

Two Theories with Axioms Built by Means of Pleonasms

Author(s): Andrzej Ehrenfeucht

Source: The Journal of Symbolic Logic, Vol. 22, No. 1 (Mar., 1957), pp. 36-38

Published by: <u>Association for Symbolic Logic</u> Stable URL: http://www.jstor.org/stable/2964056

Accessed: 20-12-2015 13:04 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic and Cambridge University Press are collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic.

http://www.jstor.org

TWO THEORIES WITH AXIOMS BUILT BY MEANS OF PLEONASMS

ANDRZEJ EHRENFEUCHT

This paper contains examples T_1 and T_2 of theories which answer the following questions:

- (1) Does there exist an essentially undecidable theory with a finite number of non-logical constants which contains a decidable, finitely axiomatizable subtheory?¹
- (2) Does there exist an undecidable theory categorical in an infinite power which has a recursive set of axioms? (Cf. [2] and [3].)

The theory T_1 represents a modification of a theory described by Myhill [7]. The common feature of theories T_1 and T_2 is that in both of them pleonasms² are essential in the construction of the axioms.

Let T_1 be a theory with identity = which contains one binary predicate R(x, y) and is based on the axioms A_1 , A_2 , A_3 , B_1 , B_2 , B_3 , B_4 , C_{nm} which follow.

A₁:
$$x=x$$
. A₂: $x=y\supset y=x$. A₃: $x=y \land y=z\supset x=z$. (Axioms of identity.)

Received October 5, 1956.

¹ Cf. [8] p. 19. A number of similar problems were recently suggested in the literature. In order to systematize them let us consider the following hypotheses.

H₁: Every axiomatizable, essentially undecidable theory T contains a finitely axiomatizable, essentially undecidable subtheory.

 H_2 : If T_1 and T_2 are compatible axiomatizable theories with the same constants and if T_2 is essentially undecidable, then T_1 is undecidable ([8] p. 19).

H₃: Every recursive extension T₂ of a decidable theory T₁ is decidable ([6] p. 384).

H₄: Every finitely axiomatizable subtheory of an axiomatizable essentially undecidable theory T is undecidable.

Further hypotheses H_1^* , H_2^* , H_3^* (cf. [6]), H_4^* are obtained from H_1 — H_4 by assuming that all theories concerned are based on a finite number of constants.

One can easily check the following connections:

$$H_1 \supset H_2 \supset H_4$$
, $H_3 \supset H_4$, $H_1^* \supset H_2^* \supset H_4^*$, $H_3^* \supset H_4^*$, $H_i \supset H_i^*$ $(i = 1, 2, 3, 4)$.

Kreisel [6] gave an example disproving H_4 and hence H_1 , H_2 , H_3 . He also noticed that the theory R described in [8] p. 52 is a counterexample for H_1^* .

In [7] Myhill gave another beautiful counterexample for H₁*. However he wrote incorrectly that Kreisel [6] left this question open. Myhill stated also that his example disproves H₂*. This however is not obvious and the proof is lacking. One could obtain this proof if one could show that there exists a decidable theory compatible with the theory of Myhill and having the same constants. (Added October 28, 1956: According to the referee, a paper by Putnam forthcoming in this JOURNAL contains an example of a theory which satisfies these conditions.)

The theory T_1 to be defined below disproves H_4^* .

² Here: repetition of one and the same formula in a single axiom.

B₁:
$$R(x, x)$$
. B₂: $R(x, y) \supset R(y, x)$. B₃: $R(x, y) \land R(y, z) \supset R(x, z)$. (Axioms of equivalence.)

B₄:
$$x=y\supset [R(z,x)\equiv R(z,y)]$$
.

(Axiom of extensionality.)

Let ϕ_n be the formula

$$(\exists x_1, \ldots, x_n) \{ x_1 \neq x_2 \land x_1 \neq x_3 \land \ldots \land x_{n-1} \neq x_n \land R(x_1, x_2) \land R(x_1, x_3) \land \ldots \land R(x_{n-1}, x_n) \land (y)[R(x_1, y) \supset (y = x_1 \lor y = x_2 \lor \ldots \lor y = x_n)] \},$$

which express that there is an abstraction class of the relation R which has exactly n elements.

Let f(n) and g(n) be two recursive functions which enumerate two recursively inseparable sets [5], and call these sets X_1 and X_2 .

We now specify the axioms C_{nm} .

$$C_{nm}$$
: $\phi_m \wedge \dots \wedge \phi_m$ if $f(n) = m$,
 $\sim \phi_m \wedge \dots \wedge \sim \phi_m$ if $g(n) = m$,
 $x = x$ if $g(n) \neq m \neq f(n)$.

It is obvious that the set composed of the formulas A_1-A_3 , B_1-B_4 , C_{nm} (n, m = 1, 2, ...) is recursive.

The theory T_1 is essentially undecidable; for if there were a complete and decidable extension T_1' of it, then the recursive sets $Z = \{n : \phi_n \text{ is provable in } T_1'\}$ and $Z' = \{n : \sim \phi_n \text{ is provable in } T_1'\}$ would separate the sets X_1 and X_2 .

By a result of Janiczak [4], every finitely axiomatizable theory T which has the same constants as T_1 and satisfies the condition that A_1-A_3 , B_1-B_4 are provable in T is decidable. Thus T_1 has all the properties required in (1).

Let T_2 be the theory which has only one constant = (the predicate of identity) and which is based on the axioms $A_1 - A_3$ as well as on the axioms β_{nm} given below.

Let ψ_n be the formula

$$(\exists x_1, \ldots, x_n)[x_1 \neq x_2 \land x_1 \neq x_3 \land \ldots \land x_{n-1} \neq x_n \land (y)(y = x_1 \lor y = x_2 \lor \ldots \lor y = x_n)],$$

which means that there exist exactly n elements; and let h(n) be a re-

cursive function which enumerates a non-recursive set X. We specify β_{nm} as follows.

$$\beta_{nm}: \underbrace{\sim_{\psi_m} \wedge \ldots \wedge \sim_{\psi_m}}_{n \text{ times}} \text{ if } h(n) = m,$$

$$x = x \qquad \text{if } h(n) \neq m.$$

It is obvious that the set of axioms of T_2 is recursive, and that T_2 is categorical in the power \aleph_0 .

 T_2 is undecidable; for $\sim \psi_m$ is provable in T_2 if and only if m is in X. Thus T_2 gives a positive answer to the problem (2).

LITERATURE

- [1] H. Behmann, Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem, Mathematische Annalen, vol. 86 (1922), pp. 163-229.
 - [2] L. Henkin, On a theorem of Vaught, this Journal, vol. 20 (1955), pp. 92-93.
- [3] L. Henkin, On a theorem of Vaught, Indagationes mathematicae, vol. 17 (1955), pp. 326-328.
- [4] A. Janiczak, Undecidability of some simple formalized theories, Fundamenta mathematicae, vol. 40 (1953), pp. 131-139.
- [5] S. C. Kleene, A symmetric form of Gödel's theorem, Indagationes mathematicae, vol. 12 (1950), pp. 244-246.
 - [6] G. Kreisel, review of [8], *Mathematical reviews*, vol. 15 (1954), pp. 384-385.
- [7] J. MYHILL, Solution of a problem of Tarski, this Journal, vol. 21 (1956), pp. 49-51.
- [8] A. TARSKI, A. Mostowski and R. M. Robinson, *Undecidable theories*, Amsterdam (North-Holland Pub. Co.) 1953, xi + 98 pp.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

$$\underbrace{\frac{P(c_m) \land \dots \land P(c_m)}{n \text{ times}}}_{\text{ n times}} \quad \text{if} \quad f(n) = m,$$

$$\underbrace{\sim P(c_m) \land \dots \land \sim P(c_m)}_{\text{ n times}} \quad \text{if } g(n) = m.$$

³ (Added October 28, 1956, at the suggestion of the referee.)

All complete extensions of the theory T_2 are decidable (cf. Behmann [1]). Thus T_2 solves a problem of Mostowski, who asked whether an undecidable theory always possesses at least one undecidable complete extension.

Pleonasms can also be used to obtain an example disproving H_4 . This example is simpler than the example given by Kreisel in [6]. It is sufficient to consider a theory whose non-logical symbols are a monadic predicate P and an infinite number of constants c_1, c_2, \ldots , and whose axioms are