A Comprehensive Set of Transformations

A. Glen, S. Butler, N. Mankovich

Partially Funded by ARO Grant 67906-MA

- Introduction
 - Transformation Theorem
 - The Research
- 2 Demonstration
 - Maple and Latex Output
- Some Results
 - Database with Results
 - Unique Distributions and Interesting Properties
 - Catalog of Results: A Distribution Matrix

- Introduction
 - Transformation Theorem
 - The Research
- Demonstration
 - Maple and Latex Output
- Some Results
 - Database with Results
 - Unique Distributions and Interesting Properties
 - Catalog of Results: A Distribution Matrix

Transformation Theorem

•
$$Y = g(X)$$

Transformation Theorem

- Y = g(X)
- $f_Y(y) = f_X(g^{-1}(y)) |\frac{d}{dy}g^{-1}(y)|$

- Introduction
 - Transformation Theorem
 - The Research
- 2 Demonstration
 - Maple and Latex Output
- Some Results
 - Database with Results
 - Unique Distributions and Interesting Properties
 - Catalog of Results: A Distribution Matrix

• 23 distributions × 21 transformations

- 23 distributions × 21 transformations
- Generate the general PDF of the new distribution

- 23 distributions × 21 transformations
- Generate the general PDF of the new distribution
- Generate a representative instance of the new distributions and calculate pertinent characteristics

- 23 distributions × 21 transformations
- Generate the general PDF of the new distribution
- Generate a representative instance of the new distributions and calculate pertinent characteristics
- Catalogue and organize the information from these (number) distributions

Name	Distribution
ArcSine	$\frac{1}{\pi\sqrt{x(1-x)}}$
ArcTangent	$\frac{a}{(\arctan(ab)+\pi/2)(1+a^2(x-b)^2)}$
Beta	$\frac{\Gamma(a+b)x^{a-1}(1-x)^{b-1}}{\Gamma(a)\Gamma(b)}$
Chi	$\frac{x^{a-1}e^{-1/2x^2}}{2^{a/2-1}\Gamma(a/2)}$
Chi Squared	$\frac{x^{a/2-1}e^{-x/2}}{2^{a/2}\Gamma(a/2)}$
Exponential	e^{-ax}
Exponential Power	$\mathrm{e}^{1-\mathrm{e}^{ax^b}}\mathrm{e}^{ax^b}abx^{b-1}$
FRV	$\left \frac{\Gamma(a/2+b/2)x^{a/2-1}}{\Gamma(a/2)\Gamma(b/2)} \left(\frac{a}{b} \right)^{a/2} \left(\left(\frac{ax}{b} + 1 \right)^{a/2+b/2} \right)^{-1} \right $
Gamma	$a (ax)^{b-1} e^{-ax} \Gamma(b)$
Pareto	$\left(a+\frac{c}{x+b}\right)\left(1+\frac{x}{b}\right)^{-c}e^{-ax}$
Gompertz	$ab^{x}e^{-\frac{a(b^{x}-1)}{\ln(b)}}$
Hyperexponential	$e^{-3x} + 2e^{-4x}$

Name	Distribution
Hypoexponential	$\frac{b a c \left(e^{-c z} a - e^{-c z} b + e^{-a z} b - e^{-a z} c - e^{-b z} a + e^{-b z} c \right)}{(a - b)(a - c)(b - c)}$
Inverse Gaussian	$1/2\sqrt{2}\sqrt{\frac{a}{\pi x^3}}e^{-1/2\frac{a(x-b)^2}{b^2x}}$
Inverted Gamma	$\frac{x^{-a-1}}{\Gamma(a)b^a}e^{-\frac{1}{xb}}$
Log Logistic	$\frac{ab(ax)^{b-1}}{\left(1+(ax)^b\right)^2}$
Log Normal	$(1/2)\frac{\sqrt{2}}{\sqrt{\pi}xb}e^{-1/2\frac{(\ln(x)-a)^2}{b^2}}$
Lomax	$b a (b x + 1)^{-a-1}$
Makeham	$(a+bc^{x})e^{-ax-\frac{b(c^{x}-1)}{\ln(c)}}$
Muth	$(e^{ax}-a)e^{-\frac{e^{ax}}{a}+ax+a^{-1}}$
Rayleigh	$2 a^2 x e^{-a^2 x^2}$
Weibull	$b a^b x^{b-1} e^{-(ax)^b}$

Transformations

Transformation Table					
g(x)=					
x^2	1/tanh(x+1)				
\sqrt{x}	$1/\sinh(x+1)$				
1/x	$\operatorname{arccsch}(x+1)$				
arctan(x)	$1/\operatorname{arcsinh}(x+1)$				
e ^x	$1/\operatorname{csch}(x) + 1$				
tanh(1/x)	$\operatorname{csch}(1/x)$				
ln(x)	arcsinh(x)				
arccsch(1/x)	$\operatorname{csch}(x+1)$				
e^{-x}					
$-\ln(x)$					
ln(x+1)					
$1/(\ln(x+2))$					
tanh(x)					
sinh(x)					

- Introduction
 - Transformation Theorem
 - The Research
- ② Demonstration
 - Maple and Latex Output
- Some Results
 - Database with Results
 - Unique Distributions and Interesting Properties
 - Catalog of Results: A Distribution Matrix

- Introduction
 - Transformation Theorem
 - The Research
- Demonstration
 - Maple and Latex Output
- Some Results
 - Database with Results
 - Unique Distributions and Interesting Properties
 - Catalog of Results: A Distribution Matrix

Github Address

https://github.com/nmank/APPLResearch

- Introduction
 - Transformation Theorem
 - The Research
- 2 Demonstration
 - Maple and Latex Output
- Some Results
 - Database with Results
 - Unique Distributions and Interesting Properties
 - Catalog of Results: A Distribution Matrix

Upside Down Bathtub Hazard Function

Lomax (1,2), $\rightarrow t^2$

Finite Support PDF

Log Logistic(1,2), $t \rightarrow e^{-t}$

- Introduction
 - Transformation Theorem
 - The Research
- 2 Demonstration
 - Maple and Latex Output
- Some Results
 - Database with Results
 - Unique Distributions and Interesting Properties
 - Catalog of Results: A Distribution Matrix

Sample Distribution Matrix

Log Logistic (1,2)

$$f(x) = \frac{\frac{\beta}{\alpha} (\frac{x}{\alpha})^{\beta-1}}{1 + (\frac{x}{\alpha})^{\beta}}$$

							· (a)					
	General						Exan	ple: L	og Logis	tic (1,2)		
Transformation	PDF	PDF	CDF	$_{ m HF}$	IDF	μ	σ^2	MF	MGF	HF Shape	Support	Comment
x ²	√	V	√	√	✓	∞	∞	✓	✓	DFR	$0, \infty$	
\sqrt{x}	✓	1	✓	✓	✓	1	✓	1	✓	UBT	$0, \infty$	
x-1	✓	V	✓	✓	V	✓	∞	V	∂	UBT	$0, \infty$	
arctan(x)	V	V	✓	✓	✓	✓	✓	✓	✓	IFR	$0, \frac{\pi}{2}$	
e ^x	✓	V	✓	✓	✓	∞	∞	∞	∂	DFR	$1, \infty$	
ln(x)	✓	V	✓	✓	✓	✓	✓	ð	∂	IFR	$-\infty, \infty$	
e^{-x}	√	V	✓	✓	✓	✓	✓	✓	∂	IFR	0, 1	
$-\ln(x)$	✓	V	✓	✓	✓	✓	✓	ð	∂	IFR	$-\infty, \infty$	
ln(x+1)	√	✓	✓	✓	✓	✓	✓	ð	∂	UBT	$0, \infty$	
$1/\ln(x+2)$	✓	1	✓	✓	✓	∂	∂	ð	∂	IFR	$0, \frac{1}{\ln(2)}$	
tanh(x)	✓	1	✓	✓	✓	ð	∂	ð	∂	IFR	0, 1	
sinh(x)	✓	1	✓	✓	✓	∞	Ø	∞	ð	UBT	$0, \infty$	
$\operatorname{arcsinh}(x)$	✓	1	✓	✓	✓	✓	✓	ð	∂	IFR	$0, \infty$	
$\operatorname{csch}(x+1)$	✓	1	ð	ð		∂	ð	ð	ð		$0, \frac{2}{e^{-e^{-1}}}$	
$\operatorname{arccsch}(x+1)$	✓	1	✓	✓	✓	1	✓	ð	ð	IFR	$0, \operatorname{arcsinh}(1)$	
$1/\tanh(x+1)$	 	1	√	√	1	д	ð	ð	ð	IFR	$1, \frac{e+e^{-1}}{e-e^{-1}}$	
1/sinh(x+1)	/	1	✓	1		д	ð	ð	ð	IFR	$0, \frac{e-e^{-1}}{e-e^{-1}}$	
$1/\operatorname{arcsinh}(x+1)$	✓	1	✓	✓	✓	ð	∂	ð	ð	IFR	$0, \frac{e-e^{-1}}{\ln(1+\sqrt{2})}$	
$1/\operatorname{csch}(x) + 1$	✓	1	ð	ð		∞	∞	∞	∂	UBT	1, ∞	
$tanh(x^{-1})$	✓	1	✓	✓	✓	ð	ð	ð	ð	IFR	0, 1	
$\operatorname{csch}(x^{-1})$	✓ ✓	1	∂	ð		ð	∂	ð	∂		$0, \infty$	
$\operatorname{arccsch}(x^{-1})$	 	1	✓	✓	1	1	✓	ð	ð	IFR	$0, \infty$	

Legend

Symbol	Meaning
✓	Exists, Closed Form
ð	Exists, Not Closed Form
Ø	Not Possible
	Not Calculated

General PDFs

Log Logistic, $t \rightarrow csch(t+1)$

$$f(x) = \frac{b \, a \, (b \operatorname{arccsch}(x) - b + 1)^{-a - 1}}{\sqrt{x^2 + 1} \, |x|} \qquad 0 < x < 2 \, \left(e - e^{-1} \right)^{-1}$$

Arctan, $t \to \sqrt{t}$

$$4\frac{ax}{(2arctan(ab) + \pi)(a^2x^4 - 2a^2bx^2 + a^2b^2 + 1)} \qquad 0 < x < \infty$$

Weibull, $t \rightarrow tanh(t^{-1})$

$$f(x) = -\frac{b a^b \left(\left(\operatorname{arctanh}(x)\right)^{-1}\right)^b e^{-a^b \left(\left(\operatorname{arctanh}(x)\right)^{-1}\right)^b}}{\operatorname{arctanh}(x)(x^2 - 1)} \qquad 0 < x < 1$$

More General PDFs

Rayleigh, $t \rightarrow e^{-t}$

$$f(x) = -2 \frac{a^2 \ln(x) e^{-a^2 (\ln(x))^2}}{x} \qquad 0 < x < 1$$

Chi Squared, $t \rightarrow sinh(t)$

$$f(x) = \frac{(arcsinh(x))^{a/2-1}2^{-a/2}}{\sqrt{x + \sqrt{x^2 + 1}}\Gamma(a/2)\sqrt{x^2 + 1}} \qquad 0 < x < \infty$$

FRV, $t \rightarrow arctan(t)$

$$\frac{a^{a/2}b^{b/2}(\tan(x))^{a/2-1}(a\tan(x)+b)^{-a/2-b/2}(1+\tan(x)^2)\Gamma(a/2+b/2)}{\Gamma(a/2)\Gamma(b/2)}$$

 $0 < x < \infty$

The End

Questions?