

RCC INSTITUTE OF INFORMATION TECHNOLOGY

STREAM: COMPUTER SCIENCE AND ENGINEERING

- Name: MEGHNA SANTRA
- University roll: 11700123121
- Class roll: CSE2023001
- Registration no.: 231170110123
- Paper name: DISCRETE MATHEMATICS
- Paper code: PCC-CS 401
- Year: 2nd Semester: 4th
- Sec: B

1.

Show that for any two sets A and B, $P(A) \cup P(B) \subseteq P(A \cup B)$ $P(A) \cap P(B) \subseteq P(A \cap B)$ where P(X) is the power set of X.

SOLUTION:

 $P(A) \cup P(B) \subseteq P(A \cup B)$

 $P(A) \cap P(B) \subseteq P(A \cap B)$

Let,

 $d \in P(A) \cup P(B)$

 $=>d \in P(A) \text{ or } d \in P(B)$

 $=>d\subseteq A \text{ or } d\subseteq B$

 $=>d \subseteq A \cup B$

 $=>d \in P(A \cup B)$

Therefore,

 $P(A) \cup P(B) \subseteq P(A \cup B)$

Hence, shown.

Let,

 $d \in P(A) \cap P(B)$

 $=>d \in P(A)$ and $d \in P(B)$

 $=>d \subseteq A$ and $d\subseteq B$

 $=>d \subseteq A \cap B$

 $=>d \in P(A \cap B)$

Therefore,

 $P(A) \cap P(B) \subseteq P(A \cap B)$

Hence, shown.

2. Prove that for sets A,B,C if A \cup C=B \cup C and A \cap C=B \cap C then A=B.

SOLUTION:

Indeed,

- $A = A \cup (A \cap C)$ [Law of absorption]
- $= A \cup (B \cap C)$ [since, A=B, given]
- = $(A \cup B) \cap (A \cup C)$ [by distributivity)
- = $(A \cup B) \cap (B \cup C)$ [since A=B, given]
- = $(A \cup B) \cap (C \cup B)$ [by commutivity]
- = $(A \cap C) \cup B$ [by distributivity]
- = $(B \cap C) \cup B$ [since, A=B, given]
- = B [by law of Absorption]

Therefore, A=B

Hence, shown.

3. Prove that $(A-B)\cup(B-A)=(A\cup B)-(A\cap B)$

SOLUTION: We will prove this by showing that each side is a subset of the other.

Part 1:
$$(A-B)\cup(B-A)\subseteq(A\cup B)-(A\cap B)$$

Let $x\in(A-B)\cup(B-A)$. This means $x\in(A-B)$ or $x\in(B-A)$.

- Case 1: $x\in (A-B)$. This means $x\in A$ and $x\not\in B$. Since $x\in A$, we know $x\in (A\cup B)$. Since $x\not\in B$, x cannot be in $(A\cap B)$. Therefore, $x\in (A\cup B)-(A\cap B)$.
- Case 2: $x\in (B-A)$. This means $x\in B$ and $x\not\in A$. Since $x\in B$, we know $x\in (A\cup B)$. Since $x\not\in A$, x cannot be in $(A\cap B)$. Therefore, $x\in (A\cup B)-(A\cap B)$.

In either case, $x \in (A \cup B) - (A \cap B)$. Thus,

$$(A-B)\cup (B-A)\subseteq (A\cup B)-(A\cap B).$$

Part 2:
$$(A \cup B) - (A \cap B) \subseteq (A - B) \cup (B - A)$$

Let $x\in (A\cup B)-(A\cap B)$. This means $x\in (A\cup B)$ and $x\not\in (A\cap B)$. Since $x\in (A\cup B)$, we know $x\in A$ or $x\in B$ (or both). Since $x\not\in (A\cap B)$, we know that x is NOT in both A and B.

- Case 1: $x \in A$. Since x is not in both A and B, it must be that $x \notin B$. Therefore, $x \in (A-B)$. Thus, $x \in (A-B) \cup (B-A)$.
- Case 2: $x\in B$. Since x is not in both A and B, it must be that $x\not\in A$. Therefore, $x\in (B-A)$. Thus, $x\in (A-B)\cup (B-A)$.

In either case, $x \in (A-B) \cup (B-A)$. Thus, $(A \cup B) - (A \cap B) \subseteq (A-B) \cup (B-A)$.

Conclusion $(A \cap B) \subseteq (A \cap B) \cup (B \cap B)$

Since $(A-B)\cup (B-A)\subseteq (A\cup B)-(A\cap B)$ and

 $(A \cup B) - (A \cap B) \subseteq (A - B) \cup (B - A)$, we can conclude that:

$$(A-B)\cup(B-A)=(A\cup B)-(A\cap B)$$

Define: a. Equivalence relation and compatibility relation b. Equivalence class c. Partition d. Covering of a set e. Partial order relation

SOLUTION:

a. Equivalence Relation and Compatibility Relation

Equivalence Relation: An equivalence relation on a set is a relation that is reflexive, symmetric, and transitive.

Reflexivity: For every element (a) in set (A), (a \sim a). Symmetry: For any elements (a, b) in set (A), if (a \sim b), then (b \sim a).

Transitivity: For any elements (a, b, c) in set (A), if $(a \le b)$ and $(b \le c)$, then $(a \le c)$.

Example: The relation (a \equiv b \mod 3) on integers, where (a) is equivalent to (b) if (a - b) is divisible by 3.

Compatibility Relation: A compatibility relation allows certain structures to be preserved under operations.

Example: In a group, two elements (a) and (b) are compatible if (a \cdot b) (the group operation) is also in the group.

b. Equivalence Class

An equivalence class is a subset of a set formed by grouping all elements that are equivalent under a given equivalence relation.

Example: For (a \equiv b \mod 3), the equivalence classes are:

$$([0] = {..., -6, -3, 0, 3, 6, ...})$$

$$([1] = {..., -5, -2, 1, 4, 7, ...})$$

$$([2] = {..., -4, -1, 2, 5, 8, ...})$$

c. Partition

A partition of a set is a grouping of its elements into nonempty subsets, such that every element is included in exactly one subset.

Example: For the set ($S = \{1, 2, 3, 4\}$), a partition could be ($\{\{1, 2\}, \{3\}, \{4\}\}$).

d. Covering of a Set

A covering of a set is a collection of subsets whose union contains the entire set.

Example: For ($S = \{1, 2, 3, 4\}$), a covering could be ($\{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$), since their union is ($\{1, 2, 3, 4\}$).

e. Partial Order Relation

A partial order relation is a binary relation that is reflexive, antisymmetric, and transitive.

Example: The relation (\leq) on the set of integers (\leq) is a partial order. For instance, (2 \leq) and if (2 \leq) and (3 \leq), then (2 \leq) (transitivity).

If relations R and S are reflexive, symmetric and transitive, show that R∩S is also reflexive, symmetric and transitive.

SOLUTION:

Let R and S be reflexive, symmetric, and transitive relations on a set A. We want to show that $R \cap S$ is also reflexive, symmetric, and transitive.

Reflexive:

Since R is reflexive, $(a, a) \in R$ for all $a \in A$. Since S is reflexive, $(a, a) \in S$ for all $a \in A$. Therefore, $(a, a) \in R \cap S$ for all $a \in A$. Thus, $R \cap S$ is reflexive.

Symmetric:

Assume $(a, b) \in R \cap S$. This means $(a, b) \in R$ and $(a, b) \in S$. Since R is symmetric, $(a, b) \in R$ implies $(b, a) \in R$. Since S is symmetric, $(a, b) \in S$ implies $(b, a) \in S$. Therefore, $(b, a) \in R$ and $(b, a) \in S$. This means $(b, a) \in R \cap S$. Thus, $R \cap S$ is symmetric.

Transitive:

Assume (a, b) \in R \cap S and (b, c) \in R \cap S.

This means $(a, b) \in R$, $(a, b) \in S$, $(b, c) \in R$, and $(b, c) \in S$.

Since R is transitive, $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$.

Since S is transitive, $(a, b) \in S$ and $(b, c) \in S$ implies $(a, c) \in S$.

Therefore, $(a, c) \in R$ and $(a, c) \in S$.

This means (a, c) \in R \cap S.

Thus, $R \cap S$ is transitive.

In conclusion we can say that,

Since $R \cap S$ is reflexive, symmetric, and transitive, the intersection of two reflexive, symmetric, and transitive relations is also reflexive, symmetric, and transitive.

Let $X = \{ball, bed, dog, let, egg\}$ and R is a relation defined on X as $R = \{(x,y) \mid x \text{ and y contain some common letters}\}$. Show that R is a compatibility relation and also find maximum compatibility blocks for R.

SOLUTION:

1. Compatibility Relation:

A relation R on a set A is called a compatibility relation if it satisfies the following properties:

- Reflexivity: For every $x \in A$, $(x,x) \in R$.
- Symmetry: For every $x,y\in A$, if $(x,y)\in R$, then $(y,x)\in R$.

2. Reflexivity:

ullet For each word $x\in A$, x contains itself so $(x,x)\in R$.

- ullet For example, $(\mathrm{ball},\mathrm{ball})\in R$, $(\mathrm{bed},\mathrm{bed})\in R$, etc.
- ullet Therefore, R is reflexive.
- Since sharing a common letter is a symmetric property, if x shares a letter with y, then y also shares a letter with x.
- For example, $(ball, bed) \in R$ because both contain the letter 'b', and $(bed, ball) \in R$ for the same reason.
- ullet Therefore, R is symmetric.

- Io show that R is not transitive, we need to find elements $x,y,z\in A$ such that $(x,y)\in R$ and $(y,z)\in R$, but $(x,z)\notin R$.
- Consider the words ball, bed, and dog:
 - ullet $(\mathrm{ball},\mathrm{bed})\in R$ because both contain the letter 'b'.
 - ullet $(\mathrm{bed},\mathrm{dog})\in R$ because both contain the letter 'd'.
 - However, $(ball, dog) \notin R$ because they do not share any common letters.
- ullet Therefore, R is not transitive.

Conclusion:

The relation R is a compatibility relation because it is reflexive and symmetric. However, R is not transitive, as demonstrated by the counterexample involving the words "ball", "bed", and "dog".

Now,

ball: shares 'b' with bed.

bed: shares 'b' with ball and 'e' with let and egg.

dog: shares 'd' with bed.

let: shares 'e' with bed and egg.

egg: shares 'e' with bed and let.

Now, we can form the following compatibility blocks:

{ball, bed}: Both share 'b'.

{bed, let, egg}: All share 'e' and 'b'.

{bed, dog}: Both share 'd'.

{let, egg}: Both share 'e'.

The largest compatibility blocks are:

{bed, let, egg}: This block contains three elements where every pair shares at least one common letter.

Thus, the maximum compatibility block for (R) is {bed, let, egg}.

Given $S=\{1,2,3,4\}$ and relation R on S defined by $R=\{(1,2),(4,3),(2,2),(2,1),(3,1)\}$. Show that R is not transitive. Find a relation $R1 \ge R$ such that R1 is transitive. Can you find another relation $R2 \ge R$ which is also transitive.

SOLUTION:

We are given the set $S=\{1,2,3,4\}$ and the relation R on S, defined by the set of ordered pairs $R=\{(1,2),(4,3),(2,2),(2,1),(3,1)\}$.

Step 1: Check if R is transitive.

A relation R is transitive if whenever $(a,b) \in R$ and $(b,c) \in R$, it follows that $(a,c) \in R$.

Let's check if R is transitive by looking for pairs (a,b) and (b,c) in R, and seeing if (a,c) is also in R: For (1,2) and (2,2):

We have (1,2) and (2,2) in R, so we need to check if (1,2) is in R. Since $(1,2) \in \mathbb{R}$, the c

We have (2,1) and (1,2) in R, so we need to check if (2,2) is in R. Since $(2,2) \in \mathbb{R}$, this condition is satisfied. For (4,3) and (3,1):

We have, (4,3) and (3,1) in R, so we need to check if (4,1) is in R.

However, (4,1)∉R, so R is not transitive. Since we found a counterexample where (4,3) and (3,1) imply (4,1) is not in R, we conclude that R is not transitive.

Step 2: Find a relation R1≥R such that R1 is transitive

From the counterexample above, we need to add the pair

Thus, we can define the new relation R1 by adding (4,1) to R: R1 =R \cup {(4,1)}={(1,2),(4,3),(2,2),(2,1),(3,1),(4,1)}

Now, let's check if R1 is transitive:

We have already verified that all the existing pairs in R were consistent with transitivity. With the addition of (4,1), we ensure that the relation is transitive by closing the gaps.

Thus, R1={(1,2),(4,3),(2,2),(2,1),(3,1),(4,1)} is transitive.

Step 3: Find another relation

To ensure transitivity, we could add (1,1), (2,3), and any other pairs that might be necessary for closure.

Let's try:

R2=R
$$\cup$$
{(4,1),(1,1),(2,3)}={(1,2),(4,3),(2,2),(2,1),(3,1),(4,1),(1,1),(2,3)}

Now, let's check if R2 is transitive:

By adding these extra pairs, we ensure that any pair that would be a composition of two existing pairs now has a corresponding pair in the relation.

Thus, R={(1,2),(4,3),(2,2),(2,1),(3,1),(4,1),(1,1), (2,3)} is also transitive.

Draw the Hasse diagram of $(P(S),\subseteq)$ where the P(S) is the power set of the set $S=\{a,b,c,d\}$.

SOLUTION:

The Set S = {a, b, c, d} Since S has 4 elements |S| = 4Number of elements in Power Set P(S) = $2^4 = 16$ P(S) = {Ø, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}}

Hasse diagram of $(P(S),\subseteq)$

Let A={1,2,3,4,5,6,12} on A, define a relation R by aRb if and only if a divides b. Prove that

R is partial ordering on R. Draw the Hasse diagram for this relation.

SOLUTION:

To prove that the relation R on A={1,2,3,4,5,6,12}, defined by aRb

a/b (i.e., a divides b), is a partial ordering, we need to verify the following properties:

1. Reflexivity:

For all $a \in A$, a/a, as every number divides itself. \Box Thus, R is reflexive.

2. Antisymmetry:

If aRb and bRa, then a=b.

If a/b and b/a, then a and b must be the same number since the only divisors a number shares with itself are its multiples.

Thus, R is antisymmetric.

3. Transitivity: If aRb and bRc, then aRc.

If a/b and b/c, then a/c because the divisibility relation is transitive. ☐ Thus, R is transitive.

Since R satisfies reflexivity, antisymmetry, and transitivity, R is a partial order on A.

Hence, proved.

Here is the
Hasse
diagram for
the relation
R on the set
A=
{1,2,3,4,5,6,
12}, where
aRb <=> a/b

Let A={1,2,3,4,6,8,12,24} on A, define a relation R by aRb if and only if a divides b. Prove that R is partial ordering on R. Draw the Hasse diagram for this relation.

SOLUTION:

To prove that the relation R on A={1,2,3,4,6,8,12,24}, defined by aRb ⇔ a/b (i.e., a divides b), is a partial ordering, we need to verify the following properties:

1. Reflexivity

For all $a \in A$, a/a, as every number divides itself. \Box Thus, R is reflexive.

2. Antisymmetry

If aRb and bRa, then a=b.

If a/b and b/a, then a and b must be the same number since the only divisors a number shares with itself are its multiples.

Thus, R is antisymmetric.

3. Transitivity

If aRb and bRc, then aRc.

If a/b and b/c, then a/c because the divisibility relation is transitive. □Thus, R is transitive.

Since R satisfies reflexivity, antisymmetry, and transitivity, R is a partial order on A.

Hence, proved.

Here is the
Hasse diagram
for the relation
R on the set A=
{1,2,3,4,5,6,12,2}
4}, where aRb
<=> a/b

Let Z be the set of integers and let R be the relation called congruence modulo 3 defined by R = $\{(x,y) \mid x \in z \land y \in z \land (x-y) \text{ is divisible by 3}\}$. Determine the equivalence classes generated by the elements of Z.

SOLUTION:

The relation R is defined as $R=\{(x,y)\mid x\in\mathbb{Z}\wedge y\in\mathbb{Z}\wedge (x-y) \text{ is divisible by } 3\}$. This is the congruence modulo 3 relation, denoted as $x \equiv y \pmod{3}$.

To determine the equivalence classes generated by the elements of \mathbb{Z} , we need to find the sets of integers that are related to each other under this relation. Two integers x and y are related if their difference (x-y) is divisible by 3. In other words, x and y have the same remainder when divided by 3.

There are three possible remainders when an integer is divided by 3: 0, 1, and 2. Therefore, there are three equivalence classes:

- 1. Equivalence class of 0: $[0] = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{\ldots, -6, -3, 0, 3, 6, \ldots\} = \{3k \mid k \in \mathbb{Z}\}$
- 2. Equivalence class of 1:

$$[1] = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{\ldots, -5, -2, 1, 4, 7, \ldots\} = \{3k + 1 \mid k \in \mathbb{Z}\}$$

3. Equivalence class of 2:

$$[2] = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{\ldots, -4, -1, 2, 5, 8, \ldots\} = \{3k + 2 \mid k \in \mathbb{Z}\}$$

These three equivalence classes partition the set of integers Z. That is, every integer belongs to exactly one of these classes.

Equivalence Classes:

$$egin{align} [0] &= \{3k \mid k \in \mathbb{Z}\} \ [1] &= \{3k+1 \mid k \in \mathbb{Z}\} \ [2] &= \{3k+2 \mid k \in \mathbb{Z}\} \ \end{gathered}$$

13.

Let $R = \{(b,c),(b,e),(c,e),(d,a),(c,b),(e,c)\}$. Find the transitive closure of the relation R.

SOLUTION:

The transitive closure of

$$R = \{(b,c), (b,e), (c,e), (d,a), (c,b), (e,c)\}$$

is

$$R^+ = \{(b,b), (b,c), (b,e), (c,b), (c,c), (c,e), (e,b), (e,c), (e,e), (d,a)\}.$$

Verification:

Within the subset $\{b,c,e\}$, the relation forms a cycle (since $b\to c,c\to b,b\to e,c\to e$, and $e\to c$). This cyclicity implies that every element of $\{b,c,e\}$ is reachable from every other element, including itself (as shown by $b\to c\to b$, etc.). The pair (d,a) stands alone with no further connections from a to any element. Hence, the transitive closure includes all ordered pairs among b,c, and e, plus the isolated pair (d,a).

- A number of computer users are surveyed to find out if they have a printer, modem or scanner. Draw separate Venn diagrams and shade the areas, which represent the following configurations.
- a. modem and printer but no scanner b. scanner but no printer and no modem c. scanner or printer but no modem d. no modem and no printer.

SOLUTION: To solve this, let's define the sets:

P= users who have a printer M= users who have a modem S= users who have a scanner.

(a) Modem and Printer but no Scanner:

We need to find users who have both printer and a modem, but no Scanner. This means the intersection of M and P, but excluding S.
Mathematically, (M∪P)-S

(b) Scanner but no Printer and no Modem:

User only uses Scanner, meaning exclusively S and not P or M.

Mathematically, S- $(M \cup P)$

(c) Scanner or Printer but no Modem:

User uses either Scanner or Printer but must not have a Modem.

Mathematically, (S∪P)-M

(d) No Modem and no Printer

User do not have a Modem and do not have a Printer, that means user only have a Scanner.

Mathematically, Universal Set - $(M \cup P)$

In a school, 100 students have access to three software packages, A, B and C

28 did not use any software

8 used only packages A

26 used only packages B

7 used only packages C

10 used all three packages

13 used both A and B

- a. Draw a Venn diagram with all sets enumerated as far as possible. Label the two subsets which cannot be enumerated as x and y, in any order.
- b. If twice as many students used package B as package A, write down a pair of simultaneous equations in x and y.
- c. Solve these equations to find x and y.
- d. How many students used package C?

SOLUTION:

A only = 8

B only = 26

C only = 7

All three = 10

Both A and B = 13

Both A and B but not C = 13-10 = 3

Both A and C but not B = x

Both B and C but not A = y

None = 28

Total = 100

Now, 8+26+7+10+3+x+y+28 = 100

=>82+x+y = 100

=>x+y=18

Twice as many students used package B as package A

B used = 26+13+y=39+y

A used = 8+13+x=21+x

By the sum,

$$39+y = 42+2x$$

$$=>y = 2x+3$$

Again,
$$x+y = 18$$

$$=>x+2x+3=18$$

$$=>3x=15$$

$$=> x = 5$$

Hence, y = 13

C used = 7+10+x+y = 17+18 = 35

The required Venn Diagram:

16.

Find P(P(O)) where P(X) is the power set of X.

SOLUTION:

To find $P(P(P(\emptyset)))$, we need to carefully break down the problem by applying the concept of a power set at each step.

Step 1: Find $P(\emptyset)$

The power set of a set X is the set of all subsets of X.

The power set of the empty set, \emptyset , is: $P(\emptyset) = \{\emptyset\}$

This is because the only subset of the empty set is the empty set itself.

Step 2: Find $P(P(\emptyset))$

Now, we need to find the power set of $P(\emptyset)$, which is $P(\{\emptyset\})$.

The power set of $\{\emptyset\}$ is the set of all subsets of $\{\emptyset\}$, which are:

 $P({\emptyset})={\emptyset,{\emptyset}}$

This is because the subsets of $\{\emptyset\}$ are the empty set and the set containing the empty set.

Step 3: Find P(P(Q))

Finally, we need to find the power set of $P(P(\emptyset))$, which is $P(\{\emptyset, \{\emptyset\}\})$.

The power set of $\{\emptyset, \{\emptyset\}\}\$ is the set of all subsets of $\{\emptyset, \{\emptyset\}\}\$, which are: $P(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$

Thus, P(P(P(Ø)))={Ø,{Ø},{{Ø}},{Ø,{Ø}}}.

