# TEST REPORT

**ISSUED BY** Shenzhen BALUN Technology Co., Ltd.



**FOR** 

# bluetooth partner

**ISSUED TO** SHENZHEN FISE TECHNOLOGY HOLDING CO., LTD.

No.6 Building, Longfu Industrial Area, Huarong Road, Dalang Street, Longhua, Shenzhen, Guangdong, China



Prepared by: Thang Zhang Yanqing Reporting Specialist) Approved by Wei Yanguan (Chief Engineer)

Report No.:

Model Name: B1501 Brand Name: N/A

Test Standard: 47 CFR Part 2

Test conclusion: Pass Date of Issue: May. 7, 2015

BL-SZ1540092-602

EUT Type: bluetooth partner

47 CFR Part 22 Subpart H

47 CFR Part 24 Subpart E

FCC ID: 2AE8V-B1501

Test Date: Apr. 16, 2015 ~ Apr. 29, 2015

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055 TEL: +86-755-66850100, FAX: +86-755-61824271



# **Revision History**

Version Rev. 01 Issue Date May. 7, 2015 Revisions Initial Issue

# TABLE OF CONTENTS

| 1 | AD  | MINISTRATIVE DATA (GENERAL INFORMATION)            | 5  |
|---|-----|----------------------------------------------------|----|
|   | 1.1 | Identification of the Testing Laboratory           | 5  |
|   | 1.2 | Identification of the Responsible Testing Location | 5  |
|   | 1.3 | Announce                                           | 5  |
| 2 | PR  | ODUCT INFORMATION                                  | 6  |
|   | 2.1 | Applicant                                          | 6  |
|   | 2.2 | Manufacturer                                       | 6  |
|   | 2.3 | General Description for Equipment under Test (EUT) | 6  |
|   | 2.4 | Technical Information                              | 6  |
|   | 2.5 | Ancillary Equipment                                | 7  |
| 3 | UM  | IMARY OF TEST RESULTS                              | 8  |
|   | 3.1 | Test Standards                                     | 8  |
|   | 3.2 | Verdict                                            | 8  |
| 4 | GE  | NERAL TEST CONFIGURATIONS                          | 9  |
|   | 4.1 | Test Environments                                  | 9  |
|   | 4.2 | Test Equipment List                                | 9  |
|   | 4.3 | Test Configurations                                | 10 |
|   | 4.4 | Description of Test Setup                          | 10 |
|   | 4.4 | .1 For Antenna Port Test                           | 10 |
|   | 4.4 | .2 For Frequency Stability Test                    | 11 |
|   | 4.4 | .3 For Radiated Test (30 MHz-1 GHz)                | 11 |
|   | 4.4 | .4 For Radiated Test (Above 1 GHz)                 | 12 |
|   | 4.5 | Test Conditions                                    | 12 |
| 5 | TE: | ST ITEMS                                           | 13 |



| 5.1  | Co    | onducted RF Output Power            | 13 |
|------|-------|-------------------------------------|----|
| 5    | 5.1.1 | Test Limit                          | 13 |
| 5    | 5.1.2 | Test Procedure                      | 13 |
| 5.2  | 2 00  | ccupied Bandwidth                   | 14 |
| 5    | 5.2.1 | Limit                               | 14 |
| 5    | 5.2.2 | Test Procedure                      | 14 |
| 5.3  | S Fr  | equency Stability                   | 15 |
| 5    | 5.3.1 | Limit                               | 15 |
| 5    | 5.3.2 | Test Procedure                      | 15 |
| 5.4  | Co    | onducted Out of Band Emissions      | 16 |
| 5    | 5.4.1 | Limit                               | 16 |
| 5    | 5.4.2 | Test Procedure                      | 16 |
| 5.5  | Б Ва  | and Edge                            | 17 |
| 5    | 5.5.1 | Limit                               | 17 |
| 5    | 5.5.2 | Test Procedure                      | 17 |
| 5.6  | Tr    | ansmitter Radiated Power (EIRP/ERP) | 18 |
| 5    | 5.6.1 | Limit                               | 18 |
| 5    | 5.6.2 | Test Procedure                      | 18 |
| 5.7  | ' Ra  | adiated Out of Band Emissions       | 19 |
| 5    | 5.7.1 | Limit                               | 19 |
| 5    | 5.7.2 | Test Procedure                      | 19 |
| ANN  | EX A  | TEST RESULT                         | 20 |
| A.1  | l Co  | onducted RF Output Power            | 20 |
| A.2  | 2 00  | ccupied Bandwidth                   | 20 |
| A.3  | 3 Fr  | equency Stability                   | 22 |
| A.4  | l Co  | onducted Out of Band Emissions      | 23 |
| A.5  | 5 Ва  | and Edge                            | 29 |
| A.6  | 3 Tr  | ansmitter Radiated Power (EIRP/ERP) | 30 |
| A.7  | 7 Ra  | adiated Out of Band Emissions       | 32 |
| ANNE | EX B  | TEST SETUP PHOTOS                   | 44 |
| B.1  | I. Co | onducted Test Photo                 | 44 |





| B.2.  | Radiated Test Photo   | 45 |
|-------|-----------------------|----|
| ANNEX | C TEST SETUP PHOTOS   | 46 |
| C.1   | Appearance of the EUT | 46 |
| C.2   | Inside of the EUT     | 50 |



# 1 ADMINISTRATIVE DATA (GENERAL INFORMATION)

# 1.1 Identification of the Testing Laboratory

| Company Name | Shenzhen BALUN Technology Co., Ltd.                                 |
|--------------|---------------------------------------------------------------------|
| A diducac    | Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, |
| Address      | Nanshan District, Shenzhen, Guangdong Province, P. R. China         |
| Phone Number | +86 755 6683 3402                                                   |
| Fax Number   | +86 755 6182 4271                                                   |

# 1.2 Identification of the Responsible Testing Location

| Test Location                | Shenzhen BALUN Technology Co., Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address                      | Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,<br>Nanshan District, Shenzhen, Guangdong Province, P. R. China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Accreditation<br>Certificate | The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 11524A-1.  The laboratory has been listed by US Federal Communications Commission to perform electromagnetic emission measurements. The recognition numbers of test site are 832625.  The laboratory has met the requirements of the IAS Accreditation Criteria for Testing Laboratories (AC89), has demonstrated compliance with ISO/IEC Standard 17025:2005. The accreditation certificate number is TL-588.  The laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L6791. |  |  |
| Description                  | All measurement facilities used to collect the measurement data are located at Block B, FL 1, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China 518055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |

# 1.3 Announce

- (1) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (2) The test report is invalid if there is any evidence and/or falsification.
- (3) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (4) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.



# 2 PRODUCT INFORMATION

# 2.1 Applicant

| Applicant SHENZHEN FISE TECHNOLOGY HOLDING CO., LTD. |                                                                     |  |  |  |  |
|------------------------------------------------------|---------------------------------------------------------------------|--|--|--|--|
| Addross                                              | No.6 Building, Longfu Industrial Area, Huarong Road, Dalang Street, |  |  |  |  |
| Address                                              | Longhua, Shenzhen, Guangdong, China                                 |  |  |  |  |

# 2.2 Manufacturer

| Manufacturer | SHENZHEN FISE TECHNOLOGY HOLDING CO., LTD.                          |
|--------------|---------------------------------------------------------------------|
| Address      | No.6 Building, Longfu Industrial Area, Huarong Road, Dalang Street, |
| Addiess      | Longhua, Shenzhen, Guangdong, China                                 |

# 2.3 General Description for Equipment under Test (EUT)

| EUT Type             | bluetooth partner                                                |
|----------------------|------------------------------------------------------------------|
| Model Name           | B1501                                                            |
| Hardware Version     | 6020_MB_V1.0                                                     |
| Software Version     | N/A                                                              |
| Network and Wireless | 2G Network GSM 850/1900 MHz                                      |
| connectivity         | Bluetooth 2.1 + EDR                                              |
| About the Product    | The equipment is smart phone, intended for used with information |
| About the Floduct    | technology equipment, Only GSM modes was tested in this report.  |

# 2.4 Technical Information

| Frequency Bands    | GSM 850/1900 MHz                                           |
|--------------------|------------------------------------------------------------|
| Modulation Type    | GSM: GMSK                                                  |
| Ty Fraguency Dange | GSM 850: 824.20 - 848.80 MHz (at intervals of 200 kHz);    |
| Tx Frequency Range | GSM 1900: 1850.20 - 1909.80 MHz (at intervals of 200 kHz); |
| Dy Fraguency Dongs | GSM 850: 869.20 - 893.80 MHz (at intervals of 200 kHz)     |
| Rx Frequency Range | GSM 1900: 1930.20 - 1989.80 MHz (at intervals of 200 kHz)  |
| Power Class        | GSM 850: 4                                                 |
| rowei Class        | GSM 1900: 1                                                |
| Antenna Type       | PIFA Antenna                                               |
| Antenna Gain       | GSM 850: 0.9 dBi,                                          |
| Antenna Gam        | GSM1900: 1.0 dBi                                           |

Note: The above EUT information in section 2.3 and 2.4 was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.



# 2.5 Ancillary Equipment

|                       | Battery         |                               |  |
|-----------------------|-----------------|-------------------------------|--|
|                       | Brand Name      | Tanksun                       |  |
|                       | Model No        | B1501                         |  |
| Ancillary Equipment 1 | Serial No       | N/A                           |  |
|                       | Capacitance     | 330 mAh                       |  |
|                       | Rated Voltage   | 3.8 V                         |  |
|                       | Extreme Voltage | Low: 3.3 V / High: 4.2 V      |  |
|                       | Charger         |                               |  |
|                       | Brand Name      | N/A                           |  |
| Ancillary Equipment 2 | Model No        | N/A                           |  |
| Andiliary Equipment 2 | Serial No       | N/A                           |  |
|                       | Rated Input     | ~ 100-240 V, 0.15 A, 50/60 Hz |  |
|                       | Rated Output    | = 5 V, 1000 mA                |  |
| Ancillary Equipment 3 | Earphone        |                               |  |
| Anomary Equipment 3   | Length          | 1.0 m                         |  |
| Ancillary Equipment 4 | USB Data Cable  |                               |  |
| Anomary Equipment 4   | Length          | 1.0 m                         |  |



# 3 SUMMARY OF TEST RESULTS

# 3.1 Test Standards

| No. | Identity           | Document Title                                                |  |  |
|-----|--------------------|---------------------------------------------------------------|--|--|
| 1   | 47 CFR Part 2      | Frequency Allocations and Radio Treaty Matters; General Rules |  |  |
| I   | (10-1-14 Edition)  | and Regulations                                               |  |  |
| 2   | 47 CFR Part 22     | Public Mobile Services                                        |  |  |
| 2   | (10-1-14 Edition)  |                                                               |  |  |
| 3   | 47 CFR Part 24     | Personal Communications Services                              |  |  |
| 3   | (10-1-14 Edition)  |                                                               |  |  |
| 4   | TIA/EIA 603.D-2010 | Land Mobile FM or PM Communications Equipment Measurement     |  |  |
| 4   |                    | and Performance Standards                                     |  |  |

# 3.2 Verdict

| No. | Description                           | FCC Part<br>No.                      | Test Result | Verdict |
|-----|---------------------------------------|--------------------------------------|-------------|---------|
| 1   | Conducted RF Output Power             | 2.1046                               | ANNEX A.1   | Pass    |
| 2   | Peak to average radio                 | 2.1046<br>24.232                     | N/A         | Note    |
| 3   | Occupied Bandwidth                    | 2.1049                               | ANNEX A.2   | Pass    |
| 4   | Frequency Stability                   | 2.1055<br>22.355<br>24.235           | ANNEX A.3   | Pass    |
| 5   | Conducted Out of Band Emissions       | 2.1051<br>2.1057<br>22.917<br>24.238 | ANNEX A.4   | Pass    |
| 6   | Band Edge                             | 2.1051<br>2.1057<br>22.917<br>24.238 | ANNEX A.5   | Pass    |
| 7   | Transmitter Radiated Power (EIPR/ERP) | 22.913<br>24.232                     | ANNEX A.6   | Pass    |
| 8   | Radiated Out of Band Emissions        | 2.1053<br>2.1057<br>22.917<br>24.238 | ANNEX A.7   | Pass    |

Note: The power was used peak power to demonstrate compliance, Peak to average radio measurement is not required.



# 4 GENERAL TEST CONFIGURATIONS

# 4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

| Relative Humidity          | 45% - 55%               |                |
|----------------------------|-------------------------|----------------|
| Atmospheric Pressure       | 100 kPa - 102 kPa       |                |
| Temperature                | NT (Normal Temperature) | +22°C to +25°C |
| Working Voltage of the EUT | NV (Normal Voltage)     | 3.7 V          |

# 4.2 Test Equipment List

| Description                             | Manufacturer            | Model         | Serial No. | Cal. Date  | Cal. Due   |
|-----------------------------------------|-------------------------|---------------|------------|------------|------------|
| Spectrum Analyzer                       | ROHDE&SCHWARZ           | FSV-30        | 103118     | 2014.07.10 | 2015.07.09 |
| Vector Signal<br>Generator              | ROHDE&SCHWARZ           | SMBV100A      | 177746     | 2014.07.09 | 2015.07.08 |
| Signal Generator                        | ROHDE&SCHWARZ           | SMB100A       | 260592     | 2014.07.21 | 2015.07.20 |
| Switch Unit with OSP-B157               | ROHDE&SCHWARZ           | OSP120        | 101270     | 2014.07.23 | 2015.07.22 |
| Spectrum Analyzer                       | AGILENT                 | E4440A        | MY45304434 | 2014.10.18 | 2015.10.17 |
| Universal Radio<br>Communication Tester | ROHDE&SCHWARZ           | CMU 200       | 123666     | 2014.10.18 | 2015.10.17 |
| Wireless Communications Test Set        | ROHDE&SCHWARZ           | CMW 500       | 138884     | 2014.07.07 | 2015.07.06 |
| EMI Receiver                            | ROHDE&SCHWARZ           | ESRP          | 101036     | 2014.07.07 | 2015.07.06 |
| LISN                                    | SCHWARZBECK             | NSLK 8127     | 8127-687   | 2014.07.07 | 2015.07.06 |
| Bluetooth Tester                        | ROHDE&SCHWARZ           | CBT           | 101005     | 2014.07.07 | 2015.07.06 |
| Power Splitter                          | KMW                     | DCPD-LDC      | 1305003215 | 2014.07.07 | 2015.07.06 |
| Power Sensor                            | ROHDE&SCHWARZ           | NRP-Z21       | 103971     | 2014.07.07 | 2015.07.06 |
| Attenuator (20 dB)                      | KMW                     | ZA-S1-201     | 110617091  |            |            |
| Attenuator (6 dB)                       | KMW                     | ZA-S1-61      | 1305003189 |            |            |
| DC Power Supply                         | ROHDE&SCHWARZ           | HMP2020       | 018141664  | 2014.07.09 | 2015.07.08 |
| Temperature Chamber                     | ANGELANTIONI<br>SCIENCE | NTH64-40A     | 1310       | 2014.07.07 | 2015.07.06 |
| Test Antenna-<br>Loop(9 kHz-30 MHz)     | SCHWARZBECK             | FMZB 1519     | 1519-037   | 2013.07.02 | 2015.07.01 |
| Test Antenna-<br>Bi-Log(30 MHz-3 GHz)   | SCHWARZBECK             | VULB 9163     | 9163-624   | 2013.07.03 | 2015.07.02 |
| Test Antenna-<br>Horn(1-18 GHz)         | SCHWARZBECK             | BBHA<br>9120D | 9120D-1148 | 2013.07.02 | 2015.07.01 |
| Test Antenna-<br>Horn(15-26.5 GHz)      | SCHWARZBECK             | BBHA 9170     | 9170-305   | 2013.07.02 | 2015.07.01 |
| Anechoic Chamber                        | RAINFORD                | 9m*6m*6m      | N/A        | 2015.02.28 | 2016.02.27 |
| Shielded Enclosure                      | ChangNing               | CN-130701     | 130703     |            |            |



# 4.3 Test Configurations

| Test                    | Description               |                        |
|-------------------------|---------------------------|------------------------|
| Configurations (TC) NO. | Signal Description        | Operating Frequency    |
| Transmitter             |                           |                        |
| TC01                    | GMSK modulation, GSM 850  | Ch No. 128/ 824.2 MHz  |
| TC02                    | GMSK modulation, GSM 850  | Ch No. 190/ 836.6 MHz  |
| TC03                    | GMSK modulation, GSM 850  | Ch No. 251/ 848.8 MHz  |
| TC04                    | GMSK modulation, GSM 1900 | Ch No. 512/ 1850.2 MHz |
| TC05                    | GMSK modulation, GSM 1900 | Ch No. 661/ 1880.0 MHz |
| TC06                    | GMSK modulation, GSM 1900 | Ch No. 810/ 1909.8 MHz |

# 4.4 Description of Test Setup

# 4.4.1 For Antenna Port Test





# 4.4.2 For Frequency Stability Test



# 4.4.3 For Radiated Test (30 MHz-1 GHz)





# 4.4.4 For Radiated Test (Above 1 GHz)



(Diagram 4)

# 4.5 Test Conditions

| Test Case                             | Test Conditions             |                              |                           |  |  |  |
|---------------------------------------|-----------------------------|------------------------------|---------------------------|--|--|--|
| Test Case                             | Test Env. Test Setup Note 1 |                              | Test Configuration Note 2 |  |  |  |
| Conducted RF Output<br>Power          | NTNV                        | Test Setup 1                 | TC01~TC06                 |  |  |  |
| Occupied Bandwidth                    | NTNV                        | Test Setup 1                 | TC01~TC06                 |  |  |  |
| Frequency Stability                   | NTNV                        | Test Setup 2                 | TC01~TC06                 |  |  |  |
| Conducted Out of Band<br>Emissions    | NTNV                        | Test Setup 1                 | TC01~TC06                 |  |  |  |
| Band Edge                             | NTNV                        | Test Setup 1                 | TC01, TC03, TC04, TC06    |  |  |  |
| Transmitter Radiated Power (EIPR/ERP) | NTNV                        | Test Setup 3<br>Test Setup 4 | TC01~TC6                  |  |  |  |
| Radiated Out of Band<br>Emissions     | NTNV                        | Test Setup 3<br>Test Setup 4 | TC01~TC6                  |  |  |  |

# Note:

- 1. Please refer to section 4.4 for test setup details.
- 2. Please refer to section 4.3 for test configuration details.



# 5 TEST ITEMS

# 5.1 Conducted RF Output Power

#### 5.1.1 Test Limit

FCC §2.1046 (a)

For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033 (c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

#### 5.1.2 Test Procedure

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

- 1. The RF output of the transmitter was connected to the input of the Mobile Communication Test Unit through sufficient attenuation.
- 2. The mobile was set up for the max, Output power with pseudo random data modulation.

#### FCC PART 22

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1 MHz, for CDMA modulated signal: RBW=VBW=3 MHz.
- The low, middle and the high channels are selected to perform tests respectively. For GSM modulated, set the TCH number to 128 as the low channel, and for WCDMA modulated, set the TCH number to 4132 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 190 as the middle channel for GSM modulated, and Set the TCH number to 4175 as the middle channel for WCDMA modulated, then repeat step 3.
- 5. Set the TCH number to 251 as the high channel for GSM modulated, and Set the TCH number to 4233 as the middle channel for WCDMA modulated, then repeat step 3.

#### FCC PART 24

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1 MHz, for CDMA modulated signal: RBW=VBW=3 MHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. Set the TCH number to 512 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 661 as the middle channel, then repeat step 3.
- 5. Set the TCH number to 810 as the high channel, then repeat step 3.



# 5.2 Occupied Bandwidth

# 5.2.1 Limit

FCC § 2.1049

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Occupied bandwidth is also known as the 99% emission bandwidth

#### 5.2.2 Test Procedure

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

- 1. The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set.

#### FCC PART 22

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=3 kHz, for CDMA modulated signal: RBW=VBW=30 kHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. For GSM modulated, set the TCH number to 128 as the low channel, and for WCDMA modulated, set the TCH number to 4132 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 190 as the middle channel for GSM modulated, and Set the TCH number to 4175 as the middle channel for WCDMA modulated, then repeat step 3.
- 5. Set the TCH number to 251 as the high channel for GSM modulated, and Set the TCH number to 4233 as the middle channel for WCDMA modulated, then repeat step 3.

#### FCC PART 24

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=3 kHz, for CDMA modulated signal: RBW=VBW=30 kHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. Set the TCH number to 512 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 661 as the middle channel, then repeat step 3.

Set the TCH number to 810 as the high channel, then repeat step 3.



# 5.3 Frequency Stability

# 5.3.1 Limit

FCC § 2.1055 & 22.355 & 24.235

#### § 22.355

Except as otherwise provided in this part, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

TABLE C-1—FREQUENCY TOLERANCE FOR TRANSMITTERS IN THE PUBLIC MOBILE SERVICES

| Frequency range<br>(MHz) | Base, fixed (ppm) | Mobile >3 watts (ppm) | Mobile ≤3 watts (ppm) |
|--------------------------|-------------------|-----------------------|-----------------------|
| 25 to 50                 | 20.0              | 20.0                  | 50.0                  |
| 50 to 450                | 5.0               | 5.0                   | 50.0                  |
| 450 to 512               | 2.5               | 5.0                   | 5.0                   |
| 821 to 896               | 1.5               | 2.5                   | 2.5                   |
| 928 to 929               | 5.0               | n/a                   | n/a                   |
| 929 to 960               | 1.5               | n/a                   | n/a                   |
| 2110 to 2220             | 10.0              | n/a                   | n/a                   |

# & 24.235

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

The test conditions are:

- (a) The temperature is varied from -30°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

# 5.3.2 Test Procedure

- 1. The test is performed in a Temperature Chamber.
- The EUT is configured as MS + DC Power Supply.



# 5.4 Conducted Out of Band Emissions

#### 5.4.1 Limit

FCC §22.917(a) & 24.238(a)

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10\*log(P) dB. This calculated to be -13 dBm.

# 5.4.2 Test Procedure

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1 MHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

#### FCC PART 22

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1 MHz, for CDMA modulated signal: RBW=VBW=3 MHz.
- The low, middle and the high channels are selected to perform tests respectively. For GSM modulated, set the TCH number to 128 as the low channel, and for WCDMA modulated, set the TCH number to 4132 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 190 as the middle channel for GSM modulated, and Set the TCH number to 4175 as the middle channel for WCDMA modulated, then repeat step 3.
- Set the TCH number to 251 as the high channel for GSM modulated, and Set the TCH number to 4233 as the middle channel for WCDMA modulated, then repeat step 3.

#### FCC PART 24

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1 MHz, for CDMA modulated signal: RBW=VBW=3 MHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. Set the TCH number to 512 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 661 as the middle channel, then repeat step 3.
- 5. Set the TCH number to 810 as the high channel, then repeat step 3.



# 5.5 Band Edge

#### 5.5.1 Limit

FCC § 22.917(b) & 24.238(b)

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

#### 5.5.2 Test Procedure

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

- 1. The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.
- 2. The center of the spectrum analyzer was set to block edge frequency.

#### FCC PART 22

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1 MHz, for CDMA modulated signal: RBW=VBW=3 MHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. Set the TCH number to 128 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 190 as the middle channel, then repeat step 3.
- 5. Set the TCH number to 251 as the high channel, then repeat step 3.

#### FCC PART 24

- The resolution bandwidth of the Spectrum Analyzer is set to be comparable to the emission bandwidth of the transmitter, e.g. for GSM modulated signal (here used): RBW=VBW=1 MHz, for CDMA modulated signal: RBW=VBW=3 MHz.
- 2. The low, middle and the high channels are selected to perform tests respectively. Set the TCH number to 512 as the low channel.
- 3. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak and mark it; finally record the peak and the plot.
- 4. Set the TCH number to 661 as the middle channel, then repeat step 3.
- 5. Set the TCH number to 810 as the high channel, then repeat step 3.



# 5.6 Transmitter Radiated Power (EIRP/ERP)

#### 5.6.1 Limit

FCC §22.913 & 24.232

According to FCC section 22.913, the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7Watts, and FCC section 24.232, the broadband PCS mobile station is limited to 2Watts e.i.r.p. peak power.

#### 5.6.2 Test Procedure

The EUT, which is powered by the Battery charged with the AC Adapter, is located in a 3m Full-Anechoic Chamber; the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna.

The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM 850 MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM 1900 MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded.

The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested.

The substitution corrections are obtained as described below:

ASUBST = PSUBST\_TX - PSUBST\_RX - LSUBST\_CABLES + GSUBST\_TX\_ANT

ATOT = LCABLES + ASUBST

Where ASUBST is the final substitution correction including receive antenna gain.

PSUBST TX is signal generator level,

PSUBST\_RX is receiver level,

LSUBST CABLES is cable losses including TX cable,

GSUBST TX ANT is substitution antenna gain.

ATOT is total correction factor including cable loss and substitution correction

During the test, the data of ATOT was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of ATOT.



# 5.7 Radiated Out of Band Emissions

# 5.7.1 Limit

FCC § 22.917(a) & 24.238(a)

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10\*log(P) dB. This calculated to be -13 dBm.

# 5.7.2 Test Procedure

See section 5.6.2 of this report.

Note: when doing measurements above 1 GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.



# ANNEX A TEST RESULT

# A.1 Conducted RF Output Power

# **GSM Mode Test Data**

| Band     | Channel | Frequency (MHz) | Conducted Output<br>Peak Power (dBm) | Conducted Output<br>Peak Power (W) |
|----------|---------|-----------------|--------------------------------------|------------------------------------|
|          | 128     | 824.2           | 32.99                                | 1.99                               |
| GSM 850  | 190     | 836.6           | 33.14                                | 2.06                               |
| 251      |         | 848.8           | 33.15                                | 2.07                               |
|          | 512     | 1850.2          | 29.51                                | 0.89                               |
| GSM 1900 | 661     | 1880.0          | 29.21                                | 0.83                               |
|          | 810     | 1909.8          | 28.85                                | 0.77                               |

# A.2 Occupied Bandwidth

#### Test Data

| Band         | Channel | Frequency<br>(MHz) | Measured 99% Occupied Bandwidth (kHz) | Measured -26 dB<br>Occupied Bandwidth<br>(kHz) |
|--------------|---------|--------------------|---------------------------------------|------------------------------------------------|
|              | 128     | 824.2              | 239.7721                              | 313.037                                        |
| GSM 850 MHz  | 190     | 836.6              | 241.7714                              | 315.972                                        |
|              | 251     | 848.8              | 242.6678                              | 317.323                                        |
|              | 512     | 1850.2             | 243.5867                              | 311.620                                        |
| GSM 1900 MHz | 661     | 1880.0             | 250.0535                              | 314.851                                        |
|              | 810     | 1909.8             | 243.1640                              | 316.019                                        |

#### Test plots

#### GSM 850 MHz CHANNEL 128

#### Agilent 16:18:06 Apr 29, 2015 Meas Setup **Avg Number** Ch Freq 824.2 MHz Trig Free 10 Off Occupied Bandwidth Avg Mode Repeat Ехр Atten 40 dB Max Hold <u>On</u> Occ BW % Pwr 99.00 % 0BW Span 3.00000000 MHz Center 824.200 MHz •Res BW 3 kHz Span 3 MHz Sweep 318.3 ms (601 pts) ●VBW 9.1 kHz **x dB** -26.00 dB Occ BM % Pwr x dB 99.00 % -26.00 dB Occupied Bandwidth 239.7721 kHz Optimize Ref Level Transmit Freq Error x dB Bandwidth -1.173 kHz 313.037 kHz File Operation Status, C:/TMPIMAGE.GIF file saved





# GSM 850 MHz CHANNEL 251

# GSM 1900 MHz CHANNEL 512





# GSM 1900 MHz CHANNEL 661







# A.3 Frequency Stability

# GSM 850 MHz Band:

| Test  | Conditions  |                              |         | Frequenc | Frequency Deviation |               |         |      |  |
|-------|-------------|------------------------------|---------|----------|---------------------|---------------|---------|------|--|
| Power | Temperature | Channel = 128<br>(824.2 MHz) |         |          | nel = 190<br>6 MHz) | Chanı<br>(848 | Verdict |      |  |
| (VDC) | (°C)        | Hz                           | Limits  | Hz       | Limits              | Hz            | Limits  |      |  |
|       | -30         | 73.22                        |         | 1.31     |                     | 91.33         |         |      |  |
|       | -20         | 94.63                        |         | 64.25    |                     | 64.18         |         |      |  |
|       | -10         | 14.52                        |         | 14.06    |                     | 91.40         |         |      |  |
|       | 0           | 64.87                        |         | 83.44    |                     | 9.42          |         |      |  |
| 3.7   | +10         | 11.69                        |         | 23.36    |                     | 0.08          |         |      |  |
|       | +20         | 28.65                        | ±2060.5 | 85.07    | ±2091.5             | 20.40         | ±2122   | Pass |  |
|       | +30         | 65.45                        |         | 78.14    |                     | 5.49          |         |      |  |
|       | +40         | 76.92                        |         | 76.35    |                     | 16.75         |         |      |  |
|       | +50         | 7.15                         |         | 57.93    |                     | 4.40          |         |      |  |
| 4.3   | +25         | 57.82                        |         | 42.07    |                     | 89.09         |         |      |  |
| 3.2   | +25         | 15.84                        |         | 26.08    |                     | 56.26         |         |      |  |

# GSM 1900 MHz Band:

| Test  | Conditions  |                               | Frequency Deviation |        |                     |                |         |      |
|-------|-------------|-------------------------------|---------------------|--------|---------------------|----------------|---------|------|
| Power | Temperature | Channel = 512<br>(1850.2 MHz) |                     |        | el = 661<br>.0 MHz) | Chani<br>(1909 | Verdict |      |
| (VDC) | (°C)        | Hz                            | Limits              | Hz     | Limits              | Hz             | Limits  |      |
|       | -30         | -28.69                        |                     | -27.66 |                     | -28.33         |         |      |
|       | -20         | -28.75                        |                     | -28.57 |                     | -27.88         |         |      |
|       | -10         | -27.72                        |                     | -28.62 |                     | -28.48         |         |      |
|       | 0           | -27.70                        |                     | -27.71 |                     | -28.38         |         |      |
| 3.7   | +10         | -28.11                        |                     | -28.72 |                     | -27.59         |         |      |
|       | +20         | -28.61                        | ±4625.5             | -28.97 | ±4700.0             | -28.52         | ±4774.5 | Pass |
|       | +30         | -28.10                        |                     | -28.43 |                     | -28.04         |         |      |
|       | +40         | -27.89                        |                     | -27.93 |                     | -28.72         |         |      |
|       | +50         | -28.91                        |                     | -28.63 |                     | -28.70         |         |      |
| 4.3   | +25         | -27.54                        |                     | -28.73 |                     | -28.02         |         |      |
| 3.2   | +25         | -27.64                        |                     | -28.59 |                     | -28.62         |         |      |



# A.4 Conducted Out of Band Emissions

# Test Data



| Start          | Stop           | RBW   | Detector | Frequency | Emission[d | Limit | Margin  | Verdict |
|----------------|----------------|-------|----------|-----------|------------|-------|---------|---------|
| Frequency[MHz] | Frequency[MHz] | [MHz] | Defector | [MHz]     | Bm]        | [dBm] | [dB]    | verdict |
| 0.009          | 0.15           | 0.001 | Peak     | 0.01088   | -56.6431   | -13   | 43.6431 | Pass    |
| 0.15           | 30             | 0.01  | Peak     | 0.260037  | -52.7178   | -13   | 39.7178 | Pass    |
| 30             | 500            | 0.1   | Peak     | 363.0709  | -42.3287   | -13   | 29.3287 | Pass    |
| 500            | 1000           | 0.1   | Peak     | 824.1648  | 33.4316    | N/A   | N/A     | N/A     |
| 1000           | 10000          | 1     | Peak     | 9251.073  | -32.5458   | -13   | 19.5458 | Pass    |





| Start Frequency[MHz] | Stop<br>Frequency[MHz] | RBW<br>[MHz] | Detector | Frequency<br>[MHz] | Emission[dBm] | Limit<br>[dBm] | Margin<br>[dB] | Verdict |
|----------------------|------------------------|--------------|----------|--------------------|---------------|----------------|----------------|---------|
| 0.009                | 0.15                   | 0.001        | Peak     | 0.00994            | -56.1365      | -13            | 43.1365        | Pass    |
| 0.15                 | 30                     | 0.01         | Peak     | 0.15               | -52.8805      | -13            | 39.8805        | Pass    |
| 30                   | 500                    | 0.1          | Peak     | 495.8991           | -42.6515      | -13            | 29.6515        | Pass    |
| 500                  | 1000                   | 0.1          | Peak     | 836.5673           | 33.9019       | N/A            | N/A            | N/A     |
| 1000                 | 10000                  | 1            | Peak     | 7111.746           | -32.7537      | -13            | 19.7537        | Pass    |





| Start Frequency[MHz] | Stop<br>Frequency[MHz] | RBW<br>[MHz] | Detector | Frequency<br>[MHz] | Emission[dBm] | Limit<br>[dBm] | Margin<br>[dB] | Verdict |
|----------------------|------------------------|--------------|----------|--------------------|---------------|----------------|----------------|---------|
| 1 requericy[wir12]   | 1 requeriey[wir12]     | [1411 12]    |          | [1711 12]          |               | [dDili]        | [dD]           |         |
| 0.009                | 0.15                   | 0.001        | Peak     | 0.009235           | -55.4439      | -13            | 42.4439        | Pass    |
| 0.15                 | 30                     | 0.01         | Peak     | 0.42009            | -53.8892      | -13            | 40.8892        | Pass    |
| 30                   | 500                    | 0.1          | Peak     | 368.9721           | -42.5668      | -13            | 29.5668        | Pass    |
| 500                  | 1000                   | 0.1          | Peak     | 848.7698           | 33.9652       | N/A            | N/A            | N/A     |
| 1000                 | 10000                  | 1            | Peak     | 1698.085           | -30.1271      | -13            | 17.1271        | Pass    |





| Start          | Stop           | RBW   | Detector       | Frequency | Emission[dPm] | Limit | Margin  | Verdict |
|----------------|----------------|-------|----------------|-----------|---------------|-------|---------|---------|
| Frequency[MHz] | Frequency[MHz] | [MHz] | Detector [MHz] |           | Emission[dBm] | [dBm] | [dB]    | verdict |
| 0.009          | 0.15           | 0.001 | Peak           | 0.010692  | -56.3992      | -13   | 43.3992 | Pass    |
| 0.15           | 30             | 0.01  | Peak           | 0.170007  | -52.3439      | -13   | 39.3439 | Pass    |
| 30             | 1000           | 1     | Peak           | 116.33    | -38.3983      | -13   | 25.3983 | Pass    |
| 1000           | 3000           | 1     | Peak           | 1850.425  | 32.4342       | N/A   | N/A     | N/A     |
| 3000           | 20000          | 1     | Peak           | 19396.04  | -24.6088      | -13   | 11.6088 | Pass    |





| Start          | Stop           | RBW   | Dotostor | Frequency | Emission[dPm] | Limit | Margin  | Verdict |
|----------------|----------------|-------|----------|-----------|---------------|-------|---------|---------|
| Frequency[MHz] | Frequency[MHz] | [MHz] | Detector | [MHz]     | Emission[dBm] | [dBm] | [dB]    | verdict |
| 0.009          | 0.15           | 0.001 | Peak     | 0.010128  | -56.0825      | -13   | 43.0825 | Pass    |
| 0.15           | 30             | 0.01  | Peak     | 0.160003  | -52.2277      | -13   | 39.2277 | Pass    |
| 30             | 1000           | 1     | Peak     | 133.79    | -38.0332      | -13   | 25.0332 | Pass    |
| 1000           | 3000           | 1     | Peak     | 1880.44   | 32.0318       | N/A   | N/A     | N/A     |
| 3000           | 20000          | 1     | Peak     | 19547.55  | -25.7458      | -13   | 12.7458 | Pass    |





| Start          | Stop           | RBW   | Detector | Frequency | Emissis and David | Limit | Margin  | \/a rdiat |
|----------------|----------------|-------|----------|-----------|-------------------|-------|---------|-----------|
| Frequency[MHz] | Frequency[MHz] | [MHz] | Detector | [MHz]     | Emission[dBm]     | [dBm] | [dB]    | Verdict   |
| 0.009          | 0.15           | 0.001 | Peak     | 0.009141  | -57.2199          | -13   | 44.2199 | Pass      |
| 0.15           | 30             | 0.01  | Peak     | 0.15      | -50.6665          | -13   | 37.6665 | Pass      |
| 30             | 1000           | 1     | Peak     | 135.73    | -37.5655          | -13   | 24.5655 | Pass      |
| 1000           | 3000           | 1     | Peak     | 1909.455  | 31.7598           | N/A   | N/A     | N/A       |
| 3000           | 20000          | 1     | Peak     | 19391.89  | -25.1433          | -13   | 12.143  | Pass      |



# A.5 Band Edge

#### **Test Data**

| Band      | Channel | Frequency<br>(MHz) | Measured Max. Band Edge<br>Emission (dBm) | Limit (dBm) | Verdict |
|-----------|---------|--------------------|-------------------------------------------|-------------|---------|
| GSM 850   | 128     | 824.2              | -14.10                                    | -13         | Pass    |
| G31VI 63U | 251     | 848.8              | -16.46                                    | -13         | Pass    |
| GSM 1900  | 512     | 1850.2             | -14.23                                    | 10          | Pass    |
| GSW 1900  | 810     | 1909.8             | -14.34                                    | -14.34      |         |

#### **Test Plots**

# GSM 850 MHz CHANNEL 128

# GSM 850 MHz CHANNEL 251





#### GSM 1900 MHz CHANNEL 512

# \* Agilent 16:34:54 Apr 29, 2015 Peak Search Ref 10 dBm Atten 20 dB \*Peak Log 10 1.849997000 GHz -14.23 dBn **Next Peak** Next Pk Right -14.23 dBm Next Pk Left Min Search M1 S3 Pk-Pk Search Mkr > CF More 1 of 2 Stop 1.850 000 GHz Sweep 268 ms (601 pts) Start 1.848 000 GHz

VBW 3 kHz

File Operation Status, C:/TMPIMAGE.GIF file saved

Res BW 3 kHz





# A.6 Transmitter Radiated Power (EIRP/ERP)

Minimum RF power: GSM 850 MHz: 5.21 dBm, GSM 1900 MHz: -0.48 dBm.

# Test Data

# GSM Mode Test data:

|           |           |                    |     | Measured ERP Limit |                  |         |      | .4   |     |         |
|-----------|-----------|--------------------|-----|--------------------|------------------|---------|------|------|-----|---------|
|           |           | Frequency          |     |                    | IVIGASUI EU LIKE |         |      |      |     |         |
| Band      | Channel   | (MHz)              | PCL | SA Read Value      | Correction       | ERP     | ERP  | dBm  | W   | Verdict |
| (IVII 12) | (IVII IZ) |                    | dBm | Factor(dB)         | (dBm)            | (W)     | иын  | VV   |     |         |
| GSM       | 128       | 824.20             | 5   | -10.67             | 41               | 30.33   | 1.08 |      |     | Pass    |
| 850       | 190       | 836.60             | 5   | -9.93              | 41               | 31.07   | 1.28 | 38.5 | 7   | Pass    |
| 630       | 251       | 848.80             | 5   | -10.52             | 41               | 30.48 1 | 1.12 |      |     | Pass    |
|           |           |                    |     |                    |                  |         |      |      |     |         |
|           |           | F                  |     | Measured EIRP      |                  |         | Lim  | it   |     |         |
| Band      | Channel   | Frequency<br>(MHz) | PCL | SA Read Value      | Correction       | EIRP    | EIRP | dBm  | ۱۸/ | Verdict |
|           |           | (IVITZ)            |     | (dBm)              | Factor(dB)       | (dBm)   | (W)  | иын  | W   |         |
| CCM       | 512       | 1850.2             | 0   | -12.71             | 43               | 30.29   | 1.07 |      |     | Pass    |
| GSM       | 661       | 1880.0             | 0   | -11.24             | 43               | 31.76   | 1 50 | 33   | 2   | Pass    |

43

-12.10

# Test Plots

1900

#### GSM 850 MHz CHANNEL 128

810



1909.8

#### GSM 850 MHz CHANNEL 190

30.90



1.23

**Pass** 

Date: 6.MAY.2015 14:44:47



# GSM 850 MHz CHANNEL 251

# 

# GSM 1900 MHz CHANNEL 512



Date: 6.MAY.2015 14:56:51

# GSM 1900 MHz CHANNEL 661



# GSM 1900 MHz CHANNEL 810



Date: 6.MAY.2015 14:59:33



# A.7 Radiated Out of Band Emissions

# Test Data

#### GSM 850 MHz CHANNEL 128, ANT V



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT      | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|----------|---------|
|                 |              |             | (dBm)    |             |           |          |         |
| 819.23          | -37.39       | 5.16        | -13.0    | 24.39       | 12.90     | Vertical | Pass    |
| 1648.92         | -26.82       | 8.86        | -13.0    | 13.82       | 358.30    | Vertical | Pass    |
| 2470.88         | -26.42       | 13.05       | -13.0    | 13.42       | 263.20    | Vertical | Pass    |
| 3294.51         | -39.55       | 21.40       | -13.0    | 26.55       | 208.00    | Vertical | Pass    |
| 4118.14         | -37.33       | 24.21       | -13.0    | 24.33       | 25.90     | Vertical | Pass    |
| 5765.39         | -32.98       | 27.95       | -13.0    | 19.98       | 17.00     | Vertical | Pass    |



#### GSM 85 MHz CHANNEL 128, ANT H



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT        | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|------------|---------|
|                 |              |             | (dBm)    |             |           |            |         |
| 819.23          | -43.00       | 5.16        | -13.0    | 30.00       | 31.90     | Horizontal | Pass    |
| 1648.92         | -23.48       | 8.86        | -13.0    | 10.48       | 296.30    | Horizontal | Pass    |
| 2470.88         | -26.14       | 13.05       | -13.0    | 13.14       | 296.30    | Horizontal | Pass    |
| 3294.51         | -34.83       | 21.40       | -13.0    | 21.83       | 315.30    | Horizontal | Pass    |
| 4118.14         | -34.11       | 24.21       | -13.0    | 21.11       | 17.30     | Horizontal | Pass    |
| 5765.39         | -35.31       | 27.95       | -13.0    | 22.31       | 87.40     | Horizontal | Pass    |



# GSM 850 MHz CHANNEL 190, ANT V



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT      | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|----------|---------|
|                 |              |             | (dBm)    |             |           |          |         |
| 853.13          | -44.29       | 5.71        | -13.0    | 31.29       | 310.80    | Vertical | Pass    |
| 1672.21         | -36.25       | 8.78        | -13.0    | 23.25       | -0.30     | Vertical | Pass    |
| 2507.49         | -30.68       | 13.34       | -13.0    | 17.68       | 49.10     | Vertical | Pass    |
| 3344.43         | -39.74       | 21.48       | -13.0    | 26.74       | 220.40    | Vertical | Pass    |
| 5016.64         | -36.58       | 27.52       | -13.0    | 23.58       | 312.30    | Vertical | Pass    |
| 5850.25         | -33.50       | 28.09       | -13.0    | 20.50       | 62.80     | Vertical | Pass    |



#### GSM 850 MHz CHANNEL 190. ANT H



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT        | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|------------|---------|
|                 |              |             | (dBm)    |             |           |            |         |
| 851.51          | -45.51       | 5.68        | -13.0    | 32.51       | 305.80    | Horizontal | Pass    |
| 1672.21         | -29.79       | 8.78        | -13.0    | 16.79       | 316.60    | Horizontal | Pass    |
| 2507.49         | -28.64       | 13.34       | -13.0    | 15.64       | 306.60    | Horizontal | Pass    |
| 3344.43         | -35.34       | 21.48       | -13.0    | 22.34       | 308.90    | Horizontal | Pass    |
| 5016.64         | -37.84       | 27.52       | -13.0    | 24.84       | 269.60    | Horizontal | Pass    |
| 9201.33         | -27.17       | 35.65       | -13.0    | 14.17       | 125.70    | Horizontal | Pass    |



#### GSM 850 MHz CHANNEL 251. ANT V



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT      | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|----------|---------|
|                 |              |             | (dBm)    |             |           |          |         |
| 846.67          | -31.14       | 5.60        | -13.0    | 18.14       | 32.00     | Vertical | Pass    |
| 1695.51         | -27.25       | 8.81        | -13.0    | 14.25       | 284.20    | Vertical | Pass    |
| 2544.09         | -34.23       | 13.41       | -13.0    | 21.23       | 49.70     | Vertical | Pass    |
| 5091.51         | -38.77       | 28.29       | -13.0    | 25.77       | 285.60    | Vertical | Pass    |
| 5935.11         | -36.55       | 28.42       | -13.0    | 23.55       | 303.40    | Vertical | Pass    |
| 7397.67         | -32.51       | 33.94       | -13.0    | 19.51       | 15.90     | Vertical | Pass    |



#### GSM 850 MHz CHANNEL 251. ANT H



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT        | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|------------|---------|
|                 |              |             | (dBm)    |             |           |            |         |
| 846.67          | -32.56       | 5.60        | -13.0    | 19.56       | 244.10    | Horizontal | Pass    |
| 1695.51         | -28.64       | 8.81        | -13.0    | 15.64       | 307.10    | Horizontal | Pass    |
| 2544.09         | -34.04       | 13.41       | -13.0    | 21.04       | 302.30    | Horizontal | Pass    |
| 3394.34         | -41.19       | 21.49       | -13.0    | 28.19       | 314.20    | Horizontal | Pass    |
| 5086.52         | -38.19       | 28.24       | -13.0    | 25.19       | 261.80    | Horizontal | Pass    |
| 5935.11         | -38.02       | 28.42       | -13.0    | 25.02       | 248.90    | Horizontal | Pass    |



### GSM 1900 MHz CHANNEL 512, ANT V



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT      | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|----------|---------|
|                 |              |             | (dBm)    |             |           |          |         |
| 1838.60         | -38.11       | 10.56       | -16.0    | 22.11       | 321.10    | Vertical | Pass    |
| 3697.59         | -33.25       | 23.12       | -16.0    | 17.25       | 340.70    | Vertical | Pass    |
| 5547.00         | -35.81       | 27.79       | -16.0    | 19.81       | 235.40    | Vertical | Pass    |
| 9245.84         | -30.10       | 35.72       | -16.0    | 14.10       | 7.30      | Vertical | Pass    |
| 11095.26        | -21.65       | 37.60       | -16.0    | 5.65        | 313.20    | Vertical | Pass    |
| 18090.27        | -26.60       | 40.76       | -16.0    | 10.60       | 344.70    | Vertical | Pass    |



### GSM 1900 MHz CHANNEL 512, ANT H



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT        | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|------------|---------|
|                 |              |             | (dBm)    |             |           |            |         |
| 1835.27         | -37.97       | 10.27       | -16.0    | 21.97       | 356.10    | Horizontal | Pass    |
| 3697.59         | -30.76       | 23.12       | -16.0    | 14.76       | 14.80     | Horizontal | Pass    |
| 5547.00         | -36.99       | 27.79       | -16.0    | 20.99       | 146.70    | Horizontal | Pass    |
| 9245.84         | -27.72       | 35.72       | -16.0    | 11.72       | 119.30    | Horizontal | Pass    |
| 11095.26        | -27.28       | 37.60       | -16.0    | 11.28       | 23.70     | Horizontal | Pass    |
| 18131.03        | -27.73       | 40.60       | -16.0    | 11.73       | 360.70    | Horizontal | Pass    |



### GSM 1900 MHz CHANNEL 661, ANT V



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT      | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|----------|---------|
|                 |              |             | (dBm)    |             |           |          |         |
| 75.19           | -51.33       | -6.94       | -16.0    | 35.33       | 81.00     | Vertical | Pass    |
| 1878.54         | -29.29       | 11.47       | -16.0    | 13.29       | 300.80    | Vertical | Pass    |
| 3762.48         | -31.73       | 23.30       | -16.0    | 15.73       | 347.60    | Vertical | Pass    |
| 5628.12         | -35.64       | 27.79       | -16.0    | 19.64       | 4.80      | Vertical | Pass    |
| 9391.85         | -27.16       | 35.91       | -16.0    | 11.16       | 360.00    | Vertical | Pass    |
| 18049.50        | -26.77       | 40.92       | -16.0    | 10.77       | 315.60    | Vertical | Pass    |



### GSM 1900 MHz CHANNEL 661, ANT H



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT        | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|------------|---------|
|                 |              |             | (dBm)    |             |           |            |         |
| 1878.54         | -26.99       | 11.47       | -16.0    | 10.99       | 281.90    | Horizontal | Pass    |
| 3762.48         | -34.83       | 23.30       | -16.0    | 18.83       | 37.30     | Horizontal | Pass    |
| 5628.12         | -36.38       | 27.79       | -16.0    | 20.38       | 14.80     | Horizontal | Pass    |
| 9391.85         | -28.37       | 35.91       | -16.0    | 12.37       | 319.70    | Horizontal | Pass    |
| 13728.37        | -34.60       | 29.88       | -16.0    | 18.60       | 283.00    | Horizontal | Pass    |
| 18212.56        | -27.14       | 40.27       | -16.0    | 11.14       | 358.60    | Horizontal | Pass    |



### GSM 1900 MHz CHANNEL 810 , ANT V



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT      | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|----------|---------|
|                 |              |             | (dBm)    |             |           |          |         |
| 1915.14         | -20.17       | 12.17       | -16.0    | 4.17        | 277.10    | Vertical | Pass    |
| 3811.15         | -38.46       | 23.49       | -16.0    | 22.46       | 28.50     | Vertical | Pass    |
| 5725.46         | -36.56       | 28.14       | -16.0    | 20.56       | 1.30      | Vertical | Pass    |
| 9537.85         | -27.26       | 36.78       | -16.0    | 11.26       | 170.10    | Vertical | Pass    |
| 14237.94        | -34.55       | 30.70       | -16.0    | 18.55       | 355.00    | Vertical | Pass    |
| 18131.03        | -27.62       | 40.60       | -16.0    | 11.62       | 352.40    | Vertical | Pass    |



### GSM 1900 MHz CHANNEL 810 . ANT H



| Frequency (MHz) | Result (dBm) | Factor (dB) | PK Limit | Margin (dB) | Table (o) | ANT        | Verdict |
|-----------------|--------------|-------------|----------|-------------|-----------|------------|---------|
|                 |              |             | (dBm)    |             |           |            |         |
| 1908.49         | -21.01       | 12.02       | -16.0    | 5.01        | 286.70    | Horizontal | Pass    |
| 3811.15         | -38.41       | 23.49       | -16.0    | 22.41       | 157.20    | Horizontal | Pass    |
| 5725.46         | -34.42       | 28.14       | -16.0    | 18.42       | 298.90    | Horizontal | Pass    |
| 9537.85         | -29.58       | 36.78       | -16.0    | 13.58       | 312.60    | Horizontal | Pass    |
| 12052.41        | -32.11       | 34.76       | -16.0    | 16.11       | 216.60    | Horizontal | Pass    |
| 18090.27        | -26.93       | 40.76       | -16.0    | 10.93       | 360.70    | Horizontal | Pass    |



# ANNEX B TEST SETUP PHOTOS

### **B.1. Conducted Test Photo**





# B.2. Radiated Test Photo





## ANNEX C TEST SETUP PHOTOS

## C.1 Appearance of the EUT



THE FRONT OF EUT



THE BACK OF EUT





THE LEFT OF EUT



THE RIGHT OF EUT





THE UP OF EUT



THE DOWN OF EUT





CHARGER



**USB CABLE** 



### C.2 Inside of the EUT



**EUT UNCOVER VIEW 1** 



**EUT UNCOVER VIEW 2** 





**BATTERY** 



MAIN BOARD TOP VIEW 1





MAIN BOARD BACK VIEW 1



MAIN BOARD TOP VIEW 2





MAIN BOARD BACK VIEW 2

--END OF REPORT--