import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data=pd.read_csv('/content/student_data.csv')
print(data)

	school						Pstatus		Fedu		Mjo		Fjol	
0	GP	F	18	U		GT3	Α	4	4	at	_hom	e	teache	1
1	GP	F	17	U		GT3	Т	1	1	at	_hom	e	othe	1
2	GP	F	15	U		LE3	T	1	1	at	_hom	e	othe	•
3	GP	F	15	U		GT3	T	4	2	ŀ	nealt	h	service	5
4	GP	F	16	U		GT3	T	3	3		othe	r	othe	•
95	MS	M	20	U		LE3	Α	2	2	ser	vice	S	service	5
96	MS	М	17	U		LE3	Т	3	1	ser	vice	S	service	5
97	MS	M	21	R		GT3	Т	1	1		othe	r	othe	•
98	MS	М	18	R		LE3	Т	3	2	ser	vice	S	othe	,
99	MS	М	19	U		LE3	T	1	1		othe	r	at_home	غ
	fa	amrel	free	etime g	oout	Da]	lc Walc	health	absen	ces	G1	G2	G3	
0		4		3	4		1 1	3		6	5	6	6	
1		5		3	3		1 1	3		4	5	5	6	
2		4		3	2		2 3	3		10	7	8	10	
3		3		2	2		1 1	5		2	15	14	15	
4		4		3	2		1 2	5		4	6	10	10	
95		5		5	4		4 5	4		11	9	9	9	
96		2		4	5		3 4	2		3	14	16	16	
97		5		5	3		3 3	3		3	10	8	7	
98		4		4	1		3 4	5		0	11	12	10	
99		3		2	3		3 3	5		5		9	9	
				_						_	0	_	_	

[100 rows x 33 columns]

data.head()

0	GP GP	F		U	GT3	Α	4	1										
1	GP	F						4	at_home	teacher	 4	3	4	1	1	3	6	
		'	17	U	GT3	Т	1	1	at_home	other	 5	3	3	1	1	3	4	
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 4	3	2	2	3	3	10	
3	GP	F	15	U	GT3	Т	4	2	health	services	 3	2	2	1	1	5	2	
4	GP	F	16	U	GT3	Т	3	3	other	other	 4	3	2	1	2	5	4	
5 rows × 33 columns																		

data.plot.scatter(x='age', y='Medu');


```
data.shape
     (100, 33)
x=data['age'].values.reshape(-1,1)
y=data['Medu'].values.reshape(-1,1)#depending
x.shape
     (100, 1)
SEED = 30
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 30)
print(x_train)
print(y_train)
      [4]
      [3]
      [4]
      [4]
      [4]
      [4]
      [4]
      [2]
      [2]
      [4]
      [2]
      [2]
      [4]
      [4]
      [4]
      [4]
      [2]
[3]
      [2]
      [4]
      [3]
      [2]
      [3]
      [4]
      [3]
      [2]
      [2]
      [4]
      [1]
      [4]
[3]
      [2]
      [3]
      [2]
      [4]
      [1]
      [4]
      [2]
      [3]
      [4]
      [1]
      [3]
      [1]
[2]
      [4]
      [4]
      [2]
      [3]
      [2]
      [1]
      [3]
      [4]
      [4]
      [4]
      [4]
      [4]
```

from sklearn.linear_model import LinearRegression

```
regressor = LinearRegression()
regressor.fit(x_train, y_train)
     ▼ LinearRegression
     LinearRegression()
y_pred = regressor.predict(x_test)
df_preds = pd.DataFrame({'Actual': y_test.squeeze(), 'Predicted': y_pred.squeeze()})
print(df_preds)
         Actual Predicted
     0
             4 3.213119
     1
             4 3.213119
                 2.889740
             4 3.213119
     3
     4
             3 3.213119
     5
             3
                 2.889740
     6
             4 3.213119
             2
                 2.889740
     7
     8
             2
                 3.213119
     9
             4 2.889740
     10
             3
                 3.213119
             3
                 3.213119
     11
     12
             4
                 2.242981
     13
             2
                 2.889740
                 3.213119
     14
     15
             3
                 2.889740
     16
                 3.213119
                 2.889740
     17
             3
                 3.213119
     18
             4
     19
             4
                 3.213119
from sklearn.metrics import mean_absolute_error, mean_squared_error
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print(f'Mean absolute error: {mae:.2f}')
print(f'Mean squared error: {mse:.2f}')
print(f'Root mean squared error: {rmse:.2f}')
     Mean absolute error: 0.68
     Mean squared error: 0.67
     Root mean squared error: 0.82
plt.figure(figsize=(12,10))
plt.plot(x,y,'ro') # regression line
plt.plot(x_test,y_pred) # scatter plot showing actual data
plt.title('Actual vs Predicted')
plt.xlabel('X')
plt.ylabel('y')
plt.show()
```

Actual vs Predicted


```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

data=pd.read_csv('/content/2014.csv')
print(data)

∃		Company	Name	Net Sales	Cons PAT	Cons OCF
	0	3I Infotech	Ltd.	1344	-976	-51
	1	3M India	Ltd.	1840	108	177
	2	Aavas Financiers	Ltd.	104	19	-370
	3	ABB India	Ltd.	7733	229	479
	4	Abbott India	Ltd.	2289	229	215
	151	Wabco India	Ltd.	1348	121	124
	152	Whirlpool Of India	Ltd.	3294	211	300
	153	Wintac	Ltd.	29	-6	6
	154	Xchanging Solutions	Ltd.	287	25	1
	155	Zim Laboratories	Ltd.	266	-22	6

[156 rows x 4 columns]

data.head()

	Company Name	Net Sales	Cons PAT	Cons OCF	-
0	3I Infotech Ltd.	1344	-976	-51	11.
1	3M India Ltd.	1840	108	177	
2	Aavas Financiers Ltd.	104	19	-370	
3	ABB India Ltd.	7733	229	479	
4	Abbott India Ltd.	2289	229	215	

Next steps: Generate code with data View recommended plots

data.plot.scatter(x='Net Sales', y='Cons PAT');


```
{\tt data.shape}
```

(156, 4)

```
x=data['Net Sales'].values.reshape(-1,1)
y=data['Cons PAT'].values.reshape(-1,1)#depending
```

x.shape

```
(156, 1)
SEED = 30
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 30)
print(x_train)
print(y_train)
          -14]
          -601
          229]
           -6]
           20]
           45]
            0]
          -71]
          158]
           18]
           22]
          149]
           35]
          114]
           22]
           66]
          -531
           22]
           69]
           40]
         -459]
          943]
           88]
          153]
           68]
         1338]
         1185]
         -262]
           25]
          129]
          -31]
          383]
         1066]
          160]
          247]
          268]
          186]
          -56]
          264]
           34]
          -22]
           32]
           79]
          301
           42]
           47]
          584]
          113]
          196]
          177]
           42]
          -51]
         1487]
           70]
          103]
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train, y_train)
      ▼ LinearRegression
     LinearRegression()
```

```
y_pred = regressor.predict(x_test)
df_preds = pd.DataFrame({'Actual': y_test.squeeze(), 'Predicted': y_pred.squeeze()})
print(df_preds)
        Actual
                  Predicted
     0
                 326.274229
          9663 -3075.930497
     1
     2
          4363 -2460.486468
     3
            37
                338.470118
            7 396.221241
     4
     5
            33 361.965140
     6
            67
                 379.451893
            6 396.759295
     7
     8
            1 389.047188
     9
           229 -286.838234
     10
           19 223.685278
          -233 361.696113
     11
     12
            49
                 382.590541
     13
           -67
                 -15.390022
     14
           33 385.191135
     15
           274
                 84.957038
     16
         -2097 -1526.873210
     17
           211 111.232005
     18
           133
                 256.685920
           108 241.620409
     19
     20
            78 265.563810
     21
                 401.063726
            7 394.696755
     23
            8
                395.952214
     24
            12
                 397.476700
     25
          -976 286.099535
     26
            78
                 348.513792
     27
            11
                 298.923154
     28
           114 191.043339
     29
                 378.824163
            53
     30
            35
                 343.312604
            19 397.297349
from sklearn.metrics import mean_absolute_error, mean_squared_error
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print(f'Mean absolute error: {mae:.2f}')
print(f'Mean squared error: {mse:.2f}')
print(f'Root mean squared error: {rmse:.2f}')
     Mean absolute error: 931.79
     Mean squared error: 6679322.02
     Root mean squared error: 2584.44
plt.figure(figsize=(12,10))
plt.plot(x,y,'ro') # regression line
plt.plot(x_test,y_pred) # scatter plot showing actual data
plt.title('Actual vs Predicted')
plt.xlabel('X')
plt.ylabel('y')
plt.show()
```

Actual vs Predicted

