

NORTHWEST UNIVERSITY

2.2 闭集

开集的定义

回顾

设G是距离空间X中一个子集. 如果 $G \subset G^o$,则称G为**开集**.

闭集的定义

设A 是距离空间X中一个子集,若它的补集

$$A^c = X \setminus A$$

是开集,则称A是**闭集**.

闭球是闭集

例

闭球 $\overline{B}(x_0,r)$ 是闭集.

证

任取 $y \in (\overline{B}(x_0, r))^c$, 则 $d(y, x_0) > r$.

取 $\beta: 0 < \beta < d(y, x_0) - r$. 只需证

 $B(y,\beta)\subset (\overline{B}(x_0,r))^c$. T球是补集的 对任意 $x\in B(y,\beta)$,则 $d(x,y)<\beta$,因而 子集

$$d(x, x_0) \ge d(y, x_0) - d(y, x) > d(y, x_0) - \beta > r,$$

因而, $x \in (\overline{B}(x_0,r))^c$.

接触点的定义

设A 是距离空间X中一个子集, $x_0 \in X$,若对任给的 $\varepsilon > 0$,有 $B(x_0, \varepsilon) \cap A \neq \emptyset$

则称 x_0 为 A 的接触点. A 的接触点的全体称为 A 的**闭包**,记为 \overline{A} .

注 2 x_0 不是 A 的接触点 \Leftrightarrow 存在 $\varepsilon_0 > 0$, 使得 $B(x_0, \varepsilon_0) \cap A = \emptyset$.

接触点的例

例

在平面空间 \mathbb{R}^2 中,集合 $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\},$

则 A 的闭包为 $\overline{A} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$

圆周和圆内的点都是接触点、

接触点的等价刻画

20.是接触点

定理

设A 是距离空间X的子集,则 $x_0 \in \overline{A}$ 的充分必要条件是存在

$$\{x_n\}\subset A,$$

使得 $x_n \to x_0 \ (n \to \infty)$.

存在一列点,点列极限为为

证

(充分性) 若 $\lim_{n\to\infty} x_n = x_0$,则任给 $\varepsilon > 0$,存在N,当n > N时, $d(x_n, x_0) < \varepsilon$, 极限定义

即 $x_n \in B(x_0, \varepsilon) \cap A$, 这表明 $x_0 \in A$ 的接触点. 即 $x_0 \in \overline{A}$.

接触点定义

接触点的等价刻画

定理

设A 是距离空间X的子集,则 $x_0 \in \overline{A}$ 的充分必要条件是存在

$$\{x_n\}\subset A,$$

使得 $x_n \to x_0 \ (n \to \infty)$.

证

(必要性) 若
$$x_0 \in \overline{A}$$
. 则对 $\varepsilon_n = \frac{1}{n} > 0$,必有 $B(x_0, \frac{1}{n}) \cap A \neq \emptyset$. 于是存在 $\{x_n\} \subset A$,使得

因而
$$x_n \to x_0 \ (n \to \infty)$$
.

闭集的等价刻画I

定理

设A是距离空间X的子集,A是闭集 $\Longleftrightarrow A = \overline{A}$.

A是A的闭包

A由所有的接触点、构成

证

$$B(x,\varepsilon_0)\cap A=\emptyset.$$

即 $B(x, \varepsilon_0) \subset A^c$. 因此 A^c 是开集,即 A 是闭集.

闭集的等价刻画I

定理

设 A 是距离空间X 的子集,A 是闭集 $\Longleftrightarrow A = \overline{A}$.

证

⇒ 由于 $A \subset \overline{A}$, 只需证明 $\overline{A} \subset A$. 设 $x \in \overline{A}$, 若 $x \notin A$, 即 $x \in A^c$.

由于 A^c 是开集,于是存在 $\varepsilon_0 > 0$,使得

$$B(x,\varepsilon_0)\cap A=\emptyset.$$

这与 $x \in \overline{A}$ 矛盾. 因而 $\overline{A} \subset A$. 即 $A = \overline{A}$.

闭集的等价刻画I

定理

设A是距离空间X的子集,A是闭集 $\Longleftrightarrow A = \overline{A}$.

定理

设A 是距离空间X的子集,则 $x_0 \in \overline{A}$ 的充分必要条件是存在

$$\{x_n\}\subset A,$$

使得 $x_n \to x_0 \ (n \to \infty)$.

闭集的等价刻画 II

定理

设 A 是距离空间X 的子集,A 是闭集 \Longleftrightarrow 对任何 $\{x_n\} \subset A$,

若 $x_n \to x_0 \ (n \to \infty)$, 必有 $x_0 \in A$.

在闭集里极限运算是封闭的.

点到集合的距离

设A 是距离空间X的一个子集, $x \in X$,称

$$d(x,A) = \inf_{y \in A} d(x,y)$$

为点 x 到集合 A 的距离. 下确界

注 可以证明 $\overline{A} = \{x \mid d(x, A) = 0\}.$

小结

- 闭集的定义
- 接触点、闭包的定义
- 闭集的等价刻画