Boxplots and Outliers

Earl F Glynn

Kansas City R Users Group

Beginner's Workshop 4 Oct 2014

Gist: https://gist.github.com/EarlGlynn/a13b651289eff61a2201

Outline

- Fivenum quartile summary
- Interquartile range (IQR)
- Boxplot: visual display of fivenum summary
- Outliers
- "Notched" boxplots
- Examples of using boxplots to identify outliers

"fivenum" Quartile Summary

```
> set.seed(19)
> x <- rnorm(11)
> x
 [1] -1.1894537 0.3885812 -0.3443333 -0.5478961 0.9806622 -0.2366460
 [7] 0.8097397 -0.7447795 -0.2597870 -0.1830838 0.5186300
 [1] -1.1894537 -0.7447795 -0.5478961 -0.3443333 -0.2597870 -0.2366460
 [7] -0.1830838 0.3885812 0.5186300
                                     0.8097397
>
> min(x)
[1] -1.189454
> mean(sort(x)[3:4])
[1] -0.4461147
                       IQR = Interquartile Range = Middle 50%
> median(x)
[1] -0.236646
> mean(sort(x)[8:9])
[1] 0.4536056
> max(x)
[1] 0.9806622
> quantile(x, probs=seg(0,1,0.25)
                            50%
                                       75%
                                                100%
-1.1894537 -0.4461147 -0.2366460 0.4536056
> fivenum(x)
[1] -1.1894537 -0.4461147 -0.2366460 0.4536056 0.9806622
```

Boxplot: Visual Display of "fivenum" summary

Tukey, John W., *Exploratory Data Analysis*, Addison-Wesley Publishing Company, 1977, Section 2B, "Hinges and 5-number summaries."

Boxplot with Outlier

What happens if one value is "bad"? Let's replace x[3] with value 20.

Median is more "robust" measure of central tendency than mean

IQR is more "robust" measure of dispersion than standard deviation

Boxplot (median, IQR) vs. Normal Distribution (mean, standard deviation)

- Boxplot makes no assumptions about probability distribution.
- IQR contains 50% of data.
- If normal data, ± 1 standard deviation contains ~68% of data.
- Median, IQR more "robust" than mean, standard deviation

How are Outliers Defined?

Look at the code: boxplot.stats

```
> boxplot.stats
function (x, coef = 1.5, do.conf = TRUE, do.out = TRUE)
    if (coef < 0)
        stop("'coef' must not be negative")
    nna <- !is.na(x)
    n <- sum(nna)
    stats <- stats::fivenum(x, na.rm = TRUE)</pre>
    igr <- diff(stats[c(2, 4)])</pre>
    if (coef == 0)
        do.out <- FALSE
    else {
        out <- if (!is.na(iqr)) {
            x < (stats[2L] - coef * iqr) | x > (stats[4L] + coef *
                 iqr)
        else !is.finite(x)
        if (any(out[nna], na.rm = TRUE))
            stats[c(1, 5)] \leftarrow range(x[!out], na.rm = TRUE)
    conf <- if (do.conf)
        stats[3L] + c(-1.58, 1.58) * iqr/sqrt(n)
```

How are Outliers Defined?

Simplified version

Notched Boxplots

```
> # Statistics: An introduction using R by Michael J. Crawley, p. 297.
> set.seed(11)
> plotboxes <- function(N)
+ a <- rnorm(N, mean=0.00, sd=1)
+ b <- rnorm(N, mean=0.00, sd=1)
+ c <- rnorm(N, mean=0.50, sd=1)
+ d <- rnorm(N, mean=1.00, sd=1)
+ e <- rnorm(N, mean=1.50, sd=1)
+ f <- rnorm(N, mean=2.00, sd=1)
+ boxplot(data.frame(a,b,c,d,e,f),
     notch=TRUE, main=paste("N = ", N))
> par(mfrow=c(1,2))
> plotboxes(50)
> plotboxes(100)
```

Notched Boxplots

The notch=TRUE option allows significance testing of the difference in medians. Where the notches do not overlap the medians are significantly different at an α = 0.05 significance level. When the notches overlap, there is no significant difference between the medians.

"Notched" Boxplots

From InnoCentive.com submission

Examples of Using Boxplots to Identify Outliers

- Identify "problem" images in Kaggle competition facial images
- Congressional disbursements
- "PULSE" diagrams to study political money
- Shawnee County, KS public salaries

Kaggle Competition: Facial Keypoints Detection

http://www.kaggle.com/

Knowledge • 49 teams

Facial Keypoints Detection

Tue 7 May 2013

Wed 31 Dec 2014 (2 months to go)

Images: 7049 Train 1783 Test

96 x 96 pixels

How can "problem" images be identified?

Normal

Eyes unusually close together

Train 6493: 2.69

Train 6494: 5.86

Train 6406: 7.13

Train 4264: 9.65

Train 1862: 13.52

Train 4491: 14.13

Train 6766: 14.22

Train 2819: 15.41

Eyes unusually far apart

Train 1748: 66.83

Train 2777: 53.13

Train 3557: 51.68

Congressional Disbursements

Congressional Disbursements

U.S. House Disbursements, 2009 Q3

Travel

Travel

What expenses are "normal"?

"PULSE" Diagrams to Study Political Money

No longer online at FollowTheMoney.org

PULSE = Political Contribution Logarithmic Scatterplot Profile

Kansas Senate Winners and Losers in 2008

Shawnee County, Kansas Public Salaries

Shawnee County 2010 Annual Pay

Source: Shawnee County, Kansas

Kansas Watchdog

Shawnee County, Kansas Public Salaries

Shawnee County 2010 Annual Pay by Department

Source: Shawnee County, Kansas

Kansas Watchdog

Take Away

- Great tools for exploratory data analysis:
 - fivenum summary (or use quantile function)
 - boxplot summary
- Median and IQR robust statistics for any distribution
- Outliers: bad data or possibly something interesting