

Emissions from mine tailings: spatially- and temporallyresolved life cycle assessment

Lugas Raka Adrianto, Stephan Pfister, Stefanie Hellweg
Group for Ecological Systems Design, Institute of Environmental Engineering, ETH Zurich, Switzerland

SETAC Europe 30th Annual Meeting, May 2020

How do we quantify tailings emissions?

Legacy pollution (Lottermoser, 2010):

- Long-term emissions like 'landfill' (i.e., mine drainage)
- Structure stability

New models needed to estimate tailings emissions

- Geochemical model as a tool to assess long term prediction (Dijkstra, 2018)
- Tailings dataset is available in Ecoinvent, differentiated by metal type and country-level
 - Averaged concentrations, no physical & chemical interactions
- Temporal perspectives matter when dealing with long-term heavy metal emissions (Bakas, 2015)
- However, different tailings have different compositions (mineralogy)
 - Deposits origin and technology-dependent
 - Minerals can act as buffers or enhance metal releases

The necessity to consider site-specific factors

Case studies

Inventory (release) modelling

- Geochemical approach:
 - Integrating factors (mineralogy, climate conditions) that contribute to heavy-metals release over time
 - Complexation and dissolution/ precipitation of minerals
 - Making use of comprehensive geochemical database 'PHREEQC' and 'Wateq4f' (Parkhurst, 2013; Nordstrom, 2002)

Geochemical model

Parameterization and outputs

Site-specificity

Parameters

- Homogeneous tailings composition
- Water composition
- Matrix infiltration rate (PR)

Mineralogy

Buffers:

- Calcite
- Siderite
- Ferrihydrite
- Gibbsite

Simulation

Leached mass of species over time (M_x, total)

$$M_{x, total} = \sum_{t=t_0}^{t_1} PR.t_{timestep}.(C_x(t))$$

Dissolution of minerals and major buffers over time

Concentrations of leachate vs. groundwater limit

Forward-looking LCA (USETox, freshwater ecotoxicity)

Choice of LCIA methods

FU: 1 kg tailings, after 100 years and 60,000 years

Comparison of transfer coefficients after 100 years

Species	Simulated (this study)	Ratio	Ecoinvent (current database)
Cd	3.5×10^{-9}	0.3	1.4×10^{-8}
Cu	4.5×10^{-6}	15	3.0×10^{-7}
Zn	2.2×10^{-5}	23	9.7×10^{-7}

- Differences due to consideration of thermodynamics and mineralogy inputs
- For simulated case, Cu and Zn have been completely leached out after 60,000 years

Outlook: Towards global assessment

An opportunity to improve consistency of tailings emissions LCA of metal production

Data compiled from: USGS Minerals Resources; S&P Market Intelligence; Mudd et. al 2018; Companies' reports)

Conclusion

- The approach parameterizes the model of tailings emissions
- Geochemistry and infiltration rate control releases of heavy metals
- Possibility to include different time horizons in tailings inventory
- Choice of time horizon affects the overall LCA results

ETH zürich

Acknowledgment

This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement # 812580

Kindly send your questions via live chats © Thanks

