진리-진리를 공유하는 전문인

• 자기주도학습을 통한 전문성 계발 • 전문지식을 통한 지역과 세계에 기여

정의-정의에 공감하는 세계시민

• 관용과 배려를 통한 자발적 나눔 • 이성과 감성을 통한 공동체 소통 창의-창의로 공명하는 지도자

• 다원적 사고를 통한 문제 해결 • 능동적 실천을 통한 미래 개척

2021학년도 제 2 학기 중간시험							감독교수 확인란			
시험과목	강조	·번호 501103		교과	목명	디지	털영상처리 II	담당교수	김 남 규	
응시대상	학과			학년		학번		성명		

1. (10점) 다음 괄호 안에 가장 적절한 단어를 보기에서 선택하시오

〈보기〉

Periodic Noise, Histogram, Salt-Pepper Noise, Contrast, Band-stop Filter, Fourier Transformation, Spatial Resolution, Brightness, Gaussian Noise, Fourier Series, Band-pass Filter, Intensity Resolution

- ① (): 모든 주기 함수는 각기 다른 주파수의 sine과 cosine에 각기 다른 계수를 곱한 합으로 표현 가능하다는 것으로 기저함수의 선형 결합 형태를 보인다.
- ② (): 특정 범위의 주파수 성분을 감쇠시키는 필터로 저주파 필터와 고주파 필터의 조합으로 생성하며, 특히 좁은 범위의 감쇠 필터를 노치 필터라고 부른다.
- ③ (): 식별 가능한 가장 작은 디테일(명세) 척도로 단위 거리당 점이나 선의 수로 나타내며 dpi, ppi 등의 단위로 표현한다.
- ④ (): 이미지 상의 객체들을 얼마나 잘 구분할 수 있는가의 정도를 표현하는 기준으로 밝기 값(intensity)의 분포가 넓게 퍼져 있는 경우 좋다고 설명한다.
- ⑤ (): 영상 취득시 발생하는 오류로 밝기 세기의 급격한 저하나 상 승으로 인해 흐트러진 검은색과 흰색 픽셀들이 나타나는 결과를 말한다.

2. (10점) 문장에 대해서 맞으면 O, 틀리면 X를 선택하시오.

- ① (O, X) 영상의 크기를 늘릴 때 주변으로 정보를 가져와 새롭게 생긴 위치에 픽셀값을 보간하게 되는데 이때 원하지 않는 앨리어싱(aliasing) 효과가 발생한다.
- ② (O, X) 이산 푸리에 변환을 실제 구현할 때 복잡도가 너무 높으므로, 푸리에 변환이 갖는 주기성과 대칭성을 활용하여 빠른 연산이 가능한 고속 푸리에 변환으로 구현하여 활용한다.
- ③ (O, X) 닫힘(closing) 형태학적(morphological) 연산은 팽창(dilation)과 침식(erosion)을 순차적으로 적용한 연산으로 모호한 연결을 강하게 하고 내부 구멍을 메우는 효과가 있다.
- ④ (O, X) 푸리에 변환의 결과는 복소수이므로 우리가 해석하기 위해 실수부와 허수부가 이루는 각(angle)을 푸리에 스펙트럼으로 정의하여 필터링 연산을 수행하게 된다.
- ⑤ (O, X) 히스토그램 평활화는 균등 확률 밀도 함수(uniform PDF)를 갖도록 주어진 영상의 히스토그램으로 변환하는 것으로 선형적인 히스토그램 영상에서 좋은 효과를 얻을 수 있다.

3. (10점) 다음 3x3 영상의 중심 위치에 대한 Box(평균값) 필터와 Median(중간값) 필터의 필터링 결과를 구하시오.

주	어진 '	영상	Box 필터링 결과	Median 필터링
3	7	2		
1	1	0		
9	5	8		

4. (10점) 에지 검출에 있어 영교차(Zero-crossing)는 매우 중요한 의미가 있다. 그 영교차 특성을 반영한 LoG(Laplacian of Gaussian)와 DoG(Difference of Gaussian)의 원리를 설명하시오.

LoG (Laplacian of Gaussian)	DoG (Difference of Gaussian)

5. (10점) 다음은 케니 에지 검출기(Canny Edge Detector)의 단계별 내용이다. 순서에 맞게 정렬하고, 보기에서 각 단계에 부합하는 용어를 보기에서 찾아 쓰시오.

_____ 〈 보 기 **〉**

Smoothing, Gradient computing, Non-maximal suppression, Hysteresis thresholding

1)	에지로 구분된 픽셀이 실제 에지인지를 결정하기 위해 최소값(min)과 최대값(max)으로 정의되는 임계 범위로 구별
2	잡음 증가 오류를 미리 제거하기 위해 가우시안(Gaussian) 필터링 수행
3	에지를 보다 정확하고 가늘게 만들기 위해 그레디언트(에지의 수직) 방향으로 이웃 픽셀을 관찰하여 최고치만을 살리고 나머지는 영 값으로 제거
4	그레디언트(Gradient) 연산자를 이용해 에지의 변화 크기와 방향을 계산

번호	 	_	_
(용어)			

6. (10점) 다음은 영상 특징 서술자를 뜻하는 약어이다. 원래의 단어를 풀어 쓰고, 각 특징 서술자의 특성 또는 생성 방법 등을 간단히 서술하시오. (예, HoG: Histogram of Gradient, 주변 픽셀의 변화 방향을 양자화한 히스토그램...)

BRIEF	
ORB	
SURF	

7. (10점) 다음 4x4 영상의 적분 영상(integral image)을 만들고, $A(x,y) = \sum_{x' \le x,y' \le y} I(x',y')$ 주어진 2개의 Haar wavelet의 반응값을 간단히 계산하시오.

주어진 영상						즈	분영	상		Haar Wavelet		
						0	0	0	0	-1 +1	1	
1	2	2	3		0					+1	+1	
2	1	4	1		0					반응값	반응값	
1	2	2	1		0							
3	3 1 2 1				0							

8. (10점) 임의의 윈도우 상에서 계산한 그레디언트 공분산 행렬(gradient covariance matrix) M 에 대하여 수식 $R=det(M)-x\cdot trace^2(M)$ 의 부호로 판단할 수 있는 특징을 정의하시오. ($det M=\lambda_1\cdot\lambda_2$, $trace M=\lambda_1+\lambda_2$, λ_1,λ_2 는 M 의 고유벡터)

R < 0	
$R \ll 0$	
R > 0	

9.	아핀 변환	영상 간에 대응점(Corresponding points)이 존재하고, 그 정보를 활용하여 (Affine transformation)을 계산하는 방법인 LSM과 RANSAC의 용어를 각 방법의 장단점을 기술하시오				
	LSM					
	RANSAC					
10	구현한 프	다음은 OpenCV python 라이브러리의 SIFT를 이용한 두 영상 간의 매칭을 프로그램의 일부분이다. 보기에 적절한 내용을 참고하여 프로그램을 완성하시오. (보기〉 SIFT_create, append, BFMatcher cv2.imread('book_src.png')				
	gray_src= img_dst =	cv2. imread('book_src.png') cv2.imread('books_dst.png') cv2.cvtColor(img_dst,)				
	<pre>sift = kp_src, desc_src = kp_dst, desc_dst = sift.detectAndCompute(gray_dst, None)</pre>					
	bf = matches =	bf.knnMatch(
	if m1	2 in matches: .distance < 0.75*m2.distance: ood_matches.				
	img_match	= cv2.drawMatchesKnn(img_src, kp_src, img_dst,				
		- 끝 -				