Formal Semantics III: Designing Rules (Part D)

CAS CS 320: Principles of Programming Languages

Thursday, April 4, 2024

NEW MATERIAL, NOT IN PRECEDING LECTURES

Applying The Evaluation Rules To Our "Toy" Language Augmented With Variables

called "VarLang" in these slides where
we use "p/S" to denote a configuration
instead of "(S,p)"

VarLang is a stack manipulating language with the ability to bind variables. When designing its operational semantics, we must account for the bindings between variables and values.

```
<state> ::= cyrog>/<stack>/<env> | ERROR
<stack> ::= <int> :: <stack> | []
<env> ::= (<var> → <int>) :: <env> | []
```

Environment examples:

```
[]
(x → 1) :: []
(y → 3) :: (x → 1) :: []
(y → 3) :: (x → 1) :: (w → 4) :: []
```

```
<state> ::= cyrog>/<stack>/<env> | ERROR
<stack> ::= <int> :: <stack> | []
<env> ::= (<var> → <int>) :: <env> | []
```

We include the environment as a part of VarLang's reduction relation.

$$P/S/E \rightarrow Q/R/F$$

This relation states that program P with stack S and environment E reduces to program Q with stack R and environment F.

```
n \in \mathbb{Z}
Push n; p/S/E \rightarrow p/(n :: S)/E
v \in var \qquad fetch(E, v) = n
Push v; p/S/E \rightarrow p/(n :: S)/E
push-var
Push v; p/S/E \rightarrow p/(n :: S)/E
push-var
push-var
push v; p/S/E \rightarrow ERROR
push-error
push v; p/S/E \rightarrow ERROR
```

 $fetch: env \times var \rightarrow \mathbb{Z} \cup \{\bot\}$ fetch and update are meta-functions which exist outside of VarLang. $update: env \times var \times \mathbb{Z} \rightarrow env$ They manipulate the environment in the expected way.

Example: reduction of Push 1; Let x; Push x; Push x; [] in an empty stack and environment.

```
1 \in \mathbb{Z}
(1) Push 1; Let x; Push x; Push x; [] / [] / [] \rightarrow Let x; Push x; Push x; [] / (1 :: []) / []
```

Example: reduction of Push 1; Let x; Push x; Push x; \prod in an empty stack and environment.

```
(1) \frac{1 \in \mathbb{Z}}{\text{Push 1; Let x; Push x; Push x; } \left[ \left| \left| \left| \right| \right| \right] \to \text{Let x; Push x; Push x; } \left[ \left| \left| \left| \left| \right| \right| \right| \right] = \text{push-int}}{\text{update}([], x, 1) = (x \mapsto 1) :: []}
\frac{update([], x, 1) = (x \mapsto 1) :: []}{\text{Let x; Push x; Push x; } \left[ \left| \left| \left| \left| \right| \right| \right| \right] \to \text{Push x; Push x; } \left[ \left| \left| \left| \right| \right| \right| \right] = \text{let-ok}}
```

Example: reduction of Push 1; Let x; Push x; Push x; [] in an empty stack and environment.

```
(1) Push 1; Let x; Push x; Push x; []/[]/[] \rightarrow Let x; Push x; Push x; []/(1 :: [])/[] push-int

\frac{update([], x, 1) = (x \mapsto 1) :: []}{\text{Let x; Push x; Push x; } []/(1 :: [])/[] \rightarrow \text{Push x; Push x; } []/([]/(x \mapsto 1) :: []} \text{let-ok}

(2) 
\frac{x \in var}{\text{Push x; Push x; } []/([]/(x \mapsto 1) :: [] \rightarrow \text{Push x; } []/([1 :: [])/(x \mapsto 1) :: []} \text{push-var}

(3) 
\frac{x \in var}{\text{Push x; Push x; } []/([]/(x \mapsto 1) :: [] \rightarrow \text{Push x; } []/([1 :: [])/(x \mapsto 1) :: []} \text{push-var}
```

Example: reduction of Push 1; Let x; Push x; Push x; [] in an empty stack and environment.

```
1 \in \mathbb{Z}
(1) Push 1; Let x; Push x; Push x; []/[]/[]\rightarrow Let x; Push x; Push x; []/(1::[])/[]
       update([], x, 1) = (x \mapsto 1) :: []
\frac{upuate([], x, 1) = (x \mapsto 1) :: []}{\text{Let } x; \text{ Push } x; \text{ Push } x; [] / [] / (x \mapsto 1) :: []} \text{ let-ok}
(3) \frac{x \in var}{\text{Push x; Push x; [] / [] / (x \mapsto 1) :: [] \rightarrow \text{Push x; [] / (1 :: []) / (x \mapsto 1) :: []}} \text{push-var}
                            \frac{fetch((x \mapsto 1) :: [], x) = 1}{\text{push-var}}
        x \in var
(4) Push x; \lceil \mid / (1 :: \lceil \mid) \mid / (x \mapsto 1) :: \lceil \mid \rightarrow \mid \mid / (1 :: 1 :: \lceil \mid) \mid / (x \mapsto 1) :: \lceil \mid
```

Example: reduction of Push 1; Let x; Push x; Push x; [] in an empty stack and environment.

Compose together single step reductions via the transitive rule for multi-step.

(THIS	PAGE	INTENTIONALLY	LEFT	BLANK)