Must-know Estimations for a System Design Interview

Must know Back-of-the-envelope estimations

In a system design interview, the chances are high that you will be asked to estimate QPS (Queries per second) and Storage of the system using a back-of-the-envelope estimation.

There are various scales and numbers anyone appearing for System Design Interview should know. Some of the scales are as follows -

Number Scale

Name	Number	Number of Zeroes	
1 hundred	100	2 Zeroes	
1 thousand (K)	1000	3 Zeroes	
1 million (M)	1000000	6 Zeroes	
1 billion (B)	100000000	9 Zeroes	
1 trillion (T)	100000000000	12 Zeroes	
1 quadrillion	100000000000000	15 Zeroes	

Power of Two's Scale

In a system design interview, the volume of huge data is measured on the power of 2. It gets as low as to bits and bytes. A byte is measured as 8 bits. Estimations becomes easier if we co-relate below table with number table and make rough approximation. The interviewer will expect you to know these scales.

Name	Power	Value
1 KB (Kilobyte)	2 ¹⁰	1024 ~ 1K
1 MB (Megabyte)	2 ²⁰	1048576 ~ 1M
1 GB (Gigabyte)	2 ³⁰	1073741824 ~ 1B
1 TB (Terabyte)	2 ⁴⁰	1099511627776 ~ 1T
1 PB (Petabyte)	2 ⁵⁰	1125899906842624 ~ 1 Quadrillion

Latency Numbers

In a system design interview, the latency numbers play a vital role in estimations and in having the knowledge, like how much time certain components take to perform certain operations. Below are some of the latency numbers of various operations -

Operation	Time taken	
L1 cache reference	0.5 ns	
Branch mispredict	5 ns	
L2 cache reference	7 ns	
Mutex lock/unlock	100 ns	
Main memory reference	100 ns	
Compress 1K bytes with Zippy	10,000 ns = 10 μs	
Send 2K bytes over 1 Gbps network	20,000 ns = 20 μs	

Latency Numbers

Operation	Time taken	
Read 1 MB sequentially from memory	250,000 ns = 250 μs	
Round trip within the same datacenter	500,000 ns = 500 μs	
Disk seek	10,000,000 ns = 10 ms	
Read 1 MB sequentially from the network	10,000,000 ns = 10 ms	
Read 1 MB sequentially from disk	30,000,000 ns = 30 ms	
Send packet CA (California) → Netherlands → CA	150,000,000 ns = 150 ms	

***ns = nanosecond, µs = microsecond, ms = millisecond

 $1 \text{ ns} = 10^{-9} \text{ seconds}$

 $1 \mu s = 10^{-6} seconds = 1,000 ns$

1 ms = 10^{-3} seconds = $1,000 \mu s = 1,000,000 ns$

Availability Numbers

In a system design interview, the **High Availability** discussion will happen for sure. It is define as the ability of the system to be operational for a longer period of time. Below are some of the availability numbers you should know -

Availability %	Downtime per year	Downtime per month	Downtime per day
90% (one nine)	36.53 days	73.05 hours	2.40 hours
99% (two nines)	3.65 days	7.31 hours	14.40 mins
99.9% (three nines)	8.77 hours	43.83 mins	1.44 mins
99.99% (four nines)	52.60 mins	4.38 mins	8.64 secs
99.999% (five nines)	5.26 mins	26.30 secs	864.00 millisecs
99.9999% (six nines)	31.56 secs	2.63 secs	86.40 millisecs
99.99999% (seven nines)	3.16 secs	262.98 millisecs	8.64 millisecs
99.999999% (eight nines)	315.58 millisecs	26.30 millisecs	864.00 microsecs
99.999999% (nine nines)	31.56 millisecs	2.63 millisecs	86.40 microsecs

Blob/Object Storage Sizes

In a system design, there are various big systems that involve types of blobs/objects like images, videos, audios etc. Below are some of the approximate storage sizes of various blobs/objects -

Object Type	Size	
char	1 B	
char (Unicode)	2 B	
UUID	16 B	
Thumbnails	20-30 KB	
Website image	200-300 KB	
Mobile image	2-3 MB	
Documents like books, reports, govt lds etc	1-3 MB	
Audio files like songs, recordings etc	4-5 MB	
1 min 720px video	60 MB	
1 min 1080px video	130 MB	
1 min 4K video	350 MB	

Cracking the GAMAM Technical Interviews

CRACKING THE GAMAM TECHNICAL INTERVIEWS

Strategies, Tips, and Preparation resources

AN INSIDER'S GUIDE

Dinesh Varyani

Buy Now

THANK YOU!!! For more such content follow @Dinesh Varyani