

# Winning Space Race with Data Science

Alejandro Achkienasi October 2023



## Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

## **Executive Summary**

- Summary of methodologies
  - Data collection trough API
  - Webscraping
  - Data wrangling
  - ❖ EDA with SQL
  - EDA with Visualization
  - Interactive Visual Analytics with Folium lab
  - Interactive Dashboard with Ploty Dash
  - Machine Learning Prediction
- Summary of all results
  - EDA conclusions.
  - ❖ Interactive Visual Analytics and Dashboard with Folium and Ploty Dash.
  - \* Prediction analysis and Performance Comparison between different learning algorithms

## Introduction

#### Project background and context

The commercial space age is here, companies are making space travel affordable for everyone. Perhaps the most successful is SpaceX. SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upwards of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch.

#### Problems you want to find answers

- ❖ Determine the price of each if each launch, by gathering information about Space X and creating dashboards for your team.
- ❖ Determine if SpaceX will reuse the first stage.
- ❖ Train a machine learning model and use public information to predict if SpaceX will reuse the first stage.



# Methodology

#### **Executive Summary**

- Data collection methodology:
  - Data was collected using Python request to the SpaceX API and Web scrap with BeatifulSoup from Wikipedia.
- Perform data wrangling
  - Data was processed with EDA determining the training labels.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models

Create a column for the class, standardize the data, Split into training data and test data.

## Data Collection – SpaceX API

 https://github.com/Alejand ro9108/data\_science\_ibm/ blob/main/jupyter-labsspacex-data-collectionapi.ipynb



## **Data Collection - Scraping**

 https://github.com/Alej andro9108/data\_scienc e\_ibm/blob/main/jupyt er-labswebscraping.ipynb



## **Data Wrangling**

 https://github.com/Alej andro9108/data\_scienc e\_ibm/blob/main/labsjupyter-spacex-Data%20wrangling.ipy nb



## **EDA** with Data Visualization

#### Used Charts

- Scatter Plots: For exploring relationship, patterns and trends between two variables (FlightNumber vs PayloadMass, FlightNumber vs LaunchSite, PayloadMass vs LaunchSite, FlightNumber vs Orbit, Payloadmass vs Orbit)
- BarPlot: For visualizing the relashionship between success rate between orbit type, comparing different classes. (Orbit vs Class)
- LineChart: For visualizing the Launch Success trend trough the years (Class vs Date)
- https://github.com/Alejandro9108/data\_science\_ibm /blob/main/jupyter-labs-eda-dataviz.ipynb





## **EDA** with SQL

#### • SQL queries performed:

coursera sqllite.ipynb

```
    %sql SELECT DISTINCT(Launch Site) from SPACEXTABLE

    %sql SELECT * from SPACEXTABLE where Launch Site='CCAFS LC-40' LIMIT 5;

%sql SELECT sum(PAYLOAD MASS KG ) from SPACEXTABLE where PAYLOAD MASS KG > 0;
o sql SELECT AVG(PAYLOAD MASS KG ) from SPACEXTABLE where Booster Version='F9 v1.1' AND PAYLOAD MASS KG > 0;
%sql SELECT MIN(Date) from SPACEXTABLE where Landing Outcome='Success (ground pad)';
o %sql SELECT DISTINCT(Booster Version) from SPACEXTABLE where Landing Outcome='Success (drone ship)' AND PAYLOAD_MASS__KG_
  BETWEEN 4000 AND 6000;
%sql select MISSION OUTCOME, count(MISSION OUTCOME) from SPACEXTBL GROUP BY MISSION OUTCOME;
○ %sql SELECT Booster Version from SPACEXTBL where PAYLOAD MASS KG =(select max(PAYLOAD MASS KG ) from SPACEXTBL);

    %sql SELECT substr(DATE, 6,2) as Month, MISSION OUTCOME, BOOSTER VERSION, LAUNCH SITE from SPACEXTBL where substr(Date,

  0,5)='2015';
o %sql SELECT Landing_Outcome from SPACEXTBL WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20' ORDER BY DATE DESC;
```

https://github.com/Alejandro9108/data\_science\_ibm/blob/main/jupyter-labs-eda-sql-

## Build an Interactive Map with Folium

- Map objects added to folium map
- Markers and Cicles: Launch Sites (CCAFS LC-40, CCAFS SLC-40, KSC LC-39A, VAFB SLC-4E). To represent the location and are of the launch sites
- Markers: Success and Fail launches (green and red respectively). To differentiate between success and fail launches and to mark where happen each of them.
- Lines: To the closest city, railway and highway. To represent the distance between two points.
- https://github.com/Alejandro9108/data\_science\_ibm/blob/main/lab\_ jupyter\_launch\_site\_location.ipynb

## Build a Dashboard with Plotly Dash

- Was added a pie chart to easily visualize what launch site has the largest successful launches and which site has the highest launch success rate.
- A scatter plot of the payload mass vs the class with a range slider for the payload mass was added for easily visualization of what payload range has the highest and the lowest launch success rate
- https://github.com/Alejandro9108/data\_science\_ibm/blob/mai\_n/spacex\_dash\_app.py

# Predictive Analysis (Classification)

https://github.com/A
 lejandro9108/data
 science ibm/blob/m
 ain/SpaceX Machine
 Learning Predictio
 n Part 5.jupyterlite.i
 pynb



## Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results



## Flight Number vs. Launch Site

 No real correlation for success launch is found between the launch site and the flight number



## Payload vs. Launch Site

 For Payload over 8000 Kg the the launches are usually successful in all the launch sites.



## Success Rate vs. Orbit Type

- For the Orbits ES-L1, GEO,
   HEO and SSO always the first stage was recover.
- For SO was never succefully recover



# Flight Number vs. Orbit Type

 In the LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.



# Payload vs. Orbit Type

 With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.

 However for GTO we cannot distinguish this well as both positive landing rate and negative landing(unsuccessful mission) are both there here.



# Launch Success Yearly Trend

- After 2013 the success had a general tendency to increase.
- In the years 2018 and 2020 the success rate decreased in relation to the previous year.



### All Launch Site Names

- %sql SELECT DISTINCT(Launch\_Site) from SPACEXTABLE
- Launch\_Site
- CCAFS LC-40
- VAFB SLC-4E
- KSC LC-39A
- CCAFS SLC-40
  - The **SELECT DISTINCT** statement was used to select the unique values in the Launch\_site column.

# Launch Site Names Begin with 'CCA'

%sql SELECT \* from SPACEXTABLE where Launch\_Site='CCAFS LC-40' LIMIT 5;

| Date       | Time (UTC) | Booster_Vers     | Launch_Site | Payload                                                                      | PAYLOAD_M<br>ASSKG_ | Orbit     | Customer           | Mission_Out come | Landing_Out come       |
|------------|------------|------------------|-------------|------------------------------------------------------------------------------|---------------------|-----------|--------------------|------------------|------------------------|
| 2010-04-06 | 18:45:00   | F9 v1.0<br>B0003 | CCAFS LC-40 | Dragon<br>Spacecraft<br>Qualification<br>Unit                                | 0                   | LEO       | SpaceX             | Success          | Failure<br>(parachute) |
| 2010-08-12 | 15:43:00   | F9 v1.0<br>B0004 | CCAFS LC-40 | Dragon demo<br>flight C1, two<br>CubeSats,<br>barrel of<br>Brouere<br>cheese | 0                   | LEO (ISS) | NASA (COTS)<br>NRO | Success          | Failure<br>(parachute) |
| 2012-05-22 | 07:44:00   | F9 v1.0<br>B0005 | CCAFS LC-40 | Dragon demo<br>flight C2                                                     | 525                 | LEO (ISS) | NASA (COTS)        | Success          | No attempt             |
| 2012-08-10 | 00:35:00   | F9 v1.0<br>B0006 | CCAFS LC-40 | SpaceX CRS-1                                                                 | 500                 | LEO (ISS) | NASA (CRS)         | Success          | No attempt             |
| 2013-01-03 | 15:10:00   | F9 v1.0<br>B0007 | CCAFS LC-40 | SpaceX CRS-2                                                                 | 677                 | LEO (ISS) | NASA (CRS)         | Success          | No attempt             |

<sup>•</sup> The where Launch\_Site='CCAFS LC-40' to display only records of the launch site 'CCAFS LC-40' additionally the clause LIMIT 5 was used to display only 5 records.

# **Total Payload Mass**

```
%sql SELECT sum(PAYLOAD_MASS__KG_) from SPACEXTABLE where PAYLOAD_MASS__KG_ > 0;
```

```
sum(PAYLOAD_MASS__KG_)
619967
```

• The SELECT SUM statement was used to calculate the total payload mass in addition with the where clause to select the records with positive value.

# Average Payload Mass by F9 v1.1

```
%sql SELECT AVG(PAYLOAD_MASS__KG_) from SPACEXTABLE where Booster_Version='F9 v1.1' AND PAYLOAD_MASS__KG_ > 0;
```

```
AVG(PAYLOAD_MASS__KG_)
2928.4
```

 The SELECT AVG statement was used to calculate the average value of Payload Mass additionally using where & AND clauses to average only the records with Booster\_Version='F9 v1.1' and PAYLOAD MASS KG > 0

# First Successful Ground Landing Date

%sql SELECT MIN(Date) from SPACEXTABLE where Landing\_Outcome='Success (ground pad)';

MIN(Date)

2015-12-22

• The SELECT MIN statement was used to select the first successful landing outcome additionally the where clause was used to state the type of outcome searched (Success ground pad)

#### Successful Drone Ship Landing with Payload between 4000 and 6000

%sql SELECT DISTINCT(Booster\_Version) from SPACEXTABLE where Landing\_Outcome='Success (drone ship)' AND PAYLOAD\_MASS\_\_KG\_ BETWEEN 4000 AND 6000;

Booster\_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

 The SELECT DISTINCT statement was used to select the unique values in Booster\_version additionally the where & AND clauses were used to state that the desire records are only where the landing outcome was success on drone ship and the payload mass was between 4000 and 6000 kg

#### Total Number of Successful and Failure Mission Outcomes

%sql select MISSION\_OUTCOME, count(MISSION\_OUTCOME) from SPACEXTBL GROUP BY MISSION\_OUTCOME;

Mission\_Outcome count(MISSION\_OUTCOME)

Failure (in flight) 1

Success 98

Success 1

Success (payload status unclear) 1

• The COUNT statement was used to count each type of Mission outcome additionally the GROUP BY clause was used to concentrate the different types of outcomes.

## **Boosters Carried Maximum Payload**

%sql SELECT Booster\_Version from SPACEXTBL where PAYLOAD\_MASS\_\_KG\_=(select max(PAYLOAD\_MASS\_\_KG\_) from SPACEXTBL);

| Booster_Version |               |
|-----------------|---------------|
| F9 B5 B1048.4   | F9 B5 B1049.5 |
| F9 B5 B1049.4   | F9 B5 B1060.2 |
| F9 B5 B1051.3   | F9 B5 B1058.3 |
| F9 B5 B1056.4   | F9 B5 B1051.6 |
| F9 B5 B1048.5   | F9 B5 B1060.3 |
| F9 B5 B1051.4   | F9 B5 B1049.7 |

 The where clause & SELECT MAX subquerie were used to state that the desire records are only where the payload mass was maximum

### 2015 Launch Records

%sql SELECT substr(DATE, 6,2) as Month, MISSION\_OUTCOME, BOOSTER\_VERSION, LAUNCH\_SITE from SPACEXTBL where substr(Date, 0,5)='2015'

| Month | Mission_Outcome     | Booster_Version | Launch_Site |
|-------|---------------------|-----------------|-------------|
| 10    | Success             | F9 v1.1 B1012   | CCAFS LC-40 |
| 11    | Success             | F9 v1.1 B1013   | CCAFS LC-40 |
| 02    | Success             | F9 v1.1 B1014   | CCAFS LC-40 |
| 04    | Success             | F9 v1.1 B1015   | CCAFS LC-40 |
| 04    | Success             | F9 v1.1 B1016   | CCAFS LC-40 |
| 06    | Failure (in flight) | F9 v1.1 B1018   | CCAFS LC-40 |
| 12    | Success             | F9 FT B1019     | CCAFS LC-40 |

The substr(Date, 6,2) and substr(Date, 0,5)='2015' were used to select the month and years

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

%sql SELECT Landing\_Outcome from SPACEXTBL WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20' ORDER BY DATE DESC;

| Landing_Outcome      |                      |                        |                      |                     |
|----------------------|----------------------|------------------------|----------------------|---------------------|
| No attempt           | Success (ground pad) | Controlled (ocean)     | Controlled (ocean)   | No attempt          |
| Success (ground pad) | Failure (drone ship) | Failure (drone ship)   | No attempt           | No attempt          |
| Success (ground pad) | Success (drone ship) | Precluded (drone ship) | No attempt           | No attempt          |
| Success (drone ship) | Success (drone ship) | No attempt             | No attempt           | Failure (parachute) |
| Success (ground pad) | Failure (drone ship) | Failure (drone ship)   | Controlled (ocean)   |                     |
| Success (drone ship) | Failure (drone ship) | No attempt             | Uncontrolled (ocean) |                     |
| Success (drone ship) | Success (ground pad) | Uncontrolled (ocean)   | No attempt           |                     |

 The clause WHERE DATE BETWEEN was used to delimited the time period and the ORDER BY DATE to make the rank in descending order



## Launch sites' location markers on a global map

• The map displays the location of the launch sites in Florida and California.



## Color-labeled launch outcomes on map

- Fig 1 color labeled launch outcome in CCAFS LC-40
- Fig 2 color labeled launch outcome in CCAFS SLC-40
- Fig 3 color labeled launch outcome in KSC LC-39A
- Fig 4 color labeled launch outcome in VAFB SLC-4E
- Green markers represent success
- Red markers represent failures



Fig. 1

Fig. 3





Fig. 4

35

## Selected launch site to proximities of interest

- Figure 1 shows plot of distance to railroad, city and coastline
- Figure 2 shows full view of distance plot to Melbourne City in Florida



distance\_city = 51.43416999517233 km distance\_coastline = 0.5834695366934144 km

distance\_railroad = 1.2864152581510746 km





## Launch success count for all sites

It is appreciated in the graph the ratio of success launches between all sites.

The site with higher success counts is KSC LC-39A.

The site with lower success count is CCAFS SLC-40



## Success ratio of the launch site KSC LC-39A

• The success ratio of the launch site KSC LC-39A is 76.9% of success.



## Payload vs. Launch Outcome scatter plot for all sites

- The first graph shows the relation of the launch outcome of all launch sites and payload mass range between 2500-5000kg.
- The second graph shows the relation of the launch outcome of all launch sites and payload mass range between 5000-7500kg.
- The first of the two selected ranges has a higher success rate.





## **Classification Accuracy**

 All the models performed very similar, although the Decision tree model had a slightly better accuracy



## **Confusion Matrix**

• The confusion matrix of the descision tree shows that the classifier can distinguish between different classes. With the biggest problem being the outliers.



## **Conclusions**

#### **From EDA insights:**

- Payloads over 8000 Kg the the launches are usually successful in all the launch sites.
- For the Orbits ES-L1, GEO, HEO and SSO always the first stage was recovered.
- For payloads between 4000-6000 kg the Booster\_Versions that were successfully recoverd are:F9 FT B1022, F9 FT B1026, F9 FT B1021.2, F9 FT B1031.2.

#### From dashboard:

• The site with higher success counts is KSC LC-39A.with 76.9% of success.

#### From the prediction analysis:

- All the models performed very similar, although the Decision tree model had a slightly better accuracy.
- The confusion matrix shows that the classifier can distinguish between different classes. With the biggest problem being the outliers.

