

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA TECNOLOGIA DO CEARÁ ENGENHARIA DE COMPUTAÇÃO

Paulo Henrique Araujo Nobre Matheus Holanda Matos Izabella Leticia Marques Silveira

RESOLUÇÃO DE ATIVIDADE DA AULA 27

Introdução:

Resolução de uma atividade ofertada pela disciplina Probabilidade e Estatística do turno vespertino do Instituto Federal do Ceará (IFCE), no qual serão mostrados os passos efetuados para a resolução dos problemas de acordo com as explicações sobre a matéria a qual o exercício teve embasamento. O assunto da atividade é sobre "Intervalo de Confiança".

Desenvolvimento:

Daremos início a resolução encontrando uma variável necessária em comum aos três resultados que procuramos: $Z(1-\alpha)/2$, no qual, " $(1-\alpha)$ " é o nível de confiança.

Para encontrá-la, é necessário usar a variável dada pela questão, nível de confiança e dividi-la por 2 para obter o valor correspondente na tabela abaixo:

Zo	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
00	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000

Com a tabela, encontramos o valor de $Z(1-\alpha)/2$ igual à 1,96, com isso, podemos calcular o intervalo de confiança de cada um pedido separadamente.

Muito Satisfeito:

Muito Satisfeito = 24,2%;

Com isto vemos o valor de P:

$$P = 0.242$$

Podemos encontrar agora o valor de q:

A partir de agora podemos calcular o desvio padrão amostral:

$$\sigma = \sqrt{((q * P) / n)}$$
 Sabendo que n = 66
 $\sigma = \sqrt{((0,242 * 0,758) / 66)}$
 $\sigma = 0.0527$

Subsequentemente, podemos encontrar os valores de a e b:

$$a = P - (\mathbb{Z}_{(1-\alpha)/2} * \sigma)$$

$$a = 0.242 - (1.96 * 0.0527)$$

$$a = 0.1387$$

$$a = 13.87\%$$

$$b = P + (\mathbb{Z}_{(1-\alpha)/2} * \sigma)$$

$$b = 0.242 + (1.96 * 0.0527)$$

$$b = 0.3452$$

$$b = 34.52\%$$

Logo, assim temos que o intervalo de confiança:

Em seguida, calcularemos o valor do erro de estimação cometido no processo:

$$e = \mathbb{Z}_{(1-\alpha)/2} * \sigma$$

 $e = 0,1032$
 $e = 10,32\%$

Satisfeito:

Satisfeito = 65,2%

Com isto vemos o valor de P:

$$P = 0.652$$

Podemos encontrar agora o valor de q:

A partir de agora podemos calcular o desvio padrão amostral:

$$\sigma = \sqrt{((q * P) / n)}$$
 Sabendo que n = 66
 $\sigma = \sqrt{((0,348 * 0,652) / 66)}$
 $\sigma = 0,0586$

Subsequentemente, podemos encontrar os valores de a e b:

$$a = P - (\mathbb{Z}_{(1-\alpha)/2}2 * \sigma)$$

$$a = 0,652 - (1,96 * 0,0586)$$

$$a = 0,5371$$

$$a = 53,71\%$$

$$b = P + (\mathbb{Z}_{(1-\alpha)/2} * \sigma)$$

$$b = 0,652 + (1,96 * 0,0586)$$

$$b = 0,7668$$

$$b = 76,68\%$$

Logo, assim temos que o intervalo de confiança:

Em seguida, calcularemos o valor do erro de estimação cometido no processo:

$$e = Z_{(1-\alpha)/2} * \sigma$$

 $e = 0,1148$
 $e = 11,48\%$

Insatisfeito:

Insatisfeito = 10,6%

Com isto vemos o valor de P:

$$P = 0.106$$

Podemos encontrar agora o valor de q:

A partir de agora podemos calcular o desvio padrão amostral:

$$\sigma = \sqrt{((q * P) / n)}$$
 Sabendo que n = 66
 $\sigma = \sqrt{((0.894 * 0.106) / 66)}$
 $\sigma = 0.0378$

Subsequentemente, podemos encontrar os valores de a e b:

$$a = P - (\mathbb{Z}_{(1-\alpha)/2} * \sigma)$$

$$a = 0.106 - (1.96 * 0.0378)$$

$$a = 0.0319$$

$$a = 3.19\%$$

$$b = P + (\mathbb{Z}_{(1-\alpha)/2} * \sigma)$$

$$b = 0.106 + (1.96 * 0.0378)$$

$$b = 0.18$$

$$b = 18\%$$

Logo, assim temos que o intervalo de confiança:

Em seguida, calcularemos o valor do erro de estimação cometido no processo:

$$e = \mathbb{Z}_{(1-\alpha)/2}) * \sigma$$

 $e = 0.0740$
 $e = 7.4\%$

Conclusão:

Com os valores encontrados, podemos concluir destacar o erro cometido no processo:

Muito Satisfeito:

Satisfeito:

Insatisfeito:

Referências:

- https://www.youtube.com/watch?v=aA9--CeP5gw
- https://proeducacional.com/ead/curso-cga-modulo-i/capitulos/capitulo-4/aulas/distribuicao-de-probabilidades-distribuicao-normal/