实验报告

1. 实验内容

测试 sklearn 中的聚类算法在 tweet 数据集上的效果,并使用 NMI 作为评价指标。

2. 实验过程

1) NMI 评价指标: Normalized Mutual Information

$$U(X,Y) = 2R = 2\frac{I(X;Y)}{H(X) + H(Y)}$$

$$I(X,Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \qquad H(X) = \sum_{i=1}^{n} p(x_i) I(x_i) = \sum_{i=1}^{n} p(x_i) \log_b \frac{1}{p(x_i)} = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i),$$

- 2) 在处理文档时,使用了 TfidfVectorizer 来统计 tf-idf。
- 3) 需测试的聚类算法总结:

在 scikit-learn 中的 clustering algorithms (聚类算法)的比较

Method name (方法名 称)	Parameters (参 数)	Scalability (可扩展 性)	Usecase(使用场景)	Geometry (metric used)(几何图形(公制 使用))
K-Means(K-均 值)	聚类形成的簇的 个数	非常大的 n_samples, 中等的 n_clusters 使 用 MiniBatch code	通用, 均匀的簇大小, 平面几何, 不是太多的簇	点之间的距离
Affinity propagation	damping (阻 尼), sample preference (样本 偏好)	n_samples 不可扩展	许多簇,不均匀的簇大小,非 平面几何	图形距离(例如,最近邻图)
Mean-shift	带宽	不可扩展的 n_samples	许多簇,不均匀的簇大小,非 平面几何	点之间的距离
Spectral clustering	簇的个数	中等的 n_samples,小 的 n_clusters	几个簇,均匀的簇大小,非平 面几何	图形距离(例如最近邻图)
Ward hierarchical clustering	簇的个数	大的 n_samples 和 n_clusters	很多的簇,可能连接限制	点之间的距离
Agglomerative clustering	簇的个数,链接类型,距离	大的 n_samples 和 n_clusters	很多簇,可能连接限制,非欧 几里得距离	任意成对距离
DBSCAN	neighborhood 的 大小	非常大的 n_samples, 中等的 n_clusters	非平面几何,不均匀的簇大小	最近点之间的距离
Gaussian mixtures	很多	不可扩展	平面几何,适用于密度估计	Mahalanobis 与中心的距离
Birch	分支因子, 阈值, 可选全局簇.	大的 n_clusters 和 n_samples	大数据集,异常值去除,数据 简化	点之间的欧式距离

3. 实验结果

The NMI of KMeans is:0.8260

The NMI of AffinityPropagation is: 0.7644

The NMI of Mean-shift is:0.7644

The NMI of Spectral Clustering is:0.7200

The NMI of Ward hierarchical clustering is:0.7991

The NMI of Agglomerative clustering is:0.7460

The NMI of DBSCAN NMI is: 0.7913

The NMI of Gaussian Mixture NMI is:0.7101