Project Context of Hardware Software Co-Design

Simulating a system contains Microprocessor/Accelerator/Bus and their connection via SystemC

- 1. Design a cpu (micro-processor) in SystemC language consists of the instructions below:
 - ALU instructions according to the Opselect codes determined below

Operation select

_		-		_		_
S_3	S_2	S_1	S_0		Operation	Function
0	0	0	0		F = A	Transfer A
0	0	0	0		F = A+1	Increment A
0	0	0	1		F = A + B	Addition
0	0	0	1		F = A + B + 1	Add with carry
0	0	1	0		F = A + B	Subtract with borrow
0	0	1	0		F = A + B + 1	Subtraction
0	0	1	1		F = A - 1	Decrement A
0	0	1	1		F = A	Transfer A
0	1	0	0		$F = A \wedge B$	AND
0	1	0	1		$F = A \vee B$	OR
0	1	1	0		$F = A \oplus B$	XOR
0	1	1	1		F = A	Complement A
1	0	×	\times		F = shr A	Shift right A into F
1	1	\times	×		F = shl A	Shift left A into F

- `load` and `store` operations with arbitrary opcodes
- In this cpu, we can also stop the current task after calling an accelerator to do some other task.

This accelerator can have an internal implemented algorithm (pure c++ code) This accelerator is connected to the bus just like the shared memory So if we wanna access the accelerator, we need to have an additional signal which we name it `call` signal.

- 2. This cpu works as a pipeline architecture
- 3. Implement an 8 KB Memory and connect it to the bus. Each row of the memory is 8 bits.
- 4. By writing a testbench, simulate a real algorithm.

**

THIS PROJECT WAS PROPOSED FOR ONE OF THE UNIVERSITY COURSES BY PROFESSOR @DR. H. ROODAKI

COURSE: HARDWARE SOFTWARE CO-DESIGN

UNIVERSITY: KHAJE NASIR TOOSI UNIVERSITY (@KNTU)

DATE: APRIL-2018

**