FM/FFM 概述 [1]

leolinuxer

July 23, 2020

Contents

1	則置	知识	1
	1.1	线性回归模型	1
	1.2	非负矩阵分解	2
2	\mathbf{FM}	模型	2
	2.1	FM 模型的方程推导	3
	2.2	FM 模型的假设	3
	2.3	FM 模型的计算	3
	2.4	FM 模型训练	4
	2.5	FM 模型总结	4
		2.5.1 FM 模型优点	4
		25.2 经处面归 vo EM	Ē

1 前置知识

1.1 线性回归模型

线性回归模型如下:

$$y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n \Rightarrow y = w_0 + \sum_{i=1}^n w_i x_i$$

线性回归模型的假设:

- 特征之间相互独立不相关;
- 特征的作用是可以叠加的;

线性回归模型假设特征之间是相互独立的、不相关的。但在某些场景中,特征之间往往是相关的,而不是相互独立的。比如 < 女性 > 和 < 化妆品 >, < 程序员 > 与 < 计算机类书籍 >, 所以需要特征组合。

特征两两组合,得到二阶多项式如下:

$$y = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} w_{ij} x_i x_j$$

其中,n 代表样本的特征数量, x_i 是第 i 个特征的值, w_0, w_i, w_{ij} 是模型参数。则组合特征的参数一 共有 n(n-1)/2 个,任意两个参数是独立的。

1.2 非负矩阵分解

非负矩阵: 所有元素非负。若 X 是非负矩阵, 记作 $X \ge 0$ 。

非负矩阵分解: 给定一个非负矩阵 $X \ge 0$, 找到两个非负矩阵 $W \ge 0$ 和 $H \ge 0$, 使得:

$$X \approx WH$$

即将非负矩阵 X 分解为两个非负矩阵 W, H 的乘积形式, 称为非负矩阵分解。

非负矩阵分解的例子如下:

我们把每个 user 表示成一个二维向量,同时把每个 item 表示成一个二维向量,两个向量的点积就是矩阵中 user 对 item 的打分,写成非负矩阵分解形式如下:

特征关系的向量化,则得 FM 模型。

2 FM 模型

论文: Factorization Machines

因子分解机模型,即 Factorization Machine Model,简称 FM。

2.1 FM 模型的方程推导

上述二阶多项式的二项式参数 w_{ij} 可以组成一个<mark>对称矩阵 W</mark>,那么这个矩阵可以分解为: $W = V^T V$,V 的第 j 列便是第 j 维特征的特征向量,即 W_{ij} 的每个参数都可以表示为:

$$W_{ij} = \langle V_i, V_j \rangle$$

这就是 FM 的核心思想。

即上述二阶多项式可以写成:

$$y = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle v_i, v_j \rangle x_i x_j$$

这边是 FM 的方程。其中, v_i 是第 i 维特征的隐向量,隐向量的长度为 k,包含 k 个描述特征的因子; $<\cdot,\cdot>$ 代表向量点积,即 $< v_i,v_j>=\sum_{f=1}^k v_{i,f}v_{j,f}$ 。

2.2 FM 模型的假设

- 特征之间两两相关;
- 特征的作用是可以叠加的;

2.3 FM 模型的计算

利用矩阵直观化推导 FM 模型的计算,具体推导如下。 根据 FM 的二阶多项式,扩充后得到如下矩阵:

$< v_1, v_1 > x_1 x_1$	$< v_1, v_2 > x_1 x_2$		$< v_1, v_{n-1} > x_1 x_{n-1}$	$< v_1, v_n > x_1 x_n$
$< v_2, v_1 > x_2 x_1$	$< v_2, v_2 > x_2 x_2$		$< v_2, v_{n-1} > x_2 x_{n-1}$	$\langle v_2, v_n \rangle x_2 x_n$
1	1	i	:	1
$< v_{n-1}, v_1 > x_{n-1}x_1$	$< v_{n-1}, v_2 > x_{n-1}x_2$	•••	$< v_{n-1}, v_{n-1} > x_{n-1}x_{n-1}$	$< v_{n-1}, v_n > x_{n-1}x_n$
$< v_n, v_1 > x_n x_1$	$\langle v_n, v_2 \rangle x_n x_2$	•••	$< v_n, v_{n-1} > x_n x_{n-1}$	$\langle v_n, v_n \rangle x_n x_n$

矩阵上三角(绿色部分)的元素之和即为 FM 的二阶部门:

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} < v_i, v_j > x_i x_j$$

等于矩阵的全部元素之和减去对角线元素之和,再除以二:

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle v_i, v_j \rangle x_i x_j = \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \langle v_i, v_j \rangle x_i x_j - \sum_{i=1}^{n} \langle v_i, v_i \rangle x_i x_i \right)$$

FM 模型的二次项化简推导过程如下:

$$\begin{split} \sum_{i=1}^{n} \sum_{j=i+1}^{n} < v_{i}, v_{j} > x_{i}x_{j} &= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} < v_{i}, v_{j} > x_{i}x_{j} - \sum_{i=1}^{n} < v_{i}, v_{i} > x_{i}x_{i} \right) \\ &= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{f=1}^{k} v_{i,f}v_{j,f}x_{i}x_{j} - \sum_{i=1}^{n} \sum_{f=1}^{k} v_{i,f}v_{i,f}x_{i}x_{i} \right) \\ &= \frac{1}{2} \sum_{f=1}^{k} \left[\left(\sum_{i=1}^{n} v_{i,f}x_{i} \right) \left(\sum_{j=1}^{n} v_{j,f}x_{j} \right) - \sum_{i=1}^{n} v_{i,f}^{2}x_{i}^{2} \right] \\ &= \frac{1}{2} \sum_{f=1}^{k} \left[\left(\sum_{i=1}^{n} v_{i,f}x_{i} \right)^{2} - \sum_{i=1}^{n} v_{i,f}^{2}x_{i}^{2} \right] \qquad (i \ \text{和 j } \text{ 是等价的}) \end{split}$$

即 FM 模型方程 (时间复杂度为 O(kn²)):

$$y = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle v_i, v_j \rangle x_i x_j$$

可以转化为 (时间复杂度为 O(kn)):

$$y = w_0 + \sum_{i=1}^{n} w_i x_i + \frac{1}{2} \sum_{f=1}^{k} \left[\left(\sum_{i=1}^{n} v_{i,f} x_i \right)^2 - \sum_{i=1}^{n} v_{i,f}^2 x_i^2 \right]$$

同时,在稀疏数据场景下,很多特征为0,所以只需要计算非零特征就行,这样可以极大提升计算效率。

2.4 FM 模型训练

FM 可以采用随机梯度下降的方法进行训练。

FM 模型各个参数的梯度如下:

$$\frac{\partial \hat{y}(x)}{\partial \theta} = \begin{cases}
1 & \text{if } \theta \text{ is } w_0 \\
x_i & \text{if } \theta \text{ is } w_i \\
x_i \sum_{j=1}^n v_{j,f} x_j - v_{j,f} x_i^2 & \text{if } \theta \text{ is } v_{i,f}
\end{cases}$$

2.5 FM 模型总结

2.5.1 FM 模型优点

- 适用于高度稀疏化的数据场景;
- 具有线性复杂度;

2.5.2 线性回归 vs FM

FM 模型由线性回归模型演化出来。二者的最大区别是:线性回归模型的特征独立,而 FM 模型的特征两两相关。

References

[1] "Fm 因子分解机模型的原理、推导、代码和应用." [Online]. Available: https://zhuanlan.zhihu.com/p/145436595