How to designe et IIR filter

- 1. Bestem hvilken transformationsmetode der benyttes:
- Mached z-transformation
- Impuls Invariant z-transformation
- Bilineær z-transformation

2. Hvis bilineær z-transformation benyttes:

Bestem prewarpingkonstanten $C = \cot(\omega_a T/2)$ Bestem den prewarpede stopbåndsfrekvens ved at multiplicere med C og bestem ordenstallet på baggrund af denne.

- 3. Opstil filterspecifikationerne og bestem det analoge prototypefilters frekvensnormerede overføringsfunktion H(s).
- 4. Mached, Bilineær: Faktoriser H(s)
- 5. Impulsinvariant: Partialbrøkopløs H(s)
- 6. Mached: Denormer poler og nulpunkter
- 7. Impulsinvariant: Denormer koefficienter k_i og poler
- 8. Bestem den digitale overføringsfunktions koefficienter:

1. Orden:

Transformation	H(z)	a_0	a ₁	b ₁
Mached	$H(z) = \frac{a_0}{1 + b_1 z^{-1}}$	$a_0=1+b_1$		b_1 : pol $-e^{\sigma_1*T}$
Impulsinvariant	$H(z) = \frac{a_0}{1 + b_1 z^{-1}}$	$a_0 = -\sigma_i T$		$b_1 = -e^{\sigma_i T}$
Bilineær	$H(z) = \frac{a_0 + a_1 z^{-1}}{1 + b_1 z^{-1}}$	$a_0 = \frac{A_0 + A_1 C}{B_0 + B_1 C}$	$a_1 = \frac{A_0 - A_1 C}{B_0 + B_1 C}$	$b_1 = \frac{B_0 - B_1 C}{B_0 + B_1 C}$

2. Orden:

Transformation	H(z)	a ₀	a ₁
Mached	$H(z) = \frac{a_0}{1 + b_1 z^{-1} + b_2 z^{-2}}$	$a_0 = 1 + b_1 + b_2$	
Impulsinvariant	$H(z) = \frac{a_0 + a_1 z^{-1}}{1 + b_1 z^{-1} + b_2 z^{-2}}$	$a_0 = 2\alpha_i$	$a_1 = -2e^{\sigma_i T} (\alpha_i \cos(\omega_i T) - \beta_i \sin(\omega_i T))$
Bilineær	$H(z) = \frac{a_0 + a_1 z^{-1}}{1 + b_1 z^{-1} + b_2 z^{-2}}$	$a_0 = \frac{A_0 + A_1C + A_2C^2}{B_0 + B_1C + B_2C^2}$	$a_1 = \frac{2(A_0 - A_2C^2)}{B_0 + B_1C + B_2C^2}$

Transformation	a_2	b ₁	b ₂
Mached		$b_1=2e^{\sigma_1T}cos(\omega_1T)$	$b_2=e^{2\sigma_2 T}$
Impulsinvariant		$b_0 = -(2e^{\sigma_i T}\cos(\omega_i T))$	$b_1 = e^{2\sigma_i T}$
Bilineær	$a_2 = \frac{A_0 - A_1C + A_2C^2}{B_0 + B_1C + B_2C^2}$	$\overline{b_1} = \frac{2(B_0 - B_2 C^2)}{B_0 + B_1 C + B_2 C^2}$	$b_2 = \frac{B_0 - B_1 C + B_2 C^2}{B_0 + B_1 C + B_2 C^2}$

9. Implementer H(z) som kaskade/parallelrealisation:

Mached	Kaskade
Impulsinvariant	Parallel
Bilineær	Kaskade