Trabajo Práctico Final ASSD

Algoritmos adaptativos aplicados a ANC

Linares Gonzalo Ezequiel Gullino Agustin Luis Bustelo Nicolás Sergi Damián Feldman Santiago

Instituto Tecnológico de Buenos Aires

Diciembre 2023

Introducción

Aplicaciones

Descenso por gradiente

Descenso por gradiente

Filtro de Wiener

$$e(n) = d(n) - \hat{d}(n) = d(n) - \vec{\mathbf{w}} * \vec{\mathbf{x}}(n)$$
$$\vec{\mathbf{x}}(n) = \begin{bmatrix} x(n) & x(n-1) & \dots & x(n-M-1) \end{bmatrix}^T$$
$$\vec{\mathbf{w}} = \begin{bmatrix} w_0 & w_1 & \dots & w_{M-1} \end{bmatrix}$$

Filtro de Wiener

Para obtener el filtro **w** óptimo en el sentido del MSE:

$$J(\vec{\mathbf{w}}) = \mathbb{E}\{e^{2}(n)\} = \mathbb{E}\{(d(n) - \vec{\mathbf{w}} * \vec{\mathbf{x}}(n))^{2}\}$$

$$\nabla J(\vec{\mathbf{w}}) = \mathbb{E}\{-2 * \vec{\mathbf{x}}(n) * (d(n) - \vec{\mathbf{w}} * \vec{\mathbf{x}}(n))\}$$

$$\nabla J(\vec{\mathbf{w}}) = 0 \Rightarrow \mathbb{E}\{\vec{\mathbf{x}}(n) * d(n)\} = \mathbb{E}\{\vec{\mathbf{x}}(n) * \vec{\mathbf{x}}(n) * \vec{\mathbf{w}}\}$$

$$\mathbf{R} * \vec{\mathbf{w}} = \mathbf{p}$$

Filtro de Wiener + SGD

$$J(\vec{\mathbf{w}}) = \mathbb{E}\{e^2(n)\}$$

$$J(\vec{\mathbf{w}}) = \mathbb{E}\{(\vec{d}(n) - \vec{\mathbf{w}} * \vec{\mathbf{x}})^2\}$$

$$\nabla J(\vec{\mathbf{w}}) = -\mathbb{E}\{2 * \vec{\mathbf{x}} * (d(n) - \vec{\mathbf{w}} * \vec{\mathbf{x}})\}$$
$$\nabla J(\vec{\mathbf{w}}) = \mathbb{E}\{-2 * \vec{\mathbf{x}} * e(n)\}$$

$$\vec{\mathbf{w}}(n+1) = \vec{\mathbf{w}}(n) - \frac{1}{2} * \mu * \nabla J(\vec{\mathbf{w}}(n))$$

$$\vec{\mathbf{w}}(n+1) = \vec{\mathbf{w}}(n) + \mu * \mathbb{E}\{e(n) * \vec{\mathbf{x}}(n)\}$$

Filtro de Wiener + SGD - Convergencia

Si bien en el algoritmo de SGD se inicializan arbitrariamente los pesos del vector, en general se hacen en 0 y para converger(sin convergencia alternada) se tiene que cumplir la condición:

$$0<\mu<1/\lambda_{MAX}$$

Siendo λ_{MAX} el mayor autovalor de la matriz de correlación R.

LMS

Dada la ecuación de actualización de $\vec{w}(n)$ obtenida al realizar SGD sobre filtrado óptimo, se puede obtener LMS estimando el valor esperado en la expresión de actualización. En particular, LMS clásico se obtiene de aproximar el valor esperado del producto por el producto:

$$ec{\mathbf{w}}(n+1) = ec{\mathbf{w}}(n) + \mu * \mathbb{E}\{e(n) * ec{\mathbf{x}}(n)\} pprox \\ ec{\mathbf{w}}(n+1) = ec{\mathbf{w}}(n) + \mu * e(n) * ec{\mathbf{x}}(n)$$

LMS

LMS - Algoritmo: Resumen

Parámetros:

M= orden del filtro $\mu=$ paso del algoritmo

Inicialización:

$$w(0) = \mathbf{0}$$

Cálculo:

For n = 0, 1, 2, ...

$$x(n) = [x(n), x(n-1),, x(n-M+1)]^{T}$$

$$e(n) = d(n) - \vec{\mathbf{w}}(n)\vec{x}(n)$$

$$\vec{\mathbf{w}}(n+1) = \vec{\mathbf{w}}(n) + \mu e(n)\vec{x}(n)$$

Sistema físico

FxLMS

$$W(z) = -\frac{P(z)}{S(z)}$$

$$w(n+1) = w(n) - \mu x_f(n)e(n)$$

FxLMS

RLS

Initialization

$$\mathbf{w}(-1) = \mathbf{0}$$
 $\mathbf{P}(-1) = \delta^{-1}\mathbf{I}$
 $\delta = \text{small positive constant}$

For each $n = 0, 1, 2, \ldots$ compute:

Adaptation gain computation

$$\bar{\mathbf{g}}(n) = \lambda^{-1} \mathbf{P}(n-1) \mathbf{x}(n)$$

$$\bar{\alpha}(n) = 1 + \bar{\mathbf{g}}^H(n)\mathbf{x}(n)$$

$$\bar{\mathbf{g}}(n)$$

$$\mathbf{g}(n) = \frac{\bar{\mathbf{g}}(n)}{\bar{\alpha}(n)}$$

$$\mathbf{P}(n) = \lambda^{-1}\mathbf{P}(n-1) - \mathbf{g}(n)\bar{\mathbf{g}}^H(n)$$

Filtering

$$e(n) = y(n) - \mathbf{w}^H(n-1)\mathbf{x}(n)$$

Coefficient updating

$$\mathbf{w}(n) = \mathbf{w}(n-1) + \mathbf{g}(n)e^*(n)$$

Enfoque del trabajo

Realizaremos el análisis e implementación del algoritmo FxLMS y FxRLS aplicado a ANC, utilizando interferencias de entrada sintéticas.

Problemas a resolver

- Estabilidad
- Estimación de $\hat{S}(z)$

- Velocidad de convergencia vs desajuste
- ..

Datasets

Paths for Active Noise Cancellation Database

Biblioteca PyRoom Acoustics

