

Learning Objectives (LOs)

- -Summarize qualitative data with frequency distributions.
- -Understand and interpret pie charts, bar charts and Pareto diagrams.
- -Summarize quantitative data with frequency distributions.
- -Understand and interpret histograms, polygons, and ogives.
- -Understand and interpret scatterplots.
- -Calculate and interpret the arithmetic mean, median, and mode.
- -Calculate and interpret the range, variance, standard deviation, and coefficient of variation.
- -Apply the empirical rule.
- -Interpret the correlation coefficient.

BUSINESS STATISTICS | Jaggia, Kelly

Summarizing Qualitative Data

- A **frequency distribution** (for qual. data) groups data into categories and records how many observations fall into each category.
- To calculate the relative frequency divide each category's frequency by the sample size.
- To express relative frequencies in terms of percentages, multiply each proportion by 100%.

		Relative	
	Frequency	Frequency	Percentage
MCom	30	0.31	30.93
MProfAcc	19	0.20	19.59
MAppFin	14	0.14	14.43
MBILM	13	0.13	13.40
MDS	10	0.10	10.31
MMark	7	0.07	7.22
MCom&MIntComLaw	1	0.01	1.03
MIndEng&Mgt	1	0.01	1.03
Grad Cert Com	1	0.01	1.03
HDR PhD Prelim	1	0.01	1.03
Total	97	(1	100

- A pie chart is a segmented circle whose segments portray the relative frequencies of the categories of a qualitative variable.
- A bar chart depicts the frequency or the relative frequency for each category of the qualitative data as a bar rising vertically from the horizontal axis.

Misleading Graphical Displays

To avoid misleading:

- · Present data in a clear, simple way.
- Strive for clarity.
- Avoid chart junk.
- Do not compress the vertical axis.
- Do not stretch the vertical axis.
- Axes should be clearly marked with numbers and clearly labelled.
- Give your chart a title.
- Interpret your chart in the body of your report. Don't assume the reader understands it.
- The vertical axis should (in most cases) include zero.
- · For bar charts, bars should be the same width.
- Include a key for different categories.

PLEASE NOTE: Excel does not know these rules! You will always need to fix up an Excel graph.

- A frequency distribution for quantitative data groups data into intervals called classes, and records the number of observations that fall into each class.
- Guidelines when constructing frequency distribution:
 - □ Classes are mutually exclusive.
 - Classes are exhaustive.
 - □ The number of classes usually ranges from 5 to 20. This is a guideline, not an absolute rule.

 The raw height data from our class survey have been converted into a frequency distribution in the

following table.

Class	Frequency	Cumulative Frequency
140.1 up to 150	1	1
150.1 up to 160	13	13+1=14
160.1 up to 170	34	14+34= 48
170.1 up to 180	36	48+36=84
180.1 up to 190	12	84+12=96
190.1 up to 200	1	96+1=97
Total	97	

A cumulative frequency distribution specifies how many observations fall below the upper limit of a particular class.

BUSINESS STATISTICS | Jaggia, Kelly

Summarizing Quantitative Data

Here are the relative frequency and the cumulative relative frequency distributions for your height data.

Class	Frequency	Relative Frequency	Cumulative Relative Frequency
140.1 up to 150	1	1/97=0.010	=0.010
150.1 up to 160	13	13/97=0.134	=0.010+0.134 =0.144
160.1 up to 170	34	34/97=0.351	=0.144+0.351 =0.495
170.1 up to 180	36	36/97=0.371	=0.495+0.371 =0.866
180.1 up to 190	12	12/97=0.124	=0.866+0.124 =0.990
190.1 up to 200	1	1/97=0.010	=0.990+0.010 =1
Total	97		

- A **histogram** is a visual representation of a frequency or a relative frequency distribution.
 - ✓ Bar height represents the respective class frequency (or relative frequency).
 - ✓ Bar width represents the class width.

- · Skewed distribution
 - Positively skewed data form a long, narrow tail to the right.
 - Negatively skewed data form a long, narrow tail to the left.

BUSINESS STATISTICS | Jaggia, Kelly

Summarizing Quantitative Data

- A **polygon** is a visual representation of a frequency or a relative frequency distribution.
 - ✓ Plot the class midpoints on x-axis and associated frequency (or relative frequency) on y-axis.
 - Neighboring points are connected with a straight line.

· Here is a polygon for height.

Summarizing Quantitative Data

· Here is a polygon for distance to UWA.

Summarizing Quantitative Data Here is a polygon for age. Age Age (student) Age 20 20 25 30 35 40 45

Q- When would you use a polygon in place of a histogram?

- An ogive is a visual representation of a cumulative frequency or a cumulative relative frequency distribution.
 - Plot the cumulative frequency (or cumulative relative frequency) of each class above the upper limit of the corresponding class.
 - ✓ The neighboring points are then connected.

BUSINESS STATISTICS | Jaggia, Kelly

Summarizing Quantitative Data

Here is an ogive for the age data.

Approximate the percentage of students aged 30 years and under.

Scatterplots

Q: How would you describe this relationship? Does it makes sense to consider this relationship?

TED Talk- Hans Rowling The Best Stats You've Ever Seen

http://www.ted.com/talks/hans rosling shows the best stats you ve ever seen

Stats Joke

A statistician can have their head in an oven and their feet in ice, and they will say that on the average they feel fine.

Measures of Central Location

The arithmetic mean is a primary measure of central location. It is often referred to it as the average.
 Sample Mean Population Mean

$$\overline{x} = \frac{\sum x_i}{n}$$

$$\mu = \frac{\sum x_i}{N}$$

· The mean is sensitive to outliers.

BUSINESS STATISTICS | Jaggia, Kelly

Measures of Central Location

- The median is another measure of central location that is not affected by outliers.
- The mode is another measure of central location.
 - The most frequently occurring value in a data set
 - Used to summarize qualitative data
 - A data set can have no mode, one mode (unimodal), or many modes (multimodal).

Measures of Dispersion

- Measures of dispersion gauge the variability of a data set.
- Measures of dispersion include:
 - ✓ Range
 - ✓ Variance and Standard Deviation
 - Coefficient of Variation (CV)

Measures of Dispersion

Range

Range = Maximum Value - Minimum Value

- ✓ It is the simplest measure.
- ✓ It is focusses on extreme values.

BUSINESS STATISTICS | Jaggia, Kelly

Measures of Dispersion

- · Variance and standard deviation
- · For a given sample,

$$s^2 = \frac{\sum (x_i - \overline{x})^2}{n-1}$$
 and $s = \sqrt{s^2}$

· For a given population,

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$
 and $\sigma = \sqrt{\sigma^2}$

Measures of Dispersion

- Coefficient of variation (CV)
 - CV adjusts for differences in the magnitudes of the means.
 - CV is unitless, allowing easy comparisons of mean-adjusted dispersion across different data sets.

Sample CV =
$$\frac{s}{\overline{x}}$$

Population CV = $\frac{\sigma}{u}$

DADM Student Results-Summary Stats

	Age	Height	Work Experience	Travel Time to UWA	Comfort with Analytics
Mean	24.891	170.685	2.191	28.413	6.307
Standard Error	0.407	0.938	0.328	1.862	0.179
Median	24	171	1	25	6
Mode	23	163	0	15	6
Standard Deviation	3.904	8.995	3.148	17.856	1.717
Sample Variance	15.241	80.916	9.911	318.839	2.947
Kurtosis	3.942	-0.685	6.357	1.650	1.474
Skewness	1.896	-0.166	2.235	1.195	-0.467
Range	19	41	17	89	9
Minimum	20	150	0	1	1
Maximum	39	191	17	90	10
Sum	2290	15703	201.6	2614	580.25
Count	92	92	92	92	92

$$s^2 = \frac{\sum (x_i - \overline{x})^2}{n-1}$$
 and $s = \sqrt{s^2}$

Analysis of Relative Location- We will discuss this in our next lecture

• The Empirical Rule:

- \checkmark Approximately 68% of all observations fall in the interval $\overline{x} \pm s$.
- Approximately 95% of all observations fall in the interval $\overline{x} \pm 2s$.
- Almost all observations fall in the interval $\bar{x} \pm 3s$.

Correlation

- The **correlation coefficient** $(r_{xy} \text{ or } \rho_{xy})$ describes both the direction and strength of the relationship between x and y.
- The scatterplot visually displays this relationship.

BUSINESS STATISTICS | Jaggia, Kelly

Interpreting Correlation Coefficients

- Sign (+/-) direction of relationship --> direct or inverse relationship
- Values--> strength of relationship

Rule of Thumb

- |.71| |1.00| Strong
- |.41| |.70| Moderate
- |.01| |.40| Weak
- 0 No relationship

Correlation Matrix

	Age	height	work experience	time to UWA	comfort
Age	1				
height	-0.002	1			
work experience	0.760	0.009	1		
time to UWA	0.112	-0.106	0.155	1	
comfort	-0.103	-0.013	0.012	0.302	1

Sample Statistics versus Population Parameters- It's all Greek to me!

Measure	Population Parameter	Sample Statistic
Mean	μ	$\bar{\chi}$
Variance	σ^2	s^2
Standard Deviation	σ	S
Correlation	ρ	r
Size	N	n

Summary

- -Summarize qualitative data by forming frequency distributions.
- -Understand and interpret pie charts and bar charts.
- -Summarize quantitative data by forming frequency distributions.
- -Understand and interpret histograms, polygons, and ogives.
- -Understand and interpret a scatterplot.
- -Calculate and interpret the arithmetic mean, median, and mode.
- -Calculate and interpret the range, variance, standard deviation, and coefficient of variation.
- -Apply the empirical rule.
- -Interpret the correlation coefficient.

Next Lecture....

- Brief revision of Lecture 2
- Topic:
 - -Dealing with Risk and Uncertainty

SEE YOU THEN

