ECE358 Week 1

Sanzhe Feng

September 10, 2022

Asmptotic efficiency of algorithms decribes when the size of the input increases without bound.

3.1 Asymptotic Notation

Asymptotic notation, functions, and running times

Asymptotic notation actually applies to functions. For example, the worst-case running time for insertion sort is $an^2 + bn + c$, but when we write the asymptotic notation as $\Theta(n^2)$.

Θ -notation

Definition: For given function g(n), a function f(n) belongs to the **set** $\Theta(g(n))$ if there exists positive constants c_1 , c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

Figure 1.1 Graphic examples of the Θ , Ω and O notations (CLRS P45)

Such relationship can be expressed by $f(n) \in \Theta(g(n))$ or $f(n) = \Theta(g(n))$, and g(n) is the **asymptotically tight bound** for f(n). This definition requires that f(n) is nonnegative whenever n is sufficiently large (**asymptotically nonnegative**). Consequently, g(n) needs to be the same way.

A formal justification of $f(n) = \Theta(n)$ where $f(n) = an^2 + bn + c$ where a, b, c are constants and a > 0. We can easily pick $c_1 = a/4, c_2 = 7a/4$ and $n_0 = 2 \cdot max(|b|/a, \sqrt{|c|/a})$ and verify that $0 \le c_1 n^2 \le an^2 + bn + c \le c_2 n^2$ (definition). The important thing is that **some choice exists**.

In general, for any polynomial $p(n) = \sum_{i=0}^{k} a_i n^i$, we have $p(n) = \Theta(n^d)$ when a_i are constants and $a_d > 0$. We can also express constant functions as $\Theta(n^0)$ or $\Theta(1)$.

O-notation

Asymptotic upper bound. Definition: For given function g(n), a function f(n) belongs to the set O(g(n)) if there exists positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$. Note that $f(n) = \Theta(g(n))$ implies f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. Therefore, if $\Theta(n^2)$, then $O(n^2)$.

Suprisingly,we found any linear function an + b, a > 0 is in $O(n^2)$. This is because in this book, we do not claim about **HOW TIGHT AN UPPER BOUND IS**.

O-notation describes an upper bound, when we use it to bound the worstcase running time of an algorithm, we have a bound on the running time of the algorithm on every input. Thus, the $O(n^2)$ bound on worst-case running time of insertion sort also applies to its running time on every input. The $\Theta(n^2)$ bound on the worst-case running time of insertion sort, however, does not imply $\Theta(n^2)$ bound on the running time of insertion sort on every input. Since there is an input that makes insertion sort runs in $\Theta(n)$ time. (The simple $\Theta(n^2) \neq \Theta(n^2)$ idea).

When we say the running time of insertion sort is $O(n^2)$, we MEAN no matter what the input is, the time is bounded from above by f(n).

Ω -notation

Asymptotic lower bound. Definition: For given function g(n), a function f(n) belongs to the set $\Omega(g(n))$ if there exists positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

Based on these three definitions, we can have the following theorem:

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and

$f(n) = \Omega(g(n))$

The running time of an algorithm is $\Omega(g(n))$ means the running time on any input is at least g(n). In CONCLUSION, the running time of insertion sort belongs to both $\Omega(n)$ and $O(n^2)$ and these bounds are as close as possible: cannot be $\Omega(n^2)$ since there is an input to make the running time $\Theta(n)$ (so $\Omega(n)$).

However, we can also say that the worst-case running time of insertion sort is $\Omega(n^2)$ since there does exists an input to make this happen.

Asymptotic notation in equations and inequalities

How do we interpret these notations when in equations?

Case 1: When the notation stands alone, the equal sign = means is a set of.

Case 2: When the notation is in a formula, we interpret it as standing for some anonymous function that we do not care to name. e.g. $2n^2 + 3n + 1 = 2n^2 + f(n)$ where f(n) is in the set $\Theta(n)$ so we write as $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$

The number of the anonymous functions (represented by the notations) is understood to be equal to the number of times the notations appears. For example, $\sum_{i=1}^{n} O_i$ can be interpretted as only one single anonymous function (a function of i). What does it even mean though.

Case 3: if the notation is on the left, we interpret it by the following rule: No matter how the anonymous functions are chosen on the left of the equal sign, there is a way to choose the anonymous functions on the right of the equal sign to make the equation valid. In the case: $2n^2 + \Theta(n) = \Theta(n^2)$, we interpret it as for any $f(n) \in \Theta(n)$, there is SOME $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$ for all n.

o-notation

Back to the tightness problem: $2n^2 = O(n^2)$ is asymptotically tight but $2n = O(n^2)$ is not. onotation is then used to denote an upper bound that is not asymptotically tight. Formal definition:

For given function g(n), a function f(n) belongs to the **set** o(g(n)) if for any positive constant c, there exists a constant n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

This definition can be intuitively considered as the following limit:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

ω -notation

Similar to o-notation, ω -notation is used to denote a lower bound that is not asymptotically tight. Definition:

For given function g(n), a function f(n) belongs to the **set** $\omega(g(n))$ if for any positive constant c, there exists a constant n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

This definition can be intuitively considered as the following limit:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Relational properties

Transitivity

$$\begin{split} &f(n) = \Theta(g(n)) \text{ and } g(n) = \Theta(h(n)) & \text{ imply } f(n) = \Theta(h(n)); \\ &f(n) = O(g(n)) \text{ and } g(n) = O(h(n)) & \text{ imply } f(n) = O(h(n)); \\ &f(n) = \Omega(g(n)) \text{ and } g(n) = \Omega(h(n)) & \text{ imply } f(n) = \Omega(h(n)); \\ &f(n) = o(g(n)) \text{ and } g(n) = o(h(n)) & \text{ imply } f(n) = o(h(n)); \\ &f(n) = \omega(g(n)) \text{ and } g(n) = \omega(h(n)) & \text{ imply } f(n) = \omega(h(n)); \end{split}$$

Reflexivity

$$f(n) = \Theta(f(n));$$
 $f(n) = O(f(n));$ $f(n) = \Omega(f(n));$

Symmetry

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$.
 $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

To help understand and memorize, we can draw analogies between the asymptotic comparison of functions f and g and the comparison of two real numbers a and b:

$$f(n) = O(g(n)) \text{ is like } a \leq b.$$

$$f(n) = \Omega(g(n)) \text{ is like } a \geq b.$$

$$f(n) = \Theta(g(n)) \text{ is like } a = b.$$

$$f(n) = o(g(n)) \text{ is like } a < b. \text{ f is asymptotically smaller than g}$$

$$f(n) = \omega(g(n)) \text{ is like } a > b. \text{ f is asymptotically larger than g}$$

Trichotomy

For any two real numbers a and b, exactly one of the following must hold: a < b, a = b or a > b. This property CANNOT be hold for the functions. For example, we cannot compare n and $n^{1+\sin(n)}$ since the oscillating value. Some logrithm

3.2 Logarithms

In this course, following notations are used

$$\lg n = \log_2 n$$
 (binary logarithm)
 $\ln n = \log_e n$ (natural logarithm)
 $\lg^k n = (\lg n)^k$ (exponentiation)

$$\lg \lg n = \lg(\lg n)$$
 (composition)

Just for review, for all real a > 0, b > 0, c > 0 and n,

$$a = b^{\log_b a}$$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b (1/a) = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

where, in each equation above, logarithm bases are not 1.

A simple expansion when |x| < 1:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \dots$$

An inequalities for x > -1, equality holds when x = 0:

$$\frac{1}{1+x} \le \ln(1+x) \le x$$

A function is **polylogarithmically bounded** if $f(n) = O(\lg^k n)$, consider polynomial n^a , if we take:

$$\lim_{n \to \infty} \frac{\lg^b n}{(2^{a \lg n})} = \lim_{n \to \infty} \frac{\lg^b n}{n^a} = 0$$

From this, we can conclude, $\lg^b n = o(n^a)$, which means any positive polynomial function grows faster than any polylogarithmic function.

Appendix A: Summation

Convergence/Divergence: The limit of the infinite series exist/don't exist. Notice the terms of a convergent series cannot always be added in ANY order. Unless it is **absolute convergent series**: both $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} |a_k|$ converge.

Linearity:
$$\sum_{k=1}^n \Theta(f(k)) = \Theta(\sum_{k=1}^n f(k))$$

Arithmetic series:
$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1) = \Theta(n^2)$$

Sum of squares and cubes:
$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 and $\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}$

Geometric series:
$$\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1}$$
 if summation is inf. and $|x| < 1$, the result becomes: $\frac{1}{1-x}$

Harmonic series:
$$H_n = \sum_{k=1}^n \frac{1}{k} = \ln n + O(1)$$

Telescoping series:
$$\sum_{k=1}^{n} (a_k - a_{k-1}) = a_n - a_0$$
; $\sum_{k=0}^{n-1} (a_k - a_{k+1}) = a_0 - a_n$. An example is $\sum_{k=1}^{n-1} \frac{1}{k(k+1)}$. Try it.

Techniques for bounding the summations:

1. Mathematical induction:

Lets prove the geometric series $\sum_{k=0}^{n} 3^{k}$ is $O(3^{n})$:

So we need to prove $\sum_{k=0}^{n} 3^k \le c 3^n$ for some constant c; If n=0, we have $\sum_{k=0}^{n} 3^k \le c \cdot 3^n$ as long

as $c \ge 1$. Assume this bound holds for all n, then:

$$\sum_{k=0}^{n+1} 3^k = \sum_{k=0}^n 3^k + 3^{n+1}$$

$$\leq c3^n + 3^{n+1}$$

$$= \left(\frac{1}{3} + \frac{1}{c}\right)c3^{n+1}$$

$$\leq c3^{n+1}$$

as long as $(1/3 + 1/c) \le 1$. Q.E.D.

2. Bounding the terms:

Case 1: In general, for a series $\sum_{k=1}^{n} a_k$, let $a_{max} = \max(a_k)$, then $\sum_{k=1}^{n} a_k \le n \cdot a_{max}$ Case 2 (Stronger Case): Geometric series. Given the series $\sum_{k=0}^{n} a_k$, suppose $a_{k+1}/a_k \le r$, where 0 < r < 1, such geometric series have the property:

$$\sum_{k=0}^{n} a_k = a_0 \frac{1}{1-r}$$

For example: $\sum_{k=1}^{\infty} (k/3^k)$, rewrite it as $\sum_{k=0}^{\infty} ((k+1)/3^{k+1})$, the first term (a_0) is 1/3, and the ratio (r) is:

$$\frac{(k+2)/3^{k+2}}{(k+1)/3^{k+1}} = \frac{1}{3} \cdot \frac{k+2}{k+1} \le \frac{2}{3}$$

for all $k \ge 0$ So $\sum_{k=1}^{n} a_k \le 1$

3. Splitting summations:

Express the series as the sum of two or more series by partitioning the range of the index and then

to bound each of the resulting series. e.g.1:

$$\sum_{k=1}^{n} k = \sum_{k=1}^{n/2} k + \sum_{k=n/2+1}^{n} k$$

$$\geq \sum_{k=1}^{n/2} 0 + \sum_{k=n/2+1}^{n} (n/2)$$

$$= (n/2)^{2}$$

$$= \Omega(n^{2})$$

e.g.2: Ignore a constant number of the initial terms. Generally, this technique applies when each term is independent of n. For example, $\sum_{k=0}^{\infty} \frac{k^2}{2^k}$, if $k \geq 3$

$$\frac{(k+1)^2/2^{k+1}}{k^2/2^k} = \frac{(k+1)^2}{2k^2}$$
$$\leq \frac{8}{9}$$

then summation can be split into

$$\sum_{k=0}^{\infty} \frac{k^2}{2^k} = \sum_{k=0}^{2} \frac{k^2}{2^k} + \sum_{k=3}^{\infty} \frac{k^2}{2^k}$$

$$\leq \sum_{k=0}^{2} \frac{k^2}{2^k} + \frac{9}{8} \sum_{k=0}^{\infty} \left(\frac{8}{9}\right)^k$$

$$= O(1)$$

4. Approximation by integrals: If f(x) is monotonically increasing, we can use:

$$\int_{m-1}^{n} f(x)dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x)dx$$

to approximate the summation term.