ПРАКТИЧНА РОБОТА №1 ОТРИМАННЯ ДАНИХ ПРО АРХІТЕКТУРУ КОМП'ЮТЕРА ЗАСОБАМИ ОПЕРАЦІЙНОЇ СИСТЕМИ ТА СПЕЦІАЛІЗОВАНИХ УТИЛІТ

Мета — закріпити знання про архітектуру персонального комп'ютера, функціональне призначення основних компонентів; закріпити навички отримання даних про архітектуру комп'ютера засобами операційної системи та спеціалізованих утиліт.

Форма звітності – друкований варіант звіту, оформлений згідно вимог викладача.

ТЕОРЕТИЧНІ ВІДОМОСТІ

Архітектурою комп'ютера називається його опис на деякому загальному рівні, що включає опис призначених для користувача можливостей програмування, системи команд, системи адресації, організації пам'яті і так далі Архітектура визначає принципи дії, інформаційні зв'язки і взаємне з'єднання основних логічних вузлів комп'ютера: процесора, оперативного ЗП, зовнішніх ЗП і периферійних пристроїв. Спільність архітектури різних комп'ютерів забезпечує їх сумісність з точки зору користувача.

Структура комп'ютера — це сукупність його функціональних елементів і зв'язків між ними. Елементами можуть бути самі різні пристрої — від основних логічних вузлів комп'ютера до простих схем. Структура комп'ютера графічно представляється у вигляді структурних схем, за допомогою яких можна дати опис комп'ютера на будь-якому рівні деталізації.

Архітектура персонального комп'ютера

Згідно з тезою Черча-Т'юрінга, всі відомі типи обчислювальних машин якісно еквівалентні в своїх можливостях: будь-яка дія, здійснима на одній

обчислювальній машині, також здійснима і на іншій. Це один з основних фундаментальних принципів інформатики, який закладений в основу архітектури сучасних комп'ютерів.

Архітектура комп'ютера, розроблена Т'юрингом і фон Нейманом (рис. 1.1), заснована на принципі спільного зберігання програм і даних в пам'яті комп'ютера. Обчислювальні машини, побудовані на цьому принципі, часто позначають терміном «Машина фон Неймана». У загальному випадку, коли говорять про архітектуру фон Неймана, мають на увазі фізичне відділення процесного модуля від пристроїв зберігання програм і даних.

Спрощена блок-схема, що відображає основні функціональні компоненти комп'ютерної системи в їх взаємозв'язку, змальована на рисунку 1.2.

Для того, щоб з'єднати один з одним різні пристрої комп'ютера, вони повинні мати однаковий інтерфейс (англ. interface від inter — між, і face — особа).

Інтерфейс – це засіб узгодження двох приладів, в яких всі фізичні та логічні параметри погоджуються між собою.

Рисунок 1.1 – Схема персонального комп'ютера фон Неймана

Якщо інтерфейс ϵ загальноприйнятим, наприклад, затвердженим на рівні міжнародних угод, то він називається стандартним. Кожен з функціональних елементів (пам'ять, монітор або інший пристрій) пов'язаний з шиною певного типа — адресною, управляючою або шиною даних. Для узгодження інтерфейсів периферійні пристрої підключаються до шини не безпосередньо, а

через свої контролери (адаптери) і порти приблизно за такою схемою, що приведена на (рис. 1.3).

.

Рисунок 1.2 – Загальна структура персонального комп'ютера

:

Рисунок 1.3 – Схема підключення приладу до шини

Контролерами і адаптерами є набори електронних ланцюгів, якими забезпечуються пристрої комп'ютера з метою сумісності їх інтерфейсів. Контролери, окрім цього, здійснюють безпосереднє управління периферійними пристроями по запитах мікропроцесора.

Портами пристроїв ϵ якісь електронні схеми, що містять один або декілька регістрів введення-виводу, і що дозволяють підключати периферійні пристрої комп'ютера до зовнішніх шин мікропроцесора.

Портами також називають пристрої стандартного інтерфейсу: послідовний, паралельний і ігровий порти (або інтерфейси). Послідовний порт обмінюється даними з процесором побайтно, а із зовнішніми пристроями — побітно. Паралельний порт отримує і посилає дані побайтно.

До послідовного порту зазвичай під'єднують ті пристрої, що повільно діють або досить віддалені пристрої, такі, як миша і модем. До паралельного порту під'єднують "швидші" пристрої — принтер і сканер. Через ігровий порт під'єднується джойстик. Клавіатура і монітор підключаються до своїх спеціалізованих портів, які є просто роз'ємами.

Основні електронні компоненти, що визначають архітектуру процесора, розміщуються на основній платі комп'ютера, яка називається системною або материнською (Motherboard). А контролери і адаптери додаткових пристроїв, або самі ці пристрої, виконуються у вигляді плат розширення (Daughterboard — дочірня плата) і підключаються до шини за допомогою роз'ємів розширення, званих також слотами розширення (англ. slot — щілина, паз).

Основні блоки ПК

Комп'ютер складається з наступних основних блоків:

- системний блок;
- монітор;
- клавіатура.

Системний блок - основний блок комп'ютера, в якому знаходяться основні елементи комп'ютера, такі як:

- материнська плата:
- процесор;
- оперативна пам'ять;
- чіпсет;
- мікросхема ПЗП;
- енергозалежна пам'ять CMOS;
- шинні інтерфейси;
- слоти;
- жорсткий диск;
- дисковод гнучких дисків;
- дисковод компакт-дисків;
- відеокарта (відеоадаптер);
- звукова карта.

Монітор (дисплей) - пристрій для візуального відображення інформації.

Клавіатура - клавішний пристрій управління персональним комп'ютером (ПК). Служить для введення інформації, а також команд управління. Стандартна клавіатура має 101 клавішу, функціонально розподілених по трьох групах: основну, управління курсором і цифрову.

Основні елементи ПК

До основних елементів комп'ютера відносяться:

- материнська плата;
- процесор;
- оперативна пам'ять (ОЗУ);
- постійний пристрій, що запам'ятовує (ПЗП);
- відеокарта; звукова карта.

Материнська плата - основна плата персонального комп'ютера, що визначає його можливості за допомогою підключення різних елементів. Має

наступні шинні інтерфейси, через які здійснюється підключення пристроїв: ISA; EISA; VLB; PCI; FSB; AGP; PCMCIA; USB.

Процесор - основна мікросхема комп'ютера, що виконує арифметикологічні операції і обчислення за програмним кодом, що знаходиться в пам'яті і керує роботою всіх пристроїв комп'ютера. Конструктивно складається з комірок. Внутрішні комірка процесора називають регістрами.

Основні параметри процесора: робоча напруга; розрядність; робоча тактова частота; коефіцієнт внутрішнього множення тактової частоти; розмір кеш-пам'яті.

3 іншими пристроями комп'ютера процесор зв'язаний декількома групами провідників, які називаються шинами. Основних шин три: шина даних, адресна шина і командна шина.

Оперативна пам'ять - це масив кристалічних комірок, здатних зберігати дані. Основні характеристики модулів оперативної пам'яті: об'єм пам'яті і час доступу. При виключенні живлення всі дані, що знаходяться в оперативній пам'яті, стираються.

Чіпсет (мікропроцесорний комплект) - набір мікросхем, що керують роботою внутрішніх устроїв комп'ютера визначають основні функціональні можливості материнської плати.

Постійний пристрій (ПЗП), що запам'ятовує, - пристрій для тривалого зберігання інформації. Мікросхема ПЗП здатна тривалий час зберігати інформацію, навіть коли комп'ютер вимкнений. Комплект програм, що знаходяться в ПЗП, утворює базову систему введення-виводу (ВІОЅ).

Основне призначення програм цього пакету - перевірити склад і працездатність комп'ютерної системи і забезпечити взаємодію з клавіатурою, монітором, жорстким диском і дисководом гнучких дисків.

Енергозалежна пам'ять (CMOS). У мікросхемі CMOS зберігаються дані про гнучкі диски, про процесор, про деяких інших пристроях материнської плати. Від оперативної пам'яті вона відрізняється тим, що її вміст не стирається

під час виключення комп'ютера, а від ПЗП - тим, що дані в неї можна заносити і змінювати самостійно.

Жорсткий диск - пристрій для довготривалого зберігання великих об'ємів інформації і програм.

Дисковод CD - пристрій для читання числових даних за допомогою лазерного променя, що відбивається від поверхні сd-диска. Основний параметр сd-дисководів - швидкість читання даних.

Відеокарта (відеоадаптер) - пристрій, що перетворює зображення із пам'яті комп'ютера у відеосигнал для монітора. Фізично відеоадаптер виконаний у вигляді окремої плати, яка вставляється в один зі слотів материнської плати.

Звукова карта - пристрій для виводу звуку. Підключається до одного зі слотів материнської плати у вигляді плати або вбудовується безпосередньо в материнську плату. Виконує обчислювальні операції, пов'язані з обробкою звуку, мови, музики.

ЗАВДАННЯ

- 1. Відкрити текстовий редактор MS Word та зберегти документ звіту під ім'ям Номер бригади_Таsk_1 у теці вашої групи на сервері секції ІТП.
 - 2. Оформити заголовок звіту роботи на зразок, приведений на рис. 1.4.

Практична робота №1

Отримання даних про архітектуру комп'ютера засобами операційної системи та спеціалізованих утиліт

Мета – закріпити знання про архітектуру персонального комп'ютера, функціональне призначення основних компонентів; закріпити навички отримання даних про архітектуру комп'ютера засобами операційної системи та спеціалізованих утиліт.

Виконавець – Прізвище І.П/б, Прізвище І.П/б

Номер бригади – 2

Група – IT-91

Дата – 22.01.2013

Хід роботи

Рисунок 1.4 – Заголовок звіту виконання проблемного завдання

3. Розглядаючи розподіл пам'яті ПК на зовнішню та внутрішню, встановіть аналогії з використанням пам'яті людини і ПК (якими органами/елементами). Виконуючи завдання майте на увазі, що внутрішня пам'ять — це мізки людини (власне біологічна пам'ять), а зовнішня — записи на папері тощо. Відповіді оформіть у вигляді таблиці 1.1.

Таблиця 1.1

Функція	Людина	ПК
Збереження інформації		
Обробка інформації		
Сприйняття інформації		
Передача інформації		

4. Визначте всі елементи ПК, що виконують відповідні функції, пов'язані з інформацією. Відповідь оформити у вигляді таблиці 1.2.

Таблиця 1.2

Функція	Компоненти ПК
Прилади обробки інформації	1
	2
	3
Прилади введення інформації	
Прилади виведення інформації	
Прилади збереження інформації	
Прилади передачі інформації	

- 5. Отримати системну інформацію про ПК, що з'являється під час завантаження системи. Для цього слід виконати таку послідовність дій:
- при включенні та завантаженні ПК натисніть клавішу «PAUSE» на клавіатурі;

- перегляньте та запишіть всі відомості на екрані монітору: тип процесора, його тактову частоту й ідентифікаційний номер; об'єм та тип встановленої оперативної пам'яті; об'єм кеш-пам'яті; відомості про встановлені слоти пам'яті; інформація про відеоадаптер; відомості про жорсткий диск та інш;
- для продовження завантаження системи натисніть клавішу «Esc» («Escape») на клавіатурі.

Оформіть дані у вигляді таблиці на зразок:

Таблиця 1.3 — Зведені відомості про конфігурацію ПК, отримані при завантаженні системи

Номер п/п	Елемент конфігурації	Значення параметрів елементу
1	•••	

- 6. Отримайте доступ до детальної інформації, виконавши таку послідовністю дій:
 - на робочому столі, на ярлику Мой компьютер натискаємо правою кнопкою миші і вибираємо пункт Свойства;
 - у вікні основних відомостей натискаємо в нижній лівій частині вікна на пункт Счетчики и средства производительности;
 - далі в наступному вікні опускаємося трохи нижче і в правій нижній частині шукаємо пункт Отображение и печать подробных сведений о производительности компьютера и системы;

Детальні відомості, які відображаються в результаті виконання вказаних кроків, наведені у табличному вигляді. Скопіююйте таблицю як текст і вставте у звіт з практичної роботи під заголовком «Таблиця 1.4 — Детальні відомості про ПК»

- 7. Отримайте доступ до даних про пристрої за допомогою «Дистпетчера устройства», виконавши таку послідовність дій:
- виконайте команду Π уск \to Π анель управления \to Cистема \to Π испетчер устройств;

- відкрийте детальну інформацію про процесор та системні пристрої натиснувши на позначки «плюс» біля відповідних елементів ієрархічного дерева пристроїв;
- заповніть таблицю 1.4 під назвою «Детальні відомості про *згідно* варіанту» аналогічно до структури таблиці 1.1 (пункт 5). Варіанти завдань приведені в таблиці 1.4.

Таблиця 1.4 – Варіанти завдань

Номер варіанту	Елемент	Номер варіанту	Елемент
1.	Процесор та системні пристрої	2.	Дискові пристрої та мережеві плати
3.	Пристрої введення інформації	4.	Пристрої виведення інформації
5.	Пристрої виведення інформації	6.	Пристрої введення інформації
7.	Дискові пристрої та мережеві плати	8.	Процесор та системні пристрої

- 8. Інсталювати (за необхідності, проте можна викристати версію portable) обрану програму тестування та діагностики системи (Evarest, CPU-Z та інш.). Провести діагностику, сформувати звіти та вставити у звіт з практичної роботи.
- 9. Сформулювати висновки по роботі, зазначивши яким чином доцільно використовувати отримані навички, переваги використання того чи іншого способу отримання даних пр архітектуру ПК.
 - 10. Зберегти звіт та роздрукувати викладачу на перевірку.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА

1. Таненбаум Э. Архитектура компьютера. – СПб.: Питер, 2002 – 704 с.

- 2. Бройдо В.Л., Ильина О.П. Архитектура ЭВМ и систем: Учебник для вузов.— СПб.: Питер, 2006-718 с.:ил.
- 3. Компоненты комп'ютера.— http://windows.microsoft.com/ru-ru/windows7/parts-of-a-computer.