## CS 540-1 Homework assignment #6

Due Dec 12, Jianyi Liu Jianyi.liu@wisc.edu

## **Question 1: Game Playing [25]**

a) [10] Use the Minimax algorithm to compute the minimax value at each node for the game tree below.



Sol:



b) [15] Use Alpha-Beta Pruning to compute the minimax value at each node for the game tree below, assuming children are visited left to right. You are asked to:



- (a) [10] Show the alpha and beta values at each node.
- (b) [5] Show which branches will be pruned.



**Question 2: Game Theory [25]** 

a) [10] Consider the following zero-sum game. You are asked to:



(a) [5] Write down the pure strategies for player A and B (by denoting the choice for internal states a to d).

Sol: Player A has 4 pure strategies:

A's strategy I: (a→L, d→L)
A's strategy II: (a→L, d→R)
A's strategy III: (a→R, d→L)
A's strategy IV: (a→R, d→R)
Player B has 4 pure strategies:

B's strategy I:  $(b \rightarrow L, c \rightarrow L)$ B's strategy II:  $(b \rightarrow L, c \rightarrow R)$ B's strategy III:  $(b \rightarrow R, c \rightarrow L)$ B's strategy IV:  $(b \rightarrow R, c \rightarrow R)$ 

(b) [5] Write down the matrix normal form of this game.

| <u> </u> |     |      |       |      |
|----------|-----|------|-------|------|
|          | B-I | B-II | B-III | B-IV |
| A-I      | -1  | -1   | 2     | 2    |
| A-II     | 4   | 4    | 2     | 2    |
| A-III    | 5   | -2   | 5     | -2   |
| A-IV     | 5   | -2   | 5     | -2   |

b) [15] The table below shows a matrix normal form of a non-zero game. The two numbers in each entry represent the gains for player A and B respectively. You are asked to:

|   |     |     | ט   |     |     |
|---|-----|-----|-----|-----|-----|
|   |     | I   | II  | III | IV  |
|   | I   | 3,5 | 1,3 | 3,2 | 8,3 |
| A | II  | 6,5 | 1,4 | 4,8 | 1,3 |
|   | III | 7,9 | 9,5 | 2,6 | 3,2 |
|   | IV  | 3,9 | 6,2 | 3,6 | 5,4 |

(a) [10] Apply iterative elimination of strictly dominated strategies to this matrix normal form. Sol:

If we start from Player A, the strictly dominates doesn't apply. So, start from Player B. For Player B, B-I strictly dominates B-II and B-IV.

|   |     |     | В   |     |     |
|---|-----|-----|-----|-----|-----|
|   |     | I   | II  | III | IV  |
|   | I   | 3,5 | 1.3 | 3,2 | 8.3 |
| A | II  | 6,5 | 1,4 | 4,8 | 1.3 |
|   | III | 7,9 | 9,5 | 2,6 | 3.2 |
|   | IV  | 3,9 | 6.2 | 3,6 | 5.4 |

For Player A, A-II strictly dominates A-I and A-IV.

|   |     | В    |          |  |
|---|-----|------|----------|--|
|   |     | I    | III      |  |
|   |     | 2 5  | 2.9      |  |
|   | 1   | 0,0  | 0,2      |  |
| A | II  | 6,5  | 4,8      |  |
|   | III | 7,9  | $^{2,6}$ |  |
|   | III | 2.0  | 26       |  |
|   | 1 1 | 0, 0 | 0,0      |  |
|   | В   |      |          |  |
|   |     | I    | III      |  |
| A | II  | 6,5  | 4,8      |  |
|   | III | 7,9  | 2,6      |  |

(b) [5] Show what strategies will player A and B choose in the end and explain the reason. Sol: By Nash Equilibrium, we have two choice, A-III & B-I, and A-II & B-III. And A-III & B-I is strictly better than A-II & B-III, so we choice A-III & B-I.