신용카드 사기 거래 탐지 Al 경진 대회 PBL 기획서

기간: 23/01/16 ~ 23/02/24

목차

1

2

3

PBL **주제**

Stage 별 기획

팀 멤버 및 역할

1. PBL 주제

주제 (Mission): Anomaly Detection에서 머신러닝 엔지니어링 기법 정확히 이해하기

부제 (Vision): PBL만 열심히 하면 다른 곳에서도 좋은 성적을 낼 수 있다 깊게 이해하기 깊게 이해하기 퀴즈 풀기 전반적인 내용 이해 세부적인 내용 이해 (Strategy 3) (Strategy 1) (Strategy 2) 이해한 내용 확인하기 이해한 내용 확인하기

Anomaly Detection

세부적인 내용 이해 (Strategy 2)

퀴즈 풀기 (Strategy 3)

Example Quiz

1. 해당 데이터로 Box Plot를 그려보았습니다. 다수의 이상치가 보입니다. 해당 데이터의 평균값, 중앙값, 표준편차를 구해보시오. 그리고 다음의 어떤 Scaling 기법을 적용하면 좋을 지 생각해보시오.

Hint: 이상치는 정규화 과정에서 평균값과 표준편차의 값에 큰 영향을 줍니다

2. **사기거래 식별 문제를 머신러닝으로 해결하고자 합니다. 머신러닝의 성능 지표로 '** Accuracy'**와** 'F1 Score' **중 어떤 것을 선택하면 좋을 지 생각해보시오**.

Hint: 사기거래가 발생할 가능성은 극히 적습니다.

3. Train Score와 Val Score의 차이가 커 보입니다. 이들 간의 격차를 줄이기 위해서는 Random Forest의 무슨 Hyper Parameter를 어떻게 설정하면 좋을 지 생각해보시오?

Hint: 'max_depth'는 뿌리의 깊이, 'min_samples_leaf'는 마지막 뿌리가 되기 위한 최소한 데이터 수, 'min_samples_split'는 가지를 나누기 위한 최소한의 데이터 수와 관련이 있습니다.'

2. Stage 별 기획

문제 기반 실무 학습의 이해

학습 목표

- 데이터 사이언티스트의 역할과 역량을 이해한다
- 머신러닝 엔지니어링은 무엇이고 프로세스는 어떤 지 이해한다
- AI & ML & DL가 무엇이고 차이점을 이해한다
- 지도 학습과 비지도 학습을 이해한다
- 빅데이터가 무엇인지 이해한다
- 데이터의 종류를 구분하고 이해한다
- Anomaly Detection이 무엇인지 이해한다

참여 실습

- 파이썬 라이브러리가 무엇이고 불러올 수 있다
- CSV 파일을 Data Frame으로 불러온다
- 데이터의 Row와 Column을 이해하고 개수를 셀 수 있다
- 데이터의 통계값을 확인할 수 있다
- 퀴즈 : 각각 Column의 Type을 확인할 수 있다

데이터 사이언티스트가 되기 위해 무엇이 중요한지 이해한다

문제 기반 실무 학습의 기초

학습 목표

- 데이터 전처리가 왜 필요한 지 이해한다
- 결측치가 무엇이고 어떻게 처리하는 지 이해한다
- 파생변수, 스케이링, 클러스터링, 차원 축소 등 다양한 기법을 이해한다
- 언더 샘플링과 오버 샘플링을 이해한다
- 변수 선택법을 이해한다

참여 실습

- IQR을 기준으로 이상치를 이해한다
- 파생변수를 생성해본다
- 스케이링을 적용한다
- 클러스터링을 적용한다
- 테이블 핸들링을 통한 변수 선택을 해본다
- 퀴즈 : 여러 조건에 부합하는 데이터만 추출해본다

데이터를 내가 원하는 데로 자유롭게 핸들링 할 수 있다

문제 및 모델링의 이해

학습 목표

- 지도 학습과 비지도 학습의 문제 접근 방식을 이해한다
- 다양한 머신러닝 기법을 이해한다
- 딥러닝은 무엇인지 이해한다
- 각 모델의 하이퍼 파라미터를 이해한다
- 성능을 높일 수 있는 기법들을 이해한다 (앙상블, 교차검증)
- 손실 함수를 이해한다 (혼동 행렬)
- 과소 적합과 과대 적합을 이해한다

참여 실습

- 데이터를 학습 데이터와 검증 데이터로 분할한다
- 머신러닝을 수행해본다 (트리 기반 머신러닝)
- 머신러닝을 하이퍼 파라미터를 변경해본다
- 혼동 행렬 지표를 구해본다
- 성능 지표를 비교 및 확인한다
- 과소 적합과 과대 적합 문제를 겪어본다
- 퀴즈 : 성능 개선 방안을 찾아본다

모델의 작동 방식을 이해하고 성능 향상시키는 방법을 이해한다

기초 EDA 및 모델링의 활용

학습 목표

- 데이터 타입별로 어떤 그래프를 그릴 수 있는 지 이해한다
- 각각의 그래프가 줄 수 있는 의미를 이해한다
- 그래프를 통해 데이터의 분포와 통계값을 추측해본다
- 성능 지표를 그래프로 표현한다

참여 실습

- 데이터 타입에 맞는 그래프를 그릴 수 있다
- 그래프를 자기가 원하는데로 수정할 수 있다 (X&Y축, 크기 등등)
- 그래프를 'PNG' 파일로 저장할 수 있다
- 하나의 창에 여러 그래프를 동시에 나타낼 수 있다
- Target의 분포를 확인할 수 있다
- 데이터가 불균형 상태인지 확인할 수 있다
- 퀴즈 : 시각화를 통해 데이터 분포를 확인하고 그에 맞는 전처리 기법을 선택한다

시각화를 자유롭게 다루어 Insight를 찾을 수 있는 방안을 모색할 수 있다

데이터 가공 및 EDA 기반 Insight 시각화의 이해와 활용

학습 목표

- 전처리로 인한 데이터 변화를 시각화로 확인한다
- 히스토그램과 박스 플랏으로 데이터 분포와 이상치 여부를 확인한다
- 산점도를 통해 상관관계를 확인한다
- 전처리를 통해 데이터 분포가 어떻게 변화하였는 지 시각화로 확인한다

참여 실습

- 박스 플랏을 통해 이상치를 확인하고 처리할 수 있다
- 산점도를 통해 파생변수를 생성할 수 있다
- 전처리된 데이터를 시각화해보고 모델의 비교한다
- 퀴즈 : 모델링 수정에 따른 성능 지표 결과 전 후를 시각화로 비교한다

Insight를 통해 모델링을 수정하여 성능을 향상시킬 수 있다

고급 데이터 사이언스 기법의 이해와 활용 Insight 도출 및 증명의 이해와 활용

학습 목표

- 상위권 코드를 이해하고 구현할 수 있다
- 가설 검증에 대해 이해한다
- 시각화를 바탕으로 한 가설을 검증할 수 있다
- A/B 테스트를 수행할 수 있다
- 학습한 내용을 바탕으로 사기거래 식별 모델링 성능을 올려본다

참여 실습

- 상위권에서 사용한 기법 중 사용할 수 있는 것을 구현해본다
- 가설을 설정하고 검증해본다
- 모델링을 수행하고 문제점을 진단하고 개선방안을 찾는다
- 퀴즈 : 최종 결과물에 대해 논리적으로 설명해본다

수행한 머신러닝 엔지니어링에 대해서 논리적으로 설명할 수 있다 '무엇'을 '어떻게'하여 '왜' 수행하였는지

3. 팀멤버 및 역할

권남우

- 팀장
- PBL **총괄**
- PDF 제작
- 코드 작성 (IPYNB)
- 으쌰으쌰 다같이 공부

빵일이삼

- 팀원
- 자료 조사
- 코드 작성 (IPYNB)
- 으쌰으쌰 다같이 공부

감사합니다