

SINUS & FREUNDE

Fragen?

6AGA HHAG Hührerhaf AG T 1 7 sir cas four cat

* Werte von Sinus am Dreieck. Was ist $\sin(\underline{45}^{\circ}) = \sin(\frac{\pi}{4})$? Bestimmen Sie den Wert durch Überlegung an einem geeigneten Dreieck im Einheitskreis!)

Lösung.

Pythogoras:
$$cas^{2}(45^{\circ}) + sin^{2}(45^{\circ}) = 1^{2}$$
 $\Rightarrow 2 sin^{2}(45^{\circ}) = 1$
 $\Rightarrow sin(45^{\circ}) = \pm \frac{1}{42} = \frac{1}{42}$

Winkel α (Grad)	0°	30°	45°	60°	90°	180°	270°	360°
Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
Sinus	$\frac{1}{2}\sqrt{\color{red}{0}}=0$	$\frac{1}{2}\sqrt{1}=\frac{1}{2}$	$\frac{1}{2}\sqrt{2} = \frac{1}{\sqrt{2}}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{4}=1$	0	-1	0
Kosinus	$\frac{1}{2}\sqrt{4}=1$	$\frac{1}{2}\sqrt{\color{red}{3}}$	$\frac{1}{2}\sqrt{2} = \frac{1}{\sqrt{2}}$	$\frac{1}{2}\sqrt{1\over 2}=\frac{1}{2}$	$\frac{1}{2}\sqrt{\color{red}{0}}=0$	-1	0	1

* Sinus skizzieren. Skizzieren Sie

$$f(x) = 2 \cdot \sin(3x - \frac{\pi}{6}) = 2 \cdot \sin(3(x - \frac{\pi}{18}))$$

Geben Sie alle lokalen Maxima/Minima, sowie alle NST und die Periode/Amplitude an.

Lösung.

mit linearen Transformationen (si else Übuy "Funtionen")

Max:
$$\frac{T}{18} + \frac{1}{5} = \frac{2\pi}{3} + \frac{2\pi}{3}$$
, eeZ

$$NST: \frac{\pi}{4} + k \cdot \frac{\pi}{2} + k \cdot \pi$$

ODER: Bei sinus/Kosinur direct mit Dentung der Parameter:

2 Sim $(3 \times -\frac{\pi}{6})$ Amplitude Winkelpodro. Phosenvoschickuy

Priorde $\frac{2\pi}{3}$ The start x-West: $\frac{\pi}{6}$ Max: $\frac{\pi}{18} + \frac{1}{4} \cdot \frac{2\pi}{3} + \frac{1}{4} \cdot \frac{2\pi}{3}$ Mox : $\frac{\pi}{18} + \frac{3}{4} \cdot \frac{2\pi}{3} + \frac{1}{4} \cdot \frac{2\pi}{3}$ NST: $\frac{\pi}{18} + \frac{1}{4} \cdot \frac{2\pi}{3}$

ODER: Max/Min/NST rechnesisch:

Eigener Lösungsversuch.

Eigener Lösungsversuch.

Flax:
$$2 \sin(3x - \frac{\pi}{6}) = 2 \implies \sin(3x - \frac{\pi}{6}) = 1$$

Flax: $3x - \frac{\pi}{6} = \arcsin(9)$
 $3x - \frac{\pi}{6} = \arcsin(9)$

And $3x - \frac{\pi}{6} = \arcsin(9)$
 $3x - \frac{\pi}{6} = \arcsin(9)$
 $3x - \frac{\pi}{6} = \arcsin(9)$

And $3x - \frac{\pi}{6} = 2$
 $3x - \frac{\pi}{6} = \arcsin(9)$
 $3x - \frac{\pi}{6} = \arcsin(9)$
 $3x - \frac{\pi}{6} = \arcsin(9)$

And $3x - \frac{\pi}{6} = 2$
 $3x - \frac{\pi}{6} = \arcsin(9)$
 $3x - \frac{\pi}{6} = \arcsin(9)$

And $3x - \frac{\pi}{6} = 2$
 $3x - \frac{\pi}{6} = \arcsin(9)$
 $3x - \frac{\pi}{6} = \arcsin(9)$
 $3x - \frac{\pi}{6} = \arcsin(9)$

And $3x - \frac{\pi}{6} = 2$
 $3x - \frac{\pi}{6} = \arcsin(9)$
 $3x - \frac{\pi}{6} = \arcsin(9)$

And $3x - \frac{\pi}{6} = 2$

And $3x - \frac{\pi}{6} = 2$
 $3x - \frac{\pi}{6}$

ODER:
$$\sin(3x-\frac{\pi}{6})$$
 maximal falls Argument $3x-\frac{\pi}{6}=\frac{\pi}{2}+k\cdot 2\pi$

$$\Rightarrow x=\frac{1}{3}\left(\frac{\pi}{2}+\frac{\pi}{6}+k\cdot 2\pi\right)$$

$$=\frac{6\pi}{16}+k\cdot \frac{2\pi}{3}$$

Trigonometrische Gleichungen. Finden Sie alle Lösungen der Gleichungen

1.
$$5\sin(2x+5) = 2$$

2.
$$2\cos(x) + \sin^2(x) = 1,75$$

Lösung.

Lösung.

A.
$$5 \sin(2x+5) = 2$$
 \Rightarrow $\sin(2x+5) = \frac{2}{5}$ \Rightarrow $\arcsin(\frac{2}{5}) = \arcsin(\frac{2}{5})$
 $\Rightarrow 2x+5 = \arcsin(\frac{2}{5}) \Rightarrow \frac{2}{2}$
 $\Rightarrow 2x+5 = \arcsin(\frac{2}{5}) \Rightarrow \frac{2}{2}$

$$x_{z} = \left(\frac{-S}{z} + \frac{\pi}{z}\right) - \left(\frac{x_{n} - \frac{-S}{z}}{z}\right) = \frac{-S + \pi - 2x_{n} - 5}{2} = \frac{-S + \pi - 2}{2} = \frac{-S + \pi - 2x_{n} - 5}{2}$$

$$=\frac{\pi - \arcsin(\frac{2}{5}) - 5}{2}$$

Alle Gen: $x = x_1 + k \cdot T$ oder $x = x_2 + k \cdot T$

2.
$$2\cos x + \sin^2 x = 1,75$$
 $\Rightarrow -\cos^2 x + 2\cos x - 0,75 = 0$ $\Rightarrow -\pi^2 + 2\pi - 0,75 = 0$

Pythopono $\Rightarrow u_{1,2} = ... = \begin{cases} 1/2 & \cos x = 0 \\ 3/2 & \Rightarrow \end{cases} \xrightarrow{\cos x} \begin{cases} \frac{1/2}{3/2} = 1,5 \end{cases} \xrightarrow{\cos x} \begin{cases} \frac{1/2}{3/2} = 1,5 \end{cases}$

$$\Rightarrow x = \arccos\left(\frac{\Lambda}{2}\right) = \frac{\pi}{3} \stackrel{\triangle}{=} 60^{\circ} \quad \text{alle Is pen } \stackrel{?}{=} \text{Nein } \stackrel$$

Arcus-Funktionen. Berechnen Sie:

- 1. $\arcsin(1)$
- 2. $\arcsin(\frac{\sqrt{2}}{2})$
- 3. $\arcsin(-\frac{\sqrt{3}}{2})$

oversin = sin 1 RAD default!

Lösung. Tabelle oben oder TR:

1.
$$acsin(1) = \frac{\gamma}{2}$$

1.
$$arcsin(1) = \frac{\pi}{2}$$
 $\left(si_{1} \times = 1 \text{ bi } \times = \frac{\pi}{2} \text{ } (\triangleq 90^{\circ})\right)$

2.
$$\operatorname{acsin}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$
 $\left(\operatorname{Sin} X = \frac{\pi}{2} \dots\right)$

2.
$$\arcsin\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$
 $\left(\sin x = \frac{\pi}{2}, \dots\right)$
3. $\arcsin\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$ $\left(\sin x = \frac{\pi}{2}, \dots\right)$

3.
$$ascsin \left(-\frac{137}{2}\right) = -\frac{71}{3}$$

Eine Formel. Zeigen Sie: $\arcsin(a) = \arccos(\sqrt{1-a^2})$. Hinweis: Setze $a = \sin(x)$ ein.

Lösung.

LS:
$$arcsin(sin(x)) = x$$

RS: $arccos(\sqrt{1-sin^2(x)}) = arccor(cos(x)) = x$

Eigener Lösungsversuch.

Noch eine Formel. Zeigen sie damit $\cos(\arcsin(a)) = \sqrt{1 - a^2}$.

Lösung.

$$\cos\left(\arccos\left(\sqrt{1-\alpha^2}\right)\right) = \sqrt{1-\alpha^2}.$$

Eigener Lösungsversuch.

Ableitung von $\arcsin(x)$. Berechnen Sie mit der Ableitungsformel für Umkehrfunktionen $[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$ die Ableitung von $\arcsin(x)$.

Lösung.

$$\left[\frac{\sin^{-1}(x)}{\sin^{-1}(x)}\right] = \frac{1}{\sin^{-1}(\arcsin(x))} = \frac{1}{\cos(\arcsin(x))} = \frac{1}{1-x^{2}} \left(\frac{1}{1-x^{2}}\right)$$

$$\frac{\cos(\sin(x))}{\cos(\sin(x))} = \frac{1}{\sin(-x^{2})} \left(\frac{1}{1-x^{2}}\right)$$