

SEMICONDUCTOR TECHNICAL DATA

KF10N60P/F

N CHANNEL MOS FIELD EFFECT TRANSISTOR

General Description

This planar stripe MOSFET has better characteristics, such as fast switching time, low on resistance, low gate charge and excellent avalanche characteristics. It is mainly suitable for active power factor correction and switching mode power supplies.

FEATURES

- \cdot V_{DSS}=600V, I_D=10A
- · Drain-Source ON Resistance :

 $R_{DS(ON)}(Max)=0.69 \Omega$ @ $V_{GS}=10V$

 \cdot Qg(typ.)= 29.5nC

MAXIMUM RATING (Tc=25 ℃)

CHARACTERISTIC		SYMBOL	RAT	UNIT	
		STWIDOL	KF10N60P	KF10N60F	ONII
Drain-Source Voltage		V _{DSS}	600		V
Gate-Source Voltage		V _{GSS}	±30		V
Drain Current	@T _C =25℃	$ I_{\mathrm{D}}$	10	10*	A
	@T _C =100 °C		6	6*	
	Pulsed (Note1)	I_{DP}	25	25*	
Single Pulsed Avalanche Energy (Note 2)		E _{AS}	400		mJ
Repetitive Avalanche Energy (Note 1)		E _{AR}	16.5		mJ
Peak Diode Recovery dv/dt (Note 3)		dv/dt	4.5		V/ns
Drain Power Dissipation	Tc=25 °C	P _D	190	50	W
	Derate above 25 ℃		1.52	0.4	W/ °C
Maximum Junction Temperature		T_{j}	150		c
Storage Temperature Range		T _{stg}	-55 ∼150		c
Thermal Charac	teristics				
Thermal Resistance, Junction-to-Case		R _{thJC}	0.65	2.5	°C/W
Thermal Resistance, Junction-to-Ambient		R _{thJA}	62.5	62.5	°C/W

^{* :} Drain current limited by maximum junction temperature.

PIN CONNECTION

(KF10N60P, KF10N60F)

ELECTRICAL CHARACTERISTICS (Tc=25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Static	'					
Drain-Source Breakdown Voltage	BV_{DSS}	$I_D = 250 \mu\text{A}, \ V_{GS} = 0V$	600	-	-	V
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/\Delta T_{j}$	$I_D=250\mu\text{A}$, Referenced to 25 °C	-	0.6	-	V/°C
Drain Cut-off Current	I_{DSS}	V _{DS} =600V, V _{GS} =0V	-	-	10	μA
Gate Threshold Voltage	V_{th}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	-	4	V
Gate Leakage Current	I_{GSS}	$V_{GS}=\pm30V, V_{DS}=0V$	-	-	±100	nA
Drain-Source ON Resistance	R _{DS(ON)}	$V_{GS}=10V$, $I_D=5A$	-	0.59	0.69	Ω
Dynamic			1		1	
Total Gate Charge	Q_{g}		-	29.5	-	nC
Gate-Source Charge	Q_{gs}	V_{DS} =480V, I_{D} =10A V_{GS} =10V (Note4,5)	-	6.5	-	
Gate-Drain Charge	Q_{gd}	VGS-10 V (110104,5)	-	12.5	-	
Turn-on Delay time	$t_{d(on)}$		-	32	-	ns
Turn-on Rise time	t _r	V_{DD} =300V I_{D} =10A	-	35	-	
Turn-off Delay time	$t_{d(off)}$	$R_G=25 \Omega$ (Note4,5)	-	88	-	
Turn-off Fall time	t_{f}	(2.000.1,0)	-	30.5	-	
Input Capacitance	C _{iss}		-	1255	-	pF
Output Capacitance	C _{oss}	$V_{DS}=25V, V_{GS}=0V, f=1.0MHz$	-	160	-	
Reverse Transfer Capacitance	C _{rss}		-	16.5	-	
Source-Drain Diode Ratings					ı	
Continuous Source Current	I_S	V AI	-	-	10	A
Pulsed Source Current	I_{SP}	$V_{GS} < V_{th}$	-	-	40	
Diode Forward Voltage	V_{SD}	I _S =10A, V _{GS} =0V	-	-	1.4	V
Reverse Recovery Time	t _{rr}	$I_{S}=10A, V_{GS}=0V,$	-	350	-	ns
Reverse Recovery Charge	Q _{rr}	dIs/dt=100A/1/8	-	4.2	-	μC

Note 1) Repetivity rating: Pulse width limited by junction temperature.

Note 2) L =5.5mH, $\rm\,I_S=10A,\,\,V_{DD}=50V,\,R_G=25\,\,\Omega$, Starting $\rm\,T_j=25\,\,^\circ\!C.$

Note 3) $I_S \le 10A$, $dI/dt \le 200A/\mu$ s, $V_{DD} \le BV_{DSS}$, Starting $T_j = 25\,^{\circ}\!\!\mathrm{C}$.

Note 4) Pulse Test : Pulse width $\leq 300\,\mu\text{s}, \ \text{Duty Cycle} \leq 2\%.$

Note 5) Essentially independent of operating temperature.

Marking

Junction Temperature T_j ($^{\circ}C$)

Fig11. I_D - T_i

Fig10. Safe Operation Area

Fig12. Transient Thermal Response Curve

Fig13. Transient Thermal Response Curve

5/7

Fig14. Gate Charge

Fig15. Single Pulsed Avalanche Energy

Fig16. Resistive Load Switching

Fig17. Source - Drain Diode Reverse Recovery and dv /dt

