

RECEIVED

AUG 05 2002

TECH CENTER 1600/2900

SEQUENCE LISTING

<110> ARAI, Kenichi
MASAI, Hisao

<120> Human H37 Protein and cDNA Encoding The Protein

<130> 2001-0531A/LC/00653

<140> 09/830,647
<141> 2001-07-30

<150> JP No. 10-311408

<151> 1998-10-30

<160> 9

<210> 1
<211> 674

<212> PRT

<213> Homo sapiens

<400> 1

Met Asn Ser Gly Ala Met Arg Ile His Ser Lys Gly His Phe Gln Gly
1 5 10 15
Gly Ile Gln Val Lys Asn Glu Lys Asn Arg Pro Ser Leu Lys Ser Leu
20 25 30
Lys Thr Asp Asn Arg Pro Glu Lys Ser Lys Cys Lys Pro Leu Trp Gly
35 40 45
Lys Val Phe Tyr Leu Asp Leu Pro Ser Val Thr Ile Ser Glu Lys Leu
50 55 60
Gln Lys Asp Ile Lys Asp Leu Gly Gly Arg Val Glu Glu Phe Leu Ser
65 70 75 80
Lys Asp Ile Ser Tyr Leu Ile Ser Asn Lys Lys Glu Ala Lys Phe Ala
85 90 95
Gln Thr Leu Gly Arg Ile Ser Pro Val Pro Ser Pro Glu Ser Ala Tyr
100 105 110
Thr Ala Glu Thr Thr Ser Pro His Pro Ser His Asp Gly Ser Ser Phe
115 120 125
Lys Ser Pro Asp Thr Val Cys Leu Ser Arg Gly Lys Leu Leu Val Glu
130 135 140
Lys Ala Ile Lys Asp His Asp Phe Ile Pro Ser Asn Ser Ile Leu Ser
145 150 155 160
Asn Ala Leu Ser Trp Gly Val Lys Ile Leu His Ile Asp Asp Ile Arg
165 170 175
Tyr Tyr Ile Glu Gln Lys Lys Glu Leu Tyr Leu Leu Lys Lys Ser
180 185 190
Ser Thr Ser Val Arg Asp Gly Gly Lys Arg Val Gly Ser Gly Ala Gln
195 200 205
Lys Thr Arg Thr Gly Arg Leu Lys Lys Pro Phe Val Lys Val Glu Asp
210 215 220
Met Ser Gln Leu Tyr Arg Pro Phe Tyr Leu Gln Leu Thr Asn Met Pro
225 230 235 240
Phe Ile Asn Tyr Ser Ile Gln Lys Pro Cys Ser Pro Phe Asp Val Asp
245 250 255
Lys Pro Ser Ser Met Gln Lys Gln Thr Gln Val Lys Leu Arg Ile Gln
260 265 270

Thr Asp Gly Asp Lys Tyr Gly Gly Thr Ser Ile Gln Leu Gln Leu Lys
 275 280 285
 Glu Lys Lys Lys Lys Gly Tyr Cys Glu Cys Cys Leu Gln Lys Tyr Glu
 290 295 300
 Asp Leu Glu Thr His Leu Leu Ser Glu Gln His Arg Asn Phe Ala Gln
 305 310 315 320
 Ser Asn Gln Tyr Gln Val Val Asp Asp Ile Val Ser Lys Leu Val Phe
 325 330 335
 Asp Phe Val Glu Tyr Glu Lys Asp Thr Pro Lys Lys Arg Ile Lys
 340 345 350
 Tyr Ser Val Gly Ser Leu Ser Pro Val Ser Ala Ser Val Leu Lys Lys
 355 360 365
 Thr Glu Gln Lys Glu Lys Val Glu Leu Gln His Ile Ser Gln Lys Asp
 370 375 380
 Cys Gln Glu Asp Asp Thr Thr Val Lys Glu Gln Asn Phe Leu Tyr Lys
 385 390 395 400
 Glu Thr Gln Glu Thr Glu Lys Lys Leu Leu Phe Ile Ser Glu Pro Ile
 405 410 415
 Pro His Pro Ser Asn Glu Leu Arg Gly Leu Asn Glu Lys Met Ser Asn
 420 425 430
 Lys Cys Ser Met Leu Ser Thr Ala Glu Asp Asp Ile Arg Gln Asn Phe
 435 440 445
 Thr Gln Leu Pro Leu His Lys Asn Lys Gln Glu Cys Ile Leu Asp Ile
 450 455 460
 Ser Glu His Thr Leu Ser Glu Asn Asp Leu Glu Glu Leu Arg Val Asp
 465 470 475 480
 His Tyr Lys Cys Asn Ile Gln Ala Ser Val His Val Ser Asp Phe Ser
 485 490 495
 Thr Asp Asn Ser Gly Ser Gln Pro Lys Gln Lys Ser Asp Thr Val Leu
 500 505 510
 Phe Pro Ala Lys Asp Leu Lys Glu Lys Asp Leu His Ser Ile Phe Thr
 515 520 525
 His Asp Ser Gly Leu Ile Thr Ile Asn Ser Ser Gln Glu His Leu Thr
 530 535 540
 Val Gln Ala Lys Ala Pro Phe His Thr Pro Pro Glu Glu Pro Asn Glu
 545 550 555 560
 Cys Asp Phe Lys Asn Met Asp Ser Leu Pro Ser Gly Lys Ile His Arg
 565 570 575
 Lys Val Lys Ile Ile Leu Gly Arg Asn Arg Lys Glu Asn Leu Glu Pro
 580 585 590
 Asn Ala Glu Phe Asp Lys Arg Thr Glu Phe Ile Thr Gln Glu Glu Asn
 595 600 605
 Arg Ile Cys Ser Ser Pro Val Gln Ser Leu Leu Asp Leu Phe Gln Thr
 610 615 620
 Ser Glu Glu Lys Ser Glu Phe Leu Gly Phe Thr Ser Tyr Thr Glu Lys
 625 630 635 640
 Ser Gly Ile Cys Asn Val Leu Asp Ile Trp Glu Glu Asn Ser Asp
 645 650 655
 Asn Leu Leu Thr Ala Phe Phe Ser Ser Pro Ser Thr Ser Thr Phe Thr
 660 665 670
 Gly Phe
 674

<210> 2
 <211> 234
 <212> PRT
 <213> Homo sapiens

<400> 2
Met Asn Ser Gly Ala Met Arg Ile His Ser Lys Gly His Phe Gln Gly
1 5 10 15
Gly Ile Gln Val Lys Asn Glu Lys Asn Arg Pro Ser Leu Lys Ser Leu
20 25 30
Lys Thr Asp Asn Arg Pro Glu Lys Ser Lys Cys Lys Pro Leu Trp Gly
35 40 45
Lys Val Phe Tyr Leu Asp Leu Pro Ser Val Thr Ile Ser Glu Lys Leu
50 55 60
Gln Lys Asp Ile Lys Asp Leu Gly Gly Arg Val Glu Glu Phe Leu Ser
65 70 75 80
Lys Asp Ile Ser Tyr Leu Ile Ser Asn Lys Lys Glu Ala Lys Phe Ala
85 90 95
Gln Thr Leu Gly Arg Ile Ser Pro Val Pro Ser Pro Glu Ser Ala Tyr
100 105 110
Thr Ala Glu Thr Thr Ser Pro His Pro Ser His Asp Gly Ser Ser Phe
115 120 125
Lys Ser Pro Asp Thr Val Cys Leu Ser Arg Gly Lys Leu Leu Val Glu
130 135 140
Lys Ala Ile Lys Asp His Asp Phe Ile Pro Ser Asn Ser Ile Leu Ser
145 150 155 160
Asn Ala Leu Ser Trp Gly Val Lys Ile Leu His Ile Asp Asp Ile Arg
165 170 175
Tyr Tyr Ile Glu Gln Lys Lys Glu Leu Tyr Leu Leu Lys Lys Ser
180 185 190
Ser Thr Ser Val Arg Asp Gly Gly Lys Arg Val Gly Ser Gly Ala Gln
195 200 205
Lys Thr Arg Thr Gly Arg Leu Lys Lys Pro Phe Val Lys Val Glu Asp
210 215 220
Met Ser Gln Ser Pro Ala Val His Leu Met
225 230 234

Q2
w/

<210> 3
<211> 2780
<212> DNA
<213> Homo sapiens

<400> 3
aattccggcac gagctctctg aggctgcgcc aagacctgaa gcggcgacc gagagcccg 60
gtctgagact gagagagcaa cggaatggag gccccgtaga ggcggaaaca caacctgcag 120
ggccagagcg aggcgcgaga aggacggcgg cgtgaggggg cggggcgcgc agcgcgagaa 180
ggcaggcagc aggggcgagc gcgaggcggg gacacggcgcg tggcgtgaga cggggcgggg 240
cgcgctatc ggcgcgcgg ccgcgtgacg cgttttcaaa tcttcaaccg ccgcagccca 300
ctcgttgtg ctgcgcct tcctctccg ccgcctggag ccggatccgg ccccgaaac 360
ccgacctgca gacgcgtac ctctactgcg tagaggccgt agctggcggg aggagagagg 420
cggccgtct gtcaacaggc cgggggaagc cgtgctttcg cggctcccg gtgcgcacact 480
ttctccggac ccagcatgtc ggtgcgggc gactgccatg aactccggag ccatgaggat 540
ccacagtaaa ggacatttc aggggtgaat ccaagtcaaa aatggaaaaaa acagaccatc 600
tctgaaatct ctgaaaactg ataacaggcc agaaaaatcc aatgttaagc cactttgggg 660
aaaatgttt taccttgact taccttctgt caccatatct gaaaaacttc aaaaggacat 720
taaggatctg ggagggcgag ttgaagaatt ttcagcaaa gatatcgtt atcttatttc 780
aaataagaag gaagctaaat ttgcacaaac cttgggtcga atttctccgt taccagtcc 840
agaatctgca tatactgcag aaaccacttc acctcatccc agccatgtatc gaagttcatt 900
taagtccacca gacacagtgt gtttaagcag agggaaaatta ttagttgaaa aagctatcaa 960
ggaccatgtat tttattccctt caaatgttat attatcaaatt gccttgtcat ggggagtaaa 1020
aattcttcat attgatgaca ttagatacta cattgaacaa aagaaaaaag agttgtatc 1080

actcaagaaa	tcaagtactt	cagtaagaga	tggggc aaa	agagttggta	gtggcaca	1140
aaaaacaaga	acagaagac	tcaaaaaggcc	ttttgtaaag	gtggaagata	tgagccaact	1200
ttataggcca	ttttatcttc	agctgacc aa	tatgccttt	ataaattatt	ctattcagaa	1260
gccctgcagt	ccatttgat g	tagacaagcc	atcttagtat g	caaaggcaaa	ctcaggttaa	1320
actaagaatc	caaacagat g	gcgataagta	tgg tggaaacc	tcaattcaac	tccagttgaa	1380
agagaagaag	aaaaaaggat	attgtgaat g	ttgctgcag	aatatgaag	atctagaaac	1440
tcaccttcta	agtgagcaac	acagaaaactt	tgcacagat g	aaccagtat c	aagttgttga	1500
tgatatttga	tctaagttag	ttttgtactt	tgtgaaatata	gaaaaggaca	cacctaaaaa	1560
gaaaagaata	aaatacagt g	ttggatccct	ttctctgtt	tctgcaagt g	tcctgaaaaa	1620
gactgaacaa	aaggaaaaaag	ttgaatttgc a	acatatttct	cagaaagatt g	gccaggaaaga	1680
tgatacaaca	gtgaaggagc	agaatttctt	gtataaagag	acc caggaaaa	ctgaaaaaaa	1740
gctctgtt	atttcagat c	ccatccccca	cccttcaat a	gaatggagag	ggcttaatga	1800
gaaaatgagt	ataataatgtt	ccatgttaag	tacagtgtaa	gatgacataa	gacagaattt	1860
tacacagcta	ccttacata	aaaacaaaaca	ggaatgcatt	cttgacattt	ccgaacacac	1920
attaagtgaa	aatgacttag	agaactaag	ggtagatcac	tataaatgtt a	acatacaggc	1980
atctgtacat	gtttctgatt	tcagttacaga	taatagtgg a	tctcaacca a	aacagaagtc	2040
agatactgtg	cttttccag	caaaggatct	caaggaaaag	gaccttcatt	caatatttac	2100
tcatgattct	ggctgtataa	caataaacag	ttcacaagag	cacctaactg	ttcaggaaaa	2160
ggctccatc	cataactcctc	ctgaggaacc	caatgaatgt	.gacttcaaga	atatggatag	2220
tttaccttct	ggtaaaatac	atcgaaaagt	gaaaataata	ttaggacgaa	atagaaaaaga	2280
aaatctgaa	ccaaatgtcg	aatttgat a	aagaactgaa	tttatttacac	aagaagaaaa	2340
cagaatttgt	agttcacccgg	tacagtctt	actagacttg	tttcagacta	gtgaagagaa	2400
atcagaattt	ttgggtttca	caagctacac	agaaaagat	ggtatatgca	atgtttttaga	2460
tat tgggaa	gagggaaaatt	catgataatc	gttaacagcg	tttttctcg t	cccccttcaac	2520
ttctacat t	actggcttt	agaattttaa	aatgcatac	ttttcagaag	tgataaggat	2580
catatcttgc	aaatttttat	aaatatgtat	ggaaattctt	aggat tttt	taccagctt	2640
gtttacagac	ccaaatgtaa	atattaaaaa	taaatat t	caat tttcta	cagaat gaa	2700
tacctgttaa	agaaaaattt a	cagaataa ac	ttgtgactgg	tcttgg tttt	cattaaaaaa	2760
aaaaaaaaaa	aaaactcgag					2780

<210> 4
<211> 2719
<212> DNA
<213> *Homo sapiens*

<400> 4
aattcggcac gagctctctg aggctgcgcc aagacctgaa gcggcgacc gagagccgg 60
gtctgagact gagagagcaa cgaaatggag gcggggtaga ggccgaaaca caacctgcag 120
ggccagagcg aggccgcaga aggacggccg cgtgaggggg cggggcgcgc agcgcgagaa 180
ggcaggcacg aggggcgagc gcgaggcgg gcacggcgcg tggcgtgaga cggggcgccc 240
cgcgctatc ggcgcgcgg ccgcgtgacg ctgtttcaaa tttcaaccg ccgcagccca 300
ctcgtttgcg ctgcgcct tcctcctccg cgcctggag ccggatccgg ccccgaaaac 360
ccgacactca gacgcggta ctcactgcg tagagggcgt agctggcgga aggagagagg 420
cgccgtctct gtcaacaggc cgggggaagc cgtgcgttcg cggctgcccgt gtgcacact 480
ttctccggac ccagcatgta ggtgcgggc gactgcctatg aactccggag ccatgaggat 540
ccacagtaaa ggacatttcc agggtgaaat ccaagtcaaa aatgaaaaaa acagaccatc 600
tctgaaatct ctgaaaactg ataacaggcc agaaaaatcc aaatgtaaac cactttgggg 660
aaaagtattt taccttgcgt taccttctgt caccatatct gaaaaacttc aaaaggacat 720
taaggatctg ggaggcgag ttgagaatt tctcgtcaaa gatatcgat atctttttc 780
aaataagaag gaagctaaat ttgcacaaac cttgggtcga atttctctgt taccaaatc 840
agaatctgcata tactgcgaa accacttc acctcatccc agccatgtatg gaagttcatt 900
taatgcacca gacacgtgt gtttaagcag agaaaaattt ttatgtaaaa aagctatcaa 960
ggaccatgtat tttattcctt caaatagtat attatcaat gcctgtcat ggggagataaa 1020
aattcttcattt attgtatgaca ttgatacta cattgaacaa aagaaaaaaag agttgtat 1080
actcaagaaa tcaagtactt cagtaagaga tggggcaaa agagttggta gtgggtcaca 1140
aaaaacaaga acagaagac tcaaaaagcc tttttaaag gtggaaagata tgagccaaag 1200
ccctgcgttc cattgtatgt agacaagcca tcttagtatgc aaaagccaaac tcaggtaaa 1260

ctaagaatcc aaacagatgg cgataagtat ggtggAACCT caattcaact ccagttgaaa 1320
gagaagaaga aaaaaggata ttgtgaatgt tgcttcaga aatatgaaga tctagaaact 1380
caccttctaa gtgagcaaca cagaAACTTT gcacagAGTA accagtatca agttgttgat 1440
gatattgtat ctaagttat ttttgcTTT gtggaatATG AAAAGGACAC acctaaaaAG 1500
aaaagaataa aatacagtgt tggatCCCTT tctcCTGTtT ctgcaagtgt cctgaaaaAG 1560
actgaacaaa aggaaaaAGT ggaATTGCAA catatttCTC agaaAGATTG ccAGGAAGAT 1620
gatacaacag tgaaggagca gaatttCCTG tataaAGAGA cccAGGAAAC tgaaaaAAAG 1680
ctcCTGTtTA tttcagAGCC catccccCAC CCTTCAATG aattgAGAGG gCTTAATGAG 1740
aaaatgagta ataaatgttC catgttaAGT acagCTGAAG atgacataAG acagaATTT 1800
acacagCTAC ctctacataa aaacAAACAG gaATGCACTT ttgacatTC cgaACACACA 1860
ttaagtggaa atgacttaga agaACTAAGG gtAGATCACT ataaatgtAA catacAGGCA 1920
tctgtacatg tttCTGATT cAGTACAGAT aatAGTGGAT ctcaACAAA ACAGAAGTCA 1980
gataCTGTGc ttttCCAGC aaaggatCTC aaggAAAAGG acCTTCACTC aatATTTACT 2040
catgattCTG gtCTGATAAC aataaacAGT tcacaAGAGC acCTTAACtGT tcAGGCAAAG 2100
gCTCCATTCC atactCCTCC tgAGGAACCC aatGAATGTG acTTCAAGAA tatGGATAGT 2160
ttacCTTCTG gtaaaatACA tcgAAAAGTG aaaATAATAT taggACGAAA tagAAAAGAA 2220
aatCTGGAAc caaATGCTG aTTTgATAAA agaACTGAAt ttattACACA agaAGAAAAC 2280
agaatttGta gttcaccGt acAGTCTTA ctGACTTGT ttCAgACTAG tGAAGAGAAA 2340
tcagaatTTT tggTTTcac aagCTACACA gaaaAGAGTG gtATATGCA tgTTTtagAT 2400
atTTGGAAAG aggAAAATTc agataATCTG ttaACAGCGT ttttCTCGTC CCCTCAACT 2460
tctacatTTA ctggCTTTA gaATTAAAAA aatGCATACT ttTCAGAAGT gataAGGATC 2520
atTTCTGta aTTTTTATA aatATGTG gaaATTCTTA ggATTTTTT accAGCTTG 2580
tttacAGACC caaATGtaAA tattAAAAT aaATATTGc aTTTTCTAC agaATTGAA 2640
acCTGTTAAA gaaaATTAC agaATAAAACT tGTGACTGGT ctTGTtttAC attAAAAAAA 2700
aaaaaaaaaa aaACTCGAG 2719

<210> 5
<211> 67
<212> PRT
<213> Mus musculus

Q2
W
<400> 5
Leu Lys Ala Asp Asn Arg Leu Glu Lys Ser Lys Tyr Lys Pro Leu Met
1 5 10 15

Gly Lys Ile Phe Tyr Leu Asp Leu Pro Ser Ile Thr Ile Cys Glu Lys
20 25 30

Leu Gln Lys Asp Ile Lys Glu Leu Gly Gly Arg Val Glu Glu Phe Leu
35 40 45

Ser Lys Asp Ile Ser Tyr Phe Val Ser Asn Lys Lys Glu Ala Lys Tyr
50 55 60

Ala Gln Thr
65

<210> 6
<211> 66
<212> PRT
<213> Drosophila melanogaster

<400> 6
Thr Pro Pro Lys Val Lys Val Ile Lys Ser Lys Arg Pro Leu Cys His
1 5 10 15

Phe Lys Phe Tyr Leu Asp Ile Cys Asp His Gln Leu Ala Lys Arg Ile
20 25 30

Glu Ser Asp Ile Lys Ala Leu Gly Gly His Leu Glu Pro Phe Leu Ser
35 40 45

Asp Asp Ile Thr His Phe Val Thr Asp Lys Pro Glu Val Ile Gly Gly
50 55 60

Thr Ser
65

<210> 7
<211> 59
<212> PRT
<213> Mus musculus

<400> 7
Lys Gln Ala Gln Pro Lys Leu Arg Ile Asn Met Asp Gly Asp Lys Cys
1 5 10 15

Gly Thr Pro Val Gln Leu Gln Leu Lys Glu Lys Arg Lys Lys Gly Tyr
20 25 30

Cys Glu Cys Cys Leu Gln Lys Tyr Glu Asp Leu Glu Thr His Leu Leu
35 40 45

Ser Glu Lys His Arg Asn Phe Ala Gln Ser Asn
50 55

(12)
<210> 8
<211> 60
<212> PRT
<213> Drosophila melanogaster

<400> 8
Pro Ser Leu Gln Glu Leu Lys Lys Gln Ser Ala Ile Pro Asn Ser Pro
1 5 10 15

Arg Ser Asn Cys Arg Glu Pro Ile Asp Ser Ser Glu Lys Gln Gly Gly
20 25 30

Val Cys Glu Ile Cys Lys Leu Glu Tyr Asp Ile Leu Asn Ile His Leu
35 40 45

Gln Ser Lys Asp His Glu Leu Phe Ala Lys Asn Ser
50 55 60

<210> 9
<211> 59
<212> PRT
<213> Saccharomyces cerevisiae

<400> 9

Lys Lys Ser Thr Ser Thr Asn Val Thr Leu His Phe Asn Ala Gln Thr
1 5 10 15

Ala Cys Thr Ala Gln Pro Val Lys Lys Glu Thr Val Lys Asn Ser Gly
20 25 30

Tyr Cys Glu Asn Cys Arg Val Lys Tyr Glu Ser Leu Glu Gln His Ile
35 40 45

Val Ser Glu Lys His Leu Ser Phe Ala Glu Asn
50 55