12.2: Double Integrals Over General Regions

$$F(x,y) = \begin{cases} f(x,y), & (x,y) \in D \\ 0, & (x,y) \in R \setminus D \end{cases}$$

$$\left(\int_{D}^{1} f(x, y) \right) dA = \int_{R}^{1} F(x, y) dA$$

If
$$f(x,y) \ge 0$$
 on D, $\iint_D f(x,y) dA = vol.$ of solid lying below surface $z = f(x,y)$, and above D.

Type I region
$$D \subset \mathbb{R}^2$$
, $D = \{(x, y) : a \leq x \leq b,$

$$D = \{(x, y) : c$$

$$a \in x \leq b$$

$$g_1(x) \leq y \leq g_2(x)$$

for some continuous func.
$$g_1, g_2: [a, b] \longrightarrow \mathbb{R}$$

$$g_1, g_2: [a, b] \longrightarrow \mathbb{R}$$

$$\iint\limits_{D} f(x, y) dA = \iint\limits_{\Omega} \left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) dy \right) dx$$

"bottom & top

 $y = g_1(x)$ λ $f_1(x)$

* Integrate over vertical segments, bottom to top.

In outter integral, let x vary.

Type I region

 $D = \{(x, y): C \leq y \in d, h_1(y) \leq x \leq h_2(y)\}$

for some cont. $h_1, h_2: (c, d) \longrightarrow \mathbb{R}$.

If f cont, on D,

 $\iint\limits_{D} f(x, y) dA = \iint\limits_{C} \frac{d \left(h_{2}(y) \right)}{f(x, y)} dx dy$

y d + - - - y = d y c + - - - y = c $x = h_1(y)$ $x = h_2(y)$

left & right curves "

$$x = h_1(y)$$

 $x = h_2(y)$

* Fix y, integrate over horizontal segments, left to right.

Ex. Find the volume of solid under $t = x^2 + y^2$, above D, where D is the region in xy-plane bold by y = 2x and $y = x^2$.

Have $f(x,y) = x^2 + y^2 \ge 0$ on D.

$$\Rightarrow V = \iint_D x^2 + y^2 dt$$

$$= ?$$

 $\chi^2 = 2x$ $\chi = 2$

 $y = x^{2}$ y = 2x x = 0 x = 2 = 6

 $V = \iint_{D} x^{2} + y^{2} dA$ $= \int_{0}^{2} \int_{x^{2}}^{2x} x^{2} + y^{2} dy dx$

(type I)

 $y = \lambda^{2} \Rightarrow x = \lambda^{2}$ y = 2x x = y

Or as tappe II.

$$\iint_{D} \chi^{2} + y^{2} dA = \iint_{X^{2} + y^{2}} dx dy$$

$$= \underbrace{\frac{21b}{35}}$$

Ex. Find vol. of tetrahedron bdd by planes
$$x + 2y + z = 2$$
 $x = 0$, $y = 0$, $z = 0$.

2y + z = 2 2z = 2 - 2y 1 1 1 2 - 2 - 2y

$$V = \iiint_{D} f(x, y) dA = \iiint_{0}^{2} \frac{-\xi+1}{2-x-2y} dy dx \qquad (+ype I)$$

$$= \dots \qquad (solve)$$

(this is currently type I)

Hard to do $\int_{x}^{2} s \ln(y^{2}) dy \dots$

so switch order of integration?

$$\frac{y}{y} = x$$

$$y = 1$$

$$x = 1$$

$$\iint_{D} f dA = \iint_{0}^{1} \int_{0}^{y} \sin(y^{2}) dx dy$$

(type II)

$$= \int_0^1 \sin(y^2) \int_0^y dx dy$$

$$= \int_0^1 \sin(y^2) y \, dy$$

$$u = y^2$$

$$du = Xy dy$$

$$= \int_{0}^{1} \sinh(u) \frac{du}{2}$$

/ \ /

Properties Assume
$$\iint g = exist$$
, $D \subset \mathbb{R}^2$

(i)
$$\iint_{D} f + g = \iint_{D} f + \iint_{D} g$$

$$\begin{cases}
\text{(ii)} & \iint_{D} f - g = \iint_{D} f - \iint_{D} g
\end{cases}$$

(iii)
$$\iint_{D} c f(x,y) dA = c \iint_{D} f(x,y) dA$$

(iv) If
$$f(x,y) \ge g(x,y)$$
 on D, then $\iint_D f \ge \iint_D g$

$$(v) \quad D = D_1 \cup D_2 , \quad \text{where} \quad \left(D_1 \cap D_2 \right) \subset \left(\partial D_1 \cap \partial D_2 \right),$$

then
$$\iint_D f = \iint_2 f + \iint_2 f$$

$$(vi) \iint_{D} 1 dA = area(D)$$

(vii)
$$m \le f(x, y) \le M$$
 on D, then

$$m \cdot area(D) \leq \iint_D f dA \leq M \cdot area(D)$$

i.e.
$$m \leq \frac{1}{avea(D)} \iint_{D} f dA \leq M$$