Scenario 1: Load all the Cache Lines of a particular Set (index-0x3784)

- 0 984DE132
- 0 116DE12F
- 1 100DE130
- 1 999DE12E
- 1 645DE10A
- 0 846DE107
- 1 211DE128
- 0 777DE133

(Note: Initially all the cache lines are initialized to invalid state. And since the first write is write through it goes to Exclusive state)

Assume: LRU-000, MRU-111

	Way-1	Way-2	Way-3	Way-4	Way-5	Way-6	Way-7	Way-8
<u>Index</u>	984	116	100	999	645	846	211	777
LRU bits	000	001	010	011	100	101	110	111
<u>MESI</u>	Ε	Ε	E	Ε	Ε	E	Ε	Ε

Scenario 1 Explanation:

Step 1: 0 984DE132 - Read Operation - **Miss**

Binary Representation of 984DE132 is 1001 1000 0100 1101 1110 0001 0011 0010.

Byte offset: 11 0010

Index: 1101 1110 0001 00 (0x3784)

Tag: 1001 1000 0100 (0x984)

This loads Way-1 with 984

Step 2: 0 116DE12F - Read Operation - Miss

Binary Representation of 116DE12F is 0001 0001 0110 1101 1110 0001 0010 1111.

Byte offset: 10 1111.

Index: 1101 1110 0001 00 (0x3784, note this is the same set as set in Step 1.)

Tag: 0001 0001 0110 (0x116)

This loads Way-2 with 116

Step 3: 1 100DE130 - Write Operation -

Binary Representation of 100DE130 is 0001 0000 0000 1101 1110 0001 0011 0000.

Byte offset: 11 0000.

Index: 1101 1110 0001 00 (0x3784)

Tag: 0001 0000 0000 (0x100)

This loads Way-3 with 100

Step 4: 1 999DE12 - Write Operation - Miss

Binary Representation of 999DE12 is 1001 1001 1001 1101 1110 0001 0010

Byte offset: 01 0010

Index: 1101 1110 0001 00 (0x3784)

Tag: 1001 1001 1001 (0x999)

This loads Way-4 with 999

Step 5: 1 645DE10A - Write Operation - **Miss**

Binary Representation of 645DE10A is 0110 0100 0101 1101 1110 0001 0000 1010

Byte offset: 00 1010

Index: 1101 1110 0001 00 (0x3784)

Tag: 0110 0100 0101 (0x645)

This loads Way-5 with 645

Step 6: 0 846DE107 - Read Operation - **Miss**

Binary Representation of 846DE107 is 1000 0100 0110 1101 1110 0001 0000 0111

Byte offset: 00 0111

Index: 1101 1110 0001 00 (0x3784)

Tag: 1000 0100 0110 (0x846)

This loads Way-6 with 846

Step 7: 1 211DE128 - Write Operation -

Binary Representation of 211DE128 is 0010 0001 0001 1101 1110 0001 0010 1000

Byte offset: 10 1000

Index: 1101 1110 0001 00 (0x3784) Tag: 0010 0001 0001 (0x211)

This loads Way-7 with 211

Step 8: 0 777DE133 - Read Operation - Miss

Binary Representation of 777DE133 is 0111 0111 0111 1101 1110 0001 0011 0011

Byte offset: 11 0011

Index: 1101 1110 0001 00 (0x3784)

Tag: 0111 0111 0111 (0x777)

This loads Way-8 with 777

Note in this scenario, all the eight access has the same index address of 1101 1110 0001 00 (or 0x3784). Assumes LRU bit: 000, MRU bit: 111

Scenario 2: Read and Write into a particular Set (index-3784)

- 0 999DE132
- 1 116DE123
- 1 666DE135
- 1 333DE12C
- 0 846DE10C
- 0 777DE136
- 1 ABCDE128
- 0 116DE101
- 1 100DE101
- 1 AAADE101
- 1 EDCDE101
- 4 AAADE101

Scenario 2 Explanation:

Step 1 0 999DE132 - Read Operation - **Hit**

Binary Representation of 999DE132 is 1001 1001 1001 1101 1110 0001 0011 0010

Byte offset: 11 0010

Index: 1101 1110 0001 00 (0x3784) Tag: 1001 1001 1001 (0x999)

	Way-1	Way-2	Way-3	Way-4	Way-5	Way-6	Way-7	Way-8
<u>Index</u>	984	116	100	999	645	846	211	777
<u>LRU bits</u>	000	001	010	111	011	100	101	110
MESI	Е	Ε	Ε	S	Ε	Ε	E	E

Step 2: 1 116DE123 – Write Operation - **Hit**

Binary Representation of 116DE12F is 0001 0001 0110 1101 1110 0001 0010 1111.

Byte offset: 10 1111.

Index: 1101 1110 0001 00 (0x3784) Tag: 0001 0001 0110(0x116)

<u>Index</u>	984	Way-2 116	100	Way-4 999	Way-5 645	Way-6 846	Way-7 211	Way-8 777
LRU bits	000	111	001	110	010	011	100	101
MESI	E	M	E	S	E	E	E	E

Step 3: 1 666DE135 - Write Operation – Miss. So replace using LRU. (No Write back)

Binary Representation of 666DE135 0110 0110 0110 1101 1110 0001 0011 0101.

Byte offset: 11 0101.

Index: 1101 1110 0001 00 (0x3784)

Tag: 0110 0110 0110 (0x666)

	Way-1_	_Way-2_	Way-3_	Way-4	<u> Way-5</u>	Way-6	Way-7	_Way-8_
Index	666	116	100	999	645	846	211	777
LRU bits	111	110	000	101	001	010	011	100

M E S E E E Ε MESI M

Step 4: 333DE12C - Write Operation - Miss. So replace using LRU. (No Write back)

Binary Representation of 333DE12C is 0011 0011 0011 1101 1110 0001 0010 1100

Byte offset: 10 1100

Index: 1101 1110 0001 00 (0x3784) Tag: 0011 0011 0011 (0x333)

	Way-1	Way-2	Way-3	Way-4	Way-5	Way-6	Way-7	_Way-8_
<u>Index</u>	666	116	333	999	645	846	211	777
LRU bits	110	101	111	100	000	001	010	011
MESI	M	M	M	S	Ε	Ε	Ε	Е

Step 5: 846DE10C - Read Operation - Hit

Binary Representation of 846DE10C is 1000 0100 0110 1101 1110 0001 0000 1100

Byte offset: 00 1100

Index: 1101 1110 0001 00 (0x3784)

Tag: 1000 0100 0110 (0x846)

	Way-1	_Way-2_	Way-3_	Way-4	Way-5	Way-6	_Way-7_	_Way-8_
<u>Index</u>	666	116	333	999	645	846	211	777
					U .5			
LRU bits	101	100	110	011	000	111	001	010
			_	5				
MESI	M	M	M	3	С	3	Е	E

Step 6: 777DE136- Read Operation - Hit

Binary Representation of 777DE136 is 0111 0111 0111 1101 1110 0001 0011 0110

Byte offset: 11 0110

Index: 1101 1110 0001 00 (0x3784)

Tag: 0111 0111 0111(0x777)

	Way-1_	_Way-2_	_Way-3_	Way-4	Way-5	<u> Way-6</u>	_Way-7	Way-8_
<u>Index</u>	666	116	333	999	645	846	211	777

LRU bits	100	011	101	010	000	110	001	111
MESI	M	M	M	S	Ε	S	Ε	M

Step 7: 1 ABCDE128 - Write Operation - Miss. So replace using LRU. (No Write back)

Binary Representation of ABCDE128 is 1010 1011 1100 1101 1110 0001 0010 1000

Byte offset: 10 1000

Index: 1101 1110 0001 00(0x3784) Tag: 1010 1011 1100 (0xABC)

<u>Index</u>	Way-1 666	Way-2 116	Way-3 333	Way-4 999	Way-5 ABC	Way-6 846	Way-7	Way-8
LRU bits	011	010	100	001	111	101	000	110
MESI	M	M	M	S	M	S	E	M

Step 8: 0 116DE101 - Read Operation - Hit

Binary Representation of 116DE101 is 0001 0001 0110 1101 1110 0001 0000 0001

Byte offset: 00 0001

Index: 1101 1110 0001 00 (0x3784)

Tag: 0001 0001 0110 (0x116)

	Way-1	Way-2	Way-3	Way-4	Way-5	Way-6	Way-7	Way-8
<u>Index</u>	666	116	333	999	ABC	846	211	777
LRU bits	010	111	011	001	110	100	000	101
MESI	M	М	M	S	M	S	Ε	M

Step 9: 1 100DE101 - Write Operation - Miss. So replace using LRU. (No Write back)

Binary Representation of 100DE101 is 0001 0000 0000 1101 1110 0001 0000 0001

Byte offset: 00 0001

Index: 1101 1110 0001 00 (0x3784) Tag: 0001 0000 0000 (0x100)

Way-1	_Way-2_	Way-3_	Way-4	Way-5	Way-6	_Way-7_	Way-8_
666	116	333	999	ABC	846	100	777

Index

LRU bits	001	110	010	000	101	011	111	100
MESI	M	M	M	S	M	S	М	M

Step 10: 1 AAADE101 - Write Operation - Miss. So replace using LRU. (No Write back)

Binary Representation of AAADE101 is 1010 1010 1010 1101 1110 0001 0000 0001

Byte offset: 00 0001

Index: 1101 1110 0001 00 (0x3784) Tag: 1010 1010 1010 (0xAAA)

	Way-1	_Way-2_	Way-3_	Way-4	Way-5	Way-6	Way-7	Way-8
<u>Index</u>	666	116	333	AAA	ABC	846	100	777
<u>LRU bits</u>	000	101	001	111	100	010	110	011
MESI	M	M	M	M	M	S	M	M

Step 11: 1 EDCDE101 - Write Operation - Miss. So replace using LRU. (Write back)

Binary Representation of EDCDE101 is 1110 1101 1100 1101 1110 0001 0000 0001

Byte offset: 00 0001

Index: 1101 1110 0001 00 (0x3784) Tag: 1110 1101 1100 (0xEDC)

	Way-1	Way-2	Way-3	Way-4	Way-5	Way-6	Way-7	Way-8
<u>Index</u>	EDC	116	333	AAA	ABC	846	100	777
LRU bits	000	101	001	111	100	010	110	011
MESI	M	M	M	M	М	S	M	M

In this case, Way-1 was previously in M state and again a Write operation happens in this step. So the previously modified content is written back to the memory before step 11 happens.

Step 12: 4 AAADE101 - SNOOP (RFO scenario)

This is a two step process. AAA in previous case points to Modified state. The modified data pointed by AAA is being requested by another processor(P2) for ownership. So AAA first writes back data to Memory and shares the data to the requested processor thereby going to shared state. Once the requested processor gets the shared data it modifies it(Read For Ownership first, then write) and goes to Exclusive state(P2) and broadcasts the Invalidate signal to all other processors. So AAA of processor(P1) goes to Invalid state finally.

Binary Representation of AAADE101 is 1010 1010 1010 1101 1110 0001 0000 0001

Byte offset: 00 0001

Index: 1101 1110 0001 00 (0x3784) Tag: 1010 1010 1010 (0xAAA)

	Way-1	Way-2	Way-3_	Way-4	Way-5	Way-6	Way-7	Way-8_
<u>Index</u>	EDC	116	333	AAA	ABC	846	100	777
<u>LRU bits</u>	000	101	001	111	100	010	110	011
MESI	M	М	M	ı	M	S	М	M

P.S -> The above two scenarios are explained for different operations only to a particular index (3784 in decimal or 1101 1110 0001 00 in HEX) in the D-cache.