

Wavetables

- A single sound sample can be resampled to change its pitch
- Wavetable synthesis uses resampling to construct an "instrument" from a small number of sound samples
- Resampling using a large scale factor produces unnatural sounds
 - Multiple samples may be used
 - The samples may be modified on the fly

Sample articulation (1)

- Articulation: a musical note may be long or short in duration, and may be loud or soft
- The raw sample used to play the note can be modified according to the note articulation
- The dynamics of a sample can be controlled by an envelope
 - Exponential envelope
 - Exponential-sine envelope
 - ADSR envelope

Sample articulation (2)

- To produce a sustained note, two loop points within the raw sample may be chosen
 - The raw sample is played normally until the second loop point is reached
 - As long as the note is held, the portion of the raw sample between the two loop points is then repeated

Exponential Envelope

• Governed by the **decay rate** *k*

$$y(t)=e^{-kt}$$

Used for piano or guitar type sounds

Exponentials in practice (1)

• It is common to use the **half-life** of an exponential: the time interval after which the amplitude falls to half its original value

Exponentials in practice (2)

- Theoretically, an exponential decay function will never have zero amplitude.
- In practice, since we represent output values by b bit integers, the amplitude has a value of zero for all times $t \ge \tau$, where

$$2^{b-1}e^{-k\tau} = \frac{1}{2} \implies \tau = \frac{b\ln 2}{k}$$

In the case b = 16, $\tau = (16 \ln 2)/k$, which gives a decrease in amplitude of \approx -96 dB

Exponential Example (1)

• Suppose that the half-life an exponential decay envelope is $\lambda = 0.3$ s. Find the decay constant.

$$k = \frac{\ln 2}{\lambda} = \frac{\ln 2}{0.3} \approx 2.31 s^{-1}$$

• At what time after the envelope starts does it have the value of -10 dB?

$$g = 10^{-10/20} \approx 0.3162$$

 $e^{-kt} = g \implies t = -\frac{\ln(g)}{k} \approx 0.498 s$

Exponential Example (2)

• If an exponential envelope takes 7.42 s to reach -96 dB (the effective zero for 16 bit sampling), what is the decay constant?

$$\tau = \frac{16 \ln 2}{k} \Rightarrow k = \frac{16 \ln 2}{\tau} = \frac{16 \ln 2}{7.42} \approx 1.49 \, s^{-1}$$

• How long does it take the envelope to go from a gain of 0.8 to a gain of 0.3?

$$0.8e^{-kt} = 0.3$$

$$\Rightarrow t = -\frac{\ln(0.3/0.8)}{k} \approx 0.656 s$$

Incremental Update

- Exponential function is computationally expensive
- More efficient to compute incrementally

$$y(t)=e^{-kt}$$

$$y(t+\frac{1}{R})=y(t)e^{-k/R}$$

That is, successive values are computed by multiplying by the exponential factor

$$e^{-k/R}$$

Incremental Update Example

- Suppose an exponential decay envelope has decay rate k = 0.8, and the sampling rate is R = 5 Hz
- Exponential factor is

$$e^{-k/R} = e^{-0.8/5} = e^{-0.16} \approx 0.8521$$

First 4 envelope values are

$$y(0)=1$$

$$y(\frac{1}{5})=e^{-1.6} \approx 0.851$$

$$y(\frac{2}{5})=y(\frac{1}{5})e^{-1.6} \approx 0.7261$$

$$y(\frac{3}{5})=y(\frac{2}{5})e^{-1.6} \approx 0.6188$$

Exponential-Sine Envelope

- Exponential multiplied by a sine function
 - Additional parameter: LFO frequency f

$$y(t) = e^{-kt} \sin(2\pi ft)$$

Used to model bell-like sounds

ADSR Envelope (1)

- ADSR envelopes are common in audio
 - Attack Phase gain increases from 0 to 1
 - Decay Phase gain decreases from 1 to sustain level
 - Sustain Phase constant gain
 - Release Phase gain decreases from sustain level to 0
- In real-time applications, the sustain phase has indefinite duration. E.g., until the user releases a pressed key on a MIDI keyboard

ADSR Envelope (2)

ADSR envelope diagram

ADSR Envelope (3)

- The attack, decay, and release ramps may be
 - Linear
 - Exponential (linear on a logarithmic scale)
 - A mixture of linear and exponential

Incremental ADSR Envelope

- An ADSR envelope can be computed incrementally
 - Initialize envelope value to 0 (1 if attack time is 0)
 - Attack phase: increment envelope value until 1 is reached
 - Decay phase: decrement envelope value until sustain level is reached
 - Sustain phase: envelope value stays at sustain level until release phase is triggered
 - Release phase: decrement envelope value until (effective)
 0 level is reached

Choosing Loop Points (1)

 If loop points are chosen poorly, there is an audible click with each loop iteration

Choosing Loop Points (2)

 Loop points are often chosen at points where the signal crosses the *t*-axis ("zero crossings")

