

APPLN. NO.: 09/699,873
TITLE: MICROFABRICATED
CHEMICAL REACTOR

FIGURE 1

FIGURE 2

APPLN. NO.: 09/699,873
TITLE: MICROFABRICATED
CHEMICAL REACTOR

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7a

FIGURE 7b

APPLN. NO.: 09/699,873
TITLE: MICROFABRICATED
CHEMICAL REACTOR

FIGURE 8

FIGURE 9

FIGURE 10a

APPLN. NO.: 09/699,873
TITLE: MICROFABRICATED
CHEMICAL REACTOR

$$k_L a = 0.45 * \frac{D_{AL}}{d_p^2} [Re_L^{4/5} \cdot We_L^{1/5} \cdot Sc_L^{1/2} \cdot X_G^{1/2} \cdot \alpha]^{1/3}$$

FIGURE 10b

$$k_L a = 0.12 \cdot E_I^{1/2}$$
$$E_I^{1/2} = \frac{\Delta P}{\Delta L} \cdot v_L$$

FIGURE 10c

FIGURE 11a

FIGURE 11b

FIGURE 11c

FIGURE 12

APPLN. NO.: 09/699,873
TITLE: MICROFABRICATED
CHEMICAL REACTOR

FIGURE 13a

FIGURE 13b

FIGURE 13c

APPLN. NO.: 09/699,873
TITLE: MICROFABRICATED
CHEMICAL REACTOR

FIGURE 13d

Cyclohexene Hydrogenation

Gas-Liquid Interface,

$$P_{\text{H}_2} \text{ (gas)} = H^* [H_2](l)$$

Gas-Liquid Mass Transfer,

$$r = k_l a_i ([H_2](l) - [H_2](\text{liquid}))$$

Liquid-Solid Mass Transfer,

$$r = k_s a_i ([H_2](\text{liquid}) - [H_2](\text{particle}))$$

FIGURE 14

Multi-channel vs. Single channel reaction rates

FIGURE 15

APPLN. NO.: 09/699,873
TITLE: MICROFABRICATED
CHEMICAL REACTOR

FIGURE 16a

APPLN. NO.: 09/699,873
TITLE: MICROFABRICATED
CHEMICAL REACTOR

FIGURE 16b

APPLN. NO.: 09/699,873
TITLE: MICROFABRICATED
CHEMICAL REACTOR

FIGURE 16c

FIGURE 17

$$\frac{\Delta P}{L} \propto \frac{\mu \cdot Q}{D_p^2 \cdot A_s} \cdot \frac{(1-\varepsilon)^2}{\varepsilon^3}$$

FIGURE 18

FIGURE 19

FIGURE 20

APPLN. NO.: 09/699,873
TITLE: MICROFABRICATED
CHEMICAL REACTOR

FIGURE 21

FIGURE 22

FIGURE 23

FIGURE 24a

FIGURE 24b

FIGURE 25