Algorytmy On-Line Lista 3

Adrian Herda

2025-04-24

1. Treść zadania

Rozważmy problem BIN PACKING z kubełkami wielkości 1 i 100-elementowymi ciągami elementów.

Ciągi elementów będą losowane z rozkładem jednostajnym na przedziale [1,1] i powtarzane k razy zgodnie z następującymi rozkładami na zbiorze $\{1,\cdots,10\}$ (losowanie robimy do uzyskania 100 elementów):

- jednostajny $\Pr[X=i]=\frac{1}{10}$,
- harmoniczny $\Pr[X=i] = \frac{1}{i \cdot H_{10}}$, gdzie H_{10} jest 10-tą liczbą harmoniczną,
- dwuharmoniczny $\Pr[X=i]=rac{1}{i^2\cdot\hat{H}_{10}},$ gdzie $\hat{H}_{10}=\sum_{i=1}^{10}rac{1}{i^2}$ jest 10-tą liczbą dwuharmoniczną,
- geometryczny $\Pr[X=i]=\frac{1}{2^i}$, dla i<10, i $\Pr[X=10]=\frac{1}{2^9}$.

Rozważmy następujące algorytmy online dla problemu Вім Раскімс:

- NEXT FIT,
- RANDOM FIT,
- First Fit,
- BEST FIT,
- Worst Fit,

Przeprowadź eksperymenty dla podanych algorytmów i rozkadów oraz oszacuj średnią wartość współczynnika konkurencyjności dla wszytskich przypadków. Do oszacowania użyj wartości optymalnych dla wylosowanych przykładów danych (jeśli nbie potrafisz policzyć optymalnej wartości użyj oszacowania w postaci zaokrąglenia w górę do wartości całkowitej sumy elementów ciągu).

2. Wyniki eksperymentów

Distributions	Next	Random	First	Best	Worst
Uniform	1.28659	1.16871	1.16563	1.16151	1.18218
Harmonic	1.29055	1.15971	1.15557	1.14992	1.17837
Double_Harmonic	1.29985	1.14329	1.13618	1.12809	1.17371
Geometric	1.29721	1.14028	1.13296	1.12469	1.17118

2.1. Wnioski

Najlepsze wyniki ogólnie osiągają algorytmy Best Fit i First Fit, zwłaszcza dla rozkładów bardziej skoncentrowanych (np. Double Harmonic i Geometric). Next Fit wypada najsłabiej, co jest zgodne z literaturą – to prosty algorytm, ale mało efektywny. Algorytm Random radzi sobie gorzej niż First/Best Fit, ale lepiej niż Next Fit – jego wydajność jest niestabilna. Dla wszystkich rozkładów, Worst Fit nie wypada najlepiej – często generuje nieefektywne wykorzystanie pojemników.