MA166: Recitation 11

Carlos Salinas

April 7, 2016

1 Homework

1.1 This Week's Summary

Here's a summary of the material that was (presumably) covered this week. From Stewart, we have

1.2 WebAssign Homework

Solutions to selected problems

Homework 28

Problem 1 (WebAssign HW 28, # 1). Find a power series representation for the function.

$$f(x) = \frac{1}{9+x}.$$

Determine the interval of convergence.

Problem 2 (WebAssign HW 28, # 2). Find a power series representation for the function.

$$f(x) = \frac{8}{9-x}.$$

Determine the interval of convergence.

Problem 3 (WebAssign HW 28, # 3). Find a power series representation for the function.

$$f(x) = \frac{x}{4 + x^2}.$$

Determine the interval of convergence.

Problem 4 (WebAssign HW 28, # 4). Find a power series representation for the function.

$$f(x) = \frac{10}{x^2 - 2x - 24}.$$

Determine the interval of convergence.

Problem 5 (WebAssign HW 28, #5). Find a power series representation for the function.

$$f(x) = \frac{1}{(7+x)^2}.$$

Determine the interval of convergence.

Problem 6 (WebAssign HW 28, # 6). Find a power series representation for the function.

$$f(x) = \ln(3 - x).$$

Determine the interval of convergence.

Problem 7 (WebAssign HW 28, #7). Evaluate the indefinite integral as a power series.

$$\int \frac{t}{1-t^{11}}dt.$$

What is the radius of convergence R?

Problem 8 (WebAssign HW 28, # 8). Use a power series to approximate the definite integral, I, to six decimal places.

$$\int_0^{0.1} \frac{1}{1+x^6} dx.$$

Homework 29

Problem 9 (WebAssign HW 29, # 1). Find the MacLaurin series for f(x) using the definition of a MacLaurin series. [Assume that f has a power series expansion. Do not show that $R_n(x) \to 0$.]

$$f(x) = \sin\left(\frac{\pi x}{3}\right).$$

Find the associated radius of convergence R.

Problem 10 (WebAssign HW 29, # 2). Find the MacLaurin series for f(x) using the definition of a MacLaurin series. [Assume that f has a power series expansion. Do not show that $R_n(x) \to 0$.]

$$f(x) = e^{-5x}.$$

Find the associated radius of convergence R.

Problem 11 (WebAssign HW 29, # 3). Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that $R_n(x) \to 0$.]

$$f(x) = x^4 - 4x^2 + 2,$$
 $a = 2.$

Find the associated radius of convergence R.

Problem 12 (WebAssign HW 29, #4). Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that $R_n(x) \to 0$.]

$$f(x) = \ln x, \qquad a = 6.$$

Find the associated radius of convergence R.

Problem 13 (WebAssign HW 29, # 5). Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that $R_n(x) \to 0$.]

$$f(x) = \frac{10}{x}, \qquad a = -2.$$

Find the associated radius of convergence R.

Homework 30

Problem 14 (WebAssign HW 30, # 1). Use the MacLaurin series in the table (it's somewhere in the book, I'll put a link here) to obtain the MacLaurin series for the given function.

$$f(x) = 6e^x + e^{4x}.$$

Problem 15 (WebAssign HW 30, # 2). Use the MacLaurin series in the table to obtain the MacLaurin series for the given function.

$$f(x) = 4x \cos\left(\frac{x^2}{9}\right).$$

Problem 16 (WebAssign HW 30, # 3). Use the MacLaurin series in the table to obtain the MacLaurin series for the given function.

$$f(x) = 9\sin^2 x.$$

[*Hint*: Use $\sin^2 x = (1 - \cos 2x)/2$.]

Problem 17 (WebAssign HW 30, # 4). Use series to approximate the definite integral I to within the indicated accuracy.

$$I = \int_{0}^{0.5} x^4 e^{-x^2} dx$$

(|error| < 0.001).

Problem 18 (WebAssign HW 30, # 5). Use series to evaluate the limit.

$$\lim_{x \to 0} \frac{1 - \cos 3x}{1 + 3x - e^{3x}}.$$

Problem 19 (WebAssign HW 30, # 6). Use multiplication or division of power series to find the first three nonzero terms in the MacLaurin series for the function.

$$y = e^{-x^2} \cos x.$$

2 Exam III Problems