	Date i	10.
gsm HW3		
1. (1) $MUx = \frac{\partial U}{\partial x} = 3$; $MUy = \frac{\partial U}{\partial y} = 1$		
(2) U(X,V)= 3x+y , MUx>0 , MUy>0 , 是韩周的		
(3) MRS = MONOS 1777 - MUX = -3		
对无影的戏, 3x+y=uo,故 MUx dx + MUy dy	= 0	
说明: Peter 多1本书,朋友男少3本书才可保证效用不变		
(4) 不足。MRS 定值,而非革减		
2、(1) 收益的期望。 w ^{生 Trwg+(1-TT) wb= w+ TTXYg+}	(1-T) XYb	
= W + BX[TTYg + (1-TL)Yb]		
$\frac{dw^{*}}{dx} = \pi r_g + (1-\pi) r_b$ (+) (-)		
(+) (-) 国比, TYg+(1-Ti)Yb >0 台 Ti(Yg-Yb)ターYb 台	$\pi \geqslant \frac{-\gamma_b}{\gamma_b \gamma_b}$	
	19-178	
最优选择 x= 5 w , 若 TE [-Yb , 1] 0 , 否则		, jun
(x) (1) 题目在明3:风险部厌恶。因此是在期望效用 setting	上分析, 从上凸。(故以)(60) 凹函数	Le La
<u> Εμία) = π μι ω+ χγς) + (I-π) μ (ω+ ξχγь)</u>		
$EU'(x) = \pi \gamma_g U'(w + x \gamma_g) + (+\pi) \gamma_b U'(w + x \gamma_g)$		
EU'(x) = πrgu'(w+ xrg) + (1-π) γρ u"(w+ xrb) No)	
EU'(x)享養成 EU'(0)=[T(Yg+(1-T()Yb] U'(W) 。 李琦设 例列		
以(w) >0,(v'(y)>0、y e[w, w+wrg])。那以 EU(x)字		
最i代点会在X=0或X=W取到	79 417 174 174 174 174 174 174 174 174 174	
(2) $E\widetilde{\mathcal{U}}(x) = \pi \mathcal{U}(w + \chi(1-t)\gamma_0) + (1-\pi)\mathcal{U}(w + \chi(1-t)\gamma_0)$)	
煮以地,E((X))的,E(i)(x)单减,但由于以是上凸函数		
お EÛ(x) ア EU(x)		
此时在最优选择下的期望效用会把(1)中最高的期望效用	W+XY6 W / W+XYA	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ W+11-t)XYA	
	W+(I=tlXY)	

3. Max_GG2______ 5.t. 1.10+0=8800

L= C1C+ > (110+C>-8800)

$$\frac{\partial L}{\partial G} = C_1 + 1.1\lambda = 0$$

$$\frac{\partial L}{\partial G} = C_1 + \lambda = 0$$

$$C_1 = 4000$$

$$G^* = 4400$$

4. $u(c, H) = \ln c - \frac{\lambda}{H}$, m = c + H

(1)
$$\max_{C+H=m} EU(C > H) = \max_{C+H=m} (1-8) \ln C + 8 \left[\ln C - \frac{1}{H} \right]$$

(2) $L = \ln c - \frac{\gamma}{H} + \lambda (m - c - H)$

$$\frac{\partial L}{\partial O} = \frac{1}{C} - \lambda = 0$$

$$\frac{\partial L}{\partial H} = \frac{\lambda}{H^{2}} - \lambda = 0$$

$$\frac{\partial L}{\partial H} = \frac{\lambda}{H^{2}} - \lambda = 0$$

$$\frac{\partial L}{\partial A} = M - C - H = 0$$

$$\frac{\partial L}{\partial A} = M - C - H = 0$$

5. (a) independence axiom = 凸性

(b) 确据 violate convexity.

Ol

Øl∋ al+(1-a)L.

③ みじ+ (1-3)レラ みレ+(1-2)レ , 因为加立

@ a)+(1-2)L" > L

a sure loss of money