MATH 220 Practice Finals 2 Answers — October, 2024, Duration: 2.5 hours This test has 9 questions on 18 pages, for a total of 90 points.

First Name:	Last Name:
Student Number:	Section:
Signature:	

Question:	1	2	3	4	5	6	7	8	9
Points:									
Total:									/90

- 1. Carefully define or restate each of the following:
 - (a) An upper bound on a set $A \subseteq X$ where X is ordered

Solution: Let $A \subseteq X$. Then, $y \in X$ is called an upper bound if for all $a \in A$, $a \le y$.

(b) Bézout's lemma

Solution: Let $a, b \in \mathbb{Z}$. Then, there exists $x, y \in \mathbb{Z}$ such that $ax + by = \gcd(a, b)$.

(c) A partition on a set X

Solution: $P \subseteq \mathcal{P}(X)$ is a partition on X if

- For all $A \in P$, $A \neq \emptyset$.
- For all $x \in X$, there exists $A \in P$ such that $x \in P$.
- For all $A_1, A_2 \in P$, $A_1 = A_2$ or $A_1 \cap A_2 = \emptyset$.
- (d) A bounded sequence $(x_n)_{n\in\mathbb{N}}: \mathbb{N} \to \mathbb{R}$

Solution: We say $(x_n)_{n\in\mathbb{N}}: \mathbb{N} \to \mathbb{R}$ is bounded if there exists $M \in \mathbb{R}$ such that for all $n \in \mathbb{N}$, $|x_n| \leq M$.

(e) The principle of mathematical induction

Solution: Let $\ell \in \mathbb{Z}$ and let $S = \{k \in \mathbb{Z} | n \ge \ell\}$. If $P(\ell)$ is true and P(k) being true implies P(k+1) being true for some $k \in S$, then P(n) is true for all $n \in S$.

- 2. Write the negation of each of the following and prove or disprove the original statement.
 - (a) For all $n \in \mathbb{N}$, for all $x \in \mathbb{Z}$, for all $y \in \mathbb{Z}$, there exists $k \in \mathbb{Z}$ such that $yk \equiv x \mod n$.

Solution: The negation is "There exists $n \in \mathbb{N}$ such that there exist $x \in \mathbb{N}$ such that there exists $y \in \mathbb{N}$ such that for all $k \in \mathbb{N}, yk \not\equiv x \mod n$ ". The original statement is false.

Disproof. Let n = 4, x = 1, y = 2 and let $k \in \mathbb{N}$. Notice for all $k \in \mathbb{N}$, $2k \equiv 2 \mod 4$ or $2k \equiv 0 \mod 4$ so the original statement is false.

(b) For all people $e \in D_e$ where D_e is the set of all people, there exists a function $f: D_e \mapsto D_e$ such that f maps e to the biological grandmothers of e.

Solution: The negation is "There exists a person $e \in D_e$ such that for all functions $f: D_e \mapsto D_e$, f does not map e to the biological grandmothers of e. The original statement is false.

Disproof. Notice for all $e \in D_e$, e has two biological grandmothers. It follows that if f maps e to their biological grandmothers, then $f(e) = e_1 = e_2$ for some $e_1 \neq e_2$, a contradiction. Hence, there does not exist such f.

10 Marks | 3.

- 3. Let $f:A\mapsto B$ and $g:B\mapsto C$ be functions. Prove or disprove each of the following:
 - (a) If $g \circ f$ is bijective, then f is injective.

Solution 1:

Proof. Let $a_1, a_2 \in A$ and assume $f(a_1) = f(a_2)$ and thus $g \circ f(a_1) = g \circ f(a_2)$. Since $g \circ f$ is injective, it follows that $a_1 = a_2$.

Solution 2:

Proof. We prove the contrapositive. Assume f is not injective, so there exists $a_1, a_2 \in A$ where $a_1 \neq a_2$ such that $f(a_1) = f(a_2)$. Then, $g \circ f(a_1) = g \circ f(a_2)$ so $g \circ f$ is not injective and hence not bijective.

(b) If $g \circ f$ is bijective, then f is surjective.

Solution:

Disproof. Let $A = \{0\}$, $B = \{0, 1\}$ and $C = \{0\}$, let f(x) = 0 and g(x) = 0. Notice $g \circ f$ maps 0, the only element in A, to 0, the only element in C, so $g \circ f$ is bijective. However, $f^{-1}(\{1\}) = \emptyset$ so f is not surjective.

10 Marks

4. Let p be a prime. Prove by induction that for all $n \in \mathbb{Z}$, $p \mid n^p - n$. (Hint: You will need to split into different cases for induction, and use the binomial theorem)

Solution:

Proof. We proceed with a proof by cases.

- For $n \geq 0 \in \mathbb{N}$, we proceed with induction on n.
 - For the base case, it holds trivially when n = 0 since $p \mid 0^p 0 = 0$.
 - Assume that the statement holds for n = k. Then, observe that

$$(n+1)^p - n - 1 = n^p + 1 + \sum_{k=1}^n \binom{n}{k} n^{n-k} - n - 1$$

= $n^p - n + p\ell$
= $pm + p\ell$

so $p \mid (n+1)^p - n$ and the inductive step holds.

Since the base case and the inductive step hold, by the principle of mathematical induction, the result holds for all $n \ge 0$.

- For n < 0, e proceed with induction on n.
 - For the base case, notice when n = -1, p = 2 or $p \neq 2$.

* If
$$p = 2$$
, $p \mid (-1)^2 + 1 = 2$

* If
$$p \neq 2$$
, $p \mid (-1)^p + 1 = 0$

So the base case holds.

- Assume that the statement holds for n = k. Then,

$$(n+1)^{p} - n - 1 = n^{p} + 1 + \sum_{k=1}^{n} {n \choose k} n^{n-k} - n - 1$$
$$= n^{p} - n + p\ell$$
$$= pm + p\ell$$

so $p \mid (n+1)^p - n$ and the inductive step holds.

Since the base case and the inductive step hold, by the principle of mathematical induction, the result holds for all n < 0.

As such, it holds for all $n \in \mathbb{Z}$ as required.

- 5. Let $\mathbb{R}[x]$ denote the set of polynomials with real coefficients and define a set $I = \{(x^2+1)p(x)|p(x) \in \mathbb{R}[x]\}$. Let \sim be a relation on $\mathbb{R}[x]$ defined as $f(x) \sim g(x)$ if and only if $f(x) g(x) \in I$.
 - (a) Prove \sim is an equivalence relation.

Solution:

Proof. We prove reflexivity, symmetry, and transitivity in turn.

- For reflexivity, let $f(x) \in \mathbb{R}[x]$. Then, $f(x) f(x) = 0 = (x^2 + 1) \cdot 0 \in I$ so $f(x) \sim f(x)$.
- For symmetry, let $f(x), g(x) \in \mathbb{R}[x]$ and assume $f(x) \sim g(x)$. Then, $f(x) g(x) = (x^2 + 1)p(x)$ for some $p(x) \in \mathbb{R}[x]$ so $g(x) f(x) = (x^2 + 1)(-p(x)) \in I$ so $g(x) \sim f(x)$.
- For transitivity, let $f(x), g(x), h(x) \in \mathbb{R}[x]$ and assume $f(x) \sim g(x)$ and $g(x) \sim h(x)$. Then, $f(x) h(x) = f(x) g(x) + g(x) h(x) = (x^2 + 1)p(x) + (x^2 + 1)q(x) = (x^2 + 1)(p(x) + q(x)) \in I$ for some $p(x), q(x) \in \mathbb{R}[x]$ so $f(x) \sim h(x)$.

Hence, \sim is an equivalence relation as required.

(b) Let $f(x) \in \mathbb{R}[x]$ and [f(x)] be its equivalence class under \sim . Prove that [f(x)] must be of the form $\{a+bx+p(x)|p(x)\in I\}$ where $a,b\in\mathbb{R}$. (Hint: The polynomial division algorithm states that for all $f(x),g(x)\in\mathbb{R}[x]$ where $\deg g(x)=k,\ f(x)=q(x)g(x)+r(x)$ with $q(x),r(x)\in\mathbb{R}[x]$ such that $0\leq \deg r(x)< k$)

Solution:

Proof. Let $f(x) \in \mathbb{R}[x]$. By the polynomial division algorithm, we know $f(x) = q(x)(x^2+1)+r(x)$ where $q(x), r(x) \in \mathbb{R}[x]$ and r(x) has degree 0 or 1. By definition, we know $f(x) \sim g(x)$ if and only if $f(x) - g(x) \in I$ which implies f(x) - g(x) has the same polynomial remainder r(x), namely, r(x) = a + bx for some $a, b \in \mathbb{R}$ since r(x) has degree 0 or 1. Also notice if $p(x) \in I$, we have $f(x) \sim f(x) + p(x)$ so $r(x) + p(x) \in [f(x)]$ for all $p(x) \in I$ and thus $r(x) + p(x) \in I$ for all $p(x) \in I$. Hence, $[f(x)] = \{a + bx + p(x) | p(x) \in I\}$ as required.

(c) Prove that if $f(x), g(x) \in \mathbb{R}[x]$ and $f(x)g(x) \in I$, then $f(x) \in I$ or $g(x) \in I$. (Hint: The polynomial division algorithm states that for all $f(x), g(x) \in \mathbb{R}[x]$ where $\deg g(x) = k$, f(x) = q(x)g(x) + r(x) with $q(x), r(x) \in \mathbb{R}[x]$ such that $0 \leq \deg r(x) < k$)

Solution:

Proof. We prove the contrapositive. Assume $f(x) \notin I$ and $g(x) \notin I$, so by the polynomial division algorithm $f(x) = q_1(x)p(x) + r_1(x)$ and $g(x) = q_2(x)p(x) + r_2(x)$ where $r_1(x)$ and $r_2(x)$ are of degree 1. Then,

$$f(x)g(x) = (q_1(x)p(x) + r_1(x))(q_2(x)p(x) + r_2(x))$$

$$= q_1(x)p(x)q_2(x)p(x) + r_1(x)q_2(x)p(x) + q_1(x)p(x)r_2(x) + r_1(x)r_2(x)$$

$$= k(x)p(x) + (a_1 + b_1x)(a_2 + b_2x)$$

$$= k(x)p(x) + a_1a_2 + a_2b_1x + a_1b_2x + b_1b_2x^2$$

where one of $a_1, b_1 \in \mathbb{R}$ is non-zero and one of $a_2, b_2 \in \mathbb{R}$ is non-zero.

- If both b_1, b_2 are zero, both a_1, a_2 are non-zero so we have $f(x)g(x) = k(x)p(x) + a_1a_2$. f(x)g(x) cannot be factored by $x^2 + 1$ so $f(x)g(x) \notin I$ as required.
- If b_1, b_2 are both non-zero, then a_1, a_2 are zero so $f(x)g(x) = k(x)p(x) + b_1b_2x^2$ which cannot be factored by p(x) so $f(x)g(x) \notin I$.
- If b_1, a_2 are non-zero but a_1, b_2 are zero, then $f(x)g(x) = k(x)p(x) + a_2b_1x$ so $x^2 + 1$ cannot factor f(x)g(x) and $f(x)g(x) \notin I$. Without loss of generality, the same holds for b_1, a_2 are zero but a_1, b_2 are non-zero.

This proves all cases so $f(x)g(x) \notin I$ and so this proves the contrapositive. \square

- 6. Prove or disprove each of the following:
 - (a) If A is a infinite and $P \subseteq \mathcal{P}(A)$ is a finite partition of A, then for all $X \in P$, X is infinite.

Solution:

Disproof. Let $A = \mathbb{N} \cup \{0\}$ and $P = \{\{0\}, \mathbb{N}\}$. Observe that A is infinite and P is a finite partition, but $X = \{0\} \in P$ is finite, so the statement is false. \square

(b) If A is a infinite and $P \subseteq \mathcal{P}(A)$ is an infinite partition of A, then for all $X \in P$, X is finite.

Solution:

Disproof. Let $A = \mathbb{N}$ and P be the partition where all composite numbers form their own equivalence classes and the set of primes is one equivalence class. Since there are infinite composite numbers, P is an infinite partition. However, there are also infinite primes so there exists $X \in P$ such that X is infinite.

7. (a) Prove that if $A_1, A_2, A_3 ... A_n$ and $B_1, B_2, B_3, ... B_n$ are non-empty sets such that for all $i \leq n \in \mathbb{N}$, $|A_i| \leq |B_i|$, then $|\prod_{i=1}^n A_i| \leq |\prod_{i=1}^n B_i|$ by constructing an explicit injection $f: \prod_{i=1}^n A_i \mapsto \prod_{i=1}^n B_i$

Solution:

Proof. Since for all non-empty sets $A_1, A_2, A_3 \dots A_n$ and $B_1, B_2, B_3, \dots B_n$, we have $|A_i| \leq |B_i|$, we know that for all A_i there exists an injection $f_i : A_i \mapsto B_i$. Then, I claim $f(a_1, a_2, \dots, a_n) = (f_1(a_1), f_2(a_2), \dots, f_n(a_n))$ would be an injection. This is clear since if

$$f(a_1, a_2, \dots, a_n) = (f_1(a_1), f_2(a_2), \dots, f_n(a_n))$$

= $(f_1(a'_1), f_2(a'_2), \dots, f_n(a'_n))$
= $f(a'_1, a'_2, \dots, a'_n)$

Then by the injectivity of f_i , we have $a_i = a_i'$ for all $0 \le i \le n$, so $(a_1, a_2, \ldots, a_n) = (a_1', a_2', \ldots, a_n')$. Hence, f is an injection.

(b) Prove or disprove that the result holds when there exists B_i such that B_i is empty.

Solution:

Proof. Assume for all $A_1, A_2, A_3 \dots A_n$ and $B_1, B_2, B_3, \dots B_n$, we have $|A_i| \leq |B_i|$, and there exists B_i such that B_i is empty. Then, since $|A_i| \leq |B_i|$, $A_i = \emptyset$. It follows that $\prod_{i=1}^n A_i = \emptyset = \prod_{i=1}^n B_i$ so $|\prod_{i=1}^n A_i| \leq |\prod_{i=1}^n B_i|$ as required,

10 Marks

8. Let
$$f(x) = \begin{cases} 2x & \text{if } x \in \mathbb{Q} \\ -2x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

(a) Recall that f(x) is continuous if for all $a \in \mathbb{R}$, $\lim_{x\to a} f(x) = f(a)$. Prove that f(x) is discontinuous. (Hint: Use density of rationals/irrationals in the reals)

Solution:

Proof. Let a=1 and choose $\varepsilon=1$. Then, let $\delta>0$ and choose x to be any irrational number between 1 and $\delta+1$ so $0<|x-1|<\delta$. Then,

$$|f(x) - f(1)| = |f(x) - 2|$$

= $|-2x - 2|$
= $|-1||2x + 2|$
= $2x + 2 \ge 1 = \varepsilon$

So f is discontinuous as required.

(b) We say f(x) is everywhere discontinuous if for all $a \in \mathbb{R}$ there exists $\varepsilon > 0$ such that for all $\delta > 0$, there exists $x \in \mathbb{R}$ such that $0 < |x-a| < \delta$ and $|f(x)-f(a)| \ge \epsilon$. Prove or disprove that f(x) everywhere discontinuous.

Solution: f(x) is not everywhere discontinuous.

Disproof. I claim f(x) is continuous at a=0. Let $\varepsilon>0$, choose $\delta=\frac{\varepsilon}{4}$ and assume $0<|x|<\delta$. Then, $|f(x)-f(0)|=\left|\frac{\pm 2\varepsilon}{4}\right|=\frac{\varepsilon}{2}<\varepsilon$ so f(x) is continuous at a=0 and hence not everywhere discontinuous.

- 9. Let $f:(0,1)\mapsto \mathbb{R}$ be defined as $f(x)=\frac{2x-1}{x-x^2}$.
 - (a) Prove that f is injective.

Solution:

Proof. Let f be as stated and assume $f(x_1) = f(x_2)$. Then,

$$\frac{2x_1 - 1}{x_1 - x_1^2} = \frac{2x_2 - 1}{x_2 - x_2^2}$$

$$(2x_1 - 1)(x_2 - x_2^2) = (2x_2 - 1)(x_1 - x_1^2)$$

$$2x_1(x_2 - x_2^2) - (x_2 - x_2^2) = 2x_2(x_1 - x_1^2) - (x_1 - x_1^2)$$

$$2x_2x_1^2 - 2x_1x_2^2 + x_1 - x_1^2 - x_2 + x_2^2 = 0$$

$$2x_2x_1^2 - x_1^2 + x_1 - 2x_1x_2^2 + x_2^2 - x_2 = 0$$

$$(x_1 - x_2)(2x_1x_2 - x_1 + 1) = 0$$

So $x_1 = x_2$ or $2x_1x_2 - x_1 + 1 = 0$. Assume for the sake of contradiction that $x_1 \neq x_2$. Then, $2x_1x_2 - x_1 + 1 = 0$ so

$$2x_1x_2 - x_1 = -1$$
$$x_1(2x_2 - 1) = -1$$
$$2x_2 - 1 = \frac{-1}{x_1}$$

Now $x_1 > 0$, so $2x_2 - 1 < 0$. Notice LHS < -1 since $0 < x_1 < 1$, but RHS > -1, so LHS \neq RHS, a contradiction. Hence, $x_1 = x_2$ and f is injective as required. \square

(b) Prove that f is surjective.

Solution:

Proof. Let $y \in \mathbb{R}$. Then, we solve for $y = \frac{2x-1}{x-x^2}$ where $x \in (0,1)$ so we solve $yx^2 + (y-2)x - 1 = 0$. Either y = 0 or $y \neq 0$.

- If y = 0, notice if $x = \frac{1}{2}$ then f(x) = 0.
- If $y \neq 0$, observe that by the quadratic formula,

$$x = \frac{y - 2 \pm \sqrt{(y - 2)^2 + 4y}}{2y}$$
$$= \frac{y - 2 \pm \sqrt{y^2 + 4}}{2y}$$

Now to check $x \in (0,1)$, it suffices to check $0 < y - 2 + \sqrt{y^2 + 4} < 2y$. Now observe that $\sqrt{(2-y)^2} = \sqrt{y^2 - 4y + 4} < \sqrt{y^2 + 4} < \sqrt{y^2 + 4y + 4} = \sqrt{(y+2)^2}$ so

$$y - 2 + \sqrt{(2 - y)^2} < y - 2 + \sqrt{y^2 + 4} < y - 2 + \sqrt{(y + 2)^2}$$
$$0 < y - 2 + \sqrt{y^2 + 4} < y - 2 + y + 2 = 2y$$

So $x = \frac{y-2+\sqrt{y^2+4}}{2y}$ maps to y as required.

Hence, f is surjective.

(c) Hence prove that $|(0,1)| = |\mathbb{R}|$.

Solution:

Proof. From above, f is injective and surjective so f is a bijection between (0,1) and \mathbb{R} so $|(0,1)| = |\mathbb{R}|$.