DICOD: Distributed Coordinate Descent for Convolutional Sparse Coding

Thomas Moreau, Laurent Oudre, Nicolas Vayatis CMLA, ENS Paris-Saclay

Convolutional Dictionary Learning

$$\to D$$
 fixed in $\mathbb{R}^{K \times W}$, update Z in $\mathbb{R}^{K \times L}$ with X of length $T = L + W - 1$

$$Z^* = \underset{Z}{\operatorname{argmin}} \|X - \sum_{k=1}^{K} \mathbf{D}_k * Z_k\|_2^2 + \lambda \|Z\|_1$$

Classical Algorithms:

► Coordinate Descent (CD)

[Friedman et al., 2007; Kavukcuoglu et al., 2010]

► Fast Iterative Soft-Thresholding Algorithm (FISTA)

[Beck and Teboulle, 2009; Chalasani et al., 2013]

► Alternated Direction Method of Multiplier (ADMM)

[Gabay and Mercier, 1976; Bristow et al., 2013]

 \Rightarrow Do not scale well with long signals $T \gg 1$.

Coordinate Descent (CD)

 \rightarrow **D** fixed, update Z

$$Z^* = \underset{Z}{\operatorname{argmin}} \|X - \sum_{k=1}^{K} \mathbf{D}_k * Z_k\|_2^2 + \lambda \|Z\|_1$$

Coordinate Descent:

Select a coordinate (k_0, t_0) to update.

- ightharpoonup Cyclic/Random updates; $\mathcal{O}\left(1\right)$,
- ► Greedy updates; $\mathcal{O}(KL)$.

Update the value for $Z_{k_0}[t_0]$

- ▶ For convolutional setting; $\mathcal{O}(KW)$.
- ▶ Local operation: only impact a time segment of size 2W 1

[Friedman et al., 2007; Nesterov, 2010; Osher and Li, 2009]

Locally Greedy Coordinate Descent

Key idea: Matches CD selection complexity with update complexity.

 \Rightarrow Select the coordinate in a locally greedy fashion.

Locally Greedy Coordinate Descent

Key idea: Matches CD selection complexity with update complexity.

⇒ Select the coordinate in a locally greedy fashion.

Take the update greedily in a subsegment of the signal,

$$\mathcal{C}_m = \left\{ m \left\lfloor rac{L}{M}
ight
floor, \ldots (m+1) \left\lfloor rac{L}{M}
ight
floor - 1
ight\}.$$

This is efficient when $M = \mathcal{O}\left(\frac{L}{M}\right)$ as both part of the CD algorithm have the same computational complexity $\mathcal{O}\left(KW\right)$.

Z is the coding signal of length L.

$$\mathcal{C}_m = \left\{ m \left\lfloor rac{L}{M}
ight
floor, \ldots (m+1) \left\lfloor rac{L}{M}
ight
floor - 1
ight\}.$$

Z is the coding signal of length L.

$$\mathcal{C}_m = \left\{ m \left\lfloor rac{L}{M}
ight
floor, \ldots (m+1) \left\lfloor rac{L}{M}
ight
floor - 1
ight\}.$$

Z is the coding signal of length L.

$$\mathcal{C}_m = \left\{ m \left\lfloor rac{L}{M}
ight
floor, \ldots (m+1) \left\lfloor rac{L}{M}
ight
floor - 1
ight\}.$$

Z is the coding signal of length L.

$$\mathcal{C}_m = \left\{ m \left\lfloor rac{L}{M}
ight
floor, \ldots (m+1) \left\lfloor rac{L}{M}
ight
floor - 1
ight\}.$$

Z is the coding signal of length L.

$$\mathcal{C}_m = \left\{ m \left\lfloor rac{L}{M}
ight
floor, \ldots (m+1) \left\lfloor rac{L}{M}
ight
floor - 1
ight\}.$$

Z is the coding signal of length L.

$$\mathcal{C}_m = \left\{ m \left\lfloor rac{L}{M}
ight
floor, \ldots (m+1) \left\lfloor rac{L}{M}
ight
floor - 1
ight\}.$$

Z is the coding signal of length L.

$$\mathcal{C}_m = \left\{ m \left\lfloor rac{L}{M}
ight
floor, \ldots (m+1) \left\lfloor rac{L}{M}
ight
floor - 1
ight\}.$$

Z is the coding signal of length L.

$$\mathcal{C}_m = \left\{ m \left\lfloor rac{L}{M}
ight
floor, \ldots (m+1) \left\lfloor rac{L}{M}
ight
floor - 1
ight\}.$$

Z is the coding signal of length L.

$$\mathcal{C}_m = \left\{ m \left\lfloor rac{L}{M}
ight
floor, \ldots (m+1) \left\lfloor rac{L}{M}
ight
floor - 1
ight\}.$$

Z is the coding signal of length L.

$$\mathcal{C}_m = \left\{ m \left\lfloor rac{L}{M}
ight
floor, \ldots (m+1) \left\lfloor rac{L}{M}
ight
floor - 1
ight\}.$$

Theoretical results:

- ► Guaranteed convergence: We show that the interferences do not break the algorithm. even when run in a synchronous setting
- ► Superlinear speedup: More than twice as fast when doubling *M*.
 - ► Speed-up due to the parallelization on *M* cores.
 - Speed-up to the complexity reduction of each iteration.

Numerical convergence

Cost as a function of the iterations

ICML 2018 8/10 Stockholm

Numerical convergence

Cost as a function of the runtime

ICML 2018 8/10 Stockholm

Runtime as a function of the number of cores M

DICOD: Distributed Coordinate Descent for Convolutional Sparse Coding

Use the **structure** of convolutional LASSO to derive a parallel algorithm based on **CD** with

- Asynchronous updates
- ▶ Efficient communications
- github.com/tommoral/dicod

- ▶ No exogenous parameters
- Maximal update rules
 - **O** @tomamoral (note the extra 'a')

DICOD: Distributed Coordinate Descent for Convolutional Sparse Coding

Use the **structure** of convolutional LASSO to derive a parallel algorithm based on **CD** with

- Asynchronous updates
- Efficient communications
- github.com/tommoral/dicod

- No exogenous parameters
- Maximal update rules
 - **O** @tomamoral (note the extra 'a')

Thanks!

It's coming home!
Allez les bleus!

