ЛАБОРАТОРНА РОБОТА №1

ПОПЕРЕДНЯ ОБРОБКА ТА КОНТРОЛЬОВАНА КЛАСИФІ-КАЦІЯ ДАНИХ

Мета заняття: використовуючи спеціалізовані бібліотеки та мову програмування Python дослідити попередню обробку та класифікацію даних.

Хід роботи

GitHub репозиторій: https://github.com/AlexanderHorielko/SAI_Horielko_PI-59

Варіант №5

Завдання 1

Рис. 1.1.1 Бінарізація

					ЖИТОМИРСЬКА ПОЛІТЕХНІКА.21.121.05.000 – Лр1				
3мн.	Арк.	№ докум.	Підпис	Дата	<u> </u>				
Розро	б.	Горєлко О. В.				Літ.	Арк.	Аркушів	
Перес	зір.	Пулеко I. B.			7-:		1	3	
Керівник					Звіт з				
Н. контр.					лабораторної роботи ϕ ІКТ Γp .		o. ΠΙ-59		
Зав. к	саф.								

Рис. 1.1.2 Виключення середнього

Рис. 1.1.3 Масштабування

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата

Рис. 1.1.4 Нормалізація

L1-нормалізація використовує метод найменших абсолютних відхилень (Least Absolute Deviations), що забезпечує рівність 1 суми абсолютних значень вкожному ряду. L2-нормалізація використовує метод найменших квадратів, що забезпечує рівність 1 суми квадратів 4 значень. Тому можна зробити висновки, що L1 нормалізація є більш надійною у порівняні з L2.

Рис. 1.1.5 Кодування міток

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата

Macub Input_labels був пересортований за алфавітним порядком, та бувпроіндексований від 0 до 4. Наступна частина коду демонструє роботу кодувальника, (слова заміняються числами). Третя частина коду демонструєзворотню процедуру.

Завдання 2: Попередня обробка нових даних

Рис. 1.3 Результат

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата

Завдання 3: Класифікація логістичною регресією або логістичний класифікатор

Рисунок 1.4 Візуалізація класифікації логістичною регресією

Завдання 4: Класифікація наївним байєсовським класифікатором

Обидва прогони дали ідентичний результат, оскільки генерувались однакові набори даних для навчання й тестування.

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата

Рисунок 1.5 Класифікація наївним байєсовським класифікатором

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата

Рисунок 1.6. Класифікація наївним байєсовським класифікатором з обчисленням якості, точності та повноти

Завдання 5: Вивчити метрики якості класифікації

Рисунок 1.7. Порівння моделей RF та LF на кроках 0.25 та 0.5

		Горєлко О. В.				Арк
		Пулеко I. B.			ЖИТОМИРСЬКА ПОЛІТЕХНІКА.21.121.05.000 — Лр1	7
Змн.	Арк.	№ докум.	Підпис	Дата		′

При порозі 0.5 якість та точність значно вищі, у разі використання моделі RF, тому, як на мене вона ϵ більш оптимальною, але при порозі 0.25 LR модель справляється краще, тому остаточний вибір варто робити виходячи з вхідних даних.

Рисунок 1.8. Порівняння моделей за допомогою кривих ROC

Завдання 6: Розробіть програму класифікації даних

```
| Studies | Studies | Strong skiesens | Strong s
```

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата

Рисунок 1.9 порівняння класифікаторів наївного байєса та SVM

Висновок: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідив попередню обробку та класифікацію даних.

		Горєлко О. В.		
		Пулеко I. B.		
3мн.	Арк.	№ докум.	Підпис	Дата