Bit-encoding of canonical k-mers

Roland Wittler

Bielefeld University

DSB 2022

k-mers

$\begin{array}{l} \textit{k-mers} = \text{sequences of length } k \text{ over alphabet } \{A, C, G, T\} \\ \underline{\underline{\text{ATCGACTACAGCGT}}}... \end{array}$

Encoding

Roland Wittler Canonical k-mers DSB 2022 1/12

Canonical representative of $k\text{-mer }x=\min_{lex}\{x,\bar{x}\}$

AAAAA AAAAC ... ATTTT ... TAAAA ... TTTTG TTTTT TTTTT GTTTT AAAAT ... TTTTA CAAAA AAAAA

Canonical representative of k-mer $x = \min_{lex} \{x, \bar{x}\}$

Encoding

$$\frac{4^k}{2} \left\{ \begin{matrix} \text{AAAAA} \\ \text{AAAAC} \\ \vdots \\ \text{TTTTT} \end{matrix} \right. \Rightarrow \left. \begin{matrix} \text{A} \mapsto 00 \\ \text{C} \mapsto 01 \\ \text{G} \mapsto 10 \\ \text{T} \mapsto 11 \end{matrix} \right. \Rightarrow \left. \begin{matrix} \text{00 00 00 00 00 00} \\ \text{00 00 00 00 00} \\ \vdots \\ \text{11 11 11 11 11} \end{matrix} \right. \Rightarrow \left. \begin{matrix} \text{0} \\ \text{0} \\ \text{1} \\ \vdots \\ \text{14} \end{matrix} \right. \right.$$

Roland Wittler Canonical k-mers DSB 2022 2/12

canonical
$$k$$
-mers = $\frac{1}{2}$ # k -mers

 \triangleright 2 k-1 bits per k-mer

Encoding

$$\frac{4^k}{2} \begin{cases} \text{AAAAA} \\ \text{AAAAC} \\ \vdots \\ \text{TTTTT} \end{cases} \Rightarrow ? \Rightarrow 000000001 \Rightarrow 0 \\ \vdots \\ \frac{4^k}{2} - 1 \end{cases}$$

Roland Wittler Canonical k-mers DSB 2022 4 / 12

How to save one bit?

▶ What makes a *k*-mer canonical?

How to save one bit?

▶ What makes a *k*-mer canonical?

Encode from the outside inwards

AGATGAT

How to save one bit?

▶ What makes a *k*-mer canonical?

Encode from the outside inwards

AGATGAT

How to save one bit?

▶ What makes a *k*-mer canonical?

Encode from the outside inwards

AGATGAT

Encode from the outside inwards

unspecific pair

$$A \cdots T \mapsto 11 \cdots 11$$

$$C \cdots G \mapsto 11 \cdots 10$$

$${\tt G} \cdots {\tt C} \mapsto {\tt 11} \cdots {\tt 01}$$

$$\mathtt{T}\cdots\mathtt{A}\mapsto\mathtt{11}\cdots\mathtt{00}$$

Encode from the outside inwards

unspecific pair

$$A \cdots T \mapsto 11 \cdots 11$$

$$C \cdots G \mapsto 11 \cdots 10$$

$$G \cdots C \mapsto 11 \cdots 01$$

$$\mathtt{T}\cdots\mathtt{A}\mapsto\mathtt{11}\cdots\mathtt{00}$$

specifying case

$$\mathtt{A} \cdots \mathtt{A} \mapsto \mathtt{00} \cdots \mathtt{0}$$

$$\mathtt{A} \cdots \mathtt{C} \mapsto \mathtt{00} \cdots \mathtt{1}$$

$$\mathtt{A} \cdots \mathtt{G} \mapsto \mathtt{01} \cdots \mathtt{0}$$

$$\mathtt{C}\cdots\mathtt{A}\mapsto\mathtt{01}\cdots\mathtt{1}$$

$$C \cdots C \mapsto 10 \cdots 0$$

$$G \cdots A \mapsto 10 \cdots 1$$

$$A \mapsto 0$$

$$C\mapsto 1$$

Roland Wittler Canonical k-mers DSB

Encode from the outside inwards

unspecific pair

$$A \cdots T \mapsto 11 \cdots 11$$
 $C \cdots G \mapsto 11 \cdots 10$

$$G \cdots C \mapsto 11 \cdots 01$$

$$T \cdots A \mapsto 11 \cdots 00$$

specifying case

$$\mathtt{A}\cdots\mathtt{A}\mapsto\mathtt{00}\cdots\mathtt{0}$$

$$A \cdots C \mapsto 00 \cdots 1$$

 $A \cdots G \mapsto 01 \cdots 0$

$$C \cdots A \mapsto 01 \cdots 1$$

$$C \cdots C \mapsto 10 \cdots 0$$

$$G \cdots A \mapsto 10 \cdots 1$$

$$A \mapsto 0$$

$$C \mapsto 1$$

remainder

$$A \mapsto 00$$

$$C \mapsto 01$$

$$\mathtt{G}\mapsto \mathtt{10}$$

$$T \mapsto 11$$

6/12

Palindromes

- $ightharpoonup x = \overline{x} = canonical$
- \blacktriangleright # palindromes = $4^{k/2}$
- \blacktriangleright # non-palindromes = $4^k 4^{k/2}$
- ightharpoonup # canonical k-mers $= rac{1}{2}4^k rac{1}{2}4^{k/2} + 4^{k/2} \ > rac{1}{2}4^k$
- ▶ more than 2k-1 bits $\Rightarrow 2k$ bits

Palindromes

- $ightharpoonup x = \overline{x} = canonical$
- \blacktriangleright # palindromes = $4^{k/2}$
- # non-palindromes = $4^k 4^{k/2}$
- ightharpoonup # canonical k-mers $= rac{1}{2}4^k rac{1}{2}4^{k/2} + 4^{k/2} \ > rac{1}{2}4^k$
- ▶ more than 2k-1 bits $\Rightarrow 2k$ bits

Tweak new encoding

- ▶ span integer range $0, \ldots, \#$ canonical k-mers -1
- palindromes get highest ranks

Palindromes get highest ranks?!

- ightharpoonup non-palindromes: two k-mers = one canonical k-mer
- **palindrome**: one k-mer = one canonical k-mer

Palindromes get highest ranks?!

- ▶ non-palindromes: two k-mers = one canonical k-mer
- **p** palindrome: one k-mer = one canonical k-mer
- ▶ distribute canonical *k*-mers to buckets: heterogeneous bucket sizes

00000000	AAAA	01101110	CACG	01111000	TCGA
00000001	AAAC	01101110	CCAG	01111001	GCGC
00000010	AACA	01101111	AACT	01111010	CCGG
00000011	AACC	01101111	ACAT	01111011	ACGT
		01110000	TCCA	01111100	TATA
		01110001	GCCC	01111101	GATC
		01110010	CCCG	01111110	CATG
		01110011	ACCT	01111111	AATT
:	:	01110100	TAGA	10000000	TTAA
		01110100	TGAA	10000001	GTAC
		01110101	GAGC	10000010	CTAG
		01110101	GGAC	10000011	ATAT
01101100	TACA	01110110	CAGG	10000100	TGCA
01101100	TCAA	01110110	CGAG	10000101	GGCC
01101101	GACC	01110111	AAGT	10000110	CGCG
01101101	GCAC	01110111	AGAT	10000111	AGCT

Roland Wittler Canonical k-mers DSB 2022 9/12

Frigate [Brihadiswaran & Jayasena, Int. Conf. Bioinf. & Biomed. Techn., 2021]

- ▶ k-mer counter
- ightharpoonup in-memory: array of length 4^k
- multithreaded, lock-free array access

```
minimum = kmer;
if ( rc_kmer < kmer ) {
    minimum = rc_kmer;
}

pow(4, k_value)

pow(4, k_value) / 2  //k odd</pre>
```

Proof of concept

Proof of concept

Proof of concept

Conclusion

Summary

- ▶ 2k-1 bit encoding of canonical k-mers
- including palindromes
- ightharpoonup constant time transformation from 2k bit to 2k-1 bit

Conclusion

Summary

- ▶ 2k-1 bit encoding of canonical k-mers
- including palindromes
- ightharpoonup constant time transformation from 2k bit to 2k-1 bit

Questions

- Other encodings?
- Useful?

Conclusion

Summary

- ▶ 2k-1 bit encoding of canonical k-mers
- including palindromes
- ightharpoonup constant time transformation from 2k bit to 2k-1 bit

Questions

- Other encodings?
- Useful?

Thank you very much!

Outline

Appendix

Encode from the outside inwards

```
unspecific pair A \cdots T \mapsto 11 \cdots 11 C \cdots G \mapsto 11 \cdots 10 G \cdots C \mapsto 11 \cdots 01 T \cdots A \mapsto 11 \cdots 00
```

Encode from the outside inwards

unspecific pair $A\cdots T\mapsto 11\cdots 11$ $C\cdots G\mapsto 11\cdots 10$ $G\cdots C\mapsto 11\cdots 01$ $T\cdots A\mapsto 11\cdots 00$

specifying case $A \cdot \cdot \cdot A \mapsto OO \cdot \cdot \cdot O$ $A \cdot \cdot \cdot C \mapsto 00 \cdot \cdot \cdot 1$ $A \cdot \cdot \cdot G \mapsto 01 \cdot \cdot \cdot 0$ $C \cdots A \mapsto 01 \cdots 1$ $C \cdot \cdot \cdot C \mapsto 10 \cdot \cdot \cdot 0$ $G \cdot \cdot \cdot A \mapsto 10 \cdot \cdot \cdot 1$ $A \mapsto 0$ $C \mapsto 1$

Encode from the outside inwards

AGATGAT

11 10 00 11 10 1 11

unspecific pair

$$A \cdots T \mapsto 11 \cdots 11$$

$$\texttt{C}\cdots\texttt{G}\mapsto \texttt{11}\cdots\texttt{10}$$

$$G\cdots C\mapsto 11\cdots 01$$

$$\mathtt{T}\cdots\mathtt{A}\mapsto\mathtt{11}\cdots\mathtt{00}$$

specifying case

$$A \cdots A \mapsto 00 \cdots 0$$

$$A \cdots C \mapsto 00 \cdots 1$$

$$\mathtt{A}\cdots\mathtt{G}\mapsto\mathtt{01}\cdots\mathtt{0}$$

$$\texttt{C}\cdots \texttt{A} \mapsto \texttt{01}\cdots \texttt{1}$$

$$C \cdots C \mapsto 10 \cdots 0$$

$$G \cdots A \mapsto 10 \cdots 1$$

$$\mathtt{A} \mapsto \mathtt{0}$$

$$C \mapsto 1$$

remainder

$$\mathtt{A}\mapsto\mathtt{00}$$

$$\text{C}\mapsto \text{O1}$$

$$\mathtt{G}\mapsto\mathtt{10}$$

$$T\mapsto 11$$

Encode from the outside inwards

unspecific pair

$$A \cdots T \mapsto 11 \cdots 11$$
 $C \cdots G \mapsto 11 \cdots 10$

$$G \cdots C \mapsto 11 \cdots 01$$

$$T\cdots A\mapsto 11\cdots 00$$

specifying case

$$A \cdots A \mapsto 00 \cdots 0$$

$$\mathtt{A} \cdots \mathtt{C} \mapsto \mathtt{00} \cdots \mathtt{1}$$

$$\mathtt{A} \cdots \mathtt{G} \mapsto \mathtt{01} \cdots \mathtt{0}$$

$$\texttt{C}\cdots \texttt{A} \mapsto \texttt{01}\cdots \texttt{1}$$

$$C \cdots C \mapsto 10 \cdots 0$$

$$G \cdots A \mapsto 10 \cdots 1$$

$$A \mapsto 0$$

$$C \mapsto 1$$

remainder

$$\mathtt{A} \mapsto \mathtt{00}$$

$$C\mapsto 01$$

$$\mathtt{G}\mapsto \mathtt{10}$$

$$T\mapsto 11\,$$

Roland Wittler

Encode from the outside inwards

$$\underset{11}{\text{A}} \underset{10}{\text{G}} \underset{00}{\text{A}} \underset{11}{\text{T}} \underset{10}{\text{G}} \underset{11}{\text{A}} \underset{11}{\text{T}} = \underset{11}{\overline{\text{A}}} \underset{11}{\overline{\text{T}}} \underset{11}{\overline{\text{C}}} \underset{11}{\overline{\text{A}}} \underset{11}{\overline{\text{T}}} \underset{11}{\overline{\text{C}}}$$

unspecific pair $A \cdots T \mapsto 11 \cdots 11$ $C \cdots G \mapsto 11 \cdots 10$

$$G \cdots C \mapsto 11 \cdots 01$$

$$T \cdots A \mapsto 11 \cdots 00$$

specifying case

$$A \cdots A \mapsto 00 \cdots 0$$

 $A \cdots C \mapsto 00 \cdots 1$

$$A \cdots G \mapsto 01 \cdots 0$$

$$C \cdots A \mapsto 01 \cdots 1$$

$$C \cdots C \mapsto 10 \cdots 0$$

$$G \cdots A \mapsto 10 \cdots 1$$

$$\mathtt{A}\mapsto\mathtt{O}$$

$$C \mapsto 1$$

remainder

$$\mathtt{A} \mapsto \mathtt{00}$$

$$C\mapsto 01$$

$$\mathtt{G}\mapsto \mathtt{10}$$

$$T\mapsto 11$$

Encode from the outside inwards

$$A G A T G A T = \overline{A T C A T C T}$$

unspecific pair $A \cdots T \mapsto 11 \cdots 11$ $C \cdots G \mapsto 11 \cdots 10$ $G \cdots C \mapsto 11 \cdots 01$ $T \cdots A \mapsto 11 \cdots 00$

remainder $A \mapsto 00$ $C \mapsto 01$ $G \mapsto 10$ $T \mapsto 11$

New encoding (k odd)

Encode from the outside inwards

$$A G A T G A T = \overline{A T C A T C T}$$

unspecific pair $A \cdots T \mapsto 11 \cdots 11$ $C \cdots G \mapsto 11 \cdots 10$ $G \cdots C \mapsto 11 \cdots 01$ $T \cdots A \mapsto 11 \cdots 00$

remainder $A \mapsto 00$ $C \mapsto 01$ $G \mapsto 10$ $T \mapsto 11$

Roland Wittler Canonical k-mers DSB 2022 13 / 12

New encoding (k odd)

Encode from the outside inwards

$$A G A T G A T = \overline{A T C A T C T}$$

```
unspecific pair
A \cdots T \mapsto 11 \cdots 11
C \cdots G \mapsto 11 \cdots 10
G \cdots C \mapsto 11 \cdots 01
T \cdots A \mapsto 11 \cdots 00
```


remainder $\begin{array}{c} \text{A} \mapsto 00 \\ \text{C} \mapsto 01 \\ \text{G} \mapsto 10 \\ \text{T} \mapsto 11 \end{array}$

Bijectiveness

decoding

New encoding (k odd)

00000	AAA	10000	CAC
00001	AAC	10001	GAA
00010	ACA	10010	CCC
00011	ACC	10011	GCA
00100	AGA	10100	CGC
00101	AGC	10101	GGA
00110	ATA	10110	CTC
00111	ATC	10111	GTA
01000	AAG	11000	TAA
01001	CAA	11001	GAC
01010	ACG	11010	CAG
01011	CCA	11011	AAT
01100	AGG	11100	TCA
01101	CGA	11101	GCC
01110	ATG	11110	CCG
01111	CTA	11111	ACT

2-bit encoding: shift/update (const. time)

Roland Wittler Canonical k-mers DSB 2022 15 / 12

```
2-bit encoding: shift/update (const. time)

AGATAT → 00 10 00 11 00 11
GATATA → 10 00 11 00 11 00

new encoding: shift/update (const. time) + shorten (const. time)

AGATAT → 00 10 00 11 00 11 → 11 10 00 11 11
GATATA → 10 00 11 00 11 01 → 10 00 11 11
```

Roland Wittler Canonical k-mers DSB 2022 15/12

111110011101011

```
Shorten: 2-bit \Rightarrow new encoding (const. time)  k\text{-mer }x \quad \text{A C C C T C G T} \\ \overline{x} \quad \text{A C G A G G G T}  2-bit: x \quad 0001010111011011 \overline{x} \quad 000110001010111 \\ \text{XOR} \quad 00001101011110000  count leading zeros 4
```

_111110011101011

```
Shorten: 2-bit \Rightarrow new encoding (const. time)
            k-mer x A C C C T C G T
                  \overline{x} ACGAGGGT
            2-bit: x 0001010111011011
                  \overline{x} 000110001010111
               XOR 0000110101110000
 count leading zeros
                      0000000000001011
                      _111101011100000
                OR _1111010111101011
  set specifying pos. _111110011101011
```

Roland Wittler Canonical k-mers DSB 2022 16 / 12

Encoding palindromes

unspecific pair

$$A \cdots T \mapsto 11 \cdots 11$$

$$C \cdots G \mapsto 11 \cdots 10$$

$${\tt G} \cdots {\tt C} \mapsto {\tt 11} \cdots {\tt 01}$$

$$\mathtt{T}\cdots\mathtt{A}\mapsto\mathtt{11}\cdots\mathtt{00}$$

specifying case

$$\mathtt{A} \cdots \mathtt{A} \mapsto \mathtt{00} \cdots \mathtt{0}$$

$$A \cdots C \mapsto 00 \cdots 1$$

$$\mathtt{A} \cdots \mathtt{G} \mapsto \mathtt{01} \cdots \mathtt{0}$$

$$C \cdots A \mapsto 01 \cdots 1$$

$$C \cdots C \mapsto 10 \cdots 0$$

$${\tt G} \cdots {\tt A} \mapsto {\tt 10} \cdots {\tt 1}$$

$$A\mapsto 0$$

$$C \mapsto 1$$

remainder

$$\mathtt{A}\mapsto\mathtt{00}$$

$$C\mapsto 01$$

$$\mathtt{G}\mapsto \mathtt{10}$$

$$T\mapsto 11\,$$

Encoding palindromes

unspecific pair

$$A \cdots T \mapsto 11 \cdots 11$$

$$C \cdots G \mapsto 11 \cdots 10$$

$$G\cdots C\mapsto 11\cdots 01$$

$$\mathtt{T}\cdots\mathtt{A}\mapsto\mathtt{11}\cdots\mathtt{00}$$

specifying case

$$\mathtt{A} \cdots \mathtt{A} \mapsto \mathtt{00} \cdots \mathtt{0}$$

$$A \cdots C \mapsto 00 \cdots 1$$

$$\mathtt{A}\cdots\mathtt{G}\mapsto\mathtt{01}\cdots\mathtt{0}$$

$$\mathtt{C}\cdots\mathtt{A}\mapsto\mathtt{01}\cdots\mathtt{1}$$

$$C \cdots C \mapsto 10 \cdots 0$$

$${\tt G}\cdots {\tt A}\mapsto {\tt 10}\cdots {\tt 1}$$

$$A\mapsto 0$$

$$C \mapsto 1$$

palindrome identified

$$\mathtt{AT} \mapsto \mathtt{011} \cdots \mathtt{111}$$

$$GC \mapsto 100 \cdots 001$$

$$\mathtt{TA} \mapsto \mathtt{100} \cdots \mathtt{000}$$

Encoding palindromes

unspecific pair

$$A \cdots T \mapsto 11 \cdots 11$$

$$C \cdots G \mapsto 11 \cdots 10$$

$$G\cdots C\mapsto 11\cdots 01$$

$$\texttt{T}\cdots \texttt{A} \mapsto \texttt{11}\cdots \texttt{00}$$

specifying case

$$\mathtt{A} \cdots \mathtt{A} \mapsto \mathtt{00} \cdots \mathtt{0}$$

$$\mathtt{A} \cdots \mathtt{C} \mapsto \mathtt{00} \cdots \mathtt{1}$$

$$\mathtt{A} \cdots \mathtt{G} \mapsto \mathtt{01} \cdots \mathtt{0}$$

$$\mathtt{C}\cdots\mathtt{A}\mapsto\mathtt{01}\cdots\mathtt{1}$$

$$C \cdots C \mapsto 10 \cdots 0$$

$${\tt G}\cdots {\tt A}\mapsto {\tt 10}\cdots {\tt 1}$$

$$\mathtt{A}\mapsto\mathtt{0}$$

$$C \mapsto 1$$

palindrome identified

$$AT \mapsto 011 \cdots 111$$

$$GC \mapsto 100 \cdots 001$$

$$\mathtt{TA} \mapsto \mathtt{100} \cdots \mathtt{000}$$

Encoding palindromes

unspecific pair

$$\mathtt{A}\cdots\mathtt{T}\mapsto\mathtt{11}\cdots\mathtt{11}$$

$$\texttt{C}\cdots \texttt{G} \mapsto \texttt{11}\cdots \texttt{10}$$

$$G\cdots C\mapsto 11\cdots 01$$

$$\mathtt{T}\cdots\mathtt{A}\mapsto\mathtt{11}\cdots\mathtt{00}$$

specifying case

$$\mathtt{A} \cdots \mathtt{A} \mapsto \mathtt{00} \cdots \mathtt{0}$$

$$\mathtt{A} \cdots \mathtt{C} \mapsto \mathtt{00} \cdots \mathtt{1}$$

$$\mathtt{A} \cdots \mathtt{G} \mapsto \mathtt{01} \cdots \mathtt{0}$$

$$\mathtt{C}\cdots\mathtt{A}\mapsto\mathtt{01}\cdots\mathtt{1}$$

$$C \cdots C \mapsto 10 \cdots 0$$

$${\tt G} \cdots {\tt A} \mapsto {\tt 10} \cdots {\tt 1}$$

$$\mathtt{A} \mapsto \mathtt{0}$$

$$C \mapsto 1$$

palindrome identified

$$AT \mapsto 011 \cdots 111$$

$$GC \mapsto 100 \cdots 001$$

$$\texttt{TA} \mapsto \texttt{100} \cdots \texttt{000}$$