2020 春夏·实变函数·期中测试

满分60分,时间100分钟.

姓名:

学号:

问题 1. (10 分). 假设 $\{E_k\}_{k=1}^{\infty}$ 是 \mathbb{R}^n 中的一列可测集, 并且

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

令 $E=\{x\in\mathbb{R}^n:$ 存在无穷多个 k, 使得 $x\in E_k\}$. 证明: E 是可测集,并且 m(E)=0.

Proof. 不难看到 $E = \limsup_{k \to \infty} E_k = \bigcap_{k=1}^{\infty} \bigcup_{j \ge k} E_j$. 因此 E 可测. 我们直接计算可知

$$m(E) = \lim_{k \to \infty} m(\bigcup_{j \ge k} E_j) \le \lim_{k \to \infty} \sum_{j=k}^{\infty} m(E_j) = 0.$$

在第一个等式中我们用到 $m(\cup_{j\geq k}E_j)<\infty$.

问题 **2.** (10 分). 假设 $E \subset \mathbb{R}^n$, $m_*(E) < \infty$. 证明: E 可测当且仅当存在 E 的可测子集列 $\{E_k\}_{k\geq 1}$ 满足 $m(E_k) \to m_*(E)$.

Proof. 现证充分性. 任何 $\varepsilon > 0$,我们有开集 $\mathcal{O} \supset E$ 满足 $m_*(E) + \varepsilon \geq m(\mathcal{O})$. 我们计算

$$m_*(\mathcal{O} \setminus E) \le m_*(\mathcal{O} \setminus E_k) = m(\mathcal{O}) - m(E_k) \to m(\mathcal{O}) - m_*(E) \le \varepsilon.$$

这表明E可测.

下证必要性. 由于 E 可测, 存在闭集 $F_k \subset E$ 并且 $m(E \setminus F_k) \leq \frac{1}{k}$. 取 $E_k = F_k$. 显然

$$0 \le m(E) - m(E_k) = m(E \setminus F_k) \le 1/k \to 0.$$

因此 $m(E) = \lim_{k \to \infty} m(E_k)$.

问题 3. (10分). 完成下面两个小题.

- (i) 假设 $\chi_{[0,1]}$ 是区间 [0,1] 的特征函数. 证明: 若 $f: \mathbb{R} \to \mathbb{R}$ 满足 $f(x) = \chi_{[0,1]}(x)$ a.e. $x \in \mathbb{R}$, 则 f 在 \mathbb{R} 上不连续.
- (ii) 考虑函数列 $f_k(x) = k^{n/2}e^{-k|x|^2}$, $x \in \mathbb{R}^n$. 请回答问题并说明理由: $\{f_k\}_{k=1}^{\infty}$ 是否是 \mathbb{R}^n 上的测度基本列 (测度 Cauchy 列)?

Proof.

<u>关于 (i)</u>. 按假设,对几乎所有的 $x \in (0,1)$,我们有 f(x) = 1;对几乎所有的 $x \in (-1,0)$ 我们有 f(x) = 0. 因此存在一列 $x_k^- \to 0$ — 以及一列 $x_k^+ \to 0$ + ,满足 $f(x_k^-) = 0$ 与 $f(x_k^+) = 1$. 这表明 f 在 x = 0 处不连续.

<u>关于 (ii)</u>. $\{f_k\}$ 是测度 Cauchy 列. 为此我们说明 $\{f_k\}$ 依测度收敛到 0. 不难验证,对任何的 $x \neq 0$, $f_k(x) \to 0$. 对任何 $\varepsilon > 0$,

$$|f_k(x) - 0| \ge \varepsilon$$
 当且仅当 $|x|^2 \le \frac{1}{k} |\log \varepsilon| + \frac{n}{2k} \log k \to 0.$

因此

$$\lim_{k \to \infty} m(\{x \in \mathbb{R}^n : |f_k(x) - 0| \ge \varepsilon\}) = 0, \ \forall \ \varepsilon > 0.$$

这表明 f_k 依测度收敛到 0,从而 $\{f_k\}$ 是测度 Cauchy 列.

Remark 0.1. 可验证 $||f_k||_{L^1} = \int_{\mathbb{R}^n} f_k$ 是一个与 k 无关的正常数. 故在 L^1 范数下, $f_k \to 0$.

问题 **4.** (10 分). 假设 $E \in \mathbb{R}^n$ 中的可测集, $f: E \to \mathbb{R}$ 是可测函数. 求证: 存在一列连续函数 $f_k: \mathbb{R}^n \to \mathbb{R}$,使得 $f(x) = \lim_{k \to \infty} f_k(x)$ a.e. $x \in E$.

Proof. 取 $\varepsilon_k=1/2^k$. 根据 Lusin 定理,存在闭集 $F_k\subset E$ 以及 E 上的连续函数 f_k 满足 $m(E\setminus F_k)\leq \varepsilon_k$,并且

$$f_k(x) = f(x), x \in F_k.$$

令 $F = \liminf_{k \to \infty} F_k$. 则对任何 $x \in F$, 存在 N_x 使得 $x \in F_k$, $k \ge N_x$. 于是

$$f(x) = \lim_{k \to \infty} f_k(x), \ \forall \ x \in F.$$

我们计算

$$m(E \setminus F) = m(\cap_{j=1}^{\infty} \cup_{k \ge j} (E \setminus F_k)) = \lim_{j \to \infty} m(\cup_{k \ge j} (E \setminus F_k)) \le \lim_{j \to \infty} \sum_{k=j}^{\infty} \varepsilon_k \to 0.$$

因此 f_i 不收敛到 f 的集合至多是一个零测集.

问题 **5.** (10 分). 假设 $E \in \mathbb{R}^n$ 中的可测集, $f_1, \dots, f_d \in E$ 上的实值可测函数. 考虑 \mathbb{R}^{n+d} 中的集合 $G = \{(x, f_1(x), \dots, f_d(x)) \in \mathbb{R}^{n+d} : x \in E\}$. 请回答问题并说明理由: G 是否是 \mathbb{R}^{n+d} 中的可测集?

Proof. 我们证明 $G \in \mathbb{R}^{n+d}$ 中的零测集.

假设 $m(E)<\infty$. 给定 $\delta>0$,考虑 \mathbb{R}^d 中边长为 δ 的不交的可列半开方体 $\{Q_k\}_{k\geq 1}$,使 $\mathbb{R}^d=\bigcup_{k\geq 1}Q_k$. 令 $E_k=\{x\in E:(f_1(x),\cdots,f_d(x))\in Q_k\}$. 记 $Q_k=\prod_{i=1}^d(a_i^k,b_i^k]$. 则

$$E_k = \bigcap_{i=1}^{d} \{ x \in E : f_i \in (a_i^k, b_i^k] \}$$

是可测集. 注意到 $G \subset \bigcup_{k>1} (E_k \times Q_k)$. 于是

$$m_*(G) \le \sum_{k>1} m(E_k \times Q_k) = \sum_{k>1} m(E_k) m(Q_k) = \delta^d \sum_{k>1} m(E_k) = \delta^d m(E).$$

由 δ 的任意性可知 $m_*(G) = 0$.

一般的, 我们考虑 $E = \bigcup_{N>1} (E \cap \{|x| \leq N\})$. 令

$$G_N = \{(x, f_1(x), \cdots, f_d(x)) : x \in E \cap \{|z| \le N\}\}.$$

上述讨论说明 $m_*(G_N)=0$. 所以 G 是零测集.

问题 6. (10 分). 假设 $E \neq (0, \infty)$ 中的可测集, $f \neq E$ 上的实值可测函数. 考虑如下映照

$$T: \mathbb{R}^2 \to [0, \infty), \ (x, y) \mapsto x^2 + y^2.$$

 $i \, \, \, \, E^T = \{ (x,y) \in \mathbb{R}^2 : T(x,y) \in E \}.$

- (i) 求证: E^T 是 \mathbb{R}^2 上的可测集, $f \circ T$ 是 E^T 上的可测函数.
- (ii) 假设 $E \subset (1,10)$, f_k 是 E 上的可测函数列, 并且 f_k 在 E 上依测度收敛到 f. 求证: $f_k \circ T$ 在 E^T 上依测度收敛到 $f \circ T$.

Proof.

 $\underline{\mathsf{X}}$ 于(i). 我们知道 $E = G \setminus Z$,其中 $G = \bigcap_{k \geq 1} \mathcal{O}_k$ 是 G_δ 集 ($\mathcal{O}_k \subset (0, \infty)$ 是开集), $Z \subset (0, \infty)$ 是零测集. 不难验证:

$$G^T = \cap_{k \ge 1} \mathcal{O}_k^T, \ E^T = G^T \setminus Z^T.$$

由于T是连续的,故 \mathcal{O}_k^T 均为 \mathbb{R}^2 中的开集.从而 G^T 是 \mathbb{R}^2 中的 G_δ 集,因此可测.

下证 Z^T 是 \mathbb{R}^2 的零测集. 一旦获证我们便知道 E^T 可测 (利用 $E^T = G^T \setminus Z^T$). 任意 $\varepsilon > 0$,取 $(0, \infty)$ 的开集 $U \supset Z$ 使得 $m(U) < \varepsilon$. 由 \mathbb{R} 中的开集构成可知, $U = \bigcup_{k \geq 1} (a_k, b_k)$,其中 (a_k, b_k) 是互不相交的开区间. 于是

$$\mathcal{U}^T = \bigcup_{k \ge 1} \{ (x, y) \in \mathbb{R}^2 : a_k < x^2 + y^2 < b_k \}.$$

这是可列个不交开环的并, 因此

$$m(\mathcal{U}^T) = \pi \sum_{k=1}^{\infty} (b_k^2 - a_k^2).$$

对于任何给定的 R > 0, 取 B_R 为 \mathbb{R}^2 中半径为 R 的球, 则

$$m(Z^T \cap B_R) \le m(\mathcal{U}^T \cap B_R) \le \pi \sum_{k=1}^{\infty} (b_k - a_k) \cdot 2R = 2\pi R m(\mathcal{U}) < 2\pi R \varepsilon.$$

令 $\varepsilon \to 0$,我们知道 $m(Z^T \cap B_R) = 0$. 利用 R 的任意性, Z^T 是 \mathbb{R}^2 的零测集.

下面我们证明 $f \circ T$ 是可测函数. 首先取 \mathbb{R} 上的简单函数列 f_j ,满足 $f_j(x) \to f(x)$, $\forall x \in E$. 若 $f_j = \sum a_{j,k}\chi_{F_k}$,则 $f_j \circ T = \sum a_{j,k}\chi_{F_k^T}$. 于是 $f_j \circ T$ 也是简单函数. 显然 $f \circ T(x,y) = \lim_{j \to \infty} f_j \circ T(x,y)$, $\forall (x,y) \in E^T$. 因此 $f \circ T$ 可测.

<u>关于 (ii)</u>. 为方便,令 $F_k(x,y)=(f_k\circ T)(x,y)$, $F(x,y)=(f\circ T)(x,y)$. 若结论不真,则存在 $\varepsilon,\delta>0$,以及一个子列满足

$$m(\{(x,y) \in E^T : |F_{k_j}(x,y) - F(x,y)| \ge \varepsilon\}) > \delta, \ \forall \ j.$$
 (0.1)

因为 f_{k_j} 依测度收敛到 f,利用 Riesz 定理,通过进一步取子列,我们得到

$$f_{k_{j_l}}(x) \to f(x), \ \forall \ x \in E \setminus Z,$$

其中Z是 \mathbb{R} 中的零测集.于是

$$F_{k_{j_l}}(x,y) \to F(x,y), \ \forall (x,y) \in E^T \setminus Z^T.$$
 (0.2)

在 (i) 中我们已经知道 Z^T 是 \mathbb{R}^2 的零测集. 注意到 E 是有界集意味着 E^T 也是有界集,故 $m(E^T)<\infty$. 这样,(0.2)意味着 $F_{k_{j_1}}$ 在 E^T 上依测度收敛到 F. 这与(0.1)矛盾. 证毕.