Cybersecurity (COSC 3371) 2022 Spring

List of Midterm Topics

- Introduction to security (Lecture 1)
 - concepts and objectives (confidentiality, data integrity, system integrity, availability, non-repudiation, authenticity, privacy), important challenges (weakest link principle, process instead of product, cost and perceived value of security)
 - attacker modeling principles (safe assumptions, attacker capabilities and knowledge), rejection of security by obscurity (Lecture 2)
- Introduction to cryptography (Lecture 2)
 - general model of symmetric-key ciphers (plaintext, secret key, encryption, ciphertext, decryption)
 - basic types of attacks (brute force vs. cryptanalysis, ciphertext only vs. known plaintext attack)
 - Kerckhoffs's principle (Lecture 3)
- Stream ciphers (Lecture 3)
 - perfect security and one-time pad (idea, requirements, and properties)
 - basic notion of semantic security (advantage of efficiently computable attack over random guessing), problem with "many-time pad"
 - general model of stream ciphers
 - pseudorandom number generators (key requirements, including resistance to cryptanalytic and brute-force attacks)
 - key-reuse problem and solutions
 - o RC4 and Salsa20 (basic properties) (Lecture 4)
- Block ciphers (Lecture 4)
 - general model of block ciphers
 - design considerations and security
 - o practical design principles (diffusion and confusion)
 - idea and structure of iterated block ciphers
 - o idea and structure of substitution-permutation ciphers
 - o DES
 - very basic properties (e.g., state of security, approximate block and key sizes)
 - Feistel-network: structure and advantages
 - AES
 - basic properties (e.g., state of security, performance, block and key sizes)
 - high-level structure and general properties (e.g., invertibility) of the substitution and permutation steps (SubBytes, ShiftRows, MixColumns)
 - 3DES (Lecture 5)
 - principle of multiple encryption, meet-in-the-middle attack
 - motivation for 3DES and EDE structure

- Block cipher modes of operation (Lecture 5)
 - o ECB, CBC, OFB, and CTR modes of operation
 - structure and properties of each mode, including security (information leakage, tampering), performance (parallelization, seeking), and error propagation
- Public-key encryption (Lecture 6)
 - o principles of public-key cryptography (asymmetric pair of keys)
 - general model and requirements for public-key encryption schemes, comparison with symmetric-key cryptography
 - o RSA
 - key ideas for algorithms and security, hardness of integer factorization, security and efficiency (approximate key sizes)
 - ElGamal
 - hardness of discrete logarithm
 - Elliptic Curve Cryptography
 - basic idea (replacing modular arithmetic with elliptic curves) and advantages
- Hash functions (Lecture 7)
 - general model and applications
 - o formal requirements (one way, weak collision resistant, strong collision resistant)
 - brute-force attacks and birthday paradox
 - o structure of iterative hash functions, Merkle-Damgård construction
 - o basic properties and state of security for MD5, SHA-1, SHA-2, and SHA-3
- Message authentication (Lecture 8)
 - o active attacks in a communication channel (Lecture 7)
 - general model of message authentication, usage and properties of MAC tags
 - brute-force tag forging and key search attacks
 - MAC based on block ciphers (structure of CBC-MAC, basic idea of CMAC)
 - MAC based on hash functions (structure of HMAC, advantages in terms of precomputation and security)
 - authenticated encryption
 - motivation and approaches
 - very basic properties of CCM and GCM
- Digital signatures (Lecture 9)
 - motivation (non-repudiation requirement), general model, usage, and properties of digital signatures
 - relation to public-key encryption
 - hash-then-sign principle
 - o very basic properties of RSA signature, DSA, and ECDSA
- Key distribution (Lectures 9)
 - requirement of key freshness, idea of key hierarchy (session and master keys)
 - symmetric-key distribution using symmetric encryption
 - decentralized: advantages and disadvantages
 - Key Distribution Center: advantages and disadvantages
 - o ideas of extended Needham-Schroeder and Kerberos protocols

- Public-key distribution (Lecture 10)
 - o symmetric-key distribution using asymmetric-key cryptography
 - Diffie-Hellman key exchange, idea of Station-to-Station
 - idea of symmetric-key distribution using asymmetric encryption
 - distribution of public keys
 - motivation, problems with basic approaches (public announcement and public-key authority)
 - o digital certificates
 - process (requesting/issuing and using), requirements, advantages
 - usage of X.509 standard, certificate authorities in practice
 - problem with private key compromise, process of revocation