



## **Model Development Phase Template**

| Date          | 31 June 2024               |
|---------------|----------------------------|
| Team ID       | 739853                     |
| Project Title | Software Salary Prediction |
| Maximum Marks | 4 Marks                    |

## Initial Model Training Code, Model Validation and Evaluation Report

Initial Model Training Code, Model Validation and Evaluation Report The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots





```
Linear Regression Model

[34] reg= LinearRegression()
reg.fit(X_train,y_train)

* LinearRegression
LinearRegression()

[35] y_test_pred=reg.predict(X_test)
y_train_pred=reg.predict(X_train)

* train_r2 = r2_score(y_train, y_train_pred) * 100
print("Training R2",train_r2)

# Calculate and print the R2 score for the testing data
test_r2 = r2_score(y_test, y_test_pred) * 100
print("Testing R2" ",test_r2)

** Training R2 86.03987604146623
```

```
Random forest Model

orfr = RandomForestRegressor(n_estimators=100,random_state=42)
    rfr.fit(X_train,y_train)
    y_test_pred=rfr.predict(X_test)
    y_train_pred=rfr.predict(X_train)

train_r2 = r2_score(y_train, y_train_pred) * 100
    print("Training R²:",train_r2)
    #Calculate and print the R² score for the testing data
    test_r2 = r2_score(y_test, y_test_pred) * 100
    print("Testing R²",test_r2)

Training R²: 86.03987604146623
    Testing R² 0.19943667460349257
```





```
[31] xg_reg = xgb.XGBRegressor()
     xg_reg.fit(X_train,y_train)
<del>_</del>
                                         XGBRegressor
      XGBRegressor(base_score=None, booster=None, callbacks=None,
                    colsample_bylevel=None, colsample_bynode=None,
                    \verb|colsample_bytree=None|, device=None|, early_stopping_rounds=None|,
                  enable_categorical=False, eval_metric=None, feature_types=None,
  gamma=None, grow_policy=None, importance_type=None,
                    interaction_constraints=None, learning_rate=None, max_bin=None,
                    max_cat_threshold=None, max_cat_to_onehot=None,
                    max_delta_step=None, max_depth=None, max_leaves=None,
                    min_child_weight=None, missing=nan, monotone_constraints=None,
                    multi_strategy=None, n_estimators=None, n_jobs=None,
                    num_parallel_tree=None, random_state=None, ...)
[32] y_test_pred=xg_reg.predict(X_test)
     y_train_pred=xg_reg.predict(X_train)
[33]
     train_r2 = r2_score(y_train, y_train_pred) * 100
     print("Training R2:",train_r2)
     test_r2 = r2_score(y_test, y_test_pred) * 100
     print("Testing R2: ",test_r2)
```





## Decision tree for training data

```
y_train_pred = dtr.predict(X_train)
y_test_pred = dtr.predict(X_test)

r2_score(y_train, y_train_pred)*100
```

→ 99.88283394123113





## **Model Validation and Evaluation Report:**

|                   | F1     |
|-------------------|--------|
|                   | Scor e |
| Model             |        |
|                   |        |
|                   |        |
| Random Forest     | 0.607  |
|                   | 86%    |
| Decision Tree     |        |
| Decision free     |        |
|                   | 83%    |
|                   |        |
|                   |        |
| KNN               | 64%    |
|                   |        |
|                   |        |
| Gradient Boosting | 78%    |