Unsupervised Domain Adaptation for Remote Sensing Images Using Metric Learning and Correlation Alignment

Aniruddha Mahapatra¹ Biplab Banerjee²

IIT Roorkee¹

IIT Bombay²

Problem Statement

- Importance of Remote Sensing Image Analysis :
 - Real-time monitoring of agricultural crops
 - Mapping forest fires
 - Tracking clouds for weather prediction
 - Tracking city growth

Problem Statement

1. Season change

Fig. Seasonal changes over particular land area

2. Cloud formation

Fig. Cloud formation over land

Problem Statement

Motivation

- Clustering improves classification
- The feature space should be discriminative

Proposed Model for Source Domain

Source Embedding Network

Fig. Network overview for Clustering

Proposed Model for Source Domain

Contrastive Loss

$$D_W(X_1,X_2) = ||G_W(X_1) - G_W(X_2)||$$

same class (as 's')

different class (as 's')

source point

pull

push
euclidean distance

After Training

$$L(W, (Y, X_1, X_2)^i = (1 - Y)L_S(D_W^i) + Y \max(0, m - L_D(D_W^i))$$

$$\kappa(W) = \sum_{i=1} L(W, (Y, \boldsymbol{X_1}, \boldsymbol{X_2})^i)$$

Proposed Model Correlation Alignment

Cross-Domain Correlation Alignment Network

Fig. Network overview for Domain Adaptation

Proposed Model for Correlation Alignment

CORAL / logCORAL Loss

$$\mathbf{C_S} = \frac{1}{n_S - 1} (\mathbf{D_S^T} \mathbf{D_S} - \frac{1}{n_S} (\mathbf{1^T} \mathbf{D_S})^T (\mathbf{1^T} \mathbf{D_S}))$$

$$\mathbf{C_T} = \frac{1}{n_T - 1} (\mathbf{D_T^T} \mathbf{D_T} - \frac{1}{n_T} (\mathbf{1^T} \mathbf{D_T})^T (\mathbf{1^T} \mathbf{D_T}))$$

$$L_{CORAL} = \frac{1}{4d^2} ||\mathbf{C_S} - \mathbf{C_T}||^2$$

$$L_{logCORAL} = \frac{1}{4d^2} ||log(\mathbf{C_S}) - log(\mathbf{C_T})||^2$$

Proposed Model

Combined Network

Fig. Overview of complete network

Proposed Model

- Why perform combined training on both losses?
- Alternate (convex) optimization

Fig. Loss curve of Contrastive loss with CORAL loss

Fig. Loss curve of Contrastive loss with logCORAL loss

Datasets

Botswana Dataset

- 10 spectral bands
- 14 classes
- Divided into 2 disjoint sets
 - Domain 1
 - TR1 (Training): 1242
 - TS1 (Testing) : 1252
 - Domain 2
 - TR2 (Training) : 2621
 - TS2 (Testing): 627

Fig. Botswana Dataset

Datasets

Pavia Dataset

- Domain 1 (Pavia Centre)
 - 102 spectral bands
 - Train: 50000
 - Test: 22933
- Domain 2 (Pavia University)
 - 103 spectral bands
 - Train: 20000
 - Test: 19332
- Training and Testing on 7 common classes
- Trained and Tested on 50 features

Fig. Pavia dataset with Groundtruth labels

Results

Botswana Dataset

Model	$\mathbf{TR1} \to \mathbf{TS2}$	$\mathbf{TR2} \to \mathbf{TS1}$
TCA	69.88	61.00
GFK	72.89	65.50
CORAL	54.54	47.36
SA	72.88	68.52
STK	75.28	70.20
BDA	62.52	50.72
Auto-Encoder	67.46	62.69
Deep-LogCORAL	75.09	68.48
our(CORAL)	76.08	69.73
our(LogCORAL)	76.24	71.09

Results

Pavia Dataset

Model	$\mathbf{PaviaC} \rightarrow \mathbf{PaviaU}$	$\mathbf{PaviaU} \rightarrow \mathbf{PaviaC}$
Auto-Encoder	46.14	46.64
Deep-LogCORAL	47.57	51.28
our(CORAL)	47.72	45.86
our(LogCORAL)	47.81	56.32

Conclusion & Future Works

- Metric learning with reduced covariance
- Metric learning based on data distribution
- Expanding our method to other standard domain adaptation datasets