Homework # 9

Case-I: Distinct Eigenvalues Always Diagonalizable

1. Find eigenvalues and eigenvectors of the matrix A, where

$$A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$$

Also

- (a) Compute $\begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}^{10} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$
- (b) Diagonalize the matrix A
- (c) Compute $\begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}^{10}$

Hint: Follow these steps to provide solution

- (i) For Eigenvalues: Solve the Characteristic polynomial $\lambda^2 tr(A)\lambda + det(A) = 0$ to obtain eigenvalues
- (ii) For Eigenvectors v_1 and v_2 : Find λ -eigenspace= $Nul(A \lambda I)$
- (iii) For $A^n v$: First write $\mathbf{v} = \mathbf{x_1} \mathbf{v_1} + \mathbf{x_2} \mathbf{v_2}$ where $\mathbf{v_1}$ and $\mathbf{v_2}$ are eigenvectors, then use the fact $A^n \mathbf{v_1} = \lambda_1^n \mathbf{v_1}$ and $A^n \mathbf{v_2} = \lambda_2^n \mathbf{v_2}$
- (iv) For Diagonalization: Write $A = PDP^{-1}$, where D is 2×2 matrix with eigenvalues in its diagonal and P is 2×2 matrix with eigenvectors as its columns.
- (v) For A^n : Use $A = PDP^{-1}$, which gives $A = PD^nP^{-1}$.