Высшая математика

Лисид Лаконский

May 2023

Содержание

г вы	сшая математика — справочныи материал к экзамену					
1.1	Производные функции одной переменной, экстремумы, выпуклость-вогнутость, возрастание-убывание, ка-					
	сательные и оси					
	1.1.1 Производные функции одной переменной					
	1.1.2 Нахождение экстремумов функции одной переменной					
	1.1.3 Нахождение интервалов выпуклости и интервалов вогнутости					
	1.1.4 Возрастание и убывание функции на интервале					
	1.1.5 Касательная к графику функции					
	1.1.6 Преобразование графиков функций					
1.2	Неопределенные интегралы					
	1.2.1 Свойства неопределенного интеграла					
	1.2.2 Таблица неопределенных интегралов					
	1.2.3 Подведение функции под знак дифференциала					
	1.2.4 Метод замены переменной в неопределенном интеграле					
	1.2.5 Метод интегрирования по частям					
1.3						
1.4	Площадь и длина дуги кривой (декартовые, полярные, параметрические координаты)					
	1.4.1 Вычисление площадей в прямоугольных координатах					
	1.4.2 Вычисление площадей при параметрическом задании кривой					
	1.4.3 Площадь в полярных координатах					
	1.4.4 Длина дуги кривой					
1.5						
1.6	Рапы					

1 Высшая математика — справочный материал к экзамену

1.1 Производные функции одной переменной, экстремумы, выпуклость-вогнутость, возрастание-убывание, касательные и оси

1.1.1 Производные функции одной переменной

Свойства производных функций

1.
$$(c)' = 0$$

3.
$$(u \pm v)' = u' \pm v'$$

5.
$$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$$

6. Если
$$y=f(u), u=\phi(x),$$
 то $(f(\phi(x)))'=f'(u)*u'.$ Пример: $\cos 3x=-\sin 3x*3=-3\sin x$ Еще один пример: $\operatorname{tg}^{2x}e^x=2\operatorname{tg}e^x*\frac{1}{\cos^2 e^x}*e^x$

2. (cu)' = c * u'

4.
$$(u*v)' = u'v + uv'$$

Таблица производных

1.
$$(u^a)' = a * u^{a-1} * u', a \in R$$

 $(\frac{1}{u}) = (u^{-1})' = -1 * \frac{1}{u^2} * u'$
 $(\sqrt{u})' = (u^{\frac{1}{2}})' = \frac{1}{2\sqrt{u}} * u'$

3.
$$(\log_a u)' = \frac{1}{u} \log_a e * u' = \frac{1}{u \ln a} * u'$$

 $(\ln u)' = \frac{1}{u} * u', (\ln |u|)' = \frac{1}{u} * u'$

$$5. (\cos u)' = -\sin x$$

7.
$$(\operatorname{ctg} u)' = -\frac{1}{\sin^2 u} * u'$$

9.
$$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} * u'$$

11.
$$(\operatorname{arcctg} u)' = -\frac{1}{1+u^2} * u'$$

13.
$$(\cosh u)' = \sinh u * u'$$

15.
$$(\coth u)' = -\frac{1}{\sinh^2 u} * u'$$

2.
$$(a^u) = a^u * \ln a * u'$$

 $(e^u)' = e^u * u'$

$$4. (\sin u)' = \cos x$$

6.
$$(\operatorname{tg} u)' = \frac{1}{\cos^2 u} * u'$$

8.
$$(\arcsin u)' = \frac{1}{\sqrt{1-u^2}} * u'$$

10.
$$(\operatorname{arctg} u)' = \frac{1}{1+u^2} * u'$$

12.
$$(\sinh u)' = \cosh u * u'$$

14.
$$(\tanh u)' = \frac{1}{\cosh^2 u} * u'$$

16.
$$(u(x)^{v(x)})' = v(x) * u(x)^{v(x)-1} * u'(x) + u(x)^{v(x)} * \ln u(x) * v'(x)$$

1.1.2 Нахождение экстремумов функции одной переменной

- 1. Находим производную функции
- 2. Приравниваем эту производную к нулю
- 3. Находим значения переменной получившегося выражения
- 4. Разбиваем этими значениями координатную прямую на промежутки (при этом не нужно забывать о точках разрыва, которые также надо наносить на прямую)
- 5. Вычисляем, на каких из этих промежутков производная будет положительной, а на каких отрицательной

1.1.3 Нахождение интервалов выпуклости и интервалов вогнутости

Пусть функция y = f(x) дважды дифференцируема на некотором интервале. Тогда:

- 1. Если вторая производная f''(x) < 0 на интервале, то график функции f(x) является выпуклым на данном интервале
- 2. Если вторая производная f''(x) > 0 на интервале, то график функции f(x) является вогнутым на данном интервале

2

1.1.4 Возрастание и убывание функции на интервале

Определение возрастающей функции

- 1. если производная функции y = f(x) положительна для любого x из интервала X, то функция возрастает на X
- 2. если производная функции y = f(x) отрицательна для любого x из интервала X, то функция убывает на X

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

- 1. найти область определения функции
- 2. найти производную функции
- 3. решить неравенства f'(x) > 0 и f'(x) < 0 на области определения
- 4. к полученным промежуткам добавить граничные точки, в которых функция определена и непрерывна

1.1.5 Касательная к графику функции

Определение

1. Пусть функция $f:U(x_0)\subset R\to R$ определена в некоторой окрестности точки $x_0\in R$, и дифференцируема в ней: $f\in D(x_0)$. Касательной прямой к графику функции f в точке x_0 называется график линейной функции, задаваемый уравнением

$$y = f(x_0) + f'(x_0)(x - x_0), x \in R$$

2. Если функция f имеет в точке x_0 бесконечную производную $f'(x_0) = \pm \infty$, то касательной прямой в этой точке называется вертикальная прямая, задаваемая уравнением

$$x = x_0$$

Замечание Прямо из определения следует, что график касательной прямой проходит через точку $(x_0, f(x_0))$. Угол α между касательной к кривой и осью Ох удовлетворяет уравнению

$$tg \alpha = f'(x_0) = k$$

где tg обозначает тангенс, а k — коэффициент наклона касательной. Производная в точке x_0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

1.1.6 Преобразование графиков функций

Функция	Преобразование графика функции $y = f(x)$		
y = f(x) + A	Параллельный перенос вдоль оси OY на A единиц вверх,		
	если >0 , и на $ A $ единиц вниз, если <0		
y = f(x - a)	Параллельный перенос вдоль оси OX на a единиц вправо,		
	если $a>0$, на $ a $ единиц влево, если $a<0$		
y = kf(x)	Растяжение вдоль оси OY относительно оси OX в k раз,		
	если $k > 1$, и сжатие в $1/k$ раз, если $0 < k < 1$		
y = f(kx)	Сжатие вдоль оси OX относительно оси OY в k раз, если		
	k > 1, и растяжение в $1/k$ раз, если $0 < k < 1$		
y = -f(x)	Симметричное отражение относительно оси ОХ		
y = f(x)	Часть графика, расположенная ниже оси OX , симметрич-		
	но отражается относительно этой оси, остальная его часть		
	остается без изменения.		
y = f(-x)	Симметричное отражение относительно оси ОҮ		
y = f(x)	Часть графика, расположенная правее оси ОХ, симмет-		
	рично отражается относительно этой оси, остальная его		
	часть остается без изменения		

1.2Неопределенные интегралы

 $\int f(x) dx = F(x) + C$ — неопределенный интеграл, где f(x) называется подинтегральной функцией, а xназывается переменной интегрирования

1.2.1Свойства неопределенного интеграла

1.
$$(\int f(x) dx)' = (F(x) + C)' = f(x)$$

1.
$$(\int f(x) dx) = (F(x) + C) = f(x)$$

5.
$$\int \alpha f(x) \, \mathrm{d}x = \alpha \int f(x) \, \mathrm{d}x$$

3. $\int d(F(x)) = F(x) + C$

6. Если
$$\int f(x) dx = F(x) + C$$
, то

7.
$$\int f(\alpha x) dx = \frac{1}{a} F(\alpha x) + C$$

8.
$$\int f(x+b) dx = F(x+b) + C$$

9.
$$\int f(\alpha x + b) dx = \frac{1}{a} F(\alpha x + b) + C$$

2. $d(\int f(x) dx) = f(x) dx$

4. $\int (f_1(x) + f_2(x)) dx = \int f_1(x) dx + \int f_2(x) dx$

1.2.2Таблица неопределенных интегралов

1.
$$\int x^n \, \mathrm{d}x = \frac{x^{n+1}}{n+1} + C$$

3.
$$\int \sin x \, \mathrm{d}x = -\cos x + C$$

5.
$$\int \frac{\mathrm{d}x}{\cos^2 x} = \operatorname{tg} x + C$$

7.
$$\int \operatorname{tg} x \, \mathrm{d}x = -\ln(\cos x) + C$$

9.
$$\int e^x \, \mathrm{d}x = e^x + C$$

11.
$$\int \frac{dx}{1+x^2} = \arctan x + C$$

13.
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

 $2. \int \frac{\mathrm{d}x}{x} = \ln|x| + C$

4. $\int \cos x \, \mathrm{d}x = \sin x + C$

6. $\int \frac{\mathrm{d}x}{\sin^2 x} = -\operatorname{ctg} x + C$

8. $\int \operatorname{ctg} x \, \mathrm{d}x = \ln|\sin x| + C$

10. $\int a^x \, dx = \frac{a^x}{\ln a} + C$

12. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + C$

14. $\int \frac{dx}{\sqrt{x^2+a}} = \ln|x+\sqrt{x^2+a}| + C$

Подведение функции под знак дифференциала

Найти неопределенный интеграл. Выполнить проверку. $\int \sin(3x+1) dx$

Смотрим на таблицу интегралов и находим похожую формулу: $\int \sin x \, dx = -\cos x + C$. Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?

4

Подводим функцию (3x+1) под знак дифференциала: $\int \sin(3x+1) \, dx = \frac{1}{3} \int \sin(3x+1) \, d(3x+1)$

Раскрывая дифференциал, легко проверить, что:

$$\frac{1}{3} \int \sin(3x+1) \, d(3x+1) = \frac{1}{3} \int \sin(3x+1) * (3x+1)' \, dx = \frac{1}{3} \int \sin(3x+1) * (3+0) \, dx = \int \sin(3x+1) \, dx$$

Теперь можно пользоваться табличной формулой $\int \sin x \, dx = -\cos x + C$:

 $\int \sin(3x+1) dx = \frac{1}{3} \int \sin(3x+1) d(3x+1) = -\frac{1}{3} \cos(3x+1) + C$, где C = const

Метод замены переменной в неопределенном интеграле

Найти неопределенный интеграл.

 $\int \sin(3x+1) dx$

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой

В данном случае напрашивается: t = 3x + 1

Действие следующее. После того, как мы подобрали замену, в данном примере, t=3x+1, нам нужно найти дифференциал dt.

Так как
$$t=3x+1$$
, то $\mathrm{d}t=\mathrm{d}(3x+1)=(3x+1)'\,\mathrm{d}x=3\,\mathrm{d}x$ $\mathrm{d}x=\frac{\mathrm{d}t}{3}$

Таким образом:

$$\int \sin(3x+1) \, dx = \frac{1}{3} \int \sin t \, dt = -\frac{1}{3} \cos t + C$$

Вернемся к переменной
$$x$$
: $\frac{1}{3} \int \sin t \, \mathrm{d}t = -\frac{1}{3} \cos t + C = -\frac{1}{3} \cos(3x+1) + C$

1.2.5 Метод интегрирования по частям

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

1. многочлен * тригонометрическую или показательную функцию, то

за u выбирают многочлен, $\mathrm{d}v$ — все, что осталось

Пример
$$\int (3x+1)\cos 5x \, dx = \frac{(3x+1)}{5}\sin 5x - \frac{3}{5}\int \sin 5x \, dx = \frac{(3x+1)}{5}\sin 5x + \frac{3}{25}\cos 5x + C$$
 $du = 3dx, v = \int \cos 5x \, dx = \frac{1}{5}\sin 5x$

Другой пример $\int (3x^2+1)\cos 5x\,\mathrm{d}x = \frac{(3x^2+1)}{5}\sin 5x + \frac{6}{5}\int x\sin 5x\,\mathrm{d}x$, дальше следует применить метод интегрирования по частям заново

2. многочлен * логарифмическую или обратную тригонометрическую функцию, то

за u выбирают функцию, а $\mathrm{d}v$ — все остальное

Пример
$$\int (3x^2 + 5) \ln x \, dx = (\frac{x^3}{3} + 5x) \ln x - \int (\frac{x^2}{3} + 5x) \frac{dx}{1} = (\frac{x^3}{3} + 5x) \ln x - \frac{x^3}{9} - 5x + C$$

$$\ln x = u \Longrightarrow \frac{dx}{x} = du, \, dv = (x^2 + 5) \, dx \Longrightarrow v = \int (x^2 + 5) \, dx = \frac{x^3}{3} + 5x$$

3. тригонометрическая функция * показательную функцию, то

не имеет значения, что выбрать за u, а что за $\mathrm{d}v$, но формулу интегрирования по частям в этом случае **придется** применить два раза подряд единообразно

Пример
$$\int \sin 5x e^x dx = \sin 5x * e^x - 5 \int \cos 5x * e^x dx = \dots$$

Пусть
$$u = \sin 5x \Longrightarrow du = 5\cos 5x dx$$
, $dv = e^x dx \Longrightarrow v = e^x$

Применим метод интегрирования по частям во второй раз, теперь $u=\cos 5x\Longrightarrow \mathrm{d} u=-5\sin 5x\,\mathrm{d} x,$

$$v = e^x dx \Longrightarrow v = e^x$$

 $\cdots = \sin 5x * e^x - 5(\cos 5xe^x + 5 \int \sin 5xe^x dx)$

$$y = (\sin 5x - 5\cos 5x)e^x - 25y \iff 26y = (\dots)e^x \iff y = \frac{(\sin 5x - 5\cos 5x)e^x}{26}$$
, где $y = \int \sin 5x e^x dx$

1.3	Определенные интегралы

1.4 Площадь и длина дуги кривой (декартовые, полярные, параметрические координаты)

1.4.1 Вычисление площадей в прямоугольных координатах

$$\int\limits_{0}^{b}f(x)\,\mathrm{d}x=S_{\mathrm{криволинейной трапеции}}$$

 $\stackrel{\iota\iota}{ ext{Ec}}$ Если график несколько раз пересекает ось OX, надо разбить его на несколько отрезков

1.4.2 Вычисление площадей при параметрическом задании кривой

$$\begin{cases} x = \phi(t) \\ y = \psi(t) = \psi(y(x)) \end{cases}$$
 (1)

$$\alpha \le t \le b, \ \phi(\alpha) = a, \ \phi(\beta) = b$$

$$S = \int_{a}^{b} \phi(x) \, dx = \int_{\alpha}^{\beta} \psi(t) \phi'(t) \, dt$$

1.4.3 Площадь в полярных координатах

Пусть имеем $\rho = f(\theta)$, различные углы $\alpha = \theta_0$, $\beta = \theta_n$, разбивающие график на секторы.

$$S_i = \frac{1}{2}\Delta\Theta\rho^2$$

$$S = \sum_{i=1}^n = \frac{1}{2}\sum_{i=1}^n (f(\theta_i))^2 \Delta\theta_i$$

$$S = \lim_{n \to \infty} \frac{1}{2}\sum_{i=1}^n (f(\theta_i))^2 \Delta\theta_i = \frac{1}{2}\int_{\alpha}^{\beta} (f(\theta))^2 d\theta$$

1.4.4 Длина дуги кривой

- 1. Длина дуги кривой в декартовых координатах $(y=f(x),\,[a;b]),\,$ то $l=\int\limits_a^b\sqrt{1+(f'(x))^2}\,\mathrm{d}x$
- 2. Если

$$\begin{cases} x = \phi(t) \\ y = \psi(t), \ \alpha \le t \le \beta \end{cases}$$

To
$$l = \int_{a}^{b} \sqrt{(\phi'_t)^2 + (\psi'_t)^2} dt$$

3. Если имеем полярные координаты $(\rho=f(\theta)),$ то $l=\int\limits_{\theta_1}^{\theta_2}\sqrt{f^2(\theta)+(f'(\theta))^2}\,\mathrm{d}\theta^2$

1.5 Функции нескольких переменных

1.6 Ряды