

Determination of c—t relation

☑ Chemical Analysis Methods

Sample |

→ Termination **→** Measurement

Disadvantages:

- Many compounds, especially organic ones, are hardly to be determined quantitatively
- Larger reactors are used because large amount of samples are needed
- > Determinations are of very much time consuming

☑ Physicochemical Analysis Methods

-Time dependence of some physical properties of the reaction system

- (1) the contributions of various substances to Y are additive
- (2) the contributions of various substances to Y are proportional to or are linear to their concentrations
- (3) The equilibrium constant is large enough that the reactant A can be regarded as completely consumed if the time is long enough

Electric conductance, optical rotation, absorbance, refractive index, vapor pressure, viscosity, pressure etc.

Physicochemical Analysis Methods

$$aA + bB \rightarrow pP$$

$$t=0$$
: c_{A0}

$$\boldsymbol{Y_0}$$

$$t = t$$
: $c_{A0} - x$ $c_{B0} - \frac{b}{a}x$ $\frac{p}{a}x$

$$Y_t$$

$$t = \infty$$
: 0

$$c_{\text{B0}} - \frac{b}{a} c_{\text{A0}} \qquad \frac{p}{a} c_{\text{A0}}$$

$$c_{
m A0}$$

M refers to reaction medium

A refers to coefficient

$$t = 0$$
: $Y_0 = Y_M + \Lambda_A c_{A0} + \Lambda_B c_{B0}$

$$t = 0: \quad c_{A0} \qquad c_{B0} \qquad 0 \qquad Y_{0}$$

$$t = t: \quad c_{A0} - x \quad c_{B0} - \frac{b}{a}x \quad \frac{p}{a}x \qquad Y_{t}$$

$$t = \infty: \quad 0 \qquad c_{B0} - \frac{b}{a}c_{A0} \qquad \frac{p}{a}c_{A0} \qquad Y_{\infty}$$

$$t = \infty: \quad Y_{0} = Y_{M} + A_{A}c_{A0} + A_{B}c_{B0}$$

$$t = t: \quad Y_{t} = Y_{M} + A_{A}(c_{A0} - x) + A_{B}(c_{B0} - \frac{b}{a}x) + A_{P}\frac{p}{a}x$$

$$t = \infty: \quad Y_{\infty} = Y_{M} + A_{B}(c_{B0} - \frac{b}{a}c_{A0}) + A_{P}\frac{p}{a}c_{A0}$$

$$t = \infty$$
: $Y_{\infty} = Y_{\rm M} + \Lambda_{\rm B}(c_{\rm B0} - \frac{b}{a}c_{\rm A0}) + \Lambda_{\rm P}\frac{p}{a}c_{\rm A0}$

$$\frac{c_{A0}}{c_{A0} - x} = \frac{Y_{\infty} - Y_{0}}{Y_{\infty} - Y_{t}}; \quad \frac{x}{c_{A0} - x} = \frac{Y_{t} - Y_{0}}{Y_{\infty} - Y_{t}}; \quad x = c_{A0} \frac{Y_{t} - Y_{0}}{Y_{\infty} - Y_{0}}$$

$$V_{\infty} - Y_{0} = (\Lambda_{P} \frac{p}{a} - \Lambda_{B} \frac{b}{a} - \Lambda_{A})c_{A0} = \Lambda c_{A0}$$

$$Y_{t} - Y_{0} = (\Lambda_{P} \frac{p}{a} - \Lambda_{B} \frac{b}{a} - \Lambda_{A})x = \Lambda x$$

$$Y_{\infty} - Y_{0} = (\Lambda_{P} \frac{p}{a} - \Lambda_{B} \frac{b}{a} - \Lambda_{A})c_{A0} = \Lambda c_{A0}$$

$$Y_{\bullet} - Y_{0} = (\Lambda_{P} \frac{p}{a} - \Lambda_{B} \frac{b}{a} - \Lambda_{A})x = \Lambda x$$

To use the ratio of physical properties instead that of concentration

$$Y_0$$
 $Y_t - Y_0$ Y_t $Y_{\infty} - Y_t$ Y_{∞}

Physicochemical Analysis Methods

$$\frac{c_{A0} - c_{A}}{c_{A0}} = \frac{k_{A}t}{c_{A0}} = \frac{Y_{t} - Y_{0}}{Y_{\infty} - Y_{0}}$$

$$\ln \frac{c_{A0}}{c_A} = k_A t$$

$$\ln \frac{c_{A0}}{c_{A}} = \ln \frac{c_{A0} - c_{A\infty}}{c_{A} - c_{A\infty}} = \ln \frac{Y_{\infty} - Y_{0}}{Y_{\infty} - Y_{t}} = k_{A}t$$

The rate coefficient can be calculated without **knowing the initial concentration**

Second order
$$\frac{1}{c_{A}} - \frac{1}{c_{A0}} = k_{A}t$$

$$\frac{c_{A0} - c_{A}}{c_{A0} \cdot c_{A}} = \frac{1}{c_{A0}} \cdot \frac{Y_{t} - Y_{0}}{Y_{\infty} - Y_{t}} = k_{A}t$$

☑ Method one—Integration Method (Trying method)

Exp. Data
$$(t_1, c_1), (t_2, c_2), (t_3, c_3), \dots$$

Substitute into integrated rate equations of various orders

Advantage: Simple and convenient when the reaction order is a simple positive integer

Disadvantages:

It is not sensitive enough especially for narrower concentration range of experiment resulting in difficulty to distinguish the different orders.

It can not be used when the order is a non-integer including a fraction, or a negative value.

Example

$$(CH_3)_3COOC(CH_3)_3(g) \rightarrow C_2H_6(g) + 2CH_3COCH_3(g)$$

t/min	0.0	2.5	5.0	10.0	15.0	20.0
p/kPa	1.00	1.40	1.67	2.11	2.39	2.59

$$p_t \sim Y; p_\infty = 3p_0$$

$$\frac{k_{A}t}{c_{A0}} = \frac{Y_{t} - Y_{0}}{Y_{\infty} - Y_{0}} = \frac{p_{t} - p_{0}}{3p_{0} - p_{0}}$$

$$p_t - t$$

$$k_{A}t = \ln \frac{Y_{\infty} - Y_{0}}{Y_{\infty} - Y_{t}} = \ln \frac{3p_{0} - p_{0}}{3p_{0} - p_{t}}$$

$$\ln \frac{2p_0}{3p_0 - p_t} - t$$

$$k_{A}t = \frac{1}{c_{A0}} \cdot \frac{Y_{t} - Y_{0}}{Y_{\infty} - Y_{t}} = \frac{1}{c_{A0}} \cdot \frac{p_{t} - p_{0}}{3p_{0} - p_{t}} \qquad \frac{1}{3p_{0} - p_{t}} - \frac{1}{3p_{0} - p_{t}}$$

$$\frac{1}{3p_0-p_t}-t$$

☑ Zeroth

✓ First

✓ Second

$$n = 1$$

$$k_{A} = 0.08 \,\mathrm{min}^{-1}$$

Example

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_6H_{12}O_6 \text{ (fructose)} + C_6H_{12}O_6 \text{ (glucose)}$$

<i>t</i> /min	a_t / Degree
0	34.50
1435	31.10
4315	25.00
7070	20.16
11360	13.98
14170	10.61
16935	7.57
19815	5.08
29925	-1.65
∞	-10.77

Reaction order and rate coefficient?

Method one——Plot a straight line

$$k_{A} = \frac{1}{t} \ln \frac{c_{A0}}{c_{A0} - x} = \frac{1}{t} \ln \frac{\alpha_{0} - \alpha_{\infty}}{\alpha_{t} - \alpha_{\infty}}$$

$$\ln(\alpha_t - \alpha_{\infty}) - t$$

$$n = 1$$

$$k_{\rm A} = 5.37 \times 10^{-5} \, \rm min^{-1}$$

Method two—Calculate k_{Λ} at different times

$$k_{A} = \frac{1}{t} \ln \frac{c_{A0}}{c_{A0} - x}$$
$$= \frac{1}{t} \ln \frac{\alpha_{0} - \alpha_{\infty}}{\alpha_{t} - \alpha_{\infty}}$$

$$n = 1$$

t/min	a_i Degree	$(a_t - a_{\infty})$	$k_{\rm A} \times 10^5 / \rm min^{-1}$
0	34.50	45.27	
1435	31.10	41.87	5.44
4315	25.00	35.77	5.46
7070	20.16	30.93	5.39
11360	13.98	24.75	5.32
14170	10.61	21.38	5.29
16935	7.57	18.34	5.34
19815	5.08	15.85	5.30
29925	-1.65	9.12	5.35
∞	-10.77	0.00	_

$$k_{\text{A(avg)}} = 5.36 \times 10^{-5} \,\text{min}^{-1}$$

An ideal gas reaction $A(g) \rightarrow B(g) + 2C(g)$ is carried out in an isothermal and isochoric reactor. The pressure of the reaction system changed with time. Try to calculate the rate coefficient:

Exp. 1 Only A was presented at the initial time

t/min	0	2.5	5.0	10.0	15.0	20.0
p/kPa	1.00	1.40	1.67	2.11	2.39	2.59

Exp. 2 Part of A was decomposed at the initial time

<i>t</i> /min	0	5.0	10.0	15.0	∞
p / kPa	1.67	2.11	2.39	2.59	3.00

☑ Method two——Differential Method

$$\upsilon_{\mathbf{A}} = -\mathbf{d}c_{\mathbf{A}} / \mathbf{d}t = k_{\mathbf{A}}c_{\mathbf{A}}^{n}$$

 $\lg\{\upsilon_{A}\} = n\lg\{c_{A}\} + \lg\{k_{A}\}$

> Regression

Experimental data

$$c_{A} = f(t) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} + \dots$$

Regression parameters a_0, a_1, a_2, \dots

$$v_{\rm A} = -dc_{\rm A}/dt = a_1 + 2a_2t + 3a_3t^2 + \dots$$

Reaction rate at different time

☑ Method two—Differential Method

Initial Rate Method

True order n_c The rate determination will not be disturbed by the products

One Run Method

Reaction order n_t

 $n_t > n_c$ the products play retarding effect

 $n_t < n_c$ the products play accelerating effect

☑ Method two——Differential Method

Isolating Variables Method

$$\boldsymbol{\upsilon}_{\mathrm{A}} = k_{\mathrm{A}} c_{\mathrm{A}}^{\,\alpha} c_{\mathrm{B}}^{\,\beta}$$

$$\upsilon_{A} = k_{A} c_{A}^{\alpha} c_{B}^{\beta}$$
 $\lg\{v_{A}\} = \alpha \lg\{c_{A}\} + \beta \lg\{c_{B}\} + \lg k_{A}$

Reactant B is in great excess

$$v_{\rm A} = -\mathrm{d}c_{\rm A}/\mathrm{d}t = k_{\rm A}'c_{\rm A}'$$

A pseudo α order reaction

Reactant A is in great excess

$$\upsilon_{\rm B} = -\mathrm{d}c_{\rm B} / \mathrm{d}t = k_{\rm B}' c_{\rm B}^{\beta}$$

A pseudo β order reaction

It is applicable when the order is non-integer **Advantage:**

Disadvantage: Large uncertainty

☑ Method two——Differential Method

Differential Reactors

Concentrations unchanged with time and in space

$$v_{\rm A} = q_{\rm V} \frac{c_{\rm A0} - c_{\rm A}}{V_{\rm R}}$$

Continuous Tank Reactor

Continuous Tubular Reactor with a Loop

☑ Method three—half life

$$v_{\rm A} = -{\rm d}c_{\rm A}/{\rm d}t = k_{\rm A}c_{\rm A}^n$$

$$k_{A} = \frac{1}{t(n-1)} \left[\frac{1}{(c_{A0} - x)^{n-1}} - \frac{1}{c_{A0}^{n-1}} \right] \qquad (n \neq 1)$$

$$t_{1/2} = (2^{n-1} - 1)/[(n-1)k_{\rm A}c_{\rm A0}^{n-1}]$$

$$\lg\{t_{1/2}\} = (1-n)\lg\{c_{A0}\} + \lg\left\{\frac{2^{n-1}-1}{k_A(n-1)}\right\}$$

- ightharpoonup Plotting $\lg\{t_{1/2}\}$ against $\lg\{c_{A0}\}$ gives a straight line
- Arr Half-lifes at different initial concentrations $n = \frac{\lg(t_{1/2}/t'_{1/2})}{\lg(c'_{A0}/c_{A0})} + 1$