Géométrie dans l'espace à trois dimensions

Prof. Vladimir ROUBTSOV

vladimir.roubtsov@univ-angers.fr

4 février 2016

1. Vecteurs

Soit \mathcal{E}^3 l'espace à trois dimensions. En tant qu'ensemble, il s'agit de \mathbb{R}^3 . Les éléments de \mathcal{E}^3 sont appelés **points** de \mathcal{E}^3 et notés avec des lettres majuscules. Un point P de \mathcal{E}^3 est donc la donnée d'un triplet (x_P, y_P, z_P) avec x_P, y_P et z_P trois réels.

Mais on sait que \mathcal{E}^3 possède une structure d'espace vectoriel, la structure d'espace vectoriel canonique sur \mathbb{R}^3 . Pour définir rigoureusement la notion de vecteur à partir de la notion de point géométrique, on introduit une relation d'équivalence sur $\mathcal{E}^3 \times \mathcal{E}^3$ appelée équipollence et notée \sim .

Définition 1: Un **bipoint** (A, B) de $\mathcal{E}^3 \times \mathcal{E}^3$ est **équipollent** à un autre bipoint (C, D) si et seulement si ABCD est un parallélogramme. Un **vecteur** $u = \overrightarrow{AB}$ est alors la classe d'équivalence du bipoint (A, B) pour la relation d'équipollence. On dira que A est l'**origine** de u et B est l'**extrémité** de u.

Les vecteurs de \mathcal{E}^3 seront notés avec une lettre minuscule (accompagnés éventuellement d'une flèche). L'ensemble des vecteurs est alors l'espace quotient $(\mathbb{R}^3 \times \mathbb{R}^3)/\sim$ que l'on identifie encore

à \mathbb{R}^3 par l'application :

$$\left[((x_A, y_A, z_A), (x_B, y_B, z_B)) \right] \mapsto (x_B - x_A, y_B - y_A, z_B - z_A)$$

ce qui permet de définir les **composantes** d'un vecteur $\overrightarrow{AB} = -\overrightarrow{BA}$, que l'on notera par :

$$\{x_B - x_A, y_B - y_A, z_B - z_A\}$$

Ces composantes sont indépendantes de la valeur des coordonnées des points A et B, mais dépendantes de leurs différences, c'est-à-dire de la relation géométrique qu'il y a entre les points A et B. Comme d'habitude on définit l'opération de multiplication d'un vecteur par un nombre réel α et l'opération d'addition de deux vecteurs; au niveau des composantes cela se traduit par la multiplication par α de chaque composante et l'addition des composantes des deux vecteurs. On retrouve ainsi la structure d'espace vectoriel bien connue sur \mathbb{R}^3 , et nous pouvons utiliser l'algèbre linéaire pour faire de la géométrie.

La distance euclidienne entre deux points A et B de \mathcal{E}^3 est donnée par la formule :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

Ce qui permet de définir la **norme euclidienne** $\|\overrightarrow{AB}\|$ du vecteur \overrightarrow{AB} par la distance AB = BA qui sépare son origine A de son extrémité B. Autrement dit, si $u = \{u_1, u_2, u_3\}$ on a :

On dira que les vecteurs $u = \{u_1, u_2, u_3\}$ et $v = \{v_1, v_2, v_3\}$ sont **orthogonaux** si l'angle qu'ils forment est droit. Nous verrons plus loin une formule en termes de composantes, mais pour cela il faut introduire la notion de produit scalaire.

On appelera **repère** de \mathcal{E}^3 la donnée d'un point O point quelconque de \mathcal{E}^3 et de trois vecteurs e_1 , e_2 et e_3 d'origine O qui de plus forment une base de \mathcal{E}^3 au sens de l'algèbre linéaire. On

notera ce repère $\mathcal{R} = (O, e_1, e_2, e_2)$, le point O est appelé **origine** du repère. On dira de plus qu'il est **orthonormé** (ou de Descartes) si les vecteurs e_1 , e_2 et e_3 sont de norme 1 et deux à deux orthogonaux.

Grâce à la donnée d'un repère, chaque point M de \mathcal{E}^3 a unique un vecteur qui lui correspond :

$$\overrightarrow{OM} = x_1e_1 + x_2e_2 + x_3e_3$$

où x_1 , x_2 et x_3 sont trois réels appelés **coordonnées affines** de M, qui ne sont rien d'autre que les composantes du vecteur \overrightarrow{OM} définies ci-dessus. Dans le cas où le repère est orthonormé, on parle de **coordonnées cartésiennes**. On a ainsi défini un **système de coordonnées** (affines ou cartésiennes) sur \mathcal{E}^3 .

Nous pouvons également définir les espaces \mathcal{E}^2 et \mathcal{E}^1 , respectivement de dimension 2 et 1, ainsi que toutes les notions associées comme ci-dessus.

2. Droites dans \mathcal{E}^2

Soit (O, e_1, e_2) un système de coordonnées affines sur \mathcal{E}^2 et soit ℓ une droite de vecteur directeur $v = \{\alpha, \beta\}$. Soit $M_0 = (x_0, y_0)$ un point fixé (souvent appelé origine) de la droite ℓ et soit M = (x, y) un point arbitraire de cette droite.

M appartient à la droite ℓ équivaut au fait que les vecteurs v et $\overrightarrow{M_0M}$ sont colinéaires, c'est-à-dire $\overrightarrow{M_0M} = tv$ où t est un réel quelconque. En écrivant cette équation en composantes on obtient une équation paramétrique de la droite ℓ :

$$\begin{cases} x = x_0 + t\alpha \\ y = y_0 + t\beta \end{cases}$$

ce qu'on peut également écrire comme une relation de proportionalité :

$$\boxed{\frac{x - x_0}{\alpha} = \frac{y - y_0}{\beta}}$$

ces quotients étant tous égaux au paramètre t de l'équation paramétrique.

On considère une équation d'une droite dans le plan \mathcal{E}^2 écrite sous la forme d'une relation de proportionalité :

$$\frac{x - x_0}{\alpha} = \frac{y - y_0}{\beta}, \quad \alpha^2 + \beta^2 \neq 0$$

C'est équivalent à l'égalité $\beta(x-x_0) = \alpha(y-y_0)$ ou encore $\beta x - \alpha y + (\alpha y_0 - \beta x_0) = 0$. Ce qui signifie que chaque droite du plan peut être représentée comme l'espace des solutions d'une équation linéaire non triviale à deux variables :

$$Ax + By + C = 0, \quad A^2 + B^2 \neq 0$$
 (1)

Réciproquement, considérons une telle équation linéaire (1). Soit $y_0 \in \mathbb{R}$ un réel quelconque et soit $x_0 = -\frac{C+By_0}{A}$ (on peut supposer $A \neq 0$), alors (x_0, y_0) est une solution particulière de (1). Maintenant considérons x = -B et y = A, il est facile de vérifier que c'est une solution (non triviale) de l'équation homogène correspondante :

$$Ax + By = 0 (2)$$

Or $\operatorname{rg}(2) = 1$ et le nombre de variables de cette équation est 2, donc par la théorie générale des systèmes linéaires, (-B, A) est une solution de base et la solution générales s'écrit comme :

$$\begin{cases} x = x_0 - Bt \\ y = y_0 + At \end{cases}$$

avec $t \in \mathbb{R}$. On reconnaît l'équation paramétrique d'une droite d'origine $M_0 = (x_0, y_0)$ et de vecteur directeur $v = \{-A, B\}$. On a donc montré :

Proposition 1: Soit ℓ un sous-ensemble dans le plan \mathcal{E}^2 . Alors ℓ est une droite si et seulement si ℓ est l'ensemble solution d'une équation linéaire non triviale à deux variables :

$$Ax + By + C = 0, \quad A^2 + B^2 \neq 0$$
 (3)

3. Plans dans \mathcal{E}^3

Soit (O, e_1, e_2, e_2) un système de coordonnées affines sur \mathcal{E}^3 . On considère un point $M_0 = (x_0, y_0, z_0)$, deux vecteurs $u = \{\alpha_1, \beta_1, \gamma_1\}$ et $v = \{\alpha_2, \beta_2, \gamma_2\}$ supposés linéairement indépendants (non colinéaires). Ce point M_0 et ces deux vecteurs u et v forment un plan de \mathcal{E}^3 que l'on notera π . Soit M = (x, y, z) un point arbitraire de π .

On peut considérer (M_0, u, v) comme un repère de π . Dans ce repère on a $\overrightarrow{M_0M} = tu + sv$ ce qui se traduit en coordonnées par :

$$\begin{cases} x = x_0 + t\alpha_1 + s\alpha_2 \\ y = y_0 + t\beta_1 + s\beta_2 \\ z = z_0 + t\gamma_1 + s\gamma_2 \end{cases}$$

$$(4)$$

avec s et t deux réels arbitraires. On obtient ainsi une équation paramétrique du plan π .

Considérons l'équation linéaire à trois variables :

$$\begin{vmatrix} \beta_1 & \beta_2 \\ \gamma_1 & \gamma_2 \end{vmatrix} (x - x_0) - \begin{vmatrix} \alpha_1 & \alpha_2 \\ \gamma_1 & \gamma_2 \end{vmatrix} (y - y_0) + \begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} (z - z_0) = 0$$

ou encore:

$$Ax + By + Cz + D = 0$$
 (5)

avec:

$$A = \begin{vmatrix} \beta_1 & \beta_2 \\ \gamma_1 & \gamma_2 \end{vmatrix}, \quad B = - \begin{vmatrix} \alpha_1 & \alpha_2 \\ \gamma_1 & \gamma_2 \end{vmatrix}, \quad C = \begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix}, \quad D = -x_0 \begin{vmatrix} \beta_1 & \beta_2 \\ \gamma_1 & \gamma_2 \end{vmatrix} + y_0 \begin{vmatrix} \alpha_1 & \alpha_2 \\ \gamma_1 & \gamma_2 \end{vmatrix} - z_0 \begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix}$$

(5) est une équation non triviale. En effet, considérons la matrice

$$\begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \end{pmatrix}$$

dont le rang vaut 2 parce que u et v sont linéairement indépendants. Alors on a un mineur non trivial parmi A, B et C. Vérifions que chaque point satisfaisant l'équation paramétrique (4) est une solution de (5) :

$$\begin{vmatrix} \beta_1 & \beta_2 \\ \gamma_1 & \gamma_2 \end{vmatrix} (t\alpha_1 + s\alpha_2) - \begin{vmatrix} \alpha_1 & \alpha_2 \\ \gamma_1 & \gamma_2 \end{vmatrix} (t\beta_1 + s\beta_2) + \begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} (t\gamma_1 + s\gamma_2)$$

$$= t \begin{pmatrix} \begin{vmatrix} \beta_1 & \beta_2 \\ \gamma_1 & \gamma_2 \end{vmatrix} \alpha_1 - \begin{vmatrix} \alpha_1 & \alpha_2 \\ \gamma_1 & \gamma_2 \end{vmatrix} \beta_1 + \begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} \gamma_1 \end{pmatrix} + s \begin{pmatrix} \begin{vmatrix} \beta_1 & \beta_2 \\ \gamma_1 & \gamma_2 \end{vmatrix} \alpha_2 - \begin{vmatrix} \alpha_1 & \alpha_2 \\ \gamma_1 & \gamma_2 \end{vmatrix} \beta_2 + \begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} \gamma_2 \end{pmatrix}$$

$$= t \begin{vmatrix} \alpha_1 & \alpha_1 & \alpha_2 \\ \beta_1 & \beta_1 & \beta_2 \end{vmatrix} + s \begin{vmatrix} \alpha_2 & \alpha_1 & \alpha_2 \\ \beta_2 & \beta_1 & \beta_2 \\ \gamma_2 & \gamma_1 & \gamma_2 \end{vmatrix}$$

$$= t \cdot 0 + s \cdot 0 = 0$$

Réciproquement, considérons l'équation

$$Ax + By + Cz + D = 0, \quad A^2 + B^2 + C^2 \neq 0$$
 (5)

Sans perte de généralité $A \neq 0$. Soit y_0 et z_0 deux réels arbitraires. Soit $x_0 = -\frac{1}{A}(D + By_0 + Cz_0)$, alors $M_0 = (x_0, y_0, z_0)$ est une solution particulière de (5). Or rg (5) = 1 et le nombre d'inconnues est 3 donc d'après la théorie générales des systèmes linéaires il y a deux solutions de base de l'équation homogène :

$$Ax + By + Cz = 0$$

Si $u = \{\alpha_1, \beta_1, \gamma_1\}$ et $v = \{\alpha_2, \beta_2, \gamma_2\}$ désignent ces solutions de base, alors u et v sont linéairement indépendants. Une solution générale de (5) peut donc s'écrire sous la forme :

$$\begin{cases} x = x_0 + t\alpha_1 + s\alpha_2 \\ y = y_0 + t\beta_1 + s\beta_2 \\ z = z_0 + t\gamma_1 + s\gamma_2 \end{cases}$$

qui est une représentation paramétrique d'un plan π déterminé par M_0 , u et v. On a donc montré :

Proposition 2: Soit π un sous-ensemble de \mathcal{E}^3 . Alors π est un plan si et seulement si π est l'ensemble solution d'une équation linéaire non triviale à trois variables :

$$Ax + By + Cz + D = 0, \quad A^2 + B^2 + C^2 \neq 0$$
 (6)

4. Droites dans \mathcal{E}^3

Soit (O, e_1, e_2, e_3) un système de coordonnées affines sur \mathcal{E}^3 et soit ℓ une droite de vecteur directeur $v = \{\alpha, \beta, \gamma\}$. Soit $M_0 = (x_0, y_0, z_0)$ un point fixé (souvent appelé origine) de la droite ℓ et soit M = (x, y, z) un point arbitraire de cette droite. M appartient à la droite ℓ équivaut au fait que les vecteurs v et $\overrightarrow{M_0M}$ sont colinéaires, c'est-à-dire $\overrightarrow{M_0M} = tv$ où t est un réel quelconque. En écrivant cette équation en composantes on obtient une **équation paramétrique** de la droite ℓ :

$$\begin{cases} x = x_0 + t\alpha \\ y = y_0 + t\beta \\ z = z_0 + t\gamma \end{cases}$$

ce qu'on peut également écrire comme une relation de proportionalité :

$$\boxed{\frac{x - x_0}{\alpha} = \frac{y - y_0}{\beta} = \frac{z - z_0}{\gamma}}$$

ces quotients étant tous égaux au paramètre t de l'équation paramétrique. Par exemple pour l'axe des abscisses, on prend $M_0 = (0,0,0)$, $v = \{1,0,0\}$, une équation paramétrique de cet axe est :

$$\begin{cases} x = t \\ y = 0 \\ z = 0 \end{cases}$$

et une relation de proportionalité est :

$$\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$$

On considère une équation d'une droite dans le plan \mathcal{E}^2 écrite sous la forme d'une relation de proportionalité :

$$\frac{x - x_0}{\alpha} = \frac{y - y_0}{\beta} = \frac{z - z_0}{\gamma}, \quad \alpha^2 + \beta^2 + \gamma^2 \neq 0$$
 (7)

Par définition d'une relation de proportionalité, (7) est équivalente aux deux égalités $\beta(x-x_0) = \alpha(y-y_0)$ et $\gamma(x-x_0) = \alpha(z-z_0)$ soit encore :

$$\begin{cases} \beta x - \alpha y + (\alpha y_0 - \beta x_0) = 0\\ \gamma x - \alpha z + (\alpha z_0 - \gamma x_0) = 0 \end{cases}$$
(8)

Mais (8) a la forme d'un système de deux équations :

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$
(9)

ce qui correspond à l'intersection de deux plans. Or :

$$\operatorname{rg}(9) = \operatorname{rg}\begin{pmatrix} \beta & -\alpha & 0 \\ \gamma & 0 & -\alpha \end{pmatrix} = 2$$

Réciproquement, considérons un système d'équations de la forme :

$$\begin{cases}
A_1x + B_1y + C_1z + D_1 = 0 \\
A_2x + B_2y + C_2z + D_2 = 0
\end{cases}$$
(9)

Il s'agit d'un système de rang 2. D'après la théorie générale des systèmes linéaires on a une solution particulière $M_0 = (x_0, y_0, z_0)$ et une solution de base du système homogène correspondant $v = \{\alpha, \beta, \gamma\}$. Alors une solution générale (9) s'écrit sous la forme :

$$\begin{cases} x = x_0 + t\alpha \\ y = y_0 + t\beta \\ z = z_0 + t\gamma \end{cases}$$

qui est l'équation paramétrique de la droite dans \mathcal{E}^3 déterminée par M_0 et v. On a donc montré :

Proposition 3: Soit ℓ un sous-ensemble de \mathcal{E}^3 . Alors ℓ est une droite si et seulement si ℓ est l'ensemble solution d'un système de deux équations linéaires à trois variables et de rang 2.