

深度学习硬件

你的GPU电脑

Intel i7

0.15 TFLOPS

DDR4

32 GB

Nvidia Titan X

12 TFLOPS 16 GB

Intel i7-6700K

提升CPU利用率 I

- 在计算 a + b 之前,需要准备数据
 - 主内存 -> L3 -> L2 -> L1 -> 寄存器
 - L1 访问延时: 0.5 ns
 - L2 访问延时: 7 ns (14 x L1)
 - ・ 主内存访问延时: 100ns (200 x L1)
- 提升空间和时间的内存本地性
 - 时间: 重用数据使得保持它们在缓存里
 - 空间:按序读写数据使得可以预读取

样例分析

- 如果一个矩阵是按列存储,访问一行会比访问一列要快
 - CPU 一次读取 64 字节(缓存线)
 - · CPU 会"聪明的"提前读取下一个(缓存线)

提升CPU利用率 II

- · 高端 CPU 有几十个核
 - EC2 P3.16xlarge: 2 Intel Xeon CPUs, 32 物理核
- 并行来利用所有核
 - 超线程不一定提升性能,因为它们共享寄存器

样例分析

· 左边比右边慢(python)

```
for i in range(len(a)):
    c[i] = a[i] + b[i]
```

- 左边调用 n 次函数,每次调用有开销
- · 右边很容易被并行(例如下面C++实现)

```
#pragma omp for
for (i=0; i<a.size(); i++) {
    c[i] = a[i] + b[i]
}</pre>
```

Nvidia Titan X (Pascal)

CPU vs GPU

一般/高端

# 核	6 / 64	2K / 4K
TFLOPS	0.2 / 1	10 / 100
内存大小	32 GB / 1 TB	16 GB / 32 GB
内存带宽	30 GB/s / 100 GB/s	400 GB/s / 1 TB/s
控制流	强	弱

提升GPU利用率

- 并行
 - 使用数千个线程
- 内存本地性
 - 缓存更小,架构更加简单
- 少用控制语句
 - 支持有限
 - 同步开销很大

CPU/GPU 带宽

PCIe 3.0 16x: 16 GB/s

480 GB/s

·不要频繁在CPU和 GPU之前传数据:带宽 限制,同步开销

更多的 CPUs 和 GPUs

• CPU: AMD, ARM

• GPU: AMD, Intel, ARM, Qualcomm...

CPU/GPU高性能计算编程

- CPU: C++ 或者任何高性能语言
 - 编译器成熟
- GPU
 - Nvidia 上用 CUDA
 - 编译器和驱动成熟
 - ・ 其他用 OpenCL
 - 质量取决于硬件厂商

总结

- · CPU:可以处理通用计算。性能优化考虑数据读写效率和多线程
- GPU: 使用更多的小核和更好的内存带 宽,适合能大规模并行的计算任务