Walking motion generation with online foot position adaptation based on ℓ_1 - and ℓ_∞ -norm penalty formulations

Dimitar Dimitrov¹, Antonio Paolillo², Pierre-Brice Wieber³

¹Örebro University, Sweden

²Università di Roma "La Sapienza", Italy

³INRIA, Grenoble, France

May 11, 2011

Scenario

- humanoid robot walks on a <u>flat surface</u> assumption
- the system is subject to external disturbances
- higher level planner generates reference footsteps

Objective

follow reference footsteps (exactly, when possible) while preserving the "stability" of the system

Required

a scheme for online trajectory following and stabilization

Trajectory following + stabilization $\stackrel{\triangle}{=}$ walking motion generation

How to approach the problem (in under 10 ms)

- using predefining motion primitives not possible in the presence of disturbances
- making local decisions considering the full dynamical morel not reliable
- "look-ahead" schemes increasingly popular but computationally demanding. In particular, using full system dynamics - not feasible

One possible "solution"

- use approximate dynamical model (preferably linear)
- compensate the approximation by applying a preview type of controller with (possibly) fast sampling rate

We use ...

- model: linearized 3D inverted pendulum surprisingly accurate approximation (under certain assumptions)
- preview controller: Linear Quadratic Regulator (LQR) with explicit constraints ≜ Linear Model Predictive Control (LMPC)
- stability criterion: ZMP ∈ support polygon

Explicit constraints - address the stabilization sub-task

Figure: A typical result (fixed feet). Red squares - ZMP, blue line - CoM

 $\mbox{\bf Given CoM}$ & feet positions $\mbox{\bf solve}$ inverse kinematics to apply necessary control input ...

The paper deals with ...

Main contribution

- walking motion generation generate "safe" motion profile for the CoM
- online foot position adaptation compute "optimal" foot repositioning "when necessary" (due to disturbances)
- ℓ_1 and ℓ_∞ -norm penalty define "optimal" and "when necessary" (and motivate them)

In addition ...

- change of variable that leads to a simplified formulation
- double support handling with foot adaptation

Typical result - foot variation (no disturbance)

Relax footstep constraints: penalize quadratic ℓ_2 -norm of foot variation

Figure: Reference footsteps altered even though it is "not necessary"

Fact

Regardless of how large (finite) quadratic ℓ_2 penalty is used, footstep repositioning would occur

What penalty to use?

We are not the first people to ask this question :)

A wide variety of options are available. Popular ones:

- ullet ℓ_1 -norm based penalization
- ullet ℓ_{∞} -norm based penalization

reason: discontinuity at the origin leads to the following property

Minimization of ℓ_1 -norm or ℓ_∞ -norm tends to produce sparse solutions.

Heavily used in

- compressed sensing
- approximate solution of cardinality problems
- robust (to outliers, or noise) estimation in statistics
- sparse signal reconstructions
- optimization methods using exact penalization
- imposing **soft constraints** in the context of MPC
- classification in machine learning (e.g., soft margin SVM), etc.

Sparse solutions

Suppose that ΔF_i represents foot variation from the reference position for the $i^{\mbox{th}}$ footstep in the preview window, then

```
minimize usual stuff + \alpha(|\Delta \pmb{F}_1| + \cdots + |\Delta \pmb{F}_k|) subject to usual stuff
```

leads to foot repositioning only "when necessary". Define what "when necessary" means by the gain $\alpha>0.$

Relation: $\alpha \leftrightarrow$ set of disturbances that do not lead to foot repositioning.

Many interesting options to consider

The paper presents two formulations (require solving a single QP)

- ullet quadratic ℓ_2 -norm + ℓ_1 -norm penalty o (slightly more variables)
- $\bullet \ \mathsf{quadratic} \ \ell_2\mathsf{-norm} \ + \ \ell_\infty\mathsf{-norm} \ \mathsf{penalty} \to \big(\mathsf{slightly} \ \mathsf{more} \ \mathsf{constraints}\big)$

"Shaping-up" alternative norms is possible with both formulations ...

Example (with disturbance)

Example (with disturbance)

Figure: ℓ_2 -norm in combination with ℓ_∞ -norm minimization.

Change of variable that leads to a simplified formulation

Standard approach

- control input: jerk of CoM
- output: position of ZMP

```
position of ZMP ← system dynamics ← jerk of CoM
```

⇒ The system dynamics appears in the constraints for the ZMP

We use the ZMP directly as a decision variable

minimize usual stuff 7MP

subject to $ZMP \in support polygon \leftarrow pure geometry$

In this way we can derive a formulation with simple bounds

Double support handling with foot adaptation

Foot variation allowed ⇒

relation between ΔF_i and the double support constraint is nonlinear.

To circumvent this problem

LMPC schemes that perform foot adaptation assume that no sampling times fall strictly in double support (i.e., they jump-over the double support phase) \rightarrow does not scale well with some walking patters ...

In the context of foot adaptation, we present a "reasonable" approximate way to account for double support constraints

Future work ...

Two ways of implementing this LMPC scheme

 sequential formulation: usually dense, with less variables. Objective function can be formed offline. The use of off-the-shelf dense solvers possible (more appealing to practitioners)

this paper

- simultaneous formulation: usually sparse, with more variables. No need to explicitly form an objective function. The use of specialized solvers necessary ... (many possibilities)
 We allow
 - variable sampling time
 - variable CoM height, etc.

next IROS