CP decomposition with rotation and decomposed vector

Geonwoo Ban

Pusan National University Department of Statistics

2022 2/24

List

CP decomposition

- ullet Calculate the distance using the decomposed vector o **Check**
- ullet Find rotation effect in CP decomposition o **Check**

CP decomposition

$$x_{ijk} \approx \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr}$$

Data

- Left side
- Two brands; Nike, Adidas
- Four sample; A(Nike), B(Nike), C(Adidas), D(Adidas)
- Two images for one sample; A1, A2, B1, ..., D1, D2
- Rank 1 CP-decomposition

Nike

Nike rank 1

Adidas

Adidas rank 1

Decomposed vector

Euclidean distance

$$d(a_j, b_j) = \sqrt{\sum_{i=1}^n (a_{j_i} - b_{j_i})^2}$$

- a, b: one part of decomposed vectors in image a and b
- n: the length of the vector(the size of the row/column/3rd-axis)
- *j*: the number of image axes

Total weight

$$TW(image_a, image_b) = \sum_{j=1}^{3} d(a_j, b_j)$$

Decomposed vector

Result table

	$mean(d_1)$	$mean(d_2)$	$mean(d_3)$	mean(TW)
Matching	0.0669	0.0395	0	0.1064
Non-matching (same brand)	0.0793	0.0544	0	0.1189
Non-matching (different brand)	0.0668	0.0468	0	0.1135

- height-axis(d_1): weird result
 - alignment problem
- width-axis(d_2): ideal result
 - coincidence case
- color-axis(d_3): all the same elements
 - low dimension(just 3-dim)

Rotation effect

Check list

- Is there a rotation effect in CP-decomposition?
- 45 degree rotation
- Without alignment
- Rank: 1, 2, 3, 5 and 10

Summaries

Decomposed vector

- Alignment problem
 - simple alignment using large scale points
- Resize image to lower dimension
 - rebuild CP-decomposition
- Check the difference of outer products
 - after alignment

Rotation effect

- CP-decomposition is sensitive to rotation
- ullet Vertical or horizontal info o good
- ullet Diagonal info o bad