Peak-Aware LSTM-CNN for Milan Internet Traffic Prediction

-This document is not used for poster, only demonstrating progress

Model Description: Peak-Aware LSTM-CNN

The proposed model is a **Peak-Aware LSTM-CNN** designed to predict urban internet traffic in Milan with fine-grained temporal and spatial resolution. It integrates convolutional, recurrent, and attention mechanisms with a custom loss to emphasize high-traffic periods.

The architecture processes two input streams: a **traffic volume sequence** ([Batch, 240, 30]) capturing 40 hours of historical data across 30 city grid squares, and a **temporal feature sequence** ([Batch, 240, 10]) encoding time-of-day, day-of-week, and calendar context.

A multi-scale CNN module with five parallel 1D convolution layers (kernel sizes 3 to 15) captures patterns ranging from quick spikes to extended daily cycles. These outputs are concatenated and fed into a **5-layer** bidirectional LSTM stack (512 hidden units per direction) to learn long-range temporal dependencies.

To focus on the most relevant time steps, the LSTM output is passed through a **multi-head self-attention mechanism** (16 heads × 32 dimensions). Simultaneously, the temporal input is projected into a 256-dimensional feature space via a dense layer. The attention and temporal features are **fused** through a linear layer, normalization, and dropout to form a unified representation.

A parallel **peak detector** branch classifies whether each time step represents a high-traffic period, with a peak-aware loss function (5× weighting on peaks) used during training to improve critical predictions.

Finally, the fused features are processed by **18 output heads**, grouped into three 1-hour segments, each predicting traffic volume for all 30 grid squares in 10-minute increments. The model outputs [Batch, 18, 30] shaped predictions with strong performance on metrics like $R^2 = 0.869$ and **71.1% directional accuracy**.

Output shape: [Batch, 18, 30] — 18 future time steps for 30 spatial grid squares

Parameters:

Core Architecture			
Parameter	Value	Description	
	enhanced_lst		
MODEL_TYPE	m	Enhanced LSTM-based architecture	
		Hidden size of the LSTM	
HIDDEN_DIM	512	(bidirectional = 1024)	
NUM_LAYERS	5	Number of stacked LSTM layers	
DROPOUT	0.15	Dropout rate between layers	
BIDIRECTIONAL	TRUE	Uses bidirectional LSTM	
		Predicts 3 hours ahead (18 × 10-	
PREDICTION_HORIZON	18	minute steps)	
SEQUENCE_LENGTH	240	Input sequence length (40 hours)	
Attention Config			
Parameter	Value	Description	
USE_ATTENTION	TRUE	Enables attention mechanism	
NUM_HEADS	16	Number of attention heads	
ATTENTION_DIM	512	Attention output dimensionality	
ATTENTION_LAYERS	2	Number of attention layers	
CNN Config			
Parameter	Value	Description	
USE_MULTI_SCALE	TRUE	Enables multi-scale convolution	
KERNEL_SIZES	[3,5,7,11,15]	Kernel sizes for different time scales	
Regularization			
Parameter	Value	Description	
USE_BATCH_NORM	TRUE	Applies batch normalization	
USE_LAYER_NORM	TRUE	Applies layer normalization	
USE_RESIDUAL_CONNECTI			
ONS	TRUE	Enables residual connections	
0.10	11102		

Peak Loss Config			
Parameter	Value	Description	
USE_PEAK_LOSS	TRUE	Applies extra weighting to peak-period errors	
PEAK_WEIGHT	5	Weight multiplier for peak errors	
PEAK_THRESHOLD_PERCENTILE	70	Defines peaks above the 70th percentile	
Loss Weights			
Loss Type	Weight	Description	
MSE	1	Mean Squared Error (primary loss)	
MAE	0.2	Mean Absolute Error (auxiliary loss)	
Directional Loss	0.1	Loss for directional trend accuracy	
Training Optimization			
Parameter	Value	Description	
BATCH_SIZE	16	Mini-batch size for training	
LEARNING_RATE	0.0001	Small learning rate for stability	
WEIGHT_DECAY	0.00001	L2 regularization strength	
	cosine_warm_re		
SCHEDULER_TYPE	start	Cosine annealing learning rate	
PATIENCE	50	Early stopping patience	
GRADIENT_CLIP_VALUE	0.3	Threshold for gradient clipping	

Model Architecture: Peak-Aware LSTM-CNN for Milan Internet Traffic Prediction

1. Traffic Input

Function: Feeds the main traffic data into the network.

Details: 240 time steps representing 40 hours of past internet activity across 30 of Milan's busiest

grid squares. All values are normalized.

Shape: [Batch, 240, 30]

3. Multi-Scale CNN Feature Extractor

Function: Captures temporal patterns at multiple scales.

Layers:

•Conv k=3: Detects quick spikes (~30 min)

•Conv k=5: Captures short-term transitions (~50 min)

•Conv k=7: Focuses on mid-range patterns (~70 min)

•Conv k=11: Models daily routines (~110 min)

•Conv k=15: Extracts long-term activities (~150 min)

Each convolution operates in parallel and processes the same traffic input. The outputs

are concatenated.

Output Shape: [Batch, 240, 256]

5. Bidirectional LSTM Stack ×5

Function: Learns long-range temporal dependencies from the concatenated features.

Details: 5 stacked Bi-LSTM layers with 512 hidden units each and dropout of 0.15. Bidirectional

to consider both past and future context. **Output Shape**: [Batch, 240, 1024]

7. Temporal Feature Processor

Function: Reduces and transforms the temporal input for fusion. **Details**: A dense layer maps [Batch, 240, 10] to [Batch, 240, 256].

9. Peak Detector (Auxiliary Branch)

Function: Identifies high-traffic periods to enhance learning.

Details: A binary classifier trained with a 5× weighted loss for samples in the 70th percentile or above. It operates only during training and influences the loss function.

Architecture:

 $Linear(1024 \rightarrow 512) \rightarrow ReLU \rightarrow Linear(256) \rightarrow ReLU \rightarrow Linear(1) \rightarrow Sigmoid$

11. Output Summary

•Final Output: 18 future time steps (10-min each) for 30 city grid squares

•Output Shape: [Batch, 18, 30]

•Used For: Real-time traffic forecasting, capacity planning, and peak anticipation.

2. Temporal Input

Function: Provides time-based context to the model.

Details: Includes engineered features such as hour/day/month (encoded as sin-cos), and binary indicators for weekends and

holidays.

Shape: [Batch, 240, 10]

4. Concatenation Layer

Function: Combines the outputs of all convolution branches into a single temporal feature sequence.

Output Shape: [Batch, 240, 256]

6. Multi-Head Self-Attention

Function: Allows the model to weigh different time steps differently based on their relevance.

Details: 16 attention heads, each 32 dimensions, with sinusoidal positional encoding.

Output Shape: [Batch, 240, 1024]

8. Feature Fusion

Function: Combines the outputs of the attention mechanism and the processed temporal features.

Details: Concatenates [1024 + 256] features, passes through a linear layer (1280 \Rightarrow 1024), ReLU activation,

LayerNorm, and Dropout (0.15). **Output Shape**: [Batch, 240, 1024]

10. Multi-Horizon Output Heads

Function: Generate traffic volume predictions across 18 future 10-minute intervals.

Structure: Three grouped outputs:
•Output 1–6: 0–60 min forecast
•Output 7–12: 60–120 min forecast
•Output 13–18: 120–180 min forecast

Each head:

 $Linear(1024 \rightarrow 512) \rightarrow ReLU \rightarrow Dropout(0.15) \rightarrow Linear(256) \rightarrow ReLU \rightarrow Linear(30)$

Output Shape: [Batch, 18, 30]

Enhanced Validation Set Analysis

