

Discrete Structures (Monsoon 2021)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
 https://sites.google.com/view/iitkgpakdas/

Topic: Relations

Definition

- A relation between two sets A and B is a subset of the cartesian product $A \times B$ and is defined by R (or ρ or r). $R \subseteq A \times B$.
- We write $_{x}R_{y}$ or $_{x}\rho_{y}$ if and only if (iff) $(x,y) \in R$ (or ρ).
- We also write $_{x}(\sim R)_{y}$ when x is NOT related to y in R.
- Empty Relation: A relation R on a set A is called Empty if the set A is empty set.
- Full Relation: A binary relation R on the sets A and B is called full if $A \times B = R$.

Examples

- **Example.** Consider the relation $R = \{(x, y) \in I \times I : x > y\}$, where I is the set of all integers. Clearly, $R \subseteq I \times I$ and R is a relation in I. We write ${}_{7}R_{5}$ as $(7,5) \in I \times I$ and T > 5.
- **Example.** Consider the relation $R = \{(x, y) \in N \times N : x = 3y\}$, where N is the set of natural numbers. Clearly, $R \subseteq N \times N$ and R is a relation on the set N. We write ${}_{15}R_5$, ${}_{18}R_6$, and ${}_{27}R_9$.

Inverse Relation

• If R be the relation from A to B, then the inverse relation of R is the relation from B to A and is denoted and defined by $R^{-1} = \{(y, x) : y \in B, x \in A, (x, y) \in R\}.$

$$B^{-1} = \{(y, x) : y \in B, x \in A, (x, y) \in A, (x, y)$$

• **Example.** If $A = \{1, 2\}$, $B = \{2, 3\}$ and R be the relation from A to B, $R = \{(1, 2), (2, 3)\}$, then $R^{-1} = \{(2, 1), (3, 2)\}$.

Theorem

If R be a relation from A to B, then the domain of R is the range of R^{-1} and the range of R is the domain of R^{-1} .

Theorem

If R be a relation from A to B, then $(R^{-1})^{-1} = R$.

Reflexive relation

- Let A be a set and R the relation defined in it (i.e., $R \subseteq A \times A$). R is said to be *reflexive*, if $(a, a) \in R$, $\forall a \in A$ $\Longrightarrow {}_{a}R_{a}$ holds for every $a \in A$.
- **Example.** Consider the relation $R = \{(a, a), (a, c), (b, b), (c, c), (d, d)\}$ in the set $A = \{a, b, c, d\}$. Then R is reflexive, since $(x, x) \in R$, $\forall x \in A$, that is, $_XR_X$ holds for every $x \in A$.
- **Example.** Consider the relation $S = \{(a, a), (a, c), (b, c), (b, d), (c, d)\}$ in the set $A = \{a, b, c, d\}$. Verfify whether S is reflexive.

Symmetric relation

- Let A be a set and R the relation defined in it (i.e., $R \subseteq A \times A$). R is said to be *symmetric*, if $(a,b) \in R \Rightarrow (b,a) \in R$, $\forall a,b \in A$ In other words, ${}_aR_b \Rightarrow {}_bR_a$ for every $a,b \in A$.
- **Example.** Let N be the set of natural numbers and R the relation defined in it such that ${}_xR_y$ if x is a divisor of y (that is, x|y), $x,y \in N$.
 - Then R is NOT symmetric, since ${}_{x}R_{y} \Rightarrow {}_{y}R_{x}$, $\forall x, y \in N$. For example, ${}_{3}R_{9} \Rightarrow_{9} R_{3}$.
- **Example.** Consider the relation S in the set of natural numbers N as $R = \{(x, y) \in N \times N : x + y = 5\}$. Verfify whether S is symmetric.

Theorem

For a symmetric relation R, $R^{-1} = R$.

Proof.

Required to prove (RTP) (i) $R \subseteq R^{-1}$, and (ii) $R^{-1} \subseteq R$. (i) Let $(x,y) \in R$.

Then $(x,y) \in R \Rightarrow (y,x) \in R$, since R is symmetric $\Rightarrow (x,y) \in R^{-1}$, by definition of R^{-1} .

Thus, $R \subseteq R^{-1}$.

(ii) Let $(x,y) \in R^{-1}$.

Then $(y,x) \in (R^{-1})^{-1} = R$, by definition of R^{-1} . $\Rightarrow (x,y) \in R$, since R is symmetric Thus, $R^{-1} \subseteq R$.