Oblig 1 MAT1100 - Lineær Algebra

Oliver Ekeberg

September 3, 2025

Contents

T	1.4	
	1.1	Oppgave 1.4.2
	1.2	Oppgave 1.4.6
		1.2.1 1.4.6 a)
		1.2.2 1.4.6 b)
2	1.5	
	2.1	Oppgave 1.5.2
		2.1.1 1.5.2 a)
		2.1.2 1.5.2 b)
		2.1.3 1.5.2 c)
3	1.6	
	3.1	Oppgave 1.6.5
		3.1.1 1.6.5 a)
		3.1.2 1.6.5 b)
		3.1.3 1.6.5 c)
4	1.8	
	4.1	Oppgave 1.8.2
		4.1.1 1.8.2 a)
		4.1.2 1.8.2 b)
	4.2	Oppgave 1.8.3

1 1.4

1.1 Oppgave 1.4.2

Vis at standardbasisen $(e_1,...,e_n)$ er en basis for \mathbb{K}^n pf:

Først viser jeg at $(e_1,...,e_n)$ er lineært uavhengig. Dette skjer når likningen

$$0 = \alpha_1 e_1 + \dots + \alpha_n e_n$$

har eneste løsning at $\alpha_1=\ldots=\alpha_n=0.$ Vi vet videre at

$$e_j = (\delta_{jk})_{k=1}^n$$

hvor j er da posisjonen til vektoren inne i listen, og k er da den k´te posisjonen i n-tuppelen.

I nesten enhver situasjon så har vi en liste med n-tupler

$$0 = \alpha_1 e_1 + \dots + \alpha_n e_n$$

$$= \sum_{j=1}^n \alpha_j * e_j$$

$$= \sum_{j=1}^n \alpha_j * (\delta_{jk})_{k=1}^n$$

$$= (\sum_{j=1}^n \alpha_j \delta_{jk})_{k=1}^n$$

$$= (\alpha_k)$$

hvis og bare hvis $\alpha_1 = \dots = \alpha_n = 0$

Så $(e_1,...e_n)$ er lineært uavhengig

Deretter må jeg vise at listen $(e_1, ... e_n)$ utspenner heel \mathbb{K}^n

Definisjonen på spennet av en liste med vektorer er definert som

$$span(\mathbb{K}^n) = \{\alpha_1 e_1 + ... + \alpha_n e_n : \alpha_1, ..., \alpha_n \in \mathbb{K}\}\$$

Siden $(e_1, ..., e_n)$ er lineært uavhengig, så vet vi at det finnes
n uavhengige vektorer, og de må av den grunn utspenne hele \mathbb{K}^n

1.2 Oppgave 1.4.6

1.2.1 1.4.6 a)

La $C = (e_1, ..., e_n)$ være standardbasisen til \mathbb{K}^n . Vis at $[x]_C = x, \forall x \in \mathbb{K}^n$.

pf:

Vi vet at $e_j = (\delta_{jk})$ som er den j-te n-tuppelen, som er 0 overalt enn i den k-te posisjonen.

Da er enhver $x \in \mathbb{K}^n$ en lineær kombinasjon av standardbasisen, og kan skrives som

$$x = \sum_{j=1}^{n} x_j e_j$$
$$= \sum_{j=1}^{n} x_j (\delta_{jk})$$
$$= (x_k)$$

Da vil av teorem 1.4.5, som sier at hvis $u = x_1u_1 + ... + x_nu_n = [u]_B = (x_1, ..., x_n)$ gitt at basisen til et vektorrom U over \mathbb{K} er gitt ved at $B = (u_1, ..., u_n)$, kunne si at $[x]_C = x, \forall x \in \mathbb{K}^n$

1.2.2 1.4.6 b)

La U være et vektorrom over K med en basis $B = (u_1, ..., u_n)$. Vis at

$$[u_j]_B = e_j, \forall j = 1, ..., n$$

Vi vet at vi kan uttrykke u_j som $0 * u_1 + ... + 1 * u_j + ... + 0 * u_n$.

Da vet vi fra teorem 1.4.5 at $[u_j]_B = (0, ..., 1, ..., 0)$. Dette er det samme som å skrive $e_j = (0, ..., 1, ..., 0)$ hvor 1 er i den j-te plassen, som viser at

$$[u_j]_B = e_j, \forall j = 1, ..., n$$

2 1.5

2.1 Oppgave 1.5.2

2.1.1 1.5.2 a)

Vis at dim $P_n = n + 1$

pf: Siden dimensjonen til en basis er lik antall vektorer i den basisen, må jeg vise at basisen $P_n = \{$ alle reelle polynomer av grad høyst n $\}$ har n+1 vektorer.

Videre er ethvert polynom av grad n formulert som

$$p(t) = \alpha_0 + \alpha_1 t + \dots + \alpha_n t^n$$

= $\alpha_0 p_0(t) + \alpha_1 p_1(t) + \dots + \alpha_n p_n(t)$

Så lineær kombinasjonen av enhver $p(t) \in P_n$ inneholder da n+1 vektorer, og $span(p_0,...,p_n) = P_n$. Logikken er det samme som at settet $C_4 = 0, 1, 2, 3, 4$ inneholder 5 tall, men har input lik 4

Må nå bare vise at p(t) = 0 hvis $\alpha_0 = ... = \alpha_n = 0$. Hvis det ikke er slik, betyr det at noen av $p_0, ..., p_n$ er lineært uavhengige, og da er dimensjonen mindre. enn n+1.

$$0 = \sum_{j=0}^{n} \alpha_j p_j$$

Hvis alle $p_j=0$, så er ikke basisen som P_n består av lin. uavh. Derfor må alle $\alpha_j=0$ for j=1,...,n

2.1.2 1.5.2 b)

Vis at dim $P = \infty$

pf:

P := (alle reelle polynomer)

Anta at P har en endeligdimensjonal, med basis $B:=(p_0(t),...,p_n(t))$. Det vil si at for en $p(t)\in P$, så er $p(t)=t^n=\alpha_0p_0(t)+\alpha_1p_1(t)+...+\alpha_np_n(t)$. Men siden $p(t)\in P$, så vil også $p(t)=t^{n+1}\in P$, og $t^{n+1}=\alpha_0p_0+..+\alpha_np_n$. Dette motsier argumentet om at P skal være endelig dim. fordi basisen til P skal utspenne hele P. Altså span(B)=P. Av den grunn, er P uendelig dim., og dim $P=\infty$.

2.1.3 1.5.2 c)

 $C^0(\mathbb{R},\mathbb{R})$ er rommet som inneholder alle kontinuerlige funksjoner s.a. $f:\mathbb{R}\to\mathbb{R}$

pf:

P er et underrom av $C^0(\mathbb{R}, \mathbb{R})$ fordi ethvert polynom er en kontinuerlig funksjon. Men P inneholder ikke alle kontinuerlige funksjoner, for eksempel er ikke f(x) = sin(x) et polynom. Derfor er P et ekte underrom av $C^0(\mathbb{R}, \mathbb{R})$. Og siden dim $P = \infty$, så må dim $C^0(\mathbb{R}, \mathbb{R})$ også være uendelig.

3 1.6

3.1 Oppgave 1.6.5

3.1.1 1.6.5 a)

$$V \oplus W := \{(v, w) : v \in V, w \in W\}$$

pf:

Vi sier at $V \oplus W$ er et vektorrom fordi

- vi utstyrer det med nullelementet $0_{V \oplus W} = (0_V, 0_W)$
- for to elementer $(v_1, w_1), (v_2, w_2) \in V \oplus W$, så definerer vi addisjon som $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$
- skalar multiplikasjon som $\alpha(v, w) = (\alpha v, \alpha w)$ for en skalar α

Fra disse operasjonene kan vi se at alle åtte aksiomene for et vektorrom er oppfylt, fordi både V og W er vektorrom. Derfor er $V \oplus W$ et vektorrom.

Eksempel: Punkt 5:

For en $u \in V \oplus W$, og en $\alpha, \beta \in \mathbb{K}$ (V og W er vektorrom over \mathbb{K}), så er

$$\alpha(\beta u) = \alpha(\beta(v, w)) = \alpha(\beta v, \beta w)$$

$$= (\alpha(\beta v), \alpha(\beta w))$$

$$= ((\alpha \beta) v, (\alpha \beta) w)$$

$$= (\alpha \beta) (v, w)$$

3.1.2 1.6.5 b)

Siden $(v_1, 0_W), ..., (v_n, 0_W) \in V$ og $(0_V, w_1), ..., (0_V, w_m) \in W$, så er enhver $(v, w) \in V \oplus W$ en lineær kombinasjon av disse vektorene. Derfor spenner de opp hele $V \oplus W$. Og $((v_1, 0_W), ..., (v_n, 0_W), (0_V, w_1, ..., (0_V, w_m)))$ blir da en basis for $V \oplus W$.

3.1.3 1.6.5 c)

Dimensjonen til et vektorrom er lik antall vektorer i en basis for det rommet. Fra oppgave b) så vet vi at en basis for $V \oplus W$ er gitt ved $((v_1, 0_W), ..., (v_n, 0_W), (0_V, w_1, ..., (0_V, w_m)))$. Denne listen inneholder n + m vektorer. Derfor er dim $V \oplus W = n + m = dimV + dimW$

4 1.8

4.1 Oppgave 1.8.2

4.1.1 1.8.2 a)

Vis at vektorrommet \mathbb{K}^n har dim n.

pf:

Standardbasisen til \mathbb{K}^n er $C = (e_1, ..., e_n)$. Må vise at denne listen er linært uavhengig.

En liste er linært uavhengig hvis likningen

$$0 = \sum_{j=1}^{n} \alpha_j e_j$$

Vet fra tidligere av at $e_j := (\delta_{jk})_{k=1}^n$

$$0 = \sum_{j=1}^{n} \alpha_j (\delta_{jk})_{k=1}^n = (\sum_{j=1}^{n} \alpha_j \delta_{jk})_{k=1}^n = (\alpha_k)_{k=1}^n$$

Alle α_k må være lik 0. Videre må jeg vise at listen spenner opp hele \mathbb{K}^n .

Ta en $x = (x_1, ..., x_n) \in \mathbb{K}$. Da er $x = x_1 e_1 + ... + x_n e_n$. Av dette, er da $span(C) = \mathbb{K}^n$, og dim $\mathbb{K}^n = n$

4.1.2 1.8.2 b)

 $M_{mxn}(\mathbb{K}) = (M_{jk})_{j=1,..m,k=1,..n}$. er mengden av alle mxn matriser med elementer i \mathbb{K} . Siden M_{jk} er ethvert element i matrisen, så vil en lin. komb. av $M_{mxn}(\mathbb{K})$ være 0 iff. $0 = (\alpha M)_{jk}$ har eneste løsning at $\alpha_{jk} = 0 \forall j = 1,..., m$ og k = 1,..., n. Så lenge $\alpha_{jk} \in \mathbb{K}$

4.2 Oppgave 1.8.3

 $i) \rightarrow ii)$

Anta at $dimU = \infty$

For enhver $n \in \mathbb{N}$ finnes et underrom U_n av U med dimensjon n.

pf: For en vilkårlig $n \in \mathbb{N}$ så har vi et underrom U_n av U fordi for k = 2, ..., n så vil vi ha følgende utsagn til å være sant;

$$u_k \notin span(u_1, ..., u_{k-1})$$

som sier at listen $(u_1, ..., u_n)$ er lineært uavhengig. Om vi tar U_{n+1} istendenfor, så vil $dim U_{n+1} = n+1$. Vi finner at

$$u_{k+1} \notin span(u_1, ..., u_k)$$

Siden $dimU = \infty$, som betyr at U ikke har en endeligdimensjonal basis, vil vi ha lov til å fortsette i evigheten

Vi vet at listen er uavhengig fordi for at et vektorrom skal ha dimensjon n, så må det være n vektorer i basisen.

$$ii) \rightarrow i)$$

Anta at for enhver $n \in \mathbb{N}$, finnes det et underrom U_n av U med dimensjon n.

pf:

Skal vise at dim $U=\infty$. Skal bruke motbevis. Anta at dim $U=d<\infty$. Da er det en endelig dimensjonal basis $(u_1,...,u_d)$. Sett nå n=d+1. Vi har antatt at det finner et underrom U_n av U uansett hvilken n vi velger. Ta nå dim $U_{d+1}=d+1$. Dette er vårt motbevis, fordi hvis et vektorrom U er endeligdim. og U_n er et underrom av U, så må dim $U_n \leq dimU$. Derfor er dim $U=\infty$. Dette argumentet er formulert i proposisjon 1.4.11