

Universidade de Brasília Faculdade do Gama

Matemática Discreta 2

Prof. Dr. Glauco Vitor Pedrosa

Anéis

 Anel é uma estrutura algébrica que consiste em um conjunto A (não vazio) associado a duas operações binárias:

$$\langle A, *, \Delta \rangle$$

- Para a estrutura algébrica acima ser considerada um anel, ela precisa satisfazer a três propriedades:
 - 1. a estrutura <A, *> deve ser um grupo abeliano
 - 2. a operação ∆ deve ser <u>associativa</u>
 - 3. a operação Δ deve ser <u>distributiva</u> em relação à operação *

Exemplo

• Mostre que a estrutura <Q, *, Δ > é um anel As operações * e Δ são definidas como: a*b = a+b-1 a Δ b = a+b-ab

Para mostrar que $\langle Q, *, \Delta \rangle$ é um anel, precisamos mostrar que:

- 1) <Q, *> é grupo abeliano
- 2) A operação Δ é associativa
- 3) Distributividade da operação Δ em relação a *, ou seja:

$$a \Delta (b*c) = (a \Delta b) * (a \Delta c)$$

 $(a*b) \Delta c = (a \Delta c) * (b \Delta c)$

Exemplo

• Seja A = $\{0, 1\}$ e as operações * e Δ definidas nas tábuas abaixo. Verifique se <A, *, Δ > é um anel

*	0	1
0	0	1
1	1	0

Δ	0	1
0	0	0
1	0	1

Para mostrar que <A, *, Δ > é um anel, precisamos mostrar que:

- 1) <A, *> é grupo abeliano
- 2) A operação Δ é associativa
- 3) Distributividade da operação Δ em relação a *, ou seja:

$$\int a \Delta (b*c) = (a \Delta b) * (a \Delta c)$$

$$(a*b) \Delta c = (a \Delta c) * (b \Delta c)$$

Sabe-se que A = {a, b, c, d} e <A, *, Δ > é um anel em que os elementos neutros das operações * e Δ são, respectivamente, <u>a</u> e <u>b</u>. Conhecendo-se os compostos <u>b</u> * <u>b</u> = <u>a</u>, <u>c</u> * <u>c</u> = <u>a</u>, <u>c</u> Δ <u>d</u> = <u>a</u>, construir as tábuas das duas operações.

Dicas:

- $a \Delta (b*c)$
- $b \Delta (a*d)$
- $c \Delta (d*a)$
- $d \Delta (b*a)$
- $d \Delta (a*c)$

Complete a tábua abaixo sabendo que <A, *, \Delta > é um anel

*	0	1	2	3
0	0			
1		2		
2			0	
3				2

Δ	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Tipos de anéis

- Anéis comutativos
 - se a operação ∆ for comutativa
- Anéis com unidade
 - se a operação ∆ tiver elemento neutro

Exercício: Mostre que $< Q, *, \Delta > é$ um **anel comutativo e com unidade**, onde:

$$x * y = x+y-3$$

$$x \Delta y = x + y - \frac{xy}{3}$$

- Seja < A, *, Δ>, em que A = {e, a, b, c}, um anel comutativo com unidade
- Sabendo que:
 - o elemento neutro de Δ é <u>a</u>
 - o elemento neutro de * é e.
 - b * b = e
 - $b \Delta c = e$
- Construa as tábuas das operações do anel A

```
Dicas:

b \Delta (b*c) e \Delta (b*c)

c \Delta (b*c)
```

c ∆ (a*c)

Divisores de zero em um anel

- Dado um anel $\langle A, *, \Delta \rangle$
- Considere:
 - e_* o elemento neutro da operação *
 - \underline{a} , $\underline{b} \in A$, tal que: $a \neq e_*$ e $b \neq e_*$
- Se a Δ b = e_* então dizemos que a e b são divisores de zero do anel <A, *, Δ >
- Exemplo:
- Os divisores de zeros do anel $\langle Z_6, +, ... \rangle$ são os elementos $\{2,3,4\}$, pois 2*3=0 e 3*4=0

 Determine os divisores de zero dos seguintes anéis:

```
a) \langle Z_8, +, . \rangle

\{2, 4, 6\} pois 2*4 = 0 e 4*6 = 0

a) \langle Z_{18}, +, . \rangle

\{2, 3, 4, 6, 8, 9, 12\}
```

Corpos

 Chamamos de corpo todo anel comutativo e com unidade no qual todo elemento possui simétrico em relação à operação Δ (exceto o elemento neutro da operação *)

O anel $\langle Z_3, +, . \rangle$ é um corpo. Por que?

O anel $\langle Z_4, +, . \rangle$, não é um corpo. Por que?

Teorema

Todo anel $\langle Z_p, +, . \rangle$ onde p é primo é um corpo

Verifique se $\langle C, *, \Delta \rangle$ é um corpo, onde $C = \{a,b,c\}$ e as operações * e Δ são definidas nas tábuas abaixo:

*	a	b	С
a	a	b	С
b	b	С	a
С	С	a	b

Δ	a	b	С
a	a	a	a
b	a	b	С
С	a	С	b

1° passo: verificar se <C, *> é um grupo abeliano:

- a) A operação * é comutativa? Sim!
- b) Tem elemento neutro? Sim!
- c) Tem elemento simétrico? Sim!
- d) É associativa? Sim!

$$(a*b)*c = a*(b*c)$$
 $(b*c)*a = b*(c*a)$
 $a*c = a*a$ $a*a = b*c$
 $a = a$ $a = a$

Verifique se $\langle C, *, \Delta \rangle$ é um corpo, onde $C = \{a,b,c\}$ e as operações * e Δ são definidas nas tábuas abaixo:

*	a	b	С
a	a	b	С
b	b	С	a
С	С	a	b

Δ	a	b	С
a	a	a	a
b	a	b	С
С	a	С	b

2° passo: verificar se a operação Δ é associativa

Podemos ver pela tábua da operação Δ que ela é comutativa. Essa propriedade reduz nossos testes para verificar se Δ é associativa

$$(a \triangle b) \triangle c = a \triangle (b \triangle c)$$

 $a \triangle c = a \triangle c$
 $a = a$

(b
$$\triangle$$
 c) \triangle a = b \triangle (c \triangle a)
c \triangle a = b \triangle a
a = a

Verifique se $\langle C, *, \Delta \rangle$ é um corpo, onde $C = \{a,b,c\}$ e as operações * e Δ são definidas nas tábuas abaixo:

*	a	b	С
a	a	b	С
b	b	С	<u>a</u>
С	С	a	b

Δ	a	b	С
a	a	a	a
b	a	b	С
С	a	С	b

3° passo: verificar a Distributividade da operação Δ em relação a *, ou seja:

a
$$\triangle$$
 (**b*c**) = (**a** \triangle **b**) * (**a** \triangle **c**)
a \triangle **a** = **a** * **a**
a = **a**

$$(a*b) \triangle c = (a \triangle c) * (b \triangle c)$$

 $b \triangle c = a * c$
 $c = c$

Verifique se $\langle C, *, \Delta \rangle$ é um corpo, onde $C = \{a,b,c\}$ e as operações * e Δ são definidas nas tábuas abaixo:

*	a	b	С
a	a	b	С
b	b	С	<u>a</u>
С	С	a	b

Δ	a	b	C
a	a	a	a
b	a	b	С
С	a	С	b

4° passo: verificar se a operação Δ é comutativa

Só olhando na tábua já podemos confirmar que a operação Δ é comutativa

Verifique se $\langle C, *, \Delta \rangle$ é um corpo, onde $C = \{a,b,c\}$ e as operações * e Δ são definidas nas tábuas abaixo:

*	a	b	С
a	a	b	С
b	b	С	<u>a</u>
С	С	a	b

Δ	a	b	С
a	a	a	a
b	a	b	С
С	a	С	b

5° passo: verificar se a operação Δ tem elemento neutro

Só olhando na tábua já podemos ver que o elemento neutro de Δ é elemento b

Verifique se $\langle C, *, \Delta \rangle$ é um corpo, onde $C = \{a,b,c\}$ e as operações * e Δ são definidas nas tábuas abaixo:

*	a	b	С
a	a	b	С
b	b	С	<u>a</u>
С	С	a	b

Δ	a	b	С
a	a	a	a
b	a	b	С
С	a	С	b

 6° passo: verificar se todos os elementos tem elemento simétrico com relação à operação Δ

Olhando na tábua da operação Δ , o elemento <u>a</u> é o único elemento que não tem simétrico. Porém, o elemento <u>a</u> é o elemento neutro da operação *

Logo, todas as condições foram satisfeitas e, portanto, <C,*, ∆> é um corpo