PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA A 15 GIUGNO 2006

1) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia V_{T1} , V_{T2} e dai coefficienti β_1 e β_2 . Il segnale d'ingresso abbia il seguente andamento:

 $t<0: V_i=V_{dd}$ $t>0: V_i=0$

Si calcoli il tempo necessario al segnale di uscita V_{u} per compiere il 50% della sua escursione.

$$V_{dd}=3.5$$
 V, V_{T1} = -0.9 V , V_{T2} = 0.55 V, β_1 = 0.1 mA/V², β_2 = 8 mA/V², R_1 = 1 kΩ, C=12 pF.

$$V_{cc}$$
 = 5 V, β_F = 100, R_1 = 500 $\Omega,~R_2$ = 500 $\Omega,~R_3$ = 8 k $\Omega,~R_4$ = 5 k $\Omega,~R_5$ = 500 $\Omega.$

3) Nel circuito in figura, i transistori MOS sono caratterizzati dalla tensione di soglia V_{Tn} =- V_{Tp} = V_{T} e dai coefficienti β_n e β_p . Il segnale di Clock alterna i valori 0 e V_{dd} con periodo pari a 2ns, mentre i segnali V_a e V_b assumono i valori 0 e V_{dd} secondo l'andamento illustrato nel diagramma sottostante. Si determini il corrispondente andamento del segnale di uscita V_u , calcolando i tempi di propagazione associati a ciascuna transizione di quest'ultimo.

$$V_{dd} = 3.3 \text{ V}, V_T = 0.4 \text{ V}, \beta_n = 800 \mu\text{A/V}^2, \beta_p = 500 \mu\text{A/V}^2, C=15 \text{ fF}.$$

4) Nel circuito in figura, i transistori MOS sono caratterizzati dalla tensione di soglia V_{Tn} =- V_{Tp} = V_{T} e dai coefficienti β_n e β_p . Il segnale di clock CK alterna i valori 0 e V_{dd} mentre i segnali A e B variano tra 0 e V_{dd} secondo l'andamento riportato in figura.

Si valuti qualitativamente l'andamento dei segnali Vx e Vout individuando le possibili condizioni di malfunzionamento del circuito.

Supponendo che A si mantenga

costante al valore alto e che durante la fase di precarica B commuti

dal valore basso a quello alto, si calcoli il tempo impiegato da V_{out} per raggiungere la condizione di alta impedenza.

 $V_{dd} = 3.5 \text{ V}, \ V_T = 0.3 \text{ V}, \ \beta_n = 600 \ \mu\text{A/V}^2, \ \beta_p = 400 \ \mu\text{A/V}^2, \ C = 10 \ \text{fF}.$

Esame di ELETTRONICA AB (mod. B): svolgere gli esercizi 1 e 2.

Esame di ELETTRONICA DEI SISTEMI DIGITALI A: svolgere gli esercizi 3 e 4

Esame di FONDAMENTI DI ELETTRONICA A: svolgere almeno uno fra gli esercizi 1 e 2 e almeno uno fra gli esercizi 3 e 4.

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

ESAME SCRITTO DI FONDAMENTI DI ELETTRONICA A 15 GIUGNO 2006 SOLUZIONI

Esercizio 1

Osservazione preliminare:

vgs1=vi.

vi>vt1=-0.9V (sempre). Quindi M1 sempre on.

1)t<0, vi=vdd.

M1 lin (\leftrightarrow vu<3.5+0.9=4.4V, quindi sempre).

M2 è on (da verificare) \leftrightarrow vu<vdd-vt2=2.95V.

se M2 on, allora è sat (0<vt2, sempre).

Calcolo di vu(t<0).

 $id1lin = \beta1*((vdd-vt1)*vu-1/2*vu^2)$

 $id2sat = \beta 2/2*(vdd-vu-vt2)^2$

ir1=vu/r1

Ma id2sat=id1lin+ir1.

Risolvendo si trovano le soluzioni seguenti:

vu=2.11V oppure vu=4.072 V.

Quella che verifica le Hp su M2 è la prima,

vu(t<0)=2.11 V

2) Per $t \rightarrow \infty$, vi=0 quindi M1 on, M2 off e vu=0V.

3) t=0+, vi=0, quindi M1 on, M2 off, e la tensione ai capi del condensatore non cambia rispetto all'istante t=0-.

Il segnale d'uscita varia tra 2.11V e 0V.

Il tempo da valutare, quindi, è quello per

passare da 2.11V a 2.11/2=1.055 V.

M1 sarà sat per vu>-vt1=0.9V e lin per vu<0.9V, quindi durante la parte di transitorio d'interesse, M1 rimarrà in saturazione.

Per 1.055<vu<2.11 V M1 sarà sat:

 $idn1sat = \beta 1/2*((-vt1)^2)$

ir1=vu/r1

icap=C*d(vc)/dt

dove vc è la capacità ai capi del condensatore, ed è definita da :

vc= vdd-vo

Allora

e quindi:

dvc = -dvo

ricava che

$$t = -C \int_{2.11}^{1.0554} \frac{1}{\frac{vu}{rl} + \frac{bl}{2} (-vt1)^2} dvu$$

Sostituendo le espressioni corrispondenti, si

ovvero t = 8.09 ns.

Esercizio 2

Osservazione preliminare: T2 quando on sempre in AD.

Regione 1: Suppongo T1 off e T2 on in AD. T1 sarà off fintantoché vi-vx<v $_{\gamma}$, dove vx è da ricavare.

```
ib2=(vcc-(vu+v\gamma))/(r2+r3)
ie2=vu/(r4+r5)
Ma
ie2=(\beta f+1)*ib2, da cui si ricava che vu= 4.186 V,
quindi T2 on (4.186+v\gamma < vcc).

Noto vu si ricava vx:
vx=4.186*r5/(r4+r5)=0.380 V
Si rimane in regione 1 fintantoché T1 rimane off, ovvero per vi<vx+v\gamma=1.13 V.
```

Regione 2 : Suppongo T1 on e T2 on in AD. Si rimane in questa regione fintantochè o T1 va sat, oppure T2 va off.

$ib1 = (vi-(vx+v\gamma))/r1$ $ir2 = (vcc-va)/r2$ $ib2 = (va-(v\gamma+vu))/r3$ $\begin{cases} \beta f * ib1 = ir2 - ib2 \\ vx/r5 = (\beta f + 1)ib1 + (\beta f + 1) * ib2 \\ (vu - vx)/r4 = (\beta f + 1) * ib2 \end{cases}$	Risolvendo si trova che: va=6.34 -1.188 vi, vx=-0.736+0.988 vi, vu=5.491 -1.154 vi Si rimane in questa regione fintantochè (A) T1 va sat, (B) oppure T2 va off.						
(A) Si può notare come con T2 in AD, T1 non possa andare in sat. Infatti considerando la maglia formata dal Collettore-Emettitore di T1, da R3, da Base-Emettitore di T2 e da R4 si trova che se T1 fosse sat con T2 in AD: vcesat-ib2*r3-vγ-ie2*r4=0, ovvero ib2*r3+ie2*r4= vcesat-vγ <0, quindi assurdo perché in AD ib2 e ie2 devono essere entrambe >0.	Invece quando T2 è off, ie2=ib2=ic2=0, e vu=vx allora ie1=vu/r5 ib1=(vi-(vu+v γ))/r1 , ma ie1=(β f+1)*ib1 e vu=5.491 -1.154 vi, da cui si ricava che T2 va off per vi= 2.907V						
Si rimane in regione 2 per 1.13V <vi<2.907v.< td=""></vi<2.907v.<>							

Regione 3: T1 AD, T2 off

T2 è off, ie2=ib2=ic2=0, e vu=vx.	Infine T1 andrà saturo per quel valore di vi						
ie1=vu/r5	tale che ic1 $<$ ib1 $*\beta_f$ con vce=vcesat.						
$ib1=(vi-(vu+v\gamma))/r1$, ma	vu=-0.743+0.99vi						
ie1=(βf+1)*ib1, da cui si ricava che:	$ib1=(vi-(vu+v\gamma))/r1$						
vu=-0.743+0.99 vi	ic1=(vcc-(vu+vcesat))/r2						
Si rimane in regione 3 finché T1 non e entra in	ic1 <ib1*βf, andrà="" che="" cui="" da="" in<="" ricava="" si="" t1="" td=""></ib1*βf,>						
saturazione.	saturazione per vi > 3.186V.						
Si rimane in regione 3 per 2.907V <vi <3.186="" td="" v<=""></vi>							

Regione 4: T1 sat, T2 off

$ib1=(vi-(vu+v\gamma))/r1$	ie1=ib1+ic1					
ic1=(vcc-(vu+vcesat))/r2	da cui si ricava					
ie1=vu/r5	vu=1.35 +0.333 vi					
Si rimane in regione 3 per 3.186 V <vi<vcc.< th=""></vi<vcc.<>						

Di seguito si riporta la caratteristica statica di trasferimento.

Esercizio 3

Si tratta di un p-latch TSPCL, il cui primo stadio include la funzione di NAND(A,B).

Intervallo [ns]	Va	Vb	Vck	M1	M2	М3	M4	M5	Vx	M6	M7	M8	Vu
0 → 1	0	0	0	off	off	off	on	on	V_{dd}	on	off	off	a.i.
1 → 1.2	0	0	V_{dd}	off	off	on	on	on	V_{dd}	on	on	off	0
1.2 → 1.4	V_{dd}	0	V_{dd}	off	on	on	off	on	V_{dd}	on	on	off	0
1.4 → 2	V_{dd}	V_{dd}	V_{dd}	on	on	on	off	off	0	off	on	on	V_{dd}
2 → 2.2	V_{dd}	V_{dd}	0	on	on	off	off	off	0 [a.i.]	off	off	on	V_{dd}
2.2 → 2.4	0	V_{dd}	0	on	off	off	on	off	V_{dd}	on	off	off	V _{dd} [a.i.]
2.4 → 3	0	0	0	off	off	off	on	on	V_{dd}	on	off	off	V _{dd} [a.i.]
3 →4	0	0	V_{dd}	off	off	on	on	on	V_{dd}	on	on	off	0
4 →									V_{dd}				0

Quindi, per t=1.4ns V_x si scarica da Vdd a 0 tramite la serie di M1,M2,M3 (β_{eq}=β_n/3).
 Successivamente Vu si carica a Vdd tramite il transistore M8. Il tempo di propagazione è quindi la somma dei due tempi di transizione:

$$tpHLx = \int_{vid}^{vid-vt} \frac{C}{-\frac{ln}{3} \frac{((vidi-vt)^2)}{2}} dvx + \int_{vid-vt}^{\frac{vid}{2}} \frac{C}{-\frac{ln}{3} \left((vidd-vt) vx - \frac{vx^2}{2}\right)} dvx$$

$$tpLHu = \int_{0}^{vt} \frac{C}{bp \frac{((vcd-vt)^{2})}{2}} dvu + \int_{vt}^{vcd} \frac{C}{bp \left((vcd-vt) (vcd-vu) - \frac{(vcd-vu)^{2}}{2}\right)} dvu$$

la somma di questi transitori è un transitorio complessivo di durata t1=35.6 ps, che si innesca all'istante 1.4ns.

Il segnale Vx torna al valore Vdd per t=2.2 ns, mentre il segnale Vu commuta solo per t=3 ns, non appena il segnale di CK abilita la transizione di scarica attraverso M7 e M6 (β_{eq} = β_n /2).

$$tpHL = \int_{vdi}^{vdd-vt} \frac{C}{-\frac{\ln}{2} \frac{((vdd-vt)^2)}{2}} dvu + \int_{vdi-vt}^{\frac{vdi}{2}} \frac{C}{-\frac{\ln}{2} \left((vdd-vt) vu - \frac{vo^2}{2}\right)} dvu$$

il transitorio è di durata t2= 15.5 ps, e si innesca all'istante 3ns.

Esercizio 4

Durante l'ottavo semiperiodo di clock, la transizione di vout (che si scarica tramite la serie di M7 e M6) viene interrotta quando vx (scaricato mediante la serie di M2, M3, M4) raggiunge il valore vt

t =
$$\int_{\text{vdd}}^{\text{vdd-vt}} \frac{\text{Cap}}{-\frac{\text{Im}}{3} \frac{\left((\text{vdd-vt})^2\right)}{2}} \, d\text{vo} + \int_{\text{vdd-vt}}^{\text{vt}} \frac{\text{Cap}}{-\frac{\text{Im}}{3} \left((\text{vdd-vt}) \text{ vo} - \frac{\text{vo}^2}{2}\right)} \, d\text{vo}$$
= 4.99963×10^{-11} sec a partire dall'istante di discesa del segnale di clock

sec a partire dall'istante di discesa del segnale di clock.

questa è appunto la condizione critica che può determinare malfunzionamento del circuito