GOOD COVERS AND ALGEBRAS ON CONICALLY SMOOTH SPACES

ALEKSANDAR IVANOV AND ÖDÜL TETİK

ABSTRACT. We construct good covers for conically smooth spaces over depth-1 posets. By a result of Karlsson–Scheimbauer–Walde, this implies that, for every such space X, constructible factorisation algebras on X and disk algebras over X coincide. We also give a simplified proof of that result.

Contents

1.	Introduction]
2.	Localities of the full unzip	1
3.	Good covers	4
4.	A proof of	6
References		6

1. Introduction

Acknowledgments. We thank Tashi Walde for very useful exchanges.

2. Localities of the full unzip

Definition 2.1. $S_X \subset X$.

Proposition 2.2. $S_X \subset X$ proper constructible bundle with $\operatorname{Unzip}_{S_X}(X) \cong \operatorname{Unzip}(X)$ and $\operatorname{Link}_{S_X}(X) = \partial \operatorname{Unzip}(X)$.

Lemma 2.3. Locally finite good cover on S_X . (?) unnecessary - second-countability implies more than paracompactness - see [Lee, Smooth, Thm 1.15]

Lemma 2.4. Let X be a smooth manifold with corners. Then for every boundary collar $I: \mathbb{R}_{\geq 0} \times \partial X \hookrightarrow X$ there exists a homeomorphism

$$\alpha_I \colon X^+ \xrightarrow{\cong} \mathbb{R}_{\geq 0} \times X$$

where $X^+ = \bigcup_{r \in \mathbb{R}_{>0}} [0, r] \times \partial X \cup_{\{r\} \times \partial X} X$.

Proof. Let $I: \mathbb{R}_{\geq 0} \times \partial X \hookrightarrow X$ be a collar, which is a homeomorphism onto its image. We have $X = I(\mathbb{R}_{\geq 0} \times \partial X) \cup_{I((0,\infty) \times \partial X)} X^{\circ}$. Similarly, for each r, we have a diffeomorphism

$$\alpha_r \colon X \to X \setminus I([0,r) \times \partial X) = I([r,\infty) \times \partial X) \cup_{I((r,\infty) \times \partial X)} X \setminus I([0,r] \times \partial X)$$

The authors were supported by the Austrian Science Fund (FWF) through Project no. P 37046.

given by $I(t,q) \mapsto I(t+r,q)$ on $I(\mathbb{R}_{\geq 0} \times \partial X)$ and by the identity on $X \setminus \operatorname{Im}(I)$. We suppress the dependence on I in notation. We obtain a well-defined homeomorphism

$$I \cup \alpha_r \colon [0, r] \times \partial X \cup_{\{r\} \times \partial X} X \to X,$$

well-defined since $\alpha_r(q) = \alpha_r(I(0,q)) = I(r,q)$ for $q \in \partial X$, and thereupon, writing $X^{+r} = [0,r] \times \partial X \cup_{\{r\} \times \partial X} X$, the bijection

$$\alpha_I \colon X^+ \to \mathbb{R}_{\geq 0} \times X,$$

 $\alpha|_{X^{+r}} = \{r\} \times I \cup \alpha_r.$

We equip X^+ with the induced topology, promoting α to a homeomorphism.

Lemma 2.5. Let X be a smooth manifold with corners. Then there is a homeomorphism $\mathbb{R}_{>0} \times \partial(\mathbb{R}_{>0} \times X) \cong \mathbb{R}_{>0} \times X$. Consequently, there is a homeomorphism

$$\operatorname{Unzip}_{C(L)}(C(Z)) \cong \mathbb{R}_{>0} \times \operatorname{Link}_{C(L)}(C(Z))$$

for $L = S_Z$.

Proof. Using Lemma 2.4 it suffices to provide a homeomorphism

$$\phi \colon \mathbb{R}_{\geq 0} \times \partial(\mathbb{R}_{\geq 0} \times X) \to \bigcup_{r \in \mathbb{R}_{\geq 0}} [0, r] \times \partial X \cup_{\{r\} \times \partial X} X.$$

Noting

$$\partial(\mathbb{R}_{\geq 0} \times X) = \{0\} \times X \cup_{\{0\} \times \partial X} \mathbb{R}_{\geq 0} \times \partial X,$$

we define ϕ to be the following map:

$$\mathbb{R}_{\geq 0} \times \{0\} \times X \ni (t,0,x) \mapsto x \in X \subset [0,t] \times \partial X \cup_{\{t\} \times \partial X} X$$
$$\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \times \partial X \ni (t,s,q) \mapsto (t,q) \in [0,t+s] \times \partial X.$$

This map and its inverse ϕ^{-1} given by

$$[0,r]\times\partial X\ni (t,q)\mapsto (t,r-t,q)\in\mathbb{R}_{\geq 0}\times\mathbb{R}_{\geq 0}\times\partial X$$
$$[0,r]\times\partial X\cup_{\{r\}\times\partial X}X\supset X\ni x\mapsto (r,0,x)\in\mathbb{R}_{\geq 0}\times\{0\}\times X$$

are well-defined and continous. Note that ϕ does not nepend on a collar.

The second statement is the special case where $X = \operatorname{Unzip}_L(Z)$ using Proposition 2.2 and that $\operatorname{Unzip}_{C(L)} C(Z) = \mathbb{R}_{\geq 0} \times \operatorname{Unzip}_L(Z)$ and $\operatorname{Link}_{C(L)} C(Z) = \partial \operatorname{Unzip}_{C(L)}(C(Z))$.

Remark 2.6. In the situation of Lemma 2.4 we will regard X^+ as a smooth manifold with corners with respect to the smooth structure induced by α_I . Up to equivalence, this structure does not depend on the choice of collar. Similarly, in the situation of Lemma 2.5 we will regard $\mathbb{R}_{\geq 0} \times \operatorname{Link}_{C(L)} C(Z)$ as a smooth manifold with corners, tautologically diffeomorphic to $\operatorname{Unzip}_{C(L)} C(Z)$ with respect to the induced smooth structure.

Construction 2.7. Let X be a smooth manifold with corners of dimension n, let $\{(U,\phi_U)\}$ a cover of X by coordinate neighbourhoods where each $\phi_U \colon \mathbb{R}^{n-c_U} \times \mathbb{R}^{c_U}_{\geq 0}$ is a homeomorphism, and let $\{\rho_U \colon X \to [0,1]\}$ be a partition of unity subordinate to this cover. Recall that a collar $I = I(\{U,\phi_U,\rho_U\}) \colon \mathbb{R}_{\geq 0} \times \partial X \hookrightarrow X$ is then constructed by defining to be the flow along the nowhere-vanishing inward-pointing vector field $V = \sum \rho_U V_U$ where, in local coordinates, $V_U = \sum_{1 \leq i \leq c_U} \partial_i$ where $\{\partial_i\}$ is the standard basis of $T_0\mathbb{R}^{c_U}_{\geq 0} \subset T_0(\mathbb{R}^{n-c_U} \times \mathbb{R}^{c_U}_{\geq 0})$.

Let X and $I = I_{\{U,\phi_U,\rho_U\}}$ be as above. Then there is a canonically induced a collar

$$I^{+} = I(\{\mathbb{R}_{\geq 0} \times U, \mathrm{id}_{\mathbb{R}_{\geq 0}} \times \phi_{U}, \rho_{U} \circ \mathrm{pr}_{X}\}) \colon \mathbb{R}_{\geq 0} \times \partial(\mathbb{R}_{\geq 0} \times \partial X) \hookrightarrow \mathbb{R}_{\geq 0} \times X$$

on $\mathbb{R}_{\geq 0} \times X$, where $\operatorname{pr}_X \colon \mathbb{R}_{\geq} \times X \to X$ is the coordinate projection. It is the flow along the vector field $V^+ = \sum_{c} (\rho_U \circ \operatorname{pr}_X) \cdot V_U^+$ where $V_U^+ = \partial_s + V_U$ where ∂_s is the standard basis of $T_0 \mathbb{R}_{\geq 0} \subset T_0(\mathbb{R}_{\geq 0} \times \mathbb{R}^{n-c_U} \times \mathbb{R}_{\geq 0}^{c_U})$.

Lemma 2.8. Let X be a smooth manifold with corners and let $I^+: \mathbb{R}_{\geq 0} \times \partial(\mathbb{R}_{\geq 0} \times \partial X) \hookrightarrow \mathbb{R}_{\geq 0} \times X$ be as in Construction 2.7. Then

$$I^+ = \alpha_I \circ \phi$$

where α_I is as in Lemma 2.4 and ϕ is as in the proof of Lemma 2.5.

Proof. We observe the restrictions

$$\mathbb{R}_{\geq 0} \times \{0\} \times X \xrightarrow{\alpha_I \circ \phi} \mathbb{R}_{\geq 0} \times X$$
$$(t, 0, x) \mapsto \begin{cases} (t, I(t_x + t, q)), & x = I(t_x, q) \\ (t, x), & x \in X \setminus \text{Im}(I) \end{cases}$$

and

$$\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \times \partial X \xrightarrow{\alpha_I \circ \phi} \mathbb{R}_{\geq 0} \times X$$
$$(t, s, q) \mapsto (t + s, I(t, q)).$$

Both maps are the flow (for time t) along the vector field $V^+ = \sum (\rho_U \circ \operatorname{pr}_X) \cdot (\partial_s + V_U)$.

In the following, $\mathbb{D}^n \subset \mathbb{R}^n$ denotes the unit open n-disk and $C^{<1}(Z) = * \coprod_{\{0\} \times Z} [0,1) \times Z$.

Definition 2.9. We say an embedded basic $\phi \colon \mathbb{R}^k \times C(Z) \hookrightarrow X$ in a conically smooth space X is *extendable* if there exists an embedding $\widehat{\phi} \colon \mathbb{R}^n \times C(Z) \hookrightarrow X$ such that ϕ factors as $\phi \colon \mathbb{R}^k \times C(Z) \to \mathbb{D}^n \times C^{<1}(Z) \hookrightarrow \mathbb{R}^n \times C^{<1}(Z) \stackrel{\widehat{\phi}}{\hookrightarrow} X$ where the first map is the isomorphism given by the cartesian product of the isomorphisms $\mathbb{R}^n \to \mathbb{D}^n$, $x \mapsto \frac{x}{|x|+1}$ and $C(Z) \to C^{<1}(Z)$, $(t,z) \mapsto (\frac{t}{t+1},z)$.

Definition 2.10. Suppose \mathcal{U} is a cover of a topological space X which is closed under finite intersections. We say \mathcal{U} is generated by a cover \mathcal{V} and write $\mathcal{U} = \langle \mathcal{V} \rangle$ if every member of \mathcal{U} is a finite intersection of members of \mathcal{V} .

Lemma 2.11. Every smooth manifold M has a good cover \mathcal{U} which is generated by extendable basics.

Proof. Equip M with a riemannian metric. We can put $\mathcal{U} = \langle \mathcal{V} \rangle$ for $\mathcal{V} = \{D_p\}_{p \in M}$ where D_p is the convex disk which is the interior of the image of a ball in T_pM under the exponential map, with radius strictly smaller than the radius of injectivity. \square

Lemma 2.12. Suppose $U \subset C(Z)$ be conically smooth basics with $S_{C(Z)} \cong U$, and suppose that $U \cong C(L)$ is extendable. Let $\pi \colon \operatorname{Link}(C(Z))|_U \to U$ denote the link projection of $\operatorname{Unzip}(C(Z))$ over U. Then there is an isomorphism

$$\partial \overline{\pi^{-1}U} \cong \operatorname{Link}_L(Z)$$

and an induced conically smooth collar

$$(0,1] \times \partial \overline{\pi^{-1}U} \hookrightarrow \overline{\pi^{-1}U}$$

which is a refinement onto its image.

Proof. Up to isomorphism we have that $U=C^{<1}(L)\subset C^{<1}(Z)\subset C(Z)$ is induced by the inclusion $L=S_Z\subset Z$. Abbreviating $S=S_{C(Z)}$, the inclusion of U factors as $U\subset S=C(L)$. Now, using Proposition 2.2 we have $\operatorname{Unzip} C(Z)=\operatorname{Unzip}_S C(Z)=\mathbb{R}_{>0}\times\operatorname{Unzip}_L Z$ and so

$$\begin{aligned} \operatorname{Unzip} C(Z)|_{U} &= \operatorname{Link}_{C(L)} C(Z)|_{C^{<1}(L)} \\ &= \{0\} \times \operatorname{Unzip}_{L} Z \cup_{\{0\} \times \operatorname{Link}_{L} Z} [0,1) \times \operatorname{Link}_{L} Z \end{aligned}$$

since the projection $\pi\colon \operatorname{Link}_{C(L)}C(Z)=\{0\}\times \operatorname{Unzip}_L Z\cup_{\{0\}\times\operatorname{Link}_L Z}\mathbb{R}_{\geq 0}\times \operatorname{Link}_L Z\to C(L)=*\operatorname{II}_{\{0\}\times L}\mathbb{R}_{\geq 0}\times L$ is given by mapping all of $\{0\}\times\operatorname{Unzip}_L Z$ to * and on $\mathbb{R}_{\geq 0}\times\operatorname{Link}_L Z$ by $\operatorname{id}_{\mathbb{R}_{\geq 0}}\times\pi'$ where $\pi'\colon \operatorname{Link}_L Z\to L$ is the link projection. Thus

$$\pi^{-1}\overline{U} = \pi^{-1}C^{\leq 1}(U) = \{0\} \times \operatorname{Unzip}_L Z \cup [0,1] \times \operatorname{Link}_L Z$$

and consequently

$$\pi^{-1}\partial \overline{U} = \pi^{-1}\{1\} \times L = \{1\} \times \operatorname{Link}_L Z,$$

proving the first claim. The collar is immediate.

Example 2.13.

Corollary 2.14.

3. Good Covers

Definition 3.1. Let X be a CSS. A good cover of X is an open cover \mathcal{U} of X consisting of basics whose finite intersections are also in \mathcal{U} .

Definition 3.2. Let Y be a smooth manifold with or without boundary, equipped with a riemannian metric. We call a cover of Y geodesically convex if it consists of geodesically convex basics.

Theorem 3.3. Let X be a CSS over a depth-1 poset. Then X has a good cover.

Proof. Without loss of generality, suppose X is stratified over [1] and let $M = X_0$ and $N = X_1$. Recall the blow-up of M, the smooth manifold

Unzip
$$\cong L \coprod_{L \times (0,\infty)} N$$

with boundary $L = \partial \text{Unzip}$. We write $\pi \colon L \to M$ for the accompanying proper fibre bundle. Let us equip Unzip with a riemannian metric which splits along the boundary.

Using the paracompactness of M, let \mathcal{U} be a locally finite good cover of M which trivialises π . For each $U \in \mathcal{U}$, let $\epsilon_U > 0$ be the radius of injectivity in the normal direction on the compact closure \overline{U} so that there is a smooth embedding

$$I_U : \pi^{-1}U \times [0, \epsilon_U) \hookrightarrow \text{Unzip}$$

whose restriction $I_U|_{\pi^{-1}U\times\{0\}}$ to $\pi^{-1}U\subset L$ is given by the boundary inclusion, and the path $I_U(q,-):[0,\epsilon_U)\hookrightarrow \text{Unzip}$, for every $q\in\pi^{-1}U$, is the minimising geodesic

given by the normal exponential map. More precisely, for ν the inward-pointing unit normal vector field along the boundary, we set $I_U(x,t) = \exp_x(t\nu_x)$. Let

$$C = \bigcup_{U \in \mathcal{U}} \operatorname{Im}(I_U)$$

be the induced 'collar' and consider the cover

$$\mathcal{C} = \{ I_U(\pi^{-1}U \times [0, \delta)) : U \in \mathcal{U}, \ \delta \le \epsilon_U \}$$

of C. Let us write $C_{U,\delta} = I_U(\pi^{-1}U \times [0,\delta)) \in \mathcal{C}$. Note that \mathcal{C} is closed under finite intersections since so is \mathcal{U} : we have $\pi^{-1}U \cap \pi^{-1}V = \pi^{-1}(U \cap V)$ and

$$C_{U,\delta} \cap C_{V,\delta'} = C_{U \cap V,\min(\delta,\delta')} \in \mathcal{C}$$

since $\min(\delta, \delta') \le \epsilon_{U \cap V}$ for $\delta \le \epsilon_U$, $\delta' \le \epsilon_V$.

Consider now the collection $\mathcal V$ of those convex geodesic disks V in N such that $V\cap C_{U,\delta}$ is either empty or a convex geodesic disk for every $C_{U,\delta}\in\mathcal C$. Then $\mathcal V$ is a good cover of N. To prove this, it suffices to show that every $p\in C$ has a neighbourhood $V_p\in\mathcal V$, since convex geodesic disks are closed under finite intersections and so $V\cap V'\cap C_{U,\delta}=V\cap V''\in\mathcal V$. Let now $p\in I_U(\pi^{-1}U\times[0,\delta))\in\mathcal C$, which uniquely determines a point $l_p=\pi(\operatorname{pr}_1(p))\in\pi^{-1}U\subset L$. Let $W\subset\pi^{-1}U$ be a convex geodesic disk neighbourhood of l_p . Now, since $\mathcal U$ is locally finite, so is the cover $\widetilde{\mathcal C}=\{I_U(\pi^{-1}U\times[0,\epsilon_U))\}$ of C (which is not necessarily closed under finite intersections), so in particular p is contained within finitely many members $I_{U_i}(\pi^{-1}U_i\times[0,\epsilon_i))\in\widetilde{\mathcal C}$. We necessarily have $p\in I_U(\pi^{-1}U\times[0,\min_i(\epsilon_i)))$ with $U\in\{U_i\}_i$ an open satisfying $\epsilon_U=\min_i(\epsilon_i)$. Then $W\times[0,\min_i(\epsilon_i))\ni p$ is a convex geodesic half-disk since the riemannian metric on Unzip splits along the boundary, and so we have $p\in V_p=W\times(0,\min_i(\epsilon_i))\in\mathcal V$.

Let us now observe that $\pi^{-1}U \cong L_p \times U$ for $p \in U$ implies that each

$$C(L_n) \times U \cong U \coprod_{\pi^{-1}U} C_{U,\delta} \subseteq X$$

is a basic in X. Thus, writing $\widehat{C_{U,\delta}} = U \coprod_{\pi^{-1}U} C_{U,\delta}$, we obtain that

$$\widehat{\mathcal{C}} = \{\widehat{C_{U,\delta}} : C_{U,\delta} \in \mathcal{C}\}$$

is a cover by basics of the 'tubular neighbourhood'

$$\widehat{C} = \bigcup_{U \in \mathcal{C}} \widehat{C_{U,\epsilon_U}} \subseteq X$$

of M. It is closed intersections since so is \mathcal{C} . Finally, since for $V \in \mathcal{V}$ we have $\widehat{C_{U,\delta}} \cap V = C_{U,\delta} \cap V \in \mathcal{V}$, we conclude that

$$\widehat{\mathcal{C}} \cup \mathcal{V}$$

is a good cover of X.

¹A global ϵ need not exist unless Unzip is of bounded geometry; see e.g. Schick [Sch01].

4. A proof of...

References

[Sch01] T. Schick. 'Manifolds with Boundary and of Bounded Geometry'. Mathematische Nachrichten 223.1 (2001), 103–120.

University of Vienna, Faculty of Physics, Mathematical Physics Group, Boltzmanngasse 5, 1090 Vienna, Austria

 $Email\ address:$ aleksandar.ivanov@univie.ac.at

 $Email\ address: {\tt oeduel.tetik@univie.ac.at}$