COMP-2310

Theoretical Fundamentals of Computer Science

Fall 2021

Assignment 4

Due Date: November 30 9 (before 12:59p.m.)

Section 5.8

- **3.** Let R and S be relations in a set A. Prove or disprove the following:
 - (b) If R and S are antisymmetric, then (i) $R \cup S$ is an antisymmetric relation. (ii) $R \cap S$ is an antisymmetric relation.
- 17. Let R be a relation from X to Y. Let $X_{=}$ and $Y_{=}$ be the equality relation in X and Y, respectively. Prove that $R \circ Y_{=} = R$ and $X_{=} \circ R = R$.

Section 6.6

- **14.** Let $f: X \longrightarrow Y$. If there exist $g: Y \longrightarrow X$ and $h: Y \longrightarrow X$ such that $f \circ g = I_X$ and $h \circ f = I_Y$. Prove that:
 - (a) the function f is a one-to-one correspondence.
 - (b) $g = h = f^{-1}$.

Section 7.8

Figure 2

	1	2	3		i	
F_1	$F_1(1)$					
F_2		$F_2(2)$				
F_3			$F_3(3)$			
÷				٠,		
÷				·		
F_i					$F_i(i)$	
÷						٠.
d	$F_1(1)+1$	$F_2(2)+1$	$F_3(3)+1$		$F_i(i)+1$	• • •

7.8 Exercises

- 1. Prove that if R is a symmetric relation, then so is $R^k, \forall k > 0$.
- Let A be a nonempty set, and 2^A be the set of all functions from A to $\{0,1\}$. Prove that $\mathcal{P}(A) \sim 2^A$, where $\mathcal{P}(A)$ is the power set of A.
- Let A and B be any two sets. Prove that $A \times B \sim B \times A$.
- Let A and B be any two sets. Prove that $A \times (B \cup C) \sim (A \times B) \cup (A \times C)$.
- Prove that if $(X Y) \sim (Y X)$, then $X \sim Y$.
- Prove that if $A \sim C$ and $B \sim D$, then $A \times B \sim C \times D$. Prove that if $A \sim B$, then $A^C \sim B^C$ for any set C.
- Let A,B,C be sets such that $B\cap C=\emptyset$. Prove that $A^{B\cup C}\sim A^B\times A^C$. Let A,B,C be sets. Prove that $(A\times B)^C\sim A^C\times B^C$.

- 10. Prove that the open interval $(0,1) = \{x \in \mathbf{R} \mid 0 < x < 1\}$ is an infinite set. 11. Let $\mathfrak{B} = \{\{b_i\}_{i=1}^{\infty} \mid b_i \in \{0,1\}\}$. i.e. \mathfrak{B} is the set of all infinite sequences of 0's and 1's. Prove that \mathfrak{B}
- Determine $F_i(x)$ and d(i) for each of the following g(i) where g is defined in Lemma 7.7.14.
 - (a) q(i) = "program h(input,output); var x:integer; begin read(x); write(2*x) end."
 - (b) g(i) = "program h(input,output); var x:integer; begin read(x); repeat x:=x until (false) end."
 - (c) g(i) = "program h(input,output); var x:integer; begin anjgishgragjskklsjjbumijk end."
 - (d) g(i) = ``program h(input,output); var x:integer; begin read(x); if (x<50) then write(x-30) elseif (x<1000)then write(x/2) else write("too large") end."
- 13. Use the diagonalization method to prove that there exists a one-variable number theoretic function which cannot be defined mathematically using a finite set of symbols.
- 14. Let A and B be two finites sets. Prove that $|A| \leq |B|$ if and only if $\exists f : A \stackrel{1-1}{\to} B$.