Notes: Friday January 11, 2013

Mean:
$$\bar{Y} = \frac{\sum Yi}{n}$$

Expected value: $\sum_{i=0}^{n} Y_i P_i$

Mean, Median, Mode

Problems with means: They don't accurately describe nominal—binary/Bernouli, or ordinal variables

Median: is best use for ordinal variables or when interval ranges are skewed by outliers

Mode: can be used for all variable types, works well with nominal variables

Variance

Deviation: $(y_i - \bar{Y})$

Variance:
$$(var)Y = \frac{\sum_{i=0}^{n}(y_i - \bar{Y})}{n-1}$$

Standard Deviation:
$$s = \sqrt{\frac{\sum_{i=0}^{n}(y_i - \bar{Y})^2}{n-1}}$$

Standard Deviations are always positive

Moments

Mean	1 st moment	(Y^1)
Variance	2 nd moment	(Y^2)
Skewness	3 rd moment	(Y^3)
Kurtosis	4 th moment	(Y^4)

Symbols:

	Population	Sample
Mean	μγ	$ar{Y}$
Standard deviation	σ	S

Conditional Distribution

$$Pr(Y = y \mid X = x) = \frac{Pr(X = x, Y = y)}{Pr(X = x)}$$