Econometric Analysis of Cross Section and Panel Data Problem Set 2

Due date: October 28

Problem 1: Recall the prediction errors $\tilde{e}_i = (1 - h_{ii})^{-1} \hat{e}_i$. In vector notation, $\tilde{e} = M^* \hat{e}$ where M^* is a diagonal matrix with i^{th} diagonal element $(1 - h_{ii})^{-1}$. Thus $\tilde{e} = M^* M e$.

- (a) Calculate $\mathbb{E}[\widetilde{e} \mid X]$.
- (b) Calculate $var[\tilde{e} \mid X]$.
- (c) Calculate the variance of the i^{th} prediction error var $[\widetilde{e}_i \mid \boldsymbol{X}]$ under the assumption of homoskedasticity.
- (d) Define the standardized residuals as $\bar{e}_i = (1 h_{ii})^{-1/2} \hat{e}_i$ or in vector notation $\bar{e} = (\bar{e}_1, \dots, \bar{e}_n)' = M^{*1/2} M e$. Show that $\operatorname{var} \left[\bar{e}_i \mid X\right] = \mathbb{E}\left[\bar{e}_i^2 \mid X\right] = \sigma^2$.

Problem 2: Of the variables (Y^*, Y, X) only the pair (Y, X) are observed. In this case we say that Y^* is a **latent variable**. Suppose

$$Y^* = X'\beta + e$$
$$\mathbb{E}[Xe] = 0$$
$$Y = Y^* + u$$

where u is a measurement error satisfying

$$\mathbb{E}[Xu] = 0$$
$$\mathbb{E}[Y^*u] = 0$$

Let $\widehat{\beta}$ denote the OLS coefficient from the regression of Y on X.

- (a) Is β the coefficient from the linear projection of Y on X?
- (b) Is $\widehat{\beta}$ consistent for β as $n \to \infty$?

(c) Find the asymptotic distribution of $\sqrt{n}(\widehat{\beta} - \beta)$ as $n \to \infty$.

Problem 3: Take the linear regression model with $\mathbb{E}[Y \mid X] = X\beta$. Define the ridge regression estimator

$$\widehat{\beta} = (\mathbf{X}'\mathbf{X} + \mathbf{I}_k\lambda)^{-1}\mathbf{X}'\mathbf{Y}$$

where $\lambda > 0$ is a fixed constant.

- (a) Find $E[\widehat{\boldsymbol{\beta}} \mid \boldsymbol{X}]$. Is $\widehat{\boldsymbol{\beta}}$ biased for $\boldsymbol{\beta}$ in limited samples?
- (b) Is $\widehat{\beta}$ consistent for β as $n \to \infty$?