Update on $t\bar{t}t\bar{t}$ Searches in Single Lepton/OS Dilepton Channels Using 2016 Data

Denys Lontkovskyi 1 Freya Blekman 1 Long Wang 2 Robert Clare 2 Steve Wimpenny 2

¹Vrije Universiteit Brussel

²University of California, Riverside

March 23, 2018

Overview

- 1. Current status
- 2. Data and event selection
- 3. tītī Search Method
- 4. Re-blinded fit result
- 5. Conclusion

Current Status

- ▶ Aiming at re-preapproval, we are finalizing our documentation
 - ► Single-lepton: AN-17/146
 - ▶ Di-lepon: AN-17/143
- We have requested for the production of two new $t\bar{t}$ samples with 9M events each for the two channels(semi-lep and OS dilep), with dedicated cuts at generator level to increase MC stats by a factor of \backsim 10 in high multiplicity/discriminant tails. Details on slide ?? to ??
- We are studying the effects of possible background from QCD multi jets with mis-identified leptons.

Data, MC and Objects

Data and MC

- ► Run2016 B-H, 35.9pb⁻¹
- Summer 16 MiniAOD MC for Morond 17
 - ▶ signal sample: tt̄tt̄ amc@NLO
 - ▶ background samples: $t\bar{t}(+\text{backup, mass, width, details on slide ??})$, single $t(\bar{t})$, DY, W+jets, $t\bar{t} + Z/H/W/diboson$

Objects

Single Lepton

- μ : tight ID, $p_T >$ 26 GeV, $|\eta| <$ 2.1, Rellso < 0.15
- e : tight ID, $p_T >$ 35 GeV, $|\eta| < 1.4442 \text{ or } 1.566 < |\eta| < 2.1$
- ▶ jet: loose ID, $p_T > 30$ GeV, $|\eta| < 2.1$, $\Delta R > 0.4$

OS Dilepton

- μ : loose ID, leading(subleading) lep $p_T > 25(20)$ GeV, $|\eta| < 2.4$, Rellso < 0.15
- e: loose ID, leading(subleading) lep $p_T > 25(20)$ GeV, $|\eta| < 1.4442$ or $1.566 < |\eta| < 2.4$
- ▶ jet: loose ID, $p_T > 30$ GeV(25 GeV if tagged as b), $|\eta| < 2.4$, $\Delta R > 0.4$

Event Selection and MC Re-weighting

Event selection

Single Lepton

- $\triangleright N_{i}^{tight} = 1$
- $ightharpoonup N_{\mu}^{loose}=0, N_{e}^{veto}=0$
- ▶ $N_j \ge 8(7)$ in $e(\mu)$ channel of which $N_{tags}^M \ge 2$
- ► £_T > 50 GeV
- ► HT > 500 GeV

OS Dilepton

- Exactly 2 OS leptons
- $M_{II} \ge 106$ GeV or $76 \ge M_{II} \ge 20$ GeV
- ▶ $N_j \ge 4$ of which $N_{tags}^M \ge 2$
- HT ≥ 500 GeV

MC Re-weighting

- ▶ Trigger eff.
- Lepton scales

- ► Pileup Reweight
- ► JER/JEC

- b-tagging eff.
- ▶ top p_T reweight

tītī Search Method

Binned analysis fitting on event level BDT

Figure: Single μ event level BDT in \geq 9 jet 3 btag category

Figure: μe event level BDT in CR

Event categorization in $N_j \otimes N_{tags}^M$ for limit fitting

- Single lepton channel
 - μ : N_j : 7, 8, 9, 10+; N_{tags}^{M} : 2, 3, 4+
 - $e: N_j: 8, 9, 10+; N_{tags}^M: 2, 3, 4+$
- ▶ OS Dilepton channel: N_j : 4-5, 6-7, 8+; N_{tags}^{M} : 2, 3+

Control Plots (BDT Input Variables)

Single lepton channel

► OS Dilepton channel

$$N_j, BDT_{trijet1}, H_T^b, H_T^{2M}, HTH, S, H_T^{Rat}, p_T^{l1}, \eta^{l1}, \Delta R_{ll}, \Delta R_{bb}, N_{tags}^L, N_{tags}^M, p_T^{3rdjet}, p_T^{4thjet}, p_T^{l1}, p_T^{l2}, p_T^{l2}$$

Overall reasonable distributions agreement within uncertainties.

Sources of Systematic Uncertainties

Experimental Uncertainties

- Luminosity uncertainty
- ▶ Pileup $\pm 1\sigma$
- ► Lepton SFs uncertainty
- ▶ JER $\pm 1\sigma$
- JES(split)
 - SubTotalPileUp
 - SubTotalRelative
 - SubTotalPt
 - SubTotalScale
 - Jet flavor
- ▶ b-tag CSV $\pm 1\sigma$
- Heavy flavor fraction
- ▶ Top p_T reweight
- Jet normalization

Theoretical Uncertainties

- ME scale
- MC cross sections
- UE tune
- PS scale
- ME-PS matching
- PDF

Fit Strategy

- Likelihood fit using Combine Tool
- ▶ Event level BDT output discriminator distributions for fit is performed simultaneously in different $N_j \otimes N_{tags}^M$ categories.
- ▶ Blind highest jet/tag multiplicity categories.
 - ▶ single lepton: blind 10+ jets & 3+ tags category
 - ▶ OS dilepton: blind 8+ jets & 3+ tags category
- Combine results from single lepton channel and OS dilepton channel.

Large uncertainties on MC in the signal regions.

Template Fit in Single Lepton Channel

Postfit BDT distributions

- Equiprobable binning scheme
- ▶ Blind signal rich 10+/3+ category
- ▶ Reasonable description of the data in CRs

Template Fit in Single Lepton Channel

Table: Single lepton blinded fitting results

Channel	Expected limit	Expected xsec	Expected
	$\times \sigma_{t\bar{t}t\bar{t}}^{SM}$	fb	significance
е	$23.5^{+7.0}_{-6.5}$	216.2^{+64}_{-60}	0.09
μ	$16.0^{+7.0}_{-4.7}$	147.2^{+64}_{-43}	0.12
combined	$9.4^{+4.0}_{-2.7}$	86.5^{+37}_{-25}	0.25

Fit Diagnostic in Single Lepton Channel

Post-fit uncertainty reduction is under investigation

Figure: μ +jets channel

Figure: e+jets channel

Impact of Nuisance Parameters

- ▶ Dominant sources of systematic uncertainty:
 - UE variation. Affects jet multiplicity spectrum (Sample has low statistics)
 - ightharpoonup $t\bar{t}b\bar{b}$ normalization
 - ▶ Normalization of $t\bar{t}Z, H \rightarrow bb$
 - Reweighting of HF component in CSV discriminant

Postfit BDT distributions

- high BDT region in signal sensitive regions is blinded
- Obvious excess in the distribution tails within all three channels, could be due to lack of MC stats

Figure: $e\mu$ channel

Figure: $\mu\mu$ channel

Figure: ee channel

Template Fit in OS Dilepton Channel

Table: OS dilepton blinded fitting results

Channel	Expected limit	Expected xsec	Expected	
	$\times \sigma_{t\bar{t}t\bar{t}}^{SM}$	fb	significance	
$\mu\mu$	$14.56^{+9.64}_{-5.24}$	134^{+89}_{-48}	0.19	
$e\mu$	$9.88^{+6.53}_{-3.53}$	91^{+60}_{-32}	0.37	
ee	$17.56^{+11.34}_{-6.19}$	162^{+104}_{-57}	0.29	
combined	$6.88^{+4.44}_{-2.42}$	63^{+41}_{-22}	0.52	

Fit Diagnostic in OS Dilepton Channel

Figure: nuisance pulls in $\mu\mu$

Figure: nuisance pulls in $e\mu$

- Most signal sensitive region is blinded
- No extreme pulls or constraints.
- Reasonable behavior for all the NPs
- Results are consistent between three sub-channels

Fit Diagnostic in OS Dilepton Channel

Figure: nuisance pulls in ee

Figure: nuisance pulls in OS dilep

- Mainly the sub-components of JES are constrained
 - Statistic fluctuation
 - Correlated with other NPs

Nuisance Parameters impact in OS dilep combined fit

Figure: Impact of nuisance parameters on the parameter of interest

Nuisance Parameters impact in OS dilep combined fit

- ► Signal systematics have the largest impacts, as we are very close to the expected signal strength.
- ▶ TTRare resembles our signal, but under control.
- ▶ Jet energy scale uncertainties and MC stats in signal enriched bins dominate.
- All nuisance parameters behave reasonably.
- ► Full list of nuisance impacts are on backup slides ?? to ??

Combined Results

Table: Single lepton + OS dilepton blinded combined results

Channel	Expected limit	Expected limit	Expected	
	$\times \sigma_{t\bar{t}t\bar{t}}^{SM}$	fb	significance	
l+jets	$9.4^{+4.0}_{-2.7}$	86.5^{+37}_{-25}	0.25	
OS II+jets	$6.9^{+4.4}_{-2.4}$	63^{+41}_{-22}	0.52	
combined	$5.2^{+2.6}_{-1.7}$	48^{+24}_{-16}	0.58	

▶ Signal sensitivity is driven by the OS //+jets channel

Conclusion

- Analysis re-blinded in order to optimize search regions/binning taking into account limited MC statistics
- ightharpoonup Expect imes 10 more $t\bar{t}$ simulated events using dedicated filters in signal rich search regions that have large statistical uncertainty
 - New high jet multiplicity, high- H_T filter was optimized for the analysis
 - MC requests are added to the system

Plans for coming weeks:

- Include new MC samples when they are ready
- Finalize QCD background estimation
- Update ANs and paper draft

Backups

MC samples

Table: Simulated event samples, cross sections and event yields used in this analysis

Sample	σ (pb)	No of events
/TT_TuneCUETP8M2T4_13TeV-powheg-pythia8(& backup)	831.8	154652276
/TT_TuneCUETP8M2T4_mtop1665_13TeV-powheg-pythia8	831.8	19379727
/TT_TuneCUETP8M2T4_mtop1695_13TeV-powheg-pythia8	831.8	58540996
/TT_TuneCUETP8M2T4_mtop1715_13TeV-powheg-pythia8	831.8	19578294
/TT_TuneCUETP8M2T4_mtop1735_13TeV-powheg-pythia8	831.8	19323035
/TT_TuneCUETP8M2T4_mtop1755_13TeV-powheg-pythia8	831.8	59252096
/TT_TuneCUETP8M2T4_mtop1785_13TeV-powheg-pythia8	831.8	16376678
/TT_widthx0p2_TuneCUETP8M2T4_13TeV-powheg-pythia8	831.8	19937607
/TT_widthx0p5_TuneCUETP8M2T4_13TeV-powheg-pythia8	831.8	19909415
/TT_widthx0p8_TuneCUETP8M2T4_13TeV-powheg-pythia8	831.8	18546839
/TT_widthx2_TuneCUETP8M2T4_13TeV-powheg-pythia8	831.8	13505281
/TT_widthx4_TuneCUETP8M2T4_13TeV-powheg-pythia8	831.8	19593910
/TT_widthx8_TuneCUETP8M2T4_13TeV-powheg-pythia8	831.8	19524579
total		436M

Current status

- Existing inclusive $t\bar{t}$ sample, including mass and width variations: 436M events
 - Nevertheless, MC statistics is scarce
 - ▶ 200 MC events in 10j4b /+jets category
 - ▶ 140 MC events in 8j4j *I*⁺*I*⁻+jets category
 - ▶ Need factor of 10 increase in statistics to ensure fit stability in the sensitive high multiplicity/high discriminant region
 - ► This requires the development of a gen level filter for efficient MC production
- Various filter configurations have been studied and we have a preferred configuration
- ▶ MC production can be started once new release is available
- Backport and genfragment are available (Thanks Javier Fernandez!)
- CMSSW modification are signed by generator conveners (Thanks L.Perrozzi!)
- Currently waiting for new cmssw build containing the backport
 - New patch release has to be issued by release managers

Two scenarios for new filtered samples

- Two independent samples with different lepton and jet multiplicity cuts:
 - Optimal for the two channels
 - Uses gen level cuts which are probably not useful for other analyses
- ightharpoonup Common sample with no fully hadronic $t\bar{t}$ decays
 - Potentially useful for other analyses
 - Worse filter efficiency

- Filter efficiency and acceptance loss were calculated on /MINIAODSIM level
- ► Efficiency values were verified using actual filter implementation in small private /GEN-SIM production

Filters summary (I+jets and OS)

▶ Preferred configuration: HT > 500, $nJets + nLep \ge 8$, $nLep \ge 1$ (26M)

		Acceptance loss in different jet multiplicity regions ¹				
Filter cuts	Filter eff. $\times 10^{-2}$	OS $N_J = 7$	OS $N_J \geq 8$	$SL N_J = 9$	$SL N_J > 9$	Ext (×10)
HT>500 nJets+nLep≥6 ≥ 1 lepton	2.3 ± 0.03	_	_	_	_	100 M
HT $>$ 500 nJets $+$ nLep \geq 7 \geq 1 lepton	1.4 ± 0.02	0.04	0.02	_	_	61 M
$\begin{array}{c} \text{HT}{>}500\\ \text{nJets}{+}\text{nLep}{\geq}8\\ \geq 1 \text{ lepton} \end{array}$	0.6 ± 0.02	0.14	0.04	0.11	0.08	26 M
HT $>$ 500 nJets $+$ nLep \geq 9 \geq 1 lepton	0.2 ± 0.01	0.43	0.14	0.19	0.1	9M
HT>500 nJets+nLep≥10 ≥ 1 lepton	0.08 ± 0.007	_	_	_	0.19	3.5M

¹Fraction of events passing offline cuts but rejected by gen filter

Filter optimized for I+jets channel

▶ Preferred configuration: HT > 500, $nJets + nLep \ge 9$, nLep = 1 (9M)

		Acceptance loss in different jet multiplicity regions ²		
Filter cuts	Filter eff.	$SL(N_J^{rec}=9)$	$SL(N_J^{rec} > 9)$	Ext (×10)
HT>500 nJets+nLep ≥8 1 lepton	0.005 ± 0.0002	0.11	0.08	21.8 M
$\begin{array}{c} {\rm HT} > 500 \\ {\rm nJets+nLep} \ge & 9 \\ 1 \ {\rm lepton} \end{array}$	0.002 ± 0.0001	0.19	0.10	8.7M
HT>500 nJets+nLep>=10 1 lepton	$0.0007 \pm 6.5 \times 10^{-5}$	_	0.19	ЗМ

²Fraction of events passing offline cuts but rejected by gen filter

Filter optimized for OS dilpeton channel

▶ Preferred configuration: HT > 500, $nJets + nLep \ge 7$, nLep = 2 (9M)

		Acceptance loss in different jet multiplicity regions ³		
Filter cuts	Filter eff.	OS $(N_J^{rec} = 7)$	OS $(N_J^{rec} \ge 8)$	Ext (×10)
HT>500 nJets+nLep>=5 2 lepton	0.0046 ± 5.5e - 05	0.21	0.23	20 M
HT>500 nJets+nLep>=6 2 lepton	$0.0033 \pm 4.7e - 05$	0.21	0.23	14.4 M
HT>500 nJets+nLep>=7 2 lepton	$0.0020 \pm 3.6e - 05$	0.23	0.24	8.7 M
HT>500 nJets+nLep>=8 2 lepton	0.0009 ± 2.4e - 05	0.31	0.25	3.9 M

 $^{^{3}\}mbox{Fraction}$ of events passing offline cuts but rejected by gen filter

Summary

- ► There are two options to get 10× MC stat extension:
 - Preferred) Two samples with different gen level cuts (Total of 18M events passing the filters):
 - ▶ OS 9M events: HT > 500, $nJets + nLep \ge 7$, nLep = 2
 - ▶ SL 9M events: HT > 500, $nJets + nLep \ge 9$, nLep = 1
 - Combined sample (Total of 26M events passing the combined filter):
 - ► SL+OS: HT > 500, $nJets + nLep \ge 8$, $nLep \ge 1$

Definitions

Variable definitions:

•
$$HT = \sum_{j:p_T>30, |\eta|<2.4} p_T(j)$$

- nJets= number of gen jets with p_T > 30
 No η(j) cut due to different CMSSW filter logic.
- Jets in HT and multiplicity definition may include jets from isolated leptons
- Lepton cuts are applied using LHE filter, similar to NoFullyHadronicDecays filter applied to single-top MC samples

impacts of nuisance parameters

impacts of nuisance parameters

