Data Preparation

MACHINE LEARNING WITH PYSPARK

Andrew Collier

Data Scientist, Exegetic Analytics

Do you need all of those columns?

```
+----+
|maker| model| origin| type| cyl|size|weight|length| rpm|consumption|
+----+
|Mazda| RX-7|non-USA|Sporty|null| 1.3| 2895| 169.0|6500| 9.41|
| Geo| Metro|non-USA| Small| 3| 1.0| 1695| 151.0|5700| 4.7|
| Ford|Festiva| USA| Small| 4| 1.3| 1845| 141.0|5000| 7.13|
+----+
```

Remove the maker and model fields.

Dropping columns

```
# Either drop the columns you don't want...
cars = cars.drop('maker', 'model')
# ... or select the columns you want to retain.
cars = cars.select('origin', 'type', 'cyl', 'size', 'weight', 'length', 'rpm', 'consumption')
```


Filtering out missing data

```
# How many missing values?
cars.filter('cyl IS NULL').count()
```

1

Drop records with missing values in the cylinders column.

```
cars = cars.filter('cyl IS NOT NULL')
```

Drop records with missing values in any column.

```
cars = cars.dropna()
```


Mutating columns

```
from pyspark.sql.functions import round

# Create a new 'mass' column
cars = cars.withColumn('mass', round(cars.weight / 2.205, 0))

# Convert length to metres
cars = cars.withColumn('length', round(cars.length * 0.0254, 3))
```


Indexing categorical data

```
from pyspark.ml.feature import StringIndexer
indexer = StringIndexer(inputCol='type',
                        outputCol='type_idx')
# Assign index values to strings
indexer = indexer.fit(cars)
# Create column with index values
cars = indexer.transform(cars)
```

```
+----+
| type|type_idx|
+----+
|Midsize| 0.0| <- most frequent value
| Small| 1.0|
|Compact| 2.0|
| Sporty| 3.0|
| Large| 4.0|
| Van| 5.0| <- least frequent value
+----+
```

Use stringOrderType to change order.

Indexing country of origin

```
# Index country of origin:
# non-USA -> 1
cars = StringIndexer(
  inputCol="origin",
  outputCol="label"
).fit(cars).transform(cars)
```

```
+----+
| origin|label|
+----+
| USA| 0.0|
|non-USA| 1.0|
+----+
```

Assembling columns

Use a vector assembler to transform the data.

```
from pyspark.ml.feature import VectorAssembler
assembler = VectorAssembler(inputCols=['cyl', 'size'], outputCol='features')
assembler.transform(cars)
```

```
+---+----+
|cyl|size| features|
+---+----+
| 3| 1.0|[3.0,1.0]|
| 4| 1.3|[4.0,1.3]|
| 3| 1.3|[3.0,1.3]|
+---+----+
```


Let's practice!

MACHINE LEARNING WITH PYSPARK

Decision Tree

MACHINE LEARNING WITH PYSPARK

Andrew Collier

Data Scientist, Exegetic Analytics

Anatomy of a Decision Tree: Root node

Anatomy of a Decision Tree: First split

Anatomy of a Decision Tree: Second split

Anatomy of a Decision Tree: Third split

Classifying cars

Classify cars according to country of manufacture.

```
cyl|size|mass |length|rpm |consumption|features
   |3.0 |1451.0|4.775 |5200|9.05 |[6.0,3.0,1451.0,4.775,5200.0,9.05]|1.0
   |2.2 |1129.0|4.623 |5200|6.53 | [4.0,2.2,1129.0,4.623,5200.0,6.53]|0.0
   |2.2 |1399.0|4.547 |5600|7.84
                                      |[4.0,2.2,1399.0,4.547,5600.0,7.84]|1.0
   |1.8 |1147.0|4.343 |6500|7.84 | [4.0,1.8,1147.0,4.343,6500.0,7.84]|0.0
   | 1.6 | 1111.0 | 4.216 | 5750 | 9.05 | [4.0, 1.6, 1111.0, 4.216, 5750.0, 9.05] | 0.0
label = 0 -> manufactured in the USA
     = 1 -> manufactured elsewhere
```


Split train/test

Split data into training and testing sets.

```
# Specify a seed for reproducibility
cars_train, cars_test = cars.randomSplit([0.8, 0.2], seed=23)
```

Two DataFrames: cars_train and cars_test .

```
[cars_train.count(), cars_test.count()]
```

[79, 13]

Build a Decision Tree model

from pyspark.ml.classification import DecisionTreeClassifier

Create a Decision Tree classifier.

```
tree = DecisionTreeClassifier()
```

Learn from the training data.

```
tree_model = tree.fit(cars_train)
```

Evaluating

Make predictions on the testing data and compare to known values.

Confusion matrix

A confusion matrix is a table which describes performance of a model on testing data.

```
prediction.groupBy("label", "prediction").count().show()
```

Accuracy = (TN + TP) / (TN + TP + FN + FP) — proportion of correct predictions.

Let's build Decision Trees!

MACHINE LEARNING WITH PYSPARK

Logistic Regression

MACHINE LEARNING WITH PYSPARK

Andrew Collier

Data Scientist, Exegetic Analytics

Cars revisited

Prepare for modeling:

- assemble the predictors into a single column (called features) and
- split data into training and testing sets.

Build a Logistic Regression model

from pyspark.ml.classification import LogisticRegression

Create a Logistic Regression classifier.

```
logistic = LogisticRegression()
```

Learn from the training data.

logistic = logistic.fit(cars_train)

Predictions

```
prediction = logistic.transform(cars_test)
```


Precision and recall

How well does model work on testing data?

Consult the confusion matrix.

```
# Precision (positive)
TP / (TP + FP)
```



```
# Recall (positive)
TP / (TP + FN)
```

```
0.8
```

Weighted metrics

```
from pyspark.ml.evaluation import MulticlassClassificationEvaluator

evaluator = MulticlassClassificationEvaluator()

evaluator.evaluate(prediction, {evaluator.metricName: 'weightedPrecision'})
```

0.763888888888888

Other metrics:

- weightedRecall
- accuracy
- f1

ROC and AUC

ROC = "Receiver Operating Characteristic"

- TP versus FP
- threshold = 0 (top right)
- threshold = 1 (bottom left)

AUC = "Area under the curve"

ideally AUC = 1

Let's do Logistic Regression!

MACHINE LEARNING WITH PYSPARK

Turning Text into Tables

MACHINE LEARNING WITH PYSPARK

Andrew Collier

Data Scientist, Exegetic Analytics

One record per document

One document, many columns

Ten Little Fingers and Ten Little Toes

Ten	Little	Fingers	Toes
2	2	1	1

A selection of children's books

books.show(truncate=False)

```
id |text
   |Forever, or a Long, Long Time | ---> 'Long' is only present in this title
   |Winnie-the-Pooh
   |Ten Little Fingers and Ten Little Toes|
   |Five Get into Trouble
                        | -+-> 'Five' is present in all of these titles
3
   |Five Have a Wonderful Time
   |Five Get into a Fix
   |Five Have Plenty of Fun
```


Removing punctuation

```
from pyspark.sql.functions import regexp_replace

# Regular expression (REGEX) to match commas and hyphens
REGEX = '[,\\-]'

books = books.withColumn('text', regexp_replace(books.text, REGEX, ' '))
```


Text to tokens

```
from pyspark.ml.feature import Tokenizer
books = Tokenizer(inputCol="text", outputCol="tokens").transform(books)
```


What are stop words?

```
from pyspark.ml.feature import StopWordsRemover

stopwords = StopWordsRemover()

# Take a look at the list of stop words
stopwords.getStopWords()
```

```
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', ...]
```

Removing stop words

```
# Specify the input and output column names
stopwords = stopwords.setInputCol('tokens').setOutputCol('words')
books = stopwords.transform(books)
```

```
tokens | words |

|[forever, or, a, long, long, time] | [forever, long, long, time] |

|[winnie, the, pooh] | [winnie, pooh] |

|[ten, little, fingers, and, ten, little, toes]|[ten, little, fingers, ten, little, toes]|

|[five, get, into, trouble] | [five, get, trouble] |

|[five, have, a, wonderful, time] | [five, wonderful, time] |
```


Feature hashing

```
from pyspark.ml.feature import HashingTF
hasher = HashingTF(inputCol="words", outputCol="hash", numFeatures=32)
books = hasher.transform(books)
```


Dealing with common words

```
from pyspark.ml.feature import IDF
books = IDF(inputCol="hash", outputCol="features").fit(books).transform(books)
```


Text ready for Machine Learning!

MACHINE LEARNING WITH PYSPARK

