# "手写识别"实例介绍

**ML19** 



礼欣 www.python123.org

# 图像识别

- 图像识别(Image Recognition)是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。
- 图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。机器学习领域一般将此类识别问题转化为分类问题。

## 手写识别

- 手写识别是常见的图像识别任务。计算机通过手写体图片来识别出图片中的字,与印刷字体不同的是,不同人的手写体风格迥异,大小不一,造成了计算机对手写识别任务的一些困难。
- 数字手写体识别由于其有限的类别(0~9共10个数字)成为了相对简单的手写识别任务。DBRHD和MNIST是常用的两个数字手写识别数据集。



### MNIST数据集

MNIST的下载链接: http://yann.lecun.com/exdb/mnist/。

MNIST是一个包含数字0~9的手写体图片数据集,图片已归一化为以手写数字为中心的28\*28规格的图片。MNIST由训练集与测试集两个部分组成,各部分规模如下:

● 训练集:60,000个手写体图片及对应标签

● 测试集:10,000个手写体图片及对应标签

## MNIST数据集

#### MNIST数据集的手写数字样例:

- MNIST数据集中的每一个图片 由28\*28个像素点组成
- 每个像素点的值区间为0~255, 0表示白色,255表示黑色。



图. 手写数字样例

# DBRHD数据集

DBRHD (Pen-Based Recognition of Handwritten Digits Data Set ) 是UCI的机器 学习中心提供的数字手写体数据库: <a href="https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits">https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits</a>。

DBRHD数据集包含大量的数字0~9的手写体图片,这些图片来源于44位不同的人的手写数字,图片已归一化为以手写数字为中心的32\*32规格的图片。DBRHD的训练集与测试集组成如下:

● 训练集:7,494个手写体图片及对应标签,来源于40位手写者

● 测试集:3,498个手写体图片及对应标签,来源于14位手写者

## DBRHD数据集

#### DBRHD数据集特点:

- 去掉了图片颜色等复杂因素, 将手写体数字图片转化为训练数据为大小32\*32的文本 矩阵
- 空白区域使用0代表,字迹区域使用1表示。

| 0000000000   | 000000     | 000000000  |
|--------------|------------|------------|
| 0000000000   | 00000      | 000000000  |
| 000000000    | 0000       | 0000000000 |
| 00000000     | 000        | 000000000  |
| 0000000      | 00         | 0000000000 |
| 000000       | 0 0        | 000000000  |
| 000000       | 000        | 000000000  |
| 000000       | 0000       | 000000000  |
| 00000        | 00000      | 000000000  |
| 00000        | 000000     | 000000000  |
| 000000       | 0000000    | 0000000    |
| 00000        | 00000000   | 000000     |
| 00000        | 000000000  | 000000     |
| 00000        | 000000000  | 00000      |
| 00000        | 000000000  | 00000      |
| 00000        | 0000000000 | 00000      |
| 00000        | 0000000000 | 00000      |
| 00000        | 0000000000 | 00000      |
| 00000        | 0000000000 | 00000      |
| 00000        | 0000000000 | 00000      |
| 000000       | 0000000000 | 00000      |
| 000000       | 000000000  | 00000      |
| 000000       | 00000000   | 000000     |
| 0000000      | 0000000    | 00000      |
| 00000000     | 000000     | 000000     |
| 00000000     | 00000      | 0000000    |
| 00000000     | 000        | 00000000   |
| 00000000     |            | 000000000  |
| 00000000     |            | 0000000000 |
| 000000000    | 0          | 000000000  |
| 0000000000   | 00         | 000000000  |
| 000000000000 | 000        | 000000000  |

| 000000000000000000000000000000000000000 | 0000000000000 |
|-----------------------------------------|---------------|
| 0000000000000000                        | 00000000000   |
| 00000000000000                          | 00000000      |
| 00000000000000                          | 0000000       |
| 00000000000000                          | 0000000       |
| 0000000000000                           | 0000000       |
| 00000000000                             | 00000000      |
| 00000000000                             | 00000000      |
| 00000000000                             | 00000000      |
| 00000000000                             | 00000000      |
| 00000000                                | 00000000      |
| 00000000                                | 00000000      |
| 000000000                               | 0000000       |
| 0000000                                 | 0000000       |
| 000000                                  | 0000000       |
| 000000                                  | 0000000       |
| 0000000                                 | 0000000       |
| 0000000000 0000                         | 0000000       |
| 000000000000000                         | 00000000      |
| 000000000000000                         | 00000000      |
| 000000000000000                         | 00000000      |
| 0000000000000000                        | 0000000       |
| 000000000000000                         | 0000000       |
| 000000000000000                         | 0000000       |
| 000000000000000                         | 0000000       |
| 000000000000000                         | 0000000       |
| 000000000000000                         | 0000000       |
| 000000000000000                         | 0000000       |
| 000000000000000                         | 0000000       |
| 000000000000                            | 0000000       |
| 0000000000000000                        | 000000        |
| 1                                       |               |

| 0000000000       | 00000000000000000 |
|------------------|-------------------|
| 00000000         | 00000000000000    |
| 0000000          | 000000000000      |
| 0000000          | 00000000000       |
| 000000           | 00000000000       |
| 000000           | 00000000000       |
| 00000 00         | 00000000000       |
| 00000 000        | 00000000000       |
| 000000 000       | 000000000         |
| 000000 000       | 0000000000        |
| 000000 000       | 0000000000        |
| 000000 000       | 0000000000        |
| 000000 0000      | 0000000000        |
| 0000000 00000    | 0000000000        |
| 000000000000000  | 000000000         |
| 000000000000000  | 0000000000        |
| 000000000000000  | 0000000000        |
| 000000000000000  | 00000000000       |
| 000000000000000  | 00000000000       |
| 0000000000000000 | 00000000000       |
| 000000000000000  | 00000000000       |
| 0000000000000000 | 00000000000       |
| 00000000000000   | 000000000000      |
| 000000000000     | 00000000000000    |
| 00000000000      | 000000000000000   |
| 00000000000      | 0 00000           |
| 0000000000       | 0000              |
| 000000000        | 000               |
| 00000000         | 000               |
| 0000000          | 000               |
| 00000000         | 00                |
| 000000000        | 000               |

图. 手写数字样例

000000000

# "手写识别"实例

已有许多模型在MNIST或DBRHD数据集上进行了实验,有些模型对数据集进行了偏斜矫正,甚至在数据集上进行了人为的扭曲、偏移、缩放及失真等操作以获取更加多样性的样本,使得模型更具有泛化性。

- 常用于数字手写体的分类器:
  - 1) 线性分类器

2) K最近邻分类器

3) Boosted Stumps

4) 非线性分类器

5) SVM

6) 多层感知器

- 7) 卷积神经网络
- 后续任务:利用全连接的神经网络实现手写识别的任务