Big Problems for Small Networks: Small Network Statistics¹

George G. Vega Yon, MS Kayla de la Haye, PhD

North American Social Networks Conference, 2018 November 29, 2018

¹Contact: vegayon@usc.edu. We thank members of our MURI research team, USC's Center for Applied Network Analysis, and Andrew Slaughter for their comments.

Funding Acknowledgement

This material is based upon work support by, or in part by, the U.S. Army Research Laboratory and the U.S. Army Research Office under grant number W911NF-15-1-0577

Computation for the work described in this paper was supported by the University of Southern California's Center for High-Performance Computing (hpc.usc.edu).

- ▶ 42 mixed gender groups of 3 to 5 participants (unknown)
- ▶ Eligibility: (1) 18+ years, (2) Native English speaker

- ▶ 42 mixed gender groups of 3 to 5 participants (unknown)
- ▶ Eligibility: (1) 18+ years, (2) Native English speaker
- 2 hour group session

- ▶ 42 mixed gender groups of 3 to 5 participants (unknown)
- ▶ Eligibility: (1) 18+ years, (2) Native English speaker
- 2 hour group session
 - ► Group tasks (2 sets of tasks x 30 minutes each)
 - ► Measure group social networks and individual social intelligence (SI)

Recruited

- ▶ 42 mixed gender groups of 3 to 5 participants (unknown)
- ▶ Eligibility: (1) 18+ years, (2) Native English speaker
- 2 hour group session
 - ► Group tasks (2 sets of tasks x 30 minutes each)
 - ▶ Measure group social networks and individual social intelligence (SI)

Study motivation

Recruited

- ▶ 42 mixed gender groups of 3 to 5 participants (unknown)
- ▶ Eligibility: (1) 18+ years, (2) Native English speaker

2 hour group session

- ► Group tasks (2 sets of tasks x 30 minutes each)
- ► Measure group social networks and individual social intelligence (SI)

Study motivation

- ▶ Overall, a very limited set of SI domains have been tested as predictors of social networks
- ▶ Very little research on the emergence of networks in teams.

Context (cont'd)

Context (cont'd)

How can we go beyond descriptive statistics?

When trying to estimate ERGMs in little networks

When trying to estimate ERGMs in little networks

► MCMC fails to converge when trying to estimate a block diagonal (structural zeros) model,

When trying to estimate ERGMs in little networks

- ▶ MCMC fails to converge when trying to estimate a block diagonal (structural zeros) model,
- ▶ Same happens when trying to estimate an ERGM for a single (little) graph,

When trying to estimate ERGMs in little networks

- ► MCMC fails to converge when trying to estimate a block diagonal (structural zeros) model,
- ▶ Same happens when trying to estimate an ERGM for a single (little) graph,
- ▶ Even if it converges, the Asymptotic properties of MLEs are no longer valid since the sample size is not large enough.

▶ 1st Step: Forget about MCMC-MLE estimation, take advantage of small sample and use exact statistic for MLEs:

$$\Pr\left(\mathbf{Y} = \mathbf{y} | \theta, \mathcal{Y}\right) = \frac{\exp \theta^{\mathsf{T}} \mathbf{g}(\mathbf{y})}{\kappa \left(\theta, \mathcal{Y}\right)}, \quad \mathbf{y} \in \mathcal{Y}$$

▶ This solves the problem of been able to estimate a small ergm.

$$\Pr\left(\mathbf{Y} = \mathbf{y} | \theta, \mathcal{Y}\right) = \frac{\exp \theta^{\mathsf{T}} \mathbf{g}(\mathbf{y})}{\kappa \left(\theta, \mathcal{Y}\right)}, \quad \mathbf{y} \in \mathcal{Y}$$

- ▶ This solves the problem of been able to estimate a small ergm.
- ► For this we started working on the lergm R package (available at https://github.com/USCCANA/lergm):

$$\Pr\left(\mathbf{Y} = \mathbf{y} | \theta, \mathcal{Y}\right) = \frac{\exp \theta^{\mathsf{T}} \mathbf{g}(\mathbf{y})}{\kappa \left(\theta, \mathcal{Y}\right)}, \quad \mathbf{y} \in \mathcal{Y}$$

- ▶ This solves the problem of been able to estimate a small ergm.
- ► For this we started working on the lergm R package (available at https://github.com/USCCANA/lergm):
 - Not from scratch: uses some functions from statnet's ergm, in particular ergm-terms.

$$\Pr\left(\mathbf{Y} = \mathbf{y} | \theta, \mathcal{Y}\right) = \frac{\exp \theta^{\mathsf{T}} \mathbf{g}(\mathbf{y})}{\kappa \left(\theta, \mathcal{Y}\right)}, \quad \mathbf{y} \in \mathcal{Y}$$

- ▶ This solves the problem of been able to estimate a small ergm.
- ► For this we started working on the lergm R package (available at https://github.com/USCCANA/lergm):
 - Not from scratch: uses some functions from statnet's ergm, in particular ergm-terms.
 - ▶ High performing (up to some point): Some components written in C++

$$\Pr\left(\mathbf{Y} = \mathbf{y} | \theta, \mathcal{Y}\right) = \frac{\exp \theta^{\mathsf{T}} \mathbf{g}(\mathbf{y})}{\kappa \left(\theta, \mathcal{Y}\right)}, \quad \mathbf{y} \in \mathcal{Y}$$

- ▶ This solves the problem of been able to estimate a small ergm.
- ► For this we started working on the lergm R package (available at https://github.com/USCCANA/lergm):
 - ► Not from scratch: uses some functions from statnet's ergm, in particular ergm-terms.
 - ▶ High performing (up to some point): Some components written in C++
 - ▶ Very early stage of development...

$$\Pr\left(\mathbf{Y} = \mathbf{y} | \theta, \mathcal{Y}\right) = \frac{\exp \theta^{\mathsf{T}} \mathbf{g}(\mathbf{y})}{\kappa \left(\theta, \mathcal{Y}\right)}, \quad \mathbf{y} \in \mathcal{Y}$$

- ▶ This solves the problem of been able to estimate a small ergm.
- ► For this we started working on the lergm R package (available at https://github.com/USCCANA/lergm):
 - ▶ Not from scratch: uses some functions from statnet's ergm, in particular ergm-terms.
 - ▶ High performing (up to some point): Some components written in C++
 - ▶ Very early stage of development...we'll see if it is worth keep working on it!

Example 1

Let's start by trying to estimate an ERGM for a single graph of size 4

```
library(lergm)
set.seed(12)
x <- sna::rgraph(4)
lergm(x ~ edges + balance + mutual)

##
## Little ERGM estimates
##
## Coefficients:
## edges balance mutual
## -1.9443 -0.2417 3.4961</pre>
```

	ol, we are gms), but.	stimate	ERGMs	for little	networks!	(we act	ually cal	l them
	,,							

\blacktriangleright	Cool, we are able to estimate ERGMs for little networks! (we actually call them	
	lergms) but	

▶ We still have issues regarding asymptotics.

▶	Cool,	we are able	to estimate	ERGMs for	little networks!	(we actually call them
		` '				

lergms), but...

▶ We propose to solve this by using a pooled version of the ERGM

▶ We still have issues regarding asymptotics.

▶ When estimating a block diagonal ERGM we were essentially assuming independence across networks.

- ▶ When estimating a block diagonal ERGM we were essentially assuming independence across networks.
- ► This means that we can actually do the same with exact statistics approach to calculate a joint likelihood:

- ▶ When estimating a block diagonal ERGM we were essentially assuming independence across networks.
- ► This means that we can actually do the same with exact statistics approach to calculate a joint likelihood:

$$\Pr\left(\mathbf{Y} = \{\mathbf{y}_i\} | \boldsymbol{\theta}, \{\mathcal{Y}_i\}\right) = \prod_i \frac{\exp \boldsymbol{\theta}^\mathsf{T} \mathbf{g}(\mathbf{y}_i)}{\kappa_i\left(\boldsymbol{\theta}, \mathcal{Y}_i\right)}$$

- ▶ When estimating a block diagonal ERGM we were essentially assuming independence across networks.
- ► This means that we can actually do the same with exact statistics approach to calculate a joint likelihood:

$$\Pr\left(\mathbf{Y} = \{\mathbf{y}_i\} | \boldsymbol{\theta}, \{\mathcal{Y}_i\}\right) = \prod_i \frac{\exp \boldsymbol{\theta}^\mathsf{T} \mathbf{g}(\mathbf{y}_i)}{\kappa_i\left(\boldsymbol{\theta}, \mathcal{Y}_i\right)}$$

▶ By estimating a pooled version of the ERGM we can recover the asymptotics of MLEs.

- ▶ When estimating a block diagonal ERGM we were essentially assuming independence across networks.
- ► This means that we can actually do the same with exact statistics approach to calculate a joint likelihood:

$$\Pr\left(\mathbf{Y} = \{\mathbf{y}_i\} | \boldsymbol{\theta}, \{\mathcal{Y}_i\}\right) = \prod_i \frac{\exp \boldsymbol{\theta}^\mathsf{T} \mathbf{g}(\mathbf{y}_i)}{\kappa_i\left(\boldsymbol{\theta}, \mathcal{Y}_i\right)}$$

- ▶ By estimating a pooled version of the ERGM we can recover the asymptotics of MLEs.
- ▶ We implemented this in the lergm package

Example 2

Suppose that we have 3 little graphs of sizes 4, 5, and 5:

```
library(lergm)
set.seed(12)
x1 <- sna::rgraph(4)
x2 <- sna::rgraph(5)
x3 <- sna::rgraph(5)
lergm(list(x1, x2, x3) ~ edges + balance + mutual)
##
## Little ERGM estimates
##
    Coefficients:
##
##
     edges balance
                      mutual
## -0.3941 -0.2085
                      1.4156
```

Simulation study

Scenario A

- 1. Draw parameters for edges and mutual from a uniform(-3, 3).
- 2. Using those parameters, sampled $n \sim \mathsf{Poisson}(30)$ networks of size 4
- ${\bf 3.}\,$ Estimated the pooled ERGMs using both the MLE and the boostrap version.

Simulation study

Scenario A

- 1. Draw parameters for edges and mutual from a uniform(-3, 3).
- **2.** Using those parameters, sampled $n \sim \text{Poisson}(30)$ networks of size 4
- 3. Estimated the pooled ERGMs using both the MLE and the boostrap version.

Scenario B

- **1.** Idem.
- 2. Using those parameters, sampled $n_1 \sim {\sf Poisson}(15), n_2 \sim {\sf Poisson}(15)$ networks of size 3 and 4 respectively.
- **3.** Idem.

Simulation study

Scenario A

- 1. Draw parameters for edges and mutual from a uniform(-3, 3).
- 2. Using those parameters, sampled $n \sim \mathsf{Poisson}(30)$ networks of size 4
- ${\bf 3.}\,$ Estimated the pooled ERGMs using both the MLE and the boostrap version.

Scenario B

- 1. Idem.
- 2. Using those parameters, sampled $n_1 \sim {\sf Poisson}(15), n_2 \sim {\sf Poisson}(15)$ networks of size 3 and 4 respectively.
- **3.** Idem.
- (If anyone asks, I just ran about 3 billion ERGMs... :))

Simulation study: Scenario A

Empirical Bias

Simulation study: Scenario A

Power

Simulation study: Scenario B

Empirical Bias

Simulation study: Scenario B

Power

Other approaches

lacktriangle First set of results from the simulation study are encouraging

- ▶ First set of results from the simulation study are encouraging
- ▶ Need to conduct more simulations using nodal attributes and networks of size 5 (right now having problems when building the DGP).

- ▶ First set of results from the simulation study are encouraging
- ▶ Need to conduct more simulations using nodal attributes and networks of size 5 (right now having problems when building the DGP).
- ► Small structures imply a smaller pool of parameters (which is OK), but can be more useful when including nodal attributes.

- ▶ First set of results from the simulation study are encouraging
- ▶ Need to conduct more simulations using nodal attributes and networks of size 5 (right now having problems when building the DGP).
- ► Small structures imply a smaller pool of parameters (which is OK), but can be more useful when including nodal attributes.
- ▶ When estimating the pooled version, we are essentially hand-waving the fact that parameter estimates implicitly encode size of the graph, i.e.

Does a the estimate of edge = 0.1 has the same meaning for a network of size 3 to a size 5?

- ▶ First set of results from the simulation study are encouraging
- ▶ Need to conduct more simulations using nodal attributes and networks of size 5 (right now having problems when building the DGP).
- ► Small structures imply a smaller pool of parameters (which is OK), but can be more useful when including nodal attributes.
- ▶ When estimating the pooled version, we are essentially hand-waving the fact that parameter estimates implicitly encode size of the graph, i.e.

Does a the estimate of edge = 0.1 has the same meaning for a network of size 3 to a size 5?

► Finally, this work can be extended to other types of small networks, including: families, egonets, etc. And other methods, such as TERGMs.

Thank you!

Big Problems for Small Networks: Small Network Statistics²

George G. Vega Yon, MS Kayla de la Haye, PhD

North American Social Networks Conference, 2018 November 29, 2018

²Contact: vegayon@usc.edu. We thank members of our MURI research team, USC's Center for Applied Network Analysis, and Andrew Slaughter for their comments.

What have we got so far?

```
lergm(networks ~ mutual + edges + triangle + nodematch("male") +
    diff("Empathy") + nodematch("nonwhite"))
```

Table 1: Preliminary results with our small teams data. The table shows 95% confidence intervals for the parameter estimates using the pooled ERGM model.

	All	(42)	All but size 3 (35)		
	2.5 %	97.5 %	2.5 %	97.5 %	
mutual	-0.40	0.55	-0.45	0.55	
edges	-0.91	-0.16	-1.04	-0.29	
triangle	0.06	0.24	0.09	0.27	
nodematch("male")	-0.36	0.31	-0.34	0.36	
diff("Empathy")	0.12	0.59	0.09	0.58	
nodematch("nonwhite")	-0.26	0.37	-0.29	0.35	