NOIP 2022 模拟赛题解 1 可爱的背包

可爱的背包

正解

将所有物品按照 r_i 从小到大排序,考虑 dp,令 f_i 表示当前加入物品中最靠右的右端点为 i 的最大价值,按照从左往右的顺序依次将物品放入背包,那么每次加入一个物品时进行转移:

$$f_{r_i} = \max_{j < l_i} f_j + v_i$$

维护 dp 数组的前缀 max,排序使用桶排即可做到线性。当然带一个 log 也能过。

NOIP 2022 模拟赛题解 2 加边

加边

正解

对于一次询问 x,保留所有宽度 $\geq x$ 的边,如果此时图仍然连通则无需加边,否则需要加边让图重新连通。可以发现,代价最小的加边方案是找到全局 a_i 最小的点 p 所在的连通块,从其他每个连通块中 a_i 最小的点向点 p 连边,若 S 为连通块集合则此时总代价为

$$(|S| - 2) \times a_p + (\sum_{T \in S} \min_{x \in T} a_x)$$

将询问离线按 x 从大到小排序,每次加入所有宽度 $\geq x$ 的边,用并查集维护连通块数量和每个连通块中的最小 a_i 。假设 n,m,q 同级,时间复杂度 $O(n \log n)$ 。

NOIP 2022 模拟赛题解 3 奇怪的操作

奇怪的操作

正解

由于每次只修改一个位置且没有后效性,所以可以考虑先求出不变的答案,然后算上位置改变的贡献。

对于每个 i, 求出 v_i 表示前 i 个数中第 b_i 大的值, v_i' 表示第 b_i + 1 大的值(若不存在则为 0), c_i 表示前 i 个数中前 b_i 大的数之和。这些值可以从前到后把序列扫一遍的同时用权值线段树查询。

先求出初始的 $\sum c_i$ 。对于一次询问将 a_x 改为 k:

- 1. $a_x < k$: 对于每个 i > x,
- 若 $v_i \le a_x$, 说明原先 a_x 是前 b_i 大的值, c_i 要先减去 a_x 。
- 若 $a_x < v_i \le k$, 说明原先 a_x 不是前 b_i 大, 改完了是, c_i 要减去 v_i 。
 - 2. $a_x > k$: 对于每个 i > x,
- 若 $v_i' < a_x$, 说明原先 a_x 是前 b_i 大的值, c_i 要先减去 a_x 。
- 若 $v_i' < k$,说明改成 k 后是前 b_i 大的值, c_i 要再加上 k。
- 若 $k \le v_i' < a_x$, 说明原先 a_x 是前 b_i 大, 改完了不是, c_i 要加上 v_i' 。

将询问离线按 x 从大到小扫描线,用两棵权值线段树分别维护 v_i 和 v_i' ,支持查询值域区间内有多少个 v_i 以及 v_i 的和即可回答询问。

时间复杂度 $O(n \log n)$ 。

函数

算法 1

对于 $q = 1, a_i < 2$ 的部分。

将整个序列的变换看成一个三角形画出来如下:

显然可以发现如果出现一对相邻位置相同,那么这个位置会一直向上传递直到出现 一个更靠近中间的相邻相同的位置然后被干掉。

于是结论就是答案是最靠近中间的一个相邻相同的位置的值,而由于区间长度是奇数,可以发现不可能出现矛盾。如果不存在相邻位置相同,那么答案显然是与中间位置相反的值,时间复杂度 O(n)。

算法 2

对于 q=1 的部分。

二分,将小于二分值的看作 1,大于等于二分值的看作 2,即可像算法 1 一样解决。时间复杂度 $O(n \log n)$,结合暴力期望得分 50 分。

算法 3

考虑离线后整体二分,维护序列上相邻相同的位置,那么每次的 check 即转化为求所有小于 x 的最大的值和大于 x 的最小值,可直接使用平衡树维护。

时间复杂度 $O(n \log^2 n)$, 期望得分 100 分。