3 PRP versus Left-or-Right

Given a security parameter (which is implicit and omitted from notations for better readability), we consider a pair (Enc, Dec) of functions from $\{0,1\}^k \times \{0,1\}^n$ to $\{0,1\}^n$ (k and n are functions of the security parameter). These functions are such that for all K and K, we have

$$Dec(K, Enc(K, X)) = X$$

It is assumed that there are implementations which can evaluate both functions in polynomial time complexity (in terms of the security parameter). We define several security notions.

PRP. We say that this pair is a *pseudorandom permutation* (PRP) if there exists a negligible function negl such that for all probabilistic polynomial time (PPT) algorithm \mathcal{A} , we have $\Pr[\Gamma^{\mathsf{PRP}}(\mathcal{A},0) \to 1] - \Pr[\Gamma^{\mathsf{PRP}}(\mathcal{A},1) \to 1] \leq \mathsf{negl}$, where $\Gamma^{\mathsf{PRP}}(\mathcal{A},b)$ is the PRP game defined as follows:

```
\Gamma^{\mathsf{PRP}}(\mathcal{A}, b):

1: initialize a list \mathcal{L} to empty

2: pick K \in \{0, 1\}^k uniformly at random

3: pick a permutation \Pi over \{0, 1\}^n uniformly at random

4: run b' \leftarrow \mathcal{A}^{\mathcal{O}}

5: return b'
subroutine \mathcal{O}(x):

6: if x \in \mathcal{L} abort

7: insert x in \mathcal{L}

8: if b = 0 then

9: return \mathsf{Enc}(K, x)

10: else

11: return \Pi(x)

12: end if
```

LoR. We say that this pair is LoR-secure if there exists a negligible function negl such that for all probabilistic polynomial time (PPT) algorithm \mathcal{A} , we have $\Pr[\Gamma^{\mathsf{LoR}}(\mathcal{A},0) \to 1] - \Pr[\Gamma^{\mathsf{LoR}}(\mathcal{A},1) \to 1] \leq \mathsf{negl}$, where $\Gamma^{\mathsf{LoR}}(\mathcal{A},b)$ is the left-or-right game defined as follows:

```
\Gamma^{\mathsf{LoR}}(\mathcal{A}, b):

1: initialize two lists \mathcal{L}_l and \mathcal{L}_r to empty

2: pick K \in \{0, 1\}^k uniformly at random

3: run b' \leftarrow \mathcal{A}^{\mathcal{O}}

4: return b'
subroutine \mathcal{O}(x_l, x_r):

5: if x_l \in \mathcal{L}_l or x_r \in \mathcal{L}_r, abort

6: insert x_r in \mathcal{L}_l and x_r in \mathcal{L}_r

7: if b = 0 then

8: return \mathsf{Enc}(K, x_l)
```

```
9: else
      return Enc(K, x_r)
10:
11: end if
```

We want to show the equivalence between these notions.

- Q.1 Is the list management important in each security definition (or: what happens with modified definitions in which we remove the lists)? Justify your answer.
- **Q.2** We consider the following hybrid game:

```
\Gamma^{\mathsf{hyb}}(\mathcal{A},b):
         1: initialize a list \mathcal{L} to empty
        2: pick K \in \{0,1\}^k uniformly at random
         3: pick a permutation \Pi over \{0,1\}^n uniformly at random
        4: run b' \leftarrow \mathcal{A}^{\mathcal{O}}
         5: return b'
       subroutine \mathcal{O}(x):
         6: if x \in \mathcal{L} abort
         7: insert x in \mathcal{L}
        8: if b = 0 then
               return Enc(K, x)
       10: else
               return Enc(K,\Pi(x))
       11:
       12: end if
       Show that for all \mathcal{A} playing the PRP game and any b, we have \Pr[\Gamma^{\mathsf{PRP}}(\mathcal{A},b) \to 1] =
       \Pr[\Gamma^{\mathsf{hyb}}(\mathcal{A},b) \to 1].
Q.3 Given \mathcal{A} playing the PRP game, we define \mathcal{B} playing the LoR game as follows:
         1: pick a permutation \Pi over \{0,1\}^n uniformly at random
         2: run \mathcal{A}
            when \mathcal{A} makes a query x to its oracle, answer by \mathcal{O}(x,\Pi(x))
        3: return the same output as \mathcal{A}
```

Show that $\Pr[\Gamma^{\mathsf{hyb}}(\mathcal{A}, b) \to 1] = \Pr[\Gamma^{\mathsf{LoR}}(\mathcal{B}, b) \to 1]$ for any b.

Q.4 Deduce that LoR-security implies PRP.

CAUTION: adversaries must be PPT.

Q.5 Using the following game, show that PRP security implies LoR security. Give a precise proof with the reductions.

```
\Gamma^{\mathsf{generic}}(\mathcal{A}, b, c):
  1: initialize two lists \mathcal{L}_l and \mathcal{L}_r to empty
  2: pick K \in \{0,1\}^k uniformly at random
  3: pick a permutation \Pi over \{0,1\}^n uniformly at random
  4: run b' \leftarrow \mathcal{A}^{\mathcal{O}}
  5: return b'
subroutine \mathcal{O}(x_l, x_r):
```

```
6: if x_l \in \mathcal{L}_l or x_r \in \mathcal{L}_r, abort
7: insert x_r in \mathcal{L}_l and x_r in \mathcal{L}_r
 8: if b = 0 then
        if c = 0 then
 9:
           return Enc(K, x_l)
10:
11:
        else
           return \Pi(x_l)
12:
        end if
13:
14: else
        if c = 0 then
15:
           return Enc(K, x_r)
16:
17:
           return \Pi(x_r)
18:
        end if
19:
20: end if
```