

Simulating Polarized Neutron Scattering Experiments and Equipment with McStas

Peter Willendrup, DTU Physics & ESS DMSC

McStas "particle" model

Neutron ray/package:

Weight: (p) # neutrons left in the

package

Position: (x, y, z)

Velocity: (v_x, v_y, v_z)

Polarization: (s_x, s_y, s_z)

Time: (t)

$$P_n = \frac{1}{p_n} \sum_{i=1}^{p} P_{i,n}; \ n = raynumber$$

$$P = \frac{1}{N} \sum_{n=0}^{N} P$$

$$P_{i,n} = 2\left(\left\langle s_{x,i}^{\wedge} \right\rangle i_{x,i}^{\wedge} + \left\langle s_{y,i}^{\wedge} \right\rangle i_{y,i}^{\wedge} + \left\langle s_{z,i}^{\wedge} \right\rangle i_{z,i}^{\wedge}\right)$$

From G. Williams: "Polarized neutrons", Oxford Science Publ., 1988

McStas detectors/monitors

Monitoring: How and What do we monitor?

$$P_{\hat{h}} = \frac{\sum_{n=0}^{N} p_n P_n \cdot \hat{h}}{\sum_{n=0}^{N} p_n}$$

McStas detectors/monitors

Monitoring: How and What do we monitor?

E.g. polarisation along \hat{h} as fct. of wavelength

McStas detectors/monitors

Monitoring: How and What do we monitor?

Polarisation along \hat{h} as fct. of wavelength

Polarization monitors

Available monitors:

- Pol_monitor.comp: **OD**
- Pollambda monitor.comp: 2D
- PolTOF_monitor.comp: 2D
- MeanPolLambda monitor.comp: 1D

- Magnetic fields in McStas
- The challenge:
 - Fast beam/ray transport: # $rays > 10^6$
 - Unknown magnetic field and field strength
 - >1 Magnet → nested fields.


```
while n_t < t_{target} do store neutron; sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_2 = \mathbf{B}(n_x, n_y, n_z, n_t); while |\mathbf{B}_1 - \mathbf{B}_2| > \delta B_{threshold} do restore neutron; \delta t := \delta t/2; propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); precess polarization: \mathbf{P}_n by \omega around \frac{\mathbf{B}_1 + \mathbf{B}_2}{2};
```

Algorithm 1: SimpleNumMagnetPrecession: Simplistic algorithm for tracking polarization of a Monte-Carlo neutron in a magnetic f eld. The neutron's state is stored as a position (n_x, n_y, n_z) , a velocity \mathbf{v} , time n_t , and polarization vector $\mathbf{P_n}$.


```
while n_t < t_{target} do store neutron; sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_2 = \mathbf{B}(n_x, n_y, n_z, n_t); while |\mathbf{B}_1 - \mathbf{B}_2| > \delta B_{threshold} do restore neutron; \delta t := \delta t/2; propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); precess polarization: \mathbf{P}_n by \omega around \frac{\mathbf{B}_1 + \mathbf{B}_2}{2};
```

Algorithm 1: SimpleNumMagnetPrecession: Simplistic algorithm for tracking polarization of a Monte-Carlo neutron in a magnetic f eld. The neutron's state is stored as a position (n_x, n_y, n_z) , a velocity \mathbf{v} , time n_t , and polarization vector $\mathbf{P_n}$.


```
while n_t < t_{target} do store neutron; sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); propagate neutron: \delta t < \Delta t; sample magnetic f eld: \mathbf{B}_2 = \mathbf{B}(n_x, n_y, n_z, n_t); while |\mathbf{B}_1 - \mathbf{B}_2| > \delta B threshold do restore neutron; \delta t := \delta t/2; propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); precess polarization: \mathbf{P}_n by \omega around \frac{\mathbf{B}_1 + \mathbf{B}_2}{2};
```

Algorithm 1: SimpleNumMagnetPrecession: Simplistic algorithm for tracking polarization of a Monte-Carlo neutron in a magnetic f eld. The neutron's state is stored as a position (n_x, n_y, n_z) , a velocity \mathbf{v} , time n_t , and polarization vector $\mathbf{P_n}$.


```
while n_t < t_{target} do store neutron; void mc_pol_set_timestep (double dt); sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); propagate neutron; void mc_pol_set_angular_accuracy (double domega); while |\mathbf{B}_1 - \mathbf{B}_2| > \delta B_{threshold} do restore neutron; \delta t := \delta t/2; propagate neutron: \delta t (< \Delta t); sample magnetic f eld: \mathbf{B}_1 = \mathbf{B}(n_x, n_y, n_z, n_t); precess polarization: \mathbf{P}_n by \omega around \frac{\mathbf{B}_1 + \mathbf{B}_2}{2};
```

Algorithm 1: SimpleNumMagnetPrecession: Simplistic algorithm for tracking polarization of a Monte-Carlo neutron in a magnetic f eld. The neutron's state is stored as a position (n_x, n_y, n_z) , a velocity \mathbf{v} , time n_t , and polarization vector $\mathbf{P_n}$.

McStas polarization components

Magnetic fields:

- Pol_FieldBox.comp
- (Pol_constBfield.comp 2.x)
- Pol_Bfield.comp
- Pol_Bfield_stop.comp
- Pol triafield.comp
- (Pol tabled field 3.x)

Monitors:

- Pol monitor.comp
- MeanPolLambda_monitor.comp
- Pollambda monitor.comp
- PolTOF monitor.comp

Contrib:

• Foil flipper magnet.comp

Optics:

- Monochromator pol.comp
- Pol bender.comp
- Pol_guide_mirror.comp
- Pol guide vmirror.comp
- Pol mirror.comp
- Transmission_polarisatorABSnT.comp
- Pol bender tapering.comp

Idealized components:

- PolAnalyser ideal.comp
- Pol SF ideal.comp
- Pol_pi_2_rotator.comp
- Set pol.comp

- Pol_constBfield.comp
- Single constant Magnetic field in a "box".
- user may specify a wavelength to flip.
 - "blocking walls"

- Pol_FieldBox.comp
- Single Magnetic field in a "box"
- Constant or tabled magnetic fields

- Pol_Bfield.comp
- Pol_Bfield_stop.comp
 - Entry/Exit contruction allows for nested magnetic field descriptions.
 - Any magnetic field through user supplied c-function
 - Tabled magnetic fields

Standard field types:

- Constant field
- Rotating field
- Gradient field
- "Majorana" type field

Plus user-defined fields (McStas 2.x only)

See pol-lib.c in share/ and the examples

Windows can be many shapes

B-Fields: constant, functional, tabled, ... in more general shapes

- Pol_Bfield.comp
- Pol_Bfield_stop.comp
 - Entry/Exit contruction allows for nested magnetic field descriptions.
 - Any magnetic field through user supplied c-function
 - Tabled magnetic fields

Standard field types:

- Constant field
- Rotating field
- Gradient field
- "Majorana" type field

Plus user-defined fields (McStas 2.x only)

See pol-lib.c in share/ and the examples

Nested fields

Simple McStas sample component

Incoherent.comp has SF / NSF solution

```
/* Polarisation part (1/3 NSF, 2/3 SF) */
sx *= -1.0/3.0;
sy *= -1.0/3.0;
sz *= -1.0/3.0;
SCATTER;
```


Magnetic single crystal

Magnetic single crystal – Unpolarized beam

Magnetic single crystal – Polarized beam

Magnetic single crystal

The magnetic scattering cross-section for a sample with localised spin+orbital angular moment $g\mathbf{J} = (g_S + g_L)\mathbf{J} = 2\mathbf{S} + \mathbf{L}$ is:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega_{\mathrm{f}} \mathrm{d}E_{\mathrm{f}}} = \frac{k_f}{k_i} \sum_{i,f} P(\lambda_i) \left| \langle \lambda_f \mid \sum_j e^{i\mathbf{Q} \cdot \mathbf{d}_j} U_j^{\sigma_i \sigma_f} \mid \lambda_i \rangle \right|^2 \delta(\hbar \omega + E_i - E_f)$$

where $|\lambda_i\rangle$ and $\langle\lambda_f|$ are the initial and final states of the sample with energies E_i and E_f respectively, $P(\lambda_i)$ is the distribution of initial states and

$$U_i^{\sigma_i \sigma_f} = \langle \sigma_f \mid b_j - m_j \mathbf{J}_{\perp j} \cdot \boldsymbol{\sigma} \mid \sigma_i \rangle$$

where $|\sigma_i\rangle$ and $\langle\sigma_f|$ are the initial and final spin states of the neutron, and σ are the Pauli spin matrices working on the neutron state.

From: G. Shirane et.al., "Neutron Scattering with Triple-Axis Spectrometer", Cambridge Univ. Press, 2002

McStas sample component (2.x only) Magnetic single crystal

If $\mathbf{P} = P(\xi, \eta, \zeta) = P\hat{\boldsymbol{\zeta}}$. Thus, the matrix elements of $U^{\sigma_i \sigma_f}$ can now be written

$$U^{++} = b - mJ_{\perp \xi}
U^{--} = b + mJ_{\perp \xi}
U^{+-} = -m (J_{\perp \xi} + iJ_{\perp \eta})
U^{+-} = -m (J_{\perp \xi} - iJ_{\perp \eta})$$

where $m = \frac{r_0 \gamma}{2} gf(\mathbf{Q})$ with r_0 the classical electron radius, $\gamma = 1.913$, g the Landé splitting factor and $f(\mathbf{Q})$ the magnetic form factor of a particular ion in the sample.

Example instruments:

```
*Magnetic*.instr:
Test_Magnetic_Constant.instr
Test_Magnetic_Majorana.instr
Test_Magnetic_Rotation.instr
Test_Magnetic_Userdefined.instr (2.x only)
Test_single_magnetic_crystal.instr (2.x only)
```

```
SE*.instr:
SEMSANS_Delft.instr
SEMSANS_instrument.instr
SESANS_Delft.instr
SE_example.instr
SE_example2.instr
```

```
*Pol*.instr:
Test_Pol_Bender.instr
Test_Pol_Bender_Vs_Guide_Curved.instr
Test_Pol_FieldBox.instr
Test_Pol_Guide_Vmirror.instr
Test_Pol_Guide_mirror.instr
Test_Pol_MSF.instr
Test_Pol_Mirror.instr
Test_Pol_SF_ideal.instr
Test_Pol_Set.instr
Test_Pol_Tabled.instr
Test_Pol_TripleAxis.instr
```