Scalability in bioinformatics

Antoine Limasset

Bonsai Team, CRIStAL, Lille University, CNRS, France

antoine.limasset@gmail.com

Take home messages

Bioinformatics is a exiting research field for computer scientists

How?

- Drowned by data deluge
- Algorithms and data structures matter
- Very rewarding to help biologists

Sequencing

Big Data

Presentation Leitmotiv

We sequenced a weird bacteria! Let's see if it looks like something known!

Bacterial database

One million available genomes (Genbank)

pprox 10 megabases each

Database size estimation: 10 Terabases (10¹³)

Using 2bit per bases \approx 3 TeraBytes

Idea 1: Use alignment

Use Smith-Waterman algorithm to compare our query to each genome

		Α	С	Α	С	Α	С	Т	Α
	Q	0	0	0	0	0	0	0	0
Α	0	\$	1	2	1	2	1	0	2
G	0	1	1	1	1	1	1	0	1
С	0	0	3	2	3	2	3	2	1
Α	0	2	2	5	4	5	4	3	4
С	0	1	4	4	Y.	6	7	6	5
Α	0	2	3	6	6	9	8	7	8
С	0	1	4	5	8	8	11	10	9
Α	0	2	3	6	7	10	10	10	12

Idea 1: Use alignment

Use Smith-Waterman algorithm to compare our query to each genome

Complexity

 $\mathcal{O}(G^2.N)$

(G the genomes size and N the amount of genomes)

Cost of our search

 $\approx 10^{20}$ operations

Idea 2: Use Longest increasing subsequence

Use LIS algorithm to compare our query to each genome

Idea 2: Use Longest increasing subsequence

Use LIS algorithm to compare our query to each genome

Complexity

 $\mathcal{O}(G.In(G).N)$

(G the genomes size and N the amount of genomes)

Cost of our search

 $\approx 10^{14}$ operations

Idea 3: Count shared words

Idea 3: Count shared words

Index fixed size word (k-mer) from each genome with a hash table and count

Complexity

 $\mathcal{O}(G.N)$

(G the genomes size and N the amount of genomes)

Cost of our search

 $\approx 10^{13} \ \text{operations}$

Idea 4: Index k-mers

We can build an index associating to each k-mer its originating datasets

	k-mer	Color set
	ACTG	0110010101
Color matrix	ACTT	1000011111
Color matrix	CTTG	0011110000
	TTTC	0110010101
	GCGT	0111110101
	AGCC	0110010101

Idea 4: Index k-mers

We consider only the query time because we got a pre-built index

Complexity

 $\mathcal{O}(G)$

(G the genomes size)

Cost of our search

 $\approx 10^7$ operations

Memory cost

Up to $\mathcal{O}(G.N.K)$ nucleotide in theory

In practice, counting 100 billions distinct k-mers, using 64bits per kmer > 1 TeraByte

Idea 5: Use minhash sketches

Idea 5: Use minhash sketches

Represent each genome with a Minhash sketch

Complexity

 $\mathcal{O}(S.N)$

(S the sketch size, N the number of genomes)

Cost of our search

Using 1,000 fingerprints

 $\approx 10^9$ operations

 $\approx 10^6$ Random access

Memory cost

 $\mathcal{O}(H.G)$ integers

In practice, using sketches of 1,000 32 bits integers, \approx 4 GigaBytes

Idea 6: Index fingerprints

Index fingerprint using inversed index

docID		geo-scopelD		
1		Europe		
2] <u>[</u>	Europe		
3		France		
4		England		
5		Portugal		
6		Quebec		
7		Europe		
8		Spain		

	docID		
\neg	1	2	7
\neg	3		
\neg	5		
ightharpoons	4		
\neg	6		
_	8		
		1 3 5 4	1 2 3 - 5 - 4

Forward Index

Inverted Index

Idea 6: Index fingerprints

Index integer using inversed index

Complexity

 $\mathcal{O}(H)$

(H the sketch size)

Cost of our search

 $\approx 10^3$ operations

Memory cost

 $\mathcal{O}(H.G)$ integers

In practice, using sketches of 1,000 32 bits integers, \approx 4 GigaBytes

Take home message

Algorithmic and data structure improvement are the cornerstones of being able to scale with the current databases sizes

Application to antibiotic resistance gene surveillance

Application to biomarker detection

Comparison and clustering of all know genomes

Take home messages

Bioinformatics is a exiting research field for computer scientists

How?

- Drowned by data deluge
- Algorithms and data structures matter
- Very rewarding to help biologists

Join Us!

Open subjects: (Internship/PhD Thesis)

- Index data structure
- Specialized architecture
- Sequence analysis

Contact:

Antoine.Limasset@univ-lille.fr **y**@BQPmalfoy on Twitter

THE END IS NEVER THE END THE EN EVER THE END THE END IS NEVER D THE END IS NEVER THE END THE NEVER THE END THE END IS NEVER ND THE END IS NEVER THE END TH S NEVER THE END THE END IS NEVI END THE END IS NEVER THE END TH IS NEVER THE END THE END IS NEV