Transformers for Image Recognition

Никита Андреев

План

- Идея использования трансформеров
- Vision Transformer
- DEtection TRansformer

Зачем трансформеры?

Как применить

- Попиксельный attention
- Локальный attention только для соседних пикселей
- Другие различные аппроксимации

Результаты - обнадеживающие, но довольно трудоемкие алгоритмы для эффективной реализации.

Vision Transformer

Результаты

Model	Layers	${\it Hidden \ size \ } D$	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Object Detection

Задача Object Detection

Хотим выделить на изображении объекты интересующих нас классов

DEtection TRansformer

- Предобученная CNN
- Карта признаков изображения
- Трансформер(encoder + decoder)
- Множество предсказанных объектов
- Посчитать лосс

Архитектура DETR

- Добавляем positional encoding
- На вход для декодера подаем фиксированное число запросов
- Параллельное декодирование для запросов
- Для каждого выхода получаем предсказание через FFN

Loss

$$\hat{\sigma} = \operatorname*{arg\,min}_{\sigma \in \mathfrak{S}_N} \sum_{i}^{N} \mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)}),$$

$$-\mathbb{1}_{\{c_i\neq\varnothing\}}\hat{p}_{\sigma(i)}(c_i)+\mathbb{1}_{\{c_i\neq\varnothing\}}\mathcal{L}_{\text{box}}(b_i,\hat{b}_{\sigma(i)}).$$

$$\mathcal{L}_{\text{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$$

$$\lambda_{\text{iou}} \mathcal{L}_{\text{iou}}(b_i, \hat{b}_{\sigma(i)}) + \lambda_{\text{L1}} ||b_i - \hat{b}_{\sigma(i)}||_1$$

Результаты

Model	GFLOPS/FPS	#params	AP	AP_{50}	AP ₇₅	AP_{S}	AP_{M}	$\overline{\mathrm{AP_L}}$
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

Использованные материалы

- 1. https://arxiv.org/pdf/2005.12872.pdf
- 2. https://arxiv.org/pdf/2101.01169.pdf
- 3. https://arxiv.org/pdf/2010.11929.pdf