Université de Tlemcen Faculté des Sciences Département de Mathématiques

L3 - Examen final Introduction aux processus aléatoires Durée 1h30mn

30 mai 2022

Exercice 1:

Soit $(X_n, n \in \mathbf{N}^*)$ une suite de variables aléatoires de loi exponentielle de paramètres respectifs λ_n . Dans quels cas la suite (X_n) est-elle convergente en loi?

- $1. \ \lambda_n = n^2 e^{-n}.$
- $2. \ \lambda_n = e^{-n}.$
- 3. $\lambda_n = \ln n$.
- $4. \ \lambda_n = \frac{3n+1}{n}.$

Exercice 2:

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de même loi exponentielle de paramètre 1.

- 1. Montrer que la suite $(X_n)_{n>1}$ converge en loi.
- 2. La suite $(X_n)_{n\geq 1}$ converge-t-elle en probabilité? Indication : on calculera $\mathbf{P}(|X_n-X_m|>\varepsilon)$ pour tout $\varepsilon>0,\ n,m\in\mathbf{N}^*, n\neq m$.

Exercice 3

Soit $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires indépendantes de loi uniforme sur [0,1].

1. Montrer que, pour tout $k \in \mathbb{N}, \widetilde{X}_k = \ln(X_k)$ est intégrable et que

$$\frac{1}{n}\sum_{k=1}^{n}\widetilde{X}_{k}\longrightarrow \mathbf{E}(\ln(X_{1}))$$
 p.s. quand $n\longrightarrow +\infty$.

2. Soit $\alpha \in \mathbf{R}$. Posons

$$Y_n = \prod_{k=1}^n (X_k)^{\alpha/n}.$$

Montrer que la suite $(Y_n)_{n \in \mathbb{N}^*}$ converge presque sûrement et donner sa limite.

Exercice 4:

Soit (X, Y, Z) un vecteur gaussien de \mathbb{R}^3 d'espérance $(1, 1, 1)^{tr}$ et de matrice de covariance $3I_3$.

- 1. Déterminer la loi du vecteur aléatoire de \mathbb{R}^2 : V = (X + 2Y + Z, 2X Y + Z).
- 2. En déduire la loi et les paramètres du vecteur aléatoire W = (X + 2Y + Z, 2X Y + Z + 2).

Bon courage!

module "Introduction aux processus aléaboires" 2021-2022 Exercice 1: 1) $\lambda_n = n^2 e^{-n}$. Nous remarquons que lim $\lambda_n = 0$ Si la suite (Xn) convergeait en loi ver une v.a. X, alors les f.c. Px(t) convergeraient vers (fx(t) pour bout t ER. On a $\Psi_{X_n}(t) = E \left[e^{itX_n} \right] = \frac{\lambda_n}{\lambda_n - it} \xrightarrow[n \to +\infty]{\Lambda} \text{ sinch sinon}$ Si on a la convergence en loi alors $(x(t) = 1)_{t=0}$. Or la fonction tus $(x(t) = 1)_{t=0}$, where $(x(t) = 1)_{t=0}$ and $(x(t) = 1)_{t=0}$ and $(x(t) = 1)_{t=0}$. de v. a. La suite (Xn) me converge donc pas en loi. 2) $\lambda_n = e^{-r}$. Même chose que 1). 3) $\lambda_n = \ln n$. Nous temanquons que limit $n = +\infty$. Soit quine fontime continue et bounée. $E[g(X_n)] = \int g(x) \lambda_n e^{-\lambda_n x} dx = \begin{cases} y = \lambda_n x \\ dy = \lambda_n \end{cases} \Rightarrow \begin{cases} y = \lambda_n x \\ y = \lambda_n \end{cases}$ = Iq (dy , e dy . On utilise la majoration (e g (\frac{3}{\lambda_n}) \le 1/911 & e g = h(y) et la foution hest intégable sur [0,+10). Comme gest continue on a aussi lin g (\frac{y}{\text{Zn}}) = g(0) et par convergence dominée, nous obtenous $E[g(X_n)] \xrightarrow{n \to +\infty} g(o) = E[g(X)] \text{ avec } X = o p_i s_i$ Donc (Xn) converge en loi vero X = 0. H) $\lambda_n = \frac{3n+1}{n}$. Nous tremarquens que luis $\lambda_n = 3$. Soit gune fonction continue et bonnée. On a $E[g(x_n)] = \int_n^x e^{-\lambda_n x}$ 4870]n EN/ NZne => 12,-3/ SE. cad 2, E[3-8,3+8] et par suite [Line 2000 (x)] < [1911 a (3+ E) & 3+ E) x = h_E(x) et la fonction he est intégrable et par le Révoreine de la convergence

dominée E[g(Xn)] \(\frac{1}{n} \) \(\frac{1}{3}e^{-3x} g(x) dx = E[g(X)] où X \(\frac{1}{3}e^{-3x} g(x) dx = E[g(X)] Exercice 2: 1) Les Xnont la même loi alos E[g(Xn)] = E[g(X1)] pour toute fontion g continue bornée. (Xn) converge donc en la vers X1. 2) On a pour, m + n P(IX m Xn 1> E) = fe -x-y 1 dx dy) o bout E>och definition 2-4 tefinition x-y

(x,y)=fe si x70,147,0

(x,m,(X,n)) o sinon c'est une constante positive strictement, qui ne dépend mi de m mi Par l'absurde, si (Xn) converge en probabilité vers une v.a. X alors $P(|X_n \times I > \frac{\varepsilon}{2}) \rightarrow 0$ et $P(|X_m \times I > \frac{\varepsilon}{2}) \rightarrow 0$ alos PZIX-Xm>E}<PZIX-XI>E}+PZIX-XI>E}

Hyp. par absurde

coteso: on obtent of este <0 ce qui est absurde. Ainsi la suite (Xn) ne converge pas en probabilité. Exacie3: 1) Pour bout lEIN*, Xl= ln Xl est définie p.s. Ces v.a. sont mutuellement indépendantes can les Xe le sont et la fonction In est mesurable car continue. $f_{\chi}(x) = 1$. $\int_{[0,1]}^{(\chi)} f(x) dx$ $E[IX_{e}] = \int_{-\infty}^{\infty} |\ln x| \cdot 1 \cdot dx = \lim_{\varepsilon \to \infty} \int_{-\infty}^{\infty} |\ln x| dx = \lim_{\varepsilon \to \infty} \int_{-\infty}^{\infty}$ Ainsi Xe est intégrable. Par la LFGN,

1 = X => E[X] = E[Ln(X1)] p.s. quandn -> + 20 2) La fonction exponentielle étant entinue d'après la question précédente mons déduirons: $y_n = \frac{n}{k-1} \times \frac{\alpha}{n} = \frac{n}{k-1} e^{n} \ln(x_k) \longrightarrow e^{n} E[\ln x_1] = e^{n} \ln x_1 = e^{n} \ln x_2 = e^{n} \ln x_2 = e^{n} \ln x_1 = e^{n} \ln x_2 = e^{n} \ln x_2 = e^{n} \ln x_1 = e^{n} \ln x_2 = e^{n} \ln x_2 = e^{n} \ln x_1 = e^{n} \ln x_2 = e^{n} \ln x_1 = e^{n} \ln x_2 = e^{n} \ln x_2 = e^{n} \ln x_1 = e^{n} \ln x_2 = e^$ e^{- \times} $V = \begin{pmatrix} x + 2y + 7 \\ 2x - y + 7 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 2 & 1 \end{pmatrix}$ donc $V = A \begin{pmatrix} x \\ z \end{pmatrix}$ avec $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix}$ Vest une transformation lineaire de (x, Y, Z) qui est gaussien alors Vest gaussien. E(V) = A E(X, Y, Z) = A = (1) = A $=\begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ Calcul de la matrice de Covariance de V. Var (X+ 2Y+Z)= Var (X) +4Var (Y)+ Var (Z) car X, Y et Z sont indépen -dantes vu que la matrice de covariance de (x, Y, Z) est diagonale $(C = 3I_3 = .(3 0 0)$ (x,y,z)Var (X+2Y+7) = 3+4,3+3 = 18 Van (2 x - Y+Z) = 4 Van (x) + Van(Y) + Van(Z) = = 4.3 +3+3=18 Cov (X+27+ Z 1 2x-7+ Z) = 2Var(X- 2Var(Y) + Var(Z) = = 2.3 - 2.3 + 3=3 etaul indépendents On en déduit la matrice de covariance de V: $C_{V} = \begin{pmatrix} 18 & 3 \\ 3 & 18 \end{pmatrix}.$ Contrier: (4), (183).

Con peut utiliser la proposition du cours directement:

 $V = A \left(\frac{y}{2}\right) + B \subseteq U^{\alpha} \left(A, E\left(\frac{y}{2}\right) + B, A \cdot 3I_{\beta} \cdot A^{\frac{1}{\alpha}}\right)$ where $B = \left(\frac{x}{\alpha}\right)$ of C and C and C and C are C are C and C are C are C and C are C are C and C are C and C are C are C and C are C are C and C are C and C are C are C and C are C and C are C and C are C are C and C are C are C and C are C and C are C are C and C are C are C and C are C and C are C are C and C are C are C and C are C and C are C are C and C are C are C and C are C and C are C are C and C are C are C and C are C and C are C are C and C are C are C and C are C and C are C are C and C are C are C and C are C and C are C and C are C are C are C and C are C and C are C are C and C are C are C and C are C and C are C are C are C and C are C are C and C are C are C and C are C are C are C are C and C are C are C are C are C and C are C are C and C are C are C and C are C and C are C are C are C and C are C are C and C are C are C are C are C and C are C are C and C are C are C and C are C are C are C are C are C and C are C are C are C are C and C are C are C and C are C are C are C are C and C are C and C are C are C are C are C and C are C are C and C are C are C are C are C and C are C are C are C are

W 5 cr ((4), (18 3))