

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 3

Тема: Построение и программная реализация алгоритма сплайн-интерполяции табличных функций.

Студент: Фролов Е.А.

Группа: ИУ7-45Б

Оценка (баллы):

Преподаватель: Градов В.М.

Цель работы

Получение навыков владения методами интерполяции таблично заданных функций с помощью кубических сплайнов.

Исходные данные

- 1) Значение аргумента х
- 2) Таблица функции с количеством узлов N, которая задается с помощью формулы y = x*x в диапазоне [0...10] с шагом 1

Выходные данные

- Значение у(х)
- 2) Сравнить результат интерполяции кубического сплайна с полиномом Ньютона 3-ей степени

Анализ алгоритма

Для кубического сплайна значение у вычисляется следующим образом

$$\psi(x_i) = y_i = a_i + b_i h_i + c_i h_i^2 + d_i h_i^3,$$

$$h_i = x_i - x_{i-1}, 1 \le i \le N.$$

В начале нужно найти все коэффициенты:

1) Коэффициент а:

$$a_i = y_{i-1}$$
, $1 \le i \le N$,

2) Коэффициент с вычисляется до того, как вычисляются b и d, потому что с участвует в процессе вычислении b и d:

С помощью метода Гаусса получаем, что

$$C_i = \xi_{i+1}C_{i+1} + \eta_{i+1}$$

где $\xi_{_{i+1}}$, $\eta_{_{i+1}}$ - некоторые, не известные пока прогоночные коэффициенты;

Сами прогоночные коэффициенты вычисляются следующим образом

$$\xi_{i+1} = -\frac{h_i}{h_{i-1}\xi_i + 2(h_{i-1} + h_i)}\eta_{i+1} = \frac{f_i - h_{i-1}\eta_i}{h_{i-1}\xi_i + 2(h_{i-1} + h_i)}.$$

Используя дополнительное обозначение:

$$f_i = 3(\frac{y_i - y_{i-1}}{h_i} - \frac{y_{i-1} - y_{i-2}}{h_{i-1}})$$
.

3) Коэффициент b:

$$b_{i} = \frac{y_{i} - y_{i-1}}{h_{i}} - h_{i} \frac{c_{i+1} - 2c_{i}}{3} , \quad 1 \le i \le N - 1 ,$$

$$b_{N} = \frac{y_{N} - y_{N-1}}{h_{N}} - h_{N} \frac{2c_{N}}{3} ,$$

4) Коэффициент d:

$$d_{i} = \frac{c_{i+1} - c_{i}}{3h_{i}} , 1 \le i \le N - 1 ,$$

$$d_{N} = -\frac{c_{N}}{3h_{N}} .$$

Код программы:

```
def in file(file name):
              file = open(file_name, "r")
              print("Ошибка: Нет такого файла")
         table = []
         num_line = 0
9
10
         array_x = []
11
         array_y = []
12
13
14
         for line in file:
              arr = []
15
16
                  arr = [float(num) for num in line.split()]
17
                  array_x.append(arr[0])
18
                  array_y.append(arr[1])
19
20
                  file.close()
21
22
23
24
25
26
27
                  return []
              num_line += 1
         table.append(array_x)
         table.append(array_y)
28
         file.close()
         return table
```

```
def calc_factors_spline(array_x, array_y):
    a_factor = array_y[:-1]
             size = len(array_y)
             c_factor = [0] * (size - 1)
             ksi_arr = [0, 0]
teta_arr = [0, 0]
             for i in range(2, size):
    h1 = array_x[i] - array_x[i - 1]
    h2 = array_x[i - 1] - array_x[i - 2]
                  f= 3 * ((array_y[i] - array_y[i - 1]) / h1 - (array_y[i - 1] - array_y[i - 2]) / h2)
                  ksi_cur = - h1 / (h2 * ksi_arr[i - 1] + 2 * (h2 + h1))
teta_cur = (f- h1 * teta_arr[i - 1]) / (h1 * ksi_arr[i - 1] + 2 * (h2 + h1))
                  ksi_arr.append(ksi_cur)
                  teta_arr.append(teta_cur)
             c_factor[size - 2] = teta_arr[len(teta_arr) - 1]
             for i in range(size - 2, 0, -1):
    c_factor[i - 1] = ksi_arr[i] * c_factor[i] + teta_arr[i]
             b_factor = []
             for i in range(1, len(array_x) - 1):
    h = array_x[i] - array_x[i - 1]
                  b_cur = (array_y[i] - array_y[i - 1]) / h - (h * (c_factor[i] + 2 * c_factor[i - 1])) / 3
64
65
                  b_factor.append(b_cur)
             h = array_x[size - 1] - array_x[size - 2]
             b_factor.append((array_y[size - 1] - array_y[size - 2]) / h - (h * 2 * c_factor[i]) / 3)
             d_factor = []
             for i in range(1, len(array_x) - 1):
    h = array_x[i] - array_x[i - 1]
    d_cur = (c_factor[i] - c_factor[i - 1]) / (3 * h)
    d_factor.append(d_cur)
             h = array_x[size - 1] - array_x[size - 2]
d_factor.append((- c_factor[i]) / (3 * h))
             return a_factor, b_factor, c_factor, d_factor
```

```
def spline(array_x, array_y, x):
            factors = calculate_factors_spline(array_x, array_y)
            side = 1
            while (side < len(array_x) and array_x[side] < x):</pre>
                side += 1
            side -= 1
            h = x - array_x[side]
            y = 0
           y += factors[0][side]
           y += factors[1][side] * h
y += factors[2][side] * h * h
y += factors[3][side] * h * h * h
           return y
100
       def find_div_difference(x1, y1, x2, y2, proizvod):
101
102
            if (abs(x1 - x2) > 1e-7):
                return (y1 - y2) / (x1 - x2)
103
104
105
                return proizvod
106
107
       def find_index_table(table, x, power):
            if (power >= len(table)):
    return -1
108
109
110
111
            ind = -1
112
            flag = 0
113
114
            for i in range(len(table)):
                if (x <= table[i][0]):
    ind = i - power // 2</pre>
115
116
117
                     flag = 1
118
119
120
            if (ind < 0):
                ind = 0
121
122
123
            if (flag == 0) or (ind + power + 1 > len(table) - 1):
                ind = len(table) - power - 1
124
125
126
            return ind
```

Пример работы программы

```
X: 0.5
Сравнение результатов для x = 0.5
Сплайном: 0.34151
Полином Ньютона Зей степени: 0.25
PS C:\Users\gimna\Desktop\BMSTU\BычАлг\lab_03> c:; c
STU\BычАлг\lab_03\main.py'
X: 5.5
Сравнение результатов для x = 5.5
Сплайном: 30.24811
Полином Ньютона Зей степени: 30.25
```

Результаты

X	у	Кубический сплайн	Полином Ньютона 3й степени
0.5	0.25	0.34151	0.25
2.5	6.25	6.25660	6.25
5.5	30.25	30.24811	30.25

Вопросы при защите лабораторной работы

1. Получить выражения для коэффициентов кубического сплайна, построенного на двух точках

Пусть заданы две точки: (x1, y1), (x2, y2)

Для кубического сплайна, который имеет вид:

$$\psi(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3$$

Коэффициент A = y1

Так как сплайн строится по двум точкам и C(N) = 0, то C(N) = C, значит C(N) = 0

Через коэффициент C находим:

коэффициент
$$\mathbf{D} = -\mathbf{C}(N) / 3h(N) = 0$$

коэффициент
$$\textbf{\textit{B}} = (y(N) - y(N-1)) \, / \, h(N) - h(N)*(2Cn) \, / \, 3 = (y2 - y1) \, / \, (x2 - x1)$$

$$A = y1$$
,

$$\mathbf{B} = (y2 - y1) / (x2 - x1),$$

$$C=0$$
,

$$\mathbf{D} = 0.$$

Сплайном будет прямая, проходящая ч-з две точки

2. Выписать все условия для определения коэффициентов сплайна, построенного на 3-х точках.

Пусть дано три точки: (x1, y1), (x2, y2), (x3, y3)

Будет 8 коэффициентов, которые будут находиться следующим образом:

- 1) Через значения узлов: w1(x1) = y1, w2(x2) = y2, w1(x2) = y2, w2(x3) = y3:
 - a1 = y1
 - a2 = y2
 - a1 + b1*(x2 x1) + c1*(x2 x1)^2 + d1*(x2 x1)^3 = y2
 - $a2 + b2*(x3 x2) + c2*(x3 x2)^2 + d2*(x3 x2)^3 = y3$
- 2) Через производные:
 - $w1'(x2) = w2'(x2) => b1 + 2*c1*(x2 x1) + 3*d1*(x2 x1)^2 = b2$
 - w1"(x2) = w2"(x2) = c1 + 3*d1*(x2 x1) = c2
 - w1''(x1) = 0
 - w2''(x3) = 0
- 3. Определить начальные значения прогоночных коэффициентов, если принять, что для коэффициентов сплайна справедливо C1=C2.

$$C_{i-1} = \xi_i C_i + \eta_i$$

Если C1 = C2, то: $\xi 2 = 1$, $\eta 2 = 0$

4. Написать формулу для определения последнего коэффициента сплайна CN, чтобы можно было выполнить обратный ход метода прогонки, если в качестве граничного условия задано kCN-1+mCN=p, где k,m и p - заданные числа.

$$C(N - 1) = e(N) * C(N) + n(N)$$

Если k*C(N-1) + m*C(N) = p, получаем: C(N) = (p - k*n(N)) / (k*e(N) + m)