北京理工大学《数学分析 B》

2008-2009 学年第二学期期末试题(A 卷)

班级		学号				姓名				
			(4	区试卷共	5页,	九个大员	题)			
题号	_	二	三	四四	五.	六	七	八	九	总分
得分										
签名										
	线 <i>L</i> : $\frac{x}{2}$ 2 2 到平面	$\frac{-1}{3} = \frac{y}{2}$ π π	$\frac{+1}{2} = \frac{z - d}{n}$ $\frac{1}{2} d = \underline{\qquad}$		·					
2. 已知方 3. $I = \int_{0}^{1} dx$	$dx \int_{1-x}^{\sqrt{1-x^2}}$	$\frac{1}{(x^2+y)}$	$\frac{1}{2} dy dx$	E极坐杨			CA			·
			 子数,且	$\int f'_u(u,v)$						所满足的微
5. 曲线 y	$=x^2$ 与I	直线 y =	1围成-	一均匀薄	詳 D, :	其面密质		,则D自	11.11	,=
6. 设 $f(x)$	$ = \begin{cases} x \\ 1 \end{cases} $	$0 \le x < \frac{\pi}{2} \le x < \frac{\pi}{2}$	$\frac{\pi}{2}$, $\sum_{n=1}^{\infty}$	$b_n \sin nx$: 是 f(x)的以2	π 为周	期的正	弦级数,	<i>S</i> (<i>x</i>) 是此

- 二. (8 分) 求曲面 $S: xyz = a^2$ (其中 x, y, z > 0)上点 M(x, y, z) 处的法向量 \vec{n} 以及曲面 S 在 点 M 处的切平面与三坐标面所围立体的体积.

三. (9 分) 求级数 $\sum_{n=1}^{\infty} n(\frac{x+1}{2})^n$ 的收敛域及和函数.

四. (9 分) 设 V 是曲面 $x^2+y^2+z^2=2z$ $(z\geq 1)$ 与 $z=\sqrt{x^2+y^2}$ 所围成的有界闭区域,计算积分 $I=\iiint_V \sqrt{x^2+y^2+z^2} dV$.

五. (10 分) 设 $f(x,y) = x^2y + y^3 - y$, 求 f(x,y) 的极值点和极值.

六. (10 分) 已知沿平面任意闭曲线 L, 都有 $\oint_L (2xy + \varphi(y))dx + (x-y)^2 dy = 0$, 且 $\varphi(0) = 1$, 求 $\varphi(y)$ 的表达式及积分 $I = \int_{(0,0)}^{(1,2)} (2xy + \varphi(y))dx + (x-y)^2 dy$ 的值.

七. (8 分) 将
$$f(x) = \begin{cases} \frac{x^2 + 1}{x} \ln(1 + x^2) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 展成 x 的幂级数, 并指出收敛域.

八. (9 分) 设 S 是曲面 $z=\sqrt{x^2+y^2}$ $(1\leq z\leq 2)$ 的下侧,利用高斯公式计算曲面积分 $I=\iint_S x^3 dy dz+y^3 dz dx+(z+1) dx dy \, .$

九. (9 分) 设函数 f(x) 在 x = 0 的某邻域内有二阶导数,且 $\lim_{x \to 0} \frac{f(x)}{x} = a \quad (a \ge 0$ 为实数), 判断级数 $\sum_{n=1}^{\infty} (-1)^{n-1} f(\frac{1}{n})$ 的敛散性,若收敛指出是条件收敛还是绝对收敛.

