FINM 34000, Autumn 2023

Lectures 8 and 9

Reading: Notes, Sections 6.1 - 6.3 (we will not cover 6.4)

Exercise 1 Suppose X_t is a Poisson process with parameter $\lambda = 3$. Find the following.

1.
$$\mathbb{P}\{X_3=7\}$$

- 2. $\mathbb{P}\{X_2(X_5 X_2) = 0\}$
- 3. The expected amount of time until $X_t = 6$
- 4. $\mathbb{P}\{X_1=2 \mid X_3=7\}.$

Exercise 2 Suppose that the number of customers arriving at an automobile dealership in Chicago follows a Poisson process with $\lambda = 2$ (time is measured in hours).

- a. What is the probability that at most two customers arrive in the first hour?
- b. Suppose that exactly two customers arrive in the first hour. What is the probability that there will be exactly three customers in the second hour?
- c. Suppose that exactly four customers arrived in the first two hours. What is the probability that exactly two customers arrived in the first hour?
- d. An enthusiastic salesperson decides to wait until 10 customers have arrived before going to lunch. What is the expected amount of time she will have to wait?
- e. Let N denote the number of customers that arrive in the first two hours. Find $\mathbb{E}[N^2]$.

Exercise 3 Suppose X_t is a continuous time Markov chain with state space $\{0, 1, 2, 3\}$ with rates

$$\alpha(0,1)=2, \ \alpha(1,2)=3, \ \alpha(2,0)=1, \ \alpha(2,3)=1, \ \alpha(3,1)=4,$$

with all other rates equal to zero.

- 1. Write down the generator A.
- 2. Is this chain irreducible?

- 3. What is the invariant probability?
- 4. Suppose we start with $X_0 = 0$. What is the expected amount of time until reaching state 3?
- 5. Suppose we start with $X_0 = 0$. What is the expected amount of time until the chain leaves state 0 for the first time?
- 6. Suppose we start with $X_0 = 0$. What is the expected amount of time for the chain to leave 0 and then return to 0 for the first time?

Exercise 4 Answer the same questions as in Exercise 3 with state space $\{0, 1, 2, 3, 4\}$ and rates

$$\alpha(0,1) = \alpha(1,0) = \alpha(1,2) = \alpha(2,1) = \alpha(2,3) = \alpha(3,2) = \alpha(3,4) = \alpha(4,3) = 1.$$

This is a continuous time version of simple symmetric random walk with reflecting boundary.