ARM program

CSC 236

ARM program

- Read specification
 - O Due date: see syllabus
- Team assignment (optionally)

Assignment

- Write the "KEY" program in ARM
 - See KEY assignment for details
 - One difference
 - Ignore '.' (period)
 - We can just read until the end-of-file

- Read a line of ASCII text
 - Input and output strings
 - For each character in input string :
 - uppercase output
 - lowercase capitalize and output
 - blank output
 - other ignore
 - At end of input string
 - write output string to file
 - write cRLF to file
- Repeat till read string SWI indicates EOF
- Close input & output file

Steps

- Step 0 install ARMsim
- Step 1 create design
 - Model after KEY (same code organization, different instructions)
 - Use hello.s, copystr.s, copyfile.s as examples
 - Think about conditionally executed instructions
- Step 2 code solution
 - O Name file armkey.s

Steps

- Step 3 test/debug
 - Use sample file key.in
 - Modify for additional tests
 - Use ARMsim to read, assemble, run
 - Output data into key.out
 - Verify key.out is correct
- Step 4 grade
 - Follow instructions in specification
 - O Need to execute in ARMsim and grade in DOSbox
- Step 5 submit
 - o arm.ans created by gradarm.exe (in DOSbox)

Design

- In 8086, maybe you used xlat
 - al = bx[al]; // C syntax
 - al gets the value at memory location bx+al
- ARM doesn't have that instruction
 - - But, you can implement it yourself
 - ... using indirect addressing.
 - ldr r1, [r2, r3] ; r1 = [r2+r3]
 - Use one register for the start of the
 - translation table
 - Another for the offset into the table.

C

b

а

Α

sp

В

*

C

В

Α

*

- Α
- *
- *
- *
- *

*

sp

*