$\overline{A \cup (B \cap C)}$ is equal to

- (A) $\overline{A} \cup (\overline{B} \cap \overline{C})$
- (B) $(\overline{A} \cap \overline{B}) \cup (\overline{A} \cap \overline{C})$
- (C) $\overline{A} \cup (\overline{B} \cup \overline{C})$
- (D) $\overline{A} \cap (\overline{B} \cup \overline{C})$
- A

- D

$$A - (B \cap C)$$
 is

- (A) A
- (B) $(A \cup B) \cap C$
- (C) $(A B) \cup (A C)$
- (D) C
- B
- D

If $P = \{1, \{2\}, 4\}$ and $Q = \{1, 2, 4\}$, then

- (A) P = Q
- (B) $Q \subseteq P$
- (C) $P \neq Q$
- (D) $P \subseteq Q$
- A
- () B
- C
- () D

Power set of $\{1,3\}$ is

- (A) $\{\phi, \{1\}, \{3\}, \{1, 3\}\}$
- (B) $\{\phi, \{1\}, \{1,3\}\}$
- (C) $\{\phi, \{3\}, \{1,3\}\}$
- (D) $\{\phi, \{1\}, \{3\}\}$

-) C

For any two sets A and B, $A - (A \cap B) = ?$

- (A) $A \subseteq B$
- (B) $\overline{A} \subseteq \overline{B}$
- (C) A B
- (D) $A \neq B$
- A
- C
- () D

*

If $A = \{2, 3\}$, $B = \{1, 3\}$, then the cartesian product $A \times B = ?$

- (A) $\{(2,3),(2,2),(3,1),(3,3)\}$
- (B) $\{(2,1),(2,3),(3,1),(3,3)\}$
- $(C) \{(2,2),(2,3),(1,3),(3,3)\}$
- (D) $\{(2,1),(2,3),(3,2),(3,1)\}$
- () A

- () D

If A and B are any non-empty sets, then $A \cap (B - A)$ is

- (A) ¢
- (B) A
- (C) B
- (D) $\overline{A} \cap B$
- A

- D

 $A \cap (A \cup B) = ?$

- $(A) \phi$
- (B) A
- (C) B
- (D) *A* ∪ *B*

- D

*

If $A = \{3, 4, 5\}$ and R is a relation on A given by $R = \{(x, y)|x + y > 7 \text{ and } x \neq y\}$, then R is

- (A) $R = \{(3,4), (4,5), (3,5)\}$
- (B) \(\phi \)
- $(C) \{(3,5), (4,5)\}$
- (D) $\{(3,4),(4,5)\}$
- (A
- B
- C
- D

*

If $R = \{(1, 1), (1, 3), (3, 2), (3, 4), (4, 2)\}$ and $S = \{(2, 1), (3, 3), (3, 4), (4, 1)\}$ are two relations defined on the set $A = \{1, 2, 3, 4\}$, then $S \circ R$ is

- (A) $\{(2,2),(2,4),(3,2),(3,4),(4,1),(4,3)\}$
- (B) $\{(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)\}$
- (C) $\{(2,1),(2,3),(3,3),(3,4),(4,2),(4,3)\}$
- (D) $\{(2,1),(2,3),(3,2),(3,4),(4,2),(4,3)\}$
- A
- B
- O C
- O D

R is a relation on Z such that aRb if and only if $a = b^2$. Then R satisfies

- (A) Reflexive
- (B) Transitive
- (C) Symmetric
- (D) Antisymmetric

*

R is a relation on $\mathbb{Z}_+ \times \mathbb{Z}_+$ such that (a, b)R(c, d) if and only if ad = bc. Then

- R is
- (A) an equivalence relation
- (B) a partial order relation
- (C) symmetric and transitive
- (D) reflexive only
- В
- D

If $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$, then the symmetric difference $A \oplus B$ is

- (A) {1, 2, 3, 4}
- (B) {1, 2, 5, 6}
- $(C) \{3,4\}$
- (D) {1, 2, 3, 4, 5, 6}

R is a relation on $A = \{1, 2, 3\}$ such that $(a, b) \in R$ if and only if a + b = evennumber. Then the matrix of inverse relation $M_{R^{-1}}$ is

- (A) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

Let $A = \{1, 2, 3\}$ and R be a relation on A defined by R = $\{(1,1),(1,3),(2,2),(3,1),(3,3)\}$. Then the matrix of complement relation M_{R} is

- (A) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

- A
- B
- D

Let $A=\{1,2,3,4\}$ and R be a relation on A is defined by R= $\{(1,1),(1,2),(2,3),(3,4)\}$. Then the reflexive closure of R is

- (A) $R = \{(1,2), (2,1), (1,1), (2,2), (3,3)\}$
- (B) $R = \{(1,2), (3,3), (1,1), (3,4), (2,2), (3,3)\}$
- (C) $R = \{(3,3), (2,1), (1,1), (2,2), (4,4)\}$
- (D) $R = \{(1,1), (1,2), (2,3), (3,4), (2,2), (3,3), (4,4)\}$
- A

- D

Let $A = \{1, 2, 3\}$ and let R be a relation on A be given by $R = \{(1, 1), (2, 2), (3, 3)\}$.

The transitive closure of R is

- (A) R
- (B) $R \cup \{(1,2)\}$
- (C) $R \{(1, 1)\}$
- (D) $R \cup \{(1,2),(2,1)\}$
- A

- D

Let $f(x) = x^3 - 4x$ and $g(x) = \frac{1}{x^2 + 1}$ be functions on R. Then $f \circ g$ is

- (A) $\left(\frac{1}{x^2+1}\right)^3 8\left(\frac{1}{x^2+1}\right)$ (B) $\left(\frac{1}{x^2+1}\right)^3 4\left(\frac{1}{x^2+1}\right)$
- (C) $\left(\frac{1}{x^2+1}\right)^3 + 4\left(\frac{1}{x^2+1}\right)$ (D) $4\left(\frac{1}{x^2+1}\right) \left(\frac{1}{x^2+1}\right)^3$

- D

Let $f: A \to B$ and $g: B \to C$ be bijections. Then $g \circ f$ is

- (A) a bijection
- (B) not a bijection
- (C) only surjective
- (D) only injective
- A
- B
- D

*

If $S = \{1, 2, 3, 4, 5\}$ and if the function $f : S \rightarrow S$ is given by f = $\{(1,2),(2,1),(3,4),(4,5),(5,3)\}$, then f^{-1} is

- (A) $\{(2,1),(1,2),(4,3),(4,5)\}$
- (B) $\{(2,1),(1,2),(3,3),(5,4),(3,4)\}$
- (C) {(2,1), (1,2), (4,3), (5,4), (3,5)}
- (D) $\{(2,1),(1,2),(4,3),(3,5)\}$
- () A

- () D

If $f: A \to B$, $g: B \to C$ and $h: C \to D$ be bijections, then $(h \circ g) \circ f = ?$

- (A) $f^{-1} \circ g^{-1} \circ h^{-1}$
- (B) $h \circ (g \circ f)$
- (C) $g \circ f^{-1} \circ h^{-1}$
- (D) $f^{-1} \circ g \circ h^{-1}$

- \bigcirc C
- D

If R is a relation on $A = \{1, 2, 3\}$ such that $(a, b) \in R$ if and only if a + b = even, then R^2 is

- (A) $\{(1,3),(3,1),(3,3),(2,2)\}$
- (B) $\{(1,1),(3,1),(2,2)\}$
- $(C) \{(1,1),(3,3),(1,3)\}$
- (D) $\{(1,1),(1,3),(3,1),(3,3),(2,2)\}$
- A

- D

If R is a relation defined on a set A = { 1,2,3,4}, then the exact number of iterations required to compute transitive closure of R, by using Warshall 's algorithm is

- A) 1
- B) 2
- C) 3
- D) 4

The divisibility relation defined on a

set A = { 2, 4, 5, 10, 12, 20, 25 } is

- A) Irreflexive
- B) Antisymmetric
- C) Not transitive
- D) symmetric

- D

Which of the following pair of elements appearing in the Hasse diagram are not related

- A) (a, c)
- B) (a, d)
- C) (a, b)
- D) (a, e)

- D

This form was created inside of SRM Institute of Science and Technology.

Google Forms