Rank-65759 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_3 + X_0 X_1^2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431676585

General information

Number of lines	5
Number of points	25
Number of singular points	1
Number of Eckardt points	1
Number of double points	3
Number of single points	16
Number of points off lines	5
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{5}
Type of lines on points	$3, 2^3, 1^{16}, 0^5$

Singular Points

The surface has 1 singular points:

$$0: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1)$$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_5 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_5 = \mathbf{Pl}(1, 0, 1, 0, 1, 0)_{33}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \mathbf{Pl}(0,0,0,1,0,1)_{129}$$

$$\ell_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega^2 \end{bmatrix}_{339} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}_{339} = \mathbf{Pl}(0,0,0,3,0,1)_{143}$$

$$\ell_3 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{338} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{338} = \mathbf{Pl}(0,0,0,2,0,1)_{136}$$

$$\ell_4 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \mathbf{Pl}(0,0,1,1,1,1)_{198}$$

Rank of lines: (5, 337, 339, 338, 38)

Rank of points on Klein quadric: (33, 129, 143, 136, 198)

Eckardt Points

The surface has 1 Eckardt points: $0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0).$

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_{42} = (0, 1, 1, 1) = \ell_0 \cap \ell_1$$

 $P_4 = (1, 1, 1, 1) = \ell_0 \cap \ell_4$

 $P_{38} = (0,0,1,1) = \ell_1 \cap \ell_4$

Single Points

The surface has 16 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_0 = (1,0,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_5 = (1,1,0,0) \ \text{lies on line} \ \ell_4 \\ 2: \ P_{43} = (2,1,1,1) \ \text{lies on line} \ \ell_0 \\ 3: \ P_{44} = (3,1,1,1) \ \text{lies on line} \ \ell_0 \\ 4: \ P_{45} = (0,2,1,1) \ \text{lies on line} \ \ell_1 \\ 5: \ P_{47} = (2,2,1,1) \ \text{lies on line} \ \ell_4 \\ 6: \ P_{49} = (0,3,1,1) \ \text{lies on line} \ \ell_1 \\ 7: \ P_{52} = (3,3,1,1) \ \text{lies on line} \ \ell_4 \\ 8: \ P_{53} = (0,0,2,1) \ \text{lies on line} \ \ell_2 \end{array}$

9: $P_{57} = (0, 1, 2, 1)$ lies on line ℓ_2 10: $P_{61} = (0, 2, 2, 1)$ lies on line ℓ_2 11: $P_{65} = (0, 3, 2, 1)$ lies on line ℓ_2 12: $P_{69} = (0, 0, 3, 1)$ lies on line ℓ_3 13: $P_{73} = (0, 1, 3, 1)$ lies on line ℓ_3 14: $P_{77} = (0, 2, 3, 1)$ lies on line ℓ_3

15: $P_{81} = (0, 3, 3, 1)$ lies on line ℓ_3

The single points on the surface are:

Points on surface but on no line

The surface has 5 points not on any line: The points on the surface but not on lines are:

```
\begin{array}{lll} 0: \, P_{12} = (1,1,1,0) & 3: \, P_{67} = (2,3,2,1) \\ 1: \, P_{23} = (1,0,0,1) & 4: \, P_{80} = (3,2,3,1) \\ 2: \, P_{27} = (1,1,0,1) & \end{array}
```

Line Intersection Graph

 $\begin{array}{c|c} 0 & 1 & 2 & 3 & 4 \\ \hline 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 2 & 0 & 1 & 0 & 1 & 0 \\ 3 & 0 & 1 & 1 & 0 & 0 \\ 4 & 1 & 1 & 0 & 0 & 0 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_4
in point	P_{42}	P_4

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_{42}	P_1	P_1	P_{38}

 ${\bf Line~2~intersects}$

Line	ℓ_1	ℓ_3
in point	P_1	P_1

Line 3 intersects

Line	ℓ_1	ℓ_2
in point	P_1	P_1

Line 4 intersects

Line	ℓ_0	ℓ_1
in point	P_4	P_{38}

The surface has 25 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	9: $P_{43} = (2, 1, 1, 1)$	$18: P_{65} = (0, 3, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	10: $P_{44} = (3, 1, 1, 1)$	19: $P_{67} = (2, 3, 2, 1)$
$2: P_4 = (1, 1, 1, 1)$	11: $P_{45} = (0, 2, 1, 1)$	$20: P_{69} = (0,0,3,1)$
$3: P_5 = (1, 1, 0, 0)$	12: $P_{47} = (2, 2, 1, 1)$	$21: P_{73} = (0, 1, 3, 1)$
$4: P_{12} = (1, 1, 1, 0)$	13: $P_{49} = (0, 3, 1, 1)$	$22: P_{77} = (0, 2, 3, 1)$
$5: P_{23} = (1,0,0,1)$	$14: P_{52} = (3, 3, 1, 1)$	$23: P_{80} = (3, 2, 3, 1)$
$6: P_{27} = (1, 1, 0, 1)$	15: $P_{53} = (0, 0, 2, 1)$	$24: P_{81} = (0, 3, 3, 1)$
$7: P_{38} = (0, 0, 1, 1)$	16: $P_{57} = (0, 1, 2, 1)$	
$8: P_{42} = (0, 1, 1, 1)$	$17: P_{61} = (0, 2, 2, 1)$	