```
In [82]: import numpy as np
         import pandas as pd
         import matplotlib as mpl
         import matplotlib.pyplot as plt
         from matplotlib.animation import FuncAnimation
         from sklearn.datasets import load boston
         from sklearn.metrics import mean squared error
         from sklearn.model selection import train test split
         from sklearn.preprocessing import MinMaxScaler
In [44]: #loading the Dataset
         boston=load boston()
         print(boston.DESCR)
         Boston House Prices dataset
         ______
         Notes
         Data Set Characteristics:
             :Number of Instances: 506
             :Number of Attributes: 13 numeric/categorical predictive
             :Median Value (attribute 14) is usually the target
             :Attribute Information (in order):
                 - CRIM
                           per capita crime rate by town
                 - ZN
                           proportion of residential land zoned for lots over 2
         5,000 sq.ft.
                           proportion of non-retail business acres per town
                 - INDUS
                           Charles River dummy variable (= 1 if tract bounds ri
                 - CHAS
```

ver; 0 otherwise) - NOX nitric oxides concentration (parts per 10 million) average number of rooms per dwelling - RM proportion of owner-occupied units built prior to 19 - AGE 40 - DIS weighted distances to five Boston employment centres - RAD index of accessibility to radial highways - TAX full-value property-tax rate per \$10,000 - PTRATIO pupil-teacher ratio by town - B 1000(Bk - 0.63)^2 where Bk is the proportion of blac ks by town % lower status of the population - LSTAT MEDV Median value of owner-occupied homes in \$1000's

:Missing Attribute Values: None

:Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset. http://archive.ics.uci.edu/ml/datasets/Housing

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedoni c prices and the demand for clean air', J. Environ. Economics & Managemen t, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagn ostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning pape rs that address regression problems.

References

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influe ntial Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
 - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)

Out[45]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386
10	0.22489	12.5	7.87	0.0	0.524	6.377	94.3	6.3467	5.0	311.0	15.2	392
11	0.11747	12.5	7.87	0.0	0.524	6.009	82.9	6.2267	5.0	311.0	15.2	396
12	0.09378	12.5	7.87	0.0	0.524	5.889	39.0	5.4509	5.0	311.0	15.2	390

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
13	0.62976	0.0	8.14	0.0	0.538	5.949	61.8	4.7075	4.0	307.0	21.0	396
14	0.63796	0.0	8.14	0.0	0.538	6.096	84.5	4.4619	4.0	307.0	21.0	380
15	0.62739	0.0	8.14	0.0	0.538	5.834	56.5	4.4986	4.0	307.0	21.0	395
16	1.05393	0.0	8.14	0.0	0.538	5.935	29.3	4.4986	4.0	307.0	21.0	386
17	0.78420	0.0	8.14	0.0	0.538	5.990	81.7	4.2579	4.0	307.0	21.0	386
18	0.80271	0.0	8.14	0.0	0.538	5.456	36.6	3.7965	4.0	307.0	21.0	288
19	0.72580	0.0	8.14	0.0	0.538	5.727	69.5	3.7965	4.0	307.0	21.0	390
20	1.25179	0.0	8.14	0.0	0.538	5.570	98.1	3.7979	4.0	307.0	21.0	376
21	0.85204	0.0	8.14	0.0	0.538	5.965	89.2	4.0123	4.0	307.0	21.0	392
22	1.23247	0.0	8.14	0.0	0.538	6.142	91.7	3.9769	4.0	307.0	21.0	396
23	0.98843	0.0	8.14	0.0	0.538	5.813	100.0	4.0952	4.0	307.0	21.0	394
24	0.75026	0.0	8.14	0.0	0.538	5.924	94.1	4.3996	4.0	307.0	21.0	394
25	0.84054	0.0	8.14	0.0	0.538	5.599	85.7	4.4546	4.0	307.0	21.0	303
26	0.67191	0.0	8.14	0.0	0.538	5.813	90.3	4.6820	4.0	307.0	21.0	376
27	0.95577	0.0	8.14	0.0	0.538	6.047	88.8	4.4534	4.0	307.0	21.0	306
28	0.77299	0.0	8.14	0.0	0.538	6.495	94.4	4.4547	4.0	307.0	21.0	387
29	1.00245	0.0	8.14	0.0	0.538	6.674	87.3	4.2390	4.0	307.0	21.0	380
476	4.87141	0.0	18.10	0.0	0.614	6.484	93.6	2.3053	24.0	666.0	20.2	396
477	15.02340	0.0	18.10	0.0	0.614	5.304	97.3	2.1007	24.0	666.0	20.2	349
478	10.23300	0.0	18.10	0.0	0.614	6.185	96.7	2.1705	24.0	666.0	20.2	379
479	14.33370	0.0	18.10	0.0	0.614	6.229	88.0	1.9512	24.0	666.0	20.2	383

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
480	5.82401	0.0	18.10	0.0	0.532	6.242	64.7	3.4242	24.0	666.0	20.2	396
481	5.70818	0.0	18.10	0.0	0.532	6.750	74.9	3.3317	24.0	666.0	20.2	393
482	5.73116	0.0	18.10	0.0	0.532	7.061	77.0	3.4106	24.0	666.0	20.2	395
483	2.81838	0.0	18.10	0.0	0.532	5.762	40.3	4.0983	24.0	666.0	20.2	392
484	2.37857	0.0	18.10	0.0	0.583	5.871	41.9	3.7240	24.0	666.0	20.2	370
485	3.67367	0.0	18.10	0.0	0.583	6.312	51.9	3.9917	24.0	666.0	20.2	388
486	5.69175	0.0	18.10	0.0	0.583	6.114	79.8	3.5459	24.0	666.0	20.2	392
487	4.83567	0.0	18.10	0.0	0.583	5.905	53.2	3.1523	24.0	666.0	20.2	388
488	0.15086	0.0	27.74	0.0	0.609	5.454	92.7	1.8209	4.0	711.0	20.1	395
489	0.18337	0.0	27.74	0.0	0.609	5.414	98.3	1.7554	4.0	711.0	20.1	344
490	0.20746	0.0	27.74	0.0	0.609	5.093	98.0	1.8226	4.0	711.0	20.1	318
491	0.10574	0.0	27.74	0.0	0.609	5.983	98.8	1.8681	4.0	711.0	20.1	390
492	0.11132	0.0	27.74	0.0	0.609	5.983	83.5	2.1099	4.0	711.0	20.1	396
493	0.17331	0.0	9.69	0.0	0.585	5.707	54.0	2.3817	6.0	391.0	19.2	396
494	0.27957	0.0	9.69	0.0	0.585	5.926	42.6	2.3817	6.0	391.0	19.2	396
495	0.17899	0.0	9.69	0.0	0.585	5.670	28.8	2.7986	6.0	391.0	19.2	393
496	0.28960	0.0	9.69	0.0	0.585	5.390	72.9	2.7986	6.0	391.0	19.2	396
497	0.26838	0.0	9.69	0.0	0.585	5.794	70.6	2.8927	6.0	391.0	19.2	396
498	0.23912	0.0	9.69	0.0	0.585	6.019	65.3	2.4091	6.0	391.0	19.2	396
499	0.17783	0.0	9.69	0.0	0.585	5.569	73.5	2.3999	6.0	391.0	19.2	395
500	0.22438	0.0	9.69	0.0	0.585	6.027	79.7	2.4982	6.0	391.0	19.2	396
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396

506 rows × 13 columns

Out[46]:

	target
0	24.0
1	21.6
2	34.7
3	33.4
4	36.2
5	28.7
6	22.9
7	27.1
8	16.5
9	18.9
10	15.0
11	18.9

	targe
12	21.7
13	20.4
14	18.2
15	19.9
16	23.1
17	17.5
18	20.2
19	18.2
20	13.6
21	19.6
22	15.2
23	14.5
24	15.6
25	13.9
26	16.6
27	14.8
28	18.4
29	21.0
476	16.7
477	12.0
478	14.6

479 21.4 480 23.0 481 23.7 482 25.0 483 21.8 484 20.6 485 21.2 486 19.1 487 20.6 488 15.2 489 7.0 490 8.1 491 13.6 492 20.1 493 21.8 494 24.5 495 23.1 496 19.7 497 18.3 498 21.2 499 17.5 500 16.8		1
480 23.0 481 23.7 482 25.0 483 21.8 484 20.6 485 21.2 486 19.1 487 20.6 488 15.2 489 7.0 490 8.1 491 13.6 492 20.1 493 21.8 494 24.5 495 23.1 496 19.7 497 18.3 498 21.2 499 17.5		targe
481 23.7 482 25.0 483 21.8 484 20.6 485 21.2 486 19.1 487 20.6 488 15.2 489 7.0 490 8.1 491 13.6 492 20.1 493 21.8 494 24.5 495 23.1 496 19.7 497 18.3 498 21.2 499 17.5	479	21.4
482 25.0 483 21.8 484 20.6 485 21.2 486 19.1 487 20.6 488 15.2 489 7.0 490 8.1 491 13.6 492 20.1 493 21.8 494 24.5 495 23.1 496 19.7 497 18.3 498 21.2 499 17.5	480	23.0
483 21.8 484 20.6 485 21.2 486 19.1 487 20.6 488 15.2 490 8.1 491 13.6 492 20.1 493 21.8 494 24.5 495 23.1 496 19.7 497 18.3 498 21.2 499 17.5	481	23.7
48420.648521.248619.148720.648815.24897.04908.149113.649220.149321.849424.549523.149619.749718.349821.249917.5	482	25.0
485 21.2 486 19.1 487 20.6 488 15.2 489 7.0 490 8.1 491 13.6 492 20.1 493 21.8 494 24.5 495 23.1 496 19.7 497 18.3 498 21.2 499 17.5	483	21.8
486 19.1 487 20.6 488 15.2 489 7.0 490 8.1 491 13.6 492 20.1 493 21.8 494 24.5 495 23.1 496 19.7 497 18.3 498 21.2 499 17.5	484	20.6
487 20.6 488 15.2 489 7.0 490 8.1 491 13.6 492 20.1 493 21.8 494 24.5 495 23.1 496 19.7 497 18.3 498 21.2 499 17.5	485	21.2
48815.24897.04908.149113.649220.149321.849424.549523.149619.749718.349821.249917.5	486	19.1
4897.04908.149113.649220.149321.849424.549523.149619.749718.349821.249917.5	487	20.6
4908.149113.649220.149321.849424.549523.149619.749718.349821.249917.5	488	15.2
49113.649220.149321.849424.549523.149619.749718.349821.249917.5	489	7.0
 492 20.1 493 21.8 494 24.5 495 23.1 496 19.7 497 18.3 498 21.2 499 17.5 	490	8.1
 493 21.8 494 24.5 495 23.1 496 19.7 497 18.3 498 21.2 499 17.5 	491	13.6
494 24.5 495 23.1 496 19.7 497 18.3 498 21.2 499 17.5	492	20.1
495 23.1 496 19.7 497 18.3 498 21.2 499 17.5	493	21.8
496 19.7497 18.3498 21.2499 17.5	494	24.5
497 18.3 498 21.2 499 17.5	495	23.1
498 21.2 499 17.5	496	19.7
499 17.5	497	18.3
	498	21.2
500 16.8	499	17.5
	500	16.8

	target
501	22.4
502	20.6
503	23.9
504	22.0
505	11.9

506 rows × 1 columns

Out[47]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386
10	0.22489	12.5	7.87	0.0	0.524	6.377	94.3	6.3467	5.0	311.0	15.2	392
11	0.11747	12.5	7.87	0.0	0.524	6.009	82.9	6.2267	5.0	311.0	15.2	396
12	0.09378	12.5	7.87	0.0	0.524	5.889	39.0	5.4509	5.0	311.0	15.2	390
13	0.62976	0.0	8.14	0.0	0.538	5.949	61.8	4.7075	4.0	307.0	21.0	396
14	0.63796	0.0	8.14	0.0	0.538	6.096	84.5	4.4619	4.0	307.0	21.0	380
15	0.62739	0.0	8.14	0.0	0.538	5.834	56.5	4.4986	4.0	307.0	21.0	395
16	1.05393	0.0	8.14	0.0	0.538	5.935	29.3	4.4986	4.0	307.0	21.0	386
17	0.78420	0.0	8.14	0.0	0.538	5.990	81.7	4.2579	4.0	307.0	21.0	386
18	0.80271	0.0	8.14	0.0	0.538	5.456	36.6	3.7965	4.0	307.0	21.0	288
19	0.72580	0.0	8.14	0.0	0.538	5.727	69.5	3.7965	4.0	307.0	21.0	390
20	1.25179	0.0	8.14	0.0	0.538	5.570	98.1	3.7979	4.0	307.0	21.0	376
21	0.85204	0.0	8.14	0.0	0.538	5.965	89.2	4.0123	4.0	307.0	21.0	392
22	1.23247	0.0	8.14	0.0	0.538	6.142	91.7	3.9769	4.0	307.0	21.0	396
23	0.98843	0.0	8.14	0.0	0.538	5.813	100.0	4.0952	4.0	307.0	21.0	394
24	0.75026	0.0	8.14	0.0	0.538	5.924	94.1	4.3996	4.0	307.0	21.0	394
25	0.84054	0.0	8.14	0.0	0.538	5.599	85.7	4.4546	4.0	307.0	21.0	303
26	0.67191	0.0	8.14	0.0	0.538	5.813	90.3	4.6820	4.0	307.0	21.0	376
27	0.95577	0.0	8.14	0.0	0.538	6.047	88.8	4.4534	4.0	307.0	21.0	306

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
28	0.77299	0.0	8.14	0.0	0.538	6.495	94.4	4.4547	4.0	307.0	21.0	387
29	1.00245	0.0	8.14	0.0	0.538	6.674	87.3	4.2390	4.0	307.0	21.0	380
476	4.87141	0.0	18.10	0.0	0.614	6.484	93.6	2.3053	24.0	666.0	20.2	396
477	15.02340	0.0	18.10	0.0	0.614	5.304	97.3	2.1007	24.0	666.0	20.2	349
478	10.23300	0.0	18.10	0.0	0.614	6.185	96.7	2.1705	24.0	666.0	20.2	379
479	14.33370	0.0	18.10	0.0	0.614	6.229	88.0	1.9512	24.0	666.0	20.2	383
480	5.82401	0.0	18.10	0.0	0.532	6.242	64.7	3.4242	24.0	666.0	20.2	396
481	5.70818	0.0	18.10	0.0	0.532	6.750	74.9	3.3317	24.0	666.0	20.2	393
482	5.73116	0.0	18.10	0.0	0.532	7.061	77.0	3.4106	24.0	666.0	20.2	395
483	2.81838	0.0	18.10	0.0	0.532	5.762	40.3	4.0983	24.0	666.0	20.2	392
484	2.37857	0.0	18.10	0.0	0.583	5.871	41.9	3.7240	24.0	666.0	20.2	370
485	3.67367	0.0	18.10	0.0	0.583	6.312	51.9	3.9917	24.0	666.0	20.2	388
486	5.69175	0.0	18.10	0.0	0.583	6.114	79.8	3.5459	24.0	666.0	20.2	392
487	4.83567	0.0	18.10	0.0	0.583	5.905	53.2	3.1523	24.0	666.0	20.2	388
488	0.15086	0.0	27.74	0.0	0.609	5.454	92.7	1.8209	4.0	711.0	20.1	395
489	0.18337	0.0	27.74	0.0	0.609	5.414	98.3	1.7554	4.0	711.0	20.1	344
490	0.20746	0.0	27.74	0.0	0.609	5.093	98.0	1.8226	4.0	711.0	20.1	318
491	0.10574	0.0	27.74	0.0	0.609	5.983	98.8	1.8681	4.0	711.0	20.1	390
492	0.11132	0.0	27.74	0.0	0.609	5.983	83.5	2.1099	4.0	711.0	20.1	396
493	0.17331	0.0	9.69	0.0	0.585	5.707	54.0	2.3817	6.0	391.0	19.2	396
494	0.27957	0.0	9.69	0.0	0.585	5.926	42.6	2.3817	6.0	391.0	19.2	396

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
495	0.17899	0.0	9.69	0.0	0.585	5.670	28.8	2.7986	6.0	391.0	19.2	393
496	0.28960	0.0	9.69	0.0	0.585	5.390	72.9	2.7986	6.0	391.0	19.2	396
497	0.26838	0.0	9.69	0.0	0.585	5.794	70.6	2.8927	6.0	391.0	19.2	396
498	0.23912	0.0	9.69	0.0	0.585	6.019	65.3	2.4091	6.0	391.0	19.2	396
499	0.17783	0.0	9.69	0.0	0.585	5.569	73.5	2.3999	6.0	391.0	19.2	395
500	0.22438	0.0	9.69	0.0	0.585	6.027	79.7	2.4982	6.0	391.0	19.2	396
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396

506 rows × 14 columns

In [49]: #describe option is used to provide a statistical description of the da taset

#round(decimals=2) is used to set the precision

df.describe().round(decimals=2)

Out[49]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRA
count	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.0
mean	3.59	11.36	11.14	0.07	0.55	6.28	68.57	3.80	9.55	408.24	18.46
std	8.60	23.32	6.86	0.25	0.12	0.70	28.15	2.11	8.71	168.54	2.16
min	0.01	0.00	0.46	0.00	0.38	3.56	2.90	1.13	1.00	187.00	12.60

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTR#
25%	0.08	0.00	5.19	0.00	0.45	5.89	45.02	2.10	4.00	279.00	17.40
50%	0.26	0.00	9.69	0.00	0.54	6.21	77.50	3.21	5.00	330.00	19.05
75%	3.65	12.50	18.10	0.00	0.62	6.62	94.07	5.19	24.00	666.00	20.20
max	88.98	100.00	27.74	1.00	0.87	8.78	100.00	12.13	24.00	711.00	22.00

In [50]: corr=df.corr('pearson') #taking the abs value of the co relations using list comprehension # this corrs has all the co relations wrt the target column #df is a matrix. corrs=[abs(corr[attr]['target']) for attr in list(features)] #making a list of tuple pairs having tuples in the form of (corrs, featu res) l=list(zip(corrs, list(features))) #sort the list in desc order with the co realtion value as the key for sorting. l.sort(key= lambda x:x[0],reverse=True) #We have to unzip the co realtion and features pair #zip(*l) is used to take the list in form of [[a,b,c],[d,e,f],[g,h,i]] # returns a list of[[a,d,g],[b,e,h],[c,f,i]] corrs, labels = list(zip((*l))) #plotting the co realtions as bargraph with respect to the target index = np.arange(len(labels)) #arrange is used to provide a range of v alues within a given range plt.figure(figsize=(15,5))

```
plt.bar(index,corrs,width=0.5)
          plt.xlabel('Attributes')
          plt.ylabel('Co-relation with target variable')
          plt.xticks(index,labels)
          plt.show()
          Co-relation 0.3
           0.1
                     RM PTRATIO INDUS
                                     TAX
                                                CRIM
                                                Attributes
In [51]: #Data Preprocessing
          #data normalisation
         X=df['LSTAT'].values
          Y=df['target'].values
In [52]: print(X[:5])
          [4.98 9.14 4.03 2.94 5.33]
In [53]: x_scaler=MinMaxScaler()
          X = x_scaler.fit_transform(X.reshape(-1,1))
          X = X[:, -1]
```

```
y scaler=MinMaxScaler()
         Y=y scaler.fit transform(Y.reshape(-1,1))
         Y = Y[:, -1]
In [54]: #error function or cost Function
         def error(m,x,c,t):
             N=x.size
             e=sum(((m*x + c)-t) ** 2)
             return e^*(1/2*N)
In [56]: #Spliting the dataset
         xtrain, xtest, ytrain, ytest = train test split(X,Y,test size=0.2)
         #0.2 refers to the 20 % of the values in the dataset chosen randomly
In [69]: #update function to be used inside the gradient descent
         def update(m,x,c,t,learning rate):
             grad m = sum(2*((m*x+c)-t)*x)
             grad c=sum(2*((m*x+c)-t))
             m=m-grad m*learning rate
             c=c-grad c*learning rate
             return m.c
In [70]: #init m is the initial estimate of m and init c is the initial estimate
          of the c
         #error threshold is the threshold value below which the gradient descen
         t must stop
         def gradient descent(init m,init c,x,t,learning rate,iterations,error t
         hreshold):
             m=init m
             c=init c
             error values=list()
             mc values=list()
             for i in range(iterations):
                 e=error(m,x,c,t)
                 if e < error threshold:</pre>
                     print('Error less than the threshold. Stopping Gradient Des
         cent...')
```

```
break
                 error values.append(e)
                 m, c=update(m,x,c,t,learning_rate)
                 mc values.append((m,c))
             return m,c,error values,mc values
In [72]: #setting the initial values
         init m=0.9
         init c=0
         learning rate=0.001
         iterations=250
         error threshold=0.001
         m,c,error values,mc values=gradient descent(init m,init c,xtrain,ytrain
         ,learning rate,iterations,error threshold)
In [77]: #visualising the training
         #AS the number of iterations increases the changes made in the line are
          less noticable, this also consumes more CPU time
         #take some small interval of data, slecting every 5th value
         mc_values_anim=mc_values[0:250:5]
In [ ]:
In [88]: #visualsing the the egression line
         plt.scatter(xtrain,ytrain,color='b')
         plt.plot(xtrain,(m*xtrain+c),color='black')
Out[88]: [<matplotlib.lines.Line2D at 0x1c22ecb9a20>]
```



```
In [89]: #plotting the error values against the no of iterations
  plt.plot(np.arange(len(error_values)),error_values)
   plt.ylabel('Error')
  plt.xlabel('Iterations')
```

Out[89]: Text(0.5,0,'Iterations')


```
In [90]: #calculate the operations on the test set as a vectorized operation
         predicted=(m*xtest)+c
In [91]: #calculate MSE for the predicted value on the training set
         mean squared error(ytest,predicted)
Out[91]: 0.019324299194478884
In [92]: #put xtest ytest and predicted values into a single dataframe so that w
         e can see the predicted values alonside the testing set
         p=pd.DataFrame(list(zip(xtest,ytest,predicted)),columns=['x','target y'
         ,'predicted y'])
         p.head()#returns top n rows 5 defeault
Out[92]:
                            predicted y
                     target_y
          0 0.161976 0.557778 0.494405
          1 0.042219 1.000000 0.586073
          2 0.476821 0.171111 0.253405
          3 0.354857 0.268889 0.346763
          4 0.613962 0.317778 0.148429
In [93]: plt.scatter(xtest,ytest,color='b')
         plt.plot(xtest,predicted,color='r')
Out[93]: [<matplotlib.lines.Line2D at 0x1c22b69db38>]
```


x | target_y | predicted_y

	x	target_y	predicted_y		
0	7.60	30.1	27.25		
1	3.26	50.0	31.37		
2	19.01	12.7	16.40		
3	14.59	17.1	20.60		
4	23.98	19.3	11.68		
5	30.63	8.8	5.36		
6	26.40	17.2	9.38		
7	17.09	18.7	18.23		
8	5.49	32.7	29.25		
9	5.70	28.7	29.05		