RWorkshee_Sobusa#3a.rmd

Nexon Sobusa

2024-09-30

#1. Using Vectors # a. First 11 uppercase letters first_11 <- LETTERS[1:11]

b. Odd numbered letters

odd_letters <- LETTERS[seq(1, 26, by = 2)]

c. Vowels in uppercase

vowels <- LETTERS[c(1, 5, 9, 15, 21)]

d. Last 5 lowercase letters

last_5_lowercase <- letters[22:26]

e. Letters 15 to 24 in lowercase

 $lower_15_24 < -letters[15:24]$

#2. Average Temperatures (Vector and Dataframe) # a. Create character vector for cities city <-c("Tuguegarao City", "Manila", "Iloilo City", "Tacloban", "Samal Island", "Davao City")

b. Create numeric vector for temperatures

temp $\langle c(42, 39, 34, 34, 30, 27) \rangle$

c. Combine city and temperature into dataframe

city_temp_df <- data.frame(City = city, Temperature = temp)

d. Change column names

names(city_temp_df) <- c("City", "Temperature")

e. Display structure of the dataframe

str(city_temp_df)

f. Rows 3 and 4 content

 $row_3_4 \leftarrow city_temp_df[3:4,]$

g. Display city with highest and lowest temperature

 $\label{linear_city} \begin{array}{ll} \text{highest_temp_city} < - \text{ city_temp_df[which.max(city_temp_dfTemperature)}, "City"]} \\ lowest_temp_df[which.min(city_temp_dfTemperature), "City"] \\ \end{array}$

#3. Using Matrices # a. Create a matrix with values 1 to 8 and 11 to 14 matrix_values <- matrix(c(1:8, 11:14), nrow = 3, ncol = 4)

b. Multiply matrix by 2

matrix_times_two <- matrix_values * 2

c. Content of row 2

row_2 <- matrix_times_two[2,]

d. Display columns 3 and 4 from row 1 and row 2

 $cols_3_4_{row_1_2} < -matrix_times_two[1:2, 3:4]$

e. Display columns 2 and 3, row 3

 $cols_2_3_{row_3} < -matrix_{times_two}[3, 2:3]$

f. Display only column 4

column_4 <- matrix_times_two[, 4]

g. Name rows and columns

rownames(matrix_times_two) <- c("isa", "dalawa", "tatlo") colnames(matrix_times_two) <- c("uno", "dos", "tres", "quatro")

h. Reshape matrix to 2 columns and 6 rows

 $\dim(\text{matrix_values}) <- c(6, 2)$

#4. Using Arrays # a. Create an array with repeated numeric values array_values <- array(rep(c(1, 2, 3, 6, 7, 8, 9, 0, 3, 4, 5, 1), 2), dim = c(2, 4, 3))

b. Check the dimensions of the array

array_dims <- dim(array_values)

c. Name the rows and columns, and dimensions

 $\label{eq:conditional} $\operatorname{dimnames}(\operatorname{array_values}) <- \operatorname{list}(\operatorname{letters}[1:2], \operatorname{LETTERS}[1:4], \operatorname{c}("1\operatorname{st-Dimensional Array"}, "2\operatorname{nd-Dimensional Array"}))$$