Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

↑ Derivada de funções logarítmicas

1. Derive as funções abaixo.

(a)
$$f(x) = x \ln x - x$$
 (d) $y = \sqrt[3]{\ln x}$

(d)
$$y = \sqrt[3]{\ln x}$$

(g)
$$f(u) = \frac{u}{1 + \ln u}$$

(b)
$$f(x) = \text{sen}(\ln x)$$
 (e) $y = \ln(\sin^2 x)$

(e)
$$y = \ln(\sin^2 x)$$

(h)
$$y = 2x \log_{10} \sqrt{x}$$

(c)
$$y = \ln \sqrt{x}$$

(f)
$$f(t) = \ln(t\sqrt{t^2 - 1})$$

(i)
$$y = \log_5(xe^x)$$

2. Use a derivação logarítmica para achar a derivada da função.

(a)
$$y = (2x+1)^5(x^4-3)^6$$

(c)
$$y = x^{1/x^2}$$

(e)
$$y = (\operatorname{sen} x)^{\ln x}$$

(b)
$$y = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5}$$
 (d) $y = x^{\sin x}$

(d)
$$y = x^{\sin x}$$

(f)
$$y = (\ln x)^{\cos x}$$

↑ Derivada de ordens superiore

3. Calcule a derivada de segunda ordem $y'' = d^2y/dx^2$.

(a)
$$y = 7^x \operatorname{sen} x$$

(b)
$$y = x(2x+1)^4$$

(c)
$$y = \cos(\ln x)$$

4. O polinômio de Taylor de grau n de uma função f, classe \mathcal{C}^n , na vizinhança de um ponto $a \in Dom(f)$ é dado por

$$p_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n.$$

Calcule o polinômio de Taylor de grau 3 em torno de a quando:

(a)
$$f(x) = \sqrt[3]{x}$$
, $a = 1$ (b) $f(x) = e^x$, $a = 0$

(b)
$$f(x) = e^x$$
, $a = 0$

(c)
$$f(x) = \sin x, \ a = 0$$

∧ Regra de L'Hôspital

5. Encontre o limite. Use a regra de L'Hôspital quando for apropriado.

(a)
$$\lim_{x \to -1} \frac{x^4 - 1}{x + 1}$$

$$(d) \lim_{x \to 0} \frac{\sin x}{x^3}$$

(g)
$$\lim_{x \to 0^+} \sqrt{x} \ln x$$

$$(j) \lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

(b)
$$\lim_{x \to 1} \frac{x^9 - 1}{x^5 - 1}$$

(e)
$$\lim_{x \to \infty} \frac{\ln x}{x}$$

(a)
$$\lim_{x \to -1} \frac{x^4 - 1}{x + 1}$$
 (d) $\lim_{x \to 0} \frac{\sin x}{x^3}$ (g) $\lim_{x \to 0^+} \sqrt{x} \ln x$ (j) $\lim_{x \to 0} \frac{1 - \cos x}{x^2}$ (b) $\lim_{x \to 1} \frac{x^9 - 1}{x^5 - 1}$ (e) $\lim_{x \to \infty} \frac{\ln x}{x}$ (h) $\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$ (k) $\lim_{x \to 0} \frac{\sin x}{e^x}$ (c) $\lim_{x \to 0} \frac{e^x - 1}{\sin x}$ (f) $\lim_{x \to 0} 3x \operatorname{cossec} x$ (i) $\lim_{x \to 0} x \cot x$ (l) $\lim_{x \to -\infty} x^2 e^x$

(k)
$$\lim_{x \to 0} \frac{\sin x}{e^x}$$

(c)
$$\lim_{x \to 0} \frac{e^x - 1}{\sin x}$$

(f)
$$\lim_{x\to 0} 3x$$
 cossec x

(i)
$$\lim_{x\to 0} x \cot x$$

$$\lim_{x \to -\infty} x^2 e^x$$

6. Use a continuidade da função logaritmo e a regra de L'Hôspital para calcular os limites.

(a)
$$\lim_{x \to +\infty} (\cos x)^{1/x^2}$$

(b)
$$\lim_{x\to 0} (1-2x)^{1/x}$$

(c)
$$\lim_{x \to \infty} x^{1/x}$$

(a)
$$\lim_{x \to 0^+} (\cos x)^{1/x^2}$$
 (b) $\lim_{x \to 0} (1 - 2x)^{1/x}$ (c) $\lim_{x \to \infty} x^{1/x}$ (d) $\lim_{x \to 0^+} (\sin x)^{\tan x}$

7. Use a regra de L'Hôspital para demonstrar os quatro limites fundamentais do cálculo: $\lim_{x \to 0} \frac{\sin x}{x} = 1; \lim_{x \to 0} \frac{\cos x - 1}{x} = 0; \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \quad (a > 0); \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e.$

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. Data máxima de entrega: 10/12/2024 até 16:00 horas