法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

关注 小象学院

回归模型

--Robin

目录

- 简单线性回归
- 多元线性回归

• 场景:根据房屋的面积(X,单位:平方英尺)预测房价(Y)

House Size sq.ft (X)	1400	1600	1700	1875	1100	1550	2350	2450	1425	1700
House Price\$ (Y)	245,000	312,000	279,000	308,000	199,000	219,000	405,000	324,000	319,000	255,000

平方英尺<->平方米转换器

https://www.metric-conversions.org/zh-hans/area/square-feet-to-square-meters.htm

- 思路: 使用线型模型在历史数据点上拟合一条直线 a+bX
- 目标:找到最优的a, b使线型模型在历史数据上的误差最小
 - 定义误差: Sum of Squared Errors (SSE)
 - = ½ Sum (Actual House Price Predicted House Price)²
 - = $\frac{1}{2}$ Sum(Y Ypred)²

- 如何找到最优的a, b? -> 梯度下降
- 数据预处理:将X和Y归一化到0-1

HOUSII	HOUSING DATA							
House Size (X)	House Price (Y)							
1,100	1,99,000							
1,400	2,45,000							
1,425	3,19,000							
1,550	2,40,000							
1,600	3,12,000							
1,700	2,79,000							
1,700	3,10,000							
1,875	3,08,000							
2,350	4,05,000							
2,450	3,24,000							

Min-Max Sta	Min-Max Standardization								
X (X-Min/Max-min)	Y (Y-Min/Max-Min)								
0.00	0.00								
0.22	0.22								
0.24	0.58								
0.33	0.20								
0.37	0.55								
0.44	0.39								
0.44	0.54								
0.57	0.53								
0.93	1.00								
1.00	0.61								

• 步骤:

1. 随机初始化a, b, 并计算此时的SSE

	0.7				43	We are here with random values o a, b
ш	0.6			-		
SS	0.5		-	777		
Total SSE	0.4		I for		100	
	0.3	/		1		
	0.2					
	0.1			/	b	
	0		a	/		
				1		
				,	١	
					d to be here	2
					otal SSE is red with	
					values of a	h

a	b	Х	Υ	YP=a+bX	SSE=1/2(Y-YP)^2
0.45	0.75	0.00	0.00	0.45	0.101
		0.22	0.22	0.62	0.077
		0.24	0.58	0.63	0.001
		0.33	0.20	0.70	0.125
		0.37	0.55	0.73	0.016
		0.44	0.39	0.78	0.078
		0.44	0.54	0.78	0.030
		0.57	0.53	0.88	0.062
		0.93	1.00	1.14	0.010
		1.00	0.61	1.20	0.176
					Total
					SSE 0.677

梯度下降

- 步骤:
 - 2. 分别计算SSE关于a, b的偏导数

 $\partial SSE/\partial a = -(Y-YP), \ \partial SSE/\partial b = -(Y-YP)X$

梯度=(∂ SSE/ ∂ a, ∂ SSE/ ∂ b): 函数在变量空间的某一点处,沿着哪一个方向有最大的变化率;梯度是一个向量,即有方向有大小。

a	b	х	Υ	YP=a+bX		SSE		ðSSE/ða = -(Y-YP)	ðSSE/ðb = -(Y-YP)X
0.45	0.75	0.00	0.00	0.45		0.101		0.45	0.00
		0.22	0.22	0.62		0.077		0.39	0.09
		0.24	0.58	0.63		0.001		0.05	0.01
		0.33	0.20	0.70		0.125		0.50	0.17
		0.37	0.55	0.73		0.016		0.18	0.07
		0.44	0.39	0.78		0.078		0.39	0.18
		0.44	0.54	0.78		0.030		0.24	0.11
		0.57	0.53	0.88		0.062		0.35	0.20
		0.93	1.00	1.14		0.010		0.14	0.13
		1.00	0.61	1.20		0.176		0.59	0.59
					Total SSE	0.677	Sum	3.300	1.545

梯度下降

- 步骤:
 - 3. 根据梯度方向更新权重,更新规则:

a – alpha*∂SSE/∂a, b – alpha*∂SSE/∂b, alpha:学习率

 $a = 0.45 - 0.01 \times 3.300 = 0.42$, $b = 0.75 - 0.01 \times 1.545 = 0.73$

4. 计算此时的SSE, 从上一次的0.677降到了0.553

a	b	х	Y	YP=a+bX		SSE		∂SSE/∂a	∂SSE/∂b
0.42	0.73	0.00	0.00	0.42		0.087		0.42	0.00
		0.22	0.22	0.58		0.064		0.36	0.08
		0.24	0.58	0.59		0.000		0.01	0.00
		0.33	0.20	0.66		0.107		0.46	0.15
		0.37	0.55	0.69		0.010		0.14	0.05
		0.44	0.39	0.74		0.063		0.36	0.16
		0.44	0.54	0.74		0.021		0.20	0.09
		0.57	0.53	0.84		0.048		0.31	0.18
		0.93	1.00	1.10		0.005		0.10	0.09
		1.00	0.61	1.15		0.148		0.54	0.54
					Total SSE	0.553	Sum	2.900	1.350

5. 重复步骤3,4, 直到a, b变化幅度不大, 或SSE足够小, 或迭代次数足够多

梯度下降

• 实际使用中:

• 目标/损失函数
$$J(\theta)=\frac{1}{2m}\sum_{i=1}^m\left(h_{\theta}(x^{(i)})-y^{(i)}\right)^2$$

$$h_{\theta}(x)=\theta^Tx=\theta_0+\theta_1x_1$$

• 更新公式:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 (simultaneously update θ_j for all j).

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象学院

