

http://www.seplessons.org/files/centrifuged_blood.jpg

- Upor, ki ga čuti "plavalec":
 - zaradi inercije tekočine (odrivanje mase z vztrajnostjo) $\propto \rho R^2 v^2$

- Upor, ki ga čuti "plavalec":
 - zaradi viskoznosti tekočine (vlečenje slojev tekočine, ki se prilepijo na površino telesa)

 $\propto \eta R v$

- Upor, ki ga čuti "plavalec":
 - zaradi vztrajnosti tekočine $\propto \rho R^2 v^2$

- zaradi viskoznosti tekočine $\propto \eta R v$

Katera sila je pomembnejša?

odloča razmerje obeh sil (Reynoldsovo število Re):

$$\frac{\text{upor zaradi gostote}}{\text{upor zaradi viskoznosti}} \propto \frac{\rho R^2 v^2}{\eta R v} = \frac{\rho R v}{\eta} = Re$$

$$\frac{\text{upor zaradi gostote}}{\text{upor zaradi viskoznosti}} \propto \frac{\rho Rv}{\eta} = Re$$

medij	plavalec	R	V	Re
voda	človek	1 m	1 m/s	10 ⁶
med	človek	1 m	1 m/s	10 ²
arašidno maslo	človek	1 m	1 m/s	1
voda	bakterija	1 μm	1 μm/s	10-6

 $\frac{\text{upor zaradi gostote}}{\text{upor zaradi viskoznosti}} \propto \frac{\rho R v}{\eta} = Re$

$$\frac{\rho Rv}{\eta} = Re$$

medij	plavalec	Re
voda	človek	10 ⁶
med	človek	10 ²
arašidno maslo	človek	1
voda	oda bakterija	

v = 1 dolžina / s

Re > 1000	Re < 1		
vztrajnost viskoznost	vzirajnost viskoznost		
upor α v^2	upor α v		
vrtinčenje, turbulenten tok https://www.cfdsupport.com/OpenFOAM-Training-b	brez vrtincev, laminaren tok		
to poznamo – plavanje ljudi v vodi	bakterije in molekule ne poznajo vztrajnosti!! → način plavanja mora biti drugačen		

Laminaren tok – ni vrtincev, ni vztrajnosti

(I)

(Laminar Flow)

https://youtu.be/dJTTUROqHgs

Re > 1000

Re < 1

voda

koruzni sirup

 Brownovo gibanje – so zrna peloda živa?

Razlaga (Einstein):
 difuzija je posledica
 trkov med molekulami
 s termično kinetično
 energijo ~ k_BT

https://youtu.be/R5t-oA796to

https://youtu.be/6VdMp46ZIL8

Brownovo gibanje:

- enako verjeten premik v vse smeri $\langle x \rangle = 0$
- povprečna razdalja, do katere pridejo delci
 (D koeficient difuzije, t čas)

primer	razdalja	čas
velikost bakterije	1 μm	0.25 ms
velikost živalske celice	10 μm	25 ms
velikost manjše žuželke	1 mm	4 minute
velikost človeka	1 m	8 let

http://cronodon.com/BioTech/Diffusion.html

difuzija je na dolge razdalje zelo počasna!!

Brownovo gibanje:

- enako verjeten premik v vse smeri $\langle x \rangle = 0$
- povprečna razdalja, do katere pridejo delci
 (D koeficient difuzije, t čas)

$$s \propto \sqrt{Dt}$$

http://cronodon.com/BioTech/Diffusion.html

- Hitrost difuzije določa koeficient difuzije D, ki je odvisen od
 - termične energije delcev
 - velikosti (!) in oblike delcev
 - viskoznosti tekočine

$$D \propto \frac{\text{energija}}{\text{upor}} \propto \frac{k_B T}{\eta R}$$

• tok snovi – zakaj se črnilo razširi po celotni posodi?

https://en.wikipedia.org/wiki/Diffusion

Centrifuga

- Kako bi ločili različne komponente krvi?
- V disperziji nenabitih delcev tekmujeta urejevalna sila (težnost) in termično gibanje
 - → stabilnost disperzije določa teža delcev
- Usedanje lahkih delcev v centrifugi pospešimo s "povečanjem njihove teže", sorazmerno s (frekvenco vrtenja ω)²

Hitrost posedanja
$$\propto \frac{\text{centrif.}}{\text{upor}} \propto \frac{\omega^2 m'}{\eta R}$$

(m' - masa delca, zmanjšana za vzgon)

Centrifuga

Hitrost posedanja

$$\propto \frac{\text{centrif.}}{\text{upor}} \propto \frac{\omega^2 m'}{\eta R}$$

(m' - masa delca, zmanjšana za vzgon)

http://stevegallik.org/sites/all/images/Blood_01a.jpg

http://www.histology.leeds.ac.uk/blood/blood_content.php

Janez Štrancar in Hana Majaron

Laboratorijska biomedicina – Molekularna biofizika

Elektroforeza

- Nabite delce lahko ločujemo tudi z električnim poljem - E
- Hitrost potovanja je sorazmerna gibljivosti delcev - μ

$$\mu \propto \frac{\text{naboj}}{\text{upor}} \propto \frac{Ze_0}{\eta R}$$

• Izvedbe: gelska, kapilarna, 2D ef., isoelektrično fokusiranje, ef. na mikročipu ...

Janez Štrancar in Hana Majaron

Laboratorijska biomedicina - Molekularna biofizika

Ze₀ - neto naboj delcev

Meritev ζ-potenciala

- • cfektivni naboj delca
- izmerimo elektroforetsko mobilnost μ , iz nje nato izračunamo ζ

$$\zeta \propto \mu / \mu = \frac{v}{E}$$

https://en.wikipedia.org/wiki/Zeta potential

kako izmerimo hitrost delcev?

"laserski radar"

Fluorescence Recovery After Photobleaching - FRAP

"Obnavljanje fluorescence po fotoslepljenju"

