Dr. Andrey Soldatenkov

Exercises, Algebra I (Commutative Algebra) – Week 10

Exercise 53. (2 points) Write the normalization of $A = k[x, y]/(y^2 - x^2(x+1))$ as the intersection of discrete valuation rings.

Exercise 54. (4 points) An absolute value on an integral domain A is a map $|\cdot|: A \to \mathbb{R}$ such that for all $a, b \in A$:

- 1) $|a| \ge 0$; 2) |a| = 0 if and only if a = 0; 3) $|ab| = |a| \cdot |b|$; and 4) $|a + b| \le |a| + |b|$.
 - i) Check that any absolute value on A extends to an absolute value on its fraction field Q(A) (define |a/b| = |a|/|b|).
 - ii) Suppose 4) is replaced by the stronger requirement $|a+b| \leq \max\{|a|,|b|\}$. Show that then for any $\alpha > 1$ the map $\nu \colon Q(A)^* \to \mathbb{R}, \, x \mapsto -\log_{\alpha}|x|$ is a valuation.
 - iii) What goes wrong for $\mathbb{C}^* \to \mathbb{R}$, $x \mapsto -\log_{\alpha} |x|$?
- iiii) Determine an absolute value describing $\mathbb{Z}_{(p)}$ for a prime p.

Exercise 55. (2 points)

Consider a field extension $K \subset L$, B a valuation ring with quotient field L, and let $A := K \cap B$. Prove the following statements:

- i) A is a valuation ring with quotient field K.
- ii) If L/K is algebraic and B is not a field, then also A is not a field.

Exercise 56. (6 points) (Associated prime ideals)

Let A be a ring and M an A-module. Recall that a prime ideal $\mathfrak{p} \subset A$ is associated with M if there exists an $m \in M$ with $\mathrm{Ann}(m) = \mathfrak{p}$. The set of associated prime ideals is denoted $\mathrm{Ass}(M)$.

- i) Let N be a submodule of M. Prove that $Ass(N) \subset Ass(M) \subset Ass(N) \cup Ass(M/N)$.
- ii) Show that for all $\mathfrak{p} \in \mathrm{Ass}(M)$ one has $M_{\mathfrak{p}} \neq 0$, i.e. $\mathfrak{p} \in \mathrm{Supp}(M)$.
- iiI) Assuming A to be Noetherian, prove that the natural map $M \to \prod_{\mathfrak{p} \in \mathrm{Ass}(M)} M_{\mathfrak{p}}$ is injective.

Exercise 57. (6 points) (Primary ideals)

Recall that an ideal $\mathfrak{q} \subset A$ is called *primary* if $ab \in \mathfrak{q}$ and $a \notin \mathfrak{q}$ implies $b^n \in \mathfrak{q}$ for some n > 0.

- i) Let \mathfrak{q} be a primary ideal. Show that $V(\mathfrak{q})$ is irreducible.
- ii) Assume that A is Noetherian. Prove that an ideal \mathfrak{q} is \mathfrak{p} -primary (that is, \mathfrak{q} is primary and its radical is a prime ideal \mathfrak{p}) if and only if $\mathrm{Ass}(A/\mathfrak{q}) = \{\mathfrak{p}\}.$

Due Monday Jun 22.