Análise e Síntese de Algoritmos

Fluxos Máximos [CLRS, Cap. 26]

2011/2012

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Árvores abrangentes
 - Caminhos mais curtos
 - Fluxos máximos
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica
 - Algoritmos greedy
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Emparelhamento de Cadeias de Caracteres
 - Complexidade Computacional
 - Algoritmos de Aproximação

Resumo

- Motivação
- 2 Definições
- Método Ford-Fulkerson
 - Rede Residual
 - Caminhos de Aumento
 - Cortes em Redes de Fluxo
- Algoritmo Edmonds-Karp
- 5 Emparelhamento Bipartido Máximo

Problema

Problema: fornecer água a Lisboa

Pretende-se determinar qual o volume de água máximo (por segundo), que é possível fazer chegar a Lisboa a partir da Barragem de Castelo de Bode

- Existe uma rede de condutas de água que permitem o envio da água de Castelo de Bode para Lisboa
- Cada conduta apresenta uma capacidade limite, de metros cúbicos por segundo
- Objectivo: Encontrar um algoritmo eficiente para resolver este problema

Motivação

Fluxos Máximos em Grafos

Dado um grafo dirigido G = (V, E):

- Com um vértice fonte s e um vértice destino t
 - Em que cada arco (u, v) é caracterizado por uma capacidade não negativa c(u, v)
 - A capacidade de cada arco (u, v) indica o valor limite de "fluxo" que é possível enviar de u para v através do arco (u, v)
- Pretende-se calcular o valor máximo de "fluxo" que é possível enviar do vértice fonte s para o vértice destino t, respeitando as restrições de capacidade dos arcos

Motivação

Aplicações

Envio de materiais em rede de transportes

- Água, petróleo ou gás
- Contentores
- Electricidade
- Bytes
- ..

Motivação

Fluxos Máximos em Grafos

Para redes de fluxo com múltiplas fontes e/ou destinos

- Definir super-fonte que liga a todas as fontes
- Definir super-destino ao qual ligam todos os destinos
- Capacidades infinitas entre super-fonte e fontes, e entre destinos e super-destino

Definições

Fluxos Máximos em Grafos

- Uma rede de fluxo G = (V, E) é um grafo dirigido em que cada arco (u, v) tem capacidade $c(u, v) \ge 0$
 - Se $(u, v) \notin E$, então c(u, v) = 0
- Dois vértices especiais: fonte s e destino t
- Todos os vértices de G pertencem a um caminho de s para t
- Grafo é ligado, $|E| \ge |V| 1$
- Um fluxo G = (V, E) é uma função $f : V \times V \rightarrow R$ tal que:
 - Restrição de Capacidade: $f(u, v) \le c(u, v), \forall u, v \in V$
 - Simetria: $f(u, v) = -f(v, u), \forall u, v \in V$
 - Conservação de Fluxo $\sum_{v \in V} f(u, v) = 0, \forall u \in V \{s, t\}$

Definições

Fluxos Máximos em Grafos

- Valor de um fluxo: $|f| = \sum_{v \in V} f(u, v)$
- Problema do Fluxo Máximo: Dada rede de fluxo G com fonte s e destino t, calcular o fluxo de valor máximo de s para t

Valor do Fluxo: 10

Fluxo Máximo: 20

Fluxo Máximo

Propriedades

- Dados conjuntos de vértices X e Y: $\sum_{x \in X} \sum_{y \in Y} f(x, y)$
- Considere rede de fluxo G = (V, E), uma função de fluxo f em G e X, Y, Z ⊂ V:
 - f(X,X) = 0
 - f(X, Y) = -f(Y, X)
 - Se $X \cap Y = \emptyset$:
 - $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$
 - $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$

Método Ford-Fulkerson

Método Ford-Fulkerson Redes residuais

- Caminhos de aumento
- Cortes em redes de fluxo
- Teorema do Fluxo-Máximo Corte-Mínimo
- Algoritmo Genérico de Ford-Fulkerson

Método Ford-Fulkerson

Ford-Fulkerson-Method(G, s, t)

- 1 Inicializar fluxo f a 0
- 2 while existe caminho de aumento p
- 3 **do** aumentar fluxo f utilizando p
- 4 return f

Rede Residual

Dado G = (V, E), um fluxo f, e vértices $u, v \in V$

- $c_f(u, v)$ denota a capacidade residual de (u, v): fluxo líquido adicional que é possível enviar de u para v (fluxo que sobra)
- $c_f(u,v) = c(u,v) f(u,v)$
- $G_f = (V, E_f)$ denota a rede residual de G: onde $E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$
- Cada arco (residual) de G_f permite apenas fluxo líquido positivo

Rede Residual

Rede Residual: Exemplo

Algoritmo Edmonds-Karp

Rede Residual

Fluxo de Soma

Seja G = (V, E) uma rede de fluxo, f um fluxo, G_f a rede residual de G e f' um fluxo em G_f

- Fluxo de soma f + f' definido para cada par $u, v \in V$: (f + f')(u, v) = f(u, v) + f'(u, v)
- Fluxo de soma é um fluxo com valor |f + f'| = |f| + |f'|
- Propriedades de um fluxo são verificadas: restrição de capacidade, simetria e conservação de fluxo
- Observação: f' é definido em G_f e é um fluxo
- Cálculo do valor de fluxo

$$|f + f'| = \sum_{v \in V} (f + f')(s, v)$$

$$= \sum_{v \in V} (f(s, v) + f'(s, v))$$

$$= \sum_{v \in V} f(s, v) + \sum_{v \in V} f'(s, v)$$

$$= |f| + |f'|$$

Caminhos de Aumento

Caminho de Aumento

Dado rede residual G = (V, E) e um fluxo f:

- caminho de aumento p:
 - caminho simples de s para t na rede residual G_f
- capacidade residual de p:

•
$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ em } p\}$$

- $c_f(p)$ permite definir fluxo f_p em G_f , $|f_p| = c_f(p) > 0$
- $f' = f + f_D$ é um fluxo em G, com valor $|f'| = |f| + |f_D| > |f|$

Corte em Rede de Fluxo

Um corte (S, T) de G = (V, E) é uma partição de V em S e T = V - S, tal que $S \in S$ e $S \in T$

- fluxo líquido do corte (S, T): $f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v)$
- capacidade do corte (S,T): $c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$

Corte em Rede de Fluxo

Um corte (S, T) de G = (V, E) é uma partição de V em S e T = V - S, tal que $S \in S$ e $t \in T$

- fluxo líquido do corte (S, T): $f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v)$
- capacidade do corte (S, T): $c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$

Fluxo através de um Corte

Se G = (V, E) com fluxo f, então o fluxo líquido através de um corte (S, T) é f(S, T) = |f|

- $V = T \cup S$, pelo que $f(S, V) = f(S, T \cup S) = f(S, T) + f(S, S)$
- Logo, f(S, T) = f(S, V), dado que f(S, S) = 0
- f(S, V) = f(s, V) + f(S s, V) = f(s, V) = |f|
- Obs: para $u \in S s$, f(u, V) = 0 (conservação de fluxo)

Corte em Rede de Fluxo

Qualquer valor de fluxo é limitado superiormente pela capacidade de qualquer corte de *G*

Seja (S, T) qualquer corte de G, e f um fluxo:

$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) \le \sum_{u \in S} \sum_{v \in T} c(u,v) = c(S,T)$$

Teorema Fluxo Máximo - Corte Mínimo

Seja G = (V, E), com fonte s e destino t, e um fluxo f. Então as proposições seguintes são equivalentes:

- f é um fluxo máximo em G
- A rede residual G_f não contém caminhos de aumento
- |f| = c(S, T) para um corte (S, T) de G

Teorema Fluxo Máximo - Corte Mínimo

Seja G = (V, E), com fonte s e destino t, e um fluxo f. Então as proposições seguintes são equivalentes:

- f é um fluxo máximo em G
- A rede residual G_f não contém caminhos de aumento
- |f| = c(S, T) para um corte (S, T) de G
- $\mathbf{1} \rightarrow \mathbf{2}$
 - Admitir que f é fluxo máximo em G mas que G_f tem caminho de aumento
 - Então é possível definir um novo fluxo $f+f_p$ com valor $|f|+|f_p|>|f|$; uma contradição

Teorema Fluxo Máximo - Corte Mínimo

Seja G = (V, E), com fonte s e destino t, e um fluxo f. Então as proposições seguintes são equivalentes:

- f é um fluxo máximo em G
- A rede residual G_f não contém caminhos de aumento
- |f| = c(S, T) para um corte (S, T) de G

 $2 \rightarrow 3$

- $S = \{v \in V : \text{ existe caminho de } s \text{ para } v \text{ em } G_t\}$; T = V S; $s \in S$ e $t \in T$
- Com $u \in S$ e $v \in T$, temos f(u, v) = c(u, v), pelo que |f| = f(S,T) = c(S,T)

Teorema Fluxo Máximo - Corte Mínimo

Seja G = (V, E), com fonte s e destino t, e um fluxo f. Então as proposições seguintes são equivalentes:

- f é um fluxo máximo em G
- A rede residual G_f não contém caminhos de aumento
- |f| = c(S, T) para um corte (S, T) de G

 $3 \rightarrow 1$

- Dado que $|f| \le c(S, T)$, para qualquer corte (S, T) de G
- Como |f| = c(S, T) (definido acima), então f é fluxo máximo

Teorema Fluxo Máximo - Corte Mínimo: Exemplo

Corte mínimo?

Corte mínimo? $(\{s, v_1, v_2, v_4\}, \{v_3, t\})$

Algoritmo Ford-Fulkerson

```
Ford-Fulkerson(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

4 while there exists a path p from s to t in G_f

5 do c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \in p\}

6 for each edge (u, v) \in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

Cortes em Redes de Fluxo

Cortes em Redes de Fluxo

Cortes em Redes de Fluxo

Algoritmo Ford-Fulkerson: Exemplo

Motivação

Algoritmo Ford-Fulkerson

Análise Algoritmo Básico

- Número de aumentos de fluxo pode ser elevado
- Ex: Fluxo máximo = 2000000
- No pior caso: número de caminhos de aumento é 2000000

Rede de Fluxo

Caminho de aumento p com $c_f(p) = 1$

Análise Algoritmo Básico

- Número de caminhos de aumento limitado por valor máximo do fluxo |f*|
- Complexidade: O(E |f*|)
- Por exemplo: DFS para encontrar caminho de aumento

Algoritmo Edmonds-Karp

- Implementação do método de Ford-Fulkerson
- Escolher caminho de aumento mais curto no número de arcos
- Utilizar BFS em G_f para identificar caminho mais curto
- Complexidade: O(V E2)

Análise Edmonds-Karp

Definições

- $\delta_f(s, v)$: distância mais curta de s para v na rede residual G_f
- $\delta_{f'}(s, v)$: distância mais curta de s para v na rede residual $G_{f'}$
- Sequência de eventos considerada:

$$f o G_f o \mathsf{BFS} o
ho o f' o \mathsf{G}_{f'} o \mathsf{BFS} o
ho'$$

Resultados:

- $\delta_f(s, v)$ cresce monotonamente com cada aumento de fluxo
- Número de aumentos de fluxo é O(V E)
- Tempo de execução é O(V E²)
- O(E) devido a BFS e aumento de fluxo a cada passo

Análise Edmonds-Karp

 $\delta_f(s, v)$ cresce de forma monótona com cada aumento de fluxo

• Prova por contradição: considere-se o primeiro $v \in V$ tal que, após aumento de fluxo (de f para f'), a distância do caminho mais curto diminui, $\delta_{f'}(s,v) < \delta_f(s,v)$

Análise Edmonds-Karp

 $\delta_f(s, v)$ cresce de forma monótona com cada aumento de fluxo

- Prova por contradição: considere-se o primeiro v ∈ V tal que, após aumento de fluxo (de f para f'), a distância do caminho mais curto diminui, δ_{f'}(s, v) < δ_f(s, v)
- Seja $p = \langle s, ..., u, v \rangle$ o caminho mais curto de s para v em $G_{f'}$
 - $\delta_{f'}(s,u) = \delta_{f'}(s,v) 1$
 - $\delta_{f'}(s, u) > \delta_f(s, u)$ (porque v é o primeiro que falha)

Análise Edmonds-Karp

 $\delta_f(s,v)$ cresce de forma monótona com cada aumento de fluxo

- Prova por contradição: considere-se o primeiro v ∈ V tal que, após aumento de fluxo (de f para f'), a distância do caminho mais curto diminui, δ_{f'}(s, v) < δ_f(s, v)
- Seja $p = \langle s, ..., u, v \rangle$ o caminho mais curto de s para v em $G_{f'}$
 - $\delta_{f'}(s, u) = \delta_{f'}(s, v) 1$
 - $\delta_{f'}(s, u) \ge \delta_f(s, u)$ (porque v é o primeiro que falha)
- $(u, v) \in E_f : \delta_f(s, v) \le \delta_f(s, u) + 1 \le \delta_{f'}(s, u) + 1 = \delta_{f'}(s, v)$

Análise Edmonds-Karp

 $\delta_f(s,v)$ cresce de forma monótona com cada aumento de fluxo

- Prova por contradição: considere-se o primeiro v ∈ V tal que, após aumento de fluxo (de f para f'), a distância do caminho mais curto diminui, δ_{f'}(s, v) < δ_f(s, v)
- Seja $p=< s,\ldots,u,v>$ o caminho mais curto de s para v em $G_{f'}$
 - $\delta_{f'}(s, u) = \delta_{f'}(s, v) 1$
 - $\delta_{f'}(s,u) \ge \delta_f(s,u)$ (porque v é o primeiro que falha)
- $(u, v) \in E_f : \delta_f(s, v) \le \delta_f(s, u) + 1 \le \delta_{f'}(s, u) + 1 = \delta_{f'}(s, v)$
- $(u, v) \notin E_f e(u, v) \in E_{f'}$: aumento de fluxo de v para u
 - Aumento sempre pelo caminho mais curto, então o caminho mais curto entre s e u em G_f tem como último arco (v, u):
 - Então, $\delta_f(s,v) = \delta_f(s,u) 1 \le \delta_{f'}(s,u) 1 = \delta_{f'}(s,v) 2$ Contradição!

Análise Edmonds-Karp

- arco (u, v) na rede residual G_f é crítico se capacidade residual de p é igual à capacidade residual do arco
 - arco crítico desaparece após aumento de fluxo
- Quantas vezes pode arco (u, v) ser arco crítico?

Análise Edmonds-Karp

- arco (u, v) na rede residual G_f é crítico se capacidade residual de p é igual à capacidade residual do arco
 - arco crítico desaparece após aumento de fluxo
- Quantas vezes pode arco (u, v) ser arco crítico?
 - Como caminhos de aumento são caminhos mais curtos, $\delta_f(s,v) = \delta_f(s,u) + 1$
 - (u, v) só volta à rede residual após arco (v, u) aparecer em caminho de aumento (com fluxo f')

Análise Edmonds-Karp

- arco (u, v) na rede residual G_f é crítico se capacidade residual de p é igual à capacidade residual do arco
 - arco crítico desaparece após aumento de fluxo
- Quantas vezes pode arco (u, v) ser arco crítico?
 - Como caminhos de aumento são caminhos mais curtos, $\delta_f(s,v) = \delta_f(s,u) + 1$
 - (u, v) só volta à rede residual após arco (v, u) aparecer em caminho de aumento (com fluxo f')

Como,
$$\delta_{f'}(s,u) = \delta_{f'}(s,v) + 1$$
 Dado que,
$$\delta_f(s,v) \leq \delta_{f'}(s,v) \text{ (resultado anterior)}$$
 Obtém-se,
$$\delta_{f'}(s,u) = \delta_{f'}(s,v) + 1 \geq \delta_f(s,v) + 1 = \delta_f(s,u) + 2$$

Análise Edmonds-Karp

- Distância de s a u aumenta pelo menos de duas unidades entre cada par de vezes que (u, v) é crítico
 - No limite, distância de s a u é não superior a |V| − 2
 - Pelo que arco (u, v) pode ser crítico O(V) vezes
 - Existem O(E) pares de vértices
 - Na execução do algoritmo de Edmonds-Karp o número total de vezes que arcos podem ser críticos é O(V E)
 - Como cada caminho de aumento tem um arco crítico, então existem O(V E) caminhos de aumento

Análise Edmonds-Karp

- Distância de s a u aumenta pelo menos de duas unidades entre cada par de vezes que (u, v) é crítico
 - No limite, distância de s a u é não superior a |V|-2
 - Pelo que arco (u, v) pode ser crítico O(V) vezes
 - Existem O(E) pares de vértices
 - Na execução do algoritmo de Edmonds-Karp o número total de vezes que arcos podem ser críticos é O(V E)
 - Como cada caminho de aumento tem um arco crítico, então existem O(V E) caminhos de aumento
- Complexidade de Edmonds-Karp é O(V E²)
 - Complexidade de BFS é O(V+E) = O(E)
 - Aumento de fluxo em O(E)

Emparelhamento Bipartido Máximo

Considere um grafo G = (V, E) não dirigido

- Emparelhamento:
 - M ⊆ E, tal que para qualquer vértice v ∈ V não mais do que um arco em M é incidente em v
- Emparelhamento Máximo:
 - Emparelhamento cardinalidade máxima (na dimensão de M)
- Grafo Bipartido:
 - Grafo pode ser dividido em V = L∪R, em que L e R são disjuntos e em que todos os arcos de E estão entre L e R
- Emparelhamento Bipartido Máximo:
 - Emparelhamento máximo em que G é bipartido

Emparelhamento Bipartido Máximo: Exemplo

Utilização Redes de Fluxo

Construir grafo G' = (V', E'):

$$V' = V \cup \{s, t\}$$

$$E' = \{(s, u) : u \in L\} \cup \{(u, v) : u \in L, v \in R, e(u, v) \in E\} \cup \{(v, t) : v \in R\}$$

- Atribuir capacidade unitária a cada arco de E'
- Emparelhamento bipartido máximo em G equivale a encontrar fluxo máximo em G'

Emparelhamento Bipartido Máximo: Exemplo

Análise da Correcção

- 1. Dados $G \in G'$, se M é um emparelhamento em G, existe um fluxo f de valor inteiro em G', com |f| = |M|
 - Seja M um emparelhamento, e $(u, v) \in M$
 - Definir f utilizando arcos de M, f(s,u) = f(u,v) = f(v,t) = 1
 - Para restantes arcos $(u, v) \in E', f(u, v) = 0$
 - Os caminhos s → u → v → t para todo o (u, v) ∈ M são disjuntos em termos dos vértices, com excepção de s e t
 - Como existem |M| caminhos, cada um com uma contribuição de uma unidade de fluxo para o fluxo total f, |f| = |M|

Análise da Correcção

- 2. Dados $G \in G'$, se |f| é um fluxo de valor inteiro em G', existe um emparelhamento M em G, com |f| = |M|
 - Definir $M = \{(u, v) : u \in L, v \in R \text{ e } f(u, v) > 0\}$
 - Para cada $u \in L$, existe no máximo um $v \in R$ tal que f(u, v) = 1
 - Apenas um arco incidente com capacidade 1
 - Capacidades s\u00e3o inteiras
 - De forma simétrica para v ∈ R
 - Logo M é um emparelhamento
 - |M| = f(L,R) = f(s,L) = f(s,V') = |f|

Análise da Correcção

- Se todas as capacidades têm valor inteiro, então para fluxo máximo f,
 |f| é inteiro
 - Indução no número de iterações do algoritmo genérico de Ford-Fulkerson
- Emparelhamento bipartido máximo |M| em G corresponde a |f|, em que f é o fluxo máximo de G'
 - Se |M| é emparelhamento máximo em G, e |f| não é máximo em G', então existe f' que é máximo
 - f' é inteiro, |f'| > |f|
 - e f' corresponde a emparelhamento |M'|, com |M'| > |M|; Contradição!

Análise da Complexidade

- A aplicação do algoritmo genérico de Ford-Fulkerson tem complexidade O(E |f*|)
- Emparelhamento bipartido máximo é não superior a min(|L|, |R|) = O(V) e tem valor inteiro (i.e., no caso do emparelhamento máximo, |f*| = O(V))
- Complexidade de identificação do emparelhamento bipartido máximo é O(V E)