$$\frac{3a_{1}a_{2}a_{2}a_{3}}{2} = \frac{1}{2} \left(\frac{1}{2}\right)^{2} = \frac{1}{2}\left(\frac{1}{2}\right)^{2} = \frac{1}{2}\left(\frac{1$$

Bagara 2º Учия пропускания по интен-L, 7, 27. cubreocru: 3=29. (1+cos + R) = $= 2a_0^2 \left(1 + \frac{1}{2}e^{\frac{ikR^2}{2R_0}} + \frac{1}{2}e^{\frac{ikR^2}{2R_0}}\right)$ Mpu boccrarecher a guerroir bourror 2, ra pacer. 2R. ex renorpament. Ecues 27, 00 virues 4 gences. ujoop. wax-cg Ha B2 DT rowerp. Due coggarung voro же изобр. фазы донжны совп.

k. R² k. R² 2 п R² 2 п R² 2 п R²
2 R. 2 R. 2 R. Orber: 62 paga Emina

Bocex: genesbut

$$G_{3} = \frac{1}{2} \int_{A}^{A} \int_{A}^{A$$

9.35	1./	R =	24	
L = 50 cm			P	
6=0,01 um	1 1 1	Þ=	2L = 2,50	Cun
7 = 9,5 euseur	500			
52-?	1 - 2 nu. 1	No 2 Dmax	1, 2 p2	1 -
p-?		on max	-14 4	7
	Viik	$= L\sqrt{1+\frac{D^2}{4L^2}}$	-L = L(1	+ \frac{1}{8L} \ L=
$\Delta \lambda \leq \frac{\lambda^2 \cdot 8}{2}$	L = 862 = 1,6 mm			$=\frac{P'}{8L}$

N $\gtrsim \frac{L}{\delta} = 50$ - rucuo useules peruesca Ecrus reago radi. m = 10 uzoop, zuevries gouriero dois 10 rueba guapp max. m = 2 $\frac{\lambda}{6}$: $\frac{\lambda}{d}$ $\frac{\lambda}{d}$ $\frac{2}{6}$ $\frac{2}{6}$ $\frac{d}{m}$ $\frac{5\cdot 2\cdot 10^{4}}{cm}$ $\frac{10^{3}}{cm}$ Orber: $d = 5\cdot 10^{3}$ $\frac{d}{d}$ $\frac{10^{3}}{cm}$, $\delta = 10^{3}$ $\frac{10^{3}}{cm}$, $\delta = 50$

3agara 952
L = 50 euseu

$$\lambda = 0$$
 $\lambda = 0$
 λ

Mucuo	cuoel,	KOT. M	origer su	ye obere	a, nagatou	yuis
neactur	iny teop	пианон	e: n	1 = \frac{\sigma 2}{\sigma}	= 4 (1-00)	d)
You-ne 2 d Sin $\frac{2}{2}$	= 71	d = -	nga:			
d-pacer	nencgi	y cocega	4. huock	urerepop.	карт.	
d-pacer Orayga 7 = N=m	A1.	2 N 2 -	11- cosa	(<u>)</u>	7	- 0.02
				7	L(1-005d)	=0,02/

9.40
h 2 Seukus
L=60° hyward
h = 1
$I(x,z) = \left e^{ikz} + e^{ik(x\sin d + z\cos d)} \right ^2$
= 2 (1+ cos (kx sind-kz(1-cos L)))
I(x) = 2(1+ cos kxsind)

- 1 x = sind KAx Sind = 27 Tyres X=0: I(2) = 2(1+cosk2(1-cosk)) - 1/2 = 1-cosd 198= 1/2 = 2 (1-cos2) = tg d/2 B. 2 - nouve neveroir rand notleur. N = h = 5 mm = 5 cuveb d = $\frac{\lambda}{\sin \lambda}$ = 5,8.10 eur - mengy cuoquen,

9.78

$$R_1 = 60em$$
 $S_2 = 90em$
 $S_1)$
 $S_2 = 90em$
 $S_3 = e^{ikR_2}$
 $S_4 = e^{ikR_2}$
 $S_2 = e^{ikR_3}$
 $S_3 = e^{ikR_4}$
 $S_4 = e^{ikR$