МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ»

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ по лабораторной работе №1

по дисциплине «Операционные системы»

Выполнил:

Студент Чванова Ангелина Дмитриевна Студенческой группы НПИбд-02-21 Студенческий билет № 1032212282 Лабораторная работа № 1. Установка и конфигурация операционной системы на виртуальную машину.

Цель: приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Ход работы:

- 1. Создание виртуальной машины в VirtualBox.
- 1.1 Указание её имени Fedora и пути для папки машины (рис1.1). Fedora была предварительно скачена с сайта ((getfedora.org)

https://getfedora.org/ru/workstation/download/)

Рис.1.1 Окно «Имя машины и тип ОС»

1.2 Указание объема памяти виртуальной машины (рис1.2)

Рис.1.2 Окно «Объем памяти»

1.3 Создание жесткого диска для виртуальной машины(рис1.3)

Рис.1.3 Окно «Жесткий диск»

1.4 Указание типа жесткого диска(рис1.4)

Рис.1.4 Окно «Формат жесткого диска»

1.5 Выбор формата хранения в пользу динамического жесткого диска (рис1.5)

Рис.1.5 Окно «Формат хранения»

1.6 Указание размера для жесткого диска виртуальной машины. В нашем случае 80 ГБ (рис1.6)

Рис.1.6 Окно «Имя и размер файла»

1.7 Созданная виртуальная машина (рис1.7)

Рис.1.7 Окно «Характеристик виртуальной машины»

- 2. Настройка виртуальной машины в VirtualBox.
 - 2.1 Настройка общего буфера обмена и функции Drag'n'Drop (рис2.1)

Рис.2.1 Окно «Настройки машины»

2.2 Выбор носителя с образом Fedora (рис2.2)

Рис.2.2 Окно «Выбора носителя»

3. Установка Fedora

3.1 Установка на жесткий диск(ри3.1)

Рис.3.1 Приветственное окно «Welcome to Fedora»

3.2 Выбор языка. (рис3.2)

Рис.3.2 Окно «Выбор языка»

3.3 Разбиение дисков для места установки. (рис3.3.1-рис3.3.3). Выбираем автоматическое разбиение.

Рис.3.3.1 Окно «Просьба заполнить место установки»

Рис.3.3.2 Окно «Место установки»

Рис.3.3.3 Окно «Обзор установки» с заполненным местом установки

3.4 Выполнение установки(рис3.4). Ожидаем завершения загрузки.

Рис.3.4 Окно «Ход установки»

- 4. Установка пользователя в Fedora
- 4.1 В загруженной Fedora выходим из нее(рис4.1.1), производим изъятие оптического привода(рис4.1.2)

Рис.4.1.1 Выход из Fedora

Рис.4.1.2 Изъятие оптического привода

4.2 Указание информации о пользователе (рис4.2.1) и пароля(рис4.2.2)

Рис.4.2.1 Окно конфигурации пользователей

Рис 4.2.2 Установка пароля для пользователя

4.3 Выход и повторный вход для проверки сохранения пользователя (рис4.3)

Рис.4.3 Вход для пользователя с введением пароля.

5. Выполненное домашнее задание

Дождемся загрузки графического окружения и откроем терминал. В окне терминала проанализируем последовательность загрузки системы, выполнив команду dmesg. (рис5.1)

```
\oplus
                           adchvanova@fedora:~ - less
    0.000000] Linux version 5.14.10-300.fc35.x86_64 (mockbuild@bkernel01.iad2.f
edoraproject.org) (gcc (GCC) 11.2.1 20210728 (Red Hat 11.2.1-1), GNU ld version
2.37-10.fc35) #1 SMP Thu Oct 7 20:48:44 UTC 2021
    0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.10-300.fc35.x8
6_64 root=UUID=78cb4535-1d14-47a3-a426-8211e983517a ro rootflags=subvol=root rhg
quiet
    0.000000] [Firmware Bug]: TSC doesn't count with P0 frequency!
    0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point regi
sters'
    0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
    0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
    0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
    0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes,
using 'standard' format.
    0.000000] signal: max sigframe size: 1776
    0.000000] BIOS-provided physical RAM map:
    0.000000] BIOS-e820: [mem 0x0000000000000000000000000009fbff] usable
    0.000000] BIOS-e820: [mem 0x000000000009fc00-0x00000000009ffff] reserved
    0.000000] BIOS-e820: [mem 0x00000000000f0000-0x000000000ffffff] reserved
    0.000000] BIOS-e820: [mem 0x000000000100000-0x00000000dffeffff] usable
    0.000000] BIOS-e820: [mem 0x00000000dfff0000-0x0000000dffffffff] ACPI data
    0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
    0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
```

Рис 5.1 вывод команды dmesg | less

Получим следующую информацию.

1. Версия ядра Linux (Linux version). (рис 5.2)

Рис. 5.2 вывод версии ядра

2. Частота процессора (Detected Mhz processor). (рис 5.3)

```
[adchvanova@fedora ~]$ dmesg | grep -i "processor"

[ 0.000076] tsc: Detected 2096.066 MHz processor

[ 1.562735] smpboot: Total of 2 processors activated (8384.26 BogoMIPS)

[ 2.774535] ACPI: Added _OSI(Processor Device)

[ 2.774552] ACPI: Added _OSI(Processor Aggregator Device)

[adchvanova@fedora ~]$
```

Рис. 5.3 вывод частоты процессора

3. Модель процессора (СРИ0). (рис 5.4)

```
[adchvanova@fedora ~]$ dmesg | grep -i "CPU0"
[ 1.547461] smpboot: CPU0: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx (family: 0x17, model: 0x18, stepping: 0x1)
[adchvanova@fedora ~]$ ☐
```

Рис. 5.4 вывод модели процессора

4. Объем доступной оперативной памяти (Memory available). (рис 5.5.1-5.5.3)

```
[adchvanova@fedora ~]$ dmesg | grep -i "Memory"

[ 0.025216] ACPI: Reserving FACP table memory at [mem 0xdfff00f0-0xdfff01e3]

[ 0.025230] ACPI: Reserving DSDT table memory at [mem 0xdfff0470-0xdfff2794]

[ 0.025241] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]

[ 0.025252] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]

[ 0.025260] ACPI: Reserving APIC table memory at [mem 0xdfff0240-0xdfff029b]

[ 0.025270] ACPI: Reserving SSDT table memory at [mem 0xdfff02a0-0xdfff046b]

[ 0.453017] Early memory node ranges

[ 0.518488] PM: hibernation: Registered nosave memory: [mem 0x000000000-0x000000fff]
```

Рис.5.5.1 вывод объема памяти

```
[ 1.028049] Memory: 3967076K/4193848K available (16393K kernel code, 3531K rw data, 10388K rodata, 2872K init, 4908K bss, 226512K reserved, 0K cma-reserved)
[ 1.439450] Freeing SMP alternatives memory: 44K
[ 1.566143] x86/mm: Memory block size: 128MB
[ 3.926996] Non-volatile memory driver v1.3
[ 9.950255] Freeing initrd memory: 31828K
[ 10.553507] Freeing unused decrypted memory: 2036K
[ 10.558130] Freeing unused kernel image (initmem) memory: 2872K
[ 10.569273] Freeing unused kernel image (text/rodata gap) memory: 2036K
[ 10.573975] Freeing unused kernel image (rodata/data gap) memory: 1900K
[ 23.905643] [TTM] Zone kernel: Available graphics memory: 2004026 KiB
[ 23.908444] [drm] Max dedicated hypervisor surface memory is 507904 kiB
[ 23.908451] [drm] Maximum display memory size is 16384 kiB
[adchvanova@fedora ~]$
```

Рис.5.5.2 вывод объема памяти

```
(стандартный ввод): [ 1.028049] Memory: 3967076K/4193848K available (16393K kernel code, 353 1K rwdata, 10388K rodata, 2872K init, 4908K bss, 226512K reserved, 0K cma-reserved) (стандартный ввод): [ 1.439450] Freeing SMP alternatives memory: 44K (стандартный ввод): [ 1.566143] x86/mm: Memory block size: 128MB (стандартный ввод): [ 3.926996] Non-volatile memory driver v1.3 (стандартный ввод): [ 9.950255] Freeing initrd memory: 31828K (стандартный ввод): [ 10.553507] Freeing unused decrypted memory: 2036K (стандартный ввод): [ 10.558130] Freeing unused kernel image (initmem) memory: 2872K (стандартный ввод): [ 10.569273] Freeing unused kernel image (text/rodata gap) memory: 2036K (стандартный ввод): [ 10.573975] Freeing unused kernel image (rodata/data gap) memory: 1900K (стандартный ввод): [ 23.905643] [TTM] Zone kernel: Available graphics memory: 2004026 KiB (стандартный ввод): [ 23.908444] [drm] Max dedicated hypervisor surface memory is 507904 kiB (стандартный ввод): [ 23.908451] [drm] Maximum display memory size is 16384 kiB
```

Рис. 5.5.3 вывод объема памяти

5. Тип обнаруженного гипервизора (Hypervisor detected). (рис 5.6)

```
[adchvanova@fedora ~]$ dmesg | grep -i "Hypervisor"
[ 0.000000] Hypervisor detected: KVM
[ 23.908444] [drm] Max dedicated hypervisor surface memory is 507904 kiB
[adchvanova@fedora ~]$
```

Рис. 5.6 вывод типа гипервизора

6. Тип файловой системы корневого раздела. (рис 5.7)

```
[adchvanova@fedora ~]$ dmesg | grep -i "btrfs"

[ 10.457527] Btrfs loaded, crc32c=crc32c-generic, zoned=yes

[ 20.874025] BTRFS: device label fedora_localhost-live devid 1 transid 208 /dev/sda2 scanned by systemd-udevd (352)

[ 25.957971] BTRFS info (device sda2): flagging fs with big metadata feature

[ 25.958046] BTRFS info (device sda2): disk space caching is enabled

[ 25.958060] BTRFS info (device sda2): has skinny extents

[ 43.653714] BTRFS info (device sda2): use zstd compression, level 1

[ 43.654215] BTRFS info (device sda2): disk space caching is enabled

[adchvanova@fedora ~]$
```

Рис. 5.7 типа файловой системы корневого раздела

7. Последовательность монтирования файловых систем

```
[adchvanova@fedora ~]$ dmesg | grep -i "mounted"
[ 43.518699] systemd[1]: Mounted Huge Pages File System.
[ 43.544628] systemd[1]: Mounted POSIX Message Queue File System.
[ 43.563496] systemd[1]: Mounted Kernel Debug File System.
[ 43.590020] systemd[1]: Mounted Kernel Trace File System.
[ 63.209835] EXT4-fs (sda1): mounted filesystem with ordered data mode. Opts: (null). Quota mode: none.
[adchvanova@fedora ~]$
```

Рис. 5.8 последовательности монтирования систем

Вывод: В ходе выполнения лабораторной работы 1 были приобретены практические навыки установки операционной системы на виртуальную машину, а также минимальные необходимые настройки для дальнейшей работы сервисов. Fedora работает корректно, удалось найти всю необходимую информацию.

Контрольные вопросы

- Какую информацию содержит учётная запись пользователя?
 Идентификатор пользователя, системное имя, идентификатор группы, начальная оболочка, домашний каталог
- 2. Укажите команды терминала и приведите примеры:
- для получения справки по команде; man "команда"
 Например: man cd.
- для перемещения по файловой системе; cd "каталог"

Например: cd / перемещение в корневой каталог

– для просмотра содержимого каталога; ls "каталог"

Например: ls / просмотр содержимого корневого каталога

– для определения объёма каталога;

du- s "каталог"

Например: du- s /

для создания / удаления каталогов / файлов;

Команда rm также позволяет удалять не только файлы, но и каталоги Для удаления директории с именем dir1 со всеми подкаталогами и файлами используется опция -r

rm -r dir1

Можно удалить одновременно две директории со всем их содержимым: rm -r имя директории 1 имя директории 2

Также можно использовать параметр -f, который означает, что при удалении не будет запрашиваться подтверждение.

– для задания определённых прав на файл / каталог;
 chmod <xxx> "имя"
 chmod 677 file.txt

– для просмотра истории команд.

history

2. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система (ФС) — архитектура хранения данных, которые могут находиться в разделах жесткого диска и ОП. Она выдает пользователю доступ к конфигурации ядра, а также пределяет, какую структуру принимают файлы в каждом из разделов, создает правила для их генерации, а также управляет файлами в соответствии с особенностями каждой конкретной ФС. ФС Linux — пространство раздела, поделенное на блоки определенного размера.

BTRFS (B-Tree Filesystem) — файловая система для Unix-подобных операционных систем, основанная на технике «Сору on Write» (CoW), призванная обеспечить легкость масштабирования файловой системы, высокую степень надежности и сохранности данных, гибкость настроек и легкость администрирования, сохраняя при этом высокую скорость работы.

- Максимальный размер файла 2^64 байт
- Динамическая таблица inode
- Дедупликация данных
- Эффективное хранение файлов как очень малых, так и очень больших размеров
- Создание сабвольюмов и снапшотов
- Квоты на размеры сабвольюмов
- Контрольные суммы для данных и метаданных
- Возможность объединить несколько накопителей в единую файловую систему
- Создание RAID конфигурации на уровне файловой системы
- Сжатие данных
- 3. Как посмотреть, какие файловые системы подмонтированы в ОС?

Команда mount

5. Как удалить зависший процесс? kill