APEX **527**

DATA BOOK

Physical Properties and Flow Characteristics of Air

J. L. Hobbs M. E. Lapides

Reproduced From Best Available Copy

AIRCRAFT NUCLEAR PROPULSION DEPARTMENT

DISTRIBUTION STATEMENT A

Approved for Public Release
Distribution Unlimited

20011016 079

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor the Air Force, nor any person acting on behalf of the Commission or the Air Force:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above "person acting on behalf of the Commission or Air Force" includes any employee or contractor of the Commission or Air Force to the extent that such employee or contractor prepares, handles, or distributes, or provides access to, any information pursuant to his employment or contract with the Commission or Air Force.

Printed in USA. Price \$1.75. Available from the

Office of Technical Services U.S. Department of Commerce Washington 25, D.C.

UC-34 Physics and . Mathematics TID-4500 (15th Ed.)

DATA BOOK Physical Properties and Flow Characteristics of Air

J. L. Hobbs

Thermodynamics and Mechanics Development Sub-Section

M.E. Lapides

Technical Design Sub-Section

MARCH 1956

United States Air Force

Contract No. AF 33(600)-38062

United States Atomic Energy Commission

Contract No. AT (11-1)-171

GENERAL 🍪 ELECTRIC

AIRCRAFT NUCLEAR PROPULSION DEPARTMENT
CINCINNATI 15, OHIO

Published by Reports and Publications Sub-Section March 1960

Abstract

This report presents data on the physical properties and flow characteristics of air. These data have been compiled from several different sources outside the Department and from charts prepared within the Department. The report was prepared as a data book to be used as an aid in calculations.

Contents

Air Enthalpy Tables	5
Physical Properties of Air	25
Working Charts for Airflow Characteristics	35
Atmospheric Tables	42
References	59

Reference Tables and Figures

TABLES	Page
Table 1 - Air Enthalpy Tables	6
Table 2 - Physical Properties of Dry Air at Atmospheric Pressure	26
Table 3 - Properties of the Standard Atmosphere	43
Table 4 - Properties of the Standard Atmosphere	45
Table 5 - ICAO Standard Atmosphere	48
Table 6 - Ram Pressure Ratios (for 100% Ram Efficiency) and Total Temperature at NACA Standard Altitudes	53
Table 7 - Density of Air	54
FIGURES	
Fig. 1 - Physical Properties of Air	27-28
Fig. 2 - Compressibility Factor for Gases	29
Fig. 3 - Saturation Moisture Content of Air as a Function of Temperature and Pressure	32
Fig. 4 - Air Dynamics Chart	37-39
Fig. 5 - Airflow Parameter G/P' as a Function of Mach Number and Air Temperature from 400° to 2200°F	40-41
Fig. 6 - NACA Standard Atmosphere	55
Fig. 7 - Army and CAA Summer Atmosphere	56
Fig. 8 - Navy Summer Atmosphere	57
Fig. 9 - Airspeed, Mach Number, and Altitude Chart	58

Air Enthalpy Tables

Use of Relative Pressure Charts on Enthalpy Tables

The derivation and use of the temperature-enthalpy - relative-pressure relationship are outlined in Keenan and Kaye.* The use of the enthalpy chart and the derivations will not receive attention. However, the use of the relative-pressure - temperature chart will be reproduced in part.

The purpose of the relative pressure - temperature chart is to facilitate the finding of temperature and enthalpy of isentropic compression or expansion processes. The solution involves use of the ratio

$$\left(\frac{P_a}{P_b}\right) = \frac{P_{ra}}{P_{rb}}$$

where (P_a/P_b) is compressor pressure ratio, and P_r is the relative pressure.

The following example illustrates the use of the chart shown in Table 1.

From the chart, for $T_1 = 520^{\circ}R$ the values $P_r = 2.505$ and $h_1 = 28.76$ Btu/lb are obtained, where the subscript 1 refers to compressor inlet conditions. If a compressor pressure ratio of 6 to 1 is assumed, then to obtain compressor outlet conditions for isentropic compression, outlet relative pressure is found by using the ratio given above.

$$P_{r2} = \left(\frac{6}{1}\right) \times 2.505 = 15.03$$

Enthalpy and temperature at the compressor outlet for isentropic compression may be read at this value (15.03) on the chart.

$$h_{2s} = 112.1 \text{ Btu/lb}, T_{2s} = 864.3^{O} \text{R}$$

*J. H. Keenan and J. Kaye, Thermodynamic Properties of Air, 1945.

TABLE 1 AIR ENTHALPY TABLES

Physical Properties of Air

Introduction

Data reported by many investigators are in good agreement concerning the physical properties of air as a function of temperature. These physical properties are listed in Table 2 and are plotted in Figures 1A and 1B. A specific exception is thermal conductivity data at high temperatures. In this case few experimental data are available. The Aircraft Nuclear Propulsion Department standards have been based on experimental data of Stops.* Recent data and extrapolations by many workers have tended to confirm these data. The present standards of the National Bureau of Standards are also in close agreement with these data.

In most engineering calculations air can be treated as an ideal gas, and its physical properties may be assumed to be independent of pressure level. Significant exceptions may occur at extremely low temperatures in conjunction with either low pressures (vacuum) or extremely high pressures (above 5000 psi). The National Bureau of Standards work or any engineering thermodynamics text can be used to determine whether the deviations from ideality are of concern.

In precise calculations it may be necessary to consider the nonideal behavior of air, the effect of water vapor on physical properties and density, and dissociation effects at high temperatures. A limited coverage of the various items mentioned is presented and detailed evaluations are available in the references cited.

Water Vapor

Atmospheric air contains small amounts of water vapor; however, the moisture content is usually sufficiently low that assumption of applicability of dry-air properties is valid. For extreme precision it may be necessary to weight physical properties in proportion to relative amounts of air and water present. Data for specific heat of moist air calculated in this manner is tabulated and reproduced. Dry-air specific heat data are not usually applicable to the definition of temperatures during cooling of moist air if water vapor is condensed by the cooling process. Data for such processes are available in standard psychometric charts.

Nonideal Behavior of Air

Data pertinent to nonideal behavior of air are largely defined by methods of statistical thermodynamics. The generalized compressibility chart, Figure 2, derived from such work illustrates conveniently the ranges in which air can be expected to behave in a

^{*}D. W. Stops, Nature, Vol. 164, pp. 966-967, 1947.

[†]I. O. Hirschfelder, C. F. Curtiss, Report CM-518, 1948; The Reactor Handbook, AECD 3646, 1955, p. 383-4.

Т,	t,	С _р ,	Су,	$\gamma = \frac{C_p}{C_v}$	a,	$\mu \times 10^7$,	K,	$_{3600} \frac{C_p \mu}{}$
o_{R}	o _F	Btu/lb-	Btu/lb-	$\gamma = \frac{1}{C_v}$	ft/sec	lbm/sec-ft	Btu/hr-ft- ^O F	P _r K
100	-359.7	0.2392	0.1707	1.402	490.5		0.00236	
150	-309.7	0.2392	0.1707	1.402	600.7		0.00391	
200	-259.7	0.2392	0.1707	1.402	693.6		0.00590	
250	-209.7	0.2392	0.1707	1.402	775.4		0.00705	
300	-159.7	0.2392	0.1707	1.402	849.4		0.00856	
350	-109.7	0.2393	0.1707	1.402	917.5		0.01003	
400	- 59.7	0.2393	0.1707	1.402	980.9	100	0.01145	0.752
45 0	- 9.3	0.2394	0.1708	1.401	1040.3	109	0.01283	0.732
5 00	40.3	0.2396	0.1710	1.401	1096.4	118	0.01415	0.719
5 50	90.3	0.2399	0.1713	1.400	1149.6	126	0.01543	0.705
600	140.3	0.2403	0.1718	1.399	1200.3	135	0.01667	0.701
650	190.3	0.2409	0.1723	1.398	1248.7	143	0.01786	0.694
700	240.3	0.2416	0.1730	1.396	1295.1	151	0.01903	0.690
750	290.3	0.2424	0.1739	1,394	1339.6	158	0.02015	0.684
800	340.3	0.2434	0.1748	1.392	1382.5	166	0.02125	0.684
900	440.3	0.2458	0.1772	1.387	1463.6	179	0.02334	0.679
1000	540.3	0.2486	0.1800	1.381	1539.4	192	0.02533	0.678
1100	640.3	0.2516	0.1830	1.374	1610.8	205	0.02722	0.682
1200	740.3	0.2547	0.1862	1.368	1678.6	218	0.02904	0.688
1300	840.3	0.2579	0.1894	1.362	1743.2	230	0.03077	0.694
1400	940.3	0.2611	0.1926	1,356	1805.0	242	0.03243	0.701
15 00	1040.3	0.2642	0.1956	1.350	1864.5	253	0.03404	0.707
1600	1140.3	0.2671	0.1985	1,345	1922.0	264	0.03559	0.713
1700	1240.3	0.2698	0.2013	1.340	1977.6	274	0.03708	0.718
1800	1340.3	0.2725	0.2039	1.336	2032	284	0.03854	0.723
1900	1440.3	0.2750	0.2064	1.332	2084	293	0.03995	0.726
2000	1540.3	0.2773	0.2088	1.328	2135	302	0.04131	0.730
2100	1640.3	0.2794	0,2109	1.325	2185	311	0.04264	0.734
2200	1740.3	0.2813	0,2128	1.322	2234	320	0.04395	0.737
2300	1840.3	0.2831	0.2146	1.319	2282	329	0.04521	0.742
2400	1940.3	0.2848	0,2162	1.317	2329	338	0.04645	0.746
2600	2140.3	0.2878	0.2192	1.313	2420		0.04884	
	2340.3	0.2905	0.2219	1.309	2508		0.05113	
	2540.3	0.2929	0.2243	1.306	2593		0.05332	
	2740.3	0.2950	0.2264	1.303	2675		0.05544	
	2940.3	0.2969	0.2283	1.300	2755		0.05751	
36 00	3140.3	0.2986	0.2300	1.298	2832		0,05948	
3800	3340.3	0.3001	0.2316	1.296	2907		0.06139	

 $a_{\hbox{Reprinted with permission from Keenan\ and\ Kaye}, \underline{\hbox{Gas\ Tables}}, 1945, \underline{\hbox{John\ Wiley\&\ Sons}}, \underline{\hbox{Inc.}}$

Fig. 1A — Physical properties of air

Fig. 18 — Physical properties of air (Data Source: Keenan and Kaye Gas Tables)

nonideal manner. The chart is a plot of compressibility factor (Z) versus reduced pressure (p_r) with reduced temperature (T_r) as a parameter. The various terms are defined as follows:

$$Z = \frac{pV}{RT}$$
 $Z = 1$ for ideal gas

$$T_r = T/T_c$$
 T - absolute temperature

$$p_r = p/p_c$$
 p - absolute static pressure

For air:

$$T_c = 238.55^{\circ} R, 132.53^{\circ} K$$

$$p_c = 546.25 \text{ psi}, 37.17 \text{ atm}$$

From the chart and critical-property data it is readily apparent that air behaves essentially as an ideal gas except at extremely high pressures and extremely low temperatures. The compressibility chart, although intended for illustrative purposes, can be used to estimate deviation of air from ideal-gas behavior. A complete presentation of nonideal behavior of air is available.*

Similar charts are available for specific heat, entropy, viscosity, and thermal conductivity, although only the charts for specific heat and entropy are developed sufficiently to be reliable. In all of these works it is indicated that physical properties become pressure insensitive as reduced temperature increases, and that correction factors are essentially negligible for air except at the extremes noted for compressibility factor variation. A detailed calculation of pressure effect on specific heat is available.

Dissociation

Dissociation of air (conversion of molecular to atomic species) does not normally affect engineering considerations of air properties at temperatures below 2400°F with subatmospheric pressures, or temperatures in excess of 4000°F with greater-than-atmospheric pressures. The atom species present in air at atmospheric pressure, and temperatures up to 5000° F account for less than 1.5 percent of the total atomic and molecular species present. Hence, it could be anticipated that physical properties are essentially independent of dissociation up to this temperature level. An important exception concerns interpretation of heat-capacity data. The usual definition of heat capacity applies to a material whose composition remains constant over a unit temperature interval, and is expressed by the relation:

$$\left(\frac{dH}{dT}\right)_p = C_p$$

in which

 C_{p} = Heat capacity

 $(dH/dT)_p$ = Change of enthalpy with respect to temperature at constant pressure.

When a diatomic gas dissociates, the enthalpy change for an interval of temperature would be expressed by the relation

$$\frac{dH}{dT} \cong a \Delta H_D + (1 - a) C_{p_M} + 2a (C_{p_A})$$

^{*&}quot;Tables of Thermal Properties of Gases," Circular No. 564, National Bureau of Standards, November 1955, and N. A. Hall, W. E. Ibele, *Transactions ASME*, 76, 1039, 1954.

[†]O. A. Haugen, K. M. Watson, *Chemical Process Principles*, Vol. II, John Wiley and Sons, Inc., New York, 1943. "Reaction Kinetics and Transfer Process," Chemical Engineering Progress Symposium Series No. 4.

¹"Table of Thermal Properties of Gases," Reference 10.

in which

a = Fraction of molecular species dissociated

 $C_{p_{\mathbf{M}}}$ = Heat capacity of molecular species

 C_{p_A} = Heat capacity of atomic species

 ΔH_D = Heat of dissociation

Since ΔH_D is usually several thousand times the magnitude of C_{p_M} , even small degrees of dissociation can significantly affect the total enthalpy change. Most references combine all of the right-hand terms of the preceding equation in the form of an apparent heat capacity. Since the degree of dissociation of air is a function of both pressure and temperature, this apparent heat capacity is pressure sensitive at temperature levels where dissociation can occur; the pressure sensitivity is, however, a measure of the degree of dissociation rather than of the nonideal behavior of air. Data applicable to dissociation calculations for air is presented in Wooley.*

Water Content of Compressed Air

Compressed air or gas usually contains some water vapor. The amount of moisture contained depends upon (1) the condition of air at the compressor inlet, (2) the compression system, and (3) the degree of aftercooling. Stationary compressors are generally equipped with aftercoolers (water-cooled heat exchangers) to decrease water content by cooling the compressed gas. The maximum amount of water vapor contained in air corresponds to the equilibrium or saturation concentration, which is, in turn, a function of temperature and pressure. Maximum concentrations of water vapor in air can be estimated by use of Dalton's law. However, water vapor – air mixtures do not behave as ideal gases. Figure 3 based on the work of Landsbaum and coworkers, presents the nonideal behavior of air-water mixtures. This figure represents experimental data for most of the temperature range up to pressures of 200 atmospheres. The remainder of the curve is extrapolated. The effectiveness of aftercooling (decrease of compressedair temperature) is readily apparent.

Water Content of Atmospheric Air

Moisture content of atmospheric air varies greatly from day to day, and the range of variation is different for different locations. Average absolute moisture content, expressed as pounds of water per pound of dry air, varies from about 0.01 at sea level to 0.0001 at 35,000 feet; the range of variation about these averages decreases with increasing altitude.

Rain ingestion at compressor inlets can increase water content of air. The amount of increase is largely a function of both type and exposure of compressor inlet. Stationary compressors would not normally be expected to ingest rain, whereas airborne systems would. Heavy rain corresponds to absolute water (as drops) content of 0.01 to 0.05 pound of water per pound of dry air, the usual rains being associated with the lower value or less.

Empirical Equations

The empirical equations contained in this section have been derived from data presented elsewhere in this book. The usefulness of the equations is in the adaptability to IBM digital computations. The error ascribed to the air-properties relations within the given limits

^{*}H. W. Wooley, "Effect of Dissociation on Thermodynamic Properties of Pure Diatomic Gases," NACA Report TN 3270, 1955.

[†]E. M. Landsbaum, et al, Industrial Engineering Chemistry, Vol. 47, p. 102, 1955.

Fig. 3 – Saturation moisture content of air as a function of temperature and pressure (Data Source: Landsbaum, E.M. et al., Ind. Engg. Chem., <u>47</u>, 102, (1955).)

is less than 1 percent. This error is well within the limits in which the properties are known. Units are given in the foot-pound-sec, ${}^{O}R$ system.

Range of Application

1.
$$\gamma = C_p/C_v = 1.3817 + 1.05 \times 10^{-4} \text{ T} - 1.629 \times 10^{-7} \text{ T}^2 + 6.572 \times 10^{-11} \text{ T}^3 - 8.645 \times 10^{-15} \text{ T}^4$$

500° - 2900°R

2.
$$\mu = (23.25 + 0.21365 \text{ T} - 5.004 \text{ x} 10^{-5} \text{ T}^2 + 6.967 \text{ x} 10^{-9} \text{ T}^3 - 2.588 \text{ x} 10^{-13} \text{ T}^4) \text{ x} 10^{-7}$$

$$500^{\circ} - 2900^{\circ} \text{R}$$

3.
$$C_p = 0.2479 - 4.5292 \times 10^{-5} \text{ T} + 6.8267 \times 10^{-8} \text{ T}^2$$

 $- 2.5216 \times 10^{-11} \text{ T}^3 + 3.048 \times 10^{-15} \text{ T}^4$ 500° - 2900°R

4.
$$h = 0.240176(T) - 8.005646 \times 10^{-6} (T)^2 + 1.192176 \times 10^{-8} T^3$$

- $2.917016 \times 10^{-12} (T)^4 + 2.340132 \times 10^{-6} (T)^5$ $300^{\circ} - 4300^{\circ} R$

5.
$$T = 4.183639 (h) + 4.440606 \times 10^{-4} (h)^2 - 3.284583 \times 10^{-6} (h)^3 + 3.74104 \times 10^{-9} (h)^4 - 1.375426 \times 10^{-12} (h)^5$$
 293° - 3930° R

In addition to these equations, the following relationships are reasonable engineering approximations (= \pm 5 percent) for variation of physical properties of air with temperature, for the range of room temperature to 2500°R:

$$1. C_{p} = 0.24$$
 $460^{O} - 660^{O} R$

2.
$$C_p = 0.103 \times T^{0.13}$$

3.
$$\mu = 6.4 \times 10^{-4} \text{ T}^{0.68}$$

4.
$$k = 1.6 \times 10^{-4} T^{0.73}$$

T = ORankine (refers to absolute total temperature)

Units: Btu, pound, foot, hour

Symbols

a = velocity of sound

C_p = specific heat of air at constant pressure

 C_{V}^{p} = specific heat of air at constant volume

G = mass flow per unit area

h = enthalpy per unit mass

k = thermal conductivity of air

M = Mach number

T = absolute temperature

t = temperature

 γ = ratio of specific heats C_p/C_v

 μ = viscosity of air.

 P_r = Prandtl number = $C_p \mu/k$

The following data on composition of dry air have been established as standards by the International Civil Aviation Organization (ICAO),* as reported in NACA Report TN 3182:

COMPOSITION OF PURE DRY AIRa

Component	Molecular Weight	Mol. Fraction (%)	Weight (%)	
Nitrogen	28.016	78.09	75.553	
Oxygen	32.000	20.95	23.152	
Argon	39.944	0.93	1.283	
Carbon Dioxide	44.010	0.03		
Neon	20.183	1.8×10^{-3}		
Helium	4.003	5.24×10^{-4}		
Krypton	83.7	1.0×10^{-4}		
Hydrogen	2.0160	5.0×10^{-5}	2 0.013	
Xenon	131.3	8.0×10^{-6}		
Ozone	48.00	1.0×10^{-6}		
Radon	222	6.0×10^{-18}		

^aFor this composition the average molecular weight assigned to air is 28.966. This composition of air is representative of dry air to altitudes of 75,000 - 100,000 feet.

Universal gas constant = 1545.35 ft $lb/^{O}R$ -mol. On the basis of a pound of air the gas constant becomes:

$$R' = \frac{1545.35}{28.966} = 53.35 \text{ ft/}^{O}R$$

^{*&}quot;Manual of the ICAO Standard Atmosphere," Calculations by the NACA, NACA Report TN 3182, May 1954.

Working Charts for Airflow Characteristics

The charts in this section have been prepared within GE-ANPD in order to facilitate compressible-flow calculations. The basic source material is either Keenan and Kaye Gas Tables* information or other property data presented in the section "Physical Properties of Air."

The air dynamics chart permits interrelation of the following variables:

- T' Total Temperature, OR
- T Static Temperature, OR
- P' Total Pressure, psf, psi
- P Static Pressure, psf, psi
- y Ratio of Specific Heats
- M Mach Number
- G Mass Velocity, lb/sec-ft² lb/sec-in² (Consistent with pressure units)

The variables are presented in terms of the following relations:

$$P/P' = \left[1 + \left(\frac{\gamma - 1}{2}\right)M^{2}\right]^{\gamma/1 - \gamma}$$

$$T/T' = \left[1 + \left(\frac{\gamma - 1}{2}\right)M^{2}\right]^{-1}$$

$$G/P' = M\sqrt{\frac{g\gamma}{TR}}\left(\frac{P}{P'}\right)$$

Use of Charts

The dynamics chart, Figure 4A, is basically a plot of M, P'/P, γ M², and G/P' versus T'/T arranged so that graphical interrelation of ordinate functions is possible. Each term is plotted as a parameter of total temperature because of the temperature dependence of γ .

In order to utilize the chart it is necessary to know one ordinate value and the total temperature. The procedure is illustrated in the following sketch for the case of Mach number, M, and total temperature, T', known. Then G/P', and T'/T are calculated.

Other variables $(P'/P \text{ and } \gamma M^2)$ are determined in a similar manner.

An adjunct solution that can be obtained is q/P where q = dynamic head in the same units as P, since q/P = (P'/P) - 1.0.

If static temperatures and pressures are known, rather than total values, various alternative methods of solution may be considered:

1. An auxiliary chart, Figure 4B, based on static pressure is included that can be used in conjunction with the basic chart for cases in which static pressure is initially known.

^{*}J. H. Keenan, J. Kaye, Gas Tables, J. Wiley and Sons, 1948.

2. In general, T' and T may be used interchangeably for Mach numbers below 0.3. For other cases in which T is known, T' may be assumed and checked by iterative graphic calculation since T'/T is readily evaluated.

Alternate charts presented in Figures 5A and 5B or the exact formulae should be used if extreme accuracy is required.

.

!

4

RATIO OF TOTAL TO STATIC TEMP!

Fig. 4A - Air dynamics chart (reference data: Keena

RATIO OF TOTAL TO STATIC TEMPERATURE (T'/T)

dynamics chart (reference data: Keenan and Kaye "Air Tables," 1948)

ıbles," 1948)

 \mathcal{O}

Atmospheric Tables

This section contains various reference summaries of standard atmosphere tables (Tables 3 to 7) and charts (Figures 6 to 9) used in performance calculations.

The basic sources for these calculations are the following NACA reports:

Report TN 3182, Manual of the ICAO Standard Calculations by the NACA (May 1954).

Report 218, Standard Atmosphere Tables and Data (1925).

PROPERTIES OF THE STANDARD ATMOSPHERE.

5		7
~~ N	حر ۵ 🗚	
, V	المسلا ال	

Altitude,	=======================================	Pressure, 1	,	Density,	Density ratio,	_1	Temp., T	Speed of sound,	Coefficient of viscosity,	Kinematic viscosity,
h – ft	lb/ft²	in. H ₂ 0	in. Hg	· ρ slugs/ft³	$\sigma = \frac{\rho}{\rho_{}}$	√ π	°F abs.	a	slugs/ft sec	ft²/sec
0	2116	407.1	29.92	0.002378	1.0000	1.0000	518.4	760.9	3.725 x 10 ⁻⁷	1.566 x 10-
500	2078	399.8	29.38	.002343	.9855	1.007	516.6	759.6	3.716	1.586
1000	2041	392.6	28.86	.002309	.9710	1.015	514.8	758.3	3.705	1.604
1500	2004	385.5	28.33	.002275	.9568	1.022	513.0	757.0	3.695	1.624
2000	1968	378.5	27.82	.002242	.9428	1.030	511.2	755.7	3.68 5 3.67 4	1.644 1.663
2500	1932	371.6	27.31	.002209	.9288	1.038	509.5 507.7	754.3 753.0	3.664	1.684
3000 3500	1896 1862	364.8 358.2	26.81 26.32	.002176 .002144	.9151 .9015	1.045 1.053	505.9	751.7	3.654	1.704
4000	1828	351.6	25.84	.002144	.8881	1.053	504.1	750.4	3.644	1.725
4500	1794	345.1	25.36	.002112	.8748	1.069	502.4	749.1	3.633	1.747
5000	1760	338.7	24.89	.002030	.8616	1.077	500.6	747.7	3.623	1.768
5500	1728	332.4	24.43	.002019	.8487	1.085	498.8	746.4	3,612	1.790
6000	1696	326.2	23.98	.001988	.8358	1.094	497.0	745.1	3.602	1.812
6500	1664	320.1	23.53	.001957	.8232	1.102	495.2	743.7	3.592	1.835
7000	1633	314.1	23.09	.001937	.8106	1.111	493.4	742.3	3.581	1.857
7500	1602	308.2	22.65	.001328	.7982	1.119	491.7	741.0	3.571	1.881
8000	1572	302.4	22.22	.001869	.7859	1.128	489.9	739.7	3.561	1.905
8500	1542	296.6	21.80	.001840	.7738	1.137	488.1	738.3	3.550	1.929
9000	1512	291.0	21.38	.001812	.7619	1.146	486.3	737.0	3.540	1.954
9500	1483	285.4	20.98	.001784	.7501	1.155	484.5	735.6	3.529	1.978
10,000	1455	279.9	20.58	.001756	.7384	1.164	482.7	734.3	3.519	2.004
10,500	1427	274.5	20.18	.001728	.7269	1.173	481.0	732.9	3.508	2.030
11,000	1399	269.2	19.79	.001702	.7154	1.182	479.2	731.6	3.498	2.055
11,500	1372	264.0	19.40	.001675	.7042	1.192	477.4	730.2	3.487	2.082
12,000	1346	258.9	19.03	.001648	.6931	1.201	475.6	728.8	3.476	2.109
12,500	1319	253.8	18.65	.001622	.6821	1.211	473.8	727.5	3.466	2.137
13,000	1293	248.8	18.29	.001596	.6712	1.220	472.0	726.1	3.455	2.165
13,500	1268	243.9	17.93	.001570	.6605	1.230	470.3	724.7	3.445	2.194
14,000	1243	239.1	17.57	.001545	.6499	1.240	468.5	723.4	3.434	2.223
14,500	1218	234.4	17.22	.001520	.6394	1.250	466.7	722.0	3.423	2.252
15,000	1194	229.7	16.88	.001496	.6291	1.261	464.9	720.6	3.413	2.281
15,500	1170	225.1	16.54	.001472	.6189	1.271	463.1	719.2	3.402	2.311
16,000	1146	220.6	16.21	.001448	.6088	1.282	461.3	717.8	3.391	2.342
16,500	1123	216.1	15.89	.001424	.5988	1.292	459.6	716.4	3.380	2.374
17,000	1101	211.8	15.56	.001401	.5891	1.303	457.8	715.0	3.370	2.405
17,500	1078	207.5	15.25	.001378	.5793	1.314	456.0	713.6	3.359	2.438
18,000	1056	203.2	14.94	.001355	.5698	1.325	454.2	712.2 710.8	3.348	2.471 2.503
18,500	1035	199.1	14.63	.001333 .001311	.5603 .5509	1.336 1.347	452.4 450.6	709.4	3.337 3.326	2.537
19,000	1014	195.0 191.0	14.33 14.04	.001311	.5418	1.347	448.9	709.4	3.316	2.572
19,500	992.6 972.1	187.0	13.75	.001269	.5327	1.330	447.1	706.6	3.305	2.608
20,000 20,500	972.1	183.1	13.46	.001207	.5237	1.370	445.3	705.2	3,294	2.644
21,000	931.9	179.3	13.48	.001246	.5148	1.394	443.5	703.2	3.283	2.680
21,500	912.5	175.6	12.90	.001204	.5061	1.406	441.7	702.4	3.272	2.718
22,000	893.3	171.9	12.63	.001183	.4974	1.418	439.9	701.0	3.261	2.756
22,500	874.4	168.2	12.36	.001163	,4889	1.430	438.2	699.6	3.250	2.794
23,000	855.9	164.7	12.10	.001143	.4805	1.443	436.4	698.1	3.239	2.834
23,500	837.7	161.2	11.84	.001123	.4721	1.455	434.6	696.7	3.228	2.874
24,000	819.8	157.7	11.59	.001103	.4640	1.468	432.8	695.3	3.217	2.916
24,500	802.2	154.3	11.34	.001085	.4559	1.481	431.0	693.8	3.206	2.955
25,000	784.9	151.0	11.10	.001065	.4480	1.494	429.2	692.4	3.195	3.000
25,500	767.9	147.7	10.86	.001046	.4401	1.507	427.5	691.0	3.184	3.044
26,000	751.2	144.5	10.62	.001028	.4323	1.521	425.7	689.5	3.173	3.086
26,500	734.8	141.4	10.39	.001010	.4247	1.534	423.9	68 ⁸ .1	3.162	3.131
27,000	718.7	138.3	10.16	.000992	.4171	1.548	422.1	686.6	3.150	3.175
27,500	702.9	135.2	9.939	.000974	.4097	1.562	420.3	685.2	3.139	3.223
28,000	687.4	132.2	9.720	.000957	.4023	1.577	418.5	683.7	3.128	3.268

TABLE 3

PROPERTIES OF THE STANDARD ATMOSPHERE (Cont).

Altitude,		Pressure, 1)	Density,	Density ratio,	1	Temp., T	Speed of sound,	Coefficient of viscosity,	Kinematic viscosity,
h – ft	lb/ft²	in. H ₂ 0	in. Hg	slugs/ft ³	$\sigma = \frac{\rho}{\rho_{.,}}$	√ō	°F abs.	a mph	μ slugs/ft sec	ft²/sec
28,500	672.1	129.3	9.504	0.000940	0.3951	1.591	416.8	682.3	3,117 x 10 ⁻⁷	3.316 x 10-
29,000	657.1	126.4	9.293	.000922	.3879	1.606	415.0	680.8	3.106	3.369
29,500	642.4	123.6	9.085	.000906	.3809	1.620	413.2	679.3	3.094	3.415
30,000	628.0	120.8	8.880	.000889	.3740	1.635	411.4	677.9	3.083	3.468
30,500	613.8	118.0	8.680	.000873	.3671	.1.650	409.6	676.4	3.072	3.519
31,000	599.9	115.4	8.483	.000857	.3603	1.666	407.8	674.9	3.060	3.570
31,500	586.3	112.8	8.290	.000842	.3537	1.682	406.1	673.4	3.049	3.621
32,000	572.9	110.2	8.101	.000826	.3472	1.697	404.3	672.0	3.038	3.678
32,500	559.7	107.6	7.915	.000810	.3406	1.713	402.5	670.5	3.026	3.736
33,000	54 6.8	105.2	7.732	.000795	.3343	1.730	400.7	669.0	3.015	3.792
33,500	534.1	102.8	7.554	.000780	.3280	1.746	399.0	667.5	3.004	3.851
34,000	521.7	100.4	7.377	.000765	.3218	1.763	397.2	666.0	2.992	3.911
34,500	509.5	98.03	7.205	.000750	.3158	1.779	395,4	664.5	2.981	3.975
35,000	497.6	95.75	7.036	.000736	.3098	1.797	393.6	663.0	2.969	4.034
35,332	489.8	94.24	6.926	.000727	.3058	1.808	392.4	662.0	2.962	4.073
35,500	485.8	93.51	6.873	.000721	.3034	1.816	392.4	662.0	2.962	4.105
36,000	474.4	91.31	6.711	.000705	.2963	1.837	392.4	662.0	2,962	4.204
36,500	463.2	89.15	6.552	.000688	.2893	1.859	392.4	662.0	2.962	4.306
37,000	452.2	87.04	6.397	.000672	.2824	1.881	392.4	662.0	2.962	4.410
37,500	441.6	85.00	6.247	.000656	.2758	1.904	392.4	662.0	2.962	4.516
38,000	431.1	82.97	6.098	.000640	.2692	1.927	392.4	662.0	2.962	4.625
38,500	421.0	81.01	5.954	.000625	.2629	1.950	392.4	662.0	2.962	4.737
39,000	411.0	79.10	5.813	.000610	.2567	1.974	392.4	662.0	2.962	4.852 4.969
39,500	401.3	77.23	5.676	.000596	.2506	1.998	392.4	662.0	2.962	
40,000	391.9	75.44	5.544	.000582	.2448	2.021	392.4	662.0	2,962	5.089 5.212
40,500	382.6	73.64	5.412	.000568	.2390	2.045	392.4	662.0	2.962	5.338
41,000	373.6	71.89	5.284	.000555	.2333	2.070	392.4	662.0	2.962 2.962	5.467
41,590	364.8	70.18	5.158	.000542	.2278	2.095	392.4	662.0	2.962	5.599
42,000	356.2	68.56	5.038	.000529	.2225	2.120	392.4	662.0	2.962	5.735
42,500	347.8	66.93	4.919	.000516	.2172	2.146	392.4	662.0	2.962	5.873
43,000	339.6	65.34	4.802	.000504	.2120	2.172	392.4	662.0 662.0	2.962	6.015
43,500	331.5	63.79	4.688	.000492	.2070	2.198	392.4 392.4	662.0	2.962	6.161
44,000	323.7	62.29	4.578	.000480	.2021	2.224	392.4	662.0	2.962	6.310
44,500	316.1	60.82	4.470	.000469	.1974	2.251		662.0	2.962	6.462
45,000	308.6	59.40	4.365	.000458	.1927	2.278	392.4 392.4	662.0	2.962	6.618
45,500	301.3	58.01	4.263	.000448	.1882	2.305	392.4	662.0	2.962	6.778
46,000	294.2	56.63	4.162	.000437	.1838	2.333	392.4 392.4	662.0	2.962	6.942
46,500	287.3	55.28	4.063	.000427	.1794	2.361 2.389	392.4	662.0	2.962	7.110
47,000	280.5	53.98	3.967	.000417	.1752	2.418	392.4	662.0	2.962	7.282
47,500	273.9	52.72	3.875	.000407 .000397	.1711 .1670	2.413	392.4	662.0	2,962	7.459
48,000	267.4	51.46	3.782	.000397	.1630	2.477	392.4	662.0	2.962	7.640
48,500	261.1	50.24	3.692	.000388	.1592	2.506	392.4	662.0	2.962	7.824
49,000	255.0	49.06	3.605	.000379	.1555	2.536	392.4	662.0	2.962	8.012
49,500	248.9	47.92	3.522	.000370	.1518	2.567	392.4	662.0	2.962	8.206
50,000	243.1	46.78	3.438	.000351	.1482	2.598	392.4	662.0	2.962	8.404
50,500	237.3	45.67	3.357	.000332	.1447	2.629	392.4	662.0	2.962	8.607
51,000	231.7	44.60	3.276	.000344	.1413	2.660	392.4	662.0	2.962	8.815
51,500	226.3	43.54	3.200 3.124	.000330	.1379	2.692	392.4	662.0	2.962	9.028
52,000	220.9	42.52	3.124	.000326	.1347	2.725	392.4	662.0	2.962	9.246
52,500	215.7	41.51	2.979	.000320	.1315	2.758	392.4	662.0	2.962	9.470
53,000	210.6	40.53	2.979	.000313	.1284	2.791	392.4	662.0	2.962	9.699
53,500	205.6	39.57 38.64	2.840	.000303	.1254	2.824	392.4	662.0	2.962	9.933
54,000	200.8	38.64 37.73	2.773	.000298	.1224	2.858	392.4	662.0	2.962	10.17
54,500	196.1	37.73 36.84	2.773	.000291	.1195	2.893	392.4	662.0	2.962	10.42
55,000	191.4	35.84	2.644	,000278	.1167	2.927	392.4	662.0	2.962	10.67
55,500 56,000	186.9 182.5	35.97	2.581	.000278	.1140	2.962	392.4	662.0	2.962	10.93

PROPERTIES OF THE STANDARD ATMOSPHERE (Cont).

Altitude,		Pressure, p	o	Density,	Density ratio,	1	Temp.,	Speed of	Coefficient of	Kinematio
h – ft	lb/ft²	in. H₂0	in. Hg	ρ slugs/ft³	$\sigma = \frac{\rho}{\rho_{0}}$	<u>√</u> σ	T °F abs.	sound, a mph	viscosity, µ slugs/ft sec	ປ ft²/sec
56,500	178.2	34.29	2.520	0.000264	0.1113	2.997	392.4	662.0	2.962 x 10 ⁻⁷	11.19 x 10-
57,000	174.0	33.48	2.461	.000258	.1087	3.033	392.4	662.0	2.962	11.46
57,500	169.9	32.69	2.403	.000252	.1061	3.070	392.4	662.0	2.962	11.74
58,000	165.9	31.92	2.346	.000246	.1036	3.107	392.4	662.0	2.962	12.02
58,500	162.0	31.17	2.291	.000240	.1011	3.145	392.4	662.0	2.962	12.32
59,000	158.1	30.43	2.236	.000235	.09875	3.182	392.4	662.0	2.962	12.61
59,500	154.4	29.71	2.184	.000229	.09643	3.220	392.4	662.0	2.962	12.92
60,000	150.8	29.01	2.132	.000224	.09415	3.259	392.4	662.0	2.962	13.23
60,500	147.2	28.33	2.082	.000218	.09192	3.298	392.4	662.0	2.962	13.55
61,000	143.8	27.66	2.033	.000213	.08976	3.338	392.4	662.0	2.962	13.88
61,500	140.4	27.01	1.985	.000208	.08764	3.378	392.4	662.0	2.962	14.21
62,000	137.1	26.37	1.938	.000203	.08557	3.419	392.4	662.0	2.962	14.56
62,500	133.8	25.74	1.892	.000199	.08355	3.460	392.4	662.0	2.962	14.91
63,000	130.7	25.14	1.848	.000194	.08158	3.501	392.4	662.0	2.962	15.27
63,500	127.6	24.54	1.804	.000189	.07965	3.543	392.4	662.0	2.962	15.64
64,000	124.6	23.96	1.761	.000185	.07777	3.586	392.4	662.0	2.962	16.02
64,500	121.6	23.40	1.720	.000180	.07594	3.629	392.4	662.0	2.962	16.40
65,000	118.7	22.85	1.679	.000176	.07414	3.672	392.4	662.0	2.962	16.80

TABLE 4
PROPERTIES OF THE STANDARD ATMOSPHERE.

Altitude ft	Temp. °F	Temp. °F abs.	Temp. °F Mean abs.	Relative Temp. $\frac{T}{T_0}$	Relative Pressure $\frac{P}{P_{\parallel}}$	Density Ratio $\sigma = \frac{\rho}{\rho_0}$	Pressure Abs P in. of Hg	Density slugs/ft ³	Specific Gravity	Temp. °C
-4000	73.265	532.665	525.500	1.0275	1.1533	1.1225	34.51	0.002669	0.08588	22.925
-3400	71.125	530.525	524.439	1.0234	1.1293	1.1035	33.79	.002624	.08442	21.736
-3000	69.699	529.099	523.731	1.0206	1.1134	1.0909	33.31	.002594	.08346	20,944
-2400	67.559	526.959	522.669	1.0165	1.0899	1.0722	32.61	.002550	.08203	19.755
-2000	66.132	525.532	521.962	1.0138	1.0745	1.0599	32.15	.002520	.08109	18.962
-1400	63.992	523.392	520.895	1.0096	1.0516	1.0416	31.47	.002477	.07970	17.774
-1000	62.566	521.960	520.181	1.0069	1.0367	1.0296	31.02	.002448	.07878	16.981
-400	60,426	519.826	519.112	1.0027	1.0146	1.0118	30.36	.002406	.07741	15.792
0	59.000	518.400	518.400	1.0000	1.0000	1.0000	29.92	.002378	.07651	15.000
5 00	57.217	516.617	517.507	.9966	.9821	.9855	29.38	.002343	.07540	14.009
1000	55.434	514.834	516.615	.9931	.9644	.9710	28.86	.002309	.07430	13.019
1500	53.651	513.051	515.722	.9897	.9496	.9568	28.33	.002275	.07321	12.028
2000	51,868	511.268	514.830	.9862	.9298	.9428	27.82	,002242	.07213	11.038
2500	50.085	509,485	513.931	.9828	.9129	.9288	27.31	.002209	.07107	10.047
3000	48.301	507.701	513.033	.9794	.8962	.9151	26.81	.002176	.07001	9.056
3500	46.518	505.918	512.135	.9759	.8798	.9015	26.32	.002144	.06897	8.066
4000	44.735	504.135	511.237	.9725	.8636	.8881	25.84	.002111	.06794	7.075
4500	42.952	502.352	510.335	.9690	.8477	.8748	25.36	.002080	.06693	6.085
5000	41.169	500.569	509.434	.9656	.8320	.8616	24.89	.002049	.06592	5.094
5500	39.386	498.786	508.531	.9622	.8165	.8487	24.43	.002018	.06493	4.103

PROPERTIES OF THE STANDARD ATMOSPHERE (Cont).

TABLE 4

Altitude ft	Temp. °F	Temp. °F abs.	Temp. °F Mean abs.	$\begin{array}{c} \text{Relative} \\ \text{Temp.} \\ \hline \frac{T}{T_0} \end{array}$	Relative Pressure $\frac{P}{P_0}$	Density Ratio $\sigma = \frac{\rho}{\rho_0}$	Pressure Abs P in. of Hg	Density slugs/ft³ ho	Specific Gravity	Temp. °C
6000	37,603	497.003	507.629	0.9587	0.8013	0.8358	23.98	0.001988	0.06395	3.113
6500	35.820	495.220	506.723	.9553	.7863	.8232	23.53	.001957	.06298	2.122
7000	34.037	493.437	505.816	.9518	.7716	.8106	23.09	.001928	.06202	1.132
7500	32.254	491.654	504.910	.9484	.7571	.7982	22.65	.001898	.06107	0.141
8000	30.471	489.871	504.002	.9450	.7427	.7859	22.22	.001869	.06013	-0.850
8500	28.688	488.088	503.091	.9415	.7286	.7738	21.80	.001840	.05920	-1.840
9000	26.904	486.304	502.180	.9381	.7147	.7619	21.38	.001812	.05829	-2.831
9500	25.121	484.521	501.270	.9346	.7011	.7501	20.98	.001784	.05739	-3.281
10000	23,338	482.738	500.359	.9312	.6876	.7384	20.58	.001756	.05649	-4.812
10500	21.555	480.955	499.448	.9278	.6743	.7269	20.18	.001728	.05561	-5.803
11000	19.772	479.172	498,535	.9243	.6614	.7154	19.79	.001702	.05474	-6.793
11000	17.989	479.172	497.623	.9209	.6486	.7042	19.40	.001675	.05388	-7.784
11500	16.206	477.369	496.710	.9175	.6359	.6931	19.03	.001648	.05303	-8.774
12000	14.423	473.823	495.787	.9173	.6234	.6821	18.65	.001622	.05219	-9.765
12500 13000	12.640	472.040	494.865	.9106	.6112	.6712	18.29	.001596	.05136	-10.756
12500	10.057	470.257	493.941	.9071	.5992	.6605	17.93	.001570	.05054	-11.746
13500	10.857 9.074	468.474	493.941	.9071	.5873	.6499	17.57	.001545	.04973	-12.737
14000	7.291	466.691	492.093	.9003	.5757	.6394	17.22	.001520	.04893	-13.727
14500	5.507	464.907	491.168	.8968	.5642	.6291	16.88	.001496	.04814	-14.718
15000 15500	3.724	463.124	490.242	.8934	.5530	.6189	16.54	.001472	.04736	-15.511
16000	1.041	461.341	489.317	.8899	.5418	.6088	16.21	.001448	.04658	-16.699
16000	1.941 0.158	459.558	488.387	.8865	.5309	.5988	15.89	.001424	.04583	-17.690
16500	-1.625	457.775	487.459	.8831	.5202	.5891	15.56	.001401	.04507	-18.680
17000 17500	-3.408	455.992	486.529	.8796	.5097	.5793	15.25	.001378	.04433	-19.671
18000	-5.191	454.209	485.598	.8762	.4992	.5698	14.94	.001355	.04359	-20.662
10500	6.074	452.426	484.664	.8727	.4891	.5603	14.63	.001333	.04287	-21 652
18500	-6.974	452.420	483.729	.8693	.4790	.5509	14.33	.001311	.04216	-22.643
19000	-8.757 -10.540	448.860	482.794	.8659	.4691	.5418	14.04	.001289	.04145	-23,633
19500	-10.340	447.077	481.859	.8624	.4594	.5327	13.75	.001267	.04075	-24.624
20000 20500	-14.106	445.294	480.921	.8590	.4498	.5237	13.46	.001246	.04007	-25.615
		444.510	470.000	0555	.4405	.5148	13.18	.001225	.03938	-26.605
21000	-15.890	444.510	479.980 479.042	.8555 .8521	.4313	.5061	12.90	.001204	.03872	-27.596
21500	-17.673	441.727	479.042 478.100	.8321 .8487	.4222	.4974	12.63	.001183	.03806	-28.586
22000	-19.456	439.944	477.156	.8452	.4133	.4889	12.36	.001163	.03740	-29.577
22500 23000	-21.239 -23.022	438.161 436.378	476.210	.8418	.4045	.4805	12.10	.001143	.03676	-30.568
	04.007	424.505	475.005	0202	.3959	.4721	11.84	.001123	.03612	-31.558
23500	-24.805	434.595	475.265	.8383	.3959 .3874	.4721	11.59	.001123	.03550	-32.549
24000	-26.588	432.812	474.320	.8349	.3791	.4559	11.34	.001105	.03488	-33.539
24500	-28.371	431.029	473.370	.8315 .8280	.3791	.4339	11.10	.001065	.03427	-34.530
25000 25500	-30.154 -31.937	429.246 427.463	472.420 471.469	.8280 .8246	.3629	.4401	10.86	.001046	.03367	-35.521
			, mo = 1 =	0211	2550	4222	10.62	.001028	.03308	-36.511
26000	-33.720	425.680	470.518	.8211	.3550	.4323 .4247	10.39	.001028	.03249	-37.502
26500	-35.504	423.896	469.563	.8177	.3474 .3397	.4247	10.39	.000992	.03192	-38.493
27000	-37.287	422.113	468.607	.8143	.3322	.4171	9.939	.000974	.03134	-39.483
27500	-39.070	420.330	467.651	.8108 .8074	.3322	.4023	9.720	.000977	.03078	-40.474
28000	-40.853	418.547	466,695	.0074	.5270	, 1020	2.720			

PROPERTIES OF THE STANDARD ATMOSPHERE (Cont).

Altitude ft	Temp. °F	Temp. °F abs.	Temp. °F Mean abs.	Relative Temp. $\frac{T}{T_0}$	Relative Pressure P	Density Ratio $\sigma = \frac{\rho}{\rho_{,,}}$	Abs Pressure P in. of Hg	Density slugs/ft 3	Specific Gravity	Temp. °C
28500	-42.636	416.764	465.734	0.8039	0.3176	0.3951	9.504	0.000940	0.03023	-41.464
29000	-44.419	414.981	464.773	.8005	.3106	.3879	9.293	.000922	.02968	-42.455
29500	-46.202	413.198	463.811	.7971	.7971	.3809	9.085	.000906	.02914	-43.446
30000	-47.985	411.415	462.849	.7936	.2968	.3740	8.880	.000889	.02861	-44.436
30500	-49.768	409.632	461.882	.7902	.290(.3671	8.680	.000873	.02809	-45.427
31000	-51.551	407.849	460.914	.7867	.2834	.3603	8.483	.000857	.02757	-46.417
31500	-53.334	406.066	459.947	.7833	.2770	.3537	8.290	.000842	.02706	-47.408
32000	-55.117	404.283	458.980	.7799	.2707	.3472	8.101	.000826	.02656	-48.399
33000	-58.684	400.716	457.034	.7730	.2583	.3343	7.732	.000795	.02558	-50.379
34000	-62.250	397.150	455.087	.7661	.2465	.3218	7.377	.000765	.02463	-52.361
35000	-65.816	393.584	453.132	.7592	.2352	.3098	7.036	.000736	.02369	-54.342
35332	-67.000	392.400	452.680	.7569	.2314	.3058	6.925	.000727	.02339	-55.000
36000	-67.000	392.400	451.198	.7569	.2242	.2962	6.708	.000704	.02265	-55.000
37000	-67.000	392.400	449.369	.7569	.2137	.2824	6.395	.000671	.02160	-55.000
38000	-67.000	392.400	447.648	.7569	.2037	.2692	6.096	.000640	.02059	-55.000
39000	-67.000	392.400	446.049	.7569	.1943	.2566	5.812	.000610	.01963	-55.000
40000	-67.000	392.400	444.537	.7569	.1852	.2447	5.541	.000582	.01872	-55.000
41000	-67,000	392.400	443.104	.7569	.1765	.2332	5.283	.000554	.01785	-55.000
42000	-67.000	392.400	441.742	.7569	.1683	.2224	5.036	.000529	.01701	-55.000
43000	-67.000	392.400	440.455	.7569	.1605	.2120	4.802	.000504	.01622	-55.000
44000	-67.000	392.400	439.232	.7569	.1530	.2021	4.578	.000481	.01546	-55.000
45000	-67.000	392.400	438.071	.7569	.1458	.1926	4.364	.000459	.01474	-55.000
46000	-67.000	392.400	436.964	.7569	.1391	.1837	4.160	.000437	.01405	-55.000
47000	-67.000	392.400	435.912	.7569	.1325	.1751	3.966	.000417	.01339	-55.000
48000	-67.000	392.400	434.906	.7569	.1264	.1669	3.781	.000397	.01277	-55.000
49000	-67.000	392.400	433.948	.7569	.1205	.1591	3.604	.000382	.01217	-55.000
50000	-67.000	392.400	433.030	.7569	.1149	.1517	3.436	.000361	.01161	-55.000
51000	-67.000	392.400	432.151	.7569	.1095	.1447	3.276	.000344	.01106	-55.000
52000	-67.000	392.400	431.312	.7569	.1044	.1380	3.123	.000328	.010550	-55.000
53000	-67.000	392.400	430.507	.7569	.09955	.1314	2.978	.000312	.010057	-55.000
54000	-67.000	392.400	429.734	.7569	.09491	.1253	2.839	.000298	.009591	-55.000
55000	-67.000	392.400	428.991	.7569	.09049	.1195	2.707	.000284	.009143	-55.000
56000	-67.000	392.400	428.279	.7 5 69	.08626	.1140	2.581	.000271	.008718	-55.000
57000	-67.000	392.400	427.592	.7569	.08223	.1087	2.460	.000258	.008310	-55.000
58000	-67.000	392.400	426.933	.7569	.07839	.1035	2.346	.000246	.007922	-55.000
59000	-67.000	392.400	426.297	.7569	.07473	.09870	2.237	.000234	.007553	-55.000
60000	-67.000	392.400	425.685	.7569	.07125	.09413	2.132	.000224	.007201	-55.000
61000	-67.000	392.400	425.093	.7569	.06792	.08974	2.033	.000214	.006865	-55.000
62000	-67.000	392.400	424.522	.7569	.06476	.08555	1.938	.000203	.006546	-55.000
63000	-67.000	392.400	423.972	.7569	.06173	.08156	1.847	.000194	.006239	-55.000
64000	-67.000	392.400	423.439	.7569	.05886	.07775	1.761	.000185	.005949	-55.000
65000	-67.000	392.400	422.922	.7569	.05611	.07412	1.680	.000176	.005671	-55.000

TABLE 5 ICAO STANDARD ATMOSPHERE - INLET CONDITIONS

Altitude,	мр	$^{ m P_0,}_{ m lb/in.}{}^2$	${}^{\mathrm{T}}_{\mathrm{O}}$,	P_2/P_0	$^{ m P_2,}_{ m lb/in.^2}$	δ_2	$^{\mathrm{T_2}}_{\mathrm{o_R}}$	θ_2	$\sqrt{\theta_2}$
0	0	14. 696	518. 67	1. 0000	14. 696	1. 0000	518. 67	1. 0000	1. 0000
	0.2			1.0282	15. 110	1. 0282	522.81	1.0080	1.0040
	0. 4			1. 1167	16.42	1. 1167	535. 30	1.0321	1. 0159
	0.6			1.2757	18.748	1.2757	556 . 0 5	1.0721	1. 0354
	0.8			1. 5248	22.408	1. 5248	585. 10	1. 1281	1.0621
	0. 9			1.6916	24.860	1. 6916	602.69	1. 1620	1.0780
	1.0			1.8930	27.819	1. 8930	622.32	1. 1998	1. 0954
	1.2			2.4037	35. 325	2.4037	667. 79	1.2875	1. 1347
	1. 5			3. 5441	52. 084	3. 5441	751. 28	1. 4485	1.2035
5000	0.04	12. 228	500.86	1. 0011	12.242	0.83302	501. 02	0.96597	0.98284
	0. 1			1. 0071	12.314	0. 83792	501.86	0.96759	0. 98366
	0. 2			1. 0282	12.573	0. 85554	504.87	0. 97339	0.98661
	0.4			1. 1167	13.654	0. 92910	516.93	0. 99665	0.99834
	0.6			1.2759	15. 601	1. 0616	537. 00	1. 0354	1. 0175
	0.8			1.5247	18.644	1.2687	565. 05	1. 0894	1. 0438
	0. 9			1.6918	20.686	1.4076	582. 0 8	1. 1222	1. 0594
	1. 0			1.8930	23. 147	1.5751	601.07	1. 1589	1. 0765
	1. 2			2.4039	29.394	2.0001	645.02	1. 2436	1. 1152
	1. 5			3. 5434	43. 328	2. 9483	725. 72	1. 3992	1. 1829
10,000	0. 1	10. 1065	483.03	1.0070	10. 177	0.69251	483.99	0. 93314	0.96599
	0. 2			1.0283	10. 393	0.70720	486. 89	0. 93873	0. 96888
	0. 4			1. 1167	11. 286	0. 76798	498. 53	0. 96116	0. 98039
	0. 6			1. 2759	12. 894	0. 87741	517. 89	0. 99850	0. 99925
	0.8			1. 5250	15. 412	1. 0487	544.98	1. 0507	1. 0251 1. 0404
	0. 9			1. 7025	17. 207	1. 1708	561. 40 579. 75	1. 0824 1. 1178	1. 0572
	1. 0			1. 8937	19. 138	1. 3023 1. 6533	622. 14	1. 1176	1. 0943
	1. 2 1. 5			2. 4040 3. 5433	24. 296 35. 810	2. 4367	700. 10	1. 3498	1. 1618
15, 000	0. 1	8. 2935	465.20	1. 0070	8, 3516	0. 56829	466. 13	0. 89870	0.94800
13, 000	0. 2	0. 2000	100.20	1. 0283	8. 5283	0. 58031	468. 92	0.90408	0.95083
	0. 4			1. 1167	9.2614	0. 63020	480. 13	0.92569	0.96213
	0. 6			1. 2757	10.580	0.71996	498.78	0.96165	0.98065
	0.8			1. 5349	12.730	0.86623	524.87	1.0120	1.0060
	0. 9			1. 6921	14. 033	0.95491	540.73	1.0425	1.0210
	1. 0			1. 8936	15.705	1.0686	558.40	1.0766	1.0376
	1. 2			2. 4043	19.940	1. 3568	599.30	1. 1555	1.0740
	1. 5			3.5606	29. 530	2.0094	674.37	1. 3002	1. 1411
20, 000	0. 1	6. 7534	447. 37	1. 0070	6. 8007	0. 46276	448.26	0.86426	0. 92965
,	0. 2	•		1. 0282	6.9438	0.47250	450.95	0.86943	0.93243
	0. 4			1. 1162	7. 5381	0. 51294	461.68	0.89013	0.94347
	0. 6			1. 2752	8.6119	0. 58601	479.62	0.92471	0.96163
	0. 8			1. 5346	10. 364	0.70522	504.71	0.97310	0.98646
	0. 9			1. 6913	11.422	0.77723	519.97	1.0025	1. 0012
	1. 0			1.8941	12.791	0.87040	537. 01	1. 0354	1.0175
	1.2			2.4036	16.232	1. 1046	576.38	1. 1113	1. 0542
	1.5			3. 5416	23.918	1.6275	648.68	1.2507	1. 1183

Calculations include standard ram recovery equation

$$\eta_{\rm r} = 1.0 - 0.1 \, ({\rm M_p} - 1)^{1.5}$$

$$\eta_{
m r}$$
 = 1.0 for M $_{
m p}$ < 1.0 $_{\odot}$

TABLE 5
ICAO STANDARD ATMOSPHERE - INLET CONDITIONS (Cont.)

Altitude, ft	М _р	P_0 , $lb/in.^2$	${\rm ^{T}_{0}}, {\rm ^{o}_{R}}$	P_2/P_0	$^{\mathrm{P}_{2},}_{\mathrm{lb/in.}^{2}}$	δ_2	$^{\mathrm{T_2},}_{\mathrm{o_R}}$	θ_2	$\sqrt{\theta_2}$
25, 000	0. 2 0. 4	5. 4535	429. 53	1. 0282 1. 1164	5. 6073 6. 0883	0. 38155 0. 41428	432. 97 443. 29	0. 83478 0. 85467	0. 91366 0. 92448
	0. 6			1. 1104 1. 275 2	6. 9543	0. 47321	460. 50	0. 88785	0. 94226
	0.8			1. 5240	8. 3111	0. 56554	484. 60	0. 93431	0.96661
	0. 9			1. 6911	9. 2224	0. 62755	499. 25	0. 96255	0. 98110
	1. 0			1. 8930	10. 323	0. 70246	515. 61	0.99410	0. 99705
	1. 2			2.4035	13. 107	0.89190	553, 45	1.0671	1.0330
	1. 5			3, 5399	19. 305	1. 3136	622.91	1.2010	1.0968
	1.7			4. 6466	25. 340	1.7243	677. 72	1.3067	1. 1431
30, 000	0. 3	4. 3641	411.70	1. 0647	4. 6464	0. 31616	419.16	0. 80814	0.89897
	0. 5			1.1864	5. 1776	0.35231	432.37	0.83362	0.91303
	0.8			1. 5243	6.6522	0.45266	4 6 4. 53	0.89562	0.94637
	0.9			1.6913	7. 3810	0.50225	478.57	0.92269	0.96056
	1.0			1.8931	8.2617	0. 56218	494.25	0.95293	0.97618
	1.2			2.4039	10. 491	0. 71387	530. 57	1.0229	1. 0114
	1.5			3. 5414	15. 455	1. 0516	597.22	1. 1515	1.0731
	1. 7			4.6475	20. 282	1. 3801	649.79	1.2528	1. 1193
	2. 0			7. 0461	30. 750	2.0924	740.65	1. 4280	1. 1950
35,000	0.9	3.4580	393.87	1.6908	5.8468	0. 39785	457.80	0.88265	0.93950
	0.95			1.7867	6.1784	0.42042	465.09	0.89671	0.94696
	1.0			1.8920	6. 5426	0.44520	427.77	0. 91151	0. 95473
	1.2			2.4022	8. 3068	0. 56525	507. 51	0. 97849	0.98920
	1. 5			3.5402	1 2 . 242	0. 83302	571.40	1. 1017	1.0506
	1.8			5. 3337	18. 444	1.2550	649.23	1.2517	1. 1188
	2. 0			7.0404	24. 346	1. 6566	708. 76	1. 3665	1. 1690
	2.2			9. 2884	32. 119	2. 1856	774. 33	1. 4929	1. 2219
	2. 5			13. 962	48. 281	3. 2853	883. 52	1. 7035	1. 3052
36, 089	0. 9	3. 2825	389.99	1.6907	5. 5497	0. 37764	453.29	0. 87395	0. 93486
	0.95			1. 7865	5. 8642	0. 39903	460. 50	0. 88786	0. 94226
	1.2			2.4023	7. 8854	0. 53657	502.51	0. 96885	0. 98430
	1.5			3. 5402	11.621	0. 79073	565. 78	1. 0908	1. 0444
	1.8			5. 3330	17. 506	1. 1912	642.87	1. 2395	1. 1133
	2. 0			7. 0389	23. 105	1. 5722	701. 81	1. 3531	1. 1624
	2. 2 2. 5			9. 2867	30. 483	2.0743	766. 79	1. 4784	1. 2159
	3. 0			13.966 26.478	45. 843 86. 914	3. 1195 5. 9142	875. 01 1082. 5	1. 6870 2. 0871	1. 2989 1. 4447
40.000		9 7900	389. 99						0. 94226
40, 000	0. 95 1. 2	2.7200	309. 99	1.7865 2.4023	4. 8593 6. 5342	0. 33066 0. 44463	460. 50 502. 51	0. 88786 0. 96885	0. 94220
	1. 5			3. 5402	9. 6292	0. 65523	565. 78	1. 0908	1. 0444
	1. 8			5. 3330	14. 506	0. 98707	642.87	1. 2395	1. 1133
	2.0			7. 0389	19. 146	1. 3028	701. 81	1. 3531	1. 1632
	2.2			9. 2867	25. 260	1. 7188	766. 89	1. 4784	1. 2159
	2. 5			13. 966	37. 988	2. 5849	875. 01	1. 6870	1. 2989
	3. 0			26. 478	72. 019	4.9006	1082. 5	2. 0871	1. 4447
	3. 2			33. 593	91. 373	6. 2176	1174. 5	2. 2644	1. 5048
	3. 5			46. 820	127. 35	8. 6657	1321. 3	2. 5474	1. 5961
	4. 0			75. 325	204.88	13.942	1588.4	3.0624	1.7505

TABLE 5 (Cont.)
ICAO STANDARD ATMOSPHERE - INLET CONDITIONS

Altitude,	мр	P_0 , $lb/in.^2$	${\mathbf r}_{\mathbf 0}, \\ {\mathbf o}_{\mathbf R}$	P_2/P_0	$_{ m lb/in.2}^{ m P_2,}$	δ_2	$^{\mathrm{T_2}}_{\mathrm{o_R}}$	θ_2	$\sqrt{\theta_2}$
45,000	0. 95 1. 2 1. 5 1. 8 2. 0 2. 2 2. 5 3. 0 3. 2 3. 5 4. 0	2. 1459	389.99	1. 7865 2. 4023 3. 5402 5. 3330 7. 0389 9. 2867 13. 966 26. 478 33. 593 46. 820 75. 325	3. 8337 5. 1550 7. 5968 11. 444 15. 105 19. 928 29. 970 56. 819 72. 088 100. 47 161. 64	0. 26087 0. 35078 0. 51694 0. 77873 1. 0278 1. 3561 2. 0393 3. 8663 4. 9053 6. 8367 10. 999	460. 50 502. 51 565. 78 642. 87 701. 81 766. 89 875. 01 1082. 5 1174. 5 1321. 3 1588. 4	0. 88786 0. 96885 1. 0908 1. 2395 1. 3531 1. 4784 1. 6870 2. 0871 2. 2644 2. 5474 3. 0624	0. 94226 0. 98430 1. 0444 1. 1133 1. 1632 1. 2159 1. 2989 1. 4447 1. 5048 1. 5961 1. 7505
50,000	0.95 1.2 1.5 1.8 2.0 2.2 2.5 3.0 3.2 3.5 4.0	1.6820	389.99	1.7865 2.4023 3.5402 5.3330 7.0389 9.2867 13.966 26.478 33.593 46.820 75.325	3.0049 4.0407 5.9546 8.9703 11.840 15.621 23.491 44.536 56.504 78.753 126.70	0.20448 0.27495 0.40519 0.61039 0.80564 1.0629 1.5985 3.0305 3.8449 5.3588 8.6214	460.50 502.51 565.78 642.87 701.81 766.89 875.01 1082.5 1174.5 1321.3 1588.4	0.88786 0.96885 1.0908 1.2395 1.3531 1.4784 1.6870 2.0871 2.2644 2.5474 3.0624	0.94226 0.98430 1.0444 1.1133 1.1632 1.2159 1.2989 1.4447 1.5048 1.5961 1.7505
55, 000	0.95 1.2 1.5 1.8 2.0 2.2 2.5 3.0 3.2 3.5 4.0	1. 3227	389. 99	1. 7865 2. 4023 3. 5402 5. 3330 7. 0389 9. 2867 13. 966 26. 478 33. 593 46. 820 75. 325	2. 3630 3. 1775 4. 6826 7. 0540 9. 3104 12. 284 18. 473 35. 022 44. 434 61. 929 99. 633	0. 16079 0. 21622 0. 31863 0. 48000 0. 63354 0. 83585 1. 2570 2. 3831 3. 0236 4. 2141 6. 7797	460. 50 502. 51 565. 78 642. 87 701. 81 766. 79 875. 01 1082. 5 1174. 5 1321. 3 1588. 4	0. 88786 0. 96885 1. 0908 1. 2395 1. 3531 1. 4784 1. 6870 2. 0871 2. 2644 2. 5474 3. 0624	0. 94226 0. 98430 1. 0444 1. 1133 1. 1632 1. 2159 1. 2989 1. 4447 1. 5048 1. 5961 1. 7505
60, 000	0.95 1.2 1.5 1.8 2.0 2.2 2.5 3.0 3.2 3.5 4.0	1. 0402	3 89. 99	1. 7865 2. 4023 3. 5402 5. 3330 7. 0389 9. 2867 13. 966 26. 478 33. 593 46. 820 75. 325	1. 8582 2. 4987 3. 6823 5. 5471 7. 3215 9. 6596 14. 527 27. 541 34. 942 48. 700 78. 349	0. 12645 0. 17003 0. 25057 0. 37746 0. 49820 0. 65730 0. 98849 1. 8740 2. 3777 3. 3138 5. 3314	460. 50 502. 51 565. 78 642. 87 701. 81 766. 79 875. 01 1082. 5 1174. 5 1321. 3 1588. 4	0. 88786 0. 96385 1. 0908 1. 2395 1. 3531 1. 4784 1. 6870 2. 0871 2. 2644 2. 5474 3. 0624	0. 94226 0. 98430 1. 0444 1. 1133 1. 1632 1. 2159 1. 2989 1. 4447 1. 5048 1. 5961 1. 7505

TABLE 5 (Cont.)
ICAO STANDARD ATMOSPHERE - INLET CONDITIONS

Altitude, ft	Мр	P_0 , lb/in.2	$^{\mathrm{T_0},}_{\mathrm{o_R}}$	P_2/P_0	$_{ m lb/in.2}^{ m P_2,}$	δ_2	$^{\mathrm{T_2},}_{\mathrm{o_R}}$	θ_2	$\sqrt{\theta_2}$
65, 000	0. 95	0. 81796	389. 99	1. 7865	1. 4613	0. 099435	460. 50	0. 88786	0. 94226
•	1.2			2.4023	1.9649	0. 13371	502.51	0.96885	0.98430
	1.5			3.5402	2.8957	0. 19704	565.78	1.0908	1.0444
	1. 8			5. 3330	4.3622	0. 29683	642.87	1.2395	1. 1133
	2. 0			7. 0389	5. 7575	0.39178	701.81	1.3531	1. 1632
	2.2			9.2867	7.5961	0 . 51689	766.79	1.4784	1. 2159
	2.5			13.966	11. 424	0.77733	875.01	1.6870	1.2989
	3. 0			26.478	21.658	1.4737	1082.5	2.0871	1.4447
	3.2			33.593	27.478	1.8698	1174.5	2.2644	1.5048
	3. 5			46.820	38.297	2.6060	1321.3	2.5474	1. 5961
	4.0			75. 32 5	61. 613	4. 1925	1588. 4	3. 0624	1.7505
70,000	0.95	0.64321	389.99	1.7865	1. 1491	0. 078192	460.50	0.88786	0.94226
	1. 2			2.4023	1. 5452	0. 10514	502.51	0.96885	0.98430
	1.5			3.5402	2.2771	0. 15495	565.78	1. 0908	1. 0444
	1.8			5.3330	3.4032	0. 23341	642.87	1. 2395	1. 1133
	2.0			7. 0389	4. 5275	0. 30808	701. 81	1. 3531	1. 1632
	2.2			9.2867	5.9733	0. 40646	766. 79	1. 4784	1.2159
	2.5			13.966	8. 9831	0.61126	875.01	1.6870	1.2989
	3. 0			26.478	17.031	1. 1589	1082.5	2.0871	1. 4447
	3. 2			33. 593	21.607	1.4703	1174. 5	2.2644	1. 5048
	3. 5			46. 820	30. 115	2.0492	1321.3	2.5474	1. 5961
	4. 0			75. 325	48. 450	3. 2968	1588. 4	3.0624	1. 7505
75,000	0.95	0. 50582	389. 99	1.7865	0.90365	0.061490	460.50	0.88786	0.94226
	1. 2			2.4023	1. 2151	0. 082685	502.51	0. 96885	0.98430
	1.5			3.5402	1.7907	0. 12185	565.78	1.0908	1. 0444
	1.8			5. 3330	2.6975	0. 18356	642.87	1.2395	1. 1133
	2. 0			7. 0389	3.5604	0.24227	701. 31	1. 3531	1. 1632
	2.2			9.2867	4.6974	0.31964	766. 79	1. 4784	1.2159
	2.5			13.966	7.0643	0. 48070	875.01	1. 6870	1.2989
	3. 0			26.478	13. 393	0. 91135	1082.5	2.0871	1. 4447
	3. 2			33. 593	16. 992	1. 1562	1174. 5	2.2644	1. 5048
	3. 5			46.820	23. 682	1. 6115	1321.3	2.5474	1. 5961
	4.0			75. 325	38. 101	2.5926	1588.4	3. 0624	1. 7505
80,000	0.95	0. 39777	389.99	1. 7865	0.71062	0. 048355	460.50	0.88786	0.94226
	1.2			2.4023	0.95556	0.065022		0. 96885	0.98430
	1. 5			3.5402	1. 4082	0.095822	565.78	1. 0908	1. 0444
	1.8			5. 3330	2. 1213	0. 14435	642.87	1.2395	1. 1133
	2.0			7. 0389	2.7999	0. 19052	701.81	1. 3531	1. 1632
	2.2			9.2867	3. 6940	0. 25136	766. 79	1. 4784	1.2159
	2.5			13.966	5. 5553	0. 37801	875. 21	1. 6870	1.2989
	3. 0			26.478	10. 532	0.71667	1082.5	2.0871	1.4447
	3. 2			33. 593	13. 362	0.90925	1174. 5	2.2644	1.5048
	3. 5			46. 820	18. 624	1. 2673	1321.3	2. 5474	1. 5961
	4. 0			75. 325	29.962	2. 0388	1588. 4	3. 0624	1. 7505

TABLE 5 (Cont.) ICAO STANDARD ATMOSPHERE - INLET CONDITIONS

Altitude,	м _р	P ₀ , lb/in 2	т ₀ , о _R	P_2/P_0	P_2 , lb. in. 2	δ_2	${\overset{T_2}{\circ}_R},$	θ_2	$\sqrt{\theta_2}$
85, 000	1.0	0. 31279	389. 99	1.8918	0. 59174	0. 040265	468. 108	0.90252	0.95001
	1.2			2.4023	0.75142	0. 051131	502.51	0. 96885	0. 98430
	1.5			3.5402	1.1073	0. 075350	565.78	1. 0908	1. 0444
	1.8			5. 3330	1.6681	0. 11351	642.87	1.2395	1. 1133
	2.0			7. 0389	2.2017	0. 14982	701, 81	1. 3531	1. 1632
	2,2			9.2867	2.9048	0. 19766	766.79	1. 4784	1.2159
	2.5			13.966	4.3684	0.29725	875.01	1.6870	1.2989
	3. 0			26.478	8.2821	0.57356	1082.5	2.0871	1.4447
	3. 2			33. 593	10.508	0.71500	1174.5	2,2644	1.5048
	3. 5			46.820	14.645	0.99652	1321.3	2.5474	1.5961
	4. 0			75. 325	23. 561	1.6032	1588. 4	3.0624	1.7505
90, 000	1. 0	0. 24594	3 89, 99	1. 8918	0.46527	0. 031660	468. 108	0.90252	0.95001
00, 000	1. 2			2.4023	0. 59082	0.040203	502.51	0.96885	0.98430
	1. 5			3.5402	0.87068	0.059246	565. 78	1. 0908	1.0444
	1. 8			5. 3330	1. 3116	0. 089249	642.87	1. 2395	1, 1133
	2. 0			7. 0389	1. 7311	0. 11780	701.81	1. 3531	1. 1632
	2.2			9. 2867	2.2840	0. 15542	766. 79	1. 4784	1.2159
	2.5			13. 966	3. 4348	0. 23372	875. 01	1. 6870	1. 2989
	3. 0			26. 478	6. 5120	0. 44312	1082.5	2. 0871	1.4447
	3. 2			33. 593	8. 2619	0. 56219	1174. 5	2.2644	1.5048
	3. 5			46 820	11. 515	0. 78355	1321.3	2.5474	1.5961
	4. 0			75. 325	18. 525	1. 2606	1588.4	3. 0624	1.7505
95, 000	1. 5	0. 19339	389. 99	3. 5402	0. 68464	0. 046587	565.78	1. 0908	1. 0444
90,000	1.8	0. 10000		5. 3330	1. 0313	0.070179	642.87	1.2395	1. 1133
	2. 0			7. 0389	1. 3613	0. 092628	701. 81	1.3531	1. 1632
	2.2			9. 2867	1. 7960	0. 12221	766. 79	1.4784	1.2159
	2.5			13. 966	2.7009	0. 18378	875. 01	1.6870	1.2989
	3. 0			26. 478	5. 1206	0. 34844	1082.5	2.0871	1.4447
	3. 2			33. 593	6.4966	0.44207	1174.5	2.2644	1.5048
	3. 5			46. 820	9. 0545	0.61613	1321. 3	2.5474	1.5961
	4. 0			75. 325	14. 567	0. 99124	1588.4	3.0624	1.7505
100, 000	2. 0	0. 15211	389.99	7. 0389	1. 0707	0. 072856	701. 81	1. 3531	1. 1632
,	2.2			9.2867	1.4126	0. 096122	766. 79	1.4784	1.2159
	2. 5			13.966	2.1244	0. 14456	875. 01	1.6870	1.2989
	3. 0			26. 478	4.0276	0.27406	1082.5	2.0871	1.4447
	3. 2			33. 593	5. 1098	0.34770	1174.5	2.2644	1.5048
	3. 5			46.820	7. 1218	0.48461	1321.3	2.5474	1,5961
	4.0			75. 325	11.458	0.77965	1588.4	3. 0624	1.7505

$M_{\rm p}$	Flight mach number	Subscrip	ts
Р	Total pressure, psia	0	Ambient conditions
T	Total temperature, ^O R	2	Compressor inlet after ram recovery
δ_2	P ₂ /14. 696	Source:	Flight Propulsion Division
δ_2	$T_2/518.67$		General Electric Company

TABLE 6

RAM PRESSURE RATIOS (FOR 100% RAM EFFICIENCY) AND TOTAL TEMPERATURE AT NACA STANDARD ALTITUDES.

V = True Air Speed (ft per sec)

p. = Static Pressure

p₁ = Impact Pressure

k = 1.4

 $T_{\tau} = Impact Temperature (°R)$

R = 53.5

 $T_{\circ} = Static Temperature (^{\circ}R)$

$$\left(\frac{p_1}{p_s}\right)^{\frac{k-1}{k}} - 1 = \left(\frac{k-1}{kRT_s}\right)^{\frac{V^2}{2g}}$$

*Standard Atmosphere in lb sq in.

$$T_t = T_s + \left(\frac{k-1}{kR}\right) \frac{V^2}{2g}$$

True Knots	Air Speed Ft Sec	14.696*	12.227*	10.105*	8.292*	6.751*	5.451*	4.362*-	3.455*	3.401*
0	·	= 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	\mathbf{T}_{t}	= 518.4	500.6	482.7	464.9	447.1	429.2	411.4	393.6	392.4
50	84.1	1.0037	1.00416	1.00435	1.0045	1.0047	1.00483	1.00497	1.0053	1.0053
		518.9	501.1	483.4	465.6	447.6	429.9	411.9	394.1	392.9
100	169.3	1.0161	1.01671	1.01735	1.0180	1.0187	1.0195	1.0204	1.0213	1.0214
		520.8	503.0	485.1	467.3	449.5	431.6	413.8	396.0	394.8
150	253.3	1.03565	1.03769	1,03929	1.04085	1.0423	1.04427	1.04621	1.04835	1.0485
		523.7	505.9	488.1	470.2	452.4	434.6	416.7	398.9	397.7
200	337.4	1.0657	1.0680	1.0706	1.0754	1.0764	1.07964	1.0833	1.0871	1.0874
		527.9	510.0	492.2	474.4	456.5	438.8	420.9	403.	401.9
250	422.6	1.1039	1.1077	1.1119	1.1164	1.1213	1.12649	1,1322	1,1384	1.13874
200	,	533.3	515.4	497.6	479.8	462.0	444.1	426.3	408.5	407.3
300	506.7	1,1519	1.1577	1.16405	1.1705	1.1778	1.1855	1.1940	1.2032	1.2040
500	000.7	539.8	521.9	504.0	486.3	468.5	450.7	432.8	415.0	413.8
350	590.8	1.2109	1.2188	1.2278	1.2371	1.2470	1.2582	1,2701	1.2839	1.2841
550	270.0	547.4	529.6	511.9	493.9	476.1	458.4	440.4	422.6	421.4
400	676.0	1.282	1.2941	1.30399	1.3169	1.3308	1.3459	1.3640	1.3810	1.3815
100	070.0	556.3	538.5	520.8	503.0	485.0	467.3	449.5	431.5	430.3
450	760.0	1.3640	1.3789	1.3948	1.4119	1.4301	1.4505	1,4726	1.4975	1,4995
450	700.0	566.4	548.6	530.8	512.9	495.1	477.3	459.5	441.6	440.4
500	844.1	1.4621	1,4810	1.5013	1.5233	1.5475	1.5739	1.6034	1.6358	1.6372
500	01112	577.7	560.0	542.1	524.2	506.4	488.6	470.8	452.9	451.7
550	929.3	1.5759	1.5995	1.6259	1.6504	1.6842	1.7190	1.7578	1.8040	1.7950
330	929.0	590.1	572.3	554.6	536.6	518.9	501.1	483.3	465.3	464.1
600	1013.4	1.7052	1.7359	1.7696	1.8065	1.8450	1.8890	1.9360	1.9905	1.9950
000	1013.4	603.8	586.0	568.2	550.4	532.5	514.7	496.8	479.0	477.8
650	1097.4	1.8585	1.8959	1.9371	1.9825	2.0190	2.0850	2.1478	2.2150	2.2198
030	1097.4	618.7	600.9	583.1	565.2	547.4	529.6	511.7	493.9	492.7
700	1181.5	2.0320	2,0780	2.1305	2.195	2.2479	2.3160	2.3937	2.4751	2.4830
700	1101.3	634.7	616.9	599.0	581.2	563.4	545.5	527.7	509.9	508.7
750	10667		2.2900	2.3301	2.4226	2.4975	2.5849	2.6765	2.7810	2.7900
750	1266.7	2.2312 652.0	634.0	616.2	598.4	580.7	562.8	544.9	527.2	525.9
000	1251.0			2 6005	2.6025	2.7883	2.8900	3.0050	3.1720	3.3150
800	1351.9	$\frac{2.455}{670.3}$	2.5280 653.8	2.6085 634.7	2 6925 616.8	599.0	581.2	563.4	545.5	543.9
A 14*4		Sea Level	5,000	10,000	15,000	20,000	25,000	30,000	35,000	35,332
Altiti	nae	bea revei	5,000	10,000	15,000	40,000	20,000	20,000	22,000	,

TABLE 7 DENSITY OF AIR

	50	3420 3215 3070 3000 2935 22815 2756 2760 2600 2550 2550 2550 2215 2215 2215 2215 22	.1125 .0995 .0925 .0865 .0815 .0770 .0725 .0690
R=53.3 gas constant of air T=Absolute temp. °R	45	3080 22890 22760 22642 22540 22540 22430 22385 22340 22385 22360 22165 2210 22165 2210 22165 2210 22165 2210 22165 2210 22165	.1012 .0895 .0833 .0779 .0724 .0693 .0652
	40	2736 2456 2456 22408 23348 23308 2252 22120 22120 22000 2000 21924 11924 11772 11524 11772 1188 11336 1124 1124 1124 1126 1126 1127 1127 1128 1128 1128 1128 1128 1128	.0900 .0796 .0740 .0692 .0652 .0616 .0580
	35	2392 2250 2145 2100 2055 2012 3012 3012 3012 3012 3012 3012 3012	0696 0647 .0605 .0570 .0570 .0539 .0507 .0483
	30	.2052 .1929 .1832 .1860 .1761 .1763 .1683 .1683 .1683 .1680 .1590 .1500 .1500 .1500 .1500 .1500 .1646	.0675 .0597 .0555 .0519 .0489 .0462 .0435
	25	.1710 .1532 .1532 .1533 .1468 .1438 .1356 .1356 .1356 .1356 .1256	.0562 .0498 .0463 .0433 .0407 .0387 .0363 .0363
	20	.1368 .1286 .1228 .1200 .1170 .1170 .1100 .1000 .1000 .1000 .0082 .0084 .0086 .0086 .0076 .0076 .0076 .0050 .0050	.0450 .0398 .0370 .0346 .0326 .0308 .0290
	14.7	.1005 .0945 .0963 .0882 .0883 .0884 .0887 .0810 .0779 .0779 .0750 .0750 .0750 .0761	.0330 .0292 .0272 .0254 .0239 .0226 .0213 .0203
	13	.0888 .0835 .0798 .0778 .0747 .0747 .0702 .0702 .0663 .0650 .0650 .0650 .0650 .0650 .0638 .0648	.0292 .0259 .0241 .0225 .0212 .0200 .0188
ŘË	12	.0820 .0771 .0736 .0720 .0705 .0690 .0662 .0637 .0637 .0632 .0577 .0589 .0492 .0492 .0492 .0492 .0492 .0492 .0492 .0492 .0492 .0493	.0270 .0239 .0222 .0208 .0196 .0185 .0173
	111	.0752 .0675 .0675 .0665 .0665 .0633 .0623 .0626 .0572 .0572 .0573 .0773	.0248 .0219 .0204 .0191 .0179 .0169 .0160
ρ=lbs/ft³ P=psia	10	.0684 .0614 .0614 .0600 .0587 .0553 .0551 .0550 .0520 .0520 .0533 .0493 .0314 .0314 .0333	.0225 .0199 .0185 .0173 .0163 .0154 .0138
$\rho = 1$ $P = 1$	6	.0512 .0576 .0576 .0549 .0549 .0522 .0513 .0504 .0456 .0457 .0458 .0459 .0353 .0396 .0396 .0396 .0396 .0396 .0396 .0396	.0202 .0179 .0167 .0156 .0147 .0138 .0138
	&	.0544 .0512 .0488 .0488 .0486 .0446 .0440 .0432 .0408 .0408 .0408 .0322 .0328 .0328 .0328 .0328 .0328 .0328 .0328	.0180 .0159 .0148 .0138 .0130 .0123 .0116
	7	0476 0448 04427 0420 0392 0392 0385 0371 0357 0350 0357 0350 0357 0350 0357 0350 0357 0350 0357 0350 0357	.0158 .0139 .0129 .0121 .0114 .0108 .0101 .0097
$\rho = \frac{144 \text{ P}}{\text{RT}}$	9	.0498 .0384 .0366 .0348 .0348 .0348 .0336 .0336 .0338 .0318 .0318 .0294 .0288 .0208	.0135 .0119 .0111 .0104 .0098 .0092 .0087 .0083
	ις	.0342 .0322 .0307 .0300 .0284 .0288 .0282 .0270 .0260 .0250 .0251 .0271 .0270 .0250 .0250 .0251 .0271 .0071	.0113 .0099 .0093 .0086 .0082 .0077 .0073
	4		.0090 .0079 .0074 .0069 .0065 .0062 .0058
	ω		.0066 .0060 .0057 .0052 .0052 .0049 .0046
	7		.0044 .0040 .0040 .0038 .0034 .0030 .0030 .0028
	_		.0022 .0020 .0020 .0019 .0016 .0015 .0015
	psia R		1260 1360 1460 1560 1660 1760 1760 1960
	Į.	-6.58 -1.00	800 900 1000 1100 1200 1300 1400 1500

Fig. 9 – Airspeed, Mach number, and altitude chart

References

- 1. Keenan, J. H., and Kaye, J., Gas Tables, J. Wiley, New York, 1948.
- 2. Bureau of Ships Research Memorandum, 6 44, December, 1944.
- 3. Keenan, J. H., and Kaye, J., <u>Thermodynamic Properties of Air</u>, Wiley and Sons, New York, 1945.
- 4. Hirschfelder, J. O., and Curtiss, C. F., Report CM-518, 1948.
- 5. The Reactor Handbook, AECD 3646, p. 383-4, 1955.
- 6. Hall, N. A., and Ibele, W. E., Transactions, ASME, 76, p. 1039, 1954.
- 7. Hougen, O. A., and Watson, K. M., <u>Chemical Process Principles</u>, Vol. II, Wiley and Sons.
- 8. "Reaction Kinetics and Transfer Process," Chemical Engineer Progress Symposium Series No. 4.
- 9. Wooley, H. W., "Effect of Dissociation on Thermodynamic Properties of Pure Diatomic Gases," NACA Report TN3270, 1955.
- 10. "Tables of Thermal Properties of Gases," Circular 564, National Bureau of Standards, November, 1955.
- 11. Stops, D. W., "Effect of Temperature Upon the Thermal Conductivity of Gases," Nature, Vol. 164, pp. 966-7, 1949.
- 12. Landsbaum, E. M., et al, Industrial Engineering Chemistry, Vol. 47, p. 102, 1955.
- 13. "Manual of the ICAO Standard Atmosphere," Calculations by the NACA, NACA Report TN 3182, May, 1954.
- 14. "Standard Atmosphere Tables and Data," NACA Report 218, 1925.