Note Title

Esempio 1 Calcolare $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$

La sevie sappiamo de converge per Leibuitz. A cosa converge? Cosa ci ricorda? Sembra

> $cou \times = 1$ $\times - \frac{\times^2}{2} + \frac{\times^3}{3} + \frac{\times^4}{4} + \dots$

Ma questa è la serie di Taylor di log (1+x), de quindi è la souma della serie nella sona di convergenta

Qual è la zona di convergenza? Calcolo R. Ju questo caso

 $C_m = (-1)^{m+1} \frac{1}{m} \sim m \sqrt{|C_m|} = \frac{1}{m} \rightarrow 1 = L \sim R = \frac{1}{L} = 1$

Quiudi la serie couverge di si curs per × € (-1,1).

Vediamo gli estemi

-> per x = 1 converge per Leibnit?

 \rightarrow per x = -1 diventa $-1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{6} - \dots$ che diverge $a - \infty$

Quiudi la zona di convergenta è (-1, 1] e quiudi

 $\sum_{n=1}^{\infty} (-1)^{n+1} \times \frac{n}{n} = \log (1+x) \quad \forall x \in (-1, 1]$

Zoua di convergenza

Ju particolare $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{6}+\ldots=\log 2$

Oss. Se metto x = 2 la serie non converge, e in particolare la sua souma non fer log 3

Oss. In questo caso il raggio di convergenta non poteva essere più di 1 perché log (1+x) ha problemi per x < -1.

Escupio 2 Calcolare
$$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$$

Questra ci ricorda $x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots=arctau \times$

e quiudi se tutto va beue la somma richiesta è arctau $1=\frac{\pi}{4}$.

The $x=1$ è all'intruo

della soma di comi della

serie di potente

Soriviamo per beue la serie: $\sum_{n=0}^{\infty}\frac{(-1)^n}{2^{m+1}}\times^{2^{m+1}}$

8a quali x comenge? In questo caso

 $c_m=\int_{3\pm\frac{1}{m}}^{\infty}se$ n è dispani

 $c_m=\int_{3\pm\frac{1}{m}}^{\infty}se$ n è dispani

quindi $\sqrt[n]{c_m}$ hou ha Dimite perdri sui pani tende a 0 , e sui dispani tende a 1 .

Quindi il teorema 2 hell'immediato hou si applica.

Ossenso che

 $\int_{n=0}^{\infty}\frac{(-1)^m}{2^{m+1}}\times^{2^{m+1}}= \times \sum_{n=0}^{\infty}\frac{(-1)^n}{2^{m+1}}\times^{2^m}= \times \sum_{n=0}^{\infty}\frac{(-1)^n}{2^{m+1}}$

L'ultima si rede che comerga per ye $(-1,1)$ più eventualmente aggi estremi, quindi quella initiale combage per $x\in (-1,1)$ più eventualmente aggi estremi.

 \Rightarrow per $x=1$ e per $x=-1$ comerge per leibuita.

Conclusione

 $arctau x=x-\frac{x^2}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots$
 $\forall x\in [-1,1]$

Delitio Nell'esempio 2 la funcione arctanx hon la mai problemi di definizione, quindi perdié la sua serie di Taylor si référéra di couvergere per 1×1>1. Chi à la derivata di arotau ×? 1+x2 Ora 1/2 ha problemi in x = ±i, e i dista 1 dall'origine. Moralmente: arctan × ha problemi in ±i, perché ce li ha la sua derivata, quindi il rappio di convergenza non può essere più di 1. anotau $\times = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$ Oss. Abbiano detto che Derivaualo trovo 1+x2 = 1-x2+x4-x4.

già lo soperamo per la geometrica e questo è un esempto del Teorema 3. Esempio 3 Calcolare Zmx Jutanto cn = n, quindi VICm) -> 1 = L, quindi R = 1 = 1 Negli estremi x = ±1 hou couverge, perché manca conol. nec. Ouindi la serie data converge (=> × € (-1,1) La serie è $\times +2 \times^{2} +3 \times^{3} +4 \times^{4} + - ... = \times (1 + 2 \times + 3 \times^{2} + 4 \times^{3} + ...)$ $= \times \left(\times + \times^2 + \times^3 + \times^4 + \dots \right)^{1} = (2\pi)^{1}$ Ora $x + x^{2} + x^{3} + x^{4} + \dots = x (1 + x + x^{2} + x^{3} + \dots) = x \cdot \frac{1}{1 - x}$ alometrica Quivoli $(*) = \times \left(\frac{\times}{1-\times}\right)^1 = \times \frac{1-\times+\times}{(1-\times)^2} = \frac{\times}{(1-\times)^2}$

Exemplo
$$L$$
 $\sum_{n=1}^{\infty} \frac{x^n}{m \cdot 3^n}$ Quanto fo la sourrea

Oppure calcolare $\sum_{n=1}^{\infty} \frac{x^n}{m \cdot 3^n}$

Pougo $y = \frac{x}{3}$ e disenta $\sum_{n=1}^{\infty} \frac{y^n}{m} = y + \frac{y^2}{2} + \frac{y^3}{3} + \frac{y^4}{4} + \cdots$
 $\log(x + y) = y - \frac{y^4}{2} + \frac{y^3}{3} - \frac{y^4}{4} + \cdots$

Quindi quella originaria \tilde{e} — $\log(x - y)$, quindi forwardo $\tilde{e}x \times y$

disento — $\log(x - \frac{x}{3}) = -\log(x - \frac{y}{3}) = \log(x - \frac{y}{3}) = \log(x - \frac{y}{3})$

Tutto questo sole all' cuterno della zona di convergensa.

Al solito $c_m = \frac{x}{m \cdot 5^n}$, quindi $R = 3$. Greato gli estrum:

Then $r = \frac{x}{m \cdot 5^n}$ quindi $r = \frac{x}{m \cdot 5^n}$ is converge per leibuits.

Conclusione: $\sum_{n=1}^{\infty} \frac{x^n}{m \cdot 3^n} = \log(\frac{3}{3-x})$ $\forall x \in [-3,3)$

In particolare per $x = 1$ converge $x = 1$ x