Style Equalization: Unsupervised Learning of Controllable Generative Sequence Models

- ICML 2022
- Apple
- Paper, Demo

Overview

- Motivation
 - Content-leakage problem due to training-inference mismatch
 - ⇒ Unparallel setting training method for style transfer
 - Challenge: no GT output
- Input / output Design
 - Text A + style B => style A with Text A (GT audio)
 - Text와 style을 다른 source에서 입력받도록 디자인
 - Text A + Style A => style B with Text A -> no GT audio
- Variational RNN을 활용한 Controllable Generative Sequence Model
- Style Equalization
 - Style B와 Style A의 차이를 먼저 구하고, style transform을 시행
- TTS와 handwritining의 style transfer에 적용

Motivation

training $\begin{array}{cccc} \operatorname{content} A & \to & G \\ & \operatorname{sample} A & \to & G \end{array} & \to \operatorname{sample} A \\ & & \operatorname{(G \ learns \ to \ copy \ sample} A)} \\ & & \operatorname{inference} & \begin{array}{cccc} \operatorname{content} A & \to & G \\ & \operatorname{sample} B & \to & G \end{array} & \to \begin{array}{c} \operatorname{deformed \ sample} B \\ \operatorname{(generates \ wrong \ content)} \end{array}$

(c) Training-inference mismatch leads to generation errors

(d) Proposed style equalization

Handwriting Style Transfer Example

Style Equalization

(c) proposed style encoder with style equalization

• Training Scheme

- x': style input / x: target style
- 먼저, 각 style을 encoding -> style feature f', f
- φ: f', f 간의 차이를 구하는 function
 - $\phi(x',x) = avg(Af) avf(Af')$
 - A: linear layer, avg: average pooling
- ullet : Learnable style transformation function
 - $\mathcal{M}(x', \phi(x', x))$: style difference와 input style 을 받아서, target style x로 변환
 - $\mathcal{M}(\mathbf{x}', \boldsymbol{\phi}(\mathbf{x}', \mathbf{x})) = \mathbf{f}' + \mathbf{A}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}', \mathbf{x})$
 - Style difference를 every time step에 더해줌
- Q: from content / K, V: style
- Content, target style, style diffence로부터 posterior distribution을 approximate

Style Equalization

(b) proposed style encoder

• inference Scheme

- cf) Training
 - x': style input / x: target style
 - φ: f', f 간의 차이를 구하는 function
 - $\phi(\mathbf{x}',\mathbf{x}) = avg(Af) avf(Af')$
 - A: linear layer, avg: average pooling
 - ullet : Learnable style transformation function
 - $\mathcal{M}(\mathbf{x}', \boldsymbol{\phi}(\mathbf{x}', \mathbf{x})) = \mathbf{f}' + \mathbf{A}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}', \mathbf{x})$
 - Style difference를 every time step에 더해줌
- Input Style = Target Style
- $\phi(x', x) = 0 \Rightarrow \mathcal{M}(x', \phi(x', x)) = f'$

Model Structure

- Variational RNN
 - VAE with Recurrence
- c: content embedding (output of phoneme encoder)
- x = [x1, x2, ... xT] : GT audio
- z = [z1, z2, ..., zT]: Reference style information

(a) overview of the entire model

Experiment

• Training dataset : VCTK, LibriTTS

• Baseline

- Tacotron
- Tacotron-S
- GST-16 / GST-64
- GST-16S / GST-64S
- GST/Tactron-S: reference encoder 훈련 데이터에 Voxceleb dataset도 추가
- Token 개수: capacity of reference encoder

Metrics

- SMOS
- WER, cos-sim, sRank
 - sRank : 평가셋에 있는 모든 speaker와 cos-sim을 계산한 뒤, Target 음성의 rank를 구함

Result - Quantitative

Table 1: Quantitative results on VCTK dataset. The reference style inputs are seen (randomly selected from the training set). WER measures content accuracy; cosine-similarity (cos-sim) and sRank measure style similarity.

Method		Parallel text	102	Nonparallel text				
	WER (%)	cos-sim ↑	sRank ↓	WER (%)	cos-sim ↑	sRank↓		
Tacotron	16.0 ± 1.7	0.05 ± 0.13	53.1 ± 29.1	16.4 ± 1.2	0.05 ± 0.12	53.9 ± 27.8		
Tacotron-S	13.6 ± 0.7	0.24 ± 0.18	16.4 ± 20.9	16.3 ± 0.4	0.22 ± 0.18	18.0 ± 21.9		
GST-16	18.6 ± 0.9	0.23 ± 0.15	21.4 ± 21.9	18.5 ± 1.1	0.23 ± 0.16	21.1 ± 22.4		
GST-64	16.9 ± 0.5	0.23 ± 0.17	24.4 ± 23.1	27.5 ± 0.4	0.22 ± 0.16	25.2 ± 24.4		
GST-16S	8.3 ± 0.1	0.34 ± 0.18	10.8 ± 15.2	17.7 ± 0.8	0.31 ± 0.17	13.0 ± 20.0		
GST-64S	14.1 ± 0.3	0.33 ± 0.18	11.4 ± 16.3	24.7 ± 1.0	0.32 ± 0.18	12.7 ± 18.1		
Proposed	$\textbf{7.4} \pm \textbf{0.2}$	$\textbf{0.73} \pm \textbf{0.12}$	$\textbf{1.5} \pm \textbf{2.1}$	9.5 ± 0.4	$\textbf{0.64} \pm \textbf{0.14}$	$\textbf{1.9} \pm \textbf{4.2}$		
Oracle	6.6 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	6.6 ± 0.0	0.57 ± 0.16	1.6 ± 4.1		

Table 2: Quantitative results on LibriTTS-all-960 dataset.

Method	Seen speakers, parallel text			Seen sp	eakers, nonpar	allel text	Unseen speakers, nonparallel text			
	WER (%)	cos-sim↑	sRank \downarrow	WER (%)	cos-sim↑	sRank \downarrow	WER (%)	cos-sim ↑	sRank ↓	
Tacotron	64.4 ± 4.1	0.00 ± 0.10	1218 ± 671	52.2 ± 1.7	0.01 ± 0.10	1140 ± 651	52.2 ± 0.6	0.00 ± 0.10	847 ± 563	
Tacotron-S	14.9 ± 0.0	0.23 ± 0.22	430 ± 584	18.7 ± 0.2	0.24 ± 0.22	370 ± 562	13.5 ± 0.0	0.16 ± 0.16	289 ± 436	
GST-64	38.2 ± 2.2	0.12 ± 0.19	706 ± 701	33.3 ± 3.4	0.12 ± 0.19	700 ± 739	30.4 ± 2.2	0.09 ± 0.16	535 ± 610	
GST-192	19.3 ± 0.3	0.10 ± 0.17	786 ± 725	17.8 ± 0.6	0.09 ± 0.16	823 ± 719	18.0 ± 0.7	0.07 ± 0.14	587 ± 582	
GST-64S	19.7 ± 0.7	0.39 ± 0.23	150 ± 305	20.4 ± 1.6	0.40 ± 0.23	143 ± 334	16.5 ± 0.2	0.28 ± 0.17	121 ± 259	
GST-192S	13.8 ± 0.7	0.39 ± 0.23	137 ± 309	15.4 ± 1.1	0.41 ± 0.22	126 ± 317	13.4 ± 0.2	0.29 ± 0.18	139 ± 316	
Proposed	6.2 ± 0.5	$\boldsymbol{0.82 \pm 0.14}$	$\textbf{1.7} \pm \textbf{4.1}$	$\textbf{9.4} \pm \textbf{0.3}$	$\boldsymbol{0.78 \pm 0.14}$	$\textbf{1.8} \pm \textbf{6.0}$	$\textbf{7.6} \pm \textbf{0.9}$	$\boldsymbol{0.57 \pm 0.15}$	$\textbf{7.4} \pm \textbf{42.6}$	
Oracle	6.5 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	6.5 ± 0.0	0.85 ± 0.06	1.0 ± 0.0	6.5 ± 0.0	0.50 ± 0.23	3.6 ± 24.9	

● 제안하는 방식이 기존 방식보다 좋 음

Quantitative

- GST-16 vs GST-64
 - Non-parallel text 상황에서 WER
 - Lower capacity -> content leakage problem에 더 강함
 - Cosine similarity 차이는 별로 없음

Qualitative

• GT 와 비슷하거나 좋은 성능

Table 3: Style opinion scores of speech synthesizers.

VCTK, seen speakers			LibriTTS, seen speakers				LibriTTS, unseen speakers				
GST-64	GST-16S	Proposed	Oracle	GST-192	GST-192S	Proposed	Oracle	GST-192	GST-192S	Proposed	Oracle
2.1 ± 1.0	3.3 ± 0.9	3.8 ± 0.4	3.8 ± 0.4	1.4 ± 0.6	2.8 ± 1.0	3.6 ± 0.6	3.5 ± 0.9	1.2 ± 0.5	2.6 ± 0.9	$\textbf{3.5} \pm \textbf{0.7}$	3.5 ± 0.9

Conclusion

- Unsupervised style transfer learning with style equalization
- GT audio 를 사용하는 방법
- Style feature 를 그대로 이용하지않고, 두 style 간의 차이를 style transformation 함수의 입력으로 이용

감사합니다.