Esercizi di Logica - 1

1. Scrivere l'albero di formazione (parsing tree) e le tavole di verità delle seguenti formule:

$$\neg(x_2 \lor x_3) \land (x_3 \land (x_2 \lor \neg x_1))$$
$$((x_3 \lor x_1) \land (x_1 \to x_2)) \lor \neg x_1$$

2. Dire se la seguente formula e' soddisfacibile e quali sono le valutazioni delle variabili x_1, x_2, x_3 che la soddisfano:

$$(x_1 \to (\neg x_3 \lor x_2)) \leftrightarrow (\neg (x_1 \lor \neg x_3))$$

3. Scrivere delle formule in forma normale congiuntiva (CNF) e in forma normale disgiuntiva (DNF) corrispondenti alle seguenti tabelle di verità:

x_1	$ x_2 $	x_3	$f(x_1, x_2, x_3)$
0	1	0	0
0	0	0	0
0	1	1	1
0	0	1	0
1	1	0	1
1	0	0	0
1	1	1	1
1	0	1	1

x_1	$ x_2 $	x_3	$f(x_1, x_2, x_3)$
0	1	0	1
0	0	0	1
0	1	1	0
0	0	1	0
1	1	0	1
1	0	0	1
1	1	1	0
1	0	1	1

4. Trasformare in forma normale congiuntiva (CNF) e disgiuntiva (DNF) le seguenti formule:

$$(\neg x_1 \land x_3) \lor \neg (x_1 \land (x_2 \lor \neg x_3))$$
$$((x_3 \lor x_1) \land (x_1 \to x_2)) \lor \neg x_1$$

5. Scrivere l'albero di formazione e stabilire dove le variabili occorrono libere e dove occorrono vincolate nelle seguenti formule:

$$\forall x_2 \exists x_3 \neg (P_1(x_1, x_2) \lor P_2(x_3, x_2)) \land \exists x_2 \forall x_1 (P_2(x_1, x_2, x_3))$$
$$\exists x \exists y (A(x, y) \to B(x)) \to \forall z C(z) \lor D(z)$$

```
6. Sia A = (\mathbb{N}, I) una struttura sull'insieme dei numeri naturali \{0, 1, 2, 3, \ldots\} con:
```

$$I(P_1) = \{(n, n) \mid n \in \mathbb{N}\};$$

$$I(P_2) = \{ (n, m) \mid n < m \};$$

$$I(P_3) = \{(n, m) \mid n \text{ è multiplo di } m\}.$$

Consideriamo la valutazione delle variabili e data da $e(v_1) = 4$, $e(v_2) = 8$, $e(v_3) = 2$, $e(v_4) = 1$, $e(v_5) = 5$, $e(v_6) = 8$. Dire quali delle seguenti affermazioni è vera:

$$(A, e) \models P_1(v_2, v_6)$$

$$(A,e) \models P_2(v_2,v_3)$$

$$(A,e) \models P_3(v_3,v_1)$$

$$(A,e) \models P_3(v_6,v_3)$$

$$(A, e) \models \forall v(P_1(v, v_1) \lor P_3(v, v_2))$$

$$(A,e) \models P_3(v_3,v_2) \land \forall v(P_2(v_1,v))$$

7. Si consideri il linguaggio contenente i predicati unari R, G e N, e il predicato binario P. Nell'insieme degli esseri viventi, interpretiamo

$$I(R) = \{x \mid x \text{ è una persona}\}$$

$$I(G) = \{x \mid x \text{ è un gatto}\}$$

$$I(N) = \{x \mid x \text{ è nero}\}$$

$$I(P) = \{(x, y) \mid a \text{ x piace y}\}\$$

Scrivere il significato della formula

$$\exists x (R(x) \land \forall y ((G(y) \land \neg N(y)) \rightarrow P(x,y))).$$

Trasformare questa formula in forma di Skolem. Tale formula è soddisfacibile?

8. Scrivere una formula che interpretata nella struttura $\{0, 1, 2, \ldots\}, \{\le, =\}$ rappresenti la frase

"esiste n diverso da zero tale che per ogni m, m è minore o uquale a n".

Trasformarla poi in forma di Skolem.

9. Una funzione $f: X \to Y$ si dice *iniettiva* se per ogni coppia di elementi distinti $x, y \in X$ si ha $f(x) \neq f(y)$. Scrivere una formula che rappresenti tale proprieta' nel linguaggio contenente i predicati

A(x) interpretato con "x appartiene a X"

U(x,y) interpretato con "x e y sono uguali",

e il simbolo di funzione f.

10. Scrivere alcuni esempi di formule e di formule atomiche nel linguaggio formato dalle variabili $\{v_1, v_2, \ldots\}$, dai connettivi $\{\land, \lor, \neg\}$ dai quantificatori $\{\forall, \exists\}$, dai predicati binari $\{P_1, P_2\}$, dalle parentesi (,) e dall'eguaglianza =.