(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開平5-194658

(43)公開日 平成5年(1993)8月3日

(51)Int.Cl. ⁵ C 0 8 F 136/06	識別記号 MNY	庁内整理番号 8416-4 I	F I	技術表示箇
B 6 0 C 1/00	B	8408-3D		
11/00	15			
	В	8408-3D		
C08L 7/00	LBD	6770-4 J		
9/00	LAY	6770-4 J		
			3	審査請求 未請求 請求項の数 2(全 14 頁
(21)出願番号	特顯平4-259946		(71)出願人	000000206
				宇部興産株式会社
(22)出題日	平成 4年(1992) 9月	129 FI		山口県宇部市西本町1丁目12番32号
			(72)発明者	川口 憲重
(31)優先権主張番号	特順平3-336403		' '	千葉県市原市五井南海岸8番の1 宇部県
(32)優先日	平 3 (1991)10月22日	9		産株式会社千葉石油化学工場内
(33)優先権主張国	日本 (JP)		(72)発明者	中村一裕之
30) BEJUTH LIKE	U-4 (31)		(12)767111	千葉県市原市五井南海岸8番の1 宇部
				産株式会社千葉石油化学工場内
			(72)発明者	田中 恒夫
				千葉県市原市五井南海岸8番の1 宇部県
				産株式会社千葉石油化学工場内

(54) 【発明の名称 】 ポリプタジエンゴム及びその組成物

(57)【要約】

【産業上の利用分野】タイヤのベーストレッドやサイド ウォール、ビードフィラー等に特に好適なポリプタジエ ンゴム及びこのポリプタジエンゴムを含むゴム組成物に 関する。

(構成) シンジオタクチックー1, 2 - ボリブタジエン を主成分とするn - ヘキサン不溶分であって0. 5 - 4 の範囲の適定抵抗 (135 C) - 5

【特許請求の範囲】

【請求項1】 ②還元粘度0.5~4の沸騰n-ヘキサン 不溶分・・・10~25重量%

②(a) 重量平均分子量(Mw)が30万~80万であ。 り、(b) トルエン溶液粘度(t-cp) と100℃にお けるムーニー粘度 (ML) とが、3ML-30<t-c p<3ML+30なる関係を満足する沸騰n-ヘキサン 可溶分・・・・90~75重量% からなるポリブタジエンゴム。

· · · 2 0 重量%以上

(b) 天然ゴム、及び/又は少なくとも 1 種類のジエン系 合成ゴム・・・・・・・・・・残 部であるゴム 組成物。

【発明の詳細な説明】

[0.0.0.1]

【産業上の利用分野】本発明は、ポリプタジエンゴム及 びこのゴムに他のジエン系ゴムや天然ゴムを配合したゴ ム組成物であって、自動車タイヤの部材、特にベースト のに関する。

[00002]

【従来の技術】近年、自動車業界においては、省資源、 省エネルギーの観点から、乗用車の走行燃費を更に低減 することが検討されてきた。走行燃費の低減には自動車 の軽量化と走行抵抗の減少が有効であるが、そのために は、タイヤそのものの軽量化とともに転がり抵抗の減少 が効果的である。そのため、タイヤの軽量化と転がり抵 抗の減少のための種々の方法が試みられてきた。

【0003】先ず、タイヤの軽量化の一つの方向とし て、タイヤ各部のゲージダウン (厚みを減少させる) が 検討された。しかし、トレッドを余り薄くした場合に は、短期間でトレッドが摩耗し切ってタイヤが使えなく なり、タイヤの寿命が短くなるという問題があった。一 方、サイドウォールの厚みを余り薄くした場合には、タ イヤの剛性が低下するという問題が起こった。このた め、タイヤ各部のゲージダウンによる軽量化には限界が あることが判った。

*【0004】次に、タイヤのゴムに添加するカーボンブ ラックの量を減らすことが試みられた。カーボンブラッ クは比重が大きいので、使用量を減らすことはタイヤそ のものの軽量化に結びつく。又、カーボンブラックの使 用量を減らすことにより、ゴムの発熱、損失モジュラス (E")、及び損失正接(tanδ)を減少させること ができるので、タイヤの転がり抵抗の減少も期待でき る。しかし、従来のゴムでは、カーボンブラックの添加 量を減らした場合にゴムの機械的性質、耐摩耗性、硬 【請求項2】(a) 請求項1 に記載のポリプタジエンゴム 10 度、弾件率等が低下し、それに従ってタイヤそのものの

性能も低下するという問題があった。 【0005】このため、近年、ゴムの硬度、弾性、耐摩 耗性、機械的性質、及び動的特性(発熱特性やtan

δ) を改良することが検討されてきた。このようなゴム として、高シス-1、4-ポリブタジエン(以下「高シ ス-BR」と略)のマトリックス中にシンジオタクチッ ク-1, 2-ポリプタジエン (SPB) を分散させた改 良ポリプタジエンゴムが提案された(特公昭49-17 666号)。このポリプタジエンゴムは、SPBが高シ レッドやサイドウォール、ピードフィラー等に好適なも 20 スBRのマトリックス中に繊維状に分散した構造を有し ているため、従来のゴム、例えば高シスBR単味のゴム 等と比較して硬度及び弾性が高く耐屈曲角裂成長性に優 れているという特徴を有している。このため、この改良 ポリブタジエンを用いたタイヤ部材も各種提案されてい る。このようなものとして、例えばトレッドに使用した 例(特公昭63-1355号) やサイドウォールに使用 した例(特公昭55-17059号)等がある。

[0006]

【解決すべき課題】しかし、この改良ポリブタジエン 30 も、最近の高度な省燃費の要求 (例えば CAFE対応) を満たす材料としては充分とは言えなかった。本発明 は、従来の改良ポリブタジエンゴムの長所をそのまま保 持しつつ、動的特性と耐塵耗性、引張強度、耐屈曲亀裂 成長性、反発弾性のパランスに優れたポリブタジエンゴ ムを提供することを目的とする。 [0007]

【発明の構成】本発明は、

②環元粘度0.5~4の沸騰n-ヘキサン不溶分・・・10~25重量%

②(a) 重量平均分子量(Mw)が30万~80万であり、

(b) トルエン溶液粘度 (t-cp) と100°でのムーニー粘度 (ML) とが、

3ML - 30 < t - cp < 3ML + 30

なる関係を満足する沸騰n-ヘキサン可溶分・・・・90~75重量%

からなるポリブタジエンゴムに関する。

【0008】本発明は、又、このポリプタジエンゴムに ジエン系合成ゴム及び/又は天然ゴムを配合したゴム組 成物に関する。

【0009】以下、本発明のポリブタジエンゴムについ て詳しく説明する。

【0010】本発明のポリブタジエンゴムは、沸騰 n-ヘキサン不溶分と沸騰 n - ヘキサン可溶分からなってい

【0011】沸騰n-ヘキサン不溶分は、シンジオタク チックー1. 2-ポリブタジエン、及び/又はシンジオ 50 タクチックー1. 2 - ポリブタジエンを主要構造とする

ポリブタジエンを主成分とするものである。一方、沸騰 n-ヘキサンに可溶な成分は、高シス-1, 4-ポリブ タジエンを主成分とするものである。

【0012】沸騰n-ヘキサン不溶分の割合は、10~ 25重量%であることが必要である。沸騰n-ヘキサン 不溶分の割合が10重量%より少ないと、ポリプタジエ ンゴムの硬度、弾性率、及び破壊強度が低下するという 問題が生じる。一方、25重量%より多い場合はポリブ タジエンゴムの配合物M L が高くなりすぎ、加工件に難 が生じる。ここで「配合物」とは、ポリプタジエンゴム 10 或いはこのポリプタジエンゴムに他のジエン系ゴムを配 合したゴム組成物にカーボンブラックやプロセスオイ ル、加硫剤等を配合したものをいう。

【0013】沸騰n-ヘキサン不溶分は、テトラリン中 で130℃で測定した粘度の値から計算した還元粘度の 値が0.5~4.0の範囲にあることが必要である。還 元粘度が0.5よりも小さいと、沸騰n-ヘキサン不溶 分が沸騰 n - ヘキサン可溶分中に繊維状に分散しないの で、得られるポリブタジエンゴムの硬度や弾性、耐屈曲 性が低下するという問題が起こる。一方、環元粘度が4 20 ランタン系列希土類元素系触媒等を挙げることができ を超えると、沸騰 n - ヘキサン不溶分は沸騰 n - ヘキサ ン可溶分中で凝集塊を形成するようになり、分散不良を 起こし易くなるので、ポリブタジエンゴムの加工性や耐 久性が低下するという問題が生じる。

【0014】沸騰n-ヘキサン可溶分は、重量平均分子 量が30万~80万の範囲であることが必要であり、重 量平均分子量が5万以下の成分の割合は3%以下(沸騰 n-ヘキサン可溶分に対して)であることが好ましい。 又、重量平均分子量(Mw)と数平均分子量(Mn)の 平均分子量が30万未満の場合は、得られるポリブタジ エンゴムの耐久性が悪化するという問題が生じる。一 方、重量平均分子量が80万を招える場合は、配合物の ムーニー粘度が高くなり過ぎ、加工が困難になるという 問題が起こる。又、配合ゴムの流動性も悪化する。

【0015】更に、沸騰n-ヘキサン可溶分は、それ自 体のトルエン溶液粘度(t-cp)とムーニー粘度(M L) とが、

3 M L - 3 0 < t - c p < 3 M L + 3 0

液粘度は、濃厚溶液中での沸騰 n - ヘキサン可溶分の分 子の絡みあいの程度を示すものであって、同程度の分子 量分布のゴムにあっては、分子量が同一であれば(即ち ムーニー粘度が同一であれば)ポリマー鎖の分岐の度合 いの尺度となるものである。即ち同一ムーニー粘度の場 合、トルエン溶液粘度が小さいことは分岐度の大きなこ とを示し、トルエン溶液粘度が大きいことは分岐度の小 さなことを示すのである。本発明において、t-cp≤ 3 M L - 3 0 であると、ポリブタジエンゴムの耐磨料件 や引張強度が低下し、好ましくない。

【0016】一方、t-cp≥3ML+30の場合は、 ポリプタジエンゴムの配合物ムーニー粘度が高くなり過 ぎ、加工性が悪くなる。

【0017】以下、本発明のポリブタジエンゴムの製造 法について説明する。製造法には、例えば二段重合法が ある。

【0018】二段重合法とは、1,3-ブタジエンを最 初にシスー1、4-重合して高シスー1、4-ポリブタ ジエンとし、次いで重合系にシンジオタクチック-1.

2重合触媒を投入して残余の1、3-ブタジエンを1、 2重合させるというものである。1, 4-重合触媒、及 びシンジオタクチック-1.2-重合触媒には、公知の ものを使用することができる。1. 4-重合触媒の例と しては、ジエチルアルミニウムクロライドーコパルト系 **触媒やトリアルキルアルミニウム**-三弗化硼素-ニッケ ル系触媒、ジエチルアルミニウムクロライドーニッケル 系触媒、トリエチルアルミニウム-四沃化チタニウム系 触媒、等のチーグラー・ナッタ型触媒、及びトリエチル アルミニウムー有機酸ネオジウムールイス酸系触媒等の

る。シンジオタクチック1、2-重合触媒の例として は、可溶性コパルトー有機アルミニウム化合物ー二硫化 炭素系触媒(特公昭47-19892号)や、この触媒 系に更にアクリロニトリルを加えたもの(特公昭47-19893号)を挙げることができる。重合温度、重合 溶媒等も公知の方法に従って適官設定できる。

【0019】本発明のポリブタジエンゴムは、このほか ブレンド法によっても製造できる。ブレンド法とは、予 め高シス1、4-ポリプタジエンとシンジオタクチック 比Mw/Mnは3.0未満であることが好ましい。重量 30 1.2-ポリプタジエンを別々に重合しておき、各々の 重合溶液をブレンドするというものである。このほか、 高シス1、4-ポリブタジエンの重合溶液に固体状のシ ンジオタクチック1.2-ポリブタジエンをプレンドす る等の方法も可能である。

【0020】本発明のポリブタジエンゴムは、高シスポ リブタジエンゴムや低シスポリブタジエンゴムやスチレ ンーブタジエンゴム、イソプレンゴム、ブチルゴム、及 び天然ゴムからなる群から選ばれた少なくとも 1 種類の ゴムを配合した組成物としてタイヤのベーストレッドや なる関係を満たしていることが必要である。トルエン溶 40 サイドウォール、或いはビードフィラーに好ましく用い 得る。但しこの組成物は本発明のポリプタジエンゴムを 20重量%以上含有することが望ましい。

[0021]

【実施例】以下の実施例および比較例において、ブタジ エンゴム及びその組成物について以下の各項目の測定 は、次のようにして行った。

【0022】n-ヘキサン不溶分の還元粘度

ポリプタジエンゴム25gを沸騰n-ヘキサン1000 ml中で環流し、沸騰n-ヘキサン不溶分と可溶分とに分 50 離した。得られた沸騰n-ヘキサン不溶分0.2gをテ トラリン100mlに溶解し、130℃の温度にてウベロ ーデ粘度計にて測定した。

[0023]

n-ヘキサン可溶分の重量平均分子量の測定

装 置:HLC-802A型(東洋曹達株式会社製)

カラム: GMH6000、2本並列

溶離液: テトラヒドロフラン 溶離液流量: 1.0 ml/分

測定温度:カラム槽・・・40℃

検出器・・・・4 0 °C

サンプル濃度: 0. 025g/100ml

サンプル注入量: 0.5ml 【0024】 n-ヘキサン可溶分のミクロ構造

上記の方法で得られた沸騰n - ヘキサン可溶分について、赤外線吸収スペクトル法(モレロ法)によってシス-1,4構造の割合を定量した。

[0025]

n一へキサン可溶分のトルエン溶液粘度(T−cp) 上記の方法で得られた沸騰n一ヘキサン可溶分を5重量 %になるようにトルエンに溶解して、キャノンフェンス ケ粘度計を25でで測定した。

[0026]

n − ハキサン可溶分及び配合物のムーニー粘度 JIS-K-6300に規定されている測定方法に従って測定した。

【0027】加硫物の硬度、反発弾性、及び引張強度 JIS-K-6301に規定されている測定法に従って 測定した。

[0028] tan 8

加硫物の t a n δについては、レオメトリックス社製R S A 2を用いて、温度 7 0 ℃、周波数 1 0 H z 、動歪 2 %の条件で測定した。

【0029】発熱特性

グッドリッチフレクソメーターを用い、ASTM D6 23に従い、歪み0.175インチ、荷重55ポンド、 100℃25分の条件で測定した。

【0030】ピコ摩耗

ASTM D2228に規定されている測定法に従って 測定した。

【0031】耐屈曲亀裂成長性

2 mmの亀裂が 1 5 mmに成長するまでの屈曲回数を J IS K 6 3 0 1 に規定されている測定法に従って測定 した。

[0032]

【実施例1】内部を窒素ガスで置換した容量2リットル のオートクレーブに、1,3-ブタジエン192gを脱 水ベンゼン608gに溶解した溶液を仕込み、更に水 1. 9 mmol を加えて30分間攪拌した。次いで、この溶 液を50℃に昇温し、ジエチルアルミニウムクロライド 3. 1 mmol、コバルトオクトエート0. 0 1 mmol、及び 1. 5-シクロオクタジエン8. 5 molを加えて機拌を 行い、1、3-プタジエンをシス-1、4重合した。3 ()分経過後、重合溶液に、シンジオタクチック1、2重 合触媒としてトリエチルアルミニウム3.6 mol、二硫 化炭素0, 2mmol、及びコバルトオクトエート0, 12 0 mmolを加えて、温度を50℃に調節して30分間操拌 を行い、残余の1、3-ブタジエンをシンジオタクチッ ク1、2重合した。重合終了後、重合溶液に、2、4tert-プチルーp-クレゾール0.5gをメタノー ルーベンゼン混合溶媒(50:50)に溶かした溶液を 加えて、重合反応を停止した。重合反応を停止した後、 重合溶液を常法に従って処理し、ポリブタジエンゴムを 20 回収した。得られたポリブタジエンゴムは、ムーニー粘 度が6.5 (M L_M 、1.0.0 ℃)、沸騰n-ヘキサン不 溶分の含有率が12.1重量%、沸騰n-ヘキサン可溶 分の含有率は87.9重量%であった。沸騰n-ヘキサ ン不溶分は還元粘度が2、1であった。沸騰n-ヘキサ ン可溶分はムーニー粘度が50 (MLm 、100 で)、トルエン溶液粘度が150、重量平均分子量が6

い、「ルルン お成的内が「12 生産」である。 の方であり、シスー1、4 構造の割合は96.9%であった。このボリブタジエンゴムについての上転の結果を表1に示す。このボリブタジエンゴムに、表2の配合表 に従い、カーボンブラック、プロセスオイル、硫黄等を配合し、150でで30分間プレスし、加減し、配合物 (サンブル) 及び2)を測した。サンブル)及び2に ついて、硬度、300% 応力、引張強度、反発弾性、発 熱等を制定した。測定結果を表3に示す。更に、表4、 6、及び8の配合表定後は、サイドウォール月配合物、 ベーストレッド用配合物、及びビードフィラー用配合物 を調製した。これらの配合物について、硬度、300% お力、引爆縮度、反発性、発熱等を削速した。 油に結ら が加、現た後に使いた。

40 [0033]

果を表5、7、及び9に示す。

【実施例2】シスー1、4重合において水を1.8 mno l、1、5・シクロオクタジエンの最を10.5 mnolと し、シンジオタクチック1、2 重合においてコバルトオ クトエートの量を0.20 mnolとした以外は、実施例1 と同様にして2段重合を行い、ポリブタジエンゴムを得 た。このポリブタジエンゴムのnーへキサン不溶分の割 合、nーヘキサン可溶分の上一一粘度とトルエン溶液 粘度、等について測定した結果を表1に示す。このポリ アジェンゴムに、表2の配合表に従いカーボンブラッ 50 ケ、プロセスオイル、施賞等を配合し、150でで30 分間プレスし、加硫し、サンプル3及び4を調製した。 サンプル3及び4について、硬度、300%応力、引張 強度、反発弾性、発熱等を測定した。測定結果を表3に 示す。更に、表4、6及び7の配合表に従い、サイドウ オール用配合物及びベーストレッド用配合物を調製し た。これらの配合物について、硬度、300%応力、引 張強度、反発弾性、発熱等を測定した。測定結果を表 7、及び9に示す。

[0034]

オクタジエンの量を10.0molとし、シンジオタクチ ック1、2重合においてトリエチルアルミニウムの量を 3. 9 mmol、コバルトオクトエートの量を0. 2 0 mmol とした以外は、実施例1と同様にして2段重合を行い、 ポリブタジエンゴムを得た。このポリブタジエンゴムの n-ヘキサン不溶分の割合、n-ヘキサン可溶分のムー ニー粘度とトルエン溶液粘度、等について測定した結果 を表1に示す。次いで、このポリブタジエンゴムに、表 2の配合表に従いカーボンブラック、プロセスオイル、 硫黄等を配合し、150℃で30分間プレスし、加硫 し、サンプル5を調製した。サンプル5について、硬 度、300%応力、引張強度、反発弾性、発熱等を測定 した。測定結果を表3に示す。更に、表4、6、及び8 の配合表に従い、サイドウォール用配合物及びベースト レッド用配合物を調製した。これらの配合物について、 硬度、300%応力、引張強度、反発弾性、発熱等を測 定した。測定結果を表5、7、及び9に示す。

[0035]

【実施例4】シス-1、4重合において水の量を1、9 5 nnolとし、シンジオタクチック1.2 重合においてト 30 ℃で30分間プレスし、加硫し、サンプル8を調製し リエチルアルミニウムの量を3.5mmolとした以外は、 実施例1と同様にして2段重合を行い、ポリブタジエン ゴムを得た。このポリプタジエンゴムのnーヘキサン不 溶分の割合、n-ヘキサン可溶分のムーニー粘度とトル エン溶液粘度、等について測定した結果を表1に示す。 次いで、このポリブタジエンゴムに、表2の配合表に従 いカーボンブラック、プロセスオイル、硫黄等を配合 し、この配合ゴムを150℃で30分間プレスし、加硫 し、サンプル6を調製した。サンプル6について、硬 度、300%応力、引張強度、反発弾性、発熱等を測定 40 5mmolとし、ジエチルアルミニウムクロライドの量を した。測定結果を表3に示す。更に、表4、6、及び8 の配合表に従い、サイドウォール用配合物及びベースト レッド用配合物を調製した。これらの配合物について、 硬度、300%応力、引張強度、反発弾性、発熱等を測 定した。測定結果を表5、7、及び9に示す。

[0036]

【比較例1】シス-1、4重合においてコバルトオクト エートの量を0.08mmolとした以外は、実施例1と同 様にして2段重合を行い、ポリブタジエンゴムを得た。 得られたポリプタジエンゴムは、ムーニー粘度が60

(ML_{IM} 、100℃)、沸騰n-ヘキサン不溶分の含 有率が7.8重量%、沸騰n-ヘキサン可溶分の含有率 は92.2重量%であった。沸騰n-ヘキサン不溶分は 還元粘度が2.1であった。沸騰n-ヘキサン可溶分は ムーニー粘度が48 (M L_{IM} 、100°C) 、トルエン 溶液粘度が132、重量平均分子量が52万であり、シ ス-1,4構造の割合は96.7%であった。このポリ ブタジエンゴムについての上記の結果を表1に示す。こ のポリプタジエンゴムに、表2の配合表に従い、カーボ

【実施例3】シス-1、4重合において1、5-シクロ 10 ンプラック、プロセスオイル、硫黄等を配合し、150 ℃で30分間プレスし、加硫し、サンプル7を調製し た。サンプル7について、硬度、300%応力、引張強 度、反発弾性、発熱等を測定した。測定結果を表3に示 す。更に、表4、6、及び8の配合表に従い、サイドウ オール用配合物及びベーストレッド用配合物を調製し た。これらの配合物について、硬度、300%応力、引 張強度、反発弾性、発熱等を測定した。測定結果を表 5、7、及び9に示す。

[0037]

20 【比較例2】シス-1, 4重合において水を1. 7 mno 1、シクロオクタジエンの量を10.0mmolとした以外 は、実施例2と同様にして2段重合を行い、ポリブタジ エンゴムを得た。得られたポリブタジエンゴムは、ムー 二一粘度が62 (ML_{IM} 、100℃)、沸騰n-ヘキ サン不溶分の含有率が18.3重量%であった。n-へ キサン可溶分のムーニー粘度は41、重量平均分子量が 50万であった。これらの結果を表1に示す。次いで、 このポリプタジエンゴムに、表2の配合表に従いカーボ ンプラック、プロセスオイル、硫黄等を配合し、150 た。サンプル8について、硬度、300%応力、引張強 度、反発弾性、発熱等を測定した。測定結果を表3に示 す。更に、表4、6、及び8の配合表に従い、サイドウ オール用配合物及びベーストレッド用配合物を調製し た。これらの配合物について、硬度、300%店力、引 張強度、反発弾性、発熱等を測定した。測定結果を表 5、7、及び9に示す。

[0038]

【比較例3】シス-1, 4重合において水の量を1.7 3. 3 mmolとした以外は実施例2と同様にしてポリブタ ジエンゴムを得た。得られたポリプタジエンゴムは、ム ーニー粘度が62 (MLin 、100℃)、沸騰nーへ キサン不溶分の含有率が18.3重量%であった。n-ヘキサン可溶分のムーニー粘度は38、重量平均分子量 が48万であった。これらの結果を表1に示す。次い で、このポリプタジエンゴムに、表2の配合表に従いカ ーポンプラック、プロセスオイル、硫黄等を配合し、1 50℃で30分間プレスし、加硫し、サンプル9を調製 50 した。サンプル9について、硬度、300%応力、引張 示す。更に、表4、6、及び8の配合表に従い、サイド ウォール用配合物及びベーストレッド用配合物を調製し

- 強度、反発弾性、発熱等を測定した。測定結果を表3に * 張強度、反発弾性、発熱等を測定した。測定結果を表 5、7、及び9に示す。 【0039】
- た。これらの配合物について、硬度、300%応力、引*【表1】

				実力	奄 例		比	較(9 1
t	ンフ	プル	1	2	3	4	1	2	3
	МΙ		6 5	6 1	6 4	6 2	6 0	6 2	6 1
沸騰		Wt%	12. 1	18. 5	17. 9	18. 2	7.8	18. 3	18. 1
不溶		η/с	2. 1	2. 0	3. 5	1.4	2.1	2. 0	2. 1
沸騰		ML	5 0	3 6	4 0	3 9	4 8	4 1	3 8
17-4	キン	t —cp	150	95	118	132	141	90	103
-140	23	Mw*1	6 3	4 4	5 1	5 2	6 1	5 0	4 8
		M n *)	2 3	1 5	1 8	2 0	2 2	1 7	1 4
	ci	sl, 4(%)	96. 9	96. 6	96. 8	97. 0	96. 7	96. 3	96. 8

[0040] 【表2】

ポリブタジエンゴム 100重量部

HAFカーボン 50重量部(サンプ)

50重量部(サンプル1、3、及び11)

30重量部(その他)

プロセスオイル

10重量部

亜鉛華 1 号

5重量部2重量部

ステアリン酸 2 重量部 老化防止剤 (N-イソフロヒル-N'-フュニル-p-フュニレンウアミン)

1重量部

加硫促進剤(N-シクロヘキシル-2-ヘンソチテアソールスルフェンアミト)

1重量部

硫黄

1.5重量部

[0041]

【表3】

	13						
ゴム	fy/h番号	1	2	3	4	5	6
組成	ポリプタジェン *)	実1	実1	実2	実2	実3	実4
物	オーギン豊・・)	5 0	3 0	5 0	3 0	3 0	3 0
B	C合物M L	8 1	5 4	8 3	5 6	5 7	5 6
ź	いたさ	7 1	6.1	77	6 6	6 5	6.6
300	X吃力(kg/cm²)	1 5 2	8 6	187	108	108	109
313	長強度(kg/cm²)	193	171	186	175	176	180
反発	 弹性	5 3	6 3	5 2	6 1	6 1	6 2
発熱	4 (°C)	2 6	1 8	2 9	19	1 9	18
F.=	摩耗 (指数)	267	201	284	209	206	2 1 0
比重	t	1.13	1.10	1.13	1.10	1.10	1.10

ゴム	サンル番号	7	8	9	10	1 1
組	ポリプクラエン *)	比1	It 2	此3	VCR412	UBBPOL***
成物	カーボン量**)	3 0	3 0	3 0	3 0	5 0
ă	C合物ML	5 0	5 7	5 4	4 6	6 1
1	nたさ	5 6	6.6	6 6	6 0	6.0
300	終力(kg/cm²)	6 2	101	9 7	7 6	8 7
립당	發度(kg/cm²)	128	156	159	150	183
反列	學性	-	5 8	5 7	5 8	5 7
発無	(°C)	-	2 2	2 3	2 2	2 3
ĽΞ	摩耗(指数)	-	188	165	173	2 1 4
比重		1. 10	1. 10	1. 10	1.10	1.13

*) ・・・・実→実施例、比→比較例

**)・・・・単位は重量部

***) · · · UBEPOL-BR150

【0042】 【表4】

ポリプタジエンゴム 60重量部

天然ゴム 40重量部

FEFカーボン 50重量部(サンプル1、3、及び11)

30重量部(その他)

プロセスオイル 10重量部

亜鉛華1号 3重量部

ステアリン酸 2重量部

ワックス 2重量部

加硫促進剤(N-オキシジエチレン-2-ベングチアジルスルフェンアミド)

0.8重量部

硫黄 1.5重量部

加硫 150℃×30分

【0043】 【表5】

	17						18
ゴム	サンガル番号	1	2	3	4	5	6
왪	ポリプクジェン *)	実1	実」	実2	実2	実3	実4
成物	カーボン戦・・)	5 0	3 0	5 0	3 0	3 0	3 0
ě	記合物M L	6 2	4 3	6 4	4.4	4.4	4 4
ź	かたさ	6.5	5 8	6.8	5 9	5 9	5 9
300	X応力(kg/cm²)	102	6 7	117	8 1	7 9	8 2
313	表強度(kg/cm²)	190	178	188	180	179	183
反列	管弹性.	5 8	6 6	5 6	6 4	6 4	6.5
発達	ń (°C) .	2 4	14	2 5	16	16	15
۲:	コ摩耗 (指数)	151	114	160	118	115	121
耐犯	四曲亀裂 (回)	27. 000	29, 000	25. 000	28. 000	28, 000	27, 000
ta	an δ(指数)	108	70	110	7 3	7 3	7 2
比重	ũ	1.13	1. 10	1. 13	1.10	1. 10	1.10 ·

ゴーサンル番号	7	8	9	10	1 1
組 約75912 *)	比1	比2	比3	VCR412	UBSPOL***
物力ポン量**	3 0	3 0	3 0	3 0	5 0
配合物ML	4 1	4 2	4 2	3 8	5 3
かたさ	5 4	5 9	5 8	5 6	5 9
300版均(kg/cm²)	5 2	6 8	7.0	5 9	7 9
引張強度(kg/cm²)	147	170	167	165	187
反発彈性	-	6 2	6 1	6 1	6 1
発熱・(℃)	-	19	19	1.8	2 0
ピコ摩耗 (指数)	-	106	101	103	121
耐屈曲亀裂(回)		22, 000	25, 000	24, 000	10, 000
tan δ (指数)	_	8 5	8 3	8 3	100
比重	1. 10	1.10	1. 10	1.10	1. 13

*)・・・・実→実施例、比→比較例 **)・・・単位は重量部 ***)・・・UBEPOL-BR150

[0044]

ポリブタジエンゴム	5 0 重量部							
天然ゴム	5 0 重量部							
HAFカーボン	50重量部(サンプル1、3、及び11)							
	3 0 重量部 (その他)							
プロセスオイル	10重量部							
亜鉛華1号	3 重量部							
ステアリン酸	2 重量部							
老化防止剤(N-イソプロヒル-N'-フェニル-p-フェニレンシアマミン)								
	1 重量部							

加硫促進剤(N-オキシシエチレン-2-ヘンソチテアシルスルフェンアミト)

0.8重量部

硫黄

1. 5重量部

加硫

150℃×30分

[0045]

【表7】

	21						22
ゴム	リンプル番号	1	2	3	4	5	6
組成	ポリブタラエン *>	実1	実1	実2	実2	実3	実 4
物	カーボン量 * *)	5 0	3 0	5 0	3 0	3 0	3 0
Ď	配合物M L	7 4	5 0	7 6	5 1	5 1	5 2
t.	かたさ	6 4	5 7	6 7	5 9	5 9	5 9
300	條的力(kg/cm²)	1 2 5	8 2	145	9 9	9 7	9 9
313	長強度(kg/cm²)	2 5 4	2 5 8	2 5 1	2 4 1	239	2 4 4
反多	è弹性	5 2	6 0	5 0	5 9	5 9	5 8
発素	4 (℃)	2 6	16	2 8	1 8	17	17
t a	n δ(指数)	105	7 2	109	7 5	7 5	7 4
比重	E	1. 13	1.10	1. 13	1.10	1.10	1. 10

		r				
ゴム	サンフル番号	7	8	9	10	1 1
組成	ポリプタジェン *)	比1	比2	比3	VCR412	UBEPOL***
物	かポン量**)	3 0	3 0	3 0	3 0	5 0
n	C合物M L	4 8	4 9	4 8	4 4	6 3
t	nたさ	5 3	5 9	5 8	5 6	5 8
300	%吃力(kg/cm²)	6 5	8 3	8 6	7 2	9 7
引引	曼強度(kg/cm²)	196	227	2 2 3	2 2 1	2 5 0
反务	è弹性	-	5 5	5 5	5 6	5 4
発素	\$ (°C)	-	2 1	2 1	2 0	2 2
t a	n δ (指数)		8 8	8 6	8 5	100
比重		1. 10	1.10	1.10	1. 10	1. 13

*)・・・・・実→実施例、比→比較例

[0046] [表8]

ポリプタジエンゴム 60重量部

天然ゴム 40重量部

ISAFカーボン 50重量部(サンプル2)、

(13)

75重畳部(サンプル7)、50重量部(その他)

アロマオイル 10 重量部

亜鉛華1号 5重量部

ステアリン酸 2重量部

老化防止剤(N-イソフロヒル-N゚-フェニル-p-フェニレンシアミン)

2 重量部

加硫促進剤(N-オキシゔエチル-2-ベンゾチアジルスルフェンアミド)

1. 5重量部

硫黄 3重量部

加硫 15.0℃×2.0分

【0047】 【表9】

	50	~ -	- 1811	-			20
ゴム	サンガル番号	1	2	3	4	5	6
組成物	ポリプタジェン *1	実1	実2	比1	比2	比3	VCR412
物	カーボン量・・)	5 5	5 0	5 5	5 5	5 5	5 5
B	P合物M L	9 3	7.7	9 0	8 8	8 5	8 2
1.	かたさ	7 9	7 8	7.4	7 9	7 8	7 8
300	が方(kg/cm²)	2 2 4	228	183	2 1 5	210	208
313	長強度(kg/cm²)	237	2 4 0	2 1 5	227	223	220
反列	萨弹性	5 8	6.0	6 0	5 4	5 3	5 3
発熱	\ (°C)	2 2	2 1	2 1	2 6	2 7	2 7
tε	nδ(指数)	7 0	6 6	6 8	8 4	8 2	8 2
比重		1. 14	1. 13	1.14	1.14	1. 14	1. 14

ゴム	サンプル番号	7
組成	ポリプタジェン *)	BR130B***)
物	カーボン量・・・	7 5
ā	己合物M L	9 2
ħ	たさ	7 8
300	K応力(kg/cm³)	-
引引	長強度(kg/cm²)	205
反乳	5 弾性	5 0
発制	(°C)	3 9
t a	nδ (指数)	100
比重		1. 18

*) ・・・・実→実施例、比→比較例

) ・・・単位は重量部 *)・・・UBEPOL-BR130B

[0048] 【発明の効果】本発明のポリプタジエン及びゴム組成物 屈曲性、反発弾性のバランスに優れている。 は従来の改良ポリブタジエンゴムの長所をそのまま保持

40 しているとともに、動的特性と耐摩耗性、引張強度、耐