Dirichlet の近似定理

https://seasawher.github.io/kitamado/ @seasawher

2019年8月19日

京大数学系平成 27 年度基礎科目 II の問 7 のための補足です。あの問題は Dirichlet の近似定理を認めてしまえばほぼ当たり前なのですが、しかし Dirichlet の近似定理ってあんまり本に載ってませんからね。見たことないひとも多いと思います。そこで、Dirichlet の近似定理の内容とその証明をここで補うことにしました。 鳩の巣論法を使った証明もあります。それについては Dirichlet の Diophantus 近似定理で調べてください。

定義. \mathbb{R}^n の部分集合 S があるとする。このとき S が点対称 (centrally symmetric) であるとは、任意の $x \in S$ に対して $-x \in S$ であることをいう。また S が凸 (convex) であるとは、任意の $x,y \in S$ に対し、x と y を結ぶ線分が S に含まれるということである。つまり任意の $0 \le t \le 1$ に対して $tx + (1-t)y \in S$ であることを指す。

命題. (Minkowski の定理)

 μ は Lebesgue 測度とする。 $S\subset\mathbb{R}^n$ が点対称かつ凸な可測集合で、 $\mu(S)>2^n$ ならば $S\cap\mathbb{Z}^n\setminus\{0\}\neq\emptyset$ である。

証明. ハイリホーによる。 $S \cap \mathbb{Z}^n = \{0\}$ と仮定しよう。I を \mathbb{R}^n の標準基底が張る超立方体とする。このとき

$$\frac{1}{2^n}\mu(S) = \mu\left(\frac{S}{2}\right)$$

$$= \mu\left(\frac{S}{2} \cap \coprod_{d \in \mathbb{Z}^n} (I+d)\right)$$

$$= \mu\left(\coprod_{d \in \mathbb{Z}^n} \frac{S}{2} \cap (I+d)\right)$$

$$= \sum_{d \in \mathbb{Z}^n} \mu\left(\frac{S}{2} \cap (I+d)\right)$$

$$= \sum_{d \in \mathbb{Z}^n} \mu\left(\left(\frac{S}{2} - d\right) \cap I\right)$$

である。ここで S が凸かつ点対称という仮定により $d \neq d'$ のとき $(S/2+d) \cap (S/2+d') = \emptyset$ である。した

がって

$$\frac{1}{2^{n}}\mu(S) = \mu\left(\prod_{d \in \mathbb{Z}^{n}} \left(\frac{S}{2} - d\right) \cap I\right)$$

$$\leq \mu(I)$$

$$= 1$$

となって矛盾。

命題. (Dirichlet の近似定理)

 $d\geq 1$ とする。 実数 α_1,\cdots,α_d と $N\in\mathbb{N}$ が与えられたとき次が成り立つ。

$$\exists q, p_i \in \mathbb{Z} \text{ s.t. } 1 \leq q \leq N \text{ and } \forall i \quad |q\alpha_i - p_i| \leq \frac{1}{N^{1/d}}$$

証明. 次のような \mathbb{R}^{1+d} の部分集合 S を考える。

$$S = \left\{ (x, y_1, \cdots, y_d) \in \mathbb{R}^{1+d} \mid -N - 1/2 \le x \le N + 1/2, \forall i \quad |x\alpha_i - y_i| \le \frac{1}{N^{1/d}} \right\}$$

このとき S はあきらかに凸かつ点対称な可測集合なので、あとは $\mu(S)>2^{d+1}$ がいえれば Minkowski の定理 から主張が従う。計算すると $M=\frac{1}{N^{1/d}}$ として

$$\mu(S) = \int_{-N-1/2}^{N+1/2} dx \int_{\alpha_d x - M}^{\alpha_d x + M} dy_d \cdots \int_{\alpha_1 x - M}^{\alpha_1 x + M} dy_1$$

$$= (2M)^d (2N + 1)$$

$$= \frac{2^d (2N + 1)}{N}$$

$$> 2^{d+1}$$

である。よって示すべきことがいえた。