MATHEMATICS-II (MATH F112)

Dr. Krishnendra Shekhawat

BITS PILANI
Department of Mathematics

Section 5.2

The Matrix of a Linear Transformation

Let V and W be two finite dimensional real vector spaces such that $\dim(V) = n$ and $\dim(W) = m$. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $C = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ be an ordered basis of V and W, respectively.

Let V and W be two finite dimensional real vector spaces such that $\dim(V) = n$ and $\dim(W) = m$. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $C = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ be an ordered basis of V and W, respectively.

Let $L: V \to W$ be any linear transformation.

Let V and W be two finite dimensional real vector spaces such that $\dim(V) = n$ and $\dim(W) = m$. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $C = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ be an ordered basis of V and W, respectively.

Let $L: V \to W$ be any linear transformation. For $\mathbf{v}_j \in V$, $L(\mathbf{v}_j) \in W$, for each $j, 1 \leq j \leq n$.

Let V and W be two finite dimensional real vector spaces such that $\dim(V) = n$ and $\dim(W) = m$. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $C = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ be an ordered basis of V and W, respectively.

Let $L: V \to W$ be any linear transformation. For $\mathbf{v}_j \in V$, $L(\mathbf{v}_j) \in W$, for each $j, 1 \leq j \leq n$. Since C is a basis of W, for $a_{ij} \in \mathbb{R}$, we can write

Let V and W be two finite dimensional real vector spaces such that $\dim(V) = n$ and $\dim(W) = m$. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $C = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ be an ordered basis of V and W, respectively.

Let $L: V \to W$ be any linear transformation. For $\mathbf{v}_j \in V$, $L(\mathbf{v}_j) \in W$, for each $j, 1 \leq j \leq n$. Since C is a basis of W, for $a_{ij} \in \mathbb{R}$, we can write

$$L(\mathbf{v}_j) = a_{1j}\mathbf{w}_1 + a_{2j}\mathbf{w}_2 + \dots + a_{mj}\mathbf{w}_m$$

Thus, we have

Then the matrix

$$A_{BC} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{m \times n}$$

is called the matrix of linear transformation L w.r.t. the bases B and C.

Example 1

Q:. Consider the LT $L: \mathbb{R}^3 \to \mathbb{R}^2$, given by

$$L([x, y, z]) = [-2x + 3z, x + 2y - z]$$

with ordered bases

$$B = ([1, -3, 2], [-4, 13, -3], [2, -3, 20])$$
 and

$$C=([-2,-1],[5,3])$$
 of \mathbb{R}^3 and \mathbb{R}^2 respectively.

Example 1

Q:. Consider the LT $L: \mathbb{R}^3 \to \mathbb{R}^2$, given by

$$L([x, y, z]) = [-2x + 3z, x + 2y - z]$$

with ordered bases

$$B = ([1, -3, 2], [-4, 13, -3], [2, -3, 20])$$
 and $C = ([-2, -1], [5, 3])$ of \mathbb{R}^3 and \mathbb{R}^2 respectively. Compute A_{BC} .

Sol.
$$L([1,-3,2]) = [4,-7],$$

Sol.
$$L([1,-3,2]) = [4,-7], L([-4,13,-3]) = [-1,25]$$

Sol.
$$L([1,-3,2]) = [4,-7], L([-4,13,-3]) = [-1,25]$$

and $L([2,-3,20]) = [56,-24].$

Sol.
$$L([1,-3,2]) = [4,-7], L([-4,13,-3]) = [-1,25]$$

and $L([2,-3,20]) = [56,-24].$

$$[C|L[B]] = \begin{bmatrix} -2 & 5 & 4 & -1 & 56 \\ -1 & 3 & -7 & 25 & -24 \end{bmatrix}$$

Sol.
$$L([1,-3,2]) = [4,-7], L([-4,13,-3]) = [-1,25]$$

and $L([2,-3,20]) = [56,-24].$

$$[C|L[B]] = \begin{bmatrix} -2 & 5 & 4 & -1 & 56 \\ -1 & 3 & -7 & 25 & -24 \end{bmatrix}$$

$$[C|L[B]] = \begin{bmatrix} 1 & 0 & -47 & 128 & -288 \\ 0 & 1 & -18 & 51 & -104 \end{bmatrix}$$

Sol.
$$L([1,-3,2]) = [4,-7], L([-4,13,-3]) = [-1,25]$$

and $L([2,-3,20]) = [56,-24].$

$$[C|L[B]] = \begin{bmatrix} -2 & 5 & 4 & -1 & 56 \\ -1 & 3 & -7 & 25 & -24 \end{bmatrix}$$

$$[C|L[B]] = \begin{bmatrix} 1 & 0 & -47 & 128 & -288 \\ 0 & 1 & -18 & 51 & -104 \end{bmatrix}$$

Hence, $[L([1,-3,2])]_C = [-47,-18],$

Sol.
$$L([1, -3, 2]) = [4, -7], L([-4, 13, -3]) = [-1, 25]$$

and $L([2, -3, 20]) = [56, -24].$

$$[C|L[B]] = \begin{bmatrix} -2 & 5 & 4 & -1 & 56 \\ -1 & 3 & -7 & 25 & -24 \end{bmatrix}$$

$$[C|L[B]] = \begin{bmatrix} 1 & 0 & -47 & 128 & -288 \\ 0 & 1 & -18 & 51 & -104 \end{bmatrix}$$

Hence,
$$[L([1,-3,2])]_C = [-47,-18]$$
, $[L([-4,13,-3])]_C = [128,51]$

Sol.
$$L([1, -3, 2]) = [4, -7], L([-4, 13, -3]) = [-1, 25]$$

and $L([2, -3, 20]) = [56, -24].$

$$[C|L[B]] = \begin{bmatrix} -2 & 5 & 4 & -1 & 56 \\ -1 & 3 & -7 & 25 & -24 \end{bmatrix}$$

$$[C|L[B]] = \begin{bmatrix} 1 & 0 & -47 & 128 & -288 \\ 0 & 1 & -18 & 51 & -104 \end{bmatrix}$$

Hence,
$$[L([1,-3,2])]_C = [-47,-18]$$
, $[L([-4,13,-3])]_C = [128,51]$ and $[L(2,-3,20)]_C = [-288,-104]$.

Here
$$A_{BC} = \begin{bmatrix} -47 & 128 & -288 \\ -18 & 51 & -104 \end{bmatrix}$$
 is called the matrix of LT \boldsymbol{L} with respect to the ordered bases \boldsymbol{B} and \boldsymbol{C} .

Here
$$A_{BC} = \begin{bmatrix} -47 & 128 & -288 \\ -18 & 51 & -104 \end{bmatrix}$$
 is called the matrix of LT L with respect to the ordered bases B and C .

Let
$$v = [-5, 20, 16]$$
,

Here
$$A_{BC} = \begin{bmatrix} -47 & 128 & -288 \\ -18 & 51 & -104 \end{bmatrix}$$
 is called the matrix of LT

Let
$$v = [-5, 20, 16]$$
, then $[v]_B = [1, 2, 1]$.

Here
$$A_{BC} = \begin{bmatrix} -47 & 128 & -288 \\ -18 & 51 & -104 \end{bmatrix}$$
 is called the matrix of LT

Let
$$v = [-5, 20, 16]$$
, then $[v]_B = [1, 2, 1]$.

Now it can be verified that

Here
$$A_{BC} = \begin{bmatrix} -47 & 128 & -288 \\ -18 & 51 & -104 \end{bmatrix}$$
 is called the matrix of LT

Let
$$v = [-5, 20, 16]$$
, then $[v]_B = [1, 2, 1]$.

Now it can be verified that $A_{BC}[v]_B = [L(v)]_C$, i.e.,

Here
$$A_{BC} = \begin{bmatrix} -47 & 128 & -288 \\ -18 & 51 & -104 \end{bmatrix}$$
 is called the matrix of LT

Let
$$v = [-5, 20, 16]$$
, then $[v]_B = [1, 2, 1]$.

Now it can be verified that $A_{BC}[v]_B = [L(v)]_C$, i.e., for v = [-5, 20, 16], we have

Here
$$A_{BC} = \begin{bmatrix} -47 & 128 & -288 \\ -18 & 51 & -104 \end{bmatrix}$$
 is called the matrix of LT

Let
$$v = [-5, 20, 16]$$
, then $[v]_B = [1, 2, 1]$.

Now it can be verified that $A_{BC}[v]_B=[L(v)]_C$, i.e., for v=[-5,20,16], we have $A_{BC}[v]_B=[L(v)]_C=[-79,-20]$.

Here
$$A_{BC} = \begin{bmatrix} -47 & 128 & -288 \\ -18 & 51 & -104 \end{bmatrix}$$
 is called the matrix of LT

Let
$$v = [-5, 20, 16]$$
, then $[v]_B = [1, 2, 1]$.

Now it can be verified that $A_{BC}[v]_B = [L(v)]_C$, i.e., for v = [-5, 20, 16], we have $A_{BC}[v]_B = [L(v)]_C = [-79, -20]$.

Clearly,
$$[58, 19]_C = -79[-2, -1] - 20[5, 3]$$
.

Let $B = (v_1, ..., v_n)$ and $C = (w_1, ..., w_m)$ be ordered bases for V and W, respectively. Also, let $L: V \to W$ be a LT.

• Compute $L(v_i)$ for all i = 1, 2, ..., n.

- Compute $L(v_i)$ for all i = 1, 2, ..., n.
- Form the augmented matrix $[w_1, \dots, w_m | L(v_1), \dots, L(v_n)].$

- Compute $L(v_i)$ for all i = 1, 2, ..., n.
- Form the augmented matrix $[w_1, ..., w_m | L(v_1), ..., L(v_n)]$.
- Use row reduction on $[w_1, ..., w_m | L(v_1), ..., L(v_n)]$

- Compute $L(v_i)$ for all i = 1, 2, ..., n.
- Form the augmented matrix $[w_1, \dots, w_m | L(v_1), \dots, L(v_n)].$
- Use row reduction on $[w_1, ..., w_m | L(v_1), ..., L(v_n)]$ to produce $[I_m | A_{BC}]$.

Let an ordered basis for \mathbb{R}^4 be

$$B = ([0,4,0,1],[-2,5,0,2],[-3,5,1,1],[-1,2,0,1])$$

Let an ordered basis for \mathbb{R}^4 be

$$B = ([0,4,0,1],[-2,5,0,2],[-3,5,1,1],[-1,2,0,1])$$

and an ordered basis for \mathbb{R}^3 be

$$C = ([1,0,0],[0,1,0],[0,0,1])$$

Let an ordered basis for \mathbb{R}^4 be

$$B = ([0,4,0,1],[-2,5,0,2],[-3,5,1,1],[-1,2,0,1])$$

and an ordered basis for \mathbb{R}^3 be

$$C = ([1,0,0],[0,1,0],[0,0,1])$$

Let $L: \mathbb{R}^4 \to \mathbb{R}^3$, given by

Let an ordered basis for \mathbb{R}^4 be

$$B = ([0,4,0,1],[-2,5,0,2],[-3,5,1,1],[-1,2,0,1])$$

and an ordered basis for \mathbb{R}^3 be

$$C = ([1,0,0],[0,1,0],[0,0,1])$$

Let $L: \mathbb{R}^4 \to \mathbb{R}^3$, given by

$$L([0,4,0,1]) = [3,1,2], L([-2,5,0,2]) = [2,-1,1],$$

 $L([-3,5,1,1]) = [-4,3,0], L([-1,2,0,1]) = [6,1,-1].$

For
$$v \in \mathbb{R}^4$$
, let $[v]_B = [k_1, k_2, k_3, k_4] \implies$

For
$$v \in \mathbb{R}^4$$
, let $[v]_B = [k_1, k_2, k_3, k_4] \implies$
 $L(v) = [L(v)]_C =$
 $[3k_1 + 2k_2 - 4k_3 + 6k_4, k_1 - k_2 + 3k_3 + k_4, 2k_1 + k_2 - k_4]$

For
$$v \in \mathbb{R}^4$$
, let $[v]_B = [k_1, k_2, k_3, k_4] \Longrightarrow$

$$L(v) = [L(v)]_C = [3k_1 + 2k_2 - 4k_3 + 6k_4, k_1 - k_2 + 3k_3 + k_4, 2k_1 + k_2 - k_4]$$
Clearly, if $A_{BC} = \begin{bmatrix} 3 & 2 & -4 & 6 \\ 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & -1 \end{bmatrix}$

For
$$v \in \mathbb{R}^4$$
, let $[v]_B = [k_1, k_2, k_3, k_4] \implies$

$$L(v) = [L(v)]_C =$$

$$[3k_1 + 2k_2 - 4k_3 + 6k_4, k_1 - k_2 + 3k_3 + k_4, 2k_1 + k_2 - k_4]$$

Clearly, if
$$A_{BC} = \begin{bmatrix} 3 & 2 & -4 & 6 \\ 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & -1 \end{bmatrix}$$
 then

$$A_{BC} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \\ k_4 \end{bmatrix} = \begin{bmatrix} 3k_1 + 2k_2 - 4k_3 + 6k_4 \\ k_1 - k_2 + 3k_3 + k_4 \\ 2k_1 + k_2 - k_4 \end{bmatrix}$$

For
$$v \in \mathbb{R}^4$$
, let $[v]_B = [k_1, k_2, k_3, k_4] \implies$

$$L(v) = [L(v)]_C =$$

$$[3k_1 + 2k_2 - 4k_3 + 6k_4, k_1 - k_2 + 3k_3 + k_4, 2k_1 + k_2 - k_4]$$

Clearly, if
$$A_{BC} = \begin{bmatrix} 3 & 2 & -4 & 6 \\ 1 & -1 & 3 & 1 \\ 2 & 1 & 0 & -1 \end{bmatrix}$$
 then

$$A_{BC} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \\ k_4 \end{bmatrix} = \begin{bmatrix} 3k_1 + 2k_2 - 4k_3 + 6k_4 \\ k_1 - k_2 + 3k_3 + k_4 \\ 2k_1 + k_2 - k_4 \end{bmatrix}$$

Hence, $A_{BC}[v]_B = [L(v)]_C$.

Theorem: Let V and W be non-trivial vector spaces, with $\dim(V) = n$ and $\dim(W) = m$. Let $B = (v_1, ..., v_n)$ and $C = (w_1, ..., w_m)$ be ordered bases for V and W, respectively. Let $L: V \to W$ be a LT.

Theorem: Let V and W be non-trivial vector spaces, with $\dim(V) = n$ and $\dim(W) = m$. Let $B = (v_1, ..., v_n)$ and $C = (w_1, ..., w_m)$ be ordered bases for V and W, respectively. Let $L: V \to W$ be a LT. Then there is a unique $m \times n$ matrix A_{BC} such that $A_{BC}[v]_B = [L(v)]_C$, for all $v \in V$.

Theorem: Let V and W be non-trivial vector spaces, with $\dim(V) = n$ and $\dim(W) = m$. Let $B = (v_1, \dots, v_n)$ and $C = (w_1, \dots, w_m)$ be ordered bases for V and W, respectively. Let $L: V \to W$ be a LT. Then there is a unique $m \times n$ matrix A_{BC} such that $A_{BC}[v]_B = [L(v)]_C$, for all $v \in V$. Furthermore, for $1 \le i \le n$, the i^{th} column of $A_{RC} = [L(v_i)]_{C}$

Q:. Consider the LT $L: \mathbb{R}^2 \to P_2$, given by

$$L([a,b]) = (-a+5b)x^2 + (3a-b)x + 2b$$

with ordered bases B=([5,3],[3,2]) and $C=(3x^2-2x,-2x^2+2x-1,x^2-x+1)$ of \mathbb{R}^2 and P_2 respectively.

Q:. Consider the LT $L: \mathbb{R}^2 \to P_2$, given by

$$L([a,b]) = (-a+5b)x^2 + (3a-b)x + 2b$$

with ordered bases B=([5,3],[3,2]) and $C=(3x^2-2x,-2x^2+2x-1,x^2-x+1)$ of \mathbb{R}^2 and P_2 respectively. Compute A_{BC} .

Sol.
$$L[5,3] = 10x^2 + 12x + 6$$

Sol.
$$L[5,3] = 10x^2 + 12x + 6$$
 and $L[3,2] = 7x^2 + 7x + 4$.

Sol.
$$L[5,3] = 10x^2 + 12x + 6$$
 and $L[3,2] = 7x^2 + 7x + 4$.

$$[C|L[B]] = \begin{bmatrix} 3 & -2 & 1 & 10 & 7 \\ -2 & 2 & -1 & 12 & 7 \\ 0 & -1 & 1 & 6 & 4 \end{bmatrix}$$

Sol.
$$L[5,3] = 10x^2 + 12x + 6$$
 and $L[3,2] = 7x^2 + 7x + 4$.

$$[C|L[B]] = \begin{bmatrix} 3 & -2 & 1 & 10 & 7 \\ -2 & 2 & -1 & 12 & 7 \\ 0 & -1 & 1 & 6 & 4 \end{bmatrix}$$

Using row reduction, we obtain

$$[C|L[B]] = \begin{bmatrix} 1 & 0 & 0 & 22 & 14 \\ 0 & 1 & 0 & 62 & 39 \\ 0 & 0 & 1 & 68 & 43 \end{bmatrix} \implies A_{BC} = \begin{bmatrix} 22 & 14 \\ 62 & 39 \\ 68 & 43 \end{bmatrix}$$

Q:. Consider the LT $L: P_3 \to P_2$, given by L(p) = p'.

Q:. Consider the LT $L: P_3 \to P_2$, given by L(p) = p'. Compute A_{BC} with respect to standard bases from P_3 and P_2 .

Q:. Consider the LT $L: P_3 \to P_2$, given by L(p) = p'. Compute A_{BC} with respect to standard bases from P_3 and P_2 . Using A_{BC} , compute $[L(4x^3 - 5x^2 + 6x - 7)]_C$.

Q:. Consider the LT $L: P_3 \to P_2$, given by L(p) = p'. Compute A_{BC} with respect to standard bases from P_3 and P_2 . Using A_{BC} , compute $[L(4x^3 - 5x^2 + 6x - 7)]_C$.

Sol. Standard basis of P_3 is

Q:. Consider the LT $L: P_3 \to P_2$, given by L(p) = p'. Compute A_{BC} with respect to standard bases from P_3 and P_2 . Using A_{BC} , compute $[L(4x^3 - 5x^2 + 6x - 7)]_C$.

Sol. Standard basis of P_3 is $\{x^3, x^2, x, 1\}$.

Q:. Consider the LT $L: P_3 \to P_2$, given by L(p) = p'. Compute A_{BC} with respect to standard bases from P_3 and P_2 . Using A_{BC} , compute $[L(4x^3 - 5x^2 + 6x - 7)]_C$.

Sol. Standard basis of P_3 is $\{x^3, x^2, x, 1\}$.

Now
$$L(x^3) = 3x^2$$
, $L(x^2) = 2x$, $L(x) = 1$, $L(1) = 0$

$$[C|L[B]] = \begin{bmatrix} 1 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix} \implies A_{BC} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$[C|L[B]] = \begin{bmatrix} 1 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix} \implies A_{BC} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\text{Now } [L(4x^3 - 5x^2 + 6x - 7)]_C = A_{BC}[(4x^3 - 5x^2 + 6x - 7)]_B$$

Now
$$[L(4x^3 - 5x^2 + 6x - 7)]_C = A_{BC}[(4x^3 - 5x^2 + 6x - 7)]_C$$

$$[C|L[B]] = \begin{bmatrix} 1 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix} \Longrightarrow A_{BC} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Now
$$[L(4x^3-5x^2+6x-7)]_C = A_{BC}[(4x^3-5x^2+6x-7)]_B$$

$$= A_{BC} \begin{bmatrix} 4 \\ -5 \\ 6 \\ -7 \end{bmatrix} = \begin{bmatrix} 12 \\ -10 \\ 6 \end{bmatrix}$$

$$[C|L[B]] = \begin{bmatrix} 1 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix} \implies A_{BC} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Now
$$[L(4x^3 - 5x^2 + 6x - 7)]_C = A_{BC}[(4x^3 - 5x^2 + 6x - 7)]_B$$

$$= A_{BC} \begin{bmatrix} 4 \\ -5 \\ 6 \\ -7 \end{bmatrix} = \begin{bmatrix} 12 \\ -10 \\ 6 \end{bmatrix}$$

Note: Here

$$[L(4x^3 - 5x^2 + 6x - 7)]_C = L(4x^3 - 5x^2 + 6x - 7) \implies$$

$$[C|L[B]] = \begin{bmatrix} 1 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix} \implies A_{BC} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Now
$$[L(4x^3 - 5x^2 + 6x - 7)]_C = A_{BC}[(4x^3 - 5x^2 + 6x - 7)]_B$$

$$=A_{BC}\begin{bmatrix} 4\\-5\\6\\-7 \end{bmatrix} = \begin{bmatrix} 12\\-10\\6 \end{bmatrix}$$

Note: Here

$$[L(4x^3 - 5x^2 + 6x - 7)]_C = L(4x^3 - 5x^2 + 6x - 7) \Longrightarrow [L(4x^3 - 5x^2 + 6x - 7)]_C = (4x^3 - 5x^2 + 6x - 7)' = 12x^2 - 10x + 6.$$

Q:. Consider the LT $L: \mathbb{R}^3 \to \mathbb{R}^2$, given by L([x,y,z]) = [x+y,y-z].

Q:. Consider the LT $L : \mathbb{R}^3 \to \mathbb{R}^2$, given by L([x,y,z]) = [x+y,y-z]. Compute A_{BC} with respect to bases B = ([1,0,1],[0,1,1],[1,1,1]) and C = ([1,2],[-1,1]).

Q:. Consider the LT $L : \mathbb{R}^3 \to \mathbb{R}^2$, given by L([x,y,z]) = [x+y,y-z]. Compute A_{BC} with respect to bases B = ([1,0,1],[0,1,1],[1,1,1]) and C = ([1,2],[-1,1]).

Sol.
$$A_{BC} = \begin{bmatrix} 0 & 1/3 & 2/3 \\ -1 & -2/3 & -4/3 \end{bmatrix}$$

Q:. Consider the LT $L: \mathbb{R}^3 \to \mathbb{R}^2$, given by

L([x,y,z]) = [x+y,y-z]. Compute A_{BC} with respect to bases B = ([1,0,1],[0,1,1],[1,1,1]) and C = ([1,2],[-1,1]).

Sol.
$$A_{BC} = \begin{bmatrix} 0 & 1/3 & 2/3 \\ -1 & -2/3 & -4/3 \end{bmatrix}$$

Q:. Consider the LT $L: P_3 \to M_{22}$, given by

$$L(ax^{3} + bx^{2} + cx + d) = \begin{bmatrix} -3a - 2c & -b + 4d \\ 4b - c + 3d & -6a - b + 2d \end{bmatrix}.$$

Compute A_{BC} with respect to standard bases for P_3 and M_{22} .

Sol.
$$\begin{bmatrix} -3 & 0 & -2 & 0 \\ 0 & -1 & 0 & 4 \\ 0 & 4 & -1 & 3 \\ -6 & -1 & 0 & 2 \end{bmatrix}$$

Sol.
$$\begin{bmatrix} -3 & 0 & -2 & 0 \\ 0 & -1 & 0 & 4 \\ 0 & 4 & -1 & 3 \\ -6 & -1 & 0 & 2 \end{bmatrix}$$

Q:. Let B = ([1,2],[2,-1]) and C = ([1,0],[0,1]) be ordered bases for \mathbb{R}^2 . If $L : \mathbb{R}^2 \to \mathbb{R}^2$ be a LT such that $A_{BC} = \begin{bmatrix} 4 & 3 \\ 2 & -4 \end{bmatrix}$, then compute L([5,5]).

Sol.
$$\begin{bmatrix} -3 & 0 & -2 & 0 \\ 0 & -1 & 0 & 4 \\ 0 & 4 & -1 & 3 \\ -6 & -1 & 0 & 2 \end{bmatrix}$$

Q:. Let B = ([1,2],[2,-1]) and C = ([1,0],[0,1]) be ordered bases for \mathbb{R}^2 . If $L : \mathbb{R}^2 \to \mathbb{R}^2$ be a LT such that $A_{BC} = \begin{bmatrix} 4 & 3 \\ 2 & -4 \end{bmatrix}$, then compute L([5,5]).
Sol. [15,2].

$$B = ([1,1,0,0],[0,1,1,0],[0,0,1,1],[0,0,0,1]) \text{ and }$$

$$C = ([1,1,1],[1,2,3],[1,0,0])$$

be ordered bases for \mathbb{R}^4 and \mathbb{R}^3 , respectively. If

$$L: \mathbb{R}^4 \to \mathbb{R}^3 \text{ be a LT such that } A_{BC} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}. \text{ Find}$$

$$L?$$

L?

Q:. Let

$$B = ([1,1,0,0],[0,1,1,0],[0,0,1,1],[0,0,0,1]) \text{ and }$$

$$C = ([1,1,1],[1,2,3],[1,0,0])$$

be ordered bases for \mathbb{R}^4 and \mathbb{R}^3 , respectively. If

$$L: \mathbb{R}^4 \to \mathbb{R}^3 \text{ be a LT such that } A_{BC} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}. \text{ Find}$$

$$L?$$

L?

Sol.

$$L([x_1, x_2, x_3, x_4]) = [-2x_1 + 3x_2 + x_4, x_2 + 2x_3, x_2 + 3x_3].$$

Theorem: Suppose V and W are nontrivial finite dimensional vector spaces with ordered bases B and C, respectively, and let $L:V\to W$ be a LT. Then L is an isomorphism if and only if the matrix representation A_{BC} for L with respect to B and C is nonsingular.

Theorem: Suppose V and W are nontrivial finite dimensional vector spaces with ordered bases B and C, respectively, and let $L: V \to W$ be a LT. Then L is an isomorphism if and only if the matrix representation A_{BC} for L with respect to B and C is nonsingular.

Remark: Let D_{CB} be the matrix for L^{-1} with respect to C and B. Also let $\dim(V) = \dim(W)$. Then $A_{BC}^{-1} = D_{CB}$ provided that A_{BC} is nonsingular.

Q:. Let L_1 and L_2 be linear operators. Also, let

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & -3 & 0 \end{bmatrix} \text{ be matrices for } L_1$$

and L_2 respectively, with respect to standard basis.

Q:. Let L_1 and L_2 be linear operators. Also, let

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & -3 & 0 \end{bmatrix} \text{ be matrices for } L_1$$
and L_2 respectively, with respect to standard basis

and L_2 respectively, with respect to standard basis.

i. Show that L_1 and L_2 are isomorphisms.

Q: Let L_1 and L_2 be linear operators. Also, let

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & -3 & 0 \end{bmatrix} \text{ be matrices for } L_1$$

and L_2 respectively, with respect to standard basis.

i. Show that L_1 and L_2 are isomorphisms.

Since, |A| = 1, |B| = 3, i.e., A and B are nonsingular.

Q: Let L_1 and L_2 be linear operators. Also, let

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ 0 & -3 & 0 \end{bmatrix} \text{ be matrices for } L_1$$

and L_2 respectively, with respect to standard basis.

i. Show that L_1 and L_2 are isomorphisms.

Since, |A| = 1, |B| = 3, i.e., A and B are nonsingular. Hence, L_1 and L_2 are isomorphisms.

ii. Find matrices for L_1^{-1} and L_2^{-1} .

ii. Find matrices for L_1^{-1} and L_2^{-1} .

$$L_1^{-1}(v) = A^{-1}(v)$$
 and $L_2^{-1}(v) = B^{-1}(v)$ where

ii. Find matrices for L_1^{-1} and L_2^{-1} .

$$L_1^{-1}(v) = A^{-1}(v)$$
 and $L_2^{-1}(v) = B^{-1}(v)$ where

$$A^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & -2 & 0 \end{bmatrix} \text{ and } B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1/3 \\ 2 & 1 & 0 \end{bmatrix}.$$

Matrix for the composition of Linear Transformations

Theorem: Let V_1, V_2 and V_3 be nontrivial finite dimensional vector spaces with ordered bases B, C and D, respectively.

Matrix for the composition of Linear Transformations

Theorem: Let V_1, V_2 and V_3 be nontrivial finite dimensional vector spaces with ordered bases B, C and D, respectively. Let $L_1: V_1 \to V_2$ be a linear transformation with matrix A_{BC} and let $L_2: V_2 \to V_3$ be a linear transformation with matrix A_{CD} . Then matrix

$$A_{BD} = A_{CD}A_{BC}$$

is the matrix of linear transformation $L_2 \circ L_1 : V_1 \to V_3$ with respect to the bases B and D.

Q:. Let
$$L_1: \mathbb{R}^2 \to \mathbb{R}^2$$
 and $L_2: \mathbb{R}^2 \to \mathbb{R}^3$ defined by
$$L_1([x,y]) = [y,x]$$

$$L_2([x,y]) = [x+y,x-y,y]$$

• Find the matrix of L_1 and L_2 with respect to the standard basis in each case.

Q:. Let $L_1: \mathbb{R}^2 \to \mathbb{R}^2$ and $L_2: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $L_1([x,y]) = [y,x]$ $L_2([x,y]) = [x+y,x-y,y]$

- Find the matrix of L_1 and L_2 with respect to the standard basis in each case.
- Find the matrix of $L_2 \circ L_1$ with respect to standard basis of \mathbb{R}^2 and \mathbb{R}^3 .

