3.2.2 Motion with non-uniform acceleration

	Learning outcomes		Additional guidance		
		rners should be able to demonstrate and ly their knowledge and understanding of:			
(a)	_	as the frictional force experienced by an ct travelling through a fluid			
(b)	factors affecting drag for an object travelling through air		HSW6		
(c)	motion of objects falling in a uniform gravitational field in the presence of drag		HSW9		
(d)	(i)	terminal velocity	HSW1, 5		
	(ii)	techniques and procedures used to determine terminal velocity in fluids.	PAG1 e.g. ball-bearing in a viscous liquid or cones in air. HSW4 Investigating factors affecting terminal velocity.		

- (6) M Define draw and state the factors that affect it.
 (7) S Describe the motion of an object falling in the presence of drag
 (8) C Understand techniques and procedures used to determine terminal velocity.

Lesson 3. Drag and terminal velocity

STARTER: Describe the drag force acting on this falcon. State factors affect it magnitude.

2. Relationship between speed and drag? / graph to show this

The drag force can be calculated using the following equation:

$$F = \frac{1}{2} \rho C_d A v^2$$

F = drag force

 ρ = density of air (or liquid)

C_d = drag coefficient

A = front cross-sectional area

v = velocity

- (6) M Define draw and state the factors that affect it.
 (7) S Describe the motion of an object falling in the presence of drag
 (8) C Understand techniques and procedures used to determine terminal velocity.

Lesson 3. Drag and terminal velocity

- (6) M Define draw and state the factors that affect it.
 (7) S Describe the motion of an object falling in the presence of drag
 (8) C Understand techniques and procedures used to determine terminal velocity.

ACTIVITY: Use the graph of the skydiver to complete the sheet to find: Velocity, acceleration, weight, drag and resultant force,

The skydiver weight is 60kg

Kilo 103 Hint: Find weight using W=mg

Compare qualitatively the change in drag from 2 to 3, to the change in Speed in the same period.

0:10:00

	Velocity (from graph)	Diagram (draw weight and drag forces including magnitudes)	Resultant force	Acceleration.	
1. Start of jump (free- fall)		D. P.		I	
2. accelerating		500			
3. Terminal Velocity		53			
4. Parachute starts to open		55			
5. deccelerating					
6. Terminal Velocity					

- (6) M Define draw and state the factors that affect it.
- (7) S Describe the motion of an object falling in the presence of drag (8) C Understand techniques and procedures used to determine terminal velocity.

Lesson 3. Drag and terminal velocity

video

Activity: Complete the activity sheet of a falling

Q2. Sketch a free body force diagram for the falcon in position a b and c.

Q3. Find the acceleration of the falcon at b.

Q4. Calculate the drag force on the falcon at b. Add this drag value to your diagram.

$$(R.F)$$
 $F = Ma = 0.5 \times 1.67$