

Основы искусственного интеллекта

Лекция 2

Процедура обучения моделей на основе машинного обучения. Метрики качества

> к.ф.-м.н., доцент кафедры ИСиЦТ Корнаева Е.П.

Целевая функция – функция, подлежащая минимизации (максимизации)

В ML целевая функция называется функцией потерь (loss function)

Параметры модели определяются в ходе решения задачи МО.

Например, в задачах регрессии параметрами являются компоненты матрицы весовых коэффициентов $\boldsymbol{\theta}$.

Гиперпараметры задаются пользователем, как правило не единственным образом, и их значения влияют на значения искомых параметров.

- 1. Масштабирование признаков / Feature Scaling
- 2. Скорость обучения а / Learning rate
- 3. Погрешность δ и количество итераций $N_{\rm max}$ / Error and # of iterations
- 4. Регуляризация / Regularization

Общая процедура построения приближенных моделей

Обучение валидация тест

Процедура валидации:

На отложенной выборке

Обучение

валидация

Подбор гиперпараметров:

- Построить l-моделей для каждого значения гиперпараметра по обучающей выборке;
- Рассчитать точность моделей на новой выборке (проверочной, валидационной);
- Выбрать значение *гиперпараметра*, для которого точность максимальная.

Кросс-валидация

		валидация	
			·
	валидация		<i>fold</i> = .
			' I
валидация			

Каждая из l моделей строиться fold раз. Считается средняя точность по всем fold моделям.

Выбирается модель с максимальной точностью.

Обычно fold (блок) = 3(5)

Процедура тестирования:

Проверяется точность выбранной модели на новой (тестовой выборке)!!!

Параметры модели определяются в ходе решения задачи МО. Например, в задачах регрессии параметрами являются компоненты матрицы весовых коэффициентов **0**.

Гиперпараметры задаются пользователем, как правило не единственным образом, и их значения влияют на значения искомых параметров.

- 1. Масштабирование признаков / Feature Scaling
- 2. Скорость обучения α / Learning rate
- 3. Погрешность δ и количество итераций N_{max} / Error and # of iterations
- 4. Регуляризация / Regularization

$$J(\theta_0, \theta_j) = \frac{1}{2n} \left[\sum_{i=1}^n (H(\theta, X_i) - Y_i)^2 + \lambda \sum_{j=1}^k \theta_j^2 \right] \Rightarrow \min$$

Train Ytest

$$h(\theta_0, \theta_j) = \theta_0 + \theta_p x^p,$$

$$(j, p = 1 \dots d).$$

Параметры модели определяются в ходе решения задачи МО. Например, в задачах регрессии параметрами являются весовые коэффициенты Θ .

Гиперпараметры задаются пользователем, как правило не единственным образом, и их значения влияют на значения искомых параметров.

- 1. Масштабирование признаков / Feature Scaling
- 2. Скорость обучения α / Learning rate
- 3. Погрешность δ и количество итераций $N_{\rm max}$ / Error and # of iterations
- 4. Регуляризация / Regularization

Метод k-ближайших соседей (KNN) для задачи классификации

Пример бинарной классификации: $Y \in \{0; 1\}$

Двумерный случай: $X = [[x_1, x_2]]$

+ $y_i = 1$: зачислен $y_i = 0$: не зачислен

Метод k-ближайших соседей (KNN) для задачи классификации

Обучающая выборка: $\{(X_{ij}, Y_i)\}$

Пример

 X_2

 \mathbf{X}_{12}

 \mathbf{X}_{22}

 X_{n2}

 \mathbf{y}_1

 y_2

 y_n

 \mathbf{X}_{11}

 \mathbf{x}_{21}

 x_{n1}

i — номер объекта; j — номер признака;

 X_{ij} — значение j^{ro} признака для i^{ro} объекта;

 Y_i — значение класса для $i^{\text{го}}$ объекта (дискретная величина);

n — кол-во объектов;

т – кол-во признаков (факторов);

Матричная форма записи:

	X ₁	X ₂		X _m	$Y_{[n\times 1]}$	
1	X ₁₁	X ₁₂		x _{1m}	y_1	
2	X ₂₁	X ₂₂		X _{2m}	y ₂	
			•••			
n	X _{n1}	X _{n2}		X _{nm}	J y _n	
V						

 $X_{[n\times(m+1)]}$

Метод k-ближайших соседей (KNN) для задачи классификации

✓ Гипотеза компактности: предположение о том, что схожие объекты гораздо чаще лежат в одном классе, чем в разных

Обучение:

- Сохраняется обучающая выборка $\{X_i, Y_i\}$;

Классификация нового объекта:

- Измерить расстояние от всех объектов до нового объекта X_q ;
- Упорядочить объекты в порядке возрастания (неубывания) дальности до нового объекта:

$$\rho(X_l, X_q) \le \dots \le \rho(X_i, X_q) \le \dots \le \rho(X_r, X_q)$$

- Выбрать первые к объектов (к ближайших соседей):

$$\{X_1,\ldots,X_k\}$$

- Назначить новому объекту модальный класс (самый частый) среди k ближайших соседей:

$$Y(X_q) = \underset{y_{cl} \in Y}{\operatorname{argmax}} \sum_{i=1}^{k} [y_i == y_{cl}]$$

Метод k-ближайших соседей (KNN) для задачи классификации

Метрика (в функциональном анализе) - это функция с двумя аргументами, принимающая значения в множестве неотрицательных вещественных чисел, удовлетворяющая условиям:

$$ho(x,z)=0 \leftrightarrow x=z$$
 – аксиома тождества

$$ho(x,z) =
ho(z,x)$$
 - аксиома симметрии

$$ho(x,z) \leq
ho(x,v) +
ho(v,z)$$
 - неравенство треугольника

Вид расстояний	Расчет $ ho_{iq}= ho(X_i,X_q)$	Примечание	
Евклидова норма	$\sqrt{\sum_{j=1}^{m}(x_{ij}-x_{iq})^2}$	Самое частое применение	
Степенное расстояние	$\left(\sum_{j=1}^{m}(x_{ij}-x_{iq})^{p}\right)^{1/p}$	Параметр p подбираются в процессе решения.	
Расстояние Чебышева	$\max_{j} x_{ij} - x_{iq} $	объекты различаются по какой-либо одной координате (признаку)	
L1 – метрика (Манхэттенское расстояние)	$\sum_{j=1}^{m} x_{ij} - x_{iq} $	влияние отдельных больших разностей (выбросов) уменьшается	

Метод k-ближайших соседей с весами (KNN) для задачи классификации

Обучение:

- Сохраняется обучающая выборка $\{X_i, Y_i\}$;

Классификация нового объекта:

- Измерить расстояние от всех объектов до нового объекта X_q ;
- Упорядочить объекты в порядке возрастания дальности до нового объекта:

$$\rho(X_l, X_q) \le \dots \le \rho(X_i, X_q) \le \dots \le \rho(X_r, X_q)$$

- Выбрать первые к объектов (к ближайших соседей):

$$\{X_1,\ldots,X_k\}$$

- Назначить новому объекту модальный класс (самый частый) среди k ближайших соседей:

$$Y(X_q) = \underset{y_{cl} \in Y}{\operatorname{argmax}} \sum_{i=1}^{R} \omega_i [y_i == y_{cl}]$$

$$w_i = K\left(\frac{
ho(X_i, X_{cl})}{h}\right)$$
 - Парзеновское окно

$$K$$
 — ядро;

h — ширина окна.

Определение гиперпараметров на примере k-ближайших соседей

k – гиперпараметр модели

Процедура валидации:

На отложенной выборке

Обучение

валидация

Подбор гиперпараметра k:

- Построить l-моделей для каждого значения гиперпараметра k по обучающей выборке;
- Рассчитать точность моделей на новой выборке (проверочной, валидационной);
- Выбрать значение k, для которого точность максимальная.

 Кросс-валидация

 валидация
 валидация

 валидация
 fold = 3

Каждая из l моделей строиться fold раз. Считается средняя точность по всем fold моделям.

Выбирается модель с максимальной точностью.

Обычно кол-во fold (блоков): 3, 5

Процедура тестирования:

Проверяется точность выбранной модели на новой (тестовой выборке)!!!

Определение гиперпараметров на примере k-ближайших соседей

k — гиперпараметр модели

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Лекции К.В. Воронцова http://www.machinelearning.ru/wiki/index.php?title=MO

Общая процедура построения приближенных моделей

Обучение валидация тест

Исходная выборка делится на три части:

- Обучающая (определение параметров модели);
- Валидационная (подбор гиперпараметров на основе валидации или кросс-валидации);
- Тестовая (расчет точности модели).

Метрики качества модели классификации

Метрика качества модели (алгоритма обучения) (в машинном обучении) – количественная оценка качества модели (т.е. ее обобщающей способности)

Accuracy – относительное количество верно предсказанных классов (доля верных ответов):

Пример.

Предсказанные	Реальные	$y_{\mathrm{T}i} == y_i$
1	0	0
0	0	1
1	1	1
0	0	1
1	0	0
0	0	1
0	0	1
1	1	1
0	0	1
0	0	1

$$Accuracy = \frac{1}{n} \sum_{i=1}^{n} [y_{\mathsf{T}_i} == y_i]$$

- 1 Редкий класс
- 0 Частый класс

$$Accuracy = 80\%$$

$$\sum_{i=1}^{10} [y_{\mathbf{r}_i} == y_i] = 8$$

Метрики качества модели классификации. Перекошенные классы

Accuracy – относительное количество верно предсказанных классов (доля верных ответов):

Пример плохой модели c высокой долей верных ответов: $Y_{\rm T}(X)=0$

Предсказанные	Реальные
0	0
0	0
0	1
0	0
0	0
0	0
0	0
0	1
0	0
0	0

Accuracy = 80%

$Accuracy = \frac{1}{n} \sum_{i=1}^{n} [y_{\mathbf{T}_{i}}] $	$== y_i$]
n = 1	

		Реальный кла	асс
		«1» (*редкий класс)	«O»
Предсказанный класс	«1» (*редкий класс)	True positive (TP)	False positive (FP) Ошибка 1го рода
Пре	«O»	False negative (FN)	True negative (TN)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Метрики качества модели классификации. Перекошенные классы

Матрица ошибок (confusion matrix). Точность и полнота модели классификации

		Реальный класс		
<u>ت</u>		«1» (*редкий класс)	«O»	
Предсказанный класс	«1» (*редкий класс)	True positive (TP)	False positive (FP) Ошибка 1го рода	$Precision = \frac{TP}{TP + FP}$
/әdЦ	«O»	False negative (FN) Ошибка 2го рода	True negative (TN)	

$$Recall = \frac{TP}{TP + FN}$$

$$F1-score = \frac{2PrecisionRecall}{Precision + Recall}$$

Метрики качества модели классификации. Перекошенные классы

Матрица ошибок (confusion matrix). Чувствительность и специфичность модели

	Реальный класс					
) <u>Z</u>		«1» (*редкий класс)	«O»			
Предсказанный класс	«1» (*редкий класс)	True positive (TP)	False positive (FP) Ошибка 1го рода			
Пред	«O»	False negative (FN) Ошибка 2го рода	True negative (TN)			

$$Sensitivity(Recall) = \frac{TP}{TP + FN} \qquad Specificity = \frac{TN}{TN + FP}$$

$$Specificity = \frac{TN}{TN + FP}$$

Метрики качества модели классификации. Перекошенные классы

Precision/recall кривая

Классификатор: $y_{\mathrm{T}_i} = \lfloor h(X_i) >$	$p\rfloor$	
--	------------	--

р	0	0,1	0,2	•••	1
Precision					
Recall					

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \ln(h_{\theta}(x_{ij})) + (1 - y_i)(\ln(1 - h_{\theta}(x_{ij}))) + \frac{\lambda}{2n} \sum_{j=1}^{k} \theta_j^2 \to \min$$

λ	0	0,01	0,1	1	10
Precision					
Recall					

Метрики качества модели классификации. Перекошенные классы

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Метод к-ближайших соседей для задачи регрессии

✓ Гипотеза компактности: предположение о том, что схожие объекты гораздо чаще лежат в одном классе, чем в разных

Обучение:

- Сохраняется обучающая выборка $\{X_i, Y_i\}$;

Предсказание отклика для новой точки:

- Измерить расстояние от всех объектов до нового объекта X_a ;
- Упорядочить объекты в порядке возрастания дальности до нового объекта:

$$\rho(X_l, X_q) \le \dots \le \rho(X_i, X_q) \le \dots \le \rho(X_r, X_q)$$

- Выбрать первые к объектов (к ближайших соседей):

$$\{X_1,\ldots,X_k\}$$

- Рассчитать среднее значение отклика среди k ближайших соседей:

$$Y(X_q) = \frac{1}{k} \sum_{i=1}^k y_i$$

Метод к-ближайших соседей для задачи регрессии

Метрики качества для задач регрессии:

абсолютные:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y(x_i) - y_i)^2$$

$$RMSE = \sqrt{MSE}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y(x_i) - y_i|$$

относительные:

$$RSD = \frac{\sqrt{MSE}}{\bar{y}}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y(\vec{x}_{i}) - y_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- Определение гиперпараметров на примере k-ближайших соседей

Валидация/кросс-валидация аналогично такой же процедуре для классификации, только рассматриваются метрики качества для регрессии.