DREAM Challenge 2022 Predicting Gene Expression Using a Residual CNN

A description of team Camformers' submission (4th place) to the DREAM 2022 challenge "Predicting gene expression using millions of random promoter sequences".

Fredrik Svensson¹, Maria-Anna Trapotsi², <u>Susanne Bornelöv</u>²

¹Alzheimer's Research UK UCL Drug Discovery Institute, University College London, UK ²Cancer Research UK Cambridge Institute, University of Cambridge, UK

DREAM Challenge 2022

"Predicting gene expression using millions of random promoter sequences"

Task

Train a sequence-to-expression model using 6.7 million random promoter sequences

Data

110 nt sequences + expression

Evaluation

71,103 unseen sequences

DREAM challenge results

Predicting gene expression using millions of random promoter sequences

DREAM Challenge 2022

IBM Research

Google Research TPU Research Cloud

100+ teams participating27 final submissions

Position	Team Name	Mean rank in competition metrics
1	autosome.org	1.01175
2	BHI - dream challenge	1.98825
3	Unlock_DNA	3.6497
4	Camformers	4.5854
5	NAD	5.81105
5	wztr	5.8152
7	High Schoolers Are All You Need	7.21835
8	BioNML	7.93655
9	BUGF	8.5263
10	mt	9.3033

Sequence representation

110 nt sequences and their expression

Illustration from Al-Ajlan & El Allali, 2019

Data processing

- Data inclusion criteria
 - No more than three "N"
 - Length 110 ±3 nt
 - Padding with N and truncation at 110
- Data split
 - Model design and hyperparameter optimisation
 - Training set (72%), validation set (8%), test set (20%)
 - Final submission
 - Training set (90%), validation set (10%)

Model architecture

16,611,073 trainable parameters

Optimisation
AdamW, L1 loss, ReduceLROnPlateau
Early stopping
No improvement in r+p for 10 epochs

Model training

T, training; V, validation

	T loss	V loss	Тr	V r	T rho	V rho	
Epoch 1:	1.3174	1.3255	0.6716	0.7136	0.6909	0.7293	*
Epoch 2:	1.2353	1.1921	0.7153	0.7320	0.7315	0.7503	*
Epoch 3:	1.2092	1.1782	0.7267	0.7382	0.7428	0.7552	*
Epoch 4:	1.1962	1.1802	0.7318	0.7387	0.7480	0.7571	*
Epoch 5:	1.1876	1.1669	0.7350	0.7423	0.7513	0.7594	*
Epoch 6:	1.1806	1.1731	0.7376	0.7436	0.7539	0.7605	*
Epoch 7:	1.1754	1.1589	0.7396	0.7445	0.7559	0.7619	*
Epoch 8:	1.1710	1.1576	0.7412	0.7454	0.7576	0.7627	*
Epoch 9:	1.1671	1.1574	0.7427	0.7452	0.7591	0.7624	
Epoch 10:	1.1634	1.1589	0.7439	0.7455	0.7603	0.7633	*
Epoch 11:	1.1606	1.1650	0.7447	0.7463	0.7613	0.7635	*
Epoch 12:	1.1577	1.1537	0.7457	0.7467	0.7623	0.7641	*
Epoch 13:	1.1551	1.1692	0.7467	0.7463	0.7633	0.7642	
Epoch 14:	1.1528	1.1625	0.7475	0.7463	0.7640	0.7638	
Epoch 15:	1.1507	1.1561	0.7482	0.7469	0.7648	0.7648	*
Epoch 16:	1.1487	1.1576	0.7489	0.7465	0.7655	0.7642	
Epoch 17:	1.1466	1.1590	0.7495	0.7467	0.7661	0.7647	
Epoch 18:	1.1451	1.1608	0.7500	0.7475	0.7667	0.7648	*
Epoch 19:	1.1429	1.1558	0.7508	0.7463	0.7675	0.7640	
Epoch 20:	1.1411	1.1559	0.7513	0.7464	0.7681	0.7639	
Epoch 21:	1.1399	1.1576	0.7517	0.7471	0.7684	0.7647	
Epoch 22:	1.1381	1.1542	0.7524	0.7468	0.7690	0.7644	
Epoch 23:	1.1366	1.1688	0.7528	0.7457	0.7695	0.7637	
Epoch 24:	1.1200	1.1509	0.7581	0.7481	0.7748	0.7655	*
Epoch 25:	1.1161	1.1500	0.7594	0.7480	0.7761	0.7654	
Epoch 26:	1.1138	1.1552	0.7601	0.7479	0.7769	0.7653	
Epoch 27:	1.1123	1.1511	0.7606	0.7478	0.7774	0.7652	
Epoch 28:	1.1110	1.1509	0.7610	0.7478	0.7778	0.7653	
Epoch 29:	1.1096	1.1510	0.7614	0.7479	0.7783	0.7653	
Epoch 30:	1.1085	1.1510	0.7618	0.7479	0.7786	0.7653	
Epoch 31:	1.1074	1.1500	0.7621	0.7481	0.7790	0.7654	
Epoch 32:	1.1064	1.1534	0.7624	0.7476	0.7793	0.7651	
Epoch 33:	1.1058	1.1539	0.7626	0.7470	0.7795	0.7647	
Epoch 34:	1.1050	1.1559	0.7628	0.7474	0.7797	0.7651	

Performance on validation set

(660,559 sequences)

Model fine-tuning

- Optuna
 - Batch size, learning rate, weight decay,
 - Kernel size, number of layers, number of channels, dropout rates
 - Position(s) of max pooling
 - Max pooling operation at the penultimate layer improved generalisation

Tricks that did not work (in our hands...)

- Manipulation of target values
 - Quantile normalization (no difference)
 - Add noise (no difference)
- Preprocessing
 - Extend/shorten flanking sequence length (no difference)
- Data augmentation
 - Upsample distribution tails (no difference or reduced performance)
 - Extend and cut sequences (no difference)
 - Reverse-complement sequences (reduced performance)

<u>Caveat</u>: Evaluation was done on a model that differs from the final submission.

Performance breakdown

Category	# Sequences	PearsonR	Rank	Spearman	Rank	Weight
All	71103	0.956	6 th	0.961	5 th	1.00
High expression	968	0.557	8 th	0.575	6 th	0.30
Low expression	997	0.622	6 th	0.611	3 rd	0.30
Native	578	0.825	5 th	0.818	6 th	0.30
Random	6349	0.968	6 th	0.972	5 th	0.30
Challenging	1953	0.941	4 th	0.940	3 rd	0.50
SNVs	44340	0.821	5 th	0.674	7 th	1.25
TFBS perturbation	3287	0.975	4 th	0.959	8 th	0.30
Motif tiling	2624	0.899	16 th	0.912	9 th	0.40

Based on all data with no subsampling

100+ teams participating 27 final submissions

Overall	0.787	4 th
ScoreSpearman	0.821	4 th
ScorePearsonR ²	0.753	5 th

Contact

Fredrik Svensson, Senior Research Associate
Alzheimer's Research UK UCL Drug Discovery Institute, University College London
The Cruciform Building, Gower Street, London, WC1E 6BT, United Kingdom

Maria-Anna Trapotsi, Bioinformatician Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom

Susanne Bornelöv, Senior Research Associate
Cancer Research UK Cambridge Institute, University of Cambridge
Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
susanne.bornelov@cruk.cam.ac.uk

