Lab 2 Report

107091218 謝霖泳

1.

Design specification

For a full adder (FA):

Input: x, y, cin
Output: s, cout

Design Implementation

First, we can derive the truth table

X	y	cin	S	cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Then, by using K-map, we can derive the logic equations.

$$S = (x \oplus y) \oplus cin = x \oplus y \oplus cin$$

$$cout = x\&y + y\&cin + x\&cin$$

i/o pin assignment 如同題目所要求

X	у	cin	S	cout
V17	V16	W16	U16	E19

Discussion

這題題目因為是第一次 lab 題目的延伸,只是多了 i/o pin assignment 的部分,將自己的 design 實做在 FPGA 板上顯示出來,因此,並沒有遇到什麼困難。

2.

Design Specification

For a BCD to 7-segment display:

Input: [3:0] i

Output: [7:0] D_ssd, [3:0] d, [3:0] ctrl

Design Implementation

首先,由FPGA 板下方最右邊的 4 個開關作為 4-bit i 的輸入。SS_3 的意思就是對應「3」這個數字顯示在七段顯示器上的結果,因為還有小數點,因此為 8-bit,依此類推。因為七段顯示器為 low active,因此,有亮的段值設為 0,暗的段則設為 1。以輸入的 i 作為 MUX 的 selection,去選擇對應的結果,並將之傳到七段顯示器。

此外,也另一個 4bit 的變數 d 作為 LED 燈的控制,哪個開關被打開,他上方的 LED 燈就要亮起來。因為 LED 與開關均為為 high active,因此,其值與所輸入的 i 值理應相同,即 d=i。

另外,我還設計了一個 4bit 的 input 名為 ctrl,是用來控制 ssd 要亮哪個 digit,因為無特別要求,所以當然 4 個 digit 都亮,因此,ssd 的值我就直接給定為 4'b0000。

IO pin assignment

i[3]	i[2]	i[1]	i[0]	d[3]	d[2]	d[1]	d[0]
W17	W16	V16	V17	V19	U19	E19	U16

D_ssd[7]	D_ssd[6]	D_ssd[5]	D_ssd[4]	D_ssd[3]	D_ssd[2]	D_ssd[1]	D_ssd[0]
W7	W6	U8	V8	U5	V5	U7	V7

ctrl[3]	ctrl[2]	ctrl[1]	ctrl[0]
W4	V4	U4	U2

Discussion

這題當時在設計時,遇到一個自己沒有想透徹而導致的問題,就是 ssd decoder 的部分。因為念 7-seg dec.的時候,我習慣從最上面那段開始念,以 2 為例,在 ssd 的顯示為亮暗亮暗亮暗亮暗,所以 decoder 值為 00100101,但在設定多 bit 時,由左而右為 MSB 到 LSB,所以當時我的七段 io pin 順序設反,導致無法正常顯示。

3.

Design Specification

For a binary to 7-segment display:

Input: [3:0] i

Output: [7:0] D ssd, [3:0] d, [3:0] ctrl

Design Implementation

此題與上一小題的不同點僅在於 input 值在 10 以上的處理。上一小題若輸入的 i 超過 9,一律顯示為 F,這一題則是用 16 進位的方式顯示。換言之,i=4'd10 顯示 A,i=4'd11 顯示 B.....i=4'd15 則顯示 F。

首先,由 FPGA 板下方最右邊的 4 個開關作為 4-bit i 的輸入。SS_3 的意思就是對應「3」這個數字顯示在七段顯示器上的結果,因為還有小數點,因此為 8-bit,依此類推。因為七段顯示器為 low active,因此,有亮的段值設為 0,暗的段則設為 1。以輸入的 i 作為 MUX 的 selection,去選擇對應的結果,並將之傳到七段顯示器。

此外,也另一個 4bit 的變數 d 作為 LED 燈的控制,哪個開關被打開,他上方的 LED 燈就要亮起來。因為 LED 與開關均為為 high active,因此,其值與所輸入的 i 值理應相同,即 d=i。

另外,我還設計了一個 4bit 的 input 名為 ctrl,是用來控制 ssd 要亮哪個 digit,因為無特別要求,所以當然 4 個 digit 都亮,因此,ssd 的值我就直接給定為 4'b0000。

IO pin assignment:

i[3]	i[2]	i[1]	i[0]	d[3]	d[2]	d[1]	d[0]
W17	W16	V16	V17	V19	U19	E19	U16

D_ssd[7]	D_ssd[6]	D_ssd[5]	D_ssd[4]	D_ssd[3]	D_ssd[2]	D_ssd[1]	D_ssd[0]
W7	W6	U8	V8	U5	V5	U7	V7

ctrl[3]	ctrl[2]	ctrl[1]	ctrl[0]
W4	V4	U4	U2

Discussion

這一題與上一小題大致雷同,只要把上一小題的 decoder 增加 A~F 等顯示就可以了,並沒有遇到太大的問題。

4.

Design specification

For a 4-bit number comparator

Input: [3:0] a, [3:0]b

Output: x, [3:0] ctrl_a, [3:0] ctrl_b, [7:0] D, [3:0] ssd_active

Design Implementation

輸入兩個 4-bit 的數 a 和 b ,進入 1 個 4-bit 的 comparator ,其結果作為下方 MUX 要選擇 1 或 0 作為 output x 輸出的 selection。若 a>b ,則 x=1 ,若 x<=b ,則 x=0 。 x 的輸出為 LED 燈 U14,若 x 為 1 則亮,反之則不亮。

再設兩 4-bit 變數 ctrl_a 與 ctrl_b, 作為 LED 燈的控制。也就是把哪個開關撥上來,其上相對應的 LED 燈也要亮,所以 ctrl_a=a且 ctrl_b=b。

此外,我還多設計一個功能,就是將較大那個數顯示到 ssd 上。那麼,要先選擇要顯示哪一個數,令一 4-bit 變數叫 bigger,用來記錄大數。 其設計構想為利用 comparator 的結果作為另一 MUX 的 selection,若 a>b,則 bigger=a;若 a<=b,bigger=b。

再來,將 4-bit 的 bigger 變數傳入 ssd decoder,得到 1 個 8-bit 的結果作為 output 傳到 7-segment display 將之顯示出來。ssd_active 是用來控制 ssd 要亮哪個 digit,因為 4 個 digit 都要亮,因此,ssd 的值我就直接給定為 4'b0000。

Input 腳位

a[3]	a[2]	a[1]	a[0]	b[3]	b[2]	b[1]	b[0]
W17	W16	V16	V17	R2	R1	V1	W2
	最右邊	1個開關			最右邊 4	1個開關	

LED 控制

ctrl_a[3]	ctrl_a[2]	ctrl_a[1]	ctrl_a[0]	ctrl_b[3]	ctrl_b[2]	ctrl_b[1]	ctrl_b[0]
V19	U19	E19	U16	L1	P1	N3	Р3
	最右邊 4	l 個 LED			最右邊4	l 個 LED	

ssd decoder

D [7]	D [6]	D [5]	D [4]	D[3]	D [2]	D[1]	D [0]
W7	W6	U8	V8	U5	V5	U7	V7

ssd active 與 output

ssd_active [3]	ssd_active [2]	ssd_active [1]	ssd_active [0]	X
W4	V4	U4	U2	U14

Discussion

這一題輸入了兩個數,藉由他們的大小來決定輸出是1還是0,並將大數顯示到七段顯示器上。因為題目要求 a > b 時 output x=1,其他狀況均為零,所以,我也測試過板子上的結果。當我兩邊的數大小相同時,代表 x 的那個 LED 燈是不會亮的,與我的設計預設結果一致。

5. conclusion

這次實驗更讓我了解到 block diagram 的重要,也更讓我體會到一個 module、一個 module 的概念。這次最後一題顯示到 ssd 的部分應該可以呼 叫上一小題的 module,但這次我的打法並沒有呼叫之前 module,而是又把

它全部打出來,之後會嘗試呼叫 module 的方式。