Computer and Network Security

Homework 1

20337025 崔璨明

Problem 1

密文ABCBABBBAC中, "AB"出现的位置为1, 5, 距离为4, "BA"出现的位置为4, 8, 距离为4, 公因子为{4, 2, 1}, 已知密钥长度为1/2/3, 因此最有可能的密钥长度为2。

根据密钥的长度(2),将密文分为两组:

奇数: ACABAC

偶数: BBBBC

三个字母A, B, C的出现频率分别为0.7, 0.2和 0.1, 在奇数序列中A出现次数为3, BC出现次数都为1, 所以奇数序列中A的明文为A, 而偶数序列中B出现次数为4, C出现次数为1, 所以B的明文为A, 综上, 密钥为(0,1)=(a,b)

Problem 3

当使用DESV时:

对于两组不同的明文和秘文M1,C1,M2,C2,有:

$$C_1 = DES_k(M_1) \oplus k_1$$

$$C_2 = DES_k(M_2) \oplus k_1$$

$$C_1 \oplus C_2 = \{DES_k(M_1) \oplus k_1\} \oplus \{DES_k(M_2) \oplus k_1\} = DES_k(M_1) \oplus DES_k(M_2)$$

对于满足以上条件的密钥,可以进行brute-force key search,需要编码M1 2^{56} 和M2 2^{56} 次,一旦找到k,就可以找到满足条件的 k_1 ,总时间为 2^{56} DES。

当使用DESW时:

$$DES_k^{-1}(C_1)=M_1\oplus k_1$$

$$DES_k^{-1}(C_2)=M_2\oplus k_1$$

$$DES_k^{-1}(C_1) \oplus DES_k^{-1}(C_2) = \{M_1 \oplus k_1\} \oplus \{M_2 \oplus k_1\} = M_1 \oplus M_2$$

进行brute-force key search,需要编码 C_1 2^{56} 和 C_2 2^{56} 次,一旦找到k ,就可以找到满足条件的 k_1 ,总时间就是 2^{56} DES。

Problem 4

Bob已知N,可以将N分解为两个质数P和Q: $P \times Q = N$,对于每一组P,Q,通过 $\phi(N) = (P-1)(Q-1)$ 计算欧拉函数。因为已知公钥,所以只需要求解该公式便可以求得私钥: $e_A \times d_A \% \ \phi(N) = 1$,Bob可以使用扩展欧几里得算法来计算。

Problem 5

 $C_2=M_1\oplus M_2^{'}$,而M1=M2=M,所以 $C_2=M\oplus M^{'}$,由此可以计算得到 $M^{'}$ 。 又因为 $C_1 = M^{'} \oplus M0$, C_1 已知,由此便可以得到 M_0 。

Problem 6

- 1. 具有单向性而不具有抗碰撞性: $H(x)=\sum_{i=1}^n x_i$, x_i 为x的第i位 2. 具有抗碰撞性而不具有单向性: $H(x)=A(x)\mid\mid B(x)$, A(x) 为抗碰撞性的函数, B(x) 为x的 最后256位