Для линейной параметризации форма дифференциала сохраняется

$$d^{2}z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{2}z \stackrel{\text{инвариант}}{=} z_{t}^{(n)}dt^{n}$$

Введем функцию: $z(x(t),y(t))\stackrel{\text{обозн}}{=} \varphi(t)$ – она (n+1) раз дифференцируема (композиция (n+1)дифференцируемых и линейных функций)

Заметим, что $x = x_0 + \Delta xt \stackrel{t_0=0}{=} x_0$, $y = y_0 + \Delta yt \stackrel{t_0=0}{=} y_0$, тогда $M \stackrel{t \to t_0=0}{\to} M_0$

То есть $z(M_0) = z(x_0, y_0) = z(x(t_0), y(t_0)) = \varphi(t_0) = \varphi(0)$

Таким образом $\varphi(t)$ как функция одной переменной может быть разложена в окрестности $t_0 = 0$ по формуле Маклорена

$$\varphi(t) = \varphi(0) + \frac{d\varphi(0)}{1!} \Delta t + \dots + \frac{d^n \varphi(0)}{n!} \Delta t^n + o((\Delta t)^n)$$

Вернемся к z(x, y) ($\Delta t = t - t_0 = 1$):

$$z(x,y) = z(M) = z(M_0) + \frac{dz(M_0)}{1!} + \frac{d^2z(M_0)}{2!} + \dots + \frac{d^nz(M_0)}{n!} + r_n(x,y)$$

где остаток в форме Лагранжа $r_n(x,y)=r_n(t)=\frac{\varphi^{(n+1)}(\theta\Delta t)}{(n+1)!}\Delta t=\frac{\varphi^{(n+1)}(\theta\Delta t)}{(n+1)!}$ Остаток $r_n(x,y)$ должен быть бесконечно малым по отношению к $(\Delta\rho)^n$, то есть $r_n(x,y)=$

 $o((\Delta \rho)^n)$

 $(r_n(t) \overset{n \to \infty}{\longrightarrow} 0,$ если $\varphi(t)$ нужное число раз дифференцируема \Rightarrow ограничена, $r_n(t)$ – ограниченная бесконечно малая)

Nota. В дальнейшем для исследования z(x,y) на экстремум достаточно разложения по формуле Тейлора до 2-ого порядка включительно. Покажем сходимость $r_n(x,y) \stackrel{(\Delta \rho)^n \to 0}{\to} 0$ на примере $r_2(x,y) = \frac{d^3z(M_{\text{сред.}})}{3!}$

$$r_{2}(x,y) = \frac{1}{3!} \left(\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y \right)^{3} z = \frac{1}{3!} \left(\frac{\partial^{3} z}{\partial x^{3}} (\Delta x)^{3} + 3 \frac{\partial^{3} z}{\partial x^{2} \partial y} (\Delta x)^{2} \Delta y + 3 \frac{\partial^{3} z}{\partial x \partial y^{2}} (\Delta y)^{2} \Delta x \frac{\partial^{3} z}{\partial y^{3}} (\Delta y)^{3} \right)$$

Вообще говоря, значения частных производных берутся в различных средних

$$r_{2}(x,y) = \frac{1}{3!} (z_{xxx}(\mu_{1})(\Delta x)^{3} + 3z_{xxy}(\mu_{2})(\Delta x)^{2}\Delta y + z_{xyy}(\mu_{3})(\Delta y)^{2}\Delta x + 3z_{yyy}(\mu_{4})(\Delta y)^{3}) = \left[\text{вынесем }(\Delta \rho)^{3}\right] = \frac{(\Delta \rho)^{3}}{3!} \left(\text{огран.} \cdot \frac{(\Delta x)^{3}}{(\Delta \rho)^{3}} + \text{огран.} \cdot \frac{(\Delta x)^{2}\Delta y}{(\Delta \rho)^{3}} + \text{огран.} \cdot \frac{(\Delta y)^{2}\Delta x}{(\Delta \rho)^{3}} + \text{огран.} \cdot \frac{(\Delta y)^{3}}{(\Delta \rho)^{3}}\right) = \frac{(\Delta x)^{3}}{(\Delta \rho)^{3}} = \frac{(\Delta x)^{3}}{\sqrt{(\Delta x)^{2} + (\Delta y)^{2}}} \xrightarrow{\Delta x \to 0} 0, \text{ то есть дробь и выражение выше ограничены}$$

$$\frac{r_2(x,y)}{(\Delta\rho)^2} = \frac{1}{3!} \frac{(\Delta\rho)^3 \cdot \text{orp.}}{(\Delta\rho)^2} = \frac{1}{3!} \Delta\rho \cdot \text{orp.} \xrightarrow{\Delta\rho \to 0} 0$$

4.7. Геометрия ФНП

4.7.1. Линии и поверхности уровня

Положим z = const.

Положим $z={\rm const.}$ В сечении плоскостью z=c образуется кривая l с уравнением $\begin{cases} z=c \\ \varphi(x,y)=0 \leftarrow {\rm ypashehue} \ l_{\rm npoek} \ {\rm ha} \ Oxy \end{cases}$ Кривая l с уравнением z(x,y)=c называется линией уровня функции двух переменных z = z(x, y)

Def. Поверхность уровня \mathcal{P} – это поверхность с уровнем u(x,y,z)=cФизический смысл: Пусть $u: \mathbb{R}^3 \to \mathbb{R}$ (значения функции u(x,y,z) – скаляры). Тогда говорят, что в \mathbb{R}^3 задано скалярное поле. Например, поле температур, давления, плотности и т. д. Тогда u = c — поверхности постоянных температур, давления и т. п. (изотермические, изобарные, эквипотенциальные)

$$Ex.$$
 Koнус: $z = -\sqrt{x^2 + y^2}$

Линии уровня z = c:

1.
$$c > 0$$
 Ø

2.
$$c = 0$$
 $x = y = 0$ точка $(0, 0)$

3.
$$c < 0$$
 $-|c| = -\sqrt{x^2 + y^2}$ или $c^2 = x^2 + y^2$

4.7.2. Производная по направлению, градиент

Задача. Дано скалярное поле u = u(x, y, z) (например, давления). Как меняется давление при перемещении в заданном направлении?

Это задача о нахождении скорости изменения u(x,y,z) в заданном направлении \vec{s}

Из $M_0(x_0,y_0,z_0)$ движемся в M(x,y,z) в направлении $\vec{s},\ x=x_0+\Delta x,\ y=y_0+\Delta y,\ z=z_0+\Delta z$

$$\Delta s = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2} \left[\cdot \frac{1}{\Delta s} \right]$$

$$1 = \sqrt{\left(\frac{\Delta x}{\Delta s}\right)^2 + \left(\frac{\Delta y}{\Delta s}\right)^2 + \left(\frac{\Delta z}{\Delta s}\right)^2}$$

$$1 = \sqrt{\left(\frac{\Delta x}{\Delta s}\right)^2 + \left(\frac{\Delta y}{\Delta s}\right)^2 + \left(\frac{\Delta z}{\Delta s}\right)^2}$$

$$\left(\frac{\Delta x}{\Delta s}, \frac{\Delta y}{\Delta s}, \frac{\Delta z}{\Delta s}\right) = (\cos \alpha, \cos \beta, \cos \gamma) = \vec{s^0}$$

 Π отребуем, чтобы u(x,y,z) имела непрерывность u_x,u_y,u_z в D

To есть u(x,y,z) дифференцируема и $\Delta u = du + o(\Delta s) = u_x \Delta x + u_y \Delta y + u_z \Delta x + o(\Delta s)$

$$\frac{\Delta u}{\Delta s} = u_x \cos \alpha + u_y \cos \beta + u_z \cos \gamma + \frac{o(\Delta s)}{\Delta s}$$

В предельном переходе получаем: $\frac{\partial u}{\partial s} = \frac{\partial u}{\partial r} \cos \alpha + \frac{\partial u}{\partial u} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma$

Nota. Изначально $\Delta u = du + (6. \text{ м.})\Delta x + (6. \text{ м.})\Delta y + (6. \text{ м.})\Delta z$ $\left| \cdot \frac{1}{\Delta s} \right|$

$$\frac{\Delta u}{\Delta s} = \frac{du}{\Delta s} + (6. \text{ m.}) \cos \alpha, (6. \text{ m.}) \cos \alpha \rightarrow 0$$

Def. Производной функции u=u(x,y,z) в направлении \vec{s} называют величину $\frac{\partial u}{\partial s} = \frac{\partial u}{\partial r}\cos\alpha +$ $\frac{\partial u}{\partial u}\cos\beta + \frac{\partial u}{\partial z}\cos\gamma$, где α, β, γ - направления \vec{s}

Nota. Производная в определении — число, но $\frac{\partial u}{\partial c}\vec{s^0}$ — вектор скорости

Nota. Заметим, что если $\vec{i}, \vec{j}, \vec{k}$ – декартовы орты, то $\frac{\partial u}{\partial i} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{\partial u}{\partial x}$

И аналогично в других направлениях: $\frac{\partial u}{\partial i} = \frac{\partial u}{\partial u}, \frac{\partial u}{\partial k} = \frac{\partial u}{\partial z}$

Составим вектор $\frac{\partial u}{\partial x}\vec{i} + \frac{\partial u}{\partial y}\vec{j} + \frac{\partial u}{\partial z}\vec{k} \stackrel{\text{обозн}}{=} \vec{\nabla} u$

 $\vec{\nabla}$ — набла-оператор (оператор Гамильтона); $\vec{\nabla} = \left(\frac{\partial}{\partial x}; \frac{\partial}{\partial u}; \frac{\partial}{\partial z}\right)$ — условный вектор

 $\overrightarrow{\mathrm{Def.}}$ $\overrightarrow{\mathrm{grad}}$ $u \stackrel{def}{=} \vec{\nabla} u$ — называют градиентом функции u(x,y,z)

Свойства градиентов:

Th. 1.
$$\frac{\partial u}{\partial s} = \text{проек.}_{\vec{s}} \vec{\nabla} u$$

В любом заданном направлении \overrightarrow{s} производная $\frac{\partial u}{\partial s}|_{M}$ равна проекции градиента в M

Th. 2. $\vec{\nabla} u$ – направление наибольшего значения $\frac{\partial u}{\partial s}$

Th. 3.
$$\vec{s} \perp \vec{\nabla} u \Longrightarrow \frac{\partial u}{\partial s} = 0$$

Th. 4. u=u(x,y), u=c — линии уровня l. Тогда $\vec{\nabla} u \perp l$

Прямая, содержащая $\vec{\nabla} u$ (т. е. перпендикулярная касательной к l), называется нормалью к l а тогда $\vec{\nabla} u$ — вектор нормали

Доказательства:

1

$$\begin{split} \frac{\partial u}{\partial s} &= \left(\left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z} \right) \cdot \vec{s^0} \right) u = \left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z} \right) u \cdot \vec{s^0} = \vec{\nabla} u \cdot \vec{s^0} \\ |\vec{\nabla} u \cdot \vec{s^0}| &= |\vec{\nabla} u| |\vec{s^0}| \cos(\vec{\nabla} u, \vec{s^0}) = |\vec{\nabla} u| \cos(\vec{\nabla} u, \vec{s^0}) = \text{проек.}_{\vec{s}} \vec{\nabla} u \end{split}$$

2.

$$\frac{\partial u}{\partial s} = |\vec{\nabla} u| \cos \varphi$$
, где φ - угол между \vec{s} и $\vec{\nabla} u$

Косинус принимает наибольшее значение, если угол между \vec{s} и $\vec{\nabla} u$ равен нулю, то есть направления векторов совпадает. Значит, при $\vec{s} = \vec{\nabla} u$ производная принимает наибольшее значение

3.

Из доказательства **Th. 2.** следует, что если \vec{s} сонаправлен с $\vec{\nabla} u$, то производная принимает наибольшее значение. Следовательно, если $\vec{s} \perp \vec{\nabla} s$, то $\cos \varphi = 0$, $\frac{\partial u}{\partial s} = 0$

4.

u=c — уравнение $l_{\rm np}$ в плоскости Oxy, то есть u(x,y)=c мы можем рассмотреть как неявную функцию u(x,y(x))-c=0

Производная неявной функции: $\frac{dy}{dx} = -\frac{u_x}{u_y} = k_l$ – угловой коэффициент касательной к l

$$ec{
abla}u=(u_x,u_y)$$
 $\dfrac{u_y}{u_x}=k_{
m rpag.}$ — наклон вектора градиента.
 Очевидно $k_l\cdot k_{
m rpag.}=-1\Longrightarrow ec{
abla}u\perp l$

Очевидно
$$k_l \cdot k_{ ext{град.}} = -1 \Longrightarrow \vec{\nabla} u \perp l$$