V _{DSS}	600V
$R_{DS(on)}(Max.)$	0.130Ω
I_D	30A
P _D	40W

Outline

FEATURES

- Low on-resistance
- Fast switching speed
- ◆ Gate-source voltage (V_{GSS}) guaranteed to be ±20V
- Drive circuits can be simple
- Parallel use is easy
- Pb-free lead plating; RoHs compliant

Inner circuit

Application

Switching Power Supply

Packaging specificationa

	Packaging	Bulk
	Reel size (mm)	-
Typo	Tape width (mm)	-
Туре	Basic ordering unit (pcs)	1,000
	Taping code	-
	Marking	CMS6030ENX

ORDERING INFORMATION

Part Number	Temperature Range	Package
CMS6030ENX	-55°ℂ to 150°ℂ	TO-220FP

*Note:

E*Series

N*:N-ch Mosfet

X*TO-220FP

ABSOLUTE MAXIMUM RATINGS (Ta=25℃)

Parame	ter	Symbol	Value	Unit
Drain-Source Voltage		V _{DSS}	600	V
Continuous drain current	Tc=25°C	I _D *1	±30	Α
Continuous drain current	Tc=100°C	I _D *1	±16.3	Α
Pulsed drain current		I _{D, pulse} *2	±80	А
Gate-Source Voltage		V _{GSS}	±20	V
Avalanche energy, single pulse		E _{AS} *3	636	mJ
Avalanche energy, repetitive		E _{AR} *3	0.96	mJ
Avalanche current, repetitive		I _{AR}	5.2	А
Power Dissipation (Tc=25°C)		P _D	40	W
Junction temperature		TJ	150	$^{\circ}\!\mathbb{C}$
Range of storage temperature		T _{stg}	-55 to +150	$^{\circ}\!\mathbb{C}$
Reverse diode dv/dt		Dv/dt *4	15	V/ns
Drain-Source Voltage Slope	V _{DS} =480V ; Tj=25℃	Dv/dt	50	V/ns

THERMAL RESISTANCE

Parameter	Symbol		Unit		
Farameter	Symbol	Min.	Тур.	Max.	Onit
Thermal resistance , junction-case	R _{thJC}	-	-	3.13	°C/W
Thermal resistance , junction-ambient	R _{thJA}	-	-	70	°C/W
Soldering temperature , wavesoldering for 10s	T _{sold}	-	-	265	$^{\circ}$

ELECTRICAL CHARACTERISTICS (Ta=25℃)

Downwater	Combal	Conditions	Value			l lm!4
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain-Source breakdown voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_D = 250uA$	600	-	-	V
		$V_{DS} = 600V, V_{GS} = 0V$				
Zero gate voltage drain current	I _{DSS}	T _j = 25°C	-	0.1	100	uA
		T _j = 125°C	-	-	1000	
Gate-Source leakage current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	±100	nA
Gate threshold voltage	V _{GS(th)}	$V_{DS} = 10V, I_{D} = 1mA$	2	-	4	V
		V _{GS} = 10V, I _D = 14.5A				
Static drain-source on-state resistance	R _{DS(on)} *5	T _j = 25°C	-	0.115	0.130	Ω
Toolstanes		T _j = 125°C	-	0.225	-	
Gate input resistance	R_{G}	F = 1MHz, open drain	-	3.6	-	Ω

Nch 600V/30A Super Junction Power MOSFET

ELECTRICAL CHARACTERISTICS (Ta=25°C)

Downwater	Come had	Conditions	Value			I I m i f
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transconductance	G _{fs} *5	V _{DS} = 10V, I _D = 15A	8.5	17	-	S
Input capacitance	C _{iss}	V _{GS} = 0V	-	2100	-	
Output capacitance	C _{oss}	V _{DS} = 25V	-	1900	-	pF
Reverse transfer capacitance	C _{rss}	F = 1MHZ	-	190	-	
Effective output capacitance, energy related	C _{o(er)}	V _{GS} = 0V	-	82	-	pF
Effective output capacitance, time related	C _{o(tr)}	V _{DS} = 0V to 480V	-	400	-	рΓ
Turn-on delay time	T _{d(on)} *5	\(\(\) = 200\(\) \(\) = 10\(\)	-	40	-	
Rise time	T _r *5	$V_{DD} \sim 300V$, $V_{GS} = 10V$ $I_D = 15A$ $R_L = 20\Omega$	-	55	-	ns
Turn-off delay time	T _{d(off)} *5		-	190	-	113
Fall time	T _f *5	$R_G = 10\Omega$	-	60	-	

GATE CHARACTERISTICS (Ta=25°C)

Parameter	Parameter Symbol Conditions	Conditions	Value			Unit
raianietei		Conditions	Min.	Тур.	Max.	Oill
Gate plateau voltage	V _(plateau)	$V_{DD} \sim 300 V$, $I_D = 30 A$	-	6.5	-	V
Total gate charge	Qg *5		-	85	-	
Gate-Source charge	Q _{gs} *5	$V_{DD} \sim 300V$ $I_D = 30A$	-	15	-	nC
Gate Drain charge	Q _{gd} *5	V _{GS} = 10V	-	45	-	

*1 : Limit only by maximum temperature allowed

*2 : Pw \leq 10us, Duty cycle \leq 1%

*3 : I_D = 5.2A, V_{DD} = 50V

*4 : Reference measurement circuits Fig.5-1

*5: Pulsed

BODY DIODE ELECTRICAL CHARACTERISTICS (Source-Drain) (Ta=25°C)

Parameter	Symbol	Conditions	Value			Unit
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Oilit
Inverse diode continuous, forward current	I _S *1	- Tc=25℃	-	1	30	Α
Inverse diode direct current, pulsed	I _{sM} *2		-	ı	80	Α
Forward Voltage	V _{SD} *5	V _{GS} = 0V, I _S = 30A	-	-	1.5	V
Reverse recovery time	T _{rr} *5	I _S = 30A Di/dt = 100A/us	-	660	-	ns
Reverse recovery charge	Q _{rr} *5		-	15	-	uC
Peak reverse recovery current	I _{rrm} *5		-	45	-	Α

TYPICAL TRANSIENT THERMAL CHARACTERISTICS

Symbol	Value	Unit
R _{th1}	0.0973	
R _{th2}	0.618	K/W
R _{th3}	2.14	
C _{th1}	0.00375	
C _{th2}	0.0519	Ws/K
C _{th3}	0.524	

Application Circuit

Junction Temperature : T_i [°C]

Pulse Width : Pw [s]

Fig.3 Avalanche Energy Derating Curve vs Junction Temperature 120 Avalanche Energy: EAS / EAS max. [%] 100 80 60 40 20 0 0 25 50 75 100 125 150

Junction Temperature : T_i [°C]

Fig.4 Typical Output Characteristics(I)

Drain - Source Voltage: VDS [V]

Fig.5 Typical Output Characteristics(II)

Drain - Source Voltage: VDS [V]

Fig.9 Typical Transfer Characteristics

Gate - Source Voltage : V_{GS} [V]

Fig.11 Transconductance vs. Drain Current

Fig. 12 Static Drain - Source On - State Resistance vs. Gate Source Voltage 400 Static Drain - Source On-State Resistance T_a=25°C 350 300 $I_D = 14.5A$: R_{DS(on)} [mΩ] 250 $I_D = 30A$ 200 150 100 50 0 0 5 10 15 20

Gate - Source Voltage : V_{GS} [V]

Fig. 14 Static Drain - Source On - State

Resistance vs. Drain Current

Fig.13 Static Drain - Source On - State Resistance vs. Junction Temperature 400 Static Drain - Source On-State Resistance V_{GS}= 10V 350 $I_D = 14.5A$ 300 R_{DS(on)} [mΩ] 250 200 150 100 50 0 -50 0 50 100 150

Junction Temperature : T_i [°C]

Fig. 15 Static Drain - Source On - State

Static Drain - Source On-State Resistance On-S

Drain Current : ID [A]

Fig.17 Coss Stored Energy T_=25°C Coss Stored Energy: Eoss [uJ]

Drain - Source Voltage : V_{DS} [V]

Fig. 18 Switching Characteristics

Gate - Source Voltage: V_{GS} [V]

Fig. 19 Dynamic Input Characteristics

T_a = 25°C V_{DD}= 300V 20 40 60 80 100 120 140 160 180 200

Total Gate Charge : Qg [nC]

Fig.21 Reverse Recovery Time

Electrical characteristic curves

Fig.20 Inverse Diode Forward Current vs. Source - Drain Voltage 100 Inverse Diode Forward Current: Is [A] 10 1 =125°C T_=75°C 0.1 T_a=25°C -25°C 0.01 0.0 0.5 1.0 1.5

Vs.Inverse Diode Forward Current

10000

1000

T_a=25°C

di / dt = 100A / μs

V_{GS} = 0V

Source - Drain Voltage : V_{SD} [V]

Inverse Diode Forward Current : Is [A]

CMS6030ENX

Nch 600V/30A Super Junction Power MOSFET

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

5F, No. 11, Park Avenue II, Science-Based Industrial Park, HsinChu City, Taiwan

T E L: +886-3-567 9979 F A X: +886-3-567 9909 http://www.champion-micro.com

Sales & Marketing

21F., No. 96, Sec. 1, Sintai 5th Rd., Sijhih City, Taipei County 22102, Taiwan R.O.C

T E L: +886-2-2696 3558 F A X: +886-2-2696 3559