Algebra Abstracta: Tarea #8

Jonathan Andrés Niño Cortés

26 de marzo de 2015

Sección 13.1 1. Muestre que $p(x) = x^3 + 9x + 6$ es irreducible en $\mathbb{Q}[x]$. Sea θ una raíz de p(x). Encuentre el inverso de $1 + \theta$ en $\mathbb{Q}(\theta)$.

Demostración. La irreducibilidad de este polinomio esta dada por el criterio de Einsenstein tomando el primo 3.

Ahora podemos escribir cualquier elemento de $\mathbb{Q}(\theta)$ como $a\theta^2 + b\theta + c$. Entonces queremos encontrar los coeficientes a, b y c tales que

$$(a\theta^2 + b\theta + c)(1+\theta) = 1$$

Desarrollando esta expresión obtenemos

$$a\theta^2 + b\theta + c + a\theta^3 + b\theta^2 + c\theta = 1$$

Pero como θ es raíz de nuestro polinomio tenemos que $\theta^3+9\theta+6=0$, es decir que $\theta^3=-9\theta-6$. Por lo tanto la expresión queda como

$$a\theta^{2} + b\theta + c + a(-9\theta - 6) + b\theta^{2} + c\theta^{2} = 1$$

$$(a+b)\theta^{2} + (-9a+b+c)\theta + (-6a+c) = 1$$

De aqui obtenemos el siguiente sistema de ecuaciones

$$a+b = 0$$

$$-9a+b+c = 0$$

$$-6a+c = 1$$

Resolviendo este sistema de ecuaciones obtenemos la solución $a=1/4,\ b=-1/4$ y c=5/2. Por lo tanto, $1/4\theta^2-1/4\theta+5/2$ es el inverso de $\theta+1$.

Sección 13.1 4. Pruebe directamente que el mapa $a+b\sqrt{2}\mapsto a-b\sqrt{2}$ es un isomorfismo de $\mathbb{Q}(\sqrt{2})$ consigo mismo.

Demostración. Sea ϕ el mapa anterior que claramente esta bien definido. Probemos primero que preserva la suma

$$\phi(a + b\sqrt{2} + c + d\sqrt{2}) = a + c - (b\sqrt{2} + d\sqrt{2}) = a - b\sqrt{2} + c - d\sqrt{2} = \phi(a + b\sqrt{2}) + \phi(c + d\sqrt{2})$$

Ahora probemos que preserva la multiplicación

$$\phi(a + b\sqrt{2})(c + d\sqrt{2})) = ac + 2bd - (ad + bc)\sqrt{2} = (a - b\sqrt{2})(c - d\sqrt{(2)}) = \phi(a + b\sqrt{2})\phi(c + d\sqrt{2})$$

Ahora para probar que este homomorfismo solo basta probar que es diferente de 0. Y esto se puede ver porque $\phi(1) = 1 \neq 0$.

Finalmente es sobreyectiva porque para cualquier $a+b\sqrt{2}\in\mathbb{Q}(\sqrt{2})$ tenemos que $\phi(a-b\sqrt{2})=a+b\sqrt{2}$.

Sección 13.2 3. Determine el polinomio minimal sobre \mathbb{Q} del elemento 1+i.

Demostración. Si extendemos el campo a $\mathbb C$ tenemos que x-1-i es un polinomio irreducible cuya raíz es la buscada. Si multiplicamos por el polinomio irreducible correspondiente al conjugado obtenemos

$$(x-1-i)(x-1+i) = x^2 - x + ix - x + 1 - i - ix + i + 1 = x^2 + 2i$$

obtenemos un polinomio mónico cuyos coeficientes estan en \mathbb{Q} y que además es irreducible por el criterio de Einsenstein tomando p=2. Por lo tanto este polinomio es el polinomio minimal asociado a 1+i.

Sección 13.2 10. Determine el grado de la extensión $\mathbb{Q}(\sqrt{3+2\sqrt{2}})$ sobre \mathbb{Q} .

Demostración. El punto anterior da la clave para resolver este ejercicio. Podemos demostrar que $\sqrt{3+2\sqrt{2}}=1+\sqrt{2}$.

En efecto, $(1+\sqrt{2})^2 = 1+2\sqrt{2}+2=3+\sqrt{2}$, de donde se deduce la afirmación anterior al sacar raices a ambos lados.

Por lo tanto el polinomio mínimal asociado a $1 + \sqrt{2}$ es

$$x - 1 - \sqrt{2} = 0$$

$$x - 1 = \sqrt{2}$$

$$x^{2} - 2x + 1 = 2$$

$$x^{2} - 2x - 1 = 0$$

Este ultimo es el polinomio minimal pues es irreducible en \mathbb{Q} . Para demostrar esto podemos extendernos al campo \mathbb{R} donde este polinomio se descompone como $(x-1-\sqrt{2})(x-1+\sqrt{2})$. Esta descomposición es única porque $\mathbb{R}[x]$ es un D.F.U. Por lo tanto, vemos que este polinomio no tiene raices en los racionales y como es de grado dos esto es lo único que basta para demostrar su irreducibilidad. Concluimos que la extensión es de grado 2.

Sección 13.2 14. Pruebe que si $[F(\alpha):F]$ es impar entonces $F(\alpha)=F(\alpha^2)$.

Para demostrar esto primero hacemos la siguiente observación. Si $\beta \in F(\alpha)$ entonces $F(\beta) \subseteq F(\alpha)$. Esto es por simple definición porque $F(\beta)$ es la mínima extensión de campo que contiene a β y si ya esta contenida en la expansión de campo de α entonces la extensión de β debe ser igual o menor a la de α .

Como claramente $\alpha^2 \in F(\alpha)$ porque es la multiplicación de dos elementos en el campo concluimos que $F(\alpha^2) \subseteq F(\alpha)$.

Para el otro lado vamos a demostrar que $\alpha \in F(\alpha^2)$. Para esto necesitamos la suposición que $n = [F(\alpha) : F]$ es impar, es decir que existe $k \in \mathbb{Z}_{>0}$ tal que n = 2k - 1. Ahora esto es equivalente a que existe un polinomio en F[x] irreducible de grado n tal que α es raíz.

Entonces tenemos la siguiente expresión $(\alpha^2)^k = \alpha \alpha^n$.

Ahora sea $x^n + a_{n-1}x^{n-1} + \cdots + a_0$ el polinomio minimal de α . Como es irreducible tenemos que a_0 es diferente de 0 o de lo contrario sería divisible por x. Como α es raiz de aqui deducimos que $\alpha^n = -(a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0)$. Reemplazando esto en la primera expresión obtenemos que $(\alpha^2)^k = -\alpha(a_{n-1}\alpha^{n-1} + \cdots + a_0) = -(a_{n-1}\alpha^n + a_{n-2}\alpha^{n-1} \cdots + a_1\alpha^2 + a_0\alpha)$. Pero además podemos reescribir los n en términos de k para obtener la expresión $(\alpha^2)^k = -(a_{n-1}\alpha(\alpha^2)^{k-1} + a_{n-2}(\alpha^2)^{k-1} \cdots + a_1\alpha^2 + a_0\alpha)$. Entonces podemos factorizar α de los términos impares y obtener la expresión

$$\alpha(a_{n-1}(\alpha^2)^{k-1} + \dots + a_0) = -((\alpha^2)^k + a_{n-2}(\alpha^2)^{k-1} + \dots + a_1\alpha^2)$$

Podemos pasar el término que multiplica a α por cero porque es diferente de 0 pues $a_0 \neq 0$. Por lo tanto

$$\alpha = -\frac{(\alpha^2)^k + a_{n-2}(\alpha^2)^{k-1} \cdots + a_1 \alpha^2}{a_{n-1}(\alpha^2)^{k-1} + \cdots + a_0}$$

Por lo tanto logramos escribir α como suma, multiplicación y división de elementos en $F(\alpha^2)$. Concluimos que $F(\alpha) \subseteq F(\alpha^2)$ y esto era lo que nos faltaba para concluir la igualdad.

Sección 13.2 20. Muestre que si la matriz de la transformación lineal "multiplicación por α çonsiderada en el ejercicio anterior es A entonces α es una raíz del polinomio caracteristico para A. Use este procedimiento para obtener el polinomio mónico de grado 3 satisfecho por $\sqrt[3]{2}$ y por $1 + \sqrt[3]{2} + \sqrt[3]{4}$.

Demostración. Para probar esto vamos a utilizar el teorema de Calley-Hamilton. Este teorema indica que si P_f es el polinomio característico entonces $P_f(f) = 0$. En este caso $f = \alpha Id$. Por lo tanto que $P_f(f) = 0$ equivale a que $P_f(\alpha) = 0$, es decir, que α es una raíz del polinomio.

Para la segunda parte del problema necesitamos calcular las matrices asociadas a multiplicar por $\sqrt[3]{2}$ y por $1+\sqrt[3]{2}+\sqrt[3]{4}$, respectivamente. Esto se hace calculando las transformaciones de los vectores canónicos $1, \alpha$ y α^2 . Para el primer caso la matriz va a ser

$$\begin{pmatrix}
0 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}$$

Y el polinomio característico para esta matriz es $t^3 - 2$ que es precisamente el polinomio minimal de $\sqrt[3]{2}$.

Para el segundo caso la matriz asociada es

$$\begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

Y el polinomio caracteristico calculado es t^3-3t^2-3t-1 que tiene como raíz a $1+\sqrt[3]{2}+\sqrt[3]{4}$.