Automata Theory CS411-2015F-06 Finite Automata & Regular Expressions

David Galles

Department of Computer Science University of San Francisco

06-0: $L_{DFA}\&L_{REG}$

- \bullet $L_{DFA} = L_{NFA}$
- What about L_{REG} ?
- How can we show that $L_{REG} = L_{DFA}$?

06-1: $L_{DFA}\&L_{REG}$

- \bullet $L_{DFA} = L_{NFA}$
- What about L_{REG} ?
- How can we show that $L_{REG} = \overline{L_{DFA}}$?
 - lacktriangle Show $L_{REG}\subseteq L_{NFA}$
 - Show $L_{NFA} \subseteq \overline{L_{REG}}$

06-2: $L_{REG} \subseteq L_{NFA}$

• How can we show that $L_{REG} \subseteq L_{NFA}$?

06-3: $L_{REG} \subseteq L_{NFA}$

- How can we show that $L_{REG} \subseteq L_{NFA}$?
 - Given any regular expression r, create an NFA M such that L[r] = L[M]
 - Since regular expressions are defined recursively, our proof will be inductive
 - recursive \approx inductive

06-4: $L_{REG} \subseteq L_{NFA}$

- To Prove: Given any regular expression r, we can create an NFA M such that L[M] = L[r]
 - \exists NFA M s.t. $L[M] = L[r], |F_M| = 1$, No transitions out of $f \in F$
- ullet By induction on the structure of r

06-5: $L_{REG} \subseteq L_{NFA}$

•
$$r = a, a \in \Sigma$$

06-6: $L_{REG} \subseteq L_{NFA}$

•
$$r = a, a \in \Sigma$$

06-7: $L_{REG} \subseteq L_{NFA}$

Base Cases:

 $\bullet r = \epsilon$

06-8: $L_{REG} \subseteq L_{NFA}$

06-9: $L_{REG} \subseteq L_{NFA}$

$$\bullet$$
 $r = \emptyset$

06-10: $L_{REG} \subseteq L_{NFA}$

$$\bullet$$
 $r = \emptyset$

06-11: $L_{REG} \subseteq L_{NFA}$

Recursive Cases:

$$\bullet r = (r_1 r_2)$$

NFA for r₁

NFA for r₂

06-12: $L_{REG} \subseteq L_{NFA}$

Recursive Cases:

$$\bullet r = (r_1 r_2)$$

NFA for (r_1r_2)

06-13: $L_{REG} \subseteq L_{NFA}$

Recursive Cases:

NFA for r₁

NFA for r₂

06-14: $L_{REG} \subseteq L_{NFA}$

Recursive Cases:

06-15: $L_{REG}\subseteq L_{NFA}$

Recursive Cases:

$$\bullet \ r = (r_1^*)$$

NFA for r

06-16: $L_{REG} \subseteq L_{NFA}$

Recursive Cases:

NFA for (r*)

06-17: $L_{REG} \subseteq L_{NFA}$

- Examples:
- 1(0+1)*0
 - ((1((0+1)*))0)

06-18: $L_{REG} \subseteq L_{NFA}$

- Examples:
- (a+b)*aba(a+b)*
 - $((((((a+b)^*)a)b)a)((a+b)^*))$

06-19: $L_{REG} \subseteq L_{NFA}$

- Given any regular expresion r, we can create an NFA M such that L[M] = L[r]
- \bullet Given any NFA M, we can create a DFA M' such that L[M'] = L[M]
- Given any regular expresion r, we can create a DFA M such that L[M] = L[r]

• What about the other direction?

06-20: $L_{NFA} \subseteq L_{REG}$

- Start with a specialized NFA
 - No transitions into the start state
 - Single final state
 - No transitions out of the final state
- Can we transform any NFA into one in this form?
 How?

06-21: $L_{NFA} \subseteq L_{REG}$

- Transitions will be labeled with regular expressions
- If there is a transition from state q_1 to state q_2 labeled with regular expression r, then any string generated by r can move the machine from q_1 to q_2
 - Recall that $\forall a \in \Sigma$, a is a regular expression
 - Technically true, even for standard NFA

06-22: $L_{NFA} \subseteq L_{REG}$

- Transitions will be labeled with regular expressions
- If there is a transition from state q_1 to state q_2 labeled with regular expression r, then any string generated by r can move the machine from q_1 to q_2
 - Recall that $\forall a \in \Sigma$, a is a regular expression
 - Technically true, even for standard NFA
- Remove states, relabeling transitions so that the langauge defined by the machine does not change

06-23: $L_{NFA} \subseteq L_{REG}$

• Removing state q_1

06-24: $L_{NFA} \subseteq L_{REG}$

• State q_1 removed

06-25: $L_{NFA} \subseteq L_{REG}$

• Removing state q_1

06-26: $L_{NFA} \subseteq L_{REG}$

• State q_1 removed

06-27: $L_{NFA} \subseteq L_{REG}$

• Removing state q_1

06-28: $L_{NFA} \subseteq L_{REG}$

• State q_1 removed

06-29: $L_{NFA} \subseteq L_{REG}$

• Removing state q_1

06-30: $L_{NFA} \subseteq L_{REG}$

• Removing state q_1

06-31: $L_{NFA} \subseteq L_{REG}$

$$- (0) \frac{\alpha(\gamma^*)\beta + \delta}{2}$$

06-32: $L_{NFA} \subseteq L_{REG}$

• Removing state q_1

06-33: $L_{NFA} \subseteq L_{REG}$

• State q_1 removed. Removing state q_2

06-34: $L_{NFA} \subseteq L_{REG}$

• State q_2 removed.

06-35: $L_{NFA} \subseteq L_{REG}$

- Example:
 - NFA for all strings over {a,b} where # of a's mod
 3 = 0

06-36: $L_{NFA} \subseteq L_{REG}$

Reconfigure NFA

06-37: $L_{NFA} \subseteq L_{REG}$

• Remove state q_1

06-38: $L_{NFA} \subseteq L_{REG}$

• State q_1 removed, removing state q_2

06-39: $L_{NFA} \subseteq L_{REG}$

• State q_2 removed, removing state q_3

06-40: $L_{NFA} \subseteq L_{REG}$

• State q_3 removed.