Exponential Distribution Investigation in R - Statistical Inference: Course Project - Question 1

Martin Cote April 26, 2015

Overview

Investigation of the exponential distribution in R and comparison with the Central Limit Theorem. This report will test using a simulation the distribution obtained from it, confirming the CLT by validating the distribution as a standard normal distribution.

Simulation

Preparing the simulation using:

- 1. num: number of exponentials per simulations
- 2. lambda: the rate parameter used within this investigation
- 3. numsim: number of simulations used in this investigation

By:

- 1. running a 'numsim' times the 'rexp' (the "random exponantial distribution") with a 'lambda' rate for n=num.
- 2. saves the results into matrix for further manipulation

Sample Mean versus Theoretical Mean

Comparing the sample mean versus the theoritical mean.

```
# Calculating the overall means
mns <- rowMeans(simulateddata)
mean(mns)</pre>
```

```
## [1] 4.991369
```

```
# Calculating the mean
1 / lambda
```

[1] 5

As observed, the sample mean calculated is fairly closed to the averages of 40 means exponantials simulated.

```
# Displaying the histogram of all simulated means of 40 random exponantials
hist(mns, xlab="Means", ylab="Frequency", main="Sample Mean vs. Theoritical Mean")
abline(v=1/lambda, col="red", lwd=3)
```

Sample Mean vs. Theoritical Mean

The distribution is centered at or around both the sample mean or theoritical mean.

Sample Variance versus Theoretical Variance

Comparing the sample variance versus the theoritical variance.

```
# Calculating the variances and averaging them:
vrs = NULL
for (i in 1:numsim) {
   vrs = c(vrs, var(simulateddata[i, ]))
}
mean(vrs)
```

[1] 24.69762

```
# Calculating the variance
(1 / lambda)^2
```

[1] 25

As observed, the averages of all variances of the simulated 40 random exponantials is fairly closed to the calculated variance.

hist(vrs, xlab="Variances", ylab="Frequency", main="Sample Variance vs. Theoritical Variance") abline(v=(1/lambda)^2, col="red", lwd=2)

Sample Variance vs. Theoritical Variance

The distribution is centered at or around both the sample variance or the theoritical variance.

Distribution

Investigating if the overall distribution is normal.

hist(mns, xlab="Means", ylab="Frequency", main="Histogram of the sample means")

Histogram of the sample means

Since the histogram follows/is closed to a normal distribution, we can assume the distribution is approxamitively normal.