

Generative Models

A Recap

- 1. Feed-forward neural networks
- 2. How we train neural networks
- 3. Convolutional neural networks

What will be covered today

- 1. Generative vs. Discriminative Models
- 2. Autoencoders high level
- 3. Generative Adversarial Models (GANs)
- 4. Training GANs

Discriminative Models

- Model learns the decision boundary to discriminate the data
- Estimates:

Generative Models

- Model learns the probability distribution of the data in order to generate samples from the data.
- Estimates:

A Comparison

Autoencoders

A Generative Model

Autoencoder Intuition

- Introduce a bottle neck that compresses the input into a latent-space representation.
- The *encoder* turns the input into the latent-space h = f(x)
- The *decoder* reconstruct the input from the latent-space representation r = g(h)

Autoencoder Latent Space

Source: MIC 2017 Unsupervised Learning

Applications of Autoencoders

- Anomaly detection
- Image reconstruction
- Denoising
- Dimensionality reduction

Autoencoders for Image Generation

Going Beyond GAN? New DeepMind VAE Model Generates High Fidelity Human Faces

Generative Adversarial Networks (GANs)

GAN Intuition - What are GANs?

History of GANs

And Many More!

Applications of GANs - Image to Image Translation

https://github.com/junyanz/CycleGAN

Applications of GANs - Face Generation

Applications of GANs - Style Transfer

How do GANs Work?

Two Opposing Models

The Forger (The Generator)

The Detective (The Discriminator)

Some Definitions

x: space in which examples reside (space that Generator outputs to, and the Discriminator discriminates in)

z: some space (space that the Generator samples from)

 $p_{\rm g}$: the distribution in x of the outputs of the generator

 p_{data} : the distribution in x of the actual data

The Generator - G(z)

Generator G(z): Given random input from z, output an example in x

G outputs examples in a distribution $p_{\rm g}$ in x

The Discriminator - D(x)

Discriminator D(x): Given an example in x, output probability it is a real example

D outputs probability that the example came from $p_{\rm data}$ (the real examples) rather than $p_{\rm g}$ (the generated examples)

GAN Definition

Goal of Generator: map z to a distribution p_{g} in x

ullet We want p_{g} to converge to p_{data}

Goal of Discriminator: determine whether x comes from p_{data} or p_{g}

ullet Accuracy of D is ½ when $p_{
m g}$ has converged to $p_{
m data}$

To motivate this we define a value function:

$$V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

The Generator's Goal

Create convincing generated examples

- Value function is small when the Discriminator predicts that the generated example is from the data
- G wants to minimize the value function

$$\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

This is small when D(G(z)) is close to 1 (when the discriminator thinks the generated example is from the data)

The Discriminator's Goal

Correctly distinguish between real and generated examples

- Discriminator: Value function is large when D predicts that examples from the data are from the data, and examples from the generator are from the generator (i.e. it makes correct predictions)
- D wants to maximize the value function

$$\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

This is large when D(x) is close to 1 (when the discriminator identifies the real examples as real)

This is large when D(G(z)) is close to 0 (when the discriminator identifies the generated example as generated)

GAN Definition

2-player minimax game:

- D tries to correctly classify real examples and generated examples
- G tries to fool D by creating generated examples that are mistaken for real examples

G tries to minimize and D tries to maximize the value function:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log (1 - D(G(\boldsymbol{z})))]$$
 Minimize over G, Large when D assigns smaximize over D Small when Correct label G fools D

GAN Convergence

- Black: p_{data} (real examples)
- Green: p_q (generated examples)
- Blue: D's prediction

 p_G converges to p_{data} , and the D's prediction converges to ½ (can't distinguish between real and generated)

Training GANs - The Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

The Algorithm - Updating the Discriminator

- 1. Sample minibatch of m noise samples $\{z_1, \ldots, z_m\}$ from a random distribution.
- 2. Then run samples through the generator (G) to get fake examples

$$\{z_1,\ldots,z_m\} \longrightarrow G \longrightarrow \{fake_1,\ldots,fake_m\}$$

3. Sample minibatch of m examples $\{x_1, \ldots, x_m\}$ from the true dataset

Real Fake
$$\{x_1, \ldots, x_m\}$$
 $\{fake_1, \ldots, fake_m\}$

The Algorithm - Updating the Discriminator

4. Get probability scores for real and fake examples

$$\{x_1, \dots, x_m\} \longrightarrow D \longrightarrow \{p_1, \dots, p_m\}$$

$$\{fake_1, \dots, fake_m\} \longrightarrow \{p_1, \dots, p_m\}$$

Real Fake
$$\{p_1, \ldots, p_m\}$$
 $\{p_1, \ldots, p_m\}$

The Algorithm - Updating the Discriminator

5. Use probability scores to update the discriminator's parameters

$$heta_G := heta_G - lpha \cdot
abla_{ heta_G} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight]$$

The Algorithm - Updating the Generator

- 6. Sample minibatch of m noise samples $\{z_1, \ldots, z_m\}$ from a random distribution.
- 7. Then run samples through the generator (G) to get fake examples

$$\{z_1,\ldots,z_m\} \longrightarrow G \longrightarrow \{fake_1,\ldots,fake_m\}$$

Fake
$$\{fake_1, \ldots, fake_m\}$$

The Algorithm - Updating the Generator

8. Get probability scores for new fake examples

$$\{fake_1,\ldots,fake_m\} \longrightarrow \{p_1,\ldots,p_m\}$$

Fake
$$\{p_1,\ldots,p_m\}$$

The Algorithm - Updating the Generator

9. Use probability scores to update the generator's parameters

Fake
$$\{\boldsymbol{p}_1,\ldots,\boldsymbol{p}_m\}$$

$$heta := heta - lpha \cdot
abla_{ heta} rac{1}{m} \sum_{i=1}^m \log ig(1 - Dig(Gig(oldsymbol{z}^{(i)}ig)ig)ig)$$

Training GANs - The Algorithm - Recap

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Training GANs - Issues

- Non-Convergence
- Mode Collapse
- Diminished Gradient
- Sensitive to Hyperparameters!

Mode Collapse on MNIST

An Interesting Property of GANs - Latent Vector Arithmetic

(b) Presence or absence of glasses

https://arxiv.org/pdf/1606.03657.pdf

An Interesting Property of GANs - Latent Vector Arithmetic

Open Questions

Open Questions about Generative Adversarial Networks

What we'd like to find out about GANs that we don't know yet.

Problem 1	What are the trade-offs between GANs and other generative models?
Problem 2	What sorts of distributions can GANs model?
Problem 3	How can we Scale GANs beyond image synthesis?
Problem 4	What can we say about the global convergence of the training dynamics?
Problem 5	How should we evaluate GANs and when should we use them?
Problem 6	How does GAN training scale with batch size?
Problem 7	What is the relationship between GANs and adversarial examples?

Coding Example

Link to Collab Notebook and Github - https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

References & Further Reading

- 1. Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.
- 2. Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets." Advances in neural information processing systems. 2016.
- 3. Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

Thank you for coming!