

# AQA Level 2 Certificate in FURTHER MATHEMATICS (8365/1)

Paper 1

Specimen 2020

Time allowed: 1 hour 45 minutes

## **Materials**

## For this paper you must have:

mathematical instruments



You may not use a calculator

#### Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the space provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
   These must be tagged securely to this answer booklet.

| Please write clearly | y, in b | lock | capi | tals | , to a | allo | w cł | nar | act | er c | om | npu | ter | rec | ogr | nitio | n. |  |  |     |
|----------------------|---------|------|------|------|--------|------|------|-----|-----|------|----|-----|-----|-----|-----|-------|----|--|--|-----|
| Centre number        |         |      |      |      | Can    | did  | ate  | nu  | mb  | er [ |    |     |     |     |     |       |    |  |  |     |
| Surname              |         |      |      |      |        |      |      |     |     |      |    |     |     |     |     |       |    |  |  |     |
| Forename(s)          |         |      |      |      |        |      |      |     |     |      |    |     |     |     |     |       |    |  |  |     |
| Candidate signatur   | re      |      |      |      |        |      |      |     |     |      |    |     |     |     |     |       |    |  |  | - / |

Answer all questions in the spaces provided.

1 (a) 
$$\frac{y^6 \times y}{y^m} = y^4$$

Circle the value of m.

-2

1.5

2

[1 mark]

1 **(b)**  $a^n \times a^5 = a^5$ 

Work out the value of n.

[1 mark]

Answer C

1 (c)  $(c^5)^p = (c^2)^6$ 

Work out the value of p.

[2 marks]

| 2 | Solve | $\sqrt[3]{7x-13}=2$ |
|---|-------|---------------------|
| _ | 00.00 | V12 10 - 2          |

[2 marks]

76=3

3 
$$3a(2x-1) + 4(ax+5) \equiv 60x + b$$

Work out the values of a and b.

[4 marks]

$$10ax = 60x$$
  $20-3a = 6$   
 $a = 6$   $20-18=6$ 

$$b =$$





Work out the coordinates of C.

$$C_{x} = 5 + \frac{(5-3)x^{2}}{5} = 5 + \frac{4}{5} = 5.8$$

$$C_{y} = 5.5 + \frac{(7-5.5)x^{2}}{5} = 5.5 = 6.1$$

[4 marks]

Answer ( 5,8 , 6.1 )

| 5 |  |  |
|---|--|--|

$$y = 2x^{10} - \frac{3}{x^2}$$

Work out  $\frac{dy}{dx}$ 



[3 marks] = 3 x 2x-3

$$=7x^{10}-3xx^{2}$$

$$=7x^{10}-3xx^{-3}$$

$$= 2x^{10} - 3x^{2} = 3x^{2}x^{2}$$

$$= 3x^{2}x^{2}$$

$$= 3x^{2}x^{2}$$

$$= 6$$

$$(3x^{2}) = 6$$

$$= 6$$

Answer  $20_{12}$  9 +  $\frac{6}{2_{12}3}$ 

6

Simplify fully 
$$\frac{15x^2y - 5xy^2}{12x - 4y}$$





# 7 ABCD is a rhombus with side length 8 cm

Angle  $ABC = 60^{\circ}$ 



Not drawn accurately



Work out the area of the rhombus.

Give your answer in the form  $a\sqrt{b}$  cm<sup>2</sup> where a and b are integers.



[3 marks]

$$\frac{a}{\sin A} = \frac{b}{\sin 8}$$

$$AE = \frac{8}{\sin 90} \times \sin 60 = 9 \times 5 = 453$$

$$E = \frac{8}{\sin 90} \times \sin 30 = \frac{9 \times 5}{2} = \frac{453}{2}$$

$$\frac{8E = 8}{\sin 90} \times \sin 30 = \frac{8 \times 1}{2} = 9$$

Answer 65 cm<sup>2</sup>

8 The curve  $y = 2x^3 - 3x^2 - 12x + 6$ 

has a maximum point at L(-1, 13)

has a minimum point at M(2, -14)

intersects the *y*-axis at *N*.

The curve crosses the *x*-axis at three distinct points.

On the axes below, sketch the curve.

Label the points *L*, *M* and *N* on your sketch.

[3 marks]



A, B, C and D are points on a circle. 9

$$\angle BCA = x$$
  $\angle ACD = 2x$   $\angle CAD = 3x$   $\angle CAB = 4x$ 



Not drawn accurately

Prove that AC is a diameter.

| 2+2x+4x+3x=180° | (BA = 180-4)c-)c |
|-----------------|------------------|
|-----------------|------------------|

[4 marks]

| 2 | , somethe disner |
|---|------------------|
| • | <del>-</del>     |
|   |                  |
|   |                  |
|   |                  |
|   |                  |
|   |                  |
|   |                  |

$$\mathbf{10} \qquad \qquad \mathsf{f}(x) = \left(\frac{9x}{2}\right)^{-1}$$

$$g(x) = \sqrt{1 - px^3}$$
 where  $p$  is a constant

Given that  $f\left(\frac{1}{3}\right) = g\left(\frac{1}{3}\right)$  work out the value of p.

 $\frac{2}{9 \times \frac{1}{3}} = \int \left[ -\frac{p(\frac{1}{3})^3}{1 + \frac{p(\frac{1}{3})^3}{1 + \frac{p(\frac{1}{3})^3}{1$ 

[5 marks]

$$\frac{2}{3} = \sqrt{1 - \frac{\rho}{27}}$$

$$\frac{4}{9} = 1 - \frac{9}{27}$$

$$\frac{-5}{9} = -\frac{P}{27}$$

Answer (5

A circle, centre C, touches the y-axis at the point (0, 2)

The line y = k intersects the circle at the points (1, k) and (5, k)



Not drawn accurately

Work out the equation of the circle.



Answer 
$$(x-3)^2 + (y-2)^2 = 9$$

12 AB = 4 cm

$$AC = 7 \text{ cm}$$

$$\cos x = -\frac{2}{7}$$



Work out the length of BC.

Answer

cm

[3 marks]

Rearrange  $t = \frac{3w^3 + a}{w^3 - 2}$  to make w the subject. 13

[5 marks]

| 14 Rationalise and simplify | $\frac{\sqrt{3}-7}{\sqrt{3}+1}$ |
|-----------------------------|---------------------------------|
|-----------------------------|---------------------------------|

Give your answer in the form  $a + b\sqrt{3}$  where a and b are integers

[4 marks]



Answer

Turn over ▶



**15 (a)** Show that the equation of the normal to the curve at A is 3y = x + 16

[5 marks]





34=3+3 34=20 + 16

| 15 (b) | The normal at A also intersects the curve at B. |
|--------|-------------------------------------------------|
|        |                                                 |

Work out the x-coordinate of *B*.

[4 marks]

$$x=\frac{-2}{3}$$
  $x=-9$  Aso divoid



Work out the possible values of a.

Work out the possible values of a.

$$(2x+a)^{6} = \binom{6}{1}(2x)^{6} + \binom{6}{1}(2x)^{5}(a) + \binom{6}{3}(2x)^{9}(a)^{2}$$

$$(3)^{6}(2x)^{9}(a)^{2} = 20x |6xa^{2} \times x^{4}|$$

$$320a^{2} = 60$$

$$(6)(2x)^{9}(a)^{2} = 20 \times 16 \times a^{2} \times x^{4}$$

$$320a^{2} = 60$$

$$32a^{2} = 60$$

$$a^{2} = 60$$

$$a^{2} = \frac{60}{20} = \frac{3}{16}$$

$$a^{2} = \frac{50}{4} = \frac{3}{16}$$

Answer £

17 Solve the simultaneous equations

(3) 
$$6a + 3b - 3c = 24$$
  
(3)  $4a - 3b - 2c = -9$ 

$$6a + 3b + c = 0$$

| Za+6-c=8 |
|----------|
| -3+6+6=8 |
| 6+3=8    |
| 6=5      |

$$a = \frac{-15}{5} \quad b = \frac{5}{5} \quad c = \frac{-6}{5}$$



**19** 
$$f(x) = 2x^3 - 12x^2 + 25x - 11$$

Use differentiation to show that f(x) is an increasing function for all values of x.

 $\frac{dy = 3x^{2} - 24x + 25}{dx}$   $\frac{6(x^{2} + 3x)}{6(x^{2} + 3x)}$ 

[4 marks]

4 asq

| 20 (a) | Show that $2\cos^2\theta = 2 - 2\sin^2\theta$ | cos 20 = 1 - sin 20 | [1 mark] |
|--------|-----------------------------------------------|---------------------|----------|
|        | -2 (cos 20)                                   |                     |          |
|        | 2 (1-sin 'O)                                  |                     |          |
|        | - 2 2 · 2A                                    |                     |          |



**20 (b)** Hence, solve  $2 \cos^2 \theta + 3 \sin \theta = 3$  for  $0 < \theta < 180^{\circ}$ 

[4 marks]

$$2 - 2 \sin^{2} \theta + 3 \sin \theta - 3 = 0$$

$$\frac{1}{16} \cos^{2} \theta + 3 \sin \theta - 3 = 0$$

$$\frac{1}{16} \cos^{2} \theta + 3 \cos \theta + 3 = 0$$

$$\frac{1}{16} \cos^{2} \theta + 3 \cos \theta + 3 = 0$$

$$\frac{1}{16} \cos^{2} \theta + 3 \cos \theta + 3 = 0$$

$$\frac{1}{16} \cos^{2} \theta + 3 \cos \theta + 3 = 0$$

$$\frac{1}{16} \cos^{2} \theta + 3 \cos \theta + 3 = 0$$

$$\frac{1}{16} \cos^{2} \theta + 3 \cos \theta + 3 = 0$$

$$\frac{1}{16} \cos^{2} \theta + 3 \cos \theta + 3 = 0$$

$$\frac{1}{16} \cos^{2} \theta + 3 \cos \theta + 3 = 0$$

$$\frac{1}{16} \cos^{2} \theta + 3 \cos^{2} \theta + 3$$

Answer 30, 90, 150

# **END OF QUESTIONS**

