计算机组织与体系结构

第一讲

计算机科学与技术学院 舒燕君

主讲教师

• 舒燕君

- 研究方向:
 - ✓云计算系统性能评测
 - ✓高端容错计算机系统
 - ✓系统容错性能评测工具
 - ✓数据中心的智能运维技术
- 联系方式: QQ: 6016511
- 办公室地址:综合实验楼510房间

联合培养

- 加拿大Queens大学,Prof. Ying Zou
 - (Software Repository Mining, SRM)
 - Undergraduate Internship, 12 weeks
- 澳大利亚Adelaide大学, Prof. Wei Zhang
 (Information Retrieve, IR)
- 澳大利亚Macquarie大学, Prof. Michael Sheng (IoT, Cloud Services)

联合培养

Prof. Ying Zou

夏季课程: Software Performance Engineering Intro: Improving software performance from system aspects, including hardware, software, OS, internet.

Prof. Michael Sheng

夏季课程: Advanced Web Service Technologies

Intro: New service computing development and research directions, particularly giving the consideration of recent exciting applications.

助教

- 助教 刘宣麟
 - 负责作业及报告批改、课程答疑
 - 联系方式: QQ: 893868839

• 助教 马庄宇

- -负责指导实验、课程答疑
- -联系方式: QQ: 1141325030

课程概貌

• 讲授内容

- 一计算机基本部件的组织方式和工作过程、基本 运算的操作原理
- 现代计算机体系结构基本概念、设计思想、量化分析方法和实现技术

教材

- 唐朔飞. 计算机组成原理(第2版). 高等教育 出版社
- 王志英等. 计算机体系结构(第2版). 清华大学出版社

参考教材

David A. Patterson, John L.
 Hennessy. Computer Organization
 & Design: A Hardware/Software
 Interface

John L. Hennessy, David A.
 Patterson. Computer Architecture:
 A Quantitative Approach

本课程在课程体系中的地位

教学模式与课程考核

- 教学模式:采用理论和实践相结合的方法进行 教学
 - 48学时课堂教学
 - 24学时上机实验

考核方式与答疑安排

> 课程公告和文件: QQ 群(群号: 567714071)

> 答疑安排:

全国大学生计算机系统 能力培养大赛

- 第1章 计算机系统概论
- 第2章 计算机系统量化分析基础
- 第3章 总线
- 第4章 指令系统
- 第5章 CPU设计与实现
- 第6章 基本流水线技术
- 第7章 指令级并行
- 第8章 存储系统的结构与优化
- 第9章 IO系统

第1章 计算机系统概论

- 第2章 计算机系统量化分析基础
- 第3章 总线
- 第4章 指令系统
- 第5章 CPU设计与实现
- 第6章 基本流水线技术
- 第7章 指令级并行
- 第8章 存储系统的结构与优化
- 第9章 IO系统

第1章 计算机系统概论

1.1 计算机系统简介

1.2 计算机的基本组成

1.3 计算机硬件的主要指标

1.1 计算机系统简介

• 现代计算机的多态性

跑得最快的计算机(截止2021年6月)

		, , , , , , , , , , , , , , , , , , , 			
Rank	Site 国家	System 名称	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)
1	RIKEN Center for Computational Science	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D 制造商: Fujitsu 所属: 日本理化学研究所		422,010.0	537,212.0
2		Summit-IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband 制造商: IBM 所属: 美国能源部Oak Ridge国家实验室	2,414,592	148,600	200,795
3	DOE/NNSA/LLNL United States	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband 制造商: IBM、NVIDIA、Mellanox 所属: 美国能源部、美国国家核安全管理局	1,572,480	94,640.0	125,712.0
4	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC 制造商:中国国家并行计算机工程与技术研究中心所属:中国国家超算中心(无锡)		93,014.6	125,435.9
5	DOE/SC/LBNL/NERS C United States	PERLMUTTER - HPE CRAY EX235N, AMD EPYC 7763 64C 2.45GHZ, SLINGSHOT-10 制造商: HPE Cray EX 所属: 美国国家能源研究科学计算中心(NERSC)的劳伦斯·伯克利国家实验室	706,304	64,590.0	89,794.5

Fugaku

Site:	RIKEN Center for Computational Science
Manufacturer:	Fujitsu
Cores:	7,630,848
Linpack Performance (Rmax)	442,010 TFlop/s
Theoretical Peak (Rpeak)	537,212 TFlop/s
Power:	29,899.23 kW
Memory:	5,087,232 GB
Interconnect:	Tofu interconnect D
Operating System:	Red Hat Enterprise Linux
Compiler:	FUJITSU Software Technical Computing Suite V4.0
Math Library:	FUJITSU Software Technical Computing Suite V4.0

Sunway TaihuLight

Cito:

Site:	National Supercomputing Center in Wuxi
Manufacturer:	NRCPC
Cores:	10, 649, 600
Linpack Performance (Rmax)	93,014.6 TFlop/s
Theoretical Peak (Rpeak)	125,436 TFlop/s
Power:	15,371 kW
Memory:	1,310,720 GB
Interconnect:	Sunway
Operating System:	Sunway RaiseOS 2.0.5

1.1 计算机系统简介

1.1 计算机系统简介

一、计算机的软硬件概念

1. 计算机系统

计算机的实体, 如主机、外设等 机系统 软件 由具有各类特殊功能 的信息(程序)组成

用来管理整个计算机系统 系统软件 语言处理程序 操作系统 服务性程序 数据库管理系统 网络软件

按任务需要编制成的各种程序

2. 计算机的解题过程

计算机

1.1

二、计算机系统的层次结构

高级语言

汇编语言

操作系统

机器语言

微指令系统

1.2 计算机的基本组成

- 一、冯·诺依曼计算机的特点
 - 1. 计算机由五大部件组成
 - 2. 指令和数据以同等地位存于存储器, 可按地址寻访
 - 3. 指令和数据用二进制表示
 - 4. 指令由操作码和地址码组成
 - 5. 存储程序
 - 6. 以运算器为中心

冯·诺依曼计算机硬件框图

二、计算机硬件框图

1. 以存储器为中心的计算机硬件框图

2. 现代计算机硬件框图

1.2

1. 上机前的准备

- 建立数学模型
- 确定计算方法

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

• 编制解题程序

程序 —— 运算的 全部步骤

指令 —— 每 一个步骤

计算
$$ax^2 + bx + c = (ax + b)x + c$$
取 x 至运算器中 取 x 至运算器中 乘以 a 在运算器中 乘以 a 在运算器中 ax^2 在存储器中 ax^2 在存储器中 和 ax^2 在运算器中 和 ax^2 在运算器中 加 ax^2 在运算器中

取x 至运算器中 乘以a 在运算器中 在运算器中 加b乘以x 在运算器中 加c 在运算器中

指令格式举例

操作码	地址码	
取数 00001	α 000001000	$[\alpha] \longrightarrow ACC$
存数	β	$[ACC] \rightarrow \beta$
加	γ	$[ACC]+[\gamma] \longrightarrow ACC$
乘	δ	$[ACC] \times [\delta] \longrightarrow ACC$
打印停机	σ	[σ] → 打印机

计算 $ax^2 + bx + c$ 程序清单

<u>1.2</u>

指令和数据存于	指令		注释	
主存单元的地址	操作码	地址码	↑土↑辛	
0	000001	0000001000	取数x至ACC	
1	000100	0000001001	乘a得ax,存于ACC中	
2	000011	0000001010	加b得ax+b,存于ACC中	
3	000100	0000001000	乘x得 (ax+b)x,存于ACC中	
4	000011	0000001011		
5	000010	0000001100	将 $ax^2 + bx + c$,存于主存单元	
6	000101	0000001100	打印	
7	000110		停机	
8		x	原始数据x	
9		a	原始数据a	
10 b		原始数据b		
11		c	原始数据c	
12			存放结果	

1.2

(1)存储器的基本组成

存储体

MAR | MDR |

主存储器

存储体 - 存储单元 - 存储元件

大楼 - 房间 - 床位(无人/有人)

存储单元 存放一串二进制代码

存储字 存储单元中二进制代码的组合

存储字长 存储单元中二进制代码的位数

每个存储单元赋予一个地址号

按地址寻访

(1)存储器的基本组成

存储体

MAR

MDR

主存储器

MAR 存储器地址寄存器 反映存储单元的个数

MDR 存储器数据寄存器 反映存储字长

设 MAR=4位
MDR=8位
存储单元个数 16
存储字长 8

1.2

(2)运算器的基本组成及操作过程

	ACC	MQ	X
加法	被加数 和		加数
减法	被减数差		减数
乘法	乘积高位	乘数 乘积低位	被乘数
除法	被除数 余数	商	除数

(3)控制器的基本组成

PC 存放当前欲执行指令的地址, 具有计数功能(PC)+1→PC

IR 存放当前欲执行的指令

CU 控制单元

(4) 主机完成一条指令的过程 以取数指令为例

(4) 主机完成一条指令的过程 以存数指令为例

(5) $ax^2 + bx + c$ 程序的运行过程

- 将程序通过输入设备送至计算机
- 程序首地址 → PC
- 启动程序运行
- 取指令 $PC \rightarrow MAR \rightarrow M \rightarrow MDR \rightarrow IR$, $(PC) + 1 \rightarrow PC$
- 分析指令 OP(IR) → CU
- 执行指令 Ad(IR) → MAR → M → MDR → ACC

•

- 打印结果
- 停机

