

STEINMETZ TESLA

La alterna senoidal es una señal o función que depende del tiempo de la siguiente manera:

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

 $U_{mlpha x}$: amplitud en [V], si fuera tensión *ω: pulsación en* [rad/s] Además $T=2\pi/\omega$

$$u_R = i \cdot R$$

$$u_C(t) = \frac{1}{C} \int i(t) \cdot dt$$

$$i_L(t) = \frac{1}{L} \int u(t) \cdot dt$$

$$i_R = \frac{u}{R}$$

$$i_C(t) = C.\frac{du}{dt}$$
$$u_L(t) = L.\frac{di}{dt}$$

$$u_L(t) = L.\frac{di}{dt}$$

EXCITACIONES Y RESPUESTAS

Si se **excita** un resistor de resistencia R mediante una tensión senoidal, la **respuesta** es una corriente, también senoidal, que está **en fase** con la tensión y cuya amplitud $I_{m\acute{a}x}$ vale $U_{m\acute{a}x}/R$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

EXCITACIONES Y RESPUESTAS

Si se **excita** un capacitor de capacitancia *C* mediante una tensión senoidal, la **respuesta** es una corriente, también senoidal, que está

adelantada 90° respecto de la tensión y cuya amplitud I_{max} vale

¿De dónde salen?

litud $I_{m\acute{a}x}$ vale $\frac{U_{m\acute{a}x}}{1/\omega \cdot C}$ $i_{c}(t) = C.\frac{du}{dt}$

$$u(t)$$
 $i(t)$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t + \frac{\pi}{2})$$

EXCITACIONES Y RESPUESTAS

Si se **excita** un inductor de inductancia *L* mediante una tensión senoidal, la **respuesta** es una corriente, también senoidal, que está

atrasada 90° respecto de la tension y cuya amplitud $I_{m\acute{a}x}$ vale

¿De dónde salen?

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t - \frac{\pi}{2})$$

EXCITACIONES Y RESPUESTAS

Para la combinación resistor-capacitor en serie

La solución particular para el **estado permanente** vale $i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t + \theta)$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t + \theta)$$

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + \left(\frac{1}{\omega \cdot C}\right)^2}} \qquad \theta = arc\,tg\left(\frac{1/\omega \cdot C}{R}\right)$$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$
 $i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t + \theta)$

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + \left(\frac{1}{\omega \cdot C}\right)^2}}$$

$$\theta = arctg\left(\frac{1/\omega \cdot C}{R}\right)$$

EXCITACIONES Y RESPUESTAS

Para la combinación resistor-inductor en serie

La solución particular para el **estado permanente** vale $i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t - \theta)$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t - \theta)$$

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + \left(\omega \cdot L\right)^2}} \qquad \theta = arc\,tg\left(\frac{\omega \cdot L}{R}\right)$$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$
 $i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t - \theta)$

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + \left(\omega \cdot L\right)^2}}$$

$$\theta = arctg\left(\frac{\omega \cdot L}{R}\right)$$

EXCITACIONES Y RESPUESTAS

Para la combinación resistor-inductor-capacitor en serie

$$u_f(t) = U_{f m \acute{a}x} \cdot sen(\omega \cdot t)$$

$$u_f(t) = u_R(t) + u_L(t) + u_C(t)$$
 por L

Luego
$$u_f(t) = R \cdot i(t) + L \cdot \frac{di(t)}{dt} + \frac{I}{C} \int i(t) dt$$

$$\frac{du_f(t)}{dt} = R \cdot \frac{di(t)}{dt} + L \cdot \frac{d^2i(t)}{dt^2} + \frac{1}{C} \cdot i(t)$$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t \pm \theta)$$

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + \left(\omega \cdot L - \frac{1}{\omega \cdot C}\right)^2}} \qquad \theta = arc\,tg\left(\frac{\omega \cdot L - \frac{1}{\omega \cdot C}}{R}\right)$$

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

$$I_{m\acute{a}x} = \frac{U_{f\,m\acute{a}x}}{\sqrt{R^2 + \left(\omega \cdot L - \frac{1}{\omega \cdot C}\right)^2}} \qquad \theta = arc\,tg\left(\frac{\omega \cdot L - \frac{1}{\omega \cdot C}}{R}\right)$$

$$i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t \pm \theta)$$

$$\theta = arctg \left(\frac{\omega L - \frac{1}{\omega \cdot C}}{R} \right)$$

0.005 0.015 0.01

Predomina el efecto inductivo

Predomina el efecto capactivo

EJERCICIO: Resolver planteando todos los circuitos duales de los vistos

FASOR

Las complicaciones para el análisis de circuitos en CA senoidal justifica la utilización de una herramienta matemática relacionada con los números complejos en la aplicación de las leyes de Ohm y Kirchhoff.

Toda función senoidal dependiente del tiempo puede describirse mediante una función compleja equivalente denominada **FASOR**.

FASOR: $U = U_{m\acute{a}x} \cdot e^{j\omega \cdot t}$

es equivalente a: (no es igual a)

 $u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$

FASOR

Caso general (fase inicial ≠0):

$$\dot{U} = U_{m\acute{a}x} \cdot e^{j(\omega \cdot t + \phi)} = U_{m\acute{a}x} \cdot e^{j\omega \cdot t} \left(e^{j\phi} \right) = U_{-} \cdot e^{j\omega \cdot t}$$

$$\underline{U} = U_{m\acute{a}x} \cdot e^{j\phi}$$

De la teoría de números complejos:

$$\dot{U} = U_{m\acute{a}x} \cdot e^{j(\omega \cdot t + \phi)} = U_{m\acute{a}x} \cdot cos(\omega t + \phi) + jU_{m\acute{a}x} \cdot sen(\omega t + \phi)$$

Identidad de Euler

$$Re(\dot{U}) = U_{m\acute{a}x} \cdot cos(\omega t + \phi)$$

$$Im(\dot{U}) = U_{m\acute{a}x} \cdot sen(\omega t + \phi)$$

$$Im(U) = U_{m\acute{a}x} \cdot sen(\omega t + \phi)$$

FASOR

Si $u(t)=U_{m\acute{a}x}sen(\omega t+\phi)$ es una tensión, luego $\mathring{U}=U_{m\acute{a}x}e^{j(\omega t+\phi)}$ es su fasor equivalente.

Igualmente, si i(t) es una corriente que varía en función del tiempo, $\dot{I}=I_{m\acute{a}x}e^{j(\omega t+\phi+\alpha)}$ es una corriente desfasada de la tensión anterior un ángulo α , y expresada por su fasor equivalente.

FASOR E IMPEDANCIA COMPLEJA

La aplicación de la ley de Ohm a los dos fasores anteriores da como resultado:

$$\frac{\dot{U}}{\dot{I}} = \frac{U_{m\acute{a}x} \cdot e^{j\omega t}}{I_{m\acute{a}x} \cdot e^{j(\omega t + \alpha)}} = \frac{U_{m\acute{a}x}}{I_{m\acute{a}x}} e^{-j\alpha} = |\underline{Z}| \cdot e^{-j\alpha} = \underline{Z}$$

Z es un **número complejo** (**no** es un fasor)

La impedancia compleja es una expresión que caracteriza el comportamiento de una red pasiva en función de la relación entre la tensión y la corriente cuando éstas son de forma senoidal

NÚMEROS COMPLEJOS

En función de los resultados anteriores, se puede resumir:

$$\underline{U} = U_{m\acute{a}x} \cdot e^{j0}$$
 Número complejo que representa a la tensión $u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$

$$\underline{I} = I_{m\acute{a}x} \cdot e^{j\alpha}$$
 Número complejo que representa a la corriente $i(t) = I_{m\acute{a}x} \cdot sen(\omega \cdot t + \alpha)$

$$\underline{Z} = \left| \underline{Z} \right| \cdot e^{-j\alpha} \quad \text{Impedancia compleja donde, por ejemplo:} \\ |\underline{Z}| = \frac{U_{\textit{máx}}}{I_{\textit{máx}}} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

$$\alpha = arctg\left(\frac{\omega \cdot L - \frac{1}{\omega \cdot C}}{R}\right)$$

El fasor es simplemente una función que nos permite relacionar una función sinusoidal (corriente o tensión) con un número complejo equivalente

¿Unidades?

PARTES DE UNA IMPEDANCIA

Además de la forma polar, la impedancia compleja obtenida puede expresarse en forma binómica, por ejemplo:

$$\underline{Z} = R + j\left(\omega L - \frac{1}{\omega C}\right) = R + j\omega L - j\frac{1}{\omega C} = R + j\omega L + \frac{1}{j\omega C}$$

Se puede asociar cada componente de esta impedancia a los respectivos elementos de circuito (conectados "en serie"):

R RESISTENCIA, parte real, asociada a la característica de transformación irreversible de la energía

 $\omega L = X_L$ REACTANCIA INDUCTIVA, parte imaginaria, asociada a la inductancia

 $\frac{1}{\omega C} = X_C$ REACTANCIA CAPACITIVA, parte imaginaria, asociada a la capacitancia

¿Unidades?

¿Representación gráfica?

Triángulo de impedancia

APLICACIONES

Fuente alterna senoidal de pulsación ω

¿Impedancia equivalente del circuito o "vista" por la fuente?

$$\underline{Z} = \frac{\dot{U}}{\dot{I}} = \frac{U_{m\acute{a}x} \cdot e^{j\omega t}}{I_{m\acute{a}x} \cdot e^{j(\omega t - \alpha)}} = \frac{U_{m\acute{a}x}}{I_{m\acute{a}x}} e^{j\alpha} = |\underline{Z}| \cdot e^{j\alpha}$$

Y como antes:

$$|\underline{Z}| = \frac{U_{m\acute{a}x}}{I_{m\acute{a}x}} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

$$\alpha = arctg \left(\frac{\omega \cdot L - \frac{1}{\omega \cdot C}}{R} \right)$$
 ¿característica de \underline{Z} ?

APLICACIONES

También se podría escribir $U = Z \cdot \dot{I}$

$$\dot{U} = Z \cdot \dot{I}$$

Recordando la forma binómica de la impedancia y desarrollando

$$\dot{U} = \underline{Z} \cdot \dot{I} = \left\{ R + j \left(\omega L - \frac{1}{\omega C} \right) \right\} \cdot \dot{I} = R\dot{I} + j\omega L\dot{I} - j\frac{1}{\omega C}\dot{I} = R\dot{I} + j\omega L\dot{I} + \frac{1}{j\omega C}\dot{I}$$

Finalmente, comparando con la expresión en función del tiempo para el circuito RLC

$$\dot{U} = R\dot{I} + j\omega L\dot{I} + \frac{1}{j\omega C}\dot{I}$$

$$u_f(t) = R\cdot i(t) + L\cdot \frac{di(t)}{dt} + \frac{1}{C}\int i(t).dt$$

se puede asociar un operador j ω a las operaciones derivada e integral de la siguiente manera:

$$j\omega \to \frac{d}{dt} y \frac{1}{j\omega} \to \int dt$$

APLICACIONES

Y teniendo en cuenta la definición de reactancia inductiva y reactancia capacitiva, el circuito RLC se puede dibujar:

Además, \mathring{U}_f e \mathring{I} se reemplazaron por \underline{U}_f e \underline{I} , respectivamente (¿por qué?)

Ahora se puede escribir:

$$\underline{U}_{f} = \underline{Z} \cdot \underline{I} = R \cdot \underline{I} + jX_{L} \cdot \underline{I} - jX_{C} \cdot \underline{I}$$
$$= \underline{U}_{R} + \underline{U}_{L} + \underline{U}_{C}$$

APLICACIONES

APLICACIONES

¿Si en lugar del cociente $\underline{U}/\underline{I}$ se hiciera $\underline{I}/\underline{U}$?

$$\frac{\dot{I}}{\dot{U}} = \frac{I_{m\acute{a}x} \cdot e^{j(\omega t + \alpha)}}{U_{m\acute{a}x} \cdot e^{j\omega t}} = \frac{I_{m\acute{a}x}}{U_{m\acute{a}x}} e^{j\alpha} = |\underline{Y}| \cdot e^{j\alpha} = \underline{Y}$$

ADMITANCIA COMPLEJA

¿Unidades y característica de \underline{Y} ?

Por lo tanto, para un caso general:
$$\underline{Y} = \frac{1}{\underline{Z}}$$

DUALIDAD

PARTES DE UNA ADMITANCIA

Además de la forma polar, una admitancia compleja puede expresarse en forma binómica:

$$\underline{Y} = G + j\left(\omega C - \frac{1}{\omega L}\right) = G + j\omega C - j\frac{1}{\omega L} = G + j\omega C + \frac{1}{j\omega L}$$

Se puede asociar cada componente de la admitancia a los respectivos elementos de circuito (conectados "en paralelo"):

G CONDUCTANCIA, parte real, asociada a la característica de transformación irreversible de la energía

 $\omega C = B_C$ SUSCEPTANCIA CAPACITIVA, parte imaginaria, asociada a la capacitancia

 $\frac{1}{\omega L} = B_L$ SUSCEPTANCIA INDUCTIVA, parte imaginaria, asociada a la inductancia

Además: $G = \frac{1}{R}$ $B_L = \frac{1}{X_L}$ $B_C = \frac{1}{X_C}$ ¿Unidades? ¿Representación gráfica?

¿DUALIDAD?

VALORES INSTANTÁNEO, MEDIO, EFICAZ

Si la función es senoidal:

$$u(t) = U_{m\acute{a}x} \cdot sen(\omega \cdot t)$$

VALOR INSTANTÁNEO

Para un caso general se define:

$$U_m = \frac{1}{T} \int_o^T u(t) dt$$
 ¿Interpretación?

Si u(t) es sinusoidal, U_m resulta igual a ${\sf cero}$

$$U_{ef} = \sqrt{\frac{1}{T}} \int_{o}^{T} u^{2}(t).dt$$
 ¿Interpretación?

Si u(t) es sinusoidal, U_{ef} resulta igual a $U_{m\acute{a}x}/\sqrt{2}$

INSTRUMENTOS

VOLTÍMETRO

AMPERÍMETRO

Ideal

Real

Ideal

Real

De continua

De valor eficaz

RESOLUCIÓN DE CIRCUITOS EN ALTERNA

Valen las leyes fundamentales y todas las metodologías de resolución

Ley de Ohm (en alterna se generaliza como $\underline{Z} = \frac{\underline{U}}{\underline{I}}$ ó $\underline{Y} = \frac{\underline{I}}{\underline{U}}$)

Leyes de Kirchhoff

Análisis nodal

Análisis de malla

Principio de superposición

En el caso particular de los equivalentes de Thèvenin y Norton, los mismos pueden generalizarse de la siguiente manera:

$$I^{N}$$
 I^{N}
 U_{AB}
 I^{N}
 $I^{$

RESUMEN

Circuitos con **señal alterna senoidal** en estado permanente

EXCITACIONES y RESPUESTAS en circuitos R, RL, RC, RLC

FASOR, equivalencias con la señal senoidal

DIAGRAMA FASORIAL

Relación entre dos fasores: IMPEDANCIA COMPLEJA y sus componentes

Impedancia equivalente o "vista" entre dos bornes

Característica de una IMPEDANCIA: inductiva, capacitiva

Inversa de una impedancia: ADMITANCIA y sus componentes

Característica de una ADMITANCIA: inductiva, capacitiva

INSTRUMENTOS