ReinforcementLearningAgents

Agents and Multi-Agent Systems

Group 2

Diogo Silva (up202004288) João Araújo (up202004293)

Problem Description

- Create a Reinforcement Learning Environment:
 - using an existing environment in Gymnasium \rightarrow Lunar Lander V2
- Train the agents:
 - o using existing algorithms in Stable baselines $3 \rightarrow PPO$, A2C, DQN
- Modify algorithms and environment's parameters:
 - o fine-tune algorithms for environment:
 - hyperparametrization
 - training and validation
 - o modify gravity, add wind, etc.

Environment Description - LunarLander-V2

- Rocket trajectory optimization problem
- Agent:
 - rocket/lander with 3 engines
 - fuel is infinite
- **Discrete** engine either on/off (discrete actions)
- Landing pad always at coordinates (0, 0)
- **Terrain** changes appearance with each episode
- Lander starts at the top in the center:
 - with random initial force applied to it
- Episode finishes if:
 - lander crashes (contacts moon surface)
 - lander gets outside of viewport
 - lander is not awake (not moving nor colliding)

Environment Description

Parameters			
Gravity	-10.0		
Wind	Enabled		
Wind Power	5.0		
Turbulence	0.5		
Action Space			
Do nothing		0	

Fire left engine

Fire main engine

Fire right engine

Observation Space (8D vector)		
Coordinates	х, у	
Linear velocity	vx, vy	
Angle	radians	
Angular velocity	radians/s	
Left leg contact	boolean	
Right leg contact	boolean	

Rewards (per step)		
Closer to landing	1	
Slower movement	1	
More angle tilt	↓	
Leg (each) ground contact	+10	
Side engines firing	-0.03	
Main engine firing	-0.3	
Rewards (for episode)		
Landing safely	+100	
Crashing	-100	
Minimum points for solution	200	

Algorithms

- Commonly used algorithms that support a discrete environment
- PPO (Proximal Policy Optimization):
 - optimizes the policy to maximize expected reward
 - prevents large policy updates to stabilize training
 - uses General Advantage Estimation (GAE) for stable training
- A2C (Advantage Actor-Critic)
 - o combines value-based and policy-based approaches
 - critic evaluates the actions by estimating value functions
 - o uses an Advantage Function to update policy and value functions
- DQN (Deep Q-Network)
 - uses Q-Learning to estimate action-value function
 - o approximates the *Q-Function* with deep neural networks
 - stabilizes training by breaking correlations

Training Environment

- Using the same environment parameters all along
- Perform **hyperparametrization**:
 - on each algorithm until **100k** steps (**16** different combinations)
 - o relevant variables tuned:
 - learning_rate current progress remaining
 - gamma discount factor
 - gae_lambda factor for trade-off of bias vs variance (PPO, A2C)
 - ent_coef entropy coefficient for loss calculation (PPO, A2C)
 - tau update rate of network (DQN)
 - etc.

Models Used

- Take parameters of the best pair of results:
 - o PPO models:
 - one with default parameters
 - one with higher gae_lambda and ent_coef
 - A2C models:
 - single one with default parameters
 - DQN models:
 - one with default parameters ($tau \rightarrow hard update$)
 - one with higher learning_rate and opposite tau (soft update)
- Train models until **2M** steps
- Visual validation every 250k steps to see agent's behaviours at the moment
- Final rewards above $200 \rightarrow$ the environment has been solved!

Training Evolution

Episode Statistics

- Mean Episode Length:
 - DQN with default parameters odd increase
 (high default tau value → unstable training)
 - o custom PPO/DQN rapid reduction/leveling
- Mean Episode Reward:
 - PPO algorithms quicker to find episode solution and stabilizing
 - A2C solution found but some fluctuations
 - DQN algorithms no signs of approaching the solution

Mean Episode Length

Mean Episode Reward

▶ Training Evolution

Other Statistics

- Entropy Loss:
 - randomness in policy's actions:
 - being reduced throughout training
 - less exploration, more exploitation
 - PPO allowed for more exploration at early stages and slowly converted
- Value Loss:
 - o predicted rewards vs actual observed returns:
 - improves (decrease) during training
 - PPO and A2C with default parameters better at predicting than modified PPO

Entropy Loss

Value Loss

▶ Validation - PPO

- 500k steps: quickly presents a good degree of success, despite some imperfections
- 1M steps: fulfills the episodes effectively, showing it can adapt rapidly
- 2M steps: continues to complete each episode in an efficient manner
- Good balance in policy update steps:
 - **stabilizes training** → steady and reliable improvements (as shown in the graphs)

► Validation - A2C

- **500k steps**: incapable of solving, wanders off a bit in the air and sideways
- 1M steps: achieves success, but not in the most efficient way (excessive tilting and engine usage)
- 2M steps: more efficient, despite some slight hesitations near landing
- Synchronous update of policy and value function:
 - \circ less stable training \rightarrow less thorough exploration of the state space

Validation - DQN

- 500k steps: never gets to land (constantly in flight), quite slow, often moves sideways
- 1M steps: remains with long times, but shows an effort to approach the landing
- 2M steps: intentionally moves towards the landing, but hovers there until timeout
- Used policy (ε -greedy) leading to **suboptimal decisions** (in this case):
 - \circ slower movement, less angle tilt, closer to landing, avoid crashing \rightarrow loop
 - difficulty in assessing long-term benefits

Unforeseen Scenarios

- Testing out the best results from each algorithm on **LunarLander-V2** but...
 - rougher environment:
 - Wind Speed = $15.0 \rightarrow 3x$ the initial wind speed
 - Turbulence Power = $1.5 \rightarrow 3x$ the initial turbulence power
 - Gravity = $-5.0 \rightarrow 0.5x$ the initial gravity
 - expectations based on training evaluation/validation:
 - PPO models should perform the best easily adapts on similar conditions
 - DQN models should have a harsher time suboptimal exploration
- Note on an easier environment:
 - PPO & A2C succeeded the environment with ease
 - DQN still demonstrated some level of struggle → not finding the correct course of action

Unforeseen Scenarios

- PPO able to adapt to harsh conditions, rapidly contacts the ground and adjust from there
- A2C manages to use engines well to fight the wind, takes a bit longer to contact the ground
- DQN constantly in flight, fighting the turbulence, contacts landing pad but decides not to rest
- Comparisons:
 - o PPO performed best, followed by A2C both were able to succeed at several attempts
 - DQN was the worst by a large margin virtually never landing correctly

Conclusion

- Policy based, actor-critic and value based methods:
 - o demonstration of distinct characteristics/approaches within reinforcement learning
 - PPO with its penalty to the objective function ended up bringing the best results
- Significant importance of balancing exploration and exploitation:
 - learning process becomes more reliable
 - excessive exploration slow learning and inconsistent performance
 - excessive exploitation lack of robustness:
 - agent policy highly specialized to specific states/actions hard to adapt in unseen situations