1 Régression linéaire simple

Postulats

 \mathbf{H}_1 Linéarité : $E[\varepsilon_i] = 0$

H₂ Homoscédasticité : $Var(ε_i) = σ^2$

H₃ Indépendance : $Cov(\varepsilon_i, \varepsilon_i) = 0$

H₄ Normalité : $\varepsilon_i \sim N(0, \sigma^2)$

Modèle

$$E[Y_i|x_i] = \beta_0 + \beta_1 x_i$$

$$Var(Y_i|x_i) = \sigma^2$$

$$Y_i|x_i \stackrel{\mathbf{H}_4}{\sim} N(\beta_0 + \beta_1 x_i, \sigma^2)$$

Estimation des paramètres

$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} Y_{i} - \bar{Y} \sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} x_{i}^{2} - \bar{x} \sum_{i=1}^{n} x_{i}} = \frac{S_{XY}}{S_{XX}}$$

Estimation de σ^2

$$\hat{\sigma^2} = s^2 = \frac{\sum_{i=1}^n \hat{\varepsilon_i}^2}{n - p'} = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n - 2}$$

Propriété des estimateurs

$$E\left[\hat{\beta}_{1}\right] = \beta_{1} \quad , Var(\hat{\beta}_{1}) = \frac{\sigma^{2}}{S_{XX}}$$

$$\hat{\beta}_{1} \stackrel{H_{4}}{\sim} N(\beta_{1}, \frac{\sigma^{2}}{S_{XX}})$$

$$E\left[\hat{\beta}_{0}\right] = \beta_{0} \quad , Var(\hat{\beta}_{0}) = \sigma^{2}\left(\frac{1}{n} + \frac{\bar{X}^{2}}{S_{XX}}\right)$$

$$\hat{\beta}_{0} \stackrel{H_{4}}{\sim} N(\beta_{0}, \sigma^{2}\left(\frac{1}{n} + \frac{\bar{x}^{2}}{S_{XX}}\right)$$

$$Cov(\hat{\beta}_{0}, \hat{\beta}_{1}) = -\frac{\bar{x}\sigma^{2}}{S_{XX}}$$

Tests d'hypothèse sur les paramètres

$$H_0: \hat{eta} = heta_0$$
 , $H_1: \hat{eta}
eq heta_0$
$$t_{obs} = \frac{\hat{eta} - heta_0}{\sqrt{Var(\hat{eta}}} \sim T_{n-2}$$
 On Rejette H_0 si $t_{obs} > |t_{n-2}(1 - rac{lpha}{2})|$

Intervalle de confiance

Pour la droite de régression ($E[Y_0|x_0]$)

Sachant que
$$E\left[Y_0|x_0\right] = \beta_0 + \beta_1 x_0$$
, on a l'IC suivant
$$\hat{Y_0} \pm t_{n-2} \left(\frac{\alpha}{2}\right) \sqrt{s^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)}$$

Pour la prévision de Y_0

Sachant que
$$Y_0 = \beta_0 + \beta_1 x_0 + \varepsilon$$
, on a l'IC suivant
$$\hat{Y_0} \pm t_{n-2} \left(\frac{\alpha}{2}\right) \sqrt{s^2 \left(1 + \frac{1}{m} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)}$$

Analyse de la variance (ANOVA)

Source	dl	SS	MS	F
Model	р	$\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 $ (SSR)	$SSR/dl_1 \ (MSR)$	MSR MSE
Residual error	n-p'	$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 $ (SSE)	$SSE/dl_2 (MSE = s^2)$	
Total	n-1	$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 $ (SST)		

Coefficient de détermination

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
 On a aussi la relation suivante avec F_{obs}
$$F = \frac{R^2}{1 - R^2} \cdot \frac{n - p'}{p}$$

Test F de Fisher pour la validité globale de la régression

On rejette
$$H_0: \beta_1=\beta_2=...=\beta_p=0$$
 si
$$F_{obs}=\frac{MSR}{MSE}\geq F_{n,n-p'}(1-\alpha)$$
 où p est le nombre de variables explicatives dans le modèle

où p est le nombre de variables explicatives dans le modèl (régression linéaire simple, p = 1 et p' = p + 1.

Distribution d'un résidu ε

$$E\left[\mathcal{E}_{i}\right]=0$$
, $Var\left(\mathcal{E}_{i}\right)=\sigma^{2}(1-h_{ii})$
où $h_{ii}=\frac{1}{n}+\frac{(\bar{x}-x_{i})^{2}}{S_{XX}}$.

2 Régression linéaire multiple

Le modèle et ses propriétés

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times p'}\boldsymbol{\beta}_{p'\times 1} + \boldsymbol{\varepsilon}_{n\times 1}$$

$$E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta} \quad , Var(\mathbf{Y}) = \sigma^{2}\mathbf{I}_{n\times n}$$

$$Y \stackrel{H_{4}}{\sim} N_{n}(\mathbf{X}\boldsymbol{\beta}, \sigma^{2}\mathbf{I}_{n\times n})$$

Paramètres du modèle

Estimation et propriétés des paramètres

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$$

$$E \left[\hat{\boldsymbol{\beta}} \right] = \boldsymbol{\beta} \quad , Var(\mathbf{Y}) = \sigma^{2} (\mathbf{X}^{\top} \mathbf{X})^{-1}$$

$$\hat{\boldsymbol{\beta}} \stackrel{H_{4}}{\sim} N_{p} (\boldsymbol{\beta}, \sigma^{2} (\mathbf{X}^{\top} \mathbf{X})^{-1})$$

Intervalle de confiance sur les paramètres

$$\begin{split} \left[\hat{\pmb{\beta}} \pm t_{n-p'} (1-\frac{\alpha}{2}) \sqrt{s^2 v_{jj}} \right] \\ \text{où } v_{jj} \text{ est l'élément } (i,i) \text{ de la matrice } (\pmb{X}^{\top} \pmb{X})^{-1}. \end{split}$$

Estimation de σ^2

$$\hat{\sigma}^2 = s^2 = \frac{\hat{\varepsilon}^\top \hat{\varepsilon}}{n - p'}$$

Test d'hypothèse sur un paramètre du modèle

On rejète
$$H_0: eta_j = 0$$
 si
$$|t_{obs,j}| = rac{eta_j \sqrt{n-p'}}{\sqrt{v_{jj} \hat{oldsymbol{arepsilon}}^{ op}}} > t_{n-p'} \left(1 - rac{lpha}{2}
ight)$$

Propriétés de la droite de régression

$$\hat{\mathbf{Y}} = \mathbf{X}\boldsymbol{\beta}$$

$$= \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

$$= \mathbf{H}\mathbf{Y}$$
où $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ est la hat matrix.
On a aussi que
$$E\left[\hat{\mathbf{Y}}\right] = \mathbf{X}\boldsymbol{\beta} \quad , Var(\hat{\mathbf{Y}}) = \sigma^{2}\mathbf{H}$$

$$\hat{\mathbf{Y}} \stackrel{H_{4}}{\sim} N_{n}(\mathbf{X}\boldsymbol{\beta}, \sigma^{2}\mathbf{H})$$

Pour les résidus de la droite de régression, on a

$$E\left[\hat{\mathbf{\varepsilon}}\right] \stackrel{H_1}{=} 0 \quad , Var(\hat{\mathbf{\varepsilon}}) = \sigma^2(\mathbf{I}_{n \times n} - \mathbf{H})$$
$$\hat{\mathbf{\varepsilon}} \stackrel{H_4}{\sim} N_n(0, \sigma^2(\mathbf{I}_{n \times n} - \mathbf{H}))$$

Intervalle de confiance pour la prévision

Théorème de Gauss-Markov

Selon les postulats
$$H_1$$
 à H_4 , l'estimateur $\mathbf{a}^{\top} \hat{\boldsymbol{\beta}} = \mathbf{a}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$ est le meilleur estimateur pour $\mathbf{a}^{\top} \boldsymbol{\beta}$ (BLUE : Best linear unbiaised estimator).

I.C. pour la prévision de la valeur moyenne $E[Y|X^*]$

$$\left[\mathbf{X}^{*\top}\hat{\boldsymbol{\beta}} \pm t_{n-p'} \left(1 - \frac{\alpha}{2}\right) \sqrt{s^2 \mathbf{X}^{*\top} (X^\top X)^{-1} X^{*\top}}\right]$$

I.C. pour la valeur prédite $\hat{Y}|X^*$

$$\left[\mathbf{X}^{*\top} \hat{\boldsymbol{\beta}} \pm t_{n-p'} \left(1 - \frac{\alpha}{2} \right) \sqrt{s^2 \left(1 + \mathbf{X}^{*\top} (X^\top X)^{-1} X^{*\top} \right)} \right]$$

Analyse de la variance

Tableau ANOVA

- > On utilise le même tableau ANOVA qu'en régression linéaire simple.
- > $SSR_{r\'{e}gression} = \sum_{i=1}^{p} SSR_{i}$, où SSR_{i} représente le SSR individuel de la variable explicative i calculé par R. On peut ensuite trouver MSR et la statistique F_{obs} .

Test F pour la validité globale de la régression

Même test qu'en régression linéaire simple.

Test F partiel pour la réduction du modèle

Avec k < p, on va rejeter

$$H_0: Y_i = \beta_0 + \beta_1 x_{i1} + ... \beta_{ik}$$
 (modèle réduit)

Pour

$$H_1: Y_i = \beta_0 + \beta_1 x_{i1} + ...\beta_{ip}$$
 (modèle complet)

Si

$$F_{obs} = \frac{(SSE^{(0)} - SSE^{(1)})/\Delta dl}{SSE^{(1)}/(n-p')} \ge F_{p-k,n-p'}(1-\alpha)$$

où $\Delta dl = p - k$, $SSE^{(0)}$ pour le modèle réduit (H_0) et $SSE^{(1)}$ pour le modèle complet (H_1).