Qualifying Exams

D. Zack Garza

December 22, 2019

Contents

1	Fall	2019													
	1.1	1													
	1.2	2													
	1.3	3													
	1.4	4													
	1.5	5													
	1.6	6													
	1.7	7													
	1.8	8													
	1.0	0													
2	Spring 2019														
	2.1	1													
	2.2	2													
	2.3	3													
	2.4	4													
	2.5	5													
	2.6	6													
	2.7	7													
	2.8	8													
3															
	3.1	1													
	3.2	2													
	3.3	3													
	3.4	4													
	3.5	5													
	3.6	6													
	3.7	7													
4	Spring 2018														
7	3pri 4.1	g 2016 1													
	4.2	2													
	4.3	3													
	4.4	4													
	4.5	5													

4.6	6									 													Ć
4.7	7									 													Ĉ
4.8	8	 •																			•		Ĝ
	2017																						10
5.1	1																						10
5.2	2																						10
5.3	3																						10
5.4	4									 													10
5.5	5									 													11
5.6	6																						11
	7																						

1 Fall 2019

1.1 1

Let G be a finite group with n distinct conjugacy classes. Let $g_1 \cdots g_n$ be representatives of the conjugacy classes of G.

Prove that if $g_ig_j = g_jg_i$ for all i, j then G is abelian.

1.2 2

Let G be a group of order 105 and let P, Q, R be Sylow 3, 5, 7 subgroups respectively.

- (a) Prove that at least one of Q and R is normal in G.
- (b) Prove that G has a cyclic subgroup of order 35.
- (c) Prove that both Q and R are normal in G.
- (d) Prove that if P is normal in G then G is cyclic.

1.3 3

Let R be a ring with the property that for every $a \in R, a^2 = a$.

- (a) Prove that R has characteristic 2.
- (b) Prove that R is commutative.

1.4 4

Let F be a finite field with q elements.

Let n be a positive integer relatively prime to q and let ω be a primitive nth root of unity in an extension field of F.

Let $E = F[\omega]$ and let k = [E : F].

(a) Prove that n divides $q^k - 1$.

- (b) Let m be the order of q in $\mathbb{Z}/n\mathbb{Z}$. Prove that m divides k.
- (c) Prove that m = k.

1.5 5

Let R be a ring and M an R-module.

Recall that the set of torsion elements in M is defined by

$$Tor(m) = \{ m \in M \ni \exists r \in R, \ r \neq 0, \ rm = 0 \}.$$

- (a) Prove that if R is an integral domain, then Tor(M) is a submodule of M.
- (b) Give an example where Tor(M) is not a submodule of M.
- (c) If R has zero-divisors, prove that every non-zero R-module has non-zero torsion elements.

1.6 6

Let R be a commutative ring with multiplicative identity. Assume Zorn's Lemma.

(a) Show that

$$N = \{ r \in R \mid r^n = 0 \text{ for some } n > 0 \}$$

is an ideal which is contained in any prime ideal.

- (b) Let r be an element of R not in N. Let S be the collection of all proper ideals of R not containing any positive power of r. Use Zorn's Lemma to prove that there is a prime ideal in S.
- (c) Suppose that R has exactly one prime ideal P. Prove that every element r of R is either nilpotent or a unit.

1.7 7

Let ζ_n denote a primitive nth root of $1 \in \mathbb{Q}$. You may assume the roots of the minimal polynomial $p_n(x)$ of ζ_n are exactly the primitive nth roots of 1.

Show that the field extension $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is Galois and prove its Galois group is $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

How many subfields are there of $\mathbb{Q}(\zeta_{20})$?

1.8 8

Let $\{e_1, \dots, e_n\}$ be a basis of a real vector space V and let

$$\Lambda \coloneqq \left\{ \sum r_i e_i \mid ri \in \mathbb{Z} \right\}$$

Let \cdot be a non-degenerate $(v \cdot w = 0 \text{ for all } w \in V \iff v = 0)$ symmetric bilinear form on V such that the Gram matrix $M = (e_i \cdot e_j)$ has integer entries.

Define the dual of Λ to be

$$\Lambda^{\vee} := \{ v \in V \ \ni v \cdot x \in \mathbb{Z} \text{ for all } x \in \Lambda \}.$$

- (a) Show that $\Lambda \subset \Lambda^{\vee}$.
- (b) Prove that $\det M \neq 0$ and that the rows of M^{-1} span Λ^{\vee} .
- (c) Prove that $\det M = |\Lambda^{\vee}/\Lambda|$.

2 Spring 2019

2.1 1.

Let A be a square matrix over the complex numbers. Suppose that A is nonsingular and that A^{2019} is diagonalizable over \mathbb{C} .

Show that A is also diagonalizable over \mathbb{C} .

2.2 2.

Let $F = \mathbb{F}_p$, where p is a prime number.

- (a) Show that if $\pi(x) \in F[x]$ is irreducible of degree d, then $\pi(x)$ divides $x^{p^d} x$.
- (b) Show that if $\pi(x) \in F[x]$ is an irreducible polynomial that divides $x^{p^n} x$, then $\deg \pi(x)$ divides n.

2.3 3.

How many isomorphism classes are there of groups of order 45?

Describe a representative from each class.

2.4 4.

For a finite group G, let c(G) denote the number of conjugacy classes of G.

(a) Prove that if two elements of G are chosen uniformly at random, then the probability they commute is precisely

$$\frac{c(G)}{|G|}$$
.

- (b) State the class equation for a finite group.
- (c) Using the class equation (or otherwise) show that the probability in part (a) is at most

$$\frac{1}{2} + \frac{1}{2[G:Z(G)]}.$$

4

Here, as usual, Z(G) denotes the center of G.

2.5 5.

Let R be an integral domain. Recall that if M is an R-module, the rank of M is defined to be the maximum number of R-linearly independent elements of M.

- (a) Prove that for any R-module M, the rank of Tor(M) is 0.
- (b) Prove that the rank of M is equal to the rank of of M/Tor(M).
- (c) Suppose that M is a non-principal ideal of R.

Prove that M is torsion-free of rank 1 but not free.

2.6 6.

Let R be a commutative ring with 1.

Recall that $x \in R$ is nilpotent iff xn = 0 for some positive integer n.

- (a) Show that every proper ideal of R is contained within a maximal ideal.
- (b) Let J(R) denote the intersection of all maximal ideals of R.

Show that $x \in J(R) \iff 1 + rx$ is a unit for all $r \in R$.

(c) Suppose now that R is finite. Show that in this case J(R) consists precisely of the nilpotent elements in R.

2.7 7.

Let p be a prime number. Let A be a $p \times p$ matrix over a field F with 1 in all entries except 0 on the main diagonal.

Determine the Jordan canonical form (JCF) of A

- (a) When $F = \mathbb{Q}$,
- (b) When $F = \mathbb{F}_p$.

Hint: In both cases, all eigenvalues lie in the ground field. In each case find a matrix P such that $P^{-1}AP$ is in JCF.

2.8 8.

Let $\zeta = e^{2\pi i/8}$.

- (a) What is the degree of $\mathbb{Q}(\zeta)/\mathbb{Q}$?
- (b) How many quadratic subfields of $\mathbb{Q}(\zeta)$ are there?
- (c) What is the degree of $\mathbb{Q}(\zeta, \sqrt[4]{2})$ over \mathbb{Q} ?

3 Fall 2018

3.1 1.

Let G be a finite group whose order is divisible by a prime number p. Let P be a normal p-subgroup of G (so $|P| = p^c$ for some c).

- (a) Show that P is contained in every Sylow p-subgroup of G.
- (b) Let M be a maximal proper subgroup of G. Show that either $P \subseteq M$ or $|G/M| = p^b$ for some $b \le c$.

3.2 2.

- (a) Suppose the group G acts on the set X. Show that the stabilizers of elements in the same orbit are conjugate.
- (b) Let G be a finite group and let H be a proper subgroup. Show that the union of the conjugates of H is strictly smaller than G, i.e.

$$\bigcup_{g \in G} gHg^{-1} \subsetneq G$$

(c) Suppose G is a finite group acting transitively on a set S with at least 2 elements. Show that there is an element of G with no fixed points in S.

3.3 3.

Let $F \subset K \subset L$ be finite degree field extensions. For each of the following assertions, give a proof or a counterexample.

- (a) If L/F is Galois, then so is K/F.
- (b) If L/F is Galois, then so is L/K.
- (c) If K/F and L/K are both Galois, then so is L/F.

3.4 4.

Let V be a finite dimensional vector space over a field (the field is not necessarily algebraically closed).

Let $\phi:V\to V$ be a linear transformation. Prove that there exists a decomposition of \$V\$ as $V=U\oplus W$, where U and W are ϕ -invariant subspaces of V, $\phi|_U$ is nilpotent, and $\phi|_W$ is nonsingular.

3.5 5.

Let A be an $n \times n$ matrix.

(a) Suppose that v is a column vector such that the set $\{v, Av, ..., A^{n-1}v\}$ is linearly independent. Show that any matrix B that commutes with A is a polynomial in A.

(b) Show that there exists a column vector v such that the set $\{v, Av, ..., A^{n-1}v\}$ is linearly independent \iff the characteristic polynomial of A equals the minimal polynomial of A.

3.6 6.

Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is maximal if there is no R-module P with $N \subsetneq P \subsetneq M$.

- (a) Show that an R-submodule N of M is maximal iffM/N is a simple R-module: i.e., M/N is nonzero and has no proper, nonzero R-submodules.
- (b) Let M be a \mathbb{Z} -module. Show that a \mathbb{Z} -submodule N of M is maximal $\iff \#M/N$ is a prime number.
- (c) Let M be the \mathbb{Z} -module of all roots of unity in \mathbb{C} under multiplication. Show that there is no maximal \mathbb{Z} -submodule of M.

3.7 7.

Let R be a commutative ring.

(a) Let $r \in R$. Show that the map

$$r \bullet : R \to R$$

 $x \mapsto rx.$

is an R-module endomorphism of R.

- (b) We say that r is a **zero-divisor** if $r \bullet$ is not injective. Show that if r is a zero-divisor and $r \neq 0$, then the kernel and image of R each consist of zero-divisors.
- (c) Let $n \geq 2$ be an integer. Show: if R has exactly n zero-divisors, then $\#R \leq n^2$.
- (d) Show that up to isomorphism there are exactly two commutative rings R with precisely 2 zero-divisors.

You may use without proof the following fact: every ring of order 4 is isomorphic to exactly one of the following:

$$\frac{\mathbb{Z}}{4\mathbb{Z}}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2+t+1)}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2-t)}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2)}.$$

4 Spring 2018

4.1 1.

- (a) Use the Class Equation (equivalently, the conjugation action of a group on itself) to prove that any p-group (a group whose order is a positive power of a prime integer p) has a nontrivial center.
- (b) Prove that any group of order p^2 (where p is prime) is abelian.

- (c) Prove that any group of order $5^2 \cdot 7^2$ is abelian.
- (d) Write down exactly one representative in each isomorphism class of groups of order $5^2 \cdot 7^2$.

4.2 2.

Let $f(x) = x^4 - 4x^2 + 2 \in \mathbb{Q}[x]$.

- (a) Find the splitting field K of f, and compute $[K:\mathbb{Q}]$.
- (b) Find the Galois group G of f, both as an explicit group of automorphisms, and as a familiar abstract group to which it is isomorphic.
- (c) Exhibit explicitly the correspondence between subgroups of G and intermediate fields between \mathbb{Q} and k.

4.3 3.

Let K be a Galois extension of \mathbb{Q} with Galois group G, and let E_1, E_2 be intermediate fields of K which are the splitting fields of irreducible $f_i(x) \in \mathbb{Q}[x]$.

Let $E = E_1 E_2 \subset K$.

Let $H_i = Gal(K/E_i)$ and H = Gal(K/E).

- (a) Show that $H = H_1 \cap H_2$.
- (b) Show that H_1H_2 is a subgroup of G.
- (c) Show that

$$Gal(K/(E_1 \cap E_2)) = H_1H_2.$$

4.4 4.

Let

$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 1 & -3 \\ 1 & 2 & -4 \end{bmatrix} \in M_3(\mathbb{C})$$

- (a) Find the Jordan canonical form J of A.
- (b) Find an invertible matrix P such that $P^{-1}AP = J$.

You should not need to compute P^{-1} .

4.5 5.

Let

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{and} \quad N = \begin{pmatrix} x & u \\ -y & -v \end{pmatrix}$$

over a commutative ring R, where b and x are units of R. Prove that

$$MN = \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix} \implies MN = 0.$$

4.6 6.

Let

$$M = \{(w, x, y, z) \in \mathbb{Z}^4 \ni w + x + y + z \in 2\mathbb{Z}\},\$$

and

$$N = \{(w, x, y, z) \in \mathbb{Z}^4 \ni 4 \mid (w - x), 4 \mid (x - y), 4 \mid (y - z)\}.$$

- (a) Show that N is a \mathbb{Z} -submodule of M.
- (b) Find vectors $u_1, u_2, u_3, u_4 \in \mathbb{Z}^4$ and integers d_1, d_2, d_3, d_4 such that

$$\{u_1, u_2, u_3, u_4\}$$

is a free basis for M, and

$$\{d_1u_1, d_2u_2, d_3u_3, d_4u_4\}$$

is a free basis for N .

(c) Use the previous part to describe M/N as a direct sum of cyclic \mathbb{Z} -modules.

4.7 7.

Let R be a PID and M be an R-module. Let p be a prime element of R. The module M is called $\langle p \rangle$ -primary if for every $m \in M$ there exists k > 0 such that $p^k m = 0$.

- (a) Suppose M is $\langle p \rangle$ -primary. Show that if $m \in M$ and $t \in R$, $t \notin \langle p \rangle$, then there exists $a \in R$ such that atm = m.
- (b) A submodule S of M is said to be *pure* if $S \cap rM = rS$ for all $r \in R$. Show that if M is $\langle p \rangle$ -primary, then S is pure if and only if $S \cap p^k M = p^k S$ for all $k \geq 0$.

4.8 8.

Let R = C[0,1] be the ring of continuous real-valued functions on the interval [0,1]. Let I be an ideal of R.

- (a) Show that if $f \in I$, $a \in [0,1]$ are such that $f(a) \neq 0$, then there exists $g \in I$ such that $g(x) \geq 0$ for all $x \in [0,1]$, and g(x) > 0 for all x in some open neighborhood of a.
- (b) If $I \neq R$, show that the set $Z(I) = \{x \in [0,1] \ni f(x) = 0 \text{ for all } f \in I\}$ is nonempty.
- (c) Show that if I is maximal, then there exists $x_0 \in [0,1]$ such that $I = \{f \in R \ni f(x_0) = 0\}$.

5 Fall 2017

5.1 1.

Suppose the group G acts on the set A. Assume this action is faithful (recall that this means that the kernel of the homomorphism from G to $\operatorname{Sym}(A)$ which gives the action is trivial) and transitive (for all a, b in A, there exists g in G such that $g \cdot a = b$.)

(a) For $a \in A$, let G_a denote the stabilizer of a in G. Prove that for any $a \in A$,

$$\bigcap_{\sigma \in G} \sigma G_a \sigma^{-1} = \{1\}.$$

(b) Suppose that G is abelian. Prove that |G| = |A|. Deduce that every abelian transitive subgroup of S_n has order n.

5.2 2.

(a) Classify the abelian groups of order 36.

For the rest of the problem, assume that G is a non-abelian group of order 36.

You may assume that the only subgroup of order 12 in S_4 is A_4 and that A_4 has no subgroup of order 6.

- (b) Prove that if the 2-Sylow subgroup of G is normal, G has a normal subgroup N such that G/N is isomorphic to A_4 .
- (c) Show that if G has a normal subgroup N such that G/N is isomorphic to A_4 and a subgroup H isomorphic to A_4 it must be the direct product of N and H.
- (d) Show that the dihedral group of order 36 is a non-abelian group of order 36 whose Sylow-2 subgroup is not normal.

5.3 3.

Let F be a field. Let f(x) be an irreducible polynomial in F[x] of degree n and let g(x) be any polynomial in F[x]. Let p(x) be an irreducible factor (of degree m) of the polynomial f(g(x)).

Prove that n divides m. Use this to prove that if r is an integer which is not a perfect square, and n is a positive integer then every irreducible factor of $x^{2n} - r$ over $\mathbb{Q}[x]$ has even degree.

5.4 4.

(a) Let f(x) be an irreducible polynomial of degree 4 in $\mathbb{Q}[x]$ whose splitting field K over \mathbb{Q} has Galois group $G = S_4$.

Let θ be a root of f(x). Prove that $\mathbb{Q}[\theta]$ is an extension of \mathbb{Q} of degree 4 and that there are no intermediate fields between \mathbb{Q} and $\mathbb{Q}[\theta]$.

(b) Prove that if K is a Galois extension of \mathbb{Q} of degree 4, then there is an intermediate subfield between K and \mathbb{Q} .

5.5 5.

A ring R is called *simple* if its only two-sided ideals are 0 and R.

- (a) Suppose R is a commutative ring with 1. Prove R is simple if and only if R is a field.
- (b) Let k be a field. Show the ring $M_n(k)$, $n \times n$ matrices with entries in k, is a simple ring.

5.6 6.

For a ring R, let U(R) denote the multiplicative group of units in R. Recall that in an integral domain R, $r \in R$ is called *irreducible* if r is not a unit in R, and the only divisors of r have the form ru with u a unit in R.

We call a non-zero, non-unit $r \in R$ prime in R if $r \mid ab \implies r \mid a$ or $r \mid b$. Consider the ring $R = \{a + b\sqrt{-5} \ni a, b \in Z\}$.

- (a) Prove R is an integral domain.
- (b) Show $U(R) = \{\pm 1\}.$
- (c) Show $3, 2 + \sqrt{-5}$, and $2 \sqrt{-5}$ are irreducible in R.
- (d) Show 3 is not prime in R.
- (e) Conclude R is not a PID.

5.7 7.

Let F be a field and let V and W be vector spaces over F.

Make V and W into F[x]-modules via linear operators T on V and S on W by defining $X \cdot v = T(v)$ for all $v \in V$ and $X \cdot w = S(w)$ for all $w \in W$.

Denote the resulting F[x]-modules by V_T and W_S respectively.

- (a) Show that an F[x]-module homomorphism from V_T to W_S consists of an F-linear transformation $R: V \to W$ such that RT = SR.
- (b) Show that $VT \cong WS$ as F[x]-modules \iff there is an F-linear isomorphism $P: V \to W$ such that $T = P^{-1}SP$.
- (c) Recall that a module M is *simple* if $M \neq 0$ and any proper submodule of M must be zero. Suppose that V has dimension 2. Give an example of F, T with V_T simple.
- (d) Assume F is algebraically closed. Prove that if V has dimension 2, then any V_T is not simple.