# 东南大学电工电子实验中心 实验报告

课程名称: \_\_\_\_\_\_模拟电子电路实验\_\_\_\_\_\_

# 第 2 次实验

# 一、实验目的

- 1、 理解微分/积分运算电路的基本概念;
- 2、 掌握微分/积分电路的基本结构和各自特点;
- 3、 掌握微分/积分电路的设计和调试方法;
- 4、 掌握微分/积分电路完成波形变换的方法。

# 二、实验原理

#### 1、基本概念

利用运算放大器构成微分/积分运算电路,除了完成对应的微分/积分运算外,在很多场合可以用来完成波形之间的变换,如图 2-3-1 所示,输入方波经过运算放大器构成微分/积分运算电路,输出脉冲波和三角波等。



图 2-3-1 微分/积分电路实现波形的变换

#### 2、积分电路

积分电路原理图如图 2-3-2 (a) 所示:



#### 3、微分电路

运算放大器构成的微分电路如图 2-3-4 所示。



图 2-3-4 微分电路

# 三、实验内容

#### 1、实验要求

利用 μA741、LM324、TL084 等通用运算放大器构成一个微分电路,开展电路性能的测量和实验研究。

微分实验电路如图 2-3-7 所示,采用  $\mu$ A741 运放,按图示电路结构和参数连接好电路,运放使用 $\pm$ 15V 电源供电,确保正确无误后就可以开展实验。



图 2-3-7 微分实验电路

2、仿真实验 电路图:



# (1) 微分电路性能的测量 信号源给方波,100Hz,1Vp



10.862V~12.905V 尖峰电压略小于外施电源电压



放大图像如上~12.9V

#### (2) 微分电路特性研究

#### 正弦波:

#### 1V, 100Hz:

相位:



#### 峰峰值:



#### 1V, 200Hz:

#### 相位:



#### 峰峰值:



总结:相位差不变为 1/4 的周期,200Hz 的幅值变为 100Hz 时的两倍。

# 3、电路实验

#### 预搭:



#### (3) 微分电路性能的测量

| 输入波形      | 频率=100Hz,幅度=1Vp(Vpp=2V) |         |              |  |
|-----------|-------------------------|---------|--------------|--|
|           | 方波 Vpp                  | 三角波 Vpp | 正弦波 Vpp&相位   |  |
| 记录输入/输出波形 | 27.6V                   | 0.812V  | 1.30V; 90.8° |  |
| 波形转换      | 双向尖脉冲                   | 方波      | 正弦波但相位差约 90° |  |

#### 方波:



#### 三角波:



#### 正弦波



#### (4) 微分电路特性的研究 ( $R=10k\Omega$ 变为 $R=20k\Omega$ )

| 输入波形      | 频率=100Hz,幅度=1Vp(Vpp=2V) |         |              |  |
|-----------|-------------------------|---------|--------------|--|
|           | 方波 Vpp                  | 三角波 Vpp | 正弦波 Vpp&相位   |  |
| 记录输入/输出波形 | 26.0V                   | 1.90V   | 2.80V; 98.5° |  |

#### 方波



#### 三角波



正弦波



(5) 微分电路特性的研究 (CF=10nF 变为 CF=1uF) (恢复 R1=10k Ω!)

| 输入波形      | 频率=100Hz,幅度=1Vp(Vpp=2V) |         |             |  |
|-----------|-------------------------|---------|-------------|--|
|           | 方波 Vpp                  | 三角波 Vpp | 正弦波 Vpp&相位  |  |
| 记录输入/输出波形 | 0.24V                   | 0.216V  | 0.22V; 167° |  |

方波



三角波



#### 正弦波



选作部分:积分电路 仿真:





电路实验:

波形:



(2) 如果输入是一个占空比不为 0.5 的矩形波,即矩形波的高电平时间和低电平时间不相等,输出的波形是什么?

高电平对应着输出的下降段,低电平对应着输出的上升段,

如果占空比小于50%, 比如25%



则上升段时间长于下降段,且有正的直流分量。 如果占空比大于 50%,比如 75%



则下降段时间长于上升段,且有负的直流分量。

- (3) 如果输出的波形出现顶部或底部被削平了,可能会是什么原因? 是由于增益倍数不合适,输出太大超过电源电压被限幅。
- (4) 研究输入信号频率和积分之间的关系。
- 输入信号频率越高,则输出的增益倍数越小。
- (5) 选用不同的电阻电容等参数,对电路性能会有什么影响?

改变 2 端口 R1 可以改变增益倍数,然后并联的电阻和电容,电容越小或者电阻小了,就会导致输出的线性不好,示波器上图像呈曲线。

# 四、实验总结

这次实验我学到的是微分电路的波形转换,它能把方波转为双向尖脉冲; 三角波转为方波; 正弦波转为正弦波但相位差约 90° 即四分之一个周期。然后在选作部分积分电路中,学到很多,第一次知道用电位器代替每个电阻,这样可以手动调整阻值而且精度更高,我们现成的电阻用万用表测出的值和它的标称值也有误差, 所以说我的输出图像线性一直不直线, 然后我将两个电阻都用电位器代替一边拧一边观察图像, 才调整好。

### 五、实验器材

E派实验箱、示波器、信号源、稳压电源等

# 六、参考文献

模拟电子电路实验 1-3 周教学内容(2024年)