10

15

20

25

明細書

新規 N-アセチルグルコサミン転移酵素、それをコードする核酸並びにこれらの 癌及び/又は腫瘍診断用途

技術分野

本発明は、 $Gal \beta 1-4 Glc$ または $Gal \beta 1-4 Glc$ NAC一基の非還元末端に N-Pセチルグルコサミンを $\beta-1$, 3 結合で転移する活性を有する新規な酵素及びそれをコードする核酸、並びに該核酸を測定するための核酸に関する。さらに本発明は、前記酵素又はその遺伝子の発現量を指標とする癌又は腫瘍診断に関する。

背景技術

 $Gal \beta 1-4 Glc$ または $Gal \beta 1-4 GlcNAc-$ 基の非還元末端に N-アセチルグルコサミンを $\beta-1$, 3 結合で転移する活性を有する、ポリラクトサミン糖鎖の合成に関与する活性を有する酵素は、現在までに 5 種類同定されている(Togayachi, A.等, J Biol Chem, 2001, 276, 22032-40, Shiraishi, N.等, J Biol Chem, 2001, 276, 3498-507, Sasaki, K等, Proc Natl Acad Sci U S A, 1997, 94, 14294-9)。しかし、これらの遺伝子を細胞に発現させるとポリラクトサミンが細胞表面に増加するが、発現酵素にするとその活性は非常に弱いものも存在する。すなわち、ポリラクトサミンを作る酵素は、それぞれ違った特徴を備えていると考えられるが、未だここの酵素の特徴付けは十分ではない。従って、この酵素活性を必要とするポリラクトサミン糖鎖構造の作製または製造は、化学合成するか、生体成分より分離するか、または、酵素学的に組織ホモジネートを使用して合成しなければならない。

ポリラクトサミン糖鎖を基幹とする糖鎖構造上にはルイス抗原などの糖鎖構造があることが知られている (Kannagi R. Glycoconj J. 1997 Aug:14(5):577-84. Review; Nishihara S et al., J Biol Chem. 1994 Nov 18:269(46):29271-8)。 同様にポリラクトサミン糖鎖の長さなどの構造が癌転移、NK 細胞などをはじめとした細胞免疫機能に関係していると言われている (Ohyama C et a., EMBO J. 1999 Mar 15:18(6):1516-25.)。 同様にヘリコバクターピロリ菌はルイス抗原などの関連糖鎖を介してヒト胃組織に感染することが知られている (Wang G et al.

10

15

20

25

, Mol Microbiol. 2000 Jun;36(6):1187–96. Review: Falk PG et al., Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1515–9)。従って、もし、 $Gal \beta 1$ –4 Glc または $Gal \beta 1$ –4 Glc NAc 一基の非還元末端に Nーアセチルグルコサミンを β –1,3 結合で転移する活性を有する酵素遺伝子をクローニングでき、また、該遺伝子を利用して遺伝子工学的に該酵素を生産できるようになれば、該酵素に対する抗体も生産可能となる。従って、これらは癌、免疫病及びピロリ菌感染症の診断、治療及び予防に有用である。しかしながら、該酵素は、未だ精製分離もされておらず、該酵素の単離及び遺伝子の同定についての手がかりはない。そのために、該酵素に対する抗体も作製されていない。

発明の開示

従って、本発明の目的は、 $Gal \beta 1-4Glc$ または $Gal \beta 1-4Glc$ NAcー基の非還元末端にN-Pセチルグルコサミンを $\beta-1$, 3 結合で転移する活性を有する酵素及びそれをコードする核酸を提供することである。また、本発明の目的は、該核酸を宿主細胞内で発現する組換えベクター及び該核酸が導入され、前記核酸および酵素タンパク質を発現する細胞および酵素タンパク質を提供することである。さらに、本発明の目的は、上記本発明の核酸を測定するための測定用核酸を提供することおよび活性を有する該酵素の生産法を提供するものである。

上記の通り、目的とする酵素は、未だ単離されていないので、その部分アミノ酸配列を知ることもできない。一般に、細胞に微量しか含まれていないタンパク質を単離精製することは容易ではなく、現在に至るまで単離されていない酵素を細胞から単離することは容易でないことが予想される。本願発明者は、目的とする酵素と比較的類似した作用を有する種々の酵素遺伝子の塩基配列間に、もしも相同性の高い領域が存在していれば、目的とする酵素の遺伝子もその相同配列を有しているかもしれないと考えた。そして、公知の β 1、3-N-アセチルグルコサミン転移酵素遺伝子、 β 1、3-ガラクトース転移酵素および β 1、3-N-アセチルガラクトサミン転移酵素遺伝子等の塩基配列を検索した結果、相同な領域が見つかった。そこで、この相同領域にプライマーを設定して。DNAライブラリーからPCRでクローニングすることを基本として種々検討した結果、該

10

15

20

25

酵素の遺伝子のクローニングに成功し、その塩基配列及び推定アミノ酸配列を決定することができ、本発明に至った。

すなわち、本発明は、配列表の配列番号1に示されるアミノ酸配列又は該アミ ノ配列において1若しくは複数のアミノ酸が置換し若しくは欠失し、若しくは該 アミノ配列に1若しくは複数のアミノ酸が挿入され若しくは付加されたアミノ配 列を有し、Galβ1-4GlcまたはGalβ1-4GlcNAc-基の非還元末端にNーアセチ ルグルコサミンをβ-1,3結合で転移する活性を有するタンパク質を提供する。 また、本発明は、該タンパク質をコードする核酸を提供する。さらに、本発明は、 該核酸を含み、宿主細胞中で該核酸を発現することができる組換えベクターを提 供する。さらに、本発明は、該組換えベクターにより形質転換され、前記核酸を 発現する細胞を提供する。さらに、本発明は、核酸と特異的にハイブリダイズす る、該核酸の測定用核酸を提供する。さらに、本発明は、該測定用核酸の癌又は腫 瘍の診断用途を提供する。さらに、本発明は、生体から分離された試料細胞中に おける、上記酵素又はその遺伝子の発現量を調べることを含む、癌又は腫瘍の診 断方法を提供する。さらに本発明は、上記本発明の核酸測定用核酸と、上記本発 明の核酸とをアニーリングすることによりハイブリダイズさせ、ハイブリダイズ した核酸を測定することを含む、上記本発明の核酸の測定方法を提供する。さら に、本発明は、上記本発明の核酸測定用核酸の、上記本発明の核酸の測定用核酸 製造のための使用を提供する。さらに、本発明は、上記本発明の核酸測定用核酸 の、癌及び/又は腫瘍の診断試薬製造のための使用を提供する。

本発明により、 $Gal \beta 1-4 Glc$ または $Gal \beta 1-4 Glc$ NAcー基の非還元末端にNーアセチルグルコサミンを β -1、3 結合で転移する活性を有する酵素及びそれをコードする核酸が初めて提供された。また、本発明により、該核酸を測定するための核酸がはじめて提供された。さらに、本発明により、該酵素又はその遺伝子の発現量を指標とする、癌又は腫瘍、とりわけ消化器の癌又は腫瘍の簡便で正確な診断方法及びそれに用いられる測定用核酸が初めて提供された。したがって、本発明は、消化器癌や腫瘍の診断に大いに貢献するものと期待される。

図面の簡単な説明

10

15

20

25

図 1 は、本発明の遺伝子を導入した組換えベクター又は導入しない組換えベクター形質転換した HCT15 大腸癌細胞株の LEA レクチンとの結合性を示すフローサイトメトリーの結果を示す。

図2は、本発明の遺伝子を導入した組換えベクター又は導入しない組換えベクター形質転換した LSC 大腸癌細胞株の LEA レクチンとの結合性を示すフローサイトメトリーの結果を示す。

図3は、本発明の遺伝子を導入した組換えベクター又は導入しない組換えベクター形質転換した HCT15 大腸癌細胞株の WGA レクチンとの結合性を示すフローサイトメトリーの結果を示す。

図4は、大腸癌患者の正常組織及び癌組織中における、本発明の遺伝子の発現量 を比較して示す図である。

発明を実施するための最良の形態

下記実施例において詳述する方法により、ヒト幽門洞 (antrum) c DNA > 1 ブリーからクローニングされた、本発明のタンパク質をコードする核酸から開始コドン (ATG) を除いた核酸は、配列表の配列番号 4 に示される塩基配列を有し、それがコードする推定アミノ酸配列が、該塩基配列の下に記載されている。配列番3 には、該アミノ酸配列のみを取り出して示す。配列番号 4 に示される塩基配列を有する核酸は、下記実施例において、発現ベクターに組み込まれ、昆虫細胞中で発現され、実際に、上記酵素活性を有するタンパク質が生産されることが確認されている。配列番号 3 に示されるアミノ酸配列と、他の類似の酵素(具体的な酵素名: $\beta - 1$, 3 -N-アセチルグルコサミン転移酵素遺伝子の beta 3GnT2 : AB049584) のアミノ酸配列とを比較、検討した結果、比較的ホモロジーの高い領域、すなわち、配列番号 2 に示されるアミノ酸配列中の第45番目のアミノ酸からて末端までの領域が酵素活性ドメインであると考えられ、この283アミノ酸から成る領域が含まれていれば上記酵素活性が発揮されると考えられる。この283アミノ酸を取り出して配列番号 2 に示し、また、これをコードする核酸を配列番号 2 に示す。

下記実施例で得られた本発明のタンパク質(「beta3GnT-7」と命名)は、次の

15

20

25

性質を有する酵素である。なお、各性質及びその測定方法は下記実施例において 詳述されている。

作用: Gal β 1-4 Glc または Gal β 1-4 GlcNAc 一基の非還元末端にNーアセチルグルコサミンを β -1, 3 結合で転移する。触媒する反応を反応式で記載すると UD P-N-アセチル-D-グルコサミン+ β -D-ガラクトシル-1, 4-D-グルコシル-R

- → UDP + N-アセチル- β -D-グルコサミニル-1, 3- β -D-ガラクトシル-1, 4-D-グルコシル-R、または、UDP-N-アセチル-D-グルコサミン+ β -D-ガラクトシル-1, 4-N-アセチル-D-グルコサミニル-R
- → UDP + N-アセチル-β-D-グルコサミニル-1,3-β-D-ガラクトシル-1,4-N-ア
 10 セチル-D-グルコサミニル-R

基質特異性: $Gal \beta 1-4 Glc$ または $Gal \beta 1-4 Glc$ NAcー基。生体物質では、例えば、糖蛋白質(0-グリカン、N-グリカン)や糖脂質(ラクト・ネオラクト系列糖鎖など)上のポリラクトサミン構造を始めとして多数存在しており、またプロテオグリカン(ケラタン硫酸)などの基幹構造等に含まれる $Gal \beta 1-4 Glc$ または $Gal \beta 1-4 Glc$ NAcー基。

なお、一般に、酵素のような生理活性を有するタンパク質において、そのアミノ酸配列のうち、1若しくは複数のアミノ酸が置換し若しくは欠失し、若しくは該アミノ配列に1若しくは複数のアミノ酸が挿入され若しくは付加された場合であっても、該生理活性が維持されることがあることは周知である。従って、配列番号1又は3に示されるアミノ配列において1若しくは複数のアミノ酸が置換し若しくは欠失し、若しくは該アミノ配列に1若しくは複数のアミノ酸が挿入され若しくは付加されたアミノ配列を有し、 $Gal\beta1-4Glc$ または $Gal\beta1-4Glc$ なんとは付加されたアミノ配列を有し、 $Gal\beta1-4Glc$ または $Gal\beta1-4Glc$ なんできするタンパク質(以下、便宜的に「修飾タンパク質」)も本発明の範囲に含まれる。このような修飾タンパク質のアミノ酸配列は、配列番号1又は3に示されるアミノ酸配列と70%以上、好ましくは90%以上、さらに好ましくは95%以上の相同性を有することが好ましい。なお、アミノ酸配列の相同性は、FASTAのような周知のコンピューターソフトを用いて容易に算出することができ、このよ

10

15

20

25

うなソフトはインターネットによっても利用に供されている。さらに、該修飾タンパク質としては、配列番号 1 又は 3 に示されるアミノ酸配列又は該配列において 1 若しくは数個のアミノ酸が置換し若しくは欠失し、若しくは該アミノ配列に 1 若しくは数個のアミノ酸が挿入され若しくは付加されたアミノ配列を有するものが特に好ましい。さらに、配列番号 1 若しくは 3 に示されるアミノ酸配列を有するタンパク質又はこれらの修飾タンパク質を含むタンパク質であって、 $Gal \beta$ 1-4 Glc または $Gal \beta$ 1-4 GlcNAcー基の非還元末端にN-アセチルグルコサミンを β -1、3 結合で転移する活性を有するタンパク質も当然、本発明の範囲に含まれる。例えば、下記実施例では、配列番号 3 に示されるアミノ酸配列の上流に、膜貫通領域を含む領域が結合された、膜結合型の酵素をコードする核酸もクローニングされたが、このような膜結合型の酵素も当然本発明の範囲に含まれる。

本発明は、配列番号1又は配列番号3で示されるアミノ酸配列をコードする核酸及び上記修飾タンパク質のアミノ酸配列をコードする核酸も提供する。核酸としてはDNAが好ましい。なお、周知の通り、コドンには縮重があり、1つのアミノ酸をコードする塩基配列が複数存在するアミノ酸もあるが、上記アミノ酸配列をコードする塩基配列であれば、いずれの塩基配列を有するものも本願発明の範囲に含まれる。なお、下記実施例において実際にクローニングされた。DNAの塩基配列が配列番号2および配列番号4に示されている。配列番号2又は配列番号4に示す塩基配列を有する核酸とストリンジェントな条件下(すなわち、5 × Denhardt's reagent, 6 x SSC, 0.5% SDS 又は0.1% SDS といった一般的なハイブリダイゼーション溶液を用いて50~65℃で反応を行なう)において、ハイブリダイズし、かつ、上記修飾タンパク質をコードする核酸も本発明の範囲内に入る。

上記本発明の核酸は、下記実施例に詳述する方法により調製することもできるし、また、本発明によりその塩基配列が明らかにされたので、下記実施例で用いているヒト幽門洞を材料として用い、常法である RT-PCR 法を行うことにより容易に調製することができる。また、上記本発明のタンパク質は、例えば下記実施例に詳述するように、上記本発明の核酸を発現ベクターに組み込み、宿主細胞中

10

15

20

25

で発現させ、精製することにより容易に調製することができる。

上記本発明の核酸を、発現ベクターのクローニング部位に挿入することにより、宿主細胞中で上記核酸を発現させることができる組換えベクターを得ることができる。発現ベクターとしては、種々の宿主細胞用の種々のプラスミドベクター及びウイルスベクターが周知であり、市販もされている。本発明では、このような市販の発現ベクターを好ましく用いることができる。また、このような組換えベクターで宿主細胞を形質転換又は形質導入する方法も周知である。本発明はまた、該核酸が形質転換、形質導入又はトランスフェクション等により宿主細胞に導入され、該核酸を発現する細胞を提供する。宿主細胞に外来遺伝子を導入する方法自体は周知であり、上記組換えベクターを用いること等により容易に行うことができる。宿主細胞としては、特に限定されず、哺乳動物細胞、昆虫細胞、酵母、細菌等を用いることができる。なお、組換えベクターの構築及びそれを用いて本発明の核酸を宿主細胞に導入する方法の具体例が下記実施例に詳述されている。

なお、本発明のタンパク質は、そのアミノ酸配列が上記した通りのものであり、 上記した酵素活性を有するものであれば、タンパク質に糖鎖が結合していてもよい。すなわち、本発明の「タンパク質」は「糖タンパク質」をも包含する。

本発明により、本発明の新規酵素の c D N A の塩基配列が明らかになったので、
該酵素のm R N A 又は c D N A と特異的にハイブリダイズする、前記本発明の測
定用核酸(以下、単に「測定用核酸」)が本発明により提供された。ここで、「
特異的」とは、検査対象となる細胞中に存在する他の核酸とハイブリダイズせず、
上記本発明の核酸とのみハイブリダイズするという意味である。測定用核酸は、
上記本発明の核酸、とりわけ配列番号2又は4に示される塩基配列を有する核酸
中の部分領域と相同的な配列を有することが一般的に好ましいが、1~2塩基程
度の不一致があっても差し支えないことが多い。測定用核酸は、プローブ又は核
酸増幅法におけるプライマーとして用いることができる。特異性を確保するため
に、測定用核酸の塩基数は15塩基以上、さらに好ましくは18塩基以上である。
サイズは、プローブとして用いる場合には、15塩基以上、さらに好ましくは2
の塩基以上、コード領域の全長以下が好ましく、プライマーとして用いる場合に

10

15

20

25

は、15塩基以上、さらに好ましくは18塩基以上、50塩基以下が好ましい。 被検核酸の部分領域と相補的な配列を有する核酸をPCRのような遺伝子増幅法 のプライマー、又はプローブとして用いて被検核酸を測定する方法自体は周知で あり、下記実施例には、ヒト細胞中の本発明の酵素のmRNAをノーザンブロッ ト及びインサイチューハイブリダイゼーションにより測定した方法が具体的に詳 述されている。なお、本明細書において、「測定」には、検出、定量、半定量の いずれもが包含される。

PCRのような核酸増幅法自体は、この分野において周知であり、そのための 試薬キット及び装置も市販されているので容易に行うことができる。すなわち、 例えば、鋳型となる被検核酸(例えば、本発明の酵素の遺伝子の c D N A)と本 発明の測定用核酸(プライマー)の一対とを、緩衝液中で、Taq ポリメラーゼ及 び dNTP の存在下で、変性、アニーリング、伸長の各工程を反応液の温度を変化 させることにより行う。通常、変性工程は、90~95℃、アニーリング工程は、 鋳型とプライマーの Tm 又はその近傍(好ましくは±4℃以内)、伸長工程は Ta q ポリメラーゼの至適温度である72℃で行われる。各工程は30秒~2分程度 で適宜選択される。この熱サイクルを例えば25~40回程度繰り返すことによ り、一対のプライマーで挟まれた鋳型核酸の領域が増幅される。なお、核酸増幅 法はPCRに限定されるものではなく、この分野において周知の他の核酸増幅法 も用いることができる。このように、上記した本発明の測定用核酸の一対をプラ イマーとして用い、被検核酸を鋳型として用いて核酸増幅法を行うと、被検核酸 が増幅されるのに対し、検体中に被検核酸が含まれない場合には増幅が起きない ので、増幅産物を検出することにより検体中に被検核酸が存在するか否かを知る ことができる。増幅産物の検出は、増幅後の反応溶液を電気泳動し、バンドをエ チジウムブロミド等で染色する方法や、電気泳動後の増幅産物をナイロン膜等の 固相に不動化し、被検核酸と特異的にハイブリダイズする標識プローブとハイブ リダイズさせ、洗浄後、該標識を検出することにより行うことができる。また、 クエンチャー蛍光色素とレポーター蛍光色素を用いたいわゆるリアルタイム検出 PCRを行うことにより、検体中の被検核酸の量を定量することも可能である。

10

15

20

25

なお、リアルタイム検出PCR用のキットも市販されているので、容易に行うことができる。さらに、電気泳動バンドの強度に基づいて被検核酸を半定量することも可能である。なお、被検核酸は、mRNAでも、mRNAから逆転写した。DNAであってもよい。被検核酸としてmRNAを増幅する場合には、上記一対のプライマーを用いた NASBA 法(3SR 法、TMA 法) を採用することもできる。NASB A 法自体は周知であり、そのためのキットも市販されているので、上記一対のプライマーを用いて容易に実施することができる。

プローブとしては、上記測定用核酸に蛍光標識、放射標識、ビオチン標識等の標識を付した標識プローブを用いることができる。核酸の標識方法自体は周知である。被検核酸又はその増幅物を固相化し、標識プローブとハイブリダイズさせ、洗浄後、固相に結合された標識を測定することにより、検体中に被検核酸が存在するか否かを調べることができる。あるいは、測定用核酸を固相化し、被検核酸をハイブリダイズさせ、固相に結合した被検核酸を標識プローブ等で検出することも可能である。このような場合、固相に結合した測定用核酸もプローブと呼ばれる。なお、核酸プローブを用いた被検核酸の測定方法もこの分野において周知であり、緩衝液中、核酸プローブを被検核酸と Tm 又はその近傍(好ましくは土4℃以内)で接触させることによりハイブリダイズさせ、洗浄後、ハイブリダイズした標識プローブ又は固相プローブに結合された鋳型核酸を測定することにより行うことができる。このような方法には、下記実施例に記載されるノーザンブロットやインサイチューハイブリダイゼーション、さらにはサザンブロット法等の周知の方法が包含される。

本発明の酵素を、 $Gal \beta 1-4 Glc$ または $Gal \beta 1-4 Glc$ NAcー基を有する糖タンパク質、オリゴ糖、糖脂質又は多糖等に作用させることにより、 $Gal \beta 1-4 Glc$ または $Gal \beta 1-4 Glc$ NAcー基の非還元末端にN-Pセチルグルコサミンが $\beta-1$, 3 結合で結合される。従って、本発明の酵素は、糖タンパク質の糖鎖の修飾、糖脂質の糖鎖の修飾や、糖類の合成に用いることができる。さらに、この酵素を免疫原として動物に投与することにより、該酵素に対する抗体を作製することができ、該抗体を用いて免疫測定法により該酵素を測定することが可能になる。従って、

10

15

20

25

本発明の酵素及びこれをコードする核酸は、このような免疫原の作製に有用である。このような抗体及び上記した測定用核酸は、生体中の該酵素を測定することに有用であり、該測定は、癌、免疫病及びピロリ菌感染症の診断、治療及び予防に有用である。

本発明の酵素と抗原抗体反応する抗体、好ましくはモノクローナル抗体は、本 発明の酵素を免疫原として動物に投与することを含む周知の方法により作製する ことができる。このような抗体は、癌又は腫瘍、好ましくは消化器系の癌又は腫 瘍、特に大腸の癌又は腫瘍、さらに好ましくは大腸癌の診断に用いることができ る。抗体を癌又は腫瘍の診断に用いる場合、試料となる細胞中の上記酵素と、該 抗体との抗原抗体反応を利用した免疫測定方法により、上記酵素を測定し、正常 細胞における測定結果と比較し、酵素の測定量が正常細胞よりも少なければ、特 に、酵素が検出されなければ、癌又は腫瘍の可能性が高いと診断することができ る。免疫測定方法自体は、周知であり、周知のいずれの免疫測定方法をも採用す ることができる。すなわち、測定形式で分類すれば、サンドイッチ法、競合法、 凝集法、ウェスタンブロット法などがあり、用いる標識で分類すれば蛍光法、酵 素法、放射法、ビオチン法等があるが、これらのいずれをも用いることができる。 さらに、免疫組織染色によって診断することもできる。免疫測定方法に標識抗体 を用いる場合、抗体の標識方法自体は周知であり、周知のいずれの方法をも採用 することができる。また、周知のとおり、抗体をパパイン分解やペプシンで分解 することにより、Fab フラグメントや F(ab')2 フラグメントのような、対応抗原 との結合性を有する抗体断片(本明細書において「抗原結合性断片」という)が 得られることが知られているが、本発明の抗体の抗原結合性断片も本発明の抗体 と同様に用いることができる。

なお、これらの免疫測定法自体は周知であり、本明細書で説明する必要はないが、簡単に記載すると、例えば、サンドイッチ法では、本発明の抗体又はその抗原結合性断片を第1抗体として固相に不動化し、検体と反応させ、洗浄後、本発明の酵素と抗原抗体反応する第2抗体を反応させ、洗浄後、固相に結合した第2抗体を測定する。第2抗体を酵素、蛍光物質、放射性物質、ビオチン等で標識し

10

15

20

25

ておくことにより固相に結合した第2抗体を測定することができる。濃度既知の複数の標準試料中について上記方法により測定し、測定された標識量と標準試料中の本発明の酵素の関係に基づき検量線を作成し、未知濃度の被検試料についての測定結果をこの検量線に当てはめることにより、被検試料中の本発明の酵素を定量することができる。なお、第1抗体と第2抗体を上記の説明と入れ替えてもよい。また、凝集法では、ラテックス等の粒子に本発明の抗体又はその抗原結合性断片を不動化し、検体と反応させて吸光度を測定する。濃度既知の複数の標準試料中について上記方法により測定し、測定された標識量と標準試料中の本発明の酵素の関係に基づき検量線を作成し、未知濃度の被検試料についての測定結果をこの検量線に当てはめることにより、被検試料中の本発明の酵素を定量することができる。

また、各免疫測定に必要な試薬類も周知であり、用いる抗体に特徴があること 以外は、通常の免疫測定キットを用いて免疫測定を行うことができる。例えば、 通常、緩衝液、固相、標識第2抗体等が含まれる。

下記実施例に具体的に記載するように、本発明の酵素の発現量を指標として癌及び/又は腫瘍の診断を行うことができることが確認されたので、本発明は、生体から分離された試料細胞中における、上記本発明の酵素の遺伝子の発現量を調べることを含む、癌又は腫瘍の診断方法をも提供するものである。なお、下記実施例に具体的に示されるように、本発明の診断方法により検出可能な腫瘍は、癌又は癌が強く疑われる腫瘍である。前記試料細胞としては、消化器系器官の細胞が好ましく、特に大腸由来の細胞が好ましく、これらの細胞を対象とすることで消化器の癌又は腫瘍、特に大腸の癌及び/又は腫瘍の診断を行うことができる。遺伝子の発現量は、細胞中の、該遺伝子から転写されたmRNA若しくは該mRNAを鋳型として作製された。DNAの量を調べることによって測定することができるし、試料細胞中で生産された酵素を、上記本発明の抗体を用いた免疫測定法により測定することによっても測定することができる。mRNA又は。DNAの量の測定は、上記した本発明の測定用核酸を用いて、上記のようにして行うことができる。

実施例

5

10

15

20

25

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。なお、下記の記述において、例えば配列表の配列番号5で表される塩基配列を有する核酸を、便宜的に「配列番号5」のように記載することがある)。

1. 遺伝子データベースの検索と beta3GnT-7 の塩基配列決定

既存の $\beta-1$, 3-N-アセチルグルコサミン転移酵素遺伝子、 $\beta-1$, 3-ガラクトース転移酵素および $\beta-1$, 3-N-アセチルガラクトサミン転移酵素遺伝子を用いて、遺伝子データベースから類似遺伝子の検索を行った。用いた配列は $\beta-1$, 3-N-アセチルグルコサミン転移酵素遺伝子 AB049584、AB049585、AB049586、AB045278、 β 1, 3-ガラクトース転移酵素遺伝子の配列 AF117222、Y15060、Y15014、AB026730、AF145784、 AF145784、1, 3-N-アセチルガラクトサミン転移酵素遺伝子の配列 Y15062(すべて Gene Bank 登録番号)で、プログラムは BLAST の t Blastn を使用し、ORF(Open Reading Frame)に相当するアミノ酸全てについて検索を行った。

その結果、EST 配列 Gene Bank Accetion No. AK000770 とヒトゲノム配列 Gene Bank accetion No. AC017104 が見出された。そこで AC017104 を用いてライブラリーのスクリーニングを行った。

用いたサンプルは常法(Yuzuru Ikehara, Hisashi Narimatsu et al, Glycob iology vol. 9 no. 11 pp. 1213-1224, 1999)により作製したヒト Antrum(幽門洞) c DNA ライブラリーである。また、スクリーニング手法はラジオアイソトープを使用した一般的な核酸プローブによる方法を用いた。具体的には以下に述べるとおりである。

まず、ヒトAntrum(幽門洞) c DNA ライブラリーより常法に従って調製したラムダファージを鋳型とし、プライマーCB-635 (5'-cagca gctgc tggcc tacga ag ac-3') (ACO17104における塩基番号 6814-6837)と CB-638 (5'-gcaca tgccc agaaa gacgt cgtc-3') (塩基番号 7221-7245) を用いて PCR を行い、増幅した DNA 断片約 430 bp を Amersham 社製 Multiple DNA labeling system を用いて

10

15

20

25

³²P-dCTP で放射能ラベルした。

このプローブを用いて、大腸菌上に形成されたラムダファージのプラークのうち、プローブとハイブリダイゼーションする単一のプラークを拾い、上記プライマーCB635 と CB638 を用いて PCR で目的とする DNA 部位の存在を確認した。挿入が確認されたプラークより得られたファージは Lamda ZAP II ベクター(ストラタジーン社)で構築されているため(Yuzuru Ikehara , Hisashi Narimatsu et al, Glycobiology vol. 9 no. 11 pp. 1213-1224, 1999)、付属の説明書に従った方法により pBluescript SK ベクターに挿入された cDNA クローンとして調製(Excision)することが出来る。同方法によりこれを調製し、得られたコロニーより DNA を得た。その後、通常の方法に従って cDNA クローンの塩基配列を決定した(配列番号6)。

上記方法で得られた配列番号 6 は AC017104 の塩基番号 4828 から 7052 に該当 し、ORF の3'側が欠けていたため、3'側を cDNA から PCR でクローニングして つなげることとした。即ち、コンピューターによる検索結果の AC017104 より予 想される配列から終止コドンの後の配列でプライマ―CB-625 (5'-cgttc ctggg c ctca gtttc ctag-3') (塩基番号 7638-7661) を設計し、上記 CB635 と組み合 わせて上記ヒト Antrum (幽門洞) c DNA ライブラリーより DNA 断片を得た。常法 によりこの DNA 断片の塩基配列を決定したところ、配列番号7 (ACO17104 にお ける 6814-7661) (以下配列3という) が得られた。これを配列番号6と組み 合わせ、理論上のORF987bp (AC017104における6466-7452) が得られ、この ORFから328アミノ酸が推定されbeta3GnT-7と名づけた(配列番号8)。一 般的には、糖転移酵素は2型の膜1回貫通タンパクであることが知られているが、 この ORF 配列には、N末端には疎水性領域が見出されなかった。しかし、ヒト血 清中にβ1,3-N-アセチルグルコサミニル転移酵素活性が検出されることが報告さ れていることから (Human Serum Contains N-Acetyllactosamine: β1,3- N-Ace tylglucosaminyltransferase Activity. Hosomi, O., Takeya, A., and Kogure, J. Biochem. 95, 1655-1659 (1984)) 、おそらくこの ORF は膜貫通領域が無 い分泌型酵素であると考えられた。

10

15

20

25

この配列番号8によるORFとそれがコードするアミノ酸が実際に存在し、機能している(=発現している)ものであることを示すため、RT-PCRと、PCR 増幅産物の制限酵素による確認およびPCR 増幅産物の配列のダイレクトシークエンシング(通常の方法)によるmRNAの確認を行った。その結果上記理論上のORFが確かに存在し、実際に機能していることが確認された。

また、上述のように、糖転移酵素は通常2型の膜貫通タンパク質であることが知られているが、配列番号8のアミノ酸配列のN末側に疎水性領域が無く、一般的な糖転移酵素とは異なっていると考えられた。そこで、N末側に疎水性領域(膜貫通領域)を持つスプライシングバリアントがさらに存在するか否か、5 imes 1 側の核酸配列(1 imes 1 1 imes 2 1 imes 3 1 imes 4 1 imes 5 1 imes 6 1 imes 7 1 imes 7

まず、Human stomach Marathon- Ready cDNA (クロンテック社)を鋳型として 5' -RACE (Rapid amplification of cDNA ends) を行なった。具体的には、Mara thon cDNA 付属の AP 1 プライマーと(DNA 断片の両側に AP1、さらにその両内側に AP2 のアダプターがついている)、見出した配列部分に設定したプライマーbe ta3GnT-7RACE-5 (5'- GACCG ACTTG ACAAC CACCA GCA -3') で PCR (94°C60 秒、94°C30 秒-72°C3 分を5サイクル、94°C30 秒-70°C3 分を5サイクル、94°C-68°C3 分を25 サイクル)を行い、そのDNA産物についてさらに、Marathon cDNA 付属の AP2 プライマーと、配列部分に設定したプライマーbeta3GnT-7RACE-4 (5'-GTAGA CATCG CCCCT GCACT TCT -3') で nested PCR (94°C60 秒、94°C30 秒-72°C3 分を5サイクル、94°C30 秒-70°C3 分を5サイクル、94°C-68°C3 分を15サイクル)を行なった。これを pGEMeasy (クロンテック社) にクローニングして塩基配列を決定した。その結果、先に見出した配列番号6の開始コドンより上流部分の配列が得られ、アミノ酸配列にすると膜貫通領域が認められた。しかし、この膜貫通領域の配列近傍の5´ー側の核酸配列を解析したが、ORF の開始点は認められなかった。

そこで、beta3GnT-7 を含むヒトゲノム配列 ACO17104 を遺伝子領域解析ソフトの GeneScan、HMMgene 等を用いて翻訳領域を解析した。その結果、開始コドンを含み、1 1 塩基(約3アミノ酸)の第一エクソン(ACO17104 の塩基番号 4331-4

10

15

20

25

341) が予測された。そこで、開始コドンより前の部分にプライマーを設計して PCR を行い、予測された領域がトランスクリプトとして存在するかどうか確認することにした。

具体的には、プライマーとして beta3GnT-7RACE-8 (5'- GCCCA GAGCT GCGAG CCG CT -3') (ACO17104における 4278-4300) と CB-638 (5'- GCACA TGCCC AGAAA GA CGT CG-3') ((ACO17104における 7224-7245)、鋳型として Human leukocyte M arathon-Ready cDNA および LA-Taq (TaKaRa) を用いて PCR (95℃30秒、60℃30秒、72℃60秒で30サイクル)を行なった。その結果、1046塩基の増幅産物が得られた。PCR 増幅産物を精製してシークエンスを行ってこの配列を検証したところ、上記翻訳領域の解析で予測されたとおり、第1エクソンの3'側(塩基番号 4341)が下流の塩基番号 6258につながっていることが判明した。

そこでさらに配列番号6、7と、この結果を組み合わせて配列番号5に示す1206の核酸および配列番号9に示す401のアミノ酸が得られた。この配列番号5は、配列番号8(配列番号6と配列番号7の合成)の塩基配列に上流部分の219塩基(73アミノ酸)((AC017104における4331-4341と6258-6465)付加したもので、塩基番号4342-6257はスプライスされたと考えられた。配列番号5は膜貫通領域(AC017104の塩基番号6265-6322)を含むため、配列番号5と配列番号8は同じ活性を持つ酵素の膜貫通型と分泌型であると考えられた。2. beta3GnT-7の発現ベクターへの挿入

beta3GnT-7の活性を調べるためにbeta3GnT-7を昆虫細胞内で発現させた。活性を確認するには配列番号9の少なくとも他のファミリー遺伝子と比較的ホモロジーが保たれている119番アミノ酸からC末端までの活性領域を発現させれば十分であると考えられるが、ここではbeta3GnT-7(配列番号9)の75番アミノ

酸からC末端までの活性領域を発現させることとした。

そこでインビトロジェン社の Gateway システムの pFastBac に組込み、さらに インビトロジェン社の Bac-to-Bac システムによるバクミドを作成した。

①エントリークローンの作成

beta3GnT-7S プライマー(5' - GGGGA CAAGT TTGTA CAAAA AAGCA GGCTT Cgcct

10

15

20

25

ctcag gggcc ccagg cct- 3')と beta3GnT-7A プライマー5'- GGGGA CCACT TTGT A CAAGA AAGCT GGGTC catgg gggct cagga gcaag tgcc-3') (大文字は後述する GATEWAY 用の付加配列 attL である)、鋳型にはスクリーニングによって得られた cDNA クローンと PCR によって得られた DNA 断片より生成した beta3GnT-7 クローン (理論上の ORF 配列を有するクローン) の DNA を用いて PCR を行い、増幅産物を得た。

この産物を BP クロナーゼ 反応によって pDONR201 へ組込み、「エントリークローン」を作成した。反応は目的とする DNA 断片 $5~\mu$ \ 、pDONR201 $1~\mu$ \ (150ng)、反応緩衝液 $2~\mu$ \ 、BP クロナーゼ mix $2~\mu$ \ を 25°Cで 1 時間インキュベートして行った。プロテイナーゼ K を $1~\mu$ \ 加えて 37°C10 分おき反応を終了させた。

その後上記 mix 全量(11μ l)をコンピテントセル(大腸菌 $DH5\alpha$) 100μ l と混合し、ヒートショック法の後、カナマイシンを含む LB プレートにまいた。翌日コロニーをとり、直接 PCR で目的 DNA を確認した。さらに確実を期すためシーケンシングにより DNA 配列の確認をした後、ベクター(pDONR-beta3GnT-7)を抽出・精製した。

②発現クローンの作成

上記エントリークローンは挿入部位の両側にラムダファージが大腸菌から切り 出される際の組換部位である attl を持つもので、LR クロナーゼ(ラムダファー ジの組換酵素 Int、IHF、Xis を混合したもの)とデステイネーションベクターと 混合することで、挿入部位がデステイネーションベクターに移り、発現クローン が作成される。具体的工程は以下のとおりである。

まずエントリークローン 1 μ I、pFBIF を 0.5μ I(75ng)、LR 反応緩衝液 2μ I、TE4. 5μ I、LR クロナーゼ mix 2μ I を 25 $^{\circ}$ $^{\circ}$ で 1 時間反応させ、プロテイナーゼ K を 1μ I 加えて 37 $^{\circ}$ $^{\circ}$

10

15

20

25

ペプチドは精製のため挿入したものである。FLAG ペプチドは OT3(5'-gatca tg cat tttca agtgc agatt ttcag cttcc tgcta atcag tgcct cagtc ataat gtcac gt gga gatta caagg acgac gatga caag-3')を鋳型とし、プライマーOT2O(5'-cgg gatccat gcattttcaa gtgcag-3')と、OT21(5'-ggaat tcttgt catcg tcgtc ct tg-3')によって得られた DNA 断片を Bam H1 と Eco R1 で挿入した。さらに、G ateway 配列を挿入するため、Gateway Vector Conversion System(インビトロジェン社)を用いて Conversion cassette を入れた。

その後上記混合液全量(11μ I)をコンピテントセル(大腸菌 $0H5 \alpha$) 100μ I と混合し、ヒートショック法の後、アンピシリンを含む LB プレートにまいた。 翌日コロニーをとり、直接 PCR で目的 0NA を確認し、ベクター(pFBIF-beta3Gn T-7)を抽出・精製した。

③ Bac-to-Bac システムによるバクミドの作成

続いて Bac-to-Bac システム (インビトロジェン社) を用いて上記 pFBIF-と pFastBac との間で組換えをさせ、昆虫細胞中で増殖可能なバクミド(Bacmid)に G1 0 その他の配列を挿入した。このシステムは Tn7 の組換部位を利用して、バクミドを含む大腸菌 (DH10BAC) に目的遺伝子を挿入させた pFastBac を導入するだけで、ヘルパープラスミドから産生される組換タンパク質によって目的とする遺伝子がバクミドへとりこまれるというものである。またバクミドには lacZ 遺伝子が含まれており、古典的な青(挿入なし)ー白コロニー(挿入あり)による選択が可能である。

即ち、上記精製ベクター(pFBIH-beta3GnT-7)をコンピテントセル(大腸菌 DH10BAC) 50μ | と混合し、ヒートショック法の後、カナマイシン、ゲンタマイシン、テトラサイクリン、Bluo-gal、及び IPTG を含む LB プレートにまき、翌日白い単独コロニーをさらに培養し、バクミドを回収した。

3. パクミドの昆虫細胞への導入

上記白コロニーから得られたバクミドに目的配列が挿入していることを確認した後、このバクミドを昆虫細胞 Sf21 (インビトロジェン社より市販) に導入した。即ち 35mm のシャーレに Sf21 細胞 9x105 細胞/2ml (抗生物質を含む Sf-9

10

15

20

25

00SFM(インビトロジェン社)を加え、27℃で1時間培養して細胞を接着した。(Solution A)精製した バクミド DNA 5 μ I に抗生物質を含まない Sf-900SFM(インビトロジェン社)100 μ I 加えた。(Solution B)CellFECTIN Reagent(インビトロジェン社)6 μ I に抗生物質を含まない Sf-900SFM(インビトロジェン社)100 μ I 加えた。その後、Solution A および Solution B を丁寧に混合して 15~45 分間、室温でインキュベートした。細胞が接着したことを確認して、培養液を吸引して抗生物質を含まない Sf-900SFM(インビトロジェン社)2mlを加えた。Solution A と Solution B を混合して作製した溶液(lipid-DNA complexes)に抗生物質を含まない Sf900II 800 μ I を加えて丁寧に混和した。細胞から培養液を吸引し、希釈した lipid-DNA complexes 溶液を細胞に加え、27℃で5時間インキュベーションした。その後、トランスフェクション混合物を除き、抗生物質を含む S f-900SFM(インビトロジェン社)培養液 2mlを加えて27℃で72時間インキュベーションした。トランスフェクションから72時間後にピペッティングにより細胞を剥がし、細胞と培養液を回収した。これを3000rpm、10分間遠心し、上清を別のチューブに保存した(この上清が一次ウイルス液となる)。

T75 培養フラスコに Sf21 細胞 $1x10^7$ 細胞/20ml Sf-900SFM(インビトロジェン社) (抗生物質入り)を入れて、27°Cで 1 時間インキュベートした。細胞が接着したら一次ウイルスを $800\,\mu$ l を添加して、27°Cで 48 時間培養した。 4 8 時間後にピペッティングにより細胞を剥がし、細胞と培養液を回収した。これを 3 000rpm, 10 分間遠心し、上清を別のチューブに保存する(この上清を二次ウイルス液とした)。

さらに、T75 培養フラスコに Sf21 細胞 1x10⁷ 細胞/20ml Sf-900SFM(インビトロジェン社) (抗生物質入り)を入れて、27℃で1時間インキュベートした。 細胞が接着したら二次ウイルス液 1000 μ I を添加して、27℃で 72~96 時間培養した。培養後にピペッティングにより細胞を剥がし、細胞と培養液を回収した。 これを 3000 rpm, 10 分間遠心し、上清を別のチューブに保存した(この上清を三次ウイルス液とした)。加えて、100ml 用スピナーフラスコに Sf21 細胞 6 x 1 0 5 細胞/ml 濃度で 100ml を入れ、三次ウイルス液を 1 m I 添加して 2 7℃で約

10

15

20

25

96時間培養した。培養後に、細胞及び培養液を回収した。これを3000rpm, 10分間遠心し、上清を別のチューブに保存した(この上清を四次ウイルス液とした)。

一次から三次までのセルペレットをソニケーションし(ソニケーション緩衝液 : 20mM HEPES pH7.5、2% Triton X-100 (商品名)) 細胞粗抽出液 を H_2 0 で 20 倍にし、常法により SDS-PAGE による電気泳動について抗 FLAG M2-ペルオキシダーゼ (A-8592、SIGMA 社) を用いてウエスタンブロッテイングを行い、目的とする beta3GnT-7 タンパク質の発現を確認した。その結果約 38-40kDa の位置を中心としてブロードに複数のバンド (糖鎖などの翻訳後修飾の違いによるものと考えられる) が検出、発現が確認された。

4. beta3GnT-7 のレジン精製

上記四次感染の FLAG-beta3GnT-7 上清 10ml に NaN_3 (0.05 %) 、NaCl (150 mM)、 $CaCl_2$ (2 mM)、抗 M1 レジン (Sigma 社) (50 μ I)を混合し、 4° Cで一夜攪拌した。翌日遠心して(3000rpm 5 分 4° C)ペレットを回収し、2 mM の $CaCl_2$ ・TBS を 900μ I 加えて再度遠心分離(2000rpm 5 分 4° C)し、ペレットを 200μ I の 1 mM $CaCl_2$ ・TBS に浮遊させ活性測定のサンプル(beta3GnT-7 酵素液)とした。 beta3GnT-7 の受容体基質の探索

beta3GnT-7 は、 β 1,3-N-アセチルグルコサミン転移酵素類および β 1,3-ガラクトース転移酵素類と比較して分子進化学的に解析した結果、 β 1,3-N-アセチルグルコサミニル転移酵素類に分類された。そこで、第一に供与体基質(donor substrate)として UDP-GlcNAc を用いて検討した。

以下の反応系を用いて、beta3GnT-7の受容体基質を調べた。下記反応液の「受容体基質」には、pNp- α -Glc、pNp- β -Glc、pNp- α -GlcNAc、pNp- β -GlcNAc、pNp- β -GlcNAc、pNp- α -GlcNAc、pNp- α -GlcNAc、pNp- α -GlcNAc、pNp- α -GlcNAc、pNp- α -GlcNAc、pNp- α -Axyl、pNp- α -Gal、pNp- α -GalNAc、Bz- α -GalNAc、Bz- α -GalNAc、pNp- α -Xyl、pNp- α -Fuc、Bz- α -Man、Bz- α -ManNAc、LacCer、GalCer typel、Bz- β -lactoside (すべて Sigma 社) および Gal β 1-4GlcNAc- α -pNp (トロントリサーチケミカル社) を用いてそれぞれが受容体として機能するかどうかを調べた。反応液(カッコ内は最終濃度)は受容体基質(10 nmol)、カコジル酸ナトリ

10

15

20

25

ウム緩衝液(pH7. 2)(50mM)、Triton CF-54(商品名)(0.4%)、MnCl₂(10 mM)、UDP-GIcNAc(480 μ M)、UDP-[14 C]GIcNAC(175 nCi)、CDP-coline(5 mM)から成り、これに beta3GnT-7 酵素液を 10 μ I 加えて、さらに H_2 0 を加えて全量 $25\,\mu$ I とした。

上記反応混合液を 37℃で 5 時間反応させ、反応終了後、0.1M KCIを 200 μ I 加え、軽く遠心後上清を取得した。 1 Om I の μ 2 の μ 2 回洗浄して平衡化した Sep-Pak plus C18 Cartridge (Waters) に該上清を通し、上清中の基質および生成物をカートリッジに吸着させた。 1 Om I の μ 2 にて μ 3 回カートリッジを洗浄後、 μ 4 の μ 5 に μ 6 にて μ 7 回カートリッジを洗浄後、 μ 7 に μ 8 で μ 9 に μ 9

その結果、beta3GnT-7 は Bz- β -ラクトシドおよび Ga $\mid \beta$ 1-4G \mid cNAc- α -pNp に G \mid cNAc を転移させる活性を有する β 1, 3-N-アセチルグルコサミン転移酵素で あること、すなわち、Ga $\mid \beta$ 1 - 4 G \mid c \mid

6. N ー グリカンに対する β 3G1 cNAcT 活性の測定

酵素源は前記と同様にリコンビナント酵素(FLAG 配列融合蛋白)として発現し、精製したものを使用した。アクセプター基質には表 1 に示す市販の PA 化糖鎖基質(タカラバイオ社製)を使用し、反応条件は、14mM カコジル酸ナトリウム緩衝液(pH7.4)、0.4% Triton CF-54、10 mM MnCl₂、50 mM UDP-GlcNAc(ドナー基質)、20 pmol アクセプター基質、100 ng 酵素タンパク質液で37℃、16時間反応した。反応後95℃、3分で反応を止め、80μlの水を加えて Ultra-free MC column(ウオーターズ社製)を通し、この通過液から45μlをHPLC

に供した。HPLCの条件は以下の通りである。尚、UDP-GlcNAc(ドナー基質)を 含まない溶液を対象として転換酵素活性(%)を求めた。その結果を下記表 1 に 示す。

· (HPLC 条件)

5 Buffer I.a: 100 mM 酢酸/ トリエチルアミン, pH 4.0

Buffer I.b: 100 mM 酢酸/トリエチルアミン, pH 4.0 (0.5% 1ーブタノー

ル含有)

gradient: 5-55%: Buf. I.b (0-60 min.),

flow rate : 1.0 ml/min.

10 column: PalPak Type R (TaKaRa Cat. No. CA8000)

column oven temp: 40°C

HPLC システム: Shimadzu LC-10AD vp、CTO-10AC vp 、DGU-14A、cell temp c

ontroller

検出器: Fluorescence: RF-10AXL、UV: SPD-10Avp

表 1

アクセプター基質	転換活性(%)
Gal & 1-4GloNAc & 1-2Man & 1-6 Man & 1-4GloNAc & 1-4GloNAc-PA Gal & 1-4GloNAc & 1-2Man & 1-3	18. 3
Gal \$ 1-4GlcNAc \$ 1 - 2Man \$ 1 Gal \$ 1-4GlcNAc \$ 1 4Man \$ 1 Gal \$ 1-4GlcNAc \$ 1	26. 0
Gal β 1-4GlcNAc β 1 6 Man α 1 Gal β 1-4GlcNAc β 1 2 Man α 1 Gal β 1-4GlcNAc β 1 4 GlcNAc β 1-4GlcNAc β 1 4 GlcNAc β 1 6 Man α 1	20. 3
Gal \$1-4GkNAc \$1-2Man α 1 Fuc α 1 6 Man \$1-4GkNAc \$1-4GkNAc-PA Gal \$1-4GkNAc \$1-2Man α 1 3	20. 6
Gal & 1-4GlcNAc & 1 - 2Man α 1 Fuc α 1 6 Man α 1 -4GlcNAc α 1 -4GlcNAc -PA Gal & 1-4GlcNAc α 1 9 Man α 1 Gal α 1 -4GlcNAc α 1 9 To α 1 9	17. 3 ·
Gal β 1-4GlcNAc β 1 6 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 1 6 6 1 6 1 6 6 1 6	18. 1
Man α 1 6 Man β 1-4GlcNAc β 1-4GlcNAc-PA Man α 1	0. 0
Gal β 1-4GlcNAc β 1-3Gal β 1-4Glc-PA	_

7. フローサイトメトリーによる酵素発現の測定

pDEST12.2 ベクター (インビトロジェン社製) に beta3GnT-7 (G10) 遺伝子を組み込んだ pDEST12.2-G10 ベクターDNA を作製した。これは具体的に次のようにして行った。下記の Invitrogen 社の gateway システムの配列を組み込んだプライマーを用いて Co1o205 細胞 (大腸ガン細胞) の cDNA より PCR 法で増幅後、その増幅産物をまず pDONR ベクターに BP 反応により組み込んだ。そのベクターのシーケンシングを行い、DNA 配列の確認後、pDONR ベクターから pDEST12.2 ベクターに LR 反応により入れ替えた。なお、上記操作は、Invitrogen 社製のキットに含まれるベクター、試薬を用いて商品の指示書に従い行った。

10 G10/ORF-F1 プライマー

5

15

20

25

ggggacaagtttgtacaaaaaagcaggcttctggcgcccagagctgcgagccgct

(このうち、ggggacaagtttgtacaaaaaagcaggcttc はベクター側の配列) G10/ORF-R1 プライマー

ggggaccactttgtacaagaaagctgggtccatgggggctcaggagcaagtgcc

(このうち、catgggggctcaggagcaagtgcc から b3GnT7 遺伝子の cDNA 配列)
以上の操作により、pDEST12.2 ベクター (インビトロジェン社製) に、配列番号
5に示す c D N A の 5 ' 側及び 3 ' 側に、上記プライマー中の、c D N A 配列以
外の領域が付加されたD N A 断片が挿入された組換えベクターが得られた。この
組換えベクターを、常法により、HCT15 細胞株、LSC 細胞株 (ともに大腸癌細胞
株) に導入した。また、コントロールとして遺伝子導入のない pDEST12.2 ベクター
DNA を用いて、同様に細胞株に導入した(Mock 細胞) 。 0.8 mg/ml の G418 薬剤
(インビトロジェン社製) によるセレクションを 1 ヶ月行った後に細胞を回収し
た。回収した細胞を 1%BSA/0.1%NaN3/PBS(-)で 2 回洗った。細胞数を 1x10⁷ce11
s / ml にして 1 サンプルあたり 100 μl (1x10⁶ce11s) 使用した。遠心後上清を
除いて、10 μg/ml になるよう希釈した。下記 FITC ラベルレクチンをそれぞれ 1
00 μl 加え、細胞を懸濁した。4℃で暗所 (冷蔵庫) 30 分反応させた後、1%BSA
/ 0.1%NaN₃ / PBS 100 μl をウェルに入れて洗浄を行い、1000rpm で 5 分遠心し、
上清を取り除いた。さらにもう一度洗浄を繰り返した。0.5%パラホルムアルデヒ

10

15

20

25

ド/PBS 1 ml に懸濁して細胞固定を行い、ナイロンメッシュを通した後、フローサイトメトリーFACSCalibur (ベクトン ディッキンソン社製)を用いて解析した。その結果を図1~3に示す。

使用したレクチンは $Lycopersicon\ esculentum$ (LEA) ならびに $Triticum\ vulgar$ $e\ (WGA)$ であり、それぞれ N-アセチルラクトサミンの繰り返し構造、ならびに N-アセチルグルコサミン構造を認識するレクチンであり、FITC により標識されているものを使用した(ホーネン、生化学工業、EY Laboratories 社などより購入)。

図1は、HCT15大腸癌細胞株のLEA レクチンとの結合性を示すフローサイトメトリーの結果、図2は、本発明の遺伝子を導入した組換えベクター又は導入しない組換えベクター形質転換したLSC 大腸癌細胞株のLEA レクチンとの結合性を示すフローサイトメトリーの結果、図3は、HCT15大腸癌細胞株のWGA レクチンとの結合性を示すフローサイトメトリーの結果を示す。各図において、太線がbeta3Gn T-7 遺伝子を含む組換えベクターで形質転換した細胞についての結果を示し、細線がbeta3GnT-7 遺伝子を含まないベクターで形質転換した細胞(Mock 細胞)についての結果を示す。

図 1 ~ 3 に示す通り、いずれも蛍光強度がシフトしていることから、beta3Gn T-7 (G10) 遺伝子を組み込んだ pDEST12. 2-G10 ベクターDNA の導入細胞株では N ーアセチルラクトサミン含有構造が増えていた。

8. beta3GnT-7の組織特異的発現の解析

Real Time PCR 法 (Gibson, U. E., Heid, C. A., and Williams, P. M. (1996) Genome Res 6, 995-1001) で組織での発現および株化細胞での発現状態を調べた。材料として、ヒト組織 c DNA は、Marathon c DNA (クロンテック社)を使用した。各種株化細胞は、常法に従い総 RNA を抽出して c DNA を合成した。beta3GnT-7の検量線は、 pDONR™201 vector DNA に beta3GnT-7遺伝子を組み込んだプラスミドを使用した。内因性の対照として恒常的に発現しているグリセルアルデヒト3リン酸脱水素酵素(human glyceraldehyde-3-phosphate dehydrogenase (GAPDH))を用いた。GAPDHの検量線は、pCR2.1 (インビトロゲン社)に GAPD

10

H遺伝子を組み込んだプラスミドを使用した。beta3GnT-7 用のプライマーセットおよびプローブは、RT-beta3GnT-7-F2;5'-TTCCTCAAGTGGCTGGACATC-3', RT-beta3GnT-7-R2;5'-GCCGGTCAGCCAGAAATTC-3', プローブ;5'-Fam ACTGCCCCCACGTCCCCTTCA -MGB-3'を用いた。GAPDHのプライマーセットとプローブは、キット(Pre-Developed TaqMan® Assay Reagents Endogenous Human GAPDH (Applied Biosystems 社))を使用した。PCR条件は、TaqMan Universal PCR Master Mix (Applied Biosystems 社)を使用し、1 サイクル、50°C、2 分間、続いて1 サイクル、95°C、10 分間、そして50 サイクル;95°C、15 秒-60°C、1 分間を行なった。PCR 産物の定量は ABI PRIAM7700 Sequence Detection System (Applied Biosystems 社)を用いて測定した。G11 の発現量は、恒常的に発現している GAPDH の転写産物量で割ることによって標準化した。表2にヒト組織、表3に株化細胞の結果をまとめる。

表 2

12 2	
組織名	beta3GnT-7/GAPDH
脳	0. 01045
大脳皮質	0. 04522
小脳	0. 02345
胎児脳	0. 02030
骨髄	0. 01462
甲状腺	0. 04084
胸腺	0. 01274
脾臓	0. 10108
白血球	0. 07876
心臓	0. 00956
骨格筋	0. 00071
肺	0. 12146
肝臓	0. 02299
食道	0. 00605
胃	0. 26922
小腸	0. 09333
大腸	0. 07630
膵臓	0. 27317
腎臓	0. 01161
副腎	0. 15069
乳腺	0. 02560
子宮	0. 07747
胎盤	0. 18763
卵巣	0. 11465
精巣	0. 05323

beta3GnT-7の高発現組織は、膵臓、胃、胎盤、副腎であり、中発現組織は、 大腸、白血球、肺、卵巣、小腸、脾臓、精巣、子宮、大脳皮質であった。それ以 外の組織では発現量が比較的低いものであった。

表3

10

	beta3GnT-7/
細胞名(由来)	GAPDH
GOTO (神経芽腫)	0. 00012
SCCH-26 (神経芽腫)	0. 00137
T98G (神経膠芽腫)	0. 00032
U251 (神経膠芽腫)	0. 00023
Leukemia(前骨髄芽球性白血病)	0. 35660
Melanoma(皮膚)	0. 01255
HL-60 (前骨髓芽球性白血病)	0. 17663
K562 (白血病)	0. 00038
U937(単球)	0. 01617
Daudi (B 細胞(Burkitt's))	0. 00437
PC-1 (肺)	0.00000
EBC-1 (肺)	0. 00121
PC-7 (肺)	0. 00017
HepG2 (肝臓)	0. 01199
A431 (食道)	0. 01031
MKN45 (胃)	0. 00027
KATOIII(胃)	0. 03964
HSC43(胃)	0. 00031
Colo205 (大腸)	0. 00278
HCT15 (大腸)	0. 00193
LSC(大腸)	0. 00003
LSB(大腸)	0. 00128
SW480 (大腸)	0. 00045
SW1116 (大腸)	0. 13076
Capan-2 (膵臓)	0. 03664
PA-1 (子宮)	0. 00290

株化細胞での beta3GnT-7 の発現は、正常組織に比べると低下していた。前骨髄芽球性白血病由来の細胞である HL60 細胞および大腸由来の SW1116 細胞においては、発現レベルが高かった。

これらのことから、癌化などにより細胞の分化の程度が変化した場合、beta3G nT-7 の発現量が変化することが容易に考えられ、beta3GnT-7 の発現量の変化を調べることにより、病気の診断に利用できる可能性が考えられた。また、beta3G nT-7 には、記載したように開始点が2つ存在する可能性があり、スプライシングバリアントの変化を調べることによって細胞の分化状態、病的な変化を調べられる可能性もある。

9. 大腸癌患者の正常組織及び癌組織における beta3GnT-7 遺伝子の発現

実際の大腸癌 (DK) 患者の正常 (N) または癌 (T) 組織における beta3Gn T-7 の発現量を「8. beta3GnT-7 の組織特異的発現の解析」に記載された方法に従い測定した。その結果を図4に示す。この結果からDK3検体を除いて、DK 10、DK15、DK19、DK22、DK23およびDK24検体について、癌組織では beta3GnT-7 の発現が減少する傾向が見られた。

10

請求の範囲

- 1. 配列表の配列番号 1 に示されるアミノ酸配列又は該アミノ配列において 1 若しくは複数のアミノ酸が置換し若しくは欠失し、若しくは該アミノ配列に 1 若しくは複数のアミノ酸が挿入され若しくは付加されたアミノ配列を有し、 $Gal \beta$ 1-4 Glc または $Gal \beta$ 1-4 Glc または $Gal \beta$ 1-4 Glc るの非還元末端にN -アセチルグルコサミンを β -1, 3 結合で転移する活性を有するタンパク質。
- 2. 配列表の配列番号3に示されるアミノ酸配列又は該アミノ配列において1 若しくは複数のアミノ酸が置換し若しくは欠失し、若しくは該アミノ配列に1若 しくは複数のアミノ酸が挿入され若しくは付加されたアミノ配列を有する請求項 1記載のタンパク質。
- 3. 前記タンパク質は、配列番号1又は3に示されるアミノ酸配列と70%以上の相同性を有する請求項1又は2記載のタンパク質。
- 4. 前記タンパク質は、配列番号1又は3に示されるアミノ酸配列と90%以上の相同性を有する請求項3記載のタンパク質。
- 6. 前記タンパク質は、配列番号3に示されるアミノ酸配列を有する請求項5 20 記載のタンパク質。
 - 7. 請求項 1 ないし 6 のいずれか 1 項に記載のアミノ酸配列を有する領域を含み、 $Gal\beta$ 1-4 Glc または $Gal\beta$ 1-4 GlcNAc-基の非還元末端にN-アセチルグルコサミンを β -1, 3 結合で転移する活性を有するタンパク質。
 - 8. 請求項1ないし7のいずれか1項に記載のタンパク質をコードする核酸。
- 25 9. 配列表の配列番号2又は4に示される塩基配列とストリンジェントな条件 下でハイブリダイズする、請求項8記載の核酸。
 - 10. 配列表の配列番号2又は4に示される塩基配列を有する請求項9記載の 核酸。

- 11. 請求項8ないし10のいずれか1項に記載の核酸を含み、宿主細胞中で該核酸を発現することができる組換えベクター。
- 12. 請求項8ないし10のいずれか1項に記載の核酸が導入され、該核酸を発現する細胞。
- 5 13. 請求項8ないし10のいずれか1項に記載の核酸と特異的にハイブリダイズする、該核酸の測定用核酸。
 - 14. 請求項10記載の領域中の部分領域と相補的な配列を有する請求項13 記載の測定用核酸。
 - 15. プローブ又はプライマーである請求項13又は14記載の測定用核酸。
- 10 16. 塩基数が15塩基以上である請求項15記載の測定用核酸。
 - 17. 癌及び/又は腫瘍の診断に用いられる請求項13ないし16のいずれか1項に記載の核酸測定用核酸。
 - 18. 消化器の癌及び/又は腫瘍の診断に用いられる請求項17記載の核酸測定用核酸。
- 15 19. 大腸癌の診断に用いられる請求項18記載の核酸測定用核酸。
 - 20. 生体から分離された試料細胞中における、請求項6記載のタンパク質又はその遺伝子の発現量を調べることを含む、癌及び/又は腫瘍の診断方法。
 - 21. 前記試料細胞が消化器由来の細胞であり、消化器の癌及び/又は腫瘍を 診断する請求項20記載の方法。
- 20 22. 前記試料細胞が、大腸由来の細胞であり、大腸癌を診断する請求項21 記載の方法。
 - 23. 請求項13ないし16のいずれか1項に記載の核酸測定用核酸と、請求項6ないし8のいずれか1項に記載の核酸とを接触させることによりハイブリダイズさせ、ハイブリダイズした核酸を測定することを含む、請求項8ないし10のいずれか1項に記載の核酸の測定方法。
 - 24. 請求項13ないし16のいずれか1項に記載の核酸測定用核酸の一対を プライマーとし、請求項8ないし10のいずれか1項に記載の核酸を鋳型として 核酸増幅法を行い、増幅産物を測定することを含む、請求項8ないし10のいず

10

15

れか1項に記載の核酸の測定方法。

- 25. 請求項6記載のタンパク質の遺伝子の発現量を、請求項13ないし16 のいずれか1項に記載の核酸測定用核酸と、該遺伝子から転写されたmRNA又は該mRNAを鋳型として生成されるcDNAとを接触させることによりハイブリダイズさせ、ハイブリダイズした核酸を測定することを含む、請求項20ないし22のいずれか1項に記載の癌及び/又は腫瘍を診断する方法。
- 26. 請求項6記載のタンパク質の遺伝子の発現量を、請求項13ないし16のいずれか1項に記載の核酸測定用核酸の一対をプライマーとし、該遺伝子から転写されたmRNA又は該mRNAを鋳型として生成されるcDNAを鋳型として核酸増幅法を行い、増幅産物を測定することを含む、請求項20ないし22のいずれか1項に記載の癌及び/又は腫瘍を診断する方法。
- 27. 請求項13ないし16のいずれか1項に記載の核酸測定用核酸の、請求項8ないし10のいずれか1項に記載の核酸の測定用核酸製造のための使用。
- 28. 請求項17ないし19のいずれか1項に記載の核酸測定用核酸の、癌及び/又は腫瘍の診断試薬製造のための使用。
- 29. 前記癌及び/又は腫瘍は、消化器の癌及び/又は腫瘍である請求項28 記載の使用。
- 30. 前記消化器の癌及び/又は腫瘍は、大腸癌である請求項29記載の使用。

図 1

SEQUENCE LISTING

- <110> NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY JAPAN GENOME SOLUTIONS INC.
- <120> Novel N-acetylglucosamine transferase, nucleic acid encoding the same and use thereof for diagnosis of cancers and/or tumors
- <130> 02PF251-PCT
- <160> 26
- <210> 1
- <211> 283
- <212> PRT
- <213> Homo sapiens
- <400> 1
- Tyr Phe Pro Met Leu Leu Asn His Pro Glu Lys Cys Arg Gly Asp Val
- 1 5 10 15

 Tyr Leu Leu Val Val Val Lys Ser Val IIe Thr Gln His Asp Arg Arg
 - 20 25 30
- Glu Ala Ile Arg Gln Thr Trp Gly Arg Glu Arg Gln Ser Ala Gly Gly
 - 35 40 45
- Gly Arg Gly Ala Val Arg Thr Leu Phe Leu Leu Gly Thr Ala Ser Lys 50 55 60
- Gln Glu Glu Arg Thr His Tyr Gln Gln Leu Leu Ala Tyr Glu Asp Arg
- 65 70 75 80
- Leu Tyr Gly Asp Ile Leu Gin Trp Gly Phe Leu Asp Thr Phe Phe Asn
 85 90 95
- Leu Thr Leu Lys Glu lle His Phe Leu Lys Trp Leu Asp lle Tyr Cys

			100					105					110		
Pro	His	Val	Pro	Phe	lle	Phe	Lys	Gly	Asp	Asp	Asp	Val	Phe	Val	Asn
		115					120					125			
Pro	Thr	Asn	Leu	Leu	Glu	Phe	Leu	Ala	Asp	Arg	Gln	Pro	Gln	Glu	Asn
	130					135	i				140	l			
Leu	Phe	Val	Gly	Asp	Vai	Leu	Gln	His	Ala	Arg	Pro	lle	Arg	Arg	Lys
145					150					155					160
Asp	Asn	Lys	Tyr	Tyr	lle	Pro	Gly	Ala	Leu	Tyr	Gly	Lys	Ala	Ser	Tyr
				165					170	•				175	
Pro	Pro	Tyr	Ala	Gly	Gly	Gly	Gly	Phe	Leu	Met	Ala	Gly	Ser	Leu	Ala
			180					185					190		
Arg	Arg	Leu	His	His	Ala	Cys	Asp	Thr	Leu	Glu	Leu	Tyr	Pro	He	Asp
		195					200					205			
Asp	Val	Phe	Leu	Gly	Met	Cys	Leu	Glu	Val	Leu	Gly	Val	Gln	Pro	Thr
	210					215					220				
Ala	His	Glu	Gly	Phe	Lys	Thr	Phe	Gly	He	Ser	Arg	Asn	Arg	Asn	Ser
225					230					235					240
Arg	Met	Asn	Lys	Glu	Pro	Cys	Phe	Phe	Arg	Ala	Met	Leu	Val	Val	His
				245					250					255	
Lys	Leu	Leu	Pro	Pro	Glu	Leu	Leu	Ala	Met	Trp	Gly	Leu	Val	His	Ser
			260					265					270		
Asn	Leu	Thr	Cys	Ser	Arg	Lys	Leu	Gln	Val	Leu					
		275					280								

<210> 2

<211> 849

<212> DNA

3> F	lomo	sapi	ens												
)> 2	2														
ttc	ccc	atg	ctg	ctg	aac	cac	ccg	gag	aag	tgc	agg	ggc	gat	gtc	48
Phe	Pro	Met	Leu	Leu	Asn	His	Pro	Glu	Lys	Cys	Arg	Gly	Asp	Val	
			5					10					15		
ctg	ctg	gtg	gtt	gtc	aag	tcg	gtc	atc	acg	cag	cac	gac	cgc	cgc	96
Leu	Leu	Val	Val	Val	Lys	Ser	Val	lle	Thr	Gln	His	Asp	Arg	Arg	
		20					25					30			
gcc	atc	cgc	cag	acc	tgg	ggc	cgc	gag	cgg	cag	tcc	gcg	ggt	ggg	144
Ala	lle	Arg	Gln	Thr	Trp	Gly	Arg	Glu	Arg	Gln	Ser	Ala	Gly	Gly	
	35					40					45				
cga	ggc	gcc	gtg	cgc	acc	ctc	ttc	ctg	ctg	ggc	acg	gcc	tcc	aag	192
Arg	Gly	Ala	Val	Arg	Thr	Leu	Phe	Leu	Leu	Gly	Thr	Ala	Ser	Lys	
50					55					60					
g gag	g gag	g cgc	acg	cac	tac	cag	cag	ctg	ctg	gco	tac	gaa	gac	cgc	240
ı Glı	ı Glı	ı Arg	g Thr	His	Tyr	Gln	Gln	Leu	Leu	Ala	1 Tyr	Glu	ı Asp	Arg	
				70					75					80	
c tac	c ggo	c gad	ato	cte	g cag	g tgg	ggc	ttt	cto	gao	acc	tto	tto	aac	288
			85 .					90					95		
g ac	c ct	c aa	g ga	g ato	c ca	c tto	cto	aag	g tgg	g ct	g ga	c ate	c ta	c tgc	336
с са	c gt	c cc	c tt	c at	t tt	c aa	a ggo	ga	c ga	t ga	c gt	c tt	c gt	c aac	384
c ac	c aa	c ct	g ct	a ga	a tt	t ct	g gc	t ga	c cg	g ca	g cc	a ca	g ga	a aac	432
	ttc Phe ctg ctac Ala cga f SO gag f Glu ctac u Tyr gac u Th	ttc ccc Phe Pro ctg ctg Leu Leu gcc atc Ala lie 35 cga ggc Arg Gly 50 g gag gag n Glu Glu c tac ggc u Tyr Gly g acc ct u Thr Le c cac gt o His Va	ttc ccc atg Phe Pro Met ctg ctg gtg Leu Leu Val	ttc ccc atg ctg Phe Pro Met Leu 5 ctg ctg gtg gtt Leu Leu Val Val 20 gcc atc cgc cag Ala lle Arg Gin 35 cga ggc gcc gtg Arg Gly Ala Val 50 g gag gag cgc acg a Glu Glu Arg Thr c tac ggc gac atc u Tyr Gly Asp lle 85 g acc ctc aag gag u Thr Leu Lys Glu 100 c cac gtc ccc tt o His Val Pro Ph 115	ttc ccc atg ctg ctg Phe Pro Met Leu Leu 5 ctg ctg gtg gtt gtc Leu Leu Val Val Val 20 gcc atc cgc cag acc Ala lie Arg Gin Thr 35 cga ggc gcc gtg cgc Arg Gly Ala Val Arg 50 g agg gag cgc acg cac a Glu Glu Arg Thr His 70 c tac ggc gac atc ctg u Tyr Gly Asp lle Leu 85 g acc ctc aag gag atc u Thr Leu Lys Glu lle 100 c cac gtc ccc ttc atc o His Val Pro Phe II 115	ttc ccc atg ctg ctg aac Phe Pro Met Leu Leu Asn 5 ctg ctg gtg gtt gtc aag Leu Leu Val Val Val Lys 20 gcc atc cgc cag acc tgg Ala lle Arg Gln Thr Trp 35 cga ggc gcc gtg cgc acc Arg Gly Ala Val Arg Thr 50 55 g aag gag cgc acg cac tac Glu Glu Arg Thr His Tyr 70 c tac ggc gac atc ctg cag u Tyr Gly Asp lle Leu Glr 85 g acc ctc aag gag atc cac u Thr Leu Lys Glu lle His 100 c cac gtc ccc ttc att tt o His Val Pro Phe Ile Ph 115	ttc ccc atg ctg ctg aac cac Phe Pro Met Leu Leu Asn His 5 ctg ctg gtg gtt gtc aag tcg Leu Leu Val Val Val Lys Ser 20 gcc atc cgc cag acc tgg ggc Ala lie Arg Gin Thr Trp Gly 35 cga ggc gcc gtg cgc acc ctc Arg Gly Ala Val Arg Thr Leu 50 gag gag cgc acg cac tac cag Glu Glu Arg Thr His Tyr Gin 70 c tac ggc gac atc ctg cag tgg u Tyr Gly Asp lie Leu Gin Trp 85 g acc ctc aag gag atc cac ttc u Thr Leu Lys Glu lie His Phe 100 c cac gtc ccc ttc att ttc aac o His Val Pro Phe lie Phe Ly 115	ttc ccc atg ctg ctg aac cac ccg Phe Pro Met Leu Leu Asn His Pro 5 ctg ctg gtg gtt gtc aag tcg gtc Leu Leu Val Val Val Lys Ser Val 20 gcc atc cgc cag acc tgg ggc cgc Ala lie Arg Gin Thr Trp Gly Arg 35 40 cga ggc gcc gtg cgc acc ctc ttc Arg Gly Ala Val Arg Thr Leu Phe 50 53 gag gag cgc acg cac tac cag cag Glu Glu Arg Thr His Tyr Gin Gin 70 c tac ggc gac atc ctg cag tgg ggc u Tyr Gly Asp lie Leu Gin Trp Gly 85 g acc ctc aag gag atc cac ttc ctc u Thr Leu Lys Glu lie His Phe Leu 100 105 c cac gtc ccc ttc att ttc aaa ggc o His Val Pro Phe lie Phe Lys Gly 115 120	ttc ccc atg ctg ctg aac cac ccg gag Phe Pro Met Leu Leu Asn His Pro Glu 5 10 ctg ctg gtg gtt gtc aag tcg gtc atc Leu Leu Val Val Val Lys Ser Val Ile 20 25 gcc atc cgc cag acc tgg ggc cgc gag Ala Ile Arg Gln Thr Trp Gly Arg Glu 35 40 ccga ggc gcc gtg cgc acc ctc ttc ctg Arg Gly Ala Val Arg Thr Leu Phe Leu 50 55 g gag gag cgc acg cac tac cag cag ctg Glu Glu Arg Thr His Tyr Gln Gln Leu 70 c tac ggc gac atc ctg cag tgg ggc ttt u Tyr Gly Asp Ile Leu Gln Trp Gly Phe 85 90 g acc ctc aag gag atc cac ttc ctc aag u Thr Leu Lys Glu Ile His Phe Leu Lys 100 105 c cac gtc ccc ttc att ttc aaa ggc ga o His Val Pro Phe Ile Phe Lys Gly As 115 120	tte ccc atg ctg ctg aac cac ccg gag aag Phe Pro Met Leu Leu Asn His Pro Glu Lys 5 10 ctg ctg gtg gtt gtc aag tcg gtc atc acg Leu Leu Val Val Val Lys Ser Val Ile Thr 20 25 gcc atc cgc cag acc tgg ggc cgc gag cgg Ala lie Arg Gln Thr Trp Gly Arg Glu Arg 35 40 cca ggc gcc gtg cgc acc ctc ttc ctg ctg Arg Gly Ala Val Arg Thr Leu Phe Leu Leu 50 55 g gag gag cgc acg cac tac cag cag ctg ctg Glu Glu Arg Thr His Tyr Gln Gln Leu Leu 70 75 c tac ggc gac atc ctg cag tgg ggc ttt ctc u Tyr Gly Asp Ile Leu Gln Trp Gly Phe Leu 85 90 g acc ctc aag gag atc cac ttc ctc aag tgg u Thr Leu Lys Glu Ile His Phe Leu Lys Tr 100 105 c cac gtc ccc ttc att ttc aaa ggc gac ga o His Val Pro Phe Ile Phe Lys Gly Asp As 115 120	tte ccc atg ctg ctg aac cac ccg gag aag tgc Phe Pro Met Leu Leu Asn His Pro Glu Lys Cys 5 10 ctg ctg gtg gtt gtc aag tcg gtc atc acg cag Leu Leu Val Val Val Lys Ser Val Ile Thr Gln 20 25 gcc atc cgc cag acc tgg ggc cgc gag cgg cag Ala Ile Arg Gln Thr Trp Gly Arg Glu Arg Gln 35 40 cga ggc gcc gtg cgc acc ctc ttc ctg ctg ggc Arg Gly Ala Val Arg Thr Leu Phe Leu Leu Gly 50 55 60 g gag gag cgc acg cac tac cag cag ctg ctg gcc a Glu Glu Arg Thr His Tyr Gln Gln Leu Leu Ala 70 75 c tac ggc gac atc ctg cag tgg ggc ttt ctc gac a Tyr Gly Asp Ile Leu Gln Trp Gly Phe Leu Asp 85 90 g acc ctc aag gag atc cac ttc ctc aag tgg ct u Thr Leu Lys Glu Ile His Phe Leu Lys Trp Leu 100 105 c cac gtc ccc ttc att ttc aaa ggc gac gat ga o His Val Pro Phe Ile Phe Lys Gly Asp Asp Asp 115 120	the coc atg otg otg aac cac cog gag aag tgc agg Phe Pro Met Leu Leu Asn His Pro Glu Lys Cys Arg 5 10 ctg ctg gtg gtt gtc aag tog gtc atc acg cag cac Leu Leu Val Val Val Lys Ser Val IIe Thr Gln His 20 25 gcc atc cgc cag acc tgg ggc cgc gag cgg cag tcc Ala IIe Arg Gln Thr Trp Gly Arg Glu Arg Gln Ser 35 40 45 c cga ggc gcc gtg cgc acc ctc ttc ctg ctg ggc acg Arg Gly Ala Val Arg Thr Leu Phe Leu Leu Gly Thr 50 55 60 g gag gag cgc acg cac tac cag cag ctg ctg gcc tac Glu Glu Arg Thr His Tyr Gln Gln Leu Leu Ala Tyr 70 75 c tac ggc gac atc ctg cag tgg ggc ttt ctc gac acc u Tyr Gly Asp IIe Leu Gln Trp Gly Phe Leu Asp Thr 85 90 g acc ctc aag gag atc cac ttc ctc aag tgg ctg gac u Thr Leu Lys Glu IIe His Phe Leu Lys Trp Leu Asi 100 105 c cac gtc ccc ttc att ttc aaa ggc gac gat gac gt o His Val Pro Phe IIe Phe Lys Gly Asp Asp Asp Va	the coc atg otg otg aac cac cog gag aag tgc agg ggc Phe Pro Met Leu Leu Asn His Pro Glu Lys Cys Arg Gly 5 10 ctg ctg gtg gtt gtc aag tog gtc atc acg cac gac Leu Leu Val Val Val Lys Ser Val IIe Thr Gln His Asp 20 25 30 ggcc atc cgc cag acc tgg ggc cgc gag cgg cag toc gcg Ala IIe Arg Gln Thr Trp Gly Arg Glu Arg Gln Ser Ala 35 40 45 coga ggc gcc gtg cgc acc ctc ttc ctg ctg ggc acg gcc Arg Gly Ala Val Arg Thr Leu Phe Leu Leu Gly Thr Ala 50 55 60 g gag gag cgc acc cac tac cag cag ctg ctg gcc tac gas an Glu Glu Arg Thr His Tyr Gln Gln Leu Leu Ala Tyr Glu 70 75 cotac ggc gac atc ctg cag tgg ggc ttt otc gac acc ttc 1 Tyr Gly Asp IIe Leu Gln Trp Gly Phe Leu Asp Thr Phe 85 90 g acc ctc aag gag atc cac ttc ctc aag tgg ctg gac atc 1 Thr Leu Lys Glu IIe His Phe Leu Lys Trp Leu Asp III 100 105 111 115 120 125	the coc atg etg etg aac cac ceg gag aag tge agg gat Phe Pro Met Leu Leu Asn His Pro Glu Lys Cys Arg Gly Asp 5 10 15 ctg ctg gtg gtt gte aag teg gte ate acg cag cac gac ege Leu Leu Val Val Val Lys Ser Val Ile Thr Gln His Asp Arg 20 25 30 gee ate ege cag ace tgg gge ege egg egg egg egg egg egg ggg Ala lie Arg Gln Thr Trp Gly Arg Glu Arg Gln Ser Ala Gly 35 40 45 cea gge gee egg ege ace ete ete ete etg egg acg egg eag ege acg ece ete Arg Gly Ala Val Arg Thr Leu Phe Leu Leu Gly Thr Ala Ser 50 55 60 g gag gag ege ace cae tae eag eag etg etg gee tae gaa gae a Glu Glu Arg Thr His Tyr Gln Gln Leu Leu Ala Tyr Glu Asp 70 75 c tae gge gae ate etg eag tgg gge ttt ete gae ace ete ete a Tyr Gly Asp Ile Leu Gln Trp Gly Phe Leu Asp Thr Phe Phe 85 90 95 g ace ete aag gag ate cae tee ete ete ete eag gae ete ete a Tyr Gly Asp Ile Leu Gln Trp Gly Phe Leu Asp Ile Ty 100 105 110 c eac gte eec tte att tte aaa gge gae gat gae gte ete ete o His Val Pro Phe Ile Phe Lys Gly Asp Asp Asp Val Phe Va 115 120 125	ttc ccc atg ctg ctg aac cac ccg gag aag tgc agg ggc gat gtc Phe Pro Met Leu Leu Asn His Pro Glu Lys Cys Arg Gly Asp Val 5 10 15 ctg ctg gtg gtt gtc aag tcg gtc atc acg cag cac gac cgc cgc Leu Leu Val Val Val Lys Ser Val lle Thr Gln His Asp Arg Arg 20 25 30 gcc atc cgc cag acc tgg ggc cgc gag cgg cag tcc gcg ggt ggg Ala lle Arg Gln Thr Trp Gly Arg Glu Arg Gln Ser Ala Gly Gly 35 40 45 c cga ggc gcc gtg cgc acc ctc ttc ctg ctg ggc acg gcc tcc aag Arg Gly Ala Val Arg Thr Leu Phe Leu Leu Gly Thr Ala Ser Lys 50 55 60 g gag gag cgc acg cac tac cag cag ctg ctg gcc tac gaa gac cgc a Glu Glu Arg Thr His Tyr Gln Gln Leu Leu Ala Tyr Glu Asp Arg 70 75 80 c tac ggc gac atc ctg cag tgg ggc ttt ctc gac acc ttc ttc aac u Tyr Gly Asp lle Leu Gln Trp Gly Phe Leu Asp Thr Phe Phe Asn 85 90 95 g acc ctc aag gag atc cac ttc ctc aag tgg ctg gac atc tac tgc u Thr Leu Lys Glu lle His Phe Leu Lys Trp Leu Asp lle Tyr Cys 100 105 110 c cac gtc ccc ttc att ttc aaa ggc gac gat gac gtc ttc gtc aac o His Val Pro Phe lle Phe Lys Gly Asp Asp Asp Val Phe Val Asn

Pro	Thr	Asn	Leu	Leu	Glu	Phe	Leu	Ala	Asp	Arg	GIn	Pro	Gln	Glu	Asn	
	130					135					140					
ctg	ttc	gtg	ggc	gat	gtc	ctg	cag	cac	gct	cgg	ccc	att	cgc	agg	aaa	480
Leu	Phe	Val	Gly	Asp	Val	Leu	Gln	His	Ala	Arg	Pro	He	Arg	Arg	Lys	
145					150					155					160	
gac	aac	aaa	tac	tac	atc	ccg	ggg	gcc	ctg	tac	ggc	aag	gcc	agc	tat	528
Asp	Asn	Lys	Tyr	Tyr	He	Pro	Gly	Ala	Leu	Tyr	Gly	Lys	Ala	Ser	Tyr	
				165					170					175		
ccg	ccg	tat	gca	ggc	ggc	ggt	ggc	ttc	ctc	atg	gcc	ggc	agc	ctg	gcc	576
Pro	Pro	Tyr	Ala	Gly	Gly	Gly	Gly	Phe	Leu	Met	Ala	Gly	Ser	Leu	Ala	
			180					185					190			
cgg	cgc	ctg	cac	cat	gcc	tgc	gac	acc	ctg	gag	ctc	tac	ccg	atc	gac	624
Arg	Arg	Leu	His	His	Ala	Cys	Asp	Thr	Leu	Glu	Leu	Tyr	Pro	lle	Asp	
		195					200					205				
gac	gtc	ttt	ctg	ggc	atg	tgc	ctg	gag	gtg	ctg	ggc	gtg	cag	ccc	acg.	672
Asp	Val	Phe	Leu	Gly	Met	Cys	Leu	Glu	Val	Leu	Gly	Val	Gin	Pro	Thr	
	210					215					220)				
gcc	cac	gag	ggc	ttc	aag	act	ttc	ggc	atc	tcc	cgg	aac	cgo	aac	agc	720
Ala	His	Glu	Gly	Phe	Lys	Thr	Phe	Gly	lle	Ser	Arg	, Asr	Arg	Asr	Ser	
225					230					235	5				240	
cgc	atg	aac	aag	gag	ccg	tgc	ttt	ttc	cgc	gco	ate	cto	gtg	gtg	cac	768
Arg	Met	Asn	Lys	Glu	Pro	Cys	Phe	Phe	Arg	Ala	Met	: Leu	ı Val	Val	His	
				245	;				250)				255	5	
aag	ctg	cte	ccc	cct	gag	ctg	cto	gcc	atg	tgg	g ggg	g ctg	ggtg	g cad	agc	816
Lys	Leu	. Leu	ı Pro	Pro	Glu	Leu	Leu	ı Ala	Met	Trp	Gly	/ Leu	ı Val	His	s Ser	
			260)				265	j				270)		
aat	cto	acc	tgo	tcc	cgc	aag	cto	cag	gte	cto	•					849

Asn Leu Thr Cys Ser Arg Lys Leu Gin Vai Leu 275 280

(210>	3														
<211>	3:	27													
<212>	P	RT													
<213>	> H	omo	sapi	ens											
<400>	> 3														
Ala S	Ser	Gin	Gly	Pro	Gln	Ala	Trp	Asp	Val	Thr	Thr	Thr	Asn	Cys	Ser
1				5					10					15	
Ala A	Asn	He	Asn	Leu	Thr	His	Gln	Pro	Trp	Phe	Gln	Val	Leu	Glu	Pro
			20					25					30		
Gln	Phe	Arg	GIn	Phe	Leu	Phe	Tyr	Arg	His	Cys	Arg	Tyr	Phe	Pro	Met
		35					40					45			
Leu	Leu	Asn	His	Pro	Glu	Lys	Cys	Arg	Gly	Asp	Val	Tyr	Leu	Leu	Val
	50					55					60				
Val	Val	Lys	Ser	Val	He	Thr	Gln	His	Asp	Arg	Arg	Glu	Ala	He	Arg
65					70					75					80
Gin	Thr	Trp	Gly	Arg	Glu	Arg	Gln	Ser	Ala	Gly	Gly	Gly	Arg	Gly	Ala
				85					90					95	
Val	Arg	Thr	Leu	Phe	Leu	Leu	Gly	Thr	Ala	Ser	Lys	Gln	Glu	Glu	Arg
			100					105					110		
Thr	His	Tyr	Gin	Gin	Leu	Leu	Ala	Tyr	Glu	Asp	Arg	Leu	Tyr	Gly	Asp
		115					120					125			
He	Leu	Gln	Trp	Gly	Phe	Leu	ı Asp	Thr	Phe	Phe	Asn	Leu	Thr	Leu	Lys
	130					135					140				
e lu			: Phe	Leu	Lvs	Tro	Leu	ı Asr	116	Tyr	Cys	Pro	His	Val	Pro

145					150					155					160
Phe	lle	Phe	Lys	Gly	Asp	Asp	Asp	Val	Phe	Val	Asn	Pro	Thr	Asn	Leu
				165					170					175	
_eu	Glu	Phe	Leu	Ala	Asp	Arg	Gln	Pro	Gln	Glu	Asn	Leu	Phe	Val	Gly
			1,80					185					190		
Asp	Val	Leu	Gin	His	Ala	Arg	Pro	He	Arg	Arg	Lys	Asp	Asn	Lys	Tyr
		195					200					205			
Tyr	He	Pro	Gly	Ala	Leu	Tyr	Gly	Lys	Ala	Ser	Tyr	Pro	Pro	Tyr	Ala
	210					215					220				
Gly	Gly	Gly	Gly	Phe	Leu	Met	Ala	Gly	Ser	Leu	Ala	Arg	Arg	Leu	His
225					230					235					240
His	Ala	Cys	Asp	Thr	Leu	Glu	Leu	Tyr	Pro	He	Asp	Asp	Val	Phe	Leu
				245					250					255	i
Gly	Met	Cys	Leu	Glu	Val	Leu	Gly	Val	Gln	Pro	Thr	Ala	His	Glu	Gly
			260					265					270)	
Phe	Lys	Thr	Phe	Gly	He	Ser	Arg	Asn	Arg	, Asn	Ser	Arg	Met	Asr	Lys
		275	5				280)				285	;		
Glu	Pro	Cys	Phe	Phe	Arg	Ala	Met	: Leu	Val	۷a۱	His	Lys	Leu	ı Leı	ı Pro
	290					295					300				
Pro	Glu	ı Let	ı Lei	ıAla	Met	: Trp	Gly	/ Leu	ı Va	His	s Ser	Asr	ı Leu	ı Thi	r Cys
305					310)				315	5				320
Ser	Ar	g Lys	s Leu	ı Glr	ı Val	Leu	I								
				325	5										

<210> 4

<211> 981

<212> DNA

<213	> H	lomo	sapi	ens												
<400	> 4															
												act				48
Ala	Ser	Gln	Gly	Pro	Gin	Ala	Trp	Asp	Val	Thr	Thr	Thr	Asn	Cys	Ser	
1				5					10					15		
gcc	aat	atc	aac	ttg	acc	cac	cag	ccc	tgg	ttc	cag	gtc	ctg	gag	ccg	96
Ala	Asn	He	Asn	Leu	Thr	His	Gln	Pro	Trp	Phe	Gin	Val	Leu	Glu	Pro	
			20					25		•			30			
cag	ttc	cgg	cag	ttt	ctc	ttc	tac	cgc	cac	tgc	cgc	tac	ttc	CCC	atg	144
Gln	Phe	Arg	Gln	Phe	Leu	Phe	Tyr	Arg	His	Cys	Arg	Tyr	Phe	Pro	Met	
		35					40					45			•	
ctg	ctg	aac	cac	ccg	gag	aag	tgc	agg	ggc	gat	gtc	tac	ctg	ctg	gtg	192
Leu	Leu	Asn	His	Pro	Glu	Lys	Cys	Arg	Gly	Asp	Val	Tyr	Leu	Leu	Val	
	50					55					60		•			
gtt	gto	aag	tcg	gtc	atc	acg	cag	cac	gac	cgc	cgc	gag	gcc	ato	cgc	240
Val	Val	Lys	Ser	Val	He	Thr	Gln	His	Asp	Arg	Arg	Glu	Ala	He	Arg	
65					70					75					80	
cag	acc	; tgg	ggc	cgc	gag	cgg	cag	tcc	gcg	ggt	ggg	ggc	cga	ggo	gcc	288
															/ Ala	
				85					90					95		
gte	g cgo	acc	cto	; ttc	ctg	ctg	ggo	acg	gcc	tcc	aag	cag	gag	gag	g cgc	336
															ı Arg	
			100					105					110			
acı	g ca	c tac	cag	g cag	g ctg	g ctg	goo	: tac	gaa	a gad	cgc	cto	; tac	gg	c gac	384
															y Asp	
		11!					120	•				125				
ati	c ct			o go	e tti	t cto	gao	aco	c tte	c tto	c aac	c ctg	gac	c ct	c aag	432

He	Leu	Gln	Trp	Gly	Phe	Leu	Asp	Thr	Phe	Phe	Asn	Leu	Thr	Leu	Lys	
	130					135					140					
gag	atc	cac	ttc	ctc	aag	tgg	ctg	gac	atc	tac	tgc	ccc	cac	gtc	CCC	480
Glu	He	His	Phe	Leu	Lys	Trp	Leu	Asp	lle	Tyr	Cys	Pro	His	Val	Pro	
145					150					155					160	
ttc	att	ttc	aaa	ggc	gac	gat	gac	gtc	ttc	gtc	aac	ccc	acc	aac	ctg	528
Phe	lle	Phe	Lys	Gly	Asp	Asp	Asp	Val	Phe	Val	Asn	Pro	Thr	Asn	Leu	
				165					170					175		
cta	gaa	ttt	ctg	gct	gac	cgg	cag	cca	cag	gaa	aac	ctg	ttc	gtg	ggc	576
Leu	Glu	Phe	Leu	Ala	Asp	Arg	Gln	Pro	GIn	Glu	Asn	Leu	Phe	Val	Gly	
			180					185					190			
gat	gtc	ctg	cag	cac	gct	cgg	ccc	att	cgc	agg	aaa	gac	aac	aaa	tac	624
Asp	Val	Leu	Gln	His	Ala	Arg	Pro	He	Arg	Arg	Lys	Asp	Asn	Lys	Tyr	
		195					200			•		205				
tac	atc	ccg	ggg	gcc	ctg	tac	ggc	aag	gcc	agc	tat	ccg	ccg	tat	gca	672
Tyr	lle	Pro	Gly	Ala	Leu	Tyr	Gly	Lys	Ala	Ser	Tyr	Pro	Pro	Tyr	Ala	
-	210					215					220)				
ggc	ggc	ggt	ggc	ttc	ctc	atg	gcc	ggc	agc	ctg	gcc	cgg	cgc	ctg	cac	720
Gly	Gly	Gly	Gly	Phe	Leu	Met	Ala	Gly	Ser	Leu	Ala	Arg	Arg	Leu	His	
225					230					235	;				240	
cat	gcc	tgc	gac	acc	ctg	gag	ctc	tac	ccg	ato	gac	gac	gto	ttt	ctg	768
His	Ala	Cys	Asp	Thr	Leu	Glu	Leu	Tyr	Pro	ile	e Asp	Asp	Val	Phe	Leu	
				245	5				250)				255	j	
ggo	atg	tgc	ctg	gag	gte	ctg	ggo	gtg	cag	ccc	ace	gcc	cac	gag	ggc	· 816
Gly	Met	Cys	Leu	Glu	ı Val	Leu	Gly	Val	Glr	Pro	Thr	· Ala	His	: Glu	Gly	
			260)				265	i				270)		
tto	: aag	act	tto	ggo	ato	too	cgg	aac	cgc	aac	ago	cgo	ate	gaac	aag	864

9/.27

Phe	Lys	Thr	Phe	Gly	He	Ser	Arg	Asn	Arg	Asn	Ser	Arg	Met	Asn	Lys	
		275					280					285				
gag	ccg	tgc	ttt	ttc	cgc	gcc	atg	ctc	gtg	gtg	cac	aag	ctg	ctg	ccc	912
Glu	Pro	Cys	Phe	Phe	Arg	Ala	Met	Leu	Val	Val	His	Lys	Leu	Leu	Pro	
	290					295					300					
cct	gag	ctg	ctc	gcc	atg	tgg	ggg	ctg	gtg	cac	agc	aat	ctc	acc	tgc	960
Pro	Glu	Leu	Leu	Ala	Met	Trp	Gly	Leu	Val	His	Ser	Asn	Leu	Thr	Cys	
305					310					315					320	
tcc	cgc	aag	ctc	cag	gtg	ctc										981
Ser	Arg	Lys	Leu	Gln	Vai	Leu										
				325												
<210)> {	5														
<21 ⁻	i> _	1206														
<212	2> 1	ONA														
<213	3> I	Homo	sap	i ens												
<400)> !	5														
atg	tcg	ctg	tgg	aag	aaa	acc	gtc	tac	cgg	agt	ctg	tgc	ctg	gcc	ctg	48
Met	Ser	Leu	Trp	Lys	Lys	Thr	Val	Tyr	Arg	Ser	Leu	Cys	Leu	Ala	Leu	
1				5					10					15		
gcc	ctg	ctc	gtg	gcc	gtg	acg	gtg	ttc	caa	cgc	agt	ctc	acc	cct	ggt	96
Ala	Leu	Leu	Val	Ala	Val	Thr	Val	Phe	Gln	Arg	Ser	Leu	Thr	Pro	Gly	
			20					25					30			
cag	ttt	ctg	cag	gag	cct	ccg	cca	ccc	acc	ctg	gag	cca	cag	aag	gcc	144
Gln	Phe	Leu	Gln	Glu	Pro	Pro	Pro	Pro	Thr	Leu	Glu	Pro	Gln	Lys	Ala	
		35					40					45				
000	220	003	22 ⁺	aas	cag	cta	σtσ	aac	ccc	aar	220	tto	+00	ลลฮ	aac	192

GIn	Lys	Pro	Asn	Gly	Gin	Leu	Val	Asn	Pro	Asn	Asn	Phe	Trp	Lys	Asn	
	50					55					60					
ccg	aaa	gat	gtg	gct	gcg	ccc	acg	ccc	atg	gcc	tct	cag	ggg	CCC	cag	240
Pro	Lys	Asp	Val	Ala	Ala	Pro	Thr	Pro	Met	Ala	Ser	Gln	Gly	Pro	Gln	
65					70					75					80	
gcc	tgg	gac	gtg	acc	acc	act	aac	tgc	tca	gcc	aat	atc	aac	ttg	acc	288
Ala	Trp	Asp	Val	Thr	Thr	Thr	Asn	Cys	Ser	Ala	Asn	He	Asn	Leu	Thr	
				85					90					95		
cac	cag	ccc	tgg	ttc	cag	gtc	ctg	gag	ccg	cag	ttc	cgg	cag	ttt	ctc	336
His	GIn	Pro	Trp	Phe	Gln	Val	Leu	Glu	Pro	Gln	Phe	Arg	GIn	Phe	Leu	
			100					105					110			
ttc	tac	cgc	cac	tgc	cgc	tac	ttc	ccc	atg	ctg	ctg	aac	cac	ccg	gag	384
Phe	Tyr	Arg	His	Cys	Arg	Tyr	Phe	Pro	Met	Leu	Leu	Asn	His	Pro	Glu	
		115					120					125	•			
aag	tgc	agg	ggc	gat	gtc	tac	ctg	ctg	gtg	gtt	gtc	aag	tcg	gtc	atc	432
Lys	Cys	Arg	Gly	Asp	Val	Tyr	Leu	Leu	Val	Val	Val	Lys	Ser	Val	lle	
	130					135					140					
acg	cag	cac	gac	cgc	cgc	gag	gcc	atc	cgc	cag	acc	tgg	ggc	cgc	gag	480
Thr	Gln	His	Asp	Arg	Arg	Glu	Ala	He	Arg	Gln	Thr	Trp	Gly	Arg	Glu	
145					150					155					160	
cgg	cag	tcc	gcg	ggt	ggg	ggc	cga	ggc	gcc	gtg	cgc	acc	ctc	ttc	ctg	528
Arg	Gin	Ser	Ala	Gly	Gly	Gly	Arg	Gly	Ala	Val	Arg	Thr	Leu	Phe	Leu	
				165					170					175		
ctg	ggc	acg	gcc	tcc	aag	cag	gag	gag	cgc	acg	cac	tac	cag	cag	ctg	576
Leu	Gly	Thr	Ala	Ser	Lys	Gln	Glu	Glu	Arg	Thr	His	Tyr	Gln	Gln	Leu	
			180					185					190			
ctg	gcc	tac	gaa	gac	cgc	ctc	tac	ggc	gac	atc	ctg	cag	tgg	ggc	ttt	624

Leu	Ala	Tyr	Glu	Asp	Arg	Leu	Tyr	Gly	Asp	He	Leu	Gln	Trp	Gly	Phe	
		195					200					205				
ctc	gac	acc	ttc	ttc	aac	ctg	acc	ctc	aag	gag	atc	cac	ttc	ctc	aag	672
Leu	Asp	Thr	Phe	Phe	Asn	Leu	Thr	Leu	Lys	Glu	He	His	Phe	Leu	Lys	
	210					215					220					
tgg	ctg	gac	atc	tac	tgc	ccc	cac	gtc	ccc	ttc	att	ttc	aaa	ggc	gac	720
Trp	Leu	Asp	He	Tyr	Cys	Pro	His	Val	Pro	Phe	He	Phe	Lys	Gly	Asp	
225					230					235					240	
gat	gac	gtc	ttc	gtc	aac	ccc	acc	aac	ctg	cta	gaa	ttt	ctg	gct	gac	768
Asp	Asp	Val	Phe	Val	Asn	Pro	Thr	Asn	Leu	Leu	Glu	Phe	Leu	Ala	Asp	
				245					250					255		
cgg	cag	cca	cag	gaa	aac	ctg	ttc	gtg	ggc	gat	gtc	ctg	cag	cac	gct	816
Arg	Gin	Pro	Gln	Glu	Asn	Leu	Phe	Val	Gly	Asp	Val	Leu	Gln	His	Ala	
			260					265					270			
cgg	ccc	att	cgc	agg	aaa	gac	aac	aaa	tac	tac	atc	ccg	ggg	gcc	ctg	864
Arg	Pro	He	Arg	Arg	Lys	Asp	Asn	Lys	Tyr	Tyr	He	Pro	Gly	Ala	Leu	
		275					280					285				
tac	ggc	aag	gcc	agc	tat	ccg	ccg	tat	gca	ggc	ggc	ggt	ggc	ttc	ctc	912
Tyr	Gly	Lys	Ala	Ser	Tyr	Pro	Pro	Tyr	Ala	Gly	Gly	Gly	Gly	Phe	Leu	
	290					295					300					
atg	gcc	ggc	agc	ctg	gcc	cgg	cgc	ctg	cac	cat	gcc	tgc	gac	acc	ctg	960
Met	Ala	Gly	Ser	Leu	Ala	Arg	Arg	Leu	His	His	Ala	Cys	Asp	Thr	Leu	
305					310					315					320	
gag	ctc	tac	ccg	atc	gac	gac	gtc	ttt	ctg	ggc	atg	tgc	ctg	gag	gtg	1008
Glu	Leu	Tyr	Pro	He	Asp	Asp	Val	Phe	Leu	Gly	Met	Cys	Leu	Glu	Val	
				325		•			330					335		
ctg	ggc	gtg	cag	CCC	acg	gcc	cac	gag	ggc	ttc	aag	act	ttc	ggc	atc	1056

Leu Gly Val Gin Pro Thr Ala His Glu Gly Phe Lys Thr Phe Gly Tie	
340 345 350	
tcc cgg aac cgc aac agc cgc atg aac aag gag ccg tgc ttt ttc cgc	1104
Ser Arg Asn Arg Asn Ser Arg Met Asn Lys Glu Pro Cys Phe Phe Arg	
355 360 365	
gcc atg ctc gtg gtg cac aag ctg ctg ccc cct gag ctg ctc gcc atg	1152
Ala Met Leu Val Val His Lys Leu Leu Pro Pro Glu Leu Leu Ala Met	
370 375 380	
tgg ggg ctg gtg cac agc aat ctc acc tgc tcc cgc aag ctc cag gtg	1200
Trp Gly Leu Val His Ser Asn Leu Thr Cys Ser Arg Lys Leu Gln Val	
385 390 395 400	
ctc tga	1206
Leu	
<210> 6	
<211> 2228	
<212> DNA	
<213> Homo sapiens	
<400> 6	
cocagggeet egeogeette coggtgeace eccegacete eccegteeg geoteggtgg	60
goggottoco tggaacccct agggotggca gggccggato cggagccctc cgtttcctcc	120
coggagaget ggacottggg toacaccccc cagcotgcac ctaaggtgcc cotgtottcc	180
tocaaccaca tgccccagca acctggggac cctatgggga aaatgtcgct ctatggggct	240
cagoctgoat toaccotggg gootggacot goaaccggac cagocotcag ggcaacccag	300
gogtotocac gggotgootg tototoctgg caccotgoto otoccoottg gaggtcagog	360
ccatctctct gctaggctgg ccctggaagg ccactctgct gtccccagag ctctcagccc	420
ccaggtctcc actggggagg gtggggcagg tgtcctggca gcccccggag ggtgagatga	480

agagaggagg toottoagga caggggotoa ggo	cccaggg cttgggacga ccagcactcc 540
tggcagagag ctctaatttc tgcttccgaa atg	ggtgtgg accggggttg gggtgggggg 600
gtctctgggc aagaagggtc cctcaagggc tgg	agotgoa aatgtgooco otocoaggga 660
gtagagctgt agcctcatgt cttctaatgg ggt	gttatga gctggggatg ttaaggtagg 720
ggtgaggggc agtgccatgc tagaggtgct cac	tgcatcc ttgggcctcc atcaaccatg 780
agggctgctc tttgttgggt gagacagact gga	gaagggg gaggagggcc agtcttcctc 840
aggtcccaag ctcgagccac tctccaatgt gcc	ccacatg tgatggagct cccgggcggc 900
acagaggatc agagggtgcc ctctcaatga ctc	tggctct gagtcaccta atgataccga 960
tacctactgc tgtgggtagg tacaccgcag gga	aatgaaa ggcattgggg ttccaggcgt 1020
ggggaacagg gcagaggttt ccacctgagg ccc	tootgtt aaggtgacag cattooccta 1080
actgtgcacc cgctgcctgg tactttatat agc	actocaa tootgtgttt tagocccatt 1140
tgggggaaga agaaatcgtg gctcagagtg gtt	gtaaacc actcattcag cttgtaagcg 1200
toagggcotg attocacagt gotcottgag gag	agggcag ggtgggagaa agaaagggca 1260
gggtgggaga ggaagcggga ccctaccctg aca	gettagg gacteeggga etgageetgt 1320
gcccaggtcc acttgcccgt ctgggaccac cca	gectece aaggggggeg ceaggagage 1380
cotgggctca tottttctct ctcctctgta ctg	teegete teecceacag gaagaaaacc 1440
gtctaccgga gtctgtgcct ggccctggcc ctg	ctcgtgg ccgtgacggt gttccaacgc 1500
agtotoacco ctggtcagtt totgcaggag cot	cegecae ceaceetgga gecacagaag 1560
gcccagaagc caaatggaca gctggtgaac ccc	aacaact totggaagaa coogaaagat 1620
gtggctgcgc ccacgccc atg gcc tct cag	ggg ccc cag gcc tgg gac gtg 1671
Met Ala Ser Gin	Gly Pro Gln Ala Trp Asp Val
1	5 10
acc acc act aac tgc tca gcc aat atc	aac ttg acc cac cag ccc tgg 1719
Thr Thr Asn Cys Ser Ala Asn Ile	Asn Leu Thr His Gin Pro Trp
15 20	25
ttc cag gtc ctg gag ccg cag ttc cgg	cag ttt ctc ttc tac cgc cac 1767
Phe Gin Vai Leu Giu Pro Gin Phe Arg	Gln Phe Leu Phe Tyr Arg His

		30					35					40				
tgc	cgc	tac	ttc	ccc	atg	ctg	ctg	aac	cac	ccg	gag	aag	tgc	agg	ggc	1815
Cys	Arg	Tyr	Phe	Pro	Met	Leu	Leu	Asn	His	Pro	Glu	Lys	Cys	Arg	Gly	
	45					50					55					
gat	gtc	tac	ctg	ctg	gtg	gtt	gtc	aag	tcg	gtc	atc	acg	cag	cac	gac	1863
Asp	Val	Tyr	Leu	Leu	Val	Val	Val	Lys	Ser	Val	He	Thr	Gln	His	Asp	
60					65					70					75	
cgc	cgc	gag	gcc	atc	cgc	cag	acc	tgg	ggc	cgc	gag	cgg	cag	tcc	gcg	1911
Arg	Arg	Glu	Ala	He	Arg	Gln	Thr	Trp	Gly	Arg	Glu	Arg	Gln	Ser	Ala	
				80					85					90		
ggt	ggg	ggc	cga	ggc	gcc	gtg	cgc	acc	ctc	ttc	ctg	ctg	ggc	acg	gcc	1959
Gly	Gly	Gly	Arg	Gly	Ala	Val	Arg	Thr	Leu	Phe	Leu	Leu	Gly	Thr	Ala	
			95					100					105			
tcc	aag	cag	gag	gag	cgc	acg	cac	tạc	cag	cag	ctg	ctg	gcc	tac	gaa	2007
Ser	Lys	Gln	Glu	Glu	Arg	Thr	His	Tyr	Gln	Gln	Leu	Leu	Ala	Tyr	Glu	
		110					115					120				
gac	cgc	ctc	tac	ggc	gac	atc	ctg	cag	tgg	ggc	ttt	ctc	gac	acc	ttc	2055
Asp	Arg	Leu	Tyr	Gly	Asp	lle	Leu	Gln	Trp	Gly	Phe	Leu	Asp	Thr	Phe	
	125					130					135					
ttc	aac	ctg	acc	ctc	aag	gag	atc	cac	ttc	ctc	aag	tgg	ctg	gac	atc	2103
Phe	Asn	Leu	Thr	Leu	Lys	Glu	He	His	Phe	Leu	Lys	Trp	Leu	Asp	He	
140					145					150					155	
tac	tgc	ccc	cac	gtc	ccc	ttc	att	ttc	aaa	ggc	gac	gat	gac	gtc	ttc	2151
Tyr	Cys	Pro	His	Val	Pro	Phe	He	Phe	Lys	Gly	Asp	Asp	Asp	Val	Phe	
				160					165					170		
gtc	aac	ccc	acc	aac	ctg	cta	gaa	ttt	ctg	gct	gac	cgg	cag	cca	cag	2199
Val	Asn	Pro	Thr	Asn	Leu	Leu	Glu	Phe	Leu	Ala	Asp	Arg	Gin	Pro	Gln	

	175	180	185	
gaa aac ctg	ttc gtg ggc	gat gtc ctg c	oa e e e e e e e e e e e e e e e e e e e	2228
Glu Asn Leu	Phe Val Gly	Asp Val Leu		
190		195		
<210> 7				
<211> 848				
<212> DNA				
<213> Homo	sapiens			
<400> 7				
cag cag ctg	g ctg gcc tac	gaa gac cgc d	ctc tac ggc gac atc	ctg cag 48
Gin Gin Leu	ı Leu Ala Tyr	Glu Asp Arg L	_eu Tyr Gly Asp lle	Leu Gln
1	5	1	10	15
tgg ggc ttt	ctc gac acc	ttc ttc aac o	ctg acc ctc aag gag	atc cac 96
Trp Gly Phe	e Leu Asp Thr	Phe Phe Asn I	Leu Thr Leu Lys Glu	lle His
	20	25	30	
ttc ctc aag	g tgg ctg gac	atc tac tgc o	ccc cac gtc ccc ttc	att ttc 144
Phe Leu Lys	Trp Leu Asp	lle Tyr Cys F	Pro His Val Pro Phe	lle Phe
35		40	45	
aaa ggc gad	gat gac gtc	ttc gtc aac o	ccc acc aac ctg cta	gaa ttt 192
Lys Gly Asp	Asp Asp Val	Phe Val Asn F	Pro Thr Asn Leu Leu	Glu Phe
50		55	60	
ctg gct gad	c cgg cag cca	cag gaa aac o	ctg ttc gtg ggc gat	gtc ctg 240
Leu Ala Asp	Arg Gln Pro	Gin Giu Asn I	Leu Phe Val Gly Asp	Val Leu
65	70		75	80
cag cac gct	cgg ccc att	cgc agg aaa g	gac aac aaa tac tac	atc ccg 288
Gln Hie Ale	Arg Pro Ile	Ara Ara Ive	Asn Asn Ive Tyr Tyr	lle Pro

				85					90					95		
ggg	gcc	ctg	tac	ggc	aag	gcc	agc	tat	ccg	ccg	tat	gca	ggc	ggc	ggt	336
Gly	Ala	Leu	Tyr	Gly	Lys	Ala	Ser	Tyr	Pro	Pro	Tyr	Ala	Gly	Gly	Gly	
			100					105					110			
ggc	ttc	ctc	atg	gcc	ggc	agc	ctg	gcc	cgg	cgc	ctg	cac	cat	gcc	tgc	384
Gly	Phe	Leu	Met	Ala	Gly	Ser	Leu	Ala	Arg	Arg	Leu	His	His	Ala	Cys	
		115					120					125				
gac	acc	ctg	gag	ctc	tac	ccg	atc	gac	gac	gtc	ttt	ctg	ggc	atg	tgc	432
Asp	Thr	Leu	Glu	Leu	Tyr	Pro	lle	Asp	Asp	Val	Phe	Leu	Gly	Met	Cys	
	130					135					140					
ctg	gag	gtg	ctg	ggc	gtg	cag	ccc	acg	gcc	cac	gag	ggc	ttc	aag	act	480
Leu	Glu	Val	Leu	Gly	Val	Gin	Pro	Thr	Ala	His	Glu	Gly	Phe	Lys	Thr	
145					150					155					160	
ttc	ggc	atc	tcc	cgg	aac	cgc	aac	agc	cgc	atg	aac	aag	gag	ccg	tgc	528
Phe	Gly	lle	Ser	Arg	Asn	Arg	Asn	Ser	Arg	Met	Asn	Lys	Glu	Pro	Cys	
				165					170					175		
ttt	ttc	cgc	gcc	atg	ctc	gtg	gtg	cac	aag	ctg	ctg	ccc	cct	gag	ctg	576
Phe	Phe	Arg	Ala	Met	Leu	Val	Val	His	Lys	Leu	Leu	Pro	Pro	Glu	Leu	
			180					185					190			
ctc	gcc	atg	tgg	ggg	ctg	gtg	cac	agc	aat	ctc	acc	tgc	tcc	cgc	aag	624
Leu	Ala	Met	Trp	Gly	Leu	Val	His	Ser	Asn	Leu	Thr	Cys	Ser	Arg	Lys	
		195					200					205				
ctc	cag	gtg	ctc	tga	ccca	agc (cgggo	ctac	ta g	gaca	ggcc	a gg	gcac	ttgc		676
Leu	Gln	Val	Leu													
	210															
tcc	tgago	occ (cat	ggta	tt g	gggc	tggag	g cca	acag	tgcc	cag	gcct	agc	cttt	ggtccc	736
caa	gggg	agg t	tggag	gggti	tg ag	ggcc	tacgt	t gc	cact	gggt	gtg	gtgg	ggt	gcag	gtagcc	796

agaa	aggg	gac (ctccc	ctgtg	gt gg	gataa	ittot	agg	gaaac	etga	ggcc	cage	gaa o	g		848
<210	> . 8	3														
<211	> 9	987														
<212	!> [ONA														
<213	3> H	lomo	sap	iens												
<400)> {	3											-			
atg	gcc	tct	cag	ggg	ccc	cag	gcc	tgg	gac	gtg	acc	acc	act	aac	tgc	48
Met	Ala	Ser	Gln	Gly	Pro	Gln	Ala	Trp	Asp	Val	Thr	Thr	Thr	Asn	Cys	
1				5					10					15		
tca	gcc	aat	atc	aac	ttg	acc	cac	cag	CCC	tgg	ttc	cag	gtc	ctg	gag	96
Ser	Ala	Asn	He	Asn	Leu	Thr	His	Gln	Pro	Trp	Phe	Gln	Val	Leu	Glu	
			20			,		25					30			
ccg	cag	ttc	cgg	cag	ttt	ctc	ttc	tac	cgc	cac	tgc	cgc	tac	ttc	CCC	144
Pro	GIn	Phe	Arg	Gln	Phe	Leu	Phe	Tyr	Arg	His	Cys	Arg	Tyr	Phe	Pro	
		35					40					45				
atg	ctg	ctg	aac	cac	ccg	gag	aag	tgc	agg	ggc	gat	gtc	tac	ctg	ctg	192
Met	Leu	Leu	Asn	His	Pro	Glu	Lys	Cys	Arg	Gly	Asp	Val	Tyr	Leu	Leu	
	50					55					60					
	_	_			gtc											240
Val	Val	Val	Lys	Ser	Val	He	Thr	GIn	His		Arg	Arg	Glu	Ala		
65					70					75					80	
					cgc											288
Arg	Gln	Thr	Trp		Arg	Glu	Arg	Gin		Ala	Gly	Gly	Gly		Gly	
				85					90					95		
gcc	gtg	cgc	acc	ctc	ttc	ctg	ctg	ggc	acg	gcc	tcc	aag	cag	gag	gag	336

Ala	Val	Arg	Thr	Leu	Phe	Leu	Leu	Gly	Thr	Ala	Ser	Lys	Gin	Glu	Glu	
			100					105					110			
cgc	acg	cac	tac	cag	cag	ctg	ctg	gcc	tac	gaa	gac	cgc	ctc	tac	ggc	384
Arg	Thr	His	Tyr	Gln	Gln	Leu	Leu	Ala	Tyr	Glu	Asp	Arg	Leu	Tyr	Gly	
		115					120					125				
gac	atc	ctg	cag	tgg	ggc	ttt	ctc	gac	acc	ttc	ttc	aac	ctg	acc	ctc	432
Asp	He	Leu	Gln	Trp	Gly	Phe	Leu	Asp	Thr	Phe	Phe	Asn	Leu	Thr	Leu	
	130					135					140					
aag	gag	atc	cac	ttc	ctc	aag	tgg	ctg	gac	atc	tac	tgc	ccc	cac	gtc	480
Lys	Glu	He	His	Phe	Leu	Lys	Trp	Leu	Asp	He	Tyr	Cys	Pro	His	Val	
145					150					155					160	
ccc	ttc	att	ttc	aaa	ggc	gac	gat	gac	gtc	ttc	gtc	aac	ccc	acc	aac	528
Pro	Phe	He	Phe	Lys	Gly	Asp	Asp	Asp	Val	Phe	Val	Asn	Pro	Thr	Asn	
				165					170					175		
ctg	cta	gaa	ttt	ctg	gct	gac	cgg	cag	cca	cag	gaa	aac	ctg	ttc	gtg	576
Leu	Leu	Glu	Phe	Leu	Ala	Asp	Arg	Gln	Pro	GIn	Glu	Asn	Leu	Phe	Val	
			180					185					190			
ggc	gat	gtc	ctg	cag	cac	gct	cgg	ccc	att	cgc	agg	aaa	gac	aac	aaa	624
Gly	Asp	Val	Leu	Gln	His	Ala	Arg	Pro	lle	Arg	Arg	Lys	Asp	Asn	Lys	
		195					200					205				
tac	tac	atc	ccg	ggg	gcc	ctg	tac	ggc	aag	gcc	agc	tat	ccg	ccg	tat	672
Tyr	Tyr	lle	Pro	Gly	Ala	Leu	Tyr	Gly	Lys	Ala	Ser	Tyr	Pro	Pro	Tyr	
	210					215					220					
gca	ggc	ggc	ggt	ggc	ttc	ctc	atg	gcc	ggc	agc	ctg	gcc	cgg	cgc	ctg	720
Ala	Gly	Gly	Gly	Gly	Phe	Leu	Met	Ala	Gly	Ser	Leu	Ala	Arg	Arg	Leu	
225	•				230					235					240	
cac	cat	PCC.	tøc	gac	acc	ctg	gag	ctc	tac	CCE	atc	gac	gac	gtc	ttt	768

20

19/27

His	His	Ala	Cys	Asp	Thr	Leu	Glu	Leu	Tyr	Pro	lle	Asp	Asp	Val	Phe		
				245					250					255			
ctg	ggc	atg	tgc	ctg	gag	gtg	ctg	ggc	gtg	cag	ccc	acg	gcc	cac	gag	816	3
Leu	Gly	Met	Cys	Leu	Glu	Val	Leu	Gly	Val	Gln	Pro	Thr	Ala	His	Glu		
			260					265					270				
ggc	ttc	aag	act	ttc	ggc	atc	tcc	cgg	aac	cgc	aac	agc	cgc	atg	aac	864	1
Gly	Phe	Lys	Thr	Phe	Gly	He	Ser	Arg	Asn	Arg	Asn	Ser	Arg	Met	Asn		
		275					280					285					
aag	gag	ccg	tgc	ttt	ttc	cgc	gcc	atg	ctc	gtg	gtg	cac	aag	ctg	ctg	912	2
Lys	Glu	Pro	Cys	Phe	Phe	Arg	Ala	Met	Leu	Val	Val	His	Lys	Leu	Leu		
	290					295					300						
ccc	cct	gag	ctg	ctc	gcc	atg	tgg	ggg	ctg	gtg	cac	agc	aat	ctc	acc	960)
Pro	Pro	Glu	Leu	Leu	Ala	Met	Trp	Gly	Leu	Val	His	Ser	Asn	Leu	Thr		
305					310					315					320		
tgc	tcc	cgc	aag	ctc	cag	gtg	ctc	tga								987	1
Cys	Ser	Arg	Lys	Leu	Gln	Val	Leu										
				325													
<210)> (•															
<211	> 4	101															
<212	:> F	PRT															
<213	> F	lomo	sapi	ens													
<400	> 9)															
Met	Ser	Leu	Trp	Lys	Lys	Thr	Val	Tyr	Arg	Ser	Leu	Cys	Leu	Ala	Leu		
1				5					10					15			
Ala	Leu	Leu [.]	Val	Ala	Val	Thr	Val	Phe	Gin	Arg	Ser	Leu	Thr	Pro	Gly ·		

25

30

Gln	Phe	Leu	Gln	Glu	Pro	Pro	Pro	Pro	Thr	Leu	Glu	Pro	Gln	Lys	Ala
		35					40					45			
Gln	Lys	Pro	Asn	Gly	Gln	Leu	Val	Asn	Pro	Asn	Asn	Phe	Trp	Lys	Asn
	50					55					60				
Pro	Lys	Asp	Val	Ala	Ala	Pro	Thr	Pro	Met	Ala	Ser	Gln	Gly	Pro	Gln
65					70					75					80
Ala	Trp	Asp	Val	Thr	Thr	Thr	Asn	Cys	Ser	Ala	Asn	lle	Asn	Leu	Thr
				85					90					95	
His	Gln	Pro	Trp	Phe	Gln	Val	Leu	Glu	Pro	Gln	Phe	Arg	Gln	Phe	Leu
			100					105					110		
Phe	Tyr	Arg	His	Cys	Arg	Tyr	Phe	Pro	Met	Leu	Leu	Asn	His	Pro	Glu
		115					120					125			
Lys	Cys	Arg	Gly	Asp	Val	Tyr	Leu	Leu	Val	Val	Val	Lys	Ser	Val	He
	130					135					140			•	
Thr	Gln	His	Asp	Arg	Arg	Glu	Ala	lle	Arg	Gln	Thr	Trp	Gly	Arg	Glu
145					150					155					160
Arg	Gln	Ser	Ala	Gly	Gly	Gly	Arg	Gly	Ala	Val	Arg	Thr	Leu	Phe	Leu
				165					170					175	
Leu	Gly	Thr	Ala	Ser	Lys	Gln	Glu	Glu	Arg	Thr	His	Tyr	Gln	Gln	Leu
			180					185					190		
Leu	Ala	Tyr	Glu	Asp	Arg	Leu	Tyr	Gly	Asp	He	Leu	Gln	Trp	Gly	Phe
		195					200					205			
Leu	Asp	Thr	Phe	Phe	Asn	Leu	Thr	Leu	Lys	Glu	He	His	Phe	Leu	Lys
	210					215					220				
Trp	Leu	Asp	lle	Tyr	Cys	Pro	His	Val	Pro	Phe	He	Phe	Lys	Gly	Asp
225		-			230					235					240
Asp	Asp	Val	Phe	Val	Asn	Pro	Thr	Asn	Leu	Leu	Glu	Phe	Leu	Ala	Asp

Arg Gln Pro Gln Glu Asn Leu Phe Val Gly Asp Val Leu Gln His Ala Arg Pro lle Arg Arg Lys Asp Asn Lys Tyr Tyr lle Pro Gly Ala Leu Tyr Gly Lys Ala Ser Tyr Pro Pro Tyr Ala Gly Gly Gly Phe Leu Met Ala Gly Ser Leu Ala Arg Arg Leu His His Ala Cys Asp Thr Leu Glu Leu Tyr Pro Ile Asp Asp Val Phe Leu Gly Met Cys Leu Glu Val Leu Gly Val Gln Pro Thr Ala His Glu Gly Phe Lys Thr Phe Gly Ile Ser Arg Asn Arg Asn Ser Arg Met Asn Lys Glu Pro Cys Phe Phe Arg Ala Met Leu Val Val His Lys Leu Leu Pro Pro Glu Leu Leu Ala Met Trp Gly Leu Val His Ser Asn Leu Thr Cys Ser Arg Lys Leu Gln Val Leu <210> <211> 24 <212> DNA Artificial Sequence <213>

<220>

<223> Oligonucleotide primer for PCR

<400>	10	
cagcag	ctgc tggcctacga agac	24
<210>	11	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	
<400>	11	
gcacat	gccc agaaagacgt cgtc	24
<210>	12	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	
<400>	12	
cgttcc	tggg cotcagttto ctag	24
<210>	13	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	

<400>	13	
gaccga	cttg acaaccacca gca	23
<210>	14	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	
<400>	14	
gtagac	atcg cccctgcact tct	23
<210>	15	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	
<400>	15	
gcccag	agct gcgagccgct	20
	•	
<210>	16	
<211>	53	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	

<400>	16	
gcacat	gccc agaaagacgt cg	22
<210>	17	
<211>	53	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	
<400>	17	
ggggac	aagt ttgtacaaaa aagcaggott cgcctctcag gggccccagg cct	53
<210>	18	
<211>	54	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	
<400>	18	
ggggac	cact ttgtacaaga aagctgggtc catgggggct caggagcaag tgcc	54
<210>	19	
<211>	94	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	template for PCR	

<400>	19	
gatcat	goat tttcaagtgo agattttcag ottootgota atcagtgoot cagtcataat	60
gtcacg	tgga gattacaagg acgacgatga caag	94
	·	
<210>	20	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	
<400>	20	
cgggat	ccat gcattttcaa gtgcag	26
<210>	21	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	
<400>	21	
ggaatt	cttg tcatcgtcgt ccttg	25
<210>	22	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		

<223>	Oligonucleotide primer for PCR	
<400>	22	
ttcctc	aagt ggctggacat c	21
	•	
<210>	23	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	
<400>	23	
gccggt	cago cagaaatto	19
<210>	24	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide probe	
<400>	24	
actgcc	ccca cgtccccttc a	21
•		
<210>	25	
<211>	55	
<212>	DNA	•
	Artificial Sequence	
<220>		

54

27/27

<223>	Oligonucleotide primer for PCR	
<400>	25	
ggggaca	aagt ttgtacaaaa aagcaggctt ctggcgccca gagctgcgag ccgct	55
<210>	26	
<211>	54	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer for PCR	
<400>	26	

ggggaccact ttgtacaaga aagctgggtc catgggggct caggagcaag tgcc

International application No. PCT/JP03/03044

A. CLASS Int.	SIFICATION OF SUBJECT MATTER C1 ⁷ C12N15/12, C12N9/10, C12N1 C12N5/00, C12Q1/68	/15, C12N1/19, C12N1/21	.,						
According t	o International Patent Classification (IPC) or to both na	tional classification and IPC							
	B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)								
Minimum d Int.	ocumentation searched (classification system followed to C1 ⁷ C12N15/12, C12N9/10, C12N1 C12N5/00, C12Q1/68	y classification symbols) /15, Cl2N1/19, Cl2N1/21	.,						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched									
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) MEDLINE, SwissProt/PIR/GeneSeq, Genbank/EMBL/DDBJ/Geneseq									
C. DOCU	MENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where ap		Relevant to claim No.						
х, 	Akira TOGAYACHI et al., Molecthoracterization of UDP-GlcNP beta 1,3-acetylglucosaminyltr T5), an essential enzyme for HNK-1 and Lewis X epitopes or Journal of Biological Chemist No.25, pages 22032 to 22040 WO 02/26950 A2 (INCYTE GENOM 04 April, 2002 (04.04.02), & EP 0463395 A1	Ac:lactosylceramide cansferase(beta 3Gn-the expression of glycolipids, The cry, 2001, Vol.276,	1-19,23,24, 27-30 1-19,23,24, 27-30						
	·								
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.							
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considere									
Name and mailing address of the ISA/ Authorized officer									
	naing address of the ISA/ anese Patent Office	1100.011200 OALIOOI							
Faccimile N	lo.	Telephone No.							

International application No.
PCT/JP03/03044

			057 050:11
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	Relevant to claim No.	
A	Norihiko SHIRAISHI, Identification and chization of three novel beta 1,3-N-acetylg nyltransferases structurally related to t1,3-galactosyltransferase family, The Jou Biologocal Chemistry, 2001, Vol.276, No.5 3498 to 3507	1-19,23,24, 27-30	
		·	
		·	
			·

International application No.
PCT/JP03/03044

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)				
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
 X Claims Nos.: 20-22, 25, 26 because they relate to subject matter not required to be searched by this Authority, namely: Claims 20 to 22, 25 and 26 pertain to diagnostic methods to be practiced the human body or animal body and thus relate to a subject matter which the International Searching Authority is not required, under the provisions Article 17(2)(a)(i) of the PCT and (continued to extra sheet) Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such a extent that no meaningful international search can be carried out, specifically: 	of			
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
1. As all required additional search fees were timely paid by the applicant, this international search report covers all search claims.	able			
 As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payments of any additional fee. 	ent			
3. As only some of the required additional search fees were timely paid by the applicant, this international search report coonly those claims for which fees were paid, specifically claims Nos.:	vers			
<u>.</u>				
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

International application No.
PCT/JP03/03044

Continuation of Box No.I-1 of continuation of first sheet(1) Rule 39.1(iv) of the Regulations under the PCT, to search.