Battle Of The Neighborhoods

Coursera_capstone

Problem Statement

- "Suggest whether or not to move to a neighborhood based on its neighborhood profile.
 Suggest a tourist which neighborhood to visit based on their interest."
- Cities are, in part, entities varying from coffee shops to operas that not only provide to the needs of local citizens but also to tourists from around the world
- For bigger cities, the entities can be spread apart or concentrated based on its geographical proximity to a place of significance like a monument or a memorial, resulting in an ecosystem of neighborhoods that evolve and change over time.

Methodology: Data Sources

NYU Spatial Data Repository

• Foursquare's 'Places API

rough	Neighborhood	Latitude	Longi
Bronx	Wakefield	40.894705	-73.84
Bronx	Co-op City	40.874294	-73.829
Bronx	Eastchester	40.887556	-73.82
Bronx	Fieldston	40.895437	-73.90
Bronx	Riverdale	40.890834	-73.912

od Latitude	Neighborhood Longitude	
40.894705	-73.847201	Т
40.894705	-73.847201	24
40.894705	-73.847201	ı
40.894705	-73.847201	
40.894705	-73.847201	

Data Analysis

• Most entries pulled from the API request included a 'state' parameter equal to either 'New York' or 'NY.' Some entries included a 'state' parameter equal to 'CA', 'MA', and 'NJ' and will need to be removed

Data Pre-Processing

- The preliminary dataset was cleaned according to the Exploratory Data Analysis section above. First, venues located in states other than "New York" or "NY" were removed. Entries with "Venue State" equal to "New York" were changed to "NY.
- Entries returned by Foursquare with no 'Venue City' and given the 'N/A' treatment were also removed:

		Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue Name	Venue Category	Venue Latitude	Venue Longitude	Venue City	Venue State
- 39	0	Wakefield	40.894705	-73.847201	The Upper Room	Music Venue	40.892567	-73.846406	NaN	NY
	1	Wakefield	40.894705	-73.847201	241st Liquor Store	Other Nightlife	40.902771	-73.849098	Bronx	NY
-	2	Wakefield	40.894705	-73.847201	Dyme Life Radio	Music Venue	40,894541	-73.843266	Bronx	NY
	3	Wakefield	40.894705	-73.847201	Par-City	Music Venue	40.890211	-73.847002	Bronx	NY
-	4	Wakefield	40.894705	-73.847201	Tavern	Bar	40.895898	-73.855731	Bronx	NY

OneHotEncoding Venue Categories

• In order to use Foursquare's category values to find similar neighborhoods based on venues, a onehotencoding representation of each entry was created using Pandas' 'get_dummies' function. The result was a dataframe of New York City venues where entry venue category is represented by a value of 1 in the column of matching venue category, as shown below:

Data Visualization

- Venue counts were determined for each venue category using the one hot encoded dataframe:
- Using the dataframe of venue counts shown above, horizontal bar plots were created for select

venue categories to help visualize the top 25 neighborhoods with the most of each

particular venue.

venum_counts = my_venum_category_omehot.grouphy('Neighborhood').sum() venum_counts.head(10)															
	African Restaurant	American Restaurant	Amphitheater	Arcade	Arepa Restaurant	Art Gallery	Asian Restaurant	Australian Restaurant	BBQ Joint	Bar	Basketball Stadium	Beach	Beach Bar	Beer Bar	Bee Garde
Neighborhood															
Allerton	0	0	0	0	0	0	0	0	0	7	0	0	0	0	
Annadale	0	0	0	0	0	0	0	0	0	2	0	0	0	0	
Arden Heights	0	0	0	0	0	0	0	0	0	3	0	0	0	0	
Arlington	0	0	0	0	0	0	0	0	0	3	0	0	0	0	
Arrochar	0	0	0	0	0	0	0	0	0	3	0	0	0	0	
Arverne	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Astoria	0	0	0	0	0	0	0	0	0	19	0	0	0	0	
Astoria Heights	0	0	0	0	0	0	0	0	0	5	0	0	1	0	
Auburndale	0	0	0	0	0	0	1	0	0	14	0	0	0	0	
Bath Beach	0	0	0	0	0	0	0	0	1	4	0	0	0	0	

Determine the total amount of venues of each category in each neighborhood

[40] polt_scteppeis = ['Gonzet Mall', 'Newrican Restaurunt', 'Asian Restaurunt', 'Haskethall Stadium', 'Pjano Gae']
s = 25
for ceteppey in plot_scteppeies:
pit.'[previousminus, 'figalisation(12, 7), dyindh, facescdors's', adgesolors's')
pit.'[title("Time (d) magdesolouds such must (ceteppey))
pit.'[title("Time (d) magdesolouds such must (ceteppey))
to, ceteppey, majdebordous 1, ceteppey, majdebordous

Data Visualization contd.

- We can see the top neighborhoods for selected venue categories.
- Some neighborhoods don't have the venue at all which will be a good information for a new venture to set up business.

Cluster Modeling

 Scikitlearn's KMeans clustering was used to determine similar neighborhoods based on venue percentage. The image below shows the data being scaled and the K-Means model being created:

[52]:	Nei	ghborhood	Latitude	Longitude	Cluster Labels	1st Top Venue Category	2nd Top Venue Category	3rd Top Venue Category	4th Top Venue Category	5th Top Venue Category
	0	Wakefield	40.894705	-73.847201	0.0	Smoke Shop	Music Venue	Nightlife Spot	Speakeasy	Other Nightlife
	1	Co-op City	40.874294	-73.829939	0.0	Jazz Club	Recording Studio	Sports Bar	Nightclub	Pub
	2	Eastchester	40.887556	-73.827806	0.0	Recording Studio	Jazz Club	Sports Bar	Nightclub	Cocktail Bar
	3	Fieldston	40.895437	-73.905643	0.0	Piano Bar	Nightlife Spot	Sports Bar	Record Shop	Pub
	4	Riverdale	40.890834	-73.912585	0.0	Nightlife Spot	Speakeasy	Music Venue	Hotel Bar	Sports Bar

Cluster Visualization

Conclusion

• Machine learning and clustering algorithms can be applied to multidimensional datasets to find similarities and patterns in the data. Clusters of neighborhoods of similar profile can be generated using high quality venue location data. There is a preface on high quality because analysis models are only as good as the input into them. Foursquare offers a robust 'Places API' service that can be leveragd s in similar studies and modelmaking. This project could be expanded on in a number of different ways. Foursquare's API could be further interrogated to retrieve and consider more related venues in New York City. New datasets of venues can be acquired and potentially merged with what was retrieved from Foursquare. The DBSCAN clustering algorithm, better at maintaining dense clusters and ignoring outliers, could be implemented and compared to KMeans. The clustering model could become the basis for a recommendation system aimed to provide neighborhoods of similar profile to users.

Thank You