Лабораторна робота №3. РОЗВ'ЯЗАННЯ НЕЛІНІЙНИХ РІВНЯНЬ

Мета роботи: розробка програми розв'язання нелінійних рівнянь

Хід виконання роботи:

- 1. Вивчити методи розв'язання нелінійних рівнянь.
- 2. Скласти алгоритми програм розв'язання нелінійних рівнянь двома методами.
- 3. Написати програму розв'язання нелінійних рівнянь двома методами.
- 4. Для налагодження програми взяти нелінійне рівняння з відомим розв'язком та провести тестування програми.
 - 5. Дослідити збіжність методів від вибору початкових умов.
 - 6. Підготувати звіт.

Реалізувати методи розв'язку та меню вибору методу.

В програмі передбачити:

- режим налагодження виведення результатів на кожній ітерації (за вибором користувача);
- призупинку обчислення при перевищенні заданої кількості ітерацій з видачею інформації для прийняття рішення, що робити далі (продовжити з такою ж кількістю ітерацій; або виконати програма до кінця, поки не будуть знайдено корені рівняння; або вийти із програми, перед виходом вивівши на екран отриманий проміжний результат обрахунку);
- визначення затрат часу на пошук кореня, наприклад, за допомогою функцій **clock()** чи **time()**;
 - вивід на екран значення кореня та значення функції в цій точці.

Вхідні дані: початкове (початкові) значення кореня, похибка обчислення, максимальна кількість ітерацій.

Вихідні дані: значення кореня, значення функції у знайденій точці, кількість ітерацій.

Зміст звіту:

- 1. Мета роботи.
- 2. Алгоритм кожного метода.
- 3. Обрана функція та обраховане вручну значення кореня.
- 4. Результати обрахунків коренів функції заданими методами при чотирьох різних початкових умовах.
- 5. Кількість ітерацій, яка потрібна для знаходження кореня при заданій похибці обчислення для кожного з методів при різних початкових умовах.
 - 6. Висновки щодо точності та часу обчислення кожного з методів.

МЕТОДИ РОЗВ'ЯЗКУ НЕЛІНІЙНИХ РІВНЯНЬ

Загальна форма запису нелінійного рівняння f(x)=0. Наприклад, $f(x)=x^3+2.0 \cdot x$.

Розв'язком рівняння f(x) буде таке X, при якому рівняння перетворюється в тотожність: при x=X, f(X)=0. Функція нев'язки $|f(x_{\text{пот}})|$ є мірою відхилення $x_{\text{пот}}$ від X ($x_{\text{пот}}$ – поточне значення кореня). При **чисельному** розв'язку рівнянь розв'язком вважається таке $X_{\text{ч}}$, при якому $|f(X_{\text{ч}})| \le \varepsilon$, де ε – похибка обчислення, яку обирати з діапазону ε = 10^{-5} – 10^{-3} (для метода половинного ділення розв'язком ε будь-яке значення з проміжку [x_1 ; x_2], якщо $|x_1-x_2| \le \varepsilon$).

Метод хорд

Задамо точки x_1 та x_2 , в яких значення функції мають **протилежні знаки** (в нашому випадку, наприклад, в точці x_1 $f(x_1)<0$, в точці x_2 $f(x_2)>0$). Як відомо з курсу вищої математики, при цій умові корінь рівняння лежить між точками x_1 і x_2 . Проводимо через точки $f(x_1)$ та $f(x_2)$ пряму (хорду), рівняння якої в канонічному виді має вигляд

$$F(x) = f(x_2) + f'(x_2) \cdot (x - x_2) = f(x_2) + \frac{f(x_1) - f(x_2)}{x_1 - x_2} \cdot (x - x_2),$$

де $f(x_1)$, $f(x_2)$ - значення функції в точках x_1 і x_2 , f'(x) — похідна функції f(x).

Тепер знаходимо з цього рівняння координату точки x_i , в якій хорда перетинає вісь абсцис $(F(x_i)=0)$:

$$\mathbf{x}_{i} = \frac{\mathbf{f}(\mathbf{x}_{2}) \cdot \mathbf{x}_{1} - \mathbf{f}(\mathbf{x}_{1}) \cdot \mathbf{x}_{2}}{\mathbf{f}(\mathbf{x}_{2}) - \mathbf{f}(\mathbf{x}_{1})}$$

Вирахуване значення x_i вважаємо новим значенням x_1 або x_2 : значення x_i обирається рівним x_1 або x_2 таким чином, щоб точка з розв'язком знаходилася всередині інтервалу $[x_1; x_2]$, тобто значення функції в точках x_1 та

 x_2 знову мали протилежні знаки. (При однакових знаках в обох точках добуток значень функцій в цих точках буде додатній, при різних знаках — від'ємний.)

На кожній ітерації обчислюємо $|f(x_i)|$ і порівнюємо з заданою похибкою розв'язку є. Цикл припиняється, коли значення функції в точці x_i менше за абсолютним значенням ніж є; це значення x_i вважається розв'язком рівняння X_u .

Метод половинного ділення

Задамо точки x_1 та x_2 , в яких значення функції мають **протилежні знаки** (в нашому випадку, наприклад, в точці x_1 $f(x_1)<0$, в точці x_2 $f(x_2)>0$). При цій умові корінь рівняння лежить між точками x_1 і x_2 . Метод половинного ділення полягає в зменшенні інтервалу $[x_1; x_2]$ вдвічі на кожній ітерації.

Обираємо нову точку на середині відрізку $[x_1; x_2]$:

$$\mathbf{x}_i = \frac{\mathbf{x}_1 + \mathbf{x}_2}{2}$$

Обчислюємо значення $F=f(x_i)$. Перевіряємо, в якому з утворених проміжків $[x_1; x_i]$ та $[x_i; x_2]$ знаходиться розв'язок рівняння (якщо значення функції на кінцях проміжку

протилежні мають знаки, розв'язок знаходиться цьому В проміжку). Для показаної малюнку функції бачимо, що якщо F<0, то корінь рівняння лежить поміж хі та х2. В цьому разі необхідно значення змінної х₁ замінити на значення хі і повторити обчислення. Якщо F>0, то корінь лежить поміж x_1 і хі (друга ітерація). Тоді треба замінити значення змінної х2 на хі і обчислення. повторити Після присвоєння хі необхідно перевірити критерій закінчення пошуку розв'язку $|x_1-x_2|$ ≤є.

Метод Ньютона (метод дотичних)

Обираємо x_1 і обчислюємо $f(x_1)$. Проводимо у вибраній точці дотичну до кривої f(x). Рівняння дотичної має вигляд:

$$F(x) = f(x_1) + f'(x_1) \cdot (x - x_1)$$

де $f'(x_1)$ – перша похідна функції f(x) в точці x_1 .

3 цього рівняння визначаємо точку хі, в якій дотична перетинає вісь абсцис:

$$0 = f(x_1) + f'(x_1) \cdot (x_i - x_1),$$

звідки

$$x_i = x_1 - \frac{f(x_1)}{f'(x_1)}.$$

Значення x_i ближче до кореня ніж x_1 . Міняємо x_1 на x_i і повторюємо обчислення до того часу, поки не виконається критерій зупинки $|\mathbf{f}(\mathbf{x}_i)| \leq \varepsilon$.

