DSC5211C - Workshop 4

Name: Cho Zin Tun (A0098996W); Peh Yingqi Amelia (A0071186E); Toh Pei Xuan (A0000584R)

1ai) Results suggest that the series is not stationary

Sample: 1960M01 2018M12 Included observations: 708							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
		1	0.992	0.992	699.84	0.000	
	l l	2	0.980	-0.257	1384.0	0.000	
	ı ı	3	0.968	0.008	2051.6	0.000	
1	ı j ı	4	0.955	0.030	2703.3	0.000	
	1 1	5	0.944	0.004	3339.9	0.000	
	1 0 1	6	0.931	-0.037	3961.0	0.000	
1	ı İ I	7	0.919	0.027	4567.3	0.000	
1	ı İ D	8	0.909	0.068	5160.5	0.000	
1	ı İ	9	0.901	0.111	5743.7	0.000	
1	ı ı	10	0.893	-0.004	6318.5	0.000	
1	@	11	0.886	-0.055	6884.1	0.000	
1		12		-0.113	7438.2	0.000	
1	1 1	13	0.866	0.016	7980.0	0.000	
1	ı D	14	0.856	0.069	8510.8	0.000	
1	ı İ ı	15		-0.008	9031.3	0.000	
1	111	16	0.838	0.019	9542.0	0.000	
1	111	17	0.830	0.021	10043.	0.000	
1	1 1	18	0.822	0.006	10535.	0.000	
1	1 1	19	0.814	0.010	11018.	0.000	
1	1 1	20	0.807	0.006	11494.	0.000	
1	1 ₫ 1	21		-0.029	11963.	0.000	
1	ı l ı	22		-0.045	12423.	0.000	
1	ı l ı	23		-0.017	12873.	0.000	
1	1 1	24	0.774	0.002	13314.	0.000	
1	1 1 11	25	0.766	0.034	13745.	0.000	
1	1 . 1 1	26	0.758	0.031	14168.	0.000	
1	' II	27	0.751	0.090	14585.	0.000	
1	1 1	28	0.746	0.012	14997.	0.000	
1	1 1	29	0.741	0.024	15404.	0.000	
1	1]1	30	0.738	0.000	15807.	0.000	
1	ų į	31	-	-0.002	16207.	0.000	
1	' D	32	0.732	0.061	16605.	0.000	
1	1 1	33	0.729	0.008	17001.	0.000	
	111	34	0.727	0.017	17395.	0.000	
	'] li	35	0.724	0.048	17786.	0.000	
	I II 1	36	0.722	-0.045	18176.	0.000	

1aii) Results show that t-stat is -0.733304 which has significance of 0.3988. This more than 0.05 hence there is no evidence to reject the null hypothesis that "COPPER" has unit root (γ =0). Hence it is also non-stationary.

Null Hypothesis: COPPER has a unit root Exogenous: None Lag Length: 1 (Automatic - based on SIC, maxlag=19)					
		t-Statistic	Prob.*		
Augmented Dickey-Fu Test critical values:	1% level	-0.733304 -2.568242	0.3988		
	5% level 10% level	-1.941272 -1.616398			

1aiii) Similarly, Results show that t-stat is -3.29265 which has significance of 0.0683. This more than 0.05 hence there is no evidence to reject the null hypothesis that "COPPER" has unit root (γ =0). Hence it is also non-stationary.

Null Hypothesis: COPPER has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=19)					
		t-Statistic	Prob.*		
Augmented Dickey-Ful Test critical values:	ller test statistic 1% level 5% level 10% level	-3.292650 -3.971104 -3.416195 -3.130392	0.0683		

1aiv) Only 1 lag term is significant.

Exogenous: None Lag Length: 1 (Fixed)				
			t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic		-0.733304	0.3988
Test critical values:	1% level		-2.568242	
	5% level		-1.941272	
	10% level		-1.616398	
*MacKinnon (1996) on	e-sided p-value	S.		
Augmented Dickey-Ful Dependent Variable: D Method: Least Squares	(COPPER)	on		
Dependent Variable: D	(COPPER) 19:58 60M03 2018M1	2	t-Statistic	Prob.
Dependent Variable: D Method: Least Squares Date: 02/13/19 Time: Sample (adjusted): 196 Included observations: Variable	(COPPER) 19:58 60M03 2018M1 706 after adjus	2 tments Std. Error		
Dependent Variable: D Method: Least Squares Date: 02/13/19 Time: Sample (adjusted): 196 Included observations:	(COPPER) 19:58 60M03 2018M1 706 after adjus	2 tments	t-Statistic -0.733304 9.439353	Prob. 0.4636 0.0000
Dependent Variable: D Method: Least Squares Date: 02/13/19 Time: Sample (adjusted): 196 Included observations: Variable COPPER(-1)	(COPPER) 5 19:58 50M03 2018M1 706 after adjus Coefficient -0.001762	2 tments Std. Error 0.002403	-0.733304 9.439353	0.4636
Dependent Variable: D Method: Least Squares Date: 02/13/19 Time: Sample (adjusted): 196 Included observations: Variable COPPER(-1) D(COPPER(-1)) R-squared Adjusted R-squared	(COPPER) 19:58 60M03 2018M1 706 after adjus Coefficient -0.001762 0.335927 0.111507 0.110245	2 tments Std. Error 0.002403 0.035588 Mean depend S.D. dependo	-0.733304 9.439353 dent var ent var	0.4636 0.0000 7.573839 243.9988
Dependent Variable: D Method: Least Squares Date: 02/13/19 Time: Sample (adjusted): 196 Included observations: Variable COPPER(-1) D(COPPER(-1)) R-squared Adjusted R-squared S.E. of regression	(COPPER) 19:58 50M03 2018M1 706 after adjus Coefficient -0.001762 0.335927 0.111507 0.110245 230.1563	2 tments Std. Error 0.002403 0.035588 Mean depend S.D. depend Akaike info c	-0.733304 9.439353 dent var ent var riterion	0.4636 0.0000 7.573839 243.9988 13.71822
Dependent Variable: D Method: Least Squares Date: 02/13/19 Time: Sample (adjusted): 196 Included observations: Variable COPPER(-1) D(COPPER(-1)) R-squared Adjusted R-squared	(COPPER) 19:58 60M03 2018M1 706 after adjus Coefficient -0.001762 0.335927 0.111507 0.110245	2 tments Std. Error 0.002403 0.035588 Mean depend S.D. dependo	-0.733304 9.439353 dent var ent var riterion	0.4636 0.0000 7.573839 243.9988

Date: 02/13/19 Time: 20:04 Sample: 1960M01 2018M12 Included observations: 706

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
1 1		1 0.016	0.016	0.1745	0.676
ı l ı	ı l ı	2 -0.040	-0.040	1.3001	0.522
ı l ı	101	3 -0.034	-0.033	2.1310	0.546
ı l ı	II 1	4 -0.042	-0.042	3.3627	0.499
ı İ D		5 0.056	0.055	5.5948	0.348
[]		6 -0.066	-0.072	8.6803	0.192
	<u> </u>	7 -0.014	-0.010	8.8265	0.265
<u> </u>	l l	8 -0.185	-0.190	33.231	0.000
ı Q ı	101	9 -0.045	-0.041	34.660	0.000
1 1	101	10 0.003	-0.025	34.667	0.000
ı İ		11 0.171	0.171	55.738	0.000
1 þ i	1 🖟	12 0.061	0.035	58.440	0.000
Q '	<u> </u>	13 -0.115	-0.091	67.902	0.000
11	111	14 -0.015	-0.032	68.058	0.000
1 1	1 1	15 0.002	0.001	68.060	0.000
ı l l	Q +	16 -0.005	-0.063	68.079	0.000
ı D i	I	17 0.042	0.044	69.347	0.000
ı l ı	 	18 -0.031	-0.022	70.066	0.000
4 '	1 1	19 -0.065		73.118	0.000
111	1 1	20 -0.012	0.008	73.229	0.000
' []		21 0.070	0.049	76.852	0.000
I I II		22 0.052		78.835	0.000
! ∄ !	I	23 0.046	0.040	80.400	0.000
q ·	 	24 -0.058		82.905	0.000
I l I	1 1	25 -0.019	0.013	83.180	0.000
1	<u> </u>	26 -0.047		84.831	0.000
'∐ '	111		-0.031	85.667	0.000
<u> </u>	9 1	28 -0.039		86.797	0.000
" '	'[['	29 -0.050		88.614	0.000
<u> </u>	<u> </u>	30 0.026	0.049	89.129	0.000
<u> </u>	<u> </u>		-0.078	95.057	0.000
1 1	 	i	-0.047	95.104	0.000
1	11	i e	-0.015	95.225	0.000
t ∦ t	4	34 -0.021	-0.066	95.551	0.000
(1 1		35 0.039	0.026	96.706	0.000
ı D ı		36 0.056	0.065	99.007	0.000

Test shows that the residuals in the above model are not correlated (see above). Hence the model with one lag satisfies the residual assumptions. The augmented dickey fuller test indicates that this series is not stationary.

1av)

Date: 02/13/19 Time: 20:17 Sample: 1960M01 2018M12 Included observations: 707

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	0.333	0.333	78.954	0.00
ı İ <u>l</u> ı	i	2		-0.055	81.743	0.00
1 []	111	3	-0.020		82.020	0.00
ı l i	111	4	-0.037	-0.021	82.987	0.00
1 1	1 1	5	0.009	0.033	83.043	0.00
[6	-0.081	-0.107	87.696	0.00
□ ı	I	7	-0.098	-0.045	94.588	0.00
<u> </u>		8	-0.205	-0.176	124.70	0.00
[1 1 1	9	-0.090	0.037	130.57	0.00
ı İ I	1 0 1	10	0.025	0.041	131.02	0.00
ı İ		11	0.166	0.160	150.89	0.00
ı İ D	(12	0.074	-0.058	154.87	0.00
□ i		13	-0.082	-0.104	159.68	0.00
ıııı	1 1	14	-0.040	-0.004	160.86	0.00
ı l ı	1 1	15	-0.012	-0.004	160.96	0.00
ı İı	1	16	-0.002	-0.046	160.96	0.00
1 1	1 0 1	17	0.021	0.053	161.29	0.00
ıııı	ı	18	-0.039	-0.037	162.37	0.00
(T I	19	-0.066	0.001	165.51	0.00
ı l ı	ı j ı	20	-0.007	0.026	165.54	0.00
ı İ II	 	21	0.078	0.041	169.93	0.00
ı İ II	111	22	0.078	-0.015	174.42	0.00
ı İ li	T I	23	0.045	0.022	175.94	0.00
ı l ı	(24	-0.049	-0.058	177.73	0.00
ı l ı	1 1	25	-0.054	-0.004	179.85	0.00
□ i		26	-0.076	-0.092	184.05	0.00
(111	27	-0.073	-0.024	187.94	0.00
	i	28	-0.075	-0.057	192.07	0.00
4	1 1	29	-0.071	0.007	195.75	0.00
ı l ı	ı l ı	30	-0.026	0.021	196.25	0.00
.		31	-0.085	-0.104	201.62	0.00
1 1 1	l l	32	-0.018	-0.027	201.87	0.00
1 1	TI I	33	0.004	-0.014	201.88	0.00
1 1	ı d ı	34	0.000	-0.040	201.88	0.00
ı İ D		35	0.051	0.061	203.82	0.00
, j ju	I	36	0.064	0.042	206.93	0.00

Null Hypothesis: D(COPPER) has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=19)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ıller test statistic 1% level 5% level 10% level	-18.75198 -2.568242 -1.941272 -1.616398	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COPPER,2)

Method: Least Squares Date: 02/13/19 Time: 20:17

Sample (adjusted): 1960M03 2018M12 Included observations: 706 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(COPPER(-1))	-0.665749	0.035503	-18.75198	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.332788 0.332788 230.0808 37320724 -4840.802 1.963378	Mean depend S.D. depende Akaike info co Schwarz crite Hannan-Quir	ent var riterion erion	-0.188938 281.6753 13.71615 13.72261 13.71865

Results suggest that the D(copper) series is stationary.

- The graph of D(copper) shows no patterns.
- The correlogram shows that auto correlation of residuals tend to 0
- The augmented dickey-fuller test shows that the T-Stat is significant and that the null hypothesis can be rejected which suggest that the series is stationary.

1b)

MA(1) – based on result below, model seems reasonable

Dependent Variable: DLOG(GOLD)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 02/13/19 Time: 19:56
Sample: 1985M02 2018M12
Included observations: 407
Convergence achieved after 16 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1) SIGMASQ	0.003484 0.167650 0.001196	0.002086 0.040449 6.34E-05	1.670293 4.144712 18.84932	0.0956 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.022957 0.018120 0.034710 0.486726 791.8023 4.746237 0.009174	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.003484 0.035029 -3.876179 -3.846630 -3.864485 2.026107
Inverted MA Roots	17			

Both the coefficient is significant

Residuals don't seem to have any pattern

Date: 02/13/19 Time: 19:58 Sample: 1985M01 2018M12 Included observations: 407 Q-statistic probabilities adjusted for 1 ARMA term Correlogram also suggest random residuals Autocorrelation Partial Correlation PAC Q-Stat Prob -0.014 -0.083 0.006 0.044 0.012 -0.009 -0.014 -0.084 0.004 0.037 0.015 -0.002 0.073 0.013 -0.002 0.0774 2.9417 2.9572 3.7588 3.8229 3.8558 5.9516 6.0305 6.0384 123456789 10 None of the Q stat is 0.086 0.228 0.289 0.431 0.570 0.429 0.536 significant (>0.05) -0.002 -0.013 0.150 0.005 0.020 0.028 0.025 6.0964 6.1854 16.262 16.277 16.296 16.689 17.181 -0.014 0.155 0.006 112341516178921223425678931333456 0.131 0.014 0.042 -0.006 17.723 19.070 19.071 21.741 21.778 22.175 22.446 23.295 23.332 25.267 25.478 25.483 25.483 25.491 25.989 27.526 0.004 0.056 -0.001 0.079 0.009 0.030 0.025 0.044 -0.009 -0.006 0.087 0.011 0.016 0.021 0.045 -0.021 0.434 0.444 0.500 0.007 -0.022 0.003 0.004 -0.034 0.059 -0.047 0.007 -0.022 -0.040 0.024 0.601 0.626 0.596 27.526 27.565 28.030 29.253 31.144 31.638 0.668 0.654 0.608 Ė 0.631

ARMA(2, 0): based on result below, model seems reasonable

Dependent Variable: L Method: ARMA Maxim Date: 02/13/19 Time: Sample: 1985M02 201 Included observations: Convergence achieved Coefficient covariance	All coefficients are significant				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C AR(1) AR(2) SIGMASQ	0.003473 0.150628 -0.105918 0.001188	0.001897 0.039910 0.043571 6.36E-05	1.830899 3.774163 -2.430929 18.67461	0.0679 0.0002 0.0155 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.029621 0.022398 0.034634 0.483406 793.1888 4.100590 0.006942	Mean depend S.D. dependd Akaike info c Schwarz crite Hannan-Quir Durbin-Watsd	ent var riterion erion nn criter.	0.003484 0.035029 -3.878078 -3.838679 -3.862486 1.992539	
Inverted AR Roots	.08+.32i	.0832i			

ARMA(0, 2): based on result below, model MA(2) is not significant which suggest that it can be dropped from the model, and hence this model should not be used

Dependent Variable: DLOG(GOLD)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 02/13/19 Time: 20:10
Sample: 1985M02 2018M12
Included observations: 407
Convergence achieved after 16 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1) MA(2) SIGMASQ	0.003479 0.151899 -0.079066 0.001188	0.001948 0.040588 0.043340 6.36E-05	1.786143 3.742491 -1.824306 18.67115	0.0748 0.0002 0.0688 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.029432 0.022207 0.034637 0.483500 793.1497 4.073607 0.007200	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.003484 0.035029 -3.877886 -3.838487 -3.862294 1.996835
Inverted MA Roots	.22	37		

All coefficients are significant except MA(2) which has pvalue more than 0.05

Residuals don't seem to have any pattern

Date: 02/13/19 Time: 20:12 Sample: 1985M01 2018M12 Included observations: 407 Q-statistic probabilities adjusted for 2 ARMA terms Correlogram also suggest random residuals Autocorrelation **Partial Correlation** PAC Q-Stat Prob 0.001 -0.004 -0.004 0.0003 0.001 123456789 None of the Q stat is -0.004 -0.004 0.0086 0.0164 0.898 significant (>0.05) ПÌП 10.1 0.654 0.806 0.912 0.670 0.777 0.045 0.045 ju 0.9810 0.9850 3.1919 3.2502 3.2594 0.018 0.018 -0.003 -0.003 0.073 0.074 0.012 0.010 0.073 0.012 0.005 þ п 0.004 0.860 -0.011 0.150 0.006 0.010 0.032 3.3135 13.484 13.525 13.552 14.023 -0.011 0.156 0.010 0.008 0.033 0.196 0.259 0.299 0.335 0.353 0.423 0.370 0.438 0.306 0.362 14.023 14.565 15.380 15.402 17.242 17.243 0.036 0.024 0.024 0.039 0.011 0.045 -0.005 0.085 0.044 0.044 0.007 0.066 0.001 0.087 0.012 0.042 0.025 0.053 20.496 20.557 21.311 21.578 22.838 22.834 25.001 25.193 25.207 25.222 25.698 27.155 27.276 27.531 28.937 30.460 b 0.011 0.042 0.014 0.025 0.019 0.053 0.048 -0.008 -0.026 0.070 0.066 0.424 0.413 ji i 0.471 ш b -0.021 -0.0460.452 0.006 -0.001 0.006 -0.016 -0.033 -0.042 0.057 0.023 0.507 0.562 0.590 ш 0.563 -0.016 -0.025 33 34 35 36 -0.024 -0.046 -0.056 -0.070 0.058 0.036 0.645 0.622 0.594 -0.038 -0.053 31.108 ſ 0.610

ARMA(1, 0): based on result below, residuals may not be stationary, hence not a good model

Dependent Variable: DLOG(GOLD)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 02/13/19 Time: 20:12
Sample: 1985M02 2018M12 All coefficients are significant Included observations: 407 Convergence achieved after 11 iterations Coefficient covariance computed using outer product of gradients Variable Coefficient Std. Error t-Statistic Prob. 0.003486 0.136010 0.001201 0.002101 0.039860 6.43E-05 1.659647 0.0978 AR(1) SIGMASQ 3.412218 18.67665 0.0007 0.0000 R-squared Adjusted R-squared 0.018565 0.013706 0.034788 0.003484 Mean dependent var S.D. dependent var 0.035029 Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat -3.871717 -3.842168 -3.860024 S.É. of regression Sum squared resid 0.488914 Log likelihood F-statistic Prob(F-statistic) 790.8945 3.820989 1.969347 0.022702 Inverted AR Roots .14

ARMA(1, 1): based on result below, AR(1) is not significant, which suggest that it can be dropped from the model, and hence this model should not be used

Dependent Variable: DLOG(GOLD)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 02/13/19 Time: 20:13
Sample: 1985M02 2018M12
Included observations: 407
Convergence achieved after 14 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) MA(1) SIGMASQ	0.003484 -0.330921 0.490279 0.001190	0.002013 0.215195 0.203645 6.33E-05	1.731338 -1.537772 2.407521 18.80114	0.0842 0.1249 0.0165 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.027818 0.020581 0.034666 0.484304 792.8132 3.843834 0.009822	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.003484 0.035029 -3.876232 -3.836833 -3.860640 2.011501
Inverted AR Roots Inverted MA Roots	33 49			

Not all coefficients are significant, AR(1) is not significant

Residuals don't seem to have any pattern

luded observations: 407 statistic probabilities adjusted for 2 ARMA terms							suggest random residuals	
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob			
		1 -0.00 2 -0.03 3 -0.01 4 0.05 5 0.01 6 -0.00 7 0.07 8 0.01 10 -0.01 11 0.15 12 0.00 13 0.00 14 0.03 15 0.03 16 0.04 17 0.00 20 0.08 21 0.00 22 0.03 23 0.02 24 0.05 25 -0.00 26 0.06 27 -0.02 28 0.00 29 0.00 30 -0.03 31 -0.02 33 -0.02 34 -0.05 35 -0.03	3 -0.019 1 0.049 3 0.012 4 -0.001 2 0.075 0 0.009 1 -0.002 4 -0.010 5 0.149 6 0.012 2 0.034 6 0.022 1 0.040 1 -0.005 4 0.086 8 0.011 1 -0.048 9 0.041 1 -0.048 9 0.044 1 -0.016 2 0.044 1 -0.016 9 0.045 1 -0.045 1 -0.045 6 -0.046 9 0.037	0.0171 0.4172 0.5559 1.6855 1.6898 3.8780 3.8789 14.056 14.083 14.056 14.083 15.691 17.336 20.396 20.425 21.084 21.286 22.416 22.453 24.708 24.716 24.724 25.186 24.724 25.186 24.724 25.186 26.822 27.117 28.481 20.396	0.456 0.446 0.793 0.573 0.693 0.7861 0.120 0.169 0.228 0.333 0.432 0.333 0.432 0.3411 0.369 0.4435 0.4435 0.4435 0.4435 0.590 0.626		None of the Q stat is significant	

Based on above, only the first 2 out of these 5 models are compared

- ARMA(0,1)
- ARMA(2,0)

The RSS, SBC, AIC and HQ of this 2 models are very close. Hence propse to use the model with less parameters, i.e. ARMA(0,1) because it is more parsimonous.

1bv) Forecasting

Dependent Variable: DLOG(GOLD)

Method: ARMA Generalized Least Squares (Gauss-Newton)

Date: 02/13/19 Time: 20:29 Sample: 1985M02 2018M12 Included observations: 407

Convergence achieved after 7 iterations

Coefficient covariance computed using outer product of gradients

d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1)	0.003484 0.168141	0.002007 0.049007	1.736294 3.430960	0.0833 0.0007
R-squared	0.022957	Mean dependent var		0.003484
Adjusted R-squared	0.020545	S.D. depende	0.035029	
S.E. of regression Sum squared resid	0.034667 0.486726	Akaike info c	-3.881092 -3.861393	
Log likelihood	791.8023	Hannan-Quinn criter.		-3.873297
F-statistic	9.516057	Durbin-Watson stat		2.027007
Prob(F-statistic)	0.002176			
Inverted MA Roots	17			

Diagnostic looks reasonable

Static forecast:

Forecast: GOLDF Actual: GOLD Forecast sample: 2018M01 2018M12 Included observations: 12 Root Mean Squared Error 29.58882 Mean Absolute Error 22.91981 Mean Abs. Percent Error 1.795537 Theil Inequality Coef. 0.011627 Bias Proportion 0.020820 Variance Proportion 0.002435 Covariance Proportion 0.976745 Theil U2 Coefficient 0.998494 Symmetric MAPE 1.794831

Dynamic Forecast:

Forecast: GOLDF
Actual: GOLD
Forecast sample: 2018M01 2018M12
Included observations: 12
Root Mean Squared Error 68.85195
Mean Absolute Error 62.95120
Mean Abs. Percent Error 5.024407
Theil Inequality Coef. 0.026895
Bias Proportion 0.087829

Variance Proportion 0.281625 Covariance Proportion 0.630546 Theil U2 Coefficient 3.025021 Symmetric MAPE 4.942829

Static forecasts are better.

Plot of goldf and gold

The fit of the forecast is good.

Plot of dlog(goldf) and dlog(gold)

The fit of the forecast is good also.

The gold price is expected to go up as the e(t-1) is positive and the coefficient is positive, the price is expected to be positive.

We cannot use static as there is no actual data. Dynamic forecast will take previously forecasted values while static forecast will take actual values to make next step forecast.