

MGMT 9050: Quantitative Methods I

Linear Regression

THE CONTEXT

DEFINING A LINE

$$Y = B_0 + B_1 X$$

- B_0 indicates Y when X is 0.
- B_1 is the slope of the line.

USING A LINE

$$Y = 35 + 15X$$

- If X = 3, Y = 80
- If X = 8, Y = 155
- If X = -2, Y = 5

WHAT'S THIS MEAN FOR US?

- We don't start with an equation, but rather data
- We must construct the equation from the data
- Our data never fall cleanly along a straight line, so:

$$Y = B_0 + B_1 X + e$$

$$\widehat{Y} = B_0 + B_1 X$$

EXAMPLE

A POSSIBLE LINE

LINE OF BEST FIT

$$Y = .75 + .75X$$

COMPARE THE LINES

Model 1

Х	Y	Yhat	Y - Yhat	Squares
1	2	1	1	1
3	2	3	-1	1
5	5	5	0	0

$$SS = 2$$

Model 2

Х	Y	Yhat	Y - Yhat	Squares
1	2	1.5	.5	.25
3	2	3	-1	1
5	5	4.5	.5	.25

STANDARDIZED FORM

$$z_Y = \beta_1 z_X + e$$

$$\hat{z}_Y = \beta_1 z_X$$

SIMPLE DATA

Case	X	Υ
А	5	10
В	1	4
С	4	5
D	7	11
E	6	15
F	4	6
G	3	5
Н	2	0
1	4	8
J	8	12

OUTPUT

Model Fit Measures

				Overall Model Test			
Model	R	\mathbb{R}^2	Adjusted R ²	F	df1	df2	þ
1	0.846	0.716	0.681	20.182	1	8	0.002

Omnibus ANOVA Test

	Sum of Squares	df	Mean Square	F	р
В	127.758	1	127.758	20.182	0.002
Residuals	50.642	8	6.330		

Note. Type 3 sum of squares

Model Coefficients - C

Predictor	Estimate	SE	t	р	Stand. Estimate
Intercept	-0.038	1.877	-0.020	0.984	
В	1.736	0.386	4.492	0.002	0.846

MODEL FIT

Total Sum of Squares

$$SS_{TOT} = \sum (Y - \overline{Y})^2$$

Regression Sum of Squares

$$SS_{REG} = \sum (\hat{Y} - \overline{Y})^2$$

Residual Sum of Squares

$$SS_{RES} = \sum (Y - \hat{Y})^2$$

MODEL FIT

- R correlation between Y and predicted Y
- R2 percentage of variance in Y that can be explained given X

•
$$F - F = \frac{MS_{reg}}{MS_{res}}$$

- degrees of freedom
- numerator = # of predictor variables (k)
- denominator = N k 1

MODEL FIT

- Total Sum of Squares = 178.40
- Regression Sum of Squares = 127.76
- Residual Sum of Squares = 50.64
- R and R-Square = .85 & .72
- $F_{(1.8)} = 20.18, p = .002$