

LEVEL III DREDGED MATERIAL RESEARCH PROGRAM

TECHNICAL REPORT D-77-24

AQUATIC DISPOSAL FIELD INVESTIGATIONS DUWAMISH WATERWAY DISPOSAL SIL ADA 0 58001 PUGET SOUND, WASHINGTON. APPENDIX D. CHEMICAL AND PHYSICAL ANALYSES OF VATER AND SEDIMENT IN RELATION TO DISPOSAL OF DREDGED MATERIAL IN ELLIOTT BAY. Volume II. September-December 1976. Sugai, W. R./Schell, A/Nevissi, S./Olsen/ D./Huntamer University of Washington, College of Fisheries

Laboratory of Radiation Ecology - 410819

Seattle, Washington 98195

June Final Report

AUG 23 1978

THIS DOCUMENT IS BEST QUALITY THE COPY PURNISHED TO DOCUMENTALINED A SIGNIFICANT NUMBER OF PAGES WHICH DO BOT EEPRODUCE LEGIBLY.

Prepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 20314

Under Contract No DACW39-76-C-Ø167 (DMRP Work Unit No. IAIOD)

Monitored by Environmental Laboratory U. S. Army Engineer Waterways Experiment Station

P. O. Box 631, Vicksburg, Miss. 39180

2 0 8 2 1 0 0 5

di A

AQUATIC DISPOSAL FIELD INVESTIGATIONS DUWAMISH WATERWAY DISPOSAL SITE PUGET SOUND, WASHINGTON

- Appendix A: Effects of Dredged Material Disposal on Demorsal Fish and Shellfish in Elliett Bay, Seattle, Washington

 Appendix B: Role of Disposal of PCB-Contaminated Sediment in the Accumulation of PCB's by Marine Animals

 Appendix C: Effects of Dredged Material Disposal on the Concentration of Marcury and Chromium in Several Species of Marine Animals

 Appendix D: Chemical and Physical Analyses of Water and Sediment in Relation to Disposal of Dredged Material in Elliott Bay

 Appendix E: Release and Distribution of Polychlorinated Biphonyls Induced by
- Open-Water Dredge Disposal Activities
 Appendix F: Recolonization of Benthic Macrefauna over a Deep-Water Disposal Site
- Appendix G: Benthic Community Structural Changes Resulting from Dredged Material Disposal, Elliott Bay Disposal Site

Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS

P. O. BOX 631 VICKSBURG, MISSISSIPPI 39180

IN REPLY REFER TO

WESYV

31 July 1978

SUBJECT: Transmittal of Technical Report D-77-24 (Appendix D, Volume II)

TO: All Report Recipients

- 1. The technical report transmitted herewith represents the results of one of several research efforts (work units) undertaken as part of Task 1A, Aquatic Disposal Field Investigations, of the Corps of Engineers' Dredged Material Research Program. Task 1A was a part of the Environmental Impacts and Criteria Development Project (EICDP) and had as a general objective determination of the magnitude and extent of effects of disposal sites on organisms and the quality of surrounding water, and the rate, diversity and extent that such sites are recolonized by benthic flora and fauna. The study reported on herein was an integral part of a series of research contracts jointly developed to achieve the general objective at the Duwamish Waterway Disposal Site, one of five study sites located in several geographical regions of the United States. Consequently, this report presents results and interpretations of but one of several closely interrelated efforts and should be used only in conjunction with and consideration of the other related reports for this site.
- 2. This report, Appendix D: Chemical and Physical Analyses of Water and Sediment in Relation to Disposal of Dredged Material in Elliott Bay, Volume I February-June 1976 and Volume II September-December 1976, is one of seven contractor-prepared appendices published as Waterways Experiment Station Technical Report D-77-24 entitled: Aquatic Disposal Field Investigations, Duwamish Waterway Disposal Site, Puget Sound, Washington. The titles of all contractor-prepared appendices to this series are listed on the inside front cover of this report. The main report, the Evaluative Summary, will provide additional results, interpretations, and conclusions not found in the additional appendices and will provide a comprehensive summary and synthesis overview of the entire study.
- 3. The purpose of these two investigations, conducted as Work Units 1A1OC (Volume I) and 1A1OD (Volume II), was to monitor selected physical and chemical parameters in water-column and sediment samples obtained before, during, and after disposal of contaminated dredged material at

WESYV 31 July 1978 SUBJECT: Transmittal of Technical Report D-77-24 (Appendix D, Volume II)

an Elliott Bay disposal site. Appendix D is divided into two volumes since two separate research groups were involved. Volume I discusses the results of analyses of samples collected before, during, and 1 week, 1 month, and 3 months after the disposal operation while Volume II reports on samples collected 6 and 9 months after the operation.

- 4. The Duwamish River sediments were found to be highly heterogeneous. However, the concentrations of several significant parameters such as ammonia, alkaline-soluble sulfide, and total mercury were in general several times higher than the Elliott Bay disposal site sediments. Standard elutriate tests conducted with the river sediments indicated that ammonia and manganese would probably be released to the water column following each disposal event. Analyses of samples collected during the disposal operation revealed elevated levels of manganese, suspended solids, and ammonia in the water column for a few minutes following each dump. Interstitial water concentrations of manganese, ammonia, and sulfides remained above ambient at the disposal site through the 3 months of postdisposal monitoring discussed in Volume I. One week after the disposal operation, there were no chemical differences found between water-column samples taken at the disposal and reference sites.
- 5. At 6 and 9 months after the disposal operation, the levels of manganese, ammonia, and inorganic phosphate in the interstitial waters were found to be higher than at both reference sites. There were no detectable chemical differences in water-column samples from the disposal and reference sites at 1, 3, 6, and 9 months after disposal.
- 6. The results of this study are important in determining placement of dredged material for open-water disposal. Referenced studies, as well as the ones summarized in this report, will aid in determining the optimum disposal conditions and site selection for either the dispersion of the material from the dump site or for its retention within the confines of the site, whichever is preferred for maximum environmental protection at a given site.

JOHN L. CANNON

Colonel, Corps of Engineers Commander and Director

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT HUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Technical Report D-77-24	
4. TITLE (and Substitle)	S. TYPE OF REPORT & PERIOD COVERED
AQUATIC DISPOSAL FIELD INVESTIGATIONS, DUWAMISH	Final report
WATERWAY DISPOSAL SITE, PUGET SOUND, WASHINGTON;	
APPENDIX D: CHEMICAL AND PHYSICAL ANALYSES OF	6. PERFORMING ORG. REPORT NUMBER
WATER AND SEDIMENT IN RELATION TO DISPOSAL OF	
DREDGED MATERIAL IN ELLIOTT BAY; VOLUME II:	B. CONTRACT OR GRANT NUMBER(+)
	V
SEPTEMBER-DECEMBER 1976	Contract No. DACW39-76-C-016
7. AUTHOR(4)	
S. Sugai, W. R. Schell, A. Nevissi,	
S. Olsen, D. Huntamer	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
. PERFORMING ORGANIZATION NAME AND ADDRESS	DMRP Work Unit No. 1A10D
University of Washington, College of Fisheries,	TARRY WOLK OHIC NO. TATOD
Laboratory of Radiation Ecology	
Seattle, Washington 98195	12. REPORT DATE
II. CONTROLLING OFFICE NAME AND ADDRESS	June 1978
Office, Chief of Engineers, U. S. Army	13. NUMBER OF PAGES
	130
Mashington, D. C. 20314 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
U. S. Army Engineer Waterways Experiment Station	Unclassified
Environmental Laboratory	TE- DECLASSIFICATION DOWNGRADING
P. O. Box 631, Vicksburg, Miss. 39180	15. DECLASSIFICATION DOWNGRADING
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro	on Report)
Tables 1-19 were reproduced on microfiche and are entire inside the back cover of this report.	nclosed ————————————————————————————————————
18. KEY WORDS (Continue on reverse side it necessary and identity by block number	
	Waste disposal sites Water analysis Water quality
This report presents results obtained in a stuextent and duration of changes in chemical characte washington, six and nine months after disposal of d Duwamish River. The seawater, sediment, and intersfor the following chemical parameters: (1)	dy conducted to evaluate the ristics of Elliott Bay, redged materials from the
, –	

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

- 20. ABSTRACT (Continued).
 - a. Seawater. Suspended solids, arsenic, manganese, mercury, reactive silicate, inorganic phosphate, nitrate, and ammonia. (2)
 - b. Sediment -- Free and total (acid soluble) sulfide, manganese, chromium, arsenic, mercury, and particle size. and (3)
 - c. Interstitial water. Arsenic, manganese, reactive silicate, ammonia, and inorganic phosphate.

Temporal, depth, and spatial changes in concentrations of chemical variables were evaluated at disposal and reference sites. The results of analyses showed only minimal changes in trace metal concentrations in the water column above the disposal site, but lower Eh and pH values in the sediments than at the reference site. The manganese, inorganic phosphate, and ammonia concentration values were greater in interstitial waters at the disposal site than at the reference site.

ACCESSION IN		
NTIS SOC BLASHOUNCES JUSTIFICATION	White Section Beff Section	X
	VAILABILITY GOS	-

THE CONTENTS OF THIS REPORT ARE NOT TO BE

USED FOR ADVERTISING, PUBLICATION, OR

PROMOTIONAL PURPOSES. CITATION OF TRADE

NAMES DOES NOT CONSTITUTE AN OFFICIAL EN
DORSEMENT OR APPROVAL OF THE USE OF SUCH

COMMERCIAL PRODUCTS.

SUMMARY

This study is part of a comprehensive program to measure the effects on the biota, sediment, and water quality that result from open-water disposal of dredged material at the Duwamish Waterway site, Elliott Bay, Puget Sound, Washington. Specifically, this work examined the extent and duration of changes in the chemical characteristics of the water and sediment at the disposal site in Elliott Bay six and nine months after disposal. Measurements before, during, and at three months after disposal were made by the Environmental Protection Agency (EPA) laboratory in Corvallis, Oregon.

Disposal of dredged materials from the Duwamish River into Elliott Bay has resulted in minimal long-term changes in the concentrations of trace metals in water above the disposal site. The only significant changes observed were decreases in the concentration of suspended solids and arsenic in the water column above the disposal area between September and December 1976 with no comparable change in concentrations at the reference sites.

Alteration in several chemical parameters of sediments at the disposal site was significant six and nine months after disposal when compared to one or both reference stations. In September and December 1976, the sediments at the disposal site had pH and Eh values significantly lower than those determined at the west reference station. At the disposal site, concentrations of manganess inorganic phosphate, and ammonia in the interstitial waters were higher than at both reference sites, while the chromium concentration was higher in sediments at the west reference site that at the disposal site.

The significant changes between September and December 1976 in the chemical characteristics of the sediments at the disposal site were a decrease in values for pH, Eh, and inorganic phosphate and an increase in mercury and manganese concentrations. At the reference stations only Eh was significantly different in December than in September and in December the sediments became more reducing in nature.

PREFACE

The study described in this report was performed under Contract DACW39-76-C-0167, entitled "Elliott Bay Dredge Disposal Project--Trace Metals Project," between the U. S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi, and the University of Washington, Seattle, Washington. The research was sponsored by the Office, Chief of Engineers (DAEN-CWO-M), under the Civil Works Dredged Material Research Program (DMRP), Work Unit 1A10D. The work was initiated in September 1976 and the chemical analyses of all environmental samples collected during the project were completed in July 1977. This study includes data from collections made six and nine months after disposal and thus the evaluation of changes was restricted to that time period. The measurements on samples collected at the disposal site before, during, and three months after disposal have been made by the EPA laboratory in Corvallis, Oregon.

The work was conducted by the Laboratory of Radiation Ecology, College of Fisheries, University of Washington, whose personnel included Dr. W. R. Schell (Principal Investigator), Dr. A. Nevissi, S. Sugai, S. Olsen, D. Huntamer, and M. Brown. The project officer for this contract was Mr. J. H. Johnson of the WES Environmental Laboratory under the supervision of Dr. R. M. Engler, Manager of the Environmental Impacts and Criteria Development Project at WES.

Director of WES during the period of the contract and the preparation of the report was COL J. L. Cannon, CE. Technical Director was Mr. F. R. Brown.

CONTENTS

																														Page
SUMMA	RY																													2
PREFA	CE																													3
LIST	OF	TA	BL	ES																										5
LIST	OF	F	GU	RE	S																									5
PART	I:	3	INT	RO	DU	CT	IC	N																						6
	Ob, Des																													6
PART	II:	:	EX	PE	RI	ME	NT	'AI	E	R	CE	EDU	JRE	S												•				9
	Sar	ipl	008	rd	F	ro	ce	du	re	28																				9
	Pro Ans Sts	113	rti	ca	1	Pr	oc	ed	ur	es	;																			10 11 13
PART	II	:	F	ES	UI	TS	A	NI	I	OIS	SCU	JSS	SIO	N																16
	Che Che Dis	em i	ca	1	Cr	ar	ac	te	ri	st	ii	es	of	· F	211	ic	ott	E	Bay	. 5	Sec	lin	ner	nt						16 17 19
PART	IV:		SU	MM	AF	Y	AN	D	CC	NC	LU	ISI	ON	S																23
REFER	ENC	CES	3																											24
TABLE				A	OF	S	EA	WA	TE	ER	AN	ND	E SE FEC	DI	ME	CNC	V	AF	RIA	BI	ES	S V	VI'	H	SI	GI	III	rI-	-	Al

^{*} Tables 1-19 were reproduced on microfiche and are enclosed in an envelope attached inside the back cover of this report.

LIST OF TABLES

No.	Title
1	Listing of Experimental Data Broken Down by Position, Time, and Depth
2	Concentrations of Trace Metals and Nutrients in Water
3	Elliott Bay Sediment pH, Eh, and Free and Total Sulfide Concentrations
14	Concentration of Arsenic in Elliott Bay Sediments
5	Concentration of Chromium in Elliott Bay Sediments
6	Concentration of Manganese in Elliott Bay Sediments
7	Concentration of Mercury in Elliott Bay Sediments
8	Particle Size Distribution and Percent Water in Elliott Bay Sediments
9	Arsenic Concentration in Interstitial Water from Elliott Bay Sediments, September 1976
10	Manganese Concentration in Interstitial Water from Elliott Bay Sediments
11	Nutrient Concentrations in Interstitial Water from Elliott Bay Sediments
12	Significance of Temporal, Depth, and Spatial Differences in Chemical Variables in Elliott Bay Water
13	Significance of Temporal, Depth, and Spatial Differences in Chemical Variables in Elliott Bay Sediments
14	Pearson Correlation Coefficients Matrix for Seawater at Stations 6 and 10 (Disposal Site)
15	Pearson Correlation Coefficients Matrix for Seawater at Stations 17 and 19 (Reference Stations)
16	Pearson Correlation Coefficients Matrix for Sediments at Stations 6, 7, 10, and 11 (Disposal Site)
17	Pearson Correlation Coefficients Matrix for Sediments at Stations 17 and 19 (Reference Stations)
18	Effect of Storage upon Concentration of Arsenic in Interstitial Waters
19	Effect of Storage and Sample Size Upon Concentration of Mercury in Interstitial Waters
	LIST OF FIGURES
No.	Title Page
1	Locations of dredging, disposal, and reference sites 7

AQUATIC DISPOSAL FIELD INVESTIGATIONS, DUWAMISH WATERWAY DISPOSAL SITE, PUGET SOUND, WASHINGTON

APPENDIX D: CHEMICAL AND PHYSICAL ANALYSES OF WATER AND SEDIMENT IN RELATION TO DISPOSAL OF DREDGED MATERIAL IN ELLIOTT BAY

VOLUME II: SEPTEMBER-DECEMBER 1976

PART I: INTRODUCTION

Objective

1. This study is part of a comprehensive program to measure effects on the biota, sediment, and water quality resulting from open-water disposal of dredged material at the Duwamish Waterway site, Elliott Bay, Puget Sound, Washington. Specifically, this work examined the extent and duration of changes in the chemical characteristics of the water and sediment at the disposal site in Elliott Bay six and nine months after disposal.

Description of Study Area

- 2. Elliott Bay is located on the east side of central Puget Sound and is bounded by Duwamish Head to the southwest and Magnolia Bluff to the northwest (Figure 1).
- 3. The Duwamish River drains an area of 1251 km², mostly industrial, and provides fresh water to Elliott Bay at an average annual rate of about 1300 cfs.¹ The river discharges into the southeast corner of Elliott Bay, around Harbor Island, through two channels—the East and West Waterways.
- 4. Approximately 114,250 m³ of dredged material from a 1.88-km stretch of the upper Duwamish Estuary (Figure 1) was deposited near the center of a disposal site marked by a Coast Guard lighted buoy (47°35' 42"N; 122°21'42"W) during the period 16 February 1976 to 6 March 1976. The locations of the 16 stations (1-16) at the experimental disposal

Figure 1. Locations of dredging, disposal, and reference sites

site, located due north of the mouth of the West Waterway, were selected by use of a 4 by 4 grid with the grid lines 76.2 m apart. The two reference sites were located along the east and west shores of Elliott Bay and consisted of two stations each (Figure 1). Historically the west reference site (stations 17, 18) has received the least impact from the municipal, commercial, and industrial activities of the Seattle area. Water flow over this location originates primarily from the main basin of Puget Sound rather than from the interior of Elliott Bay. The east reference site (stations 19, 20) has received effluents from the Duwamish River, shipping, and nearby shore-based activities, as well as from storm sewage overflow along the Seattle waterfront.

PART II: EXPERIMENTAL PROCEDURES

Sampling Design

5. Seawater and sediment samples for chemical analyses were collected during September and December 1976 following sampling and field procedures used during earlier portions of the disposal study. Seawater samples

- 6. Water samples were collected at five stations: two stations near the center of the disposal site (station 6, north of buoy; station 10, south of buoy), two reference stations (station 17, west reference site; station 19, east reference site), and at the mouth of Duwamish River (station 44).
- 7. Water samples were collected at depths of 1 and 10 m above the bottom and 2 m below the surface. Two samples were taken at each station using a peristaltic pump attached to 1/2-in.-ID polyethylene tubing that had been lowered to depth on the hydrowire and then flushed thoroughly before sample collection.

Sediment samples

8. Sediment samples were taken using a double-barreled gravity cover with 67-mm-ID lucite liners at 20 sampling stations in the experimental disposal site (stations 1-20) and at two reference sites (one on the west side of the bay, stations 17 and 18; one on the east side, stations 19 and 20).

Shipboard Procedures

Seawater samples

9. Sufficient water was pumped to determine suspended solids, trace metals, and nutrients. To determine suspended solids, 2 to 10 litres of water were filtered through weighed 0.4 µm Nuclepore filters and stored in plastic petri dishes. Samples for determination of chromium (Cr), manganese (Mn), and arsenic (As) were collected in acid-cleaned 2-litre polyethylene bottles and acidified to pH 1.0 with 2 ml/1 doubly distilled

6 M hydrochloric acid (HCl). Mercury (Hg) samples were collected in acid-cleaned 1-litre polyethylene bottles and acidified with 2 ml/l of doubly distilled 16 M nitric acid (HNO₃), to give a pH of less than 1.0, and stored frozen. Nutrient (nitrate, reactive silicate, inorganic phosphate, ammonia) samples were frozen at ~15°C in 250-ml polyethylene bottles.

Sediment samples

10. For each of the two casts (two cores per cast) taken at a station, the top 10 cm of one core was extruded into a nitrogen-filled polyethylene bag, the next 15 cm extruded into a second bag, and the excess discarded. The second core on each cast was processed for the trace organics program of S. Pavlou. Each sample was homogenized, subsampled, and stored at 5°C.

Processing of Sediment Samples

- 11. In the field initial measurements of Eh, pH, and free sulfide (S⁼) in the sediments were made using appropriate probes while working in a nitrogen-filled glove box. Upon return to the laboratory, in a nitrogen-atmosphere glove box, sediment samples were divided into two sections: one for Eh, pH, S⁼, total sulfide, percent water, and heavy metals analyses; and the other for centrifugation to remove interstitial water for trace metal and nutrient determinations. Particle size analyses were made on the sediment remaining after centrifugation.
- 12. After Eh, pH, and free sulfide were determined on the first aliquot of sediment, 30 g was removed and oven-dried at 70°C to determine the percent water. The dry aliquot was retained for heavy metal analyses.
- 13. In the nitrogen atmosphere of the glove box, 100 g of the second sediment aliquot was sealed into a 250-ml centrifuge bottle and centrifuged at 5°C for 20 minutes at 9000 rpm. Upon return to the glove box the interstitial water was decanted into a 10-dram vial, extracted from the vial with a 25-cc clean polyethylene syringe, and filtered through a 0.4 µm Nuclepore® filter into a tared, clean 60-ml polyethylene

bottle. One aliquot was frozen at 15°C for nutrient analyses, and a second aliquot was acidified with 25 μ l/ml of 6 \underline{M} doubly distilled HCl for heavy metals analyses.

Analytical Procedures

- 14. The analytical methods used in determining chemical parameters in the seawater and sediment are given below.
- Seawater and interstitial water
- 15. Arsenic. Twenty mg of ferric ion was added to a measured aliquot of acidified seawater or interstitial water in an acid-cleaned polyethylene bottle and mixed. Concentrated ammonium hydroxide (NH₁₄OH) was added to raise the pH of the sample to between 9 and 10 to coprecipitate As with ferric hydroxide (Fe(OH)₃), digested at 80°C for 30 min and allowed to cool. Samples were then filtered through 0.45 µm Millipore or 0.4 µm Nuclepore filters and precipitates were rinsed with deionized distilled water. Filters were removed and placed in 2/5 dram neutron activation analysis (NAA) vials to dry at room temperature. When dry, vials were sealed and irradiated for 2 hours along with As standards sorbed to silica gel and National Bureau of Standards (NBS) orchard leaves.²
- 16. Mercury. Distilled 8 M HNO $_3$ and reagent grade 18 M sulfuric acid (${\rm H_2SO_4}$) were added to the 470-500 ml seawater and 0.5 5 ml interstitial water samples. These samples were then loosely capped and digested in a 90°C water bath for 1 hour. Saturated potassium thiosulfate (${\rm K_2S_2O_8}$) was added and the solution allowed to cool. Analysis of the mercury concentration was then made using the flameless atomic absorption method of Melton, Hoover, and Howard.
- 17. Manganese. Acidified seawater and interstitial water samples were diluted 1:10 with acidified, deionized distilled water and analyzed by flameless atomic absorption using the method of standard additions.
- 18. <u>Nutrients</u>. Nitrate, inorganic phosphate, ammonia, and reactive silicate were determined using a Technicon Autoanalyzer. Nitrate was analyzed by the cadmium-copper reduction of nitrate to nitrite with

corrections made for nitrite measured in samples. Inorganic phosphate was determined by the ascorbic acid reduction method, ammonia by the phenate procedure, and reactive silicate by reduction of silicomolybdate complexes by a solution of Metol and oxalic acid. Sediment samples

- 19. Free sulfide. Free sulfide was measured using an Orion specific ion electrode and a Chemtrix Model 60A pH/pIon meter. The sulfide electrode was calibrated by bubbling H₂S (gas) through buffered solutions at different pH values. After the electrode reached equilibrium with the saturated solution (changes of < 1 mv/min), the millivolt reading and pH of the solution were recorded.
- 20. Manganese. To each 2-gram aliquot of dried sediment, 20 ml of dionized water and 20 ml of distilled HNO₃ were added. The samples were heated, 5 ml of perchloric acid was added, and then the samples were evaporated to dryness. Subsequently, 10 ml of distilled HCl and 50 ml of dionized distilled water were added and the samples were boiled 10 to 15 min. Samples were then filtered and filtrates were combined with washings of the filter. Volume of filtrate was measured and concentration of manganese was determined by flameless atomic absorption.
- 20. Arsenic. Weighed aliquots of dried sediment were sealed in 2/5 dram vials and irradiated for 2 hours. Arsenic concentration was determined by comparison with As standards sorbed on silica gel and NBS standardized orchard leaves.
- 22. Mercury. Sediment samples were leached with distilled HNO_3 and reagent grade $\mathrm{H_2SO}_4$ in a water bath at 90°C. Saturated $\mathrm{K_2S_2O}_8$ was added to each sample and samples were then treated as the seawater and interstitial water samples. Mercury in leachate was determined by flameless atomic absorption.
- 23. Chromium. Weighed aliquots of dried sediment were sealed in 2/5 dram vials and irradiated for 8 hours. Chromium concentration was determined by comparison with Cr standards sorbed on silica gel and NBS standardized orchard leaves.
- 24. Total (acid soluble) sulfide. Sulfide was separated by acidifying the sediment samples to produce hydrogen sulfide (H2S) which was

bubbled and trapped quantitatively in a zinc (Zn) solution as zinc sulfide precipitate. Iodometric titration was then used to determine the sulfide in the precipitate and solution. The total (acid soluble) sulfide determination measured dissolved HS, H₂S, and soluble metal sulfides.

25. Particle size analyses. Following the removal of the interstitial water from the sediment by centrifugation, the particle size distributions of samples were determined by procedures suggested by H. P. Guy.

Statistical Treatment of Experimental Data

- 26. A listing of the experimental data broken down by position, time, and depth is tabulated in Table 1. The data reduction and analysis was done by use of SPSS (Statistical Package for the Social Sciences) programs.
- 27. The statistical treatment of experimental data was divided into the analysis of the independent variables and the correlation of dependent variables. For water and sediment samples, the independent variables of time (sampling date), depth (in core or water column), and position (station location) were analyzed by analysis of covariance using position as the factor with time and depth as the covariates. The response parameters for these analyses of covariances were the dependent variables listed in paragraph 31. The strength of association between dependent variables in both the water and sediment was evaluated by means of the Pearson product-moment correlation.

Analytical treatment of independent variables

28. Using the analysis of covariance to test independent variables, the effect of time and depth was isolated and checked for significance at the 95 percent ($S \le 0.05$) and 99 percent ($S \le 0.01$) confidence levels. This approach allowed position effects to be examined after being corrected for time and depth. The corrected means are tabulated in the multiple classification section of the analysis of covariance tables.

The assumptions for analysis of variance (ANOVA) were assumed valid for all data and the covariate-by-factor interaction was assumed to be zero.

- 29. Analysis of covariance for water samples. In the water samples the treatment design was a 5 × 2 × 3 factorial. The factor was position with the five levels being the five stations: 6, 10, 17, 19, and 44. The first covariate was time with the two levels being September 1976 and December 1976. The second covariant was depth with the three levels being 2 m from surface, 10 m from bottom, and 1 m from bottom. The position effects were compared pairwise with the corrected means given in the multiple classification analysis of Scheffe's multiple comparison test. The time and depth effects were broken down into three parts by a further analysis of covariance. Three areas were examined (disposal site, stations 6, 10; reference sites, stations 17, 19; and Duwamish River mouth, station 44) so that the disposal site could be compared with the reference sites.
- 30. Analysis of covariance for sediment samples. The sediment samples were analyzed in a manner similar to that used for the water samples. However, the data for the sediment were reduced into four categories to aid in interpretation. The first group was the central disposal site consisting of stations 6, 7, 10, and 11. The second and third groups were the west (stations 17, 18) and east (stations 19, 20) reference sites. The fringe area of the disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, and 16) was included in the fourth group. After the data reduction, the treatment design was a 4 x 2 x 2 factorial. The factor was position with the four levels described above. The first covariate was time with the two levels being September 1976 and December 1976; and the second covariate was depth with the two levels being 0 to 10 cm and 10 to 25 cm in the core. The significant effects of time, position, and depth were compared, as with the water samples, except that time and depth were broken down into only disposal and reference sites.

Analytical treatment of dependent variables

31. Pairwise matrices were constructed to examine the linear

correlations between response parameters. The correlation coefficients not only summarized the strength of association between a pair of variables, but also provided an easy means for comparing the strength of relationships between one pair of variables and a different pair. In order to evaluate whether elements were behaving differently in the disposal and reference sites, two correlations were done for each dependent variable: disposal and reference. The dependent variables for the water samples are as follows: suspended solids, As, Mn, Hg, nitrate, ammonia, inorganic phosphate, and reactive silicate. The dependent variables for the sediment samples are as follows: pH, Eh, sediment manganese (Mn(Sed)), interstitial water manganese (Mn(IW)), sediment arsenic (As(Sed)), intersittial water arsenic (As(IW)), sediment mercury (Hg(Sed)), interstitial water mercury (Hg(IW)), sediment chromium (Cr(Sed)), free sulfide, inorganic phosphate, ammonia, and particle size coarse fractions (CFI-CF6), silt, and clay. The data were assumed to be normally distributed and the linearity of the correlation was determined by inspection of scattergrams. 11

PART III: RESULTS AND DISCUSSION

32. The concentrations of four trace metals (Mn, As, Hg, Cr) and four nutrients (nitrate, ammonia, reactive silicate, inorganic phosphate), and supporting chemical and physical information determined in water, sediment, and interstitial water of Elliott Bay are listed in Tables 2-11.

Chemical Characteristics of Elliott Bay Water

33. The concentrations of suspended solids, trace metals, and nutrients at the Elliott Bay dredge disposal site (stations 6, 10), Duwamish River mouth (station 44), and two reference sites (stations 17, 19) are shown in Table 2. The significance of temporal, depth, and spatial differences in the chemical parameters as determined by analysis of covariance is tabulated in Table 12.

Temporal differences in chemical parameters

34. Suspended solids measured over the disposal site decreased between September and December 1976 sampling cruises although no significant changes occurred in the reference sites. Seawater arsenic concentrations at the disposal site were lower in December than in September although arsenic in the reference sites remained constant. Other observed temporal changes occurred at both disposal and reference sites and therefore were likely seasonal rather than disposal effects.

Position differences over depth in the water column

35. Over the disposal site, manganese concentrations were higher in bottom waters than in surface waters, while in reference sites the opposite trend was observed.

Spatial differences in chemical parameters

36. Concentration levels of the various trace metals and nutrients measured in the water above the disposal site were not statistically

different from levels measured at the reference sites except for mercury concentrations in September. In September, the mercury concentrations at the east reference site (station 19) were approximately two to three times higher than levels in other parts of Elliott Bay.

Chemical Characteristics of Elliott Bay Sediment

37. The pH, Eh, and free and total sulfide concentrations are tabulated in Table 3. Concentrations of arsenic, chromium, manganese, and mercury in sediments are shown in Tables 4-7. Particle size distribution and percent water values are given in Table 8. Tables 9 and 10 list the concentrations of arsenic and manganese in interstitial waters. Inorganic phosphate, reactive silicate, and ammonia concentrations are tabulated in Table 11. The significance of temporal, depth, and spatial differences in the chemical parameters as determined by analysis of covariance is tabulated in Table 13.

Sediment parameters

- 38. pH. Sediment pH was lower at the Elliott Bay disposal site than at reference sites for both sampling cruises and decreased between September and December (Table 3). No temporal effect was observed for the west reference site. In addition, pH values for the central disposal site increased from the top to bottom sections of the core.
- 39. Eh. Eh values were more negative in December than in September for central disposal and reference sites (Table 3). The Eh values in the west reference site were higher than values obtained in the central disposal area and in the fringe of the experimental disposal area. No Eh differences were observed with depth in the core.
- 40. Free sulfide. No spatial or temporal differences were observed for free sulfide concentrations in Elliott Bay (Table 3).
- 41. <u>Manganese</u>. Manganese concentrations in sediment from the disposal area were greater in December than in September (Table 6). Concentrations in the central disposal area were higher than those in the east reference site.
 - 42. Arsenic. The arsenic concentration in sediment from the

central disposal site was higher in the top section of the core than in the lower section (Table 4). No temporal differences were observed and differences in concentration between the central disposal site and the west reference station were not significant.

- 43. Mercury. Mercury concentrations in sediment at the disposal site increased between the September and December sampling cruises (Table 7). The concentration at the disposal site decreased from the top to the bottom sections of the cores. Mercury concentrations were two to three times greater in sediments from the east reference site than elsewhere in Elliott Bay.
- 44. Chromium. Chromium concentrations in sediment were higher at the west reference station than at the central disposal, fringe disposal, or east reference sites (Table 5). The chromium concentration in sediment at the disposal site decreased with depth in the core. No temporal differences were observed.
- 45. Particle Size. Coarse fractions 1 (>2 mm) and 2 (1-2 mm) decreased with depth in the cores taken from the central disposal area while coarse fractions 3 (0.5-1 mm) and 4 (0.25-0.5 mm) increased with depth (Table 8). No particle size variation with depth was seen for the west reference site. CF2 was higher at the west reference site than at either the central disposal area or the east reference site. CF4 was higher at the disposal site than at the east reference site. The silt fraction was higher at the disposal site than at the rest reference site.

Interstitial water parameters

- 46. Manganese. Manganese concentrations in interstitial waters from Elliott Bay sediments were significantly higher within the disposal site than at reference stations (stations 17-20) (see Table 10). No consistent pattern of increasing or decreasing manganese concentration was observed with depth or distance from the center of the disposal site. No temporal effect upon concentration was seen for disposal site sediments. A decrease in manganese concentration with depth was seen at the west reference site.
 - 47. Arsenic. No statistically significant differences in

concentration of arsenic were observed between disposal and reference sites or with depth in the cores (Table 9).

- 48. Phosphate. Inorganic phosphate concentrations decreased from September to December for the central disposal site (Table 11). The phosphate concentration at the central disposal region was higher than that observed at either of the reference sites. No concentration gradients were observed with depth in the core.
- 49. Ammonia. Ammonia concentration was significantly higher at the center of the disposal site than at the reference sites and concentrations were generally higher in December than in September for both the disposal and west reference sites (Table 11). No significant concentration differences were observed with depth.

Discussion of Results

Correlations between various chemical and physical parameters

- 50. Seawater. Table 14 lists the Pearson product-moment correlation coefficients, R, for seawater samples taken at stations 6 and 10 of the disposal site. A similar matrix constructed for the reference stations (stations 17, 19) is shown in Table 15. The only significant correlations ($S \leq 0.01$, 99 percent confidence limit) present in the reference stations are between the various nutrients: nitrate and phosphate, nitrate and silicate, and phosphate and silicate. In the disposal site there is also a correlation between suspended solids and manganese ($S \leq 0.001$) and between arsenic and phosphate ($S \leq 0.005$).
- 51. Sediment. Correlation coefficient matrices for sediment parameters in disposal and reference stations are given in Tables 16 and 17, respectively. At the reference stations, arsenic in sediment correlates $(S \le 0.001)$ with arsenic and mercury in interstitial water and with mercury and chromium in sediment. Arsenic in interstitial water correlates strongly with mercury in interstitial water and with chromium in sediment. At the disposal area pH correlates with Eh $(S \le 0.003)$, with manganese (0.006), arsenic (0.001), and mercury (0.001) in sediment,

and with manganese in interstitial water (0.001). However, the strong correlations between the various heavy metals seen at the reference stations were not observed.

Choice of reference sites

52. When undertaking a study of the effect of a perturbation upon a natural system it is important to have a reference area that is similar to the study area in every way except that it is not subject to the experimental stress, in this case disposal of dredged material. However, in this study the east reference site, located offshore from the Seattle piers, had mercury concentrations in the water, sediment, and interstitial waters which were elevated with respect to both the disposal and west reference sites. In addition, Eh and Cr(Sed) values at the east reference site were significantly lower than values measured at the west reference site. Sediments at the east reference site had a much greater percentage of finer particle size material than either the west reference site or the disposal area. Thus, the choice of the reference sites for sediment and water chemistry comparisons was not ideal. Only stations 19 and 20 were used in Table 13 for determinations of temporal and depth differences between the central disposal site and the undisturbed areas of Elliott Bay.

Improper storage and pretreatment problems

- 53. Although estuarine samples can contain airborne and waterborne contamination from industrial and human sources which result in elevated concentrations of heavy metals relative to pristine open ocean areas, parts per billion levels necessitate that care be exercised to minimize metal contamination or loss during collection, storage, and analysis. Without adequate protection of sample integrity, spatial and temporal changes in metal concentration which occur in the natural marine system cannot be determined. Threats to the sample integrity include metal contamination or loss in the laboratory and care must be taken to quantify these problems.
- 54. Following centrifugation, interstitial water samples that were to be analyzed for trace metals were acidified with HCl and stored at

room temperature in polyethylene bottles. Because samples were not frozen, considerable amounts of arsenic and mercury were lost to the container walls in the 5 to 6 months the December samples were stored before the analyses were completed.

- 55. Arsenic. Table 18 shows the effect of storage upon the observed arsenic concentration in interstitial waters collected in September. The first arsenic concentration, Asl, was measured in November within about a month of collection. As2 is a second aliquot taken from the same storage bottle and analyzed in May, approximately 6 months later. As shown in Table 18, the percent change in arsenic concentration ranged from -75 percent to +231 percent of the value determined in November. Although adsorption of metals on the walls of containers is probably the most likely mechanism for change in concentration, resulting in a decrease in observed concentration, contamination can increase the measured concentration. Samples from the December cruise were not analyzed until 5 months after collection and were considerably lower in concentration reflecting the loss of arsenic to the container walls. Thus, the only arsenic concentrations reported were from the September cruise.
- mercury in interstitial waters. Acidified aqueous solutions initially containing 0.34 mg/l have been observed to lose more than 65 percent of the original mercury when stored in polyethylene containers for 10 days. ¹² Table 19 shows the change in mercury concentration measured in September samples following 7 months of storage. Because December samples were stored 6 months before analyses, the results were not reported. September samples were stored for over a month and therefore are also questionable and not reported. Lindberg and Harriss ¹³ indicate that interstitial dissolved mercury is much greater than that in the overlying water. Results of this study did not support this observation, and, rather than being indicative of unique conditions in the study area, measured mercury concentrations in interstitial water are believed to reflect the improper storage of the samples. Seawater samples to be analyzed for mercury were frozen immediately after the collection,

but interstitial water samples were not.

57. <u>Nitrate</u>. Nitrate values for interstitial waters are not reported because samples were mistakenly stored in bottles that had been soaked in nitric acid which contaminated the samples for this nutrient.

PART IV: SUMMARY AND CONCLUSIONS

- 58. Disposal of dredged material from the Duwamish River into Elliott Bay has resulted in minimal long-term changes in concentrations of trace metals observed in water above the disposal site. Six and nine months after the disposal of dredged material, the only significant difference between water at the disposal site and at the two reference sites was a higher mercury concentration in waters of the east reference site located near the Seattle waterfront. The concentrations of suspended solids and arsenic in the water column above the disposal area decreased between September and December although no significant change in concentration was observed at the reference sites.
- 59. Alteration in chemical parameters of the disposal site sediments was significant six and nine months after disposal when compared to one or both reference stations. In September and December 1976, the sediments of the disposal area had pH and Eh values significantly lower than those determined at the west reference station. At the disposal site, concentrations of manganese, inorganic phosphate, and ammonia in the interstitial waters were higher than at both reference sites, while chromium was highest in sediments at the west reference site.
- 60. Significant temporal changes in the sediment chemistry of the disposal site were observed between September and December 1976; pH, Eh, and inorganic phosphate decreased at the disposal site and mercury and manganese concentrations in sediment increased. At the reference stations only Eh was significantly different in December than in September and also, in December, the sediments became more reducing in nature.

REFERENCES

- 1. U. S. Environmental Protection Agency. <u>Puget Sound 305-A Report.</u> Report No. EPA 910/7-74-001. US EPA Region X, Surveillance and Analysis Division, Seattle, Washington, 1974.
- Robertson, D. E. and Carpenter, R. Monograph of National Academy of Science, Natural Res. Council, Nuclear Sci. Ser. NAS-NS 2114, 1974.
- 3. Melton, J. R., Hoover, W. L., and Howard, P. A. "The Determination of Mercury in Soils by Flameless Atomic Absorption." Proceedings of American Soil Science, Vol 35, No. 5, Sep-Oct 1971, pp 850-852.
- 4. Wood, E. D., Armstrong, F. A. J., and Richards, F. A. "Determination of Nitrate in Sea Water by Cadmium-Copper Reduction to Nitrate."

 Journal of the Marine Biological Association of the United Kingdom,
 Vol 47, No. 1, Jan 1967. pp 23-31.
- 5. Bendschneider, K., and Robinson, R. J. "A New Spectrophotometric Method for the Determination of Nitrite in Sea Water." <u>Journal of Marine Research</u>, Vol 11, 1953, pp 87-96.
- 6. Strickland, J. D. H. and Parsons, T. R. "A Practical Handbook of Seawater Analysis." <u>Fisheries Research Board of Canada</u>, Bulletin 167, Ottawa, 1968.
- 7. American Public Health Association, American Water Works Association, Water Pollution Control Federation. Standard Methods for the Examination of Water and Wastewater, 14th ed., Washington, D. C., 1975.
- 8. Guy, H. P. "Laboratory Theory and Methods for Sediment Analysis, Book 5," U. S. Geological Survey, 1969.
- 9. Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K., and Bent, D. H. Statistical Package for the Social Sciences. 2nd ed., McGraw-Hill, New York, New York, 1975.
- Scheffe, H. <u>The Analysis of Variance</u>. Wiley and Sons, New York, New York, 1959.
- 11. Dixon, W. J. and Massey, F. J., Jr. <u>Introduction to Statistical Analysis</u>. 3rd ed., McGraw-Hill, New York, New York, 1969.
- 12. Litman, R., Finston, H. L., and Williams, E. T. "Evaluations of Sample Pretreatments for Mercury Determination." Analytical Chemistry Vol 47, No. 13, Dec 1975, pp 2364-2369.
- Lingberg, S. E. and Harriss, R. C. "Mercury-Organic Matter Associations in Estuarine Sediments and Interstitial Water." <u>Environmental Science and Technology</u>, Vol 8, No. 5. May 1974, pp 159-462.

APPENDIX A'

ANOVA AND MULTIPLE CLASSIFICATION ANALYSIS TABLES FOR SEAWATER AND SEDIMENT VARIABLES WITH SIGNIFICANT POSITION EFFECTS

ANOVA Table for Seawater Mercury by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 10,) west reference site (station 17,), east reference site (station 19)

Time = Sampling date (September, December 1976)

Depth = Depth in water column (2m from surface, 10m above bottom, 1m above bottom)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates Time Depth	110.008 30.343 79.665	2 1 1	55.004 30.343 79.665	.193 .106 .279	.825 .746 .600
Main effects Position	4318.674 4318.674	4	1079.669	3.782 3.782	.009
Explained	4428.682	6	738.114	2.586	.029
Residual	14844.381	52	285.469		
Total	19273.063	58	332.294		
Covariate	Beta				
Time	-1.434				
Depth	-1.411				

60 cases were processed

1 case (1.7 PCT) was missing

Multiple Classification Analysis for Seawater Mercury by Position with Time and Depth as Covariates

Grand Mean = 26.26		Unadjusted	Adjusted for Independents	Adjusted for indepedents + Covariates
Variable + Category	N	DEV∮N Eta	DEV≠N Beta	DEV≠N Beta
Position				
St. 6. central disposal site 1	1	-5.39		-5.35
St. 10 central disposal site 1	2			-2.47
St. 17 west reference site 1:	2	-2.26		-2.27
St. 19 east reference site 1:	2	16.58		16.57
St. 44 Duwamish River mouth 13	2	-6.92		-6.93
		.47		.47

ANOVA Table for Seawater Manganese by Position with

Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 10,) west reference site (station 17), east reference site (station 19),

Time = Sampling date (September, December 1976)

Depth = Depth in water column (2m from surface, 10m above bottom, 1m above bottom)

Source of Variation Covariates Time	Sum of Squares 334.604 212.105	<u>DF</u> 2	Mean Square 167.303	<u>F</u> 31.388	Significance of F
Depth	122.500	i	212.105 122.500	39.794 22. 983	.001
Main effects Position	264.417 264.417	4	66.104 66.104	12.402	.001
Explained	599.023	6	99.837	• 18.731	.001
Residual	277.165	52	5.330		
Tota1	876.187	58	15.107		
Covariate	Beta				
Time	-3.793				
Depth	1.750				

60 cases were processed 1 case (1.7 PCT) was missing

Multiple Classification Analysis for Seawater Manganese by Position with Time and Depth as Covariates

Grand Mean = 18.35		Unadju	sted	Adjusted Independe		Adjusto Indepen + Covan	ndents
Variable + Category	N	DEV#N	Eta	DEV≠N B	eta	DEV≠N	Beta
Position							
St. 6 central disposal site	11	-1.52				-1.39	
St. 10 central disposal site		3.80				3.77	
St. 17 west reference site	12	.32				.28	
St. 19 east reference site	12	33				36	
St. 44 Duwamish River mouth	12	-2.39				-2.42	
			.56				.55

ANOVA Table for Sediment pH by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11, west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates Time Depth	1.044 .430 .614	2 1 1	.522 .430 .614	8.622 7.100 10.144	.001 .009 .002
Main Effects Position	10.130 10.130	3	3.377 3.377	55.751 55.751	.001
Explained	11.174	5	2.235	36.900	.001
Residual	8.721	144	.061		
Total	19.896	149	.134		
Covariate	Beta				
Time	107				
Depth	.128				

160 cases were processed 10 cases (6.3 PCT) were missing

Multiple Classification Analysis for Sediment pH by Position with Time and Depth as Covariates

Grand Mean = 6.86						
Variable + Category	N	Unadjus DEV≠N	ted Eta	Adjuste indeper DEV≠N	Adjuste independent + covar DEV#N	ndents
Position	-				 	
1 Central disposal	31	16			17	
2 West reference	16	.50			.50	
3 East reference	16	.50			.50	
4 Fringe disposal	87	13			12	
Titinge aropesar	•		.72			.71

ANOVA Table for Sediment Manganese by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11), west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates Time Depth	32881.749 32516.971 277.986	2 1 1	16440.875 32518.971 277.986	5.006 9.901 .085	.008 .002 .772
Main Effects Position	39583.925 39583.925	3	13194.642 13194.642	4.017 4.017	.009
Explained	72465.674	5	14493.135	4.413	.001
Residual	492668.236	150	3284.455		
Total	565133.910	155	3646.025		
Covariate	Beta				
Time	28.881				

-2.671

160 cases were processed 4 cases (2.5 PCT) were missing

Depth

Multiple Classification Analysis for Sediment Manganese by Position with Time and Depth as Covariates

Grand Mean = 255.88				
Variable + Category	N	Unadjusted DEV≠N Eta	Adjusted for independents DEV # N Beta	Adjusted for independents + covariates DEV#N Beta
Position				
1 Central disposal	32	28.00		27.86
2 West reference	16	-11.56		-11.71
3 East reference	15	-28.63		-27.93
4 Fringe disposal	93	- 3.03		- 3.07
		.27		.26

ANOVA Table for Sediment Mercury by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11), west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	·Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates	11.822	2	5.911	3.568	.031
Time	2.326	1	2.326	1.404	.238
Depth	9.557	1	9.557	5.768	.018
Main effects	42,977	3	14.326	8.646	.001
Position	42.977	3	14.326	8.646	.001
Explained	54.799	5	10.960	6.615	.001
Residual	250.191	151	1.657		
Total	304.990	156	1.955		
Covariate	Beta				
Time	.243				
Depth	.493				

160 cases were processed

3 cases (1.9 PCT) were missing

Multiple Classification Analysis for Sediment Mercury by Position with Time and Depth as Covariates

Grand Mean = .51 Variable + category		Unadjusted DEV≠ Eta	Adjusted for independents	Adjusted for Independents + Covariates
Committee of the Commit	N	DEV≠ Eta	DEV≠N Beta	DEV≠N Beta
Position				
1 Central disposal	32	33		33
2 West reference	16	28		29
3 East reference	15	1.59		1.58
4 Fringe disposal	94	09		09
		.38		.38

ANOVA Table for Sediment Chromium by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11), west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates Time Depth	2537.371 124.786 2412.586	2 1 1	1268.686 124.786 2412.586	3.886 .382 7.390	.023 .537 .007
Main Effects Position	37231.017 34231.017	3 3	12410.339 12410.339	38.014 38.014	.001
Explained	39768.388	5	7953.678	24.363	.001
Residual	50275.372	154	326.463		
Total	90043.759	159	566.313		
Covariate	Beta				
Time	1.766				
Depth	-7.766				

160 cases were processed O cases (O PCT) were missing

Multiple Classification Analysis for Sediment Chromium by Position with Time and Depth as Covariates

Grand Mean = 76.79		Unadjusted	Adjusted for independents	Adjusted for independents + covariates
Variable + Category	N	DEV#N Eta	DEV≠N Beta	DEV≠N Beta
Position				
1 Central disposal	32	- 6.92		- 6.92
2 West reference	16	44.58		44.58
3 East reference	16	5.25		5.25
4 Fringe disposal	96	- 6.00		- 6.00
		.64		.64

ANOVA Table for Sediment Coarse Size Fraction 1(> 2mm) by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11), west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates Time Depth	182.800 6.400 176.400	2 1 1	91.400 6.400 176.400	3.834 .268 7.399	.024 .605 .007
Main effects Position	200.860 200.860	3	66.953 66.953	2.808 2.808	.041
Explained	383:660	5	76.732	3.219	.009
Residual	3671.315	154	23.840		
Tota1	4054.975	159	25.503		
Covariate	Beta				
T4	400				

Time - .400 Depth 2.100

160 cases were processed

O cases (O PCT) were missing

Multiple Classification Analysis for Sediment Coarse Size Fraction 1 (> 2mm) by Position with Time and Depth as Covariates

Grand Mean = 5.76					Adjust	ed for
Wandahila I aabaasaa		Unadju		Adjusted for independents	indepe + cova	ndents riates
Variable + category	N	DEV#N	Eta	DEV≠N Beta	DEV≠N	Beta
Position						
1 Central disposal	32	-1.29			-1.29	
2 West reference	16	1.43			1.43	
3 East reference	16	2.61			2.61	
4 Fringe disposal	96	24			24	
			.22			.22

ANOVA Table for Sediment Coarse Size Fraction 2 (1 to 2mm) by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11), west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates Time Depth	374.291 15.191 359.101	2 1 1	187.146 15.191 359.101	4.322 .351 8.293	.015 .555 .005
Main effects Position	939.575 939.575	3	313.19 2 313.192	7.233 7.233	.001
Explained	1313.867	5	262.773	6.069	.001
Residual	6668.195	154	43.300		
Total	7982.062	159	50.202		
Covariate	Beta				
Time	.616				

2.996

160 cases were processed

Depth

O cases (O PCT) were missing

Multiple Classification Analysis for Sediment Coarse Size Fraction 2 (1 to 2mm) by Position with Time and Depth as Covariates

Grand Mean = 10.98				
Variable + Category	N	Unadjusted DEV≠N Eta	Adjusted for independents DEV≠N Beta	Adjusted for independents + covariates DEV≠N Beta
Position				
1 Central disposal	32	-1.49		-1.49
2 West reference	16	5.39		5.39
3 East reference	16	-4.92		-4.92
4 Fringe disposal	96	.42		.42
		.34		34

ANOVA Table for Sediment Coarse Size Fraction 3 (0.5 - 1mm) by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11), west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates Time Depth	263.081 102.881 160.200	2 1 1	131.540 102.881 160.200	1.869 1.462 2.276	.158 .229 .133
Main effects Position	3116.202 3116.202	3	1038.734 1038.734	14.757 14.757	.001
Explained	3379.283	5	675.857	9.601	.001
Residual	10840.217	154	70.391		
Total	14219.499	159	89.431		
Covariate	Beta				
Time	-1.604				
Depth	-2.001				

160 cases were processed

O cases (O PCT) were missing.

Multiple Classification Analysis for Sediment Coarse Size Fraction 3 (0.5 - 1mm) by Position with Time and Depth as Covariates

Grand Mean = 19.65		Unadjus	+od	Adjusted for independents	Adjusted independ + covar	dents
Variable + Category	N	DEV XN		DEV≠N Beta	DEV#N	Beta
Position	_					
1 Central disposal	32	60			60	
2 West reference	16	3.36			3.36	
3 East reference	16	-12.80			-12.80	
4 Fringe disposal	96	1.77			1.77	
			.47			.47

ANOVA Table for Sediment Coarse Size Fraction 4 (0.25 - 0.5mm) by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11), west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates Time Depth	150.783 2.906 147.609	2 1 1	75.391 2.906 147.609	1.728 .067 3.383	.181 .797 .068
Main effects Position	3484.783 3484.783	3	1161.594 1161.594	26.623 26.623	.001
Explained	3635.566	5	727.113	16.665	.001
Residual	6575.634	153	43.632		
Total	10311.200	158	65.261		

Covariate Beta
Time .270
Depth -1.927

160 cases were processed

1 case (.6 PCT) was missing

Multiple Classification Analysis for Sediment Coarse Size Fraction 4 (0.25 - 0.5mm) by Position with Time and Depth as Covariates

Grand Mean = 19.03				
Variable + Category	<u>N</u>	Unadjusted DEV≠N Eta	Adjusted for independents DEV≠N #eta	Adjusted for independents + covariates DEV≠N Beta
Position				Day, Name and
1 Central disposal	32	- 2.23		- 2.24
2 West reference	16	31		32
3 East reference	16	-12.53		-12.53
4 Fringe disposal	95	2.91		2.92
		.58		.58

ANOVA Table for Sediment Silt Size Fraction (0.002 - 0.05mm) by

Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11), west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covarites Time Depth	17.640 1.764 15.876	2 1 1	8.820 1.764 15.876	.042 .008 .076	.959 .927 .783
Main effects Position	10222.910 10222.910	3	3407.637 3407.637	16.321 16.321	.001
Explained	10240.550	5	2048.110	9.810	.001
Residual	32153.261	154	208.787		
Total	42393.811	159	266.628		
Covariate	Beta				
Time	210				
Depth	630				

160 cases were processed

O cases (O PCT) were missing

Multiple Classification Analysis for Sediment Silt Size Fraction (0.002 - 0.05mm) by Position with Time and Depth as Covariates

Grand Mean = 43.47				
Variable + category	<u>N</u>	Unadjusted DEV≠N Eta	Adjusted for independents DEV#N Beta	Adjusted for independents + covariates DEV/N Beta
Position				
1 Central disposal	32	6.39		6.39
2 West reference	16	- 8.25		- 8.25
3 East reference	16	19.77		19.77
4 Fringe disposal	96	- 4.05		- 4.05
		.49		.49

ANOVA Table for Sediment Clay Size Fraction (<0.002mm) by Position with Time and Depth as Cowariates

Position = Station location; central disposal site (stations 6, 7, 10, 11), west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	· Sum of Squares	DF	Mean Square	F	Significance of F
Covariates	40.107	2	20.053	.742	.478
Time	9.448	1	9.448	.349	.555
Depth	30.659	1	30.659	1.134	.289
Main effects	683.896	3	227.965	8.430	.001
Position	683.896	3	227.965	8.430	.001
Explained	724.003	5	144.801	5.355	.001
Residual	4110.354	152	27.042		
Total	4834.357	157	30.792		
Covariate	Beta				
Time	489				
Depth	881				

160 cases were processed

2 cases (1.3 PCT) were missing

Multiple Classification Analysis for Sediment Clay Size Fraction (<0.002m) by Position with Time and Depth as Covariates

Grand Mean = 3.52 Variable + category	N	Unadjusted DEV∮N Eta	Adjusted for independents DEV#N Beta	Adjusted for independents + covariates DEV/N Beta
Position				
1 Central disposal	32	-1.04		-1.04
2 West reference	16	19		19
3 East reference	16	6.16		6.16
4 Fringe disposal	94	67		66
		. 38		.38

ANOVA Table for Interstitial Water Manganese by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11, west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12,13,14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates Time Depth	.354 .354 .000	2 1 1	.177 .354 .000	.036 .072 .000	.965 .789 .993
Main Effects Position	324.870 324.870	3	108.290 108.290	22.062 22.062	.001
Explained	325.223	5	65.045	13.251	.001
Residual	721.549	147	4.908		
Total	1046.773	152	6.887		
Covariate	Beta				
Time	. 096				
Depth	003				

160 cases were processed
7 cases (4.4 PCT) were missing

Multiple Classification Analysis for Interstitial Water Manganese by Position with Time and Depth as Covariates

Grand Mean = 3.26						
Variable + category	N	Unadju DEV≠N	isted Eta	Adjuste indepen DEV#N	Adjust indeper + covar DEV#N	ndents
Position						
1 Central reference	30	.99			.99	
2 West reference	15	-2.81			-2.81	
3 East reference	16	-2.94			-2.94	
4 Fringe disposal	92	.65			.65	
			. 56			.56

ANOVA Table for Interstitial Water Inorganic Phosphate by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11), west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates Time Depth	9030.382 8563.243 527.040	2 1 1	4515.191 8563.243 527. 0 40	18.117 34.359 2.115	.001 .001 .148
Main effects Position	3182.612 3182.612	3	1060.871 1060.871	4.257 4.257	.007
Explained	12212.994	5	2442.599	9.801	.001
Residual	32898,386	132	249.230		
Total	45111.380	137	329.280		
Covariate	Beta				
Time	-15.816				
Depth	- 3.909				

160 cases were processed 22 cases (13.8 PCT) were missing

Multiple Classification Analysis for Interstitial Water Inorganic Phosphate by Position with Time and Depth as Covariates

Grand Mean = 13.13		Unadju	sted	Adjust		Adjuste indeper + covar	ndents
Variable + Category	N	DEV≠N	Eta	DEV#N	Beta	DEV#N	Beta
Position							
1 Central disposal	23	7.13				5.91	
2 West reference	13	-10.27				-10.06	
3 East reference	15	- 9.18				- 7.89	
4 Fringe disposal	87	1.23				1.30	
			.30				.27

ANOVA Table for Interstitial Water Ammonia by Position with Time and Depth as Covariates

Position = Station location; central disposal site (stations 6, 7, 10, 11), west reference site (stations 17, 18), east reference site (stations 19, 20), fringe of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16)

Time = Sampling date (September, December 1976)

Depth = Depth in core (top 10 cm, bottom 15 cm)

Source of Variation	Sum of Squares	DF	Mean Square	<u>F</u>	Significance of F
Covariates Time Depth	1786.749 1442.863 356.045	2 1 1	893.375 1442.863 356.045	6.272 10.131 2.500	.003 .002 .116
Main Effects Position	2605.421 2605.421	3	868.474 868.474	6.098 6.098	.001
Explained	4392.171	5	878.434	6.168	.001
Residual	18373.146	129	142.427		
Total	22765.316	134	169.890		

Covariate Beta
Time 6.548
Depth -3.249

160 cases were processed 25 cases (15.6 PCT) were missing

Multiple Classification Analysis for Interstitial Water Ammonia by Position with Time and Depth as Covariates

Grand Mean = 7.99		Unadjusted	Adjusted for independents	Adjusted for independents + covariates
Variable + Category	N	DEV≠N Eta	DEV≠N Beta	DEV≠N Beta
Position				
1 Central disposal	20	9.90		9.57
2 West reference	13	-5.60		-5.44
3 East reference	15	-4.67		-4.99
4 Fringe disposal	87	64		53
		. 35		.34

. Table 1

Listing of Experimental Data Broken Down by Position, Time, and Depth

VAPTARLE	CODE. VALUE LABEL	SUM	WEAN	STO DEV	VADIANCE
FOR FUTIDE OPPULATION		70.9000	1.1817	.4500	5202.
NOTATION	1	12.4000	1.0133	6267.	6276
High	1. SEPTEMBED	0005-6	1.7167	05/7.	1555.
Hingu	1	1.5000	.7500	3536	.1259
DEPT4		3.0000	1.5000	0,	0
int	2. DECEMBER	4.5000	.7500	.3564	.1270
Hadio		00000	.4000	0	0
	3. 801194	2.1000	1.9500	.3536	.1250
VO11100		14.4003	1.346.7	5483	4006
1100		10.000	1.6667	.5164	.2457
DE DE LA		4.0000	3.0000	0.	0
ОЕВТН	3. HOTTON	4.0000	2.0000	0 0	
					•
2020	S. DECEMBER	4.4000	1.0447	1227	.1787
Hogo	Z MIDDLE	2000	מטטביו	2828	0500
nE974		2.1000	1.0500	8777.	0504.
MOLLITON		14.2009	1.1833	5005	4056
init	· SEDIEMMED	4.4000	1.9447	1751	7050.
H.030		0001.9	1.1900	7070.	0500.
. H1030	FOR FOR	2.0000	1.6000	6.55	0521.
47. +	0.000			1.0.	
M2030	1. \$1105.405	0006.1	.6500	7070.	0 500
יייי דעטעל	2. MIDDLE	2.2000	1.1000	1414	0020.
21030		4.3000	2.1500	.2121	0570.
MC111200	4. DEFEDENCE-E19	14.9000	1.2417	. 7875	.1453
HIGH	1. SIDEACE	000000	1.0000	. 4135 8080	01710
н този		1.1000	0054.	1215.	0570
25014		7.0000	1.0000	0	0
1100	2. DeCENRER	8.5000	1.4433	.2503	1647.
7.		3.000	1.5000	c	0
		(continued)			(Sheet
0					
4					

SUPPLIED OFFICE--NATER SAMPLES

Table 1 (Continued)

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	VAP! AFI.E	CODE	VAL'IE LABEL	NiS	NE'BN	STD DEV	VAPIANCE	2
	леэтн Эсэтн		MIDDLE	3.3000	1.1500	1919.	.0050	
Titory Continued							-	
	20111	٠.	33-12 12 10 10	13.0000	1.0000	25020	2540.	71
	7,030	:.	2105615	2,5000	1 2000		171.	
71-05	11030			2000	0000	2131	00,00	
2. DECEMBER 6.5000 1.2500 .0707 2.1000 .0707	DED TH		PO1106	2.5000	1.3000	0		
1. 4 1.00 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.								
2. MOTE 2.1000 1.0500 1.05000707 3. MOTION 1.05000707 4.00	1105	2.	DECEMBER	6.5000	1.0473	.1472	. 11217	-
3. HOTION 1.96000707 1.96000707 1.96000707 1.96000707	Debin	1.	SUBFACE	2.5000	1.2500	1070.	0500.	
3. BOTTOM 1.96n0 .9560 .0707 .0	HEGEL	.2.	MINOLE	2.1000	1.0900	10707	0500	-
continued)	CEPTH	3.	BOTTOM	1.9000	0056.	.0707	. 0500.	
(Continued)								
(Continued)								
(Continued)								
(Continued)				,				
(Continued)								
(Continued)								-
(Continued)								
(Continued)								
			• • • •					
				***************************************				-
								-
				(Continue	(Pe			

VERTABLE	HI 030						
	3000	VALUE, LAPEL	*11S	WEAN	STD 0EV	VADIANCE	2
FOR FUTISE POPULATION			169.5000	7.8267	6662.	. 0844	109
Moialson	1:	\$z=drill0	34.9000	2.9083	2185.	. 1927	(21)
11.45	:		18.6000	3.1000	. 2608	0890.	19)
HI OFO	2	STOOL S	4.300n	3.1500	3516	1250	12 - 13
и сотн		80110W	4.2000	3.1000	. 2428	0000	53
ini.	. 2.	DECEMBED	14.3000	2.7167	21602	1520.	19
nte30		SUPFACE	8.4000	2.7000	.2828	0040.	(2
מנסגם	2.	370076	5.4000	2.7000	0.00	000	12
	:		3.2400	6.00.1.2		0000	
PACITION.	. 2.	C	34.7000	2.8917	46.26.	6070.	(
	٠.	SPOTFAGE	17.9000	2.9933	1404.	.0857	19)
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			5.7000	0054.5	.2121	0570.	22
ПЕОТН	-	1	6.2000	3.1000	0	0	12
3011	2.	OF CEMBER	14.8000	2.8000	2690.	.906.	5
OFPTH.	:	SUPE ACE	5.5000	2.7500	7070.	0500.	(2)
11030	· ·	ROTTON	5.7000	2.4000	.0707	0500.	5.5
NOTITION	r.	VI=-30%30330	31.5000	2.4250	.1671	.1749	121
назо	-	Single Are	14.4000	2 4500	2010	1646.	26
11000		- 1001 F	0001.5	2.5500	0507	0576	
niegu .	31	ant the	4.0003	3.540.9	6		27.
1106	2.	DECEMBED	15.1000	2.5167	.0763	1500	.,
HIGH		51126 ACF	9.2000	2.4000	0		2
טנסגע	2.	*IODLE	6.0000	2.5000	0		(2)
11010	÷	80110M	0000.7	2.4500	1070.	0500.	(2
9041110W	,	615-301,003330	34.8000	2.0000	7334	5711.	121
	:	CLOTE WARD	16.2000	2.4000	2416.	.: 100	9
12011		CHOFACE.	2.9000	2.9500	0567		(2)
A LOSC	3.5	10110	9,000	2.7000	10/01	0500.	2 2
						000	0
H.O.J.	~-	OFCEAFO	18.0000	3.0000	9256.	.1280	19
	:	27.5		0.151.1	0000	6572	2

POLLUTION DYNAMICS -- MATER SAUPLES

	τ	3
	משווע	ď
	п	3
	4	ø
	-	٠
	=	3
	•	7
	ϵ	•
	-	•
		è
	-	٦
	+	3
	•	7
	200	٠
	1	÷
	-	c
	4	٦
		e
- 1	•	٦
		J
~	_	,
	_	
,		
,	_	+
	_	+
	_	+
	0	+
	0	+
	a	+
	a	+
	a	+
	a	+
	a	+
	a	+
	a	+
	a	+
	0	+
	a	+
	a	+
	a	+
	a	+

POSITION POSITION THAT DEPTH 1. SUPPLIES TOTAL CASES = 60.	2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	11414 11379 11414 11414 11414 11414 11414	00500. 00100. 00100. 00500. 00500. 00500.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1. SEPTEMED 1. SEPTEMED 1. SIDEACE 2. WIDNE 3. WIDNE 1. SUPACE 3. WIDNE 3. WOTTOW 3. WOTTOW	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		0190 0137 0620 0620 0620 0600	2000
1. STOPAGE 1. STOPAGE 1. STOPAGE 2. WITTOW 2. DECFURE 3. WITTOW 3. WOTTOW 4. WOLD ACE 4.	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	1169 1169 11619 11619 11619 11619	0200 0200 0200 0200 0200	2000
1. Storage 2. Minnie 3. Minnie 1. Storage 1. Storage 2. Minnie 3. Minnie 3. Minnie	2.4.20 2.40 2.4	2011. 1215. 1217. 1217. 1217. 1217.	0500 0500 0500 0500 0500 0500	
2. WIDNLE 3. ANTTON 1. SUPFACE 3. WIDDLE 3. HOTTON	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1515. 141. 1573. 1573. 1414.	0.020 0.020 0.020 0.020 0.020 0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	
3. ACTTON 2. DECEMBE 3. ACTTON 3. HOTTON 4. HOTTON	2 - H000 2 - H000 3 - H000 4 - H000 5 - H000 5 - H000 6 - H000 7 -	2828	000000000000000000000000000000000000000	
2. DECEMBER 1. SIGENCE 3. MOTTOW 5. MOTTOW	2.0000 2.0000 2.0000 2.0000	1673	000000000000000000000000000000000000000	
1. SIGE ACE 2. MIGNUE 3. MOTTOW	2.7000	2004	000000000000000000000000000000000000000	
3. HOTTON 3. HOTTON	2.8000	14:14	.0800	
3. HOTTOM	2.8000	71414	. 0200	
A STATE OF THE PERSON NAMED IN COLUMN 1 AND THE PERSON NAMED IN COLUMN 1				
(Continued)	((Sh	(Sheet 4 of

### ### ##############################	à à	7:4E		-				
100 100	149 1 4PLE		VALUE LABEL	HIS	KERN	STD DEV	VADIANCE	Z
10 10 10 10 10 10 10 10	P ENTIRE POPULATION	7		1099.2001	18.3200	3.8611	14.9077	609
	K11104	1:	טוויים בא	201.6000	16.9000	3.1652	10.0192	121
	1100	-	SEPTEMBED	1:0.0000	18.333	2.6583	7.06.67	6
1	NFOTH	1.	SUDFACE.	37.5000	16.7500	.3536	11250	2)
1	DEPTH	3.6	HIDDLE	33.0000	16.5000	9536.	1250	22
1	2500	:-	OF CENTRAL S	2000	7447.50	3.0340	7.3307	66
10 10 10 10 10 10 10 10	11000		MIDDLE	2005.000	14.7500	1217	0521	25
1 1 2 2 2 2 2 2 2 2	н1 о з о	3.	ноттом	35.4000	17.9000	4.8083	23.1200	2
STOCKALE STOCKALE STOCKAL S	:11:00	2.	Or E-daylig	265.8000	22.1500	5.2876	1050.75	121
			SEDTEMBED	152.5000	25.4167	5.3049	28.1417	15
1	nfoth	:	SUDEACE	41.5000	20.7500	.1536	11250 (23
7	DEDTH	2.	MIDDLE	47.5000	23.7500	1.0407	1.1250	2)
1.	нте эд	3.	HOTTOM	63.5000	11.7500	3.1820	10.1250	(2
7. 4100_E 3. 0FF70FVGE==17 7. 7000 19.5500 1.6263 11. 5400_E 2. 0FF70FVGE==17 7. 7000 19.5500 1.6127 7. 7000 19.5500 1.6128 7. 7000 19.5500 1.6128 7. 7000 17. 7572 7. 7000 7. 7572 7. 7000 7. 70	1145			113.3000	16.993	2.7853	7.7577	6
7. 4100LE	טנפור	1.		32.3000	16.1500	2010.	0578.	2
1.	11000	~ ~	A LOGE	0006.76.	18.4500	1.6263	2.4450	25
3. 0 F F P N C E = 17 1.			The state of the s	43.7000	0058.12	1.6663	7-5-4450	12
SKPTEMARE	strin.	3.	715-33N3033330	224.0000	19.6447	2.2395	5.0152	121
1.	1100	1.	SEDICASED	120.0000	20.000	1.7321	3.0000	4
2. 05CEWER 104.0000 17.773 1.94.08 2. 05CEWER 104.0000 17.773 1.94.08 2. 05CEWER 104.0000 17.773 1.94.08 2. 05CEWER 104.0000 17.0000 1.4142 3. 0700 1	Н1630	:	SUPFACE	37.5000	18.7500	.1536	1 0561.	21
2. DECEMBRA 104.0000 17.173 1.9408 2. DECEMBRA 104.0000 17.1733 1.9408 3. MIDDLE 34.0000 17.0000 1.442 4. OFFICE 19 21.5000 19.2500 1.462 2. MIDDLE 37.5000 19.2500 1.4125 2. MIDDLE 37.5000 19.2500 1.5125 2. MIDDLE 37.5000 19.2500 1.5125 2. DECEMBRA 102.3000 17.6500 1.7015	11000	٠.	* .	39.0000	19.5000	1.6142	5.0000	23
2. DECEMBRA 3. A1001.E 3. A1001.E 3. A07704 3. A07704 1. A105 RUCE = 19 11. A105 RUCE = 19 12. A1001.E 3. A07704 13. A105 RUCE = 19 14. A105 RUCE = 19 15. A105 RUCE = 19 16. A105 RUCE = 19 17. A105 RUCE 18. A105 RUCE 18. A105 RUCE 19. A105 RUCE 18. A105 RUCE 19. A105	H.o.U	3.	201109	43.5%64	21.7500	1.7578	3.1250	7.7
S S S S S S S S S S	1146	2.	DECEMBER	104.0000	17.113	1.9408	3.7667	63
7 A 97 TOW 17.0000 1.4147 3. AOTTOW 34.0000 17.0000 1.4678 4. OFFERENCE=19 214.0000 14.0000 1.4801 1. SEOTEWARD 3. AOTTOW 14.0000 1.4801 2. WIDNER 3. AOTTOW 34.5000 19.2500 3516 2. DECEMBER 100.3000 17.0500 1.4015	nfoth	-	SIJUFACF	31.5000	15.7500	1.0607	1.1250	23
3. AOTTON 38.5000 19.2500 1.7678 4. OFFREE UE = 19 214.0000 18.0250 1.8801 1. SEDTEMBED 114.0000 19.0000 1.5125 2. VIOUE 2. VIOUE 37.5000 19.2500 1.3576 2. DECEMBED 102.3000 17.0500 1.7015	нерти	.5	MIDDLE	34.0000	17.0000	1.4142	2.0000	2
TH SECTEMBED 114.000 18.0250 1.4801 1.4.000 1.4.0000 1.4.125 1.4.0000 1.4.0000 1.4.125 1.4.0000 1.4.0000 1.4.125 1.4.0000 1.4.125 1.4.0000 1.4.0000 1.4.125 1.4.0000 1.4.0000 1.4.125 1.4.125 1.4.1	nfoth	3.	AOTTOM	34.5000	19.2500	1.7678	3.1250 (5
1. SEOTEWARE 114.0000 14.0000 1.5155 1 2. WIDDLE 37.5000 19.7500 .3516 3. ADITOM 19.7500 .3516 2. DECEMPER 100.3000 17.0500 1.7015	errioù .	4.	612-300303530	215.3000	18.0250	1.8801	3.5348	121
2. W. 100 LE 33. GO 17.	1100	1.	SEPTEMBED	114.0000	14.0000	1.6125	2.4000	19
1974 2. "100LE 37.5000 18.7500 .9536 19.7500 .9536 19.7500 .9536 .9536 .9536 .9536 .9536 .95360 .95360 .95360 .95360 .95360 .953600 .955600 .955600 .955600 .955600 .955600 .955600 .9556000 .9556000 .955600 .9556000 .955600 .955600	DESTH		SIIDE ACF	38.0000	19.000	3.5355	12.5000	12
2. DECEMPER 102.3500 17.0500 1.7015	71030	2.	370012	37.5000	18.7500	9151.	1 0541.	12
2. DECEMPER 102.3000 17.6500 1.7015	25071	3.	A01104	38.5000	19.2500	9151.	1 0561.	2
	i'n F	3.	ОЕСЕМИЕЯ	102.3000	17.0500	1.7015	2.4050	10
. SUPFACE. 34.8000 17.4000 1.0799	DEDTH	:	SUPFACE.	34.8000	17.4000	1.9799	3.9200	21

(Sheet 5 of 34)

ONITION DANGATES--VATER SAMPLES

Table 1 (Continued)

71691647	3000	VALUE LAREL	2115	. NATA	410 0EV	VAPIANCE		z
0807H	3.5	#150LE RATTO	31.5000	18.0000	1.7678	3.1250		22
10111800		OHANA SHEEK	191,5000	15.9587	2.9324	R.5990	-	121
1100		CEOTENAED	0001-80.	18.0.81	1211.6	6.1457		
הנסיו			34.8000	17.4000	3.3941	11.5200		5
нтези	2.	1	33.3000	16.6500	2010.	.8450	-	2
nform	3.	BOTTOM	40.0000	20.000	1.4142	2.0000	-	51
1106		DE CENTES	83.4000	13.9000	1.8450	3.4040		100
11020	-	SUCTACE	0000-05	19.0000	2.8284	8.0000		5
DEDTH		3 100 1	25.2000	13.1000	2.2627	5.1200		21
у Брти	3.	ROTTOM	27.2000	13.4000	.1414	0020.	-	5
TOTAL CASES .								1
				•				
			(bourt + aon)	-				

(Continued)	
Table 1	
SETHERS CENTRES	

d a d	NOTE TO SEE							
	3641 341.05 1.885	136	7. O	NESA	V20 012	VAOLANCE		. 2
FOR ENTIRE ROOM ATTON			1540.0500	155.94	14.2249	332.2942	-	593
20417100	1.		229.5646	20.9636	14.7802	214.4545	,	111
67.10	1. 980184489		74.0000	15.4.00	15.0192	225.4750		2
11030			54.0000	28.0000	9.9995	98.0000	1	2
1 0 0	3. BOTTON		1.0000	5000.22	00			2.5
2011	2. DECEMBED		150,5000	Fren. Pc	14,4721	\$145,4417	,	1
neath			35.5660	17.7500	24.3052	545.1250		2
F1077	2. WIDNLF		67.0000	24.0000	14.14.21	200.0000	1	22
			,					,
Polition	2. Arrao-5 10		285.5000	23.7917	10.8491	117.7027	-	121
1146			115.0000	19-1467	4.4907	20-1467		0
1 1 1 1 1 1 1	2. Chorace		39.0000	19-0466	7.8244	8.7000		N n
NE at 4	1.		38.0000	19.0000	2.9294	8.0000	-	2
3011	2. הוב כב משבם		179.5000	74.4.47	13.6909	187.4417	,	é
ngorn.			69.6000	34.5440	.7071		-	1
H1030	2. WIDDLE		34.5000	17.2400	21.444.19	561.1250		22
2011	Distorace.	-=13	283.0000	26.4466	12,4923	141.2727	,	101
1146	GEOTFURED.	.,	AA.aaana	14.1111	10.3240	106.4467		6
Treat.			10.0000	5.4464	0	•		2
0.00 to 100 to 1	3. Antrov	* 72	44.1970	23.0000	7.0244	8.0000		200
2011	2. 0800-959		202,0100	11.4467	4.9854	27.04.67		3
MEDIN	v		73.0000	16.5000	2.1213	4.5000	-	2
neoth neoth	2. *IDDLE 3. BATTOM		59.3440	75.4160	7.7782	69.5089		22
411100	30 10 50 3 2 3 0 ·	512-	514.0000	42.4113	24.2777	495.5152	,	12
TING NEOTH			392,0000	44.5273	11.1078	127.94547		20
DEPTH NESTH	1		142.0000	71.5468	21.4263	480.5980		22
3011	2. 08.08.4460		\$16.850AA	16.1133	A.1158	65.0447	-	10
1 1 0 3 0	1. 4007105		Continued		4.94.97	54.5000	,	2
						(Sheet	7 of	35

VEDIANCE 196.7487 204.8937 8.9000 98.0000 220.5000 528.1250 220.5000 84.5000 13.8112 14.83141 2.8284 9.8995 STO DEV 9.1924 14.7518 14.8492 22.9910 23.7.7.85 23.5000 23.5000 16.7500 23.5000 13.0000 Table 1 (Continued) 232.0500 104.5500 58.0000 127.5000 25.0000 5. DUMANISH-44
1. SEDEMER
1. SUBFACE
2. WINDLE
3. POTTON VALUE LARFL 2. OFCEMBED 1. SUNFACE 2. YION, E 3. ROTTON 2. MIDDLE 3. BOTTOM 1 00 1.7 PCT. POLLINTION DYNAMICS -- WATER SAMPLES 3000 COLLEGION VADIABLE HG = 19410 C4469 = YAS! AALE DEDTH NEOTH 11030 HLOSU DESTH 11030 HEDIG POSTITION 3011 31.11

22222

Z

2555

(Continued)

(Sheet 8 of 34)

188 F 199	1973 4000 27.726	àà	7145 7145 7167 7167							
1967 1967	######################################								:	:
1951-4000 22-7267 27-7260 27-7267 27	1961-4004 1961-25	7821287	3005		NUS.	NABA	STO DEV	VADIANCE		7
		no Furior enougation				.726	5.1667	5709.42	-	109
	State 1.00	OSTITION	1:	1	271.7000	22.6417	5.2372	27.4281		121
1	1	1145			100.9000	18.3000	1.8612	3.4640		9
		11030	1.	i	35.7090	18.3500	2.4749	6.1250	1	23
Compared	Continue	11030			34.2000	19.1000	7.6153	1.4200		22
		11.15	2.	DECEMBE	161.9000	26.6813	3.4114	11.63.17	1	13
		11034	:		50.5000	25.2500	9151	1250		5 6
		DFOTA	2.	- 1	60.1000	30.0500	5.4447	29.6450		5
		1	÷		51.30nn	25.4500	1515.	0570.	,	5
	Septemble 19, 2000 14, 14, 200	9611104	2.		275.0000	0	4.3444	18.9742		121
		1 to 1	<u>.</u>		118.5000	19.7500	4.1244	17.0270	-	3
7. DEFERRED SALAND SALA		1 1 0 0 0	• • •	Da rotta	30.4000	15.4000	1.4142	2.0000	_	2
711	714	нтозо	3.	1	47.4000	23.7000	3.5770		-	52
		1714	2.	08.00.00	156.5000	FF47.49	5554	1007		3
	2. v1031E	0.5074	1.	Stips ace	50.3000	25.4000	. 5667	.3200	-	5
DEFFORMER 19.8000 22.8083 4.4125 19.4499 19.	SEFFERENCE 19,499		~ ~	#103LE	52.9000	24.4000	0567	0516.		2.5
SEPTEMBLE 19,4499 19,143 3,2010 10,2499 10,2499 11,44000 19,143 3,2010 10,2447 10,2499 11,41000 16,5000 17,718 10,2499 11,41000 12,419 10,2447 10,2247 10,2447 10,2447 10,2247 10,2447 10,2247 10,2247 10,2447 10,22	SEPTEMBLE 19,4499 19						-		-	
2. DEFF. DE	2. DEFFICE 19.2447 19.173 3.2010 19.2447 19.24	11110	· ·	DEFF 25105-17	273.7000	22.8083	4.4175	10.4499	-	12)
2. DESCRIBER 152 9000 26.423 .4167 .1778 .0050	2. OECETABLE 152 9000 26.423 .4147 .0050	11030		2000000	00000	19.173	3.2010	10.2447	-	16
2. DEFFUSE 154 -0000 26 -4823 4167 1737 1737 1745 1	2. DEFFWER 159-9000 26-4823 -4167 -1737 (3. MIDDLE 515000 26-7500 -0707 -0050 (3. MIDDLE 515000 26-7500 -0707 -0050 (3. MEFFLENCE 519 267.1000 26-7500 -0707 -0050 (3. MEFFLENCE 519 267.1000 18-850 (3. MEFFLENCE 519 26-700 18-850 (3. MEFFLENCE 519 267.1000 18-850 (3. MEFFLENCE 519 26-700 (3. MEFFLENCE 5	11000			2000-55	16.5000	.1414	0020.		20
2. DEFF. RE 15a 9000 26.4833 .4167 .1137 	2. DEFF.BER 152 9000 26.4233 .4167 .1737	нідів	-:			22 19.9	5,44.47	20,1459		400
1 400FACE 51.5000 25.7500 0707 00050 0707 00050 0707 00050 0707 07050 0707 07050 0707 07050 0707 07050 0707 07050 0707 07050 0707 07050 0707 07050 0707 07050 0707 0707 07050 0707 07	2. "IDOLE 51.5000 P5.5500 .0707 .0050 (2. "IDOLE 51.5000 P5.7500 .0707 .0050 (3. AOTTOW 53.5000 P5.7500 .0707 .0050 (4. WEFFLEICE-519 P67.1000 P5.7500 .0707 .0050 (5. MIDDLE 51.000 P5.7500 1.4449 .0.6500 (5. MIDDLE 51.000 P5.7500 1.4449 .0.6500 (6. MIDDLE 51.000 P5.7500 (6. MID	1100	۶.	Office was a	152.9000	26.4823	.4167	1871.	-	3
2. 41001E 3. A01104 3. A01104 4. WEFFLETCHE = 19 10. 1000 22. 7500 23. 4978 23. 4978 23. 4978 24. 4978 25. 4978 25. 4978 26. 4978 27. 4978	2. 41001E 53.5000 26.7500 .0007 .0080 (проти	:	SUPFACE	61.9000	55.0500	7070.	0500.		2
1. HEFFLEICE-E19 25.1000 22.2643 4.4978 23.9841 (10.01) 2. HICKLEICE E19 10.1000 11.0650 1.0650	1. Supracr (Continued)	1 11		2100LE	53.5000	25.7500	7070.	0500.		2
2. HEFFERENCE = 19	2. HEFFERENCE = 19 267.1000 22.2543 4.4978 23.0841 (;		0000000	0000	10:4.	0500.	_	5
State Stat	Suprace 100.0430	DETTION	,	1	267.1000	22.2543	4.9978	23.9841	-	:23
2. WINDLE 42.1000 21.0500 1.050 1.250 1.05	EDTH 2. WIDNEE 42.1000 71.0400 1.040	11000	:-		104.3000	18.0000	3.1691	10.0430		90
FPTH 3. RATTOM 24.9000 14.4500 1.7678 3.1250 (FPTH 3. RATTOM 24.4667 14.4500 1.7678 3.1250 (2. DECEWH! B 152.8060 24.4667	HE BERTH	2.	1	42.1000	21.7500	0567	1576	1	56
SOTH 1. SUPPACE 53.1000 26.5467 .4741 .2741 .2750 .	50TH 1. SUPFACE 53.1000 25.5503 .4753 (Continued)	N. p. 1.	m'		24.9660	14.4500	1.7678	3.1250		50
1. SUBFACF 53.1000 25.5003 .4950 .	1. Suprace 53.:non 25.5503 .4553 . 2450 (Continued)	1146	.,	CECENHI D	150.4000	74,4467	.4761	12767	-	10
	(8,000	DE011	1.	SUBFACE	53.1900	56.5503	0557*	. 2450	_	5

77	3
0)
:	3
2	:
	4
+)
200	:
0)
C)
_	-
-	
	4
10	+ 0+
10	+ 0+
10	+ 0+
-	+ 0+

POLITICA DYNALICAWATED SAMPLES	NOT	v	Table 1 (Continued)	ntinued)				
VAGIAPLE	CODE	VALIF LABEL	MINS .	KERN	STD DEV.	VAPIANCE		2
111036	3.	HINDLE	53.0000	24.3500	9195	.8450		25
1.0111300	5.	Dijuan SH-44	276-1000	23.0083	7.2828	53.0390	-	121
3711	.1.	GSFWSLOSS	104.1000	17.3500	3.2587	10.6190	_	5
пусти	-	SUPFACE	27.1000	13.5500	3.0405	9.2450		2
DEDTH	~	MIDGLE	34.9000	19.4500	.1516	.1250	•	53
PEDTH	÷	80110M	34.:000	19.0500	0567.	0576.		53
3011	2.	OE CEMBER	172.0000	28.6667	5.4042	29.2247	-	153
OFPTH		SUPFACE	64-1000	33.0500	5707.6	89.4450		5
11050	. 2	#1001.E	0008.CN	26.4000	1414	0000		1
DE,2TH	3.	ROTTOM	53.1000	26.5500	2070.	0500-	_	5
			(Continued)			(Sheet 10 of 3h)	100	5

AY 05P	71wE 05PTH						
VAOTABLE	COOK	YALUE LABEL	MUS	MEAN	STD DEV	VAPIANCE	2
FOR ENTIRE PROULATION			51.7000	1.0283	1.3850	1.9191	109
סטכנונטא)	15.7800	1.3150	1.7650	3.1151	121
11000	:-	0 10 10 10 10 10 10 10 10 10 10 10 10 10	4.8900	. 4133	1.0371	1.0756	•
DEPTH .		1001	3700	0051.3	97.79	0500	2
DEOTH	т : е	HOTTON		.1050	.0212	1000.	52
J.i.t.	2. 0	DECEMBRA	10.9000	1.8167	2.2746	5.1737	9
טנהנה		JOE ACE		1.3000	7171.	.0200	
HIGHTH		w100LE	6.9000	3.4500	4.1719	17.4050	12 1
25.011		07.TOM	1.4000	.7000	. 2828	0080.	2 ,
poeition.	. 2. 0	11.5-= 10	10.8700	.9058	1.0745	1.1549	121
1100	1.	SEUTEMAFE	5.8700	.9743	1.2815	1.4422	9
11000		SUPFACE	5.2000	5.6000	.5457	.3200	(5)
Hadio	2. 4	IDULE	ישטעני.	0051.	0	0	2
nin di		ROTTON	.3700	.1850	.0212	+000.	2
line	2. 0	ונונוב מאבש	5.0000	.8133	6576.	1768.	14
DEBTH	1. 5	SIDFACE	3.6000	1.4000	1.2728	1.6200	12
25.030		MIDGLE	0000	0005.	1710	0023.	2
High	1	BOTTOM	יטטטי.	0001.	1414	00200	2
סטפונוטא			4.3000	0007.	.3111	.096A	(12)
1106	!	SF01fu3En	2.5000	.4147	24070	.1666	(4.
2000		SUDE ACE	1.2400	0026.	9526	.0443	2
11030	3	ROTTON	0027	.2100	9 0	00	200
3012		026730	2.3000	1001	2117	.570	
DEPTH	::	SUBFACE	1.3000	66500	.0707	0500	52
DFOTH H	:	MIDDLE	.4000	0002.			2 2
AF DIA		ROTTON	0009.	0006.	0	•	2
MOILION	1	PEFFUENCE-319	15.2300	1.2492	1.3047	1.7022	12
1100		SEDIENTED	8.4300	1.4050	1.4739	2.8019	9
наза	1.	SIIDFACE	7.1000	3.5500	.3536	1250	12
טוניים		TOOLE	0005-	.2000	0	•	(5 2)
11030		*O110a	.9300	0547.	1901.	.0113	2
1146	8.0	CECEMBES	A.8000	1.113	0876.	7,908.	19
1		2000	4000	0000	<	•	•

POLLUTION DYNAMICS -- WATER SAMPLES

Table 1 (Continued)

	VEPTARLE	CODE	VALUE LAPEL	WITS	MEAN	STD DEV	VAPIANCE	z
2. Ojavajeti, 15.0200 1.2617 1.8810 2.2000 1	DE97H	3.	MIDDLE	.7000	0051.	1070.	.2450	22
11. (\$100.00 1.000	SITION	.5	DIWANISH-44	15.0200	1.2517	1.8870	7.5404	121
2. winter	Tive	1	SEPTEMBER	4.4200	1961.	. 5917	1056.	19
5. 901104	HIGH		STORY ACT	3.0000	2300	000	000	
2. DECEMBE 10.5000 1.7677 2.6166 2.7.7 2.6000 2.7.000 2.7.000 2.7.0000 2.7.	DEDTH	3.	ROTTOM	1667.	. 3000	.0141	5000.	56
5. 400 5.		2.	DECEMBER	10.5000	1.7467	2.6166	4.9467	14
60 100.£ 1.5000 1414	NEDIN	:-	SIJOFACE	7.6000	3.4000	4.4669	21.7800	2
	DE074	2.	M100.5	1.4000	7000	1414	0500	12
(Continue)	10741 CASES =							
(Continued)								
(Continued)								
(Continued)								
(Continue)								
(Continued)								
(Continued)								
				(6000+1000)				

(Sheet 12 of 34)

NACIABLE CODE VALUE LABEL 134.3000	:				1:	1:
2	70	KEAN	STD DEV	VAPIANCE		7
11. D.199-36 12. STOTE 48E 8 13. STOTE 48E 8 14. STOTE 48E 8 15. STOTE 48E 8 16. STOTE 48E 8 17. STOTE 48E 8 1		1815.5	6674.	1224	_	609
11. SEDTEMBER 12. MIDDLE 13. DECEMBER 14. SUGFACE 15. SUGFACE 16. SUGFACE 17. SUGFACE 17. SUGFACE 18. SUGFACE 19.		2.2417	.3450	0011.	-	121
11. \$\text{SIMFACE} \\ \text{17.} \\ 1		1.9133	.1751	10301	_	9
714 3. WIDDLE 5.	-	2.1000	11710	.0200	1	-21
15		. 8000	-1414	0020.	_	2
7. DECEMBER 1. AUGRACE 1. AUGRACE 1. AUGRACE 1. SEDTEMBER 1. SEDTEMBER 1. SUGRACE 1. SUG		6000	1717	0060.	_	2
7. SEPTEMBER 1. SEPTEMBER 1. SEPTEMBER 1. SIDEAGE 2. DECEMBER 1. SIDEAGE 2. DECEMBER 1. SUBFACE 2. DECEMBER 1. SUBFACE 2. DECEMBER 3. DEFFERENCE=17 4. SUBFACE 4. DEFFERENCE=19 5. DECEMBER 6. DECEMBER 7. DEFFERENCE=19 7. DEFFERENC		0055.	8750°	00000	-	3
114 2. w100LE 11 5. 00.00 = 2.0 114 1. 5. 00.00 = 2.0 115 2. w100LE 11 5. 00.00 = 2.0 114 2. w100LE 115 5. 00.00 = 2.0 116 5. 00.00 = 2.0 117 5. 00.00 = 2.0 118 5. 00.00 = 2.0 119 5. 00.00 = 2.0 11		2.5500	2070.	.0050	_	۲
7. DIWD-310 1. SEPTEMBER 1. SEPTEMBER 1. SUPFACE 2. DECEMBER 2. DECEMBER 3. SUPFACE 1. SUPFACE 1. SUPFACE 2. SUPFACE 3. SUPFACE 3. SUPFACE 4. SUPFACE 5. SUPFACE 6. SUPFACE 7. S	-	0005.5	0	0	-	5
714 SEPTEMBER 1 SEPTEMBE		0000	0	0	_	S
2		מטטנים	2727.	F701.		12
1. SUPFACE 2. WIDDLE 3. OFFERER 3. OFFERER 11. SUBFACE 12. SUBFACE 13. OFFERER 14. SUBFACE 15. SUBFACE 16. SUBFACE 17. SUBFACE 18. SUBFACE 19. SUBFACE		2.0333	.2503	1540.		9
714 2. 0FCFWHER 114 2. 0FCFWHER 115 1100LE 116 117 117 117 117 117 117 11		1.9000	17110	.0200	_	2
2. 0FCFMHER 11. 5. 0FCFMHER 12. 4.00LE 13. 0FFFRENCE-=17 14. 5. 0FFFRENCE-=17 15. 5. 0FFFRENCE-=17 16. 5. 0FFFRENCE-=17 17. 5. 0FFFRENCE-=19 18. 5. 0FFFRENCE-=19 19. 5. 0FFFRENC		1.4000	0	0	-	5
11.		2.3000	.2828	0090.	-	5
11.		15667	.0515	7200		3
2. #100LE 3. #0170M 1. #05F6F4GF-17 2. #05C4GF 2. #05C4GF 2. #05C4GF 3. #05C4GF 4. #05CF4GF 4. #05CF4		2.6000	c	0	_	5
3. 26.71000 3. 26.71000 1. 50.0700 2. 0.0000 2. 0.0000 2. 0.0000 2. 0.0000 2. 0.0000 3. 0.0000 4. 0.0000 5. 0.0000 6. 0.00000 6. 0.0000 6. 0.00000 6. 0.0000 6. 0.00000 6. 0.0000 6.		0055.5	1070.	0500.	_	5
3. OFFORMED 1. SUBFACE 2. WIDDLE 2. PECEMPER 3. PIDDLE 4. OFFFRENCE 1. SUBFACE 1. SUBFACE 2. PIDDLE 3. PIDDLE 4. OFFFRENCE 1. SUBFACE 5. PIDDLE 6. PIDDLE 7. PIDDLE 8. PIDDLE 8. PIDDLE 8. PIDDLE 9. PIDLE 9. PIDL	-	0055.	7070.	0500.	-	53
11		5000	2059	4500		
2. MIDDLE 2. MIDDLE 3. MIDDLE 3. MIDDLE 4. PEFFENCE 2. MERMARR 4. PEFFENCE 2. MIDDLE 3. MIDDLE 3. MIDDLE 4. PEFFENCE 2. MIDDLE 4. PEFFENCE 3. PEFFENCE 4. PEFFENCE 5. PEFFENCE 5		0000	2000	0050		3
2. MIDDLE 11. MIDDLE 11. MIDDLE 12. MIDDLE 13. MIDDLE 14. MIDDLE 15. MIDDLE 15. MIDDLE 16. MIDDLE 16. MIDDLE 17. MIDDLE 16. MIDDLE 17. MIDDLE 18. MIDDLE 1		1.8500	7070.	0500.	-	12
2. DECEMBER 11. SUPFACE 2. MIDDLE 3. WITHOM 3. WOTTOM 1. SPOTEMBER 11. SUPFACE 12. MIDDLE 2. MIDDLE 2. MIDDLE 3. WOTTOM 3. WOTTOM 3. WOTTOM 4. WEFFRAGE 4. WOTTOM 5. MIDDLE 6. WOTTOM 6. W		0001-	0	0	_	5
2. DECEMBER 3. WIDDLE 4. DEF HENCE = 19 4. DEF HENCE = 19 1. SUBF ACE 2. MIDDLE		00200	.3536	.1250	-	23
1. SIPFACE 2. MIDDLS 3. 901TOM 4. PEFFHENCE-=19 1. SFOTFHAGE 1. SFOTFHAGE 1. SPOTFHAGE 2. MIDDLF		19151	10753	1500-		3
2. WIDDLE 3. 90110M 4. DEFFENCE-219 1. SFOTFMAGA 1. SUPFAGE 2. MIDDLE 2. MIDDLE		0057.	7070.	0500		5
3. 40110M 4. 0EFFHENCE-=19 1. SUPFACE 11. SUPFACE 2. HIDDLE		0005.	0	0	-	2
1. SEPTEMBER 1. SUPFACE 1. SUPFAC		2.4000	0	0	_	2
THE SPOTEMBER STATE OF THE STAT		5000	0017	16.81	1	101
STH S HIDDLE		2000	1520	1001		3 2
Z. MIDDLE		2.1500	.2121	0550		5
201100		2.000	0			2
2. 101.102		0005-1	-1414	.0200	_	5
		5.5733	.1033	7010.	-	15
		2.6500	1070.	0500.		5

BOLLISTION DYNAMICS -- WATER SAMPLES

Table 1 (Continued)

7.000	2005	VALUE LABEL	MIS	MEAN	\$10 DEV	VAPIANCE		2
2000	2.	MIDDLE	5.0000	2.5000	0	0	-	12
יים פיני	÷	AOTTOM	4.9000	5.4500	1070.	0500-		2
MULLISUM	5.	Dillaw I SH-44	24.2000	2.1433	9566	7651.		5
1145		SEPTEMBER	10.9000	1.9167	1602	0257		1
nfath		SHOFACE	2,3000	1.6500	.212.	0570		
nE97H	2.	MIDGLE	3.8000	0000	0		1	35
УКоти	3.	HOTTOM .	3.8000	1.9000	o	•		2
3-11		DECEMBED	15.3000	2.5500	0549	0100.	1	19
. Higgd	:	SUBFACE	5.0000	2.5000	0			2
назо	2.	MIDDLE	5.1000	2.5500	20707	0500		
NEDTH	3.	BOTTOM	5.2000	2.4000	0	0	-	5
TOTAL CASES = 60	0							
						-		

(Sheet 14 of 34)

Pacifiles C092 Value 146 Pacifiles	STO DEV		
Divo-34 Springs Spri	-	VARIANCE	. 2
Duvb=34		42.4189 (601
11. SIDEFERED 23.49000 14.1900 11.1900	-	45.8293	121
Sinff AFE An 30 no 14,1500		35.2470 (3
1	-	21.1250	2
2. DECEMBE 799, 2000 49, 2000 49, 2000 111 1, 500 ECE 49 EP 700 49, 2000 49, 2000 111 1, 500 ECE 49 EP 700 49, 2000 49, 2000 111 1, 500 ECE 40 EP 70 E	2.1335 5.	1.2050 (25
Substace	9479	9766	14
2. Jinolf 999.2000 49.5600 29.1000 49.5600 29.1000 49.5600 29.1000 49.5600 29.1000 49.5600 29.1000 49.5600 29.1000 49.5600 29.1000 49.5600 29.1000 49.5600 29.1000 49.5600 29.1000 49.5600 29.1000 29.1000 49.5600 29.1000 49.5000 29.1000 29.1000 49.5000 29.1000 29.	0132	0578	
2. Diubaji		.7200	5
2. Diluba-10 5. SEPTEMBER 2. DECEMBER 2. DECEMBER 2. DECEMBER 2. DECEMBER 2. DECEMBER 3. SEPTEMBER 5. DECEMBER 5. DECEMBER 6. STA, SOND 6. ST	3	3.1250 (12
SEPTEMBER SSO.0000 41.4647 SUPFACE 744 3000 40.4500 SUPFACE 744 3000 40.4000 SUPFACE 101.9000 45.2000 SUPFACE 101.9000 50.4400 SUPFACE 101.9000 45.2000 SUPFACE 101.9000 46.0000 SUPFACE 102.4000 40.7000 SUPFACE 103.4000 40.7000	5.5848	1 25124	121
1.	15	15.3467	10
		1 0500.	2
2. DFCF-AFP	-	7 0570.	٦
2. DECELLER 304.4000 \$0.7447 2. MIDDLE 83.500 44.000 41.3700 2. MIDDLE 83.500 41.3700 2. DECELURE 30.000 50.4000 3. DECELURE 30.000 50.4000 4. DECELURE 50.000 4. DECELURE 50.000 4. DECELURE 50.000 4. DECELURE 50.0000 4. DECELURE 50	4.0611 36	36.9800 (51
SUPFACE 101 9000		3.6747 (69
3. EFFORME 100,1000 50,0500 100,1000 50,0500 100,1000 50,0500 100,1000 50,0500 100,0500 50,0500		14.0450 (2
3	1.5556	2.4200	í í
3. EEFFERICF=17	-	1 00000	-
2. DECFURE 364.3000 41.2147 2. DECFURE 364.3000 40.7000 2. DECFURE 100.0000 50.4000 2. DECFURE 100.000 30.4000 2. DECFURE 100.000 30.4000 2. DECFURE 100.000 30.4000 2. DECFURE 100.0000 2. DECFURE 100.00000 2. DECFURE 100.0000 2. DECFUR		32.6917	121
2. DECEMBED 304.3000 40.7500 21. SUPFACE 102.1000 50.4000 22. MIDDLE 101.3000 50.4000 23. MIDDLE 101.3000 50.4000 24. MIDDLE 574.4000 40.4000 25. MIDDLE 559.4000 40.4000 26.4000 30.9400	-	16.0417	19
2. DECEMBED 364.3000 41.7500 2. DECEMBED 364.3000 50.0000 2. MINGLE 107.9000 50.0000 3. MINGLE 107.9000 50.0000 47.8447 47.8447 1. SEPTEMBED 5594.4000 47.8447 2. MINGLE 919 57.3000 46.5500 214 21.54600 30.0500		. 9230	2
2. DECEMBED 304.3000 50.8000 2. MINULE 101.3000 50.4000 2. MINULE 101.3000 50.4000 2. MINULE 101.3000 50.4000 2. MINULE 574.4000 47.8467 2. MINULE 57.3000 49.2000 3. MINULE 5.9000 30.9400	0.7600	00000-54	22
714 2. WINDLE 102.1000 51.0500 57.4 50.500 57.4 50.500 57.4 50.500 57.4 50.00	9684	, 7760	•
2. windle 100.9000 50.4500 214 2. REFERENCE=19 574.4600 47.8647 2. REPERSONE 574.4600 47.8647 2. WINDLE 94.2000 30.9500		0504.	53
3. Antiom 101.40.0 <0.90.0 4. AFFRANCE==19		1 0500.	2
1. qEptpale 374.4600 47.8667 1. qEptpale 259.4000 43.0667 2. w100LE 99.2000 30.0000	1.4971 2	2.8200 (5)
FOTH 1. SEPTEMBED 259-4000 43.0467 FOTH 67.3000 46.5500 61.5010 49.5500 30.9500		70.1AKI (121
2. MIDDLE 97.3000 40.4000 3. MOTION 61.9000 30.9000		1 165.439	3
3. 401104 61.9000 30.9400		37.2450(2
3. 401704 61.9000 30.9500		1.2800 (51
	1.6263 2) 0577.	2
2. DECEMBER 314.0000 52.4467		2.9307	15
1. SUDFACE 169-3000 S4-5500	.6364	, 4050	2

BOLLISTION DYNAMICS -- WATER SAMPLES

COLLEGION VACIABLE S!			Table 1 (Co)	(Continued)				
VAPILALE	CODE	VALUE LABEL	Silve	MFAN	V30 015	VAPIANCE		z
DE014	3.6	#IDDLE ROTTOM	104.5000	52.2500	1.0607	1.1250		25
200111900		1					1	1
57.1	· ·	33-11 516	54.1. 7000	45.1083	4.1540	0001.07	_	151
HEADO	•		73.5000	20000	3 6770	79.847		66
н1630			85.3000	42.6500	1.2021	13.36.00		1
DEOTH	3.	ROTTON	78.9000	39.4500	1070.	0500.		53
1176		DECEMBER	365.9000	50.0911	4515.1	1,7257		14
DEOTH		SUSFACE	60000	6005-67	0.170	7200		
D-014	2	w100LE	192.4000	61.2000	2828	0080		25
DE014	3.	ноттом	104.5000	\$2.2500	.3576	.1250	_	51
TOTAL CASES = 6	60							
							-	
	,							
1								
								-
		•						
			(Continued	1)		(Shee	1 16	(Sheet 16 of 34)

(Sheet 16 of 34)

	DEPTH							
VAQIASLE	C00E	VALUE LAPEL	MUS	HEAN	STO DEV	VARIANCE		. 2
FOR FATTOE BOBULATION			1029.2000	6.8413	.3654	.1335	-	150)
POSITION	1:	CENTRAL DISPOSAL	207.5000	6.5948	.2536	.0643	-	310
1105	1:	SEPTEMBED	102.0000	6.800	6772.	0040.	_	151
neozu	-	100100	47.4909	6.7714	.1704	. 0240		1
ОЕРТН	2.	BOTTOM25CM	54.6040	6.8250	6506.	9160.	-	9
1100	5.	0,60,60,60	105,6000	6.5000	.2280	0520		163
ито30		T0P10CM	52.3000	6.5375	.1685	.0284	-	8
DEPTH	. 2	80110425CM	53.3000	6.5525	.2722	.0741	_	8
POSITION	2.	WEST DEFEDENCE	117.8000	7.3425	.0719	5506.	-	161
TINE	-	SEPTEMBES	58.300	7.3500	9260.	.0086		9
нт езо	1:	T0010CM	29.4000	7.3500	.0577	.0033		7
H1 430	2.	80110M25CM	29.4000	7.1500	.1291	.0167	-	5
1145	5	DECEMBER	59.0000	7.3759	5440	1200	,	â
нтезо	-	T0010CM	29.5000	7.1750	00500	.0025		3
DEPTH	2.	90110M25CM	29.5000	7.3750	.0500	.0025	_	4
P041710%	3.	FAST DEFENCE	117.8000	7.1425	.2473	.0612	-	161
11.6	-	SEDTEMBER	58.7040	7.3375	7720.	5500.	_	8
HEGGU	-	T0910Cm	29.2000	7.3000	.0816	1400.	1	5
0.5074	2.	80110425CM	20.5000	7.3750	0050.	\$200.	_	3
71.05	2.	DFCEMBED	54.1000	7.1975	.1523	1761.	_	
нтази	-	100100	29.1086	7.2750	.4573	2002.	,	3
DEOTH	2.	BOTTOM25CM	30.0000	7.5000	.2160	1970.	~	3
NO. 11.00	4.	F0116 0150051	584.0000	6.7756	20145	1870.	-	87
41.45	1.	GEOTENSES	264.8000	6.7897	.2643	0770.	_	391
ОЕОТН	1.	10P10C*	134.0000	6.7000	. 2271	9150.	_	201
ОКРТН	2.	ACTTOM25CM	130.86.00	6.8942	.2814	2620.	_	161
3-11	2.	DECEMBED	321.2000	6.6917	5185.	.0804		4.83
Обруги		TG919C4	158.9000	6.6208	1672.	1650-	-	541
05ртн	2.	90110M240M	162.3000	6.74.25	.3076	9760.	_	54)
1074L C45ES # 16	160 00 6.1	6.3 PCT.						1

	OE 97H						
VAPTABLE	3000	VALUE LAREL	SUM	MEAN	STD DEV.	VARIANCE	2
FOR FNTINE POPULATION	2		-45618.0000	-302.1050	53.2372	2434.2020	(151)
P0151710W	1	CENTRAL DISPOSAL	-9604-0000	-109.8065	24.8125	F10.1613	11
37:L	::	SEDTEMBER	-4425.0000	-245.0000	30.7040	942.9571	(51)
Обрти	1.	1001004	-2055.0000	-293.5714	21.7398	472.6190	11
Hadi	5.	HO110425CH	0000.0165-	-296.2500	38.4290	1476.7457	•
3+11	2.	DECEMBER	-5179.0000	-323.6475	18.9564	355.5425	161
ngoth	-	TCP10C4	-2525.0000	-315.6250	20.2551	410.2679	(8)
DEPTH	.2	BOTTOM25CM	-2654.0000	-331-7500	14.2503	203.0714	9
POSITION	2.	WEST REFERENCE	-1942.0000	-246.7500	82.0196	6A75.5657	(41
11.5	1.	SEPTEMBER	-1440.0000	-120.0000	57.5698	3314.2857	8
DEDTH	-	TOP10CM	-690.0000	-172.5000	71.3559	5091.6657	(,
05P7h	2.	HOTTOM25CM	-750.0000	-187.5000	49.9166	2491.6667	(7)
1105	2.	DECEMBER	0000-0056-	-313.5000	35.1446	1235.1429	6
DEPTH	-	1001004	-1233.0000	-308.2500	40.0281	1602.25.00	17
PEPTH	2.	HOTTOM25CM	-1275.0000	-318.7500	34.7311	1204.2500	7
MOSTITION	3.	EAST REFERENCE	-4885.0000	-305.3125	74.4508	5874.2292	(91
TIME	:	SEPTEMBED	-2035.0000	-254.3750	67,1585	4510.2679	.8
nEp14	:	1001004	-955.0000	-238.7560	42.2328	3972.0167	(4)
Обрти	2.	90110M25CM	-1086.0000	-270.000	77.4597	6000.0009	(7
Line	2.	DECFURED	-2250.0000	-356.2500	34.7895	1503.0286	8
DEPTH	-	TOB10C*	-1375,0000	-343.7500	39.8877	1512.2500	7
ЭЕРТН	2.	ROTTOM25CM	-1475-6000	-348.7500	39.7524	1540.2500	(7
VO:11:09	4.	FP1165 01500541	-27181.0000	-308.8750	42.6714	1820.8463	(88)
3711	-		-11246.0000	-291.1500	40.5517	1644.4385	(04
DEPTH	-	TOP10CM	-6240.0000	-207.1429	30.0554	903.9286	115
ОЕЭТН	2.	80110M25CM	-5006.0000	-243.4737	43.9340	1930.3743	161
1105	2.	DECEMBER	-15935.0000	-311.0702	28.4010	806.4156	(87
DE01H	-	10p10CM	-7904.0000	-329.3313	25.9375	672.7576	(54)
DE21H	2.	80110425CM	-8031.0000	-334.6250	30.9990	2050.096	1 54

RY TIME RY DEPT	¥.							
VA91ABLE	CODE	VALUE LABEL	NO.S	VEAN	STD DEV.	VAPIANCE		Z
FOR ENTIRE POSILATION			39916.5800	255.8762	60.3823	3444.0252	-	1561
MOSITION		CENTRAL DISPOSAL	9684.0000	283.8750	77.4854	6003.9839	1	32
11.6	:	SEPTEMBED	4179.0000	241.1475	56.4509	3232.0292		16
ngoth .	1:	T0910CM	2138.0000	267.2500	34.9623	1364.2143		8
рерти	2,	B0110425CM	2041.0000	255.1250	73.9970	5475.5536	-	80
1146	2.	05CEM950	4905.0000	306.5425	89.8784	8078.1292		161
		T0010CM	2284.0000	285.5000	44.4097	4436.8571		
. Эбртн	2.	H0110425CM	2421.0000	327.6250	104.9009	11959-4107	-	ê
POSTITION	2	WEST RFFFRENCE	3909.0000	244.3125	54.1545	3381.9425	-	1
1145	-	SEDTEMHER	1919.0000	227.3750	14.94.11	352.4393	-	2
ОЕРТИ	-	1001001	473.0000	218.2500	21.1719	448.2500	_	3
Обртн	2.	80110M25CM	0000-975	236.5000	12.9228	167.0000	_	,
1106	2.	DECEMBED	2090.0000	241.2500	78.9442	6232.5000		â
ОЕРТН	-	T0510CM	1179.000	294.7500	103.2505	10784.9167	-	1
ОЕРТН .	5.	ROTTOM25CM	00000-176	227.7500	27.4571	764.9167	_	7
NOI1180a	3	EAST REFFRENCE	3404.5900	227.2453	R2.7698	6850.8457	1	151
TINE	:	SEDTEMBER	1657.6800	207.2100	100.1410	10028-2271		8
ЛЕРТН		TOF10CM	983.9000	245.7500	77.5731	6017.5013		3
п£втн .	5.	B0110425CM	674.6900	148-6700	115.94.79	13420.7289	-	3
1106	2.	05CEMHF0	1741.0066	250.1429	54.0251	3134.9095		-
рертн	-	10010CM	1:29.0000	282.2500	45.0955	2115.5413		. 4
пЕртн	5.	80TT0M25CM	622.0000	207.3733	37.8462	1432.1333	-	~
MOILLING	4.	FRINGE DISPOSAL	23515.0000	292.9425	45.4827	2084.9119	-	93)
1145	:	SEPTEMBER	11431.0000	243.2129	44.4204	1973.1711	_	47
DFOTH.	-	10p10C4	5530.0000	234.5933	22.4943	808.0058	-	24
Обртн	۶٠	B0110M25CM	5301.0000	252.2174	54.5724	3430.7233	-	23)
TIME	2.	DECEMBER	12084.0060	742.6957	45.3151	2053.4609		46
STOTA	1.	1001001	6373.0000	245.5417	35.1295	1234.0851	-	241
DEPTH	2.	POTTOM250%	5711.0000	269.5009	1010 23	0000 0000		231

(Sheet 19 of 34)

RY DEP	05ртн						
VARIABLE	CODE	VALUE LABEL	MUS	NARA	STD_0EV	VADIANCE	
FOR ENTINE POPULATION			499.3900	3.2440	2.6242	6.9867	(153)
POSITION	1	CENTOAL DISPOSAL	127. 5800	4.2550	2.7701	7.6715	-
1146		SEPTEMBER	61.9000	2.8483	6557	2011.0	141
0£PTH	::	109196	35.4000	4.4250	1.9077	19191	
пертн	2.	BOTTOM25CM	24.5000	3.3125	2244.	.1955	3
311.	2.	DECEMBER	65.7900	4.6985	3.7784	14.2766	141
ОЕРТН	-	T0910CM	34.7000	4.957]	4.9940	24.9795	
ОЕРТН	5.	ROTTOM25CM	31.0800	0077.7	2.4077	5.7972	(1 7
P051110W	2.	WEST WEFFDENCE	6.7800	0257.	26532	2505.	
1145	:	SEDTEMBER	4.4300	.5537	.5872	.3448	8
DEPTH	-1	T0010CM	3.0400	.7600	.8276	0564.	
ОЕОТН	2.	AOTTOM25CM	1.3900	.3475	.0780	1900.	(7
1106	2	DECEMBER	2.3500	7315.	7715.	7250.	_
Назо	-1	T0P10CM	1.4900	1494.	.2194	.0481	
05074	2.	90110425CM	.9600	.2150	.1318	-0174	-
POSITION	3.	EAST REFERENCE	5.1900	.3244	.2035	.0414	(91
1105	-	SEPTEMBER	1.8900	.2763	.1397	.0195	
DEPTH	-	T0010CM	1.3400	0576.	.1121	.0126	(7
DEP TH	5.	80110425CM	.5100	.1275	. 0377	*100.	
soil	2.		2.3000	56126	6926.	.0515	(6
DE0134	:	700: du	2.1000	27.475	14.74.	9050.	-
9EP1H	5.	HOTTOM25CM	1.1100	.2775	.11.35	.4129	(7)
P051710*	4.	FRINGE DISPOSAL	359.7400	3.9102	2.3345	8077.5	0
2-11	1:	SEPTEMBED	185.9400	3.9566	2.1316	5.4365	(74)
бертн	1	T0010CM	62.5000	3.5870	1.9335	3.7385	(5 23)
ОЕРТН	2.	ROTTOM25CM	103.4600	4.310A	2.6513	7.0246	172)
Tine	2.	DECEMBER	173.7809	3.8418	2.3528	5.5928	, ,
DEPTH		TCP10CM	84.2000	3.8273	2.2844	5.2183	(22)
DEPTH	2	BOTTOM SCIN	90.5800	3.4948	7.4844	4.1922	

(Sheet 20 of 34)

	1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1							
	3000	VALUE LASSEL	, , , , , , , , , , , , , , , , , , ,	NEAN	STD 05v	VADIANCE	:	. 2
3			2549,0444	16.1912	10.1652	103.3317	-	1603
NOTATION	1:	CENTRAL DISPOSAL	445,0000	13,9063	4.1298	17.0554	1	32
	1:	050151035	214.0000	13.5000	3.4254	11.7133		161
DE0TH	:		104.0000	13.2500	7.9541	8.7857		·
11000		8011042564	110.0400	13,7500	4.0247	16.2143	_	œ
4114	2.	03873336	229.0000	14.1125	4.9127	23.1425		16
DEDTH.	1:		103.000	12.8750	4.1209	16.9821	1	4
Trage	2.	80110425CM	124.0000	15.7500	5.2847	27.9246	,	0
POSTTION.	2.	BONGER SEFERENCE	154.0000	9.6250	2.1910	5.7167	-	161
1146	1.	63Fn31035	72.0400	9.0010	2.4234	4.0000	-	ê
CEPTA	1:	T0p10C*	40.0000	10.000	1.4142	2.0000	1	1
06.011	2.	20110425CM	32.0000	8.6000	3.7417	14.0000	v	1
4:45	\$	036*3330	82.0000	10.2540	1.0323	3.3571		a
DEPTH	1:	100100-	45.0000	11.2500	2.4615	4.2500	-	3
11030	5.	80110M25C*	37.0000	0.2500	7256.	1916.		4
#051110a	3.	BONBERE DE 1573	297.9000	18.5425	10.7949	114.5292	1	1.6
1100	:	de l'antion	159,0000	19.4740	14.4943	221.4393		æ
DE011	:	10014CM	59.0000	14.7500	3.7749	14.2500		17
11000	3.	80110425C4	136.5300	25.0000	20.3167	433,1333		4
57.14	2	Calendara	1.000 500	6736 41	4:69:4	22.0284	,	a
н1 430	:	*301c01	79.0000	19.7550	5.1841	26.9167	-	1
11030	2.	80110×25C*	59.0000	14.7560	3.5000	12.2500	_	4
P051110W	.,	FOTNE DISPOSAL	1693.0000	17.4754	11.4620	136.0035	-	100
2011	.:	SEPTEMBED	851.9880	17.9175	14.4007	207.1790		4.5
Оботи		1001064	327.0000	13.6250	9.7393	94.4513	,	34
7 ta 30	2.	90110M25CM	534.0000	22.2500	17.0326	290.1047	-	54
301.	3.	05/5×8/50	#32.000¢	17.1113	8.2057	6277.733		4
Оботн	:	*301a01	329.0000	13.5467	4.1354	17.1014	-	154)
11030	2.	ROTTOM25CM	504.0200	21.0000	9.6143	95.4348		543

Figs Entries Population South	149LE DE POPULATION								
CENTRAL DISPOSAL	ENTINE POPULATION	35	VALUE LABEL	21.5	MEAN	STO DEV	VADIANCE		×
Centall Disposal	W01118			3711.4000	50.1541	34.5574	1194.2110	_	74)
Continue		1:	CENTRAL DISPOSAL	A55.0000	57.0000	50.9453	2595.4296	-	15
1	1:25	:	SEDIEMHED	855.0000	57.0000	50.9453	2595.4285		15
7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	ngoth		100inc	428.0000	54.0900	55.1802	3044.4571.	1	0
2. WEST DEFENDE	Hadio		ROTTOW25CM	453.0000	40.4286	49.7790	2477.9524	_	-
1. SEPFENSE	ITION	2.	WEST DEFENCE	337.0000	45.5000	7,7395	59.9000	,	4
1. 170-1104 169-1000 56.3333 10.5040 110.3333 110.3333	1145	-	oghndldgb	333.0000	55.5000	7.7395	59.9000	_	9
TH 2. ADITON - 25CH 164.000 54.667 6.1101 37.333 (3. E49 GFEBENCE 352.000 50.3429 27.6831 540.8895 (3. E41 GFEBENCE 352.000 60.3429 27.6831 540.8895 (3. E41 GFEBENCE 352.000 60.3429 27.6831 540.8895 (3. E41 GFEBENCE 352.000 50.3429 27.6831 540.8895 (4. FRINGE DISPOSAL 2771.0000 47.1957 31.6372 1019.9831 (4. FRINGE DISPOSAL 2771.0000 47.1957 31.6372 1019.9831 (4. FRINGE DISPOSAL 2771.0000 47.1957 31.6372 1019.9831 (4. FRINGE DISPOSAL 2771.0000 52.7825 31.6372 (5. GOTTON - 25CW 1214.0000 52.7825 37.9521 14.00.3597 (5. GOTTON - 25CW 1214.000	DEPTH	:	1001001	169.0000	56.3333	10.5040	110.3333	_	n
3. FLAT BF F B F NCE. 1. SERTEWER 1 55.400 50.1429 21.6831 55.0.8495 1 1 100-1000 1 1 1 100-1000 1 1 1 1 1 1	ОЕФТН	2.	ROTTOM25CH	164.0000	54.6667	6.1101	37.3313	-	2
1. 100-100- 1. 100-100- 2. 01.0000 4. 59.400 1. 100-100- 4. 5.000 4. 75.000 4. 75.000 5. 75.000 5. 75.000 5. 75.000 7. 75.0000 7. 75.000 7. 7	11100	ć	FACT REFFERENCE	352.4000	60.36.03	1187 56	260 0 0 25		,
1. 100100	2 2 1	:	מנים בנית שנים	352.4000	6271.05	23.6831	566.045		-
774 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	DESTH	1	100100	195.0000	45.0000	9.8394	91.0000	-	1
TH 1. SEPTEMED 2171.0000 47.1957 31.9372 1019.9931 (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	DEPTH	5.	801T0M25CM	157.4000	39.3500	24.1755	685.1567	_	1
1. SEDTEMBED 217:0000 47:1957 31:9372 1019:9831 (2. 9370-1007 2504 1214.0000 52.7825 37:957 (2. 93770-100-9831 (2. 93770-10	ITTOM	1,	FRINGE DISPOSAL	2171.0000	47.1957	31.9372	1010.0431	-	45
1. TOP-10CM 41.6087 2.0978 580.7036 (2. 90TTOW25CW 1214.0000 52.7826 37.9521 1440.3597 (86 09 53.7 PCT.	1100	:	SEDTEMBED COS	2171.0000	47.1957	31.9372	1019.9831	_	44
160 86 09 53.7 PCT.	HLd	:	100100	957.0000	41.6087	25.0978	580.7036		23
86 09	DE 3 TH	5.	90TT0425CM	1214.0000	52.7825	37.9521	1440.3597	-	23)
90	160								
	86 09	53.7	PCT.						
								1	1
									1
		-							i
									1

ntinued)

(Sheet 22 of 34)

POLLUTION DYNAMICS -- AEDINENT SAPPLES

	7	4
	1	D
		1
	i	1
	.,	1
	ì	5
	7	
	2	100
	ť	<
	C.	r
•	-	,,,
	-	4
	0	,
	0	0 4
	0	0 4
	0	0 4

RY 11.25	, I						i	- 1
ADIABLE	CODE	VALUE LARGE	100	MEAN	STD DEV	YAPIANCE		. 2
FOR ENTIRE POPULATION			90.3299	5115.	1.3942	1.9551	-	1571
P051710M	:	CENTRAL DISPOSAL	5.84.30	1029	7551.	.0262	-	125
1176	-	SEPTEMBED	1.4100	. 0281	1560.	0690		161
DEDTH	-	TOP10C*	1.0100	.1242	1248	.0156		8
N. 974	2.	POTTOM25CM	0007	0050.	.0220	5000.	-	8
3716	2.	DECEMBED	4.4.90	.2775	1441	6150.		141
nEst.	.:		2.2100	.2762	.1859	.0346	-	. 8
DEDTH	5.	80110425CM	2.2300	.2788	.1115	.0124	_	8
POSITION	2.	WEST REFFRENCE	3.6500	. 228]	.1643	.0770	-	161
1105	:	\$5075446 p	.6500	.0325	6120.	-0005	_	â
Оботн	1.	T0P10C4	3400	0060.	*620*	6000.	-	7
DEPTH	2.	ROTTOM25CM	.3060	.0750	.0100	1000.	-	3
30.11	2.	DECEMBED	2.0900	8575.	.0943	9800.	_	•
Оботн .	1:	10p10CH	1.2200	.3050	6710.	.0003	-	13
Оботн	. 2	90TT0W25CM	3.7700	5277.	SABA.	.0078	•	3
POSITION	3.	EAST REFERENCE	31.5200	2.1013	3.9607	15.4869	-	151
1105	-	SE0154150	19.0200	2.3775	5.5056	30.3115	_	â
11000	-	# 10 1 a(a)	1.0000	0007.	62910	6120	1	7
	.,	100-104-104	17.6253	4.3550	7.7638	60.5770	_	5
3011	2.	Ofceupea	12,5444	1.7857	1.0167	1.0214		7.1
14040	:	1001004	5 - 10 C	1.2000	47.72	3010.	-	11
r. 10.10	:	407 TOX 200 A	8.52.0	2-1-00	1.2543	1.5433	_	
POSTITION	4.	FRINGE DISPOSAL	39.3000	1614.	6194.	1867.	-	176
11.45	:	SFOTENED	10.4100	.2169	2884	. 0A32	_	483
DEPTH	-	- 10a10C*	3.2200	.1767	.1377	00100		172
DEDTH.	5.	80110M25CM	7.1300	.2071	.3709	.1376	-	142
Time	2.	05054869	20.8900	. 4280	\$454.5	5057.	-	441
Обрти		1001604	7.5300	.3137	77.15.	15700	-	241
nicat.	•	SOUCHOLINGE	21 22.00	0000	000.			

(Sheet 23 of 34)

# ## ## ## ## ## ## ## ## ## ## ## ## #	MEAN 5.2078				-
2 POPULATION 1 CENTRAL DISPOSAL 1 SECTION 2 NOTTON-10CM 2 WEST PEFFRENCE 1 SECTION-10CM 2 NEST PEFFRENCE 1 SECTION-10CM	5.2078			:	
7.		11.0016	121.0352	-	15
7.H 7.00-1004 2. MEST PEFFERENCE 1. TOD-1004 1. TOD-1004 1. TOD-1004 1. TOD-1004 1. TOD-1004	3 6223	0076	1 .663	-	1
2. MEST BEFRENCE 1. TOD100W 2. MEST BEFRENCE 1. TOD100W 2. MEST BEFRENCE 1. TOD100W 2. POTTOW260W	2.5333	6576	*26.5		0 0
2. ADTION25CM 2. WEST BEFFRENCE 1. SEDIEMRED 1. TOD17H 2. ADTION25CM	2.5000	1.4.42	2.0000		2 9
2. WEST REFERENCE 1. SEDTEMBER 1. TOD-10CW 2. ROTTOW-2SCM	2.5714	1.1339	1.2857	-	12
1. AEDTENSED 1. TO	7.5714	4.9291	24.2857	,	
1. TOD10CK	7.57:4	4.9291	24.2057	-	7.1
2. porton25cm	6.5000	7.0817	6.3333	-	4
	9.0000	7.8102	61.0000		131
3. FAST REFERENCE	20.2500	30.6769	941.0714	_	e.
1. 55016,0060	20.2500	30.6769	941.0714	1	a .
1. TOD10CM	8.5000	1.7321	3.0000		7
H0110425CM	32.0000	42.7151	1954.4467	_	4
1	3.1489	2.5020	6.2599	-	473
1. GENTENES	3.1489	2.5020	6.2569	-	473
	3.9000	2.3741	5.6364		23
2. ROTTOM25CM	3.29:7	2.4618	7.0651	-	541
					1

(Sheet 24 of 34)

¥8 × 1000	TIVE		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	C00E	VALUE LABEL	Suv		STD. 05V	VARIANCE	
FGP ENTINE POPULATION			12286.7000	76.70;9	23.7973	566.3130	(160)
POSITION	1.	CENTRAL DISPOSAL	2234.0000	69.8750	10.1814	103.6613	(25)
3411	677	SEPTEMBER	1094.0000	68.4250	8.5781	73.5933	. 16.
HLO30	2.	ROTTOM25CM	514.0000	72.5000	5.0071	25.0714	9
37.1	•	Cadwa	86		5314		141
Hidau		100100	594.0000	74.2500	14.1497	200.2143	1
ЭЕОТН	. 2	80110M25CM	544.0000	A8.0000	4.644	71.7143	8
W011100	2.	WEST PEFFOENCE	1942.0000	121.3750	43.1213	1859.4500	(91
1105	:	SEDTEMBER	1032.0000	129.0000	61.3468	3763.4286	(8)
ОЕБТИ	1.	TOP10CM	643.0000	160.7500	74.7145	5582.2500	(7
ЛЕРТН	2.	ROTTOM25CM	149.6000	97.2500	22.4035	510.9167	7
لأدو	2.	DECEMBES	910.0000	113.7500	9.3922	88.2143	6
0.5014		1001004	432.0000	108.0000	4.4807	42.0000	(7
. Оботн	2.	80110425CM	474.0000	119.5000	8.6537	75.6657	(7)
POSITION	3.	ELST UEFFAENCE	1312.7000	A2.0437	74.1794	SA4.6440	161
1100	:	SEPTEMBER	636.7000	79.5875	32.4996	1062.7327	ê
Hidad		100-100	359.0000	89.7500	R.1803	46.9167	3
nia in	.2	*OSSWOLLON	277.7000	0527.69	46.2319	2564.7615	(7
1105	2.	OFCENERA	074.0000	84.5000	13.2773	174.2657	(8)
DEDTH	-	10P10CM	379.0000	0052.76	8.5391	72.9167	17
Обрти	2.	BOTTOM25CM	297.0000	24.2500	7.6322	54.2500	7
POSITION	4.	FUINGE DISPOSAL	6794.0000	7:07:07	11.6699	136.1877	146
1145	1.	SEUTENBED	3304.0000	68.8750	11.4978	141.55.85	167)
DEDIN		TOP10CM	1709.000	71.2083	11.0374	121.9243	1 241
ОЕРТН	2.	80TTOM25CM	1597.0000	66.5417	12.4934	156.0851	(57)
1146	2.	ОЕСЕМИЕВ	3490.0000	72.7023	11.2344	126.2110	183
DEPTH	:	TOP10C#	1756.0000	73.2500	10.4476	109.1522	172)
2000	•	1000	0000 0000	1771 66	12 1716	0	

(Sheet 25 of 34)

VADIABLE	CODE	VALUE LABEL	Silve	HEAN	STD DEV	VAPIANCE	N
FOR ENTIRE POPULATION			8.9523	0950.	. 6429	1217.	160
P0517104	.1	CENTOAL DISPOSAL	8600.	1000.	1000	0000.	(32)
1100	::		.0014	.0001	.0001	0000	1.0
Обртн	2:	801T0W25CM	0100.	1000	1000.	00000	
17.6		Обсемара	2100	1000	1000	0000	141
Н1030	1	2001001	6000	.0001	.0002	0000	
Оботн	2.	ROTTOM25CM	50000	.0001	1000.	0000-	9
POSITION	2.	WEST GEFFRENCE	4400.	.0003	4000.	0000	16
11146	1.	SEPTEMBER	0000	0000	0	•	. 8
חבספט			.0000	0000.	0	0	,
SECTH.	۶.	80110425CM	6000	6000.	0	0	;
1145	2.	DECEMBES	9500.	9000	7000-	0000	18
DEPTH		100100	\$600.	50000	2000.	00000	7
DE01H	2.	10110110N	· 0012	.0003	.0003	0000.	,
POSITION	3.	FAST DEFFIDENCE	A.8270	.4517	2.0192	4.0770	() 161
5714	<u>.</u>	250164460	0000	0000	0	0	18
110		1	0000	9000.	0	0	5
H a a		BOTTOMITOR	0000.	0000.	0	0	·
27.14	2.	December	8.0270	1.1036	2.9356	8.0207	I.A.
11030		T0910CM	.6595	6741.	.3168	-1004	(7
DEPTH	5.	AUTTOM25CM	8.1475	2.0419	4.0349	16.3125	,
P05:11:0W	;	FRINGE DISPOSAL	.11.24	-0012	9500.	0000	196
3-11		CENTE 44E2	*0454	6000.	BC00.	0000.	167
DEPTH	-	1001004	6060.	1100.	.0038	0000	(56)
ОЕРТН	2.	ROTTOM25CM	5500.	-0002	. 0010	.0000	(72)
3,11	2.	036849330	1570.	.0015	.0074	luou.	(67
HI USDIA	-	T0210CH	.0578	.0024	.0104	1000.	(25.)
11000	2.	80110N25CM	.0:53	9000-	.0015	.0000	1 24

(Sheet 26 of 34)

784 T	DEPTH							1
VAGTAPLE		VALUE LAREL	MDS.	MEAN	STO DEV	VAPIANCE		Z
FOR ENTISE POPULATION			922.0000	5.7425	5.0500	25.5030	-	160)
P06:11:00	1:	CENTRAL DISPOSAL	143.0000	4.4489	2.9728	R. A377	-	32)
114	:	SEDTEMER	69.0000	4.3125	1.6621	2.7625	_	19
NF01H	1.	T0P10CM	42.0000	5.2500	1.4830	2.2143	1	18
DEOTH	2.	ROTTOM25CM	27.0000	3.1750	1.3025	1.6964	_	8
Time	2.	DECEMBED	74.0000	4.4250	3.9306	15.4500	,	151
CEDIM	-1	TOP10C*	40.0000	5.0000	4.7208	22.2457	-	æ
n£27H	2.	80110025CM	34.0000	0052.7	3.2404	10.5000	_	ê
POSITION	2.	WEST DEFERENCE	115.0000	7.1975	3.2087	10.2958	-	161
1115	.1.	SECTEMBED	74.0000	9.5000	2.9277	8.5714	_	8
OEDTH.	-	TOP10CM	35.0000	8.7500	3.3040	10.9167	_	3
убртн	2.	80110425CM	41.0900	10.2500	2.7538	7.5833	_	3
1145	2.	DECEMBES	39.0000	4.8750	1.1260	1.2679	-	æ
Of pth	-	T0P10C*	19.0000	4.7500		. 2500	-	3
CEPTH	2.	BOTTOM25CM	20.0000	5.0000	1.6370	2.4467	-	3
POSTITION	3.	EAST DEFFDENCE	134.0000	8.3750	6.2915	39.5833		16)
7145	:	SFOTEMBER	53.0000	6.4250	3.3760	11.4107	_	æ
оботн	-	100100	33.0000	8.2500	4.0311	16.2500		4
DE D TH	٠.	80TT0425CM	20.0000	5.0000	1.8257	3.1333	-	3
ini	2.		91.0000	10.1250	A.1493	44.4107		8
DE01H	:	1091004	45.0050	11.2500	10.6252	112.9167	-	7
nio in	2.	BOTTOM25CK	34.0460	000006	6.2143	38.6467	_	1
enstrion.	.,	FRINGE DISPOSAL	530.0000	5.5208	5.4599	29.8101	-	961
11.5	:	c3111035	279.0000	5.8125	6.0763	36.9215	_	483
нтезо	-	T0916CM	74.0000	3.2500	2.4715	6.1087	_	241
052TH	۶٠	901T0M25CM	201.0006	8.3750	7.4549	55.4359	-	54)
1146	2.	0£CE48Ep	251.0000	5.2262	4.8124	23.1591	-	49,
пЕрти	-	T001964	85.0000	3.5417	2.3215	5.3895	-	241
L'OTH CAP	2	BOTTOMINA	165 0000	4 0167	7000	0000		

(Sheet 27 of 34)

AY T	71.6 05.01H							
VAPIABLE	3000	VALUE LAREL	N. iv	WEAN	STD DEV	VARIANCE		2
FAD FNTISE PODULATION			1756.7000	10.9794	7.0853	50.2016	-	160)
MULLISUE	1.	CENTOAL DISPOSAL	303.6000	9.4475	4.8355	23.3831	-	32)
7105	:	SEPTEMBER	141.4000	8.8500	3.1845	10.1413		16.
ОЕОТИ	-	T0010CM	82.0000	10.2500	3.0249	9.1743	1	0
оботн	5.	BOTTOM25CM	59.6000	7.4500	2.8420	A.0771	-	œ.
1/10	2.	DECEMBR	162.0000	10.1250	6.1087	37.3167	,	161
r.Epth	:	T0P10CM	85.0000	10.7500	6.4047	41.0714	-	9
н1 о 3 и	. 2.	BOTTOM25CM	76.0000	0005.6	6.1644	34.0000	_	8
POSTITION	2.	WEST PFFERENCE	261.9000	16.3687	4.9617	24.6193	-	161
11.45	:	SEPTEM-FR	130.9000	16.1625	1560.9	39.6284	_	3
Обрти	-	10p10C*	69.4000	17:3500	A.0748	45.3967	-	17
ОЕРІН	2.	801T0M25CM	61.5000	15.3750	4.94.66	2697.72	_	4
1105	2.	DECEMBES	131.0000	16.3750	3.4228	13.1250	_	8
DEPTH	-	T0910C*	65.0000	16.2500	2.3629	5.5913	-	3
. незо	2.	PO110424CH	00000.49	16.5000	00000	25.0000	_	7
one it in	3.	FAST DEFFERENCE	97.000	6.0423	2.4949	7.24.95	-	151
1146	-	CEDIFICATED .	48.0000	6.0000	2.2019	4.4571	_	ê
LEDIH.	-	T001004	25.0000	6.2500	2.0616	4.2500	-	4,
Эгетн	5.	M0110425CM	27.0009	5.7500	2.6300	2416-9	-	3
37.1		08.00.000	40.000	6.1550	2.5705	10.0964	,	
חובים	-	203	22.0000	5.5000	1.7321	3.000	-	3
95014	2.	RO110425CM	27.0000	6.7500	4.5735	20.0167	J	3
POSTTION	.,	FRINGE DISPOSAL	1094.2000	11.7079	7.9401	61.4674	-	961
1100	1.	AEDTENHED.	537.2000	11,1083	7.4543	55.5965	-	163
DE214	1.	TOP19C*	200.1000	8.3375	5.2347	27.4233	-	241
перти	2.	POTTOM25CM	337.1000	13.8792	A-3764	70-1643	~	54)
301	2.	UECEMBED	561.0000	11.6475	8.2749	58.4747		9
DEDTH	-	T0P10C*	209.0000	8.7083	4.6202	21.3460	_	241
N. O. IV	2.	ADITOM25CM	152.5000	14-4451	9000	100.000		241

(Sheet 28 of 34)

VAPIARLE	3005	VALUE LAPEL	SUM	NA MA	STD DEV	VARIANCE		Z
FOR FUTTOF POPULATION			3144.3000	19.6519	9.4548	89.4308	Ĵ	1601
POSTTION	1:	CENTRAL DISPOSAL	809.7000	19.0531	11.2492	126.5219	-	321
3411	1.	SFOTENSES	311.7000	19.4913	12.1616	147.9043	_	16)
25071	1	T0910C4	144.9000	18.6125	11.0002	121.0041	-	- 8)
H1430	۶.	A0110425CM	162.8000	20.3500	13.9359	194.2046	_	8)
3411	2.	DECEMBER	294.0000	18.6250	10.6388	113.1833	,	161
DEPTH	1.	T0910CM	149.0000	18.6250	11.5340	133.1250	_	9
DEPTH	.5	HOTTOM25CM	149.0000	18.6750	10.4609	109-4107	_	8;
POSTITION	2.	WEST DEFERENCE	369.2000	23.0125	13.9591	194.8558	-	16)
1145	:	SEDTEMBER	201.2000	25.1500	19.7877	391.5514	_	8
DEPTH	-1	1001000	70.6000	17.4500	4.3882	19.2547	_	(1)
0521Н	2.	B0110425C4	130.6000	32.6500	27.2830	744.3633	,	3
1146	2.	DECEMBER	167.0000	20.4750	3.0478	15.5536	_	â
DEPTH	-	10P10C	84.0000	22.0000	3.5590	12.4467		4.
ргози	2.	90110425CM	79.0000	19.7500	4.5000	20.2500	-	7
POSITION	3.	EAST BETFRENCE	109.5000	5.85.00	3.97;6	15.7733	-	161
1106	:	SEPTEMBES	49.6000	6.2000	1.9213	3.6.914	_	8
DEDTH	-	T09100m	27.0000	5.7500	0005.	1052.	-	17
0£отн	~	R0110425CM	25.5000	0059.9	07.07.0	7.8233	_	7
Tine	۲.	0,000,000,000	60.0000	7.5.00	5,1984	29.1429		6
DEOTH		T0910CM	33.0000	7.7500	5.1831	26.9167	-	1
ОЕОТН	۶.	80110425CM	29.0000	7.2500	4.3966	40.9167	-	3
00517104	.,	FRINGE DISPOSAL	2056.3000	21.4250	6.5064	42.1315	-	146
1145	.:	d2mastc35	1973.3000	22.1708	6.4102	46.3791	-	(8)
ПЕРТН	-	TOP10CM	603.7000	25.1542	6.6950	44.9715	-	24)
טנסנת	0	DOST TON THE	130 1000	20000	2012	****		241

(Sheet 29 of 34)

4.8) 24.)

27.3613

6.5176 5.1074

20.4792 22.4167 13.5417

538.0000 545.0000

2. DECEMBER 1. TOP-10CM 2. ROTTOM-25CM

150

TOTAL CASES =

71MF 0601H 0601H (Continued)

PALLITION DYNAMICS -- SEDIMENT SAMPLES

Table 1 (Continued)

FILE AGGGEGAT (COEATION DATE = 09/22/77)

AY C	ОЕРТИ						1:	
VAPTABLE	3000	VALUE LAPEL	MIS	MEAN	STD DEV	VABIANCE		2
FOR FRITISE POPULATION			4954.8000	43.4475	16.3287	246.4277	-	1601
NOTITION	1	CFUTDAL DISPOSAL	1595,4000	49.8563	21.5864	465.0742	1	321
Tive	:	SEPTENGED	824.4000	51.6500	21.0227	641.0573		163
ПЕртн	-	T0010Cm	434.5000.	54.3250.	17.5018	309.4936		6
HLOGO	2.	HOTTOM25CM	391.8000	48.9750	24.9157	620.7936	_	æ
1int	2.	Generalia	769.0000	48.0425	22.4759	514.1959	,	
нь озо		T0019C*	387.0000	48.3750	23.4700	550.8393		
недзи	2.	80710425CM	382.0000	47.7500	23.4648	550.7857		
POSTTION	2.	WEST WEFERENCE	563.5000	35.2188	H.4805	72.0723	,	161
1145	1.	SFOTENSED	265.5600	13.1975	9.1306	87.3670		
DEPTH	1	T0010CM	137.2000	34.3000	1766.6	86.3800		
DEOTH	2.	ROTTOW25CM	128.3000	32.0750	10.2393	104.8425	-	3
1105	2.	DECFMBED	209.0000	17.2500	7,8513	61.4429		ä
ОЕРТН	1.	TOP10CM	141.0000	35.2500	P. 9875	78.9167	-	5
ntegu.	. 2.	80110M25CM	. 157.9000	39.2500	7.1655	24.2540	_	7
NO1111900	3.	EAST OFFFRENCE	1011.3000	63.2375	15.4484	234.4545	-	161
Tine		GENTENHED	530.8000	0051.99	10.7944	116.5629	-	đ
уготи	-	1001004	241.6000	60.2500	12.7554	152.4547		4
JE0TH,	۶.	BOTTOM25CM	289.8000	12.4500	4.4929	20.0967	-	3
11 nt	2.	0805988	6.21.0.0	60.1250	19.3053	372.6964	-	
DEDTH	-	1001004	226.0000	56.5000	15,3514	235.4667	-	7
DEPTH	2.	80110425CM	255.0060	63.7500	24.4728	594.6167	_	3
POSTTION	4.	FRINGE DISPOSAL	3784.1000	39.4177	11.7271	137.5222	-	196
1145	:	SFOTENSED	1863.1000	38.8146	11,1333	129.4447	_	483
DEDTH	-	TOP10CM	980.8300	40.9567	11.2924	127.5180		24)
DEPTH	. 2.	H0110M25CM	882.3000	36.7625	11.2324	126.1677	_	541
1 int	2.	0564450	1921.0000	40.020A	12.1978	148.7858		43
DE01H		TOP10CM	955.0000	39.7917	11.3673	129.2156	_	241
nEp TH	2.	ROTTOM25CM	966.0000	40.2500	13.2181	174.7174	_	241

3.84104	3000	VALUE LABEL	MUS	NEAN	STD_DEV	VADIANCE		2
FOO FNTIRE POPULATION			555.6000	3.5165	5.5491	30.7921	-	1581
POSITION		CENTRAL DISPOSAL	79.4000	2.69.3	4.4043	10 3077	1	100
1145	-		0000	2000	0000	2000		30
DESTH	::		0004	0200	1414	6514.57		2
перти	2.	ROTTOM25CH	41.0000	5.1250	4.0244	36.2936	į_	000
Line	2.	DECEMBED	38.0000	2.3750	4.0311	16.2500		161
ПЕВТН	-	1	12.0000	1.5000	2.0702	4.2857		6
Обртн	. 2.		24.0000	3.2500	5.3652	28.7857		6
MULLIAND	2.	1	53.3000	3.3112	3.7335	13.9836	-	161
11-6	1.		37.3000	4.6625	3.0095	9.0570		8
PEDTH	-	i	14.6000	3.4500	3.4549	11.9500	-	14
DEPTH DEPTH	2.	HOTTOMINAGE	22.7000	5.6750	2.5395	2677.9	-	3
iine	2.	טבּכנּ אַנּיַט	16.0000	2.0000	4.1057	16.8571		9
NEDTH	-	TOP10CM	14.0009	3.5000	5.6862	32.33.13	-	4.
ні віч	. 2	80110425CM	. 2.0000	0005.	1.0000	1.0033		3
P05:T10#	3.		154.9000	9.6412	9.54.25	92.0776	-	165
Line	.:		78.9000	5.84.2	11.0074	121.1627	-	8
DEDTH	1.	-	61.3000	15.3250	13.9297	194.0092	_	4,
ОЕРТН	2.	80110425CM	17,5000	0007-7	3.0221	9.1313	_	7
int	2	0.50m2330	74.9000	0.5000	A. 4318	78.0000		â
DEDTH		TOP10CM	53.0500	13.2500	11.2953	127.5833	-	7
DEDTH	5.	HOTTOM25CM	23.0000	8.7500	4.11.0	16.9167	_	-
POSITION	4.	FAINGE DISPOSAL	269.0000	2.8511	4.5721	20.9040	-	176
1105	-:	SEDTEMBED	134.0000	5.9565	4.3104	18.5794	_	461
HLOSU	:	TOD10CM	49.3000	2.1435	4.4391	19.697!		231
нісьін	2.	H0110425CM	86.7000	3.7696	4.1139	16.9240	-	231
1105	2.	DECEMBES	132.0000	2.7500	4.9512	23.5532	-	48)
DFSTH	:	T0010CM	108.0000	6002.4	4.1574	37.9139	-	541
71000	•	2000	2000			. , , ,		

(Sheet 32 of 34)

(Continued)

3417	- T.	201	``					
PIAPLE	CODE	VALUE LAREL	202	MEAN	STD_0EV_	U		2
FOR FUTTRE POPULATION			1811.7000	13.1283	18.1461	329.2801	-	138)
MO111209	1.	CENTRAL DISPOSAL	265.9000	20.2545	25.7656	663.8690	-	23
Tine	: -	SEOTEMHED	431,0000	10.7957	24.4844	A111.159A	-	141
ОЕОТН		1001004	215.4000	25.9250	19.3529	374.5336	-	2
Обртн	2.	B0110425CM	215.6000	35.0133	30.1004	1529.5427	-	0
1146	2.	DECEMBED	34.9000	3.9778	3.3719	11.3694	_	0
DEDTH.		TOP10CM	21.8000	4.3400	3.7293	13.9040	-	5
ОЕРТН	. 2.	A0110M25CM	13.1000	3.2750	3.3019	10.9025	-	1
POSITION	2.	WEST REFERENCE	37.2000	2.9415	2,2262	65550	-	13
1146	1.	SEPTEMBES	14.7000	2.6714	1.1600	1.3457		12
REPTH	-1	10p10CM	6.5000	2.2000	.5196	.2700	_	3
DEPTH	2.	HOTTOM25CM	12.1000	3.0250	1.4549	2.1225	_	1
ini	2.	DFCFWHED .	18.5909	3.0433	3.1890	10.1697		9
nepre	~	1001004	13.5000	6005-7	4.3301	18.7500	-	6
DEPTH	2.	40110M25CM	8.0000	1.6667	.8083	.6433	-	3
MOLITION	3.	EAST WFFERENCE	59.2000	3.9467	6.6175	43.7912	j-	15
1145		SFOTENDED	36.2000	5.1714	9.7345	665.766	_	12
DEPTH	-	100100	3.4000	1.1733	. 3215	- 61013	1	1
DE01H	2.	HO110425CH	32.9000	8.2000	12.6683	160.0013	_	1
24.		DECEMBER	0000.65	2.4750	1.9745	3.5176	-	a
DEDTH THE		100100	11.5560	2,9000	1,7108	7,9267	-	*
Обрти	2.	80TTOM25CM	11.4000	2.3500	2.2956	6.2700	-	3
POSTITION	,	FRINGE DISPOSAL	1249.4000	14.1409	17.3534	301.1403	-	671
4214	1.	dipidital's	1034.3000	22.0915	17.4699	305.1969	_	47)
DEPTH	1:	10010C	621.0000	27.0000	21.6961	470.7200	-	233
HI 630	2.	HOTTOM25CM	417.3000	17.1975	10.6241	112.0548	-	2
4.00	2.	DECEMBER	211.1000	5.2775	12.1422	147.4326	-	40
nepra	-	10010CM	139.5000	6.9750	16.8330	283.1514	-	203
7.000	0	WOLL OF THE PROPERTY	71 6000	00000	1767 6	0700		2

(Sheet 33 of 34)

(Continued)

POLLUTTON DYNAMICS -- SEDIMENT SAMPLES

Table 1 (Concluded)

× × × × × × × × × × × × × × × × × × ×	нтазо Верти							
V4011AIE	CODE	VALUE LABEL	NUS	MEAN	STO DEV	VARIANCE		2
FOR FATTUE GOOULATION			1074.6800	7.9902	13,0342	169.8904	-	1351
MOLLING		CENTRAL DISPOSAL	257.9000	17.8950	12.7140	161.6458	-	201
7105	-	SEPTEMBER	152.8900	15.2400	9.6376	0788.66		100
HIC SU		1000-1001	80.2000	13.3467	10.3303	106.7147		19
H 1430	•	E060	12.5000	18-1500	7240.6	85.4900	_	3
3611	.5	DECEMBER	205.1000	20.5100	15.2700	233.1721	-	101
Septa		T0910CM	131,3000	26.2466	10,4873	109.8780	_	51
насс	۶.	HOTTOHDACK	73.8000	14.7600	18.2237	332.1030	_	2
MULTITION	3.	WEST DEFFORME	31.9700	2.3900	2.8735	A.2570	-	13)
1145	-	SEPTEMBEP	3.6700	.5243	6056.	08 90 .	_	2
ніазо	-	10910CM	1.0400		. 1551	1720.	1	3
OF0TH	2.	R0110M25CM	8.6300	54575	.2337	9750.	,	3
Int	2.	DECEMBED	27.4000	4.5467	3.0303	9.1927		3
DF D TH	1.	TOP10CM	19.2000	6.4000	3.1575	0010.6	-	3
. ньсэс	2.	ROLLONII	A.2000	2.77.3	1.7039	2.9033	_	3
MOLITION	3.	EAST DEFEDENCE	49.9600	3.3240	3.1421	9.8730	-	151
1105	:	SEPTEMBER	3.4600	6757	.4256	.1811	_	2
NEDTH	-	TO010CM	5800	.1033	1210.	1500	-	3)
DEPTH .	2.	ADTTOW25CM	7.8400	27200	.4471	6661.	_	3
smil.	2.	Di Cruyra	44.4600	5.9000	2.1394	4.5771	,	Q.
OFDIN	1.	100inCM	25.6000	6.4000	7762.	.0867		3
DEOTH	5.	ROTTOM25CM	20.9000	5.2000	3.1038	6.6113	_	3
POSITION	4.	FRINGE DISPOSAL	639.3500	7.394.4	17.9456	194.4729	-	871
1100	1.	SFOTENSFO	187.9300	3.0945	11.0791	141.1135	_	473
Droth	1.	T0010CM	119.7400	5.2061	14.4247	276.3819		231
нтезу	. 2.	ADITONPECH	68.1960	2.8412	3.8778	15.0040	_	142
3011	2.	DECEMBED	451.9200	11.2980	15.2606	232.9863	,	40)
DED TH		TGP10CM	257.4000	13.5474	19.5550	382.1942	-	161
DEDIN	2	ROTTOMILION	194-5200	9.2429	10.0406	100 8166		211

Table 2 Concentrations of Trace Metals and Nutrients in Water

Reactive Silicate mg/l-Si		1 26	7	1.07	335	1.03	1.13	1.14	1.15	1.10	1.10	1.39	1.15		1.14	1.15	1.14	1.20	1.33	0.98		1.25	1.49	1.37	1.42	0.84	0.90	
Phosphate ug/1-P		6 2 9	60.09	0.09	52.0	57.0	0.09	6.09	56.0	0.09	0.09	76.0	65.0		53.0	55.0	63.0	64.0	69.7	24.0		63.0	70.7	62.0	63.0	43.0	50.0	
Ammonta ug/1-N		30 5	0.00		3.4	1.7	1.3	41.6	31.0	2.1	2.1	30.0	2.8		15.0	10.4	1.7	1.7	2.9	5.9		45.5	53.0	2.3	2.3	7.6	5.5	
Nitrate ug/l-N		282	232	270	218	255	280	215	201	277	287	363	295		229	233	281	296	336	. 229		245	275	. 290	299	185	219	
Mercury ng/1,	Area	35	36	: 1	22	210	<10	1.1	21	13	56	21	. 17	nce Site	<10	<10	25	<10	. 52	21	nce Site	71	99	75	44	71	71	nued)
Manganese ud/1 September	Disposal	16.5	17.0	16.5	16.5	21.5	22.0	20.5	21.0	23.0	24.5	29.5	34.0	West Reference	19.0	13.5	20.5	13.5	23.0	20.5	East Reference	21.5	16.5	19.0	10.5	19.0	19.5	(Continued
Arsenic ug/1		5 0	3.5	3.3	2.3	3.3	2.9	2.7	3.0	2.6	3.4	3.1	3.1		2.0	3.3	2.2	2.9	3.0	3.0	-	3.3	2.6	2.7	2.3	2.4	3.0	
Suspended Solids mg/l		1.7	1.7	0.5	1.0	1.5	1.5	2.0	2.0	1.0	1.0	2.0	2.0		1.1	1.2	8.0	1.3	1.0	1.0		1.3	1.7	0.5	0.8	1.0	1.0	
Depth		2		47	47	57	57	2	2	20	20	09	09		2	2	21	51	19	61		2	2	33	39	65	49	
Sample No.*		6-1-5	6-2-5	M-1-9	6-2-M	6-1-0	6-2-0	10-1-5	10-2-5	10-1-M	. 10-2-M	10-1-D	10-2-D		17-1-5	17-2-5	17-1-M	17-2-11	17-1-0	17-2-D		19-1-5	19-2-5	19-1-M	19-2-11	19-1-0	19-2-D	

(Sheet 1 of 3) * First digit indicates station location, second digit indicates cast, letter indicates depth location, surface, middle, deep.

Table 2 (Continued)

						THE REAL PROPERTY.			
	4+000		90000	1		***************************************			Reactive
Sample No.	un dan	mg/1	MESENIC MS/1	nanganese v3/1	Percury 79/1	1117818 19/1-1	19/1-N	nosphate ug/1-P	mg/1-Si
			al	Duwamish Riv	River Mouth				
44-1-5	2	1.3	2.3	19.8	21	219	21.3	54.0	1.11
44-2-5	2	1.3	2.8	15.0	25	159	20.8	46.0	0.96
K-1-75	33	0.5	3.0	16.0	38	569	4.6	58.6	1.17
44-2-11	39	0.8	2.7	17.3	22	276	4.6	60.09	1.22
44-1-D	49	1.3	2.9	21.0	<10	271	5.5	0.09	1.11
44-2-D	65	1.3	2.7	19.0	410	261	5.2	58.3	1.11
				December					
				Disposal	Area				
8-1-9	2	0.4	2.9	13.0	10	350	16.9	75.0	1.39
6-2-5	2	0.4	2.5	13.3	35	357	19.5	30.0	1.42
6-1-M	49	9.0	2.7	14.5	34	367	6.4	77.8	1.38
6-2-11	49	1.0	2.7	15.0	14	475	89.5	78.0	1.41
6-1-0	26	1.3	2.9	21.3	33	357	6.7	30.0	1.43
6-2-0	59	0.8	5.6	14.5	34	361	2.3	80.0	1.36
10-1-5	2	6.0	2.8	15.5	34	361	12.3	80.0	1.36
10-2-5	2	0.8	2.7	15.8	35	350	37.0	81.0	1.51
10-1-M	49	1.1	5.9	10.8	33	366	3.5	76.0	1.47
10-2-11	64	1.5	2.8	17.5	34	375	6.4	79.0	1.42
10-1-0	53	0.5	2.8	20.7	34	366	5.9	77.8	1.41
10-2-0	59	1.6	2.8	23.0	<10	373	5.6	80.0	1.40
				West Refere	erence Site				
17-1-5	2	0.7	2.6	15.0	35	363	10:1	77.0	1.42
17-2-5	2	9.0	2.6	16.5	233	364	7.7	76.0	1.45
17-1-M	55	1.0	2.5	16.0	32	374	2.7	78.0	1.42
17-2-M	200	1.2	2.5	18.0	100	373	2.2	79.0	1.42
17-1-0	99	2.0	2.5	18.0	27	374	4.2	80.0	1.40
17-2-0	99	2.3	2.4	20.5	32	373	3.8	80.0	1.47
				(Contin	(pani			(Sheet	2 of 3)

Cample No	Depth	Suspended Sol 1ds	Arsente	Manganese	Nercury	Mitrate	Amonta	Phosphate	Reactive Silicate
Semple No.	12	1/50	1/5/	1/64	1/62	N2/1-18	N-1/57	1-1/54	md/ 1-31
				East Refere	nce Site				
19-1-5	2	1.5	3.0	16.0	71,	367	32.0	81.0	1.52
19-2-5	2	1.5	2.7	13.3	12	376	69.	81.0	1.55
19-1-H	47		2.7	17.0	13	370	5.6	76.0	1,49
19-2-W	47	1.0	2.9	14.5	13	370	4.2	77.0	1.45
19-1-0	57	1.7	2.8	17.0	12	350	5.9	75.0	1,44
19-2-0	27	1.6	5.9	19.0	33	377	15.9	77.0	1,44
			al	uventsh Riv	er Mouth				
44-1-5	2	1.2	2.9	13.0	13	556	4.66	78.0	1.33
44-2-5	2	1.3	2.9	17.0	77	369	7.1	77.0	1.41
H-1-75	13	1.0	2.9	11.5	33	369	11.3	77.8	1,43
44-2-11	30	1.1	2.5	14.7	<10	370	7.8	80.0	1,45
44-1-0	23	1.0	2.9	13.7	33	373	7.6	79.0	1.46
44-2-0	23	6.0	2.7	13.5	13	37.1	12.3	6.18	1,43

Table 3 Elliott Bay Sediment pH, Eh, and Free and Total Sulfide Concentrations

		Se	ptember 1976				December 197	6
			Free	Total			Free	Total
Sample No.*	PH	<u>Eh</u>	Sulfide**	Sulfide	PH	<u>Eh</u>	Sulfide **	Sulfide
			Dispos	sal Site				
	7.0	220	<3.2 x 10 ⁻¹³	38.4	7.0	270	3.2 x 10-11	
I-1-T I-2-T	7.2	-330 -330	1.3 x 10 ⁻⁸	30.4	7.0	-270 -325	<3.2 x 10 ⁻¹³	
1-1-B		- 330	5.1 x 10 ⁻¹¹		7.0	-270	3.2 x 10-10	
-2-B	6.8	-330	1.3 x 10-10		7.0	-320	1.6 x 10-11	
	0.0	-000	11.5 % 10				110 4 10	
2-1-1	7.1	-275	5.1×10^{-12}		6.9	-325	6.4×10^{-11}	
2-2-1	6.8	-330	3.2 x 10-10		6.7	-365	2.5 x 10-11	
2-1-B			$<3.2 \times 10^{-13}$		6.9	-300	5.1 x 10 ⁻¹³	
2-2-B	7.2	-200	$<3.2 \times 10^{-13}$		7.1	-300	6.4×10^{-13}	
3-1-T			3.2 x 10 ⁻⁹		6.7	-330	5.1 x 10-11	560
3-2-T	6.5	-320	1.6 x 10 ⁻¹⁰		6.7	-330	2.5 x 10 ⁻¹⁰	
3-1-B		0	8.1×10^{-12}		7.2	-360	6.4 x 10-11	27.
3-2-8	6.8	-330	$<3.2 \times 10^{-13}$		7.1	-340	2.5 x 10-10	
I-1-T	6.9	-330	4.0 x 10-10		6.7	-300	2.0 x 10 ⁻¹¹	
1-2-1			1.3 x 10 ⁻⁸		6.8	-333	1.0 x 10-10	
1-1-B	7.1	-225	$<3.2 \times 10^{-13}$		7.2	-310	2.0 x 10-10	
1-2-B			6.4×10^{-11}		6.8	-3/2	1.6 x 10 ⁻¹⁰	
5-1-1	6.7	-225	<3.2 x 10 ⁻¹³		6.6	-300	6.4 x 10 ⁻¹²	
5-2-T			6.4×10^{-9}		6.5	-330	<3.2 x 10-13	
5-1-B	6.8	-270	$<3.2 \times 10^{-13}$		6.9	-355	1.6 x 10-9	
5-2-B			5.1 x 10 ⁻⁹		6.5	-3 80	5.1×10^{-13}	
5-1-1	7.0	-260	<3.2 x 10 ⁻¹³		6.4	-330	3.2 x 10-13	1466
5-2-T			<3.2 x 10=13		6.6	-300	1.3 x 10-10	
-1-B	7.1	-330	<3.2 x 10-13		6.4	-344	1.6 x 10-11	
5-2-B	6.6	-240	3.2 x 10-12		6.9	-310	8.1×10^{-12}	1043
7-1-T	6.6	-300	<3.2 x 10 ⁻¹³		6.7	-300	1.3 x 10-10	
7-2-T	6.6	-285	<3.2 x 10-13		6.8	-330	5.1 x 10-10	
7-1-B	6.8	-325	4.0 x 10-10		6.7	-305	1.6 x 10-10	
1-2-B	7.1	-320	1.3×10^{-10}		7.2	-330	2.0 x 10-10	

* Note: First digit of sample number indicates station location, second digit indicates cast number, and letter indicates section of core, top or bottom.

** Concentrations measured in milligrams per litre.

† Concentrations measured in micrograms per gram (wet weight),

(Sheet 1 of 3)

Table 3 (Continued)

		Se	ptember 197	6		V	ecember 1976	
Sample No.	рН	<u>Eh</u>	Free Sulfide**	Total Sulfide+	рН	<u>Eh</u>	Free Sulfide**	Total Sulfide
			Disposal	Site (Con	tinued)		
8-1-T 8-2-T 8-1-B 8-2-B	6.4 6.5 6.4 6.5	-279 -280 -310 -295	<3.2 x 10 ⁻¹ 5.1 x 10 ⁻¹ 1.0 x 10 ⁻¹ 1.3 x 10 ⁻¹	10	6.6 6.2 6.4 6.2	-310 -355 -345 -350	6.4 x 10 ⁻¹⁰ 1.0 x 10 ⁻⁹ 5.1 x 10 ⁻⁹ 2.5 x 10 ⁻¹⁰	
9-1-T 9-2-T 9-1-B 9-2-B	6.5 6.6 6.5 6.9	-285 -275 -300 -200	5.1 x 10 ⁻¹ <3.2 x 10 ⁻¹ <3.2 x 10 ⁻¹ <3.2 x 10 ⁻¹	13	6.1 6.3 6.7 7.1	-287 -346 -290 -300	6.4 x 10 ⁻¹⁰ 8.1 x 10 ⁻¹⁰ 3.2 x 10 ⁻¹⁰ 2.0 x 10 ⁻¹⁰	
10-1-T 10-2-T 10-1-B 10-2-B	6.7 7.1 6.2 6.8	-300 -300 -240 -280	8.0 x 10 ⁻ 1.0 x 10 ⁻ 2.0 x 10 ⁻ 1.6 x 10 ⁻	12 11	6.4 6.6 6.6 6.6	-230 -320 -335 -350	5.1 x 10 ⁻¹² 4.0 x 10 ⁻¹³ <3.2 x 10 ⁻¹³ <3.2 x 10 ⁻¹³	
11-1-T 11-2-T 11-1-B 11-2-B	6.7 6.8 7.0 7.0	-280 -300 -305 -305	1.3 x 10 ⁻¹ 2.0 x 10 ⁻¹ 2.0 x 10 ⁻¹ 2.0 x 10 ⁻¹	0 870	6.3 6.5 6.5 6.4	-325 -340 -330 -320	1.3 x 10-12 1.6 x 10-15 2.0 x 10-13 5.1 x 10-13	
12-1-T 12-2-T 12-1-B 12-1 B	6.5 6.8 6.6	-350 -250 -280 -320	5.1 x 10 ⁻¹ <3.2 x 10 ⁻¹ <3.2 x 10 ⁻¹ <3.2 x 10 ⁻¹	3	6.5 6.3 6.4	-340 -350 -340 -365	1.6 x 10-10 3.2 x 10-10 5.0 x 10-10 2.0 x 10-10	
13-1-T 13-2-T 13-1-B 13-2-B	7.0 6.7 7.3 7.1	-285 -240 -225 -250	<3.2 x 10 ⁻¹	3	6.6 6.5 6.5	-327 -340 -295 -365	3.2 x 10 ⁻¹⁰ 8.1 x 10 ⁻¹¹ 1.6 x 10 ⁻¹⁰ 1.0 x 10 ⁻¹⁰	
14-1-T 14-2-T 14-1-B 14-2-B	7.0 6.7 7.2 7.3	-310 -300 -260 -240	1.6 x 10 ⁻¹ <3.2 x 10 ⁻¹ <3.2 x 10 ⁻¹ <3.2 x 10 ⁻¹	3	6.6 6.8 6.9 6.8	-290 -360 -280 -370	1.6 x 10 ⁻¹⁰ 6.4 x 10 ⁻¹⁰ 5.1 x 10 ⁻¹³ 5.1 x 10 ⁻⁹	44.8
15-1-T 15-2-T 15-1-B 15-2-B	6.7 6.4 7.0 6.8	-320 -310 -240 -195	1.0 x 10 ⁻⁹ <3.2 x 10 ⁻¹ <3.2 x 10 ⁻¹ <3.2 x 10 ⁻¹	3	6.7 6.4 6.5 6.7	-350 -350 -350 -375	4.0 x 10 ⁻¹² 4.0 x 10 ⁻¹³ <3.2 x 10 ⁻¹³ 1.0 x 10 ⁻¹³	

(Sheet 2 of 3)

Table 3 (Concluded)

		Sep	tember 1976			Do	ecember 1976	5
Sample No.	рн	<u>Eh</u>	Free Sulfide**	Total Sulfide >	рн	Eh	Free Sulfide**	Total Sulfide
			Disposal	Site (Cont	inued)			
16-1-T 16-2-T 16-1-B 16-2-B	6.7 6.7 7.1 6.6	-300 -295 -260 -270	<3.2 x 10 ⁻¹ 2.0 x 10 ⁻⁹ <3.2 x 10 ⁻¹ <3.2 x 10 ⁻¹	3	6.7 7.0 7.0 6.8	-325 -368 -335 -344	8.1 x 10 ⁻¹ 6.4 x 10 ⁻¹ 4.0 x 10 ⁻¹ 5.1 x 10 ⁻¹	10
			West Ref	erence Site	2			
17-1-T 17-2-T 17-1-B 17-2-B	7.3 7.3 7.3 7.3	-100 -150 -200 -240	<3.2 x 10 ⁻¹	3	7.3 7.4 7.4 7.4	-304 -365 -370 -310	6.4 x 10 ⁻¹ 1.0 x 10 ⁻¹ 6.4 x 10 ⁻¹ 4.0 x 10 ⁻¹	0 23.0
18-1-T 18-2-T 18-1-B 18-2-B	7.4 7.5 7.5 7.5	-170 -270 -120 -190	<pre> <3.2 x 10=1 </pre>	3	7.4 7.3 7.4 7.3	-290 -273 -300 -295	1.0 x 10 ⁻¹ 8.1 x 10 ⁻¹ 1.0 x 10 ⁻¹ 1.0 x 10 ⁻¹	10 20.8
			East Re	ference Si	te			
19-1-T 19-2-T 19-1-B 19-2-B	7.3 7.3 7.3 7.4	-220 -160 -180 -240	<3.2 x 10 ⁻¹	3	7.0 6.8 7.2 7.6	-303 -360 -346 -325	6.4 x 10 ⁻ 1.3 x 10 ⁻ 1.3 x 10 ⁻ 5.1 x 10 ⁻	8 166.4
20-1-T 20-2-T 20-1-B 20-2-B	7.2 7.4 7.4 7.4	-275 -300 -360 -300	3.2 x 10 ⁻¹ 3.2 x 10 ⁻¹ 3.2 x 10 ⁻¹ 3.2 x 10 ⁻¹	3 16.3	7.8 7.5 7.7 7.5	-399 -322 -409 -395	6.4 x 10 ⁻¹ 6.4 x 10 ⁻¹ 7.1 x 10 ⁻¹ 8.1 x 10 ⁻¹	9

Table 4 Concentration of Arsenic in Elliott Bay Sediments

September 1976 <u>Disposal Site</u> 57.7 ± 1.7 55.7 ± 1.1	December 1976
57.7 ± 1.7	10.0.10
	100.10
55.7 ± 1.1	12.8 ± 1.0
10.0 ± 0.95	18.4 ± 0.83
12.5 ± 1.1	
73.3 ± 1.5	12.3 ± 0.86
14 4 + 0 04	19.5 ± 0.78
	19.5 ± 0.78
10.5 1 1.1	
9.6 ± 1.1	7.7 ± 0.85
9.7 ± 1.0	17.7 ± 1.1
12.6 ± 0.82	32.7 ± 1.3
13.3 ± 1.1	
20.4 ± 1.1	29.7 ± 1.0
18.4 ± 1.3	11.8 ± 1.0
24.5 ± 1.2	
16.8 ± 1.4	14.3 ± 0.79
13.9 ± 0.76	
64.1 ± 1.6	33.8 ± 1.2
	43.0 . 3.0
	41.0 ± 1.0
12.1 2 0.03	
12.9 ± 0.90	22.4 ± 1.2
13.4 ± 0.87	10.3 ± 0.93
12.9 ± 0.65	27.0 ± 0.95
	13.4 ± 1.1
44.5 ± 0.89	
10.0 ± 0.80	18.0 ± 1.1
10.5 ± 0.84	20.5 ± 1.1
	8.6 ± 0.90
10.8 ± 0.81	27.0 ± 1.5
13.8 ± 1.0	17.3 ± 1.0
10.7 ± 0.86	11.0 ± 0.88
7.4 ± 0.78	26.9 ± 0.86
	14.3 ± 0.86
	10.0 ± 0.95 12.5 ± 1.1 73.3 ± 1.5 60.8 ± 1.2 14.4 ± 0.94 16.9 ± 1.1 9.6 ± 1.1 9.7 ± 1.0 12.6 ± 0.82 13.3 ± 1.1 20.4 ± 1.1 18.4 ± 1.3 24.5 ± 1.2 16.8 ± 1.4 13.9 ± 0.76 64.1 ± 1.6 55.9 ± 1.1 9.3 ± 0.74 12.1 ± 0.85 12.9 ± 0.90 13.4 ± 0.87 12.9 ± 0.65 23.9 ± 0.84 28.1 ± 0.70 44.5 ± 0.89 10.0 ± 0.80 10.5 ± 0.84 13.1 ± 0.85 10.8 ± 0.81

* Note: First digit of sample number indicates station location, second digit indicates cast number, and letter indicates section of core, top or bottom.
 ** Concentrations measured in micrograms per gram ± 1 standard

deviation.

(Sheet 1 of 3) '

Table 4 (Continued)

Sample No.	September 1976	December 1976
<u>Sumpre</u>	Disposal Site (Continued)	
	The same state of the same sta	04.036
7-1-T	11.6 ± 0.87	9.4 ± 0.75 9.6 ± 1.3
7-2-1	9.4 ± 0.75	12.9 ± 0.77
7-1-B	15.5 ± 1.0	13.4 ± 0.87
7-2-8	17.3 ± 0.87	13.4 ± 0.67
8-1-T	8.9 ± 0.80	14.6 ± 1.1
8-2-T	10.4 ± 0.78	8.9 ± 0.80
8-1-8	15.2 ± 0.84	15.5 ± 1.2
8-2-B	9.5 ± 0.81	17.9 ± 1.1
9-1-T	13.7 ± 0.82	21.5 ± 0.75
9-2-T	12.8 ± 0.90	9.2 ± 0.78
9-1-B	5.9 ± 0.74	32.3 ± 1.3
	11.1 ± 0.61	
9-2-B	15.9 ± 0.95	13.8 ± 0.85
10-1-T	14.6 ± 1.1	21.4 ± 1.4
10-2-1	18.5 ± 1.1	. 12.2 ± 0.92
t0-1-B	13.4 ± 0.94	15.8 ± 0.71
10-2-B	12.8 ± 1.0	15.9 ± 0.87
11-1-1	13.4 ± 1.0	13.4 ± 0.94
11-2-T	13.0 ± 0.85	9.6 ± 0.91
11-1-B	18.2 ± 1.1	17.6 ± 0.97
11-2-B	17.0 ± 1.2	9.2 ± 0.83
12-1-T	8.2 ± 0.74	12.6 ± 0.88
12-2-T	9.0 ± 0.59	10.2 ± 0.87
	7.3 ± 0.62	
12-1-B	23.9 ± 0.96	16.8 ± 0.84
12-2-B	9.4 ± 0.61	10.9 ± 0.82
13-1-1	16.8 ± 0.67	10.2 ± 0.82
13-2-T	11.7 ± 0.76	13.6 ± 0.95
13-1-B	5.3 ± 0.64	20.5 ± 0.82
	5.3 ± 0.85	
13-2-B	83.7 ± 0.84	11.5 ± 0.8
	23.3 ± 0.93	
14-1-1	8.7 ± 0.87	13.2 ± 0.73
14-2-T	9.1 ± 0.91	9.7 ± 0.8
14-1-B	19.6 ± 0.88	40.0 ± 1.0
14-2-B	34.8 ± 1.0	16.1 ± 0.8
	(Continued)	
		(Sheet 2 of

Table 4 (Concluded)

Sample No.	Concentrat September 1976	December 1976
	Disposal Site (Continued)	
15-1-T	11.8 ± 0.89	12.0 ± 0.90
15-2-8	11.7 ± 0.99	12.8 ± 0.77
15-1-B	20.5 ± 0.92	9.6 ± 0.72
15-2-B	13.1 ± 0.72	13.6 ± 1.0
16-1-T	11.5 ± 0.75	12.2 ± 0.92
16-2-T	11.0 ± 0.88 11.2 ± 0.73	11 6 + 0 91
10-2-1	11.5 ± 0.73	11.6 ± 0.81
16-1-B	15.9 ± 0.64	14.4 ± 0.94
	20.2 ± 0.91	
16-2-B	13.9 ± 0.70	17.4 ± 0.87
	15.3 ± 0.92	
	West Reference Site	
17-1-T	9.3 ± 0.65	11.3 ± 0.73
17-2-T 17-1-B	9.1 ± 0.68 7.9 ± 0.67	9.4 ± 0.75
17-1-8	3.5 ± 0.35	10.1 ± 0.81 8.2 ± 0.66
17-2-0	3.3 1 0.33	. 0.2 3 0.00
13-1-T	11.4 ± 0.80	14.3 ± 0.86
100 "	13.5 ± 0.61	11 0 . 0 77
18-2-T	9.9 ± 0.74 10.4 ± 0.52	11.0 ± 0.77
18-1-B(1)+	13.1 ± 0.65	9.6 ± 0.72
.0-1-5(1)1	13.5 ± 0.61	2.0 1 0.72
18-1-B(2)		11.4 ± 0.80
18-1-B(3)	*	9.5 ± 0.71
18-1-8(4)		13.2 ± 0.73
18-1-8(5)		2.7 ± 0.19
18-1-8(6)	22.051	11.5 ± 0.75
18-2-8	7.7 ± 0.54 6.3 ± 0.41	8.7 ± 0.70
	East Reference Site	
19-1-1	17.6 ± 1.4	16.3 ± 0.98
19-2-T	17.9 ± 1.3	22.3 ± 1.0
19-1-8	17.7 ± 1.5	18.9 ± 0.85
19-2-8	15.7 ± 1.0	16.2 ± 0.89
20-1-T	11.6 ± 0.70	15.0 ± 0.98
20-2-T	16.1 ± 1.6 10.3 ± 0.67	25.5 ± 0.89
	14.0 ± 1.1	
20-1-B	12.2 ± 0.92 12.5 ± 1.2	11.4 ± 0.86
20-2-B	14.3 ± 0.79	13.4 ± 0.80
	12.6 ± 1.1	

[†] Six aliquots of same sample.

Table 5 Concentration of Chromium in Elliott Bay Sediments

***	Concentration**											
Sample No.*	September 1976	December 1976										
	Disposal Site											
1-1-T	77 ± 1.4	66 ± 1.7										
1-2-T	81 ± 1.6	55 ± 0.8										
1-1-B	68 ± 1.4	78 ± 1.2										
1-2-B	85 ± 1.7	64 ± 1.3										
2-1-T	63 ± 1.3	64 ± 1.3										
2-2-T	86 ± 1.7	78 ± 1.2										
2-1-B	64 ± 1.0	91 ± 1.4										
2-2-B	59 ± 0.9	70 ± 1.4										
3-1-T	55 ± 0.8	74 ± 1.1										
3-2-T	81 ± 1.6	71 ± 1.1										
3-1-B	84 ± 1.3	61 ± 1.2										
3-2-B	74 ± 1.5	73 ± 1.8										
4-1-T	82 ± 1.6	74 ± 1.1										
4-2-T	69 ± 1.4	75 ± 1.5										
4-1-B	46 ± 1.2	64 ± 1.3										
4-2-B	74 ± 1.5	73 ± 1.8										
5-1-T	59 ± 0.9	109 ± 1.6										
5-2-T	60 ± 0.9	76 ± 1.1										
5-1-B	54 ± 0.8	59 ± 0.9										
5-2-B	83 ± 1.3	85 ± 1.7										
6-1-T	64 ± 1.0	74 ± 1.5										
6-2-T	53 ± 0.9	68 ± 1.4										
6-1-B	59 ± 0.9	82 ± 1.2										
6-2-B	70 ± 1.1	58 ± 0.9										
7-1-T	84 ± 1.3	71 ± 1.1										
7-2-T	81 ± 0.8	68 ± 1.4										
7-1-B	68 ± 1.0	64 ± 1.0										
7-2-B	61 ± 1.2	62 ± 1.2										
8-1-T	59 ± 0.9	69 ± 1.4										
8-2-T	64 ± 1.0	65 ± 1.3										
8-1-B	77 ± 1.5	62 ± 1.2										
8-2-B	67 ± 1.3	67 ± 1.3										
9-1-T 9-2-T 9-1-B 9-2-B	83 ± 1.7 89 ± 1.3 70 ± 1.4 78 ± 1.6 (Continued)	65 ± 1.0 79 ± 1.6 68 ± 1.0 65 ± 1.0										

Note: First digit of sample number indicates station location, second digit indicates cast number, and letter indicates section of core, ton or bottom.
 Concentrations measured in micrograms per gram ± 1 standard deviation. (Sheet 1 of 3)

Table 5 (Continued)

Cample No	Concentr	
Sample No.	September 1976	December 1976
	Disposal Site (Continued)	
10-1-T	70 ± 1.4	106 ± 2,1
10-2-T	64 ± 1.3	59 ± 1.2
10-1-8	58 ± 0.9	69 ± 1,0
10-2-В	64 ± 1.3	76 ± 1,1
11-1-1	83 ± 1,3	68 ± 1,4
11-2-1	76 ± 0.8	80 ± 1,6
11-1-B 11-2-B	67 ± 1.3	73 ± 1,5
11-2-0	71 ± 1,4	60 ± 1,2
12-1-1	75 ± 1.5	86 ± 1,3
12-2-T	64 ± 1.0	82 ± 1,6
12-1-B 12-2-B	60 ± 1.2 58 ± 1.2	63 ± 1.4
12-2-0	55 1 1,2	65 ± 1,0
13-1-T	59 ± 0,9	76 ± 1,5
13-2-T 13-1-B -	63 ± 1,3	69 ± 1.0
13-2-6	30 ± 0.8 64 ± 1.3	64 ± 1.0 68 ± 1.0
13-2-0	04 1 11,3	0,1 1 00
14-1-T	71 ± 1.1	71 ± 1.1
14-2-T 14-1-B	63 ± 0.6 68 ± 1.0	77 ± 1,2
14-2-B	75 ± 1.1	116 ± 1.7 . 82 ± 1.2
14-2-5	73 1 1.1	, 62 ± 1,2
15-1-T 15-2-T	62 ± 0.6	75 ± 1.1
15-1-8	69 ± 1.0 56 ± 0.8	59 ± 0,9
15-2-B	65 ± 1.0	69 ± 1,0 76 ± 1,1
16-1-T	86 ± 1,3	66 ± 1,0
16-2-T	89 ± 1.3	76 ± 1.5
16-1-B 16-2-B	71 ± 1.1	74 ± 1.1
10-2-8	67 ± 1,0	71 ± 1,1
	West Reference Site	
17-1-T	152 ± 1,5	117 ± 1,2
17-2-T	269 ± 2.7	108 ± 1.1
17-1-B	124 ± 1.2	131 ± 1.3
17-2-8	69 ± 0.7	115 ± 1,2
	(Continued)	(Shark 2 of 2)
		(Sheet 2 of 3)

Table 5 (Concluded)

	Concent	ration
Sample No.	September 1976	December 1976
	West Reference Site (Continued)	
18-1-T	110 ± 1.1	102 ± 1.5
18-2-T	112 ± 1.7	105 ± 1.6
18-1-8(1)+	95 ± 1.4	88 ± 1.3
18-1-B(2)		109 ± 1.1
18-1-B(3)		114 ± 1.7
18-1-8(4)		135 ± 1.4
18-1-8(5)		160 ± 1.6
18-1-B(6)		122 ± 1.2
18-2-8	101 ± 1.5	111 ± 1.7
	East Reference Site	
19-1-T	92 ± 1.4	91 ± 1.4
19-2-T	86 ± 0.9	96 ± 1.0
19-1-B	87 ± 0.9	64 ± 1.3
19-2-8	95 ± 1.4	79 ± 1.2
20-1-1	100 ± 1.5	106 ± 1.6
20-2-T	81 ± 1.2	86 ± 1.3
20-1-8	89 ± 1.3	81 ± 1.6
20-2-8	101 ± 1.0	73 ± 1.5

Table 6

Concentration of Manganese in Elliott Bay Sediments

Sample No.*	September 1976 Concentr	December 1976
	Disposal Site	
1-1-T	227 ± 4	204 ± 72
1-2-1	262 ± 32	192 ± 16
1-1-8	258 ± 43	252 ± 36
1-2-8	276 ± 13	244 ± 40
2-1-T	238 ± 28	231 ± 22
2-2-T	248 ± 35	287 ± 53
2-1-8	313 ±134	327 ± 53
2-2-8	248 ± 15	305 ± 41
3-1-T	238 ± 75	. 267 ± 7
3-2-1	262 ± 95	276 ± 10
3-1-8	179 ± 19	223 ± 33
3-2-B	289 ± 15	248 ± 28
4-1-T	254 ± 52	339 ± 41
		307 ± 95
4-2•T	245 ± 15	260 ± 13
1-1-B	239 ± 16	203 ± 52
1-2-B		303 ± 76
5-1-T	255 ± 45	297 ± 29
5-2-T	199 ± 5	331 ± 35
5-1-B	257 ± 31	233 ± 28
5-2-B	269 ± 14	383 ± 16
6-1-T	300 ± 42	405 ± 74
6-2-T	248 ± 20	236 ± 17
6-1-B	147 ± 51	441 ± 31
6-2-8	216 ± 20	256 ± 21
7-1-T	221 ± 98	255 ± 23
7-2-T	272 ± 69	243 ± 21
7-1-B	240 ± 21	274 ± 35
7-2-8	301 ± 0	280 ± 65
8-1-T	241 ± 13	299 ± 37
8-2-T	275 ± 39	244 ± 43
8-1-8	287 ± 33	243 ± 13
8-2-8	230 ± 34	339 ± 77

* Note: First digit of sample number indicates station location, second digit indicates cast number, and letter indicates section of core, top or bottom.

of core, top or bottom.

** Concentrations measured in micrograms per gram + 95% confidence intervals.

(Sheet 1 of 3)

Table 6 (Continued) .

Sample No.	Concentr	
sample No.	September 1976	December 197
	Disposal Site (Continued)	
9-1-T	207 ± 44	314 ± 120
9-2-1	227 ± 38	254 ± 28
9-1-B	233 ± 21	161 ± 28
9-2-B	255 ± 72	188 ± 30
10-1-T	275 ± 41	356 ± 51
10-2-T	269 ± 56	262 ± 14
10-1-B	274 ± 44	268 ± 26
10-2-8	219 ± 44	290 ± 50
11-1-1	330 ± 57	314 ± 36
11-2-T	223 ± 19	213 ± 46
11-1-8	244 ± 60	552 ±170
11-2-3	400 ± 33	260 ± 22
12-1-T	194 ± 20	241 ± 34
12-2-1	236 ±100	235 ± 17
12-1-B	230 ± 31	262 ± 25
12-2-B	216 ± 63	268 ± 77
		259 ± 29
13-1-T	177 ± 11	266 ± 31
13-2-T	258 ± 33	259 ± 19
13-1-B	321 ± 49	226 ± 48
13-2-В	167 ± 41	. 323 ± 48
14-1-T	249 ± 42	234 ± 71
14-2-1	237 ± 13	263 ± 23
14-1-B	225 ± 31	186 ± 62
14-2-В	160 ± 25	
15-1-T	229 ± 18	251 ± 19
15-2-T	219 ± 73	298 ± 17
-15-1-B	183 ± 17	296 ± 30
15-2-B	223 ± 15	268 ± 23
16-1-T	242 ± 43	293 ± 84
16-2-T	261 ± 54	253 ± 20
16-1-B	171 ± 6	222 + 20
16-2-8	269 ± 37	233 ± 38
	West Reference Site	
17-1-T	190 ± 27	236 ± 14
17-2-1	234 ± 47	222 ± 20
17-1-B	222 ± 52	251 ± 92
17-2-B	252 ± 92	193 ± 70
	(Continued)	(Sheet 2 of 3)

Table 6 (Concluded)

	Concentration												
Sample No.	September 1976	December 1976											
	214 + 28	447 + 99											
18-1-1	235 ± 32	274 ± 3											
8-2-T	241 ± 58	231 ± 40											
8-1-6(1)+	241 1 20	224 ± 33											
151		221 ± 12											
\a^{\alpha}\		350 ± 1											
>36		225 ± 2											
161		243 ± 5											
18-2-B	231 ±110	218 ± 2											
	East Reference Site												
19-1-T	283 ± 22	321 ± 31											
9-2-1	324 ± 72	309 ± 21											
9-1-8	266 + 18	**											
9-2-B	210 ±107	251 ± 30											
20-1-1	244 ± 84	281 + 2											
0-2-1	232 ± 49	218 ± 2											
0-1-8	198 ± 12	187 ± 4											
20-2-8	268 ± 25	184 ± 10											

Table 7
Concentration of Mercury in Elliott Bay Sediment:

		ration**
Sample No.*	September 1976	December 1976
	Disposal Site	
1-1-1	0,68	0,19
1-2-T .	0.04	1,2
1-1-B	1,1	0,32
1-2-В	0.06	1.5
2-1-T	0.16	0,23
2-2-T	0.18	0,27
2-1-B	0.21	1,2
2-2-8	1.3	
3-1-T	0.22	0,22
3-2-T	0,25	0,23
3-1-8	0.73	2,3
3-2-B	0.18	4.2
4-1-T	0.15	0,27
4-2-T	0.06	0,33
4-1-6	0.46	3,6
4-2-8	1.1	2,0
5-1-T	0,25	0,23
5-2-T	0.19	0.34
5-1-B	0.30	0.13
5-2-B	0,26	0,52
6-1-T	0.11	0,66
5-2-T	0.03	0,15
5-1-B	0.03	0,40
6-2-B	0,03	0,16
7-1-T	0.42	0.16
7-2-T	0.09	0.16
7-1-B	0.07	0.12
7-2-B	0.06	0,22
	(Continued)	

* Note: First digit of sample number indicates station location, second digit indicates cast number, and letter indicates section of core, top or bottom.

** Concentrations measured in micrograms per gram ± 20% analytical error. (Sheet 1 cf 3)

Table 7 (Continued)

C	Concentr						
Sample No.	September 1976	December 1976					
	Disposal Site (Continued)						
8-1-1	0.19	0.26					
8-2-T	0.15	0.22					
8-1-8	0.08	0.71					
8-2-8	0.05	0.29					
9-1-T	0.05	0.32					
9-2-T	0.07	0.24					
9-1-B	0.08	0.59					
9-2-B	0.06						
10-1-T	0.05	0.44					
10-2-T	0,14	0.12					
10-1-B	0.03	0.32					
10-2-8	0.03	0.37					
11-1-Т	0.05	0.26					
11-2-F	0.12	0.26					
11-1-8	0.03	0.41					
11-2-8	0.07	0.23					
12-1-T	0.06	0.25					
12-2-T	0.04	0.29					
12-1-B	0.15	0.15					
12-2-B	. 0.13	0.08					
13-1-T	0.18	0,25					
13-2-T	0.06	0.12					
13-1-B	0.02	0.28					
13-2-8	0.25	0.33					
14-1-T	0.04	0,21					
14-2-T	0.08	0.65					
14-1-B	0.12	0.57					
4-2-B	0.16	1.3					
15-1-T	0.04	0.20					
15-2-T	0.04	0.33					
15-1-B	0.08	0.33					
15-2-B	0.05	0.16					
	(Continued)						
	(Continued)	(Sheet 2 of 3)					

Table 7 (Concluded)

	ration
September 1976	December 1976
Disposal Site (Continued)	
0.04	0.42
	0.26
0.12	0.33
0.07	0.42
West Reference Site	
0.08	0.32
0.06	0.29
0.07	0.40
0.07	0.43
0.09	0.32
	0.29
	0.25
	0.50
	0.42
	0.52
	. 1.2
	0.56
0.07	0.37
East Reference Site	
0.42	1.1
0.54	1,2
0.41	1.8
0.38	1,2
	1.6
	4.0
0.35	1.6
	Disposal Site (Continued) 0.04 0.05 0.12 0.07 West Reference Site 0.08 0.06 0.07 0.07 0.09 0.13 0.09 0.13 0.09 East Reference Site 0.42 0.58 0.54 0.41 0.38 0.22 0.53

[†] Six aliquots of the same sample.

Particle Size Distribution and Percent Water in Elliott Bay Sediments Table 8

H20	40 330	76837	46 46 40 40	22200	35.	33334
96 E	44	0000	4464	4444	लाल कुल	4 0000
Clay <.002m	0002	0000	71-00	-000	6000	0097
Silt* 0.00205mm	443 453 453	51 39 45 40	47 25 44	8 8 8 8 8 8 8 8	26 29 37 37	23 23 23
CF6 0.063-0.125mm	13 28 21	22 28 29 159	20116	255	25 30 30 30	21 24 25
CF5 0.125-0.25mm September 1976 Disposal Site	26 26 26 26 26 26 26 26 26 26 26 26 26 2	23 29 23 23	25 20 24 24	5855	2405	3,823
0.25-0.5mm Sep Sep Di	23 6 23	8000	5 6 14 14	4 ស ស ខ	5000	5000
0.5-1mm	~~~~	9	-000	-09 2	n 000-	0000
1-2mm	-0	0000	4-	00-0	0	4
25mm > 2mm	8	000-	-000	0000	0000	-00-
Sample No.*		+ + \(\theta \)	17 17 09 09			FF 9 9
Sam	1217	2-1-T 2-2-T 2-1-B 2-2-B	3-2-1 3-2-1 3-2-8	4-2-4	5-2-1 5-2-1 5-2-3	6-2

Note: First digit of sample indicates station number, second digit indicates cast number, and letter indicates section of core; top or bottom.
 Numbers indicate per cent retained in sieves for coarse fraction of sediment.
 Numbers indicate per cent of sediment in the rise range fraction as determined by pipette analyses.

(Sheet 1 of 6)

Table 8 (Continued)

# H20	85	46	46	36	35	362	40	35 39	38	39	20	55	47	41	4 6 4	30	33	42	36	40	56	27	43	9.5	38	2 of 6)
clay c.002mm	00	00	8	2	0-		0	9:	-	0	00	000	0	0	<u> </u>	12	6	00		0	2	9	0	v ~	00	(Sheet 2 of
Silt+ 0.00205mm	E 8	69	70	34	33	25	45	31	38	7.5	69	32 27	72	44	87	27	25	38	36	44	16	62	33	333	23	
CF6 0.063-0.125mm	85.0	. 15	7	26	33 33	282	50	7 6	25	=:	= ;	502	00	55	၌ ထ	. 56	25	ខេត	20	23	4 (on.	33	312	11	
CF5 0.125-0.25mm	35	o o	6	59	32	23	26	34 24	52	0:	200	36	9	26	9	30	28	0 0	20	26	က	5	62 63	3 5	21	(Continued)
CF4 0.25-0.5mm	71 0	o vo	ω	0	~ "	တလ	or c	ח עס	=	ر. د د	20	12	10	13	າ ເດ	. 5	ω;	7	21	10	27	53	00 M	- 10	21	
CF3 0.5-1mm	mu		2	-		- 2	~ ~	2	2	2.	40	16	8	ω -	- 2	-	2	2	လ	2	91	= '	2.	- 4	7	
CF2 1-2m			0	-	0-			-,-	-				-	- 0	00	-		c> 	2	4	m r	· ·	- 0	- -	2	
CF1**	00	04	0	-	00	o		-0	2	0,	- c	00	0			0	2		0	0	~ 0	n .	- 0	00		
Sample No.*	7-1-1	7-1-8	7-2-8	8-1-T	1-2-8	8-2-8	9-1-1	9-1-8	9-2-8		10-1-8	10-2-8	11-1-1	11-2-1	11-2-3	12-1-1	12-2-1	12-2-8	13-1-T	13-2-T	13-1-5	9-7-61	14-1-1	14-1-8	14-2-8	

Table 8 (Continued)

	* H20	40	45	36	37	46	42	33	43		31	27	53	28	40	33	36	23		49	51	43	38	63	24	37	4:	3 of 6)
	Clay	-	0	80	0	0	0	0	0		80	m	00	7	0	7	2	9		34	17	m	6	2	60	2	4	(Sheet
	Silt+ 0.00205mm	33	95	- 12	20	43	52	43	55		56	30	23	25	48	33	47	28		45	62	72	76	92	23	29	76	
,	CF6 0.063-0.125mm	23	27	10	24	28	23	21	13	e)	13	20	18	14	22	18	50	16	o I	9	2	7	ıs	9	to	7	7	
nanurunan) o a	CF5 0.125-0.25mm	30	19	16.	13	20	23	20	. 15	Reference Site	13	20	20	22	16	23	16	23	Reference Site	i,	9	و	4	60	63	11	9	
aigni	CF4 0.25-0.5mm	80	6	. 22	6	4	4	14	20	West	27	21	14.	21	on	12	6	18	East	9	9	œ	c)	4 .	6	ေ	4	
	CF3 0.5-1mm	2	2	10	4	2	-	e	က		S	4	4	1	2	9	ຕ	4		2	3	e	2	2	~	60	-	
	CF2 1-2mm	0	-	3	-	0	0	-	-		2	6	4	2	-	3	2	2		-	4	2	-	-	2	7	-	
	CF1 ×2m	o	-	-	-	0	ó	0	-		2	0	c	က	2	2	7	ო		-	-	-	-			. 2	-	
	Sample No.	15-1-T	15-2-1	15-1-8	15-2-8	16-1-T	16-2-1	16-1-8	16-2-8		17-1-1	17-2-1	17-1-8	17-2-3	18-1-T	13-2-1	18-1-8	13-2-8		19-1-T	19-2-T	19-1-8	19-2-3	20-1-T	20-2-1	20-1-6	20-2-8	

-				21001					
Sample No.	E2×	1-2mm	0.5-1m	CF4 0.25-0.5mm	CF5 0.125-0.25mm	CF6 9.063-0.125mm	\$11t+ 0.00205mm	Clay <.002mm	2 H20
					December 1976 Disposal Site				
1-1	0	0	-	2	23	26	45	7	12
2-1	2	-	S	17	12	13	45	· u	30
1-3	0	0	-	m	20	3.5	77	00	3.5
2-3	2	-	00	29	14	10	33.5	00	33
1-1	c		0	1.1	25	36	22		
2-1	. 0		, ~		29	66	55	00	200
1-3	0	-	2	12	36	26	42	00	200
2-8	-	2	9	25	13	11	42	00	38
1-1	0	0	-	7	26	24	33	00	33
2-1	0	-		9	18	25	47	0 ~	36
1-8	4	m	12	36	16	6	23	0	33
2-3	2	-	1	51	17	13	48	0	37
1-1	-	4	2	m	15	28	52	c	71
2-1	0	0	-	7	22	28	43	0 0	707
1-3	0	-	7	17	13	1	46	4	37
2-3	0	-	4	12	17	20	45		88
1-1	0	-	2	12	.15	12	52	9	37
2-1	-	2	~	2	9	12	73	-	46
9	0	_	~	12	25	22	1.5	0	30
2-8	0	0	2	2	m	13	82	0	45
6-1-1	ca c	e.	<	63	un j	0	73	0	20
1-7	0		2	**	30	57	31	0	32
-9	0		0	es	m	1	88	0	50
2-3	0	-	8	9	56	32	59	0	32
1-1	0		2	12	30	27	27	2	8
2-1	0	0	-	7	31	28	30	2	38
-19			,	7	22	31	32	9	34
2-3	0	-	2	17	17	22	43	0	83
					(Continued)			(Sheet	4 of 6)

Table 8 (Continued)

	2 H20	38	39	38	45	37	38	53	30	40	30	3 %	41	36	45	36	34	35	36	3	33	8 8	38	35	4	27	75	40		37	5 of 6)
	clay <.002mm	0	10	0	0	-	0	0	2	0	0	15	9	2	0	'n	0	17			. c		ω	0	2	4 0	•	20	> 0	00	(Sheet
	Silt+ 0.00205mm	14	56	33	39	33	34	37	22	30	52	717	73	43	84	35	32	16	24 K	2 6	3/	2 64	34	33	46	73	ż	33	35	43	
	CF6 0.063-0.125mm	28	25	27	53	16	27	=:	13	6	13	128	7	22	11	13	52	25	3.2	3 3	72	17	23	25	28	910	71	55	500	22	
e o (concinued)	CF5 0.125-0.25mm	. 22	53	24	27	20	33	16	/!	80	523	16	4	20	2	31	53	E :	200		52	252	161	22	18	23		25	3 22	23	(Continued)
lable	CF4 .	6	80	σ,	9	23	9	33	30	7	25	15	7	9	2	9	14	ω (x 4		4 0	24.	1	12	S.	27	4.7	ro Ç	2 4	9	
	CF3 0.5-1mm	-	_	2	2	y	2	0.5	-3	5	2	٥0	2	2	-	8	7	7.			- 0	44	2	.4	-:	= 5	<u> </u>	m c	20	17	
	CF2 1-2mm	-	-	0	-	-	-	- (7	-	m	~ - -	0	0	0	-	-		0-		0-		-	2	0	m <	+	2-			
	CF1	0	0	0	-	0	0	- (2	-	~	٧-	0	0	0	-	-	0	٥-		00) r:	0	2	0	mı	,	2.	- c	-	
	Sample No.	-	\sim	8-1-3		9-1-T	9-2-T	9-1-8	8-7-6	10-1-T	10-2-T	10-2-8	11-1-T	C	11-1-8	11-2-8	12-1-T	12-2-1	12-2-8		- 0	13-1-8	CI	14-1-T	CI.	14-1-8	5	15-1-1		15-2-8	

(Sheet 6 of 6)

2 H 20 756 6957 35 47 53 5250 88280 CF6 0.063-0.125mm 23 23 13 West Reference Site East Reference Site Table 8 (Concluded) CF5 0.125-0.25mm 11619 8822 CF4 0.25-0.5mm Sample No. 17-2-1 17-2-3 17-2-3 18-1-1 18-1-8 18-1-8 18-1-8 20-2-8 20-2-1 20-2-1 20-2-1 20-2-1 20-2-1 20-2-8 6-2-T 6-1-8 16-1-8

3333 8355

33

Arsenic Concentration in Interstitial Water from Elliott Bay Sediments, September 1976

	, noite	1000	noitate	satisates	number	sample	to sigit	First	Hote:	*
				(pan	nitno))					
	€.9	04							8-2	:- 4
		F 19							8-1	-1
	0,8	70							1-2	
	8,5	62							1-1	-1
									8-2	2-9
	2.05	E9	l						8-1	
	2,58 4								1-3	
	7,113	73 +							1-1	-9
	£,8, ±	34 3							8-2	
	9'4	37 3							8-1	-9
•	6'7 4	F 67							1-2	
*	9,4	37 ±							1-1	-9
	£ . 6 ±	34 =							8-5	·- b
	5'5	F 65							9-1	- 5
	0,0	75							1-2	
	5,3	FLV							1-1	- b
	6,3	F LV							8-2	3-5
	9,7	F 96							8-1	
	5,6	56 3							1-2	
	1,2 ±	F 09							1-1	3-
	5.2	F 99							8-2	s-:
	6'9	45 3							9-1	
	6'5	F 19							1-7	
									1-1	
	6,6	F 19							8-5	-1
	4.8	F 05							9-1	
		F 89							1-2	
	6,6	F 1/2							1-1	i-i
				Site	Tesods	10				
**	noiten	Cent	con					*	on oldu	Sai

of core, top or bottom.

** Concentrations in micrograms per litre + 1 standard deviation.

(Sheet 1 of 3)

Table 9 Arsenic Concentration in Interstitial Water from Elliott Bay Sediments, September 1976

		Companytuationtt	-
Sample No.*	Di 2 01	Concentration**	
	Disposal Si		
1-1-T		34 ± 6.5	
1-2-T		69 ± 6.1	
1-1-B		30 ± 5.4	
1-2-B		54 ± 6,5	
2-1-T			
2-2-T		54 ± 5.9	
2-1-B		42 ± 5,9	
2-2-B		65 ± 5.2	
3-1-T		60 ± 5,7	
3-2-7		26 ± 6.2	
3-1-B		95 ± 7.6	
3-2-B		47 ± 5.9	
4-1-T		,/1 ± 6,2	
4-2-T		32 ± 5,6	
4-1-8		49 ± 5,9	
4-2-B		34 ± 5,3	
5-1-T		37 ± 4,6	
5-2-T		49 ± 4,9	
5-1-B		37 ± 4,6	-
5-2-B		34 ± .5,3	
		73 ± 11,7	
6-1-T		179 ± 32,2	
6-2-T 6-1-B		163 ± 30.2	
6-2-B		103 2 3012	
7-1-T		62 ± 2,8	
7-2-T	*	40 ± 6.0	
7-1-B		61 ± 6.1 70 ± 6.3	
7-2-B		, 70 ± 0,3	

Note: First digit of sample number indicates station location, second digit indicates cast number, and letter indicates section of core, top or bottom.

Concentrations in micrograms per litre + 1 standard deviation.

(Continued)

Table 9 (Continued)

Sample No.	Disposal Site (Continued)	Concentration
8-1-T 8-2-T 8-1-B 8-2-B		22 ± 9.1 132 ± 31.7 108 ± 25.9 106 ± 29.7
9-1-T 9-2-T 9-1-B 9-2-B		37 ± 9.8 13 ± 1.3 32 ± 8.6 182 ± 28.2
10-1-T 10-2-T 10-1-B 10-2-B		8 ± 0.8 14 ± 3.4 7 ± 0.7 29 ± 5.3
11-1-T 11-2-T 11-1-B 11-2-B		28 ± 5.3 28 ± 5.5 50 ± 6.0 43 ± 6.0
12-1-T 12-2-T 12-1-B 12-2-B		36 ± 5.4 42 ± 6.9 32 ± 5.9 20 ± 5.4
13-1-T 13-2-T 13-1-B 13-2-B		46 ± 5.8 24 ± 5.3 11 ± 4.8 25 ± 4.5
14-1-T 14-2-T 14-1-B 14-2-B		41 ± 5.3 40 ± 5.6 31 ± 3.7 36 ± 4.5
15-1-T 15-2-T 15-1-B 15-2-B		38 ± 4.4 61 ± 5.2
16-1-1 16-2-T 16-1-B 16-2-B		40 ± 4.8 40 ± 5.0 40 ± 5.0 43 ± 5.0
	(Continued)	
		151

Table 9 (Concluded)

Sample No.		Concentration
	West Reference S	
17-1-T		67 ± 4.8
17-2-T		
17-1-B		56 ± 5.0
17-2-8		
18-1-T		46 ± 4.8
18-2-T		56 ± 5.3
18-1-8		48 ± 4.6
18-2-B		60 ± 4.5
	East Reference S	ite
19-1-T		76 ± 4.9
19-2-T		
19-1-B		56 ± 5.0
19-2-B		56 ± 4.5
00.1.1		59 ± 4.7
20-1-1	•	60 ± 4.8
20-2-T		48 ± 4.1
20-1-8 20-2-8		53 ± 4.8

Table 10
Manganese Concentration in Interstitial Water from Elliott Bay Sediments

Sample No.*	September 1976	
campic no.	-	December 1976
	Disposal Site	
1-1-T	3.8 ± 1.3	3.0 ± 1.6
1-2-T	1.3 ± 1.5	4.0 ± 1.3
1-1-В	1.8 ± 1.7 1.8 ± 1.0	3.1 ± 0.1
1-2-B	8.3 ± 3.0	3.8 ± 1.3
2-1-T 2-2-T	5.4 ± 1.9	2.5 ± 0.8 3.1 ± 0.9
2-1-B	9.5 ± 2.4	4.6 ± 1.8
2-2-B	2.7 ± 1.3	2.8 ± 1.0
3-1-T	4.5 ± 1.0	7.1 ± 2.7
3-2-T	6.4 ± 2.4	
3-1-B	2.5 ± 1.0	0.33± 0.62
3-2-B	4.4 ± 2.2	1.1 ± 0.3
4-1-T	9.6 ± 8.2	2.6 ± 0.8
4-2-T	3.9 ± 3.0	4.8 ± 1.6
4-1-B	3.6 ± 1.8 7.9 ± 3.5	1.4 ± 1.0 5.2 ± 1.7
4-2-B	7.9 1 3.3	
5-1-T	3.4 ± 1.3	3.9 1 1.1
5-2-T 5-1-B	2.0 ± 1.2 4.0 ± 1.3	3.0 ± 1.4 4.4 ± 1.4
5-1-B 5-2-B	6.3 ± 1.3	3.0 ± 1.0
		15.6.67
6-1-T 6-2-T	2.3 ± 0.7 2.7 ± 1.2	15.6 ± 6.7
6-1-B	3.8 ± 2.0	2.7 ± 1.1
6-2-B	2.6 ± 1.5	0.78± 0.60
7-1-T	6.0 ± 1.7	2.5 ± 1.0
7-2-T	5.0 ± 4.3	1.3 ± 0.5
7-1-B	3.7 ± 0.9	5.9 ± 2.2
7-2-B	3.1 ± 1.8	6.3 ± 3.0
8-1-T	3.9 ± 1.3	1.9 ± 1.2
8-2-T	2.1 ± 1.3	2.6 ± 1.5
8-1-B	7.3 ± 3.4 2.1 ± 0.9	4.7 ± 1.2 3.7 ± 1.5
8-2-B	2.1 1 0.3	3.7 2 1.0
9-1-T	5.2 ± 3.0	14.00
9-2-T 9-1-B	4.3 ± 1.3 5.0 ± 1.8	1.4 ± 0.9
9-2-8	6.1 ± 2.3	2.1 ± 0.4
	(Continued)	

* Note: First digit of sample number indicates station location, second digit indicates cast number, and letter indicates section of core, top or bottom.

** Concentrations measured in milligrams per litre ± 95% confidence limits.

(Sheet 1 of 3)

Table 10 (Continued)

Sample No.	Concentration September 1976	7642
Sample No.	Disposal Site (Continued)	December 1976
	Draposar area (
10-1-T	3.5 ± 1.3	3.7 ± 1.4 4.9 ± 1.6
10-2-T	5.4 ± 1.9 3.0 ± 1.5	3.0 ± 0.8
10-1-B 10-2-B	3.6 ± 1.7	4.1 ± 1.1
11-1-1	7.7 ± 2.2	3.6 ± 1.6
11-2-T 11-1-B	2.8 ± 0.9 3.7 ± 1.1	2.7 ± 1.3
11-2-B	3.0 ± 1.7	7.7 ± 4.6
12-1-T	3.1 ± 1.3	6.8 ± 2.6 2.6 ± 0.9
12-2-T 12-1-B	2.2 ± 0.7 6.3 ± 2.3	6.1 ± 2.0
12-2-B	8.7 ± 2.5	9.0 ± 5.0
13-1-T	2.2 ± 1.3 1.2 ± 0.7	9.9 ± 4.0 3.2 ± 0.7
13-2-T 13-1-B	1.2 ± 0.6	4.7 ± 1.4
13-2-B	0.36± 0.09	6.1 ± 2.9
14-1-T 14-2-T	2.9 ± 0.5 5.2 ± 1.8	1.2 ± 0.4 4.4 ± 1.1
14-1-B	3.5 ± 3.1	0.41± 0.15
14-2-8	1.6 ± 1.3	0.84± 0.65
15-1-T	2.0 ± 1.1 5.7 ± 1.7	1.7 ± 0.7 8.2 ± 2.8
15-2-T 15-1-B	1.3 ± 1.2	6.8 ± 2.9
15-2-B	3.5 ± 1.5	9.2 ± 3.0
16-1-1	1.8 ± 0.6 2.1 ± 0.9	4.2 ± 1.0 2.1 ± 0.5
16-2-T 16-1-B	3.3 ± 0.8	4.6 ± 1.3
16-2-B	2.2 ± 1.1	1.6 ± 0.8
	West Reference Site	
17-1-T	0.29 ± 0.13	0.37 ± 0.13
17-2-T	0.37 ± 0.21	0.37 ± 0.10 0.071± 0.09
17-1-B 17-2-B	$\begin{array}{c} 0.33 \pm 0.13 \\ 0.46 \pm 0.14 \end{array}$	0.20 + 0.1
	(Continued)	
		(Sheet 2 of 3

Table 10 (Concluded)

	Concentration	on
Sample No.	September 1976	December 1976
	West Reference Site (Continued	<u>d</u>)
18-1-1	2.0 ± 1.4	
18-2-T	0.38 ± 0.18	0.75 ± 0.7
18-1-B	0.32 ± 0.15	$0.39 \pm 0.$
18-2-B	0.28 ± 0.15	$0.20 \pm 0.$
	East Reference Site	
19-1-T	0.30 ± 0.11	0.32 ± 0.
19-2-T	0.41 ± 0.18	$0.50 \pm 0.$
19-1-6	0.10 ± 0.02	6.41 ± 0.
19-2-B	0.16 ± 0.08	0.16 ± 0.1
20-1-1	0.21 ± 0.03	0.89 ± 0.
20-2-T	0.46 ± 0.16	$0.48 \pm 0.$
20-1-B	0.16 ± 0.03	0.33 ± 0.
20-2-8	0.092± 0.03	0.21 ± 0.0

Table 11 Nutrient Concentrations in Interstitial Water from Elliott Bay Sediments

-	Sej	tember 197			mber 1976	
Sample No.	Phosphate mg/1-P	Silicate mg/l-Si	Ammonia mg/1-N	Phosphate mg/1-P	Silicate mo/1-Si	Ammonia mg/1-N
			Dispos	al Site		
1-1-1	1.24	3.09	4.87	0.10	1.63	6.05
1-2-T	0.60	2.91	1.31	0.03	1.73	
1-1-B	0.16	2.99	4.97	0.35	1.54	8.61
1-2-8	0.17	1.87	2.58			13.5
2-1-T				0.09	1.13	7.98
2-2-T	0.36	2.45	1.78	0.23	4.27	31.1
2-1-8	1.02	2.86	3.84	0.04	1.27	10.7
2-2-B	0.80	1.98	1.41	0.02	0.67	2.11
3-1-1	0.63	2.09	0.31			
3-2-T	1.96	9.24	81.5			
3-1-B	0.78	4.59	0.75	0.03	1.14	3.90
3-2-B	0.64	4.06	19.0			
4-1-T	0.31	2.14	0.95	0.02	1.14	9.95
4-2-T	0.72	2.10	0.91	0.17	2.04	5.80
4-1-B	0.43	2.02	0.17	0.07 •	1.59	11.0
4-2-B	0.29	1.88	2.15	1.49	2.95	10.2
5-1-Y	1.76	2.57	1.05	0.05	1.64	9.79
5-2-T	0.62	1.91	1.14	0.28	2.49	32.5
5-1-8	0.83	2.53	1.57			
5-2-B	0.39	2.44	2.32	0.44	2.87	50.3
6-1-T	1.49	2.55	4.92	0.24	1.67	29.9
6-2-Y	0.74	2.20	4.45			
6-1-8				0.24	2.93	47.9
6-2-8				0.03	1.33	6.95
7-1-1	0.36	2.02	17.7	0.05	2.30	9.25
7-2-1	0.20	2,26	23.8	0.28	7.66	35.7
7-1-8	0.51	3.59	26.5	0.02	1.23	7.76
7-2-B	0.08	3.60	26.4			2.40
8-1-1	0.44	4.00	1.05	0.06	1.60	5.29
8-2-T	1.12	4.01	5.79	2.41	3.79	5.42
8-1-8	0.70	3.50	5.49	0.19	1.51	9.70
8-2-B	0.65	4.37	5.39	0.21	2.42	11.5
9-1-T	2.07	5.05	5.88			
9-2-T	0.40	4.46	3.13	0.10	1.37	8.46
9-1-B	0.71	3.27	4.27			
9-2-B	0.77	4.65	5.67	0.05	2.06	4.43
10-1-T	0.23	2.52	3.95	0.05	2.28	34.2
10-2-T	1.89	6.12	27.4			
10-1-B	1.36	4.16	9.65			
10-2-B	3.45	4.41	11.7			
			(Continued)			

^{*} Note: First digit of sample number indicates station number, second digit indicates cast number, and letter indicates section of core, top or bottom.

Table 11 (Concluded)

-	Se	otember 197		bece	aber 1976	
Sample No.	Phosphate mg/1-P	Silicate mg/1-Si	Ammonia mg/1-N	Phosphate mg/1-P	Silicate mg/1-Si	Anmonia mg/1-N
			Disposal Sit	te (Continued)		
11-1-T 11-2-T 11-1-B	0.76 0.97 0.61	1.28 1.67 1.51		0.04	1.16	24.1
11-2-B	0.69	4.45		0.11	1.28	9.80
12-1-T 12-2-T 12-1-B 12-2-B	0.63 0.83 0.70 1.47	1.58 1.37 1.48 1.59	1.82 1.84 0.72 1.97	0.03 0.11 0.02	4.23 0.70 1.03	5.83 3.00 3.13
13-1-T 13-2-T 13-1-B 13-2-B	0.35 0.73 0.22 0.16	1.72 1.37 1.73 1.34	0.54 0.28 0.36 0.18	0.09 0.02 0.05 0.13	0.95 0.92 1.45 1.61	2.71 11.7 7.52 10.2
14-1-T 14-2-T 14-1-B 14-2-B	1.25 0.27 0.46 0.11	1.63 1.27 1.24 1.62	0.24 0.21 0.49 0.86	0.13 0.02 0.03 0.05	1.46 0.87 1.24 1.86	3.25 3.78 2.60 5.98
15-1-T 15-2-T 15-1 - B 15-2-B	0.49 0.31 0.41 0.62	1.58 1.57 1.30 1.48	0.19 0.29 1.35 1.03	0.04 0.13 * 0.01 0.10	1.11 1.31 0.84 1.25	8.68 87.0 8.46 13.1
16-1-T 16-2-T 16-1-B 16-2-B	0.03 0.25 0.16 0.29	0.88 1.17 1.27 1.30	5.28 0.52 0.96 1.03	0.10 0.18 0.04 0.06	0.86 3.68 1.26 0.71	5.37 8.87 6.67 0.72
*			West Refe	erence Site		
17-1-T 17-2-T 17-1-B 17-2-B	0.08 0.08 0.16 0.10	1.05 1.36 0.95 1.10	0.30 0.52 0.79 0.88	0.06 0.06 0.02 0.05	2.27 1.42 1.83 2.14	5.11 4.10 1.19 2.69
18-1-T 18-2-T 18-1-B	0.05 0.05	0.85 0.92	0.22	0.25	3.88	10.7
18-2-B	0.07	1.74	0.35	0.08	3.09	4.51
				erence Site		
19-1-T 19-2-T	0.03	0.86	0.14	0.10	3.00 2.74	6.66
19-1-B 19-2-B	0.05	1.02	0.80	£1.0 £0.0	2.76	4.17 3.08
20-1-T 20-2-T 20-1-B	0.05 0.03 0.04	1.07 0.90 1.07	0.16 0.28 0.25	0.15 0.05 0.19	2.86 3.24 2.25	6.18 6.75 9.85
20-2-B	0.84	1.30	1.33	0.04	2.42	3.98

Table 12

Significance of Temporal, Depth, and Spatial Differences in Chemical Variables in Elliott Bay Water

				30 N 3 d 3 O N I	TRECHE	VARIABLES*	318			
DEPENDENT VARIABLES		11001			1000	c		P 0 5 1	tionit	
	-	2	3,4	-	2	3.4	1 6 3,4	2 2 3.4	182	3 2 4
Suspended solids	P \$ 0.01**	N.S.	¥, 5,	N.S.	N.S.	N.5.	N.S.	N.S.	N.S.	N.S.
Arsenic	P ≤ 0.01	N.S.	N.S.	ж.5.	N.S.	N.S.	N.S.	4.5.	N.S.	N.S.
Nanganase	p \$ 0.01	10.0 2 q	P ≤ 0.01	P ≤ 0.01	H.S.	p ≤ 0.01	N.S.	P 5 0.01	P 5 0.01	N.S.
Mercury	A.S.	N.S.	P 5 0.01	N.S.	N.S.	N.S.	P ≤ 0.01	P 5 0.01	P ≤ 0.01	P 5 0.01
Mitrate	P \$ 0.01	10.0 2 q	P 5 0.01	х.5.	N.S.	p \$ 0.01	н.5.	N.S.	N.S.	N.S.
Acronia	N.S.	P \$ 0.01	N.S.	P 5 0.01	N.S.	P \$ 0.01	N.S.	N.S.	M.S.	R.S.
Inorganic Phosphate P 5 0.01	P 5 0.01	10.0 2 4	P \$ 0.01	и.5.	p 2 0.03	P 5 0.01	N.S.	x.s.	N.S.	N.S.
Resertive Stilfcate	P 5 0.01 P 5 0.01	10.0 2 q	P 5 0.01	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.

Note: Time * sampling time: September or December, 1976; Depth * sampling depth: surface, middle, or deep; Position * station location: 1 - disposal site (stations 6, 7, 2 - mouth of Duwamish River (station 44), 3 - west reference site (station 19).
 ** Significance level: P \$ 0.05, 95% significance level; P \$ 0.01, 99% significance level; N.S. * not significant
 ** The independent variables of time and depth are analyzed by analysis of covariance at the indicated positions
 ** The independent variable, position, is analyzed by analysis of covariance with the significance of position compared by Scheffe's multicomparison test

Significance of Temporal, Depth, and Spatial Differences in Chemical Variables in Elliott Bay Sediments I was taken to the process of the pro

			2	AUENER	4	KIRBLES	-		
DEPENDENT YARIABLES* T 1	11	40 E	Desth	t ht		9	Position#		
	-	2.3	-	2.3	182	123	. 2.8.4	124	223
T.	p \$ 0.01+	. K.S.	p \$ 0.01	ж.5.	10.0 2 q	p ≤ 0.01	и.s.	N.S.	N.S.
53	p 5 0.01	0	N.S.	N.S.	p \$ 0.01	N.S.	p 2 0.01	N.S.	10.0 2 q
Mn (Sed)	p \$ 0.01		N.S.	p 2 0.05	N.S.	p \$ 0.05	N.S.	N.S.	N.S.
Mn (TV)	N.S.	N.S.	R.S.	p \$ 0.05	10.0 2 q	p \$ 0.01	10.0 ± q	N.S.	N.S.
As (Sed)	N.S.	R.S.	10.0 2 q	x.5.	K.S.	M.S.	p 2 0.05	M.S.	#.55
As (TX)	:	‡	N.S.	1.5.	R.S.	и.5.	N.S.	N.S.	M.S.
Hg (Sed)	P \$ 0.01	N.S.	p \$ 0.01	X.5.	N.S.	p \$ 0.01	N.S.	N.S.	p \$ 0.01
Cr (Sed)	N.S.	N.S.	p 2 0.05	N.S.	p \$ 0.01	N.S.	p \$ 0.01	N.S.	p 5 0.01
Free sulfice	M.S.	N.S.							
CF1 (> 2mm)	N.S.	N.S.	10.0 2 q	N.S.	N.S.	и.5.	N.S.	N.S.	R.S.
CF2 (1 - 2m)	M.S.	N.S.	10.0 £ ¢	N.S.	p ≤ 0.01	#.S.	N.S.	R.S.	p \$ 0.01
GF3 (0.5 - 1m)	N.S.	N.S.	0.0 5 g	N.S.	N.S.	p ≤ 0.01	N.S.	N.S.	p \$ 0.01
CF4 (0.25 - 0.5m)	N.S.	p 2 0.05	p \$ 0.01	N.S.	N.S.	p \$ 0.01	N.S.	p \$ 0.01	p \$ 0.01
silt (0.002 - 0.05m)) N.S.	N.S.	N.S.	и.5.	p ≤ 0.05	p \$ 0.05	N.S.	p \$ 0.01	p \$ 0.01
clay (< 0.002m)	N.S.	N.S.	ж.5.	#.S.	. N.S.	p \$ 0.01	N.S.	p \$ 0.05	p \$ 0.01
Inorganic phosphate p 5 0.01	10.0 £ q	N.S.	и.5.	R.S.	p ≤ 0.05	p \$ 0.05	N.S.	N.S.	N.S.
Amonfa	p \$ 0.01	D \$ 0.01	N.S.	R.S.	p \$ 0.01	p 2 0.01	p 2 0.05	p \$ 0.01	N.S.

Note: Sed = sediment, IN = interstitial water, CF = coarm fraction if non pipette enalysis
 Time = sampling time: September or December, 1975; depth = section of cone: too or bottom; position = station location: 1 - center of disposal site (stations 6, 7, 10, 11), 2 - wast reference site (stations 1ste (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16).
 of disposal site (stations 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16).
 t p = significance level; p ≤ 0.05, 95% significance level; p ≤ 0.01, 99% significance level; N.S. = not significant

The independent variables of time and depth are analyzed by analysis of covariance at the indicated positions -:"

The independent variable, position, is analyzed by analysis of covariance with the significance of position compared by Scheffe's multicomparison test.

Table 14

Pearson Correlation Coefficients Matrix for Seawater at Stations 5 and 10 (Disposal Site)

1,0,0,0		\$0¢	AS	2		2		NO3		NH3		70d	,	5	
100 5		1.0000	19561	-	6069.	١,	2913	:	3917	_	241	٠.	.3243	-	2339
741 1.0000	1	1	090 - 25	.5=	.001		1600	5=	.u29		.349	5=	.061	\$. 134
\$ = .000		.3241	1.0000		.3920	•	2693	•	4329	•	2503	•	.5120		.4308
300		(72)	10	_	176	-	11.2	-	241	-	24)	_	541	-	541
100			100 = 5	S=	620.	2=	.107	25	-017		•119	.5	500.	25	.013
411 = 241 (24) (24) (24) (24) (24) (24) (24) (24) (24) (24) (24) (24) (24) (23) (24) <t< td=""><td></td><td>6069.</td><td>0366.</td><td></td><td>.0000</td><td>•</td><td>2826</td><td>٠</td><td>5761</td><td>•</td><td>.3637</td><td>•</td><td>0642.</td><td></td><td>6072.</td></t<>		6069.	0366.		.0000	•	2826	٠	5761	•	.3637	•	0642.		6072.
#13		(72)	1 241	-	5	-	231	-	176	-	541	-	172	-	541
			620. =>		.001	23	960.	2=	.181	2=	070-	25	-102	2	.124
73) (23) (23) (23) (23) (23) (23) (23) (23) (24) (-	2413	2403	1	.2926	-	6000		2243		5510		66120	,	64348
917437919452293 1-000023948759 5-970		(52)	_	-	231	_	60	-	233		. 231	_	233	-	231
91743291945 -2293 1.0000 -2394 -8769 (24)	1	100. =5	5=	2=	950.	25	100.	2	.147	23	.473	=5	•02	. 5=	610.
24) (24) (24) (25) (0) (24) (2		3917	4329		.1945		2283	-	0000		.2394		.8769		.8144
719750835370122 -2394 1.0000 -1301 5= 719750835370122 -2394 1.0000 -1301 5= 719750835370122 -2394 1.0000 -1301 5= 7197508750 -478 5= .130 5= .001 5= .272 5= 743		(34)	(56)	-	24)		231	_	60	_	54)	_	241	-	241
		620 -5	5= .017	5	.18:	5=	.147	SE	100.	2=	.130		100.	2	.001
54) (24) (24) (24) (24) (24) (24) (24) (272 5 = .120 5 = .120 5 = .272 <td></td> <td>6110.</td> <td></td> <td>•</td> <td>.3537</td> <td></td> <td>6210</td> <td></td> <td>2394</td> <td>-</td> <td>0000</td> <td></td> <td>1301</td> <td></td> <td>.2404</td>		6110.		•	.3537		6210		2394	-	0000		1301		.2404
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		(76)	-	-	241	-	233	-	176	_	69	_	541	-	54)
-374151202630 -4122 -8769 -1301 1.0000 243 (24) (2		6yt - =5	611.	2	070-	25	.479	25	.130	2	100-	es:	.272	5	.129
24) (24) (24) (23) (24) (1	3243	5120		.2690	1	4122		6779	•	1301		0000.		.9436
-2419410924092409240424092		(54)	(52)	-	541	_	233	_	241	_	241	-	ê	-	192
-41092409 - 4246 .8144 .2404 .9415 1. 541 (241 (1	1	500- =5	10	-105	53	5000	23	.001	-2=	.272	2.	100.	5	100.
6= .018 S= .128 S= .019 S= .001 S= .129 S= .001 S=		erre			.2409		3767	•	8164		2000		9676.		00000-
G# .018 S# .128 S# .019 S# .001 S# .129 S# .001 S#	-	1 24.1			2:11		733	,	74.3		543		24.3		93
		921. =5			.123	2=	6:0.		100.	*	.129		.001	S	100.

* Note: SOL* suspended solids, NO3* nitrate, NH3* ammonia, PO4*inorganic phosphate, Si* reactive silicate.
** Matrix gives coefficients, number of points considered, and significance of coefficients.

Pearson Correlation Coefficients Matrix for Secuster at Stations 17 and 19 (Reference Stations)

	\$3F		45	š		10	NO3		NH3	70d		2
SUL	1.00	**0000	8650°		1040.	105		3003	.3063	,		
		-	5%	,	170	(24)		541	(24)	-		_
	. =5	. 1vu.	- 37	3 5=	066.	S= .140	E,	.071	5=73	3.5	810.	5x069
AS	,0.	.0493	1.0000	6		040		9356	5776.		328	-
	,			, ,	24.1	1 241	-					
	. =S	.373 9	100. =5	: 2=	.248	524. =5	2	077.	\$= .050	2	407.	\$= .306
;;	1090.		.132			.1850	•	4232	0497			4
	,		24		10	176	-	24.1	(24)			2
	S= .	.300	S= .268	8 5=	100.	5= .193	810- =5 1	.018	607 =5	\$ 5= .023		S= .013
94	-11956	556	040		.1855	1.0000	•	7756	25694			22
		170	52	-	176	(0)	-	176	(76)	,		2 1
	25	.140	525.	5 52	. Sa . 193	100 -=5	\$	570.	S= .102	750- =5		S= .149
E014	.3.	3093	.032	•		3544	:		1093		574	.85
		241	24	, ,		(56)	-		(24)	,		
	. =5	. 170.	77. =5	15	.440 S= .018	\$ +00.	1000 -5 . 5		\$.306	2	100.	100 - =5
6HM	.3	.3063	.346.	16	1570.	2504		1093	1.0003		140	.23
		176	77	-	541	1 24)		24.1	100	-	152	12)
	. =S	. 673 4	050 =5	-8 .	607- =5 0	5= -102		\$05. =2	100. =5	B	562.	5= .132
700		. 55679	.050		-4115	3779		4155.	.1160		990	.00.
			24		243	1 243	_		1 243			
		S	1070 =5	=5	.404 SE .023	Se 334	.5		\$62. =5	100 5		160. =5
15	.31	.3112	.1999		6157	2219		5090	.2374			1.0000
	, , , , , , , ,	541	1 24	, ,	1 741-	1 201	_	24.1	(54)	-	172	100
	- =5	040		25		27: "	-		6:1	,		

Note: Sol= suspended solids, NU3= nitrate, NH3= annonia, POA= inorganic phosphate, SI= reactive silicate.
 Matrix gives coefficients, number of points considered, and significance of coefficients.

....

Pearson Correlation Coefficients Matrix for Sediments at Stations 6, 7, 10, and 11 (Disnosal Site)

FH				THE SELL								,	225	•	
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	10	1.0200		2132	30	101	.3407	.0891		2765	1569	•	2047		.0219
\$\begin{array}{cccccccccccccccccccccccccccccccccccc			. S= .003	S= .006	S=	22	100.	5= 267	- 5	1160	Se .133	- 3	.013	- 5	407
	14	0152.	1.0000	•	20	17	7050.	7050.	;	2036	.052		2009	•	4160
\$ = .001			10 01	-	. 1. 11	11	110)	(25)	-	1173	165)	-	1100	-	1190
114.1			1000 =>	2=	S= .0	51	262. =		S	-015	\$5 .32	25	+10.	2.	.146
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	DESNA	2112	×151.	1.0000	15.	67	0502	1248	;	0108	. 009		8560.	٠	0128
Color Colo			(117)	(0)	11	60	1561		-	1531	(19)	•	125)	_	125
1001 -2047 -2747 1.0000 -1049 -1173 .0070 .0652 .2011 .201			150. =5	100 =5	S= -5	100	684.		25	.453	S= .47	2 5	.166		777.
1121 (1131 (1141 (MIN	3001	2047	.2767	1.60	00	1993	0489	•	1373	0700.		.0452		1690
\$\begin{array}{c c c c c c c c c c c c c c c c c c c			(113)	(119)		10	1551	(19)	-	1201	(29)	-	1221	_	1221
1100			\$165	. 5=001	2. =5	101	* Tu - = 5		S=	. 190.	S= .47	. 5	.238	2	.223
1191	ASSED	.3407	1050.	0502	19	60	1.0000	0593		4356	.0220		.1719	•	0752
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		(110)	(114)	(1251	12	121	16	(61)	•	1241	(62)	-	128)	_	1281
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		S= .001	202 = 5	5= .289	S= .0				25	100.	5= .43	3 5=	120.		156
\$ = .267	ACTU	1680.	7650	1249	04	0	0593	1.0000	;	6160	008		9900	•	9 . 0
\$= .267		115	1 521	(09)	4	111	613	0	,	611	(19)		613	_	4:1
1145 1177 1237 1265 0119 1.0000 1.0228 1.00000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000			S= .339	5= .171	S= .3	154	325	100. =5	5	705.	Sz .474	. 5=	.490	2.5	.47
S= .011	HIGSED	22745	2985	0103	13	173	.4356	0319		0000	.122	_	.0228	•	1020
S= .001 S= .012 S= .067 S= .001 S= .004 S= .001 Sx .172 S= .400 S= .001 Sx .172 S= .400 S= .001 S= .001 S= .000 S= .0001		(114)	(117)	(123)	1 12	100	1263	(19)	_	66	,	-	1261	_	125)
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	-	1	\$= .012	£57. =5	S=	167	1001 =5	707. =5	2.5	100.	2×	25	005.	2	.373
1 1 1 1 1 1 1 1 1 1	4194	6751	.0423		0.	170	.0220	0003		1223	-		1557		9570
\$ = .173 \$ = .379 \$ = .474 \$ = .473 \$ = .475 \$ = .975 \$ = .001 \$ = .112 \$ =		165	11.5	-		153	123	1:15		1.2.		-	650	_	623
			62k - = 5	2.	S= .4	.79	5= .433	414. =5	e co	.172	S= .00	E.S.	.112	2	.366
119) (119) (129) (129) (129) (61) (124) (62) (61) (62) (COSED	2747	2000	#500°	90.	CU	.1710	9500.	•	022B	.156		1.0000		0416
.013 <= .014 S= .234 S= .027 S= .440 S= .400 S= .112 S= .001 S= .013 <= .0219			(119)	1251	1 13	121	1221	(61)	-	1541	(29)	•	e	-	1281
1191 (1191 (1291 (1291 (1291 (611 (1261 (62) (1281 (1291 (611 (52) (1281 (611 (52) (1281 (52) (52) (1281 (52) (52			510· =5	5= .144	5=	860	220 - =5	\$= .490	20	007.	\$11.	5.	100.	2.5	.35
1191 (1191 (120) (120) (124) (61) (124) (62) (129) (120)	5	0219	0974	0129		200	0752	0088	i	1660	.045		.0416	-	.0000
.407 GE .146 SE .444 GE .273 SF .199 GE .473 SF .373 SE .362 SE .371 SE			(611)	1561	(1)			(19)		1541	129)	•	1281	-	6
	-		471 - 144	5= .444	S= 5			•	H C	.373	5= .35	23	176.	25	00.

Note: NNSED= sediment manganese, NNIW= interstitial water manganese, ASSED= sediment arsenic, ASIW= interstitial water arsenic, HGSED= sediment mercury, CRSED= sediment chromium, S= free sulfide.
 ** Matrix gives coefficients, number of points considered, and significance of coefficients.

Table 16 (Concluded)

	CF.1	CES		CF3		CF4		SILT	5-	CLAY	¥ ¥	P04	,	NA	*	2	
Ha	.3773		4092	1	1947		2154		.0740		9220.	1.	.0624	1.	.2681	1.	101.
	(119)	_	118)	_	1191	_	110)	-	113)	-	1177	-	1001	-	971	-	1001
-	1000 =5	-5=	100.	=5	-917	25	.010	5	.213	25	507.	-5	.549	25	700.	8	157
EH	.2511	•	5490	•	0550	•	952b	•	.1400	•	.9451		.2673	•	.3215		.0196
	(611-1)	-	119)	_	1191	_	113)	-	119)	-	116)	-	101	-	981	_	101
	S= .003	2=5	.003	2	.276	25	284	25	*90*		2765	2.5	.003	2	.001	2	.473
MASED	2273	•	2749	•	4731	•	19397		.6010	•	1037	•	.1278		6007		.024
	(521)	-	1251	-	1521		1241	-	125)	-	123)	-	1973	-	1001	_	1073
	500 - =5	= 5	1000	25	100.		5000	2	:00:		121.	25	- 045	2	.001	2	005.
MIN	1082-	1:	3279		1660		11137		.2198	•			.01120		.1819		4000
	(122)	-	1221	_	1221	_	1211	•	1221	-	1201	-	1163	-	107)	-	110
	S= .001	-25	100.	-5	.166	SE	.101	S.	.007	25	.381	N S	057.	2=	620.	2	.408
ASSED	1015.	•	6003	•	3446	•	5065		9960.		9428	•	.1073	•	1110		0130
	1531	-	1281	_	1281	-	1271	3	1283	-	126)	-	1101	-	1071	_	110)
	S= .001	2	100-	2=	.001	25	.001	S	.331	25	.243	2	.132	S	.455	S	.446
4910	0774	•	9510		2864	•	1357	•	.1945	•	.1030		0605	•	.0316		.1444
	(14)	-	611	_	611		109	-	613	-	165	-	603	,	561	•	603
	5-5	=	. 286	25	.013	2=	.070	S	190.	25	612.	S.	.323	2	.408	S=	.136
HGSED	.2472	!	3461		1615		3024		.0254		.0853		2140		0670	•	-1000
	(126)	_	1561	_	1261	_	1251	-	1241	-	124)	-	1001	-	1051	_	1001
	100 =5	5	100.	25	.007	=5	.001	S=	. 389	25	.173	5	.013	2=	.332	23	.152
M514	1257	:	2010-	:	9226	•	5770		-1703	•	1206.	•	90:1:0		.0163		6160.
	1 621	-	(29	-	62)	_	613	-	623	-	603	-	613	-	571		61
	\$4 .145		654.		794.	E	.340	K US	.000	"	.241		.179	e	.452	r vo	. 24.
Caseo		•	1922	-	6660	•	9010	-	.2204	•	9990		.1635		.1549		.0736
	(128)	,	1291	_	1201	-	1271	_	1281	_	1261	-	1100	-	1071		1100
	1100 =5		.015	2	.146		617.	2=	9000	25	.229	2	.044	5=	.051	2	.207
	1040		66160		6680		.1076	:	5950.	-	.0856		12000-	•	.1210	•	600.
	(124)	_	1281	_	1281		1271	_	1281	-	126)		1100	_	107)	-	1100
	6:1.	"		"	200	-	7.1.			1				•		•	

Table 17

Pearson Correlation Coefficients Matrix for Sediments at Stations 17 and 19 (Reference Stations)

	•	£	MNSED	FNIE	ASSED	ASIW	HGSED	HOIN	CBSED	s
I	1.0000	2150 (32) s= .119	1824	.0945 (31) S= .305		2830 (13) S= .174	. 1582 (31) S= . 198	1960	0576 (32) S= .317	.1773 (32) S= .166
2	156 1 156 1 151 = 2	1.0000	311.	1457	1239 (32) S= .448	.1200	0867 (18 31) 5= .321	-1943 (15) S= .244	.2979 (32) S= .049	2837 (35) S= .058
WASED	116 1 116 1 5= 163	5:597	1.0000	1 301 S= .163	(31) S= .371	. 131 (131 S= .377	301		0131 S= .472	-1285
31.72	31)	- 5	301	1.0000	1118	0340 (13) S= .456	-1406 (30) S= .229		.0728 (311 S= .349	
45560	156 - 1562 156 - 321	126 -	\$1.00.15 115. =2		1.0000		.8890 (11) S= .001	.9050 151 S= .001	5516 (32) S= .001	0210 321 5= .455
ASTÚ	0187. 181 471. =2	133	131	13) (13) S= .456	1 131 S= .001	1.0000		9161 (21 121 S= .001	. 7903 (11) S= .001	99.0000
HGSED	15A2 (31) 5= 109	0867	(30) S= .341	301	. 8880 (31) S= .001	(13) S= .001	1.0000	. 9771 (21 15)	5310 (18 31) S= .001	.0320
7194	.1940	151	151	-1664	9980	121.	. 151 . 153 	1.0000	5599 (15) S= .015	99.0000
Cocen	100 - 1 101 321	920.	1110 1117 5=2 -472	311.) (35) (35) (35)	, 7503 (13) S= .001	5319 (1231) S= -001	. 5509 151 S= .015	1.00003	1319 136 755. =2
	1771.	1583. 37 1		313	0:50 1.5k)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	31)	99.0000	1310 (56) S= .237.	1.0000

*Note: MUSED= sediment manganese, MUN= interstitial water ranganese, ASSED= sediment arsenic, ASSM= interstitial water arsenic, MGSED= sediment mercury, AGSM= interstitial water mercury, CRSED= sediment chromium, S= free sulfide.
 ** Matrix gives coefficients, number of points considered, and significance of coefficients.
 ** 99.0000= uncomputable

	CF1	CF?		CF3		CF4		SILT	1	CLAY	**	P.04	•	AH.	.,	51	
I d	.5325 (32) (52 . 101]	- "	321	. S.	3219	- "	.1488 32)		2741 (32) S= .109	- 5	525.063	- 5	281.	5	283	- 5	285
2	1969	5	32)	. J.s.	321	S	321		1942 (32) S= .143	- 5	323	5.8		- "5	5728 283	- 5	7.52
CASED	1 31) S = 2 491	- "	311	- "	3119	- "	3119	1	311	- 5.	311	- 5	.012	- 5	.4161 273 .015	- 6	.010
KINH	1820 (31) S= .164	- "	311	- 5	.0263	- 5	310	- "	313	- "5	5151.	- 0	-1406	~ "5	.3954	- 5	.084
ASSED		-0		- "		- "	1 32) (58	- 5	.5720	- "	32)			- "	.0572 281 .386	- 5	2925
ACIA	13) (13) 5= 101.	- "	13)	- "5	1636		13)	- 5	131	"	13751	- 5	121 123	- 5	2231	- "	121
HGCED	0461	31A1	1	31)	31)	- 5	2094	- S	3302	- 85	313	- 8	0196 (77) Sa461	- 5	.0301	- 5	271
H614	-3125	- "	7111.	· - 5	121 121	- (*	5000	• 41	3004	. "	. 130 1574.	. v	133	-8	.0039	~ 0	1870.
CBYED	105 1 105 1	- 5	32)	- "	121	- "	1981	1-2	.003	- "	1994	- 5	283	- 5	1317	- 5	.0950 281 .313
5	0240. (3) 125. = 2	- "	323	1321	1027 321	- 5	32)	- "5	126	- "	32)	- 5	0779 281	- 5	28)	- 5	281

and the

Table 18

Effect of Storace Upon Concentration of Arsenic in Interstitial Maters

	Arsente Con	centration.		Percent change in
Sample No.	As I 11/76	As2 5/77	As1 - As2	As concentration As1 - As2 (100)
3-2-T	0.026	0.016	-0.01	-38
5-2-8	0.034	0.013	-0.021	-62
6-2-T	0.179	0.056	-0.123	-63
6-1-8	0.163	0.068	-0.095	-58 .
7-2-8	0.070	0.025	-0.045	-64
8-1-B	0.108	0.044	-0.064	-59
8-2-B	0.106	0.057	-0.049	-46
9-2-T	0.013	0.043	+0.03	+231
9-2-B	0.013	0.069	-0.113	-62
11-1-T	0.028	0.018	-0.010	-36
11-2-T	0.028	0,020	-0.003	-29
11-2-B	0.043	0.048	+0.005	+12
20-1-T	0.059	0.025	-0.034	-58
20-2-8	0.053	0.013	-0.04	-75

*Note: All concentrations in mg/l.

Percent change in arsenic concentration = -75% to +231%;
mean decrease in arsenic concentration after 6 months = -55% (12 samples);
and mean increase in arsenic concentration after 6 months = +122% (2 samples.

Table 19

Effect of Storage and Sample Size Upon Concentration of Mercury in Interasticial Maters

Sample	Mercury cone	entration*	Sample	Change in Hg	Percent change in Hg
No.	11/76	6/11	size me	concentration	concentration
17-2-8	18	14	0.53	4	22
13-2-T	9	5	4.0	4	44
19-2-7	10	2	7.7	8	80
20-1-8	22	3	5.5	19	86

*Note: All concentrations in µg/1.

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Sugai, S

Aquatic disposal field investigations, Duwamish Waterway disposal site, Puget Sound, Washington; Appendix D: Chemical and physical analyses of water and sediment in relation to disposal of dredged material in Elliott Bay; Volume II: September-December 1976 / by S. Sugai ... tet al. J. University of Washington, College of Fisheries, Laboratory of Radiation Ecology, Seattle, Washington. Vicksburg, Miss.: U. S. Waterways Experiment Station; Springfield, Va.: available from National Technical Information Service, 1978.

24, [106] p.: iii.: 27 cm. (Technical report - U. S. Army Engineer Waterways Experiment Station; D-77-24, Appendix D, v.2) Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C., under Contract No. DACW39-76-C-0167 (DMRP Work Unit No. 1A10D)

Tables 1-19 on microfiche in pocket. References: p. 24.

Aquatic environment.
 Bottom sediment.
 Chemical analysis.
 Dredged material.
 Dredged material disposal.

(Continued on next card)

Sugai, S
Aquatic disposal field investigations, Duwamish Waterway
disposal site, Puget Sound, Washington; Appendix D: Chemical
and physical analyses of water and sediment ... 1978. (Card 2)

6. Duwamish Waterway. 7. Elliott Bay. 8. Field investigations. 9. Waste disposal sites. 10. Water analysis. 11. Water quality. I. United States. Army. Corps of Engineers. 11. Washington (State). University. Laboratory of Radiation Ecology. 111. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Technical report; D-77-24, Appendix D, v.2) TA7.W34 no. D-77-24 Appendix D v.2