概率论与随机过程

授课教师: 唐宏岩

前言

本讲义基于清华大学数学系唐宏岩老师于 2023 - 2024 学年秋季学期开设的《概率论与随机过程》课程,用于辅助同学们课后复习。

由于时间与能力所限,本讲义可能不会出现大段的文字论述(但会包含重要的定义、定理与公式等)。但是,对许多基本概念的深入理解是非常有必要的,同学们可以在浏览时检查自己是否能够回忆起课上的内容,对掌握不够扎实的地方,鼓励大家查阅参考书或在课程群提问以解决问题。

由于此为教学团队第一年尝试整理讲义,诸如格式编排、内容完整性方面可能存在许多不足,欢迎大家联系我提出宝贵的意见与建议。

曹子尧 2023 年 9 月

目录

前言		Ì
第一部	邓分 初等概率论	1
第一章	事件的概率	2
1.1	概率的发展史	2
1.2	随机试验与事件	2
1.3	事件的运算	3
1.4	概率的几种解释	3
1.5	概率的公理化定义	3
1.6	条件概率	4
1.7	事件的独立性	5
1.8	Bayes 公式	6
第二章	随机变量	8
2.1	一维随机变量	8
2.2	离散随机变量	10
2.3	常见离散分布	11
2.4	连续随机变量	12
2.5	常见连续分布	12
2.6	随机变量的函数	14
第三章	联合分布	16
3.1	随机向量 ····································	16
3.2	离散分布	16
3.3	连续分布	17

目录		目录
3.4	边际分布	17
3.5	条件分布	18
3.6	独立性	18
3.7	随机向量的函数	19
第四章	随机变量的数字特征	22
4.1	期望	22
4.2	分位数	22
4.3	方差	23
4.4	协方差与相关系数	23
4.5	矩	24
4.6	矩母函数	25
4.7	条件期望	27
第五章	不等式与极限定理	29
5.1	概率不等式	29
5.2	大数定律	30
5.3	中心极限定理	31
松一 计	p / \	99
另 一首	『分 随机过程 	33
第六章	Poisson 过程	36
6.1	基本概念	36
6.2	Bernoulli 过程	36

第七章	离散时间 Markov 链	43
7.1	基本概念	43
7.2	Chapman-Kolmogorov 方程	45

36

38

41

6.3

6.4

6.5

第一部分

初等概率论

第一章 事件的概率

1.1 概率的发展史

赌博中的 de Méré's Problem: 连续掷一个均匀六面骰 4 次,获得至少一次"6"的概率为 $1-(\frac{5}{6})^4\approx 0.5177$; 而连续掷两个均匀六面骰 24 次,获得至少一次"对 6"的概率为 $1-(35/36)^{24}\approx 0.4914$ 。

Pascal 和 Fermat 的通信中使用初等数学的方法,首创了概率论相当多的数学理论,虽然当时没有总结成通用的定理。

Laplace 创立了采用分析方法的分析概率论。

Kolmogorov 利用测度论方法发展了现代概率理论。

1.2 随机试验与事件

定义 1.1. 概率论中的随机试验指的是符合下面两个特点的试验:

- 1. 不能预先确知结果
- 2. 可以预测所有可能的结果

定义 1.2. 样本空间是指一个试验的所有可能结果的集合,常用 Ω 表示。

定义 1.3. 事件是样本空间的一个良定义的子集。

一次随机试验中,一个事件可能发生或不发生。

下面是一些常见的事件:

- 1. 全事件 Ω (必然事件)
- 2. 空事件 ∅ (不可能事件)
- 3. 基本事件 $\{a\}$, 其中 $a \in \Omega$, 即仅包含单一试验结果的事件

1.3 事件的运算

由于事件是集合,因此事件之间可以进行集合之间的运算,如:

- 2. $A + B = A \cup B = (A^c \cap B^c)^c$
- 3. 差 $A B = A \setminus B$
- $4. \, \Re AB = A \cap B = (A^c \cup B^c)^c$

集合的 De Morgan's laws 也适用于事件: $(\bigcup_n A_n)^c = \bigcap_n A_n^c$ 。 事件的运算像集合的运算一样,可以用 Venn 图来表示。

1.4 概率的几种解释

对于概率这一数学概念,人们形成了几种从不同角度出发的解释:

- 1. 古典解释: 基于等可能性的解释
- 2. 频率解释:基于大量重复试验的解释(频率学派采用的解释)
- 3. 主观解释: 概率是一种对确信程度的度量(Bayes 学派采用的解释)

1.5 概率的公理化定义

我们用 2^{Ω} 表示 Ω 的幂集, 即 Ω 的所有子集组成的集合。

定义 1.4. 事件集类 $\mathscr{F} \subset 2^{\Omega}$ 必须满足所谓 σ -代数的性质:

- 1. $\Omega \in \mathscr{F}$
- 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$ (对补运算的封闭性)
- 3. $A_i \in \mathcal{F}, \forall i \in \mathbb{N}^* \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ (对可列并的封闭性)

例 1.1. $\Omega = \{a, b, c, d\}$, 以下是一些合法的事件集类:

- 1. $\mathscr{F}_1 = 2^{\Omega}$
- 2. $\mathscr{F}_2 = \{\Omega, \emptyset\}$
- 3. $\mathscr{F}_3 = \{\Omega, \emptyset, \{a, b\}, \{c, d\}\}$

定义 1.5. (Kolmogorov) 概率函数 $P: \mathscr{F} \to \mathbb{R}$ 是满足以下三条公理的映射:

- 1. $P(A) \ge 0, \forall A \in \mathscr{F}$
- 2. $P(\Omega) = 1$
- 3. $A_i \in \mathcal{F}, \forall i \in \mathbb{N}^*, A_i A_j = \emptyset, \forall i \neq j \Rightarrow P(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ (加法公理/可列可加性)

我们称 (Ω, \mathcal{F}, P) 是一个概率空间。

命题 1.1. 关于概率空间, 有如下性质:

- 1. $P(A) \leq 1, \ \forall A \in \mathscr{F}$
- 2. $P(\emptyset) = 0$
- 3. $P(A) + P(A^c) = 1$
- 4. $A_i \in \mathcal{F}, \forall i \in \{1, 2, \dots, n\}, \ A_i A_j = \emptyset, \forall i \neq j \Rightarrow P(\sum_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$ (有限可加性)
- 5. $A \subset B \Rightarrow P(A) \leq P(B)$ (我们称事件 A 蕴涵事件 B)

6.
$$P(A_1 + \dots + A_n) = \sum_{i=1}^{n} P(A_i) - \sum_{i_1 < i_2} P(A_{i_1} A_{i_2})$$
 (容斥公式)
$$+ \dots + (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(A_{i_1} A_{i_2} \cdots A_{i_r})$$

$$+ \dots + (-1)^{n+1} P(A_1 \cdots A_n)$$

特别地, P(A + B) = P(A) + P(B) - P(AB)。

例 1.2. (配对问题)

有 n 个人,每人有一顶帽子。现将所有帽子放到一起,再随机分配给每人一顶,考虑无人拿到自己的帽子的概率。

为此,设事件 A_i 为 "第 i 个人拿到自己的帽子",则 $P(A_i) = 1/n$ 。

利用容斥公式,至少一人拿到自己帽子的概率为

$$P(A_1 + \dots + A_n)$$

$$= \sum_{i=1}^n P(A_i) - \sum_{i_1 < i_2} P(A_{i_1} A_{i_2})$$

$$+ \dots + (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(A_{i_1} A_{i_2} \cdots A_{i_r})$$

$$+ \dots + (-1)^{n+1} P(A_1 \cdots A_n)$$

其中 $\sum_{i_1 < i_2 < \dots < i_r} P(A_{i_1} A_{i_2} \dots A_{i_r}) = \frac{(n-r)!}{n!} \binom{n}{r} = \frac{1}{r!}$,即 $P(A_1 + \dots + A_n) = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots + (-1)^{r+1} \frac{1}{r!} + \dots + (-1)^{n+1} \frac{1}{n!}$ 。

所求概率 $P_n = 1 - P(A_1 + \dots + A_n) = 1 - (1 - \frac{1}{2!} + \dots + (-1)^{n+1} \frac{1}{n!}) \to e^{-1}(n \to +\infty)$ 。

思考: 恰有 k 个人拿到自己的帽子的概率?

1.6 条件概率

定义 1.6. 若 P(B) > 0,定义条件概率 $P(A|B) = \frac{P(AB)}{P(B)}$ 。

通常, 我们计算条件概率的方法有两种:

- 1. 在缩小(受限)的样本空间(要求事件 B 发生)上,考虑事件 A 发生的概率
- 2. 根据定义计算
- 一种常用的形式是 P(AB) = P(A|B)P(B) = P(B|A)P(A),这可以视作是求解两个事件的积的概率的方法(乘法法则)。
- 例 1.3. 掷一个均匀六面骰, $\Omega = \{1, 2, 3, 4, 5, 6\}, A = \{2, 3, 4, 5\}, B = \{1, 3, 5\},$ 则 $P(A) = 4/6, P(B) = 3/6, P(AB) = 2/6, P(A|B) = \frac{P(AB)}{P(B)} = 2/3$ 。

例 1.4. 袋子中有 8 个红球和 4 个白球,无放回地取出两个球,利用组合数可知,两个都是红球的概率为 $\frac{\binom{8}{2}}{\binom{12}{2}}$ 。

用条件概率可以简化计算: $P(R_1R_2) = P(R_1)P(R_2|R_1) = \frac{8}{12} \times \frac{7}{11}$.

更一般地,我们有 $P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$,常用于序贯发生的一系列事件的积的概率求解。

例 1.5. 回忆上一节的"配对问题"。我们有

$$P(A_{i_1} A_{i_2} \cdots A_{i_r})$$

$$= P(A_{i_1}) P(A_{i_2} | A_{i_1}) \cdots P(A_{i_r} | A_{i_1} \cdots A_{i_{r-1}})$$

$$= \frac{1}{n} \times \frac{1}{n-1} \times \cdots \times \frac{1}{n-(r-1)}$$

$$= \frac{(n-r)!}{n!}.$$

命题 1.2. 对于给定的事件 $B,\ P(\cdot|B): \mathscr{F} \to \mathbb{R}$ 是概率函数,即 $(\Omega,\mathscr{F},P(\cdot|B))$ 仍是概率空间。

对于上述命题的证明,只需验证 $P(\cdot|B)$ 满足概率的三条公理即可。

这提示我们,条件概率也是一种概率,如果我们将 P(A) 称为观察到事件 B 之前 A 的 "先验概率",则 P(A|B) 就是相应的"后验概率"。

一个常见的迷思是: 观测到事件 A 已经发生后, 是否可以说事件 A 发生的概率 P(A) = 1? 学过条件概率之后, 我们知道答案是否定的, 实际上是后验概率 P(A|A) = 1.

1.7 事件的独立性

定义 1.7. 若 P(AB) = P(A)P(B),则称事件 A, B 相互独立。

如果 P(B) > 0,我们注意到 A, B 独立等价于 P(A|B) = P(A)。

命题 1.3. 若 A, B 独立,则 A^{c}, B 独立。

定义 1.8. 若 P(ABC) = P(A)P(B)P(C), 且 A, B, C 两两独立,则称事件 A, B, C 独立。

注意,仅有A,B,C两两独立,不能推出三者独立。

定义 1.9. 若对于事件列 $\{A_i\}_{i=1}^{\infty}$,任意取有限个事件 $A_{i_1}, A_{i_2}, \cdots, A_{i_r}$,都有 $P(A_{i_1}A_{i_2}\cdots A_{i_r}) = P(A_{i_1})P(A_{i_2})\cdots P(A_{i_r})$,则称 $\{A_i\}_{i=1}^{\infty}$ 相互独立。

例 1.6. 每周开奖的彩票,各次中奖率均为 10^{-5} 且独立,问连续十年(520 周)不中奖的概率? 令事件 A_i 为第 i 周不中奖,则 $P(A_i) = 1 - 10^{-5}$,故 $P(A_1 \cdots A_{520}) = (1 - 10^{-5})^{520} \approx 0.9948$ 。

定义 1.10. 若事件 A, B, E 满足 P(AB|E) = P(A|E)P(B|E),则我们称 A, B 关于 E 条件独立。

注意,条件独立性和独立性之间没有蕴涵关系。

1.8 Bayes 公式

定理 1.1. (全概率公式)

设 $\{B_i\}$ 是 Ω 的一个分割,即

- 1. $\sum_{i} B_{i} = \Omega$
- 2. $B_iB_i = \emptyset, \forall i \neq j$
- 3. $P(B_i) > 0, \forall i$

则 $P(A) = P(\sum_{i} (AB_i)) = \sum_{i} P(AB_i) = \sum_{i} P(A|B_i)P(B_i)$ 。

注: $\{B_i\}$ 可以是有限集合,或可数无穷集合。

例 1.7. 对于调查问卷中的敏感问题(如"你是否有过某病史"),被调查者可能会有所顾虑而做出虚假的回答。为保护被调查者的隐私,同时取得其信任,考虑引入一个"保护性问题",即不具有敏感性的问题(如"你是否会游泳"),并让被调查者以抛硬币的方式,随机抽取一个问题回答。这样,抽到敏感问题的、确有过该病史的被调查者在回答"是"时也无须有病史暴露之虞。

设人群中,敏感问题答案为"是"的比例为 p (未知),保护性问题答案为"是"的比例为 q (假设已知),则若收集到 n 个被调查者的结果,其中 k 个为"是",我们便有 $\frac{1}{2}p+\frac{1}{2}q\approx\frac{k}{n}$,可以据此得到 p 的估计。

定理 1.2. (Bayes 公式 / Bayes 准则)

设 $\{B_i\}$ 是 Ω 的一个分割,则 $P(B_i|A) = \frac{P(B_i)P(A|B_i)}{\sum_i P(B_j)P(A|B_j)}$ 。

例 1.8. (假阳性悖论)

对于一种流行病, A 表示一个人检查呈阳性, B 表示此人确实患病。

设 $P(B) = 10^{-4}, P(A|B) = 0.99, P(A|B^c) = 10^{-3},$

则一个检查呈阳性的人真的患病的概率仅为 $P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)} \approx 9\%$ 。

如果再次检测仍呈阳性, 且两次检测效率不变, 结果彼此独立, 则此人真的患病的概率为

 $P(B|A_1A_2) = \frac{P(A_1A_2|B)P(B)}{P(A_1A_2|B)P(B) + P(A_1A_2|B^c)P(B^c)} = \frac{P(A_1|B)P(A_2|B)P(B)}{P(A_1|B)P(A_2|B)P(B) + P(A_1|B^c)P(A_2|B^c)P(B^c)} \approx 99\%.$

第二章 随机变量

2.1 一维随机变量

定义 2.1. 随机变量是样本空间上的实值函数。

注意,上述定义是不严格的。

更严谨的定义: 若对于可测空间 (Ω, \mathscr{F}) 和函数 $X: \Omega \to \mathbb{R}$,有 $\forall x \in \mathbb{R}, \{\omega | X(\omega) \leq x\} \in \mathscr{F}$,则称 X 是 (Ω, \mathscr{F}) 上的随机变量。其中"可测空间"是指 \mathscr{F} 是样本空间 Ω 上的 σ -代数。此处不要求"概率空间",即随机变量的定义并不依赖概率测度 P 的存在。

例 2.1. 下表展示了两个随机变量。其中"像集"即 $\{X(\omega)|\omega\in\Omega\}$ 。

试验	样本空间 Ω	随机变量 X	像集	
随机调查 50 人对	$O = \{0, 1\}^{50}$	V _ "1" 的 人 米h	[0 1 50]	
某议题支持与否	$\Omega_1 = \{0, 1\}^{50}$	$X_1 = "1"$ 的个数	$\{0, 1, \cdots, 50\}$	
随机抽取一名北	0	V 甘东山	П	
京成年市民	$\Omega_2 = $ 所有北京成年市民之集	$X_2 = $ 其年收入	\mathbb{R}	

注意,我们经常用 " $X_1=20$ "、" $X_2>100000$ " 等简化的记号来表示事件。例如,前者实际上指的是 $\{\omega\in\Omega_1|X_1(\omega)=20\}$ 。

诸如此类的试验结果集合需是事件,这体现出前述的随机变量严谨定义的意义。事实上,如果满足该严谨定义,则对于任意可测集 $I\subset\mathbb{R}$,都有 $\{\omega\in\Omega|X(\omega)\in I\}\in\mathscr{F}$ 。

随机变量是试验结果的数值摘要,起到一种概括的作用。随机变量的"随机"要素来自于 样本点 $\omega \in \Omega$ 的随机选择。在实际应用中,随机变量常常比样本空间具有更直观的意义。

随机变量可以分为:

1. 离散型: 至多可数多个取值

2. 连续型:区间型取值(非严格定义)

3. 其他

"其他"中的一个非常特殊的子类是所谓的混合型随机变量。

定义 2.2. 对于随机变量 X 和 \mathbb{R} 的可测子集 I (例如 I = (a, b]),令 $X^{-1}(I) = \{\omega \in \Omega | X(\omega) \in I\}$ $\subset \Omega$ 为 I 的原像集,我们定义记号 $P(X \in I)$ 表示 "X 的取值在 I 中的概率",其值为 $P(X^{-1}(I))$ 。

例如, $P(a < X \le b) = P(\{\omega | X(\omega) \in (a, b]\})$ 。

定义 2.3. $F_X(x) = P(X \le x), \forall x \in \mathbb{R}$ 称为随机变量 X 的累积分布函数(Cumulative Distribution Function, CDF)。下标 X 在无歧义时可省略。

我们有 $P(a < X \le b) = F(b) - F(a)$ 。

X	2	3	4	5	6	7	8	9	10	11	12
F	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

相应的 CDF 见图 2.1。

图 2.1: X 的 CDF 图象

注:由于软件限制,各个阶跃点的绘制方式不太规范,实际上从其左侧逼近应该为一个空圈,例如 F(3)=3/36 而不是 1/36。另外, $\forall x<2, F(x)=0; \forall x\geq 12, F(x)=1$ 。

命题 2.1. CDF 的性质:

- 1. F 单调递增(未必严格单调递增)
- 2. $\lim_{x \to +\infty} F(x) = 1$, $\lim_{x \to -\infty} F(x) = 0$
- 3. F 右连续

可以证明,上述三条性质是任意函数 $F: \mathbb{R} \to \mathbb{R}$ 成为 CDF 的充要条件。

思考:如果我们将 CDF 的定义改为 P(X < x),上述性质会如何变化?

命题 2.2. 若 X, Y 为随机变量,则 aX + bY, XY, X/Y (需 $Y \neq 0$) 都是随机变量。一般地,若 g 为可测函数,则 g(X, Y) 是随机变量。

定义 2.4. 设 X_1, X_2 的 CDF 分别为 F_1, F_2 , 我们称 X_1 与 X_2 同分布, 若 $\forall x \in \mathbb{R}, F_1(x) = F_2(x)$.

命题 2.3. 随机变量 X_1 与 X_2 同分布的一个充要条件是 \forall 可测集 $I \subset \mathbb{R}, P(X_1 \in I) = P(X_2 \in I)$ 。

注意,同分布不等价于"同变量",即两个同分布的变量的取值不一定恒等。

例 2.3. 掷一次硬币,X 表示正面向上次数,Y 表示反面向上次数,显然 X 与 Y 同分布,但取值不等。

2.2 离散随机变量

定义 2.5. 离散随机变量 X 的概率质量函数(Probability Mass Function, PMF)f 是指该随机变量取各个可能值的概率,即 $f(x) = P(X = x), \forall x \in \mathbb{R}$ 。可以用分布表的形式展示各个可能取值与概率的对应关系。

命题 2.4. 如果离散随机变量 X 的所有可能取值为 $\{x_i\}$,则 X 的 PMF 具有如下性质:

- 1. $f(x_i) = p_i \ge 0, \forall i$
- 2. $\sum_{i} p_{i} = 1$
- 3. $F(x) = \sum_{x_i \le x} f(x_i)$

定义 2.6. 离散随机变量 X 的期望定义为 $E(X) = \sum_{i} x_{i} p_{i}$ 。

我们称 X 的期望存在,当且仅当 $\sum_{i} |x_{i}| p_{i} < +\infty$ 。

当期望存在时,其方差定义为 $Var(X) = \sum_i (x_i - E(X))^2 p_i = E((X - E(X))^2) = E(X^2) - E^2(X)$ 。 当方差有限时,称其算术平方根为 X 的标准差,记作 SD(X)。

注意,通常我们所说的一个随机变量的均值指的就是期望。

标准化指的是对 X 作线性变换 $\frac{X-\mu}{\sigma}$, 其中 μ 和 σ 分别为 X 的期望和标准差,得到均值 为 0,标准差为 1 的随机变量。

对于可测函数 g, g(X) 也是随机变量, 其期望 $E(g(X)) = \sum_i g(x_i)p_i$ 。期望反映了随机变量的集中趋势, 而方差反映了其分散程度。

2.3 常见离散分布

定义 2.7. 称一个随机变量 X 服从 Bernoulli 分布,若 $\exists p \in (0,1), X$ 的取值集合为 $\{0,1\},$ 且 P(X=1)=p, P(X=0)=1-p。记作 $X \sim B(p)$ 。

B(p) 中的 p 称为该 Bernoulli 分布的参数。后续介绍的其他分布同理。

我们常将两种取值分别称为"成功"和"失败"。

计算可得, 若 $X \sim B(p)$, 则 E(X) = p, Var(X) = p(1-p)。

定义 2.8. 称一个随机变量 X 服从二项分布,若 $\exists N \in \mathbb{N}^*, p \in (0,1), X$ 的取值集合为 $\{0,1,\cdots,N\}$,且 $P(X=k) = \binom{N}{k} p^k (1-p)^{N-k} (k \in \{0,1,\cdots,N\})$ 。记作 $X \sim B(N,p)$ 。

我们常将 k 理解为 "N 次独立 Bernoulli 试验中的成功次数"。

计算可得, 若 $X \sim B(N, p)$, 则 E(X) = Np, Var(X) = Np(1-p)。

定义 2.9. 称一个随机变量 X 服从 Poisson 分布,若 $\exists \lambda > 0$,X 的取值集合为 \mathbb{N} ,且 $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} (k \in \mathbb{N})$ 。记作 $X \sim P(\lambda)$ 。

计算可得, 若 $X \sim P(\lambda)$, 则 $E(X) = \lambda, Var(X) = \lambda$ 。

对 Poisson 分布的一种常见理解是"一段时间内某个小概率事件发生的次数"所服从的分布。例如,观察时间 (0,1] 内某路口的交通事故数 X,将 (0,1] 区间等分成 n 个小区间,即 $l_i = (\frac{i-1}{n}, \frac{i}{n}](i=1,2,\cdots,n)$ 。考虑到 n 很大时,每个区间的长度很小,我们作如下假设:

- 1. 每段区间内,至多发生一次事故
- 2. l_i 上发生一次事故的概率与区间长度 (1/n) 成正比, 为 $p = \lambda/n$
- 3. 各区间内是否发生事故彼此独立 则 $P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}\to \frac{\lambda^k e^{-\lambda}}{k!}(n\to +\infty)$,即 $X\sim P(\lambda)$ 。

例 2.4. 设某医院平均每天出生婴儿数为 λ ,则接下来 t 天内出生婴儿数服从参数为 $t\lambda$ 的 Poisson 分布。

对于一般的二项分布 $X \sim B(N,p)$,若 p 很小,N 很大,而 $\lambda = Np$ 不太大,则近似有 $X \sim P(\lambda)$,且近似误差不超过 $\min\{p,Np^2\}$ 。

进一步,若 N 次 Bernoulli 试验并非严格独立,但满足弱相依条件,则 Poisson 分布仍为一种较好的近似。

例 2.5. (配对问题)

 A_i 表示第 i 个人拿到自己的帽子,则 $P(A_i) = 1/n, P(A_i|A_j) = \frac{1}{n-1}(j \neq i)$,当 n 很大时,1/n

和 $\frac{1}{n-1}$ 很接近,可以认为满足弱相依条件。

记 X 为拿到自己帽子的人数,则 X 近似服从参数为 $\lambda=np=n\cdot\frac{1}{n}=1$ 的 Poisson 分布,即 $P(X=k)\approx\frac{e^{-1}}{k!}$ 。

我们用常规做法检查这种近似是否合理。首先考虑指定的某 k 人,记事件 E 表示这 k 人拿到自己的帽子,事件 F 表示其余 (n-k) 人未拿到自己的帽子,则 $P(EF) = P(E)P(F|E) = \frac{(n-k)!}{n!} \cdot P_{n-k}$,其中 P_{n-k} 为 (n-k) 人随机拿帽子时无人拿对的概率。那么我们有 $P(X=k) = \binom{n}{k} P(EF) = \frac{1}{k!} P_{n-k} \to \frac{e^{-1}}{k!} (n \to +\infty)$ 。这说明前述的近似是较好的。

2.4 连续随机变量

定义 2.10. 对随机变量 X,若存在 $f: \mathbb{R} \to [0, +\infty)$,使得 \forall 可测集 $I \subset \mathbb{R}$,都有 $P(X \in I) = \int_I f(x) dx$,则称 X 为 连续型随机变量,f 称为其概率密度函数 (Probability Density Function, PDF)。

命题 2.5. 连续随机变量 X 的 PDF 具有如下性质:

- 1. $\int_{-\infty}^{+\infty} f(x) dx \equiv 1$
- 2. $P(a < X \le b) = \int_a^b f(x) dx = P(a \le X \le b) = P(a \le X < b) = P(a < X < b)$
- 3. $P(X = a) \equiv 0, \forall a \in \mathbb{R}$
- 4. 若 f 在 x_0 处连续,则 $P(x_0 \delta < X < x_0 + \delta) = \int_{x_0 \delta}^{x_0 + \delta} f(t) dt \approx f(x_0) \cdot 2\delta$
- 5. $F(x) = \int_{-\infty}^{x} f(t) dt$ 连续,且若 f 在 x 处连续,有 F'(x) = f(x)
- 6. PDF 若存在,则不唯一(可以修改其在任意零测集上的值,得到不同的 PDF)

定义 2.11. 连续随机变量 X 的期望定义为 $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$.

我们称 X 的期望存在,当且仅当 $\int_{-\infty}^{+\infty} |x| f(x) dx < +\infty$ 。

当期望存在时,其方差定义为 $Var(X) = \int_{-\infty}^{+\infty} (x - E(x))^2 f(x) dx = E((X - E(X))^2) = E(X^2) - E^2(X)$ 。

当方差有限时,称其算术平方根为X的标准差,记作 $\mathrm{SD}(X)$ 。

对于可测函数 g, g(X) 也是随机变量, 其期望 $\mathrm{E}(g(X)) = \int_{-\infty}^{+\infty} g(x) f(x) \mathrm{d}x$.

2.5 常见连续分布

定义 2.12. 称一个连续型随机变量 X 服从均匀分布,若其 PDF 为 $f(x) = \frac{1}{b-a}(x \in (a,b))$, f 在其余各处取 0。记作 $X \sim U(a,b)$ 。

我们常将 $X \sim U(0,1)$ 称为随机数。

计算可得,若 $X \sim U(a,b)$,则 $E(X) = \frac{a+b}{2}$, $Var(X) = \frac{(b-a)^2}{12}$ 。

定义 2.13. 称一个连续型随机变量 X 服从正态分布,若其 PDF 为 $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}(\sigma > 0)$ 。记作 $X \sim N(\mu, \sigma^2)$ 。

计算可得,若 $X \sim N(\mu, \sigma^2)$,则 $E(X) = \mu, Var(X) = \sigma^2$ 。 著名的"经验法则"见图 2.2。

图 2.2: 经验法则

 $X \sim N(\mu, \sigma^2)$ 的充要条件是 $Y = \frac{X - \mu}{\sigma} \sim N(0, 1)$ 。我们将 N(0, 1) 称为标准正态分布。

定义 2.14. 称一个连续型随机变量 X 服从指数分布, 若其 PDF 为 $f(x) = \lambda e^{-\lambda x} (\lambda > 0, x > 0)$, f 在其余各处取 0。记作 $X \sim Exp(\lambda)$ 。

指数分布常用于刻画等待时间、寿命等。

计算可得, 若 $X \sim Exp(\lambda)$, 则 $E(X) = 1/\lambda$, $Var(X) = 1/\lambda^2$ 。

指数分布有另一种符号约定,以 $\beta = 1/\lambda$ 为参数,一些数学软件可能采用此种约定。

指数分布的 CDF 为 $F(x)=1-e^{-\lambda x}(x>0)$,所谓的 "尾概率" 为 $P(X>x)=1-F(x)=e^{-\lambda x}(x>0)$ 。

例 2.6. 设某医院平均每天出生婴儿数为 λ ,现在观察到一名婴儿出生,则接下来 t 天内有婴儿出生的概率为 $P(X \le t)$,其中 X 表示到下一个婴儿出生所需等待的时间。

记 N(t) 为 t 天内出生婴儿数,我们已经知道 $N(t) \sim P(t\lambda)$,则 $P(X > t) = P(N(t) = 0) = e^{-\lambda t}$, 故 $P(X \le t) = 1 - e^{-\lambda t}$ 。我们发现 X 服从参数为 λ 的指数分布。

我们从另一个角度理解指数分布。

首先引入失效率或危险率的概念。设 X 为连续型随机变量(表示某种零件的寿命),其 CDF 为 F(x),且 F(0)=0。考虑条件概率 $P(x < X < x + \mathrm{d}x | X > x) = \frac{P(x < X < x + \mathrm{d}x | X > x)}{P(X > x)} = \frac{F(x + \mathrm{d}x) - F(x)}{1 - F(x)} \approx \frac{F'(x)}{1 - F(x)} \mathrm{d}x$,即 "年龄" 为 x 的零件不能继续工作的条件概率密度为 $\frac{F'(x)}{1 - F(x)}$,我们称其为瞬时失效率 $\lambda(x)$,则 $F(x)=1-e^{-\int_0^x \lambda(t) \mathrm{d}t}$ 。

在 "无老化" 假设下,即 $\lambda(t) \equiv \lambda$ 不随时间变化,则 $F(x) = 1 - e^{-\lambda t}(x > 0)$,X 服从指数分布。

指数分布有所谓"无记忆性": $P(X > t + s | X > s) = \frac{P(X > t + s)}{P(X > s)} = e^{-\lambda t} = P(X > t)(t, s > 0)$ 。 "无老化" 假设并不总是成立。为此,我们可以进行一定程度的改进,例如令 $\lambda(x) = \alpha \frac{x^{\alpha-1}}{\beta^{\alpha}}(x > 0, \alpha, \beta > 0$ 为常数),则 $F(x) = 1 - e^{-(\frac{x}{\beta})^{\alpha}}(x > 0)$,称之为 Weibull 分布。当 $\alpha = 1$ 时,Weibull 分布退化为参数为 $1/\beta$ 的指数分布。

总览至此我们介绍过的各个分布的参数,可以将其大致分为以下几类:

- 1. 位置参数: 决定了分布平移到的位置,通常在 PMF/PDF 中体现为 $f(x) = g(x \cdot)$ 的形式,如正态分布的参数 μ
- 2. 尺度参数: 决定了分布伸缩的程度,通常在 PMF/PDF 中体现为 $f(x) = g(\frac{x}{x})$ 的形式,如正态分布的参数 σ 、Weibull 分布的参数 β
- 3. 形状参数: 决定了分布的形状, 如 Weibull 分布的参数 α

2.6 随机变量的函数

对于随机变量 X 和可测函数 g, Y = g(X) 也是随机变量。特别地,若 X 为离散型随机变量,则 Y 也离散。但若 X 为连续型随机变量,Y 未必连续。

例 2.7.
$$X \sim Exp(\lambda)$$
, $Y = \begin{cases} 0, & X \le t_0, \\ 1, & X > t_0, \end{cases}$ 其中 $t_0 > 0$ 为常数,则 $Y \sim B(e^{-\lambda t_0})$ 。

例 2.8. 设 X 为连续型随机变量, PDF 为 f(x), 考虑 $Y = X^2$ 。

从 CDF 入手, $\forall y > 0, P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} f(x) dx$,我们有 Y 的 PDF 为 $l(y) = \frac{d}{dy} P(Y \le y) = \frac{1}{2\sqrt{y}} (f(\sqrt{y}) + f(-\sqrt{y}))(y > 0)$ 。

特别地, 若 $X \sim N(0,1)$, 称 Y 服从自由度为 1 的 χ^2 -分布, 读作"卡方分布"。

若 Y = g(X) 为随机变量,我们可以计算 Y 的分布如下:

- $P(Y = y) = P(g(X) = y) = P(X \in g^{-1}(y))$
- $P(Y \le y) = P(g(X) \le y) = P(X \in g^{-1}((-\infty, y]))$

第三章 联合分布

3.1 随机向量

定义 3.1. 称 $(X_1, X_2, \dots, X_n) : \Omega \to \mathbb{R}^n$ 为 $(n \, \mathfrak{t})$ 随机向量,若 $\{X_i\}_{i=1}^n$ 均为随机变量。

定义 3.2. n 维随机向量的(联合)(累积)分布函数(CDF)定义为 $F(x_1, \dots, x_n) = P(X_1 \le x_1, \dots, X_n \le x_n), \forall (x_1, \dots, x_n) \in \mathbb{R}^n$ 。

对于 n=2 (二元分布) 的情形, 我们常用 (X,Y) 来表示随机向量, 对应的 CDF 为 F(x,y)。

3.2 离散分布

定义 3.3. 称 n 维随机向量 (X_1, \dots, X_n) 是离散的,当且仅当 $\{X_i\}_{i=1}^n$ 均为离散随机变量。 离散随机向量 (X_1, \dots, X_n) 的 (联合) 概率质量函数 (PMF) 定义为 $f(x_1, \dots, x_n) = P(X_1 = x_1, \dots, X_n = x_n), \forall (x_1, \dots, x_n) \in \mathbb{R}^n$ 。

命题 3.1. 离散随机向量 (X_1, \dots, X_n) 的 PMF 具有如下性质:

- 1. $f(x_1, \dots, x_n) \ge 0, \forall (x_1, \dots, x_n) \in \mathbb{R}^n$
- 2. $\sum_{x_i \in \{X_i(\omega) | \omega \in \Omega\}, \forall i \in \{1, \dots, n\}} f(x_1, \dots, x_n) \equiv 1$

注意第2条性质中求和的项数为至多可数,原因是有限个至多可数集的笛卡尔积仍是至多可数集。

例 3.1. 设 $\{B_i\}_{i=1}^n$ 为 Ω 的一个分割(分割的定义见 1.8 节), $P(B_i) = p_i \ge 0, \forall i \in \{1, \dots, n\}$, $\sum_{i=1}^n p_i = 1$ 。

进行 N 次独立试验,设 $\forall i \in \{1, \dots, n\}$,有 X_i 个试验结果落在 B_i 中,则若 $k_1 + \dots + k_n = N$,其中 k_i 均为非负整数,我们有 $P(X_1 = k_1, \dots, X_n = k_n) = \binom{N}{k_1, \dots, k_n} p_1^{k_1} \dots p_n^{k_n}$ 。其中 $\binom{N}{k_1, \dots, k_n} = \frac{N!}{k_1! \dots k_n!}$ 为多项式 $(a_1 + \dots + a_n)^N$ 中 $a_1^{k_1} \dots a_n^{k_n}$ 项的系数。

我们称 (X_1, \cdots, X_n) 服从多项分布。

3.3 连续分布

定义 3.4. 对 n 维随机向量 (X_1, \dots, X_n) ,若存在 $f: \mathbb{R}^n \to [0, +\infty)$,使得 \forall 可测集 $Q \subset \mathbb{R}^n$, 都有 $P((X_1, \dots, X_n) \in Q) = \int_Q f(x_1, \dots, x_n) dx_1 \dots dx_n$,则称 (X_1, \dots, X_n) 为连续型随机向 量, f 称为其 (联合) 概率密度函数 (PDF)。

命题 3.2. 连续随机向量 (X_1, \dots, X_n) 的 PDF 具有如下性质:

- 1. $\int_{\mathbb{R}^n} f(x_1, \cdots, x_n) dx_1 \cdots dx_n \equiv 1$
- 2. 以 n=2 为例, $F(x,y)=\int_{-\infty}^{x}\int_{-\infty}^{y}f(t,s)\mathrm{d}s\mathrm{d}t, f(a,b)=\frac{\partial^{2}F}{\partial x\partial y}(a,b)$, a.e.

其中 a.e. 表示 "almost everywhere"。

例 3.2. 矩形域上的均匀分布的 PDF:
$$f(x,y) = \begin{cases} \frac{1}{(b-a)(d-c)}, & (x,y) \in (a,b) \times (c,d), \\ 0, &$$
其他.

例 3.3. 二元正态分布
$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$$
 的 PDF:
$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2} \frac{1}{\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}((\frac{x-\mu_1}{\sigma_1})^2 + (\frac{y-\mu_2}{\sigma_2})^2 - 2\rho\frac{x-\mu_1}{\sigma_1}\frac{y-\mu_2}{\sigma_2})}, \forall (x,y) \in \mathbb{R}^2, \sigma_1, \sigma_2 > 0, |\rho| < 1.$$
 令 $\boldsymbol{x} = \begin{bmatrix} \frac{x-\mu_1}{\sigma_1} \\ \frac{y-\mu_2}{\sigma_2} \end{bmatrix}, W = \frac{1}{1-\rho^2} \begin{bmatrix} 1 & -\rho \\ -\rho & 1 \end{bmatrix}, W = A^{\mathrm{T}}A$ 为正定矩阵 W 的 Cholesky 分解,则

$$\begin{bmatrix}
\frac{y-\mu_2}{\sigma_2}
\end{bmatrix} - \frac{1}{2(1-\rho^2)} \begin{bmatrix} -\rho & 1 \\ -\frac{1}{2(1-\rho^2)} \end{bmatrix} - \frac{1}{2(1-\rho^2)} ((\frac{x-\mu_1}{\sigma_1})^2 + (\frac{y-\mu_2}{\sigma_2})^2 - 2\rho \frac{x-\mu_1}{\sigma_1} \frac{y-\mu_2}{\sigma_2}) = -\frac{1}{2} \boldsymbol{x}^{\mathrm{T}} W \boldsymbol{x} = -\frac{1}{2} \boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{x} = -\frac{1}{2} (A \boldsymbol{x})^{\mathrm{T}} (A \boldsymbol{x}).$$

上述 Cholesky 分解的结果为
$$A = \frac{1}{\sqrt{1-\rho^2}}\begin{bmatrix} 1 & -\rho \\ 0 & \pm\sqrt{1-\rho^2} \end{bmatrix}$$
 或 $A = \frac{1}{\sqrt{1-\rho^2}}\begin{bmatrix} -1 & \rho \\ 0 & \pm\sqrt{1-\rho^2} \end{bmatrix}$ 。

3.4 边际分布

对 n 维随机向量 (X_1, \dots, X_n) , 称 $F_i(x) = P(X_i \le x) = P(X_i \le x, -\infty < X_i < +\infty, \forall j \ne x)$ i) 为 X_i 的边际分布。

例如, 若 n=2, 随机向量 (X,Y) 有 CDF F(x,y), 则 X 的边际分布为 $F_X(x)=P(X\leq$

$$\begin{split} x) &= P(X \leq x, Y \in \mathbb{R}) = \lim_{y \to +\infty} P(X \leq x, -\infty < Y \leq y) = \lim_{y \to +\infty} F(x, y) \, \text{o} \\ & \stackrel{\cdot}{\text{H}} = 3 \, \text{, 随机向量} \, (X, Y, Z) \, \text{有 CDF } F(x, y, z) \, \text{, } \text{则 } F_X(x) = \lim_{y, z \to +\infty} F(x, y, z) \, \text{, } \text{而 } (X, Y) \end{split}$$
的边际分布为 $F_{X,Y}(x,y) = P(X \le x, Y \le y) = P(X \le x, Y \le y, -\infty < Z < +\infty) =$ $\lim_{z \to +\infty} F(x, y, z) \,.$

例 3.4. 设二维随机向量 (X,Y) 的 CDF 为 F(x,y), 则 $\forall a,b \in \mathbb{R}, P(X>a,Y>b)=1$ $F_X(a) - F_Y(b) + F(a,b)$.

对于离散型随机向量,以 n=2 为例,定义边际 PMF 为 $P(X=x)=\sum_{x}P(X=x,Y=y)$ 。 对于连续型随机向量,以 n=2 为例,设联合 PDF 为 f(x,y),则 $F_X(x)=P(X\leq x,Y\in X)$ \mathbb{R}) = $\int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(t,s) ds dt$, 则 X 的边际 PDF 为 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$ 。

例 3.5. $(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$,则 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$,即 $X \sim$ $N(\mu_1, \sigma_1^2)$. 同理 $Y \sim N(\mu_2, \sigma_2^2)$.

3.5 条件分布

以 n=2 为例说明条件分布的概念,考虑随机向量 (X,Y)。

对于离散型随机向量,设联合 PMF 为 $P(X = a_i, Y = b_j) = p_{ij} \ge 0, \sum_{i,j} p_{ij} \equiv 1$,则在 $Y=b_j$ 条件下的 X 的条件 PMF 为 $P(X=a_i|Y=b_j)=\frac{P(X=a_i,Y=b_j)}{P(Y=b_j)}=\frac{p_{ij}}{\sum_k p_{ki}}$ 。条件 PMF 满 足 $\sum_{i} P(X = a_i | Y = b_i) \equiv 1, \forall j$.

对于连续型随机向量,设联合 PDF 为 f(x,y),首先考虑条件概率 $P(X \leq x|y \leq Y \leq x)$ $y+\mathrm{d}y)=\tfrac{P(X\leq x,y\leq Y\leq y+\mathrm{d}y)}{P(y\leq Y\leq y+\mathrm{d}y)}=\tfrac{\int_{-\infty}^x\int_y^{y+\mathrm{d}y}f(t,s)\mathrm{d}s\mathrm{d}t}{\int_y^{y+\mathrm{d}y}f_Y(s)\mathrm{d}s},\ \ \text{対}\ x$ 求导得 X 在 $y\leq Y\leq y+\mathrm{d}y$ 条件下的条 件 PDF 为 $\frac{\int_y^{y+\mathrm{d}y} f(x,s)\mathrm{d}s}{\int_y^{y+\mathrm{d}y} f_Y(s)\mathrm{d}s} \to \frac{f(x,y)}{f_Y(y)}(\mathrm{d}y \to 0)$ 。

定义 3.5. 对于连续型随机向量 (X,Y), 设联合 PDF 为 f(x,y), 若 $f_Y(y) > 0$, 则称 X 在 Y = y 条件下的条件 PDF 为 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_{Y}(y)}$.

可以验证 $f_{X|Y}(x|y)$ 满足 PDF 的各性质。

相应的条件 CDF 为 $F_{X|Y}(a|y) = P(X \le a|Y = y) = \int_{-\infty}^{a} f_{X|Y}(x|y) dx$.

我们熟知的各个定理均有适用于连续型随机向量的版本:

- 1. $f(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$ (乘法法则)
- 2. $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \int_{-\infty}^{+\infty} f_{X|Y}(x|y) f_Y(y) dy$ (全概率公式) 3. $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{f_{X|Y}(x|y) f_Y(y)}{\int_{-\infty}^{+\infty} f_{X|Y}(x|y) f_Y(y) dy}$ (Bayes 公式)

例 3.6.
$$(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$$
,则 $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{1}{\sqrt{2\pi}\sigma_2} \frac{1}{\sqrt{1-\rho^2}} e^{-\frac{(y-(\mu_2+\rho\frac{\sigma_2}{\sigma_1}(x-\mu_1)))^2}{2(1-\rho^2)\sigma_2^2}}$,即 $Y|X=x \sim N(\mu_2+\rho\frac{\sigma_2}{\sigma_1}(x-\mu_1),(1-\rho^2)\sigma_2^2)$ 。

独立性 3.6

定义 3.6. 设二维随机向量 (X,Y) 的 CDF 为 F(x,y),若 $F(x,y) = F_X(x)F_Y(y), \forall x,y \in \mathbb{R}$, 则称 X,Y 相互独立。

可以证明,对于二维离散型(或连续型)随机向量 (X,Y), X,Y 相互独立的充要条件是 $f(x,y) = f_X(x)f_Y(y), \forall x,y \in \mathbb{R}$,其中 f(x,y) 为联合 PMF(或 PDF)。

定义 3.7. 设 n 维随机向量 (X_1, \dots, X_n) 的 CDF 为 $F(x_1, \dots, x_n)$,若 $F(x_1, \dots, x_n) = F_1(x_1) \dots F_n(x_n), \forall x_1, \dots, x_n \in \mathbb{R}$,则称 X_1, \dots, X_n 相互独立。

可以证明,对于 n 维离散型(或连续型)随机向量 (X_1, \dots, X_n) , X_1, \dots, X_n 相互独立的充要条件是 $f(x_1, \dots, x_n) = f_1(x_1) \dots f_n(x_n)$, $\forall x_1, \dots, x_n \in \mathbb{R}$,其中 $f(x_1, \dots, x_n)$ 为联合PMF(或 PDF)。

定理 3.1.

- 1. 若 X_1, \dots, X_n 相互独立,则 $\forall m \in \{1, \dots, n-1\}$,可测函数 g_1, g_2 ,有 $Y_1 = g_1(X_1, \dots, X_m)$ 与 $Y_2 = g_2(X_{m+1}, \dots, X_n)$ 相互独立。
- 2. 若 n 维连续型随机向量 (X_1, \dots, X_n) 的联合 PDF 满足

$$f(x_1, \dots, x_n) = g_1(x_1) \dots g_n(x_n), \forall x_1, \dots, x_n \in \mathbb{R},$$

其中 $g_i: \mathbb{R} \to [0, +\infty), \forall i \in \{1, \dots, n\}$,则 X_1, \dots, X_n 相互独立,且 X_i 的边际 PDF f_i 与 g_i 相差常数因子, $\forall i \in \{1, \dots, n\}$ 。

例 3.7. 设 (X,Y) 服从如图 **3.1** 的三角形域 D 上的均匀分布,即 $f(x,y) = \begin{cases} c, & (x,y) \in D, \\ 0, & \text{其他,} \end{cases}$ 则 X,Y 不独立。

图 3.1: 三角形域上的均匀分布

3.7 随机向量的函数

本节中,我们考虑给定随机向量 (X_1, \cdots, X_n) 和可测函数 g,如何求 $Y = g(X_1, \cdots, X_n)$ 的分布。

首先介绍"直接法"。

例 3.8. $X_i \sim B(n_i, p) (i = 1, 2)$ 独立, $Y = X_1 + X_2$, 则 $\forall k \in \{0, 1, \dots, n_1 + n_2\}$,

$$P(Y = k)$$

$$= P(X_1 + X_2 = k)$$

$$= \sum_{k_1=0}^{k} P(X_1 = k_1, X_2 = k - k_1)$$

$$= \sum_{k_1=0}^{k} P(X_1 = k_1) P(X_2 = k - k_1)$$

$$= \sum_{k_1=0}^{k} {n_1 \choose k_1} p^{k_1} (1 - p)^{n_1 - k_1} {n_2 \choose k - k_1} p^{k - k_1} (1 - p)^{n_2 - (k - k_1)}$$

$$= \left(\sum_{k_1=0}^{k} {n_1 \choose k_1} {n_2 \choose k - k_1}\right) p^k (1 - p)^{n_1 + n_2 - k}$$

$$= {n_1 + n_2 \choose k} p^k (1 - p)^{n_1 + n_2 - k}$$

因此 $Y \sim B(n_1 + n_2, p)$ 。

例 3.9. 随机向量 (X_1, X_2) 有联合 PDF $f(x_1, x_2)$,且 $X_1 > 0$,考虑 $Y = X_2/X_1$,有 $\forall y \in \mathbb{R}$, $P(Y \leq y) = P(\frac{X_2}{X_1} \leq y) = P(X_2 \leq X_1 y) = \int_D f(x_1, x_2) \mathrm{d}x_1 \mathrm{d}x_2 = \int_0^{+\infty} \int_{-\infty}^{yx_1} f(x_1, x_2) \mathrm{d}x_2 \mathrm{d}x_1$,作 $x_2 = x_1 t$ 换元得 $P(Y \leq y) = \int_0^{+\infty} \int_{-\infty}^y f(x_1, x_1 t) x_1 \mathrm{d}t \mathrm{d}x_1$,故 Y 的 PDF 为 $l(y) = \int_0^{+\infty} x_1 f(x_1, yx_1) \mathrm{d}x_1$ 。

图 3.2: 区域 D 的范围,其中边界线的斜率为 y

接下来介绍"密度函数变换法"。

设随机向量 (X_1, X_2) 有联合 PDF $f(x_1, x_2)$,且有可逆可微的映射关系 $\begin{cases} Y_1 = g_1(X_1, X_2) \\ Y_2 = g_2(X_1, X_2) \end{cases}$

据此解出逆映射 $\begin{cases} X_1 = h_1(Y_1, Y_2) \\ X_2 = h_2(Y_1, Y_2) \end{cases}$,则对于任意可测集 A,若 (h_1, h_2) 将 A 映射到集合 B,则

由可逆性可知 B 在 (g_1, g_2) 的映射下的值域为 A。因此我们有 $P((Y_1, Y_2) \in A) = P((X_1, X_2) \in B)$ = $\int_B f(x_1, x_2) \mathrm{d}x_1 \mathrm{d}x_2 = \int_A f(h_1(y_1, y_2), h_2(y_1, y_2)) |J| \mathrm{d}y_1 \mathrm{d}y_2$, 其中 J 为 Jacobi 行列式 $\det \begin{bmatrix} \frac{\partial h_1}{\partial y_1} & \frac{\partial h_1}{\partial y_2} \\ \frac{\partial h_2}{\partial y_1} & \frac{\partial h_2}{\partial y_2} \end{bmatrix}$, 因此 (Y_1, Y_2) 的联合 PDF 为 $l(y_1, y_2) = f(h_1(y_1, y_2), h_2(y_1, y_2)) |J|$ 。

例 3.10. 随机向量 (X_1,X_2) 有联合 PDF $f(x_1,x_2)$,为求 $Y=X_1+X_2$ 的 PDF,引入 $Z=X_1$,则 $\begin{cases} X_1=Z\\ X_2=Y-Z \end{cases}$,Jacobi 行列式为 $\det\begin{bmatrix} 0&1\\ 1&-1 \end{bmatrix}=-1$,故 (Y,Z) 的联合 PDF 为 f(z,y-z)|-1|=f(z,y-z),Y 的边际 PDF 为 $f(z,y-z)=\int_{-\infty}^{+\infty}f(z,y-z)\mathrm{d}z$ 。

上例中,若 X_1, X_2 相互独立,则 $f(x_1, x_2) = f_1(x_1) f_2(x_2) \Rightarrow l_Y(y) = \int_{-\infty}^{+\infty} f_1(z) f_2(y-z) dz$, 这称之为 f_1 和 f_2 的卷积,记作 $f_1 * f_2$ 。

特别地,若 $(X_1, X_2) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,则 $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2)$ 。 利用上述随机向量的函数的 PDF 求解方法,可以得到所谓卡方分布(χ^2 -分布)、t-分布和 F-分布的 PDF。这些分布的表达式较为复杂,在此不一一罗列。感兴趣的同学可以查阅资料,简单了解一下它们与标准正态分布的联系。

第四章 随机变量的数字特征

4.1 期望

离散型和连续型随机变量的期望分别参见定义 2.6 和定义 2.11。 对于随机向量,期望自然推广定义为 $\mathrm{E}((X_1,\cdots,X_n))=(\mathrm{E}(X_1),\cdots,\mathrm{E}(X_n))$ 。

命题 4.1. 期望有如下性质:

1. 离散型和连续型随机向量的函数的期望 $E(g(X_1, \dots, X_n))$ 分别等于

$$\sum_{x_i \in \{X_i(\omega) | \omega \in \Omega\}, \forall i \in \{1, \cdots, n\}} g(x_1, \cdots, x_n) f(x_1, \cdots, x_n)$$
和 $\int_{\mathbb{R}^n} g(x_1, \cdots, x_n) f(x_1, \cdots, x_n) dx_1 \cdots dx_n$,
其中 g 为可测函数, f 分别为联合 PMF 与联合 PDF

- 2. $E(aX + bY) = aE(X) + bE(Y), \forall$ 常数 $a, b \in \mathbb{R}$
- 3. 若 X_1, \dots, X_n 相互独立,则 $E(X_1 \dots X_n) = E(X_1) \dots E(X_n)$

4.2 分位数

定义 4.1. 设 X 为连续型随机变量, 若 $P(X \le m) = F(m) = 1/2$, 则称 m 为 X 的中位数。

和均值一样,中位数也是随机变量集中趋势的一种刻画。中位数不一定唯一。

若 m 是连续型随机变量 X 的中位数,则 P(X < m) = P(X > m) = 1/2。

以下给出更一般的中位数定义。

定义 4.2. 对随机变量 X,若 $P(X < m) \le 1/2$,且 $P(X > m) \le 1 - 1/2 = 1/2$,则称 m 为 X 的中位数。

例 4.1. 设离散型随机变量 X 的分布表为

X	1	2	3	4
P	1/3	1/2	1/12	1/12

则其中位数为 2。

定义 4.3. 对随机变量 X, $\forall \alpha \in (0,1)$, 若 $P(X < a) \le \alpha$ 且 $P(X > a) \le 1 - \alpha$, 则称 a 为 X 的(下侧) α -分位数。

上述定义的 α -分位数是不唯一的。为了唯一性,我们考虑定义 $F^{-1}(\alpha) = \inf\{x | F(x) \ge \alpha\}$ 。 我们给出众数(mode)的方便定义: f(x) 的最大值点,其中 f(x) 为 PMF 或 PDF。由于 PDF 可在任意零测集上修改取值,故这一定义并非严谨的。

4.3 方差

离散型和连续型随机变量的方差分别参见定义 2.6 和定义 2.11。

方差的意义: 若 X 为收益率,则 $\mathrm{SD}(X)$ 称为波动率,刻画了风险的大小。我们定义变异系数 $\mathrm{CV} = \frac{\mathrm{SD}(X)}{\mu}$,其中 $\mu = \mathrm{E}(X) \neq 0$ 。

命题 4.2. 方差有如下性质:

- 1. $Var(C) \equiv 0, C$ 为常数
- 2. $Var(CX) = C^2Var(X)$
- 3. Var(X + Y) = Var(X) + Var(Y) + 2E((X E(X))(Y E(Y))),且若 X, Y 独立,则 E((X E(X))(Y E(Y))) = 0

4.4 协方差与相关系数

对随机变量 X, Y,设 $E(X) = \mu_1, E(Y) = \mu_2, Var(X) = \sigma_1^2, Var(Y) = \sigma_2^2$ 。

定义 4.4. 称 X 与 Y 的协方差 $Cov(X,Y) = E((X - \mu_1)(Y - \mu_2))$ 。

命题 4.3. 协方差有如下性质:

- 1. Cov(X, X) = Var(X)
- 2. Cov(X, Y) = Cov(Y, X)
- 3. Cov(X, Y) = E(XY) E(X)E(Y)
- 4. $Cov(aX_1 + bX_2 + c, Y) = aCov(X_1, Y) + bCov(X_2, Y), \forall$ 常数 $a, b, c \in \mathbb{R}$

定义 4.5. 称 X 与 Y 的(线性)相关系数 $Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_1\sigma_2} = E(\frac{X-\mu_1}{\sigma_1}\frac{Y-\mu_2}{\sigma_2})$ 。 若 Corr(X,Y) = 0,称 X,Y 不相关。

定理 4.1. 相关系数有如下性质:

1. 若 X,Y 相互独立,则 X,Y 不相关(反之未必成立)

2. $|\operatorname{Corr}(X,Y)| \leq 1$,且等号成立当且仅当 $\exists a,b,P(Y=aX+b)=1$,即 Y=aX+b, a.s. 其中 a.s. 表示 "almost surely"。

为证明上述定理的 (2),首先我们利用 Cauchy-Schwartz 不等式证明引理: 对随机变量 U,V,有 $E^2(UV) \leq E(U^2)E(V^2)$,且等号成立当且仅当 $\exists t_0 \in \mathbb{R}, P(V=t_0U)=1$ 。接下来令 $U=\frac{X-\mu_1}{\sigma_1}, V=\frac{Y-\mu_2}{\sigma_2}$,即得。

当 $Corr(X,Y) = \pm 1$,可以证明 $a = \pm \sigma_2/\sigma_1$ 。

例 4.2. $X \sim N(0,1), Y = X^2$,则 X 与 Y 不相关,但不独立。

例 4.3. $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,则

$$\begin{aligned} & \operatorname{Corr}(X,Y) \\ = & \operatorname{E}(\frac{X - \mu_1}{\sigma_1} \frac{Y - \mu_2}{\sigma_2}) \\ &= \int_{\mathbb{R}^2} \frac{x - \mu_1}{\sigma_1} \frac{y - \mu_2}{\sigma_2} \frac{1}{2\pi \sigma_1 \sigma_2} \frac{1}{\sqrt{1 - \rho^2}} e^{-\frac{1}{2(1 - \rho^2)} ((\frac{x - \mu_1}{\sigma_1})^2 + (\frac{y - \mu_2}{\sigma_2})^2 - 2\rho \frac{x - \mu_1}{\sigma_1} \frac{y - \mu_2}{\sigma_2})} \mathrm{d}x \mathrm{d}y \end{aligned}$$

进行换元 $(u,v)^{\mathrm{T}} = A(\frac{x-\mu_1}{\sigma_1}, \frac{y-\mu_2}{\sigma_2})^{\mathrm{T}}$,其中 A 的定义参见例 3.3,则指数上的项化为 $-\frac{1}{2}(u^2+v^2)$,这一步实质上是进行了二次型的标准化。后续过程留作习题,最终计算结果为 $\mathrm{Corr}(X,Y) = \rho$ 。

4.5 矩

定义 4.6. 对 $k=1,2,\cdots$,称 $\mathrm{E}((X-c)^k)$ 为 X 关于 c 点的 k 阶矩。特别地,c=0 的情况下称为 k 阶原点矩, $c=\mathrm{E}(X)$ 的情况下称为 k 阶中心矩。

根据定义可知, $\mathrm{E}(X)$ 为 1 阶原点矩,而 1 阶中心矩恒等于 0; $\mathrm{Var}(X)=\mathrm{E}(X^2)-\mathrm{E}^2(X)$ 为 2 阶中心矩。

若 $\mathrm{E}(X) = \mu, \mathrm{SD}(X) = \sigma$,我们称 $\mathrm{E}((\frac{X-\mu}{\sigma})^k) = \frac{\mathrm{E}((X-\mu)^k)}{\sigma^k}$ 为 k 阶标准矩。

1 阶标准矩恒等于 0,2 阶标准矩恒等于 1,3 阶标准矩称为 X 的偏度系数,记作 Skew(X)。

例 4.4. $X \sim N(0,1)$,则 Skew $(X) = \int_{-\infty}^{+\infty} x^3 f(x) dx = 0$,其中 f 为 X 的 PDF。

我们称偏度系数 < 0 的分布为"负偏"或"左偏",如图 4.1。

- 5 阶以上的奇数阶标准矩计算更复杂, 受噪声影响更大。
- 4 阶标准矩称为 X 的峰度系数,记作 Kurt(X)。由于正态分布的峰度系数恒等于 3,因此常定义超额峰度系数为 Kurt(X) 3。

我们经常将 $\mu \pm \sigma$ 以内的范围称为 "峰", 范围在 "峰" 以外但在 $\mu \pm 2\sigma$ 以内的范围称为 "肩", 范围在 "肩" 以外的部分称为 "尾"。

通常,峰度系数 > 3 表现为相对于正态分布"尖峰厚尾",如图 4.2。

图 4.1: 负偏分布

图 4.2: "Leptokurtic" 一词的含义即峰度系数 > 3

4.6 矩母函数

定义 4.7. 记 $M_X(t) = E(e^{tX})$,若 $M_X(t)$ 在 t = 0 的某邻域内存在,则称其为 X 的矩母函数 (Moment Generating Function, MGF),否则称 X 的矩母函数不存在。

例 4.5. 若 $X \sim Exp(\lambda)$,则 $M_X(t) = \mathrm{E}(e^{tX}) = \int_0^{+\infty} e^{tx} \lambda e^{-\lambda x} \mathrm{d}x = \frac{\lambda}{\lambda - t}, t < \lambda$ 。

例 4.6. 若 $X \sim N(0,1)$,则 $M_X(t) = \mathrm{E}(e^{tX}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{tx} e^{-\frac{x^2}{2}} \mathrm{d}x = e^{\frac{t^2}{2}}, t \in \mathbb{R}$ 。

命题 4.4. 矩母函数有如下性质:

- 1. $M_X(0) \equiv 1$
- 2. Y = aX + b, 则 $M_Y(t) = E(e^{tY}) = E(e^{t(aX+b)}) = e^{tb}M_X(at)$

例 4.7. 若 $Y \sim N(\mu, \sigma^2)$, 令 $Y = \sigma X + \mu$, 则 $X \sim N(0, 1)$, 故 $M_Y(t) = e^{\mu t} M_X(\sigma t) = e^{\mu t} e^{\frac{(\sigma t)^2}{2}} = e^{\frac{\sigma^2 t^2}{2} + \mu t}$, $t \in \mathbb{R}$ 。

矩母函数可以用于确定矩。

定理 4.2. 随机变量 X 的 n 阶(原点)矩与其矩母函数有如下关系: $\mathrm{E}(X^n) = M_X^{(n)}(0)$ 。

证明. 由 Taylor 展开有 $M_X(t) = \sum_{n=0}^{+\infty} M_X^{(n)}(0) \frac{t^n}{n!}$,又 $M_X(t) = \mathrm{E}(e^{tX}) = \mathrm{E}(\sum_{n=0}^{+\infty} X^n \frac{t^n}{n!}) = \sum_{n=0}^{+\infty} \mathrm{E}(X^n) \frac{t^n}{n!}$,得到结论。

例 4.8. 若 $X \sim N(0,1)$,则 $M_X(t) = e^{\frac{t^2}{2}} = \sum_{n=0}^{+\infty} \frac{(\frac{t^2}{2})^n}{n!} = \sum_{n=0}^{+\infty} \frac{(2n)!}{2^n n!} \frac{t^{2n}}{(2n)!}$,因此我们得出 $E(X^{2n}) = \frac{(2n)!}{2^n n!}$, $E(X^{2n+1}) \equiv 0 \ (n=0,1,\cdots)$ 。

由此可以计算 $Var(X) = E(X^2) = 1$, $Kurt(X) = E(X^4) = \frac{4!}{2^2 \cdot 2!} = 3$.

矩母函数还可以用于确定分布。

定理 4.3. 若存在 a > 0,使得 $M_X(t) = M_Y(t), \forall t \in (-a, a)$,则 X, Y 同分布。

例 4.9. 若随机变量 X 的矩母函数 $M_X(t) = \frac{1}{2}e^{-t} + \frac{1}{4} + \frac{1}{8}e^{4t} + \frac{1}{8}e^{5t}$,则 X 为离散型随机变量,分布表为

X	-1	0	4	5	
P	1/2	1/4	1/8	1/8	

一般地,若离散型随机变量 X 有 PMF $P(X=k)=p_k$ ($\sum_k p_k\equiv 1$),则其 MGF 为 $M_X(t)=\mathrm{E}(e^{tX})=\sum_k e^{tk}p_k$ 。

注意,各阶矩均相同的随机变量未必同分布。

例 4.10. 设连续型随机变量 X_1 和 X_2 的 PDF 分别为 $f_1(x) = \frac{1}{\sqrt{2\pi}x}e^{-\frac{(\log x)^2}{2}}, x > 0$ 和 $f_2(x) = f_1(x)(1 + \sin(2\pi \log x)), x > 0$ (X_1 服从对数正态分布) ,则 $E(X_2^n) = E(X_1^n) + \int_0^{+\infty} x^n f_1(x) \sin(2\pi \log x) dx$,其中后一项通过换元 $y = \log x - n$ 可以证明为 0,即 X_1 和 X_2 同矩但不同分布。

下面我们运用矩母函数,研究独立随机变量和的分布。

定理 4.4. 若随机变量 X, Y 独立, Z = X + Y, 则 $M_Z(t) = M_X(t)M_Y(t)$ 。

证明. $M_Z(t) = \mathrm{E}(e^{tZ}) = \mathrm{E}(e^{t(X+Y)}) = \mathrm{E}(e^{tX}e^{tY}) = M_X(t)M_Y(t)$,其中最后一个等号利用了独立性。

推而广之,若 $\{X_i\}_{i=1}^n$ 相互独立, $Z = X_1 + \cdots + X_n$,则 $M_Z(t) = \prod_{i=1}^n M_{X_i}(t)$ 。

例 4.11. 若 $\{X_i\}_{i=1}^n$ 相互独立且服从正态分布,则 $X_1 + \cdots + X_n$ 也服从正态分布。

以 n=2 为例说明。设 $X_i \sim N(\mu_i, \sigma_i^2)$ (i=1,2),则 $M_{X_1+X_2}(t)=M_{X_1}(t)M_{X_2}(t)=e^{\frac{\sigma_1^2t^2}{2}+\mu_1t}e^{\frac{\sigma_2^2t^2}{2}+\mu_2t}=e^{\frac{1}{2}(\sigma_1^2+\sigma_2^2)+(\mu_1+\mu_2)t}$,对应 $N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$ 的 MGF,再由 MGF 确定分布可得结论。

定义随机向量 (X_1, \dots, X_n) 的 MGF 为 $M_{X_1, \dots, X_n}(t_1, \dots, t_n) = \mathbb{E}(e^{t_1 X_1 + \dots + t_n X_n})$ 。 以下简介类似 MGF 的其他函数:

- 1. 概率母函数 (Probability Generating Function, PGF), 仅针对非负整数取值的离散型随机 变量 X, 设其 PMF 为 $P(X=k)=p_k$, 则其 PGF 定义为 $E(t^X)=\sum_{k=0}^{+\infty}p_kt^k, t\in[-1,1]$, 或对于 $t \in (0,1]$, 等于 $E(e^{X \log t}) = M_X(\log t)$.
- 2. 特征函数, 定义为 $E(e^{itX})$, 其中 $i^2 = -1$ 。

4.7 条件期望

散型和连续型随机变量。

我们定义条件期望
$$\mathrm{E}(Y|X\in A)=$$

$$\begin{cases} \sum_{i}y_{i}P(Y=y_{i}|X\in A)\\ \int_{-\infty}^{+\infty}yf_{Y|X}(y|X\in A)\mathrm{d}y \end{cases}, \ \mathrm{两种定义分别针对}\ Y\ \mathrm{为离} \end{cases}$$
 是和连续型随机变量。
$$\begin{cases} \sum_{i}y_{i}P(Y=y_{i}|X=x)\\ \int_{-\infty}^{+\infty}yf_{Y|X}(y|X)\mathrm{d}y \end{cases}, \ \mathrm{注意到这是一个}\ x$$
 是一个 x 的函数(称为 y 是一个 x 的函数(称为 y

的函数,记作 h(x)。将其作用在 X 上,得到 h(X) = E(Y|X),这是一个 X 的函数 对 X 的回归函数),因此是一个新的随机变量。

例 4.12.
$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$$
,则 $E(Y|x) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1)$ 。

例 4.13. 甲、乙两种同类产品, 平均使用寿命分别为 10 年和 15 年, 市场占有率分别为 60% 和 40%, 随机买一个, 则期望寿命是 $10 \times 60\% + 15 \times 40\% = 12$ 年, 我们发现这个计算过程可以 表示为 E(Y) = E(Y|X=1)P(X=1) + E(Y|X=2)P(X=2) = h(1)P(X=1) + h(2)P(X=1)(2) = E(h(X)) = E(E(Y|X)),其中 (X) = 1 表示抽到甲产品,(X) = 0 表示抽到乙产品,(Y) 表示 抽到的产品的寿命。

一般地,我们有以下定理:

定理 4.5. (全期望公式)

对于随机向量 (X,Y), 有 E(Y) = E(E(Y|X))。

证明. 以连续型为例。设 (X,Y) 的联合 PDF 为 f(x,y), 有 $\mathrm{E}(Y|x) = \int_{-\infty}^{+\infty} y f_{Y|X}(y|x) \mathrm{d}y =$ $\int_{-\infty}^{+\infty} y \frac{f(x,y)}{f_X(x)} \mathrm{d}y, \quad \text{ix } \mathrm{E}(Y) = \int_{-\infty}^{+\infty} y f_Y(y) \mathrm{d}y = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f(x,y) \mathrm{d}x \mathrm{d}y = \int_{-\infty}^{+\infty} \mathrm{E}(Y|x) f_X(x) \mathrm{d}x = \int_{-\infty}^{+\infty} \mathrm{E}(Y|x) f_X(x) \mathrm{E}(Y|x) \mathrm{d}x = \int_{-\infty}^{+\infty} \mathrm{E}(Y|x) f_X(x) \mathrm{e}x = \int_{-\infty}^{+\infty} \mathrm$ $E(E(Y|X))_{\circ}$

一般地,对于可测函数 g,我们有 E(g(X,Y)) = E(E(g(X,Y)|X))。

定理 4.6. 对于随机向量 (X,Y) 和任意可测函数 $g:\mathbb{R}\to\mathbb{R}$,都有 $\mathrm{E}((Y-g(X))^2)\geq \mathrm{E}((Y-g(X))^2)$ $E(Y|X))^2$),即条件期望是均方误差意义下的最优预测。

证明. 类比期望的性质 $\mathrm{E}((Y-c)^2) \geq \mathrm{E}((Y-\mathrm{E}(Y))^2), \forall c \in \mathbb{R}$,我们有 $\mathrm{E}((Y-g(X))^2|X) \geq \mathrm{E}((Y-\mathrm{E}(Y|X))^2|X), \forall g : \mathbb{R} \to \mathbb{R}$ 可测,两边对 X 求期望即得。

我们经常用到最优线性预测,即 $\min_{a,b} \mathrm{E}((Y-(aX+b))^2)$,这种"均方意义上的最优"称 之为最小二乘(least square)。

命题 4.5. 记 $\hat{Y} = E(Y|X)$ 为已知 X 的条件下对 Y 的最优估计, \tilde{Y} 为估计误差 $\hat{Y} - Y$,则 $E(\tilde{Y}) = 0$, $E(\tilde{Y}\hat{Y}) = 0$,进而有 $Cov(\hat{Y}, \tilde{Y}) = 0$, $Var(Y) = Var(\hat{Y}) + Var(\tilde{Y})$ 。

第五章 不等式与极限定理

5.1 概率不等式

定理 5.1. (Markov 不等式)

若随机变量 $Y \ge 0$, 则 $\forall a > 0$, 有 $P(Y \ge a) \le \frac{E(Y)}{a}$.

证明. 取示性变量
$$I = \begin{cases} 1, & Y \geq a, \\ 0, & Y < a, \end{cases}$$
则 $I \leq Y/a$,故 $P(Y \geq a) = \mathrm{E}(I) \leq \mathrm{E}(Y/a) = \mathrm{E}(Y)/a$ 。

定理 5.2. (Chebyshev 不等式)

若随机变量 Y 的方差 $\mathrm{Var}(Y)$ 存在,则 $\forall a>0$ 有 $P(|Y-\mathrm{E}(Y)|\geq a)\leq \frac{\mathrm{Var}(Y)}{a^2}$ 。

证明.
$$P(|Y - E(Y)| \ge a) = P((Y - E(Y))^2 \ge a^2) \le \frac{E((Y - E(Y))^2)}{a^2} = \frac{Var(Y)}{a^2}$$
.

这告诉我们, 如果 Var(Y) = 0, 则 P(Y = E(Y)) = 1 (即 a.s.)。

定理 5.3. (Chernoff 不等式)

对于任意随机变量 Y, $\forall a>0, t>0$, 有 $P(Y\geq a)\leq \frac{\mathrm{E}(e^{tY})}{e^{ta}}$.

证明.
$$\forall t > 0, P(Y \ge a) = P(e^{tY} \ge e^{ta}) \le \frac{\mathbf{E}(e^{tY})}{e^{ta}}.$$

例 5.1. 若 $X \sim N(0,1)$,则

- 1. 根据 Markov 不等式, $P(|X| \ge 3) \le \frac{E(|X|)}{3} = \frac{1}{3}\sqrt{\frac{2}{\pi}} \approx 0.27;$
- 2. 根据 Chebyshev 不等式, $P(|X| \ge 3) \le \frac{\text{Var}(X)}{3^2} = \frac{1}{9} \approx 0.11$;
- 3. 根据 Chernoff 不等式, $\forall t > 0, P(|X| \ge 3) = 2P(X \ge 3) \le 2\frac{\mathbb{E}(e^{tX})}{e^{3t}} = 2e^{\frac{t^2}{2} 3t}$,取最小值点 t = 3,得 $P(|X| \ge 3) \le 2e^{-\frac{9}{2}} \approx 0.022$;
- 4. 根据经验法则, $P(|X| \ge 3) \approx 0.003$ 。

5.2 大数定律

设随机变量 X_1, \cdots, X_n 独立同分布,均值 $\mathrm{E}(X_i) = \mu$,方差 $\mathrm{Var}(X_i) = \sigma^2 > 0$,则样本均值 $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$,其均值 $\mathrm{E}(\bar{X}) = \mu$,方差 $\mathrm{Var}(\bar{X}) = \frac{\sigma^2}{n} \to 0 (n \to +\infty)$ 。

定理 5.4. (Khinchin 弱大数定律)

设随机变量 X_1, \dots, X_n 独立同分布,均值 $E(X_i) = \mu$,方差 $Var(X_i) = \sigma^2 > 0$,则 $\forall \epsilon > 0$,有 $\lim_{n \to +\infty} P(|\bar{X} - \mu| \ge \epsilon) = 0$,或等价地, $\lim_{n \to +\infty} P(|\bar{X} - \mu| < \epsilon) = 1$ 。

证明. 由 Chebyshev 不等式,
$$P(|\bar{X} - \mu| \ge \epsilon) \le \frac{\operatorname{Var}(\bar{X})}{\epsilon^2} = \frac{\sigma^2}{n} \frac{1}{\epsilon^2} \to 0 (n \to +\infty)$$
。

 $\forall \epsilon > 0, \forall \alpha > 0$, 如果我们将 ϵ 和 $(1-\alpha)$ 分别称为精度和置信度,则根据 Khinchin 弱大数定律, $\exists N \in \mathbb{N}^+$,当 $n \geq N$ 时, $P(|\bar{X}-\mu| < \epsilon) \geq 1-\alpha$,即 \bar{X} 至少以概率 $(1-\alpha)$ 落在区间 $(\mu-\epsilon,\mu+\epsilon)$ 内。

换句话说, 当样本量足够大时, 有很大的概率 $\bar{X} \approx \mu$, 其中 μ 为未知的总体均值。

我们将 $X_i \sim B(p)$ 这一特例称之为 Bernoulli 大数定律。

通过更进一步的讨论可以证明,上述定理中关于方差的条件可以去掉,结论仍正确。

此外,我们还有对 Khinchin 弱大数定律的若干推广,如

- 1. 要求 X_i 两两不相关, $Var(X_i)$ 一致有界, 我们就得到了 Chebyshev 大数定律;
- 2. 要求 $Var(\bar{X}) \to 0 (n \to +\infty)$,我们就得到了 Markov 大数定律。

定义 5.1. 我们称 Y_n 依概率收敛于 Y,记作 $Y_n \stackrel{P}{\to} Y$,如果 $\forall \epsilon > 0$,有 $\lim_{n \to +\infty} P(|Y_n - Y| \ge \epsilon) = 0$ 。

用上述定义,弱大数定律可以表述为 $\bar{X} \stackrel{P}{\rightarrow} \mu$ 。

定理 5.5. (Kolmogorov 强大数定律)

设随机变量 X_1, \dots, X_n 独立同分布,均值 $E(X_i) = \mu$,则 $P(\lim_{n \to +\infty} \bar{X} = \mu) = 1$ 。

考虑 $X_i \sim B(p)$ 的特殊情形,则 \bar{X} 称之为频率,由强大数定律, $P(\lim_{n\to +\infty} \bar{X}=p)=1$,这说明概率的频率解释是合理的。

定义 5.2. 我们称 Y_n 以概率 1 收敛于 Y,又称几乎必然收敛于 Y,记作 $Y_n \stackrel{\text{a.s.}}{\to} Y$,如果 $P(\lim_{n\to +\infty} Y_n = Y) = 1$ 。

用上述定义,强大数定律可以表述为 $\bar{X} \stackrel{\text{a.s.}}{\to} \mu$ 。

例 5.2. (Monte Carlo 积分)

设我们要计算 g(x) > 0 在区间 [a,b] 上的定积分,首先取一个适当的 $c > \sup\{g(x)|x \in [a,b]\}$,设 (X_i,Y_i) 独立且服从区域 $[a,b] \times [0,c]$ 上的均匀分布,记 $I_i = \begin{cases} 1, & Y_i \leq g(X_i), \\ 0, & Y_i > g(X_i), \end{cases}$,则 $I_i \sim B(p)$,其中 $p = \frac{\int_a^b g(x) \mathrm{d}x}{c(b-a)}$,于是 $\bar{I} = \frac{1}{n} \sum_{i=1}^n I_i \approx p$,从而 $\int_a^b g(x) \mathrm{d}x \approx c(b-a)\bar{I}$ 。

例 5.3. 我们通过一个例子来考察一下上面介绍的两种收敛性的区别。

设概率空间 (Ω, \mathscr{F}, P) , 其中 $\Omega = [0, 1]$, ω 在 Ω 上均匀分布。定义随机变量序列 $\forall \omega \in \Omega, Y_1(\omega) = \omega + I_{[0,1]}(\omega), Y_2(\omega) = \omega + I_{[0,1/2]}(\omega), Y_3(\omega) = \omega + I_{[1/2,1]}(\omega), Y_4(\omega) = \omega + I_{[0,1/3]}(\omega), Y_5(\omega) = \omega + I_{[1/3,2/3]}(\omega), Y_6(\omega) = \omega + I_{[2/3,1]}(\omega), \cdots$,则 $Y_n(\omega)$ 依概率收敛于 $Y(\omega) = \omega$,但不以概率 1 收敛于 $Y(\omega)$,因为 $\forall \omega_0 \in \Omega$, $Y_n(\omega)$ 无极限。

5.3 中心极限定理

定理 5.6. 设随机变量 X_1, \dots, X_n 独立同分布,均值 $\mathrm{E}(X_i) = \mu$,方差 $\mathrm{Var}(X_i) = \sigma^2 > 0$,则 $\forall x \in \mathbb{R}, \lim_{n \to +\infty} P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le x\right) = \Phi(x)$,其中 $\Phi(x)$ 为标准正态分布的 CDF。或等价地, $\lim_{n \to +\infty} P\left(\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \le x\right) = \Phi(x)$ 。

证明. 只对 X_i 的 MGF 存在的情形给出证明。

不失一般性,假设 $\mu=0,\sigma^2=1$,令 $M(t)=\mathrm{E}(e^{tX_i})$,则 M(0)=1,M'(0)=0,M''(0)=1,于 是 $\mathrm{E}(e^{t\frac{X_1+\cdots+X_n}{\sqrt{n}}})=M^n\left(\frac{t}{\sqrt{n}}\right)$,而根据 Taylor 展开, $M\left(\frac{t}{\sqrt{n}}\right)=1+0+\frac{1}{2}\left(\frac{t}{\sqrt{n}}\right)^2+o\left(\frac{t^2}{n}\right)$,故 $\mathrm{E}(e^{t\frac{X_1+\cdots+X_n}{\sqrt{n}}})=(1+\frac{t^2}{2n}+o(\frac{t^2}{n}))^n\to e^{t^2/2}(n\to+\infty)$,此为 N(0,1) 的 MGF,这说明 $\frac{X_1+\cdots+X_n}{\sqrt{n}}$ 的分布趋近于 N(0,1)。

上述定理通常称为 Lindeberg-Lévy CLT,可推广至不同分布的情形。

如果将定理中的 $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ 理解为标准化的过程,则不难得出 \bar{X} 近似服从 $N(\mu,\frac{\sigma^2}{n})$, $X_1+\cdots+X_n$ 近似服从 $N(n\mu,n\sigma^2)$ 。

例 5.4. (De Moivre-Laplace CLT)

设 $X_i \sim B(p)$,则 $\sum_{i=1}^n X_i \sim B(n,p)$,当 n 充分大时,可以近似地认为 $\sum_{i=1}^n X_i \sim N(np,np(1-p))$,于是我们可近似计算 $P(t_1 \leq \sum_{i=1}^n X_i \leq t_2) = P\left(\frac{t_1-np}{\sqrt{np(1-p)}} \leq \frac{\sum_{i=1}^n X_i-np}{\sqrt{np(1-p)}} \leq \frac{t_2-np}{\sqrt{np(1-p)}}\right) \approx \Phi(y_2) - \Phi(y_1)$,其中 $y_1 = \frac{t_1-np-\frac{1}{2}}{\sqrt{np(1-p)}}, y_2 = \frac{t_2-np+\frac{1}{2}}{\sqrt{np(1-p)}}$,其中 $\frac{1}{2}$ 是连续性修正项。

定义 5.3. (依分布收敛)

我们称 Y_n 依分布收敛于 Y,记作 $Y_n \stackrel{d}{\to} Y$,如果 $\lim_{n \to +\infty} F_{Y_n}(x) = F_Y(x), \forall x \in \mathbb{R}$ 。

用上述定义,CLT 可以表述为 $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\stackrel{d}{\to} Z$,其中 $Z\sim N(0,1)$,或简记为 $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\to N(0,1)$ 。

例 5.5. (选举问题)

设 p 为选民真实支持度(未知),随机抽样调查 n 人(假设 n 远远小于总人数 N,可以近似有放回抽样),样本支持比例 $P_n = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$,其中 $X_i \sim B(p)$ 且独立,表示第 i 个人是否支持。

设置精度 $\epsilon = 0.03$,置信度 $1-\alpha = 95\%$,则至少需要 n 为多少,才能保证 $P(|P_n-p| < \epsilon) \ge 1-\alpha$?根据 CLT,我们有 $P(|P_n-p| \ge \epsilon) \approx 2\left(1-\Phi(\frac{\epsilon}{\sqrt{p(1-p)/n}})\right) \le \alpha$,于是 $n \ge \frac{z_{\alpha/2}^2p^{(1-p)}}{\epsilon^2}$,其中 $z_{\alpha/2}$ 为标准正态分布的上 $\alpha/2$ 分位数,代入最大值点 $p=\frac{1}{2}$,我们得到 $n \ge \frac{z_{\alpha/2}^2}{4}\epsilon^2$,代入 $\epsilon = 0.03$, $\alpha = 0.05$,得到 $n \ge 1068$ 。这一结果与 N 无关!

第二部分

随机过程

随机过程引言

定义. 给定一个概率空间 (Ω, \mathcal{F}, P) ,若对于某个集合 T (称之为指标集), $\forall t \in T$,都有一个随机变量 X_t ,则称 $\{X_t\}_{t\in T}$ 为一个随机过程(Stochastic Process),也记作 $\{X_t, t \in T\}$ 。称 X_t 为该随机过程在 t 时刻的状态,有时也记作 X(t),其取值集合 S 称为状态空间,即 $\forall t \in T, \forall \omega \in \Omega, X_t(\omega) \in S$ 。 $\forall \omega_0 \in \Omega$,称 $\{X_t(\omega_0), t \in T\}$ 为该随机过程的一条样本轨道(Sample Path)。

随机变量是 Ω 上的函数,而随机过程是一列随机变量,因此 $X_t(\omega)$ 可以视为 t,ω 的函数。 **例.** 设 X_0,U 独立且均服从 N(0,1),令 $X_t=X_0+tU$,则 $\{X_t,t\in\mathbb{R}\}$ 是一个随机过程, $\forall t\in\mathbb{R},X_t\sim N(0,t^2+1)$,如下图所示。

Normal Distribution at Different Time Points

 ${X_t, t \in \mathbb{R}}$ 的分布

例. 设 $\{Y_i\}_{i=1}^{\infty}$ 独立同分布,且 $P(Y_i = 1) = P(Y_i = -1) = \frac{1}{2}$,令 $Y_0 = 0, X_n = \sum_{i=0}^n Y_i$,则 $\{X_n, n \in \mathbb{N}\}$ 是一个随机过程,属于随机游走(Random Walk)。

如果一个随机过程的 T 是离散的,常称之为时间序列(Time Series)。而如果 S 是离散的,有时用链(Chain)来称呼这样的随机过程。

定义. 若 $\forall n, \forall t_1 < t_2 < \cdots < t_n \ (t_1, \cdots, t_n \in T)$,满足 $X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \cdots, X_{t_n} - X_{t_{n-1}}$ 相互独立,则称 $\{X_t, t \in T\}$ 为独立增量过程。若 T 中包含最小指标 t_0 ,则要求 $X_{t_0}, X_{t_1} - X_{t_0}, X_{t_2} - X_{t_1}, \cdots, X_{t_n} - X_{t_{n-1}}$ 相互独立。

定义. 若 $\forall t \in T, \forall \tau \text{ s.t. } t + \tau \in T,$ 满足 $X_{t+\tau} - X_t$ 只依赖 τ (不依赖 t), 则称 $\{X_t, t \in T\}$ 为 平稳增量过程。

一个随机过程 $\{X_t, t \in T\}$ 是平稳增量过程,等价于 $\forall t_1, t_2 \in T, \forall \tau \text{ s.t. } t_i + \tau \in T \ (i = 1, 2),$ 总有 $X_{t_1+\tau} - X_{t_1}$ 与 $X_{t_2+\tau} - X_{t_2}$ 同分布。

第六章 Poisson 过程

6.1 基本概念

加入引言后,似乎"基本概念"这一节无内容了,有待确认。

6.2 Bernoulli 过程

定义 6.1. 设 $T = \mathbb{N}^*$, $\{X_n\}_{n=1}^{\infty}$ 是一列独立同分布的随机变量,且 $P(X_n = 1) = p, P(X_n = 0) = 1 - p$,则称 $\{X_n\}_{n=1}^{\infty}$ 为参数为 p 的 Bernoulli 过程。

定义中提到的 $\{X_n\}_{n=1}^{\infty}$ 相互独立, 指的是 $\forall n \in \mathbb{N}^*$, 都有 X_1, \dots, X_n 相互独立。

如果在每个离散时刻 n,将事件 $X_n = 1$ 即 "第 n 次试验成功"理解为该时刻有一个顾客到达某商店,则 Bernoulli 过程属于一种到达过程。

本章的主要内容 Poisson 过程也是一种到达过程。

6.3 Poisson 过程

定义 6.2. 称一个随机过程 $\{N(t), t \ge 0\}$ 为计数过程, 若其满足:

- 1. $N(t) \in \mathbb{N}$
- 2. $\forall t > s \ge 0, N(t) \ge N(s)$
- 3. N(t) N(s) 为 (s,t] 时间内发生的事件数

定义 6.3. 称一个计数过程 $\{N(t), t \geq 0\}$ 为 Poisson 过程, 若其满足:

- 1. N(0) = 0
- 2. $\{N(t), t \geq 0\}$ 有平稳增量性和独立增量性
- 3. $\exists \lambda > 0$, $\stackrel{\text{def}}{=} h \rightarrow 0$ H, $P(N(h) = 1) = \lambda h + o(h)$
- 4. 当 $h \to 0$ 时, $P(N(h) \ge 2) = o(h)$

利用平稳增量性可知, $\forall t \geq 0, P(N(t+h) - N(t) = 1) = \lambda h + o(h), P(N(t+h) - N(t) \geq 2) = o(h)$ 。

考虑 (0,t] 时间段,将其分成 n 个长度为 $\frac{t}{n}$ 的子区间,当 $n \gg 1$ 时,每个小区间上发生 2 次及以上事件的概率趋于 0,而发生 1 次事件的概率 $p \approx \lambda_n^t$,因此近似有 $N(t) \sim B(n,p)$,而我们知道当 $n \to \infty$ 时,B(n,p) 会趋向于 Poisson 分布,即 $N(t) \sim P(\lambda t)$ 。稍后我们将严格证明这一结论。

称 λ 为 Poisson 过程的强度或到达率。

定理 6.1. 若 $\{N(t), t \geq 0\}$ 是 Poisson 过程,则 $\forall t \geq 0, N(t) \sim P(\lambda t)$ 。

证明. 记
$$P_n(t) = P(N(t) = n)$$
 $(n \in \mathbb{N})$, 则 $P_0(t+h) = P(N(t+h) = 0) = P(N(t+h) - N(t) = 0, N(t) = 0) = P(N(t+h) - N(t) = 0) = (1 - \lambda h + o(h))P_0(t)$, 即 $\frac{P_0(t+h)-P_0(t)}{h} = -\lambda P_0(t) + \frac{o(h)}{h}$ 。当 $h \to 0$ 时, $\frac{o(h)}{h} \to 0$,因此 $\frac{P_0(t+h)-P_0(t)}{h} \to -\lambda P_0(t)$,即 $P_0'(t) = -\lambda P_0(t)$,由边界条件 $P_0(0) = P(N(0) = 0) = 1$ 解得 $P_0(t) = e^{-\lambda t} = \frac{(\lambda t)^0}{0!} e^{-\lambda t}$ 。同理,

$$\begin{split} &P_n(t+h)\\ =&P(N(t+h)=n)\\ =&P(N(t+h)-N(t)=0,N(t)=n)+P(N(t+h)-N(t)=1,N(t)=n-1)\\ &+P(N(t+h)-N(t)\geq 2,N(t+h)=n)\\ =&P(N(t+h)-N(t)=0)P(N(t)=n)+P(N(t+h)-N(t)=1)P(N(t)=n-1)\\ &+P(N(t+h)-N(t)\geq 2,N(t+h)=n)\\ =&P(N(h)=0)P_n(t)+P(N(h)=1)P_{n-1}(t)+o(h)\\ &(\because P(N(t+h)-N(t)\geq 2,N(t+h)=n)\leq P(N(t+h)-N(t)\geq 2)\\ &=P(N(h)\geq 2)=o(h))\\ =&(1-\lambda h+o(h))P_n(t)+(\lambda h+o(h))P_{n-1}(t)+o(h)\\ =&P_n(t)+\lambda h(P_{n-1}(t)-P_n(t))+o(h) \end{split}$$

因此 $\frac{P_n(t+h)-P_n(t)}{h} = \lambda(P_{n-1}(t)-P_n(t)) + \frac{o(h)}{h}$,当 $h \to 0$ 时, $\frac{P_n(t+h)-P_n(t)}{h} \to \lambda(P_{n-1}(t)-P_n(t))$,即 $P'_n(t) = \lambda(P_{n-1}(t)-P_n(t))$ 。由数学归纳法可证明 $P_n(t) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$, $\forall n \in \mathbb{N}$,即 $N(t) \sim P(\lambda t)$ 。

于是我们有 $E(N(t)) = \lambda t, Var(N(t)) = \lambda t.$

下面给出 Poisson 过程的一个等价定义。

定义 6.4. 称一个计数过程 $\{N(t), t \geq 0\}$ 为 Poisson 过程, 若其满足:

- 1. N(0) = 0
- 2. $\{N(t), t \ge 0\}$ 有独立增量性
- $3. \ \exists \lambda>0, \forall t>s\geq 0, n\in \mathbb{N}, P(N(t+s)-N(s)=n)=\tfrac{(\lambda t)^n}{n!}e^{-\lambda t}, \ \text{for } N(t+s)-N(s)\sim P(\lambda t)$

记 T_1 为首次到达时刻,则 $P(T_1 \leq t) = 1 - P(T_1 > t) = 1 - P(N(t) = 0) = 1 - e^{-\lambda t}$,因此 $T_1 \sim Exp(\lambda)$ 。再记 T_2 为第二次到达时刻,则在 $T_1 = t_0$ 条件下, $T_2 - T_1$ 的分布 $P(T_2 - T_1 \leq t) = P(T_2 - t_0 \leq t) = 1 - P(T_2 - t_0 > t) = 1 - P(N(t_0 + t) - N(t_0) = 0) = 1 - P(N(t) = 0) = 1 - e^{-\lambda t}$,因此 $T_2 - T_1 \sim Exp(\lambda)$,且 $T_2 - T_1$ 与 T_1 相互独立。一般地,记 T_i 为第 i 次到达时刻, $W_i = T_i - T_{i-1}$ 为相邻两次到达间隔时间,约定 $T_0 = 0$,则 $\{W_i\}_{i=1}^\infty$ 相互独立且 $W_i \sim Exp(\lambda)$,而 $T_k = \sum_{i=1}^k W_i$,称 T_k 服从参数为 k 和 λ 的 Gamma 分布,记作 $T_k \sim \Gamma(k,\lambda)$, $E(T_k) = \frac{k}{\lambda}$, $Var(T_k) = \frac{k}{\lambda^2}$ 。 T_k 服从的分布又称之为 Erlang 分布。事实上,Erlang 分布是 Gamma 分布在 $k \in \mathbb{N}^*$ 时的特例。 $\Gamma(1,\lambda)$ 就是 $Exp(\lambda)$ 。

利用 $\forall t \geq 0, P(T_k \leq t) = P(N(t) \geq k) = 1 - \sum_{n=0}^{k-1} \frac{(\lambda t)^n}{n!} e^{-\lambda t}$, 求导可得 T_k 的 PDF 为 $f_{T_k}(t) = \frac{\lambda^k t^{k-1}}{(k-1)!} e^{-\lambda t} (t \geq 0)$ 。

Poisson 过程还有一个等价定义如下。

定义 6.5. 称一个计数过程 $\{N(t), t \geq 0\}$ 为 Poisson 过程, 若其满足:

- 1. N(0) = 0
- 2. $\exists \lambda > 0$,各相邻两次到达间隔时间 $\{W_i\}_{i=1}^{\infty}$ 相互独立且 $W_i \sim Exp(\lambda)$

这提示我们,生成 Poisson 过程的一种方法便是从独立同分布的 $Exp(\lambda)$ 中抽取相邻两次到达间隔时间,据此给出各到达时刻,即可确定一 Poisson 过程。

例 6.1. 拨打服务热线时,被告知除了正在接受服务的人以外,前面还有 55 人在等待。假设呼叫者离开服从 Poisson 过程, $\lambda=2$ 人/min,则平均等待时间为 $T_{56}=\sum_{i=1}^{56}W_i$,其中 $W_i\sim Exp(2)$ 且相互独立,因此平均等待时间为 $E(T_{56})=\frac{56}{2}=28$ min,且 $Var(T_{56})=\frac{56}{4}=14$ min²。等待时间超过 30 分钟的概率为 $P(T_{56}>30)=\int_{30}^{+\infty}f_{T_{56}}(t)\mathrm{d}t$ 。根据 CLT,近似有 $T_{56}\sim N(28,14)$,故有 $P(T_{56}>30)\approx P(Z>\frac{30-28}{\sqrt{14}})=1-\Phi(\frac{2}{\sqrt{14}})$,其中 $Z\sim N(0,1)$ 。

6.4 Poisson 过程的进一步性质

首先介绍 Poisson 过程的分裂。

定理 6.2. 假设某 Poisson 过程每次发生的事件分为 I 类和 II 类,每个事件独立地以概率 p 成为 I 类事件,以概率 1-p 成为 II 类事件,记 $N_1(t)$ 和 $N_2(t)$ 分别为 (0,t] 内 I 类和 II 类事件的个数,则

- 1. $N(t) = N_1(t) + N_2(t)$
- 2. $\{N_1(t), t \ge 0\}$ 和 $\{N_2(t), t \ge 0\}$ 均为 Poisson 过程,且到达率分别为 λp 和 $\lambda (1-p)$
- 3. 这两个过程相互独立

证明. 仅对第二条给出简要证明。 $\forall h > 0, P(N_1(h) = 1) = P(N_1(h) = 1|N(h) = 1)P(N(h) = 1) + P(N_1(h) = 1|N(h) \geq 2)P(N(h) \geq 2) = p(\lambda h + o(h)) + o(h) = \lambda ph + o(h), 而 <math>P(N_1(h) \geq 2) \leq P(N(h) \geq 2) = o(h)$, 因此 $\{N_1(t), t \geq 0\}$ 是 Poisson 过程,且到达率为 λp 。同理可证 $\{N_2(t), t \geq 0\}$ 是 Poisson 过程,且到达率为 $\lambda (1-p)$ 。

例 6.2. 设 $\{X_i\}_{i=1}^{\infty}$ 独立同分布且服从 $Exp(\lambda)$, N 服从参数为 p 的几何分布,且与 $\{X_i\}_{i=1}^{\infty}$ 相互独立,令 $Y = \sum_{i=1}^{N} X_i$ 。为求出 Y 的分布,设每次事件都独立地以概率 p 成为 "特殊事件",则 N 可视为首次发生 "特殊事件" 时的事件总数,Y 为特殊事件首次发生的时刻。由定理 6.2,特殊事件的发生是一个 Poisson 过程,到达率为 λp ,因此 $Y \sim Exp(\lambda p)$ 。

下面介绍 Poisson 过程的合并。

定理 6.3. 若 $\{N_1(t), t \ge 0\}$ 和 $\{N_2(t), t \ge 0\}$ 是两个独立的 Poisson 过程,且到达率分别为 λ_1 和 λ_2 ,则 $\{N_1(t) + N_2(t), t \ge 0\}$ 也是 Poisson 过程,且到达率为 $\lambda_1 + \lambda_2$ 。

证明.

- 1. 显然有 N(0) = 0。
- 2. 由 $N(t+s) N(t) = (N_1(t+s) N_1(t)) + (N_2(t+s) N_2(t))$ 易验证独立增量性。
- 3. 由于 $N_i(t+s) N_i(s) \sim P(\lambda_i t), i = 1, 2$ 且独立,因此 $N(t+s) N(s) \sim P((\lambda_1 + \lambda_2)t)$ 。

定理 6.4. 记定理 6.3 中的两类事件的首达时刻分别为 $T^{(1)}$ 和 $T^{(2)}$, 则 $P(T^{(1)} < T^{(2)}) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$ 。

例 6.3. 设 $X \sim Exp(\lambda)$,而在 X = x 的条件下, $Y - 1 \sim P(x)$ 。为求出 Y 的分布,首先考虑到达率为 λ 的"成功"过程,则 X 可视为首次成功的时刻。再考虑到达率为 1 的"失败"过程,则 (0,x] 内"失败"的次数服从 P(x),因此 Y - 1 可视为首次"成功"之前"失败"的次数,即 Y 为首次"成功"时的事件总数。合并两个过程,得到一个参数为 $\lambda + 1$ 的Poisson 过程,且每个事件属于"成功"的概率为 $p = \frac{\lambda}{\lambda + 1}$,因此 Y 服从参数为 p 的几何分布,即 $P(Y = k) = p(1 - p)^{k - 1}$, $k \in \mathbb{N}^*$ 。

最后介绍在 Poisson 过程在条件作用下的性质。

记 T_i 为第 i 次到达时刻,计算可得对于 $0 \le s \le t$,条件概率 $P(T_1 \le s|N(t)=1) = \frac{P(T_1 \le s,N(t)=1)}{P(N(t)=1)} = \frac{P(N(s)=1,N(t)-N(s)=0)}{P(N(t)=1)} = \frac{P(N(s)=1,N(t)-N(s)=0)}{P(N(t)=1)} = \frac{\frac{(\lambda s)^1}{1!}e^{-\lambda s}\frac{(\lambda(t-s))^0}{0!}e^{-\lambda(t-s)}}{\frac{(\lambda t)^1}{1!}e^{-\lambda t}} = \frac{s}{t}$,即在 N(t)=1 的条件下, $T_1 \sim U(0,t)$ 。

一般地, 我们有如下定理。

定理 6.5. 设 $\{N(t), t \geq 0\}$ 是 Poisson 过程,则 $\forall 0 \leq t_1 \leq t_2$,在 $N(t_2) = n$ 的条件下,有 $N(t_1) \sim B(n, \frac{t_1}{t_2})$ 。

证明. 由 Poisson 过程性质知, $N(t_1) \sim P(\lambda t_1)$,而 $N(t_2) - N(t_1) \sim P(\lambda (t_2 - t_1))$,且 $N(t_1)$ 和 $N(t_2) - N(t_1)$ 相互独立。据此, $\forall 0 \leq k \leq n$,有

$$P(N(t_1) = k | N(t_2) = n)$$

$$= \frac{P(N(t_1) = k, N(t_2) = n)}{P(N(t_2) = n)}$$

$$= \frac{P(N(t_1) = k)P(N(t_2) - N(t_1) = n - k)}{P(N(t_2) = n)}$$

$$= \frac{\frac{(\lambda t_1)^k}{k!} e^{-\lambda t_1} \frac{(\lambda (t_2 - t_1))^{n-k}}{(n-k)!} e^{-\lambda (t_2 - t_1)}}{\frac{(\lambda t_2)^n}{n!} e^{-\lambda t_2}}$$

$$= \binom{n}{k} \left(\frac{t_1}{t_2}\right)^k \left(1 - \frac{t_1}{t_2}\right)^{n-k}.$$

事实上,上述讨论适用于任何长度为 t_1 的子区间。因此,以 $N(t_2) = n$ 为条件,相当于在 $(0,t_2]$ 上以均匀分布随机放置 n 个到达点,第 i 次到达时刻就是这 n 个独立且服从 $U(0,t_2)$ 的随机变量的第 i 个次序统计量。

一般地,考虑随机样本 X_1, \dots, X_n ,将它们从小到大排序,记为 $X_{(1)} \leq \dots \leq X_{(n)}$,则称 $X_{(i)}$ 为 X_1, \dots, X_n 的第 i 个次序统计量, $X_{(1)} = \min\{X_1, \dots, X_n\}, X_{(n)} = \max\{X_1, \dots, X_n\}$ 。 严谨地说, $X_{(1)}$ 定义为 $\forall \omega \in \Omega, X_{(1)}(\omega) = \min\{X_1(\omega), \dots, X_n(\omega)\}$,其余同理。

命题 6.1. 若连续型随机变量 X_1, \dots, X_n 独立同分布,且 CDF 为 F(x), PDF 为 f(x),则

- 1. $X_{(k)}$ 的 PDF 为 $f_{X_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!} F^{k-1}(x) (1 F(x))^{n-k} f(x)$
- 2. $(X_{(1)}, \dots, X_{(n)})$ 的联合 PDF 为 $f_{X_{(1)}, \dots, X_{(n)}}(x_1, \dots, x_n) = n! f(x_1) \dots f(x_n) \mathbf{1}_{x_1 \leq \dots \leq x_n}$

证明. 考虑小区间 $(x, x + \mathrm{d}x]$,当 $\mathrm{d}x$ 充分小时,有两个及以上随机变量落入其中的概率极小,因此事件 $X_{(k)} \in (x, x + \mathrm{d}x]$ 的概率近似为 $\binom{n}{k-1, 1, n-k} F^{k-1}(x) f(x) \mathrm{d}x (1-F(x))^{n-k}$,即有 (k-1)个随机变量落入 $(-\infty, x]$,1 个随机变量落入 $(x, x + \mathrm{d}x]$,(n-k) 个随机变量落入 $(x + \mathrm{d}x, +\infty)$ 的概率。于是 $X_{(k)}$ 的 PDF 为 $f_{X_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!} F^{k-1}(x) (1-F(x))^{n-k} f(x)$ 。类似讨论可知, $(X_{(1)}, \cdots, X_{(n)})$ 的联合 PDF 为 $\binom{n}{1, \dots, 1} f(x_1) \cdots f(x_n) \mathbf{1}_{x_1 \leq \dots \leq x_n} = n! f(x_1) \cdots f(x_n) \mathbf{1}_{x_1 \leq \dots \leq x_n}$ 。

定理 6.6. 设 $\{N(t), t \geq 0\}$ 是 Poisson 过程,则在 N(t) = n 的条件下,事件发生时刻 T_1, \dots, T_n 的联合 PDF 为 $f_{T_1, \dots, T_n \mid N(t)}(t_1, \dots, t_n \mid N(t) = n) = \frac{n!}{t^n} \mathbf{1}_{0 \leq t_1 \leq \dots \leq t_n \leq t}$ 。

证明. 直接应用命题 6.1 的结论即得。我们另给出一种直接的证明。

由于 $\{T_1 = t_1, T_2 = t_2, \dots, T_n = t_n, N(t) = n\}$ 等价于 $\{W_1 = t_1, W_2 = t_2 - t_1, \dots, W_n = t_n - t_{n-1}, W_{n+1} > t - t_n\}$, 其中 W_i 为相邻两次到达间隔时间,且 W_1, \dots, W_n, W_{n+1} 相互独立,且 $W_i \sim Exp(\lambda)$ 。因此

$$f_{T_1,\dots,T_n|N(t)}(t_1,\dots,t_n|N(t)=n)$$

$$=\frac{\lambda e^{-\lambda t_1} \lambda e^{-\lambda(t_2-t_1)} \dots \lambda e^{-\lambda(t_n-t_{n-1})} \cdot e^{-\lambda(t-t_n)}}{\frac{(\lambda t)^n}{n!} e^{-\lambda t}} \mathbf{1}_{0 \le t_1 \le \dots \le t_n \le t}$$

$$=\frac{n!}{t^n} \mathbf{1}_{0 \le t_1 \le \dots \le t_n \le t}.$$

这个定理的证明让我有点疑惑。难道不需要取 n 个小区间严谨讨论吗?为什么可以直接用 W_1, \dots, W_n 的 PDF?

这提示我们生成 Poisson 过程的另一种方法。首先从 $P(\lambda t)$ 中采样 n 为 (0,t] 内事件发生数,然后从 (0,t] 中均匀采样 n 个点,即取 U_1, \dots, U_n 独立同分布且服从 U(0,t),令 $T_k = U_{(k)}$ 为各事件发生时刻,即可确定一 Poisson 过程。

例 6.4. 乘客到达火车站可视为一 Poisson 过程,设到达率为 λ 。火车在 t 时刻出发,则 (0,t] 内到达的乘客总等待时间的期望为 $\mathrm{E}(\sum_{i=1}^{N(t)}(t-T_i))=\mathrm{E}(\mathrm{E}(\sum_{i=1}^{N(t)}(t-T_i)|N(t)))$ 。而 $\mathrm{E}(\sum_{i=1}^{N(t)}(t-T_i)|N(t))=n$ $=nt-\mathrm{E}(\sum_{i=1}^nT_i|N(t))=n$ $=nt-\mathrm{E}(\sum_{i=1}^nU_i)=n$ $=nt-\mathrm{E}(\sum_{i=1}^nU_i)=n$ 因此 $\mathrm{E}(\sum_{i=1}^{N(t)}(t-T_i))=\mathrm{E}(\frac{N(t)}{2}t)=\frac{\lambda t^2}{2}$ 。

6.5 Poisson 过程的推广

首先介绍非齐次 Poisson 过程。

定义 6.6. 称一个计数过程 $\{N(t), t \ge 0\}$ 为到达率 $\lambda(t) > 0$ 的非齐次 *Poisson* 过程, 若其满足:

- 1. N(0) = 0
- 2. $\{N(t), t \ge 0\}$ 有独立增量性
- 3. $\forall t \geq 0, P(N(t+h) N(t) = 1) = \lambda(t)h + o(h)$
- 4. $\forall t > 0, P(N(t+h) N(t) > 2) = o(h)$

令 $m(t) = \int_0^t \lambda(s) ds$,可以证明 $P(N(t+s) - N(s) = n) = \frac{(m(t+s) - m(s))^n}{n!} e^{-(m(t+s) - m(s))}$ 。 然后介绍复合 Poisson 过程。 **定义 6.7.** 设 $\{N(t), t \geq 0\}$ 是 Poisson 过程, $\{X_i\}_{i=1}^{\infty}$ 独立同分布且与 $\{N(t), t \geq 0\}$ 独立,记 $X(t) = \sum_{i=1}^{N(t)} X_i$,则称 $\{X(t), t \geq 0\}$ 为一复合 Poisson 过程。

最后介绍更新过程。我们知道,Poisson 过程的相邻两次到达间隔时间服从参数为 λ 的指数分布。如果将其推广为一般分布,就得到了更新过程。

第七章 离散时间 Markov 链

7.1 基本概念

我们本章讨论的离散时间 Markov 链是一种特殊的随机过程,其指标集 T 和状态空间 S 都是离散的,不妨记为 $T=\{0,1,\cdots\},S=\{0,1,\cdots\}$ 。

定义 7.1. 若随机过程 $\{X_n, n = 0, 1, \dots\}$ 的状态空间为 S, 满足 $\forall n \in \mathbb{N}, \forall i, j, i_0, \dots, i_{n-1} \in S, P(X_{n+1} = j | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i)$,则称 $\{X_n, n = 0, 1, \dots\}$ 为(离散时间)Markov 链,上式称为 Markov 性,又称无后效性。

我们可以直接利用 Markov 性给出 (X_0, \dots, X_n) 的联合分布,即

$$P(X_{0} = i_{0}, \dots, X_{n} = i_{n})$$

$$= P(X_{n} = i_{n} | X_{0} = i_{0}, \dots, X_{n-1} = i_{n-1}) P(X_{0} = i_{0}, \dots, X_{n-1} = i_{n-1})$$

$$= P(X_{n} = i_{n} | X_{n-1} = i_{n-1}) P(X_{0} = i_{0}, \dots, X_{n-1} = i_{n-1})$$

$$= \dots$$

$$= P(X_{n} = i_{n} | X_{n-1} = i_{n-1}) P(X_{n-1} = i_{n-1} | X_{n-2} = i_{n-2}) \dots P(X_{1} = i_{1} | X_{0} = i_{0}) P(X_{0} = i_{0})$$

定义 7.2. 若 $\{X_n, n = 0, 1, \dots\}$ 为离散时间 Markov 链,称 $P(X_{n+1} = j | X_n = i)$ 为其(一步)转移概率,若其与 n 无关,则称该 Markov 链关于时间是齐次的,此时记 $p_{ij} = P(X_{n+1} = j | X_n = i)$,称 $P = (p_{ij})$ 为转移概率矩阵。

显然有 $\forall i, j, p_{ij} \geq 0, \sum_{j \in S} p_{ij} = 1$ 。

状态空间有限时称该 Markov 链为有限链, 否则称为无限链。多数情况下我们只讨论关于时间齐次的有限 Markov 链。

利用转移概率,容易写出 $P(X_0 = i_0, \dots, X_n = i_n) = P(X_0 = i_0) p_{i_0 i_1} \dots p_{i_{n-1} i_n}$ 。

- 例 7.1. 假设每天的天气只与前一天的天气有关:
 - 若前一天是雨天,则第二天是雨天的概率为 1/3, 晴天的概率为 2/3

• 若前一天是晴天,则第二天是雨天的概率为 1/2,晴天的概率为 1/2则各天的天气构成一个 Markov 链,其状态空间 $S=\{r,s\}$,其中 r 和 s 分别表示雨天和晴天。其转移概率矩阵为

$$r \quad s$$

$$r \left(\frac{1}{3} \quad \frac{2}{3}\right)$$

$$s \left(\frac{1}{2} \quad \frac{1}{2}\right)$$

该 Markov 链的转移概率图如下。

例 7.2. 设 $\{X_i\}_{i=1}^{\infty}$ 独立同分布,且 $P(X_i = 1) = 1 - P(X_i = -1) = p$,令 $X_0 = 0, Y_n = \sum_{i=0}^{n} X_i$,则 $\{Y_n, n \in \mathbb{N}\}$ 是一维随机游走,状态空间 $S = \mathbb{Z}$,且其为 Markov 链,转移概率为 $p_{i,i+1} = p, p_{i,i-1} = 1 - p$ 。

例 7.3. 状态空间为 $S = \{0, \dots, N\}$ 的 Markov 链,对于 $i = 1, \dots, N-1$ 其转移概率同上例,而 $p_{00} = 1, p_{01} = 0, p_{NN} = 1, p_{N,N-1} = 0$,则称为具有吸收壁的随机游走,0 和 N 称为吸收态。其转移概率矩阵为

例 7.4. 现假设每天的天气与前两天的天气有关:

- 若前两天是雨天,则第三天是雨天的概率为 0.7, 晴天的概率为 0.3
- 若前两天分别是晴天和雨天,则第三天是雨天的概率为 0.5,晴天的概率为 0.5
- 若前两天分别是雨天和晴天,则第三天是雨天的概率为 0.4,晴天的概率为 0.6
- 若前两天是晴天,则第三天是雨天的概率为 0.2,晴天的概率为 0.8

则仍可构造 Markov 链,其状态空间 $S=\{rr,sr,rs,ss\}$,各状态表示近两天的天气,则转移 概率矩阵为

7.2 Chapman-Kolmogorov 方程

定义 7.3. 若 $\{X_n, n=0,1,\cdots\}$ 为关于时间齐次的 Markov 链, 对 $n\in\mathbb{N}^*$, 称 $P(X_n=j|X_0=i)$ 为其 n 步转移概率,记为 $p_{ij}^{(n)}$ 。