

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №2 по курсу "Анализ алгоритмов"

Студент Артюхин Н.П.
Группа ИУ7-51Б
Преподаватели Волкова Л.Л., Строганов Ю.В.

Тема Алгоритмы умножения матриц

Оглавление

Bı	Введение					
1	Ана	алитическая часть	<u>.</u>			
	1.1	Стандартный алгоритм умножения матриц	Ę			
	1.2	Алгоритм Винограда умножения матриц	Ę			
2	Koi	Конструкторская часть				
	2.1	Стандартный алгоритм умножения матриц				
	2.2	Алгоритм Винограда умножения матриц	Ć			
	2.3	Оптимизированный алгоритм Винограда умножения матриц				
	2.4	Оценка трудоемкости алгоритмов умножения матриц	13			
		2.4.1 Стандартный алгоритм умножения матриц	14			
		2.4.2 Алгоритм Винограда умножения матриц	14			
		2.4.3 Оптимизированный алгоритм Винограда умножения				
		матриц	15			
3	Технологическая часть					
	3.1	Требования к программному обеспечению	17			
	3.2	Выбор средств реализации	17			
	3.3	Реализация алгоритмов	18			
	3.4	Тестирование	20			
4	Исс	следовательская часть	23			
	4.1	Пример работы программного обеспечения	23			
	4.2	Технические характеристики	25			
	4.3	Время выполнения реализаций алгоритмов	25			
	4.4	Оценка затрат алгоритмов по памяти	27			
Зг	клю	очение	29			
\mathbf{C}_{1}	писо	ж использованных источников	30			

Введение

Цель лабораторной работы — изучение способов оптимизации алгоритмов на примере алгоритмов умножения матриц.

Термин «матрица» применяется в различных областях, но основное значение данный термин имеет в математике.

Матрица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы [1].

Матрицы часто применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений (количество строк матрицы соответствует числу уравнений, а количество столбцов — количеству неизвестных).

Таким образом, решение систем линейных уравнений сводится к операциям над матрицами, среди которых встречается умножение.

Произведением двух матриц А и В называется матрица С, элемент которой, находящийся на пересечении і-й строки и ј-го столбца, равен сумме произведений элементов і-й строки матрицы А на соответствующие (по порядку) элементы ј-го столбца матрицы В [2].

Умножение матриц A и B — это операция вычисления этой матрицы ${\bf C}.$

Для достижения поставленной цели требуется решить следующие задачи:

- 1) изучение двух алгоритмов умножения матриц стандартный алгоритм, алгоритм Винограда;
- 2) разработка трех алгоритмов умножения матриц стандартный, Винограда и Винограда с оптимизациями;
- 3) реализация трех алгоритмов умножения матриц;
- 4) выполнение замеров процессорного времени работы реализаций алгоритмов умножения матриц;

- 5) сравнительный анализ трудоемкости реализаций разработанных алгоритмов умножения матриц на основе теоретических расчетов;
- 6) выполнение оценки затрат алгоритмов умножения матриц по памяти и сравнительный анализ;
- 7) сравнительный анализ процессорного времени работы реализаций разработанных алгоритмов умножения матриц на основе экспериментальных данных.

1 Аналитическая часть

В данном разделе будут представлены описания алгоритмов умножения матриц: стандартного, Винограда.

1.1 Стандартный алгоритм умножения матриц

Пусть даны две прямоугольные матрицы $A[N \times M]$ и $B[M \times Q]$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1q} \\ b_{21} & b_{22} & \cdots & b_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nq} \end{bmatrix}$$

Тогда матрица $C[M \times Q]$ — произведение матриц A и B:

$$C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1q} \\ c_{21} & c_{22} & \cdots & c_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mq} \end{bmatrix},$$

в которой каждый элемент вычисляется по следующей формуле:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \quad (i = \overline{1, m}; j = \overline{1, q})$$
 (1.1)

Стандартный алгоритм реализует данную формулу.

1.2 Алгоритм Винограда умножения матриц

Если посмотреть на результат умножения двух матриц, то видно, что каждый элемент в нем представляет собой скалярное произведение соответствующих строки и столбца исходных матриц. Можно заметить также,

что такое умножение допускает предварительную обработку, позволяющую часть работы выполнить заранее.

Рассмотрим два вектора $V=(v_1,v_2,v_3,v_4)$ и $W=(w_1,w_2,w_3,w_4)$. Их скалярное произведение равно: $V\cdot W=v_1w_1+v_2w_2+v_3w_3+v_4w_4$, что эквивалентно (1.2):

$$V \cdot W = (v_1 + w_2)(v_2 + w_1) + (v_3 + w_4)(v_4 + w_3) - v_1 v_2 - v_3 v_4 - w_1 w_2 - w_3 w_4.$$
 (1.2)

Кажется, что второе выражение задает больше работы, чем первое: вместо четырех умножений мы получаем шесть, а вместо трех сложений — десять. Однако выражение в правой части последнего равенства допускает предварительную обработку, а именно его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй. На практике это означает, что над предварительно обработанными элементами нам придется выполнять лишь первые два умножения и последующие пять сложений, а также дополнительно два сложения [3].

В конце нужно проверить кратность размерности матриц M двум. Если она не кратна двум, то нужно добавить к каждому элементу результирующей матрицы произведение последних элементов соответствующих строки и столбца.

Вывод

В данном разделе были рассмотрены основные идеи, лежащие в основе рассматриваемых алгоритмов умножения матриц — стандартного алгоритма и алгоритма Винограда.

2 Конструкторская часть

В данном разделе будут представлены схемы алгоритмов умножения матриц и вычисления трудоемкости данных алгоритмов.

2.1 Стандартный алгоритм умножения матриц

На рисунке 2.1 приведена схема стандартного алгоритма умножения матриц.

Рисунок 2.1 – Схема стандартного алгоритма умножения матриц

2.2 Алгоритм Винограда умножения матриц

На рисунке 2.2 приведена схема алгоритма Винограда умножения матриц. Можно заметить, что для алгоритма Винограда умножения матриц худшим случаем являются матрицы с нечётной общей размерностью (длина перемножаемых векторов), а лучшим — с чётной, так как последний цикл в этом случае не задействуется.

Рисунок 2.2 – Схема алгоритма Винограда умножения матриц

2.3 Оптимизированный алгоритм Винограда умножения матриц

Алгоритм Винограда можно оптимизировать несколькими способами.

- 1) Заменить все выражения вида x = x + k на x += k.
- 2) Использовать побитовый сдвиг влево на 1 бит (<<) вместо умножения на 2.
- 3) Четвертый (последний) цикл для нечётных элементов алгоритма Винограда объединить с третьим, нечетность общей размерности (длина перемножаемых векторов) входных матриц проверить до третьего цикла и установить соответствующий флаг, если флаг содержит значение истина, то выполняем дополнительные операции в третьем цикле (предвычисляются некоторые слагаемые для алгоритма).

На рисунке 2.3 приведена схема алгоритма Винограда умножения матриц с учетом перечисленных выше оптимизаций.

Рисунок 2.3 – Оптимизированный алгоритм Винограда умножения матриц

2.4 Оценка трудоемкости алгоритмов умножения матриц

Для последующего вычисления трудоемкости необходимо ввести следующую модель вычислений.

- Базовые операции с трудоемкостью 2: /, /=, *, *=, %, %=.
- Базовые операции с трудоемкостью 1: +, ++, +=, -, --, -=, ==, !=, <, >, <=, >=, <<, >>, [].
- Трудоемкость цикла: Fцикла = Fиниц. + Fсравн. + М * (Fтела + Fинк. + Fсравн.), где Fиниц., Fсравн., Fтела, Fинк. трудоемкости инициализации, проверки условия цикла, тела цикла и инкрементирования соответственно, а М количество итераций.
- Трудоемкость условного оператора:

$$F_{if} = F_{cmp} + \begin{bmatrix} min(f1, f2) - \text{лучший случай} \\ max(f1, f2) - \text{худший случай} \end{bmatrix},$$
 (2.1)

где F_{cmp} , f1, f2 — трудоемкости проверки условия, первого блока и второго блока, соответственно.

• Трудоемкость инициализации массива/матрицы — N, где N — число элементов в массиве/матрице.

Обозначим во всех последующих вычислениях размерности входных матриц (A[N x M], B[M x Q]) как N, M, Q.

Во всех рассматриваемых алгоритмах умножения матриц не будем учитывать проверку размерностей входных матриц А и В на корректность для операции умножения и инициализацию матрицы С, в которую записывается результат, так как данные действия являются общими для всех алгоритмов и имеют незначительную для всего алгоритма трудоемкость.

2.4.1 Стандартный алгоритм умножения матриц

Трудоёмкость стандартного алгоритма умножения матриц состоит из следующих составляющих.

- Трудоемкость внешнего цикла (по $i \in [1..N)$): $f_1 = 2 + N \cdot (2 + f_{body})$
- Трудоемкость внутреннего цикла (по $j \in [1..Q)$): $f_2 = 2 + Q \cdot (2 + f_{body})$
- Трудоемкость внутреннего цикла (по $k \in [1..M)$): $f_3 = 2 + 14M$

Суммарная трудоёмкость стандартного алгоритма умножения матриц:

$$f_s = 2 + N \cdot (4 + Q \cdot (4 + 14M)) \approx 14NMQ$$
 (2.2)

2.4.2 Алгоритм Винограда умножения матриц

Трудоёмкость алгоритма Винограда умножения матриц состоит из следующих составляющих.

ullet Трудоемкость создания и инициализации массивов MulH и MulV:

$$f_{init} = N + Q \tag{2.3}$$

• Трудоемкость заполнения массива *MulH*:

$$f_{MulH} = 2 + N \cdot (3 + \frac{M}{2} \cdot 15)$$
 (2.4)

• Трудоемкость заполнения массива MulV:

$$f_{MulV} = 2 + Q \cdot (3 + \frac{M}{2} \cdot 15)$$
 (2.5)

• Трудоемкость цикла заполнения для чётных размеров:

$$f_{for3} = 2 + N \cdot (4 + Q \cdot (12 + \frac{M}{2} \cdot 29))$$
 (2.6)

• Трудоемкость цикла, для дополнения результата умножения суммой последних нечётных строки и столбца, если общая размерность (длина перемножаемых векторов) входных матриц нечётная:

$$f_{for4} = 3 + \begin{cases} 0, & \text{л.с.,} \\ 2 + M \cdot (4 + 16N), & \text{x.c.} \end{cases}$$
 (2.7)

Трудоемкость в худшем случае, при нечётной размерности матриц M:

$$f_v = f_{MulH} + f_{MulV} + f_{for3} + f_{for4} \approx 14.5 \cdot NMQ \tag{2.8}$$

Трудоемкость в лучшем случае, при чётной размерности матриц M:

$$f_v = f_{MulH} + f_{MulV} + f_{for3} + f_{for4} \approx 14.5 \cdot NMQ$$
 (2.9)

2.4.3 Оптимизированный алгоритм Винограда умножения матриц

Трудоёмкость оптимизированного алгоритма Винограда умножения матриц состоит из из следующих составляющих.

ullet Трудоемкость создания и инициализации массивов MulH и MulV:

$$f_{init} = N + Q \tag{2.10}$$

• Трудоемкость заполнения массива *MulH*:

$$f_{MulH} = 2 + N \cdot (3 + \frac{M}{2} \cdot 12)$$
 (2.11)

ullet Трудоемкость заполнения массива MulV:

$$f_{MulV} = 2 + Q \cdot (3 + \frac{M}{2} \cdot 12)$$
 (2.12)

• Трудоемкость цикла заполнения для чётных размеров:

$$f_{for3} = 2 + N \cdot (4 + Q \cdot (12 + \frac{M}{2} \cdot 24))$$
 (2.13)

• Трудоемкость условия, для дополнения умножения суммой последних нечётных строки и столбца, если размерность входных матриц M — нечётная:

$$f_{if} = NQ + \begin{cases} 0, & \text{л.с.,} \\ N \cdot (4 + 12Q), & \text{x.c.} \end{cases}$$
 (2.14)

Трудоемкость в худшем случае, при нечётной размерности матриц M:

$$f_{ov} = f_{MulH} + f_{MulV} + f_{for3} + f_{if} \approx 12NMQ$$
 (2.15)

Трудоемкость в лучшем случае, при чётной размерности матриц M:

$$f_{ov} = f_{MulH} + f_{MulV} + f_{for3} + f_{if} \approx 12NMQ$$
 (2.16)

Вывод

В данном разделе были разработаны схемы алгоритмов умножения матриц: стандартного, Винограда, оптимизированного Винограда. Для каждого из них были оценены трудоемкости в лучшем и худшем случаях.

3 Технологическая часть

В данном разделе будут представлены требования к программному обеспечению, средства реализации, листинги кода и тесты.

3.1 Требования к программному обеспечению

Вход: две матрицы A и B, количество строк и стобцов в данных матрицах, причем количество столбцов в матрице A должно быть равно количеству строк в матрице B.

Выход: матрица С — результат умножения матриц А и В.

Результат умножения введенных пользователем матриц должен быть выведен для каждого из реализованных алгоритмов умножения матриц: стандартного, Винограда, оптимизированного Винограда.

3.2 Выбор средств реализации

В качестве языка программирования для реализации данной лабораторной работы был выбран язык программирования Python [4]. В данном языке программирования есть необходимая для замеров процессорного времени библиотека.

Процессорное время реализованных алгоритмов было замерено с помощью функции process_time() из библиотеки time [5].

В качестве среды разработки был выбран PyCharm Professional [6]. Данная среда разработки является кросс-платформенной, предоставляет функциональный отладчик, средства для рефакторинга кода и возможность установки необходимых библиотек при необходимости.

3.3 Реализация алгоритмов

В листингах 3.1 – 3.3 представлены реализации различных алгоритмов умножения матриц: стандартного, Винограда, оптимизированного Винограда.

Листинг 3.1 – Реализация стандартного алгоритма умножения матриц

```
def standart mult matr(matr1, matr2):
      if len(matr1[0]) != len(matr2):
          print("Incorrect size of matrices!")
          return -1
      n = len(matr1)
     m = len(matr1[0])
      q = len(matr2[0])
      res = [[0] * q for i in range(n)]
10
11
      for i in range(n):
12
          for j in range(q):
13
               for k in range(m):
14
                   res[i][j] = res[i][j] + matr1[i][k] * matr2[k][j]
15
16
      return res
```

Листинг 3.2 – Реализация алгоритма Винограда умножения матриц

```
def vinograd mult matr(matr1, matr2):
      if len(matr1[0]) != len(matr2):
          print("Incorrect size of matrices!")
          return -1
      n = len(matr1)
     m = len(matr1[0])
      q = len(matr2[0])
      res = [[0] * q for i in range(n)]
10
      # vector of rows matrix A
11
      mulh = [0] * n
12
      for i in range(n):
          for k in range(m // 2):
14
```

```
mulh[i] = mulh[i] + matr1[i][2 * k] * matr1[i][2 * k +
15
                    1]
16
      # vector of columns matrix B
17
      mulv = [0] * q
18
      for i in range(q):
19
           for k in range(m // 2):
20
               mulv[i] = mulv[i] + matr2[2 * k][i] * matr2[2 * k +
21
                  1][i]
22
      # filling matrix C
23
      for i in range(n):
24
           for j in range(q):
25
               res[i][j] = - mulh[i] - mulv[j]
26
               for k in range(m // 2):
27
                    res[i][j] = res[i][j] + (matr1[i][2 * k] + matr2[2]
28
                        * k + 1][j]) * \
                                 (matr1[i][2 * k + 1] + matr2[2 * k][j]
29
                                    ])
30
      if m \% 2 == 1:
31
           for i in range(n):
32
               for j in range(q):
33
                    res[i][j] = res[i][j] + matr1[i][m - 1] * matr2[m]
34
                      - 1][j]
35
      return res
```

Листинг 3.3 – Реализация оптимизированного алгоритма Винограда умножения матриц

```
def vinograd_optimized_mult_matrix(matr1, matr2):
    if len(matr1[0]) != len(matr2):
        print("Incorrect size of matrices!")
        return -1

n = len(matr1)
m = len(matr1[0])
q = len(matr2[0])

res = [[0] * q for i in range(n)]
```

```
# vector of rows matrix A
12
      mulh = [0] * n
13
      for i in range(n):
           for k in range(m // 2):
15
               mulh[i] += matr1[i][k << 1] * matr1[i][(k << 1) + 1]
16
17
      # vector of columns matrix B
18
      mulv = [0] * q
19
      for i in range(q):
20
           for k in range(m // 2):
21
               mulv[i] += matr2[k << 1][i] * matr2[(k << 1) + 1][i]
22
23
      flag = m \% 2
24
25
      # filling matrix C
26
      for i in range(n):
27
           for j in range(q):
               res[i][j] = - mulh[i] - mulv[j]
29
               for k in range(m // 2):
30
                   res[i][j] += (matr1[i][k << 1] + matr2[(k << 1) +
31
                       1][j]) * \
                                 (matr1[i][(k << 1) + 1] + matr2[k <<
32
                                    1][j])
               if flag == 1:
33
                   res[i][j] += matr1[i][m-1] * matr2[m-1][j]
34
      return res
35
```

3.4 Тестирование

В таблице 3.1 приведены функциональные тесты для реализаций стандартного алгоритма умножения матриц, алгоритма Винограда и оптимизированного алгоритма Винограда. Тесты пройдены успешно.

Таблица 3.1 — Тестирование реализаций алгоритмов умножения матриц

Матрица А	Матрица В	Ожидаемый результат
$ \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} $	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}$
$\begin{pmatrix} 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$
(7)	(7)	(49)
$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 1 & 2 & 3 \end{pmatrix}$	$ \begin{pmatrix} 6 & 7 & 9 \\ -1 & -3 & 4 \\ 3 & 7 & 9 \\ 17 & -5 & 6 \end{pmatrix} $	$\begin{pmatrix} 81 & 2 & 68 \\ 181 & 26 & 180 \\ 110 & 59 & 121 \end{pmatrix}$
$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	(0)	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix}$	Некорректные размеры матриц!

Вывод

В данном разделе были представлены требования к программному обеспечению и средства реализации, реализованы и протестированы алгоритмы умножения матриц (стандартный, Винограда, оптимизированный Винограда).

4 Исследовательская часть

В текущем разделе будут представлены примеры работы разработанного программного обеспечения, постановка эксперимента и сравнительный анализ реализованных алгоритмов.

4.1 Пример работы программного обеспечения

На рисунке 4.1 представлен результат работы программы. На вход программы подаются две матрицы размерностей 3 на 4 и 4 на 3 соответственно. Первая матрица — [[1, 2, 3, 4], [5, 6, 7, 8], [9, 1, 2, 3]], вторая матрица — [[6, 7, 9], [-1, -3, 4], [3, 7, 9], [17, -5, 6]]. В результате выполнения программа выводит матрицу, полученную умножением двух введенных пользователем матриц различными алгоритмами (стандартный, Винограда, оптимизированный Винограда).

```
Ввод матрицы А
Введите кол-во строк: 3
Введите кол-во столбцов: 4
Ввод матрицы В
Введите кол-во строк: 4
Введите кол-во столбцов: 3
Результат (стандартный алгоритм умножения матриц):
[81, 2, 68]
[181, 26, 180]
[110, 59, 121]
Результат (алгоритм Винограда умножения матриц):
[81, 2, 68]
[181, 26, 180]
[110, 59, 121]
Результат (оптимизированный алгоритм Винограда умножения матриц):
[81, 2, 68]
[181, 26, 180]
[110, 59, 121]
```

Рисунок 4.1 – Пример работы программы

4.2 Технические характеристики

Технические характеристики устройства, на котором выполнялись замеры процессорного времени представлены ниже.

- операционная система: Windows 10 [7];
- оперативная память: 16 Гб;
- процессор: Intel® Core™ i5 10300H 2.5 ГГц.

Во время проведения замеров времени ноутбук был включен в сеть питания и нагружен только встроенными приложениями окружения и системой тестирования.

4.3 Время выполнения реализаций алгоритмов

Замеры процессорного времени реализованных алгоритмов умножения матриц (стандартный, Винограда, оптимизированный Винограда) проводились с помощью функции process time() из библиотеки time языка Python.

Функция process_time() возвращает время в секундах (сумму системного и пользовательского процессорного времени).

Замеры времени для каждой четной размерности входных квадратных матриц (от 100 x 100 до 500 x 500 с шагом 100) и нечетной (от 101 x 101 до 501 x 501 с шагом 100) проводились по 10 раз для всех трех реализованных алгоритмов умножения матриц. В качестве результата бралось среднее время работы реализации алгоритма на каждой линейной размерности матрицы.

На рисунке 4.2 представлено сравнение процессорного времени работы реализаций алгоритмов умножения матриц на матрицах четной размерности (n * n).

На графике видно, что реализация оптимизированного алгоритма Винограда является самой эффективной по времени среди реализованных ал-

горитмов, на втором месте по эффективности — реализация алгоритма Винограда без оптимизации, самая неэффективная по времени — реализация стандартного алгоритма умножения матриц, но она практически не уступает по времени реализации алгоритма Винограда без оптимизации.

Рисунок 4.2 — Сравнение процессорного времени работы реализаций алгоритмов умножения матриц на квадратных матрицах четной размерности (n * n)

На рисунке 4.3 представлено сравнение процессорного времени работы реализаций алгоритмов умножения матриц на матрицах нечетной размерности (n+1)*(n+1). На графике видно, что реализация оптимизированного алгоритма Винограда является самой эффективной по времени среди реализованных алгоритмов (несмотря на то, что это худший случай для данного алгоритма), на втором месте по эффективности — реализация алгоритма Винограда без оптимизации, самая неэффективная по времени — реализация стандартного алгоритма умножения матриц, но она практически не уступает по времени реализации алгоритма Винограда без оптимизации.

Рисунок 4.3 — Сравнение процессорного времени работы реализаций алгоритмов умножения матриц на квадратных матрицах нечетной размерности (n+1)*(n+1)

4.4 Оценка затрат алгоритмов по памяти

Пусть первая матрица (A) имеет N строк и M столбцов, вторая матрица (B) имеет M строк и Q столбцов, тогда затраты памяти на рассматриваемые алгоритмы умножения матриц будут следующими.

Стандартный алгоритм умножения матриц:

- входные матрицы (N * M + M * Q) * sizeof(int);
- результирующая матрица (N * Q) * sizeof(int);
- размерности матриц 3 * sizeof(int).

Суммарные затраты памяти стандартного алгоритма умножения матриц: (N * M + M * Q + N * Q + 3) * sizeof(int) байт.

Алгоритм Винограда умножения матриц:

- входные матрицы (N * M + M * Q) * sizeof(int);
- результирующая матрица (N * Q) * sizeof(int);
- размерности матриц 3 * sizeof(int);
- массивы MulH и MulV (N + Q) * sizeof(int);
- вспомогательные переменные (флаг) sizeof(int). (только для оптимизированного алгоритма Винограда)

Суммарные затраты памяти алгоритма Винограда умножения матриц: (N * M + M * Q + N * Q + N + Q + 3) * sizeof(int) байт.

Суммарные затраты памяти оптимизированного алгоритма Винограда умножения матриц: (N * M + M * Q + N * Q + N + Q + 4) * sizeof(int) байт.

Вывод

Таким образом, самой эффективной по времени по экспериментальным данным с учетом работы на всех видах матриц является реализация оптимизированного алгоритма Винограда, реализации стандартного алгоритма и алгоритма Винограда без оптимизации практически одинаковы эффективны по времени из-за того, что неоптимизированный алгоритм Винограда содержит большое количество операций.

Самым эфективным по памяти является стандартный алгоритм умножения матриц, так как в алгоритме Винограда выделяется память под вспомогательные массивы MulH и MulV.

Заключение

В результате выполнения лабораторной работы цель достигнута: изучены способы оптимизации алгоритмов на примере алгоритмов умножения матриц — стандартный, Винограда.

В ходе выполнения данной работы были решены все задачи:

- 1) изучены два алгоритма умножения матриц стандартный алгоритм, алгоритм Винограда;
- 2) разработаны три алгоритма умножения матриц стандартный, Винограда и Винограда с оптимизациями;
- 3) реализованы алгоритмы умножения матриц;
- 4) выполнены замеры процессорного времени работы реализаций алгоритмов умножения матриц;
- 5) проведен сравнительный анализ трудоемкости реализаций разработанных алгоритмов умножения матриц на основе теоретических расчетов;
- 6) выполнена оценка и сравнительный анализ затрат алгоритмов умножения матриц по памяти;
- 7) проведен сравнительный анализ процессорного времени работы реализаций разработанных алгоритмов умножения матриц на основе экспериментальных данных.

В результате лабораторной работы можно сделать вывод, что самой эффективной по времени (на основе полученных экспериментальных данных) является реализация оптимизированного алгоритма Винограда умножения матриц, а самым эффективным по памяти является стандартный алгоритм умножения матриц.

Список использованных источников

- 1. Матрицы. Виды матриц [Электронный ресурс]. Режим доступа: https://vuzlit.com/833194/matritsy_vidy_matrits (дата обращения: 20.10.2022).
- 2. Произведение двух матриц: формула, решения, свойства [Электронный ресурс]. Режим доступа: https://function-x.ru/operations_with_matrices.html (дата обращения: 20.10.2022).
- 3. Умножение матриц по Винограду [Электронный ресурс]. Режим доступа: http://algolib.narod.ru/Math/Matrix.html (дата обращения: 20.10.2022).
- 4. Лутц, Марк. Изучаем Python, том 1, 5-е изд. Пер. с англ. СПб.: ООО "Диалектика", 2019 С. 832.
- 5. time Time access and conversions [Электронный ресурс]. Режим доступа: https://docs.python.org/3/library/time.html (дата обращения: 20.09.2021).
- 6. Узнайте все о PyCharm [Электронный ресурс]. Режим доступа: https://www.jetbrains.com/ru-ru/pycharm/learn/ (дата обращения: 20.09.2022).
- 7. Windows 10 [Электронный ресурс]. Режим доступа: https://learn.microsoft.com/ru-ru/windows/ (дата обращения: 20.09.2022).