Série 2014

Procédures de qualification Télématicienne CFC Télématicien CFC

Connaissances professionnelles écrites

Pos. 5.2 Technique des systèmes électriques

Nom, prénom	N° de candidat	Date

Temps: 45 minutes

Auxiliaires : Règle, équerre, chablon, calculatrice de poche sans transmission de

données et recueil de formules sans exemple de calcul.

Cotation : - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.
- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

1,0

Barème: Nombres de points maximum: 37,0

35,5	-	37,0	Points = Note	6,0
31,5	-	35,0	Points = Note	5,5
28,0	-	31,0	Points = Note	5,0
24,5	-	27,5	Points = Note	4,5
20,5	-	24,0	Points = Note	4,0
17,0	-	20,0	Points = Note	3,5
13,0	-	16,5	Points = Note	3,0
9,5	-	12,5	Points = Note	2,5
6,0	-	9,0	Points = Note	2,0
2,0	-	5,5	Points = Note	1,5

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Signature des expertes / experts :	Points obtenus	Note

Délai d'attente : Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le **1**^{er} **septembre 2015.**

Créé par : Groupe de travail EFA de l'USIE pour la profession de

0.0 - 1.5 Points = Note

télématicienne CFC / télématicien CFC

Editeur : CSFO, département procédures de qualification, Berne

Exer	cice	s	Nombre of maximal	de points obtenus
1.	a)	Donnez l'équation de la résistance équivalente de charge (vue par la source de tension depuis les bornes a et b)	4	
1.	b)	Donnez l'équation de la résistance équivalente de charge (vue par la source de tension depuis les bornes a et b)	4	

rcices	Nombre maximal	
Un téléphone analogique a une résistance ohmique de $350~\Omega$ et se trouve à une distance de 5 km du central public. L'appareil est alimenté avec une ligne de cuivre de 0,6 mm de diamètre. Lorsqu'une communication est établie, un courant	5	
de 25 mA circule.		
U _{CENTRAL} b		
Utilisez $\rho_{CU} = 0.0178 \ \Omega \text{mm}^2/\text{m}$		
Calculez, pendant qu'une communication est établie :		
a) la tension aux bornes de l'appareil (entre les bornes a et b).		
b) la tension à la sortie du central public (U _{CENTRAL}).		

Exer	cices	Nombre of maximal	de points obtenus
3.	Soit le signal suivant présenté sur l'écran de l'oscilloscope :	3	
	10 μs / Div. 50 mA / Div.		
	a) Déterminez la valeur de crête î.		
	b) Déterminez la valeur efficace I.		
	c) Déterminez la période T.		

Exer	cices	Nombre of maximal	de points obtenus
4.	Déterminez la tension sur la résistance R_L , lorsque le curseur du potentiomètre de 10 k Ω se trouve aux trois positions ci-dessous.	4	
	$V_z = 6$ R_1 R_2 R_2 R_2 R_2 R_2 R_3 R_4 R_4 R_5 R_4 R_6 R_1 R_1 R_2 R_1 R_2 R_3 R_4 R_4 R_5 R_6 R_1 R_1 R_2 R_3 R_4 R_6 R_7 R_8 R_9 R_1 R_1 R_2 R_3 R_4 R_7 R_8 R_9 R_1 R_1 R_2 R_3 R_4 R_7 R_8 R_9 R_9 R_1 R_1 R_2 R_1 R_2 R_3 R_4 R_7 R_8 R_9		
	a) Curseur en position a)		
	b) Curseur en position b)		
	c) Curseur en position $R_1 = R_2$		

Exer	cices	Nombre maximal	de points obtenus
5.	a) Entourez le diagramme représentant la variation de la puissance P en fonction de la tension U dans une résistance ohmique pure.	2	
	P en W 25 U en V U en V		
	P en W 25 U en V 2 U en V		
	b) Calculez pour le diagramme choisi la valeur de la résistance R.		

Technique des systèmes électriques

Exercic	es	maximal d	obtenus
6. a)	Effectuez l'opération logique AND sur les deux nombres binaires suivants : $X_1 = 1100110$ $X_2 = 1111000$	4	
	Le raisonnement doit être démontré. X1 AND		
(b)	Transformez le nombre binaire X_2 en sa valeur hexadécimale. Le raisonnement doit être démontré. $X_2 = 1111000$		

Exer	cices	Nombre of maximal	de points obtenus
7.	Dans le schéma ci-dessous, on mesure les courants suivants :	3	
	$I_1 = 5A$ $I_2 = 2A$ $I_4 = 4A$ $I_6 = -2A$		
	a) Quelle est la valeur de I $_5$?		
	b) Dans quelle direction circule I₅ ?		

Exer	cices	Nombre maximal	de points obtenus
8.	Soit le circuit RC ci-dessous :	3	
	Ue \sim $C = 10 \mu F$ Us		
	a) Calculez la fréquence de coupure.		
	 Votre collègue a rajouté en série une inductivité d'une valeur L = 0,8 mH. Dites-lui si ce circuit devient inductif ou reste capacitif pour une fréquence de 1 kHz. Le raisonnement doit être démontré. 		

Exer	cices	Nombre of maximal	de points obtenus
9.	Soit le schéma logique suivant :	2	
	X ₁ & & Y X ₂ E		
	Les entrées X ₁ et X ₂ sont pilotées de la manière suivante :		
	X_1 X_2 X_2 X_3 X_4 X_4		
	Marquez la séquence correcte pour la sortie Y.		
	Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Exer	cices	Nombre maximal	de points obtenus
10.	Deux antennes directionnelles se font face comme sur le plan ci-dessous.	3	
	50 km		
	(((((((/		
	a) Sur une ligne souterraine en cuivre, le temps de propagation du signal mesuré est de 240 μs .		
	Calculez le NVP du cuivre.		
	b) Quel serait le temps de propagation du même signal entre les antennes ?		

Exer	cices	Nombre maximal	de points obtenus
11.	Un lecteur CD a une impédance de sortie de 4 Ω et doit être utilisé comme musique en attente sur une ligne analogique d'un PBX.	1	
	En admettant une impédance du port PBX de 600 Ω , complétez le schéma d'interconnexion avec les résistances nécessaires entre les bornes a) et b).		
	Vous disposez de plusieurs résistances de 560 Ω et 18 Ω .		
	Le raisonnement doit être démontré.		
	$\begin{array}{c} \text{a} \\ \text{b} \\ \\ \text{CD Player} \\ \text{Ri} = 4 \Omega \end{array}$		

Exercices	Nombre maximal	de points obtenus
12. a) Trouvez le circuit qui se cache derrière ce quadripole.	3	
Entrée U en V Quadripole inconnu Quadripole inconnu		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
 b) Calculez, pour le circuit choisi, le courant maximal (positif et négatif) traversant la résistance. Note : la sortie du quadripole n'est pas chargée. I_{POS} 		
I _{NEG}		
Total	37	