Emergence of communication and inductive biases towards compositionality

CaféTAL

May 23, 2022

In collaboration with Timothée Bernard

Outline

Intro

Exp. 1: Doing the math

Exp. 2: Signaling games & pretraining

Exp. 3: Signaling game & GANs (Teaser)

Conclusions

Outline

Intro

Exp. 1: Doing the math

Exp. 2: Signaling games & pretraining

Exp. 3: Signaling game & GANs (Teaser)

Conclusions

► How did language evolve?

- ► How did language evolve?
- ► Can we replicate that?

- ► How did language evolve?
- ► Can we replicate that?

- ► How did language evolve?
- ► Can we replicate that?

► Can we get specific characteristics, like compositionality?

 One way to measure compositionality is topographic similarity (Brighton et al., 2006)

- One way to measure compositionality is topographic similarity (Brighton et al., 2006)
- ▶ Compositional ⇒ gradual changes in form entail gradual changes in meaning

- One way to measure compositionality is topographic similarity (Brighton et al., 2006)
- ▶ Compositional ⇒ gradual changes in form entail gradual changes in meaning

- One way to measure compositionality is topographic similarity (Brighton et al., 2006)
- ▶ Compositional ⇒ gradual changes in form entail gradual changes in meaning

- One way to measure compositionality is topographic similarity (Brighton et al., 2006)
- ▶ Compositional ⇒ gradual changes in form entail gradual changes in meaning

► Still an open question

What we'll s	ee todav:

- 1. some language games designed for the emergence of compositionality
- 2. some tweaks and tricks to get the model to produce more reliable outputs

Outline

Intro

Exp. 1: Doing the math

Exp. 2: Signaling games & pretraining

Exp. 3: Signaling game & GANs (Teaser)

Conclusions

The sum game

▶ What's a good task for testing compositionality?

The sum game

▶ What's a good task for testing compositionality?

The sum game

What's a good task for testing compositionality?

► We can use the known additive structure to see what's encoded: pairs of integers, sum of integers, other?

How should we train such a setup?

How should we train such a setup?

as a classification problem: the correct label is the matching sum

How should we train such a setup?

- as a classification problem: the correct label is the matching sum
- as a regression problem: the receiver has to output the matching sum

How should we train such a setup?

- as a classification problem: the correct label is the matching sum
- as a regression problem: the receiver has to output the matching sum

Computational details:

- LSTM-based agents
- inptus ar represented using a concatenation of learned embeddings: $e(40) \oplus e(2)$
- Exploring hyperparameters with Bayesian Optimization.

Classification-based results

	Train	Dev	Test
XENT	2.718	2.751	2.723
Acc.	0.191	0.195	0.163
$\rho_{\vec{e}}$	0.204	0.210	0.192
$ ho_{\langle a,b \rangle}$	0.545	0.573	0.538
$ ho_{a+b}$	0.846	0.862	0.831

Classification-based results

	Train	Dev	Test
XENT	2.718	2.751	2.723
Acc.	0.191	0.195	0.163
$\rho_{\vec{e}}$	0.204	0.210	0.192
$ ho_{\langle a,b \rangle}$	0.545	0.573	0.538
$ ho_{a+b}$	0.846	0.862	0.831

messages produced

Classification-based results

Train	Dev	Test
2.718	2.751	2.723
0.191	0.195	0.163
0.204	0.210	0.192
0.545	0.573	0.538
0.846	0.862	0.831
	2.718 0.191 0.204 0.545	2.718 2.751 0.191 0.195 0.204 0.210 0.545 0.573

FILO structure

messages produced

Regression-based results

	Train	Dev	Test
MSE	0.260	0.259	0.269
Acc.	0.712	0.741	0.734
$\rho_{\vec{e}}$	0.140	0.152	0.131
$ ho_{\langle a,b angle}$	0.459	0.487	0.454
$ ho_{a+b}$	0.722	0.722	0.704

Regression-based results

	Train	Dev	Test
MSE	0.260	0.259	0.269
Acc.	0.712	0.741	0.734
$\rho_{\vec{e}}$	0.140	0.152	0.131
$ ho_{\langle a,b angle}$	0.459	0.487	0.454
$ ho_{a+b}$	0.722	0.722	0.704

messages produced

Regression-based results

	Train	Dev	Test
MSE	0.260	0.259	0.269
Acc.	0.712	0.741	0.734
$\rho_{\vec{e}}$	0.140	0.152	0.131
$ ho_{\langle a,b angle}$	0.459	0.487	0.454
$ ho_{a+b}$	0.722	0.722	0.704

a+b, expressed in base 6

messages produced

In short

► How to best train a model is dependent on the exact language game

In short

- ► How to best train a model is dependent on the exact language game
- More effective training doesn't necessary entail more compositional outputs

In short

- ► How to best train a model is dependent on the exact language game
- More effective training doesn't necessary entail more compositional outputs

This task is fairly limited

Outline

Intro

Exp. 1: Doing the math

Exp. 2: Signaling games & pretraining

Exp. 3: Signaling game & GANs (Teaser)

Conclusions

Signaling Game

▶ Have the receiver select the image shown to the sender

Synthetic Dataset

Images each containing one object, based on five *features*: **color**, **shape**, **size**, **vertical position** and **horizontal position**

Synthetic Dataset

Images each containing one object, based on five *features*: **color**, **shape**, **size**, **vertical position** and **horizontal position**

Some examples:

Images of different categories

Images of the same category

Synthetic Dataset

Images each containing one object, based on five *features*: **color**, **shape**, **size**, **vertical position** and **horizontal position**

Some examples:

Images of different categories

The sender has to convey the values of the 5 features

Baking in inductive bias

LSTMs are not biased towards compositionality (Liška et al., 2018) We compare four pretraining regimens:

- no pretraining
- category-wise classification: predict the category of the presented image
- feature-wise classification: predict the value of each feature independently (one classifier per feature)
- auto-encoding: learn to reconstruct the full image.

Baking in inductive bias

LSTMs are not biased towards compositionality (Liška et al., 2018) We compare four pretraining regimens:

- no pretraining
- category-wise classification: predict the category of the presented image
- feature-wise classification: predict the value of each feature independently (one classifier per feature)
- auto-encoding: learn to reconstruct the full image.

Computational details: CNN + LSTM agents. Hyperparameters are explored by grid. We also study whether to freeze CNN weights after pretraining, or whether further adaptation is required.

Results: Accuracy

Results: Compositionality

► Any pretraining helps

- ► Any pretraining helps
- ► More direct supervision helps more

- ► Any pretraining helps
- ► More direct supervision helps more

► Can we induce compositionality less directly?

Outline

Intro

Exp. 1: Doing the math

Exp. 2: Signaling games & pretraining

Exp. 3: Signaling game & GANs (Teaser)

Conclusions

Meet Charlie

► Signaling game with a tweak

Meet Charlie

► Signaling game with a tweak

Meet Charlie

► Signaling game with a tweak

▶ Feature values are no longer the sole plausible meaning

Early results

Having a look at the images

Pretraining No pretraining

▶ Still possible to get some interesting results

- ▶ Still possible to get some interesting results
- Lower accuracy, slower training, CNN pretraining seems necessary

- ▶ Still possible to get some interesting results
- Lower accuracy, slower training, CNN pretraining seems necessary

More work to be done!

Outline

Intro

Exp. 1: Doing the math

Exp. 2: Signaling games & pretraining

Exp. 3: Signaling game & GANs (Teaser)

Conclusions

Today's overview:

Not all tasks are equally complex, nor equally likely to yield compositional languages

- Not all tasks are equally complex, nor equally likely to yield compositional languages
- ► How to (pre-)train a model is crucial

- Not all tasks are equally complex, nor equally likely to yield compositional languages
- ► How to (pre-)train a model is crucial
- Metrics for compositionality are unsatisfactory

- Not all tasks are equally complex, nor equally likely to yield compositional languages
- ► How to (pre-)train a model is crucial
- Metrics for compositionality are unsatisfactory
- ▶ Many other fators to consider: dataset? reward function?