

The Optimal Mechanism in Additive Differential Privacy

Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar

Gmail : {qgeng, vvei, guorq, sanjivk}@google.com

Abstract

We derive the optimal $(0, \delta)$ -differentially private query-output independent noise-adding mechanism for single real-valued query function.

We show that the optimal noise probability distribution is a uniform distribution with a probability mass at the origin.

Background on Differential Privacy

A randomized mechanism K satisfies (ϵ , δ)-differential privacy if for any two neighboring datasets D_1 and D_2 differing by one element, and all $S \subset Range(K)$

$$Pr[\mathcal{K}(D_1) \in S] \leq e^{\epsilon} Pr[\mathcal{K}(D_2) \in S] + \delta.$$

In the special case ε =0, the constraint for (0, δ)-differential privacy is

$$\Pr[\mathcal{K}(D_1) \in S] \leq \Pr[\mathcal{K}(D_2) \in S] + \delta.$$

Problem Formulation

Query sensitivity $\Delta := \max_{D_1,D_2 \in \mathcal{D}} |q(D_1) - q(D_2)|$

Query-output independent noise-adding mechanisms

$$K(D) = q(D) + noise$$

Constraint on the noise probability distribution P

$$\mathcal{P}(S) \leq \mathcal{P}(S+d) + \delta, \forall |d| \leq \Delta, \text{measurable set } S \subset \mathbb{R}.$$

Cost model on the additive noise

Symmetric cost function on the noise: $\ell(\cdot):\mathcal{R} o\mathcal{R}$

Expected cost: $\int_{x \in \mathbb{R}} \mathcal{L}(x) \mathcal{P}(dx).$

Optimization problem to solve

minimize
$$\int_{x \in \mathbb{R}} \mathcal{L}(x) \mathcal{P}(dx)$$

subject to \forall measurable set $S \subseteq \mathbb{R}, \ \forall |d| \leq \Delta$.
 $|\mathcal{P}(S) - \mathcal{P}(S+d)| \leq \delta$

Main Result

As the loss function L is symmetric, without loss of generality, assume P is symmetric.

Assuming L is monotonically increasing for $x \ge 0$.

Consider the class of symmetric noise distributions **SP** whose "p.d.f." monotonically decreases for $x \ge 0$,

$$\inf_{\mathcal{P}\in\mathcal{SP}}\int_{x\in\mathbb{R}}\mathcal{L}(x)\mathcal{P}(dx) = \inf_{\alpha\in[0,\delta)}\int_{x\in\mathbb{R}}\mathcal{L}(x)\mathcal{P}_{\alpha}(dx).$$

The optimal parameter α depends on the privacy parameters δ and loss function L

where \mathcal{P}_{α} is defined as

Figure 1: Probability distribution of \mathcal{P}_{α} . \mathcal{P}_{α} has a probability mass $\alpha \in [0, \delta)$ at the origin, and has a uniform distribution over $\left[-\frac{1-\alpha}{\delta-\alpha}\frac{\Delta}{2}, \frac{1-\alpha}{\delta-\alpha}\frac{\Delta}{2}\right] \setminus \{0\}$ with probability density $\frac{\delta-\alpha}{\Delta}$.

Proof Ideas

Sufficient and necessary condition for preserving $(0, \delta)$ -differential privacy (assuming P is symmetric and monotonic)

$$\mathcal{P}([-\frac{\Delta}{2}, \frac{\Delta}{2}]) \leq \delta.$$

Step 1: Discretize the probability distribution

Step 2: Rearrange the tail distribution

Figure 3: Re-arrange the probability distribution in $\left[\frac{\Delta}{2}, +\infty\right)$ to be a step.

Step 3: Rearrange the distribution in $[0, \Delta/2]$

Figure 4: Re-arrange the probability distribution in $(0, \frac{\Delta}{2})$ to be uniform and put the extra probability mass at the origin.

Applications

Let $V(\mathcal{P}) := \int_{x \in \mathbb{R}} \mathcal{L}(x) \mathcal{P}(dx)$, i.e., $V(\mathcal{P})$ denote the expectation of the cost given the noise probability distribution \mathcal{P} for the cost function $\mathcal{L}(\cdot)$.

Theorem 3. Given $0 < \delta < 1$ and the query sensitivity $\Delta > 0$. For the general momentum cost function $\ell^p(x) := |x|^p$, where p > 0, the optimal noise probability distribution to preserve $(0, \delta)$ -differential privacy with query sensitivity Δ is $\mathcal{P}_{\alpha} *$ with

$$\alpha^* = \begin{cases} 0, & for \ \delta \in (0, \frac{p}{p+1}] \\ (p+1)\delta - p, & for \ \delta \in (\frac{p}{p+1}, 1) \end{cases}$$

and the minimum cost is

$$V(\mathcal{P}_{\alpha^*}) = \begin{cases} \frac{\Delta^p}{2^p (p+1)\delta^p}, & for \ \delta \in (0, \frac{p}{p+1}] \\ \frac{(p+1)^p}{2^p p^p} (1-\delta)\Delta^p, & for \ \delta \in (\frac{p}{p+1}, 1) \end{cases}$$

Corollary: Optimal Noise Magnitude

$$\begin{cases} \frac{\Delta}{4\delta}, & \text{for } \delta \in (0, \frac{1}{2}] \\ (1 - \delta)\Delta, & \text{for } \delta \in (\frac{1}{2}, 1) \end{cases}$$

Corollary: Optimal Noise Power

$$\begin{cases} \frac{\Delta^2}{12\delta^2}, & \text{for } \delta \in (0, \frac{2}{3}] \\ \frac{9}{16}(1-\delta)\Delta^2, & \text{for } \delta \in (\frac{2}{3}, 1) \end{cases}$$

Paper link https://arxiv.org/abs/1809.10224