第16讲 函数极限存在性的判定准则

● 数列极限存在性判定准则

- > 夹逼定理
- > 单调有界原理
- > 柯西收敛准则
- 数列极限与函数极限关系

数列极限
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
 函数极限 $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$

函数极限与数列极限的关系

夹逼定理

两个重要极限及应用

定理1 设 $\lim_{x\to +\infty} f(x) = A$, 则对于任何满足 $x_n \to +\infty$ $(n \to \infty)$

的数列 $\{x_n\}$,均有 $\lim_{n\to\infty} f(x_n) = A$.

n	1	2	3	4	•••	n	•••
$\boldsymbol{x_n}$	x_1	x_2	x_3	x_4	•••	x_n	•••
$f(x_n)$	$f(x_1)$	$f(x_2)$	$f(x_3)$	$f(x_4)$	•••	$f(x_n)$	• • •

函数值数列

定理1 设 $\lim_{x\to +\infty} f(x) = A$, 则对于任何满足 $x_n \to +\infty$ $(n \to \infty)$

的数列 $\{x_n\}$,均有 $\lim_{n\to\infty}f(x_n)=A$.

定理2 设 $\lim_{x\to x_0} f(x) = A$,则对于任何满足 $x_n \to x_0 (n \to \infty)$ 且

$$x_n \neq x_0 \ (n=1,2,\cdots)$$
的数列 $\{x_n\}$,均有 $\lim_{n\to\infty} f(x_n) = A$.

● 海涅定理(极限的归一性)

$$\lim_{x \to +\infty} x^{\frac{1}{x}} = 1 \longrightarrow \lim_{n \to \infty} \sqrt[n]{n} = 1$$

定理3(夹逼定理) 设 f(x), $\varphi(x)$, $\psi(x)$ 在 x_0 的去心邻域 $U_0(x_0)$ 中满足 $\varphi(x) \leq f(x) \leq \psi(x)$,且 $\lim_{x \to x_0} \varphi(x)$ 和 $\lim_{x \to x_0} \psi(x)$ 存在且相等,则 $\lim_{x \to x_0} f(x)$ 存在,且

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} \varphi(x) = \lim_{x\to x_0} \psi(x).$$

$$U_0(x_0) \longrightarrow |x| > X > 0$$

$$x \to x_0 \longrightarrow x \to \infty$$

例2 (重要极限之一)

证明:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

$$\Rightarrow \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e.$$

例3 证明以下结论:

(1)
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1;$$

(2)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

例4 (重要极限之二) 证明: $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

$$\lim_{x\to 0} \frac{\sin x}{x} = 1 \longrightarrow \lim_{x\to 0} \frac{\sin ax}{ax} = 1 \text{ (其中a为非零常数)}$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \longrightarrow \lim_{x \to \infty} \left(1 + \frac{1}{x+a} \right)^{x+a} = e$$

例5 计算下列极限 (1) $\lim_{x\to 0} \frac{\sin 2x}{\sin 3x}$ (2) $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.

例6 计算极限 $\lim_{x\to\infty} \left(\frac{2+x}{1+x}\right)^x$.

