Remark. Please be kindly reminded that there is no tutorial this week. We include this note only for the completeness.

Recall

Projection and decomposition in Banach spaces

Let X be a Banach space. A bounded linear operator $P: X \to X$ is called a *projection* if $P^2 = P$ (idempotent). For each projection P there is a decomposition $X = \text{Im}(P) \oplus \text{Ker}(P)$. A **closed** subspace M is called *complemented* if there exists a **closed** subspace N such that $X = M \oplus N$.

- { a closed subspace M is complemented } \iff { \exists projection P with Im(P) = M }.
- Any subspace of finite dimension is complemented.
- c_0 is not complemented in ℓ^{∞} , nor a dual space of any normed space.
- Let $Q: X \to X^{**}$, $\widetilde{Q}: X^* \to X^{***}$ be the canonical mappings and $Q^*: X^{***} \to X^*$ be the adjoint operator of Q, that is

Then $Q^*\widetilde{Q} = I_{X^*}$, where I_{X^*} denotes the identity map on X^* . Hence $P := \widetilde{Q}Q^*$ is a projection on X^{***} . This implies

$$X^{***} = \operatorname{Im}(P) \oplus \operatorname{Ker}(P) = \widetilde{Q}X^* \oplus (QX)^{\perp} \cong X^* \oplus X^{\perp}.$$

In particular, we have $(\ell^{\infty})^* = \ell^1 \oplus c_0^{\perp}$ by letting $X = c_0$.

• Suppose norms are considered on the direct sum and denote $X = Y \oplus_{\ell_1} Z$ if $X = Y \oplus Z$ and ||x|| = ||y|| + ||z|| for x = y + z, $y \in Y$, $z \in Z$. Then

$$(\ell^{\infty})^* = \ell^1 \oplus_{\ell_1} c_0^{\perp}.$$

Main content

Proposition 1. Let X, Y be Banach spaces and $T: X \to Y$ be a bounded linear operator. Then Im T is closed in Y if and only if there exists $C < \infty$ such that $d(x, \operatorname{Ker} T) \leq C \|Tx\|$ for $x \in X$.

Proof. Let $\pi: X \to X/\operatorname{Ker} T$ be the natural projection, that is,

$$X \xrightarrow{T} \operatorname{Im} T \subset Y$$

$$\downarrow^{\pi} \qquad \widetilde{T}$$

$$X/\operatorname{Ker} T$$

Define $\widetilde{T}: X/\operatorname{Ker} T \to \operatorname{Im} T$ canonically by $\widetilde{T}(\pi x) := Tx$ for $\pi x \in X/\operatorname{Ker} T$ and some $x \in X$. Then \widetilde{T} is well defined and injective.

(\Longrightarrow) Since X,Y are Banach spaces and $\operatorname{Im} T$ is closed, then $X/\operatorname{Ker} T$ and $\operatorname{Im} T$ are both Banach spaces. The Open Mapping Theorem implies that \widetilde{T}^{-1} is continuous, thus bounded. Hence $d(x,\operatorname{Ker} T)=\|\pi x\|\leq \|\widetilde{T}^{-1}\|\|Tx\|$.

(\iff) Since $\|\widetilde{T}^{-1}(Tx)\| = \|\pi x\| = d(x, \operatorname{Ker} T) \leq C\|Tx\|$, then \widetilde{T} is continuous. This implies that $\operatorname{Im} T$ is complete since $X/\operatorname{Ker} T$ is complete. Hence $\operatorname{Im} T$ is closed in Y.

Proposition 2. Let M be a closed subspace of a normed space X. Then X is complete if and only if M and X/M are both complete.

Proof. Let $\iota: M \to X$ be the natural inclusion and $\pi: X \to X/M$ be the natural projection, that is,

$$0 \longrightarrow M \stackrel{\iota}{\longrightarrow} X \stackrel{\pi}{\longrightarrow} X/M \longrightarrow 0.$$

 (\Longrightarrow) The proof of this direction is standard and omitted.

 (\Leftarrow) Let (x_n) be a Cauchy sequence in X. Then (πx_n) is a Cauchy sequence in X/M since $\|\pi x_n\| \leq \|x_n\|$. By the completeness of X/M, there exists $\pi x \in X/M$ for some $x \in X$ such that $\|\pi (x - x_n)\| = \|\pi x - \pi x_n\| \to 0$ as $n \to \infty$. Hence there exists a sequence (m_n) in M such that

$$||x_n - x - m_n|| \to 0.$$

This implies that (m_n) is a Cauchy sequence since (x_n) is Cauchy sequence. By the completeness of M, there exists $m \in M$ such that

$$||m-m_n||\to 0.$$

Hence

$$||x_n - (x+m)|| = ||x_n - x - m_n + m_n - m|| \le ||x_n - x - m_n|| + ||m_n - m|| \to 0$$

as $n \to \infty$, which means $x_n \xrightarrow{\|\cdot\|} x + m$ as $n \to \infty$.

Remark. A property P is called a three-space property if P satisfies a relationship like above. Recall that reflexitivity and separability are three-space properties.

Corollary 3. Let X, Y be Banach spaces and $T, K \in B(X, Y)$. If $\operatorname{Im} T$ is closed and $\operatorname{Im} K$ is finite dimensional, then $\operatorname{Im}(T+K)$ is closed.

Proof. Write $Z := \operatorname{Im}(T + K) = \operatorname{Im} T + \operatorname{Im} K$. Then Z is a normed space. Since $\operatorname{Im} T$ is closed in the Banach space Y, we have $\operatorname{Im} T$ is complete, thus closed in Z. It follows from $\dim(Z/\operatorname{Im} T) \leq \dim \operatorname{Im} K < \infty$ that $Z/\operatorname{Im} T$ is complete. Applying Proposition 2 to

$$0 \longrightarrow \operatorname{Im} T \xrightarrow{\iota} Z \xrightarrow{\pi} Z/\operatorname{Im} T \longrightarrow 0$$

shows that Z = Im(T + K) is complete, thus closed in Y.