Infinite Interval Problems Modeling the Flow of a Gas Through a Semi-Infinite Porous Medium

By Ravi P. Agarwal and Donal O'Regan

Various existence results are presented for boundary-value problems on the infinite interval. In particular, our theory includes a discussion of a problem arising in the unsteady flow of a gas through a semi-infinite porous medium.

1. Introduction

In the study of the unsteady flow of a gas through a semi-infinite porous medium [1, 2] initially filled with gas at a uniform pressure $p_0 > 0$, at time t = 0, the pressure at the outflow face is suddenly reduced from p_0 to $p_1 \ge 0$ ($p_1 = 0$ is the case of diffusion into a vacuum) and is, thereafter, maintained at this lower pressure. The unsteady isothermal flow of gas is described by the nonlinear partial differential equation

$$\nabla^2(p^2) = 2A \frac{\partial p}{\partial t}$$

where the constant A is given by the properties of the medium. In the onedimensional medium extending from x = 0 to $x = \infty$, this reduces to

$$\frac{\partial}{\partial x} \left(p \frac{\partial p}{\partial x} \right) = A \frac{\partial p}{\partial t}$$

Address for correspondence: Professor R. P. Agarwal, Florida Institute of Technology, Department of Mathematical Sciences, Melbourne, FL 32901-6975. E-mail: agarwal@fit.edu.

with the boundary conditions

$$\begin{cases} p(x,0) = p_0, 0 < x < \infty \\ p(0,t) = p_1(< p_0), 0 \le t < \infty. \end{cases}$$

To obtain a similarity solution, we introduce the new independent variable

$$z = \frac{x}{\sqrt{t}} \left(\frac{A}{4p_0} \right)^{\frac{1}{2}}$$

and the dimension-free dependent variable w, defined by

$$w(z) = \alpha^{-1} \left(1 - \frac{p^2(x)}{p_0^2} \right), \quad \text{where} \quad \alpha = 1 - \frac{p_1^2}{p_0^2}.$$

In terms of the new variable, the problem takes the form

$$\begin{cases} w''(z) + \frac{2z}{(1 - \alpha w(z))^{\frac{1}{2}}} w'(z) = 0\\ w(0) = 1, \quad w(\infty) = 0. \end{cases}$$

Making the change of variable $u(z) = 1 - \alpha w(z)$, we have the boundary-value problem

$$\begin{cases} u''(z) + \frac{2z}{[u(z)]^{\frac{1}{2}}} u'(z) = 0, & 0 < z < \infty \\ u(0) = 1 - \alpha, & 0 < \alpha \le 1 \\ u(\infty) = 1. \end{cases}$$
 (1)

Motivated by the above example, we establish in this article a general existence theory for the boundary-value problem

$$\begin{cases} y'' + \phi(t) \ f(t, y, y') = 0, & 0 < t < \infty \\ y(0) = a_0, & 0 \le a_0 < 1 \\ \lim_{t \to \infty} y(t) = 1. \end{cases}$$
 (2)

Our theory, which complements the work in [3–5], automatically produces the existence of a solution for (1). The technique we use to establish existence for (2) is based on a diagonalization argument and a well-known existence principle [6] for boundary value problems on finite intervals. For the convenience of the reader we state the existence principle from [6] that we use in this article.

THEOREM 1. Let $n \in \{1, 2, ...\}$ be fixed. Suppose $f : [0, n] \times \mathbb{R}^2 \to \mathbb{R}$ is continuous, and $\phi \in C[0, n]$ with $\phi > 0$ on (0, n]. In addition, assume there is a constant $M \ge \max\{|a|, |b|\}$, independent of λ , with

$$\max \left\{ \sup_{t \in [0,n]} |y(t)|, \sup_{t \in [0,n]} |y'(t)| \right\} \le M$$

for any solution $y \in C^2[0, n]$ to

$$\begin{cases} y'' + \lambda \phi(t) f(t, y, y') = 0, & 0 < t < n \\ y(0) = a, y(n) = b \end{cases}$$
 (3)_{\lambda}

for each $\lambda \in (0,1)$. Then $(3)_1$ has at least one solution in $C^2[0, n]$.

2. Nonsingular problems

The example in Section 1 (when $0 < \alpha < 1$) motivates our discussion of the second-order nonsingular boundary-value problem

$$\begin{cases} y'' + \phi(t)f(t, y, y') = 0, & 0 < t < \infty \\ y(0) = a_0, & 0 < a_0 < 1 \\ \lim_{t \to \infty} y(t) = 1. \end{cases}$$
(4)

The goal of this section is to present a result that offers easily verifiable (see Example 1) criteria for (4). The technique we use to establish the existence of a positive solution to (4) is based on: (1) proving results in the finite interval [0, n] for each $n \in \{1, 2, \ldots\}$; and (2) using a diagonalization argument.

THEOREM 2. Suppose $f:[0,\infty)\times[a_0,\infty)\times\mathbf{R}\to\mathbf{R}$ is continuous, $\phi\in C[0,\infty)$ with $\phi>0$ on $(0,\infty)$. In addition, assume the following conditions hold:

$$v f(t, y, v) \ge 0 \text{ on } [0, \infty) \times [a_0, \infty) \times \mathbf{R}$$
 (5)

$$\begin{cases} \text{there exists a continuous function } \tau : [0, \infty) \to (0, \infty) \text{ with} \\ f(t, y, v) \le \tau(v) \text{ on } [0, \infty) \times [a_0, 1] \times [0, \infty) \end{cases}$$
(6)

$$\int_{0}^{\infty} \frac{du}{\tau(u)} > \int_{0}^{1-a_0} \frac{du}{\tau(u)} + \int_{0}^{1} \phi(s) ds$$
 (7)

$$\phi$$
 is nondecreasing on $(0,\infty)$ (8)

and

$$\begin{cases} \text{for constants } H > a_0, \ K > 0 \text{ there exists a function } \psi_{H,K} \text{ continuous} \\ \text{on } [0,\infty) \text{ and positive and nondecreasing on } (0,\infty), \text{ and a constant} \\ 1 \leq r < 2 \text{ with } f(t,y,v) \geq \psi_{H,K}(t)v^r \text{ on } [0,\infty) \times [a_0,H] \times [0,K]. \end{cases}$$

$$(9)$$

Then (4) has a solution $y \in C^2[0, \infty)$ with $1 \ge y(t) \ge a_0$ for $t \in [0, \infty)$.

Proof: Fix $n \in \{1, 2, ...\}$. We first show

$$\begin{cases} y'' + \phi(t) & f(t, y, y') = 0, \\ y(0) = a_0, & ty(n) = 1 \end{cases} 0 < t < n$$
(10)ⁿ

has a solution $y_n \in C^2[0, n]$. To establish this the idea is to apply Theorem 1 to the modified problem

$$\begin{cases} y'' + \lambda \phi(t) f^{*}(t, y, y') = 0, & 0 < t < n \\ y(0) = a_{0}, & y(n) = 1 \end{cases}$$
 (11)ⁿ_{\lambda}

where $\lambda \in (0,1)$ and

$$f^{\star}(t, y, v) = \begin{cases} f(t, y, v), & y \ge a_0 \\ f(t, a_0, v), & y \le a_0. \end{cases}$$

From (5), we note that $v f^*(t, y, v) \ge 0$ for $(t, y, v) \in [0, \infty) \times \mathbf{R} \times \mathbf{R}$. Let $y \in C^2[0, n]$ be any solution of $(11)^n_{\lambda}$ for $0 < \lambda < 1$. We first show

$$y'(t) \ge 0 \qquad \text{for} \qquad t \in [0, n]. \tag{12}$$

To see this note for any $\eta \in [0, n)$ and $t > \eta$, we have

$$-[y'(t)]^{2} + [y'(\eta)]^{2} = 2\lambda \int_{\eta}^{t} \phi(s)y'(s) f^{*}[s, y(s), y'(s)]ds \ge 0,$$

and so

$$[y'(t)]^2 \le [y'(\eta)]^2 \quad \text{for} \quad t \ge \eta. \tag{13}$$

If y'(0) = 0, then (13) with $\eta = 0$ implies y'(t) = 0 for $t \in [0, n]$, a contradiction, because $1 > a_0$. Thus, $y'(0) \neq 0$. Then, either $y'(t) \neq 0$ for $t \in [0, n]$ or there exists $\delta \in (0, n)$ with $y'(t) \neq 0$ for $t \in [0, \delta)$ and $y'(\delta) = 0$.

Case 1. $y' \neq 0$ on [0, n]. If y'(t) < 0 for $t \in [0, n]$ then $a_0 = y(0) > y(n) = 1$, a contradiction. Thus, y'(t) > 0 for $t \in [0, n]$.

Case 2. There exists $\delta \in (0, n)$ with $y'(t) \neq 0$ for $t \in [0, \delta)$ and $y'(\delta) = 0$. Now (13) with $\eta = \delta$ implies y'(t) = 0 for $t \in [\delta, n]$, so y(t) = 1 for $t \in [\delta, n]$. If y'(t) < 0 for $t \in [0, \delta)$ then $y(\delta) < a_0$, a contradiction. Hence, y'(t) > 0 for $t \in [0, \delta)$.

Consequently (12) is true. Now, the definition of f^* together with (5) implies $y''(t) \le 0$ for $t \in (0, n)$ and also

$$a_0 \le y(t) \le 1$$
 for $t \in [0, n]$. (14)

In addition $\sup_{t \in [0, n]} y'(t) = y'(0)$. The mean value theorem guarantees that there exists $\xi \in (0, 1)$ with $y'(\xi) = y(1) - y(0) \le y(1) - a_0 \le 1 - a_0$. Now, from (6), we have

$$\frac{-y''(t)}{\tau(y'(t))} \le \phi(t) \quad \text{for} \quad t \in (0, n),$$

and so integrating from 0 to ξ yields

$$\int_{y'(\xi)}^{y'(0)} \frac{du}{\tau(u)} \le \int_0^{\xi} \phi(s) ds.$$

Consequently,

$$\int_0^{y'(0)} \frac{du}{\tau(u)} \le \int_0^{y'(\xi)} \frac{du}{\tau(u)} + \int_0^1 \phi(s) ds \le \int_0^{1-a_0} \frac{du}{\tau(u)} + \int_0^1 \phi(s) ds.$$

Let

$$J(z) = \int_0^z \frac{du}{\tau(u)},$$

and so we have [note (7)],

$$y'(0) \le J^{-1} \left(\int_0^{1-a_0} \frac{du}{\tau(u)} + \int_0^1 \phi(s) ds \right) \equiv K.$$
 (15)

Combining (12) and (15) gives

$$0 \le y'(t) \le K \qquad \text{for} \qquad t \in [0, n]. \tag{16}$$

Theorem 1 implies that $(11)_1^n$ [and consequently $(10)^n$] has a solution $y_n \in C^2[0, n]$ with

$$a_0 \le y_n(t) \le 1$$
 and $0 \le y'_n(t) \le K$ for $t \in [0, n]$. (17)

Next, we obtain a sharper lower bound on $y_n(t)$. Note assumption (9) guarantees that there is a continuous function $\psi_{1,K}$ positive and nondecreasing on $(0,\infty)$, and a constant $1 \le r < 2$ with $f(t,y,v) \ge \psi_{1,K}(t) v^r$ for $(t,y,v) \in [0,\infty) \times [a_0, 1] \times [0, K]$. Thus,

$$-y_n''(t) \ge \phi(t)\psi_{1,K}(t)[y_n'(t)]^r \quad \text{for} \quad t \in (0, n).$$
 (18)

Case 1. r = 1. Integrating (18), with r = 1, from t to n yields

$$y'_n(t) \ge \phi(t)\psi_{1,K}(t)\int_t^n y'_n(s)ds = \phi(t)\psi_{1,K}(t)[1-y_n(t)].$$

Integration from 0 to t now yields

$$y_n(t) \ge 1 - (1 - a_0) \exp\left[-\int_0^t \phi(s) \psi_{1,K}(s) ds\right] \equiv \Phi_1(t)$$
 for $t \in [0, n]$. (19)

Note $\Phi_1(t) \to 1$ as $t \to \infty$.

Case 2. 1 < r < 2. We know either $y_n'(t) > 0$ for $t \in [0, n]$, or there exists $\delta \in (0, n)$ with $y_n'(t) > 0$ for $t \in [0, \delta)$ and $y_n'(t) = 0$ for $t \in [\delta, n]$, so in both cases, there exists $\delta \in (0, n)$ with $y_n'(t) > 0$ for $t \in [0, \delta)$. Multiply (18) by $y_n'(t)^{1-r}$ and integrate from t to δ to obtain [note ϕ and $\psi_{1,K}$ are nondecreasing on $(0, \infty)$],

$$y'_n(t) \ge \left\{ (2-r)\phi(t)\psi_{1,K}(t)[1-y_n(t)] \right\}^{\frac{1}{2-r}}$$

As a result

$$[1 - y_n(t)]^{\frac{-1}{2-r}} y_n'(t) \ge [(2-r)\phi(t)\psi_{1,K}(t)]^{\frac{1}{2-r}},$$

and so integration from 0 to t yields

$$[1 - y_n(t)]^{\frac{1-r}{2-r}} \ge (1 - a_0)^{\frac{1-r}{2-r}} + \left(\frac{2-r}{1-r}\right) \int_0^t \left[(2-r)\phi(s)\psi_{1,K}(s) \right]^{\frac{1}{2-r}} ds. \tag{20}$$

Let

$$\Phi_r(t) = 1 - \frac{1}{\left\{ (1 - a_0)^{\frac{1-r}{2-r}} + (\frac{2-r}{r-1}) \int_0^t \left[(2-r)\phi(s)\psi_{1,K}(s) \right]^{\frac{1}{2-r}} ds \right\}^{\frac{2-r}{r-1}}}$$

and notice (20) implies

$$y_n(t) \ge \Phi_r(t)$$
 for $t \in [0, n]$. (21)

Note $\Phi_r(t) \to 1$ as $t \to \infty$.

As a result, we have

$$\Phi_r(t) \le y_n(t) \le 1$$
 with $0 \le y'_n(t) \le K$ for $t \in [0, n]$, (22)

and

$$-y_n''(t) \le \phi(t)\tau \left[y_n'(t)\right] \le \phi(t) \qquad \sup_{v \in [0,K]} \qquad \tau(v) \qquad \text{for} \qquad t \in (0,n). \quad (23)$$

For $n \ge 1$, an integer, let

$$u_n(x) = \begin{cases} y_n(x), & x \in [0, n] \\ 1, & x \in (n, \infty). \end{cases}$$

Let $S = \{u_n\}_{n=1}^{\infty}$. The Arzela–Ascoli theorem guarantees a subsequence N_1^{\star} of $\{1, 2, \ldots\}$ and functions $z_1^{(j)} \in C[0, 1], j = 0, 1$, with $u_n^{(j)} \to z_1^{(j)}, j = 0, 1$, uniformly on [0, 1] as $n \to \infty$ through N_1^{\star} . Also $\Phi_r(t) \leq z_1(t) \leq 1$ and $0 \leq z_1'(t) \leq K$ for $t \in [0, 1]$, and $z_1(0) = a_0$. Let $N_1 = N_1^{\star} \setminus \{1\}$. Again, the Arzela–Ascoli theorem guarantees a subsequence N_2^{\star} of N_1 and functions $z_2^{(j)} \in C[0, 2], j = 0, 1$, with $u_n^{(j)} \to z_2^{(j)}, j = 0, 1$, uniformly on [0, 2] as $n \to \infty$ through N_2^{\star} . Note $z_2 = z_1$ on [0, 1] because $N_2^{\star} \subseteq N_1$. Also $\Phi_r(t) \leq z_2(t) \leq 1$ and $0 \leq z_2'(t) \leq K$ for $t \in [0, 2]$, and $z_2(0) = a_0$. Let $N_2 = N_2^{\star} \setminus \{2\}$ and proceed inductively to obtain for $k = 2, \ldots$ a subsequence $N_k \subseteq \{1, 2, \ldots\}$ with $N_k \subseteq N_{k-1}$ and function $z_k^{(j)} \in C[0, k], j = 0, 1$, with $u_n^{(j)} \to z_k^{(j)}$ uniformly on [0, k] as $n \to \infty$ through N_k . Also $z_k = z_{k-1}$ on [0, k-1] with $\Phi_r(t) \leq z_k(t) \leq 1$ and $0 \leq z_k'(t) \leq K$ for $t \in [0, k]$, and $z_k(0) = a_0$.

Define a function y as follows. Fix $x \in (0, \infty)$ and let $k \in \{1, 2, ...\}$ with $x \le k$. Then define $y(x) = z_k(x)$. Then $y \in C^1[0, \infty)$ with $\Phi_r(t) \le y(t) \le 1$ and $0 \le y'(t) \le K$ for $t \in [0, \infty)$, and $y(0) = a_0$. Let x and k be as above. Also for $n \in N_k$ and $t \in (0, k]$ we have

$$y'_n(t) - y'_n(0) = -\int_0^t \phi(s) f[s, y_n(s), y'_n(s)] ds.$$

Let $n \to \infty$ through N_k so for $t \in (0, t_k]$, we have

$$z'_k(t) - z'_k(0) = -\int_0^t \phi(s) f[s, z_k(s), z'_k(s)] ds;$$

that is,

$$y'(t) - y'(0) = -\int_0^t \phi(s) f[s, y(s), y'(s)] ds.$$

Consequently, $y''(t) + \phi(t) f[t, y(t), y'(t)] = 0$ for $t \in (0, k]$ so in particular

$$y''(x) + \phi(x)f[x, y(x), y'(x)] = 0.$$

We can do this for every $x \in (0, \infty)$. Consequently, $y \in C^1[0, \infty)$ with $y''(t) + \phi(t) f[t, y(t), y'(t)] = 0$ for $t \in (0, \infty)$, $\Phi_r(t) \le y(t) \le 1$ and $0 \le y'(t) \le K$ for $t \in (0, \infty)$ and $y(0) = a_0$. Finally $\lim_{t \to \infty} y(t) = 1$, because $\lim_{t \to \infty} \Phi_r(t) = 1$, so y is a solution of (4).

Example 1: The boundary-value problem

$$\begin{cases} y'' + \frac{2t}{\frac{1}{2}}y' = 0, & 0 < t < \infty \\ y(0) = 1 - \alpha, 0 < \alpha < 1 \\ \lim_{t \to \infty} y(t) = 1 \end{cases}$$
 (24)

has a solution $y \in C^2[0, \infty)$ with $y(t) \ge 1 - \alpha$ for $t \in [0, \infty)$. To see this, let

$$a_0 = 1 - \alpha, \phi(t) = 2t, \ f(t, y, v) = \frac{v}{y^{\frac{1}{2}}}$$
 and $\tau(v) = \frac{v+1}{[a_0]^{\frac{1}{2}}}$.

Clearly (5), (6), (7) (because

$$\int_0^\infty \frac{du}{\tau(u)} = \infty$$

and (8) are satisfied. Also (9) holds with $\psi_{H,K} = H^{-\frac{1}{2}}$ and r = 1. The existence of a solution to (24) follows from Theorem 1.

3. Singular problems

The example in Section 1 (when $\alpha = 1$) motivates our discussion of the singular boundary-value problem

$$\begin{cases} y'' + \phi(t) f(t, y, y') = 0, & 0 < t < \infty \\ y(0) = 0, \\ \lim_{t \to \infty} y(t) = 1. \end{cases}$$
 (25)

THEOREM 3. Suppose $f: [0, \infty) \times (0, \infty) \times \mathbf{R} \to \mathbf{R}$ is continuous, $\phi \in C[0, \infty)$ with $\phi > 0$ on $(0, \infty)$. In addition, assume the following conditions hold:

$$v f(t, y, v) \ge 0$$
 on $[0, \infty) \times (0, \infty) \times \mathbf{R}$ (26)

 $\begin{cases} \text{there exists a continuous function } \tau:[0,\infty)\to(0,\infty)\\ \text{a continuous nonincreasing function } g:(0,\infty)\to(0,\infty)\\ \text{with } f(t,y,v)\leq g(y)\tau(v) \quad \text{on} \quad [0,\infty)\times(0,1]\times[0,\infty) \end{cases} \tag{27}$

$$\int_{0}^{1} g(u)du < \infty \tag{28}$$

$$\int_{0}^{\infty} \frac{du}{\tau(u)} > \int_{0}^{1} \frac{du}{\tau(u)} + \phi(1) \int_{0}^{1} g(w) dw$$
 (29)

$$\phi$$
 is nondecreasing on $(0,\infty)$ (30)

and

 $\begin{cases} \textit{for constants } H > 0, \ K > 0, \ \textit{there exists a function } \psi_{H,K} \ \textit{continuous} \\ \textit{on } [0, \infty) \ \textit{and positive and nondecreasing on } (0, \infty), \ \textit{and a constant} \\ 1 \leq r < 2 \ \textit{with } f(t, y, v) \geq \psi_{H,K}(t) v^r \ \textit{on } [0, \infty) \times (0, H] \times [0, K]. \end{cases}$ (31)

Then (25) has a solution $y \in C^1[0, \infty) \cap C^2(0, \infty)$ with $1 \ge y(t) > 0$ for $t \in (0, \infty)$.

Proof: Fix $n \in \{1, 2, ...\}$. The idea is to show again that

$$\begin{cases} y'' + \phi(t) f(t, y, y') = 0, & 0 < t < n \\ y(0) = 0, & y(n) = 1 \end{cases}$$
 (32)

has a solution in $C^1[0, n] \cap C^2(0, n]$. To establish this, we first must discuss the boundary-value problem

$$\begin{cases} y'' + \phi(t) f(t, y, y') = 0, & 0 < t < n \\ y(0) = \frac{1}{m}, & y(n) = 1, \end{cases}$$
 (33)^m

for each $m \in \{2, 3, ...\}$. The technique we use to establish the existence of a solution to (32) is (1) prove $(33)^m$ has a solution for each $m \in \{2, 3, ...\}$; and

(2) apply the Arzela–Ascoli theorem. Fix $m \in \{2, 3, ...\}$. To show $(33)^m$ has a solution, we will apply Theorem 1 to the modified problem

$$\begin{cases} y'' + \lambda \phi(t) f^{*}(t, y, y') = 0, & 0 < t < n \\ y(0) = \frac{1}{m}, & y(n) = 1 \end{cases}$$
 (34)_{\lambda}

where $\lambda \in (0,1)$ and

$$f^{\star}(t,y,v) = \begin{cases} f(t,y,v), & y \ge \frac{1}{m} \\ f(t,\frac{1}{m},v), & y \le \frac{1}{m}. \end{cases}$$

Let $y \in C^2[0, n]$ be any solution of $(34)_{\lambda}^m$ for $0 < \lambda < 1$. Essentially, the same reasoning as in Theorem 2 (here $a_0 = \frac{1}{m}$) establishes

$$y'(t) \ge 0$$
 for $t \in [0, n]$ and $y'(0) > 0$. (35)

As a result $y''(t) \le 0$ for $t \in (0, n)$ and

$$\frac{1}{m} \le y(t) \le 1 \qquad \text{for} \qquad t \in [0, n]. \tag{36}$$

In addition $\sup_{t \in [0,n]} y'(t) = y'(0)$, and there exists $\xi \in (0,1)$ with $y'(\xi) = y(1) - y(0) \le 1$. Now, from (27), we have

$$\frac{-y'(t)y''(t)}{\tau(y'(t))} \le \phi(t)g[y(t)]y'(t) \quad \text{for} \quad t \in (0, n),$$

and so, integrating from 0 to ξ yields

$$\int_0^{y'(0)} \frac{u}{\tau(u)} \frac{du}{\leq} \int_0^{y'(\xi)} \frac{u}{\tau(u)} \frac{du}{\tau(u)} + \phi(1) \int_{v(0)}^{y(\xi)} g(u) du \leq \int_0^1 \frac{u}{\tau(u)} \frac{du}{\tau(u)} + \phi(1) \int_0^1 g(u) du.$$

Let

$$I(z) = \int_0^z \frac{u \, du}{\tau(u)},$$

and so we have

$$y'(0) \le I^{-1} \left(\int_0^1 \frac{u \ du}{\tau(u)} + \phi(1) \int_0^1 g(u) du \right) \equiv V.$$
 (37)

Combining (35) and (37) gives

$$0 \le y'(t) \le V$$
 for $t \in [0, n]$.

Theorem 1 implies that $(34)_1^m$ [and consequently $(33)^m$] has a solution $v_m \in C^2[0, n]$ with

$$\frac{1}{m} \le v_m(t) \le 1 \quad \text{and} \quad 0 \le v'_m(t) \le V \quad \text{for} \quad t \in [0, n].$$
 (38)

Next assumption (31) guarantees that there is a continuous function $\psi_{1,V}$ positive and nondecreasing on $(0, \infty)$, and a constant $1 \le r < 2$ with $f(t, y, v) \ge \psi_{1,V}(t) v^r$ for $(t, y, v) \in [0, \infty) \times (0, 1] \times [0, V]$. Thus,

$$-v''_m(t) \ge \phi(t)\psi_{1,V}(t) \left[v'_m(t)\right]^r$$
 for $t \in (0, n)$. (39)

Essentially the same reasoning as in Theorem 2 establishes

$$v_m(t) \ge \Psi_r(t)$$
 for $t \in [0, n]$;

here

$$\Psi_1(t) = 1 - \exp\left[-\int_0^t \phi(s)\psi_{1,V}(s)ds\right]$$

and if 1 < r < 2,

$$\Psi_r(t) = 1 - \frac{1}{\left\{1 + \left(\frac{2-r}{r-1}\right) \int_0^t \left[(2-r)\phi(s)\psi_{1,V}(s) \right]^{\frac{1}{2-r}} ds \right\}^{\frac{2-r}{r-1}}}.$$

Let

$$\Omega_r(t) = \begin{cases} \Psi_r(1)t, & t \in [0, 1] \\ \Psi_r(t), & t \ge 1. \end{cases}$$

We claim

$$v_m(t) \ge \Omega_r(t)$$
 for $t \in [0, n]$. (40)

To see this let

$$r(t) = v_m(t) - \left\{ \frac{1}{m} (1 - t) + v_m(1)t \right\}.$$

Then $r''(t) = v_m''(t) \le 0$ on (0, n) with r(0) = r(1) = 0. Consequently, $r \ge 0$ on [0, 1] so

$$v_m(t) \ge \frac{1}{m}(1-t) + v_m(1)t \ge v_m(1)t \ge \Psi_r(1)t$$
 for $t \in [0,1]$.

Hence (40) is true.

As a result we have

$$\Omega_r(t) \le v_m(t) \le 1$$
 with $0 \le v_m'(t) \le V$ for $t \in [0, n],$ (41)

and
$$-v_m''(t) \le \phi(t)g[v_m(t)]\tau[v_m'(t)] \le \phi(t)g[\Omega_r(t)] \quad \sup_{u \in [0,V]} \tau(u) \quad \text{for} \quad t \in (0,n).$$
(42)

Now the Arzela-Ascoli theorem guarantees that there is a subsequence N of $\{2, 3, \ldots\}$ and functions $y_n^{(j)} \in C[0, n], j = 0, 1$, with $v_m^{(j)} \to y_n^{(j)}, j = 0, 1$, uniformly on [0, n] as $m \to \infty$ through N. Also $y_n(0) = 0$, $y_n(n) = 1$ with

$$\Omega_r(t) \le y_n(t) \le 1$$
 and $0 \le y_n'(t) \le V$ for $t \in [0, n]$. (43)

Also

$$v'_m(t) - v'_m(0) = -\int_0^t \phi(s) f(s, v_m(s), v'_m(s)) ds$$
 for $t \in (0, n)$. (44)

Let $m \to \infty$ through N [note (42)] in (44), and we obtain using the Lebesgue dominated convergence theorem that

$$y'_n(t) - y'_n(0) = -\int_0^t \phi(s) \ f[s, y_n(s), y'_n(s)] ds$$
 for $t \in (0, n)$.

Consequently $y_n \in C^1[0, n] \cap C^2(0, n)$ is a solution of (32) with

$$\Omega_r(t) \le y_n(t) \le 1$$
 with $0 \le y'_n(t) \le V$ for $t \in [0, n],$ (45)

and

$$-y_n''(t) \le \phi(t)g[\Omega_r(t)] \sup_{u \in [0,V]} \tau(u) \quad \text{for} \quad t \in (0,n).$$
 (46)

Essentially the same reasoning as in Theorem 2 [from (23) onward] now establishes that (25) has the desired solution.

Example 2: The boundary-value problem

$$\begin{cases} y'' + \frac{2t}{\frac{1}{y}}y' = 0, & 0 < t < \infty \\ y(0) = 0, \\ \lim_{t \to \infty} y(t) = 1 \end{cases}$$
 (47)

has a solution $y \in C^1[0, \infty) \cap C^2(0, \infty)$ with y(t) > 0 for $t \in (0, \infty)$. To see this let

$$\phi(t) = 2t, \quad f(t, y, v) = \frac{v}{v^{\frac{1}{2}}}, \qquad g(y) = \frac{1}{v^{\frac{1}{2}}} \quad \text{and} \quad \tau(v) = v + 1.$$

Clearly (26)–(30) are satisfied. Also, (31) holds with $\psi_{H,K} = H^{-\frac{1}{2}}$ and r = 1. The existence of a solution to (47) follows from Theorem 3.

References

- 1. R. E. KIDDER, Unsteady flow of gas through a semi-infinite porous medium, *J. Appl. Mech.* **27**:329–332 (1957).
- T. Y. NA, Computational Methods in Engineering Boundary Value Problems, Academic Press, New York, 1979.
- 3. J. W. BERBERNES and L. K. JACKSON, Infinite interval boundary value problems for y'' = f(t, y), *Duke Math. J.* **34**:39–47 (1967).
- 4. C. CORDUNEANU, Admissibility with respect to an integral operator and applications, *Stud. Appl. Math.* **5**:55–63 (1969).
- L. H. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions, Ann. Polon. Math. 54:195–226 (1991).
- 6. R. P. AGARWAL, D. O'REGAN, and P. J. Y. WONG. *Positive Solutions of Differential, Difference and Integral Equations*, Kluwer, Dordrecht, 1999.

NATIONAL UNIVERSITY OF SINGAPORE NATIONAL UNIVERSITY OF IRELAND

(Received November 16, 2000)