计算机视觉与模式识别作业五(2021版本)

姓名:	李智骋	学号:	2196113526
班级:	计算机95	得分:	

1、 给定一幅图像如下所示:

111	112	113	114	115	114	113	112	111	110			
110	111	112	113	114	115	114	113	112	111			
109	110	111	112	113	114	115	114	113	112	1/9	1/9	1/9
108	109	110	111	112	113	114	115	114	113	1/9	1/9	1/9
107	108	109	110	111	112	113	114	115	114	1/9	1/9	1/9

利用均值模板,如下所示,对它进行模板运算,要求模板运算后的图像尺寸和变换前的一致, 当模 板运算超出原始图像部分则对边缘进行扩展。

以下均采用拷贝图像边缘的填充方法。

1) 写出第一次模板运算的结果;

对填充后的图像采用一次模板运算的结果如下:

```
111.666664 112.66667 113.666664 114.22222 114.11111
113.333336 112.33333 111.333336 110.66667 ]
[110.333336 111. 112.
                           113. 113.77778 114.111115
113.77778 113.
                  112.
                           111.33333 ]
                  111.
[109.333336 110.
                           112. 113.
                                               113.77778
114.111115 113.77778 113.
                           112.333336]
[108.33333 109. 110. 111. 112. 113.
113.77778 114.111115 113.77778 113.33333 ]
[107.666664 108.333336 109.333336 110.333336 111.33333 112.333336
113.33333 114.111115 114.22222 114.
                                     11
```

考虑到实际应用时,存数的格式应为整数,采用四舍五入的方法:

111	112	113	114	114	114	113	112	111	111
110	111	112	113	114	114	114	113	112	111
109	110	111	112	113	114	114	114	113	112
108	109	110	111	112	113	114	114	114	113
108	108	109	110	111	112	113	114	114	114

2) 写出第二次模板运算的结果;

对填充后的图像采用两次模板运算的结果如下,即对第一次模板运算结果(未舍入时)做填充后,再次使用模板运算:

考虑到实际应用时,存数的格式应为整数,采用四舍五入的方法:

111	112	112	113	114	114	113	113	112	111
110	111	112	113	114	114	114	113	112	112
110	110	111	112	113	113	114	113	113	113
109	109	110	111	112	113	114	114	114	113
108	109	110	111	112	113	113	114	114	114

3) 在进行了无穷多次模板运算之后,结果如何。

无穷多次模板运算后(程序采用1000次的模板运算估计结果),图像内所有值都变成112.1,**这与模板的均值平滑作用是一致的。**Python代码如下:

```
    import matplotlib.pyplot as plt

2. import pylab
3. import cv2
4. import numpy as np
5.
6.
7. src = np.array([[111, 112, 113, 114, 115, 114, 113, 112, 111, 110],
                    [110, 111, 112, 113, 114, 115, 114, 113, 112, 111],
8.
9.
                    [109, 110, 111, 112, 113, 114, 115, 114, 113, 112],
10.
                   [108, 109, 110, 111, 112, 113, 114, 115, 114, 113],
11.
                    [107, 108, 109, 110, 111, 112, 113, 114, 115, 114]], dty
   pe="float32")
12.
                                                      #这个是设置的滤波,也就
13. fil = np.array([[1, 1, 1],
   是 template operation
14.
                   [1, 1, 1],
15.
                   [1, 1, 1]])/9
16. for i in range(0, 1000):
17.
       print(i)
18.
       print(src)
19.
       src = cv2.filter2D(src,-1,fil,borderType=1)
```

2、如何设计一个5×5的滤波器,实现对图像向右上角平移 2个像素的目的模板运算:

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1	0	0	0	0

卷积运算的卷积核:

0	0	0	0	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

3、给定一幅 4x4 的图像,如下所示

1	2	3	4
5	5	5	5
6	6	6	6
7	7	7	7

① 计算这幅图像 DCT 变换的结果。

采用离散余弦变换公式逐个计算:

$$F(u, v) = \alpha_u \alpha_v \sum_{x=0}^{X-1} \sum_{y=0}^{Y-1} I(x, y) \cos \frac{\pi (2x+1)u}{2X} \cos \frac{\pi (2y+1)v}{2Y}$$

例如:

$$F(0,0) = 0.25 * \sum_{x=0}^{3} \sum_{y=0}^{3} I(x,y) \cos \frac{\pi(2x+1) * 0}{8} \cos \frac{\pi(2y+1) * 0}{8} = 20.5$$

计算的DCT变换结果如下:

20.5	-1.115	0	-0.079
-6.421	-1.457	0	-0.104
-1.5	-1.115	0	-0.079
-1.129	-0.604	0	-0.043

也可以采用python编程代码实现:

```
1. import numpy as np
2. import cv2
3.
4. y = np.array([[1, 2, 3, 4], [5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7]])
5. y1 = y.astype(np.float32)
6. Y = cv2.dct(y1)
7. print(Y)
8.
9. y2 = cv2.idct(Y)
10. print(y2)
```

② 能否有一种简单快速的方式计算 DCT 变换,如有,尝试进行公式推导。 以二维离散余弦变换为例,根据离散余弦变换公式,进行一定变换:

$$G(x, v) = \sum_{y=0}^{Y-1} \alpha_v \cos \frac{\pi (2y+1)v}{2Y} * I(x, y)$$

$$F(u, v) = \sum_{x=0}^{X-1} \alpha_u \cos \frac{\pi (2x+1)u}{2X} * G(x, v)$$

这样就转换为两个一维的DCT变换——先对y进行离散余弦变计算内层 G(u,v)换,再对x计算离散余弦变换计算F(u,v)。

设图像I纵向为x轴,横向为y轴,取:

$$A(i,j) = \alpha_u(u=i)\cos\frac{\pi(2j+1)i}{2X}$$

$$B(i,j) = \alpha_v(v=j)\cos\frac{\pi(2i+1)j}{2Y}$$

那么F = A * G, G = I * B, 即:

$$F = A * I * B$$

当I为方阵,即X = Y时,有:

$$\alpha_u = \alpha_v$$
, when $u = v$

$$A(i,j) = B(j,i)$$

$$B = A^T$$

此时,

$$F = A * I * A^T$$

总的运算时间复杂度从 $O(N^4)$ 减少为 $O(N^3)$,且引入矩阵A、B的生成,减少了许多重复计算的过程。

4、如果原始图像是124×325的,给定一个7×9的模板,试问通过模板运算后生成的全尺寸,同等尺寸和有效尺寸的图像分别是多大?

$$2a = 6, 2b = 8$$

全尺寸图像大小: (124+6)*(325+8)=130*333

同等尺寸图像大小: 124 * 325

有效尺寸图像大小: (124-6)*(325-8)=118*317

5、卷积的定义如下所示:

$$g = I \otimes f$$

$$g(i,j) = \sum_{m,n} I(i-m,j-n) f(m,n)$$

针对二维的图像和卷积核,则有:

这里我们采用一个二维的图像如下所示:

$$I = \begin{bmatrix} 0 & 1.0 & -1.0 \\ 2.0 & 1.0 & 0 \\ 0 & 3.0 & -1.0 \end{bmatrix}$$

给定两个一维的卷积核,如下所示:

$$f_x = [-1.0, 0, 1.0]$$

$$f_y = \begin{bmatrix} 1.0 \\ 1.0 \\ 1.0 \end{bmatrix}$$

我们要求卷积计算过程中,输出图像和输入图像一样大,同时当卷积核在遍历时超出原始图像 边界时,采用 0 来填充,同时 0 和 0, 0 和非 0 元素的加法和乘法都记作一次有效的加法和乘法运算。

令:

$$\begin{cases} g_1 = I \otimes f_x \otimes f_y \\ f_{xy} = f_x \otimes f_y \quad g_2 = I \otimes f_{xy} \end{cases}$$

请问

1) g_1 和 g_2 的结果分别如何,给出计算过程。

假设从0开始计数,根据卷积运算的规则:

计算 g_0 时卷积模板为 f_x , $n \in \{-1, 0, 1\}$, m = 0:

$$g_0(i,j) = \sum_{n=-1}^{1} I(i-0,j-n) * f_x(0,n)$$

$$g_0 = I \otimes f_x = \begin{bmatrix} -1 & 1 & 1 \\ -1 & 2 & 1 \\ -3 & 1 & 3 \end{bmatrix}$$

计算 g_1 时卷积模板为 f_y , $m \in \{-1, 0, 1\}, n = 0$:

$$g_1(i,j) = \sum_{m=-1}^{1} g_0(i-m,j-0) * f_y(m,0)$$

$$g_1 = g_0 \otimes f_y = \begin{bmatrix} -2 & 3 & 2 \\ -5 & 4 & 5 \\ -4 & 3 & 4 \end{bmatrix}$$

计算 f_{xy} 时卷积模板为 f_y , $m \in \{-1, 0, 1\}, n = 0$:

$$f_{xy}(i,j) = \sum_{m=-1}^{1} f_x(i-m,j-0) * f_y(m,0)$$

$$f_{xy} = f_x \otimes f_y = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

计算 g_2 时卷积模板为 f_{xy} , m、 $n \in \{-1, 0, 1\}$:

$$g_2(i,j) = \sum_{m=-1}^{1} \sum_{n=-1}^{1} I(i-m,j-n) * f_{xy}(0,n)$$

$$g_2 = g \otimes f_{xy} = \begin{bmatrix} -2 & 3 & 2 \\ -5 & 4 & 5 \\ -4 & 3 & 4 \end{bmatrix}$$

2) 请问两种计算方法分别进行了多少次加法和乘法运算?

	计算 g_0	从 g_0 计算 g_1	计算f _{xy}	从 f_{xy} 计算 g_2
加法次数	2 * 9	2 * 9	2 * 9	8 * 9
乘法次数	3 * 9	3 * 9	3 * 9	9 * 9

计算 g_1 一共用了36次加法,54次乘法

计算 g_2 一共用了90次加法,108次乘法

3) 请问这个滤波器的作用是什么?

根据

$$f_{xy} = f_x \otimes f_y = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

可知,这是一种Premitt算子,求取了八邻域内的横向(水平方向)梯度,可以用于检测竖直方向的边缘。

6、估计卷积核

我们在课件中,给出了对图像进行平移的卷积核,例如我们给定如下的一个图像

$$I = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

并利用这样一个卷积核对它进行卷积运算,

$$f = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

我们可以获得输出图像如下所示

$$O = \begin{bmatrix} e & f & 0 \\ h & i & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

另外一个对我们而言非常有效的技巧,给定一个卷积核如下所示:

$$f = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 5 \\ 0 & 2 & 0 \end{bmatrix}$$

利用它对输入图像进行卷积运算,可以分解成如下形式:

$$I \otimes f = I \otimes \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + I \otimes \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix} + I \otimes \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$

这里给定一个图像如下所示:

$$I = \begin{bmatrix} 1 & 5 & 2 \\ 7 & 8 & 6 \\ 3 & 9 & 4 \end{bmatrix}$$

对应的输出图像如下所示:

$$O = \begin{bmatrix} 29 & 43 & 10 \\ 62 & 52 & 30 \\ 15 & 45 & 20 \end{bmatrix}$$

请手动估计卷积核

在3*3的卷积核构成的空间中,寻找如下的标准正交基:

$$x_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ x_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \dots, \ x_9 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

所求的卷积核可以被唯一地表示为 $k_1x_1 + k_2x_2 + ... + k_9x_9$,那么

$$I \otimes (k_1x_1 + k_2x_2 + ... + k_9x_9) = 0$$

根据卷积运算的线性可加性和比例关系可得:

$$I \otimes k_1 x_1 + I \otimes k_2 x_2 + \dots + I \otimes k_9 x_9 = 0$$
$$k_1 I \otimes x_1 + k_2 I \otimes x_2 + \dots + k_9 I \otimes x_9 = 0$$

那么问题转化为,求解 $K = [k_1, k_2, ..., k_9]^T$,满足:

$$[I \otimes x_1, I \otimes x_2, ..., I \otimes x_9]K = 0\#(1)$$

依据题目可以计算出:

$$I \otimes x_1 = \begin{bmatrix} 8 & 6 & 0 \\ 9 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ I \otimes x_2 = \begin{bmatrix} 7 & 8 & 6 \\ 3 & 9 & 4 \\ 0 & 0 & 0 \end{bmatrix}, \ \dots, \ I \otimes x_9 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 7 & 8 \end{bmatrix}$$

求解(1)的线性方程组,有且仅有一个解,记 $X = [x_1, x_2, ..., x_9]$,所求卷积 核为:

$$X * K = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

使用程序验证该卷积核,满足 $I \otimes (X * K) = 0$ 。

求解线性方程组并验证所用的matlab程序如下:

```
1. X = [8, 6, 0, 9, 4, 0, 0, 0, 0]
2. 7, 8, 6, 3, 9, 4, 0, 0, 0;
        0, 7, 8, 0, 3, 9, 0, 0, 0;
      5, 2, 0, 8, 6, 0, 9, 4, 0;
        1, 5, 2, 7, 8, 6, 3, 9, 4;
0, 1, 5, 0, 7, 8, 0, 3, 9;
6.
        0, 0, 0, 5, 2, 0, 8, 6, 0;
0, 0, 0, 1, 5, 2, 7, 8, 6;
        0, 0, 0, 0, 1, 5, 0, 7, 8];
10. 0 = [29, 43, 10, 62, 52, 30, 15, 45, 20];
11. K = X' \setminus O';
12. disp(reshape(K, 3, 3)');
13.
14.%检验结果,imfilter 采用的是模板运算
15. src = [1, 5, 2; 7, 8, 6; 3, 9, 4];
16. a = [0, 0, 0;
17. 0, 5, 0;
18. 0, 0, 3];
19. dec = imfilter(src, a);
20. disp(dec);
```

程序运行结果,第一个矩阵为卷积核,第二个矩阵为验证卷积结果为0:

```
>> Q5 6
           0.0000
   3,0000
                       0.0000
   0.0000
          5. 0000
                      -0.0000
  -0.0000 -0.0000
                     0.0000
   29
         43
               10
   62
         52
               30
   15
         45
               20
```

7、匹配卷积核

1)将上面三幅输出图像和下面的卷积核连接起来,看看输出图像是由哪个卷积核产生的?

从左向右,第一个卷积核(6)对应(b)图,为一种Sobe1算子,计算竖直方向梯度、检测水平边缘。

第二个卷积核(2)对应(a)图,计算水平方向梯度、检测竖直边缘。

第三个卷积核(3)对应(c)图,检测水平和竖直的边缘。

2) 将上面四幅输出图像和下面的卷积核连接起来,看看输出图像是由哪个卷积核产生的?

从左向右,从上向下,第一个卷积核(5)对应(f)图,使用5*5的高斯卷积核,属于低通滤波器,且核维度更大所得图像更模糊。

第二个卷积核(7)对应(g)图,是冲激响应,图像不变化。

第三个卷积核(4)对应(d)图,是一种高通滤波器,使得图像锐化、像素间差异和图像边缘更加明显。

第四个卷积核(1)对应(e)图,使用3*3的高斯卷积核,图像被模糊,但模糊程度不如第一个卷积核的结果。