HackerClub

Today...

is not a deep dive into OOP.

is a brief guide on OOP for problem solving.

Log into Kattis

When logged in search for "Take Two Stones".

Open a new tab, and search for "pizza2" on Kattis.

Read it...

what is it asking you to find?

what data is it giving you to work with?

what objects can you identify in the description?

Find the nouns (objects and data attributes)

Alice and **Bob** are playing a new **game** of **stones**. There are *N* **stones** placed on the **ground**, forming a **sequence**. The stones are labeled from 1 to *N*.

Alice and **Bob** in turns take exactly two consecutive **stones** on the **ground** until there are no consecutive **stones** on the **ground**.

That is, each **player** can take **stone** i and **stone** i + 1, where $1 \le i \le N - 1$.

If the number of stones left is odd, Alice wins. Otherwise, Bob wins.

Assume both **Alice** and **Bob** play optimally and **Alice** plays first, do you know who the **winner** is?

Eliminate duplicates

Alice and **Bob** are playing a new **game** of **stones**. There are *N* stones placed on the **ground**, forming a **sequence**. The stones are labeled from 1 to *N*.

Alice and Bob in turns take exactly two consecutive stones on the ground until there are no consecutive stones on the ground.

That is, each **player** can take **stone** i and stone i + 1, where $1 \le i \le N - 1$.

If the number of stones left is odd, Alice wins. Otherwise, Bob wins.

Assume both Alice and Bob play optimally and Alice plays first, do you know who the **winner** is?

Classify

Alice and Bob are outputs, so we can call them attributes of the object.

The **number of stones** is the input so we can call it an attribute also.

The object these are all attributes of is the **game**. The game has **players** (**Alice** and **Bob**) and a **sequence of stones**.

The word **ground** can disregarded in this question.

Finally, our object needs a winner, which will be either Alice or Bob.


```
class Game(object):
      def __init__(self, player1, player2, stones):
          self.player1 = player1
          self.player2 = player2
          self.stones = stones
      def get_winner(self):
          winner = self.player1 if self.stones % 2 != 0 else self.player2
          return winner
10
11
      def play(self):
          leftover = self.stones
13
          for i in range(1, self.stones):
              leftover -= 2
14
          self.stones = leftover
16
17
18 def main():
      n = int(input())
      game = Game('Alice', 'Bob', n)
      game.play()
      winner = game.get_winner()
22
23
      print(winner)
24
     __name__ == "__main__":
27
      main()
```

(1.) The game uses 3 pieces of data, player1 (Alice), player2 (Bob), and the number of stones (n).

We initialize the object using the data.

- (2.) Calling .play() on the new game object will trigger an algorithm which follows hte rules specified in the problem description.
- (3.) Finally we judge the winner on how many stones are leftover.

Questions?

With that done...

Move onto your other tab, and try the "pizza2" problem.

I have a solution so... it can be done.

