Sample Proportion Sampling Distribution

Central Limit Theorem

If:

- **Proof** Random variable W has mean μ_w and standard deviation σ_w .
- ▶ Random variable *X* is the sum of *n* instances of *W*.
- Random variable Y is the average of n instances of Y.

Then:

The following formulas are exactly true:

$$\mu_{x} = \mathbf{n} \cdot \mu_{w}$$
 $\mu_{y} = \mu_{w}$
 $\sigma_{x} = \sqrt{\mathbf{n}} \cdot \sigma_{w}$ $\sigma_{y} = \frac{\sigma_{w}}{\sqrt{\mathbf{n}}}$

 \blacktriangleright And X and Y are **approximately** normal (if n is large enough).

Example: Let W be Bernoulli with p = 0.8

W	P(w)	$w \cdot P(x)$	$w - \mu_w$	$(w-\mu_w)^2$	$(w-\mu_w)^2\cdot P(w)$
0	0.2	0	-0.8	0.64	0.128
1	0.8	0.8	0.2	0.04	0.032
		$\mu_{w} = 0.8$			$\sigma_w^2 = 0.16$
					$\sigma_w = 0.4$