Machine-Learning Models to Predict Cathode Performance

Clement Wong ^{1,2}, Ishan Saraswat ⁴, Katsuyuki Tomita ³, Spandan Gandhi ⁴, ¹Engineering and Public Policy, ² Mechanical Engineering, ³Chemical Engineering, ⁴Energy Science, Technology and Policy

Introduction and Objective

Our objective is to build a model predicting cathode performance (i.e. capacity) using a dataset of cathode materials from the Taylor Sparks Group at University of Utah.

- What features are important to predict cathode performance?
- What machine learning method works best for prediction of cathode performance?

Our Collaborator

Citrine Informatics: Provides a materials data science and artificial intelligence platform that allows users to

- 1. Store to and extract from material data infrastructure
- 2. Run machine learning models

Benefits of Al for Materials

- > Promotes sharing materials knowledge
- ➤ Accelerates material development and discovery through "sequential learning"

Literature Review

Features that affect cathode capacity:

- > Material (e.g. chemical composition) [1]
- ➤ Design Parameters (e.g. electrode thickness and porosity) [2]

ML algorithms implemented to predict Nirich NCM cathode properties [3]

- ➤ 13 input features (synthesis parameters, inductively coupled plasma mass spectrometry, X-ray diffraction)
- Extremely Randomized Tree model with AdaBoost algorithm best predicted initial capacity, residual Li, and the cycle life

Results from Citrine Platform

Random Forest Model on Citrination using only features from Taylor Sparks dataset

Important features for capacity

important lea	itures for o	capacity
Features	Importance	
structure type	26.1%	Property C1 discharge or initial highest
coulombic		250- Extrapolating Ideal
efficiency at first		
cycle	4.7%	150- 100- 100- 100- 100- 100- 100- 100-
mean of Elemental		
polarizability for		50-
formula	4.1%	
mean of Number		0 100 200
of unfilled p		Actual (mAh g-1)
valence electrons		
for formula	3.4%	RMSE = 24.4 mAh/g
Voltage range max	3.0%	

Our Method Remo Cleaning and Cross Remo /exper

Checking

Data

Retrieval

and Feature

Engineering

- Removed sparse features/experimental test conditions
- ➤ Remove rows which have missing values for important features
- Fill in missing/incorrect data from the research papers

Open-Source Databases pymatgen matminer

CITRINE INFORMATICS

Extract important features such as density, electronegativity, and crystal structure (spacegroup)

Feature Engineering Diagram

Conducted Recursive Feature Elimination to narrow to 15 features

Models Implemented

- Linear Regression
- Random Forest
- Decision trees
- Support Vector Regression

Model
Selection and
Parameter
Optimization

Accuracy of the model in terms of RMSE and R² score using K Fold Cross Validation.

Our Results

Suggestions for Future Work

- Adding more data (Trained on 247 training examples out of the initial 343 in dataset due to missing/incorrect values)
- Test with more material properties to identify other predictors
 - Predict other performance properties such as cycle life

Summary

- Random Forest Model best predicted initial capacity
- Founded 15 best features to represent the data using Recursive Feature Elimination
- With more data on cathodes, the model would be more robust

References

[1] A. Eddahech, O. Briat, J.-M. Vinassa. Performance comparison of four lithium—ion battery technologies under calendar aging. Energy, 84 (2015), pp. 542-550

[2] S. Yu, S. Kim, T. Y. Kim, J. H. Nam, and W. I. Cho, Bulletin of the Korean Chemical Society, 34, 79 (2013).
[3] Min, K., Choi, B., Park, K. & Cho, E. Machine learning assisted optimization of electrochemical properties for Ni-rich cathode materials. Sci. Rep. 8, 15778 (2018)

[4] "Scikit-Learn." 1.4. Support Vector Machines - Scikit-Learn 0.19.2 Documentation, scikit-learn.org/stable/index.html.