RECOMMENDATION ITU-R P.838-3

Specific attenuation model for rain for use in prediction methods

(Question ITU-R 201/3)

(1992-1999-2003-2005)

The ITU Radiocommunication Assembly,

considering

- a) that there is a need to calculate the attenuation due to rain from a knowledge of rain rates, recommends
- 1 that the following procedure be used.

The specific attenuation γ_R (dB/km) is obtained from the rain rate R (mm/h) using the power-law relationship:

$$\gamma_R = kR^{\alpha} \tag{1}$$

Values for the coefficients k and α are determined as functions of frequency, f (GHz), in the range from 1 to 1 000 GHz, from the following equations, which have been developed from curve-fitting to power-law coefficients derived from scattering calculations:

$$\log_{10} k = \sum_{j=1}^{4} \left(a_j \exp \left[-\left(\frac{\log_{10} f - b_j}{c_j} \right)^2 \right] + m_k \log_{10} f + c_k \right)$$
 (2)

$$\alpha = \sum_{j=1}^{5} \left(a_{j} \exp \left[-\left(\frac{\log_{10} f - b_{j}}{c_{j}} \right)^{2} \right] + m_{\alpha} \log_{10} f + c_{\alpha} \right]$$
 (3)

where:

f: frequency (GHz)

k: either k_H or k_V

 α : either α_H or α_V .

Values for the constants for the coefficient k_H for horizontal polarization are given in Table 1 and for the coefficient k_V for vertical polarization in Table 2. Table 3 gives the values for the constants for the coefficient α_H for horizontal polarization, and Table 4 gives the values for the constants for the coefficient α_V for vertical polarization.

TABLE 1 Coefficients for k_H

j	a_j	b_{j}	c_{j}	m_k	c_k
1	-5.33980	-0.10008	1.13098		
2	-0.35351	1.26970	0.45400	-0.18961	0.71147
3	-0.23789	0.86036	0.15354	-0.18901	0.71147
4	-0.94158	0.64552	0.16817		

TABLE 2 Coefficients for k_V

j	a_j	b_{j}	c_{j}	m_k	c_k
1	-3.80595	0.56934	0.81061		
2	-3.44965	-0.22911	0.51059	-0.16398	0.63297
3	-0.39902	0.73042	0.11899	-0.10398	0.03297
4	0.50167	1.07319	0.27195		

TABLE 3 Coefficients for α_H

j	a_j	b_j	c_{j}	m_{α}	c_{α}
1	-0.14318	1.82442	-0.55187		
2	0.29591	0.77564	0.19822		
3	0.32177	0.63773	0.13164	0.67849	-1.95537
4	-5.37610	-0.96230	1.47828		
5	16.1721	-3.29980	3.43990		

TABLE 4 Coefficients for α_V

j	a_j	\boldsymbol{b}_{j}	c_{j}	m_{α}	c_{α}
1	-0.07771	2.33840	-0.76284		
2	0.56727	0.95545	0.54039		
3	-0.20238	1.14520	0.26809	-0.053739	0.83433
4	-48.2991	0.791669	0.116226		
5	48.5833	0.791459	0.116479		

For linear and circular polarization, and for all path geometries, the coefficients in equation (1) can be calculated from the values given by equations (2) and (3) using the following equations:

$$k = [k_H + k_V + (k_H - k_V)\cos^2\theta\cos 2\tau]/2$$
 (4)

$$\alpha = [k_H \alpha_H + k_V \alpha_V + (k_H \alpha_H - k_V \alpha_V) \cos^2 \theta \cos 2\tau]/2k$$
 (5)

where θ is the path elevation angle and τ is the polarization tilt angle relative to the horizontal ($\tau = 45^{\circ}$ for circular polarization).

For quick reference, the coefficients k and α are shown graphically in Figs. 1 to 4, and Table 5 lists numerical values for the coefficients at given frequencies.

FIGURE 1

FIGURE 2

FIGURE 3 k coefficient for vertical polarization

 $\label{eq:figure 4} FIGURE~4$ α coefficient for vertical polarization

TABLE 5
Frequency-dependent coefficients for estimating specific rain attenuation using equations (4), (5) and (1)

Frequency (GHz)	k_H	$lpha_H$	k_V	$lpha_V$
1	0.0000259	0.9691	0.0000308	0.8592
1.5	0.0000443	1.0185	0.0000574	0.8957
2	0.0000847	1.0664	0.0000998	0.9490
2.5	0.0001321	1.1209	0.0001464	1.0085
3	0.0001390	1.2322	0.0001942	1.0688
3.5	0.0001155	1.4189	0.0002346	1.1387
4	0.0001071	1.6009	0.0002461	1.2476
4.5	0.0001340	1.6948	0.0002347	1.3987
5	0.0002162	1.6969	0.0002428	1.5317
5.5	0.0003909	1.6499	0.0003115	1.5882
6	0.0007056	1.5900	0.0004878	1.5728
7	0.001915	1.4810	0.001425	1.4745
8	0.004115	1.3905	0.003450	1.3797
9	0.007535	1.3155	0.006691	1.2895
10	0.01217	1.2571	0.01129	1.2156

TABLE 5 (continued)

_					
Frequency (GHz)	k_H	α_H	k_V	$oldsymbol{lpha}_V$	
11	0.01772	1.2140	0.01731	1.1617	
12	0.02386	1.1825	0.02455	1.1216	
13	0.03041	1.1586	0.03266	1.0901	
14	0.03738	1.1396	0.04126	1.0646	
15	0.04481	1.1233	0.05008	1.0440	
16	0.05282	1.1086	0.05899	1.0273	
17	0.06146	1.0949	0.06797	1.0137	
18	0.07078	1.0818	0.07708	1.0025	
19	0.08084	1.0691	0.08642	0.9930	
20	0.09164	1.0568	0.09611	0.9847	
21	0.1032	1.0447	0.1063	0.9771	
22	0.1155	1.0329	0.1170	0.9700	
23	0.1286	1.0214	0.1284	0.9630	
24	0.1425	1.0101	0.1404	0.9561	
25	0.1571	0.9991	0.1533	0.9491	
26	0.1724	0.9884	0.1669	0.9421	
27	0.1884	0.9780	0.1813	0.9349	
28	0.2051	0.9679	0.1964	0.9277	
29	0.2224	0.9580	0.2124	0.9203	
30	0.2403	0.9485	0.2291	0.9129	
31	0.2588	0.9392	0.2465	0.9055	
32	0.2778	0.9302	0.2646	0.8981	
33	0.2972	0.9214	0.2833	0.8907	
34	0.3171	0.9129	0.3026	0.8834	
35	0.3374	0.9047	0.3224	0.8761	
36	0.3580	0.8967	0.3427	0.8690	
37	0.3789	0.8890	0.3633	0.8621	
38	0.4001	0.8816	0.3844	0.8552	
39	0.4215	0.8743	0.4058	0.8486	
40	0.4431	0.8673	0.4274	0.8421	
41	0.4647	0.8605	0.4492	0.8357	
42	0.4865	0.8539	0.4712	0.8296	
43	0.5084	0.8476	0.4932	0.8236	
44	0.5302	0.8414	0.5153	0.8179	
45	0.5521	0.8355	0.5375	0.8123	
46	0.5738	0.8297	0.5596	0.8069	
47	0.5956	0.8241	0.5817	0.8017	
48	0.6172	0.8187	0.6037	0.7967	

TABLE 5 (continued)

Frequency (GHz)	k_H	$lpha_H$	k_V	$\mathbf{\alpha}_V$
49	0.6386	0.8134	0.6255	0.7918
50	0.6600	0.8084	0.6472	0.7871
51	0.6811	0.8034	0.6687	0.7826
52	0.7020	0.7987	0.6901	0.7783
53	0.7228	0.7941	0.7112	0.7741
54	0.7433	0.7896	0.7321	0.7700
55	0.7635	0.7853	0.7527	0.7661
56	0.7835	0.7811	0.7730	0.7623
57	0.8032	0.7771	0.7931	0.7587
58	0.8226	0.7731	0.8129	0.7552
59	0.8418	0.7693	0.8324	0.7518
60	0.8606	0.7656	0.8515	0.7486
61	0.8791	0.7621	0.8704	0.7454
62	0.8974	0.7586	0.8889	0.7424
63	0.9153	0.7552	0.9071	0.7395
64	0.9328	0.7520	0.9250	0.7366
65	0.9501	0.7488	0.9425	0.7339
66	0.9670	0.7458	0.9598	0.7313
67	0.9836	0.7428	0.9767	0.7287
68	0.9999	0.7400	0.9932	0.7262
69	1.0159	0.7372	1.0094	0.7238
70	1.0315	0.7345	1.0253	0.7215
71	1.0468	0.7318	1.0409	0.7193
72	1.0618	0.7293	1.0561	0.7171
73	1.0764	0.7268	1.0711	0.7150
74	1.0908	0.7244	1.0857	0.7130
75	1.1048	0.7221	1.1000	0.7110
76	1.1185	0.7199	1.1139	0.7091
77	1.1320	0.7177	1.1276	0.7073
78	1.1451	0.7156	1.1410	0.7055
79	1.1579	0.7135	1.1541	0.7038
80	1.1704	0.7115	1.1668	0.7021
81	1.1827	0.7096	1.1793	0.7004
82	1.1946	0.7077	1.1915	0.6988
83	1.2063	0.7058	1.2034	0.6973
84	1.2177	0.7040	1.2151	0.6958
85	1.2289	0.7023	1.2265	0.6943
86	1.2398	0.7006	1.2376	0.6929

TABLE 5 (end)

Frequency (GHz)	k_H	$lpha_H$	k_V	α_V
87	1.2504	0.6990	1.2484	0.6915
88	1.2607	0.6974	1.2590	0.6902
89	1.2708	0.6959	1.2694	0.6889
90	1.2807	0.6944	1.2795	0.6876
91	1.2903	0.6929	1.2893	0.6864
92	1.2997	0.6915	1.2989	0.6852
93	1.3089	0.6901	1.3083	0.6840
94	1.3179	0.6888	1.3175	0.6828
95	1.3266	0.6875	1.3265	0.6817
96	1.3351	0.6862	1.3352	0.6806
97	1.3434	0.6850	1.3437	0.6796
98	1.3515	0.6838	1.3520	0.6785
99	1.3594	0.6826	1.3601	0.6775
100	1.3671	0.6815	1.3680	0.6765
120	1.4866	0.6640	1.4911	0.6609
150	1.5823	0.6494	1.5896	0.6466
200	1.6378	0.6382	1.6443	0.6343
300	1.6286	0.6296	1.6286	0.6262
400	1.5860	0.6262	1.5820	0.6256
500	1.5418	0.6253	1.5366	0.6272
600	1.5013	0.6262	1.4967	0.6293
700	1.4654	0.6284	1.4622	0.6315
800	1.4335	0.6315	1.4321	0.6334
900	1.4050	0.6353	1.4056	0.6351
1 000	1.3795	0.6396	1.3822	0.6365