

CompTIA Network+ N10-009 TTT Session 6:

Title

June 20, 2024

Instructor:
Don Tilley
Cybersecurity Instructor,
Program Director
Access Computer Training
dontilley130@gmail.com

Host:
Stephen Schneiter
Instructor Network Program Director
CompTIA
sschneiter@comptia.org

The CompTIA Instructor Network (CIN) is a worldwide community for instructors who provide CompTIA certification training.

Benefits of being a community member include:

- Communicate and collaborate with CompTIA staff and other instructors.
- Access resources for students to understand the value of getting certified.
- Receive complimentary training and tools from CompTIA to enrich your classroom.
- Become proficient at teaching CompTIA standards.
- Share best practices and resources with each other.

Join us for the morning session from 9:00 a.m. to 12:00 p.m. or the afternoon session from 1:00 p.m. to 4:00 p.m.

Each session is \$99.00.

Lunch and refreshments provided

Workshop sessions:

- 1. Get In Sync with the new CompTIA Tech+ FC0-U71
- 2. Teaching CompTIA Network+ N10-009 with the new CertMaster Perform
- 3. Tools for teaching CompTIA A+ 1100 Series

Each session provides:

- Access to official CompTIA content for the course
- Instructor led training and labs
- Certificate of completion provided at the end of session.

Hyatt Regency Atlanta
July 31 – August 1

Register today: https://connect.comptia.org/partnersummit/home

If a bad organizational culture eats ethics for breakfast, then will AI steal your lunch money?

What: One-hour webinar investigating current industry AI trends

When: Thursday July 25th 10:00 a.m. CST

Where: ON24

Who: James Stanger, Chief Technology Evangelist

Register: https://bit.ly/CINPulse-AITrends

- Introductions
- Getting to know you
- Why Network+
- Session 1 topics

Network+ N10-009 TTT Session Outline					
Date	Topic				
√ 06/20/2024	Introduction and Network Topologies				
√ 06/25/2024	Cabling and Physical Installations				
√ 06/27/2024	Configuring Interfaces and Switches				
√ 07/02/2024	Configuring Network Addressing				
√ 07/09/2024	Configuring Routing and Advanced Switching				
√ 07/11/2024	Network Security				
07/16/2024	Network Security (Continued)				
07/18/2024	Wireless Networking				
07/23/2024	Troubleshooting and Management				
07/25/2024	Emerging Technologies and Trends				

Learning Objectives

- **Explain common security concepts.**
- Gaine Distinguish risk, vulnerability, exploit, and threat.
- Explain the importance of audits and regulatory compliance.
- Summarize types of attacks and their impact on the network.
- **Explain** identity and access management concepts.
- Distinguish protocols and standards used for authentication and directory management.

SECURITY CONCEPTS

CIA Triad

Vulnerability, Threat, Risk

Security Audits

Security Audit

Systematic evaluation of a company's information system security

Measure conformity to established security criteria

Identifies strengths and weaknesses Highlights areas for security improvement

Key Components

Policies assessment

Procedures review

Technical controls evaluation

Access controls inspection

Risk management practices assessment

Types of Security Assessments

Compliance Audits

Verify adherence to laws, regulations, and standards

Risk-Based Audits

Identifying and prioritizing potential threats/vulnerabilities

Technical Audits

• Deep-dive into IT infrastructure (e.g., network security, access controls, and data protection)

Role of Risk Management

Identifying Critical Assets

Determine mission essential functions/assets vital to business operations

Business Impact Analysis (BIA)

Assess potential losses from threat scenarios (e.g., DoS attack)

Mitigation Strategies

Balance cost of security controls against the potential risks to determine acceptable risk levels

Regulatory Compliance

Definition

The process by which organizations ensure they are following all relevant laws, regulations, and guidelines applicable to their industry

Purpose

To protect data, individuals' privacy, and ensure the integrity of financial transactions and sensitive information

Key Components

Implementation of security measures and controls Regular internal and external audits Compliance with specific industry standards

Understanding Encryption

What is Encryption?

Converting human-readable data (plaintext) into a coded format (ciphertext)
Only accessible to authorized users with decryption key

Purpose of Encryption

Ensures data confidentiality

Protects information from unauthorized access

Types of Cryptographic Algorithms

Encryption Algorithm

Converts plaintext into ciphertext (key required for decryption)

Use Case: Protecting emails or files

Cryptographic Hash Algorithm

Transforms a string into a fixed-length hash (cannot be reversed)

Use Case: Password storage, verifying data integrity

The States of Data

Data at Rest

- Persistent storage media protection
- Example: encrypted hard drives

Data in Transit

- Protection while data is transmitted
- Example: TLS encryption

Data in Use

- Securing data in volatile memory
- Example: RAM encryption techniques

Vulnerabilities

1.Definition

 Flaws in software design allowing bypass of security or causing crashes

Causes

 Misconfigurations, poor practices, design faults

Impact

 Allows attackers to execute arbitrary code, install malware, compromise security configurations

Targets

 Commonly include web servers, browsers, plug-ins, email clients, databases

Types of Exploits and Vulnerabilities

1.Zero-Day Vulnerabilities

- Exploited before developers can patch
- High destructive potential

Unpatched/Legacy Systems

Pose significant threats due to lack of updates or support

Vulnerability Assessment

- Evaluating a system's security based on its configuration
- Verify it matches the ideal baseline
- Involves manual inspections and automated scans

Question 1: What are the three components of the CIA Triad?

Question 2: What is the difference between a vulnerability and a threat in cybersecurity?

NETWORK THREATS AND ATTACKS

External Threats

Origin

 Attacks or malicious activities by individuals/ groups from outside the organization Examples

Hackers

•Cyber Criminals

Espionage

•Competitive intelligence

Characteristics

•Often sophisticated

Targeted

•Relentless

MitigationStrategies

Firewall protection

•Intrusion detection systems (IDS)

External audits

•Security awareness training

Internal Threats

Origin

Originate from within the organization

Often involve employees, contractors, or business partners Examples

Accidental data leaks

 Deliberate data theft

Sabotage

•Insider trading

Characteristics

 Harder to detect due to legitimate access

May stem from dissatisfaction, malicious intent, or carelessness

Mitigation Strategies

•Role-based access controls

> User activity monitoring

 Regular security training

•Clear policies on data handling

Origin

Internet's inception and growing more complex

Evolved to sophisticated DDoS using botnets

Characteristics

Intent: Disrupts service, denying user access.

Methods: Uses resource exhaustion, bandwidth saturation, software exploitation

chutdown

DDoS Attacks – Examples and Mitigation

Examples of DDoS Attacks

ICMP Flood: Overloads with ICMP packets (unreachable targets)

SYN Flood: Abuses TCP handshake (blocks legitimate server access)

DNS Amplification: Exploits misconfigured DNS servers (attack traffic)

Mitigation Strategies

Early Detection: Monitors for unusual traffic patterns

Traffic Filtering: Employs firewalls and IDS to block malicious traffic

Response Plan: Prepares specific actions for DoS attacks

Redundancy: Implements network redundancy to reduce downtime

Botnet Attacks

Definition

Network of compromised computers for malicious use

Infected by malware and controlled remotely

Types of **Botnets**

Distributed Denial of Service (DDoS)

Spam botnets

Banking trojan botnets

Mitigation strategies

- •Implement cybersecurity like firewalls and antivirus
- •Analyze network for unusual traffic
- •Isolate and fix compromised devices
 - Teach safe internet use

Malware

Definition

Harmful software disrupting or damaging systems

Types of Malware

Viruses/Worms

Trojan

PUPs/PUAs

Vectors and Payloads

Vectors: Infection and spread methods

Payloads: Executed harmful actions (e.g., spying, unauthorized access, data encryption for ransom)

Question 1: What is the main difference between external and internal threats?

Question 2: What is a Denial of Service (DoS) attack?

SPOOFING ATTACKS

Spoofing Attacks

Definition

Disguising oneself as someone else to gain unauthorized access

Purpose

Trick users/devices, bypass security, and steal data or spread malware

Types

IP spoofing **ARP** spoofing Email spoofing

On-Path Attacks

Definition

Attacks that intercept and possibly alter two parties' communications undetected

Purpose

Steal sensitive personal or corporate information Inject malware

Common Types

Session hijacking SSL stripping DNS spoofing Wi-Fi eavesdropping ARP spoofing

ARP Spoofing Example

No.	Time	Source	Destination	Protocol	Length Info
wo.	6 10.022521400		Microsof 01:ca:76	ARP	42 10.1.0.102 is at 00:15:5d:01
	7 10.032593990		Microsof_01:ca:77	ARP	42 10.1.0.2 is at 00:15:5d:01:c
	8 10.032505300		Microsof_D1:ca:75	ARP	42 10.1.0.101 is at 60:15:5d:01
-	9 18.219206500		10.1.0.2	TCP	55 1762 → 80 [SYN] Seg=0 Win=65
	10 18.220473490		19.1.9.2	TCP	56 [TCP Out-Of-Order] 1762 → 89
	11 18.223616200	10.1.0.2	10.1.0.101	TCP	66 80 → 1702 [SYN, ACK] Seq=0 A
	12 18.228456890	16.1.6.2	10.1.0.101	TCP	66 [TCP Retransmission] 80 → 17
	13 18.228797700		10.1.0.2	TCP	54 1702 → 80 [ACK] Seq=1 Ack=1)
	14 18.229264190		10.1.0.2	HTTP	433 GET / HTTP/1.1
	15 18.238162690		10.1.0.2	TCP	54 1702 → 80 [ACK] Seq=1 Ack=1 \
	16 18.238250490		10.1.0.2	TCP	433 [TCP Retransmission] 1702 →
	17 18.239342290		10.1.0.101	HTTP	412 HTTP/1.1 302 Redirect (text
	18 18,244530790		19.1.9.191	TCP	412 [TCP Retransmission] 80 → 17
	19 18.245021200		10.1.0.2	TCP	54 1702 → 80 [ACK] Seq=380 Ack=
	20 18.252481890		19.1.9.2	TCP	54 [TCP Dup ACK 19#1] 1762 - 89
	21 18, 255190490 22 18, 260503200		19.1.9.2	TCP TCP	55 1763 → 443 [SYN] Seq=0 Win=5
	23 18.261065300		10.1.0.2 10.1.0.101	TCP	66 [TCP Retransmission] 1703 → 86 443 → 1793 [SVN, ACK] Seg=0 .
	24 18.268454300		19.1.9.101	TCP	55 [TCP Retransmission] 443 → 1
	24 10.200404000	10.1.0.2	10.1.0.101	101	00 G
Era	ame 9: 66 bytes o	on wire (528 bits), 56	bytes captured (528)	bits) on i	interface D
					_01:ca:4a (00:15:5d:01:ca:4a)
		rosof G1:ca:4a (98:15:			
-	Source: Microsof	_01:ca:77 (00:15:5d:01	.:ca:77)		
	Type: IPv4 (0x080				
		/ersion 4, Src: 10.1.8			
Tra	ansmission Contro	ol Fratocal, Src Port:	1702, Dst Fort: 80,	Seq: 0, Le	en: 0
9609]wE	
9619				e.	
9629	00 62 86 a6 09	50 dc 52 ee 41 09 00	60 96 88 02F	'.R .A	
9639	ff ff 89 1d 00	00 02 04 05 b4 01 03	63 98 91 91		
9649	04 62				
0 2	Destination Hardwa	are Address (eth.dst), 6 bytes		Day	:kets: 286 - Displayed: 286 (100.0%) Profile: Defau
- 5	Destination Hardwa	are mouress (emiost), o bytes		rac	incis, 200 - Displayed, 200 (100,0%) Fronte, Derau

MAC Flooding Attacks

Definition

Overloads switch CAM table with many MAC addresses, causing switch failure and traffic broadcast

Purpose

Disrupt switch function to eavesdrop on normally inaccessible network traffic

Types of MAC Flooding **Attacks**

Random MAC address flooding Incremental MAC address flooding Targeted MAC flooding

VLAN Hopping Attack

Definition

 Exploit where attackers send packets to a VLAN without access, using vulnerabilities in **VLAN** implementation on switches

Purpose

 Bypass security, accessing restricted/sensitive networks

Types

- Switch Spoofing
- **Double Tagging**

Activity: Fill in the Blank

Two types of _____ hopping attacks include switch spoofing and double tagging.

A/an _____ attack involves intercepting and possibly altering two parties' communications without detection.

A/an _____ flooding attack overloads switch CAM table with many addresses, causing switch failure and traffic broadcast

ROGUE SYSTEM ATTACKS

Rogue Devices and Services

Definition

Unauthorized hardware and software that connect to a network without permission, potentially causing serious security risks

Characteristics

Unauthorized access

Malicious intent

Data interceptions and manipulation

Rogue DHCP Server Attacks

DNS Attacks

Attacks that target the DNS, undermining the integrity and availability of internet services

Characteristics

Disruption of service

Domain hijacking

Cache poisoning

Question 1: What is a rogue DHCP server attack?

Question 2: What are some characteristics of rogue devices and services?

SOCIAL ENGINEERING

Social Engineering Attacks

Definition

Manipulative technique cyber criminals use to exploit human vulnerabilities, not technical weaknesses

Goal

Deceive individuals into giving up confidential or personal information

Characteristics

Highly effective due to exploiting people's natural tendency to trust

Success relies on the attacker appearing trustworthy or authoritative

Persuades victims to breach security practices or ignore red flags

Types of Social Engineering Attacks

Password Attacks

Definition

Attempts to obtain or bypass individuals' passwords using various methods

Dictionary Attacks

Enters all dictionary words Targets weak, simple passwords

Brute Force Attacks

Tries all character combinations

Time-consuming but cracks any password

Question 1: What is the primary goal of social engineering attacks?

Question 2: Name two types of social engineering attacks.

AUTHENTICATION

Discussion

Boarding Pass

Passenger Name: Samantha Simons

Birthdate: 1-11-2001

Required to board:

Passport

Printed Ticket

Destination: Aruba Ship: The Splash

Deck: 12

Cabin: 12345

Included:

Beverages: All-inclusive

Meals: A la carte

Scuba diving excursion

Resort shopping excursion

All onboard activities and purchases will be logged in your customer account.

Identity

Who she claims to be

Authentication

Proof that she is who she claims to be

Authorization

Where she is allowed to go and what level of access she will have once onboard

Accounting

Method for tracking and logging activity

Think About It: Access Control

Identity

An account or ID that uniquely represents a user, device, or process on the network

Authentication

Factor(s) used to prove a subject is who or what it claims to be

Authorization

Rights and permissions a subject is granted within a system or network

Accounting

Tracking of authorized/unauthorized usage of a resource by a subject

What are some examples of each of these in network security?

Authentication Methods

Single Sign-On

I'm so happy I don't have to log in to all these apps one at a time!

Kerberos SSO Authentication

- Question 1: What are the three main factors of authentication often referred to as "something you..."?
- Question 2: What is Single Sign-On (SSO) and how does it benefit users?
- Question 3: What is the primary function of the Ticket Granting Service (TGS) in Kerberos authentication?

Question 4: What are two key benefits of using Kerberos for authentication?

CIN

Summary

Policies & Controls: Establish policies and deploy controls aligned with the CIA triad (Confidentiality, Integrity, Availability)

Assessment & Monitoring: Use tools and processes to continuously evaluate vulnerabilities, threats, and risk

Awareness Training: Educate users on common attacks like footprinting, spoofing, DoS, DNS manipulation, VLAN hopping, malware, password cracking, and social engineering

Access control: Only authorized users and devices can access resources (physical & digital measures).

Chat Question

Discussion question asked to the group.

Answer in the chat window and let's share.

Discussion time: Please type your questions in chat

- Questions over content.
- Share you experience.
- What would you like to see different moving forward?

Thank You!

Let's keep the conversation going in the CompTIA Instructor Forum: https://cin.comptia.org