Rockchip Linux 软件开发指南

文档标识: RK-KF-YF-902

发布版本: V1.7.0

日期: 2023-04-20

文件密级:□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因、本文档将可能在未经任何通知的情况下、不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有© 2023 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

文档作为 Rockchip Buildroot/Debian/Yocto Linux 系统软件开发指南,旨在帮助软件开发工程师、技术支持工程师更快上手 Rockchip Linux 平台的开发及调试。

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

日期	作者	版本	修改说明
2021-04-10	Caesar Wang	V1.0.0	初始版本
2021-05-20	Caesar Wang	V1.1.0	增加rk3399、rk3288、rk3326/px30的支持
2021-09-30	Caesar Wang	V1.2.0	更新Linux4.4和Linux4.19的支持
2022-01-15	Caesar Wang	V1.3.0	增加RK3588 Linux5.10的支持 增加RK3358 Linux4.19支持 更新SDK版本信息
2022-04-14	Caesar Wang	V1.4.0	增加RK3326S的支持 更新RK3588 更新FAQ
2022-05-20	Caesar Wang	V1.4.1	更新芯片支持情况和2022 roadmap
2022-06-20	Caesar Wang	V1.4.2	更新SDK版本和支持情况
2022-09-20	Caesar Wang	V1.5.0	更新Linux5.10得支持
2022-11-20	Caesar Wang	V1.6.0	更新各芯片系统支持状态和roadmap 安全启动更新说明 更新 FAQ
2023-04-20	Caesar Wang	V1.7.0	更新各芯片系统支持状态和roadmap 更新最新SDK目录结构 增加RK3562的支持 文档拆分多个章节

各芯片系统支持状态

Linux5.10 SDK

芯片名称	Buildroot版本	Debian版本	Yocto版本	Kernel版本	SDK版本
RK3588	2021.11	11	4.0	5.10	V1.1.0
RK3562	2021.11	11	4.0	5.10	V0.1.0
RK3566	2021.11	11	4.0	5.10	V1.1.0
RK3568	2021.11	11	4.0	5.10	V1.1.0
RK3399	2021.11	11	4.0	5.10	V1.1.0
RK3358	2021.11	N/A	N/A	5.10	V1.0.0
RK3326	2021.11	N/A	N/A	5.10	V1.1.0
PX30	2021.11	N/A	N/A	5.10	V1.1.0
RK3308	2021.11	N/A	N/A	5.10	V1.1.0
RK312X	2021.11	N/A	N/A	5.10	V1.0.0
RK3036	2021.11	N/A	N/A	5.10	V1.0.0

Linux4.19 SDK

芯片名称	Buildroot版本	Debian版本	Yocto版本	Kernel版本	SDK版本
RK3566	2018.02-rc3	10	3.4	4.19	V1.3.2
RK3568	2018.02-rc3	10	3.4	4.19	V1.3.2
RK3399	2018.02-rc3	10	3.4	4.19	V1.2.2
RK3326	2018.02-rc3	N/A	N/A	4.19	V1.2.2
RK3358	2018.02-rc3	N/A	N/A	4.19	V1.1.1
RK3288	2018.02-rc3	10	3.4	4.19	V1.2.2
PX30/PX30S	2018.02-rc3	10	3.4	4.19	V1.2.2

Linux4.4 SDK

芯片名称	Buildroot版本	Debian版本	Yocto版本	Kernel版本	SDK版本
RK3399PRO	2018.02-rc3	10	3.2	4.4	V1.4.2
RK1808	2018.02-rc3	N/A	N/A	4.4	V1.1.7
RK3399	2018.02-rc3	10	3.4	4.4	V2.9.0
RK3326	2018.02-rc3	N/A	N/A	4.4	V1.8.0
RK3328	2018.02-rc3	N/A	N/A	4.4	V1.1.0
RK3288	2018.02-rc3	10	3.4	4.4	V2.6.0
PX30	2018.02-rc3	10	3.4	4.4	V1.8.0
RK3308	2018.02-rc3	N/A	N/A	4.4	V1.5.2
RK3358	2018.02-rc3	N/A	N/A	4.4	V1.8.0
RK312X	2018.02-rc3	N/A	N/A	4.4	V1.3.0
PX3SE	2018.02-rc3	N/A	N/A	4.4	V1.0.0

2023 芯片升级计划

芯片名称	Buildroot版本	Debian版本	Yocto版本	Kernel版本	预计发布时间
RK3358	2021.11	N/A	N/A	5.10	2023.Q2
RK312X	2021.11	N/A	N/A	5.10	2023.Q2
RK3036	2021.11	N/A	N/A	5.10	2023.Q2
RK3562	2021.11	11	4.0	5.10	2023.Q2
RK3288	2021.11	11	4.0	5.10	2023.Q3
RK3328	2021.11	N/A	N/A	5.10	2023.Q3
RK1808	2021.11	N/A	N/A	4.4	2023.Q4
RK3399Pro	2021.11	11	4.0	4.4	2023.Q4

Rockchip Linux 软件开发指南

- 1. Chapter-1 SDK软件包
 - 1.1 简介
 - 1.2 通用SDK软件包获取方法
 - 1.2.1 通过代码服务器下载
 - 1.2.2 通过本地压缩包解压获取
- 2. Chapter-2 文档说明
 - 2.1 通用开发指导文档 (Common)
 - 2.1.1 外设支持列表 (AVL)
 - 2.1.1.1 DDR支持列表
 - 2.1.1.2 eMMC支持列表
 - 2.1.1.3 SPI Nor及SLC Nand支持列表
 - 2.1.1.4 Nand Flash支持列表
 - 2.1.1.5 WIFI/BT支持列表
 - 2.1.1.6 Camera 支持列表
 - 2.1.2 音频模块文档 (AUDIO)
 - 2.1.3 CAN模块文档 (CAN)
 - 2.1.4 时钟模块文档 (CLK)
 - 2.1.5 CRYPTO模块文档 (CRYPTO)
 - 2.1.6 DDR模块文档 (DDR)
 - 2.1.7 调试模块文档 (DEBUG)
 - 2.1.8 显示模块文档 (DISPLAY)
 - 2.1.9 动态调整频率和电压模块文档 (DVFS)
 - 2.1.10 文件系统模块文档 (FS)
 - 2.1.11 以太网模块文档 (GAMC)
 - 2.1.12 HDMI-IN模块文档 (HDMI-IN)
 - 2.1.13 I2C模块文档 (I2C)
 - 2.1.14 IO电源域模块文档 (IO-DOMAIN)
 - 2.1.15 IOMMU模块文档 (IOMMU)
 - 2.1.16 图像模块文档 (ISP)
 - 2.1.17 MCU模块文档 (MCU)
 - 2.1.18 MMC模块文档 (MMC)
 - 2.1.19 内存模块文档 (MEMORY)
 - 2.1.20 MPP模块文档 (MPP)
 - 2.1.21 看门狗模块文档 (WATCHDOG)
 - 2.1.22 NPU模块文档 (NPU)
 - 2.1.23 NVM模块文档 (NVM)
 - 2.1.24 PCIe模块文档 (PCIe)
 - 2.1.25 性能模块文档 (PERF)
 - 2.1.26 GPIO模块文档 (PINCTRL)
 - 2.1.27 电源模块文档 (PMIC)
 - 2.1.28 功耗模块文档 (POWER)
 - 2.1.29 脉宽调制模块文档 (PWM)
 - 2.1.30 RGA模块文档 (RGA)
 - 2.1.31 SARADC模块文档 (SARADC)
 - 2.1.32 SPI模块文档(SPI)
 - 2.1.33 温控模块文档 (THERMAL)
 - 2.1.34 工具类模块文档 (TOOL)
 - 2.1.35 安全模块文档 (TRUST)
 - 2.1.36 串口模块文档 (UART)
 - 2.1.37 UBOOT模块文档 (UBOOT)
 - 2.1.38 USB模块文档 (USB)
 - 2.2 Linux系统开发文档 (Linux)
 - 2.2.1 应用指南(ApplicationNote)
 - 2.2.2 音频相关开发 (Audio)

- 2.2.3 摄像头相关开发(Camera)
- 2.2.4 容器相关开发 (Docker)
- 2.2.5 显示相关开发 (Graphics)
- 2.2.6 多媒体(Multimedia)
- 2.2.7 SDK附件内容简介 (Profile)
- 2.2.8 OTA升级 (Recovery)
- 2.2.9 安全方案(Security)
- 2.2.10 系统开发(System)
- 2.2.11 UEFI启动(UEFI)
- 2.2.12 网络模块(RKWIFIBT)
- 2.3 芯片平台相关文档 (Socs)
 - 2.3.1 发布说明
 - 2.3.2 快速入门
 - 2.3.3 软件开发指南
- 2.4 芯片资料
 - 2.4.1 硬件开发指南
- 2.5 其他参考文档 (Others)
- 2.6 文件目录结构 (docs_list.txt)
- 3. Chapter-3 工具说明
 - 3.1 驱动安装工具
 - 3.2 开发烧写工具
 - 3.3 打包工具
 - 3.4 SD升级启动制作工具
 - 3.5 写号工具
 - 3.6 固件签名工具
 - 3.7 烧录器升级工具
 - 3.8 PCBA测试工具
 - 3.9 DDR焊接测试工具
 - 3.10 eFuse烧写工具
 - 3.11 量产升级工具
 - 3.12 分区修改工具
- 4. Chapter-4 SDK软件架构
 - 4.1 SDK工程目录介绍
 - 4.2 SDK概述
 - 4.2.1 Linux发行版
 - 4.2.2 Buildroot
 - 4.2.3 Yocto
 - 4.2.4 Debian
 - 4.3 SDK软件框图
 - 4.4 SDK开发流程
- 5. Chapter-5 SDK 开发坏境搭建
 - 5.1 概述
 - 5.2 Linux服务器开发环境搭建
 - 5.2.1 安装库和工具集
 - 5.2.1.1 检查和升级主机的 make 版本
 - 5.2.1.2 检查和升级主机的 lz4 版本
 - 5.2.1.3 检查和升级主机的 git 版本
 - 5.2.2 发布包使用Linux服务器系统版本
 - 5.2.3 交叉编译工具链介绍
 - 5.2.3.1 U-Boot 及Kernel编译工具链
 - 5.2.3.2 Buildroot工具链
 - 5.2.3.3 Debian工具链
 - 5.2.3.4 Yocto工具链
 - 5.3 Window PC 开发坏境搭建
 - 5.3.1 开发工具安装
 - 5.3.2 Rockchip USB 驱动安装
 - 5.3.3 Windows 烧录工具使用
 - 5.3.4 目标硬件板准备

- 6. Chapter-6 SDK开发前准备工作
 - 6.1 简要介绍
 - 6.2 安装 repo
 - 6.3 Git 配置
 - 6.4 SDK 获取
 - 6.4.1 SDK 下载命令
 - 6.4.2 SDK 代码压缩包
 - 6.5 软件更新记录
 - 6.6 SDK 更新
 - 6.7 SDK 问题反馈
- 7. Chapter-7 SDK 编译说明
 - 7.1 SDK编译命令查看
 - 7.2 SDK板级配置
 - 7.3 SDK配置不同启动/内核/系统等组件
 - 7.4 SDK环境变量配置
 - 7.5 全自动编译
 - 7.6 模块编译
 - 7.6.1 U-Boot编译
 - 7.6.2 Kernel编译
 - 7.6.3 Recovery编译
 - 7.6.4 Buildroot编译
 - 7.6.4.1 Buildroot的交叉编译
 - 7.6.4.2 Buildroot模块编译
 - 7.6.5 Debian编译
 - 7.6.6 Yocto 编译
- 8. Chapter-8 SDK固件升级
 - 8.1 烧写模式介绍
 - 8.1.1 Windows 刷机说明
 - 8.1.2 Linux 刷机说明
 - 8.1.3 系统分区说明
- 9. Chapter-9 SDK开发
 - 9.1 U-Boot 开发
 - 9.1.1 U-Boot 简介
 - 9.1.2 版本
 - 9.1.3 前期准备
 - 9.1.4 启动流程
 - 9.1.5 快捷键
 - 9.2 Kernel 开发
 - 9.2.1 DTS 介绍
 - 9.2.1.1 DTS 概述
 - 9.2.1.2 新增一个产品 DTS
 - 9.2.2 内核模块开发文档
 - 9.2.3 GPIO
 - 9.2.4 CPU、GPU、DDR 频率修改
 - 9.2.5 温控配置
 - 9.2.6 LPDDR4 配置
 - 9.2.7 SD卡配置
 - 9.3 Recovery 开发
 - 9.3.1 简介
 - 9.3.2 调试
 - 9.4 Buildroot 开发
 - 9.4.1 坏境变量的设定
 - 9.4.2 编译模块和系统
 - 9.4.3 开发相关模块
 - 9.4.4 定制相关模块
 - 9.4.5 桌面应用 9.4.6 用户和密码
 - 9.4.7 Weston 开发

- 9.4.8 中文显示的支持
- 9.5 Debian 开发
- 9.6 Yocto 开发
- 9.7 多媒体开发
- 9.8 Grahpics 开发
- 9.9 应用开发
- 9.10 安全机制开发
- 9.11 Secureboot安全启动
- 9.12 WIFI/BT开发
- 9.13 SDK 测试
 - 9.13.1 集成Rockchip压力测试脚本
 - 9.13.2 Benchmark 测试
 - 9.13.3 Rockchip 模块和压力测试
- 10. Chapter-10 SDK调试
 - 10.1 ADB工具
 - 10.1.1 概述
 - 10.1.2 USB adb使用说明
 - 10.2 系统log信息自动获取
 - 10.3 版权检测工具
 - 10.3.1 Buildroot
 - 10.3.2 Debian
 - 10.3.3 Yocto
- 11. Chapter-11 开源
 - 11.1 github
 - 11.2 wiki
 - 11.3 upstream
- 12. Chapter-12 SDK常见问题
 - 12.1 如何确认当前SDK版本和系统/内核版本?
 - 12.2 SDK编译相关问题
 - 12.2.1 repo导致同步问题
 - 12.2.2 ./build.sh编译时候repo导致异常问题
 - 12.2.3 Buildroot编译问题
 - 12.3 Debian相关问题
 - 12.3.1 遇到" noexec or nodev"问题
 - 12.3.2 下载"Base Debian"失败问题
 - 12.3.3 异常操作导致挂载/dev出错问题
 - 12.3.4 多次挂载导致/dev出错问题
 - 12.3.5 怎么查看系统相关信息
 - 12.3.5.1 如何查看系统Debian版本?
 - 12.3.5.2 如何查看Debian显示用X11还是Wayland?
 - 12.3.5.3 如何查看系统分区情况
 - 12.3.5.4 系统出现ssh.service服务异常
 - 12.3.6 Debian11 base包编译不过
 - 12.3.7 Debian deb包的解压、修改、重新打包方法
 - 12.3.8 Debian如何增加swap分区
 - 12.3.9 Debian第一次更新系统会重启显示服务
 - 12.3.10 Debian中libGL相关dri.so调用出错问题
 - 12.3.11 Debian中怎么确认硬件鼠标图层有用起来
 - 12.4 Linux视频相关问题
 - 12.4.1 播放视频卡顿, 日志出现丢帧错误, 要怎么解决
 - 12.4.2 gst-launch-1.0 进行摄像头视频预览命令
 - 12.4.3 开启 AFBC 后播放画面出现抖动,要怎么解决
 - 12.4.4 Gstreamer 框架 buffer 是零拷贝吗
 - 12.4.5 gst-launch-1.0 怎么测试解码最高的性能?
 - 12.4.6 播放时如果画面出现抖动,水波纹,要怎么解决
 - 12.4.7 Gstreamer怎么快速接入opengles
 - 12.5 第三方 OS 移植问题
 - 12.5.1 有没有介绍麒麟系统移植的,就是下载标准的 iso 镜像提取 rootfs.squafs 来移植

- 12.5.2 适配过哪些国产OS
- 12.5.3 是否支持 UEFI 的引导启动
- 12.6 显示相关问题
 - 12.6.1 如何使视频送显到视频层
 - 12.6.2 wayland 多屏异显模式如何配置每个屏幕的位置,比如左右或者上下位置的
 - 12.6.3 Debian xserver 版本是多少
- 13. Chapter-13 开源
 - 13.1 github
 - 13.2 wiki
 - 13.3 upstream

1. Chapter-1 SDK软件包

1.1 简介

Rockchip Linux SDK 支持 Buildroot,Yocto和Debian三个系统,内核基于 Kernel 4.4、Kernel 4.19或 Kernel5.10,引导基于 U-boot v2017.09,适用于 Rockchip EVB 开发板及基于此开发板进行二次开发的所有 Linux 产品。

开发包适用但不限于行业应用/智能家居/消费电子/办公及会议等AIoT产品,提供灵活的数据通路组合接口,满足客户自由组合的客制化需求。 具体功能调试和接口说明,请阅读工程目录 docs/ 下文档。

1.2 通用SDK软件包获取方法

1.2.1 通过代码服务器下载

获取 Rockchip Linux 软件包,需要有一个帐户访问 Rockchip 提供的源代码仓库。客户向瑞芯微技术窗口申请 SDK,同步提供 SSH公钥进行服务器认证授权,获得授权后即可同步代码。关于瑞芯微代码服务器 SSH公钥授权,请参考第 15 节 <u>SSH 公钥操作说明</u>。这边只介绍只介绍新版本Linux5.10 各芯片SDK获取方式。

Rockchip Linux SDK 下载命令如下:

芯片	版本	下载命令
RK3562	Linux5.10	repo initrepo-url https://gerrit.rock-chips.com:8443/repo-release/tools/repo -u \ https://gerrit.rock-chips.com:8443/linux/rockchip/platform/manifests - b rk3562 -m \ rk3562_linux_release.xml
RK3588	Linux5.10	repo initrepo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo -u \ ssh://git@www.rockchip.com.cn/linux/rockchip/platform/manifests -b linux -m \ rk3588_linux_release.xml
RK3566、 RK3568	Linux5.10	repo initrepo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo -u \ ssh://git@www.rockchip.com.cn/linux/rockchip/platform/manifests -b linux -m \ rk356x_linux5.10_release.xml
RK3399	Linux5.10	repo initrepo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo -u \ ssh://git@www.rockchip.com.cn/linux/rockchip/platform/manifests -b linux -m \ rk3399_linux5.10_release.xml
RK3326	Linux5.10	repo initrepo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo -u \ ssh://git@www.rockchip.com.cn/linux/rockchip/platform/manifests -b linux -m \ rk3326_linux5.10_release.xml
RK3358	Linux5.10	repo initrepo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo -u \ ssh://git@www.rockchip.com.cn/linux/rockchip/platform/manifests -b linux -m \ rk3358_linux5.10_release.xml
PX30	Linux5.10	repo initrepo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo -u \ ssh://git@www.rockchip.com.cn/linux/rockchip/platform/manifests -b linux -m \ px30_linux5.10_release.xml
RK3308	Linux5.10	repo initrepo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo -u \ ssh://git@www.rockchip.com.cn/linux/rockchip/platform/manifests -b linux -m \ rk3308_linux5.10_release.xml

芯片	版本	下载命令
RK312X	Linux5.10	repo initrepo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo -u \ ssh://git@www.rockchip.com.cn/linux/rockchip/platform/manifests -b linux -m \ rk312x_linux5.10_release.xml
RK3036	Linux5.10	repo initrepo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo -u \ ssh://git@www.rockchip.com.cn/linux/rockchip/platform/manifests -b linux -m \ rk3036_linux5.10_release.xml

repo 是 google 用 Python 脚本写的调用 git 的一个脚本,主要是用来下载、管理项目的软件仓库,其下载地址如下:

```
git clone ssh://git@www.rockchip.com.cn/repo/rk/tools/repo
```

1.2.2 通过本地压缩包解压获取

为方便客户快速获取 SDK 源码,瑞芯微技术窗口通常会提供对应版本的 SDK 初始压缩包,开发者可以通过这种方式,获得 SDK 代码的初始压缩包,该压缩包解压得到的源码,进行同步后与通过 repo 下载的源码是一致的。

以 RK3588_LINUX5.10_SDK_RELEASE_V1.0.0_20220520.tgz 为例, 拷贝到该初始化包后, 通过如下命令可检出源码:

```
mkdir rk3588
tar xvf RK3588_LINUX5.10_SDK_RELEASE_V1.0.0_20220520.tgz -C rk3588
cd rk3588
.repo/repo/repo sync -l
.repo/repo/repo sync -c
```

后续开发者可根据 FAE 窗口定期发布的更新说明,通过 .repo/repo/repo sync -c 命令同步更新。

说明:

软件发布版本可通过工程 xml 进行查看, 具体方法如下:

```
.repo/manifests$ realpath rk3588_linux_release.xml
例如:打印的版本号为v1.1.0,更新时间为20230420
<SDK>/.repo/manifests/rk3588_linux_release_v1.1.0_20230420.xml
```

目前Linux5.10发布的SDK初始压缩包如下:

芯片名称	压缩包	版本
RK3562	RK3562_LINUX5.10_SDK_BETA_V0.1.0_20230420.tgz	v0.1.0
RK3588	RK3588_LINUX5.10_SDK_RELEASE_V1.0.0_20220520.tgz	v1.0.0
RK3566、RK3568	RK356X_LINUX5.10_SDK_RELEASE_V1.0.0_20220920.tgz	v1.0.0
RK3399	RK3399_LINUX5.10_SDK_RELEASE_V1.0.0_20220920.tgz	v1.0.0
RK3326、RK3326S	RK3326_LINUX5.10_SDK_RELEASE_V1.0.0_20220920.tgz	v1.0.0
RK3358	RK3358_LINUX5.10_SDK_RELEASE_V1.0.0_20230420.tgz	v1.0.0
PX30、PX30S	PX30_LINUX5.10_SDK_RELEASE_V1.0.0_20220920.tgz	v1.0.0
RK3308	RK3308_LINUX5.10_SDK_RELEASE_V1.0.0_20220920.tgz	v1.0.0
RK312X	RK312X_LINUX5.10_SDK_RELEASE_V1.0.0_20220420.tgz	v1.0.0
RK3036	RK3036_LINUX5.10_SDK_RELEASE_V1.0.0_20220420.tgz	v1.0.0

注意:

初始压缩包可能有新版本替换更新!

2. Chapter-2 文档说明

随 Rockchip Linux SDK 发布的文档旨在帮助开发者快速上手开发及调试,文档中涉及的内容并不能涵盖所有的开发知识和问题。文档列表也会不断更新,如有文档上的疑问及需求,请联系我们的FAE窗口<u>fae@rock-chips.com</u>。

Rockchip Linux SDK 中在 docs 目录分为中文(cn)和英文(en)。其中中文目录附带了 Common(通用开发指导文档)、Socs(芯片平台相关文档)、Linux (Linux 系统开发指南)、Others(其他参考文档)、docs_list.txt (docs文件目录结构),其具体介绍如下:

2.1 通用开发指导文档 (Common)

详见 /docs/cn/Common 各子目录下的文档。

2.1.1 外设支持列表 (AVL)

详见 /docs/cn/Common/AVL 目录包含DDR/eMMC/NAND FLASH/WIFI-BT/CAMERA等, 其支持列表实时更新在redmine上,链接如下:

https://redmine.rockchip.com.cn/projects/fae/documents

2.1.1.1 DDR支持列表

Rockchip 平台 DDR 颗粒支持列表,详见 /docs/cn/Common/AVL 目录下

《Rockchip_Support_List_DDR_Ver2.55.pdf》,下表中所标示的DDR支持程度表,只建议选用√、T/A标示的颗粒。

表 1-1 Rockchip DDR Support Symbol

Symbol	Description
V	Fully Tested and Mass production
T/A	Fully Tested and Applicable
N/A	Not Applicable

2.1.1.2 eMMC支持列表

Rockchip 平台 eMMC 颗粒支持列表,详见 /docs/cn/Common/AVL 目录下

《RKeMMCSupportList_V1.73_20230303.pdf》,下表中所标示的EMMC支持程度表,只建议选用√、T/A标示的颗粒。

表 1-2 Rockchip EMMC Support Symbol

Symbol	Description
V	Fully Tested , Applicable and Mass Production
T/A	Fully Tested , Applicable and Ready for Mass Production
D/A	Datasheet Applicable,Need Sample to Test
N/A	Not Applicable

• 高性能eMMC颗粒的选取

为了提高系统性能,需要选取高性能的 eMMC 颗粒。请在挑选 eMMC 颗粒前,参照 Rockchip 提供支持列表中的型号,重点关注厂商 Datashet 中 performance 一章节。

参照厂商大小以及 eMMC 颗粒读写的速率进行筛选。建议选取顺序读速率>200MB/s、顺序写速率>40MB/s

如有选型上的疑问,也可直接联系Rockchip FAE窗口fae@rock-chips.com。

6.1.5 Performance

[Table 23] Performance

Density	Davidian Tyna	Perfor	mance
Density	Partition Type	Read(MB/s)	Write (MB/s)
16GB		285	40
32GB	General	310	70
64GB	General	310	140
128GB		310	140
16GB		295	80
32GB	Enhanced	320	150
64GB	Lillianced	320	245
128GB		320	245

图1-1 eMMC Performance示例

2.1.1.3 SPI Nor及SLC Nand支持列表

Rockchip 平台 SPI Nor 及 SLC Nand 支持列表,详见 /docs/cn/Common/AVL 目录下《RK_SpiNor_and_SLC_Nand_SupportList_V1.41_20230303.pdf》,文档中也有标注SPI Nand的型号,可供选型。下表中所标示的Nand支持程度表,只建议选用√、T/A标示的颗粒。

表 1-3 Rockchip SPI Nor and SLC Nand Support Symbol

Symbol	Description
V	Fully Tested , Applicable and Mass Production
T/A	Fully Tested , Applicable and Ready for Mass Production
D/A	Datasheet Applicable,Need Sample to Test
N/A	Not Applicable

2.1.1.4 Nand Flash支持列表

Rockchip 平台 Nand Flash 支持列表,详见 /docs/Common/AVL 目录下《RKNandFlashSupportList Ver2.73_20180615.pdf》,文档中有标注 Nand Flash 的型号,可供选型。下表中所标示的 Nand Flash 支持程度表,只建议选用√、T/A标示的颗粒。

表 1-4 Rockchip Nand Flash Support Symbol

Symbol	Description
V	Fully Tested , Applicable and Mass Production
T/A	Fully Tested , Applicable and Ready for Mass Production
D/A	Datasheet Applicable,Need Sample to Test
N/A	Not Applicable

2.1.1.5 WIFI/BT支持列表

Rockchip 平台 WIFI/BT 支持列表,详见 /docs/cn/Common/AVL 目录下

《Rockchip_Support_List_Linux_WiFi_BT_20220828.pdf》 , 文档列表中为目前Rockchip平台上大量测试过的WIFI/BT芯片列表,建议按照列表上的型号进行选型。如果有其他WIFI/BT芯片调试,需要WIFI/BT芯片原厂提供对应内核驱动程序。

如有选型上的疑问,建议可以与Rockchip FAE窗口fae@rock-chips.com联系。

2.1.1.6 Camera支持列表

Rockchip 平台 Camera 支持列表,详见<u>Camera模组支持列表</u>,在线列表中为目前Rockchip平台上大量测试过的Camera Module 列表,建议按照列表上的型号进行选型。

如有选型上的疑问,建议可以与Rockchip FAE窗口fae@rock-chips.com联系。

2.1.2 音频模块文档 (AUDIO)

包含麦克风的音频算法和音频/Pulseaudio模块的相关开发文档。具体文档如下:

docs/cn/Common/AUDIO/

├─ Algorithms

Prockchip_Developer_Guide_Audio_CN.pdf

— Rockchip_Developer_Guide_PulseAudio_CN.pdf

2.1.3 CAN模块文档 (CAN)

CAN(Controller Area Network) 总线,即控制器局域网总线,是一种有效分布式控制或实时控制的串行通信网络。以下文档主要介绍CAN驱动开发、通信测试工具、常用命令接口和常见问题等。

2.1.4 时钟模块文档 (CLK)

本文档主要介绍 Rockchip 平台Clock、GPIO、PLL展频等时钟开发

2.1.5 CRYPTO模块文档 (CRYPTO)

以下文档主要介绍 Rockchip Crypto 和 HWRNG(TRNG) 的开发,包括驱动开发与上层应用开发。

```
docs/cn/Common/CRYPTO/

Rockchip_Developer_Guide_Crypto_HWRNG_CN.pdf
```

2.1.6 DDR模块文档 (DDR)

该模块文档主要包含 Rockchip 平台DDR开发指南、DDR问题排查、DDR颗粒验证流程、DDR布板说明、DDR带宽工具使用、DDR DQ眼图工具等

```
docs/cn/Common/DDR/

— Rockchip-Developer-Guide-DDR-CN.pdf

— Rockchip-Developer-Guide-DDR-Verification-Process-CN.pdf

— Rockchip-Guide-DDR-PCB-Layout-Notes-CN.pdf

— Rockchip-User-Guide-DDR-DQ-Eye-Tool-CN.pdf

— Rockchip_Developer_Guide_HAL_DDR_ECC_CN.pdf

— Rockchip_Introduction_DDR_Bandwidth_Tool_CN.pdf

— Rockchip_Trouble_Shooting_DDR_CN.pdf
```

2.1.7 调试模块文档 (DEBUG)

该模块文档主要包含 Rockchip 平台DS5、FT232H_USB2JTAG、 GDB_ADB、Eclipse_OpenOCD等调试工具使用介绍。

```
docs/cn/Common/DEBUG/

— Rockchip_Developer_Guide_DS5_CN.pdf

— Rockchip_Developer_Guide_FT232H_USB2JTAG.pdf

— Rockchip_Developer_Guide_GDB_Over_ADB_CN.pdf

— Rockchip_Developer_Guide_GNU_MCU_Eclipse_OpenOCD_CN.pdf
```

2.1.8 显示模块文档 (DISPLAY)

该模块文档主要包含 Rockchip 平台DRM、DP、HDMI、MIPI、RK628等显示模块的开发文档。

2.1.9 动态调整频率和电压模块文档 (DVFS)

cpufreq和devfreq 是内核开发者定义的一套支持根据指定的 governor 动态调整频率和电压的框架模型,它能有效地降低的功耗,同时兼顾性能。

2.1.10 文件系统模块文档 (FS)

```
docs/cn/Common/FS

L— Rockchip_Developer_FAQ_FileSystem_CN.pdf
```

2.1.11 以太网模块文档 (GAMC)

```
docs/cn/Common/GMAC/

— Rockchip_Developer_Guide_Linux_GMAC_CN.pdf

— Rockchip_Developer_Guide_Linux_GMAC_DPDK_CN.pdf

— Rockchip_Developer_Guide_Linux_GMAC_Mode_Configuration_CN.pdf

— Rockchip_Developer_Guide_Linux_GMAC_RGMII_Delayline_CN.pdf

— Rockchip_Developer_Guide_Linux_MAC_TO_MAC_CN.pdf
```

2.1.12 HDMI-IN模块文档 (HDMI-IN)

```
docs/cn/Common/HDMI-IN/

— Rockchip_Developer_Guide_HDMI_IN_Based_On_CameraHal3_CN.pdf

— Rockchip_Developer_Guide_HDMI_RX_CN.pdf
```

2.1.13 I2C模块文档 (I2C)

```
docs/cn/Common/I2C/

— Rockchip_Developer_Guide_I2C_CN.pdf
```

2.1.14 IO电源域模块文档 (IO-DOMAIN)

Rockchip平台一般 IO 电源的电压有 1.8v, 3.3v, 2.5v, 5.0v 等, 有些 IO 同时支持多种电压, io-domain 就是配置 IO 电源域的寄存器,依据真实的硬件电压范围来配置对应的电压寄存器,否则无法正常工作;

Rockchip_Developer_Guide_Linux_IO_DOMAIN_CN.pdf

2.1.15 IOMMU模块文档 (IOMMU)

主要介绍Rockchip平台IOMMU用于32位虚拟地址和物理地址的转换,它带有读写控制位,能产生缺页异常以及总线异常中断。

2.1.16 图像模块文档 (ISP)

ISP1.X主要适用于RK3399/RK3288/PX30/RK3326/RK1808等 ISP21主要适用于RK3566_RK3568等 ISP30主要适用于RK3588等 ISP32-lite主要适用于RK3562等

包含ISP开发文档、VI驱动开发文档、IQ Tool开发文档、调试文档和颜色调试文档。具体文档如下:

```
docs/cn/Common/ISP

|-- ISP1.X
|-- ISP21
|-- ISP30
|-- ISP32-lite
|-- The-Latest-Camera-Documents-Link.txt
```

说明:

RK3288/RK3399/RK3326/RK1808 Linux(kernel-4.4) rkisp1 driver、sensor driver、vcm driver 参考文档:《RKISP_Driver_User_Manual_v1.3_20190919》

RK3288/RK3399/RK3326/RK1808 Linux(kernel-4.4) camera_engine_rkisp(3A库)参考文档:《camera_engine_rkisp_user_manual_v2.0》

RK3288/RK3399/RK3326/RK1808 Linux(kernel-4.4) camera_engine_rkisp v2.0.0版本及其以上版本IQ 效果文件参数参考文档: 《RKISP1_IQ_Parameters_User_Guide_v1.0_20190606》

2.1.17 MCU模块文档 (MCU)

主要介绍Rockchip平台上MCU开发指南。

```
docs/cn/Common/MCU
— Rockchip_RK3399_Developer_Guide_MCU_CN.pdf
```

2.1.18 MMC模块文档 (MMC)

主要介绍Rockchip平台上SDIO、SDMMC、eMMC等接口开发指南。

2.1.19 内存模块文档 (MEMORY)

主要介绍Rockchip平台上CMA、DMABUF等内存模块机制处理。

2.1.20 MPP模块文档 (MPP)

主要介绍Rockchip平台上MPP开发说明。

```
docs/cn/Common/MPP/
└─ Rockchip_Developer_Guide_MPP_CN.pdf
```

2.1.21 看门狗模块文档 (WATCHDOG)

主要介绍Rockchip平台上Watchdog开发说明。

```
docs/cn/Common/WATCHDOG/
└─ Rockchip_Developer_Guide_Linux_WDT_CN.pdf
```

2.1.22 NPU模块文档 (NPU)

主要介绍Rockchip平台上NPU相关开发该工具说明。

RKNN-TOOLKIT2: 开发工具在 external/rknn-toolkit2 目录下,主要用来实现模型转换,模型推理,模型性能评估功能。适用RK356X/RK3588等芯片

RKNN API 的开发使用在工程目录 external/rknpu2 下,用于推理 RKNN-Toolkit2 生成的 rknn 模型。 具体使用说明请参考当前目录文档:

```
docs/cn/Common/NPU/
├─ README.md
  - rknn-toolkit2
    - RKNNToolKit2_API_Difference_With_Toolkit1-1.4.0.md
   ├── RKNNToolKit2_OP_Support-1.4.0.md
   Prockchip_Quick_Start_RKNN_Toolkit2_CN-1.4.0.pdf
   — Rockchip_User_Guide_RKNN_Toolkit2_CN-1.4.0.pdf
   — changelog-1.4.0.txt
    requirements_cp36-1.4.0.txt
   └─ requirements_cp38-1.4.0.txt
  – rknpu2
    - RK3588_NPU_SRAM_usage.md
    RKNN_Compiler_Support_Operator_List_v1.4.0.pdf
    Prockchip_Quick_Start_RKNN_SDK_V1.4.0_CN.pdf
     Rockchip_RKNPU_User_Guide_RKNN_API_V1.4.0_CN.pdf
    Rockchip_RV1106_Quick_Start_RKNN_SDK_V1.4.0_CN.pdf
```

2.1.23 NVM模块文档 (NVM)

主要介绍Rockchip平台上启动流程,对存储进行配置和调试、OTP OEM 区域烧写等安全接口方面。

2.1.24 PCIe模块文档 (PCIe)

主要介绍Rockchip平台上PCIe的开发说明。

2.1.25 性能模块文档 (PERF)

主要介绍Rockchip平台上PERF性能相关分析说明。

2.1.26 GPIO模块文档 (PINCTRL)

主要介绍Rockchip平台上PIN-CTRL驱动及DTS使用方法。

2.1.27 电源模块文档 (PMIC)

主要介绍Rockchip平台上RK805、RK806、RK808、RK809、RK817等PMIC的开发指南。

```
docs/cn/Common/PMIC/

— Rockchip_RK805_Developer_Guide_CN.pdf

— Rockchip_RK806_Developer_Guide_CN.pdf

— Rockchip_RK808_Developer_Guide_CN.pdf

— Rockchip_RK809_Developer_Guide_CN.pdf

— Rockchip_RK816_Developer_Guide_CN.pdf

— Rockchip_RK817_Developer_Guide_CN.pdf

— Rockchip_RK818_Developer_Guide_CN.pdf

— Rockchip_RK818_RK816_Developer_Guide_Fuel_Gauge_CN.pdf

— Rockchip_RK818_RK816_Introduction_Fuel_Gauge_Log_CN.pdf
```

2.1.28 功耗模块文档 (POWER)

主要介绍Rockchip平台上芯片功耗的一些基础概念和优化方法。

```
docs/cn/Common/POWER/

— Rockchip_Developer_Guide_Power_Analysis_CN.pdf
```

2.1.29 脉宽调制模块文档 (PWM)

主要介绍Rockchip平台上 PWM开发指南。

```
docs/cn/Common/PWM

— Rockchip_Developer_Guide_Linux_PWM_CN.pdf
```

2.1.30 RGA模块文档 (RGA)

主要介绍Rockchip平台上 RGA开发指南。

2.1.31 SARADC模块文档 (SARADC)

主要介绍Rockchip平台上 SARADC开发指南。

2.1.32 SPI模块文档 (SPI)

主要介绍Rockchip平台上SPI开发指南。

2.1.33 温控模块文档 (THERMAL)

主要介绍Rockchip平台上Thermal开发指南。

2.1.34 工具类模块文档 (TOOL)

主要介绍Rockchip平台上分区、量产烧入、厂线烧入等工具的使用说明。

```
docs/cn/Common/TOOL/

— Production-Guide-For-Firmware-Download.pdf

— RKUpgrade_Dll_UserManual.pdf

— Rockchip-User-Guide-ProductionTool-CN.pdf

— Rockchip_Introduction_Partition_CN.pdf

— Rockchip_User_Guide_Production_For_Firmware_Download_CN.pdf
```

2.1.35 安全模块文档 (TRUST)

主要介绍Rockchip平台上TRUST、休眠唤醒等功能说明。

```
docs/cn/Common/TOOL/

— Production-Guide-For-Firmware-Download.pdf

— RKUpgrade_Dll_UserManual.pdf

— Rockchip-User-Guide-ProductionTool-CN.pdf

— Rockchip_Introduction_Partition_CN.pdf

— Rockchip_User_Guide_Production_For_Firmware_Download_CN.pdf
```

2.1.36 串口模块文档 (UART)

主要介绍Rockchip平台上串口功能和调试说明。

2.1.37 UBOOT模块文档 (UBOOT)

主要介绍Rockchip平台上U-Boot相关开发说明。

```
docs/cn/Common/UB00T/

— Rockchip_Developer_Guide_Linux_AB_System_CN.pdf

— Rockchip_Developer_Guide_U-Boot_TFTP_Upgrade_CN.pdf

— Rockchip_Developer_Guide_UBoot_MMC_Device_Analysis_CN.pdf

— Rockchip_Developer_Guide_UBoot_MTD_Block_Device_Design_CN.pdf

— Rockchip_Developer_Guide_UBoot_Nextdev_CN.pdf

— Rockchip_Introduction_UBoot_rkdevelop_vs_nextdev_CN.pdf
```

2.1.38 USB模块文档 (USB)

主要介绍Rockchip平台上USB开发指南、USB 信号测试和调试工具等相关开发说明。

```
docs/cn/Common/USB

Rockchip_Developer_Guide_Linux_USB_Initialization_Log_Analysis_CN.pdf

Rockchip_Developer_Guide_Linux_USB_PHY_CN.pdf

Rockchip_Developer_Guide_Linux_USB_Performance_Analysis_CN.pdf

Rockchip_Developer_Guide_USB2_Compliance_Test_CN.pdf

Rockchip_Developer_Guide_USB_CN.pdf

Rockchip_Developer_Guide_USB_FFS_Test_Demo_CN.pdf

Rockchip_Developer_Guide_USB_Gadget_UAC_CN.pdf

Rockchip_Developer_Guide_USB_SQ_Test_CN.pdf

Rockchip_Introduction_USB_SQ_Tool_CN.pdf

Rockchip_RK3399_Developer_Guide_USB_CN.pdf

Rockchip_RK3399_Developer_Guide_USB_DTS_CN.pdf

Rockchip_RK356x_Developer_Guide_USB_CN.pdf

Rockchip_RK356x_Developer_Guide_USB_CN.pdf

Rockchip_RK3588_Developer_Guide_USB_CN.pdf
```

2.2 Linux系统开发文档 (Linux)

详见/docs/cn/Linux 目录下的文档。

2.2.1 应用指南(ApplicationNote)

主要介绍Rockchip平台上应用相关开发说明,比如ROS、RetroArch、USB等

```
ApplicationNote/

— Rockchip_Developer_Guide_Linux_Flash_Open_Source_Solution_CN.pdf

— Rockchip_Instruction_Linux_ROS2_CN.pdf

— Rockchip_Instruction_Linux_ROS_CN.pdf

— Rockchip_Quick_Start_Linux_USB_Gadget_CN.pdf

— Rockchip_Use_Guide_Linux_RetroArch_CN.pdf
```

2.2.2 音频相关开发(Audio)

主要介绍Rockchip平台上自研音频算法。

2.2.3 摄像头相关开发(Camera)

主要介绍Rockchip平台上MIPI/CSI Camera和结构光开发指南。

2.2.4 容器相关开发(Docker)

主要介绍Rockchip平台上Debian/Buildroot等第三方系统的Docker搭建和开发。

2.2.5 显示相关开发(Graphics)

主要介绍Rockchip平台上 Linux显示相关开发。

```
Graphics/
├── Rockchip_Developer_Guide_Buildroot_Weston_CN.pdf
└── Rockchip_Developer_Guide_Linux_Graphics_CN.pdf
```

2.2.6 多媒体(Multimedia)

Rockchip Linux平台上视频编解码大概的流程

```
vpu_service --> mpp --> gstreamer/rockit --> app vpu_service: 驱动 mpp: rockchip平台的视频编解码中间件,相关说明参考mpp文档 gstreamer/rockit: 对接app等组件
```

目前Debian/buildroot系统默认用gstreamer来对接app和编解码组件。

目前主要开发文档如下:

```
Multimedia/

— Rockchip_Developer_Guide_Linux_RKADK_CN.pdf

— Rockchip_User_Guide_Linux_Gstreamer_CN.pdf

— Rockchip_User_Guide_Linux_Rockit_CN.pdf
```

编解码功能,也可以直接通过mpp提供测试接口进行测试(比如mpi_dec_test\mpi_enc_test...)
mpp源码参考 <SDK>/external/mpp/
测试demo参考: <SDK>/external/mpp/test 具体参考SDK文档
Rockchip_Developer_Guide_MPP_CN.pdf

Rockchip芯片比如RK3588 支持强大的多媒体功能:

• 支持H.265/H.264/AV1/VP9/AVS2视频解码,最高8K60FPS,同时支持1080P 多格式视频解码 (H.263、MPEG1/2/4、VP8、JPEG)

- 支持8K H264/H265 视频编码和1080P VP8、JPEG 视频编码
- 视频后期处理器: 反交错、去噪、边缘/细节/色彩优化。

以下列举平台常见芯片编解码能力的标定规格。

说明:

测试最大规格与众多因素相关,因此可能出现不同芯片相同解码 IP 规格能力不同。 芯片的支持情况,实际搭配不同系统可能支持格式和性能会有所不同。

• 解码能力规格表

芯片名称	H264	H265	VP9	JPEG
RK3588	7680X4320@30f	7680X4320@60f	7680X4320@60f	1920x1088@200f
RK356X	4096x2304@60f	4096x2304@60f	4096x2304@60f	1920x1080@60f
RK3399	4096x2304@30f	4096x2304@60f	4096x2304@60f	1920x1088@30f
RK3328	4096x2304@30f	4096x2304@60f	4096x2304@60f	1920x1088@30f
RK3288	3840x2160@30f	4096x2304@60f	N/A	1920x1080@30f
RK3326	1920x1088@60f	1920x1088@60f	N/A	1920x1080@30f
PX30	1920x1088@60f	1920x1088@60f	N/A	1920x1080@30f
RK312X	1920x1088@30f	1920x1088@60f	N/A	1920x1080@30f

• 编码能力规格表

芯片名称	H264	H265	VP8
RK3588	7680x4320@30f	7680x4320@30f	1920x1088@30f
RK3566_RK3568	1920x1088@60f	1920x1088@60f	1920x1088@30f
RK3399	1920x1088@30f	N/A	1920x1088@30f
RK3328	1920x1088@30f	1920x1088@30f	1920x1088@30f
RK3288	1920x1088@30f	N/A	1920x1088@30f
RK3326	1920x1088@30f	N/A	1920x1088@30f
PX30	1920x1088@30f	N/A	1920x1088@30f
RK312X	1920x1088@30f	N/A	1920x1088@30f

2.2.7 SDK附件内容简介(Profile)

主要介绍Rockchip Linux平台上软件测试,benchmark等介绍。

Profile/

- Rockchip_Developer_Guide_Linux_PCBA_CN.pdf
- ├─ Rockchip_Introduction_Linux_PLT_CN.pdf
- Rockchip_User_Guide_Linux_Software_Test_CN.pdf

2.2.8 OTA升级(Recovery)

主要介绍Rockchip Linux平台 OTA 升级时的 recovery 开发流程和升级介绍。

2.2.9 安全方案(Security)

主要介绍Rockchip Linux平台上Securbeoot和TEE的安全启动方案。

2.2.10 系统开发(System)

主要介绍Rockchip Linux平台上Debian等第三方系统的移植和开发指南。

2.2.11 UEFI启动(UEFI)

主要介绍Rockchip Linux平台上的UEFI启动方案。

```
Uefi/
└─ Rockchip_Developer_Guide_UEFI_CN.pdf
```

2.2.12 网络模块(RKWIFIBT)

主要介绍Rockchip Linux平台上WIFI、BT等开发。

2.3 芯片平台相关文档 (Socs)

详见 <SDK>/docs/cn/<chipset_name> 目录下的文档。正常会包含该芯片的发布说明、芯片快速入门、软件开发指南、硬件开发指南、Datasheet等。

2.3.1 发布说明

里面包含芯片概述、支持的主要功能、SDK获取说明等。

详见 <SDK>/docs/cn/<chipset_name> 目录下的文档
Rockchip_<chipset_name> _Linux_SDK_Release_<version>_CN.pdf

2.3.2 快速入门

正常会包含软硬件开发指南、SDK编译、SDK预编译固件、SDK烧写等内容。 详见 <SDK>/docs/cn/<chipset_name>/Quick-start 目录下的文档。

2.3.3 软件开发指南

为帮助开发工程师更快上手熟悉 SDK 的开发调试工作,随 SDK 发布 《 Rockchip_Developer_Guide_Linux_Software_CN.pdf 》,可在 /docs/cn/<chip_name>/ 下获取,并会不断完善更新。

2.4 芯片资料

为帮助开发工程师更快上手熟悉芯片的开发调试工作,随 SDK 发布芯片手册。 详见 <SDK>/docs/cn/<chipset_name>/Datasheet 目录下的文档。

2.4.1 硬件开发指南

Rockchip 平台会有对应的硬件参考文档随 SDK 软件包一起发布。硬件用户使用指南主要介绍参考硬件板基本功能特点、硬件接口和使用方法。旨在帮助相关开发人员更快、更准确地使用该 EVB,进行相关产品的应用开发,详见 /docs/cn/<chip_name>/Hardware 目录下相关文档。

2.5 其他参考文档 (Others)

其他参考文档,比如Rockchip SDK申请及同步指南、Rockchip Bug 系统使用指南等,详见 /docs/cn/Others 目录下的文档。

Others/

— Rockchip_User_Guide_Bug_System_CN.pdf

Rockchip_User_Guide_SDK_Application_And_Synchronization_CN.pdf

2.6 文件目录结构 (docs_list.txt)

详见/docs/cn/docs_list_cn.txt 文档。

- Common	
— Linux	
├─ Others	
Rockchip_Developer_Guide_Linux_Software_CN.pdf	
<chipset_name></chipset_name>	
└─ docs_list_cn.txt	

3. Chapter-3 工具说明

随 Rockchip Linux SDK 发布的工具,用于开发调试阶段及量产阶段。工具版本会随SDK更新不断更新,如有工具上的疑问及需求,请联系我们的 FAE 窗口<u>fae@rock-chips.com</u>。

Rockchip Linux SDK 中在 tools 目录下附带了linux(Linux操作系统环境下使用工具)、mac(MAC操作系统环境下使用工具)。windows(Windows操作系统环境下使用工具)。

• Windows工具

工具说明文档: tools/windows/ToolsRelease.txt

工具名称	工具用途
boot_merger	打包或解包loader工具
DDR_UserTool	DDR用户测试工具
DriverAssitant	驱动安装工具
EfuseTool	efuse烧写工具
FactoryTool	量产升级工具
ParameterTool	分区表修改工具
pin_debug_tool	GPIO调试工具
programmer_image_tool	烧录器升级工具
rk_ddrbin_tool	rk的ddrbin调试工具
RKDevInfoWriteTool	写号工具
RKDevTool	分立升级固件及整个update升级固件工具
RKDevTool_Release	固件烧录工具
RKPCBATool	PCBA板测试工具
rk_sign_tool	Secureboot签名工具
Rockchip_HdcpKey_Writer	HDCP key烧写工具
Rockchip_USB_SQ_Tool	USB PHY 信号质量的调试工作
SDDiskTool	SD卡启动或升级的镜像制作
SecureBootTool	固件签名工具
upgrade_tool	命令行升级工具
RKImageMaker	命令行打包工具

• Linux工具

工具说明文档: tools/linux/ToolsRelease.txt

工具名称	工具用途
boot_merger	打包或解包loader工具
Firmware_Merger	SPI NOR固件打包工具(生成的固件可以用于烧录器)
Linux_DDR_Bandwidth_Tool	DDR带宽统计工具
Linux_Diff_Firmware	OTA差分包工具
Linux_Pack_Firmware	固件打包工具(打包成updata.img)
Linux_SecureBoot	固件签名工具
Linux_SecurityAVB	AVB签名工具
Linux_SecurityDM	DM签名工具
Linux_Upgrade_Tool	烧录固件工具
pin_debug_tool	GPIO调试工具
programmimg_image_tool	打包SPI NOR/SPI NAND/SLC NAND/eMMC的烧录器固件
rk_ddrbin_tool	rk的ddrbin调试工具
rk_sign_tool	Secureboot签名工具

• mac工具

工具名称	工具用途
boot_merger	打包或解包loader工具
upgrade_tool	命令行升级工具
rk_sign_tool	Secureboot签名工具

3.1 驱动安装工具

Rockchip USB 驱动安装助手存放在 <SDK>/tools/windows/DriverAssitant_v5.12.zip。支持 xp,win7_32,win7_64, win10_32,win10_64等操作系统。

安装步骤如下:

3.2 开发烧写工具

• SDK 提供 Windows 烧写工具(工具版本需要 V3.15 或以上), 工具位于工程根目录:

• SDK 提供 Linux 烧写工具(Linux_Upgrade_Tool 工具版本需要 V2.17 或以上),工具位于工程根目录:

<SDK>/tools/linux/Linux_Upgrade_Tool/Linux_Upgrade_Tool

Linux_Upgrade_Tool\$ sudo ./upgrade_tool -h -----Tool Usage -----Help: Version: LG ------Upgrade Command ------ChooseDevice: CD ListDevice: LD SwitchDevice: SD UpgradeFirmware: UF <Firmware> [-noreset] UpgradeLoader: UL <Loader> [-noreset] [FLASH|EMMC|SPINOR|SPINAND]

DownloadImage: DI <-p|-b|-k|-s|-r|-m|-u|-t|-re image> DB <Loader> DownloadBoot: EraseFlash: EF <Loader|firmware> PartitionList: PL WriteSN: SN <serial number> RSN ReadSN: ReadComLog: RCL <File> GPT <Input Parameter> <Output Gpt> CreateGPT: SwitchStorage: SSD ------Professional Command -----TestDevice: ResetDevice: RD [subcode] ResetPipe: RP [pipe] ReadCapability: RCB ReadFlashID: RTD ReadFlashInfo: RFI ReadChipInfo: RCI ReadSecureMode: RSM WS <BeginSec> <PageSizeK> <PageSpareB> <File> WriteSector: ReadLBA: RL <BeginSec> <SectorLen> [File] WriteLBA: WL <BeginSec> [SizeSec] <File> EraseLBA: EL <BeginSec> <EraseCount> EraseBlock: EB <CS> <BeginBlock> <BlokcLen> [--Force]
RunSystem: RUN <uboot_addr> <trust_addr> <boot_addr> <trust> <boot>

3.3 打包工具

主要用于各分立固件打包成一个完整的update.img固件方便升级。

• Windows 环境下打包update.img固件方法,运行如下命令生成update.img

<SDK>/tools/windows/RKDevTool/rockdev/mkupdate.bat

• Linux 环境下打包update.img固件方法,运行如下命令生成update.img

<SDK>/tools/linux/Linux_Pack_Firmware/rockdev\$./mkupdate.sh

3.4 SD升级启动制作工具

用于制作SD卡升级、SD卡启动、SD卡PCBA测试.

<SDK>/tools/windows/SDDiskTool_v1.74.zip ♣ 瑞芯微创建升级磁盘工具 v1.74 SD_Firmware_Tool 第一步:选择可移动磁盘设备 Generic STORAGE DEVICE USB Device 119. 创建升级磁盘成功. 第二步:选择功能模式 □ 固件升级 PCBA测试式 第三步:选择升级固件 确定 190\huangzihan\inux-develop\3506\rockdev\update.img 选择固件 第四步:选择Demo数据(可选) 选择Demo 开始创建 开始写入GPT... 恢复磁盘

3.5 写号工具

<SDK>/tools/windows/RKDevInfoWriteTool*

解压RKDevInfoWriteTool-1.3.0.7z后安装,以管理员权限打开软件,工具使用参考当前目录Rockchip_User_Guide_RKDevInfoWriteTool_CN.pdf。

3.6 固件签名工具

用于固件的efuse/otp签名.

• SDK 提供 Windows 签名工具位于工程根目录:

<SDK>/tools/windows/SecureBootTool_v2.2

• SDK 提供 Linux 签名工具位于工程根目录:

```
<SDK>/tools/linux/rk_sign_tool_v1.31_linux.zip

rk_sign_tool_v1.3_linux$ ./rk_sign_tool
rk_sign_tool is a tool signing firmware and loader for secureboot
usage of rk_sign_tool v1.3:

CC <--chip chip_id> //select sign options by chip

KK [--bits default=2048] <--out> //generating rsa key pairs

LK <--key> <--pubkey> //loading rsa key pairs

SI [--key] <--img> [--pss] //signing image like boot uboot trust

SL [--key] [--pubkey] <--loader> [--little] [--pss] //signing loader like

RKXX_loader.bin

SF [--key] [--pubkey] <--firmware> [--little] [--pss] //signing firmware like
update.img

SB [--key] <--bin> [--pss] //signing binary file

GH <--bin> <--sha 160|256> [--little] //computing sha of binary file

*******rk_sign_tool XX -h to get more help*******
```

工具使用参考目录/docs/Linux/Security/Rockchip_Developer_Guide_Linux4.4_SecureBoot_CN.pdf 中签名工具使用说明。

3.7 烧录器升级工具

用于量产烧录器镜像制作工具,该工具位于:

```
<SDK>/tools/windows/programmer_image_tool 或<SDK>/tools/linux/programmer_image_tool
```

```
PS D:\Rockchip\vs projects\programmer image tool> .\programmer image tool -h
       programmer image tool - creating image for programming on flash
SYNOPSIS
       programmer image tool [-iotbpsvh]
       This tool aims to convert firmware into image for programming
        From now on, it can support slc nand(rk)|spi nand|nor|emmc.
OPTIONS:
               input firmware
          -i
               output directory
          -0
               storage type, range in[SLC|SPINAND|SPINOR|EMMC]
          -t
          -b
               block size, unit KB
               page size, unit KB
          -p
          -s oob size,unit B
               2k data in one page
          -2
               using page linked list
          -1
               show version
```

烧录器镜像制作步骤:

• 烧录镜像到 emmc

```
./programmer_image_tool -i update.img -t emmc
```

• 烧录镜像到 spi nor

```
./programmer_image_tool -i update.img -t spinor
```

更多使用说明参考工具目录 user_manual.pdf 文档。

3.8 PCBA测试工具

PCBA 测试工具用于帮助在量产的过程中快速地甄别产品功能的好坏,提高生产效率。目前包括屏幕 (LCD)、无线(Wi-Fi)、蓝牙(bluetooth)、DDR/EMMC 存储、SD 卡(sdcard)、USB HOST、按键(KEY),喇叭耳机(Codec)等测试项目。

这些测试项目包括自动测试项和手动测试项,无线网络、DDR/EMMC、以太网为自动测试项,按键、SD卡、USB HOST、Codec、为手动测试项目。

PCBA工具位于:

```
<SDK>/tools/windows/RKPCBATool_V1.0.9.zip
```

具体PCBA功能配置及使用说明,请参考:

/tools/windows/RKPCBATool_V1.0.9/Rockchip PCBA测试开发指南_1.10.pdf

3.9 DDR焊接测试工具

用于测试DDR的硬件连接,排查虚焊等硬件问题:

3.10 eFuse烧写工具

用于eFuse的烧写,适用于RK3288/RK3368/RK3399/RK3399Pro等平台。

```
<SDK>/tools/windows/EfuseTool_v1.42zip
```

如果芯片使用 eFuse 启用 SecureBoot 功能,请保证硬件连接没有问题,因为 eFuse 烧写时,Kernel 尚未启动,所以请保证 VCC_EFUSE 在 MaskRom 状态下有电才能使用。

使用 /Tools/windows/EfuseTool_v1.4.zip,板子进入 MaskRom 状态。 点击"固件",选择签名的 update.img,或者 Miniloader.bin,点击运行"启动",开始烧写 eFuse。

3.11 量产升级工具

用于工厂批量烧写固件:

<SDK>/tools/windows/FactoryTool_v1.76.zip

3.12 分区修改工具

用于Paramter.txt中的分区修改工具:

<SDK>/tools/windows/ParameterTool_v1.2.zip

Parameter:	parameter.txt					Browse
Name	Offset		Secotr Offset		Size	
uboot	0x800000		0x4000		4MB	
trust	0xC00000		0x6000		4MB	
misc	0x1000000		0x8000		4MB	
boot	0x1400000		0xA000		32MB	
recovery	0x3400000		0x1A000		32MB	
backup	0x5400000		0x2A000		32MB	
oem	0x7400000		0x3A000		64MB	
rootfs	0xB400000		0x5A000		6144MB	
userdata:g	0x18B400000		0xC5A000	_		
Offset:	_					
Size:	•	КВ	МВ			
Name:						
		Modify	Revoke	Save		

4. Chapter-4 SDK软件架构

4.1 SDK工程目录介绍

一个通用 Linux SDK 工程目录包含有 buildroot、debian、app、kernel、u-boot、device、docs、external 等目录。采用manifest来管理仓库,用repo工具来管理每个目录或其子目录会对应的 git 工程。

- app: 存放上层应用 APP, 主要是一些应用Demo。
- buildroot:基于 Buildroot (2021)开发的根文件系统。
- debian: 基于 Debian bullseye(11) 开发的根文件系统。
- device/rockchip: 存放芯片板级配置以及一些编译和打包固件的脚本和文件。
- docs: 存放开发指导文件、平台支持列表、工具使用文档、Linux 开发指南等。
- external: 存放第三方相关仓库,包括显示、音视频、摄像头、网络、安全等。
- kernel: 存放 Kernel 开发的代码。
- output: 存放每次生成的固件信息、编译信息、XML、主机环境等。
- prebuilts: 存放交叉编译工具链。
- rkbin: 存放 Rockchip 相关二进制和工具。
- rockdev: 存放编译输出固件,实际软链接到 output/firmware 。
- tools: 存放 Linux 和 Window 操作系统下常用工具。
- u-boot: 存放基于 v2017.09 版本进行开发的 U-Boot 代码。
- yocto: 存放基于 Yocto 4.0开发的根文件系统。

4.2 SDK概述

4.2.1 Linux发行版

Linux发行版(Distribution) 就是我们日常在 Linux主机上使用的那些系统,为用户预先集成好的Linux操作系统及各种应用软件。Linux发行版的形式多种多样,有从功能齐全的桌面系统到服务器版本到小型系统。通用Linux SDK支持桌面版本的Debian系统,可定制化的Buildroot/Yocto的轻量级系统。至于产品中系统的选型可按具体产品需求情况来定。具体系统情况介绍如下:

4.2.2 Buildroot

Rockchip Linux SDK 的Buildroot系统,其包含了基于 Linux 系统开发用到的各种系统源码,驱动,工具,应用软件包。Buildroot 是 Linux 平台上一个开源的嵌入式 Linux 系统自动构建框架。整个 Buildroot 是由 Makefile 脚本和 Kconfig 配置文件构成的。你可以通过Buildroot配置,编译出一个完整的可以直接烧写到机器上运行的 Linux 系统软件。

图4-1 Buildroot编译框图

Buildroot 有以下几点优势:

- 通过源码构建,有很大的灵活性;
- 方便的交叉编译环境,可以进行快速构建;
- 方便各系统组件配置及定制开发。

使用 Buildroot 的 project 最出名的就是 Openwrt。可以看到,由它制作出的镜像可以跑在搭载16 Mb SPI NOR的路由器上,系统基本没包含多余的东西。 这就是得益于 Buildroot 的地方:简单化。整个 Buildroot project 在一个git维护。

Buildroot 使用 kconfig 和 make,一个defconfig 配置代表一种 BSP 支持。

Buildroot 本身不具备扩展能力,用户需要自己通过脚本来完成工作。这些列出来的特点,都是和 Yocto 不同的地方。

4.2.3 Yocto

Yocto 和 Buildroot 一样,是一套构建嵌入式系统的工具,但是两者的风格完全不同。

Yocto project 是通过一个个单独的包(meta)来维护,比如有的包负责核心,有的包负责外围。有的包用 于跑 Rockchip 的芯片,有的包用于安装上weston,有的包是则是用于跑 debian, 同样采用类似机制的 nodejs, 社区膨胀非常厉害, 活跃度很高, 每个人都分享自己低质量垃圾包到 github 上,这样的机制保证 了我们可以从互联网复用别人的工作成果,相当有价值。相比Buildroot系统,Yocto有点具体更强编译机 制,比如第三方包的依赖和重编,都会自动处理。缺点相对复杂、需VPN网络。目前该系统主要针对国 外、爱好者或具体二次开发能力的客户使用。

图4-2 Yocto编译框图

Yocto是一个非常灵活的构建系统,允许用户使用shell和Python来处理各种特殊情况。目前,该系统主要针对国外客户。如果您需要更多关于Yocto的信息,请查看以下参考资料:

- Yocto
- Rockchip Yocto
- Yocto stable branch

4.2.4 Debian

Debian 是一种完全自由开放并广泛用于各种设备的 Linux 操作系统选择Debian原因如下:

• Debian 是自由软件

Debian 是由自由和开放源代码的软件组成,并将始终保持100%自由。每个人都能自由使用、修改,以及发布。大家可以基于Rockchip构建的Debian系统进行二次开发。

• Debian 是一个基于 Linux稳定且安全的的操作系统。

Debian 是一个广泛用于各种设备的操作系统,其使用范围包括笔记本计算机,台式机和服务器。自 1993年以来,它的稳定性和可靠性就深受用户的喜爱。我们为每个软件包提供合理的默认配置。 Debian 开发人员会尽可能在其生命周期内为所有软件包提供安全更新。

• Debian 具有广泛的硬件支持。

大多数硬件已获得 Linux 内核的支持。当自由软件无法提供足够的支持时,也可使用专用的硬件驱动程序。目前Rockchip RK3588/RK3568/RK3566/RK3399/RK3288等芯片已经适配并支持。

• Debian 提供平滑的更新。

Debian 以在其发行周期内轻松流畅地进行更新而闻名,不仅如此,还包括轻松升级到下一个大版本。Rockchip目前已从Debian Stretch(9)升级到Debian Buster(10)和 Bullseye(11)版本。

• Debian 是许多其他发行版的种子和基础。

许多非常受欢迎的 Linux 发行版,例如 Ubuntu、Knoppix、PureOS、SteamOS 以及 Tails,都选择了 Debian 作为它们的软件基础。Debian 提供了所有工具,因此每个人都可以用能满足自己需求的软件 包来扩展 Debian 档案库中的软件包。

• Debian 项目是一个社区。

Debian 不只是一个 Linux 操作系统。该软件由来自世界各地的数百名志愿者共同制作。即使您不是一个程序员或系统管理员、也可以成为 Debian 社区的一员。

Rockchip定制版的Debian系统是通过Shell脚本来达到获取构建Linux Debian发行版源码,编译和安装适配 Rockchip硬加速包的操作系统。

4.3 SDK软件框图

SDK 软件框图4-3 所示, 从下至上分为Bootloader、Linux Kernel、Libraries、Applications四个层次。各层次内容如下:

- Bootloader层主要提供底层系统支持包,如Bootloader、U-Boot、ATF相关支持。
- Kernel层主要提供Linux Kernel的标准实现, Linux也是一个开放的操作系统。Rockchip平台的Linux 核心为标准的Linux4.4/4.19/5.10内核,提供安全性,内存管理,进程管理,网络协议栈等基础支持;主要是通过 Linux 内核管理设备硬件资源,如 CPU调度、缓存、内存、I/O 等。
- Libraries层对应一般嵌入式系统,相当于中间件层次。包含了各种系统基础库,及第三方开源程序库支持,对应用层提供API接口,系统定制者和应用开发者可以基于Libraries层的API开发新的应用。

• Applications层主要是实现具体的产品功能及交互逻辑,需要一些系统基础库及第三方程序库支持, 开发者可以开发实现自己的应用程序,提供系统各种能力给到最终用户。

图4-3 SDK软件框图

SDK 系统启动流程如图4-3.1所示。

图4-3.1 SDK启动流程

4.4 SDK开发流程

Rockchip Linux系统是基于Buildroot/Yocto/Debian 系统, 内核基于 kernel 4.4/4.19/5.10开发,针对多种不同产品形态开发的SDK。可以基于本SDK,有效地实现系统定制和应用移植开发。

图4-4 SDK开发流程

如图4-4所示,开发者可以遵循上述开发流程,在本地快速构建Rockchip Linux系统的开发环境和编译代码。下面将简单介绍下该流程:

- 检查系统需求:在下载代码和编译前,需确保本地的开发设备能够满足需求,包括机器的硬件能力,软件系统,工具链等。目前SDK支持Linux操作系统环境下编译,并仅提供Linux环境下的工具链支持,其他如MacOS,Windows等系统暂不支持。
- 搭建编译环境:介绍开发机器需要安装的各种软件包和工具,详见5章开发环境搭建,获知 Rockchip Linux 已经验证过的 Linux 操作系统版本,编译时依赖的库文件等。选择设备:在开发过程中,需要开发者根据自己的需求,选择对应的硬件板型,详见 <u>SDK适配硬件全自动编译汇总</u>。
- 下载源代码:选定设备类型后,需要安装repo工具用于批量下载源代码,详见 6.4 节 SDK获取。系统定制:开发者可以根据使用的硬件板子、产品定义,定制U-Boot(详见 9.1 节 U-Boot开发)、Kernel(详见 9.2 节Kernel 开发)及Buildroot(详见 9.4 节 Buildroot开发),请参考章节中相关开发指南和配置的描述。
- 编译与打包:介绍具备源代码后,选择产品及初始化相关的编译环境,而后执行编译命令,包括整体或模块编译以及编译清理等工作,进一步内容详见7章SDK编译。烧录并运行:继生成镜像文件后,将介绍如何烧录镜像并运行在硬件设备,进一步内容详见8.1节SDK镜像烧写。

5. Chapter-5 SDK 开发坏境搭建

5.1 概述

本节主要介绍了如何在本地搭建编译环境来编译Rockchip Linux SDK源代码。当前SDK只支持在Linux环境下编译,并提供Linux下的交叉编译工具链。

一个典型的嵌入式开发环境通常包括Linux 服务器、Windows PC和目标硬件版,典型开发环境如下图 所示。

- Linux 服务器上建立交叉编译环境,为软件开发提供代码更新下载,代码交叉编译服务。
- Windows PC 和 Linux 服务器共享程序,并安装Putty,通过网络远程登陆到 Linux 服务器,进行交 叉编译,及代码的开发调试。
- Windows PC 通过串口和 USB 与目标硬件板连接,可将编译后的镜像文件烧写到目标硬件板,并调试系统或应用程序。

[注]: 开发环境中使用了Windows PC,实际上很多工作也可以在 Linux PC 上完成,如使用minicom 代替 Putty等,用户可自行选择。

5.2 Linux服务器开发环境搭建

我们推荐使用 Ubuntu 20.04 或更高版本的系统进行编译。其他的 Linux 版本可能需要对软件包做相应调整。除了系统要求外,还有其他软硬件方面的要求。

硬件要求: 64 位系统, 硬盘空间大于 40G。如果您进行多个构建, 将需要更大的硬盘空间。

软件要求: Ubuntu 20.04 或更高版本系统。

考虑客户开发环境搭建时间成本,我们也提供了交叉编译器docker镜像方式供客户验证,缩短编译环境搭建耗时。

参考文档 Docker/Rockchip_Developer_Guide_Linux_Docker_Deploy_CN.pdf。

• Docker编译镜像系统兼容性测试结果参考如下:

发行版本	Docker 版本	镜像加载	固件编译
ubuntu 21.10	20.10.12	pass	pass
ubuntu 21.04	20.10.7	pass	pass
ubuntu 18.04	20.10.7	pass	pass
fedora35	20.10.12	pass	NR (not run)

5.2.1 安装库和工具集

使用命令行进行设备开发时,可以通过以下步骤安装编译SDK需要的库和工具。

使用如下apt-get命令安装后续操作所需的库和工具:

```
sudo apt-get install git ssh make gcc libssl-dev liblz4-tool \
expect g++ patchelf chrpath gawk texinfo chrpath diffstat \ binfmt-support qemu-
user-static live-build bison flex fakeroot \ cmake gcc-multilib g++-multilib
unzip device-tree-compiler \ ncurses-dev libgucharmap-2-90-dev bzip2 expat gpgv2
\
cpp-aarch64-linux-gnu g++-aarch64-linux-gnu
```

说明:

安装命令适用于Ubuntu20.04, 其他版本请根据安装包名称采用对应的安装命令, 若编译遇到报错, 可以视报错信息, 安装对应的软件包。其中:

- make要求安装 make 4.0及以上版本,此处以 make 4.2为例。
- lz4要求安装 lz4 1.7.3及以上版本。
- 编译yocto需要VPN网络, git没有CVE-2022-39253安全检测补丁。

5.2.1.1 检查和升级主机的 make 版本

检查和升级主机的 make 版本方法如下:

• 检查主机 make 版本

```
$ make -v
GNU Make 4.2
Built for x86_64-pc-linux-gnu
```

• 升级 make 4.2 新版本

```
git clone https://github.com/mirror/make.git
cd make
git checkout 4.2
git am $BUILDROOT_DIR/package/make/*.patch
autoreconf -f -i
./configure
make make -j8
sudo install -m 0755 make /usr/bin/make
```

5.2.1.2 检查和升级主机的 lz4 版本

检查和升级主机的 lz4 版本方法如下:

• 检查主机 lz4 版本

```
$ lz4 -v
*** LZ4 command line interface 64-bits v1.9.3, by Yann Collet ***
refusing to read from a console
```

• 升级 lz4 新版本

```
git clone https://github.com/lz4/lz4.git
cd lz4
make
sudo make install
sudo install -m 0755 lz4 /usr/bin/lz4
```

5.2.1.3 检查和升级主机的 git 版本

```
git clone https://github.com/mirror/make.git --depth 1 -b 4.2
cd make
git am $BUILDROOT_DIR/package/make/*.patch
autoreconf -f -i
./configure
make make -j8
install -m 0755 make /usr/local/bin/make
```

5.2.2 发布包使用Linux服务器系统版本

本SDK开发环境安装如下版本Linux 系统, SDK默认均以此Linux 系统进行编译:

```
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=22.04
DISTRIB_CODENAME=jammy
DISTRIB_DESCRIPTION="Ubuntu 22.04 LTS"
Linux version 5.15.0-46-generic (buildd@lcy02-amd64-115) (gcc (Ubuntu 11.2.0-19ubuntu1) 11.2.0, GNU ld (GNU Binutils for Ubuntu) 2.38) #49-Ubuntu SMP Thu Aug 4 18:03:25 UTC 2022
```

5.2.3 交叉编译工具链介绍

鉴于Rockchip Linux SDK目前只在Linux PC环境下编译,我们也仅提供了Linux下的交叉编译工具链。prebuilt目录下的工具链是U-Boot和Kernel使用。

具体Rootfs需要用各自对应的工具链,或者使用第三方工具链静态链接。

5.2.3.1 U-Boot 及Kernel编译工具链

Linux4.4/4.19 SDK:

prebuilts/gcc/linux-x86/aarch64/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-

Linux5.10 SDK:

prebuilts/gcc/linux-x86/aarch64/gcc-arm-10.3-2021.07-x86_64-aarch64-none-linux-gnu/bin/aarch64-none-linux-gnu-

对应版本

```
Linux4.4/4.19 SDK:
```

gcc version 6.3.1 20170404 (Linaro GCC 6.3-2017.05)

Linux5.10 SDK:

gcc version 10.3.1 20210621 (GNU Toolchain for the A-profile Architecture 10.3-2021.07 (arm-10.29))

5.2.3.2 Buildroot工具链

若需要编译单个模块或者第三方应用,需对交叉编译环境进行配置。比如RK3588,其交叉编译工具位于buildroot/output/rockchip_rk3588/host/usr 目录下,需要将工具的bin/目录和aarch64-buildroot-linux-gnu/bin/目录设为环境变量,在顶层目录执行自动配置环境变量的脚本:

source envsetup.sh

输入命令查看:

```
cd buildroot/output/rockchip_rk3588/host/usr/bin
./aarch64-linux-gcc --version
```

此时会打印如下信息:

```
aarch64-linux-gcc.br_real (Buildroot linux-5.10-gen-rkr3.3) 11.3.0
```

如果需要其他平台或版本的工具链, 需自行编译。

上述环境准备好后,Linux服务器开发环境搭建已完成,可以下载编译源代码了。

具体可参考

buildroot/docs/manual/using-buildroot-toolchain.txt buildroot/docs/manual/adding-packages.txt

5.2.3.3 Debian工具链

使用docker机器端, gcc或者dpkg-buildpackage

5.2.3.4 Yocto工具链

参考如下:

https://wiki.yoctoproject.org/wiki/Building_your_own_recipes_from_first_principle s#Adding_new_recipes_to_the_build_system https://docs.yoctoproject.org/dev/dev-manual/new-recipe.html

5.3 Window PC 开发坏境搭建

5.3.1 开发工具安装

- 请用户自行安装 Vim, Notepad++等编辑软件。
- 下载 Virtual-Box (提供虚拟开发环境的软件)
- 下载 XShell6 (用来和Linux系统建立交互)

5.3.2 Rockchip USB 驱动安装

开发调试阶段,需要将设备切换至 Loader 模式或是 Maskrom 模式,需要安装 Rockusb 驱动才能正常识别设备。

Rockchip USB 驱动安装助手存放在 tools/windows/DriverAssitant_v5.x.zip。支持 xp,win7_32,win7_64,win10_32,win10_64 等操作系统。 安装步骤如下:

5.3.3 Windows 烧录工具使用

Windows 系统上的的烧录工具发布在 tools/windows/RKDevTool/RKDevTool_Release,可用于 Windows 环境下开发调试,固件的烧写。具体的使用说明见 12.3 节 瑞芯微开发工具。

5.3.4 目标硬件板准备

请参考SDK 软件包适用硬件列表<u>SDK软件包适用硬件列表</u>,选择对应硬件板子,进行后续的开发调试。 对应的硬件使用说明文档,会介绍硬件接口,使用说明,及烧录操作方法。

6. Chapter-6 SDK开发前准备工作

6.1 简要介绍

Rockchip Linux SDK 的代码和相关文档被划分为了若干 git 仓库分别进行版本管理,开发者可以使用 repo 对这些 git 仓库进行统一的下载,提交,切换分支等操作。

6.2 安装 repo

确保主目录下有一个 bin/ 目录, 并且该目录包含在路径中:

```
mkdir ~/bin
export PATH=~/bin:$PATH
```

如果可以访问 google 的地址,下载 Repo 工具,并确保它可执行:

```
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo
```

如果执行上述命令后发现~/bin/repo 为空, 您可以尝试访问镜像站点来下载repo工具。

```
curl https://mirrors.tuna.tsinghua.edu.cn/git/git-repo -o ~/bin/repo
chmod a+x ~/bin/repo
```

除以上两种方式外,也可以使用如下命令获取 repo

```
sudo apt-get install repo
```

6.3 Git 配置

在使用 repo 之前请配置一下自己的 git 信息, 否则后面的操作可能会遇到 hook 检查的障碍:

```
git config --global user.name "your name"
git config --global user.email "your mail"
```

6.4 SDK 获取

SDK 通过瑞芯微代码服务器对外发布。客户向瑞芯微技术窗口申请 SDK,需同步提供 SSH 公钥进行服务器认证授权,获得授权后即可同步代码。关于瑞芯微代码服务器 SSH 公钥授权,请参考本文章节SSH 公钥操作说明。

6.4.1 SDK 下载命令

Rockchip Linux SDK 被设计为可以适配到不同的芯片平台上,如RK3588、RK3566、RK3568、RK3308,RK3288,RK3326/PX30,RK3399,RK3399Pro, RK1808等,对于不同芯片平台的源代码会有一定程度的不同。开发者下载源代码的时候声明自己想要的芯片平台,从而不必下载自己不需要的代码。

SDK 使用-m <芯片平台SDK版本发布版本>.xml 来声明自己想要下载的对应芯片平台。

请参考本文章节通过代码服务器下载。

代码将开始自动下载,后面只需耐心等待。源代码文件将位于工作目录中对应的项目名称下。初始同步操作将需要 1 个小时或更长时间才能完成。

6.4.2 SDK 代码压缩包

为方便客户快速获取 SDK 源码,瑞芯微技术窗口通常会提供对应版本的 SDK 初始压缩包,开发者可以通过这种方式,获得 SDK 代码的初始压缩包,该压缩包解压得到的源码,与通过 repo 下载的源码是一致的。

请参考本文章节通过本地压缩包解压获取。

6.5 软件更新记录

软件发布版本升级通过工程 xml 进行查看, 比如RK3588芯片具体方法如下:

```
.repo/manifests$ realpath rk3588_linux_release.xml
## Chapter-6 例如:打印的版本号为v1.1.0,更新时间为20230420
## Chapter-6 <SDK>/.repo/manifests/rk3588_linux_release_v1.1.0_20230420.xml
```

软件发布版本升级更新内容通过工程文本可以查看,比如RK3588得查看方法如下:

```
.repo/manifests/rk3588_linux$ cat RK3588_Linux_SDK_Note.md
```

或者参考工程目录:

<SDK>/docs/RK3588/RK3588_Linux_SDK_Note.md

6.6 SDK 更新

后续开发者可根据 FAE 窗口定期发布的更新说明,通过命令同步更新。

```
.repo/repo/repo sync -c
```

6.7 SDK 问题反馈

Rockchip bug 系统(Redmine)为了更好的帮助客户开发,记录了用户问题处理过程及状态,方便双方同时跟踪,使问题处理更及时更高效。后续 SDK 问题、具体技术问题、技术咨询等都可以提交到此 Bug 系统上,Rockchip 技术服务会及时将问题进行分发、处理和跟踪。更多详细说明,可参考文档 <SDK>/docs/cn/Others/Rockchip_User_Guide_SDK_Application_And_Synchronization_CN.pdf

7. Chapter-7 SDK 编译说明

SDK可通过 make 或 ./build.sh 跟目标参数进行相关功能的配置和编译。 具体参考 device/rockchip/commo/README.md 编译说明。

7.1 SDK编译命令查看

make help ,例如:

make实际运行是 ./build.sh

即也可运行./build.sh <target> 来编译相关功能,具体可通过./build.sh help 查看具体编译命令。

\$./build.sh -h Usage: build.sh [OPTIONS] Available options: lunch - choose defconfig

*_defconfig - switch to specified defconfig

olddefconfig - resolve any unresolved symbols in .config savedefconfig - save current config to defconfig menuconfig kernel-5.10 - interactive curses-based configurator - build kernel 5.10 kernel - build kernel modules - build kernel modules loader build loader (uboot|spl) - build u-boot uboot spl - build spl uefi - build uefi wifibt
rootfs - build rootfs (uc...)
buildroot - build buildroot rootfs
- build yocto rootfs
- dehian rootfs wifibt - build Wifi/BT build rootfs (default is buildroot) - build recovery recovery - build PCBA pcba security_check - check contidions for security features
createkeys - build secureboot root keys
security_uboot - build uboot with security paramter
security_boot - build boot with security paramter

security_recovery - build recovery with security paramter

security_rootfs - build rootfs and some relevant images with security paramter

(just for dm-v)

updateimg - build update image
otapackage - build OTA update image
sdpackage - build SDcard update image
firmware - generate and check firmwares

all - build all basic image
save - save images and build info
allsave - build all & firmware & updateimg & save
cleanall - cleanup
post-rootfs - trigger post-rootfs hook scripts
shell - setup a shell for doubles. shell - setup a shell for developing

- usage help

Default option is 'allsave'.

7.2 SDK板级配置

make rockchip_defconfig 具体板级配置说明如下:

进入工程 <SDK>/device/rockchip/<chipset_name> 目录:

板级配置	说明
rockchip_rk3588_evb1_lp4_v10_defconfig	适用于 RK3588 EVB1 搭配 LPDDR4 开发板
rockchip_rk3588_evb3_lp5_v10_defconfig	适用于 RK3588 EVB3 搭配 LPDDR5 开发板
rockchip_rk3588_evb7_lp4_v10_defconfig	适用于 RK3588 EVB7 搭配 LPDDR4 开发板
rockchip_rk3588s_evb1_lp4x_v10_defconfig	适用于 RK3588S EVB1 搭配 LPDDR4 开发板
rockchip_rk3562_evb1_lp4x_v10_defconfig	适用于 RK3562 EVB1 搭配 LPDDR4 开发板
rockchip_rk3562_evb2_ddr4_v10_defconfig	适用于 RK3566 EVB2 搭配 DDR4 开发板
rockchip_defconfig	默认配置,具体会软链接到默认一个板级配置

可通过 make lunch 或者 ./build.sh lunch 进行配置, 比如RK3562芯片

\$./build.sh lunch

You're building on Linux

Lunch menu...pick a combo:

- rockchip_defconfig
- 2. rockchip_rk3562_evb1_lp4x_v10_defconfig
- rockchip_rk3562_evb2_ddr4_v10_defconfig

Which would you like? [1]:

其他功能的配置可通过 make menuconfig 来配置相关属性。

7.3 SDK配置不同启动/内核/系统等组件

SDK可通过 make menuconfig 进行相关配置,目前可配组件主要如下:

```
(rk3562) SoC
  Rootfs --->
  Loader (u-boot) --->
  Kernel --->
  Boot --->
  Recovery (buildroot) --->
  PCBA test (buildroot) --->
  Security --->
  Update (OTA and A/B) --->
  Firmware --->
  Extra partitions --->
  Others configurations --->
```

通过以上config,可选择不同rootfs/loader/kernel等配置,进行各种定制化编译。另外还带有强大命令行切换功能。

注意menuconfig配置之后,需要make savedefconfig保存配置

7.4 SDK环境变量配置

可通过 source envsetup.sh 来设置不同芯片和目标功能的配置。

```
$ source envsetup.sh
Top of tree: /home/wxt/linux-develop/rk3562
You're building on Linux
Pick a board:
1. rockchip_px30_32
2. rockchip_px30_64
rockchip_px30_recovery
4. rockchip_rk3036
5. rockchip_rk3036_recovery
6. rockchip_rk3126c
rockchip_rk312x
8. rockchip_rk312x_recovery
9. rockchip_rk3288
10. rockchip_rk3288_recovery
11. rockchip_rk3308_32_release
12. rockchip_rk3308_b_32_release
13. rockchip_rk3308_b_release
14. rockchip_rk3308_bs_32_release
15. rockchip_rk3308_bs_release
16. rockchip_rk3308_h_32_release
17. rockchip_rk3308_recovery
18. rockchip_rk3308_release
19. rockchip_rk3326_64
20. rockchip_rk3326_recovery
21. rockchip_rk3358_32
22. rockchip_rk3358_64
```

```
23. rockchip_rk3358_recovery
24. rockchip_rk3399
25. rockchip_rk3399_base
26. rockchip_rk3399_recovery
27. rockchip_rk3399pro
28. rockchip_rk3399pro-multi-cam
29. rockchip_rk3399pro-npu
30. rockchip_rk3399pro-npu-multi-cam
31. rockchip_rk3399pro_combine
32. rockchip_rk3399pro_recovery
33. rockchip_rk3528
34. rockchip_rk3528_recovery
35. rockchip_rk3562
36. rockchip_rk3562_32
37. rockchip_rk3562_recovery
38. rockchip_rk3566
39. rockchip_rk3566_32
40. rockchip_rk3566_recovery
41. rockchip_rk3566_rk3568_base
42. rockchip_rk3566_rk3568_ramboot
43. rockchip_rk3568
44. rockchip_rk3568_32
45. rockchip_rk3568_recovery
46. rockchip_rk3588
47. rockchip_rk3588_base
48. rockchip_rk3588_ramboot
49. rockchip_rk3588_recovery
Which would you like? [1]:
```

比如选择33 rockchip_rk3562

然后进行RK3562的Buildroot目录,开始相关模块的编译。

7.5 全自动编译

进入工程根目录执行以下命令自动完成所有的编译:

```
./build.sh all # 只编译模块代码(u-Boot, kernel, Rootfs, Recovery)
# 需要再执行./mkfirmware.sh 进行固件打包

./build.sh # 编译模块代码(u-Boot, kernel, Rootfs, Recovery)
# 打包成update.img完整升级包
# 所有编译信息复制和生成到out目录下
```

默认是 Buildroot,可以通过设置坏境变量 RK_ROOTFS_SYSTEM 指定不同 rootfs。 RK_ROOTFS_SYSTEM 目前可设定三种系统: buildroot、debian、yocto。

比如需要 debain 可以通过以下命令进行生成:

```
export RK_ROOTFS_SYSTEM=debian
./build.sh
或
RK_ROOTFS_SYSTEM=debian ./build.sh
```

7.6 模块编译

7.6.1 U-Boot编译

进入SDK工程。运行如下命令进行编译

```
<SDK>#./build.sh uboot
```

具体板级编译参考SDK发布文档中编译说明。

7.6.2 Kernel编译

进入工程目录根目录执行以下命令自动完成 kernel 的编译及打包。

```
<SDK>#./build.sh kernel
```

具体板级编译参考发布说明或者Quick Start中编译说明。

7.6.3 Recovery编译

进入工程根目录执行以下命令自动完成 Recovery 的编译及打包。

```
<SDK>#./build.sh recovery
```

编译后在 Buildroot 目录 `output/rockchip<chipset_name>recovery/images 生成 recovery.img。 需要特别注意 recovery.img 是包含 kernel.img,所以每次 Kernel 更改,Recovery 是需要重新打包生成。例如下:

<SDK>#source envsetup.sh

<SDK>#cd buildroot

<SDK>#make recovery-rebuild

<SDK>#cd -

<SDK>#./build.sh recovery

更多编译说明请参考SDK发布文档。

注: Recovery是非必需的功能,有些板级配置不会设置

7.6.4 Buildroot编译

进入工程目录根目录执行以下命令自动完成 Rootfs 的编译及打包:

```
./build.sh rootfs
```

编译后在Buildroot目录 output/rockchip_<target>/images 下生成不同格式的镜像, 默认使用rootfs.ext4格式。

7.6.4.1 Buildroot的交叉编译

若需要编译单个模块或者第三方应用,需对交叉编译环境进行配置。比如RK3562,其交叉编译工具位于buildroot/output/rockchip_rk3562/host/usr 目录下,需要将工具的bin/目录和 aarch64-buildroot-linux-gnu/bin/目录设为环境变量,在顶层目录执行自动配置环境变量的脚本(只对当前控制台有效):

source envsetup.sh

输入命令查看:

cd buildroot/output/rockchip_rk3562/host/usr/bin
./aarch64-linux-gcc --version

此时会打印如下信息:

aarch64-linux-gcc.br_real (Buildroot 2018.02-rc3-00216-gd9212ae84c) 10.3.0

7.6.4.2 Buildroot模块编译

比如 rockchip_test 模块, 常用相关编译命令如下:

进入 buildroot 目录

SDK#cd buildroot

编译 rockchip_test

buildroot#make rockchip_test

• 重编 rockchip_test

buildroot#make rockchip_test-rebuild

• 删除 rockchip_test

buildroot#make rockchip_test-dirclean 或者

buildroot#rm -rf output/rockchip_rk3562/build/rockchip_test-20220105/

7.6.5 Debian编译

./build.sh debian

说明:需要预先安装相关依赖包 sudo apt-get install binfmt-support qemu-user-static live-build sudo dpkg -i ubuntu-build-service/packages/* sudo apt-get install -f 或进入 debian/ 目录:

```
cd debian/
```

后续的编译和 Debian 固件生成请参考当前目录 readme.md。

• (1) Building base Debian system

```
sudo apt-get install binfmt-support qemu-user-static live-build
sudo dpkg -i ubuntu-build-service/packages/*
sudo apt-get install -f
```

编译 64 位的 Debian:

```
RELEASE=buster TARGET=desktop ARCH=arm64 ./mk-base-debian.sh
```

编译完成会在 debian/ 目录下生成: linaro-buster-alip-xxxxx-1.tar.gz(xxxxx 表示生成时间戳)。

FAQ:

• 上述编译如果遇到如下问题情况:

Debian 使用 live build,镜像源改为国内可以这样配置:

--apt-recommends false \
--apt-secure false \

```
noexec or nodev issue /usr/share/debootstrap/functions: line 1450:
..../rootfs/ubuntu-build-service/buster-desktop-arm64/chroot/test-dev-null:
Permission denied E: Cannot install into target '/rootfs/ubuntu-build-service/buster-desktop-arm64/chroot' mounted with noexec or nodev
```

解决方法:

```
mount -o remount, exec, dev xxx (xxx 是工程目录), 然后重新编译
```

另外如果还有遇到其他编译异常,先排除使用的编译系统是 ext2/ext4 的系统类型。

• 由于编译 Base Debian 需要访问国外网站,而国内网络访问国外网站时,经常出现下载失败的情况:

```
+++ b/ubuntu-build-service/buster-desktop-arm64/configure

@@ -11,6 +11,11 @@ set -e

echo "I: create configuration"

export LB_BOOTSTRAP_INCLUDE="apt-transport-https gnupg"

lb config \
+ --mirror-bootstrap "https://mirrors.tuna.tsinghua.edu.cn/debian" \
+ --mirror-chroot "https://mirrors.tuna.tsinghua.edu.cn/debian" \
+ --mirror-chroot-security "https://mirrors.tuna.tsinghua.edu.cn/debian-security"
\
+ --mirror-binary "https://mirrors.tuna.tsinghua.edu.cn/debian" \
+ --mirror-binary-security "https://mirrors.tuna.tsinghua.edu.cn/debian-security"
--apt-indices false \
```

如果其他网络原因不能下载包,有预编生成的包分享在<u>百度云网盘</u>,放在当前目录直接执行下一步操 作。

• (2) Building rk-debian rootfs

编译 64位的 Debian:

```
VERSION=debug ARCH=arm64 ./mk-rootfs-buster.sh
```

• (3) Creating the ext4 image(linaro-rootfs.img)

```
./mk-image.sh
```

此时会生成 linaro-rootfs.img。

7.6.6 Yocto 编译

进入工程目录根目录执行以下命令自动完成 Rootfs 的编译及打包:

```
./build.sh yocto
```

编译后在 yocto 目录 build/lastest 下生成 rootfs.img。

FAQ:

上面编译如果遇到如下问题情况:

Please use a locale setting which supports UTF-8 (such as LANG=en_US.UTF-8). Python can't change the filesystem locale after loading so we need a UTF-8 when Python starts or things won't work.

解决方法:

```
locale-gen en_US.UTF-8
export LANG=en_US.UTF-8 LANGUAGE=en_US.en LC_ALL=en_US.UTF-8
```

或者参考 <u>setup-locale-python3</u> 编译后生成的 image 在 yocto/build/lastest/rootfs.img, 默认用户名登录是 root。

Yocto 更多信息请参考 Rockchip Wiki。

8. Chapter-8 SDK固件升级

本章节主要介绍如何将构建完整的镜像文件(image)烧写并运行在硬件设备上的流程。 Rockchip 平台提供的几种镜像烧写工具介绍如下所示,可以选择合适的烧写方式进行烧写。烧写前,需 安装最新的 USB 驱动,详见 <u>Rockchip USB 驱动安装</u>。

工具	运行系统	描述
RKDevTool	Windows	瑞芯微开发工具,分立升级固件及整个 update 升级固件工具
FactoryTool	Windows	量产升级工具,支持 USB 一拖多烧录
Linux_Upgrade_Tool	Linux	Linux 下开发的工具,支持固件的升级

8.1 烧写模式介绍

Rockchip 平台硬件运行的几种模式如表所示,只有当设备处于 Maskrom,及 Loader 模式下,才能够烧写固件,或对板上固件进行更新操作。

模式	工具烧 录	描述
Maskrom	支持	Flash 在未烧录固件时,芯片会引导进入 Maskrom 模式,可以进行初次固件的烧写; 开发调试过程中若遇到 Loader 无法正常启动的情况,也可进入 Maskrom模式烧写固件。
Loader	支持	Loader 模式下,可以进行固件的烧写、升级。 可以通过工具单独烧写某一个分区镜像文件,方便调试。
Recovery	不支持	系统引导 recovery 启动,主要作用是升级、恢复出厂设置类操作。
Normal Boot	不支持	系统引导 rootfs 启动,加载 rootfs,大多数的开发都是在这个模式下调试的。

进入烧写模式方式以下几种方法:

- 未烧录过固件,上电,进入 Maskrom 模式。
- 烧录过固件,按住 recovery 按键上电或复位,系统将进入 Loader 固件烧写模式。
- 烧录过固件,按住 Maskrom 按键上电或复位,系统将进入 MaskRom 固件烧写模式。
- 烧录过固件,上电或复位后开发板正常进入系统后,瑞芯微开发工具上显示"发现一个 ADB设备"或 "发现一个 MSC 设备",然后点击工具上的按钮"切换",进入 Loader 模式。
- 烧录过固件,可在串口或 ADB 命令行模式下,输入 reboot loader 命令,进入 Loader 模式。

8.1.1 Windows 刷机说明

SDK 提供 Windows 烧写工具(工具版本需要 V2.84 或以上), 工具位于工程根目录:

```
tools/
|— windows/RKDevTool
```

如下图,编译生成相应的固件后,设备烧写需要进入 MASKROM 或 BootROM 烧写模式,连接好 USB 下载线后,按住按键"MASKROM"不放并按下复位键"RST"后松手,就能进入 MASKROM 模式,加载编译生成固件的相应路径后,点击"执行"进行烧写,也可以按 "recovery" 按键不放并按下复位键 "RST" 后松手进入 loader 模式进行烧写,下面是 MASKROM 模式的分区偏移及烧写文件。(注意: Windows PC 需要在管理员权限运行工具才可执行)

注: 烧写前, 需安装最新 USB 驱动, 驱动详见:

<SDK>/tools/windows/DriverAssitant_v5.12.zip

8.1.2 Linux 刷机说明

Linux 下的烧写工具位于 tools/linux 目录下(Linux_Upgrade_Tool 工具版本需要 V2.17或以上),请确认你的板子连接到 MASKROM/loader rockusb。比如编译生成的固件在 rockdev 目录下,升级命令如下:

```
sudo ./upgrade_tool ul rockdev/MiniLoaderAll.bin -noreset
sudo ./upgrade_tool di -p rockdev/parameter.txt
sudo ./upgrade_tool di -u rockdev/uboot.img
sudo ./upgrade_tool di -trust rockdev/trust.img ##新芯片已把trust,合并到uboot分区
sudo ./upgrade_tool di -misc rockdev/misc.img
sudo ./upgrade_tool di -b rockdev/boot.img
sudo ./upgrade_tool di -recovery rockdev/recovery.img
sudo ./upgrade_tool di -oem rockdev/oem.img
sudo ./upgrade_tool di -rootfs rocdev/rootfs.img
sudo ./upgrade_tool di -userdata rockdev/userdata.img
sudo ./upgrade_tool rd
```

或升级打包后的完整固件:

sudo ./upgrade_tool uf rockdev/update.img

或在根目录, 机器在 MASKROM 状态运行如下升级:

./rkflash.sh

8.1.3 系统分区说明

默认分区说明(下面是 RK3562 EVB 分区参考)

Number	Start (sector)	End (sector)	Size	Name
1	16384	24575	4M	uboot
2	24576	32767	4M	misc
3	32768	163839	64M	boot
4	163840	294911	32M	recovery
5	294912	360447	32M	bakcup
6	360448	12943359	6144M	rootfs
7	12943360	12943359	128M	oem
8	13205504	61120478	22.8G	userdata

• uboot 分区:供 uboot 编译出来的 uboot.img。

• misc 分区:供 misc.img,给 recovery 使用。

• boot 分区:供 kernel 编译出来的 boot.img。

• recovery 分区:供 recovery 编译出的 recovery.img。

• backup 分区: 预留, 暂时没有用。

• rootfs 分区:供 buildroot、debian 或 yocto 编出来的 rootfs.img。

• oem 分区:给厂家使用,存放厂家的 APP 或数据。挂载在 /oem 目录。

• userdata 分区:供 APP 临时生成文件或给最终用户使用,挂载在 /userdata 目录下。

9. Chapter-9 SDK开发

9.1 U-Boot 开发

本节简单介绍 U-Boot 基本概念和编译的注意事项,帮助客户了解 RK 平台 U-Boot 框架,具体 U-Boot 开发细节可参考 <SDK>/docs/cn/Common/U-Boot 目录下《Rockchip-Developer-Guide-UBoot-*.pdf》。

9.1.1 U-Boot 简介

v2017(next-dev) 是 RK 从 U-Boot 官方的 v2017.09 正式版本中切出来进行开发的版本,目前已经支持 RK 所有主流在售芯片。支持的功能主要有:

- 支持 RK Android 固件启动;
- 支持 Android AOSP 固件启动;
- 支持 Linux Distro 固件启动;
- 支持 Rockchip miniloader 和 SPL/TPL 两种 Pre-loader 引导;
- 支持 LVDS、EDP、MIPI、HDMI、CVBS、RGB 等显示设备;
- 支持 eMMC、Nand Flash、SPI Nand flash、SPI NOR flash、SD 卡、U 盘等存储设备启动;
- 支持 FAT、EXT2、EXT4 文件系统;
- 支持 GPT、RK parameter 分区表;
- 支持开机 LOGO、充电动画、低电管理、电源管理;
- 支持 I2C、PMIC、CHARGE、FUEL GUAGE、USB、GPIO、PWM、GMAC、eMMC、NAND、Interrupt 等;
- 支持 Vendor storage 保存用户的数据和配置;
- 支持 RockUSB 和 Google Fastboot 两种 USB gadget 烧写 eMMC;
- 支持 Mass storage、ethernet、HID 等 USB 设备;
- 支持通过硬件状态动态选择 kernel DTB;

9.1.2 版本

RK 的 U-Boot 一共有两个版本: v2014旧版本和v2017新版本,内部名称分别为rkdevelop和next-dev。用户有两个方式确认当前U-Boot是否为v2017版本。

方式1: 确认根目录Makefile的版本号是否为2017。

```
#
### Chapter-1 SPDX-License-Identifier: GPL-2.0+
#

VERSION = 2017
PATCHLEVEL = 09
SUBLEVEL =
EXTRAVERSION =
NAME =
......
```

方式2: 确认开机第一行正式打印是否为 U-Boot 2017.09。

```
U-Boot 2017.09-01818-g11818ff-dirty (Nov 14 2019 - 11:11:47 +0800) .....
```

项目开源: v2017已开源且定期更新到Github: https://github.com/rockchip-linux/u-boot

内核版本: v2017要求RK内核版本 >= 4.4

9.1.3 前期准备

下载rkbin

这是一个工具包仓库,用于存放RK不开源的bin、脚本、打包工具。U-Boot 编译时会从该仓库索引相关文件,打包生成loader、trust、uboot固件。rkbin和U-Boot工程必须保持同级目录关系。

仓库下载:请参考附录章节。

• 下载GCC

GCC编译器使用gcc-linaro-6.3.1,放置于prebuilts目录之内。prebuilts和U-Boot保持同级目录关系。如下:

```
// 32位:
prebuilts/gcc/linux-x86/arm/gcc-linaro-6.3.1-2017.05-x86_64_arm-linux-
gnueabihf
// 64位:
prebuilts/gcc/linux-x86/aarch64/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-
linux-gnu/
```

GCC 下载:请参考附录章节

• 选择defconfig

各平台的defconfig支持情况(以SDK发布为准):

"[芯片]_defconfig" 或 "[芯片].config" 通常都是全功能版本,其余为特定feature版本。

芯片	defconfig	支持kernel dtb	说明
RV1108	evb-rv1108_defconfig	N	通用版本
RK1808	rk1808_defconfig	Y	通用版本
RK1806	rk1806_defconfig	Y	通用版本
RK3036	rk3036_defconfig	Y	通用版本
RK3128x	rk3128x_defconfig	Y	通用版本
RK3126	rk3126_defconfig	Y	通用版本
RK322x	rk322x_defconfig	Y	通用版本
RK3288	rk3288_defconfig	Y	通用版本
RK3368	rk3368_defconfig	Y	通用版本
RK3328	rk3328_defconfig	Y	通用版本
RK3399	rk3399_defconfig	Y	通用版本
RK3399Pro	rk3399pro_defconfig	Y	通用版本
RK3399Pro-npu	rknpu-lion_defconfig	Y	通用版本
RK3308	rk3308_defconfig rk3308-aarch32_defconfig	Y	通用版本 支持aarch32模式
PX30	px30_defconfig	Y	通用版本
RK3326	rk3326_defconfig rk3326-aarch32_defconfig	Y	通用版本 支持aarch32模式
RV1126	rv1126_defconfig rv1126-ab.config rv1126-spi-nor-tiny_defconfig rv1126-ramboot.config rv1126-usbplug.config rv1126-dfu.config rv1126-ipc.config	Y	通用版本 通用版本+支持A/B Spi Nor 小容量 无存储器件(内存启动) usbplug功能 支持dfu ipc sdk上使用
RV1126	rv1126-emmc-tb.config rv1126-lp3-emmc-tb.config rv1126-spi-nor-tb.config	Y	eMMC+DDR3 快速开机 eMMC+LP3 快速开机 Spi Nor+DDR3 快速开机
RK3568	rk3568_defconfig rk3568-dfu.config rk3568-nand.config rk3568-spl-spi-nand_defconfig rk3568-aarch32.config rk3568-usbplug.config	Y	通用版本 支持dfu 支持MLC/TLC/ eMMC SPI-nand专用SPL 支持aarch32模式 支持usbplug模式
RK3566	rk3566.config rk3566-eink.config	Y	通用版本 电子书版本

芯片	defconfig	支持kernel dtb	说明
RK3588	rk3588_defconfig rk3588-ramboot.config rk3588-sata.config rk3588-aarch32.config rk3588-ipc.config	Y	通用版本 无存储器件(内存启动) 双存储支持sata启动 支持aarch32模式 ipc sdk上使用
RV1106/RV1103	rv1106_defconfig rv1106-emmc-tb_defconfig rv1106-spi-nor-tb_defconfig rv1106-spi-nor_defconfig rv1106-display.config rv1106-dfu.config rv1106-ipc.config	Y	通用版本 eMMC快速开机 Spi Nor快速开机 Spi Nor 小容量 支持开机logo 支持dfu ipc sdk上使用
RK3528	rk3528_defconfig	Y	通用版本
RK3562	rk3562_defconfig	Y	通用版本

注意:如果表格和SDK发布的defconfig不同,请以SDK为准。

9.1.4 启动流程

RK平台的U-Boot 启动流程如下, 仅列出一些重要步骤:

```
start.s
   // 汇编环境
   => IRQ/FIQ/lowlevel/vbar/errata/cp15/gic // ARM架构相关的lowlevel初始化
   => _main
       => stack
                                          // 准备好C环境需要的栈
       // 【第一阶段】C环境初始化,发起一系列的函数调用
       => board_init_f: init_sequence_f[]
          initf_malloc
          arch_cpu_init
                                          // 【SoC的lowlevel初始化】
                                          // 串口初始化
          serial_init
                                          // 【获取ddr容量信息】
          dram_init
                                          // 从ddr末尾开始往低地址reserve内存
          reserve_mmu
          reserve_video
          reserve_uboot
          reserve_malloc
          reserve_global_data
          reserve_fdt
          reserve_stacks
          dram_init_banksize
          sysmem_init
                                          // 确定U-Boot自身要reloc的地址
          setup_reloc
       // 汇编环境
                                          // 汇编实现U-Boot代码的relocation
       => relocate_code
       // 【第二阶段】C环境初始化,发起一系列的函数调用
       => board_init_r: init_sequence_r[]
                                          // 使能MMU和I/Dcache
          initr_caches
          initr_malloc
          bidram_initr
```

```
sysmem_initr
initr_of_live
                              // 初始化of_live
                              // 初始化dm框架
initr dm
board_init
                              // 【平台初始化,最核心部分】
                              // 串口iomux、clk配置
   board_debug_uart_init
   init_kernel_dtb
                              // 【切到kernel dtb】!
   clks_probe
                              // 初始化系统频率
                              // 初始化系统电源
   regulators_enable_boot_on
   io_domain_init
                              // io-domain初始化
   set_armclk_rate
                              // __weak, ARM提频(平台有需求才实现)
   dvfs_init
                              // 宽温芯片的调频调压
                              // __weak, 由各个具体平台进行实现
   rk_board_init
console_init_r
board_late_init
                              // 【平台late初始化】
                              // 设置mac地址
   rockchip_set_ethaddr
                              // 设置serialno
   rockchip_set_serialno
   setup_boot_mode
                              // 解析"reboot xxx"命令、
                              // 识别按键和loader烧写模式、recovery
   charge_display
                              // U-Boot充电
   rockchip_show_logo
                              // 显示开机logo
   soc_clk_dump
                              // 打印clk tree
   rk_board_late_init
                              // __weak, 由各个具体平台进行实现
run_main_loop
                              // 【进入命令行模式,或执行启动命令】
```

9.1.5 快捷键

RK平台提供串口组合键触发一些事件用于调试、烧写(如果无法触发,请多尝试几次;启用secure-boot时无效)。**开机时长按**:

ctrl+c: 进入 U-Boot 命令行模式;
ctrl+d: 进入 loader 烧写模式;
ctrl+b: 进入 maskrom 烧写模式;
ctrl+f: 进入 fastboot 模式;
ctrl+m: 打印 bidram/system 信息;
ctrl+i: 使能内核 initcall_debug;
ctrl+p: 打印 cmdline 信息;
ctrl+s: "Starting kernel..."之后进入 U-Boot 命令行;

9.2 Kernel 开发

本节简单介绍内核一些常见配置的修改,主要是 dts 的配置,帮助客户更快更方便的进行一些简单的修改。Kernel 版本以 4.4 作为基准,做相应的介绍。

9.2.1 DTS 介绍

9.2.1.1 DTS 概述

早期版本的 Linux Kernel 是直接在板级配置文件配置板子相关的信息,如 IOMUX,默认拉高/低的 GPIO,每个 I2C/SPI 总线下的 client 设备信息。为了摒弃这种'hard code' 的方式,Linux引入设备树(Device Tree)的概念来描述不同的硬件结构。

Device Tree 数据可读性较高,遵循 DTS 规范,通常被描述在.dtsi 和.dts 源文件。在内核编译的过程中,被编译为.dtb 的二进制文件。在开机启动阶段,dtb 会被 bootloader(如 U-Boot)加载到 RAM 的某个地址空间,并且将该地址作为参数传递给 Kernel space。内核解析整个 dtb 文件,提炼每个设备信息以初始化。

本文旨在介绍如何新增一个的板子 dts 配置以及一些常见的 dts 语法说明,关于更详细 dts 的语法介绍不在本文范围内,如有兴趣,请参考: <u>devicetree-specifications</u>和<u>devicetree-bindings</u>

9.2.1.2 新增一个产品 DTS

• 创建 dts 文件

Linux Kernel 目前支持多平台使用 dts, RK 平台的 dts 文件存放于:

ARM: arch/arm/boot/dts/
ARM64: arch/arm64/boot/dts/rockchip

一般 dts 文件的命名规则为"soc-board-name.dts",如 rk3399-evb-ind-lpddr4-linux.dts。soc 指的是芯片型号,board_name 一般是根据板子丝印来命名。如果你的板子是一体板,则只需要一个 dts 文件来描述即可。

如果硬件设计上是核心板和底板的结构,或者产品有多个产品形态,可以把公用的硬件描述放在 dtsi 文件, 而 dts 文件则描述不同的硬件模块, 并且通过 include "xxx.dtsi"将公用的硬件描述, 包含进来。

```
├──rk3399-evb-ind-lpddr4-linux.dts
| ├── rk3399-evb-ind.dtsi
| └── rk3399-linux.dtsi
```

• 修改 dts 所在目录的 Makefile

```
--- a/arch/arm64/boot/dts/rockchip/Makefile
+++ b/arch/arm64/boot/dts/rockchip/Makefile
@@ -50,6 +50,7 @@ dtb-$(CONFIG_ARCH_ROCKCHIP) += rk3368-tablet.dtb
dtb-$(CONFIG_ARCH_ROCKCHIP) += rk3399-evb.dtb
dtb-$(CONFIG_ARCH_ROCKCHIP) += rk3399-evb-ind-lpddr4-android.dtb
dtb-$(CONFIG_ARCH_ROCKCHIP) += rk3399-evb-ind-lpddr4-android-avb.dtb
+dtb-$(CONFIG_ARCH_ROCKCHIP) += rk3399-evb-ind-lpddr4-linux.dtb
```

编译 Kenrel 的时候可以直接 make dts-name.img(如 rk3399-evb-ind-lpddr4-linux.img),即可生成对应的boot.img(包含 dtb 数据)。

• dts 语法的几个说明

dts 语法可以像 c/c++一样,通过#include xxx.dtsi 来包含其他公用的 dts 数据。dts 文件 将继承包含的 dtsi 文件的所有设备节点的属性和值。如 property 在多个 dts/dtsi 文件被定义,它的值最终为 dts 的定义。所有和芯片相关的控制器节点都会被定义在 soc.dtsi,如需使能该设备功能,需要在 dts 文件中设置其 status 为"okay"。关闭该设备,需要在 dts 文件中设置其 status 为"disabled"。

```
/dts-v1/;
#include "rk3399-evb-ind.dtsi"
#include "rk3399-linux.dtsi"
...
```

```
&i2s2 {
          #sound-dai-cells = <0>;
          status = "okay";
};

&hdmi_sound {
          status = "okay";
};
```

9.2.2 内核模块开发文档

\docs\Common\目录下分功能模块发布了对应的开发文档,本节主要对这些开发文档进行一个归纳索引,大家结合实际开发遇到的问题,参照以下表格阅读学习对应的开发指南,可在docs/Common下获取,并会不断完善更新。

模块功能	子目录	对应文档
音频	Audio	Rockchip_Developer_Guide_Audio_CN.pdf
显示	DISPLAY	Rockchip_Developer_Guide_HDMI-CEC_CN.pdf Rockchip_Developer_Guide_HDMI_CN.pdf Rockchip_Developer_Guide_HDMI-PHY-PLL_Config_CN.pdf Rockchip_DRM_Display_Driver_Development_Guide_V1.0.pdf Rockchip_DRM_Panel_Porting_Guide_V1.6_20190228.pdf Rockchip_DRM_RK628_Porting_Guide_CN.pdf
USB	USB	Rockchip_Developer_Guide_Linux_USB_Initialization_Log_Analysis_CN.pdf Rockchip_Developer_Guide_Linux_USB_Performance_Analysis_CN.pdf Rockchip_Developer_Guide_USB2_Compliance_Test_CN.pdf Rockchip_Developer_Guide_Linux_USB_PHY_CN.pdf Rockchip_Developer_Guide_USB_CN.pdf Rockchip_Developer_Guide_USB_EN.pdf Rockchip_Developer_Guide_USB_FFS_Test_Demo_CN.pdf Rockchip_Developer_Guide_USB_Gadget_UAC_CN.pdf Rockchip_Developer_Guide_USB_SQ_Test_CN.pdf Rockchip_RK3399_Developer_Guide_USB_DTS_CN.pdf Rockchip_RK356x_Developer_Guide_USB_CN.pdf Rockchip_Trouble_Shooting_Linux4.19_USB_Gadget_UVC_CN.pdf
I2C	I2C	Rockchip_Developer_Guide_I2C_CN.pdf
IOMMU	IOMMU	Rockchip_Developer_Guide_Linux_IOMMU_CN.pdf
MMC	MMC	Rockchip_Developer_Guide_SD_Boot_CN.pdf Rockchip_Developer_Guide_SDMMC_SDIO_eMMC_CN.pdf
PCIe	PCIe	Rockchip_Developer_Guide_Linux4.4_PCIe_CN.pdf Rockchip_RK356X_Developer_Guide_PCIe_CN.pdf
GPIO	Pin-Ctrl	Rockchip-Developer-Guide-Linux-Pin-Ctrl-CN.pdf Rockchip_Problem_Shooting_Linux_GPIO_CN.pdf
电源、功耗	Power	Rockchip_Developer_Guide_Power_Analysis_CN.pdf
SARADC	SARADC	Rockchip_Developer_Guide_Linux_SARADC_CN.pdf
温控	THERMAL	Rockchip_Developer_Guide_Thermal_CN.pdf
TRUST	TRUST	Rockchip_Developer_Guide_Trust_CN.pdf Rockchip_RK3308_Developer_Guide_System_Suspend_CN.pdf Rockchip_RK3399_Developer_Guide_System_Suspend_CN.pdf
U-Boot	U-Boot	Rockchip_Developer_Guide_Linux_AB_System_CN.pdf Rockchip_Developer_Guide_UBoot_MMC_Device_Analysis_CN.pdf Rockchip_Developer_Guide_UBoot_MTD_Block_Device_Design_CN.pdf Rockchip_Developer_Guide_UBoot_Nextdev_CN.pdf Rockchip_Introduction_UBoot_rkdevelop_vs_nextdev_CN.pdf
喂狗	WATCHDOG	Rockchip_Developer_Guide_Linux_WDT_CN.pdf
Clock时钟配置	CRU	Rockchip-Clock-Developer-Guide-RTOS-CN.pdf Rockchip_RK3399_Developer_Guide_Linux4.4_Clock_CN.pdf
JTAG GDB等常 用调试	DEBUG	Rockchip_Developer_Guide_DS5_CN.pdf Rockchip_Developer_Guide_GDB_Over_ADB_CN.pdf Rockchip_Developer_Guide_OpenOCD_CN.pdf Rockchip_User_Guide_J-Link_CN.pdf

模块功能	子目录	对应文档
CPU/GPU等频率 电压调节	DVFS	Rockchip_Developer_Guide_CPUFreq_CN.pdf Rockchip_Developer_Guide_Devfreq_CN.pdf
以太网配置	GMAC	Rockchip_Developer_Guide_Linux_GMAC_RGMII_Delayline_CN.pdf Rockchip_Developer_Guide_Linux_GMAC_CN.pdf Rockchip_Developer_Guide_Linux_GMAC_Mode_Configuration_CN.pdf Rockchip_Developer_Guide_Linux_MAC_TO_MAC_CN.pdf
GPIO电源域	IO-DOMAIN	Rockchip_Developer_Guide_Linux_IO_DOMAIN_CN.pdf
PMIC电量计、 DCDC	PMIC	Rockchip_Developer_Guide_Power_Discrete_DCDC_EN.pdf Rockchip_RK805_Developer_Guide_CN.pdf Rockchip_RK808_Developer_Guide_CN.pdf Rockchip_RK809_Developer_Guide_CN.pdf Rockchip_RK816_Developer_Guide_CN.pdf Rockchip_RK817_Developer_Guide_CN.pdf Rockchip_RK818_Developer_Guide_CN.pdf
PWM	PWM	Rockchip_Developer_Guide_Linux_PWM_CN.pdf
SPI	SPI	Rockchip_Developer_Guide_Linux_SPI_CN.pdf
串口通信	UART	Rockchip_Developer_Guide_UART_CN.pdf

9.2.3 **GPIO**

比如 RK3399/RK3399Pro 提供 5 组 GPIO(GPIO0~GPIO4)共 122 个,所有的 GPIO 都可以用作中断,GPIO0/GPIO1 可以作为系统唤醒脚,所有 GPIO 都可以软件配置为上拉或者下拉,所有 GPIO 默 认为输入,GPIO 的驱动能力软件可以配置。 关于原理图上的 GPIO 跟 dts 里面的 GPIO 的对应关系,例如GPIO4C0,那么对应的 dts 里面应该是"gpio4 16"。因为 GPIO4A 有 8 个 pin,GPIO4B 也有 8 个 pin,以此计算可得 c0 口就是 16,c1 口就是 17,以此类推;GPIO 的 使用请参考

<SDK>/docs/cn/Common/PinCtrl/Rockchip_Developer_Guide_Linux_Pinctrl_CN.pdf

9.2.4 CPU、GPU、DDR 频率修改

DVFS(Dynamic Voltage and Frequency Scaling)动态电压频率调节,是一种实时的电压和频率调节技术。目前 4.4 内核中支持 DVFS 的模块有 CPU、GPU、DDR。CPUFreq 是内核开发者定义的一套支持动态调整 CPU 频率和电压的框架模型。它能有效的降低 CPU 的功耗,同时兼顾 CPU 的性能。CPUFreq 通过不同的变频策略,选择一个合适的频率供CPU 使用,目前的内核版本提供了以下几种策略:

- interactive: 根据 CPU 负载动态调频调压;
- conservative:保守策略,逐级调整频率和电压;
- ondemand:根据 CPU 负载动态调频调压,比 interactive 策略反应慢;
- userspace: 用户自己设置电压和频率,系统不会自动调整;
- powersave: 功耗优先, 始终将频率设置在最低值;
- performance: 性能优先,始终将频率设置为最高值;

详细的模块功能及配置,请参考 <SDK>/docs/cn/Common/DVFS/ 目录下文档。ARM/GPU/DDR 分别有对应的调试接口,可以通过 ADB 命令进行操作,对应的接口目录如下:

CPU小核: /sys/devices/system/cpu/cpu0/cpufreq/ CPU大核: /sys/devices/system/cpu/cpu4/cpufreq/

GPU: /sys/class/devfreq/ff9a0000.gpu/

DDR: /sys/class/devfreq/dmc/

这些目录下有如下类似节点:

available_frequencies:显示支持的频率available governors:显示支持的变频策略

• cur_freq: 显示当前频率

governor: 显示当前的变频策略
 max_freq: 显示当前最高能跑的频率
 min_freq: 显示当前最低能跑的频率

以 RK3399/RK3399pro GPU 为例进行定频操作,流程如下: 查看支持哪些频率:

```
cat /sys/class/devfreq/ff9a0000.gpu/available_frequencies
```

切换变频策略:

```
echo userspace > /sys/class/devfreq/ff9a0000.gpu/governor
```

定频:

```
echo 400000000 > /sys/class/devfreq/ff9a0000.gpu/userspace/set_freq
cat /sys/class/devfreq/ff9a0000.gpu/cur_freq
```

9.2.5 温控配置

RK3399/RK3399Pro 芯片的 ARM 核和 GPU 核分别带有温控传感器,可以实时监控 CPU 和 GPU 的温度,并通过算法来控制 CPU 和 GPU 的频率从而控制 CPU 和 GPU 的温度。每个产品的硬件设计和模具不同对应的散热情况也不同,可以通过 dts 中的如下配置进行适当的调整温控参数来适配产品:

设置温控开启的温度:

```
&threshold {
   temperature = ; /* millicelsius */
};
```

设置温控上限温度:

```
&target {
   temperature = ; /* millicelsius */
};
```

设置软件关机温度:

```
&soc_crit {
   temperature = ; /* millicelsius */
};
```

配置硬件关机温度:

```
&tsadc {
    rockchip, hw-tshut-mode = ; /* tshut mode 0:CRU 1:GPIO */
    rockchip, hw-tshut-polarity = ; /* tshut polarity 0:LOW 1:HIGH */
    rockchip, hw-tshut-temp = ;
    status = "okay";
};
```

温控的具体说明可以参考 <SDK>/docs/cn/Common/THERMAL 目录下相关文档。

9.2.6 LPDDR4 配置

DDR的配置说明可参考 <SDK>/docs/cn/Common/DDR 目录下相关文档。

RK3399Pro 使用 LPDDR4 的 dts 配置请参考文件: arch/arm64/boot/dts/rockchip/rk3399pro-evb-lp4-v11-avb.dts,将该文件中的下述 3 个节点拷贝到对应的产品 dts 中即可:

```
&dfi {
   status = "okay";
};
&dmc {
   status = "okay";
    center-supply = <&vdd_center>;//这里需要客户根据实际硬件电路来配置
    upthreshold = <40>;
    downdifferential = <20>;
    system-status-freq = <</pre>
        /*system status freq(KHz)*/
        SYS_STATUS_NORMAL 856000
        SYS_STATUS_REBOOT 416000
        SYS_STATUS_SUSPEND 416000
        SYS_STATUS_VIDEO_1080P 416000
        SYS_STATUS_VIDEO_4K 856000
        SYS_STATUS_VIDEO_4K_10B 856000
        SYS_STATUS_PERFORMANCE 856000
        SYS_STATUS_BOOST 856000
        SYS_STATUS_DUALVIEW 856000
        SYS_STATUS_ISP 856000
    >;
    vop-pn-msch-readlatency = <</pre>
        /* plane_number readlatency */
        0 0
        4 0x20
    >;
    vop-bw-dmc-freq = <</pre>
        /* min_bw(MB/s) max_bw(MB/s) freq(KHz) */
        763 1893 416000
        3013 99999 856000 \
    >;
    auto-min-freq = <0>;
```

```
};
&dmc_opp_table {
    compatible = "operating-points-v2";
    opp-200000000 {
        opp-hz = /bits/64;
        opp-microvolt = <900000>;
        status = "disabled";
    };
    opp-300000000 {
        opp-hz = /bits/64;
        opp-microvolt = <900000>;
        status = "disabled";
    };
    opp-400000000 {
        opp-hz = /bits/64;
        opp-microvolt = <900000>;
        status = "disabled";
    };
    opp-416000000 {
        opp-hz = /bits/64;
        opp\text{-microvolt} = <900000>;
    };
    opp-528000000 {
        opp-hz = /bits/64;
        opp-microvolt = <900000>;
        status = "disabled";
    };
    opp-6000000000 {
        opp-hz = /bits/64;
        opp-microvolt = <900000>;
        status = "disabled";
    };
    opp-800000000 {
        opp-hz = /bits/64;
        opp-microvolt = <900000>;
        status = "disabled";
    };
    opp-856000000 {
        opp-hz = /bits/64;
        opp-microvolt = <900000>;
    };
    opp-928000000 {
        opp-hz = /bits/64;
        opp-microvolt = <900000>;
        status = "disabled";
    };
    opp-1056000000 {
        opp-hz = /bits/64;
        opp-microvolt = <900000>;
        status = "disabled";
    };
};
```

LPDDR4 我们只支持 416M 和 856M 两档频率,其他频率已经被 disabled,所以如果客户要使用同一个 dts 来支持 LPDDR4 和其他类型的 DDR,则其他类型的 DDR 也将只有 416M 和 856M 的频率,此时请务必注意配置默认开启 DDR 变频功能。LPDDR4 的变频功能对声卡的数量有所限制,原因如下:

- 如果 LPDDR4 需要变频功能,则需要将音频 buffer 移到 sram 中,RK3399Pro 的 sram 空间有限,可用空间 128k。目前预分配给单个音频流的空间为 32k,所以系统支持的上限声卡数最多只能2个(32k22,每个声卡包含播放和录制),更多的声卡无法创建成功,除非减小单个流的预分配大小,但这也相对的减小了底下支持的最大buffer大小,如果用户层使用声卡想设置更大buffer时将受限。需注意USB 声卡由于未使用dma,所以不在限制范围内。也就是说,可以有2个声卡(包含hdmi、spdif、i2s 等接口的声卡)加上多个 usb 声卡。
- 如果需要 LPDDR4 变频,则需要将音频 buffer 移到 sram 中,此时系统最多只能支持 2 个声卡。

请按照如下方法进行配置:

dts 中添加 sram 节点

```
/* first 64k(0xff8c0000~0xff8d0000) for ddr and suspend */
iram: sram@ff8d0000 {
   compatible = "mmio-sram";
   reg = ; /* 128k */
};
```

相对应的产品 dts 中引用 iram 节点。

```
&dmac_bus {
   iram = <&iram>;
   rockchip,force-iram;
};
```

• 如果不需要 LPDDR4 的变频, 由于 LPDDR4 变频有 2 个声卡的限制,因此如果需要 3 个以上声卡,需要关闭 LPDDR4 的变频,即在对应产品的 dts 中将 dmc 节点 disable,如下所示:

```
&dmc {
    status = "disabled";
    ... ...
};
```

另外, 需要确保在内核中删除掉 如下2个配置:

删除 dts 中的如下配置:

```
/* first 64k(0xff8c0000~0xff8d0000) for ddr and suspend */
iram: sram@ff8d0000 {
    compatible = "mmio-sram";
    reg = ; /* 128k */
};

&dmac_bus {
    iram = <&iram>;
    rockchip,force-iram;
};
```

9.2.7 SD卡配置

温控的具体说明可以参考 <SDK>/docs/cn/Common/MMC 目录下相关文档。

有些芯片比如 RK3326/RK3399PRO 的 UART的debug 与 sdcard 复用,默认配置是打开debug,如果要使用 sdcard 需要如下配置:

```
&fiq_debugger {
    status = "disabled";
    pinctrl-0 = <&uart2a_xfer>;
};
&sdmmc {
    ...
    sd-uhs-sdr104;
    status = "okay";
};
```

9.3 Recovery 开发

9.3.1 简介

Recovery机制的开发,类似Android的Recovery功能开发。主要作用是擦除用户数据和系统升级。

Linux中Recovery 模式是在设备上多一个Recovery分区,该分区由kernel+resource+ramdisk 组成,主要用于升级操作。u-boot会根据misc分区存放的字段来判断将要引导的系统是Normal 系统还是Recovery 系统。由于系统的独立性,所以Recovery模式能保证升级的完整性,即升级过程被中断,如异常掉电,升级仍然能继续执行。

9.3.2 调试

常用调试手段是开启debug

buildroot/output/rockchip_xxx_recovery/target 目录下创建一个隐藏文件.rkdebug,

```
touch .rkdebug
```

Recovery 模式中升级的 log 在串口中打印出来。另外一种是通过查看 userdata/recovery/Log 文件 更多Recovery开发资料,参考文档

<SDK>/docs/cn/Linux/Recovery/Rockchip_Developer_Guide_Linux_Recovery_CN.pdf

9.4 Buildroot 开发

Rockchip已经配置好坏境变量,BSP配置和各模块开发,方便客户开发和定制。

9.4.1 坏境变量的设定

```
source envsetup.sh (config_name)
```

config_name 可以source ./envsetup.sh列出来,选择具体平台编译。

9.4.2 编译模块和系统

选好编译平台,接下来就可以编译每一个package,它主要是config、build、install三部分组成

```
make <package>-reconfigure
make <package>-rebuild
make <package>-reinstall
```

清理包命令如下:

```
make <package>-dirclean
```

编译Buildroot系统,直接make即可

```
make
```

9.4.3 开发相关模块

相关package的开发,可以参考《SDK>/buildroot/package/*,其中package/rockchip是Rockchip开发的相关package.

9.4.4 定制相关模块

参考/buildroot/configs/rockchip* 配置开关,各模块可自行定制开发。

```
buildroot$ tree -L 2 configs/rockchip/
├─ base
    - base.config
    ├─ common.config
    ├─ kernel.config
    — recovery.config

    tiny.config

  benchmark.config
  chips
    ├─ rk3036.config
   ├─ rk3036_arm.config
    - rk312x.config
    ├── rk312x_arm.config
    ├─ rk3288.config
   ├─ rk3288_arm.config
    ├─ rk3308.config
     rk3308_aarch64.config
```

```
rk3308_arm.config
     rk3326.config
   ├─ rk3326 aarch64.config
   ├─ rk3326_arm.config
   ├─ rk3399.config
   ├─ rk3399_aarch64.config
  ├─ rk3399_arm.config
  ├── rk3399pro.config
   rk3399pro_aarch64.config
   rk3399pro_arm.config
   ├─ rk3399pro_npu.config
   - rk3399pro_npu_aarch64.config
   ├── rk3399pro_npu_arm.config
   rk3528.config
   - rk3528_aarch64.config
   ├─ rk3562.config
   ├─ rk3562_aarch64.config
   ├─ rk3562_arm.config
   ├─ rk3566_rk3568.config
   — rk3566_rk3568_aarch64.config
   ├─ rk3566_rk3568_arm.config
   ├─ rk3588.config
   - rk3588_aarch64.config
   └─ rk3588_arm.config
 — chromium.config
 — debug.config
├─ electric.config
├─ font.config
 — fs
 ├─ e2fs.config
 ├─ exfat.config
  ├─ ntfs.config
   — ubifs.config
   └─ vfat.config
 gdb.config
  └─ gpu.config
├─ libcamera.config
├─ locale
   — chinese.config
  └─ locale.config
 — multimedia
 ├─ audio.config
  — camera.config
   ├─ gst
   └─ mpp.config
 npu2.config
powermanager.config
├─ qt
 ├─ app.config
  ├─ qt5.config
   ├─ qt5webengine.config
   └─ qt6.config
— rknn_demo.conf
├─ tee_aarch64_v2.config
├─ test.config
├─ weston.config
├─ wifibt
```

```
| ├── bt.config
| ├── network.config
| └── wireless.config
├── x11.config
└── yx.config...
```

9.4.5 桌面应用

Buildroot默认支持 Weston 桌面环境以及一些 Demo。如下图:

这些 Weston 应用提供了一些基础功能,如Termial,Launchers配置,Chromium浏览器,摄像头预览,多路视频,GPU,鼠标等demo。如需更多Demo可以通过/etc/xdg/weston/weston.ini.d/02-desktop.ini 配置添加即可。

注意: 许多第三方UI框架需要商业授权,否则可能存在侵权风险。如果需要在Rockchip平台上启用Buildroot QT/Enlightenment/Minigui等UI框架,由于Rockchip官方不提供支持和维护,因此需要获取相应的第三方授权和支持。

9.4.6 用户和密码

用户: root 密码: rockchip

9.4.7 Weston 开发

Weston是Wayland开源显示协议的官方参考实现,Rockchip Buildroot SDK的显示服务默认使用Weston 10.0.0 drm后端。

Buildroot SDK中Weston的配置方式有以下几种:

a、启动参数

即启动Weston时命令所带参数,如weston --tty=2,位于/etc/init.d/S49weston,对应SDK代码中位置为:buildroot/package/weston/S49weston

b、weston.ini配置文件

位于/etc/xdg/weston/weston.ini及/etc/xdg/weston/weston.ini.d/下的.ini文件,对应SDK代码中位置如:buildroot/board/rockchip/common/base/etc/xdg/weston/weston.ini

参考: https://fossies.org/linux/weston/man/weston.ini.man

c、特殊环境变量

此类环境变量一般设置在/etc/profile.d/weston.sh,对应SDK代码中位置为:buildroot/package/weston/weston.sh.

d、动态配置文件

对于drm后端显示功能,Buildroot SDK中的Weston提供一些动态配置支持,默认路径为/tmp/.weston_drm.conf,可以通过环境变量WESTON_DRM_CONFIG指定。

e, udev rules

Weston中输入设备的部分配置需要通过udev rules。

具体可参考Weston开发文档

<SDK>/docs/cn/Linux/Graphics/Rockchip_Developer_Guide_Buildroot_Weston_CN.pdf

9.4.8 中文显示的支持

weston如下配置:

\$ cat /etc/xdg/weston/weston.ini
[terminal]
font=Source Han Sans CN Medium
font-size=14
term=xterm-256color

把buildroot的configs/rockchip/locale/chinese.config导入或者开启以下配置:

BR2_TOOLCHAIN_GLIBC_GCONV_LIBS_COPY=y
BR2_PACKAGE_BUSYBOX_UNICODE=y
Chapter-9 BR2_ENABLE_LOCALE_PURGE is not set
BR2_GENERATE_LOCALE="zh_CN.UTF-8"

buildroot中环境变量得设定:

root@rk3588:/# cat /etc/profile.d/lang.sh
export LANG=zh_CN.utf8

buildroot中相关提交如下:

```
buildroot$ git log --oneline
c476944fee configs: locale.config: Disable BR2_ENABLE_LOCALE_PURGE
f9654d67c8 localedef: Sync with 2018 SDK
2cbb75a54c coreutils: Support bypassing Unicode when printing
15340338dc busybox: Support bypassing Unicode when printing
5e9b8ba00c configs: rockchip: Add locale.config
863eed048e busybox: Support enabling unicode

device/rockchip$ git log --oneline
5c42211 post-rootfs.sh: Support setting LANG environment
```

9.5 Debian 开发

Rockchip提供了对Debian 10/11的支持,基于X11的显示架构。系统基于Linaro版本。添加一些图形和视频加速的支持。它包括libmali、xserver、gstreamer rockchip等package,这些packages通过docker搭建编译相关deb包,存放在/debian/packages/*。

Docker搭建编译deb package参考文档

<SDK>/docs/cn/Linux/ApplicationNote/Rockchip_Developer_Guide_Debian_Docker_CN.pdf

Debian开发文档参考

<SDK>/docs/cn/Linux/ApplicationNote/Rockchip_Developer_Guide_Debian_CN.pdf

9.6 Yocto 开发

更多资料参考: http://opensource.rock-chips.com/wiki Yocto

9.7 多媒体开发

通过gstreamer/rockit来在rockchip平台上做multimedia的开发

```
vpu_service --> mpp --> gstreamer/rockit --> app
vpu_service: 驱动
mpp: rockchip平台的视频编解码中间件,相关说明参考mpp文档
gstreamer/rockit: 对接app的组件
```

目前rockchip linux通用SDK提供的完整solution是基于gstreamer的,使用gstreamer的好处就是可以比较方便的基于pipeline的方式完整播放器,编码器这些应用。如需基于rockit定制开发可参考rockit的相关发布文档。

具体资料参考:

9.8 Grahpics 开发

Rockchip Linux平台的Graphics,是应用DRM和DMA-BUF的ARM Linux平台。优势是,通用的架构,在基于此架构进行客制化开发较容易,可以利用很多现有组件,现有很多基础开源项目的开发,都开始基于Rockchip平

台来作为ARM端的适配平台。但缺点是,很多人不是很理解这些内容,实际应用起来需要一个学习过程。更多资料可以参考Rockchip wiki和下面文档。

```
<SDK>/docs/cn/Linux/Graphics/

— Rockchip_Developer_Guide_Buildroot_Weston_CN.pdf

— Rockchip_Developer_Guide_Linux_Graphics_CN.pdf
```

9.9 应用开发

SDK常用应用有Weston、EFL、ROS等应用开发,参考/docs/cn/Linux/Graphics/ApplicationNote目录下文档

9.10 安全机制开发

参考 <SDK>/docs/xn/Linux/Security 目录下文档

9.11 Secureboot安全启动

默认Secureboot安全启动没有开启,若需验证,操作步骤如下:

• BoardConfig增加安全相关配置

```
diff --git a/rk356x/BoardConfig-rk3568-evb1-ddr4-v10.mk b/rk356x/BoardConfig-
rk3568-evb1-ddr4-v10.mk
index 6282827..6d050d7 100644
--- a/rk356x/BoardConfig-rk3568-evb1-ddr4-v10.mk
+++ b/rk356x/BoardConfig-rk3568-evb1-ddr4-v10.mk
@@ -60,3 +60,6 @@ export RK_MISC=wipe_all-misc.img
export RK_DISTRO_MODULE=
# Define pre-build script for this board
export RK_BOARD_PRE_BUILD_SCRIPT=app-build.sh

+REALDIR=`dirname $(readlink -f ${BASH_SOURCE[0]})`
+source ${REALDIR}/BoardConfig-security-base.mk
```

- 上面步骤会开启安全加密,如果加密可以,那么dmv校验也行(加密过程使用到了dmv校验)
- 直接 ./build.sh 按编译报错说明, 逐步操作

```
______
ERROR: No root passwd(u-boot/keys/root_passwd) found in u-boot
      echo your root key for sudo to u-boot/keys/root_passwd
把你PC root的密码写入到 `u-boot/keys/root_passwd`
$ ./build.sh
Security: No found config CONFIG_BLK_DEV_DM in
kernel/arch/arm64/configs/rockchip_linux_defconfig
make sure your config include this list
   CONFIG_BLK_DEV_DM
   CONFIG_DM_CRYPT
   CONFIG_BLK_DEV_CRYPTOLOOP
   CONFIG_DM_VERITY
   CONFIG_TEE
   CONFIG_OPTEE
内核添加相关配置
kernel$ git diff
diff --git a/arch/arm64/configs/rockchip_linux_defconfig
b/arch/arm64/configs/rockchip_linux_defconfig
index d8757f713ec4..7beca18172e0 100644
--- a/arch/arm64/configs/rockchip_linux_defconfig
+++ b/arch/arm64/configs/rockchip_linux_defconfig
@@ -590,3 +590,9 @@ CONFIG_RCU_CPU_STALL_TIMEOUT=60
CONFIG_FUNCTION_TRACER=y
CONFIG_BLK_DEV_IO_TRACE=y
CONFIG_LKDTM=y
+CONFIG_BLK_DEV_DM=y
+CONFIG_DM_CRYPT=y
+CONFIG_BLK_DEV_CRYPTOLOOP=y
+CONFIG_DM_VERITY=y
+CONFIG_TEE=y
+CONFIG_OPTEE=y
Security: No found config CONFIG_FIT_SIGNATURE in u-boot/configs/rk3568_defconfig
make sure your config include this list
   CONFIG_FIT_SIGNATURE
   CONFIG_SPL_FIT_SIGNATURE
u-boot添加相关配置:
u-boot$ git diff
diff --git a/configs/rk3568_defconfig b/configs/rk3568_defconfig
index fbd9820acc..6efdaac1d6 100644
--- a/configs/rk3568_defconfig
+++ b/configs/rk3568_defconfig
@@ -220,3 +220,5 @@ CONFIG_RK_AVB_LIBAVB_USER=y
CONFIG_OPTEE_CLIENT=y
CONFIG_OPTEE_V2=y
CONFIG_OPTEE_ALWAYS_USE_SECURITY_PARTITION=y
+CONFIG_FIT_SIGNATURE=y
```

+CONFIG_SPL_FIT_SIGNATURE=y Security: No found string BR2 ROOTFS OVERLAY=".*board/rockchip/common/securitysystem-overlay.* in buildroot/configs/rockchip_rk3568_defconfig ERROR: Running check_security_condition failed! ERROR: exit code 255 from line 982: buildroot添加相关配置: buildroot\$ git diff diff --git a/configs/rockchip_rk3568_defconfig b/configs/rockchip_rk3568_defconfig index 6cdd795c64..5244694c7d 100644 --- a/configs/rockchip_rk3568_defconfig +++ b/configs/rockchip_rk3568_defconfig @@ -23,3 +23,4 @@ BR2_PACKAGE_RKWIFIBT_AP6398S=y BR2_PACKAGE_RKWIFIBT_BTUART="ttyS8" BR2_PACKAGE_RKNPU2=y +BR2_ROOTFS_OVERLAY="board/rockchip/common/security-system-overlay" 环境安装: 若编译报错 No module named Crypto.Signature , 这是开发电脑没有安装python的算法库导致 的,执行如下命令即可: pip uninstall Crypto pip uninstall pycrypto pip install pycrypto 2. 若出现如下错误: ModuleNotFoundError: No module named 'Cryptodome' 开发主机上请安装python包: pip3 install [--user] pycryptodomex

- 验证的时候,要找一个没烧过rpmb的机器。如果机器里面有加密key,他是先用机器里面的加密key,如果机器加密key和我们编译加密key不同,就会启动失败
- 加密key是放rpmb区域,可重复擦写。如果碰到key不一样,导致系统加载不起来的,可以将buildroot/board/rockchip/common/security-ramdisk-overlay/init.in中的FORCE_KEY_WRITE=true打开,强制更新key

具体可参考

- TEE 开发指南 <SDK>/docs/cn/Linux/Security/Rockchip_Developer_Guide_TEE_SDK_CN

9.12 WIFI/BT开发

参考 <SDK>/docs/cn/Linux/Wifibt 目录下文档

9.13 SDK 测试

9.13.1 集成Rockchip压力测试脚本

rockchip_test集成功能、压力、和性能相关测试

```
ROCKCHIPS TEST TOOLS
ddr test:
                            1 (ddr stress test)
                          2 (cpu stress test)
cpu test:
                          3 (gpu stress test)
gpu test:
                          4 (npu stress test)
npu test:
suspend_resume test: 5 (suspend resume)
reboot test:
                         6 (auto reboot test)
power lost test: 7 (power lost test)
flash stress test: 8 (flash stress test)
recovery test: 9 (recovery wipe all test)
audio test:

camera test:

video test:

bluetooth test:

10 (audio test)

11 (camera test)

12 (video test)

bluetooth test:

13 (bluetooth on off test)
wifi test:
                         14 (wifi on off test)
                        15 (chromium with video test)
chromium test:
***********
please input your test moudle:
```

9.13.2 Benchmark 测试

一些常用基准测试的参考数据,该测试文档位于:

<SDK>/docs/cn/Linux/Profile/Rockchip_Introduction_Linux_Benchmark_KPI_CN.pdf

9.13.3 Rockchip 模块和压力测试

提供一些常用模块功能和压力测试的方法,该文档位于:

<SDK>/docs/cn/Linux/Profile/Rockchip_User_Guide_Linux_Software_Test_CN.pdf

10. Chapter-10 SDK调试

10.1 ADB工具

10.1.1 概述

- 运行设备的 shell(命令行)
- 管理模拟器或设备的端口映射
- 计算机和设备之间上传/下载文件
- 将本地软件安装至Debian 设备
- ADB 是一个"客户端一服务器端"程序,其中客户端主要是指PC,服务器端是Debian 设备的实体 机器或者虚拟机。根据PC连接Debian设备的方式不同,ADB 可以分为两类:

网络 ADB: 主机通过有线/无线网络(同一局域网)连接到STB设备

USB ADB: 主机通过 USB 线连接到STB设备

10.1.2 USB adb使用说明

USB adb 使用有以下限制:

- 只支持 USB OTG 口
- 不支持多个客户端同时使用
- 只支持主机连接一个设备,不支持连接多个设备

连接步骤如下:

测试是否连接成功,运行"adb devices"命令,如果显示机器的序列号,表示连接成功。

10.2 系统log信息自动获取

log信息都会自动获取到/info目录下, 主要log信息如下:

/info/
— dma_but -> /sys/kernel/debug/dma_but
├── dri -> /sys/kernel/debug/dri
├── fstab -> /etc/fstab
├── gpio -> /sys/kernel/debug/gpio
├─ interrupts -> /proc/interrupts
— iomem -> /proc/iomem
├─ kallsyms -> /proc/kallsyms
├─ log -> /var/log
— meminfo -> /proc/meminfo
— mountall.log -> /tmp/mountall.log
— os-release -> /etc/os-release

```
    partitions -> /proc/partitions
    pinctrl -> /sys/kernel/debug/pinctrl/
    rkcif-mipi-lvds -> /proc/rkcif-mipi-lvds
    rk_dmabuf -> /proc/rk_dmabuf
    rkisp0-vir0 -> /proc/rkisp0-vir0
    slabinfo -> /proc/slabinfo
    softirqs -> /proc/softirqs
    version -> /proc/version
    wakeup_sources -> /sys/kernel/debug/wakeup_sources
    ...
```

10.3 版权检测工具

10.3.1 Buildroot

```
make legal-info
```

10.3.2 Debian

检测可参考官方工具

```
licensecheck --check '.*' --recursive --copyright --deb-fmt \
    --lines 0 * | /usr/lib/cdbs/licensecheck2dep5
```

各源码包相关版权说明位于 /usr/share/doc/*/copyright

10.3.3 Yocto

各源码包相关版权说明位于 build/tmp/deploy/licenses/*/recipeinfo

11. Chapter-11 开源

11.1 github

Rockchip代码仓库开源rockchip-github。

11.2 wiki

Rockchip资料开源rockchip-wiki

11.3 upstream

• Rockchip upstream uboot:

git clone https://gitlab.denx.de/u-boot/custodians/u-boot-rockchip.git

Upstream U-Boot support Rockchip SoCs:

RK3036, RK3188, RK3288, RK3328, RK3399, RK3566, RK3568

· Rockchip upstream kernel

git clone git://git.kernel.org/pub/scm/linux/kernel/git/mmind/linux-rockchip.git

Mainline kernel supports:

RV1108, RK3036, RK3066, RK3188, RK3228, RK3288, RK3368, RK3399, RK3566, RK3568

12. Chapter-12 SDK常见问题

12.1 如何确认当前SDK版本和系统/内核版本?

可以通过/info/目录或' /etc/os-release '获取相关信息, 比如

```
root@rk3588:/# cat /etc/os-release
NAME=Buildroot
VERSION=linux-5.10-gen-rkr3.4-48-gb0d2bfa6
ID=buildroot
VERSION_ID=2021.11
PRETTY_NAME="Buildroot 2021.11"
BUILD_INFO="wxt@ubuntu-191 Wed Nov 23 09:17:44 CST 2022 -
/home/wxt/test/rk3588/buildroot/configs/rockchip_rk3588_defconfig"
KERNEL="5.10 - rockchip_linux_defconfig"
```

12.2 SDK编译相关问题

12.2.1 repo导致同步问题

repo sync -c 更新的时候提示 No module named formatter 这个由于您得主机使用新版本的python, 比如python3.8+完全移除了 formatter, 对外SDK得repo版本太旧导致, 这种只能更新repo版本 比如通过如下方式解决

```
$ cd .repo/repo/$ git checkout origin/stable
这个分支repo是2022版本,默认master分支是2020的版本.或者repo init工程时候增加`--repo-rev=stable`来切换到新版本repo.

repo init --repo-url ssh://git@www.rockchip.com.cn/repo/rk/tools/repo --repo-rev=stable \
-u ssh://git@www.rockchip.com.cn/linux/rockchip/platform/manifests -b linux -m \
rk3588_linux_release.xml
```

12.2.2./build.sh编译时候repo导致异常问题

会提示如下错误:

```
Adding information to /etc/os-release...

Traceback (most recent call last):
file "rk356x/.repo/repo/main.py", line 56, in <module>
from subcmds.version import Version
File "rk356x/.repo/repo/subcmds/__init__.py", line 35, in <module>
ModuleNotFoundError: No module named 'formatter'
```

这个由于buildroot中python3和工程repo版本匹配问题,device/rockchip 可做如下修改:

```
--- a/common/post-build.sh
+++ b/common/post-build.sh
@@ -171,8 +171,6 @@ function add_build_info()

mkdir -p "$INFO_DIR"

- yes | python3 .repo/repo/repo manifest -r -o "$INFO_DIR/manifest.xml"
```

12.2.3 Buildroot编译问题

如果一些网络原因,导致buildroot编译失败的。可以使用以下方法来解决:

预置dl目录,dl是预编的包可以提前集成到buildroot中。减少下载时间,提高编译效率。

比如rk3588 linux sdk可以这么修改增加dl目录:

其他芯片SDK修改方法类似。

12.3 Debian相关问题

12.3.1 遇到" noexec or nodev"问题

```
noexec or nodev issue /usr/share/debootstrap/functions: line 1450:
..../rootfs/ubuntu-build-service/buster-desktop-arm64/chroot/test-dev-null:
Permission denied E: Cannot install into target '/rootfs/ubuntu-build-service/buster-desktop-arm64/chroot' mounted with noexec or nodev
```

解决方法:

```
mount -o remount, exec, dev xxx
(其中xxx 是工程目录路径,然后重新编译)
```

另外如果还有遇到其他编译异常, 先排除使用的编译系统是 ext2/ext4 的系统类型。

12.3.2 下载"Base Debian"失败问题

• 由于编译 Base Debian 需要访问国外网站,而国内网络访问国外网站时,经常出现下载失败的情况: Debian 使用 live build,镜像源改为国内可以这样配置:

```
32位系统:
+++ b/ubuntu-build-service/{buster/bullseye}-desktop-armhf/configure
@@ -11,6 +11,11 @@ set -e
echo "I: create configuration"
export LB_BOOTSTRAP_INCLUDE="apt-transport-https gnupg"
 lb config \
+ --mirror-bootstrap "http://mirrors.ustc.edu.cn/debian" \
+ --mirror-chroot "http://mirrors.ustc.edu.cn/debian" \
+ --mirror-chroot-security "http://mirrors.ustc.edu.cn/debian-security" \
+ --mirror-binary "http://mirrors.ustc.edu.cn/debian" \
+ --mirror-binary-security "http://mirrors.ustc.edu.cn/debian-security" \
  --apt-indices false \
  --apt-recommends false \
  --apt-secure false \
  64位系统:
  --- a/ubuntu-build-service/{buster/bullseye}-desktop-arm64/configure
+++ b/ubuntu-build-service/{buster/bullseye}-desktop-arm64/configure
@@ -11,6 +11,11 @@ set -e
echo "I: create configuration"
export LB_BOOTSTRAP_INCLUDE="apt-transport-https gnupg"
+ --mirror-bootstrap "http://mirrors.ustc.edu.cn/debian" \
+ --mirror-chroot "http://mirrors.ustc.edu.cn/debian" \
+ --mirror-chroot-security "http://mirrors.ustc.edu.cn/debian-security" \
+ --mirror-binary "http://mirrors.ustc.edu.cn/debian" \
+ --mirror-binary-security "http://mirrors.ustc.edu.cn/debian-security" \
  --apt-indices false \
  --apt-recommends false \
  --apt-secure false \
```

如果其他网络原因不能下载包,有预编生成的包分享在<u>百度云网盘</u>,放在当前目录直接执行下一步操作。

12.3.3 异常操作导致挂载/dev出错问题

比如出现这种 askpass command or cannot use one

引起原因可能是编译过程频繁异常操作(CTRL+C),导致上面出错的,可以通过如下方式修复:

```
sudo -S umount /dev
```

12.3.4 多次挂载导致/dev出错问题

比如出现这种 sudo: unable to allocate pty: No such device

引起原因可能是编译过程多次挂载,导致上面出错的,可以通过如下方式修复:

ssh <用户名>@<IP地址> -T sudo -S umount /dev -l

12.3.5 怎么查看系统相关信息

12.3.5.1 如何查看系统Debian版本?

```
root@linaro-alip:~# cat /etc/debian_version
11.1
```

12.3.5.2 如何查看Debian显示用X11还是Wayland?

在X11系统上:

```
$ echo $XDG_SESSION_TYPE
x11
```

在Wayland系统上:

```
$ echo $XDG_SESSION_TYPE
wayland
```

12.3.5.3 如何查看系统分区情况

```
root@linaro-alip:~# parted -l
Model: MMC BJTD4R (sd/mmc)
Disk /dev/mmcblk0: 31.3GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
Number Start End
                      Size
                              File system Name
                                                    Flags
       8389kB 12.6MB 4194kB
1
                                          uboot
2
       12.6MB 16.8MB 4194kB
                                          misc
3
       16.8MB 83.9MB 67.1MB
                                          boot
4
       83.9MB 218MB 134MB
                                          recovery
5
       218MB 252MB 33.6MB
                                          backup
       252MB 15.3GB 15.0GB ext4
6
                                          rootfs
7
       15.3GB 15.4GB 134MB ext2
                                          oem
 8
       15.6GB 31.3GB 15.6GB ext2
                                          userdata
```

12.3.5.4 系统出现ssh.service服务异常

这是Debian10或早期存在的问题 /etc/rc.local 添加如下:

```
#!/bin/sh -e
## Chapter-12 rc.local
## Chapter-12 This script is executed at the end of each multiuser runlevel.
## Chapter-12 Make sure that the script will "exit 0" on success or any other
## Chapter-12 value on error.
## Chapter-12 In order to enable or disable this script just change the execution
## Chapter-12 bits.
#
## Chapter-12 By default this script does nothing.
## Chapter-12 Generate the SSH keys if non-existent
if [ ! -f /etc/ssh/ssh_host_rsa_key ]
then
    # else ssh service start in dpkg-reconfigure will fail
    systemctl stop ssh.socket||true
    dpkg-reconfigure openssh-server
fi
exit 0
```

12.3.6 Debian11 base包编译不过

会遇到类似如下报错

```
W: Failure trying to run: /sbin/ldconfig
W: See //debootstrap/debootstrap.log for details
```

主要要求PC的kernel版本是5.10+, 这是旧的QEMU存在的bug. 解决方法主要两种:

• PC自带的内核版本需满足5.10+的需求。

检查PC内核版本

```
cat /proc/version
Linux version 5.13.0-39-generic
```

• 更新系统的qemu

参考 gemu。

12.3.7 Debian deb包的解压、修改、重新打包方法

如果很多想在原先deb上修改重新打包,方法如下:

```
#解压出包中的文件到extract目录下
dpkg -X xxx.deb extract/
#解压出包的控制信息extract/DEBIAN/下:
dpkg -e xxx.deb extract/DEBIAN/
#修改文件XXX
## Chapter-12 对修改后的内容重新进行打包生成deb包
dpkg-deb -b extract/ .
```

12.3.8 Debian如何增加swap分区

当系统的物理内存不够用的时候,就可以增加Debian得swap虚拟内存分区,以供当前运行的程序使用。 比如创建一个2G得虚拟内存

• 创建一个swap文件

```
cd /opt
mkdir swap
dd if=/dev/zero of=swapfile bs=1024 count=2000000
## Chapter-12 count代表的是大小,这里是2G。
```

• 把文件转换为swap文件

```
sudo mkswap swapfile
```

• 激活swap文件

```
swapon /opt/swapfile
卸载:
swapoff /opt/swapfile
```

开机启动后自动挂载的话,可以把它添加到/etc/fstab文件中eg:/opt/swapfile swap swap defaults 0 0

• 验证是否生效

```
root@linaro-alip:/opt# free -h
total used free shared buff/cache available
内存: 1.9Gi 390Mi 91Mi 75Mi 1.5Gi 1.4Gi
交换: 1.9Gi 0B 1.9Gi
e =h
```

12.3.9 Debian第一次更新系统会重启显示服务

通用Debian为了兼容不同芯片, /etc/init.d/rockchip.sh 第一次启动得时候,会根据芯片安装各种差异包,比如 libmali isp等packages. 安装完后会重启显示服务. 如果是独立项目可以放到制作镜像得时候处理这部分差异即可。

12.3.10 Debian中libGL相关dri.so调用出错问题

解释主要如下:

- EGL 是用ARM 平台上 OpenGL 针对 x window system 的扩展,功能等效于 x86 下的 glx 库。
- 由于 Xorg 使用的 Driver modesettings 默认会加载 libglx.so (禁用 glx 会导致某些通过检测 glx 环境的应用启动失败), libglx.so 会搜索系统中的 dri 实现库。但是 Xorg 2D 加速是直接基于 DRM 实现,并未实现 dri 库,所以启动过程中,libglx.so 会报告如下的错误。

```
(EE) AIGLX error: dlopen of /usr/lib/aarch64-linux-gnu/dri/rockchip_dri.so failed
```

这个对系统运行没有任何影响,不需要处理。

基于同样的道理,某些应用启动过程中,也会报告如下错误,不用处理,对应用的运行不会造成影响。

```
libGL error: unable to load driver: rockchip_dri.so
libGL error: driver pointer missing
libGL error: failed to load driver: rockchip
```

12.3.11 Debian中怎么确认硬件鼠标图层有用起来

• 内核dts配置起来

类似如下log:

```
root@linaro-alip:~# dmesg |grep cursor

[ 2.062561] rockchip-vop2 fe040000.vop: [drm:vop2_bind] Cluster1-win0 as cursor plane for vp0

[ 2.062669] rockchip-vop2 fe040000.vop: [drm:vop2_bind] Cluster0-win0 as cursor plane for vp1
```

• modetest测试图层是否有上报

• 看下summary是否有调用硬鼠标图层

root@linaro-alip:~# cat /sys/kernel/debug/dri/0/summary |grep 64x64

如果步骤1/2都有,还有问题得话再检查下/var/log/drm-cursor.log 是否有异常。

12.4 Linux视频相关问题

12.4.1 播放视频卡顿,日志出现丢帧错误,要怎么解决

可以使用 fpsdisplaysink 确认最高帧率,如果最高帧率接近期望帧率,可以通过指定 sync=false 解决,部分平台可以开启 AFBC。卡顿也可以看下硬件运行时间,echo 0x100 > /sys/module/rk_vcodec/parameters/mpp_dev_debug

12.4.2 gst-launch-1.0 进行摄像头视频预览命令

可以使用 v4l2src 插件, 如 gst-launch-1.0 v4l2src! autovideosink

12.4.3 开启 AFBC 后播放画面出现抖动,要怎么解决

画面抖动一般是 ddr 带宽不足,可以尝试固定性能模式。另外由于显示硬件实现方式,垂直方向上如果有缩放,需要的性能和带宽会比较高,容易不足,需要使用其他方式缩放(如 rga/gpu)

12.4.4 Gstreamer 框架 buffer 是零拷贝吗

使用dmabuf 相关接口进行数据处理实现零拷贝

12.4.5 gst-launch-1.0 怎么测试解码最高的性能?

设置性能模式,用官方的 fpsdisplaysink 查看帧率,以及驱动的调试接口查看驱动帧率

12.4.6播放时如果画面出现抖动,水波纹,要怎么解决

抖动一般都是显示硬件的性能不足,大部分是 ddr 带宽不够,可以用 ddr 性能模式,固定最高频

12.4.7 Gstreamer怎么快速接入opengles

一般是合成上有 gl 插件支持,送显上由第三方显示服务支持,显示服务内部可以进行 opengles 合成(如 weston)

12.5 第三方 OS 移植问题

12.5.1 有没有介绍麒麟系统移植的,就是下载标准的 iso 镜像提取 rootfs.squafs 来移植

可以参考SDK中移植文档介绍,也适用于麒麟 os,但麒麟 os 相对比较封闭,如果要效果比较好,可以找到麒麟拿对接 RK 平台的镜像。

12.5.2 适配过哪些国产OS

统信、麒麟有适配过。另外鸿蒙社区目前正在做RK3588、RK356X、RK3399的适配。具体进展也可以咨询我司业务,或者关注鸿蒙开源社区。

12.5.3 是否支持 UEFI 的引导启动

RK3588 会优先支持UEFI

12.6 显示相关问题

12.6.1 如何使视频送显到视频层

drm 有接口,可以查询到 plane 的 type。具体可以参考 gstreamer 的 kmssink 方式。

12.6.2 wayland 多屏异显模式如何配置每个屏幕的位置,比如左右或者上下位置的

weston 异显只支持左右排列,按照屏幕加载顺序, 具体可以参考 <SDK>/docs/Linux/*/Rockchip_Developer_Guide_Buildroot_Weston_CN.pdf 2.9 多屏配置

12.6.3 Debian xserver 版本是多少

Debian10使用 xserver1.20.4, Debian11使用 xserver1.20.11

13. Chapter-13 开源

13.1 github

Rockchip代码仓库开源rockchip-github。

13.2 wiki

Rockchip资料开源rockchip-wiki

13.3 upstream

• Rockchip upstream uboot:

git clone https://gitlab.denx.de/u-boot/custodians/u-boot-rockchip.git

Upstream U-Boot support Rockchip SoCs:

RK3036, RK3188, RK3288, RK3328, RK3399, RK3566, RK3568

· Rockchip upstream kernel

git clone git://git.kernel.org/pub/scm/linux/kernel/git/mmind/linux-rockchip.git

Mainline kernel supports:

RV1108, RK3036, RK3066, RK3188, RK3228, RK3288, RK3368, RK3399, RK3566, RK3568