See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231554708

Essential Oil Composition of Cilantro

ARTICLE in JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY · JULY 1996

Impact Factor: 2.91 · DOI: 10.1021/jf950814c

CITATIONS	READS
29	97

1 AUTHOR:

Thomas L Potter

United States Department of Agriculture

110 PUBLICATIONS 1,589 CITATIONS

SEE PROFILE

Essential Oil Composition of Cilantro

Thomas L. Potter*

Department of Food Science, Chenoweth Laboratory, University of Massachusetts, Amherst, Massachusetts 01003

Leaf oil was isolated from two commercial samples of cilantro ($Coriandrum\ sativum\ L.$) and from growth-chamber-grown plants at five different stages of growth. The oils were analyzed by GC/MS. They were found to be composed mainly of $C_{10}-C_{16}$ aldehydes. (E)-2-Alkenals predominated. Substantial quantitative differences were observed between the two cilantro samples and in the leaf oils isolated at different growth stages. The data indicate that cilantro oil may exhibit significant variation in composition due to ontogenic factors. The data also suggest a possible link among growth stage, oil composition, and consumer preference.

Keywords: Cilantro; Coriandrum sativuum; essential oil; ontogeny

INTRODUCTION

The green leaves of immature *Coriandrum sativum* L. are one of the most widely used fresh herbs. It is featured in the cuisines of China, Southeast Asia, India, and South and Central America. The tradition of its use in these cultures has contributed to its current popularity in the United States. It is a common ingredient in products such as salsa and appears on the menus of gourmet restaurants in poultry and seafood dishes. In the United States and the Spanish-speaking world the herb is most commonly known as cilantro. Other names used are coriander and Chinese parsley.

In a prior work, we reported on the composition of leaf oil isolated from *C. sativum* L. at the blooming stage (Potter and Fagerson, 1990). The leaf oil was composed mainly of (E)-2-decenal (46.6%). Other principal constituents were (E)-2-dodecanal, decanal, (E)-2-undecanal, (E)-2-tetradecanal, 1-decanol, and 2-decen-1-ol. Other research groups have reported similar results (Carlbolm, 1936; Mookherjee et al., 1989). Few if any studies have reported the composition of leaf oil from plants at a less mature stage of development (vegetative). *C. sativum* L. is typically harvested at this stage (prior to blooming) for use as cilantro. It is also notable that Lawrence (1986) reported that the composition of oils isolated from whole coriander plants exhibited significant ontogenic variation. He studied plants from the blooming stage to the development of fully mature

In this work, we report on the essential oil composition of two commercial cilantro samples and on the leaf oil composition of *C. sativum* L. plants sampled at five different stages of growth (vegetative to fruit set). We believe this a first report of cilantro oil composition. Substantial quantitative differences in the leaf oil composition of the two commercial samples was observed. Large quantitative differences were also observed when the oils isolated from *C. sativum* L. plants at differing growth stages were compared. Results emphasize ontogenic factors as determinants in the cilantro oil composition.

MATERIALS AND METHODS

Plant Material. *C. sativum* L. plants were grown from dried fruits (Johnny's Selected Seeds, Albion, ME) in growth

* Fax (413) 545-5910; e-mail TPOTTER@FNR.UMASS.EDU.

chambers. A commercial potting mix was used (Pro Mix BX) with plants thinned after sprouting to one plant per pot. The illumination period was 12 h with temperature at 25 °C. Whole plants were harvested at five different stages of growth: 1, vegetative; 2, change in leaf morphology; 3, blossom initiation; 4, full bloom; and 5, green fruit set. After harvest, plants were immediately subjected to steam codistillation with pentane to isolate leaf oil volatiles. The two commercial cilantro samples were purchased at local (Amherst, MA) markets.

Isolation of Leaf Oil. Fresh leaves (10 g) were clipped from the plants using solvent-rinsed stainless steel scissors and tweezers. Leaves were transferred to a 500 mL distillation flask containing 250 mL of distilled deionized water. The flask was spiked with 90 μ g of naphthalene- d_8 as an internal standard and was connected to a modified Likens–Nickerson steam codistillation apparatus (J&W Scientific, Folsom, CA). After extraction with n-pentane for 2 h, the pentane was recovered and concentrated to 1.0 mL under a stream of dry nitrogen. The extract was stored at -20 °C prior to analysis. The standard and solvents were obtained from Aldrich Chemical Co. (Milwaukee, WI) and were used without further purification.

GC/MS Analysis. A 30 m \times 0.25 mm HP-5 (Hewlett-Packard, Avondale, PA) fused silica capillary column was directly coupled to the ion source of a Hewlett-Packard Model 5989A GC/mass spectrometer. The GC oven temperature was programmed as follows: 40 °C (hold for 1 min), increase at 2 °C/min to 240 °C. Helium carrier gas head pressure was fixed at 100 kPa with injection at 250 °C in the splitless mode. Mass spectral data were obtained in the electron impact (33–300 Da) and chemical ionization (CI) modes. Isobutane at 0.5 Torr was used as the CI reagent gas. The source temperature under CI conditions was 150 °C.

Standards. Reference compounds were purchased from Aldrich or were donated by Bedoukian Fine Chemicals and Takasago, Inc.

RESULTS AND DISCUSSION

Total ion current chromatograms (TIC) obtained from the commercial cilantro samples are shown in Figure 1. Compounds for which structural assignments were made are presented in Table 1. Compounds positively identified by GC/MS analysis of standards accounted for >70% of the TIC of both samples.

Qualitatively, the cilantro samples were very similar, being composed mainly of C_9-C_{16} alkanals and alkenals. The 2-alkenals were most prominent, comprising more than 50% of the TIC of both samples. Their composition

Table 1. Essential Oil Composition of Two Commercially Grown Cilantro Samples

104	RRT^a		\mathbf{MW}^{b}		% TIC ^d	
1.28 S 0.36 1.28 1.2		compound		\mathbf{ID}^c	A	В
5.508 5-methyltetrahydrofurfuryl alcohol 116 0.07 0.00	0.255	$unknown^e$				0.12
142	0.317			S		1.28
128 S	0.508					0.06
1.595 Ilmonene						0.12
1.118 decanal 156 S 9.25 9.4 1.230 decenal isomer 154 0.68 <0.06 1.284 (E)-2-decenal 154 S 12.1 0.8 1.293 2-decen-1-ol 156 8.18 <0.0 1.305 1-decanol 158 S 2.09 0.8 1.313 undecenal isomer 168 0.06 <0.0 1.376 undecenal isomer 168 0.00 <0.0 1.376 undecenal isomer 168 0.10 <0.0 1.405 undecanal 170 S 2.31 2.1 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 S 5.32 1.1 1.577 2-undecen-1-ol 170 0.21 <0.0 1.543 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.795 dodecenal isomer 182 0.51 0.4 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 184 S 4.96 10.3 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.685 2-dodecenal 182 S 15.6 21.6 1.695 1.606 0.05 0.0 1.795 dodecanal 196 S 0.09 0.1 1.796 dodecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.019 Tridecenal isomer 196 0.05 0.0 2.102 (E)-2-tridecanal 196 S 2.53 1.8 2.103 2.104 2.104 0.05 0.0 2.104 2.104 2.104 0.05 0.0 2.105 2.104 2.104 0.05 0.0 2.107 2.104 2.104 0.05 0.0 2.108 2.104 2.104 0.05 0.0 2.109 2.104 2.104 0.05 0.0 2.101 2.104 2.104 0.05 0.0 2.102 2.104 2.104 0.05 0.0 2.105 2.104 0.05 0.0 2.106 2.104 0.05 0.0 2.107 2.104 0.05 0.0 2.108 2.104 0.05 0.0 2.109 0.05 0.0 2.100 0.05 0.0 2.100 0.05 0.0 2.101 0.05 0.0 2				S		
1.118 decanal 156 S 9.25 9.4 1.230 decenal isomer 154 0.68 <0.06 1.284 (E)-2-decenal 154 S 12.1 0.8 1.293 2-decen-1-ol 156 8.18 <0.0 1.305 1-decanol 158 S 2.09 0.8 1.313 undecenal isomer 168 0.06 <0.0 1.376 undecenal isomer 168 0.00 <0.0 1.376 undecenal isomer 168 0.10 <0.0 1.405 undecanal 170 S 2.31 2.1 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 S 5.32 1.1 1.577 2-undecen-1-ol 170 0.21 <0.0 1.543 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.795 dodecenal isomer 182 0.51 0.4 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 184 S 4.96 10.3 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.685 2-dodecenal 182 S 15.6 21.6 1.695 1.606 0.05 0.0 1.795 dodecanal 196 S 0.09 0.1 1.796 dodecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.019 Tridecenal isomer 196 0.05 0.0 2.102 (E)-2-tridecanal 196 S 2.53 1.8 2.103 2.104 2.104 0.05 0.0 2.104 2.104 2.104 0.05 0.0 2.105 2.104 2.104 0.05 0.0 2.107 2.104 2.104 0.05 0.0 2.108 2.104 2.104 0.05 0.0 2.109 2.104 2.104 0.05 0.0 2.101 2.104 2.104 0.05 0.0 2.102 2.104 2.104 0.05 0.0 2.105 2.104 0.05 0.0 2.106 2.104 0.05 0.0 2.107 2.104 0.05 0.0 2.108 2.104 0.05 0.0 2.109 0.05 0.0 2.100 0.05 0.0 2.100 0.05 0.0 2.101 0.05 0.0 2				S		0.19
1.118 decanal 156 S 9.25 9.4 1.230 decenal isomer 154 0.68 <0.06 1.284 (E)-2-decenal 154 S 12.1 0.8 1.293 2-decen-1-ol 156 8.18 <0.0 1.305 1-decanol 158 S 2.09 0.8 1.313 undecenal isomer 168 0.06 <0.0 1.376 undecenal isomer 168 0.00 <0.0 1.376 undecenal isomer 168 0.10 <0.0 1.405 undecanal 170 S 2.31 2.1 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 S 5.32 1.1 1.577 2-undecen-1-ol 170 0.21 <0.0 1.543 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.795 dodecenal isomer 182 0.51 0.4 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 184 S 4.96 10.3 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.685 2-dodecenal 182 S 15.6 21.6 1.695 1.606 0.05 0.0 1.795 dodecanal 196 S 0.09 0.1 1.796 dodecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.019 Tridecenal isomer 196 0.05 0.0 2.102 (E)-2-tridecanal 196 S 2.53 1.8 2.103 2.104 2.104 0.05 0.0 2.104 2.104 2.104 0.05 0.0 2.105 2.104 2.104 0.05 0.0 2.107 2.104 2.104 0.05 0.0 2.108 2.104 2.104 0.05 0.0 2.109 2.104 2.104 0.05 0.0 2.101 2.104 2.104 0.05 0.0 2.102 2.104 2.104 0.05 0.0 2.105 2.104 0.05 0.0 2.106 2.104 0.05 0.0 2.107 2.104 0.05 0.0 2.108 2.104 0.05 0.0 2.109 0.05 0.0 2.100 0.05 0.0 2.100 0.05 0.0 2.101 0.05 0.0 2				S		0.17
1.118 decanal 156 S 9.25 9.4 1.230 decenal isomer 154 0.68 <0.06 1.284 (E)-2-decenal 154 S 12.1 0.8 1.293 2-decen-1-ol 156 8.18 <0.0 1.305 1-decanol 158 S 2.09 0.8 1.313 undecenal isomer 168 0.06 <0.0 1.376 undecenal isomer 168 0.00 <0.0 1.376 undecenal isomer 168 0.10 <0.0 1.405 undecanal 170 S 2.31 2.1 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 S 5.32 1.1 1.577 2-undecen-1-ol 170 0.21 <0.0 1.543 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.795 dodecenal isomer 182 0.51 0.4 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 184 S 4.96 10.3 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.685 2-dodecenal 182 S 15.6 21.6 1.695 1.606 0.05 0.0 1.795 dodecanal 196 S 0.09 0.1 1.796 dodecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.019 Tridecenal isomer 196 0.05 0.0 2.102 (E)-2-tridecanal 196 S 2.53 1.8 2.103 2.104 2.104 0.05 0.0 2.104 2.104 2.104 0.05 0.0 2.105 2.104 2.104 0.05 0.0 2.107 2.104 2.104 0.05 0.0 2.108 2.104 2.104 0.05 0.0 2.109 2.104 2.104 0.05 0.0 2.101 2.104 2.104 0.05 0.0 2.102 2.104 2.104 0.05 0.0 2.105 2.104 0.05 0.0 2.106 2.104 0.05 0.0 2.107 2.104 0.05 0.0 2.108 2.104 0.05 0.0 2.109 0.05 0.0 2.100 0.05 0.0 2.100 0.05 0.0 2.101 0.05 0.0 2				S		0.06
1.118 decanal 156 S 9.25 9.4 1.230 decenal isomer 154 0.68 <0.06 1.284 (E)-2-decenal 154 S 12.1 0.8 1.293 2-decen-1-ol 156 8.18 <0.0 1.305 1-decanol 158 S 2.09 0.8 1.313 undecenal isomer 168 0.06 <0.0 1.376 undecenal isomer 168 0.00 <0.0 1.376 undecenal isomer 168 0.10 <0.0 1.405 undecanal 170 S 2.31 2.1 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 S 5.32 1.1 1.577 2-undecen-1-ol 170 0.21 <0.0 1.543 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.795 dodecenal isomer 182 0.51 0.4 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 184 S 4.96 10.3 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.685 2-dodecenal 182 S 15.6 21.6 1.695 1.606 0.05 0.0 1.795 dodecanal 196 S 0.09 0.1 1.796 dodecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.019 Tridecenal isomer 196 0.05 0.0 2.102 (E)-2-tridecanal 196 S 2.53 1.8 2.103 2.104 2.104 0.05 0.0 2.104 2.104 2.104 0.05 0.0 2.105 2.104 2.104 0.05 0.0 2.107 2.104 2.104 0.05 0.0 2.108 2.104 2.104 0.05 0.0 2.109 2.104 2.104 0.05 0.0 2.101 2.104 2.104 0.05 0.0 2.102 2.104 2.104 0.05 0.0 2.105 2.104 0.05 0.0 2.106 2.104 0.05 0.0 2.107 2.104 0.05 0.0 2.108 2.104 0.05 0.0 2.109 0.05 0.0 2.100 0.05 0.0 2.100 0.05 0.0 2.101 0.05 0.0 2				S		0.07
1.118 decanal 156 S 9.25 9.4 1.230 decenal isomer 154 0.68 <0.06 1.284 (E)-2-decenal 154 S 12.1 0.8 1.293 2-decen-1-ol 156 8.18 <0.0 1.305 1-decanol 158 S 2.09 0.8 1.313 undecenal isomer 168 0.06 <0.0 1.376 undecenal isomer 168 0.00 <0.0 1.376 undecenal isomer 168 0.10 <0.0 1.405 undecanal 170 S 2.31 2.1 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 0.17 0.0 1.516 undecenal isomer 168 S 5.32 1.1 1.577 2-undecen-1-ol 170 0.21 <0.0 1.543 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.643 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.13 0.0 1.795 dodecenal isomer 182 0.51 0.4 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 184 S 4.96 10.3 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.685 2-dodecenal 182 S 15.6 21.6 1.695 1.606 0.05 0.0 1.795 dodecanal 196 S 0.09 0.1 1.796 dodecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.995 tridecanal 198 S 1.44 1.4 1.019 Tridecenal isomer 196 0.05 0.0 2.102 (E)-2-tridecanal 196 S 2.53 1.8 2.103 2.104 2.104 0.05 0.0 2.104 2.104 2.104 0.05 0.0 2.105 2.104 2.104 0.05 0.0 2.107 2.104 2.104 0.05 0.0 2.108 2.104 2.104 0.05 0.0 2.109 2.104 2.104 0.05 0.0 2.101 2.104 2.104 0.05 0.0 2.102 2.104 2.104 0.05 0.0 2.105 2.104 0.05 0.0 2.106 2.104 0.05 0.0 2.107 2.104 0.05 0.0 2.108 2.104 0.05 0.0 2.109 0.05 0.0 2.100 0.05 0.0 2.100 0.05 0.0 2.101 0.05 0.0 2				S		
1230 decenal isomer 154 5 12.1 0.8						
1.284				S		
1.293				_		
1.305				S		
1.313				~		
1.321				S		
1.376						
1.405 undecanal 170 S 2.31 2.1. 1.516 undecenal isomer 168 0.17 0.00 1.565 (E)-2-undecenal 168 S 5.32 1.1 1.577 2-undecen-1-ol 170 0.21 -0.00 1.587 1-undecanol 172 S 0.07 -0.01 1.643 dodecenal isomer 182 0.13 0.00 1.643 dodecenal isomer 182 0.13 0.00 1.655 dodecenal isomer 182 0.34 0.3 1.690 dodecanal 184 S 4.96 10.3 1.735 germacrene B 204 0.10 0.1 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.858 2-dodecen-1-ol 184 0.58 0.8 1.862 1-dodecanol 186 S 0.09 0.1 1.955 tridecanal 198 S 1.44 1.4 2.019 Tridecenal isomer 196 0.05 0.00 2.102 (E)-2-tridecanal 196 S 2.53 1.8 2.110 2-tridecen-1-ol 238 0.04 -0.05 2.102 (E)-2-tridecanal 196 S 2.53 1.8 2.110 2-tridecen-1-ol 238 0.04 -0.02 2.181 tetradecenal isomer 210 S 0.09 0.0 2.181 tetradecenal isomer 210 S 0.09 0.0 2.181 tetradecenal isomer 210 S 0.09 0.0 2.181 tetradecenal isomer 210 0.27 0.2 2.250 diallylfumerate 196 -0.03 0.2 2.211 tetradecenal isomer 210 S 1.7 20.2 2.242 pentadecenal isomer 224 0.09 -0.0 2.484 pentadecenal isomer 224 0.09 -0.0 2.498 pentadecenal isomer 224 0.09 -0.0 2.406 unknown' 194 0.47 5.5 2.552 pentadecenal isomer 224 0.09 -0.0 2.735 hexadecenal isomer 238 -0.03 -0.0 2.748 (E)-2-hexadecenal 224 -0.77 5.1 2.795 unknown' 298 -0.14 0.05 3.005 1-eicosanol 298 -0.14 0.00 3.007 1-docsanol 326 -0.13 0.01 3.009 1-docs						
1.516						
1.565 (E)-2-undecenal 168 S 5.32 1.11 1.577 2-undecan-1-ol 170 0.21 <0.00 1.587 1-undecanol 172 S 0.07 <0.00 1.643 dodecenal isomer 182 0.13 0.00 1.655 dodecenal isomer 182 0.34 0.3 1.690 dodecanal 184 S 4.96 10.3 1.735 germacrene B 204 0.10 0.1 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.855 (E)-2-dodecenal 186 S 0.09 0.1 1.855 tridecanal 186 S 0.09 0.1 1.955 tridecanal 198 S 1.44 1.4 1.019 Tridecenal isomer 196 0.05 0.0 1.02 (E)-2-tridecanal 196 S 2.53 1.8 1.100 2-tridecenal isomer 196 0.05 0.0 1.172 tetradecenal isomer 210 S 0.09 0.0 1.181 tetradecenal isomer 210 S 0.09 0.0 1.2181 tetradecenal isomer 210 S 0.09 0.0 1.2181 tetradecenal isomer 210 0.27 0.2 1.211 tetradecenal isomer 210 0.36 0.3 1.22 2.250 diallylfumerate 196 0.03 0.2 1.2312 tetradecenal isomer 210 S 1.69 2.2 1.244 pentadecenal isomer 224 0.09 0.0 1.2454 pentadecenal isomer 224 0.09 0.0 1.2454 pentadecenal isomer 224 0.09 0.0 1.2598 (E)-2-tetradecenal 224 0.10 0.0 1.2671 hexadecenal 224 0.10 0.0 1.2705 unknown 224 0.10 0.0 1.2705 unknown 238 0.04 0.05 0.1 1.2705 unknown 298 0.04 0.05 0.3 1.2705 unknown 298 0.04 0.05 0.3 1.2718 (E)-2-hexadecenal 238 0.04 0.05 0.3 1.272 2.273 hexadecenal 238 0.04 0.05 0.3 1.2748 (E)-2-hexadecenal 238 0.04 0.05 0.3 1.2705 unknown 306 0.05 0.3 1.2848 unknown 306 0.05 0.3 1.292 phytol 296 2.79 3.4 1.3005 1-eicosanol 326 1.38 2.4 3.009 unknown 310 0.013				S		
1.577 2-undecen-1-ol 170 0.21 <0.00 1.587						
1.587		` '		S		
1.643 dodecenal isomer 182 0.13 0.0 1.655 dodecenal isomer 182 0.34 0.3 1.690 dodecanal 184 S 4.96 10.3 1.735 germacrene B 204 0.10 0.11 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.858 2-dodecen-1-ol 184 0.58 0.8 1.862 1-dodecanol 186 S 0.09 0.1 1.955 tridecanal 198 S 1.44 1.4 2.019 Tridecenal isomer 196 0.05 0.0 2.0102 (E)-2-tridecanal 196 S 2.53 1.8 2.110 2-tridecenal isomer 196 0.05 0.0 2.102 (E)-2-tridecanal 196 S 2.53 1.8 2.111 2-tridecen-1-ol 238 0.04 <0.0 2.172 tetradecenal isomer 210 S 0.09 0.0 2.181 tetradecenal isomer 210 S 0.09 0.0 2.181 tetradecenal isomer 210 S 0.09 0.0 2.181 tetradecenal isomer 210 0.27 0.2 2.250 diallylfumerate 196 <0.03 0.2 2.251 tetradecenal isomer 210 S 1.69 2.2 2.250 diallylfumerate 196 <0.03 0.2 2.248 pentadecenal isomer 210 S 1.7 20.2 2.248 pentadecenal isomer 224 0.09 <0.0 2.466 unknown' 194 0.47 5.5 2.552 pentadecenal isomer 224 0.10 0.0 2.598 (E)-2-tetradecenal 224 0.10 0.0 2.705 unknown' 298 0.03 <0.0 2.705 unknown' 238 0.03 <0.0 2.705 unknown' 298 S 0.06 0.1 3.005 1-etosanol 298 S 0.06 0.1 3.009 unknown' 298 0.14 0.06 3.009 unknown' 298 0.14 0.06 3.009 1-docosanol 298 1.48 0.44 3.001 0.013 0.02 3.002 1-docosanol 326 1.38 2.4 3.111 unknown' 310 0.13 0.25 3.005 1.300 0.14 0.06 3.001 0.001 0.001 0.001 3.002 1-docosanol 326 1.38 2.4 3.003 1.300 0.001 0.001 3.004 0.001 0.001 3.005 1.300 0.001 3.006 1.300 0.001 3.007 1.300 0.001 3.008 1.300 0.001 3.008 1.300 0.001 3.009 0.001 0.001 3.001 0.001 0.				C		
1.655 dodecanal isomer 182 0.34 0.3 1.690 dodecanal 184 S 4.96 10.3 1.735 germacrene B 204 0.10 0.11 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.858 2-dodecen-1-ol 184 0.58 0.8 1.862 1-dodecanol 186 S 0.09 0.1 1.955 tridecanal 198 S 1.44 1.4 2.019 Tridecenal isomer 196 0.05 0.0 2.058 tridecenal isomer 196 0.05 0.0 2.102 (E)-2-tridecanal 196 S 2.53 1.8 2.110 2-tridecen-1-ol 238 0.04 <0.0 2.172 tetradecenal isomer 210 S 0.09 0.2 2.181 tetradecenal isomer 210 S 0.09 0.0 2.211 tetradecenal isomer 210 0.27 0.2 2.211 tetradecenal isomer 210 0.36 0.3 2.312 tetradecenal isomer 210 0.36 0.3 2.368 (E)-2-tetradecenal 210 S 12.7 20.2 2.428 pentadecenal isomer 210 0.36 0.3 2.488 pentadecenal isomer 224 0.09 <0.0 2.454 pentadecenal 226 0.47 0.6 2.466 unknown 194 0.47 5.5 2.552 pentadecenal 224 0.10 0.00 2.553 pentadecenal 240 0.05 0.11 2.671 hexadecanal 240 0.05 0.11 2.775 hexadecenal isomer 238 0.03 <0.00 2.735 hexadecenal isomer 238 0.03 <0.00 2.748 (E)-2-hexadecenal 238 0.94 1.5 2.795 unknown 306 0.05 0.3 2.795 hexadecenal isomer 238 0.00 0.05 0.3 2.795 hexadecenal isomer 238 0.00 0.05 0.3 2.795 hexadecenal isomer 238 0.00 0.05 0.3 2.795 hexadecenal 296 2.79 3.4 methyl stearate 298 S 0.06 0.1 3.009 unknown 298 0.14 0.00 3.009 unknown 298 0.14 0.00 3.009 unknown 310 0.13 0.2				S		
1.690 dodecanal 184 S 4.96 10.3 1.735 germacrene B 204 0.10 0.11 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.858 2-dodecen-1-ol 184 0.58 0.8 1.862 1-dodecanol 186 S 0.09 0.1 1.955 tridecanal 198 S 1.44 1.4 1.915 tridecenal isomer 196 0.05 0.00 2.058 tridecenal isomer 196 0.05 0.00 2.058 tridecenal isomer 196 S 2.53 1.8 2.102 (E)-2-tridecen-1-ol 238 0.04 <0.0 2.172 tetradecenal isomer 210 S 0.09 0.0 2.181 tetradecenal isomer 210 S 0.09 0.0 2.211 tetradecenal isomer 210 S 1.69 2.2 2.250 diallylfumerate 196 <0.03 0.2 2.250 diallylfumerate 196 <0.03 0.2 2.248 pentadecenal isomer 210 S 12.7 20.2 2.248 pentadecenal isomer 224 0.09 <0.00 2.466 unknown 194 0.47 0.6 2.466 unknown 194 0.47 0.5 2.552 pentadecenal isomer 224 0.09 <0.00 2.705 unknown 238 0.04 0.05 0.11 2.705 unknown 298 S 0.06 0.15 2.748 (E)-2-hexadecenal 238 0.94 1.5 2.748 (E)-2-hexadecenal 238 0.94 1.5 2.748 (E)-2-hexadecenal 238 0.94 1.5 2.749 0.05 0.3 2.748 (E)-2-hexadecenal 298 S 0.06 0.15 3.005 1-eicosanol 298 S 0.06 0.15 3.009 unknown 298 0.14 0.06 3.009 unknown 300 0.14 0.06 3.009 1-docosanol 326 1.38 2.4 3.111 unknown 310 0.13 0.25 3.112 0.13 0.05 0.14 0.06 3.112 0.112 0.122 0.122 0.122 0.122 3.112 0.122 0.1222 0.1222 0.1222 0.1222 0.1222 0.1222 0.12222 0.1222 0.12						
1.735 germacrene B 204 0.10 0.11 1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.858 2-dodecen-1-ol 184 0.58 0.8 1.862 1-dodecanol 186 S 0.09 0.1 1.955 tridecanal 198 S 1.44 1.4 1.909 Tridecenal isomer 196 0.05 0.00 2.058 tridecenal isomer 196 0.05 0.00 2.102 (E)-2-tridecanal 196 S 2.53 1.8 2.110 2-tridecen-1-ol 238 0.04 <0.00 2.172 tetradecenal isomer 210 S 0.09 0.0 2.181 tetradecanal 210 S 0.09 0.0 2.211 tetradecanal 212 S 1.69 2.2 2.211 tetradecanal 212 S 1.69 2.2 2.211 tetradecanal 212 S 1.69 2.2 2.212 tetradecenal isomer 210 0.36 0.3 2.368 (E)-2-tetradecenal 210 S 12.7 20.2 2.484 pentadecanal 224 0.09 <0.00 2.454 pentadecanal 226 0.47 0.6 2.466 unknown' 194 0.47 5.5 2.552 pentadecenal isomer 224 0.10 0.00 2.552 pentadecenal 224 0.10 0.00 2.553 pentadecenal 224 0.10 0.00 2.755 pentadecenal 224 0.10 0.00 2.755 pentadecenal 224 0.00 0.05 0.11 2.705 unknown' 238 0.03 0.00 2.735 hexadecenal 236 0.37 0.36 2.735 hexadecenal 238 0.94 1.5 2.748 (E)-2-hexadecenal 238 0.94 1.5 2.749 (E)-2-hexadecenal 298 0.14 0.04 3.009 1.4000000000000000000000000000000000000				C		
1.795 dodecenal isomer 182 0.51 0.4 1.855 (E)-2-dodecenal 182 S 15.6 21.6 1.858 2-dodecen-1-ol 184 0.58 0.8 1.862 1-dodecanol 186 S 0.09 0.1 1.955 tridecanal 198 S 1.44 1.4 1.955 tridecanal 198 S 1.44 1.4 1.915 tridecanal 196 0.05 0.00 1.92058 tridecanal 196 0.05 0.00 1.92058 tridecanal 196 S 2.53 1.8 1.921 2.110 2-tridecan-1-ol 238 0.04 <0.00 1.921 tetradecanal 210 S 0.09 0.00 1.921 tetradecanal 210 S 0.09 0.00 1.922 1.81 tetradecanal 210 S 0.09 0.00 1.923 diallylfumerate 196 <0.03 0.2 1.924 tetradecanal 212 S 1.69 2.2 1.924 tetradecanal 210 S 1.27 20.2 1.924 tetradecanal 210 S 1.27 20.2 1.924 tetradecanal 210 S 1.27 20.2 1.924 tetradecanal 224 0.09 <0.03 1.924 2.454 pentadecenal isomer 224 0.09 <0.03 1.925 2.466 unknown				3		
1.855						
1.858				C		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				3		
2.019 Tridecenal isomer 196 0.05 0.0 2.058 tridecenal isomer 196 0.05 0.0 2.102 (E) -2-tridecanal 196 S 2.53 1.8 2.110 2-tridecen-1-ol 238 0.04 <0.0				C		
2.019 Tridecenal isomer 196 0.05 0.0 2.058 tridecenal isomer 196 0.05 0.0 2.102 (E) -2-tridecanal 196 S 2.53 1.8 2.110 2-tridecen-1-ol 238 0.04 <0.0				S		
2.058 tridecenal isomer 196 0.05 0.00 2.102 (E) -2-tridecanal 196 S 2.53 1.8 2.110 2-tridecen-1-ol 238 0.04 <0.00				3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		` '		3		
2.181 tetradecenal isomer 210 0.27 0.28 2.211 tetradecanal 212 S 1.69 2.2 2.250 diallylfumerate 196 <0.03				C		
2.211 tetradecanal 212 S 1.69 2.2 2.250 diallylfumerate 196 <0.03				3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				c		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				S		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C	0.30 19.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				S		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
2.922 phytol methyl stearate 296 2.79 3.40 3.005 1-eicosanol 298 S 0.06 0.11 3.009 unknown ⁱ 298 1.48 0.40 3.092 1-docosanol 326 1.38 2.4 3.111 unknown ^j 310 0.13 0.2						
methyl stearate 298 S 0.06 0.13 3.005 1-eicosanol 298 1.48 0.44 3.009 unknown ⁱ 298 0.14 0.00 3.092 1-docosanol 326 1.38 2.4 3.111 unknown ⁱ 310 0.13 0.2	2.922					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				S		
3.009 unknown ⁱ 298 0.14 0.00 3.092 1-docosanol 326 1.38 2.4 3.111 unknown ⁱ 310 0.13 0.2	2 005			S		
3.092 1-docosanol 326 1.38 2.4 3.111 unknown ^j 310 0.13 0.2						
3.111 unknown ^j 310 0.13 0.2						
5.202 1-letracosanoi 354 0.42 0.3						
	3.202					

^a Retention time relative to that of the internal standard, naphthalene- d_8 . ^b Molecular weight based on isobutane CI spectra. ^c S indicates identification confirmed by analysis of a standard. The other structural assignments are based on MS interpretation and comparison with the NIST database (NIST, 1994). ^d Percent total ion current. ^e EI-MS data: 45 (100), 43 (94), 41 (3), 71 (24), 55 (24), 104 (2). ^f EI-MS data: 108 (100), 79 (32), 80 (25), 109 (13), 81 (8), 77 (7). ^g EI-MS data: 95 (100), 82 (97), 68 (91), 57 (83), 43 (78), 69 (70). ^h EI-MS data: 83 (100), 55 (62), 224 (26), 84 (5). ^f EI-MS data: 221 (100), 276 (46), 243 (42), 233 (32), 43 (29), 215 (24). ^f EI-MS data: 57 (100), 43 (88), 83 (82), 55 (81), 97 (79), 69 (76).

was similar to published reports of leaf oil composition isolated from *C. sativum* L. plants at the blooming stage (Carlbolm, 1936; Lawrence, 1986; Mookherjee et al., 1989; Potter and Fagerson, 1990).

In a quantitative sense, there were substantial differences between the two cilantro samples and published results for the blooming stage leaf oils. Some of the more prominent differences are shown in Figure 2. This figure compares the (E)-2-alkenal contents by carbon number. Sample B was enriched in the higher carbon number homologs, $C_{12}-C_{16}$, whereas sample A had much higher concentrations of the C_{10} and C_{11} homologs. Sample A also had a much higher (E)-2-decen-1-ol content. It accounted for 8.2% of the TIC in

Figure 1. TIC chromatograms of cilantro essential oil samples.

Figure 2. (*E*)-2-Alkenal concentration in cilantro essential oil.

Figure 3. Change in (*E*)-2-decenal (■) and decanal (+) concentration with stage of growth.

this sample. This compound was not detected in sample \boldsymbol{B} .

Even greater differences were observed when the published data for C. sativum L. leaf oil harvested at the blooming stage and the cilantro data were compared. The (E)-2-decenal content in blooming stage samples was reported to be in the 40-50% range (Potter and Fagerson, 1990; Mookherjee et al., 1989) more than 4-40 times greater than observed in the cilantro samples.

Results obtained from the analysis of coriander plants harvested at five stages of growth indicate that these differences may be attributable to ontogenic factors. (*E*)-2-Decenal and decanal concentration data with stage of growth are summarized in Figure 3. From the vegetative to the stage where leaf morphology changed and buds formed (*E*)-2-decenal concentration increased

by a factor of nearly 3, while the decanal content decreased ca. 10%. After blooming, the concentration of these compounds in the leaf oils remained relatively constant.

Lawrence (1986) also isolated oils from coriander plants at different stages of growth: from blooming to development of mature fruit. His data showed that the composition of oils isolated from coriander plants may change significantly as they develop. Among his reported results, (E)-2-decenal first increased and then decreased, linalool showed a steady increase, and decanal exhibited a steady decrease.

The sharp increase in (E)-2-decenal content at the bud formation and blooming stages may at least partly explain why cilantro is typically harvested prior to this stage of development. (E)-2-Decenal is a potent irritant (Sax and Lewis, 1989) and is found in the defensive secretion of insects (Jacobs et al., 1989). From this, it may be inferred that it may be objectionable to humans. The data reported in this study indicate that harvesting plants at earlier stages of growth may be a means of producing cilantro with low (E)-2-decenal content. A positive link to consumer preference is likely.

ACKNOWLEDGMENT

This work is dedicated to the memory of a friend and colleague, Irving S. Fagerson, who passed away in June 1994; he provided expert guidance and assistance for this study. We thank Dr. Lyle Craker and Yanli Li of Plant and Soil Science Department, University of Massachusetts, for cultivating the coriander plants and Dr. Harry Seelig, Germanic Languages and Literature Department, University of Massachusetts, for assistance with a translation.

LITERATURE CITED

Carlbolm, V. A. J. Zur frage der Entstehung des linalools im atherischen corianderol. (An investigation of the occurrence of linalools in the essential oil of coriander). *J. Prakt. Chem.* **1936**, *144*, 225–241.

Jacobs, D. H.; Apps, P. J.; Viljoen, H. W. The composition of the defensive secretions of *Thaumastella namaquensis* and *T. elizabethae* with notes on the higher classification of Thaumastellidae (insecta: Heterotera). *Comp. Biochem. Physiol.* **1989**, *93B*, 459–463.

Lawrence, B. M. Essential oil production. A discussion of influencing factors. In *Biogeneration of Aromas*; ACS Symposium Series; American Chemical Society: Washington, DC, 1986; pp 363–369.

Mookherjee, B. D.; Wilson, R. A.; Trenkle, R. W.; Zampino, M. J.; Sands, K. New dimensions in flavor research: herbs and spices. In *Flavor Chemistry: Trends and Developments*; ACS Symposium Series 338; American Chemical Society: Washington, DC, 1989; pp 176–187.

NIST. The NIST/EPA/NIH Mass Spectral Library, version 1.0 (Windows); National Institute of Standards and Technology: Gaithersburg, MD, 1995.

Potter, T. L.; Fagerson, I. S. Composition of coriander leaf volatiles. J. Agric. Food Chem. 1990, 38, 2054–2056.

Sax, N. I.; Lewis, R. J. Dangerous Properties of Industrial Materials; Van Nostrand-Reinhold: New York, 1989.

Received for review December 14, 1995. Accepted April 18, 1996. Financial support was provided by the Massachusetts Agricultural Experiment Station, University of Massachusetts, Amherst, MA. Contribution 3185 from the Massachusetts Agricultural Experiment Station.

JF950814C

 $^{^{\}otimes}$ Abstract published in *Advance ACS Abstracts*, May 15, 1996.