Christian Campbell

Data Mining Final Project

Milestone 1

1.1. Importing libraries

```
In [1]:  import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
```

1.2. Importing the dataset

[2]:		CLIENTNUM	Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Status	Income_Category	Card
	0	768805383	Existing Customer	45	М	3	High School	Married	60 <i>K</i> -80K	
	1	818770008	Existing Customer	49	F	5	Graduate	Single	Less than \$40K	
	2	713982108	Existing Customer	51	М	3	Graduate	Married	80 <i>K</i> -120K	
	3	769911858	Existing Customer	40	F	4	High School	Unknown	Less than \$40K	
	4	709106358	Existing Customer	40	М	3	Uneducated	Married	60 <i>K</i> -80K	
	5	713061558	Existing Customer	44	М	2	Graduate	Married	40 <i>K</i> -60K	
	6	810347208	Existing Customer	51	М	4	Unknown	Married	\$120K +	
	7	818906208	Existing Customer	32	М	0	High School	Unknown	60 <i>K</i> -80K	
	8	710930508	Existing Customer	37	М	3	Uneducated	Single	60 <i>K</i> -80K	
	9	719661558	Existing Customer	48	М	2	Graduate	Single	80 <i>K</i> -120K	
	10	rows × 23 col	lumns							
	4									•

1.3. Creating a "Customer Attrition" bar chart

1.4. Creating a "Customer Attrition" Pie Chart

```
In [4]: N counts = bank_df['Attrition_Flag'].value_counts() # Calculates counts

plt.figure(figsize=(8, 8))
    plt.pie(counts, labels=counts.index, autopct='%1.1f%%', startangle=90, colors=['lightblue', 'lightcoral']
    plt.title('Customer Attrition Distribution')
    plt.axis('equal')
    plt.show()
```

Customer Attrition Distribution

1.5. Creating an "Age vs Months on Book" scatter plot

Age vs Months on Book

1.6. Creating a "Credit Limit vs Total Revolving Balance" scatter plot

Milestone 2

2.1. Deleting the last two columns that contain "naive baye classifier."

In [7]: # Identifies columns that contain 'Naive_Bayes_Classifier' in their names
columns_to_drop = bank_df.filter(like='Naive_Bayes_Classifier').columns

Drops these columns and creates a new DataFrame bank_df1
bank_df1 = bank_df.drop(columns=columns_to_drop)

bank_df1.head(10)

Į.										
Out[7]:		CLIENTNUM	Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Status	Income_Category	Card
	0	768805383	Existing Customer	45	М	3	High School	Married	60 <i>K</i> -80K	
	1	818770008	Existing Customer	49	F	5	Graduate	Single	Less than \$40K	
	2	713982108	Existing Customer	51	М	3	Graduate	Married	80 <i>K</i> -120K	
	3	769911858	Existing Customer	40	F	4	High School	Unknown	Less than \$40K	
	4	709106358	Existing Customer	40	М	3	Uneducated	Married	60 <i>K</i> -80K	
	5	713061558	Existing Customer	44	М	2	Graduate	Married	40 <i>K</i> -60K	
	6	810347208	Existing Customer	51	М	4	Unknown	Married	\$120K +	
	7	818906208	Existing Customer	32	М	0	High School	Unknown	60 <i>K</i> -80K	
	8	710930508	Existing Customer	37	М	3	Uneducated	Single	60 <i>K</i> -80K	
	9	719661558	Existing Customer	48	М	2	Graduate	Single	80 <i>K</i> -120K	

10 rows × 21 columns

2.2. Checking for null values.

```
In [8]:
         ▶ # Checks for null values in each column
            null_counts = bank_df1.isnull().sum()
            # Displays the count of null values in each column
            print(null_counts)
            CLIENTNUM
                                        0
            Attrition_Flag
                                        0
            Customer_Age
            Gender
            Dependent_count
            Education_Level
                                        0
            Marital_Status
            Income_Category
            Card_Category
            Months_on_book
                                        0
            Total_Relationship_Count
            Months_Inactive_12_mon
            Contacts_Count_12_mon
            Credit_Limit
                                        0
            Total_Revolving_Bal
                                        0
            Avg_Open_To_Buy
            Total_Amt_Chng_Q4_Q1
            Total_Trans_Amt
            Total_Trans_Ct
                                        0
            Total_Ct_Chng_Q4_Q1
            Avg_Utilization_Ratio
            dtype: int64
```

2.3. Deleting CLIENTNUM column

```
In [9]:
         # Drop the column 'CLIENTNUM' and create a new DataFrame bank_df2
           bank_df2 = bank_df1.drop(columns=['CLIENTNUM'])
           # Display the updated DataFrame
           bank_df2.head(10)
```

Out[9]:		Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Status	Income_Category	Card_Category	Мс
	0	Existing Customer	45	М	3	High School	Married	60 <i>K</i> -80K	Blue	
	4	Existing	40	_	E	Craduata	Single	Loop than \$40K	Pluo	

	Attition_i lag	oustoniei_Age	Gender	Dependent_count	Luucation_Levei	maintai_Otatus	income_oategory	oard_oategory	IVIC
0	Existing Customer	45	М	3	High School	Married	60 <i>K</i> -80K	Blue	
1	Existing Customer	49	F	5	Graduate	Single	Less than \$40K	Blue	
2	Existing Customer	51	М	3	Graduate	Married	80 <i>K</i> -120K	Blue	
3	Existing Customer	40	F	4	High School	Unknown	Less than \$40K	Blue	
4	Existing Customer	40	М	3	Uneducated	Married	60 <i>K</i> -80K	Blue	
5	Existing Customer	44	М	2	Graduate	Married	40 <i>K</i> -60K	Blue	
6	Existing Customer	51	М	4	Unknown	Married	\$120K +	Gold	
7	Existing Customer	32	М	0	High School	Unknown	60 <i>K</i> -80K	Silver	
8	Existing Customer	37	М	3	Uneducated	Single	60 <i>K</i> -80K	Blue	
9	Existing Customer	48	М	2	Graduate	Single	80 <i>K</i> -120K	Blue	
4									•

2.4. Checking the data type of each column.

Attrition_Flag object int64 Customer_Age Gender object Dependent_count int64 Education_Level object Marital Status object Income_Category object Card_Category object Months_on_book int64 Total_Relationship_Count int64 Months_Inactive_12_mon int64 Contacts_Count_12_mon int64 Credit Limit float64 Total_Revolving_Bal int64 Avg_Open_To_Buy float64 Total_Amt_Chng_Q4_Q1 float64 Total_Trans_Amt int64 int64 Total_Trans_Ct Total_Ct_Chng_Q4_Q1 float64 Avg_Utilization_Ratio float64 dtype: object

2.5. Checking the values in the following categorical columns

```
# List of known categorical columns
In [11]:
             categorical columns = ['Attrition Flag', 'Gender', 'Education Level', 'Marital Status', 'Income Category
             # Iterates over each categorical column and prints the unique values
             for column in categorical columns:
                 unique_values = bank_df2[column].unique()
                 print(f"Unique values in column '{column}':")
                 print(unique values)
                 print()
             Unique values in column 'Attrition_Flag':
             ['Existing Customer' 'Attrited Customer']
             Unique values in column 'Gender':
             ['M' 'F']
             Unique values in column 'Education Level':
             ['High School' 'Graduate' 'Uneducated' 'Unknown' 'College' 'Post-Graduate'
              'Doctorate']
             Unique values in column 'Marital Status':
             ['Married' 'Single' 'Unknown' 'Divorced']
             Unique values in column 'Income_Category':
             ['$60K - $80K' 'Less than $40K' '$80K - $120K' '$40K - $60K' '$120K +'
              'Unknown']
             Unique values in column 'Card_Category':
             ['Blue' 'Gold' 'Silver' 'Platinum']
```

2.6. Checking to see how many "unknown" values are in each of the following columns.

2.7. Creating dummy Variables for the following columns.

```
In [13]: # List of columns to convert into dummy variables
    columns_to_dummy = ["Attrition_Flag", "Gender", "Education_Level", "Marital_Status", "Income_Category", '

# Converts specified columns to dummy variables
    bank_df3 = pd.get_dummies(bank_df2, columns=columns_to_dummy, dtype=int)

# Set display option to show all columns
    pd.set_option('display.max_columns', None)

print(bank_df3)
```

	Customer_Age Depen	dent_count	Months_on_book	\		
0	45	3	39			
1	49	5	44			
2	51	3	36			
3	40	4	34			
4	40	3	21			
	•••		•••			
10122		2	40			
10123		2	25			
10124		1	36			
10125		2	36			
10126		2	25			
10120	, +3	_	23			
	Total_Relationship_	Count Month	ns_Inactive_12_r	non \		
0	. o curcrucrosrp_	5	.5_1	1		
1		6		1		
2		4		1		
3		3		4		
4		5		1		
-		3		-		
10122)	3		2		
10123		4		2		
10124		5		3		
10125		4		3		
10126		6		2		
10120	,	O		2		
	Contacts_Count_12_m	on Credit_	imit Total Rev	volving_Bal	l \	
0		_	591.0	77		
1			256.0	864		
2			418.0		9	
3			313.0	2517		
4			716.0		3	
	_					
10122	•	3 40	003.0	1851	1	
10123			277.0	2186		
10124			109.0	2100		
10125			281.0	(
10126			388.0	1961		
10120	,	- 10.	000.0	150.	L	
	Avg_Open_To_Buy To	tal_Amt_Chn	o 04 01 Total ⁻	Γrans_Amt	Total_Trans_Ct	t \
0	11914.0		1.335	1144	42	
1	7392.0		1.541	1291	33	
2	3418.0		2.594	1887	26	
_	3-120-0			±00,	20	-

3 4	796.0 4716.0	1.405 2.175	1171 816	20 28
10122 10123 10124 10125 10126	2152.0 2091.0 5409.0 5281.0 8427.0	0.703 0.804 0.819 0.535 0.703	15476 8764 10291 8395 10294	117 69 60 62 61
0 1 2 3 4 10122 10123 10124 10125 10126	Total_Ct_Chng_Q4_Q1	Avg_Utilization_Ratio 0.061 0.105 0.000 0.760 0.000 0.462 0.511 0.000 0.000 0.189		
0 1 2 3 4 10122 10123 10124 10125 10126	Attrition_Flag_Attr	ited Customer Attrition_ 0 0 0 0 0 1 1 1	Flag_Existing Cus	tomer \ 1
0 1 2 3 4 	Gender_F Gender_M 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1	Education_Level_College 0 0 0 0	Education_Level_	Doctorate \ 0 0 0 0 0 0

10123 10124 10125 10126	0 1 1 0 0 1 1 0	0 0 0	
0 1 2 3 4 10122 10123 10124 10125 10126	Education_Level_Graduate 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1	Education_Level_Hig	h School \
0 1 2 3 4 10122 10123 10124 10125 10126	Education_Level_Post-Grad	duate Education_Leve	1_Uneducated \
0 1 2 3 4 10122 10123 10124 10125 10126	Education_Level_Unknown 0 0 0 0 1 0 0 0 1	Marital_Status_Divor	ced \ 0

```
Marital_Status_Married Marital_Status_Single Marital_Status_Unknown \
0
                             0
1
                                                                             0
2
                             1
                                                                             0
3
                             0
                                                                             1
4
                             1
                                                                             0
10122
                             0
                                                                             0
10123
                                                                             0
10124
                             1
                                                                             0
10125
                             0
10126
                             1
       Income_Category_$120K +
                                Income_Category_$40K - $60K
0
                                                            0
1
                              0
2
                                                            0
3
4
10122
                                                            1
10123
                                                            1
10124
10125
                                                            1
10126
                                                            0
       Income_Category_$60K - $80K Income_Category_$80K - $120K \
0
                                                                 0
1
                                  0
                                                                 0
2
                                  0
3
4
10122
                                  0
                                                                 0
10123
10124
                                                                 0
10125
                                  0
                                                                 0
10126
       Income_Category_Less than $40K Income_Category_Unknown \
0
1
                                     1
                                                               0
```

2		0	0	
3		1	0	
4		0	0	
 10122		0	0	
10123		0	0	
10124		1	0	
10125		0	0	
10126		1	0	
	Card_Category_Blue	Card_Category_Gold	Card_Category_Platinum	\
0	1	0	9	
1	1	0	0	
2	1	0	0	
3	1	0	0	
4	1	0	0	
 10122	1	0	0	
10123	1	0	0	
10124	1	0	0	
10125	1	0	0	
10126	0	0	0	
	Card_Category_Silve	r		
0		0		
1		0		
2		0		
3		0		
4		0		
 10122	••	•		
10122		0 0		
10123		0		
10125		0		
10126		1		
[10127	rows x 39 columns]			

2.8. Checking the data type of each column

Customer_Age	int64
Dependent_count	int64
Months_on_book	int64
Total_Relationship_Count	int64
Months_Inactive_12_mon	int64
Contacts_Count_12_mon	int64
Credit_Limit	float64
Total_Revolving_Bal	int64
Avg_Open_To_Buy	float64
Total_Amt_Chng_Q4_Q1	float64
Total_Trans_Amt	int64
Total_Trans_Ct	int64
Total_Ct_Chng_Q4_Q1	float64
Avg_Utilization_Ratio	float64
Attrition_Flag_Attrited Customer	int32
Attrition_Flag_Existing Customer	int32
Gender_F	int32
Gender_M	int32
Education_Level_College	int32
Education_Level_Doctorate	int32
Education_Level_Graduate	int32
Education_Level_High School	int32
Education_Level_Post-Graduate	int32
Education_Level_Uneducated	int32
Education_Level_Unknown	int32
Marital_Status_Divorced	int32
Marital_Status_Married	int32
Marital_Status_Single	int32
Marital_Status_Unknown	int32
Income_Category_\$120K +	int32
Income_Category_\$40K - \$60K	int32
Income_Category_\$60K - \$80K	int32
Income_Category_\$80K - \$120K	int32
Income_Category_Less than \$40K	int32
Income_Category_Unknown	int32
Card_Category_Blue	int32
Card_Category_Gold	int32
Card_Category_Platinum	int32
Card_Category_Silver	int32
dtype: object	

Milestone 3

3.1. Import necessary libraries

3.2. Splitting the data into training and testing data.

3.3. Training the Model on Gradient Boosting Classifier Model

Out[17]: GradientBoostingClassifier()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

3.4. Testing the accuracy of the gb classifier model

Accuracy of the Gradient Boosting model: 1.00

3.5. Further evaluation of the gb classifier model

```
In [19]: # Generate a classification report
    print("Classification Report:")
    print(classification_report(target_test, target_pred))

# Generate a confusion matrix
    print("Confusion Matrix:")
    print(confusion_matrix(target_test, target_pred))
```

Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	1699
1	1.00	1.00	1.00	327
accuracy			1.00	2026
macro avg	1.00	1.00	1.00	2026
weighted avg	1.00	1.00	1.00	2026

Confusion Matrix: [[1699 0] [0 327]]

3.6. Looking for feature importance

```
# Gets the feature importances
In [20]:
             feature_importances = gb_classifier.feature_importances_
             # Creates a DataFrame for better visualization
             feature importance df = pd.DataFrame({
                 'Feature': features.columns,
                 'Importance': feature importances
             })
             # Sorts the DataFrame by importance
             feature_importance_df = feature_importance_df.sort_values(by='Importance', ascending=False)
             plt.figure(figsize=(12, 8))
             plt.barh(feature_importance_df['Feature'], feature_importance_df['Importance'])
             plt.xlabel('Feature Importance')
             plt.ylabel('Features')
             plt.title('Feature Importances from Gradient Boosting Classifier')
             plt.gca().invert_yaxis()
             plt.show()
             feature_importance_df
```

Feature Importances from Gradient Boosting Classifier

Out[20]:

	Feature	Importance
14	Attrition_Flag_Existing Customer	1.000000e+00
6	Credit_Limit	1.952855e-14
8	Avg_Open_To_Buy	1.445049e-14
7	Total_Revolving_Bal	6.301624e-15
10	Total_Trans_Amt	4.704759e-15
13	Avg_Utilization_Ratio	1.550176e-15
12	Total_Ct_Chng_Q4_Q1	1.515230e-15
31	Income_Category_ $80K$ -120K	9.332270e-16
11	Total_Trans_Ct	7.069132e-16
9	Total_Amt_Chng_Q4_Q1	1.506989e-18
26	Marital_Status_Single	0.000000e+00
27	Marital_Status_Unknown	0.000000e+00
28	Income_Category_\$120K +	0.000000e+00
29	Income_Category_ $40K$ -60K	0.000000e+00
30	Income_Category_ $60K$ -80K	0.000000e+00
0	Customer_Age	0.000000e+00
32	Income_Category_Less than \$40K	0.000000e+00
24	Marital_Status_Divorced	0.000000e+00
33	Income_Category_Unknown	0.000000e+00
34	Card_Category_Blue	0.000000e+00
35	Card_Category_Gold	0.000000e+00
36	Card_Category_Platinum	0.000000e+00
25	Marital_Status_Married	0.000000e+00
19	Education_Level_Graduate	0.000000e+00
23	Education_Level_Unknown	0.000000e+00
22	Education_Level_Uneducated	0.000000e+00
21	Education_Level_Post-Graduate	0.000000e+00

	Feature	Importance
20	Education_Level_High School	0.000000e+00
1	Dependent_count	0.000000e+00
18	Education_Level_Doctorate	0.000000e+00
17	Education_Level_College	0.000000e+00
16	Gender_M	0.000000e+00
15	Gender_F	0.000000e+00
5	Contacts_Count_12_mon	0.000000e+00
4	Months_Inactive_12_mon	0.000000e+00
3	Total_Relationship_Count	0.000000e+00
2	Months_on_book	0.000000e+00
37	Card_Category_Silver	0.000000e+00

3.7. Training a Logistic Regression Model

```
# Initialize the Logistic Regression model
In [21]:
             logistic model = LogisticRegression()
             # Train the model using the training data
             logistic model.fit(features train, target train)
             C:\Users\chris\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:458: ConvergenceWarning: 1
             bfgs failed to converge (status=1):
             STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
             Increase the number of iterations (max iter) or scale the data as shown in:
                 https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/module
             s/preprocessing.html)
             Please also refer to the documentation for alternative solver options:
                 https://scikit-learn.org/stable/modules/linear model.html#logistic-regression (https://scikit-lear
             n.org/stable/modules/linear_model.html#logistic-regression)
               n_iter_i = _check_optimize_result(
   Out[21]: LogisticRegression()
             In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
```

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

3.8. Evaluating the logistic regression model

```
# Make predictions on the testing data
In [22]:
             predictions = logistic_model.predict(features_test)
             # Evaluate the model
             accuracy = accuracy_score(target_test, predictions)
             conf_matrix = confusion_matrix(target_test, predictions)
             class_report = classification_report(target_test, predictions)
             # Print the evaluation metrics
             print(f"Accuracy: {accuracy}")
             print("Confusion Matrix:")
             print(conf_matrix)
             print("Classification Report:")
             print(class report)
             Accuracy: 0.8716683119447186
             Confusion Matrix:
             [[1627 72]
              [ 188 139]]
             Classification Report:
                           precision
                                        recall f1-score
                                                           support
                        0
                                0.90
                                          0.96
                                                    0.93
                                                              1699
                        1
                                0.66
                                          0.43
                                                    0.52
                                                               327
                                                    0.87
                                                              2026
                 accuracy
                                                    0.72
                                                              2026
                macro avg
                                0.78
                                          0.69
             weighted avg
                                                    0.86
                                0.86
                                          0.87
                                                              2026
```

3.9. Looking for feature importance

Feature Importance in Logistic Regression Model:

reactive importance in rogistic Regression roaci.		
	Feature	Coefficient
14	Attrition_Flag_Existing Customer	-0.388041
5	Contacts_Count_12_mon	0.321220
4	Months_Inactive_12_mon	0.260960
3	Total_Relationship_Count	-0.214982
1	Dependent_count	0.190291
0	Customer_Age	0.177105
2	Months_on_book	-0.161208
11	Total_Trans_Ct	-0.101106
15	Gender_F	0.074435
12	Total_Ct_Chng_Q4_Q1	-0.057723
26	Marital_Status_Single	0.048810
32	<pre>Income_Category_Less than \$40K</pre>	0.042639
16	Gender_M	-0.041239
25	Marital_Status_Married	-0.032527
34	Card_Category_Blue	0.026500
33	Income_Category_Unknown	0.015733
30	<pre>Income_Category_\$60K - \$80K</pre>	-0.014250
9	Total_Amt_Chng_Q4_Q1	-0.012099
23	Education_Level_Unknown	0.011429
18	Education_Level_Doctorate	0.011191
24	Marital_Status_Divorced	0.011011
21	Education_Level_Post-Graduate	0.006752
19	Education_Level_Graduate	0.006225
27	Marital_Status_Unknown	0.005901
31	<pre>Income_Category_\$80K - \$120K</pre>	-0.005827
35	Card_Category_Gold	0.004058
17	Education_Level_College	-0.003474
29	Income_Category_\$40K - \$60K	-0.003427
22	Education_Level_Uneducated	0.002600
13	Avg_Utilization_Ratio	0.002496
28	Income_Category_\$120K +	-0.001672
20	Education_Level_High School	-0.001527
36	Card_Category_Platinum	0.001468
37	Card_Category_Silver	0.001171
7	Total_Revolving_Bal	-0.000640
10	 Total_Trans_Amt	0.000394
6	Credit_Limit	-0.000323
8	Avg_Open_To_Buy	0.000317
	·	

In []: ▶