Sentiment Analysis and Feature Extraction on Phone Product Reviews

Shuyu Ding, Jiatuan Luo, Qihang Zhang

Motivation/Project Goals

- Build a deep learning based sentiment classifier
- Extract product features for popular phone brands
- Provide potential business insights to manufacturers

Data

Amazon Reviews: Unlocked Mobile Phone from Kaggle

- 413,840 data entries, keep 413,778 reviews
- Six Features: Product Name, Brand Name, Rating, Reviews, Price, Review Votes
- New column: Label

Properties of the data

- The vocabulary size is 60,689 after data cleaning
- The average number of sentences per review is around 2.958
- The average number of tokens per sentence is 13.92

Approaches

- Baselines: K-Nearest Neighbors(KNN), Random Forest, Naive Bayes
 - Train a Word2Vec model for word embedding
 - Create a bag of K-Means centroids for each review and save as the designed matrix
 - Perform hyperparameter tuning and cross-validation with the training data
 - Evaluate model performances with the validation data

Proposed model: LSTM(Long Short Term Memory) Networks

- Tokenize the most frequent 50,000 word with Keras word tokenizer
- Truncate and pad the input sequences with the same length
- Build a LSTM network with one embedding layer and two LSTM layers

Approaches

Feature Extraction

- Perform POS tagging technique on each word
- Filter out features that are either considered as noun or noun phrase
- Find the adjectives within a certain distance to the feature
- o Calculate the corresponding sentiment score

Experiments and Evaluations

Experiment setup

- Training set 80%, validation set 20%
- All experiments run on CPU
- Baselines: Grid-search cross validation method with 3 folds
- Proposed Method: Manually hyper parameters tuning

Hyperparameter	Tuning Range	
Embedding Vector Length	[32,128]	
Batch Size	[256,1024]	
Units Per Layer	[32,128]	
Drop Out	[0.1-0.4]	
Recurrent Drop Out	[0.1-0.4]	
Number of Epoches	[5-10]	

Evaluation Metrics:

 F1 score, Recall, Precision and Accuracy

Feature Extraction

- Cluster the reviews by phone brand
- Run the algorithm on top 7 brands

Results

Model	Accuracy	Precision (weighted)	Recall (weighted)	F1 (weighted)
Random Forest	0.815	0.838	0.815	0.822
KNN	0.862	0.846	0.852	0.847
Naive Bayes	0.674	0.628	0.674	0.610
LSTM	0.877	0.895	0.852	0.874

Results

Samsung: Positive/Negative Sentiment by Features

Results

LG: Positive/Negative Sentiment by Features

Conclusion/Future work

- Evaluate feature extraction results
- Modify model structure to further improve performance
- Apply to different datasets

Thank You!