procedure to calculate $Q = (Q^1Q^2Q^3)$. By definition

$$A^1 = Q'^1 = Q^1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

and since $A^2 = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}$, we discover that

$$Q^{2} = A^{2} - (A^{2} \cdot Q^{1})Q^{1} = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}.$$

Hence, $Q^2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Finally,

$$Q^{\prime 3} = A_3 - (A^3 \cdot Q^1)Q^1 - (A^3 \cdot Q^2)Q^2 = \begin{pmatrix} 5\\1\\1 \end{pmatrix} - \begin{pmatrix} 0\\0\\1 \end{pmatrix} - \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 5\\0\\0 \end{pmatrix},$$

which implies that $Q^3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. According to Proposition 12.16, in order to determine R we need to calculate

$$r_{11} = ||Q'^1|| = 1$$
 $r_{12} = A^2 \cdot Q^1 = 1$ $r_{13} = A^3 \cdot Q^1 = 1$ $r_{22} = ||Q'^2|| = 4$ $r_{23} = A_3 \cdot Q^2 = 1$ $r_{33} = ||Q'^3|| = 5$.

In summary, we have found that the QR-decomposition of $A = \begin{pmatrix} 0 & 0 & 5 \\ 0 & 4 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ is

$$Q = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{and} \quad R = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 5 \end{pmatrix}.$$

Example 12.14. Another example of QR-decomposition is

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 1/\sqrt{2} & \sqrt{2} \\ 0 & 1/\sqrt{2} & \sqrt{2} \\ 0 & 0 & 1 \end{pmatrix}.$$