

Master Thesis Seminar Talk Progress Update

Fabrice Beaumont

Department of Information Systems and Artificial Intelligence - Dr. Pascal Welke

14. September 2022

UNIVERSITÄT BONN Lab

JNIVERSITÄT BONN Lab

$$d_T(4,7) = 4$$

$$= w_{1,4} + w_{0,1} + w_{0,2} + w_{2,7}$$

Meta Parameters

Procedure

- WLLT depth
- Update scope (w.r.t. layers)
- Update intensity: Push and Pull factors (fixed or percentage)
- Adjust weights to leaves only
- Heaviest earth threshold

Machine Learning

- Update frequency (batch size)
- Learning rate
- Adjust weights to leaves only
- Class imbalance factor

First results

- Clustering scores improve reliably, after enough iterations or high enough WLLT depth.
- WLLT layers 1, 2 and 3 get the most total weight increases.
- WLLT layer 2 grows more rapidly than all others.

•

- TODO: Track number not intensity of weight updates per Layer?
 - ! Switch to go from relative to absolute push/pull factors
- OGB datasets

Current todos / Outlook

- Limit the relative weight updates by setting a ceiling
- Switch to go from relative to absolute push/pull increments
- Other, cleaned datasets. And OGB datasets
- Split the dataset in training and test data.
 And evaluate for overfitting. Run for many epochs and search for some kind of plateau in the learning.

Thank you all for listening.

I will be happy to answer any questions and hear your comments.

Idea: Reduce distance between B and C, by updating the edge weights.

Preparation of the performance comparison

Figure: Classification accuracies on databases using Weisfeiler-Lehman.

grakel.kernels.WeisfeilerLehman(n_iter=[1-10], base=grakel.kernels.VertexHistogram, normalize=True) grakel.utils.cross_validate_Kfold_SVM(K, y, n_iter=10)

Implementation road-map 1/2

WLLT Construction:

- Write to file and read from file. Construct WL-iteration based.
- All weights equal.
- (Random initial weights.)
- (Use a priori knowledge.)

Wasserstein-Distance feedback:

- "Biggest pile of dirt". ("Smallest", to increase the distance.)
- Distribution proportional to the pile size.
- Distribution proportional to the cost of moving the pile size.

Implementation road-map 2/2

- Update rule:
 - Value:
 - Constant λ .
 - Gradient descent.
 - Location:
 - Local: Only update the first and last edge weights of the connecting path.
 - Weighted path: Update all edge weights on the path, with less magnitude for edges closer to the root.
 - Path: Update all edges on the path.
 - Global: Update all edges, related to all occurring labels.