(urs 2 A multime, P(A) = represent a multimea partilor multime? P(A): $\frac{def}{def}$ $\frac{$ $2\mathcal{P}(\mathcal{P}(\Phi)) \cdot \mathcal{P}(\Phi) = \langle \Phi + \mathcal{P}(\mathcal{P}(\Phi)) \rangle = \langle \Phi + \mathcal{P}(\Phi) \rangle = \langle$ Det Fie A si B 2 multimi. O functive f de la A la B (motatie f. A -> B) ente o submultime a produsului cartezian A xB ou proprietatea:

(4) sce A (3!) box B a.i. (x, bx) e f

(w) sce A (3!) box B a.i. (x, bx) e f

(sce A)

vom mota ou f(x).

2) f. A > B functive xeA -> f(x) e B. A NU e fct. 10 A 30 A 30 Finche 3 Pizzish 374,564 P(1) = 4, P(3) = 6.

Notatie DC f. A-Be fct., atunci A > domeniul de definitée al lui f B > codomeniul (sau domeniul valorilor feuif Graficul function of este a multime ? (a, flas) laca). Im(f) = 3 /f(a) (a ∈ A) = B Obs a fet $f:A \rightarrow B$, $g:C \rightarrow D$ sunt egale daca: A=C, B=D, $f(a)=g(a)(a)a\in A$. Ex $1f:R \rightarrow R$ f(a)=x $(A)a\in R$ $f\neq g. (f\leqslant g)$ run sunt egale) Ex $1f:R \rightarrow R$ a(x)=x A a(x)=x Ex 11 f: R -) R f(x) = x (4) x e in)
g: N -) R g(x) = x (4) x e in) $g: \{1/2\} \rightarrow \{0\}$ $g(x) = x^2 - 3x + 2$ (4) $x \in \{1/2\} = 3$ g(x) = g(z) = 0Det Fio for JB gof. A >C (gof)(x) = g(f(x)) (4) xeA. 2) 4:31,25 -> 305 f(1)- f(2)=0 $gol:A \rightarrow C (gol)(1) = 8$ (gol)(2) = 10 (gol)(3) = 92 (3) 10 (3) = 10 (3) (3) = 10 (3) (3) = 9.

Propr f: A>B, g:B>C, h:C>D fet. Atunci holgof) = (hog)of.

Compunered fet. = associativa)

Det Fix f:A->15 a fct. fs.m. imjectiva dara (4) x,ycA a x = y => f(x) = f(y) (echivalent pt + x,yeA an fs.m. surjectiva daca Tm(f)=B (echivalent (+)y=B(=)x=Aar f(xy)=y) of s.m. bijectiva daca fe stmultan (mj sij surj. $\begin{cases} (x) & \text{if } (x) = 2m+1 \\ \text{for } (x) & \text{for } (x) = 2m+1 \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for } (x) & \text{for } (x) \\ \text{for } (x) & \text{for }$ Funcții speciale 1) Fct. caracteristică a unei submulțimi: $A \subseteq X$; $f_A(x) = \frac{1}{10}$, $x \in A$ $f_B : X - 30 N$.

(Obs. $AB \subseteq X$. Atunci A = B = A = B) 2) "P(m)" or function indicatoral lui Euler relative "N" -> IN f(m) = # mr. maturale nemule mai mici sau egale cu m si care sunt sprime cu mmemule man mun sum $f(n) = 1 \cdot | f(n) = 2 \cdot$ 3) Daca A EB, fet, inclusione in: A B in(a)=x (x) xeA. 4) Doca A,B 2 multimi, projectia camonica pe mult. A PA, (GLD)=0 PA ((a,b)) = a (4) (a,b) eAxB 5) Fet parte întreagă, fct parte Practionara

 $f: \mathbb{R} \longrightarrow \mathbb{Z}$ $f(x) = x \propto e^{-ix}$ I fet parte întreagă g: R -> [0,1) g(00) = 1x1 (4) xe R & fct. parte fractionarà 6) Daca A=1,2,-,my atumei 5,=3+1+:31,2,-,my =31,2,-,my =31,2,-,my = bijectiva; > fs.m. permutare a lei }1,2,.., my (15m) = M1, Hopz Fie fct, f,f': A >B & g,g': B >C. Atunci: fa injective = gof e injectiva

(a) fig injective = gof e surjectiva

(b) fig injective = gof e bijectiva

(c) fig injectiva injectiva injectiva injectiva injectiva injectiva

(d) fig injectiva = gof e bijectiva

(d) fig injectiva injectiva injectiva

(d) fig injectiva injectiva injectiva

(d) fig injectiva injectiva injectiva

(e) fig injectiva injectiva injectiva

(injectiva = gof e injectiv 6 got surjectiva => q e surjectiva (-11 — got surj si f nu e surj.)
6 got bijectiva => finj, g surj. Dom (4) Fig xyef a.i. $f(x) = f(y) \Rightarrow g(f(x)) = g(f(y)) = g(f(y))$ Thop Fie f: A > B o function (Pt o multime A, I a a get identitate

Thop Fie fie de bijectiva, atuncia fet, g (de maisus) este unica; gs.m. inversa

Obs. Daca f e bijectiva, atuncia fet, g (de maisus) este unica; gs.m. inversa goting = g. Decifeing.

Propre Fie f: A -> B functie, X, W = A, Y, Z = B. Atunci: (x) = (x) = f(x) = f(x).@ y = Z => f - (y) = 'f - (Z). f(xvw) = f(x) v f(w). f(xnw) = f(x) of(w) (ou egalitate dacé feim) f-(Ans) = f-, (Nnf-(s). The state of the Obs Preimaginea unei submultimi a codomeniului prin functia f existe mtotdeauna (a mu se confunda f (y) cu obligativitatea ca l'a sà lio inverso P. i I (-1:-! D-10: ca frisa fie inversa lui f (adica fisa fie bijectiva).

Down G XNW EX | D f(xnw) = f(x) | => f(xnw) = f(x)nf(w).

XNW EX | D f(xnw) = f(w) | D x eX a n f(xo) = b | D x eX a n f(xo) = $= \int \partial u du = \int \int \int \partial u du = \int \int \partial u du = \partial u du$