EE221

Transformers

Tutorial

\odot	/	OBJECTIVES
0		Basic use of transformer LTIF
		D
•		Types and Construction
		O '
•		Ideal TIF
•		voltage and current ratio
		0
6		Dot Convention
ð		Equivalent Circuit of TIF
		b
•		Determining components
		Determining components values
•		PU System
•		Voltage Regulation
		U

\odot	/	
•		Auto-TIF
•		Advantages of Auto-TIF
•		Three-phase TIF

Transformers

A transformer is a device that changes ac electric power at one frequency and voltage level to ac electric power at the same frequency and another voltage level through the action of a magnetic field.

It consists of two or more coils of wire wrapped around a common ferromagnetic core. These coils are (usually) not directly connected. The only connection between the coils is the common magnetic flux present within the core.

Applications

- → used to step-up generator voltage to an appropriate voltage level for power transfer.
- → stepping down the transmission voltage at various levels for distribution and power utilization.

why TIF are used ??

In a modem power system, electric power is generated at voltages of 12 to 25 kV. Transformers step up the voltage to between 1 10 kV and nearly 1000 kV for transmission over long distances at very low losses. Transformers then step down the voltage to the 12- to 34.5-kV range for local distribution and finally permit the power to be used safely in homes, offices, and factories at voltages as low as 120 V.

Transformer classifications

1. Number of windings

-> Conventional TIF: two windings -> Auto-TIF: one winding -> Others: more than two windgs.

2. Number of phases:

-> Single-phase TIF

-> Three-phase TIF

TIF classifications contd...

3. Voltage level at which words is operated:

A low voltage (LV) wordg.

> step-down T/F: primary wordg is a high voltage (HV) wordg.

4. Construction:

Constructional Details

Shell Type TIF: wndgs are wrapped around the center leg of a laminated core.

Core Pype TIF:

wondge are wrapped ground two sides of a laminated equare core.

Primary & Secondary Winding 8

A two-winding TIF coneiets of two wondgs interlinked by a mutual magnetic field.

Primary wndg: energized by connecting it to an input source.

Secondary words: words to which an electrical load is connected and from which output energy is drawn.

fundamentals:

- 1. A voltage is induced in a coil when it links a variable flux.
- 2. A sinusoidal plux induces a sinusoidal voltage.

9 deal TIF:

- Input winding and an output winding having following properties:
 - · No iron and copper loves.
 - · No leakage fluxes.
 - · A core of infinite magnetic permeability and of infinite electrical recistivity
 - · Flux is confined to the wre and wndg religible.

- · AC current is flows through primary winding.
 - =) establishes an alternating flux in mag. ckt.
 - =) flux induces an emf in primary

$$e_1 = \frac{d\lambda_1}{dt} = \frac{d(N_1\phi)}{dt} = N_1 \frac{d\phi}{dt}$$

where,

1, = plux linkage of primary wordg

Φ: plux in the core linking both wndgs [wb]

N. = no. of turns in primary wordg.

e, -> induced emf [v]

0, = R, io +e, — (2) 5, No load recistance drop-10

 \Rightarrow $v_1 \simeq e_1$

Cet $\phi = \phi_{max} sinwt$

then,

$$e_1 = N_1 \frac{d\phi}{dt}$$

" W= 27f

NOTE:

induced emf leads the flux by 90°.

RMS (Effective) value of e1:

$$E_1 = \frac{e_{max}}{\sqrt{2}}$$
 $\left[:RMS = \frac{peak}{\sqrt{2}} \right]$

$$=) E_1 = 2 A f N_1 \Phi max$$

9 deal TIF phasor diag.:

formula:

E = 4.44 f N pmax

where,

E = effective voltage induced [v]

f = frequency of plux [Hz]

N= No. of turns on the

P max = peak value of the blux [wb]

Examples

The wil possesses 4000 turns and links an ac flux having a peak value of 2 mwb. If the frequency is SOHZ, Calculate the effective value and prequency of the induced voltage E.

4.44 f ND max

4.44x 50x 4000x0.002

17764

.. voltage ratio and turns ratio are given as:

$$\frac{E_1}{E_2} = \frac{N_1}{N_2} = a$$

where,

EI > Emf induced in primary[v]

E2 -> " " secondary [v]

a -> turns ratio

An ideal T/F having go turns on the primary and 2250 turns on the secondary is connected to a 120V, 50KZ source. The coupling between primary and secondary is perfect, but the magnetizing current is AA.

Calculate:

a) Effective voltage across the secondary terminals.

$$E_1 = 120 V$$
 $N_1 = 90$
 $N_2 = 2250$

$$\therefore \quad \frac{\varepsilon_1}{\varepsilon_2} = \frac{N_1}{N_2}$$

$$\Rightarrow E_2 = \frac{N_2}{N_1} \times E_1$$

$$=\frac{2250}{90} \times 120$$

- (b) peak voltage across secondary ferminals
- -> :: Effective value : peak
 - =) peak voltage = $\sqrt{2} \times E_2$ = $\sqrt{2} \times 3000$

(c) Instantaneous voltage across the secondary when the instantaneous voltage across the primary is 37V.

$$\frac{E_1}{E_2} = 25$$