

POLYTECHNIQUE MONTRÉAL DÉPARTEMENT DE GÉNIE ÉLECTRIQUE

AER8500 - Informatique Embarquée de l'avionique

Plan de développement

Anastasiya Basanets 1933929 Omar Ben Salah 1835965

Remis à Mr Habacuc Honvo

1. Plan de développement

Étape 1 (fini le 6 mars)	Étape 2 (fini le 30 mars)	Étape 3 (fini le 13 Avril)	Étape 4 (fini le 19 Avril)
(Dé)codage A429	Implémentation de l'unité de calcul (calculateur)	Intégration des unités	Rapport
(Dé)codage AFDX	Implémentation de la logique du Agrégateur	Test d'intégration	
Panneau de contrôle	Implémentation de la logique du Calculateur		

2. Liste des signaux

a. Siganux de type BNR

Information	Source	Octal Label	Bit le plus significatif (MSB)	Nombre de bits significat ifs	Unités	Range
Altitude	Agrégateur	001	28	16	pieds	65536

b. Signaux de type DIS

Information	Source	Octal Label	Bit	Signification
État fonctionnalité Avionique	Calculateur	001	00 01 10 11	AU_SOL CHANGEMENT_ALTITUDE VOL_CROISIÈRE NOT USED

c. Signaux de type BCD

Information	Source	Octal Label	Bit le plus signific atif (MSB)	Nombre de bits significatifs	Unités	Résolution	Range
Taux de montée	Agrégateur	002	28	14	mètres/minute	0.0625	1024
Angle d'attaque	Agrégateur	003	28	9	degrés	0.0625	32

3. Diagramme interactif

*les flèches avec une légende indiquent le moyen de communication;

4. Choix du langage

Notre choix s'arrête sur le langage Python.

Nous allons adapter une interface déjà développée dans le cadre d'un autre projet pour nous simplifier la tâche, elle est basée sur la librairie Tkinter. Des modifications seront apportées pour permettre à l'utilisateur de saisir des données en plus d'une adaptation des valeurs affichées.

Pour la partie calculateur, nous avons opté pour le langage Python aussi malgré que le langage C++ soit plus rapide. Nous allons utiliser le module de multiprocesseur et la logique de Pipe() pour nous assurer d'avoir un système temps réel. Utiliser Python nous permettra de ne pas gérer les difficultés avec C++ pour la création d'un système temps réel. Finalement, Python est un langage que nous connaissons bien, que nous utilisons souvent et qui a beaucoup de bibliothèques et outils créés disponibles.

^{*}les flèches sans légende indiquent qu'un composant utilise un autre.