Reinforcement Learning Training 2025

Round 1

Where is RL in ML?

Main branches of machine learning (1) These types of machine learning tasks are all important, and they aren't **Artificial intelligence** mutually exclusive. -**Machine learning** Supervised learning Unsupervised Reinforcement learning learning (a) In fact, the best examples of artificial intelligence combine many

RL Training 2025

different techniques. H

Supervised Learning

- We know *all* the right answers (label)
- We teach machine.

Unsupervised Learning

- We don't know the answer.
- We let machine find structure in the data.

Reinforcement Learning

- We don't know *all* the right answer
 - o but we have a way to conduct *trial-and-error* experiments.
- We let the machine discover the answers.

Applications

- ChatGPT
 - Enhanced by reinforcement learning through a technique called Reinforcement Learning from Human Feedback (RLHF). [1] [2]
- Spot
 - Utilize reinforcement learning (RL) to enhance their locomotion and manipulation capabilities. [3]

Types of RL

 Don't worry. We will come back later.

RL Formalism

- Entities
 - Agent
 - Environment
- Communimation
 - Actions
 - Reward
 - Observation

Figure 1.2: RL entities and their communication channels

Reward

- A scalar value we obtain periodically from the environment.
 - Can be positive or negative
- Tell our agent how well it has behaved.
- Reflects the success of the agent's recent activity (local)
 - Not all the successes achieved by the agent so far.
- What an agent is trying to achieve is the largest accumulated reward over its sequence of actions.

Agent

- An agent is somebody or something who/that interacts with the environment by executing certain actions, making observations, and receiving eventual rewards for this.
- In most practical RL scenarios, the agent is our piece of software that is supposed to solve some problem in a more-or-less efficient way.

Environment

- The environment is everything outside of an agent.
- The agent's communication with the environment is limited to
 - Reward (obtained from the environment)
 - Actions (executed by the agent and given to the environment)
 - Observations (some information besides the reward that the agent receives from the environment).

Action

- Actions are things that an agent can do in the environment.
- We distinguish between two types of actions—discrete or continuous.
 - **Discrete actions** form the finite set of mutually exclusive things an agent can do, such as move left or right.
 - **Continuous actions** have some value attached to them, such as a car's action turn the wheel having an angle and direction of steering.

Observation

- Observations are pieces of information that the environment provides the agent with that say what's going on around the agent.
- I am guessing it is something that agent can use to make action?

Markov Processes (MP)

- Also called a Markov chain
- Models a system observed through a sequence of states.
- The system transitions between states according to certain dynamics, but the observer cannot influence the system.

MP - State Space

- The set of all possible states is called the state space.
- For MPs, the state space is finite but can be very large.
- Observations form a sequence or chain of states, known as the history.

MP - Markov Property

- The future state depends only on the current state, not on the full history.
- Each state is self-contained and unique.
- This simplifies modeling by focusing only on the current state to predict the future.

MP - Example (Weather Model)

- States: {sunny, rainy}
- Sequence example: [sunny, sunny, rainy, sunny, ...]
- The Markov property means the probability of rain tomorrow depends only on today's weather, not previous days.
 - This is a simplification and not fully realistic since weather depends on many factors (season, geography, solar activity).
 - To capture more dependencies, the state space can be extended (e.g., include season with weather states).

MP - Transition Matrix

- An $N \times N$ matrix where N = number of states.
- ullet Each entry (i,j) represents the probability of transitioning from state i to state j.
- Example matrix for weather:

	Sunny	Rainy
Sunny	0.8	0.2
Rainy	0.1	0.9

From \ To	Home	Coffee	Chat	Computer
Home	60%	40%	0%	0%
Coffee	0%	10%	70%	20%
Chat	0%	20%	50%	30%
Computer	20%	20%	10%	50%

Estimating the Transition Matrix

- In real-world scenarios, we typically do not know the exact transition matrix of a system.
 - Instead, we observe sequences of system states, known as episodes.
- How to estimate the transition matrix
 - Count all observed transitions from each state to every other state.
 - Normalize these counts so that the probabilities from each state sum to 1.
 - The accuracy of this estimation improves as more observational data (episodes) are collected.

Markov Reward Processes (MRP)

- To model rewards, we extend the Markov Process (MP) by associating a reward value with each state transition.
- Now, each transition also has an associated reward.

MRP - Reward

- ullet The most general form uses a reward matrix where each entry specifies the reward for transitioning from state i to state j.
- This matrix can be simplified if rewards depend only on the destination state, in which case only state-to-reward pairs are needed.

MRP - Reward

ullet For each episode, the return at time t (denoted as G_t) is the sum of future rewards, discounted by γ at each step:

$$G_t = R_{t+1} + \gamma R_{t+2} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$$

ullet where γ is a scalar value between 0 and 1 called a discount factor .

MRP - Discount Factor

- γ determines how much **future rewards** are valued compared to **immediate rewards**.
 - $\circ \gamma = 1$: The agent values all future rewards equally, summing them without discounting. This represents perfect foresight.
 - $\circ \gamma = 0$: The agent only considers the immediate reward, ignoring all future rewards—total short-sightedness.