

Exploiting Minimal Arrival Curves To Deal With Negative Service Curves

How MinAC Saves The Day

Anja Hamscher, Vlad-Cristian Constantin, Jens B. Schmitt

April 4th 2024

Many of the results will be published in IEEE RTAS 2024.

Outline

- 1 Motivation
- 2 Extension of NC Performance Bounds for (Partially) Negative Service Curves
- 3 Applications
- 4 Conclusion

Motivation

- 1 Motivation
- 2 Extension of NC Performance Bounds for (Partially) Negative Service Curves
- 3 Applications
- 4 Conclusion

■ Assume S offers a strict service curve $\beta_{R,T}$

- Assume S offers a strict service curve $\beta_{R,T}$
- Residual service curve $\beta_{\rm res}^{\rm SSC}$ [Le Boudec and Thiran, 2001] is calculated as

$$\beta_{\text{res}}^{\text{SSC}} \coloneqq [\beta_{R,T} - \overline{\alpha}_2]^+$$

- Assume S offers a strict service curve $\beta_{R,T}$
- lacktriangle Residual service curve $eta_{
 m res}^{
 m SSC}$ [Le Boudec and Thiran, 2001] is calculated as

$$\beta_{\text{res}}^{\text{SSC}} := [\beta_{R,T} - \overline{\alpha}_2]^+$$

 \Rightarrow Delay bound for f_1 is calculated as $\mathit{h}(\overline{\alpha}_1, \beta^{\mathrm{SSC}}_{\mathrm{res}})$

- Assume S offers a strict service curve $\beta_{R,T}$
- lacktriangle Residual service curve $eta_{
 m res}^{
 m SSC}$ [Le Boudec and Thiran, 2001] is calculated as

$$\beta_{\text{res}}^{\text{SSC}} := [\beta_{R,T} - \overline{\alpha}_2]^+$$

 \Rightarrow Delay bound for f_1 is calculated as $h(\overline{\alpha}_1, \beta_{\mathrm{res}}^{\mathrm{SSC}})$

■ Assume S offers a min-plus service curve $\beta_{R,T}$

- Assume S offers a min-plus service curve $\beta_{R,T}$
- Residual service curve candidate $\beta_{\rm res}^{\rm SC}$ [Bouillard et al., 2018] is calculated as

$$\beta_{\text{res}}^{\text{SC}} := \beta_{R,T} - \overline{\alpha}_2$$

- Assume S offers a min-plus service curve $\beta_{R,T}$
- \blacksquare Residual service curve candidate β^{SC}_{res} [Bouillard et al., 2018] is calculated as

 $D_1 \geq A_1 \otimes \beta_{res}^{SC}$

- Assume S offers a min-plus service curve $\beta_{R,T}$
- lacktriangle Residual service curve candidate $eta_{
 m res}^{
 m SC}$ [Bouillard et al., 2018] is calculated as

$$\beta_{\rm res}^{\rm SC} \coloneqq \beta_{R,T} - \overline{\alpha}_2$$

■ $D_1 \ge A_1 \otimes \beta_{\text{res}}^{\text{SC}}$, HOWEVER, $\beta_{\text{res}}^{\text{SC}} \notin \mathcal{F}_0^{\uparrow}!$

- Assume S offers a min-plus service curve $\beta_{R,T}$
- Residual service curve candidate $\beta_{\rm res}^{\rm SC}$ [Bouillard et al., 2018] is calculated as

$$\beta_{\text{res}}^{\text{SC}} := \beta_{R,T} - \overline{\alpha}_2$$

- $D_1 \geq A_1 \otimes \beta_{\mathrm{res}}^{\mathrm{SC}}$, HOWEVER, $\beta_{\mathrm{res}}^{\mathrm{SC}} \notin \mathcal{F}_0^{\uparrow}$!
- Performance bounds are only defined for $\beta \in \mathcal{F}_0^{\uparrow}$
 - \Rightarrow We have no valid delay bound

What's The Issue? [Bouillard et al., 2018]

What's The Issue? [Bouillard et al., 2018]

• $A_1 \otimes \beta_{\text{res}}^{\text{SC}}$ never becomes positive

What's The Issue? [Bouillard et al., 2018]

- $A_1 \otimes \beta_{\text{res}}^{\text{SC}}$ never becomes positive
- \Rightarrow \mathcal{S} can delay f_1 infinitely without violating min-plus SC property

Issue: Not enough traffic in the system, allowing a "burst-and-stop" pattern

- Issue: Not enough traffic in the system, allowing a "burst-and-stop" pattern
- Idea: guarantee a lower bound on incoming traffic

- Issue: Not enough traffic in the system, allowing a "burst-and-stop" pattern
- Idea: guarantee a lower bound on incoming traffic

Definition

Let $\overline{\alpha},\underline{\alpha}\in\mathcal{F}_0^{\uparrow}$. We say that $\overline{\alpha}$ is a maximal arrival curve for arrival process A, and $\underline{\alpha}$ is a minimal arrival curve for A, if it holds for all $0\leq s\leq t$ that

$$\underline{\alpha}(t-s) \leq A(t) - A(s) \leq \overline{\alpha}(t-s).$$

Definition

Let $\overline{\alpha},\underline{\alpha}\in\mathcal{F}_0^{\uparrow}$. We say that $\overline{\alpha}$ is a maximal arrival curve for arrival process A, and $\underline{\alpha}$ is a minimal arrival curve for A, if it holds for all $0\leq s\leq t$ that

$$\underline{\alpha}(t-s) \leq A(t) - A(s) \leq \overline{\alpha}(t-s).$$

Definition

Let $\overline{\alpha},\underline{\alpha}\in\mathcal{F}_0^{\uparrow}$. We say that $\overline{\alpha}$ is a maximal arrival curve for arrival process A, and $\underline{\alpha}$ is a minimal arrival curve for A, if it holds for all 0 < s < t that

$$\underline{\alpha}(t-s) \leq A(t) - A(s) \leq \overline{\alpha}(t-s).$$

 \Rightarrow ${\cal S}$ has to eventually serve ${\it f}_1$

Extension of NC Performance Bounds for (Partially) Negative Service Curves

- 1 Motivation
- 2 Extension of NC Performance Bounds for (Partially) Negative Service Curves
- 3 Applications
- 4 Conclusion

• We start with $\beta_{res}^{SC} =: \beta \in \mathcal{F}_0^{\uparrow}$

- We start with $\beta_{res}^{SC} =: \beta \in \mathcal{F}_0^{\uparrow}$
- Then safely perform the lower non-decreasing closure $\xi(t) := \beta_{\downarrow}(t) = \beta \overline{\oslash} 0(t) = \inf_{s \ge 0} \{\beta(t+s)\}$

- We start with $\beta_{res}^{SC} =: \beta \in \mathcal{F}_0^{\uparrow}$
- Then safely perform the lower non-decreasing closure $\xi(t) := \beta_{\downarrow}(t) = \beta \overline{\oslash} 0(t) = \inf_{s>0} \{\beta(t+s)\}$
- $\Rightarrow \xi \in \mathcal{F}_{\leq 0}^{\uparrow}$

Theorem

$$d(t) \leq z(\underline{\alpha}, \xi) \vee h(\overline{\alpha}, \xi).$$

Theorem

Let an arrival process A traverse a system \mathcal{S} . Further, let the arrivals be constrained by maximal arrival curve $\overline{\alpha} \in \mathcal{F}_0^{\uparrow}$ and minimal arrival curve $\underline{\alpha} \in \mathcal{F}_0^{\uparrow}$, and let the system offer a service curve $\xi \in \mathcal{F}_{\leq 0}^{\uparrow}$. The virtual delay d(t) satisfies for all $t \geq 0$

$$d(t) \leq z(\underline{\alpha}, \xi) \vee h(\overline{\alpha}, \xi).$$

■ For proof details, please refer to our technical report [Hamscher et al., 2024, arXiv]

Theorem

$$d(t) \leq z(\underline{\alpha}, \xi) \vee h(\overline{\alpha}, \xi).$$

Theorem

$$d(t) \leq z(\underline{\alpha}, \xi) \vee h(\overline{\alpha}, \xi).$$

Theorem

$$d(t) \leq z(\underline{\alpha}, \xi) \vee h(\overline{\alpha}, \xi).$$

Theorem

$$d(t) \leq z(\underline{\alpha}, \xi) \vee h(\overline{\alpha}, \xi).$$

Different Cases of the Delay Bound

■ If $\overline{\alpha}$ is not large enough, $z(\underline{\alpha}, \xi)$ is the delay bound

Different Cases of the Delay Bound

- If $\overline{\alpha}$ is not large enough, $z(\underline{\alpha}, \xi)$ is the delay bound
- If $\overline{\alpha}$ is large, then the delay bound is $h(\overline{\alpha},\xi)$

Is the Generalized Delay Bound Tight?

YES!

- YES!
- The worst-case delay $WCD = z(\underline{\alpha}, \xi) \vee h(\overline{\alpha}, \xi)$

- YES!
- The worst-case delay $WCD = z(\underline{\alpha}, \xi) \vee h(\overline{\alpha}, \xi)$
- A worst-case sample path is set as:

• If
$$h(\overline{\alpha},\xi) > z(\underline{\alpha},\xi)$$

- $A^{\mathrm{WC}} := \overline{\alpha}$

- YES!
- The worst-case delay $WCD = z(\underline{\alpha}, \xi) \vee h(\overline{\alpha}, \xi)$
- A worst-case sample path is set as:

If
$$h(\overline{\alpha}, \xi) > z(\underline{\alpha}, \xi)$$

$$A^{\mathrm{WC}} := \overline{\alpha}$$

• If
$$h(\overline{\alpha}, \xi) \leq z(\underline{\alpha}, \xi)$$

- YES!
- The worst-case delay $WCD = z(\underline{\alpha}, \xi) \vee h(\overline{\alpha}, \xi)$
- A worst-case sample path is set as:

If
$$h(\overline{\alpha}, \xi) > z(\underline{\alpha}, \xi)$$

$$A^{\text{WC}} := \overline{\alpha}$$

$$D^{\text{WC}} := [\overline{\alpha} \otimes \xi]^+$$

If
$$h(\overline{\alpha}, \xi) \leq z(\underline{\alpha}, \xi)$$

$$A^{\text{WC}}(t) := \underline{\alpha}(t) + \overline{\alpha}(0_+) \cdot \mathbb{1}_{\{t > 0\}}$$

$$D^{\text{WC}}(t) := \left[\alpha \otimes \xi(t) + \overline{\alpha}(0_+) \cdot \mathbb{1}_{\{t > 0\}}\right]^+$$

■ For proof details, please refer to our technical report [Hamscher et al., 2024, arXiv]

Backlog Bound

Theorem

Let an arrival process A traverse a system \mathcal{S} . Further, let the arrivals be constrained by maximal arrival curve $\overline{\alpha} \in \mathcal{F}_0^{\uparrow}$, and let the system offer a service curve $\xi \in \mathcal{F}_{\leq 0}^{\uparrow}$. The backlog q(t) satisfies for all t

$$q(t) \leq v(\overline{\alpha}, \xi)$$

Backlog Bound

Theorem

Let an arrival process A traverse a system S. Further, let the arrivals be constrained by maximal arrival curve $\overline{\alpha} \in \mathcal{F}_0^{\uparrow}$, and let the system offer a service curve $\xi \in \mathcal{F}_{\leq 0}^{\uparrow}$. The backlog q(t) satisfies for all t

$$q(t) \leq v(\overline{\alpha}, \xi) \wedge \sup_{s \geq 0} \{\overline{\alpha}(s)\}.$$

Backlog Bound

$\mathsf{Theorem}$

Let an arrival process A traverse a system S. Further, let the arrivals be constrained by maximal arrival curve $\overline{\alpha} \in \mathcal{F}_0^{\uparrow}$, and let the system offer a service curve $\xi \in \mathcal{F}_{\leq 0}^{\uparrow}$. The backlog q(t) satisfies for all t

$$q(t) \leq v(\overline{\alpha}, \xi) \wedge \sup_{s \geq 0} \{\overline{\alpha}(s)\}.$$

■ The vertical deviation $v(\overline{\alpha}, \xi)$ is attained when ξ is negative

■ The vertical deviation $v(\overline{\alpha}, \xi)$ is attained when ξ is negative

■ The vertical deviation $v(\overline{\alpha},\xi)$ is attained when ξ is negative

■ For proof details, please refer to our technical report [Hamscher et al., 2024, arXiv]

Applications

- 1 Motivation
- 2 Extension of NC Performance Bounds for (Partially) Negative Service Curves
- 3 Applications
- 4 Conclusion

■ So far: have to choose between either using (1) residual SC or (2) concatenation

- So far: have to choose between either using (1) residual SC or (2) concatenation
- With new results, we can safely use both operations without requiring SSC

- So far: have to choose between either using (1) residual SC or (2) concatenation
- With new results, we can safely use both operations without requiring SSC
- Some network elements cannot provide a SSC

- So far: have to choose between either using (1) residual SC or (2) concatenation
- With new results, we can safely use both operations without requiring SSC
- Some network elements cannot provide a SSC

The MinAC Approach

■ Idea: calculate end-to-end min-plus service curve and residual service curve, then calculate delay bound for f_1

The MinAC Approach

- Idea: calculate end-to-end min-plus service curve and residual service curve, then calculate delay bound for f_1
- Determine residual service curve:

$$\begin{split} \beta_{\mathrm{res}}^{\mathrm{mac}} &\coloneqq \left(\left(\bigotimes_{i=1}^{n} \left(\beta_{R_i, T_i} - \overline{\alpha}_{i+2} \right) \right) - \overline{\alpha}_2 \right)_{\downarrow} \\ &= \xi_{b_2 + b_{i+2} + (r_2 + r_{i+2}) \sum_{i=1}^{n} T_i, \bigwedge_{i=1}^{n} (R_i - r_{i+2}) - r_2, \sum_{i=1}^{n} T_i} \end{split}$$
 with $\xi_{b_N, R, T}(t) \coloneqq \beta_{R, T}(t) - b_N$

The MinAC Approach

- Idea: calculate end-to-end min-plus service curve and residual service curve, then calculate delay bound for f_1
- Determine residual service curve:

$$\begin{split} \beta_{\mathrm{res}}^{\mathrm{mac}} &\coloneqq \left(\left(\bigotimes_{i=1}^{n} \left(\beta_{R_i, T_i} - \overline{\alpha}_{i+2} \right) \right) - \overline{\alpha}_2 \right)_{\downarrow} \\ &= \xi_{b_2 + b_{i+2} + (r_2 + r_{i+2}) \sum_{i=1}^{n} T_i, \bigwedge_{i=1}^{n} (R_i - r_{i+2}) - r_2, \sum_{i=1}^{n} T_i} \end{split}$$
with $\xi_{b_N, R, T}(t) \coloneqq \beta_{R, T}(t) - b_N$

■ Calculate end-to-end delay bound:

$$d_{\mathrm{e2e}}^{\mathrm{mac}} = h(\overline{\alpha}_{1}, \beta_{\mathrm{res}}^{\mathrm{mac}}) \vee z(\underline{\alpha}_{1}, \beta_{\mathrm{res}}^{\mathrm{mac}})$$

Idea: determine input to comm by using output bound and calculate residual service curve for each component, then sum up the delay bound at each component to get end-to-end delay for f_1

- Idea: determine input to comm by using output bound and calculate residual service curve for each component, then sum up the delay bound at each component to get end-to-end delay for f1
- Determine input flows

- Idea: determine input to comm by using output bound and calculate residual service curve for each component, then sum up the delay bound at each component to get end-to-end delay for f1
- Determine input flows
- Determine residual service curve at comm i

- Idea: determine input to comm by using output bound and calculate residual service curve for each component, then sum up the delay bound at each component to get end-to-end delay for f1
- Determine input flows
- Determine residual service curve at comm i
- \blacksquare Calculate nodal delay bound d_i for f_1

- Idea: determine input to comm by using output bound and calculate residual service curve for each component, then sum up the delay bound at each component to get end-to-end delay for f1
- Determine input flows
- Determine residual service curve at comm i
- Calculate nodal delay bound d_i for f_1
- Calculate end-to-end delay bound

How Do They Compare?

$$b_1 = b_2 = b_3 = 1 \text{ Mbit,}$$

$$r_1 = r_2 = r_3 = 5 \frac{\text{Mbit}}{\text{s}}$$

- $R_i = 20 \frac{\text{Mbit}}{\text{s}} =: R, T_i = 50 \text{ ms}, i \in \{1, ..., n\},$
- $T_{\underline{\alpha_1}} = \frac{b_1}{R},$
- $\underline{r}_1 \in \{0.5, 1.25, 2.5, 3.75, 5\} \frac{\text{Mbit}}{\text{s}}$

How Do They Compare?

$$b_1 = b_2 = b_3 = 1 \text{ Mbit,}$$

$$r_1 = r_2 = r_3 = 5 \frac{\text{Mbit}}{\text{s}}$$

- $R_i = 20 \frac{\text{Mbit}}{\text{s}} =: R, T_i = 50 \text{ ms}, i \in \{1, ..., n\},$
- $T_{\underline{\alpha_1}} = \frac{b_1}{R},$
- $\underline{r}_1 \in \{0.5, 1.25, 2.5, 3.75, 5\} \frac{\text{Mbit}}{\text{s}}$

- Different scaling of bounds
 - Min AC approach stays linear in n, while conventional analysis has super-linear scaling

Conclusion

- 1 Motivation
- 2 Extension of NC Performance Bounds for (Partially) Negative Service Curves
- 3 Applications
- 4 Conclusion

 \blacksquare Extended NC to be able to handle $\beta \in \mathcal{F}_{\leq 0}$

- \blacksquare Extended NC to be able to handle $\beta \in \mathcal{F}_{\leq 0}$
 - Solved issue of requiring SSCs to obtain residual SCs

- \blacksquare Extended NC to be able to handle $\beta \in \mathcal{F}_{\leq 0}$
 - Solved issue of requiring SSCs to obtain residual SCs
 - Enables simultaneous use of concatenation and calculation of residual SCs

- Extended NC to be able to handle $\beta \in \mathcal{F}_{\leq 0}$
 - Solved issue of requiring SSCs to obtain residual SCs
 - Enables simultaneous use of concatenation and calculation of residual SCs
 - Delay bound calculation is enabled by minimal AC, backlog bound is generalized without a minimal AC

- Extended NC to be able to handle $\beta \in \mathcal{F}_{\leq 0}$
 - Solved issue of requiring SSCs to obtain residual SCs
 - Enables simultaneous use of concatenation and calculation of residual SCs
 - Delay bound calculation is enabled by minimal AC, backlog bound is generalized without a minimal AC
- Opens the scope for new applications that were previously difficult or unable to be analyzed

- Extended NC to be able to handle $\beta \in \mathcal{F}_{\leq 0}$
 - Solved issue of requiring SSCs to obtain residual SCs
 - Enables simultaneous use of concatenation and calculation of residual SCs
 - Delay bound calculation is enabled by minimal AC, backlog bound is generalized without a minimal AC
- Opens the scope for new applications that were previously difficult or unable to be analyzed
 - Presented C/C networks

- lacksquare Extended NC to be able to handle $eta \in \mathcal{F}_{\leq 0}$
 - Solved issue of requiring SSCs to obtain residual SCs
 - Enables simultaneous use of concatenation and calculation of residual SCs
 - Delay bound calculation is enabled by minimal AC, backlog bound is generalized without a minimal AC
- Opens the scope for new applications that were previously difficult or unable to be analyzed
 - Presented C/C networks
 - Not presented: finite buffer calculation

- lacksquare Extended NC to be able to handle $eta \in \mathcal{F}_{\leq 0}$
 - Solved issue of requiring SSCs to obtain residual SCs
 - Enables simultaneous use of concatenation and calculation of residual SCs
 - Delay bound calculation is enabled by minimal AC, backlog bound is generalized without a minimal AC
- Opens the scope for new applications that were previously difficult or unable to be analyzed
 - Presented C/C networks
 - Not presented: finite buffer calculation
- What's next?

- Extended NC to be able to handle $\beta \in \mathcal{F}_{\leq 0}$
 - Solved issue of requiring SSCs to obtain residual SCs
 - Enables simultaneous use of concatenation and calculation of residual SCs
 - Delay bound calculation is enabled by minimal AC, backlog bound is generalized without a minimal AC
- Opens the scope for new applications that were previously difficult or unable to be analyzed
 - Presented C/C networks
 - Not presented: finite buffer calculation
- What's next?
 - Investigate accuracy of LNDC preprocessing
 - Explore further applications
 - Build lower traffic shaper
 - ...

Bouillard, A., Boyer, M., and Le Corronc, E. (2018).

Deterministic Network Calculus: From Theory to Practical Implementation.

John Wiley & Sons.

Hamscher, A., Constantin, V.-C., and Schmitt, J. B. (2024). Extending Network Calculus To Deal With Partially Negative And Decreasing Service Curves. arXiv preprint arXiv:2403.18042.

Le Boudec, J.-Y. and Thiran, P. (2001).

Network Calculus: A Theory of Deterministic Queuing Systems for the Internet.

Springer.

Any questions?

Tightness of the Backlog Bound: The Standard Case

lacktriangle The negativity of ξ essentially plays no role

- Let $t_B := \overline{\alpha}^{-1}(v(\overline{\alpha}, \xi))$
- Set a worst-case sample path as:

$$A^{ ext{WC}}(t) \coloneqq egin{cases} \overline{lpha}(t_B) - \overline{lpha}(t_B - t), & ext{if } t \leq t_B, \ \overline{lpha}(t_B), & ext{otherwise,} \end{cases}$$

and
$$D^{\mathrm{WC}} \coloneqq \left[A^{\mathrm{WC}} \otimes \xi \right]^+$$
.

■ Then $q(t_B) = v(\overline{\alpha}, \xi) \wedge \sup_{s>0} \{\overline{\alpha}(s)\}$

Tightness of the Backlog Bound: The Plateau Case

■ The backlog may never attain $v(\overline{\alpha}, \xi)$

Finite Buffers: Network Model

Finite Buffers: Buffer Dimensioning

- High prio stays the same: $v(\overline{\alpha}_H, \beta^{FB}) = b_H$
- Low prio changes with analysis method
 - $\blacksquare \mathsf{MinAC} : v(\overline{\alpha}_L, \beta_{\mathrm{res}}^{\mathrm{mac}}) = b_H + b_L$

Finite Buffers: Stability Regions of Conventional Analysis

- Check whether $R^{\text{res}} T^{\text{res}} < B^{\text{res}}$
 - □ True? $\Rightarrow v(\overline{\alpha}, \beta_{\rm res}^{\rm ca}) = b_L + r_L \frac{b_H}{R r_H}$
 - False? \Rightarrow Follow shape of $\beta_{\text{stair}}^{\text{FB}}$ and watch for r_L

- a) Shapes of $\beta_{R,T}^{\text{FB}}$ and $\beta_{\text{stair}}^{\text{FB}}$.
- b) Stability regions of the analyses.

Finite Buffers: Delay Bounds

- High prio stays the same: $h(\overline{\alpha}_H, \beta^{\mathrm{FB}}) = \frac{b_H}{R}$
- Low prio changes with analysis method
 - MinAC uses previously shown delay bound
 - f CA: Analogous to backlog; check for bandwidth delay product and r_L