TD II: Théorie générale de la mesure

1 Espaces mesurables, Applications mesurables

Exercice 1. Tribu engendrée par les singletons Soit X un ensemble et $\mathscr{D} = \{A \subset X \mid A \text{ dénombrable}, \text{ ou } A^c \text{ dénombrable}\} \subset \mathscr{P}(X).$

- 1. Montrer que \mathcal{D} est une tribu sur X.
- 2. On note $\mathscr{C} = \{\{x\} \mid x \in X\} \subset \mathscr{P}(X)$ la classe des singletons (*i.e.* des parties à un seul élément). Comparer \mathscr{D} et $\sigma(\mathscr{C})$.
- 3. Sur N, quelle est la tribu engendrée par les singletons?

Noter que dans l'exercice suivant, l'ensemble X n'est pas nécessairement borélien...

Exercice 2. Tribu induite Soit $X \subset \mathbb{R}^n$, on note

$$\mathscr{A}_X = \left\{ X \cap B \mid B \in \mathscr{B}(\mathbb{R}^n) \right\}$$

1. Montrer que \mathscr{A}_X est une tribu sur X. On l'appelle la tribu induite ou tribu trace sur X par $\mathscr{B}(\mathbb{R}^n)$.

Remarque : si $A \subset X$, attention à ne pas confondre son complémentaire dans \mathbb{R}^n (noté A^c) et son complémentaire dans X qu'on notera $X \setminus A$.

2. On note $\mathscr{O}_X = \{X \cap U \mid U \in \mathscr{O}_{\mathbb{R}^n}\}$ la classe des ouverts induits de X, et $\mathscr{B}(X) = \sigma(\mathscr{O}_X)$ la tribu borélienne de X. Montrer que $\mathscr{A}_X = \mathscr{B}(X)$.

Indication : on pourra s'intéresser à l'injection $i: X \to \mathbb{R}^n$ définie par i(x) = x.

Exercice 3. Tribus engendrées par les partitions finies Soit (X, \mathcal{F}) un espace mesurable. Déterminer les fonctions de $X \to \mathbb{R}$ qui sont mesurables lorsque

- 1. $\mathscr{F} = \{\emptyset, X\}.$
- $2. \ \mathscr{F} = \mathscr{P}(X)$
- 3. $\mathscr{F} = \left\{ \bigcup_{i \in I} A_i \mid I \subset \{1, \dots, n\} \right\}$ avec (A_1, \dots, A_n) une partition finie de X. (On montrera que \mathscr{F} est une tribu et on se contentera d'un critère suffisant de mesurabilité).

On a vu en cours que la mesurabilité est compatible avec les opérations usuelles, les passages à la limite, etc...

Exercice 4. Monter que les fonctions suivantes, définies sur \mathbb{R} , sont boréliennes :

- 1. $g(x) = \inf_{n \in \mathbb{N}} (\cos(xe^n)),$
- 2. $h(x) = \limsup_{n \to \infty} \arctan(f(x^n) + n^3 x^7)$
- 3. $f(x) = \begin{cases} e^x & \text{si } x \in \mathbb{Q} \\ \cos(x) & \text{sinon} \end{cases}$

La mesurabilité est aussi compatible avec la troncature, l'extension ou la décomposition en forme polaire.

Exercice 5. Troncature Soit (X, \mathscr{A}) un espace mesurable et $f: X \to \mathbb{R}$ une fonction mesurables. Pour $a \in \mathbb{R}_+^*$, montrer que la fonction $f_a: X \to \mathbb{R}$ définie par

$$f_a(x) = \begin{cases} f(x) & \text{si } |f(x)| \leq a \\ a & \text{si } f(x) > a \\ -a & \text{si } f(x) < -a \end{cases}$$

est mesurable.

Exercice 6.

- 1. On suppose que $X \in \mathcal{B}(\mathbb{R}^n)$. Soit $f: X \to \mathbb{C}$ une fonctions borélienne. Montrer que la fonction $g: \mathbb{R}^n \to \mathbb{C}$ définie par $g(x) = \begin{cases} f(x) & \text{si } x \in X \\ 0 & \text{sinon} \end{cases}$ est borélienne.
- 2. Soit $h: \mathbb{R}^n \to \mathbb{C}$ borélienne. Montrer que |h| est borélienne et qu'il existe $\alpha: \mathbb{R}^n \to \mathbb{C}$ borélienne telle que $|\alpha(x)| = 1$ et $h(x) = |h(x)|\alpha(x)$ pour tout $x \in X$.

Exercice 7. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction.

- 1. Si f est croissante, montrer que f est borélienne.
- 2. Si f est dérivable, montrer que f' est borélienne.

2 Mesures

Exercice 8. Sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, on considère λ la mesure de Lebesgue, $\mu = \sum_{k \in \mathbb{N}} \delta_k$ et $\nu = \sum_{k \in \mathbb{N}} k \delta_k$. Pour chacune de ces mesures, calculer les mesures des ensembles suivants :

- 1. pour tout $n \in \mathbb{N}^*$, $A_n = [n, n+1+\frac{1}{n^2}]$, $B_n = \bigcup_{k=1}^n A_k$ et $C_n = \bigcap_{k=1}^n A_k$;
- 2. $B = \bigcup_{k \in \mathbb{N}^*} A_k$ et $C = \bigcap_{k \in \mathbb{N}^*} A_k$

Exercice 9. Mesure image Soient (X, \mathscr{A}) et (Y, \mathscr{B}) des espaces mesurables et $F: X \to Y$ une application mesurable. Si μ est une mesure sur (X, \mathscr{A}) , on note $F_*\mu: \mathscr{B} \to [0, +\infty]$ la mesure image de μ par F.

- 1. Pour $a \in X$, déterminer $F_*\delta_a$.
- 2. On dit qu'une application $G: \mathbb{N} \to \mathbb{N}$ préserve la mesure χ si $G_*\chi = \chi$.
 - (a) Soit $a \in \mathbb{N}$. À quelle condition l'application G préserve-t-elle la mesure δ_a ?
 - (b) À quelle condition l'application G préserve-t-elle la mesure de comptage?

Exercice 10. Soit (X, \mathscr{A}) un espace mesurable, μ une mesure de probabilité sur (X, \mathscr{A}) , et soit $(A_n)_{n\in\mathbb{N}}$ une suite de parties mesurables telle que $\forall n\in\mathbb{N}, \mu(A_n)=1$.

- 1. Montrer que $\mu(\bigcap_{\in \mathbb{N}} A_n) = 1$. Interpréter en passant au complémentaire.
- 2. Le résultat est-il encore vrai si on a $\mu(X) = +\infty$?

Exercice 11. Lois conditionnelles Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace probabilisé. Pour toute évènement $A \in \mathscr{F}$ de probabilité non nulle, on considère l'application $\mathbb{P}(.|A) : \mathscr{F} \to \mathbb{R}_+$ définie par $\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$.

- 1. Montrer que $\mathbb{P}(.|A)$ est une probabilité sur (Ω, \mathscr{F}) .
- 2. Pour tous évènements $A, B \in \mathscr{F}$ de probabilités non nulles, exprimer $\mathbb{P}(A|B)$ en fonction de $\mathbb{P}(B|A)$, et en déduire la formule de Bayes.

Exercice 12. Fonctions de répartition Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace probabilisé et $X : \Omega \to \mathbb{R}$ une variable aléatoire. La fonction de répartition de X est la fonction $F_X : \mathbb{R} \to \mathbb{R}$ définie par $F_X(t) = \mathbb{P}(X \leq t)$.

- 1. Exprimer F_X à l'aide de la loi \mathbb{P}_X de X. Que peut-on dire de la monotonie de F_X ? Déterminer $\lim_{t\to -\infty} F_X(t)$ et $\lim_{t\to +\infty} F_X(t)$
- 2. Montrer F_X est continue à droite : pour tout $a \in \mathbb{R}$ on a $\lim_{\substack{t \to a \\ t > a}} F_X(t) = F_X(a)$.
- 3. Montrer que F_X est continue sur \mathbb{R} si et seulement si $\forall a \in \mathbb{R}$ $\mathbb{P}(X = a) = 0$.

La mesure de Lebesgue est invariante par translation. Réciproquement, cela permet de la caractériser.

Exercice 13. Invariance par translation de la mesure de Lebesgue Soit $a \in \mathbb{R}$ fixé. Pour tout $A \subset \mathbb{R}$, on note $A + a = \{x + a \mid x \in A\}$.

- 1. Montrer que $A + a \in \mathcal{B}(\mathbb{R})$ si et seulement si $A \in \mathcal{B}(\mathbb{R})$.
- 2. pour tout $A \in \mathcal{B}(\mathbb{R})$, on note $\mu(A) = \lambda_1(A+a)$, où λ_1 est la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que l'application μ ainsi définie est une mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- 3. Déduire de ce qui précède que la mesure de Lebesgue est invariante par translation : pour tout $A \in \mathcal{B}(\mathbb{R})$ on a $\lambda_1(A+a) = \lambda_1(A)$.

Exercice 14. Caractérisation de la mesure de Lebesgue Pour tout intervalle $I \subset \mathbb{R}$ et tout $a \in \mathbb{R}$, on note $I + a = \{x + a \mid x \in I\}$.

Soit μ une mesure sur $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ vérifiant les deux propriétés suivantes :

- $\mu([0,1])=1$;
- Pour tout intervalle $I \subset \mathbb{R}$ et tout $a \in \mathbb{R}$, on a $\mu(I+a) = \mu(I)$.

Le but est de montrer que μ est la mesure de Lebesgue.

- 1. Montrer $\mu(\lbrace x \rbrace) = 0$ pour tout $x \in \mathbb{R}$. On dit que la mesure μ est diffuse.
- 2. Montrer que $\mu([0,x]) = x$ pour tout $x \in \mathbb{R}_+^*$. On pourra commencer par le montrer pour tout rationnel $x \in \mathbb{Q}_+^*$.
- 3. En déduire que $\mu = \lambda_1$.

3 Pour s'entrainer, pour aller plus loin

Exercice 15. Soit $X = \{1, 2, 3, 4, 5, 6\}$ et soit $\mathscr{C} = \{\{1\}, \{2, 4\}, \{2, 5\}\} \subset \mathscr{P}(X)$. Déterminer $\sigma(\mathscr{C})$.

Exercice 16. Tribu image réciproque Soit X un ensemble, (Y, \mathcal{B}) un espace mesuré, et $f: X \to Y$ un application. On note

$$f^{-1}(\mathscr{B}) = \{ f^{-1}(B) \mid B \in \mathscr{B} \}.$$

- 1. Montrer que $f^{-1}(\mathscr{B})$ est une tribu sur X.
- 2. On suppose que \mathscr{A} est une tribu sur X. Montrer que f est \mathscr{A} - \mathscr{B} -mesurable si et seulement si $f^*(\mathscr{B}) \subset \mathscr{A}$.

Exercice 17. Soit λ_1 la mesure de Lebesgue sur \mathbb{R} , δ_0 la mesure de Dirac en 0, et $\mu = \lambda_1 + \delta_0$.

- 1. Calculer $\mu(\bigcap_{n\geqslant 1} A_n)$, où $A_n=[0,\frac{1}{n}]$;
- 2. Calculer $\mu(\bigcup_{n\geqslant 1} A_n)$, où $A_n = \left[\frac{1}{n}, 1\right]$;
- 3. Calculer $\mu(\bigcup_{n\geqslant 1} A_n)$, où $A_n = \left[-\frac{1}{n}, 2 \frac{1}{n}\right]$;
- 4. Calculer $\mu(\bigcap_{n\geq 1} A_n)$, où $A_n = \left[-\frac{1}{n}, 1 \frac{1}{n}\right]$.

Exercice 18. Soit $A \in \mathcal{B}(\mathbb{R}^n)$ tel que $\lambda_n(A) = 0$. Montrer que A est d'intérieur vide.

Exercice 19. Extrait d'un sujet d'examen.

Soit (X, \mathscr{A}) un espace mesurable, où \mathscr{A} est une tribu qui contient les singletons. Dans ce qui suit, toutes les mesures considérées sont des mesures sur (X, \mathscr{A}) .

On dit qu'une mesure μ est diffuse si elle vérifie $\forall x \in X \ \mu(\{x\}) = 0$.

On dit qu'une mesure μ est discrète s'il existe une partie dénombrable $D \subset X$ telle que $\mu(D^c) = 0$.

- 1. Montrer qu'une mesure μ est diffuse si et seulement si, pour toute partie dénombrable $A \subset X$ on a $\mu(A) = 0$.
- 2. Soit μ une mesure discrète, et soit $D \subset X$ dénombrable tel que $\mu(D^c) = 0$. Montrer qu'il existe des réels positifs $(\alpha_a)_{a \in D}$ tels que $\mu = \sum_{a \in D} \alpha_a \delta_a$.
- 3. Soit μ une mesure finie, et soit $D = \{x \in X \mid \mu(\{x\}) > 0\}.$
 - (a) Pour tout $n \in \mathbb{N}^*$ on note $E_n = \left\{ x \in X \mid \mu(\{x\}) > \frac{1}{n} \right\}$. Montrer que E_n est une partie finie de X pour tout $n \in \mathbb{N}^*$ et en déduire que D est dénombrable.
 - (b) Pour tout $A \in \mathscr{A}$ on note $\nu(A) = \mu(A \cap D^c)$. Montrer que ν est une mesure diffuse.
 - (c) Montrer que μ est la somme d'une mesure diffuse et d'une mesure discrète.
- 4. Montrer que le résultat de la question 3.(c) est encore vrai si la mesure μ est σ -finie.

Exercice 20. Un exemple de partie non mesurable

On considère la relation d'équivalence sur [0, 1] définie par

$$x \sim y \iff x - y \in \mathbb{O}.$$

On peut donc écrire [0,1] comme l'union disjointe de ses classes d'équivalences : $[0,1] = \bigsqcup_{i \in I} C_i$.

Pour tout $i \in I$ on se donne un élément $x_i \in C_i$ et on considère $A = \{x_i \mid i \in I\}$. Par ailleurs, pour tout $q \in \mathbb{Q} \cap [-1, 1]$, on note $A_q = A + q$.

- 1. Montrer que $A_q \cap A_r = \emptyset$ si $q \neq r$.
- 2. Montrer que $[0,1]\subset \bigcup_{q\in \mathbb{Q}\cap [-1,1]}A_q\subset [-1,2].$
- 3. En supposant que A est borélien, exprimer $\lambda_1(\bigcup_{q\in\mathbb{Q}\cap[-1,1]}A_q)$ en fonction de $\lambda_1(A)$. Conclure.