بهبود فرآیند استخراج سیگنال فتوپلتیسموگرافی به صورت راه دور با استفاده از تشخیص وزن دار نواحی يوست صورت و بدن

> زهرا ملكي دیارتمان مهندسی برق دانشگاه صنعتی شریف استاد راهنما: دُكتر خلج استاد درس: دكتر اقليدس

ليست

- 🚺 مقدمه
- 🕥 مروری بر ادبیات
 - 🕥 متود و نتایج
 - 🕥 جمع بندی

مقدمه

りくで き (き)(き)(日)(ロ)

18/8

بهار ۱۴۰۴

استخراج سيگنال حياتي

فتوپلتیسموگرافی از راه دور (rPPG)

شكل ٢: استخراج با استفاده از سنسور [١]

شكل ١: استخراج سيگنار از راه دور [١]

كليت پروژه

شكل ٣: مراحل استخراج سيگنال از جمع آوري داده تا سنجش ضربان قلب

◆基ト ◆基ト ◆部ト ◆ロト بهار ۱۴۰۴

استخراج سيكنال حياتي

زهرا ملكي

مروری بر ادبیات

りくで 注 (注)(注)(回)(口)

بهار۱۶/۶ ۱۴۰۴

روش های مبتنی بر یادگیری عمیق

شکل ۴: شماتیکی از مدل DeepLab شکل

(a) Atrous Spatial

مدیاپایپ

selfie Multi-class شکل ۶: مدل segmentation

شکل ۵: مدل Land-marker

18/1

متود و نتایج

یادگیری و خروجی مدل

COCO:

شکل ۷: درست کردن یک دیتاست از تصاویر برای مرحله یادگیری مدل [۱۰]

شكل ٨: نمونه هايي از خروجي مدل نهايي

شکل ۱۰: سیگنال استخراج شده با استفاده از مدل ما در مقایسه با دو مدل مدیاپایپ در شرایط چرخش سر شدید

شکل ۹: نمونه از دیتاست جمع آوری شده و خروجی مدل ما در مقایسه با دو مدل مدیایایپ

بهار ۱۴۰۴

Dataset	Scenario	Metric	Models							
			Spatial Average [33]	Landmarker	MCSS	Full-body	DaapPhys [12]	EfficientPhys [34]	PhysFormer [66]	SkinMap (our
		MAE ↓	11.34±2.48	10.02±2.81	11.51±3.16	10.55±2.15	5.89±2.97	1.85+0.61	11.87±2.48*	6.86±1.62
		RMSE ‡	15.86±9.63	16.08±11.37	18.24 ± 11.91	14.26±8.60	14.54±12.31	3.31±2.27	16.24±9.54	9.97±5.54
	Rest	MAPE 1	15.41±3.59	13.92 ± 4.51	16.41±4.93	14.72±3.44	6.98±3.33	2.39 ± 0.78	16.49 ± 3.89	9.09±2.15
		PCC †	-0.04 ± 0.24	0.11 ± 0.23	0.20 ± 0.23	0.039 ± 0.236	0.233 ± 0.229	0.933 ± 0.085	-0.042 ± 0.235	0.497±0.205
SYNC-1PPG		SNR (dB) †	-5.49 ± 0.45	-4.82 ± 0.45	-4.75 ± 0.43	-4.74 ± 0.52	-1.66 ± 0.74	-1.44 ± 0.64	-5.21 ± 0.43	-4.20±0.51
		MAE 1	13,45 ± 2,39	13.54+2.59	12.83±2.40	12,30±2,04	29.53±4.44*	22.85 ± 4.28	12.39+2.55	12.66±2.17
	Talking	RMSE 1	17.16±9.50	17.81 ± 9.92	16.74±9.31	15.31±8.63	35.59±16.91	29.81±15.64	16.85 ± 9.28	15.95±9.33
		MAPE I	15.44±2.72	14.86±2.53	14.35±2.52	13.75±2.11	31,41±4,38	24.65±4.26	13.96 + 2.97	14.42±2.31
		PCC ↑	0.243 ± 0.229	0.31 ± 0.22	0.32 ± 0.22	0.439 ± 0.212	-0.281 ± 0.226	-0.262 ± 0.227	0.128 ± 0.234	0.242 ± 0.229
		SNR (dB) †	-6.57±0.51	-6.09 ± 0.56	-6.34 ± 0.64	-6.21 ± 0.59	-8.35 ± 0.77	-7.24 ± 0.70	-5.95 ± 0.34	-6.15±0.67
		MAE ‡	14.85±2.10	24.17±3.51	13.80±1.92	13.45±2.47	27.25+2.36*	21.45±3.18	15.21±2.71	11.95+2.13
		RMSE 1	17.58±8.32	28.82±14.04	16.25±7.91	17,41±9,88	29.22±11.35	25,74±12.80	19.44±10.63	15.29 ± 8.17
	Head Rotation	MAPE 1	19.18±2.93	31.30±4.39	17.74±2.57	17.65±3.40	34.05±2.51	27.80±4.44	20.50±4.24	14.99±2.59
		PCC †	-0.028 ± 0.236	0.50 ± 0.20	0.03 ± 0.24	0.170 ± 0.232	-0.072 ± 0.235	-0.335 ± 0.222	0.107 ± 0.234	0,343±0,221
		SNR (dB) †	-6.25 ± 0.38	unstable	-6.90 ± 0.47	-5.62 ± 0.44	-9.35 ± 0.60	-7.77 ± 0.48	-6.07 ± 0.41	-5.82±0.49
		MAE ‡	36.47±4.86	29.53±5.33	32.70±5.27	33.05±4.89	45.18±9.34*	37.88±7.69	28.56 + 5.67	32.96±4.64
		RMSE ‡	42.46±17.89	37.96±18.98	40.31 ± 19.11	39.62±18.05	61.53±31.25	51.16±25.13	38.21 ± 20.06	38.94±17.70
	After Exercise	MAPE 1	29.05±3.38	22.95±3.80	25.77±3.54	25.82±3.29	34.82 ± 6.73	28.44±5.49	21.98 ± 3.95	26.11±3.07
		PCC †	0.241 ± 0.229	0.00 ± 0.24	-0.47 ± 0.21	0.033 ± 0.236	-0.317 ± 0.224	-0.450 ± 0.210	-0.038 ± 0.236	0.312±0.224
		SNR (dB) †	-10.77±0.95	-9.64 ± 1.03	-10.18 ± 1.05	-10.02 ± 0.83	-8.65 ± 1.08	-7.34 ± 0.92	-8.92 ± 1.03	-9.49±0.88
UBFC-Phys		MAE ↓	4.91±1.23	5.13±1.55	5.28±1.52	4.65±1.10	5.57±1.43	3.75 ± 0.98	6.25±1.46*	5.18±1.36
		RMSE ‡	10.13±6.50	12.29 ± 8.53	12.19±8.52	9.19 ± 5.72	11.20±6.57	7.63 ± 5.17	11.87±7.12	10.86±6.95
	Rest	MAPE ‡	6.88 ± 1.89	6.83±2.43	7.03 ± 2.41	5.98±1.64	7.47 ± 2.02	5.34±1.52	8.97±2.27	7.27±2.07
		PCC †	0.751 ± 0.093	0.577±0.116	0.597 ± 0.113	0.770 ± 0.090	0.718 ± 0.105	0.834 ± 0.083	0.678 ± 0.108	0,717±0,102
		SNR (dB) †	0.69 ± 0.71	2.82 ± 0.90	3.06 ± 0.87	2.04±0.91	0.322 ± 0.771	0.71 ± 0.75	-0.75 ± 0.84	0.37±0.80
		MAE ‡	12.75±1.80	25.00±2.72*	24.85±2.80	16.09±2.01	19.45±2.37	16.91±2.11	18.19±1.95	12.04±1.73
		RMSE ‡	18.20±9.03	31.77±14.53	32.03±13.29	21.64±10.36	25.10±10.69	22.46±10.25	21.98±9.48	17.35±8.90
	Talking	MAPE 1	18.38±3.07	35.87 ± 4.80	35.38 ± 4.44	22.24 ± 2.90	24.31±2.94	23.51±3.42	25.33±3.21	16.82 + 2.88
		PCC †	0.143 ± 0.140	-0.262 ± 0.136	-0.073 ± 0.141	0.193 ± 0.139	-0.062 ± 0.152	-0.126 ± 0.145	0.214±0.158	0.124±0.140
		SNR (dB) †	-5.14 ± 0.41	-7.42 ± 0.54	-6.18 ± 0.57	-6.30 ± 0.54	-6.14 ± 0.43	-5.53 ± 0.43	-6.24 ± 0.38	-5.19±0.40
		MAE ↓	10.31±1.62	22.13±2.51*	20.51±2.27	19.89±2.08	13.18±1.87	12.19±1.89	16.44±2.12	10.12±1.61
		RMSE 1	15.68±7.74	28.72±12.60	26.34±11.57	24.99±10.63	18.68 + 9.31	17.99±8.39	21.94 ± 10.02	15.46 ± 7.91
	Arithmetic	MAPE 1	15.06±2.70	35.88±4.84	33.45 ±4.56	31.37±4.21	16.86 ± 2.26	17.56±3.00	23.29 ± 3.24	14.72±2.70
		PCC †	0.325 ± 0.132	-0.166 ± 0.138	0.152 ± 0.138	-0.044 ± 0.140	0.436 ± 0.130	0.248 ± 0.141	-0.024 ± 0.149	0.394±0.129
		SNR (dB) †	-4.57±0.36	-6.57 ± 0.60	-6.76 ± 0.59	-6.13±0.54	-4.83 ± 0.44	-4.00 ± 0.47	-5.38±0.34	-4,17±0,36

شكل ۱۱: نتايج روى ديتاستها و مدلهاي مختلف

عملكرد مدل

Dataset	Landr	narker	MO	CSS	SkinMap		
	RMSE	MPCC	RMSE	MPCC	RMSE	MPCC	
S*-rest	1.42	0.32	0.97	0.32	1.57	0.26	
S*-talk	2.29	0.29	2.43	0.25	1.78	0.26	
S*-rotation	2.16	0.28	2.59	0.24	1.15	0.37	
S*-exercise	2.16	0.29	2.73	0.25	2.72	0.24	

شكل ۱۲: مقايسه عملكرد مدل

Datasets	SYNC-rPPG	UBFC1	UBFC2
Average FPS	211.85	226.99	220.72
Average Latency (ms)	6.65	5.47	5.42

شکل ۱۳: مقایسه زمان اجرای مدل

جمع بندی

りゅう き ・・ き・・ き・・ 4 回 ト・ 4 ロ ト

بهار ۱۴۰۴ ۱۴۰۴

در یک نگاه

رویکرد: تشخیص دقیق تمامی نواحی پوست قابل مشاهده با وزن دهی اتوماتیک وابسته به الویت ناحیه و شرایط نوری و زاویه نسبت به دوریبین با آموزش یک مدل مبتنی بر یادگیری عمیق برای استفاده در مراحل استخراج ضربان قلب از راه دور

داده ها: جمع آوری مجوعه از داده های همزمان ویدیو و سیگنال تحت شرایط نوری و حرکتی متفاوت (ساکن، درحال مکالمه، حرکت سر شدید، ریکاوری بعد از ورزش)

استخراج: با استفاده از ماسک تعیین شده از نواحی پوست برای هر فریم ویدیو استخراج سیگنال رنگی و تبدیل به سیگنال فتوپلتیسموگرافی برای تعیین ضربان قلب

نتیجه: با استفاده از این مدل دقت و اطمینان در نظارت بر ضربان قلب به صورت از راه دور بهبود می یابد.

18/10

- [\] W. Wang et al., "Remote PPG," IEEE TBME, :(Y) 94, \\4\-\\4\9\-\\4\9\.
- [Y] D.-Y. Kim et al., "ROI for rPPG," IEEE Access, : A , \YTTFOY-\YTTFOY . Y o Y o
- [٣] R. Khan et al., "Skin Detection in Videos," in Proc. ICPR, pp., ۴-1. ٢٠١٠
- [۴] M. Scherpf et al., "Skin Segmentation for PPG," IEEE JBHI, :(Y)Y\(\Delta\), 499-409. YoY\
- [Δ] L.-C. Chen et al., "Atrous Convolution," . Yo \Y [Online]. Available: arxiv.org/abs/1706.05587.
- [β] "Face YPPG," . Υο Υο [Online]. Available: arxiv.org/abs/2006.01054.
- [V] M. Fleck et al., "Skin Detection," IEEE TPAMI, :(۴) ۲۲, ۴۰۶-۳۹۳, ۲۰۰۰
- [A] What can interfere with baby monitor signal (Online). Available: https://example.com/what-can-interfere-baby-monitor-signal.
- [9] iStock by Getty Images. [Online]. Available: https://www.istockphoto.com.