AMENDMENTS

In the Claims

Please amend the claims as indicated hereafter.

- 1.-24. (Canceled)
- 25. (Currently Amended) The ohmic contact method according to claim 21-36 wherein said adhesive element is chosen from at least one of chromium, titanium, and silicon.
- 26. 32. (Canceled)
- 33. (Currently Amended) The ohmic contact-method according to claim 21-36 wherein said refractory layer has a thickness of about 800 angstroms.
- 34. (Canceled)
- 35. (Canceled)
- 36. (Previously Presented) A method for forming an ohmic contact on a compound semiconductor layer of a semiconductor device comprising:

depositing a reactive layer on at least a portion of a compound semiconductor layer of a semiconductor device, wherein the reactive layer is nickel and an adhesive element;

depositing a refractory layer on said reactive layer, said refractory layer is titanium, wherein said refractory layer is substantially free of gold, and

wherein additional layers of conductive metal are not deposited on the refractory layer in the forming of the ohmic contact.

- 37. (Original) The method according to claim 36 wherein said step of depositing a reactive layer comprises depositing a reactive layer on at least a portion of a compound semiconductor layer that comprises In_xGa_{1-x}As, InAs, In_xGa_{1-x}P, InP, In_xA1_{1-x}As, InGaAsP, GaSb, or In_xGa_{1-x}Sb, all wherein 0<x<1.
- 38. (Original) The method according to claim 36 wherein said step of depositing a reactive layer comprises depositing a reactive layer on at least a portion of a compound semiconductor layer that comprises $In_xGa_{1-x}As$, wherein 0.05 < x < 1.00.
- 39. (Original) The method according to claim 36 wherein said step of depositing a reactive layer comprises depositing a reactive layer on at least a portion of a compound semiconductor layer that comprises $In_xGa_{1-x}As$, wherein 0.3 < x < 0.8.
- 40. (Original) The method according to claim 36 wherein said step of depositing a reactive layer comprises depositing a reactive layer on at least a portion of a compound semiconductor layer that comprises $In_xGa_{1-x}As$, wherein x is approximately 0.6.
- 41. (Original) The method according to claim 36 wherein said step of depositing a reactive layer comprises depositing a reactive layer on at least a portion of a compound semiconductor layer that comprises InAs.

42. (Currently Amended) The method according to claim 36 wherein said step of depositing a reactive layer comprises depositing a reactive layer further comprising from about 5 to about 45 atomic percent of an-the adhesive element.

43. (Canceled)

44. (Previously Presented) An ohmic contact to a compound semiconductor layer of a semiconductor device made by a method comprising:

depositing a reactive layer on at least a portion of a compound semiconductor layer of a semiconductor device, wherein the reactive layer is nickel and an adhesive element;

depositing a refractory layer on said reactive layer, said refractory layer is titanium, wherein said refractory layer is substantially free of gold, and

wherein additional layers of conductive metal are not deposited on the refractory layer in the forming of the ohmic contact.

45. - 47. (Canceled)

48. (Previously Presented) The ohmic contact of claim 44, wherein the semiconductor device comprises a laser diode, a light emitting diode, a Schottky diode, a field effect transistor, a metal-semiconductor field effect transistor, a metal-oxide-semiconductor field effect transistor, or a high electron mobility transistor.

49.	(Currently Amended) The method of claim 4 36, further comprising:
	depositing a dielectric layer onto the refractory layer.

- 50. (Previously Presented) The method of claim 49, further comprising: depositing a nitride liner onto a portion of the dielectric layer.
- 51. (Previously Presented) The method of claim 50, further comprising: depositing a spacer onto a portion of the nitride liner.
- 52. 54. (Canceled)
- 55. (Currently Amended) The ohmic contact of claim 21-44, wherein the method further comprisinges:

disposing a dielectric layer disposed upon the refractory layer.

56. (Currently Amended) The ohmic contact of claim 55, wherein the method further comprisinges:

disposing a nitride liner disposed onto a portion of the dielectric layer.

57. (Currently Amended) The <u>ohrnic ohmic contact</u> of claim 56, <u>wherein the method further comprisinges</u>:

disposing a spacer disposed onto a portion of the nitride liner.

58. - 67. (Canceled)

- 68. (Previously Presented) The method of claim 36, wherein the compound semiconductor layer is N+ InGaAs.
- 69. (New) The method according to claim 36, wherein said refractory layer is entirely free of gold.
- 70. (New) The ohmic contact of claim 44, wherein said refractory layer is entirely free of gold.