

+10/1/42+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

IPS				
Quizz	du	15/11/2017		

Nom et prénom	:
RREDA	Hamza

Durée : 10 minutes.

Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. Téléphone interdit.

Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses.

Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Question	1	•
& CCCOLLOIT	-	_

On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) = \frac{A_0}{1+\tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon = u_+ - u_-$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé ?

	et U_s , Que dire de la stabilité du système bouclé ?
8/8	
	Question 2 • Qu'est ce que la linéarité d'un capteur ?
0/1	L'écart maximal entre la valeur de sortie mesurée et la valeur idéale attendue Convertir une grandeur physique en grandeur électrique Le coefficient directeur de la fonction de transfert du capteur La faculté de posséder une fonction de transfert en forme de droite
	Question 3 • Qu'est-ce que la résistivité d'un matériau ?
	L'écart maximal entre la valeur de sortie mesurée et la valeur idéale attendue

Le coefficient directeur de la fonction de transfert du capteur

La faculté de posséder une fonction de transfert en forme de droite

La résistance d'un tronçon de matériau de 1 m de longueur et de 1m^2 de section

Question $4 \bullet$ Une jauge de contrainte a comme caractéristiques $R_0 = 50\Omega$, $L_0 = 8\text{mm}$ et K = 0.4. Combien vaut R si L = 10mm?

Question 5 •

1/1

Soit le filtre RC suivant :

Quelles valeurs donner au produit RC pour qu'une perturbation d'une fréquence de 100kHz soit réduite à 2% de sa valeur ? (en Ω .F).

> R=L×Eo L-K(L-LO)

Question 6 •

On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où Treprésente la température en °C, $R_0 = 1 \text{k}\Omega$ la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant

L'étendu de mesure est [-25°C; 60°C].

Pour quelles valeurs de V_G le courant dans le capteur est toujours inférieur à 5mA.

$V_G \ge$	10,5V
V_G	≤ 10V

$V_G \ge 5V$
$V_C > 12^{\gamma}$

$V_G \ge 10 \text{V}$
$V_{\rm c} < 5V$

$$V_G \ge 11,6V$$
 $V_G \le 11,6$

Question 7 •

Soit le convertisseur analogique numérique Flash de la figure cicontre. On donne la caractéristique entrée-sortie.

Sur combien de bit se fait la conversion?

1.25

3/3

3/3

	l		
Quest	ion	8	

Quelle est le type de conversion de ce convertisseur flash ?

3/3

3/3

2/2

Quar	tification	linéaire	centrée
	quantific	cation lo	garithmiqu

]	_Quantification	linéaire	par	valeur	supérieure
	Quantifica	tion line	saire	nar dá	fant

Question 9 •

Sachant que $R_2 = 10k\Omega$, calculer les valeurs de R_1 , R_3 et R_4 ?

$$R_1 = 5k\Omega, R_3 = 10k\Omega, R_4 = 5k\Omega$$

$$\begin{bmatrix} R_1 = 3.125 \text{k}\Omega, R_3 = 2.5 \text{k}\Omega, R_4 = 3.75 \text{k}\Omega \end{bmatrix}$$

Question 10 • Pourquoi faire du sur-échantillonnage?

- Pour supprimer les perturbations de mode commun.
- Pour améliorer l'efficacité du filtre antirepliement.
- Pour réduire le bruit de quantification