TPC-H ANALTYCS' SCENARIOS AND PERFORMANCES ON HADOOP DATA CLOUDS

RIM MOUSSA rim.moussa@esti.rnu.tn LATICE –UNIV. OF TUNIS TUNISIA

4th International. Conference on Networked Digital Technologies NDT'2012, Dubai, UAE.

OUTLINE

- 1. Business Intelligence
- 2. Motivation
 - data managment issues, NoSQL, clouds
 - OLAP in the cloud
- 3. Implementation of OLAP in the cloud
 - TPC-H Benchmark
 - Analytics Scenarios
 - Performance Measurements
- 4. Related Work
- 5. Conclusion
- 6. Future Work

BUSINESS INTELLIGENCE

BI Motivation TPC-H & COLAP Performance Conclusion Future work

- Business intelligence aims to support better business decision-making.
- Common functions of business intelligence technologies are
 - On-Line Analytical Processing,
 - data mining, process mining,
 - Business performance management
 - Text mining and predictive analytics, ...
- Market share
 - □ Gartner Research Reports BI Market Revenue Hit **\$12.2 Billion** in 2011

MOTIVATION

BI Motivation |—Issues |— NoSQL |—Cloud |—COLAP

Decision Support Systems

- Incessant Data & complex workload
- Complex DB schema

Scalability Issues

- Ideally, Linear Speed up & Linear Scale up
- DBMS do not scale linearly
- OLAP Technologies do not scale

Hardware

- I/O Bottleneck → I/O-bound data storage systems
- Gilder law: Thrice bandwidth every 3 years
- Moore Law: Twice computing and storage capacities every 18 months.
 Obsolete by 2017
- Vertical scaling cost >> Horizontal scaling cost

NoSQL

BI
Motivation
|—Issues
|— NoSQL
|—Cloud
|—COLAP

- Big Challenges related to velocity
 - How fast huge volumes of data can be processed?
- NoSQL solutions
 - Adopted by Google, Facebook, Amazon, ...
 - Dynamic horizontal scale-up
 - Nodes are added without bringing the cluster down
 - Shared-nothing architecture
 - Independent computing& storage nodes interconnected via a high speed network
 - Distributed programming framework: MapReduce (Google)

CLOUD COMPUTING

BI
Motivation
|—Issues
|— NoSQL
|—Cloud
|—COLAP

- Cloud computing is a style of computing where scalable and elastic ITenabled capabilities are provided "as a service" to external customers using Internet technologies.
 - Broad network access
 - Resource pooling (virtualization)
 - Self-provisioning
 - Rapid elasticity
 - Measured service

Market share

- Forrester Research expects the global cloud computing market to reach \$241
 billion in 2020. In particular, SaaS market growing to \$92.8 billion by 2016.
- Gartner group expects the cloud computing market will reach \$US150.1 billion, with a compound annual rate of 26.5%, in 2013.

OLAP IN THE CLOUD

BI Motivation |—Issues |— NoSQL |—Cloud |—COLAP

- OLAP constraints
 - Big data analytics' obstacles
 - Current systems & technologies do not scale
- Key benefits of Cloud Computing
 - Performance
 - Much faster data analysis,
 - Dynamic and up-to-date hardware infrastructure,
 - More Economical
 - Organizations no longer need to expend capital upfront for hardware and software purchases
 - Services are provided on a pay-per-use basis,

TPC-H

DECISION-SUPPORT SYSTEM BENCHMARK

BI Motivation TPC-H COLAP Performance Conclusion

DATA

- Complex DB schema
- Scale factor 1, 10, ..., 100,000 correspond respectively to 1GB, 10 GB, ..., 100 TB
- 8 data files {lineitem, customer..., region}.tbl
- broad industry-wide relevance

WORKLOAD

- 22 real world business questions
- High degree of complexity
 - Star queries (complex joins)
 - Grouping
 - Nested queries

TPC-H BENCHMARK

BI
Motivation
TPC-H
|— E/R schema
COLAP
Performance

HADOOP/PIG LATIN

TPC-H
COLAP
|— hadoop/pig
|— translation
Performance
Conclusion

APACHE HADOOP

- Framework for running applications on large clusters of commodity hardware.
- Implements computational framework MapReduce
- HDFS: (hadoop distributed file system) stores data on the compute nodes
- Replication & job resoumissions for failures' handling

APACHE PIG LATIN

• high-level language for expressing data analysis programs (filter, projection, join, group, sort, union, ...)

PIG LATIN BENCHMARK 5 TRANSLATION HINTS

TPC-H
COLAP
|— hadoop/pig
|— translation
|—nominal
scenario

- Load Data for Immediate Processing
 - Better memory management
- 2. Minimum Relation Scan
 - Conjunction/disjunction of predicates applied once
- 3. Unary operations prior to binary operations
 - Unary operations (projection, restriction,) reduce data volume

PIG LATIN BENCHMARK 5 TRANSLATION HINTS -CTND

TPC-H
COLAP
|— hadoop/pig
|— translation
|—nominal
scenario

- 4. Intra-operation parallelism
 - partitioned join
- 5. Join Algorithm
 - Algorithm
 - hash join,
 - merge join,
 - Star-queries: joins ordering

Nominal Analytical Scenario

TPC-H
COLAP
|— hadoop/pig
|— translation
|—nominal
scenario

Nominal Analytical Scenario

TPC-H
COLAP
|— hadoop/pig
|— translation
|—nominal
scenario

High Cost

 Measured Service, pay as you consume cloud ressources (bandwitdh, CPU, RAM)

Performance Issues

• The same query (with same or different parameters) is executed several times with no optimization

Due to high demand the service you have requested is currently not available.

Please try again later.

Discontinuity of Service

Network failure/congestion

COMPLEX!!

TPC-H
COLAP
|— hadoop/pig
|— translation
|—nominal
scenario

How to reduce service cost?

How to improve performances?

How to prevent discontinuity of service?

- Materialized views?
 - Aggregated data replication
- OLAP or not?

Workload Study for Tuning

Cost Management

- Exploit organization hardware resources
- Cloud Right size?

TPC-H WORKLOAD NUMERICAL STUDY TYPE A

TPC-H Cube4 *Order Priority Checking*

	Order Priority					
Order Date	-All Order Prioritys	1-URGENT	2-HIGH	3-MEDIUM	4-NOT SPECIFIED	5-LOW
-1993	2 125	389	417	440	436	443
1	500	110	92	101	94	103
2	527	84	117	112	107	107
3	535	93	103	109	102	128
4	563	102	105	118	133	105
*1994	2 126	438	439	420	412	417
*1995	2 022	409	449	396	387	381
*1996	2 103	430	428	412	395	438
*1997	2 090	442	387	395	467	399

|order date dim| × |order priority dim| × |count orders measure|

OLAP!

always 135

+export to olap server

+MV

TPC-H WORKLOAD NUMERICAL STUDY TYPE B

TPC-H Cube 18

Large Volume Orders

		Mesures		
Customer Orders	Order Total Price	Order Date	Sum Line QTY	Fact Count
6882	422359.65	1997-04-09	303	7
29158	439687.23	1995-10-21	305	7

$$|order \dim| \times |sum \ line \ qty \ measure|$$

 $SF \times 1,500,000$

almost 3.8 ppm of orders have $\sum line\ qty > 300$, for SF = 1

Not OLAP! +MV

Cloud

Analytics

TPC-H WORKLOAD NUMERICAL STUDY TYPE C

TPC-H Cube 2

Minimum Cost Supplier

Supplier	Supp Acct Bal	Supp Phone	Supp Address	
+AFRICA		Part Part M	1500 1	Mesures
+AMERICA		Part Part M	IFGR Part Size Part Type	Min Supply Cost
↓ASTA		All Parts		
+EUROPE		1 Man	ufacturer#1 7 PROMO BURNISHED	16,82
-MIDDLE EAST		2 Manu	facturer#1 1 LARGE BRUSHED BRA	
+EGYPT		3 Manufa	acturer#4 21 STANDARD POLISHED	
+IRAN		4 Manufac	turer#3 14 SMALL PLATED BRASS	
-IRAQ			2.1.20 010/33	113,97
Supplier#000000005	-283.84	21-151-690-3663	. slyly regular pintō bea	Gcdm2rJRzl5qlTVzc

 $|\text{supplier dim}| \times |\text{part dim}| \times |\text{min supply cost } measure|$

OLAP!

MV storage cost

$$SF^2 \times 2,000,000,000$$

best supplier in each region for each part!

TPC-H WORKLOAD NUMERICAL STUDY

Туре	Features	TPC-H Business Questions (OLAP Cube)
A	 Medium dimensionality Result is TPC-H Scale Factor independent 	Q1, Q3, Q4, Q5, Q6, Q7, Q8, Q12, Q13, Q14, Q16, Q19, Q22 13 business questions
В	High dimensionalityfew results, lots of empty cells	Q15, Q18 2 business questions
С	High dimensionalityResult % of Scale Factor	Q2, Q9, Q10, Q11, Q17, Q20, Q21 7 business questions

CLOUD COST MANAGEMENT

- Measured Service
 - pay as you go
 - CPU + Memory + Bandwidth
- "When users understand the relationship between cost and consumption, everybody wins" —Ron Miller
- Emerging need to understand, manage and proactively control costs across the cloud
 - Resource Utilization Monitoring
 - Right size w.r.t. both performances & cost (client and provider)
 - Green cloud through energy saving

BETTER SCENARIO

COLAP
|— ...
|—better scenario
Performance
Related work
Conclusion

Pig Latin Script (Generalized Business Question)

Interaction

Import Data into an on-site OLAP server

Pre-aggregated Data ↓

MIDDLE	EAST	IRAN	1993	25573	5.04959999997
MIDDLE	EAST	IRAN	1992	20381	7.70789999998
MIDDLE	EAST	EGYPT	1998	38701	2.1518
MIDDLE	EAST	EGYPT	1997	77986	5.8600999999
MIDDLE	EAST	EGYPT	1996	64378	2.6547000001
MIDDLE	EAST	EGYPT	1995	88141	9.7011
MIDDLE	EAST	EGYPT	1994	13394	54.0117
MIDDLE	EAST	EGYPT	1993	80357	3.9572000001
MIDDLE	EAST	EGYPT	1992	70554	1.2589
EUROPE	UNITE	D KING	GDOM	1998	205051.5488
EUROPE	UNITE	D KING	GDOM	1997	413469.2654000
EUROPE	UNITE	D KING	GDOM	1996	291845.8779
EUROPE	UNITE	D KING	GDOM	1995	647750.816
EUROPE	UNITE	D KING	GDOM	1994	512853.7625
EUROPE	UNITE	D KING	GDOM	1993	146581.1697999
EUROPE	UNITE	D KIN	GDOM	1992	305019.6303
EUROPE	RUSSI.	A	1998	96106	.0025
EUROPE	RUSSI	A	1997	37088	2.6169

Performance Measurements

TPC-H
COLAP
Performance
Related work
Conclusion
Future work

35K

French GRID platform: a large scale nation wide infrastructure for Grid research.

- Bordeaux Site
 - Borderel: 24GB RAM, 4 AMD CPUs, 2.27 GHz, and 4cores/CPU.
 - Borderline: :
 32GB RAM, 4
 Intel Xeon CPUs,
 2.6 GHz, and 2
 cores/CPU.
 - Ethernet 10Gbps

IPC-H

- TPC-H Benchmark
- SF=1
 - 1.1GB source files
 - 4.5GB single big file
- SF=10
 - 11GB source files
 - 45GB single big file

Pig/HDFS

- Apache Hadoop 0.20
 - N=3, 5 or 8
 - one Hadoop
 Master
 - (2, 4 or 7) Workers
- Apache Pig 0.8.1

Performance Measurements

TPC-H COLAP Performance Related work Conclusion Future work

Original TPC-H 11GB

Original 1.1 vs 11GB

Big File

Big File 4.5GB

Big File 45GB

 Except business questions which do not perform join operations: No improvement when cluster size doubles

Performance Measurements

Performance Measurements

TPC-H COLAP Performance Related work Conclusion Future work

Original TPC-H 1GB

Original TPC-H 11GB

Original 1.1 vs 11GB

Big File

Big File 4.5GB

Big File 45GB

Elapsed times for SF=10 (11GB) are

- At maximum 5 times elapsed times obtained for SF=1 (1.1GB)
- In average twice elapsed times obtained for SF=1 (1.1GB)

Analytics

Performance Measurements

TPC-H COLAP Performance Related work Conclusion Future work

Original TPC-H 1GB

Original TPC-H 11GB

Original 1.1 vs 11GB

Big File

Big File 4.5GB

Big File 45GB

Joining partitionned files is complex!

Combine all files into one file

$$SF=1 \rightarrow 4.5GB$$

- Evaluation of Pig/MR without joins
- Denormalization
 - saves join cost
 - increases required storage space (≈ ×4 for TPC-H)

Performance Measurements

Performance Measurements

Performance Measurements

TPC-H COLAP Performance Related work Conclusion Future work

Big File

Big File 4.5GB

Big File 45GB

OLAP

OLAP 4.5GB

OLAP 45GB

Aggregated data

- TPC-H business questions type A (SF independent & small resultset)
- TPC-H business questions type B (very very small resultset)
- 15 business questions from 22

Tradeoff between space & computation

- TPC-H business questions type C
- Add derived fields
 - Q2: check (true) minimum supplycost by supplier for a part in PartSupp
 - Q17: average_line_quantity field for each part
 - Q20: sum_lines_quantities_per_year for each supplier
 - Q21: number of waiting orders for each supplier
- 7 business questions from 22

Performance Measurements

Analytics

Performance Measurements

RELATED WORK

- Implementation of relational operations using MR framework
 - □ Kim et al. –MRBench, 2008
 - Nominal analytics scenario
 - \square TPC-H benchmarking for SF=1,3
- Translation from SQL to Pig Latin
 - □ lu et al. —Hadoop to SQL, 2010
 - □ Lee et al. -Ysmart, 2011
- Other pig latin use cases
 - Shatzle et al, RDF data, 2011
 - Loebman etal. Astrophysical data, 2009

CONCLUSION

- □ TPC-H in-depth numerical study
- OLAP in the cloud
 - Scenarios
 - Implementation
 - Pig / Hadoop Distributed File System
 - Performances
 - □ Various cluster sizes
 - Various data volumes
 - Various schemas (with and without joins)

Analytics

FUTURE WORK AQP

- Approximate Query Processing in clouds
 - Most Distributed File Systems implement replication for high availability
 - MDS erasure codes outperform replication from two perspectives (i) storage cost and (ii) minimal operation cost of redundant data management
 - New Hadoop release
 - Facebook
 - Generalized framework for approximate data analytics in the cloud coping with nodes' failure

FUTURE WORK PIG LATIN++

- Most of TPC-H business questions scripts are composed of jobs, which execute sequentially,
 - → some branches of the DAG are unnecessarily blocked!
 - namely Q1, Q3, Q4, Q9, Q10, Q11, Q12, Q13,Q14, Q16, Q17 and Q18
- Pig Latin Enhancements
 - Investigate intra-operation Parallelism for better performances of Pig Scripts
 - Investigate better job definitions strategies, in order to increase inter-job parallelism

FUTURE WORK PIG LATIN++>> Q16 EXPLE

TPC-H COLAP Performance Related work Conclusion Future work

Q16's DAG

TPC-H Analtycs Scenarios and Performances on Hadoop Data Clouds

THANK YOU FOR YOUR ATTENTION

Q & A

24th, Apr. 2012

4th International. Conference on Networked Digital Technologies

NDT'12.Dubai. UAE