אלגוריתם "המנצח "המתוקן Adjusted Winner Algorithm

אראל סגל-הלוי

חלוקת חפצים בדידים

כשהחפצים לא ניתנים לחלוקה, בדרך-כלל אי אפשר למצוא חלוקה פרופורציונלית וללא קנאה (דוגמה: בית).

פתרונות מקובלים:

1)הוספת כסף למערכת. דוגמה: אלגוריתמי חלוקת שכר-דירה.

2)מציאת דרך יצירתית לחלק חפץ אחד. דוגמה: אלגוריתם "וין-וין" לגישור.

3)חלוקה ללא-קנאה-בקירוב. דוגמה: חלוקת תכשיטים ומקומות בקורסים.

חלוקת חפצים בין שני אנשים

נתונים:

- שני שותפים (למשל: דונאלד ואיוואנה).
- חפצים או נושאים שיש עליהם מחלוקת m
 - כל שותף מייחס ערך באחוזים לכל נושא.

:האתגר – להחליט מי יקבל כל חפץ/נושא כך ש

- לא תהיה קנאה.
- התוצאה תהיה יעילה פארטו.
- נצטרך לחתוך חפץ אחד לכל היותר.

חלוקת חפצים בין שני אנשים

ניסיון ראשון: אחד מחלק, השני בוחר.

אין קנאה; חפץ אחד נחתך; אבל לא יעיל פארטו. •

30	20	30	20	דונאלד:
20	40	10	30	:איוואנה

ניסיון שני: כל חפץ נמסר למי שהכי רוצה אותו.

יעיל פארטו, אף חפץ לא נחתך; אבל יש קנאה. •

30	30	30	10	:דונאלד
16	18	20	40	:איוואנה

חלוקת חפצים בין שני אנשים

ניסיון שלישי: מיקסום מכפלת הערכים.

אין קנאה; יעיל פארטו;
 אבל לא ברור כמה חפצים נחתכים.
 [בנוסף, גם לא פשוט לחישוב].

"אלגוריתם "המנצח המתוקן" (Adjusted Winner) Brams and Taylor, 1996

א. כל חפץ נמסר למי שהכי רוצה אותו.

ב. אם סכום הנקודות שווה – סיימנו.

ג. אחרת – מסדרים את החפצים **בסדר עולה של היחס מנצח\מפסיד**, ומעבירים חפצים עד שהסכום
משתווה. *צריך לחתוך לכל היותר חפץ אחד**.

30	30*	30	10	דונאלד:
18	20*	28	34	:איוואנה

משפט: אלגוריתם "המנצח המתוקן" מחזיר תמיד חלוקה יעילה פארטו.

הוכחה: יהי ז יחס-הניקוד של החפץ האחרון
שהועבר מהמנצח/ת למפסיד/ה (r>1). [היחס הגדול ביותר].
נכפיל את הניקוד של המפסיד ב-ז. עכשיו בחלוקה
הסופית, כל חפץ נמסר למי שנותן לו ניקוד מירבי.
מכאן - החלוקה הסופית ממקסמת סכום:

r*v[loser] + v[winner]

30	30*	30	10	דונאלד:
r*18=27	r*20= 30*	r*28= 42	r*34= 51	:איוואנה

משפט: אלגוריתם "המנצח המתוקן" מחזיר תמיד חלוקה ללא קנאה.

הוכחה: לשני השותפים ניקוד שווה.

אילו הניקוד היה קטן מ-50, הם היו יכולים להתחלף וזה היה שיפור פארטו – סתירה למשפט הקודם. ***

שיקולים אסטרטגיים:

- האלגוריתמים לא אמיתי (כמו רוב האלגוריתמים לחלוקה הוגנת).
 - כל שיווי-משקל נאש טהור הוא ללא קנאה.
 - 3/4 כל שיווי-משקל נאש טהור משיג קירובלמקסימום-סכום-הערכים.
 - http://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/download/11147/10727 •

מקורות:

- Brams and Taylor: Fair Division (1996 book),
 The Win-Win Solution (1999 book).
- הקורס של ויליאם גסרך כולל מצגות סטודנטים על יישומים של האלגוריתם במקרים שונים: http://www.cs.umd.edu/~gasarch/COURSES/209/S15/
 - האתר של אוניברסיטת ניו-יורק כולל הדגמה חיה ואפשרות לשלם כדי לקבל הסכם פורמלי: http://www.nyu.edu/projects/adjustedwinner/
 - http://fairoutcomes.com/fd.html •