Predicting Loan Status

OBJECTIVE: To predict weather loan will be approved or not based on applicant's informations

Data Source: Analytics Vidhya Data Science Hacakthon pltform

Tools Used: Numpy, Pandas, Matplotlib, Scikit Learn libraries of python

Getting to know data

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
                   Non-Null Count Dtype
 # Column
___
                                 614 non-null object
601 non-null object
      Loan ID
    Gender
 2 Married 611 non-null object
3 Dependents 599 non-null object
4 Education 614 non-null object
5 Self_Employed 582 non-null object
6 ApplicantIncome 614 non-null int64
    Married
     CoapplicantIncome 614 non-null float64
LoanAmount 592 non-null float64
     Loan_Amount_Term 600 non-null float64
10 Credit History 564 non-null float6
11 Property_Area 614 non-null object
12 Loan_Status 614 non-null object
                                                         float64
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB
```

Independent Variable: Loan Status

Notes -: Categorical/binary variables : Loan_ID, Gender, Married, Dependents, Education, Self_Employed, Credit_History, Property_Area, Loan_Status. Continous Variables : ApplicantIncome, CoapplicantIncome, LoanAmount Descrete Numerical variable : Loan Amount Term

Data Exploration

Creating frequency table for each variable to explore dependecy of Loan_Status variable on every other variable

```
Frequency Table for variable 'Gender' :
 Loan_Status N
Gender
          0.06 0.12 0.19
Female
           0.25 0.56 0.81
0.31 0.69 1.00
Male
All
Frequency Table for variable 'Married':
Loan Status N Y All
Married
No
           0.13 0.22 0.35
          0.18 0.47 0.65
           0.31 0.69 1.00
Frequency Table for variable 'Dependents' :
Loan_Status N Y All
Dependents
0
           0.18 0.40 0.58
           0.06 0.11 0.17
1
           0.04 0.13 0.17
3+
           0.03 0.06 0.09
          0.31 0.69 1.00
Frequency Table for variable 'Education' :
Loan_Status N Y All
Education
Graduate
           0.23 0.55 0.78
Not Graduate 0.08 0.13 0.22
            0.31 0.69 1.00
Frequency Table for variable 'Self_Employed' :
             N Y
Loan Status
                         All
Self Employed
No
             0.27 0.59 0.86
             0.04 0.10 0.14
Yes
All
             0.31 0.69 1.00
```

```
Frequency Table for variable 'Credit History' :
Loan Status
                   N Y All
Credit_History
               0.15 0.01 0.16
0.17 0.67 0.84
0.0
1.0
                0.32 0.68 1.00
Frequency Table for variable 'Property_Area' :
                       Y All
                 N
Loan_Status
Property_Area
               0.11 0.18 0.29
Rural
Semiurban
               0.09 0.29 0.38
Urban
               0.11 0.22 0.33
All
               0.31 0.69 1.00
```

Visualizing data

Visually exploring data: Bar plots for categorical independent variables. Box Plots for continous variables

Applicant_Income Box Plot :

Coapplicant_Income Box Plot :

<matplotlib.axes._subplots.AxesSubplot at 0xe99ead1f08>

Loan_Amount Box Plot :

<matplotlib.axes._subplots.AxesSubplot at 0xe99eb19c88>

Implementing Logistic Regression Model

Intercept is [-2.41961967]

Coeffice	nts are :	
	Independent variable	coefficents
0	Applicant_Income	1.35e-05
1	Coapplicant_Income	-5.08e-05
2	Loan_Amount	-2.22e-03
3	Loan_Amount_Term	-2.30e-03
4	Credit_History	3.83e+00
5	Gender_Male	1.62e-01
6	Married_Yes	4.36e-01
7	Dependents_1	2.74e-01
8	Dependents_2	4.30e-01
9	Dependents_3+	4.46e-01
10	Education_Graduate	4.72e-01

11	Self_Employed_Yes	-1.33e-01
12	Property Area Semiurban	7.19e-01
13	Property Area Urban	-2.51e-01

Evaluating the Model

Accuracy Score of model is : 0.8230088495575221

Confusion Matrix:

Classificatio	n report is : precision	recall	f1-score	support
0 1	0.88 0.81	0.45 0.97	0.60 0.89	33 80
accuracy macro avg weighted avg	0.85 0.83	0.71 0.82	0.82 0.74 0.80	113 113 113

Comment: Logistic regression model seems to be a good fit for this data

367 non-null

367 non-null

367 non-null

float64

float64

float64

uint8

object

Test Data

Test data Information :

<class 'pandas.core.frame.DataFrame'> Index: 367 entries, LP001015 to LP002989 Data columns (total 11 columns): # Column Non-Null Count Dtype 367 non-null 0 Gender object Married 367 non-null object Dependents 367 non-null object Education 367 non-null object Self_Employed 367 non-null object 367 non-null Applicant_Income float64

Coapplicant_Income 367 non-null

10 Property_Area 367 non-null dtypes: float64(4), object(6), uint8(1)

memory usage: 31.9+ KB

Loan Amount

Loan Amount Term

Credit_History

Output

Select Loan ID from dropdown to check predicted Loan approval status

Select ID LP001015

Loan_ID	Loan_Status
1 LP001022	Y

<function __main__.select_func(1)>

To check if Decision Tree Classification model can be a better fit, data was also trained in decision tree classifier and model evaluated based n classification accuracy

Building Decision Tree Classification Model

Accuracy Score of model is: 0.6814159292035398

Classification	report is : precision	recall	f1-score	support
0 1	0.47 0.82	0.64 0.70	0.54 0.76	33 80
accuracy macro avg weighted avg	0.65 0.72	0.67	0.68 0.65 0.69	113 113 113

Comments: Decision Tree Model is rejected due to low accuracy