Q1. Let a be a sonting network.

"=)" suppose a rorts $\langle n, ..., 1 \rangle$. For all $i \in [1, n]$, we define $f_i : j \mapsto \begin{bmatrix} 1 & i & i \\ 0 & \text{else.} \end{bmatrix}$

We have that $\alpha(\langle n, ..., 1 \rangle) = \langle 1, ..., n \rangle$

Mon, for all $\hat{i} \in [1, \pi]$, $d(f_{\hat{i}}(\langle n, ..., A \rangle)) = d(\langle 1, ..., 1, 0, ..., 0 \rangle)$ $= f_{\hat{i}}(\langle 1, ..., n \rangle)$ $= \langle 0, ..., 0, 1, ..., 1 \rangle$.

"= Suppose a:= oc(4n,...,1)) is insorted: there exists i e II. 2-1] such that a; < age_1.

Define $b:= \omega(f_{\frac{1}{2}}(\langle a_1,...,1\rangle))$. Thus $b_{\frac{1}{2}}=1$ and $b_{\frac{1}{2}+2}=0$ with the lumma. Therefore, $\omega(f_{\frac{1}{2}}(\langle a_1,...,1\rangle))$ is unsorted.

Q2. Yes it does

Example of a separator with 8 imputs

Inturtion:

Q36) We we the following

No see why it is correct, we show by includion that, for all bimoury bitomic sequences, they are correctly sorted.

Each stop has the following property:

the current block is devicted in two blocks such that one block is comstant and the other is bitonic.

With $n = 2^{nn}$ imputs, we have a metwork with depth $m = \log_2 n$.

and $(m \cdot m)/2$ companators.

