Prediction of Job Change

Group 1

Renping Ge, Yuchen Ma, Zongzhu Li

Outlines

- Introduction
- Exploration Data Analysis
- Data Preprocessing
- Modeling and Prediction
 Logistic Regression
 Random Forests
 Histogram based Gradient Boosting
- Modeling Evaluation
- Features Importance
- Summary and Discussion

Introduction

Exploring the probability of a candidate to look for a new job or will work for the company after training

Interpreting affected factors on employee decision

Dataset Description

➤ This dataset, provided by kagle, is collected by the company and designed to understand the factors that lead a person to work for the company(leaving their current job).

19158 entries and 14 columns including features variables and target variable.

```
In[4]: print(data.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19158 entries, 0 to 19157
Data columns (total 14 columns):
     Column
                             Non-Null Count
                                              Dtype
 0
     enrollee id
                             19158 non-null
                                              int64
     city
                             19158 non-null
                                              object
     city_development_index
                             19158 non-null
                                              float64
                                              object
     gender
                             14650 non-null
     relevent_experience
                             19158 non-null
                                              object
     enrolled_university
                             18772 non-null
                                              object
     education_level
                             18698 non-null
                                              object
     major_discipline
                             16345 non-null
                                              object
     experience
                             19093 non-null
                                              object
     company_size
                             13220 non-null
                                              object
                                              object
     company_type
                             13018 non-null
     last_new_job
                             18735 non-null
                                              object
     training_hours
                             19158 non-null
                                              int64
     target
                             19158 non-null
                                              float64
dtypes: float64(2), int64(2), object(10)
```

memory licade: 2 D+ MR

Dataset Description - Features and Target

- enrollee_id: Unique ID for enrollee.
- > city: City code.
- citydevelopmentindex: Development index of the city (scaled).
- gender: Gender of enrollee.
- relevent_experience: Relevant experience of enrollee.
- enrolled_university: Type of University course enrolled if any.
- education_level: Education level of enrollee.
- major_discipline: Education major discipline of enrollee.
- experience: Enrollee total experience in years.
- company_size: No of employees in current employer's company.
- company_type: Type of current employer.
- last_new_job: Difference in years between previous job and current job.
- training_hours: training hours completed.

target:

- 0 Not looking for job change,
- 1 Looking for a job change.

Exploratory Data Analysis

remove unrelated columns

```
data = data.drop(["enrollee_id", "city"], axis=1)
```

change some values to be understood easily

```
data["company_size"].unique()
for i in range(len(data.index)):
   if data['company_size'][i] == '10/49':
        data['company_size'][i] = '10-49'
```

```
data["experience"].unique()
for i in range(len(data.index)):
   if data['experience'][i] == '>20':
        data['experience'][i] = '21'
   elif data['experience'][i] == '<1':
        data['experience'][i] = '0'</pre>
```

```
data["last_new_job"].unique()

for i in range(len(data.index)):
    if data['last_new_job'][i] == '>4':
        data['last_new_job'][i] = '5'
    elif data['last_new_job'][i] == 'never':
        data['last_new_job'][i] = '0'
```

```
retarget = {0.0: 'Not looking for job change',

1.0: 'Looking for job change'}

data['target'] = data['target'].map(retarget)
```

EDA - Counts for target

➤ There are 24.9% enrollee is looking for job change and 75.1% enrollee is not.

EDA - Distribution of job change by gender and training hours

- People with different gender shows comparable rate of looking for a new job.
- People with different training hours shows comparable rate of looking for a new job.

EDA - Distribution of job change by enrolled_university and education_level

- People who took the full time course are more likely to look for a new job compared to others.
- People with graduate education level are more inclined to look for a new job.

EDA - Distribution of job change by major_discipline and city_development_index

- People with different major discipline shows comparable rate of looking for a new job.
- ➤ In the cities with lower city_development_index, more people is likely to look for a new job.

EDA - Distribution of job change by company_type and company_size

- People working in the Pvt Ltd, NGO and Founded Startup are less likely to look for a new job.
- People working in the company with size of 10-49 are more inclined to look for a new job.

EDA - Distribution of job change by experience_years and relevent_experience

People with less working experiences and with no relevant experience are more likely to look for a new job.

EDA - Distribution of job change by last_new_job

➤ The difference of 1 year and zero year shows a significant higher rate of looking for a new job.

Data Preprocessing

- > specify the predictors and target variable
- > fill na
- > standardization and centralization for numerical variables with StandardScaler()
- encoding categorical features with OneHotEncoder()
- label target variable with LabelEncoder()
- > split the dataset into train (70%) and test (30%)

Models

Modeling Evaluation - Logistic Regression

confusion matrix

ROC area under curve

report

support	f1-score	recall	precision	
4334	0.86	0.94	0.80	0
1414	0.38	0.28	0.59	1
5748	0.77			200110201
3740	0.77			accuracy
5748	0.62	0.61	0.69	macro avg
5748	0.74	0.77	0.75	weighted avg

Accuracy: 77.48782185107864 ROC_AUC: 78.41463080318185

Modeling Evaluation - Random Forest

Modeling Evaluation - Gradient Boosting

Features Importance

The top 5 important features--- city_development_index, training_hours, experience, last_new_job and company_type.

GUI

Summary and Discussion

- Exploratory data analysis shows that city_development_index, experience, last_new_job, but not gender and training_hours, play important roles in the job change. However, feature importance shows that training_hours is the second important variable.
- ➤ Based on the comparison of accuracy, f1 score and ROC_AUC, Gradient Boosting shows the best performance to predict job change.
- Gradient Boosting is a great ML algorithm that handles categorical features and missing values.

THANKS

Q&A