Text Retrieval and Search Engines

Recommender Systems: Content-Based Filtering - Part 1 - 2

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Recommender Systems

Two Modes of Text Access: Pull vs. Push

- Pull Mode (search engines)
 - Users take initiative
 - Ad hoc information need
- Push Mode (recommender systems)
 - Systems take initiative
 - Stable information need or system has good knowledge about a user's need

Recommender ≈ **Filtering System**

- Stable & long term interest, dynamic info source
- System must make a delivery decision immediately as a document "arrives"

Basic Filtering Question: Will User *U* Like Item *X*?

- Two different ways of answering it
 - Look at what items U likes, and then check if X is similar

ltem similarity => content-based filtering

Look at who likes X, and then check if U is similar

User similarity => collaborative filtering

Can be combined

A Typical Content-Based Filtering System

Linear Utility = 3* #good - 2 *#bad

#good (#bad): number of good (bad) documents delivered to user Are the coefficients (3, -2) reasonable? What about (10, -1) or (1, -10)?

Three Basic Problems in Content-Based Filtering

- Making filtering decision (Binary classifier)
 - Doc text, profile text \rightarrow yes/no
- Initialization
 - Initialize the filter based on only the profile text or very few examples
- Learning from
 - Limited relevance judgments (only on "yes" docs)
 - Accumulated documents
- All trying to maximize the utility

Extend a Retrieval System for Information Filtering

"Reuse" retrieval techniques to score documents

Use a score threshold for filtering decision

Learn to improve scoring with traditional feedback

New approaches to threshold setting and learning

A General Vector-Space Approach

Difficulties in Threshold Learning

Empirical Utility Optimization

- Basic idea
 - Compute the utility on the training data for each candidate score threshold
 - Choose the threshold that gives the maximum utility on the training data set
- Difficulty: Biased training sample!
 - We can only get an upper bound for the true optimal threshold
 - Could a discarded item be possibly interesting to the user?
- Solution:
 - Heuristic adjustment (lowering) of threshold

Beta-Gamma Threshold Learning

Beta-Gamma Threshold Learning (cont.)

Pros

- Explicitly addresses exploration-exploitation tradeoff ("Safe" exploration)
- Arbitrary utility (with appropriate lower bound)
- Empirically effective

Cons

- Purely heuristic
- Zero utility lower bound often too conservative

Summary

- Two strategies for recommendation/filtering
 - Content-based (item similarity)
 - Collaborative filtering (user similarity)
- Content-based recommender system can be built based on a search engine system by
 - Adding threshold mechanism
 - Adding adaptive learning algorithms