3 Defining Languages with Context-free Grammars

Context-free Grammars Defined

A production is a replacement rule. For example,

 $A \rightarrow aAb$

says A can be replaced with aAb.

Allowable forms for productions in a context-free grammar:

1. A → bc	right side all terminals
2. A \rightarrow BCD	right side all nonterminals
3. A → B	right side one nonterminal
4. A → a	right side one terminal
5. A → aBc	right side terminals and nonterminals
6. A → aABAb	left side also on right side
7. A → λ	right side lambda

Capital letters are *nonterminals*. Small letters are *nonterminals*. Replacement rules replace the nonterminals.

A terminal string is either λ or a string containing only terminals.

Derivation

```
1) S \rightarrow AB

2) A \rightarrow aA

3) A \rightarrow \lambda

4) B \rightarrow bb

Figure 3.1
```

```
S
S \Rightarrow AB
S \Rightarrow AB \Rightarrow aAB
S \Rightarrow AB \Rightarrow aB
S \Rightarrow AB \Rightarrow aB
S \Rightarrow AB \Rightarrow aB \Rightarrow abb (this is a derivation of abb from S)
```

Language defined: set of terminal strings derivable from S.

Examples of Context-free Grammars

1)
$$S \rightarrow aSb$$

$$2) S \rightarrow \lambda$$

1)
$$S \rightarrow aS$$
 1) $S \rightarrow Sa$

2)
$$S \rightarrow \lambda$$
 2) $S \rightarrow \lambda$

$$2) S \rightarrow \lambda$$

1)
$$S \rightarrow aS$$
 1) $S \rightarrow Sa$ 1) $S \rightarrow aA$ 1) $S \rightarrow Aa$

1)
$$S \rightarrow Aa$$

$$2) S \rightarrow a$$

$$2) S \rightarrow a$$

2)
$$S \rightarrow a$$
 2) $S \rightarrow a$ 2) $A \rightarrow aA$ 2) $A \rightarrow Aa$

$$2) A \rightarrow Aa$$

3)
$$A \rightarrow \lambda$$
 3) $A \rightarrow \lambda$

$$3) A \rightarrow \lambda$$

Grammars for Arithmetic Expressions

```
a
(a)
a+b
a*a
a*(b+c)

1) S \rightarrow S+S
2) S \rightarrow S*S
3) S \rightarrow (S)
4) S \rightarrow a
5) S \rightarrow b
6) S \rightarrow c
```

$$S \rightarrow S+S \mid S*S \mid (S) \mid a \mid b \mid c$$

 $S \Rightarrow S+S \Rightarrow a+S \Rightarrow a+b$

Parse tree

Ambiguous grammar

Equivalent unambiguous grammar

- $1) S \rightarrow S+T$
- $2) S \rightarrow T$
- $3) \quad \mathsf{T} \rightarrow \mathsf{T*F}$
- $4) T \rightarrow F$
- 5) $F \rightarrow a \mid b \mid c \mid (S)$

Figure 3.3

Here are the only possible parse trees for a+b+c and a+b*c using the grammar in Fig. 3.3:

Another unambiguous grammar for arithmetic expressions:

1) $S \rightarrow TL$ 2) $L \rightarrow +TL$ 3) $L \rightarrow \lambda$ 4) $T \rightarrow FM$ 5) $M \rightarrow *FM$ 6) $M \rightarrow \lambda$ 7) $F \rightarrow a \mid b \mid c \mid (S)$

Figure 3.4

Using star operator in context-free grammars

- 1) $S \rightarrow TL$ (generates a leading T)
- 2) L → +TL (each time used, generates one occurrence of "+T")
- 3) $L \rightarrow \lambda$ (eliminates L)

$$L \Rightarrow \lambda$$
 (use production 3 once)
 $L \Rightarrow +TL \Rightarrow +T$ (use production 2 once then production 3 once)

 $L \Rightarrow +TL \Rightarrow +T+TL \Rightarrow +T+T$ (use production 2 twice then production 3 once)

Represent lists using the star operator

$$S \rightarrow T(+T)^*$$

$$T \rightarrow F(*F)*$$

1)
$$S \to T(+T)^*$$

2) $T \to F(*F)^*$
3) $F \to a \mid b \mid c \mid (S)$

Figure 3.5

Use quotes to distinguish terminals

```
1) S \to T('+' T)^*

2) T \to F('*' F)^*

3) F \to 'a' \mid 'b' \mid 'c' \mid '(' S ')'
```

Figure 3.6

Use angle brackets to allow multi-character terminals