## Вариант № 3.

(№ 1603) На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).

|    | П1 | П2 | П3 | П4 |    | П6 | П7 |
|----|----|----|----|----|----|----|----|
| П1 |    | 8  | 10 |    | 20 | 5  |    |
| П2 | 8  |    |    | 14 |    |    |    |
| П3 | 10 |    |    | 9  |    |    | 16 |
| П4 |    | 14 | 9  |    |    |    |    |
| П5 | 20 |    |    |    |    | 12 | 7  |
| П6 | 5  |    |    |    | 12 |    |    |
| П7 |    |    | 16 |    | 7  |    |    |



Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину кратчайшего пути из пункта А в пункт Е.

2 (№ 1633) Логическая функция F задаётся выражением ((x  $\land$  w)  $\lor$  (w  $\land$  z))  $\equiv$  ((z  $\rightarrow$  y)  $\land$  (y  $\rightarrow$ x)).

| ? | ? | ? | 3 | F |
|---|---|---|---|---|
| 1 | 0 | 1 | 1 | 1 |
| 1 | 0 |   | 0 | 1 |
| 1 | 0 |   | 0 | 1 |

На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

(№ 1660) В фрагменте базы данных представлены сведения о родственных отношениях. Определите максимальную разницу между годами рождения двух родных братьев.

Таблица 2

| Таблица 1 |               |     |           |
|-----------|---------------|-----|-----------|
| ID        | Фамилия_И.О.  | Пол | Год рожд. |
| 240       | Черных А.В.   | M   | 1930      |
| 261       | Черных Д.И.   | ж   | 1933      |
| 295       | Черных Е.П.   | М   | 1954      |
| 325       | Черных И.А.   | ж   | 1953      |
| 356       | Черных Н.Н.   | M   | 1954      |
| 367       | Гунько А.Б.   | ж   | 1958      |
| 427       | Малых Е.А.    | M   | 1972      |
| 517       | Краско М.А.   | ж   | 1978      |
| 625       | Соболь О.К.   | ж   | 1976      |
| 630       | Краско В.К.   | ж   | 1979      |
| 743       | Гунько Б.В.   | ж   | 1994      |
| 854       | Колосова А.Е. | ж   | 2001      |
| 943       | Гунько А.Н.   | М   | 1993      |
| 962       | Малых Н.Н.    | М   | 1998      |

| ID_Родителя | ID_Ребенка |
|-------------|------------|
| 240         | 325        |
| 261         | 325        |
| 240         | 356        |
| 261         | 356        |
| 325         | 517        |
| 325         | 427        |
| 356         | 625        |
| 356         | 630        |
| 367         | 625        |
| 367         | 630        |
| 625         | 943        |
| 625         | 962        |
| 427         | 743        |
| 427         | 854        |

- (№ 1685) 139) По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Й, Л, М, Т, Ю. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны:  $\Pi - 010$ , E - 011, E - 10. Какое наименьшее количество двоичных знаков потребуется для кодирования слова АЛТАИ? 5 (№ 1786) На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
  - 1) Строится двоичная запись числа N.
  - 2) Затем справа дописываются два разряда: символы 01, если число N чётное, и 10, если нечётное.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число N,

после обработки которого автомат получает число, большее 73. В ответе это число запишите в десятичной системе.

6 (№ 1809) (А.Г. Минак) Определите, при каком наименьшем введённом значении переменной ѕ программа выведет число 23.

| Паскаль                                                   | Python                                             | C++                                                                         |
|-----------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|
| <pre>var s, n: integer; begin   readln (s);</pre>         | <pre>s = int(input()) n = 50 while s &gt; 0:</pre> | <pre>#include <iostream> using namespace std; int main() {</iostream></pre> |
| <pre>n := 50; while s &gt; 0 do begin s := s div 2;</pre> | <pre>s = s // 2 n = n - 3 print(n)</pre>           | <pre>int s, n = 50; cin &gt;&gt; s; while (s &gt; 0) {    s = s / 2;</pre>  |
| <pre>n := n - 3 end; writeln(n) end.</pre>                |                                                    | <pre>n = n - 3; } cout &lt;&lt; n &lt;&lt; endl; return 0; }</pre>          |

- 7 (№ 1881) Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла 75 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован с разрешением в 3 раза выше и частотой дискретизации в 2,5 раза меньше, чем в первый раз. Сжатие данных не производилось. Укажите размер файла в Мбайт, полученного при повторной записи.
- 8 (№ 1958) (А.Н. Носкин) Петя составляет шестибуквенные слова перестановкой букв слова МОЛОКО. Сколько всего различных слов может составить Петя?
- 9 (№ 2006) (А. Кабанов) Откройте файл электронной таблицы 9-0.xls, содержащей результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Найдите среднее значение измерений в апреле во второй половине дня (с 12:00), в которых температура не превышала 19 градусов. В ответе запишите только целую часть получившегося числа.
- 10 (№ 2031) (Е. Джобс) С помощью текстового редактора определите, сколько раз, не считая сносок, встречаются слова «ворон» и «ворона» в текстах басен И.А. Крылова в файле 10-j2.docx. Слова могут начинаться как с заглавной, так и со строчной буквы. В ответе укажите только число.
- 11 (№ 2080) (ege.yandex.ru) Автомобильный номер состоит из нескольких букв (количество букв одинаковое во всех номерах), за которыми следуют три цифры. При этом используются 10 цифр и только 5 букв: H, O, M, E и P. Нужно иметь не менее 100 тысяч различных номеров. Какое наименьшее количество букв должно быть в автомобильном номере?
- 12 (№ 2134) (С.С. Поляков) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
  - 1. заменить (v, w)
  - 2. нашлось (v)

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

```
НАЧАЛО
```

```
ПОКА нашлось (111) заменить (111, 2) заменить (222, 3)
```

```
заменить (333, 1)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой программы к строке вида 1...13...3 (2019 единиц и 2019 троек)?

(№ 2169) (А.Н. Носкин). На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей, ведущих из города А в город Л и проходящих через участок дороги, который связывает город Д и Ж напрямую?



- (№ 2230) (М.В. Кузнецова) Значение арифметического выражения: 9<sup>17</sup> + 3<sup>16</sup> 27 записали в системе счисления с основанием 3. Какая из цифр чаще всего встречается в полученном числе? В ответе укажите, сколько таких цифр в этой записи.
- 15 (№ 2258) Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула (ДЕЛ(x, A) ∧ ДЕЛ(x, 16)) → (¬ДЕЛ(x, 16) ∨ ДЕЛ(x, 24))

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

16 (№ 2286) Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = n*n*n + n*n + 1, при n \le 13

F(n) = F(n-1) + 2*n*n - 3, при n > 13, кратных 3

F(n) = F(n-2) + 3*n + 6, при n > 13, не кратных 3
```

Определите количество натуральных значений n из отрезка [1; 1000], для которых все цифры значения F(n) нечётные.

- 17 (№ 2292) Рассматривается множество целых чисел, принадлежащих отрезку [1012; 9638], которые делятся на 3 и не делятся на 11, 13, 17 и 19. Найдите количество таких чисел и максимальное из них. В ответе запишите два числа через пробел: сначала количество, затем максимальное число.
- 18 (№ 2349) Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.</p>

Исходные данные записаны в файле <u>18-1.xls</u> в виде электронной таблице размером N×N, каждая ячейка которой соответствует клетке квадрата. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

19 20

21

(№ 2423) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень или увеличить количество камней в куче в два раза. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 49. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 49 или больше камней.

В начальный момент в первой куче было 7 камней, во второй куче — S камней,  $1 \le S \le 41$ . Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Ответьте на следующие вопросы:

**Bonpoc 1.** Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Назовите минимальное значение S, при котором это возможно.

**Bonpoc 2.** Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответе в порядке возрастания.

**Bonpoc 3.** Сколько существует значений S, при которых у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

22 (№ 407) Укажите наибольшее из таких чисел х, при вводе которых алгоритм печатает сначала 3, а потом 7.

| Паскаль                          | Python                      | Си                                      |
|----------------------------------|-----------------------------|-----------------------------------------|
| var x, L, M: integer;            | <pre>x = int(input())</pre> | <pre>#include <stdio.h></stdio.h></pre> |
| begin                            | L = 0                       | <pre>int main(void)</pre>               |
| readln(x);                       | M = 0                       | {                                       |
| L:=0; M:=0;                      | while $x > 0$ :             | int L, M, x;                            |
| while x > 0 do begin             | L = L+1                     | scanf("%d", &x);                        |
| L:=L+1;                          | if M < (x % 10):            | L = 0; M = 0;                           |
| if M < (x mod 10) then           | M = x % 10                  | while (x > 0) {                         |
| M:= x mod 10;                    | x = x // 10                 | L = L+1;                                |
| x:= x div 10;                    | print(L)                    | if (M < x % 10) {                       |
| end;                             | print(M)                    | M = x % 10;                             |
| <pre>writeln(L); write(M);</pre> |                             | }                                       |
| end.                             |                             | x = x / 10;                             |
|                                  |                             | }                                       |
|                                  |                             | <pre>printf("%d\n%d", L, M);</pre>      |
|                                  |                             | }                                       |

- **23** (№ 2502) (С.Э. Назаренко) Исполнитель Калькулятор преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
  - 1. Прибавить 1
  - 2. Прибавить 3
  - 3. Умножить на 2

Программа для исполнителя Калькулятор – это последовательность команд. Сколько существует программ, для которых при исходном числе 3 результатом является число 15?

- (№ 2556) Текстовый файл 24-s1.txt состоит не более чем из  $10^6$  заглавных латинских букв (A..Z). Текст разбит на строки различной длины. Определите количество строк, в которых комбинация YZ встречается больше одного раза.
- 25 (№ 2564) Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [194455; 194500], числа, имеющие ровно 4 различных делителя. В ответе для каждого найденного числа запишите два его наибольших делителя в порядке возрастания.

**26** 

(№ 2647) (Е. Джобс) Для уменьшения аварий на центральной дороге в городе X дорожная служба решила выровнять ямы. Новая яма будет иметь второй по величине объем (в литрах) среди её самой и двух соседних ям. При этом размеры первой и последней ямы решили не менять. Ночью перед ремонтом дороги в городе X прошел проливной дождь, поэтому все ямы до краев заполнены водой. Сколько литров воды выльется обратно на дорогу после проведения ремонта?

**Входные данные.** В первой строке входного файла 26-j5.txt находится число N — количество ям на дороге (натуральное число, не превышающее  $10\ 000$ ). В следующих N строках находятся значения объемов ям (все числа натуральные, не превышающие 25), каждое в отдельной строке. Запишите в ответе два числа: количество ям с наименьшим объемом и общий объем воды, вылившейся из ям обратно на дорогу.

## Пример входного файла:

27

При таких исходных данных после ремонта объем ям будет выглядеть следующим образом 10, 10, 8, 8, 12, 16, 12, 10. В ответе необходимо указать два числа -2 и 14.

(№ 2691) Имеется набор данных, состоящий из троек положительных целых чисел. Необходимо выбрать из каждой тройки два числа так, чтобы сумма всех выбранных чисел не делилась на 9 и при этом была минимально возможной. Гарантируется, что искомую сумму получить можно. Программа должна напечатать одно число — минимально возможную сумму, соответствующую условиям задачи.

**Входные** данные. Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество троек N ( $1 \le N \le 100000$ ). Каждая из следующих N строк содержит три натуральных числа, не превышающих  $10\ 000$ .

## Пример входного файла:

Для указанных входных данных значением искомой суммы должно быть число 56. В ответе укажите два числа: сначала искомое значение для файла A, затем для файла B.

Вариант построен по материалам сайта <u>kpolyakov.spb.ru</u>. © *К. Поляков*, 2021