Relations and functions

A relation from a non-empty set A to a nonempty set B is a subset of $A \times B$.

In this chapter we study different types of relations and functions, composition of functions, and binary operations.

Examples

- $\{(a,b) \in A \times B : a \text{ is brother of b}\}$

Types of Relations

- Empty Relation: $R: A \to A$ given by $R = \phi \subset A \times A$
- Universal Relation $R: A \to A$ given by $R = A \times A$
- Reflexive Relation $R: A \to A$ with $(a, a) \in R, \forall a \in A$
- Symmetric Relation $R: A \to A$ with $(a,b) \in R \Rightarrow (b,a) \in R, a,b \in A$
- Transitive Relation $R:A\to A$ with $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$
- Equivalence Relation Relation which is Reflexive, Symmetric and Transitive.

Equivalence Class

Let A be an Equivalence Relation in a set A. If $a \in A$, then the subset $\{x \in A, (x, a) \in R\}$ of A is called the Equivalence class corresponding to 'a' and is denoted by [a].

Types of functions

One-One or Injective function.

A function $f: A \to B$ is said to be One-Oneor *Injective*, if the image of distinct elements of A under f are distinct.

i.e; $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. Otherwise, f is called many-one.

If lines parallel to x-axis meet the curve at two or more points, then the function is not one-

Onto or Surjective function

A function $f: A \to B$ is said to be *Onto* or Surjective, if every element of B is some image of some elements of A under f.

ie; If for every element $y \in Y$ then there ex-• $\{(a,b) \in A \times B : \text{age of a is greater than age ist}$ by an element x in A such that f(x) = y.

Bijective Functions

A function $f: A \to B$ is said to be Bijective if it is both One-One and Onto.

Composition of functions and Invertible function

Composition of Functions.

Let $f: A \to B$ and $g: B \to C$ be two functions. Then the composition of f and gdenoted by is gof defined gof: $A \rightarrow C$ and qof(x) = q(f(x)).

- If $f: A \to B$ and $g: B \to C$ are One-One, then $qof: A \to C$ is One-One.
- If $f:A\to B$ and $g:B\to C$ are Onto, then $gof: A \to C$ is Onto.gof: A $\to C$
- If $f: A \to B$ and $g: B \to C$ are Bijective, $\iff qof: A \to C$ is Bijective.

Inverse Function

If $f:A\to B$ is defined to be invertible, if there exists a function $g: B \to A$ such that $qof = I_A$ and $fog = I_B$. The function q is called the inverse of 'f' and is denoted by f^{-1} .

- If function $f: A \to B$ is invertible only if f is bijective.
- \bullet $(qof)^{-1} = f^{-1}oq^{-1}$.