IOT ENABLED HYDROPONIC FARM MONITORING USING ARDUINO & CLOUD

THESIS CASE STUDY

by

Jason Alexander Tan 2440042310

BINUS INTERNATIONAL BINUS UNIVERSITY JAKARTA 2024

IOT ENABLED HYDROPONIC FARM MONITORING USING ARDUINO & CLOUD

THESIS

Proposed as a requirement for obtaining
Sarjana degree at
Business Information Systems
Master Track (Macquarie) – Information Systems Management
Education Level Strata-1 (Sarjana/Bachelor)

by

Jason Alexander Tan 2440042310

BINUS INTERNATIONAL BINUS UNIVERSITY JAKARTA 2024

THESIS

Prepared by:

Jason Alexander Tan 2440042310

Approved by:

Supervisor

Samuel Mahatmaputra T, S.Kom., M.Info.Tech Lecture Code: D2131

> BINUS UNIVERSITY Jakarta 2024

BINUS INTERNATIONAL

FM-BINUS-AA-FPU-442/R1

STATEMENT FROM THE BOARD OF EXAMINERS

We, the members of the Board of Examiners for the S-1 Thesis Defense, Hereby declare that

JASON ALEXANDER TAN (2440042310)

Who presented an S-1 Thesis entitle

IOT ENABLED HYDROPONIC FARM MONITORING USING ARDUINO & CLOUD

People
Innovation
Excellence

Successfully passed the S-1 Thesis Defense Examination conducted on 19 December 2023

Name Signature

1. Chair Dr. Michael Baskara L. A. Siek, S.Si., S.Kom., M.Sc.

2. Member Dr.-Ing Rein Suadamara, S.Kom, M.Si.

3. Supervisor Samuel Mahatmaputra T, S.Kom., M.Info.Tech

JWC Campus

Jl. Hang Lekir I No.6 Senayan, Jakarta 10270 Indonesia

t. +6221 720 2222, 720 3333 f. +6221 720 8569, 720 5555 e.inquiry-jwc@binus.edu

PERNYATAAN STATEMENT

Dengan ini, saya/kami,

With this, I/We,

Nama (Name): JASON ALEXANDER TAN

NIM (Student ID): 2440042310

Judul Tesis (Thesis Title): IOT ENABLED HYDROPONIC FARM

MONITORING USING ARDUINO & CLOUD

Memberikan kepada Universitas Bina Nusantara hak non-eksklusif untuk menyimpan, memperbanyak, dan menyebarluaskan tesis saya/kami, secara keseluruhan atau hanya sebagian atau hanya ringkasannya saja, dalam bentuk format tercetak atau elektronik.

Hereby grant to my/our school, Bina Nusantara University, the non-exclusive right to archive, reproduce, and distribute my/our thesis, in whole or in part, whether in the form of a printed or electronic format.

Menyatakan bahwa saya/kami, akan mempertahankan hak exclusive saya/kami, untuk menggunakan seluruh atau sebagian isi tesis saya/kami, guna pengembangkan karya di masa depan, misalnya dalam bentuk artikel, buku, perangkat lunak, ataupun sistem informasi.

I/We acknowledge that I/we retain exclusive rights of my/our thesis by using all or part of it in a future work or output, such as an article, a book, software, or information system.

Catatan: Pernyataan ini dibuat dalam 2 (dua) bahasa, Indonesia dan Inggris, dan apabila terdapat perbedaan penafsiran, maka yang berlaku adalah versi Bahasa Indonesia.

Note: This Statement is made in 2 (two) languages, Indonesian and English, and in the case of a different interpretation, the Indonesian version shall prevail.

Jakarta, 11/04/2023

Jason Alexander Tan

2440042310

BINUS INTERNATIONAL BINUS UNIVERSITY

Business Information Systems

Master Track (Macquarie) – Information Systems Management

Sarjana Komputer Thesis

Odd Semester 2023

IOT ENABLED HYDROPONIC FARM MONITORING USING ARDUINO & CLOUD

Jason Alexander Tan 2440042310

Abstract

This case study focuses on the development of an Arduino and PHP based integrated hydroponic farm monitoring system by leveraging IoT and cloud technologies. The system's objective is to deliver relevant environmental parameter data, such as parts per million (PPM), pH levels, CO₂ levels, humidity, and temperature, to greatly optimize the routine hydroponic monitoring activity performed by JUST HYDROPONICS.

Preliminary information collection is done qualitatively, which is used in the system's conception process. The Arduino is used as the sensor. The detailed specifications of the Arduino's software and hardware are discussed in detail, including the specific models of the components and subcomponents used in the creation of the Arduino prototype, which are specifically compatible with Arduino. The web application provides the users with an interface to visualize the collected data. The web API, which is built into the web application serves as a receiver for data from the Arduino. The design of the web application and API are also discussed in detail. The cloud platform provides application hosting, data storage, and remote access to the system.

Primary evaluation of the system's performance is done by studying the system's accuracy and reliability. A secondary evaluation is done qualitatively by directly interviewing JUST HYDROPONICS's owners & management about the system's impact and effectiveness.

The findings of this case study contribute to the progress of research on IoT and precision agriculture, which are highly important fields in addressing the sustainability and security of food in the world. The findings of this case study should be easily adaptable to a variety of hydroponic farm types.

Key Words

IOT, Hydroponic, Farm, Arduino, Cloud

Acknowledgements

This case study is dedicated to a few people, without whom I would have to endure unspeakable difficulties to get to where I am today. Words alone cannot express how grateful I am to have their unyielding support and company.

- 1. To my core family, especially my mother, to whom I owe everything.
- 2. To my extended family, which have been so kind and supportive as to allow me to use their business as the object of this case study and put up with my annoyingly large number of questions.
- 3. To my girlfriend, for her unwavering support, for her words of encouragement, and for her extraordinary ability to calm me down when times are difficult.
- 4. To my closest friends, for their invaluable friendship, their company, and the laughs we shared, which has opened many doors to me, be it physical, mental, or emotional.
- 5. To my thesis supervisor, Samuel Mahatmaputra T, S.Kom., M.Info.Tech., for providing me with invaluable guidance and inspiration during my thesis period and throughout the years since I started studying in Binus International, for being the lecturer who taught me the very lessons that are quintessential to my ability to perform this case study, for being the anchor of stability in my efforts of navigating Binus's bureaucratic nightmare for Master Track, all of which were crucial in enabling me to finish this case study.

Table of Contents

Statement From Board of Examiners	iii
Personal Statement	iv
Abstract	v
Acknowledgements	vi
Table of Contents	vii
List of Tables	xi
List of Figures	xii
Chapter 1 – Introduction	1
1.1 Introduction	1
1.2 Background	1
1.3 Object of Study	3
1.4 Case Study Objectives	4
1.5 Research Questions.	5
1.6 Hypothesis	5
1.7 Scope & Limitations	8
1.8 Case Study Outline.	9
1.8.1 Chapter 1 - Introduction	9
1.8.2 Chapter 2 – Theoretical Foundation	10
1.8.3 Chapter 3 – Problem	10
1.8.4 Chapter 4 – Solution Design	10
1.8.5 Chapter 5 – Solution Implementation	11
1.8.6 Chapter 6 – Evaluation & Discussion	11
1.8.7 Chapter 7 – Conclusion & Recommendation	11
Chapter 2 – Theoretical Foundation.	12
2.1 Theoretical Foundation of the Hydroponic Sensor	12
2.1.1 Arduino Uno	12
2.1.2 Wi-Fi Module	15
2.1.3 Water Temperature Sensor	23
2.1.4 Humidity Sensor.	27
2.1.5 CO2 Sensor.	30
2.1.6 pH Sensor	36
2.1.7 PPM Sensor	39

2.1.8 Possible Alternatives	44
2.2 Theoretical Foundation of the Web Application	46
2.2.1 PHP	46
2.2.2 HTML & CSS	48
2.2.3 JavaScript.	49
2.2.4 XAMPP	50
2.2.5 Amazon Web Services (AWS)	52
2.3 Literature Review.	54
2.3.1 "DIY Hydroponic Garden w/ Arduino and IoT"	55
2.3.2 "ESP8266 + Arduino + Database"	56
2.3.3 "Sending Data to Thingspeak Website Using ESP8266"	57
Chapter 3 – Problem Analysis.	59
3.1 Current Processes.	59
3.1.1 Data Measurement & Collection	59
3.1.2 Data Storage.	60
3.2 Problem Analysis.	60
3.2.1 Data Vulnerability	60
3.2.2 Arduous Data Management	61
3.2.3 Labor Intensive.	61
3.2.4 Reduces Accuracy & Inconsistency	62
3.2.5 Delayed Response.	62
3.2.6 Inefficient Allocation of Financial Resources	63
3.3 Empathy Map.	64
3.4 Value Proposition Canvas	64
Chapter 4 – Solution Design.	66
4.1 Arduino.	66
4.1.1 Architecture Overview	66
4.1.2 Loop Cycle	67
4.1.3 Data Collection Frequency	67
4.1.4 Unit Cost	67
4.2 Web Application.	68
4.2.1 Architecture Overview	68
4.2.2 Class Diagram.	69

	4.2.3 Design Pattern	70
	4.2.4 Use Case	72
	4.2.5 User Interface.	74
	4.2.6 Database	76
	4.2.7 Arduino API.	76
4.3 Cl	loud Deployment	77
4.4 Te	esting Plan	78
Chap	ter 5 – System Implementation	80
5.1 A	rduino	80
	5.1.1 Architecture	80
	5.1.2 Code Structure	82
	5.1.3 The Code	84
5.2 W	eb Application	95
	5.2.1 Application Code Structure	95
	5.2.2 Database & API.	99
	5.2.3 Cloud Deployment	101
Chap	ter 6 – Evaluation & Discussion	115
6.1 Ev	valuation	115
	6.1.1 Methodology	115
	6.1.2 Arduino	115
	6.1.3 Web Application	121
	6.1.4 End-to-End.	124
	6.1.5 Research Questions & Hypothesis Evaluation	130
6.2 D	iscussion	132
	6.2.1 Not Ready for Commercialization	133
	6.2.2 Range Extension.	133
	6.2.3 Wi-Fi Reliability	134
	6.2.4 Data Collection Frequency	134
	6.2.5 Documentation Scarcity	135
	6.2.6 UI Design Simplicity	135
Chap	ter 7 - Conclusion & Recommendation	136
7 1 C	onclusion	136

7.2 Recommendation	137
References	139
Curriculum Vitae	143
Appendices	144

List of Tables

Table 2.1 – MH-Z19B Technical Specifications	30
Table 2.2 – MH-Z19B Recommended Software Settings	31
Table 2.3 – Specifications of the TDS Signal Transmitter Board (DFRobot, n.d.)	40
Table 2.4 – Specifications of the TDS Probe (DFRobot, n.d.)	40
Table 4.1 – Unit Cost	67

List of Figures

Figure 1.1 – Just Hydroponics 1	3
Figure 1.2 – Just Hydroponics 2	3
Figure 2.1 – Arduino Uno R3 16U2	12
Figure 2.2 – Arduino Schematic (freeCodeCamp.org, 2021)	13
Figure 2.3 – The ESP-01 Module	15
Figure 2.4 – A Schematic of the ESP-01 Module (Electronoobs, 2019)	16
Figure 2.5 – ESP-01 in Bypass Mode	18
Figure 2.6 – Empty Arduino Code	19
Figure 2.7 – The Arduino IDE Serial Monitor	20
Figure 2.8 – ESP-01 in SoftwareSerial Mode	21
Figure 2.9 – Garbled Response From ESP-01	23
Figure 2.10 – Two Models of the DS18B20 Sensor	23
Figure 2.11 – The DS18B20 Operating in External Power Mode (Maxim, 2019).	24
Figure 2.12 – The DS18B20 Operating in Normal Mode (Santos, 2016)	24
Figure 2.13 – The DS18B20 Operating in Parasite Power Mode (Maxim, 2019).	25
Figure 2.14 – The DS18B20 Operating in Parasitic Power Mode (Santos, 2016).	25
Figure 2.15 – The OneWire Library	26
Figure 2.16 – The DallasTemperature Library	26
Figure 2.17 – The DHT11 Sensor (Mouser, n.d.)	27
Figure 2.18 – Typical Application of the DHT11 Sensor (Mouse, n.d.)	28
Figure 2.19 – Basic Schematic of a DHT11 Sensor in Use (Campbell, 2015)	29
Figure 2.20 – MH-Z19B Sensor (Winsen, 2016)	30
Figure 2.21 – MH-Z19B Diagram (Winsen, 2016)	30
Figure 2.22 – The MH-Z19B Library	32
Figure 2.23 – MH-Z19B Schematic, Digital Mode (Fahad, 2022)	32
Figure 2.24 – MH-Z19B, Digital Mode	34
Figure 2.25 – MH-Z19B Schematic, PWM Mode (IoTSpace, 2011)	35
Figure 2.26 – PH-4502C Module (CimpleO, 2020)	36
Figure 2.27 – The pH Probe	37
Figure 2.28 – A Schematic of the PH-4502C with Arduino	37
Figure 2.29 – PH-4502C Probe Offset Calibration.	38

Figure 2.30 – DFRobot Analog TDS Sensor Illustration (DFRobot, n.d.)	40
Figure 2.31 – Signal Transmitter Board (DFRobot, n.d.)	41
Figure 2.32 – Example Use of the Analog TDS Sensor Kit (DFRobot, n.d.)	42
Figure 2.33 – The Raspberry Pi	44
Figure 2.32 – NodeMCU Lolin.	45
Figure 2.33 – XAMPP Control Panel	51
Figure 2.34 – The DIY Hydroponic Concept Sketch	55
Figure 3.1 – The HI98301 TDS Meter.	59
Figure 3.2 – A Whiteboard Used for Storing Data	60
Figure 3.3 – Arduous Data Management	61
Figure 3.4 – Empathy Map	64
Figure 3.5 – Value Proposition Canvas	64
Figure 4.1 – Arduino System Architecture	66
Figure 4.2 – Process Cycle	67
Figure 4.3 – Web Application System Architecture	68
Figure 4.4 – Class Diagram	69
Figure 4.5 – Use Case Diagram.	72
Figure 4.6 – User Interface, Dashboard	74
Figure 4.7 – User Interface, Login Page	75
Figure 4.8 – The Database Structure	76
Figure 4.9 – Superglobal URL Pattern	76
Figure 4.10 – AWS Cloud Architecture	77
Figure 5.1 – Schematic of the Arduino Prototype	80
Figure 5.2 – The Arduino Prototype	81
Figure 5.3 – The File Structure.	82
Figure 5.4 – The Web Application's File Structure	95
Figure 5.5 – The Index File	96
Figure 5.6 – Router, Check Function.	97
Figure 5.7 – Router, Load Function.	97
Figure 5.8 – Controllers Abstraction Layer.	98
Figure 5.9 – The DashboardController's run() Function	98
Figure 5.10 – Database Master Table	99

Figure 5.11 – Database Sensors Table	99
Figure 5.12 – The API Code	100
Figure 5.13 – Deployment S1/A	101
Figure 5.14 – Deployment S1/B	102
Figure 5.15 – Deployment S2/A	102
Figure 5.16 – Deployment S2/B	103
Figure 5.17 – Deployment S2/C	104
Figure 5.18 – Deployment S2/D	105
Figure 5.19 – Deployment S2/E	106
Figure 5.20 – Deployment S2/F	106
Figure 5.21 – Deployment S3/A	107
Figure 5.22 – Deployment S3/B	108
Figure 5.23 – Deployment S3/C	108
Figure 5.24 – Deployment S3/D	108
Figure 5.25 – Deployment S3/E	109
Figure 5.26 – Deployment S4/A	109
Figure 5.27 – Deployment S4/B	110
Figure 5.28 – Deployment S4/C	110
Figure 5.29 – Deployment S4/D	110
Figure 5.30 – EC2 Deployment S2/A	111
Figure 5.31 – EC2 Deployment S2/B	112
Figure 5.32 – EC2 Deployment S2/C	112
Figure 5.33 – EC2 Deployment S2/D	113
Figure 6.1 – Wi-Fi Module Unit Test Setup (Serial Monitor)	116
Figure 6.2 – Wi-Fi Module Unit Test Results (Serial Monitor)	116
Figure 6.3 – Wi-Fi Module Unit Test Results (Database)	116
Figure 6.4 – Water Temperature Sensor Unit Test Results	117
Figure 6.5 – Humidity Sensor Unit Test Results	118
Figure 6.6 – CO ₂ Sensor Unit Test Results	118
Figure 6.7 – pH Sensor Unit Test Results	119
Figure 6.8 – TDS Sensor Unit Test Results	119
Figure 6.9 – Integration Test Results (Serial Monitor)	120

Figure 6.10 – Integration Test Results (Database)
Figure 6.11 – Dashboard Display
Figure 6.12 – Sensor Selection
Figure 6.13 – Column Sorting
Figure 6.14 – Login Box
Figure 6.15 – Time Filters
Figure 6.16 – Remember Functionality
Figure 6.17 – DB Inserted
Figure 6.18 – DB Insertion Instructions
Figure 6.19 – Null Insert Test. 123
Figure 6.20 – Partial Null Insert Test
Figure 6.21 – Partial Null Insert Instructions
Figure 6.22 – Dashboard Displaying Inserted Test Data
Figure 6.23 – Evaluation Point 1A
Figure 6.24 - Evaluation Point 1B
Figure 6.25 - Evaluation Point 2
Figure 6.26 - Evaluation Point 3
Figure 6.27 – Visualization of the Reliability Testing Results
Figure 6.28 – The Visualized Gap
Figure 6.29 – Visualization of the Reliability Testing Results (Cloud)127
Figure 6.30 – The Visualized Gap (Cloud)
Figure 6.31 – The Main Prototype & Emulator
Figure 6.32 – Database Results for MDT
Figure A1.1 – UI Suggestion 1
Figure A1.2 – UI Suggestion 2
Figure A1.3 – UI Suggestion 3
Figure A1.4 – UI Suggestion 4

References

- About Arduino. (2021, September 15). Arduino. https://www.arduino.cc/en/about
- Ada, L. (2015). *Adafruit HUZZAH ESP8266 Breakout*. Adafruit. https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/overview
- Amazon. (2023). What is AWS? Amazon AWS. https://aws.amazon.com/what-is-aws/
- Amazon. (2023). What is Amazon Relational Database Service (Amazon RDS)?

 Amazon AWS.

 https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
- Amazon. (2023). What is Amazon EC2? Amazon AWS.

 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
- Arduino. (2023, June 26). *SoftwareSerial Library*. Arduino Documentation. https://docs.arduino.cc/learn/built-in-libraries/software-serial
- Barela, A. (2023). *ESP8266 Temperature / Humidity Webserver*. Adafruit. https://learn.adafruit.com/esp8266-temperature-slash-humidity-webserver/overview
- Bhimsen. (2022, September 9). *ESP8266 AT Commands List and Working Explained*. Electronics Fun. https://electronics-fun.com/esp8266-at-commands/
- Binance. (2023). *Turing Complete*. Binance Academy. https://academy.binance.com/en/glossary/turing-complete
- Bootstrap The most popular HTML, CSS, and JS library in the world. (n.d.).

 Bootstrap. Retrieved April 17, 2023, from https://getbootstrap.com/
- Campbell, S. (2015, October 1). *How to Set Up the DHT11 Humidity Sensor on an Arduino*. Circuit Basics. https://www.circuitbasics.com/how-to-set-up-the-dht11-humidity-sensor-on-an-arduino/
- Case Study Evaluation Approach. (n.d.). EvalCommunity. Retrieved September 26, 2023, from https://www.evalcommunity.com/career-center/case-study-evaluation-approach/

- CimpleO, (2020, April 23). *Arduino pH-meter using PH-4502C*. CimpleO. https://cimpleo.com/blog/simple-arduino-ph-meter/
- CSS Introduction. (n.d.). W3Schools. Retrieved April 17, 2023, from https://www.w3schools.com/css/css_intro.asp
- DFRobot. (n.d.). SEN0244 Gravity Analog TDS Sensor Meter for Arduino. DFRobot Open-Source Hardware Electronics and Kits. Retrieved April 16, 2023, from https://wiki.dfrobot.com/Gravity_Analog_TDS_Sensor_Meter_For_Arduino_SKU_SEN0244
- DPV Technology. (2019, September 29). Sending data to thingspeak website using esp8266 Arduino Tutorial [Video]. YouTube. URL https://www.youtube.com/watch?v=nMWwqcn7ofw
- Electronoobs. (2019, August 4). *ESP8266 + Arduino + database Control Anything*from Anywhere [Video]. YouTube. URL

 https://www.youtube.com/watch?v=6hpIjx8d15s&t=491s
- ESP8266 Pinout Reference: Which GPIO pins should you use? (2019, May 6).

 Random Nerd Tutorials. https://randomnerdtutorials.com/esp8266-pinout-reference-gpios/
- Fahad, E. (2022, June 24). *MH-Z19B NDIR CO₂ Sensor with Arduino*. Electronic Clinic. https://www.electroniclinic.com/mh-z19b-ndir-co2-sensor-with-arduino-mhz19b/
- Fernandez, E. (2014, February 20). Hydroponic Nutrients TDS, PPMs and EC Explained! [Video]. YouTube. https://www.youtube.com/watch?v=uI9D-ONNdHg
- freeCodeCamp.org. (2021, June 8). Arduino Course for Beginners Open-Source sElectronics Platform [Video]. YouTube.

 https://www.youtube.com/watch?v=zJ-LqeX_fLU
- General Hydroponics. (2023). *How Often Should I Check My pH Level?* General Hydroponics FAQs. https://generalhydroponics.com/faqs/how-often-should-i-check-my-ph-level/

- Google. (2023). *Google Cloud Documentation*. Google Cloud. https://cloud.google.com/docs
- Hernandez, R. D. (2021, April 19). *The Model View Controller Pattern MVC*Architecture and Frameworks Explained. freeCodeCamp.

 https://www.freecodecamp.org/news/the-model-view-controller-pattern-mvc-architecture-and-frameworks-explained/
- HTML Introduction. (n.d.). W3Schools. Retrieved April 17, 2023, from https://www.w3schools.com/html/html_intro.asp
- IoTSpace. (2021, September 17). Arduino CO₂ Sensor MH-Z19 Beispiel und Sketch. IoTSpace. https://iotspace.dev/arduino-co2-sensor-mh-z19-beispiel-und-sketch/
- Janes, L. (2019, July 30). Top 15 Reasons Why You Should Grow Vegetables In A Hydroponic Garden. VH Hydroponics. https://www.vhhydroponics.com/hydroponic-garden/
- MariaDB. (2023). *MariaDB Server: The open-source relational database*. MariaDB. https://mariadb.org/
- Maxim Integrated. (2019). DS18B20 Programmable Resolution 1-Wire Digital

 Thermometer. Maxim Integrated.

 https://www.analog.com/media/en/technical-documentation/data-sheets/ds18b20.pdf
- Mouser Electronics. (n.d.). *DHT11 Humidity & Temperature Sensor*. Mouser Electronics. Retrieved April 16, 2023, from https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf
- Mozilla. (2023, September 16). *What is JavaScript?* MDN Web Docs.

 https://developer.mozilla.org/en-us/docs/Learn/JavaScript/First_steps/What_is_JavaScript
- MySQL. (n.d.). *MySQL 8.0 Reference Manual*. Dev MySQL. https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html

- NodeMCU ESP8266. (2020, April 22). Components 101.

 https://components101.com/development-boards/nodemcu-esp8266-pinout-features-and-datasheet
- PHP. (2023). *History of PHP and Related Projects*. PHP. https://www.php.net/manual/en/history.php
- *pH Probe Architecture.* (n.d.). Digital Analysis Corporation. Retrieved 4 September 2023, from https://www.digital-analysis.com/TArticles/pH_Probe.html
- Prasanniya. (2023, March 28). *A Closer Look at the Latest Technologies in Hydroponics*. Hydroponic Way. https://hydroponicway.com/latest-technologies-in-hydroponics/
- Programming Electronics Academy. (2021, April 11). *DIY Hydroponic Garden*w/Arduinoand IoT [Video]. URL

 https://www.youtube.com/watch?v=Ng7qDDH9Yqk
- Santos, R. (2016, August 24). *Guide for DS18B20 Temperature Sensor with Arduino*.

 Random Nerd Tutorials. https://randomnerdtutorials.com/guide-for-ds18b20-temperature-sensor-with-arduino/
- Shinde, S. (2023, January 25). What are the Key Pros and Cons of the Arduino Programming Language? Emeritus. https://emeritus.org/blog/coding-arduino-programming-language/
- Winsen. (2016). *Intelligent Infrared CO₂ Module (Model: MH-Z19B)*. Zhengzhou Winsen Electronics Technology Co., Ltd. https://www.winsen-sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf
- XAMPP Team. (2023). Windows Frequently Asked Questions. Apache Friends. https://www.apachefriends.org/faq_windows.html

Appendices

Appendix 1: UI Design Suggestions

Figure A1.1 – UI Suggestion 1

Figure A1.2 – UI Suggestion 2

Figure A1.3 – UI Suggestion 3

Figure A1.4 – UI Suggestion 4

Appendix 2: Results of Interview with Just Hydroponics

(Interview Results)

Date : Sunday, 1st of January 2023.

Time : ~11:00 AM

Location : Just Hydroponics, Outskirts of Bogor City

Jl. Pasir Bogor, Cipelang, Cijeruk, Bogor, Jawa Barat 16740

Interviewee: Anton & Ina (Owners of Just Hydroponics)

*Note: This interview is not a 100% accurate & direct reference to what was said during the interview. For the sake of readability, the written transcript has been modified, rewritten, translated to English, and had some unnecessary dialogue which covers some banter, finances, other people's comments and the business's customer base removed.

[Begin Interview]

Jason: Hi Auntie Ina, so I have this case upcoming case study thesis that I will need to start writing soon. I've been looking for ideas and your hydroponic farm seems like it would be a great object of study for my thesis. Do you mind if I use it and ask you some questions?

Ina : Hi Jason! Sure, of course. We've actually had someone else, I forgot who it was, who asked us the very same thing. He also wanted to use my farm for their thesis.

Jason: Do you mind giving me a tour of the place?

Ina : Yes sure! Everyone else can also come! We're planning to give you all a tour anyways, and at the end you can get your pick at some of our cancelled orders, on the house!

[*Tour* – Aunt Ina showed me (and quite a number of people from my extended family) her hydroponic farm, accompanied by her husband, Uncle Anton.]

Jason: Oh, so these whiteboards are where you write down the information about the [hydroponic] trays?

Ina: Yes, we measure the "PPM" of the hydroponic waters and write them down here for reference.

Jason: How do you measure the PPM levels?

Ina : Ah, I don't know too much about that, Uncle Anton usually handles this. <Calls uncle Anton over.>

Anton: Ah yes, we use handheld test kits, think I have them somewhere over here... Here it is. So you just dip this end into the water and... <explains how the tool works>.

Jason: So you only measure the "PPM"?

Anton: Yes, it's the "nutrient density". I don't really understand how the science behind it works, but I follow guides.

Jason: How about other things like CO₂ and temperature?

Anton: That's why we built this greenhouse around it. I don't know exactly how much CO₂ there is and is needed, but this greenhouse works wonders.

Jason: And you store the nutrient density notes on these whiteboards? What if they get wet, or accidentally wiped?

Anton: Well of course we will try not to let that happen, but what's the worst that could happen if it does get wiped? It's not like the crops are just going to die, it's still going to grow normally, it's just that we won't know exactly what's going on, until we measure it again that is, which is pretty simple. Plus, these greenhouses don't allow rainwater in, so the whiteboards won't get wet.

Jason: But what if I can come up with a way to store these notes like on a database or something?

Anton: It would be interesting, but I'm getting old, might be too much for me to learn.

Jason: Shouldn't be a problem, I should be able to make it very simple to use. You do have Wi-Fi here right?

Anton: Yes, but it's rather slow, and can be unreliable at times.

Jason: Hmm, its good that there is Wi-Fi, but the unreliability could be a problem...

[*Tour* – We moved to the far end of the farm complex, to the undeveloped lands around it.]

Ina: Well, our lands are quite big as you can see.

Jason: Wow, that's quite large, I wonder how much all of this costs.

Ina : Well, it's remote, with difficult access to almost everything really, so it's not too expensive. This whole entire land costs around IDR 2 bio.

Jason: Wow, that's really cheap for a land this massive, especially compared to Jakarta.

Anton: Yeah, that's the point, we plan to expand because demand is on the rise.

Jason: Wouldn't it get more and more tedious to individually monitor and care for all these greenhouses the more you expand?

Anton: Well yes, but that's why we have staff tending to the crops. Of course, it will eventually get difficult, but that's still far in the future, might even be a decade ahead, so we'll think about that when it comes to it.

Jason: I might be able to do something about that with my case study.

Ina : Really? We'll it'll be interesting to see what you can come up with, maybe we'll even pay you hahaha.

Jason: Yeah..., maybe..., haha...

Anton: Well, do you have any other questions?

Jason: No, I think that's it for now... thanks a lot for all of this. I know I must be bothering you.

[End Interview]

Appendix 3: Additional Attachments

I have included the following attachments onto the final submission of this thesis:

- > Arduino High-Level Architecture Diagram
- ➤ Web Application High-Level Architecture Diagram
- Class Diagram
- > Empathy Map
- Process Cycle Diagram
- Use Case Diagram
- ➤ Value Proposition Canvas
- > Arduino "Final" Schematic
- ➤ Schematic of ESP-01 in Bypass Mode
- > Schematic of ESP-01 in SoftwareSerial Mode
- > Schematic of the MH-Z19B in Analog Mode
- > Schematic of the PH-4502C

Any tables, figures, or diagrams not attached in this appendix should be available directly in this report in high-resolution. Please zoom-in to view.

Appendix 4: Database Seed File

I will also be attaching the **.SQL** *seed* file, which was generated via *mysqldump* from my own local test database.

Appendix 5: Web Application Code, PHP Project Folder

I am attaching the web application's source code in the form of the PHP project folder as an appendix for inspection.

Appendix 6: Hydroponic Sensor Code, Arduino Project Folder

I am also attaching the Hydroponic Sensor device's source code in the form of the Arduino project folder.

Curriculum Vitae

Name Jason Alexander Tan Place, Day of Birth Jakarta, 5 November 2001 : Sex Male Address Jl. Tajuk Rencana H-117 Cipinang Muara, Jatinegara, Jakarta Timur 13420 **Telephone** (+62) 858 8888 9900 **Education and Training Binus University International** July 2020 - Present Undergraduate, Business Information Systems Jakarta, Indonesia **SMAK 1 BPK Penabur Jakarta July 2017 – Jun 2020** High School Diploma, School of Science Jakarta, Indonesia **Work History** PT. Bank DBS Indonesia February 2023 - Present Jakarta, Indonesia Business Platform Management (Internship) **NHS England** February 2022 – September 2022 Project Management (Internship, Remote) Jakarta, Indonesia