VLSI LAB Exercise-8 NORA Logic

Group Number: 2

Group Members:

Thathapudi Sanjeev Paul Joel - 2020AAPS0120H Aditya Anirudh - 2020AAPS0373H

Design Workout:

Schematics:

Waveforms:

Giving pulse excitations:-

Giving constant excitations (to analyze the behavior):-

$$A = 1$$
, $B = 1$, $C = 0$, $D = 0$, $E = 1$, $F = 0$

A = 1, B = 1, C = 0, D = 0, E = 1, F = 1

Inferences:

- 1. V_{out} = 1.8 V, whenever CLK = 0, because the **2**nd stage is in the predischarge phase in this period.
- 2. Three cases have been depicted while giving constant input excitations to the above circuit:
 - a. The 1st stage is evaluated while the 2nd stage is not.
 - b. Both the stages are evaluated.
 - c. Both the stages are not evaluated.
- 3. While designing the NMOS and PMOS logic blocks, we have to ensure that, the **race condition for inputs is avoided** by **giving the input non-inverted to the second stage** as PMOS transistors are ON only when V_{in} = LOW, while the NMOS stage is initially pre-charged and not pre-discharged.

Conclusion:

In this experiment, we designed a combinational circuit by **cascading two stages** of **dynamic logic**: one using NMOS logic while the other using PMOS logic for the evaluation phase. This ensures that the **race condition is avoided (NORA Logic)**.