Module FIR

Finite Impulse Response filter

Piet Sommen

Compute a moving (running) average of two or more consecutive samples, forming a new sequence of the average values

Note: FIR is generalization of running average

Averaging used when data fluctuates, thus smoothing prior interpretation (e.g. view trends). E.g. Stock-market prices, credit-card balances, etc.

Example:

Input-output relation (=difference equation) 3-point averaging

$$\to y_1[n] = \frac{1}{3} (x[n] + x[n+1] + x[n+2])$$

The running average filter

Observations output signal samples:

Smooths input, longer than input, finite sequence, starts (becomes nonzero) before input starts (=noncausal filter)

Last issue undesirable if input comes directly from A-to-D (e.g. audio).

Causal filter uses only present and past values

Noncausal
$$y_2[n] = \frac{1}{3} \left(x[n+1] + x[n] + x[n-1] \right)$$

Causal $y_3[n] = \frac{1}{3} \left(x[n] + x[n-1] + x[n-2] \right)$

$$\begin{bmatrix} \frac{6}{5} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3}$$

averaging

Illustration running average filter

Find trend in the following signal:

$$x[n] = \begin{cases} (1.01)^n + \frac{1}{2}\cos(2\pi n/8 + \pi/4) & 0 \le n \le 40 \\ 0 & \text{otherwise} \end{cases}$$

Use M-point averaging filter $\, o \,$

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

Observations:

- ullet Run-in and -out area y[n]
- Length $y[n] \uparrow$
- For $M \uparrow \Rightarrow \text{Less}$ fluctuations
- Fluctuations reduced <u>not</u> eliminated

General filter and basic building blocks

Difference equation (DE):
$$y[n] = \sum_{k=0}^{M-1} b_k x[n-k]$$

- ullet Weighted running average of M samples
- Causal filter
- M is order of filter

⇒ Basic building blocks are: multiplier, adder, unit-delay operator

Convolution sum: Example

$$\mathsf{DE} \ : \ y[n] = \sum_{k=1}^{n} h[k] \cdot x[n-k]$$

Impulse response : $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$

Input : $x[n] = \delta[n] + \frac{2}{2}\delta[n-1] + \frac{3}{2}\delta[n-2]$

Note for finite filter length: Length(y) = Length(x) + Length(h) -1

/department of electrical engineering

Length(y) = Length(x) + Length(h) -1

Tube

| Technische Universiteit
| Endenderen
| Universiteit
| Company | Company

Convolution sum

$$y[n] = \sum_{k=0}^{M-1} b_k x[n-k]$$

Procedure:

- Plot weights b_k as function of k
- Plot input signal samples x[k] as function of k
- Mirror (reverse) x[k] into x[-k]
- ullet Shift mirrored signal x[-k] to index n which results in x[n-k].
- For each new time index n y[n] equals the element by element multiplication of b_k and x[n-k] in the range $k=0,1,\cdots M-1$.

Implementation issues:

Constraints with VLSI or DSP architectures; Finite word-length effects; Memory length; etc

$$\delta[n] = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases}$$

$$\delta[n-2] = \begin{cases} 1 & \text{for } n = 2 \\ 0 & \text{for } n \neq 2 \end{cases}$$

n	• • • •	-2	-1	0	1		3	4	5	6	• • • •
$\delta[n]$	0	0	0	1	0	0	0	0	0	0	0
$\delta[n-2]$	0	0	0	0	0	1	0	0	0	0	0

Concept usefull to represent signals and system, e.g.

$$x[n] = 2\delta[n] + 3\delta[n-2] - \delta[n-4]$$

$$x[n] = \sum_{k} x[k]\delta[n-k] = \dots + x[-1]\delta[n+1] + x[0]\delta[0] + x[1]\delta[n-1] + \dots$$

/department of electrical engineering

TU/e Technische Universitei Eindhoven University of Technolog

$$u[n] = \left\{ \begin{array}{ll} 1 & \text{for } n \geq 0 \\ 0 & \text{for } n < 0 \end{array} \right.$$

n	-2	-1	0	1	2	3	4	• • •
u[n]	0	0	1	1	1	1	1	

• Examples:

$$u[n-2] = \left\{ \begin{array}{ll} 1 & \text{for } n \geq 2 \\ 0 & \text{for } n < 2 \end{array} \right.$$

$$u[-n+2] = \begin{cases} 1 & \text{for } n \leq 2 \\ 0 & \text{for } n > 2 \end{cases}$$

Response for
$$x[n] = \delta[n]$$

$$\begin{array}{c|c} x[n] & \text{Discrete-Time} & y[n] \\ \hline \delta[n] & \text{FIR filter} & h[n] \end{array}$$

Impulse response h[n] of order M FIR:

$$h[n] = \sum_{k=0}^{M-1} b_k \delta[n-k] = \left\{ \begin{array}{ll} b_n & n=0,1,\cdots,M-1 \\ 0 & \text{otherwise} \end{array} \right.$$

In tabular form response to FIR (Finite Impulse Response):

n	n < 0	0	1	2	3	• • •	M-1	M	n > M
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	b_3		b_{M-1}	0	0

Delay or shift input x[n] by n_0 samples, thus $y[n] = x[n-n_0]$

For order M FIR:

$$y[n] = b_0x[n] + b_1x[n-1] + \cdots + b_{n_0}x[n-n_0] + \cdots + b_Mx[n-(M-1)]$$

Now $y[n]=x[n-n_0]$ when $b_i=0$ except for $i=n_0$, thus $b_{n_0}=1$

 \Rightarrow Impulse response of delay by n_0 samples: $h[n] = \delta[n-n_0]$

Example:

Delay by 2 samples, thus $h[n] = \delta[n-2]$ and

y[n] = x[n-2]

Why LTI: Simplified mathematics and leads to greater insight

Input-output notation: $x[n] \mapsto y[n]$

Time Invariance:
$$x[n-n_0] \mapsto y[n-n_0]$$

System Time-Invariant

 $w[n] = y[n - n_0]$

Example:
$$y[n] = (x[n])^2$$

$$x[n] \mapsto y[n] = (x[n])^2 \Rightarrow \text{ Delay by one } \Rightarrow y[n-1] = (x[n-1])^2$$

 $x[n] \Rightarrow \text{ Delay by one } \Rightarrow x[n-1] \mapsto (x[n-1])^2 = y[n-1]$

Not time-invariant: y[n] = x[-n]

Linear system: If $x_1[n]\mapsto y_1[n]$ and $x_2[n]\mapsto y_2[n]$, then

System Linear iff w[n] = y[n]

Example: System $y[n] = (x[n])^2$ is Nonlinear since

$$y[n] = (\alpha x_1[n] + \beta x_2[n])^2 \neq \alpha (x_1[n])^2 + \beta (x_2[n])^2$$

Is y[n] = x[-n] linear?

FIR both linear and time-invariant, proof:

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] \quad \Rightarrow \quad y[n-n_0] = \sum_{k=0}^{M} b_k x[(n-n_0)-k]$$

On the other hand with $v[n] = x[n - n_0]$

$$w[n] = \sum_{k=0}^{M} b_k v[n-k] = \sum_{k=0}^{M} b_k x[(n-k) - n_0] = \sum_{k=0}^{M} b_k x[(n-n_0) - k]$$

FIR is Linear Time-Invariant (LTI) system

Main issues of LTI system:

- Impulse response is complete characterization
- Convolution is general formula to compute output from input

We can write $x[n] = \sum_{l} x[l] \delta[n-l]$

$$(\cdots + x[-2]\delta[n+2] + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \cdots)$$

For LTI system:

$$\begin{array}{lll} \delta[n] \mapsto h[n] & \Rightarrow & \delta[n-l] \mapsto h[n-l] & \text{for any } l \\ & \Rightarrow & x[l] \delta[n-l] \mapsto x[l] h[n-l] & \text{for any } l \\ & \Rightarrow & x[n] = \sum_l x[l] \delta[n-l] \mapsto y[n] = \sum_l x[l] h[n-l] \end{array}$$

No assumptions made about length x[n] or h[n], \Rightarrow

The convolution sum formula: $y[n] = \sum x[l]h[n-l]$

Thus all LTI systems can be represented by a convolution for the state of the state of the system of the

Impulse response h[n] of FIR only nonzero for $0 \le n \le M$. Thus

$$y[n] = \sum_{l=-\infty}^{\infty} x[l]h[n-l]$$

with index $h[n-l] \in \{0,M\}$ results in

$$y[n] = \sum_{l=n-M}^{n} x[l]h[n-l]$$

Simple example:

$$x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-3]$$
 and $h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$

Convolution as operator:

$$y[n] = x[n] *h[n] = \sum_{l=-\infty}^{\infty} x[l]h[n-l]$$

Convolution with shifted impulse: \Leftrightarrow Delay with n_0

$$x[n] * \delta[n - n_0] = x[n - n_0]$$

Commutative property of *:

$$x[n] * h[n] = h[n] * x[n]$$

Proof:

$$y[n] = x[n] * h[n] = \sum_{l=-\infty}^{\infty} x[l]h[n-l]$$
 with $k = n - l$

$$= \sum_{k=0}^{\infty} x[n-k]h[k] = \sum_{k=0}^{\infty} h[k]x[n-k] = h[n] * x[n]$$

Associative property:

$$(x_1[n] * x_2[n]) * x_3[n] = x_1[n] * (x_2[n] * x_3[n])$$

Proof:

$$\begin{split} x_1[n] * (x_2[n] * x_3[n]) &= \sum_{l = -\infty}^{\infty} x_1[l] \left(\sum_{k = -\infty}^{\infty} x_2[k] x_3[(n - l) - k] \right) \\ \text{with} \quad & k = q - l \ \Rightarrow \ = \sum_{l = -\infty}^{\infty} x_1[l] \sum_{q = -\infty}^{\infty} x_2[q - l] x_3[n - q] \end{split}$$

$$= \sum_{q=-\infty}^{\infty} \left(\sum_{l=-\infty}^{\infty} x_1[l] x_2[q-l] \right) x_3[n-q] = (x_1[n] * x_2[n]) * x_3[n]$$

$$\begin{array}{c} x[n] \\ \delta[n] \end{array} \xrightarrow{\text{LTI 1}} \begin{bmatrix} w[n] \\ h_1[n] \end{bmatrix} \underbrace{\begin{bmatrix} \text{LTI 2} \\ h_2[n] \end{bmatrix}}_{h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] \end{bmatrix}}_{h_1[n] * h_2[n]} \Leftrightarrow \begin{array}{c} x[n] \\ \delta[n] \end{bmatrix} \underbrace{\begin{bmatrix} \text{LTI 2} \\ h_2[n] \end{bmatrix}}_{h_2[n]} \underbrace{\begin{bmatrix} \text{LTI 1} \\ h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] \end{bmatrix}}_{h_2[n] * h_2[n]} \Leftrightarrow \begin{array}{c} x[n] \\ \delta[n] \end{bmatrix} \underbrace{\begin{bmatrix} \text{Equivalent LTI} \\ h[n] = h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n]} \underbrace{\begin{bmatrix} y[n] \\ h_1[n] * h_2[n] * h_1[n] \end{bmatrix}}_{h_2[n] * h_1[n] * h_2[n] * h_1[n] * h_$$

$$y[n] = (x[n] * h_1[n]) * h_2[n] = x[n] * (h_1[n] * h_2[n])$$

= $x[n] * (h_2[n] * h_1[n]) = (x[n] * h_2[n]) * h_1[n]$

Example: Evaluate $h[n] = h_1[n] * h_2[n]$ with

$$h_1[n] = \left\{ \begin{array}{ll} 1 & 0 \leq n \leq 2 \\ 0 & \text{otherwise} \end{array} \right. \quad h_2[n] = \left\{ \begin{array}{ll} 1 & 1 \leq n \leq 2 \\ 0 & \text{otherwise} \end{array} \right.$$

Summary Module FIR

- Finite Impulse Response (FIR) filters: Each output sample is sum of finite number of weighted samples of input sequence.
- Difference equation FIR: $y[n] = \sum_{k=0}^{M-1} b_k x[n-k]$ Weighted running average of M samples; Causal filter; M is order of FIR filter
- Unit Impulse Sequence: $\delta[n]=1$ for n=0 and zero elsewhere. Representation signal by unit impulses: $x[n]=\sum_k x[k]\delta[n-k]$
- Impulse response h[n] of order M FIR: $h[n] = \sum_{k=0}^{M-1} b_k \delta[n-k] = b_n$
- Time-Invariance: If $x[n] \mapsto y[n]$ then $x[n-n_0] \mapsto y[n-n_0]$
- Linear system: If $x_1[n] \mapsto y_1[n]$ and $x_2[n] \mapsto y_2[n]$ then $x[n] = \alpha x_1[n] + \beta x_2[n] \mapsto y[n] = \alpha y_1[n] + \beta y_2[n]$

- Main issues Linear Time-Invariance (LTI) system: (FIR is LTI)
 Completely characterized by impulse response; Convolution is general formula to compute output from input.
- Convolution sum FIR: $y[n] = \sum_{k=0}^{M-1} h[k]x[n-k]$
- Convolution operator: $y[n] = x[n]*h[n] = \sum_{l=-\infty}^{\infty} x[l]h[n-l]$
 - Commutative property: x[n] * h[n] = h[n] * x[n]
 - Associative property: $(x_1[n] * x_2[n]) * x_3[n] = x_1[n] * (x_2[n] * x_3[n])$
- Cascade of LTI systems:

