Homework 1 Partial Solutions

Homework 1 problems:

Section 1.1

8. Use elimination and back substitution to solve the given system:

$$x_1 + 2x_2 - 2x_3 = 1$$
$$2x_1 + 5x_2 + x_3 = 9$$

$$x_1 + 3x_2 + 4x_3 = 9$$

Elimination on the augmented system looks like:

$$\begin{bmatrix} 1 & 2 & -2 & | & 1 \\ 2 & 5 & 1 & | & 9 \\ 1 & 3 & 4 & | & 9 \end{bmatrix} \xrightarrow[\substack{r_2 - 2r_1 \to r_2 \\ r_3 - r_1 \to r_3} \begin{bmatrix} 1 & 2 & -2 & | & 1 \\ 0 & 1 & 5 & | & 7 \\ 0 & 1 & 6 & | & 8 \end{bmatrix} \xrightarrow[\substack{r_3 - r_2 \to r_3}]{} \begin{bmatrix} 1 & 2 & -2 & | & 1 \\ 0 & 1 & 5 & | & 7 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

This gives the triangular system

$$x_1 + 2x_2 - 2x_3 = 1$$

 $x_2 + 5x_3 = 7$
 $x_3 = 1$

Back substitution gives:

$$x_2 = 7 - 5(1) = 2$$

 $x_1 = 1 + 2(1) - 2(2) = -1$

So we have the solution (-1, 2, 1). (Check this in the initial system!)

9.

(a) Suppose $m_1 \neq m_2$. Assume $m_1 \neq 0$. (If $m_1 = 0$, then $m_2 \neq 0$ by our assumption so we could just swap the rolls below.) Multiply the first equation by $-m_2/m_1$ add to the second

and replace the second. This yields the new system:

$$-m_1x_1 + x_2 = b_1$$
$$(1 - m_2/m_1)x_2 = b_2 - (m_2/m_1)b_1$$

Now you can use back substitution:

$$x_2 = \frac{b_2 - (m_2/m_1)b_1}{1 - m_2/m_1} = \frac{m_1b_2 - m_2b_1}{m_1 - m_2}$$
 (ok since $m_1 \neq m_2$)
$$x_1 = -\frac{b_1 - x_2}{m_1} = \frac{2m_2b_1 - m_1(b_1 + b_2)}{m_1(m_1 - m_2)}$$

So we have a unique solution.

(b) If $m_1 = m_2$, then the system is just

$$-m_1 x_1 + x_2 = b_1$$
$$-m_1 x_1 + x_2 = b_2$$

This is equivalent to the single equation $-m_1x_1+x_2=b_1$ if $b_1=b_2$, else you get $0=b_2-b_1\neq 0$ which cannot happen.

(c) For (a) saying $m_1 \neq m_2$ is equivalent to saying that the two lines have different slopes and hence have a unique point of intersection. For (b), if $m_1 = m_2$, the lines are parallel, they are the same line if $b_1 = b_2$, else they are distinct parallel lines and hence never intersect.

Section 1.2

5.

(c)

$$x_1 + x_2 = 0$$
$$2x_1 + 3x_2 = 0$$
$$3x_1 - 2x_2 = 0$$

Gaussian Elimination looks like

$$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 0 \\ 3 & -2 & 0 \end{bmatrix} \xrightarrow[\substack{r_2 - 2r_1 \to r_2 \\ r_3 - 3r_1 \to r_3}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 0 \end{bmatrix} \xrightarrow[\substack{r_3 + 5r_2 \to r_3}]{} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

This results in the triangular system

$$x_1 + x_2 = 0$$
$$x_2 = 0$$

Which is solved by back substitution to give: $x_2 = 0$, and $x_1 = -x_2 = 0$.

(d)

$$3x_1 + 2x_2 - x_3 = 4$$
$$x_1 - 2x_2 + 2x_3 = 1$$
$$11x_1 + 2x_2 + x_3 = 14$$

Gaussian Elimination looks like

$$\begin{bmatrix} 3 & 2 & -1 & | & 4 \\ 1 & -2 & 2 & | & 1 \\ 11 & 2 & 1 & | & 14 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & -2 & 2 & | & 1 \\ 3 & 2 & -1 & | & 4 \\ 11 & 2 & 1 & | & 14 \end{bmatrix} \xrightarrow{r_2 - 3r_1 \to r_2} \begin{bmatrix} 1 & -2 & 2 & | & 1 \\ 0 & 8 & -7 & | & 1 \\ 0 & 24 & -21 & | & 3 \end{bmatrix} \xrightarrow{r_3 - 3r_2 \to r_3} \begin{bmatrix} 1 & -2 & 2 & | & 1 \\ 0 & 8 & -7 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

This is equivalent to the "triangular system"

$$x_1 - 2x_2 + 2x_3 = 1$$
$$8x_2 - 7x_3 = 1$$

So x_1 and x_2 are the two "pivot variables" an x_3 is the "free variable." Let $x_3 = t$ be any value, then we use back substitution to get:

$$x_2 = 1/8 + 7/8t$$
$$x_1 - 2(1/8 + 7/8t) + 2t = 1$$
$$x_1 = 5/4 - 1/4t$$

So

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5/4 - 1/4t \\ 1/8 + 7/8t \\ t \end{bmatrix} = \begin{bmatrix} 5/4 \\ 1/8 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1/4 \\ 7/8 \\ 1 \end{bmatrix}$$

(e)

$$2x_1 + 3x_2 + x_3 = 1$$
$$x_1 + x_2 + x_3 = 3$$
$$3x_1 + 4x_2 + 2x_3 = 4$$

Elimination on the augmented system looks like:

$$\begin{bmatrix} 2 & 3 & 1 & | & 1 \\ 1 & 1 & 1 & | & 3 \\ 3 & 4 & 2 & | & 4 \end{bmatrix} \xrightarrow[r_1 \leftrightarrow r_2]{} \begin{bmatrix} 1 & 1 & 1 & | & 3 \\ 2 & 3 & 1 & | & 1 \\ 3 & 4 & 2 & | & 4 \end{bmatrix} \xrightarrow[r_2 \to r_3 \to r_3]{} \begin{bmatrix} 1 & 1 & 1 & | & 3 \\ 0 & 1 & -1 & | & -5 \\ 0 & 1 & -1 & | & -5 \end{bmatrix} \xrightarrow[r_3 \to r_2 \to r_3]{} \begin{bmatrix} 1 & 1 & 1 & | & 3 \\ 0 & 1 & -1 & | & -5 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

The echelon form of the matrix coefficient matrix is now shown.

This system is consistent. if we let $x_3 = t$, then by back substitution get

$$x_3 = t$$

 $x_2 = -5 + t$
 $x_1 = 3 - t - (-5 + t) = 8 - 2t$

so the solution set is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ -5 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

8. For what values of a does the following have a unique solution?

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ -1 & 4 & 3 & 2 \\ 2 & -2 & a & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ -1 & 4 & 3 & 2 \\ 2 & -2 & a & 3 \end{bmatrix} \xrightarrow[r_{2}+r_{1}\to r_{2}]{r_{3}-2r_{1}\to r_{3}} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 6 & 4 & 3 \\ 0 & -6 & a-2 & 1 \end{bmatrix}$$

$$\xrightarrow[r_{3}+r_{2}\to r_{3}]{r_{3}-2r_{1}\to r_{3}} \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & 6 & 4 & -5 \\ 0 & 0 & a+2 & 4 \end{bmatrix}$$

All that is required to get a unique solution is that $a + 2 \neq 0$ or $a \neq -2$.

11. Solve

$$x_1 + 2x_2 = 2$$
 $x_1 + 2x_2 = 1$
 $3x_1 + 7x_2 = 8$ $3x_1 + 7x_2 = 7$

Set this up as:

$$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 3 & 7 & 8 & 7 \end{bmatrix} \xrightarrow[r_2-3r_3\rightarrow r_3]{} \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 2 & 4 \end{bmatrix} \xrightarrow[r_1-2r_2\rightarrow r_1]{} \begin{bmatrix} 1 & 0 & -2 & -7 \\ 0 & 1 & 2 & 4 \end{bmatrix}$$

So the solutions are

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \end{bmatrix}$$

respectively. As usual, you should check this.

(b)

From this we have

$$i_1 - i_2 + i_3 = 0$$
 (node B)
 $-i_1 + i_2 - i_3 = 0$ (node A)
 $2i_1 + 4i_2 = 20$ (top loop)
 $4i_2 + 2i_3 = 20$ (bottom loop)

This gives

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ -1 & 1 & -1 & 0 \\ 2 & 4 & 0 & 20 \\ 0 & 4 & 2 & 20 \end{bmatrix} \xrightarrow[r_2+r_1\to r_2]{r_2+r_1\to r_2} \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 6 & -2 & 20 \\ 0 & 4 & 2 & 20 \end{bmatrix}$$

$$\xrightarrow[r_2\leftrightarrow r_4]{1/2r_2\to r_2} \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & 1 & 10 \\ 0 & 3 & -1 & 10 \\ 0 & 3 & -1 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow[r_3-3/2r_2\to r_3]{1} \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This gives the triangular system

$$i_1 - i_2 + i_3 = 0$$

 $2i_2 + i_3 = 10$
 $-5/2i_3 = -5$

So

$$i_3 = 2 \Longrightarrow i_3 = 2$$

 $2i_2 + 2 = 10 \Longrightarrow i_2 = 4$
 $i_1 - 4 + 2 = 0 \Longrightarrow i_1 = 2$

(c)

The equations here are

$$-i_1 + i_2 - i_3 = 0$$
 (Node A)
 $i_1 - 1_2 + i_4 = 0$ (Node B)
 $i_3 - i_5 + i_6 = 0$ (Node C)
 $-i_4 + i_5 - i_6 = 0$ (Node D)
 $4i_1 + 2i_2 = 8$ (Top Loop)
 $4i_5 + 5i_6 = 10$ (Bottom Node)

The augmented matrix is

$$\begin{bmatrix} -1 & 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 & -1 & 0 \\ 4 & 2 & 0 & 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 0 & 4 & 5 & 10 \end{bmatrix}$$

solving gives

$$\begin{bmatrix}
 1/2 \\
 3 \\
 5/2 \\
 5/2 \\
 5/2 \\
 0
 \end{bmatrix}$$

Section 1.3

- 6. This is just computational. Do this by hand, but this is also good to verify in MATLAB.
- 7. This is just computational. Do this by hand, but this is also good to verify in MATLAB.

13.

(a) Say the variables are x_1, x_2, x_3, x_4, x_5 the variables x_2, x_4 and x_5 will be independent since the columns 2,4, and 5 do not contain pivot elements. The others can be solved in terms of those. Let s, t, u be arbitrary real numbers and set $x_2 = s, x_4 = t$, and $x_5 = u$, then

$$x_1 = -2 - 2s - 3t - u$$

$$x_2 = s$$

$$x_3 = 5 - 2t - 4u$$

$$x_4 = t$$

$$x_5 = u$$

We can write this nicely as

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 5 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} -1 \\ 0 \\ -4 \\ 0 \\ 1 \end{bmatrix}$$
 (1)

(b)

We know

We also know that

$$\mathbf{x} = \begin{bmatrix} -2\\0\\5\\0\\0 \end{bmatrix}$$

is a solution, namely the solution where s = t = u = 0

So
$$A\mathbf{x} = -2\mathbf{a_1} + 5\mathbf{a_3} = -2\begin{bmatrix} 1\\1\\3\\4 \end{bmatrix} + 5\begin{bmatrix} 2\\-1\\1\\3 \end{bmatrix} = \begin{bmatrix} 8\\-7\\-1\\7 \end{bmatrix} = \mathbf{b}$$

16. $A^T = -A$ implies $a_{ii} = -a_{ii}$ so $a_{ii} = 0$.

Section 1.4

8. Check that $A^2 = I$, so $A^{2n+1} = A$ and $A^{2n} = I$.

10. Assume $A^T = A$ and $B^T = B$.

(a) Symmetric since: $(A+B)^T = A^T + B^T = A + B$

(b) Symmetric since: $(A^2)^T = A^T A^T = AA = A^2$

(c) Not necessarily transitive since: $(AB)^T = B^T A^T = BA$. Symmetry would only happen if AB = BA, i.e., A and B commute.

Example: Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix}$, notice both A and B are symmetric. $AB = \begin{bmatrix} 0 & -2 \\ 0 & -2 \end{bmatrix}$ is not symmetric so $(AB)^T \neq AB$.

(d) Symmetric since: $(ABA)^T = A^T B^T A^T = ABA$

(e) Symmetric since: $(AB + BA)^T = (AB)^T + (BA)^T = B^T A^T + A^T B^T = BA + AB =$

AB + BA

(f) Not symmetric since: $(AB - BA)^T = (AB)^T - (BA)^T = B^T A^T - A^T B^T = BA - AB = -(AB - BA)$. So AB - BA is symmetric iff AB - BA = 0, that is iff A and B commute.

The same example as in (c) works here.

22.

$$RR^{T} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2}(\theta) + \sin^{2}(\theta) & \cos(\theta)\sin(\theta) - \sin(\theta)\cos(\theta) \\ \sin(\theta)\cos(\theta) - \cos(\theta)\sin(\theta) & \sin^{2}(\theta) + \cos^{2}(\theta) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

23. $H = I - 2uu^T$, so

$$\begin{split} H^2 &= (I - 2\mathbf{u}\mathbf{u}^T)(I - 2\mathbf{u}\mathbf{u}^T) \\ &= I^2 - 2\mathbf{u}\mathbf{u}^TI - 2I\mathbf{u}\mathbf{u}^T + 4\mathbf{u}\mathbf{u}^T\mathbf{u}\mathbf{u}^T \\ &= I^2 - 4\mathbf{u}\mathbf{u}^T + 4\mathbf{u}\mathbf{u}^T\mathbf{u}\mathbf{u}^T \\ &= I^2 - 4\mathbf{u}\mathbf{u}^T + 4\mathbf{u}(1)\mathbf{u}^T \\ &= I^2 - 4\mathbf{u}\mathbf{u}^T + 4\mathbf{u}\mathbf{u}^T \\ &= I^2 \\ &= I \end{split}$$

27. Assume $A^2 = I$ and let $B = \frac{1}{2}(I+A)$ and $C = \frac{1}{2}(I-A)$. Note

$$B^2 = \frac{1}{4}(I^2 + IA + AI + A^2) = \frac{1}{4}(I + 2A + I) = \frac{1}{4}(2)(I + A) = B$$

Similarly, $C^2 = C$.

30.

$$(A + A^T)^T = A^T + (A^T)^T = A^T + A = A + A^T$$

So $A + A^T$ is symmetric. Similarly,

$$(A - A^T)^T = A^T - (A^T)^T = A^T - A = -(A - A^T)^T$$

So $A - A^T$ is skew-symmetric.

Since $A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$ we see A can be written as symmetric + skew-symmetric.

33.

(a) Adjacency Matrix, A:

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

(b)
$$A^{2} = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 3 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 3 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

There are 6 walks starting at V_1 and that is the sum of column 1 or row 1 (the matrix is symmetric). $V_1V_2V_1$, $V_1V_4V_1$, V_1 , V_2V_3 , $V_1V_2V_4$, $V_1V_4V_2$, and $V_1V_4V_5$.

(c)
$$A^{2} = \begin{bmatrix} 2 & 4 & 1 & 4 & 1 \\ 4 & 2 & 3 & 5 & 1 \\ 1 & 3 & 0 & 1 & 1 \\ 4 & 5 & 1 & 2 & 3 \\ 1 & 1 & 1 & 3 & 0 \end{bmatrix}$$

There are 5 walks of length 3 from V_2 to V_4 and 1 of length 2 so 6 altogether.

Section 1.5

8. find the LU decomposition of the following matrices:

(b)
$$\begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix} \xrightarrow[r_2+(1)r_1 \to r_2; L_{2,1}=-1]{} \begin{bmatrix} 2 & 4 \\ 0 & 5 \end{bmatrix} = U$$

The (2,1) position of L is -1 so

$$L = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$$

It is easy to see that

$$\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -2 & 1 & 2 \\ 4 & 1 & -2 \\ -6 & -3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 1 & 2 \\ 4 & 1 & -2 \\ -6 & -3 & 4 \end{bmatrix} \xrightarrow[r_{3}+(-3)r_{1}\to r_{3};L_{3,1}=3]{} \begin{bmatrix} -2 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & -6 & -2 \end{bmatrix}$$

$$\xrightarrow[r_{3}+(2)r_{2}\to r_{3};L_{3,2}=-2]{} \begin{bmatrix} -2 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{bmatrix} = U$$

We see

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix}$$

Again, it is easy to check that

$$LU = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 2 \\ 4 & 1 & -2 \\ -6 & -3 & 4 \end{bmatrix}$$

19. (a) If U is upper triangular with non-zero diagonal, then clearly U can be row reduced to I. Since U is row equivalent to I, U is invertible. (Theorem 1.5.2).

(b) **Proof 1:** For this, essentially look into the proof of 1.5.2. Let $E_n E_{n-1} \cdots E_1 U = I$ where E_i is an elementary matrix. Since U starts as upper-triangular (u.t.) it is clear that only type

II and III operations are needed and the type II here are of the form $R_i - c \cdot R_j \to R_i$ where i < j, so c goes in the (i, j)th spot and hence this matrix is u.t. So all the E_i are u.t. Thus $E_n E_{n-1} \cdots E_1 = U^{-1}$ is u.t.

Proof 2: We can show that of AB = C with B and C u.t. and B invertible, then A is u.t. This will clearly imply what we want. Suppose A is not u.t. and let i be least such that there is j < i with $A_{i,j} \neq 0$. Let j be the least i so that $A_{i,j} = 0$. Then $0 = C_{i,j} = \sum_{k \leq i} A_{i,k} B_{k,j} = \sum_{k \leq j} A_{i,k} B_{k,j}$, that is,

$$0 = A_{i,1}B_{1,j} + \dots + A_{i,j}B_{j,j} = 0 + \dots + A_{i,j}B_{j,j} = A_{i,j}B_{j,j} = 0$$

This is a contradiction to the choice of $A_{i,j}$ and the fact that B is invertible, hence $B_{j,j} \neq 0$, since B is u.t.

Proof 3: This is the easiest proof (it is essentially proof 1, just with row ops instead of elementary matrices.)

Suppose consider starting with $\begin{bmatrix} U \mid I \end{bmatrix}$ and applying row ops to get to $\begin{bmatrix} I \mid U^{-1} \end{bmatrix}$. In the first step, we just divide each row by the diagonal element:

$$\begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & \cdots & 1 & 0 & 0 & \cdots \\ 0 & u_{2,2} & u_{2,3} & \cdots & 0 & 1 & 0 & \cdots \\ \vdots & & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{n,n} & & 0 & 0 & \cdots & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & \frac{u_{1,2}}{u_{1,1}} & \frac{u_{1,3}}{u_{1,1}} & \cdots & \frac{1}{u_{1,1}} & 0 & 0 & \cdots \\ 0 & 1 & \frac{u_{2,3}}{u_{2,2}} & \cdots & 0 & \frac{1}{u_{2,2}} & 0 & \cdots \\ \vdots & & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & 0 & \cdots & \frac{1}{u_{n,n}} \end{bmatrix}$$

The rest of the row ops will proceed right-to-left and bottom-to-top. The 0's in the lower left of the RHS will never be touched, and neither will the diagonal elements. So we also see that $U_{i,i}^{-1} = \frac{1}{U_{i,i}}$. (Proof 1 shows this additional fact as well.)

28. (a) There is nothing to do except unpack matrix multiplication, which is done below for (b).

(b) For this

$$V\boldsymbol{c} = c_0 \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} + c_1 \begin{bmatrix} x_1 \\ \vdots \\ x_{n+1} \end{bmatrix} + \dots + c_n \begin{bmatrix} x_i^n \\ \vdots \\ x_{n+1}^n \end{bmatrix} = \begin{bmatrix} p(x_1) \\ \vdots \\ p(x_{n+1}) \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

But then we have n+1 distinct roots to a polynomial of degree n, which is a contradiction unless $p(x) \equiv 0$, i.e., p is the constant 0 polynomial.

32. This is false, for example let A = B = I and C = -I, then clearly A is row equivalent to B and C, but $B + C = \mathbf{0}$ (the all 0 matrix). It is not true that A is row equivalent to $\mathbf{0}$, else $I = \mathbf{0}$ (a version of I = 0).