概率论与数理统计总结

刘阳

2019年6月9日

目录

第一	章 概率论的基本概念	3
1.1	随机试验	3
1.2	样本空间、随机事件	3
	1.2.1 样本空间	3
	1.2.2 随机事件	3
	1.2.3 事件间的关系与事件的运算	3
1.3	频率与概率	4
	1.3.1 频率	4
	1.3.2 概率	5
1.4	等可能概型 (古典概型)	5
1.5	条件概率	6
	1.5.1 条件概率	6
	1.5.2 乘法定理	6
	1.5.3 全概率公式和贝叶斯公式	6
1.6	独立性	7
第二	章 随机变量及其分布	7
2.1	随机变量	7
2.2	离散型随机变量及其分布率	7
	2.2.1 (0-1) 分布	7
	2.2.2 伯努利试验、二项分布	8
	2.2.3 泊松分布	8
2.3	随机变量的分布函数	8
2.4	连续型随机变量及其概率密度	8
	1.1 1.2 1.3 1.4 1.5 1.6 第二 2.1 2.2	1.2 样本空间、随机事件

目录 2

		2.4.1 均匀分布
		2.4.2 指数分布 9
		2.4.3 正态分布
	2.5	随机变量的函数的分布
3	第三	E章 多维随机变量及其分布 10
	3.1	二维随机变量
	3.2	边缘分布 12
	3.3	条件分布 13
	3.4	相互独立的随机变量
4	第匹]章 随机变量的数字特征 14
	4.1	数学期望 14
	4.2	方差
	4.3	协方差及相关系数
	4.4	矩、协方差矩阵
5	第五	17 方数定律及中心极限定理 17
	5.1	大数定律 17
	5.2	中心极限定理
6	第六	二章 样本及抽样分布 20
	6.1	随机样本 20
	6.2	直方图和箱线图
	6.3	抽样分布 20
7	第七	20 参数估计
	7.1	点估计
	7.2	基于截尾样本的最大似然估计
	7.3	估计量的评选标准 20
	7.4	区间估计 20
	7.5	正态总体均值与方差的区间估计 20
	7.6	(0-1) 分布参数的区间估计 20

1 第一章 概率论的基本概念

1.1 随机试验

- 随机试验: 1. 可以在相同条件下重复地进行;
 - 2. 每次试验的可能结果不止一个,并且能事先明确实验的所有可能结 果;
 - 3. 进行一次实验之前不能确定哪一个结果会出现.

1.2 样本空间、随机事件

1.2.1 样本空间

随机试验 E 的所有可能结果组成的集合称为 随机试验. 样本空间的元素,即 E 的每个结果称为 样本点.

1.2.2 随机事件

试验 E 的样本空间 S 的子集称为 随机事件, 简称 事件.

每次试验中,当且仅当这一子集的一个样本点出现称为事件发生.

有一个样本点组成的单点集称为 基本事件.

样本空间 S 包含所有的样本点,它是 S 自身的子集,在每次试验中它总是 发生的, S 成为 必然事件.

空集 Ø 不包含任何样本点,它也作为样本空间的子集,他在每次试验中都 不发生, ∅ 称为 不可能事件.

1.2.3 事件间的关系与事件的运算

1. 若 $A \subset B$, 则称事件 B 包含事件 A , 这指的是事件 A 发生必导致事件

若 $A \subset B$ 且 $B \subset A$, 即 A = B , 则称事件 A 与事件 B 相等.

- 2. 事件 $A \cup B = \{x | x \in A \ x \in B\}$ 称为事件 A 与事件 B 的 **和事件**. 当且仅 当 A, B 中至少一个发生时,事件 $A \cup B$ 发生. 类似地,称 $\bigcup_{k=1}^{\infty} A_k$ 为 n 个事件 A_1, A_2, \cdots, A_n 的 **和事件**;称 $\bigcup_{k=1}^{\infty} A_k$ 为 可列个事件 A_1, A_2, \cdots 的和事件.
- 3. 事件 $A \cap B = \{x | x \in A \ x \in B\}$ 称为事件 A 与事件 B 的 **积事件**. 当且仅 当 A, B 同时发生时,事件 $A \cap B$ 发生. $A \cap B$ 也记作 AB.

类似地,称 $\bigcap_{k=1}^n A_k$ 为 n 个事件 A_1, A_2, \cdots, A_n 的 **积事件**;称 $\bigcap_{k=1}^\infty A_k$ 为可列个事件 A_1, A_2, \cdots 的积事件.

- 4. 事件 $A B = \{x | x \in A \ x \notin B\}$ 称为事件 A 与事件 B 的 **差事件**. 当且仅 当 A 发生、B 不发生时事件 A B 发生.
- 5. 若 $A \cap B = \emptyset$ 则称事件 A 与事件 B 是 **互不相容的**,或 **互斥的**. 这指的是事件 A 与事件 B 不能同时发生. 基本事件也是两两互不相容的.
- 6. 若 $A \cup B = S$ 且 $A \cap B = \emptyset$, 则称事件 A 与事件 B 互为 **逆事件**. 又称事件 A 与事件 B 互为 **对立事件**. 这指的是对每次试验而言,事件 A, B 中必有一个发生,且仅有一个发生. A 的对立事件记为 \bar{A} . $\bar{A} = S A$

交换律:
$$A \cup B = B \cup A$$
;
 $A \cap B = B \cap A$.

结合律:
$$A \cup (B \cup C) = (A \cup B) \cup C$$
;
 $A \cap (B \cap C) = (A \cap B) \cap C$.

分配律:
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
;
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

德摩根律: $A \bar{\cup} B = \bar{A} \cap \bar{B}$; $A \bar{\cap} B = \bar{A} \cup \bar{B}$.

1.3 频率与概率

1.3.1 频率

在相同条件下,进行了 n 次试验,在这 n 次试验中,事件 A 发生的次数为 n_A 称为事件 A 发生的 **频数**. 比值 $\frac{n_A}{n}$ 称为事件 A 发生的 **频率**,并记成 $f_n(A)$

性质: $1.0 \le f_n(A) \le 1$;

- 2. $f_n(S) = 1$;
- 3. 若 A_1, A_2, \dots, A_k 是两两互不相容的事件,则

$$f_n(A_1 \cup A_2 \cup \cdots \cup A_k) = f_n(A_1) + f_n(A_2) + \cdots + f_n(A_k).$$

1.3.2 概率

设 E 是随机试验, S 是它的样本空间. 对于 E 的每一事件 A 赋予一个实数, 记为 P(A) , 称为事件 A 的 概率, 如果集合函数 $P(\cdot)$ 满足以下条件:

- 1. **非负性:** 对于每一个事件 A , 有 $P(A) \ge 0$;
- 2. **规范性:** 对于必然事件 S , 有 P(S) = 1 ;
- 3. **可列可加性:** 设 A_1, A_2, \cdots 是两两互不相容的事件,即对于 $A_i A_j = \emptyset$, $i \neq i, j = 1, 2, \cdots$,有

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

性质: $1. P(\emptyset) = 0.$

2. 若 A_1, A_2, \dots, A_n 是两两互不相容的事件,则有

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n).$$

3. 设 A, B 是两个事件, 若 $A \subset B$, 则有

$$P(B - A) = P(B) - P(A);$$

$$P(B) \ge P(A)$$
.

4. 对于任一事件 A ,有

$$P(A) \leq 1$$
.

5. 对于任意两事件 A, B 有

$$P(A \cup B) = P(A) + P(B) - P(AB).$$

1.4 等可能概型(古典概型)

- 1. 试验的样本空间只包含有限个元素.
- 2. 试验中每个基本事件发生的可能性相同.

具有以上两个特点的试验称为 **等可能概型**. 它在概率论发展初期曾是主要的研究对象, 所以也成为 **古典概型**.

设试验的样本空间为 $S = \{e_1, e_2, \cdots, e_n\}$ 若 A 包含 k 个基本事件则有:

$$P(A) = \sum_{i=1}^{k} P(\{e_{i_j}\}) = \frac{k}{n} = \frac{A}{2}$$
包含的基本事件数.

超几何分布的概率公式:

$$p = \frac{\binom{D}{k} \binom{N-D}{n-k}}{\binom{N}{n}}.$$

1.5 条件概率

1.5.1 条件概率

设 A, B 是两个事件, 且 P(A) > 0, 称

$$P(B|A) = \frac{P(AB)}{P(A)}$$

为在事件 A 发生下事件 B 发生的 **条件概率**.

1.5.2 乘法定理

设 P(A) > 0 则有

$$P(AB) = P(B|A)P(A).$$

1.5.3 全概率公式和贝叶斯公式

全概率公式: 设试验 E 的样本空间为 S , A 为 E 的事件, B_1, B_2, \cdots, B_n 为 S 的一个划分,且 $P(B_i) > 0 (i = 1, 2, \cdots, n)$, 则

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \dots + P(A|B_n)P(B_n).$$

贝叶斯 (Bayes) 公式: 设试验 E 的样本空间为 S , A 为 E 的事件, B_1, B_2, \dots, B_n 为 S 的一个划分,且 $P(A) > 0, P(B_i) > 0 (i = 1, 2, \dots, n)$,则

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{i=1}^{n} P(A|B_j)P(B_j)}, \quad i = 1, 2, \dots, n.$$

1.6 独立性

设 A, B 两事件如果满足等式

$$P(AB) = P(A)P(B)$$

则称事件 A, B 相互独立, 简称 A, B 独立.

定理: 1. 设 A, B 是两事件,且 P(A) > 0 . 若 A, B 相互独立,则 P(B|A) = P(B). 反之亦然.

2. 若事件 A 与 B 相互独立,则下列各对事件也相互独立: A 与 \bar{B} , \bar{A} 与 B , \bar{A} 与 \bar{B} .

一般,设 A_1, A_2, \dots, A_n 是 $n(n \ge 2)$ 个事件,如果对于其中任意 2 个,任意 3 个, · · · ,任意 n 个事件的积事件的概率,都等于各事件概率之积,则称事件 A_1, A_2, \dots, A_n 相互独立.

推论: 1. 若事件 $A_1, A_2, \dots, A_n (n \ge 2)$ 相互独立,则其中任意 $k(2 \le k \le n)$ 个事件也是相互独立的.

2. 若 n 个事件 $A_1, A_2, \dots, A_n (n \ge 2)$ 相互独立,则将 A_1, A_2, \dots, A_n 中任意多个事件换成它们各自的对立事件,所得的 n 个事件仍相互独立.

2 第二章 随机变量及其分布

2.1 随机变量

设随机试验的样本空间为 $S=\{e\}$. X=X(e) 是定义在样本空间上的单值函数. 称 X=X(e) 为 **随机变量**

2.2 离散型随机变量及其分布率

2.2.1 (0-1) 分布

设随机变量 X 只可能取 0 与 1 两个值,它的分布律是

$$P{X = k} = p^k (1 - p)^{1 - k}, k = 0, 1 \ (0$$

则称 X 服从以 p 为参数的 (0-1) 分布或 两点分布

2.2.2 伯努利试验、二项分布

设试验 E 只有两个可能结果: A 及 \bar{A} , 则称 E 为 **伯努利** (Bernoulli) **试**验.

将 E 独立重复地进行 n 次,则称这一串重复的独立试验为 n **重伯努利试 验**.

以 X 表示 n 重伯努利试验中事件 A 发生的次数, 每次伯努利试验中 A 事件 发生的概率为 p 称随机变量 X 服从参数为 n,p 的 二**项分布**, 并记为 $X\sim b(n,p)$. 它的分布律是

$$P\{x=k\} = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1, 2, \dots, n$$

2.2.3 泊松分布

设随机变量 X 的所有可能取的值为 $0,1,2,\cdots$, 而取各个值的概率为

$$P\{X = k\} = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2 \cdots,$$

其中 $\lambda > 0$ 是常数. 则称 X 服从参数为 λ 的 **泊松分布**,记为 $X \sim \pi(\lambda)$

泊松定理: 设 $\lambda > 0$ 是一个常数, n 是任意正整数, 设 $np_n = \lambda$, 则对于任意固定的非负整数 k 有

$$\lim_{n \to \infty} p_n^k (1 - p_n)^{n-k} = \frac{\lambda^k e^{-\lambda}}{k!}$$

一般,当 $n \geq 20, p \leq 0.05$ 时用 $\frac{\lambda^k e^{-\lambda}}{k!} (\lambda = np)$ 作为 $\binom{n}{k} p^k (1-p)^{n-k}$ 的近似值效果颇佳.

2.3 随机变量的分布函数

设X是一个随机变量,x是任意实数,函数

$$F(x) = P\{X \le x\}, -\infty < x < \infty$$

称为 X 的 **分布函数**.

2.4 连续型随机变量及其概率密度

如果对于随机变量 X 的分布函数 F(x) ,存在非负可积函数 f(x) ,使对于任意实数 x 有

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

则称 X 为 **连续型随机变量**, 其中函数 f(x) 称为 X 的 概率密度函数, 简称 概率密度.

2.4.1 均匀分布

若连续型随机变量 X 具有概率密度

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & \text{其他}, \end{cases}$$

则称 X 在区间 (a,b) 上服从 均匀分布. 记为 $X \sim U(a,b)$

2.4.2 指数分布

若连续型随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0, \\ 0, & \text{ 其他}, \end{cases}$$

其中 $\theta > 0$ 为常数,则称 X 服从参数为 θ 的 **指数分布**.

2.4.3 正态分布

若连续型随机变量 X 的概率密度为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$

其中 $\mu, \sigma(\sigma > 0)$ 为常数,则称 X 服从参数为 μ, σ 的 **正态分布**或 **高斯** (Gauss) 分布,记为 $X \sim N(\mu, \sigma^2)$.

性质: 1. 曲线关于 $x = \mu$ 对称. 这表明对于任意 h > 0 有

$$P\{\mu - h < X \le \mu\} = P\{\mu < X \le \mu + h\}.$$

2. 当 $x = \mu$ 时取到最大值

$$F(\mu) = \frac{1}{\sqrt{2\pi}\sigma}.$$

特别, 当 $\mu = 0$, $\sigma = 1$ 时称随机变量 X 服从 **标准正态分布**. 其概率密度和 分布函数分别用 $\varphi(x)$, $\Phi(x)$ 表示, 即有

$$\varphi(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2}},$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

易知

$$\Phi(-x) = 1 - \Phi(x).$$

引理: 若 $X \sim N(\mu, \sigma^2)$, 则 $Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$.

2.5 随机变量的函数的分布

设随机变量 X 具有概率密度 $f_X(x), -\infty < x < \infty$,又设函数 g(x) 处处可导且恒有 g'(x) > 0 (或恒有 g'(x) < 0). 则 Y = g(X) 是连续型随机变量,其概率密度为

$$f_Y(y) = \begin{cases} f_X[h(y)]|h'(y)|, & \alpha < y < \beta, \\ 0, & \text{ 其他}, \end{cases}$$

其中 $\alpha=\min\{g(-\infty),g(\infty)\},\beta=\max\{g(-\infty),g(\infty)\}$, h(y) 是 g(x) 的反函数.

3 第三章 多维随机变量及其分布

3.1 二维随机变量

一般,设 E 是一个随机试验,它的样本空间是 $S=\{e\}$,设 X=X(e) 和 Y=Y(e) 是定义在 S 上的随机变量,由它们构成的一个向量 (X,Y) ,叫做 二 **维随机向量**或 二**维随机变量**.

设 (X,Y) 是二维随机变量,对于任意实数 x,y,二元函数

$$F(x,y) = P\{(X \leq x) \cap (Y \leq y)\} \xrightarrow{\text{i己成}} P\{X \leq x, Y \leq y\}$$

称为二维随机变量 (X,Y) 的分布函数,或称为随机变量 X 和 Y 的 **联合分布 函数**.

- 性质: 1. F(x,y) 是变量 x 和 y 的不减函数,即对于固定的 y ,当 $x_2 > x_1$ 时, $F(x_2,y) \ge F(x_1,y)$;对于任意固定的 x ,当 $y_2 > y_1$ 时, $F(x,y_2) \ge F(x,y_1)$.
 - 2. $0 \le F(x, y) \le 1$, \blacksquare

对于任意固定的
$$y, F(-\infty, y) = 0$$
,

对于任意固定的
$$y, F(x, -\infty) = 0$$
,

$$F(-\infty, -\infty) = 0, F(\infty, \infty) = 1$$

3. F(x+0,y) = F(x,y), F(x,y+0) = F(x,y), 即 F(x,y) 关于 x 右连续, 关于 y 也右连续.

4. 对于任意 (x_1, y_1) , (x_2, y_2) , $x_1 < x_2$, $y_1 < y_2$, 下述不等式成立:

$$F(x_2, y_2) - F(x_2, y_1) + F(x_1, y_1) - F(x_1, y_2) \ge 0.$$

如果二维随机变量 (X,Y) 全部可能取到的值是有限对或可列无限多对,则称 (X,Y) 是 **离散型的随机变量**.

我们称 $P\{X = x_i, Y = y_i\} = p_{ij}, i, j = 1, 2, \cdots$ 为二位离散型随机变量 (X, Y) 的 **分布律**, 或称随机变量 X 和 Y 的 **联合分布律**.

对于二维随机变量 (X,Y) 的分布函数 F(x,y) ,如果存在非负可积函数 f(x,y) ,使对于任意 x,y 有

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv,$$

则称 (X,y) 是 **连续型的二维随机变量**,函数 f(x,y) 称为二维随机变量 (X,Y) 的 **概率密度**,或称为随机变量 X 和 Y 的 **联合概率密度**.

性质: $1. f(x,y) \ge 0$

- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dxy = F(\infty, \infty) = 1.$
- 3. 设 G 是 xOy 平面上的区域,点 (X,Y) 落在 G 内的概率为

$$P\{(X,Y) \in G\} = \iint_C f(x,y) dx dy.$$

4. 若 f(x,y) 在点 (x,y) 连续,则有

$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y).$$

设 E 是一个随机试验,它的样本空间是 $S = \{e\}$,设 $X_1 = X_1(e), X_2 = X_2(e), \cdots, X_n = X_n(e)$ 是定义在 S 上的随机变量,由它们构成的一个 n 维向量 (X_1, X_2, \cdots, X_n) 叫做 n **维随即向量**或 n 维随机变量.

对于任意 n 个实验 x_1, x_2, \cdots, x_n, n 元函数

$$F(x_1, x_2, \dots, x_n) = P\{X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n\}$$

称为 n 维随机变量 (X_1, X_2, \dots, X_n) 的 **分布函数**, 或随机变量 X_1, X_2, \dots, X_n 的 **联合分布函数**.

3.2 边缘分布

二维随机变量 (X,Y) 作为一个整体,具有分布函数 F(x,y). 而 X 和 Y 都是随机变量,各自也有分布函数,将它们分别记为 $F_X(x)$, $F_Y(y)$,依次称为二维随机变量 (X,Y) 关于 X 和关于 Y 的 **边缘分布函数**.

对于离散型随机变量可得

$$F_X(x) = F(x, \infty) = \sum_{x_i \le x} \sum_{j=1} p_{ij}$$

X 的分布律为

$$P\{X = x_i\} = \sum_{j=1}^{\infty} p_{ij}, \quad i = 1, 2, \cdots.$$

同样 Y 的分布律为

$$P{Y = y_i} = \sum_{i=1}^{\infty} p_{ij}, \quad j = 1, 2, \cdots.$$

记

$$p_{i\cdot} = \sum_{j=1}^{\infty} p_{ij} = P\{X = x_i\}, \quad i = 1, 2, \cdots,$$

$$p_{\cdot j} = \sum_{i=1}^{\infty} p_{ij} = P\{Y = y_j\}, \quad j = 1, 2, \cdots,$$

分别称 $p_{i\cdot}(i=1,2,\cdots)$ 和 $p_{\cdot j}(j=1,2,\cdots)$ 为 (X,Y) 关于 X 和关于 Y 的 **边 缘分布律**.

对于连续型随机变量 (X,Y) 设它的概率密度为 f(x,y), 由于

$$F_X(x) = F(x, \infty) = \int_{-\infty}^x \left[\int_{-\infty}^\infty f(x, y) dy \right] dx,$$

X 是一个连续型随机变量, 其概率密度为

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy.$$

同样, Y 也是一个连续型随机变量, 其概率密度为

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx.$$

分别称 $f_X(x)$, $f_Y(y)$ 为 (X,Y) 关于 X 和关于 Y 的 **边缘概率密度**.

3.3 条件分布

设 (X,Y) 是二位离散型随机变量,对于固定的 j ,若 $P\{Y=y_i\}>0$,则 称

$$P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{ij}}, \quad i = 1, 2, \dots$$

为在 $Y = y_j$ 条件下随机变量 X 的 **条件分布律**. 同样,对于固定的 i ,若 $P\{X = x_i\} > 0$,则称

$$P\{Y = y_i | X = x_i\} = \frac{P\{X = x_i, Y = y_j\}}{P\{X = x_i\}} = \frac{p_{ij}}{p_i}, \quad j = 1, 2, \dots$$

为在 $X = x_i$ 条件下随机变量 Y 的 **条件分布律**.

设二维随机变量 (X,Y) 的概率密度为 f(x,y),(X,Y) 关于 Y 的边缘概率 密度为 $f_Y(y)$. 若对于固定的 y , $f_Y(y)>0$, 则称 $\frac{f(x,y)}{f_Y(y)}$ 为在 Y=y 的条件下 X 的 **条件概率密度**,记为

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)},$$

类似地,可以定义

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}.$$

3.4 相互独立的随机变量

设 F(x,y) 及 $F_X(x)$, $F_Y(y)$ 分别是二维随机变量 (X,Y) 的分布函数及边缘分布函数. 若对于所有 x,y 有

$$P\{X \leq x, Y \leq y\} = P\{X \leq x\}P\{Y \leq y\},$$

即

$$F(x,y) = F_X(x)F_Y(y),$$

则称随机变量 X 和 Y 是相互独立的.

定理: 设 (X_1, X_2, \dots, X_n) 和 $(Y_1, Y_2, \dots Y_n)$ 相互独立,则 $X_i (i = 1, 2, \dots, m)$ 和 $Y_j (j = 1, 2, \dots, n)$ 相互独立.又若 h, g 是连续函数,则 $g(X_1, X_2, \dots, X_m)$ 和 $g(Y_1, Y_2, \dots, Y_n)$ 相互独立.

4 第四章 随机变量的数字特征

4.1 数学期望

设离散型随机变量 X 的分布律为

$$P\{X = x_k\} = p_k \ k = 1, 2, \cdots$$

若级数

$$\sum_{k=1}^{\infty} x_k p_k$$

绝对收敛,则称级数 $\sum\limits_{k=1}^{\infty}x_kp_k$ 的和为随机变量 X 的 **数学期望**. 记为 E(X) . 即

$$E(X) = \sum_{k=1}^{\infty} x_k p_k.$$

设连续型随机变量 X 的概率密度为 f(x) , 若积分

$$\int_{-\infty}^{\infty} x f(x) \mathrm{d}x$$

绝对收敛,则称积分 $\int_{-\infty}^{\infty}xf(x)\mathrm{d}x$ 的值为随机变量 X 的 **数学期望**,记为 E(X) . 即

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

数学期望简称 期望, 又称 均值.

性质: 1. 设 C 是常数,则有 E(C) = C.

2. 设 X 是随机变量, C 是常数, 则有

$$E(CX) = CE(X).$$

3. 设 X,Y 是两个随机变量,则有

$$E(X + Y) = E(X) + E(Y).$$

这一性质可以推广到任意有限多个随机变量之和的情况.

4. 设 X,Y 是相互独立的随机变量,则有

$$E(XY) = E(X)E(Y).$$

这一性质可以推广到任意有限个相互独立的随机变量之积的情况.

4.2 方差

设 X 是一个随机变量,若 $E\{[X-E(X)]^2\}$ 存在,则称 $E\{[X-E(X)]^2\}$ 为 X 的 **方差**,记为 D(X) 或 Var(X) ,即

$$D(X) = Var(X) = E\{[X - E(X)]^2\}.$$

在应用上还引入量 $\sqrt{D(X)}$, 记为 $\sigma(X)$, 称为 标准差或 均方差.

性质: 1. 设 C 是常数,则有 E(C) = 0.

2. 设X是随机变量,C是常数,则有

$$D(CX) = C^2 D(X),$$

$$D(X+C) = D(X).$$

3. 设 X,Y 是两个随机变量,则有

$$D(X + Y) = D(X) + D(Y) + 2E\{(X - E(X))(Y - E(Y))\}.$$

特别, 若 X,Y 相互独立, 则有

$$D(X + Y) = D(X) + D(Y).$$

这一性质可以推广到任意有限多个相互独立的随机变量之和的情况.

4. D(X) = 0 的充要条件是 X 以概率为 1 取常数 E(X) , 即

$$P{X = E(X)} = 1.$$

4.3 协方差及相关系数

量 $E\{[X-E(X)][Y-E(Y)]\}$ 称为随机变量 X 与 Y 的 **协方差**,记为 Cov(X,Y) ,即

$$Cov(X, Y) = E\{[X - E(X)][Y - E(Y)]\}.$$

而

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

称为随机变量 X 与 Y 的 相关系数.

由定义知

$$Cov(X, Y) = Cov(Y, X),$$

$$Cov(X, X) = D(X).$$

对于任意两个随机变量 X 和 Y , 下列等式成立:

$$D(X + Y) = D(X) + D(Y) + 2Cov(X, Y).$$

将 Cov(X,Y) 的定义式展开,易得

$$Cov(X, Y) = E(XY) - E(X)E(Y).$$

我们常常利用这一式子计算协方差.

性质: 1. Cov(aX, bY) = abCov(X, Y), a, b 是常数.

2. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$.

定理: 1. $|\rho_{XY}| \le 1$.

2. $|\rho_{XY}| = 1$ 的充要条件是,存在常数 a,b 使

$$P\{Y = a + bX\} = 1.$$

当 $|\rho_{XY}| = 1$ 时,称 X 和 Y 不相关.

4.4 矩、协方差矩阵

设X和Y是随机变量,若

$$E(X^k), k = 1, 2, \cdots$$

存在, 称它为 X 的 k **阶原点矩**, 简称 k 阶矩. 若

$$E\{[X - E(X)]^k\}, k = 2, 3, \cdots$$

存在, 称它为 X 的 k **阶中心**距. 若

$$E(X^kY^l), \quad k, l = 1, 2, \cdots$$

存在, 称它为 X 和 Y 的 k+l 阶混合矩. 若

$$E\{[X - E(X)]^k [Y - E(Y)]^l\}, k, l = 1, 2, \cdots$$

存在, 称它为 X 和 Y 的 k+l **阶混合中心矩**.

显然, X 的数学期望 E(X) 是 X 的一阶原点矩, 方差 D(X) 是 X 的二阶中心距, 协方差 Cov(X,Y) 是 X 和 Y 的二阶混合中心矩.

设 n 维随机变量 (X_1, X_2, \cdots, X_n) 的二阶混合中心矩

$$c_{ij} = Cov(X_i, X_j) = E\{[X_i - E(X_i)][X_j - E(X_j)]\}, i, j = 1, 2, \dots, n$$

都存在,则称矩阵

$$C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix}$$

为 n 维随机变量 (X_1, X_2, \dots, X_n) 的 **协方差矩阵**. 由于 $c_{ij} = c_{ji}$ $(i \neq j; i, j = 1, 2, \dots, n)$,因而上述矩阵是一个对阵矩阵.

5 第五章 大数定律及中心极限定理

5.1 大数定律

弱大数定理(辛钦大数定理):设 X_1, X_2, \cdots 是相互独立,服从同一分布的随机变量序列,且具有数学期望 $E(X_k) = \mu(k=1,2,\cdots)$. 作前 n 个变量的算术平均 $\frac{1}{n}\sum_{k=1}^n X_k$. 则对于任意 $\epsilon>0$,有

$$\lim_{n\to\infty} P\{|\frac{1}{n}\sum_{k=1}^n X_k - \mu| < \epsilon\} = 1.$$

设 $Y_1,Y_2,\cdots,Y_n,\cdots$ 是一个随机变量序列,a 是一个常数. 若对于任意正数 ϵ ,有

$$\lim_{n \to \infty} P\{|Y_n - a| < \epsilon\} = 1,$$

则称序列 $Y_1, Y_2, \cdots, Y_n, \cdots$ 依概率收敛于 a , 记为

$$Y_n \xrightarrow{P} a$$
.

性质: 设 $X_n \xrightarrow{P} a, Y_n \xrightarrow{P} b$, 又设函数 g(x,y) 在点 (a,b) 连续, 则

$$g(X_n, Y_n) \xrightarrow{P} g(a, b).$$

弱大数定理 (辛钦大数定理) 又可叙述为: 设随机变量 X_1, X_2, \cdots 相互独立,服从同一分布,且具有数学期望 $E(X_k) = \mu(k=1,2,\cdots)$. 则序列 $\bar{X} = \frac{1}{n}\sum_{k=1}^n X_k$ 依概率收敛于 μ ,即 $\bar{X} \stackrel{P}{\to} \mu$.

伯努利大数定理: 设 f_A 是 n 次独立重复试验中事件 A 发生的次数, p 是事件 A 在每次试验中发生的概率,则对任意正数 $\epsilon > 0$,有

$$\lim_{n \to \infty} P\{|\frac{f_A}{n} - p| < \epsilon\} = 1$$

或

$$\lim_{n \to \infty} P\{|\frac{f_A}{n} - p| \ge \epsilon\} = 0.$$

5.2 中心极限定理

独立同分布的中心极限定理: 设随机变量 $X_1,X_2,\cdots,X_n,\cdots$ 相互独立,服从同一分布,且具有数学期望和方差 $E(X_k)=\mu,D(X_k)=\sigma^2>0(k=1,2,\cdots)$,则随机变量之和 $\sum_{k=1}^n X_k$ 的标准化变量

$$Y_n = \frac{\sum_{k=1}^{n} X_k - E(\sum_{k=1}^{n} X_k)}{\sqrt{D(\sum_{j=1}^{n} X_k)}} = \frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n}\sigma}$$

的分布函数 $F_n(x)$ 对于任意 x 满足

$$\lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} P\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\}$$
$$= \int_{-\infty}^x \frac{1}{\sqrt{2\pi}e^{-\frac{t^2}{2}}dt} = \Phi(x).$$

李雅普诺夫 (Lyapunov) **定理:** 设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立, 它们具有数学期望和方差

$$E(X_k) = \mu_k$$
, $D(X_k) = \sigma_k^2 > 0$, $k = 1, 2, \dots$,

记

$$B_n^2 = \sum_{k=1}^k \sigma_k^2.$$

若存在正数 δ , 使得当 $n \to \infty$ 时,

$$\frac{1}{B_n^{2+\delta}} \sum_{k=1}^n E\{|X_k - \mu_k|^{2+\sigma}\} \to 0,$$

则随机变量之和 $\sum_{k=1}^{n} X_k$ 的标准化变量

$$Z_n = \frac{\sum_{k=1}^n X_k - E(\sum_{k=1}^n X_k)}{\sqrt{D(\sum_{k=1}^n X_k)}} = \frac{\sum_{k=1}^n X_k - \sum_{k=1}^n \mu_k}{B_n}$$

的分布函数 $F_n(x)$ 对于任意 x 满足

$$\lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} P\{\frac{\sum_{k=1}^n X_k - \sum_{k=1}^n \mu_k}{B_n} \le x\}$$
$$= \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(x).$$

棣莫弗-拉普拉斯 (De Moivre-Laplace) **定理:** 设随机变量 $\eta_n(n=1,2,\cdots)$ 服从参数为 n,p(0 的二项分布,则对于任意 <math>x ,有

$$\lim_{n \to \infty} P\{\frac{\eta_n - np}{\sqrt{np(1-p)}} \le x\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(x).$$

6 第六章 样本及抽样分布

- 6.1 随机样本
- 6.2 直方图和箱线图
- 6.3 抽样分布

7 第七章 参数估计

- 7.1 点估计
- 7.2 基于截尾样本的最大似然估计
- 7.3 估计量的评选标准
- 7.4 区间估计
- 7.5 正态总体均值与方差的区间估计
- 7.6 (0-1) 分布参数的区间估计
- 7.7 单侧置信区间