3) Объект исследования.

Тележка, скользящая по наклонной плоскости

4) Метод экспериментального исследования.

Статический

5) Рабочие формулы и исходные данные.

$$\Delta_a = 2\sigma_a$$
 $\varepsilon_a = \frac{\Delta a}{a} \cdot 100\%$, $\sin \alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x}$,

$$a = rac{\sum\limits_{i=1}^{N} Z_{i} Y_{i}}{\sum\limits_{i=1}^{N} Z_{i}^{2}}; \quad \sigma_{a} = \sqrt{rac{\sum\limits_{i=1}^{N} \left(Y_{i} - a Z_{i}\right)^{2}}{\left(N - 1\right) \sum\limits_{i=1}^{N} Z_{i}^{2}}}, \qquad \langle a \rangle = rac{2\left(x_{2} - x_{1}\right)}{\left\langle t_{2} \right\rangle^{2} - \left\langle t_{1} \right\rangle^{2}}$$

$$\Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_{\text{\tiny M2}})^2 + (\Delta x_{\text{\tiny M1}})^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{\left(\langle t_2 \rangle^2 - \langle t_1 \rangle^2\right)^2}}$$

$$B \equiv g = \frac{\sum_{i=1}^{N} a_{i} \sin \alpha_{i} - \frac{1}{N} \sum_{i=1}^{N} a_{i} \sum_{i=1}^{N} \sin \alpha_{i}}{\sum_{i=1}^{N} \sin \alpha_{i}^{2} - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_{i}\right)^{2}} A = \frac{1}{N} \left(\sum_{i=1}^{N} a_{i} - B \sum_{i=1}^{N} \sin \alpha_{i}\right) A$$

$$\sigma_g = \sqrt{\frac{\sum\limits_{i=1}^N d_i^2}{D(N-2)}}, D = \sum\limits_{i=1}^N \sin \alpha_i^2 - \frac{1}{N} \left(\sum\limits_{i=1}^N \sin \alpha_i\right)^2, d_i = a_i - \left(A + B \sin \alpha_i\right),$$

$$\Delta g = 2\sigma_g$$

6) Измерительные приборы.

Nº	Наименование	Предел	Цена	Класс	Δи
		измерений	деления	точности	
1	Линейка на рельсе	1,3 M	1 см/дел	-	5 mm
2	Линейка на угольнике	250 мм	1 мм/дел	-	0,5 mm
3	ПКЦ-3 в режиме секундомера	100 c	0,1 c	-	0,1 c

7) Схема установки (перечень схем, которые составляют Приложение 1).

Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник
- 8) Результаты прямых измерений и их обработки (таблицы, примеры расчётов).

Таблица 2

х, м	x', m	h ₀ , mm	h', мм
0,22	1,0	210	208

Таблица 3

	Из	вмеренные	е величинь	Рассчитанные величины		
Nº	<i>X</i> ₁ , M	<i>X</i> ₂ , M	<i>t</i> ₁ , c	t ₂ , c	X ₂ - X ₁ , M	$\frac{t_2^2-t_1^2}{2}$, c ²
1	0,15	0,4	1,1	2,3	0,25	2,04
2	0,15	0,5	1,1	2,7	0,35	3,04
3	0,15	0,7	1,6	3,6	0,55	5,2
4	0,15	0,9	1,5	3,9	0,75	6,48
5	0,15	1,1	1,3	4,5	0,95	9,28

Таблица 4

Νпл	h, mm	h', mm	Nº	t ₁ , c	t ₂ , c	$\overline{t_1}$,	$\overline{t_2}$,	K ₁ , c ²	K ₂ , c ²	Σ K ₁ , c ²	Σ K ₂ , c ²	sin α, paд
			1	1,2	4,1			0,0064	0,01			
			2	1,3	4,2			0,0004	0			
1	220	211	3	1,3	4,2	1,28	4,2	0,0004	0	0,008	0,02	0,0089
			4	1,3	4,2			0,0004	0			
			5	1,3	4,3			0,0004	0,01			
			1	0,9	3			0	0,0004			
			2	0,9	3			0	0,0004			
2	229	209	3	0,9	3	0,9	3,02	0	0,0004	0	0,008	0,0231
			4	0,9	3			0	0,0004			
			5	0,9	3,1			0	0,0064			
			1	0,7	2,5			0,0036	0			
			2	0,7	2,5			0,0036	0			
3	237	208	3	0,8	2,5	0,76	2,5	0,0064	0	0,0264	0	0,0346
			4	0,8	2,5			0,0064	0			
			5	0,8	2,5			0,0064	0			
			1	0,7	2,2			0,0036	0,0036			
			2	0,6	2,1			0,0064	0,0016			
4	245	209	3	0,7	2,2	0,66	2,14	0,0036	0,0036	0,0236	0,014	0,0436
			4	0,7	2,2			0,0036	0,0036			
			5	0,6	2,1			0,0064	0,0016			
			1	0,6	2,0			0	0,0004			
			2	0,6	1,9			0	0,0064			
5	255	209	3	0,6	1,9	0,6	1,98	0	0,0064	0	0,026	0,0564
			4	0,6	1,9			0	0,0064			
			5	0,6	1,9			0	0,0064			

Nпл – количество пластин

h – высота в координате x = 0,22 м

h' – высота на координате x' = 1,00 м

9) Расчёт результатов косвенных измерений (таблицы, примеры расчётов).

i	Z_iY_i , $M * c^2$	Z_i^2 , c^4	$(Y_i - aZ_i)^2$, M^2
1	0,51	4,1616	9,50E-04
2	1,064	9,2416	5,467E-04
3	2,86	27,04	7,548E-05
4	4,86	41,9904	2,893E-03
5	8,816	86,1184	2,213E-03

$$\sum_{i=1}^{N} Z_i Y_i = 18,11 \text{ m*c}^2$$

$$\sum_{i=1}^{N} Z_i^2 = 168,552 \text{ c}^4$$

$$a = \frac{18,11}{168,552} = 0,10744 \text{ m*c}^2$$

$$L = \langle t_2 \rangle^2 - \langle t_1 \rangle^2$$

$$M = (\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2$$

$$\frac{(\Delta x_{\text{\tiny M2}})^2 + (\Delta x_{\text{\tiny M1}})^2}{(x_2 - x_1)^2} = \frac{(0.005)^2 + (0.005)^2}{(1 - 0.22)^2} = 0.000082183$$

i	L	M	$\langle a \rangle$	4M/L ²	Δа
1	16,00	0,2271	0,031	0,0035	0,0019
2	8,31	0,0723	0,084	0,0042	0,0055
3	5,67	0,0362	0,194	0,0045	0,0131
4	4,14	0,0510	0,362	0,0119	0,0396
5	3,56	0,0584	0,534	0,0184	0,0727

Таблица 5

N _{пл}	sin α, рад	$\langle oldsymbol{t_1} angle \pm \Delta oldsymbol{t_1}$, c	$\langle t_2 angle \pm \Delta t_2$, c	$\langle a angle \pm \Delta a$, M/c
1	0,0089	1,28 ± 0,09	4,20 ± 0,11	0,031 ± 0,002
2	0,0231	0,90 ± 0,07	3,02 ± 0,09	0,084 ± 0,006
3	0,0346	0,76 ± 0,12	2,50 ± 0,07	0,194 ± 0,013
4	0,0449	0,66 ± 0,12	2,14 ± 0,10	0,362 ± 0,040
5	0,0564	0,60 ± 0,07	1,98 ± 0,12	0,534 ± 0,073

$$\langle \sin \alpha \rangle = \frac{0,09 + 0,231 + 0,346 + 0,449 + 0,564}{5} = 0,0336$$

$$\langle \alpha \rangle = \frac{0,031 + 0,084 + 0,194 + 0,362 + 0,534}{5} = 0,241$$

$$Q = \sin \alpha_i - \langle \sin \alpha \rangle$$

$$P = a_i - \langle \alpha \rangle$$

i	QP	Q ²	di
1	0,00519	0,00061	0,0572
2	0,00165	0,00011	0,084
3	-0,00005	0,000001	0,2369
4	0,00137	0,000128	0,362
5	0,00668	0,0005198	0,534

$$\sum_{i=1}^{N} Q_i P_i = 0,01482$$

$$\sum_{i=1}^{N} Q_i^2 = D = 0,00137$$

$$\sum_{i=1}^{N} Q_i^2 = D = 0,00137$$

$$\sum_{i=1}^{N} d_i^2 = 0.01065 \qquad B = 10.838 \qquad A = -0.12317$$

10) Расчёт погрешностей измерений (для прямых и косвенных измерений).

$$\sum_{i=1}^{N} (Y_i - aZ_i)^2 = 0.006678 \text{ m}^2$$

$$\sigma_{\langle a \rangle} = \sqrt{\frac{0,006678}{4*168,552}} = 0,0099 \text{ m*c}^2$$

$$\Delta_a = 2,78 * 0,0099 = 0,027522 \text{ m*c}^2 \ \varepsilon_a = \frac{0,027522}{0,10744} * 100\% = 18\%$$

i	$S_{ar{t}1}$	$S_{ar{t}2}$	$\Delta_{ar{t}1}$	$\Delta_{ar{t}2}$	Δ_{t1}	Δ_{t2}	$arepsilon_{t1}$	$arepsilon_{t2}$
1	0,02	0	0,0556	0	0,08681	0,0667	4,34%	0%
2	0	0,02	0	0,0556	0,0667	0,08681	0%	4,34%
3	0,024	0	0,0681	0	0,0953	0,0667	5,32%	0%
4	0,0245	0,024	0,0681	0,0681	0,0953	0,0953	5,32%	5,32%
5	0	0,02	0	0,0556	0,0667	0,08681	0%	4,34%

$$\sigma_g = \sqrt{\frac{0,01065}{3 * 0,00137}} = 1,6097$$

- 11. Графики (перечень графиков, которые составляют Приложение 2).
- 12. Окончательные результаты.

$$a = (0.107 \pm 0.028) \frac{M}{c^2}; \quad \varepsilon_a = 18\%; \quad \alpha = 0.95.$$

$$g = (10.84 \pm 3.22) \frac{M}{c^2}; \quad \varepsilon_g = 29.70\%; \quad \alpha = 0.95.$$

$$\Delta g_{ ext{otkj}} = |g_{ ext{skch}} - g_{ ext{ta6j}}| = |10,838 - 9,81908| = 1,019$$

$$\varepsilon_{g_{\text{ОТКЛ}}} = 9,4\%$$

- 13. Выводы и анализ результатов работы.
- 1) В рассматриваемом случае движение тележки можно считать равноускоренным на это указывают вычисленные значения абсолютной и относительной погрешностей ускорения, а также линейный характер полученного графика.
- 2) Так как 1,019 < 3,219 \Rightarrow Δg откл < ΔB , следовательно полученная величина ускорения свободного падения g является достоверной.

Приложение 2.

