

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

tions, a transit instrument by Dollond was used, which was 10 feet in focal length, and 4.75 inches aperture. For observing the comet, an eye-glass magnifying 86 times was employed.

A paper was then read, entitled, "On the supposed Powers of Suction of the Common Leech." By Thomas Andrew Knight, Esq., F.R.S., President of the Horticultural Society.

From observing the feebleness of the muscular force exhibited by the leech in its progressive movements through the water, the author was led to doubt its possessing the powers of suction that are so universally ascribed to it. A fact which came under his notice above sixty years ago, of considerable loss of blood from the leg following the bite of a vigorous leech, suggested to him the idea that the animal might become filled with blood simply by the injection of its body, in consequence of the impetus with which the blood is made to flow into it from the part bitten;—an impetus which he imagines may be occasioned by the introduction of a peculiar kind of venom. He considers the irritation which often accompanies the bite of a leech as corroborating this hypothesis: he admits, however, that the inflammation excited by the sting of a bee or a wasp is attended with effects of a totally opposite kind; for, in that case, the blood, instead of having a tendency to flow, stagnates around the point where the poison has been instilled.

A paper was also read, entitled, "Experimental Researches in Electricity.—Fourth Series." By Michael Faraday, Esq., D.C.L., F.R.S., Fullerian Professor of Chemistry in the Royal Institution of Great Britain.

The author, while prosecuting his researches on electro-chemical decomposition, observed some phenomena which appeared to be referable to a general law of electric conduction not hitherto recognised. He found that an electric current from a voltaic battery, which is readily conducted by water, did not pass through ice: even the thinnest film of ice, interposed in the circuit, was sufficient to intercept all electric influence of such low intensities as that produced by the voltaic apparatus, although it allows of the transmission of electricity of such high intensity as that excited by the common electrical machine. The author ascertained that a great number of other substances, which are solid at ordinary temperatures, do not conduct the electric current from the voltaic battery until they are liquefied. Among these are potassa, protoxide of lead, glass of antimony, and oxide of bismuth; various chlorides, iodides, and sulphurets; and also many of the ordinary neutral salts with alkaline bases. In almost every instance the bodies subjected to this law are decomposable by electricity; and their decomposition can be effected only when they are in a fluid state, and while they are conductors of electricity. The author inquires how far these two properties are connected together, or dependent the one upon the other; but finds that several exceptions occur to any general proposition that he attempted to establish on this subject.