Example of PROC LOGISTIC matched pairs analysis by creating differences between members of a pair

 A conditional analysis for matched pairs can be conducted through the creation of differences of covariate values between members of a pair

```
initial = difference in initial skin grade values for each pair
age = difference in age value for each pair
i_sex = difference in sex value for each pair
isexage = difference in sex*age indicator value for each pair
isexinit = difference in sex*initial indicator value for each pair
iageinit = difference in age*initial indicator value for each pair
trtsex = difference in trt*sex indicator value for each pair
trtinit = difference in trt*initial indicator value for each pair
trtage = difference in trt*age indicator value for each pair
```

•Outcome variable uses only discordant pair information: improve=1 if (yes, no) for (new, placebo) improve=0 if (no, yes) for (new, placebo) improve=. if else

Response Profiles

Response Profile						
Ordered Value	Improve	Total Frequency				
1	1	34				
2	0	20				

Score Statistics

	Residual	Chi-Square Test	
	Chi-Square	DF Pr > ChiSq	
	4.9936	6	0.5446
	Analysis of	Effects Not in	the
Effect	DF	Modedcore Chi-	Pr > ChiSq
		Square	
isexage	1	0.6593	0.4168
isexinit	1	0.0074	0.9312
iageinit	1	2.9194	0.0875
trtsex	1	0.2681	0.6046
trtinit	1	0.0121	0.9125
trtage	1	0.4336	0.5102

- Since there are 20 observations with the less prevalent response, this model can support 20/5 = 4 terms. Therefore, there are too many terms to rely on the residual score statistic to assess goodness of fit.
- However, the residual test (p> 0.5) and the individual tests (all p > 0.08) provide reasonable confidence that model fits adequately.

Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Chi- Square	Pr > ChiSq		
Intercept	1	0.7024	0.3601	3.8053	0.0511		
initial	1	1.0915	0.3351	10.6105	0.0011		
age	1	0.0248	0.0224	1.2252	0.2683		
i_sex	1	0.5312	0.5545	0.9176	0.3381		

• The treatment effect is represented by intercept for this model.

Odds Ratios

Odds Ratio Estimates					
Effect	Effect Point 95% Wald Estimate Confidence Limit				
Initial	2.979	1.545	5.745		
Age	1.025	0.981	1.071		
i_sex	1.701	0.574	5.043		

- Note that LOGISTIC does not print the odds ratio for the intercept. Odds of improvement for those on treatment is $e^{0.7024} = 2.019$ times higher than for those on placebo.
- Consider the model where the intercept is the only term:

```
proc logistic data=trial descending;
    model improve = ;
run;
```

Treatment Effect Only Model

	Analysis	of Maximum	Likelihood	Estimates	
Parameter	DF	Estimate	Standard Error	Chi- Square	Pr > ChiSq
Intercept	1	0.5306	0.2818	3.5457	0.0597

• Note that $e^{\beta} = e^{0.5306} = 1.70$