

IC part numbers: 1267.379.413 (LQFP32) 1267.379.414 (SOIC24) 1277.379.012 (LQFP32) intern

Package prints: 40103, 40105 (LQFP32) 40104, 40106 (SOIC24)

40298 (LQPF32) intern

TCD part number: 1279.923.679

Date of issue: 2020-09-15

changes:

New edition TCD v1.0 based on data sheet v6 (2012-06-20)

2020-09-15

Ordering information in appendix, PLCC

1. Table of contents

1.	Table of contents	2
2.	Key features	3
3.	Block- / functional diagram	4
4.	Functional description	5
5.	SPI	. 15
6.	Pinning	. 19
7.	Maximum ratings	. 22
В.	Electrical characteristics	. 24
9.	Disclaimer	. 35
10.	Additional Customer Information	. 35
4.4	Annandiy	26

2. **Key features**

The integrated circuit CJ125 (predecessor CJ110; for differences between CJ110, CJ120 and CJ125 see block-/functional diagram on page 4) is a control and amplifier circuit for a wide range λ -Sensor LSU4.x for the continuous regulation of λ in combination with the sensor in the range of $\lambda = 0.65...\infty$ (air).

To increase the accuracy especially in a system for the regulation in the lean region, a measurement of the resistance of the sensor is carried out. Therefore it is possible to regulate the resistance of the sensor to keep the temperature of the sensor constant.

Fur	nctional groups realized in CJ125: page
1.	Currents and Voltages (box 1)5
	For internal use. Other currents and voltages are described below.
2.	Pump current control (box 2a to 2b)5
	a) pump current of OTA is positive when V_{IJN-VM} < 450mV (lean region).
	b) pump current of OTA is negative when $V_{UN-VM} > 450 \text{mV}$ (rich region).
	c) pump current of OTA keeps his actual value when $V_{UN-VM} = 450 \text{mV} (\lambda = 1)$
	d) Sample&Hold-Phase (see box 8c; box 2b).
3.	Pump current sense amplifier (box 3a to 3b)
•	a) Amplifier for pump current with switchable amplification. The second amplification is for
	expanding the measurement range down to $\lambda = 0.65$ (box 3a).
	b) Elimination of offsets for $\lambda = 1$ respective $I_{IA} = 0\mu A$ (box 3b).
4.	Lambda output amplifier (box 4)
٦.	Analogous output with the measured pump current which represents the oxygen equiva-
	lente.
5.	Virtual ground voltage source for sensor and pump current control (box 5)
J.	Voltage source of 0.5 VCC for positive and negative V _{pump} .
c	Nernst cell reference voltage source (box 6)
6.	Reference voltage of 450mV for λ = 1 (referenced to virtual ground voltage source).
7	Oscillator (box 7)
7.	
•	Timing for S1, S2, HOLD, F3K, Tx.
8.	Circuit for Ri or Rical measurement (boxes 8a to 8d)7
	a) push-pull-stage generates AC measurement current (box 8a),
	b) mux for selection of sensor or calibration resistor (box 8b),
	c) timing (box 8c,)
	d) Sample&Hold (S&H) for storing the voltage sampled at pin [RS] or [UN] according to
	designated timing (box 8d),
	e) R _i differential-amplifier (box 8e) with analogous output which represents the measured
	resistor (sensor resistor R _i in measurement mode; calibration resistor R _{ical} in calibration
	mode).
9.	Diagnostic of sensor lines (box 9)9
	The sensor lines [UN], [VM], [IP] and [IA] are monitored for short circuits to Vbatt or GND.
10.	Diagnostic of external heater (box 10)
	The external heater stage at pin [DIAHG], [DIAHD] is monitored for short circuits to Vbatt
	or GND and open load.
11.	Serial-Peripheral-Interface (SPI; box 11):
	Communication between CJ125 and a micro-controller:
	a) read/write init-register1 and init-register2,
	b) read ident-register,
	c) read diagnostic-register.
12.	Programable reference pumping currents (box 12)
	For use in combination with LSU4.9.
13	Suppression of Ri-measurement (box 13)
10.	R _i measurement is not carried out during a time interval beginning with a positive or nega-
	tive slope at pin [DIAHG] and ending with the negative slope of the HOLD-Phase.
	ave stope at pin [DIALIO] and ending with the hegative stope of the HOLD-Fliase.

3. Block- / functional diagram

Bosch is not liable if products delivered by Bosch outside the Bosch approved applications, specified environments or installation conditions, are used or applied in a false way.

4. Functional description

The integrated circuit CJ125 works together with the wide range sensor LSU4.x to coverage and regulate continuously the ingredients of the exhaust fumes of a combustion engine.

4.1 Currents and Voltages (box 1)

This block makes available all internal used reference currents and voltages. Other currents and voltages are described below.

The information of low-battery-voltage will be stored as a flag in the diagnostic register.

4.2 Pump current control (box 2a to 2b)

The pump current control is realized as an OTA (Operational Transconduction Amplifier). The output is clamped to VCC to protect the sensor. The pump current control compares the reference of 450mV with the voltage of the nernst cell and regulates the current across the oxygen pump cell in such a manner that the ingredients of the gas in the diffusion gap will be constant at λ =1. This is equivalent to voltage at the nernst concentration cell of V_{Nernst} = 450mV.

- a) If V_{UN-VM} is < 450mV, at "lean" exhaust gas, source current -I_{IA} will be injected by the OTA into the oxygen pump cell so that the oxygen pump cell will be steered to pump out the oxygen from the diffusion gap.
- b) In the "rich" region when V_{UN-VM} is > 450mV, the current flows in the opposite direction and the oxygen is pumped into the diffusion gap. Due to the diffusion law, the pump current is proportional to the concentration of oxygen in lean exhaust gas respectively to the requirements of oxygen in rich exhaust gas.
- c) If V_{UN-VM} is = 450mV pump current I_{IA} keeps his actual value ($\lambda = 1$).
- d) During the Hold-phase used for R_i-measurement, the pump current control is simultaneously controlled with a S&H-stage (S&H2; box 2b) to keep the pump current of OTA constant.

It is possible to compensate couplings in the sensor with external resistor between pins [US], [UP] and [IA]. In this case the $\lambda = 1$ -reference value is affected negligible by a feedback.

For adjustment of individual sensors, the current is splitted by a 61.9Ω shunt and a trim resistance in the sensor plug.

It is possible to shut off the pump voltage at pin [IA] with the internal signal PA (SPI bit PA). At the output at pin [IA] there is still small diagnostic current.

4.3 Pump current sense amplifier (box 3a to 3b)

The pump current is transmitted with 61.9Ω resistor into voltage and amplified by differential amplifier with constant amplification and added to a output offset voltage of typical 0.3VCC = 1.5V. This voltage is the reference ground for the output trace. At $\lambda = 1$ the pump current is 0mA and $V_{UA} = 1.5V$.

To increase the range of measurement down to λ = 0.65 without losing resolution, it is possible to switch over to another amplification. This is done by the internal signal VL (SPI-Bit VL). The "normal" amplification is V = 17 (like CJ110). V = 8 is for the rich region.

Positive and negative pump currents are depicted with a 0...5V-trace (see 4.4.1). To eliminate offsets in the amplifier, it is possible to adjust the output voltage with the internal signal LA (SPI-Bit LA). In this case the inputs of the amplifier will be shortened. The output voltage at [UA] represents now $\lambda = 1$ and can be used by the software in the ECU for calibration.

4.4 Lambda output amplifier (box 4)

In contrast to CJ110, CJ125 has an additional output [RF]. Due to the splitting of pin [CF] into pin [CF] and pin [RF] it is possible to realize a external low pass filter.

4.4.1 Typical trace for Ua = f (Lambda):

4.5 Virtual ground voltage source for sensor and pump current control (box 5)

The virtual ground voltage for the sensor is typical 0.5VCC = 2.5V. This is necessary because the pump current can be positive and negative. A S&H stage for V_{VM} (S&H3) is controlled with the same hold phase so that it can reduce the influence of noise at VCC.

In normal condition the current at [VM] is influenced by the current of the pump current control at [IA]. Therefore the necessary driving capability of [VM] is coupled to the actual value of the current at [IA].

4.6 Nernst cell reference voltage source (box 6)

The reference voltage source (450mV) is referenced to virtual ground and is the reference voltage for λ =1 for the pump current control.

4.7 Oscillator (box 7)

RC oscillator needs fixed external $10k\Omega$ resistor. With this resistor the frequency is 192kHz. Derived from this frequency is the timing

- $_{
 m q}$ for the plus/ minus measurement current (3kHz at [RM]; F3K) for R $_{
 m i}$
- q of the Sample&Hold-Stages for measurement of R; (S1, S2, HOLD)
- q for filtering failures at sensor lines or at the external heater stage (Tx).

Annotation: If no resistor is connected to [OSZ], the CJ125 remains in the RESET mode.

4.8 Circuit for R_i or R_{ical} measurement (boxes 8a to 8d)

4.8a Push-pull-stage (box 8a)

Push pull stage between GND and VCC clocked by 3kHz (F3K = 1). The measurement current and therefore the output trace of R_i at pin [UR] is fixed by an external resistor R_{RM} . The measurement current is approximated by:

$$\begin{array}{ll} I_{RM+} &= \Delta V \: / \: R = (VCC \text{-}V_{VM}) \: / \: (R_{RM} + R_{RM_high} + R_{onCMxx} + R_i) \\ I_{RM-} &= \Delta V \: / \: R = (V_{VM} \text{-} V_{GND}) \: / \: (R_{RM} + R_{RM_low} + R_{onCMxx} + R_i) \end{array}$$

with RonCMxx = RonCMUN or RonCMRS.

$$I_{RM\pm} = \pm 250 \mu A \ (R_{RM} = 10.0 k \Omega; \ LSU4.2)$$

 $I_{RM\pm} = \pm 79 \mu A \ (R_{RM} = 31.6 k \Omega; \ LSU4.9)$

The resulting voltage drop over Ri in the nernst cell is

$$\begin{array}{l} \Delta V_{UN} = R_i \ ^* \ I_{RM} = R_i \ ^* \ (I_{RM+} \ ^- \ I_{RM-}) = R_i \ ^* \ 500 \mu A \ (LSU4.2) \\ \Delta V_{UN} = R_i \ ^* \ I_{RM} = R_i \ ^* \ (I_{RM+} \ ^- \ I_{RM-}) = R_i \ ^* \ 158 \mu A \ (LSU4.9) \end{array}$$

The resulting voltage drop over the calibration resistor is

$$\Delta V_{RS} = R_{ical} * I_{RM} = R_{ical} * (I_{RM+} - I_{RM-}) = R_{ical} * 500 \mu A (LSU4.2)$$

 $\Delta V_{RS} = R_{ical} * I_{RM} = R_{ical} * (I_{RM+} - I_{RM-}) = R_{ical} * 158 \mu A (LSU4.9)$

The serial C is necessary for DC free current to get good accuracy at $\lambda=1$.

The output voltage at [RM] is low when

- q F3K = 0 or
- q /RST = 0.

4.8b R_i-Mux (box 8b)

With the internal signal RA (SPI-Bit RA) it is possible to switch the R_i measurement current and the S&H-stage to [UN] for the measurement mode or to [RS] for the calibration mode. The output voltage at [UR] during calibration can be used in the ECU software as a reference for R_i . Offsets are also eliminated at the operation point for example at R_i =82.5 Ω (LSU4.2) or R_i =200 Ω (LSU4.9).

4.8c Sample&Hold (S&H1; box 8c)

The voltage of the nernst cell is sampled before (within S2) and after (within S1) the positive transition of the measurement current. The voltages are usually updated with 3 kHz. The negative transition of the measurement current is not used.

Principle

4.8d Timing (box 8d)

4.8e R_i differential amplifier (box 8e)

The output resistance of the R_i differential amplifier is typically 15k Ω for realization of anti aliasing filter with external C.

The output voltage at [UR] is calculated by

$$V_{UR} = VCCS/17 + v_{Ri} \times I_{RM} \times R_{iLSU4.x}$$
 (sensor)

$$V_{UR} = VCCS/17 + v_{Ri} \times I_{RM} \times R_{ical}$$
 (calibration)

with output offset: VCCS/17

amplifier gain: $v_{Ri} = 15.5$

measurement current: $I_{RM} = 500 \mu A \text{ (LSU4.2)}$

 $I_{RM} = 158 \mu A (LSU4.9)$

resistance of nernst cell: R_{iLSU4.x}

Typical trace for measurement of the sensor resistance:

4.9 Diagnostic of sensor lines (box 9)

The sensor lines [UN], [VM], [IP] and [IA] are monitored for short circuits to Vbatt or GND. Only with a cold sensor it is possible to assign the failure type and location due to high impedance of sensor. A hot sensor registers several failures due to internal couplings ($R_i < 200\Omega$!). The location of the failure needs to be detected by the micro-controller's software.

Open failures are not dedeted by CJ125. They must be dedeted by the micro-controller's software.

4.9.1 Virtual ground

Short circuits at [VM] are detected outside of the threshold voltages $2.5V\pm0.5V$ (typical) and stored after a filtering time t_{VM} in the diagnostic register.

A short circuit to GND at cold sensor will be registered at [VM] if some failures occur at the other lines. With any failure on sensor lines [VM] will be switched off and the pull down sink of a diagnostic current will force the voltage at [VM] below the threshold voltage 2.0V.

4.9.2 Nernst cell

A short circuit at [UN] to GND can be registered only while T_SC2G is high. A short circuit at [UN] to Vbat can be registered only while T_SC2VB is high (see timing diagram below).

Timing diagram for diagnostic at [UN]

To prevent a failure storage by mistake due to R_i measurement current at [UN], the failure conditions short circuit to ground or to Vbat are masked during the low phase at [RM] respectively the high phase. This means that a short circuit to ground will be detected only when the source current $-I_{RM}$ of the push pull high side stage is turned on (current $-I_A$ into the nernst cell). A short circuit to Vbat will be detected only when the sink current $+I_{RM}$ of the push pull low side stage is turned on.

With a resistor between [UP] and [UN] the voltage at [UN] and [UP] with a high impedance (cold) sensor is equal.

4.9.3 Pump cell

A short circuit to Vbat at [IA] will be detected directly. A short circuit at [IP] will be detected at [IA] due to the external shunt between [IA] and [IP]. The failure will be stored after filtering time t_{IAB}.

A short circuit to GND at [IA] or [IP] will be detected directly at each pin. The failure will be stored after filtering time t_{IAM}.

4.9.4 Failure treatment

While the pump current control is active (SPI bit PA = 0) any failure at the sensor lines leads to the following actions to protect the sensor:

- q synchronous shut off of [VM] and [IA]. [UN] and [IP] are always high impedance.
- q register the failure bits DIA5 to DIA0.

If the pump current control is switched off with SPI bit PA = 1 no failure at [IA] or [IP] will be stored in the diagnostic register bits DIA5 and DIA4. Nevertheless any failure leads to the following actions:

- q synchronous shut off of [VM] and [IA]. [UN] and [IP] are always high impedance.
- q register the failure bits DIA3 to DIA0 . No update of Bits DIA5 and DIA4.

4.9.5 Failure registration depends on sensor and application (see DIAG_REG) Every "0" in the tables below means a failure.

table: possible failure bits at cold sensor (normal conditions; PRx = 0; see INIT_REG)

	I	A	U	N	VM	1.)
	DIA5	DIA4	DIA3	DIA2	DIA1	DIA0
SC2GUN	1	1	0	0	0	0
SC2VBUN	1	1	1	0	0	0
SC2GIA,IP 2.)	1	1	1	1	1	1
	0	0	1	1	0	0
SC2VBIA 3.)	1	0	1	1	0	0
SC2GVM	1	1	1	1	0	0
SC2VBVM	1	1	1	1	1	0

- 1.) Failure SC2G at [VM] is a result of turning off [VM] and the diagnostic current at [VM]
- 2.) a failure will be recognized only if either the source current at output [IA] is dedected (internal signal DIA_Q = 1) or Bit 5 (SET_DIA_Q) in INIT_REG2 = 1.
- 3.) IP is monitored via external resistor between [IA] and [IP]

table: possible failure bits at hot sensor (normal conditions)

	I.	Α	U	N	V	M
	DIA5	DIA4	DIA3	DIA2	DIA1	DIA0
SC2GUN	1	1	0	0	0	0
SC2VBUN	1	0	1	0	1	0
SC2GIA,IP 1.)	0	0	0	0	0	0
SC2VBIA 2.)	1	0	1	0	1	0
SC2GVM	1	1	0	0	0	0
SC2VBVM	1	0	1	0	1	0

- 1.) depends on sensor, DIA_Q and Bit 5 (SET_DIA_Q) in INIT_REG2
- 2.) IP is monitored via external resistor between [IA] and [IP]

4.10 Diagnostic of external heater (box 10)

A external heater stage (like BUK108) can be monitored for

- q short circuits to Vbat
- q short circuits to ground and
- q open load (OL)

via [DIAHD] and [DIAHG].

The filtering time t_{diag} is derived from the oscillator frequency (192kHz). The heater stage must be failure save by itself e.g. current limitation, thermal cut off/regulation. The failure bits in the diagnostic register are only failure flags and therefore CJ125 diagnostic stage does not shut off the heater stage in case of a failure.

4.10.1 Principle schematic

A current, depending on the voltage of the external drain, the external resistor R_{ext} and the internal bias current, will be compared with thresholds (see below).

4.10.2 Thresholds:

4.10.3 Hints for diagnostic:

- If the heater stage is in the failure save mode due to SC2VB, this failure will be recognized as long as [DIAHG] is high.
- A defect in the heater stage e.g. transistor not on or open input, will be recognized as SC2VB.

4.10.4 Failure storage in the diagnostic register:

Failures in general will be stored in accordance with failure conditions. The occurrence of the last failure will be stored. A failure in the register can be overridden only by a new failure but not with "no failure" (bit combination 11). After a RD_DIAG diagnostic register will be resetted at the positive transition of /SS. If CJ125 is turned off, due to a failure to protect the sensor, then CJ125 now turns on, the diagnostic register will be updated if there are still failures. Therefore no extra command is necessary to erase any failure.

It is recommended to verify the bits in the diagnostic register with a second RD_DIAG because failures can be registered during reading the diagnostic register. This means that there is no write protection during reading out. The minimum time between two RD_DIAG commands must be in every case greater than the longest filtering time $t_{IAM} = 4T_{M}$ meas for correct failure detection.

Serial-Peripheral-Interface (SPI; box 11):

4.11.1 SPI schematic:

The interface consists of four pins: [SCK], [SI], [SO], and [/SS]. The SPI-Interface makes communication between the CJ125 and the micro-controller possible. The CJ125 always acts as the Slave whilst the micro-controller always acts as the Master. The maximum Baud-rate is 4MBit/s.

The selection of the CJ125 through the SPI-Master is carried out by the Slave-Select-Signal [/SS] and the first two address bits of the command byte sent from the micro-controller. Hence 4 different components can be connected to a single common micro-controller Slave-Select-Signal. SI is the data input (Slave-In), SO is the data output (Slave-Out) and the SPI-Clock is provided by the Master via the input SCK (Serial-Clock-Input). Should the Slave-Select-Signal be inactive (high) then the data output SO shall go into tristate mode.

The component shall begin to evaluate the message sent on SI after detecting the falling edge on /SS and

interpreting the first two bits as an address. Only when the CJ125 is selected via the /SS input and the address is correctly decoded, CJ125 sends data via its SO output. Prior to this, the output SO is high impedance to prevent conflicts with other components connected to a common SO.

/RST = 0 resets the SPI, the registers and [VM] and [IA] are turned off.

SPI communication shall always start with a SPI command sent to the CJ125 from the micro-controller. When writing, the micro-controller shall send the data after the SPI command, whereby the most significant bit (MSB) shall be sent first. When reading, the CJ125 shall send the appropriate data, MSB first, to the micro-controller after receipt of the SPI command.

4.11.2 SPI register

The following internal SPI registers are accessible via the SPI:

DIAG_REG Diagnosis information on the sensor interface and external heater driver

INIT_REG1 Initialisation Register 1for bits VL, LA, RA, PA
INIT_REG2 Initialisation Register 2 for bits PRx, ENSCUN

IDENT_REG CJ125 IC number & version number.

4.11.3 SPI commands

The SPI responds to the following commands:

RD_IDENT Read contents of Identification Register RD_INIT1 Read contents of Initialisation Register 1

WR_INIT1 Write to Initialisation Register 1

RD_INIT2 Read contents of Initialisation Register 2

WR_INIT2 Write to Initialisation Register 2
RD_DIAG Read contents of Diagnosis Register

4.11.4 SPI timing

- q SCK must be low before /SS is low
- q the value of input signal SI is validated with the falling edge of the SCK signal
- \boldsymbol{q} $\,$ the change at output SO occurs with the rising edge of the SCK signal
- q the timing for SO is based upon 10% and 90% of VCC respectively
- q the timing for /SS, SI and SCK is based upon 20% and 70% of VCC respectively

The data in the shift register shall be transferred to the internal registers when exactly 16 SPI clocks have

been counted during /SS is low. For a correctly executed RD_DIAG command, the contents of DIAG_REG shall be reseted to FFH (no fault) with the rising edge of /SS.

In order to ensure that communication is correct, a minimum pause between two commands shall be necessary.

4.11.5 Characteristic of SPI interface:

- q When a low level is applied to pin [/RST], the SPI shall be reset. The SPI control as well as the shift register and registers INIT_REG1, INIT_REG2 and DIAG_REG shall be reset to their default state. In addition to this, the serial output of the shift register SO shall be placed in a tristate mode.
- q Should the Slave-Select-Signal [/SS] be high or should bits 7 & 6 deviate from "0" and "1", then the state machine shall be placed in the initial state, i.e. the state machine shall wait for a new command after a new falling edge on /SS, i.e. /SS shall be required to be inactive between two commands.
- In order to provide for a number of possible SPI participants on one common /SS line, bits 7 & 6 are defined as "01". They serve as additional "Address bits" to differentiate between participants. During the receipt of the first two bits, output SO is in a tristate mode, in order to prevent conflicts with other participants. After the receipt of the first two bits, the CJ125 determines whether CJ125 is addressed (Bit 7 = 0, Bit 6 = 1). If the CJ125 is addressed, the following 6 command bits and the data byte shall be accepted to be valid and the appropriate control and data byte shall be sent to the micro-controller. If the command is not valid, the command and data byte shall be ignored and SO shall remain in a tristate mode.
- q Control Byte:
 - The CJ125 shall return a control byte (6 bit) via [SO] to the micro-controller in parallel to the receipt of the SPI command. This byte shall show, whether the current command is valid, contains the parity bit (even parity) including the parity bit for the data byte of the last access and shall show whether the last access was a read or write cycle.
- q Valid command / access
 - The CJ125 shall set the SPI output SO low after sending the control byte for write cycles (00H). For read cycles, the 2. byte contains data bits.
- q Invalid command / access:
 - A command / access shall be determined to be invalid when one of the following conditions is true:
 - unknown command
 - parity bit PR_bit is incorrect
 - Should an invalid command be detected, no write access to the registers shall be permitted and FF_H shall be returned after the control byte for write cycles. For read cycles, the byte contains any data bits.
- q For write accesses, the received data shall only be placed in the internal init-register1 or init-register2 when exactly 16 SPI clocks have been counted at the /SS phase change from low to high. After the receipt, the clock counter shall immediately be reset to zero and shall be prepared to count once again after the next falling edge of /SS.
- q The output SO shall be tristate should VCC be missing.

4.12 Programable reference pumping currents (box 12)

With the SPI-Bits PRx (x = 0 to 3) in the initialisation register 2 it is possible to activate/deactivate 4 internal current sources. The current I_{UN} is determined by I_{UN} = -(10 μ A * PR0 + 20 μ A * PR1 + 40 μ A * PR2 + 80 μ A * PR3).

4.13 Suppression of R_i-measurement (box 13)

 R_i measurement is not carried out during a time interval beginning with a positive or with a negative slope at pin [DIAHG] and ending with the negative slope of the HOLD-Phase. During this time interval the internal signal HSupp forces the switches S1 and S2 to open.

- 5. SPI
- 5.1 Access modes
- 5.1.1 Write access (16 bit: 8-bit command and 8-bit data)

/SS

SI address parity

0 1 x x x x x x - 8 bit data

command dc

SO tristate RD/WD v OH (command valid) or FFH (not valid)

5.1.2 Read access (16 bit: 8-bit command and 8-bit data)

SI

address parity
0 1 x x x x x x - command dc

tristate RD/WD v
Z Z 1 0 1 x x x x x x x x 8 bit data

fixed parity
controll byte

5.2 SPI- commands (SI)

SPI - command			bi	t co	odir	ng				description
	7	6	5	4	3	2	1	0		
	ADR1	ADR0	\vdash	INSTR2	\vdash	INSTR0	PR_BIT 1.)	not used ^{2.)}	hex value	
RD_IDENT	0	1	0	0	1	0	0	0	48	read IC code number from IDENT_REG
RD_INIT1	0	1	1	0	1	1	0	0	6C	read INIT_REG1
RD_DIAG	0	1	1	1	1	0	0	0	78	read failure condition from DIAG_REG
WR_INIT1	0	1	0	1	0	1	1	0	56	write INIT_REG1
RD_INIT2	0	1	1	1	1	1	1	0	7E	read INIT_REG2
WR_INIT2	0	1	0	1	1	0	1	0	5A	write INIT_REG2
otherwise	Х	Х	Х	Х	Х	Х	Х	Х		command not valid

- 1.) check-bit for SPI-command: Parity-bit of bits 7-2 (even parity including PR_BIT)
- 2.) bit not interpreted.

5.3 Control-byte (SO):

MSB	6	5	4	3	2	1	LSB
Z ^{1.)}	Z	1	0	1	RD/WR	PARITY	INSTR_F

^{1.)} Z: SO-output "tristate" (high impedance)

bit	name	value	description
0	INSTR F	0	current command is valid
0	INSTIX_I	1	current command is not valid
1	PARITY	х	Parity-bit (even parity inclusive parity bit!) builded from the databyte of the last access of the micro- controller. The parity-bit is undefined if the last transfer terminated not normally or the last command was not valid. RESET value = 0
2	RD/WR	0	last access was a read access or not valid or there are more or less than 16 SPI-periods during the active /SS-phase or RESET value
		1	last access was a write access
3		1	wired high
4		0	wired low
5		1	wired high
6		Z	always tristate (high impedance)
7		Z	always tristate (high impedance)

5.4 SPI register

5.4.1 Diagnostic register (SPI command: RD_DIAG) (ASIC with sensor see page 10):

name	description				b	it				comment
		7	6			3			0	
		DIA7	DIA6	DIA5	DIA4	DIA3	DIA2	DIA1	DIA0	
DIAG_REG	Read only	1	1	1	1	1	1	1		RESET-value: FFH after (RD_DIAG and a positive slope at /SS) or /RST=0
Diagnostic	short circuit to GND 1.)							0	0	$SC2GVM = 1 \text{ for } t_{VM}^{2.)}$
VM	low voltage at V _{UB}							0		LV_UB =1 (see 8.2.5)
and low bat-	short circuit to Vbatt							1	0	SC2VBVM= 1 for t _{VM}
tery	no failure							1	1	RESET-value
Diagnostic UN and low	short circuit to GND					0	0			SC2GUN = 1 and T_SC2G = high (see 4.9.2)
battery	low voltage at V _{UB}					0	1			LV_UB =1 (see 8.2.5)
	short circuit to Vbatt 3.)					1	0			SC2VBUN= 1 and T_SC2VB = high (see 4.9.2) and ENSCUN = 1
	no failure or short circuit detection at UN to Vbatt disabled					1	1			RESET-value or SC2VBUN= 1 and T_SC2VB = high and ENSCUN = 0
Diagnostic IA, IP see also bit PA ^{4.)}	short circuit to GND			0	0					(SC2GIA=1 and DIA_Q=1) and PA =0 or (SC2GIA=1 and SET_DIA_Q = 1) $^{5.)}$ for t_{IAM} $^{6.)}$ and PA = 0
	low voltage at V _{UB}			0	1					LV_UB =1 (see 8.2.5)
and low bat-	short circuit to Vbatt			1	0					SC2VBIA= 1 for t _{IAB} 7.) and PA = 0
tery	no failure			1	1					RESET-value

name	description				b	it				comment
		7	6	5	4	3	2	1	0	
		DIA7	DIA6	DIA5	DIA4	DIA3	DIA2	Ν	DIA0	
Diagnostic	short circuit to GND	0	0							registered after t _{diag} ^{9.)}
heater 8.)	open load (OL)	0	1							registered after t _{diag}
	short circuit to Vbatt	1	0							registered after t _{diag}
	no failure	1	1							registered RESET-value

- 1.) Failure displayed due to internal signal OFF = 1 (see box 2a) and pull down sink at [VM]
- ^{2.)} filtering time $t_{VM} = 15T_{meas}/32 ... 16T_{meas}/32$ (32 clocks)
- 3.) Only when ENSCUN = 1; otherwise no failure registration for a SC2VB.
- 4.) failure storage only possible, if PA = 0 i.e. the pump voltage is released.
- 5.) Bit5 in Initialisation register2 (for verification of a short circuit at IA or IP to ground (lean region))
- 6.) filtering time $t_{IAM} = (3*32/32)T_{meas} ... (4*32/32)T_{meas}$ (256 clocks)
 7.) filtering time $t_{IAB} = 1T_{meas}/32 ... 2T_{meas}/32$ (4 clocks)
- 8.) see 4.10.2 (thresholds)
- 9.) filtering time $t_{diag} = (30/32)T_{meas} \dots (32/32)T_{meas}$ (64 clocks)

5.4.2 IC register (SPI command: RD_IDENT):

name	description				b	it				comment		
		7	6	5	4	3	2	1	0			
IDENT_REG	Read only	ID7	9Q1	ID5	ID4	ID3	ID2	101	1D0	each design step is represented by a readable version number (metal mask).		
		0	1	1	0	0	0	1	0	CJ125BA: 62 _H		
		0	1	1	0	0	0	1	1	CJ125BB: 63 _H		
IC-code	version number						Х	X	Χ			
	IC-number	0	1	1	0	0						

5.4.3 Initialisation register1 (SPI command: WR_INIT1, RD_INIT1):

name	description		bit							comment
		7	6	5	4	3	2	1	0	
		EN_HOLD	PA	"Zero" 1.)	RA	EN_F3K	4	"Zero"	۸۲	
INIT_REG1		1	0	0	0	1	0	0	1	RESET value 89H after RES_N = 0: operation without SPI possible
VL	amplification = 8								0	range: λ = 0.65∞
	amplification = 17								1	range: $\lambda = 0.75\infty$
LA	measurement mode						0			measurement mode for λ-signal at [UA]
	adjustment mode						1			adjustment mode for λ -signal offset at [UA]
EN_F3K	F3K off					0				timing active; except F3K
	Enable F3K					1				measurement, calibration mode
RA	measurement mode				0					measurement mode for R _i in sensor
	calibration mode				1					calibration mode for R _i with R _{ical}

name	description				b	it				comment
		7	6	5	4	3	2	1	0	
		EN_HOLD	PA	"Zero" 1.)	RA	EN_F3K	ΓA	"Zero"	٦٨	
PA	on		0							pump current control released
	off		1							IA high impedance (I_IA = 0μ A (typ. when V_{IA} < VCC)). diagnostic at IA off: write access in DIAG_REG for DIA4 and DIA5 disabled.
EN_HOLD 2.)	pump current control without "HOLD-phase"	0								In connection with RA = 1 operation like CJ110; not recommended to use
	Enable hold	1								measurement mode, calibration mode

only for EWS and final test of CJ125 (for RB internal only); data bit must be "Zero"
 only for pump current control; other hold signals not affected.

5.4.4 Initialisation register2 (SPI command: WR_INIT2, RD_INIT2):

name	description	bit								comment
		7	6	5	4	3	2	1	0	
				O_						
		eq	ΕŢ	DIA	Ν̈́					
		not used	SRESE ⁻	<u> </u>	S	3	32	PR1	PR0	
		2C	S	S	Ш	Ы	Ы	Ы	Ы	
INIT_REG2		0	0	0	0	0	0	0	0	RESET value 00 _H after RES_N = 0: operation without SPI possible
10μΑ	off								0	pump reference current 10μA off
	on								1	pump reference current 10μA on
20μΑ	off							0		pump reference current 20μA off
	on							1		pump reference current 20μA on
40μΑ	off						0			pump reference current 40μA off
	on						1			pump reference current 40μA on
80μΑ	off					0				pump reference current 80μA off
	on					1				pump reference current 80μA on
ENSCUN	off									short circuit detection to Vbat at UN dis-
					0					abled; used when sensor is high imped-
										ance and pump reference currents are turned on.
	on				1					short circuit detection to Vbat at UN enabled
SET_DIA_Q	off			0						short circuit dedection to GND at IA/IP for V _{UP} > V _{UN} ("lean") and voltage below threshold
	on			1						short circuit dedection to GND at IA/IP when voltage below threshold
SRESET	off		0							
	on		1							Software-RESET of SPI and all registers
not used		0								wired 0

6. **Pinning**

6.1 **Pinout SOIC24**

6.2 **Pinout PLCC28**

6.3 Pinout LQFP32

6.4 Pin description (packaged, bare-die)

pin	description
UB	power supply input (14V)
VCC	power supply input (5V)
VCCS 1.)	sense inputs (5V); only for hybrid, PLCC28, LQFP32
VCCSS 2.)	
GND	ground
GNDS 3.)	ground; only for hybrid, PLCC28, LQFP32;
VM	virtual ground of pump current control and of the LSU (0.5VCC)
US	nernst cell reference voltage (450mV)
IP	inverting input of pump current amplifier (shunt voltage)
IA	non inverting input of pump current amplifier
	and output of the pump current control
RF	output of pump current amplifier (> external filtering)
CF	input of lambda output amplifier (after filter)
UA	output of lambda output amplifier
UP	non inverting input of pump current control
UN	inverting input of pump current control resp. in-/output for R _i -measurement (LSU)
RM	output R _i -measurement current (DC)
CM	input R _i -measurement current (AC, dc free)
RS	in-/output R _i -calibration measurement
UR	output R _i -signal (analogous)
DIAHG	diagnostic input (gate)

pin	description
DIAHD	diagnostic input (drain)
SCK	input SPI-clock (from micro- controller)
SI	input serial data (SPI, from micro- controller)
SO	output serial data (SPI, to micro- controller)
/SS	slave select (SPI, to micro- controller)
/RST	input Reset
OSZ	R_OSZ = 10kΩ: fixed resistor for 192kHz

- 1.) For hybrid version it is recommended to connect VCCS with the reference VCC for the ADC
- 2.) VCCS and VCSS are short-circuited on the IC.
- 3.) For hybrid version it is recommended to connect GNDS with the reference ground for the ADC

	parameter / condition	symbol	min	typ	max	unit	
7.	Maximum ratings parameter marked with * (see on the right) are not tested in the standard production flow. A sink current which flows into the ASIC is	è					*
	positive and described as	I	1	3.5	5	mA	*
	A source current which comes out of the ASIC is negative and described as	-1	1	3.5	5	mA	*
7.1	supply voltage V _{UB}						
7.1.1 7.1.2 7.1.3	static V _{UB} for 1ms; repetition rate max. 1Hz Test pulses: 10 times; 1time/30s	V _{UB} V _{UB} V _{UBmax}	-0.3		28 35 36	V V V	* *
	12V 160ms						
7.2	supply voltage V _{VCC} abbreviation: V _{VCC} = VCC						
7.2.1	static and dynamic	VCC	-0.3		5.5	V	*
7.2.2 7.2.2.1	accumulated over 5 minutes VCCS	VCC VCCS	VCC -1.5		6 VCC+1.5	V V	*
7.3	temperature						
7.3.1	storage	T _{St}	-40		150	°C	*
7.3.2 7.3.3	junction (constant) junction (for 50h)	T _J T _J	-40 -40		150 165	°C ℃	*
7.3.4	SOIC24 /PLCC28						
7.3.4.1 7.3.4.1.1	VCC = VCCS = 5.5V; V _{UB} = 35V ambience	т.	-40		110	°C	*
	ambience for 50h	T _A T _A	-40		125	°C	*
	VCC = VCCS = 5.1V; V _{UB} = 18V ambience ambience for 50h	T _A T _A	-40 -40		125 140	လို	*
127992		2020			Page	22 / 39	

	parameter / condition	symbol	min	typ	max	unit	
7.3.5 7.3.5.1 7.3.5.2	LQFP ambience ambience for 50h	T _A T _A	-40 -40		125 140	°C °C	*
7.4 7.4.1 7.4.2	thermal resistance SOIC24 / PLCC28 LQFP32	R _{thja} R _{thja}	70 45		80 65	K/W K/W	*
7.5 7.5.1	voltages no destruction for voltages below breakdown of ESD diodes valid for pins: RM, UP, US, RF, CF, UA, UR, DIAHG, (DIAHD see 7.6) SCK, SI, SO, /SS, /RST, OSZ	V_x	-0.3		VCC+0.3	V	*
7.5.2 7.5.3 7.5.3.1 7.5.3.2	valid for board pins: RS, UN, VM, IA, IP, CM allowed difference between VCC and VCCS(static dynamic	V _x	-0.3 -0.25 -1		28 0.25 1	V V V	*
7.5.4 7.5.4.1 7.5.4.2	allowed difference between GND and GNDS static dynamic	ΔV ΔV	-0.25 -1		0.25 1	V V	*
7.6	current (diagnostic heater) current must be limited with an external resistor	I _{DIAHD}	-1		+10	mA	*
7.7	overvoltage pulses (board pins) no destruction for ISO-pulses 3a, 3b see ISO7637-1 at UN, VM, IA, IP and RS with external 82.5Ω	V_{X}	-100		100	V	*
7.8	slewrate (not valid for ISO-pulses) at UN, VM, IA, IP, VCC, UB, RS	dV/dt			1	V/µs	*
7.9	ESD rating human body model (C=100pF,R=1.5kΩ); see MIL883D / 3015	all pins	- 2		2	kV	*

Page 23 / 39

1279923679 00 TCD | v1.0 | September 2020

	parameter / condition	symbol	min	typ	max	unit	
0	Electrical oberestariation						
8.	Electrical characteristics						*
	parameter marked with * (see on the right) are not tested in the standard production						
	flow. A: for Characterization otherwise B B: GoNoGo-test						A B
8.1	Temperature range						
	if not specified otherwise	T_J	-40		150	°C	*
8.2	Voltage range						
	parameters are valid in the voltage range						
	if not specified otherwise						
8.2.1 8.2.1.1	battery voltage	V/	0		18	V	*
8.2.1.2	extended (refer to 8.5; 8.6; 8.7.8)	V _{UB}	9 8		18	V	*
8.2.2	stabilized voltage						
8.2.2.1	unlimited accuracy	VCC	4.9		5.1	V	В
8.2.2.2	limited accuracy (refer to 8.12.2)	VCC	4.75		5.25	V	*
8.2.3	stabilized voltage at VCCS or VCCSS						
8.2.3.1	unlimited accuracy	VCCS(S)	4.9		5.1	V	В
8.2.3.2	limited accuracy (refer to 8.12.2)	VCCS(S)	4.75		5.25	V	В
8.2.4	Power on/off						
8.2.4.1	V _{UB} > VCC;						
	$VCC +2 V \le V_{UB} \le 9V$ $4.75V \le VCC \le 5.25V$						
	$1V \le V_{ A} = V_{ P} \le 3.5V$						
	V _{UN} = V _{UP} = V _{US}	v_{UA}	1.3		1.7	V	*
		*UA	1.0		'''	·	
8.2.4.2 8.2.4.2.1	$V_{UB} \le VCC$ during power on/off				100	me	*
8.2.4.2.1		t			2	ms h	*
8.2.4.3	- I _{UB} < 200uA	t			1000	h	*
8.2.5	low voltage LV_UB						
	if V _{UB} < V _{UBIV} during the <mark>S1</mark> phase, signal						
	LV_UB is set to 1; bits DIA1, 3, 5 are set to 0	V_{UBIV}	VCC+1		VCC+4	V	Α
8.3	Current consumption						
	-10mA \leq I _{IA} \leq 10mA and -I _{IA} = I _{VM} No short circuit						
8.3.1	from battery	I_{UB}			5	mA	Α
8.3.2	from stabilized voltage	lvcc			76	mA	Α
8.3.3	from stabilized sense voltage	lvccs	0.5		4	mA	Α
127992		2020	I		∟ Page	1 24 / 39	1
	1 1 1				<u> </u>		

	parameter / condition	symbol	min	typ	max	unit	I
8.4	Oscillator RC-Oscillator with external R at OSZ; Measurement of frequency and duty cycle						
8.4.1 8.4.2	at RM resistor determinant for the frequency (1%) output voltage	R V _{OSZ}	9.9	10 1.75	10.1	kΩ V]
8.4.3	short circuit current VOSZ = 0V	- I _{OSZ}		2		mA	
8.4.4	frequency	f _{meas}	2.49	3.0	3.51	kHz	
8.4.5	duty cycle	TV		50		%	
8.4.6	max. C load	C _{max}			20	pF	
8.5	measurement current for R _i Push-pull-stage driven by oscillator						
8.5.1 8.5.1.1	output resistor 'High' (to VCC) -1mA \leq I _{RM} \leq 0mA V _{UB} = 8V	R _{RM_high} R _{RM_high}	5 5	40	100 200	Ω Ω	
8.5.2	output resistor 'Low' (to GND) 0mA ≤ I _{RM} ≤ 1mA	R _{RM_low}	5	40	100	Ω	
8.5.2.1 8.5.3	$V_{UB} = 8V$ common mode of output resistor $\Delta R = R_{RM_high} - R_{RM_low}$	R _{RM_low}	5		200	Ω	
	$-1mA \le I_{RM} \le 1mA$	ΔR			50	Ω	
8.6	differential amplifier for R _i						
8.6.1	the measurement current (input CM) flows on dependency of SPI-Bit RA either through the nernst cell (measurement mode) or through an external calibration resistor (calibration mode). analogous switch						
	resistor in measurement mode SPI-bit RA =0 V _{UB} = 8V	R _{on} CMUN R _{on} CMUN			100 200	Ω Ω	
8.6.1.2	resistor in calibration mode SPI-bit RA =1	RonCMRS			100	Ω	
	$V_{UB} = 8V$	R _{on} CMRS			200	Ω	
8.6.2 8.6.2.1 8.6.2.2	common mode of resistor $\Delta Ron = R_{on}CMUN - R_{on}CMRS$ $V_{UB} = 8V$	ΔR _{on} ΔR _{on}			20 30	Ω Ω	
27002	3679 00 TCD v1.0 September 2	2020			Page	25 / 39	

	parameter / condition	symbol	min	typ	max	unit	
8.6.3	leakage current when switch is open	^I leak	-500		500	nA	Α
8.6.4	input voltage range at CM, UN and RS for full accuracy	V _{RI}	2		VCC-1.1	V	В
8.6.5	output signal at overdrive $\Delta V_{UN} \ge 1V$ symmetric $V_{UNhigh} \ge V_{VM}$	Vur			5	V	В
8.6.6	sample&hold-stage (S&H1) S&H-stage for sampling of UN- signal before (S2) and after (S1) the positive transition at RM of the measurement current (see 4.8d page 8).	·UK					
8.6.6.1	T _{meas} = 1 / f _{meas} delay after S2 and before positive transition	t ₁ /T _{meas}			1/32		*
8.6.6.2	sampling time S2 simultaneous start of the hold phase at the beginning of S2	[†] 2 ^{/T} meas			1/32		*
8.6.6.3	delay after positive transition and before S1	t ₄ /T _{meas}			4/32		*
8.6.6.4	sampling time S1	t ₅ /T _{meas}			1/32		*
8.6.6.5 8.6.6.5.1 8.6.6.5.2	setup time (n * Tmess) power on: ΔV =3V measurement / calibration: ΔV =450mV	n n		30 5			*
8.6.6.6	ΔV of sample C / cycle	ΔV			100	mV	*
8.6.6.7	hold failure voltage failure due to the discharge of the sample-C's during the clock period (see 4.8d page 8)	$_{ m \Delta V}_{ m UR}$		10		mV	*
8.6.7	differential amplifier amplifier with fixed amplification and offset						
8.6.7.1 8.6.7.1.1 8.6.7.1.2	amplification $RA = 0$, $V_{UN} = 2.95V$ $RA = 1$, $V_{RS} = 2.50V$	^V RI ^V RI	15.0 15.0	15.5 15.5	16.3 16.3		A A
8.6.7.2	output voltage swing $I_{UR} = 0\mu A$	$v_{\sf UR}$	0.06VCC		VCC-0.2	V	*
8.6.7.3 8.6.7.4	maximum output voltage static and dynamic output resistor	^V URmax R _{out}	7.5	15	VCC 30	kΩ	* A
 127992	3679 00 TCD v1.0 September 2	2020			Page	26 / 39	

	parameter / condition	symbol	min	typ	max	unit	
0.075							
8.6.7.5	zero point for output trace						
	V _{UN} = V _{RS} = V _{US}	V _{UR} / VCCS	0.05	1/17	0.063		Α
	$I_{UR} = 0\mu A$	VUR / VCCS	0.03	1/17	0.003		^
8.6.7.6	change of output voltage before/after						
	calibration						
	$VUN = VRS = VUS; RRS = 100^{\Omega}$		0				
8.6.7.7	$\Delta V_R = V_{UR}(RA = HIGH) - V_{UR}(RA = LOW)$ calibration failure	$^{\Delta V}UR$	-6	-3	3	mV	ΙA
0.0.7.7	V _{UN} = V _{US} , V _{RS} = V _{VM}						
	$\Delta V_R = V_{UR}(RA = HIGH) - V_{UR}(RA = LOW)$	$_{\Delta V_{ m UR}}$	-8	-6	3	mV	Α
	ZVR = VUR(IVV = IIIOII) VUR(IVV = 2011)	_ ∆vuk	J	Ü		*****	'
8.7	pump current control						
8.7.1	common mode range at input						
	for full function						
8.7.1.1	$V_{\sf UP}$	$V_{\sf UP}$	2.15		VCC-0.5	V	*
8.7.1.2	V_{UN}	V _{UN/} VCC	0.4		0.9		*
8.7.2	offset of OTA						
0.7.2	$V_{\text{off}} = V_{\text{UP}} - V_{\text{UN}}$; $I_{\text{IA}} = -10 \text{mA} + 10 \text{mA}$						
	$2.15V \le V_{UP} \le VCC-0.5V$						
	$2.15V \le V_{UN} \le VCC-0.5V$						
	$0.50V \le V_{A} \le VCC-0.5V$	V _{off}	-10		10	mV	Α
8.7.3	innut ourrent OTA						
0.7.3	input current OTA $2.15V \le V_{UP} \le 4.4V$						
	$1.75V \le V_{UN} \le 4.4V$						
	no pump reference current						
8.7.3.1	Condition 1: -40°C ≤ T _J ≤ 80°C	I _{UP} , I _{UN}	-700		700	nA	Α
8.7.3.2	Condition 2: $80^{\circ}\text{C} < \text{T}_{\text{J}} \le 150^{\circ}\text{C}$	I _{UP} , I _{UN}	-1		1	μΑ	Α
	pump reference current; depending on						
	bits PRx						
	$2.5V \le V_{LIN} \le 3.5V$						
	10μA per stage						
	accuracy 20μA-150μA: +-15%						
	10μΑ: 30%						
8.7.4	input offset current for OTA						
0.7.4	loff = lup- lun						
	V_{UP} , V_{UN} so that $I_{IA} = 0$						
	$2.15V \le V_{UP} \le 4.4V$						
	$2.15V \le V_{UN} \le 4.4V$						
	$0.50V \le V_{IA} \le VCC\text{-}0.5V$	l _{off}	-1		1	μΑ	*
8.7.5	hold phase						
0.7.3	the regulator will be frozen for the R _i -						
	measurement for t ₃ ; definition of time						
	(see 4.8d page 8)	t ₃ /T _{meas}			8/32		,
	. , ,	o meas					L

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

1279923679 00 TCD | v1.0 | September 2020

Page 27 / 39

	parameter / condition	symbol	min	typ	max	unit	
8.7.6	voltage limitation at output						
	SPI-bit PA = 0: I_{IA} = 0 i.e. IA = open						
8.7.6.1	source: V _{UP} > V _{UN} ("lean")	V_{IA}	VCC-0.5		VCC	V	*
8.7.6.2	sink: $V_{UP} < V_{UN}$ ("rich")	V_{IA}			0.5	V	*
8.7.7	output current						
0.7.7.4	$0.5V \le V_{A} \le VCC - 0.5V,SPI$ -bit PA = 0		40		20	^	_
8.7.7.1 8.7.7.2	source: V _{UP} > V _{UN} ; "lean" sink: V _{UP} < V _{UN} ; "rich"	- I _{IA}	10 10		30 30	mA mA	A
0.7.7.2	Silk. VUP < VUN, "Ilcli	I _{IA}	10		30	l IIIA	^
8.7.8	supply voltage be available $4.9V \le VCC \le 5.1V$						
	$V_{pump} = V_{IA} - V_{VM}$						
8.7.8.1	"rich" (sink active)						
8.7.8.1.1	I _{IA} = 10mA	-V _{pump}	1.85			V	Α
8.7.8.2	"lean" (source active)						
	$I_{IA} = -10mA$	V_{pump}	1.85			V	Α
8.7.8.2.2	$I_{IA} = -10 \text{mA}; V_{UB} = 8 \text{V}$	V _{pump}	1.35			V	*
8.7.9	voltage off						
	SPI-bit PA = 1: voltage off for sensor-						
	protection, i.e. pin IA high impedance						
8.7.9.1	V_{VM} - $1V \le V_{IA} \le VCC$	ļ _I A	-10	0	10	μA	Α
8.7.9.2	VCC < VIA	I _{IA}	-10		10	μΑ	^
8.7.10	integration time constant	^τ R	7	22	80	μS	Α
8.8	pump current sense amplifier						
	differential amplifier which converts the						
	pump current into a 0VCC - signal						
8.8.1	common mode range at input						
8.8.1.1	V _{UB} ≥ 9V	.,					
8.8.1.1.1 8.8.1.1.2	pin IP	V _{IP}	0		VCC VCC	V V	*
0.0.1.1.2	pin IA	V_{IA}	0		VCC	V	
8.8.1.2	7.5V < V _{UB} < 9V						
8.8.1.2.1	pin IP	v_{IP}	0		3.5	V	*
8.8.1.2.2	pin IA	V_{IA}	0		3.5	V	*
8.8.2	input current						
	$V_{IP} = 1 \dots 4V$						
	$0.5V \le V_{RF} \le VCC-0.5V$						
8.8.2.1	$ I_{RF} \le 10\mu A$ condition 1: -40°C $\le T_{J} \le 80$ °C	1	-500		500	nA	٨
8.8.2.2	condition 1: -40 C \le T \le 50 C condition 2: 80°C < T \le 150°C	I _{IP} I _{IP}	-500		1	μΑ	Α
0.0.2.2	55a5ii 2. 55 5 7 1j = 155 5	'IP	'		·	μ	
127992	3679 00 TCD v1.0 September 2	2020			Page	28 / 39	

	parameter / condition	symbol	min	typ	max	unit	
8.8.3	amplification						
0.0.3	condition: traces V _{IA} = f(signal)						
	$V_0 = \Delta V_{RF} / \Delta (V_{IA} - V_{IP})$						
	$1V \le V_{A}, V_{P} \le 4V$						
	I _{RF} ≤ 10μA						
	$0.5V \le V_{RF} \le 3.0V$						
8.8.3.1	SPI-bit VL = 0	$v_{\lambda o}$	7.82	8	8.15		Α
8.8.3.2	SPI-bit VL = 1	v λ1	16.62	17	17.24		Α
8.8.3.3	SPI-bit VL = 1		16.60	17	17.24		_
	$3.0V \le V_{RF} \le VCC - 0.2V$	v λ1	16.62	17	17.24		Α
8.8.4	common mode rejection ratio						
	$CMRR^{-1} = \Delta V_{RF} / \Delta V_{IP}$						
	$V_{IP} = V_{IA} = 1 \dots 4V$						
	$0.5V \le V_{RF} \le VCC - 0.5V$						
	I _{RF} ≤ 10μA	CMRR ⁻¹		7	12	mV/V	Α
8.8.5	output voltage swing						
0.0.0	I _{RF} = 0μA	V_{RF}	0.20		VCC-0.18	V	Α
	Ki sr	IXI					
8.8.6	driver capability for dynamic	l _{RF}	100			μΑ	В
8.8.7	maximum output voltage						
	statically and dynamically	V_{RFmax}			VCC	V	*
8.8.8	output resistance	Б	50	200	400	0	
	V _{UB} = 14V	R _{out}	50	200	400	Ω	А
8.8.9	output voltage adjustment						
	SPI-bit LA = 1 (adjustment)						
	I _{RF} = 0 μA						
	r _{adj} = V _{RF} / VCCS	^r adj	0.285	0.3	0.315		Α
0.040	voltage change hefere/ofter adjustment						
8.8.10	voltage change before/after adjustment $\Delta V_{RF} = V_{RF}(LA = 1) - V_{RF}(LA = 0)$						
	A = A = A = A = A = A = A = A = A = A =	ΔV_{RF}	-3		3	mV	Α
	TIP TIA TVIVI	△·KF				•	
8.9	Pump reference current						
	Current controlled by SPI-bits PRx (x = 0 to 3)						
	Current derived from 10kΩ at OSZ						
8.9.1	typical current per step	-l _{UN}		10		μΑ	Α
8.9.2	typical current range	-lun	0		150	μΑ	Α
8.9.3	accuracy						
8.9.3.1	for -I _{UN} = 10 μA (first step)	I _{Ist} /I _{Soll}	0.5		1.5		Α
8.9.3.2	for -I _{UN} ≥ 20 μA	I _{Ist} /I _{Soll}	0.8		1.2		Α
8.9.4	Common mode range at input VCC >= 4.9V	v_{UN}	0		3.5	V	В
127992	3679 00 TCD v1.0 September 2		Page	29 / 39			

	parameter / condition	symbol	min	typ	max	unit	
8.10	Lambda output amplifier						
	Impedance converter for lambda signal						
8.10.1	with failure signal common mode range at input	[∨] CF	0		VCC	V	*
		* CF	Ü			•	
8.10.2	input current V _{CF} = 0.2V VCC						
8.10.2.1	Condition 1: $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 80^{\circ}\text{C}$	l _{CF}	-100		100	nA	Α
8.10.2.2	Condition 2: $80^{\circ}\text{C} \le \text{T}_{\text{J}} \le 150^{\circ}\text{C}$	^I CF	-100		500	nA	Α
8.10.3	input offset voltage						
	V _{CF} = 0.2V VCC						
	$ I_{UA} \le 10\mu A$	V _{off}	-3		3	mV	Α
8.10.4	amplification	V_0		1			*
8.10.5	output voltage swing (minimum)						
	$ I_{UA} \le 10\mu A$	v_{UA}	0.20		VCC-0.18	V	Α
8.10.6	maximum output voltage						
	statically and dynamically	^V UAmax			VCC		*
8.10.7	output resistance	R _{out}	50	100	200	Ω	Α
8.11	virtual ground voltage source						
8.11.1	permissible output current						
8.11.1.1	permissible current VM ("hot sensor") driver capability (source and sink) is coupled	I _{VM}	-I _{IA} -2		-I _{IA} +2	mA	Α
8.11.1.2	with the current at IA permissible current VM ("cold sensor")	l∨M	-2		1	mA	Α
0.11.1.2	driver capability is <i>not</i> coupled with the	· V IVI	_			1117 (
	current at IA						
8.11.2	output voltage						
	during hold phase t ₃ the voltage V _{VM} is almost independently of VCC (see 8.11.3)						
	$-I_{IA} - 2mA \le I_{VM} \le -I_{IA} + 2mA$	V _{VM} / VCC	0.48	0.5	0.52		Α
8.11.3	power supply rejection	psr	20			dB	*
8.11.4	permissible C load	c _{VM}	0		10	nF	*
8.11.5	short circuit current to ground						
	$V_{VM} = 0V$, $V_{UP} = 5V$, $V_{UN} = 0V$						
8.11.5.1	before end of filtering time	I_{VM}		130	250	mA	В
8.11.5.2	after end of filtering time	l∨M	-0,2		0,2	mA	В
127992	3679 00 TCD v1.0 September 2	l 2020			Page:	30 / 39	
121002	oo, o oo i ob i vi.o i ooptoilibei z			. ago	55, 55		

		parameter / condition	symbol	min	typ	max	unit	
	_							
8.1	2	nernst cell reference voltage source	•					
8.12	2.1	permissible current	lus	-0.4		0.4	mA	А
8.12	2.2	open load output voltage						
0.40		$V_{Soll} = V_{US} - V_{VM}, I_{US} = 0$.,,	400	450	470		
	2.2.1	4.90V ≤ VCC ≤ 5.10V	V _{Soll}	420	450	470	mV	A
	2.2.2	4.75V ≤ VCC ≤ 5.25V	V _{Soll}	405	450	490	mV	*
8.12	2.2.3	4.75V ≤ VCC ≤ 5.30V	V _{Soll}	405	450	500	mV	
8.12	2.3	output resistance						
		Rout = $\Delta V_{US} / \Delta I_{US}$	R _{out}	220	450	900	Ω	Α
8.1	3	SPI interface						
8.13	3.1	clock input SCK						
	3.1.1	low	[∨] scĸ	-0.3		0.3VCC	V	В
8.13	3.1.2	high	V _{SCK}	0.7VCC		VCC+0.3	V	В
8.13	3.1.3	hysteresis	∆Vsck	0.1		0.9	V	*
8.13	3.1.4	input capacitance	C _{SCK}			10	pF	*
8.13	3.1.5	pullup current at VCC	33.1					
		$0.3VCC \le V_{SCK} \le 0.7VCC$	-ISCK	10	20	50	μΑ	Α
8.13	3.2	input slave select /SS						
8.13	3.2.1	low: CJ125 selected	V/SS	-0.3		0.3VCC	V	В
8.13	3.2.2	high: CJ125 not selected (SO tristate)	V/SS	0.7VCC		VCC+0.3	V	В
8.13	3.2.3	hysteresis	ΔV/SS	0.1		0.9	V	*
8.13	3.2.4	input capacitance	C _{/SS}			10	pF	*
8.13	3.2.5	pullup current at VCC	,					
		$0.3VCC \le V_{/SS} \le 0.7VCC$	-I/SS	10	20	50	μΑ	Α
8.13	3.3	data input SI						
8.13	3.3.1	low	v_{SI}	-0.3		0.3VCC	V	В
8.13	3.3.2	high	V _{SI}	0.7VCC		VCC+0.3	V	В
8.13	3.3.3	hysteresis	∆VSI	0.1		0.9	V	*
8.13	3.3.4	input capacitance	CSI			10	pF	*
8.13	3.3.5	pullup current at VCC						
		$0.3VCC \le V_{SI} \le 0.7VCC$	-ISI	10	20	50	μΑ	Α
8.13	3.4	SPI data output SO						
		tristate when not selected or RESET						
		or VCC < 3V						
8.13	3.4.1	low: $I_{SO} = 2mA$; VCC > 4V	^V soL			0.4	V	Α
8.13	3.4.2	high: $I_{SO} = -2mA$; VCC > 4V	V _{SOH}	VCC- 0.7			V	Α
8.13	3.4.3	capacitance						
		tristate: /SS = high	c_{SO}			10	pF	*
8.13	3.4.4	leakage current						
		tristate: /SS = high						
		$0V \le V_{SO} \le VCC$	I _{SO}	-10		10	μΑ	А
127	1279923679 00 TCD v1.0 September 2020					Page	31 / 39	
1270020070 00 10B 1110 00ptombol 2020								

8.13.5 timing (see 4.11.4 page 13) 8.13.5.1 transmission rate 8.13.5.2 Cycle time (SPI clock) 8.13.5.3 Enable lead time (master) tcyc tlead tcyc 50	4					
8.13.5.4 Enable lag time (master) 8.13.5.5 Data valid (CJ125), CLoad = 100pF HIGH> LOW: SCK = 0.7VCC> SO = 0.1VCC			MBit/s ns ns ns	* * *		
LOW> HIGH:		100 50	ns ns ns ns ns	* * * * *		
commands t _{dt} 50 8.13.5.12 recommended transfer delay between two			ns	*		
RD_DIAG commands (Master, see 8.14.9 page 33) t_{dt}/T_{meas} 4*32/32 8.13.5.13 Clear time, time after RD_DIAG command: /SS = 0.7VCC> DIAG_REG: FFH t_{clear}/T_{meas}		1	μS	*		
8.13.6 Reset input /RST 8.13.6.1 Low						
reset of SPI interface and SPI register V/RST -0.3		0.3VCC	V	Α		
no reset $V/RST = 0.7VCC$ 8.13.6.3 Hysteresis $\Delta V/RST = 0.1$		VCC+0.3 0.9	V V	A *		
$ 8.13.6.4 \text{Pullup current at VCC} \\ 0.3\text{VCC} \leq \text{V/RST} \leq 0.7\text{VCC} \\ 8.13.6.5 \text{necessary reset time after power on} \\ 8.13.6.6 \text{necessary reset time when VCC> 4.75V} \\ 10 \\ t/\text{RST} \\ 0.5 \\ t/\text{RST} \\ 3 \\ $	20	50 1 10	μA ms μs	A * *		
8.13.7 Transition to test mode Annotation: only for testing at RB; return to normal mode with 5A _H and "x1xxxxxxx" V/RST VCC		VCC+2	V	А		
8.13.8 Necessary delay for access via SPI after reset tdelay/Tmeas (3/32)/64				*		
8.14 Diagnostic of sensor lines						
When one failure condition is met, the equivalent failure bit in the DIAG_REG will be set until it will be erased with RD_DIAG! 8.14.1 SC2G level at VM bits DIA0 and DIA1 will set to "00" below the level V _{VM} / VCC 0.35	0.4	0.45		Α		
1279923679 00 TCD v1.0 September 2020		III Page 32 / 39				

	parameter / condition	symbol	min	typ	max	unit	
8.14.2	SC2VB level at VM bit DIA0 will set to "0" above the level after t _{VM}	V _{VM} / VCC	0.55	0.6	0.65		Α
8.14.3	Filtering time t _{VM} for short circuit detection at VM. Failure will be ignored for t _{VM} T _{meas} = 1/fmeas (see 4.8d page 8)	^t VM ^{/T} meas	15/32		16/32		Α
8.14.4	SC2G level at UN Detection of SC2G only when RM =high! Bits DIA2 and DIA3 will set to "0" below level during t ₇ ; failure will be updated after 1 period of Tmeas	V _{UN} / VCC	0.3	0.35	0.4		Α
8.14.5	SC2VB level at UN Bit DIA2 will set to "0" above level during t ₇ Detection of SC2VB only when RM =low! Failure will be updated after 1 period of Tmeas	V _{UN} / VCC	0.72	0.8	0.88		А
8.14.6	Waiting time for failure detection (SC2G and SC2VB) at UN after a transition at RM (see page 9)	^t 6 ^{/⊤} meas		4/32			Α
8.14.7	Failure detection for SC2G and SC2VB activated (see page 9)	t ₇ /T _{meas}		8/32			Α
8.14.8	SC2G detection at IA, IP (only while SPI bit PA = 0) Bits DIA4 and DIA5 will be set to "00" when SC2GIA,IP =1 and DIA_Q =1 for t _{IAM}						
8.14.8.1	Level for SC2GIA,IP SC2GIA,IP = 1 for V < V _{IA,IP}	V _{IA,IP}	0.3		1.5	V	Α
8.14.8.2	Level for DIA_Q DIA_Q =1 for I _{IA} < I _{IAT}	l _{IAT}	-8		-0,1	mA	Α
8.14.9	Filtering time for SC2G detection at IA, IP Failure will be ignored during t _{IAM} T _{meas} =1/f _{meas} (see 8.4.4 page 25)	^t IAM ^{/T} meas	96/32		128/32		А
8.14.10	SC2VB level IA (only while SPI bit PA=0) Bit DIA4 will be set to "0" after t _{IAB}	V _{IA}	VCC		VCC+2	V	А
8.14.11	Filtering time t _{IAB} for SC2VB detection at IA V _{IA} > V _{IA} (8.14.10) Failure will be ignored during t _{IAB}	t/T	1/32		2/32		
	T _{meas} = 1/f _{meas} (see 8.4.4 page 25)	^t IAB ^{/T} meas	1/32				Α
1279923679 00 TCD v1.0 September 2020				Page	33 / 39		

	parameter / condition	symbol	min	typ	max	unit			
8.14.12 8.14.12.1 8.14.12.2	Pulldown current when turned off PA= 0; V _{IA} > SC2VB level V _{IA} (8.14.10) PA= 1; see 8.7.9	I _{IA}	50		500	μΑ	Α		
	Pulldown current when turned off VCC > V _{VM} > 1V VCC < V _{VM}	I _{VM} I _{VM}	1 1		40 40	μ Α μ Α	A A		
8.15	Diagnostic of external heater								
8.15.1	Diagnostic information for DIAHD and DIAHG stored in DIAG_REG (Bits 6 and 7). If any failure occurs, the CJ125 does not turn off the heater (only flag)! Input DIAHG								
8.15.1.1	Information for: gate turned on/off Low level	V _{DIAHGL}	-0.3		0.3VCC	V	Α		
8.15.1.2	High level	^V DIAHGH	0.7VCC		VCC+0.3	V	Α		
8.15.1.3	Hysteresis	$^{\Delta extsf{V}}$ DIAHG	0.1		0.9	V	*		
8.15.1.4	Input current	I _{DIAHG}	-1		1	μΑ	Α		
8.15.2	In-/output DIAHD								
8.15.2.1	Monitoring of external Drain voltage -350μA ≤I _{DIAHD} ≤ 350μA	V _{DIAHD}	VCC-1.2		VCC+0.6	V	А		
8.15.2.2	detection of short circuit to ground (SC2G) DIAHG = Low	I _{DIAHD_SCG}	-1000		-350	μΑ	В		
8.15.2.3	detection of short circuit to Ubatt (SC2VB) DIAHG = High	IDIAHD_SCB	-100		10000	μΑ	В		
8.15.2.4	Detection of open load (OL) when DIAHG = Low	^I DIAHD_OL	-100		100	μΑ	В		
8.15.2.5.1	No failure DIAHG = high DIAHG = low	^I DIAHD_IOH ^I DIAHD_IOL	-1000 350		-350 10000	μ Α μ Α	B B		
8.15.2.6	Filtering time t _{diag} Failure during t _{diag} will be stored in DIAG_REG after t _{diag} . Each failure triggers t _{diag}	[†] diag ^{/T} meas	30/32		32/32		Α		
	voltage IDIAHD = +10mA IDIAHD = - 1mA	V _{DIAHD} V _{DIAHD}	VCC+0.5 VCC-1.9		VCC+4	V V	A *		
1279923679 00 TCD v1.0 September 2020					Page 34 / 39				

9. Disclaimer

Intended use: Provided that the product is used within the conditions (environment, application, installation, loads) as described in this Technical Customer Documentation (TCD) and the corresponding agreed upon documents, Bosch ensures that the product complies with the agreed properties. Agreements beyond this require the written approval by Bosch. The product is considered fit for the intended use when the product successfully has passed the tests in accordance with the TCD and agreed upon documents.

This product is not designed, intended, or authorized for use in systems intended to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur.

Bosch complied with the following regulations specific to the target market when developing the product: Europe, RoHS (Restriction of Hazardous Substances). Materials used are documented and provided on customer request by IMDS (International material data sheet). The component is RoHS compatible for Pb-free soldering according to IPC/JEDEC J-STD-020

If other or additional regulations are required for marketing the product or marketing is effected outside the named target markets, the customer requests compliance with the specific regulations of the target market from Bosch, or ensures these by itself. It is the responsibility of the customer to ensure the proper application of the product in the overall system/vehicle. Bosch does not assume any responsibility for changes to the environment of the product that deviate from the TCD and the agreed upon documents.

<u>ISO 26262</u>: Bosch points out that the system/product does not implement any ASIL -classified requirements (in the sense of ISO 26262). Therefore, it has not been approved by Bosch for applications in which Bosch delivered system/product has an ASIL related (above QM) role.

<u>Field returns:</u> Products are considered good if they fulfill the specifications/test data for 0 -mileage and field listed in the TCD.

Service and repair: Repair of the product is not possible.

Transport, storage, assembly, start and end of operation: Please pay special attention to the safety and warning notes.

<u>Amendments:</u> Unless otherwise expressly agreed in writing Bosch reserves the right, at any time, to change the technical customer documentation.

10. Additional Customer Information

For additional informations please contact AE Sales:

Robert Bosch GmbH

Sales Semiconductors Postbox 13 42 72703 Reutlingen

Germanny

E-mail: bosch.semiconductors@de.bosch.com Internet: www.bosch-semiconductors.de

11. Appendix

Ordering

Discontinued - PLCC28

• Package code: 30493

Internal use only 1277.379.012 - LQFP32

• Package code: 40298

1267.379.413 - LQFP32

• Package codes: 40103, 40105

1267.379.414 - SOIC24

• Package codes: 40104, 40106

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

1279923679 00 TCD | v1.0 | September 2020

AE/PAI-PRM PO box 1342 72702 Reutlingen Germany

© Robert Bosch GmbH 09/2020

1279923679 00 TCD | v1.0 | September 2020

Page 39 / 39