Math 135 - Final Exam - Practice problems

In addition to these problems, your review should include all previous homework assignments, and the midterm.

Laplace transforms

1. Use the Laplace transform to solve the initial value problem

$$\begin{cases} y'' + 2y' + 2y = xe^{-x} \\ y(0) = 0 \\ y'(0) = -1. \end{cases}$$

Solution: Let $Y = \mathcal{L}[y]$. Taking the Laplace transform we obtain

$$p^{2}Y + 1 + 2pY + 2Y = \frac{1}{(p+1)^{2}}$$

$$(p^{2} + 2p + 2)Y = -\frac{p^{2} + 2p}{(p+1)^{2}}$$

$$Y = -\frac{p^{2} + 2p}{(p+1)^{2}[(p+1)^{2} + 1]}$$

$$Y = \frac{1}{(p+1)^{2}} - \frac{2}{(p+1)^{2} + 1},$$

where the final line follows from partial fractions. We may then invert the Laplace transform to obtain

$$y(x) = xe^{-x} - 2e^{-x}\sin(x).$$

2. Let $f:[0,\infty)\to\mathbb{R}$ be a continuous function of exponential order satisfying f(0)=0 and

$$\mathcal{L}[f'] = p \, \frac{d}{dp} \left(\frac{4p}{p^2 + 4} \right).$$

Find f(x).

Solution: We compute that

$$p\mathcal{L}[f] = p \frac{d}{dp} \left(\frac{4p}{p^2 + 4} \right)$$

$$\mathcal{L}[f] = \frac{d}{dp} \mathcal{L}[4\cos(2x)]$$

$$\mathcal{L}[f] = \mathcal{L}[-4x\cos(2x)].$$

Inverting the Laplace transform we obtain

$$f(x) = -4x\cos(2x).$$

3. Let f(x) be a continuous function of exponential order. Use the Laplace transform to find the solution of

$$\begin{cases} y'(x) - 2y(x) + 17 \int_0^x y(t) dt = f(x), \\ y(0) = 0. \end{cases}$$

Solution: Let $Y = \mathcal{L}[y]$. Taking the Laplace transform we have

$$pY - 2Y + \frac{17}{p}Y = \mathcal{L}[f]$$

$$Y = \left[\frac{p-1}{(p-1)^2 + 16} + \frac{1}{(p-1)^2 + 16}\right] \mathcal{L}[f]$$

$$Y = \mathcal{L}[e^x \cos(4x) + \frac{1}{4}e^x \sin(4x)] \mathcal{L}[f].$$

Inverting the Laplace transform we have

$$y(x) = \int_0^x e^t \left[\cos(4t) + \frac{1}{4}\sin(4t)\right] f(x-t) dt.$$

4. Use the Laplace transform to solve the differential equation

$$\begin{cases} xy'' + xy' + (3-2x)y = 0, \\ y(0) = 0. \end{cases}$$

Solution: Let $Y = \mathcal{L}[y]$. Taking the Laplace transform we have

$$-(p+2)(p-1)Y' - 2(p-1)Y = 0.$$

For p > 1 we then have

$$Y' = -\frac{2}{p+2}Y$$
$$Y = \frac{C}{(p+2)^2},$$

for some $C \in \mathbb{R}$. Inverting the Laplace transform we have

$$y(x) = Cxe^{-2x},$$

for some $C \in \mathbb{R}$.

Existence and uniqueness

5. (a) Let $h: \mathbb{R} \to \mathbb{R}$ be a differentiable function and suppose there exists M > 0 so that $|h'(y)| \leq M$ for all $y \in \mathbb{R}$. Show that h is Lipschitz on \mathbb{R} .

Hint: Use the Mean Value Theorem.

(b) Let g(x) be defined on \mathbb{R} , and let h(y) be Lipschitz on \mathbb{R} . Show that the function

$$f(x,y) = g(x) + h(y)$$

is Lipschitz in y on $\mathbb{R} \times \mathbb{R}$.

Solution:

(a) Note that as h is differentiable it is continuous. Given y < z we may then apply the Mean Value Theorem to find some w so that

$$h(y) - h(z) = h'(w)(y - z),$$

so taking absolute values and using that $|f'(w)| \leq M$ we have

$$|h(y) - h(z)| \le |h'(w)||y - z| \le M|y - z|.$$

An identical argument applies if y > z and the case y = z is vacuous. Consequently,

$$|h(y) - h(z)| \le M|y - z|$$

for all $y, z \in \mathbb{R}$, so f is Lipschitz on \mathbb{R} .

(b) As h is Lipschitz on $\mathbb R$ there exists some constant M>0 so that

$$|h(y) - h(z)| \le M|y - z|$$
 for all $y, z \in \mathbb{R}$.

Given $x \in [a, b]$ and $y, z \in \mathbb{R}$ we then have

$$|f(x,y) - f(x,z)| = |h(y) - h(z)| \le M|y - z|,$$

so f is Lipschitz in y on $[a, b] \times \mathbb{R}$.

6. Consider the differential equation

(*)
$$\begin{cases} y''' + x^2 y^2 + |y''| + e^x = 0, \\ y(0) = y'(0) = y''(0) = 1. \end{cases}$$

- (a) Write the differential equation (*) as a first order ODE system.
- (b) Show that the differential equation (*) has a unique local solution.

Solution:

(a) We introduce

$$\mathbf{z} = \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix},$$

and denoting the components of z by z_i we take

$$\mathbf{f}(x, \mathbf{z}) = \begin{bmatrix} z_2 \\ z_3 \\ -x^2 z_1^2 - |z_3| - e^x \end{bmatrix},$$

to obtain the first order equation

$$\begin{cases} \mathbf{z}' = \mathbf{f}(x, \mathbf{z}) \\ \mathbf{z}(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{cases}$$

(b) The function $f(x, \mathbf{z})$ is continuously differentiable on the box

$$\mathcal{D} = [-1, 1] \times [\frac{1}{2}, \frac{3}{2}]^3$$

From our theorem in class, as \mathcal{D} is closed and bounded, this suffices to show that $f(x, \mathbf{z})$ is continuous and Lipschitz in \mathbf{z} on \mathcal{D} . We may then apply Picard's Theorem to obtain a unique local solution of (*).

Fourier series

7. Let $f(x) = x\mathbb{1}_{[0,\frac{\pi}{2}]}(x)$ for $x \in [-\pi,\pi]$ and let

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left\{ a_n \cos(nx) + b_n \sin(nx) \right\}$$

be the Fourier series for f(x).

(a) Compute

$$a_2, a_6, \ldots, a_{4k+2}, \ldots, b_1, b_5, \ldots, b_{4k+1}, \ldots$$

(b) Are there any $-\pi < x < \pi$ for which

$$f(x) \neq \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left\{ a_n \cos(nx) + b_n \sin(nx) \right\} ?$$

For each such x, to what value does the Fourier series converge?

<u>Remark:</u> You may wish to use that the conclusion of Dirichlet's Theorem for the convergence of Fourier series applies to piecewise smooth functions.

Solution:

(a) For $n \ge 1$ we have

$$a_n = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} x \cos(nx) dx$$

$$= \frac{1}{n\pi} \left[x \sin(nx) \right]_0^{\frac{\pi}{2}} - \frac{1}{n\pi} \int_0^{\frac{\pi}{2}} \sin(nx) dx$$

$$= \frac{1}{2n} \sin(n\frac{\pi}{2}) + \frac{1}{n^2\pi} \left[\cos(nx) \right]_0^{\frac{\pi}{2}}$$

$$= \frac{1}{2n} \sin(n\frac{\pi}{2}) + \frac{1}{n^2\pi} \cos(n\frac{\pi}{2}) - \frac{1}{n^2\pi}.$$

In particular, if we take n = 4k + 2 we obtain

$$a_{4k+2} = -\frac{1}{2\pi(2k+1)^2}.$$

Similarly, for $n \ge 1$ we have

$$\begin{split} b_n &= \frac{1}{\pi} \int_0^{\frac{\pi}{2}} x \sin(nx) \, dx \\ &= -\frac{1}{n\pi} \left[x \cos(nx) \right]_0^{\frac{\pi}{2}} + \frac{1}{n\pi} \int_0^{\frac{\pi}{2}} \cos(nx) \, dx \\ &= -\frac{1}{2n} \cos(n\frac{\pi}{2}) + \frac{1}{n^2\pi} \left[\sin(nx) \right]_0^{\frac{\pi}{2}} \\ &= -\frac{1}{2n} \cos(n\frac{\pi}{2}) + \frac{1}{n^2\pi} \sin(n\frac{\pi}{2}), \end{split}$$

so taking n = 4k + 1 we obtain

$$b_{4k+1} = \frac{1}{(4k+1)^2\pi}.$$

(b) As f(x) is piecewise smooth, the remark ensures that the Fourier series converges to

$$\frac{1}{2} \left[f(x-) + f(x+) \right]$$

for all $-\pi < x < \pi$. As f(x) is continuous on $(-\pi, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi)$, the Fourier series converges to f(x) at every $x \in (-\pi, \pi)$ except $x = \frac{\pi}{2}$. Here it converges to

$$\frac{1}{2} \left[f(\frac{\pi}{2} -) + f(\frac{\pi}{2} +) \right] = \frac{\pi}{4}.$$

8. Consider the function $f: [0, \pi] \to \mathbb{R}$,

$$f(x) = \begin{cases} 3 & \text{for } 0 \le x < \frac{\pi}{2} \\ 0 & \text{for } x = \frac{\pi}{2} \\ -1 & \text{for } \frac{\pi}{2} < x \le \pi \end{cases}$$

(a) Show that the Fourier cosine series of f(x) can be written as

$$\lambda_0 + \sum_{n=1}^{\infty} \lambda_n \cos((2n-1)x)$$

and determine $\lambda_n \in \mathbb{R}$ for $n = 0, 1, 2, \dots$

- (b) Draw the graph of the Fourier cosine series for $x \in [-\pi, \pi]$.
- (c) Draw the graph of the Fourier sine series for $x \in [-\pi, \pi]$.

Solution:

(a) We start by writing the Fourier cosine seres as

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx),$$

where

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} 3 dx - \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} dx = 2$$

and for $n \ge 1$ we have

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx$$

= $\frac{2}{\pi} \int_0^{\frac{\pi}{2}} 3 \cos(nx) dx - \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} \cos(nx) dx$
= $\frac{4}{n\pi} \sin(n\frac{\pi}{2}),$

and hence we may take

$$\lambda_0 = 1$$
 and $\lambda_n = \frac{4}{(2n-1)\pi}(-1)^{n+1}$

(b) We sketch

(c) We sketch

PDEs & boundary value problems

9. Find a solution y(t,x), for $t \ge 0$ and $0 \le x \le \pi$, to the boundary value problem

$$\begin{cases} \frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2} - y, \\ y(t,0) = 0 = y(t,\pi), \\ \frac{\partial y}{\partial t}(0,x) = 0, \ y(0,x) = f(x) \quad \text{for} \quad 0 < x < \pi. \end{cases}$$

using the method of separation of variables.

Remark: You may use without justification that the Sturm-Liouville problem

$$\begin{cases} u'' + \lambda u = 0, \\ u(0) = 0 = u(\pi) \end{cases}$$

has eigenvalues $\lambda_n = n^2$ and eigenfunctions $u_n(x) = \sin(nx)$ for integers $n \ge 1$.

Solution: We start by seeking a solution in the form

$$y(t,x) = v(t)u(x).$$

This yields the equation

$$\frac{v''}{v} = \frac{u''}{u} - 1.$$

As the left hand side depends only on t and the right hand side depends only on x they are both equal to a constant, say $-\lambda$. This yields the ODEs

$$(1) u'' + (\lambda - 1)u = 0,$$

$$v'' + \lambda v = 0.$$

The boundary conditions yield the conditions

$$u(0) = 0 = u(\pi),$$

so from class we know that the corresponding eigenvalues for the Sturm-Liouville problem (1) are

$$\lambda_n = 1 + n^2$$
 for integers $n \ge 1$,

with corresponding eigenfunctions

$$u_n(x) = \sin(nx)$$
.

Turning to the equation for v, the initial condition

$$\frac{\partial y}{\partial t}(0,x) = 0$$

yields the condition

$$v'(0) = 0,$$

and a non-trivial solution of (2) with $\lambda = \lambda_n$ satisfying this condition is

$$v_n(t) = \cos(\sqrt{1+n^2}\,t).$$

Putting these together, for each integer $n \ge 1$ we have a solution of

$$\begin{cases} \frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2} - y \\ y(t,0) = 0 = y(t,\pi) \\ \frac{\partial y}{\partial t}(0,x) = 0 \end{cases}$$

given by

$$y_n(t,x) = \cos(\sqrt{1+n^2}t)\sin(nx).$$

We may then take linear combinations to obtain a solution (ignoring convergence)

$$y(t,x) = \sum_{n=1}^{\infty} b_n \cos(\sqrt{1+n^2}t) \sin(nx),$$

for any constants b_1, b_2, \ldots

Utilizing the remaining initial condition we see that

$$f(x) = y(0, x) = \sum_{n=1}^{\infty} b_n \sin(nx),$$

so if we take

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) \, dx,$$

then the series

$$y(t,x) = \sum_{n=1}^{\infty} b_n \cos(\sqrt{1+n^2} t) \sin(nx),$$

yields a (formal) solution of our problem.

10. Determine the eigenfunctions $y_n(x)$ and eigenvalues λ_n of the boundary value problem

$$\begin{cases} -y'' - 4y = \lambda y, \\ y'(0) = 0 = y'(1). \end{cases}$$

Solution: We first write our problem in the form.

$$y'' + (4 + \lambda)y = 0.$$

If $\lambda < -4$, the general solution is given by

$$y(x) = C_1 e^{\sqrt{-(4+\lambda)}x} + C_2 e^{-\sqrt{-(4+\lambda)}x}$$

and the only solution satisfying the boundary conditions is y(x) = 0.

If $\lambda = -4$, the general solution is given by

$$y(x) = C_1 + C_2 x,$$

and hence, taking $C_2=0$ we obtain a non-trivial solution satisfying the boundary conditions. Consequently, our ground state energy is $\lambda_1=-4$ and the corresponding ground state is

$$y_1(x) = 1.$$

If $\lambda > -4$, the general solutions is given by

$$y(x) = C_1 \cos(\sqrt{4+\lambda} x) + C_2 \sin(\sqrt{4+\lambda} x).$$

Using the boundary conditions, we have a non-trivial solution if and only if $\sqrt{4+\lambda}=n\pi$ for an integer $n\geq 1$. This leads us to take

$$\lambda_n = (n-1)^2 \pi^2 - 4 \quad \text{for} \quad n \ge 2,$$

with corresponding eigenfunctions

$$y_n(x) = \cos((n-1)\pi x).$$