Observação: segundo o Fernando dos motores monitorados pela Semeq temos algo em torno de:

70% motores de 80 A a 150 A 30% motores de 150 A a 300 A

Projeto: substituição de garras M.T.E.: 100A e/ou 1000A

Produto: Sensor de corrente para uso no M.T.E.

Justificativas:

- substituir as garras de corrente utilizadas atualmente no M.T.E. que possuem alto custo de montagem e manutenção;
- testar o conceito e funcionalidade de um sensor de corrente desenvolvido pela Semeq para depois adicioná-lo ao sistema online possibilitando: detecção de falhas elétricas, detecção de falhas mecânicas, monitoramento de qualidade de energia etc;

Objetivo SMART: desenvolvendo um sensor de corrente interno podemos baratear a produção do M.T.E. e testá-lo para posterior uso no sistema online, permitindo ai realizarmos as analises de falha elétrica, mecânica e qualidade de energia;

Benefícios:

- diminuição do custo de montagem e manutenção do M.T.E.;
- possibilidade de expansão do projeto utilizando do mesmo sensor para monitoramento online;
- podemos comparar as medições realizadas com as garras de corrente atuais com os ensaios realizados com o novo sensor para validar a tecnologia e a aplicação;

Requisitos / Escopo:

- sensor se conectar de forma transparente ao M.T.E. possibilitando a realização de todos os ensaios online;
- Bandwidth mínimo do sensor de até 7.5KHz;
- Duas, ou mais, versões de sensor: Range de medição 0 a 100 A e 0 a 1000A;
- sensor ser não invasivo: instalação por contato sem a necessidade de alterar o circuito de alimentação do motor;
- sensor de baixo custo: ter custo baixo o suficiente para possibilitar o desenvolvimento de uma versão online do mesmo;
- sensor de baixo consumo: ter custo baixo o suficiente para possibilitar o desenvolvimento de uma versão online do mesmo;
- não alterar duração de bateria ou peso do M.T.E.;
- permitir ao usuário a utilização tanto das tanto das garras convencionais quando do novo sensor desenvolvido;
- Hardware do M.T.E. alimentar o sensor e receber o sinal medido:

Fora do escopo:

- desenvolvimento do sensor de corrente que se conecte ao SMQ 985 v.2.3 (Paçokinha Analógico);
- desenvolvimento de sensor para correntes superiores a 1000 A;

Premissas:

- software do M.T.E. não precisará ser rescrito, apenas alterado;
- teremos um M.T.E. disponível para realizar as alterações e testes necessários;
- utilizaremos no projeto os sensores que já iniciamos o desenvolvimento e conseguiremos encontrá-los para compra no futuro (SMQ 1054);
- faremos uma pesquisa inicial visando buscar soluções alternativas a esses componentes para serem usados caso não conseguimos encontrá-los para comprar;

- o ajuste mecânico de distancia do sensor ao circuito permitirá aumentar o range de medição mantendo a precisão da medida;
- não teremos que fazer alterações nas PCBs do MTE;

Equipe:

- Marcos H. Pitoli: Hardware e Software;
- Arnaldo: projeto mecânico;
- Fernando: ajuda no levantamento dos tipos de circuito de alimentação existentes, disposição dos cabos, formato e dimensões típicas. Analise dos ensaios realizados;

Riscos:

- não encontrarmos o sensor escolhido para comprar devido a crise dos semicondutores;
- não ser possível realizar algum dos ensaios do M.T.E. utilizando o sensor selecionado: problema na leitura dos ângulos por exemplo;
- devido a grande variedade de circuitos de alimentação existentes podemos ter que desenvolver várias soluções de mecânica diferentes;
- campo magnético criado pelo motor ou por equipamentos ao redor interferirem nas medições e inviabilizar o produto;
- o ajuste mecânico de distancia do sensor ao circuito causar perda de precisão e impossibilitar o aumento do range de medição do sensor;

Custos:

Compra materiais: US\$ 200

Protótipo PCB: 3.000 R\$ ("Placa Alimentação") ou

6.000 R\$ "Placa Alimentação" + "Placa sensor Alternativo"

Mecânica: 200 R\$

Adaptação M.T.E.: 100 US\$

Entregas + Linha do tempo:

1.1 Opções alternativas - 2 dias

1.2 Avaliação dos sensores - 2 semanas

2.1 Desenvolvimento do Hardware - 4 semanas //

2.2 Desenvolvimento do Firmware - 2 semana //

2.3 Desenvolvimento da mecânica - 1 mês

2.4 Testes dos protótipos - 1 semana

3.1 Produção do Primeiro M.T.E. - 3 dias

3.2 Testes externos de validação - 1 semana

4.1 Arquivos e manuais de produção - 2 dias

Total = 13 semanas

dias emanas nanas //	2 dias 2 semanas 4 semanas // 2 semanas //	Custo estimado 200 US\$ - 3.000 R\$ ou 6.000 R\$	Colaboradores Pitoli Pitoli Pitoli Pitoli
emanas nanas //	2 semanas 4 semanas //	-	Pitoli Pitoli
nanas //	4 semanas //		Pitoli
		3.000 R\$ ou 6.000 R\$	
nanas //	2 semanas //	_	Ditali
		_	PILOII
mês	1 mês	200 R\$	Arnaldo / Fernando / Pitoli
emana	2 semanas	-	Pitoli
dias	3 dias	100 US\$	João / Pitoli
emana	1 semana	-	PCP
dias	2 dias	-	Pitoli
(mana dias mana dias	mana 2 semanas dias 3 dias mana 1 semana	Immana 2 semanas - dias 3 dias 100 US\$ Immana 1 semana - dias 2 dias -

Tempo Estimado_2: usando sensores alternativos com estoque

1. Pesquisa de sensores

- **1.1 Opções alternativas:** pesquisar e comprar opções alternativas aos sensores que já compramos baseado nas especificações e restrições do projeto e que possuam estoque mínimo;
- **1.2 Avaliação dos sensores:** montar os circuitos mínimos necessários para testar os sensores e validar seu uso no projeto;

2. Prototipagem

- **2.1 Desenvolvimento do Hardware**: será necessário desenvolver uma forma de alimentação dos sensores através do M.T.E. além disso caso tenhamos encontrado opções alternativas viáveis ou seja necessário alterar a PCB atual (SMQ 1054) devido a mecânica podemos ter que desenvolver uma placa nova para o sensor.
- 2.1.1 Projeto Eletrônico: "Placa Alimentação" e "Placa sensor Alternativo" (?);
- 2.1.2 Design da PCB: "Placa Alimentação" e "Placa sensor Alternativo" (?);
 - 2.1.3 Produção e validação dos circuitos;

2.2 Desenvolvimento do Firmware:

- 2.2.1 Alterar rotinas de aquisição para os novos sensores: retirar nível DC, verificar ângulos, alterar filtros (?);
- 2.2.2 Adicionar o setup para os novos sensores: nova opção na tela de Configurações;

2.3 Desenvolvimento da mecânica:

- 2.3.1 Levantamento dos tipos de circuito de alimentação existentes: disposição dos cabos, formato e dimensões típicas;
- 2.3.2 Criação dos requisitos para a mecânica: baseado no levantamento dos circuitos existentes;
- 2.3.3 Projeto da mecânica considerando a PCB atual e o ajuste da distância do sensor ao circuito para aumentar o range de medição;

2.3.4 Testes de validação da mecânica: testes interno de fixação e medição em diferentes cabos e circuitos;

2.4 Testes dos protótipos:

- 2.4.1 Consumo e estimativa de bateria;
- 2.4.2 Testes internos: testes nos motores da Semeq comparando com ensaios realizados com as garras atuais em motores com e sem falha:
 - 2.4.3 Testes com cabos e distâncias mecânicas diferentes;

Power: ondas no tempo, qualidade de energia e valores

RMS

Eccentricit e Rotor Evaluation: FFTs

In Rush: ondas no tempo e valores RMS

3. Cabeça de série

3.1 Produção do Primeiro M.T.E.: adaptação do M.T.E. para alimentar e receber os sinais dos sensores de corrente Semeg;

3.2 Testes externos de validação:

- 3.2.1 Testes em um cliente utilizando as garras atuais;
- 3.3.2 Testes em um cliente utilizando os sensores desenvolvidos;
 - 3.3.3 Analise e comparação dos dados;

Power: ondas no tempo, qualidade de energia e valores

RMS

Eccentricit e Rotor Evaluation: FFTs

In Rush: ondas no tempo e valores RMS

4. Produção

4.1 Arquivos e manuais de produção

- 4.1.1 Gerbers
- 4.1.2 Datasheet

- 4.1.3 Lista de Materiais
- 4.1.4 Pick and Place
- 4.1.5 Manual