

Ch.3 Gate-Level Minimization

MSOP O minimal number of product terms

2 minimal number of literals.

Karnaugh maps (K-maps)

- minimal sum of products(MSOP) form 만들기 위한 graphical technique
 - minimal two-level implementation
- · K-maps are an alternative to algebra for simplifying expressions
 - o don't care conditions 조절하기 수월함
 - are only good for manual simplification of small expressions.

- Remember

 - o k-map의 모든 side는 wrap around 할 수 있다는 것.
 - 사각형 → 크기는 가장 크게, 개수는 가장 적게
 - solution은 여러 개일 수 있음 ⇒ MSP 제작 시
 평수수방 덕저 찾고 시작.
- 1. re-arranging the truth table

×	У	minterm			>	<u>'</u>
0	0	x'y'		•	0	1
0	1	x'y		ſo	x'v'	x'v
1	0	xy'	X	1	xy'	XV
1	1	xy	(K-map)		- /	- /

2. 근처에 있는 값끼리 묶는다고 생각, 즉 'OR'

ex) x'y' + x'y = x'(y'+y) = x'

ex)
$$x'y' + x'y + xy = (x'y' + x'y) + (x'y + xy) = x' + y$$

adjacent squares

Table 3-1The Relationship Between the Number of Adjacent Squares and the Number of Literals In the Term

	Number of Adjacent Squares	in a	Number o Term in an		Actoral 9 Sultr (3 AND SATER) s + 4368 Sulfat 20 le Map
K	2^k	n = 2	n = 3	n = 4	n = 5
0	1	2 TY	3 742	4	5
1	2	1 }	2 82	3	4
2	4	0	1 7 2.	2	3
3	8	12 Tal	0	1	2
4	16	अधिकेत.		0	1
5	32				0

a three-variable state

- 인접한 건 m0-m2, m4-m6도 가능
- ⇒ IcHUL 간단하게 만들기 귀에 사가하 하나에 많이 몫이웃 것!

 $f(x, y, z) = m_1 + m_5 + m_6 + m_7$

• ex) f(x,y,z) = xy + y'z + xz

×	У	Z	f(x,y,z)
0	0	0	0 0
0	0	1	1 1
0	1	0	0 4
0	1	1	0 3
1	0	0	0 4
1	0	1	15
1	1	0	1 6
1	1	1	1 7

	0	l	3 1	<u>/ 2</u>
	m ₀	m ₁	m_3	m_2
X	m ₄	m ₅	m ₇	m ₆
		Z	Z	

$$f(x,y,z)$$

$$= x'y'z + xy'z + xyz' + xyz$$

$$= m_1 + m_5 + m_6 + m_7$$

$$= \gamma' + \gamma + \gamma$$

LO Sum of monterm=3 H=197

- ∘ groping the minterms together → 사각형 개수 최소화 하기
 - **(7)** 사각형 하나 = and gate 하나
 - ② input 수 작게 할 것 = 사각형 크기 크게 할 것 ((2,4,8개씩 옮기)
 - 중복되는 값이 많을수록 사각형 크기가 커질 것임

$$\Rightarrow$$
 f(x, y, z) = y'z + xy

- 해당하는 MM 네 개가 다 묶여야 하나로 표현 가능함.
- => blue Attige that product.

Example 3-4

$$F = A'C + A'B + AB'C + BC$$

- Express it in sum of products
- · Find the minimal SOP

FIGURE 3-7

Map for Example 3-4; A'C + A'B + AB'C + BC = C + A'B

Four-variable K-maps

• wrap around all four sides!!

• ex) f = m0 + m2 + m5 + m8 + m10 + m13

• The expression is already a sum of minterms, so here's the K-map:

			\	/	
	1	0	0	1	
	0	1	0	0	>
\A/	0	1	0	0	X
W	1	0	0	1	
		Z	7		

)	/	
	m ₀	m_1	m ₃	m ₂	
	m ₄	m ₅	m_7	m_6	
W	m ₁₂	m ₁₃	m ₁₅	m ₁₄	X
VV	m ₈	m ₉	m ₁₁	m ₁₀	
		7	7		

• We can make the following groups, resulting in the MSP x'z' + xy'z.

			\	/	
	1	0	0	1	
	0	1	0	0	\ \
\4/	0	1	0	0	^
W -	1	0	0	1	
		Z	7	1	

	1		,	У	
	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
	w'xy'z'	w'xy'z	w'xyz	w'xyz'	
\A/	wxy'z'	wxy'z	wxyz	wxyz'	<u> </u>
W-	w×'y'z'	wx'y'z	wx'yz	wx'yz'	
		Z	7	1	

Prime Implications

Prime implicant

a product term obtained by combining the maximum possible number of adjacent squares.

 \Rightarrow 주된 항(주항) , and gate 묶인 하나

中外告世 35个对对

essential prime implicant

a minterm in a square is covered by only one prime implicant

⇒ 필수주항 ⇒ 주항 중에 대체할 수 없는 것들

765: XY, Y'Z, YZ, XZ

• $F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$ → 구성을 4개씩 웃음.

Fig. 3-11 Simplification Using Prime Implicants

Five-variable map

• 6 이상은 비효율적 → 3차원이 필요함

• five : 2차원

	٠.		/A =	= 0		
		DE		1)	
ì	BC	0 0	01	11	10	
	00	0	1	3	2	
	01	4	5	7	6	
В	11	12	13	15	14	
D	10	8	9	11	10	
				7		

			<i>A</i> =	= 1		
		DE		1	D	
1	BC	00	01	11	10	
	00	16	17	19	18	
	01	20	21	23	22	$\Big \Big _C$
В	11	28	29	31	30	
D	10	24	25	27	26	ľ
	-		I	<u> </u>		

ex)

P05

product of Sums Simplification

- · considering the generalized De Morgan's Theorem
 - · 1-0 ⇒ 0=2 务어주기
 - · AND-OR → OR 學见 ANDE 低기
 - Minterms-Maxterms

•
$$F(A, B, C, D) = \sum (0,1,2,5,8,9,10)$$

= $\prod (3,4,6,7,11,12,13,14,15)$

• gate implementation

Seven Segement Display

I don't care

n개의 변수가 있는 function에서 모든 2^n 개의 input 조합을 항상 필요로 하지 x

- 만약 특정한 input 조합이 절대 나타나지 않는다면 → guarantee 가능
- 몇몇 ouput이 회로에서 사용되지 않는다면 → 가능

• ex

- o X → i don't care
- 0, 1 모두로 간주될 수 있음

$$\Rightarrow$$
 MPd \times

×	У	z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	X
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	X
1	1	1	1

Seven Segment Display

• Input: digit encoded as 4 bits: ABCD

Table for e C X X X X X X X X X X

X

X

NAND

why NAND and NOR gates?

AND, OR보다 더 자주 쓰임

- 제작하기 쉬움
- IC 에서의 기본 gate

NAND Circuits

Fig. 3-18 Logic Operations with NAND Gates

AND -invert.

DeMorgan's Theorem

Conversion into NAND

- 1. covert all AND to NAND with AND-invert symbols
- 2. convert all OR to NAND with invert-OR symbols
- 3. check all the invert in the diagram
- 4. if not compensated, insert an inverter

$$F = AB + CD$$
bubble 3xHbHof 35.

$$A = B$$

$$C = D$$
(a) AND-OR
(b) NAND

NOR

NOR Circuits

the dual of NANDS

DeMorgan's Theorem

example

AND-OR invert

the complement of SOP

• AND-NOR = NAND-AND

OR-AND Invert

the complement of POS

• OR-NAND = NOR-OR

F = [(A + B)(C + D)E]'

Example

XOR Function

XOR → sum of minterm or input이 서로 다를 때

Exclusive-OR
$$\rightarrow$$
 일정 H로 다른 때 $x \oplus y = xy' + x'y$
Exclusive-NOR \rightarrow 일정 본 때

$$(x \oplus y)' = xy + x'y'$$

Properties

$$x \oplus 0 = x$$
 $x \oplus 1 = x'$

$$x \oplus x = 0$$
 $x \oplus x' = 1$

$$x \oplus y' = x' \oplus y = (x \oplus y)'$$

$$A \oplus B = B \oplus A$$

$$(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$$

⇒ multiple input은 어려움

Odd Function

Map for a Three-variable Exclusive-OR Function

bubble 27

(a) 3-input odd function

(a) Even function $F = (A \oplus B \oplus C)'$

(b) 3-input even function

Parity Generation and checking

even-parity generator

Table 3-4 Even-Parity-Generator Truth Table

Three-Bit Message			Parity Bit
х	У	z	Р
0	0	0	0
0	O	1	1
0	1	0	1
0	1	1	0
1	0	O	1
1	0	1	0
1	1	O	0
1	1	1	1

門外外帶 Even-Parity Generator

(a) 3-bit even parity generator

even-parity checker

P 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0	0 1 1 0 1 0 0
1 0 1 0 1 0 1	1 1 0 1 0
0 1 0 1 0 1	1 0
1 0 1 0 1 0	1 0
0 1 0 1 0	1 0
1 0 1 0	0
0 1 0	~
1 0	0
0	1
1	1
	0
0	0
1	1
0	0
1	1
0	1
1	0
	0

Even-Parity Checker

Reuse the parity generator!