Assignment -2

Python Programming

Assignment Date	30 September2022
Student Name	RAVILLA RAMA RAO
Student Roll Number	111519104113
Maximum Marks	2 Marks

Question-1:

1. Download the dataset: Dataset

Solution:

Downloaded succesfully

Question-2:

2. Load the dataset.

Solution:

import pandas as pd import numpy as np

```
file=pd.read_csv("/content/Churn_Modelling (1).csv")
df=pd.DataFrame(file)
df.head()
```



```
df['HasCrCard'] = df['HasCrCard'].astype('category')

df['IsActiveMember'] = df['IsActiveMember'].astype('category')

df['Exited'] = df['Exited'].astype('category')

df = df.drop(columns=['RowNumber', 'CustomerId', 'Surname'])

df.head()
```


Question 3:

3. Perform Below Visualizations: Univariate Analysis, Bi – Variate Analysis, Multi – Variate Analysis Solution:

```
import seaborn as sns
density = df['Exited'].value_counts(normalize=True).reset_index()
sns.barplot(data=density, x='index', y='Exited', );
density
```

	index	Exited
0	0	0.7963
1	1	0.2037

The data is significantly imbalanced

```
import matplotlib.pyplot as plt
categorical = df drop(columns=['CreditScore' 'Age' 'Tenure' 'Balance'
```

```
categorical = df.drop(columns=['CreditScore', 'Age', 'Tenure', 'Balance',
'EstimatedSalary'])
rows = int(np.ceil(categorical.shape[1] / 2)) - 1
# create sub-plots anf title them
fig, axes = plt.subplots(nrows=rows, ncols=2, figsize=(10,6))
```

```
axes = axes.flatten()

for row in range(rows):
    cols = min(2, categorical.shape[1] - row*2)
    for col in range(cols):
        col_name = categorical.columns[2 * row + col]
        ax = axes[row*2 + col]

        sns.countplot(data=categorical, x=col_name, hue="Exited", ax=ax);

plt.tight_layout()
```


Question 4:

4. Perform descriptive statistics on the dataset.

Solution:

df.info()

df.describe()

CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSalary
10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000
650.561300	38.660800	5.012800	76485.889288	1.527200	100090.239881
96.558702	9.746704	2.892174	62397.405202	0.570081	57510.492818
383.000000	18.000000	0.000000	0.000000	1.000000	11.580000
584.000000	32.000000	3.000000	0.000000	1.000000	51002.110000
652.000000	37.000000	5.000000	97198.540000	1.000000	100193.915000
718.000000	44.000000	7.000000	127644.240000	2.000000	149388.247500
850.000000	62.000000	10.000000	250898.090000	3.500000	199992.480000
	10000.000000 650.561300 96.558702 383.000000 584.000000 718.000000	10000.000000 10000.000000 650.561300 38.660800 96.558702 9.746704 383.000000 18.000000 584.000000 32.000000 652.000000 37.000000 718.000000 44.000000	10000.000000 10000.000000 10000.000000 650.561300 38.660800 5.012800 96.558702 9.746704 2.892174 383.000000 18.000000 0.000000 584.000000 32.000000 3.000000 652.000000 37.000000 5.000000 718.000000 44.000000 7.000000	10000.000000 10000.000000 10000.000000 10000.000000 650.561300 38.660800 5.012800 76485.889288 96.558702 9.746704 2.892174 62397.405202 383.000000 18.000000 0.000000 0.000000 584.000000 32.000000 3.000000 0.000000 652.000000 37.000000 5.000000 97198.540000 718.000000 44.000000 7.000000 127644.240000	10000.000000 10000.000000 10000.000000 10000.000000 650.561300 38.660800 5.012800 76485.889288 1.527200 96.558702 9.746704 2.892174 62397.405202 0.570081 383.000000 18.000000 0.000000 0.000000 1.000000 584.000000 32.000000 37.00000 97198.540000 1.000000 652.000000 44.000000 7.000000 127644.240000 2.000000

Question 5:

5. Handle the Missing values.

Solution:

```
df.isna().sum()
```

```
CreditScore 0
Geography 0
Gender 0
Age 0
Tenure 0
Balance 0
NumOfProducts 0
HasCrCard 0
IsActiveMember 0
EstimatedSalary 0
Exited 0
dtype: int64
```

There is no missing values in dataset

```
for i in df:
    if df[i].dtype=='object' or df[i].dtype=='category':
```

```
print("unique of "+i+" is "+str(len(set(df[i])))+" they are
"+str(set(df[i])))
```

```
unique of Geography is 3 they are {'France','Germany','Spain'} unique of Gender is 2 they are {'Male','Female'} unique of Has CrCard is 2 they are {0,1} unique of Is Active Member is 2 they are {0,1} unique of Exited is 2 they are {0,1}
```

Question 6:

6. Find the outliers and replace the outliers. **Solution:**

Checking for outliers

```
def box_scatter(data, x, y):
    fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(16,6))
    sns.boxplot(data=data, x=x, ax=ax1)
    sns.scatterplot(data=data, x=x,y=y,ax=ax2)
```

```
box_scatter(df,'CreditScore','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(df.loc[df['CreditScore'] < 400])}")</pre>
```

of bivariate Outliers:19


```
box_scatter(df,'Age','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(df.loc[df['Age'] > 87])}")
# of bivariate Outliers:0
```

```
box_scatter(df,'Balance','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(df.loc[df['Balance'] > 220000])}")
```

of bivariate Outliers:4

```
box_scatter(df,'EstimatedSalary','Exited');
plt.tight_layout()
```


Removing Outliers

```
for i in df:
    if df[i].dtype=='int64' or df[i].dtypes=='float64':
        q1=df[i].quantile(0.25)
        q3=df[i].quantile(0.75)
        iqr=q3-q1
        upper=q3+1.5*iqr
        lower=q1-1.5*iqr
        df[i]=np.where(df[i] >upper, upper, df[i])
        df[i]=np.where(df[i] <lower, lower, df[i])</pre>
```

After removing outliers, boxplot will be like

```
box_scatter(df,'CreditScore','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(df.loc[df['CreditScore'] < 400])}")</pre>
```

of bivariate Outliers:19

```
box_scatter(df,'Age','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(df.loc[df['Age'] > 87])}")
```

of bivariate Outliers:0

```
box_scatter(df,'Balance','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(df.loc[df['Balance'] > 220000])}")
```

of bivariate Outliers:4

Question 7:

7. Check for Categorical columns and perform encoding. **Solution:**

```
from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
for i in df:
    if df[i].dtype=='object' or df[i].dtype=='category':
        df[i]=encoder.fit_transform(df[i])
```

Question 8:

8. Split the data into dependent and independent variables.

Solution:

```
x=df.iloc[:,:-1]
x.head()
```

```
        CreditScore
        Geography
        Gender
        Age
        Tenure
        Balance
        NumOfProducts
        HasCrCard
        IsActiveMember
        EstimatedSalary

        0
        619.0
        0
        42.0
        2.0
        0.00
        1.0
        1
        1
        101348.88

        1
        608.0
        2
        0
        41.0
        1.0
        83807.86
        1.0
        0
        1
        112542.58

        2
        502.0
        0
        42.0
        8.0
        159660.80
        3.0
        1
        0
        113931.57

        3
        699.0
        0
        39.0
        1.0
        0.00
        2.0
        0
        0
        93826.63

        4
        850.0
        2
        0
        43.0
        125510.82
        1.0
        1
        1
        79084.10
```

```
y=df.iloc[:,-1]
y.head()
```

```
0 1
1 0
2 1
3 0
4 0
Name: Exited, dtype: int64
```

Question 9:

9. Scale the independent variables **Solution**:

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
x=scaler.fit_transform(x)
```

```
x
```

```
array([[-0.32687761, -0.90188624, -1.09598752, ..., 0.64609167, 0.97024255, 0.02188649],

[-0.44080365, 1.51506738, -1.09598752, ..., -1.54776799, 0.97024255, 0.21653375],

[-1.53863634, -0.90188624, -1.09598752, ..., 0.64609167, -1.03067011, 0.2406869],

...,

[ 0.60524449, -0.90188624, -1.09598752, ..., -1.54776799, 0.97024255, -1.0806308],

[ 1.25772996, 0.30659057, 0.91241915, ..., 0.64609167, -1.03067011, -0.12523071],

[ 1.4648682, -0.90188624, -1.09598752, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question 10:

10. Split the data into training and testing **Solution:**

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
```

