1. [7 pts] The Bernstein polynomials of degree n is given by

$$B_n f(t) = \sum_{j=0}^{n} f(j/n) B_j^n(t), \quad t \in [0, 1],$$

where

$$B_j^n(t) = \binom{n}{j} t^j (1-t)^{n-j}, \quad j = 0, \dots, n.$$

(a) Show that $B_0^n(0) = 1$ and for j = 1, 2, ..., n,

$$\frac{d^r}{dt^r} B_j^n(t)|_{t=0} = 0, \quad r = 0, 1, \dots, j-1,$$

$$\frac{d^j}{dt^j} B_j^n(t)|_{t=0} \neq 0.$$

use symmetry

- (b) What are the analogous properties at t = 1 and how are they most easily derived?
- \bigoplus Plot the fourth-degree polynomials $B_j^4(t), j = 0, 1, \ldots, 4$ on interval $0 \le t \le 1$.
- (d) Use (a) to show that the $\{B_j^n(t)\}$ is linearly independent on [0,1] and spans the space Π_n . proving independence suffices; as for independence, prove by definition.

2. [7 pts] Define $\sigma:[0,1]\to[a,b]$ by $\sigma(t)=a+t(b-a)$ for $0\leq t\leq 1$, and define a definition check~ transformation $T_\sigma:\mathcal{C}[a,b]\to\mathcal{C}[0,1]$ by $(T_\sigma f)(t)=f(\sigma(t))$. Prove that T_σ satisfies:

- (a) $T_{\sigma}(f+g) = T_{\sigma}(f) + T_{\sigma}(g)$ and $T_{\sigma}(cf) = cT_{\sigma}(f)$ for $c \in \mathbb{R}$.
- (b) $T_{\sigma}(fg) = T_{\sigma}(f)T_{\sigma}(g)$. In particular, T_{σ} maps polynomials to polynomials.
- (c) $T_{\sigma}(f) \leq T_{\sigma}(g)$ if and only if $f \leq g$.
- (d) $||T_{\sigma}(f)||_{\infty} = ||f||_{\infty}$.
- (e) T_{σ} is both one-to-one and onto. Moreover $(T_{\sigma})^{-1} = T_{\sigma^{-1}}$.
- (f) Now use the above properties appropriately to show that if the Weierstrass theorem holds for C[0,1], then it is also holds for C[a,b]. For your information, the converse is also true and the proof is identical so you don't need to show the converse.
- 3. [7 pts] Modulus of Continuity:
 - (a) Let $f: [-1,1] \to \mathbb{R}$. If $x = \cos\theta$, where $-1 \le x \le 1$ and if $g(\theta) = f(\cos\theta)$, show that $\omega_g([-\pi, \pi]; \delta) = \omega_g([0, \pi]; \delta) \le \omega_f([-1, 1]; \delta)$, where

$$\underline{\omega_f([a,b];\delta)} = \max_{x,y \in [a,b], |x-y| \le \delta} |f(x) - f(y)|, \quad \delta > 0.$$

- (b) If h(x) = f(ax + b) for $c \le x \le d$, show that $\omega_h([c, d]; \delta) = \omega_f([ac + b, ad + b]; a\delta)$.
- 4. [7 pts] Let $f \in \mathcal{C}[a, b]$ and $p \in \Pi_n$. If there exist at least n + 2 points for which f p alternates between $\pm ||f p||_{\infty}$, prove that p is indeed the best approximator of $f \in \Pi_n$
- 5. [7 pts] Let $\{x_i\}_{i=0,\dots,n}$ be the Chebyshev nodes on [-1,1]. Let f satisfies the Dinicondition,

$$|log\delta|\omega(\delta) \to 0$$
, as $\delta \to 0$,

where ω denotes the modulus of continuity of f on [-1,1]. Prove that the interpolating polynomial p_n of degree $\leq n$ converges to f uniformly in [-1,1] as $n \to \infty$. This shows that the Chebyshev nodes work for functions slightly better than continuous and are almost the perfect choice for "most" functions.

6. [7 pts] Let $f \in C^1[-1,1]$ and $\underline{E_n(f)} = \min_{p \in \Pi_n} ||f-p||_{\infty}$ be the error of best approximation in $L^{\infty}[-1,1]$. Proceed as follows to prove the generalization of Jackson Theorem,

$$E_n(f) \le \frac{6}{n} E_{n-1}(f').$$

- (a) Show that $E_n(f) = E_n(f-p)$ for all $p \in \Pi_n$.
- (b) If $p_{n-1}^* \in \Pi_{n-1}$ is the best approximation of f' within Π_{n-1} , set $p_n(x) = \int_0^x p_{n-1}^*(t)dt \in \Pi_n$ and use (a).
- 7. [8 pts] Given $f \in [a, b]$ and a partition $a = x_0 < \cdots < x_n = b$, consider the continuous piecewise linear approximation $P_n f(x)$ of f in the sense of least squares with weight w(x) = 1. A basis for the space of continuous piecewise linear functions \mathcal{L}^n is the set of hat functions $\phi_i \in \mathcal{L}^n$ defined by $\phi_i(x_j) = 1$ if i = j and 0 otherwise.
 - (a) Determine the normal equations. Prove that the system is tridiagonal and diagonally dominant.
 - (b) Prove that $||P_n f||_{\infty} \leq 3||f||_{\infty}$. Hint: argue as with the matrix for splines.
 - (c) Let h be the mesh size. Conclude from (b) that

$$||f - P_n f||_{\infty} \le 4 \inf_{q \in \mathcal{L}^n} ||f - q||_{\infty} \le \frac{h^2}{2} ||f''||_{\infty}.$$