

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B

Vår 2017

Løsningsforslag — Øving 9

Oppgaver fra boken:

10.1:13 Finn det største mulige domenet og den tilhørene verdimengden til funksjonen

$$f(x,y) = x^2 + y^2.$$

Finn også ligningene for nivåkurvene f(x,y)=c og de mulige verdiene av c.

Løsning:

Funksjonen er definert for alle x og y, så domenet er

$$\mathcal{D} = \mathbb{R}^2$$
.

Verdimengden er åpenbart

$$\mathcal{V} = [0, \infty).$$

Nivåkurvene til f er sirkler med sentrum i origo og radius \sqrt{c} . Altså, $x^2+y^2=c$ der $c\in\mathcal{V}$.

Figur 1 viser grafen av f over kvadratet $-1 \le x \le 1$, $-1 \le y \le 1$ og seks nivå-kurver tilsvarene c = i/5, $i = 1, \dots 6$.

Figur 1: Grafen av f og seks nivåkurver

10.1:18 Finn det største mulige domenet og den tilhørene verdimengden til funksjonen

$$f(x,y) = \frac{x+y}{x-y}.$$

Finn også ligningene for nivåkurvene f(x,y) = c og de mulige verdiene av c.

Funksjonen er definert for, og bare for, x og y slik at nevneren ikke er null. Dvs

$$\mathcal{D} = \{(x, y) \mid y \neq x\}.$$

Verdimengden er

$$\mathcal{V} = \mathbb{R}$$
.

Bevis:

La $r \in \mathbb{R}$. Vi må finne et punkt $(x, y) \in \mathcal{D}$ slik at f(x, y) = r. La x = r + 1 og y = r - 1. Da er $(x, y) \in \mathcal{D}$ fordi $x \neq y$ og

$$f(r+1,r-1) = \frac{r+1+r-1}{r+1-(r-1)} = r.$$

Ligningene for nivåkurvene er gitt ved

$$\frac{x+y}{x-y} = c.$$

Vi forsøker å finne en ligning på eksplisitt form:

$$\frac{x+y}{x-y} = c \quad \iff \quad x+y = cx - cy \quad \iff \quad y(1+c) = x(c-1),$$

så nivåkurven for c=-1 er gitt ved x=0 og for $c\neq -1$ er nivåkurvene gitt ved

$$y = \frac{c-1}{c+1}x.$$

Dvs. rette linjer gjennom origo. Figur 2 viser grafen av f på kvadratet $-10 \le x, y \le 10$ og

Figur 3: Nivåkurver til f

figur 3 viser sju nivåkurver til f på \mathcal{D} for $c = -3, \ldots, 3$.

Figur 2: Grafen av f

10.1:14 Finn det største mulige domenet og den tilhørene verdimengden til funksjonen

$$f(x,y) = \sqrt{9 - x^2 - y^2}$$

Finn også ligningene for nivåkurvene f(x,y) = c og de mulige verdiene av c.

Løsning:

Funksjonen er definert for, og bare for, x og y slik at $9 - x^2 - y^2 \ge 0$, så domenet er disken med sentrum i origo og radius 3:

$$\mathcal{D} = \{(x, y) \mid x^2 + y^2 \le 9\}.$$

fer størst når x^2+y^2 er minst mulig, dvs. $x^2+y^2=0.$ Og fer minst når x^2+y^2 er størst mulig, dvs. $x^2+y^2=9.$ Altså er verdimengden

$$V = [0, 3].$$

Figur 4: Grafen av f

Grafen av f (figur 4) er den øvre halvkulen med sentrum i origo og radius 3. Nivåkurvene til f er sirkler med sentrum i origo og radius $\sqrt{9-c^2}$ der $c \in \mathcal{V}$. I figur 5 ser vi fem

Figur 5: Nivåkurver til f

nivåkurver for f tilsvarene $c = i/2, i = 1, \dots 5$.

10.2:15 La $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ være gitt ved

$$f(x,y) = \frac{x^2 - 2y^2}{x^2 + y^2}.$$

Vis at

$$\lim_{(x,y)\to(0,0)} f(x,y)$$

ikke eksisterer ved å beregne grensen i origo langs den positive x-aksen og langs den positive y-aksen.

På x-aksen er y = 0 og

$$\lim_{x \to 0^{+}} f(x,0) = \lim_{x \to 0^{+}} \frac{x^{2}}{x^{2}}$$

$$= \lim_{x \to 0^{+}} 1$$

$$= 1,$$

men på y-aksen er x = 0 og

$$\lim_{y \to 0^+} f(0, y) = \lim_{y \to 0^+} \frac{-2y^2}{y^2}$$

$$= \lim_{y \to 0^+} -2$$

$$= -2$$

$$\neq 1 = \lim_{x \to 0^+} f(x, 0).$$

Dvs. $\lim_{(x,y)\to(0,0)} f(x,y)$ eksisterer ikke.

10.2:19 La f være gitt ved

$$f(x,y) = \frac{2xy}{x^3 + yx}.$$

Beregn grensen av f(x,y) i origo langs de rette linjene y=mx for $m \neq 0$ og langs parabol $y=x^2$. Hva kan du konkludere i forhold til eksistens av

$$\lim_{(x,y)\to(0,0)} f(x,y)?$$

Løsning:

La $m \neq 0$. På linjen y = mx er funksjonsverdien gitt ved

$$f(x,y) = f(x,mx)$$

$$= \frac{2mx^2}{x^3 + mx^2}$$

$$= \frac{2m}{x+m}$$

når $x \neq 0$, så

$$\lim_{x \to 0} f(x, mx) = \lim_{x \to 0} \frac{2m}{x+m}$$
$$= 2$$

Fordi $\lim_{(x,y)\to(0,0)}y=mx=0$ og $\lim_{(x,y)\to(0,0)}\frac{2xy}{x^3+yx}=2$ langs linje y=mx, og $0\neq 2$, dermed kan $\lim_{(x,y)\to(0,0)}f(x,y)$ ikke eksistere. Altså avhenger grenseverdien, langs rette linjer inn mot origo, av retningen på linjene og grenseverdien $\lim_{(x,y)\to(0,0)}f(x,y)$ kan dermed ikke eksistere.

Vi sjekker $\lim_{(x,y)\to(0,0)} f(x,y)$ langs parabol $y=x^2$ nå. På parabolen $y=x^2$ er funksjonsverdien gitt ved

$$f(x,y) = f(x,x)$$

$$= \frac{2mx^3}{x^3 + mx^3}$$

$$= \frac{2m}{m+m} = \frac{2m}{2m} = 1$$

 $\dot{\mathrm{sa}}$

$$\lim_{x \to 0} f(x, x^2) = \lim_{x \to 0} \frac{2m}{2m} = 2$$

Fordi $\lim_{(x,y)\to(0,0)} y = x^2 = 0$ og $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^3+yx} = 1$ langs parabolen $y = x^2$, og $0 \neq 1$, dermed kan $\lim_{(x,y)\to(0,0)} f(x,y)$ ikke eksistere.

10.2:32 Tegn en lukket disk, \mathcal{D} , i x, y-planet med radius 3 og sentrum i (2,0) og gi en matematisk beskrivelse av denne mengden.

Løsning:

Et punkt (x, y) ligger i denne disken hvis og bare hvis avstanden mellom (x, y) og (2,0) er mindre eller lik 3. Dvs. hvis og bare hvis $\sqrt{(x-2)^2 + y^2} \leq 3$. Mengden \mathcal{D} kan altså beskrives som

$$\mathcal{D} = \left\{ (x, y) \in \mathbb{R}^2 \middle| \sqrt{(x-2)^2 + y^2} \le 3 \right\}.$$

Figur 6 viser området $\mathcal{D} \subseteq \mathbb{R}^2$.

 $\boxed{10.3:1}$ Finn funksjonene $\frac{\partial f}{\partial x}$ og $\frac{\partial f}{\partial y}$ når

$$f(x,y) = x^2y + xy^2.$$

Figur 6: Området \mathcal{D}

Løsning:

$$\frac{\partial f}{\partial x}(x,y) = 2xy + y^2.$$
$$\frac{\partial f}{\partial y}(x,y) = x^2 + 2xy.$$

10.3:6 Finn funksjonene $\frac{\partial f}{\partial x}$ og $\frac{\partial f}{\partial y}$ når

$$f(x,y) = \tan(x - 2y).$$

$$\frac{\partial f}{\partial x}(x,y) = \frac{1}{\cos^2(x-2y)}.$$
$$\frac{\partial f}{\partial y}(x,y) = -\frac{2}{\cos^2(x-2y)}.$$

10.3:13 Finn funksjonene $\frac{\partial f}{\partial x}$ og $\frac{\partial f}{\partial y}$ når

$$f(x,y) = \ln(2x + y).$$

Løsning:

$$\frac{\partial f}{\partial x}(x,y) = \frac{2}{2x+y}.$$
$$\frac{\partial f}{\partial y}(x,y) = \frac{1}{2x+y}.$$

 $\boxed{10.3:14}$ Finn funksjonene $\frac{\partial f}{\partial x}$ og $\frac{\partial f}{\partial y}$ når

$$f(x,y) = \ln(3x^2 - xy).$$

Løsning:

$$\frac{\partial f}{\partial x}(x,y) = \frac{6x - y}{3x^2 - xy}.$$

$$\frac{\partial f}{\partial y}(x,y) = -\frac{x}{3x^2 - xy}.$$

$$f(x,y) = x^{1/3}y - xy^{1/3}.$$

Løsning:

$$\frac{\partial f}{\partial y}(x,y) = x^{1/3} - \frac{1}{3}xy^{-2/3},$$

 ${så}$

$$\frac{\partial f}{\partial y}(1,1) = 1^{1/3} - \frac{1}{3}1 \cdot 1^{-2/3} = \frac{2}{3}.$$

 $\fbox{10.3:24}$ Finn $\frac{\partial f}{\partial u}(2,1)$ når

$$f(u, v) = e^{u^2/2} \ln(u + v).$$

$$\frac{\partial f}{\partial u}(u, v) = ue^{u^2/2} \ln(u + v) + e^{u^2/2} \frac{1}{u + v}$$
$$= e^{u^2/2} \left(u \ln(u + v) + \frac{1}{u + v} \right)$$

 $\dot{\mathrm{sa}}$

$$\frac{\partial f}{\partial u}(2,1) = e^2 \left(2\ln 3 + \frac{1}{3} \right).$$

10.3:33 Finn funksjonene $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ og $\frac{\partial f}{\partial z}$ når

$$f(x, y, z) = x^3 y^2 z + \frac{x}{yz}.$$

Løsning:

$$\begin{split} \frac{\partial f}{\partial x}(x,y) &= 3x^2y^2z + \frac{1}{yz},\\ \frac{\partial f}{\partial y}(x,y) &= 2x^3yz - \frac{x}{y^2z},\\ \frac{\partial f}{\partial z}(x,y) &= x^3y^2 - \frac{x}{yz^2}. \end{split}$$

 $\fbox{10.3:41}$ Finn funksjonen $\frac{\partial^2 f}{\partial y \partial x}$ når

$$f(x,y) = xe^y.$$

Løsning:

$$\frac{\partial f}{\partial x}(x,y) = e^y,$$

 $\dot{\mathrm{sa}}$

$$\frac{\partial^2 f}{\partial y \partial x}(x, y) = \frac{\partial}{\partial y} e^y$$
$$= e^y$$

 $\boxed{10.3:42}$ Finn funksjonen $\frac{\partial^2 f}{\partial y \partial x}$ når

$$f(x,y) = \sin(x - y).$$

$$\frac{\partial f}{\partial x}(x,y) = \cos(x-y),$$

 ${\rm s}\mathring{\rm a}$

$$\frac{\partial^2 f}{\partial y \partial x}(x, y) = \frac{\partial}{\partial y} \cos(x - y)$$
$$= -\sin(x - y) \cdot (-1)$$
$$= \sin(x - y).$$