THE UNIVERSITY OF MELBOURNE SCHOOL OF COMPUTING AND INFORMATION SYSTEMS COMP30026 Models of Computation

Selected Tutorial Solutions, Week 9

62. (a) $\{w \mid w \text{ has at least three as}\} \cap \{w \mid w \text{ has at least two bs}\}$

(b) $\{w \mid w \text{ has an even number of as}\} \cap \{w \mid w \text{ has one or two bs}\}$

(c) $\{w \mid w \text{ has an odd number of as}\} \cap \{w \mid w \text{ ends with b}\}\$

(d) $\{w \mid w \text{ has an even length}\} \cap \{w \mid w \text{ has an odd number of as}\}$

63. (a) $\{w \mid w \text{ does not contain the substring bb}\}$

(b) $\{w \mid w \text{ contains neither the substring ab nor ba}\}$

(c) $\{w \mid w \text{ is any string not in } a^*b^*\}$

(d) $\{w \mid w \text{ is any string not in } a^* \cup b^*\}$ (compare to (b)!)

(e) $\{w \mid w \text{ is any string that doesn't contain exactly two as}\}$

(f) $\{w \mid w \text{ is any string except a and b}\}$

64. (a) $\{w \mid w \text{ begins with a 1 and ends with a 0}\}$

(b) $\{w \mid w \text{ contains the substring 0101}\}$

(c) $\{w \mid w \text{ has length at least 3 and its third symbol is 0}\}$

(d) $\{w \mid \text{the length of } w \text{ is at most } 5\}$

(e) $\{w \mid w \text{ is any string except 11 and 111}\}$

(f) $\{w \mid \text{ every odd position of } w \text{ is a 1}\}$

(g) $\{w \mid w \text{ contains at least two 0s and at most one 1}\}$

(h) $\{\epsilon, 0\}$

(i) The empty set

(j) All strings except the empty string

65. (a) $\{w \mid w \text{ ends with 00}\}\$ using three states

(b) $\{w \mid w \text{ contains the substring 0101}\}$ using five states

(c) The language $\{\epsilon\}$ using one state

66. From this NFA:

we end up with the following DFA:

67. From this NFA:

we end up with this DFA:

- 68. (a) $\{w \mid w \text{ begins with a 1 and ends with a 0}\}: 1(0 \cup 1)^*0$
 - (b) $\{w \mid w \text{ contains the substring 0101}\}: (0 \cup 1)^*0101(0 \cup 1)^*$
 - (c) $\{w \mid w \text{ has length at least 3 and its third symbol is 0}\}: (0 \cup 1)(0 \cup 1)0(0 \cup 1)^*$
 - (d) $\{w \mid \text{the length of } w \text{ is at most } 5\}$: $(\epsilon \cup 0 \cup 1)(\epsilon \cup 0 \cup 1)(\epsilon \cup 0 \cup 1)(\epsilon \cup 0 \cup 1)(\epsilon \cup 0 \cup 1)$
 - (e) $\{w \mid w \text{ is any string except 11 and 111}\}: \epsilon \cup 1 \cup 111111^* \cup (0 \cup 1)^*0(0 \cup 1)^*$
 - (f) $\{w \mid \text{ every odd position of } w \text{ is a 1}\}: (1(0 \cup 1))^*(\epsilon \cup 1)$
 - (g) $\{w \mid w \text{ contains at least two 0s and at most one 1}\}: 0*(00 \cup 001 \cup 010 \cup 100)0*$
 - (h) $\{\epsilon, 0\}$: $\epsilon \cup 0$
 - (i) The empty set: \emptyset
 - (j) All strings except the empty string: $(0 \cup 1)(0 \cup 1)^*$