DEPARTMENT OF MATHEMATICS BIRLA INSTITUTE OF TECHNOLOGY MESRA, RANCHI

IMM5002 Numerical Method Lab, Session: (MO-19)Lab Assignment - 5

1. Use Lagranges's interpolation formula to find the value of y when x = 10, if the following values of x and y are given:

	x	5	7	11	13	17	
Ì	\overline{y}	150	392	1452	2366	5202	

2. From the following table, find y when x = 1.85 and 2.25 by Newton's interpolation formula.

x	1.7	1.8	1.9	2.0	2.1	2.2	2.3
$y = e^x$	5.474	6.050	6.686	7.389	8.166	9.025	9.974

3. Find the Newton's forward interpolating polynomial of degree 10 that interpolates the function $\tan^{-1}(x)$ at 11 equally spaced points in the interval [0 6]. Print the coefficients of the polynomial. Compute and print the difference between the polynomial and the function at 33 equally spaced points in the interval [0 8]. What conclusion can be drawn?