學號: R06942128 系級: 電信碩一 姓名: 許祐銘

1. PCA of colored faces

1. (.5%) 請畫出所有臉的平均。

2. (.5%) 請畫出前四個 Eigenfaces,也就是對應到前四大 Eigenvalues 的 Eigenvectors。

eigenface_1

eigenface_3

eigenface_2

eigenface_4

3. (.5%) 請從數據集中挑出任意四個圖片,並用前四大 Eigenfaces 進行 reconstruction,並畫出結果。

3.jpg

219.jpg

414.jpg

4. (.5%) 請寫出前四大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入到小數點後一位。

	eigenface_1	eigenface_2	eigenface_3	eigenface_4
weight	4.1%	2.9%	2.4%	2.2%

2. Visualization of Chinese word embedding

1. (.5%) 請說明你用哪一個 word2vec 套件,並針對你有調整的參數說明那個參數的意義。

我先使用 jieba 來切割句子,接著使用 gensim 來做 word embedding,再來使用TSNE做降維。

model = Word2Vec(sent2word_index, size=128, window=5, min_count=5)

調整的參數: size 是 embedding 的大小, window 則是會訓練時會看前後幾個單詞, min_count 是訓練的最小次數,也就是在 train data 出現小於 5 次的單詞則不會訓練。

2. (.5%) 請在 Report 上放上你 visualization 的結果。

TSNE參數:
perplexity = 10
n_components=2
learning rate=10

TSNE參數:
perplexity = 80
n_components=2
learning_rate=10

3. (.5%) 請討論你從 visualization 的結果觀察到什麼。

很明顯的我們可以觀察到perplexity=10的分群效果比80要好的多,80幾乎將許多詞聚集在一起了,而perplexity=10可以將『爸』、『媽』以及人物姓名分在一起,還有『拿』、『叫』的動詞分在一起,看得出來分群效果還不錯。

3. Image clustering

1. (.5%) 請比較至少兩種不同的 feature extraction 及其結果。(不同的降維方法或不同的 cluster 方法都可以算是不同的方法)

我使用的是DNN和CNN的auto encoder, DNN的架構如下:

Layer (type)	Output	Shape ========	Param # ======
<pre>input_1 (InputLayer)</pre>	(None,	784)	0
dense_1 (Dense)	(None,	256)	200960
dense_2 (Dense)	(None,	128)	32896
dense_3 (Dense)	(None,	64)	8256
dense_4 (Dense)	(None,	32)	2080
dense_5 (Dense)	(None,	64)	2112
dense_6 (Dense)	(None,	128)	8320
dense_7 (Dense)	(None,	256)	33024
dense_8 (Dense)	(None,	784) 	201488
Total params: 489,136 Trainable params: 489,136 Non-trainable params: 0			

而CNN的架構與DNN大同小異,以下是兩種的kaggle分數:

FScore	Public	Private
DNN	0.89285	0.89406
CNN	0.80752	0.80882

我原本預想的是 CNN 在 image 的結果會比較好,但發現居然是DNN的效果 比較好,有可能是參數調整的不好,也有可能是DNN剛好很適合這個data set

- 2. (.5%) 預測 visualization.npy 中的 label, 在二維平面上視覺化 label 的分佈。
- 3. (.5%) visualization.npy 中前 5000 個 images 跟後 5000 個 images 來自不同 dataset。請根據這個資訊,在二維平面上視覺化 label 的分佈,接著比較和自 己預測的 label 之間有何不同。

