Custom Camera System Solution

定制相机系统方案

制作:

Google

时间: 2025-06-19

目录 CONTENT

- → 方案概述
- → 系统组成及要求

- → 工作流程详解
- → RK3588主控芯片介绍

→ 总结与展望

01 方案概述

• 核心功能需求

技术目标定位

• 应用场景分析

微型相机摄像头配置

1.1参数如下

1.TELE长焦相机						
SENSOR-ARRAY SIZE		PIXEL SIZE	EFL	35mm DIAGONAL		
8000	6000	0.8	16.86	43.27		
DIAGONAL						
8.000						
35mm等效焦距						
91.18						

2.Wide广角相机						
SENSOR-ARRAY SIZE		PIXEL SIZE	EFL	35mm DIAGONAL		
8000	6000	0.8	2.59	43.27		
DIAGONAL						
8.000						
35mm等效焦距						
14.01						

芯片配置以及镜头角度

camera	Туре	参数
WIDE	sensor	IMX586
	LENS	HFOV: 21.7° VFOV: 16.4° DFOV: 26.8°
TELE	sensor	IMX586
	LENS	HFOV: 102.1° VFOV: 85.7° DFOV: 114.9°

微型相机主控系统配置

1.2 RK3588主控板现成的配置进行修改设计

修改方向:

- 1.小型化设计优化
- 2.低功耗设计优化

核心功能需求

广角与长焦影像采集

结合广角镜头覆盖大范围场景,长焦镜头捕捉远处细节,实现多距离、全方位的高清影像采 集能力。

同步位姿数据记录

通过内置传感器实时获取设备姿态信息,确保影像与位姿数据精准匹配,为后续分析提供可靠依据。

实时存储与转发

支持高速本地存储及网络传输,满足大规模数据的即时保存和远程分发需求,提升整体效率。

技术目标定位

提升数据采集精度

优化光学设计与算法处理,减少噪声干扰,提高图像分辨率和清晰度,确保采集数据的高度 准确性。

确保传输稳定性

采用冗余通信机制与加密技术,增强信号抗干扰能力,保障复杂环境下数据传输的高效与安全。

应用场景分析

智能监控领域

适用于城市安防、交通管理等场景,提供全天候、高精度的监控解决方案,助力智慧城市建设。

数据采集设备

集成于无人机、机器人等移动平台,完成地理测绘、环境监测等任务,拓展数据采集的应用边界。

02 系统组成及要求

• 微型核心板卡

• 广角摄像头模块

• 长焦摄像头模块

• 定位定姿模块

• 电源管理模块

微型核心板卡

RK3588主控芯片性能

RK3588采用8nm工艺,具备高性能AI算力,支持4K视频编解码,多核CPU与GPU协同工作,满足复杂计算需求。

支持多路视频处理

支持同时处理四路1080P视频流,集成硬件加速单元,优化图像质量,降低延迟,提升实时性与流畅度。

低功耗设计特点

通过动态电源管理技术,根据负载调整功耗,结合深度睡眠模式,显著延长设备续航时间,适应多种场景。

广角摄像头模块

高像素图像采集

配备4800万像素传感器,支持高动态范围成像,细节丰富,色彩还原准确,适合复杂光照环境下的拍摄。

大视场角设计

视场角可达120度,覆盖更广区域,减少盲区,配合畸变校正算法,确保画面边缘清晰无失真。

实时数据传输支持

支持千兆以太网与USB3.0接口,提供高速数据传输通道,保证图像数据的实时性和完整性, 降低丢帧率。

长焦摄像头模块

夜视功能实现

内置红外补光灯与感光增强技术,提升弱光环境下的成像效果,支持全彩夜视,清晰捕捉夜间细节。

MIPI接口优势

MIPI接口具有低电磁干扰、高带宽特性,支持远距离传输,简化电路设计,提高系统稳定性和兼容性。

高分辨率成像

支持1200万像素分辨率,提供细腻画质,结合光学防抖技术,有效减少运动模糊,提升成像质量。

定位定姿模块

GNSS信号同步校时

支持多频段GNSS信号接收,实现亚米级定位精度,同步授时功能确保时间基准一致,提升系统可靠性。

串口通信协议

采用标准UART协议,支持多种波特率配置,数据传输高效可靠,便于与其他模块无缝对接, 简化开发流程。

数据实时采集存储

支持高速数据采集与存储,内置大容量缓存,配合文件管理系统,确保数据不丢失,方便后期分析与调用。

电源管理模块

高效电池管理系统

采用智能充放电算法,实时监测电池状态,均衡电流分布,延长电池寿命,支持快充功能,提升使用体验。

电磁屏蔽技术应用

运用多层屏蔽材料与结构设计,有效隔绝外界电磁干扰,降低噪声对系统的影响,保障设备稳定运行。

03 工作流程详解

• 开机与初始化

• 参数设置步骤

• 数据采集过程

• 关机与数据访问

开机与初始化

开机键操作说明

长按开机键3秒,设备启动自检程序并点亮状态指示灯。松开按键后进入待机模式,同时默认 WiFi模块开始工作,确保设备随时可连接。

默认WiFi热点设置

设备默认SSID为 "CameraSys", 密码为 "default1234"。用户可通过手机或电脑搜索该热点并连接,首次使用建议修改默认WiFi名称和密码以增强安全性。

参数设置步骤

手机APP链接配置

下载官方APP "CamConfig",打开后选择"添加设备"功能。扫描二维码或手动输入设备ID完成绑定,随后通过APP界面调整基础参数并保存。

相机参数详细设定

支持分辨率、帧率、曝光时间等高级参数调节。用户可在APP中选择预设模式(如夜景、运动),也可手动输入具体数值,点击确认后参数立即生效。

数据采集过程

自动采集启动机制

设备内置定时器模块,可根据预设时间自动启动数据采集任务。同时支持外部信号触发采集,确保在复杂场景下也能精准执行。

数据存储与转发逻辑

采集到的数据会优先存储至本地SD卡,同时通过WiFi上传至云端服务器。若网络中断,则启用断点续传功能,保证数据完整性。

关机与数据访问

停止采集操作方法

长按暂停按钮2秒停止当前采集任务,设备将自动保存已采集数据并关闭相关模块电源,降低功耗延长设备寿命。

APP访问云服务器流程

登录APP后进入"数据管理"页面,选择目标设备查看云端存储文件。支持在线预览、下载或分享功能,方便用户随时随地获取所需数据。

1 RK3588主控芯片介绍

• 性能特点分析

• 通信能力评估

• 功耗控制策略

• 可靠性保障措施

性能特点分析

高性能处理器架构

RK3588采用八核高性能处理器架构,包含四个Cortex-A76大核和四个A55小核,主频高达 2.4GHz,满足多任务处理需求,显著提升系统运算能力。

多路视频输入输出支持

芯片支持多达8路高清视频同时输入与输出,兼容多种视频格式,实现多摄像头协同工作,广 泛应用于安防监控、智能驾驶等领域。

强大图像处理能力

内置独立NPU单元,提供6TOPS算力,支持AI加速图像处理,优化画质、降噪及动态范围调整,确保图像清晰度和色彩还原。

通信能力评估

4G/5G网络兼容性

RK3588支持最新5G通信协议,向下兼容4G网络,保障高速数据传输,适应不同地区网络环境,降低延迟提升稳定性。

WiFi通信优化方案

集成WiFi6模块,支持MIMO技术,增强信号覆盖范围和抗干扰能力,优化复杂环境下无线通信质量,提高连接可靠性。

数据传输效率提升

通过硬件级DMA控制器与协议栈优化,减少CPU负载,提升数据吞吐量,确保大规模数据实时传输的高效性和稳定性。

功耗控制策略

芯片低功耗设计原理

采用先进7nm工艺制程,结合DVFS动态电压频率调节技术,根据负载智能调整功耗,有效延长设备续航时间,降低发热。

对相机续航的影响

低功耗设计使相机在待机模式下功耗降低30%,连续拍摄时续航提升20%,为长时间户外使用提供可靠保障,减少充电频率。

可靠性保障措施

稳定运行环境要求

芯片支持宽温工作范围(-20℃至85℃),具备防静电、防电磁干扰设计,适应恶劣环境,确保系统长期稳定运行无故障。

故障检测与恢复机制

内置自检模块实时监测关键参数,发现异常自动触发保护机制,结合固件级重启功能,快速恢复系统正常运行,降低宕机风险。

05 总结与展望

• 方案总结回顾

• 未来优化方向

方案总结回顾

主要功能实现情况

本方案成功实现了高精度图像采集、智能目标识别及实时数据传输三大核心功能,满足了多场景下的应用需求,并确保了系统的稳定性和可靠性。

技术优势总结

通过采用先进的AI算法和硬件优化设计,系统具备高效的数据处理能力、低功耗运行特点以及灵活的可扩展性,为用户提供卓越性能体验。

未来优化方向

提升数据处理速度

我们将进一步优化算法结构并引入GPU加速技术,同时改进数据缓存机制,以显著缩短图像处理时间,提升整体效率至更高水平。

拓展更多应用场景

计划深入探索医疗影像分析、工业缺陷检测及自动驾驶等领域,结合具体需求定制功能模块,使系统适应更广泛行业要求,创造更大价值。

谢谢观看

您的姓名

Design by MindShow