To: Professor Yuce

Applied Mathematics

New York City College of Technology

From: Brian Holliday

Applied Mathematics

New York City College of Technology

Subject: Lab 21: One Way ANOVA

Figure:

Figure 1: GLM Procedure Smokers Data

Figure 2: Distribution of FEF

Figure 3: t-test LSD for FEF

Figure 4: GLE Procedure: Contrast and Parameter.

Date: 4/23/20

Summary:

The question that ANOVA is concerned with answering is whether there is a difference in the means of two populations. To do this ANOVA uses the F-statistic where:

F-statistics = Variation among sample means / Variation within groups

If the variation among the sample means is higher than the variation within groups, then the value of the F-statistic will be low. If the variation within groups is high, then the F-statistic will be low. If the F-statistic is high then we have strong evidence for the null hypothesis, which is means are equal. If the variation within groups is high, then then we probably will not reject the null hypothesis. We looked at data about smokers using ANOVA test in order to see if FEF or the forced mid-expiratory flow is different among six groups, nonsmokers, passive smokers, non-inhalers, light smokers, moderate smokers and heavy smokers.

When we ran the ANOVA test on different groups:

Source	DF	Sum of Squares		Mean	Square	F Value	Pr > F
Model	5	182.6239362		36.5	247872	56.82	<.0001
Error	1044	671.0601090		0.6427779			733,5733,5
Corrected Total	1049	853.6840452					

We could see from running the procedure that p-value for our model is <0.001, which is well below our 5 percent threshold. Since this is the case, we reject the null hypothesis. In this case the null hypothesis is there is not equality among the different groups. We strongly support that smoking influences FEF. We also have a linear model as part of our procedure, but our groups are not lined in way that would make the linear model feasible. Therefore, we have a low R^2 value.

Figure 2

We can see the distribution of FEF among the different categories. The boxplot does confirm our hypothesis from the models that the means are different. We can look at the mean of NS (Non-Smoker) and HS (Heavy Smoker) to see that there is a significant difference in the FEF between the two groups.

Figure 3

		en alle tot en Maria en la c	l Procedui				
		t lests (L	SD) for FE	:H			
ote: This test contro	ols the Typ	oe I comparison	wise error	rate, no	t the exper	imentwise	error
	Alp	ha		C	.05		
	Err	or Degrees of	Freedom	1	044		
	Err	or Mean Squar	re	0.642	778		
	Cri	tical Value of t		1.96	224		
Comp	arisons s	significant at th	ne 0.05 lev	el are i	ndicated b	y ***.	
1070	MT parison	Difference Between Means	95% Co	nfidenc	e Limits		
NS	- NI	0.45373	0.204	98	0.70247	***	
NS	-PS	0.50974	0.352	42	0.66706	***	
NS	- LS	0.56070	0.403	39	0.71802	***	
NS	- MS	0.96702	0.809	70	1.12433	***	
NS	- HS	1.24406	1.086	74	1.40138	***	
NI	- NS	-0.45373	-0.702	47	-0.20498	***	
NI	- PS	0.05601	-0.192	73	0.30476		
NI	- LS	0.10698	-0.141	77	0.35572		
NI	- MS	0.51329	0.264	55	0.76203	***	
NI	- HS	0.79033	0.541	59	1.03907	***	
PS	- NS	-0.50974	-0.667	06	-0.35242	***	
PS	- NI	-0.05601	-0.304	76	0.19273		
PS	- LS	0.05096	-0.106	36	0.20828	7	
PS	- MS	0.45727	0.299	96	0.61459	***	
PS	- HS	0.73432	0.577	00	0.89163	***	

We can also view the t-test to look for the difference between each individual group. Here we can also confirm if that difference is significant as they are noted with the three stars.

Figure 4

	[Dependent Var	riabl	e: FEF		
Contrast	DF	Contrast SS	Me	an Square	F Value	Pr > F
ns vs ps	1	25.9835335	2	25.9835335	40.42	<.0001
ns vs ave inhale	1	125.1839038		25.1839038	194.75	<.0001
Parameter		Estimat	te	Standard Error	t Value	Pr > t
Parameter ns vs ave inh		Estimat 0.9817922			t Value	Pr > t
		7.55	27	Error	30000000	1000

Lastly, we can test individual groups within our 6 categories against each other, with either a contrast or parameter test. In the contrast you can put a weight on the groups to have them factor in with the model, but they must add up to zero. A parameter is different in that the groups do not have to add up to zero, but you must include in the estimate specification the term intercept T where T is the total of the linear coefficients for the group terms. We can also see that for our models, all models reject the null hypothesis.