

Lecture 5: Text Representation II Distributed Representations

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

01	Word-level: NNLM
02	Word-level:Word2Vec
03	Word-level: GloVe
04	Word-level: Fasttext
05	Sentence/Paragraph/Document-level
06	More Things to Embed?

Mikolov et al. (2013)

- Two Architectures
 - √ Continuous bag-of-words (CBOW) vs. Skip-gram

CBOW

Skip-gram

- Learning representations: Skip-gram approach
 - ✓ Predict surrounding words in a window of length m of every word
- Objective function
 - ✓ Maximize the log probability of any context word given the current center word

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log p(w_{t+j}|w_t)$$

 \checkmark where θ represents all variables we optimize

Skip-gram model

knight → The

knight → mighty

knight → Lancelot

knight → fought

knight → bravely.

Model probability of a context word given a word

feature for word w: x_w classifier for word c: v_c

$$p(c|w) = \frac{e^{x_w^{\top} v_c}}{\sum_{k=1}^{K} e^{x_w^{\top} v_k}}$$

• Word vectors $x_w \in \mathbb{R}^d$

CBOW model

Model probability of a word given a context

feature for context C: h_C

classifier for word w: v_w

$$p(w|\mathcal{C}) = \frac{e^{h_{\mathcal{C}}^\top v_w}}{\sum_{k=1}^K e^{h_{\mathcal{C}}^\top v_k}}$$

Continuous Bag Of Words

$$h_{\mathcal{C}} = \sum_{c \in \mathcal{C}} x_c$$

• Another architecture explanation

• For simplicity, we use the following notation instead of $p(w_{t+j}|w_t)$

$$p(o|c) = \frac{exp(u_o^T v_c)}{\sum_{w=1}^{W} exp(u_w^T v_c)}$$

✓ where o is the outside (output) word id, c is the center word id, u and v are "outside"

and "center" vectors of o and c

- ✓ Every word has two vectors!
 - v is a row of matrix W
 - u is a column of matrix W'
- \checkmark Use W' = W^T in practice for efficient computation

Learning parameters with Gradient Ascent

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-m < j < m, j \neq 0} \log p(w_{t+j}|w_t)$$

$$p(o|c) = \frac{exp(u_o^T v_c)}{\sum_{w=1}^{W} exp(u_w^T v_c)}$$

✓ Compute the gradient

$$\frac{\partial}{\partial v_c} \log p(o|c) = \frac{\partial}{\partial v_c} \log \frac{exp(u_o^T v_c)}{\sum_{w=1}^W exp(u_w^T v_c)}$$

$$= \frac{\partial}{\partial v_c} u_o^T v_c - \frac{\partial}{\partial v_c} \log \sum_{w=1}^W exp(u_w^T v_c)$$

A

Learning parameters with Gradient Ascent

✓ For chunk A

$$\frac{\partial}{\partial v_c} u_o^T v_c = u_o$$

✓ For chunk B

$$\begin{split} &-\frac{\partial}{\partial v_c} \log \sum_{w=1}^W exp(u_w^T v_c) \\ &= -\frac{1}{\sum_{w=1}^W exp(u_w^T v_c)} \cdot \Big(\sum_{w=1}^W exp(u_w^T v_c) \cdot u_w\Big) \\ &= -\sum_{w=1}^W \frac{exp(u_w^T v_c)}{\sum_{w=1}^W exp(u_w^T v_c)} \cdot u_w = -\sum_{w=1}^W P(w|c) \cdot u_w \end{split}$$

Learning parameters with Gradient Ascent

$$\frac{\partial}{\partial v_c} \log p(o|c) = u_o - \sum_{w=1}^W P(w|c) \cdot u_w$$

• Update the weight vector

$$v_c(t+1) = v_c(t) + \alpha \left(u_o - \sum_{w=1}^{W} P(w|c) \cdot u_w\right)$$

- Learning strategy
 - √ Do not use all nearby words, but one per each training

- The number of weights to be trained: $2 \times V \times N$ (Huge network!)
 - √ Word pairs and phrases
 - Treating common word pairs or phrases as single "word"
 - √ Subsampling frequent words
 - To decrease the number of training examples
 - The probability of word w_i being removed

$$if \ f(w_i) = 10^{-4}, \ P(w_i) = 1 - \sqrt{\frac{1}{10}} = 0.6838$$

$$if \ f(w_i) = 10^{-2}, \ P(w_i) = 1 - \sqrt{\frac{1}{1000}} = 0.9684$$

• The number of weights to be trained: $2 \times V \times N$ (Huge network!)

√ Negative sampling

 Instead of updating the weights associated with all output words, update the weight of a few (5-20) words

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-m < j < m, j \neq 0} \log p(w_{t+j}|w_t) = \frac{1}{T} \sum_{t=1}^{T} J_t(\theta)$$

$$J_t(\theta) = \log \sigma(u_o^T v_c) + \sum_{i=1}^k E_{i \sim P(w)} \left[\log \sigma(-u_i^T v_c) \right]$$

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{j=0}^{n} (f(w_i)^{3/4})}$$

• Negative Sampling Example

Context word vector

Negative Sampling Example

√ No. of 0 values for softmax computation is reduced from

|V| to (k+1)

wevi: word embedding visual inspector

Everything you need to know about this tool - Source code

Word2Vec: Example

Trained with movie reviews

Word2Vec: Example

Trained with movie reviews

Vec[류승완] - Vec[베테랑] ≒ Vec[최동훈] - Vec[암살]

