# **Gameboy Printer Format**

Information gathered by *Martin Eyre Email: Martin.Eyre@crispgroup.co.uk* special thanks to all who contributed especially *ClapOn/ClapOff*.

Last Updated: 24-August-1998

#### Reading data from the GBCamera

The following document contains information on how to make your PC emulate the Gameboy printer thus allowing you to download gameboy camera pictures, it also details the gameboy printer format.

The information has been gained by trial and error and even though I've successfully managed to download data I don't guarantee all the information is correct.

#### A Gameboy connector cable (Gameboy to Parrallel port)

I constructed a cable a bit like the one used with GBBasic except I joined the **clk** to pin 11 instead of pin 2, this allows the PC to read the **CLK** using interrupts on IRQ 7.

Note: When constructing a cable I noticed the colours of wires differed to what was outlined in a diagram describing the GBBasic cable.



#### **Reading the Data**

Data is sent from the GBCamera down the serial port one bit at a time, we know when a bit has arrived because the CLK goes low causing a interrupt to fire, we then read the data from pin 12.

The GBCamera starts by sending a *Print Initialise* ~ *Command 1* (see below) on byte 9 the Gameboy will expect a message back in *Message Data* ~ *footer* (see below) in this case the message is 129.

### Do I need to send any other messages back to GBCamera?

I've successfully read all the data by only sending the 1 message as above, but I know that the GBPrinter sends back many other messages within the footer see *Message Data ~ footer* below for more information.

### **Software**

I've written a utility to emulate the GBPrinter and store the downloaded pictures, I'm upgrading the software all the time and at the moment is only half finished.

1

It currently only works under DOS.

All printer commands start with \$88 \$33 then the 3<sup>rd</sup> byte is the command type.

# Print Initialise ~ Command 1

This is the first data that needs to be sent to initialise the printer so it knows that data is about to arrive.

**HEADER** 

Length 6 bytes

| Byte | Hex | Bin      | Dec | Description    |
|------|-----|----------|-----|----------------|
| 00   | 88  | 10001000 | 136 |                |
| 01   | 33  | 00110011 | 51  |                |
| 02   | 01  | 00000001 | 1   | Command Type 1 |
| 03   | 00  | 00000000 | 0   |                |
| 04   | 00  | 00000000 | 0   |                |
| 05   | 00  | 00000000 | 0   |                |

**FOOTER** 

Length 4 bytes

CRC = 1 + 0 + 0 + 0

| Byte | Hex | Bin      | Dec | Description         |
|------|-----|----------|-----|---------------------|
| 00   | 01  | 00000001 | 1   | CRC Low Byte        |
| 01   | 00  | 00000000 | 0   | CRC High Byte       |
| 02   | 00  | 00000000 | 0   | Message data byte 0 |
| 03   | 00  | 00000000 | 0   | Message data byte 1 |

# Start Printing ~ Command 2

After the first data pack has been sent send this data to tell the printer to start printing.

**HEADER** 

Length 10 bytes

| Byte | Hex | Bin      | Dec | Description               |  |  |
|------|-----|----------|-----|---------------------------|--|--|
| 00   | 88  | 10001000 | 136 |                           |  |  |
| 01   | 33  | 00110011 | 51  |                           |  |  |
| 02   | 02  | 00000010 | 2   | Command Type 2            |  |  |
| 03   | 00  | 00000000 | 0   |                           |  |  |
| 04   | 04  | 00000100 | 4   |                           |  |  |
| 05   | 00  | 00000000 | 0   |                           |  |  |
| 06   | 01  | 00000001 | 1   |                           |  |  |
| 07   | 13  | 00010011 | 19  | Margins (see below)       |  |  |
| 08   | e4  | 11100100 | 228 | Colour Palette to use     |  |  |
| 09   | 40  | 01000000 | 64  | Exposure (bit 7 not used) |  |  |

**FOOTER** 

Length 4 bytes

CRC = 2 + 0 + 4 + 0 + 1 + 19 + 228 + 64 = 318 (100111110 bin)

| Byte | Hex | Bin      | Dec | Description         |
|------|-----|----------|-----|---------------------|
| 00   | 3e  | 00111110 | 62  | CRC Low Byte        |
| 01   | 01  | 00000001 | 1   | CRC High Byte       |
| 02   | 00  | 00000000 | 0   | Message data byte 0 |
| 03   | 00  | 00000000 | 0   | Message data byte 1 |

### Margins (Byte 07)

There are before picture and after picture margins arranged as follows:-



|    |    | $\checkmark$     |    |         |  |
|----|----|------------------|----|---------|--|
| 07 | 13 | <b>0001</b> 0011 | 19 | Margins |  |
|    |    | $\uparrow$       | •  |         |  |

2 06/03/2024

——— After Margin

## Data Pack ~ Command 4

This is how the data is sent in 2 rows of 20 columns

HEADER Length 6 bytes

| Byte | Hex | Bin      | Dec | Description           |
|------|-----|----------|-----|-----------------------|
| 00   | 88  | 10001000 | 136 |                       |
| 01   | 33  | 00110011 | 51  |                       |
| 02   | 04  | 00000100 | 4   | Command Type 4        |
| 03   | 00  | 00000000 | 0   |                       |
| 04   | 80  | 10000000 | 128 | Data Length Low Byte  |
| 05   | 02  | 00000010 | 2   | Data Length High Byte |

DATA Length 640 bytes

640 bytes of data = 16 bytes tile \* 20 columns\* 2 Rows

| Byte | Hex | Bin     | Dec | Description       |
|------|-----|---------|-----|-------------------|
| 00   | ??  | ??????? | ?   | 640 bytes of data |
|      |     |         |     |                   |
| 639  | ??  | ??????? | ?   |                   |

FOOTER Length 4 bytes

CRC = 4 + 0 + 128 + 2 + value of each data byte

| Byte | Hex | Bin      | Dec | Description         |
|------|-----|----------|-----|---------------------|
| 00   | ??  | ???????  | ?   | CRC Low Byte        |
| 01   | ??  | ???????  | ?   | CRC High Byte       |
| 02   | 00  | 00000000 | 0   | Message data byte 0 |
| 03   | 00  | 00000000 | 0   | Message data byte 1 |

## Status ~ Command 15

This is sent to the printer so status can be read.

HEADER Length 6 bytes

| Byte | Hex | Bin      | Dec | Description     |
|------|-----|----------|-----|-----------------|
| 00   | 88  | 10001000 | 136 |                 |
| 01   | 33  | 00110011 | 51  |                 |
| 02   | 0F  | 00001111 | 15  | Command Type 15 |
| 03   | 00  | 00000000 | 0   |                 |
| 04   | 00  | 00000000 | 0   |                 |
| 05   | 00  | 00000000 | 0   |                 |

FOOTER Length 4 bytes

CRC = 15 + 0 + 0 + 0 = 15 (00001111 bin)

| Byte | Hex | Bin      | Dec | Description         |
|------|-----|----------|-----|---------------------|
| 00   | 0F  | 00001111 | 15  | CRC Low Byte        |
| 01   | 00  | 00000000 | 0   | CRC High Byte       |
| 02   | 00  | 00000000 | 0   | Message data byte 0 |
| 03   | 00  | 00000000 | 0   | Message data byte 1 |

3 06/03/2024

# Message Data ~ footer

The printer returns messages when the gameboy is transmitting the last 2 bytes of the footer. So reading 2 bytes of data at this point will have the following format:-

First Byte will always be one of the following

| Byte | Hex | Bin      | Dec | Description |
|------|-----|----------|-----|-------------|
| 02   | 80  | 10000000 | 128 |             |
| 02   | 81  | 10000001 | 129 |             |

Second byte is the printer status code described by the bits

| Bit | Bin      | Description                   |  |  |  |  |  |
|-----|----------|-------------------------------|--|--|--|--|--|
| 0   | 00000001 | unknown                       |  |  |  |  |  |
| 1   | 00000010 | Print in progress (when set)  |  |  |  |  |  |
| 2   | 00000100 | unknown                       |  |  |  |  |  |
| 3   | 00001000 | unknown                       |  |  |  |  |  |
| 4   | 00010000 | unknown                       |  |  |  |  |  |
| 5   | 00100000 | Error #3 Paper Jam (when set) |  |  |  |  |  |
| 6   | 01000000 | Error #4 Too Hot/Cold         |  |  |  |  |  |
| 7   | 10000000 | Error #1 Low Batteries        |  |  |  |  |  |