**Description:** Click Play to watch the video below. Answer the ungraded questions in the video and the graded follow-up questions at right. (a) Three blocks are at rest on a smooth, horizontal table. You push on block A (m = 1.50 kg) to the right with a horizontal...

Constants | Periodic Table

Click Play to watch the video below. Answer the ungraded questions in the video and the graded follow-up questions at right.



## Part A

Three blocks are at rest on a smooth, horizontal table. You push on block A (m = 1.50 kg) to the right with a horizontal force of  $F_{push}$ . As a result, block A pushes on block B (m = 2.50 kg), block B pushes on block C (m = 1.20 kg), and the system of blocks moves to the right with an acceleration of 1.12 m/s<sup>2</sup>. What is the magnitude of the force that block B exerts on block C?



ANSWER:

| <ul><li>1.34 N</li></ul> |  |  |
|--------------------------|--|--|
| 1.65 N                   |  |  |
| ○ 5.82 N                 |  |  |
| 7.45 N                   |  |  |
| 2.75 N                   |  |  |
|                          |  |  |

A free-body diagram of the forces acting on block C will show the force that block B exerts on C ( $F_{\rm B\ on\ C}$ ) pointing to the right, and no other horizontal forces. Therefore, this force is equal to the mass of block C times its acceleration:  $F_{\rm B\ on\ C}=m_{\rm C}a$ . Solving for the force that B exerts on C gives:  $F_{\rm B\ on\ C}=(1.20\ {\rm kg})(1.12\ {\rm m/s^2})=1.34\ {\rm N}.$ 

Also, according to Newton's Third Law, the force that block B exerts on C and the force that block C exerts on B are equal in magnitude and opposite in direction. That is:  $F_{\rm C\ on\ B}=1.34\ \rm N.$ 

## Part B

In the scenario described above, what is the magnitude of the force that block A exerts on block B?

ANSWER:



1.34 N

6.90 N

5.82 N

2.80 N

A free-body diagram of the forces acting on block B will show the force block A exerts on B ( $F_{\rm A\ on\ B}$ ) pointing to the right and the force that block C exerts on B ( $F_{\rm C\ on\ B}$ ) pointing to the left. The vector sum of these forces is  $F_{\rm A\ on\ B} - F_{\rm C\ on\ B}$  and is equal to the mass of block B times its acceleration:  $F_{\rm A\ on\ B} - F_{\rm C\ on\ B} = m_{\rm B}\,a$ . Solving for the force that A exerts on B gives  $F_{\rm A\ on\ B} = F_{\rm C\ on\ B} + m_{\rm B}\,a = 1.34\ {\rm N} + (2.50\ {\rm kg})(1.12\ {\rm m/s^2}) = 4.14\ {\rm N}$ .

Also, according to Newton's Third Law, the force that block A exerts on B and the force that block B exerts on A are equal in magnitude and opposite in direction. That is:  $F_{\rm B\ on\ A}=4.14\ {
m N}.$ 

## Part C

In the scenario described above, what is the magnitude of the force  $F_{push}$ ?

ANSWER:

- 4.14 N
- 5.82 N
- 2.75 N
- 1.32 N
- 7.12 N

A free-body diagram of the forces acting on block A will show the applied force of  $F_{\rm push}$  pointing to the right and the force that block B exerts on A ( $F_{\rm B\ on\ A}$ ) pointing to the left. The vector sum of these forces is  $F_{\rm push}$  –  $F_{\rm B\ on\ A}$  and is equal to the mass of block A times its acceleration:  $F_{\rm push}$  –  $F_{\rm B\ on\ A}$  =  $m_{\rm A}\,a$ . Solving for the applied force gives:  $F_{\rm push}$  =  $F_{\rm B\ on\ A}$  +  $m_{\rm A}\,a$  = 4.14 N + (1.50 kg)(1.12 m/s<sup>2</sup>) = 5.82 N.

As it turns out, you also could have arrived at this value by applying Newton's 2nd law to the block system as a whole, since:

 $F_{\text{net}} = (m_{\text{A}} + m_{\text{A}} + m_{\text{A}})a = (5.20 \text{ kg})(1.12 \text{ m/s}^2) = 5.82 \text{ N}.$