Lecture 13E. An Extra Bit on Linear SVM

COMP90051 Statistical Machine Learning

Semester 2, 2015 Lecturer: Andrey Kan

Copyright University of Melbourne

Do Ask Questions!

- If something doesn't make sense
- If I'm speaking too fast or too slow
- If you have any other concerns
- In class or just after the lecture
- During the office hour
- Via email (to me or Ben)
- Via the LMS forum
- Anonymously via the LMS forum

Support Vector Machines: Intuition

What linear classifier to choose?

(very brief) Revision of geometry

- Line = set of points (x_1, x_2) that satisfy $w_1x_1 + w_2x_2 + b = 0$
- Plane $\rightarrow w_1 x_1 + w_2 x_2 + w_3 x_3 + b = 0$
- Hyperplane $\rightarrow \sum_{i=1}^{n} w_i x_i + b = 0$

• Note: we can multiply w_i , b by a constant without changing the (hyper-)plane

- Distance from point x to (hyper-)plane is $d = \frac{|w^T x + b|}{\|w\|}$
- We can rescale so that $\mathbf{w}^T \mathbf{x} + b = 1$, and get $d = \frac{1}{\|\mathbf{w}\|}$

Linear SVM parameters

- Goal: max margin hyperplane
- Hyperplane parameters
 - * Normal vector w
 - * Offset b
- Scale parameters so that
 - * Negative data: $\mathbf{w} \cdot \mathbf{x} + b \leq -1$
 - * Positive data: $\mathbf{w} \cdot \mathbf{x} + b \ge +1$
- Then margin is $2/\|\mathbf{w}\|$

• Consider 2D data (with two features x_1, x_2)

Dashed lines show the margin

 Training a linear SVM essentially means moving/rotating plane B so that separating boundary changes

- However, we can also rotate Plane B along the separating boundary
- In this case, the boundary does NOT change
 - Same classifier!
- → The same boundary can be expressed by many parameter combinations

Each corresponding to a particular rotation of Plane B

- However, we can also rotate Plane B along the separating boundary
- In this case, the boundary does NOT change
 - Same classifier!
- → The same boundary can be expressed by many parameter combinations

Each corresponding to a particular rotation of Plane B

 For convenience we choose a particular Plane B angle so that the distance from a support vector to Plane B equals to 1

Dashed lines show the margin
Support vectors are marked with
golden outline
Green distances = 1

- For convenience we choose a particular Plane B angle so that the distance from a support vector to Plane B equals to 1
- In this case, the width of the margin is $\frac{2}{\|w\|}$

Dashed lines show the margin Support vectors are marked with golden outline Brown distances = $\frac{1}{\|w\|}$

Linear SVM parameters

- Goal: max margin hyperplane
- Hyperplane parameters
 - * Normal vector w
 - * Offset b
- Scale parameters so that
 - * Negative data: $\mathbf{w} \cdot \mathbf{x} + b \leq -1$
 - * Positive data: $\mathbf{w} \cdot \mathbf{x} + b \ge +1$
- Then margin is $2/\|\boldsymbol{w}\|$

