FIRST & FOLLOW

The construction of a predictive parser is aided by two functions associated with a grammar G. These functions, FIRST and FOLLOW, allow us to fill in the entries of a predictive parsing table for G, whenever possible. Sets of tokens yielded by the FOLLOW function can also be used as synchronizing tokens during panic-mode error recovery.

FIRST(α)

If α is any string of grammar symbols, let FIRST(α) be the set of terminals that begin the strings derived from α . If $\alpha \Rightarrow \varepsilon$ then ε is also in FIRST(α).

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or ε can be added to any FIRST set:

- 1. If X is terminal, then FIRST(X) is $\{X\}$.
- 2. If $X \to \varepsilon$ is a production, then add ε to FIRST(X).
- 3. If X is nonterminal and $X \rightarrow Y_1 Y_2 ... Y_k$. is a production, then place a in FIRST(X) if for some i, a is in FIRST(Y_i), and ε is in all of FIRST(Y_i), ..., FIRST(Y_i); that is, $Y_1, ..., Y_{i-1} \Rightarrow \varepsilon$. If ε is in FIRST(Y_i) for all i = 1, 2, ..., k, then add ε to FIRST(X). For example, everything in FIRST(Y_i) is surely in FIRST(X). If Y_i does not derive ε , then we add nothing more to FIRST(X), but if $Y_i \Rightarrow \varepsilon$, then we add FIRST(Y_i) and so on.

Now, we can compute FIRST for any string $X_1X_2...X_n$ as follows. Add to FIRST($X_1X_2...X_n$) all the non- ε symbols of FIRST(X_1). Also add the non- ε symbols of FIRST(X_2) if ε is in FIRST(X_1), the non- ε symbols of FIRST(X_2) if ε is in both FIRST(X_1) and FIRST(X_2), and so on. Finally, add ε to FIRST(X_1) if, for all i, FIRST(X_2) contains ε .

FOLLOW(A)

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can appear immediately to the right of A in some sentential form, that is, the set of terminals a such that there exists a derivation of the form $S \Rightarrow \alpha A a \beta$ for some α and β . Note that there may, at some time during the derivation, have been symbols between A and a, but if so, they derived ε and disappeared. If A can be the rightmost symbol in some sentential form, then \$, representing the input right endmarker, is in FOLLOW(A).

To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be added to any FOLLOW set:

- 1. Place \$ in FOLLOW(S), where S is the start symbol and \$ is the input right endmarker.
- 2. If there is a production $A \Rightarrow \alpha B\beta$, then everything in FIRST(β), except for ϵ , is placed in FOLLOW(B).
- 3. If there is a production $A \Rightarrow \alpha B$, or a production $A \Rightarrow \alpha B\beta$ where FIRST(β) contains ϵ (i.e., $\beta \Rightarrow \epsilon$), then everything in FOLLOW(A) is in FOLLOW(B).

EXAMPLE

Computing Follow

- 1. If A is start symbol, put \$ in FOLLOW(A)
- 2. Productions of the form $B \rightarrow \alpha \underbrace{A}_{=} \beta$, FOLLOW(A)= FIRST(β)
- 3. Productions of the form $B \rightarrow \alpha A$ or

 $B \rightarrow \alpha \underbrace{A}_{\infty} \underbrace{\beta}_{\underline{B}} \text{ where } \underline{\beta} \Rightarrow^* \underline{\epsilon}$ Add $\underbrace{FOLLOW(A)}_{\underline{A}} = \underbrace{FOLLOW(B)}_{\underline{A}}$

- 1. Place \$ in FOLLOW(S), where S is the start symbol and \$ is the input right endmarker.
- 2. If there is a production $A \Rightarrow \alpha B\beta$, then everything in FIRST(β), except for ϵ , is placed in FOLLOW(B).
- 3. If there is a production $A \Rightarrow \alpha B$, or a production $A \Rightarrow \alpha B\beta$ where FIRST(β) contains ε (i.e., $\beta \Rightarrow \varepsilon$), then everything in FOLLOW(A) is in FOLLOW(B).


```
• S \rightarrow (A) \mid s

• A \rightarrow T E

• E \rightarrow \& T E \mid s

• T \rightarrow (A) \mid a \mid b \mid c
```

```
First (S) = { (, \epsilon}

First (A) = { (, \alpha, b, c}

First (E) = { &, \epsilon}

First (T) = { (, \alpha, b, c}

Follow (S) = { $}

Follow (A) = { )} U Follow(E) = { &, }

Follow (T) = First (E) U Follow(E) = { &, }

{ &}
```

Computing Follow

- 1. If A is start symbol, put \$ in FOLLOW(A)
- 3. Productions of the form $B \rightarrow \alpha A$ or

$$\begin{array}{ccc}
B \rightarrow & \alpha & \beta & \text{where } \beta \Rightarrow^* \epsilon \\
Add & FOLLOW(A) = & FOLLOW(B)
\end{array}$$