

=> d his

(FILE 'HOME' ENTERED AT 07:24:46 ON 19 DEC 2003)
SET COST OFF

FILE 'REGISTRY' ENTERED AT 07:25:05 ON 19 DEC 2003
E MELPHALAN/CN

L1 1 S E3
E C13H18CL2N2O2/MF
L2 79 S E3 AND 46.150.18/RID AND 1/NR
L3 67 S L2 NOT PHENYLALANINE
L4 61 S L3 NOT ALANINE
L5 18 S L2 NOT L4
L6 5 S L5 AND 4
L7 3 S L6 NOT (T/ELS OR 14C2)
L8 3 S L1,L7
SEL RN
L9 24 S E1-E3/CRN
L10 18 S L9 NOT PMS/CI
L11 17 S L10 NOT C5-C6-C6-C6/ES
L12 6 S L9 NOT L10
L13 1 S L12 AND 1/NC

FILE 'HCAPLUS' ENTERED AT 07:36:13 ON 19 DEC 2003

L14 2851 S L8
L15 2642 S MELPHALAN OR MELFALAN
L16 1027 S SARCOCLORIN# OR SARCOLYSIN# OR SARKOLYSIN# OR MEDPHALAN OR ME
L17 260 S NSC241286 OR NSC8806 OR NSC()(241286 OR 241 286 OR 8806) OR 3
L18 268 S L11
L19 2 S L13
L20 9 S MERPHALAN OR MERFALAN
L21 399 S 3 P BIS 2 CHLOROETHYL AMINO PHENYL (L) ALANINE
L22 786 S SARCOLYSIN#

FILE 'REGISTRY' ENTERED AT 07:43:01 ON 19 DEC 2003
E THALIDOMIDE/CN

L23 1 S E3
SEL RN
L24 57 S E1/CRN
L25 2 S L24 NOT MXS/CI

FILE 'HCAPLUS' ENTERED AT 07:46:05 ON 19 DEC 2003

L26 1481 S L23 OR L25
L27 1755 S THALIDOMID#
L28 83 S TALINOL OR TALIMOL OR SUARAMIDE OR SOFTENON OR SOFTENIL OR SE
L29 0 S NSC527179 OR NSC66847 OR NSC()(527179 OR 527 179 OR 66847 OR

FILE 'REGISTRY' ENTERED AT 07:46:57 ON 19 DEC 2003
E ERYTHROPOIETIN/CN

L30 1 S E3
SEL RN
L31 6 S E1/CRN
E ERYTHROPOIETIN
L32 1239 S E3
L33 1233 S L32 AND 1/NC

FILE 'HCAPLUS' ENTERED AT 07:48:26 ON 19 DEC 2003

L34 7864 S L30
L35 8120 S L33
L36 10336 S ERYTHROPOIETIN OR EPOETIN OR EPOGIS OR HEMPOIETIN# OR HAEMPOI
L37 4034 S L14-L22
L38 12363 S L26-L29,L34-L36
L39 29773 S IL6 OR IL15 OR (IL OR INTERLEUKIN)()(6 OR 15)

E INTERLEUKIN/CT
 E E45+ALL
 L40 1360 S E8, E7
 E E6+ALL
 L41 19943 S E40, E58
 L42 2073 S L39-L41 AND ANTAGON?
 E MULTIPLE MYELOMA/CT
 E E3+ALL
 L43 6756 S E7-E10, E6
 L44 16144 S E6-E13, E15-E16/BI
 L45 258 S KAHLER? DISEASE OR KAHLER S DISEASE OR (PLASMA!CELL OR PLASMA
 E E17+ALL
 L46 16171 S L43-L45
 E BISPHOSPHON/CT
 E DIPHOSPHON/CT
 E E6+ALL
 E E2+ALL
 L47 2833 S E4
 L48 6253 S (DIPHOSPHORIC OR BISPHOSPHORIC) ()ACID OR DIPHOSPHONATE OR BIS

FILE 'REGISTRY' ENTERED AT 07:56:17 ON 19 DEC 2003
 L49 1 S 13598-36-2

FILE 'HCAPLUS' ENTERED AT 07:56:33 ON 19 DEC 2003
 L50 3228 S L49/D
 L51 10651 S L47, L48, L50

FILE 'REGISTRY' ENTERED AT 07:57:20 ON 19 DEC 2003
 L52 1 S 129318-43-0
 L53 STR
 L54 50 S L53
 L55 103129 S L53 FUL
 L56 47349 S L55 AND 2/P
 L57 46762 S L56 NOT SQL/FA
 L58 46596 S L57 NOT MXS/CI
 L59 44634 S L58 NOT PMS/CI
 L60 37599 S L59 NOT (COMPD OR WITH OR UNSPECIFIED OR IDS/CI)
 L61 .9750 S L56 NOT L60

FILE 'HCAPLUS' ENTERED AT 08:00:18 ON 19 DEC 2003
 L62 88509 S L60
 L63 42544 S L61
 L64 138425 S L38, L42, L51, L62, L63
 L65 601 S L64 AND L46
 L66 2928 S (ALPHA4 OR ALPHAIV OR 4ALPHA OR IVALPHA OR ALFA4 OR ALFAIV OR
 E INTEGRIN/CT
 E E11+ALL
 L67 2296 S E2
 L68 1570 S E4
 L69 5 S L65 AND L68
 L70 5 S L65 AND L67
 L71 412 S L14-L22 AND L46
 L72 6 S L71 AND L66, L67
 L73 8 S L69, L70, L72
 L74 9 S L71 AND INTEGRIN
 L75 19 S L65 AND INTEGRIN
 L76 25 S L73-L75
 E MUNDY G
 E MUNDY G/AU
 L77 279 S E3, E6, E8-E10
 E YONEDA T/AU
 L78 67 S E3
 E YONEDA TOSH/AU

L79 129 S E4,E16-E19
 L80 2 S L76 AND L77-L79
 L81 7 S L76 AND (PD<=19990913 OR PRD<=19990913 OR AD<=19990913)
 L82 7 S L80,L81
 L83 46 S L14-L22,L64 AND L67,L68
 L84 580 S L14-L22,L64 AND INTEGRIN
 L85 287 S L83,L84 AND (PD<=19990913 OR PRD<=19990913 OR AD<=19990913)
 L86 84 S L85 AND (PHARMACOL? OR PHARMACEUT?)/SC,SX
 L87 71 S L85 AND IMMUN?/SC,SX
 L88 138 S L86,L87
 E BONE/CT
 E E3+ALL
 L89 18 S L85 AND E9,E8+NT
 E E33+ALL
 L90 23 S L85 AND E7,E8,E6+NT
 E E118+ALL
 L91 7 S L85 AND (E31+NT OR E32+NT OR E34+NT OR E35+NT OR E36+NT OR E3
 L92 35 S L89-L91
 SEL DN AN 1 3 15 20 22 23
 L93 6 S L92 AND E1-E18
 L94 10 S L82,L93 AND L14-L22,L26-L29,L34-L48,L50,L51,L62-L93
 SEL HIT RN

FILE 'REGISTRY' ENTERED AT 08:28:37 ON 19 DEC 2003
 L95 11 S E19-E29

FILE 'HCAPLUS' ENTERED AT 08:28:56 ON 19 DEC 2003
 SEL RN L80

FILE 'REGISTRY' ENTERED AT 08:29:00 ON 19 DEC 2003
 L96 19 S E30-E48
 L97 15 S L96 NOT L95

=> fil reg
 FILE 'REGISTRY' ENTERED AT 08:31:48 ON 19 DEC 2003
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2003 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 18 DEC 2003 HIGHEST RN 627518-95-0
 DICTIONARY FILE UPDATES: 18 DEC 2003 HIGHEST RN 627518-95-0

TSCA INFORMATION NOW CURRENT THROUGH JULY 14, 2003

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. For more information enter HELP PROP at an arrow prompt in the file or refer to the file summary sheet on the web at:
<http://www.cas.org/ONLINE/DBSS/registryss.html>

=> d sta que 156
 L53 STR

NODE ATTRIBUTES:

CONNECT IS E1 RC AT 4
 CONNECT IS E1 RC AT 8
 DEFAULT MLEVEL IS ATOM
 DEFAULT ECLEVEL IS LIMITED

Open structure
 search for
 "bis-phosphonate"

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED
 NUMBER OF NODES IS 8

STEREO ATTRIBUTES: NONE

L55 103129 SEA FILE=REGISTRY SSS FUL L53
 L56 47349 SEA FILE=REGISTRY ABB=ON PLU=ON L55 AND 2/P

=> d ide can tot 195

L95 ANSWER 1 OF 11 REGISTRY COPYRIGHT 2003 ACS on STN
 RN 197313-76-1 REGISTRY
 CN Pyridinium, 3-(2-hydroxy-2,2-diphosphonoethyl)-1-methyl-, inner salt,
 disodium salt (9CI) (CA INDEX NAME)

OTHER NAMES:

CN NE 10244
 MF C8 H13 N O7 P2 . 2 Na
 SR CA
 LC STN Files: BIOSIS, CA, CAPLUS, TOXCENTER, USPATFULL
 CRN (154618-13-0)

Hit compounds
 for rep 1-10,
 set L94

●2 Na

6 REFERENCES IN FILE CA (1907 TO DATE)
 6 REFERENCES IN FILE CAPLUS (1907 TO DATE)

- REFERENCE 1: 137:346153
 REFERENCE 2: 137:746
 REFERENCE 3: 136:74620
 REFERENCE 4: 134:524
 REFERENCE 5: 133:129623

REFERENCE 6: 127:302970

L95 ANSWER 2 OF 11 REGISTRY COPYRIGHT 2003 ACS on STN
 RN 114084-78-5 REGISTRY
 CN Phosphonic acid, [1-hydroxy-3-(methylpentylamino)propylidene]bis- (9CI)
 (CA INDEX NAME)

OTHER NAMES:

CN Ibandronate
 CN Ibandronic acid
 CN [1-Hydroxy-3-(methylpentylamino)propylidene]diphosphonic acid
 FS 3D CONCORD
 MF C9 H23 N O7 P2
 CI COM
 SR CA
 LC STN Files: ADISINSIGHT, ADISNEWS, ANABSTR, BIOSIS, BIOTECHNO, CA,
 CANCERLIT, CAPLUS, CASREACT, CBNB, CEN, CIN, DDFU, DRUGU, EMBASE,
 IMSDRUGNEWS, IMSPATENTS, IMSRESEARCH, IPA, MEDLINE, MRCK*, PHAR, PROMT,
 SYNTHLINE, TOXCENTER, USAN, USPAT2, USPATFULL
 (*File contains numerically searchable property data)
 Other Sources: WHO

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

233 REFERENCES IN FILE CA (1907 TO DATE)
 16 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 234 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 139:399810

REFERENCE 2: 139:399744

REFERENCE 3: 139:386433

REFERENCE 4: 139:381614

REFERENCE 5: 139:375605

REFERENCE 6: 139:358707

REFERENCE 7: 139:358664

REFERENCE 8: 139:345883

REFERENCE 9: 139:333047

REFERENCE 10: 139:333016

L95 ANSWER 3 OF 11 REGISTRY COPYRIGHT 2003 ACS on STN
 RN 104261-69-0 REGISTRY
 CN Phosphonic acid, [1-hydroxy-3-(3-pyridinyl)propylidene]bis- (9CI) (CA
 INDEX NAME)

OTHER NAMES:

CN Homorisedronate
 CN NE 58051

FS 3D CONCORD
 MF C8 H13 N O7 P2
 CI COM
 SR CA
 LC STN Files: BIOSIS, CA, CANCERLIT, CAPLUS, MEDLINE, TOXCENTER, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

14 REFERENCES IN FILE CA (1907 TO DATE)
 14 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 137:163321
 REFERENCE 2: 137:134485
 REFERENCE 3: 137:27796
 REFERENCE 4: 136:63613
 REFERENCE 5: 134:289962
 REFERENCE 6: 133:129623
 REFERENCE 7: 130:162737
 REFERENCE 8: 130:119056
 REFERENCE 9: 127:302970
 REFERENCE 10: 125:316225

L95 ANSWER 4 OF 11 REGISTRY COPYRIGHT 2003 ACS on STN

RN 66376-36-1 REGISTRY

CN Phosphonic acid, (4-amino-1-hydroxybutylidene)bis- (9CI) (CA INDEX NAME)

OTHER NAMES:

CN 4-Amino-1-hydroxybutane-1,1-diphosphonate
 CN 4-Amino-1-hydroxybutane-1,1-diphosphonic acid
 CN 4-Amino-1-hydroxybutane-1,1-diylidiphosphonic acid
 CN 4-Amino-1-hydroxybutylidene-1,1-bis(phosphonic acid)
 CN ABDP

CN Alendronate
 CN Alendronic acid

FS 3D CONCORD
 MF C4 H13 N O7 P2

CI COM
 LC STN Files: ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, BEILSTEIN*,
 BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CANCERLIT, CAPLUS, CASREACT, CBNB,
 CHEMCATS, CIN, CSCHEM, DDFU, DIOGENES, DRUGU, EMBASE, IMSDRUGNEWS,
 IMSPATENTS, IMSRESEARCH, IPA, MEDLINE, MRCK*, PROMT, RTECS*, SYNTHLINE,
 TOXCENTER, USAN, USPAT2, USPATFULL

(*File contains numerically searchable property data)

Other Sources: WHO

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

814 REFERENCES IN FILE CA (1907 TO DATE)
 35 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 815 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 139:399810
 REFERENCE 2: 139:399744
 REFERENCE 3: 139:391129
 REFERENCE 4: 139:386594
 REFERENCE 5: 139:377743
 REFERENCE 6: 139:375605
 REFERENCE 7: 139:374478
 REFERENCE 8: 139:374114
 REFERENCE 9: 139:369534
 REFERENCE 10: 139:358460

L95 ANSWER 5 OF 11 REGISTRY COPYRIGHT 2003 ACS on STN

RN 40391-99-9 REGISTRY

CN Phosphonic acid, (3-amino-1-hydroxypropylidene)bis- (9CI) (CA INDEX NAME)

OTHER NAMES:

CN (α -Hydroxy- γ -aminopropylidene)diphosphonic acid
 CN (3-Amino-1-hydroxypropylidene)-1,1-bisphosphonate
 CN 3-Amino-1-hydroxypropane-1,1-diphosphonic acid
 CN 3-Amino-1-hydroxypropylidene-1,1-bisphosphonic acid
 CN 3-Amino-1-hydroxypropylidenediphosphonic acid

CN ADP

CN AHPrBP

CN Amidronic acid

CN Pamidronic acid

CN Propane-1-hydroxy-3-amino-1,1-diphosphonic acid

FS 3D CONCORD

MF C3 H11 N 07 P2

CI COM

LC STN Files: ADISINSIGHT, ADISNEWS, ANABSTR, BEILSTEIN*, BIOBUSINESS,
 BIOSIS, BIOTECHNO, CA, CANCERLIT, CAPLUS, CASREACT, CBNB, CHEMCATS,
 CHEMINFORMRX, CHEMLIST, CSCHEM, DDFU, DRUGU, EMBASE, IFICDB, IFIPAT,
 IFIUDB, IMSDRUGNEWS, IMSPATENTS, IMSRESEARCH, IPA, MEDLINE, MRCK*, PHAR,
 PROMT, SPECINFO, SYNTHLINE, TOXCENTER, USAN, USPAT2, USPATFULL, VETU

(*File contains numerically searchable property data)

Other Sources: EINECS**, WHO

(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

710 REFERENCES IN FILE CA (1907 TO DATE)
 35 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 713 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 139:399810
 REFERENCE 2: 139:399744
 REFERENCE 3: 139:375605
 REFERENCE 4: 139:374196
 REFERENCE 5: 139:345882
 REFERENCE 6: 139:345853
 REFERENCE 7: 139:345845
 REFERENCE 8: 139:345414
 REFERENCE 9: 139:333017
 REFERENCE 10: 139:333015

L95 ANSWER 6 OF 11 REGISTRY COPYRIGHT 2003 ACS on STN
 RN 13598-36-2 REGISTRY
 CN Phosphonic acid (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

OTHER NAMES:

CN Dihydroxyphosphine oxide
 CN Phosphorous acid
 MF H₃O₃P
 CI COM
 LC STN Files: AGRICOLA, ANABSTR, AQUIRE, BIOBUSINESS, BIOSIS, BIOTECHNO,
 CA, CAOLD, CAPLUS, CASREACT, CBNB, CEN, CHEMCATS, CHEMINFORMRX,
 CHEMLIST, CIN, CSCHEM, CSNB, DETHERM*, DIPPR*, EMBASE, IFICDB, IFIPAT,
 IFIUDB, MRCK*, MSDS-OHS, NIOSHTIC, PDLCOM*, PIRA, PROMT, RTECS*,
 TOXCENTER, TULSA, USPAT2, USPATFULL, VTB
 (*File contains numerically searchable property data)
 Other Sources: DSL**, EINECS**, TSCA**
 (**Enter CHEMLIST File for up-to-date regulatory information)

*** FRAGMENT DIAGRAM IS INCOMPLETE ***

6526 REFERENCES IN FILE CA (1907 TO DATE)
 3216 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 6541 REFERENCES IN FILE CAPLUS (1907 TO DATE)

8 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 139:399744

REFERENCE 2: 139:398459

REFERENCE 3: 139:397764

REFERENCE 4: 139:397762

REFERENCE 5: 139:397760

REFERENCE 6: 139:397734

REFERENCE 7: 139:392516

REFERENCE 8: 139:392514

REFERENCE 9: 139:390929

REFERENCE 10: 139:390578

L95 ANSWER 7 OF 11 REGISTRY COPYRIGHT 2003 ACS on STN

RN 11096-26-7 REGISTRY

CN Erythropoietin (9CI) (CA INDEX NAME)

OTHER NAMES:

CN Ep

CN EPO

CN Epoetin

CN Epogis S

CN Hemopoietine

MF Unspecified

CI COM, MAN

LC STN Files: ADISNEWS, AGRICOLA, ANABSTR, BIOPHARMA, BIOSIS, BIOTECHNO, CA, CABA, CANCERLIT, CAPLUS, CBNB, CEN, CHEMCATS, CHEMLIST, CIN, CSCHEM, DDFU, DIOGENES, DRUGU, EMBASE, IFICDB, IFIPAT, IFIUDB, IMSPATENTS, IMSRESEARCH, IPA, MEDLINE, MRCK*, NIOSHTIC, PHAR, PROMT, RTECS*, TOXCENTER, USPAT2, USPATFULL, VETU

(*File contains numerically searchable property data)

Other Sources: EINECS**

(**Enter CHEMLIST File for up-to-date regulatory information)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

7848 REFERENCES IN FILE CA (1907 TO DATE)

194 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

7864 REFERENCES IN FILE CAPLUS (1907 TO DATE)

REFERENCE 1: 139:399815

REFERENCE 2: 139:392436

REFERENCE 3: 139:391734

REFERENCE 4: 139:391733

REFERENCE 5: 139:391446

REFERENCE 6: 139:391445

REFERENCE 7: 139:391354

REFERENCE 8: 139:386430

REFERENCE 9: 139:386408

REFERENCE 10: 139:379540

L95 ANSWER 8 OF 11 REGISTRY COPYRIGHT 2003 ACS on STN

RN 10596-23-3 REGISTRY

CN Phosphonic acid, (dichloromethylene)bis- (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Phosphonic acid, (dichloromethylene)di- (8CI)

OTHER NAMES:

CN (Dichloromethylene)bis[phosphonic acid]

CN Cl 2MDP

CN Clodronic acid

CN Dichloromethylenediphosphonic acid

CN DMDP

CN Methanedichlorodiphosphonic acid

FS 3D CONCORD

DR 163706-60-3

MF C H4 Cl2 O6 P2

CI COM

LC STN Files: ADISINSIGHT, ADISNEWS, ANABSTR, BEILSTEIN*, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CANCERLIT, CAOLD, CAPLUS, CASREACT, CBNB, CHEMLIST, DDFU, DRUGU, EMBASE, IFICDB, IFIPAT, IFIUDB, IMSDRUGNEWS, IMSPATENTS, IMSRESEARCH, IPA, MEDLINE, MRCK*, PHAR, PROMT, RTECS*, SYNTHLINE, TOXCENTER, USAN, USPAT2, USPATFULL

(*File contains numerically searchable property data)

Other Sources: EINECS**, WHO

(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

706 REFERENCES IN FILE CA (1907 TO DATE)

33 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

706 REFERENCES IN FILE CAPLUS (1907 TO DATE)

1 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 139:399810

REFERENCE 2: 139:399744

REFERENCE 3: 139:375605

REFERENCE 4: 139:358679

REFERENCE 5: 139:345878

REFERENCE 6: 139:345877

REFERENCE 7: 139:345738

REFERENCE 8: 139:345414

REFERENCE 9: 139:345263

REFERENCE 10: 139:332639

L95 ANSWER 9 OF 11 REGISTRY COPYRIGHT 2003 ACS on STN

RN 148-82-3 REGISTRY

CN L-Phenylalanine, 4-[bis(2-chloroethyl)amino]- (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:

CN Alanine, 3-[p-[bis(2-chloroethyl)amino]phenyl]-, L- (8CI)

OTHER NAMES:

CN 3025CB

CN Alanine nitrogen mustard

CN Alkeran

CN CB 3025

CN L-PAM

CN L-Phenylalanine mustard

CN L-Phenylalanine mustard hydrochloride

CN L-Sarcolysin

CN L-Sarcolysine

CN L-Sarkolysin

CN Levofalan

CN Levofolan

CN Levopholan

CN Melfalan

CN Melphalan

CN NSC 241286

CN NSC 8806

CN Phenylalanine mustard

CN Sarcoclorin

FS STEREOSEARCH

DR 8057-25-8

MF C13 H18 Cl2 N2 O2

CI COM

LC STN Files: ADISNEWS, AGRICOLA, ANABSTR, BEILSTEIN*, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CANCERLIT, CAOLD, CAPLUS, CASREACT, CBNB, CHEMCATS, CHEMLIST, CIN, CSCHEM, CSNB, DDFU, DIOGENES, DRUGU, EMBASE, GMELIN*, HSDB*, IFICDB, IFIPAT, IFIUDB, IPA, MEDLINE, MRCK*, MSDS-OHS, NIOSHTIC, PHAR, PROMT, RTECS*, SPECINFO, TOXCENTER, USAN, USPAT2, USPATFULL, VETU

(*File contains numerically searchable property data)

Other Sources: EINECS**, WHO

(**Enter CHEMLIST File for up-to-date regulatory information)

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

2656 REFERENCES IN FILE CA (1907 TO DATE)

150 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

2662 REFERENCES IN FILE CAPLUS (1907 TO DATE)

21 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 139:399770

REFERENCE 2: 139:395950

REFERENCE 3: 139:395828

REFERENCE 4: 139:395827

REFERENCE 5: 139:391354
 REFERENCE 6: 139:391341
 REFERENCE 7: 139:390794
 REFERENCE 8: 139:390793
 REFERENCE 9: 139:380023
 REFERENCE 10: 139:374995

L95 ANSWER 10 OF 11 REGISTRY COPYRIGHT 2003 ACS on STN

RN 58-64-0 REGISTRY

CN Adenosine 5'-(trihydrogen diphosphate) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Adenosine 5'-(trihydrogen pyrophosphate) (8CI)

CN Adenosine diphosphate (6CI)

OTHER NAMES:

CN α -ADP

CN 5'-ADP

CN Adenosine 5'-diphosphate

CN Adenosine 5'-diphosphoric acid

CN Adenosine 5'-pyrophosphate

CN Adenosine 5'-pyrophosphoric acid

CN Adenosine pyrophosphate

CN Adenosine, 5'-(trihydrogen diphosphate)

CN ADP

CN ADP (nucleotide)

FS STEREOSEARCH

DR 84412-16-8

MF C10 H15 N5 O10 P2

CI COM

LC STN Files: ADISNEWS, AGRICOLA, ANABSTR, AQUIRE, BEILSTEIN*, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CABA, CANCERLIT, CAOLD, CAPLUS, CASREACT, CEN, CHEMCATS, CHEMLIST, CIN, CSCHEM, DDFU, DETHERM*, DRUGU, EMBASE, GMELIN*, IFICDB, IFIPAT, IFIUDB, IPA, MEDLINE, MRCK*, NIOSHTIC, PIRA, PROMT, RTECS*, TOXCENTER, USPAT2, USPATFULL, VETU

(*File contains numerically searchable property data)

Other Sources: DSL**, EINECS**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

23590 REFERENCES IN FILE CA (1907 TO DATE)

521 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

23601 REFERENCES IN FILE CAPLUS (1907 TO DATE)

22 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 139:394373

REFERENCE 2: 139:393749

REFERENCE 3: 139:392855

REFERENCE 4: 139:392819

REFERENCE 5: 139:392740

REFERENCE 6: 139:391641

REFERENCE 7: 139:391620

REFERENCE 8: 139:391619

REFERENCE 9: 139:391604

REFERENCE 10: 139:379964

L95 ANSWER 11 OF 11 REGISTRY COPYRIGHT 2003 ACS on STN

RN 50-35-1 REGISTRY

CN 1H-Isoindole-1,3(2H)-dione, 2-(2,6-dioxo-3-piperidinyl)- (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Phthalimide, N-(2,6-dioxo-3-piperidyl)- (6CI, 7CI, 8CI)

OTHER NAMES:

CN (±)-Thalidomide

CN α-(N-Phthalimido)glutarimide

CN α-N-Phthalylglutaramide

CN α-Phthalimidoglutarimide

CN 1,3-Dioxo-2-(2,6-dioxopiperidin-3-yl)isoindoline

CN 3-Phthalimidoglutarimide

CN Celgene

CN Contergan

CN Distaval

CN K 17

CN Kevadon

CN Myrin

CN N-(2,6-Dioxo-3-piperidyl)phthalimide

CN N-Phthaloylglutamimide

CN Neurosedyn

CN NSC 527179

CN NSC 66847

CN Pantosediv

CN Quetimid

CN Sedalis

CN Sedoval

CN Softenil

CN Softenon

CN Suaramide

CN Talimol

CN Talinol

CN Thalidomide

CN Thalomid

FS 3D CONCORD

DR 14088-68-7, 731-40-8

MF C13 H10 N2 O4

CI COM

LC STN Files: ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, AQUIRE, BEILSTEIN*, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CABA, CANCERLIT, CAOLD, CAPLUS, CASREACT, CBNB, CEN, CHEMCATS, CHEMLIST, CIN, CSCHEM, CSNB, DDFU,

DIOGENES, DRUGU, EMBASE, HODOC*, HSDB*, IMSCOSEARCH, IMSDRUGNEWS,
 IMSRESEARCH, IPA, MEDLINE, MRCK*, MSDS-OHS, NIOSHTIC, PHAR, PIRA, PROMT,
 RTECS*, SPECINFO, SYNTHLINE, TOXCENTER, USAN, USPAT2, USPATFULL

(*File contains numerically searchable property data)

Other Sources: EINECS**, WHO

(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1474 REFERENCES IN FILE CA (1907 TO DATE)

83 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

1480 REFERENCES IN FILE CAPLUS (1907 TO DATE)

15 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 139:395772

REFERENCE 2: 139:390791

REFERENCE 3: 139:390702

REFERENCE 4: 139:390487

REFERENCE 5: 139:390456

REFERENCE 6: 139:375014

REFERENCE 7: 139:374504

REFERENCE 8: 139:374401

REFERENCE 9: 139:374323

REFERENCE 10: 139:373879

=> fil hcplus

FILE 'HCPLUS' ENTERED AT 08:32:18 ON 19 DEC 2003

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2003 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE LAST UPDATED: 18 Dec 2003 (20031218/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d all hitstr tot 194

L94 ANSWER 1 OF 10 HCAPLUS COPYRIGHT 2003 ACS on STN
 AN 2002:833305 HCAPLUS
 DN 137:333131
 ED Entered STN: 01 Nov 2002
 TI Methods of treating **multiple myeloma** and
myeloma-induced bone resorption using **integrin**
antagonists

IN Mundy, Gregory R.; Yoneda, Toshiyuki
 PA Board of Regents, The University of Texas System, USA
 SO U.S. Pat. Appl. Publ., 64 pp., Cont.-in-part of U.S. Ser. No. 943,659.
 CODEN: USXXCO
 DT Patent
 LA English
 IC ICM A61K039-395
 NCL 424143100
 CC 1-6 (**Pharmacology**)
 Section cross-reference(s): 15

FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2002159998	A1	20021031	US 2002-86217	20020221 <--
	WO 2000015247	A2	20000323	WO 1999-US21170	19990913 <--
	WO 2000015247	A3	20000525		
	W:	AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM			
	RW:	GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG			
	US 2002022028	A1	20020221	US 2001-805840	20010313 <--
	US 2002041874	A1	20020411	US 2001-943659	20010831 <--

PRAI US 1998-100182P P 19980914 <--
 WO 1999-US21170 A1 19990913 <--
 US 2001-805840 A2 20010313
 US 2001-943659 A2 20010831

AB **Antagonists of .alpha.4 integrin/.**
.alpha.4 integrin ligand adhesion, which
inhibit the biol. effects of such adhesion are described and methods for
their use are detailed. Such **antagonists** are useful in
suppressing bone destruction associated with **multiple**
myeloma. The homing of **multiple myeloma** cells
to bone marrow and their **.alpha.4 integrin**
-dependent release of bone-resorbing factors, resulting in bone
destruction in patients with **multiple myeloma**, is
inhibited.

ST **integrin antagonist** antibody chemotherapeutic agent
myeloma treatment

IT **Integrins**
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(LPAM-1 (lymphocyte Peyer's patch high endothelial venule adhesion mol.
1); treatment of **multiple myeloma** and
myeloma-induced bone resorption using **integrin**
antagonists and chemotherapeutic agents)

- IT Cell adhesion molecules
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (VCAM-1, antibodies to; treatment of **multiple myeloma**
 and **myeloma-induced bone resorption using integrin antagonists** and chemotherapeutic agents)
- IT Interleukin 15
 Interleukin 6
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (antagonists; treatment of **multiple myeloma**
 and **myeloma-induced bone resorption using integrin antagonists** and chemotherapeutic agents)
- IT Antibodies
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (chimeric; treatment of **multiple myeloma** and
myeloma-induced bone resorption using integrin antagonists and chemotherapeutic agents)
- IT Antibodies
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (humanized; treatment of **multiple myeloma** and
myeloma-induced bone resorption using integrin antagonists and chemotherapeutic agents)
- IT Antitumor agents
 (**multiple myeloma**; treatment of **multiple myeloma** and **myeloma-induced bone resorption using integrin antagonists** and chemotherapeutic agents)
- IT Bone marrow, disease
 (neoplasm; treatment of **multiple myeloma** and
myeloma-induced bone resorption using integrin antagonists and chemotherapeutic agents)
- IT Bone
 (resorption, inhibitors; treatment of **multiple myeloma** and **myeloma-induced bone resorption using integrin antagonists** and chemotherapeutic agents)
- IT Human
Multiple myeloma
Osteoclast
 (treatment of **multiple myeloma** and **myeloma-induced bone resorption using integrin antagonists** and chemotherapeutic agents)
- IT Integrins
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 ($\alpha 4$, antibodies to; treatment of
multiple myeloma and **myeloma-induced bone resorption using integrin antagonists** and chemotherapeutic agents)
- IT Integrins
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 ($\alpha 4\beta 1$; treatment of
multiple myeloma and **myeloma-induced bone resorption using integrin antagonists** and chemotherapeutic agents)
- IT 410084-86-5P, BIO 8809
 RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (BIO 8809; treatment of **multiple myeloma** and
myeloma-induced bone resorption using integrin antagonists and chemotherapeutic agents)
- IT 13598-36-2D, Phosphonic acid, alkylidinebis- derivs.
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (bisphosphonate; treatment of **multiple**

myeloma and myeloma-induced bone resorption using integrin antagonists and chemotherapeutic agents)

IT 148-82-3, Melphalan
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (treatment of multiple myeloma and myeloma -induced bone resorption using integrin antagonists and chemotherapeutic agents)

IT 98-09-9, Benzenesulfonyl chloride 6404-29-1 148893-10-1 174569-25-6
 409325-33-3
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (treatment of multiple myeloma and myeloma -induced bone resorption using integrin antagonists and chemotherapeutic agents)

IT 327613-69-4P 409325-34-4P 409325-35-5P 409325-36-6P 409325-37-7P
 409325-38-8P 473806-21-2P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (treatment of multiple myeloma and myeloma -induced bone resorption using integrin antagonists and chemotherapeutic agents)

IT 410084-88-7P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (treatment of multiple myeloma and myeloma -induced bone resorption using integrin antagonists and chemotherapeutic agents)

IT 50-35-1, Thalidomide 11096-26-7,
Erythropoietin
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (treatment of multiple myeloma and myeloma -induced bone resorption using integrin antagonists and chemotherapeutic agents)

IT 13598-36-2D, Phosphonic acid, alkylidinebis- derivs.
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (bisphosphonate; treatment of multiple myeloma and myeloma-induced bone resorption using integrin antagonists and chemotherapeutic agents)

RN 13598-36-2 HCPLUS
 CN Phosphonic acid (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

*** FRAGMENT DIAGRAM IS INCOMPLETE ***

IT 148-82-3, Melphalan
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (treatment of multiple myeloma and myeloma -induced bone resorption using integrin antagonists and chemotherapeutic agents)

RN 148-82-3 HCPLUS
 CN L-Phenylalanine, 4-[bis(2-chloroethyl)amino]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 50-35-1, Thalidomide 11096-26-7,

Erythropoietin

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (treatment of **multiple myeloma** and **myeloma**
 -induced bone resorption using **integrin antagonists**
 and chemotherapeutic agents)

RN 50-35-1 HCAPLUS

CN 1H-Isoindole-1,3(2H)-dione, 2-(2,6-dioxo-3-piperidinyl)- (9CI) (CA INDEX NAME)

RN 11096-26-7 HCAPLUS

CN Erythropoietin (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L94 ANSWER 2 OF 10 HCAPLUS COPYRIGHT 2003 ACS on STN

AN 2002:276427 HCAPLUS

DN 136:304051

ED Entered STN: 12 Apr 2002

TI Methods of treating **multiple myeloma** and
myeloma-induced bone resorption using **integrin**
antagonists

IN Mundy, Gregory R.; Yoneda, Toshiyuki

PA Board of Regents, University of Texas System, USA

SO U.S. Pat. Appl. Publ., 61 pp., Cont.-in-part of U.S. Ser. No. 805,840.

CODEN: USXXCO

DT Patent

LA English

IC ICM A61K039-395

NCL 424131100

CC 1-6 (**Pharmacology**)

Section cross-reference(s): 15

FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2002041874	A1	20020411	US 2001-943659	20010831 <--
	WO 2000015247	A2	20000323	WO 1999-US21170	19990913 <--
	WO 2000015247	A3	20000525		
	W:	AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM			
	RW:	GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,			

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG,
 CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
 US 2002022028 A1 20020221 US 2001-805840 20010313 <--
 US 2002159998 A1 20021031 US 2002-86217 20020221 <--
 PRAI US 1998-100182P P 19980914 <--
 WO 1999-US21170 W 19990913 <--
 US 2001-805840 A2 20010313
 US 2001-943659 A2 20010831

AB **Antagonists of .alpha.4 integrin/.**

alpha.4 integrin ligand adhesion, which
inhibit the biol. effects of such adhesion are described and methods for
their use are detailed. Such antagonists are useful in
suppressing bone destruction associated with multiple
myeloma. The homing of multiple myeloma cells
to bone marrow and their .alpha.4 integrin
-dependent release of bone-resorbing factors, resulting in bone
destruction in patients with multiple myeloma, is
inhibited. Among the examples provided are 2 which show that monoclonal
antibody PS/2 to VLA-4 strongly inhibits the growth of established
myeloma cells and that anti-.alpha.4
integrin antibody enhances sensitivity of myeloma cells
to melphalan.

ST **integrin antagonist antibody chemotherapeutic agent**
myeloma treatment

IT **Integrins**

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (LPAM-1 (lymphocyte Peyer's patch high endothelial venule adhesion mol.
 1); treatment of multiple myeloma and
 myeloma-induced bone resorption using integrin
 antagonists and chemotherapeutic agents)

IT **Cell adhesion molecules**

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (VCAM-1, antibodies to; treatment of multiple myeloma
 and myeloma-induced bone resorption using integrin
 antagonists and chemotherapeutic agents)

IT **Interleukin 15****Interleukin 6**

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (antagonists; treatment of multiple myeloma
 and myeloma-induced bone resorption using integrin
 antagonists and chemotherapeutic agents)

IT **Antibodies**

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
 (Biological study); USES (Uses)
 (chimeric; treatment of multiple myeloma and
 myeloma-induced bone resorption using integrin
 antagonists and chemotherapeutic agents)

IT **Antibodies**

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
 (Biological study); USES (Uses)
 (humanized; treatment of multiple myeloma and
 myeloma-induced bone resorption using integrin
 antagonists and chemotherapeutic agents)

IT **Antibodies**

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
 (Biological study); USES (Uses)
 (monoclonal; treatment of multiple myeloma and
 myeloma-induced bone resorption using integrin
 antagonists and chemotherapeutic agents)

IT **Antitumor agents**

(multiple myeloma; treatment of multiple
 myeloma and myeloma-induced bone resorption using
 integrin antagonists and chemotherapeutic agents)

- IT **Bone marrow, disease**
 (neoplasm; treatment of **multiple myeloma** and
myeloma-induced bone resorption using **integrin antagonists** and chemotherapeutic agents)
- IT **Bone**
 (resorption, inhibitors; treatment of **multiple myeloma** and **myeloma**-induced bone resorption using **integrin antagonists** and chemotherapeutic agents)
- IT Antitumor agents
 Drug interactions
 Human
Osteoclast
 (treatment of **multiple myeloma** and **myeloma**-induced bone resorption using **integrin antagonists** and chemotherapeutic agents)
- IT **Integrins**
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (α 4, antibodies to; treatment of **multiple myeloma** and **myeloma**-induced bone resorption using **integrin antagonists** and chemotherapeutic agents)
- IT **Integrins**
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (α 4 β 1; treatment of **multiple myeloma** and **myeloma**-induced bone resorption using **integrin antagonists** and chemotherapeutic agents)
- IT 410084-86-5P, BIO 8809
 RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (BIO 8809; treatment of **multiple myeloma** and **myeloma**-induced bone resorption using **integrin antagonists** and chemotherapeutic agents)
- IT 410084-88-7P, BIO 9257
 RL: BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)
 (BIO 9257; treatment of **multiple myeloma** and **myeloma**-induced bone resorption using **integrin antagonists** and chemotherapeutic agents)
- IT 13598-36-2D, Phosphonic acid, alkylidenebis- derivs.
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (bisphosphonate; treatment of **multiple myeloma** and **myeloma**-induced bone resorption using **integrin antagonists** and chemotherapeutic agents)
- IT 148-82-3, Melphalan
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (treatment of **multiple myeloma** and **myeloma**-induced bone resorption using **integrin antagonists** and chemotherapeutic agents)
- IT 98-09-9, Benzenesulfonyl chloride 174569-25-6 409325-33-3
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (treatment of **multiple myeloma** and **myeloma**-induced bone resorption using **integrin antagonists** and chemotherapeutic agents)
- IT 189215-90-5P 327613-69-4P 409325-34-4P 409325-35-5P 409325-36-6P
 409325-37-7P 409325-38-8P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (treatment of **multiple myeloma** and **myeloma**-induced bone resorption using **integrin antagonists** and chemotherapeutic agents)

IT 50-35-1, Thalidomide 11096-26-7,
Erythropoietin
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (treatment of **multiple myeloma** and **myeloma**
 -induced bone resorption using **integrin antagonists**
 and chemotherapeutic agents)

IT 13598-36-2D, Phosphonic acid, alkylidenebis- derivs.
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (bisphosphonate; treatment of **multiple**
myeloma and **myeloma**-induced bone resorption using
integrin antagonists and chemotherapeutic agents)

RN 13598-36-2 HCPLUS

CN Phosphonic acid (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

*** FRAGMENT DIAGRAM IS INCOMPLETE ***

IT 148-82-3, Melphalan
 RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
 (Biological study); USES (Uses)
 (treatment of **multiple myeloma** and **myeloma**
 -induced bone resorption using **integrin antagonists**
 and chemotherapeutic agents)

RN 148-82-3 HCPLUS

CN L-Phenylalanine, 4-[bis(2-chloroethyl)amino]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 50-35-1, Thalidomide 11096-26-7,
Erythropoietin
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (treatment of **multiple myeloma** and **myeloma**
 -induced bone resorption using **integrin antagonists**
 and chemotherapeutic agents)

RN 50-35-1 HCPLUS

CN 1H-Isoindole-1,3(2H)-dione, 2-(2,6-dioxo-3-piperidinyl)- (9CI) (CA INDEX NAME)

RN 11096-26-7 HCPLUS
 CN Erythropoietin (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L94 ANSWER 3 OF 10 HCPLUS COPYRIGHT 2003 ACS on STN
AN 1999:351801 HCPLUS
DN 131:16005
ED Entered STN: 08 Jun 1999
TI Establishment and characterization of a CD95 (Fas/Apo-1)-negative
myeloma cell line
AU Kuribayashi, Noriomi; Hata, Hiroyuki; Yoshida, Minoru; Sonoku, Takashi;
Nagasaki, Akitoshi; Kimura, Tatsuya; Harada, Naoko; Matsuzaki, Hiromitsu
CS Second Dep. Internal Medicine, School Medicine, Kumamoto Univ., Kumamoto,
860, Japan
SO Acta Haematologica (1999), 101(3), 113-118
CODEN: ACHAAH; ISSN: 0001-5792
PB S. Karger AG
DT Journal
LA English
CC 9-11 (Biochemical Methods)
Section cross-reference(s): 15
AB Although expression of CD95 (Fas/Apo-1) on myeloma cells was reported, its significance is not clearly understood. The authors established a myeloma cell line, KHM-11ad (11ad), from a parental cell line, KHM-11, by collecting cells adhered to a plastic dish. KHM-11 cells were pos. for CD45 and CD95 (Fas/ Apol), and neg. for a myelomonocytic antigen, CD13. CD95 was not detected in 11ad. Expression of CD45 was also decreased in 11ad cells while expression of CD13 was detected in these cells. The growth rate of 11ad cells was 1.7 times lower than that of KHM-11 cells. Anal. of adhesion mols. showed that expression of VLA4 and CD44 was significantly suppressed in 11ad. The IC₅₀ of melphalan (L-PAM) for 11ad cells was 50 times higher than that for KHM-11, indicating that 11ad is significantly refractory to L-PAM than KHM-11 cells. Induction of apoptosis by doxorubicin and cycloheximide was suppressed in 11ad cells compared with those in KHM-11 cells. Western blot for Bcl-2 family of proteins showed that Bax was expressed at a 2.2 times lower level in 11ad cells than in KHM-11 cells while there was no difference in expression of Bcl-2, Bcl-Xs nor Bcl-Xy. These results suggest that CD95-neg. myeloma cells may have characteristics as follows: (1) slow proliferation; (2) low sensitivity to apoptosis; (3) low expression of VLA4, CD44 and Bax. Although these intraclonal variations were based on the findings of cell lines, these may reflect similar variations in vivo. The 11ad line may be a suitable model for analyzing intraclonal variation of myeloma cells.
ST myeloma cell line KHM11ad antigen apoptosis
IT Proteins, specific or class
RL: BOC (Biological occurrence); BSU (Biological study, unclassified);
BIOL (Biological study); OCCU (Occurrence)
(Bax; doxorubicin and cycloheximide effect on KHM-11ad as CD95
(Fas/Apo-1)-neg. myeloma cell line)
IT Proteins, specific or class
RL: BOC (Biological occurrence); BSU (Biological study, unclassified);
BIOL (Biological study); OCCU (Occurrence)
(Bcl-x, XL; doxorubicin and cycloheximide effect on KHM-11ad as CD95
(Fas/Apo-1)-neg. myeloma cell line)
IT Proteins, specific or class
RL: BOC (Biological occurrence); BSU (Biological study, unclassified);
BIOL (Biological study); OCCU (Occurrence)
(Bcl-x, Xs; doxorubicin and cycloheximide effect on KHM-11ad as CD95
(Fas/Apo-1)-neg. myeloma cell line)
IT Multiple myeloma
(CD95 (Fas/Apo-1)-neg. myeloma cell line establishment and
characterization)
IT CD19 (antigen)

CD2 (antigen)
 CD20 (antigen)
 CD3 (antigen)
 CD38 (antigen)
 CD4 (antigen)
 CD44 (antigen)
 CD45 (antigen)
 CD5 (antigen)
 CD7 (antigen)
 Fas antigen
 LFA-1 (antigen)
 RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
 (CD95 (Fas/Apo-1)-neg. **myeloma** cell line establishment and characterization)

IT Glycoproteins, specific or class
 RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
 (H-CAM (homing cell adhesion mol.); CD95 (Fas/Apo-1)-neg.
myeloma cell line establishment and characterization)

IT Histocompatibility antigens
 RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
 (HLA-DR; CD95 (Fas/Apo-1)-neg. **myeloma** cell line establishment and characterization)

IT Cell adhesion molecules
 RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
 (ICAM-1 (intercellular adhesion mol. 1); CD95 (Fas/Apo-1)-neg.
myeloma cell line establishment and characterization)

IT Animal cell line
 (KHM-11; CD95 (Fas/Apo-1)-neg. **myeloma** cell line establishment and characterization)

IT Proteins, specific or class
 RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
 (bcl-2; doxorubicin and cycloheximide effect on KHM-11ad as CD95 (Fas/Apo-1)-neg. **myeloma** cell line)

IT Apoptosis
 (doxorubicin and cycloheximide effect on KHM-11ad as CD95 (Fas/Apo-1)-neg. **myeloma** cell line)

IT **Integrins**
 RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
 (α 4 β 1; CD95 (Fas/Apo-1)-neg. **myeloma** cell line establishment and characterization).

IT **Integrins**
 RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
 (α 5 β 1; CD95 (Fas/Apo-1)-neg. **myeloma** cell line establishment and characterization)

IT 9054-63-1 82707-54-8, CD10 antigen
 RL: BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)

(CD95 (Fas/Apo-1)-neg. **myeloma** cell line establishment and characterization)

IT 66-81-9, Cycloheximide

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
(cycloheximide effect on apoptosis of KHM-11ad as CD95 (Fas/Apo-1)-neg. **myeloma** cell line)

IT 23214-92-8, Doxorubicin

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
(doxorubicin effect on apoptosis of KHM-11ad as CD95 (Fas/Apo-1)-neg. **myeloma** cell line)

IT 148-82-3, **Melphalan**

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
(**melphalan** effect on apoptosis of KHM-11ad as CD95 (Fas/Apo-1)-neg. **myeloma** cell line)

RE.CNT 16 THERE ARE 16 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Abbaszadegan, M; J Cancer 1996, V66, P506 HCPLUS
- (2) Cai, Z; Int J Cancer 1996, V68, P535 HCPLUS
- (3) Durie, B; Blood 1989, V73, P770 MEDLINE
- (4) Eagle, A; Br J Haematol 1997, V97, P418
- (5) Epstein, J; Blood 1986, V74, P913
- (6) Hata, H; Blood 1993, V81, P3357 MEDLINE
- (7) Hata, H; Blood 1995, V86, P1939 HCPLUS
- (8) Hata, H; Leukemia 1994, V8, P1768 MEDLINE
- (9) Kawano, M; Blood 1993, V82, P564 MEDLINE
- (10) Landowski, T; Blood 1997, V89, P1854 HCPLUS
- (11) Matsuzaki, H; Blood 1988, V72, P978 MEDLINE
- (12) Muller, M; J Clin Invest 1997, V99, P403 MEDLINE
- (13) Oltvai, Z; Cell 1994, V79, P189 HCPLUS
- (14) Ruiz-Arguelles, G; Mayo Clin Proc 1994, V69, P684 MEDLINE
- (15) Xiag, J; Proc Natl Acad Sci 1996, V93, P14559
- (16) Zang, C; J Immunol 1996, V157, P3980

IT 148-82-3, **Melphalan**

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
(**melphalan** effect on apoptosis of KHM-11ad as CD95 (Fas/Apo-1)-neg. **myeloma** cell line)

RN 148-82-3 HCPLUS

CN L-Phenylalanine, 4-[bis(2-chloroethyl)amino]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L94 ANSWER 4 OF 10 HCPLUS COPYRIGHT 2003 ACS on STN

AN 1999:153899 HCPLUS

DN 131:321

ED Entered STN: 10 Mar 1999

TI Cell adhesion-mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human **myeloma** cell lines

AU Damiano, Jason S.; Cress, Anne E.; Hazlehurst, Lori A.; Shtil, Alexander A.; Dalton, William S.

CS H. Lee. Moffitt Cancer Center, University of South Florida, Tampa, FL,
33612, USA

SO Blood (1999), 93(5), 1658-1667
CODEN: BLOOAW; ISSN: 0006-4971

PB W. B. Saunders Co.

DT Journal

LA English

CC 1-6 (Pharmacology)

AB Integrin-mediated adhesion influences cell survival and may prevent programmed cell death. Little is known about how drug-sensitive tumor cell lines survive initial exposures to cytotoxic drugs and eventually select for drug-resistant populations. Factors that allow for cell survival following acute cytotoxic drug exposure may differ from drug resistance mechanisms selected for by chronic drug exposure. The authors show here that drug-sensitive 8226 human myeloma cells, demonstrated to express both VLA-4 (α . α .4 β 1) and VLA-5 (α 5 β 1) integrin fibronectin (FN) receptors, are relatively resistant to the apoptotic effects of doxorubicin and melphalan when pre-adhered to FN and compared with cells grown in suspension. This cell adhesion-mediated drug resistance, or CAM-DR, was not due to reduced drug accumulation or upregulation of anti-apoptotic Bcl-2 family members. As determined by flow cytometry, myeloma cell lines selected for drug resistance, with either doxorubicin or melphalan, overexpress VLA-4. Functional assays revealed a significant increase in α . α .4-mediated cell adhesion in both drug-resistant variants compared with the drug-sensitive parent line. When removed from selection pressure, drug-resistant cell lines reverted to a drug-sensitive and α . α .4-low phenotype. Whether VLA-4-mediated FN adhesion offers a survival advantage over VLA-5-mediated adhesion remains to be determined. Thus, the authors demonstrated that FN-mediated adhesion confers a survival advantage for myeloma cells acutely exposed to cytotoxic drugs by inhibiting drug-induced apoptosis. This finding may explain how some cells survive initial drug exposure and eventually express classical mechanisms of drug resistance such as MDR1 overexpression.

ST cell adhesion drug resistance integrin; apoptosis resistance
human myeloma cell line

IT Animal cell line
(8226; cell adhesion-mediated drug resistance in relation to role of integrins and resistance to apoptosis in human myeloma cell lines)

IT Proteins, specific or class
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(bcl-2; cell adhesion-mediated drug resistance in relation to role of integrins and resistance to apoptosis in human myeloma cell lines)

IT Apoptosis
Cell adhesion
Cell death
Cytotoxicity
Drug resistance
(cell adhesion-mediated drug resistance in relation to role of integrins and resistance to apoptosis in human myeloma cell lines)

IT Integrins
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
(cell adhesion-mediated drug resistance in relation to role of integrins and resistance to apoptosis in human myeloma cell lines)

IT Fibronectin receptors
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL

(Biological study); PROC (Process)

(cell adhesion-mediated drug resistance in relation to role of integrins and resistance to apoptosis in human myeloma cell lines)

IT 148-82-3, Melphalan

RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
 (cell adhesion-mediated drug resistance in relation to role of integrins and resistance to apoptosis in human myeloma cell lines)

IT 23214-92-8, Doxorubicin

RL: ADV (Adverse effect, including toxicity); BPR (Biological process);
 BSU (Biological study, unclassified); BIOL (Biological study); PROC
 (Process)
 (cell adhesion-mediated drug resistance in relation to role of integrins and resistance to apoptosis in human myeloma cell lines)

RE.CNT 67 THERE ARE 67 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Abbaszadegan, M; Cancer Res 1994, V54, P4676 HCPLUS
- (2) Abbaszadegan, M; Cancer Res 1996, V56(23), P5435 HCPLUS
- (3) Altevogt, P; J Exp Med 1995, V182, P345 HCPLUS
- (4) Anwar, A; J Exp Med 1993, V177, P839 HCPLUS
- (5) Barker, H; Leuk Lymph 1992, V8, P189 MEDLINE
- (6) Bataille, R; Int J Clin Lab Res 1992, V21, P283 HCPLUS
- (7) Bates, R; J Cell Biol 1994, V125, P403 HCPLUS
- (8) Bellamy, W; Cancer Res 1991, V51, P995 HCPLUS
- (9) Benito, A; Blood 1996, V87, P3837 HCPLUS
- (10) Bordreau, N; Science 1995, V267(5199), P891
- (11) Bozzo, C; Exp Cell Res 1997, V237, P326 HCPLUS
- (12) Caligaris-Cappio, F; Leuk Lymph 1992, V8, P15 MEDLINE
- (13) Chen, H; Proc Natl Acad Sci USA 1994, V91, P10148 HCPLUS
- (14) Chen, Q; J Biol Chem 1994, V269, P26602 HCPLUS
- (15) Clark, E; Science 1995, V268, P233 HCPLUS
- (16) Croix, B; Nature Med 1996, V2, P1204
- (17) Dalton, W; Blood 1989, V73, P747 HCPLUS
- (18) Dalton, W; Cancer Res 1986, V46, P2125
- (19) Dalton, W; Leukemia 1997, V11(7), P1166 HCPLUS
- (20) Datta, S; Cell 1997, V92, P231
- (21) Dedhar, S; Cancer Metas Rev 1996, V14, P55
- (22) Duensing, S; Invasion Met 1996, V16, P65 HCPLUS
- (23) Durand, R; Exp Cell Res 1989, V71, P747
- (24) Elices, M; Cell 1990, V60, P577 HCPLUS
- (25) Frisch, S; J Cell Biol 1994, V124, P619 HCPLUS
- (26) Frisch, S; J Cell Biol 1994, V124, P619 HCPLUS
- (27) Fuks, Z; Eur J Cancer 1992, V28A, P725 HCPLUS
- (28) Futscher, B; Anal Biochem 1993, V213, P414 HCPLUS
- (29) Higashimoto, I; Int Arch Allergy Immunol 1996, V111(Suppl 1), P66
- (30) Hoyt, D; Cancer Res 1996, V56, P2146
- (31) Hungerford, J; J Cell Biol 1996, V135, P1383 HCPLUS
- (32) Hurley, R; J Clin Invest 1995, V96, P511 HCPLUS
- (33) Hynes, R; Cell 1992, V69, P11 HCPLUS
- (34) Jensen, G; Am J Hematol 1993, V43, P29 MEDLINE
- (35) Juliano, R; Cancer Metas Rev 1994, V13, P25 HCPLUS
- (36) Kennedy, S; Genes Devel 1997, V11, P701 HCPLUS
- (37) King, W; Mol Cell Biol 1997, V17(8), P4406 HCPLUS
- (38) Komarov, P; Oncology Res 1998, V10, P185 HCPLUS
- (39) Koopman, G; J Immunol 1994, V152, P3760 HCPLUS
- (40) Marte, B; TIBS 1997, V22, P355 HCPLUS
- (41) Meredeth, J; Mol Biol Cell 1993, V4, P953
- (42) Morimoto, C; Curr Opin Micro Immunol 1998, V231, P1 HCPLUS
- (43) Nista, A; Int J Cancer 1997, V72, P133 HCPLUS
- (44) Nojima, Y; Cell Immunol 1995, V161, P8 HCPLUS
- (45) Paizi, M; Scand J Immunol 1991, V34, P285 MEDLINE

- (46) Pulido, R; J Biol Chem 1991, V266, P10241 HCAPLUS
 (47) Ricard, I; Eur J Immunol 1997, V27, P1530 HCAPLUS
 (48) Rodeck, U; Proc Natl Acad Sci USA 1997, V94, P5067 HCAPLUS
 (49) Rozzo, C; Int J Cancer 1997, V70, P688 HCAPLUS
 (50) Saiki, I; Jpn J Cancer Res 1993, V84, P326 HCAPLUS
 (51) Scheid, M; Biochem J 1995, V312, P159 HCAPLUS
 (52) Schuetz, J; Cell Growth Diff 1993, V4, P31 HCAPLUS
 (53) Schustik, C; Molecular Aspects of Medicine 1995, V16, P1
 (54) Scotlandi, K; Cancer Res 1996, V56, P2434 HCAPLUS
 (55) Scott, G; J Invest Dermatol 1997, V108, P147 HCAPLUS
 (56) Sedlak, J; Neoplasma 1996, V43, P389 MEDLINE
 (57) Soose, M; Cell Biol Toxicol 1995, V11, P51 HCAPLUS
 (58) Teicher, B; Science 1990, V247, P1457 HCAPLUS
 (59) Tu, Y; Blood 1996, V88, P1805 HCAPLUS
 (60) Uchiyama, H; Blood 1993, V82, P3712 HCAPLUS
 (61) van Riet, I; Br J Hematol 1994, V87, P258 HCAPLUS
 (62) Vichi, P; Cancer Res 1989, V49, P2679 HCAPLUS
 (63) Wang, M; Cell Growth Diff 1998, V9, P105 HCAPLUS
 (64) Wen, L; J Biol Chem 1997, V272, P26056 HCAPLUS
 (65) Xiao, J; J Biol Chem 1996, V271(13), P7659 MEDLINE
 (66) Zachary, I; Cell 1992, V71, P891 HCAPLUS
 (67) Zhang, Z; Proc Natl Acad Sci USA 1995, V92(13), P6161 HCAPLUS

IT 148-82-3, Melphalan

RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
 (cell adhesion-mediated drug resistance in relation to role of
integrins and resistance to apoptosis in human **myeloma**
 cell lines)

RN 148-82-3 HCAPLUS

CN L-Phenylalanine, 4-[bis(2-chloroethyl)amino]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L94 ANSWER 5 OF 10 HCAPLUS COPYRIGHT 2003 ACS on STN

AN 1998:591855 HCAPLUS

DN 129:211534

ED Entered STN: 18 Sep 1998

TI Alendronate reduces adhesion of human osteoclast-like cells to bone and bone protein-coated surfaces

AU Colucci, S.; Minielli, V.; Zambonin, G.; Cirulli, N.; Mori, G.; Serra, M.; Patella, V.; Zallone, A. Zambonin; Grano, M.

CS Istituto di Anatomia Umana Normale P.zza G. Cesare, Bari, 70124, Italy

SO Calcified Tissue International (1998), 63(3), 230-235

CODEN: CTINDZ; ISSN: 0171-967X

PB Springer-Verlag New York Inc.

DT Journal

LA English

CC 1-10 (Pharmacology)

AB **Bisphosphonates** (BPs) are potent inhibitors of bone resorption and are therapeutically effective in disease of increased bone turnover, but their mechanism(s) of action remain to be elucidated. Using as exptl. model human osteoclast-like cell lines derived from giant cell tumors of the bone, extensively characterized for their osteoclast features, the adhesive properties were investigated of osteoclasts on bone slices and on

different proteins of the extracellular matrix in the presence of BPs. Adhesion assays using bone slices pretreated with alendronate (ALN), at the established active concentration, showed that, although the morphol. of osteoclasts plated onto pretreated bone slices was not modified, the number of adherent cells was reduced by the treatment of 50% vs. controls. The effect of ALN on the adhesion of osteoclast-like cells onto specific extracellular matrix proteins, such as bone sialoprotein-derived peptide, containing the RGD sequence, conjugated to BSA (BSP-BSA) and fibronectin (FN), was also tested. In the case of FN the treatment with ALN of protein-coated wells did not modify the percentage of cell adhesion compared with the control, whereas onto BSP-BSA the presence of ALN reduced adhesion of about 40-45%, suggesting that the inhibitory effect of ALN on cell adhesion could probably be due to the interference with receptors specifically recognizing bone matrix proteins as $\alpha\beta 3$ integrins. Furthermore, ALN induced Ca-mediated intracellular signals in osteoclasts, triggering a 2-fold increase in intracellular Ca concentration

- ST alendronate bone protein adhesion osteoclast antiresorptive
- IT Sialoglycoproteins
 - RL: BSU (Biological study, unclassified); BIOL (Biological study) (BSP II (bone sialoglycoprotein II); cell adhesion on osteoclasts coated with BSP in the presence of alendronate)
- IT Cell adhesion
 - Osteoclast**
 - (alendronate reduces osteoclast adhesion to bone surfaces)
- IT Fibronectins
 - RL: BSU (Biological study, unclassified); BIOL (Biological study) (cell adhesion on osteoclasts coated with fibronectin in the presence of alendronate)
- IT Bone
 - (resorption, inhibitors; alendronate reduces osteoclast adhesion to bone surfaces)
- IT Osteoporosis
 - (therapeutic agents; alendronate reduces osteoclast adhesion to bone surfaces)
- IT 66376-36-1, Alendronate
 - RL: BAC (Biological activity or effector, except adverse); BIOL (Biological study)
 - (alendronate reduces osteoclast adhesion to bone surfaces)
- IT 7440-70-2, Calcium, biological studies
 - RL: BOC (Biological occurrence); BIOL (Biological study); OCCU (Occurrence)
 - (effect of alendronate on intracellular Ca concentration in osteoclasts)

RE.CNT 30 THERE ARE 30 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Baron, R; J Cell Biol 1985, V101, P2210 HCPLUS
- (2) Boonekamp, P; Bone Miner 1986, V1, P27 HCPLUS
- (3) Carano, A; J Clin Invest 1990, V85, P456 HCPLUS
- (4) Cecchini, M; J Bone Miner Res 1987, V2, P135 HCPLUS
- (5) Chenu, C; J Cell Biol 1994, V127, P1149 HCPLUS
- (6) Colucci, S; Bone 1995, V17(6), P599
- (7) Colucci, S; J Cell Sci 1996, V109, P1527 HCPLUS
- (8) Dejana, E; J Cell Biol 1988, V107, P1215 HCPLUS
- (9) Flanagan, A; Bone Miner 1989, V6, P33 HCPLUS
- (10) Flanagan, A; Calcif Tissue Int 1991, V49, P407 HCPLUS
- (11) Fleisch, J; Science 1969, V165, P1262
- (12) Fleish, H; Bone 1987, V8(1), P523
- (13) Fleish, H; Drugs 1991, V42, P919
- (14) Grano, M; Am J Physiol 1994, V267, PC961 HCPLUS
- (15) Grano, M; Exp Cell Res 1994, V212, P209 HCPLUS
- (16) Grano, M; J Bone Miner Res 1994, V9, P1013 MEDLINE
- (17) Grano, M; PNAS 1996, V93, P7644 HCPLUS
- (18) Grynkiewicz, G; J Biol Chem 1985, V260, P3440 HCPLUS

- (19) Hughes, D; J Bone Miner Res 1995, V10, P1478 HCPLUS
 (20) Kanis, J; Drug used for the treatment of Paget's disease of bone 1991,
 P159
 (21) Minaire, P; J Clin Invest 1981, V68, P1086 MEDLINE
 (22) Nagao, Y; J Bone Miner Res 1990, V5, PS159
 (23) Pelletier, A; J Biol Chem 1996, V271, P1364 HCPLUS
 (24) Sahni, M; J Clin Invest 1993, V91, P2004 HCPLUS
 (25) Sato, M; J Clin Invest 1991, V88, P2095 HCPLUS
 (26) Schmidt, A; Proc Natl Acad Sci USA 1996, V93, P3068 HCPLUS
 (27) Silver, I; Exp Cell Res 1988, V204, P9
 (28) Takemura, H; J Biol Chem 1989, V264(21), P12266 HCPLUS
 (29) Zambonin, G; Biomaterials 1995, V16, P397 HCPLUS
 (30) Zimolo, Z; J Clin Invest 1995, V96, P2277 HCPLUS

IT 66376-36-1, Alendronate

RL: BAC (Biological activity or effector, except adverse); BIOL
 (Biological study)
 (alendronate reduces osteoclast adhesion to bone surfaces)

RN 66376-36-1 HCPLUS

CN Phosphonic acid, (4-amino-1-hydroxybutylidene)bis- (9CI) (CA INDEX NAME)

L94 ANSWER 6 OF 10 HCPLUS COPYRIGHT 2003 ACS on STN

AN 1997:701081 HCPLUS

DN 128:30109

ED Entered STN: 07 Nov 1997

TI Deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**

AU Pilarski, Linda M.; Szczepak, Agnieszka J.; Belch, Andrew R.

CS Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, AB, Can.

SO Blood (1997), 90(9), 3751-3759

CODEN: BLOOAW; ISSN: 0006-4971

PB Saunders

DT Journal

LA English

CC 1-6 (**Pharmacology**)

Section cross-reference(s): 14

AB Although chemotherapy effectively reduces the plasma cell burden in **multiple myeloma** (MM), the disease recurs. MM includes circulating and bone marrow (BM) localized components. A large majority of circulating CD11b+ MM B cells (81%) express an IgH VDJ rearrangement identical to that of autologous BM plasma cells. Unlike plasma cells, these monoclonal circulating B cells exhibit dye and drug transport activity before and throughout chemotherapy. Drug resistance was measured as the ability to export the fluorescent dye Rhodamine 123 (Rh123) or the drug adriamycin, using flow cytometry. The role of P-glycoprotein 170 (P-gp), the multidrug transporter, was defined by cyclosporin A (CsA)-sensitive dye export. Only 8% to 11% of BM-localized plasma cells exported dye with the majority retaining dye, identified as bright staining. Circulating leukemic plasma cells were also unable to export dye and remained Rh123bright. However, 53% of circulating clonotypic MM B cells exhibited CsA-sensitive dye export. BM plasma cells taken before or after initiation of first line chemotherapy were equally unable to export dye. Thus in **myeloma**, differentiation to the plasma cell stage is accompanied by a loss of P-gp function, although P-gp phenotypic

expression is retained. In contrast, for monoclonal gammopathy of undetd. significance (MGUS), 54% of BM-localized plasma cells exported dye, comparable to the 53% of circulating MGUS B cells that also exported dye, suggesting that the apparent defect in P-gp function is unique to **myeloma** plasma cells. Virtually all BM plasma cells in MM retained the drug adriamycin, consistent with their initial drug sensitivity in vivo, in contrast to circulating MM B cells, or to T cells in BM or blood. Thus, circulating B cells appear to be the predominant drug-resistant component of the MM B-lineage hierarchy. This report suggests that successful therapeutic strategies will be those that target circulating B cells. Chemosensitization methods involving inhibition of P-gp are likely to improve depletion of these cells by compromising their ability to exclude drug. This work suggests that circulating clonotypic B cells should be monitored in clin. trials to confirm their depletion and the overall efficacy of novel treatment strategies.

ST **multiple myeloma** drug transport plasma cell;
resistance drug B cell **multiple myeloma**

IT **Integrins**

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(antigens CD11b; deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)

IT B cell (lymphocyte)

Bone marrow

CD4-positive T cell

CD8-positive T cell

Drug resistance

Monocyte

Multiple myeloma

(deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)

IT Interferons

Interleukin 2

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)

IT P-glycoproteins

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)

IT CD14 (antigen)

CD19 (antigen)

CD38 (antigen)

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)

IT Biological transport

(drug; deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)

IT Immunoglobulins

RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
(monoclonal gammopathy; deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)

IT Antitumor agents

Antitumor agents

Antitumor agents

(**multiple myeloma**; deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)

- IT Leukemia
 (plasma cell, terminal; deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)
- IT Lymphocyte
 (plasma cell; deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)
- IT 25316-40-9, Adriamycin
 RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)
 (deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)
- IT 50-02-2, Dexamethasone 53-03-2, Prednisone 57-22-7, Vincristine 148-82-3, Melphalan
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)
- IT 148-82-3, Melphalan
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (deficient drug transporter function of bone marrow-localized and leukemic plasma cells in **multiple myeloma**)
- RN 148-82-3 HCPLUS
 CN L-Phenylalanine, 4-[bis(2-chloroethyl)amino]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

- L94 ANSWER 7 OF 10 HCPLUS COPYRIGHT 2003 ACS on STN
 AN 1997:613207 HCPLUS
 DN 127:302970
 ED Entered STN: 26 Sep 1997
 TI **Bisphosphonates** inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrixes
 AU Boissier, Sandrine; Magnetto, Sandrine; Frappart, Lucien; Cuzin, Beatrice; Ebetino, Frank H.; Delmas, Pierre D.; Clezardin, Philippe
 CS Institut National de la Sante et de la Recherche Medicale Research Unit 403, Pavillon F, Hopital Edouard Herriot, Lyon, 69437, Fr.
 SO Cancer Research (1997), 57(18), 3890-3894
 CODEN: CNREA8; ISSN: 0008-5472
 PB American Association for Cancer Research
 DT Journal
 LA English
 CC 1-6 (**Pharmacology**)
 AB The mol. mechanisms by which tumor cells induce osteolytic metastases are likely to involve tumor cell adhesion to bone as well as the release of soluble mediators from tumor cells that stimulate osteoclast-mediated bone resorption. **Bisphosphonates** (BPs) are powerful inhibitors of the osteoclast activity and are, therefore, used in the treatment of

cancer-associated osteolytic metastases. Here, we investigated the effect of BPs on breast and prostate carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrixes. BP pretreatment of tumor cells inhibited tumor cell adhesion to unmineralized and mineralized osteoblastic extracellular matrixes in a dose-dependent manner. In contrast, BP did not affect adhesion of normal cells (fibroblasts) to extracellular matrixes. The order of potency for four BPs in inhibiting tumor cell adhesion to extracellular matrixes was found to be: ibandronate > NE-10244 (antiresorptive active pyridinium analog of risedronate) > pamidronate > clodronate. BP did not affect [³H]thymidine incorporation by tumor cells, as assessed by a mitogenesis assay, indicating that BP did not exert any cytotoxic effect at concns. used to inhibit tumor cell adhesion. NE-58051, the inactive pyridylpropylidene analog of risedronate, had no inhibitory effect on tumor cell adhesion compared to that observed with its active counterpart NE-10244, suggesting that the mechanism of action of BP on tumor cells involved a stereospecific recognition step. Although integrins mediate cell-matrix interactions, BP recognition by tumor cells did not modulate cell surface integrin expression. In conclusion, our results provide evidence for a direct cellular effect of BP in preventing tumor cell adhesion to bone, suggesting that BPs may be useful agents for the prophylactic treatment of patients with cancer that is known to preferentially metastasize to bone.

ST bisphosphonate tumor adhesion bone extracellular matrix;
antitumor bisphosphonate bone metastasis

IT Bone

Cell adhesion

Extracellular matrix

(bisphosphonates inhibition of prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrixes)

IT Mammary gland

Prostate gland

(carcinoma, inhibitors; bisphosphonates inhibition of prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrixes)

IT Osteoblast

(extracellular matrix; bisphosphonates inhibition of prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrixes)

IT Antitumor agents

(mammary gland carcinoma; bisphosphonates inhibition of prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrixes)

IT Antitumor agents

(prostate carcinoma; bisphosphonates inhibition of prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrixes)

IT 104261-69-0, NE 58051

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
(bisphosphonates inhibition of prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrixes)

IT 10596-23-3 40391-99-9 114084-78-5, Ibandronate

197313-76-1, NE 10244

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(bisphosphonates inhibition of prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrixes)

RE

- (1) Abbadia, Z; FEBS Lett 1993, V335, P161 HCAPLUS
- (2) Clezardin, P; Cancer Res 1991, V51, P2621 HCAPLUS
- (3) Clezardin, P; Eur J Biochem 1989, V181, P721 HCAPLUS
- (4) Diel, I; Proc Am Soc Clin Oncol 1997, V16, P130a
- (5) Ebetino, F; Bisphosphonates on bones 1995, P139 HCAPLUS
- (6) Galasko, C; Skeletal metastases 1986
- (7) Haas, T; Curr Opin Cell Biol 1994, V6, P656 HCAPLUS
- (8) Hortobagyi, G; N Engl J Med 1996, V335, P1785 HCAPLUS
- (9) Kanis, J; Bone 1996, V19, P663 HCAPLUS
- (10) Kirk, M; J Bone Miner Res 1995, V10, P1203 HCAPLUS
- (11) Rodan, G; J Clin Invest 1996, V97, P2692 HCAPLUS
- (12) Sasaki, A; Cancer Res 1995, V55, P3551 HCAPLUS
- (13) van der Pluijm, G; J Clin Invest 1996, V98, P698 HCAPLUS
- (14) Yoneda, T; Int J Oncol 1996, V9, P103

IT 104261-69-0, NE 58051

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
(bisphosphonates) inhibition of prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrixes)

RN 104261-69-0 HCAPLUS

CN Phosphonic acid, [1-hydroxy-3-(3-pyridinyl)propylidene]bis- (9CI) (CA INDEX NAME)

IT 10596-23-3 40391-99-9 114084-78-5, Ibandronate

197313-76-1, NE 10244

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(bisphosphonates) inhibition of prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrixes)

RN 10596-23-3 HCAPLUS

CN Phosphonic acid, (dichloromethylene)bis- (9CI) (CA INDEX NAME)

RN 40391-99-9 HCAPLUS

CN Phosphonic acid, (3-amino-1-hydroxypropylidene)bis- (9CI) (CA INDEX NAME)

RN 114084-78-5 HCAPLUS

CN Phosphonic acid, [1-hydroxy-3-(methylpentylamino)propylidene]bis- (9CI)

(CA INDEX NAME)

RN 197313-76-1 HCAPLUS

CN Pyridinium, 3-(2-hydroxy-2,2-diphosphonoethyl)-1-methyl-, inner salt, disodium salt (9CI) (CA INDEX NAME)

●2 Na

L94 ANSWER 8 OF 10 HCAPLUS COPYRIGHT 2003 ACS on STN

AN 1997:593792 HCAPLUS

DN 127:242709

ED Entered STN: 17 Sep 1997

TI **Thalidomide** may impede cell migration in primates by down-regulating **integrin** β -chains: potential therapeutic utility in solid malignancies, proliferative retinopathy, inflammatory disorders, neointimal hyperplasia, and osteoporosis

AU McCarty, M. F.

CS Nutrition 21, San Diego, CA, 92109, USA

SO Medical Hypotheses (1997), 49(2), 123-131

CODEN: MEHYDY; ISSN: 0306-9877

PB Churchill Livingstone

DT Journal; General Review

LA English

CC 1-0 (**Pharmacology**)

AB A review with 108 refs. A growing number of human inflammatory disorders are reported to respond to treatment with **thalidomide**, and recently this drug has been shown to inhibit angiogenesis in the rabbit, in doses which can elicit teratogenicity in this species. Studies in marmosets and humans indicate that **thalidomide**, and a teratogenic analog, decrease the expression of β **integrin** subunits, most notably β_3 and the β_2 produced by leukocytes. Since **integrins** are crucial for cell-matrix interactions, and the β_2 **integrins** of leukocytes mediate adhesion to endothelium, it is reasonable to postulate that **thalidomide** inhibits cell migration in susceptible species, and that this accounts for its anti-inflammatory, anti-angiogenic, and teratogenic activity. This perspective suggests that **thalidomide** will show utility in the prevention or treatment of a wide range of disorders, including solid tumors, proliferative retinopathies, many inflammatory diseases, neointimal hyperplasia, and osteoporosis. It is likely that dietary fish oil - as well as selective inhibitors of urokinase, when and if they become clin. available - will complement the efficacy of

- ST thalidomide in most if not all of these applications.
 review thalidomide cell migration beta integrin;
 antitumor antiinflammatory antiangiogenic osteoporosis thalidomide
 review; retinopathy teratogen thalidomide fish oil review
- IT Fats and Glyceridic oils, biological studies
 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (fish; thalidomide effect on cell migration: down-regulation
 of β- integrins and potential therapeutic use in solid
 malignancies, proliferative retinopathy, inflammatory disorders,
 neointimal hyperplasia, and osteoporosis)
- IT Eye, disease
 (retinopathy; thalidomide effect on cell migration:
 down-regulation of β- integrins and potential therapeutic
 use in solid malignancies, proliferative retinopathy, inflammatory
 disorders, neointimal hyperplasia, and osteoporosis)
- IT Angiogenesis inhibitors
 Anti-inflammatory agents
 Antitumor agents
 Teratogens
 (thalidomide effect on cell migration: down-regulation of
 β- integrins and potential therapeutic use in solid
 malignancies, proliferative retinopathy, inflammatory disorders,
 neointimal hyperplasia, and osteoporosis)
- IT Osteoporosis
 (therapeutic agents; thalidomide effect on cell migration:
 down-regulation of β- integrins and potential therapeutic
 use in solid malignancies, proliferative retinopathy, inflammatory
 disorders, neointimal hyperplasia, and osteoporosis)
- IT Integrins
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
 (Biological study); PROC (Process)
 (β2; thalidomide effect on cell migration:
 down-regulation of β- integrins and potential therapeutic
 use in solid malignancies, proliferative retinopathy, inflammatory
 disorders, neointimal hyperplasia, and osteoporosis)
- IT Integrins
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
 (Biological study); PROC (Process)
 (β3; thalidomide effect on cell migration:
 down-regulation of β- integrins and potential therapeutic
 use in solid malignancies, proliferative retinopathy, inflammatory
 disorders, neointimal hyperplasia, and osteoporosis)
- IT 50-35-1, Thalidomide
 RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or
 effector, except adverse); BSU (Biological study, unclassified); THU
 (Therapeutic use); BIOL (Biological study); USES (Uses)
 (thalidomide effect on cell migration: down-regulation of
 β- integrins and potential therapeutic use in solid
 malignancies, proliferative retinopathy, inflammatory disorders,
 neointimal hyperplasia, and osteoporosis)
- IT 50-35-1, Thalidomide
 RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or
 effector, except adverse); BSU (Biological study, unclassified); THU
 (Therapeutic use); BIOL (Biological study); USES (Uses)
 (thalidomide effect on cell migration: down-regulation of
 β- integrins and potential therapeutic use in solid
 malignancies, proliferative retinopathy, inflammatory disorders,
 neointimal hyperplasia, and osteoporosis)
- RN 50-35-1 HCPLUS
- CN 1H-Isoindole-1,3(2H)-dione, 2-(2,6-dioxo-3-piperidinyl)- (9CI) (CA INDEX
 NAME)

L94 ANSWER 9 OF 10 HCPLUS COPYRIGHT 2003 ACS on STN
 AN 1996:756546 HCPLUS
 DN 126:17804
 ED Entered STN: 26 Dec 1996
 TI Human antibodies derived from immunized xenomice
 IN Kucherlapati, Raju; Jakobovits, Aya; Klapholz, Sue; Brenner, Daniel G.; Capon, Daniel J.
 PA Cell Genesys, Inc., USA
 SO PCT Int. Appl., 64 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 IC ICM C12N015-00
 CC 15-3 (Immunochemistry)
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9634096	A1	19961031	WO 1995-US5500	19950428 <--
	W: AU, CA, FI, HU, JP, KR, NO, NZ RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	CA 2219486	AA	19961031	CA 1995-2219486	19950428 <--
	AU 9524668	A1	19961118	AU 1995-24668	19950428 <--
	EP 823941	A1	19980218	EP 1995-918935	19950428 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE				
	JP 11505107	T2	19990518	JP 1995-532463	19950428 <--
PRAI	WO 1995-US5500		19950428 <--		
AB	Antibodies with fully human variable regions against a specific antigen can be prepared by administering the antigen to a transgenic animal which has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled. Various subsequent manipulations can be performed to obtain either antibodies per se or analogs thereof.				
ST	human antibody Ig xenomice therapeutic				
IT	Interleukin receptors RL: BSU (Biological study, unclassified); BIOL (Biological study) (12; human antibodies derived from immunized xenomice)				
IT	Antigens RL: BSU (Biological study, unclassified); BIOL (Biological study) (A7; human antibodies derived from immunized xenomice)				
IT	Antigens RL: BSU (Biological study, unclassified); BIOL (Biological study) (B7.3; human antibodies derived from immunized xenomice)				
IT	Glycoproteins, specific or class RL: BSU (Biological study, unclassified); BIOL (Biological study) (B; human antibodies derived from immunized xenomice)				
IT	CD antigens RL: BSU (Biological study, unclassified); BIOL (Biological study) (CD27; human antibodies derived from immunized xenomice)				
IT	Antigens RL: BSU (Biological study, unclassified); BIOL (Biological study) (CD29 ligand; human antibodies derived from immunized xenomice)				
IT	Antigens RL: BSU (Biological study, unclassified); BIOL (Biological study) (CD30 ligand; human antibodies derived from immunized xenomice)				

- IT Glycoproteins, specific or class
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(CD40-L (antigen CD40 ligand); human antibodies derived from immunized xenomice)
- IT CD antigens
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(CD6; human antibodies derived from immunized xenomice)
- IT CD antigens
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(CD72; human antibodies derived from immunized xenomice)
- IT CD antigens
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(CDw52; human antibodies derived from immunized xenomice)
- IT Envelope proteins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(E glycoprotein; human antibodies derived from immunized xenomice)
- IT Selectins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(E-; human antibodies derived from immunized xenomice)
- IT Immunoglobulins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(E; human antibodies derived from immunized xenomice)
- IT Proteins, specific or class
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(ECP (eosinophil cationic protein); human antibodies derived from immunized xenomice)
- IT Cytokines
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(Groα; human antibodies derived from immunized xenomice)
- IT Cytokines
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(Groß; human antibodies derived from immunized xenomice)
- IT Glycoproteins, specific or class
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(H-CAM (homing cell adhesion mol.); human antibodies derived from immunized xenomice)
- IT Cell adhesion molecules
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(ICAM-1 (intercellular adhesion mol. 1); human antibodies derived from immunized xenomice)
- IT Cell adhesion molecules
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(ICAM-2 (intercellular adhesion mol. 2); human antibodies derived from immunized xenomice)
- IT Gene, animal
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(Ig.; human antibodies derived from immunized xenomice)
- IT Immunoglobulin receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(IgE type I; human antibodies derived from immunized xenomice)
- IT Immunoglobulin receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(IgE type II; human antibodies derived from immunized xenomice)
- IT Immunoglobulin receptors
Immunoglobulin receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(IgE; human antibodies derived from immunized xenomice)
- IT Selectins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(L-; human antibodies derived from immunized xenomice)
- IT Proteins, specific or class
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(LMP-1; human antibodies derived from immunized xenomice)

- IT Proteins, specific or class
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(LMP-2 (latent-infection membrane protein 2); human antibodies derived from immunized xenomice)
- IT Blood-group substances
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(Leb, synthetic; human antibodies derived from immunized xenomice)
- IT Blood-group substances
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(Ley; human antibodies derived from immunized xenomice)
- IT Allergens
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(Lol p I (Lolium perenne, I); human antibodies derived from immunized xenomice)
- IT Cytokines
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(MBP (major basic protein); human antibodies derived from immunized xenomice)
- IT Histocompatibility antigens
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(MHC (major histocompatibility complex), class I; human antibodies derived from immunized xenomice)
- IT Histocompatibility antigens
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(MHC (major histocompatibility complex), class II; human antibodies derived from immunized xenomice)
- IT Selectins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(P-; human antibodies derived from immunized xenomice)
- IT Chemokines
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(PF4; human antibodies derived from immunized xenomice)
- IT Skin, disease
(Paget disease; human antibodies derived from immunized xenomice)
- IT Bone, disease
(Paget's; human antibodies derived from immunized xenomice)
- IT Arthritis
Arthritis
Arthritis
(Reiter's syndrome; human antibodies derived from immunized xenomice)
- IT Blood-group substances
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(Rh; human antibodies derived from immunized xenomice)
- IT Cell adhesion molecules
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(VCAM-1; human antibodies derived from immunized xenomice)
- IT Respiratory distress syndrome
(adult; human antibodies derived from immunized xenomice)
- IT Proteins, specific or class
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(amadori; human antibodies derived from immunized xenomice)
- IT Dermatophagoides
Leukocyte
(antigen; human antibodies derived from immunized xenomice)
- IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(antigens CD11a; human antibodies derived from immunized xenomice)
- IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(antigens CD11b; human antibodies derived from immunized xenomice)
- IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(antigens CD11c; human antibodies derived from immunized xenomice)

- IT **Integrins**
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(antigens Mac-1 (macrophage 1); human antibodies derived from immunized xenomice)
- IT Thyroid gland, disease
(autoimmune thyroiditis; human antibodies derived from immunized xenomice)
- IT Gene, animal
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(c-erbB2, products; human antibodies derived from immunized xenomice)
- IT Proteins, specific or class
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(cholesterol ester-exchanging; human antibodies derived from immunized xenomice)
- IT Mammary gland
Reproductive tract
(disease, Paget; human antibodies derived from immunized xenomice)
- IT Sialoglycoproteins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(endosialins; human antibodies derived from immunized xenomice)
- IT Toxins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(endotoxins; human antibodies derived from immunized xenomice)
- IT Glycoproteins, specific or class
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(gH; human antibodies derived from immunized xenomice)
- IT Glycoproteins, specific or class
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(gcIII; human antibodies derived from immunized xenomice)
- IT Kidney, disease
(glomerulonephritis; human antibodies derived from immunized xenomice)
- IT Lipids, biological studies
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(glycated; human antibodies derived from immunized xenomice)
- IT Glycoproteins, specific or class
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(gp39; human antibodies derived from immunized xenomice)
- IT Transplant and Transplantation
(graft-vs.-host reaction; human antibodies derived from immunized xenomice)
- IT Myelin
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(growth inhibitor associated with; human antibodies derived from immunized xenomice)
- IT Animal cell
Animal cell line
Asthma
Autoimmune disease
B cell (lymphocyte)
Behcet's syndrome
Cachexia
Cytomegalovirus
Dermatomyositis
Diagnosis
Graves' disease
Hepatitis virus
Human herpesvirus
Human herpesvirus 3
Human herpesvirus 4
Human immunodeficiency virus 1
Human papillomavirus
Multiple myeloma
Multiple sclerosis

Myasthenia gravis

Osteoporosis

Pseudomonas

Psoriasis

Respiratory syncytial virus

Rheumatoid arthritis

Sjogren's syndrome

Therapy

(human antibodies derived from immunized xenomice)

IT Antibodies

Immunoglobulins

RL: BPN (Biosynthetic preparation); THU (Therapeutic use); BIOL

(Biological study); PREP (Preparation); USES (Uses)

(human antibodies derived from immunized xenomice)

IT Allergens

Antigens

Blood-coagulation factors

CD14 (antigen)

CD19 (antigen)

CD2 (antigen)

CD20 (antigen)

CD22 (antigen)

CD28 (antigen)

CD3 (antigen)

CD30 (antigen)

CD4 (antigen)

CD40 (antigen)

CD44 (antigen)

CD45 (antigen)

CD5 (antigen)

CD56 (antigen)

CD69 (antigen)

CD7 (antigen)

CD8 (antigen)

CD80 (antigen)

CD86 (antigen)

CTLA-4 (antigen)

Carcinoembryonic antigen

Cell adhesion molecules

Chemokines

Enzymes, biological studies

Epidermal growth factor receptors

Erythropoietin receptors

Fas antigen

Fibrinogens

Fibrins

Fibroblast growth factor receptors

Granulocyte colony-stimulating factor receptors

Growth factor receptors

Growth factors, animal

Hematopoietin receptors

Histocompatibility antigens

Immunoglobulin receptors

Interferon receptors

Interleukin 1

Interleukin 1 receptors

Interleukin 10

Interleukin 11

Interleukin 12

Interleukin 13

Interleukin 14

Interleukin 15

Interleukin 2

Interleukin 2 receptors
Interleukin 3
Interleukin 3 receptors
Interleukin 4
Interleukin 4 receptors
Interleukin 5
Interleukin 5 receptors
Interleukin 6
Interleukin 6 receptors
Interleukin 7
Interleukin 7 receptors
Interleukin 8
Interleukin 8 receptors
Interleukin 9
Interleukin receptors
Interleukins
LFA-1 (antigen)
LFA-3 (antigen)
Macrophage inflammatory protein 1 α
Monocyte chemoattractant protein-1
Mucins
Neutrophil-activating peptide-2
Osteopontin
P-glycoproteins
Platelet-derived growth factor receptors
Platelet-derived growth factors
RANTES (chemokine)
TCR (T cell receptors)
Thyrotropin receptors
Toxins
Tumor necrosis factor receptors
Tumor necrosis factors
Vascular endothelial growth factor receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(human antibodies derived from immunized xenomice)

IT Parathyroid hormone receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(humoral hypercalcemic factor; human antibodies derived from immunized xenomice)

IT Reperfusion
(injury; human antibodies derived from immunized xenomice)

IT Diabetes mellitus
(insulin-dependent; human antibodies derived from immunized xenomice)

IT Interleukin receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(interleukin 10 receptors; human antibodies derived from immunized xenomice)

IT Interleukin receptors
Interleukin receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(interleukin 11; human antibodies derived from immunized xenomice)

IT Interleukin receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(interleukin 12; human antibodies derived from immunized xenomice)

IT Interleukin receptors
Interleukin receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(interleukin 13; human antibodies derived from immunized xenomice)

IT Receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(interleukin 14; human antibodies derived from immunized xenomice)

IT Interleukin receptors
Interleukin receptors

RL: BSU (Biological study, unclassified); BIOL (Biological study)
(interleukin 15; human antibodies derived from
immunized xenomice)

IT Interleukin receptors
Interleukin receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(interleukin 9; human antibodies derived from immunized xenomice)

IT Selectins
Selectins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(ligands; human antibodies derived from immunized xenomice)

IT Lipoproteins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(low-d., oxidized; human antibodies derived from immunized xenomice)

IT Neoplasm
(metastasis; human antibodies derived from immunized xenomice)

IT Connective tissue
(mixed connective tissue disease; human antibodies derived from
immunized xenomice)

IT Antibodies
RL: BPN (Biosynthetic preparation); THU (Therapeutic use); BIOL
(Biological study); PREP (Preparation); USES (Uses)
(monoclonal; human antibodies derived from immunized xenomice)

IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(p150,95 antigen; human antibodies derived from immunized xenomice)

IT Antibodies
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(pANCA or perinuclear antineutrophil cytoplasm antibodies; human
antibodies derived from immunized xenomice)

IT Skin, disease
(pemphigus; human antibodies derived from immunized xenomice)

IT Muscle, disease
(polymyositis; human antibodies derived from immunized xenomice)

IT Virus
(protein; human antibodies derived from immunized xenomice)

IT DNA
RL: BPN (Biosynthetic preparation); BSU (Biological study, unclassified);
BIOL (Biological study); PREP (Preparation)
(recombinant; human antibodies derived from immunized xenomice)

IT Transplant and Transplantation
(rejection; human antibodies derived from immunized xenomice)

IT Kidney, neoplasm
(renal cell carcinoma; human antibodies derived from immunized
xenomice)

IT Ischemia
(reperfusion; human antibodies derived from immunized xenomice)

IT Connective tissue
(scleroderma; human antibodies derived from immunized xenomice)

IT Ligands
Ligands
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(selectin; human antibodies derived from immunized xenomice)

IT Shock (circulatory collapse)
(septic; human antibodies derived from immunized xenomice)

IT Venoms
Venoms
(snake; human antibodies derived from immunized xenomice)

IT Antigens
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(surface, hepatitis virus; human antibodies derived from immunized
xenomice)

IT Lupus erythematosus

(systemic; human antibodies derived from immunized xenomice)
IT Toxins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(tetanus; human antibodies derived from immunized xenomice)

IT Antigens
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(tumor-associated; human antibodies derived from immunized xenomice)

IT Collagens, biological studies
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(type IV; human antibodies derived from immunized xenomice)

IT Proteins, specific or class
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(uroponentins; human antibodies derived from immunized xenomice)

IT Bee
(venom; human antibodies derived from immunized xenomice)

IT Proteins, general, biological studies
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(viral; human antibodies derived from immunized xenomice)

IT Mouse
(xeno-; human antibodies derived from immunized xenomice)

IT Interferon receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(α -interferon; human antibodies derived from immunized xenomice)

IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
($\alpha\beta\gamma$; human antibodies derived from immunized xenomice)

IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
($\alpha\beta\gamma$; human antibodies derived from immunized xenomice)

IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
($\alpha\beta\gamma$; human antibodies derived from immunized xenomice)

IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
($\alpha\beta\gamma$; human antibodies derived from immunized xenomice)

IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
($\alpha\beta\gamma$; human antibodies derived from immunized xenomice)

IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
($\alpha\beta\gamma$; human antibodies derived from immunized xenomice)

IT Transforming growth factors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(β -; human antibodies derived from immunized xenomice)

IT Transforming growth factor receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(β -transforming growth factor; human antibodies derived from immunized xenomice)

IT Interferon receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(β ; human antibodies derived from immunized xenomice)

IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
($\beta\gamma$; human antibodies derived from immunized xenomice)

IT Integrins
RL: BSU (Biological study, unclassified); BIOL (Biological study)
($\beta\gamma$; human antibodies derived from immunized xenomice)

IT Interferon receptors
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(γ -interferon; human antibodies derived from immunized xenomice)

IT Interferons
RL: BSU (Biological study, unclassified); BIOL (Biological study)

(γ ; human antibodies derived from immunized xenomice)

IT 9002-71-5, TSH 9024-58-2, Glutamic acid decarboxylase 9054-63-1, Antigens, CD13 19600-01-2, Ganglioside GM2 53237-59-5, Urushiol 62010-37-1, Ganglioside GD3 62031-54-3, FGF 62229-50-9, EGF 80043-53-4, Gastrin releasing peptide 80295-43-8, Complement C3b 80295-54-1, Complement C5a 81669-70-7, Metalloprotease 82986-89-8, Complement C5b-9 92448-22-1, SLea 98603-84-0, SLex 116243-73-3, Endothelin 127464-60-2, Vascular endothelial growth factor

RL: BSU (Biological study, unclassified); BIOL (Biological study) (human antibodies derived from immunized xenomice)

IT 9002-64-6, PTH
RL: BSU (Biological study, unclassified); BIOL (Biological study) (proteins related to; human antibodies derived from immunized xenomice)

L94 ANSWER 10 OF 10 HCAPLUS COPYRIGHT 2003 ACS on STN
AN 1994:555179 HCAPLUS
DN 121:155179
ED Entered STN: 01 Oct 1994
TI Mechanism of platelet aggregation induced by anti-human platelet monoclonal antibody APT4
AU Yu, Aixin; Li, Jiazeng; Lian, Junyi
CS Inst. Hematology, Chin. Acad. Med. Sci., Tianjin, 300020, Peop. Rep. China
SO Zhonghua Xueyexue Zazhi (1994), 15(3), 115-18
CODEN: CHTCD7; ISSN: 0253-2727
DT Journal
LA Chinese
CC 15-3 (Immunochemistry)
AB A monoclonal antibody designated APT4 was produced by fusion of mouse myeloma cells to spleen cells from a BALB/C mouse immunized with normal human platelets. APT4 IgG caused the aggregation of both PRP and washed platelets from normal subjects and a patient with Bernard Soulier's syndrome, but not those from two patients with the type 1 Glanzmann's thrombasthenia. No aggregation was observed when APT4 F(ab') 2 was used. SDS-PAGE of the immunoppts. of 125I labeled platelet membrane lysates by APT4 showed two protein bands corresponding to GPIIb and IIIa. In conclusion, APT4 bound to GPIIb-IIIa complex and induced aggregation requiring energy metabolism, calcium, Fc fragment of IgG and ADP release, but independent of thromboxane A2 formation.
ST monoclonal antibody platelet aggregation
IT Blood platelet
IT Antibodies
IT Integrins
IT Integrins
IT 58-64-0, ADP, biological studies 7440-70-2, Calcium, biological studies
IT 58-64-0, ADP, biological studies
RN 58-64-0 HCAPLUS
CN Adenosine 5'-(trihydrogen diphosphate) (9CI) (CA INDEX NAME)

Absolute stereochemistry.

=> => fil medline embase
FILE 'MEDLINE' ENTERED AT 08:35:55 ON 19 DEC 2003

FILE 'EMBASE' ENTERED AT 08:35:55 ON 19 DEC 2003
COPYRIGHT (C) 2003 Elsevier Inc. All rights reserved.

=> d all'tot 1105

L105 ANSWER 1 OF 3 MEDLINE on STN DUPLICATE 1
 AN 1999155345 MEDLINE
 DN 99155345 PubMed ID: 10029595
 TI Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines.
 AU Damiano J S; Cress A E; Hazlehurst L A; Shtil A A; Dalton W S
 CS H. Lee. Moffitt Cancer Center, University of South Florida, Tampa, FL; and the Arizona Cancer Center, University of Arizona, Tucson, AZ.
 NC CA 17094 (NCI)
 SO BLOOD, (1999 Mar 1) 93 (5) 1658-67.
 Journal code: 7603509. ISSN: 0006-4971.
 CY United States
 DT Journal; Article; (JOURNAL ARTICLE)
 LA English
 FS Abridged Index Medicus Journals; Priority Journals
 EM 199903
 ED Entered STN: 19990326
 Last Updated on STN: 19990326
 Entered Medline: 19990318
 AB Integrin-mediated adhesion influences cell survival and may prevent programmed cell death. Little is known about how drug-sensitive tumor cell lines survive initial exposures to cytotoxic drugs and eventually select for drug-resistant populations. Factors that allow for cell survival following acute cytotoxic drug exposure may differ from drug resistance mechanisms selected for by chronic drug exposure. We show here that drug-sensitive 8226 human myeloma cells, demonstrated to express both VLA-4 (alpha4beta1) and VLA-5 (alpha5beta1) integrin fibronectin (FN) receptors, are relatively resistant to the apoptotic effects of doxorubicin and melphalan when pre-adhered to FN and compared with cells grown in suspension. This cell adhesion mediated drug resistance, or CAM-DR, was not due to reduced drug accumulation or upregulation of anti-apoptotic Bcl-2 family members. As determined by flow cytometry, myeloma cell lines selected for drug resistance, with either doxorubicin or melphalan, overexpress VLA-4. Functional assays revealed a significant increase in alpha4-mediated cell adhesion in both drug-resistant variants compared with the drug-sensitive parent line. When removed from selection pressure, drug-resistant cell lines reverted to a drug sensitive and alpha4-low phenotype. Whether VLA-4-mediated FN adhesion offers a survival advantage over VLA-5-mediated adhesion remains

to be determined. In conclusion, we have demonstrated that FN-mediated adhesion confers a survival advantage for myeloma cells acutely exposed to cytotoxic drugs by inhibiting drug-induced apoptosis. This finding may explain how some cells survive initial drug exposure and eventually express classical mechanisms of drug resistance such as MDR1 overexpression.

CT Check Tags: Human; Support, U.S. Gov't, P.H.S.

Antineoplastic Agents

Apoptosis: DE, drug effects

*Apoptosis: GE, genetics

Cell Adhesion: GE, genetics

Doxorubicin: PD, pharmacology

*Drug Resistance, Neoplasm: GE, genetics

Fibronectins: ME, metabolism

*Gene Expression Regulation, Neoplastic

*Integrins: GE, genetics

Melphalan: PD, pharmacology

*Multiple Myeloma: GE, genetics

Multiple Myeloma: ME, metabolism

*Multiple Myeloma: PA, pathology

Tumor Cells, Cultured

RN 148-82-3 (Melphalan); 23214-92-8 (Doxorubicin)

CN 0 (Antineoplastic Agents); 0 (Fibronectins); 0 (Integrins)

L105 ANSWER 2 OF 3 MEDLINE on STN

AN 95276269 MEDLINE

DN 95276269 PubMed ID: 7538823

TI Expression of adhesion molecules on CD34+ cells: CD34+ L-selectin+ cells predict a rapid platelet recovery after peripheral blood stem cell transplantation.

AU Dercksen M W; Gerritsen W R; Rodenhuis S; Dirkson M K; Slaper-Cortenbach I C; Schaasberg W P; Pinedo H M; von dem Borne A E; van der Schoot C E

CS European Cancer Centre, Amsterdam, The Netherlands.

SO BLOOD, (1995 Jun 1) 85 (11) 3313-9.

Journal code: 7603509. ISSN: 0006-4971.

CY United States

DT Journal; Article; (JOURNAL ARTICLE)

LA English

FS Abridged Index Medicus Journals; Priority Journals

EM 199506

ED Entered STN: 19950707

Last Updated on STN: 19960129

Entered Medline: 19950623

AB Adhesion molecules play a role in the migration of hematopoietic progenitor cells and regulation of hematopoiesis. To study whether the mobilization process is associated with changes in expression of adhesion molecules, the expression of CD31, CD44, L-selectin, sialyl Lewisx, beta 1 integrins very late antigen 4 (VLA-4) and VLA-5, and beta 2 integrins lymphocyte function-associated 1 and Mac-1 was measured on either bone marrow (BM) CD34+ cells or on peripheral blood CD34+ cells mobilized with a combination of granulocyte colony-stimulating factor (G-CSF) and chemotherapy. beta 1 integrin VLA-4 was expressed at a significantly lower concentration on peripheral blood progenitor cells than on BM CD34+ cells, procured either during steady-state hematopoiesis or at the time of leukocytapheresis. No differences in the level of expression were found for the other adhesion molecules. To obtain insight in which adhesion molecules may participate in the homing of peripheral blood stem cells (PBSCs), the number of CD34+ cells expressing these adhesion molecules present in leukocytapheresis material was quantified and correlated with hematopoietic recovery after intensive chemotherapy in 27 patients. The number of CD34+ cells in the subset defined by L-selectin expression correlated significantly better with time to platelet recovery after PBSC transplantation ($r = -.86$) than did the total

number of CD34+ cells ($r = -.55$). Statistical analysis of the relationship between the number of CD34+L-selectin+ cells and platelet recovery resulted in a threshold value for rapid platelet recovery of $2.1 \times 10(6)$ CD34+ L-selectin+ cells/kg. A rapid platelet recovery (< or = 14 days) was observed in 13 of 15 patients who received $>$ or = $2.1 \times 10(6)$ CD34+ L-selectin+ cells/kg (median, 11 days; range, 7 to 16 days), whereas 10 of 12 patients who received less double positive cells had a relative slow platelet recovery (median, 20 days; range, 13 to 37 days). The L-selectin+ subpopulation of CD34+ cells also correlated better with time to neutrophil recovery ($r = -.70$) than did the total number of reinfused CD34+ cells ($r = -.51$). However, this latter difference failed to reach statistical significance. This study suggests that L-selectin is involved in the homing of CD34+ cells after PBSC transplantation.

- CT Check Tags: Female; Human; Male
 Adult
 Antigens, CD: AN, analysis
 Antigens, CD34
 Antineoplastic Combined Chemotherapy Protocols: PD, pharmacology
 Antineoplastic Combined Chemotherapy Protocols: TU, therapeutic use
 Biological Markers
 Bone Marrow: DE, drug effects
 Bone Marrow Cells
 Carboplatin: AD, administration & dosage
 Carmustine: AD, administration & dosage
 Cell Adhesion Molecules: BI, biosynthesis
 *Cell Adhesion Molecules: PH, physiology
 Cell Movement: PH, physiology
 Combined Modality Therapy
 Cyclophosphamide: AD, administration & dosage
 Cytarabine: AD, administration & dosage
 Epirubicin: AD, administration & dosage
 Etoposide: AD, administration & dosage
 Fluorouracil: AD, administration & dosage
 Gene Expression
 Granulocyte Colony-Stimulating Factor: PD, pharmacology
 Hematopoiesis
 *Hematopoietic Stem Cell Transplantation
 Hematopoietic Stem Cells: CY, cytology
 *Hematopoietic Stem Cells: ME, metabolism
 Ifosfamide: AD, administration & dosage
 L-Selectin
 Leukocyte Count
 Melphalan: AD, administration & dosage
 Middle Age
 Neoplasms: DT, drug therapy
 Neoplasms: TH, therapy
 Neutrophils
 *Platelet Count
 Podophyllotoxin: AD, administration & dosage
 Receptors, Very Late Antigen: BI, biosynthesis
 *Receptors, Very Late Antigen: PH, physiology
 Thioguanine: AD, administration & dosage
 RN 126880-86-2 (L-Selectin); 143011-72-7 (Granulocyte Colony-Stimulating Factor); 147-94-4 (Cytarabine); 148-82-3 (Melphalan); 154-93-8 (Carmustine); 33419-42-0 (Etoposide); 3778-73-2 (Ifosfamide); 41575-94-4 (Carboplatin); 50-18-0 (Cyclophosphamide); 51-21-8 (Fluorouracil); 518-28-5 (Podophyllotoxin); 52-24-4 (Thiotepa); 56420-45-2 (Epirubicin)
 CN 0 (Antigens, CD); 0 (Antigens, CD34); 0 (Antineoplastic Combined Chemotherapy Protocols); 0 (BEAM protocol); 0 (Biological Markers); 0 (Cell Adhesion Molecules); 0 (Receptors, Very Late Antigen)

AN 96286625 EMBASE
 DN 1996286625
 TI [The results of a randomised study in the treatment of multiple myeloma].
 VYSLEDKY RANDOMIZOVANEJ STUDIE V ZAVISLOSTI OD POSTUPU LIECBY PRI MNOHOPOCETNOM MYELOME.
 AU Sakalova A.; Desser L.; Gazova S.; Prummerova M.; Chabronova I.; Mistrik M.; Hrubisko M.; Holomanova D.; Hapalova J.
 CS Klinika Hematologie/Transfuziologie, Fakultna Nemocnica, Bratislava, Slovakia
 SO Klinicka Onkologie, (1996) 9/4 (130-134).
 ISSN: 0862-495X CODEN: KLONEU
 CY Czech Republic
 DT Journal; Article
 FS 013 Dermatology and Venereology
 016 Cancer
 037 Drug Literature Index
 LA Slovak
 SL English; Slovak
 AB The authors in this study are continuing in their long term experience in the treatment of multiple myeloma by polychemotherapy according to protocol VMCP/MOCCA. Since 1990 a randomised group was created - only chemotherapy was given in the first group of 96 patients, in the second one chemotherapy combined with proteolytical enzymes was used (Wobe Mugos). The enzymes are the biological response modifiers, and as shown in the frequency and survival curves, the medial survival has lengthened from 20 to 47 months. The prolongation of survival is significant in the stage II patients and can be explained by tumor mass reduction, decrease cytokine activity, but mostly by decrease of infectious complications. The laboratory tests have shown a significant decrease of B2M, serum soluble TNF receptors and a decrease of the cellular membrane receptor density (CD38, Integrins, CD44, CD54, CD56). The overall survival of 198 patients in the chemotherapy group is more than 71 months and in the immunochemotherapy more than 85 months in 70% of patients in follow up.
 CT Medical Descriptors:
 *multiple myeloma: DT, drug therapy
 article
 cancer chemotherapy
 cancer regression
 cancer survival
 clinical trial
 human
 major clinical study
 randomized controlled trial
 Drug Descriptors:
 *antineoplastic agent: CT, clinical trial
 *antineoplastic agent: DT, drug therapy
 *wobe mugos: CT, clinical trial
 *wobe mugos: DT, drug therapy
 cyclophosphamide: DT, drug therapy
 cyclophosphamide: CT, clinical trial
 melphalan: CT, clinical trial
 melphalan: DT, drug therapy
 membrane receptor: EC, endogenous compound
 methylprednisolone: CT, clinical trial
 methylprednisolone: DT, drug therapy
 prednisone: DT, drug therapy
 prednisone: CT, clinical trial
 vincristine: DT, drug therapy
 vincristine: CT, clinical trial
 unclassified drug
 (wobe mugos) 60098-82-0; (cyclophosphamide) 50-18-0; (melphalan) 148-82-3; (methylprednisolone) 6923-42-8, 83-43-2; (prednisone)

53-03-2; (vincristine) 57-22-7
 CN Alkeran; Urbason; Wobe mugos

=> => fil wpix
 FILE 'WPIX' ENTERED AT 08:45:18 ON 19 DEC 2003
 COPYRIGHT (C) 2003 THOMSON DERWENT

FILE LAST UPDATED: 16 DEC 2003 <20031216/UP>
 MOST RECENT DERWENT UPDATE: 200381 <200381/DW>
 DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

>>> NEW WEEKLY SDI FREQUENCY AVAILABLE --> see NEWS <<<

>>> SLART (Simultaneous Left and Right Truncation) is now available in the /ABEX field. An additional search field /BIX is also provided which comprises both /BI and /ABEX <<<

>>> PATENT IMAGES AVAILABLE FOR PRINT AND DISPLAY <<<

>>> FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE,
 PLEASE VISIT:
http://www.stn-international.de/training_center/patents/stn_guide.pdf <<<

>>> FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES, SEE
<http://thomsonderwent.com/coverage/latestupdates/> <<<

>>> FOR INFORMATION ON ALL DERWENT WORLD PATENTS INDEX USER GUIDES, PLEASE VISIT:
<http://thomsonderwent.com/support/userguides/> <<<

=> d 1127 all abeq tech abex tot

L127 ANSWER 1 OF 2 WPIX COPYRIGHT 2003 THOMSON DERWENT on STN
 AN 2001-582112 [65] WPIX
 DNC C2001-172606
 TI Use of **bisphosphonate** compounds for inhibiting cell adhesion mediated drug resistance and enhancing efficacy of chemotherapeutic and/or radiation treatments.
 DC B05
 IN DALTON, W S; DAMIANO, J S
 PA (UYSF-N) UNIV SOUTH FLORIDA; (DALT-I) DALTON W S; (DAMI-I) DAMIANO J S
 CYC 94
 PI WO 2001064207 A2 20010907 (200165)* EN 77p A61K031-00
 RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ
 NL OA PT SD SE SL SZ TR TZ UG ZW
 W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM
 DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC
 LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE
 SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
 AU 2001039953 A 20010912 (200204) A61K031-00
 US 2003004140 A1 20030102 (200305) A61K031-66
 ADT WO 2001064207 A2 WO 2001-US6466 20010301; AU 2001039953 A AU 2001-39953
 20010301; US 2003004140 A1 Provisional US 2000-186199P 20000301, Cont of
 US 2001-795474 20010301, US 2001-24018 20011221
 FDT AU 2001039953 A Based on WO 2001064207
 PRAI US 2000-186199P 20000301; US 2001-795474 20010301; US 2001-24018
 20011221
 IC ICM A61K031-00; A61K031-66
 ICS A61N005-00
 AB WO 200164207 A UPAB: 20011108

NOVELTY - The use of **bisphosphonate** compounds for inhibiting cell adhesion mediated drug resistance and enhancing efficacy of chemotherapy and/or radiation therapy in the treatment of cancer, is new.

ACTIVITY - Cytostatic.

MECHANISM OF ACTION - Inhibit **integrin**-mediated cell adhesion.

The effect of clodronate on adhesion of 8226 **myeloma** cells was determined. Cells were incubated in the presence and absence of 100 μ M clodronate for 1.5 hours, then plated onto collagen-coated 6-well plates. After 2 hours, etoposide (50 μ M) was added. After 2 hours the adhered cells were washed. Non-adherent cells were aspirated, washed and resuspended in drug free medium, and returned to their respective wells together with adherent cells. Apoptosis was measured 24 hours later. Results for % etoposide specific apoptosis were, for the suspension about 45% in the absence of clodronate and about 50% in the presence of clodronate; and for collagen about 28% in the absence of clodronate and about 49% in the presence of clodronate;

USE - For treating cancer, e.g. **myeloma** or **multiple myeloma**.

Dwg.0/28

FS CPI

FA AB; DCN

MC CPI: B05-B01E; B05-B01G; B14-H01

TECH UPTX: 20011108

TECHNOLOGY FOCUS - PHARMACEUTICALS - Preferred Compounds: The **bisphosphonate** compound is etidronate, clodronate, pamidronate and/or zoledronate.

ABEX UPTX: 20011108

WIDER DISCLOSURE - Cancer cell interaction with the extracellular matrix, including fibronectin and collagen, prevents cell death induced by cytotoxic drugs and radiation. Also, **integrin**-mediated adhesion, including alpha4beta1 and alpha5beta1 for fibronectin and alpha2beta1 for collagen, prevents both drug and radiation induced cancer cell death.

ADMINISTRATION - The **bisphosphonate** compound is preferably administered prior to administration of chemotherapy and/or radiation therapy.

L127 ANSWER 2 OF 2 WPIX COPYRIGHT 2003 THOMSON DERWENT on STN

AN 2000-271253 [23] WPIX

DNC C2000-082763

TI Treating multiple **myeloma** and **myeloma**-induced bone reabsorption using antagonists of the alpha4/alpha4 integrin ligand pathway.

DC B04 D16

IN MUNDY, G R; YONEDA, T; TOSHIYUKI, Y

PA (BIOJ) BIOGEN INC; (TEXA) UNIV TEXAS SYSTEM; (MUND-I) MUNDY G R; (YONE-I) YONEDA T

CYC 84

PI WO 2000015247 A2 20000323 (200023)* EN 54p A61K038-17

RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
OA PT SD SE SL SZ UG ZW

W: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE
GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG
MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG
US UZ VN YU ZW

AU 9962486 A 20000403 (200034) A61K038-17

NO 2001001244 A 20010514 (200134) A61K000-00

BR 9913705 A 20010605 (200138) A61K038-17

EP 1113810 A2 20010711 (200140) EN A61K038-17

R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
RO SE SI

CZ 2001000916 A3 20010815 (200157) A61K038-17

SK 2001000605 A3 20011203 (200203) A61K038-17
 CN 1321091 A 20011107 (200216) A61K038-17
 KR 2001085793 A 20010907 (200218) A61K039-395
 US 2002022028 A1 20020221 (200221) A61K039-395
 HU 2001003630 A2 20020128 (200222) A61K038-17
 US 2002041874 A1 20020411 (200227) A61K039-395
 JP 2002524529 W 20020806 (200266) 64p A61K045-00
 US 2002159998 A1 20021031 (200274) A61K039-395
 ZA 2001002032 A 20030129 (200314) 69p A61K000-00
 AU 757873 B 20030306 (200324) A61K038-17
 NZ 511062 A 20030429 (200334) A61K038-17
 MX 2001002670 A1 20020301 (200362) A61K038-17

 ADT WO 2000015247 A2 WO 1999-US21170 19990913; AU 9962486 A AU 1999-62486
 19990913; NO 2001001244 A WO 1999-US21170 19990913, NO 2001-1244 20010312;
 BR 9913705 A BR 1999-13705 19990913, WO 1999-US21170 19990913; EP 1113810
 A2 EP 1999-949656 19990913, WO 1999-US21170 19990913; CZ 2001000916 A3 WO
 1999-US21170 19990913, CZ 2001-916 19990913; SK 2001000605 A3 WO
 1999-US21170 19990913, SK 2001-605 19990913; CN 1321091 A CN 1999-810904
 19990913; KR 2001085793 A KR 2001-703274 20010314; US 2002022028 A1
 Provisional US 1998-100182P 19980914, Cont of WO 1999-US21170 19990913, US
 2001-805840 20010313; HU 2001003630 A2 WO 1999-US21170 19990913, HU
 2001-3630 19990913; US 2002041874 A1 Provisional US 1998-100182P 19980914,
 Cont of WO 1999-US21170 19990913, CIP of US 2001-805840 20010313, US
 2001-943659 20010831; JP 2002524529 W WO 1999-US21170 19990913, JP
 2000-569831 19990913; US 2002159998 A1 Provisional US 1998-100182P
 19980914, Cont of WO 1999-US21170 19990913, CIP of US 2001-805840
 20010313, CIP of US 2001-943659 20010831, US 2002-86217 20020221; ZA
 2001002032 A ZA 2001-2032 20010312; AU 757873 B AU 1999-62486 19990913; NZ
 511062 A NZ 1999-511062 19990913, WO 1999-US21170 19990913; MX 2001002670
 A1 WO 1999-US21170 19990913, MX 2001-2670 20010314

 FDT AU 9962486 A Based on WO 2000015247; BR 9913705 A Based on WO 2000015247;
 EP 1113810 A2 Based on WO 2000015247; CZ 2001000916 A3 Based on WO
 2000015247; SK 2001000605 A3 Based on WO 2000015247; HU 2001003630 A2
 Based on WO 2000015247; JP 2002524529 W Based on WO 2000015247; AU 757873
 B Previous Publ. AU 9962486, Based on WO 2000015247; NZ 511062 A Based on
 WO 2000015247; MX 2001002670 A1 Based on WO 2000015247

 PRAI US 1998-100182P 19980914; US 2001-805840 20010313; US 2001-943659
 20010831; US 2002-86217 20020221
 IC ICM A61K000-00; A61K038-17; A61K039-395; A61K045-00
 ICS A61P019-00; A61P035-00; C07K016-18; C12N015-09
 ICA C07K014-705; C07K016-28
 ICI C07K014:705, C07K016-28
 AB WO 2000015247 A UPAB: 20000516
 NOVELTY - Methods for treating multiple **myeloma** and
myeloma-induced bone reabsorptions, comprising using integrin
 antagonists to disrupt the alpha4 integrin/alpha4 integrin ligand pathway
 in vivo to reduce the capacity of the **myeloma** cells to survive
 and proliferate, are new.
 DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the
 following:
 (1) a method (I) for treating multiple **myeloma**, comprising
 administering an antagonist of the reaction between an alpha4
 subunit-bearing integrin and a ligand for an alpha4 subunit-bearing
 integrin;
 (2) a method (II) for inhibiting bone reabsorption associated with
 bone marrow tumors, comprising administering an antagonist of the reaction
 between an alpha4 subunit-bearing integrin and a ligand for an alpha4
 subunit-bearing integrin; and
 (3) a method (III) for treating a disorder characterized by
 osteoclastogenesis, comprising administering an antagonist of the reaction
 between an alpha4 subunit-bearing integrin and a ligand for an alpha4
 subunit-bearing integrin.
 ACTIVITY - Cytostatic; osteopathic.

18 SCID mice were injected with 5TGM1 **myeloma** cells at day 0. 4 mice were treated with phosphate buffered saline (PBS), 4 mice were treated with in a prophylactic protocol with monoclonal antibody (mAb) M/K-2.7 reactive against mouse VCAM-1 in doses of 80 μg (4 mg/kg) every 3 days starting at day -1 (i.e. days -1, 2, 5, 8 and 11). In a parallel experiment, using the same protocol, 5 mice were treated with 160 μg mAb M/K-2.7. in addition, 5 mice were treated with 160 μg mAb M/K-2.7 starting at day 8 (i.e. days 8, 11, 14, 17 and 20) in a therapeutic protocol. Serum was taken from all mice on days 21, 28 and 35, and the animals were X-rayed and sacrificed for histology on day 35. All 3 treatment groups showed a reduction in serum immunoglobulin G2b levels indicative of reduced **myeloma** cell burden. A significant effect was also observed on spleen weights at the low dose prophylactic protocol relative to the control (0.23 plus or minus 0.14 g for control versus 0.08 plus or minus 0.04 for treated). In the prophylactic high dose group, 4 out of 5 animals showed a clear reduction in spleen weight, but the overall value was not significant due to one of the animals having a large spleen weight.

MECHANISM OF ACTION - The antagonists inhibit the binding of alpha₄ integrin and alpha₄ integrin ligands which reduces the capacity of **myeloma** cells to proliferate and survive.

USE - The methods may be used for treating multiple **myeloma**, inhibiting the release of bone-reabsorbing factors by **myeloma** cells (which result in severe bone loss, the major side effect of **myeloma** in humans) and other disorders associated with osteoclastogenesis.

Dwg.0/6

FS CPI

FA AB; DCN

MC CPI: B04-B04C2; B04-B04C7; B04-B04L; B04-C01; B04-F02; B04-G01; B04-G02; B04-G21; B04-H01; B04-N02; B11-C07A; B11-C08E1; B11-C09; B12-M05; B14-H01; B14-L06; B14-N02; B14-S11C; D05-H07; D05-H08; D05-H11

TECH UPTX: 20000516

TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preferred Methods: In (I), (II) and (III), the antagonist is either an alpha₄ integrin binding agent or an alpha₄ integrin ligand binding agent. In (I), the alpha₄ integrin binding agent may be:

- (a) an antibody homolog that antagonizes the interaction of both integrin VLA-4 (cell surface adhesion molecule CD29) and alpha₄beta₇ with their respective alpha₄ ligands;
- (b) an antibody homolog that antagonizes the interaction of VLA-4 with its alpha₄ ligand; and/or
- (c) an antibody homolog that antagonizes the interaction of alpha₄beta₇ with its alpha₄ ligand.

The alpha₄ integrin ligand binding agent is an anti-VCAM-1 antibody homolog. In (II) and (III), the alpha₄ integrin binding agent is an anti-VLA4 antibody homolog or anti-alpha₄beta₇ antibody homolog and the alpha₄ integrin binding agent is an anti-VCAM antibody homolog. The antibody homologs may be human antibodies, chimeric antibodies, humanized antibodies (and/or fragments of them). Alternatively, the antagonists are small molecules.

ABEX UPTX: 20000516

ADMINISTRATION - In (I) and (II) the antagonists (antibodies or small molecules) are administered in doses of 0.1 - 30 (especially 0.1 - 20) mg/kg of body weight (claimed). The antagonists may be administered parenterally.

EXAMPLE - 18 SCID mice were injected with 5TGM1 myeloma cells at day 0. 4 mice were treated with phosphate buffered saline (PBS), 4 mice were treated with in a prophylactic protocol with monoclonal antibody (mAb) M/K-2.7 reactive against mouse VCAM-1 in doses of 80 micrograms (4 mg/kg) every 3 days starting at day -1 (i.e. days -1, 2, 5, 8 and 11). In a parallel experiment, using the same protocol, 5 mice were treated with 160 micrograms mAb M/K-2.7. in addition, 5 mice were treated with 160

micrograms mAb M/K-2.7 starting at day 8 (i.e. days 8, 11, 14, 17 and 20) in a therapeutic protocol. Serum was taken from all mice on days 21, 28 and 35, and the animals were X-rayed and sacrificed for histology on day 35. All 3 treatment groups showed a reduction in serum immunoglobulin G2b levels indicative of reduced myeloma cell burden. A significant effect was also observed on spleen weights at the low dose prophylactic protocol relative to the control (0.23 +/- 0.14 g for control versus 0.08 +/- 0.04 for treated). In the prophylactic high dose group, 4 out of 5 animals showed a clear reduction in spleen weight, but the overall value was not significant due to one of the animals having a large spleen weight.

=> d his

(FILE 'HOME' ENTERED AT 07:24:46 ON 19 DEC 2003)
SET COST OFF

FILE 'REGISTRY' ENTERED AT 07:25:05 ON 19 DEC 2003
E MELPHALAN/CN

L1	1 S E3
	E C13H18CL2N2O2/MF
L2	79 S E3 AND 46.150.18/RID AND 1/NR
L3	67 S L2 NOT PHENYLALANINE
L4	61 S L3 NOT ALANINE
L5	18 S L2 NOT L4
L6	5 S L5 AND 4
L7	3 S L6 NOT (T/ELS OR 14C2)
L8	3 S L1,L7 SEL RN
L9	24 S E1-E3/CRN
L10	18 S L9 NOT PMS/CI
L11	17 S L10 NOT C5-C6-C6-C6/ES
L12	6 S L9 NOT L10
L13	1 S L12 AND 1/NC

FILE 'HCAPLUS' ENTERED AT 07:36:13 ON 19 DEC 2003

L14	2851 S L8
L15	2642 S MELPHALAN OR MELFALAN
L16	1027 S SARCOCLORIN# OR SARCOLYSIN# OR SARKOLYSIN# OR MEDPHALAN OR ME
L17	260 S NSC241286 OR NSC8806 OR NSC()(241286 OR 241 286 OR 8806) OR 3
L18	268 S L11
L19	2 S L13
L20	9 S MERPHALAN OR MERFALAN
L21	399 S 3 P BIS 2 CHLOROETHYL AMINO PHENYL (L) ALANINE
L22	786 S SARCOLYSIN#

FILE 'REGISTRY' ENTERED AT 07:43:01 ON 19 DEC 2003
E THALIDOMIDE/CN

L23	1 S E3
	SEL RN
L24	57 S E1/CRN
L25	2 S L24 NOT MXS/CI

FILE 'HCAPLUS' ENTERED AT 07:46:05 ON 19 DEC 2003

L26	1481 S L23 OR L25
L27	1755 S THALIDOMID#
L28	83 S TALINOL OR TALIMOL OR SUARAMIDE OR SOFTENON OR SOFTENIL OR SE
L29	0 S NSC527179 OR NSC66847 OR NSC()(527179 OR 527 179 OR 66847 OR

FILE 'REGISTRY' ENTERED AT 07:46:57 ON 19 DEC 2003
E ERYTHROPOIETIN/CN

L30	1 S E3 SEL RN
-----	------------------

L31 6 S E1/CRN
E ERYTHROPOIETIN

L32 1239 S E3

L33 1233 S L32 AND 1/NC

FILE 'HCAPLUS' ENTERED AT 07:48:26 ON 19 DEC 2003

L34 7864 S L30

L35 8120 S L33

L36 10336 S ERYTHROPOIETIN OR EPOETIN OR EPOGIS OR HEMPOIETIN# OR HAEMPOI

L37 4034 S L14-L22

L38 12363 S L26-L29, L34-L36

L39 29773 S IL6 OR IL15 OR (IL OR INTERLEUKIN) () (6 OR 15)
E INTERLEUKIN/CT
E E45+ALL

L40 1360 S E8, E7
E E6+ALL

L41 19943 S E40, E58

L42 2073 S L39-L41 AND ANTAGON?
E MULTIPLE MYELOMA/CT
E E3+ALL

L43 6756 S E7-E10, E6

L44 16144 S E6-E13, E15-E16/BI

L45 258 S KAHLER? DISEASE OR KAHLER S DISEASE OR (PLASMA!CELL OR PLASMA
E E17+ALL

L46 16171 S L43-L45
E BISPHOSPHON/CT
E DIPHOSPHON/CT
E E6+ALL
E E2+ALL

L47 2833 S E4

L48 6253 S (DIPHOSPHORIC OR BISPHOSPHORIC) ()ACID OR DIPHOSPHONATE OR BIS

FILE 'REGISTRY' ENTERED AT 07:56:17 ON 19 DEC 2003

L49 1 S 13598-36-2

FILE 'HCAPLUS' ENTERED AT 07:56:33 ON 19 DEC 2003

L50 3228 S L49/D

L51 10651 S L47, L48, L50

FILE 'REGISTRY' ENTERED AT 07:57:20 ON 19 DEC 2003

L52 1 S 129318-43-0

L53 STR

L54 50 S L53

L55 103129 S L53 FUL

L56 47349 S L55 AND 2/P

L57 46762 S L56 NOT SQL/FA

L58 46596 S L57 NOT MXS/CI

L59 44634 S L58 NOT PMS/CI

L60 37599 S L59 NOT (COMPD OR WITH OR UNSPECIFIED OR IDS/CI)

L61 9750 S L56 NOT L60

FILE 'HCAPLUS' ENTERED AT 08:00:18 ON 19 DEC 2003

L62 88509 S L60

L63 42544 S L61

L64 138425 S L38, L42, L51, L62, L63

L65 601 S L64 AND L46

L66 2928 S (ALPHA4 OR ALPHAIV OR 4ALPHA OR IVALPHA OR ALFA4 OR ALFAIV OR
E INTEGRIN/CT
E E11+ALL

L67 2296 S E2

L68 1570 S E4

L69 5 S L65 AND L68

L70 5 S L65 AND L67

L71 412 S L14-L22 AND L46
 L72 6 S L71 AND L66, L67
 L73 8 S L69, L70, L72
 L74 9 S L71 AND INTEGRIN
 L75 19 S L65 AND INTEGRIN
 L76 25 S L73-L75
 E MUNDY G
 E MUNDY G/AU
 L77 279 S E3, E6, E8-E10
 E YONEDA T/AU
 L78 67 S E3
 E YONEDA TOSH/AU
 L79 129 S E4, E16-E19
 L80 2 S L76 AND L77-L79
 L81 7 S L76 AND (PD<=19990913 OR PRD<=19990913 OR AD<=19990913)
 L82 7 S L80, L81
 L83 46 S L14-L22, L64 AND L67, L68
 L84 580 S L14-L22, L64 AND INTEGRIN
 L85 287 S L83, L84 AND (PD<=19990913 OR PRD<=19990913 OR AD<=19990913)
 L86 84 S L85 AND (PHARMACOL? OR PHARMACEUT?)/SC, SX
 L87 71 S L85 AND IMMUN?/SC, SX
 L88 138 S L86, L87
 E BONE/CT
 E E3+ALL
 L89 18 S L85 AND E9, E8+NT
 E E33+ALL
 L90 23 S L85 AND E7, E8, E6+NT
 E E118+ALL
 L91 7 S L85 AND (E31+NT OR E32+NT OR E34+NT OR E35+NT OR E36+NT OR E3
 L92 35 S L89-L91
 SEL DN AN 1 3 15 20 22 23
 L93 6 S L92 AND E1-E18
 L94 10 S L82, L93 AND L14-L22, L26-L29, L34-L48, L50, L51, L62-L93
 SEL HIT RN

FILE 'REGISTRY' ENTERED AT 08:28:37 ON 19 DEC 2003
 L95 11 S E19-E29

FILE 'HCAPLUS' ENTERED AT 08:28:56 ON 19 DEC 2003
 SEL RN L80

FILE 'REGISTRY' ENTERED AT 08:29:00 ON 19 DEC 2003
 L96 19 S E30-E48
 L97 15 S L96 NOT L95

FILE 'REGISTRY' ENTERED AT 08:31:48 ON 19 DEC 2003

FILE 'HCAPLUS' ENTERED AT 08:32:18 ON 19 DEC 2003

FILE 'MEDLINE' ENTERED AT 08:32:52 ON 19 DEC 2003
 L98 6258 S L14-L22
 L99 3 S L98 AND INTEGRIN
 L100 2 S L99 AND PY<=1999

FILE 'EMBASE' ENTERED AT 08:34:23 ON 19 DEC 2003
 L101 13444 S L14-L22
 L102 15 S L101 AND INTEGRIN
 L103 7 S L102 AND PY<=1999
 L104 2 S L103 AND MYELOMA

FILE 'MEDLINE, EMBASE' ENTERED AT 08:35:47 ON 19 DEC 2003
 L105 3 DUP REM L100 L104 (1 DUPLICATE REMOVED)

FILE 'MEDLINE, EMBASE' ENTERED AT 08:35:55 ON 19 DEC 2003

FILE 'WPIX' ENTERED AT 08:36:06 ON 19 DEC 2003

L106 350 S L15/BIX OR L16/BIX OR L17/BIX OR L20/BIX OR L21/BIX OR L22/BI
E MELPHALAN/DCN
E E3+ALL

L107 271 S E2 OR 1166/DRN
E THALIDOMIDE/DCN
E E3+ALL

L108 125 S E2

L109 194 S L27/BIX OR L28/BIX

L110 1260 S L36/BIX
E ERYTHROPOIETIN/DCN

L111 1619 S L39/BIX

L112 1215 S L48/BIX

L113 6479 S PYROPHOS?/BIX

L114 347 S PYRO PHOS?/BIX

L115 11129 S L106-L114

L116 125 S L115 AND INTEGRIN/BIX

L117 12 S L116 AND (L44/BIX OR L45/BIX)

L118 13 S L116 AND MYELOM?/BIX

L119 13 S L117, L118
E MUNDY G/AU

L120 29 S E3, E5
E YONEDA T/AU

L121 240 S E3, E4

L122 7 S L115 AND L120, L121

L123 0 S L116 AND L122

L124 4 S L120 AND L121

L125 1 S L124 AND MYELOM?

L126 14 S L119, L125
SEL DN AN 9 12

L127 2 S L126 AND E1-E4

FILE 'WPIX' ENTERED AT 08:45:18 ON 19 DEC 2003

=>