Ox and Oy are bisector to 2 adjacent acute angles, \widehat{AOB} and \widehat{BOC} where the difference is 36° and $\widehat{AOC} = 90^{\circ}$. Oz is the bisector of the angle \widehat{xOy} . Determine the angle \widehat{BOz}

Solution

$$\widehat{BOC} - \widehat{AOB} = 36^{\circ}$$

$$\widehat{BOC} + \widehat{AOB} = 90^{\circ}$$

$$2\widehat{BOC} = 126^{\circ}$$

$$\widehat{BOC} = 63^{\circ}$$

$$\widehat{AOB} = 27^{\circ}$$

$$\widehat{xOB} = \frac{1}{2} \widehat{AOB}$$
$$= \frac{27}{2}^{\circ}$$

$$\widehat{BOy} = \frac{63}{2}^{\circ}$$

$$\widehat{xOy} = \widehat{xOB} + \widehat{BOy}$$

$$= \frac{1}{2} (63^{\circ} + 27^{\circ})$$

= 45°

$$\widehat{xOz} = \frac{45}{2}^{\circ}$$

$$\widehat{BOZ} = \widehat{xOz} - \widehat{xOB}$$

$$= \frac{1}{2} (45^{\circ} - 27^{\circ})$$

$$= 9^{\circ}$$

Ox and Oy are bisector to 2 adjacent acute angles, \widehat{AOB} and \widehat{BOC} where the difference is 36° . Oz is the bisector of the angle \widehat{xOy} . Determine the angle \widehat{BOz}

Solution

- Ox is the bisector \widehat{AOB} (1)
- OB is the bisector \widehat{AOD} (2)
- *OM* is the bisector \widehat{AOC} (3)
- Oz is the bisector \widehat{xOy} (4)
- Oy is the bisector \widehat{BOC} (5)

$$\widehat{BOC} - \widehat{AOB} = 36^{\circ}$$

$$\widehat{BOC} - \widehat{BOD} = 36^{\circ}$$

$$\widehat{DOC} = 36^{\circ}$$

(3)
$$\rightarrow \widehat{AOM} = \frac{1}{2}\widehat{AOC}$$

$$= \frac{1}{2} \left(2\widehat{AOB} + \widehat{DOC} \right)$$

$$= \frac{1}{2} \left(2\widehat{AOB} + 36^{\circ} \right)$$

$$= \widehat{AOB} + 18^{\circ}$$

$$\widehat{BOM} = \widehat{AOM} - \widehat{AOB}$$

$$= \widehat{AOB} + 18^{\circ} - \widehat{AOB}$$

$$= 18^{\circ}$$

$$(1) \rightarrow \widehat{BOx} = \frac{1}{2} \widehat{AOB}$$

$$(4) \rightarrow \widehat{BOy} = \frac{1}{2}\widehat{BOC}$$

$$(1)+(4) \rightarrow \widehat{xOy} = \frac{1}{2}\widehat{AOC}$$

$$(3) \rightarrow \widehat{AOM} = \frac{1}{2} \widehat{AOC} = \widehat{xOy}$$

$$\widehat{BOz} = \widehat{xOz} - \widehat{xOB}$$

$$= \frac{1}{2} \left(\widehat{xOy} - \widehat{AOB} \right)$$

$$= \frac{1}{2} \left(\widehat{AOM} - \widehat{AOB} \right)$$

$$= \frac{1}{2} \widehat{BOM}$$

$$= 9^{\circ} \mid$$

Four consecutive half-lines (segments): OA, OB, OC, and OD formed angles such as

$$\widehat{DOA} = \widehat{COB} = 2\widehat{AOB}$$
 and $\widehat{COD} = 3\widehat{AOB}$

Calculate the angles to demonstrate that the bisectors of \widehat{AOB} and \widehat{COD} are in a straight line.

Solution

$$\widehat{AOB} + \widehat{BOC} + \widehat{COD} + \widehat{DOA} = 360^{\circ}$$

$$\widehat{AOB} + 2\widehat{AOB} + 3\widehat{AOB} + 2\widehat{AOB} = 360^{\circ}$$

$$8\widehat{AOB} = 360^{\circ}$$

$$\widehat{AOB} = 45^{\circ}$$

$$\widehat{DOA} = \widehat{COB} = 90^{\circ}$$

$$\widehat{COD} = 135^{\circ}$$

Let:

Ox is the bisector \widehat{AOB}

Oy is the bisector \widehat{COD}

$$\widehat{xOy} = \widehat{xOB} + \widehat{BOC} + \widehat{COy}$$

$$= \frac{1}{2} \widehat{AOB} + 90^{\circ} + \frac{1}{2} \widehat{COD}$$

$$= \frac{1}{2} (45^{\circ} + 135^{\circ}) + 90^{\circ}$$

$$= 180^{\circ}$$

Therefore; the bisectors of \widehat{AOB} and \widehat{COD} are in a straight line

The segments OA and OB formed with OX the angles α and β .

- a) Demonstrate that the bisector OC of the angle \widehat{AOB} made with OX an angle $\frac{\alpha + \beta}{2}$.
- b) Examine the cases where

i.
$$\alpha + \beta = 90^{\circ}$$

ii.
$$\alpha + \beta = 180^{\circ}$$

Solution

Given:

$$\widehat{AOA} = \alpha \quad \& \quad \widehat{XOB} = \beta$$

$$\widehat{AOC} = \frac{1}{2}\widehat{AOB}$$

$$= \frac{\beta - \alpha}{2}$$

a)
$$\widehat{XOC} = \widehat{XOA} + \widehat{AOC}$$

$$= \alpha + \frac{\beta - \alpha}{2}$$

$$= \frac{\alpha + \beta}{2}$$

b) i. If $\alpha + \beta = 90^{\circ}$, then

$$\widehat{XOC} = 45^{\circ}$$

Let: $\widehat{XOD} = 90^{\circ}$ that implies OC is the bisector of \widehat{XOD} Since OC is the bisector of \widehat{AOB} , then

$$\widehat{BOD} = 90^{\circ} - \beta$$

$$= 90^{\circ} - 90^{\circ} + \alpha$$

$$= \alpha$$

ii. If $\alpha + \beta = 180^{\circ}$, then

$$\widehat{XOC} = 90^{\circ}$$

Let: $\widehat{XOD} = 180^{\circ}$ that implies OC is the bisector of \widehat{XOD} Since OC is the bisector of \widehat{AOB} , then

$$\widehat{BOD} = 180^{\circ} - \beta$$

$$= 180^{\circ} - 180^{\circ} + \alpha$$

$$= \alpha \mid$$

$$\beta = 180^{\circ} - \alpha$$

A point O takes on an infinite right x'Ox be conducted the same side half-lines OA and OB, as well as the bisectors of angles \widehat{xOA} , \widehat{AOB} , and $\widehat{BOx'}$.

Calculate the angles of the figure such that the bisector of the angle \widehat{AOB} is perpendicular to x'Ox and the bisectors of the extreme angles formed an angle of 100° .

Solution

Given:
$$\widehat{zOz'} = 100^{\circ}$$

 $\widehat{xOC} = 90^{\circ}$

$$OC$$
 is the bisector \widehat{AOB}
 $\widehat{AOC} = \widehat{COB}$

$$Oz$$
 is the bisector \widehat{xOA}
 $\widehat{xOz} = \widehat{zOA}$

$$Oz'$$
 is the bisector $\widehat{x'OB}$

$$\widehat{x'Oz'} = \widehat{z'OB}$$

$$\widehat{xOz} = \frac{180^{\circ} - 100^{\circ}}{2}$$

$$\widehat{AOB} = 2\widehat{AOC}$$

$$= 2(90^{\circ} - 2\widehat{xOz})$$

$$= 2(90^{\circ} - 80^{\circ})$$

$$= 20^{\circ}$$

Four consecutive half-lines *OA*, *OB*, *OC*, and *OD* formed four adjacent consecutive angles which are between them like 1, 2, 3, 4.

Calculate the angles and the adjacent consecutive angles formed by their bisectors.

Solution

$$\widehat{AOB} + \widehat{BOC} + \widehat{COD} + \widehat{DOA} = 360^{\circ}$$

$$\widehat{AOB} + 2\widehat{AOB} + 3\widehat{AOB} + 4\widehat{AOB} = 360^{\circ}$$

$$10\widehat{AOB} = 360^{\circ}$$

$$\widehat{AOB} = 36^{\circ}$$

$$\widehat{BOC} = 72^{\circ}$$

$$\widehat{COD} = 108^{\circ}$$

$$\widehat{DOA} = 144^{\circ}$$

$$\widehat{xOy} = \frac{1}{2}\widehat{AOB} + \frac{1}{2}\widehat{BOC}$$

$$= \frac{1}{2}36^{\circ} + \frac{1}{2}72^{\circ}$$

$$= 18^{\circ} + 36^{\circ}$$

$$= 54^{\circ}$$

$$\widehat{yOz} = \frac{1}{2}\widehat{BOC} + \frac{1}{2}\widehat{COD}$$
$$= \frac{1}{2}72^{\circ} + \frac{1}{2}108^{\circ}$$
$$= 36^{\circ} + 54^{\circ}$$
$$= 90^{\circ}$$

$$\widehat{zOw} = \frac{1}{2}\widehat{COD} + \frac{1}{2}\widehat{DOA}$$

$$= \frac{1}{2}108^{\circ} + \frac{1}{2}144^{\circ}$$

$$= 54^{\circ} + 72^{\circ}$$

$$= 126^{\circ}$$

$$\widehat{wOx} = \frac{1}{2}\widehat{DOA} + \frac{1}{2}\widehat{AOB}$$

$$= \frac{1}{2}144^{\circ} + \frac{1}{2}36^{\circ}$$

$$= 72^{\circ} + 18^{\circ}$$

$$= 90^{\circ} \mid$$

A point P is on the base BC of an isosceles triangle ABC. The two points M and N are the middle points of the segments PB and PC, respectively, which lead the perpendicular to the base BC; these perpendiculars meet AB in E, AC in F.

Demonstrate that the angle EPF is equal to A.

Solution

$$\widehat{BAC} = 180^{\circ} - \widehat{ABC} - \widehat{ACB}$$

M is the middle of the segment BP and EM \perp to BP, therefore

$$EB = EP$$
 & $\widehat{EBP} = \widehat{EPB}$

N is the middle of the segment CP and $FN \perp$ to CP, therefore

$$FP = FP$$
 & $\widehat{FPC} = \widehat{FCP}$

$$\widehat{EPF} = 180^{\circ} - \widehat{CPF} - \widehat{BPE}$$

$$= 180^{\circ} - \widehat{PFC} - \widehat{PBE}$$

$$= 180^{\circ} - \widehat{ABC} - \widehat{ACB}$$

$$= \widehat{A} \qquad \sqrt{}$$

Given the triangle ABC and the bisectors BO and CO of the angles of the base, where the point O is the intersection of the 2 bisectors. A line DOE passes through the point O parallel to base BC.

Prove that DE = DB + CE

Solution

CO is the bisector of
$$\widehat{BCE} \Rightarrow \widehat{BCO} = \widehat{OCE}$$

$$OE \parallel BC \implies \widehat{COE} = \widehat{BOC}$$

$$\therefore \widehat{EOC} = \widehat{OCE} \rightarrow \underline{OE} = \underline{EC}$$

Similar; BO is the bisector of $\widehat{DBC} \implies \widehat{DBO} = \widehat{OBC}$

$$DO \parallel BC \implies \widehat{DOB} = \widehat{OBC}$$

$$\therefore \widehat{DOB} = \widehat{OBC} \rightarrow DO = DB$$

$$DE = DO + OE$$
$$= DB + CE \mid$$

A right triangle *ABC* at *A* with a height *AH*. We drop perpendiculars *HE* and *HD* from *H* to sides *AB* and *AC* respectively.

- a) Prove that DE = AH
- b) Prove that AM is perpendicular to DE, where M is the middle point of BC.
- c) Prove that MN (N is the middle point of AB) and the segment Bx (parallel to DE) are intersect on AH.
- d) Prove that AM and HD are intersect on Bx.

Solution

a) The triangles AEH and ADH are right triangles and angle A is right angle.

Then AEHD is a rectangle.

Therefore, DE = AH

b) A middle point of a hypotenuse of a right triangle is the center of the circle of that triangle.

Therefore, MC = MA = MB

That implies to: $\widehat{MAC} = \widehat{MCA}$

From the rectangle *ADHE*: $\widehat{EAH} = \widehat{EDH}$

$$\widehat{EAH} + \widehat{HAM} + \widehat{MAC} = 90^{\circ}$$

$$\widehat{HAM} + \widehat{MAC} = \widehat{HAC}$$

$$\widehat{EAH} + \widehat{HAC} = 90^{\circ}$$

$$\widehat{EAH} + 90^{\circ} - \widehat{MCA} = 90^{\circ}$$

$$\widehat{EAH} = \widehat{MCA} = \widehat{EDH} = \widehat{MAC}$$

$$\widehat{ADE} + \widehat{EDH} = 90^{\circ}$$

$$\widehat{ADE} + \widehat{MAD} = 90^{\circ}$$

Therefore, AM is perpendicular to DE.

c) N is the middle point of $AB \Rightarrow NA = NB$

Bx parallel to $DE \Rightarrow \widehat{ABx} = \widehat{AED} = \widehat{EDH} = \widehat{EAH}$

Let point P the intersection of Bx and AH. Since $\widehat{ABP} = \widehat{BAP}$, then the triangle BPA is an isosceles. PN is the perpendicular to AB as well MN. Which gives us that points M, P, N are on the same line.

Therefore, segment MN and AH intersect at point P.

d) Let Point Q be the intersection of AM and Bx.

$$\widehat{ABQ} = \widehat{BAH}$$
 & $\widehat{BAQ} = \widehat{ABH}$

Then, the triangles BHA and BQA are equivalent, therefore $AQ \perp BQ$ with hypotenuse AB.

9

 $HQ \parallel AB$, line HQ has to be perpendicular to AC.

AM and HD are intersect on Bx at Q.

Given an isosceles triangle ABC with a peak at A. Extend base BC the length CD = AB, then extend AB of a length $BE = \frac{1}{2}BC$, at the end draw a line EHF, H is the middle point of BC and F is located on AD.

- a) Prove that $\widehat{ADB} = \frac{1}{2} \widehat{ABC}$
- b) Prove that EA = HD
- c) Prove that FA = FD = FH
- d) Calculate the value of the angles \widehat{AFH} and \widehat{ADB} where $\widehat{BAC} = 58^{\circ}$.

Solution

a) Triangle ABC is isosceles, then $\widehat{ABC} = \widehat{ACB}$ Since, CD = AB = AC, then $\widehat{CAD} = \widehat{ADC}$

$$2\widehat{ADC} = 180^{\circ} - \widehat{ACD}$$
$$2\widehat{ADC} = 180^{\circ} - \left(180^{\circ} - \widehat{ACB}\right)$$

$$2\widehat{ADC} = \widehat{ACB}$$

$$\widehat{ADB} = \frac{1}{2}\widehat{ACB}$$
$$= \frac{1}{2}\widehat{ABC}$$

b) $BE = \frac{1}{2}BC$ H the middle point of BC

$$CD = AB$$

$$HC + CD = BE + AB$$

$$EA = HD$$
 \checkmark

=HC

c) $\widehat{ADH} = \frac{1}{2} \widehat{ABD}$ $= \frac{1}{2} \left(180^{\circ} - \widehat{HBE} \right)$ $= \frac{1}{2} \left(180^{\circ} - 180^{\circ} + 2\widehat{BHE} \right)$ $= \widehat{BHE}$

$$\Rightarrow FD = FH$$

$$\widehat{AHF} = 90^{\circ} - \widehat{FHD}$$

$$= 90^{\circ} - \widehat{ADH} \qquad (\Delta HDA)$$

$$= 90^{\circ} - (90^{\circ} - \widehat{HAF})$$

$$= \widehat{HAF}$$

$$\Rightarrow FA = FH$$

$$FA = FD = FH \qquad \checkmark$$

$$d) \quad \widehat{BAC} = 58^{\circ}$$

$$\widehat{ADB} = \frac{1}{2} \widehat{ACB}$$

$$= \frac{1}{2} \left(\frac{1}{2} \left(180^{\circ} - \widehat{BAC} \right) \right)$$

$$= \frac{1}{4} \left(180^{\circ} - 58^{\circ} \right)$$

$$= \frac{122}{4}^{\circ}$$

$$= \frac{61}{2}^{\circ} \qquad = 30.5^{\circ}$$

Triangle AFH is isosceles then,

$$\widehat{AFH} = 180^{\circ} - \widehat{HFD}$$

$$= 180^{\circ} - \left(180^{\circ} - 2\widehat{FDH}\right)$$

$$= 2\widehat{FDH}$$

$$= 2\frac{61^{\circ}}{2}$$

$$= 61^{\circ}$$

Demonstrate that the heights of a triangle share the angles of triangle that equal to each other.

Solution

Consider the 2 right triangles *APB* and *ANC*, which they have the same angle *A*.

Therefore, $\widehat{ABP} = \widehat{ACN}$.

Similar, consider the 2 right triangles BPC and AMC, which they have the same angle C.

Therefore, $\widehat{MAC} = \widehat{CBP}$.

Similar, consider the 2 right triangles *BNC* and *AMB*, which they have the same angle *B*.

Therefore, $\widehat{BCN} = \widehat{BAM}$.

A right triangle ABC at A where AB < AC, drop a perpendicular AH from A to the hypotenuse BC where HN = HB. From C drops a perpendicular CM at AN. Demonstrate that BC is the bisector of the angle \widehat{ACM} .

Solution

Consider the 2 right triangles ABC and ABH with a common angle B, then

$$\widehat{BAH} = \widehat{ACB}$$

Given:
$$HN = HB$$
, then $\widehat{HAN} = \widehat{BAH} = \widehat{ACB}$

$$\widehat{NAC} = 90^{\circ} - \widehat{HAB} - \widehat{HAN}$$
$$= 90^{\circ} - 2\widehat{HCA}$$

Consider the 2 right triangles AHN and CMC, where $\widehat{HNA} = \widehat{MNC}$

Therefore,
$$\widehat{HAN} = \widehat{NCM}$$

Since
$$\widehat{HAN} = \widehat{ACB}$$

Then
$$\widehat{ACB} = \widehat{MCB}$$

Therefore, BC is the bisector of the angle \widehat{ACM}

On the sides of an angle that it takes the length OA and OB, so that $OA + OB = \ell$ (is given) and construct a parallelogram OABC. What is the place of the summit C of parallelogram?

Solution

Let segment OE extension of segment OA such that $OE = \ell$ Let segment OF extension of segment OB such that $OF = \ell$

Then, the triangle *OEF* is an isosceles.

$$\widehat{OEF} = \widehat{OFE} = 90^{\circ} - \frac{1}{2} \widehat{EOF}$$

$$OA + OB = \ell$$

$$\begin{cases} OA + AC = \ell \\ OA + AE = \ell \end{cases} \Rightarrow AC = AE$$

$$\begin{cases} OB + BC = \ell \\ OB + BF = \ell \end{cases} \Rightarrow BC = BF$$

$$\widehat{OEF} = \widehat{OFE} = \widehat{FCB} = \widehat{ACE}$$

Therefore, the point C, E, and F are aligned.