Lernen unterschiedlich starker Bewertungsfunktionen aus Schach-Spielprotokollen

Philip Paulsen

Diplomarbeit

Übersicht

Spielstärke im Schach

MiniMax-Algorithmus

Details zur Bewertungsfunktion

Erzeugen der Trainingsdaten

Ranking SVM

Ergebnisse

Evaluierung

Zusammenfassung und Ausblick

ELO-Zahl 2600+

2400

2200

2000

1800

1600

1400

1200

1000

Großmeister

Internationale Meister

Nationale Meister

Meisteranwärter

Experten

starke Vereinsspieler

Vereinsspieler

Hobbyspieler

Gelegenheitsspieler

ELO-Zahl

2600+

2400

2200

2000

1800

1600

1400

1200

1000

Großmeister
Internationale Meister
Nationale Meister
Meisteranwärter
Experten

starke Vereinsspieler Vereinsspieler Hobbyspieler Gelegenheitsspieler

Bedeutung der ELO Differenz Gewinnerwartung

$$E_A = \frac{1}{1 + 10^{(R_B - R_A)/400}}$$

$$E_A = \frac{1}{1+10^{(R_B-R_A)/400}}$$

Bedeutung der ELO Differenz Gewinnerwartung

$$E_A = \frac{1}{1+10^{(-200)/400}} = \frac{1}{1+0,31623} = 0,7597$$

$$E_A = \frac{1}{1+10^{(R_B-R_A)/400}}$$

Bedeutung der ELO Differenz Gewinnerwartung

$$E_A = \frac{1}{1+10^{(-200)/400}} = \frac{1}{1+0,31623} = 0,7597$$

 $E_A = \frac{1}{1+10^{(200)/400}} = \frac{1}{1+3,1623} = 0,2403$

MiniMax-Algorithmus

MiniMax-Algorithmus

optimale Lösung (Spieltheorie)

Jeder macht den für sich *bestmöglichen* Zug

MiniMax-Algorithmus

optimale Lösung (Spieltheorie)

Jeder macht den für sich bestmöglichen Zug

Aber

Baumsuche nicht vollständig möglich

Verzweigungsgrad ~ 30 590 490 000 000 000 nach 10 Halbzügen

Bewertungsfunktion zum Schätzen der Blätter

Figurenwerte

Dame = 1x 900

Figurenwerte

Dame = 1x 900

Turm = 2x 500

Figurenwerte

Dame = 1x 900

Turm = 2x 500

Springer = 1x 300

Figurenwerte

Dame = 1x 900

Turm = 2x 500

Springer = 1x 300

Bauer = 6x 100

Sonderwerte

Isolierter Bauer = -10

Sonderwerte

Isolierter Bauer = -10

Freibauer = +20

Sonderwerte

Isolierter Bauer = -10 Freibauer = +20

Offene Linie = +15

Sonderwerte

Isolierter Bauer = -10
Freibauer = +20
Offene Linie = +15
Halboffene Linie = +10

Piece Square Table

Gewichtsmatrix

positive/negative
Bewertung einzelner Felder
für verschiedene
Spielsteine

Piece Square Table

0	0	0	0	0	0	0	0
5	10	15	20	20	15	10	5
4	8	12	16	16	12	8	4
3	6	9	12	12	9	6	3
2	4	6	8	8	6	4	2
1	2	3	-10	-10	3	2	1
0	0	0	-40	-40	0	0	0
0	0	0	0	0	0	0	0

Birkerod Club, Birkerod 14.03.1999, Runde: 4 Petersen, Jonathan Roed (1380) - Hamann, Heinrich (1379) 0-1

1.d2-d4 Ng8-f6 2.c2-c4 c7-c5 3.e2-e3 e7-e6 4.Nb1-c3 c5xd4 5.e3xd4 d7-d5 6.c4-c5 Nb8-c6 7.Ng1-f3 b7-b6 8.Bf1-b5 Bc8-d7 9.Bb5xc6 Bd7xc6 10.Nf3-e5 Qd8-c8 11.c5xb6 a7xb6 12.Bc1-f4 Bf8-e7 13.Ra1-c1 Qc8-b7 14.O-O O-O 15.a2-a3 Ra8-c8 16.Ne5-g4 Nf6-e4 17.Ng4-h6+g7xh6 18.Bf4xh6 Kg8-h8 19.Nc3xe4 d5xe4 20.d4-d5 Bc6xd5 21.Rc1xc8 Rf8xc8 22.Qd1-h5 Be7-f6 23.Rf1-c1 Rc8-g8 24.Bh6-e3 Rg8-g6 0-1

Datensätze beschrieben durch

Label (1,-1) **y**

ID (1...n)

Feature Vektor x

Bestimmen der resultierenden Stellung durch Ruhesuche (Schlagfolgeanalyse)

b4a6 =	-1	qid:173	1:1 2:-1	41:1 54:1 55:1 59:1 60:1 61:1		260:1	327:-1 329:1 330:1
f2f3 =	-1	qid:173		41:1 54:1 55:1 60:1 61:1	103:1	260:1	327:-1 329:1 330:1
b4d5 =	-1	qid:173	1:1 2:-1	41:1 54:1 55:1 59:1 60:1 61:1		260:1	327:-1 329:1 330:1
c1c7 =	1	qid:173	1:1	41:1 54:1 55:1 59:1 60:1 61:1	103:1	260:1	327:-1 329:1 330:1 332:1

b4a6, g6a6

b4a6 =	-1	qid:173	1:1 2:-1	41:1 54:1 55:1 59:1 60:1 61:1		260:1	327:-1 329:1 330:1
f2f3 =	-1	qid:173		41:1 54:1 55:1 60:1 61:1	103:1	260:1	327:-1 329:1 330:1
b4d5 =	-1	qid:173	1:1 2:-1	41:1 54:1 55:1 59:1 60:1 61:1		260:1	327:-1 329:1 330:1
c1c7 =	1	qid:173	1:1	41:1 54:1 55:1 59:1 60:1 61:1	103:1	260:1	327:-1 329:1 330:1 332:1

c1c7

Ranking SVM

Label (1,-1) y
ID (1...n) q
Feature Vektor x
Ordnung R
Gewichtsvektor w

Für Einträge mit derselben ID soll gelten

$$w*(x_i,q_k) > w*(x_j,q_k)$$

wenn

$$(y_i > y_j) \in R_k$$

Ranking SVM

"Schlupfvariablen" erlauben Fehlklassifikation

$$C\sum_{i=1}^n \xi_{i,j,k}$$

SVM bestimmt den Gewichtsvektor w

Sonderwerte (Turm)

Relevanzskalierte Gewichtsdarstellung

1.) Errechnete Piece Square Table (König)

Relevanzskalierte Gewichtsdarstellung

2.) Häufigkeit mit der der König ein Feld besetzt

Relevanzskalierte Gewichtsdarstellung

3.) Filtern unzuverlässiger Werte durch Multiplikation

Ergebnisse - Bauer

Ergebnisse - Springer

Evaluierung - Turnier

Basis	1000 ELO	1400 ELO	1600 ELO	1200 ELO	+	=	-	\sum
1000 ELO	(*)	49,5	55	50,5	35	240	25	155
1400 ELO	50,5	-	50	54	18	273	9	154,4
1600 ELO	45	50	-	53	19	258	23	148
1200 ELO	49,5	46	47	2	12	261	27	142,5

Tabelle 5.1: Turnierergebniss - Suchtiefe: 1 Halbzug

Basis	Orginal	1600 ELO	1400 ELO	$1200 \; \mathrm{ELO}$	1000 ELO	+	=	150	\sum
Original	-	56,5	63,5	63	63,5	232	29	139	246,5
1600 ELO	43,5	3.5	61	57	63,5	210	30	160	225,0
1400 ELO	36,5	39	≅	54	56	167	37	196	185,5
1200 ELO	37	43	46	150	59	171	28	201	185,0
1000 ELO	36,5	36,5	44	41	.=	130	56	214	158,0

Tabelle 5.2: Turnierergebniss - Suchtiefe: 2 Halbzüge

Evaluierung - FICS

Rang	Engine	Rating	σ
1.	DATSCPII	1143	± 15.1
2.	DATSCPIII	1122	± 14.6
3.	DATSCPIV	1105	± 14.9
4.	DATSCPI	1088	± 15.1

Tabelle 5.7: FICS Wertung - Blitz - Suchtiefe: 1 Halbzug

Rang	Engine	Rating	σ
1.	DATSCPIV	1898	± 28.9
2.	DATSCPIII	1891	± 28.7
3.	DATSCPII	1874	± 30.5
4.	DATSCPI	1839	± 28.1

Tabelle 5.5: FICS Wertung - Blitz - Suchtiefe: zeitbegrenzt

Zusammenfassung und Ausblick

Lernen von Bewertungsfunktionen mit Ranking-SVM möglich

Aber

Lernen unterschiedlicher Spielstärken nicht erfolgreich!

Daten in diesem ELO-Bereich unzuverlässig!

Bewertungsfunktion zu simpel?

Keine typischen Fehler modellierbar?!

Einfluss der Bewertungsfunktion wahrscheinlich zu schwach!?

Quellen

(Auszug)

D.F. Beal and M.C. Smith. *Learning piece-square values using temporal dierences*. 22(4):223{235, December 1999.

Monty Newborn David Levy. *How Computers play chess.* Computer Science Press, 1990.

T. Joachims. *Making large-scale SVM learning practical*. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, chapter 11, pages 169{184. MIT Press, Cambridge, MA, 1999.

John Von Neumann and Oskar Morgenstern. *Theory of Games and Economic Behavior*. Princeton University Press, 1944.

Claude E. Shannon. *Programming a computer for playing chess.* In Philosophical Magazine, Ser.7, volume 41, March 1950.

Gerald Tesauro. Comparison training of chess evaluation functions. In Machines that learn to play games, pages 117{130. Nova Science Publishers, Inc., Commack, NY, USA, 2001.

Danke für ihre Aufmerksamkeit

