

CS100 #07

Arithmetic Unit

Vadim Surov

Introduction

- ALU is a combinational digital electronic circuit that performs arithmetic and bitwise operations on integer binary numbers.
- A central processing unit (CPU), floating-point unit (FPU) or graphics processing units (GPU) may contain multiple ALUs.

ALU

- Data: binary numbers as operands for operators
- Operators:
 - Arithmetic: add, subtract, increment, ...
 - Bitwise logical
 - Bit shift
- Status: supplemental information about the result of an operation
 - Ex: Overflow, which indicates the result of an arithmetic operation has exceeded the numeric range of output.

Review: Binary Addition

- Binary addition follows a similar procedure as decimal addition:
 - When adding numbers we add each column separately.
 - Then if the addition of the digits in the column generates a carry the carry is then added to the next column to the left.
- Thus, a column (other than the first one) may receive a carry from the column to its right and can generate a carry as well.

Review: Binary Addition

The binary addition table showing the carry underlined:

+	0	1	
0	<u>0</u> 0	<u>0</u> 1	
1	<u>0</u> 1	<u>1</u> 0	

Consider the second column in the following addition:

Example			
Carry	Carry out:1	Carry in :1	
	0	1	1
	0	1	1
Sum	1	1	0

- In order to build the device one has to take a closer look to the table of addition.
- The binary addition table showing the carry underlined can be consider to be the merger of two separate tables, one representing the sum and the second representing the carry:

+		0	1
	0	<u>0</u> 0	<u>0</u> 1
	1	<u>0</u> 1	<u>1</u> 0

sum		0	1
	0	0	1
	1	1	0

+

carry	0	1
0	<u>0</u>	0
1	<u>0</u>	<u>1</u>

The sum table is identical to the one generated by an XOR gate.

XOR		0	1
	0	0	1
	1	1	0

 And the carry table is identical to the one generated by an AND gate.

AND		0	1
	0	0	0
	1	0	1

- The following diagram shows how the XOR and the AND gates are coupled together in order to generate the first version of the 2-bit adder we are trying to build.
- This early version is called a half adder:

Full Adder

 The solution to the problem is obtained by using two half adders connected together with an OR gate as shown in the diagram below:

Full Adder

- The logic expressions for this full adder are:
 - \circ S = (A XOR B) XOR C_{in}
 - $\circ C_{out} = AB + C_{in}(A XOR B)$
- By applications of boolean algebra, the second statement equivalent to
 - \circ C_{out} = AB + BC_{in} + AC_{in}

Truth Table For A Full Adder

A	В	C _{in}	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Binary number of 1s in input

N-bit Adder

- Several full adders can be combined together to add numbers that are more than one bit wide.
- The following diagrams represent a 4-bit adder:

4008

 The 4008 is a 4-bit full adder that takes two 4-bit binary numbers, A[3:0] and B[3:0] and carry-in signal, C_{in} and adds them to produce a 5-bit result, made up of a sum, S[3:0] and a carry-out.

The 4008 On A Board

Source:

https://simplestcomputer.wordpress.com/route-map/stage-2-arithmetic-handling-numbers/full-adder/

References

- https://en.wikipedia.org/wiki/Arithmetic logic unit
- https://en.wikibooks.org/wiki/Practical Electronics/Adders