Package 'svarCAL'

April 5, 2023

Type Package

Title Calibration using Structural VAR model

Version 0.1.0

Author Sebastiaan Tieleman

Maintainer The package maintainer <yourself@somewhere.net>

Description More about what it does (maybe more than one line)
Use four spaces when indenting paragraphs within the Description.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Depends R (>= 3.5.0), dplyr, tidyr, pwr, Matrix, vars, fastICA, permutations, gtools, rlang, pracma, matrixStats, purrr, matrixcalc

Additional_repositories

RemoteType github

RemoteHost api.github.com

RemoteRepo svarCAL

RemoteUsername STieleman

RemoteRef HEAD

RemoteSha f7dad4f71cb0c4998cbcc83d1fddb813c5421219

GithubRepo svarCAL

GithubUsername STieleman

GithubRef HEAD

GithubSHA1 f7dad4f71cb0c4998cbcc83d1fddb813c5421219

NeedsCompilation no

2 fastICA_gen

R topics documented:

	elim		2
	fastICA_model		3
		ts	
	lag_MA_component	ts_mod	4
	MCS		5
	MCS_list		5
	MDI		5
	model_data		6
	p_values		6
	sample_size		7
	=		
	= , ,		
Index			9
elim		elim	

Description

elim

Usage

elim(D_bar, variance)

Arguments

D_bar vector of average distances for different CoPs

covariance matrix of D_bar variance

fastICA_gen $fast_ICA_general$

Description

Indentification of the mixing matrix through Indepdent component analysis alogrithm "fastICA" and ordering of matrix

Usage

```
fastICA_gen(ures, sseed = 46, maxit = 3000, tol = 1e-14, verbose = FALSE)
```

fastICA_model 3

Arguments

ures residuals of VAR model seed seed maxit see fastICA docu tol see fastICA docu verbose see fastICA docu

fastICA_model

fast_ICA_model

Description

Indentification of the list of list model mixing matrix through Indepdent component analysis alogrithm "fastICA"

Usage

```
fastICA_model(
  residuals,
  sseed = 46,
  maxit = 3000,
  tol = 1e-14,
  verbose = FALSE
)
```

Arguments

residuals matrix of VAR residuals

sseed seed

maxit see fastICA docu tol see fastICA docu verbose see fastICA docu

 $fast_ICA_model$

fast_ICA_model

Description

Indentification of the model mixing matrix through Indepdent component analysis alogrithm "fastICA"

Usage

```
fast_ICA_model(residuals, n.comp, ...)
```

Arguments

residuals matrix of VAR residuals

n. comp number of components to identify
... see other fastICA comments

lag_MA_components lag_MA_components

Description

Function to extract the coefficients of lagged componenets of the moving average representation of the VAR model

Usage

```
lag_MA_components(var_est, Mixmat, maxlag = 5)
```

Arguments

var_est result of estimated VAR model

Mixmat estimated mixing matrix of contemporanous effects

maxlag nubmer of lagged coefficient to compute

lag_MA_components_mod

Description

Function to apply the lag_MA_components function to a list of list of model estimates

Usage

```
lag_MA_components_mod(var_est_model, Mixmat_model, maxlag = 5)
```

Arguments

 ${\tt var_est_model} \quad {\tt var\ estimates\ of\ the\ model\ in\ a\ list\ of\ lists}$

Mixmat_model estimates of the model mixing matrx in a list of lists

maxlag number of lagged components to compute

MCS 5

MCS MCS function

Description

Function to determine the model confidence set and p-values

Usage

```
MCS(MDI_matrix, fun_p = p_values, fun_el = elim, dA = dA)
```

Arguments

MDI_matrix matrix of MDIs

fun_p function to determine p-value

fun_el elemination rule dA significance threshold

Description

Computes the minimal confidence set of list of MDI matrices

Usage

```
MCS_list(MDI_matrix_list, dA = 1)
```

Arguments

MDI_matrix_list

list of MDI matrices

dA significance level default dA=1 selet best cop

MDI MDI

Description

Function to calculate the Minimal Dinstance Index (MDI) between the estimates of the model mixing matrix and the real world mixing matrix

Usage

```
MDI(phi_mod, phi_emp)
```

Arguments

phi_mod MA representation of model data VAR
phi_emp MA representation of empirical data VAR

p_values

model_data

Description

Function to generate the model data for multiple samples of the parameter space and multiple runs

Usage

```
model_data(model, param_space, sample_number, runs, T)
```

Arguments

model function representing the theoretical model to be calibrated

param_space a matrix consisting of two columns with the minimum and maximum value for

each parameter

sample_number of samples to draw from the parameter space

runs the number of runs per parameter sample

T number of time periods to generate

Value

a matrix containing the model data for the specified number of runs and samples

p_values

Description

Function to determine the p-values of minimal distance index based on Chi-squared

Usage

```
p_values(iN, dA, D_bar, variance)
```

Arguments

iN number of runs per CoP dA significance the shold

D_bar vector of average distances for different CoPs

variance covariance matrix of D_bar

resid_model 7

resid_model

resid_model

Description

Calculate the residuals based on the VAR estimate of the model data

Usage

```
resid_model(var_est)
```

Arguments

var_est

VAR estimate based on model data

sample_size

Sample size

Description

Function to calculate sample following Seri & Secchi (2017)

Usage

```
sample_size(sample_number, effect_size = 0.1, sigma = 0.01, power_test = 0.95)
```

Arguments

```
sample_number number of parameter samples used

effect_size set to conservative default of 0.1

sigma significance level, set to default of 0.01

power_test power of ANAVO test, set to default of 0.95
```

VAR_emp

VAR__emp

Description

VAR estimation based on empirical data

Usage

```
VAR_emp(
  data,
  var_select,
  lag_select,
  season = NULL,
  exog = NULL,
  type = "const"
)
```

8 VAR_model

Arguments

data Empirical data to be used

var_select Variables to be compared to the model SVAR lag_select Integer for the lag order (default is p=1).

season Inlusion of centered seasonal dummy variables (integer value of frequency).

exog Inlusion of exogenous variables.

type Type of deterministic regressors to include.

VAR_model VAR_model

Description

VAR estimation based on model data

Usage

```
VAR_model(
  var_select,
  model_data,
  trim,
  lag_select,
  season = NULL,
  exog = NULL,
  type = "const"
)
```

Arguments

var_select select the variables to be compared to the real world SVAR.

model_data list of list of dataframes generated by the model.

trim the number of observation to trim from the data set from θ - trim

lag_select Integer for the lag order (default is p=1).

season Inlusion of centered seasonal dummy variables (integer value of frequency).

exog Inlusion of exogenous variables.

type Type of deterministic regressors to include.

Index

```
elim, 2

fast_ICA_model, 3

fastICA_gen, 2
fastICA_model, 3

lag_MA_components, 4
lag_MA_components_mod, 4

MCS, 5

MCS_list, 5

MDI, 5

model_data, 6

p_values, 6

resid_model, 7

sample_size, 7

VAR_emp, 7

VAR_model, 8
```