Report - Explainable AI (xAI) Dashboard for UCI Adult Dataset

1. Problem Understanding & Rationale

AI models, particularly black-box ones such as XGBoost, attain great accuracy but are not interpretable. Grasping the reasons behind a model's particular prediction is essential for:

Trust & Transparency: Users can understand the reasons behind decisions.

Equity & Morality: Personal attributes such as age, gender, and ethnicity can be tracked for prejudice.

Cybersecurity: Tracking misuse or unusual predictions enhances system resilience.

Aim: Create an engaging dashboard that illustrates the rationale behind an AI model's predictions for the UCI Adult dataset, utilizing SHAP explanations

2. Dataset Description

Dataset: UCI Adult Income Dataset

• Samples: 32,561

• Features: 14 input features + 1 target (income >50K or <=50K)

• Feature Types:

- o **Categorical:** workclass, education, marital-status, occupation, relationship, race, sex, native-country
- Numerical: age, fnlwgt, education-num, capital-gain, capital-loss, hoursperweek

Target Variable:

- $0 \rightarrow Income \le 50K$
- $1 \rightarrow Income > 50K$

Notes on Indices:

• Sample index in the dashboard (0,1,2,...) refers to the row in the test set. Selecting an index shows the model prediction and SHAP explanations for that specific sample.

3. Design & Implementation Approach

Models Trained:

- 1. Logistic Regression
- 2. Decision Tree
- 3. Random Forest
- 4. XGBoost (**Best-performing model**)

Evaluation Metrics:

• Accuracy, ROC-AUC, F1-score

Model	Accuracy	ROC-AUC	F1-score
XGBoost	0.87	0.93	0.71
Random Forest	0.85	0.90	0.67
Logistic Regression	0.84	0.90	0.66
Decision Tree	0.84	0.89	0.62

Explainability Approach:

- SHAP (SHapley Additive exPlanations):
 - o Provides global feature importance across all test samples. o Gives local explanations for individual predictions.
 - o Outputs human-readable statements showing how features increase/decrease prediction probability.

Note: Decision Tree and LIME explanations were implemented in the code but are **not** included in the deployed prototype, focusing on XGBoost and SHAP for simplicity and clarity.

Dashboard Features:

- 1. **Sample Selection:** Choose any test sample index to inspect its prediction.
- 2. Model Prediction & Comparison: Shows XGBoost prediction with probability.
- 3. SHAP Explanations:
 - o Global feature importance plots.
 - o Local explanation table with features, SHAP values, and impact.
- 4. Trust & Safety: Highlights sensitive features and their influence on predictions.
- 5. **Cybersecurity:** Optional user login system with registration to demonstrate secure access.

4. Results & Observations

Example Predictions:

• Sample Index 16:

 \circ XGBoost Prediction: \circ (Income ≤50K, probability 0.99) \circ Key SHAP Influences:

Feature	SHAP Value	Impact
marital-status_Married-civ-spouse	-1.623	Decreased
age	-1.023	Decreased
education-num	0.585	Increased
sex_Female	-0.395	Decreased
hours-per-week	-0.236	Decreased
capital-gain	-0.180	Decreased
occupation_Sales	0.123	Increased

• **Interpretation:** Negative SHAP values decrease the probability of class 0, positive values increase the probability.

General Observations:

- Age and marital status significantly impact income predictions.
- Sensitive features are monitored to ensure fairness.
- Local explanations help users understand why the model made a certain decision.

5. Security, Ethical, & Governance Considerations

- Sensitive Data: Features like sex, race, and age are highlighted to detect potential bias.
- User Authentication: Only authorized users can access the dashboard (optional login system).
- Explainability: Using SHAP increases trust in AI decisions.
- Audit Trails: User actions and predictions are logged for accountability.

Ethical Implications:

- Transparent AI can prevent discriminatory outcomes.
- Users can validate model predictions before taking automated actions.

6. References

- 1. https://archive.ics.uci.edu/ml/datasets/adult
- 2. https://www.datacamp.com/tutorial/introduction-to-shap-values-machine-learninginterpretability
- 3. https://joblib.readthedocs.io/en/stable/