Neural Network 2020

Project Presentation

Francesco Starna Gianmarco Bracalello

Sapienza University of Rome

Deep Complex Network

Project

Project Goal

Compare real residual network and complex residual network on following tasks:

- Image Recognition
 - CIFAR 10, CIFAR 100

- Time Series Forecasting
 - Weather Dataset

Using Tensorflow all computation are done in real context.

Complex Residual Network

ResNet exploits advantages of deep network using shortcut paths added to output of each blocks.

Complex valued layer:

- Complex Weight Initialization
- Complex Batch Normalization
- Complex Convolution
- Imaginary Learning Block
- Complex Dropout
- Complex Activation Functions

Complex Weight Initialization

Using the polar representation of complex numbers initialize weights in a proper way

$$W = |W|e^{i\theta} = \Re(W) + i\Im(W)$$

|W| is computable from Rayleigh distribution

 θ varies between $-\pi$ and π

 $\boldsymbol{\theta}$ is the phase and $|\boldsymbol{z}|$ is the magnitude

Whitening 2D vectors

In order to optimize the model training and performance we scale the data by the inverse square root of the covariance matrix V. Different from classic real-valued batch normalization.

$$\tilde{x} = (V)^{-\frac{1}{2}}(x - \mathbb{E}[x]) \qquad V = \begin{bmatrix} Cov(\Re(x), \Re(x)) & Cov(\Re(x), \Im(x)) \\ Cov(\Im(x), \Re(x)) & Cov(\Im(x), \Im(x)) \end{bmatrix}$$

It ensures:

$$\mu = 0$$

Covariance one

$$\Gamma = 1$$

Zero correlation

$$C = 0$$

Complex Batch Normalization

Same as the real valued batch normalization two learnable parameters are used:

a scaling parameter

$$\gamma = \begin{pmatrix} \gamma_{rr} & \gamma_{ri} \\ \gamma_{ri} & \gamma_{ii} \end{pmatrix}$$

a shift parameter

$$\beta = 0$$

The batch normalization becomes:

$$BN(\tilde{x}) = \gamma \tilde{x} + \beta$$

Layer Customization

Imaginary Learning Block: 2 real residual blocks

Complex Convolution: real and imaginary kernels

Complex Output

$$W*h = (A*x - B*y) + i(B*x + A*y)$$

Complex Dropout

Complex Activation Functions

ModReLU: activation depending on magnitude, phase and a learnable parameter

$$modReLU(z) = ReLU(|z| + b)e^{i\theta_z} = \begin{cases} (|z| + b)\frac{z}{|z|} & |z| + b \ge 0\\ 0 & otherwise \end{cases}$$

CReLU: applies ReLU on real and imaginary part of the input computing the resulting complex number

$$\mathbb{C}ReLU(z) = ReLU(\Re(z)) + iReLU(\Im(z))$$

ZRelu: is simply the input if the phase is in $[0, \pi/2]$ and 0 otherwise

$$zReLU = \begin{cases} z & \theta_z \in [0, \pi/2] \\ 0 & otherwise \end{cases}$$

Architecture

Pre-Residual Block layers:

CConv → CBatch Normalization → CActivation

3 Stages Residual Blocks:

CBatch Normalization → CActivation → CConv → CDropout

post-Residual Block layers:

GlobalAveragePooling → FullyConnectedLayer

To guarantee a comprehensive comparison between real and complex networks three different architectures have been used:

- Wide and Shallow (WS)
 Blocks = 14
 F = [12, 24, 48]
- In Between (IB)
 Blocks = 17
 F = [11, 22, 44]
- Deep and Narrow (DN) Blocks = 20 F = [10, 20, 40]

Neural Network

Training

Optimizers: SGD (Robbins, 2007), Adam (Kingma and Ba, 2017)

Image Recognition

CIFAR10-100

- SGD
- Nesterov momentum 0.9
- gradient clipping 1.0
- learning rate scheduler
- 200 epochs

slower

Time Series Forecasting

1h, 24h windowing

- Adam
- gradient clipping 1.0
- learning rate 0.001
- 120 epochs

faster

Results

Image Recognition

Time Series Forecasting

Architecture	Blocks	Filters	Activation	Image Recognition		Time Series	
				CIFAR10	CIFAR100	1h	24h
Wide-Shallow	14	[12,24,48]	ModRelu	0.767	0.524	0.902	0.892
			CRelu	0,801	0,613	0.934	0.946
			ZRelu	0,788	-	0,937	0.921
Real Valued	16	[18,36,72]	Relu	0.873	0,709	0.940	0.930
In-Between	17	[11,22,44]	ModRelu	0,740	0,503	0,919	0,925
			CRelu	0,783	0,605	0,935	0,941
			ZRelu	0,758	=	0,920	0,926
Real Valued	19	[16,32,64]	Relu	0,851	0,617	0,936	0,936
Deep-Narrow	20	[10,20,40]	ModRelu	0,703	0,510	0,905	0,941
			CRelu	0,794	0,626	0,931	0,937
			ZRelu	0,771	=	0,928	0,928
Real Valued	23	[14,28,56]	Relu	0,866	0,678	0,899	0,949

Thanks

