Categorical Predictors

Statistics & Methodology Lecture 7

Kyle M. Lang

Department of Methodology & Statistics Tilburg University

Outline

1. Adding categorical predictors into MLR models

Categorical Predictors

Most of the predictors we've considered thus far have been *quantitative*.

- Continuous variables that can take any real value in their range
- Interval or Ratio scaling
- If we use ordinal items as predictors, we assume interval scaling.

We often want to include grouping factors as predictors.

- These variables are qualitative.
 - Their values are simply labels.
 - There is no ordering of the categories.
 - Nominal scaling

How to Model Categorical Predictors

We need to be careful when we include categorical predictors into a regression model.

• The variables need to be coded before entering the model.

Consider the following indicator of major:

$$X_{maj} = \{1 = Law, 2 = Economics, 3 = Data Science\}$$

• What would happen if we naïvely used this variable to predict program satisfaction?

How to Model Categorical Predictors

How to Model Categorical Predictors

Dummy Coding

The most common way to code categorical predictors is dummy coding.

- A G-level factor (i.e., one that represents G groups) will be transformed into a set of G-1 dummy codes.
- Each code is a variable on the dataset that equals 1 for observations corresponding to the code's group and equals 0, otherwise.
- The group without a code is called the reference group.

Example Dummy Code

Let's look at the simple example of coding biological sex:

	sex	male
1	female	0
2	male	1
3	male	1
4	female	0
5	male	1
6	female	0
7	female	0
8	male	1
9	female	0
10	female	0

Example Dummy Codes

Now, a slightly more complex example:

drink	juice	tea
juice	1	0
coffee	0	0
tea	0	1
juice	1	0
tea	0	1
coffee	0	0
juice	1	0
	juice coffee tea tea tea tea juice tea coffee	juice 1 coffee 0 tea 0 tea 0 tea 0 tea 0 juice 1 tea 0 coffee 0

Using Dummy Codes

To use the dummy codes, we simply include the G-1 codes as G-1 predictor variables in our regression model.

$$Y = \beta_0 + \beta_1 X_{male} + \varepsilon$$

$$Y = \beta_0 + \beta_1 X_{juice} + \beta_2 X_{tea} + \varepsilon$$

- The intercept corresponds to the mean of *Y* in the reference group.
- Each slope represents the difference between the mean of *Y* in the coded group and the mean of *Y* in the reference group.

First, an example with a single, binary dummy-coded variable:

```
## Read in some data:
cDat <- readRDS("../data/cars_data.rds")

## Fit and summarize the model:
out1 <- lm(price ~ mtOpt, data = cDat)</pre>
```

```
partSummary(out1, -c(1, 2))

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.841 1.623 14.691 <2e-16
## mtOpt -6.603 2.004 -3.295 0.0014
##
## Residual standard error: 9.18 on 91 degrees of freedom
## Multiple R-squared: 0.1066, Adjusted R-squared: 0.09679
## F-statistic: 10.86 on 1 and 91 DF, p-value: 0.001403</pre>
```

Fit a more complex model:

Include two sets of dummy codes:

```
out3 <- lm(price ~ mtOpt + front + rear, data = cDat)
partSummary(out3, -c(1, 2))
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.7187 2.9222 7.432 6.25e-11
## mtOpt -5.8410 1.8223 -3.205 0.00187
## front -0.2598 2.8189 -0.092 0.92677
## rear 10.5169 3.3608 3.129 0.00237
##
## Residual standard error: 8.314 on 89 degrees of freedom
## Multiple R-squared: 0.2834, Adjusted R-squared: 0.2592
## F-statistic: 11.73 on 3 and 89 DF, p-value: 1.51e-06
```

Cell-Means Coding

If we include all G dummy codes, we get a cell-means coded model.

• Cell-means coding estimates the so-called *normal means model*:

$$Y = \mu_g + \varepsilon$$

- We directly estimate each group-specific mean.
- We cannot estimate an intercept when using cell-means coded predictors.

Example Cell-Means Code

Let's look at the cell-means coding of biological sex:

	sex	female	male
1	female	1	0
2	male	0	1
3	male	0	1
4	female	1	0
5	male	0	1
6	female	1	0
7	female	1	0
8	male	0	1
9	female	1	0
10	female	1	0

Example Cell-Means Codes

Now, cell-means for the drinks example:

	drink	coffee	juice	tea
1	juice	0	1	0
2	coffee	1	0	0
3	tea	0	0	1
4	tea	0	0	1
5	tea	0	0	1
6	tea	0	0	1
7	juice	0	1	0
8	tea	0	0	1
9	coffee	1	0	0
10	juice	0	1	0

Using Cell-Means Codes

When using cell-means codes, we include all *G* codes into our model, so we must not estimate an intercept:

$$Y = \beta_1 X_{female} + \beta_2 X_{male} + \varepsilon$$

$$Y = \beta_1 X_{coffee} + \beta_2 X_{juice} + \beta_3 X_{tea} + \varepsilon$$

- Each "slope" is an estimate of the group-specific mean of *Y* in the coded group.
- The significance tests for the "slopes" are testing if the group-specific means are different from zero.

First, an example with a two-level cell-means coded variable:

```
## Read in some data:
cDat <- readRDS("../data/cars_data.rds")

## Fit and summarize the model:
out4 <- lm(price ~ atOnly + mtOpt - 1, data = cDat)

## HACK: Add a new class attribute to dispatch
## summary.cellMeans() in place of summary.lm():
class(out4) <- c("cellMeans", class(out4))</pre>
```

Fit a model with a three-level factor:

```
out5 <- lm(price ~ four + front + rear - 1, data = cDat)
class(out5) <- c("cellMeans", class(out5))</pre>
partSummary(out5, -c(1, 2))
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## four 17.630
                     2.761 6.385 7.33e-09
## front 17.536 1.067 16.439 < 2e-16
## rear 28.950 2.183 13.262 < 2e-16
##
## Residual standard error: 8.732 on 90 degrees of freedom
## Multiple R-squared: 0.2006, Adjusted R-squared: 0.1829
## F-statistic: 11.29 on 2 and 90 DF, p-value: 4.202e-05
```

Effects Coding

Another useful form of categorical variable coding is effects coding.

Effects codes can be weighted or unweighted.

Effects Coding

Another useful form of categorical variable coding is effects coding.

• Effects codes can be weighted or unweighted.

We'll first discuss unweighted effects codes.

- Unweighted effects codes are identical to dummy codes except that "reference group" rows get values of -1 on all codes.
- The intercept is interpreted as the unweighted mean of the group-specific means of Y.
- The slope associated with each code represents the difference between the coded group's mean of *Y* and the mean of the group-specific means of *Y*.

Example Unweighted Effects Codes

	sex	male.ec
1	female	-1
2	male	1
3	male	1
4	female	-1
5	male	1
6	female	-1
7	female	-1
8	male	1
9	female	-1
10	female	-1

	drink	juice.ec	tea.ec
1	juice	1	0
2	coffee	-1	-1
3	tea	0	1
4	tea	0	1
5	tea	0	1
6	tea	0	1
7	juice	1	0
8	tea	0	1
9	coffee	-1	-1
10	juice	1	0

Using Unweighted Effects Codes

We use the unweighted effects codes as we would use dummy codes.

• We include the G-1 effects codes as G-1 predictor variables in our regression model.

$$Y = \beta_0 + \beta_1 X_{male.ec} + \varepsilon$$

$$Y = \beta_0 + \beta_1 X_{juice.ec} + \beta_2 X_{tea.ec} + \varepsilon$$

- The intercept corresponds to the unweighted mean of the group-specific means of *Y*.
- Each slope represents the difference between the mean of *Y* in the coded group and the mean of the group-specific means of *Y*.

```
## Model with single effects code:
out6 <- lm(price ~ mtOpt.ec, data = cDat)
partSummary(out6, -c(1, 2))

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.539 1.002 20.501 <2e-16
## mtOpt.ec -3.301 1.002 -3.295 0.0014
##
## Residual standard error: 9.18 on 91 degrees of freedom
## Multiple R-squared: 0.1066, Adjusted R-squared: 0.09679
## F-statistic: 10.86 on 1 and 91 DF, p-value: 0.001403</pre>
```

```
## Model with two effects codes (for a variable with G = 3):
out7 <- lm(price ~ front.ec + rear.ec, data = cDat)
partSummary(out7, -c(1, 2))
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.372 1.226 17.433 < 2e-16
 front.ec -3.836 1.372 -2.796 0.00632
## rear.ec 7.578 1.758 4.310 4.16e-05
##
## Residual standard error: 8.732 on 90 degrees of freedom
## Multiple R-squared: 0.2006, Adjusted R-squared: 0.1829
## F-statistic: 11.29 on 2 and 90 DF, p-value: 4.202e-05
```

Why is $\hat{\beta}_0$ the Unweighted Mean of *Y*?

First, define the group-specific means:

$$\begin{split} \hat{\mu}_1 &= \hat{\beta}_0 + \hat{\beta}_1(1) + \hat{\beta}_2(0) = \hat{\beta}_0 + \hat{\beta}_1 \\ \hat{\mu}_2 &= \hat{\beta}_0 + \hat{\beta}_1(0) + \hat{\beta}_2(1) = \hat{\beta}_0 + \hat{\beta}_2 \\ \hat{\mu}_3 &= \hat{\beta}_0 + \hat{\beta}_1(-1) + \hat{\beta}_2(-1) = \hat{\beta}_0 - \hat{\beta}_1 - \hat{\beta}_2 \end{split}$$

Why is $\hat{\beta}_0$ the Unweighted Mean of *Y*?

First, define the group-specific means:

$$\begin{split} \hat{\mu}_1 &= \hat{\beta}_0 + \hat{\beta}_1(1) + \hat{\beta}_2(0) = \hat{\beta}_0 + \hat{\beta}_1 \\ \hat{\mu}_2 &= \hat{\beta}_0 + \hat{\beta}_1(0) + \hat{\beta}_2(1) = \hat{\beta}_0 + \hat{\beta}_2 \\ \hat{\mu}_3 &= \hat{\beta}_0 + \hat{\beta}_1(-1) + \hat{\beta}_2(-1) = \hat{\beta}_0 - \hat{\beta}_1 - \hat{\beta}_2 \end{split}$$

Next, solve for $\hat{\beta}_1$ and $\hat{\beta}_2$:

$$\hat{\beta}_1 = \hat{\mu}_1 - \hat{\beta}_0$$

$$\hat{\beta}_2 = \hat{\mu}_2 - \hat{\beta}_0$$

Why is $\hat{\beta}_0$ the Unweighted Mean of *Y*?

First, define the group-specific means:

$$\begin{split} \hat{\mu}_1 &= \hat{\beta}_0 + \hat{\beta}_1(1) + \hat{\beta}_2(0) = \hat{\beta}_0 + \hat{\beta}_1 \\ \hat{\mu}_2 &= \hat{\beta}_0 + \hat{\beta}_1(0) + \hat{\beta}_2(1) = \hat{\beta}_0 + \hat{\beta}_2 \\ \hat{\mu}_3 &= \hat{\beta}_0 + \hat{\beta}_1(-1) + \hat{\beta}_2(-1) = \hat{\beta}_0 - \hat{\beta}_1 - \hat{\beta}_2 \end{split}$$

Next, solve for $\hat{\beta}_1$ and $\hat{\beta}_2$:

$$\hat{\beta}_1 = \hat{\mu}_1 - \hat{\beta}_0$$

$$\hat{\beta}_2 = \hat{\mu}_2 - \hat{\beta}_0$$

Finally, substitute and solve for $\hat{\beta}_0$:

$$\hat{\mu}_{3} = \hat{\beta}_{0} - (\hat{\mu}_{1} - \hat{\beta}_{0}) - (\hat{\mu}_{2} - \hat{\beta}_{0})$$

$$\hat{\mu}_{3} = 3\hat{\beta}_{0} - \hat{\mu}_{1} - \hat{\mu}_{2}$$

$$\hat{\beta}_{0} = \frac{\hat{\mu}_{1} + \hat{\mu}_{2} + \hat{\mu}_{3}}{3}$$

Weighted Effects Coding

Weighted effects codes differ from the unweighted version only in how they code the "reference group" rows.

- In weighted effects codes the "reference group" rows get negative fractional values on all codes.
 - Let g = 1, 2, ..., G index groups.
 - Take the first group as the "reference group."
 - Then, the gth code's reference group rows will take values of $-N_g/N_1$.
- The intercept is interpreted as the weighted mean of the group-specific outcome means.
 - The arithmetic mean of *Y*.
- Each slope represents the difference from that group's mean outcome and the overall mean of Y.

Example Weighted Effects Codes

	sex	male.wec
1	female	$-N_{male}/N_{female}$
2	male	1
3	male	1
4	female	$-N_{male}/N_{female}$
5	male	1
6	female	$-N_{male}/N_{female}$
7	female	$-N_{male}/N_{female}$
8	male	1
9	female	$-N_{male}/N_{female}$
10	female	$-N_{male}/N_{female}$

	drink	juice.wec	tea.wec
1	juice	1	0
2	coffee	$-N_{juice}/N_{coffee}$	$-N_{tea}/N_{coffee}$
3	tea	0	1
4	tea	0	1
5	tea	0	1
6	tea	0	1
7	juice	1	0
8	tea	0	1
9	coffee	$-N_{juice}/N_{coffee}$	$-N_{tea}/N_{coffee}$
10	juice	1	0

Using Weighted Effects Codes

Weighted effects codes work the same way as all of our other codes.

• As before, we include the G-1 effects codes as G-1 predictor variables in our regression model.

$$Y = \beta_0 + \beta_1 X_{male.wec} + \varepsilon$$

$$Y = \beta_0 + \beta_1 X_{juice.wec} + \beta_2 X_{tea.wec} + \varepsilon$$

- The intercept corresponds to the weighted mean of the group-specific means of Y (i.e., the arithmetic average of Y).
- Each slope represents the difference between the coded group's mean of *Y* and the overall mean of *Y*.

```
## Model with single effects code:
out8 <- lm(price ~ mtOpt.wec, data = cDat)
partSummary(out8, -c(1, 2))

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.5097 0.9519 20.495 <2e-16
## mtOpt.wec -2.2720 0.6895 -3.295 0.0014
##
## Residual standard error: 9.18 on 91 degrees of freedom
## Multiple R-squared: 0.1066, Adjusted R-squared: 0.09679
## F-statistic: 10.86 on 1 and 91 DF, p-value: 0.001403</pre>
```

```
## Model with two effects codes (for a variable with G = 3):
out9 <- lm(price ~ front.wec + rear.wec, data = cDat)
partSummary(out9, -c(1, 2))
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.5097 0.9054 21.547 < 2e-16
  front.wec -1.9739 0.5640 -3.500 0.000727
## rear.wec 9.4403 1.9863 4.753 7.57e-06
##
## Residual standard error: 8.732 on 90 degrees of freedom
## Multiple R-squared: 0.2006, Adjusted R-squared: 0.1829
## F-statistic: 11.29 on 2 and 90 DF, p-value: 4.202e-05
```

Why is $\hat{\beta}_0$ the Weighted Mean of *Y*?

Define the group-specific means:

$$\begin{split} \hat{\mu}_1 &= \hat{\beta}_0 + \hat{\beta}_1(1) \\ \hat{\mu}_2 &= \hat{\beta}_0 + \hat{\beta}_1(0) \\ \hat{\mu}_3 &= \hat{\beta}_0 + \hat{\beta}_1 \left(\frac{-N_1}{N_3} \right) + \hat{\beta}_2 \left(\frac{-N_2}{N_3} \right) \end{split}$$

Why is $\hat{\beta}_0$ the Weighted Mean of *Y*?

Define the group-specific means:

$$\begin{split} \hat{\mu}_1 &= \hat{\beta}_0 + \hat{\beta}_1(1) \\ \hat{\mu}_2 &= \hat{\beta}_0 + \hat{\beta}_1(0) \\ \hat{\mu}_3 &= \hat{\beta}_0 + \hat{\beta}_1 \left(\frac{-N_1}{N_3} \right) + \hat{\beta}_2 \left(\frac{-N_2}{N_3} \right) \end{split}$$

Solve for $\hat{\beta}_1$ and $\hat{\beta}_2$:

$$\hat{\beta}_1 = \hat{\mu}_1 - \hat{\beta}_0$$

$$\hat{\beta}_2 = \hat{\mu}_2 - \hat{\beta}_0$$

Why is $\hat{\beta}_0$ the Weighted Mean of *Y*?

Define the group-specific means:

$$\hat{\mu}_{1} = \hat{\beta}_{0} + \hat{\beta}_{1}(1) + \hat{\beta}_{2}(0)$$

$$\hat{\mu}_{2} = \hat{\beta}_{0} + \hat{\beta}_{1}(0) + \hat{\beta}_{2}(1)$$

$$\hat{\mu}_{3} = \hat{\beta}_{0} + \hat{\beta}_{1}\left(\frac{-N_{1}}{N_{3}}\right) + \hat{\beta}_{2}\left(\frac{-N_{2}}{N_{3}}\right)$$

Solve for $\hat{\beta}_1$ and $\hat{\beta}_2$:

$$\hat{\beta}_1 = \hat{\mu}_1 - \hat{\beta}_0$$

$$\hat{\beta}_2 = \hat{\mu}_2 - \hat{\beta}_0$$

Substitute and solve for $\hat{\beta}_0$:

$$\hat{\mu}_3 = \hat{\beta}_0 + \left(\frac{-N_1}{N_3}\right)(\hat{\mu}_1 - \hat{\beta}_0) + \left(\frac{-N_2}{N_3}\right)(\hat{\mu}_2 - \hat{\beta}_0)$$

$$\hat{\mu}_3 = \frac{N_3}{N_3} \hat{\beta}_0 - \frac{N_1}{N_3} \hat{\mu}_1 + \frac{N_1}{N_3} \hat{\beta}_0 - \frac{N_2}{N_3} \hat{\mu}_2 + \frac{N_2}{N_3} \hat{\beta}_0$$

$$\hat{\mu}_3 = \frac{N_1 + N_2 + N_3}{N_3} \hat{\beta}_0 - \frac{N_1}{N_3} \hat{\mu}_1 - \frac{N_2}{N_3} \hat{\mu}_2$$

$$N_3\hat{\mu}_3 = (N_1 + N_2 + N_3)\hat{\beta}_0 - N_1\hat{\mu}_1 - N_2\hat{\mu}_2$$

$$\hat{\beta}_0 = \frac{N_1 \hat{\mu}_1 + N_2 \hat{\mu}_2 + N_3 \hat{\mu}_3}{N_1 + N_2 + N_3}$$

For variables with only two levels, we can test the overall factor's significance by evaluating the significance of its single code.

- This won't work when we're using cell-means coding.
- Cell-means coding will always produce two or more codes.

For variables with more than two levels (or whenever using cell-means codes), we need to simultaneously evaluate the significance of all of the variable's codes.

```
summary (out3) $r.squared - summary (out1) $r.squared
## [1] 0.1767569
anova (out1, out3)
## Analysis of Variance Table
##
## Model 1: price ~ mtOpt
## Model 2: price ~ mtOpt + front + rear
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 91 7668.9
## 2 89 6151.6 2 1517.3 10.976 5.488e-05 ***
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

What about models where a single nominal factor is the only predictor?

```
partSummary(out2, -c(1, 2))

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.63000    2.76119    6.385 7.33e-09
## front         -0.09418    2.96008    -0.032    0.97469
## rear         11.32000    3.51984    3.216    0.00181
##
## Residual standard error: 8.732 on 90 degrees of freedom
## Multiple R-squared: 0.2006, Adjusted R-squared: 0.1829
## F-statistic: 11.29 on 2 and 90 DF, p-value: 4.202e-05
```

We can compare back to an "intercept-only" model.

```
r2Diff <- summary(out2)$r.squared - summary(out0)$r.squared
r2Diff
## [1] 0.2006386
anova (out0, out2)
## Analysis of Variance Table
##
## Model 1: price ~ 1
## Model 2: price ~ front + rear
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 92 8584.0
## 2 90 6861.7 2 1722.3 11.295 4.202e-05 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

We don't actually need to do the explicit model comparison, though.

```
r2Diff
## [1] 0.2006386
summary (out2) $r.squared
## [1] 0.2006386
anova (out0, out2) [2, "F"]
## [1] 11.29494
summary(out2)$fstatistic[1]
## value
## 11.29494
```

Compare Codings

Let's dig into some numerical properties of the three coding schemes.

Compare the parameter estimates to their theoretical equivalents:

```
coef(dcOut)[1] - grpMeans["4WD"]
## (Intercept)
## -1.421085e-14
coef(cmOut) - grpMeans
## 4WD Front Rear
## 0.000000e+00 7.105427e-15 -3.552714e-15
coef(ecOut)[1] - mean(grpMeans)
## (Intercept)
## -3.552714e-15
coef(wecOut)[1] - mean(cDat$price)
## (Intercept)
## -1.065814e-14
```

Compare the R^2 values from each coding scheme:

```
summary (dcOut) $r.squared
## [1] 0.2006386
summary.cellMeans(cmOut)$r.squared
## [1] 0.2006386
summary (ecOut) $r.squared
## [1] 0.2006386
summary (wecOut) $r.squared
## [1] 0.2006386
```

Compare the F-statistics:

```
summary(dcOut)$fstatistic
## value numdf dendf
## 11.29494 2.00000 90.00000
summary.cellMeans(cmOut)$fstatistic
## value numdf dendf
## 11.29494 2.00000 90.00000
summary(ecOut)$fstatistic
## value numdf dendf
## 11.29494 2.00000 90.00000
summary(wecOut)$fstatistic
## value numdf dendf
## 11.29494 2.00000 90.00000
```

Compare the residual standard errors:

```
summary (dcOut) $sigma
## [1] 8.731638
summary.cellMeans(cmOut)$sigma
## [1] 8.731638
summary (ecOut) $sigma
## [1] 8.731638
summary (wecOut) $sigma
## [1] 8.731638
```

Choosing a Coding Scheme

Any valid coding scheme will represent the information in the categorical variable equally well.

All valid coding schemes produce equivalent models.

We choose a particular coding scheme based on the interpretations that we want.

- Dummy coding is useful with a meaningful reference group.
 - Control group in an experiment
 - An "industry standard" or benchmark implementation of some feature
- Dummy coding is also preferred if we don't care about interpretation.
 - Dummy codes are the simplest to construct.

Choosing a Coding Scheme

- Cell-means coding is useful when you want to directly test for non-zero means within each group.
 - The interpretation of cell-means effects is probably the most intuitive of any coding scheme, as well.
- Weighted effects codes are good when you believe your sample is representative of the population.
 - Larger groups should be weighted more heavily in the model.
 - Parameter estimates will correctly generalize to the population.

Choosing a Coding Scheme

- Unweighted effects codes are good when the group sizes in your sample do not generalize to the population.
 - Convenience samples, for example, are usually not representative.
 - When your sample is not representative, larger groups should not be weighted more heavily.
 - Unweighted effects codes are "agnostic" to differing group sizes.
 - We need to be careful with very small groups.
- Weighted effects codes with known weights are another option.

Conclusion

When we use categorical predictors, they must be coded before entering the model.

- We discussed four of the most popular coding schemes:
 - 1. Dummy coding
 - 2. Cell-means coding
 - 3. Unweighted effects coding
 - 4. Weighted effects coding
- Apart from cell-means, these coding schemes differ primarily in how the "reference" group is defined.

All valid coding schemes produce equivalent models.

We choose a particular scheme for interpretational convenience.