1.1.1 Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Тимур Байдюсенов Б01-302

08.09.2023

1 Аннотация

В работе размеры нихромовой проволоки измеряются с помощью линейки, штангенциркуля и микрометра, классическим методом моста постоянного тока (мост Уитстона). Сопротивление нихромовой проволоки измеряется с помощью и вольтметра и амперметра, методом моста постоянного тока. Вычисляются систематические и случайные погрешности.

2 Теоретические сведения

Удельное споротивление материала проволоки круглого сечения, изготовленной из однородного материала и имеющей всюду одинаковую толщину может быть определено по формуле (1):

$$\rho = \frac{R}{l} \frac{\pi d^2}{4} \tag{1}$$

где R - сопротивление измеряемого отрезка проволоки, l - его длина, d - диаметр проволоки.

Измерим R с помощью одной из схем, представленных на Рис. 1

Рис. 1: Схемы для измерения сопротивления

Схема a) Вольтметр измеряет напряжение на концах проволоки, а ампертметр измеряет ток, протекающий через вольтметр и амперметр, поэтому

$$R_{\text{IIP1}} = \frac{U_a}{I_a} = R_{\text{IIP}} \frac{R_V}{R_{\text{IIP}} + R_V}$$
 (2)

Преобразуем формулу

$$R_{\rm \Pi p} = R_{\rm \Pi p 1} \frac{R_V}{R_V - R_{\rm \Pi p 1}} = \frac{R_{\rm \Pi p 1}}{1 - \frac{R_{\rm \Pi p 1}}{R_V}} \approx R_{\rm \Pi p 1} \left(1 + \frac{R_{\rm \Pi p 1}}{R_V}\right)$$
 (3)

Схема б) Вольтметр измеряет напряжение на проволоке и амперметре, а ампертметр измеряет ток, протекающий через проволоку и амперметр, поэтому

$$R_{\text{IIP}2} = \frac{U_{6}}{I_{6}} = R_{\text{IIP}} + R_{A} \tag{4}$$

Преобразуем формулу

$$R_{\rm IIp} = R_{\rm IIp2} \left(1 - \frac{R_{\rm A}}{R_{\rm IIp2}} \right) \tag{5}$$

3 Оборудование

Таблица 1: Характеристики вольтметра

	1
Система	Магнитно-электрическая
Класс точности	0.2
Шкала	линейная, 150 делений
Предел измерений	0.6 B
Цена деления	4 мВ
Чувствительность	250 дел/В
Внутреннее сопротивление	4 кОм
Погрешность при считывании со шкалы	±2 мВ
Макс. погрешность	±1.2 мВ

Таблица 2: Характеристики амперметра

Цифровая
2 A
5 ед.
1,4 Ом
$\pm (0.002x + 2k) \text{ MA}$

Таблица 3: Характеристики моста постоянного тока Р4833

Tarovinina of Tarpanii opinorinini moora nooroninioro roma r 1000			
Класс точности	0.1		
Разрядность магазина сопротивлений	5 ед.		
Используемый диапазон измерений	$10^{-4} - 10 \text{ Om}$		
Погрешность в использумемом диапазоне	±0.01 Ом		

Штангенциркуль: $\Delta_{\rm HIT} = \pm 0.05 \; {\rm мм}$ Микрометр : $\Delta_{\rm MKM} = \pm 0.005 \; {\rm мм}$

Исходя из характеристик приборов можно заметить, что при $R_{\Pi p} \approx 5$ Ом и $R_{\rm A} = 1.5$ А, чтобы погрешность была меньше и ответ получился точнее, измерения лучше проводить с помщью схемы 1а. Поэтому измерения будем проводить с помощью схемы 1а.

4 Результаты измерений и обработка данных

4.1 Измерение диаметра проволоки

Диаметр измерялся с помощью штангенциркуля и микрометра многократно на разных участках проволоки. Результаты представлены в таблице.

Таблица 4: Результаты измерения диаметра проволоки

$N_{ m M3M}$	1	2	3	4	5	6	7	8	9
Микрометр: d, мм	0.37	0.37	0.37	0.37	0.37	0.36	0.37	0.36	0.37
Штангенциркуль: d, мм	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Таблица 5: Обработка результатов измерения диаметра

	Микрометр	Штангенциркуль
Средний диаметр, мм: $\overline{d} = \frac{\sum d_i}{N}$	0.368	0.4
Стандартное отклонение: $\sigma_d = \sqrt{\frac{1}{N-1}\sum (d_i - \overline{d})^2}$	0.004	0
Случайная погрешность среднего: $\sigma_{\overline{d}} = \frac{\sigma_d}{\sqrt{N}}$	0.001	0
Инструментальная погрешность, мм: Δ	0.005	0.05
Полная погрешность: $\sigma_{ ext{ПОЛ}} = \sqrt{\sigma_d^2 + \sigma_d^2}$	0.006	0.05
Окончательные результаты измерения:	0.368 ± 0.006	0.4 ± 0.05

Дальше будем использовать значение диаметра, полученное с помощью микрометра, т.к. погрешность при использовании микрометра меньше

Найдём площадь поперечного сечения проволоки:

$$S = \frac{\pi d^2}{4} = \frac{3.14 \cdot \left(3.68 \cdot 10^{-2}\right)^2}{4} \approx 1.06 \cdot 10^{-3} \text{cm}^2$$
 (6)

Найдём величину погрешности:

$$\sigma_S = 2\frac{\sigma_d}{d}S \approx 3.46 \cdot 10^{-5} \text{cm}^2 \tag{7}$$

4.2 Измерения сопротивления проволоки

Таблица 6: Результаты измерения напряжения и силы тока

аолица о. 1 сзу	олица о. гезультаты измерения напряжения и силы то					
	$l = 50 \pm 0.1 \mathrm{cm}$					
І, мА	61.05	66.83	71.64	78.69	84.73	
V, деления	78	86	92	101	109	
V, мВ	312	344	368	404	436	
І, мА	89.69	96.27	102.83	108.35	113.63	
V, деления	116	124	133	140	147	
V, мВ	464	496	532	560	588	
	l	$= 30 \pm 0$.1 см			
І, мА	88.60	101.15	111.70	121.40	130.37	
V, деления	68	77	85	92	99	
V, мВ	272	308	340	368	396	
І, мА	142.27	152.81	162.92	172.77	186.26	
V, деления	109	117	125	132	142	
V, мВ	436	468	500	528	568	
	$l = 20 \pm 0.1 \; { m cm}$					
І, мА	109.57	122.63	135.26	149.23	164.52	
V, деления	55	62	68	76	83	
V, мВ	220	248	272	304	332	
І, мА	180.13	192.03	212.81	234.57	253.83	
V, деления	92	97	108	119	128	
V, MB	368	388	432	476	512	

Рис. 2: Вольт-амперная характеристика

Таблица 7: Результаты измерения сопротивления проволок с помощью амперметра и вольтметра

l,cm	$R_{\rm cp},{ m Om}$	$\sigma_{R_{\mbox{cp}}}^{\mbox{ inyq}}$, Ом	$\sigma_{R_{\text{CP}}}^{\text{сист}}$, Ом	$\sigma_{R_{\mbox{\footnotesize cp}}},{ m Om}$	$R_{\Pi \mathrm{p}}$, Ом
20	2.02	0.0003	0.004	0.004	2.021
30	3.06	0.0007	0.007	0.007	3.062
50	5.16	0.0010	0.011	0.011	5.167

Вычислим $\sigma_{R_{\mbox{\footnotesize CD}}}^{\mbox{\footnotesize CЛУЧ}}$ по формуле:

$$\sigma_{R_{\rm CP}}^{\rm CJIYH} = \frac{\sqrt{\sum_{i=1}^{10} \frac{V\dot{1}^2}{\dot{n}^2} - R_{\rm CP}^2}}{\sqrt{10} \cdot \sqrt{9}} \cdot t_{\rm P}$$
 (8)

Возможную систематическую погрешность R_{CP} оцениваем по формуле:

$$\frac{\sigma_{R_{\rm CP}}^{\rm CUCT}}{R_{\rm Cp}} = \sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2} \tag{9}$$

Таблица 8: Результаты измерения сопротивления проволок с помощью моста P4833

l,cm	R_0 , Om
20	2.04 ± 0.01
30	3.07 ± 0.01
50	5.19 ± 0.01

В на графике и в таблицах 6, 7 и 8 представлены результаты измерения сопротивления проволок с помощью вольтметра и амперметра, моста постоянного тока Р4833. Вычисление R производилось по формуле (3).

Можно заметить, что систематические ошибки на порядок больше случайных, поэтому результаты измерений очень близки к настоящим значениям.

4.3 Измерение удельного сопротивления проволоки

Найдем удельное сопротивление проволоки по формуле:

$$\rho = R \frac{S}{l} \tag{10}$$

$$\sigma_{\rho} = \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(2 \cdot \frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2} \tag{11}$$

Значения удельного сопротивления для каждой из длин представлены в таблице 9

Таблица 9: Результаты ρ для каждой из длин проволок

	, , , , , , , , , , , , , , , , , , ,	- r 1 r 1-
l, cm	$\rho, 10^{-6} \text{ Om } \cdot \text{M}$	$\sigma_{\rho}, 10^{-8} \text{Om·m}$
20	1.07	3.6
30	1.08	3.5
50	1.10	3.5

Окончательно: $\rho = (1.08 \pm 0.04) \cdot 10^{-6} \text{ Ом·м.}$

5 Вывод

Полученное значение удельного сопротивления сравниваем с табличными значениями. В справочнике (Физические величины. М.:Энергоиздат, 1991. С. 444) для удельного сопротивления нихрома при 20 °C, значения

в зависимости от массового содержания компонент сплава меняются от $1.12\cdot 10^{-4}$ Ом·см до $0.97\cdot 10^{-4}$ Ом·см. Наиболее близкое значение к получившемуся в работе $1.06\cdot 10^{-4}$ Ом·см. Мои значения совпали в пределах погрешности: $\rho=(1.08\pm0.05)\cdot 10^{-6}$ Ом·м.