G_x = \{ g \mid gx = x \} \leq G$ is the isotropy subgroup of G at x. (the stabilizer of G at x)
- 3. $\varphi: G \to S_X \implies G/\ker \varphi \hookrightarrow S_X$. So $G/\ker \varphi \times X \to X$ is faithful.
- 4. Let $\mathcal{C}(X) = \{ f : X \to \mathbb{C} \}$. If $G \curvearrowright X$, then $G \curvearrowright \mathcal{C}(X)$ by $G \times \mathcal{C}(X) \to \mathcal{C}(X)$ with $(g, f) \mapsto gf(x) = f(g^{-1}x)$.

The reason: $(g_1g_2)f(x) = f((g_1g_2)^{-1}x) = f(g_2^{-1}g_1^{-1}x) = g_1(g_2f)(x)$.

Def 31. Let $G \curvearrowright X$ and $x \in X$.

- The **orbit** of x is defined to be $Gx = \{gx \mid g \in G\}$.
- $G \cap X$ is said to be transitive if \exists only one orbit. i.e. $\forall x, y \in X, \exists g \in G$ s.t. y = gx.

The set of orbits forms a partition: $x \sim y \iff \exists g \in G \text{ s.t. } y = gx.$

Prop 1.5.2. Let $G \curvearrowright X$ and $x \in X$. Then $|Gx| = [G : G_x]$.

In particular, $|G| < \infty \implies |G| = |Gx||G_x| \quad \forall x \in X$.

Proof. Define $\psi: Gx \to \{\text{left coset of } G_x\}$ as $\psi: gx \mapsto gG_x$.

- well-defined and 1-1: $g_1x = g_2x \iff g_2^{-1}g_1x = x \iff g_2^{-1}g_1 \in G_x \iff g_2^{-1}g_1G_x = G_x \iff g_1G_x = g_2G_x.$
- onto: $\forall g \in G, \psi(gx) = gG_x$.

1.5.2 Action by left multiplication

- The action $G \times G \to G$, $(g, x) \mapsto gx$ is associated with $\varphi : G \hookrightarrow S_G$. It is faithful (Cayley theorem) and transitive.
- Let $H \leq G$ and $X := \{ \text{left coset of } H \}$. The group action $(g, xH) \mapsto gxH \leadsto \varphi : G \to S_X$.

$$\ker \varphi = \bigcap_{x \in G} \underbrace{xHx^{-1}}_{\text{$x \in G$}} \leq H$$
 a conjugate of H

which is the largest normal subgroup in G contained in H.

Proof. If
$$\begin{cases} N \lhd G \\ N \leq H \end{cases}, \forall x \in G, xNx^{-1} \leq xHx^{-1} \implies N = N(xx^{-1}) = xNx^{-1} \leq xHx^{-1}.$$

Prop 1.5.3. Let $H \leq G$ with [G:H] = p being the smallest prime dividing |G|. Then $H \triangleleft G$.

Proof. Let $X = \{a_1H, \ldots, a_pH\}$ (all left coests of H) and $\varphi : G \to S_p$ be the associated group homo. for the group action $(g, a_iH) \mapsto ga_iH$.

By the 1st isom. thm., $G/\ker \varphi \hookrightarrow S_p$.

By Lagrange thm. $|G/\ker\varphi| \mid |S_p| = p!$ and $|G/\ker\varphi| \mid |G| \implies |G/\ker\varphi| \mid p$.

So $|G/\ker \varphi| = 1$ or p.

If $|G/\ker \varphi| = 1 \implies G = \ker \varphi \le H \le G$, which is a contradiction.

So $|G/\ker \varphi| = p \implies [G : \ker \varphi] = p \implies [G : H][H : \ker \varphi] = p \implies [H : \ker \varphi] = 1 \implies H = \ker \varphi \lhd G.$

1.5.3 Action by conjugation

• The action $G \times G \to G$ $(g,x) \mapsto gxg^{-1}$ is associated with the group homo. $\varphi : G \to S_G$ $g \mapsto (\tau_g : x \mapsto gxg^{-1})$.

$$\operatorname{Inn}(G) := \{ \tau_q \mid g \in G \}$$

Fact 1.5.1. τ_g is an automorphism. (isom. $G \to G$)

So $\varphi: G \to \operatorname{Inn}(G) \leq \operatorname{Aut}(G) \leq S_G$.

$$\ker \varphi = \{ g \in G \mid gxg^{-1} = x \quad \forall x \in G \} = Z_G.$$

By the 1st isom. thm., $G/\ker \varphi \cong \operatorname{Inn}(G)$.

- The conjugacy class: $Gx = \{gxg^{-1} \mid g \in G\} = Cl(x)$.
- The centralizer of x in G: $G_x = \{ g \in G \mid gxg^{-1} = x \} = Z_G(x)$.

$$|Cl(x)| = [G : Z_G(x)], \text{ if } |G| < \infty, |G| = |Cl(x)||Z_G(x)|$$

• For $H \lhd G$, define $G \times H \to H$ $(g,h) \mapsto ghg^{-1}$ with the group homo. $\varphi : G \to \operatorname{Aut}(H)$.

$$\ker \varphi = \{ g \in G \mid gxg^{-1} = x \quad \forall x \in H \} = Z_G(H) \implies G/Z_G(H) \le \operatorname{Aut}(H)$$

• The normalizer of H in G: $N_G(H) = \{ g \in G \mid gHg^{-1} = H \}$

Theorem 11 (Normalizer-Centralizer theorem). If $H \leq G$ then $N_G(H)/Z_G(H) \hookrightarrow \operatorname{Aut}(H)$.

Proof. Define $\varphi = g :: N_G(H) \mapsto (h \mapsto ghg^{-1}) :: \operatorname{Aut}(H)$. Then $\ker \varphi = Z_G(H)$, so $N_G(H)/Z_G(H) \cong \operatorname{Im} \varphi \leq \operatorname{Aut}(H)$.

1.6 Week 6

1.6.1 Group actions II

Def 32. Let $G \curvearrowright X$ and $|X| < \infty$. Write Fix $G := \{ x \in X \mid gx = x \quad \forall g \in G \}$.

- $x \in \operatorname{Fix} G$, $Gx = \{x\}$.
- $x \notin \operatorname{Fix} G$, $|Gx| = [G:G_x]$.

Let $\{G_{x_1}, \ldots, G_{x_n}\}$ be the set of distinct orbits. After rearrangement, assume $x_1, \ldots, x_r \in \operatorname{Fix} G, x_{r+1}, \ldots, x_n \notin \operatorname{Fix} G$. Then

$$|X| = |\operatorname{Fix} G| + \sum_{i=r+1}^{n} [G : G_{x_i}]$$

Theorem 12 (class equation). Let $|G| < \infty$. Then either $G = Z_G$ or $\exists a_1, \ldots, a_m \in G \setminus Z_G$ s.t.

$$|G| = |Z_G| + \sum_{i=1}^n [G:G_{a_i}]$$

Proof. Consider the action $(g, x) \mapsto gxg^{-1}$, then

Fix
$$G = \{ x \in G \mid qxq^{-1} = x \quad \forall q \in G \} = Z_G$$

It follows from the above argument.

Def 33. G is called a p-group if $|G| = p^n$, where p is a prime, $n \in \mathbb{N}$.

Prop 1.6.1. If G is a p-group, then $Z_G \neq \{1\}$.

Proof. Let $|G| = p^n$. If $G = Z_G$, then done. Otherwise, by the class equation (use action by conjugation), $|G| = |Z_G| + \sum_{i=1}^n [G:G_{a_i}], \quad a_i \notin Z_G$.

$$G_{a_i} = Z_G(a_i)$$
, so $a_i \notin Z_G \implies Z_G(a_i) \subsetneq G \implies p \mid [G : Z_G(a_i)] = \frac{|G|}{|Z_G(a_i)|}$.
So $|Z_G| = |G| - \sum_{i=1}^n [G : Z_G(a_i)] \implies p \mid |Z_G| \implies Z_G \neq \{1\}$.

Prop 1.6.2. If $|G| = p^2$, then G is abelian. $(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z})$ and $\mathbb{Z}/p^2\mathbb{Z}$)

Proof. Assume that G is not abelian. By prop 1.6.1, $|Z_G| = p \implies |G/Z_G| = p \implies G/Z_G$ is cyclic $\implies G$ is abelian. (contradiction)

Prop 1.6.3. If $|G| = p^3$ and G is not abelian, then $|Z_G| = p$.

(Abelian: $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p^3\mathbb{Z}$)

Prop 1.6.4. Let $|G| = p^n$. Then $\forall 0 \le k \le n, \exists G_k \triangleleft G$ s.t. $|G_k| = p^k$ and $G_i \le G_{i+1}$.

In general, for a finite group G, $\exists \{1\} = G_r \triangleleft G_{r-1} \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$ s.t. G_i/G_{i+1} is cyclic. we call G a solvable group.

Proof. By induction on n, n = 1 is trivial. For n > 1, assume that the statement a holds for n - 1. By prop 1.6.1, $Z_G \neq \{1\}$. $\exists a \in Z_G, a \neq 1$. Let $\operatorname{ord}(a) = p^l$, then $\operatorname{ord}(a^{p^{l-1}}) = p$. \Longrightarrow in any case, $\exists a \in Z_G$ with $\operatorname{ord}(a) = p$.

Now $|G/\langle a\rangle| = p^{n-1}$, so by induction hypothesis, $\forall 0 \leq k \leq n-1, \exists \overline{G_k} \triangleleft G/\langle a\rangle$ s.t. $|\overline{G_k}| = p^k, \overline{G_i} \leq \overline{G_{i+1}}$.

By 3rd isom. thm., $\exists G_{k+1} \triangleleft G$ s.t. $\overline{G_k} = G_{k+1}/\langle a \rangle, G_j \subsetneq G_{j+1}$ and $|G_{k+1}| = p^{k+1}$.

Prop 1.6.5. Let a *p*-group $G \curvearrowright X$ with $|X| < \infty$. Then $|X| \equiv |\operatorname{Fix} G| \pmod{p}$.

Theorem 13 (Cauchy theorem). Let $p \mid |G|$. Then $\exists a \in G$ s.t. $\operatorname{ord}(a) = p$. Consider

$$X = \{ (a_1, \dots, a_p) \mid a_i \in G, a_1 a_2 \dots a_p = 1 \}$$

and the action $\mathbb{Z}/p\mathbb{Z} \times X \to X$:

$$(\overline{k},(a_1,\ldots,a_p))\mapsto (a_{k+1},\ldots,a_p,a_1,\ldots,a_k)$$

(This is well-defined since $ab = 1 \implies ba = 1$ in a group.) We find that $(a_1, \ldots, a_p) \in \operatorname{Fix} \mathbb{Z}/p\mathbb{Z} \iff a_1 = a_2 \ldots a_p$. By prop 1.6.5, $|\operatorname{Fix} \mathbb{Z}/p\mathbb{Z}| \equiv |X| \pmod{p}$. And $|X| = |G|^{p-1} \equiv 0 \pmod{p}$. Since $(1, \ldots, 1) \in \operatorname{Fix} \mathbb{Z}/p\mathbb{Z}, |\mathbb{Z}/p\mathbb{Z}| \neq 0 \implies |\mathbb{Z}/p\mathbb{Z}| \geq p$.

So $\exists (a, ..., a) \in \operatorname{Fix} \mathbb{Z}/p\mathbb{Z} \implies a^p = 1$.

Application: Let $|G| = p^3$ and G be non-abelian (p is odd). By prop 1.6.3, $|G/Z_G| = p^2$. Since G is non-abelian, we have $G/Z_G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. That is, $\forall a \in G, a^p \in Z_G$.

 $\exists \, \varphi : G o Z_G$

$$\exists \, \varphi : G \to Z_G \cong C_p \text{ with } \varphi : a \mapsto a^p$$

Since G/Z_G is abelian, $[G,G] \leq Z_G$. And

$$\begin{cases} |[G,G]| \mid |Z_G| = p \\ G \text{ is non-abelian} \end{cases} \implies [G,G] = Z_G$$

Def 34. $[x,y] = x^{-1}y^{-1}xy \in [G,G], [x,y]^p = 1$

So $a^p b^p = a^p b^p [b, a]^p$... 換換換總共需要 p(p-1)/2

$$a^p b^p = (ab)^p [b, a]^{\frac{p(p-1)}{2}} = (ab)^p$$

So φ is a group homo.

So,

Now if $\ker \varphi = G$ ($\forall a \in G, a^p = 1$), i.e. φ is trivial, then φ is useless. Else, $\exists a \in G$ s.t. $\operatorname{ord}(a) = p^2$, then $H = \langle a \rangle \lhd G$. ([G:H] = p is the smallest prime dividing |G|)

Also, in this case, $\varphi: G \twoheadrightarrow Z_G \implies G/\ker \varphi \cong Z_G$. Let $E = \ker \varphi$, $|E| = p^2$. By the def. of $\ker \varphi$, $E \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

We find that $H \cap E = \langle a^p \rangle$. Pick $b \in E \setminus H$ and let $K = \langle b \rangle \implies |K| = p, H \cap K = \{1\}, HK = G.$

1.6.2 Semidirect product

Fact 1.6.1. $K \triangleleft G, H \triangleleft G, K \cap H = \{1\} \implies KH = K \times H$ $(\forall k \in K, h \in H, khk^{-1}h^{-1} \in H \cap K = \{1\}, \implies kh = hk)$

Fact 1.6.2. Let K, H be two groups, and $G = K \times H \implies K \times \{1\} \triangleleft K \times H, \{1\} \times H \triangleleft K \times H$

Observation 1. $K \leq G, H \triangleleft G, K \cap H = \{1\}$ (K 慘 H 好,簡稱慘好集) \Longrightarrow elements in KH has unique representation? 好事喔 $KH \iff K \times H$ 1-1 corresp, $(kh) \leftrightarrow (k,h)$

Group operation : $\forall k_1, k_2 \in K, h_1, h_2 \in H, (k_1h_1)(k_2h_2) = k_1k_2(k_2^{-1}h_1k_2)h_2$ Let $\tau : K \to \text{Aut}(H), k \mapsto (\tau(k) : h \mapsto khk^{-1})$ (類似 $\in \text{Inn}(H)$)

Def 35 (Semi-Direct Product (慘好積)). $K \times_{\tau} H = \{(k,h)|k \in K, h \in H\}$ with group operation : $(k_1,h_1)(k_2,h_2) = (k_1k_2,\tau(k_2^{-1})(h_1)(h_2))$ where $\tau: K \to \operatorname{Aut}(H)$ (need not to be inner homomorphism)

Properties:

- Associativity: Good, ex
- The identity = (1, 1)
- Inverse: $(k,h)^{-1} = (k^{-1}, \tau(k)(h^{-1}))$
- $K \cong K \times \{1\} \leq K \times_{\tau} H : (k_1, 1)(k_2, 1) = (k_1k_2, \tau(k_2^{-1})(1)1) = (k_1k_2, 1) \in K \times \{1\}$ $H \cong \{1\} \times H \leq K \times \tau H : (1, h+1), (1, h_2) = (1, \tau(1^{-1})(h_1)h_2) = (1, h_1h_2) \in \{1\} \times K$
- $H \triangleleft K \times_t H : (k,h)(1,h')(k,h)^{-1} = (k,hh')(k^{-1},\tau(k)(h^{-1})) = (1,\tau(k)(hh')\tau(k)(h^{-1})) \in H$
- $\tau(k)(h) = khk^{-1} : (k,1)(1,h)(k^{-1},1) = (k,h)(k^{-1},1) = (1,\tau(k)(h))$
- If τ is trivial $\implies K \times_t H \cong K \times H$

Remark 9. Some definition swaps the order of H and K, i.e. $(h_1, k_1)(h_2, k_2) = (h_1\phi(k_1)(h_2), k_1k_2)$

Ex 1.6.1. Show that $H \rtimes_{\phi} K$ is a group and satisfies the above properties.

Eg 1.6.1. Construct a non-abelian group of order 21.

Fact 1.6.3. $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times} \cong C_{p-1}$

$$\operatorname{Sol}: \phi_k: \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}, \overline{1} \mapsto \overline{k}$$

$$\phi_{k_2} \circ \phi_{k_1}(1) = \phi_{k_2}(\overline{k_1}) = \phi_{k_2}(1 + \dots + 1) = \overline{k_2} + \dots \overline{k_2} = \overline{k_1 k_2}$$

$$\operatorname{Let} K = C_3, H = C_7, \text{ define } \tau: C_3 \to \operatorname{Aut}(C_7) \cong C_6, a \mapsto \phi_2$$

$$\phi_k: b \mapsto b^k$$

$$G = \langle a, b | a^3 = 1, b^7 = 1, aba^{-1} = b^2 \rangle$$

Eg 1.6.2. p : odd, $|G| = p^3$, G is non-abelian.

(sol) $\phi: G \to Z(G), a \mapsto a^p$ non trivial case $\exists a \in G$ with $\operatorname{ord}(a) = p^2$. Let $H = \langle a \rangle$ here ϕ is onto and $E = \ker \phi \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ And $|H \cap E| = p$ $H \lhd G$ because [G:H] = p Pick $b \in E \setminus H$ and let $K = \langle b \rangle \implies |K| = p, K \cap H = \{1\}$ so $|G| = |KH| = p^3$

Fact 1.6.4. Aut $(\mathbb{Z}/p^2\mathbb{Z}) \cong (\mathbb{Z}/p^2\mathbb{Z})^{\times}$

Sol: $\phi_k: \mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p^2\mathbb{Z}, \bar{1} \mapsto \bar{k}, \gcd(k, p) = 1$

Find a group homo $\tau: K \implies \operatorname{Aut}(H)$ because $(1+p)^p \equiv 1 \mod p^2$, $\operatorname{ord}\left(\overline{1+p}\right) = p$. Let $P = \langle \overline{1+p} \rangle$ is the only subgroup of order p. (if $\exists |Q| = p, P \neq Q$ then $P \cap Q = 1, |PQ| = p^2$ but

|G|=p(p-1), miserable.) So let $\tau:b\mapsto (\phi_{1+p}:a\mapsto a^{1+p})$ so $G=\langle a,b|a^{p^2}=1,b^p=1,bab^{-1}=a^{1+p}\rangle$ is a non-abelian group of order p^3 .

Eg 1.6.3. Isometry of \mathbb{R}^n

Def 36 (Isometry). An isometry of \mathbb{R}^n is a function $h: \mathbb{R}^n \to \mathbb{R}^n$ that preserves the distance between vectors.

 $h = t \circ k$ where t is translation, k is an isometry fixing the origin, i.e. $k \in O(n)$. Let T be the group of translations on R^n , $T \cong (R^n, +, 0), t \mapsto t(0)$.

Let
$$\tau: O(n) \to \operatorname{Aut}(T), A \mapsto L_A: R^n \to R^n, v \mapsto Av$$

 $\Longrightarrow \operatorname{Isom}(R^n) = O(n) \times_{\tau} R^n$

Eg 1.6.4. Quaternium $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ is not a semi-deriect product of any two proper subgroups.

pf: since $\{\pm 1\}$ is contained in any non-trivial subgroups, can't find $H \cap K = \{1\}$.

Eg 1.6.5.
$$A_4, V_4 = \{1, (12)(34), (14)(23), (13)(24)\} \triangleleft A_4, V_4 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

Let
$$H = \langle (123) \rangle \cong C_3$$
, define $\tau : H \to \operatorname{Aut}(V_4) \cong GL_2(\mathbb{Z}/2\mathbb{Z})$ (123) $\mapsto (\bar{0}\bar{1}; \bar{1}\bar{1})$ so $A_4 \cong C_3 \times_{\tau} V_4$.

Ex 1.6.2. Construct D_n as a semi-direct product of $\mathbb{Z}/n\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z}$.

Ex 1.6.3.

- 1. Show that S_4 is a semi-direct product of V_4 and $H = \{ \sigma \in S_4 | \sigma(4) = 4 \} \sim S_3$.
- 2. Show that S_n is a semi-direct product of A_n and $H = \langle (12) \rangle$.

Remark 10.

- $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}) \cong GL_2(\mathbb{Z}/p\mathbb{Z})$ (regarded as a vector space over $\mathbb{Z}/p\mathbb{Z}$)
- $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}) \cong \operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}) \times \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) \cong C_{p-1} \times C_{q-1}$

1.7 Week 7

1.7.1 Composition series

Ques: How to simplify a finite group G?

Strategy:

- If $G = \{1\}$, then done.
- Otherwise, check whether G has a nontrivial proper normal subgroup.
- If no, then G is said to be a simple group.
- Otherwise, find a normal subgroup G_1 as large as possible s.t. G/G_1 is simple.
- If G_1 is simple, then done.
- Otherwse, repeat above on G_1 and get G_2, \ldots, G_n s.t.

$$G_n = \{1\} \triangleleft G_1 \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$$
 G_i/G_{i+1} is simple composition factors

Say "it is a composition series" with length(G) = n.

Hence simple groups can be regarded as basic building blocks of groups.

The classification of all finite simple groups is given as follows:

- 1. $\mathbb{Z}/p\mathbb{Z}$, p is a prime.
- 2. $A_n, n \ge 5$.
- 3. simple groups of Lie type.
- 4. 26 sporadic simple groups.

Eg 1.7.1.
$$G = S_4, G_1 = A_4, G_2 = V_4, G_3 = \langle (1\ 2)(3\ 4) \rangle, G_4 = \{1\} \rightsquigarrow \text{length}(S_4) = 4.$$
 factors: C_2, C_3, C_2, C_2 .

Eg 1.7.2.
$$G = \mathbb{Z}/12\mathbb{Z} = \langle \bar{1} \rangle$$
.

- $G_1 = \langle \bar{2} \rangle, G_2 = \langle \bar{4} \rangle, G_3 = \langle \bar{0} \rangle \rightsquigarrow \text{length}(3), \text{ factors: } C_2, C_2, C_3.$
- $G_1' = \langle \bar{2} \rangle, G_2' = \langle \bar{6} \rangle, G_3' = \langle \bar{0} \rangle \rightarrow \text{length}(3), \text{ factors: } C_2, C_3, C_2.$
- $G_1'' = \langle \bar{3} \rangle, G_2'' = \langle \bar{6} \rangle, G_3'' = \langle \bar{0} \rangle \rightsquigarrow \text{length}(3), \text{ factors: } C_3, C_2, C_2.$

Eg 1.7.3. Let
$$|G| = p^n$$
. We know $\forall 0 \le k \le n$, $\exists G_k \triangleleft G$ with $|G_k| = p^k$ and $G_i \subsetneq G_{i+1}$. length $(G) = n$, factors: C_p, \ldots, C_p . $(n \text{ times})$

Theorem 14 (Jorden-Hölder theorem). If G has a composition series, then any two composition series have the same length and the same factors up to permutation.

Lemma 1 (Zassenhaus lemma). Let $H' \triangleleft H \leq G, K' \triangleleft K \leq G$. Then $(H \cap K')H' \triangleleft (H \cap K)H', (H' \cap K)K' \triangleleft (H \cap K)K'$ and

$$(H \cap K)H'/(H \cap K')H' \cong (H \cap K)K'/(H' \cap K)K'.$$

Theorem 15 (Schreier theorem). Any two normal series of G have equivalent refinements. refinements: inserting a finite number of subgroups into the normal series.

Proof. For two normal series:

$$\{1\} = H_r \triangleleft H_{r-1} \triangleleft \cdots \triangleleft H_1 \triangleleft H_0 = G$$

$$\{1\} = K_s \triangleleft K_{r-1} \triangleleft \cdots \triangleleft K_1 \triangleleft K_0 = G$$

We define

$$H_{ij} = (H_i \cap K_j)H_{i+1}$$
$$K_{ji} = (H_i \cap K_j)K_{j+1}.$$

Then we have

$$\{1\} = H_{(r-1)s} \lhd H_{(r-1)(s-1)} \lhd \cdots \lhd H_{(r-1)0} = H_{r-1} = H_{(r-2)s} \lhd \cdots \lhd H_{10} = H_1 = H_{0s} \lhd \cdots \lhd H_{00} = G$$

$$\{1\} = K_{(s-1)r} \lhd K_{(s-1)(r-1)} \lhd \cdots \lhd K_{(s-1)0} = K_{s-1} = K_{(s-2)r} \lhd \cdots \lhd K_{10} = K_1 = K_{0r} \lhd \cdots \lhd K_{00} = G_{00} = G$$

Both have size
$$= rs$$
. By lemma, $H_{ij}/H_{i(j+1)} \cong K_{ji}/K_{j(i+1)}$. Note that if $H_{ij} = H_{i(j+1)}$, then $K_{ji} = K_{j(i+1)}$.

proof of Jorden-Hölder theorem. Let

$$\begin{cases}
\{1\} = G_n \lhd \cdots \lhd G_1 \lhd G_0 = G & (*) \\
\{1\} = G'_m \lhd \cdots \lhd G'_1 \lhd G'_0 = G & (**)
\end{cases}$$

be two composition series.

By Schreier theorem, we get two refined equivalent series (*)', (**)'. Since (*), (**) are already composition series, (*) = (*)', (**) = (**)' So (*), (**) are equivalent.

proof of lemma. First prove $(H \cap K')H' \triangleleft (H \cap K)H'$.

•
$$\forall g \in H \cap K, gK'g^{-1} = K' \leadsto (gHg^{-1}) \cap (gK'g^{-1}) = H \cap K' \text{ and } gH'g^{-1} = H'.$$
 So
$$g(H \cap K')H'g^{-1} = (H \cap K')H'$$

• $\forall g \in H', ab \in (H \cap K')H',$

To prove

$$(H \cap K)H'/(H \cap K')H' \cong (H \cap K)K'/(H' \cap K)K'.$$

$$(H \cap K)H'/(H \cap K')H' \cong (H \cap K)(H \cap K')H'/(H \cap K')H'$$

$$\cong (H \cap K)/(H \cap K) \cap (H \cap K')H'$$

$$\cong (H \cap K)/K \cap (H \cap K')H'$$

$$\cong (H \cap K)/(H' \cap K)(H \cap K')$$

 $(K \cap (H \cap K')H' = (H' \cap K)(H \cap K')$, tricky) By symmetry,

$$(H \cap K)K'/(H' \cap K')K' \cong (H \cap K)/(H' \cap K)(H \cap K')$$

Prop 1.7.1. Let $|G| < \infty$. Then G is solvable \iff all composition factors are cyclic of prime order.

Proof. " \Leftarrow ": by def.

"\Rightarrow": If
$$G_i/G_{i+1} \cong C_n$$
 with $n = p_1^{m_1} p_2^{m_2} \dots p_r^{m_r}$.

Observation. Let $K \triangleleft G$. 把 K, G/K 拆成兩個 composition series 的話, 就可以把兩串接起來,長度就是加起來。

Ex 1.7.1. Let $\{1\} = G_n \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$ be a composition series of G and $K \triangleleft G$. Then after we eliminate equalities,

- 1. $\{1\} = (K \cap G_n) \triangleleft (K \cap G_{n-1}) \triangleleft \cdots \triangleleft (K \cap G_1) \triangleleft (K \cap G_0) = K$ is a composition series of K.
- 2. $\{\bar{1}\} = KG_n/K \triangleleft KG_{n-1}/K \triangleleft \cdots \triangleleft KG_1/K \triangleleft KG_0/K = G/K$ is a composition series of G/K.

Ex 1.7.2. Let $\begin{cases} H \lhd G \\ K \lhd G \end{cases}$ with $H \neq K$ s.t. G/H, G/K are simple. Then $H/H \cap K, K/K \cap H$ are simple too.

Ex 1.7.3. Let $\{1\} = G_n \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$ be a composition series of length n. Show by induction on n that for every composition series of G:

$$\{1\} = H_m \triangleleft H_{n-1} \triangleleft \cdots \triangleleft H_1 \triangleleft H_0 = G,$$

we have m = n and

$$\{H_{n-1}/H_n,\ldots,H_0/H_1\}=\{G_{n-1}/G_n,\ldots,G_0/G_1\}$$

Ex 1.7.4. Exhibit all composition series for $Q_8, D_4, \mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ respectively.

1.7.2 Modules over a PID

Def 37. Let R be a ring with 1. A R-modulue is an abelian group M (written additively) on which R acts linearly. $R \times M \to M$ $(r, x) \mapsto rx$

- 1. r(x+y) = rx + ry $r \in R, x, y \in M$
- 2. $(r_1 + r_2)x = r_1x + r_2x$ $r_1, r_2 \in R, x \in M$
- 3. $(r_1r_2)x = r_1(r_2x)$ $r_1, r_2 \in R, x \in M$
- 4. $1x = x \quad x \in M$

Eg 1.7.4. A k-vector space is a k-module.

Eg 1.7.5. An abelian group G can be regarded as a \mathbb{Z} -module.

$$\mathbb{Z} \times G \to G$$

$$(n,a) \mapsto na \quad \text{by} \quad na = \begin{cases} \underbrace{a + \dots + a}_{n \text{ times}} & \text{if } n \ge 0 \\ \underbrace{(-a) + \dots + (-a)}_{n \text{ times}} & \text{if } n < 0 \end{cases}$$

Eg 1.7.6. Let *I* be an ideal of *R*. Then *I* can be regarded as an *R*-module since $\forall r \in R, a \in I$, $ra \in I$.

Def 38. A submodule N of M is an additive subgroup of M s.t. $\forall r \in R, a \in N, ra \in N$.

Prop 1.7.2. Let $\phi \neq S \subseteq M$. The submodule generated by S is defined to be

$$\begin{split} \langle S \rangle_R &= \left\{ \sum_{\text{finite}} r_i x_i \, \middle| \, x_i \in S, r_i \in R \right\} = \text{the least submodule containg } S \\ &= \bigcap_{S \subset N \subset M} N \end{split}$$

Def 39. An *R*-module *M* is said to be finitely generated if $\exists x_1, \ldots, x_n \in M$ s.t. $M = \langle x_1, \ldots, x_n \rangle_R = Rx_1 + Rx_2 + \ldots Rx_n$

Eg 1.7.7. R is generated by 1 as an R-module.

Def 40. An additive group homo. $\varphi: M_1 \to M_2$ is called an R-module homo. if

$$\varphi(rx) = r\varphi(x) \quad \forall r \in R, x \in M_1$$

Def 41. An integral domain R is called a principal ideal domain (PID) if $\forall I$ ideal in R, $\exists a \in R$ s.t. $I = \langle a \rangle_R$.

Eg 1.7.8. \mathbb{Z} is a PID.

For $I \subseteq \mathbb{Z}$, I is an additive subgroup, so $I = m\mathbb{Z} = \langle m \rangle_{\mathbb{Z}}$.

Def 42. M is said to be a free module of rank n if $M \cong R^n = R \oplus \cdots \oplus R$ (or $R \times \cdots \times R$)

Theorem 16. If R is a PID, then any submodule of R^n is free of rank $\leq n$.

Proof. By induction on n. If n=1, notice that any submodule is an ideal I by the closure of submodule. Then since R is a PID, $\forall I \subseteq R, \exists a \in R \text{ s.t. } I = \langle a \rangle_R = Ra \cong R \text{ (as a } R\text{-module)}.$

Let n > 1 and N be a submodule of \mathbb{R}^n . Consider

$$\pi_1: \frac{R^n \to R}{(r_1, \dots, r_n) \mapsto r_1}$$
 and $\pi = \pi_1 \Big|_{N}: N \to R$

case 1: Im $\pi = \{0\}$. In this case, $N \subseteq \ker \pi_1 \cong \mathbb{R}^{n-1}$. By induction hypothesis, N is free of rank $\leq n-1 < n$.

case 2: $\operatorname{Im} \pi = \langle a \rangle$, say $\pi(x) = a$. Claim: $N = Rx \oplus \ker \pi, \ker \pi \subseteq \ker \pi_1 \cong R^{n-1}$.

- $Rx \cap \ker \pi = \{0\}$: $rx \in Rx \cap \ker \pi \implies \pi(rx) = 0$, then $r\pi(x) = 0$. But integral domain doesn't have zero divisors, so r = 0 and hence rx = 0.
- $N \supseteq Rx \oplus \ker \pi$: Obvious since $Rx, \ker \pi \subseteq N$.
- $N \subseteq Rx \oplus \ker \pi$: $\forall y \in N, \pi(y) = r_0 a$ for some $r_0 \in R$, $\pi(y r_0 x) = 0 \implies y r_0 x \in \ker \pi$. So $N \subseteq Rx \oplus \ker \pi$.

Recall that the elementary matrices are

- $D_i(u) = \text{diag}(1, ..., 1, u, 1, ..., 1).$ $D_i(u) \in GL(n, R)$ if u is a unit.
- $B_{ij}(a) = I_n + ae_{ij}, a \in R, i \neq j.$ $B_{ij}(a)^{-1} = B_{ij}(-a) \implies B_{ij}(a) \in GL(n, R).$
- $P_{ij} = I_n e_{ii} e_{jj} + e_{ij} + e_{ji}$.

Fact 1.7.1. If R is a PID and $\langle a,b\rangle_R = \langle d\rangle_R$, then $d = \gcd(a,b)$.

Proof.

- $a \in \langle d \rangle_R \implies a = rd$ for some $r \in R \implies d \mid a. \ v \in \langle d \rangle_R \implies d \mid b.$
- Let $c \mid a, c \mid b$, say $a = k_1 c, b = k_2 c$. $d \in \langle a, b \rangle_R \implies d = x_1 a + x_2 b$ for some $x_1, x_2 \in R$. So $d = x_1 k_1 c + x_2 k_2 c = (x_1 k_1 + x_2 k_2)c \implies c \mid d$.

Theorem 17. Let R be a PID and $A \in M_{n \times m}(R)$. Then $\exists P \in GL_n(R)$ and $Q \in GL_m(R)$ s.t.

$$PAQ = \begin{pmatrix} d_1 & & & & & & \\ & d_2 & & & & & \\ & & \ddots & & & & \\ & & & d_r & & & \\ & & & 0 & & \\ & & & \ddots & & \\ & & & 0 \end{pmatrix} \text{ with } d_i \mid d_{i+1} \quad \forall i = 1, \dots, r-1$$

Proof. Define the length l(a) of $a \neq 0$ to be r if $a = p_1 p_2 \dots p_r$ where p_1, \dots, p_r are prime elements. prime elements: $p \mid ab \implies p \mid a$ or $p \mid b$.

- 1. We may assume $a_{11} \neq 0$ and $l(a_{11}) \leq l(a_{ij}) \forall a_{ij} \neq 0$. (換一換就上去了...XD)
- 2. We may assume $\begin{cases} a_{11} \mid a_{1k} & \forall \, k=2,\ldots,m \\ a_{11} \mid a_{k1} & \forall \, k=2,\ldots,n \end{cases}$. If $a_{11} \nmid a_{1k}$, then we can interchange 2nd and kth columns to assume $a=a_{11} \nmid a_{12}=b$.

Let
$$d = \gcd(a, b) \implies \begin{cases} l(d) < l(a) \\ d = ax + by \text{ for some } x, y \in R \end{cases} \implies 1 = \frac{a}{d}x + \frac{b}{d}y$$
. Write $b' = \frac{b}{d}, a' = -\frac{a}{d}$. Then
$$\begin{pmatrix} -a' & b' \\ y & -x \end{pmatrix} \begin{pmatrix} x & b' \\ y & a' \end{pmatrix} = I_2$$

反正就是移一下減掉,length 會一直變小 ⇒ 這個操作會停.

3. 有這個 $\begin{cases} a_{11} \mid a_{1k} & \forall \, k=2,\ldots,m \\ a_{11} \mid a_{k1} & \forall \, k=2,\ldots,n \end{cases}$ 就可以全部消掉變成

$$\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & b_{n2} & \dots & b_{nm} \end{pmatrix}$$

4. May assume $a_{11} \mid b_{kl} \quad \forall \, k, l$. 不是的話就把該 row 往第一 row 加上去,重複前面的操作, $l(a_{11})$ 總是變小,因此會停.

5. 遞迴下去...

最後就弄出想要的矩陣了.

1.8 Week 8

1.8.1 Fundamental theorem of finitely generated abelian groups

Theorem 18 (Structure theorem of finitely generated module over a PID). Let R be a PID and M be a finitely generated R-module. Then $M \cong R/d_1R \oplus \cdots \oplus R/d_lR \oplus R^s, d_i \in R$ with $d_i \mid d_{i+1} \quad \forall i = 1, \ldots, l-1$ for some $s \in \mathbb{Z}^{\geq 0}$.

Proof. Let $M = \langle x_1, \dots, x_n \rangle_R$ and consider

$$\varphi: R^n \to M$$
$$e_i \to x_i$$

By 1st isom. thm., $R^n/\ker \varphi \cong M$.

We know $\ker \varphi \cong R^m \ (e_i' \mapsto f_i, e_i' \in R^m)$ for some $m \leq n$ and $\forall x \in \ker \varphi \quad \exists ! x_1, \dots, x_m \in R \text{ s.t. } x = \sum_{i=1}^m x_i f_i$.

Note that $\ker \varphi \subseteq R^n$. So we can write $f_i = \sum_{j=1}^n a_{ji} e_j \quad \forall i = 1, ..., m$. Then $x = \sum x_i \sum a_{ji} e_j = \sum (\sum a_{ji} x_i) e_j$.

 $R \text{ is a PID} \implies \exists P \in GL_n(R), Q \in GL_m(R) \text{ s.t.}$

$$PAQ = \begin{pmatrix} d_1 & & & \\ & \ddots & & \\ & & d_r & \\ & & 0 & \\ & & & \ddots \end{pmatrix} \quad \text{with} \quad d_i \mid d_{i+1} \quad \forall i = 1, \dots, r-1$$

So consider $[w_i] = Qe_i$. Since P, Q invertible, $R^n = \bigoplus Rw_i$, $\ker \varphi = \bigoplus d_iRw_i$ Hence

$$M \simeq R/ker\varphi = \bigoplus Rw_i/\bigoplus d_iRw_i = \bigoplus R/d_iR$$

 $R \rightarrow Rw_i/Rd_i'w_i$

 $1 \rightarrow \overline{w_i}$

 $r \rightarrow \overline{rw_i}$

Remark 11. If R is commutative, then " $R^n \cong R^m \implies n = m$."

Theorem 19. Let G be a finitely generated abelian group. Then Then $G \cong \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_l\mathbb{Z} \oplus \mathbb{Z}^s, d_i \in \mathbb{Z}$ with $d_i \mid d_{i+1} \quad \forall i = 1, \ldots, l-1$ for some $s \in \mathbb{Z}^{\geq 0}$.

Since G can be regarded as a f.g. \mathbb{Z} -module and \mathbb{Z} is a PID, it follows from the main theorem.

 $\operatorname{Tor}(G) = \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_l\mathbb{Z} \leq G \text{ and } G/\operatorname{Tor}(G) \cong \mathbb{Z}^s \text{ (free part of } G).$

Fact 1.8.1. If $d = p_1^{m_1} p_2^{m_2} \dots p_s^{m_s}$, then $\mathbb{Z}/d\mathbb{Z} \cong \mathbb{Z}/p_1^{m_1} \mathbb{Z} \oplus \mathbb{Z}/p_2^{m_2} \mathbb{Z} \oplus \dots \oplus \mathbb{Z}/p_s^{m_s} \mathbb{Z}$.

Theorem 20 (Chinese Remainder theorem). Let R be a commutative ring with 1 and I_1, \ldots, I_n be ideals of R. Then

$$\varphi: R \to R/I_1 \times \cdots \times R/I_n$$
 is a ring homo.
 $r \mapsto (\overline{r}, \dots, \overline{r})$

and

- (1) if I_i, I_j are coprime $\forall i \neq j$, then $I_1 I_2 \dots I_n = I_1 \cap I_2 \cap \dots \cap I_n$.
- (2) φ is surjective $\iff I_i, I_j$ are coprime $\forall i \neq j$.
- (3) φ is injective $\iff I_1 \cap I_2 \cap \cdots \cap I_n = \{0\}.$

So if I_i, I_j are coprime $\forall i \neq j$, then

$$R/I_1I_2...I_n \cong R/I_1 \times \cdots \times R/I_n.$$

 I_i, I_j are coprime $\iff I_i + I_j = R$.

Proof. we only need to prove (1), (2).

(1) By induction on n. n = 2, need $I_1 \cap I_2 \subseteq I_1 I_2$. Indeed, $I_1 \cap I_2 = (I_1 \cap I_2)R = (I_1 \cap I_2)(I_1 + I_2) \subseteq I_1 I_2$.

For n > 2, since $I_i + I_n = R \quad \forall i = 1, ..., n - 1, \ \exists \ x_i \in I_i, y_i \in I_n \ \text{s.t.} \ x_i + y_i = 1 \quad \forall i = 1, ..., n - 1.$

So $x_1x_2...x_{n-1} = (1-y_1)(1-y_2)...(1-y_{n-1}) = 1-y, y \in I_n \implies I_1I_2...I_{n-1} + I_n = R.$ Now, $I_1I_2...I_n = (I_1...I_{n-1})I_n = (I_1...I_{n-1}) \cap I_n = I_1 \cap \cdots \cap I_n.$

(2) " \Rightarrow ": WLOG, we may let $I_i = I_1, I_j = I_2$. We have $x \in R$ s.t.

$$\varphi(x) = (\overline{1}, \overline{0}, \dots, \overline{0})$$
 i.e. $\overline{x} = \overline{1}$ in R/I_1

Write $x \equiv 1 \pmod{I_1}$. Since $1 - x \in I_1, x \in I_2$ and $(1 - x) + x = 1, I_1 + I_2 = R$.

" \Leftarrow ": $\forall y \in \text{RHS}, y = (\overline{r_1}, \dots, \overline{r_n})$. If we may find that $x_i \in R$ s.t. $\varphi(x_i) = (\overline{0}, \dots, \overline{1}, \overline{0}, \dots, \overline{0})$, then

$$\varphi\left(\sum_{i=1}^{n} r_i x_i\right) = y$$

It is enough to show, for example, $\exists x \in R \text{ s.t. } \varphi(x) = (\overline{1}, \overline{0}, \dots, \overline{0}).$

Since $I_1 + I_i = R \quad \forall i = 2, ..., n, \exists x_i \in I_1, y_i \in I_i \text{ s.t. } x_i + y_i = 1 \forall i = 2, ..., n.$

So let $x = y_2 \dots y_n = (1 - x_2) \dots (1 - x_n)$. We have $x \in I_2, \dots, I_n$ and $x \equiv 1 \pmod{I_1}$.

Eg 1.8.1. |G| = 72 and G is abelian:

$$72 = 2 \times 36 = 3 \times 24 = 2 \times 2 \times 18 = 6 \times 12 = 2 \times 6 \times 6$$

Invariant factors

Elementary divisors

Def 43. The exponent of G with $|G| < \infty$ is

$$\operatorname{Exp}(G) := \min \left\{ m \in \mathbb{N} | g^m = 1 \quad \forall g \in G \right\}$$

Ex 1.8.1.

- 1. Let G be abelian with |G| = n. Show that if $d \mid n$, then $\exists H \leq G$ s.t. |H| = d.
- 2. If n = 540, d = 90, then construct all possible G and corresponding H.

Ex 1.8.2. Let G be abelian with $|G| < \infty$. Show that G is cyclic $\iff \operatorname{Exp}(G) = |G|$.

Ex 1.8.3. Let $f_i(x) \in \mathbb{Z}[x]$, i = 1, ..., k with deg $f_i = d$ and $p_1, ..., p_k$ be distinct primes. Show that $\exists f(x) \in \mathbb{Z}[x]$ with deg f = d s.t. $\overline{f}(x) = \overline{f_i}(x)$ in $\mathbb{Z}/p_i\mathbb{Z}[x]$ $\forall i = 1, ..., k$. $f(x) = a_d x^d + \cdots + a_0, \overline{f}(x) = \overline{a_d} x^d + \cdots + \overline{a_0}$

1.8.2 Sylow theorems

Def 44. Let $|G| = p^{\alpha}r$ with $p \nmid r$.

- 1. If $H \leq G$ with $|H| = p^{\alpha}$, then we call H a Sylow p-subgroup of G.
- 2. $\operatorname{Syl}_{p}(G) = \operatorname{the set}$ of all Sylow p-subgroups of G.
- 3. $n_p = |\operatorname{Syl}_p(G)|$.

Lemma 2 (Key lemma). Let $P \in \operatorname{Syl}_p(G)$ and Q be a p-subgroup of G. Then $Q \cap N_G(P) = Q \cap P$.

Proof. By Lagrange theorem, $H = Q \cap N_G(P)$ is also a p-subgroup of $N_G(P)$ since $|H| \mid |Q|$.

Since
$$\begin{cases} P \lhd N_G(P) \\ H \leq N_G(P) \end{cases} \implies HP \leq N_G(P), \text{ we have}$$

$$|HP| = \frac{|H||P|}{|H \cap P|} = p^{\alpha + k - s}$$

where $|H \cap P| = p^s, s \leq k$. Then $p^{\alpha+k-s} \mid |N_G(P)| \mid |G| = p^{\alpha}r$.

So
$$k = s \implies H = H \cap P \implies H \le P \cap Q$$
.

Theorem 21 (Sylow I). $\forall 0 \le k \le \alpha, \exists H \le G \text{ s.t. } |H| = p^k. \text{ In particular, Syl}_n(G) \ne \emptyset.$

Proof. By induction on |G|. If |G| = 1, then k = 0, $H = \{1\}$.

Assume $|G| > 1, k \ge 1, \alpha \ge 1$.

case 1: $p \mid |Z_G|$. By Cauchy theorem, $\exists a \in Z_G$ with $\operatorname{ord}(a) = p$. Then $\langle a \rangle \triangleleft G$ and $|G/\langle a \rangle| = p^{\alpha-1}r \leq |G|$. If k = 1, then $H = \langle a \rangle$. Otherwise, we may assume that $1 \leq k - 1 \leq \alpha - 1$. By induction hypothesis, $\exists H' = G/\langle a \rangle$ s.t. $|H'| = p^{k-1}$. By 3rd isom. thm., we can write $H' = H/\langle a \rangle$ and thus $|H| = p^k$.

case 2: $p \nmid |Z_G|$. By the class equation, $|G| = |Z_G| + \sum_{i=1}^m \frac{|G|}{|Z_G(a_i)|}, a_i \in Z_G$.

In this cases, $\exists a_j$ s.t. $p \not \mid \frac{|G|}{|Z_G(a_j)|} \implies p^{\alpha} \mid |Z_G(a_j)|$. And $Z_G(a_j) \subsetneq G$ since $a_j \notin Z_G$. By induction hypothesis, $\exists H \leq Z_G(a_j) \leq G$ s.t. $|H| = p^k$.

Theorem 22 (Sylow II). Let $P \in \operatorname{Syl}_p(G)$ and Q be a p-subgroup of G. Then $\exists \ a \in G$ s.t. $Q \leq aPa^{-1}$. In particular, $\forall \ P_1, P_2 \in \operatorname{Syl}_p(G), \exists \ a \in G$ s.t. $P_2 = aP_1a^{-1}$.

Proof. Let $X = \{ \text{ left cosets of } P \}$ and consider $Q \times X \to X$ $(a, xP) \mapsto axP$.

Observe that $xP \in \text{Fix } Q \iff axP = xP \quad \forall \ a \in Q \iff x^{-1}axP = P \quad \forall \ a \in Q \iff x^{-1}ax \in P \quad \forall \ a \in Q \iff a \in xPx^{-1} \quad \forall \ a \in Q.$

We know $|\operatorname{Fix} Q| \equiv |X| \pmod{p}$ and $p \nmid r \implies |\operatorname{Fix} Q| \neq 0 \iff \exists a \in G, Q \leq aPa^{-1}$.

In particular,
$$\begin{cases} P_2 \le aP_1a^{-1} \\ |P_2| = |aP_1a^{-1}| \end{cases} \implies P_2 = aP_1a^{-1}.$$

Theorem 23 (Sylow III). $n_p \equiv 1 \pmod{p}$ and $n_p \mid r$.

$$Proof. \qquad \bullet \ \, \text{Consider} \ \, \begin{pmatrix} P \times \operatorname{Syl}_p(G) \to \operatorname{Syl}_p(G) \\ (a, Q) \mapsto aQa^{-1} \end{pmatrix} \text{ where } P \in \operatorname{Syl}_p(G).$$

$$P' \in \operatorname{Fix} P \iff aP'a^{-1} = P' \quad \forall \ a \in P \iff P \leq N_G(P') \cap P = P' \cap P \iff P' = P.$$

So Fix
$$P = \{P\} \implies n_p \equiv |\operatorname{Fix} P| = 1 \pmod{p}$$
.

$$\bullet \ \ \text{Consider} \ \begin{array}{c} G \times \operatorname{Syl}_p(G) \to \operatorname{Syl}_p(G) \\ (a, \quad Q) \mapsto aQa^{-1} \end{array} \implies \text{There is only one orbit } \operatorname{Syl}_p(G).$$

We know
$$|\operatorname{Syl}_p(G)| = \frac{|G|}{|G_Q|}$$
 and $G_Q = N_G(Q)$. Then $n_p = \frac{|G|}{|G_Q|} \mid |G|$. So $n_p \mid p^{\alpha}r \implies n_p \mid r$.

Prop 1.8.1. Let
$$|G| = pq$$
 where p, q are primes with $\begin{cases} p < q \\ q \not\equiv 1 \pmod{p} \end{cases}$. Then $G \cong C_{pq}$.

Proof.
$$n_p = 1 + kp \mid q \implies n_p = 1 \text{ i.e. } H \in \operatorname{Syl}_p(G) \implies H \triangleleft G.$$

$$n_q = 1 + kq \mid p \implies n_q = 1 \text{ i.e. } K \in \operatorname{Syl}_q(G) \implies K \triangleleft G.$$

Since
$$gcd(p,q) = 1$$
, $H \cap K = 1$. Hence $G = H \times K \cong C_p \times C_q \cong C_{pq}$.

Eg 1.8.2. Consider $|G| = 255 = 3 \times 5 \times 17$.

- 1. 找兩個 normal subgroup (17, 5 or 3)
- 2. quot 掉後發現剩下的是 abelian \leadsto [G, G] 在裡面
- 3. [G, G] = 1
- 4. 唱 f.g. xxx thm. 得到 $G \cong \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_{17}$.
- 5. 中國剩飯定理 $G \cong C_{255}$.

Ex 1.8.4. If $|G| = 7 \times 11 \times 19$, then *G* is abelian.

Eg 1.8.3. No group G of order $48 = 2^4 \times 3$ is simple.

- 1. $n_2 = 1 + 2k \mid 3 \leadsto n_2 = 1 \text{ or } 3.$
- 2. $n_2 = 1$ then OK.
- 3. Assume $n_2 = 3$. Let $P \in \text{Syl}_2(G), X = \{ \text{ left cosets of } P \} (|X| = 3)$.
- 4. Consider $(A, xP) \mapsto axP \rightsquigarrow \varphi : G \to S_3$.
- 5. 考慮 $\ker \varphi$.

Ex 1.8.5. No group G of order 36 is simple.

Ex 1.8.6. No group G of order 30 is simple.

Ex 1.8.7. Let |G| = 385. Show that $\exists P \in \text{Syl}_7(G)$ s.t. $P \leq Z_G$.

1.9 Week 9

1.9.1 Classification

To classify groups of small orders:

- |G| = 1: $G = \{1\}$
- |G|=2: $G\cong C_2$
- |G| = 3: $G \cong C_3$
- |G| = 4: $G \cong \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$
- |G| = 5: $G \cong C_5$
- |G|=6: $n_3=1, n_2=1$ or 3. Let $H\in \mathrm{Syl}_3(G)$ and $H\triangleleft G$. Let $K\in \mathrm{Syl}_2(G)$. Also $H\cap K=\{1\}$ and HK=G then $G\cong K\times_{\tau}H$
 - If τ is trivial: $G \cong K \times H \cong C_2 \times C_3 \cong C_6$
 - $-\tau:b\mapsto\phi_2:\langle a\rangle\to\langle a\rangle\colon G\cong K\times_\tau H\cong\langle a,b\mid a^3=1,b^2=1,bab^{-1}=a^2=a^{-1}\rangle\cong D_3$
- |G| = 7: $G \cong C_7$
- |G| = 8:
 - If abelian: \mathbb{Z}_8 or $\mathbb{Z}_4 \times \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
 - If non-abelian:
 - * $\not\exists a \in G \text{ with } \operatorname{ord}(a) = 8$
 - * Not each $a \in G$ with $a^2 = 1$, otherwise G is abelian.
 - * $\exists a \in G \text{ with } \operatorname{ord}(a) = 4$: Let $H = \langle a \rangle$ and $H \triangleleft G$ since [G : H] = 2. Pick $b \in G \setminus H$ and $K = \langle b \rangle$
 - · ord(b) = 2: $H \cap K = \{1\}$ and HK = G then $G \cong K \times_{\tau} H$, $\tau : b \mapsto \phi : a \mapsto a^3 : G \cong K \times_{\tau} H \cong \langle a, b \mid a^4 = 1, b^2 = 1, bab^{-1} = a^3 = a^{-1} \rangle \cong D_4$
 - · ord(b) = 4: $H \cap K = \langle a^2 = b^2 \rangle$. Then consider $bab^{-1} \in H \implies bab^{-1} = 1, a, a^2, a^3$
 - 1. 1, a obviously wrong.
 - 2. $bab^{-1} = a^2$: $a = a^2aa^{-2} = b^2ab^{-2} = a^4 \implies a^3 = 1 \text{ }$
 - 3. So $bab^{-1} = a^3 = a^{-1}$.

$$G \cong \langle a, b \mid a^4 = 1, b^4 = 1, a^2 = b^2, bab^{-1} = a^3 = a^{-1} \rangle \cong Q_8$$

- |G| = 9: $G \cong \mathbb{Z}_9$ or $\mathbb{Z}_3 \times \mathbb{Z}_3$
- |G| = 10: $G \cong K \times H \cong C_2 \times C_5 \cong C_{10}$ or $G \cong D_5$
- |G| = 11: $G \cong C_{11}$
- |G|=12: Claim: If |G|=12, then either G has a normal Sylow 3-subgroup or $G\cong A_4$.

Proof. By Sylow 3, $n_3 = 1 + 3k \mid 4 \implies n_3 = 1$ or 4.

- If $n_3 = 1$, then G has a normal Sylow 3-subgroup.
- Otherwise, let $P \in \operatorname{Syl}_3(G)$ and $X = \{ \text{left cosets of } P \}$, |X| = 4. Consider $G \times X \to X$ defined by $(a, xP) \mapsto axP$ with $\phi : G \to S_4$. And $\ker \phi \leq P$, |P| = 3 and $P \not\subset G$ (since $n_3 = 4$), so $\ker \phi = \{1\}$.

And since $n_3=4$, there are 8 elements of order 3 which corresponds to 8 3-sycles in A_4 , thus $|\operatorname{Im} \phi \cap A_4| \geq 8$. But $|\operatorname{Im} \phi \cap A_4| \mid |A_4| = 12 \implies \operatorname{Im} \phi = A_4$

Now, for the case where $\exists H \in \mathrm{Syl}_3(G)$ and $H \triangleleft G$. Let $K \in \mathrm{Syl}_2(G)$, then $K \cap H = \{1\}$ and $KH = G \implies G \cong K \times_{\tau} H$ for some $\tau : K \to \mathrm{Aut}(H) = \{\mathrm{id}, \phi_2\}$

- $-\tau$ is trivial: \mathbb{Z}_{12} or $\mathbb{Z}_2 \times \mathbb{Z}_6$.
- $-\langle b \rangle = K \cong \mathbb{Z}_4: \ \tau(b) = \phi_2 \implies G = \langle a, b \mid a^3 = 1, b^4 = 1, bab^{-1} = a^{-1} \rangle \not\cong D_6, A_4$
- $-\langle b \rangle = K \cong \mathbb{Z}_2 \times \mathbb{Z}_2$: Let $K = \langle b, c \mid b^2 = 1, c^2 = 1, bc = cb \rangle$, then $\tau : b \mapsto \phi_2$ and $c \mapsto id$ (the other cases are equivalent to this one), $G = \langle a, b, c \mid a^3 = 1, b^2 = 1, c^2 = 1, bc = cb, bab^{-1} = a^{-1}, cac^{-1} = a \rangle \cong \langle a, b \mid a^3 = 1, b^2 = 1, bab^{-1} = a^{-1} \rangle \times \langle c \rangle \cong D_3 \times C_2 \cong D_6$

Fact 1.9.1. For odd $n, D_{2n} \cong D_n \times \mathbb{Z}/2\mathbb{Z}$.

Proof.

$$D_{2n} = \langle a, b \mid a^{2n} = 1, b^2 = 1, bab^{-1} = a^{-1} \rangle$$

$$H = \langle a^2, b \mid (a^2)^n = 1, b^2 = 1, b(a^2)b^{-1} = a^{-2} \rangle \cong D_n$$

$$K = \langle a^n \rangle \cong C_2$$

And n is odd, so $H \cap K = \{1\}$ and $D_{2n} \cong D_n \times C_2$

- |G| = 13: $G \cong C_{13}$
- |G| = 14: $G \cong C_{14}$ or D_7
- |G| = 15: $G \cong C_{15}$

Ex 1.9.1. Assume that K is cyclic and H is an arbitrary group. Let $\tau_1: K \to \operatorname{Aut}(H)$, $\tau_2: K \to \operatorname{Aut}(H)$ with $\tau_1(K) \sim \tau_2(K)$ (conjugate). If $|K| = \infty$, then assume that τ_1 and τ_2 are injective. Show that $K \times_{\tau_1} H \cong K \times_{\tau_2} H$.

Ex 1.9.2. Classify G if $|G| = p^3$ with p an odd prime and each nontrivial element of G has order p.

Ex 1.9.3. Classify groups of order 30.

1.9.2 Free groups

A free group generate by a non-empty set X is that there are no relations satisfied by any of elements in X.

Def 45. A free group on X is a group F with an inclusion map $i: X \to F$ satisfying the following universal property: For any group G and any map $f: X \to G$, exists a unique group homo $\varphi: F \to G$ that the following diagram commutes.

Theorem 24. F exists and is unique up to isomorphism. (Denote it as F(X) = F).

Proof. For X, we create a new disjoint set $X^{-1} = \{x^{-1} : x \in X\}$ and an element $1 \notin X \cup X^{-1}$.

Define
$$F(X) = \{1\} \cup \left\{ x_1^{\delta_1} x_2^{\delta_2} \cdots x_m^{\delta_m} : m \in \mathbb{N}, x_i \in X, \delta_i = \pm 1, x_{i+1}^{\delta_{i+1}} \neq \left(x_i^{\delta_i} \right)^{-1} \right\}$$
, and

$$x_1^{\delta_1} x_2^{\delta_2} \cdots x_m^{\delta_m} = y_1^{\epsilon_1} y_2^{\epsilon_2} \cdots y_m^{\epsilon_m} \iff n = m \text{ and } \delta_i = \epsilon_i \text{ and } x_i = y_i, \forall i$$

For each $y \in X \cup X^{-1}$, we define $\sigma_y : F(X) \to F(X)$ by

$$\sigma_y(x_1^{\delta_1}x_2^{\delta_2}\cdots x_m^{\delta_m}) = \begin{cases} yx_1^{\delta_1}x_2^{\delta_2}\cdots x_m^{\delta_m} & \text{if } x_1^{\delta_1} \neq y^{-1} \\ x_1^{\delta_1}x_2^{\delta_2}\cdots x_m^{\delta_m} & (m \geq 2) \\ 1 & (m = 1) \end{cases} \quad \text{if } x_1^{\delta_1} = y^{-1}$$

Then σ_y is a permutation of F(X), since if $\sigma_y(x_1^{\delta_1}x_2^{\delta_2}\cdots x_m^{\delta_m}) = \sigma_y(y_1^{\epsilon_1}y_2^{\epsilon_2}\cdots y_m^{\epsilon_m})$.

 $\begin{aligned} \mathbf{m} &= \mathbf{n} \text{: either } x_1^{\delta_1} = y_1^{\epsilon_1} = y^{-1} \text{ or not, then either } x_2^{\delta_1} x_3^{\delta_2} \cdots x_m^{\delta_m} = y_2^{\epsilon_1} y_3^{\epsilon_2} \cdots y_m^{\epsilon_m} \text{ or } y x_1^{\delta_1} x_2^{\delta_2} \cdots x_m^{\delta_m} = y_1^{\epsilon_1} y_2^{\epsilon_2} \cdots y_m^{\epsilon_m}. \end{aligned}$

m = n+2: Omimi

Also σ_y is onto since omimi. And notice that $\sigma_{y^{-1}} \circ \sigma_y = id_{F(X)}$

Define $A = \langle \sigma_x : x \in X \rangle \leq S_{F(X)}$. and define $\phi : F(X) \to A$ by $\phi(1) = id_{F(X)}$ and $x_1^{\delta_1} \cdots x_m^{\delta_m} \mapsto \sigma_{x_1}^{\delta_1} \cdots \sigma_{x_m}^{\delta_m}$. The it is omimi that ϕ is a bijection. So we define $x :: X \cdot y :: X = \phi^{-1}(\phi(x) \circ \phi(y))$.

The ϕ in the universal property could be defined as $\phi(x_1^{\delta_1}x_2^{\delta_2}\cdots x_m^{\delta_m})=f(x_1)^{\delta_1}\cdots f(x_m)^{\delta_m}$. \square

Prop 1.9.1. Let $G = \langle a_1, \ldots, a_n \rangle$ and $X = \{x_1, \ldots, x_m\}$. Then $G \cong F(X)/K$ for some normal subgroup K. K is called the subgroup of relations connecting the generators.

Define $f = x_i :: X_i \to a_i :: G$. By universal property, $\exists \phi = x_i :: F(X) \mapsto a_i :: G$. Then $F(x)/\ker \phi \cong G$.

Def 46. Let $X = \{x_1, x_2, \dots, x_n\}$ and $R \subset F(X)$. Let N(R) be the smallest normal subgroup of F(X) containing R, Then G = F(X)/N(R) is written as $\langle x_1, \dots, x_n |$ elements of $R \rangle$, which is called a presentation of G. If $|R| < \infty$, then G is said to be finitely presented.

Eg 1.9.1.

$$D_n = \left\langle \begin{bmatrix} \cos\frac{2\pi}{n} & -\sin\frac{2\pi}{n} \\ \sin\frac{2\pi}{n} & \cos\frac{2\pi}{n} \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\rangle$$

We find that $x^n, y^2, xyxy \in \ker \phi$. Then $R = \{x^n, y^2, xyxy\} \subseteq \ker \phi \implies N(R) \le \ker \phi$. By factor theorem, $\exists \ \overline{\phi} :: F(X)/N(R) \to D_n$. But notice that

since $xyxy=1 \implies xy=yx^{-1}$, so every element could be turn into x^iy^j . Hence $\bar{\phi}$ is an isomorphism.

Prop 1.9.2. Let $X = \{x_1, x_2, \dots, x_n\}$. Then $F(X)/[F(X), F(X)] \cong \mathbb{Z}^n$.

Proof. Define $f = x_i :: X \mapsto e_i :: \mathbb{Z}^n$. Then $\phi = x_i :: F(X) \mapsto e_i :: \mathbb{Z}^n$. By 1st isomorphism theorem $F(X)/\ker \phi \cong \mathbb{Z}^n$ which is abelian, so $[F(X), F(X)] \leq \ker \phi$. By factor theorem, 一個元圖.

Claim that $\bar{\phi}$ is 1-1.

Proof. Since F(X)/[F(X),F(X)] is abelian, $\forall a \in F(X)/[F(X),F(X)]$, we can write $a = \bar{x}_1^{n_1}\bar{x}_2^{n_2}\cdots\bar{x}_m^{n_m}$. If $\bar{\phi}(\bar{a}) = (m_1, \dots, m_n) = 0$ in \mathbb{Z}^n , then $m_i = 0, \forall i \implies a = 1$

2 Multilinear algebra

2.1 Week 11

2.1.1 Bilinear forms & Groups preserving bilinear forms

Def 47. Let V be a vector space over a field F.

• A function $f: V \times V \to F$ is called a bilinear form if

$$\begin{cases} f(rx_1 + x_2, y) &= rf(x_1, y) + f(x_2, y) \\ f(x, ry_1 + y_2) &= rf(x, y_1) + f(x, y_2) \end{cases} \quad \forall x_1, x_2, x, y_1, y_2, y \in V, r \in F$$

• $B_F(V,V) = \{ \text{ bilinear forms on } V \}$ can be regarded as a vector space over F.

Theorem 25. Let dim V = n and $\beta = \{v_1, \dots, v_n\}$ be a basis for V. Then \exists an isomorphism $\psi_{\beta}: B_F(V, V) \to M_{n \times n}(F)$.

$$\textit{Proof. For } v,w \in V, \text{ write } v = \sum_i a_i v_i, w = \sum_j b_j v_j, \text{ i.e. } [v]_\beta = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, [w]_\beta = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

For
$$f \in B_F(V, V)$$
, $f(v, w) = \sum_i \sum_j a_i b_j f(v_i, v_j) = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \begin{pmatrix} f(v_i, v_j) \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$.

Define $\psi_{\beta}(f) = A$ with $A_{ij} = f(v_i, v_j)$.

- ψ_{β} is a linear transformation.
- ψ_{β} is 1-1.
- ψ_{β} is onto: $\forall A \in M_{n \times n}(F)$, we define $f(v, w) = [v]_{\beta}^t A[w]_{\beta}$.

Def 48. Let $f \in B_F(V, V)$

- f is said to be symmetric if $f(v, w) = f(w, v) \quad \forall v, w \in V$.
- f is said to be skew-symmetric if $f(v, w) = -f(w, v) \quad \forall v, w \in V$.
- f is said to be alternating if $f(v, v) = 0 \quad \forall v \in V$.

Remark 12.

- Alternating \implies skew-symmetric.
- If char $F \neq 2$, skew-symmetric \implies alternating.
- If char F = 2, symmetric = skew-symmetric.
- $\forall f \in B_F(V, V)$ with char $F \neq 2$,

$$f_s(u, v) = \frac{1}{2} (f(u, v) + f(v, u))$$
$$f_a(u, v) = \frac{1}{2} (f(u, v) - f(v, u))$$

and $f(u, v) = f_s(u, v) + f_a(u, v)$.

So we only need to study "symmetric" & "alternating".

Ex 2.1.1.

1. If A and B are congruent $(B = Q^t A Q)$ in $M_{n \times n}(F)$, then they define the same bilinear form.

2.
$$f$$
 is $\begin{cases} \text{symmetric} \\ \text{skew-symmetric} \end{cases} \iff \psi_{\beta}(f)$ is $\begin{cases} \text{symmetric}(A^t = A) \\ \text{skew-symmetric}(A^t = -A) \end{cases}$

Observation. Let $f \in B_F(V, V)$ and $v_0 \in V$.

$$L_f(v_0) = f(v_0, \cdot) \in V' = \operatorname{Hom}(V, F)$$
: the dual space of V
 $R_f(v_0) = f(\cdot, v_0) \in V'$

The left radical of $f : \operatorname{lrad}(f) = N(L_f) = \{ v \in V \mid f(v, w) = 0 \quad \forall w \in V \}.$

The right radical of $f: \operatorname{rrad}(f) = N(R_f) = \{ w \in V \mid f(v, w) = 0 \quad \forall v \in V \}.$

Ex 2.1.2.

- 1. $\operatorname{rank}(\psi_{\beta}(f)) = \operatorname{rank}(R_f) = \operatorname{rank}(L_f)$.
- 2. If dim V = n, then TFAE ($\implies f$: non degenerate)
 - (a) rank(f) = n.
 - (b) $\forall v \in V, v \neq 0, \exists w \in V \text{ s.t. } f(v, w) \neq 0.$
 - (c) $lrad(f) = \{0\}.$
 - (d) $L_f: V \to V'$ is isom.

(also, right)

Theorem 26 (Principal Axis theorem). Let $\dim V = n$ and $\operatorname{char} F \neq 2$. If $f \in B_F(V, V)$ is symmetric, then $\exists \beta$ s.t. $\psi_{\beta}(f)$ is diagonal.

Proof. It is sufficient to find $\beta = \{v_1, \dots, v_n\}$ s.t. $f(v_i, v_j) = 0 \quad \forall i \neq j$.

If f = 0, then done! Assume $f \neq 0$. By induction on n: If n = 1, done. Let n > 1.

Claim 1: $\exists v_1 \in V \text{ s.t. } f(v_1, v_1) \neq 0.$ Assume that $f(v, v) = 0 \quad \forall v \in V.$

$$f(v,w) = \frac{1}{2} (f(v+w,v+w) - f(v,v) - f(w,w)) = 0.$$

So f = 0, which is a contradiction.

Now let $v_1 \in V$ with $f(v_1, v_1) \neq 0$. Let $W = \langle v_1 \rangle_F$ and $W^{\perp} = \{ w \in V \mid f(v_1, w) = 0 \} \subseteq V$.

Claim 2: $V = W \oplus W^{\perp}$

- $V = W + W^{\perp}$: For all $v \in V$, let $a = f(v, v_1)/f(v_1, v_1)$, then $v = av_1 + (v av_1) \triangleq w + w'$ where $w \in W$ and $f(w', v_1) = f(v av_1, v_1) = f(v, v_1) af(v_1, v_1) = 0$. So $w' \in W^{\perp}$ and thus $V = W + W^{\perp}$.
- $W \cap W^{\perp} = \{0\}$: obviously since if $av_1 \in W$, $f(av_1, v_1) = 0 \iff a = 0 \iff av_1 = 0$.

Since $f\Big|_{W^{\perp}\times W^{\perp}}$ is a symmetric bilinear form on W^{\perp} and $\dim W^{\perp} < \dim V$. By induction hypothesis, $\exists \{v_2, \dots, v_n\}$ a basis for W^{\perp} s.t. $f(v_i, v_j) = 0 \quad \forall i \neq j$. Then $\beta = \{v_1, \dots, v_n\}$.

¹The argument in class requires char $F \geq 4$, omimi...

Theorem 27 (Sylvester's theorem). Let $f \in B_{\mathbb{R}}(V, V)$ be symmetric with dim V = n. Then $\exists \beta$

$$\text{s.t. } \psi_{\beta}(f) = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & -1 & & & \\ & & & \ddots & & & \\ & & & & 0 & & \\ & & & & \ddots & \\ & & & & 0 \end{pmatrix}.$$

The triple (# of 1, # of -1, # of 0) is well-defined. (called the signature of f)

Proof. Assume $V^+ = \langle v_1, \dots, v_p \rangle_F, V^- = \langle v_{p+1}, \dots, v_r \rangle_R, V^\perp = \langle v_{r+1}, \dots, v_n \rangle_F.$ $(V = V^+ \oplus V^- \oplus V^\perp)$

Claim: If W is a subspace of V s.t. f is positive-definite on W, then W, V^-, V^{\perp} are independent. Let $\langle w_1, w_2, \dots, w_s \rangle$ be a basis of W. If

$$a_1w_1 + a_2w_2 + \dots + a_sw_s = b_{p+1}v_{p+1} + \dots + b_rv_r + c_{r+1}v_{r+1} + \dots + c_nv_n.$$

Let $w \triangleq a_1w_1 + \cdots + a_sw_s, v \triangleq b_{p+1}v_{p+1} + \cdots + b_rv_r + c_{r+1}v_{r+1} + \cdots + c_nv_n$. Since w = v, f(w,w) = f(v,v). but $f(w,w) = \sum a_i^2 \geq 0$ and $f(v,v) = -\sum b_i^2 \leq 0$. Hence $a_i = 0, b_i = 0$. Since v_{r+1}, \cdots, v_n is linearly independent, $c_i = 0$. Therefor these vectors are linear independent.

Ex 2.1.3. Let $f \in B_F(V, V)$ with char $F \neq 2$. If f is skew-symmetric, then $\exists \beta$ s.t.

Ex 2.1.4. Study Hermitian form

 $T: V \xrightarrow{\sim} V, f \in B_F(V, V)$. T preserves f if $f(\mathsf{T}(v), \mathsf{T}(w)) = f(v, w) \quad \forall v, w \in V$. In matrix form, let β be a basis for $V, M = [\mathsf{T}]_{\beta}, A = \psi_{\beta}(f)$, then $A = M^t A M$.

• $f \in B_{\mathbb{R}}(V, V)$ symmetric, non-degenerate: $\exists \beta$ s.t. $\psi_{\beta}(f) = \begin{pmatrix} I_p \\ -I_q \end{pmatrix}$.

Then $\{\mathsf{T}: V \xrightarrow{\sim} V \text{ preserves } f\} \leftrightarrow \left\{M \in \mathrm{GL}_n(\mathbb{R}) \middle| M^t \begin{pmatrix} I_p \\ -I_q \end{pmatrix} M = \begin{pmatrix} I_p \\ -I_q \end{pmatrix}\right\} = \mathrm{O}(p,q)$.

• $f \in B_{\mathbb{R}}(V, V)$ skew-symmetric, non-degenerate: n = 2k, $\exists \beta$ s.t. $\psi_{\beta}(f) = J$. Then $\{ \mathsf{T} : V \xrightarrow{\sim} V \text{ preserves } f \} \leftrightarrow \{ M \in \mathrm{GL}_n(\mathbb{R}) | M^t J M = J \}$, where

$$J = \begin{pmatrix} 0 & I_k \\ -I_k & 0 \end{pmatrix}$$

2.1.2 Tensor product

From now on, R is assumed to be commutative with 1.

Def 49. Let M_1, \ldots, M_n, L be R-modules.

A function $F: M_1 \times \cdots \times M_n \to L$ is said to be *n*-multilinear if $\forall i$,

$$f(x_1, ..., rx_i + x_i', ..., x_n) = rf(x_1, ..., x_i, ..., x_n) + f(x_1, ..., x_i', ..., x_n) \quad \forall r \in R, x_i, x_i' \in M_i$$

If n = 2, f is called a bilinear map.

Def 50. Let M, N be R-modules. A tensor product of M and N is an R-module $M \otimes_R N$ with a bilinear map $\rho: M \times N \to M \otimes_R N$ satisfying the following universal property:

for any R-module W and any bilinear map $f: M \times N \to W, \exists ! R$ -module homomorphism $\varphi: M \otimes_R N \to W,$

$$M \times N \xrightarrow{\rho} M \otimes_R N$$

$$\downarrow^{\varphi}$$

$$W$$

Theorem 28 (Main theorem). $M \otimes_R N$ exists and is unique up to isom.

Proof. Let $X = M \times N$. First we construct the free module $V_1 = \bigoplus_{(x,y) \in X} R \cdot (x,y)$.

Notice that in V_1 ,

- $(x_1, y_1) + (x_2, y_2) \neq (x_1 + x_2, y_1 + y_2).$
- $r(x,y) \neq (rx,ry)$.
- $r(r_1(x_1, y_1) + \cdots + r_n(x_n, y_n)) = rr_1(x_1, y_1) + \cdots + rr_n(x_n, y_n)$.

Let
$$V_0 = \left\langle \begin{array}{c} (x_1 + x_2, y) - (x_1, y) - (x_2, y), \\ (x, y_1 + y_2) - (x, y_1) - (x, y_2), \\ r(x, y) - (rx, y), r(x, y) - (x, ry) \end{array} \right| x_1, x_2, x \in M, y_1, y_2, y \in N, r \in R \right\rangle_R.$$

Define $M \otimes_R N = V_1/V_0$ which is an R-module and $\rho: M \times N \to M \otimes_R N$ which is R-bilinear. (check yourself)

Universal property: $\forall (x,y) \in M \times N$, $R(x,y) \to W$ $r(x,y) \mapsto rf(x,y)$. So, by the universal property of \oplus , \exists ! R-module homo. $\varphi_1: V_1 \to W$:

$$M \times N \xrightarrow{i} V_1$$

$$\downarrow^{\varphi_1}$$

$$W$$

Claim: $V_0 \subseteq \ker \varphi_1$. (check yourself) Then by factor theorem,

$$\exists \, !\varphi : V_1/V_0 \longrightarrow W$$

$$M \times N$$

Eg 2.1.1. $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} = 0$.

Eg 2.1.2. $\mathbb{R}[x,y] \cong \mathbb{R}[x] \otimes_{\mathbb{R}} \mathbb{R}[y]$.

Proof.
$$\begin{array}{ll} \mathbb{R}[x] \times \mathbb{R}[y] \to \mathbb{R}[x,y] \\ (f(x),g(y)) \mapsto f(x)g(y) \end{array} \text{ is bilinear } \leadsto \begin{array}{ll} \exists \: !\varphi : \mathbb{R}[x] \otimes_{\mathbb{R}} \mathbb{R}[y] \to \mathbb{R}[x,y] \\ f(x) \otimes g(y) \mapsto f(x)g(y) \end{array} .$$

Conversely,
$$h(x,y) = \sum_{i=1}^{\mathbb{R}[x,y]} a_{ij} x^i y^j \mapsto \sum_{i=1}^{\infty} a_{ij} x_i \otimes y_j$$
.

Prop 2.1.1. If $M = \langle x_1, \dots, x_n \rangle_R$ and $N = \langle y_1, \dots, y_m \rangle_R$. Then

$$M \otimes_R N = \langle x_i \otimes y_i \mid i = 1, \dots, n; j = 1, \dots, m \rangle_R$$

In particular, if R is a field F, then $\dim_F M \otimes_F N = (\dim_F M)(\dim_F N)$.

Proof. Note that
$$M \otimes_R N = \langle x \otimes y \mid x \in M, y \in N \rangle$$
. Let $x = \sum_i a_i x_i, y = \sum_j b_j y_j$. Then $x \otimes y = \sum_i \sum_j a_i b_j x_i \otimes y_j$.

Some canonical isomorphisms:

• $(M \otimes_R N) \otimes_R L \cong M \otimes_R (N \otimes_R L)$.

Proof. $\forall z \in L$, $M \times N \to M \otimes_R (N \otimes_R L)$ is bilinear. $\exists ! R$ -mod homo. $\varphi_z : M \otimes_R N \to (x, y) \mapsto x \otimes (y \otimes z)$

 $M \otimes_R (N \otimes_R L)$. Similarly, $(M \otimes_R N) \times L \to M \otimes_R (N \otimes_R L)$ is bilinear. (The right is due to φ_z linear, and the left is because $x \otimes (y \otimes (rz_1 + z_2)) = rx \otimes (y \otimes z_1) + x \otimes (y \otimes z_2)$.) Hence exists unique R-mod homo. $\varphi: (M \otimes_R N) \otimes_R L \to M \otimes_R (N \otimes_R L)$. By the symmetric construction, we have φ^{-1} and $\varphi^{-1} \circ \varphi = \varphi \circ \varphi^{-1} = 1$, so the two are isomorphic. \square

• $(M \oplus M') \otimes_R N \cong (M \otimes_R N) \oplus (M' \otimes_R N)$.

The mapping $\psi :: (M \oplus M') \times N \to (M \otimes_R N) \oplus (M' \otimes_R N)$ by $\psi = ((x, x'), y) \mapsto (x \otimes y, x' \otimes y)$ is biliear, hence exists R-mod homomorphism $\varphi :: (M \oplus M') \otimes_R N \to (M \otimes_R N) \oplus (M' \otimes_R N)$.

On the other hand, The mapping $(x,y):: M \times N \mapsto (x,0) \otimes y:: (M \oplus M') \otimes_R N$ is bilinear. So exists $\phi_1:: M \otimes N \to (M \oplus M') \otimes_R N$, similarly there exists $\phi_2:: M' \otimes N \to (M \oplus M') \otimes_R N$. Now by the universal property of direct sum, there exists $\phi:: (M \otimes_R N) \oplus (M' \otimes_R N) \to (M \oplus M') \otimes_R N$. After a careful examine, we have

$$\varphi = (x, x') \otimes y \mapsto (x \otimes y, x' \otimes y), \phi = (x \otimes y, x' \otimes y) \mapsto (x, x') \otimes y$$

Thus $\phi = \varphi^{-1}$ and hence the two are isomorphic.

Ex 2.1.5.

- 1. $R \otimes_R M \cong M$.
- 2. $M \otimes_R N \cong N \otimes_R M$.

- **Ex 2.1.6.** $R/I \otimes_R N \cong N/IN$ where $IN := \{ \sum a_i x_i \mid a_i \in I, x_i \in N \}.$
- $\mathbf{Ex}\ \mathbf{2.1.7.}\quad \mathrm{Compute}\ \dim_{\mathbb{Q}}(\mathbb{Q}\otimes_{\mathbb{Z}}\mathbb{Q}), \dim_{\mathbb{R}}(\mathbb{R}\otimes_{\mathbb{R}}\mathbb{C}), \dim_{\mathbb{R}}(\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}), \dim_{\mathbb{C}}(\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C})$

2.2 Week 12

2.2.1 Tensor product II

By universal property, we get $\{R\text{-bilinear maps } M \times N \to L\} \leftrightarrow \operatorname{Hom}_R(M \otimes_R N, L)$. Similarly,

$$\operatorname{Hom}\left(\bigoplus_{s\in\Lambda}M_s,L\right)\cong\prod_{s\in\Lambda}\operatorname{Hom}\left(M_s,L\right)$$

$$\operatorname{Hom}\left(N,\prod_{s\in\Lambda}M_s\right)\cong\prod_{s\in\Lambda}\operatorname{Hom}\left(N,M_s\right)$$

Fact 2.2.1. $f \in \operatorname{Hom}_R(M, M'), g \in \operatorname{Hom}_R(N, N') \leadsto f \otimes g \in \operatorname{Hom}_R(M \otimes N, M' \otimes N')$ by $(f\otimes g)(x\otimes y)=f(x)\otimes g(y).$

Proof. Define
$$h: M \times N \to M' \otimes_R N'$$
 $(x,y) \mapsto f(x) \otimes g(y)$

Restrition and extension of scalars.

Let $f: R \to S$ be a ring homomorphism and R, S be commutative with 1. Then S can be regarded as an R-module. $\begin{pmatrix} R \times S \to S \\ (r, x) \mapsto f(r)x \end{pmatrix}$.

If M is a S-module, then M is also an R-module. $\begin{pmatrix} R \times M \to M \\ (r,a) \mapsto f(r)a \end{pmatrix}.$ If N is an R-module, then $S \otimes_R N$ an S-module. $\begin{pmatrix} S \times (S \otimes_R N) \to S \otimes_R N \\ (r, x \otimes a) \mapsto rx \otimes a \end{pmatrix}.$

Eg 2.2.1 (Important example). Let V be a real vector space. The complexification of V is $V^{\mathbb{C}} := \mathbb{C} \otimes_{\mathbb{R}} V$ which is a \mathbb{C} -vector space.

Ex 2.2.1. Let $K \subseteq L$ be an inclusion of fields and let E be a vector space over K. Show that $E^L := L \otimes_K E$ satisfies the following universal property: For any vector space U over L and any *K*-linear map $f: E \to U, \exists ! L$ -linear map φ :

$$\varphi: 1 \otimes x :: E^L \xrightarrow{f} f(x) :: U$$

$$x :: E$$

Ex 2.2.2. $E \to E^L$ is a covariant functor from the category of vector spaces over K to the category of vector spaces over L.

Eg 2.2.2.
$$\mathbb{Z}^n \cong \mathbb{Z}^m \leadsto \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}^n \cong \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}^m \leadsto n = m$$
.

Eg 2.2.3.
$$G \cong \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_l\mathbb{Z} \oplus \mathbb{Z}^s, \mathbb{Q} \otimes_{\mathbb{Z}} G = \mathbb{Q}^s$$
.

Let M, N and U be R-module. Then

$$\operatorname{Hom}_{R}(M \otimes_{R} N, U) \cong \operatorname{Hom}_{R}(N, \operatorname{Hom}_{R}(M, U))$$

Proof.

- For $f \in \operatorname{Hom}_R(M \otimes_R N, U)$ and $a \in N$, define $f_a = x :: M \mapsto f(x \otimes a) :: U$.
 - linear: easy.
 - $-\overline{f}: a \mapsto f_a$ is an *R*-mod homo.: easy.
 - $-\tau: f \mapsto \overline{f}$ is an R-mod homo.: $\tau(rf+g)(a)(x) = (rf+g)_a(x) = (rf+g)(x \otimes a) = rf(x \otimes a) + g(x \otimes a) = \cdots = r\tau(f)(a)(x) + \tau(g)(a)(x)$

- For $g \in \operatorname{Hom}_R(N, \operatorname{Hom}_R(M, U))$, define $g' = (x, a) :: M \times N \mapsto g(a)(x) :: U$.
 - g' is R-bilinear: easy.
 - $-\exists ! \tilde{g} : x \otimes a \mapsto g(a)(x).$
 - $-\sigma: g \mapsto \tilde{g}$ is an R-mod homo.: easy.
- $\sigma \tau = id$, $\tau \sigma = id$: easy...

Ex 2.2.3. Hom_R (M, \cdot) , $M \otimes_R \cdot$ are covariant functors from the category of R-modules to itself. (is an adjoint pair)

Fact 2.2.2. $\operatorname{Hom}_R(R,M) \cong M$. By $f \mapsto f(1)$.

Def 51. An exact sequence $A \xrightarrow{f_1} B \xrightarrow{f_2} \cdots$ is a sequence satisfying im $f_k = \ker f_{k+1}$.

- $0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z}$.
- $\mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$.

Let V, W be vector spaces over F. Then $V^* \otimes_F W \cong \operatorname{Hom}_F(V, W)$.

Proof. Let $\alpha = \{e_1, \dots, e_n\}$ and $\beta = \{f_1, \dots, f_m\}$ be bases for V and W respectively. Via α, β , $\text{Hom}_F(V, W) \cong \left\langle E_{ij} \middle| i = 1, \dots, m \right\rangle_F$. $V^* \otimes W \cong \left\langle e_j^* \otimes f_i \middle| i = 1, \dots, m \right\rangle_F$. \square

2.2.2 Tensor algebra

Def 52.

- Let R be a commutative ring with 1. An R-algebra is a ring A which is also an R-module s.t. the multiplication map $A \times A \to A$ is R-bilinear. (r(ab) = (ra)b = a(rb))
- Let A be an R-algebra. A grading of A is a collection of R-submodules $\{A_n\}_{n=0}^{\infty}$ (n-th homogeneous part) s.t.

$$A = \bigoplus_{n=0}^{\infty} A_n$$
 and $A_n A_m \subseteq A_{n+m} \quad \forall n, m$

- A graded R-algebra is an R-algebra with a chosen grading.
- \mathfrak{M}_R is the category of R-modules.
- \mathfrak{Gr}_R is the category of graded R-algebras. $(f:A\to A')$ with $f(A_n)\subseteq A'_n$

Eg 2.2.4. $A = R[x], A_n = \langle x^n \rangle_R$. If $I = \langle x+1 \rangle_A$, I is not graded. $I = \langle x^2 \rangle_A$ is graded.

Def 53. An ideal I is graded in a graded ring A if and only if $I = \bigoplus I \cap A_n$.

²This is not mentioned in class

Ex 2.2.4. TFAE

- (1) I is graded.
- (2) $\forall a \in I$ write $a = a_{k_1} + a_{k_2} + \dots + a_{k_m}, a_{k_i} \in A_{k_i} \implies a_{k_i} \in I$. $(a_{k_i} \text{ is the homogenuous component of } a)$
- (3) A/I is a graded ring with $(A/I)_n = (A_n + I)/I \cong A_n/I \cap A_n$.

Ex 2.2.5.

- (1) If I is a f.g. graded ideal, then I has a finite system of generators consisting of homogeneous elements alone.
- (2) I, J are graded $\implies I + J, IJ, I \cap J$ are graded.

Observation: Let $\{M_i\}_{i=1}^{\infty}$ be a collection of R-modules.

- $M_1 \otimes_R M_2$ exists.
- $(M_1 \otimes_R M_2) \otimes_R M_3 \cong M_1 \otimes_R (M_2 \otimes_R M_3) \implies M_1 \otimes_R M_2 \otimes_R M_3$ is well-defined. Universal property: for any R-module L and a 3-multilinear map $f: M_1 \times M_2 \times M_3 \to L$. (拆括號囉)
- By induction, $M_1 \otimes \cdots \otimes M_n$ is well-defined and satisfies the universal property. (n-multilinear map)

Goal: For a given R-module M, we intend to construct an graded R-algebra T(M) containing M that is "universal" w.r.t. R-algebras containing M.

That is, a tensor algebra is a pair (T(M), i) where T(M) is an R-algebra and $i :: M \to T(M)$, such that for any R-algebra A containing M, which is to say that exist a R-module homomorphism $\varphi : M \to A$, then \exists an R-algebra homomorphism $\psi :: T(M) \to A$ such that $\varphi = \psi \circ i$.

Construction:

• $\forall k \in \mathbb{N}, T^k(M) := \underbrace{M \otimes \cdots \otimes M}_{k \text{ times}}$, each $x_1 \otimes x_2 \otimes \cdots \otimes x_k \in T^k(M)$ is called a k-tensor.

$$T^0(M) := R$$
 and

$$T(M) := \bigoplus_{k=0}^{\infty} T^k(M) = R \oplus T^1(M) \oplus \dots$$

• define multiplication on T(M) by:

$$T^{i}(M) \times T^{j}(M) \longrightarrow T^{i+j}(M)$$

 $(x_{1} \otimes \cdots \otimes x_{i}, y_{1} \otimes \cdots \otimes y_{i}) \longmapsto x_{1} \otimes \cdots \otimes x_{i} \otimes y_{1} \otimes \cdots \otimes y_{i}$

Distribution law: easy.

Proving the universal property: For any R-algebra A containing M and an R-module homo. $\varphi: M \to A$. $\forall k \geq 2$, we define $f_k: M \times \cdots \times M \to A$

$$f_k: M \times \dots \times M \to A$$

 $(x_1, \dots, x_k) \mapsto \varphi(x_1) \dots \varphi(x_k)$

 f_k is k-multilinear \rightsquigarrow

$$\exists ! \tilde{f}_k : M \otimes \cdots \otimes M \to A$$
$$x_1 \otimes \cdots \otimes x_k \mapsto \varphi(x_1) \dots \varphi(x_k)$$

By the universal property of \bigoplus , exists a unique R-module homo. $\tilde{\varphi}::T(M)\to A$ which make the following diagram commutes.

 $\tilde{\varphi}: T(M) \xrightarrow{f_k} A$ $T^k(M)$

 $\tilde{\varphi}$ is an R-algebra homomorphism.

Def 54. T(M) is called the tensor algebra of M.

Ex 2.2.6. T is a covariant functor from \mathfrak{M}_R to \mathfrak{Gr}_R .

Prop 2.2.1. Let V be a vector space over F with a basis $\beta = \{v_1, \dots, v_n\}$. Then

$$\{v_{i_1} \otimes \cdots \otimes v_{i_k} \mid \forall j = 1, \dots, k, i_j = 1, \dots, n\}$$

forms a basis for $T^k(V)$. $\dim_F T^k(V) = n^k$.

T(V) can be regarded as a non-commutative polynomial algebra over F.

 \odot Symmetrization (char F = 0)

$$V \times \cdots \times V \longrightarrow T^n(V)$$

$$(x_1,\ldots,x_n) \longmapsto \frac{1}{n!} \sum_{\tau \in S_n} x_{\tau(1)} \otimes \cdots \otimes x_{\tau(n)}$$

is n-multilinear.

The symmetrizer operator $\sigma: T^n(V) \to T^n(V), \ \tilde{S}^n(V) := \sigma(T^n(V)) \subseteq T^n(V).$

Claim: $T^n(V) = \tilde{S}^n(V) \oplus C^n(V)$ where

$$C^n(V) = C(V) \cap T^n(V)$$
 $C(V) = \langle v \otimes w - w \otimes v \mid v, w \in V \rangle$

2.3 Week 13

2.3.1 Symmetric and Exterior algebra

Symmetric algebra Define

$$S: \mathfrak{M}_R \to \mathfrak{Gr}_R$$

$$M \mapsto T(M)/C(M)$$

$$S(M) := T(M)/C(M)$$

where C(M) is the gradded two-sided ideal generated by $u \otimes v - v \otimes u$ with $u, v \in M$.

• $C^k(M) := C(M) \cap T^k(M)$ is the submodule of $T^k(M)$ generated by all

$$x_1 \otimes \ldots \otimes x_k - x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(k)} \quad \forall x_i \in M, \sigma \in S_k.$$

" \subseteq ": $x_1 \otimes \ldots \otimes x_s \otimes (u \otimes v - v \otimes u) \otimes y_1 \otimes \ldots \otimes y_t \in C(M) \cap T^k(M)$ with s + 2 + t = k. " \supset ": bubble sort

• $k \geq 2, S^k(M) = T^k(M)/C^k(M) = \langle \overline{x}_1 \otimes \ldots \otimes \overline{x}_k \mid x_i \in M \rangle_R \text{ with } \overline{x}_1 \otimes \ldots \otimes \overline{x}_k = \overline{x}_{\sigma(1)} \otimes \ldots \otimes \overline{x}_{\sigma(k)} \quad \forall \sigma \in S_k$

Hence, $S(M) = \bigoplus_{k=0}^{\infty} S^k(M)$ is a graded commutative R-algebra.

Def 55. $f: M \times \cdots \times M \to L$ is a symmetric k-multilinear map if f is k-multilinear and

$$f(x_1, \dots, x_k) = f(x_{\sigma(1)}, \dots, x_{\sigma(k)}) \quad \forall \, \sigma \in S_k$$

- $k \geq 2$, $S^k(M)$ is universal w.r.t. symmetric k-multilinear maps on M: By the universal property of $T^k(M)$, $\exists !$ R-module homo. $\tilde{f}: T^k(M) \to L$. Now $C^k(M) \subseteq \ker \tilde{f} \implies \exists !$ R-module homo. $\bar{f}: S^k(M) \to L$ by factor thm.
- S(M) satisfies the universal property for maps to a commutative R-algebra: given a commutative R-algebra A and $f: M \to A$ R-module homo.,

$$M \xrightarrow{f} A \\ \downarrow \qquad \uparrow \\ T(M) \xrightarrow{\exists \,!\, f'} \uparrow \\ T(M)/C(M)$$

• $S: \mathfrak{M}_R \to \mathfrak{Gr}_R$ is a covariant functor.

$$-\varphi: M \to N$$
: R-module homo. $\leadsto T(\varphi): T(M) \to T(N) \to T(N)/C(N) = S(N)$

Ex 2.3.1. Let E be a vector space over F with dim E = n.

- 1. Show that $S(E) \cong F[x_1, \dots, x_n]$.
- 2. Compute $\dim_F S^k(E)$.

Exterior algebra $(\operatorname{char} R \neq 2)$

$$\Lambda: \mathfrak{M}_R \to \mathfrak{Gr}_R$$

$$M \mapsto \Lambda(M) = T(M)/A(M)$$

where A(M) is the two sided graded generated by $v \otimes v \quad \forall v \in M$.

• $A^k(M) := A(M) \cap T^k(M)$ is the submodule of $T^k(M)$ generated by all $x_1 \otimes \ldots \otimes x_k$ with $x_i = x_j$ for some $i \neq j$.

(Note:
$$(x_1 + x_2) \otimes (x_1 + x_2) = x_1 \otimes x_1 + x_1 \otimes x_2 + x_2 \otimes x_1 + x_2 \otimes x_2 \rightsquigarrow x_1 \otimes x_2 + x_2 \otimes x_1 \in A(M)$$
)

• $\Lambda^k(M) \cong T^k(M)/A^k(M) = \langle \overline{x_1 \otimes \ldots \otimes x_k} \mid x_i \in M \rangle$ with $\overline{x_1 \otimes \ldots \otimes x_k} = \overline{0}$ if $x_i = x_j$ for some $i \neq j$. We use $x_1 \wedge \cdots \wedge x_k := \overline{x_1 \otimes \ldots \otimes x_k}$.

Note: $x_1 \wedge x_2 = -x_2 \wedge x_1$.

Def 56. $f: M \times \cdots \times M \to L$ is an alternating k-multilinear map if f is k-multilinear and $f(x_1, \ldots, x_k) = 0$ when $x_i = x_j$ for some $i \neq j$.

• $k \geq 2$, $\Lambda^k(M)$ is universal w.r.t. alternating k-multilinear maps on M:

• $\Lambda(M)$ satisfies the universal property for maps to an R-algebra A with $a^2=0 \quad \forall \ a \in A$: given an R-algebra A and $f:M\to A$ R-module homo.,

$$\begin{array}{c}
M \xrightarrow{f} A \\
\downarrow & \uparrow \\
T(M) \longrightarrow \Lambda(M)
\end{array}$$

• $\Lambda: \mathfrak{M}_R \to \mathfrak{Gr}_R$ is a covariant functor.

$$-\varphi:M\to N$$
: R-module homo. $\leadsto T(\varphi):T(M)\to T(N)\to T(N)/A(N)=\Lambda(N)$

Ex 2.3.2. Let V be a vector space over F with dim V = n and $\varphi : V \to V$ be a linear transformation.

- (1) Compute $\Lambda^k(V)$.
- (2) Determine the map $\Lambda^k(\varphi): \Lambda^k(V) \to \Lambda^k(V)$.

Symmetrization and Skew-symmetrization

$$T^{k}(V) \xrightarrow{} T^{k}(V)$$

$$\operatorname{Sym} = \sigma : x_{1} \otimes \ldots \otimes x_{k} \longmapsto \frac{1}{k!} \sum_{\tau \in S_{k}} x_{\tau(1)} \otimes \ldots \otimes x_{\tau(k)}$$

$$\operatorname{Alt} = \sigma' : x_{1} \otimes \ldots \otimes x_{k} \longmapsto \frac{1}{k!} \sum_{\tau \in S_{k}} \operatorname{sgn}(\tau) x_{\tau(1)} \otimes \ldots \otimes x_{\tau(k)}$$

 $\tilde{S}^k(V) = \sigma(T^k(V)) \quad \tilde{\Lambda}^k(V) = \sigma'(T^k(V))$

- $\sigma^2 = \sigma$ easy $\leadsto T^k(V) = \operatorname{Im} \sigma \oplus \ker \sigma = \tilde{S}^k(V) \oplus \ker \sigma$.
- $\ker \sigma = C^k(V)$. $C^k(V) \subseteq \ker \sigma$ is obvious. Assume \supseteq , i.e., $\exists t \in \ker \sigma$ s.t. $t \notin C^k(V)$. Recall $q: T^k(V) \twoheadrightarrow S^k(V)$, since q is the quotient map. Also $q|_{\tilde{S}^k(V)} \twoheadrightarrow S^k(V)$, since if q(x) = y, then it could be easily checked that $q(\sigma(x)) = y$, so exists $t' \in \tilde{S}^k(V)$ satisfies $q(t') = q(t) \neq 0$. But then $q(t-t') = 0 \implies t-t' \in \ker q = C^k(V) \subseteq \ker \sigma$ and because of $\sigma(t) = 0 \implies \sigma(t') = 0$. Hence $t' \in \ker \sigma$. But then $t' \in S^k(V) \subseteq \operatorname{Im} \sigma \implies t' \in \operatorname{Im} \sigma \cap \ker \sigma$, which leads to an ontradiction since σ is a projection.

Ex 2.3.3.
$$T^k(V) = \tilde{\Lambda}^k(V) \oplus A^k(V)$$
.

3 Introduction to the linear representation theory of finite groups

3.1 Week 14

3.1.1 Generallities on linear representations

Notation

- G: finite group
- V: vector space of finite dim over $\mathbb C$
- GL(V): the group of all linear isom. $V \to V$

Def 57. A group homo. $\rho: G \to \operatorname{GL}(V)$ is called a linear representation of G. dim V is called the degree of ρ . (V is a representation space)

For a fixed basis $\beta = \{e_i\},\$

 $G \xrightarrow{\rho} \operatorname{GL}(V)$ $R \xrightarrow{\beta \downarrow \emptyset} \operatorname{GL}_n(\mathbb{C})$

(R is a matrix representation)

Eg 3.1.1. A representation of degree 1 of G is $\rho: G \to GL(\mathbb{C}) \cong \mathbb{C}^{\times}$.

 $\operatorname{ord}(g)$ is finite $\rightsquigarrow \rho(g)^m = 1$ for some $m \in \mathbb{N} \rightsquigarrow \rho(g)$ is a root of unity, i.e. $|\rho(g)| = 1$.

Note: So, $\rho:G\to S^1,\,S^1$ is the unit circle.

- 1. $G = \mathbb{Z}/p\mathbb{Z}, \ \rho : \overline{1} :: G \mapsto \zeta_p :: S^1 \text{ with } \zeta_p^p = 1.$
- 2. $G = S_3, V = \mathbb{C}e_1 \oplus \mathbb{C}e_2 \oplus \mathbb{C}e_3$.

A permutation representation is $\rho : \tau :: S_3 \mapsto (\rho(\tau) : e_i \mapsto e_{\tau(i)}) :: GL(V)$.

3. $G = S_3, V = \bigoplus_{\sigma \in S_3} \mathbb{C}e_{\sigma}$. The regular representation is

$$\rho^{\text{reg}} : \tau :: G \mapsto (\rho^{\text{reg}}(\tau) : e_{\sigma} \mapsto e_{\tau\sigma}) :: GL(V).$$

For general G, with $V = \bigoplus_{g \in G} \mathbb{C}e_g$,

$$\rho^{\text{reg}}: h :: G \mapsto (\rho^{\text{reg}}(h): e_q \mapsto e_{hq}) :: GL(V).$$

Def 58.

- $\rho:g::G\mapsto \mathrm{id}::\mathrm{GL}(V)$: trivial representation.
- $\rho: G \hookrightarrow \mathrm{GL}(V)$: faithful representation.
- ρ, ρ' are said to be equivalent if \exists a linear isom. $\mathsf{T}: V \xrightarrow{\sim} V'$ s.t.

$$\begin{array}{c|c} V & \stackrel{\sim}{\longrightarrow} & V' \\ \rho(g) \!\!\! \downarrow & & \!\!\! \downarrow \!\!\! \rho'(g) \\ V & \stackrel{\sim}{\longrightarrow} & V' \end{array}$$

47

Remark 13. When we choose two bases β , β' for V,

$$G \xrightarrow{\rho} \operatorname{GL}(V) \qquad G \xrightarrow{\rho'} \operatorname{GL}(V)$$

$$R \xrightarrow{\beta \downarrow \emptyset} \operatorname{GL}_n(\mathbb{C}) \qquad \operatorname{GL}_n(\mathbb{C})$$

then ρ, ρ' are equivalent.

Let $T: e_i :: V \mapsto e'_i :: V$. For $g \in G, R(g) = (a_{ij})$.

$$T \circ \rho(g) = \rho'(g) \circ T$$

Def 59. Let $\langle \cdot, \cdot \rangle$ be a positive definite Hermitian form on V.

Then $T: V \to V$ is called a unitary operator if $\langle T(x), T(y) \rangle = \langle x, y \rangle \quad \forall \, x, y \in V$.

or $\forall \beta$: orthonormal basis, $[T]^*_{\beta}[T]_{\beta} = [T]_{\beta}[T]^*_{\beta} = I_n$.

Theorem 29. $\forall \rho: G \to GL(V), \exists \text{ a matrix representation } R: G \to U_n.$

Proof. We only need to G-invariant positive definite Hermitian form on V. $(\forall g \in G, \langle \rho(g)x, \rho(g)y \rangle = \langle x, y \rangle \quad \forall x, y \in V)$

We start with an arbitrary positive definite Hermitian form $\langle \cdot, \cdot \rangle'$ on V.

Define a new form $\langle \cdot, \cdot \rangle$ by

$$\langle x, y \rangle := \frac{1}{|G|} \sum_{g \in G} \langle \rho(g)(x), \rho(g)(y) \rangle'$$

which is a positive definite Hermitian form, since

$$\langle \rho(g)x, \rho(g)y \rangle \triangleq \frac{1}{|G|} \sum_{h \in G} \langle (\rho(h) \circ \rho(g))(x), (\rho(h) \circ \rho(g))(y) \rangle'$$
$$= \frac{1}{|G|} \sum_{gh \triangleq h' \in G} \langle (\rho(h'))(x), (\rho(h'))(y) \rangle' \triangleq \langle x, y \rangle$$

So with the basis of this hermitian form, every $\rho(g)$ has a matrix representation R(g) which is unitary.

Def 60. Let $\rho: G \to \mathrm{GL}(V)$, For $W \subset V$ (we use \subset to denote subspace), if $\forall x \in W$, $\rho(g)(x) \in W$, $\forall g \in G$, then W is said to be G-invariant and

$$\rho^W: G \to \operatorname{GL}(W)$$
$$g \mapsto \rho(g)|_W$$

is called a subrepresentation of ρ .

 $W \text{ is G-invariant} \leadsto \rho(g)\big|_W: W \xrightarrow{\sim} W.$

Eg 3.1.2. Let ρ be the regular rep. of S_3 .

$$W^{\circ} = \{ \alpha_1 e_1 + \cdots + \alpha_6 e_6 \mid \alpha_1 + \cdots + \alpha_6 = 0 \}$$
 is G-invariant.

 $W^1 = \langle e_1 + \dots + e_6 \rangle_{\mathbb{C}}$ is G-invariant.

Theorem 30. Let $\rho: G \to \operatorname{GL}(V)$ and $W \subset V$ be G-invariant. Then $\exists W^{\circ} \subset V$ is still G-invariant and $V = W \oplus W^{\circ}$.

Proof. We can pick an arbitrary W' with $V = W \oplus W'$ and $\pi_1 : V \to W$ is the projection to W. Then $W' = \ker \pi_1$.

Now we need π_1 preserves the G action (G-equivariant). Define

$$\pi^{\circ} = \frac{1}{|G|} \sum_{g \in G} \rho(g)^{-1} \circ \pi_1 \circ \rho(g) : V \to W$$

- well-defined: $\rho(g)(V) \subset V \leadsto \pi_1 \circ \rho(g)(V) \subset W \leadsto \rho(g)^{-1} \circ \pi_1 \circ \rho(g)(V) \subseteq W$.
- surjective: $\forall y \in W, (\rho(g)^{-1} \circ \pi_1 \circ \rho(g))(y) = (\rho(g)^{-1} \circ \rho(g))(y) = y \text{ since } \rho(g)(y) \in W. \text{ Also,}$ $\pi^{\circ}(y) = y, \forall y \in W \implies (\pi^{\circ})^2 = \pi^{\circ}. \text{ So } \pi^{\circ} \text{ is a projection and hence } V = \operatorname{Im} \pi^{\circ} \oplus \ker \pi^{\circ}.$
- G-equivariant: $\forall g' \in G$,

$$\pi^{\circ} \circ \rho(g')(x) = \frac{1}{|G|} \sum_{g \in G} \rho(g)^{-1} \circ \pi_1 \circ \rho(g)(\rho(g')(x))$$
$$= \rho(g') \frac{1}{|G|} \sum_{gg' \in G} \rho(gg')^{-1} \circ \pi_1 \circ \rho(gg')(x)$$
$$= (\rho(g') \circ \pi^{\circ})(x)$$

• $W^{\circ} := \ker \pi^{\circ}$ is G-invariant: $\forall x \in W^{\circ}$, $\pi^{\circ}(\rho(g)(x)) = \rho(g)(\pi^{\circ}(x)) = \rho(g)(0) = 0$. So $\rho(g)(x) \in W^{\circ}$.

$$V \xrightarrow{\pi^{\circ}} W$$

$$\rho(g) \downarrow \qquad \qquad \downarrow \rho(g)$$

$$V \xrightarrow{\pi^{\circ}} W$$

Remark 14. If $W \subset V$ is G-invariant, then W^{\perp} is also G-invariant. (w.r.t. a G-invariant positive definite Hermitian form)

Def 61. $\rho: G \to GL(V)$ is irreducible if ρ has no proper notrivial subrepresentations.

Theorem 31. Each $\rho: G \to GL(V)$ is a direct sum of irreducible subrepresentations.

Proof. By induction on dim V. For dim V=1, then ρ is irreducible.

For dim V>1, if ρ is irreducible, then done. Otherwise, $\exists W, W^{\circ}$ are G-invariant s.t. $V=W\oplus W^{\circ}$ with dim $W\geq 1$, dim $W^{\circ}\geq 1$. By induction hypothesis, $\rho^{W}, \rho^{W^{\circ}}$ are the direct sum of irreducible subrepresentations, and $\rho=\rho^{W}\oplus\rho^{W^{\circ}}$, done.

Remark 15. Let $\rho: G \to GL(V)$ and $\rho': G \to GL(V')$.

- $\rho \oplus \rho' : G \to \operatorname{GL}(V \oplus V')$. 矩陣是左上右下
- $\rho \otimes \rho' : G \to GL(V \otimes V')$. 矩陣是密密麻麻 $(\sum_{i,j} r_{ip}, r'_{jq}(e_i \otimes e'_j))$

3.1.2 Character Theory I

Main goal: To determine all equivalence classes of irreducible representations of a finite group G.

Def 62.

$$G \xrightarrow{\rho} \operatorname{GL}(V)$$

$$\downarrow \downarrow \beta = \{e_i\}$$

$$\operatorname{GL}_n(\mathbb{C})$$

The character χ_{ρ} if ρ is the map $\chi_{\rho}: G \to \mathbb{C}$ defined by $\chi_{\rho}(g) = \operatorname{Tr}(R(g))$.

Remark 16.

- 1. χ_{ρ} is independent of the choice of $\beta = \{e_i\}$ For another basis $\beta' = \{e'_i\}$. (Notice that Tr(BA) = Tr(AB))
- 2. $\rho \cong \rho' \rightsquigarrow \chi_{\rho} = \chi_{\rho'}$. equivalent

Def 63.

- The degree of χ_{ρ} is defined to the degree of ρ (= dim V).
- χ_{ρ} is an irreducible character if ρ is irreducible.

Basic facts:

- 1. $\chi_{\rho}(1) = n$.
- 2. χ_{ρ} is a class function, i.e., it is constant on each conjugacy class.
- 3. $\chi_{\rho}(g^{-1}) = \overline{\chi_{\rho}(g)}$: Assume that the eigenvalues of R(g) are $\lambda_1, \ldots, \lambda_n$. Then the eigenvalues of $R(g^{-1})$ are $\lambda_1^{-1}, \ldots, \lambda_n^{-1}$.

$$0 = \det(\lambda I_n - A) = \det(\lambda I_n (A^{-1} - \lambda^{-1} I_n) A) = \det(\lambda I_n) \det(A^{-1} - \lambda^{-1} I_n) \det(A)$$

So
$$\det(A^{-1} - \lambda^{-1}I_n) = 0$$
. Then $g^m = 1 \Longrightarrow R(g)^m = I_n \Longrightarrow |\lambda_i| = 1 \Longrightarrow \lambda_i^{-1} = \overline{\lambda_i}$. Thus $\chi_{\rho}(g^{-1}) = \operatorname{Tr}(R(g)^{-1}) = \overline{\lambda_1 + \dots + \lambda_n} = \overline{\chi_{\rho}(g)}$.

- 4. $\chi_{\rho \oplus \rho'} = \chi_{\rho} + \chi_{\rho'}$.
- 5. $\chi_{\rho\otimes\rho'}=\chi_{\rho}\chi_{\rho'}$.

Def 64. $\mathcal{C}(G,\mathbb{C})$ is the vector space of complex functions on G.

 $\chi_{\rho} \in \mathcal{C}(G) \subset \mathcal{C}(G,\mathbb{C})$ is the vector space of complex class functions of G.

Remark 17. Assume that $\{C_1, \ldots, C_k\}$ is the set of distinct conjugacy classes in G. Then $\{f_i(C_j) = \delta_{ij} \mid \forall i = 1, \ldots, k\}$ forms a basis for $\mathcal{C}(G)$ over \mathbb{C} .

- $\forall f \in \mathcal{C}(G)$, let $f(C_i) = a_i$, then $f = \sum a_i f_i$.
- $\sum a_i f_i = 0$, pick $x_j \in C_j$, then $(\sum a_i f_i)(x_j) = a_j = 0 \quad \forall j = 1, \dots k$.

So dim C(G) = k.

Def 65. $\phi, \psi \in \mathcal{C}(G, \mathbb{C})$, then

$$\langle \phi, \psi \rangle := \frac{1}{|G|} \sum_{g \in G} \phi(g) \overline{\psi(g)}$$

is a positive definite Hermitian form on $\mathcal{C}(G,\mathbb{C})$.

Theorem 32 (Main theorem). The set of all irreducible characters of G forms an orthonormal basis for $\mathcal{C}(G)$ over \mathbb{C} . So there are only k irreducible representations up to equivalent.

Lemma 3 (Schur's lemma). Let $\rho: G \to \operatorname{GL}(V)$ and $\rho': G \to \operatorname{GL}(V')$ be two irr. rep. of G.

Then

1. ρ, ρ' are not equivalent $\Longrightarrow T = 0$.

2.
$$V = V', \rho = \rho' \implies \mathsf{T} = \lambda 1_V \text{ for some } \lambda \in \mathbb{C}.$$

Proof.

- Assume T ≠ 0. We only needs to prove that T is an isomorphism, and then ρ, ρ' would be isomorphic by definition. Since T is G-equivariant, ker T ≤ V and Im T ≤ V' are G-invariant. ρ is irreducible ⇒ ker T = 0 or V, but if ker T = V then T = 0, so ker T = 0.
 Similarly, ρ' is irreducible ⇒ Im T = 0 or V. And by the fact that T ≠ 0, Im T = V.
 Thus T is an isom, and consequently ρ, ρ' are equivalent.
- 2. Since the vector field is over \mathbb{C} , T has an eigenvalue. Let λ be an eigenvalue of T, say $\mathsf{T}(v) = \lambda v$ with $v \neq 0$ in V. Put $\mathsf{T}' = \mathsf{T} \lambda 1_V$. Then

$$\rho(g) \circ \mathsf{T}' = \rho(g) \circ (\mathsf{T} - \lambda 1_V) \stackrel{*}{=} \rho(g) \circ \mathsf{T} - \rho(g) \circ \lambda 1_V = \mathsf{T} \circ \rho(g) - \lambda 1_V \rho(g) = \mathsf{T}' \rho(g)$$

Which * is due to the linearity of $\rho(g)$. Hence T' is also G-equivariant.

But $v \in \ker \mathsf{T}'$, i.e., T' is not 1-1. Similar as in 1., $\ker \mathsf{T}' = \{0\}$ or $V \implies \ker \mathsf{T}' = V \implies \mathsf{T}' = 0 \implies T = \lambda 1_V$.

Coro 3.1.1. Assume ρ, ρ' is the same as above. Let $L: V \to V'$ be a linear transformation. Define

$$\mathsf{T} = \frac{1}{|G|} \sum_{g \in G} \rho'(g)^{-1} \mathsf{L} \rho(g).$$

One could easily checks that T is G-equivariant (i.e., $T \circ \rho(g) = \rho'(g) \circ T$). Then

- 1. ρ, ρ' are not equivalent $\Longrightarrow T = 0$.
- 2. $V = V', \rho = \rho' \implies \mathsf{T} = \lambda 1_V, \ \lambda = \mathrm{Tr}(\mathsf{T})/\dim V = \mathrm{Tr}(\mathsf{L})/\dim V.$

Remark 18. Let $\rho \to_{\beta} R : G \to GL_n(\mathbb{C})$ and $R(g) = [r_{ij}(g)]$

$$\rho' \to_{\beta'} R' : G \to \mathrm{GL}_{n'}(\mathbb{C}) \text{ and } R'(g) = [r'_{ij}(g)]$$

and let the matrix representation of L is $[\mathsf{L}]_{\beta}^{\beta'} = [x_{\mu\nu}] \in M_{n'\times n}(\mathbb{C})$

Then consider the matrix representation of T, which is $[\mathsf{T}]^{\beta'}_{\beta} = [x^{\circ}_{tl}]$ with

$$x_{tl}^{\circ} = \frac{1}{|G|} \sum_{\substack{g \in G \\ i=1,\dots,n \\ j=1,\dots,n'}} r'_{tj}(g^{-1}) x_{ji} r_{il}(g)$$

In case 1., $x_{tl}^{\circ} = 0, \forall t, l$. Since it hold for every L, which is independent of ρ, ρ' , fixing i, j and setting $x_{ij} = 1$ and 0 otherwise, we gets

$$\frac{1}{|G|} \sum_{g \in G} r'_{tj}(g^{-1}) r_{il}(g) = 0, \quad \forall i, j, t, l$$

In case 2., $\mathsf{T} = \lambda 1_V$, i.e. $x_{tl}^{\circ} = \lambda \delta_{tl}$. $\lambda = \frac{\mathrm{Tr}(\mathsf{L})}{n} = \frac{1}{n} \sum_{i=1}^{n} x_{ii} = \frac{1}{n} \sum_{i,j} \delta_{ji} x_{ji}$ Hence,

$$\frac{1}{|G|} \sum_{g,i,j} r'_{tj}(g^{-1}) x_{ji} r_{il}(g) = \frac{1}{n} \sum_{i,j} \delta_{ji} x_{ji} \delta_{tl}$$

But notice that this equality hold for any L, which is independent of ρ , ρ' . So if we fix i, j and set $x_{ji} = 1$, and $x_{j'i'} = 0$ otherwise, we get

$$\frac{1}{|G|} \sum_{g \in G} r_{tj}(g^{-1}) r_{il}(g) = \frac{1}{n} \delta_{ji} \delta_{tl}$$

Prop 3.1.1.

- 1. If χ_{ρ} is irreducible, then $\langle \chi_{\rho}, \chi_{\rho} \rangle = 1$.
- 2. If two irreducible representations ρ, ρ' are not equivalent, then $\langle \chi_{\rho}, \chi_{\rho'} \rangle = 0$.

Proof.

1. Let $R(g) = [r_{ij}(g)]$ be the matrix representation of $\rho(g)$. Then

$$\langle \chi_{\rho}, \chi_{\rho} \rangle \triangleq \frac{1}{|G|} \sum_{g} \chi_{\rho}(g) \overline{\chi_{\rho}(g)} = \frac{1}{|G|} \sum_{g} \chi_{\rho}(g) \chi_{\rho}(g^{-1})$$
$$= \frac{1}{|G|} \sum_{g} \sum_{i,j} r_{ii}(g) r_{jj}(g^{-1}) = \sum_{i,j} \frac{1}{n} \delta_{ij} \delta_{ij} = 1$$

2. Let $R(g) = [r_{ij}(g)], R'(g) = [r'_{ij}(g)]$ be the matrix representation of $\rho(g), \rho'(g)$. Then

$$\langle \chi_{\rho}, \chi_{\rho'} \rangle \triangleq \frac{1}{|G|} \sum_{g} \chi_{\rho}(g) \overline{\chi'_{\rho}(g)} = \frac{1}{|G|} \sum_{g} \chi_{\rho}(g) \chi_{\rho}(g^{-1})$$
$$= \frac{1}{|G|} \sum_{g} \sum_{i,j} r_{ii}(g) r'_{jj}(g^{-1}) = 0$$

Remark 19. $\langle \chi_{\rho}, \chi_{\rho} \rangle = 1 \implies \rho$ is irr.

Proof. We write $\rho = \rho_1^{\oplus m_1} \oplus \cdots \oplus \rho^{\oplus m_l}$ where ρ_1, \ldots, ρ_l are non-equivalent irr. rep.

$$\chi_{\rho} = \sum_{i=1}^{l} m_i \chi_{\rho_i}$$

$$1 = \langle \chi_{\rho}, \chi_{\rho} \rangle = \sum_{i=1}^{l} m_i^2 \implies \exists m_i = 1 \text{ and } m_j = 0 \text{ for } j \neq i$$

So $\rho \cong \rho_i$.

3.2 Week 15

3.2.1 Character Theory II

Prop 3.2.1. Let $\rho: G \to GL(V)$ and $\rho = \rho^{W_1} \oplus \cdots \oplus \rho^{W_k}$ where $\rho_i = \rho^{W_i}$ is irr. $\forall i. (V \cong W_1 \oplus \cdots \oplus W_k)$

If $\tilde{\rho}: G \to \mathrm{GL}(\tilde{W})$ is an irr. rep. then the number of ρ_i isomorphic to $\tilde{\rho}$ is equal to $\langle \chi_{\rho}, \chi_{\tilde{\rho}} \rangle$.

Proof. We know $\chi_{\rho} = \chi_{\rho_1} + \cdots + \chi_{\rho_k}$, so

$$\langle \chi_{\rho}, \chi_{\tilde{\rho}} \rangle = \sum_{i=1}^{k} \langle \chi_{\rho_i}, \chi_{\tilde{\rho}} \rangle$$

Recall $\rho_i \cong \tilde{\rho} \implies \langle \chi_{\rho_i}, \chi_{\tilde{\rho}} \rangle = 1$, otherwise $\langle \chi_{\rho_i}, \chi_{\tilde{\rho}} \rangle = 0$.

Remark 20.

1. The number of W_i isomorphic to \tilde{W} does not depend on the chosen decomposition. (= $\langle \chi_{\rho}, \chi_{\tilde{\rho}} \rangle$)

- 2. If $\chi_{\rho} = \chi_{\rho'}$, then $\rho \cong \rho'$: $\langle \chi_{\rho}, \chi_{\tilde{\rho}} \rangle = \langle \chi_{\rho'}, \chi_{\tilde{\rho}} \rangle$ The type of irr. subrep of ρ is the same as ρ' .
- 3. If χ_1, \ldots, χ_l are distinct irr. characters of G, then since x_1, \ldots, x_l are orthonormal w.r.t. $\langle \cdot, \cdot \rangle$ in $\mathcal{C}(G), x_1, \ldots, x_l$ are linearly indep. over \mathbb{C} in $\mathcal{C}(G)$.

But dim C(G) = k = # of conjugacy classes in G. So $l \leq k$ i.e. we conclude that there are at most k mutually non-equivalent irr. rep. of G, say $\rho_1, \ldots, \rho_l, l \leq k$.

For any $\rho: G \to \mathrm{GL}(V)$, $\rho \cong \rho_1^{\oplus m_1} \oplus \cdots \oplus \rho_l^{\oplus m_l}$ where $m_i = \langle \chi_{\rho_i}, \chi_{\rho_i} \rangle \in \mathbb{Z}^{\geq 0}$.

Theorem 33 (Orthogonality relations for χ 's). The set of all irr. characters of G forms an orthonormal basis $\mathcal{C}(G)$ over \mathbb{C} . In particular, the number of irr. rep. of G is equal to # of conjugacy classes in G. (up to equivalence)

Proof. Let $\chi_i = \chi_{\rho_i}, i = 1, \dots, l$ be all irr. characters of G and $\mathcal{D} = \langle \chi_1, \dots, \chi_l \rangle_{\mathbb{C}} \subseteq \mathcal{C}(G)$. Then $\mathcal{C}(G) = \mathcal{D} \oplus \mathcal{D}^{\perp}$. Claim: $\mathcal{D}^{\perp} = \{0\}$.

Let $\varphi \in \mathcal{D}^{\perp}$, i.e. $\langle \varphi, \chi_i \rangle = 0, \forall i = 1, \dots, l$.

Write $\rho^{\text{reg}} \cong \rho_1^{\oplus m_1} \oplus \cdots \oplus \rho_l^{\oplus m_l} \implies \chi^{\text{reg}} = m_1 \chi_1 + \cdots + m_k \chi_l$. By assumption, $\langle \varphi, \chi_{\rho} \rangle = 0$.

For each i, define $\mathsf{T}_{\rho_i} \in \mathrm{Hom}_{\mathbb{C}}(V, V)$ by

$$\mathsf{T}_{\rho_i} \triangleq \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \rho_i(g)$$

Then we have

$$\operatorname{Tr}(\mathsf{T}_{\rho_i}) = \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \chi_{\rho}(g) = \overline{\langle \varphi, \chi_{\rho} \rangle} = 0$$

Also, for all $h \in G$.

$$\rho_{i}(h)^{-1} \circ \mathsf{T}_{\rho_{i}} \circ \rho_{i}(h) = \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \rho_{i}(h)^{-1} \circ \rho_{i}(g) \circ \rho_{i}(h)$$

$$\stackrel{*}{=} \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(h^{-1}gh)} \rho_{i}(h^{-1}gh)$$

$$= \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \rho_{i}(g) = \mathsf{T}_{\rho_{i}}$$

Where * is because φ is a class function. So T_{ρ_i} is G-equivariant. By Schur's lemma, $\mathsf{T}_{\rho_i} = \lambda_i 1_{W_i}$ where $\rho_i : G \to \mathrm{GL}(W_i)$.

But $\operatorname{Tr} \mathsf{T}_{\rho_i} = 0 \implies \lambda_i = 0 \implies \mathsf{T}_{\rho_i} = 0.$

Also, because $\rho \cong \rho_1^{\oplus m_1} \oplus \cdots \oplus \rho_l^{\oplus m_l}$, if we define

$$\mathsf{T}_{\rho^{\mathrm{reg}}} \triangleq \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \rho^{\mathrm{reg}}(g) \implies \mathsf{T}_{\rho^{\mathrm{reg}}} = \mathsf{T}_{\rho_1}^{\oplus m_1} \oplus \cdots \oplus \mathsf{T}_{\rho_k}^{\oplus m_k} = 0$$

Finally, let $\rho = \rho^{\text{reg}} : G \to \text{GL}(V)$ with $V = \bigoplus_{g \in G} \mathbb{C}e_g$. Then $\mathsf{T}_{\rho} = 0 \implies \mathsf{T}_{\rho}(e_1) = 0$ and

$$0 = \mathsf{T}_{\rho}(e_1) = \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \rho(g)(e_1) = \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} e_g$$

Since $\{e_g\}$ is a basis, $\overline{\varphi(g)} = 0 \quad \forall g$. That is, $\varphi \equiv 0$.

Prop 3.2.2. Each irr. rep. $\rho_i: G \to \mathrm{GL}(W_i)$ is contained in ρ^{reg} with multiplicity equal to $\dim W_i = m_i, i = 1, \ldots, k$.

In particular,
$$\bigoplus_{g \in G} \mathbb{C}e_g \cong \underbrace{W_1 \oplus \cdots \oplus W_1}_{m_1 \text{times}} \oplus \cdots \oplus \underbrace{W_1 \oplus \cdots \oplus W_k}_{m_k \text{times}}$$
. So $|G| = m_1^2 + \cdots + m_k^2$.

Proof. Let $\chi^{\text{reg}} := \chi_{\rho^{\text{reg}}}$ and $\chi_i = \chi_{\rho_i}, i = 1, \dots, k$. Then

$$\langle \chi^{\text{reg}}, \chi_i \rangle = \frac{1}{|G|} \sum_{g \in G} \chi^{\text{reg}}(g) \chi_i(g^{-1}) = \frac{1}{|G|} |G| \chi_i(1) = m_i$$

Theorem 34 (Divisibility). $\forall i = 1, ..., k, \quad \chi_i(1) = m_i \mid |G|$.

Proof. First, we shall proof that for each $\rho = \rho_i$, $\chi = \chi_i$ and j, we have

$$\mathsf{T} \triangleq \sum_{g \in C_j} \rho(g) = \frac{|C_j| \chi(g_0)}{m_i} \mathsf{I}_{m_i}, \quad \text{for any } g_0 \in C_j$$

Observe that $\forall h \in G$,

$$\rho(h)^{-1} \circ \mathsf{T} \circ \rho(h) = \sum_{g \in C_i} \rho(h^{-1}gh) = \sum_{g' \in C_i} \rho(g') = \mathsf{T}$$

So T is G-equivariant w.r.t. ρ .

By Schur's lemma, $\mathsf{T} = \lambda \mathsf{I}_{m_i}$ for some $\lambda \in \mathbb{C}$. And $\lambda = \mathrm{Tr}(\mathsf{T})/m_i = \sum_{g \in C_j} \chi(g)/m_i = |C_j|\chi(g_0)/m_i$ for any $g_0 \in C_j$, thus $\sum_{g \in C_j} \rho(g) = \frac{|C_j|\chi(g_0)}{m_j} \mathsf{I}$ for any $g_0 \in C_j$.

Define $\lambda_{\mu}(C_i) \triangleq |C_i|\chi_{\mu}(g_i)/m_{\mu}$. Now, for a $g \in C_l$, define $a_{i,j,l} \triangleq \#\{(g_i,g_j) \in C_i \times C_j \mid g_ig_j = g\}$, which is indep. of the choice of g.

We claim that $\lambda_{\mu}(C_i)\lambda_{\mu}(C_j) = \sum_{l=1}^k a_{i,j,l}\lambda_{\mu}(C_j), \forall i,j,\mu$. Then

$$\lambda_{\mu}(C_{i}) \begin{bmatrix} \lambda_{\mu}(C_{1}) \\ \vdots \\ \lambda_{\mu}(C_{k}) \end{bmatrix} = A \begin{bmatrix} \lambda_{\mu}(C_{1}) \\ \vdots \\ \lambda_{\mu}(C_{k}) \end{bmatrix}, \text{ where } A \triangleq \begin{bmatrix} a_{i,1,1} & \dots & a_{i,1,k} \\ \vdots & \ddots & \vdots \\ a_{i,k,1} & \dots & a_{i,1,k} \end{bmatrix}$$

So $\lambda_{\mu}(C_j)$ is an eigenvalue of A, i.e., $\lambda = \lambda_{\mu}(C_j)$ satisfies $\det(\lambda I - A) = 0$. And thus $\lambda_{\mu}(C_i)$ is an algebraic integer.

We proof the claim by the following calculating.

$$\lambda_{\mu}(C_{i})\lambda_{\mu}(C_{j})I_{m_{\mu}} = \left(\lambda_{\mu}(C_{i})I_{m_{\mu}}\right)\left(\lambda_{\mu}(C_{j})I_{m_{\mu}}\right) = \left(\sum_{g \in C_{i}} \rho(g)\right)\left(\sum_{g' \in C_{j}} \rho(g')\right)$$

$$= \sum_{\substack{g \in C_{i} \\ g' \in C_{j}}} \rho(gg') = \sum_{l=1}^{k} \sum_{\bar{g} \in C_{l}} a_{i,j,l}\rho(\bar{g})$$

$$= \sum_{l=1}^{k} a_{i,j,l} \sum_{\bar{g} \in C_{l}} \rho(\bar{g})$$

$$= \sum_{l=1}^{k} a_{i,j,l}\lambda_{\mu}(C_{l})I_{m_{\mu}}$$

Finally,

$$\begin{aligned} \frac{|G|}{m_i} &= \frac{|G|}{m_i} \langle \chi_i, \chi_i \rangle \\ &= \frac{|G|}{m_i} \frac{1}{|G|} \sum_{g \in G} \chi_i(g) \chi_i(g^{-1}) \\ &= \sum_{g \in G} \frac{\chi_i(g)}{m_i} \chi_i(g^{-1}) \\ &= \sum_{j=1}^k \sum_{g \in C_j} \frac{\chi_i(g)}{m_i} \chi_i(g^{-1}) \\ &= \sum_{j=1}^k \frac{|C_j| \chi_i(g_j)}{m_i} \chi_i(g_j^{-1}) \\ &= \sum_{j=1}^k \lambda_i(C_j) \chi_i(g_j^{-1}) \end{aligned}$$

and thus is an algebraic integer.

Also, $|G|/m_i \in \mathbb{Q}$, so we conclude that $|G|/m_i \in \mathbb{Z} \implies m_i \mid |G|$.

Ex 3.2.1.

- 1. Show that if $g \in G$ and $g \neq 1$, then $\sum_{i=1}^k m_i \chi_i(g) = 0$.
- 2. Show that each character χ of G with $\chi(g) = 0 \quad \forall g \neq 1$ is an integral multiple of χ^{reg} .

Ex 3.2.2.

- 1. Let $|G| < \infty$. Then G is abelian \iff each irr. rep. of G is of degree 1.
- 2. {the deg 1 rep. of G} = {the irr. rep. of G/[G,G]}.

3.2.2 Applications

1.
$$G = S_3 = D_3$$
, $6 = 1^2 + 1^2 + 2^2$.

Classes
 1

$$(1\ 2)$$
 $(1\ 2\ 3)$

 size
 1
 3
 2

 χ_1
 1
 1

 χ_2
 1
 -1
 1

 χ_3
 2
 0
 -1

The permutation representation

$$\deg 4 \colon \tilde{\rho} = \rho^W \otimes \rho^W \leadsto \chi_{\tilde{\rho}} = \chi_3 \cdot \chi_3 = (4, 0, 1).$$

By inner product with χ_1, χ_2, χ_3 , we can find $\chi_{\tilde{\rho}} = \chi_1 + \chi_2 + \chi_3 \leadsto \tilde{\rho} = \rho_1 \oplus \rho_2 \oplus \rho_3$.

2.
$$G = D_4 = \langle x, y \mid x^4 = 1, y^2 = 1, yxy^{-1} = x^{-1} \rangle$$
. $|G| = 8 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2$.

Classes	1	y	\boldsymbol{x}	x^2	xy
size	1	2	2	1	2
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
χ_3	1	1	-1	1	-1
χ_4	1	-1	-1	1	1
χ_5	2	0	0	-2	0

$$\chi^{\text{reg}} = (8, 0, 0, 0, 0) = \chi_1 + \chi_2 + \chi_3 + \chi_4 + 2\chi_5.$$

3.
$$G = D_n$$
, $(n \text{ even})$ $[G, G] = H = \langle x^2 \rangle$

4.
$$G = D_n$$
, $(n \text{ odd})$ $[G, G] = H = \langle x \rangle$

5.
$$G = S_4$$
.

Classes	1	$(1\ 2)$	$(1\ 2\ 3)$	$(1\ 2\ 3\ 4)$	$(1\ 2)(3\ 4)$
size	1	6	8	6	3
χ_1	1	1	1	1	1
χ_2	1	-1	1	-1	1
χ_3	2	0	-1	0	2
χ_4	3	1	0	-1	-1
χ_5	3	-1	0	1	-1

6.
$$G = A_4$$
, $[A_4, A_4] = V_4$.

Classes	1	$(1\ 2\ 3)$	$(1\ 3\ 2)$	$(1\ 2)(3\ 4)$
size	1	4	4	3
χ_1	1	1	1	1
χ_2	1	ω	ω^2	1
χ_3	1	ω^2	ω	1
χ_A	3	0	0	-1

Theorem 35 (Product of groups). For $\rho: G \to \operatorname{GL}(V)$ and $\rho': G' \to \operatorname{GL}(V')$, write $\rho \otimes \rho': G \times G' \to \operatorname{GL}(V \otimes V')$. If $\{\rho_i\}$ are irreducible representations of G, $\{\rho'_j\}$ are irreducible representations of G', then $\{\rho_i \otimes \rho'_j\}$ are exactly the irreducible representations of $G \times G'$.

Proof. It is evidence that $\rho_i \otimes \rho'_j$ is a homomorphism, and hence a representation.

Notice that $\chi_{\rho\otimes\rho'}=\chi_{\rho}\odot\chi_{\rho'}$ where $\chi_{\rho}\odot\chi_{\rho'}(g,g')=\chi_{\rho}(g)\chi_{\rho'}(g')$

Now we calculate

$$\langle \chi_{\rho_1} \otimes \chi_{\rho'_1}, \chi_{\rho_2} \otimes \chi_{\rho'_2} \rangle = \frac{1}{|G||G'|} \sum_{g,g'} \chi_{\rho_1}(g) \chi_{\rho'_1}(g') \chi_{\rho_2}(g) \chi_{\rho'_2}(g')$$

$$= \left(\frac{1}{|G|} \sum_g \chi_{\rho_1}(g) \chi_{\rho_2}(g)\right) \left(\frac{1}{|G'|} \sum_{g'} \chi_{\rho'_1}(g') \chi_{\rho'_2}(g')\right)$$

$$= \langle \chi_{\rho_1}, \chi_{\rho_2} \rangle \langle \chi_{\rho'_1}, \chi_{\rho'_2} \rangle$$

So $\langle \chi_{\rho} \otimes \chi_{\rho'}, \chi_{\rho} \otimes \chi_{\rho'} \rangle = 1$ hence each $\chi_{\rho} \otimes \chi_{\rho'}$ is irreducible. And $\langle \chi_{\rho_1} \otimes \chi_{\rho'_1}, \chi_{\rho_2} \otimes \chi_{\rho'_2} \rangle = 0$ if $\rho_1 \otimes \rho'_1 \neq \rho_2 \otimes \rho'_2$, and thus these representations are not isomorphic.

Finally we proof that any irreducible representations of $G \times G'$ is isomorphic to some $\rho \otimes \rho'$.

Let $\{\rho_1, \ldots, \rho_k\}, \{\rho'_1, \ldots, \rho'_{k'}\}$ be the sets of irreducible representations of G, G' respectively. Write $\chi_i = \chi_{\rho_i}, \chi'_i = \chi_{\rho'_i}$.

Let $\mathcal{D} \triangleq \mathcal{C}(G \times G') = \langle \chi_i, \chi'_j \mid i = 1, \dots, k, j = 1, \dots, k' \rangle_{\mathbb{C}} =$. We claim that $\mathcal{D}^{\perp} = \{0\}$. Let $f \in \mathcal{D}^{\perp}$. Then

$$0 = \frac{1}{|G \times G'|} \sum_{(g,g') \in G \times G'} f(g,g') \overline{\chi_i(g) \chi_j'(g')}$$
$$= \frac{1}{|G'|} \sum_{g'} \left(\frac{1}{|G|} \sum_g f(g,g') \overline{\chi_i(g)} \right) \chi_j'(g')$$
$$= \left\langle \frac{1}{|G|} \sum_g f(g,\cdot) \overline{\chi_i(g)}, \chi_j' \right\rangle$$

Since ρ'_j are othonogal basis of $\mathcal{C}(G')$, we have $\frac{1}{|G|}\sum_g f(g,g')\overline{\chi_i(g)}=0$ for all g'. Again,

$$0 = \frac{1}{|G|} \sum_{g} f(g, g') \overline{\chi_i(g)} = \langle f(\cdot, g'), \chi_i \rangle$$

Hence f(g, g') = 0 for all g, g', which implies $f \equiv 0$.

Ex 3.2.3. Determine all irr. rep. of C_n .

Ex 3.2.4. Calculate the character table of Q_8 .

Ex 3.2.5. Calculate the character table of $\mathbb{Z}/2\mathbb{Z} \times S_4$ and $S_3 \times S_4$.

To calculate S_5 , $|S_5| = 120 = 1^2 + 1^2 + 4^2 + 4^2 + 5^2 + 5^2 + 6^2$.

4 Extensions of Groups

4.1 Week 16

4.1.1 Extensions of abelian groups

Def 66. If a group E contains a normal subgroup N and $E/N \cong G$, then we call E an extension of N by G, denoted by $1 \to N \to E \to G \to 1$.

Ques: When N and G are given, how to obtain all extensions of N by G.

Now assume that N is abelian.

Def 67. $1 \to N \to E \xrightarrow{p} G \to 1$. $l: G \to E$ is a lifting if $p \circ l = \mathrm{id}_G$ and l(1) = 1.

Remark 21. $G \cong E/N = \{xN \mid x \in E\}, p \circ l(\bar{x}) = \bar{x}, l(\bar{x}) \text{ is a representative of } xN = \bar{x}.$

Prop 4.1.1.

- 1. $\forall \bar{x} \in G, \theta_{\bar{x}} : N \to N, a \mapsto l(\bar{x})al(\bar{x})^{-1}$. is independent of the choice of l.
- 2. $\theta: G \to \operatorname{Aut}(N), \bar{x} \mapsto \theta_{\bar{x}}$ is a group homomorphism.

Proof.

- 1. Suppose $l': G \to E$ is another lifting. Then $l(\bar{x})N = l'(\bar{x})N$. So $l'(\bar{x}) = l(\bar{x})b$ for some $b \in N$. $\forall a \in N, l'(\bar{x})al'(\bar{x})^{-1} = l(\bar{x})bab^{-1}l(\bar{x})^{-1} = l(\bar{x})al(\bar{x})^{-1}$ since N is abelian.
- 2. $\theta_{\bar{x}\bar{y}}(a) = l(\bar{x}\bar{y})al(\bar{x}\bar{y})^{-1}$.

$$\begin{cases} p \circ l(\bar{x}\bar{y}) = \bar{x}\bar{y} \\ p \circ (l(\bar{x})l(\bar{y})) = \bar{x}\bar{y} \end{cases} \rightsquigarrow l(\bar{x}\bar{y}), l(\bar{x})l(\bar{y}) \text{ are liftings of } \bar{x}\bar{y} \qquad \Box$$

Def 68. An extension $1 \to N \to E \to G \to 1$ splits if \exists a lifting $l: G \to E$ is a group homo.

Prop 4.1.2. TFAE

- 1. $1 \to N \to E \to G \to 1$ splits.
- $2. \ \exists \ \text{a subgroup} \ K \leq E \ \text{s.t.} \ K \cong G \ \text{and} \ \begin{cases} K \cap N = \{1\} \\ NK = E \end{cases} \\ \leadsto E \cong N \rtimes K (\cong N \rtimes G).$

Proof. (1) \Rightarrow (2): Let K = Im l which is a subgroup since l is a group homo.

- l is an isomorphism from G to K: If $l(\bar{x}) = l(\bar{y})$, then $p \circ l(\bar{x}) = p \circ l(\bar{y}) \leadsto \bar{x} = \bar{y}$. So l is 1-1.
- E = NK: $\forall x \in E, \bar{x} = p(x) \leadsto y = l(\bar{x}) \text{ and } p(x) = p(y) \leadsto \exists a \in N \text{ s.t. } x = ay.$
- $K \cap N = \{1\}$: $a = l(\bar{x}) \in K \cap N \leadsto 1 = p(a) = p(l(\bar{x})) = \bar{x} \leadsto a = l(1) = 1$.

 $(2) \Rightarrow (1)$:

- $\bullet \ \ p\big|_K: K \rightarrow G \text{ is an isom.: onto: } p(K) = p(NK) = p(E) = G, \text{ 1-1: } \ker(p\big|_K) = N \cap K = \{1\}.$
- $l = (p|_K)^{-1}$ is a group homo.

Observation: Let $l: G \to E$ be a lifting. Then $E = \bigcup_{\bar{x} \in G} Nl(\bar{x}), \forall x, y \in E$, write $x = al(\bar{x}), y = bl(\bar{y}), a, b \in N, \bar{x}, \bar{y} \in G$.

$$xy = (al(\bar{x})bl(\bar{y})) = al(\bar{x})bl(\bar{x})^{-1}l(\bar{x})l(\bar{y}) = a\theta_{\bar{x}}(b)l(\bar{x})l(\bar{y})$$

Notice that $l(\bar{x})l(\bar{y})$ and $l(\bar{x}\bar{y})$ are liftings, so we can write $l(\bar{x})l(\bar{y}) = f(\bar{x},\bar{y})l(\bar{x}\bar{y})$ for some $f(\bar{x},\bar{y}) \in N$.

Ex 4.1.1. $B^2(G, N) \leq Z^2(G, N)$.

Ex 4.1.2. Show that there are inequivalent extensions of N by G with isomorphic middle groups. (Hint: $N = \mathbb{Z}/p\mathbb{Z}$ with p is odd, $E = \mathbb{Z}/p^2\mathbb{Z}$, $a :: N \mapsto x^p :: E$ and please give another morphism $N \to E$ by yourself.)

Def 69. Given $1 \to N \to E \xrightarrow{p} G \to 1$ and $l: G \to E$, a factor set is a function $f: G \times G \to N$ s.t. $\forall \bar{x}, \bar{y} \in G, l(\bar{x})l(\bar{y}) = f(\bar{x}, \bar{y})l(\bar{x}\bar{y})$.

Prop 4.1.3. Let $1 \to N \to E \xrightarrow{p} G \to 1$ and $l: G \to E$. If f is a factor set, then

- (1) $f(x,1) = 1 = f(1,y) \quad \forall x, y \in G.$
- (2) (cocycle identity) $\forall x, y, z \in G, f(x, y) f(xy, z) = \theta_x(f(y, z)) f(x, yz).$ (i.e. f(x, y) + f(xy, z) = x f(y, z) + f(x, yz))

Proof.

- (1) Trivial since $l(x)l(1) = l(1 \cdot x)$.
- (2) By associativity. (l(x)l(y))l(z) = l(x)(l(y)l(z)). (l(x)l(y))l(z) = f(x,y)l(xy)l(z) = f(x,y)f(xy,z)l(xyz), and $l(x)(l(y)l(z)) = l(x)f(y,z)l(yz) = l(x)f(y,z)l^{-1}(x)l(x)l(yz) = \theta_x(f(y,z))f(x,yz)l(xyz)$. Thus $f(x,y)f(xy,z) = \theta_x(f(y,z))f(x,yz)$.

Theorem 36. Let $\sigma: G \to \operatorname{Aut}(N), x \mapsto \sigma_x$ be a group homo. and $f: G \times G \to N$ satisfies (1),(2) in Prop. 4.1.3. Then $\exists 1 \to N \to E \to G \to 1$ and $l: G \to E$ s.t. $\theta = \sigma$ and f is the corresponding factor set.

Proof. • Define $E = N \times G$ equipped with the operation

$$(a, x)(b, y) = (a\sigma_x(b)f(x, y), xy)$$

- associativity:

$$\begin{aligned} \big((a,x)(b,y)\big)(c,z) &= (a\sigma_x(b)f(x,y),xy)(c,z) \\ &= (a\sigma_x(b)f(x,y)\sigma_{xy}(c)f(xy,z),xyz) \\ &= (a\sigma_x(b)\sigma_{xy}(c)f(x,y)f(xy,z),xyz) \quad (\because N \text{ abelian}) \end{aligned}$$

and

$$(a,x)((b,y)(c,z)) = (a,x)(b\sigma_y(c)f(y,z))$$

$$= (a\sigma_x(b\sigma_y(c)f(y,z))f(x,yz),xyz)$$

$$= (a\sigma_x(b)\sigma_{xy}(c)\sigma_x(f(y,z))f(x,yz),xyz)$$

$$= (a\sigma_x(b)\sigma_{xy}(c)f(x,y)f(xy,z),xyz)$$

- indentity: (1,1). - inverse: $(a,x)^{-1} = (\sigma_{x^{-1}}(a^{-1}f(x,x^{-1})^{-1}),x^{-1})$.

- $p: E \to G, (a, x) \mapsto x$ is a group homo by def.
- $i: N \to E, a \mapsto (a, 1)$ is a group homo. $(a, 1)(b, 1) = (a\sigma_1(b)f(1, 1), 1) = (ab, 1)$.
- $\ker p = \operatorname{Im} i$.
- Fix $l: G \to E, a \in N, x \in G$, say l(x) = (b, x).

$$l(x)(a,1)l(x)^{-1} = (b,x)(a,1)(b,x)^{-1} = (b\sigma_x(a),x)\left(\sigma_{x^{-1}}(a^{-1}f(x,x^{-1})^{-1}),x^{-1}\right)$$
$$= (b\sigma_x(a)\cdot(\sigma_x\circ\sigma_{x^{-1}})\left(b^{-1}f(x,x^{-1})^{-1}\right)\cdot f(x,x^{-1}),1)$$
$$= (\sigma_x(a),1)$$

So $\theta_x = \sigma_x$.

• Let $l: G \to E, x \mapsto (1, x)$. Check $l(x)l(y)l(xy)^{-1} = (f(x, y), 1)$. Then f is the corresponding factor set.

Prop 4.1.4. Let $1 \to N \to E \xrightarrow{p} G \to 1$ with two liftings $l_1 : G \to E$, $l_2 : G \to E$ with $f_1 : G \times G \to N$, $f_2 : G \times G \to N$ respectively.

Then $\exists h : G \to N$ with h(1) = 1 and $\forall x, y \in G, f_2(x, y) f_1(x, y)^{-1} = \theta_x(h(y)) h(xy)^{-1} h(x)$. $(f_2(x, y) - f_1(x, y) = xh(y) - h(xy) + h(x))$

Proof. For $x \in G$, $\exists h(x) \in N$ s.t. $l_2(x) = h(x)l_1(x)$. Since $l_1(1) = l_2(1) = 1$, h(1) = 1.

Now, $l_2(x)l_2(y) = f_2(x,y)l_2(x,y) = f_2(x,y)h(xy)l_1(x,y)$. and

$$l_2(x)l_2(y) = h(x)l_1(x)h(y)l_1(y) = h(x)l_1(x)h(y)l_1^{-1}(x)l_1(x)l_1(y)$$

= $h(x)\theta_x(h(y))l_1(x)l_1(y) = f_1(x,y)h(x)\theta_x(h(y))l_1(x,y)$

So $f_2(x,y)f_1(x,y)^{-1} = \theta_x(h(y))h(xy)^{-1}h(x)$.

Remark 22. A map which has the form $\tilde{h}: G \times G \to N, (x,y) \mapsto xh(y) - h(xy) + h(x)$ is called a coboundary map.

Def 70. $Z^2(G, N) =$ the abelian group of all factor sets.

 $B^{2}(G, N) =$ the abelian group of all coboundary maps.

 $H^{2}(G, N) = Z^{2}(G, N)/B^{2}(G, N)$

 $\textbf{Def 71.} \quad \text{Two extensions } \begin{cases} 1 \to N \to E \to G \to 1 \\ 1 \to N \to E' \to G \to 1 \end{cases} \quad \text{are equivalent if exists an isomorphism } \varphi:$

 $E \xrightarrow{\sim} E'$ which let the following diagram comutes.

$$1 \longrightarrow N \longrightarrow E \longrightarrow G \longrightarrow 1$$

$$\downarrow^{1_N} \qquad \varphi \downarrow \wr \qquad \downarrow^{1_G}$$

$$1 \longrightarrow N \longrightarrow E' \longrightarrow G \longrightarrow 1$$

Theorem 37. Two extensions $\begin{cases} 1 \to N \to E \to G \to 1 \\ 1 \to N \to E' \to G \to 1 \end{cases}$ are equivalent \iff

Exists mappings $l: G \to E, l': G \to E'$ with two factor sets f, f' respectively satisfies $f - f' \in B^2(G, N)$.

Proof. " \Rightarrow ": Choose $l:G\to E$ which has a corresponding factor set $f:G\times G\to N$. Now define $l':G\to E'$ by $l'=\varphi\circ l$. Since $p'\circ l'=p'\circ\varphi\circ l=p\circ l=1$, l' is a lifting. Let $f':G\times G\to N$ be its factor set.

Since $1_N = 1_N \circ \varphi$, $\varphi|_N = 1_N$. And

$$l(x)l(y) = f(x,y)l(xy)$$

$$\Rightarrow \varphi(l(x)l(y)) = \varphi(f(x,y)l(xy))$$

$$\Rightarrow l'(x)l'(y) = \varphi(f(x,y))l'(xy)$$

$$\Rightarrow f'(x,y) = \varphi(f(x,y))$$

But $f(x,y) \in N$, $\varphi(f(x,y)) = \varphi|_N(f(x,y)) = f(x,y)$. So f(x,y) = f'(x,y), hence $f - f' = 0 \in$ $B^2(G,N)$.

Ex 4.1.3.

- (1) Show that $f' f \in B^2(G, N)$.
- (2) "←": Show all details of the following steps:

•
$$\begin{cases} 1 \to N \to E \to G \to 1 \\ 1 \to N \to E(N, G, f, \theta) \to G \to 1 \end{cases}$$
 are equivalent.

- $\begin{array}{l} \bullet & \begin{cases} 1 \to N \to E \to G \to 1 \\ 1 \to N \to E(N,G,f,\theta) \to G \to 1 \end{cases} & \text{are equivalent.} \\ \bullet & \text{Similarly } \begin{cases} 1 \to N \to E' \to G \to 1 \\ 1 \to N \to E(N,G,f',\theta') \to G \to 1 \end{cases} & \text{are equivalent.} \end{array}$

4.1.2 1st and 2nd group cohomology

Let N be an abelian group and G be a group with a group homo $\sigma: G \to \operatorname{Aut}(N)$ $(G \curvearrowright N)$

 $e(G, N) = \{ \text{equivalence classes of } N \text{ by } G \}$

$$Z^{2}(G, N) = \{ f : G \times G \to N \mid f(1, v) = f = f(u, 1), f(u, v) + f(uv, w) = uf(v, w) + f(u, vw) \quad u, v, w \in G \}$$

$$B^{2}(G, N) = \{ f : G \times G \to N \mid \exists h : G \to N \text{ with } h(1) = 1 \text{ s.t. } f(u, v) = uh(v) - h(uv) + h(u) \quad u, v \in G \}$$

$$H^{2}(G, N) = Z^{2}(G, N)/B^{2}(G, N)$$

Then $e(G, N) \leftrightarrow H^2(G, N)$.

Def 72.

• $\varphi \in Aut(E)$ stabilizes $1 \to N \to E \to G \to 1$ if

• $\operatorname{Stab}_{E}(G, N) = \{\operatorname{stabilizing automorphisms}\} \leq \operatorname{Aut}(E)$

Def 73.

- A derivation is a function $d: G \to N$ s.t. $d(uv) = ud(v) + d(u) \quad \forall u, v \in G$.
- $Der(G, N) = \{derivations : G \to N\}$ is an abelian group with pointwise addition.

Theorem 38. Let $1 \to N \to E \to G \to 1$ with $\theta = \sigma$. Then $\operatorname{Stab}_E(G, N) \cong \operatorname{Der}(G, N)$. So $\operatorname{Stab}_{E}(G,N)$ is abelian.

Proof.

• Let $\varphi \in \text{LHS}$ and fix $l: G \to E$.

$$1 \longrightarrow N \longrightarrow E \longrightarrow G \longrightarrow 1$$

$$\downarrow_{1_N} \qquad \varphi \downarrow_{\coloredge l} \qquad \qquad \varphi(al(u)) = \varphi(a)\varphi(l(u)) = ad(u)l(u)$$

$$1 \longrightarrow N \longrightarrow E \longrightarrow G \longrightarrow 1$$

- For another $l': G \to E$, say l'(u) = g(u)l(u), where $g(u) \in N$, we have

$$d'(u) = \varphi(l'(u))(l'(u))^{-1} = \varphi(g(u)l(u))(g(u)l(u))^{-1}) = g(u)\varphi(l(u))l(u)^{-1}g(u)^{-1} = d(u).$$

 $-d \in RHS$,

$$\begin{split} d(uv) &= \varphi(l(uv))l(uv)^{-1} \\ &= \varphi(f(u,v)^{-1}l(u)l(v))l(v)^{-1}l(u)^{-1}f(u,v) \\ &= f(u,v)^{-1}d(u)l(u)d(v)l(v)l(v)^{-1}l(u)^{-1}f(u,v) \\ &= f(u,v)^{-1}d(u)\big(l(u)d(v)l(u)^{-1}\big)f(u,v) \\ &= \big(ud(v)\big)d(u) \end{split}$$

• Conversely,

Ex 4.1.4. proof it

• group homo: $\varphi_2 \circ \varphi_1(al(u)) = \varphi_2(ad_1(u)l(u)) = ad_1(u)\varphi_2(l(u)) = ad_1(u)d_2(u)l(u)$. That is, $\varphi_2 \circ \varphi_1 \mapsto d_1d_2$.

Def 74.

- $\operatorname{Inn}_E(G, N) = \{ \varphi \in \operatorname{Stab}_E(G, N) \mid \varphi : E \to E, x \mapsto a_0 x a_0^{-1} \text{ for some } a_0 \in N \}.$
- $PDer(G, N) = \{d \in Der(G, N) \mid d(u) = ua_1 a_1 \text{ for some } a_1 \in N\}.$

Ex 4.1.5. Show that $\operatorname{Inn}_E(G, N) \cong \operatorname{PDer}(G, N)$.

 $\operatorname{Stab}_{E}(G, N)/\operatorname{Inn}_{E}(G, N) \cong \operatorname{Der}(G, N)/\operatorname{PDer}(G, N) = H^{1}(G, N).$

Ex 4.1.6. Fix $1 \to N \to E \to G \to 1$. Show that if $H^2(G, N) = 0, H^1(G, N) = 0$, then for $l: G \to E$ with K = l(G), we get that K and K' are conjugate. K' = l'(G)

Def 75. Let R be a commutative ring with 1 and G be a group. The group ring

$$R[G] = \left\{ \sum_{g \in G} r_g g \,\middle|\, \text{only finitely many } r_g\text{'s} \neq 0 \text{ in } R \right\}$$

forms an R-algebra via

$$\begin{split} \sum_{g \in G} r_g g + \sum_{g \in G} r_g' g &= \sum_{g \in G} (r_g + r_g') g \\ \left(\sum_{g \in G} r_g g\right) \left(\sum_{g' \in G} r_g' g'\right) &= \sum_{g, g' \in G} (r_g r_g') g g' \\ r\left(\sum_{g \in G} r_g g\right) &= \sum_{g \in G} (r r_g) g \end{split}$$

Remark 23.

- 1. $\{\rho: G \to \mathrm{GL}(V)\} \leftrightarrow \{V: \mathbb{C}[G]\text{-module}\}.$
 - ρ : irr $\leftrightarrow V$: simple $\mathbb{C}[G]$ -module (i.e. no nontrivial proper submodule)
 - $W \subset V$: G-invariant $\leftrightarrow W : \mathbb{C}[G]$ -submodule.
- 2. N: abelian $\leadsto N: \mathbb{Z}$ -module and $G \curvearrowright N. \implies N: \mathbb{Z}[G]$ -module.

Def 76. $G \curvearrowright \mathbb{Z}$ trivially. i.e. $g \cdot n = n \quad \forall g \in G, n \in \mathbb{Z}$, then $\mathbb{Z} : \mathbb{Z}[G]$ -module.

- $B_0 = \mathbb{Z}[G][$]: the free $\mathbb{Z}[G]$ -module on the symbol [].
- $B_1 = \bigoplus_{u \in G} \mathbb{Z}[G][u]$: the free $\mathbb{Z}[G]$ -module on the set G.
- $B_2 = \bigoplus_{u,v \in G} \mathbb{Z}[G][u|v]$: the free $\mathbb{Z}[G]$ -module on the set $G \times G$.
- $B_3 = \bigoplus_{u,v,w \in G} \mathbb{Z}[G][u|v|w]$: the free $\mathbb{Z}[G]$ -module on the set $G \times G \times G$.

. . .

Now apply $\operatorname{Hom}(\cdot, N)$ to it:

...

Theorem 39. $\operatorname{Ext}^1_{\mathbb{Z}[G]}(\mathbb{Z}, N) := \ker d_2^* / \ker d_1^* \cong \operatorname{Der}(G, N) / \operatorname{PDer}(G, N) = H^1(G, N).$

Proof.

- $g \in \ker d_2^* \subseteq \operatorname{Hom}(B_1, N) \implies g \circ d_2 = 0. \dots$
- ...
- Let $t \in \text{Hom}(B_0, N)$, say $t([]) = a_0 \in N$.

$$d_1^*(t)([u]) = t \circ d_1([u]) = t(u[] - []) = ut([]) - t([]) = ua_0 - a_0$$

Then $d(u) := d_1^*(t)([u]) \implies d \in PDer(G, N)$.

• ...

Remark 24. $\operatorname{Ext}^2_{\mathbb{Z}[G]}(\mathbb{Z}, N) \cong H^2(G, N)$.

5 Fields

5.1 Algebraic extensions (week 1)

Def 77.

- L/K is called an **field extension** if L is a field and K is a subfield of L.
- $\alpha \in L$ is algebraic over K if exists $f(x) \in K[x]$ satisfied $f(\alpha) = 0$.
- L/K is called an **algebraic extension** if $\forall \alpha \in L, \exists f(x) \in K[x]$ such that $f(\alpha) = 0$.
- $K(\alpha_1, \alpha_2, \dots, \alpha_n) \triangleq \{P(\alpha_1, \dots, \alpha_n)/Q(\alpha_1, \dots, \alpha_n) : P, Q \in K[x_1, x_2, \dots, x_n] \text{ and } Q \neq 0\}$

Theorem 40 (Eisenstein criterion).

Let $f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$ with $gcd(a_0, a_1, \dots, a_n) = 1$. Assume that there exists a prime p s.t. $p \nmid a_n$ but $p \mid a_i$ for other $i \neq n$, and $p^2 \nmid a_0$, then f is irreducible.

Proof. Since f is primitive, by Gauss lemma, we only need to prove that it is irreducible in $\mathbb{Q}[x]$. Consider $\bar{f}(x)$, by assumption, $\bar{f}(x) = \bar{a}_n x^n$. So if f(x) = g(x)h(x) with $\deg g, \deg h \geq 1$, let $g(x) = b_r x^r + \dots + b_0, h(x) = c_{n-r} x^{n-r} + \dots + c_0$, then $\bar{g}(x) = \bar{b}_r x^r, \bar{h}(x) = \bar{c}_{n-r} x^{n-r}$ for some r. But then we would find out that $\bar{b}_0 = \bar{c}_0 = 0$, and thus $p^2 \mid a_0$, which is a contradiction, hence f is irreducible.

Prop 5.1.1. Given L/K and $\alpha \in L$, if α is algebraic over K, then there exists a unique monic irreducible polynomial $m_{\alpha,K}(x) \in K[x]$ of minimal degree s.t. $m_{\alpha,K}(\alpha) = 0$ and for any other $f(x) \in K[x]$ with $f(\alpha) = 0$, we have $m_{\alpha,K} \mid f$. We call $m_{\alpha,K}$ the **minimal polynomial** of α over K.

Proof. Let I be the set of all polynomials such that $f(\alpha) = 0$, since α algebraic, $I \neq \emptyset$, so pick a monic polynomial g(x) of minimal degree in I. For any other $f(x) \in I$, write f(x) = g(x)q(x) + r(x) with deg $r < \deg g$. If $r(x) \neq 0$, then $r(\alpha) = f(\alpha) - q(\alpha)g(\alpha)$. But then $r(\alpha) = f(\alpha) - q(\alpha)g(\alpha) = 0$ with deg $r < \deg g$, which contradicts the minimality of g, thus r = 0, and hence $g \mid f$.

Finally, if $g(x) = h_1(x)h_2(x)$ with deg h_1 , deg $h_2 < \deg g$, then one of them, say $h_1(\alpha) = 0$ again contradicts the minimality of g, hence g is irreducible.

Prop 5.1.2. Let L/K be an extension and $\alpha \in L$, the following are equivalent:

- (1) α is algebraic over K.
- (2) $K[\alpha] = K(\alpha)$.
- (3) $[K(\alpha):K]<\infty$.

Proof. (1) \Rightarrow (2): " \subset " trivial.

"\(\text{"}:\) For all $\beta \in K(\alpha), \beta = g(\alpha)/h(\alpha)$ with $h(\alpha) \neq 0$. So $m_{\alpha,K} \nmid h$. Since $m_{\alpha,K}$ is irreducible, $gcd(m_{\alpha,K},h) = 1$, hence there exists $a(x), b(x) \in K[x]$ such that $1 = a(x)h(x) + b(x)m_{\alpha,K}(x)$ Substitute α and we get $1/h(\alpha) = a(\alpha)$, hence $\beta = g(\alpha)a(\alpha) \in K[\alpha]$.

- (2) \Rightarrow (1): Since $1/\alpha \in K[\alpha]$, thus $1/\alpha = f(\alpha)$ for some polynomial f, hence if we set g(x) = xf(x) 1, $g(\alpha) = 0$ which implies α is algebraic.
- (1) \Rightarrow (3): Assume that $\deg m_{\alpha,K} = n$, it is easy to see that $K[\alpha] = \langle 1, \alpha, \dots, \alpha^{n-1} \rangle_K$. Since (1) \Rightarrow (2), we have $[K(\alpha) : K] = [K[\alpha], K] = n$.

(3) \Rightarrow (1): Since $[K(\alpha):K]=n$, consider $1,\alpha,\alpha^2,\ldots,\alpha^n$. Some of these n+1 elements may be coincident, but nevertheless these elements are linearly dependent. Hence there exists a_0,\ldots,a_n not all zero in K s.t. $a_0+a_1\alpha+\cdots+a_n\alpha^n=0 \implies \alpha$ is algebraic.

Prop 5.1.3. Given M/L and L/K, [M:K] = [M:L][L:K].

Proof. If $[M:L]=m<\infty$ and $[L:K]=n<\infty$, then $L\cong K^{\oplus n}, M\cong L^{\oplus m}$. So $M\cong (K^{\oplus n})^{\oplus m}\cong K^{\oplus mn}$, thus [M:K]=mn.

Now if $[M:K]=l<\infty$, then there exists a basis $\{z_1,z_2,\ldots,z_l\}$ which is a basis for M over K. Then $M=Kz_1+\cdots+Kz_l\subset Lz_1+\cdots+Lz_l\subset M\implies M=Lz_1+\cdots+Lz_l$. Hence $[M:L]<\infty$. Also, since L is a K-linear subspace of M, $[L:K]\leq l\implies [L:K]<\infty$. Thus if $[M:L]=\infty$ or $[L:K]=\infty$, then $[M:K]=\infty$.

Prop 5.1.4. Given L/K, define $L^{\text{alg}} \triangleq \{\alpha \in L \mid \alpha \text{ is algebraic over } K\}$, then L^{alg} is a subfield of L.

Proof. Notice that if $\alpha, \beta \in L^{\text{alg}}$, then β is algebraic over K implies that β is algebraic over $K(\alpha)$. Thus

$$[K(\alpha, \beta) : K] = [K(\alpha)(\beta) : K(\alpha)][K(\alpha) : K] < \infty$$

Also, since $K(\alpha + \beta)$, $K(\alpha - \beta)$, $K(\alpha \beta)$, $K(\alpha / \beta)$ are all contained in $K(\alpha, \beta)$, they are all algebraic over K, thus these elements are all algebraic, and hence L^{alg} is a subfield.

Prop 5.1.5. $[L:K] < \infty$ if and only if $L = K(\alpha_1, \alpha_2, \dots, \alpha_n)$ with each α_i algebraic over K. In this case, L/K is algebraic.

Proof. " \Rightarrow ": Let [L:K] = n, so there is a basis $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ for L over K. It is easy to see that $L = K(\alpha_1, \ldots, \alpha_n)$. Also $[K(\alpha_i):K] \leq [L:K] < \infty$, thus α_i is algebraic.

"\(\infty\)": Since α_i is algebraic over K, α_i is algebraic over $K(\alpha_1, \ldots, \alpha_{i-1})$. Thus

$$[L:K] = [K(\alpha_1, \dots, \alpha_n) : K(\alpha_1, \dots, \alpha_{n-1})][K(\alpha_1, \dots, \alpha_{n-1}) : K(\alpha_1, \dots, \alpha_{n-2})] \dots [K(\alpha_1) : K] < \infty$$

Moreover, $\forall \alpha \in L, [K(\alpha) : K] \leq [L : K] < \infty$, so α is algebraic over K.

Coro 5.1.1. Given L/K, and S a subset of L, if $\forall \alpha \in S$, α is algebraic over K, then K(S)/K is algebraic.

Proof. If $\beta \in K(S)$, by definition we know that there exists $\alpha_1, \ldots, \alpha_n$ such that $\beta \in K(\alpha_1, \ldots, \alpha_n)$. Thus β is algebraic over K.

Prop 5.1.6. If M/L and L/K are algebraic, then M/K is algebraic.

Proof. For all $\alpha \in M$, since α is algebraic over L, there exists a_{n-1}, \ldots, a_0 so that $\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_0 = 0$, that is, α is algebraic over $K(a_0, \ldots, a_{n-1})$.

So $[K(a_0, ..., a_{n-1}, \alpha) : K] = [K(a_0, ..., a_{n-1})(\alpha) : K(a_0, ..., a_{n-1})][K(a_0, ..., a_{n-1}) : K] < \infty$, thus α is algebraic over K.

Def 78. Given L/L_1 and L/L_2 , L_1L_2 is defined as the smallest subfield of L containing both L_1 and L_2 .

Prop 5.1.7. Let $[L_1:K]=m$ and $[L_2:K]=n$.

- (1) $[L_1L_2:K] \leq mn$.
- (2) If gcd(m, n) = 1, then $[L_1L_2 : K] = mn$.

Proof. (1): Assume $L_1 = K(\alpha_1, \ldots, \alpha_m), L_2 = K(\beta_1, \ldots, \beta_n)$. We could find that $L_1L_2 = K(\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n)$. Notice that $[K(\beta_1, \ldots, \beta_m)(\alpha_i) : K(\beta_1, \ldots, \beta_m)] \leq [K(\alpha_i) : K]$, and thus $[L_1L_2 : K] = [K(\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n) : K(\beta_1, \ldots, \beta_n)][K(\beta_1, \ldots, \beta_m) : K] \leq [K(\alpha_i, \ldots, \alpha_n) : K][K(\beta_1, \ldots, \beta_n) : K] = [L_1 : K][L_2 : K]$.

(2): Notice that $[L_i:K] \mid [L_1L_2:K]$, so $mn \mid [L_1L_2:K]$. By (1), $[L_1L_2:K] \leq nm$, hence $[L_1L_2:K] = nm$.

Def 79. Let R be a commutative ring with 1, and I be an ideal of R, then

- I is called a **maximal ideal** if for any ideal J satisfying $I \subseteq J$ we have J = I or J = R.
- *I* is called a **prime ideal** if $I \neq R$ and $ab \in I \implies a \in I$ or $b \in I$.

Prop 5.1.8. Suppose R is a ring and $I \subseteq R$ is an ideal, then

- 1. I is maximal $\iff R/I$ is a field.
- 2. I is a prime ideal \iff R/I is an integral domain.

Proof.

- 1. " \Rightarrow ": For any $\bar{r} \in R/I$ with $\bar{r} \neq 0$, then $r \notin I$. Consider $\langle r \rangle + I$ which contains I and is not equal to I because $r \notin I$. Since I is maximal, $\langle r \rangle + I = R$, and thus $\exists x \in R, y \in I$ such that xr + y = 1, so $\bar{x}\bar{r} = \bar{1}$. Hence every non-zero element has multiply inverse and R/I is a field. " \Leftarrow ": If J is an ideal such that $I \subsetneq J$, pick $x \in J \setminus I$, then $\bar{x} \neq 0$, so $\exists r \in J$ such that $\bar{x}\bar{r} = 1$. Then $xr + I = 1 + I \implies \exists y \in I$ s.t. xr + y = 1. So $1 \in J$, and because J is an ideal, J = R.
- 2. By the fact that $(ab \in I \implies a \in I \text{ or } b \in I) \iff (\bar{a}\bar{b} = 0 \implies \bar{a} = 0 \text{ or } \bar{b} = 0)$ the proof is complete.

Prop 5.1.9. If $f(x) \in K[x]$ is irreducible, where K is a field, then $\langle f(x) \rangle$ is maximal ideal.

Proof. We know that K[x] is a principal ideal domain, so if $\langle f(x) \rangle \subseteq J$, then J is generated by a element, say g(x). Since $f(x) \in J$, we could write f(x) = g(x)h(x). By the fact that f(x) is irreducible, either g(x) is an unit then J = R, or h(x) is an unit then $J = \langle f(x) \rangle$.

Eg 5.1.1. $f(x) = x^2 + 1$ has roots $\alpha = \pm \sqrt{-1}$, so $\mathbb{R}(\sqrt{-1}) \cong \mathbb{R}[x]/\langle x^2 + 1 \rangle$.

Theorem 41. Let $f(x) \in K[x]$ be monic, irreducible and of degree n. Then there exists L/K and $\alpha \in L$ s.t. $f(\alpha) = 0, L = K(\alpha)$ and [L : K] = n.

Proof. Since f(x) is irreducible, by prop. 5.1.9 $\langle f(x) \rangle$ is a maximal ideal. Then by prop. 5.1.8 $L = K[x]/\langle f(x) \rangle$ is a field, and K is a subfield of L by the inclusion map $\alpha \mapsto \bar{\alpha}$. The map is 1-1 since $\bar{1} \neq 0$ and a field homomorphism is either a 1-1 map or a zero (全洪) map.

Notice that $L \cong K[\bar{x}]$, where \bar{x} is the coset $x + \langle f(x) \rangle$. Now let $\alpha = \bar{x}$, and it is easy to see that $f(\alpha) = f(x) + \langle f(x) \rangle = 0$. Also $L \cong K[\bar{x}] \cong K(\alpha)$. Finally, $m_{\alpha,K} \mid f$ and by the fact that f is monic and irreducible, $m_{\alpha,K} = f$ and thus $[L : K] = \deg m_{\alpha,K} = \deg f = n$.

Theorem 42. Let $f(x) \in K[x]$ be of degree n > 0. Then there exists L/K s.t. f splits over L, that is,

$$f(x) = \lambda(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$$
 with $\alpha_1, \alpha_2, \dots, \alpha_n \in L, \lambda \in K$

In fact, L can be chosen to be the smallest field over which f splits and in this case $[L:K] \leq n!$. L is called a splitting field for f over K.

Proof. By induction on n, n = 1 is trivial, simply pick L = K.

For n > 1, let p(x) be an monic irreducible factor of f(x). By theorem 41, there exists an extension $K(\alpha_1)$ s.t. $p(\alpha_1) = 0$. By division algorithm, $f(x) = (x - \alpha_1)f_1(x)$ where $f_1(x) \in K(\alpha_1)[x]$ and deg $f_1 = n - 1$. Using the induction hypothesis, we know that there exists L, which is an extension of $K(\alpha_1)$, s.t. f_1 splits over L. Hence $\exists \alpha_2, \alpha_3, \ldots, \alpha_n \in L$ s.t. $f_1(x) = \lambda(x - \alpha_2) \ldots (x - \alpha_n)$, thus $f(x) = \lambda(x - \alpha_1)(x - \alpha_2) \ldots (x - \alpha_n)$. Compare the coefficient of x^n we know that $\lambda \in K$.

More over, observe that $K(\alpha_1, \ldots, \alpha_n)$ is the smallest field containing K and $\{\alpha_1, \ldots, \alpha_n\}$. So if we choose $L = K(\alpha_1, \alpha_2, \ldots, \alpha_n)$, then

$$[L:K] = [K(\alpha_1, \alpha_2, \dots, \alpha_n) : K(\alpha_1, \alpha_2, \dots, \alpha_{n-1})] \cdots [K(\alpha_1) : K] \le n!$$

Since $[K(\alpha_1, \alpha_2, \dots, \alpha_k) : K(\alpha_1, \alpha_2, \dots, \alpha_{k-1})] = [K(\alpha_1, \alpha_2, \dots, \alpha_{k-1})(\alpha_k) : K(\alpha_1, \alpha_2, \dots, \alpha_{k-1})]$ and α_k is a root of $p(x) \in K(\alpha_1, \alpha_2, \dots, \alpha_{k-1})[x]$ where $f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{k-1})p(x)$.

Eg 5.1.2. Find a splitting field L for $x^8 - 2$ over \mathbb{Q} and determine $[L : \mathbb{Q}]$.

The roots are $\alpha \zeta^k$ where $\alpha = \sqrt[8]{2}$ and $\zeta = e^{2\pi i/8}$. But $\zeta = \sqrt{2}(1+i)/2$ where $\sqrt{2} = \alpha^4$, so we know that $L = \mathbb{Q}(\alpha, \zeta) = \mathbb{Q}(\alpha, i)$. Thus $[L : \mathbb{Q}] = [\mathbb{Q}(\alpha, i) : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] = 2 \cdot 8 = 16$.

Remark 25. $\mathbb{Q}[x]/\langle x^8 - 2 \rangle = \mathbb{Q}(\bar{x}) \cong \mathbb{Q}(\sqrt[8]{2}) \cong \mathbb{Q}(\sqrt[8]{2}\zeta)$

Prop 5.1.10. Let K, L be two fields and $\tau : K \to L$ be a nontrivial homomorphism. We define $\bar{\tau} : K[x] \to \tau(K)[x] \subseteq L[x]$ by

$$a_n x^n + \dots + a_0 \mapsto \bar{\tau}(f) \triangleq \tau(a_n) x^n + \dots + \tau(a_0)$$

which is an isomorphism. Also, f is irreducible implies $\bar{\tau}(f)$ is irreducible in $\tau(K)[x]$.

Lemma 4. Let $K(\alpha)/K$ be algebraic and $\tau: K \to L$ be a nontrivial homo, then there exists an extension σ of τ from $K(\alpha)$ to L if and only if $\exists \beta \in L$ s.t. $\bar{\tau}(m_{\alpha,K})(\beta) = 0$.

In this case $m_{\beta,\tau(K)} = \bar{\tau}(m_{\alpha,K})$.

Proof. "\(\Rightarrow\)": Let $\beta = \sigma(\alpha)$ and $m_{\alpha,K} = x^n + a_{n-1}x^{n-1} + \dots + a_0$. Then $\bar{\tau}(m_{\alpha,K})(\beta) = \beta^n + \tau(a_{n-1})\beta^{n-1} + \dots + \tau(a_0) = \tau(\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_0) = 0$

" \Leftarrow ": Observe that $m_{\beta,\tau(K)} = \bar{\tau}(m_{\alpha,K})$ since $\bar{\tau}(m_{\alpha,K})(\beta) = 0$ and $\bar{\tau}(m_{\alpha,K})$ is monic and irreducible by prop 5.1.10. σ is then given by the following diagram.

$$K[x] \xrightarrow{\sim} \tau(K)[x]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K(\alpha) \iff K[x] / \langle m_{\alpha,K} \rangle \xrightarrow{\sim} \tau(K)[x] / \langle m_{\beta,\tau(K)} \rangle \iff \tau(K)(\beta) \subseteq L$$

Coro 5.1.2. Let $K(\alpha)/K$ be an algebraic extension and $\tau: K \hookrightarrow L$. If $\bar{\tau}(m_{\alpha,K})$ has r distinct roots in L, then there are exactly r extensions of τ .

Theorem 43. Let $\tau: K \to K'$ be an isomorphism of fields. If L is a splitting field for f over K and L' is a splitting field for $\bar{\tau}(f)$ over K', then $L \cong L'$

Proof. By induction on $n = \deg f$. When n = 1, L = K, L' = K', so $L \cong L'$.

Now if n > 1, assume $f(\alpha) = 0$ for $\alpha \in L$. Then $\bar{\tau}(m_{\alpha,K}) \mid \bar{\tau}(f)$ and by the fact that L' is a splitting field for $\bar{\tau}(f)$, $\exists \beta \in L'$ s.t. $\bar{\tau}(m_{\alpha,K})(\beta) = 0$. By lemma 4, $\exists \tau_{\circ} : K(\alpha) \xrightarrow{\sim} K'(\beta)$ with $\tau_{\circ}|_{K} = \tau$.

Now, write $f = (x - \alpha)f_{\circ}$, then $\bar{\tau}(f) = \bar{\tau}_{\circ}(f) = (x - \tau_{\circ}(\alpha))\bar{\tau}_{\circ}(f_{\circ}) = (x - \beta)\bar{\tau}_{\circ}(f_{\circ})$. Then L and L' is a splitting field for f_{\circ} over $K(\alpha)$ and $\bar{\tau}_{\circ}(f_{\circ})$ over $K(\beta)$ respectively. By induction hypothesis, $L \cong L'$.

Coro 5.1.3. Let $\tau: K \xrightarrow{\sim} K'$ be an isomorphism of fields, and L is a splitting field of f over K, L' is a splitting field of $\bar{\tau}(f)$ over K'. Then τ could be extend to $\sigma: L \xrightarrow{\sim} L'$ such that $\sigma|_{K} = \tau$.

5.2 Finite field (week 2)

Def 80. A polynomial $f(x) \in K[x]$ is said to be *separable* if its irreducible factors have no multiple roots in a splitting field L.

Def 81. If $f(x) = a_n x^n + \dots + a_1 x + a_0$, then define $f'(x) \triangleq n a_n x^{n-1} + \dots + 2a_2 x + a_1$.

Theorem 44. Let $f(x) \in K[x]$ be monic, irreducible of positive degree, then all the roots of f(x) in a splitting field are simple if and only if gcd(f(x), f'(x)) = 1.

Proof. "\(\Rightarrow\)": We can write $f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$ where α_i are distinct roots of f. Then $f'(x) = \sum_{i=1}^n f(x)/(x - \alpha_i)$ and we have $(x - \alpha_i) \nmid f(x)$ for all i.

"\(\infty\)": Assume $f(x) = (x - \alpha)^k g(x)$ with $k \ge 2$. Then $f'(x) = k(x - \alpha)^{k-1} g(x) + (x - \alpha)^k g'(x)$ which implies $(x - \alpha) \mid f(x)$. So $(x - \alpha) \mid \gcd(f(x), f'(x))$ and thus $\gcd(f(x), f'(x)) \ne 1$.

Remark 26. The following are equivalent:

- 1. α is a multiple root of f(x).
- 2. α is a common root of f(x) and f'(x).
- 3. $m_{\alpha,K} \mid f(x)$ and $m_{\alpha,K} \mid f'(x)$.

Theorem 45. There is a finite field K with $|K| = q \iff q = p^n$ for some prime p and $n \in \mathbb{N}$. In this situation, K is unique up to isomorphism, denote by \mathbb{F}_{p^n} .

Proof. " \Rightarrow ": Let $p = \operatorname{char} K$ and $[K : \mathbb{Z}/p\mathbb{Z}] = n$, then $|K| = p^n$.

" \Leftarrow ": Let K be a splitting field for $f(x) = x^{p^n} - x$ over \mathbb{F}_p . We claim that the set of all roots of f(x) forms a field. Since if α, β are two roots of f, obviously $\alpha\beta, \alpha\beta^{-1}$ are also roots, and by $(\alpha \pm \beta)^{p^n} = \alpha^{p^n} \pm \beta^{p^n} = \alpha \pm \beta$ because char K = p. $\alpha \pm \beta$ are also roots, hence the roots form a field. By definition, K is the smallest field containing \mathbb{F}_p and roots of f(x), so K is exactly the set of roots of f(x).

Also, f'(x) = -1 has no root, so f(x) has no multiple root which implies $|K| = p^n$.

Moreover, if K' is another finite field with $|K'| = p^n$, then for all $\alpha \in K'$, $\alpha^{p^n} = \alpha$, so α is a root of f(x), which implies that K' is a splitting field for f(x) over \mathbb{F}_p . By theorem 43, $K \cong K'$. \square

Theorem 46. Let $n \in \mathbb{N}$ and \mathbb{F}_q be a finite field. Then there exists a unique extension $\mathbb{F}_{q^n}/\mathbb{F}_q$ s.t. $[\mathbb{F}_{q^n} : \mathbb{F}_q] = n$, and Aut $(\mathbb{F}_{q^n}/\mathbb{F}_q) = \langle \sigma_q \rangle$ with $\sigma_q = \alpha :: \mathbb{F}_{q^n} \mapsto \alpha^q :: \mathbb{F}_{q^n}$. σ_q is called the Frobenius homomorphism.

Proof. By theorem 45, $q = p^r$ for some prime p and $r \in \mathbb{N}$, so $q^n = p^{nr}$ which is a power of a prime. Again by theorem 45, \mathbb{F}_{q^n} is the splitting field for $x^{p^{nr}} - x$ over \mathbb{F}_p . Since $x^q - x \mid x^{q^n} - x$, $\mathbb{F}_q \subseteq \mathbb{F}_{q^n}$ and thus $[\mathbb{F}_{q^n} : \mathbb{F}_q] = n$.

Then we proof that σ_q is indeed in Aut $(\mathbb{F}_{q^n}/\mathbb{F}_q)$. We check that

$$\sigma_q(\alpha + \beta) = (\alpha + \beta)^q = \alpha^q + \beta^q = \sigma_q(\alpha) + \sigma_q(\beta)$$
$$\sigma_q(\alpha\beta) = (\alpha\beta)^q = \alpha^q \beta^q = \sigma_q(\alpha)\sigma_q(\beta)$$

Now σ_q is nontrivial since σ_q send 1 to 1, so σ_q is 1-1 and hence an isomorphism since \mathbb{F}_q is finite. Also, for all $\alpha \in \mathbb{F}_q$, $\sigma_q(\alpha) = \alpha^q = \alpha$, hence σ_q fixes \mathbb{F}_q . Finally we prove that the order of σ_q is n. Assume not, so $\operatorname{ord}(\sigma_q) = m < n$. Then $\sigma_q^m = \operatorname{Id} \implies x^{q^m} - x = 0$ for each $x \in \mathbb{F}_{q^n}$. But $x^{q^m} - x = 0$ has at most $q^m < q^n$ roots, which leads to a contradiction.

Remark 27. By theorem 10, the multiplication group of \mathbb{F}_{q^n} is cyclic, so $\mathbb{F}_{q^n}^{\times} = \langle \alpha \rangle \subseteq \mathbb{F}_q(\alpha) \setminus \{0\} \subseteq \mathbb{F}_{q^n} \setminus \{0\}$, hence $\mathbb{F}_{q^n} = \mathbb{F}_q(\alpha)$.

Lemma 5. Every irreducible polynomial f(x) in $\mathbb{F}_{p^n}[x]$ is separable.

Proof. Without lost of generality, assume f(x) is monic.

Since σ_p is an isomorphism, $\mathbb{F}_{p^n} = \mathbb{F}_{p^n}^p = \{\alpha^p \mid \alpha \in \mathbb{F}_{p^n}\}$. Now assume f(x) has a multiple root α , then $m_{\alpha,\mathbb{F}_p} = f(x)$ since f is irreducible. By theorem 44 we also have $f(x) = m_{\alpha,\mathbb{F}_p} \mid f'(x)$, but $\deg f'(x) < \deg f(x)$ so we must have $f'(x) \equiv 0$.

Write $f(x) = a_n x^n + \ldots + a_1 x + a_0$, then $f'(x) \equiv 0$ implies $k a_k = 0_{\mathbb{F}_p}$ for each k, which means that if $a_k \neq 0 \implies p \mid k$. So

$$f(x) = a_{mp}x^{mp} + a_{(m-1)p}x^{(m-1)p} + \dots + a_px^p + a_0 = (a_{mp}x^m + \dots + a_px + a_0)^p.$$

But this implies f(x) is reducible, which is a contradiction.

Theorem 47. $x^{p^n} - x$ equals the product of all monic irreducible polynomials in $\mathbb{F}_p[x]$ of degree d where d runs through all divisors of n. i.e.

Proof. By lemma, each irreducible polynomial is separable, and if $f(x), g(x) \in \text{RHS}$, and $f(\alpha) = g(\alpha) = 0$, then $f = m_{\alpha, \mathbb{F}_p} = g$. Thus RHS is separable. LHS is separable since f' = 1, so we could prove the equality by checking that they have same roots.

LHS | RHS: $\forall \alpha \in \mathbb{F}_{p^n}$, $[\mathbb{F}_p(\alpha) : \mathbb{F}_p] \mid [\mathbb{F}_{p^n} : \mathbb{F}_p] = n$, thus $\deg m_{\alpha,\mathbb{F}_p} \mid n$ and hence m_{α,\mathbb{F}_p} appears in RHS.

RHS | LHS: Assume deg
$$m_{\alpha,\mathbb{F}_p} = d \mid n$$
, then $[\mathbb{F}_p(\alpha) : \mathbb{F}_p] = d$, so $\alpha^{p^d} = \alpha$, and hence $\alpha = \alpha^{p^d} = \alpha^{p^{2d}} = \cdots = \alpha^{p^n}$.

Def 82. The Möbius μ -function is defined as

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1\\ 0, & \text{if } n \text{ has a square factor}\\ (-1)^r, & \text{if } n \text{ is a product of } r \text{ distinct primes} \end{cases}$$

Theorem 48 (Möbius inversion formula). If $f(n) = \sum_{d|n} g(d)$, then $g(n) = \sum_{d|n} \mu(d) f\left(\frac{n}{d}\right)$.

Remark 28. Let $\psi_q(d)$ denote the number of monic irreducible polynomials of degree d in \mathbb{F}_q , then $q^n = \sum_{d|n} d\psi_q(d)$.

Using the convolution notation, we have $(n \mapsto q^n) = 1 * (n \mapsto n\psi_q(n))$. Where $1 \triangleq (n \mapsto 1)$. It could be seen that $1^{-1} = \mu$. Thus $n\psi_q(n) = \sum_{d|n} \mu(d)q^{n/d}$.

5.3 Algebra closure (week 3)

Def 83.

- L is called an **algebraic closure** of K if L/K is algebraic and each polynomial $f(x) \in K[x]$ splits over L.
- L is said to be algebraically closed if for each $f(x) \in L[x]$, f(x) has a root in L.

Prop 5.3.1. Given L/K, if L is algebraically closed, then $L^{\text{alg}} \triangleq \{\alpha \in L \mid \alpha \text{ is algebraic over } K\}$ is an algebraic closure of K.

Proof. By prop 5.1.4, L^{alg} is a field, and by definition, L^{alg}/K is algebraic.

Now we show that for any $f(x) \in K[x]$, f(x) splits over L. Using induction, $\deg f = 1$ is trivial. If $\deg f > 1$, then since $f(x) \in K[x] \subseteq L[x]$, f has a root in L, say α . so we could write $f(x) = (x - \alpha)g(x)$. Then $g(x) \in K(\alpha)[x] \subseteq L[x]$. By induction, g(x) splits and hence f(x) splits. So for any $f(x) \in K[x]$, f splits over L. Write $f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$, then each α_i is algebraic over $K \implies \alpha_i \in L^{\operatorname{alg}}$ and hence f(x) splits over $L^{\operatorname{alg}}[x]$.

Coro 5.3.1. If K is algebraically closed, then K is an algebraic closure of K itself.

Prop 5.3.2. If L is an algebraic closure of K, then L is algebraically closed.

Proof. For $f(x) \in L[x]$, let α be a root of f(x). Since $L(\alpha)/L$ and L/K is algebraic, by prop 5.1.6, $L(\alpha)/K$ is algebraic. So α must be in L, hence f(x) has a root in L.

Prop 5.3.3. The following are equivalent.

- 1. K has no nontrivial algebraic extension.
- 2. For all irreducible polynomial in K[x] has degree 1.
- 3. Every polynomial of positive degree in K[x] has at least one root in K.
- 4. Every polynomial of positive degree in K[x] splits over K.

In below we would use the Zorn's lemma heavily.

Lemma 6 (Zorn's lemma). Suppose a partially order set P has the property that every chain (i.e., a total order subset) has an upper bound in P, then the set P contains at least one maximal element.

Lemma 7. In a commutative ring R with 1, any proper ideal $I \subseteq R$ is contained in a maximal ideal.

Proof. Consider $S = \{J \subseteq R \mid I \subseteq J\} \neq \emptyset$ since $I \in S$. Define a partial order on S by $J_1 \leq J_2 \iff J_1 \subseteq J_2$.

Given a chain $\{J_i \mid i \in \Lambda\}$, let $J = \bigcup_{i \in \Lambda} J_i$. J is an ideal, since if $x, y \in J$, then $x \in J_1, y \in J_2$. Let $\tilde{J} = \max(J_1, J_2)$, then $x, y \in \tilde{J}$ which implies $x + y \in \tilde{J}$, and it is easy to check that for any $x \in R, y \in J$, $xy \in J$.

Also, J is proper since $1 \notin J$, or else $1 \in J_i$ and thus $J_i = R$ which leads to a contradiction.

By Zorn's lemma, there exists a maximal element in S, and thus it is a maximal ideal which contains I.

Theorem 49. If K is a field, then there exists an algebraic closure L of K.

Proof. Let $S = \{x_f \mid f(x) \in K[x] \text{ with } \deg f \geq 1\}$ be the set of variables indexed by non-constant polynomial in K[x]. Consider the polynomial ring K[S] and $I = \langle f(x_f) : f \in K[x] \text{ with } \deg f \geq 1 \rangle$, which is an ideal in K[S].

We claim that $I \neq K[S]$. If not, then $1 \in I \implies 1 = \sum_{i=1}^n g_i f_i(x_{f_i})$. Write $x_i \triangleq x_{f_i}$ for $i=1,2,\cdots,n$. Also, by definition g_i only involves a finite number of variable in S, so we could set $g_i \in K[x_1,x_2,\ldots,x_m]$ with $m \geq n$. That is, $1 = \sum_{i=1}^n g_i(x_1,x_2,\ldots,x_m) f_i(x_i)$. Let Σ be a splitting field for $f(x) = f_1(x) f_2(x) \cdots f_n(x)$ and define $\alpha_i \in \Sigma$ which satisfies $f_i(\alpha_i) = 0$ and $a_i = 0$ for $n+1 \leq i \leq m$. Then $1 = \sum_{i=1}^n g(\alpha_1,\alpha_2,\ldots,\alpha_m) f_i(\alpha_i) = 0$, which leads to a contradiction.

By lemma 7, there exists a maximal ideal M s.t. $I \subseteq M$.

Consider $K \hookrightarrow F_1 \triangleq K[S]/M$, and then for all $f \in K[x]$, $f(\bar{x}_f) = \bar{0}$ in F_1 . By induction, $\exists F_1 \subseteq F_2 \subseteq F_3 \subseteq \cdots$ which satisfies $f(x) \in F_n[x]$ has a root in F_{n+1} Let $F = \bigcup_{i=1}^{\infty} F_i$ which is algebraically closed since if $f(x) \in F[x]$ then $f(x) \in F_m[x]$ for some m and thus f(x) has a root in $F_{m+1} \subseteq F$.

Finally $L \triangleq \{\alpha \in F \mid \alpha \text{ is algebraic over } K\}$ is an algebraic closure of K.

Lemma 8. If L_1/K is algebraic and $\tau: K \to L_2$ is a non-zero homomorphism with L_2 being algebraically closed, then τ could be extend to $\sigma: L_1 \to L_2$.

Proof. Consider $S = \{(M, \theta) \mid K \subset M \subset L_1, \ \theta : M \to L_2 \text{ with } \theta |_K = \tau \}$, which is not an empty set since $(K, \tau) \in S$.

Define a partial order on S by $(M_1, \theta_1) \leq (M_2, \theta_2) \iff M_1 \subseteq M_2 \wedge \theta_2|_{M_1} = \theta_1$. Given any chain $\{(M_i, \theta_i) : i \in \Lambda\}$, let $N = \bigcup_{i=1}^{\infty} M_i$ and $\theta = \alpha :: N \mapsto \theta_i(\alpha)$ if $\alpha \in M_i$. It could be check easily that this map is well defined, and (N, θ) is a least upper bound in S for this chain. By Zorn's lemma, there exists a max element (M, σ) in S.

Now, if $M \neq L_1$, then pick $\alpha \in L_1 \setminus M$. Since L_1/K is algebraic, the minimal polynomial $m_{\alpha,K}$ exists. Since L_2 algebraically closed, $\bar{\sigma}(m_{\alpha,K})$ has a root in L_2 , and thus by lemma 4, σ could be extend to $\sigma' : M(\alpha) \to L_2$ which contradicts the maximality of (M, σ) . Thus $M = L_1$.

Theorem 50. Any two algebraic closures L_1, L_2 of K are isomorphic.

Proof. Consider the inclusion map $\mathrm{Id}_K:: K \hookrightarrow L_1$. By Lemma 8, Id_K could be extend to $\sigma:: L_2 \to L_1$ such that $\sigma|_K = \mathrm{Id}_K$. Since $\sigma \neq 0$, $\sigma(L_2) \cong L_2$. Also, L_2 is algebraically closed implies $\sigma(L_2)$ is algebraically closed. So for any $\alpha \in L_1$, α is algebraic over K and thus over $\sigma(L_2)$, which implies $\alpha \in \sigma(L_2)$, so σ is onto, hence σ is an isomorphism between L_1 and L_2 .

Eg 5.3.1. Let p be a prime.

- Any finite field L with char L = p, $L \cong \mathbb{F}_{p^n}$ for some $n \in \mathbb{N}$.
- Gal $(\mathbb{F}_{p^n}/\mathbb{F}_p) = \langle \sigma_p \rangle$ with $p = \alpha :: \mathbb{F}_{p^n} \mapsto \alpha^p :: \mathbb{F}_{p^n}$.
- A subfield L of \mathbb{F}_{p^n} is isomorphic to \mathbb{F}_{p^m} with $m \mid n$ since $[\mathbb{F}_{p^n} : \mathbb{F}_{p^m}] = d \leadsto p^{md} = p^n$.
- $\bigcup_{n=1}^{\infty} \mathbb{F}_{p^n}$ is a field, and it is the algebraic closure of \mathbb{F}_p .

5.4 Separable extension

Def 84.

• α is separable over K if $m_{\alpha,K}$ is separable over K.

• L/K is called a **separable extension** if $\forall \alpha \in L$, α is separable over K.

Eg 5.4.1. Let char K = p and $K^p \subsetneq K$. Pick $b \in K \setminus K^p$ and consider L to be the splitting field of $x^p - b$ over K, say $\alpha \in L$ with $\alpha^p = b$. Notice that $x^p - b = x^p - a^p = (x - a)^p$, and $x^p - b$ is irreducible in K, or else if $x^p - b = g(x)h(x)$ in K[x], then write $g(x) = (x - \alpha)^k$, $h(x) = (x - \alpha)^{n-k}$, but then expand g(x) and we would get $\alpha^k \in K$, since $\alpha^p \in K$ and gcd(k, p) = 1 implies $\alpha \in K$ which leads to a contradiction.

By above we know that $x^p - b$ is inseparable.

Def 85. K is said to be *perfect* if either char K = 0 or "char K = p and $K = K^p$ ".

Eg 5.4.2. If char K = p and K/\mathbb{F}_p is algebraic, then K is perfect.

Proof. Consider $\sigma_p: K \to K$ which is a monomorphism which fixes \mathbb{F}_p . Since K/\mathbb{F}_p is algebraic, by the exercise problem, σ_p is an automorphism, so $K = K^p$.

Fact 5.4.1. K is perfect if and only if for any irreducible polynomial $f(x) \in K[x]$, f is separable. Also, we can find that an irreducible polynomial $f(x) \in K[x]$ is not separable over K if and only if char K = p > 0 and $f(x) = g(x^p)$ for some $g(x) \in K[x]$, where g(x) is irreducible and not all coefficients of g is in K^p .

Finally, if $\operatorname{char} K = 0$, then K is separable.

Prop 5.4.1. Give $K(\alpha)/K$ with degree $m_{\alpha,K} = d$ and $\tau :: K \to L \neq 0$. If α is separable over K and $\bar{\tau}(m_{\alpha,K})$ splits over L, then there are exactly d monomorphisms $\sigma :: K(\alpha) \to L$ with $\sigma|_{K} = \tau$. Otherwise, if α is not separable or $\bar{\tau}(m_{\alpha,K})$ doesn't split over L, then there are r < d such monomorphisms.

Proof. Observe that $m_{\alpha,K}$ is separable over K if and only if $\bar{\tau}(m_{\alpha,K})$ is separable over $\tau(K)$. Extend K to Σ , $\tau(K)$ to Σ' , where Σ , Σ' are the splitting field of $m_{\alpha,K}$ and $\bar{\tau}(m_{\alpha,K})$, respectively. Since $K \cong \tau(K)$, by theorem 43, $\Sigma \cong \Sigma'$. Let τ' be the isomorphism which is an extension of τ .

If $m_{\alpha,K} = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_d)$, then $\bar{\tau}(m_{\alpha,K}) = (x - \tau'(\alpha_1))(x - \tau'(\alpha_2)) \cdots (x - \tau'(\alpha_n))$. where $\tau' :: \Sigma \xrightarrow{\sim} \Sigma'$ and $\alpha_i \neq \alpha_j \iff \tau'(\alpha_i) \neq \tau'(\alpha_j)$. Thus if α is separable, $\bar{\tau}(m_{\alpha,K})$ has d distinct roots in L. By corollary 5.1.2, there are exactly d monomorphisms σ with $\sigma|_{K} = \tau$.

Otherwise, there are r roots in L where r < d, and thus there are r < d such monomorphisms. \square

Prop 5.4.2. Let [K':K] = d and $\tau :: K \to L \neq 0$. Then K'/K is separable and $\forall \alpha \in K'$, $\bar{\tau}(m_{\alpha,K})$ splits over L, if and only if there are exactly d monomorphisms $\sigma :: K' \to L$ with $\sigma|_k = \tau$. Otherwise $\exists r < d$ of such monomorphisms.

Proof. By induction on d, if d = 1 we could simply let $\sigma = \tau$.

For d > 1, consider $\alpha \in K' \setminus K$. By prop 5.4.1, there exists exactly $[K(\alpha) : K]$ monomorphisms $\tau_1 : K(\alpha) \to L$.

Now, for any $\beta \in K'/K(\alpha)$, $m_{\beta,K(\alpha)} \mid m_{\beta,K}$ and thus $m_{\beta,K(\alpha)}$ is separable and $\bar{\tau}_1(m_{\beta,K(\alpha)})$ splits over L since $\bar{\tau}(m_{\beta,K})$ splits. These imply that $K'/K(\alpha)$ is separable and $\forall \beta \in K'$, $m_{\beta,K(\alpha)}$ splits over L. Thus, $K(\alpha)$ satisfies the hypothesis, and by induction, there are exactly $[K':K(\alpha)]$ monomorphisms $\sigma :: K' \to L$ such that $\sigma|_{K(\alpha)} = \tau_1$, thus there are $[K':K(\alpha)][K(\alpha):k] = [K':K]$ such monomorphisms.

Otherwise, we could choose $\alpha \in K'$ such that $\bar{\tau}(m_{\alpha,K})$ has fewer then $[K(\alpha):K]$ roots in L, then there are $r' < [K(\alpha):K]$ monomorphism $\tau_1 :: K(\alpha) \to L$. By induction, each τ_1 has r'' extensions $\sigma :: K' \to L$ and $r'' \le [K':K(\alpha)]$ Hence the number of monomorphism equals r'r'' < [K':K]. \square

Lemma 9. If $K(\alpha_1, \alpha_2, \dots, \alpha_n)/K$ is algebraic and L is a splitting field of $f(x) = \prod_{i=1}^n m_{\alpha_i, K}$ over K, then for all $\beta \in K(\alpha_1, \alpha_2, \dots, \alpha_n)$, $m_{\beta, K}$ also splits over L.

Proof. Let L = K(R) with R being the set of all roots of f(x). Pick any root γ of $m_{\beta,K}$. Observe the following diagram:

$$K(R) \xrightarrow{\sim} K(R, \gamma)$$

$$\uparrow \qquad \qquad \uparrow$$

$$K(\beta) \xrightarrow{\sim} K(\gamma)$$

$$\downarrow \qquad \qquad \downarrow$$

Where (1) holds because these fields are both isomorphic to $K[x]/\langle m_{\beta,K}\rangle$.

(2) holds because τ obviously fixes K, and hence K(R) is a splitting field of f and $K(R, \gamma)$ is a splitting field of $\bar{\tau}(f)$. By theorem 43, K(R) and $K(R, \gamma)$ are isomorphic.

Thus we have $[K(R):K]=[K(R,\gamma):K]$ along with $[K(R,\gamma):K]=[K(\gamma,R):K(R)][K(R):K]$. This implies $[K(\gamma,R):K(R)]=1$, hence $\gamma\in R$.

Theorem 51. Given $K(\alpha_1, \alpha_2, \dots, \alpha_n)/K$, if α_i is separable over $K_{i-1} \triangleq K(\alpha_1, \dots, \alpha_{i-1})$, then $K(\alpha_1, \alpha_2, \dots, \alpha_n)/K$ is separable.

Proof. Let L be a splitting field of $f(x) = \prod m_{\alpha_i,K}$.

We claim that there are $[K_j:K]$ monomorphisms $\tau_j::K_j\to L$ with $\tau_j\big|_K=\mathrm{Id}_K$. Use induction on j, if j=0, then there are only 1 such monomorphism, namely itself Id_K .

For j > 0, observe that $m_{\alpha_j,K_{i-1}} \mid m_{\alpha_j,K}$, and since $\bar{\tau}_{j-1}(m_{\alpha_j,K}) = m_{\alpha_j,K}$ splits over L, $m_{\alpha_j,K_{i-1}}$ also splits over L. By hypothesis, α_j is separable over K_{j-1} , so by prop 5.4.1, there are $[K_j:K_{j-1}]$ such monomorphisms $\tau_j::K_j \to L$ with $\tau_j\big|_{K-1} = \tau_{j-1}$. By induction, there are $[K_{j-1}:K]$ monomorphisms $\tau_{j-1}::K_{j-1} \to L$ with $\tau_j\big|_{K} = \mathrm{Id}_K$. Compose these monomorphisms, we know that there exist exactly $[K_j:K_{j-1}][K_{j-1}:K] = [K_j:K]$ monomorphisms $\tau_j::K_j \to L$ such that $\tau_j\big|_{K} = \mathrm{Id}_K$.

So there are exactly $[K_n : K]$ monomorphisms $\tau :: K(\alpha_1, \ldots, \alpha_n) \to L$ with $\tau|_K = \mathrm{Id}_K$. By prop 5.4.2, $K(\alpha_1, \ldots, \alpha_n)$ is separable.

Theorem 52. L/K is separable if and only if L/M, M/K are separable.

Proof. " \Rightarrow ": If L/K is separable, then M/K is obviously separable. For any $\beta \in L$, $m_{\beta,M} \mid m_{\beta,K}$ so $m_{\beta,M}$ is separable which implies L/M is separable.

" \Leftarrow ": For any $\alpha \in L$, write $m_{\alpha,M} = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$. Then $m_{\alpha,M}$ is separable implies α is separable over $K(a_0,\ldots,a_{n-1})$. Note that $a_0,\ldots,a_{n-1} \in M$ are separable over K. By theorem 51, $K(a_0,a_1,\ldots,a_{n-1},\alpha)/K$ is separable, hence each α is separable over K, thus L/K is separable.

Theorem 53 (Primitive element theorem).

- A finite extension is simple if and only if there are only finitely many intermediate fields.
- If L/K is finite and separable, then L/K is simple.

5.5 Normal extension (week 4)

Def 86. L/K is called a **normal extension** if $\forall \alpha \in L$, $m_{\alpha,K}$ splits over L.

Theorem 54. L is a splitting field of some polynomial f(x) over K if and only if L/K is finite and normal.

Proof. " \Rightarrow ": Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the roots of f, so $L = K(\alpha_1, \alpha_2, \ldots, \alpha_n)$, and L is also a splitting field of $\prod m_{\alpha_i,K}$ since $m_{\alpha_i,K} \mid f$. By lemma 9, for any β in L, $m_{\beta,K}$ splits, thus L/K is normal and also finite obviously.

" \Leftarrow ": Since L/K is a finite extension, we could write $L = K(\alpha_1, \alpha_2, \ldots, \alpha_n)$. Let $f = \prod m_{\alpha_i, K}$, then since L/K normal, each $m_{\alpha_i, K}$ splits. It is also easy to see that L is the smallest field where f splits, thus L is a splitting field of f.

Remark 29. If L/K is normal, then for any M with $K \subset M \subset L$, we have L/M is normal, this is because $\forall \alpha, m_{\alpha,M} \mid m_{\alpha,K}$, and thus $m_{\alpha,M}$ splits since $m_{\alpha,K}$ splits.

But M/K need not to be normal. For example, Let $K = \mathbb{Q}$, L be the splitting field of $x^3 - 2$, by theorem 54 L/K is normal. Then $L = \mathbb{Q}(\sqrt[3]{2}, \omega)$ where $\omega \triangleq \mathrm{e}^{2\pi\mathrm{i}/3}$. Let $M = \mathbb{Q}(\sqrt[3]{2})$ then $m_{\sqrt[3]{2},K}$ doesn't split in M, so M/K is not normal.

Prop 5.5.1. Let L/K be a finite, normal extension and $L \supset M \supset K$, then the following are equivalent.

- (a) M/K is normal.
- (b) $\forall \sigma \in \operatorname{Aut}(L/K), \sigma(M) \subset M$.
- (c) $\forall \sigma \in \text{Aut}(L/K), \sigma(M) = M$.

Proof. (a) \Rightarrow (b): $\forall \alpha \in M$, $m_{\alpha,K}(\sigma(\alpha)) = \sigma(m_{\alpha,K}(\alpha)) = 0$. So $\sigma(\alpha)$ is a root of $m_{\alpha,K}$. Since M/K normal, $m_{\alpha,K}$ splits in M and thus each root of $m_{\alpha,K}$ is in M, hence $\forall m, \sigma(m) \in M \implies \sigma(M) \subset M$.

- (b) \Rightarrow (c): Since L/K is algebraic and σ is 1-1, by a homework problem, σ onto.
- (c) \Rightarrow (a): For any $\alpha \in M$, let $\beta \in L$ be a root of $m_{\alpha,K}$. By theorem 54, we could assume L is a splitting field of f over K. Consider the following diagram,

Where isomorphism τ with $\tau(\alpha) = \beta$ exists since α, β share the same minimal polynomial, and σ with $\sigma|_K = \tau$ exists by theorem 43. Since $\sigma \in \operatorname{Aut}(L/K), \ \beta = \sigma(\alpha) \in M$, thus M/K normal. \square

Def 87. Let L/K is called a *Galois* extension if L/K is finite, normal and separable. That is, L is a splitting field of some separable polynomial over K.

Theorem 55. If L/K is Galois, then $|\operatorname{Aut}(L/K)| = [L:K]$. Otherwise, $|\operatorname{Aut}(L/K)| < [L:K]$.

Proof. Since L/K is normal, for any α , $m_{\alpha,K}$ splits over L. Since L/K is separable, $m_{\alpha,K}$ has no multiple roots. So there are exactly [L:K] extensions $\sigma::L\to L$ of Id_K .

Def 88. Given a field L, define the fixed field of G by $L^G \triangleq \{\alpha \in L \mid \sigma(\alpha) = \alpha, \forall \sigma \in G\}$.

Theorem 56. If G is a subgroup of $\operatorname{Aut}(L)$ with $|G| < \infty$, then $|G| = [L:L^G]$, $G = \operatorname{Aut}(L/L^G)$ and L/L^G is Galois.

Proof. First we prove that $[L:L^G] \leq |G|$ by contradiction. Assume |G| < [L:G]. Let $G = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$ and $\alpha_1, \alpha_2, \dots, \alpha_{n+1} \in L$ with $\{\alpha_i\}$ are linearly independent over L^G .

Consider the equations

$$\begin{cases} \sigma_1(\alpha_1)x_1 + \dots + \sigma_1(\alpha_{n+1})x_{n+1} = 0 \\ \sigma_2(\alpha_1)x_1 + \dots + \sigma_2(\alpha_{n+1})x_{n+1} = 0 \\ \vdots & \vdots \\ \sigma_n(\alpha_1)x_1 + \dots + \sigma_n(\alpha_{n+1})x_{n+1} = 0 \end{cases}$$

Since the number of variables is more than the number of equations, there is a non-trivial solution. Choose one solution (a_1, \ldots, a_{n+1}) having the least amount of nonzero element. By reordering, we could assume the solution is $(a_1, a_2, \ldots, a_m, 0, 0, \ldots, 0)$ and it is no harm to assume $\sigma_1 = 1_G$. If m = 1, then $\sigma_1(\alpha_1)a_1 = \alpha_1a_1 = 0 \implies a_1 = 0$, which is a contradiction.

So assume that m > 1, we have

$$\begin{cases} \sigma_1(\alpha_1)a_1 + \dots + \sigma_1(\alpha_m)a_m = 0 \\ \sigma_2(\alpha_1)a_1 + \dots + \sigma_2(\alpha_m)a_m = 0 \\ \vdots & \vdots \\ \sigma_n(\alpha_1)a_1 + \dots + \sigma_n(\alpha_m)a_m = 0 \end{cases}$$

By multipling a_m^{-1} , we could assume $a_m = 1$. The equation about σ_1 gives $\alpha_1 a_1 + \cdots + \alpha_m a_m = 0$, since α_i is linearly independent, one of $\{a_i\}$, say a_k is not in L^G , and thus there exists t such that $\sigma_t(a_k) \neq a_k$. Apply σ_t to each equation, we have

$$\sigma_t \sigma_i(\alpha_1) \sigma_t(a_1) + \dots + \sigma_t \sigma_i(\alpha_m) \sigma_t(a_m) = 0, \quad \forall \ 1 \le i \le n$$

But since $\{\sigma_t\sigma_1,\ldots,\sigma_t\sigma_n\}=\{\sigma_1,\ldots,\sigma_n\}$, $(\sigma_t(a_1),\sigma_t(a_2),\ldots,\sigma_t(a_m),0,\ldots,0)$ is a solution and thus $(a_1-\sigma_t(a_1),\ldots,a_m-\sigma_t(a_m),0,\ldots)$ is also a solution of the equations. Since $\sigma_t(a_k)\neq a_k$, the solution is not trivial, and because $a_m=1$, $a_m-\sigma_t(a_m)=0$. Hence this solution has m-1 nonzero element, which contradicts the minimality of the original solution. Thus $[L:L^G]\leq \operatorname{Aut}(L/L^G)$.

Finally, $|\operatorname{Aut}(L/L^G)| \leq [L:L^G]$ by theorem 51, thus $|G| \leq |\operatorname{Aut}(L/L^G)| \leq [L:L^G] \leq |G|$, hence they are all equal.

Def 89. Let $f(x) \in K[x]$ and L be a splitting field of f(x) over K. We use Gal(L/K) to denote Aut(L/K) and call it the **Galois group** of f(x).

Prop 5.5.2. Let $f(x) \in \mathbb{Q}[x]$ be irreducible polynomial of degree p where p is a prime. If f(x) has exactly p-2 roots and 2 complex roots, then the Galois group of f(x) is S_p .

Proof. Let L be a splitting field of f over \mathbb{Q} and $R = \{\alpha_1, \alpha_2, \dots, \alpha_p\}$ be the set of all roots of f(x). Since f(x) is irreducible, $f(x)/a_p = m_{\alpha_i,\mathbb{Q}}, \forall i$. By lemma 4, for any $\sigma \in \operatorname{Gal}(L/\mathbb{Q}), \sigma$ sends α_i to another root α_j . Also, $\{\alpha_i\}$ generates L so $G \triangleq \operatorname{Gal}(L/\mathbb{Q}) \leq S_p$.

Now, we define an equivalence relation on R such that $\alpha_i \sim \alpha_j \iff (\alpha_i \ \alpha_j) \in G$, that is, $\exists \ \sigma \in G$ such that $\sigma(\alpha_i) = \alpha_j, \sigma(\alpha_j) = \alpha_i$ and $\sigma(\alpha_t) = \alpha_t, \ \forall \ t \neq i, j$.

We claim that each equivalence class has the same size. Let $[\alpha_i], [\alpha_j]$ be two equivalence classes. Since α_i, α_j share the same minimal polynomial, by lemma 4, $\exists \sigma, \sigma(\alpha_i) = \alpha_j$, and σ sends $[\alpha_i]$

to $[\alpha_j]$, since if $\alpha_k \in [\alpha_i]$, $(\alpha_i \ \alpha_k) \in G$ and thus $\sigma(\alpha_i \ \alpha_k)\sigma^{-1} = (\alpha_j \ \sigma(\alpha_k)) \in G$. Since σ is 1-1, $|[\alpha_i]| \leq |[\alpha_j]|$, and by symmetry we have $|[\alpha_i]| = |[\alpha_j]|$.

But then if $[\alpha_i] = n$, $p = |R| = \sum |[\alpha_j]| = kn$, so either there are p equivalence classes with size of 1, which is impossible since the two complex root are equivalent by conjugation, or there are is one equivalence class, which means that every 2 cycle is in G, and thus $G = S_p$.

5.6 Fundamental theorem of Galois theory

Theorem 57 (Main theorem). Let L/K be a Galois extension, where L be a splitting field of a separable polynomial f, and let G = Gal(L/K). Then:

(1) There is a 1-1 correspondence from the set of intermediate field to the set of subgroup:

$$\begin{array}{ccc} \{M: K \subseteq M \subseteq L\} & \longleftrightarrow & \{H: H \leq G\} \\ M & \longmapsto & \operatorname{Gal}(L/M) \\ L^H & \longleftrightarrow & H \end{array}$$

Proof. We check these two mappings are the inverse of each other.

By theorem 56, $Gal(L/L^H) = H$.

Now we have $M \subseteq L^{\operatorname{Gal}(L/M)}$. Since L/M is galois, $[L:M] = |\operatorname{Gal}(L/M)|$. By theorem 56 again, $|\operatorname{Gal}(L/M)| = [L:L^{\operatorname{Gal}(L/M)}]$, thus $[L:M] = [L:L^{\operatorname{Gal}(L/M)}] \implies M = L^{\operatorname{Gal}(L/M)}$.

(2) If $M_1 = L^{H_1}, M_2 = L^{H_2}$, then $M_1 \subseteq M_2 \iff H_2 \leq H_1$.

Proof. Obvious.

(3) If $M = L^H$, then M/K is normal if and only if $H \triangleleft G$.

Proof. For any $\sigma \in G$,

$$\tau \in \operatorname{Gal}(L/\sigma(M)) \iff \tau(\sigma(x)) = \sigma(x), \ \forall \ x \in M$$

$$\iff \sigma^{-1}\tau\sigma(x) = x, \ \forall \ x \in M$$

$$\iff \sigma^{-1}\tau\sigma \in \operatorname{Gal}(L/M)$$

$$\iff \tau \in \sigma \operatorname{Gal}(L/M)\sigma^{-1}$$

By prop 5.5.1, M/K is normal if and only if for all $\sigma \in G$, $\sigma(M) = M \iff \operatorname{Gal}(L/M) = \operatorname{Gal}(L/\sigma(M))$. By the discussion above, $\operatorname{Gal}(L/\sigma(M)) = \sigma \operatorname{Gal}(L/M)\sigma^{-1} = \sigma H\sigma^{-1}$. Hence M/K is normal $\iff H = \sigma H\sigma^{-1}$, $\forall \sigma \in G \iff H \lhd G$.

(4) If $H \triangleleft G$, then $G/H \cong Gal(M/K)$.

Proof. Since $H \triangleleft G$, by (3) we know that M/K is Galois. Define $\varphi = \sigma$:: $\operatorname{Gal}(L/K) \mapsto \sigma|_{M}$:: $\operatorname{Gal}(M/K)$. The mapping is well defined since $\sigma(M) = M$ (by prop 5.5.1). Also, this map is onto since by corollary 43, each $\tau \in \operatorname{Gal}(M/K)$ could be extended to $\sigma \in \operatorname{Gal}(L/K)$ because $\bar{\tau}(f) = f$. Finally, notice that $\ker \varphi = H$, thus by the first isomorphism theorem, $G/H \cong \operatorname{Gal}(M/K)$.

(5) If $M_1 = L^{H_1}$, $M_2 = L^{H_2}$, then $M_1 \cap M_2 = L^{\langle H_1, H_2 \rangle}$ and $M_1 M_2 = L^{H_1 \cap H_2}$.

Theorem 58. Let L/K be Galois, and N/K be any extension, then LN/N is galois and $Gal(LN/N) \cong Gal(L/L \cap N)$ by the isomorphism $\varphi : \sigma \mapsto \sigma|_{L}$.

Proof. Let L be a splitting field of the separable polynomial f(x) over K, say $L = K(\alpha_1, \ldots, \alpha_n)$. Then $LN = N(\alpha_1, \ldots, \alpha_n)$, which can be regarded as a splitting field of f(x) over N. Thus by theorem 54, LN/N is Galois.

Now we check that φ is well defined, notice that $f(\sigma(\alpha_i)) = \sigma(f(\alpha_i)) = 0$ since σ fixes K, and thus f sends α_i to some α_j . Also, $\{\alpha_i\}$ generate L over K, thus $\sigma|_L(L) = L$.

If $\sigma|_{L} = \mathrm{Id}_{L}$, then $\sigma(\alpha_{i}) = \alpha_{i}$, $\forall i$. Since $\{\alpha_{i}\}$ generate LN over N, $\sigma = \mathrm{Id}_{LN}$. Thus φ is 1-1.

Finally, let $H = \operatorname{Im} \varphi$, we claim that $L^H = L \cap N$, since

$$\begin{split} \alpha \in L^H &\iff \alpha \in L \text{ and } \forall \, \sigma \in \operatorname{Gal}(LN/N), \, \sigma\big|_L(\alpha) = \alpha \\ &\iff \alpha \in L \text{ and } \forall \, \sigma \in \operatorname{Gal}(LN/N), \, \sigma(\alpha) = \alpha \\ &\iff \alpha \in L \text{ and } \alpha \in (LN)^{\operatorname{Gal}(LN/N)} \\ &\iff \alpha \in L \text{ and } \alpha \in N \iff \alpha \in L \cap N \end{split}$$

Remark 30. If L/K is Galois and N/K is finite, then $[LN:K] = [L:K][N:K]/[L \cap N:K]$.

Proof.

$$[LN:K]/[N:K] = [LN:N] = \operatorname{Gal}(LN/N) = \operatorname{Gal}(L/L \cap N) = [L:L \cap N] = [L:K]/[L \cap N:K]$$
 and the proof is completed. \Box

5.7 Abelian extension (week 5)

Def 90. L/K is called an abelian extension if L/K is Galois and Gal(L/K) is abelian.

Eg 5.7.1. For an extension $\mathbb{F}_{q^n}/\mathbb{F}_q$ of a finite field, \mathbb{F}_{q^n} is a splitting field of $x^{q^n} - x$ over \mathbb{F}_p , so $\mathbb{F}_{q^n}/\mathbb{F}_q$ is Galois by theorem 54. By theorem 46, we know that $\operatorname{Gal}(F_{q^n}/F_q) = \langle \sigma_q \rangle$ is a cyclic group.

Def 91.

- The cyclotomic field $\mathbb{Q}(\zeta_n)$ is the splitting field of $x^n 1$ over \mathbb{Q} .
- ζ is called an *n*th root of unity if $\zeta^n = 1$. $\mathcal{U} = \langle \zeta \rangle$ is the multiplicative group of *n*th roots of unity.
- ζ_n is called a primitive *n*th root of unity if $\zeta^n = 1$ but $\zeta^m \neq 1, \forall 0 < m < n$.
- The nth cyclotomic polynomial is defined as

$$\Phi_n \triangleq \prod_{\gcd(k,n)=1} (x - \zeta_n^k) \implies \deg \Phi_n = \varphi(n)$$

Prop 5.7.1.

• $x^n - 1 = \prod_{d|n} \Phi_d$.

Proof. First, Both sides have no multiple root. Then since $\alpha^n = 1 \iff \operatorname{ord}_{\times}(\alpha) \mid n$, we know that two sides has equal roots.

• $\Phi_n \in \mathbb{Z}[x]$.

Proof. By induction on n. n = 1 is trivial. Assume that the statement is true for all k < n, then since

$$x^{n} - 1 = \Phi_{n} \prod_{d|n,d < n} \Phi_{d} \triangleq \Phi_{n} \Phi_{< n}$$

But notice that $\Phi_{< n}$ is monic, so by the long division algorithm, it is easy to see that $\Phi_n = (x^n - 1)/\Phi_{< n}$ has all coefficients in \mathbb{Z} .

• Φ_n is irreducible.

Proof. Suppose $\Phi_n = f(x)g(x)$ with f irreducible, and both f, g are monic. By Gauss's lemma, we could assume $f(x), g(x) \in \mathbb{Z}[x]$. Let ζ_n be a primitive nth root of unity which satisfied $f(\zeta_n) = 0$ and p be a prime with $p \nmid n$.

Assume that $g(\zeta_n^p) = 0$, $m_{\zeta_n,\mathbb{Q}} = f \implies f \mid g(x^p)$, say $g(x^p) = f(x)h(x)$. By the long division algorithm, we know that $h(x) \in \mathbb{Z}[x]$, since $f(x) \in \mathbb{Z}[x]$ and monic.

In $\mathbb{Z}/p\mathbb{Z}[x]$, we have $\bar{g}(x)^p = \bar{g}(x^p) = \bar{f}(x)\bar{h}(x)$, which implies \bar{g}, \bar{f} has common root, thus $\bar{\Phi}_n = \bar{f}\bar{g}$ and hence $x^n - \bar{1}$ has a multiple root. But $(x^n - \bar{1})' = nx^{n-1} \neq 0$, and 0 is not a root of $x^n - \bar{1}$, which leads to a contradiction.

So we conclude that $f(\zeta_n^p) = 0$ for any $p \nmid n$, which could be extended and show that $f(\zeta_n^k) = 0$ for any gcd(k, n) = 1, thus $f = \Phi_n$.

- $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ is Galois with $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \deg \Phi_n = \varphi(n)$.
- $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Proof. Let $\sigma_k = (\zeta_n \mapsto \zeta_n^k) \in \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$. The isomorphism is given by $\sigma_k \mapsto \bar{k}$. Clearly, it is a homomorphism since $\sigma_k \sigma_h = (\zeta_n \mapsto \zeta_n^{kh}) = \sigma_{kh}$. Also $\sigma_k = 1 \iff \bar{k} = 1$. Finally, $|\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})| = |\mathbb{F}_n^{\times}| = \varphi(n)$, so the map is onto.

• Suppose $n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$ with p_1, \ldots, p_k are distinct primes. Define $L_i \triangleq \mathbb{Q}(\zeta_{p_i^{n_i}})$. Obviously, $L_i \subseteq \mathbb{Q}(\zeta_n)$ hence $L_1 L_2 \cdots L_k \subseteq \mathbb{Q}(\zeta_n)$, but $\zeta_n = \zeta_{p_1^{n_1}} \zeta_{p_2^{n_2}} \cdots \zeta_{p_k^{n_k}}$, so $L_1 L_2 \cdots L_k \supseteq \mathbb{Q}(\zeta_n)$. Thus we have $L_1 L_2 \cdots L_k = \mathbb{Q}(\zeta_n)$.

Eg 5.7.2. Let n = p be a prime.

- $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) = \mathbb{F}_p^{\times} = \mathbb{Z}/(p-1)\mathbb{Z}.$
- For $H \leq \operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$, we shall find $\mathbb{Q}(\zeta_p)^H$. Let $\alpha = \sum_{\tau \in H} \tau(\zeta_p)$, then it is easy to see that $\alpha \in \mathbb{Q}(\zeta_p)^H$. Also, since $[\mathbb{Q}(\zeta_p):\mathbb{Q}] = p-1$, $\zeta_p, \zeta_p^2, \ldots, \zeta_p^{p-1}$ is linearly independent, so if some $\sigma \in G$ satisfy $\sigma(\alpha) = \alpha$, then since both $\sigma(\alpha), \alpha$ are a sum of linearly independent elements, σ must send ζ_p to an element $\tau(\zeta_p)$ for some $\tau \in H$, then $\sigma = \tau \implies \sigma \in H$. Thus $\mathbb{Q}(\zeta_p)^H = \mathbb{Q}(\alpha)$.

Lemma 10. If L_1/K , L_2/K are Galois, then $L_1 \cap L_2/K$, L_1L_2/K are Galois and

$$\operatorname{Gal}(L_1L_2/K) \cong \{(\sigma,\tau) \mid \sigma|_{L_1 \cap L_2} = \tau|_{L_1 \cap L_2} \} \leq \operatorname{Gal}(L_1/K) \times \operatorname{Gal}(L_2/K)$$

In particular, if $L_1 \cap L_2 = K$, then $Gal(L_1L_2/K) \cong Gal(L_1/K) \times Gal(L_2/K)$.

Proof. We know that $L_1 \cap L_2/K$ is finite and separable. Also, for each $\alpha \in L_1 \cap L_2$, $m_{\alpha,K}$ splits in both L_1, L_2 since they are normal, thus $m_{\alpha,K}$ splits in $L_1 \cap L_2$, hence $L_1 \cap L_2/K$ is galois.

Similary, L_1L_2 is finite and separable. Let L_1 be the splitting field of f_1 , and L_2 be the splitting field of f_2 , then L_1L_2 is the splitting field of the square-free part of f_1f_2 , hence L_1L_2/K normal.

Define $\varphi = \sigma :: \operatorname{Gal}(L_1L_2/K) \mapsto (\sigma|_{L_1}, \sigma|_{L_2}) :: \operatorname{Gal}(L_1/K) \times \operatorname{Gal}(L_2/K)$. Since L_1, L_2 are normal, by proposition 5.5.1, $\sigma|_{L_1}(L_i) = L_i$ so they are well-defined. Also, it is clear that the map is 1-1.

Now we count the number of the pair $(\sigma\big|_{L_1},\sigma\big|_{L_2})$, There are $[L_1:K]$ of $\tau=\sigma\big|_{L_1}$, and fixing one, each $\sigma\big|_{L_2}$ is an extension of $\tau\big|_{L_1\cap L_2}$, so there are $[L_2:L_1\cap L_2]$ of such. On the other hand, we have $|\operatorname{Gal}(L_1L_2/K)|=[L_1L_2:K]=[L_1L_2:L_1][L_1:K]=[L_2:L_1\cap L_2][L_1:K]$, thus $\operatorname{Gal}(L_1L_2/K)$ and $\{(\sigma\big|_{L_1},\sigma\big|_{L_2})\}$ has the same size, and hence the map is onto.

Back to our problem, $[L_1L_2\cdots L_k:\mathbb{Q}]=[\mathbb{Q}(\zeta_n):\mathbb{Q}]=\varphi(n)=\varphi(p_1^{n_1})\cdots\varphi(p_k^{n_k})=[L_1:\mathbb{Q}][L_2:\mathbb{Q}]\cdots[L_k:\mathbb{Q}]$, thus

$$\operatorname{Gal}\left(\mathbb{Q}(\zeta_n)/\mathbb{Q}\right) \cong \operatorname{Gal}\left(\mathbb{Q}(\zeta_{p_1^{n_1}})/\mathbb{Q}\right) \times \operatorname{Gal}\left(\mathbb{Q}(\zeta_{p_1^{n_2}})/\mathbb{Q}\right) \times \cdots \times \operatorname{Gal}\left(\mathbb{Q}(\zeta_{p_1^{n_k}})/\mathbb{Q}\right)$$

Theorem 59. Let G be a finite abelian group. Then there exists a subfield L of a cyclotomic field satisfying $Gal(L/\mathbb{Q}) \cong G$.

Proof. By the FTFGAG,

$$G \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}$$

By dirichlet theorem, there are infinitely many prime p such that $n \mid p-1$. Let p_i be a prime such that $n_i \mid p_i-1$ and all p_i are distinct. Then G is a subgroup of $\mathbb{Z}/(p_1-1)\mathbb{Z} \times \cdots \times \mathbb{Z}/(p_k-1)\mathbb{Z} \cong \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ where $n=p_1p_2\cdots p_k$.

5.7.1 Kummer extension

In this section, we assume that char $K \nmid n$ and ζ is a primitive nth root of unity.

Def 92.

- L/K is called a kummer extension of exponent n if $\zeta \in K$ and L is a splitting field of $(x^n a_1)(x^n a_2) \cdots (x^n a_k)$ over K.
- Let $|G| < \infty$, the exponent e(G) of G is the least positive integer m satisfying $g^m = 1$ for any $g \in G$.

Theorem 60. Let L be a splitting field of $x^n - a$ over K, then $Gal(L/K(\zeta))$ is cyclic of degree dividing n. More over $x^n - a$ is irreducible over $K(\zeta) \iff [L:K(\zeta)] = n$.

Proof. If α is a root of $x^n - a$, then $\alpha, \alpha\zeta, \dots, \alpha\zeta^{n-1}$ are roots of $x^n - a$, so $L = K(\alpha, \zeta) = K(\zeta)(\alpha)$.

Consider $\frac{\varphi: \operatorname{Gal}(L/K(\zeta)) \to \mathbb{Z}/n\mathbb{Z}}{(\alpha \mapsto \alpha \zeta^k) \mapsto \bar{k}}$. It is easy to see that φ is a homomorphism. Also, if $\varphi(\sigma) = 0$, $\sigma = (\alpha \mapsto \alpha) = \operatorname{Id}$. Thus φ is 1-1 and $\operatorname{Gal}(L/K(\zeta)) \hookrightarrow \mathbb{Z}/n\mathbb{Z}$.

Def 93. L/K is called a cyclic extension if L/K is Galois and Gal(L/K) is cyclic.

Theorem 61. If L/K is a cyclic extension of degree n and $\zeta \in K$, then L is a splitting field of some irreducible polynomial $x^n - a$ over K.

Proof. Recall a result proved in HW problem: Distinct automorphisms of L are linearly independent over L

Let
$$Gal(L/K) = \langle \sigma \rangle$$
 with $ord(\sigma) = n$. Then $Id_L + \zeta \sigma + \zeta^2 \sigma^2 + \cdots + \zeta^{n-1} \sigma^{n-1} \neq 0$

$$\implies \exists c \in L, \text{ s.t. } \alpha = c + \zeta \sigma(c) + \zeta^2 \sigma^2(c) + \dots + \zeta^{n-1} \sigma^{n-1}(c) \neq 0$$

Observe that $\sigma(\alpha) = \zeta^{-1}\alpha$, so $\alpha \notin K$. Also $\sigma(\alpha^n) = \sigma(\alpha)^n = \zeta^{-n}\alpha^n = \alpha^n$, so α^n is fixed by $\operatorname{Gal}(L/K)$, thus $a \triangleq \alpha^n \in K$, and hence $K(\alpha)$ is a splitting field of $x^n - a$ over K.

Now $\sigma(\alpha) = \zeta^{-1}\alpha \in K(\alpha)$, so $\sigma|_{K(\alpha)} \in \operatorname{Gal}(K(\alpha)/K)$. Also $\sigma^k(\alpha) = \zeta^{-k}\alpha \implies \operatorname{ord}(\sigma) = n$. Thus

$$n = [L:K] \ge [K(\alpha):K] = \operatorname{Gal}(K(\alpha)/K) \ge n \implies L = K(\alpha)$$

Theorem 62. Let L/K be a Galois extension such that Gal(L/K) is abelian of exponent n and $\zeta_n \in K$, then L/K is a Kummer extension.

Proof. By induction on [L:K]. If [L:K]=1 then L=K and is trivial.

Assume [L:K] > 1, then by FTFGAG, $G \triangleq \operatorname{Gal}(L/K) \cong \mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z} \times \cdots \times \mathbb{Z}/d_s\mathbb{Z}$ with $d_i \mid d_{i+1}$. If s = 1 then the theorem degenerates to theorem 61.

So assume s > 1. Let $H = \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_{s-1}\mathbb{Z}$, $N = \mathbb{Z}/d_s\mathbb{Z}$ be the corresponding subgroup in $\operatorname{Gal}(L/K)$. Set $M = L^N$, we have $[M:K] \leq [L:K]$. Since any subgroup of abelian group is normal, we have $\operatorname{Gal}(M/K) \cong \operatorname{Gal}(L/K)/\operatorname{Gal}(L/M) = G/N = H$.

Denote $m = d_{s-1}, n = d_s$, we have $m \mid n$. Then $\zeta_n \in K \implies \zeta_m = \zeta_n^{n/m} \in K$, thus we could pass down the induction, and assume M is a kummer extension which is a splitting field of $g = (x^m - b_1)(x^m - b_2) \cdots (x^m - b_{k-1})$ over K with each $b_i \in K$. Let $\alpha_1, \ldots, \alpha_{k-1}$ be all the roots of g, then α_i is also a root of $(x^n - b_1^{n/m})$. Thus if we define $a_i \triangleq b_i^{n/m}$, then M is also the splitting field of $(x^n - a_1)(x^n - a_2) \cdots (x^n - a_{k-1})$ over K since $\zeta_n \in K$.

Now, if $N = \langle \sigma \rangle$, then $G \cong H \times N = \{ \sigma^k \tau : 0 \le k < n, \tau \in H \}$. Since automorphisms are linearly independent, exists $c \in L$ satisfied

$$0 \neq \alpha = \sum_{\tau \in H} \tau(c) + \zeta \sum_{\tau \in H} \sigma \tau(c) + \dots + \zeta^{n-1} \sum_{\tau \in H} \sigma^{n-1} \tau(c)$$

Then $\sigma(\alpha) = \zeta^{-1}\alpha$, so $\alpha \notin M$. Also $\sigma(\alpha^n) = \alpha^n$ and $\tau(\alpha^n) = \tau(\alpha)^n = \alpha^n$, so $a_k \triangleq \alpha^n \in K$. Thus $M(\alpha)$ is a splitting field of $(x^n - a_k)$ over M.

Finally, $n = [L:M] \ge [M(\alpha):M] = |\operatorname{Gal}(M(\alpha)/M)| \ge n$, thus $L = M(\alpha)$, and hence L is a splitting field of $(x^n - a_1)(x^n - a_2) \cdots (x^n - a_k)$.

Theorem 63. If L/K is a kummer extension of exponent n, then Gal(L/K) is abelian of exponent dividing n.

Proof. Let L be the splitting field of $(x^n - a_1)(x^n - a_2) \cdots (x^n - a_k)$ with $\alpha_i = \sqrt[n]{a_i}$. If $\sigma \in \operatorname{Gal}(L/K)$, then σ sends each α_i to some $\zeta^{k_{\sigma,i}}\alpha_i$. So $\sigma^n = \alpha_i \mapsto \zeta^{k_{\sigma,i}n}\alpha_i = \alpha_i \mapsto \alpha_i = \operatorname{Id}$ and $\sigma \circ \tau = \alpha_i \mapsto \zeta^{k_{\sigma,i}+k_{\tau,i}}\alpha_i = \tau \circ \sigma$. by the fact that $\{\alpha_i\}$ is the generating set of L. Hence $\operatorname{Gal}(L/K)$ is abelian and of exponent dividing n.

5.7.2 Cubic equations

Lemma 11. Let char $K \neq 2$ and $f(x) \in K[x]$ with deg f = n. Let $L = K(\alpha_1, \ldots, \alpha_n)$ be a splitting field of L over K.

Define
$$\delta = \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j)$$
, then $L^{\operatorname{Gal}(L/K) \cap A_n} = K(\delta)$. (Here $\operatorname{Gal}(L/K) \hookrightarrow S_n$)

Proof. Notice that any transposition maps δ to $-\delta$, so $\forall \sigma \in \operatorname{Gal}(L/K) \cap A_n$, $\sigma(\delta) = \delta$, thus $K(\delta) \subset L^{\operatorname{Gal}(L/K) \cap A_n}$.

Now, $|\operatorname{Gal}(L/K)/\operatorname{Gal}(L/K)\cap A_n|$ is either 1 or 2. If it is 1, then $\operatorname{Gal}(L/K) \leq A_n$, thus $\delta \in K$ and is trivial. Assume it is 2, then δ is not fixed by all permutation, thus $\delta \notin K$. But $D = \delta^2 \in K$ is the discriminant. So we have $2 = [K(\delta) : K] \leq [L^{\operatorname{Gal}(L/K)\cap A_n} : K] = |\operatorname{Gal}(L^{\operatorname{Gal}(L/K)\cap A_n}/K)| = 2$, thus $K(\delta) = L^{\operatorname{Gal}(L/K)\cap A_n}$.

Prop 5.7.2. Let $f(x) = x^3 + px + q$ be irreducible in K[x] and L be a splitting field,

- If $Gal(L/K) \cong S_3$ then $\sqrt{D} \notin K$.
- If $Gal(L/K) \cong A_3$ then $\sqrt{D} \in K$.

Def 94. $H \leq S_n$ is said to be transitive if for any i, j, there exists $\sigma \in H$ such that $\sigma(i) = j$.

Fact 5.7.1. Let f(x) be a separable polynomial with degree n, then

f(x) is irreducible \iff The Galois group of f is transitive in S_n

5.8 Solution by radicals (week 6)

Def 95.

- 1. Given L/K and $\alpha \in L$, α is called a radical over K if $\alpha^n \in K$ for some $n \in \mathbb{N}$.
- 2. L/K is called an extension by radicals if there exist $L = L_n \supset L_{n-1} \supset \cdots \supset L_1 \supset L_0 = K$ s.t. $\forall i = 1, \ldots, n, \quad L_i = L_{i-1}(\alpha_i)$ with α_i a radical over L_{i-1} .
- 3. $f(x) \in K[x]$ is solvable by radicals if there exists L/K, an extension by radicals, s.t. f splits over L.

Def 96. (Recall) Let G be a finite group. G is solvable if $\exists \{1\} = G_m \triangleleft G_{m-1} \triangleleft \cdots \triangleleft G_0 = G$ s.t. G_{i-1}/G_i is cyclic $\forall i$.

Lemma 12. Given a Galois extension L/K and $M = L(\alpha)$ is an extension by a radical, where $\alpha^n = a \in L$. Assume that char $K \nmid n$. Then $\exists N$ s.t. N/M is an extension by radicals and N/K is Galois and N contains ζ_n .

Proof. We know that $M(\zeta_n) = L(\zeta_n, \alpha)$ is a splitting field of $x^n - a$ over L. If we set

$$f(x) = \prod_{\sigma \in Gal(L/K)} (x^n - \sigma(a)),$$

then the coefficients of f(x) are elementary symmetric polynomials in $\{\sigma(a) \mid \sigma \in \operatorname{Gal}(L/K)\}$, which are fixed by $\operatorname{Gal}(L/K)$, so $f(x) \in K[x]$.

Let L be a splitting field of g(x) over K. (since L/K is Galois) Choose N as a splitting field of f(x)g(x) over K. By def., N/K is Galois. Let $L = K(\beta_1, \ldots, \beta_s)$ where β_1, \ldots, β_s are the roots of g(x), then

$$N = K(\beta_1, \dots, \beta_s, \zeta_n, \alpha_\sigma : \sigma \in Gal(L/K)), \qquad \alpha_\sigma^n = \sigma(a) \in L$$

So $N = M(\zeta_n, \alpha_\sigma : \sigma \in \operatorname{Gal}(L/K) \setminus \{\operatorname{Id}\}) \implies N/M$ is an extension by radicals.

Lemma 13. Let $L = L_m \supset L_{m-1} \supset \cdots \supset L_0 = K$ s.t. $L_i = L_{i-1}(\alpha_i)$ with $\alpha^{n_i} = a_i \in L_{i-1}$. If char $K \nmid n_1 n_2 \cdots n_m$, then there exists N/L s.t. N/K is a Galois extension by radicals and $\zeta_{n_i} \in N, \forall i = 1, \ldots, m$.

Proof. By induction on m. For m = 1, $L_1 \supset L_0 = K$ and $L_1 = L_0(\alpha_1) = K(\alpha_1)$ where $\alpha_1^{n_1} \in K$ for some $n_1 \in \mathbb{N}$. Set $N = L(\zeta_{n_1}) = K(\zeta_{n_1}, \alpha_1)$, done.

For m > 1, by induction hypothesis, $\exists N'/L_{m-1}$ s.t. N'/K is Galois extension by radicals and N' contains ζ_{n_i} , $\forall i = 1, ..., m-1$. By lemma 12, $\exists N/N'(\alpha_m)$ is an extension by radicals s.t. N/K is Galois and N contains ζ_{n_m} .

Prop 5.8.1. Let $H \triangleleft G$. Then G is solvable $\iff H, G/H$ are solvable.

Proof. " \Leftarrow ": Let $q: G \to G/H$ be the quotient map, Q = G/H. The solvable series is given by

$$G = q^{-1}(Q) = q^{-1}(Q_0) \triangleright q^{-1}(Q_1) \triangleright \cdots \triangleright q^{-1}(Q_n) = H = H_0 \triangleright H_1 \triangleright \cdots \triangleright H_m = \{1\}$$

"⇒"

<u>Claim:</u> Define $G^{(i)} = [G^{(i-1)}, G^{(i-1)}], i \in \mathbb{N}; G^{(0)} = G$. Then G is solvable $\iff G^{(n)} = \{1\}$ for some n.

Proof. "⇐": O.K.

"\(\Rightarrow\)": Given
$$G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_m = \{1\}$$
 with G_{i-1}/G_i abelian. We have $G^{(1)} \leq G_1 \rightsquigarrow G^{(2)} \leq [G_1, G_1] \leq G_2 \rightsquigarrow \cdots \rightsquigarrow G^{(n)} \leq G_n = \{1\} \rightsquigarrow G^{(n)} = \{1\}.$

By the claim above:

- $H^{(n)} \le G^{(n)} = \{1\} \leadsto H^{(n)} = \{1\} \implies H \text{ is solvable.}$
- $q([G,G]) = [q(G), q(G)] = [G/H, G/H] = (G/H)^{(1)} \leadsto \cdots \leadsto q(G^{(n)}) = (G/H)^{(n)} \Longrightarrow G/H \text{ is solvable.}$

Theorem 64 (Main Theorem). Under some proper assumption on char K, a separable polynomial $f(x) \in K[x]$ is solvable by radicals \iff the Galois group of f is solvable.

Part A: Let $L = L_m \supset \cdots \supset L_0 = K$ s.t. $L_i = L_{i-1}(\alpha_i)$ with $\alpha^{n_i} = a_i \in L_{i-1}$ and char $K \nmid n_1 \cdots n_m$. If a separable poly. $f(x) \in K[x]$ splits over L, then the Galois group of f over K is solvable.

Proof. By lemma 13, we can first extend the extension tower and thus assume that L/K is Galois with each ζ_{n_i} in L. Then each L/L_i is Galois. If we set $n = \text{lcm}(n_1, \ldots, n_m)$, L also contains $\zeta = \zeta_n = \zeta_{n_1}^{r_1} \cdots \zeta_{n_m}^{r_m}$.

Consider $L = L(\zeta) \supset L_{m-1}(\zeta) \supset \cdots \supset L_0(\zeta) = K(\zeta)$ (Note that $K(\zeta) \supset K$ and L/K is Galois) and let $G_i = \operatorname{Gal}(L/L_i(\zeta))$ for each $i = 0, \ldots, m$.

Define $L_i' \triangleq L_i(\zeta)$ for all i. We can find that

- $G_m = \{1\}, G_0 = \text{Gal}(L/K(\zeta)).$
- Since $\zeta_n \in L_{i-1}$, L_i/L_{i-1} is normal, so

$$G_{i-1}/G_i = \operatorname{Gal}(L/L'_{i-1})/\operatorname{Gal}(L/L'_i) \cong \operatorname{Gal}(L'_{i-1}/L'_i) = \operatorname{Gal}(L'_i(\alpha_i)/L'_i)$$

is cyclic.

So G_0 is solvable. Moreover, $K(\zeta)$ is a splitting field of $x^n - 1$ over K and $\operatorname{Gal}(K(\zeta)/K) \leq (\mathbb{Z}/n\mathbb{Z})^{\times}$, which is abelian, so it is solvable. Also, $\operatorname{Gal}(K(\zeta)/K) \cong \operatorname{Gal}(L/K)/G_0$ is solvable. $\operatorname{Gal}(L/K)$ is solvable. Let N be a splitting field of f over $K \leadsto L \supset N \leadsto \operatorname{Gal}(N/K) \cong \operatorname{Gal}(L/K)/\operatorname{Gal}(L/N)$.

By prop 5.8.1, Gal(N/K) is solvable.

Part B: Let $f \in K[x]$ be separable and L be a splitting field of f over K. Assume char $K \nmid |Gal(L/K)|$. If Gal(L/K) is solvable, then f is solvable by radicals.

Proof. Let $n = |\operatorname{Gal}(L/K)|$ and $\zeta = \zeta_n$. Let N be a splitting field of f over $K(\zeta)$, i.e. $N = LK(\zeta)$. $\Longrightarrow \operatorname{Gal}(N/K(\zeta)) \cong \operatorname{Gal}(L/L \cap K(\zeta)) \leq \operatorname{Gal}(L/K)$.

So $\operatorname{Gal}(N/K(\zeta))$ is solvable, say $\operatorname{Gal}(N/K(\zeta)) = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_m = 1$, G_{i-1}/G_i is cyclic.

If we set $N_j = N^{G_j}$, then $N = N_m \supset N_{m-1} \supset \cdots \supset N_0 = K(\zeta)$ and $G_j = \operatorname{Gal}(N/N_j)$, $G_{i-1}/G_i \cong \operatorname{Gal}(N_i/N_{i-1})$ is cyclic $\Longrightarrow N_i = N_{i-1}(\alpha_i), \alpha_i^{n_i} \in N_{i-1}$. (kummer extension)

Note that $n_i = [L_i : L_{i-1}] = |G_{i-1}|/|G_i|$ dividing $|G_0|$ and $|G_0| \mid n$, so ζ_n generates ζ_{n_i} and char $K \nmid n_i$.

 $\implies N/K(\zeta)$ is an extension by radicals $\rightsquigarrow N/K$ is an extension by radicals.

Remark 31. In Part A of theorem 64, $\operatorname{Gal}(K(\zeta)/K) \leq (\mathbb{Z}/n\mathbb{Z})^{\times}$ may be proper subgroup. We can check the if $[K(\zeta):K] \stackrel{?}{=} 4 = \varphi(5)$.

5.9 Ruffini-Abel theorem

Theorem 65 (Main theorem). Assume char F=0. The general equation of the n-th degree is not solvable by radicals if $n \geq 5$. In fact, let $f(x) = x^n - t_1 x^{n-1} + t_2 x^{n-2} - \cdots + (-1)^n t_n \in \underbrace{F(t_1,\ldots,t_n)}_{=K}[x]$ with t_1,\ldots,t_n variables and L be a splitting field of f over K. Then $\operatorname{Gal}(L/K) \cong S_n$. S_n is not solvable for $n \geq 5$.

Lemma 14. Let $L = F(x_1, ..., x_n)$ and $s_1, ..., s_n$ be the elementary symmetric polynomials in $x_1, ..., x_n$.

$$s_k = \sum_{1 \le j_1 < \dots < j_k \le n} \prod_{i=1}^k x_{j_i}$$

If $K = F(s_1, \ldots, s_n) \subset L$, then L/K is Galois and $Gal(L/K) \cong S_n$.

Proof. write $f(x) = (x - x_1) \cdots (x - x_n) = x^n - s_1 x^{n-1} + s_2 x^{n-2} - \cdots + (-1)^n s_n \in K[x]$. Clearly, L is a splitting field of f over $K \leadsto L/K$ is Galois and $Gal(L/K) \hookrightarrow S_n$.

Now, for $\sigma \in S_n$, σ can be regarded as an element in Gal(L/K):

$$\sigma: L \to L$$
$$x_i \mapsto x_{\sigma(i)}$$

Since $\{\sigma(x_1), \ldots, \sigma(x_n)\} = \{x_1, \ldots, x_n\} \leadsto \sigma(s_i) = s_i \quad \forall i \leadsto \sigma \big|_K = \mathrm{Id}_K \leadsto \sigma \in \mathrm{Gal}(L/K).$

Coro 5.9.1. $L^{S_n} = K = F(s_1, ..., s_n)$. $L^{S_n} = \{ f(x_1, ..., x_n) \in L \mid f(x_{\sigma(1)}, ..., x_{\sigma(n)}) = f(x_1, ..., x_n) \quad \forall \, \sigma \in S_n \}$ is all symmetric poly.

Coro 5.9.2. For any finite group G, by Cayley thm, $G \hookrightarrow S_n$ for some n. so $Gal(L/L^G) \cong G$.

Now we prove the Main theorem:

Proof. Let $L = K(z_1, \ldots, z_n)$. Since t_1, \ldots, t_n are the symmetric poly. w.r.t. z_1, \ldots, z_n , $L = F(z_1, \ldots, z_n)$.

Let $F(s_1, \ldots, s_n)$ and $F(x_1, \ldots, x_n)$ be given as in lemma 14.

since t_1, \ldots, t_n are variables, $\exists \tau : F[t_1, \ldots, t_n] \twoheadrightarrow F[s_1, \ldots, s_n]$ with $\tau : t_i \mapsto s_i$. Also, Since x_1, \ldots, x_n are variables, $\exists \sigma : F[x_1, \ldots, x_n] \twoheadrightarrow F[z_1, \ldots, z_n]$ with $\sigma : x_i \mapsto z_i$.

now, $\sigma \circ \tau(t_i) = \sigma(s_i) = \sigma\left(\sum x_{j_1} \cdots x_{j_i}\right) = \left(\sum z_{j_1} \cdots z_{j_i}\right) = t_i \implies \sigma \circ \tau = \operatorname{Id} \implies \tau$ is 1-1 and thus an isom. So there exists an extension $\tau' : F(t_1, \ldots, t_n) \xrightarrow{\sim} F(s_1, \ldots, s_n)$. Note $\bar{\tau}' : f(x) \mapsto g(x) = x^n - s_1 x^{n-1} + \cdots + (-1)^n s_n$.

Let $F(z_1, \ldots, z_n)$ be a splitting field of f over $F(t_1, \ldots, t_n)$ and $F(x_1, \ldots, x_n)$ be a splitting field of g over $F(s_1, \ldots, s_n)$ where $g = \overline{\tau}'(f)$. There exists $\sigma' : F(z_1, \ldots, z_n) \xrightarrow{\sim} F(x_1, \ldots, x_n)$ with $\sigma'|_{F(t_1, \ldots, t_n)} = \tau'$. So $\operatorname{Gal}(L/K) \cong S_n$ by lemma 14.

Remark 32.

- Since S_n is transitive, f is irr.
- $\operatorname{char} F = 0 \leadsto f$ is separable.

5.10 Calculation of Galois groups (week 7)

Let f(x) be separable in K[x] and $L = K(\alpha_1, \ldots, \alpha_n)$ be a splitting field of f over K. The goal is to find Gal(L/K) which is in S_n .

Define $\theta \triangleq y_1\alpha_1 + \dots + y_n\alpha_n$. For each $\sigma \in S_n$, define $\sigma_y(\theta) \triangleq y_{\sigma(1)}\alpha_1 + \dots + y_{\sigma(n)}\alpha_n$ and $\sigma_\alpha(\theta) = y_1\alpha_{\sigma(1)} + \dots + y_n\alpha_{\sigma(n)}$. It is easy to see that $\sigma_y^{-1} = \sigma_\alpha$.

In
$$L(x, y_1, \dots, y_n)$$
, we consider $F(x, y) = \prod_{\sigma \in S_n} (x - \sigma_y(\theta)) = \prod_{\sigma^{-1} \in S_n} (x - \sigma_\alpha(\theta)) = \prod_{\sigma \in S_n} (x - \sigma_\alpha(\theta))$.
Since each coefficient of F is a symmetric polynomial of $\alpha_1, \dots, \alpha_n$, by the fundamental theorem of

Since each coefficient of F is a symmetric polynomial of $\alpha_1, \ldots, \alpha_n$, by the fundamental theorem of symmetric polynomials, these symmetric polynomials are polynomials of the elementary symmetric polynomials. Thus $F(x,y) \in K[x,y_1,\ldots,y_n]$.

Decompose F into irreducible factors in $K[x, y_1, \ldots, y_n]$, say $F = F_1 F_2 \cdots F_r$. Notice that for any $\sigma \in S_n$, $F = \sigma_y F = \sigma_y F_1 \cdot \sigma_y F_2 \cdots \sigma_y F_r$. And each F_i is map to some F_j , thus σ induces a permutation of F_1, F_2, \ldots, F_r .

For convenience, assume $(x - \theta) \mid F_1$. We have the following lemma:

Lemma 15.

$$Q \triangleq \{\sigma : \sigma_y F_1 = F_1\} = \{\sigma : \sigma_y (x - \theta) \mid F_1\}$$

Proof. " \subseteq ": Since $x - \theta \mid F_1$, so $\sigma_y(x - \theta) \mid \sigma_y F_1 = F_1$.

"\(\text{\text{\$}}": \sigma_y(x-\theta) = x - \sigma_y(\theta) \| \sigma_y(F_1), \text{ so } \sigma_y(F_1) \text{ and } F_1 \text{ has a common factor. Since } F \text{ is separable,} \sigma_y(F_1) = F_1.

Prop 5.10.1. Gal(L/K) = Q.

Proof. " \subseteq ": For each $\sigma \in \operatorname{Gal}(L/K) \hookrightarrow S_n$, extend σ to

$$\tilde{\sigma}: L(y_1, \dots, y_n) \to L(y_1, \dots, y_n)$$

$$\alpha \in L \quad \mapsto \quad \sigma(\alpha)$$

$$y_i \quad \mapsto \quad y_i$$

The automorphism fixes $K(y_1,\ldots,y_n)$, so $\tilde{\sigma}(\theta)=\sigma_{\alpha}(\theta)$ and θ share the same minimal polynomial over $K(y_1,\ldots,y_n)$. By Gauss's lemma, F_1 is irreducible in $K[y_1,\ldots,y_n][x] \Longrightarrow F_1$ is irreducible in $K(y_1,\ldots,y_n)[x]$, thus $F_1=m_{\theta,K(y_1,\ldots,y_n)}=m_{\sigma_{\alpha}(\theta),K(y_1,\ldots,y_n)}$, which implies $(x-\sigma_{\alpha}(\theta))\mid F_1$. So $\sigma_y^{-1}F_1=F_1 \Longrightarrow \sigma^{-1}\in Q \Longrightarrow \sigma\in Q$.

"\(\text{"}\): For any $\sigma \in Q$, $F_1 = m_{\theta,K(y_1,...,y_n)} = m_{\sigma_{\alpha}^{-1}(\theta),K(y_1,...,y_n)}$, so there exists $\tau \in \operatorname{Aut}(L(\boldsymbol{y})/K(\boldsymbol{y}))$ satisfying $\tau(\theta) = \sigma_{\alpha}^{-1}(\theta) = \sigma_{y}(\theta)$. Since L/K normal, $\tau(L) = L$ and thus $\tau\big|_{L} \in \operatorname{Gal}(L/K)$ with $\tau\big|_{L}(\alpha_i) = \alpha_{\sigma^{-1}(i)}$, which implies that $\sigma^{-1} \in \operatorname{Gal}(L/K) \implies \sigma \in \operatorname{Gal}(L/K)$.

Theorem 66. Let f(x) be monic, separable, in $\mathbb{Z}[x]$. Assume $p \nmid D = \prod_{i < j} (\alpha_i - \alpha_j)^2$, then the Galois group of $\bar{f}(x)$ in $\mathbb{F}_p[x]$ is a subgroup of the Galois group of f(x).

Proof. Since f is separable, $D \neq 0$. The discriminant could be calculate by $D = (-1)^{n(n+1)/2}R(f, f')$ which only depends on the coefficients, so $\bar{D} \neq 0$ in \mathbb{F}_p since $p \nmid D$. Thus f separable.

As above, let $F = F_1 F_2 \cdots F_r$ in $\mathbb{Z}[x, y]$. Assume $f(x) = x^n + a_{n-1} x^{n-1} + \cdots + a_0$, then $\bar{f}(x) = x^n + \bar{a}_{n-1} x^{n-1} + \cdots + \bar{a}_0$. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be their roots, respectively. Define $\theta_p \triangleq y_1 \beta_1 + \cdots + y_n \beta_n$. Since the coefficients of F are symmetric polynomials of $\alpha_1, \ldots, \alpha_n$, which only depends on the coefficients of f, and so is $F_p(x,y) = \prod_{\sigma \in S_n} (x - \sigma_y(\theta_p))$, we know that $F_p(x,y) = \bar{F}(x,y)$.

Now
$$\bar{F} = \bar{F}_1 \bar{F}_2 \cdots \bar{F}_r = (G_{1,1} \cdots G_{1,q_1})(G_{2,1} \cdots G_{2,q_2}) \cdots (G_{r,1} \cdots G_{r,q_r})$$

The Galois group of \bar{f} is

$$\{\sigma \in S_n : \sigma_y G_{1,j} = G_{1,j}, \forall j\} \subseteq \{\sigma \in S_n : \sigma_y \bar{F}_1 = \bar{F}_1\} = \{\sigma \in S_n : \sigma_y F_1 = F_1\}$$

Where the equality holds because $\sigma_y \bar{F}_1 = \bar{F}_1 \iff (x - \sigma_y(\theta_p)) \mid \bar{F}_1 \iff (x - \sigma_y(\theta)) \mid F_1 \iff \sigma_y F_1 = F_1$. Thus the galois group of \bar{f} is a subgroup of f.

Fact 5.10.1.

- Every finite extension of \mathbb{F}_p is cyclic, so the Galois group of $\bar{f}(x)$ in $\mathbb{F}_p[x]$ is cyclic.
- If \bar{f} is irreducible, then the Galois group of \bar{f} is transitive on its roots, thus the only possibility is a cycle of length $n = \deg \bar{f}$ in S_n .
- If $\bar{f} = \bar{f}_1 \cdots \bar{f}_r$, with each \bar{f}_i irreducible. Let the Galois group be $\langle \sigma \rangle$, then σ should be transitive on the roots of each \bar{f}_i . The only possibility of σ is a permutation composited by cycles of length $\deg \bar{f}_1, \ldots, \deg \bar{f}_r$. That is, $\sigma = (\alpha_{1,1} \ldots \alpha_{1,m_1}) \cdots (\alpha_{r,1} \ldots \alpha_{r,m_r})$ where $m_i \triangleq \deg \bar{f}_i$.

5.11 Transcendental extensions (week 8)

Def 97. Let L/K be an extension and $S \subset L$.

- S is algebraically dependent over K if for some $n \in \mathbb{N}$, exists $f(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$ satisfied $f(a_1, \ldots, a_n) = 0$ for some distinct $a_1, \ldots, a_n \in S$.
- S is algebraically independent over K if S is not algebraically dependent.
- S is called a transcendence base for L/K if S is algebraically independent and L/K(S) is algebraic.

Theorem 67. Any two transcendence bases for L/K have the same cardinality.

Proof. Pick any transcendence base $S = \{s_1, \ldots, s_n\}$ for L/K. Let T be another transcendence base for L/K. First we deal with the case which S is finite.

We claim that $\exists t_1 \in T$ such that t_1 is algebraically independent over $K(s_2, \ldots, s_n)$.

Proof. If not, then all elements of T is algebraically dependent over $K(s_2, \ldots, s_n)$. This implies $K(s_2, \ldots, s_n)(T)/K(s_2, \ldots, s_n)$ is algebraic. And L/K(T) is algebraic implies $L/K(T)(s_2, \ldots, s_n)$ is algebraic. Then $L/K(s_2, \ldots, s_n)$ is algebraic, which is a contradiction $(s_1 \text{ is not})$.

By the claim, $\{t_1, s_2, \ldots, s_n\}$ is algebraic indepedent. Also, there exists $f \neq 0$ in $K[x_1, \ldots, x_{n+1}]$ such that $f(t_1, s_1, \ldots, s_n) = 0$ since t_1 is algebraic over $K(s_1, \ldots, s_n)$. Since $\{s_1, \ldots, s_n\}$ and $\{t_1, s_2, \ldots, s_n\}$ are both algebraically indepedent, t_1, s_1 must occur in $f \implies s_1$ is algebraic over $K(t_1, s_2, \ldots, s_n)$. Then $K(t_1, s_1, \ldots, s_n)/K(t_1, s_2, \ldots, s_n)$ is algebraic. Since $L/K(t_1, s_1, \ldots, s_n)$ is algebraic.

Repeating this process, we get find $t_1, \ldots, t_n \in T$ s.t. $L/K(t_1, \ldots, t_n)$ is algebraic. But T is a transcendence base, so we must have $T = \{t_1, \ldots, t_n\}$.

Now assume S is infinite. For another transcendence base T, we have $|T| = \infty$. For $s \in S$, s is algebraic over K(T), and in fact is over $K(T_s)$ such that T_s is finite, since algebraic relation involves. Let $m_{s,K(T)} \in K(T_s)[x]$ for some finite set $T_s \subset T$. We claim that $\bigcup_{s \in S} T_s = T$.

Proof. Let $U = \bigcup_{s \in S} T_s$. Clearly $U \subseteq T$. And by def, K(U)(S)/K(U) is algebraic. Also, L/K(U)(S) is algebraic. So L/K(U) is algebraic $\implies T = U$ since T is a transcendence base.

By well ordering principle, we can well-order S and denote its 1st element by s_1 . Let

$$\begin{cases} T'_{s_1} = T_{s_1} \\ T'_{s} = T_{s} \setminus \bigcup_{l < s} T_l \end{cases} \Longrightarrow \{T'_{s}\}_{s \in S} \text{ are mutually disjoint}$$

For all T_s' , choose a fixed ordering of the elements in T_s' , says $t_{s,1},\ldots,t_{s,k_s}$. Define an injection $\varphi:\bigcup_{s\in S}T_s'\to S\times\mathbb{N}$ with $\varphi:t_{s,i}\mapsto(s,i)$. So $|T|=\left|\bigcup_{s\in S}T_s\right|\leq |S\times\mathbb{N}|=|S||\mathbb{N}|=|S|$ since $|S|=\infty$.

Def 98. Let S be a transcendence base of L/K, then we use $\operatorname{tr} \operatorname{deg}_K L$ to denote |S|.

Remark 33. If S_1, S_2 are two transcendence base for L/K, then it is **not necessarily true** that $K(S_1) = K(S_2)$.

Def 99. L/K is called purely transcendental if exists a transcendental base S such that L = K(S).

Theorem 68 (Lüroth's theorem). If L is purely transcendental of degree 1 over K, then any proper intermediate field E is also purely transcendental of degree 1.

Lemma 16. Let L = K(t) with t being transcendental over K and $u = f(t)/g(t) \in L \setminus K$ with gcd(f(t), g(t)) = 1. Assume $n = \max(\deg f, \deg g)$, then L/K(u) is algebraic and [L:K(u)] = n.

Proof. Write

$$f(t) = a_n t^n + \dots + a_1 t + a_0, \quad g(t) = b_n t^n + \dots + b_1 t + b_0$$

(note that either $a_n \neq 0$ or $b_n \neq 0$) Let $F(x) = f(x) - ug(x) = (a_n - ub_n)x^n + \dots + (a_1 - ub_1)x + (a_0 - ub_0)$. Since $a_n - ub_n \neq 0$, $F(x) \neq 0$ and $\deg F(x) > 0$. By def. of u, we have $F(t) = 0 \implies t$ is algebraic over K(u) and $[K(t):K(u)] \leq n$. Now we prove that F(x) is irreducible over K(u). By Gauss's lemma, it suffices to show that F(x) is irreducible in K[u][x] = K[u,x]. Assume that F(x) = p(u,x)q(u,x) with $\deg_u p = 1$ and $q \in K[x]$. Since F(x) = f(x) - ug(x), we have $q \mid f, q \mid g \implies q \mid \gcd(f,g) = 1 \implies q \in K$. So [K(t):K(u)] = n.

Now we prove the Lüroth's theorem:

Proof. For $v \in E \setminus K$, by lemma 16, t is algebraic over $K(v) \leadsto t$ is algebraic over E.

Let $m(x) = m_{t,E}$, then there exists $\beta(t) \in K(t)$ s.t. $\beta(t)m(x) = a_n(t)x^n + \cdots + a_1(t)x + a_0(t)$ is primitive in K[t][x] = K[t,x]. Let $F(t,x) = \beta(t)m(x)$.

Since t is not algebraic over K, there exists some $u = \frac{a_i(t)}{a_n(t)} \notin K$. Write $u = \frac{f(t)}{g(t)}$ with $\gcd(f, g) = 1$. (Note that $u \in E$)

By lemma 16, $[K(t):K(u)]=r\geq n$. Now we show that $r\leq n$, then $r=n\implies E=K(u)$.

Let l = f(t)g(x) - g(t)f(x), which is skew-symmetric in t and x. Notice that $g(t)^{-1}l \in E[x]$ and has t as a zero. So $m(x) \mid g(t)^{-1}l$ in $E[x] \implies \beta(t)m(x) \mid \beta(t)g(t)^{-1}l$. Since $\beta(t)g(t)^{-1} \in K[t]$, $F(t,x) \mid l$ in K(t)[x]. Since F(t,x) is primitive in K[t][x], $F(t,x) \mid l$ in K[t][x].

Say l = Fq for some $q(t,x) \in K[t][x]$. Note that $\deg_t l \leq r, \deg_t F \geq r \leadsto \deg_t l = \deg_t F = r, \deg_t q = 0$. So $q \in K[x] \leadsto q$ is primitive in K[t][x]. By Gauss's lemma, F, q are primitive, then l is also primitive in K[t][x]. Since l is skew-symmetric in t and x, l is also primitive in K[x][t]. But $q \in K[x]$ and $q \mid l$, we have $q \in K$. Hence $n = \deg_x F = \deg_x l = \deg_t l = \deg_t F \geq r$. \square

5.12 Hilbert theorem 90 and Normal basis

Let $L = K(\alpha)$ with $f = m_{\alpha,K} = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ being separable. We have known that exists exactly n monomorphisms $\sigma_i :: L \to \overline{K}$ fixing K, and $\{\sigma_1(\alpha), \ldots, \sigma_n(\alpha)\}$ consists of all roots of f. So

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{0} = (x - \sigma_{1}(\alpha)) \cdots (x - \sigma_{n}(\alpha))$$

$$\implies -a_{n-1} = \sigma_{1}(\alpha) + \dots + \sigma_{n}(\alpha) \text{ and } (-1)^{n}a_{0} = \sigma_{1}(\alpha) \cdots \sigma_{n}(\alpha)$$

Consider the K-linear transformation:

$$T_{\alpha}: K(\alpha) \to K(\alpha)$$

$$v \mapsto \alpha v$$

Then

$$[T_{\alpha}]_{\gamma} = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}, \quad \text{where } \gamma = \{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$$

And $Tr(T_{\alpha}) = -a_{n-1}, \det(T_{\alpha}) = (-1)^n a_0.$

Def 100. Let L/K be a Galois extension with $G = \operatorname{Gal}(L/K)$. for all $\alpha \in L$, define

$$\begin{split} N_{L/K}(\alpha) &= \prod_{\sigma \in G} \sigma(\alpha) \qquad N_{L/K} :: L^{\times} \to K^{\times} \text{ is multiplicative} \\ \mathrm{Tr}_{L/K}(\alpha) &= \sum_{\sigma \in G} \sigma(\alpha) \qquad \mathrm{Tr}_{L/K} :: L \to K \text{ is additive} \end{split}$$

Theorem 69 (Hilbert theorem 90). Let L/K is cyclic and $G = \langle \sigma \rangle$ with $\operatorname{ord}(\sigma) = n$, then

- 1. $\alpha \in L^{\times}$ and $N_{L/K}(\alpha) = 1 \iff \exists \beta \in L^{\times}, \alpha = \beta/\sigma(\beta)$.
- 2. $\alpha \in L$ and $\operatorname{Tr}_{L/K}(\alpha) = 0 \iff \exists \beta \in L, \alpha = \beta \sigma(\beta)$.

Proof.

1. "\("\): $N_{L/K}(\alpha) = \prod_{k=0}^{n-1} \sigma^k(\beta/\sigma(\beta)) = 1$.

" \Rightarrow ": Since automorphisms are linearly independent, exists $c \in L$ such that

$$0 \neq \beta = \mathrm{Id}(c) + \alpha \sigma(c) + \alpha \sigma(\alpha) \sigma^{2}(c) + \dots + \alpha \sigma(\alpha) \sigma^{2}(\alpha) \dots \sigma^{n-2}(\alpha) \sigma^{n-1}(c)$$

Since $\alpha \sigma(\alpha \sigma(\alpha) \sigma^2(\alpha) \cdots \sigma^{n-2}(\alpha)) = N_{L/K}(\alpha) = 1$, it is easy to check that $\alpha \sigma(\beta) = \beta$.

2. "\(\infty\)": $\operatorname{Tr}_{L/K}(\alpha) = \operatorname{Tr}_{L/K}(\beta - \sigma(\beta)) = \sum_{k} (\sigma^k(\beta) - \sigma^{k+1}(\beta)) = 0.$

"\Rightarrow": Choose c such that $\beta_1 = c + \sigma(c) + \cdots + \sigma^{n-1}(c) \neq 0$, so $\sigma(\beta_1) = \beta_1$. Let

$$\beta_2 = \alpha \sigma(c) + (\alpha + \sigma(\alpha))\sigma^2(c) + \dots + (\alpha + \sigma(\alpha) + \dots + \sigma^{n-2}(\alpha))\sigma^{n-1}(c)$$

Then

$$\beta_2 - \sigma(\beta_2) = \alpha \sigma(c) + \alpha \sigma^2(c) + \dots + \alpha \sigma^{n-1}(c) + \alpha c = \alpha \beta_1.$$

So let $\beta \triangleq \beta_2/\beta_1$, we obtain $\beta_2/\beta_1 - \sigma(\beta_2/\beta_1) = (\beta_2 - \sigma(\beta_2))/\beta_1 = \alpha$.

Coro 5.12.1. Let char K = p and [L : K] = p, then L/K is Galois and cyclic $\iff L = K(\alpha)$ where α is a root of $x^p - x - a$.

Proof. " \Rightarrow ": Let $Gal(L/K) = \langle \sigma \rangle$ with $ord(\sigma) = p$. Then $Tr_{L/K}(1) = p = 0$. By theorem 69, exists α satisfied $1 = \sigma(\alpha) - \alpha$. So $\alpha \notin K$. Then we have $1 < [K(\alpha) : K] \mid [L : K] = p$, so $[K(\alpha) : K] = p \implies K(\alpha) = L$.

Notice that $\sigma^k(\alpha) = \alpha + k$. Since $\sigma^k(\alpha)$ iterates through all roots of $m_{\alpha,K}$ and $\sigma^k(\alpha) = \alpha + k$, $\alpha, \alpha + 1, \ldots, \alpha + p - 1$ are all the roots of $m_{\alpha,K}$. We claim that $m_{\alpha,K} = x^p - x - a$ where $a \triangleq \alpha^p - \alpha$. Since $\sigma(a) = \sigma(\alpha)^p - \alpha = \alpha^p + p - \alpha = a$, a is fixed by all automorphisms, so $a \in K$. Moreover, $m_{\alpha,K}(\alpha + k) = \alpha^p + k^p - \alpha - k - a = 0$, thus the proof is completed.

"\(\infty\)": Similarly, we know that all roots of $x^p - x - a$ are $\alpha, \alpha + 1, \ldots, \alpha + p - 1$. Define $\sigma(\alpha) = \alpha + 1$, then $\sigma^i(\alpha) = \alpha + i$, and thus $\operatorname{ord}(\sigma) = p$. Hence $\operatorname{Gal}(L/K) = \langle \sigma \rangle$.

Coro 5.12.2. If $x^2 + dy^2 = 1$ where -d is not a square, then $L \triangleq \mathbb{Q}(\sqrt{-d})$ is a splitting field of $x^2 + d$ over \mathbb{Q} , so $N_{L/\mathbb{Q}}(a + b\sqrt{-d}) = a^2 + db^2$. Since $[L : \mathbb{Q}] = 2$, the galois group is obviously cyclic and in fact is $\langle \sigma \rangle$, where $\sigma = (a + b\sqrt{-d}) \mapsto (a - b\sqrt{-d})$. By theorem 69,

$$x^{2} + dy^{2} = 1 \iff \exists a + b\sqrt{-d} \quad \text{s.t.} \quad x + y\sqrt{-d} = \frac{a + b\sqrt{-d}}{a - b\sqrt{-d}} = \frac{(a^{2} - db^{2}) + 2ab\sqrt{-d}}{a^{2} + db^{2}}$$

Def 101. Let L/K be Galois and $Gal(L/K) = \{Id = \sigma_1, \ldots, \sigma_n\}$. A basis for L/K of the form $\{\sigma_1(\alpha), \sigma_2(\alpha), \ldots, \sigma_n(\alpha)\}$ with $\alpha \in L$ is called a normal basis for L/K.

Lemma 17. $\alpha_1, \ldots, \alpha_n \in L$ form a basis for L/K if and only if

$$\begin{vmatrix} \sigma_1(\alpha_1) & \sigma_1(\alpha_2) & \cdots & \sigma_1(\alpha_n) \\ \sigma_2(\alpha_1) & \sigma_2(\alpha_2) & \cdots & \sigma_2(\alpha_n) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_n(\alpha_1) & \sigma_n(\alpha_2) & \cdots & \sigma_n(\alpha_n) \end{vmatrix} \neq 0$$

Proof. " \Rightarrow ": If not, then the determinant is 0. Then

$$\begin{cases} \sigma_1(\alpha_1)x_1 + \dots + \sigma_n(\alpha_1)x_n = 0 \\ \sigma_1(\alpha_2)x_1 + \dots + \sigma_n(\alpha_2)x_n = 0 \\ \vdots & \vdots \\ \sigma_1(\alpha_n)x_1 + \dots + \sigma_n(\alpha_n)x_n = 0 \end{cases}$$

has a non-zero solution $\mathbf{c} = (c_1, \dots, c_n) \in L^n$. (i.e., $\sum c_j \sigma_j(\alpha_i) = 0$ for each i.) So $(\sum_j c_j \sigma_j)(\alpha_i) = 0$ for each α_i , but α_i is a basis, so $\sum_j c_j \sigma_j = 0$, then these automorphisms are linearly dependent, which leads to a contradiction.

"\(\Rightarrow\)": If not, then exists $\mathbf{0} \neq \mathbf{c} = (c_1, \dots, c_n)$ satisfied $\sum c_i \alpha_i = 0$. Then $\sum_i c_i \sigma_j(\alpha_i) = 0$ for each j. Thus the determinant is 0 which leads to a contradiction.

Lemma 18. Let $|K| = \infty$. Then $\sigma_1, \ldots, \sigma_n$ are algebraically independent over L.

Proof. Let $f(x_1, \ldots, x_n) \in L[x_1, \ldots, x_n]$ such that $f(\sigma_1, \ldots, \sigma_n) = 0$. Let $\{\alpha_1, \ldots, \alpha_n\}$ be a basis for L/K. Then

$$0 = f(\sigma_1, \dots, \sigma_n) \left(\sum_{i=1}^n r_i \alpha_i \right) = f \left(r_1 \sigma_1 \left(\sum_{i=1}^n \alpha_i \right), \dots, r_n \sigma_n \left(\sum_{i=1}^n \alpha_i \right) \right)$$

So let

$$g(x_1, \dots, x_n) \triangleq f\left(\sum_i \sigma_1(\alpha_i)x_1, \dots, \sum_i \sigma_n(\alpha_i)x_n\right)$$

and write $g(x_1, ..., x_n) = \sum_j g_j(x_1, ..., x_n)\alpha_j$. Then $g_j(r_1, ..., r_n) = 0, \forall \mathbf{r} \in K^n$. The only polynomial which has infinite zeros (without any relation) is the zero polynomial, thus $g_j = 0$ for each j.

Now, by lemma 17, $\det([\sigma_i(\alpha_j)]) \neq 0$. So it is possible to solve $\mathbf{x} = (x_i)$ satisfied $\mathbf{y} = (y_j) = (\sum_i \sigma_j(\alpha_i)x_i)$. Thus $g = 0 \implies f = 0$.

Theorem 70. Any Galois extension L/K has a normal basis.

Proof. Case 1: L/K is cyclic (so all finite field is included).

Let $\operatorname{Gal}(L/K) = \langle \sigma \rangle$ with $\operatorname{ord}(\sigma) = n$. σ could be view as a linear transformation of L over K. Thus σ gives L a K[x]-module structure by $(f(x), \alpha) \mapsto f(\sigma)(\alpha)$. Since K[x] is a PID. By the structure theorem, we could write

$$L \cong K[x]/\langle d_1(x)\rangle \oplus \cdots \oplus K[x]/\langle d_s(x)\rangle$$
 with $d_i \mid d_{i+1}$

Since Id, $\sigma, \ldots, \sigma^{n-1}$ are linearly independent over K, $m_{\sigma,K}$ should have degree at least n, thus it is clear that $x^n - 1$ is the minimal polynomial of σ , thus $d_s(x) = x^n - 1$. But the characteristic polynomial of σ has degree at most n, thus $d_1(x) \cdots d_s(x) = x^n - 1$. So $L \cong K[x]/\langle x^n - 1 \rangle$. Let $\alpha \in L$ such that $\operatorname{Ann}(\alpha) = \langle x^n - 1 \rangle$, then $L = K[x]\alpha$. Hence $L = \langle \alpha, \sigma(\alpha), \ldots, \sigma^{n-1}(\alpha) \rangle$.

Case 2: $|K| = \infty$. Let $Gal(L/K) = \{\sigma_1, \dots, \sigma_n\}$. Define $y_{i,j} = x_k$ so that $\sigma_i \sigma_j = \sigma_k$. Consider

$$f(x_1, \dots, x_n) = \begin{vmatrix} y_{1,1} & y_{1,2} & \cdots & y_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n,1} & y_{n,2} & \cdots & y_{n,n} \end{vmatrix}$$

This determinant is a non-zero polynomial in x_1, x_2, \ldots, x_n . Since if we fix σ_1 , for each σ_i , exists unique j so that $\sigma_i \sigma_j = \sigma_1$. So the determinant has a x_1^n term and is not zero. Then $f(\sigma_1, \ldots, \sigma_n) \neq 0$ by lemma 18. Thus there exists $\alpha \in L$ s.t. $\det([\sigma_i \sigma_j(\alpha)]) = f(\sigma_1, \ldots, \sigma_n)(\alpha) \neq 0$. So by lemma 17, $\{\sigma_i(\alpha)\}$ is a basis.

6 Commutative Algebra

6.1 ED, PID and UFD (week 9)

We shall consider R to be an integral domain below.

Def 102. A function $N: R \to \mathbb{N}$ with N(0) = 0 is called a norm on R.

Def 103. R is called a Euclidean domain if exists a norm N on R satisfying

$$\forall a, b \in R, \exists q, r \in R \text{ s.t. } a = qb + r \text{ with } r = 0 \text{ or } N(r) < N(b)$$

Eg 6.1.1.

- \mathbb{Z} is a ED with N(n) = |n|.
- K[x] is a ED with $N(f) = \deg f, \forall f \in K[x]$.

Def 104. A_d is defined to be the ring of integers in the quadratic field $\mathbb{Q}(\sqrt{d})$ with $d \neq 1$ and d is square-free. That is,

$$A_d \triangleq \{\alpha \in \mathbb{Q}(\sqrt{d}) \mid \alpha \text{ is integral over } \mathbb{Z}\}\$$

Theorem 71.

• If $d \equiv 1 \pmod{4}$, then

$$A_d = \left\{ a + b \frac{1 + \sqrt{d}}{2} : a, b \in \mathbb{Z} \right\}$$

• Else, $d \equiv 2, 3 \pmod{4}$, then

$$A_d = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}\$$

Proof. Let $\alpha = p + q\sqrt{d} \in A_d$ for $p, q \in \mathbb{Q}$ with $q \neq 0$. We have $\alpha - p = q\sqrt{d}$, then $(\alpha - p)^2 = q^2d$ and thus $\alpha^2 - 2p\alpha + (p^2 - q^2d) = 0$. Let $g(x) \triangleq x^2 - 2px + (p^2 - q^2d)$. Assume $f(x) \in \mathbb{Z}[x]$ with f monic and $f(\alpha) = 0$, then we could write f(x) = q(x)g(x) + (ax + b). Since α is not rational, $a\alpha + b = 0 \implies a = b = 0$, so f(x) = q(x)g(x) in $\mathbb{Q}[x]$. By gauss lemma, $g(x) \in \mathbb{Z}[x]$, so $2p \in \mathbb{Z}$ and $p^2 - q^2d \in \mathbb{Z}$.

If 2p is even, then $p \in \mathbb{Z}$, and $p^2 - q^2 d \in \mathbb{Z}$ implies q is also an integer since d is square free.

If 2p is odd, say 2p = 2m + 1, then $(2p)^2 \equiv (2m + 1)^2 \equiv 1 \pmod{4}$. Also, $4(p^2 - q^2d) \equiv 0 \pmod{4}$, so $4q^2d \equiv 4p^2 \equiv 1 \pmod{4}$. Since d is square free, so $4 \nmid d$, thus q has to be of the form q = (2n + 1)/2. Plug in the equation we get $d \equiv 1 \pmod{4}$. Thus in this case, p, q are half integer and $d \equiv 1 \pmod{4}$.

Theorem 72. A_d is a ED if d = 2, 3, 5, -1, -2, -3, -7, -11. Hence A_d is also PID and UFD for these value.

Proof. Let $N'(p+q\sqrt{d}) = (p+q\sqrt{d})(p-q\sqrt{d}) = p^2-q^2d$. Define $N(\alpha) \triangleq |N'(\alpha)|$ which is positive since $p^2-q^2d=0 \iff p=q=0$. Notice also N is multiplicative.

Now, for $\alpha, \beta \in A_d$, write $\alpha/\beta = x + y\sqrt{d}$. If we could find $\lambda = a + b\sqrt{d}$ such that $|\alpha/\beta - \lambda| < 1$, then $\alpha = \beta\lambda + \gamma$ with $N(\gamma) < N(\beta)$ which proves that A_d is an ED.

• d=2,3,-2,-1: Choose $a,b\in\mathbb{Z}$ such that $|x-a|,|y-b|\leq 1/2$. Then $N\triangleq N(\alpha/\beta-\lambda)=|(x-a)^2-(y-b)^2d|$.

- If
$$d = 2, 3$$
, then $N \le \max(|(x-a)^2|, |(y-b)^2 d|) \le \max(1/4, d/4) < 1$.
- If $d = -2, -1$, then $N \le |(x-a)^2| + |(y-b)^2 d| \le 1/4 + |d|/4 < 1$.

• d=5,-3,-7,-11: Similarly, but now $d\equiv 1\pmod 4$, so we could choose $\lambda=a+b(1+\sqrt{d})/2=(a+b/2)+b/2\sqrt{d}$. Thus let b be the one such that $|2y-b|\leq 1/2$, and then choose a so that $x-a-b/2\leq 1/2$. We have $N(\alpha/\beta-\lambda)=|(x-a-b/2)^2-d(y-b/2)^2|\leq 1/4+d/16<1$.

Eg 6.1.2. A_{-5} is not a ED.

Proof. Consider $6=2\cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$. Notice that $1+\sqrt{-5}$ is irreducible, since if $1+\sqrt{-5}=\alpha\beta$, then $6=N(1+\sqrt{-5})=N(\alpha)N(\beta)$. But this implies $a^2+5b^2=2$ or 3 which has no integer solution. Also $1+\sqrt{-5}\nmid 2,3$. Since if $(1+\sqrt{-5})\alpha=2$, then $N(1+\sqrt{-5})N(\alpha)=N(2)=4$, but $N(1+\sqrt{-5})=6$. Similarly $1+\sqrt{-5}\nmid 3$. So A_{-5} is not an UFD thus not an ED.

6.1.1 A_{-1} and A_{-3}

Def 105. If p is odd and $a \not\equiv 0 \pmod{p}$, then

- If $x^2 \equiv a \pmod{p}$ is solvable, then define $\left(\frac{a}{p}\right) = 1$.
- Else $x^2 \equiv a \pmod{p}$ is not solvable and define $\left(\frac{a}{p}\right) = -1$.

Prop 6.1.1.

- $a \equiv b \pmod{p} \implies \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.
- $(\frac{a}{p}) = a^{(p-1)/2}$:

Proof. Consider the sequence:

$$1 \longrightarrow (\mathbb{F}_p^{\times})^2 \longrightarrow \mathbb{F}_p^{\times} \stackrel{\varphi}{\longrightarrow} \{\pm 1\} \longrightarrow 1$$
$$y^2 \longmapsto y^2 = x \longmapsto (-1)^{(p-1)/2} \longmapsto 1$$

which is exact since $y^2 \mapsto y^2 \mapsto y^{2(p-1)/2} \equiv 1$. And since \mathbb{F}_p^{\times} is cyclic with even elements, $\left[\mathbb{F}_p^{\times}: (\mathbb{F}_p^{\times})^2\right] = 2$, and $(\mathbb{F}_p^{\times})^2 = \ker \varphi$.

- $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$.
- Let $t_k \equiv ka \pmod{p}$ with $0 \le t_k < p$, for $1 \le k \le (p-1)/2$. Assume that $n = \#\{t_i \mid t_i > p/2\}$, then $\left(\frac{a}{p}\right) = (-1)^n$.

Proof. Define

$$|t_i| = \begin{cases} t_j & \text{If } 1 \le t_j < p/2 & (t_j \equiv |t_j|) \\ p - t_j & \text{If } p/2 < t_j < p & (t_j \equiv -|t_j|) \end{cases}$$

Notice that $|t_i|$ takes value between 1 and (p-1)/2, and $|ra| \equiv |sa| \pmod{p} \implies ra \equiv \pm sa \pmod{p} \implies r \equiv \pm s \pmod{p}$ since $\gcd(a,p) = 1$. So $|t_k|$ would have distinct value for $1 \le k \le (p-1)/2$. Thus

$$\prod t_k \equiv \frac{p-1}{2}! a^{(p-1)/2} \equiv (-1)^n \frac{p-1}{2}! \implies a^{(p-1)/2} \equiv (-1)^n$$

• If p, q are odd primes, then we have:

$$\left(\frac{q}{p}\right) = (-1)^{\left(\sum_{k=1}^{(p-1)/2} \left\lfloor \frac{kq}{p} \right\rfloor\right)}$$

Proof. Write $kq = g_k p + t_k$ with $0 \le t_k < p$ consistent with the previous definition. Then we have $\lfloor kq/p \rfloor = g_k$, and

if
$$|t_k| = t_k$$
 $\longrightarrow qk = g_k p + |t_k|$ $\longrightarrow k \equiv g_k + |t_k| \pmod{2}$
if $|t_k| = p - t_k$ $\longrightarrow qk = (g_k + 1)p - |t_k|$ $\longrightarrow k \equiv g_k + 1 + |t_k| \pmod{2}$

So

$$\sum_{i=1}^{(p-1)/2} k \equiv n + \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{qk}{p} \right\rfloor + \sum_{k=1}^{(p-1)/2} |t_k| \pmod{2}$$

As in the previous proof, $\sum k = \sum |t_k|$, so $n \equiv \sum \lfloor qk/p \rfloor \pmod 2$, which proves the statement.

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}$$

By above,

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\left(\sum_{k=1}^{(p-1)/2} \left\lfloor \frac{kq}{p} \right\rfloor\right)} (-1)^{\left(\sum_{k=1}^{(q-1)/2} \left\lfloor \frac{kp}{q} \right\rfloor\right)}$$

Which is the number of integer points in the rectangle:

And we know that there are $\frac{p-1}{2}\frac{q-1}{2}$ points in the rectangle.

Prop 6.1.2.

• α is a unit $\iff N(\alpha) = 1$.

Proof. "
$$\Rightarrow$$
": If $\alpha\beta = 1$, $N(\alpha)N(\beta) = 1$ so $N(\alpha) = 1$.
" \Leftarrow ": Immediately by $\alpha\bar{\alpha} = N(\alpha) = 1$.

• If α is a prime in A_d , then $N(\alpha) = p$ or p^2 for some prime integer p. Also $N(\alpha) = p^2 \implies \alpha \sim p$.

Proof. $\alpha \bar{\alpha} = N(\alpha) = p_1 \cdots p_n$ where p_i are primes in \mathbb{Z} . Continue using the fact that "If α is a prime and $\alpha \mid xy$, then $\alpha \mid x$ or $\alpha \mid y$ ", we will get $\alpha \mid p_i$ for an i. Say $\alpha \beta = p_i$, then $\bar{\alpha} \bar{\beta} = \bar{p}_i = p_i$, so $N(\alpha)N(\beta) = p_i^2$ which means that $N(\alpha) = p_i$ or p_i^2 . Also, if $N(\alpha) = p_i^2$, then $N(\beta) = 1 \implies \beta$ is a unit.

By the proposition above we identify the unit in A_{-1} , A_{-3} .

- A_{-1} : $\pm 1, \pm i$.
- A_{-3} : $\pm 1, \pm \omega, \pm \omega^2$.

Now, notice that $2 = (1 + \sqrt{-1})(1 - \sqrt{-1})$, $3 = (1 - \omega)(1 - \omega^2)$, so 2, 3 are not prime in A_{-1} , A_{-3} respectively.

Let p be a prime in \mathbb{Z} .

• In A_{-1} :

$$\begin{array}{l} p \text{ is a prime in } \mathbb{Z}[\sqrt{-1}] \\ \iff \langle p \rangle \text{ is maximal ideal} \\ \iff \frac{\mathbb{Z}[\sqrt{-1}]}{\langle p \rangle} \cong \frac{\mathbb{Z}[x]}{\langle p, x^2 + 1 \rangle} \cong \frac{\mathbb{Z}[x]/\langle p \rangle}{\langle p, x^2 + 1 \rangle/\langle p \rangle} \cong \frac{\mathbb{F}_p[x]}{\langle x^2 + 1 \rangle} \text{ is a field} \\ \iff x^2 + 1 \text{ irreducible in } \mathbb{F}_p[x] \\ \iff x^2 \equiv -1 \pmod{p} \text{ is not solvable} \\ \iff \left(\frac{-1}{p}\right) = (-1)^{(p-1)/2} \neq 1 \\ \iff p \not\equiv 1 \pmod{4} \end{array}$$

So p is **not** a prime in $A_{-1} \iff p \equiv 1 \pmod{4}$.

• In A_{-3} : If a prime $p \neq 3$ in \mathbb{Z} is not a prime in $\mathbb{Z}[\omega]$, then it has a nontrivial factor $\alpha \mid p$. But $N(p) = p^2$, so we must have $N(\alpha) = p$, i.e. $\alpha \bar{\alpha} = p$. Let $\alpha = a + b\omega$, then $p = \alpha \bar{\alpha} = a^2 + b^2 - ab \implies 4p = (2a - b)^2 + 3b^2$, so $p \equiv (2a - b)^2 \equiv 1 \pmod{3}$. $(p \not\equiv 0 \text{ since } p \neq 3)$

Conversely, if $p \equiv 1 \pmod{3}$, then

$$\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{3}{p}\right) = (-1)^{(p-1)/2}\left(\frac{p}{3}\right)(-1)^{\frac{p-1}{2}\cdot\frac{3-1}{2}} = \left(\frac{p}{3}\right) = \left(\frac{1}{3}\right) = 1$$

So exists $a \in \mathbb{Z}$ such that $a^2 \equiv -3 \pmod{p}$, say $pb = a^2 + 3 = (a + \sqrt{-3})(a - \sqrt{-3}) = (a + 1 + 2\omega)(a - 1 - 2\omega)$.

If p is a prime in $\mathbb{Z}[\omega]$, then $p \mid (a+1+2\omega)$ or $p \mod (a-1-2\omega)$, which implies that $p \mid 2$ (since $p \in \mathbb{Z}$, $p \mid a+b\omega \implies p \mid a,p \mid b$), which leads to a contradiction, thus p is not a prime.

Hence $p \neq 3$ is not a prime in $A_{-3} \iff p \equiv 1 \pmod{3}$.

6.2 Primary decomposition

Def 106.

- The radical of an ideal I is defined by $\sqrt{I} = \{a \in R \mid a^n \in I \text{ for some } n \in \mathbb{N}\}.$
- I is radical if $\sqrt{I} = I$.

Def 107. The **nilradical** is defined as $\sqrt{\langle 0 \rangle} \triangleq \{ a \in R \mid a^n = 0 \text{ for some } n \in \mathbb{N} \}$. Elements in it are called nilpotent.

Prop 6.2.1. $\sqrt{\langle 0 \rangle} = \bigcap_{P \in \operatorname{Spec} R} P$, where $\operatorname{Spec} R$ is the set of prime ideals in R.

Proof. " \subset ": Notice that $a^n = 0 \in P$ for any prime ideal P. By the definition of prime ideal, either $a \in P$ or $a^{n-1} \in P$. No matter which, eventually we would get $a \in P$.

" \supset ": Let $S \triangleq \{I : \text{ ideal in } R \mid a^n \notin I, \forall n \in \mathbb{N}\}$. By the routine argument of Zorn's lemma, exists maximal element Q in S. We claim that Q is a prime ideal.

For each $x, y \notin Q$, we have $Q + Rx \supseteq Q$ and $Q + Ry \supseteq Q$. By the maximality of Q, these two ideals are not in S. So exists n, m such that $a^n \in Q + Rx$, $a^m \in Q + Ry$ which implies $a^{n+m} \in Q + Rxy$, so $Q + Rxy \notin S$, thus $xy \notin Q$, hence Q is prime.

Coro 6.2.1.

$$\sqrt{I} = \bigcap_{\substack{P \supset I \\ P \in \operatorname{Spec} R}} P$$

Proof. Notice that Spec $R/I = \{P \in \operatorname{Spec} R \mid R \subset I\}$. By the proposition above,

$$\sqrt{\langle \bar{0} \rangle} = \bigcap_{\bar{P} \in \text{Spec } R/I} \bar{P} \quad \Longrightarrow \quad \sqrt{I} = \bigcap_{\substack{P \supset I \\ P \in \text{Spec } R}} P \qquad \Box$$

Def 108. An ideal q of R is called primary if $q \neq R$ and " $xy \in q$ and $x \notin q$ " implies $y^n \in q$ for some $n \in \mathbb{N}$.

Prop 6.2.2.

- prime \implies primary.
- $\sqrt{\text{primary}} \implies \text{prime}$. Also, if q is primary, then $p = \sqrt{q}$ is the smallest prime ideal containing q, we say q is p-primary.

Proof. The first one is obvious.

If q is primary and $\sqrt{q} = p$. For any $xy \in p$ and $x \notin p$, there exists n so that $x^ny^n \in q$, and for this $n, x^n \notin q$. Thus $(y^n)^m \in q$ for some m, hence $y \in p$. We conclude that p is a prime ideal. Finally, by corollary 6.2.1,

$$p = \sqrt{q} = \bigcap_{\substack{P \supset q \\ P \in \operatorname{Spec} R}} P \subset P, \quad \forall \, P \text{ prime },$$

thus p is indeed the smallest.

Eg 6.2.1. The primary ideals in \mathbb{Z} are $\langle 0 \rangle$ and $\langle p^m \rangle$ where p is a prime.

Proof. If $q = \langle a \rangle$ is primary, then $\sqrt{q} = \langle p \rangle$ is prime, and $p^n \in \langle a \rangle$. So $ab = p^n$ which implies $a = p^m$ for some m.

Def 109. An ideal I is said to be **irreducible** if $I = q_1 \cap q_2 \implies I = q_1 \vee I = q_2$.

Def 110. Define $(I : x) = \{a \in R \mid ax \in I\}.$

Theorem 73. In a Noetherian ring R, every irreducible ideal I is primary.

Proof. Let $xy \in I$ and $x \notin I$. Consider $(I:y) \subseteq (I:y^2) \subseteq \cdots$. Since R is Noetherian, exists n such that $(I:y^n) = (I:y^m)$ for any $m \ge n$.

We claim that $I = (I + Ry^n) \cap (I + Rx)$.

- "⊂": Obvious.
- " \supset ": For any $b \in (I + Ry^n) \cap (I + Rx)$, write $b = a_1 + r_1y^n = a_2 + r_2x$. Then $r_1y^{n+1} = a_2y a_1y + r_2xy \in I$ since $a_1, a_2, xy \in I$. So $r_1 \in (I : y^{n+1}) = (I : y^n) \implies r_1y^n \in I$. Thus $b = a_1 + r_1y^n \in I$.

Now by the fact that I is irreducible and $I \neq I + Rx$ since $x \notin I$, thus $I = I + Ry^n \implies y^n \in I$. \square

Theorem 74. In a Noetherian ring R, every ideal is a finite intersection of irreducible ideals.

Proof. If not, let $\mathcal{I} \triangleq \{I : \text{ ideal in } R \mid I \text{ is not a finite intersection of irreducible ideals } \}$ and \mathcal{I} is not an empty set. Since R is Noetherian, the set has a maximal element I_0 . Then I_0 is not irreducible (or else it is an intersection of itself, which is irreducible). Write $I_0 = I_1 \cap I_2$, with $I_1, I_2 \neq I_0$. Then $I_1, I_2 \notin \mathcal{I}$, so these two ideals could be written as a finite intersection of irreducible ideals, implying that I_0 could also be written as a finite intersection of irreducible ideals, which is a contradiction.

Prop 6.2.3. Let q be a p-primary ideal and $x \in R$.

1. If $x \in q$, then (q : x) = R.

Proof. In this case $1 \in (q:x)$, thus (q:x) = R.

2. If $x \notin q$, then (q:x) is p-primary.

Proof. For any $y \in (q:x)$, $xy \in q$ but $x \notin q$, thus $y^n \in q \implies y \in p$. Hence

$$q\subset (q:x)\subset p\implies p=\sqrt{q}\subset \sqrt{(q:x)}\subset \sqrt{p}=p$$

and thus (q:x) is p-primary.

For any y, z with $yz \in (q:x)$ but $y \notin (q:x)$, which is equivalent to $xyz \in q$ but $xy \notin q$. Since q primary, $z^n \in q \subset (q:x)$.

3. If $x \notin p$, then (q:x) = q.

Proof.

Prop 6.2.4. If each q_i are *p*-primary, then $q \triangleq \bigcap_{i=1}^n q_i$ is *p*-primary.

Proof. We check that $\sqrt{q} = \bigcap_{i=1}^n \sqrt{q_i} = \bigcap_{i=1}^n p = p$.

Also, if $xy \in q$ with $x \notin q$, then $x \notin q_k$ for some k. But $xy \in q_k$, thus $y^n \in q_k$. But $q_k \subseteq \sqrt{q_k} = p = \sqrt{q}$, so $(y^n)^{m'} = y^m \in q$, thus q is p-primary.

Def 111. A primary decomposition of $I = q_1 \cap \cdots \cap q_n$ is minimal if $\sqrt{q_1}, \dots, \sqrt{q_n}$ are distinct and $q_i \not\supseteq \bigcap_{j \neq i} q_j$.

A minimal primary decomposition of an ideal always exists in Noetherian ring since by theorem 74, the ideal could be written as a finite intersection of irreducible ideals, and then by theorem 73, these ideals are primary. Now If $\sqrt{q_i} = \sqrt{q_j}$ happen in these ideals, we could remove these two ideals and add $q' = \sqrt{q_i} \cap \sqrt{q_j}$. By proposition 6.2.4, q' is also primary. And if $q_i \supseteq \bigcap_{j \neq i} q_j$, we could simply remove q_i .

Theorem 75 (Uniqueness of primary decomposition). Let $I = \bigcap_{i=1}^{n} q_i$ be a minimal decomposition of I. If $p_i = \sqrt{q_i}$, $\forall i$, then we have

$$\{p_i\} = \left\{\sqrt{(I:x)} \ \middle| \ x \in R \land \sqrt{(I:x)} \in \operatorname{Spec} R \right\}$$

which is independent of the decomposition.

Proof. "\()": Let $x \in R \setminus I$, then $(I:x) = \left(\bigcap_{i=1}^n q_i:x\right) = \bigcap_{i=1}^n (q_i:x)$. By proposition 6.2.3, we have $\sqrt{(I:x)} = \bigcap \sqrt{(q_i:x)} = \bigcap_{x \notin q_i} p_i$.

Now, we have the following observation. "If $p \in \operatorname{Spec} R$ with $p = \bigcap_{i=1}^n J_i$, then $p = J_j$ for some j." If not, then $J_i \not\subset p$ for all i, so we could pick $x_i \in J_i \setminus p$. But then $x_1 x_2 \cdots x_n \in \cap J_i = p$ since J_i are ideals, which leads to a contradiction since p is prime.

So if $\sqrt{(I:x)}$ is a prime, then it is equal to some p_i .

"C": By assumption,
$$q_i \not\supseteq \bigcap_{j \neq i} q_j$$
 for each i , thus we could pick $x \in \bigcap_{j \neq i} q_j \setminus q_i$, then $\sqrt{(I:x)} = \bigcap_i \sqrt{(q_i:x)} = \sqrt{(q_i:x)} = p_i$.

Def 112. If $\{p_i\}$ is the unique prime ideals from the minimal primary decomposition of I.

- $\{p_i\}$ is said to be associated with I or to belong to I.
- The minimal elements in $\{p_i\}$ are called isolated primes.
- The other are called embedded primes.

Eg 6.2.2. Let R = k[x, y] and $I = \langle x^2, xy \rangle$. If $P_1 = \langle x \rangle, P_2 = \langle x, y \rangle$, then $I = P_1 \cap P_2^2$. P_1 is isolated, while P_2 is embedded.

6.3 The equivalence of algebra and geometry (week 10)

In the following, k will be an algebraically closed field.

Def 113. The category of affine algebraic sets \mathcal{G} and its objects and morphisms are defined as following:

objects: The objects are affine algebraic sets in k^n .

An **affine algebraic set** is the common zero set of $\{F_i\}_{i\in\Lambda}\subset k[x_1,\ldots,x_n]$ in k^n . We denote it by $V=\mathcal{V}(\{F_i\}_{i\in\Lambda})\subset k^n$. (In fact, $I=\langle F_i:i\in\Lambda\rangle$ is Noetherian, so $I=\langle F_1,\ldots,F_n\rangle$ and $V=\mathcal{V}(I)$.) **morphisms:** The morphisms are the polynomial map from k^n to k^m .

A **polynomial map** is a mapping as following:

$$k^n \longrightarrow k^m$$

 $\alpha \longmapsto (F_1(\alpha), \dots, F_m(\alpha))$

where each F_i is a polynomial in $K[x_1, \ldots, x_n]$.

Given two affine algebraic sets $V \subset k^n$ and $W \subset k^m$, if a map $F: V \to W$ is the restriction of a polynomial map from k^n to k^m , then F is a morphism from V to W.

Moreover, if $F: V \to W$ and $G: W \to V$ satisfy $F \circ G = \mathrm{Id}$ and $G \circ F = \mathrm{Id}$, then we say $V \cong W$.

Def 114. The category of finitely generated reduced k-algebra \mathcal{A} and its objects and morphisms are defined as following:

objects: The objects are the reduced finitely generated k-algebra R.

A finitely generated k-algebra R is reduced if R has no non-zero nilpotent elements. **morphisms:** The morphisms are the k-algebra homomorphisms.

Eg 6.3.1. It is easy to see that $\mathcal{V}(0) = k^n$ and $\mathcal{V}(1) = \emptyset$.

6.3.1 One-one correspondence between affine algebraic sets and radical ideals

Def 115. Define
$$\mathcal{I}(V) = \{ f \in k[x_1, ..., x_n] \mid f(\alpha) = 0, \forall \alpha \in V \}.$$

The one-one correspondence is given by

{affine algebraic sets in
$$\mathbb{A}^n_k$$
} \longleftrightarrow { radical ideals in $k[x_1,\ldots,x_n]$ } $V \longmapsto \mathcal{I}(V)$ $\mathcal{V}(I) \longleftarrow I$

Prop 6.3.1.

 $\bullet \quad \sqrt{\mathcal{I}(V)} = \mathcal{I}(V).$

Proof. For all
$$f^n \in \mathcal{I}(V)$$
, $f^n(\alpha) = 0, \forall \alpha \in V \implies f(\alpha) = 0, \forall \alpha \in V$. Thus $f \in \mathcal{I}(V)$.

• If V is an affine set, then $\mathcal{V}(\mathcal{I}(V)) = V$.

Proof. "\(\times \)":
$$\forall \alpha \in V, f \in \mathcal{I}(V), f(\alpha) = 0 \implies \alpha \in \mathcal{V}(\mathcal{I}(V)).$$
"\(\times \)": Since V is an affine set, $V = \mathcal{V}(I)$, then $I \subset \mathcal{I}(V)$, so $\mathcal{V}(\mathcal{I}(V)) \subset \mathcal{V}(I) = V.$

Lemma 19. Given T/S/R, a tower of rings. If R is Noetherian, T/S is module finite and T/R is ring finite, then S/R is ring finite.

Proof. Let $T = R[a_1, \ldots, a_n] = Sw_1 + \cdots + Sw_m$. Then $a_i = \sum r_{i,j,k}w_j$ for some $r_{i,j}$ and $w_iw_j = \sum t_{i,j,k}w_k$ for some $t_{i,j,k}$.

Let $S' = R[\{r_{i,j}\}, \{t_{i,j,k}\}] \subseteq S$, which is Noetherian by the Hilbert basis theorem (R Notherian $\Longrightarrow R[x]$ Notherian). Thus $T = S'\omega_1 + \cdots + S'\omega_m$ is a Noetherian S'-module by the fact that finitely generated module over a Noetherian ring is a Noetherian module.

Since $S \subset T$, S is a finitely generated S' submodule, so

$$S = S'v_1 + \dots + S'v_r = R[\{r_{i,k}\}, \{t_{i,j,k}\}, \{v_i\}].$$

Lemma 20. If $S = k(z_1, \ldots, z_p)$, p > 0 with each z_i transcendental, then S/k is not ring finite.

Proof. If not, say $S = k[f_1, \ldots, f_n]$ with $f_i = g_i/h_i$, $g_i, h_i \in k[z_1, \ldots, z_p]$. Then for any irreducible polynomial p such that $p \nmid h_i$ for each h_i (This polynomial exists since for each h_i there are only finite degree 1 factors). Then $1/p \notin k[f_1, \ldots, f_n]$ by checking the divisibility of the denominator under addition and multiplication, which leads to a contradiction.

Lemma 21. If A/k is an extension of fields and ring finite, then A/k is algebraic.

Proof. If A/k is transcendental and let $\{z_1, \ldots, z_t\}$ be a transcendental base. Then $A/k(z_1, \ldots, z_t)$ is algebraic, thus module finite (note that A/k is ring finite). By lemma 19, $k(z_1, \ldots, z_t)$ is ring finite, which contradicts with lemma 20.

Theorem 76 (Weak form of Hilbert Nullstellensatz).

$$I \subseteq k[x_1, \dots, x_n] \implies v(I) \neq \emptyset$$

Proof. Since I proper, by lemma 7, there exists a maximal ideal M such that $I \subseteq M$. Consider $K \triangleq k[x_1, \ldots, x_n]/M = k[\bar{x}_1, \ldots, \bar{x}_n]$. By proposition 5.1.8, K is a field, and by lemma 21, K/k is algebraic. Since k is already algebraically closed, K = k and hence each $\bar{x}_i \in k$. Let $\alpha \triangleq (\bar{x}_1, \ldots, \bar{x}_n) \in A_k^n$, then for any $f \in M$, $f(\alpha) = f(\bar{x}_1, \ldots, \bar{x}_n) = \bar{f} = 0$, thus $\alpha \in \mathcal{V}(M) \subseteq \mathcal{V}(I)$. \square

Theorem 77 (Strong form of Hilbert Nullstellensatz). $\mathcal{I}(\mathcal{V}(I)) = \sqrt{I}$

Proof. "\(\tilde{\gamma}\)": $f \in \sqrt{I} \implies f^n \in I$, then $f^n(\alpha) = 0, \forall \alpha \in \mathcal{V}(I) \implies f(\alpha) = 0, \forall \alpha \in \mathcal{V}(I)$, thus $f \in \mathcal{I}(\mathcal{V}(I))$.

" \subset ": If $\mathcal{I}(\mathcal{V}(I)) = 0$, then $I \subseteq \sqrt{I} \subseteq \mathcal{I}(\mathcal{V}(I)) = 0$, thus I = 0.

Otherwise, exists $0 \neq f \in \mathcal{I}(\mathcal{V}(I))$, Let $J = \langle I, ft - 1 \rangle \subset k[x_1, \dots, x_n, t]$. If (a_1, \dots, a_n, t_0) is a zero of J, then $ft - 1 \in J \implies -1 = f(a_1, \dots, a_n)t_0 - 1 = 0$, which is a contradiction, so by theorem f(t) = f(t), then f(t) = f(t) is a contradiction f(t) = f(t).

Write $1 = \sum h_i f_i + s(ft-1)$, where each $f_i \in I$ and $h_i, s \in k[x_1, \dots, x_n, t]$. This is a equation of variables, so if we set t = 1/f, the equation still holds. Now each h_i would be the form $\sum p_i/f^{k_i}$, so we could multiply each side by a suitable f^{ρ} and get $f^{\rho} = \sum c_i f_i$ with each $c_i \in k[x_1, \dots, x_n]$. This implies $f^{\rho} \in I$, thus $f \in \sqrt{I}$.

Def 116. Let $V \in \mathcal{G}$, the coordinate ring of V is $k[V] \triangleq k[x_1, \dots, x_n]/\mathcal{I}(V)$.

6.3.2 Equivalence of \mathcal{G} and \mathcal{A}

We define a functor F from \mathcal{G} to \mathcal{A} by

$$F: \quad \mathcal{G} \longrightarrow \mathcal{A}$$

$$V \longmapsto k[V]$$

And For a polynomial map $f: V \to W$, define

$$F(f) = f^*: \quad k[W] \longrightarrow k[V]$$
$$g \longmapsto g \circ f$$

Conversely, define a functor G by

$$G: \quad \mathcal{A} \longrightarrow \mathcal{G}$$

$$k[x_1, \dots, x_n]/I \longmapsto \mathcal{V}(I)$$

Then if

$$\varphi: \quad k[\ldots]/I \longrightarrow k[\ldots]/J$$

$$\bar{x}_i \longmapsto \bar{f}_i$$

Define

$$G(\varphi) = \psi:$$
 $\mathcal{V}(J) \longrightarrow \mathcal{V}(I)$ $\alpha = (a_1, \dots, a_m) \longmapsto (f_1(\alpha), \dots, f_n(\alpha))$

6.4 Gröbner basis (week 11)

6.4.1 Division algorithm in $K[X_1, ..., X_n]$

Eg 6.4.1. $I = \langle xy - 1, y^2 - 1 \rangle \subseteq K[x, y], f_1 = xy - 1 \text{ and } f_2 = y^2 - 1 \ G = \{f_1, f_2\}.$ Does $f = x^2y + xy^2 + y^2 \in I$?

- Choose a lexicographic monomial ordering: x > y
- The multidegree $\partial(f) = (2,1), \ \partial(f_1) = (1,1), \ \partial(f_2) = (0,2)$
- The leading term $LT(f) = x^2y$, $LT(f_1) = xy$, $LT(f_2) = y^2$
- LT(f) = xLT(f₁) \Rightarrow f = $xf_1 + xy^2 + y^2 + x \Rightarrow$ f = $(x+y)f_1 + (1)f_2 + (x+y+1)$ or $f = \underset{h_1}{x} f_1 + (x+1)f_2 + (2x+1)$.

Note: Divisor h_1 , h_2 and remainder \bar{f}^G are not unique!!

Def 117. Fix a monomial ordering and let I be an ideal of $K[X_1, \ldots, X_n]$. The ideal of leading terms in I is defined to be $LT(I) = \langle LT(f) | f \in I \rangle$.

Remark 34. Let $I = \langle f_1, \dots, f_n \rangle$. In general, $\langle LT(f_1), \dots, LT(f_n) \rangle \subsetneq LT(I)$.

Eg 6.4.2. Let $f_1 = xy^2 + y$, $f_2 = x^2y$. And, $xf_1 - yf_2 = xy \in \langle f_1, f_2 \rangle$ but $xy \notin \langle xy^2, x^2y \rangle$.

Def 118. $G = \{g_1, \ldots, g_m\}$ is called a Gröbner basis of I if $I = \langle g_1, \ldots, g_m \rangle$ and $LT(I) = \langle LT(g_1), \ldots, LT(g_m) \rangle$.

Prop 6.4.1. Let $g_1, \ldots, g_m \in I$, then $LT(I) = \langle LT(g_1), \ldots, LT(g_m) \rangle \implies I = \langle g_1, \ldots, g_m \rangle$.

Proof. $\forall f \in I$, do the division process. Then $f = \sum_{i=1}^{m} h_i g_i + r$, either r = 0 or $\bigstar = \text{no term of } r$ is divisible by any of $LT(g_1), \ldots, LT(g_m)$. Assume $r \neq 0$, then $r = f - \sum_{i=1}^{m} h_i g_i \in I \Rightarrow LT(r) \in LT(I) = \langle LT(g_1), \ldots, LT(g_m) \rangle$, which is a contradiction. Hence, r = 0 (i.e. $f \in \langle g_1, \ldots, g_m \rangle$). \square

Theorem 78. Each ideal I has a Gröbner basis.

Proof. By Hilbert basis thm, $LT(I) = \langle f_1, \ldots, f_m \rangle$ for some f_i 's. Write $f_i = \sum_{j=1}^{m_i} h_{ij} LT(g_{ij})$ with $h_{ij} \in K[X_1, \ldots, X_n], g_{ij} \in I$. Then $LT(I) = \langle LT(g_{ij}) | i = 1, \ldots, m, j = 1, \ldots, m_i \rangle$. By prop 6.4.1, This is Gröbner basis.

Theorem 79. Let $G = \{g_1, \dots, g_m\}$ be a Gröbner basis of I, then

- $\forall f \in K[X_1, \dots, X_n], f = f_I + r$ where $f_I \in I, r = \bigstar$ are unique.

 Proof. By division algorithm, $f = f_I + r = f'_I + r'$, then $r r' = f_I f'_I$. But if $r r' \neq 0$, then $LT(r r') \in LT(I) = \langle LT(g_1), \dots, LT(g_m) \rangle$, which is a contradiction. Hence, $r r' = 0 \Rightarrow f_I = f'_I$.
- $f \in I \iff r = 0$.

Proof. Suppose $f \in I$, then $f = f_I + r$, and if $r \neq 0$, $r = f - f_I \in I$, which is a contradiction. Hence, r = 0. Conversly, if r = 0, $f = f_I \in I$.

6.4.2 Buchberger's algorithm

Def 119. Let $f, g \in K[x_1, ..., x_n]$ and M be the monic least common multiple of LT(f) and LT(g). $S(f,g) = \frac{M}{LT(f)}f - \frac{M}{LT(g)}g$ is called an S-polynomial of f,g.

Let $I = \langle g_1, \ldots, g_m \rangle$ and $G = \{g_1, \ldots, g_m\}$. A Gröbner basis of I can be constructed by the following algorithm:

- 1. Initially let $G_0 \leftarrow G$.
- 2. Repeatly construct $G_{i+1} \leftarrow G_i \cup (\{S(f,g) \mod G_i \mid f,g \in G_i\} \setminus \{0\})$, until once $G_{i+1} = G_i$, then G_i is a Gröbner basis of I.

Lemma 22. Let $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ with $a_1, \ldots, a_m \in K$ satisfying $\partial(f_1) = \partial(f_2) = \cdots = \partial(f_m) = \alpha$ and $h = \sum_{i=1}^m a_i f_i$ with $\partial(h) < \alpha$. Then $h = \sum_{i=2}^m b_i S(f_{i-1}, f_i)$ for some $b_i \in K$.

Proof. Write $f_i = c_i f'_i$ with $c_i \in K$ and f'_i being monic of multidegree α . Note: $S(f_i, f_j) = f'_i - f'_j$ since all multidegree are equal. Then,

$$h = \sum_{i=1}^{m} (a_i c_i f_i')$$

$$= a_1 c_1 (f_1' - f_2') + (a_1 c_1 + a_2 c_2) (f_2' - f_3') + \dots + (a_1 c_1 + \dots + a_{m-1} c_{m-1}) (f_{m-1}' - f_m')$$

$$+ (a_1 c_1 + \dots + a_m c_m) f_m'$$

$$= \sum_{i=2}^{m} b_i S(f_{i-1}, f_i) + b_{m+1} f_m' \text{ with } b_i = \sum_{j=1}^{i-1} a_j c_j.$$

Also, in this equality, f'_m is the only term that has multidegree α (other terms have multidegree less than α). So $b_{m+1}=0$ must hold. Then, we have $h=\sum_{i=2}^m b_i S(f_{i-1},f_i)$.

Theorem 80 (Buchberger's criterion). Assume $I = \langle g_1, \ldots, g_m \rangle$, then $G = \{g_1, \ldots, g_m\}$ is a Gröbner basis of $I \iff S(g_i, g_j) \equiv 0 \pmod{G}$ for each i, j.

Proof.

- Suppose G is a Gröbner basis of I. $S(g_i, g_j) \in I \Rightarrow S(g_i, g_j) = 0$ by thm 79.
- Converely, suppose $S(g_i, g_j) \equiv 0 \pmod{G} \forall i, j$. For $f \in I$, $f = \sum_{not \ division} \sum_{i=1}^m h_i g_i$ for some $h_i \in K[x_1, \dots, x_n]$. Define $\alpha = \max\{\partial(h_1 g_1), \dots, \partial(h_m g_m)\}$. We have $\partial(f) \leq \alpha$ and we can select an expression $f = \sum_{i=1}^m h_i g_i$ for f s.t α is minimal.
- Claim: $\partial(f) = \alpha$.
- (pf) If not, we rewrite f

$$\begin{split} f &= \sum_{i=1}^m h_i g_i \\ &= \sum_{\partial (h_i g_i) = \alpha} h_i g_i + \sum_{\partial (h_i g_i) < \alpha} h_i g_i \quad \text{ (the first term } \neq 0 \text{ since } \alpha \text{ is minimal.)} \\ &= \sum_{\partial (h_i g_i) = \alpha} \operatorname{LT}(h_i) g_i + \sum_{\partial (h_i g_i) = \alpha} (h_i - \operatorname{LT}(h_i) g_i) + \sum_{\partial (h_i g_i) < \alpha} h_i g_i \end{split}$$

Let $LT(h_i) = a_i h_i^0$ with h_i^0 being a monic monomial. Comparing the multidegree on both side, $\partial \left(\sum_{\partial (h_i g_i) = \alpha} a_i h_i^0 g_i \right) < \alpha$ By lemma 22, $\sum_{\partial (h_i g_i) = \alpha} \left(a_i h_i^0 g_i \right) = c_{12} S(h_{i_1}^0 g_{i_1}, h_{i_2}^0 g_{i_2}) + \dots$ (finite)

where $\partial(h_{i_1}g_{i_1}) = \partial(h_{i_2}g_{i_2}) = \cdots = \alpha$. By def, if we set $M_{st} = X_{st}^{\beta}$ = the monic LCM of $LT(g_{i_s}), LT(g_{i_t})$, then

$$\begin{split} S(h_{i_s}^0 g_{i_s}, h_{i_t}^0 g_{i_t}) &= \frac{X^\alpha}{\mathrm{LT}(h_{i_s}^0 g_{i_s})} h_{i_s}^0 g_{i_s} - \frac{X^\alpha}{\mathrm{LT}(h_{i_t} g_{i_t})} h_{i_t}^0 g_{i_t} \\ &= X^{\alpha - \beta_{st}} \left(\frac{X^{\beta_{st}}}{\sum_{k=1}^0 \mathrm{LT}(g_{i_s})} h_{i_k}^0 g_{i_s} - \frac{X^{\beta_{st}}}{\sum_{k=1}^0 \mathrm{LT}(g_{i_t})} h_{i_k}^0 g_{i_t} \right) \\ &= X^{\alpha - \beta_{st}} S\left(g_{i_s}, g_{i_t} \right) \\ &= X^{\alpha - \beta_{st}} \sum_{j=1}^m l_j g_j \text{ (by division)} \end{split}$$

• Then, $\partial(l_j g_j) < \beta_{st} \implies$ we found an expression with multidegree less than α , which is a contradiction. Therefore, $\partial(f) = \alpha \implies \operatorname{LT}(f) = \sum_{\partial(h_i g_i) = \alpha} \operatorname{LT}(h_i) \operatorname{LT}(g_i) \implies \operatorname{LT}(f) \in \langle \operatorname{LT}(g_1), \dots, \operatorname{LT}(g_m) \rangle$.

Theorem 81. The Buchberger's algorithm will terminate

Proof. .

- $\langle LT(G_i) \rangle \subsetneq \langle LT(G_{i+1}) \rangle$ if $G_i \neq G_{i+1}$ $G_i \neq G_{i+1} \implies \exists f, g \in G_i \text{ s.t. } S(f,g) \not\equiv 0 \pmod{G} \implies LT(S(s,g)) \notin \langle LT(G_i) \rangle$
- $\langle LT(G_0) \rangle \subsetneq \langle LT(G_1) \rangle \subsetneq \cdots$ is not possible since $K[x_1, \ldots, x_n]$ is a Noetherian ring. (Noetherian ACC condition).

6.5 Applications of Gröbner basis

Def 120. Let $I \subseteq K[x_1, \ldots, x_n]$ and $x_1 > x_2 > \cdots > x_n$. $I_i \triangleq I \cap K[x_{i+1}, \ldots, x_n]$ is called the *i*-th elimination ideal of I.

Theorem 82 (Elimination theorem). Let $G = \{g_1, \ldots, g_m\}$ be a Gröbner basis of $I \neq 0$ with ordering $x_1 > \cdots > x_n$. Then $G_i \triangleq G \cap K[x_{i+1}, \ldots, x_n]$ is a Gröbner basis of I_i (i.e., $\langle \operatorname{LT}(G_i) \rangle = \operatorname{LT}(I_i)$).

Proof. " \subseteq ": Obvious.

"\[\sum_i : Let $f \in I_i$. Write

$$LT(f) = \sum h_i LT(g_i) = \sum a_k x^{\alpha_k} LT(g_{i_k})$$

Since LT(f) involves only the variables x_{i+1}, \ldots, x_n , and each terms of $x^{\alpha_k} LT(g_{i_k})$ which uses variables x_k with $k \leq i$ must sum to zero. Remove those term we could write LT(f) as a combination of $LT(g_i)$ with $LT(g_i) \in K[x_{i+1}, \ldots, x_n]$. But by the definition of leading term and the ordering $x_1 > \cdots > x_n$, we have $g_i \in K[x_{i+1}, \ldots, x_n] \implies g_i \in G_i$. Thus $LT(f) \in \langle LT(G_i) \rangle$.

Eg 6.5.1. Find $V = \mathcal{V}(x+y-z, x^2+y^2-z^3, x^3+y^3-z^5)$.

We compute a Gröbner basis of $I = \langle f_1, \dots, f_3 \rangle$ with respect to the ordering x > y > z. The Gröbner basis is $\{x + y - z, 2y^2 - 2yz - z^3 + z^2, 2z^5 - 3z^4 + z^3\}$.

Eg 6.5.2.

$$f: \quad \mathbb{A}^1 \longrightarrow \mathbb{A}^3$$

$$t \longmapsto (t^4, t^3, t^2)$$

We compute a Gröbner basis of $I = \langle t^4 - x, t^3 - y, t^2 - z \rangle$ with respect to t > x > y > z. The Gröbner basis is $\{-t^2 + z, ty - z^2, tz - y, x - z^2, y^2 - z^3\}$.

Eg 6.5.3.

$$f: V = \mathcal{V}(x^3 - x^2z - y^z) \longrightarrow \mathbb{A}^3$$
$$(x, y, z) \longmapsto (x^2z - y^2z, 2xyz, -z^3)$$

The ideal is $\langle x^3-x^2z-y^2z,u-x^2z+y^2z,v-2xyz,w+z^3\rangle$ has a Gröbner basis $\langle \dots,u^2+v^2-w^2\rangle$.

Theorem 83. Let I, J be two ideals of $K[x_1, \ldots, x_n]$, then $I \cap J = (t\tilde{I} + (1-t)\tilde{J}) \cap K[x_1, \ldots, x_n]$, where $\tilde{I} \triangleq K[x_1, \ldots, x_n, t]I$.

Proof. " \subseteq ": If $f \in I \cap J$, then $f = tf + (1 - t)f \in RHS$.

"\(\text{\text{"}}\)": If $f \in \text{RHS}$, then $f = t\tilde{f}_1 + (1-t)\tilde{f}_2$. with $\tilde{f}_1 \in \tilde{I}$, $\tilde{f}_2 \in \tilde{J}$. Write

$$\tilde{f}_1 = \sum (h_i t + r_i) f_i, \quad \tilde{f}_2 = \sum (h'_j t + r'_j) f_j$$

with each $r_i, r'_j \in K[x_1, ..., x_n], \ h_i, h'_j \in K[t, x_1, ..., x_n].$ Take $t = 0, \ f = \sum r'_j f_j \in J.$ Then take $t = 1, \ f = \sum (h_i(1, x_1, ..., x_n) + r_i) f_i \in J.$ Thus $f \in I \cap J.$

Eg 6.5.4. $I = \langle y^2, x - yz \rangle$, $J = \langle x, z \rangle$. We shall find $I \cap J$. $tI + (1-t)J = \langle tx - tyz, ty^2, (1-t)x, (1-t)z \rangle$ has a Gröbner basis $\{f_1, f_2, f_3, f_4, xy, x - yz\}$, so $I \cap J = \langle xy, x - yz \rangle$.

Theorem 84. Let $L = \langle f_1, \ldots, f_s \rangle \subsetneq K[x_1, \ldots, x_n]$, then $f \in \sqrt{I} \iff \langle f_1, \ldots, f_s, 1 - tf \rangle = K[x_1, \ldots, x_n, t]$.

Proof. " \Leftarrow ": By theorem 76, $\langle f_1, \ldots, f_s, 1 - tf \rangle = K[x_1, \ldots, x_n, t]$ if and only if $\mathcal{V}(f_1, \ldots, f_s, 1 - tf) = \varnothing$. Notice that 1 - tf has no zero if f = 0, which means that If \boldsymbol{x} is a common zero of f_1, \ldots, f_s , then $f(\boldsymbol{x}) = 0$. So $f \in \mathcal{I}(\mathcal{V}(I)) \implies f \in \sqrt{I}$ by theorem 77.

"\Rightarrow":
$$f^m \in I \implies 1 = t^m f^m + 1 - t^m f^m = t^m f^m + (1 - tf)(1 + tf + \dots + t^{m-1} f^{m-1}) \in \langle f_1, \dots, f_s, 1 - tf \rangle.$$

Eg 6.5.5. Let $I = \langle xy^2 + 2y^2, x^4 - 2x^2 + 1 \rangle$, and we want to determine $f = y - x^2 + 1$ is in \sqrt{I} or not.

Prop 6.5.1. An affine algebraic set V in \mathbb{A}^n_k has a unique minimal decomposition. $V = V_1 \cup V_2 \cup \cdots \cup V_m$ with V_i irreducible and $V_i \not\subset V_j$.

Proof.

Existence: If not, then $V = V_1 \cup V_1'$, and one of V_1, V_1' , say $V_1 = V_2 \cup V_2'$, ... So we would find

$$V \supseteq V_1 \supseteq V_2 \subseteq \cdots \implies \mathcal{I}(V) \subseteq \mathcal{I}(V_1) \subseteq \mathcal{I}(V_2) \subseteq \text{ in } k[x_1, \dots, x_n],$$

which contradicts that $k[x_1, \ldots, x_n]$ is Noetherian.

• Uniqueness: If

$$V = V_1 \cup \cdots \cup V_m = V_1' \cup \cdots \cup V_m'$$

then $V_i = (V_i \cap V_1') \cup \cdots \cup (V_i \cap V_m')$. But V_i irreducible, so $V_i = V_i \cap V_j' \implies V_i \subset V_j'$. By symmetry we would find $V_j' \subset V_k$, then $V_i \subset V_j' \subset V_k \implies V_i = V_k$. Thus these two decompositions are equal.

Theorem 85 (Decomposition). Assume $\sqrt{I} = I$ and $I \subset J$, then $\mathcal{V}(I:J) = \mathcal{V}(\mathcal{I}(\mathcal{V}(I) \setminus \mathcal{V}(J)))$. and $\mathcal{V}(I) = \mathcal{V}(J) \cup \mathcal{V}(I:J)$.

Proof. Let $f \in \mathcal{I}(\mathcal{V}(I) \setminus \mathcal{V}(J))$ and $g \in J$, then $fg = \mathcal{I}(\mathcal{V}(I)) = \sqrt{I} = I$ since $f(\alpha) = 0$ for each $\alpha \in \mathcal{V}(I) \setminus \mathcal{I}(J)$ and $g(\alpha) = 0$ for each $\alpha \in \mathcal{V}(J)$. Thus $f \in (I:J)$.

Eg 6.5.6. Let $I = \langle xz - y^2, x^3 - yz \rangle$ and $V = \mathcal{V}(I)$.

Notice that $\langle xz-y^2,x^3-yz\rangle\subseteq\langle x,y\rangle=J,$ so $(I:J)=(I:\langle x\rangle)\cap(I:\langle y\rangle).$

First we calculate (I:x). Notice that we know how to calculate $I \cap \langle x \rangle$ now. After a calculation, $I \cap \langle x \rangle = \{x^2z - xy^2, x^4 - xyz, x^3y - xz^2\}$, so $(I:x) = \langle f_1/x, f_2/x, f_3/x \rangle = I + \langle x^2y - z^3 \rangle$. Simarly one could find that (I:y) = (I:x), thus (I:J) = (I:x).

Hence $V = \mathcal{V}(x, y) \cap \mathcal{V}(xz - y^2, x^3 - yz, x^2y - z^2)$.

Prop 6.5.2. Let $f: V \to W$, then $\overline{f(V)} = \mathcal{V}(\ker f^*)$ where $f^*: k[W] \to k[V]$.

Proof. We claim that ker $f^* = \mathcal{I}(f(V))$, since

$$\bar{g} \in \mathcal{I}(f(V)) \iff \bar{g}(f(\alpha)) = 0, \ \forall \ \alpha \in V \iff \bar{g} \circ f \in \mathcal{I}(V) \iff f^*(\bar{g}) = \overline{g \circ f} = \bar{0} \iff \bar{g} \in \ker f^*$$
Thus $\mathcal{V}(\ker f^*) = \mathcal{V}(\mathcal{I}(f(V))) = \overline{f(V)}$.

Remark 35. In general, if $W \subseteq \mathbb{A}^n_k$ is an affine algebraic set defined by $x_i = f_i(t_1, \dots, t_m)$, then W is irreducible.

Proof. $f: \mathbb{A}_k^m \to W$ is onto, so $\overline{f(\mathbb{A}_k^m)} = W = \mathcal{V}(0)$. By the previous proposition, $\ker f^* = 0$, thus $f^*: K[W] \cong k[x_1, \dots, x_n]/\mathcal{I}(W) \hookrightarrow k[t_1, \dots, t_m]$. But $k[t_1, \dots, t_m]$ is an integral domain, so $\mathcal{I}(W)$ is a prime ideal, thus W is irreducible.

6.6 Local Rings (week 12)

From now on, R is a commutative ring with 1.

We list some facts about localization.

Prop 6.6.1. Let p be a prime ideal in R, R_p be the localization about p.

- Extension and contraction gives a bijective correspondence between { prime ideal $q \subset p$ } and { prime ideal in R_p }.
- Extension and contraction gives a bijective correspondence between {primary ideal $q \subset p$ } and { primary ideal in R_p }.
- Localization commutes with intersection.
- Localization preserves exact sequence.
- If R is Noetherian (Artinian), then R_p is Noetherian (Artinian).

Def 121. R is called a local ring if it has a unique maximal ideal.

Prop 6.6.2. TFAE

- (1) R is a local ring.
- (2) The set of non-units forms an ideal.
- (3) $\exists M \in \text{Max } R \text{ s.t. } 1+m \text{ is a unit } \forall m \in M.$

Proof.

- (1) \Rightarrow (2): Let M be the unique maximal ideal of R. Then M couldn't contain any unit. For each non-unit x, $\langle x \rangle \neq R$ and is contained in a maximal ideal by lemma 7, thus $x \in M$. Hence $M = \{\text{non-units}\}.$
- (2) \Rightarrow (3): This ideal must be a maximal ideal M since it can't be extended. Now, $1 \notin M \rightsquigarrow 1 + m \notin M$. So 1 + m is a unit.
- (3) \Rightarrow (1): If there exists another maximal ideal N, then M+N=R. Say $m\in M, n\in N$ s.t. m+n=1, then n=1-m is a unit $\implies N=R$, which is a contradiction.

Eg 6.6.1. k[[x]] is a local ring with the unique maximal ideal $\langle x \rangle$.

Proof. For each $f = \sum a_n x^n \in k[[x]]$, one could see that f is an unit if and only if $a_n \neq 0$, and the leftovers form an ideal $\langle x \rangle$.

Eg 6.6.2. Let $P \in \operatorname{Spec} R$. If $S = R \setminus P$, then S is a multiplicatively closed set with $1 \in S$ and $R_P \triangleq R_S$ is a local ring.

Proof. S is a multiplicatively closed set simply follow from the definition of prime ideal. One could then easily see that $P_P \triangleq \left\{ \frac{x}{s} \mid x \in P, s \in S \right\}$ contains all non-unit, thus R_P is local.

Prop 6.6.3. The following sets are correspondent (k is algebraically closed):

- (1) \mathbb{A}^n_k
- (2) $\text{Max } k[x_1, \dots, x_n]$
- (3) $\operatorname{Hom}_{k}(k[x_{1},\ldots,x_{n}],k)$

Proof. (1) \Rightarrow (2): For any $(a_1, \ldots, a_n) \in \mathbb{A}^n_k$, $k[x_1, \ldots, x_n]/\langle x_1 - a_1, \ldots, x_n - a_n \rangle \cong k$ is a field, hence $\langle x_1 - a_1, \ldots, x_n - a_n \rangle$ is a maximal ideal.

(2) \Rightarrow (1): Let $M \in \text{Max } k[x_1, \dots, x_n]$, by theorem 76, $\mathcal{V}(M) \neq \emptyset$, so exists $(a_1, \dots, a_n) \in \mathcal{V}(M)$. Now $M = \sqrt{M} = \mathcal{I}(\mathcal{V}(M)) \subseteq \mathcal{I}((a_1, \dots, a_n)) = \langle \dots, x_i - a_i, \dots \rangle$ which is maximal, We conclude that (a_1, \dots, a_n) is the only element in $\mathcal{V}(M)$ and $M = \langle \dots, x_i - a_i, \dots \rangle$.

(1) \Rightarrow (3): For each (a_1, \ldots, a_n) , define $\varphi \in \operatorname{Hom}_k(\cdots)$ by evaluation:

$$\varphi: \quad k[x_1, \dots, x_n] \longrightarrow k$$
$$x_i \longmapsto a_i$$

$$(3) \Rightarrow (1)$$
: Similarly, for each $\varphi \in \operatorname{Hom}_k(\cdots)$, recover (a_1, \ldots, a_n) by $(\varphi(x_1), \ldots, \varphi(x_n))$.

Remark 36. Inspired by the correspondence,

Def 122. A property of an R-module M is said to be a local property if

M has this property $\iff M_P$ (as an R_P -module) has this property $\forall P \in \operatorname{Spec} R$

Prop 6.6.4. TFAE

- (1) M = 0
- (2) $M_P = 0 \quad \forall P \in \operatorname{Spec} R$
- (3) $M_Q = 0 \quad \forall Q \in \operatorname{Max} R$

Proof. (1) \Rightarrow (2) and (2) \Rightarrow (3) are clear.

(3) \Rightarrow (1): If $M \neq 0$, let $x \in M$ such that $x \neq 0$, then $\operatorname{Ann}(x) \subseteq R$ since $1 \notin \operatorname{Ann}(x)$. Let $\operatorname{Ann}(x) \subset Q \in \operatorname{Max} R$. By assumption, $M_Q = 0$ implies $\frac{x}{1} = \frac{0}{1}$. By the definition of equal in localization, $\exists r \notin Q$ such that rx = 0, thus $r \in \operatorname{Ann}(x)$ which leads to a contradiction.

Coro 6.6.1. Let $N \subseteq M$, TFAE (consider M/N)

- (1) N = M
- (2) $N_P = M_P \quad \forall P \in \operatorname{Spec} R$
- (3) $N_Q = M_Q \quad \forall Q \in \operatorname{Max} R$

Prop 6.6.5. TFAE

- (1) $0 \to M \xrightarrow{\phi} N \xrightarrow{\psi} L \to 0$ exact
- (2) $0 \to M_P \xrightarrow{\phi_P} N_P \xrightarrow{\psi_P} L \to 0 \text{ exact } \forall P \in \operatorname{Spec} R$
- (3) $0 \to M_Q \xrightarrow{\phi_Q} N_Q \xrightarrow{\psi_Q} L \to 0 \text{ exact } \forall Q \in \text{Max } R$

Proof. (1) \Rightarrow (2): By the fact that localization preserves exact sequence.

- $(2) \Rightarrow (3)$: Obvious.
- (3) \Rightarrow (1): Let $K = \ker \phi$, then $0 \to K \to M \to N$ exact. Since we just proved (1) \Rightarrow (3), $0 \to K_Q \to M_Q \to N_Q$ exact, but $K_Q = 0$, by proposition 6.6.4, K = 0.

We could prove the other half similarly by letting K to be the cokernel.

Def 123.

- Let $R \subseteq S$. $\bar{R} = \{x \in S \mid x \text{ is integral over } R\}$ is called the integral closure of R in S.
- R is integrally closed in S if $R = \bar{R}$.
- An integral domain R is called normal if R is integrally closed in its field of fractions.

Theorem 86. UFD is normal.

Proof. Let R be a UFD and K be its field of fractions. If $a \in K$ is integral over R and $a^n + r_1a^{n-1} + \cdots + r_n = 0$. Write a = u/s with gcd(u,s) = 1. Then $u^n + r_1su^{n-1} + \cdots + r_ns^n = 0$. Now if s is a non-unit, says $p \mid s$ with p is a prime. Then $p \mid u$ obviously $\leadsto p \mid gcd(u,s) = 1$, which is a contradiction. So s is a unit $\implies a \in R$.

Prop 6.6.6.

• Let S/R is an integral extension and $T \subset R$ be a m.c. set with $1 \in T$. Then S_T is also integral over R_T .

Proof. Let $a/t \in S_T$ with $a^n + r_1 a^{n-1} + \cdots + r_n = 0$, then we have

$$\left(\frac{a}{t}\right)^n + \frac{r_1}{t} \left(\frac{a}{t}\right)^{n-1} + \dots + \frac{r_n}{t^n} = 0.$$

Thus a/t is integral over R_T .

• Let S/R be an arbitrary extension and $T \subset R$ be m.c. with $1 \in T$. Then $(\bar{R})_T = \overline{(R_T)}$ in S_T .

Proof. By 1., $(\overline{R})_T$ is integral over R_T . If $a/t \in S_T$ is integral over R_T , say

$$\left(\frac{a}{t}\right)^n + \frac{r_1}{t_1} \left(\frac{a}{t}\right)^{n-1} + \dots + \frac{r_n}{t_n} = 0.$$

Then we let $v = t_1 t_2 \cdots t_n$, multiply the equation by $(tv)^n$, we get

$$(va)^n + (r_1tt_2\cdots t_n)(va)^{n-1} + \cdots = 0 \implies va \in \overline{R}$$

So $a/t = va/(vt) \in \overline{R}_T$.

Prop 6.6.7. "Being normal" is a local property. TFAE

- (1) R is normal
- (2) R_P is normal $\forall P \in \operatorname{Spec} R$
- (3) R_Q is normal $\forall Q \in \operatorname{Max} R$

Proof. The key is to realize that if K is the field of fraction of R, then K is also the field of fraction of any R_P . Then by lemma 6.6.5,

$$0 \to R \to \overline{R} \to 0 \iff 0 \to R_P \to (\overline{R})_P \to 0, \forall P$$

By the previous proposition, $(\overline{R})_P = \overline{R_P}$ in S_P , this proves all.

Def 124. An *R*-module *F* is flat if the functor $-\otimes_R M$ is exact (i.e., it preserves exact sequence).

Prop 6.6.8. Given an homomorphism $R_1 \to R_2$. If M is a flat R_1 -module, then $R_2 \otimes_{R_1} M$ is a flat R_2 module.

Proof. Notice that $N \otimes_{R_1} M \cong N \otimes_{R_2} (R_2 \otimes_{R_1} M)$, so

$$\begin{array}{ll} 0 \to N \to N' \text{ exact} & \Longrightarrow & 0 \to N \otimes_{R_1} M \to N' \otimes_{R_1} M \text{ exact} \\ & \Longrightarrow & 0 \to N \otimes_{R_2} (R_2 \otimes_{R_1} M) \to N' \otimes_{R_2} (R_2 \otimes_{R_1} M) \text{ exact} \end{array}$$

Which is to say that $R_2 \otimes_{R_1} M$ flat.

Prop 6.6.9. TFAE

- (1) M is a flat R-module
- (2) M_P is a flat R-module $\forall P \in \operatorname{Spec} R$
- (3) M_Q is a flat R-module $\forall Q \in \text{Max } R$

Proof. (1) \Rightarrow (2): By the previous proposition combined with the property of localization, $M_P \cong R_P \otimes_R M$ is a flat module.

- $(2) \Rightarrow (3)$: Obvious.
- (3) \Rightarrow (1): If $0 \to N \to N'$ exact, then by prop 6.6.5, $0 \to N_Q \to N_Q'$ exact, so

$$0 \to N_Q \otimes_{R_Q} M_Q \to N_Q' \otimes_{R_Q} M_Q$$

is also exact. By the property of localization, $N_Q \otimes_{R_Q} M_Q \cong (N \otimes_R M)_Q$. Using prop 6.6.5, $0 \to N \otimes_R M \to N' \otimes_R M$ exact.

6.7 Krull dimension

Def 125.

- The Krull dimension of a topological space X is the supremum of the lengths n of all chains $X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_n$, where X_i are closed irreducible subset of X.
- The Krull dimension of a commutative ring R with 1 is the supremum of the lengths n of all chains $P_0 \subsetneq \cdots \subsetneq P_n$ where $P_i \in \operatorname{Spec} R$.

Prop 6.7.1. Let $R \subseteq S$ be two integral domains and S/R be integral. Then S is a field if and only if R is a field.

Proof. " \Rightarrow ": For each $a \neq 0$ in R, $a^{-1} \in S$, so we could write

$$(a^{-1})^n + r_1(a^{-1})^{n-1} + \dots + r_n = 0, \ r_i \in R$$

Which implies

$$a^{-1} = -(r_1 + \dots + r_n a^{n-1}) \in R$$

"\(= \)": For each $a \neq 0$ is S, write

$$a^n + r_1 a^{n-1} + \dots + r_n = 0, \ r_i \in R$$

Notice that we could assume $r_n \neq 0$, or else $a(a^{n-1} + r_1 a^{n-2} + \cdots + r_{n-1}) = 0$ and hence $a^{n-1} + r_1 a^{n-2} + \cdots + r_{n-1} = 0$ because R is an integral domain. Then

$$a^{-1} = -r_n^{-1}(a^{n-1} + r_1a^{n-2} + \dots + r_{n-2})$$

Prop 6.7.2. Let S/R be integral.

1. If $q \in \operatorname{Spec} S$ and $p = q \cap R \in \operatorname{Spec} R$, then $q \in \operatorname{Max} S \iff p \in \operatorname{Max} R$.

Proof. It is easy to see that S/q is integral over R/p by the identification

$$R/p \longleftrightarrow S/q$$

 $r+p \longmapsto r+q$

So

 $q \in \operatorname{Max} S \iff S/q \text{ is a field } \iff R/p \text{ is a field } \iff p \in \operatorname{Max} R$

2. If $q, q' \in \operatorname{Spec} S$ with $q \subseteq q'$ and $q \cap R = p = q' \cap R$. Then q = q'.

Proof. We know that $S_p \triangleq S_{R \setminus p}$ is integral over R_p . Since $q_p \subseteq q'_p$ and both $q_p \cap R_p$ and $q'_p \cap R_p$ equal p_p is maximal in R_p . Using 1., q_p, q'_p are maximal in S_p , but $q_p \subseteq q'_p \implies q_p = q'_p$. By corollary 6.6.1, q = q'.

Theorem 87 (Going-up theorem). Let S/R be integral, then

• If $p \in \operatorname{Spec} R$, then $\exists q \in \operatorname{Spec} S$ such that $q \cap R = p$.

Proof. We have the diagram:

Pick $q_p = N \in \operatorname{Max} S_p$, then $N \cap R_p \in \operatorname{Max} R_p = \{p_p\}$ by 1. of proposition 6.7.2, so $N \cap R_p = p_p$, and $(q \cap R)_p = q_p \cap R_p = p_p$, thus $q \cap R = p$.

• If $p_1 \subset p_2$ in Spec R and $q_1 \in \operatorname{Spec} S$ with $q_1 \cap R = p_1$, then $\exists q_2 \in \operatorname{Spec} S$ with $q_1 \subset q_2$ and $q_2 \cap R = p_2$.

Proof. Let $R' = R/p_1$ and $S' = S/q_1$. Then again, S'/R' is integral. By the previous statement, exists $q_2/q_1 \in \operatorname{Spec} S'$ so that $q_2/q_1 \cap R' = p_2/p_1$, thus $q_2 \cap R = p_2$ and $q_2 \supseteq q_1$. \square

Theorem 88. If S/R is integral, then dim $S = \dim R$.

Proof. For any chain $q_0 \subsetneq q_1 \subsetneq \cdots \subsetneq q_n$ in Spec S, by prop 2., $q_0 \cap R \subsetneq q_1 \cap R \subsetneq \cdots \subsetneq a_n \cap R$. Conversely, given $p_0 \subsetneq p_1 \subsetneq \cdots \subsetneq p_n$ in Spec R, there is $q_0 \subsetneq q_1 \subsetneq \cdots \subsetneq q_n$ by the going up theorem (87).

Prop 6.7.3. Let S,R be integral domains and S/R be integral, assume R is normal with the field of fractions K. If $a \in S$ is integral over $I \subseteq R$, then $f = m_{\alpha,K} = x^n + r_1 x^{n-1} + \cdots + r_n$ with $r_i \in \sqrt{I}$.

Proof. Assume deg f = n and $a_1, \ldots, a_n \in \overline{K}$ are the zeros of f. By assumption, $a^m + t_1 a^{m-1} + \cdots + t_m = 0$ with $t_i \in I \subset R \subset K$. For each i, exists $\varphi \in \operatorname{Aut}(\overline{K}/K)$ such that $\varphi(a) = a_i$. Then $0 = \varphi(a^m + t_1 a^{m-1} + \cdots + t_m) = a_i^m + t_1 a_i^{m-1} + \cdots + t_m$, so a_i is integral over I. Moveover, the coefficients of f are the elementary symmetry symmetric polynomial of a_i , hence they are integral over I and lie in $\sqrt{IR} = \sqrt{IR} = \sqrt{I}$.

Theorem 89 (Going-down theorem). Let S, R be integral domains and S/R be integral, assume R is normal with the field of fractions K. If $p_1 \supset p_2$ in Spec R and $q_1 \in \operatorname{Spec} S$ with $q_1 \cap R = p_1$, then $\exists q_2 \in \operatorname{Spec} S$ such that $q_1 \supset q_2$ and $q_2 \cap R = p_2$.

Proof. First we claim that $p_2S_{q_1} \cap R = p_2$.

"⊃": Obvious.

" \subseteq ": For $b/t \in p_2S_{q_1} \cap R$, $b \in p_2S \subset \sqrt{p_2S} = \sqrt{p_2\overline{R}}$, which means that b is integral over p_2 and $t \in S \setminus q_1$. By proposition 6.7.3, if $m_{b,K} = x^l + r_1x^{l-1} + \cdots + r_l$, then $r_i \in \sqrt{p_2} = p_2$.

Now, $a = b/t \in R$, so $t = b/a \in S_{R \setminus \{0\}} = SK$, so

$$\left(\frac{b}{a}\right)^{l} + \left(\frac{r_1}{a}\right)\left(\frac{b}{a}\right)^{l-1} + \dots + \left(\frac{r_l}{a^l}\right) \leftrightarrow b^l + r_1b^{l-1} + \dots + r_l = 0$$

is a correspondence. Thus we know that $m_{t,K} = x^l + (r_1/a)x^{l-1} + \cdots + (r_l/a^l)$.

Again by proposition 6.7.3, since t is integral over R, $u_i \triangleq r_i/a^i \in R$, and $u_i a^i = r_i$ for each i.

If $a \notin p_2$, then $u_i a^i = r_i \in p_2$, so $u_i \in p_2$. But with $m_{t,K}$ we will find that $t^l \in p_2 S \subseteq p_1 S \subseteq q_1$, so $t \in q_1$, which leads to a contradiction. Thus $a \in p_2$.

Now we've proved $p_2S_{q_1}\cap R=p_2$, by exercise 12.4, $p_2=Q\cap R$ for some $Q\in S_{q_1}$. Letting $q=Q\cap S$ and we're done.

Theorem 90. All maximal chain in Spec $K[x_1, \ldots, x_n]$ have the same length n, and thus

$$\dim K[x_1,\ldots,x_n]=n.$$

Proof. Let $P_0 \subset P_1 \subset \cdots \subset P_m$ in Spec $K[x_1, \ldots, x_n]$ We shall use induction on n to prove m = n. n = 0: Then $\langle 0 \rangle$ is a max chain in Spec K, so m = 0 = n.

n > 0: Let $K[y_1, \ldots, y_n] \hookrightarrow K[x_1, \ldots, x_n]$ be a strong Noether normalization with $P_1 \cap K[y_1, \ldots, y_n] = \langle y_{d+1}, \ldots, y_n \rangle$, then $h(P_1) = 1 \implies h(P_1 \cap K[y_1, \ldots, y_n]) = 1$ by the going down theorem (89). Then we can say $P_1 \cap K[y_1, \ldots, y_n] = \langle y_n \rangle$. Then we can consider $K[x_1, \ldots, x_n]/P_1$ and $K[y_1, \ldots, y_n]/\langle y_n \rangle \cong K[y_1, \ldots, y_{n-1}]$.

6.8 Artinian rings and DVR (week 13)

6.8.1 Artinian rings

Def 126. R is called an Artinian ring if one of the followings holds:

- any non-empty set of ideals has a minimal element.
- any descending chain of ideals is stationary (DCC).

Goal:

- 1. $R \cong R_1 \times \cdots \times R_l$ where R_i is an Artinian local rings.
- 2. Artinian \iff Noetherian $+ \dim = 0$.

Prop 6.8.1.

$$\bullet \quad \sqrt{\mathfrak{m}_i^{n_i} + \mathfrak{m}_j^{n_j}} = \sqrt{\sqrt{\mathfrak{m}_i^{n_i}} + \sqrt{\mathfrak{m}_j^{n_j}}}$$

Proof.

" \subseteq ": Obvious.

"⊇"
$$\forall a \in \text{RHS}$$
, that is, $a^n = b + c$ with $b^k \in \mathfrak{m}_i^{n_i}$ and $c^t \in \mathfrak{m}_j^{n_j}$. Then $(a^n)^{k+t} = (b+c)^{k+t} = b^{k+t} + \dots + {k+t \choose t} b^k c^t + \dots + c^{k+t}$. Every term is in either $\mathfrak{m}_i^{n_i}$ or $\mathfrak{m}_j^{n_j}$, then $(a^n)^{k+t} = c + d$ with $c \in \mathfrak{m}_i^{n_i}$, $d \in \mathfrak{m}_j^{n_j} \Rightarrow a \in \text{LHS}$

• If m is prime, $\sqrt{m^n} = m$

Proof.

"
$$\subseteq$$
": If $a \in LHS$, then $a^k \in m^n \subset m$ and m is prime. $\Rightarrow a \in m$.

"
$$\supset$$
 ": If $a \in \text{RHS}$, then $a^n \in m^n \implies a^n \in \text{LHS}$.

• If $m, m_i, i = 1, \dots, n$ are prime and $m \supseteq m_1 \cap \dots \cap m_n$, then $m \supseteq m_i$ for some i.

Proof

Suppose not, then we pick $a_i \in m_i \setminus m$. Then $b \triangleq a_1 \cdots a_n \in m_i$, $\forall i$. So $b \in m_1 \cap \cdots \cap m_n \subseteq m$. But m is prime, so exist $a_i \in m$, which is a contradiction.

Prop 6.8.2. Let R be an Artinian ring

- (1) If $I \subseteq R$, then R/I is also Artinian.
- (2) If R is an integral domain, then R is a field.

Proof.
$$\forall a \neq 0 \in R, \langle a \rangle \supseteq \langle a^2 \rangle \supseteq \cdots$$
 is a descending chain of ideals $\implies \langle a^l \rangle = \langle a^{l+1} \rangle = \cdots$ for some $l \in \mathbb{N} \implies a^l = ba^{l+1} \implies a^l(1-ab) = 0 \implies ab = 1$ since cancellation works in integral domain.

(3) Spec $R = \operatorname{Max} R$. $(\Longrightarrow \dim R = 0)$

Proof.
$$\forall p \in \operatorname{Spec} R, R/p$$
 is an integral domain $\implies R/p$ is a field $\implies p \in \operatorname{Max} R$.

(4) $|\operatorname{Max} R| < \infty$.

Proof. Consider the set $\left\{\bigcap_{\text{finite}} \mathfrak{m} \middle| \mathfrak{m} \in \text{Max } R\right\} \neq \emptyset$. So there exists a minimal element in this set since R is Artinian, say $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k$. Now, for $\mathfrak{m} \in \text{Max } R$, we have $\mathfrak{m} \cap \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k$ since the latter is minimal, so $\mathfrak{m} \supseteq \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k \Longrightarrow \mathfrak{m} \supseteq \mathfrak{m}_i$ for some i, by 3. of proposition 6.8.1. Then $\mathfrak{m} = \mathfrak{m}_i$, since \mathfrak{m}_i is max. So $\text{Max } R = \{\mathfrak{m}_1, \ldots, \mathfrak{m}_k\}$.

(5) $\exists n_1, \ldots, n_k \in \mathbb{N} \text{ s.t. } \langle 0 \rangle = \mathfrak{m}_1^{n_1} \mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} = \mathfrak{m}_1^{n_1} \cap \mathfrak{m}_2^{n_2} \cap \cdots \cap \mathfrak{m}_k^{n_k}$

Proof. First we claim that $\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k}=\mathfrak{m}_1^{n_1}\cap\mathfrak{m}_2^{n_2}\cap\cdots\cap\mathfrak{m}_k^{n_k}$. Recall that if I_i,I_j are coprime for $i\neq j$, then $\prod_{i=1}^n I_i=\bigcap_{i=1}^n I_i$. By Prop 6.8.1

$$\sqrt{\mathfrak{m}_i^{n_i}+\mathfrak{m}_j^{n_j}}=\sqrt{\sqrt{\mathfrak{m}_i^{n_i}}+\sqrt{\mathfrak{m}_j^{n_j}}}=\sqrt{\mathfrak{m}_i+\mathfrak{m}_j}=\sqrt{R}=R\implies \mathfrak{m}_i^{n_i}+\mathfrak{m}_j^{n_j}=R.$$

Now, let n_i be the one so that $\mathfrak{m}_i^{n_i} = \mathfrak{m}_i^{n_i+1}$. We claim that $\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k} = \langle 0 \rangle$.

If not, let $S = \{J \subseteq R \mid J\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k} \neq 0\} \neq \emptyset$ since $\mathfrak{m}_i \in S$. By the fact that R is Artinian, there exists a minimal element $J_0 \in S$. By definition of S, $\exists x \in J_0$ so that $x\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k} \neq 0$. Then $\langle x \rangle \in S \langle x \rangle \subseteq J_0$ which by the minimality we must have $\langle x \rangle = J_0$.

Also, $x\mathfrak{m}_1^{n_1+1}\mathfrak{m}_2^{n_2+1}\cdots\mathfrak{m}_k^{n_k+1}=x\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k}\neq\langle 0\rangle$, so $I=x\mathfrak{m}_1\ldots\mathfrak{m}_k\in\mathcal{S}$ and $I\subseteq xR=J_0\Longrightarrow I=xR$. Then we have $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_k=\mathfrak{m}_1\cap\mathfrak{m}_2\cap\cdots\cap\mathfrak{m}_k=\operatorname{Jac} R$ with $\operatorname{Jac} R(xR)=xR$ since $\operatorname{Max} R=\operatorname{Spec} R$. By Nakayama's lemma, $xR=0\Longrightarrow x=0$ which leads to a contradiction.

(6) The nilradical \mathfrak{n}_R of R is nilpotent.

Proof. Again, $\mathfrak{n}_R = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_k = \operatorname{Jac} R$. Let $n = \max\{n_1, \ldots, n_k\}$ in (5), then $\mathfrak{n}_R^n = (\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_k)^n = 0$.

Theorem 91. If R is an Artinian ring, then $R \cong R_1 \times \cdots \times R_k$ where each R_i is Artinian local ring.

Proof. By Chinese Remainder theorem,

$$R \cong R/\langle 0 \rangle = R/\mathfrak{m}_1^{n_1} \mathfrak{m}_2^{n_2} \cdots \mathfrak{m}_k^{n_k} \cong R/\mathfrak{m}_1^{n_1} \times R/\mathfrak{m}_2^{n_2} \times \cdots \times R/\mathfrak{m}_k^{n_k}$$

Let $R_i = R/\mathfrak{m}_i^{n_i}$, which is Artinian since it is the quotient of an Artinian ring. Since quotient preserves maximality, $\bar{\mathfrak{m}} \in \operatorname{Max} R_i \iff \mathfrak{m} \in \operatorname{Max} R$. But then $\mathfrak{m} \supset \mathfrak{m}_i^{n_i} \implies \mathfrak{m} = \mathfrak{m}_i$. Since $\mathfrak{m}_i = \sqrt{\mathfrak{m}_i^{n_i}}$ is the smallest prime containing $\mathfrak{m}_i^{n_i}$ by proposition 6.2.2. So $\operatorname{Max} R_i = \{\overline{\mathfrak{m}_i}\} \implies R_i$ is a local ring.

Lemma 23. Let V be a K-vector space, TFAE

- (1) $\dim_K V < \infty$
- (2) V has DCC on subspaces.
- (3) V has ACC on subspaces.

Proof.

Fact: If $V_1 \subseteq V_2$ is finite dimensional vector space over K, then $V_1 = V_2 \iff \dim_K V_1 = \dim_K V_2$. Otherwise, $\dim_K V_1 < \dim_K V_2$.

$$(1) \Leftrightarrow (3)$$

" \Rightarrow " Suppose there exists a chain in vector space V with strictly increasing and infinite length,

$$V_1 \subset V_2 \subset \cdots \subseteq V \Rightarrow \dim_K V_1 < \dim_K V_2 < \cdots \leq \dim_K V$$

Then, $\dim_K V$ must be infinite.

" \Leftarrow " If $\dim_K V$ is infinite, let $S = \{b_1, b_2, \dots\}$ be basis of V.

$$\langle b_1 \rangle_K \subset \langle b_1, b_2 \rangle_K \subset \cdots$$

is a infinite ascending chain.

Similarly, $(1) \Leftrightarrow (2)$.

Lemma 24. If R is Northerian and dim R = 0, then there exist \mathfrak{m}_i, n_i so that $\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k} = \langle 0 \rangle$.

Proof. By primary decomposition, $\langle 0 \rangle = \bigcap_{i=1}^k q_i$ for some primary ideals q_i . Let $\mathfrak{m}_i = \sqrt{q_i}$, since \mathfrak{m}_i finitely generated, say $\mathfrak{m}_i = \langle x_1, \ldots, x_k \rangle$. Since $\mathfrak{m}_i = \sqrt{q_i}$, for each x_i , exists r_i so that $x_i^{r_i} \in q_i$. Let $n_i = \max\{r_i\}$ and one could easily see that $\mathfrak{m}_i^{n_i} \subset q_i$. Thus

$$\mathfrak{m}_1^{n_1}\mathfrak{m}_2^{n_2}\cdots\mathfrak{m}_k^{n_k}=\mathfrak{m}_1^{n_1}\cap\mathfrak{m}_2^{n_2}\cap\cdots\cap\mathfrak{m}_k^{n_k}\subseteq q_1\cap q_2\cap\cdots\cap q_k=\langle 0\rangle$$

Theorem 92. R is Artinian \iff R is Noetherian with dimension 0.

Proof. In both case we could find maximal ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ not necessarily different in R such that $\mathfrak{m}_1\mathfrak{m}_2\cdots\mathfrak{m}_n=0$. So we shall prove that this implies Artinian \iff Noetherian.

Observe that we have a chain of ideals in $R: R \supset \mathfrak{m}_1 \supset \mathfrak{m}_1 \mathfrak{m}_2 \supset \cdots \supset \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n = 0$. Let $M_i = \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{i-1}/\mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_i$ which could be see as an R-module. Moreover, notice that $\mathfrak{m}_i M_i = 0$, so we M_i could be regard as R/\mathfrak{m}_i -module. But R/\mathfrak{m}_i is a field, so M_i can be further regarded as a vector space. Hence we could use lemma 23 now:

 M_i is Artinian \iff M_i is Noetherian.

By definition,

$$0 \to \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_i \to \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_{i-1} \to M_i \to 0$$

exact. By exercise, given $0 \to K \to M \to L \to 0$ exact, then M Noetherian (Artinian) $\iff K, L$ Noetherian (Artinian). Thus

$$\mathfrak{m}_0 = R \text{ Artinian } \iff \mathfrak{m}_1, M_1 \text{ Artinian } \\ \iff \mathfrak{m}_1 \mathfrak{m}_2, M_1, M_2 \text{ Artinian } \\ \vdots \\ \iff \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n = \langle 0 \rangle, \ M_1, \ldots, M_n \text{ Artinian } \\ \iff \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n = \langle 0 \rangle, \ M_1, \ldots, M_n \text{ Noetherian } \\ \vdots \\ \iff \mathfrak{m}_1 \mathfrak{m}_2, M_1, M_2 \text{ Noetherian } \\ \iff \mathfrak{m}_1, M_1 \text{ Noetherian } \iff \mathfrak{m}_0 = R \text{ Noetherian }$$

6.8.2 DVR (Discrete Valuation Ring)

Def 127.

- (1) Let K be a field. A discrete valuation of K is $\nu: K^{\times} \to \mathbb{Z}$ $(\nu(0) = \infty)$ s.t.
 - $\nu(xy) = \nu(x) + \nu(y)$.
 - $\nu(x \pm y) = \min{\{\nu(x), \nu(y)\}}.$
- (2) The valuation ring of ν is $R = \{x \in K \mid \nu(x) \ge 0\}$, called a DVR.

Prop 6.8.3.

1. $\nu(1) = 0$:

Proof.
$$\nu(1) = \nu(1) + \nu(1) \implies \nu(1) = 0$$

2. $\nu(x) = -\nu(x^{-1})$:

Proof.
$$0 = \nu(xx^{-1}) = \nu(x) + \nu(x^{-1})$$

3. $\nu(x) = 0 \iff x \text{ is a unit, so } \mathfrak{m} = \{x \in R \mid \nu(x) > 0\} \text{ is the unique maximal ideal}$

Proof. "
$$\Rightarrow$$
": $\nu(x) = 0 \implies \nu(x^{-1}) = 0 \implies x^{-1} \in R$ " \Leftarrow ": Then $\nu(x^{-1}), \nu(x) \ge 0$, so $\nu(x) = -\nu(x) \le 0 \implies \nu(x) = 0$.

4. Let $t \in R$ with $\nu(t) = 1$, then $\mathfrak{m} = \langle t \rangle$. More over, each element $x \in \mathfrak{m}$ could be uniquely written as $x = t^k u$ where u is a unit.

Proof.
$$\forall x \in \mathfrak{m}, \nu(x) = k > 0$$
, so $\nu(x(t^k)^{-1}) = \nu(x) - k\nu(t) = 0 \implies x = t^k u$, where u is unit in R .

5. Let $I \subseteq \mathfrak{m}$ and define $m = \min\{l \in \mathbb{N} \mid x = t^l u, \forall x \in I\}$. Then $I = \langle t^m \rangle$.

Proof. " \subseteq ": Immediately by the previous statement. " \supseteq ": Let $x = t^m u$ be the one letting l = m, then $t^m = xu'$ for some u' since where u is a unit.

Prop 6.8.4. R is a DVR \iff R is 1-dimensional normal, Noetherian local integral domain.

Proof.

$$\text{``\Rightarrow":} \ \ DVR \Longrightarrow PID \bigotimes^{} UFD \Longrightarrow normal \\ Noetherian$$

Where UFD \implies normal by theorem 86.

Now if P is a prime ideal in R, then by 5. of proposition 6.8.3, $P = \langle t^k \rangle = \mathfrak{m}^k$ where \mathfrak{m} is the maximal ideal. Then $P = \sqrt{P} = \sqrt{\mathfrak{m}^k} = \mathfrak{m}$ since \mathfrak{m} maximal. Thus the only prime ideals are $\{0,\mathfrak{m}\}$ and thus R has dimension 1.

" \Leftarrow ": Let \mathfrak{m} be the unique maximal ideal. Then $\operatorname{Spec} R = \{0, \mathfrak{m}\}$. If $\mathfrak{m} = \mathfrak{m}^2$ then since $\operatorname{Jac} R = \mathfrak{m}$, $\mathfrak{m} = 0$ by Nakayama's lemma, so $\mathfrak{m}^2 \neq \mathfrak{m}$. Pick $t \in \mathfrak{m} \setminus \mathfrak{m}^2$. We claim that $\langle t \rangle = \mathfrak{m}$. If not, then $M \triangleq \mathfrak{m}/\langle t \rangle \neq 0$. See M as an R-module and consider $S \triangleq \{\operatorname{Ann}(\bar{x}) \mid \bar{x} \neq 0 \in M\}$. Since R Noetherian, there is a maximal element, say $I = \operatorname{Ann}(\bar{x})$.

We shall prove that I is prime. If not, then there are $ab \in I$ but $a, b \notin I$, which is to say that $ab\bar{x} = 0$ but $b\bar{x} \neq 0$. Notice the obvious fact $\mathrm{Ann}(\bar{x}) \subseteq \mathrm{Ann}(b\bar{x})$, but $b\bar{x} \neq 0$ and by the maximality

of $\operatorname{Ann}(\bar{x})$, $\operatorname{Ann}(\bar{x}) = \operatorname{Ann}(b\bar{x})$, then $a \in \operatorname{Ann}(b\bar{x}) = \operatorname{Ann}(\bar{x}) \implies ax = 0$, which is a contradiction, thus I is prime.

So, if $M \neq 0$, then we could pick \bar{x} such that $\mathrm{Ann}(\bar{x})$ is a prime, and thus $\mathrm{Ann}(\bar{x}) = \mathfrak{m}$. Now, $x\mathfrak{m} \subset \langle t \rangle = tR$, so $J \triangleq (x/t)\mathfrak{m} \subset R$ in the field of fractions.

- If J=R, then there exists $y \in \mathfrak{m}$ so that $xy/t=1 \implies t=xy \in \mathfrak{m}^2$, which is a contradiction to the definition of t.
- If $J \neq R$, then J is contained in the maximal ideal \mathfrak{m} , so $(x/t)\mathfrak{m} = \mathfrak{m}$. Since \mathfrak{m} is finitely generated, $\mathfrak{m} = \langle y_1, \ldots, y_k \rangle$. Then $(x/t)y_i = \sum a_{i,j}y_j$. Using the routine determinant trick, $f(x/t)m = 0, \forall m \in \mathfrak{m} \implies f(x/t) = 0$ for some monic polynomial $f \in R[x]$. Then x/t is integral over R. But then $x/t \in R$ since R normal, and thus $x \in Rt$, which contradicts how we picked x.

Thus $\mathfrak{m} = \langle t \rangle$ is principal. Now, by the exercise problem, $\bigcap_{n=0}^{\infty} \mathfrak{m}^n = 0$. So for each $x \in R$, there exists a unique k such that $x \in \mathfrak{m}^k$ but $x \notin \mathfrak{m}^{k+1}$. Write $x = t^k u$, then $u \notin \mathfrak{m}$ implies that u is a unit. One could easily see that this representation is actually unique.

Finally, define $\nu(x) = k$, one could easily check that this definition extends well to the field of fractions, so R is a DVR.

6.8.3 Dedekind domains

Def 128. A Dedekind domain is a Noetherian normal domain of dim 1.

Def 129. Let R be an integral domain and $K = \operatorname{Frac}(R)$. A nonzero R-submodule I of K is called a fractional ideal of R if $\exists 0 \neq a \in R$ s.t. $aI \subset R$.

Eg 6.8.1. If $I = \langle f_1, \dots, f_n \rangle_R$, a finitely generated R-module with $f_i = \frac{a_i}{b_i} \in K$, then $a = b_1 b_2 \cdots b_n$ and $aI \subset R \implies I$ is fractional.

In general, if R is a Noetherian, then every fractional ideal I of R is finitely generated.

Def 130. A fractional ideal I of R is invertible if $\exists J$: a fractional ideal of R s.t. IJ = R.

Prop 6.8.5.

1. If I is invertible, then $J = I^{-1}$ is unique and equal to $J = (R : I) \triangleq \{a \in K \mid aI \subset R\}$.

$$\textit{Proof. } J \subseteq (R:I) \subseteq (R:I) \\ R \subseteq (R:I) \\ IJ \subseteq R \\ J = J \implies J = (R:I) \\ \square$$

2. If I is invertible, then I is a finitely generated R-module.

Proof. If
$$I(R:I) = R$$
 then $1 = \sum_{i=0}^{k} x_i y_i$, for some $x_i \in I$ and $y_i \in (R:I)$. Then, $\forall x \in I$, $x = \sum_{i=0}^{k} \underbrace{(xy_i)}_{\in R} x_i$ Thus $I = \langle x_0, \dots, x_k \rangle_R$.

Prop 6.8.6. Let R be a local domain but not a field, $K = \operatorname{Frac}(R)$. Then R is a DVR \iff every nonzero fractional ideal I of R is invertible.

Proof. " \Rightarrow ": Let I be fractional ideal of R, then $\exists a \in R$ s.t. $aI \subseteq R$. Since R is a DVR which is not a field, the maximal ideal $\mathfrak{m} = \langle t \rangle$ for some $t \neq 0$. We know from proposition 6.8.3 that $a = t^k u$ where u is a unit in R.

- If aI = R, then let $J \triangleq \langle a \rangle_R$ and JI = R.
- If $aI \neq R$, then $aI = \langle t^l \rangle$ again since R is DVR. Then $I = \langle t^{l-k} \rangle$, let $J = \langle t^{k-l} \rangle$ and we have IJ = R.

" \Leftarrow ": First, for any $I \subset R$, which is obvious a fractional ideal, so I is invertible, and hence by proposition 6.8.5, I is finitely generated, thus R is Noetherian.

Let \mathfrak{m} be the unique maximal ideal, then if $\mathfrak{m}^2 = \mathfrak{m}$, since R Noetherian, by Nakayama's lemma, $\mathfrak{m} = 0$, which contradicts the fact that R is not a field.

Thus pick $t \in \mathfrak{m} \setminus \mathfrak{m}^2$. Consider $t\mathfrak{m}^{-1}$ which is in R since $t \in \mathfrak{m}$. If $t\mathfrak{m}^{-1} \subseteq \mathfrak{m}$, then $t\mathfrak{m}^{-1}\mathfrak{m} = tR \subseteq \mathfrak{m}^2 \implies t \in \mathfrak{m}^2$, which is a contradiction. So $t\mathfrak{m}^{-1} = R \implies tR = \mathfrak{m}$. Using the same construction ν in proposition 6.8.4, R is a DVR.

Theorem 93. Let R be an integral domain and $K = \operatorname{Frac}(R)$. TFAE

- (a) R is a Dedekind domain.
- (b) R is Noetherian and R_P is a DVR for all $P \in \operatorname{Spec} R$.
- (c) Every nonzero fractional ideal of R is invertible.
- (d) Every nonzero proper ideal of R can be written (uniquely) as a product of powers of prime ideals.

Proof.

- (a) \Leftrightarrow (b): Recall that R is a Dedekind domain if R is (1) Noetherian, (2) normal, (3) integral domain with (4) Dimension 1. And R_P is a DVR if it is a local Dedekind domain. All of these are guaranteed by proposition 6.6.1, where (4) is by the correspondence of prime ideals.
- (b) \Leftrightarrow (c): We need a small lemma:

Lemma 25. If I is finitely generated, then $(R_P:I_P)=(R:I)_P$.

Proof. Notice that I_P is then a finitely generated R_P -module, and thus by example 6.8.1 $(R_P:I_P)$ is a fractional ideal. Then $(R:I)_P=\{x\mid xI\subset R\}_P=\{x\mid xI_P\subset R_P\}=(R_P:I_P)$.

By corollary 6.6.1, we have

$$\forall P \in \operatorname{Spec} R, \ R_P = I_P(R_P : I_P) = I_P(R : I)_P = (I(R : I))_P \iff I(R : I) = R.$$

Then use prop 6.8.6, done.

 $(a)(b)(c) \Rightarrow (d)$:

Existence: Since R is Noetherian, $I = q_1 \cap \cdots \cap q_n = q_1 q_2 \cdots q_n$. Note that the intersection equals the product since if we let $P_i \triangleq \sqrt{q_i}$, then $P_i \in \operatorname{Spec} R$, and $P_i \neq 0$ is always maximal, so $P_i + P_j = R$, which implies $q_i + q_j = R$ (as in proposition 6.8.1).

Now, we shall prove that $q_i = P_i^{k_i}$ for some k_i . By (b), each R_{P_i} is a DVR, which has primary ideals of the form $\{\mathfrak{m}^k\}$. By proposition 6.6.1, primary ideals are correspondent in localization, so $(q_i)_{P_i} = \mathfrak{m}^k \iff q_i = P_i^k$. Thus $k_i = k$ is what we want. Then we could write $I = P_1^{k_1} \cdots P_n^{k_n}$.

Uniqueness: Actually, the factorization into product of invertible prime ideal is unique in any integral domain.

If $P_1P_2\cdots P_k=Q_1Q_2\cdots Q_r$, then $P_1P_2\cdots P_k=P_1\cap\cdots\cap P_k\in Q_1$, so there is one, say $P_1\subset Q_1$. Assume Q_1 is the minimal among Q_i . Similarly we could find $Q_i\subset P_1$. But then

 $Q_i \subseteq Q_1$. Since Q_i minimal, $Q_i = Q_1$. Now, since these ideals are invertible, $P_2P_3 \cdots P_k = Q_2Q_3 \cdots Q_r$. By induction, the proof is completed.

 $(d)\Rightarrow(c)$:

Lemma 26. Let P_i be fractional ideals. If $P_1P_2\cdots P_n=\langle a\rangle$ is principal, then P_i are invertible.

Proof.
$$P_i^{-1}$$
 is actually $a^{-1}P_1P_2\cdots P_{i-1}P_{i+1}\cdots P_n$.

First we prove that p is maximal if p is prime and invertible.

If not, let $p+aR=P_1\cdots P_k$ and $p+a^2R=Q_1\cdots Q_r$ with $a\notin p$. Since $P_i,Q_j\subset p$, passing to the quotient R/p, we have $\bar{a}=P_1\cdots P_k$, $\bar{a}^2=Q_1\cdots Q_r$. Using the uniqueness of factorization, which only requires R/p to be an integral domain (which is the case) and P_i,Q_j be invertible (by lemma above), by $\bar{a}^2=P_1^2\cdots P_k^2=Q_1\cdots Q_r$, we have 2k=r and we could assume $Q_{2i-1}=Q_{2i}=P_i$. This shows that $p+a^2R=(p+aR)^2\subseteq p^2+aR$. So $p\subseteq p+a^2R\subseteq p^2+aR$. Now, if $x\in p$, x=y+az for some $y\in p^2$, $z\in R$. Then $az=x-y\in p$ but $a\notin p$, so $z\in p$. Thus we could refine the relation to $p\subseteq p^2+ap$. But then $p\subseteq p(p+aR)$, since p invertible, $R\subseteq p+aR$ which implies that p+aR=R. Thus p is maximal.

Now, we show that every prime ideal p is invertible. By assumption, let $a \in p$, then $Ra = P_1 \cdots P_k$, so by the lemma above, each P_i is invertible and thus maximal by the previous paragraph. Then $P_1 \cdots P_k \subset p$, so again $P_i \subset p$, which implies $P_i = p$. Thus p is invertible.

Finally, since each ideal is the product of prime ideals, and we've just prove that priome ideals are invertible, any ideal are invertible. For a fractional ideal I, $aI \subseteq R \implies \exists J$, $aIJ = R \implies I(aJ) = R$, which is to say that I is invertible.

7 Introduction to Homological Algebra

7.1 Projective, Injective and Flat modules (week 14)

Def 131.

- $M \in \mathbf{Mod}_R$ is **projective** if $\mathrm{Hom}(M,\cdot)$ preserves the *right* exactness.
- $N \in \mathbf{Mod}_R$ is **injective** if $\mathrm{Hom}(\cdot, N)$ preserves the *right* exactness.
- $M \in \mathbf{Mod}_R$ is flat if $M \otimes \cdot$ preserves the *left* exactness.

Fact 7.1.1.

 $\bullet \ \ M \ \text{is projective} \iff \underbrace{\begin{array}{c} \exists \ \tilde{f} \\ \downarrow f \\ M_2 \longrightarrow M_3 \longrightarrow 0 \\ 0 \longrightarrow M_1 \longrightarrow M_2 \\ \\ \bullet \ \ N \ \text{is injective} \iff \underbrace{\begin{array}{c} M \\ M_2 \longrightarrow M_3 \longrightarrow 0 \\ 0 \longrightarrow M_1 \longrightarrow M_2 \\ \\ g \downarrow \\ N \end{array}}_{\exists \ \tilde{g}}$

• free \Longrightarrow projective: If $X = \{x_i \mid i \in \Lambda\}$ and $f : x_i \mapsto a_i$. Since β onto, exists b_i so that $\beta(b_i) = a_i$. we can then set $\tilde{f} : x_i \mapsto b_i$ by the universal property of free module.

$$F(X)$$

$$\downarrow^{\tilde{f}} \qquad \downarrow^{f}$$

$$M_2 \xrightarrow{\beta} M_3 \longrightarrow 0$$

• free \Longrightarrow flat: Let $F \cong R^{\oplus \Lambda}$ be a free module, and M_1, M_2 be two modules such that $0 \to M_1 \to M_2$. Since $R \otimes_R M \cong M$, we have

$$0 \to M_1 \to M_2 \qquad \text{exact}$$

$$\Longrightarrow 0 \to R \otimes M_1 \to R \otimes M_2 \qquad \text{exact}$$

$$\Longrightarrow 0 \to \bigoplus_{i \in \Lambda} R \otimes M_1 \to \bigoplus_{i \in \Lambda} R \otimes M_2 \quad \text{exact}$$

$$\stackrel{(a)}{\Longrightarrow} 0 \to R^{\oplus \Lambda} \otimes M_1 \to R^{\oplus \Lambda} \otimes M_2 \qquad \text{exact}$$

$$\Longrightarrow 0 \to F \otimes M_1 \to F \otimes M_2 \qquad \text{exact}$$

Where (a) is by the fact that $(A \oplus B) \otimes C \cong (A \otimes C) \oplus (B \otimes C)$. Thus F flat.

• If S is a multiplication closed set in R with $1 \in S$, then

$$0 \to M \to N \to L \to 0 \implies 0 \to M_S \to N_S \to L_S \to 0.$$

We know that $M_S \cong R_S \otimes_R M$. So R_S is a flat R-module. e.g. \mathbb{Q} is a flat \mathbb{Z} -module.

For any $M \in \mathbf{Mod}_R$, a projective module N such that $N \to M \to 0$ could be easily found: Simply let N = F, a free module on the generating set of M.

Now we shall ask for any module M, does there exist $N \in \mathbf{Mod}_R$ such that N is injective and $0 \to M \to N$?

Theorem 94 (Baer's criterion). N is injective $\iff \forall I \subset R$, and a homomorphism f, there exists a homomorphism h such that the following diagram commutes:

$$0 \longrightarrow I \longrightarrow R$$

$$f \downarrow \qquad \qquad \downarrow \\ N$$

Proof. " \Rightarrow ": See I as an R module, then it is obvious by the definition of injective module.

"⇐: Consider the following diagram:

$$0 \longrightarrow M_1 \longrightarrow M_2$$

$$\downarrow^g$$

$$N$$

Let $S \triangleq \{(M, \rho) \mid M_1 \subseteq M \subseteq M_2 \text{ and } \rho : M \to N \text{ extends } g\} \neq \emptyset \text{ since } (M_1, g) \in S.$

By the routinely proof using Zorn's lemma, exists a maximal element $(M^*, \mu) \in S$.

We claim that $M^* = M_2$. If not, pick $a \in M_2 \setminus M^*$ and let $M' \triangleq M^* + Ra \supseteq M^*$, $I \triangleq \{r \in R \mid ra \in M^*\}$. Define $f: I \to N$ with $r \mapsto \mu(ra)$. Then we have an extension $h: R \to N$ of f.

Now, let $\mu': M' \to N = x + ra \mapsto \mu(x) + h(r)$. We shall prove that this map is well-defined: If $x_1 + r_1a = x_2 + r_2a$, then $(r_1 - r_2)a = x_2 - x_1 \in M \implies r_1 - r_2 \in I$. So $h(r_1) - h(r_2) = f(r_1 - r_2) = \mu((r_1 - r_2)a) = \mu(x_2) - \mu(x_1)$, which prove μ' is well defined, and the existence of μ' contradicts the fact that (M^*, μ) is maximal.

Def 132. M is **divisible** if $\forall x \in M, r \in R \setminus \{0\}$, there exists $y \in M$ such that x = ry, i.e. $rM = M \quad \forall r \in R \setminus \{0\}$.

Prop 7.1.1.

1. Every injective module N over an integral domain is divisible.

Proof. For any $x_0 \in N$ and $r_0 \in R \setminus \{0\}$. Let $I = \langle r_0 \rangle \subset R$. As long as R is an integral domain, $I \cong R$ as an R-module, so the R-module homomorphism $f: I \to N = rr_0 \mapsto rx_0$ is well-defined. Since N injective, this map extends to $h: R \to N$. Let $y_0 \triangleq h(1)$, then $r_0y_0 = r_0h(1) = h(r_0) = x_0$. Thus N injective.

2. Every divisible module N over an PID is injective.

Proof. For any $I \subseteq R$ and a homomorphism $f: I \to N$, if I = 0 then $h = x \mapsto 0$ is always an extension of f. So assume $I \neq 0$. Since R is a PID, $I = \langle r_0 \rangle$ for some $r_0 \neq 0 \in R$. By the fact that N divisible, exists $y_0 \in N$ such that $r_0 y_0 = x_0 \triangleq f(r_0)$.

Now we could define $h: R \to N$ by $1 \mapsto y_0$. Then $h(r_0) = r_0 h(1) = r_0 y_0 = x_0$, thus h is an extension of f and N injective.

3. If R is a PID, then any quotient N of a injective R-module M is injective.

Proof. By 2., rM = M for any $r \neq 0$, thus rN = N for any $r \neq 0$, and hence N injective. \square

Theorem 95. For any $M \in \mathbf{Mod}_R$, there exists an injective module N containing M.

Proof.

Case 1: $R = \mathbb{Z}$.

Let $X = \{x_i\}_{i \in \Lambda}$ be a generating set for M and F is free on X. Let f be the natural map from F to M, then $M \cong F/\ker f$.

Define $F' = \bigoplus_{i \in \Lambda} \mathbb{Q}e_i \supset F$, which is obviously a divisible \mathbb{Z} -module. Then $M \subseteq F' / \ker f \triangleq M'$, where M' is injective by proposition 7.1.1.

Case 2: R arbitrary.

We can regard any M as a \mathbb{Z} -module, then there exists an injective module $N_0 \supset M$. Now, we have an R-module $N \triangleq \operatorname{Hom}_{\mathbb{Z}}(R, N_0)$ with multiplication $rf \triangleq x \mapsto f(xr)$.

We claim that N is injective. For any $f: M_1 \to N$, and a homomorphism $\alpha: M_1 \to M_2$, first we can regard α as a \mathbb{Z} -module homomorphism, then we define $f': M_1 \to N_0$ as $x \mapsto f(x)(1)$. Since N_0 injective (in $\mathbf{Mod}_{\mathbb{Z}}$), there exists a \mathbb{Z} -module homomorphism h' from M_2 to N_0 .

Now, define

$$h: M_2 \longrightarrow N$$

$$y \longmapsto h(y): R \longrightarrow N_0$$

$$1 \longmapsto h'(y)$$

$$r \longmapsto h'(ry)$$

We check that h is well-defined.

- $h(y) \in \text{Hom}_{\mathbb{Z}}(R, N_0)$ $h(y)(r_1 + r_2) = h'((r_1 + r_2)y) = h'(r_1y + r_2y) = h'(r_1y) + h'(r_2y) = h(y)(r_1) + h(y)(r_1)$
- $h \in \operatorname{Hom}_R(M_2, N)$

$$h(r_1y_1 + y_2)(r) = h'(r(r_1y_1 + y_2)) = h'(rr_1y_1 + ry_2)$$

$$= h'(rr_1y_1) + h'(ry_2)$$

$$= h(y)(rr_1) + h(y_2)(r)$$

$$= (r_1h(y))(r) + h(y_2)(r)$$

• Show diagram commute $f = h \circ \alpha$. Fix $y \in M_1$, then $\forall r \in R$:

$$(h \circ \alpha)(y)(r) = h(\alpha(y))(r) = h'(r\alpha(y))$$
$$= h'(\alpha(ry)) = f'(ry)$$
$$= f(ry)(1) = rf(y)(1)$$
$$= f(y)(r)$$

Thus N injective.

Now, notice that $\operatorname{Hom}_{\mathbb{Z}}(R,\cdot)$ is a left exact functor, so $M \hookrightarrow N_0$ implies $\operatorname{Hom}_{\mathbb{Z}}(R,M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R,N_0)$, thus $M \cong \operatorname{Hom}_R(R,M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R,M) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(R,N_0) = N$.

Prop 7.1.2. TFAE

- 1. M is projective.
- 2. Every exact sequence $0 \to M_1 \to M_2 \to M \to 0$ split.

3. $\exists M'$ s.t. $M \oplus M' \cong F$: free.

Proof.

 $(1) \Rightarrow (2)$: Since M projective, the map λ with $\beta \circ \lambda = \text{Id}$ exists in the following diagram:

$$M_2 \xrightarrow{\exists \lambda \qquad \qquad \downarrow \text{Id}} M \longrightarrow 0$$

Then λ is a lifting, so $M_2 \cong M_1 \oplus M$ and $0 \to M_1 \to M_2 \to M \to 0$ split.

(2) \Rightarrow (3): Let F be a free module on a generating set of M, and β :: $F \to M$ be the natural map, then $0 \to \ker \beta \to F \to M \to 0$ split, so $F \cong \ker \beta \oplus M$.

(3) \Rightarrow (1): For any $M_2 \to M_3 \to 0$, since $M' \oplus M$ free and thus projective, λ' exists in the following diagram:

$$0 \longrightarrow M' \longrightarrow M' \oplus M \xrightarrow{\mu} M \longrightarrow 0$$

$$\downarrow^{\exists \lambda'} \qquad \downarrow^{f}$$

$$M_{2} \xrightarrow{\beta} M_{3} \longrightarrow 0$$

Define $\lambda = \lambda' \circ \mu$. Then $\beta \circ \lambda = \beta \circ \lambda' \circ \mu = f \circ \pi \circ \mu = f$.

Prop 7.1.3. TFAE

- 1. *M* is injective.
- 2. Each exact sequence $0 \to M \to M_2 \to M_3 \to 0$ split.

Proof. (1) \Rightarrow (2): Similar to the projective case, μ exists in the following diagram:

$$0 \longrightarrow M \xrightarrow{\alpha} M_2$$

$$\downarrow^{\operatorname{Id}}_{\mathbb{K}} \exists \mu$$

$$M$$

So $M_2 = M \oplus M_3$.

 $(2) \Rightarrow (1)$: By theorem 95, there is a module $N \subset M$ so that N is injective.

Consider $0 \longrightarrow M \xleftarrow{i}_{\exists \mu} N \longrightarrow \operatorname{coker} i \longrightarrow 0$ split exact and $\mu \circ i = \operatorname{Id}_M$. Since N injective, h' exists in the following diagram:

Let $h = \mu \circ h'$, then $h \circ \alpha = \mu \circ h' \circ \alpha = \mu \circ i \circ f = f$.

Prop 7.1.4. projective \implies flat.

Proof. Observe that $\bigoplus_{i \in \Lambda} M_i$ is flat if and only if M_i is flat for each i, since if $0 \to N_1 \xrightarrow{\alpha} N_2$ exact, then

$$0 \longrightarrow (\bigoplus M_i) \otimes N_1 \xrightarrow{1 \otimes \alpha} (\bigoplus M_i) \otimes N_2$$

$$\parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \bigoplus (M_i \otimes N_1) \xrightarrow{\oplus (1 \otimes \alpha)} \bigoplus (M_i \otimes N_2)$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow M_i \otimes N_1 \xrightarrow{1 \otimes \alpha} M_i \otimes N_2 \qquad \forall i \in \Lambda$$

If M is projective, then by proposition 7.1.2 $\exists M'$ such that $M \oplus M' \cong F$ is free. Since free implies flat, by above, M is flat.

Def 133.

• A chain complex C_{\bullet} of R-modules is a sequence and maps:

$$C_{\bullet}: \cdots \to C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \to \cdots \to C_1 \xrightarrow{d_1} C_0 \to 0$$

with $d_n \circ d_{n+1} = 0$, $\forall n$. (i.e. $\operatorname{Im} d_{n+1} \subseteq \ker d_n$)

Then define

- $-Z_n(C_{\bullet}) \triangleq \ker d_n$ is the *n*-cycle.
- $-B_n(C_{\bullet}) \triangleq \operatorname{Im} d_{n+1}$ is the *n*-boundary.
- $-H_n(C_{\bullet}) \triangleq Z_n(C_{\bullet})/B_n(C_{\bullet})$ is called the *n*-th homology.
- A cochain complex C^{\bullet} of R-modules is a sequence and maps:

$$C^{\bullet}: 0 \to C^0 \xrightarrow{d^1} C^1 \to \cdots \to C^{n-1} \xrightarrow{d^n} C^n \xrightarrow{d^{n+1}} C^{n+1} \to \cdots$$

with $d^{n+1} \circ d^n = 0$, $\forall n$. (i.e. Im $d^n \subseteq \ker d^{n+1}$)

Then define

- $-Z^n(C^{\bullet}) \triangleq \ker d^{n+1}$ is the *n*-cocycle.
- $-B^n(C^{\bullet}) \triangleq \operatorname{Im} d^n$ is the *n*-coboundary.
- $-H^n(C^{\bullet}) \triangleq Z^n(C^{\bullet})/B^n(C^{\bullet})$ is called the *n*-th cohomology.
- $\varphi: C_{\bullet} \to \tilde{C}_{\bullet}$ is a chain map if the following diagram commutes:

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots$$

$$\downarrow^{\varphi_{n+1}} \qquad \downarrow^{\varphi_n} \qquad \downarrow^{\varphi_{n-1}}$$

$$\cdots \longrightarrow \tilde{C}_{n+1} \xrightarrow{\tilde{d}_{n+1}} \tilde{C}_n \xrightarrow{\tilde{d}_n} \tilde{C}_{n-1} \longrightarrow \cdots$$

Observe that $\varphi_n(\ker d_n) \subseteq \ker \tilde{d}_n$ and $\varphi_n(\operatorname{Im} d_{n+1}) \subseteq \operatorname{Im} \tilde{d}_{n+1}$. This will induce the following maps:

$$\varphi_*: H_n(C_{\bullet}) \to H_n(\tilde{C}_{\bullet})$$

 $x + B_n(C_{\bullet}) \mapsto \varphi_n(x) + B_n(\tilde{C}_{\bullet})$

• $f: C_{\bullet} \to \tilde{C}_{\bullet}$ is null homotopic if $\exists s_n: C_n \to \tilde{C}_{n+1}$ s.t. $f_n = \tilde{d}_{n+1} \circ s_n + s_{n-1} \circ d_n, \quad \forall n$.

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots$$

$$\downarrow^{f_{n+1}} \underset{s_n}{\downarrow^{g_n}} \downarrow^{f_n} \underset{s_{n-1}}{\downarrow^{f_{n-1}}} \downarrow^{f_{n-1}}$$

$$\cdots \longrightarrow \tilde{C}_{n+1} \xrightarrow{d_{n+1}} \tilde{C}_n \xrightarrow{d_n} \tilde{C}_{n-1} \longrightarrow \cdots$$

Prop 7.1.5. If f is null homotopic, then $f_* = 0$.

Proof.
$$f_*(x) = \tilde{d}_{n+1}s_n(x) + s_{n-1}d_n(x) = \tilde{d}_{n+1}s_n(x) \in B_n(\tilde{C}_{\bullet}) \implies f_*(\bar{x}) = 0.$$

- Two chain map $f, g: C_{\bullet} \to \tilde{C}_{\bullet}$ are homotopic if f-g is null homotopic. $(f_* = g_*)$
- Let $M \in \mathbf{Mod}_R$. A projection resolution of M is an exact sequence:

$$\cdots \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\alpha} M \to 0$$

where P_i is projective for all i.

For any M, projection resolution always exists. Let P_0 be a free module on the generators of M. We get $P_0 \xrightarrow{\alpha} M \to 0$. Similarly, let P_1 be free on $\ker \alpha$, then we could extend the map to $P_1 \to P_0 \to M \to 0$. Continue the process we would get a diagram as below, where K_i are the kernels:

Theorem 96 (Comparison theorem). Given two chain as following:

$$\cdots \longrightarrow P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\alpha} M \longrightarrow 0 \qquad \text{(projective resolution)}$$

$$\downarrow \exists f_2 \qquad \downarrow \exists f_1 \qquad \downarrow \exists f_0 \qquad \downarrow f$$

$$\cdots \longrightarrow \tilde{C}_2 \xrightarrow{d'_2} \tilde{C}_1 \xrightarrow{d'_1} \tilde{C}_0 \xrightarrow{\alpha'} N \longrightarrow 0 \qquad \text{(exact sequence)}$$

Then $\exists f_i : P_i \to C_i$ s.t. $\{f_i\}$ forms a chain map making the completed diagram commutes. And any two such chain maps are homotopic.

Proof. Using induction on n.

For n = 0, the existence of f_0 is guaranteed by the definition of projective module.

$$P_0$$

$$\downarrow f \circ \alpha$$

$$C_0 \longrightarrow N \longrightarrow 0$$

For n > 0, we claim that $f_{n-1}d_n(P_n) \subseteq \operatorname{Im} d'_n$, since $d'_{n-1}f_{n-1}d_n(x) = f_{n-2}d_{n-1}d_n(x) = 0$ and by the fact that C is exact, $f_{n-1}d_n(x) \in \ker d'_{n-1} = \operatorname{Im} d'_n$. So using the diagram and again by the definition of projective module, f_n exists.

$$\begin{array}{ccc}
P_n \\
\downarrow f_{n-1} \circ d_n \\
C_n & \longrightarrow \operatorname{Im} d'_n & \longrightarrow
\end{array}$$

Now, for another chain map $\{g_i: P_i \to C_i\}$, we shall construct suitable $\{s_n\}$ to prove they are homotopic. For $s_{-1}: M \to C_0$ we could simply pick the zero map. Again, if we could prove that $\operatorname{Im}(g_n - f_n - s_{n-1}d_n) \subset \ker d'_n$, then by the definition of projective module, we would obtain s_n with

$$d_{n+1}s_n = g_n - f_n - s_{n-1}d_n \implies g_n - f_n = d_{n+1}s_n + s_{n-1}d_n$$

immediately. For this we calculate $d'_n(g_n - f_n - s_{n-1}d_n) = g_{n-1}d_n - f_{n-1}d_n - d'_ns_{n-1}d_n$. Notice that $d'_ns_{n-1} = g_{n-1} - f_{n-1} - s_{n-2}d_{n-1}$, and with $d_{n-1}d_n = 0$, we get $d'_n(g_n - f_n - s_{n-1}d_n) = 0$. \square

Def 134. Let $M \in \mathbf{Mod}_R$ and $\cdots \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\alpha} M \to 0$ be a projective resolution of M. Fix $N \in \mathbf{Mod}_R$. Applying $\mathrm{Hom}_R(\cdot, N)$ will get a complex:

$$0 \to \operatorname{Hom}_R(M,N) \xrightarrow{\bar{\alpha}} \operatorname{Hom}_R(P_0,N) \xrightarrow{\bar{d}_1} \operatorname{Hom}_R(P_1,N) \to \cdots$$

Define

- $\operatorname{Ext}_R^0(M,N) = \ker \bar{d}_1 = \operatorname{Im} \bar{\alpha} \cong \operatorname{Hom}_R(M,N).$
- $\operatorname{Ext}_{R}^{n}(M, N) = H^{n}(\operatorname{Hom}(P_{\bullet}, N)), \quad \forall n \geq 1.$

Theorem 97 (Indenpedency of the choice of projective resolutions). $\operatorname{Ext}^n(M,N)$ is independent of the choice of the projective resolution used.

Proof. First, consider two projective resolutions of M, \tilde{M} , and map $f: M \to \tilde{M}$, and two liftings $\{f_i\}, \{g_i\}$. Use $\bar{}$ to denote the natural transformation from $X \to Y$ to $\text{Hom}(Y, N) \to \text{Hom}(X, N)$ by $\bar{f} \triangleq g \mapsto g \circ f$. Then we shall prove that $\bar{f_{\bullet}}^* = \bar{g_{\bullet}}^*$, which is to say $\bar{f_{\bullet}}^*$ is independent of the lifting used.

By comparison theorem (96), $\{f_i\}, \{g_i\}$ are homotopic, and we could write down the diagram below:

$$\cdots \longrightarrow P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\alpha} M \longrightarrow 0$$

$$\downarrow f_2 \downarrow g_2 \qquad \downarrow f_1 \downarrow g_1 \qquad \downarrow f_0 \downarrow g_0 \qquad \downarrow f$$

$$\cdots \longrightarrow \tilde{P}_2 \xrightarrow{\tilde{d}_2} \tilde{P}_1 \xrightarrow{\tilde{d}_1} \tilde{P}_0 \xrightarrow{\tilde{\alpha}} \tilde{M} \longrightarrow 0$$

Notice that \bar{f} act linearly, that is, $\overline{f+g} = \bar{f} + \bar{g}$, and $\overline{fg} = \bar{g}\bar{f}$. So we have

$$g_n - f_n = s_{n-1}d_n + \tilde{d}_{n+1}s_n \implies \bar{g}_n - \bar{f}_n = \bar{d}_n\bar{s}_{n-1} + \bar{s}_n\bar{d}_{n+1}$$

and \bar{f}_n, \bar{g}_n are homotopic. Thus by proposition 7.1.5, $\bar{f}_{\bullet}^* = \bar{g}_{\bullet}^*$.

Now, let $P_{\bullet}, P'_{\bullet}$ be two projective resolutions. Consider the diagram:

$$\begin{array}{cccc}
& \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0 \\
& & \operatorname{Id} \left\langle \downarrow f_1 & \operatorname{Id} \left\langle \downarrow f_0 & \downarrow \operatorname{Id} \right. \\
& \cdots \longrightarrow P'_1 \longrightarrow P'_0 \longrightarrow M \longrightarrow 0 \\
& & \downarrow g_0 & \downarrow \operatorname{Id} \\
& \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0
\end{array}$$

Then $g_i \circ f_i$ and Id are two liftings, and thus by previous we have $\bar{g}_i^* \circ \bar{f}_i^* = \text{Id}^*$. By symmetry, $\bar{f}_i^* \circ \bar{g}_i^* = \text{Id}^*$, which means that the homology calculated using different resolution are isomorphic.

Theorem 98 (Horseshoe Lemma). Given $0 \to L \to M \to N \to 0$ and projective resolutions $P_{\bullet} \to L \to 0$, $\tilde{P}_{\bullet} \to N \to 0$. Then there is a projective resolution for M such that the following

diagram commutes:

Proof. Let $\bar{P}_n \triangleq P_n \oplus \tilde{P}_n$. \bar{P}_n is projective by the fact that direct sum of projective modules are projective. Also $0 \to P_n \to P_n \oplus \tilde{P}_n \to \tilde{P}_n \to 0$ by injection and projection. It remains to show that the maps in the middle column exists.

Consider the following diagram:

 σ exists because \tilde{P}_0 is projective. Define

$$\bar{\alpha}: P_0 \oplus \tilde{P}_0 \longrightarrow M$$

$$(z,y) \longmapsto f \circ \alpha(z) + \sigma(y)$$

It easy to see that $\bar{\alpha}$ let the diagram commutes. So we show that $P_0 \oplus \tilde{P}_0 \xrightarrow{\bar{\alpha}} M \to 0$:

For any $x \in M$, consider $g(x) \in N$. Since $\tilde{P}_0 \xrightarrow{\tilde{\alpha}} N \to 0$, there exists $y \in \tilde{P}_0$ such that $\tilde{\alpha}(y) = g(x) \implies g \circ \sigma(y) = g(x)$. Then $x - \sigma(y) = \ker g = \operatorname{Im} f$, so there exists $w \in L$ such that $f(w) + \sigma(y) = x$. Now, since $P_0 \xrightarrow{\alpha} L \to 0$, there exists $z \in P_0$ such that $\alpha(z) = w$. Then we have $\bar{\alpha}(z,y) = x$. So $P_0 \oplus \tilde{P}_0 \xrightarrow{\bar{\alpha}} M \to 0$.

By induction on n, but we use $\ker d_{n-1}$, $\ker \bar{d}_{n-1}$, $\ker \tilde{d}_{n-1}$ to replace L, M, N ($d_{-1} = \alpha$ and so on). Then we are done.

Theorem 99 (Long exact sequence for Ext). If $0 \to L \to M \to N \to 0$ exact, then there is a long exact sequence:

$$0 \to \operatorname{Hom}(N,K) \to \operatorname{Hom}(M,K) \to \operatorname{Hom}(L,K)$$

$$\to \operatorname{Ext}^1(N,K) \to \operatorname{Ext}^1(M,K) \to \operatorname{Ext}^1(L,K) \to \operatorname{Ext}^2(N,K) \to \dots$$

Proof. Taking $\operatorname{Hom}(-,K)$ in the diagram of Horseshoe' lemma (98) and delete the first row, we get

Notice that $\operatorname{Hom}(M \oplus N, K) \cong \operatorname{Hom}(M, K) \oplus \operatorname{Hom}(N, K)$, so each row is indeed exact.

By exercise 14.7, the long exact sequence in the statement exists. (one can check the kernels of the first row are indeed Hom(N,K), Hom(M,K), Hom(L,K).)

7.2 Ext and Tor (week 15)

Given $M, N \in \mathbf{Mod}_R$, there are two ways to define $\mathrm{Ext}^n(M, N)$:

Def 135 (Ext functor).

- Find any projective resolution $P_{\bullet} \xrightarrow{\alpha} M \to 0$, and let $P_M : P_{\bullet} \to 0$ (called a deleted resolution). We can define $\operatorname{Ext}^n_{\operatorname{proj}}(M,N) = H^n(\operatorname{Hom}(P_M,N))$.
- Find any injective resolution $0 \xrightarrow{\alpha} N \to E^{\bullet}$, and let $E_N : 0 \to E^{\bullet}$. We can define $\operatorname{Ext}_{\operatorname{inj}}^n(M,N) = H^n(\operatorname{Hom}(M,E_N))$.

Prop 7.2.1. $\operatorname{Ext}^0_{\operatorname{proj}}(M,N) \cong \operatorname{Ext}^0_{\operatorname{inj}}(M,N) \cong \operatorname{Hom}(M,N).$

Proof.

$$\operatorname{Hom}(P_M,N): 0 \xrightarrow{\overline{d_0}} \operatorname{Hom}(P_0,N) \xrightarrow{\overline{d_1}} \operatorname{Hom}(P_1,N) \to \cdots$$
so $\operatorname{Ext}^0_{\operatorname{proj}}(M,N) = \ker \overline{d_1} / \operatorname{im} \overline{d_0} = \ker \overline{d_1} = \operatorname{im} \alpha = \operatorname{Hom}(M,N).$

Similarly, $\operatorname{Ext}_{\operatorname{inj}}^0(M, N) = \operatorname{Hom}(M, N)$.

Lemma 27.

- If M is projective, then $\operatorname{Ext}_{\operatorname{proj}}^n(M,N)=0$ for all $n>0, N\in\operatorname{\mathbf{Mod}}_R$.
- If N is injective, then $\operatorname{Ext}_{\operatorname{inj}}^n(M,N)=0$ for all $n>0, M\in\operatorname{\mathbf{Mod}}_R.$

Proof. If M is projective, then $0 \to M \xrightarrow{\mathbf{1}_M} M \to 0$ is a projective resolution of M. Its deleted resolution is then $P_M: 0 \to M \to 0$. Hence for n > 0, $\operatorname{Ext}^n_{\operatorname{proj}}(M, N) = H^n(\operatorname{Hom}(P_M, N)) = 0$.

The argument applies similarly to injective case.

Theorem 100 (Equivalence of Ext_{proj} and Ext_{inj}).

$$\operatorname{Ext}^n_{\operatorname{proj}}(M,N) \cong \operatorname{Ext}^n_{\operatorname{inj}}(M,N).$$

Proof. Let $P_{\bullet} \to M \to 0$ and $0 \to N \to E^{\bullet}$ be projective and injective resolutions, then we have $0 \to K_0 \to P_0 \to M \to 0$ and $0 \to N \to E^0 \to L^1 \to 0$ exact.

We can construct long exact sequences of homology of $\operatorname{Hom}(\cdot, E_N)$:

$$0 \to \operatorname{Hom}(M,N) \to \operatorname{Hom}(M,E^0) \to \operatorname{Hom}(M,L^1) \to \operatorname{Ext}^1_{\operatorname{inj}}(M,N) \to \operatorname{Ext}^1_{\operatorname{inj}}(M,E^0) = 0$$

$$0 \to \operatorname{Hom}(P_0,N) \to \operatorname{Hom}(P_0,E^0) \to \operatorname{Hom}(P_0,L^1) \to 0$$

$$0 \to \operatorname{Hom}(K_0,N) \to \operatorname{Hom}(K_0,E^0) \to \operatorname{Hom}(K_0,L^1) \to \operatorname{Ext}^1_{\operatorname{inj}}(K_0,N) \to \operatorname{Ext}^1_{\operatorname{inj}}(K_0,E^0) = 0$$

The second sequence is short because P_0 is projective (so $\text{Hom}(P_0,\cdot)$ preserves exactness). Similarly, for $\text{Hom}(P_M,\cdot)$ we have:

$$0 \to \operatorname{Hom}(M,N) \to \operatorname{Hom}(P_0,N) \to \operatorname{Hom}(K_0,N) \to \operatorname{Ext}^1_{\operatorname{proj}}(M,N) \to \operatorname{Ext}^1_{\operatorname{proj}}(P_0,N) = 0$$

$$0 \to \operatorname{Hom}(M, E^0) \to \operatorname{Hom}(P_0, E^0) \to \operatorname{Hom}(K_0, E^0) \to 0$$
$$0 \to \operatorname{Hom}(M, L^1) \to \operatorname{Hom}(P_0, L^1) \to \operatorname{Hom}(K_0, L^1) \to \operatorname{Ext}^1_{\operatorname{proj}}(M, L^1) \to \operatorname{Ext}^1_{\operatorname{proj}}(P_0, L^1) = 0$$

Combining these sequences together, we got the following 2D diagram:

By Snake lemma, there is an exact sequence

$$(\ker \alpha \to) \ker \beta \to \ker \gamma \to \operatorname{coker} \alpha \to \operatorname{coker} \beta (\to \operatorname{coker} \gamma)$$

and this reads

$$\operatorname{Hom}(M, E^0) \xrightarrow{\phi} \operatorname{Hom}(M, L^1) \to \operatorname{Ext}^1_{\operatorname{proj}}(M, N) \to 0$$

Thus $\operatorname{Ext}^1_{\operatorname{proj}}(M,N) \cong \operatorname{coker} \phi \cong \operatorname{Ext}^1_{\operatorname{inj}}(M,N)$. (From now on, we don't need to distinguish proj/inj for Ext^1 !)

Since σ is onto, im $\gamma = \operatorname{im}(\gamma \circ \sigma)$. Similarly, im $\tau = \operatorname{im}(\tau \circ \beta)$.

By the commutativity of the diagram, im $\gamma = \text{im } \tau$, so

$$\operatorname{Ext}^1(K_0, N) \cong \operatorname{coker} \gamma = \operatorname{Hom}(K_0, L^1) / \operatorname{im} \gamma \cong \operatorname{coker} \tau \cong \operatorname{Ext}^1(M, L^1).$$

Write $K_{-1} := M, L^0 := N$, then $\operatorname{Ext}^1(K_0, L^0) = \operatorname{Ext}^1(K_{-1}, L^1)$ (*).

Similarly, from the exact sequences

$$0 \to K_i \to P_i \to K_{i-1} \to 0$$

$$0 \to L^i \to E^i \to L^{i+1} \to 0$$

, we can obtain $\operatorname{Ext}^1(K_i, L^i) \cong \operatorname{Ext}^1(K_{i-1}, L^{i+1})$ for $i, j \geq 0$.

Now, observe that

$$0 \to L^{n-1} \to E^{n-1} \xrightarrow{d_{n-1}} E^n \xrightarrow{d_n} \cdots$$

is an injective resolution of L^{n-1} , and $\operatorname{Ext}^1(M, L^{n-1}) \cong \ker \overline{d_n} / \operatorname{im} \overline{d_{n-1}} \cong \operatorname{Ext}^n_{\operatorname{inj}}(M, N)$. Similarly, for projective resolution we have $\operatorname{Ext}^1(K_{n-2}, N) \cong \operatorname{Ext}^n_{\operatorname{proj}}(M, N)$. Finally, by (\star) ,

$$\operatorname{Ext}_{\operatorname{inj}}^n(M,N) \cong \operatorname{Ext}^1(K_{-1},L^{n-1}) \cong \operatorname{Ext}^1(K_0,L^{n-2}) \cong \cdots \cong \operatorname{Ext}^1(K_{n-2},L^0) \cong \operatorname{Ext}_{\operatorname{proj}}^n(M,N).$$

Def 136 (Tor functor). Let $M, N \in \mathbf{Mod}_R$, and $P_{\bullet} \to M \to 0$ be a projective resolution of M, similar to the Ext case, for $n \ge 0$ we can define

$$\operatorname{Tor}_n(M,N) = H_n(P_M \otimes N).$$

Fact 7.2.1. By Horseshoe lemma, short exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$ induces a long exact sequence:

$$\cdots \to \operatorname{Tor}_1(M_1, N) \to \operatorname{Tor}_1(M_2, N) \to \operatorname{Tor}_1(M_3, N) \to M_1 \otimes N \to M_2 \otimes N \to M_3 \otimes N \to 0$$

Prop 7.2.2. If M is flat, then $\operatorname{Tor}_n(M,N)=0$ for $n>0, N\in\operatorname{\mathbf{Mod}}_R$.

Proof. M is flat $\Longrightarrow M \otimes \cdot$ is an exact functor. If $Q_{\bullet} \to N \to 0$ is a projective resolution of N, then $\cdots \to M \otimes Q_1 \to M \otimes Q_0 \to M \otimes N \to 0$ is also exact. By Exercise 15-1, we have

$$\operatorname{Tor}_n(M,N) \cong H_n(M \otimes Q_N) = 0.$$

Theorem 101 (Tor for flat resolutions). Let $U_{\bullet} \to M \to 0$ be a flat resolution of M, then for $n \ge 0$,

$$\operatorname{Tor}_n(M,N) \cong H_n(U_M \otimes N).$$

Proof.

$$\cdots \to U_2 \xrightarrow{\qquad} U_1 \xrightarrow{\qquad} U_0 \to M \to 0$$

$$W_1 \xrightarrow{\qquad} W_0$$

$$0$$

$$H_{\bullet}(U_M \otimes N) : \cdots \to U_2 \otimes N \xrightarrow{d_2 \otimes \mathbf{1}} U_1 \otimes N \xrightarrow{d_1 \otimes \mathbf{1}} U_0 \otimes N \to 0$$

• n = 0: Since tensor is right exact, $U_1 \otimes N \xrightarrow{d_1 \otimes 1} U_0 \otimes N \xrightarrow{\alpha \otimes 1} M \otimes N \to 0$ is exact. Hence

$$H_0(U_M \otimes N) = (U_0 \otimes N) / \operatorname{im}(d_1 \otimes \mathbf{1}) = (U_0 \otimes N) / \ker(\alpha \otimes \mathbf{1}) \cong M \otimes N$$

Any projective resolution also has this property, so $Tor_0(M, N) = H_0(U_M \otimes N)$.

• n=1: $0 \to W_0 \to U_0 \to M \to 0$ induces a long exact sequence:

$$\cdots \to \operatorname{Tor}_1(W_0,N) \to 0 \to \operatorname{Tor}_1(M,N) \to W_0 \otimes N \xrightarrow{i \otimes 1} U_0 \otimes N \to M \otimes N \to 0$$

where $\operatorname{Tor}_1(U_0, N) = 0$ because U_0 is flat. We can see that $\operatorname{Tor}_1(M, N) \cong \ker(i \otimes 1)$.

Since $\alpha' \otimes 1$ is onto, $W_0 \otimes N \cong (U_1 \otimes N) / \ker(\alpha' \otimes 1)$. Also, $x \in \ker(d_1 \otimes 1) \iff (d_1 \otimes 1)(x) = 0 \iff (\alpha' \otimes 1)(x) \in \ker(i \otimes 1)$, so $\ker(i \otimes 1) = (\alpha' \otimes 1)(\ker(d_1 \otimes 1)) \cong \ker(d_1 \otimes 1) / \ker(\alpha' \otimes 1)$. $(\alpha' \otimes 1)$ can be considered a quotient map, then $\ker(d_1 \otimes 1)$ descends to $\ker(d_1 \otimes 1) / \ker(\alpha' \otimes 1)$.

Now, in the diagram $W_1 \otimes N \to U_1 \otimes N \to W_0 \otimes N \to 0$ exact, so $\ker(\alpha' \otimes 1) = \operatorname{im}(j \otimes 1)$. But $\beta' \otimes 1$ is onto, thus $\operatorname{im}(j \otimes 1) = \operatorname{im}(d_2 \otimes 1)$.

Finally,

 $\operatorname{Tor}_1(M,N) \cong \ker(i \otimes 1) \cong \ker(d_1 \otimes 1) / \ker(\alpha' \otimes 1) = \ker(d_1 \otimes 1) / \operatorname{im}(d_2 \otimes 1) = H_1(U_M \otimes N).$

• $n \ge 2$:

Let's see further in the previous long exact sequences:

$$\cdots \to \operatorname{Tor}_2(W_0, N) \to 0 \to \operatorname{Tor}_2(M, N) \xrightarrow{\sim} \operatorname{Tor}_1(W_0, N) \to 0 \to \operatorname{Tor}_1(M, N) \to \cdots$$

we can see that $\operatorname{Tor}_n(M,N) \cong \operatorname{Tor}_{n-1}(W_0,N)$ for $n \geq 2$.

Now,

$$\cdots U_3 \xrightarrow{d_3} U_2 \xrightarrow{d_2} U_1 \to W_0 \to 0$$

is a flat resolution of W_0 , and its homology is $H_{n-1}(U_{W_0} \otimes N) = \ker(d_n \otimes 1) / \operatorname{im}(d_{n-1} \otimes 1) =$ $H_n(U_M \otimes N)$.

By induction, assume it's true for n-1, then

$$H_n(U_M \otimes N) = H_{n-1}(U_{W_0} \otimes N) \cong \operatorname{Tor}_{n-1}(W_0, N) \cong \operatorname{Tor}_n(M, N).$$

Eg 7.2.1. $R = \mathbb{Z}, M = \mathbb{Z}/m\mathbb{Z}$ with $m \geq 2$. Then

$$P: 0 \to \mathbb{Z} \xrightarrow{m} \mathbb{Z} \xrightarrow{/m\mathbb{Z}} \mathbb{Z}/m\mathbb{Z} \to 0$$

is a projective resolution of $\mathbb{Z}/m\mathbb{Z}$. So for any $N \in \mathbf{Mod}_{\mathbb{Z}}$,

$$H^n(\operatorname{Hom}_{\mathbb{Z}}(P_{\mathbb{Z}/m\mathbb{Z}},N)):0\to\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},N)\xrightarrow{\overline{m}}\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z},N)\to 0,$$

$$\operatorname{Ext}_{\mathbb{Z}}^{0}(\mathbb{Z}/m\mathbb{Z}, N) = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, N) \cong {}_{m}N := \{a \in N \mid ma = 0\}$$

$$\operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, N) \cong N/mN$$

$$\operatorname{Ext}_{\mathbb{Z}}^{n}(\mathbb{Z}/m\mathbb{Z}, N) = 0 \text{ (for } n \geq 2)$$

Eg 7.2.2. $\mathbb{Q} = \mathbb{Z}_{(0)}$ is a localization, thus a flat \mathbb{Z} module. Then

$$U: 0 \to \mathbb{Z} \xrightarrow{i} \mathbb{O} \to \mathbb{O}/\mathbb{Z} \to 0$$

is a flat resolution of \mathbb{Q}/\mathbb{Z} . For $G \in \mathbf{Mod}_{\mathbb{Z}}$ (i.e. an abelian group),

$$H_n(G \otimes U_{\mathbb{Q}/\mathbb{Z}}) : 0 \to G \otimes \mathbb{Z} \xrightarrow{\mathbf{1} \otimes i} G \otimes \mathbb{Q} \to 0$$

$$\operatorname{Tor}_0(G, \mathbb{Q}/\mathbb{Z}) \cong G \otimes \mathbb{Q}/\mathbb{Z}$$

$$\operatorname{Tor}_1(G,\mathbb{Q}/\mathbb{Z}) \ = \ \ker(\mathbf{1}\otimes i) \cong t(G) := \{a \in G \mid ma = 0 \text{ for some } m \in \mathbb{N}\}$$

$$\operatorname{Tor}_n(G, \mathbb{Q}/\mathbb{Z}) = 0 \text{ (for } n \ge 2)$$

Def 137. Let M be a left R-module, then define $M^* := \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ as a right R-module by

$$fr: M \to \mathbb{Q}/\mathbb{Z}$$

$$r \mapsto f(rr)$$

$$x \mapsto f(rx)$$

Fact 7.2.2.

- 1. \mathbb{Q}/\mathbb{Z} is injective.
- 2. $A = 0 \iff A^* = 0$.
- 3. $B \hookrightarrow C \iff C^* \twoheadrightarrow B^*$.

Proof.

- 1. For $m \in \mathbb{Z} \setminus \{0\}$, $m(\mathbb{Q}/\mathbb{Z}) = \mathbb{Q}/\mathbb{Z}$ by $m(\frac{a}{mb} + \mathbb{Z}) \leftarrow \frac{a}{b} + \mathbb{Z}$, so \mathbb{Q}/\mathbb{Z} is divisible. But \mathbb{Z} is a PID, so \mathbb{Q}/\mathbb{Z} is injective.
- 2. (\Rightarrow) $A^* = \operatorname{Hom}_{\mathbb{Z}}(0, \mathbb{Q}/\mathbb{Z}) = 0$.
 - (\Leftarrow) If $A \neq 0$, then $\exists a \in A, a \neq 0$, so $0 \to \mathbb{Z}a \xrightarrow{i} A$ is an inclusion.

Since $\mathbb{Z}a$ is a cyclic abelian group, there is a nonzero $g: \mathbb{Z}a \to \mathbb{Q}/\mathbb{Z}$. (If $\mathbb{Z}a \cong \mathbb{Z}/m\mathbb{Z}$, let $g: a \mapsto \frac{1}{m}$; if $\mathbb{Z}a \cong \mathbb{Z}$, let $g: a \mapsto \frac{1}{2}$.)

But \mathbb{Q}/\mathbb{Z} is injective, so $\exists f: A \to \mathbb{Q}/\mathbb{Z}$ (i.e. $f \in A^*$), and $f \circ i = g \neq 0$ so $f \neq 0$, thus $A^* \neq 0$.

- 3. Since \mathbb{Q}/\mathbb{Z} is injective, $\operatorname{Hom}(\cdot,\mathbb{Q}/\mathbb{Z})$ is exact. Let $0 \to \ker f \to B \xrightarrow{f} C$ exact, applying $\operatorname{Hom}(\cdot,\mathbb{Q}/\mathbb{Z})$ results in $C^* \xrightarrow{f^*} B^* \to (\ker f)^* \to 0$ exact. Thus $\operatorname{coker} f^* = (\ker f)^*$.
 - By 2., $B \hookrightarrow C \iff \ker f = 0 \iff (\ker f)^* = 0 \iff \operatorname{coker} f^* = 0 \iff C^* \twoheadrightarrow B^*$.

Prop 7.2.3. Let M be an R-module, then TFAE

- 1. M is flat.
- 2. M^* is injective (as a R-module).
- 3. $\operatorname{Tor}_1(R/I, M) = 0$ for all ideal $I \subseteq R$.
- 4. $I \otimes_R M \cong IM$ for all ideal $I \subseteq R$.

Proof.

• 3. \iff 4.

For any ideal $I \subseteq R$, $0 \to I \xrightarrow{i} R \xrightarrow{q} R/I \to 0$ is exact. This induces a long exact sequence:

$$\operatorname{Tor}_1(R,M) \to \operatorname{Tor}_1(R/I,M) \to I \otimes_R M \xrightarrow{i \otimes \mathbf{1}} R \otimes_R M \xrightarrow{q \otimes \mathbf{1}} R/I \otimes_R M \to 0$$

- $Tor_1(R, M) = 0$ since R is a flat R-module.
- $-R\otimes_R M\cong M.$
- $-R/I \otimes_R M \cong M/IM$ by $(r+I) \otimes a \mapsto (ra+IM)$.

So we have

$$0 \to \operatorname{Tor}_1(R/I, M) \to I \otimes_R M \xrightarrow{i'} M \xrightarrow{q'} M/IM \to 0$$

exact, with $q': M \to M/IM$ being exactly the quotient map (one can check that $q \otimes \mathbf{1} \cong q'$).

Now it's clear that $\operatorname{Tor}_1(R/I, M) = 0 \iff I \otimes_R M \cong \ker(q') \cong IM$.

(The reverse direction requires $I \otimes_R M \cong IM$ being the natural isomorphism $r \otimes b \mapsto rb$, so $i': IM \to M$ can then be the natural inclusion.)

• 1. \iff 2. Let $0 \to N' \xrightarrow{f} N$, then $\operatorname{Hom}_{R}(N, M^{*}) \xrightarrow{\overline{f}} \operatorname{Hom}_{R}(N', M^{*})$. By the adjoint relation,

$$\operatorname{Hom}_R(N, M^*) = \operatorname{Hom}_R(N, \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})) \cong \operatorname{Hom}_{\mathbb{Z}}(N \otimes_R M, \mathbb{Q}/\mathbb{Z}) = (N \otimes_R M)^*,$$

we have another map $(N \otimes_R M)^* \xrightarrow{(f \otimes 1)^*} (N' \otimes_R M)^*$ isomorphic to the previous one, with its unstarred map $N' \otimes_R M \xrightarrow{f \otimes 1} N \otimes_R M$.

Now, M^* is injective $\iff \overline{f}$ is surjective $\forall N, N' \iff (f \otimes \mathbf{1})^*$ is surjective $\forall N, N' \iff f \otimes \mathbf{1}$ is injective $\forall N, N' \iff M$ is flat.

• 2. \iff 4. Similar to the previous section, by Baer's criterion,

$$\begin{array}{ll} M^* \text{ is injective} & \Longleftrightarrow & \operatorname{Hom}_R(R,M^*) \twoheadrightarrow \operatorname{Hom}_R(I,M^*), \forall \ I \subseteq R \\ & \Longleftrightarrow & (R \otimes_R M)^* \twoheadrightarrow (I \otimes_R M)^*, \forall \ I \subseteq R \\ & \Longleftrightarrow & I \otimes_R M \hookrightarrow R \otimes_R M \cong M, \forall \ I \subseteq R \\ & \Longleftrightarrow & I \otimes_R M \cong IM, \forall \ I \subseteq R. \end{array}$$

Similarly, this requires the isomorphism of $I \otimes_R M \cong IM$ be natural (the following f).

The map $f: I \otimes_R M \to IM$ is always onto, but may not be 1-1. If it is, $I \otimes_R M \cong IM$.

Prop 7.2.4. For $I, J \subseteq R$ being ideals, then $Tor_1(R/I, R/J) \cong (I \cap J)/IJ$.

Proof. $0 \to I \xrightarrow{i} R \to R/I \to 0$ induces a long exact sequence

$$0 \to \operatorname{Tor}_1(R/I, R/J) \to I \otimes_R R/J \xrightarrow{i \otimes 1} R \otimes_R R/J \to R/I \otimes_R R/J \to 0,$$

where $Tor_1(R, R/J) = 0$ since R is flat.

Also $I \otimes_R R/J \cong I/IJ$, $R \otimes_R R/J \cong R/J$, so we have $I/IJ \xrightarrow{i'} R/J$ with $\operatorname{Tor}_1(R/I, R/J) \cong \ker(i \otimes 1) \cong \ker i'$.

But $i': I/IJ \to R/J \atop x+IJ \mapsto x+J$, so $\overline{x} \in \ker i' \iff x \in I \text{ and } x \in J \iff x \in I \cap J$, hence $\ker i' \cong (I \cap J)/IJ$.

7.3 Koszul complex (week 16)

In this section, we assume that R is commutative with 1.

Def 138. Let $L \in \mathbf{Mod}_R$, with $f: L \to R$ an R-linear map, define

$$d_f: \quad \Lambda^n L \to \quad \Lambda^{n-1} L$$
$$x_1 \wedge \dots \wedge x_n \mapsto \sum_{i=1}^n (-1)^{i+1} f(x_i) x_1 \wedge \dots \wedge \hat{x}_i \wedge \dots \wedge x_n$$

where $\Lambda^n L$ is the *n*-th exterior power of L, and \hat{x}_i means omitting x_i .

Then we can define a chain complex called **Koszul complex**:

$$K_{\bullet}(f): \cdots \to \Lambda^n L \xrightarrow{\mathrm{d}_f} \Lambda^{n-1} L \to \cdots \to \Lambda^2 L \xrightarrow{\mathrm{d}_f} L \xrightarrow{f} R$$

Also, d_f can be considered as a graded R-homomorphism of degree -1:

$$\begin{aligned} \mathrm{d}_f : \; \Lambda L \; &\to \; \quad \Lambda L \\ x \wedge y &\mapsto \mathrm{d}_f(x) \wedge y + (-1)^{\deg x} \cdot x \wedge \mathrm{d}_f(y) \end{aligned}$$

where ΛL is the exterior algebra of L, and x, y are any homogeneous elements of ΛL .

Def 139. Let $(C_{\bullet}, d), (C'_{\bullet}, d')$ be chain complexes of R-modules, define their tensor product to be a chain complex $C_{\bullet} \otimes C'_{\bullet}$ with

$$(C_{\bullet} \otimes C'_{\bullet})_n = \bigoplus_{i=0}^n (C_i \otimes_R C'_{n-i})$$

with the boundary maps being

$$d \otimes d' : (C_{\bullet} \otimes C'_{\bullet})_{n} \to (C_{\bullet} \otimes C'_{\bullet})_{n-1}$$
$$\sum_{i=0}^{n} x_{i} \otimes y_{n-i} \mapsto \sum_{i=0}^{n} (d(x_{i}) \otimes y_{n-i} + (-1)^{i} \cdot x_{i} \otimes d'(y_{n-i}))$$

One can verify that

$$(d \otimes d') \circ (d \otimes d')(x \otimes y) = (d \otimes d')(d(x) \otimes y + (-1)^{\deg x} \cdot x \otimes d'(y))$$

$$= d \circ d(x) \otimes y + (-1)^{\deg x - 1} \cdot d(x) \otimes d'(y)$$

$$+ (-1)^{\deg x} \cdot d(x) \otimes d'(y) + x \otimes d' \circ d'(y)$$

$$= 0$$

Prop 7.3.1. Let $L_1, L_2 \in \mathbf{Mod}_R, f_1 \in \mathrm{Hom}_R(L_1, R), f_2 \in \mathrm{Hom}_R(L_2, R)$. Define

$$f = f_1 + f_2 : L_1 \oplus L_2 \to R$$

 $(x, y) \mapsto f_1(x) + f_2(y)$

then

$$K_{\bullet}(f_1) \otimes K_{\bullet}(f_2) \cong K_{\bullet}(f)$$

$$\bigoplus_{i=0}^{n} (\Lambda^i L_1 \otimes_R \Lambda^{n-i} L_2) \cong \Lambda^n(L_1 \oplus L_2)$$

with $d_{f_1} \otimes d_{f_2} = d_f$.

Proof. Exercise 16-1(2).

Def 140. Let $L = \bigoplus_{i=1}^n Re_i$ be a free R-module, and $\mathbf{x} = (x_1, \dots, x_n)$ with $x_i \in R$, define

$$K_{\bullet}(\mathbf{x}) := K_{\bullet}(f), \text{ with } \begin{array}{c} f : L \to R \\ e_i \mapsto x_i. \end{array}$$

Coro 7.3.1. $K_{\bullet}(\mathbf{x}) \cong K_{\bullet}(x_1) \otimes \cdots \otimes K_{\bullet}(x_n)$ with $K_{\bullet}(x_i) : 0 \to R \xrightarrow{x_i} R$.

Prop 7.3.2. Let $x \in R$ and (C_{\bullet}, ∂) be a chain complex of R-modules, then there exist ρ, π s.t.

$$0 \to C_{\bullet} \xrightarrow{\rho} C_{\bullet} \otimes K_{\bullet}(x) \xrightarrow{\pi} C_{\bullet}(-1) \to 0$$

is exact, where $(C_{\bullet}(-1))_n = C_{n-1}$.

Proof. Since $K_{\bullet}(x): 0 \to R \xrightarrow{x} R$, so

$$(C_{\bullet} \otimes K_{\bullet}(x))_n = (C_i \otimes_R R) \oplus (C_{i-1} \otimes_R R),$$

and the boundary map is

$$d: (C_i \otimes_R R) \oplus (C_{i-1} \otimes_R R) \to (C_{i-1} \otimes_R R) \oplus (C_{i-2} \otimes_R R) (z_1 \otimes r_1, z_2 \otimes r_2) \mapsto (\partial z_1 \otimes r_1 + (-1)^{i-1} z_2 \otimes xr_2, \partial z_2 \otimes r_2).$$

Under the isomorphism $C_i \otimes_r R \cong C_i$, the boundary map become

$$d: C_{i} \oplus C_{i-1} \to C_{i-1} \oplus C_{i-2}$$

$$\begin{pmatrix} r_{1}z_{1} \\ r_{2}z_{2} \end{pmatrix} \mapsto \begin{pmatrix} \partial & (-1)^{i-1}x \\ 0 & \partial \end{pmatrix} \begin{pmatrix} r_{1}z_{1} \\ r_{2}z_{2} \end{pmatrix}$$

Let

$$\begin{array}{ccc} \rho_i:C_i\to C_i\oplus C_{i-1} & \text{and} & \pi_i:C_i\oplus C_{i-1}\to C_{i-1}\\ z_1\mapsto & (z_1,0) & (z_1,z_2) \mapsto & z_2 \end{array}$$

then

$$0 \longrightarrow C_{i} \xrightarrow{\rho_{i}} C_{i} \oplus C_{i-1} \xrightarrow{\pi_{i}} C_{i-1} \longrightarrow 0$$

$$\downarrow \partial \qquad \qquad \downarrow d \qquad \qquad \downarrow \partial$$

$$0 \longrightarrow C_{i-1} \xrightarrow{\rho_{i-1}} C_{i-1} \oplus C_{i-2} \xrightarrow{\pi_{i-1}} C_{i-2} \longrightarrow 0$$

commutes and exact:

- $d \circ \rho(z_1) = d(z_1, 0) = (\partial z_1, 0)$
- $\rho \circ \partial(z_1) = \rho(\partial z_1) = (\partial z_1, 0)$
- $\partial \circ \pi(z_1, z_2) = \partial(z_2) = \partial z_2$
- $\pi \circ d(z_1, z_2) = \pi(\partial z_1 + (-1)^{i-1}xz_2, \partial z_2) = \partial z_2$

Coro 7.3.2. This induces a long exact sequence

$$\cdots \to H_i(C_{\bullet}) \xrightarrow{\rho_*} H_i(C_{\bullet} \otimes K_{\bullet}(x)) \xrightarrow{\pi_*} H_i(C_{\bullet}(-1)) \xrightarrow{\pm x} H_{i-1}(C_{\bullet}) \to \cdots$$

Proof. We only need to show the connection homomorphism is indeed $\pm x$.

Given $z \in C_{i-1}$ with $\partial z = 0$,

$$z \xrightarrow{\pi^{-1}} (0, z) \xrightarrow{d} \left((-1)^{i-1} xz, 0 \right) \xrightarrow{\rho^{-1}} (-1)^{i-1} xz.$$

Def 141. We call x to be C_{\bullet} -regular, if x is not a zero divisor of C_i and $C_i/xC_i \neq 0$, for all $i \geq 0$.

Prop 7.3.3. If x is C_{\bullet} -regular, then $H_i(C_{\bullet} \otimes K_{\bullet}(x)) \cong H_i(C_{\bullet}/xC_{\bullet})$ for all $i \geq 0$.

Proof. Let

$$\phi_i: C_i \oplus C_{i-1} \to C_i/xC_i$$

$$(z_1, z_2) \mapsto \overline{z_1}$$

then

$$C_{i} \oplus C_{i-1} \xrightarrow{\phi_{i}} C_{i}/xC_{i}$$

$$\downarrow^{d_{i}} \qquad \downarrow^{\overline{\partial}_{i}}$$

$$C_{i-1} \oplus C_{i-2} \xrightarrow{\phi_{i-1}} C_{i-1}/xC_{i-1}$$

commutes.

- $\overline{\partial} \circ \phi_i(z_1, z_2) = \overline{\partial}(z_1) = \overline{\partial}z_1$.
- $\phi_{i-1} \circ d(z_1, z_2) = \phi_{i-1}(\partial z_1 + (-1)^{i-1}xz_2, \partial z_2) = \overline{\partial z_1}$, since $xz_2 \in xC_{i-1}$.

Now we need to show the induced maps

$$\phi_{*i} : \ker \underline{\mathbf{d}_i / \operatorname{im} \mathbf{d}_{i+1}} \to \ker \overline{\partial}_i / \operatorname{im} \overline{\partial}_{i+1}$$
$$(z_1, z_2) \mapsto \overline{\overline{z_1}} = \overline{z_1} + \operatorname{im} \overline{\partial}_{i+1}$$

are isomorphisms.

• Onto:

For $\overline{z} \in \ker \overline{\partial}_i$ with $\partial z = xz' \in xC_{i-1}$, $z' \in C_{i-1}$. Then $\phi_i(z, (-1)^i z') = \overline{z}$, and $d(z, (-1)^i z') = (\partial z - xz', (-1)^i \partial z') = (0, 0)$, so $(z, (-1)^i z') \in \ker d_i$. (Since $x\partial z' = \partial(xz') = \partial^2 z = 0$, and x is not a zero divisor of C_i , so $\partial z' = 0$.)

Now,
$$\phi_{*i}\left(\overline{(z,(-1)^iz')}\right) = \overline{\overline{z}}$$
, so ϕ_{*i} is onto.

• 1-1:

Let $(z, z') \in \ker d_i$ with $\phi_i(z, z') = \overline{z} \in \operatorname{im} \overline{\partial}_{i+1}$, i.e. $\overline{z} = \partial \overline{z''}$ with $z'' \in C_{i+1}$. This means $z - \partial z'' = xz'''$ with $z''' \in C_i$, so $\partial (z - \partial z'') = \partial z = x \partial z'''$.

On the other hand, $d(z,z')=(\partial z+(-1)^{i-1}xz',\partial z')=(0,0),$ so $\partial z=(-1)^ixz',\partial z'=0.$

So $d(z'', (-1)^i z''') = (\partial z'' + (-1)^{2i} x z'''), (-1)^i \partial z''') = (z, z')$, i.e. $(z, z') \in \text{im } d_{i+1}$. $(\partial z = x \partial z''' = (-1)^i x z'$, since x is not a zero divisor, so $\partial z''' = (-1)^i z'$.)

Hence,
$$\phi_{*i}\left(\overline{(z_1,z_2)}\right) = \overline{0}$$
 implies $\overline{(z_1,z_2)} = \overline{0}$, so ϕ_{*i} is 1-1.

Def 142. Let $M \in \mathbf{Mod}_R$. A sequence $\{a_1, \dots, a_m\}, m \geq 0$ is said to be M-regular if

- $M/\langle a_1, \cdots, a_m \rangle M \neq 0$.
- a_{i+1} is not a zero divisor of $M/\langle a_1, \cdots, a_i \rangle M$ for $0 \le i \le m-1$.

Theorem 102. If $\mathbf{x} = (x_1, \dots, x_n)$ is an R-regular sequence, then $K_{\bullet}(\mathbf{x}) \to R/\langle x_1, \dots, x_n \rangle \to 0$ is a free resolution of $R/\langle x_1, \dots, x_n \rangle$.

Proof. Since its modules are $K_i(\mathbf{x}) = \Lambda^i R^n \cong R^{\binom{n}{i}}$, i.e. free *R*-modules, so we only need to show the exactness.

By induction on n,

• n = 1: $K_{\bullet}(x_1) : 0 \to R \xrightarrow{x_1} R \to R/\langle x_1 \rangle \to 0$ exact.

• n > 1: Assume that $\mathbf{x}' = (x_1, \dots, x_{n-1})$ and $K_{\bullet}(\mathbf{x}') \to R/\langle x_1, \dots, x_{n-1} \rangle \to 0$ exact, i.e. $H_i(K_{\bullet}(\mathbf{x}')) = 0$ for i > 0.

Since we have $K_{\bullet}(\mathbf{x}) \cong K_{\bullet}(\mathbf{x}') \otimes K_{\bullet}(x_n)$ and a long exact sequence

$$\cdots \to H_i(K_{\bullet}(\mathbf{x}')) \to H_i(K_{\bullet}(\mathbf{x})) \to H_i(K_{\bullet}(\mathbf{x}')(-1)) \xrightarrow{\pm x_n} H_{i-1}(K_{\bullet}(\mathbf{x}')) \to \cdots$$

where $H_i(K_{\bullet}(\mathbf{x}')(-1)) = H_{i-1}(K_{\bullet}(\mathbf{x}')).$

For i > 1, the sequence becomes

$$\cdots \to 0 \to H_i(K_{\bullet}(\mathbf{x})) \to 0 \xrightarrow{\pm x_n} \cdots$$

so $H_i(K_{\bullet}(\mathbf{x})) = 0$.

For i = 1, we have $H_0(K_{\bullet}(\mathbf{x}')) \cong R/\langle x_1, \cdots, x_{n-1} \rangle$, so

$$0 \to H_1(K_{\bullet}(\mathbf{x})) \to R/\langle x_1, \cdots, x_{n-1} \rangle \xrightarrow{\pm x_n} R/\langle x_1, \cdots, x_{n-1} \rangle$$

But x_n is not a zero divisor of $R/\langle x_1, \dots, x_{n-1} \rangle$, so the map $\pm x_n$ is 1-1, then $H_1(K_{\bullet}(\mathbf{x})) \cong \ker(\pm x_n) = 0$.

Eg 7.3.1. Let $\mathbf{x} = (x_1, x_2)$, then

$$K_{\bullet}(\mathbf{x}): 0 \to R \xrightarrow{\alpha} R^2 \xrightarrow{\beta} R \xrightarrow{q} R/\langle x_1, x_2 \rangle \to 0$$

with $\alpha: r \mapsto (-x_2r, x_1r)$ and $\beta: (r_1, r_2) \mapsto x_1r_1 + x_2r_2$.

Coro 7.3.3. Let $I = \langle x_1, \dots, x_n \rangle \subset R$ be an ideal with $\{x_1, \dots, x_n\}$ be R-regular, then R/I has projective dimension pd(R/I) = n, i.e. the shortest projective resolution of R/I has length n.

Proof. $K_{\bullet}(\mathbf{x})$ is already a projective resolution of length N, so we only need to show that there's no shorter ones.

The left side of $K_{\bullet}(\mathbf{x})$ reads

$$0 \to \Lambda^n R^n \xrightarrow{d_n} \Lambda^{n-1} R^n \to \cdots$$

But

$$\Lambda^n R^n = R(e_1 \wedge \dots \wedge e_n) \cong R, \quad \Lambda^{n-1} R^n = \bigoplus_{i=1}^n R(e_1 \wedge \dots \wedge \hat{e_i} \wedge \dots \wedge e^n) \cong R^n$$

so

$$d_n: R \to R^n$$

$$r \mapsto (x_1 r, -x_2 r, \cdots, (-1)^{n-1} x_n r)$$

Taking tensor with R/I, we get

$$0 \to R \otimes_R R/I \xrightarrow{d_n \otimes 1} R^n \otimes_R R/I \to \cdots$$

but $R \otimes_R R/I \cong R/I, R^n \otimes_R R/I \cong (R/I)^n$, so

$$d_n \otimes \mathbf{1}: R/I \to \underbrace{(R/I)^n}_{\overline{r}} \mapsto (\overline{x_1 r}, \overline{-x_2 r}, \cdots, \overline{(-1)^{n-1} x_n r})$$

Now,

$$\operatorname{Tor}_n(R/I,R/I) = H_n(K_{\bullet}(\mathbf{x}) \otimes R/I) = \ker(d_n \otimes \mathbf{1}) = \operatorname{Ann}_{R/I} I = \{\overline{r} \in R/I \mid rI = I\} = R/I \neq 0.$$

 $(R/I \neq 0 \text{ is because } \{x_1, \dots, x_n\} \text{ is } R\text{-regular.})$ Thus, any projective resolution can't have length shorter than n since that will imply $\text{Tor}_n(R/I, R/I) = 0$.

Remark 37. Let $I = \langle x_1, \dots, x_n \rangle$ generated by R-regular sequence $\{x_1, \dots, x_n\}$, then

- $\operatorname{Tor}_n(R/I, M) \cong \operatorname{Ann}_M I$.
- $\operatorname{Ext}^n(R/I, M) \cong M/IM$.

7.4 Derived category

Def 143.

• \mathcal{C} is a pre-additive category if $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ is an abelian group $\forall X,Y\in\mathcal{C}$ s.t.

$$X \xrightarrow{u} Y \xrightarrow{f} Z \xrightarrow{v} T$$

with (f+g)u = fu + gu and v(f+g) = vf + vg.

- addivitve category: a pre-additive category $\mathcal C$ s.t.
 - There exists a zero object 0 s.t. $\forall X$, $\operatorname{Hom}_{\mathcal{C}}(0,X) = \{0\} = \operatorname{Hom}_{\mathcal{C}}(X,0)$.
 - Finite sum and finite products exist.

Def 144.

- $f \in \text{Hom}(B,C)$ is called a monomorphism if $\forall X \xrightarrow{g} B \xrightarrow{f} C$ with $f \circ g = 0 \implies g = 0$.
- $f \in \text{Hom}(B,C)$ is called a epimorphism if $\forall B \xrightarrow{f} C \xrightarrow{h} D$ with $h \circ f = 0 \implies h = 0$.
- a kernel of $f \in \text{Hom}(B,C)$ is a morphism $i:A \to B$ s.t. $f \circ i = 0$ and $\forall g:X \to B$ with $f \circ g = 0$, we have

$$A \xrightarrow{i} B \xrightarrow{f} C$$

$$\exists ! \qquad X$$

• a cokernel of $f \in \text{Hom}(B,C)$ is a morphism $p:C \to D$ s.t. $p \circ f = 0$ and $\forall h:C \to Y$ with $h \circ f = 0$, we have

$$B \xrightarrow{f} C \xrightarrow{p} D$$

$$\downarrow h$$

$$Y$$

$$Y$$

Remark 38.

- If i is a kernel of f, then i is a monomorphism.
- If p is a cokernel of f, then p is a epimorphism.

Remark 39. An epimorphism may not be a cokernel. Consider $\mathbb{Z} \xrightarrow{\times 3} \mathbb{Z}$ which is an epimorphism in the category of f.g. free \mathbb{Z} -modules. If $\mathbb{Z} \xrightarrow{\times 3} \mathbb{Z}$ is the cokernel of $G \xrightarrow{f} \mathbb{Z}$, then

$$G \xrightarrow{f} \mathbb{Z} \xrightarrow{\times 3} \mathbb{Z}$$

$$\downarrow \\ \downarrow \\ \downarrow \\ \mathbb{Z}$$

$$\downarrow \\ \downarrow \\ \mathbb{Z}$$

This implies $\tilde{f}: 1 \mapsto \frac{2}{3}$, which is impossible.

Def 145. A is an abelian category if it is an additive category s.t.

- kernels and cokernels always exist in A.
- every monomorphism is a kernel and every epimorphism is a cokernel.

Fact 7.4.1. If A is an abelian category, then:

• every morphism is expressible as the composite of an epimorphism and a monomorphism. Given $f: B \to C$, we have

$$B \xrightarrow{f} C$$

$$\text{Im } f$$

where $\operatorname{Im} f$ is unique up to isomorphism.

Proof. Consider the following diagram:

$$\ker f \xrightarrow{i} B \xrightarrow{f} C \xrightarrow{p} \operatorname{coker} f$$

$$\downarrow p' \qquad \downarrow i'$$

$$\operatorname{coker} i \xrightarrow{\exists !\sigma} \ker p$$

where μ, ν exist because i', p' are kernel and cokernel. Now, $i'\mu i = fi = 0$, and since i' is a monomorphism, $\mu i = 0$. Moreover, since p' is the cokernel of i, there exists a unique σ letting the diagram commute.

By exercise, σ is both a monomorphism and epimorphism. In an abelian category, this implies that σ is actually an isomorphism (i.e., σ^{-1} exists).

• $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is exact if f is monomorphism, g is epimorphism and $\operatorname{Im} f = \ker g$.

Theorem 103 (Freyd-Mitchell theorem). A small abelian category is equivalent to a full subcategory of a category of R-modules.

Def 146.

- $I \in \text{Obj } \mathcal{A}$ is injective if the functor Hom(-, I) is exact.
- An abelian category is said to be **enough injectives** if for any $A \in \text{Obj } A$, there exists an injective object I such that $A \hookrightarrow I$.

Def 147. Given a functor $F: A \to B$ satisfy:

- 1. F is additive, which is to say F is a group homomorphism $\operatorname{Hom}(A, A') \to \operatorname{Hom}(FA, FA')$.
- 2. F is left exact. If $0 \to A' \to A \to A'' \to 0$, then $0 \to FA' \to FA \to FA''$.

Then the derived functor $R^iF: \mathcal{A} \to \mathcal{B}$ is defined as

$$R^{i}F(A) = \begin{cases} F(A), & \text{if } i = 0\\ H^{i}(F(I^{\bullet})), & \text{else} \end{cases}$$

Our goal is to construct the derived category $D^+(A)$ and $D^+(B)$ letting RF be a exact functor.

Def 148. Let \mathcal{A} be an abelian category.

• Kom(A) is the category of complexes over A.

• $K(\mathcal{A})$ is the homotopy category of \mathcal{A} , defined by $Obj(K(\mathcal{A})) = Obj(Kom(\mathcal{A}))$ and

$$\operatorname{Hom}_{K(\mathcal{A})}(A^{\bullet}, B^{\bullet}) = \operatorname{Hom}_{\operatorname{Kom}(\mathcal{A})}(A^{\bullet}, B^{\bullet}) / \sim,$$

where \sim indicates homotopy equivalences.

Remark 40.

- $\operatorname{Hom}_{K(\mathcal{A})}(I_A^{\bullet}, I_B^{\bullet}) \cong \operatorname{Hom}_{\mathcal{A}}(A, B)$ by comparison theorem (96).
- It could be shown that K(A) is additive but may not be abelian.

Def 149. $f \in \text{Hom}_{K(\mathcal{A})}(A^{\bullet}, B^{\bullet})$ is called a quasi-isomorphism if $H^n(f)$ is an isomorphism between $H^n(A^{\bullet})$ and $H^n(B^{\bullet})$ for each n.

Eg 7.4.1. • A quasi-isomorphism is often not invertible. For example:

$$0 \longrightarrow \mathbb{Z} \stackrel{\times 2}{\longrightarrow} \mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow 0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$$

• Given $0 \to A \to I^{\bullet}$,

$$0 \longrightarrow A \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow I^0 \longrightarrow I^1 \longrightarrow I^2 \longrightarrow \cdots$$

are two quasi-isomorphic complexes.

Def 150. Let \mathcal{B} be a category. A class of morphism $S \subset \text{Mor}(\mathcal{B})$ is said to be **localizing** if

- 1. S is closed under composition with $Id_X \in S$ for each object X in \mathcal{B} .
- 2. Extension condition holds: For each $f \in \text{Mor } \mathcal{B}$, $s \in S$ as in the following diagram, exists $g \in \text{Mor } \mathcal{B}$, $t \in S$ such that ft = sg. The dual version should hold as well.

$$\begin{array}{ccc}
A & \xrightarrow{g} & B \\
\downarrow^t & & \downarrow^s \\
C & \xrightarrow{f} & D
\end{array}$$

3. For any $f, g \in \text{Hom}(X, Y)$,

$$\exists s \in S \text{ s.t. } sf = sg \iff \exists t \in S \text{ s.t. } ft = gt.$$

Theorem 104. If S is localizing, then there exists a category $\mathcal{B}[S^{-1}]$ with a functor $Q: \mathcal{B} \to \mathcal{B}[S^{-1}]$ such that

- 1. Q(s) is an isomorphism for each $s \in S$.
- 2. Given another functor $F: \mathcal{B} \to \mathcal{B}'$ satisfy condition 1, there exists a unique functor $G: \mathcal{B}[S^{-1}] \to \mathcal{B}'$ such that $F = G \circ Q$.

Proof. Define a roof to be a pair (s,t) with

$$X \qquad Y \qquad X \qquad Y$$

Also, define $(s, f) \sim (t, g)$ if there exists Z such that

with $sp = tq \in S$ and fp = gq.

First we check that " \sim " is indeed an equivalence relation. $(s, f) \sim (s, f)$ and $(s, f) \sim (t, g) \implies (t, g) \sim (s, f)$ are trivial. If $(s, f) \sim (t, g)$ and $(t, g) \sim (u, h)$, then we have the following diagram:

Using definition 2. on $tr \in S$ and sp, there are morphism z,a with $z \in S$ and spz = tra. Moreover, tqz = spz = tra, if we let b = qz, c = ra, then by 3., morphism $w \in S$ exists with bw = cw. Define x = pzw, y = vaw, we have sx = spzw = tqzw = tbw = tcw = traw = uvaw = uy and $sx \in S$ since sx = spzw and sp, z, w are all in S. Similarly, fx = hy, thus $(s, f) \sim (u, h)$. Hence we've just proved that \sim is an equivalence relation.

Now we could construct the localized category as following: The objects are $\mathrm{Obj}(\mathcal{B}[S^{-1}]) = \mathcal{B}$ and $\mathrm{Mor}(\mathcal{B}[S^{-1}]) = \{$ equivalence classes under $\sim \}$. $[(t,g)] \circ [(s,f)] = [(su,gh)]$ could be defined as in the following diagram:

Finally, define functor Q by Q(X) = X, $\forall X \in \text{Obj}(\mathcal{B})$ and $Q(f) = [(\text{Id}_X, f)]$. For the universal property, if F is another functor making every morphism in S be invertible, then the functor G exists uniquely by $G([(s, f)]) = F(f)F(s)^{-1}$. By induction hypothesis, we can say m - 1 = n - 1. Done.

Def 151. The mapping cone of a chain map f between two chain $X^{\bullet} \xrightarrow{f} Y^{\bullet}$ is defined as a chain with cone $(f)^n = X^{n+1} \oplus Y^n$, and the chain map is defined as

$$d_{\operatorname{cone}(f)} : \operatorname{cone}(f)^n = X^{n+1} \oplus Y^n \longrightarrow \operatorname{cone}(f)^{n+1} = X^{n+2} \oplus Y^{n+1}$$

$$(x_{n+1}, y_n) \xrightarrow{\begin{pmatrix} -d_X & 0 \\ f & d_Y \end{pmatrix}} \begin{pmatrix} -d_X(x^{n+1}), f(x^{n+1}) + d_Y(y_n) \end{pmatrix}$$

It is easy to see that $d_{\text{cone}(f)}^2 = 0$.

Prop 7.4.1. Suppose that $f: X^{\bullet} \to Y^{\bullet}$ is a chain map, then there is a short exact sequence

$$0 \longrightarrow Y \longrightarrow \operatorname{cone}(f) \longrightarrow X[+1] \longrightarrow 0$$
$$y \longmapsto (0, y)$$
$$(x, y) \longmapsto x$$

Proof. It is easy to see that the rows are exact. Tracing the diagram shows that the diagram commutes. \Box

Coro 7.4.1. There exists a long exact sequence of homology:

$$\cdots \to H^m(Y^{\bullet}) \to H^m(\operatorname{cone}(f)) \to H^{m+1}(X^{\bullet}) \xrightarrow{\delta} H^{m+1}(Y^{\bullet}) \to H^{m+1}(\operatorname{cone}(f)) \to \cdots$$

Where the connecting homomorphism $\delta = f^*$.

Proof. Tracing the diagram below as in the snake lemma,

$$X^m \oplus Y^{m-1} \longrightarrow X^m \\ \downarrow \qquad \qquad \downarrow \\ Y^m \longrightarrow X^{m+1} \oplus Y^m \longrightarrow X^{m+1}$$

Suppose $\bar{x} \in H^m(X^{\bullet})$, then $d_X(x) = 0$, so $d(x,0) = (-d_X(x), f(x)) = (0, f(x))$, which implies $f(x) :: Y^m \mapsto d(x,0) :: X^{m+1} \oplus Y^m$, then $\delta(\bar{x}) = \overline{f(x)}$, so $\delta = f^*$.

Coro 7.4.2. cone(f) acyclic (exact) \iff f quasi-isomorphic.

Proof. Directly by the exact sequence

$$H^{m-1}(\operatorname{cone}(f)) \to H^m(X^\bullet) \to H^m(Y^\bullet) \to H^m(\operatorname{cone}(f))$$

Notice that X[-k] is defined as $X[-k]^n = X^{n-k}$ with $d_{X[-k]} = (-1)^k d_X$ below.

Theorem 105. Let \mathcal{A} be an abelian category and $K(\mathcal{A})$ be the homotopy category. Then the class of quasi-isomorphisms are localizing.

Proof. We check that:

1. It is closed under composition: If f, g are quasi-isomorphic, then $(fg)^* = f^*g^*$ is a isomorphism since both f^*, g^* are, thus fg is quasi-isomorphic.

2. The diagram could be completed:

$$\exists W^{\bullet} \xrightarrow{----} Z^{\bullet}$$

$$\downarrow \qquad \qquad \downarrow g: \text{ q-iso}$$

$$X^{\bullet} \xrightarrow{f} Y^{\bullet}$$

Consider the following diagram:

Where cone $(\pi f)^n \cong X^{n+1} \oplus \text{cone}(g)^n \cong X^{n+1}Z^{n+1}Y^n$

We claim that $fk \simeq gh[-1]$. Since $(fk - gh[-1])(x_n, z_n, y_{n-1}) = f(x_n) + g(z_n)$. Define

$$\varphi : \operatorname{cone}(\pi f)[-1]^n = \operatorname{cone}(\pi f)^{n-1} \longrightarrow Y^{n-1}$$
$$(x_n, z_n, y_{n-1}) \longmapsto -y_{n-1}$$

Then

$$\begin{split} \varphi d_{C(\pi f)[-1]}(x_n,(z_n,y_{n-1})) &= \varphi(d(x_n),-\pi f(x_n)-d(z_n,y_{n-1})) \\ &= \varphi(d(x_n),-(0,f(x_n))-(d(z_n),g(z_n)+d(y_{n-1}))) \\ &= \varphi(d(x_n),-d(z_n),-f(x_n)-g(z_n)-d(y_{n-1})) \\ &= f(x_n)+g(z_n)+d(y_{n-1}) \end{split}$$

and $d_Y \varphi(x_n, z_n, y_{n-1}) = -d(y_{n-1})$, so $\varphi d_{C(\pi f)[-1]} + d_Y \varphi = fk - gh[-1]$, thus $fk \simeq gh[-1]$.

3. Let $f: X^{\bullet} \to Y^{\bullet}$ in $K(\mathcal{A})$. We shall prove that

$$\exists\, s: Y^\bullet \to Z^\bullet \text{ s.t. } sf=0 \iff \exists\, t: W^\bullet \to X^\bullet \text{ s.t. } ft=0$$

Let $h^i: X^i \to Z^{i-1}$ be a homotopy bewteen sf and 0. Consider the diagram:

$$\operatorname{cone}(s)[-1] \xleftarrow{g} X^{\bullet} \to \operatorname{Lonsider} \text{ the diagram:}$$

$$\operatorname{cone}(s)[-1] \xleftarrow{g} X^{\bullet} \xleftarrow{t} \operatorname{cone}(g)[-1] = W^{\bullet}$$

$$\downarrow f$$

$$\operatorname{cone}(s)[-1] \xrightarrow{p[-1]} Y^{\bullet} \xrightarrow{s} Z^{\bullet} \xrightarrow{\pi} \operatorname{cone}(s)$$

One can easily check that g is a chain map, which congruent with the boundary map (because of h^i). Now, we have ft = p[-1]gt, but $gt \simeq 0$ by

$$k_n:$$
 $W^n = X^n \oplus Y^{n-1} \oplus Z^{n-2} \longrightarrow C(s)[-1]^{n-1} = Y^{n-1} \oplus Z^{n-2}$ $(x_n, y_{n-1}, z_{n-2}) \longmapsto (y_{n-1}, z_{n-2})$

since

$$kd(x_n, y_{n-1}, z_{n-2}) = k(-(dx_n, g(x_n) + d(y_{n-1}, z_{n-2})))$$

$$= k(-dx_n, -(f(x_n), -h(x_n)) + (-dy_{n-1}, g(y_{n-1}) + dz_{n-2}))$$

$$= (-f(x_n) - dy_{n-1}, h(x_n) + g(y_{n-1}) + dz_{n-2})$$

and
$$dk(x_n, y_{n-1}, z_{n-2}) = d(y_{n-1}, z_{n-2}) = (dy_{n-1}, -g(y_{n-1}) - dz_{n-2})$$
. Thus $dk + kd = -gt \implies gt \simeq 0$.

Now, since s is quasi-isomorphic, by corollary 7.4.2, cone(s) is acyclic, and thus t is quasi-isomorphic. Hence we've find t so that $ft \simeq 0$.

We could then define the derived category as $D(A) = K(A)[S^{-1}]$ now.

Prop 7.4.2. The derived category is additive.

Proof. Let $\varphi, \varphi': X \to Y$ in D(A) with $\varphi = [(s, f)], \varphi' = [(s', f')]$, that is, we have the following two diagram

using 2. in the definition of localizing, exists U so that

$$\exists U \xrightarrow{r'} Z'$$

$$\downarrow^r \qquad \qquad \downarrow^{s'}$$

$$Z \xrightarrow{s} X$$

with one of r, r' is guaranteed to be quasi-isomorphic, say r. But then $H^n(U) \cong H^n(Z) \cong H^n(X) \cong H^n(Z')$ since r, s, s' are all quasi-isomorphic. This implies r' is also quasi-isomorphic, so we'll have the new roof for φ

Similarly, this applies to φ' . Since rs = r's', we could define $\varphi + \varphi' = [(rs, g + g')]$.

Def 152. Let \mathcal{A}, \mathcal{B} be abelian categories, $F : \mathcal{A} \to \mathcal{B}$ be an additive functor.

- Define $D^+(\mathcal{A})$ as a subcategory of $D(\mathcal{A})$ consist of all the objects (chains) X^{\bullet} in $D(\mathcal{A})$ such that $X^i = 0$ for all $i \leq i_0(X^{\bullet})$. $K^+(\mathcal{A})$ is defined similarly.
- Assume that F act on complexes component wise. $K^+(F): K^+(A) \to K^+(B)$.
- A triangle in $K^+(A)$ is a diagram of the form $\Delta: X^{\bullet} \to Y^{\bullet} \to Z^{\bullet} \to X^{\bullet}[1]$
- \triangle is said to be distinguished if

In this case, we denote it as \triangle .

Recall that $\bar{Y}^{\bullet} \to \text{cone}(\bar{f}) \to \bar{X}^{\bullet}$ induces a long exact sequence

$$\cdots \to H^i(\bar{Y}) \to H^i(\operatorname{cone}(\bar{f})) \to H^i(\bar{X}[1]) \to H^{i+1}(\bar{Y}) \to \cdots$$

Prop 7.4.3. Let $F: A \to B$ be an exact functor, then

1. The exact functor $D^+(F): D^+(A) \to D^+(B)$ exists.

2. $D^+(F)$ preserves distinguished triangle, (i.e., $\triangle \mapsto \triangle$.)

Proof. First, we have the following observation:

• F sends acyclic chain to acyclic chain: If X^{\bullet} acyclic, then X^{\bullet} could be decomposed to many short exact sequence:

$$0 \to \ker d_X^i \to X^i \to \ker d_X^{i+1} \to 0$$

Apply F we would then get

$$0 \to F(\ker d_X^i) \to F(X^i) \to \ker d_X^{i+1} \to 0$$

which we could connect them and get the desired exact sequence

$$\cdots \to F(X^{i-1}) \to F(X^i) \to F(X^{i+1}) \to \cdots$$

• If $f: X^{\bullet} \to Y^{\bullet}$, then $F(f): F(X)^{\bullet} \to F(Y)^{\bullet}$, and we have $F(\operatorname{cone}(f)) \cong \operatorname{cone}(F(f))$, since $F(\operatorname{cone}(f))^n = F(X^{n+1} \oplus Y^n) \cong F(X^{n+1}) \oplus F(Y^n) = \operatorname{cone}(F(f))^n$ because F is additive. Moreover, the boundary map $d_{\operatorname{cone}(F(f))}$ is

$$\begin{pmatrix} -F(d_X) & 0 \\ F(f) & F(d_Y) \end{pmatrix} = F \begin{pmatrix} d_X & 0 \\ f & d_Y \end{pmatrix} = d_{F(\text{cone}(f))}$$

Since F transform the object and morphisms consistently, thus $F(\operatorname{cone}(f)) \cong \operatorname{cone}(F(f))$. Similarly we have $F(\operatorname{cyl}(f)) \cong \operatorname{cyl}(F(f))$.

Now, return to our proof:

1. If f quasi-isomorphic, then cone(f) acyclic by corollary 7.4.2, and $F(cone(f)) \cong cone(F(f))$ acyclic by the discussion above, and finally F(f) acyclic by the same corollary. Thus F preserves quasi-isomorphisms.

Moreover, we could complete the following diagram

$$K^{+}(\mathcal{A}) \xrightarrow{K^{+}(F)} K^{+}(\mathcal{B})$$

$$\downarrow^{Q_{A}} \qquad \downarrow^{Q_{B}}$$

$$K^{+}(\mathcal{A})[S_{A}^{-1}] \xrightarrow{\exists !D^{+}(F)} K^{+}(\mathcal{B})[S_{B}^{-1}]$$

since F send quasi-isomorphisms to quasi-isomorphism and by the universal property of the localized category. Thus $D^+(f)$ exists.

2. Apply $D^+(F)$ to the diagram

$$X^{\bullet} \xrightarrow{f} Y^{\bullet} \longrightarrow Z^{\bullet} \longrightarrow X^{\bullet}[1]$$

$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\wr}$$

$$\bar{X}^{\bullet} \xrightarrow{\bar{f}} \bar{Y}^{\bullet} \longrightarrow \operatorname{cone}(\bar{f}) \longrightarrow \bar{X}^{\bullet}[1]$$

We get

Where the quasi-isomorphisms are preserved by the discussion above.

Def 153. A class R of objects in Obj A is said to be adapted to a left exact functor F if

- 1. It is stable under finite direct sums
- 2. F sends acyclic chain in $\text{Kom}^+(R)$ to acyclic chain (in $\text{Kom}^+(\mathcal{B})$).
- 3. For each $X \in \text{Obj } \mathcal{A}$, exists $I \in \mathbb{R}$ such that $0 \to X \to I$.

Theorem 106. Let F be a left exact functor, R be a class of objects adpated to F. Define S_R to be the class of quasi-isomorphisms on $K^+(R)$ which is localizing since it is stable with the construction of mapping cones. Then $D^+(A) \cong K^+(R)[S_R^{-1}]$.

Proof. First we claim that for all $C^{\bullet} \in D^{+}(A)$ (which we assume $C^{i} = 0, \forall i < 0$), There exists $I^{\bullet} \in K^{+}(R)$ such that $C^{\bullet} \cong I^{\bullet}$.

We shall construct quasi-isomorphism $t^n: C^n \to I^n$. Using induction on n:

n=0: By the definition of adapting class we have $0 \to C^0 \xrightarrow{t^0} I^0$ for some I^0 . Consider the following diagram:

Where $I^0 \coprod_{C^0} C^1 \triangleq (I^0 \oplus C^1) / \{(t^0(x), -d_C(x)) \mid x \in C^0\}.$

We shall prove that t^0 is an isomorphism between $H^0(C^{\bullet}) = \ker d_C^1$ and $H^0(I^{\bullet}) = \ker d_I^1$. It is obviously 1-1 since $0 \to C^0 \xrightarrow{t^0} I^0$, so we need to check it is onto. For any $y \in \ker d_I^1 = \ker b$ since c is monomorphism. Then $b(y) = 0 \implies (y,0) = (t^0(x), -d_C^1(x))$ for some $x \in C^0$. So $y = t^0(x)$ with $d_C^1(x) = 0 \implies x \in \ker d_C^1$.

n = 1: Consider the diagram now:

Similarly, we shall prove that

$$H^1(t): \xrightarrow{\ker d_C^2} \xrightarrow{\sim} \xrightarrow{\ker d_I^2} \xrightarrow{\Gamma}$$

is an isomorphism.

- 1-1: Let $t^1(x) \in \operatorname{Im} d_I^1$. Since $t^1 = ca$ and $d_I^1 = cb$, there is y such that ca(x) = cb(y). Since c 1-1, $a(x) = b(y) \implies (0,x) = (y,0)$. in the pushout, so $(y,-x) = (t^0(z), -d_C^1(z))$ for some $z \in C^0$. Thus $x = d_c^1(z) \in \operatorname{Im} d_C^1$.
- onto: For each $y \in \ker d_I^2 = \ker b'p$ since c' 1-1. Then

$$b'p(y) = 0 \implies (y + \operatorname{Im} d_I^1, 0) = (t'(x) + \operatorname{Im} d_I^1, -d_C^2(x))$$
 for some $x \in C^1$

in the pushout, so we have $y - t'(x) \in \operatorname{Im} d_I^1$ and $x \in \ker d_C^2$ and thus $H^1(t)(\bar{x}) = \bar{y}$.

n > 1: Similar as n = 1.

After proving this claim, we shall show that $\operatorname{Hom}_{K^+(R)[S_R^{-1}]}(X^{\bullet},Y^{\bullet}) \cong \operatorname{Hom}_{K^+(A)[S_A^{-1}]}(X^{\bullet},Y^{\bullet})$. We will use left roofs instead of right roofs defined before here.

• 1-1: If $(f,s) \cong (g,t)$ in $K^+(\mathcal{A})[S^{-1}_{\mathcal{A}}]$, then

where u exists by the previous claim.

• onto: Given a roof in A

We could find a roof in R which is equivalent to it again by the previous claim.

Finally, if $F: A \to \mathcal{B}$ is an additive left exact functor, then we will have $K^+(F): K^+(A) \to K^+(\mathcal{B})$ which sends acyclic chain in $K^+(R)$ to acyclic chain in $K^+(\mathcal{B})$. This implies that $K^+(F)$ sends quasi-isomorphism in $K^+(R)$ to quasi-isomorphism in $K^+(\mathcal{B})$. So we have the following diagram:

$$K^{+}(R) \xrightarrow{K^{+}(F)} K^{+}(\mathcal{B})$$

$$\downarrow^{Q_{R}} \qquad \downarrow^{Q_{\mathcal{B}}}$$

$$I^{\bullet} \in K^{+}(R)[S_{R}^{-1}] \xrightarrow{\exists ! F} D^{+}(\mathcal{B})$$

$$\downarrow^{Q_{R}}$$

Where \bar{F} exists by the universal property of localization. Then the derived functor RF could be defined with $R^iF(C^{\bullet}) = H^i(RF(C^{\bullet}))$.

The universal property of RF is as following: $RF: D^+(A) \to D^+(B)$ is exact and the diagram commutes:

with $\epsilon_F: Q_{\mathcal{B}} \circ K^+(F) \to RF \circ Q_{\mathcal{A}}$ being a morphism of functors (???). Moreover, if $G: D^+(\mathcal{A}) \to D^+(\mathcal{B})$ is another exact functor with $\epsilon_G: Q_{\mathcal{B}} \circ K^+(F) \to G \circ Q_{\mathcal{A}}$, then

there is an unique $y: RF \to G$ such that

Now, one may ask that whether $RG \circ RF \cong R(G \circ F)$, the answer is no in generally, but there are spectral sequences so that ... Which is another story then...

\mathbf{Index}

Α		I	
algebraic closure	71	Ideal	
algebraic element	64	irreducible	97
algebraically closed	71	maximal ideal	66
		prime ideal	66
		М	
Extension Galois extension	75	Möbius μ -function	70
		Module	
		flat module	110
F			
Field extension	64	N	
algebraic extension	64	nilradical	97
normal extension	75		
separable extension	73	Р	
fixed field	76	• perfect	73
Frobenius homomorphism	69	periect	13
		S	
G		seperable	69
Galois group	76	splitting field	67