

Activité : Ping-pong à la rescousse

Le séquençage d'instructions sous forme d'algorithmes simples est fondamental à la pensée informatique. Dans cette activité, les élèves travaillent en équipe de deux à quatre et créent un algorithme simple qui orientera l'un des membres de leur équipe (les yeux bandés) dans le but de sauver une balle de ping-pong. Ce faisant, les élèves développent leurs compétences essentielles en communication et en pensée critique ainsi que la compétence disciplinaire « Concevoir des idées », qui fait référence à la génération d'idées ou l'ajout d'idées à celle des autres, à l'analyse d'idées selon des critères ou des contraintes et à la sélection d'une idée à suivre.

Aperçu de l'activité

Durée approximative : 1 h

Matériel pour chaque groupe de deux à quatre élèves :

- Balle de ping-pong
- Bandeau pour les yeux
- Papier et crayon
- Verre (facultatif)
- Horloge analogique imprimée (facultatif)

Matériel pour chaque élève :

- Feuille d'autoévaluation (facultatif)
- Crayon (facultatif)

Préparation:

- Organisez la classe afin que les élèves puissent se déplacer facilement. Créez des « obstacles » à l'aide de pupitres ou de chaises pour délimiter les endroits où les élèves ne peuvent pas passer.
- Vous pouvez aussi faire l'activité au gymnase ou à l'extérieur en utilisant des cônes, des cordes à sauter ou des cerceaux en tant qu'obstacles.
- Imprimez une horloge analogique par groupe. (facultatif)
- Imprimez une feuille <u>d'autoévaluation</u> pour chaque élève. (facultatif)

Remarque pour l'enseignant : Vous trouverez une horloge analogique à imprimer à l'adresse suivante : http://www.sawyoo.com/postpic/2010/11/blank-clock-face_105120.jpg.

Réchauffement : Estimation de la complexité des algorithmes (10 minutes)

Demandez aux élèves de penser à une tâche du quotidien, comme préparer un sandwich au beurre d'arachides et à la confiture ou attacher ses chaussures. Invitez les élèves à participer à une discussion en grand groupe ou en petits groupes à propos des questions suivantes :

- Combien d'étapes sont nécessaires pour accomplir la tâche ?
- Quelles sont les étapes nécessaires pour accomplir la tâche ?
- Quels sont les obstacles qui pourraient surgir ?

Activité : Construction des algorithmes (30 minutes)

Faites des groupes de deux à quatre élèves. Demandez à chaque groupe de déterminer qui occupera les rôles suivants :

Le **robot** a les yeux bandés et suit les directives données par le marcheur et le tourneur. Le **marcheur** indique le nombre et la taille des pas que le robot doit faire. Le **tourneur** indique la direction et la portée des tours du robot. Le secrétaire écrit chaque directive donnée au robot.

Dans un groupe de quatre, chaque élève a un rôle. Dans un groupe de trois, une personne peut occuper à la fois le rôle du tourneur et du secrétaire. Dans un groupe de deux, une personne a le rôle du robot tandis que l'autre est à la fois le marcheur, le tourneur et le secrétaire.

Pour commencer:

- 1. Demandez à chaque groupe de déterminer un point de départ et d'arrivée. Ces points peuvent être distants ou rapprochés. Les groupes peuvent aussi ajouter des obstacles, mais leur sécurité reste la priorité.
- 2. Demandez à chaque groupe de placer la balle de ping-pong entre les points de départ et d'arrivée.
- 3. Donnez à chaque groupe une minute pour noter leur estimation du nombre d'instructions qu'ils devront donner au robot afin de s'emparer de la balle de ping-pong et de l'amener au point d'arrivée.
- 4. Demandez au robot de se placer au point de départ et de se bander les yeux.
- 5. Demandez au marcheur et au tourneur de se placer au point d'arrivée.

Règles générales :

- Le marcheur et le tourneur disent leurs directives au robot tour à tour afin que celui-ci puisse s'emparer de la balle de ping-pong et l'amener au point d'arrivée.
- Le robot doit répondre à chaque directive par « Ok » si la directive est valide et par « Non » si elle est invalide. Vous trouverez une liste de directives valides ci-dessous.
- Le secrétaire écrit chaque directive à laquelle le robot répond « Ok ».
- Quand le robot amène la balle de ping-pong au point d'arrivée, le secrétaire doit noter le nombre total de directives.

Directives:

Directive	Qui peut donner les directives	Comment écrire la directive
Nombre de pas en nombre entier et en taille des pas, grands ou petits Exemples: « 3 grands pas » « 2 petits pas »	Marcheur	<numéro><taille> Exemples:</taille></numéro>
L'orientation du tour, droit ou gauche, et la taille du tour, grand ou petit. Exemples: • « tour gauche grand » • « tour droit petit »	Tourneur	<pre><orientation><taille> Exemples:</taille></orientation></pre>
Annuler Annuler la dernière directive	Marcheur ou tourneur	ANNULER
PRENDRE Prendre la balle	Marcheur	PRENDRE

Réflexion : Réusiner les algorithmes (20 minutes)

Identifiez les séries de directives enregistrées par chaque groupe comme étant un **algorithme**. Expliquez qu'un algorithme est une solution à un problème. Il est divisé en étapes individuelles et peut être répété.

Demandez à chaque groupe d'analyser leur algorithme et de chercher des séquences de directives pouvant être combinées. Par exemple, la directive 2G suivie de 1 G peut être combinée en 3 G. Le but est d'avoir le moins d'instructions possible tout en produisant le même résultat. On appelle cela le **réusinage**.

Invitez les élèves à participer à une discussion en grand groupe ou demandez-leur de réfléchir en petits groupes ou individuellement à propos des questions suivantes :

- Quelle est la différence entre votre estimation et le vrai nombre de directives dans votre algorithme ?
- Le réusinage de votre algorithme a-t-il permis de réduire le nombre de directives ? Si oui, pourquoi ? Sinon, pourquoi pas ?
- Quel était l'aspect le plus facile ou le plus difficile de la réalisation de la première estimation ?
- Quel était l'aspect le plus facile ou le plus difficile des rôles de marcheur ou de tourneur ?
- Quel était l'aspect le plus facile ou le plus difficile du rôle de robot ?
- Quel était l'aspect le plus facile ou le plus difficile du rôle de secrétaire ?
- Comment pourriez-vous combiner des directives pour en faire de nouvelles ? Exemples :
 - Le mouvement du cavalier aux échecs est 2 G + DG + 1 G.
 - « Tourner » est GG + GG

Évaluation

Critères	En voie d'atteindre les exigences	Satisfait aux exigences	
L'élève a partagé ses idées pendant le réchauffement.			
L'élève a collaboré avec son équipe pour générer l'algorithme.			
L'élève a contribué au réusinage soit en trouvant des idées, en s'appuyant sur les idées des autres pour en créer ou en donnant une rétroaction constructive.			

1	Г		r
	1		
L'élève a partagé ses réflexions	1		
	i ·		
individuellement ou en groupe.	I see a	l i	
individuetternent od en groupe.	!		!
	·		

Pour aller plus loin

Permettez l'utilisation du monde « double » comme modificateur

Par exemple, 5 DG signifie « cinq double grands pas », où chaque pas fait le double d'un pas ordinaire, tandis que GDP signifie « gauche double petit pas », un pas qui représente la moitié d'un petit pas à gauche régulier. Cette façon d'écrire les directives est semblable à celle des tailles de vêtements : TTG est plus grand que TG, mais TTP est plus petit que TP.

Ajoutez un verre au point d'arrivée

Le marcheur ou le tourneur doit demander au robot de « déposer » pour placer la balle de ping-pong dans le verre.

Imprimez une horloge analogique

Plutôt que d'utiliser les directives DP et GG, le tourneur peut utiliser l'horloge analogique pour indiquer les tours à l'aide de directives telles que « 11 heures » ou « 4 heures » pour demander au robot de tourner à gauche ou à droite selon l'heure. Les directives seront notées comme « 11 h » et « 4 h », respectivement.

Ajoutez la directive « si/alors »

La directive si/alors doit être approuvée avant le départ du robot. Exemple : « Si tu atteins un obstacle, alors GG et 1 G ».

Feuille d'autoévaluation

Donne un exemple ou une preuve pour démontrer comment tu as accompli les objectifs ci-dessous pendant l'activité. Ces exemples et preuves peuvent être des dessins, des descriptions écrites ou des références à une photo ou à une vidéo.

Énoncé	Exemple ou preuve
En pensant à une tâche du quotidien, j'ai exprimé mes idées ou appuyé celles des autres en les écoutant activement.	
J'ai participé activement à l'activité avec mon équipe et j'ai contribué à créer un algorithme pour prendre la balle de ping-pong.	
À la fin de l'activité, j'ai réfléchi à propos des aspects faciles ou difficiles de mon rôle et de ceux des autres membres de mon équipe.	
Pendant le réusinage, j'ai aidé mon équipe en analysant l'algorithme et en cherchant des séquences ou des directives à combiner.	