TRAINING GENERATIVE ADVERSARIAL NETWORKS WITH BINARY NEURONS BY END-TO-END BACKPROPAGATION

Hao-Wen Dong, Yi-Hsuan Yang

2018.10.17 at Music and AI Lab

OUTLINES

- **♦** Backgrounds
 - ♦ Generative Adversarial Networks
 - **♦ Binary Neurons**
 - **♦ Straight-through Estimators**
- **♦ BinaryGAN**
- ♦ Experiments & Results
- Discussions & Conclusion

BACKGROUNDS

♦ Goal—learn a mapping from the prior distribution to the data distribution [2]

distribution data distribution

♦ Goal—learn a mapping from the prior distribution to the data distribution [2]

can be intractable
prior
distribution
distribution

Use a deep neural network to learn an implicit mapping

Use another deep neural network to provide guidance/critics

BINARY NEURONS

Definition: neurons that output binary-valued predictions

BINARY NEURONS

- Definition: neurons that output binary-valued predictions
- Deterministic binary neurons (DBNs):

$$DBN(x) \equiv \begin{cases} 1, & if \ \sigma(x) < 0.5 \\ 0, & otherwise \end{cases}$$
 (hard thresholding)

BINARY NEURONS

- Definition: neurons that output binary-valued predictions
- Deterministic binary neurons (DBNs):

$$DBN(x) \equiv \begin{cases} 1, & if \ \sigma(x) < 0.5 \\ 0, & otherwise \end{cases}$$
 (hard thresholding)

♦ Stochastic binary neurons (SBNs):

$$SBN(x) \equiv \begin{cases} 1, & if \ z < \sigma(x) \\ 0, & otherwise \end{cases}$$
, $z \sim U[0, 1]$ (Bernoulli sampling)

BACKPROPAGATING THROUGH BINARY NEURONS

- Backpropagating through binary neurons is intractable
 - ♦ For DBNs, it involves the nondifferentiable threshold function
 - ♦ For SBNs, it requires the computation of expected gradients on all possible combinations (*exponential to the number of binary neurons*) of values taken by the binary neurons

BACKPROPAGATING THROUGH BINARY NEURONS

- Backpropagating through binary neurons is intractable
 - ♦ For DBNs, it involves the nondifferentiable threshold function
 - ♦ For SBNs, it requires the computation of expected gradients on all possible combinations (*exponential to the number of binary neurons*) of values taken by the binary neurons
- We can introduce gradient estimators for the binary neurons
 - ♦ Examples include Straight-through [3,4] (the one adopted in this work), REINFORCE [5], REBAR [6], RELAX [7] estimators

STRAIGHT-THROUGH ESTIMATORS

- ♦ Straight-through estimators: [3,4]
 - ♦ Forward pass—use hard thresholding (DBNs) or Bernoulli sampling (SBNs)
 - ♦ Backward pass—pretend it as an identity function

STRAIGHT-THROUGH ESTIMATORS

- ♦ Straight-through estimators: [3,4]
 - ♦ Forward pass—use hard thresholding (DBNs) or Bernoulli sampling (SBNs)
 - Backward pass—pretend it as an identity function
- ♦ Sigmoid-adjusted straight-through estimators
 - Use the derivative of the sigmoid function in the backward pass
 - ♦ Found to achieve better performance in a classification task presented in [4]
 - **♦ Adopted in this work**

- Use binary neurons at the output layer of the generator
- Use sigmoid-adjusted straight-through estimators to provide the gradients for the binary neurons
- ♦ Train the whole network by end-to-end backpropagation

(implemented by multilayer perceptrons)

(implemented by multilayer perceptrons)

EXPERIMENTS & RESULTS

TRAINING DATA

- ♦ Binarized MNIST handwritten digit database [8]
 - \diamond Digits with nonzero intensities $\rightarrow 1$
 - \diamond Digits with zero intensities \rightarrow 0

Sample binarized MNIST digits

5	0	Ч	1	9	2	1	3	6	9	0	5	6	ø	7	6
1	4	3	5	3	6		7	ı	8	1	9	3	9	8	5
2	8	6	9	ч	Ø	9	1	5	3	3	0	7	#	9	8
7	2	4	3	2	7	ъ	8	0	9	4	1	4	#	6	0

IMPLEMENTATION DETAILS

- ♦ Batch size is 64
- ♦ Use WGAN-GP [9] objectives
- **♦ Use Adam optimizer [10]**
- ♦ Apply batch normalization [11] to the generator (but not to the discriminator)
- ♦ Binary neurons are implemented with the code kindly provided in a blog post on the R2RT blog [12]

IMPLEMENTATION DETAILS

- **♦** Apply slope annealing trick [13]
 - ♦ Gradually increase the slopes of the sigmoid functions used in the sigmoidadjusted straight-through estimators as the training proceeds
 - ♦ We multiply the slopes by 1.1 after each epoch
 - ♦ The slopes start from 1.0 and reach 6.1 at the end of 20 epochs

EXPERIMENT I—DBNs vs SBNs

- **DBNs and SBNs can achieve similar qualities**
- They show distinct characteristics on the preactivated outputs

EXPERIMENT I—DBNs vs SBNs

Histograms of the preactivated outputs

DBNs

- more values in the middle
- a notch at 0.5 (the threshold)

SBNs

- more values close to 0 and 1

EXPERIMENT II—REAL-VALUED MODEL

- Use no binary neurons
- ♦ Train the discriminator by the real-valued outputs of the generator

EXPERIMENT II—REAL-VALUED MODEL

Histograms of the preactivated outputs

DBNs

- more values in the middle
- a notch at 0.5 (the threshold)

SBNs

- more values close to 0 and 1

Real-valued model

- even more U-shaped

EXPERIMENT III—GAN OBJECTIVES

- * WGAN [14] model can achieve similar qualities to the WGAN-GP
- ♦ GAN [2] model suffers from mode collapse issue

EXPERIMENT IV—MLPs vs CNNs

♦ CNN model produces less artifacts even with a small number of trainable parameters (MLP—0.53M; CNN—1.4M)

MLP model										CNN model											
DBNs					SBNs					DBNs						SBNs					
4	6	5	I	4	6	1	T.	7	0	4	9	3	9	D	9	9	9	E	Ţ		
V	7,	7	4	9	4	2	6	0	5	6	9	3	4	T	2	1	0	0	3		
y	9	<u> Si</u>	6	5		G,	ĺ	4	3	4	7	4	1	O	ą	7	6	7	5		
4		Ø	4	7	G	3	7	4	5	e,	7	5	7	급	4	3	7	1			
4	Z	4	4		1	À.	1	9	Ġ	5	Ø	હ	2	4	1	1		Ś	7		

DISCUSSIONS & CONCLUSION

DISCUSSIONS

- ♦ Why is binary neurons important?
 - ♦ Open the possibility of conditional computation graph [4,13]
 - ♦ Move toward a stronger AI that can make reliable decisions

DISCUSSIONS

- Why is binary neurons important?
 - ♦ Open the possibility of conditional computation graph [4,13]
 - Move toward a stronger AI that can make reliable decisions
- Other approaches to model discrete distributions with GANs
 - ♦ Replace the target discrete outputs with continuous relaxations
 - ♦ View the generator as agent in reinforcement learning (RL) and introduce RL-based training strategies

FUTURE WORK

Examine the use of gradient estimators for training a GAN that has a conditional computation graph

CONCLUSION

♦ A new GAN model that

- can generate binary-valued predictions without further post-processing
- can be trained by end-to-end backpropagation

♦ Experimentally compare

- deterministic and stochastic binary neurons
- the proposed model and the real-valued model
- ♦ GAN, WGAN, WGAN-GP objectives
- **⋄** MLPs and CNNs

REFERENCES

- [1] Hao-Wen Dong and Yi-Hsuan Yang. Training Generative Adversarial Networks with Binary Neurons by End-to-end Backpropagation. arXiv Preprint arXiv:1810.04714, 2018
- [2] Ian J. Goodfellow et al. Generative adversarial nets. In Proc. NIPS, 2014.
- [3] Geoffrey Hinton. Neural networks for machine learning—Using noise as a regularizer (lecture 9c), 2012. Coursera, video lectures. [Online] https://www.coursera.org/lecture/neural-networks/using-noise-as-a-regularizer-7-min-wbw7b.
- [4] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.
- [5] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8(3-4):229–256, 1992.
- [6] George Tucker, Andriy Mnih, Chris J Maddison, and Jascha Sohl-Dickstein. REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models. In *Proc. NIPS*, 2017.
- [7] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud. Backpropagation through the Void: Optimizing control variates for black-box gradient estimation. In *Proc. ICLR*. 2018.

REFERENCES

- [8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proc. IEEE*, 86(11):2278–2324, 1998.
- [9] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved training of Wasserstein GANs. In *Proc. NIPS*, 2017.
- [10] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- [11] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In *Proc. ICML*, 2015.
- [12] Binary stochastic neurons in tensorflow, 2016. Blog post on the R2RT blog. [Online] https://r2rt.com/binary-stochastic-neurons-in-tensorflow.
- [13] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural networks. In *Proc. ICLR*, 2017.
- [14] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In *Proc. ICML*, 2017.

Thank you for your attention