Anita Schilling

Web Technology and Information Systems Bauhaus-Universität Weimar

1. März 2007

Einleitung

- 1 Einleitung
- 2 Multidimensionale Skalierung
- 3 Verfahren
 - Kräftegerichtete Positionierung durch Distanzunterschiede
 - Verfahren mit Interpolation auf Basis des nächsten Nachbarn
- **4** Evaluation
 - Testbedinungen
 - Ergebnisse
- 5 Zusammenfassung

Einleitung

- Visualisierung von hochdimensionalen Daten, die keine unmittelbare Entsprechung im 2- oder 3-dimensionalen Raum haben
- Zusammenfassung von Methoden zur Dimensionsreduktion unter multidimensionaler Skalierung

Visualisierung

Einleitung ○○●

Definition

■ Repräsentation der Distanzen δ zwischen Objektpaaren (a,b) als Distanzen Δ zwischen Punkten (p_a,p_b) in einer niedrigeren Dimension

$$\delta(a,b) - \Delta(p_a,p_b) \to 0 \quad \forall a,b \in D, |D| = N$$

Vektorraummodell

- a = "ich rechne" b = "ich schreibe"
- $a \rightarrow a = (1, 1, 0)$ $b \rightarrow b = (1, 0, 1)$
- $w_0 = ich$ $w_1 = rechne$ $w_2 = schreibe$

$$1-cos(\varphi)=0,5$$

- Repräsentation eines Dokuments als Vektor
- Dimension des Vektors ist die Anzahl von Indextermen in der Dokumentekollektion
- Elemente des Vektors sind die Wichtigkeiten der Indexterme in dem Dokument
- Kosinus-Unähnlichkeit als Distanz zwischen zwei Vektoren

Multidimensionale Skalierung

Bewertungsmaß der Punktkonfiguration

- Stress bezeichnet den Fehler, den die generierte Punktkonfiguration enthält
- Verfahren sollten Punktkonfigurationen mit möglichst geringem Stress für alle Ausgangdaten generieren

$$\sigma = \sqrt{\frac{\sum_{a,b \in D} (\delta(a,b) - \Delta(p_a,p_b))^2}{\sum_{a,b \in D} (\Delta(p_a,p_b))^2}}$$

Kräftegerichtete Positionierung durch Distanzunterschiede

Spring-Modell

Kräftegerichtete Positionierung durch Distanzunterschiede

Spring-Modell

Spring-Modell

Kräfteberechnung zwischen allen Nachbarn $O(N^3)$

Verfahren von Chalmers (1996)

Kräfteberechnung zwischen einer Stichprobe von Nachbarn $O(N^2)$

Hybride Verfahren

- Generierung einer Punktkonfiguration für eine Teilmenge S der Größe \sqrt{N} mit dem Verfahren von Chalmers (1996) O(N)
- 2 Für alle übrigen Objekte i der Datenmenge
 - 1 Suche des nächsten Nachbarn zu i in der Teilmenge S
 - Interpolation von Punktkoordinaten für i auf Basis des nächsten Nachbarn und der Teilmenge S $O(N\sqrt{N})$
- Verfeinerung der Punktkonfiguration mit dem Verfahren von Chalmers (1996) für die gesamte Datenmenge O(N)

Betrachtete Verfahren

Verfahren von Chalmers u.a. (2003) lineare Nächste-Nachbar-Suche $O(N\sqrt{N})$

Verfahren von Jourdan und Melançon (2004) Nächste-Nachbar-Suche mit geordneten Listen $O(N^{5/4}\log(N))$

Multiscale-Verfahren von Jourdan und Melançon (2004) Generierung der Teilmengenkonfiguration durch rekursive Anwendung des Verfahrens $O(N^{5/4}\log(N))$

Verfahren mit Fuzzy-Fingerprinting

- Variante des Similarity-Hashings
- Hashkollisionen als Indikator für Ähnlichkeit zwischen Objekten
- Nächste-Nachbar-Suche mit Hashing in O(N)

Fuzzy-Fingerprinting

Taxonomie der Verfahren

Evaluation

Testbedingungen

Dokumentenkollektionen	
Größe:	Dimension:
1 000	6 992
10 000	27 612
40 000	52 420
60 000	105 976
80 000	94 798
100 000	124 093

- 6 Dokumentenkollektionen aus dem Reuters-Korpus
- 6 Durchläufe je Verfahren

Ergebnisse

Gesamtlaufzeiten der Verfahren

Ergebnisse

Laufzeiten der Nächsten-Nachbar-Suche

Plots

Abb. Spring-Modell

Abb. Verfahren mit Fuzzy-Fingerprinting

Kollektion mit 1 000 Dokumenten

Ergebnisse

Stresswerte der Punktkonfigurationen

Zusammenfassung

- Verfahren mit Fuzzy-Fingerprinting ist effizientestes Verfahren hinsichtlich Laufzeit und Stresswert
- Interpolation ist Ansatzpunkt für weitere Optimierung