

시계열 분석 기법과 응용

Week 1. 시계열 평활기법 1-3. 계절성고려모형

> 전치혁 교수 (포항공과대학교 산업경영공학과)

계절성 고려 모형

추세와 계절성이 있는 시계열에 적용

윈터스 (Winters) 모형

- 홀트 모형에 계절성 (seasonality)을 추가반영하여 확장시킴
- 가법모형과 승법모형이 있음

분해법 (Decomposition)

- 추세와 계절성을 분해한 후 예측시 다시 결합
- 가법모형과 승법모형이 있음

윈터스 모형

- 홀트 모형에 계절성 (seasonality)을 추가반영하여 확장시킴
- 가법 (additive) 모형과 승법 (multiplicative)모형이 있음 여기서는 승법 모형을 설명
 - s_t : 계절성 지수, t=1,2, ···, m
 - m: 계절 주기, 분기별 데이터의 경우 m=4
- 수평 수준, 추세, 계절성을 각각 갱신하는 모형

- 수평수준:
$$L_t = \alpha \frac{X_t}{S_{t-m}} + (1-\alpha)(L_{t-1} + b_{t-1}), \quad (0\langle \alpha \langle 1 \rangle)$$

- 추세:
$$b_t = \beta (L_t - L_{t-1}) + (1 - \beta) b_{t-1}$$
, $(0\langle \beta \langle 1 \rangle)$

- 계절성:
$$s_t = \gamma \frac{X_t}{L_t} + (1 - \gamma)s_{t-m}$$
, $(0\langle \gamma \langle 1 \rangle)$

(초기치들이 필요하며, 계절성지수는 평균이 1이 되도록 조정 필요)

• 시점 T에서 시점 T+k의 값 예측(k-단계 예측):

$$f_{T,k} = (L_T + kb_T) s_{T-m+k}, \qquad k = 1,2,...$$

윈터스 모형

 예 (가정상업용 전력사용량) 아래 그림은 1997년-2017년 사이의 분기별 가정 및 상업용 전력 사용량을 나타낸다. Winters 모형을 2015년까지 데이터에 적용하여 평 활화한 후 2016-2017년 분기별 전력사용 량을 예측해 보자. (α = β = γ = 0.2 사용)

평활치

년도/분기	X_t	L_t	b_t	s_t^0	s_t
1997/ 4	1514	1522.75	0	1	1
1998/ 1	1501	1518.4	-0.87	0.9977	0.9962
/2	1426	1499.2	-4.53	0.9902	0.9888
/3	1655	1526.8	1.88	1.0168	1.0153
/4	1540	1530.9	2.34	1.0012	0.9997
2015/ 1	4505	3978.4	-7.088	1.1246	1.1232
/2	3684	3974.8	-6.382	0.9242	0.9230
/3	4030	3987.4	-2.584	0.9955	0.9943
/4	3801	3978.1	-3.929	0.9607	0.9595

윈터스 모형

• 예 (가정상업용 전력사용량 계속)

$$L_T = 3978.14,$$

 $b_T = -3.9286$
 $s_1 = 1.1232$

$$s_2 = 0.9230$$

$$s_3 = 0.9943$$

$$s_4 = 0.9595$$

$$f_{T,k} = (L_T + kb_T))s_{T-m+k}, \qquad k = 1,2,...$$

예측치

년도/분기	k	X_t	$f_{T,k}$	오차
2016/ 1	1	4610	4463.88	146.12
/2	2	3734	3664.71	69.29
/3	3	4365	3943.73	421.27
/4	4	3943	3801.78	141.22
2017/ 1	5	4611	4446.23	164.77
/2	6	3789	3650.21	138.79
/3	7	4448	3928.11	519.89
/4	8	4088	3786.71	301.29

분해법

• 가법적 모형

$$X_t = b_t + s_t + \varepsilon_t$$
; $s_t = s_{t-m}$, $\sum_{i=1}^m s_i = 0$

• 승법적 모형

$$X_t = b_t \times s_t \times \varepsilon_t; s_t = s_{t-m}, \sum_{i=1}^m s_i = m$$

- 분해법에 의한 예측 절차
 - 1) 중심 이동평균 (centered moving average) 으로 평활치 산출
 - 2) 추세제거 (detrended) 시계열 산출
 - 3) 계절성지수산출
 - 4) 계절성 제거 (deseasonalized) 시계열 산출
 - 5) 회귀모형으로 추세 추정
 - 6) 추세 및 계절성지수를 결합하여 예측치 산출

분해법 (승법적 모형)

• 중심이동평균 (m개의 데이터 이용)

$$EM_{t} = \begin{cases} \frac{1}{m} \left(0.5X_{t-q} + X_{t-q+1} + \dots + X_{t+q+1} + 0.5X_{t+q} \right) & m = 2q \text{ (주기 짝수)} \\ \frac{1}{m} \left(X_{t-q} + X_{t-q+1} + \dots + X_{t+q} \right) & m = 2q + 1 \text{ (주기 홀수)} \end{cases}$$

• 추세제거시계열

$$DX_t^{(T)} = \frac{X_t}{CM_t}$$

• 계절성지수

계절별 추세제거 시계열값의 평균으로 계절성지수 s_i , $i=1,\ldots,m$ 산출, 이때 계절성지수 평균이 1이 되도록

• 계절성제거시계열

$$DX_t^{(S)} = \frac{X_t}{S_t}$$

분해법 (승법적 모형 계속)

• 회귀모형으로 추세 추정 (계절성제거 시계열 사용)

1차식 이용
$$DX_t^{(S)} = \beta_0 + \beta_1 t + \varepsilon_t \Rightarrow b_t = \hat{\beta}_0 + \hat{\beta}_1 t$$

2차식 이용 $DX_t^{(S)} = \beta_0 + \beta_1 t + \beta_2 t^2 + \varepsilon_t \Rightarrow b_t = \hat{\beta}_0 + \hat{\beta}_1 t + \hat{\beta}_2 t^2$

• 예측치 산출 $f_{T.k} = b_{T+k} \times s_{T+k}, k = 1,2,...$

분해법

- 예 (가정상업용 전력사용량) 아래 그림은 1997 년-2017년 사이의 분기별 가정 및 상업용 전력 사용량을 나타낸다.
- 분해법 (승법 모형)을 2015년까지 데이터에 적용하여 추세 및 계절성지수를 추정한 후 2016-2017년 분기별 전력사용량을 예측해보자.

년도/분기	X_t	CM_t	$DX_t^{(T)}$	s_t	$DX_t^{(S)}$
1997/1	1,461			1.1035	1323.894
/2	1,406			0.9292	1513.185
/3	1,710	1527.75	1.1193	1.0067	1698.607
/4	1,514	1535.25	0.9862	0.9606	1576.157
1998/1	1,501	1530.87	0.9805	1.1035	1360.141
2015/1	4505	3994.62	1.1278	1.1035	4082.234
/2	3684	4009.12	0.9189	0.9292	3964.847
/3	4030			1.0067	4003.149
/4	3801			0.9606	3957.048

분해법

• 예 (가정상업용 전력사용량- 계속)

추세 추정 $b_t = 1116 + 71.19t - 0.4206t^2$

예측치
$$f_{T,k} = b_{T+k} \times s_{T+k}$$

년도/분 기	k	X_t	예 측 치	오차
2016/1	1	4610	4528.90	81.10
/2	2	3734	3818.77	-84.77
/3	3	4365	4142.65	222.35
/4	4	3943	3956.91	-13.91
2017/1	5	4611	4549.80	61.20
/2	6	3789	3833.24	-44.24
/3	7	4448	4154.94	293.06
/4	8	4088	3965.41	122.59

Reference

#1. KOSIS 국가통계포털 http://kosis.kr/ 2019.12