Daniel **Fitz** (43961229)

University of Queensland

STAT2203 – Probability and Statistics for Engineering

STAT2203 Lecture Notes

Table of Contents_____

Sums and Extremes of Independent Random Variables	2
Multivariate Normal Distribution	2
Affine Combinations of Normals Example	2
Sums of Independent Random Variables	2
Example	2
Law of Large Numbers	2
Central Limit Theorem	3
Approximating Binomial by Normal	3
Example	3
Approximating via the CLT	4
Extremes of Independent Random Variables	4
Summary	4
Statistics, Likelihood, and Estimation	4
Sums and Extremes of Independent Random Variables	4
Statistics	5
Likelihood	5
Likelihood Example	5
Maximum Likelihood Estimation	5
ML Estimation Example: Binomial Probability	6
Summary	6
Confidence Intervals and Hypothesis Testing	6
Statistics, Likelihood, and Estimation	6
Confidence Intervals	6
Confidence Interval Example	7
Approximate Confidence Intervals	7
Approximate Confidence Interval Example	7
Hypothesis Testing	8
Hypothesis Testing Example	8
Summary	9
Confidence Intervals and Hypothesis Testing II	9
Sample Variance	9
Sample Variance Example	10
Sample Mean with Unknown Variance	10
Summary	11
List of Tables	
Placeholder for table of contents	0
List of Figures	
Eigure 1: Approximating Pinemial by Normal	2

Sums and Extremes of Independent Random Variables

Multivariate Normal Distribution

- Jointly Gaussian Random Variables; as affine transform of vector of independent standard normals, examples
- Expectation of Vector- and Matrix-valued RVs; application to multivariate normal
- Affine combinations of independent normals; result, examples

Affine Combinations of Normals Example

Exercise: Let $X_1, ..., X_n \sim N(u, o^2)$ represent repeated measurements. Find is the distribution of the average

 $Y = \frac{X_1 \cdots + X_n}{n}$

Sums of Independent Random Variables

Law of Large Numbers and the Central Limit Theorem. Both theorems deal with Sums of Independent Random Variables. They arise for example in the following situations:

- 1) We flip a (biased) coin infinitely many times. Let $X_j = 1$ if the ith flip is "heads" and $X_j = 0$ otherwise. In general we do not know $p = P(X_j = 1)$. However, using the outcomes $x_1, ..., x_n$, we could estimate p by $(x_1 + ... + x_n)/n$
- 2) A certain machine needs to work continuously. The machine has one component that is very unreliable. This component is replaced immediately upon failure. Suppose there are n such (spare) components. If we denote the component lifetimes by $X_1, ..., X_n$, then the lifetime of the machine is given by $X_1 + ... + X_n$.
- 3) We weigh 20 randomly selected people. The average weight of the group is $(X_1 + ... + X_{20})/20$ Let $X_1, ..., X_n$ be independent and identically distributed random variables. For each n let $Sn = X1 \cdot \cdot \cdot + Xn$ Let $EX_i = u$ and $Var(X_i) = o^2$ (assuming that these are finite).

Some easy results are:

$$\mathbb{E}S_n = n\mathbb{E}X_1 = n\mu$$

and, by the independence of the summands,

$$Var(S_n) = n \ Var(X_1) = n\sigma^2$$

If we know the pdf or pmf of X_r , then we can (in principle) determine the pdf or pmf of S_n . The easiest way is to use transform techniques (Laplace transform, Characteristic function, etc).

An important property of these transforms is that the transform of the **sum** of independent random variables is equal to the **product** of the individual transforms.

Example

Example: Suppose each $X_i \sim \textit{Exp(lambda)}$. The Laplace transform of X_i say L is given by $L(s) = \mathbb{E} e^{-sX_i} = \frac{\lambda}{\lambda + s}$

$$L(s) = \mathbb{E}e^{-sX_i} = \frac{\lambda}{\lambda + s}$$

The Laplace transform of
$$S_n$$
, is given by
$$\mathbb{E} e^{-sS_n} = \mathbb{E} e^{-s(X_1+\dots+X_n)}$$

$$= \mathbb{E} e^{-sX_1} \dots \mathbb{E} e^{-sX_n} = (L(s))^n$$

$$= \left(\frac{\lambda}{\lambda+s}\right)^n$$

Using the uniqueness of Laplace transforms, this shows that S_n has a Gamma(n, lambda) distribution (Erlang distribution)

Law of Large Numbers

Consider the coin flip example. We expect that S_n/n is close to the unknown p for large n. We know this happens "empirically".

In general, we expect S_n/n to be close to u. Does this happen in our mathematical model? By Chebyshev's inequality we have for all e > 0,

$$\mathbb{P}\left(\mid \frac{S_n}{n} - \mu \mid > \epsilon\right) \le \frac{Var(S_n/n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0$$

as $n \rightarrow infinite$.

In other words the probability that S_n/n is more than e away from u can be made arbitrarily small by choosing n large enough.

This is the Weak Law of Large Numbers.

There is also a Strong Law of Large Numbers

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{S_n}{n}=\mu\right)=1$$

as $n \rightarrow infinite$

Central Limit Theorem

The Central Limit Theorem states, roughly, this: The **sum** of a large number of **iid** random variables has **approximately** a **Gaussian** distribution.

More precisely, it states that for all x

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right) = \Phi(x)$$

where Phi is the cdf of the standard normal distribution.

Approximating Binomial by Normal

Using the CLT we thus find the following important approximation:

Let $X \sim Bin(n, p)$. For large n, we have

$$\mathbb{P}(X \le k) \approx \mathbb{P}(Y \le k)$$

where $Y \sim N(np, np(1 - p))$.

As a rule of thumb, the approximation is accurate if both np and n(1 - p) are larger than 5.

We can improve on this somewhat by using a continuity correction, as illustrated by the following graph for the pmf of the *Bin(10, 1/2)* distribution.

Figure 1: Approximating Binomial by Normal

For example,

$$\mathbb{P}(X=k) \approx \mathbb{P}(k - \frac{1}{2} \le Y \le k + \frac{1}{2})$$

Example

Example: Let $X \sim Bin(200, 0.51)$, and suppose we wish to to calculate $P(X \le 99)$. Let $Y \sim N(200 \times 0.51, 200 \times 0.51 \times 0.49)$, and let Z be standard normal. Using the CLT we have

$$\begin{split} \mathbb{P}(X \leq 99) &\approx \mathbb{P}(Y \leq 99) \\ &= \mathbb{P}\left(\frac{Y - 102}{\sqrt{49.98}} \leq \frac{99 - 102}{\sqrt{49.98}}\right) \\ &= \mathbb{P}(Z \leq -0.4243) = 1 - \mathbb{P}(Z \leq 0.4243) \\ &= 0.3357 \end{split}$$

Using the continuity correction we find

$$\mathbb{P}(X \le 99) \approx \mathbb{P}(Y \le 99 + \frac{1}{2}) = 0.3618$$

Approximating via the CLT

Exercise: The number of calls *X* arriving at a call centre during an hour has a *Poi(100)* distribution.

Show, using probability generating functions, that X has the same distribution as $X_1 + ... + X_{100}$, where $X_1, ..., X_{100}$ are independent Poi(1)-distributed random variables.

Use this fact to approximate (with the CLT) the probability that there are more than 130 arrivals during an hour

Extremes of Independent Random Variables

In addition to the average behaviour of iid variates $X_1, ..., X_n$, we are often interested in the extremes – that is, how the largest (or smallest) variate behaves.

If
$$M=\max\{X_1,...,X_n\}$$
, we have seen (by example) that
$$F_M(m)=\mathbb{P}(M\leq m)=\mathbb{P}(X_1\leq m,\ldots,X_n\leq m)$$

$$=\mathbb{P}(X_1\leq m)^n=(F_X(m))^n$$

What distribution does *M* have, as $n \rightarrow infinite$

Remark: It turns out that, when M is suitably shifted and scaled, there are essentially three possibilities (listed here for completeness). The Gumbel distribution (u element R, o > 0):

$$f(x) = \frac{1}{\sigma} exp \left[-\frac{x-\mu}{\sigma} - exp \left[-\frac{x-\mu}{\sigma} \right] \right], x \in \mathbb{R}$$

The Frechet distribution (u element R, o > 0, alpha >

element R, o > 0, alpha > 0):
$$f(x) = \frac{\alpha}{\sigma} \left(\frac{x - \mu}{\sigma} \right)^{-\alpha - 1} exp \left[-\left(\frac{x - \mu}{\alpha} \right)^{-\alpha} \right], x > 0$$

The reversed Weibull distribution (
$$u$$
 element R , $o > 0$, alpha > 0):
$$f(x) = \frac{\alpha}{\sigma} \left(\frac{\mu - x}{\sigma} \right)^{\alpha - 1} exp \left[- \left(\frac{\mu - x}{\sigma} \right)^{\sigma} \right], x < \mu$$

Similarly, if
$$\mathit{M} = \min\{X_1, ..., X_n\}$$
, we have that
$$F_M(m) = \mathbb{P}(M \leq m) = 1 - \mathbb{P}(M > m)$$

$$= 1 - \mathbb{P}(X_1 > m, \ldots, X_n > m)$$

$$= 1 - \mathbb{P}(X_1 > m)^n = 1 - (1 - F_X(m))^n$$

Remark: It turns out that, when M is suitably shifted and scaled, there are again essentially three possibilities as n \rightarrow infinite, being the distribution of Y = -X, where X is one of the three listed for the largest extreme value.

Summary

- Law of Large Numbers: statement, weak, strong
- Central Limit Theorem: statement, approximation of sums via CLT, examples
- Extreme Value Distributions: calculation (finite n), limiting behaviour (statement)

Statistics, Likelihood, and Estimation **Sums and Extremes of Independent Random Variables**

- Law of Large Numbers; statement, weak, strong
- Central Limit Theorem; statement, approximation of sums via CLT, examples
- Extreme Value Distributions; calculation (finite n), limiting behaviour (statement)

Statistics

Data x is viewed as the outcome of a random variable X described by a probabilistic model. Usually, model is specified up to a (multidimensional) parameter: $X \sim F(..\theta)$ for some element in Θ . In classical (frequentist) statistics, purely concerned with the model and in particular with the parameter \emptyset . For example, given data, we may wish to

- · estimate the parameter,
- perform statistical tests on that parameter, or
- validate the model

In Bayesian statistics, concerned with distribution of parameter $\theta \sim F(\theta)$.

Any real- or vector-valued function of data x or X is called a **statistic** of the data. For example, the sample mean is a statistic:

$$T = T(x) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

given an outcome of X, or as a random variable

$$T = T(X) = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Often, we will view data as a series of independent outcomes from the same random experiment: $X = (X_1, ..., X_N)$, where $X_1, ..., X_N$ are iid from $F(.;\theta)$. $\{X_1, ..., X_N\}$ is called a **random sample** (from $F(.;\theta)$) or from X). Therefore, the joint cdf of a random sample is given by

$$F(x;\theta) = \prod_{k=1}^{N} F(x_k;\theta)$$

and so the joint pdf/pmf is of the same form:

$$F(x;\theta) = \prod_{k=1}^{N} F(x_k;\theta)$$
$$f(x;\theta) = \prod_{k=1}^{N} f(x_k;\theta)$$

Likelihood

When viewed as a function of θ , then point pdf/pmf of a random sample is called the **Likelihood**:

$$L(\theta; x) = f(x; \theta)$$

The (natural) logarithm of the likelihood

$$l(\theta; s) = lnL(\theta; x)$$

is called the log-likelihood

Likelihood Example

Example: Model $X_1, 2, ..., X_N \sim iid Bin(m, p)$; m known, p unknown, in $\Theta = (0, 1)$ pmf:

$$f(x;p) = {m \choose x} p^x (1-p)^{m-x}, x \in \{0, 1, \dots, m\}$$

Therefore, the likelihood can be written as

$$L(p; X) = \prod_{i=1}^{N} {m \choose x_i} p^{x_i} (1-p)^{m-x_i}$$
$$= p^{\sum_{i=1}^{N} x_i} (1-p)^{Nm - \sum_{i=1}^{N} x_i} \prod_{i=1}^{N} {m \choose x_i}$$

Maximum Likelihood Estimation

How do we find "good" estimators for model parameters? Given data and a parametric model, how to find a member of that family (point estimate) from which the data is "most likely" to have come? Given data x, one approach is to maximize the likelihood in θ – that is, find

$$\hat{\theta} \in \Theta$$

for which

$$L(\hat{\theta}; x) \ge L(\theta; x), \theta \in \Theta$$

A maximizer

$$\hat{\theta} \equiv \hat{\theta}(x)$$

of L is called a maximum likelihood estimate (MLE). The corresponding random variable &hat; $\theta(X)$ is called a maximum likelihood estimator (also MLE).

Remark: A maximiser of *I* equivalent to a maximiser of *L*

ML Estimation Example: Binomial Probability

Example: Continuing our example, recall that we found
$$L(p;X) = \prod_{i=1}^N \binom{m}{x_i} \, p^{x_i} (1-p)^{m-x_i}$$

$$= p^{\sum_{i=1}^N x_i} (1-p)^{Nm-\sum_{i=1}^N x_i} \prod_{i=1}^N \binom{m}{x_i}$$

How do we find an MLE?

Maximisation Strategy: Since L is a continuous function of p, find p such that

$$\frac{d}{dp}L(p;x) = 0$$

Working directly with L appears cumbersome; obtain the log-likelihood and work with that instead.

Taking the natural logarithm of L, we obtain the log-likelihood:

$$l(p;X) = ln(p) \sum_{i=1}^{N} x_i ln(1-p) \left(Nm - \sum_{i=1}^{N} x_i\right) + \sum_{i=1}^{N} ln\left(\binom{m}{x_i}\right)$$

First Derivative with respect to p:

$$\frac{d}{dp}l(p;X) = \frac{1}{p} \sum_{i=1}^{N} x_i - \frac{1}{1-p} \left(Nm - \sum_{i=1}^{N} x_i \right)$$

Set to zero and rearrange to find critical point:

$$(1-p)\sum_{i=1}^{N} x_i = p\left(Nm - \sum_{i=1}^{N} x_i\right)$$

Unique solution:

$$\hat{p} = \frac{1}{Nm} \sum_{i=1}^{N} x_i$$

What type of critical point is this?

Second Derivative with respect to p:

$$h(p) = \frac{d^2}{dp^2}l(p;X) = -\frac{1}{p^2}\sum_{i=1}^{N}x_i - \frac{1}{(1-p)^2}\left(Nm - \sum_{i=1}^{N}x_i\right) < 0$$

Therefore &hat;p is a local maximiser.

Moreover, $I(p;X) \to \infty$ as $p \to 0$ or $p \to 1$ (boundary of Θ). Thus &hat;p is in fact a global maximiser. Therefore, we have the Maximum Likelihood Estimator:

$$\hat{p} = \frac{1}{Nm} \sum_{i=1}^{N} X_i$$

Summary

- Statistics; definition, example
- Likelihood and log-likelihood; definition, binomial example
- Maximum Likelihood Estimation; definition, examples, bias, consistency

Confidence Intervals and Hypothesis Testing Statistics, Likelihood, and Estimation

- Statistics; definition, example
- Likelihood and log-likelihood; definition, binomial example
- Maximum Likelihood Estimation; definition, examples, bias, consistency

Confidence Intervals

Last time, we were introduced to maximum likelihood estimation, which provided a systematic way of obtaining estimates and estimators &hat: θ of unknown parameters contained in $\theta \in \Theta$

How can we gauge the accuracy of &hat; θ ?

Confidence intervals (sometimes called interval estimates) provide a precise way of describing the uncertainty of &hat;θ

Formally, given random variables X_1 , ..., X_n whose joint distribution depends on some unknown $\theta \in \Theta$, a **(1 - \alpha)** stochastic confidence interval is a pair of statistics $T_1(X_1,\ldots,X_n)$ and $T_2(X_1,\ldots,X_n)$

with the property that

$$\mathbb{P}(T_1 < \theta < T_2) \ge 1 - \alpha$$
, for all $\theta \in \Theta$

for some $\alpha \in [0, 1]$

That is, (T_1, T_2) is a random interval, based only on the (as yet to be observed) outcomes $X_1, ..., X_n$, that contains the unknown θ with probability at least $1 - \alpha$.

A realisation of the random interval, say (t_1, t_2) , is called a (1 - α) numeric confidence interval for θ .

Remark: Whilst stochastic confidence intervals contain the unknown θ with probability at least 1 - α , their numerical counterparts either contain θ or they do not. It may be helpful to think of a Bernoulli analogy, where "success" occurs with probability (at least) 1 - α - then outcomes are either "successes" or "failures"

Confidence Interval Example

Example: Model: X_1 , X_2 , ..., $X_n \sim iid N(\mu, \sigma^2)$; σ^2 known, μ unknown, in $\Theta = R$.

We have seen that

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i \qquad \tilde{N}(\mu, \frac{\sigma^2}{N})$$

Therefore,

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{N}}} \tilde{N}(0, 1)$$

Hence,

$$\mathbb{P}\left(z_{\alpha/2} \le \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{N}}} \le z_{1-\alpha/2}\right) = 1 - \alpha$$

where z_{γ} is the γ -quantile of the standard normal distribution.

Rearranging, we have

$$\mathbb{P}\left(\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{N}} \le \mu \le \bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right) = 1 - \alpha$$

Note that, by symmetry, the quantiles satisfy $-z_{\alpha/2} = z_{1-\alpha/2}$. Hence a stochastic 1 - α confidence interval for μ in this case is

$$\left(\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{N}}, \bar{X} z_{1-\alpha/2} \frac{\sigma}{\sqrt{N}}\right)$$

which is often abbreviated to

$$\bar{X} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{N}}$$

Approximate Confidence Intervals

When

$$\mathbb{P}(T_1 < \theta < T_2) \ge 1 - \alpha$$
, or all $\theta \in \Theta$

only holds approximately, we call (T_1, T_2) an approximate (1 - α) confidence interval for θ .

Remark: We can often employ the central limit theorem to construct such approximate confidence intervals, as we shall see next.

Approximate Confidence Interval Example

Example: Model $X_1, X_2, ..., X_N \sim iid Bin(m, p); m$ known, p unknown, in $\Theta = (0, 1)$, with MLE for p:

$$\hat{p} = \frac{1}{Nm} \sum_{i=1}^{N} X_i$$

Notice that $\mathbf{Y} = \sum_{i=1}^{N} X_i$ can be thought of as $\mathbf{Y} \sim Bin(Nm, p)$, and so by the central limit theorem, $Y_{approx} \mathbf{N}(Nmp, Nmp(1-p))$

or equivalently

$$\hat{p}_{approx}\mathbf{N}\left(p,\frac{p(1-p)}{Nm}\right)$$

Therefore, we have

$$\mathbb{P}\left(z_{\alpha/2} \le \frac{\hat{p} - p}{\frac{\sqrt{p(1-p)}}{\sqrt{Nm}}} \le z_{1-\alpha/2}\right) \approx 1 - \alpha$$

By the law of large numbers, hat;p≈p, so we may replace p in the denominator to obtain

$$\mathbb{P}\left(z_{\alpha/2} \leq \frac{\hat{p} - p}{\sqrt{\hat{p}(1 - \hat{p})}/\sqrt{Nm}} \leq z_{1 - \alpha/2}\right) \approx 1 - \alpha$$

Rearranging, and using the symmetry of standard normal quantiles, we have

$$\mathbb{P}\left(\hat{p} - z_{1-\alpha/2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{Nm}} \le p \le \hat{p}z_{1-\alpha/2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{Nm}}\right) \approx 1 - \alpha$$

which is an approximate $1 - \alpha$ confidence interval for p:

$$\hat{p} \pm z_{1-\alpha/2} \sqrt{rac{\hat{p}(1-\hat{p})}{Nm}}$$

Hypothesis Testing

Closely related to the notion of confidence intervals is that of hypothesis tests. In hypothesis testing, given data, we wish to determine which of two competing hypotheses $H_0:\theta\in\Theta_0$ and $H_1:\theta\in\Theta_1$ holds true. H_0 is called the **null hypothesis** and contains the "status quo" statement, whereas H_1 is called the **alternative hypothesis** which is unlikely to have occurred if H_0 were true.

Remark: Usually, $\Theta_0 \cap \Theta_1 = \emptyset$

Outcomes of hypothesis tests are decisions as to whether to accept the "status quo" H_0 , or reject the "status quo" in favour of the alternative H_1 . As such, we seek a decision rule based on the outcome of a statistic T.

- Decision Rule 1: Reject H₀ if T falls in some critical region C

• Decision Rule 2: Reject H_0 if $P(T \in C)$ is less than some critical p-value p_c . Remark: Common critical regions are one-sided (C = (- ∞ , c], C = [c, ∞)), or two-sided (C = (- ∞ , c₁] \cup [c₂, ∞), c₁ <= c_2

Regardless of which type of decision rule is employed, we can make two types of error.

Decision	H _n True	H _₁ True
Retain H ₀	Correct	Type II Error
Reject H	Type I Error	Correct

Remark: We can think of Type I error as a "false positive" and Type II error as a "false negative". In classical statistics, Type I error is considered more serious, and so decision rules are designed to control this type of error.

We will denote the probability of a Type I error by α , and the probability of a Type II error by β .

Remark: The **power** of a statistical test is the probability of correctly rejecting the null, $1 - \beta$

We will design our decision rules around a predetermined **significance level** α , which describes the acceptable level of Type I error for our test. In this framework, the two types of decision rule are equivalent:

- Decision Rule 2: Reject H_0 if $P(T \in C_{\alpha}) <= \alpha$
- Decision Rule 1: Reject H_O if T falls in C_Q

Hypothesis Testing Example

Example: Model X_1 , X_2 , ..., X_N ~iid $N(\mu, \sigma^2)$; σ^2 known, μ unknown, in $\Theta = R$. We can readily adapt our previous work to form a hypothesis test together with a decision rule about the unknown μ .

Let
$$H_0$$
: $\mu = \mu_0$ and H_1 : $\mu \neq \mu_0$;
Under the null hypothesis H_0 ;

$$T = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{N}} \ N(0, 1)$$

and so

$$C_{\infty} = (-\infty, z_{\alpha/2}] \cup [z_{1-\alpha/2}, \infty)$$

is a critical region satisfying

$$\mathbb{P}_{H_0}(T \in C_\alpha) \le \alpha$$

 $\mathbb{P}_{H_0}(T \in C_\alpha) \leq \alpha$ Therefore, we reject H_0 if our observed statistic t falls in C_{κ}

Summary

- Confidence intervals; definition, stochastic, numerical, approximate, examples
- Hypothesis testing; decision rules, null and alternative hypotheses, Type I and II error, significance level, power, critical region, critical p-value, one- and two-sided regions (hence tests).

Confidence Intervals and Hypothesis Testing II Sample Variance

For a single normal random sample with known variance σ^2 , we have seen that the sample mean (X bar) is normally distributed, and can therefore construct confidence intervals and hypothesis tests for the unknown mean

How can we proceed when σ^2 is unknown?

First, we will determine an appropriate estimator for σ^2 , and state its distribution for a normal random sample.

Recall that we defined the sample variance of data as

$$\hat{\sigma^2} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \frac{1}{N} \sum_{i=1}^{N} x_i^2 - \bar{x}^2$$

For a random sample, is the associated random variable an unbiased estimator for σ^2 ? We have

$$\begin{split} \mathbb{E}\hat{\sigma^{2}} &= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[X_{i}^{2}] - \mathbb{E}[\bar{X}^{2}] \\ &= \mathbb{E}[X_{1}^{2}] - \mathbb{E}\left[\left(\frac{1}{N} \sum_{i=1}^{N} X_{i}\right)^{2}\right] \\ &= \mathbb{E}[X_{1}^{2}] - \mathbb{E}\left[\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} X_{i} X_{j}\right] \\ &= \mathbb{E}[X_{1}^{2}] - \frac{1}{N^{2}} \mathbb{E}\left[\sum_{i=1}^{N} X_{i}^{2} + \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} X_{i} X_{j}\right] \\ &= \mathbb{E}[X_{1}^{2}] - \frac{1}{N} \mathbb{E}[X_{1}^{2}] - \frac{N(N-1)}{N^{2}} \mathbb{E}[X_{1}]^{2} \\ &= \frac{N-1}{N} (\mathbb{E}[X_{1}^{2}] - \mathbb{E}[X_{1}]^{2}) = \frac{N-1}{N} \sigma^{2} \end{split}$$

Therefore, &hat; σ^2 is a biased (but consistent) estimator for σ^2 . **Remark:** &hat; σ^2 is the MLE of σ^2 for a normal random sample.

We can easily correct for the bias in the (bias corrected) sample variance: $S^2 = \frac{N}{N-1} \hat{\sigma^2}$

$$S^{2} = \frac{N}{N-1}\hat{\sigma^{2}}$$

$$= \frac{1}{N-1}\sum_{i=1}^{N}(X_{i} - \bar{X})^{2}$$

$$= \frac{1}{N-1}\sum_{i=1}^{N}X_{i}^{2} - \frac{N}{N-1}\bar{X}^{2}$$

For a normal random sample, it turns out that

$$(N-1)\frac{S^2}{\sigma^2}\tilde{X}_{N-1}^2 \equiv \operatorname{Gamma}(\frac{N-1}{2}, \frac{1}{2})$$

Remark: The fact that the degrees of freedom is N - 1 comes from the fact that there are only N - 1 linearly independent elements of

. . .

Sample Variance Example

Example: For a normal random sample $X_1, ..., X_N \sim iid N(\mu, \sigma^2)$ with unknown mean μ and variance σ^2 , find a $1 - \alpha$ (stochastic) confidence interval for σ^2 . Since $(N-1)S^2/\sigma^2 \sim X_{N-1}^{-2}$, we have by definition

$$\mathbb{P}\left(X_{N-1;\alpha/2}^{2} \leq (N-1)\frac{S^{2}}{\sigma^{2}} \leq X_{N-1;1-\alpha/2}^{2}\right) = 1 - \alpha$$

where $X_{N-1,\gamma}^{2}$ denotes the γ -quantile of this chi-squared distribution Since $\sigma^{2N-1,\gamma}$ and $S^{2}>0$, we rearrange as follows:

$$\mathbb{P}\left(\frac{1}{X_{N-1;\alpha/2}^2} \ge \frac{\sigma^2}{(N-1)S^2} \ge \frac{1}{X_{N-1;1-\alpha/2}^2}\right) = 1 - \alpha$$

giving

$$\mathbb{P}\left(\frac{(N-1)S^2}{X_{N-1;1-\alpha/2}^2} \leq \sigma^2 \leq \frac{(N-1)S^2}{X_{N-1;\alpha/2}^2}\right) = 1-\alpha$$
 Hence, a stochastic 1 - α confidence interval for σ^2 for a normal random sample is

$$\left(\frac{(N-1)S^2}{X_{N-1;1-\alpha/2}^2}, \frac{(N-1)S^2}{X_{N-1;\alpha/2}^2}\right)$$

We can easily construct hypothesis tests at significance

If H_0 : $\sigma^2 = \sigma_0^{\ 2}$ and H_1 : $\sigma^2 \neq \sigma_0^{\ 2}$, then our test statistic is $T = (N-1)\frac{S^2}{\sigma_0^2}$

$$T = (N-1)\frac{S^2}{\sigma_0^2}$$

which (under H_0) has a X^2_{N-1} distribution

$$(-\infty, X_{N-1;\alpha/2}^2] \cup [X_{N-1;1-\alpha/2}^2, \infty)$$

Therefore, we reject H_0 in favour of H_1 if T falls in the (two-sided) critical region $(-\infty, X_{N-1;\alpha/2}^2] \cup [X_{N-1;1-\alpha/2}^2, \infty)$ Similarly, if H_0 : $\sigma^2 = \sigma_0^{\ 2}$ and H_1 : $\sigma^2 > \sigma_0^{\ 2}$, we reject H_0 in favour of H_1 if T falls in the (right one-sided) critical region

 $[X_{N-1;1-\alpha}^2,\infty)$ and if H_0 : $\sigma^2=\sigma_0^{\ 2}$ and H_1 : $\sigma^2<\sigma_0^{\ 2}$, we reject H_{α} in favour of H_1 if T falls in the (left one-sided) critical region $(-\infty,X_{N-1;\alpha}^2]$

Sample Mean with Unknown Variance

We have seen how to construct confidence intervals and hypothesis tests for a normal random sample with known variance σ^2 . How does this change when σ^2 is unknown, and must instead be replaced by an estimate? Recall that $X_1, X_2, ..., X_N \sim iid N(\mu, \sigma^2)$, and consider the hypothesis test $H_0: \mu = \mu_0$ and $H_1: \mu \neq \mu_0$. Our test statistic in this case simply replaces the known σ with its unbiased estimator $S = \&sqrt; S^2$, giving $T = \frac{\bar{X} - \mu_0}{S/\sqrt{N}}$

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{N}}$$

If H_0 is true, then it turns out that T has a **(Student's)** t distribution, with N - 1 degrees of freedom, which we will write as t_{N-1} . We will not concern ourselves with the particulars of this distribution, other than to note a few salient

• A t-distribution random variable is continuous, symmetric around zero, and has non-zero pdf over R (just like the standard normal distribution)

- As with any other distribution, we may compute γ -quantiles for a t_{N} -distributed random variable, which we will denote by $t_{N,\gamma}$.
 - Like the standard normal distribution, we will rely on tables or numerical computation for quantiles and probabilities.
- As $N \to \infty$, t_N converges in distribution to N(0, 1). (Moreover, t_1 is the Cauchy distribution)

$$(-\infty, t_{N-1:\alpha/2}] \cup [t_{N-1:1-\alpha/2}, \infty]$$

Accepting that $T \sim t_{N-1}$, we construct a two-sided critical region at significance level α : $(-\infty, t_{N-1;\alpha/2}] \cup [t_{N-1;1-\alpha/2}, \infty)$ and we reject H_0 if the outcome of our test statistic falls in this region. Similarly, critical regions for one-sided tests are easily constructed:

•
$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu > \mu_0$$
. Critical region: $[t_{N-1;1-\alpha}, \infty)$
• $H_0: \mu = \mu_0 \text{ vs } H_1: \mu < \mu_0$. Critical region: $(\infty, t_{N-1;\alpha}]$
Moreover, confidence intervals for the mean are straight-forwardly constructed from $T: \left(\bar{X} - t_{N-1;1-\alpha/2} \frac{S}{\sqrt{N}}, \bar{X} - t_{N-1;\alpha/2} \frac{S}{\sqrt{N}}\right)$

or more compactly, by the symmetry of this distribution around zero:

$$\bar{X} \pm t_{N-1;1-\alpha/2} \frac{S}{\sqrt{N}}$$

Summary

- Sample variance; bias and correction, confidence intervals and hypothesis tests for normal population.
- Sample mean with unknown variance; Student's t distribution (briefly), confidence intervals and hypothesis tests for normal population