## PRACTICE C

## **Heat-Engine Efficiency**

- **1.** If a steam engine takes in  $2.254 \times 10^4$  kJ from the boiler and gives up  $1.915 \times 10^4$  kJ in exhaust during one cycle, what is the engine's efficiency?
- **2.** A test model for an experimental gasoline engine does 45 J of work in one cycle and gives up 31 J as heat. What is the engine's efficiency?
- **3.** A steam engine absorbs  $1.98 \times 10^5$  J and expels  $1.49 \times 10^5$  J in each cycle. Assume that all of the remaining energy is used to do work.
  - **a.** What is the engine's efficiency?
  - **b.** How much work is done in each cycle?
- **4.** If a gasoline engine has an efficiency of 21 percent and loses 780 J to the cooling system and exhaust during each cycle, how much work is done by the engine?
- **5.** A certain diesel engine performs 372 J of work in each cycle with an efficiency of 33.0 percent. How much energy is transferred from the engine to the exhaust and cooling system as heat?
- **6.** If the energy removed from an engine as heat during one cycle is  $6.0 \times 10^2$  J, how much energy must be added to the engine during one cycle in order for it to operate at 31 percent efficiency?

## **ENTROPY**

When you shuffle a deck of cards, it is highly improbable that the cards would end up separated by suit and in numerical sequence. Such a highly ordered arrangement can be formed in only a few ways, but there are more than  $8 \times 10^{67}$  ways to arrange 52 cards (because  $52! = 8 \times 10^{67}$ ).

In thermodynamics, a system left to itself tends to go from a state with a very ordered set of energies (one that has only a small probability of being randomly formed) to one in which there is less order (or that has a high probability of being randomly formed). The measure of a system's disorder is called the **entropy** of the system. The greater the entropy of a system is, the greater the system's disorder.

The greater probability of a disordered arrangement indicates that an ordered system is likely to become disordered. Put another way, the entropy of a system tends to increase. This greater probability also reduces the chance that a disordered system will become ordered at random. Thus, once a system has reached a state of greatest disorder, it will tend to remain in that state and have *maximum entropy*.



## entropy

a measure of the randomness or disorder of a system