

FCC Report

JBP

Product Description: MID

Trade Mark: QUO

Model No.: QD3Gme-710-SL, QD3Gme-710-GD

FCC ID: 2AAPW-QD3GME-710-SL

Applicant: KBX GROUP

Address: AVENIDA 1ERA. CALLE B Y C MANZANA 58, FRANCE FIELD COLON PANAMA

Applicable standards: FCC CFR Title 47 Part 15 Subpart B: 2014

Test Date: 08 ~ 26 May, 2015

Issued Date: 26 May, 2015

Test Result: Complied

James Wu Laboratory Manager

ames Wh

The test result in this test report relate only to the tested samples in this report.

This report shall not be reproduced except in full without the written approval of TMC Rheinland Testing Services Corp Limited

2 Version

Version No.	Date	Description
00	26 May, 2015	Original

Prepared By:	Jourg	Date:	26 May, 2015	
	Young Li Project Engineer			
Check By:	Dixon	Date:	26 May, 2015	
	Dixon Hao Reviewer			

3 Contents

	P	age
1 (COVER PAGE	1
2 V	/ERSION	2
3 (CONTENTS	3
	EST SUMMARY	
5 6	GENERAL INFORMATION	5
5.1	CLIENT INFORMATION	5
5.2	GENERAL DESCRIPTION OF EUT	
5.3	TEST MODE	
5.4	DESCRIPTION OF SUPPORT UNITS	
5.5	TEST FACILITY	
5.6	TEST LOCATION	
6 T	EST INSTRUMENTS LIST	7
7 N	MEASUREMENT DATA AND TEST RESULTS	8
7.1	CONDUCTED EMISSIONS	8
7.2	RADIATED EMISSION	
8 T	EST SETUP PHOTO	. 17
0 F	THE CONSTRUCTIONAL DETAILS	12

4 Test Summary

Test Item	Test Method	Result
Conducted Emission	15.107	Complied
Radiated Emission	15.109	Complied

Complied: The EUT has complied with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	KBX GROUP
Address:	AVENIDA 1ERA. CALLE B Y C MANZANA 58, FRANCE FIELD COLON PANAMA
Manufacturer:	KBX GROUP
Address:	AVENIDA 1ERA. CALLE B Y C MANZANA 58, FRANCE FIELD COLON PANAMA

5.2 General Description of EUT

Product Name:	MID
Brand Mark:	QUO
Model No.:	QD3Gme-710-SL, QD3Gme-710-GD
Test model No.:	QD3Gme-710-SL
Software Version:	V1.0
Hardware Version:	V1.0
AC Adapter:	Model: JHD-AP012U-050200AB
	Input: AC 100~240V 50/60Hz 0.35A
	Output: DC 5.0V 2.0A
Power supply:	lithium-ion charge battery 3.7V

5.3 Test Mode

PC mode	Keep the EUT in exchange data with PC.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
HP	Printer	CB495A	05257893	DoC
Lenovo	PC Host	M6900	EA05257893	DoC
DELL	PC	OPTIPLEX745	GTS312	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

■ CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. to ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

■ FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491.

■ Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China

6 Test Instruments list

Instrument	Manufacturer	Model No.	Inventory No.	Next Cal. Date
3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 27 2016
Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A
EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jun. 30 2015
BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 22 2016
Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 26 2015
Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2016
EMI Test Software	AUDIX	E3	N/A	N/A
Coaxial Cable	GTS	N/A	GTS213	Mar. 27 2016
Coaxial Cable	GTS	N/A	GTS211	Mar. 27 2016
Coaxial cable	GTS	N/A	GTS210	Mar. 27 2016
Coaxial Cable	GTS	N/A	GTS212	Mar. 27 2016
Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jun. 30 2015
Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jun. 30 2015
Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 26 2015
Band filter	Amindeon	82346	GTS219	Mar. 28 2016
Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	May 09 2016
Signal Generator	Rohde & Schwarz	SML03	GTS236	May 09 2016
Temp. Humidity/ Barometer	Oregon Scientific	BA-888	GTS248	May 09 2016
D.C. Power Supply	Instek	PS-3030	GTS232	NA
Splitter	Agilent	11636B	GTS237	May 09 2016

Conducted Emission				
Instrument	Manufacturer	Model No.	Inventory No.	Next Cal. Date
Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 06 2015
EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jun. 30 2015
10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jun. 30 2015
Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jun. 30 2015
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jun. 30 2015
Coaxial Cable	GTS	N/A	GTS227	Jun. 30 2015
EMI Test Software	AUDIX	E3	N/A	N/A

Report No.: TMC1505036504

Measurement Data and Test Results

7.1 Conducted Emissions

Standard requirement

FCC Part15 C Section 15.107

Test method

ANSI C63.4:2009

Receiver set

RBW=9KHz, VBW=30KHz, Sweep time=auto

Limit

Fraguency range (MHz)	Limit (c	IBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

Test mode

Refer to section 5.3 for details

Test setup

E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m

Test mode

- 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.
- 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).
- 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement.

Test Result

Complied

Test mode:	PC mode	Temperature:	24~26℃
Phase Polarity:	Line	Relative Humidity:	50~53%

Condition: FCC PART15 CLASSB QP LISN-2013 LINE Test mode: PC mode

	Freq		LISN Factor			Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	dB	dBu₹	dBuV	dB	
1 2 3 4 5 6	1.117 1.568 2.384	31.09 30.18 28.49 28.54	0.13 0.13	0.14 0.15	31. 35 30. 44 28. 75 28. 82	56.00 56.00 56.00 56.00	-24.65 -25.56 -27.25 -27.18	QP QP QP QP

Test mode:	PC mode	Temperature:	24~26℃
Phase Polarity:	Nertral	Relative Humidity:	50~53%

Condition: FCC PART15 CLASSB QP LISN-2013 NEUTRAL Test mode: PC mode

	Freq		LISN Factor			Limit Line		Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1 2 3 4 5 6	0.862 1.106 1.888	35. 16 26. 80 25. 17 24. 79 30. 42 17. 00	0.06 0.07 0.08 0.09 0.13 1.01	0.13 0.13 0.14 0.15	27. 00 25. 38 25. 02 30. 70	56.00 56.00 56.00 56.00	-21.65 -29.00 -30.62 -30.98 -25.30 -41.76	QP QP QP QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.2 Radiated Emission

Test method

FCC Part15 C Section 15.109

Test method

ANSI C63.4:2009

Receiver set

Frequency	Detector	RBW	VBW	Remark
30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value
Above 1CHz	Peak	1MHz	3MHz	Peak Value
Above 1GHz	Peak	1MHz	3MHz	Average Value

Frequency	Limit (dBuV/m @3m)	Remark		
30MHz-88MHz	40.00	Quasi-peak Value		
88MHz-216MHz	43.50	Quasi-peak Value		
216MHz-960MHz	46.00	Quasi-peak Value		
960MHz-1GHz	54.00	Quasi-peak Value		
Above 1GHz	54.00	Average Value		
Above IGHZ	74.00	Peak Value		

Test mode

Refer to section 5.3 for details

Test setup

Below 1GHz

Above 1GHz

Test Procedure

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode

If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Result

Complied

Measurement data:

Below 1GHz

Horizontal:

Site : 3m chamber Condition : FCC PART15 CLASS B 3m VULB9163-2013M HORIZONTAL

	Freq		Antenna Factor		_				Remark
	MHz	dBu∜	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	165.487		10.82		32.04				
2	185.788 196.510	52.20 53.78			32.10 32.13				-
4	207.850				32.14				-
5	239.987				32.16				
6	483.910	40.08	18.20	J. 2J	31.61	J1.90	40.00	-8.10	QP

Vertical:

Site : 3m chamber Condition : FCC PART15 CLASS B 3m VULB9163-2013M VERTICAL

	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2 3 4 5 6	165.487	49. 12 44. 94 48. 93 52. 97 54. 71 47. 33	15.44 10.82	1.66 1.87	31.99 32.04 32.14 32.16	38.71	40.00 43.50 43.50	-14.13 -8.06 -7.29	QP QP QP QP

Above 1GHz

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) HORIZONTAL

	Freq	ReadAntenna Level Factor			Cable Preamp Loss Factor		Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	1215.000 1215.000	30.57 40.13	25.42 25.42	4.48 4.48	33.13 33.13	27.34 36.90		-26.66 -37.10	Average Peak
3	2470.000 2470.000	29.06 39.14	27.50 27.50	5.46 5.46	33.94 33.94	28.08 38.16	54.00		Average
5	3295.000 3295.000	29.90 39.57	28.35 28.35	6.56 6.56	32.99 32.99			-22.18 -32.51	Average Peak
7	4320.000 4320.000	25.11 35.89	30.77 30.77	8.17 8.17	31.85 31.85			-21.80 -31.02	Average Peak
9 10	4825.000 4825.000	24.43 34.93	31.79 31.79	8. 62 8. 62	32.10 32.10	32.74	54.00		Average
11 12	5955.000 5955.000	22.91 32.04	32.84 32.84	10.13 10.13	32.16 32.16		54.00		Average

Vertical:

Site : 3m chamber Condition : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) VERTICAL

order to the total to the own bound too the total total										
Freq						Limit Line	Over Limit	Remark		
MHz	dBu∀	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	<u>d</u> B			
1290.000 1290.000 2175.000 2175.000 3110.000 3110.000 3430.000 3430.000	30. 22 40. 13 29. 63 39. 04 29. 27 39. 17 29. 46 39. 97	25. 61 25. 61 27. 74 27. 74 28. 74 28. 74 28. 72 28. 72	4.54 4.54 5.16 5.16 6.17 6.17 6.82 6.82	33. 24 33. 24 34. 27 34. 27 33. 20 33. 20 32. 83 32. 83	27. 13 37. 04 28. 26 37. 67 30. 98 40. 88 32. 17 42. 68	74.00 54.00 74.00 54.00 74.00 54.00	-36.96 -25.74 -36.33 -23.02 -33.12 -21.83	Peak Average Peak Average Peak Average		
4355,000 4355,000 4840,000 4840,000	25.00 35.79 25.56 35.80	30.93 30.93 31.81 31.81	8. 21 8. 21 8. 63 8. 63	31.86 31.86 32.11 32.11	32.28 43.07	54.00 74.00 54.00	-21.72 -30.93 -20.11	Average Peak Average		
	MHz 1290.000 1290.000 2175.000 2175.000 3110.000 3110.000 3430.000 3430.000 4355.000 4840.000	Freq Level MHz dBuV 1290.000 30.22 1290.000 40.13 2175.000 29.63 2175.000 39.04 3110.000 29.27 3110.000 39.17 3430.000 29.46 3430.000 39.97 4355.000 35.79 4840.000 25.56	Freq Level Factor MHz dBuV dB/m 1290.000 30.22 25.61 1290.000 40.13 25.61 2175.000 29.63 27.74 2175.000 39.04 27.74 3110.000 29.27 28.74 3110.000 39.17 28.74 3430.000 29.46 28.72 3430.000 39.97 28.72 4355.000 35.79 30.93 4840.000 25.56 31.81	Freq Level Factor Loss MHz dBuV dB/m dB	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 1290.000 30.22 25.61 4.54 33.24 1290.000 40.13 25.61 4.54 33.24 2175.000 29.63 27.74 5.16 34.27 2175.000 39.04 27.74 5.16 34.27 3110.000 29.27 28.74 6.17 33.20 3110.000 39.17 28.74 6.17 33.20 3430.000 29.46 28.72 6.82 32.83 3430.000 39.97 28.72 6.82 32.83 4355.000 25.00 30.93 8.21 31.86 4365.000 35.79 30.93 8.21 31.86 4840.000 25.56 31.81 8.63 32.11	MHz dBuV dB/m dB dB dBuV/m 1290.000 30.22 25.61 4.54 33.24 27.13 1290.000 40.13 25.61 4.54 33.24 37.04 2175.000 29.63 27.74 5.16 34.27 28.26 2175.000 39.04 27.74 5.16 34.27 37.67 3110.000 29.27 28.74 6.17 33.20 30.98 3110.000 39.17 28.74 6.17 33.20 40.88 3430.000 29.46 28.72 6.82 32.83 32.17 3430.000 39.97 28.72 6.82 32.83 32.17 3430.000 39.97 28.72 6.82 32.83 42.68 4355.000 25.00 30.93 8.21 31.86 32.28 4355.000 35.79 30.93 8.21 31.86 43.07 4840.000 25.56 31.81 8.63 32.11 33.89	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 1290.000 30.22 25.61 4.54 33.24 27.13 54.00 -26.87 1290.000 40.13 25.61 4.54 33.24 37.04 74.00 -36.96 2175.000 29.63 27.74 5.16 34.27 28.26 54.00 -25.74 2175.000 39.04 27.74 5.16 34.27 37.67 74.00 -36.33 3110.000 29.27 28.74 6.17 33.20 30.98 54.00 -23.02 3110.000 39.17 28.74 6.17 33.20 40.88 74.00 -33.12 3430.000 29.46 28.72 6.82 32.83 32.17 54.00 -21.83 3430.000 39.97 28.72 6.82 32.83 42.68 74.00		

8 Test Setup Photo

Conducted emissions:

Radiated emissions:

9 EUT Constructional Details

Reference to the test report No.: TMC1505036501

-----End-----