Lineaire Algebra

(Januari 2010)

- a) Gegeven is een eindigdimensionale vectorruimte V, voortgebracht door $v_1, v_2 \dots v_r$. Geef en bewijs de manier waarop we dit voortbrengend deel uitdunnen tot een basis van V. Bewijs dit door met matrices te werken, niet de algoritmische manier.
 - b) Geldt deze stelling ook bij oneindigdimensionale vectorruimten waarbij er oneindig veel eigenvectoren en eigenwaarden zijn? Indien ja of nee: argumenteer.
- Gegeven is een lineaire transformatie \mathcal{A} met gegeven eigenwaarden $\lambda_1, \lambda_2 \dots \lambda_r$, telkens verschillend van elkaar. Ook de eigenvectoren $v_1, v_2 \dots v_r$ zijn gegeven met telkens de bijhorende eigenwaarde λ_i , voor $i = 1 \dots r$. Bewijs dat deze eigenvectoren lineair onafhankelijk zijn.

 Hint: gebruik inductie op r.
- [3] Gegeven is de lineaire afbeelding $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^4$. Volgende gegevens zijn gegeven:

$$\mathcal{A} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \qquad \mathcal{A} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \qquad \text{en} \qquad \operatorname{Im}(\mathcal{A}) = \operatorname{Ker}(\mathcal{A}).$$

(a) Bepaal de transformatiematrix $M_{\mathcal{E},\mathcal{E}}$ ten opzichte van de standaardbasis

$$\mathcal{E} = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}.$$

(b) Zouden er basissen \mathcal{V} en \mathcal{W} bestaan zodat de transformatiematrix $M_{\mathcal{V},\mathcal{W}}$ is?

$$\mathbf{M}_{\mathcal{V},\mathcal{W}} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Als zo'n basissen zouden bestaan, geef er. Bestaan ze niet, argumenteer waarom ze er niet zijn.

- a) Bepaal de formules voor $\cos(\alpha + \beta)$ en $\sin(\alpha + \beta)$ in functie van $\sin(\alpha)$, $\cos(\alpha)$, $\sin(\beta)$ en $\sin(\beta)$. Bewijs deze formules aan de hand van de rotatiematrix rond het centrum in \mathbb{R}^2 ten opzichte van twee keer de standaardbasis $\mathcal{E} = \{(1,0),(0,1)\}$.
 - b) Voor een vast getal $d \in \mathbb{N}_0$ geldt de lineaire transformatie

$$\mathcal{A}_a: \mathbb{R}[x]_{\leq d} \to \mathbb{R}[x]_{\leq d}: f(x) \mapsto f(x+a).$$

Bepaal de waarden van a waarvoor A_a diagonaliseerbaar is.

 $\boxed{5}$ Gegeven is de matrix A waar $c \in \mathbb{R}$. Bepaal een orthonormale basis van eigenvectoren die geldt voor alle c.

$$A = \begin{pmatrix} 10+c & -2+c & 4-2c \\ -2+c & 10+c & 4-2c \\ 4-2c & 4-2c & 4+4c \end{pmatrix}$$

6 Gegeven is de vectorruimte \mathbb{R}^n waarin U een lineaire deelruimte is. W is een lineaire deelruimte van U. Bewijs dat

$$U^{\perp_{\mathbb{R}^n}} + W = \left(W^{\perp_U}\right)^{\perp_{\mathbb{R}^n}}.$$

[7] Gegeven is de lineaire afbeelding $f:V\to W,$ waarbij V en W twee eindigdimensionale vectorruimten zijn. Bewijs dat

 $\begin{array}{c} \text{voor alle lineaire afbeeldingen } g:V\to W \text{ geldt dat } \operatorname{rang}(g) \leq \operatorname{rang}(f) \\ \iff \\ f \text{ is injectief of surjectief.} \end{array}$