1 Задание 4

1.1 Задача 1

 $R = (a(a|b))^*b$, я построил этот автомат по алгоритму, этапы построения по алгоритму прилагаю в форме черновика.

А вот и сам автомат.

1

ПРЯТ

1.2 Задача 2

 $R = (a|b)^*abaab$, построил автомат по алгоритму в тетрадке, вот черновик.

А вот и сам автомат.

2 ТРЯП

1.3 Задача 3

Составим таблицу, исходя из НКА из предыдущей задачи.

	Куда можно перейти	a	b
$\rightarrow Q_0$	1, 3	Q_1	Q_2
Q_1	1, 2, 3, 4	Q_1	Q_3
Q_2	1, 2, 3	Q_1	Q_2
Q_3	1, 2, 3, 5	Q_4	Q_2
Q_4	1, 2, 3, 4, 6	Q_5	Q_3
Q_5	1, 2, 3, 7	Q_2	Q_6
$*Q_6$	1, 2, 3, 8	Q_1	Q_2

Теперь построим ДКА по этой таблице и получаем:

3 TP Π Π

1.4 Задача 4

Да, для конечного языка L выполняется лемма о накачке.

В любом конечном есть самое длинное слово, пусть это будет слово ω , тогда возьмем за $p=|\omega|+1$. Тогда получаем, что у нас нет такого слова из L, которое было бы длинее р (т.к. мы так выбрали р), сл-но получаем, что посылка в следовании ложна, сл-но следование получается истинным.

Доказано

1.5 Задача 5

1. $L = \{a^{2019n+5}|n=0,1,...\} \cap \{a^{503k+29}|k=401,402,...\} \subseteq \{a^*\}$. Обозначим $L_1 = \{a^{2019n+5} | n = 0, 1, ...\}$ if $L_2 = \{a^{503k+29} | k = 401, 402, ...\}$.

Теперь рассмотрим L_1 , он получается конкатенацией $\{a^{2019n}|n=0,1,...\}$ и $\{a^5\}$. Второе слагаемое получается конкатенацией 5 раз a, a это принадлежит регулярным языкам. А первое слагаемое получается как конкатенация $\{a\}$ 2019 раз. $\{a^{2019n}\}\subseteq \{a\}^*$, тогда получается, что и первое слагаемое принадлежит регулярным языкам. А конкатенация двух регулярных языков тоже регулярный язык, получаем, что L_1 - регулярный язык.

Теперь рассмотрим L_2 , аналогично получаем, что $\{a\}^{29}$ - регулярный язык. $\{a^{201703n}\}\subseteq \{a\}^*$, аналогично получаем, что L_2 - регулярный язык.

Т.к. REG замкнуто относительной пересечения получаем, что L тоже регулярный язык.

Доказано

 $\overline{\mathbf{2.}\ L} = \{a^{200n^2+1}|n=1000,1001,...\}$ Докажем, что для него не выполняется

$$\forall p \exists \omega \in L : |\omega| > p, \forall xyz = \omega((y = \epsilon) \lor (|xy| > p) \lor (\exists i \geqslant 0 : xy^iz \notin L))$$
 Рассмотрим два случая:

1. Если р $> 2 \cdot 10^{8}$, то тогда возьмем за $\omega = a^{200 \cdot 1000^{2} + 1}$. $\forall xyz = \omega, |y| \geqslant 1$, $|xy^0z| = |\omega| - |y|, |xy^2z| = |\omega| + |y|.$ Пусть |y| = d, тогда если лемма была бы верна, то $200n^2+1+d=200(n+m)^2+1 \Rightarrow d=200(2n+m)m$ и $200n^2+1-d=200(n-k)^2+1$ $\Rightarrow d = 200(2n+k)k$

Откуда получаем, что m = k, но это невозможно т.к. $|(n-k)^2 - n^2| \neq |(n+k)^2 - n^2|$ n^2 , или же 2n+m+k=0, но n, m, k $\in \mathcal{N}$. Получается, что $xy^2z\notin L\vee xy^0z\notin L$, получается что при таких р не выполняется.

2. Если р $\leqslant 2 \cdot 10^8$, то возьмем $\omega = a^{200*1000^2+1}$. $\forall xyz = \omega, |y| \geqslant 1, \exists i = 1$ $0: |xy^iz| = |xz| < |\omega|$. Т.к. n = 1000, то $|xy^iz| \notin L$. Следовательно лемма не выполняется при таких р.

А следовательно не выполняется ни при каких р, сл-но L - нерегулярен.

Доказано

4 ТРЯП

1.6 Задача 6

а) Возьмем за $R=\otimes,\,R\in REG,\,$ но $F\cup R=\otimes inREG,\,$ из этого не следует, что $F\in REG.\,$ Т.к. F может быть произвольным.

Ответ: Нет, неверно.

б) $L_1 = F \cap R$, $L_2 = F \cap \overline{R}$. Заметим, что $L_1, L_2 \in REG$, и $L_1 \cup L_2 = (F \cap R) \cup (F \cap \overline{R}) = F \cap (R \cup \overline{R}) = F \cap U = F$, но $L_1 \cup L_2 inREG$, сл-но $F \in REG$. Ответ: Да, верно.

 $5 \hspace{1.5cm} \text{TP} \Pi \Pi$