

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский институт)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Отчёт

по лабораторной работе 1

Дисциплина: Анализ Алгоритмов

Тема лабораторной работы работы: Расстояния Левенштейна и Дамерау-Левенштейна

Студентки гр. из	//-510	Сушина А.Д.	
(Подпись, дата)	(И.О. Фамилия)	_	
Преподаватель		Волкова Л.Л.	
(Полпись лата)	(ИО Фамилия)		

Оглавление

Введение	3
1. Аналитическая часть	4
1.1. Описание алгоритмов	4
2. Конструкторская часть	5
2.1.Разработка алгоритмов	5
2.2.Сравнительный анализ рекурсивной и нерекурсивной реализаций	9
3.Технологическая часть	10
3.1.Требования к программному обеспечению	10
3.2.Средства реализации	10
3.3.Листинг кода	10
3.4.Описание тестирования	12
4.Экспериментальная часть	13
4.1.Примеры работы	13
4.2.Результаты тестирования	
4.3.Постановка эксперимента по замеру времени	
Заключение	

Введение

Расстояние Левенштейна (редакционное расстояние, дистанция редактирования) - минимальное количество операций вставки одного символа, удаления одного символа и замены одного символа на другой, необходимых для превращения одной строки в другую. Измеряется для двух строк, широко используется в теории информации и компьютерной лингвистике.

Расстояние Дамерау-Левенштейна— это мера разницы двух строк символов, определяемая как минимальное количество операций вставки, удаления, замены и транспозиции (перестановки двух соседних символов), необходимых для перевода одной строки в другую. Является модификацией расстояния Левенштейна: к операциям вставки, удаления и замены символов, определённых в расстоянии Левенштейна добавлена операция транспозиции (перестановки) символов.

Цель работы: изучение метода динамического программирования на материале алгоритмов Левенштейна и Дамерау-Левенштейна.

Задачи работы:

- 1. изучение алгоритмов Левенштейна и Дамерау-Левенштейна нахождения расстояния между строками;
- 2. применение метода динамического программирования для матричной реализации указанных алгоритмов;
- 3. получение практических навыков реализации указанных алгоритмов: двух алгоритмов в матричной версии и одного из алгоритмов в рекурсивной версии;
- 4. сравнительный анализ линейной и рекурсивной реализаций выбранного алгоритма определения расстояния между строками по затрачиваемым ресурсам (времени и памяти);
- 5. экспериментальное подтверждение различий во временной эффективности рекурсивной и нерекурсивной реализаций выбранного алгоритма определения расстояния между строками при помощи разработанного программного обеспечения на материале замеров процессорного времени выполнения реализации на варьирующихся длинах строк;
- 6. описание и обоснование полученных результатов в отчете о выполненной лабораторной работе, выполненного как расчётно-пояснительная записка к работе.

1. Аналитическая часть

1.1. Описание расстояний

Расстояния Левенштейна

Расстояние Левенштейна или редакторское расстояние считается как минимальное количество редакторских операций вставки, удаления и замены, необходимых для преобразования строки s1 в строку s2.

Редакторские операции:

- INSERT вставкам (штраф 1)
- DELETE удаление (штраф 1)
- REPLACE замена (штраф 1)
- MATCH сопадение (штраф 0)

Считается, что элементы строк нумеруются с первого, как принято в математике, а не с нулевого, как принято во многих языках программирования.

Пусть s1 и s2— две строки (длиной М и N соответственно) над некоторым афвалитом, тогда редакционное расстояние (расстояние Левенштейна) d(s1, s2) можно подсчитать по следующей рекуррентной формуле:

$$D(i,j) = \begin{bmatrix} 0, ecлu \, i = 0, \, j = 0 \\ i, ecлu \, j = 0, i > 0 \\ j, ecлu \, i = 0, j > 0 \\ D(i,j-1) + 1 \\ D(i-1,j) + 1 \\ D(i-1,j-1) + \begin{bmatrix} 0, ecлu \, s \, 1[i] = s \, 2[j] \\ 1, \, uhaчe \end{bmatrix} \end{bmatrix}$$

где операция min возвращает наименьший из аргументов.

Расстояние Дамерау-Левенштейна

Вводится дополнительна операция: перестановка или транспозиция двух букв со штрафом 1.

Если индексы позволяют и если две соседние буквы s1[i]=s2[j-1] л s1[i-1]=s2[j], то в минимум включается перестановка.

Пусть s1 и s2— две строки (длиной М и N соответственно) над некоторым афвалитом, тогда редакционное расстояние (расстояние Дамерау-Левенштейна) d(s1, s2) можно подсчитать по следующей рекуррентной

формуле:

$$D(i,j) = \begin{bmatrix} 0, ecnu i = 0, j = 0 & & & & \\ i, ecnu j = 0, i > 0 & & & \\ D(i,j-1) + 1 & & & & \\ D(i-1,j) + 1 & & & & \\ D(i-1,j-1) + \begin{bmatrix} 0, ecnu s \ 1[i] = s \ 2[j] \\ 1, u \text{ Harve} \\ D(i-2,j-2) + 1 \end{bmatrix}, ecnu i > 1, s \ 1[i-1] = s \ 2[j-2] \land s \ 1[i-2] = s \ 2[j-1] \\ min \begin{bmatrix} D(i,j-1) + 1 & & & \\ D(i-1,j) + 1 & & \\ D(i-1,j-1) + \begin{bmatrix} 0, ecnu \ s \ 1[i] = s \ 2[j] \\ 1, u \text{ Harve} \end{bmatrix} \end{bmatrix}$$

Расстояние Левенштейна и его обобщения активно применяется:

- для исправления ошибок в слове (в поисковых системах, базах данных, при вводе текста, при автоматическом распознавании отсканированного текста или речи).
- для сравнения текстовых файлов утилитой diff и ей подобными. Здесь роль «символов» играют строки, а роль «строк»— файлы.
- в биоинформатике для сравнения генов, хромосом и белков.

2. Конструкторская часть

2.1. Разработка алгоритмов

В разделе представлены схемы алгоритмов нахождения расстояний Левенштейна и Дамерау-Левенштейна на основании матрчного расчета, а также рекурсивный алгоритм нахождения расстояния Дамерау-Левенштейна (рис. 1-3).

Рис 1. Схема алгоритма Левенштейна

Рис. 2 Схема алгоритма Дамерау-Левенштейна (часть 1)

Рис 3. Схема алгоритма Дамерау-Левенштейна (часть 2)

Рис 3. Рекурсивный алгоритм Дамерау-Левенштейна (часть 1)

Рис. 4

Алгоритм Дамерау-Левенштейна (рекурсивно)

2.2.Сравнительный анализ рекурсивной и нерекурсивной реализаций

Рекурсивная реализация по сравнению с матричной работает медленнее. При постоянном рекурсивном вызове исчерпываются возможные комбинации и некоторые вызовы функции абсолютно идентичны. Это не рациональная трата ресурсов.

К тому же, на рекурсивный вызов функции тратится большое количество памяти в стеке, что, при большой глубине рекурсии, может привести к ошибкам.

Затраты по памяти алгоритмов различаются.

- Матричная реализация алгоритма Левенштейна: (n+1)*(m+1)*sizeeof(int) (матрица) + 6*sizeof(int)(локальные переменные) + 2 вызова std:min
- Матричная реализация алгоритма Дамерау-Левенштейна: (n+1)*(m+1)*sizeeof(int) (матрица) + 6*sizeof(int)(локальные переменные) + 3 вызова std:min
- Рекурсивная реалзация алгоритма Дамерау-Левенштейна:

На 1 вызов приходится

8*sizeof(int)(локальные переменные) + 3 вызова std::min + 4 вызова самой себя

Пиковое значение выделенной памяти оценивается как количество памяти на один вызов, умноженное на высоту дерева — сумму длин двух строк.

При больших длинах строк по памяти эффективнее рекурсивная реализация.

3. Технологическая часть

3.1.Требования к программному обеспечению

На вход в программу поступает 2 строки некоторой длины. На выходе необходимо получить три числа, являющиеся результатами работы трех вышеупомянутых алгоритмов. Для матричных реализаций требуется вывести матрицу решений. Также требуется замерить время работы каждого из алгоритмов.

3.2.Средства реализации

Для реализации был выбран язык C++. Этот язык позволяет решить задачу с минимальными затратами по памяти. Этот язык работает быстрее аналогов, он удобен, а так же знаком мне. Среда разработки — Ot creator.

Для реализации я выбрала паттерн Интерфейс, так как он позволяет реализовать единый интерфейс для всех алгоритмов.

3.3. Листинг кода

Матричная реализация алгоритма нахождения расстояния Левенштейна:

```
class Livinshtein {
public:
    Livinshtein(){}
    int count(std::string s1, std::string s2, int print_flag = 0) {
      allocate_matrix(matrix, s1.length()+1,s2.length()+1);
      matrix[0][0] = 0;
      for (size_t i = 0; i < s1.length()+1; i++) {</pre>
          matrix[i][0] = i;
      for (size_t j = 0; j < s2.length()+1; j++) {</pre>
          matrix[0][j] = j;
      for (size_t i = 1; i < s1.length()+1; i++) {</pre>
          for (size_t j = 1; j < s2.length()+1; j++) {</pre>
              int step = s1[i-1] == s2[j-1] ? 0 : 1;
              matrix[i][j] = std::min(std::min(matrix[i-1][j]+1,
                                                  matrix[i][j-1]+1),
                                                  matrix[i-1][j-1]+step);
          }
      }
      if (print_flag)
      {
         print_matrix(s1, s2);
      }
      int answ = matrix[ s1.length()][s2.length()];
      free_matrix(matrix, s1.length()+1);
      return answ;
    }
private:
    int **matrix;
};
```

Матричная реализация алгоритма нахождения расстояния Дамерау-Левенштейна:

```
class DamerauLiv {
public:
    DamerauLiv() {}
    int count(std::string s1, std::string s2, int print_flag = 0) {
        allocate_matrix(matrix, s1.length()+1,s2.length()+1);
        matrix[0][0] = 0;
        for (size_t i = 0; i < s1.length()+1; i++) {</pre>
            matrix[i][0] = i;
        for (size_t j = 0; j < s2.length()+1; j++) {</pre>
            matrix[0][j] = j;
        for (size_t i = 1; i < s1.length()+1; i++) {</pre>
            for (size_t j = 1; j < s2.length()+1; j++) {</pre>
                 int step = s1[i-1] == s2[j-1] ? 0 : 1;
                matrix[i][j] = std::min(std::min(matrix[i-1][j]+1,
                                                    matrix[i][j-1]+1),
                                                    matrix[i-1][j-1]+step);
                if (i > 1 \&\& j > 1){
                     if (s1[i-1] == s2[j-2] \&\& s1[i-2] == s2[j-1]) {
                         matrix[i][j] = std::min(matrix[i][j],
                                                   matrix[i-2][j-2]+1);
                     }
                }
            }
        }
        if (print_flag)
            print_matrix(s1,s2);
        }
        int answ = matrix[s1.length()][s2.length()];
        free_matrix(matrix, s1.length()+1);
        return answ;
    }
private:
    int **matrix;
};
```

Рекурсивная реализация алгоритма нахождения расстояния Дамерау-Левенштейна:

```
class DamerauLivRec {
public:
    DamerauLivRec() {}

int count(std::string s1, std::string s2) {
    size_t len1 = s1.length();
    size_t len2 = s2.length();
    if (len1 == 0 || len2 == 0){
        return len1? len1: len2;
    }
    size_t step = 1;
```

```
if (s1[len1-1] == s2[len2-1]) {
            step = 0;
        }
        int first = this->count(s1.substr(0, len1), s2.substr(0,len2-1)) + 1;
        int second = this->count(s1.substr(0, len1-1), s2.substr(0,len2)) + 1;
        int third = this->count(s1.substr(0, len1-1), s2.substr(0,len2-1)) +
step;
        int returnal = std::min(std::min(first, second), third);
        if (len1 > 1 && len2 > 1){
            if (s1[len1-1] == s2[len2-2] && s1[len1-2] == s2[len2-1]) {
                int fourth = this->count(s1.substr(0, len1-2), s2.substr(0,
len2-2)) + 1;
                return std::min(returnal, fourth);
        }
        return returnal;
   }
};
```

3.4.Описание тестирования

Тестирование будет реализовано отдельной функцией в программе, которую можно запустить по желанию пользователя.

Для каждого алгоритма реализована своя функция тестирования, так как алгоритмы Левенштейна и Дамерау-ЛеТвенштейна дают разные результаты в некоторых случаях, так как это разные алгоритмы и они ищут разные расстояния.

Тестируем по следующим данным:

- 1. Проверка работы: "skat", "kot"
- 2. Проверка работы с пустыми строками: "skat", ""; "", "kot"
- 3. Проверка работы с идентичными строками: "kot", "kot"; "",""
- 4. Проверка работы с перестановкой: "skat", "ksat"; "sksksk", "ksksks"
- Проверка работы с полностью несовпадающими строками: "aaaaaa", "kot"
- 6. Проверка работы с пробелами: «kt kt kt», «tk tk tk»

4. Экспериментальная часть

4.1. Примеры работы

Приведем примеры работы программы.

Пример 1 (см. рис. 6):

Запустим программу на строках skat и kot. Ожидаемый результат: 2,2,2(вставка+замена)

```
Так же выводятся матрицы, построенные в процессе вычислений Input str1:skat Input str2:kot Leveshtein
                                              Damerau Levenshtein
                                              Damerau Let

0 k o t

0 0 1 2 3

s 1 1 2 3

k 2 1 2 3

a 3 2 2 3

t 4 3 3 2

answer: 2
                                             Damerau Levenshtein Rec
answer: 2
```

Рис. 6 - Пример 1 работы программы

Пример 2(см. рис 7):

Запустим программу на строках skat и ksat. Ожидаемый результат: 2,1,1 В этот раз ответы отличаются, так как перестановка дает меньший результат.

```
Input str1:skat
Input str2:ksat
Leveshtein
Damerau Levenshtein

0 k s a t

0 0 1 2 3 4

s 1 1 1 2 3

k 2 1 1 2 3

a 3 2 2 1 2

t 4 3 3 2 1

answer: 1
Damerau Levenshtein Rec
answer:
```

Рис. 7 — Пример 2 работы программы

4.2. Результаты тестирования

Таблица 1.

	U		
LOCTLI	ΙΙ ΟΨΙΙΠΩΟΜΕΙΙΙ	ηρογιπέτατ τρατίλι	рования алгоритмов
ICCIDI	и ожидасиви	pesymbiai rectri	рования алгоритиов

N₀	Первое	Второе	Ожидаемый результат		
Tec	слово	слово	Левенштейна	Дамерау-	Дамерау-
та				Левенштейа	Левенштейа
					рекурсивно
1	skat	kot	2	2	2
2	skat		4	4	4
3		kot	3	3	3
4	kot	kot	0	0	0
5			0	0	0
6	skot	ksot	2	1	1
7	sksksk	ksksks	2	2	2
8	aaaaaa	kot	6	6	6
9	kt kt kt	tk tk tk	6	3	3

Тесты и ожидаемые результаты тестирования представлены в таблице.

```
TEST LEVENSHTEIN
test 1: ok
test 2: ok
test 3: ok
test 4: ok
test 5: ok
test 6: ok
test 7: ok
test 7: ok
test 1: ok
test 9: ok
TEST DAMERAU LEVENSHTEIN
test 1: ok
test 2: ok
test 3: ok
test 4: ok
test 5: ok
test 6: ok
test 7: ok
test 5: ok
```

Рис 8 — Результаты выполнения тестов

Все тесты прошли успешно.

4.3. Постановка эксперимента по замеру времени

Для произведения замеров времени выполнения реализаций алгоритмов будет использована формула $t=\frac{Tn}{N}$, где N – количество замеров, t – время выполнения реализации алгоритма, Tn — время выполнения N замеров. Неоднократное измерение времени необходимо для построения более гладкого графика и получения усредненного значения времени. Количество замеров будет взято равным 100.

Тестирование будет проведено на рандомных строках одинаковой длины: для сравнения матричных реализации длины строк принимают значения 0-1000 с шагом 100, для сравнения матричной и рекурсивной реализации -0-10 с шагом 1.

Результаты замеров представлены на рис. 9-10.

Диарамма сравнения скорости рекурсивного и нерекурсивых алгоритмов на строках размером от 1 до 10 символов

Рис. 9 График зависимости времени работы алгоритмов от времени

Даграмма сравнения времени работы алгоритмов Левенштейна и Дамурау-Левенштейна (Матричная реализация)

Рис. 10 График зависимости ремени работы матричных алгоритмов от времени на рандомных строках одинаковое

В результате проведенного эксперимента было выяснено следующее: Рекурсивный алгоритм Дамерау-Левенштейна работает гораздо дольше итеративной реализации, начиная с длины строк = 6, время его работы увеличивается в геометрической прогрессии. Итеративный алгоритм значительно превосходит его по эффективности.

Алгоритм Дамерау-Левештейна работает меленнее алгоритма Левенштейна, но незначительно. Это объясняется наличием дополнительного сравнения в алгоритме Дамерау-Левенштейна

Заключение

В ходе работы были изучены алгоритмы Левенштейна и Дамерау-Левенштейна. Выполнено тестирование и сравнение рекурсивного и итеративного алгоритмов Левенштейна. Изучены зависимости времени выполнения алгоритмов от длин строк. Также были реализованы 3 описанных алгоритма нахождения расстояний Левенштейна и Дамерау-Левенштейна(в матричной и рекурсивной формах).