Deep Q Learning: From Paper to Code

Markov Decision Processes

Last Time ...

Interactions of agent and environment

Agent learns and acts

Environment is what is acted upon

Rewards tell the agent what is good

Mathematical Formulation

Actions affect all future rewards

State depends only on previous state and action

Markov Decision Process

Mathematical abstraction

Probabilistic Transitions

Actions cause state transitions

$$p(s',r|a,s)\neq 1$$

$$\sum_{s',r} p(s',r|a,s) = 1$$

Probabilities define our dynamics

$$r(s,a)=E[R_t|S_{t-1}=s,A_{t-1}=a]=\sum_{r\in R}r\sum_{s'\in S}p(s',r|s,a)$$

Expected reward → outcome * probability

Maximizing Rewards & Episodic Tasks

Series of rewards \rightarrow expected return

Sum of rewards that follow current time

$$G_t = R_{t+1} + R_{t+2} + R_{t+3}, \dots, R_T$$

Episode: discrete period of game play

Episodic Game Play

Terminal state is unique

$$G_T = 0$$

Ensures sum over rewards finite

Reward Discounting

Not all tasks are episodic!

Fix by discounting

Discount factor $\rightarrow Y$

Reward Discounting

$$0 \le \gamma \le 1$$

$$1 \rightarrow \mathcal{Y}$$
 Far sighted

$$0 \rightarrow Y$$
 Myopic

$$0.95 \le \gamma \le 0.99$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Reward Discounting

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots$$

$$G_t = R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^2 R_{t+4} + ...)$$

$$G_t = R_{t+1} + \gamma G_{t+1}$$

But wait... how can we know future rewards?

The Policy

Mapping of states to actions

Can be probabilistic

Next Exercise

- Frozen Lake environment
- Reasonable deterministic policy
- 1000 games
- Plot win % over trailing 10 games

Summary

- MDP determined by previous states and actions
- Governed by probability distribution
- Agent maximizes rewards over time
- Policy tells us how agent will act in some state

Up Next

