

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 12

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

lei.zhang@univie.ac.at

Bayesian warm-up?

constraint

reparameterization

$$\theta \in (-\infty, +\infty) \mid \theta = \mu_{\theta} + \sigma_{\theta} \tilde{\theta}$$

$$\theta \in [0, N]$$

$$\theta \in [M, N]$$

$$\theta \in (0, +\infty)$$

$$\theta = \mu_{\theta} + \sigma_{\theta} \hat{\theta}$$

$$\theta \in [0, N]$$

$$\theta = Probit^{-1}(\mu_{\theta} + \sigma_{\theta}\tilde{\theta}) \times N$$

$$\theta \in [M, N]$$

$$\theta = Probit^{-1}(\mu_{\theta} + \sigma_{\theta}\tilde{\theta}) \times (N-M) + M$$

$$\theta \in (0, +\infty)$$
 $\theta = exp(\mu_{\theta} + \sigma_{\theta}\tilde{\theta})$

statistics

computing

```
Apply to Our Hierarchical RL Model
```

```
parameters {
   real<lower=0,upper=1> lr_mu;
   real<lower=0,upper=3> tau_mu;

   real<lower=0> lr_sd;
   real<lower=0> tau_sd;

   real<lower=0,upper=1> lr[nSubjects];
   real<lower=0,upper=3> tau[nSubjects];
}
```

```
parameters {
 real lr mu raw;
 real tau mu raw;
 real<lower=0> lr sd raw;
 real<lower=0> tau sd raw;
 vector[nSubjects] lr raw;
 vector[nSubjects] tau raw;
transformed parameters {
 vector<lower=0,upper=1>[nSubjects] lr;
 vector<lower=0,upper=3>[nSubjects] tau;
 for (s in 1:nSubjects) {
   lr[s] = Phi_approx( lr_mu_raw + lr_sd_raw * lr_raw[s] );
   tau[s] = Phi approx( tau mu raw + tau sd raw * tau raw[s] ) * 3;
```

Apply to Our Hierarchical RL Model

```
model
 lr sd \sim cauchy(0,1);
 tau sd \sim cauchy(0,3);
        ~ normal(lr_mu, lr_sd);
        ~ normal(tau mu, tau sd) ;
 tau
 for (s in 1:nSubjects) {
   vector[2] v;
   real pe;
   v = initV;
   for (t in 1:nTrials) {
      choice[s,t] ~ categorical logit( tau[s] * v );
      pe = reward[s,t] - v[choice[s,t]];
      v[choice[s,t]] = v[choice[s,t]] + lr[s] * pe;
```

```
model {
    Ir_mu_raw ~ normal(0,1);
    tau_mu_raw ~ normal(0,1);
    Ir_sd_raw ~ cauchy(0,3);
    tau_sd_raw ~ cauchy(0,3);

    Ir_raw ~ normal(0,1);
    tau_raw ~ normal(0,1);

    for (s in 1:nSubjects) {
        ...
```

```
generated quantities {
  real<lower=0,upper=1> lr_mu;
  real<lower=0,upper=3> tau_mu;

  lr_mu = Phi_approx(lr_mu_raw);
  tau_mu = Phi_approx(tau_mu_raw) * 3;
}
```

MODEL COMPARISON SATURN SATURN EARTH MERCURY MERCURY EÁRTH JUPITER MOON MARS-

Which model provides the best fit?

Which model represents the best balance between model fit and model complexity?

Ockham's razor:

Models with fewer assumptions are to be preferred

- overfitting: learn too much from the data
- underfitting: learn too little from the data

Pitt & Miyung (2002)

Which model has the highest predictive power?

statistics computing

statistics

computing

Focusing on Predictive Accuracy

- Nothing prevents you from doing that in a Bayesian context but holding out data makes your posterior distribution more diffuse
- Bayesians usually condition on all the data and evaluate how well a model is expected to predict out of sample using "information criteria": model with the highest expected log predictive density (ELPD) for new data

Information Criteria

cognitive model

statistics

computing

AIC – Akaike information criterion

DIC – Deviance Information Criterion

WAIC – Widely Applicable Information Criterion

finding the model that has the highest out-of-sample predictive accuracy

approximation to LOO

BIC – Bayesian Information Criterion

finding the "true" model

Compute WAIC from Likelihood

cognitive model

statistics

computing

$$WAIC = -2 \, \widehat{elpd}_{waic}$$

expected log pointwise predictive density

$$\widehat{\text{elpd}}_{\text{waic}} = \widehat{\text{lpd}} - \widehat{p}_{\text{waic}}$$

 \widehat{lpd} = computed log pointwise predictive density

$$= \sum_{i=1}^{n} \log \left(\frac{1}{S} \sum_{s=1}^{S} p(y_i | \theta^s) \right).$$

estimated effective number of parameters

$$\widehat{p}_{\text{waic}} = \sum_{i=1}^{n} V_{s=1}^{S} \left(\log p(y_i | \theta^s) \right)$$

lpd <- log(colMeans(exp(log_lik)))</pre>

p_waic <- colVars(log_lik)</pre>

*IC comparisons

cognitive model

statistics

computing

		No	Complete	Hierarchical
		pooling	pooling	model
		$(\tau = \infty)$	$(\tau = 0)$	$(\tau \text{ estimated})$
AIC	$-2\operatorname{lpd} = -2\log p(y \hat{\theta}_{\mathrm{mle}})$	54.6	59.4	_
	k	8.0	1.0	
	$AIC = -2 \widehat{\text{elpd}}_{AIC}$	70.6	61.4	
DIC	$-2 \operatorname{lpd} = -2 \log p(y \hat{\theta}_{\mathrm{Bayes}})$	54.6	59.4	57.4
	$p_{ m DIC}$	8.0	1.0	2.8
	$DIC = -2 \widehat{\text{elpd}}_{DIC}$	70.6	61.4	63.0
WAIC	$-2 \operatorname{lppd} = -2 \sum_{i} \log p_{\operatorname{post}}(y_i)$	60.2	59.8	59.2
	$p_{\mathrm{WAIC 1}}$	2.5	0.6	1.0
	$p_{\mathrm{WAIC}2}$	4.0	0.7	1.3
	$WAIC = -2 \widehat{elppd}_{WAIC 2}$	68.2	61.2	61.8
LOO-CV	$-2 \operatorname{lppd}$		59.8	59.2
	$p_{ m loo-cv}$		0.5	1.8
	$-2 \operatorname{lppd}_{\mathrm{loo-cv}}$		60.8	62.8

Recording the Log-Likelihood in Stan

computing

```
generated quantities {
 real log lik[nSubjects];
 { # local section, this saves time and space
   for (s in 1:nSubjects) {
     vector[2] v;
     real pe;
     log_lik[s] = 0;
     v = initV;
     for (t in 1:nTrials) {
       log_lik[s] = log_lik[s] + categorical_logit_lpmf(choice[s,t] | tau[s] * v);
       pe = reward[s,t] - v[choice[s,t]];
       v[choice[s,t]] = v[choice[s,t]] + lr[s] * pe;
```

The {loo} Package

cognitive model statistics

computing

```
> library(loo)
> LL1      <- extract_log_lik(stanfit)
> loo1      <- loo(LL1)  # PSIS leave-one-out
> waic1 <- waic(LL1)  # WAIC</pre>
```

Computed from 4000 by 20 log-likelihood matrix

Pareto Smoothed Importance Sampling

Vehtari et al. (2015)

Reversal Learning Task

statistics computing

Fictitious RL (Counterfactual RL)

Value update:

$$V_{t+1}^{c} = V_{t}^{c} + \alpha^{*} PE$$

$$V_{t+1}^{nc} = V_{t}^{nc} + \alpha^{*} PEnc$$

Prediction error:

$$PE = R_t - V_t^c$$

$$PEnc = -R_t - V_t^{nc}$$

statistics computing

More on Fictitious RL

Exercise XIII

statistics

```
.../08.compare_models/_scripts/compare_models_main.R
```

TASK: (I) complete the fictitious RL model (model2, loglik)

(2) fit and compare the 2 models

statistics

computing

```
> LL1 <- extract_log_lik(fit_rl1)</pre>
> ( loo1 <- loo(LL1) )</pre>
Computed from 4000 by 10 log-likelihood matrix
         Estimate SE
elpd loo -389.8 15.4
p loo
              3.8 0.8
looic
        779.5 30.9
> ( loo2 <- loo(LL2) )</pre>
Computed from 4000 by 10 log-likelihood matrix
         Estimate SE
elpd_loo -281.3 17.5
              3.4 0.5
p loo
looic
            562.6 35.0
```

Exercise XIII – output

Posterior Predictive Check

statistics computing

AN JEST 101

Happy Computing!