

GIRRAWEEN HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2002

MATHEMATICS

EXTENSION 2

Time allowed - Three hours (Plus 5 minutes' reading time)

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- · Standard integrals are supplied
- Board-approved calculators may be used.
- Each question attempted is to be returned on a *separate* piece of paper clearly marked Question 1, Question 2, etc. Each piece of paper must show your name.
- You may ask for extra pieces of paper if you need them.

QUESTION 1

a) Find $\int \frac{dx}{\sqrt{x^2 + 2x + 5}}$

Ž

b) (i) Find real numbers a, b and c such that

$$\frac{3x}{(x+1)(x^2+2x+4)} = \frac{a}{x+1} + \frac{bx+c}{x^2+2x+4}$$

2

(ii) Find $\int \frac{3x}{(x+1)(x^2+2x+4)} dx$

2

c) Use integration by parts to find

$$\int_{0}^{1} \tan^{-1} x \, dx$$

3

d) Find $\int_{0}^{\frac{2\pi}{3}} \frac{1}{5 + 4\cos x} dx$

3

e) Find $\int \sin^3 x \cos^2 x \, dx$

3

OUESTION 2

(a) Given the two complex numbers z = 3-4i and w = 4+3i,

find zw and
$$\frac{1}{w}$$
 in the form x + iy.

2

b) On separate argand diagrams draw a neat sketch of the locus specified by

(i)
$$z^2 - \overline{z}^2 = 4i$$

(ii) arg (z-2)=argz + $\frac{\pi}{2}$

- c) If $z = \sqrt{3} + i$
 - (i) Find the exact value of mod z and arg z.

2

(ii) By using De Moivres theorem write $\frac{1}{z^5}$ in form x+iy.

2

d) Let P, Q, R represent the complex numbers z_1, z_2, z_3 respectively .

What geometric properties characterize triangle PQR if $z_2 - z_1 = i(z_3 - z_1)$? Give reasons for your answer.

3

e) The polynomial $z^3 - 3z^2 + 7z - 5$ has one root equal to 1-2i. Factorize this polynomial

- (a) An ellipse has the equation $\frac{x^2}{25} + \frac{y^2}{16} = 1$
 - (i) Find the eccentricity.

1

(ii) Find coordinates of the foci S, S' and equation of directrices.

- 2
- (iii) Sketch the ellipse showing all the above features and where it crosses the coordinate axes.
- 1

(iv) If P is a point on the ellipse show that PS + PS' is independent of the position of P.

2

- (b) Consider the hyperbola with equation $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$
 - (i) Show that the equation of the tangent at the point P (asec θ , btan θ) has the equation bxsec θ -aytan θ =ab .
- 2

(ii) Deduce the equation of the normal at P.

- 3
- (iii) Find A and B where the tangent and normal respectively cut the y-axis .
- 2

(iv) Show that AB is the diameter of the circle that passes through the foci of the hyperbola.

- (a) A solid S is formed by rotating the region bounded by the parabola $y^2 = 4(1 x)$ and the y axis 360° about the line x = 2.
- (i) By slicing perpendicular to the axis of rotation, find the exact volume of S.
- (ii) (a) Use the method of cylindrical shells to show that the volume of S is also given by $\int_{0}^{1} 8\pi(2-x)\sqrt{1-x} \ dx$.
- (b) Confirm your answer to part (i) by calculating this definite integral using the substitution u = 1-x.
- (b) A dome has a circular base of radius 10 metres. Each cross section of the dome perpendicular to the x-axis is a parabola, whose height is the same as the base width.
 - (i) Why would Simpson's rule give the exact area of the parabolic cross section?
 - (ii) Show that the area of the parabolic cross-section is $\frac{8y^2}{3}$ square metres.
 - (iii) Find the volume of the dome.

(a) The graph of y=f(x) is shown below

Draw sketches of the following

(i)
$$y=f(x-a)$$

1

(ii)
$$y=f'(x)$$

2

(iii)
$$y = \frac{1}{f(x)}$$

2

(iv)
$$y=f(x)^2$$

2

(b) Find integers a and b such that
$$(x+1)^2$$
 is a factor of $x^3 + 4x^2 + ax + b$

3

(c)

The curve $y = \frac{2x}{1+x^2}$ is sketched in the diagram above

(i) Show that the equation
$$kx^3 + (k-2)x = 0$$
 can be written in the form $\frac{2x}{1+x^2} = kx$

2.

(ii) Using a graphical approach based on the curve
$$y = \frac{2x}{1+x^2}$$
, or otherwise, find the real values of k for which the equation $kx^3 + (k-2)x = 0$ has exactly 1 solution.

(a) A particle of mass m is projected vertically upwards under gravity

The air resistance to the motion is $-\frac{1}{100}$ mgv² where v is the speed of the particle

(i) Show that during the upward motion of the particle, if x is the upward vertical displacement of the particle from its projection point at time t then

$$x = -\frac{1}{100}g(100 + v^2).$$

(ii) If the speed of projection is u show that the greatest height (above the point of projection) reached by the particle is

$$\frac{50}{g}\ln\left(\frac{100+u^2}{100}\right).$$

(b) Let ω be a non-real cube root of unity.

(i) Show that
$$1 + \omega + \omega^2 = 0$$
.

- (ii) Hence simplify $(1+\omega)^2$.
- (iii) Show that $(1+\omega)^3 = -1$..
- (iv) Use part iii) to simplify $(1+\omega)^{3n}$ and hence show that

$${}^{3n}C_0 - \frac{1}{2}({}^{3n}C_1 + {}^{3n}C_2) + {}^{3n}C_3 - \frac{1}{2}({}^{3n}C_4 + {}^{3n}C_5) + {}^{3n}C_6 - \dots {}^{3n}C_{3n} = (-1)^n.$$

(HINT: You may assume $Re(\omega) = -\frac{1}{2}$ and that $Re(\omega^2) = -\frac{1}{2}$)

(c) (i) Show that for a>0 and
$$n \neq 0$$
, $\log_{a^n} x = \frac{1}{n} \log_a x$

(ii) Hence evaluate
$$\log_2 3 + \log_4 3 + \log_{16} 3 + \log_{256} 3 + \dots$$
 2

QUESTION 7

(a) A particle P, of mass 2kg, is attached by a light inelastic string of length 1m to a fixed point A as shown in the diagram below. Another string of equal length attaches P to a smooth ring Q, of mass 3kg which is free to slide on a vertical wire that passes through A. The particle P is rotating in a horizontal circle of radius r, about the vertical wire with a constant angular velocity of 2π radians per second

Let T_1 represent the tension in the string PQ, T_2 the tension in the string AP and θ the angle of inclination of AP to the vertical wire.

(i) Copy the above diagram onto your paper and clearly indicate on your sketch all the forces acting on P and Q.

(ii) Write down the equations expressing the vertical and horizontal equilibrium of forces at points P and Q.

(iii) By using the equations in (ii) evaluate $\tan \theta$ in terms of r. Hence calculate the vertical distance h of P below A (g=9.8ms⁻²)

QUESTION 7 (cont)

- (b) In the diagram the two circles intersect at P and Q. LMNO is a common tangent to the two circles. R is a point on one circle such that $MR \parallel NP$. RP produced meets the other circle at T.
- (i) Copy the diagram.
- (ii) Show that MNTR is a cyclic quadrilateral.

(iii) G is the point of intersection of MT and NR. The circle through the points T,R, and G is drawn. Show that the tangent to this circle at G is parallel to MN.

QUESTION 8

(a)

2

2

3

2

1

The curves $y = x^2 - 4$ and $y = \frac{1}{x}$ intersect at the points P,Q,R where $x = \alpha$, $x = \beta$, $x = \gamma$

- (i) Show that α, β, γ are the roots of the equation $x^3 4x 1 = 0$
- (ii) Find a polynomial equation with integer coefficients which has roots $\alpha^2, \beta^2, \gamma^2 \,.$
- (iii) Find a polynomial equation with integer coefficients which has roots

$$\frac{1}{\alpha^2}, \frac{1}{\beta^2}, \frac{1}{\gamma^2}$$
.

- (iv) Hence find the numerical value of $OP^2 + OQ^2 + OR^2$.
- (b) Newton's Method can be used to determine numerical approximations to the real roots of the equation $x^3 = 4$.

Let $x_1 = 2, x_2, x_3, \dots, x_n$ be a series of estimates obtained by iterative applications of Newton's method.

(i) Show that
$$x_{n+1} = \frac{2}{3}(x_n + \frac{2}{x_n^2})$$
.

- (ii) Show algebraically that $x_{n+1} \sqrt[3]{4} = \frac{(x_n \sqrt[3]{4})^2 (2x_n + \sqrt[3]{4})}{3x_n^2}$
- (iii) Given that $x_n > \sqrt[3]{4}$ show that $x_{n+1} \sqrt[3]{4} < (x_n \sqrt[3]{4})^2$.
- (iv) Show that x_6 is accurate to 12 decimal places.

| Question | Air (aween HS | Trial HX |
$$\frac{dx}{4}$$
 | $\frac{dx}{\sqrt{(2\pi)^{2}+4}}$ | $\frac{dx}{\sqrt{(2\pi)^{2}$

$$dt = \frac{2}{1+t^{2}}$$

$$0 = 4a + c$$

$$c = \frac{1}{3} = \frac{1}{1}a + 2(b+c)$$

$$3 = -9 + 2b + 8$$

$$2b = 2$$

$$b = 1$$

$$(ii) \int \frac{3x}{(x+1)(c^{2}+2x+4)} dx = \int \frac{1}{x+1} + \frac{x+y}{x^{2}+3x+y} dx$$

$$= -\ln(x+1) + \int \frac{1}{1} \ln(x^{2}+2x+y) + 3 dx$$

$$= -\ln(x+1) + \frac{1}{2} \ln(x^{2}+2x+y) + 3 dx$$

$$= -\ln(x+1) + \frac{1$$

(c)
$$arg(z-2) - arg z = T/2$$

(c) $y = \sqrt{1}$

arg $z = \sqrt{1}$
 $z = \sqrt{1}$

$$2^{-5} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$

$$= \frac{1}{32} \left(\cos \frac{-5\pi}{6} + i \sin \frac{\pi}{6} \right)$$

$$= \frac{1}{32} \left(-\frac{\sqrt{3}}{2} - \frac{1}{2} \right)$$

$$= -\frac{\sqrt{3}}{64} - \frac{1}{64} \qquad (2)$$

isoiceles & PQ=PR 122-21 = 11 (m3-w1) 1 goon's cluckwise but does not shange the length

$$(x-1+2i)(x-1-2i)(x-1)$$

$$Sec^{2}6 - tan^{2}0 = 1$$

$$biseco - augano = ab$$

(i)
$$5(3,0)$$
 $5'(-3,0)$ (ii) $\frac{dy}{dx} = \frac{a + an \theta}{b \sec \theta}$

$$\alpha = \pm \frac{25}{3}$$
 $\alpha = \frac{1}{2}$ $\alpha = \frac{1}{2}$

$$x=\frac{\pi}{2}$$
 (ui) when $x=0$

which is ndependent of P or in this case SP+5P' = 10

$$e^{2} = 1 = \frac{b^{2}}{a^{2}}$$
 $e^{2} = \frac{b^{2}}{a^{2}} + 1$
 $= \frac{b^{2}}{a^{2}} + a^{2}$ (3)

$$= -1$$

so AB 15 diameter of sircle.

from k=2 telesto y-axis only toucher at one point k > 2 and k < 0

3)

mg=-1 mg v2-mg du ha (iii) (1+w) 3 = (w2) 5 I way I /100mgv2 $x = -1 gv^2 - 9$ $= -\frac{1}{100}g(100 + v^2)$ $\frac{dv}{dx} = -1 g (100 + v^2)$ 30c + 30c w + 30c w2 + 30 + - - 30c $\frac{dV}{dx} = -9\left(\frac{100+v^2}{100v}\right)$ $\frac{dx}{dv} = \frac{-100v}{9(100+v^2)}$. Take Re part of both sides $x = -50 \ln (100 + x^2) + C$ $\frac{3}{3}$ when x=0 v=u 0 = -50 ln (100+42)+c C= 50 in (100+42) (4) c/100 x= 109a2 $x = \frac{50}{9} \ln \left(\frac{100 + 4^2}{100 + 4^2} \right)$ when X=0 greatest neight (ii) log_3+log,3+log,3+ $x = \frac{3}{2} \ln \left(\frac{100}{100} \right)$ = log 23 + 1 log 3+ 1 log 3+ 1 log 3+ 1 log 3+. (b)(9) since 23=1 Roots are 1, w, w2 sum of roots are : = 2 log_3

BUESTION 7

A+P vertical

 $T_1 \cos \theta + 2g = T_2 \cos \theta$ horizontal $T_1 \sin \theta + T_2 \sin \theta = 2 \cos^2 \theta$

TISING + TISING = 8 12 P

(ii) T₁ = 39 from A cos 0 Sub In B

 $3g + 2g = 72\cos\theta$ $T_2 = 59\cos\theta$ Sub in C

39 2100+ 20 2100 = 845L

Now By T = tano

3 hzr) &

PDM=180-0 (content a gles ME)

PDM=180-0 (content a gles ME)

PTU=180-0 (a Hernate segment

Theorem)

RMN + AN = 180 (4)

RTMN cyclic quad opposite angles supplementar

(i) Lest tangent be FGH.

RGRGF = RTM (alternate segment theorem)

RTM = RNM (angles in same segment)

CMNTR eyelic quad)

: RGF = RNM

corresponding angles

(3)

xn+1-34 = (2n-04) (1n) x P - 2 4 < (x 2 - 24) (x4-34)4 (x3-34)8 < (2 - گل)³² < 4.98 × 10-13

> in accurate to 12 decimal places has had 012 22:08.