Basic identities of matrix/vector ops	<u>j</u> j	Vector norms (beyond euclidean)	Determinant of square-diagonals =>	If all else fails, try to find row/column with MOST zeros	If associated to same eigenvalue \(\lambda\) then eigenspace	$ \sigma_1,,\sigma_p $ are singular values of \underline{A}].	Variance (Bessel's correction) of $\alpha_1,, \alpha_m$ is
$(A+B)^T = A^T + B^T (AB)^T = B^T A^T (A^{-1})^T = (A^T)^{-1} $	Notice: $Q_j c_j = \sum_{i=1}^{j} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \sum_{i=1}^{j} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$, so	vector norms are such that: $ x = 0 \iff x = 0$,	$\left \text{diag}(a_1,, a_n) \right = \prod_i a_i$ (since they are technically triangular matrices)	Perform minimal EROs/ECOs to get that row/column to be all-but-one zeros	E_{λ} has spanning-set $\{x_{\lambda_i}, \dots\}$	(Positive) singular values are (positive) square-roots	$\operatorname{Var}_{\mathbf{w}} = \frac{1}{m-1} \sum_{j} \alpha_{j}^{2} = \frac{1}{m-1} \mathbf{w}^{T} \left(\sum_{j} \mathbf{r}_{j}^{T} \mathbf{r}_{j} \right) \mathbf{w}$
$(AB)^{-1} = B^{-1}A^{-1}$	rewrite as	$\frac{ \lambda x = \lambda x }{ x + y \le x + y }$		Don't forget to keep track of sign-flipping &	$ \mathbf{x}_1,, \mathbf{x}_n $ are linearly independent \Rightarrow apply Gram-Schmidt $\mathbf{q}_{\lambda_i}, \leftarrow \mathbf{x}_{\lambda_i},$	of eigenvalues of AA^T or A^TA i.e. $\sigma_1^2,, \sigma_D^2$ are eigenvalues of AA^T or A^TA	$= \frac{1}{m-1} \mathbf{w}^T \mathbf{A}^T \mathbf{A} \mathbf{w}$
For $\underline{A \in \mathbb{R}^{m \times n}}$, $\underline{A_{ij}}$ is the \underline{i} -th ROW then \underline{j} -th COLUMN	j j	$ \mathbf{r}_p $ norms: $ \mathbf{x} _p = (\sum_{i=1}^n \mathbf{x}_i ^p)^{1/p}$	The (column) rank of AJ is number of linearly	scaling-factors Do Laplace expansion along that row/column =>	Then $\{\mathbf{q}_{\lambda_{i}},\}$ is orthonormal basis (ONB) of $E_{\lambda_{i}}$	A ₂ = \(\sigma_1\) (link to matrix norms	First (principal) axis defined =>
$(A^{T})_{ij} = A_{ji} \left[(AB)_{ij} = A_{j\star} \cdot B_{\star j} = \sum_{i} A_{ik} B_{kj} \right]$	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \mathbf{a}_{j+1} - \sum_{i=1} \text{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$	$p=1$ $\ \mathbf{x}\ _1 = \sum_{i=1}^n \mathbf{x}_i $	independent columns, i.e. <u>rk(A)</u> I.e. its the number of pivots in row-echelon-form	notice all-but-one minor matrix determinants go to		Let $r = rk(A)$, then number of strictly positive singular	$ \mathbf{w}_{(1)} = \arg\max_{\ \mathbf{w}\ =1} \mathbf{w}^T A^T A \mathbf{w}$
R	$a_1, \dots, a_n \in \mathbb{R}^m \mid \underline{m \ge n}$	$p=2$: $\ \mathbf{x}\ _{2} = \sqrt{\sum_{i=1}^{n} \mathbf{x}_{i}^{2}} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$	I.e. its the dimension of the column-space	zero	$Q = (\mathbf{q}_1,, \mathbf{q}_n)$ is an ONB of $\mathbb{R}^n \longrightarrow Q = [\mathbf{q}_1 \mathbf{q}_n]$ is orthogonal matrix i.e. $Q^{-1} = Q^T$	values is r1	= arg max _{w =1} (m-1)Var _w = v ₁
$(Ax)_i = A_{i*} \cdot x = \sum_j A_{ij} x_j \left[x^T y = y^T x = x \cdot y = \sum_i x_i y_i \right]$	\underline{n} $U_n = \text{span}\{a_1, \dots, a_n\}$	$p = \infty$ $\ \mathbf{x}\ _{\infty} = \lim_{p \to \infty} \ \mathbf{x}\ _{p} = \max_{1 \le i \le n} \mathbf{x}_{i} $	rk(A) = dim(C(A))] I.e. its the dimension of the image-space	Representing EROs/ECOs as transfor- mation matrices	$ \mathbf{q}_1, \dots, \mathbf{q}_N $ are still eigenvectors of $A = QDQ^T$	i.e. $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_p = 0$	i.e. w(1) the direction that maximizes variance Varw
$\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_i \sum_j \mathbf{A}_{ij} \mathbf{x}_i \mathbf{x}_j \mathbf{x} \mathbf{e}_k^T = [0 \dots \mathbf{x} \dots 0]$	We apply Gram-Schmidt to build ONB $(q_1,, q_n) \in \mathbb{R}^m \text{for } U_n \subset \mathbb{R}^m $	Any two norms in R ⁿ are equivalent, meaning there	rk(A) = dim(im(f_A)) of linear map $f_A(x) = Ax$	For A∈ R ^{m×n} , suppose a sequence of:	(spectral decomposition)	$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$	i.e. maximizes variance of projections on line $\underbrace{\mathbf{Rw}_{(1)}}$
$e_k x^T = [0^T;; x^T;; 0^T]$	$ j=1 \Rightarrow \mathbf{u}_1 = \mathbf{a}_1 \text{ and } \mathbf{q}_1 = \hat{\mathbf{u}}_1 \text{ i.e. start of iteration}$	exist r > 0; s > 0 such that:	The (row) rank of A is number of linearly independent	EROs transform $\underline{A} \rightsquigarrow_{EROs} A' \Longrightarrow$ there is matrix \underline{R} is.t.	A=QDQ ^T can be interpreted as scaling in direction of		σ ₁ u ₁ ,, σ _r u _r (columns of <u>US</u>) are principal components/scores of A
Scalar-multiplication + addition distributes over:	$ j=2 \Rightarrow \frac{\mathbf{u}_2 = \mathbf{a}_2 - (\mathbf{q}_1 \cdot \mathbf{a}_2)\mathbf{q}_1}{\mathbf{q}_2 = \mathbf{u}_2} $ and $ \mathbf{q}_2 = \mathbf{u}_2 $ etc Linear independence guarantees that $\mathbf{a}_{j+1} \notin U_j$	$\forall \mathbf{x} \in \mathbb{R}^n, r \ \mathbf{x}\ _a \le \ \mathbf{x}\ _b \le s \ \mathbf{x}\ _a$	rows	RA=A'	its eigenvectors: -1) Perform a succession of reflections/planar	SVD is similar to spectral decomposition, except it always exists	Recall: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ with $\sigma_1 \ge \cdots \ge \sigma_r > 0$, so that
column-blocks ⇒	For exams: compute $\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$	$\ \mathbf{x}\ _{\infty} \le \ \mathbf{x}\ _{2} \le \ \mathbf{x}\ _{1}$ Equivalence of ℓ_1, ℓ_2 and $\ell_{\infty} \Rightarrow \ \mathbf{x}\ _{2} \le \sqrt{n} \ \mathbf{x}\ _{\infty}$	The row/column ranks are always the same, hence $rk(A) = dim(C(A)) = dim(R(A)) = dim(C(A^T)) = rk(A^T)$	• ECOs transform A → ECOs A' => there is matrix C s.t.	rotations to change coordinate-system	If $n \le m$ then work with $A^T A \in \mathbb{R}^{n \times n}$:	relates principal axes and principal components
$\lambda A + B = \lambda [A_1 A_C] + [B_1 B_C] = [\lambda A_1 + B_1 \lambda A_C + B_C]$ row-blocks =>	-1) Gather $Q_j = [\mathbf{q}_1 \dots \mathbf{q}_j] \in \mathbb{R}^{m \times j}$	$\ \mathbf{x}\ _1 \le \sqrt{n} \ \mathbf{x}\ _2$	A Jis full-rank iff rk(A) = min(m, n), i.e. its as linearly	Both transform A → EROs+ECOs A' => there are	-2) Apply scaling by λ _i to each dimension q _i -Undo those reflections/planar rotations	Obtain eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2 \ge 0$ of $A^T A$	Data compression : If $\underline{\sigma_1 * \sigma_2}$ then compress \underline{AJ} by
$\lambda A + B = \lambda [A_1;; A_r] + [B_1;; B_r] = [\lambda A_1 + B_1;; \lambda A_r + B_r]$		Induce metric $d(x,y) = y-x y-x $ has additional	independent as possible	matrices R, C s.t. RAC = A'	Extension to C ⁿ	Obtain orthonormal eigenvectors $v_1,, v_n \in \mathbb{R}^n$ of	projecting in direction of principal component ⇒ $A ≈ \sigma_1 \frac{\mathbf{u}_1}{\mathbf{v}_1^T}$
Matrix-multiplication distributes over:	-2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^J$	properties: Translation invariance: $d(x+w,y+w)=d(x,y)$	Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{m \times n}$ are equivalent if there exist	FORWARD: to compute these transformation	Standard inner product: $(x, y) = x^{\dagger} y = \sum_{i} \overline{x_{i}} y_{i}$	A ^T A (apply normalization e.g. Gram-Schmidt!!!! to	
column-blocks \Rightarrow $AB = A[B_1 B_n] = [AB_1 AB_n]$	-3) Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}	Scaling: $d(\lambda x, \lambda y) = \lambda d(x, y)$	two invertible matrices $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$	matrices:	Conjugate-symmetric: $\langle x, y \rangle = \langle y, x \rangle$	eigenspaces E _{Gi} ↑	Cholesky Decomposition
	Properties: dot-product & norm	Matrix norms	such that A = PÃQ-1	Start with [I _m A I _n] i.e. A and identity matrices For every ERO on A do the same to LHS (i.e. I _m)	Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$	$V = [v_1 v_n] \in \mathbb{R}^{n \times n}$ is orthogonal so $V^T = V^{-1}$ $V = [v_1 v_n] \in \mathbb{R}^{n \times n}$ is orthogonal so $V^T = V^{-1}$	Consider positive (semi-)definite $A \in \mathbb{R}^{n \times n}$
outer-product sum => $AB = [A_1 A_p][B_1;; B_p] = \sum_{i=1}^{p} A_i B_i$	$x^T y = y^T x = x \cdot y = \sum_i x_i y_i$ $\underline{x \cdot y = a b \cos x\hat{y} }$	Matrix norms are such that: $ A = 0 \iff A = 0$,	Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{n \times n}$ are similar if there exists an invertible matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A} = \mathbf{P}\tilde{\mathbf{A}}\mathbf{P}^{-1}$	For every ECO on AJ do the same to RHS (i.e. $\frac{1}{n}$)	We can diagonalise real matrices in C which lets us	Let $\mathbf{u}_i = \frac{1}{c} A\mathbf{v}_i$ then $\mathbf{u}_1, \dots, \mathbf{u}_T \in \mathbb{R}^m$ are orthonormal	Cholesky Decomposition is A = LLT where LJis lower-triangular
$AB = [A_1 A_p B_1 B_p = \sum_{i=1}^n A_i B_i]$ [e.g. for $A = [a_1 a_n]$], $B = [b_1 b_n]$] => $AB = \sum_i a_i b_i$]	$x \cdot y = y \cdot x \mid x \cdot (y + z) = x \cdot y + x \cdot z \mid \alpha x \cdot y = \alpha(x \cdot y)$	$ \lambda A = \lambda A A + B \le A + B $ Matrices $\mathbb{F}^{m \times n}$ are a vector space so matrix norms	Similar matrices are equivalent, with Q=P	Once done, you should get $[I_m \mid A \mid I_n] \rightsquigarrow [R \mid A' \mid C]$	diagonalise more matrices than before		For positive semi-definite => always exists, but
·	$x \cdot x = x ^2 = 0 \iff x = 0$	are vector norms, all results apply	AJis diagonalisable iff AJis similar to some diagonal	with RAC = A'	Least Square Method	(therefore linearly independent) The orthogonal compliment of span{u ₁ ,,u _r } =>	non-unique
Projection: definition & properties A projection $\pi: V \rightarrow V$ Jis a endomorphism such that	for $\underline{x} \neq 0$, we have $\underline{x} \cdot y = x \cdot z \implies x \cdot (y - z) = 0$ $ x \cdot y \le x y (Cauchy-Schwartz inequality)$	Sub-multiplicative matrix norm (assumed by default)	matrix <u>D</u>]	If the sequences of EROs and ECOs were $R_1,, R_{\lambda}$ and	If we are solving $Ax = b$ and $b \notin C(A)$, i.e. no solution, then Least Square Method is:	$span\{\mathbf{u}_1,,\mathbf{u}_r\}^{\perp} = span\{\mathbf{u}_{r+1},,\mathbf{u}_m\}$	For positive-definite ⇒ always uniquely exists s.t. diagonals of L are positive
	$\frac{ x+y \le x y }{ u+v ^2 + u-v ^2 = 2 u ^2 + 2 v ^2} \text{(parallelogram law)}$	is also such that <u> </u> AB ≤ A B Common matrix norms, for some A ∈ R ^{m×n}	Properties of determinants	C ₁ ,,C _µ respectively	Finding X which minimizes Ax-b ₂	Solve for unit-vector u _{r+1} s.t. it is orthogonal to	
idempotent)		$\ \mathbf{A}\ _1 = \max_j \ \mathbf{A}_{\star j}\ _1$	Consider $\underline{A \in \mathbb{R}^{n \times n}}$, then $A_{ij}' \in \mathbb{R}^{(n-1) \times (n-1)}$ the	$R = R_{\lambda} \cdots R_{1}$ and $C = C_{1} \cdots C_{\mu}$ so	Recall for $A \in \mathbb{R}^{m \times n}$ we have unique decomposition	u ₁ ,,u _r	Finding a Cholesky Decomposition:
A square matrix P such that $P^2 = P$ is called a	$u \perp v \iff u+v ^2 = u ^2 + v ^2$ (pythagorean	$\ \mathbf{A}\ _{2} = \sigma_{1}(\mathbf{A})$ i.e. largest singular value of \mathbf{A}	(i,j) minor matrix of Al obtained by deleting i th row	$(R_{\lambda} \cdots R_1)A(C_1 \cdots C_{\mu}) = A'$	for any $\underline{\mathbf{b}} \in \mathbb{R}^m$: $\underline{\mathbf{b}} = \underline{\mathbf{b}}_i \cdot \underline{\mathbf{b}}_k$	Then solve for unit-vector \mathbf{u}_{r+2} s.t. it is orthogonal to $\mathbf{u}_1,,\mathbf{u}_{r+1}$	Compute <u>LL^T</u> and solve <u>A = LL^T</u> by matching terms For square roots always pick positive
It is called an orthogonal projection matrix if	theorem) $\ c\ ^2 = \ a\ ^2 + \ b\ ^2 - 2\ a\ \ b\ \cos b\hat{a} (law of cosines)$	(square-root of largest eigenvalue of A ^T A or AA ^T	and j th column from A Then we define determinant of A , i.e. $det(A) = A $, as	$R^{-1} = R_1^{-1} \cdots R_{\lambda}^{-1}$ and $C^{-1} = C_{\mu}^{-1} \cdots C_{1}^{-1}$, where	where $\underline{\mathbf{b}}_{i} \in C(A)$ and $\underline{\mathbf{b}}_{k} \in \ker(A^{T})$	And so on	If there is exact solution then positive-definite
P= = P = P (conjugate-transpose)	c ² = a ² + b ² - 2 a b cos ba (law of cosines) Transformation matrix & linear maps	$\ \mathbf{A}\ _{\infty} = \max_{i} \ \mathbf{A}_{i\star}\ _{1}$ note that $\ \mathbf{A}\ _{1} = \ \mathbf{A}^{T}\ _{\infty}$	II	R_i^{-1}, C_i^{-1} are inverse EROs/ECOs respectively	$\ A\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \ A\mathbf{x} - \mathbf{b}_i\ _2 = 0 \iff A\mathbf{x} = \mathbf{b}_i$	$U = [\mathbf{u}_1 \mid \dots \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ is orthogonal so $U^T = U^{-1}$	If there are free variables at the end, then positive
Eigenvalues of a projection matrix must be 0 or 1 Because π: V → V is a linear map , its image space	Transformation matrix & linear maps For linear map $f: \mathbb{R}^n \to \mathbb{R}^m$ ordered bases		$det(A) = \sum_{k=1}^{n} (-1)^{j+k} A_{jk} det(A_{jk}')$, i.e. expansion along	· · · · · · · · · · · · · · · · · · ·	-TT.	$S = diag_{m \times n}(\sigma_1,, \sigma_n)$ AND DONE!!!	semi-definite i.e. the decomposition is a solution-set
$U = im(\pi)$ and null space $W = ker(\pi)$ are subspaces of V	$(\mathbf{b}_1,, \mathbf{b}_n) \in \mathbb{R}^n \text{and } (\mathbf{c}_1,, \mathbf{c}_m) \in \mathbb{R}^m $	Frobenius norm: $\ \mathbf{A}\ _F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} ^2}$	ijth row *(for any i)	BACKWARD: once $R_1,,R_{\lambda}$ and $C_1,,C_{\mu}$ for which	$A^T Ax = A^T b$ is the normal equation which gives solution to least square problem:	If $\underline{m < n}$ then let $\underline{B = A^T}$	parameterized on free variables
π is the identity operator on U	$A = \mathbf{F}_{CB} \in \mathbb{R}^{m \times n}$ is the transformation-matrix of f	Vi=1 j=1	$det(A) = \sum_{i=1}^{n} (-1)^{i+j} A_{kj} det(A_{kj}')$, i.e. expansion along	RAC = A' are known, starting with $[I_m \mid A \mid I_n]$	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \mathbf{A}\mathbf{x} = \mathbf{b}_i \iff \mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$	apply above method to $\underline{B} J \Rightarrow \underline{B} = A^T = USV^T$ $A = B^T = VS^T U^T$	[1 1 1] [1 1 1] [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
The linear map $\pi^* = I_V - \pi$ is also a projection with $W = \text{im}(\pi^*) = \text{ker}(\pi)$ and $U = \text{ker}(\pi^*) = \text{im}(\pi)$ i.e. they	w.r.t to bases B and C	A matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is consistent with the vector norms $\ \cdot\ _{a}$ on \mathbb{R}^{n} and $\ \cdot\ _{b}$ on \mathbb{R}^{m} if	k=1	For $\underline{i=1 \rightarrow \lambda}$ perform R_i on \underline{A} perform $R_{\lambda-i+1}^{-1}$ on LHS	Linear Regression	Tricks: Computing orthonormal	e.g. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} = LL^T$ where $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & c & \sqrt{1-c^2} \end{bmatrix}$, $c \in [0, 1]$
swapped swapped	$\frac{f(\mathbf{b}_{j}) = \sum_{i=1}^{m} A_{ij} \mathbf{c}_{i}}{ $	for all $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$ and $\underline{\mathbf{x}} \in \mathbb{R}^n \Rightarrow \ \underline{\mathbf{A}}\mathbf{x}\ _b \le \ \underline{\mathbf{A}}\ \ \mathbf{x}\ _a$	j th column (for any j)	(i.e. I _m)	Let $y = f(t) = \sum_{j=1}^{n} s_j f_j(t)$ be a mathematical model,	vector-set extensions	[1.41-6]
πjis a projection along W Jonto U	If f^{-1} exists (i.e. its bijective and $\underline{m} = n$) then	If $a = b$, $\ \cdot \ $ is compatible with $\ \cdot \ _a$	When det(A) = 0 we call A a singular matrix	For $j = 1 \rightarrow \mu$ perform C_j on \underline{A} , perform $C_{\mu-j+1}^{-1}$ on	where f_i are basis functions and s_i are parameters	You have orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^m$ \Rightarrow need	If A = LL ^T you can use forward/backward substitution
π* is a projection along U onto W π* is the identity operator on W	$(\mathbf{F}_{CB})^{-1} = \mathbf{F}^{-1}_{BC} (where \mathbf{F}^{-1}_{BC}) is the$	Frobenius norm is consistent with 2 norm =>	Common determinants For <u>n = 1</u> , det(A) = A ₁₁	RHS (i.e. In)	Let (t_i, y_i) $ 1 \le i \le m, m \gg n $ be a set of observations ,	to extend to orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_m \in \mathbb{R}^m$	to solve equations
V can be decomposed as V = U ⊕ W meaning every	transformation-matrix of f^{-1}	Av ₂ \(A _F v ₂	For <u>n = 2</u>] det(A) = A ₁₁ A ₂₂ - A ₁₂ A ₂₁	You should get $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C^{-1}]$ with	and t, y ∈ R ^m are vectors representing those	Special case => two 3D vectors => use cross-product => $a \times b \perp a, b$	For $\underline{Ax = b} \Rightarrow \text{let } y = L^T x$ Solve $\underline{Ly = b}$ by forward substitution to find y
vector <u>x ∈ V</u> Jcan be uniquely written as <u>x = u + w</u> J	a ansion matrix of j	For a vector norm $\ \cdot\ $ on \mathbb{R}^n , the subordinate matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is	$\det(\mathbf{I}_n) = 1$	A=R ⁻¹ A'C ⁻¹	observations	4.024,0	Solve $L^T x = y$ by backward substitution to find x
$u \in U$ and $u = \pi(x)$ $w \in W$ and $w = x - \pi(x) = (I_V - \pi)(x) = \pi^*(x)$	The transformation matrix of the identity map is called	$\ \mathbf{A}\ = \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ = 1\}$	• Multi-linearity in columns/rows: if $A = [a_1 a_i a_n] = [a_1 \lambda x_i + \mu y_i a_n] \text{then}$		$f_j(t) = [f_j(t_1), \dots, f_j(t_m)]^T$ is transformed vector	Extension via standard basis $I_m = [e_1 e_m]$ using	[l ₁₁ 0 0]
An orthogonal projection further satisfies ULW	change-in-basis matrix	$= \max \left\{ \frac{\ \mathbf{A}\mathbf{x}\ }{\ \mathbf{x}\ } : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0 \right\}$	$\det(A) = \lambda \det\left([a_1 \dots x_i \dots a_n] \right)$	You can mix-and-match the forward/backward modes	$A = [f_1(t)] \dots f_n(t) \in \mathbb{R}^{m \times n}$ is a matrix of columns	(tweaked) GS: Choose candidate vector: just work through	For n=3]=> L= l ₂₁ l ₂₂ 0
i.e. the image and kernel of π are orthogonal	The identity matrix \underline{I}_m represents $id_R m$ w.r.t. the standard basis $\underline{E}_m = (e_1,, e_m) \Rightarrow \overline{i.e.} \underline{I}_m = \underline{I}_{EE}$	$= \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ \le 1\}$	+ $\mu \det ([a_1 \dots y_j \dots a_n])$	operations in normal order for the other	$z = [s_1,, s_n]^T$ is vector of parameters	e ₁ ,,e _m sequentially starting from e ₁ > denote	[l ₃₁ l ₃₂ l ₃₃]
subspaces infact they are eachother's orthogonal compliments,	If $B = \langle \mathbf{b}_1, \dots, \mathbf{b}_m \rangle$ is a basis of \mathbb{R}^m , then	Vector norms are compatible with their subordinate	And the exact same linearity property for rows	e.g. you can do $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C]$ to get	Then we get equation Az = y => minimizing Az - y _2 is the solution to Linear Regression	the current candidate $\frac{\mathbf{e}_{k}}{\mathbf{e}_{k}}$ Orthogonalize: Starting from $j = r$ going to $j = m$ with	[l ₁₁ l ₁₁ l ₂₁ l ₁₁ l ₃₁]
i.e. $U^{\perp} = W$, $W^{\perp} = U$ (because finite-dimensional	$I_{EB} = [b_1 b_m]$ is the transformation matrix from B	matrix norms	Immediately leads to: $ A = A^T $, $ \lambda A = \lambda^n A $, and	$AC = R^{-1}A'$ \Rightarrow useful for LU factorization	So applying LSM to Az = y is precisely what Linear	Orthogonalize: Starting from $j = r$ going to $j = m$ with each iteration \Rightarrow with current orthonormal vectors	$LL^T = \begin{bmatrix} l_{11}l_{21} & l_{21}^2 + l_{22}^2 & l_{21}l_{31} + l_{22}l_{32} \\ \vdots & \vdots & \vdots \\ l_{21}l_{21} & l_{22}l_{32} \end{bmatrix}$
vectorspaces)	to E _{BE} = $(I_{EB})^{-1}$, so \Rightarrow F_{CB} = $I_{CE}F_{EE}I_{EB}$	For $p = 1, 2, \infty$ matrix norm $\ \cdot\ _p$ is subordinate to	$ AB = BA = A B $ (for any $B \in \mathbb{R}^{n \times n}$)	Eigen-values/vectors	Regression is We can use normal equations for this =>	u ₁ ,,u _j	[l ₁₁ l ₃₁ l ₂₁ l ₃₁ +l ₂₂ l ₃₂ l ₃₁ +l ₃₂ +l ₃₃]
so we have $\pi(x) \cdot y = \pi(x) \cdot \pi(y) = x \cdot \pi(y)$	RE - (FR) 300 TER - CE - FE - FR	the vector norm $ \underline{\ \cdot \ _p } $ (and thus compatible with)	Alternating: if any two columns of Alare equal (or any	Consider $\underline{A \in \mathbb{R}^{n \times n}}$, non-zero $\underline{x \in \mathbb{C}^n}$ is an eigenvector with eigenvalue $\underline{\lambda \in \mathbb{C}}$ for \underline{A}] if $\underline{Ax = \lambda x}$	$\ Az - y\ _2$ is minimized $\iff A^T Az = A^T y$	Compute	Forward/backward substitution
or equivalently, $\underline{\pi(x) \cdot (y - \pi(y)) = (x - \pi(x)) \cdot \pi(y) = 0}$	Dot-product uniquely determines a vector w.r.t. to	Properties of matrices	two rows of A are equal), then A = 0 (its singular) Immediately from this (and multi-linearity) => if	If $Ax = \lambda x$ then $A(kx) = \lambda(kx)$ for $k \neq 0$, i.e. kx is also an	Solution to normal equations unique iff Alis full-rank,	$\mathbf{w}_{i+1} = \mathbf{e}_k - \sum_{i=1}^{j} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1}^{j} (\mathbf{u}_i)_k \mathbf{u}_i$	Forward substitution: for lower-triangular
By Cauchy–Schwarz inequality we have <u> </u> π(x) ≤ x	basis If $a_i = x \cdot b_i$; $x = \sum_i a_i b_i$, we call \underline{a} the	Consider $A \in \mathbb{R}^{m \times n}$ If $Ax = x$ for all x then $A = I$	columns (or rows) are linearly-dependent (some are	eigenvector	i.e. it has linearly-independent columns	=e _k -U _j c _j	L= 1,1
The orthogonal projection onto the line containing vector \underline{u} jis $\underline{\operatorname{proj}}_{u} = \widehat{u}\widehat{u}^{T}$, i.e. $\operatorname{proj}_{u}(v) = \frac{u \cdot v}{u \cdot u}$, $\widehat{u} = \frac{u}{\ u\ }$	coordinate-vector of x w.r.t. to B	For square AI, the trace of AI is the sum if its diagonals,	linear combinations of others) then $ A = 0$ Stated in other terms => $rk(A) < n \iff A = 0$ <=>	Alhas at most ndistinct eigenvalues The set of all eigenvectors associated with eigenvalue		Where $U_j = [\mathbf{u}_1 \dots \mathbf{u}_j] \text{and } \mathbf{c}_j = [(\mathbf{u}_1)_k, \dots, (\mathbf{u}_j)_k]^T $	[[\earline{\epsilon}_{n,1} \ \epsilon_{n,n}]
	Rank-nullity theorem:	i.e. tr(A)	RREF(A) $\neq I_n \iff A = 0$ (reduced row-echelon-form)	∆is called eigenspace E _λ of <u>A</u>]	Positive (semi-)definite matrices Consider symmetric $A \in \mathbb{R}^{n \times n}$ i.e. $A = A^T$	NOTE: en · u: = (u:) blie. k th component of u: I	For Lx = b], just solve the first row
A special case of $\pi(x) \cdot (y - \pi(y)) = 0$ is $u \cdot (v - \text{proj}_{u} v) = 0$ since $\text{proj}_{u}(u) = u$	dim(im(f)) + dim(ker(f)) = rk(A) + dim(ker(A)) = n $f is injective/monomorphism iff ker(f) = {0} iff A is$	A] is symmetric iff $A = A^T$ A] is Hermitian, iff $A = A^{\dagger}$ i.e.	\iff $C(A) \neq \mathbb{R}^{n} \iff A = 0 (column-space)$	-E _λ = ker(A - λ/)	Consider symmetric $\underline{A} \in \mathbb{R}^{n-n}$ [i.e. $\underline{A} = A^n$] A]is positive-definite $\inf x^T Ax > 0$ for all $x \neq 0$]	$ \mathbf{f} \mathbf{w}_{j+1} = 0 \text{ then } \mathbf{e}_k \in \text{span}\{\mathbf{u}_1, \dots, \mathbf{u}_j\} \Rightarrow \text{discard}$	$\ell_{1,1} x_1 = b_1 \implies x_1 = \frac{b_1}{\ell_{1,1}}$ and substitute down
If $U \subseteq \mathbb{R}^n$ is a k -dimensional subspace with	full-rank	its equal to its conjugate-transpose	For more equivalence to the above, see invertible	The geometric multiplicity of $\underline{\Lambda}$ is $\dim(E_{\overline{\Lambda}}) = \dim(\ker(A - \lambda I))$	AJis positive-definite iff all its eigenvalues are strictly	w _{j+1} choose next candidate e _{k+1} try this step	Then solve the second row
orthonormal basis (ONB) $\langle \mathbf{u}_1,, \mathbf{u}_k \rangle \in \mathbb{R}^m$	Orthogonality concepts	AAT and ATA are symmetric (and positive	matrix theorem Interaction with EROs/ECOs:		positive Alis positive-definite => all its diagonals are strictly	again	$\ell_{2,1} x_1 + \ell_{2,2} x_2 = b_2 \implies x_2 = \frac{b_2 - \ell_{2,1} x_1}{\ell_{2,2}}$ and
	$u \perp v \iff u \cdot v = 0$, i.e. u_j and v_j are orthogonal	semi-definite) For real matrices, Hermitian/symmetric are	Swapping rows/columns flips the sign	The spectrum $Sp(A) = \{\lambda_1,, \lambda_n\}$ of \underline{A} is the set of all eigenvalues of \overline{A}	positive	Normalize: w _{j+1} ≠0 so compute unit vector	substitute down
Orthogonal projection onto U is $\pi_U = UU^T$	u jand v jare orthonormal iff $u \perp v$, $ u = 1 = v $	equivalent conditions	Scaling a row/column by <u>λ ≠ 0</u>] will scale the determinant by <u>λ] (by multi-linearity)</u>	The characteristic polynomial of A Jis	A_{ji} s positive-definite => $\max(A_{ii}, A_{jj}) > A_{ij} $	$\frac{\mathbf{u}_{j+1} = \hat{\mathbf{w}}_{j+1}}{\text{Repeat: keep repeating the above steps, now with}}$	and so on until all x _i Jare solved
Can be rewritten as $\pi_U(v) = \sum_i (\mathbf{u}_i \cdot v) \mathbf{u}_i$	$A \in \mathbb{R}^{n \times n}$ is orthogonal iff $A^{-1} = A^T$	Every eigenvalue λ_i of Hermitian matrices is real	Remember to scale by λ^{-1} to maintain equality, i.e.	$P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	i.e. strictly larger coefficient on the diagonals Alis positive-definite => all upper-left submatrices are	new orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_{j+1}$	Backward substitution: for upper-triangular
If $(\mathbf{u}_1,,\mathbf{u}_k)$ is not orthonormal , then "normalizing	(ONB) $C = \langle \mathbf{a}_1, \dots, \mathbf{a}_n \rangle \in \mathbb{R}^n$, so $A = \mathbf{I}_{EC}$ is	geometric multiplicity of λ_i = geometric multiplicity of λ_i	$det(A) = \lambda^{-1} det([a_1 \mid \mid \lambda a_i \mid \mid a_n])$	$a_0 = A \int_A a_{n-1} = (-1)^{n-1} \operatorname{tr}(A) \int_A a_n = (-1)^n \int_A e C \operatorname{ise} \operatorname{eigenvalue} \operatorname{of} A \operatorname{iff} \lambda \operatorname{is} \operatorname{a} \operatorname{root} \operatorname{of} P(\lambda)$	also positive-definite => all upper-left submatrices are also positive-definite	SVD Application: Principal Compo-	[u _{1,1} u _{1,n}]
factor" $(\mathbf{U}^T \mathbf{U})^{-1}$ is added => $\pi_U = \mathbf{U}(\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T$	change-in-basis matrix	eigenvectors x ₁ ,x ₂ associated to distinct	Invariant under addition of rows/columns	The algebraic multiplicity of λ is the number of	Sylvester's criterion: Alis positive-definite iff all	nent Analysis (PCA)	0 u _{n,n}
For line subspaces U = span{u}, we have	Orthogonal transformations preserve lengths/angles/distances \Rightarrow $ Ax _2 = x _2$, $AxAy = xy$	eigenvalues λ_1, λ_2 are orthogonal , i.e. $x_1 \perp x_2$	Link to invertable matrices => $ A^{-1} = A ^{-1}$ which	times it is repeated as root of $P(\lambda)$	upper-left submatrices have strictly positive determinant	Assume $\underline{A}_{uncentered} \in \mathbb{R}^{m \times n}$ represent \underline{m} samples of	For <u>Ux = b</u>] just solve the last row
$(\mathbf{U}^T \mathbf{U})^{-1} = (u^T u)^{-1} = 1/(u \cdot u) = 1/ u $	Therefore can be seen as a succession of reflections	Attacher lander all antains 1 / /	means A is invertible ⇔ A ≠0}, i.e. singular matrices are not invertible	1]≤ geometric multiplicity of λ ≤ algebraic multiplicity of λ	r determilidit	n⊦dimensional data (with m≥n) Data centering: subtract mean of each column from	$u_{n,n} \times_n = b_n \implies x_n = \frac{b_n}{u_{n,n}}$ and substitute up
Gram-Schmidt (GS) to gen. ONB from	and planar rotations	A jis triangular iff all entries above (lower-triangular) or below (upper-triangular) the main diagonal are zero	For block-matrices:	Let $\lambda_1,, \lambda_n \in \mathbb{C}$ be (potentially non-distinct)	A Jis positive semi-definite iff $x^T Ax \ge 0$ for all x	that column's elements	Then solve the second-to-last row
lin. ind. vectors	$\det(A) = 1$ or $\det(A) = -1$, and all eigenvalues of \underline{A} are s.t. $ \lambda = 1$	Determinant \Rightarrow $ A = \prod_i a_{ii}$, i.e. the product of	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$	eigenvalues of A ₁ , with $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{C}^n$ their	AJis positive semi-definite iff all its eigenvalues are non-negative	Let the resulting matrix be $\underline{A \in \mathbb{R}^{m \times n}}$, who's columns	$u_{n-1} = 1 \times 1$
Gram-Schmidt is iterative projection => we use	S.t. $A \in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $A^T A = I$ or $AA^T = I$	diagonal elements		eigenvectors	Alis positive semi-definite => all its diagonals are	PCA is done on centered data-matrices like A:	$\Rightarrow x_{n-1} = \frac{b_{n-1} - u_{n-1,n-1} \times u_{n-1}}{u_{n-1,n}}$ and substitute up
current j-dim subspace, to get next (j+1)-dim subspace	If <u>n > m</u> then all <u>m</u> rows are orthonormal vectors	A] is diagonal iff $A_{ij} = 0$, $i * j \downarrow$ i.e. if all off-diagonal	$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1} B)$ if A or D are	$tr(A) = \sum_{i} \lambda_{i}$ and $det(A) = \prod_{i} \lambda_{ij}$	non-negative	SVD exists i.e. $A = USV^T$ and $r = rk(A)$	and so on until all x_i pare solved
Assume orthonormal basis (ONB) $(\mathbf{q}_1,, \mathbf{q}_j) \in \mathbb{R}^m$	ii <u>m > n</u> then att <u>n</u> columns are orthonormal vectors	entries are zero	= det(D) det(A - BD ⁻¹ C)	A Jis diagonalisable iff there exist a basis of R ⁿ	<u>A</u> Jis positive semi-definite => $\max(A_{ij}, A_{jj})$ ≥ $ A_{ij} $ i.e. no coefficient larger than on the diagonals	Let $A = [\mathbf{r}_1;; \mathbf{r}_m]$ be rows $\mathbf{r}_1,, \mathbf{r}_m \in \mathbb{R}^n$ \Rightarrow each row corresponds to a sample	"
for j -dim subspace $U_j \subset \mathbb{R}^m$	$\underline{U \perp V \subset \mathbb{R}^n} \iff \underline{u \cdot v} = 0$ for all $\underline{u \in U, v \in V}$, i.e. they are orthogonal subspaces	Written as	invertible, respectively	consisting of $x_1,, x_n$ A is diagonalisable iff $r_i = g_i$, where	A is positive semi-definite => all upper-left	Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m$ \Longrightarrow each	Thin QR Decomposition w/ Gram-
Let $Q_j = [\mathbf{q}_1 \mid \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ be the matrix	Orthogonal compliment of $U \subset \mathbb{R}^n$ is the subspace	$\frac{\operatorname{diag}_{m\times n}(a) = \operatorname{diag}_{m\times n}(a_1, \dots, a_p), p = \min(m, n)}{\sqrt{1 + (n-1)!}}$ where	Sylvester's determinant theorem:	r; = geometric multiplicity of λ; and	submatrices are also positive semi-definite	column corresponds to one dimension of the data	Schmidt (GS)
$P_j = Q_j Q_j^T$ is orthogonal projection onto U_j	$U^{\perp} = \{x \in \mathbb{R}^n \mid \forall v \in \mathbb{R}^n : x \perp v\}$	$\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p$ diagonal entries of \underline{A}	det (I _m +AB) = det (I _n +BA) Matrix determinant lemma:	$g_i = \text{geometric multiplicity of } \lambda_i$	A_I is positive semi-definite => it has a Cholesky	Let $X_1,, X_n$ be random variables where each X_i	Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n}$ $(\underline{m \ge n})$, i.e.
DI O.O. is orthograph	$= \left\{ x \in \mathbb{R}^n \mid \forall y \in \mathbb{R}^n : x \le x + y \right\}$	For $x \in \mathbb{R}^n$ $Ax = \operatorname{diag}_{m \times n}(a_1,, a_p)[x_1 x_n]^T$ (if	$\det(\mathbf{A} + \mathbf{u}\mathbf{v}^T) = (1 + \mathbf{v}^T \mathbf{A}^{-1} \mathbf{u}) \det(\mathbf{A})$	Eigenvalues of \underline{A}^{k} are $\lambda_1, \dots, \lambda_n$	Decomposition	corresponds to column ci	$a_1,, a_n \in \mathbb{R}^m$ are linearly independent $Apply GS q_1,, q_n \leftarrow GS(a_1,, a_n)$ to build ONB
$P_{\perp j} = I_m - Q_j Q_j^T$ is orthogonal projection onto	$\frac{\mathbb{R}^{n} = U \oplus U^{\perp} \text{and } (U^{\perp})^{\perp} = U}{U \perp V \iff U^{\perp} = V \text{and vice-versa}}$	=[a1x1 apxp 0 0]· ∈ κ···	$\det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det(\mathbf{I}_m + \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}) \det(\mathbf{A})$	Let $P = [x_1 x_n]$ then $AP = [\lambda, y, 1, 1] \lambda y = [y, 1, 1] y \text{ Idiag}(\lambda, -\lambda) = PDI$	For any $M \in \mathbb{R}^{m \times n}$, MM^T and M^TM are symmetric and	i.e. random vector $X = [X_1,, X_n]^T$ models the data	$\langle \mathbf{q}_1,, \mathbf{q}_n \rangle \in \mathbb{R}^m \text{for C(A)} $
$\left(U_{j}\right)^{\perp}$ (orthogonal compliment)	$U \perp V \iff U^{\perp} = V$ and vice-versa $Y \subseteq X \implies X^{\perp} \subseteq Y^{\perp}$ and $X \cap X^{\perp} = \{0\}$	$p = m_1$ those tail-zeros don't exist) $\operatorname{diag}_{m \times n}(\mathbf{a}) * \operatorname{diag}_{m \times n}(\mathbf{b}) = \operatorname{diag}_{m \times n}(\mathbf{a} * \mathbf{b})$		$AP = \overline{[\lambda_1 \mathbf{x}_1 \dots \lambda_n \mathbf{x}_n]} = [\mathbf{x}_1 \dots \mathbf{x}_n] \text{ diag}(\lambda_1, \dots, \lambda_n) = PD$ $\Rightarrow \text{ if } P^{-1} \text{ exists then}$	positive semi-definite	r1,,rm	For exams: more efficient to compute as
Uniquely decompose next U _j ∌a _{j+1} = v _{j+1} +u _{j+1}	Any x ∈ R ⁿ can be uniquely decomposed into	Consider diag $_{n \times h}(c_1,, c_q)$, $q = \min(n, k)$, then	$\det(\mathbf{A} + \mathbf{U}\mathbf{W}\mathbf{V}^T) = \det(\mathbf{W}^{-1} + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}) \det(\mathbf{W}) \det(\mathbf{A})$	A=PDP ⁻¹ i.e. Alis diagonalisable	Singular Value Decomposition (SVD) &	Co-variance matrix of \underline{X} is $Cov(A) = \frac{1}{m-1} A^T A = $	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$
$v_{j+1} = P_j(a_{j+1}) \in U_j \Rightarrow \text{discard it!!}$	$\underline{\mathbf{x}} = \mathbf{x}_i + \mathbf{x}_k$, where $\underline{\mathbf{x}}_i \in U$ and $\underline{\mathbf{x}}_k \in U^{\perp}$	$\operatorname{diag}_{m \times n}(a_1, \dots, a_p)\operatorname{diag}_{n \times k}(c_1, \dots, c_q)$	Tricks for computing determinant	P=I _{EB} is change-in-basis matrix for basis	Singular Values Singular Value Decomposition of $\underline{A \in \mathbb{R}^{m \times n}}$ is any	$(A^T A)_{ij} = (A^T A)_{ji} = \text{Cov}(X_i, X_j)$	·1) Gather $Q_j = [\mathbf{q}_1 \dots \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ all-at-once
$\left \frac{\mathbf{u}_{j+1} = P_{\perp j} \left(\mathbf{a}_{j+1}\right) \in \left(U_{j}\right)^{\perp}}{\mathbf{u}_{j+1} = P_{\perp j} \left(\mathbf{a}_{j+1}\right) \in \left(U_{j}\right)^{\perp}}\right \Rightarrow \text{we're after this!!}$	For matrix $A \in \mathbb{R}^{m \times n}$ and for row-space R(A),		If block-triangular matrix then apply	$\overline{B} = (\mathbf{x}_1,, \mathbf{x}_n)$ of eigenvectors	decomposition of the form A = USV where	v111 - v. 1111 - 201(N[1/1])	·2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$
	column-space C(A) and null space ker(A)	Where $r = \min(p, q) = \min(m, n, k)$, and	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)$	If A = F _{EE} is transformation-matrix of linear map f then F _{EE} = I _{EB} F _{BB} I _{BE}	decomposition of the lost $M = M$ where $M = M = M = M$ orthogonal $M = [M + M] = M = M = M$ and	v ₁ ,, v _r (columns of V) are principal axes of A	all-at-once
Let $q_{j+1} = \hat{u}_{j+1} \Longrightarrow$ we have next ONB $(q_1,, q_{j+1})$	$R(A)^{\perp} = \ker(A)$ and $C(A)^{\perp} = \ker(A^{T})$ Any $b \in \mathbb{R}^{m}$ can be uniquely decomposed into	S∈ R-,S=min(m,R)	If close to triangular matrix apply EROs/ECOs to get it		$V = [\mathbf{v}_1 \mid \dots \mid \mathbf{v}_n] \in \mathbb{R}^{n \times n}$	Let $\mathbf{w} \in \mathbb{R}^n$ be some unit-vector \Rightarrow let $\alpha_j = \mathbf{r}_j \cdot \mathbf{w}$ be the	· 3) Compute $Q_j c_j \in \mathbb{R}^m$, and subtract from a_{j+1}
for $\overline{U_{j+1}} \Longrightarrow$ start next iteration	1 1 1 1 1 1 0(a) 1 1 (aT)	Inverse of square-diagonals =>	there, then its just product of diagonals	Spectral theorem: if \underline{A} is Hermitian then $\underline{P^{-1}}$ exists: $ \text{If } x_i, x_j $ associated to different eigenvalues then	$S = \text{diag}_{m \times n}(\sigma_1, \dots, \sigma_p)$ where $p = \min(m, n)$ and	projection/coordinate of sample r _j onto w	all-at-once
$\frac{\mathbf{u}_{j+1} = \left(\mathbf{I}_m - Q_j Q_j^T\right) \mathbf{a}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j}{\mathbf{u}_{j+1} = \mathbf{u}_{j+1} - Q_j \mathbf{c}_j}$ where	$b = b_i + b_k$, where $b_i \in R(A)$ and $b_k \in ker(A)$	$\frac{\operatorname{diag}(a_1, \dots, a_n)^{-1} = \operatorname{diag}(a_1^{-1}, \dots, a_n^{-1})}{\operatorname{cannot} \operatorname{be} \operatorname{zero} (\operatorname{division} \operatorname{by} \operatorname{zero} \operatorname{undefined})} \text{i.e. diagonals}$	If Cholesky/LU/QR is possible and cheap then do it, then apply [AB] = [A][B]	$ \mathbf{x}_i \perp \mathbf{x}_j $	$ \sigma_1 \ge \cdots \ge \sigma_p \ge 0$		Can now rewrite $\mathbf{a}_j = \sum_{i=1}^{J} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = Q_j \mathbf{c}_j$
$\mathbf{c}_{j} = [\mathbf{q}_{1} \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_{j} \cdot \mathbf{a}_{j+1}]^{T}$			reses abbit lunt - luttnil				

Choose $Q = Q_n = [\mathbf{q}_1 \mid \mid \mathbf{q}_n] \in \mathbb{R}^{m \times n}$ notice its	proj _{Lu} = uu ^T and proj _{Pu} = I _n - uu ^T =>	$\frac{\partial^{n} k^{+\cdots+n} f}{\partial^{n} k_{m} \partial^{n} n_{1}} = \partial^{n} k_{m} \cdots \partial^{n} f_{1} f = f^{(n_{1}, \dots, n_{k})}_{i_{1} \dots i_{k}}$	(a, o, o, o) inner-product, back-substitution w/ triangular systems, are backwards stable	$fl(\lambda A) = \lambda A + E; E _{ij} \le \lambda A _{ij} \in mach$	Stability depends on growth-factor $\rho = \frac{\max_{i,j} u_{i,j} }{ u_{i,j} }$	Rayleigh quotient for <u>Hermitian</u> $A = A^{\dagger}$ is	Similar to to Gram-Schmidt (but different inner-product)
semi-orthogonal since Q ^T Q = I _n	H _u = proj _{Pu} - proj _L	i _k i ₁	If backwards stable \tilde{f} and f has condition number	$fl(A+B) = (A+B)+E; E _{ij} \le A+B _{ij} \in_{mach}$	max _{i,j} a _{i,j}	$R_A(\mathbf{x}) = \frac{\mathbf{x}^{\dagger} A \mathbf{x}}{\mathbf{x}^{\dagger} \mathbf{x}}$	$(\mathbf{p}^{(0)},,\mathbf{p}^{(n-1)})$ and $(\mathbf{r}^{(0)},,\mathbf{r}^{(n-1)})$ are bases for
-Notice \Rightarrow $\mathbf{a}_j = Q_j \mathbf{c}_j = \mathbf{Q}[\mathbf{q}_1 \cdot \mathbf{a}_j,, \mathbf{q}_j \cdot \mathbf{a}_j, 0,, 0]^T = \mathbf{Q}\mathbf{r}_j$ -Let $R = [\mathbf{r}_1 \mid \mid \mathbf{r}_n] \in \mathbb{R}^{n \times n} \mid \Rightarrow$	Visualize as preserving component in Pu then flipping component in Lu	Its an <u>N</u> -th order partial derivative where $N = \sum_{k} n_k$	$ \underline{\kappa(x)} $ then relative error $ \underline{\tilde{f}(x)}-f(x) = O(\kappa(x)\epsilon_{mach})$	$f((AB) = AB + E; E _{ij} \le n \epsilon_{mach}(A B)_{ij} + O(\epsilon_{mach}^2)$	⇒ for partial pivoting $\rho \le 2^{m-1}$	Eigenvectors are stationary points of RA	QR Algorithm to find Schur decomposi-
$\begin{bmatrix} \mathbf{q}_1^T \mathbf{a}_1 & \dots & \mathbf{q}_1^T \mathbf{a}_n \end{bmatrix}$	H _u is involutory, orthogonal and symmetric, i.e.	$\nabla f = [\partial_1 f,, \partial_n f]^T \text{ is gradient of } \underline{f} \Rightarrow (\nabla f)_i = \frac{\partial f}{\partial \mathbf{x}_i}$	Accuracy, stability, backwards stability are	Taylor series about $\underline{a} \in \mathbb{R}$ is	$\frac{\ U\ = O(\rho \ A\)}{\ A\ } \Rightarrow \tilde{L}\tilde{U} = \tilde{P}A + \delta A \frac{\ \delta A\ }{\ A\ } = O(\rho \epsilon_{\text{machine}})$ $\Rightarrow \text{ only backwards stable if } \rho = O(1)$	$R_A(x)$ is closest to being like eigenvalue of x , i.e. $R_A(x) = \operatorname{argmin} Ax - \alpha x _2$	tion A = QUQ [†]
$A = QR = Q$: notice its $0 = q_n^T a_n$	$H_{\boldsymbol{u}} = H_{\boldsymbol{u}}^{-1} = H_{\boldsymbol{u}}^{T}$	$ \nabla^T f = (\nabla f)^T $ is $\underline{\text{transpose}}$ of $ \nabla f $, i.e. $ \nabla^T f $ is $\underline{\text{row vector}}$	norm-independent for fin-dim X, Y	$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + O((x-a)^{n+1})$ as $\underline{x \to a}$	Only backwards stable ii p=0(1)	$R_A(x) - R_A(v) = O(x - v ^2)$ as $x \to v$ where v is	Any $\underline{A \in \mathbb{C}^{m \times m}}$ has Schur decomposition $\underline{A} = QUQ^{\dagger}$
upper-triangular	Modified Gram-Schmidt	$D_{\mathbf{u}} f(\mathbf{x}) = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})}{\delta}$ is	Big-O meaning for numerical analysis in complexity analysis $f(n) = O(g(n))$ as $n \to \infty$	Need $\underline{a=0} = f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + O(x^{n+1})$ as	Full pivoting is PAQ = LU finds largest entry in bottom-right submatrix	eigenvector	Q jis unitary, i.e. $Q^{\dagger} = Q^{-1}$ and upper-triangular U
Full QR Decomposition	Go check <u>Classical GM</u> first, as this is just an alternative computation method	directional-derivative of f	But in numerical analysis $f(\varepsilon) = O(g(\varepsilon))$ as $\varepsilon \to 0$, i.e. $\lim \sup_{\varepsilon \to 0} \ f(\varepsilon)\ / \ g(\varepsilon)\ < \infty$	x → 0	Makes it pivot with row/column swaps before	Power iteration: define sequence $\frac{b^{(k+1)}}{ \mathbf{a}\mathbf{b}(k) } = \frac{A\mathbf{b}^{(k)}}{ \mathbf{a}\mathbf{b}(k) }$	Diagonal of <u>U</u> J contains eigenvalues of <u>A</u> J
Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (\underline{m \ge n}),$	Let $P_{\perp} \mathbf{q}_{j} = \mathbf{I}_{m} - \mathbf{q}_{j} \mathbf{q}_{j}^{T}$ be projector onto hyperplane	It is rate-of-change in direction <u>u</u> , where <u>u</u> ∈ R ⁿ is unit-vector	i.e. ∃C,δ>0 s.t. <u>∀c.</u>], we have	$e.g.(1+\epsilon)^p = \sum_{k=0}^{n} {p \choose k} \epsilon^k + O(\epsilon^{n+1})$ $e.g.(1+\epsilon)^p = \sum_{k=0}^{n} {p \choose k} \epsilon^k + O(\epsilon^{n+1})$ $as \epsilon \to 0$	normal elimination Very expensive O(m ³) search-ops, partial pivoting	Power iteration: define sequence D. Ab(k)	Algorithm 1 Basic QR iteration
i.e. $\mathbf{a}_1,, \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent -Apply QR decomposition to obtain:	(Rq _j) [⊥] , i.e. orthogonal compliment of line Rq _j	$D_{\mathbf{u}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u} = \ \nabla f(\mathbf{x})\ \ \mathbf{u}\ \cos(\theta) = D_{\mathbf{u}}f(\mathbf{x})$	$\begin{array}{c} 0 < \ \epsilon\ < \delta \implies \ f(\epsilon)\ \le C \ g(\epsilon)\ \\ O(g) \text{ is set of functions} \end{array}$	$e.g.(1+\epsilon)^p = \frac{-n-0}{n} \frac{n!}{n!(p-k)!} \epsilon^k + O(\epsilon^{n+1})$ as $\epsilon \to 0$	only needs $O(m^2)$	with initial b (0) s.t. b (0) = 1	1: for $k = 1, 2, 3,$ do
ONB $\langle \mathbf{q}_1,, \mathbf{q}_n \rangle \in \mathbb{R}^m \text{for } \underline{C(A)} $	Notice: $P_{\perp j} = \mathbf{I}_m - Q_j Q_j^T = \prod_{i=1}^{j} (\mathbf{I}_m - \mathbf{q}_i \mathbf{q}_i^T) = \prod_{i=1}^{j} P_{\perp} \mathbf{q}_i$	maximized when $\cos \theta = 1$ i.e. when x , u are parallel ⇒ hence $\nabla f(x)$ is direction	$\frac{ g(g) }{\{f: \limsup_{\epsilon \to 0} f(\epsilon) / g(\epsilon) < \infty\}}$	Elementary Matrices	Metric spaces & limits	Assume dominant $\lambda_1; x_1$ exist for \underline{A} , and that $\text{proj}_{x_1} (b^{(0)}) \neq 0$	2: $A^{(k-1)} = Q^{(k-1)}R^{(k-1)}$ 3: $A^{(k)} = R^{(k-1)}Q^{(k-1)}$
Semi-orthogonal $Q_1 = [\mathbf{q}_1 \dots \mathbf{q}_n] \in \mathbb{R}^{m \times n}$ and upper-triangular $R_1 \in \mathbb{R}^{n \times n}$ where $A = Q_1 R_1$		of max. rate-of-change		Identity $I_n = [e_1 \dots e_n] = [e_1; \dots; e_n]$ has	Metrics obey these axioms $d(x, x) = 0 \mid x \neq y \implies d(x, y) > 0 \mid d(x, y) = d(y, x) \mid$	Under above assumptions.	4: end for
Compute basis extension to obtain remaining	Re-state: $\mathbf{u}_{j+1} = \left(\mathbf{I}_m - Q_j Q_j^i\right) \mathbf{a}_{j+1} = \mathbf{v}_{j+1}$	f has local minimum at x_{loc} if there's radius $r > 0$ js.t.	Smallness partial order $O(g_1) \leq O(g_2)$ defined by set-inclusion $O(g_1) \subseteq O(g_2)$	elementary vectors e ₁ ,,e _n for rows/columns Row/column switching: permutation matrix P _{ii}	$d(x,z) \le d(x,y) + d(y,z)$	$\mu_R = R_A \left(\mathbf{b}^{(R)} \right) = \frac{\mathbf{b}^{(R)} \dot{\uparrow}_{Ab}(R)}{\mathbf{b}^{(R)} \dot{\uparrow}_{Ab}(R)}$ converges to dominant	For $\underline{A} \in \mathbb{R}^{m \times m}$ leach iteration $\underline{A}^{(k)} = \underline{Q}^{(k)} \underline{R}^{(k)}$ produces
$\mathbf{q}_{n+1}, \dots, \mathbf{q}_m \in \mathbb{R}^m$ where $\langle \mathbf{q}_1, \dots, \mathbf{q}_m \rangle$ is ONB for \mathbb{R}^m	$\mathbf{u}_{j+1} = \left(\prod_{i=1}^{J} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{j+1} = \left(P_{\perp \mathbf{q}_{j}} \cdots P_{\perp \mathbf{q}_{1}}\right) \mathbf{a}_{j+1}$	$\forall \mathbf{x} \in B[r; \mathbf{x}_{loc}]$ we have $f(\mathbf{x}_{loc}) \leq f(\mathbf{x})$	i.e. as $\varepsilon \to 0$, $g_1(\varepsilon)$ goes to zero faster than $g_2(\varepsilon)$ Roughly same hierarchy as complexity analysis but	obtained by switching ei and ej in In (same for	For metric spaces, mix-and-match these	B(K) B(K)	orthogonal $Q^{(k)^T} = Q^{(k)^{-1}}$
Notice $(\mathbf{q}_{n+1}, \dots, \mathbf{q}_m)$ is ONB for $\underline{C(A)^{\perp}} = \ker(A^{\top})$	Projectors P _{1 q1} ,,P _{1 qj} are iteratively applied to	f has $global minimum x_{glob}$ if $\forall x \in \mathbb{R}^n$ we have $f(x_{glob}) \le f(x)$	flipped (some don't fit the pattern)	rows/columns) Applying P _{ij} from left will swap rows, from right will	$\frac{\inf_{\text{infinite/finite limit}} \text{definitions:}}{ \lim_{X \to +\infty} f(X) = +\infty} \iff \forall r \in \mathbb{R}, \exists N \in \mathbb{N}, \forall x > N : f(x) > r $	$\frac{h_1}{(b_k)}$ converges to some dominant x_1 jassociated with	$A^{(k+1)} = R^{(k)}Q^{(k)} = (Q^{(k)}^TQ^{(k)})R^{(k)}Q^{(k)}$ means
Let $Q_2 = [\mathbf{q}_{n+1} \dots \mathbf{q}_m] \in \mathbb{R}^{m \times (m-n)}$, let $Q = [Q_1 Q_2] \in \mathbb{R}^{m \times m}$, let $R = [R_1; 0_{m-n}] \in \mathbb{R}^{m \times n}$	a_{j+1} removing its components along q_1 then along q_2 and so on	A local minimum satisfies optimality conditions:	e.g, $O(\varepsilon^3) < O(\varepsilon^2) < O(\varepsilon) < O(1)$	swap columns		$\lambda_1 \Rightarrow Ab^{(k)}$ converges to $ \lambda_1 $	$= Q(k)^{T} A(k) Q(k)$
Then full OR decomposition is	Let $\mathbf{u}_{k}^{(j)} = \left(\prod_{i=1}^{j} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{k}$, i.e. \mathbf{a}_{k} without its	$\nabla f(\mathbf{x}) = 0$ e.g. for $\underline{n} = 1$ its $f'(\mathbf{x}) = 0$	Maximum: $O(\max(g_1 , g_2)) = O(g_2) \iff O(g_1) \le O(g_2)$	$P_{ij} = P_{ij}^T = P_{ij}^{-1}$, i.e. applying twice will undo it	$\lim_{X\to p} f(x) = L \iff \begin{cases} \forall \varepsilon > 0, \exists \delta > 0, \forall x \in X : \\ 0 < d_X(x, p) < \delta \implies d_Y(f(x), L) < \varepsilon \end{cases}$	If $\operatorname{proj}_{x_1} \left(b^{(0)} \right) = 0$ then (b_k) ; (μ_k) converge to second	$\frac{A^{(k+1)} \text{ is similar to } A^{(k)}}{\text{Setting } A^{(0)} = A \text{ we get } A^{(k)} = (\tilde{Q}^{(k)})^T A \tilde{Q}^{(k)} \text{ where}}$
$A = QR = [Q_1 Q_2] \begin{bmatrix} R_1 \\ 0_{m-n} \end{bmatrix} = Q_1 R_1$	components along $\mathbf{q}_1,, \mathbf{q}_i$	$ \nabla^2 f(\mathbf{x}) $ is positive-definite, e.g. for $\underline{n=1}$ jits $\underline{f''(x)} > 0$	e.g. $O(\max(\epsilon^{R}, \epsilon)) = O(\epsilon)$	Row/column scaling: $D_i(\lambda)$ obtained by scaling e_i by	Cauchy sequences, i.e. $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall m, n \ge N : d(a_m, a_n) < \varepsilon$, converge in	dominant λ_2 ; \mathbf{x}_2 instead If no dominant λ_1 (i.e. multiple eigenvalues of	$\tilde{Q}(k) = Q(0) \dots Q(k-1)$
$Q[\text{is orthogonal}, \text{i.e. } Q^{-1} = Q^T]$, so its a basis	Notice: $\mathbf{u}_j = \mathbf{u}_j^{(j-1)}$, thus $\mathbf{q}_j = \hat{\mathbf{u}}_j = \mathbf{u}_j^{(j-1)}/r_{jj}$ where	$\mathbf{H}(f) = \nabla^2 f = \mathbf{J}(\nabla f)^T$ is Hessian \Rightarrow $\mathbf{H}(f)_{ij} = \frac{\partial^2 f}{\partial \mathbf{x}_i \partial \mathbf{x}_i}$	Using functions $f_1,, f_n$ let $\Phi(f_1,, f_n)$ be formula	Applying P _{ij} from left will scale rows, from right will	complete spaces	maximum [λ] ∫ then ⟨b _R ⟩ will converge to linear combination of their corresponding	Under certain conditions QR algorithm converges to Schur decomposition
transformation		Interpret $F: \mathbb{R}^n \to \mathbb{R}^m$ as m functions $F_i: \mathbb{R}^n \to \mathbb{R}$	defining some function	scale columns	You can manipulate <u>matrix limits</u> much like in real analysis , e.g. $\lim_{n\to\infty} (A^n B+C) = (\lim_{n\to\infty} A^n) B+C$	eigenvectors	
$\operatorname{proj}_{C(A)} = Q_1 Q_1^T$, $\operatorname{proj}_{C(A)} \perp = Q_2 Q_2^T$ are	$r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ $ Iterative step:	(one per output-component)	Then $\Phi(O(g_1),, O(g_n))$ is the class of functions $\{\Phi(f_1,, f_n) : f_1 \in O(g_1),, f_n \in O(g_n)\}$	$D_i(\lambda) = \text{diag}(1,, \lambda,, 1)$ so all diagonal properties apply, e.g. $D_i(\lambda)^{-1} = D_i(\lambda^{-1})$	Turn metric limit $\lim_{n\to\infty} x_n = L$ into real limit	Slow convergence if dominant λ_1 not "very dominant"	We can apply shift $\mu^{(k)}$ at iteration k] $\Rightarrow A^{(k)} - \mu^{(k)} I = Q^{(k)} R^{(k)}$; $A^{(k+1)} = R^{(k)} Q^{(k)} + \mu^{(k)} I$
orthogonal projections onto $C(A)$ $C(A)$ $C(A)$ = $ext{ker}(A^T)$	$\mathbf{u}_{k}^{(j)} = \left(P_{\perp \mathbf{q}_{j}}\right) \mathbf{u}_{k}^{(j-1)} = \mathbf{u}_{k}^{(j-1)} - \left(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{(j-1)}\right) \mathbf{q}_{j}$	$\underline{\mathbf{J}(F)} = \left[\nabla^T F_1; \dots; \nabla^T F_m \right] \text{ is } \mathbf{Jacobian} \Rightarrow \underline{\mathbf{J}(F)_{ij}} = \frac{\partial F_i}{\partial \mathbf{x}_j}$	$e.g. \in O(1) = \{ \varepsilon f(\varepsilon) : f \in O(1) \}$	Row addition: $L_{ij}(\lambda) = L_{ij}(\lambda) = I_{ij}(\lambda)$ performs	$\lim_{n\to\infty} d(x_n, L) = 0$ to leverage real analysis	$\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_1\ = O\left(\left\ \frac{\lambda_2}{\lambda_1}\right\ ^k\right)$ for phase factor	If shifts are good eigenvalue estimates then
Notice: $QQ^T = \mathbf{I}_m = Q_1 Q_1^T + Q_2 Q_2^T$	i.e. each iteration $j \mid \text{of MGS computes P}_{\perp \mathbf{q}_j} \mid (and)$	Conditioning	General case:	$R_i \leftarrow R_i + \lambda R_j$ when applying from left	Bounded monotone sequences converge in R Sandwich theorem for limits in R => pick easy	$\alpha_b \in \{-1, 1\}$ [it may alternate if $\lambda_1 < 0$]	last column of $\tilde{Q}^{(k)}$ converges quickly to an
Generalizable to A∈C ^{m×n} by changing transpose to conjugate-transpose	projections under it) in one go	A problem is some $\underline{f: X \to Y}$ where $\underline{X, Y}$ are normed vector-spaces	$ \frac{\Phi_1(O(f_1),, O(f_m)) = \Phi_2(O(g_1),, O(g_n))}{\Phi_1(O(f_1),, O(f_m)) \subseteq \Phi_2(O(g_1),, O(g_n))} $ means	$\lambda e_i e_i^T$ is zeros except for $\lambda \ln (i,j)$ th entry	upper/lower bounds		eigenvector Estimate μ ^(k) with Rayleigh quotient =>
Lines and hyperplanes in En(-Dn)	At start of iteration $j \in 1n$ we have ONB	A problem <i>instance</i> is f with fixed input $x \in X$, shortened to <i>just</i> "problem" (with $x \in X$ limplied)	e.g. $e^{O(1)} = O(k^{\epsilon})$ means $\{e^{f(\epsilon)} : f \in O(1)\} \subseteq O(k^{\epsilon})$	$L_{ij}(\lambda)^{-1} = L_{ij}(-\lambda)$ both triangular matrices	$\frac{ \overline{\lim}_{n\to\infty} r^n = 0 \iff r < 1}{\lim_{n\to\infty} \sum_{i=0}^n ar^i = \frac{a}{1-r} \iff r < 1}$	$\frac{\alpha_k - \frac{1}{ \lambda_1 ^k c_1 }}{ \lambda_1 ^k c_1 }$ where $\frac{c_1 - c_1}{ c_1 ^k c_1 }$	$\mu^{(k)} = (A_k)_{mm} = (\bar{\mathbf{q}}_m^{(k)})^T A \bar{\mathbf{q}}_m^{(k)} \text{where } \bar{\mathbf{q}}_m^{(k)} \text{is } \underline{m} \text{-th}$
Consider standard Euclidean space $\mathbb{E}^n(=\mathbb{R}^n)$	$\mathbf{q}_1, \dots, \mathbf{q}_{j-1} \in \mathbb{R}^m$ and residual $\mathbf{u}_j^{(j-1)}, \dots, \mathbf{u}_n^{(j-1)} \in \mathbb{R}^m$	δx is small perturbation of δx $\Rightarrow \delta f = f(x + \delta x) - f(x)$	not necessarily true Special case: $f = \Phi(O(g_1),, O(g_n))$ means	LU factorization w/ Gaussian elimina-		b(k); x ₁ are normalized	column of $\tilde{\mathcal{Q}}^{(k)}$
with standard basis $(e_1,, e_n) \in \mathbb{R}^n$ with standard origin $0 \in \mathbb{R}^n$	Compute $r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ = \mathbf{q}_{j} = \frac{\mathbf{u}_{j}^{(j-1)} / r_{jj}}{\mathbf{q}_{j}}$	A problem (instance) is: Well-conditioned if all small δx lead to small δf i.e.	$f \in \Phi(O(g_1), \dots, O(g_n))$	Recall: you can represent EROs and ECOs as	Iterative Techniques Systems of Equations	(A-σI) has eigenvalues λ-σ λ2-σ λ	
	For each $k \in (j+1)n$, compute $r_{jk} = \mathbf{q}_j \cdot \mathbf{u}_k^{(j-1)} = >$	if $\underline{\kappa}$ jis small (e.g. $\underline{1}$) $\underline{10^2}$	e.g. $(\varepsilon+1)^2 = \varepsilon^2 + O(\varepsilon)$ means	transformation matrices R, C respectively	Let $A, R, G \in \mathbb{R}^{n \times n}$ where G^{-1} exists \Longrightarrow splitting	$\Rightarrow \underline{\text{power-iteration}} \text{ on } \underline{(A-\sigma I)} \text{ has } \frac{\lambda_2 - \sigma}{\lambda_1 - \sigma}$	
A line $L = \mathbb{R} \mathbf{n} + C$ is characterized by direction $\mathbf{n} \in \mathbb{R}^n$ $(\mathbf{n} \neq 0]$ and offset from origin $\mathbf{c} \in L$	$\mathbf{u}_{k}^{(j)} = \mathbf{u}_{k}^{(j-1)} - r_{jk}\mathbf{q}_{j}$	Ill-conditioned if <u>some</u> small δx lead to large δf , i.e.	$\varepsilon \mapsto (\varepsilon + 1)^2 \in \{\varepsilon^2 + f(\varepsilon) : f \in O(\varepsilon)\}$ not necessarily true	LU factorization => finds A = LU where L, U are lower/upper triangular respectively	A=G+R helps iteration Ax=b rewritten as x=Mx+c where	Eigenvector guess => estimated eigenvalue	
It is customary that: n_is a unit vector , i.e. n = n̂ = 1	Next ONB $(\mathbf{q}_1,, \mathbf{q}_j)$ and next residual $\mathbf{u}_{i+1}^{(j)},, \mathbf{u}_{n}^{(j)}$	if <u>K</u> jis large (e.g. <u>10⁶</u>) <u>10¹⁶</u>)	Let $f_1 = O(g_1)$, $f_2 = O(g_2)$ and let $k \neq 0$ be a constant	Naive Gaussian Elimination performs	$M = -G^{-1}R$; $C = -G^{-1}b$	Inverse (power-)iteration: perform power iteration on	
c∈L is closest point to origin, i.e. c⊥n	NOTE: for $j=1$ => $\mathbf{q}_1, \dots, \mathbf{q}_{j-1} = \emptyset$ i.e. none yet	Absolute condition number $\underline{\text{cond}(x) = \hat{k}(x) = \hat{k}}$ of \underline{f} at \underline{x} .	$ f_1f_2 = O(g_1g_2) f \cdot O(g) = O(fg) O(k \cdot g) = O(g)$ $ f_1+f_2 = O(\max(g_1 , g_2)) $	$[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid U \mid I_n]$ to get $AI_n = R^{-1} U$ using	Define $f(x) = Mx + c$ and sequence $x^{(k+1)} = f(x^{(k)}) = Mx^{(k)} + c$ with starting point $x^{(0)}$	$(A-\sigma I)^{-1}$ to get $\lambda_{1,\sigma}$ closest to σ	
-If c≠λn]=> L] not vector-subspace of R ⁿ] i.e. 0∉LJ, i.e. L]doesn't go through the origin	By end of iteration $j = n$, we have ONB	$\hat{\kappa} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ \delta f\ }{\ \delta x\ }$	\Rightarrow if $g_1 = g = g_2$ then $f_1 * f_2 = O(g)$	only row addition R ⁻¹ , i.e. inverse EROs in reversed order, is	Limit of $\langle x_k \rangle$ is fixed point of $f = $ unique fixed point	$(A-\sigma I)^{-1}$ has eigenvalues $(\lambda-\sigma)^{-1}$ so power iteration will yield largest $(\lambda_{1,\sigma}-\sigma)^{-1}$	
LJis affine-subspace of Rn	$(\mathbf{q}_1,,\mathbf{q}_n) \in \mathbb{R}^m$	=> for $\underline{\text{most problems}}$ simplified to $\hat{\kappa} = \sup_{\delta X} \frac{\ \delta f\ }{\ \delta x\ }$	Floating-point numbers	lower-triangular so $L = R^{-1}$	of f is solution to Ax = b If - is consistent norm and M < 1 then $\langle x_k \rangle$	i.e. will yield smallest $\lambda_{1,\sigma} - \sigma_{\downarrow}$ i.e. will yield $\lambda_{1,\sigma}$	
-If <u>c=λn</u> , i.e. <u>L=Rn</u> J=> <u>L</u> Jis vector-subspace of <u>R</u> ⁿ i.e. <u>0∈L</u> } i.e. <u>L</u> Jgoes through the origin	$A = [a_1 a_n] = [q_1 q_n]$ $r_{11} r_{1n}$ $r_{1n} = QR$	If <u>Jacobian</u> $J_f(x)$ exists then $\hat{k} = J_f(x) $ where	Consider base/radix $\beta \ge 2$ (typically 2) and precision $t\ge 1$ (24) or 53 for IEEE single/double precisions)	Algorithm 1 Gaussian elimination	converges for any x ⁽⁰⁾ (because Cauchy-completeness)	closest to g	
L has $dim(L) = 1$ and orthonormal basis (ONB) $\{\hat{n}\}$	0 r _{nn} corresponds to thin QR decomposition	$ \underline{\text{matrix norm}} \ \underline{\ -\ } \text{ induced by } \underline{\text{norms on } X} \text{ jand } \underline{Y} $ $ Relative condition number } \kappa(x) = \kappa \text{ of } f \text{ at } \underline{x} \text{ j is} $	Floating-point numbers are discrete subset $F = \{ (-1)^S (m/\beta^t) \beta^e \mid 1 \le m \le \beta^t, s \in \mathbb{B}, m, e \in \mathbb{Z} \} $	1: $U = A, L = I$ 2: for $k = 1$ to $m - 1$ do	We want to find M < 1 and easy to compute M; c Stopping criterion usually the relative residual	$\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_{1,\sigma}\ = O\left(\left\ \frac{\lambda_{1,\sigma} - \sigma}{\lambda_{2,\sigma} - \sigma}\right\ ^k\right)\right)$ where $\mathbf{x}_{1,\sigma}$	
A hyperplane $P = (Rn)^{\perp} + c = \{x + c \mid x \in R^n, x \perp n \}$ is	Where $A \in \mathbb{R}^{m \times n}$ is full-rank, $\mathbb{Q} \in \mathbb{R}^{m \times n}$ is	$ \kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	S_j is sign-bit, m/β^t is mantissa, e_j is exponent (8)-bit	3: for $j = k + 1$ to m do 4: $\ell_{j,k} = u_{j,k}/u_{k,k}$		corresponds to $\lambda_{1,\sigma}$ and $\lambda_{2,\sigma}$ is 2nd-closest to σ	
={x∈R" x·n=c·n}	semi-orthogonal, and $\underline{R \in \mathbb{R}^{n \times n}}$ is upper-triangular	=> for most problems simplified to	for single, 111-bit for double) Equivalently, can restrict to $\beta^{t-1} \le m \le \beta^t - 1$ for unique	5: $u_{j,k:m} = u_{j,k:m} - \ell_{j,k}u_{k,k:m}$ 6: end for		Efficiently compute eigenvectors for known eigenvalues o	
origin c∈P	Classical vs. Modified Gram-Schmidt These algorithms both compute thin	$\kappa = \sup_{\delta X} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	mjand ej	7: end for	Assume Afs diagonal is non-zero (w.l.o.g.	Eigenvalue guess => estimated eigenvector	
It represents an (n - 1) dimensional slice of the	thin QR decomposition	T_(v)	FCR is idealized (ignores over/underflow), so is countably infinite and self-similar (i.e. F=βF)	The pivot element is simply diagonal entry $u_{RR}^{(k-1)}$	permute/change basis if isn't) then $A = D + L + U$; where D is diagonal of A [L , U] are strict lower/upper triangular	Algorithm 3 Inverse iteration 1: for $k = 1, 2, 3,$ do	
It is customary that:	Modified Gram-Schmidt 1: for $j = 1$ to n do	If $\underbrace{\operatorname{Jacobian}}_{f(x)} \underbrace{\operatorname{J}_{f(x)}}_{f(x)} = \operatorname{Min}_{k=1}^{k-1} \underbrace{\operatorname{J}_{f(x)}}_{f(x)} \underbrace{\operatorname{J}_{f(x)}}_{f(x)}$ More important than $\widehat{\mathbb{K}}$ for numerical analysis	For all $x \in \mathbb{R}$ there exists $f(x) \in \mathbb{F}$ s.t.	fails if $u_{kk}^{(k-1)} \approx 0$	parts of Al	2: $\hat{x}^{(k)} = (A - \sigma I)^{-1} x^{(k-1)}$ 3: $x^{(k)} = \hat{x}^{(k)} / \max(\hat{x}^{(k)})$	
n is a unit vector, i.e. $\ \mathbf{n}\ = \ \hat{\mathbf{n}}\ = 1$ $\mathbf{c} \in P$ is closest point to origin, i.e. $\mathbf{c} = \lambda \mathbf{n}$	Classical Gram-Schmidt 1: for $j = 1$ to n do 2: $u_j = a_j$ 3: end for	Matrix condition number Cond(A) = $\kappa(A) = A A^{-1} $	$ x-fl(x) \le \epsilon_{mach} x $ Equivalently $fl(x) = x(1+\delta), \delta \le \epsilon_{mach}$	$L\bar{U} = A + \delta A$, $\ \delta A\ $ $\ L\ \cdot \ U\ $ = $O(\epsilon_{\text{mach}})$ only backwards	Jacobi Method:	4: $\lambda^{(k)} = (x^{(k)})^T A x^{(k)}$	
With those $\Rightarrow P = \{x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \lambda\}$	2: $u_j = a_j$ 4: for $j = 1$ to n do 3: for $i = 1$ to $j - 1$ do 5: $r_{jj} = u_j _2$	=> comes up so often that has its own name	Machine epsilon $\epsilon_{\text{machine}} = \epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t}$	stable if L · U ≈ A	$G = D; R = L + U$ => $M = -D^{-1}(L + U); c = D^{-1}b$	5: end for	
·If c·n≠0]=> P not vector-subspace of R ⁿ i.e. 0 ∉ P , i.e. P doesn't go through the origin	4: $r_{ij} = q_i^* a_j$ 6: $q_j = u_j / r_{ij}$ 5: $u_j = u_j - r_{ij} q_i$ 7: for $k = j + 1$ to n do	$A \in \mathbb{C}^{m \times m}$ is well-conditioned if $K(A)$ is small, ill-conditioned if large	is maximum relative gap between FPs	Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$	$ \mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j \neq i} A_{ij} \mathbf{x}_{j}^{(k)} \right) \Rightarrow \mathbf{x}_{i}^{(k+1)} \text{ only needs}$	Can reduce matrix inversion $O(m^3)$ to $O(m^2)$ by pre-factorization	
P is affine-subspace of \mathbb{R}^n If $\mathbf{c} \cdot \mathbf{n} = 0$, i.e. $P = (\mathbb{R}^n)^{\perp} \Rightarrow P$ is vector-subspace of	6: end for 8: $r_{jk} = q_j^* u_k$ 7: $r_{jj} = u_j _2$ 9: $u_k = u_k - r_{jk} q_j$	$\frac{K(\mathbf{A}) = K(\mathbf{A}^{-1})}{K(\mathbf{A}) = K(\mathbf{A})} \ \mathbf{K}(\mathbf{A}) = \mathbf{K}(\mathbf{A}) \ _{2} \implies K(\mathbf{A}) = \frac{\sigma_{1}}{\sigma_{m}}$	Half the gap between 1 and next largest FP $ 2^{-24} \approx 5.96 \times 10^{-8} \text{ and } 2^{-53} \approx 10^{-16} \text{ for single/double} $	Solving $\underline{Ax = LUx}$ Jis $\frac{2}{3}m^3$ flops (back substitution is $O(m^2)$)	$ \mathbf{b}_{i}; \mathbf{x}^{(k)}; \mathbf{A}_{i*} \Rightarrow \text{row-wise parallelization}$	Nonlinear Systems of Equations	
R ⁿ	8: $q_j = u_j/r_{jj}$ 10: end for 11: end for	- amxn Lu		NOTE: Householder triangularisation requires $\sim \frac{4}{3} m^3$	Gauss-Seidel (G-S) Method:	Recall that $\nabla f(\mathbf{x})$ is direction of max . rate-of-change $ \nabla f(\mathbf{x}) $	
i.e. <u>0 ∈ P </u> , i.e. <u>P </u>]goes through the origin <u>P</u>]has dim(P) = n - 1	Computes at jjth step: Classical GS => j th column of Q and the j th column	For $\underline{\mathbf{A}} \in \mathbb{C}^{m \times n}$, the problem $f_{\underline{\mathbf{A}}}(x) = \underline{\mathbf{A}}x$ has	FP arithmetic: let *, (*) Jbe real and floating counterparts of arithmetic operation		$G = D + L; R = U$ => $M = -(D + L)^{-1} U; c = (D + L)^{-1} b$	Idea: Search for stationary point by gradient descent:	
	of R	$\kappa = \ \mathbf{A}\ \frac{\ \mathbf{x}\ }{\ \mathbf{A}\mathbf{x}\ } \Rightarrow \text{if } \frac{\mathbf{A}^{-1}}{\ \mathbf{A}\mathbf{x}\ } = \text{sists then } \frac{\kappa \leq \text{Cond}(\mathbf{A})}{\ \mathbf{A}\mathbf{x}\ }$ If $\mathbf{A}\mathbf{x} = \mathbf{b}\ $ problem of finding \mathbf{x} igiven \mathbf{b} is just	For x, y ∈ F we have	Partial pivoting computes $PA = LU$ where P is a permutation matrix $\Rightarrow PP^T = I$ i.e. its orthogonal	$\mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ij}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right)$	$\frac{\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)})}{\mathbf{x}^{(k+1)}} \text{ for } \underline{\mathbf{x}} = \underline{\mathbf{x}}$	
Notice <u>L = Rn</u> Jand P = (Rn) \(^{\pm}\) are orthogonal compliments, so:	Modified GS $\Rightarrow j$ th column of Q and the j th row of R	If $\underline{\mathbf{A}} = b$. Problem of finding x given \underline{b} J is just $f_{\mathbf{A}} - 1$ (b) = $\mathbf{A}^{-1} \underline{b}$] $\Rightarrow \kappa = \ \mathbf{A}^{-1}\ \frac{\ \underline{b}\ }{\ \mathbf{x}\ } \le \text{Cond}(\mathbf{A})$	$ x \circledast y = fl(x*y) = (x*y)(1*\epsilon), \delta \le \epsilon_{mach}$ Holds for any arithmetic operation $\circledast = \bullet, \bullet, \bullet, \bullet$	For each column il finds largest entry and row-swaps	Computing $\mathbf{x}_{i}^{(k+1)}$ needs \mathbf{b}_{i} ; $\mathbf{x}^{(k)}$; $\mathbf{A}_{i\star}$ and $\mathbf{x}_{j}^{(k+1)}$ for	If Alis positive-definite, solving Ax = b and	
proj _L = $\hat{\mathbf{n}}\hat{\mathbf{n}}^T$ is orthogonal projection onto LJ(along PJ)	Both have flop (floating-point operation) count of	For $\underline{\mathbf{b}} \in \mathbb{C}^m$ the problem $f_{\underline{\mathbf{b}}}(A) = A^{-1}\underline{\mathbf{b}}$ (i.e. finding $\underline{\mathbf{x}}$ in	Complex floats implemented pairs of real floats, so	to make it new pivot => Pj	j < i] ⇒ lower storage requirements	$min_{\mathbf{X}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}' A \mathbf{x} - \mathbf{x}' b$ are equivalent	
$\frac{\operatorname{proj}_{P} = \operatorname{id}_{\mathbb{R}^{n}} - \operatorname{proj}_{L} = I_{n} - \hat{\mathbf{n}} \hat{\mathbf{n}}^{T}}{\operatorname{projection} \operatorname{onto} P \cdot (\operatorname{along} L)}$ is orthogonal	$O(2mn^2)$ NOTE: Householder method has $2(mn^2 - n^3/3)$ flop	$Ax = b$ has $\kappa = A A^{-1} = Cond(A)$	above applies to complex ops as-well	Then performs <u>normal elimination</u> on that column => L _j	Successive over-relaxation (SOR):	Get iterative methods $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \mathbf{p}^{(k)}$ for step length $\alpha^{(k)}$ and directions $\mathbf{p}^{(k)}$	
$L = im(proj_L) = ker(proj_P)$ and	count, but better numerical properties	Stability	Caveat: $\epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t}$ must be scaled by factors on the order of $2^{3/2}$, $2^{5/2}$ for \emptyset , \emptyset prespectively	Result is $L_{m-1}P_{m-1}\dots L_2P_2L_1P_1A=U$, where	$G = \omega^{-1}D + L; R = (1 - \omega^{-1})D + U =>$		
$P = \ker (\operatorname{proj}_L) = \operatorname{im} (\operatorname{proj}_P)$	Recall: $Q^{\dagger}Q = I_n$ \Rightarrow check for loss of orthogonality	Given a <u>problem</u> $f: X \to Y$, an algorithm for f is $\tilde{f}: X \to Y$	(v. a. av.)	L _{m-1} P _{m-1} L ₂ P ₂ L ₁ P ₁ = L' _{m-1} L' ₁ P _{m-1} P ₁	$M = -(\omega^{-1}D + L)^{-1}((1 - \omega^{-1})D + U); c = -(\omega^{-1}D + L)^{-1}b$	Conjugate gradient (CG) method: if $\underline{A \in \mathbb{R}^{n \times n}}$ symmetric then $(\mathbf{u}, \mathbf{v})_A = \mathbf{u}^T A \mathbf{v}$ is an inner-product	
	with $\ \mathbf{I}_{\mathbf{n}} - Q^{\dagger} Q\ = \text{loss}$	Input $\underline{x \in X}$ Jis first rounded to $fl(x)$, i.e. $\tilde{f}(x) = \tilde{f}(fl(x))$	$\approx (x_1 + \dots + x_n) + \sum_{i=1}^n x_i \left(\sum_{j=i}^n \delta_j \right)^{i, \delta_j } \leq \epsilon_{\text{mach}}$	Setting $L = (L'_{m-1} \dots L'_1)^{-1}$ $P = P_{m-1} \dots P_1$ gives	$\begin{bmatrix} \mathbf{x}_{i}^{(k+1)} = \frac{\omega}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right) \end{bmatrix} \text{ for }$	GC chooses $p^{(k)}$ that are conjugate w.r.t. Al i.e.	
Householder Maps: reflections	Classical GS $\Rightarrow \frac{\ \mathbf{I}_n - Q^{\dagger} Q\ \approx \text{Cond}(A)^2 \epsilon_{\text{mach}}}{\ \mathbf{Modified GS} \Rightarrow \ \mathbf{I}_n - Q^{\dagger} Q\ \approx \text{Cond}(A)\epsilon_{\text{mach}}}$	Absolute error $\Rightarrow \ \bar{f}(x) - f(x)\ $ $\ \bar{f}(x) - f(x)\ $	$(x_1 \otimes \cdots \otimes x_n) \approx (x_1 \times \cdots \times x_n)(1 + \epsilon), \epsilon \le 1.06(n - 1)\epsilon_{\text{mach}}$	Algorithm 2 Gaussian elimination with partial pivoting 1: $U = A, L = I, P = I$	$ \begin{array}{c} i \\ +(1-\omega)\mathbf{x}_{i}^{(R)} \\ \hline \text{relaxation factor } \omega > 1 \end{array} $	$\langle \mathbf{p}^{(i)}, \mathbf{p}^{(i)} \rangle_A = 0$ for $i \neq j$	
Two points $\mathbf{x}, \mathbf{y} \in \mathbb{E}^n$ are reflections w.r.t hyperplane	NOTE: Householder method has $\ \mathbf{I}_n - Q^{\dagger}Q\ \approx \text{Cond}(A) \epsilon_{\text{mach}}\ $	relative error $\Rightarrow \frac{\ \tilde{f}(x)-f(x)\ }{\ f(x)\ }$	$\frac{f(\sum x_i y_i) = \sum x_i y_i (1 + \epsilon_i)}{1 + \epsilon_i = (1 + \delta_i) \times (1 + \eta_i) \cdots (1 + \eta_n)} \text{ and } \delta_i , \eta_i \le \epsilon_{\text{mach}} $	2: for $k = 1$ to $m - 1$ do		And chooses $\underline{\alpha}^{(k)}$ s.t. residuals $\mathbf{r}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) = \mathbf{b} - A\mathbf{x}^{(k)}$ are orthogonal	
D=(Dn)± +c if-	Multivariate Calculus	$\underline{\tilde{f}} \text{ is accurate if } \underline{\forall x \in X \text{ J.}} \ \underline{\frac{\ \tilde{f}(x) - f(x)\ }{\ f(x)\ }} = O\left(\epsilon_{\text{mach}}\right)$	$1+\epsilon_i \approx 1+\delta_i + (\eta_i + \dots + \eta_n)$	3: $i = \underset{i \ge k}{\operatorname{argmax}} u_{i,k} $ 4: $u_{k,k:m} \leftrightarrow u_{i,k:m}$	If A jis strictly row diagonally dominant then Jacobi/Gauss-Seidel methods converge; A jis strictly	$ k=0 \Rightarrow p^{(0)} = -\nabla f(x^{(0)}) = r^{(0)}$	
xy=\n	Consider $f: \mathbb{R}^n \to \mathbb{R}$	\tilde{f} is stable if $\forall x \in X$], $\exists \tilde{x} \in X$]s.t.	$ fl(x^Ty) - x^Ty \le \sum x_i y_i \varepsilon_i $ Assuming $n\varepsilon_{\text{mach}} \le 0.1 =>$	5: $\ell_{k,1:k-1} \leftrightarrow \ell_{i,1:k-1}$ 6: $p_{k,:} \leftrightarrow p_{i,:}$	row diagonally dominant if $ A_{ij} > \sum_{j \neq i} A_{ij} $	$\frac{ k \ge 1 }{ k \ge 1 } \Rightarrow \mathbf{p}^{(k)} = \mathbf{r}^{(k)} - \sum_{i < R} \frac{\langle \mathbf{p}^{(i)}, \mathbf{r}^{(k)} \rangle_{\mathbf{A}}}{\langle \mathbf{p}^{(i)}, \mathbf{p}^{(i)} \rangle_{\mathbf{A}}} \mathbf{p}^{(i)}$	
	When clear write i th component of input as i instead of \mathbf{x}_i	$\frac{\ \tilde{f}(x)-f(\tilde{x})\ }{\ f(\tilde{x})\ } = O\left(\epsilon_{mach}\right) \text{ and } \frac{\ \tilde{x}-x\ }{\ x\ } = O\left(\epsilon_{mach}\right)$	$ fl(x^Ty)-x^Ty \le \phi(n)\epsilon_{mach} x ^T y $, where $ x _i = x_i $	7: for $j = k + 1$ to m do 8: $\ell_{j,k} = u_{j,k}/u_{k,k}$	If AJ is positive-definite then G-S and SOR $(\omega \in (0, 2))$	(p(t),p(t)) _A (b) (b)	
Suppose $P_{\underline{u}} = (\mathbb{R}\underline{u})^{\perp}$ goes through the origin with unit normal $\underline{u} \in \mathbb{R}^{n}$	of x_i Level curve w.r.t. to $c \in \mathbb{R}$ Jis all points s.t. $f(x) = c$ Projecting level curves onto \mathbb{R}^n gives f s	i.e. nearly the right answer to nearly the right question outer-product is stable	is vector and $\phi(n)$ is small function of n	9: $u_{j,k:m} = u_{j,k:m} - \ell_{j,k}u_{k,k:m}$	converge Eigenvalue Problems	$\alpha^{(k)} = \operatorname{argmin}_{\alpha} f(\mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}) = \frac{\mathbf{p}^{(k)} \cdot \mathbf{r}^{(k)}}{(\mathbf{p}^{(k)}, \mathbf{p}^{(k)})_{A}}$	
Householder matrix $H_{u} = I_{n} - 2uu^{T}$ is reflection w.r.t.	contour-map	\tilde{f} is backwards stable if $\forall x \in X$, $\exists \tilde{x} \in X$ s.t. $\tilde{f}(x) = f(\tilde{x})$	Summing a series is more stable if terms added in order of increasing magnitude	10: end for 11: end for	If AJ is diagonalizable then eigen-decomposition is	Without rounding errors, CG converges in ≤ n	
hyperplane P _u Recall: let L _u = Ru	n_k th order partial derivative w.r.t i_k of, of n_1 th	and $\frac{\ \bar{X}-X\ }{\ X\ } = O(\epsilon_{\text{mach}})$	For FP matrices , let $ M _{ij} = M_{ij} $, i.e. matrix $ M $ of	Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$; results in $L_{ij} \leq 1$	$\frac{A = X \Lambda X^{-1}}{ \textbf{Dominant } \lambda_1; \textbf{x}_1 } \text{are such that } \lambda_1 \text{is strictly largest} $	iterations	
<u>-</u>	order partial derivative w.r.t i_1 of f is:	i.e. exactly the right answer to nearly the right question, a subset of stability	absolute values of M	so L = O(1)	for which Ax=Xx		
	_	17					