	Student information	Date	Number of session
Algorithmics	UO: 283069		3.2
	Surname: Carvajal Aza	Escuela de	

Ingeniería Name: Guillermo Dylan

Activity 1. Tromino Times

N	T Tromino	
16	1	
	(0 or 1 until next n)	
1024	16	
2048	30	
4096	140	
8192	447	
Heap Overflow (n = 16384)	1627	

What should be the time complexity of the algorithm?

The complexity of the algorithm is calculated the following way:

a = 4

b = 2 (by division)

k = 0

So, the complexity is: $O(n^{(\log b(a))})$ which is $O(n^{(\log 2(4))}) = O(n^2)$

The time complexity of the Tromino algorithm is O(n^2)

Check if the time obtained in the previous section does or does not meet the theoretical complexity of the algorithm.

For a complexity $O(n^2)$ we would have the theoretical values:

(Note K is $n2^2/n1^2$, and since $n1 = 2^n2$ in our case, $K = n2^2/2n2^2 -> \frac{1}{4} = 0.25$)

 $T = 1024^2/2048^2 * 30 = 7,5$ N = 1024

T = 2048^2/4096^2 * 140 = 35 N = 2048

N = 4096T = 4096^2/8192^2 * 447 = 111.75

N = 8192T = 8192^2/16384^2*1627 = 406,75

And thus the ties meet approximately the complexity of the algorithm.