Lips reading to visual speech recognition.

Universidad Industrial de Santander

Juan Felipe Chacón Lopéz Mario Hernan Vallejo Huertas

Inteligencia Artificial II First delivery

What's lip reading?

Lip reading is a speech understanding technique by visually interpreting the movements of the lips, face and tongue when **normal sound is not available.**

Lip reading is mainly used by deaf and hard of hearing people, people with normal hearing generally process visual information from the mouth that moves at a subconscious level.

- Survey on automatic lip-reading in the era of deep learning
- <u>Lip-Reading Driven Deep Learning Approach for Speech Enhancement</u>
- Lip Reading Sentences Using Deep Learning With Only Visual Cues

Lip Reading Sentences Using Deep Learning With Only Visual Cues

Universidad Industrial de Santander

Related works approaches.

The most recent approaches to automated lip reading are deep learning-based and they largely focus on decoding long speech segments in the form of:

- Words and sentences using either words.
- ASCII characters.

Both of them used as the classes to recognize.

About dataset

MIRACL-VC1 is a lip-reading dataset including both depth and color images (in this work we only use color images), it was obtained from kaggle.

- 10 Women
- 5 Men

- 10 Sentences
- 10 Instances

['F01','F02','F04','F05','F06','F07','F08','F09', 'F10','F11','M01','M02','M04','M07','M08']

['Begin', 'Choose', 'Connection', 'Navigation', 'Next', 'Previous', 'Start', 'Stop', 'Hello', 'Web']

Mouth segmentation

Due to the size of the images it was necessary to reduce their size, openCV was used to segment the region corresponding to the mouth.

Model1_3D-CNNs

loss='categorical_crossentropy',
optimizer='Adagrad',
metrics=['accuracy']

Dense

Model2_3D-CNNs-LSTM

Dense

loss='categorical_crossentropy',
optimizer='Adagrad',
metrics=['accuracy']

Model3_3D-CNNs-GRU

Dense


```
loss='categorical_crossentropy',
optimizer='Adagrad',
metrics=['accuracy']
```


Model1_3D-CNNs

Accuracy = 0.26 on completely unseen data

Model2_3D-CNNs-LSTM

Universidad Industrial de Santander

Accuracy = 0.14 on completely unseen data

Model3_3D-CNNs-GRU

Accuracy = 0.18 on completely unseen data

www.uis.edu.co

Optical flow (Lucas Kanade) describes a sparse or dense vector field, where a displacement vector is assigned to certain pixel position, that points to where that pixel can be found in another image.

Model1_3D-CNNs_Lukas-Kanae

Model2_3D-CNNs-LSTM_Lukas-Kanae

loss='categorical_crossentropy',
optimizer='Adagrad',
metrics=['accuracy']

The best Model1_3D-CNNs

Star experimentation

Model1_3D-CNNs

Dense Activation ReLu

Accuracy = 0.26 on completely unseen data

Accuracy = 0.31 on completely unseen data

www.uis.edu.co

loss='categorical_crossentropy'

optimizer='Adagrad'

metrics=['accuracy']

Model1_3D-CNNs

Dense Activation ReLu

Accuracy: 0.045000 Precision: 0.014484 Recall: 0.045000 Fl score: 0.021909

Cohens kappa: -0.061111

Model1_3D-CNNs

Dense Activation tanh

Accuracy: 0.195000 Precision: 0.114214 Recall: 0.195000 F1 score: 0.131806


```
['Begin', 'Choose',
'Connection',
'Navigation', 'Next',
'Previous', 'Start',
'Stop', 'Hello', 'Web']
```


loss='categorical crossentropy'

optimizer=Adam

metrics=['accuracy']

Model1_3D-CNNs

Dense Activation ReLu

Accuracy: 0.130000 Precision: 0.074604 Recall: 0.130000 F1 score: 0.087352 Cohens kappa: 0.033333

Model1_3D-CNNs

Dense Activation tanh

Accuracy: 0.230000 Precision: 0.171074 Recall: 0.230000 F1 score: 0.183518 Cohens kappa: 0.144444


```
['Begin', 'Choose',
'Connection',
'Navigation', 'Next',
'Previous', 'Start',
'Stop', 'Hello', 'Web']
```


Some conclusions

- It's important to optimize use of resources in problems with a large size data to avoid OOM errors.
- RNN has shown improvements NLP problems like video to speech, but i this case our knowledge due to dataset structure has prevented us from obtaining good results.
- Real-life problems related with speech recognition are a hard problem to solve with classic CNN networks.
- Preprocessing data is not always a good idea and it's necessary to be careful about.
- · Dataset that we use is kind a real-life datasets.

Universidad Industrial de Santander

#LaUISqueQueremos

Gracias!