

METHODS OF GENERATING CHIMERIC ADENOVIRUSES AND USES FOR SUCH CHIMERIC ADENOVIRUSES

BACKGROUND OF THE INVENTION

5 The presence of humoral immunity (circulating antibodies) to adenovirus capsid proteins is a barrier to the use of adenovirus vectors for gene therapy. The prototype adenovirus vectors that have been developed for gene therapy are based on subgroup C adenoviruses such as that of serotype 5. The prevalence of neutralizing antibodies against subgroup C adenoviruses is generally high in human populations as
10 a result of frequent exposure to these pathogens. This fact is likely to greatly limit the effectiveness of gene therapy vectors based on serotypes such as Ad5.

Analysis of the nature of the protective antibodies against adenoviruses has indicated that the most important target is the major capsid protein, hexon [Wolfhart (1988) *J. Virol.* **62**, 2321; Gall *et al.* (1996) *J. Virol.* **70**, 2116]. Several efforts have
15 been made to engineer the hexon so as to evade the anti-hexon antibodies by making chimeric adenoviruses harboring hexons from other serotypes [Roy *et al.* (1998) *J. Virol.* **72**, 6875; US Patent No 5,922,315; Gall *et al.* (1998) *J. Virol.* **72**, 10260; Youil *et al.* (2002) *Hum. Gene Ther.* **13**, 311; Wu *et al.* (2002) *J. Virol.* **76**, 12775]. However, this has been largely unsuccessful when exchanges among distant serotypes
20 are attempted.

Alternatively, investigators have proposed using adenovirus vectors that rarely cause human infections or using adenoviruses from non-human sources. However, the lack of a practical manner in which to produce large numbers of such vectors has proved to be a hindrance to developing such vectors.
25

SUMMARY OF THE INVENTION

The present invention provides a method of modifying adenoviruses having capsids, and particularly, including hexons, from serotypes which are not well
30 adapted for growth in cells useful for adenoviral virion production. The method is useful for production of scalable amounts of adenoviruses. The resulting chimeric adenovirus genomes are useful for a variety of purposes which are described herein.

BEST AVAILABLE COPY

The invention further provides novel, isolated, adenovirus SA18 nucleic acid and amino acid sequences, vectors containing same, cell lines containing such SA18 sequences and/or vectors, and uses thereof.

Other aspects and advantages of the present invention will be readily apparent
5 from the following detailed description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 provides the map of the genome of the simian adenovirus generated by shotgun cloning as described in the examples below.

10 Fig. 2 provides the map of the recombinant Adhu5-SV25 chimeric virus, termed H5S25H5.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides chimeric adenovirus genomes composed of
15 the left terminal end and right terminal end of an adenovirus which can be cultured in the selected host cell, and the internal regions encoding, at a minimum, the capsid proteins of another adenovirus serotype. This invention is particularly advantageous for generating adenoviruses having serotypes which are difficult to culture in a desired cell type. The invention thus permits generation of chimeric adenoviruses
20 vectors of varying serotypes..

In the embodiments illustrated herein, chimeric adenoviruses have been constructed where most structural proteins, and not merely the hexon or fiber, are derived from an adenovirus of an unrelated serotype, thereby preserving the majority of the protein-protein interactions that are involved in capsid assembly. Most of the
25 early genes such as those encoded by the adenovirus E1 and E4 regions that are responsible for transcription regulation and regulation of the host cell cycle, are retained from a different serotype that is known to result in high titer virus generation in the commonly used cell types, such as HEK 293 which supplies the Ad5 E1 proteins in *trans*.

30 In another embodiment, the invention provides novel nucleic acid and amino acid sequences from Ad SA18, which was originally isolated from vervet monkey [ATCC VR-943]. The present invention further provides novel adenovirus vectors and packaging cell lines to produce those vectors for use in the *in vitro* production of

recombinant proteins or fragments or other reagents. The invention further provides compositions for use in delivering a heterologous molecule for therapeutic or vaccine purposes. Such therapeutic or vaccine compositions contain the adenoviral vectors carrying an inserted heterologous molecule. In addition, novel sequences of the 5 invention are useful in providing the essential helper functions required for production of recombinant adeno-associated viral (AAV) vectors. Thus, the invention provides helper constructs, methods and cell lines which use these sequences in such production methods.

The term "substantial homology" or "substantial similarity," when referring to 10 a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 95 to 99% of the aligned sequences.

The term "substantial homology" or "substantial similarity," when referring to 15 amino acids or fragments thereof, indicates that, when optimally aligned with appropriate amino acid insertions or deletions with another amino acid (or its complementary strand), there is amino acid sequence identity in at least about 95 to 99% of the aligned sequences. Preferably, the homology is over full-length sequence, or a protein thereof, or a fragment thereof which is at least 8 amino acids, or more 20 desirably, at least 15 amino acids in length. Examples of suitable fragments are described herein.

The term "percent sequence identity" or "identical" in the context of nucleic 25 acid sequences refers to the residues in the two sequences that are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over the full-length of the genome (*e.g.*, about 36 kbp), the full-length of an open reading frame of a gene, protein, subunit, or enzyme [*see, e.g.*, the tables providing the adenoviral coding regions], or a fragment of at least about 500 to 5000 nucleotides, is desired. However, identity among smaller fragments, *e.g.*, of at least about nine nucleotides, usually at least about 20 to 24 nucleotides, at least about 28 to 30 32 nucleotides, at least about 36 or more nucleotides, may also be desired. Similarly, "percent sequence identity" may be readily determined for amino acid sequences, over the full-length of a protein, or a fragment thereof. Suitably, a fragment is at least

about 8 amino acids in length, and may be up to about 700 amino acids. Examples of suitable fragments are described herein.

Identity is readily determined using such algorithms and computer programs as are defined herein at default settings. Preferably, such identity is over the full 5 length of the protein, enzyme, subunit, or over a fragment of at least about 8 amino acids in length. However, identity may be based upon shorter regions, where suited to the use to which the identical gene product is being put.

As described herein, alignments are performed using any of a variety of publicly or commercially available Multiple Sequence Alignment Programs, such as 10 "Clustal W", accessible through Web Servers on the internet. Alternatively, Vector NTI utilities are also used. There are also a number of algorithms known in the art that can be used to measure nucleotide sequence identity, including those contained in the programs described above. As another example, polynucleotide sequences can be compared using Fasta, a program in GCG Version 6.1. Fasta provides alignments and 15 percent sequence identity of the regions of the best overlap between the query and search sequences. For instance, percent sequence identity between nucleic acid sequences can be determined using Fasta with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) as provided in GCG Version 6.1, herein incorporated by reference. Similarly programs are available for performing 20 amino acid alignments. Generally, these programs are used at default settings, although one of skill in the art can alter these settings as needed. Alternatively, one of skill in the art can utilize another algorithm or computer program that provides at least the level of identity or alignment as that provided by the referenced algorithms and programs.

25 As used throughout this specification and the claims, the term "comprise" and its variants including, "comprises", "comprising", among other variants, is inclusive of other components, elements, integers, steps and the like. The term "consists of" or "consisting of" are exclusive of other components, elements, integers, steps and the like.

30 Except where otherwise specified, the term "vector" includes any genetic element known in the art which will deliver a target molecule to a cell, including, naked DNA, a plasmid, phage, transposon, cosmids, episomes, viruses, etc.

By "minigene" is meant the combination of a selected heterologous gene and the other regulatory elements necessary to drive translation, transcription and/or expression of the gene product in a host cell.

As used herein, the term "transcomplement" refers to when a gene (gene product) of one adenovirus serotype supplies an adenovirus serotype lacking this gene (gene product) from another serotype with the missing function. For example, human adenovirus serotype 5 E1a and E1b functions are known to transcomplement E1-deleted chimpanzee adenovirus Pan 9. Similarly, the inventors have found that human Ad5 E1 transcomplements E1-deleted chimpanzee adenovirus serotypes Pan5, Pan6, Pan7, and simian adenovirus serotypes SV1, SV25 and SV39. Other examples of transcomplementing serotypes include human Ad5 and human Ad2, Ad3, Ad4, Ad5, Ad7, and Ad12.

The term "functionally deleted" or "functional deletion" means that a sufficient amount of the gene region is removed or otherwise damaged, e.g., by mutation or modification, so that the gene region is no longer capable of producing functional products of gene expression. If desired, the entire gene region may be removed. Other suitable sites for gene disruption or deletion are discussed elsewhere in the application.

The term "functional" refers to a product (e.g., a protein or peptide) which performs its native function, although not necessarily at the same level as the native product. The term "functional" may also refer to a gene which encodes and from which a desired product can be expressed.

I. Chimeric Adenoviral Vectors

The compositions of this invention include chimeric adenoviral vectors that deliver a heterologous molecule to cells. For delivery of such a heterologous molecule, the vector can be a plasmid or, preferably, a chimeric adenovirus. The chimeric adenoviruses of the invention include adenovirus DNA from at least two source serotypes, a "donating serotype" and a "parental adenovirus" as described in more detail herein, and a minigene.

Because the adenoviral genome contains open reading frames on both strands, in many instances reference is made herein to 5' and 3' ends of the various regions to avoid confusion between specific open reading frames and gene regions. Thus, when

reference is made herein to the "left" and "right" end of the adenoviral genome, this reference is to the ends of the approximately 36 kb adenoviral genome when depicted in schematic form as is conventional in the art [see, e.g., Horwitz, "Adenoviridae and Their Replication", in *VIROLOGY*, 2d ed., pp. 1679-1721 (1990)]. Thus, as used
5 herein, the "left terminal end" of the adenoviral genome refers to portion of the adenoviral genome which, when the genome is depicted schematically in linear form, is located at the extreme left end of the schematic. Typically, the left end refers to be portion of the genome beginning at map unit 0 and extending to the right to include at least the 5' inverted terminal repeats (ITRs), and excludes the internal regions of the
10 genome encoding the structural genes. As used herein, the "right terminal end" of the adenoviral genome refers to portion of the adenoviral genome which, when the genome is depicted schematically in linear form, is located at the extreme right end of the schematic. Typically, the right end of the adenoviral genome refers to be portion of the genome ending at map unit 36 and extending to the left to include at least the 3'
15 ITRs, and excludes the internal regions of the genome encoding the structural genes.

A. Adenovirus Regulatory Sequences

1. Serotype

The selection of the adenovirus serotype donating its left terminal end and right terminal end can be readily made by one of skill in the art from
20 among serotypes which can readily be cultured in the desired cell line. Among other factors which may be considered in selecting the serotype of the donating serotype is compatibility with the adenovirus serotype which will be supplying the internal regions at the location at which their sequences are hybridized.

Suitable adenoviruses for donating their left and right termini
25 are available from the American Type Culture Collection, Manassas, Virginia, US (ATCC), a variety of academic and commercial sources, or the desired regions of the donating adenoviruses may be synthesized using known techniques with reference to sequences published in the literature or available from databases (e.g., GenBank, etc.). Examples of suitable donating adenoviruses include, without limitation, human
30 adenovirus serotypes 2, 3, 4, 5, 7, and 12, and further including any of the presently identified human types [see, e.g., Horwitz, "Adenoviridae and Their Replication", in *VIROLOGY*, 2d ed., pp. 1679-1721 (1990)] which can be cultured in the desired cell. Similarly adenoviruses known to infect non-human primates (e.g., chimpanzees,

rhesus, macaque, and other simian species) or other non-human mammals and which grow in the desired cell can be employed in the vector constructs of this invention. Such serotypes include, without limitation, chimpanzee adenoviruses Pan 5 [VR-591], Pan6 [VR-592], Pan7 [VR-593], and C68 (Pan9), described in US Patent No. 5 6,083,716; and simian adenoviruses including, without limitation SV1 [VR-195]; SV25 [SV-201]; SV35; SV15; SV-34; SV-36; SV-37, and baboon adenovirus [VR-275], among others. The sequences of Pan 5 (also termed C5), Pan 6 (also termed C6), Pan 7 (also termed C7), SV1, SV25, and SV39 have been described [WO 03/046124, published 5 June 2003; and in US Patent Application No. 10/739,096, filed December 19, 2003)], which are incorporated by reference. In the following examples, the human 293 cells and adenovirus type 5 (Ad5), Pan9, and Ad40 are used for convenience. However, one of skill in the art will understand that other cell lines and/or comparable regions derived from other adenoviral strains may be readily selected and used in the present invention in the place of (or in combination with) 10 these serotypes.

2. Sequences

The minimum sequences which must be supplied by the adenovirus donating its left terminal end and its right terminal end include the 5' cis-elements and the 3' cis-elements necessary for replication and packaging. Typically, 20 the 5' cis-elements necessary for packaging and replication include the 5' inverted terminal repeat (ITR) sequences (which functions as origins of replication) and the native 5' packaging enhancer domains (that contain sequences necessary for packaging linear Ad genomes and enhancer elements for the E1 promoter). The right end of the adenoviral genome includes the 3' cis-elements (including the ITRs) necessary for packaging and encapsidation. Desirably, the adenovirus serotype 25 donating its left and right termini and/or an adenovirus serotype which transcomplements the serotype of the donating adenovirus, further provides the functions of the necessary adenovirus early genes, including E1 (E1a and E1b), E2 (E2a and E2b), and E4 (including at least the ORF6 region). E3 is not essential and 30 may be deleted as desired, e.g., for insertion of a transgene in this region or to provide space for a transgene inserted in another region (typically for packaging it is desirable for the total adenoviral genome to be under 36 kb).

In certain embodiments, the necessary adenovirus early genes are contained in the chimeric construct of the invention. In other embodiment, one or more of the necessary adenovirus early genes can be provided by the packaging host cell or in *trans*.

5 In general, the chimeric adenovirus of the invention contains regulatory sequences from the donating adenovirus serotype, or a transcomplementing serotype, to provide the chimeric adenovirus with compatible regulatory proteins. Optionally, one or more of the necessary adenoviral structural genes is provided by the adenovirus donating its left terminal and its right terminal end.

10 In certain embodiments, the chimeric adenovirus further contains one or more functional adenovirus genes, including, the Endoprotease open reading frame, DNA binding protein, 100 kDa scaffolding protein, 33 kDa protein, protein VIII, pTP, 52/55 kDa protein, protein VII, Mu and/or protein VI from the adenovirus serotype donating its left and right termini. Where all of these genes are 15 derived from the adenovirus serotype donating the 5' and 3' ITRs, a "pseudotyped" virus is formed. In one embodiment, the chimeric adenovirus contains the left end of the adenovirus genome from the donating serotype, from the 5' ITR through the end of the pol gene (or the pTP). In another embodiment, the chimeric adenovirus contains the left end of the donating adenovirus serotype, from the 5' ITR through the 20 penton. In yet another embodiment, the chimeric adenovirus contains the left end of the donating adenovirus serotype, *e.g.*, through the end of pTP, but contains an ITR from an adenovirus serotype heterologous to the donating adenovirus serotype. Still other embodiments will be readily apparent from the present disclosure.

25 Optionally, one or more of the genes can be hybrids formed from the fusion of the donating adenovirus serotype and the parental adenovirus serotype providing the capsid proteins (*e.g.*, without limitation, polymerase, terminal protein, IIIa protein). Suitably, these genes express functional proteins which permit packaging of the adenovirus genes into the capsid. Alternatively, one or more of these proteins (whether hybrid or non-hybrid) can be functionally deleted in the 30 chimeric adenovirus. Where desired, any necessary proteins functionally deleted in the chimeric adenovirus can be expressed in *trans* in the packaging cell.

B. Parental Adenovirus Structural Proteins

1. Serotypes

This invention is particularly well adapted for use in generating chimeric adenoviruses in which the capsid proteins are from a parental adenovirus which does not efficiently grow in a desirable host cell. The selection of the parental adenovirus serotype providing the internal regions can be readily made by one of skill in the art based on the information provided herein.

A variety of suitable adenoviruses can serve as a parental adenovirus supplying the regions encoding the structural (*i.e.*, capsid proteins). Many of such adenoviruses can be obtained from the same sources as described above for the donating adenovirus serotypes. Examples of suitable parental adenovirus serotypes includes, without limitation, human adenovirus serotype 40, among others [see, *e.g.*, Horwitz, "Adenoviridae and Their Replication", in *VIROLOGY*, 2d ed., pp. 1679-1721 (1990)], and adenoviruses known to infect non-human primates (*e.g.*, chimpanzees, rhesus, macaque, and other simian species) or other non-human mammals, including, without limitation, chimpanzee adenovirus C1, described in US Patent No. 6,083,716, which is incorporated by reference; simian adenoviruses, and baboon adenoviruses, among others. In addition, the parental adenovirus supplying the internal regions may be from a non-naturally occurring adenovirus serotype, such as may be generated using a variety of techniques known to those of skill in the art.

In one embodiment illustrated herein, a chimeric virus that was constructed was that between the chimpanzee adenoviruses Pan-5 and C1 exhibited a higher titer in human 293 cells than the wild-type parental virus. However, the invention is not limited to the use of these chimpanzee adenoviruses, or to the combination of simian-simian, human-human, or simian-human chimeric adenoviruses. For example, it may be desirable to utilize bovine or canine adenoviruses, or other non-human mammalian adenoviruses which do not naturally infect and/or replicate in human cells.

In the following examples, the human adenovirus type 40 (Ad40) and the chimpanzee adenovirus C1, simian Pan 5 and Ad40, and Pan 5 and simian adenovirus SA18, are used. However, one of skill in the art will understand that other adenoviral serotypes may be readily selected and used in the present invention in the place of (or in combination with) these serotypes.

2. Sequences

The parental adenovirus provides to the chimeric construct of the invention its internal regions which includes structural proteins necessary for generating a capsid having the desired characteristics of the parental adenovirus.

5 These desired characteristics include, but are not limited to, the ability to infect target cells and delivery a heterologous transgene, the ability to elude neutralizing antibodies directed to another adenovirus serotype (*i.e.*, avoiding clearance due to cross-reactivity), and/or the ability to infect cells in the absence of an immune response to the chimeric adenovirus. The advantages of such characteristics may be

10 most readily apparent in a regimen which involves repeat delivery of adenoviral vectors. The left and right termini of the parent adenovirus, including at least the 5' ITRs, the E1 region, the E4 region and the 3' ITRs are non-functional and, preferably, completely absent. Optionally, all adenovirus regulatory proteins from this parental adenovirus are non-functional and only the structural proteins (or selected structural

15 proteins) are retained.

At a minimum, the parental adenovirus provides the adenoviral late region encoding the hexon protein. Suitably, the parental adenovirus further provides the late regions encoding the penton and the fiber. In certain embodiments, all of the functional adenoviral late regions, including L1 (encoding 52/55 Da, IIIa proteins), L2 (encoding penton, VII, V, Mu proteins), L3 (encoding VI, hexon, Endoprotease), L4 (encoding 100 kD, 33 kD, VIII proteins) and L5 (encoding fiber protein) are supplied by the parental adenovirus. Optionally, one or more of these late gene functions, with the exception of those encoding the hexon, penton and fiber proteins, can be functionally deleted. Any necessary structural proteins may be supplied in *trans*.

Thus, in certain embodiments, the chimeric adenovirus further contains one or more functional adenovirus genes, including, the Endoprotease open reading frame, DNA binding protein, 100 kDa scaffolding protein, 33 kDa protein, protein VIII, pTP, 52/55 kDa protein, protein VII, Mu and/or protein VI from the parental adenovirus donating its internal regions. Optionally, one or more of the genes can be hybrids formed from the fusion of the donating adenovirus serotype and the parental adenovirus serotype providing the capsid proteins, as described above.

C. The "Minigene"

Typically, an adenoviral vector of the invention is designed to contain a minigene which may be inserted into the site of a partially deleted, fully deleted (absent), or disrupted adenoviral gene. For example, the minigene may be located in 5 the site of such a functional E1 deletion or functional E3 deletion, or another suitable site.

The methods employed for the selection of the transgene, the cloning and construction of the "minigene" and its insertion into the viral vector are within the skill in the art given the teachings provided herein.

10 1. The transgene

The transgene is a nucleic acid sequence, heterologous to the vector sequences flanking the transgene, which encodes a polypeptide, protein, or other product, of interest. The nucleic acid coding sequence is operatively linked to regulatory components in a manner which permits transgene transcription, translation, 15 and/or expression in a host cell.

The composition of the transgene sequence will depend upon the use to which the adenoviral vector will be put. For example, the adenoviral vector may be used as a helper virus in production of recombinant adeno-associated viruses or in production of recombinant adenoviruses deleted of essential adenoviral gene 20 functions which are supplied by the adenoviral vector, or for a variety of production uses. Alternatively, the adenoviral vector may be used for diagnostic purposes.

One type of transgene sequence includes a reporter sequence, which upon expression produces a detectable signal. Such reporter sequences include, without limitation, DNA sequences encoding β -lactamase, β -galactosidase 25 (LacZ), alkaline phosphatase, thymidine kinase, green fluorescent protein (GFP), chloramphenicol acetyltransferase (CAT), luciferase, membrane bound proteins including, for example, CD2, CD4, CD8, the influenza hemagglutinin protein, and others well known in the art, to which high affinity antibodies directed thereto exist or can be produced by conventional means, and fusion proteins comprising a membrane 30 bound protein appropriately fused to an antigen tag domain from, among others, hemagglutinin or Myc. These coding sequences, when associated with regulatory elements which drive their expression, provide signals detectable by conventional means, including enzymatic, radiographic, colorimetric, fluorescence or other

spectrographic assays, fluorescent activating cell sorting assays and immunological assays, including enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and immunohistochemistry. For example, where the marker sequence is the LacZ gene, the presence of the vector carrying the signal is detected by assays for 5 beta-galactosidase activity. Where the transgene is GFP or luciferase, the vector carrying the signal may be measured visually by color or light production in a luminometer.

However, desirably, the transgene is a non-marker sequence encoding a product which is useful in biology and medicine, such as proteins, 10 peptides, RNA, enzymes, or catalytic RNAs. Desirable RNA molecules include tRNA, dsRNA, ribosomal RNA, si RNAs, small hairpin RNAs, trans-splicing RNAs, catalytic RNAs, and antisense RNAs. One example of a useful RNA sequence is a sequence which extinguishes expression of a targeted nucleic acid sequence in the treated animal.

15 The transgene may be used for treatment, *e.g.*, of genetic deficiencies, as a cancer therapeutic or vaccine, for induction of an immune response, and/or for prophylactic vaccine purposes. As used herein, induction of an immune response refers to the ability of a molecule (*e.g.*, a gene product) to induce a T cell and/or a humoral immune response to the molecule. The invention further includes 20 using multiple transgenes, *e.g.*, to correct or ameliorate a condition caused by a multi-subunit protein. In certain situations, a different transgene may be used to encode each subunit of a protein, or to encode different peptides or proteins. This is desirable when the size of the DNA encoding the protein subunit is large, *e.g.*, for an immunoglobulin, the platelet-derived growth factor, or a dystrophin protein. In order 25 for the cell to produce the multi-subunit protein, a cell is infected with the recombinant virus containing each of the different subunits. Alternatively, different subunits of a protein may be encoded by the same transgene. In this case, a single transgene includes the DNA encoding each of the subunits, with the DNA for each subunit separated by an internal ribozyme entry site (IRES). This is desirable when 30 the size of the DNA encoding each of the subunits is small, *e.g.*, the total size of the DNA encoding the subunits and the IRES is less than five kilobases. As an alternative to an IRES, the DNA may be separated by sequences encoding a 2A peptide, which self-cleaves in a post-translational event. See, *e.g.*, M.L. Donnelly, *et al*, *J. Gen.*

Virol., **78**(Pt 1):13-21 (Jan 1997); Furler, S., *et al*, *Gene Ther.*, **8**(11):864-873 (June 2001); Klump H., *et al*, *Gene Ther.*, **8**(10):811-817 (May 2001). This 2A peptide is significantly smaller than an IRES, making it well suited for use when space is a limiting factor. However, the selected transgene may encode any biologically active product or other product, *e.g.*, a product desirable for study.

5 Suitable transgenes may be readily selected by one of skill in the art. The selection of the transgene is not considered to be a limitation of this invention.

2. Vector and Transgene Regulatory Elements

10 In addition to the major elements identified above for the minigene, the adenoviral vector also includes conventional control elements which are operably linked to the transgene in a manner that permits its transcription, translation and/or expression in a cell transfected with the plasmid vector or infected with the virus produced by the invention. As used herein, "operably linked"

15 sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in trans or at a distance to control the gene of interest.

20 Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation (polyA) signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (*i.e.*, Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance secretion of the encoded product. A great number of expression control sequences, including promoters which are native, constitutive, 25 inducible and/or tissue-specific, are known in the art and may be utilized.

Examples of constitutive promoters include, without limitation, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) [see, *e.g.*, Boshart *et al*, *Cell*, **41**:521-530 (1985)], the SV40 promoter, the dihydrofolate reductase promoter, the β -actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1 α promoter [Invitrogen].

30 Inducible promoters allow regulation of gene expression and can be regulated by exogenously supplied compounds, environmental factors such as

temperature, or the presence of a specific physiological state, *e.g.*, acute phase, a particular differentiation state of the cell, or in replicating cells only. Inducible promoters and inducible systems are available from a variety of commercial sources, including, without limitation, Invitrogen, Clontech and Ariad. Many other systems
5 have been described and can be readily selected by one of skill in the art. For example, inducible promoters include the zinc-inducible sheep metallothioneine (MT) promoter and the dexamethasone (Dex)-inducible mouse mammary tumor virus (MMTV) promoter. Other inducible systems include the T7 polymerase promoter system [WO 98/10088]; the ecdysone insect promoter [No *et al*, *Proc. Natl. Acad. Sci. USA*, 93:3346-3351 (1996)], the tetracycline-repressible system [Gossen *et al*,
10 *Proc. Natl. Acad. Sci. USA*, 89:5547-5551 (1992)], the tetracycline-inducible system [Gossen *et al*, *Science*, 268:1766-1769 (1995), see also Harvey *et al*, *Curr. Opin. Chem. Biol.*, 2:512-518 (1998)]. Other systems include the FK506 dimer, VP16 or p65 using castradiol, diphenol murslerone, the RU486-inducible system [Wang *et al*,
15 *Nat. Biotech.*, 15:239-243 (1997) and Wang *et al*, *Gene Ther.*, 4:432-441 (1997)] and the rapamycin-inducible system [Magari *et al*, *J. Clin. Invest.*, 100:2865-2872 (1997)]. The effectiveness of some inducible promoters increases over time. In such cases one can enhance the effectiveness of such systems by inserting multiple
represors in tandem, *e.g.*, TetR linked to a TetR by an IRES. Alternatively, one can
20 wait at least 3 days before screening for the desired function. One can enhance expression of desired proteins by known means to enhance the effectiveness of this system. For example, using the Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE).

In another embodiment, the native promoter for the transgene
25 will be used. The native promoter may be preferred when it is desired that expression of the transgene should mimic the native expression. The native promoter may be used when expression of the transgene must be regulated temporally or developmentally, or in a tissue-specific manner, or in response to specific transcriptional stimuli. In a further embodiment, other native expression control
30 elements, such as enhancer elements, polyadenylation sites or Kozak consensus sequences may also be used to mimic the native expression.

Another embodiment of the transgene includes a transgene operably linked to a tissue-specific promoter. For instance, if expression in skeletal

muscle is desired, a promoter active in muscle should be used. These include the promoters from genes encoding skeletal β -actin, myosin light chain 2A, dystrophin, muscle creatine kinase, as well as synthetic muscle promoters with activities higher than naturally occurring promoters (see Li *et al.*, *Nat. Biotech.*, 17:241-245 (1999)).

5 Examples of promoters that are tissue-specific are known for liver (albumin, Miyatake *et al.*, *J. Virol.*, 71:5124-32 (1997); hepatitis B virus core promoter, Sandig *et al.*, *Gene Ther.*, 3:1002-9 (1996); alpha-fetoprotein (AFP), Arbuthnot *et al.*, *Hum. Gene Ther.*, 7:1503-14 (1996)), bone osteocalcin (Stein *et al.*, *Mol. Biol. Rep.*, 24:185-96 (1997)); bone sialoprotein (Chen *et al.*, *J. Bone Miner. Res.*, 11:654-64

10 (1996)), lymphocytes (CD2, Hansal *et al.*, *J. Immunol.*, 161:1063-8 (1998); immunoglobulin heavy chain; T cell receptor chain), neuronal such as neuron-specific enolase (NSE) promoter (Andersen *et al.*, *Cell. Mol. Neurobiol.*, 13:503-15 (1993)), neurofilament light-chain gene (Piccioli *et al.*, *Proc. Natl. Acad. Sci. USA*, 88:5611-5 (1991)), and the neuron-specific vgf gene (Piccioli *et al.*, *Neuron*, 15:373-84 (1995)),

15 among others.

Optionally, vectors carrying transgenes encoding therapeutically useful or immunogenic products may also include selectable markers or reporter genes may include sequences encoding geneticin, hygromycin or purimycin resistance, among others. Such selectable reporters or marker genes 20 (preferably located outside the viral genome to be packaged into a viral particle) can be used to signal the presence of the plasmids in bacterial cells, such as ampicillin resistance. Other components of the vector may include an origin of replication. Selection of these and other promoters and vector elements are conventional and many such sequences are available [see, e.g., Sambrook *et al.*, and references cited 25 therein].

These vectors are generated using the techniques and sequences provided herein, in conjunction with techniques known to those of skill in the art. Such techniques include conventional cloning techniques of cDNA such as those described in texts [Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, 30 Cold Spring Harbor Press, Cold Spring Harbor, NY], use of overlapping oligonucleotide sequences of the adenovirus genomes, polymerase chain reaction, and any suitable method which provides the desired nucleotide sequence.

II. Production of the Recombinant Viral Particle

In one embodiment, the invention provides a method of generating recombinant chimeric adenoviral particles in which the capsid of the chimeric adenovirus is of a serotype incapable of efficient growth in the selected host cell. A vector suitable for production of recombinant chimeric adenoviral particles can be generated by direct cloning. Alternatively, such particles can be generated by homologous recombination between a first vector containing the left end of the chimeric adenoviral genome and a second vector containing the right end of the chimeric adenoviral genome. However, any suitable methodology known to those of skill in the art can be readily utilized to generate a vector suitable to generate a production vector, preferably which contains the entire chimeric adenoviral genome, including a minigene. This production vector is then introduced into a host cell in which the adenoviral capsid protein is assembled and the chimeric adenoviral particle assembled as described.

The chimeric adenoviruses of the invention include those in which one or more adenoviral genes are absent, or otherwise rendered non-functional. If any of the missing gene functions are essential to the replication and infectivity of the adenoviral particle, these functions are supplied by a complementation (or transcomplementing) cell line or a helper vector expressing these functions during production of the chimeric adenoviral particle.

Examples of chimeric adenoviruses containing such missing adenoviral gene functions include those which are partially or completely deleted in the E1a and/or E1b gene. In such a case, the E1 gene functions can be supplied by the packaging host cell, permitting the chimeric construct to be deleted of E1 gene functions and, if desired, for a transgene to be inserted in this region. Optionally, the E1 gene can be of a serotype which transcomplements the serotype providing the other adenovirus sequences in order to further reduce the possibility of recombination and improve safety. In other embodiments, it is desirable to retain an intact E1a and/or E1b region in the recombinant adenoviruses. Such an intact E1 region may be located in its native location in the adenoviral genome or placed in the site of a deletion in the native adenoviral genome (e.g., in the E3 region).

In another example, all or a portion of the adenovirus delayed early gene E3 may be eliminated from the chimeric adenovirus. The function of adenovirus E3 is

believed to be irrelevant to the function and production of the recombinant virus particle. Chimeric adenovirus vectors may also be constructed having a deletion of at least the ORF6 region of the E4 gene, and more desirably because of the redundancy in the function of this region, the entire E4 region. Still another vector of this 5 invention contains a deletion in the delayed early gene E2a. Similarly, deletions in the intermediate genes IX and IV_a₂ may be useful for some purposes. Optionally, deletions may also be made in selected portions of the late genes L1 through L5, as described above.

Other deletions may be made in the other structural or non-structural 10 adenovirus genes. The above-discussed deletions may be used individually, *i.e.*, an adenovirus sequence for use in the present invention may contain deletions in only a single region. Alternatively, deletions of entire genes or portions thereof effective to destroy their biological activity may be used in any combination. For example, in one exemplary vector, the adenovirus sequence may have deletions of the E1 genes and 15 the E4 gene, or of the E1, E2a and E3 genes, or of the E1 and E3 genes, or of E1, E2a and E4 genes, with or without deletion of E3, and so on. As discussed above, such deletions may be used in combination with other mutations, such as temperature-sensitive mutations, to achieve a desired result.

Examples of suitable transcomplementing serotypes are provided above. The 20 use of transcomplementing serotypes can be particularly advantageous where there is diversity between the Ad sequences in the vector of the invention and the human AdE1 sequences found in currently available packaging cells. In such cases, the use of the current human E1-containing cells prevents the generation of replication-competent adenoviruses during the replication and production process. However, in 25 certain circumstances, it will be desirable to utilize a cell line which expresses the E1 gene products can be utilized for production of an E1-deleted simian adenovirus. Such cell lines have been described. See, *e.g.*, US Patent 6,083,716.

A. Packaging Host Cells

Suitably, the packaging host cell is selected from among cells in 30 which the adenovirus serotype donating the left and right terminal ends of the chimeric genome are capable of efficient growth. The host cells are preferably of mammalian origin, and most preferably are of non-human primate or human origin.

Particularly desirable host cells are selected from among any mammalian species, including, without limitation, cells such as A549 [ATCC Accession No. CCL 185], 911 cells, WEHI, 3T3, 10T1/2, HEK 293 cells or PERC6 (both of which express functional adenoviral E1) [Fallaux, FJ *et al*, (1998), *Hum Gene Ther*, 9:1909-1917], Saos, C2C12, L cells, HT1080, HepG2, HeLa [ATCC Accession No. CCL 2], KB [CCL 17], Detroit [*e.g.*, Detroit 510, CCL 72] and WI-38 [CCL 75] cells, and primary fibroblast, hepatocyte and myoblast cells derived from mammals including human, monkey, mouse, rat, rabbit, and hamster. These cell lines are all available from the American Type Culture Collection, 10801 University Boulevard, Manassas, Virginia 20110-2209. Other suitable cell lines may be obtained from other sources. The selection of the mammalian species providing the cells is not a limitation of this invention; nor is the type of mammalian cell, *i.e.*, fibroblast, hepatocyte, tumor cell, etc.

As described above, a chimeric adenovirus of the invention can lack one or more functional adenoviral regulatory and/or structural genes which are supplied either by the host cell or in *trans* to effect packaging of the chimeric adenovirus into the viral capsid to generate the viral particle. Thus, the ability of a selected host cell to supply transcomplementing adenoviral sequences may be taken into consideration in selecting a desired host cell.

In one example, the cells are from a stable cell line which expresses adenovirus E1a and E1b functions from a cell line which transcomplements the adenovirus serotype which donates the left and right termini to the chimera of the invention, permitting the chimera to be E1-deleted. Alternatively, where the cell line does not transcomplement the adenovirus donating the termini, E1 functions may be provided by the chimera, or in *trans*.

If desired, one may utilize the sequences provided herein to generate a packaging cell or cell line that expresses, at a minimum, the adenovirus E1 gene from the adenovirus serotype donating the 5' ITR under the transcriptional control of a promoter for expression, or a transcomplementing serotype, in a selected parent cell line. Inducible or constitutive promoters may be employed for this purpose. Examples of such promoters are described in detail elsewhere in this specification. A parent cell is selected for the generation of a novel cell line expressing any desired adenovirus or adenovirus gene, including, *e.g.*, a human Ad5, AdPan5, Pan6, Pan7,

SV1, SV25 or SV39 gene. Without limitation, such a parent cell line may be HeLa [ATCC Accession No. CCL 2], A549 [ATCC Accession No. CCL 185], HEK 293, KB [CCL 17], Detroit [*e.g.*, Detroit 510, CCL 72] and WI-38 [CCL 75] cells, among others. Many of these cell lines are all available from the ATCC. Other suitable
5 parent cell lines may be obtained from other sources.

Such E1-expressing cell lines are useful in the generation of chimeric adenovirus E1 deleted vectors. Additionally, or alternatively, the invention provides cell lines that express one or more simian adenoviral gene products, *e.g.*, E1a, E1b, E2a, and/or E4 ORF6, can be constructed using essentially the same procedures for
10 use in the generation of chimeric viral vectors. Such cell lines can be utilized to transcomplement adenovirus vectors deleted in the essential genes that encode those products, or to provide helper functions necessary for packaging of a helper-dependent virus (*e.g.*, adeno-associated virus). The preparation of a host cell according to this invention involves techniques such as assembly of selected DNA
15 sequences. This assembly may be accomplished utilizing conventional techniques. Such techniques include cDNA and genomic cloning, which are well known and are described in Sambrook et al., cited above, use of overlapping oligonucleotide sequences of the adenovirus genomes, combined with polymerase chain reaction, synthetic methods, and any other suitable methods which provide the desired
20 nucleotide sequence.

In still another alternative, the essential adenoviral gene products are provided in *trans* by the adenoviral vector and/or helper virus. In such an instance, a suitable host cell can be selected from any biological organism, including prokaryotic (*e.g.*, bacterial) cells, and eukaryotic cells, including, insect cells, yeast cells and
25 mammalian cells. Particularly desirable host cells are selected from among any mammalian species, including, without limitation, cells such as A549, WEHI, 3T3, 10T1/2, HEK 293 cells or PERC6 (both of which express functional adenoviral E1) [Fallaux, FJ et al, (1998), Hum Gene Ther, 9:1909-1917], Saos, C2C12, L cells, HT1080, HepG2 and primary fibroblast, hepatocyte and myoblast cells derived from
30 mammals including human, monkey, mouse, rat, rabbit, and hamster. The selection of the mammalian species providing the cells is not a limitation of this invention; nor is the type of mammalian cell, *i.e.*, fibroblast, hepatocyte, tumor cell, etc.

B. Helper Vectors

Thus, depending upon the adenovirus gene content of the adenoviral vectors and any adenoviral gene functions expressed from the host cell, a helper vector may be necessary to provide sufficient adenovirus gene sequences necessary to produce an infective recombinant viral particle containing the minigene. See, for example, the techniques described for preparation of a "minimal" human Ad vector in International Patent Application WO96/13597, published May 9, 1996, and incorporated herein by reference. Suitably, these helper vectors may be non-replicating genetic elements, a plasmid, or a virus.

Useful helper vectors contain selected adenovirus gene sequences not present in the adenovirus vector construct and/or not expressed by the packaging cell line in which the vector is transfected. In one embodiment, the helper virus is replication-defective and contains a variety of adenovirus genes in addition to the sequences described above. Such a helper vector is desirably used in combination with an E1-expressing cell line.

Helper vectors may be formed into poly-cation conjugates as described in Wu *et al*, *J. Biol. Chem.*, 264:16985-16987 (1989); K. J. Fisher and J. M. Wilson, *Biochem. J.*, 299:49 (April 1, 1994). A helper vector may optionally contain a second reporter minigene. A number of such reporter genes are known to the art. The presence of a reporter gene on the helper virus which is different from the transgene on the adenovirus vector allows both the Ad vector and the helper vector to be independently monitored. This second reporter is used to enable separation between the resulting recombinant virus and the helper virus upon purification.

C. Assembly of Viral Particle and Transfection of a Cell Line

Generally, when delivering the vector comprising the minigene by transfection, the vector is delivered in an amount from about 5 µg to about 100 µg DNA, and preferably about 10 to about 50 µg DNA to about 1 x 10⁴ cells to about 1 x 10¹³ cells, and preferably about 10⁵ cells. However, the relative amounts of vector DNA to host cells may be adjusted, taking into consideration such factors as the selected vector, the delivery method and the host cells selected.

Introduction into the host cell of the vector may be achieved by any means known in the art or as disclosed above, including transfection, and infection. One or more of the adenoviral genes may be stably integrated into the genome of the

host cell, stably expressed as episomes, or expressed transiently. The gene products may all be expressed transiently, on an episome or stably integrated, or some of the gene products may be expressed stably while others are expressed transiently.

Furthermore, the promoters for each of the adenoviral genes may be
5 selected independently from a constitutive promoter, an inducible promoter or a native adenoviral promoter. The promoters may be regulated by a specific physiological state of the organism or cell (*i.e.*, by the differentiation state or in replicating or quiescent cells) or by exogenously added factors, for example.

Introduction of the molecules (as plasmids or viruses) into the host
10 cell may also be accomplished using techniques known to the skilled artisan and as discussed throughout the specification. In preferred embodiment, standard transfection techniques are used, *e.g.*, CaPO₄ transfection or electroporation.

Assembly of the selected DNA sequences of the adenovirus (as well as the transgene and other vector elements) into various intermediate plasmids, and
15 the use of the plasmids and vectors to produce a recombinant viral particle are all achieved using conventional techniques. Such techniques include direct cloning as described [G. Gao *et al*, *Gene Ther.* 2003 Oct; **10**(22):1926-1930; US Patent Publication No. 2003-0092161-A, published May 15, 2003; International Patent Application No. PCT/US03/12405]. Other cloning techniques of cDNA such as
20 those described in texts [Sambrook *et al*, cited above], use of overlapping oligonucleotide sequences of the adenovirus genomes, polymerase chain reaction, and any suitable method which provides the desired nucleotide sequence can be utilized. Standard transfection and co-transfection techniques are employed, *e.g.*, CaPO₄ precipitation techniques. Other conventional methods employed include homologous
25 recombination of the viral genomes, plaquing of viruses in agar overlay, methods of measuring signal generation, and the like.

For example, following the construction and assembly of the desired minigene-containing viral vector, the vector is transfected *in vitro* in the presence of an optional helper vector into the packaging cell line. The functions expressed from
30 the plasmid, packaging cell line and helper virus, if any, permits the adenovirus-transgene sequences in the vector to be replicated and packaged into virion capsids, resulting in the chimeric viral particles. The current method for producing such virus particles is transfection-based. However, the invention is not limited to such

methods. The resulting chimeric adenoviruses are useful in transferring a selected transgene to a selected cell.

III. Use of the Chimeric Adenovirus Vectors

5 The chimeric adenovirus vectors of the invention are useful for gene transfer to a human or veterinary subject (including, non-human primates, non-simian primates, and other mammals) *in vitro*, *ex vivo*, and *in vivo*.

10 The recombinant adenovirus vectors described herein can be used as expression vectors for the production of the products encoded by the heterologous genes *in vitro*. For example, the recombinant adenoviruses containing a gene inserted into the location of an E1 deletion may be transfected into an E1-expressing cell line as described above. Alternatively, replication-competent adenoviruses may be used in another selected cell line. The transfected cells are then cultured in the conventional manner, allowing the recombinant adenovirus to express the gene.

15 product from the promoter. The gene product may then be recovered from the culture medium by known conventional methods of protein isolation and recovery from culture.

20 A chimeric adenoviral vector of the invention provides an efficient gene transfer vehicle that can deliver a selected transgene to a selected host cell *in vivo* or *ex vivo* even where the organism has neutralizing antibodies to one or more AAV serotypes. In one embodiment, the rAd and the cells are mixed *ex vivo*; the infected cells are cultured using conventional methodologies; and the transduced cells are re-infused into the patient. These compositions are particularly well suited to gene delivery for therapeutic purposes and for immunization, including inducing protective 25 immunity.

25 More commonly, the chimeric adenoviral vectors of the invention will be utilized for delivery of therapeutic or immunogenic molecules, as described below. It will be readily understood for both applications that the recombinant adenoviral vectors of the invention are particularly well suited for use in regimens involving 30 repeat delivery of recombinant adenoviral vectors. Such regimens typically involve delivery of a series of viral vectors in which the viral capsids are alternated. The viral capsids may be changed for each subsequent administration, or after a pre-selected number of administrations of a particular serotype capsid (*e.g.*, one, two, three, four

or more). Thus, a regimen may involve delivery of a rAd with a first capsid, delivery with a rAd with a second capsid, and delivery with a third capsid. A variety of other regimens which use the Ad capsids of the invention alone, in combination with one another, or in combination with other Ad serotypes will be apparent to those of skill in the art. Optionally, such a regimen may involve administration of rAd with capsids of non-human primate adenoviruses, human adenoviruses, or artificial (e.g., chimeric) serotypes such as are described herein. Each phase of the regimen may involve administration of a series of injections (or other delivery routes) with a single Ad serotype capsid followed by a series with another Ad serotype capsid. Alternatively, 10 the recombinant Ad vectors of the invention may be utilized in regimens involving other non-adenoviral-mediated delivery systems, including other viral systems, non-viral delivery systems, protein, peptides, and other biologically active molecules.

The following sections will focus on exemplary molecules which may be delivered via the adenoviral vectors of the invention.

15 A. Ad-Mediated Delivery of Therapeutic Molecules

In one embodiment, the Ad vectors described herein are administered to humans according to published methods for gene therapy. A viral vector of the invention bearing the selected transgene may be administered to a patient, preferably suspended in a biologically compatible solution or pharmaceutically acceptable 20 delivery vehicle. A suitable vehicle includes sterile saline. Other aqueous and non-aqueous isotonic sterile injection solutions and aqueous and non-aqueous sterile suspensions known to be pharmaceutically acceptable carriers and well known to those of skill in the art may be employed for this purpose.

The adenoviral vectors are administered in sufficient amounts to 25 transduce the target cells and to provide sufficient levels of gene transfer and expression to provide a therapeutic benefit without undue adverse or with medically acceptable physiological effects, which can be determined by those skilled in the medical arts. Conventional and pharmaceutically acceptable routes of administration include, but are not limited to, direct delivery to the retina and other intraocular 30 delivery methods, direct delivery to the liver, inhalation, intranasal, intravenous, intramuscular, intratracheal, subcutaneous, intradermal, rectal, oral and other parenteral routes of administration. Routes of administration may be combined, if

desired, or adjusted depending upon the transgene or the condition. The route of administration primarily will depend on the nature of the condition being treated.

Dosages of the viral vector will depend primarily on factors such as the condition being treated, the age, weight and health of the patient, and may thus
5 vary among patients. For example, a therapeutically effective adult human or veterinary dosage of the viral vector is generally in the range of from about 100 µL to about 100 mL of a carrier containing concentrations of from about 1×10^6 to about 1×10^{15} particles, about 1×10^{11} to 1×10^{13} particles, or about 1×10^9 to 1×10^{12} particles. Dosages will range depending upon the size of the animal and the route of
10 administration. For example, a suitable human or veterinary dosage (for about an 80 kg animal) for intramuscular injection is in the range of about 1×10^9 to about 5×10^{12} particles per mL, for a single site. Optionally, multiple sites of administration may be delivered. In another example, a suitable human or veterinary dosage may be in the range of about 1×10^{11} to about 1×10^{15} particles for an oral formulation. One
15 of skill in the art may adjust these doses, depending the route of administration, and the therapeutic or vaccinal application for which the recombinant vector is employed. The levels of expression of the transgene, or for an immunogen, the level of circulating antibody, can be monitored to determine the frequency of dosage administration. Yet other methods for determining the timing of frequency of
20 administration will be readily apparent to one of skill in the art.

An optional method step involves the co-administration to the patient, either concurrently with, or before or after administration of the viral vector, of a suitable amount of a short acting immune modulator. The selected immune modulator is defined herein as an agent capable of inhibiting the formation of
25 neutralizing antibodies directed against the recombinant vector of this invention or capable of inhibiting cytolytic T lymphocyte (CTL) elimination of the vector. The immune modulator may interfere with the interactions between the T helper subsets (T_{H1} or T_{H2}) and B cells to inhibit neutralizing antibody formation. Alternatively, the immune modulator may inhibit the interaction between T_{H1} cells and CTLs to reduce
30 the occurrence of CTL elimination of the vector. A variety of useful immune modulators and dosages for use of same are disclosed, for example, in Yang *et al.*, *J. Virol.*, 70(9) (Sept 1996); International Patent Application No. WO96/12406, published May 2, 1996; and International Patent Application No.PCT/US96/03035,

all incorporated herein by reference. Typically, such immune modulators would be selected when the transgene is a therapeutic which requires repeat delivery.

1. Therapeutic Transgenes

Useful therapeutic products encoded by the transgene include

- 5 hormones and growth and differentiation factors including, without limitation, insulin, glucagon, growth hormone (GH), parathyroid hormone (PTH), growth hormone releasing factor (GRF), follicle stimulating hormone (FSH), luteinizing hormone (LH), human chorionic gonadotropin (hCG), vascular endothelial growth factor (VEGF), angiopoietins, angiostatin, granulocyte colony stimulating factor (GCSF),
- 10 erythropoietin (EPO), connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), acidic fibroblast growth factor (aFGF), epidermal growth factor (EGF), transforming growth factor α (TGF α), platelet-derived growth factor (PDGF), insulin growth factors I and II (IGF-I and IGF-II), any one of the transforming growth factor superfamily, including TGF, activins, inhibins, or any of
- 15 the bone morphogenic proteins (BMP) BMPs 1-15, any one of the heregluin/neuregulin/ARIA/neu differentiation factor (NDF) family of growth factors, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophins NT-3 and NT-4/5, ciliary neurotrophic factor (CNTF), glial cell line derived neurotrophic factor (GDNF), neurturin, agrin, any one of the family of
- 20 semaphorins/collapsins, netrin-1 and netrin-2, hepatocyte growth factor (HGF), ephrins, noggin, sonic hedgehog and tyrosine hydroxylase.

Other useful transgene products include proteins that regulate the immune system including, without limitation, cytokines and lymphokines such as thrombopoietin (TPO), interleukins (IL) IL-1 through IL-25 (including, e.g., IL-2, IL-4, IL-12 and IL-18), monocyte chemoattractant protein, leukemia inhibitory factor, granulocyte-macrophage colony stimulating factor, Fas ligand, tumor necrosis factors and, interferons, and, stem cell factor, flk-2/flt3 ligand. Gene products produced by the immune system are also useful in the invention. These include, without limitation, immunoglobulins IgG, IgM, IgA, IgD and IgE, chimeric immunoglobulins, 30 humanized antibodies, single chain antibodies, T cell receptors, chimeric T cell receptors, single chain T cell receptors, class I and class II MHC molecules, as well as engineered immunoglobulins and MHC molecules. Useful gene products also include

complement regulatory proteins such as complement regulatory proteins, membrane cofactor protein (MCP), decay accelerating factor (DAF), CR1, CF2 and CD59.

Still other useful gene products include any one of the receptors for the hormones, growth factors, cytokines, lymphokines, regulatory proteins and immune system proteins. The invention encompasses receptors for cholesterol regulation, including the low density lipoprotein (LDL) receptor, high density lipoprotein (HDL) receptor, the very low density lipoprotein (VLDL) receptor, proteins useful in the regulation of lipids, including, *e.g.*, apolipoprotein (apo) A and its isoforms (*e.g.*, ApoAI), apoE and its isoforms including E2, E3 and E4), SRB1, ABC1, and the scavenger receptor. The invention also encompasses gene products such as members of the steroid hormone receptor superfamily including glucocorticoid receptors and estrogen receptors, Vitamin D receptors and other nuclear receptors. In addition, useful gene products include transcription factors such as jun, fos, max, mad, serum response factor (SRF), AP-1, AP2, myb, MyoD and myogenin, ETS-box containing proteins, TFE3, E2F, ATF1, ATF2, ATF3, ATF4, ZF5, NFAT, CREB, HNF-4, C/EBP, SP1, CCAAT-box binding proteins, interferon regulation factor (IRF-1), Wilms tumor protein, ETS-binding protein, STAT, GATA-box binding proteins, *e.g.*, GATA-3, and the forkhead family of winged helix proteins.

Other useful gene products include, carbamoyl synthetase I, ornithine transcarbamylase, arginosuccinate synthetase, arginosuccinate lyase, arginase, fumarylacetate hydrolase, phenylalanine hydroxylase, alpha-1 antitrypsin, glucose-6-phosphatase, porphobilinogen deaminase, cystathione beta-synthase, branched chain ketoacid decarboxylase, albumin, isovaleryl-coA dehydrogenase, propionyl CoA carboxylase, methyl malonyl CoA mutase, glutaryl CoA dehydrogenase, insulin, beta-glucosidase, pyruvate carboxylate, hepatic phosphorylase, phosphorylase kinase, glycine decarboxylase, H-protein, T-protein, a cystic fibrosis transmembrane regulator (CFTR) sequence, and a dystrophin cDNA sequence. Other useful gene products include those useful for treatment of hemophilia A (*e.g.*, Factor VIII and its variants, including the light chain and heavy chain of the heterodimer, optionally operably linked by a junction), and the B-domain deleted Factor VIII, see US 6,200,560 and 6,221,349], and useful for treatment of hemophilia B (*e.g.*, Factor IX).

Still other useful gene products include non-naturally occurring polypeptides, such as chimeric or hybrid polypeptides having a non-naturally occurring amino acid sequence containing insertions, deletions or amino acid substitutions. For example, single-chain engineered immunoglobulins could be useful 5 in certain immunocompromised patients. Other types of non-naturally occurring gene sequences include antisense molecules and catalytic nucleic acids, such as ribozymes, which could be used to reduce overexpression of a target.

Reduction and/or modulation of expression of a gene are particularly desirable for treatment of hyperproliferative conditions characterized by 10 hyperproliferating cells, as are cancers and psoriasis. Target polypeptides include those polypeptides which are produced exclusively or at higher levels in hyperproliferative cells as compared to normal cells. Target antigens include polypeptides encoded by oncogenes such as myb, myc, fyn, and the translocation gene bcr/abl, ras, src, P53, neu, trk and EGRF. In addition to oncogene products as 15 target antigens, target polypeptides for anti-cancer treatments and protective regimens include variable regions of antibodies made by B cell lymphomas and variable regions of T cell receptors of T cell lymphomas which, in some embodiments, are also used as target antigens for autoimmune disease. Other tumor-associated polypeptides can be used as target polypeptides such as polypeptides which are found 20 at higher levels in tumor cells including the polypeptide recognized by monoclonal antibody 17-1A and folate binding polypeptides.

Other suitable therapeutic polypeptides and proteins include those which may be useful for treating individuals suffering from autoimmune diseases and disorders by conferring a broad based protective immune response against targets that 25 are associated with autoimmunity including cell receptors and cells which produce self-directed antibodies. T-cell mediated autoimmune diseases include rheumatoid arthritis (RA), multiple sclerosis (MS), Sjögren's syndrome, sarcoidosis, insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, reactive arthritis, ankylosing spondylitis, scleroderma, polymyositis, dermatomyositis, psoriasis, 30 vasculitis, Wegener's granulomatosis, Crohn's disease and ulcerative colitis. Each of these diseases is characterized by T cell receptors (TCRs) that bind to endogenous antigens and initiate the inflammatory cascade associated with autoimmune diseases.

The chimeric adenoviral vectors of the invention are particularly well suited for therapeutic regimens in which multiple adenoviral-mediated deliveries of transgenes is desired, *e.g.*, in regimens involving redelivery of the same transgene or in combination regimens involving delivery of other transgenes. Such regimens may

5 involve administration of a chimeric adenoviral vector, followed by re-administration with a vector from the same serotype adenovirus. Particularly desirable regimens involve administration of a chimeric adenoviral vector of the invention, in which the serotype of the viral vector delivered in the first administration differs from the serotype of the viral vector utilized in one or more of the subsequent administrations.

10 For example, a therapeutic regimen involves administration of a chimeric vector and repeat administration with one or more adenoviral vectors of the same or different serotypes. In another example, a therapeutic regimen involves administration of an adenoviral vector followed by repeat administration with a chimeric vector of the invention which differs from the serotype of the first delivered adenoviral vector, and

15 optionally further administration with another vector which is the same or, preferably, differs from the serotype of the vector in the prior administration steps. These regimens are not limited to delivery of adenoviral vectors constructed using the chimeric serotypes of the invention. Rather, these regimens can readily utilize chimeric or non-chimeric vectors of other adenoviral serotypes, which may be of

20 artificial, human or non-human primate, or other mammalian sources, in combination with one or more of the chimeric vectors of the invention. Examples of such serotypes are discussed elsewhere in this document. Further, these therapeutic regimens may involve either simultaneous or sequential delivery of chimeric adenoviral vectors of the invention in combination with non-adenoviral vectors, non-viral vectors, and/or a variety of other therapeutically useful compounds or molecules.

25 The present invention is not limited to these therapeutic regimens, a variety of which will be readily apparent to one of skill in the art.

B. Ad-Mediated Delivery of Immunogenic Transgenes

The adenoviruses of the invention may also be employed as

30 immunogenic compositions. As used herein, an immunogenic composition is a composition to which a humoral (*e.g.*, antibody) or cellular (*e.g.*, a cytotoxic T cell) response is mounted to a transgene product delivered by the immunogenic composition following delivery to a mammal, and preferably a primate. The present

invention provides an Ad that can contain in any of its adenovirus sequence deletions a gene encoding a desired immunogen. Chimeric adenoviruses based on simian or other non-human mammalian primate serotypes are likely to be better suited for use as a live recombinant virus vaccine in different animal species compared to an adenovirus of human origin, but is not limited to such a use. The recombinant adenoviruses can be used as prophylactic or therapeutic vaccines against any pathogen for which the antigen(s) crucial for induction of an immune response and able to limit the spread of the pathogen has been identified and for which the cDNA is available.

Such vaccinal (or other immunogenic) compositions are formulated in a suitable delivery vehicle, as described above. Generally, doses for the immunogenic compositions are in the range defined above for therapeutic compositions. The levels of immunity of the selected gene can be monitored to determine the need, if any, for boosters. Following an assessment of antibody titers in the serum, optional booster immunizations may be desired.

Optionally, a vaccinal composition of the invention may be formulated to contain other components, including, e.g. adjuvants, stabilizers, pH adjusters, preservatives and the like. Such components are well known to those of skill in the vaccine art. Examples of suitable adjuvants include, without limitation, liposomes, alum, monophosphoryl lipid A, and any biologically active factor, such as cytokine, an interleukin, a chemokine, a ligands, and optimally combinations thereof. Certain of these biologically active factors can be expressed *in vivo*, e.g., via a plasmid or viral vector. For example, such an adjuvant can be administered with a priming DNA vaccine encoding an antigen to enhance the antigen-specific immune response compared with the immune response generated upon priming with a DNA vaccine encoding the antigen only.

The adenoviruses are administered in "an immunogenic amount", that is, an amount of adenovirus that is effective in a route of administration to transfect the desired cells and provide sufficient levels of expression of the selected gene to induce an immune response. Where protective immunity is provided, the recombinant adenoviruses are considered to be vaccine compositions useful in preventing infection and/or recurrent disease.

Alternatively, or in addition, the vectors of the invention may contain a transgene encoding a peptide, polypeptide or protein which induces an immune response to a selected immunogen. The recombinant adenoviruses of this invention are expected to be highly efficacious at inducing cytolytic T cells and antibodies to 5 the inserted heterologous antigenic protein expressed by the vector.

For example, immunogens may be selected from a variety of viral families. Example of desirable viral families against which an immune response would be desirable include, the picornavirus family, which includes the genera rhinoviruses, which are responsible for about 50% of cases of the common cold; the 10 genera enteroviruses, which include polioviruses, coxsackieviruses, echoviruses, and human enteroviruses such as hepatitis A virus; and the genera aphthoviruses, which are responsible for foot and mouth diseases, primarily in non-human animals. Within the picornavirus family of viruses, target antigens include the VP1, VP2, VP3, VP4, and VPG. Another viral family includes the calcivirus family, which encompasses the 15 Norwalk group of viruses, which are an important causative agent of epidemic gastroenteritis. Still another viral family desirable for use in targeting antigens for inducing immune responses in humans and non-human animals is the togavirus family, which includes the genera alphavirus, which include Sindbis viruses, RossRiver virus, and Venezuelan, Eastern & Western Equine encephalitis, and 20 rubivirus, including Rubella virus. The flaviviridae family includes dengue, yellow fever, Japanese encephalitis, St. Louis encephalitis and tick borne encephalitis viruses. Other target antigens may be generated from the Hepatitis C or the coronavirus family, which includes a number of non-human viruses such as infectious bronchitis virus (poultry), porcine transmissible gastroenteric virus (pig), porcine 25 hemagglutinin encephalomyelitis virus (pig), feline infectious peritonitis virus (cats), feline enteric coronavirus (cat), canine coronavirus (dog), and human respiratory coronaviruses, which may cause the common cold and/or non-A, B or C hepatitis. In addition, the human coronaviruses include the putative causative agent of sudden acute respiratory syndrome (SARS). Within the coronavirus family, target 30 antigens include the E1 (also called M or matrix protein), E2 (also called S or Spike protein), E3 (also called HE or hemagglutin-esterose) glycoprotein (not present in all coronaviruses), or N (nucleocapsid). Still other antigens may be targeted against the rhabdovirus family, which includes the genera vesiculovirus (*e.g.*, Vesicular

Stomatitis Virus), and the general lyssavirus (*e.g.*, rabies). Within the rhabdovirus family, suitable antigens may be derived from the G protein or the N protein. The family filoviridae, which includes hemorrhagic fever viruses such as Marburg and Ebola virus, may be a suitable source of antigens. The paramyxovirus family

5 includes parainfluenza Virus Type 1, parainfluenza Virus Type 3, bovine parainfluenza Virus Type 3, rubulavirus (mumps virus), parainfluenza Virus Type 2, parainfluenza virus Type 4, Newcastle disease virus (chickens), rinderpest, morbillivirus, which includes measles and canine distemper, and pneumovirus, which includes respiratory syncytial virus. The influenza virus is classified within the

10 family orthomyxovirus and is a suitable source of antigen (*e.g.*, the HA protein, the N1 protein). The bunyavirus family includes the genera bunyavirus (California encephalitis, La Crosse), phlebovirus (Rift Valley Fever), hantavirus (puremala is a hemahagin fever virus), nairovirus (Nairobi sheep disease) and various unassigned bungaviruses. The arenavirus family provides a source of antigens against LCM and

15 Lassa fever virus. The reovirus family includes the genera reovirus, rotavirus (which causes acute gastroenteritis in children), orbiviruses, and cultivirus (Colorado Tick fever), Lebombo (humans), equine encephalosis, blue tongue.

The retrovirus family includes the sub-family oncorivinal which encompasses such human and veterinary diseases as feline leukemia virus, HTLV VI and HTLVII, lentivirinal (which includes human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), equine infectious anemia virus, and spumavirinal). Among the lentiviruses, many suitable antigens have been described and can readily be selected. Examples of suitable HIV and SIV antigens include, without limitation the gag, pol, Vif, Vpx, VPR, Env, Tat, Nef, and Rev proteins, as well as various fragments thereof. For example, suitable fragments of the Env protein may include any of its subunits such as the gp120, gp160, gp41, or smaller fragments thereof, *e.g.*, of at least about 8 amino acids in length. Similarly, fragments of the tat protein may be selected. [See, US Patent 5,891,994 and US Patent 6,193,981.] See, also, the HIV and SIV proteins described in D.H. Barouch *et al*, *J. Virol.*, 75(5):2462-2467 (March 2001), and R.R. Amara, *et al*, *Science*, 292:69-74 (6 April 2001). In another example, the HIV and/or SIV immunogenic proteins or peptides may be used to form fusion proteins or other immunogenic molecules. See, *e.g.*, the HIV-1 Tat and/or Nef fusion proteins and

immunization regimens described in WO 01/54719, published August 2, 2001, and WO 99/16884, published April 8, 1999. The invention is not limited to the HIV and/or SIV immunogenic proteins or peptides described herein. In addition, a variety of modifications to these proteins have been described or could readily be made by 5 one of skill in the art. See, e.g., the modified gag protein that is described in US Patent 5,972,596. Further, any desired HIV and/or SIV immunogens may be delivered alone or in combination. Such combinations may include expression from a single vector or from multiple vectors. Optionally, another combination may involve delivery of one or more expressed immunogens with delivery of one or more of the 10 immunogens in protein form. Such combinations are discussed in more detail below.

The papovavirus family includes the sub-family polyomaviruses (BKV and JCU viruses) and the sub-family papillomavirus (associated with cancers or malignant progression of papilloma). The adenovirus family includes viruses (EX, AD7, ARD, O.B.) which cause respiratory disease and/or enteritis. The parvovirus 15 includes family feline parvovirus (feline enteritis), feline panleucopeniavirus, canine parvovirus, and porcine parvovirus. The herpesvirus family includes the sub-family alphaherpesvirinae, which encompasses the genera simplexvirus (HSV1, HSVII), varicellovirus (pseudorabies, varicella zoster) and the sub-family betaherpesvirinae, which includes the genera cytomegalovirus (HCMV, muromegalovirus) and the 20 sub-family gammaherpesvirinae, which includes the genera lymphocryptovirus, EBV (Burkitts lymphoma), infectious rhinotracheitis, Marek's disease virus, and rhadinovirus. The poxvirus family includes the sub-family chordopoxvirinae, which encompasses the genera orthopoxvirus (Variola (Smallpox) and Vaccinia (Cowpox)), parapoxvirus, avipoxvirus, capripoxvirus, leporipoxvirus, suipoxvirus, and the 25 sub-family entomopoxvirinae. The hepadnavirus family includes the Hepatitis B virus. One unclassified virus which may be suitable source of antigens is the Hepatitis delta virus. Still other viral sources may include avian infectious bursal disease virus and porcine respiratory and reproductive syndrome virus. The alphavirus family includes equine arteritis virus and various Encephalitis viruses.

30 The viruses of the present invention may also carry immunogens which are useful to immunize a human or non-human animal against other pathogens including bacteria, fungi, parasitic microorganisms or multicellular parasites which infect human and non-human vertebrates, or from a cancer cell or tumor cell.

Examples of bacterial pathogens include pathogenic gram-positive cocci include pneumococci; staphylococci; and streptococci. Pathogenic gram-negative cocci include meningococcus; gonococcus. Pathogenic enteric gram-negative bacilli include enterobacteriaceae; pseudomonas, acinetobacteria and eikenella; melioidosis; salmonella; shigella; haemophilus; moraxella; *H. ducreyi* (which causes chancroid); brucella; *Francisella tularensis* (which causes tularemia); yersinia (pasteurella); streptobacillus moniliformis and spirillum; Gram-positive bacilli include listeria monocytogenes; erysipelothrix rhusiopathiae; *Corynebacterium diphtheriae* (diphtheria); cholera; *B. anthracis* (anthrax); donovanosis (granuloma inguinale); and bartonellosis. Diseases caused by pathogenic anaerobic bacteria include tetanus; botulism; other clostridia; tuberculosis; leprosy; and other mycobacteria. Pathogenic spirochetal diseases include syphilis; treponematoses: yaws, pinta and endemic syphilis; and leptospirosis. Other infections caused by higher pathogen bacteria and pathogenic fungi include actinomycosis; nocardiosis; cryptococcosis, blastomycosis, histoplasmosis and coccidioidomycosis; candidiasis, aspergillosis, and mucormycosis; sporotrichosis; paracoccidioidomycosis, petriellidiosis, torulopsis, mycetoma and chromomycosis; and dermatophytosis. Rickettsial infections include Typhus fever, Rocky Mountain spotted fever, Q fever, and Rickettsialpox. Examples of mycoplasma and chlamydial infections include: mycoplasma pneumoniae; lymphogranuloma venereum; psittacosis; and perinatal chlamydial infections.

Pathogenic eukaryotes encompass pathogenic protozoans and helminths and infections produced thereby include: amebiasis; malaria; leishmaniasis; trypanosomiasis; toxoplasmosis; *Pneumocystis carinii*; Trichans; *Toxoplasma gondii*; babesiosis; giardiasis; trichinosis; filariasis; schistosomiasis; nematodes; trematodes or flukes; and cestode (tapeworm) infections.

Many of these organisms and/or toxins produced thereby have been identified by the Centers for Disease Control [(CDC), Department of Health and Human Services, USA], as agents which have potential for use in biological attacks. For example, some of these biological agents, include, *Bacillus anthracis* (anthrax), *Clostridium botulinum* and its toxin (botulism), *Yersinia pestis* (plague), variola major (smallpox), *Francisella tularensis* (tularemia), and viral hemorrhagic fevers [filoviruses (e.g., Ebola, Marburg], and arenaviruses [e.g., Lassa, Machupo]), all of which are currently classified as Category A agents; *Coxiella burnetti* (Q fever);

Brucella species (brucellosis), *Burkholderia mallei* (glanders), *Burkholderia pseudomallei* (meloidosis), *Ricinus communis* and its toxin (ricin toxin), *Clostridium perfringens* and its toxin (epsilon toxin), *Staphylococcus* species and their toxins (enterotoxin B), *Chlamydia psittaci* (psittacosis), water safety threats (e.g., *Vibrio cholerae*, *Cryptosporidium parvum*), Typhus fever (*Rickettsia powazekii*), and viral encephalitis (alphaviruses, e.g., Venezuelan equine encephalitis; eastern equine encephalitis; western equine encephalitis); all of which are currently classified as Category B agents; and Nipah virus and hantaviruses, which are currently classified as Category C agents. In addition, other organisms, which are so classified or differently classified, may be identified and/or used for such a purpose in the future.

It will be readily understood that the viral vectors and other constructs described herein are useful to deliver antigens from these organisms, viruses, their toxins or other by-products, which will prevent and/or treat infection or other adverse reactions with these biological agents.

Administration of the vectors of the invention to deliver immunogens against the variable region of the T cells elicit an immune response including CTLs to eliminate those T cells. In RA, several specific variable regions of TCRs which are involved in the disease have been characterized. These TCRs include V-3, V-14, V-17 and Va-17. Thus, delivery of a nucleic acid sequence that encodes at least one of these polypeptides will elicit an immune response that will target T cells involved in RA. In MS, several specific variable regions of TCRs which are involved in the disease have been characterized. These TCRs include V-7 and Va-10. Thus, delivery of a nucleic acid sequence that encodes at least one of these polypeptides will elicit an immune response that will target T cells involved in MS. In scleroderma, several specific variable regions of TCRs which are involved in the disease have been characterized. These TCRs include V-6, V-8, V-14 and Va-16, Va-3C, Va-7, Va-14, Va-15, Va-16, Va-28 and Va-12. Thus, delivery of a chimeric adenovirus that encodes at least one of these polypeptides will elicit an immune response that will target T cells involved in scleroderma.

30 C. Ad-Mediated Delivery Methods

The therapeutic levels, or levels of immunity, of the selected gene can be monitored to determine the need, if any, for boosters. Following an assessment of CD8+ T cell response, or optionally, antibody titers, in the serum, optional booster

immunizations may be desired. Optionally, the adenoviral vectors of the invention may be delivered in a single administration or in various combination regimens, e.g., in combination with a regimen or course of treatment involving other active ingredients or in a prime-boost regimen. A variety of such regimens have been

5 described in the art and may be readily selected.

For example, prime-boost regimens may involve the administration of a DNA (e.g., plasmid) based vector to prime the immune system to a second or further, booster, administration with a traditional antigen, such as a protein or a recombinant virus carrying the sequences encoding such an antigen. See, e.g., WO
10 00/11140, published March 2, 2000, incorporated by reference. Alternatively, an immunization regimen may involve the administration of a chimeric adenoviral vector of the invention to boost the immune response to a vector (either viral or DNA-based) carrying an antigen, or a protein. In still another alternative, an immunization regimen involves administration of a protein followed by booster with a vector
15 encoding the antigen.

In one embodiment, the invention provides a method of priming and boosting an immune response to a selected antigen by delivering a plasmid DNA vector carrying said antigen, followed by boosting with an adenoviral vector of the invention. In one embodiment, the prime-boost regimen involves the expression of multiproteins from the prime and/or the boost vehicle. See, e.g., R.R. Amara,
20 *Science*, 292:69-74 (6 April 2001) which describes a multiprotein regimen for expression of protein subunits useful for generating an immune response against HIV and SIV. For example, a DNA prime may deliver the Gag, Pol, Vif, VPX and Vpr and Env, Tat, and Rev from a single transcript. Alternatively, the SIV Gag, Pol and
25 HIV-1 Env is delivered in a recombinant adenovirus construct of the invention. Still other regimens are described in WO 99/16884 and WO 01/54719.

However, the prime-boost regimens are not limited to immunization for HIV or to delivery of these antigens. For example, priming may involve delivering with a first vector of the invention followed by boosting with a second vector, or with a composition containing the antigen itself in protein form. In one example, the prime-boost regimen can provide a protective immune response to the virus, bacteria or other organism from which the antigen is derived. In another desired embodiment, the prime-boost regimen provides a therapeutic effect that can

be measured using convention assays for detection of the presence of the condition for which therapy is being administered.

The priming composition may be administered at various sites in the body in a dose dependent manner, which depends on the antigen to which the desired immune response is being targeted. The invention is not limited to the amount or situs of injection(s) or to the pharmaceutical carrier. Rather, the regimen may involve a priming and/or boosting step, each of which may include a single dose or dosage that is administered hourly, daily, weekly or monthly, or yearly. As an example, the mammals may receive one or two doses containing between about 10 µg to about 50 µg of plasmid in carrier. A desirable amount of a DNA composition ranges between about 1 µg to about 10,000 µg of the DNA vector. Dosages may vary from about 1 µg to 1000 µg DNA per kg of subject body weight. The amount or site of delivery is desirably selected based upon the identity and condition of the mammal. The dosage unit of the vector suitable for delivery of the antigen to the mammal is described herein. The vector is prepared for administration by being suspended or dissolved in a pharmaceutically or physiologically acceptable carrier such as isotonic saline; isotonic salts solution or other formulations that will be apparent to those skilled in such administration. The appropriate carrier will be evident to those skilled in the art and will depend in large part upon the route of administration. The compositions of the invention may be administered to a mammal according to the routes described above, in a sustained release formulation using a biodegradable biocompatible polymer, or by on-site delivery using micelles, gels and liposomes. Optionally, the priming step of this invention also includes administering with the priming composition, a suitable amount of an adjuvant, such as are defined herein.

Preferably, a boosting composition is administered about 2 to about 27 weeks after administering the priming composition to the mammalian subject. The administration of the boosting composition is accomplished using an effective amount of a boosting composition containing or capable of delivering the same antigen as administered by the priming DNA vaccine. The boosting composition may be composed of a recombinant viral vector derived from the same viral source (e.g., adenoviral sequences of the invention) or from another source. Alternatively, the "boosting composition" can be a composition containing the same antigen as encoded in the priming DNA vaccine, but in the form of a protein or peptide, which

composition induces an immune response in the host. In another embodiment, the boosting composition contains a DNA sequence encoding the antigen under the control of a regulatory sequence directing its expression in a mammalian cell, *e.g.*, vectors such as well-known bacterial or viral vectors. The primary requirements of
5 the boosting composition are that the antigen of the composition is the same antigen, or a cross-reactive antigen, as that encoded by the priming composition.

In another embodiment, the adenoviral vectors of the invention are also well suited for use in a variety of other immunization and therapeutic regimens. Such regimens may involve delivery of adenoviral vectors of the invention
10 simultaneously or sequentially with Ad vectors of different serotype capsids, regimens in which adenoviral vectors of the invention are delivered simultaneously or sequentially with non-Ad vectors, regimens in which the adenoviral vectors of the invention are delivered simultaneously or sequentially with proteins, peptides, and/or other biologically useful therapeutic or immunogenic compounds. Such uses will be
15 readily apparent to one of skill in the art.

IV. Simian Adenovirus 18 Sequences

The invention provides nucleic acid sequences and amino acid sequences of Ad SA18, which are isolated from the other viral material with which they are
20 associated in nature. These sequences are useful in preparing heterologous molecules containing the nucleic acid sequences and amino acid sequences, and regions or fragments thereof as are described herein, viral vectors which are useful for a variety of purposes, including the constructs and compositions, and such methods as are described herein for the chimeric adenoviruses, including, *e.g.*, in host cells for
25 production of viruses requiring adenoviral helper functions, as delivery vehicles for heterologous molecules such as those described herein. These sequences are also useful in generating the chimeric adenoviruses of the invention.

A. Nucleic Acid Sequences

The SA18 nucleic acid sequences of the invention include nucleotides
30 SEQ ID NO: 12, nt 1 to 31967. See, Sequence Listing, which is incorporated by reference herein. The nucleic acid sequences of the invention further encompass the strand which is complementary to the sequences of SEQ ID NO: 12, as well as the RNA and cDNA sequences corresponding to the sequences of these sequences figures

and their complementary strands. Further included in this invention are nucleic acid sequences which are greater than 95 to 98%, and more preferably about 99 to 99.9% homologous or identical to the Sequence Listing. Also included in the nucleic acid sequences of the invention are natural variants and engineered modifications of the 5 sequences provided in SEQ ID NO: 12 and their complementary strands. Such modifications include, for example, labels that are known in the art, methylation, and substitution of one or more of the naturally occurring nucleotides with a degenerate nucleotide.

The invention further encompasses fragments of the sequences of 10 SA18, their complementary strand, cDNA and RNA complementary thereto. Suitable fragments are at least 15 nucleotides in length, and encompass functional fragments, *i.e.*, fragments which are of biological interest. For example, a functional fragment can express a desired adenoviral product or may be useful in production of recombinant viral vectors. Such fragments include the gene sequences and fragments 15 listed in the tables below.

The following tables provide the transcript regions and open reading frames in the simian adenovirus sequences of the invention. For certain genes, the transcripts and open reading frames (ORFs) are located on the strand complementary to that presented in SEQ ID NO: 12. See, *e.g.*, E2b, E4 and E2a. The calculated 20 molecular weights of the encoded proteins are also shown.

Adenovirus Gene Region	Protein	Ad SA18, SEQ ID NO:12		
		start	End	M.W.
ITR		1	180	
E1a	13S	916	1765	27264
	12S	916	1765	24081
E1b	Small T	1874	2380	19423
	LargeT	2179	3609	52741
	IX	3678	4079	13701
E2b	IVa2	5478	4126	51295
	Polymerase	13745	5229	128392
	PTP	13745	8597	75358
	Agnoprotein	8007	8705	23610
L1	52/55 kD	10788	11945	43416
	IIIa	11966	13699	63999
L2	Penton	13796	15322	57166
	VII	15328	15873	20352
	V	15920	17050	42020
L3	VI	17348	18154	29222
	Hexon	18257	21010	102912
	Endoprotease	21029	21640	23015

Adenovirus Gene Region	Protein	Ad SA18, SEQ ID NO:12		
2a	DBP	23147	21711	53626
L4	100kD	23175	25541	87538
	22 kD homolog	25204	25797	22206
	33 kD homolog	25204	26025	24263
	VIII	26107	26817	25490
E3	Orf #1	26817	27125	11814
L5	Fiber	27192	29015	65455
E4	Orf 6/7	30169	29067	13768
	Orf 6	30169	29303	33832
	Orf 4	30464	30099	14154
	Orf 3	30816	30466	13493
	Orf 2	31205	30813	14698
	Orf 1	31608	31231	14054
ITR		31788	31967	

The SA18 adenoviral nucleic acid sequences are useful as therapeutic and immunogenic agents and in construction of a variety of vector systems and host cells.

- 5 Such vectors are useful for any of the purposes described above for the chimeric adenovirus. Additionally, these SA18 sequences and products may be used alone or in combination with other adenoviral sequences or fragments, or in combination with elements from other adenoviral or non-adenoviral sequences. The adenoviral sequences of the invention are also useful as antisense delivery vectors, gene therapy
- 10 vectors, or vaccine vectors, and in methods of using same. Thus, the invention further provides nucleic acid molecules, gene delivery vectors, and host cells which contain the Ad sequences of the invention.

For example, the invention encompasses a nucleic acid molecule containing simian Ad ITR sequences of the invention. In another example, the invention provides a nucleic acid molecule containing simian Ad sequences of the invention

encoding a desired Ad gene product. Still other nucleic acid molecule constructed using the sequences of the invention will be readily apparent to one of skill in the art, in view of the information provided herein.

In one embodiment, the simian Ad gene regions identified herein may be used
5 in a variety of vectors for delivery of a heterologous molecule to a cell. Examples of such molecules and methods of delivery are provided in Section III herein. For example, vectors are generated for expression of an adenoviral capsid protein (or fragment thereof) for purposes of generating a viral vector in a packaging host cell. Such vectors may be designed for expression in trans. Alternatively, such vectors are
10 designed to provide cells which stably contain sequences which express desired adenoviral functions, *e.g.*, one or more of E1a, E1b, the terminal repeat sequences, E2a, E2b, E4, E4ORF6 region.

In addition, the adenoviral gene sequences and fragments thereof are useful for providing the helper functions necessary for production of helper-dependent
15 viruses (*e.g.*, adenoviral vectors deleted of essential functions or adeno-associated viruses (AAV)). For such production methods, the simian adenoviral sequences of the invention are utilized in such a method in a manner similar to those described for the human Ad. However, due to the differences in sequences between the simian adenoviral sequences of the invention and those of human Ad, the use of the
20 sequences of the invention essentially eliminate the possibility of homologous recombination with helper functions in a host cell carrying human Ad E1 functions, *e.g.*, 293 cells, which may produce infectious adenoviral contaminants during rAAV production.

Methods of producing rAAV using adenoviral helper functions have been
25 described at length in the literature with human adenoviral serotypes. See, *e.g.*, US Patent 6,258,595 and the references cited therein. See, also, US Patent 5,871,982; WO 99/14354; WO 99/15685; WO 99/47691. These methods may also be used in production of non-human serotype AAV, including non-human primate AAV serotypes. The simian adenoviral gene sequences of the invention which provide the
30 necessary helper functions (*e.g.*, E1a, E1b, E2a and/or E4 ORF6) can be particularly useful in providing the necessary adenoviral function while minimizing or eliminating the possibility of recombination with any other adenoviruses present in the rAAV-packaging cell which are typically of human origin. Thus, selected genes or open

reading frames of the adenoviral sequences of the invention may be utilized in these rAAV production methods.

Alternatively, recombinant adenoviral simian vectors of the invention may be utilized in these methods. Such recombinant adenoviral simian vectors may include,

5 e.g., a hybrid simian Ad/AAV in which simian Ad sequences flank a rAAV expression cassette composed of, e.g., AAV 3' and/or 5' ITRs and a transgene under the control of regulatory sequences which control its expression. One of skill in the art will recognize that still other simian adenoviral vectors and/or gene sequences of the invention will be useful for production of rAAV and other viruses dependent upon
10 adenoviral helper.

In still another embodiment, nucleic acid molecules are designed for delivery and expression of selected adenoviral gene products in a host cell to achieve a desired physiologic effect. For example, a nucleic acid molecule containing sequences encoding an adenovirus E1a protein of the invention may be delivered to a
15 subject for use as a cancer therapeutic. Optionally, such a molecule is formulated in a lipid-based carrier and preferentially targets cancer cells. Such a formulation may be combined with other cancer therapeutics (e.g., cisplatin, taxol, or the like). Still other uses for the adenoviral sequences provided herein will be readily apparent to one of skill in the art.

20 In addition, one of skill in the art will readily understand that the Ad sequences of the invention can be readily adapted for use for a variety of viral and non-viral vector systems for *in vitro*, *ex vivo* or *in vivo* delivery of therapeutic and immunogenic molecules, including any of those identified as being deliverable via the chimeric adenoviruses of the invention. For example, the simian Ad genome of the
25 invention can be utilized in a variety of rAd and non-rAd vector systems. Such vectors systems may include, e.g., plasmids, lentiviruses, retroviruses, poxviruses, vaccinia viruses, and adeno-associated viral systems, among others. Selection of these vector systems is not a limitation of the present invention.

The invention further provides molecules useful for production of the
30 simian and simian-derived proteins of the invention. Such molecules which carry polynucleotides including the simian Ad DNA sequences of the invention can be in the form of a vector.

B. Simian Adenoviral Proteins of the Invention

The invention further provides gene products of the above adenoviruses, such as proteins, enzymes, and fragments thereof, which are encoded by the adenoviral nucleic acids of the invention. The invention further encompasses § SA18 proteins, enzymes, and fragments thereof, having the amino acid sequences encoded by these nucleic acid sequences which are generated by other methods. Such proteins include those encoded by the open reading frames identified in the tables above, and fragments thereof.

Thus, in one aspect, the invention provides unique simian adenoviral 10 proteins which are substantially pure, *i.e.*, are free of other viral and proteinaceous proteins. Preferably, these proteins are at least 10% homogeneous, more preferably 60% homogeneous, and most preferably 95% homogeneous.

In one embodiment, the invention provides unique simian-derived capsid proteins. As used herein, a simian-derived capsid protein includes any 15 adenoviral capsid protein that contains a SA18 capsid protein or a fragment thereof, as defined above, including, without limitation, chimeric capsid proteins, fusion proteins, artificial capsid proteins, synthetic capsid proteins, and recombinantly capsid proteins, without limitation to means of generating these proteins.

Suitably, these simian-derived capsid proteins contain one or more 20 SA18 regions or fragments thereof (*e.g.*, a hexon, penton, fiber or fragment thereof) in combination with capsid regions or fragments thereof of different adenoviral serotypes, or modified simian capsid proteins or fragments, as described herein. A "modification of a capsid protein associated with altered tropism" as used herein includes an altered capsid protein, *i.e.*, a penton, hexon or fiber protein region, or 25 fragment thereof, such as the knob domain of the fiber region, or a polynucleotide encoding same, such that specificity is altered. The simian-derived capsid may be constructed with one or more of the simian Ad of the invention or another Ad serotypes which may be of human or non-human origin. Such Ad may be obtained from a variety of sources including the ATCC, commercial and academic sources, or 30 the sequences of the Ad may be obtained from GenBank or other suitable sources.

The amino acid sequences of the simian adenoviruses penton proteins of the invention are provided herein. The AdSA18 penton protein is provided in SEQ ID NO: 13. Suitably, any of these penton proteins, or unique fragments thereof, may

be utilized for a variety of purposes. Examples of suitable fragments include the penton having N-terminal and/or C-terminal truncations of about 50, 100, 150, or 200 amino acids, based upon the amino acid numbering provided above. Other suitable fragments include shorter internal, C-terminal, or N-terminal fragments. Further, the 5 penton protein may be modified for a variety of purposes known to those of skill in the art.

The invention further provides the amino acid sequences of the hexon protein of SA18, SEQ ID NO:14. Suitably, this hexon protein, or unique fragments thereof, may be utilized for a variety of purposes. Examples of suitable fragments 10 include the hexon having N-terminal and/or C-terminal truncations of about 50, 100, 150, 200, 300, 400, or 500 amino acids, based upon the amino acid numbering provided above and in SEQ ID NO: 14. Other suitable fragments include shorter internal, C-terminal, or N-terminal fragments. For example, one suitable fragment the loop region (domain) of the hexon protein, designated DE1 and FG1, or a 15 hypervariable region thereof. Such fragments include the regions spanning amino acid residues about 125 to 443; about 138 to 441, or smaller fragments, such as those spanning about residue 138 to residue 163; about 170 to about 176; about 195 to about 203; about 233 to about 246; about 253 to about 264; about 287 to about 297; about 404 to about 430, about 430 to 550, about 545 to 650; of the simian hexon 20 proteins, with reference to SEQ ID NO: 14. Other suitable fragments may be readily identified by one of skill in the art. Further, the hexon protein may be modified for a variety of purposes known to those of skill in the art. Because the hexon protein is the determinant for serotype of an adenovirus, such artificial hexon proteins would result in adenoviruses having artificial serotypes. Other artificial capsid proteins can 25 also be constructed using the chimp Ad penton sequences and/or fiber sequences of the invention and/or fragments thereof.

In one example, it may be desirable to generate an adenovirus having an altered hexon protein utilizing the sequences of a hexon protein of the invention. One suitable method for altering hexon proteins is described in US Patent 5,922,315, 30 which is incorporated by reference. In this method, at least one loop region of the adenovirus hexon is changed with at least one loop region of another adenovirus serotype. Thus, at least one loop region of such an altered adenovirus hexon protein is a simian Ad hexon loop region of the invention. In one embodiment, a loop region

of the SA18 hexon protein is replaced by a loop region from another adenovirus serotype. In another embodiment, the loop region of the SA18 hexon is used to replace a loop region from another adenovirus serotype. Suitable adenovirus serotypes may be readily selected from among human and non-human serotypes, as described herein. SA18 is selected for purposes of illustration only; the other simian Ad hexon proteins of the invention may be similarly altered, or used to alter another Ad hexon. The selection of a suitable serotype is not a limitation of the present invention. Still other uses for the hexon protein sequences of the invention will be readily apparent to those of skill in the art.

10 The invention further encompasses the fiber proteins of the simian adenoviruses of the invention. The fiber protein of AdSA18 has the amino acid sequence of SEQ ID NO: 15. Suitably, this fiber protein, or unique fragments thereof, may be utilized for a variety of purposes. One suitable fragment is the fiber knob, which spans about amino acids 247 to 425 of SEQ ID NO: 15. Examples of other 15 suitable fragments include the fiber having N-terminal and/or C-terminal truncations of about 50, 100, 150, or 200 amino acids, based upon the amino acid numbering provided above and in SEQ ID NO: 15. Still other suitable fragments include internal fragments. Further, the fiber protein may be modified using a variety of techniques known to those of skill in the art.

20 The invention further encompasses unique fragments of the proteins of the invention which are at least 8 amino acids in length. However, fragments of other desired lengths can be readily utilized. In addition, the invention encompasses such modifications as may be introduced to enhance yield and/or expression of an SA18 gene product, *e.g.*, construction of a fusion molecule in which all or a fragment 25 of the SA18 gene product is fused (either directly or via a linker) with a fusion partner to enhance. Other suitable modifications include, without limitation, truncation of a coding region (*e.g.*, a protein or enzyme) to eliminate a pre- or pro-protein ordinarily cleaved and to provide the mature protein or enzyme and/or mutation of a coding region to provide a secretable gene product. Still other 30 modifications will be readily apparent to one of skill in the art. The invention further encompasses proteins having at least about 95% to 99% identity to the SA18 proteins provided herein.

As described herein, vectors of the invention containing the adenoviral capsid proteins of the invention are particularly well suited for use in applications in which the neutralizing antibodies diminish the effectiveness of other Ad serotype based vectors, as well as other viral vectors. The rAd vectors of the invention are
5 particularly advantageous in readministration for repeat gene therapy or for boosting immune response (vaccine titers). Examples of such regimens are provided herein.

Under certain circumstances, it may be desirable to use one or more of the SA18 gene products (*e.g.*, a capsid protein or a fragment thereof) to generate an antibody. The term "an antibody," as used herein, refers to an immunoglobulin
10 molecule which is able to specifically bind to an epitope. Thus, the antibodies of the invention bind, preferably specifically and without cross-reactivity, to a SA18 epitope. The antibodies in the present invention exist in a variety of forms including, for example, high affinity polyclonal antibodies, monoclonal antibodies, synthetic antibodies, chimeric antibodies, recombinant antibodies and humanized antibodies.
15 Such antibodies originate from immunoglobulin classes IgG, IgM, IgA, IgD and IgE.

Such antibodies may be generated using any of a number of methods known in the art. Suitable antibodies may be generated by well-known conventional techniques, *e.g.* Kohler and Milstein and the many known modifications thereof. Similarly desirable high titer antibodies are generated by applying known
20 recombinant techniques to the monoclonal or polyclonal antibodies developed to these antigens [see, *e.g.*, PCT Patent Application No. PCT/GB85/00392; British Patent Application Publication No. GB2188638A; Amit *et al.*, 1986 *Science*, 233:747-753; Queen *et al.*, 1989 *Proc. Nat'l. Acad. Sci. USA*, 86:10029-10033; PCT Patent Application No. PCT/WO9007861; and Riechmann *et al.*, *Nature*, 332:323-
25 327 (1988); Huse *et al.*, 1988a *Science*, 246:1275-1281]. Alternatively, antibodies can be produced by manipulating the complementarity determining regions of animal or human antibodies to the antigen of this invention. See, *e.g.*, E. Mark and Padlin, "Humanization of Monoclonal Antibodies", Chapter 4, *The Handbook of Experimental Pharmacology*, Vol. 113, *The Pharmacology of Monoclonal Antibodies*, Springer-Verlag (June, 1994); Harlow *et al.*, 1999, *Using Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, NY; Harlow *et al.*, 1989, *Antibodies: A Laboratory Manual*, Cold Spring Harbor, New York; Houston *et al.*, 1988, *Proc. Natl. Acad. Sci. USA* 85:5879-5883; and Bird *et al.*, 1988, *Science* 242:423-426.

Further provided by the present invention are anti-idiotype antibodies (Ab2) and anti-anti-idiotype antibodies (Ab3). See, e.g., M. Wettendorff et al., "Modulation of anti-tumor immunity by anti-idiotypic antibodies." In Idiotypic Network and Diseases, ed. by J. Cerny and J. Hiernaux, 1990 *J. Am. Soc. Microbiol.*, Washington DC: pp. 203-229]. These anti-idiotype and anti-anti-idiotype antibodies are produced using techniques well known to those of skill in the art. These antibodies may be used for a variety of purposes, including diagnostic and clinical methods and kits.

Under certain circumstances, it may be desirable to introduce a detectable label or a tag onto a SA18 gene product, antibody or other construct of the invention. As used herein, a detectable label is a molecule which is capable, alone or upon interaction with another molecule, of providing a detectable signal. Most desirably, the label is detectable visually, e.g. by fluorescence, for ready use in immunohistochemical analyses or immunofluorescent microscopy. For example, suitable labels include fluorescein isothiocyanate (FITC), phycoerythrin (PE), allophycocyanin (APC), coriphosphine-O (CPO) or tandem dyes, PE-cyanin-5 (PC5), and PE-Texas Red (ECD). All of these fluorescent dyes are commercially available, and their uses known to the art. Other useful labels include a colloidal gold label. Still other useful labels include radioactive compounds or elements. Additionally, labels include a variety of enzyme systems that operate to reveal a colorimetric signal in an assay, e.g., glucose oxidase (which uses glucose as a substrate) releases peroxide as a product which in the presence of peroxidase and a hydrogen donor such as tetramethyl benzidine (TMB) produces an oxidized TMB that is seen as a blue color. Other examples include horseradish peroxidase (HRP) or alkaline phosphatase (AP), and hexokinase in conjunction with glucose-6-phosphate dehydrogenase which reacts with ATP, glucose, and NAD⁺ to yield, among other products, NADH that is detected as increased absorbance at 340 nm wavelength.

Other label systems that are utilized in the methods of this invention are detectable by other means, e.g., colored latex microparticles [Bangs Laboratories, Indiana] in which a dye is embedded are used in place of enzymes to form conjugates with the target sequences provide a visual signal indicative of the presence of the resulting complex in applicable assays.

Methods for coupling or associating the label with a desired molecule are similarly conventional and known to those of skill in the art. Known methods of

label attachment are described [see, for example, *Handbook of Fluorescent probes and Research Chemicals*, 6th Ed., R. P. M. Haugland, Molecular Probes, Inc., Eugene, OR, 1996; *Pierce Catalog and Handbook, Life Science and Analytical Research Products*, Pierce Chemical Company, Rockford, IL, 1994/1995]. Thus, 5 selection of the label and coupling methods do not limit this invention.

The sequences, proteins, and fragments of the invention may be produced by any suitable means, including recombinant production, chemical synthesis, or other synthetic means. Suitable production techniques are well known to those of skill in the art. See, e.g., Sambrook et al, *Molecular Cloning: A 10 Laboratory Manual*, Cold Spring Harbor Press (Cold Spring Harbor, NY). Alternatively, peptides can also be synthesized by the well known solid phase peptide synthesis methods (Merrifield, *J. Am. Chem. Soc.*, 85:2149 (1962); Stewart and Young, *Solid Phase Peptide Synthesis* (Freeman, San Francisco, 1969) pp. 27-62). These and other suitable production methods are within the knowledge of those of 15 skill in the art and are not a limitation of the present invention.

In addition, one of skill in the art will readily understand that the Ad sequences of the invention can be readily adapted for use for a variety of viral and non-viral vector systems for *in vitro*, *ex vivo* or *in vivo* delivery of therapeutic and immunogenic molecules. For example, in one embodiment, the simian Ad capsid 20 proteins and other simian adenovirus proteins described herein are used for non-viral, protein-based delivery of genes, proteins, and other desirable diagnostic, therapeutic and immunogenic molecules. In one such embodiment, a protein of the invention is linked, directly or indirectly, to a molecule for targeting to cells with a receptor for adenoviruses. Preferably, a capsid protein such as a hexon, penton, fiber or a fragment 25 thereof having a ligand for a cell surface receptor is selected for such targeting. Suitable molecules for delivery are selected from among the therapeutic molecules described herein and their gene products. A variety of linkers including, lipids, polyLys, and the like may be utilized as linkers. For example, the simian penton protein may be readily utilized for such a purpose by production of a fusion protein 30 using the simian penton sequences in a manner analogous to that described in Medina-Kauwe LK, et al, *Gene Ther.* 2001 May; 8(10):795-803 and Medina-Kauwe LK, et al, *Gene Ther.* 2001 Dec; 8(23): 1753-1761. Alternatively, the amino acid sequences of simian Ad protein IX may be utilized for targeting vectors to a cell

surface receptor, as described in US Patent Appln 20010047081. Suitable ligands include a CD40 antigen, an RGD-containing or polylysine-containing sequence, and the like. Still other simian Ad proteins, including, e.g., the hexon protein and/or the fiber protein, may be used for used for these and similar purposes.

5. Still other adenoviral proteins of the invention may be used as alone, or in combination with other adenoviral protein, for a variety of purposes which will be readily apparent to one of skill in the art. In addition, still other uses for the adenoviral proteins of the invention will be readily apparent to one of skill in the art.

10 The compositions of this invention include vectors that deliver a heterologous molecule to cells, either for therapeutic or vaccine purposes. Such vectors, containing simian adenovirus DNA of SA18 and a minigene, can be constructed using techniques such as those described herein for the chimeric adenoviruses and such techniques as are known in the art. Alternatively, SA19 may be a source for sequences of the chimeric adenoviruses are described herein.

15

The following examples illustrate construction and use of several chimeric viruses, including Pan5/C1, hu5/Pan7 and hu5/SV25, and Pan6/Pan7. However, these chimera are illustrative only and are not intended to limit the invention to those illustrated embodiments.

20

Example 1 - Construction of Pan5/C1 Chimeric Simian Viruses

Five different adenoviruses initially isolated from the chimpanzee, AdC68 [US Patent 6,083,716], AdPan5, AdPan7, AdPan6 and AdC1 [US Patent 6,083,716] have been sequenced. See, International Application No. PCT/US02/33645, filed 25 November 2002 for the sequences of Pan5 [SEQ ID NO:1], Pan7 [SEQ ID NO:3], and Pan6 [SEQ ID NO:2]. This application also provides sequences for SV1, SV25 and SV39 [SEQ ID No. 4, 5, 6, respectively]. Sequence comparison of the capsid protein sequences predicted that AdC1 clearly belonged to a different serological subgroup than the other four chimpanzee derived adenoviruses.

30

However, attempts to cultivate AdC1 in HEK293 cells revealed it to be fastidious in its growth characteristics (data not shown) and therefore possibly unsuitable for use as a vector using the currently available E1 complementing cell lines. However, because of the obvious sequence dissimilarity of AdC1 capsid

protein sequence from the other chimpanzee derived adenoviruses (as well as the huAd5), chimeric adenovirus vectors were generated with the capsid characteristics of AdC1. In view of the above-mentioned drawbacks associated with only making hexon changes, more extensive replacements were made in the chimera described 5 herein, *i.e.*, construction of chimeras where the replacement went beyond just the hexon, to achieve two goals. The first was to determine whether making extended replacements would allow for the rescue of viruses containing hexons of unrelated serotypes that may not otherwise be amenable to rescue. The second goal was to test whether the growth characteristics of adenovirus vectors such as AdPan5, that have 10 been found in our laboratory to be able to be grown to high titer for the purpose of manufacture, would also be present in the chimeric virus, particularly when the hexon (and other capsid proteins) are derived from a virus such as AdC1 that are difficult to grow to a high yield in cell lines such as HEK293. An added bonus of extending the replacement to include the fiber protein would be to further increase the antigenic 15 dissimilarity to beyond that afforded by a hexon change alone.

As an alternative to obtaining purified virus as source for adenoviral DNA to sequence, we have resorted to cloning restriction fragments of viral DNA obtained from infected cells ("Hirt prep"). The first adenovirus we have sequenced in this way is Simian Adenovirus. EcoRI digestion of the Simian Adenovirus yielded 7 20 fragments. Shotgun cloning yielded clones of the 5 internal fragments, which were cloned and sequenced. Completion of the sequencing was carried out by walking towards each of the ends of the genome. The map of the genome is shown in Figure 1.

A. *Construction of Two Pan5/C1 Chimeric Plasmids*

25 The overall approach towards constructing chimeric viruses was to first assemble the complete E1 deleted virus DNA into a single plasmid flanked by recognition sites for the restriction enzyme SwaI, digest the plasmid DNA with SwaI to release the virus DNA ends, and transfect the DNA into HEK293 cells to determine whether viable chimeric adenovirus could be rescued. Two chimeric virus plasmids 30 were constructed, p5C1short and p5C1long.

The plasmid p5C1short harbors an E1 deleted Pan5 virus where an internal 15226 bp segment (18332 – 33557) has been replaced by a functionally analogous 14127 bp (18531 – 32657) from AdC1. This results in the replacement of

the Pan5 proteins hexon, endoprotease, DNA binding protein, 100 kD scaffolding protein, 33 kD protein, protein VIII, and fiber, as well as the entire E3 region, with the homologous segment from AdC1. The ClaI site at the left end of the AdC1 fragment is at the beginning of the hexon gene and the resulting protein is identical to the C1 hexon. The EcoRI site which constitutes the right end of the AdC1 fragment is within the E4 orf 7 part of the AdC1. The right end was ligated to a PCR generated right end fragment from AdPan5 such that the regenerated orf 7-translation product is chimeric between AdPan5 and AdC1.

The plasmid p5C1long harbors an E1 deleted Pan5 virus where an internal 25603 bp segment (7955 – 33557) has been replaced by a functionally analogous 24712 bp (7946 – 32657) from AdC1. This results in the replacement of the AdPan5 pre-terminal protein, 52/55 kD protein, penton base protein, protein VII, Mu, and protein VI with those from AdC1 in addition to those replaced in p5C1short. The AscI site at the left end of the AdC1 fragment is at the beginning of the DNA polymerase gene and results in a chimeric protein where the first 165 amino acids of the AdPan5 DNA polymerase has been replaced by a 167 amino acid segment from AdC1 DNA polymerase. In this N-terminal region, the homology between the AdPan5 and AdC1 DNA polymerase proteins is 81% (72% identity).

The plasmid pDVP5Mlu which contains the left end of AdPan5 was used as the starting plasmid for the chimeric vector construction.

The plasmid pDVP5Mlu was made as follows. A synthetic DNA fragment harboring recognition sites for the restriction enzymes SmaI, MluI, EcoRI and EcoRV respectively was ligated into pBR322 digested with EcoRI and NdeI so as to retain the origin of replication and the beta-lactamase gene. The left end of Pan5 extending to the MluI site (15135 bp) was cloned into this plasmid between the SmaI and MluI sites. The E1 gene was functionally deleted and replaced by a DNA fragment harboring recognition sites for the extremely rare cutter restriction enzyme sites I-CeuI and PI-SceI). The 2904 base pairs of the right end of Pan-5 was PCR amplified using the primers P5L [GCG CAC GCG TCT CTA TCG ATG AAT TCC ATT GGT GAT GGA CAT GC, SEQ ID NO:7] and P5ITR [GCG CAT TTA AAT CAT CAT CAA TAA TAT ACC TCA AAC, SEQ ID NO:8] using Tgo polymerase (Roche). The PCR product was cut with MluI and SwaI, and cloned between MluI and EcoRV of pDVP5Mlu to yield pPan5Mlu+RE. A 3193 bp fragment extending

from the MluI site (15135) to the ClaI (18328) site of Pan5 was then inserted between the same sites of pPan5Mlu+RE to yield pPan5Cla+RE. The 3671 bp ClaI (18531) to EcoRI (22202) fragment of the adenovirus C1 was cloned into pPan5Cla+RE between ClaI (16111) and EcoRI (16116) to yield pPan5C1delRI. The 10452 bp internal
5 EcoRI fragment of the adenovirus C1 (22202 – 32653) was cloned into the EcoRI site of pPan5C1delRI to yield p5C1short. To construct p5C1long, the AdC1 replacement was further extended by replacing the AscI – ClaI 10379 bp fragment of AdPan5 in p5C1short with the AdC1 AscI – ClaI 10591 bp fragment. Finally a green fluorescent protein (GFP) expression cassette was inserted into both p5C1short and p5C1long
10 between the I-CeuI and PI-SceI sites to yield p5C1shortGFP and p5C1longGFP respectively.

B. *Rescue of chimeric Pan5/C1 recombinant vector adenoviruses*

The plasmids p5C1shortGFP and p5C1longGFP were digested with the restriction enzyme SwaI and transfected into HEK 293 cells. A typical adenovirus induced cytopathic effect was observed. The rescue of recombinant chimeric adenovirus from the p5C1longGFP transfection was confirmed by collecting the supernatant from the transfection and re-infecting fresh cells which were found to be transduced as determined by GFP expression. Viral DNA prepared from the chimeric recombinant virus was digested with several restriction enzymes and found to have
15 the expected pattern on electrophoresis (data not shown).
20

The chimeric adenoviral construct with the shorter replacement p5C1short encodes the C1 proteins hexon and fiber as well as the intervening open reading frames for endoprotease, DNA binding protein, 100 kDa scaffolding protein, 33 kDa protein, and protein VIII. (The E3 region is also included within this region
25 but is unlikely to impact on the viability of the chimeric virus). When the replacement was extended to include the additional AdC1 proteins pTP (pre-terminal protein), 52/55 kDa protein, penton base, protein VII, Mu, and protein VI, there was no difficulty in rescuing viable chimeric virus. In this experiment, the chimeric adenovirus construction strategy utilized the presence of AscI and ClaI restriction
30 enzyme sites present on the genes for DNA polymerase and hexon respectively on both AdPan5 and AdC1.

The reasons for the relatively higher yield of the chimeric virus compared to the wild-type AdC1 virus are not clear. In the growth of the 5C1

chimeric virus in 293 cells, the adenoviral early region gene products of E1 and E4 are derived from Ad5 and AdPan5 respectively. The E1 and E4 gene products bind, regulate and de-repress several cellular transcription complexes and coordinate their activity towards viral multiplication. Thus it is possible that the E1 gene products supplied in *trans* from the 293 cells and the E4 gene products from AdPan5 are more optimal in the human 293 cell background than are the equivalent AdC1 gene products. This may also apply to the activity of the major late promoter whose activity is responsible for the transcription of the capsid protein genes. In the chimeric virus, the major late promoter, and the protein IVa2 which transactivates it, are derived from AdPan5. However the E2 gene products required for adenoviral DNA replication pTP and single-stranded DNA – binding protein are derived from AdC1. The adenoviral DNA polymerase, which complexes with pTP, is chimeric in Ad5C1 but mostly AdPan5 derived.

15 **Example 2 - Construction of Ad5 Chimeric Simian Viruses**

Plasmids have been constructed where the structural proteins derive from the chimpanzee adenovirus Pan 7 and the flanking sequences are derived from human Ad5 (the commonly used vector strain). The Adhu5-Pan7 chimeric adenovirus has been rescued, demonstrating that the chimeric virus construction method used to derive the chimeric virus is broadly applicable.

20 **A. Construction of the Ad5 – Pan 7 chimeric adenovirus**

A plasmid was constructed which harbors the complete (E1 deleted) chimeric genome in order to establish that the chimeric adenovirus is viable, and then transfected the plasmid into the E1 complementing cell line HEK 293. It was found that the recombinant virus could be rescued. The chimeric adenovirus genome that was constructed is composed of a left end segment derived from Ad5 that contributes the ITR, the E1 deletion region containing the transgene expression cassette, the pIX and IVa2 genes and 954 C-terminal amino acids of the polymerase gene (which is transcribed in the right to left direction from the bottom strand). Ad5 also contributes the right end of the chimeric genome containing the E4 genes and the right ITR. All the other genes present in the central part of the chimeric construct are derived from the chimpanzee adenovirus Pan 7 including the N-terminal 235 amino acids of a chimeric DNA polymerase.

In order to construct the plasmid which harbors the complete (E1 deleted) chimeric genome, the starting plasmid was pBRA_d5lere which is comprised of three parts; the bacterial origin of replication and ampicillin resistance gene derived from the plasmid pBR322, the left end of an Ad5 derived E1 deleted vector extending from the left ITR to the StuI site located at base pair number 5782 of the wild-type Ad5 genome (the E1 deletion extends from base pair 342 to 3533 of the wild-type Ad5 genome), and the right end of Ad5 extending from the StuI site at base pair number 31954 of the wild-type Ad5 genome to the right end of the right ITR.

5 The PacI sites located adjacent to the two ITRs are used to release the Ad5 genome from the bacterial plasmid backbone. The fragment containing I-CeuI and the PI-SceI sites which is located in place of the E1 deletion is used to insert transgene cassettes.

10

A synthetic DNA oligomer was inserted at the StuI site containing sites for AscI, XbaI and EcoRI, which allowed the creation of the plasmid pAd5endsAscRI where using PCR, the Ad5 polymerase gene was extended to base 15 pair #8068 of the wild-type Ad5 genome and incorporating a newly created AscI site at this location by silent mutagenesis of the polymerase gene (translated from the bottom strand) as depicted below.

Original sequence

20 GCG ACG GGC CGA [SEQ ID NO:16]
CGC TGC CCG GCT
Arg Arg Ala Ser [SEQ ID NO:17]

Mutated sequence (The AscI recognition site is underlined)

25 GCG GCG CGC CGA [SEQ ID NO:18]
CGC TGC CCG GCT
Arg Arg Ala Ser [SEQ ID NO: 17]

The Pan 7 fiber containing region was amplified by PCR (mutating the fiber stop codon from TGA to TAA to provide a polyadenylation signal similar to that in Ad5) and inserted into the EcoRI site to yield pAd5endsP7fib. Several cloning steps led to the construction of pH5C7H5 where the complete chimeric adenoviral 30 genome has been assembled. A transgene cassette expressing GFP (green fluorescent protein) was inserted between the I-CeuI and PI-SceI sites of pH5C7H5. The final construct was digested with PacI to separate the adenoviral genome from the plasmid

backbone and transfected into HEK 293 cells. The cell lysate was harvested 2 weeks later, and the chimeric adenovirus was amplified and purified by standard methods.

5 B. Construction of the Ad5 – Simian virus 25 (SV-25) chimeric adenovirus

[N.B. Simian virus 25 (ATCC catalog number VR-201) is distinct from the chimpanzee adenovirus Simian adenovirus 25 ATCC catalog number VR-594]

The construction of the Ad5 based chimeric adenovirus where
10 the left and right end segments are derived from Ad5 and the central portion was derived from the monkey adenovirus SV-25 was carried out in a manner completely analogous to that described above for the chimeric adenovirus described above that is chimeric between Ad5 and the chimpanzee adenovirus Pan 7. Thus, the chimeric adenovirus genome that was constructed is composed of a left end segment derived
15 from Ad5 that contributes the ITR, the E1 deletion region containing the transgene expression cassette, the pIX and IVa2 genes and 956 C-terminal amino acids of the polymerase gene. Ad5 also contributes the right end of the chimeric genome containing the E4 genes and the right ITR. [Additionally, the left end of the Ad5 genome was extended beyond that present in pH5C7H5 so that 454 base pairs of the
20 Ad5 left end was present. Although not absolutely essential, this was done in order to improve packaging efficiency.] All the genes present in the central part of the chimeric construct are derived from the monkey adenovirus SV-25 including the N-terminal 230 amino acids of a chimeric DNA polymerase. The starting plasmid for the construction of the chimeric genome was pAd5endsAscRI which contains both
25 the left and right ends of Ad5 as well as the created (by silent mutation) AscI site in the polymerase gene where Ad5-SV25 chimeric fusion was made (as was done for the Ad5 – Pan 7 chimeric adenovirus). In the final construct pH5S25H5, the SV25 genome segment has been incorporated by sequential cloning steps, including creation of an AscI site at the ligation junction within the polymerase coding
30 sequence. A transgene cassette expressing GFP (green fluorescent protein) was inserted between the I-CeuI and PI-SceI sites of pH5S25H5. The final construct was digested with PacI to separate the adenoviral genome from the plasmid backbone and

transfected into HEK 293 cells. The cell lysate was harvested 2 weeks later, and the chimeric adenovirus was amplified and purified by standard methods.

Fig. 2 provides the map of the recombinant Adhu5-SV25 chimeric virus. The portion of the genome replaced by DNA from Pan7 is indicated.

5

Example 3 – Pan5 - C1 chimeric vector of invention as a delivery vehicle for immunogenic compositions

A Pan 5 (Simian adenovirus 22, a subgroup E adenovirus, also termed C5) - C1 (Simian adenovirus 21, a subgroup B adenovirus) chimeric expressing the Ebola 10 virus (Zaire) glycoprotein (C5C1C5-CMVGP) was constructed as a model antigen in order to test the efficacy of the vector C5C1C5-CMVGP as a vaccine; this vector has been compared it to the Adhu5 based vector (H5-CMVGP). Compared to H5-CMVGP, the C5C1-CMVGP vector yielded only a slightly decreased level of GP expression in transduced A549 cells.

15 Thereafter, GP-specific T cell and B cell responses elicited in B10BR mice vaccinated intramuscularly with either 5×10^{10} H5-CMVGP or C5C1-CMVGP vectors were compared.

The C5C1C5-CMVGP vector appeared to induce lower frequencies of gamma 20 interferon producing CD8+ T cells with kinetics slower than the H5-CMVGP vector as determined by intracellular cytokine staining using a H-2k restricted GP-specific peptide as stimulant. The total IgG response to GP, measured by ELISA, was equivalent in serum from mice vaccinated with the C5C1C5-CMVGP or the H5-CMVGP vectors. However, the C5C1C5-CMVGP vector induced a more potent Th1 type response while the H5-CMVGP vector stimulated a more balanced Th1/Th2 type 25 response. In a survival study, mice were vaccinated as above and challenged 28 days later with 200 LD/50 mouse-adapted Ebola Zaire virus. 100% survival was seen for both groups.

Example 4 – Generation of Chimeric Pan6/Pan7 Vectors

30 A panel of GFP expressing vectors were generated. This panel includes vectors that are chimeric between Pan 6 and Pan 7 where (a) the hexon protein of Pan 7 was replaced by that of Pan 6 (termed C767), (b), the fiber protein of Pan7 was

replaced by that of Pan 6 (termed C776), (c) both the hexon and fiber proteins of the Pan 7 vector have been replaced by those from Pan 6 (termed C766).

The chimeric virus termed C767 was constructed essentially as described above for the C5C1C5 virus in Example 1. However, due to substantial homology 5 between the Pan6 and Pan7 sequences 5' to the hexon sequence, it was not necessary to substitute the 5' end of the genome between the penton and the pol gene.

The chimeric vector C767 was compared to the C776, C766, the parent C6, and the parent C7, each expressing GFP.

Balb/C mice (25 per group) were immunized intramuscularly with either 10 Pan 6 or Pan 7 (10^{10} particles). Re-administration (10^{11} particles i.v., by tail vein injection) was attempted 3 weeks later using each of the five GFP expressing vectors (C6-GFP, C7-GFP, and the three chimeric vectors). Three days later the level of liver transduction was estimated qualitatively by examining liver sections for the presence 15 of GFP expression and quantitatively by estimating copies of GFP DNA by Taqman analysis. Administration of either one of the two chimpanzee adenovirus vectors does not affect the transduction efficiency of the other vector, while re-administration of the same vector is severely compromised. The data showed that antibodies to both hexon and fiber are important in preventing re-administration of adenoviral vectors.

20

All publications cited in this specification are incorporated herein by reference, as are the priority documents, US Patent Application 60/575,429, filed 25 March 28, 2004; US Patent Application No. 60/566,212, filed April 28, 2004, and US Patent Application No. 10/465,302, filed June 20, 2003. While the invention has been described with reference to a particularly preferred embodiment, it will be appreciated that modifications can be made without departing from the spirit of the invention. Such modifications are intended to fall within the scope of the appended claims.

What is claimed is:

1. A method of efficiently culturing a chimeric adenovirus in a selected host cell, said chimeric adenovirus being from a parental adenovirus strain incapable of efficient growth in said host cell, said method comprising the steps of:

(a) generating a chimeric adenovirus comprising:

(i) adenovirus sequences of the left terminal end and right terminal end of a first adenovirus which grows in a selected host cell type, said left end region comprising the 5' inverted terminal repeat (ITRs), and said right end region comprising the 3' inverted terminal repeat (ITRs); and

(ii) the internal regions from a parental adenovirus which lacks its native 5' and 3' terminal regions, said internal regions comprising the late genes encoding the penton, hexon, and fiber;

wherein the resulting chimeric adenovirus comprises, from 5' to 3', a left terminal region of the first adenovirus, the internal region of the parental adenovirus, and the right terminal region of the first adenovirus; and

b) culturing said chimeric adenovirus in the presence of functional adenovirus E1a, E1b, and E4 ORF6 genes from the first adenovirus or from an adenovirus serotype which transcomplements the first adenovirus, and further in the presence of necessary adenoviral structural genes from the left end of the adenovirus.

2. The method according to claim 1, wherein the internal region of the parental adenovirus further comprises one or more functional adenovirus genes selected from the group consisting of Endoprotease open reading frame, DNA binding protein, 100 kDa scaffolding protein, 33 kDa protein, protein VIII, pTP, 52/55 kDa protein, protein VII, Mu and protein VI.

3. The method according to claim 1, wherein the polymerase, terminal protein and 52/55 kDa protein functions are provided in *trans*.

4. The method according to claim 1, wherein the first adenovirus further comprises the polymerase, terminal protein and 52/55 kDa protein functions.

5. The method according to claim 1, wherein the chimeric adenovirus comprises the adenoviral late genes 1, 2, 3, 4, and 5 of the parental adenovirus.

6. The method according to claim 1, wherein the selected host cell stably contains one or more of the adenovirus E1a, E1b or E4 ORF6 functions.

7. The method according to claim 1, wherein the chimeric adenovirus comprises one or more of the adenovirus E1a, E1b or E4 ORF6 of the first adenovirus.

8. The method according to claim 1, wherein the first adenovirus is of human origin.

9. The method according to claim 1, wherein the first adenovirus is of simian origin.

10. The method according to claim 1, further comprising the step of isolating the chimeric adenovirus.

11. A method for generating a chimeric adenovirus for growth in a selected host cell, said chimeric adenovirus being derived from a parental adenovirus strain incapable of efficient growth in said host cell, said method comprising the step of generating a chimeric adenovirus comprising:

5' and 3' terminal regions of a first adenovirus which grows in a selected host cell type, said 5' terminal regions comprising the 5' inverted terminal repeat (ITRs) and necessary E1 gene functions, and said 3' terminal regions comprising inverted terminal repeat (ITRs) and necessary E4 gene functions; and

internal regions from a parental adenovirus which lacks its native 5' and 3' terminal regions, said internal regions comprising the hexon, penton base and fiber;

wherein the resulting chimeric adenovirus comprises, from 5' to 3', the 5' terminal region of the first adenovirus, the internal region of the parental adenovirus, and the 3' terminal regions of the first adenovirus.

12. A chimeric adenovirus produced according to the method of claim 1.

13. A chimeric adenovirus comprising a hexon protein of a selected adenovirus serotype which is incapable of efficient growth in a selected host cell, said modified adenovirus comprising:

(a) adenovirus sequences of the left terminal end of a first adenovirus which grows in a selected host cell type, said left end region comprising the E1a, E1b and 5' inverted terminal repeat (ITRs);

(b) adenovirus sequences of the internal region of the selected adenovirus serotype which is incapable of efficient growth in the selected host cell, said internal region comprising the genes encoding the penton, hexon and fiber of the selected adenovirus;

(c) adenovirus sequences of the right terminal end of the first adenovirus, said right end region comprising the necessary E4 gene functions and the 3' inverted terminal repeat (ITRs),

wherein the resulting chimeric adenovirus comprises adenoviral structural and regulatory proteins necessary for infection and replication.

14. The chimeric adenovirus according to claim 13, wherein the chimeric adenovirus further comprises the IIIa, 52/55kDa and terminal protein (pTP) of the selected adenovirus serotype.

15. The chimeric adenovirus according to claim 13, wherein chimeric adenovirus comprises the polymerase of the first adenovirus.

16. The chimeric adenovirus according to claim 13, wherein the chimeric adenovirus expresses a functional chimeric protein formed from the first adenovirus and the selected adenovirus, said chimeric protein is selected from the group consisting of polymerase, terminal protein, 52/55 kDa protein, and IIIa.

17. The chimeric adenovirus according to claim 13, wherein the chimeric adenovirus comprises the terminal protein, 52/55 kDa, and/or IIIa of the selected adenovirus.

18. A host cell comprising a chimeric adenovirus according to claim 12.

19. The host cell according to claim 18, wherein said host cell is a human cell.

20. An isolated simian adenovirus nucleic acid sequence selected from the group consisting of:

(a) SA18 having the sequence of nucleic acids 1 to 31967 of SEQ ID NO:12 and

(b) a nucleic acid sequence complementary to the sequence of any of (a) to (f).

21. An isolated simian adenovirus serotype nucleic acid sequence selected from one or more of the group consisting of:

(a) 5' inverted terminal repeat (ITR) sequences;

(b) the adenovirus E1a region, or a fragment thereof selected from among the 13S, 12S and 9S regions;

(c) the adenovirus E1b region, or a fragment thereof selected from among the group consisting of the small T, large T, IX, and IVa2 regions;

(d) the E2b region;

(e) the L1 region, or a fragment thereof selected from among the group consisting of the 28.1 kD protein, polymerase, agnoprotein, 52/55 kD protein, and IIIa protein;

(f) the L2 region, or a fragment thereof selected from the group consisting of the penton, VII, VI, and Mu proteins;

(g) the L3 region, or a fragment thereof selected from the group consisting of the VI, hexon, or endoprotease;

(h) the 2a protein;

- (i) the L4 region, or a fragment thereof selected from the group consisting of the 100 kD protein, the 33 kD homolog, and VIII;
- (j) the E3 region, or a fragment thereof selected from the group consisting of E3 ORF1, E3 ORF2, E3 ORF3, E3 ORF4, E3 ORF5, E3 ORF6, E3 ORF7, E3 ORF8, and E3 ORF9;
- (k) the L5 region, or a fragment thereof selected from a fiber protein;
- (l) the E4 region, or a fragment thereof selected from the group consisting of E4 ORF7, E4 ORF6, E4 ORF4, E4 ORF3, E4 ORF2, and E4 ORF1; and
- (m) the 3' ITR, of any of SA18 SEQ ID NO:12, or a sequence complementary to any of (a) to (m).

22. A simian adenovirus protein encoded by the nucleic acid sequence according to claim 21.
23. A composition comprising a simian adenovirus capsid protein according to claim 22 linked to a heterologous molecule for delivery to a selected host cell.
24. A method for targeting a cell having an adenoviral receptor comprising delivering to a subject a composition according to claim 23.
25. A nucleic acid molecule comprising a heterologous simian adenoviral sequence according to claim 21.
26. The nucleic acid molecule according to claim 25, wherein said simian adenoviral sequence encodes an adenoviral gene product and is operatively linked to regulatory control sequences which direct expression of the adenoviral gene product in a host cells.
27. The nucleic acid molecule according to claim 25, wherein said simian adenoviral sequence comprises the E1a region of SA18 SEQ ID NO:12.

28. A pharmaceutical composition comprising the nucleic acid molecule according to claim 27 and a physiologically compatible carrier.
29. A recombinant adenovirus having a capsid comprising a protein selected from the group consisting of:
 - (a) a hexon protein of SA18, SEQ ID NO 13, or a unique fragment thereof;
 - (b) a penton protein of SA18, SEQ ID NO: 14, or a unique fragment thereof;
 - (c) a fiber protein of SA18, SEQ ID NO: 15, or a unique fragment thereof.
30. The recombinant adenovirus according to claim 29, wherein the capsid is of an artificial serotype.
31. The recombinant adenovirus according to claim 29, wherein said virus further comprises a heterologous gene operatively linked to sequences which direct expression of said gene in a host cell.
32. The recombinant adenovirus according to claim 29, further comprising 5' and 3' adenovirus cis-elements necessary for replication and encapsidation.
33. The recombinant adenovirus according to claim 29, wherein said vector lacks all or a part of the E1 gene.
34. A host cell comprising a heterologous nucleic acid molecule comprising the nucleic acid sequence according to claim 21.
35. The host cell according to claim 34, wherein said host cell is stably transformed with the nucleic acid molecule.

36. The host cell according to claim 34, wherein said host cell expresses one or more adenoviral gene products from said nucleic acid molecule, said adenoviral gene products selected from the group consisting of E1a, E1b, E2a, and E4 ORF6.

37. The host cell according to claim 34, wherein said host cell is stably transformed with a nucleic acid molecule comprising the simian adenovirus inverted terminal repeats.

38. A composition comprising a recombinant virus according to claim 29 in a pharmaceutically acceptable carrier.

39. A method for delivering a heterologous gene to a mammalian cell comprising introducing into said cell an effective amount of the recombinant virus according to claim 29.

40. A method for repeat administration of a heterologous gene to a mammal comprising the steps of:

- (a) introducing into said mammal a first vector which comprises the heterologous gene and
- (b) introducing into said mammal a second vector which comprises the heterologous gene;
wherein at least the first virus or the second vector is a virus according to claim 29 and wherein the first and second recombinant vector are different.

41. A method for producing a selected gene product comprising infecting a mammalian cell with the recombinant virus according to claim 29, culturing said cell under suitable conditions and recovering from said cell culture the expressed gene product.

42. A method for eliciting an immune response in a mammalian host against an infective agent comprising administering to said host an effective amount of the

recombinant adenovirus of claim 29, wherein said heterologous gene encodes an antigen of the infective agent.

43. The method according to claim 42, comprising the step of priming the host with a DNA vaccine comprising the heterologous gene prior to administering the recombinant adenovirus.

Fig. 1

Fig. 2

SEQUENCE LISTING

<110> The Trustees of the University of Pennsylvania
Roy, Soumitra
Wilson, James M.
<120> Methods of Generating Chimeric Adenoviruses and Uses For Such
Chimeric Adenoviruses
<130> UPN-P3067PCT
<150> US 10/465,302
<151> 2003-06-20
<150> US 60/566,212
<151> 2004-04-28
<150> US 60/575,429
<151> 2004-05-28
<160> 18
<170> PatentIn version 3.2
<210> 1
<211> 36462
<212> DNA
<213> chimpanzee adenovirus serotype Pan5

<400> 1
catcatcaat aatacaccc aaacttttgg tgcgcgttaa tatgcaaatg aggtatttga 60
atttggggat gcggggcggt gattggctgc gggagcggcg accgttaggg gcggggcggg 120
tgacgttttgc atgacgtggc cgtgaggcgg agccggtttgc caagttctcg tggaaaaagt 180
gacgtcaaac gaggtgtggt ttgaacacgg aaatactcaa ttttcccgcg ctctctgaca 240
ggaaatgagg tgtttctggg cggatgcaag tgaaaacggg ccattttcgcc gcaaaaactg 300
aatgaggaag tgaaaatctg agtaattccg cgtttatggc agggaggagt atttgccgag 360
ggccgagtag actttgaccg attacgtggg ggtttcgatt accgtattt tcacctaaat 420
ttccgcgtac ggtgtcaaag tccgggtttt ttacgttaggt gtcagctgat cgccagggt 480
tttaaacctg cgctctctag tcaagaggcc actcttgagt gccagcgagt agagtttct 540
cctccgcgcc gcgagtcaga tctacacttt gaaagatgag gcacctgaga gacctgccc 600
gtaatgtttt cctggctact ggaaacgaga ttctggact ggtgggtggac gccatgatgg 660
gtgacgaccc tccggagccc cctacccat ttgaagcgcc ttcgctgtac gatttgtatg 720
atctggaggt ggatgtgcc gagaacgacc ccaacgagga ggcggtaat gatttgttt 780
gcgatgcccgc gctgctggct gccgagcagg ctaatacgga ctctggctca gacagcgatt 840
cctctctcca taccccgaga cccggcagag gtgagaaaaa gatccccgag cttaaagggg 900
aagagctcga cctgcgctgc tatgaggaat gcttgccctcc gagcgatgat gaggaggacg 960
aggaggcgat tcgagctgca gcgaaccagg gagtgaaaaac agcgagcggag ggcttttagcc 1020
tggactgtcc tactctgccc ggacacggct gtaagtcttg tgaatttcat cgcatgaata 1080
ctggagataa gaatgtgatg tggccctgt gctatatgag agcttacaac cattgtgttt 1140
acagtaagtg tgattaactt tagctgggaa ggcagagggt gactgggtgc tgactggttt 1200

atttatgtat atgttttta ttgttaggtc ccgtctctga cgtagatgag acccccacta	1260
cagagtgcac ttcatcaccc ccagaaattg gcgaggaacc gcccgaagat attattcata	1320
gaccaggttgc agtgagagtc accggcgta gagcagctgt ggagagtttgc gatgacttgc	1380
tacaggggtgg ggtatgaacct ttggacttgc gtaccggaa acgccccagg cactaagtgc	1440
cacacatgtg tgtttactta aggtgatgtc agtatttata gggtgtggag tgcaataaaa	1500
tccgtgtga cttaagtgc gtggtttatg actcagggtt gggactgtg ggtatataag	1560
caggtgcaga cctgtgtgg cagttcagag caggactcat ggagatctgg acagtcttgg	1620
aagactttca ccagactaga cagctgctag agaactcatc ggagggagtc tcttacctgt	1680
ggagattctg cttcgggtgg cctctagcta agctagtcta tagggccaag caggattata	1740
aggatcaatt tgaggatatt ttgagagagt gtcctggat ttttactct ctcaacttgg	1800
gccatcagtc tcacttaac cagagtattc tgagagccct tgactttct actcctggca	1860
gaactaccgc cgccgttagcc tttttgcct ttatccttgc caaatggagt caagaaaccc	1920
atttcagcag ggattaccgt ctggactgct tagcagtagc ttgtggaga acatggaggt	1980
gccagcgcct gaatgcaatc tccggctact tgccagtaca gccggtagac acgctgagga	2040
tcctgagtct ccagtcaccc caggaacacc aacgcccaca gcagccgcag caggagcagc	2100
agcaagagga ggaccgagaa gagaacctga gagccggct ggaccctccg gtggcggagg	2160
aggaggagta gctgacttgt ttcccggact ggcgggggt ctgacttaggt ctccagggtgg	2220
acgggagagg gggattaagc gggagaggca tgaggagact agccacagaa ctgaactgac	2280
tgtcagtctg atgagtcgca ggcgcccaga atcgggtgtgg tggcatgagg tgcaactcgca	2340
ggggatagat gaggtctcag tgatgcata gaaatattcc ctagaacaag tcaagacttg	2400
ttgggtggag cccgaggatg attgggaggt agccatcagg aattatgcca agctggctct	2460
gaggccagac aagaagtaca agattaccaa actgattaat atcagaaatt cctgctacat	2520
ttcagggaaat gggccgagg tggagatcag tacccaggag agggtggcct tcagatgctg	2580
catgatgaat atgtacccgg ggggtgggtgg catggaggga gtcaccttta tgaacgcgag	2640
gttcagggtt gatgggtata atgggggtgg ctatggcc aacaccaagc tgacagtgc	2700
cggatgctcc ttctttggct tcaataacat gtgcattgag gcctggggca gtgtttcagt	2760
gaggggatgc agttttcag ccaactggat gggggcgtg ggcagaacca agagcatgg	2820
gtcagtgaag aaatgcctgt tcgagaggtg ccacctgggg gtgatgagcg agggcgaagc	2880
caaagtcaaa cactgcgcct ctaccgagac gggctgcttt gtactgatca agggcaatgc	2940
caaagtcaag cataatatga tctgtggggc ctcggatgag cgccgcctacc agatgctgac	3000
ctgcgcgcgt gggAACAGCC atatgctagc caccgtgcac gtggcctcgc acccccgcac	3060
gacatggccc gagttcgagc acaacgtcat gacccgctgc aatgtgcacc tgggtcccgg	3120
ccgaggcatg ttcatgcctt accagtgcac catgcattt gtgaagggtgc tgctggagcc	3180
cgatgccatg tccagagtga gcctgacggg ggtgtttgac atgaatgtgg agctgtggaa	3240

aattctgaga tatgatgaat ccaagaccag gtgccggcc tgcaatgcg gaggcaagca	3300
cgccaggctt cagcccgtgt gtgtggaggt gacggaggac ctgcgaccccg atcatttggt	3360
gttgcctgc aacgggacgg agtcggctc cagcggggaa gaatctgact agagttagta	3420
gtgtttggga ctgggtggga gcctgcatga tggcagaat gactaaaatc tgtgttttc	3480
tgcgcagcag catgagcgg agcgcctcct ttgaggagg ggtattcagc ctttatctga	3540
cggggcgtct cccctcctgg gcgggagtgc gtcagaatgt gatgggatcc acgggtggacg	3600
gccggcccggt gcagcccccg aactcttcaa ccctgaccta cgcgaccctg agctcctcgt	3660
ccgtggacgc agctggccgc gcagctgctg cttccgcccgc cagcgcgtg cgccgaatgg	3720
ccctgggcgc cggctactac agctctctgg tggccaactc gagttccacc aataatcccg	3780
ccagcctgaa cgaggagaag ctgctgctgc tcatggccca gctcgaggcc ctgacccagc	3840
gcctggcga gctgacccag caggtggctc agctgcaggc ggagacgcgg gccgcgggttg	3900
ccacggtgaa aaccaaataa aaaatgaatc aataaataaa cggagacggt ttttggat	3960
aacacagagt cttgaatctt tatttggatt ttcgcgcgcg gttaggcctg gaccaccgg	4020
ctcgatcatt gagcacccgg tggatcttt ccaggaccccg gtagaggtgg gcttggatgt	4080
tgaggtacat gggcatgagc ccgtcccggg ggtggaggta gctccattgc agggcctcgt	4140
gctcggggggt ggttgtgtaa atcacccagt catagcaggg gcgcagggcg tggctgca	4200
cgatgtcctt gaggaggaga ctgatggcca cggcagccc cttgggtgtag gtgttgacga	4260
acctgtttag gttggagggta tgcattgcggg gggagatgag atgcatttt gcctggatct	4320
tgagattggc gatgttcccg cccagatccc gccgggggtt catgttgtgc aggaccacca	4380
gcacggtgta tccggtgac ttggggatt tgcattgcaa ctggaaagg aaggcgtgaa	4440
agaatttggaa gacgcccgg tgaccgccc gggtttccat gcactcatcc atgatgtgg	4500
cgatggccccc gtgggcggcg gcttggccaa agacgtttcg ggggtcggac acatcgtagt	4560
tgtggcctg ggtgagctcg tcattggcca ttttaatgaa tttggggcg agggtgccc	4620
actggggac gaagggtgccc tcgatcccgg gggcgtagtt gccctcgca atctgcatt	4680
cccaggcctt gagctcgag gggggatca tgcattccctg cggggcgatg aaaaaaacgg	4740
tttccggggc gggggagatg agctggcccg aaagcagggtt cggagcagc tggacttgc	4800
cgcagccggt ggggcccgtag atgaccccgta tgaccggctg caggtggtag ttgagggaga	4860
gacagctgcc gtcctcgccg aggagggggg ccacctcggt catcatctcg cgcacatgca	4920
tgttctcgcg cacgagtcc gccaggaggc gctgcggcccc aagcgagagg agctcttgc	4980
gcgaggcgaa gttttcagc ggcttggcccg cgatcgccat gggcattttg gagagggtct	5040
gttgcaagag ttccagacgg tcccaagact cggtgatgtg ctctagggca tctcgatcca	5100
gcagacctcc tcgtttcgcc ggttggggcg actgcgggag tagggcacca ggcgatggc	5160
gtccagcgag gccagggtcc ggtccttcca ggggcgcagg gtccgcgtca gcgtggtctc	5220
cgtcacggtg aaggggtgctc cgccgggctg ggcgcattgcg aggggtgcgt tcaggctcat	5280
ccggctggtc gagaaccgct cccggtcggc gccctgcgcg tcggccaggt agcaatttag	5340

catgagttcg tagttgagcg cctcggccgc gtggcccttg gcgccggagct tacctttgga	5400
agtgtgtccg cagacgggac agaggaggga cttgagggcg tagagcttgg gggcgaggaa	5460
gacggactcg ggggcgttagg cgccgcgcgc gcagctggcg cagacggctc cgcaactccac	5520
gagccaggcg aggtctggcc ggtcggggtc aaaaacgagg tttcctccgt gctttttgat	5580
gcgtttctta cctctggctc ccatgagctc gtgtccccgc tgggtgacaa agaggctgtc	5640
cgtgtccccg tagaccgact ttatgggccc gtcctcgagc ggggtgccgc gtcctcgtc	5700
gtagaggaac cccgcccact ccgagacgaa ggcccggtc caggccagca cgaaggaggc	5760
cacgtggag gggtagcggt cgttgtccac cagcgggtcc accttctcca ggttatgcaa	5820
gcacatgtcc ccctcggtcca catccaggaa ggtgattggc ttgttaagtgt aggccacgtg	5880
accgggggtc ccggccgggg gggtataaaa gggggcgggc ccctgctcgt cctcaactgtc	5940
ttccggatcg ctgtccagga gcccagctg ttgggttagg tattccctct cgaaggcggg	6000
catgacctcg gcactcaggt tgtcagtttc tagaaacgag gaggatttgta tattgacggt	6060
gccgttggag acgccttca tgagccccctc gtccatctgg tcagaaaaga cgatctttt	6120
gttgcgagc ttgggtggcga aggagccgta gagggcgttg gagagcagct tggcgatgga	6180
gcgcattggc tggttctttt ccttgcggc gcgccttgc gcggcgatgt tgagctgcac	6240
gtactcgccgc gccacgcact tccattcggtt gaagacggtg gtgagcttgc cggcacgtat	6300
tctgaccgc cagccgcgtgt tgtcaggggt gatgagggtcc acgctggtgg ccacccgc	6360
gcgcaggggc tcgttggcgc agcagaggcg cccgccttg cgccagcaga agggggcag	6420
cgggtccagc atgagctcgt cgggggggtc ggcgtccacg gtgaagatgc cggcaggag	6480
ctcgggtcg aagtagctga tgcaggtgcc cagatcgcc agcgcgcctt gccagtcg	6540
cacggccagc gcgcgctcgt aggggtcgag gggcgtgccc cagggcatgg ggtgcgtgag	6600
cgcggaggcg tacatgcccgc agatgtcgta gacgtagagg ggctcctcga ggacgcgcgt	6660
gtaggtgggg tagcagcgcc cccgcggat gctggcgcc acgtagtcgt acagctcg	6720
cggggcgcg aggagcccg tgccgagggtt ggagcgctgc ggctttcgg cgcggtagac	6780
gatctggcgg aagatggcgt gggagttgga ggagatggtg ggcctctgga agatgttga	6840
gtggcggtgg ggcagtccga ccgagtcctt gatgaagtgg gcgttaggagt cctgcagctt	6900
ggcgcacgagc tcggcggtga cgaggacgtc cagggcgcag tagtcgagggt tctcttggat	6960
gatgtcgta ttgagctggc cttctgcgtt ccacagctcg cggttggaaa ggaactcttc	7020
gcggtccttc cagtactctt cgagggggaa cccgtcctga tcggcacggt aagagccac	7080
catgtagaac tggttgacgg cttgttaggc gcagcagccc ttctccacgg ggagggcgta	7140
agcttgcgcg gccttgcgcg gggaggtgtg ggtgagggcg aaggtgtcg cgcaccatgac	7200
cttggaggaac tggtgcttga agtcgagggtc gtcgcagccg ccctgctccc agagctggaa	7260
gtccgtgcgc ttctttagg cggggttggg caaagcgaaa gtaacatcg tgaagaggat	7320
cttgcggcg cggggcatga agttgcgaggt gatgcggaaa ggctggggca cctcggcccg	7380

gttggatg acctggcg	7440
cgaggacat ctcgtcaag	7440
ccgttgatgt tgtccccac	7440
gatgttagat tccacgaatc	7500
gcggcgcc	7500
cttgcgtgg ggcagttct	7500
tgagctcg	7500
gttagtgagc tcggcggtt	7560
cgctgaggcc gtgctgctcg	7560
agggcccagt cggcgagg	7560
ggggttggcg ccgaggaagg	7620
aagtccagag atccacggcc	7620
agggcggtct gcaagcggtc	7620
ccggtaactga cgaaactgct	7680
ggcccacggc cattttcg	7680
gggggtgacgc agtagaaggt	7680
gcgggggtcg ccgtgccagc	7740
ggtcccactt gagctggagg	7740
gcgaggtcgt gggcgagctc	7740
gacgagcggc gggtccccgg	7800
agagttcat gaccagcatg	7800
aaggggacga gctgcttgcc	7800
gaaggacccc atccaggtgt	7860
aggtttccac gtcgttagtg	7860
aggaagagcc tttcggtgcg	7860
aggatgcgag ccgatggga	7920
agaactggat ctccctgccac	7920
cagttggagg aatggctgtt	7920
gatgtgatgg aagtagaaaat	7980
gccgacggcg cgccgagcac	7980
tcgtgcttgt gtttatacaa	7980
gcgtccgcag tgctcgcaac	8040
gctgcacggg atgcacgtgc	8040
tgcacgagct gtacctgggt	8040
tccttgacg aggaatttca	8100
gtgggcagtg gagcgctggc	8100
ggctgcatct ggtgctgtac	8100
tacgccctgg ccatcgccgt	8160
ggccatcgtc tgcctcgatg	8160
gtggtcatgc tgacgaggcc	8160
gcgcgggagg caggtccaga	8220
cctcggctcg gacgggtcgg	8220
agagcgagga cgagggcg	8220
caggccggag ctgtccaggg	8280
tcctgagacg ctgcggagtc	8280
aggtcagtgg gcagcggcgg	8280
cgcgcgggtt acttgcagga	8340
gctttccag ggcgccggg	8340
aggtccagat ggtacttgat	8340
ctccacggcg ccgttgggtt	8400
cgacgtccac ggcttcgagg	8400
gtccctgtcc cctggggcgc	8400
caccaccgtg ccccgtttct	8460
tcttgggtgc tggcggcggc	8460
ggctccatgc ttagaagcgg	8460
cggcgaggac gcgcgcggg	8520
cggcaggggc ggctcggggc	8520
ccggaggcag gggcggcagg	8520
ggcacgtcgg cgccgcgcgc	8580
ggcaggttc tggtactgcg	8580
cccggagaag actggcgtga	8580
gcgacgacgc gacgggtgac	8640
gtccctggatc tgacgcctct	8640
gggtgaaggc cacggaccc	8640
gtgagttga acctgaaaga	8700
gagttcgaca gaatcaatct	8700
cggtatcgat gacggcgcc	8700
tgccgcagga tctcttgac	8760
gtcgccccag ttgtccttgt	8760
aggcgatctc ggtcatgaac	8760
tgctcgatct cctcctcctg	8820
aaggctcccg cgaccggcgc	8820
gctcgacggt ggccgcgagg	8820
tcgttggaga tgcggcccat	8880
gagctgcgag aaggcgatca	8880
tgccggcctc gttccagacg	8880
cggctgtaga ccacggctcc	8940
gtcgggggtcg cgcgccgc	8940
tgaccacctg ggcgagggtt	8940
agctcgacgt ggcgctgaa	9000
gaccgcgtag ttgcagaggc	9000
gctggtagag gtagttgagc	9000
gtggtggcga tgtgctcggt	9060
gacgaagaag tacatgatcc	9060
agcggcgagg cggcatctcg	9060
ctgacgtcgc ccagggttcc	9120
caagcgctcc atggcctcg	9120
agaagtccac ggcgaagttt	9120
aaaaactggg agttgcgcgc	9180
cgagacggtc aactccctc	9180
ccagaagacg gatgagctcg	9180
gcgatggtgg cgcgacaccc	9240
gctgctgaag gccccggggg	9240
gctcctcttc ttccatctcc	9240
tcctcctctt ccatctcctc	9300
cactaacatc tcttctactt	9300
cctcctcagg aggccggcggc	9300
gggggagggg ccctgcgtcg	9360
ccggcgccgc acgggcagac	9360
ggtcgatgaa ggcgtcgatg	9360
gtctcccgcc gccggcgacg	9420
catggtctcg gtgacggcgc	9420
gcccgtcctc gcggggccgc	9420
agcgtgaaga cgccgcgcg	9480
catctccagg tggccgcgg	9480
gggggtctcc gttggcagg	9480

gagagggcgc tgacgatgca tcttatcaat tggcccgtag ggactccgcg caaggacctg	9540
agcgtctcga gatccacggg atccgaaaac cgctgaacga aggcttcgag ccagtcgcag	9600
tcgcaaggta ggctgagccc ggtttcttgt tcttcggta tttggtcggg aggccccgg	9660
gcgatgctgc tggtgatgaa gttgaagtag gcggtctga gacggcggat ggtggcgagg	9720
agcaccaggt ccttgggccc ggcttgctgg atgcgcagac ggtcggccat gccccaggcg	9780
tggtcctgac acctggcgag gtcctttag tagtcctgca tgagccgctc cacgggcacc	9840
tccttcctcgc ccgcgcggcc gtgcattgcgc gtgagcccga acccgcgcgt cggctggacg	9900
agcgcagggt cggcgacgac gcgcgcggcg aggtggcct gctggatctg ggtgagggtg	9960
gtcttggaaagt cgtcgaagtc gacgaagcgg tggtaggctc cgggtttgtat ggtgttaggag	10020
cagttggcca tgacggacca gttgacggtc tggtgccgg ggcgcacgag ctcgtggtac	10080
ttgaggcgcg agtaggcgcg cgtgtcgaag atgtagtcgt tgcaggtgcg cacgaggtac	10140
tggtatccga cgaggaagtgc cggcggcgcc tggcggtaga gcggccatcg ctcggtggcg	10200
ggggcgccgg gcgcgagggtc ctcgagcatg aggccgttgt agccgtagat gtacctggac	10260
atccaggtga tgccggcgcc ggtgggtggag gcgcgcggga actcgccggac gcgggttccag	10320
atgttgcgca gcggcaggaa gtagttcatg gtggccgcgg tctggccctgt gaggcgcg	10380
cagtcgtgga tgctctagac atacggcaa aaacgaaagc ggtcagcggc tcgactccgt	10440
ggcctggagg ctaagcgaac gggttggct gcgcgtgtac cccggttcga gtccctgctc	10500
gaatcaggct ggagccgcag ctaacgttgt actggcactc ccgtctcgcac ccaagcctgc	10560
taacgaaacc tccaggatac ggaggcggtt cgtttggcc attttcgtca ggccggaaat	10620
gaaactagta agcgcggaaa gcggccgtcc gcgcattggctc gctgccgtag tctggagaaa	10680
gaatcgccag gggttgcgttg cgggtgtcccc cggttcgcgc ctcagcgctc ggcgcggcc	10740
ggattccgcg gctaaacgtgg gcgtggctgc cccgtcggtt ccaagacccc tttagccagcc	10800
gacttctcca gttacggagc gagccctct ttttcttgc ttttgcctag atgcaccccg	10860
tactgcggca gatgcgc(cc) caccctccac cacaaccgc cctaccgcag cagcagcaac	10920
agccggcgct tctgcccccg ccccagcagc agcagccagc cactaccgcg gcggccgccc	10980
tgagcggagc cggcggttcag tatgacctgg ccttggaaaga gggcgagggg ctggcgccgc	11040
tggggcggtc gtcgcggag cggcacccgc gcgtgcagat gaaaaggagc gctgcgcagg	11100
cctacgtgcc caagcagaac ctgttcagag acaggagcgg cgaggagccc gaggagatgc	11160
gcgcctcccg cttccacgcg gggcgggagc tgcggcgccg cctggaccga aagcgggtgc	11220
tgagggacga ggatttcgag gcggacgagc tgacggggat cagccccgcg cgccgcacg	11280
tggccgcggc caacctggtc acggcgtacg agcagaccgt gaaggaggag agcaacttcc	11340
aaaaatcctt caacaaccac gtgcgcacgc tgatgcgcgc cgaggaggtg accctggcc	11400
tgatgcacct gtggacactg ctggaggcca tcgtgcagaa ccccacgagc aagccgctga	11460
cggcgcaagct gtttctggtg gtgcagcaca gtcgggacaa cgagacgttc agggaggcgc	11520

tgctgaatat caccgagccc gagggccgct ggctcctgga cctggtaac attctgcaga 11580
 gcatcgtggt gcaggagcgc gggctgccgc tgtccgagaa gctggcggcc atcaacttct 11640
 cggtgctgag cctgggcaag tactacgcta ggaagatcta caagacccc tacgtgccc 11700
 tagacaagga ggtgaagatc gacgggtttt acatgcgcac gaccctgaaa gtgctgaccc 11760
 tgagcgcacga tctgggggtg taccgcaacg acaggatgca ccgcgcggtg agcgcgcagcc 11820
 gccggcgca gctgagcgcac caggagctga tgcacagcct gcagcgggccc ctgaccgggg 11880
 ccgggaccga gggggagagc tactttgaca tgggcgcgga cctgcgcctgg cagcctagcc 11940
 gccgggcctt ggaagctgcc ggcgggttccc cctacgtgga ggaggtggac gatgaggagg 12000
 aggagggcga gtacctggaa gactgatggc gcgaccgtat ttttgctaga tgcagcaaca 12060
 gccaccgcgc cctcctgatc ccgcgcgcgc ggcggcgcctg cagagccagc cgtccggcat 12120
 taactcctcg gacgattgga cccaggccat gcaacgcatac atggcgctga cgacccgcaa 12180
 tccccgaagcc tttagacagc agcctcaggc caaccgcactc tcggccatcc tggaggccgt 12240
 ggtgccctcg cgctcgaacc ccacgcacga gaagggtctg gccatcgtga acgcgcgtt 12300
 ggagaacaag gccatccgcg gcgcgcggc cgggttgtg tacaacgcgc tgctggagcg 12360
 cgtggccgc tacaacagca ccaacgtgca gacgaacctg gaccgcattt tgaccgacgt 12420
 gcgcgcggcg gtgtcgacgc gcgcgcggc caccgcgcg tcaacacctgg gctccatgg 12480
 ggcgcgtgaac gccttcctga gcacgcgcgc cgccaaacgtg ccccgccggc aggaggacta 12540
 caccaacttc atcagcgcgc tgccgcgtat ggtggccgag gtgcggccaga gcgcgggtta 12600
 ccagtcgggg ccggactact tcttcagac cagtcgcgcag ggcttcgcaga ccgtgaacct 12660
 gagccaggct ttcaagaact tgcaggact gtggggctg caggccccgg tcggggaccg 12720
 cgcgacggcgtc tcgagcctgc tgacgcgcgc ctcgcgcctg ctgcgtctgc tggggcgcc 12780
 cttcacggac agcggcagcg tgagccgcga ctcgtacctg ggctacctgc ttaacctgta 12840
 ccgcgcggcc atcgggcagg cgacgtggc cgacgcgcgc taccaggaga tcacccacgt 12900
 gagccgcgcg ctggggcagg aggacccggg caacctggag gccacccctga acttcctgt 12960
 gaccaaccgg tcgcagaaga tcccgccccca gtacgcgcgtc agcaccggagg aggagcgcata 13020
 cctgcgcgtac gtgcagcaga gcgtggggct gttccgtatc caggagggggg ccacgcggc 13080
 cgccgcgcgtc gacatgaccgc cgacgcacat ggagccgcgc atgtacgcgc gcaaccgcgc 13140
 gttcatcaat aagctgtatgg actacttgcgc tcggggccgc gccatgaact cggactactt 13200
 taccaacgcgc atcttgcgc accgcactggc cccgcgcgc ggggtctaca cgggcgagta 13260
 cgacatgcgc gaccccaacgc acgggttcct gtggggacgcgc gtggacagcga gcgtgttctc 13320
 gccgcgcgcgc accaccacca ccgtgtggaa gaaagagggc ggggaccggc ggccgtcctc 13380
 ggccgtgtcc ggtcgccgcgtc gtgcgtccgc ggcgggtccc gaggccgcgc gcccccttccc 13440
 gagccctgcgc ttttcgtatc acagcgtgcgc cagcagcgcag ctgggtcggc tgacgcggcc 13500
 ggcgcgtgtc ggcgcggagg agtacctgaa cgactccttgc cttcggccccc agcgcgcgagaa 13560
 gaacttcccc aataacggaa tagagacgcct ggtggacaag atgagccgc ggaagacgt 13620

cgccgacgag cacagggacg agccccgagc tagcagcagc accggcgcca cccgttagacg 13680
ccagcggcac gacaggcagc ggggtctggt gtgggacgat gaggattccg ccgacgacag 13740
cagcgtttg gacttgggtg ggagtgggtgg tggtaacccg ttgcgtcacc tgcccccgg 13800
tatcgggcgc ctgtatgtaa aatctgaaaa aataaaaagac ggtactcacc aaggccatgg 13860
cgaccagcgt gcgttcttct ctgttggtt tagtagtatg atgaggcgcg tgtacccgga 13920
gggtccctcct ccctcgta cg agacgtgat gcagcaggcg gtggcggcg cgatgcagcc 13980
cccgtggag gcgccttacg tgcccccgcg gtacctggcg cctacggagg ggcgaaacag 14040
cattcgttac tcggagctgg cacccttgc ta cgataaccacc cggttgtacc tggtggacaa 14100
caagtccggcg gacatcgccct cgctgaacta ccagaacacgac cacagcaact tcctgaccac 14160
cgtggtgcag aacaacgatt tcaccccccac ggaggccagc acccagacca tcaactttga 14220
cgagcgctcg cggtgggacg gccagctgaa aaccatcatg cacaccaaca tgcccaacgt 14280
gaacgagttc atgtacagca acaagttcaa ggcgccgggtg atggtctcgc gcaagacccc 14340
caacggggtc acagtaacag atggtagtca ggacgagctg acctacgagt gggtgagtt 14400
tgagctgccc gagggcaact tctcggtgac catgaccatc gatctgatga acaacgccc 14460
catcgacaac tacttggcg tggggcggca gaacggggtg ctggagagcg acatcgccgt 14520
gaagttcgac acgacgcaact tccggctggg ctgggacccc gtgaccgagc tggtgatgcc 14580
ggcgtgtac accaacgagg cttccaccc cgacatcgtc ctgctgccc gctgcggcgt 14640
ggacttcacc gagagccgcc tcagcaacct gctggcattc cgcaagcgcc agcccttcca 14700
ggagggcttc cagatcctgt acgaggacct ggaggggggc aacatccccg cgctgctgga 14760
cgtggacgccc tacgagaaaa gcaaggagga tagcgccgcc gcggcgaccg cagccgtggc 14820
caccgcctct accgaggtgc gggcgataa tttgctagc gccgcgacac tggcagcggc 14880
cgaggcggct gaaaccgaaa gtaagatagt gatccagccg gtggagaagg acagcaagga 14940
gaggagctac aacgtgctcg cggacaagaa aaacaccgccc taccgcagct ggtacctggc 15000
ctacaactac ggacgaccccg agaagggcgt ggcgtcctgg acgctgctca ccaccccgaa 15060
cgtcacctgc ggcgtggagc aagtctactg gtcgtccc gacatgatgc aagacccggt 15120
cacccgcgc tccacgcgtc aagttagcaa ctaccgggtg gtggcgccc agctccgtcc 15180
cgtctactcc aagagcttct tcaacgagca ggccgtctac tcgcagcagc tgccgcctt 15240
cacccgcgtc acgcacgtct tcaaccgctt ccccgagaac cagatcctcg ttcgcccgc 15300
cgcccccacc attaccaccg tcagtgaaaa cggtccgtct ctcacagatc acgggaccct 15360
ggcgctgcgc agcagtatcc ggggagttca ggcgtgacc gtcactgacg ccagacgccc 15420
cacctgcccc tacgtctaca aggccctggg cgtagtcgcg cgcgcgtcc tctcgagccg 15480
cacccctaa aaaatgtcca ttctcatctc gcccagtaat aacaccgggtt gggccctgcg 15540
cgcccccagc aagatgtacg gaggcgctcg ccaacgctcc acgcaacacc ccgtgcgcgt 15600
gcccggcgcac ttccgcgtc cttggggcgc cctcaaggc cgcgtgcgt cgcgcaccac 15660

cgtcgacgac gtgatcgacc aggtggtggc cgacgcgcgc aactacacgc ccgccgcgc 15720
gcccgtctcc accgtggacg ccgtcatcga cagcgtggtg gccgacgcgc gccggtaacgc 15780
ccgcgcacaag agccggcggc ggcgcacgc ccggcggcac cggagcaccc ccgcgcgcg 15840
cgcggcgcga gccttgctgc gcagggccag gcgcacggga cgcagggccca tgctcagggc 15900
ggccagacgc gcggcctccg gcagcagcag cgccggcagg acccgcagac gcgcggccac 15960
ggcggcggcg gcggccatcg ccagcatgtc ccgcccgcgg cgccggcaacg tgtactgggt 16020
gcgcgacgccc gccaccggtg tgcgctgtcc cgtgcgcacc cgccccccctc gcacttgaag 16080
atgctgactt cgcgttttgc atgtgtccca gcggcgagga ggatgtccaa ggcgcatttc 16140
aaggaagaga tgctccaggt catcgccct gagatctacg gcccggcggc ggtgaaggag 16200
gaaagaaaagc cccgcaaact gaagcgggtc aaaaaggaca aaaaggagga ggaagatgtg 16260
gacggactgg tggagtttgt gcgcgagttc gccccccggc ggcgcgtgca gtggcgcggg 16320
cgaaaaagtga aaccgggtgct gcgcacccggc accacgggtgg tcttcacgccc cgccgagcgt 16380
tccggctccg cctccaagcg ctcctacgac gaggtgtacg gggacgagga catcctcgag 16440
caggcggccg aacgtctggg cgagtttgct tacggcaagc gcagccgcgg cgccgccttg 16500
aaagaggagg cgggtgtccat cccgctggac cacggcaacc ccacgcccgg cctgaagccg 16560
gtgaccctgc agcaggtgtc gcctggtgcg gcgcgcgcgg ggggcttcaa gcgcgagggc 16620
ggcgaggatc tgtacccgac catcgactg atggtgccca agcgccagaa gctggaggac 16680
gtgctggagc acatgaaggt ggaccccgag gtgcagcccg aggtcaaggt gcggcccatc 16740
aagcaggtgg cccccggcct gggcgtgcag accgtggaca tcaagatccc cacggagccc 16800
atggaaacgc agaccgagcc cgtgaagccc agcaccagca ccatggaggt gcagacggat 16860
ccctggatgc cggcaccggc ttccaccacc cggcgaagac gcaagtacgg cgccgcgc 16920
ctgctgatgc ccaactacgc gtcgtatcct tccatcatcc ccacgcccgg ctaccgcggc 16980
acgcgcttct accgcggcta caccagcagc cggcgcgcga agaccaccac ccgcgcgcgc 17040
cgtcgtcgca cccgcccggc cagcaccggc acttccgcgg ccgcgcctggt gcggagagt 17100
taccgcagcg ggcgcgagcc tctgaccctg cgcgcgcgc gctaccaccc gagcatcgcc 17160
attnaactac cgcctcctac ttgcagatat ggccctcaca tgccgcctcc gcgtccccat 17220
tacgggctac cgaggaagaa agccgcgcgg tagaaggctg acggggaaacg ggctgcgtcg 17280
ccatcaccac cggcggcggc gcgcgcgcg caagcggttg gggggaggct tcctgcccgc 17340
gctgatgccc atcatcgccc cggcgatcgg ggcgatcccc ggcatacgctt ccgtggcggt 17400
gcaggcctct cagcgccact gagacacagc ttggaaaatt tgtaataaaa aatggactga 17460
cgctcctgggt cctgtgtatgt gtgttttag atggaaagaca tcaatttttc gtccctggca 17520
ccgcgcacacg gcacgcggcc gtttatgggc acctggagcg acatcgca cagccaaactg 17580
aacggggcgc cttcaattt gggcgttc cttggagcggc ttaagaattt cgggtccacg 17640
ctcaaaacctt atggcaacaa ggcgtggac acgagcacag ggcaggcgcgt gaggaaaag 17700
ctgaaagagc agaacttcca gcagaagggtg gtcgtggcc tggcctcggtt catcaacggg 17760

gtggtggacc tggccaacca ggccgtcag aaacagatca acagccgcct ggacgcggtc 17820
ccgcccgcgg ggtccgtgga gatgccccag gtggaggagg agctgcctcc cctggacaag 17880
cgcggcgaca agcgaccgcg tcccgacgcg gaggagacgc tgctgacgca cacggacgag 17940
ccgccccctgt acgaggaggc ggtgaaaactg ggtctgccc ccacgcggcc cgtggcgcct 18000
ctggccaccg gggtgctgaa acccagcagc agcagcagcc agcccgcgac cctggacttg 18060
cctccgcctg ctcccccccc ctccacagtg gctaagcccc tgccgcccgt ggccgtcgcg 18120
tcgcgcgccc cccgaggccg cccccaggcg aactggcaga gcactctgaa cagcatcg 18180
ggtctggag tgcagagtgt gaagcgccgc cgctgtatt aaaagacact gtagcgctta 18240
acttgcttgt ctgtgtgtat atgtatgtcc gccgaccaga aggaggaggc agaggcgcgt 18300
cgccgagttg caagatggcc accccatcga tgctgccccca gtgggcgtac atgcacatcg 18360
ccggacagga cgcttcggag tacctgagtc cgggtctggcgt gcagttcgcc cgccacag 18420
acacctactt cagtctgggg aacaagttt aacaacccac ggtggcgccc acgcacgatg 18480
tgaccaccga ccgcagccag cggctgacgc tgcgcttcgt gcccgtggac cgcgaggaca 18540
acacctactc gtacaaagtgc cgctacacgc tggccgtggg cgacaacccgc gtgctggaca 18600
tggccagcac ctactttgac atccgcggcg tgctggatcg gggccctagc ttcaaaccct 18660
actccggcac cgcttacaac agcctggctc ccaaggagc gccaacact tgccagtgg 18720
catataaagc tcatgtgtat actggtagc aaaaaaccta tacatatggaa aatgcgcctg 18780
tgcaaggcat tagtattaca aaagatggta ttcaacttgg aactgacact gatgtatcagc 18840
ccatttatgc agataaaaact tatcaaccag agcctcaagt gggtgatgct gaatggcatg 18900
acatcactgg tactgatgaa aaatatggag gcagagctct caagcctgac accaaaatga 18960
agccctgcta tggttcttt gccaaggccta ccaataaaga aggaggtcag gcaaatgtga 19020
aaaccgaaac aggccgtacc aaagaatatg acattgacat ggcatttttc gataatcgaa 19080
gtgcagctgc ggctggcctg gcccagaaaa ttgtttgtat tactgagaat gtggatctgg 19140
aaactccaga tactcatatt gtatacaagg cgggcacaga tgacagcagc tcttctatca 19200
atttgggtca gcagtccatg cccaacagac ccaactacat tggcttttaga gacaacttta 19260
tcgggctcat gtactacaac agcactggca acatggcgt gctggctggt caggcctccc 19320
agctgaatgc tgtggtgac ttgcaggaca gaaacactga actgtcctac cagctttgc 19380
ttgactctct gggcgacaga accaggtatt tcagtatgtg gaatcaggcg gtggacagct 19440
atgaccccgatgtgcgtgt ggtagaactg atacttacca gggaaattaag gccaatggtg 19500
gcttcccccgtt ggtatgtgt ggtagaactg atacttacca gggaaattaag gccaatggtg 19560
ctgatcaaac cacctggacc aaagatgata ctgttaatga tgctaatgaa ttggcaagg 19620
gcaatccctt cgcctatggag atcaacatcc aggcacacccgtt gttggcggaaac ttcctctacg 19680
cgaacgtggc gctgtacctg cccgactcct acaagtacac gcccggccaaac atcacgctgc 19740
cgaccaacac caacacccatgattacatgaa acggccgcgt ggtggcgcggcc tcgctgggtgg 19800

acgcctacat caacatcgaa	gcccggccgt cgctggaccc	catggacaac gtcaaccct	19860
tcaaccacca ccgcaacgcg	ggcctgcgct accgctccat	gctcctggc aacggcgct	19920
acgtgccctt ccacatccag	gtgccccaaa agttttcg	catcaagagc ctccctgtcc	19980
tgcgggtc ctacacctac	gagtggaaact tccgcaagga	cgtcaacatg atcctgcaga	20040
gctccctcg	caacgacctg cgcacggacg	gggcctccat cgccctcacc	20100
tctacgccac cttttttttt	atggcgacata acaccgcctc	cacgctcgag gccatgctgc	20160
gcaacgacac caacgacca	tccttcaacg actacctctc	ggcgccaaac atgctctacc	20220
ccatccggc caacgcccacc	aacgtgccc tctccatccc	ctcgcaac tgggcccgcct	20280
tccgcggatg gtccttcacg	cgcctcaaga cccgcgagac	gccctcgctc ggctccgggt	20340
tcgaccctta ctctgtctac	tcgggctcca tcccctacct	cgacggcacc ttctaccta	20400
accacacctt caagaaggtc	tccatcacct tcgactcctc	cgtcagctgg cccggcaacg	20460
accgcctcct gacgcccac	gagttcgaaa tcaagcgcac	cgtcgacgga gaggggtaca	20520
acgtggccca gtgcaacatg	accaaggact gtttcctgg	ccagatgctg gcccactaca	20580
acatcgctta ccagggtttc	tacgtgccc agggtcacaa	ggaccgcatalog tactccttct	20640
tccgcaactt ccagccatg	agccgcagg tcgtggacga	ggtaactac aaggactacc	20700
aggccgtcac cttggctac	cagcacaaca actcgggctt	cgtcggtac ctcgcggcca	20760
ccatgcgcca gggacagccc	tacccgcca actaccctta	cccgtcatac ggcaagagcg	20820
ccgtcgccag cgtcaccctag	aaaaagttcc tctgcgaccg	ggtcatgtgg cgcatccct	20880
tctccagcaa ctcatgtcc	atggcgccgc tcaccgacct	cggccagaac atgctctacg	20940
ccaaactccgc ccacgcgcta	gacatgaatt tcgaagtcga	ccccatggat gagtccaccc	21000
ttctctatgt tgtcttcgaa	gtcttcgacg tcgtccgagt	gcaccagccc caccgcggcg	21060
tcatcgaggc cgtctacctg	cgcacgcct tctcgccgg	caacgcccacc acctaagccc	21120
cgctcttgct tcttgcaga	tgacggcctg tgccggctcc	ggcgagcagg agtcagggc	21180
catcctccgc gacctggct	gcgggcccctg cttcctggc	accttcgaca agcgcttccc	21240
gggattcatg gccccgcaca	agctggcctg cgccatcg	aacacggccg gccgcgagac	21300
cggggcgag cactggctgg	cttcgcctg gaacccgcgc	tcccacacct gctacctt	21360
cgaccccttc gggttctcg	acgagcgctt caagcagatc	taccagttcg agtacgaggg	21420
cctgctgcgc cgacgcgc	tggccaccga ggaccgctgc	gtcaccctgg aaaagtccac	21480
ccagaccgtg cagggtccgc	gctcgccgc ctgcgggctc	ttctgctgca tggttcgtca	21540
cgccttcgtg cactggccc	accgcctcat ggacaagaac	cccaccatga acttgctgac	21600
gggggtgccc aacggcatgc	tccagtcgc	ccaggtggaa cccaccctgc gcccgaacca	21660
ggaggcgctc taccgcttcc	tcaacgcaca ctccgcctac	tttcgctccc accgcgcgcg	21720
catcgagaag gccacccgc	tcgaccgcac	aatcaagac atgtaaaccg tgcgtgtatg	21780
tgaatgtttt attcataata	aacagcaca	gttatgcca cctttctga ggctctgact	21840
ttatTTAGAA atcgaagggg	ttctgcggc	tctcgccgtg cccgcgggc agggatacgt	21900

tgcggaactg gtacttggc agccacttga actcggggat cagcagcttc ggcacgggaa	21960
ggtcggggaa cgagtcgctc cacagttgc gcgtgagttt cagggcgccc agcaggctgg	22020
gcgcggagat cttgaaatcg cagttggac ccgcgttctg cgcgccccggat ttgcgtaca	22080
cggggtttgcgca gcactggaac accatcaggg ccgggttgctt cacgctcgcc agcaccgtcg	22140
cgtcggtgat gccctccacg tccagatcct cggcgttggc catcccgaag ggggtcatct	22200
tgcaggtctg ccgccccatg ctgggcacgc agccgggctt gtggttgcaa tcgcagtgc	22260
gggggatcag catcatctgg gcctgctcg agctcatgcc cgggtacatg gccttcatga	22320
aagcctccag ctggcggaag gcctgctgcg ccttgcgcgc ctcggtaag aagaccccgc	22380
aggacttgct agagaactgg ttggtggcgc agccggcgtc gtgcacgcag cagcgcgcgt	22440
cgttggcgc cagctgcacc acgctgcgc cccagcggtt ctgggtgatc ttggcccggt	22500
cggggttctc cttcagcgcg cgctgcccgt tctcgctcgc cacatccatc tcgatcgtgt	22560
gctccttctg gatcatcacg gtcccggtca ggcatcgcag cttgcctcg gcctcggtgc	22620
acccgtgcag ccacagcgcg cagccggcgc actccagtt ctgtggcgc atctgggagt	22680
gcgagtgcac gaagccctgc aggaagcggc ccatcatcgt ggtcagggtc ttgttgctgg	22740
tgaaggtcag cgggatgccc cgggtctcct cgttacata caggtggcag atgcggcggt	22800
acacctcgcc ctgctcgcc atcagcttgcg aggccggactt caggtcgctc tccacgcgg	22860
accggccat cagcagcgc atgacttcca tgcccttctc ccaggccgag acgatcggca	22920
ggctcagggg gttcttaccg gccgttgtca tcttagtcgc cgccgctgag gtcagggggt	22980
cgttctcgcc cagggtctca aacactcgct tgccgtcctt ctcggtgatc cgcacgggg	23040
gaaagctgaa gcccacggcc gccagctcct cctcggcctg ctttcgtcc tcgctgtcct	23100
ggctgatgtc ttgcaaaggc acatgcttgg tcttgcgggg tttcttttgc ggcggcagag	23160
gcggcggcgg agacgtgctg ggcgagcgcg agttctcgct caccacgact atttcttctt	23220
cttggccgtc gtccgagacc acgcggcggt aggcatgcct cttctgggc agaggcggag	23280
gacgacggcgt ctcgcgggtc ggcggcggc tggcagagcc cttccgcgt tcgggggtgc	23340
gctcctggcg gcgctgctct gactgacttc ctccgcggcc ggccattgtt ttctcttagg	23400
gagcaacaag catggagact cagccatcgt cgccaaacatc gccatctgcc cccggccgcg	23460
ccgacgagaa ccagcagcag aatgaaagct taaccgcccc gccgcccagc cccacctccg	23520
acgcggccgc ggccccagac atgcaagaga tggagggatc catcgagatt gacctgggct	23580
acgtgacgcc cgccggagcac gaggaggagc tggcagcgcg ctttcagcc cggaaagaga	23640
accaccaaga gcagccagag caggaagcag agagcgagca gcagcaggct gggctcgagc	23700
atggcgacta cctgagcggg gcagaggacg tgctcatcaa gcatctggcc cgccaatgca	23760
tcatcgtaa ggacgcgctg ctcgaccgcg ccgaggtgcc cctcagcgtg gcggagctca	23820
gcccgccta cgagcgcaac ctcttctcgc cgccgtgcc ccccaagcgc cagcccaacg	23880
gcacctgcga gcccaccccg cgcctcaact tctaccggc cttcgcggtg cccgaggccc	23940

tggccaccta ccacctcttt ttcaagaacc aaaggatccc cgtctcctgc cgccccaacc 24000
 gcacccgcgc cgacgcccctg ctcaacctgg gtcccgccgc cccgctacct gatatgcct 24060
 ccttggaaaga ggttcccaag atcttcgagg gtctgggcag cgacgagact cgggccgcga 24120
 acgctctgca aggaagcggg gaggagcatg agcaccacag cgcctgggt gatgttggaaag 24180
 gcgacaacgc ggcgcctggcg gtgctcaagc gcacggtcga gctgacccac ttcgcctacc 24240
 cggcgctcaa cctgcccccc aaggtcatga ggcgcgtcat ggaccaggtg ctcatcaagc 24300
 ggcgcctcgcc cctctcgat gaggacatgc aggaccccga gagctcggac gagggcaagc 24360
 ccgtggtcag cgacgagcag ctggcgcgct ggctgggagc gagtagcacc ccccagagct 24420
 tggaaagagcg gcgcaagctc atgatggccg tggcctgggt gaccgtggag ctggagtgtc 24480
 tgcgcgcctt cttcgccgac gcagagaccc tgcgcaaggt cgaggagaac ctgcactacc 24540
 tcttcaggca cgggtttgtg cgccaggcct gcaagatctc caacgtggag ctgaccaacc 24600
 tggtctcccta catgggcattc ctgcacgaga accgcctggg gcagaacgtg ctgcacacca 24660
 ccctgcgcgg ggaggcccgcc cgcgactaca tccgcgactg cgtctacctg tacctctgcc 24720
 acacctggca gacgggcatg ggcgtgtggc agcagtgcct ggaggagcag aacctgaaag 24780
 agctctgcaa gctcctgcag aagaacctga aggccctgtg gaccgggttc gacgagcgc 24840
 ccaccgcctc ggacctggcc gacctcatct tcccgagcg cctgcggctg acgctgcgc 24900
 acggactgccc cgactttatg agtcaaagca tggtaaaaa ctttcgtct ttcatcctcg 24960
 aacgctccgg gatcctgccc gccacctgct ccgcgcgtcc ctcggacttc gtgccgctga 25020
 cttccgcga gtgcccccccg ccgcctctgga gccactgcta cctgctgcgc ctggccaact 25080
 acctggcccta ccactcgac gtgatcgagg acgtcagcgg cgagggtctg ctgcagtgtc 25140
 actggcgtg caacctctgc acgcccgcacc gtcgcctggc ctgcacaccc cagctgctga 25200
 gcgagaccca gatcatcgcc accttcgagt tgcaaggccc cggcgagggc aaggggggtc 25260
 tgaaaactcac cccggggctg tggacctcggt cctacttgcg caagttcgtg cccgaggact 25320
 accatccctt cgagatcagg ttctacgagg accaatccca gccgcccag gccgaactgt 25380
 cggcctgcgt catcaccccg gggccatcc tggcccaatt gcaagccatc cagaaatccc 25440
 gccaagaatt tctgctgaaa aagggccacg gggtctacct ggaccccccag accggagagg 25500
 agctcaaccc cagttcccc cagatgccc cgaggaagca gcaagaagct gaaagtggag 25560
 ctgcccgcgc cggaggattt ggaggaagac tggagagca gtcaggcaga ggaggaggag 25620
 atggaaagact gggacacac tcaggcagag gaggacagcc tgcaagacag tctggaaagac 25680
 gaggtggagg aggaggcaga ggaagaagca gccgcccac gaccgtcgct ctcggcggag 25740
 aaagcaagca gcacggatac catctccgct ccgggtcggt gtcgcggcga ccggcccac 25800
 agtaggtggg acgagaccgg gcgcgttcccc aacccacca cccagaccgg taagaaggag 25860
 cggcaggat acaagtcctg gcggggcac aaaaacgcca tcgtctcctg cttgcaagcc 25920
 tgcggggca acatctcctt cacccgcgc tacctgtct tccaccgcgg ggtgaacttc 25980
 ccccgcaaca tcttgcatta ctaccgtcac ctccacagcc cctactactg tttccaagaa 26040

gaggcagaaa cccagcagca gcagaaaacc agcggcagca gcagctagaa aatccacagc 26100
 ggcggcaggt ggactgagga tcgcagcgaa cgagccggcg cagacccggg agctgaggaa 26160
 ccggatctt cccaccctct atgccatctt ccagcagagt cggggcagg agcaggaact 26220
 gaaagtcaag aaccgttctc tgcgctcgct cacccgcagt tgtctgtatc acaagagcga 26280
 agaccaactt cagcgcactc tcgaggacgc cgaggctctc ttcaacaagt actgcgcgct 26340
 cactcttaaa gagtagccccg cgcccgccca cacacggaaa aaggcgggaa ttacgtcacc 26400
 acctgcgccc ttcgcccac catcatcatg agcaaagaga ttcccacgcc ttacatgtgg 26460
 agctaccagc cccagatggg cctggccgccc ggcgcgcgc aggactactc cacccgcatg 26520
 aactggctca ggcgcgggccc cgcgatgatc tcacgggtga atgacatccg cgccgcgcga 26580
 aaccagatac tcctagaaca gtcagcgatc accgcccacgc cccgccatca ccttaatccg 26640
 cgttaattggc cgcgcgcctt ggtgtaccag gaaattcccc agcccacgac cgtactactt 26700
 cgcgcagacg cccaggccga agtccagctg actaactcag gtgtccagct ggccggcggc 26760
 gcccgcctgt gtcgtcaccg cccgcctcag ggtataaagc ggctggtgat ccgaggcaga 26820
 ggcacacagc tcaacgacga ggtggtgagc tcttcgctgg gtctgcgacc tgacggagtc 26880
 ttccaactcg ccggatcggg gagatcttcc ttcacgcctc gtcaggccgt cctgactttg 26940
 gagagttcgt cctcgagcc ccgctcggtt ggcattcgca ctctccagtt cgtggaggag 27000
 ttcactccct cggctactt caacccttc tccggctccc cccgcccacta cccggacgag 27060
 ttcatcccga acttcgacgc catcagcgag tcgggtggacg gctacgattt aatgtcccat 27120
 ggtggcgcag ctgacctagc tcggcttcga cacctggacc actgcccggc cttccgctgc 27180
 ttcgctcggtt atctcgccga gttgcctac tttgagctgc ccgaggagca ccctcaggggc 27240
 cccggccacg gagtgccggat catcgctgaa gggggcctcg actcccacct gcttcggatc 27300
 ttcagccagc gaccgatcct ggtcgagcgc gagcaaggac agacccttct gaccctgtac 27360
 tgcatctgca accaccccg cctgcatgaa agtcttggtt gtctgctgtg tactgagtat 27420
 aataaaagct gagatcagcg actactccgg actcgattgt ggtgttcctg ctatcaaccg 27480
 gtccctgttc ttacccggga acgagaccga gctccagctt cagtgtaaaccccacaagaa 27540
 gtacccctacc tggctgttcc agggctcccc gatcgccgtt gtcaaccact ggcacacaacg 27600
 cggagtcctg ctgagccggcc ccgcacacct tacttttcc acccgacgaa gcaagctcca 27660
 gctcttccaa cccttcctcc cccggaccta tcagtgcgtc tcgggaccct gccatcacac 27720
 cttccacctg atcccgaata ccacagcgcc gctcccgct actaacaacc aaactaccac 27780
 ccacatcgccac cgtcgcgacc tttctgaatc taacactacc accccacaccg gaggtgagct 27840
 ccgaggtcga ccaacctctg ggatttacta cggccctgg gaggtggtg ggttaatagc 27900
 gctaggccta gttgtgggtg ggctttggc tctctgctac ctatccctcc cttgctgttc 27960
 gtacttagtg gtgctgtgtt gctggttaa gaaatgggaa agatcaccct agttagctgc 28020
 ggtgcgcgtgg tggcggtgg ggtgtttcg attgtggac tggggcggcgc ggctgttagtg 28080

aaggagaagg ccgatccctg cttgcatttc aatcccgaca attgccagct gagttttag 28140
 cccgatggca atcggtgcbc ggtgctgatc aagtgcggat gggaaatgcga gaacgtgaga 28200
 atcgagtaca ataacaagac tcggaacaat actctcgctg ccgtgtggca gccccgggac 28260
 cccgagtggt acaccgtctc tgtccccggc gctgacggct ccccgcgcac cgtgaacaat 28320
 actttcattt ttgcgcacat gtgcgacacg gtcatgtgga tgagcaagca gtacgatatg 28380
 tggcccccca cgaaggagaa catcggtgc ttctccatcg cttacagcgc gtgcacggcg 28440
 ctaatcaccg ctatcggtg cctgagcatt cacatgctca tcgctattcg ccccagaaaat 28500
 aatgccgaaa aagagaaaaca gccataaacac gtttttcac acacctttt cagaccatgg 28560
 cctctgttaa attttgctt ttatttgcca gtctcattac tggtataagt aatgagaaac 28620
 tcactatttta cattggcact aaccacactt tagacggaat tccaaaatcc tcattgttatt 28680
 gctatttga tcaagatcca gacttaacta tagaactgtg tggtacaag ggaaaaaaata 28740
 caagcattca tttaattaac tttaattgctg gagacaattt gaaattaatt aatatcacta 28800
 aagagtatgg aggtatgtat tactatgtt cagaaaataa caacatgcag ttttatgaag 28860
 ttactgtaac taatcccacc acaccttagaa caacaacaac caccaccaca aaaactacac 28920
 ctgttaccac tatgcagctc actaccaata acattttgc catgcgtcaa atggtaaca 28980
 atagcactca acccaccacca cccagtgagg aaattcccaa atccatgatt ggcattattg 29040
 ttgctgttagt ggtgtcatg ttgatcatcg cttgtgtcat ggtgtactat gccttctgct 29100
 acagaaagca cagactgaac gacaagctgg aacacttact aagtgttcaa tttaatttt 29160
 tttagaaccat gaagatccca ggcctttaa tttttctat cattacctct gctctatgca 29220
 attctgacaa tgaggacgtt actgtcggt tcggaaccaa ttatacactg aaaggtccag 29280
 cgaagggtat gctttcggtt tattgtgtt ttggaactga cgagcaacag acagagctct 29340
 gcaatgctca aaaaggcaaa acctcaaatt ctAAAATCTC taattatcaa tgcaatggca 29400
 ctgacttagt actgctcaat gtcacgaaag catatgtgg cagctacacc tgccctggag 29460
 atgatactga gaacatgatt ttttacaaag tggttgtt tgatcccact actccaccc 29520
 caccaccac aactactcac accacacaca cagaacaaac cacagcagag gaggcagcaa 29580
 agttagcctt gcaggtccaa gacagttcat ttgttggcat tacccctaca cctgatcagc 29640
 ggtgtccggg gctgctcgctc agcggcattt tcgggtgtct ttcgggattt gcagtcataa 29700
 tcattctgcat gttcatttt gcttgctgct atagaaggct ttaccgacaa aaatcagacc 29760
 cactgctgaa cctctatgtt taatttttc cagagccatg aaggcagtta gcactcttagt 29820
 tttttgttct ttgattggca ctgttttag tgtagcttt ttgaaacaaa tcaatgttac 29880
 tgagggggaa aatgtgacac tggtaggcgt agagggtgct caaaataccaa cctggacaaa 29940
 attccatcta gatgggtgga aagaaatttgc cacctggaaat gtcagtactt atacatgtga 30000
 aggagttaat cttaccattt tcaatgtcag ccaaattccaa aagggttggaa ttAAAGGGCA 30060
 atctgttagt gtttagcaata gtgggtacta tacccagcat actcttatct atgacattat 30120
 agttataccca ctgcctacac ctagcccacc tagcactacc acacagacaa cccacactac 30180

acaacaacc acatacagta catcaaatca gcctaccacc actacaacag cagagggtgc 30240
cagctcgct ggggtccgag tggcattttt gatgttgcc ccatctagca gtcccactgc 30300
tagtaccaat gagcagacta ctgaattttt gtccactgtc gagagccaca ccacagctac 30360
ctcgagtgcc ttctctagca cgc当地atct atcctcgctt tcctctacac caatcagtcc 30420
cgctactact cctacccccg ctattctccc cactccctg aagcaaacag acggcgacat 30480
gcaatggcag atcaccctgc tcattgtat cgggttggtc atcctggccg tggtgctcta 30540
ctacatcttc tgccgcccga ttcccaacgc gcaccgcaag ccggcctaca agcccatcgt 30600
tgtcggcag cggagccgc ttcaaggatggaa aggggtcta aggaatcttc tcttctctt 30660
tacagtatgg tgattgaatt atgattccta gacaaatctt gatcactatt cttatctgcc 30720
tcctccaagt ctgtgccacc ctcgctctgg tggccaaacgc cagtcagac tgtattggc 30780
ccttcgcctc ctacgtgctc tttgccttca tcacctgcat ctgctgctgt agcatagtct 30840
gcctgcttat caccttcttc cagttcattt actggatctt tgtgcgcate gcctacctgc 30900
gccaccaccc ccagtaccgc gaccagcgag tggcgcggct gctcaggatc ctctgataag 30960
catgcggct ctgctacttc tcgcgtttct gctgttagtg ctccccgtc ccgtcgaccc 31020
ccggacccccc acccagtcctt ccgaggaggt ccgcaaatgc aaattccaag aaccctggaa 31080
attcctcaaa tgctaccgccc aaaaatcaga catgcattttt agtggatca tgatcattgg 31140
gatcgtaac attctggcct gcaccctcat ctcccttgcattt atttacccct gctttgactt 31200
tggttggAAC tcgcccagg cgctctatct cccgcctgaa cctgacacac caccacagca 31260
acctcaggca cacgcactac caccaccacc acagcctagg ccacaataca tgcccatatt 31320
agactatgag gccgagccac agcgacccat gctccccgtt attagttact tcaatctaacc 31380
cggcggagat gactgaccctt ctggccaaaca acaacgtcaa cgacccttctc ctggacatgg 31440
acggccgcgc ctcggagcag cgactcgccc aacttcgcat tcgcccaggag caggagagag 31500
ccgtcaagga gctgcaggac ggcatacgca tccaccagtg caagaaaggc atcttctgcc 31560
tggtgaaaca ggccaaagatc tcctacgagg tcacccagac cgaccatcgc ctctcctacg 31620
agctcctgca gcagcgccag aagttcacct gcctggtcgg agtcaaccccc atcgatcatca 31680
cccagcagtc gggcgatacc aagggtgca tccactgctc ctgcgactcc cccgactgcg 31740
tccacactct gatcaagacc ctctgcggcc tccgcgacccctt cctccccatg aactaatcac 31800
cccccttatcc agtggaaataa agatcatatt gatgatttgatggaaataaaa aataaagaat 31860
cacttacttg aatctgata ccaggtctct gtcctatgttt tctgccaaca ccacttcact 31920
ccccctttcc cagctctggt actgcaggcc ccggcgggt gcaaaacttcc tccacaccctt 31980
gaaggggatg tcaaatttcctt cctgtccctc aatcttcattt ttatcttcta tcagatgtcc 32040
aaaaagcgcg tccgggtgga tgatgacttc gacccgtctt acccctacga tgcagacaac 32100
gcaccgaccg tgcccttcat caacccccc ttcgtctttt cagatggattt ccaagagaag 32160
ccccctqqqq tqctqtcctt qcgctqqcc gatcccgtca ccaccaaqaa cqqqqaatc 32220

accctcaagc tgggagatgg ggtggacctc gactcctcg gaaaactcat ctccaacacg 32280
 gccaccaagg ccggccccc tctcagttt tccaacaaca ccatttcct taacatggat 32340
 acccctttt acaacaacaa tgaaaagtta ggcataaag tcactgctcc actgaagata 32400
 ctagacacag acttgctaaa aacacttggtt gtagcttatg gacaagggtt aggaacaaac 32460
 accactggtg cccttgtgc ccaacttagca tccccacttg cttttgatag caatagcaa 32520
 attgccctta atttaggcaa tggaccattg aaagtggatg caaatagact gaacatcaat 32580
 tgcaatagag gactctatgt tactaccaca aaagatgcac tggaaagccaa tataagttgg 32640
 gctaattgtca tgacatttat agggaaatgcc atgggtgtca atattgatac aaaaaaggc 32700
 ttgcaatttg gcaccactag taccgtcgca gatgtaaaa acgcttaccc catacaaatc 32760
 aaacctggag ctggtctcac atttgacagc acaggtgcaa ttgttgcatg gaacaaagat 32820
 gatgacaagc ttacactatg gaccacagcc gaccctctc caaattgtca catatattct 32880
 gaaaaggatg ctaagcttac actttgcttg acaaagtgtg gcagtcagat tctggcact 32940
 gttccctca tagctgtga tactggcagt ttaaatccca taacaggaac agtaaccact 33000
 gctcttgtct cacttaaatt cgatgcaaatt ggagtttgc aaagcagctc aacactagac 33060
 tcagactatt ggaatttcag acagggagat gttacacctg ctgaagccta tactaatgct 33120
 ataggtttca tgcccaatct aaaagcatac cctaaaaaca caagtggagc tgcaaaaaagt 33180
 cacattgttg ggaaagtgtta cctacatggg gatacaggca aaccactgga cctcattatt 33240
 actttcaatg aaacaagtga tgaatcttgc acttactgtt ttaactttca atggcagtgg 33300
 ggggctgatc aatataaaaa tgaaacactt gccgtcagtt cattcacctt ttcctatatt 33360
 gctaaagaat aaacccact ctgtacccca tctctgtcta tggaaaaaac tctgaaacac 33420
 aaaataaaaat aaagttcaag tgtttattt attcaacagt tttacaggat tcgagcagtt 33480
 attttcctc caccctccca ggacatggaa tacaccaccc tctccccccg cacagcctt 33540
 aacatctgaa tgccatttgtt gatggacatg cttttggtct ccacgttcca cacagttca 33600
 gagcgagcca gtctcgggtc ggtcagggag atgaaaccct ccgggcactc ccgcacatctgc 33660
 acctcacacgc tcaacacgtt aggattgtcc tcgggtgtcg ggatcacgggt tatctggaaag 33720
 aagcagaaga gccccgggtgg gaatcatagt ccgcgaacgg gatcggccgg tgggtgtcgca 33780
 tcaggccccg cagcagtcgc tgtcgccc gctccgtcaa gctgctgctc agggggtccg 33840
 ggtccaggga ctccctcagc atgatgccc cggccctcag catcagtcgt ctgggtcgcc 33900
 gggcgcagca ggcgcacatgcgg atctcgctca ggtcgctgca gtacgtgcaa cacaggacca 33960
 ccaggttgtt caacagtcca tagttcaaca cgctccagcc gaaaactcatc gcgggaagga 34020
 tgctacccac gtggccgtcg taccagatcc tcaggtaaat caagtggcgc cccctccaga 34080
 acacgctgcc catgtacatg attccttgg gcatgtggcg gttcaccacc tccccgtacc 34140
 acatcaccct ctgggtgaac atgcagcccc ggtatgtcct gcggaaaccac agggccagca 34200
 ccccccggcc cggccatgcag cgaagagacc cccgggtcccg acaatggcaa tggaggaccc 34260
 accgctcgta cccgtggatc atctgggagc tgaacaagtc tatgttggca cagcacaggc 34320

atatgctcat gcatctcttc agcactctca gtcctcggg ggtcaaaacc atatcccagg 34380
 gcacgggaa ctcttgcagg acagcgaacc ccgcagaaca gggcaatcct cgcacataac 34440
 ttacattgtg catggacagg gtatcgcaat caggcagcac cgggtgatcc tccaccagag 34500
 aagcgcgggt ctgggtctcc tcacagcgtg gtaagggggc cggccgatac gggtgatggc 34560
 gggacgcggc tgatcgtgtt cgcgaccgtg ttatgatgca gttgctttcg gacatttcg 34620
 tacttgctgt agcagaacct ggtccgggcg ctgcacacccg atcgccggcg gcggtcccgg 34680
 cgcttggAAC gctcggtgtt gaagttgtAA aacagccact ctctcagacc gtgcagcaga 34740
 tcttagggcct caggagtgtat gaagatcccA tcatgcctga tggctctaAT cacatcgacc 34800
 accgtggAAat gggccagacc cagccagatg atgcaatTTT gttgggttTC ggtgacggcg 34860
 ggggagggAA gaacaggaAG aaccatgatt aactttAAT ccaaACggTC tcggagcact 34920
 tcaAAatgAAa gatcgccggat atggcacctc tcgccccCGC tgtgttgggtg gaaaataaca 34980
 gccaggtcaa aggtgatacg gttctcgaga tggccacgg tggctccag caaAGCCTCC 35040
 acgcgcacat ccagAAacAA gacaatagcg aaagcgggag gttctctAA ttcctcaatc 35100
 atcatgttac actcctgcac catccccaga taatTTTcat tttccagcc ttGAATGATT 35160
 cgaactagtt cctgaggtAA atccaAGCCA gccatgataa agagctcgCG cagagcGCC 35220
 tccaccggca ttcttaAGCA caccctcata attccaaAGAT attctgctcc tggttcacct 35280
 gcagcagatt gacaAGCgGA atatcaaAAT ctctggcCG atccctaAGC tcctccCTCA 35340
 gcaataactg taagtactt ttcatatcct ctccgaaATT tttagccata ggaccaccAG 35400
 gaataagatt agggcaAGCC acagtacaga taaACCgaAG tcctccccAG tgagcattGC 35460
 caaatgcaag actgctataa gcatgctggc tagaccGGT gatATCTTCC agataactGG 35520
 acagAAAATC gcccaggCAA ttttaAGAA AATCAACAAA agaaaaATCC tccaggTGCA 35580
 cgTTtagAGC ctcgggaACA acgatggAGT aaatgcaAGC ggtgcgttCC agcatggTT 35640
 gttagctgat ctgtagaaaa aaacaaaaAT gaacattAAA ccatgctAGC ctggcgaACA 35700
 ggtggtaAA tcgttctCTC cagcaccAGG caggccacGG ggtctccGGC acgaccCTCG 35760
 taaaaATTGT cgctatgatt gaaaaccATC acagagAGAC gttccGGTG gccggcGTGA 35820
 atgattcgac aagatgaATA cacccccGGA acattGGCGT ccgcgAGTGA aaaaaAGCgC 35880
 ccaaggAAAGC aataaggCAC tacaatGCTC agtctcaAGT ccagcaaAGC gatGCCATGC 35940
 ggatgaAGCA caaaATTCTC aggtgcgtAC aaaatgtAA tactccccCTC ctgcacAGGC 36000
 agcaaAGCCC ccgatccCTC caggtacACA tacaAAAGCTC cagcgtccAT agcttaccGA 36060
 gcagcagcAC acaacaggCG caagagtCAg agaaaggCTG agtctcaACC tgcacAGGC 36120
 ctctctgCTC aatatataGC ccagatCTAC actgacgtAA aggccAAAGT ctaaaaaatac 36180
 ccgccAAATA atcacacACG cccagcacAC gcccAGAAAC cggtgacACA ctcaaaaaAA 36240
 tacgcgcACT tcctcaaACG cccAAACTGC cgtcattCC gggttcccAC gctacgtCAT 36300
 caaaattcGA ctttcaaATT ccgtcgaccG ttAAAAACGT cgcccggcccc gcccctaACG 36360

gtcgccgctc ccgcagccaa tcaccgcccc gcatcccaa attcaaatac ctcatttgc	36420
tattaacgcg cacaaaaagt ttgaggtata ttattgatga tg	36462

<210> 2
<211> 36604
<212> DNA
<213> chimpanzee adenovirus serotype Pan6

<400> 2	
catcatcaat aatacacctc aaacttttgg tgcgcgttaa tatgcaaatg agctgtttga	60
atttggggag ggaggaaggt gattggctgc gggagcggcg accgttaggg gcggggcggg	120
tgacgttttgc atgacgtggc tatgaggcgg agccggtttgc caagttctcg tggaaaaagt	180
gacgtcaaac gaggtgttgt ttgaacacgg aaatactcaa ttttcccgcg ctctctgaca	240
ggaaatgagg tgtttctggg cggatgcaag tgaaaacggg ccattttcgc gcgaaaactg	300
aatgaggaag tgaaaatctg agtaatttcg cgtttatggc agggaggagt atttgccgag	360
ggccgagtag actttgaccg attacgtggg gtttcgatt accgtatttt tcacctaaat	420
ttccgcgtac ggtgtcaaag tccggtgttt ttacgttaggc gtcagctgat cgccaggta	480
tttaaacctg cgctctctag tcaagaggcc actcttgagt gccagcgagt agagtttct	540
cctccgcgcc gcgagtcaga tctacacttt gaaagatgag gcacctgaga gacctgccc	600
gtaatgtttt cctggctact gggAACGAGA ttctggatt ggtgggtggac gccatgatgg	660
gtgacgaccc tccagagccc cctacccat ttgaggcgcc ttgcgtgtac gatttgtatg	720
atctggaggt ggatgtgccc gagagcgacc ctaacgagga ggcggtaat gatttgttta	780
gcgatgccgc gctgctggct gccgagcagg ctaatacgga ctctggctca gacagcgatt	840
cctctctcca taccccgaga cccggcagag gtgagaaaaa gatccccgag cttaagggg	900
aagagctcga cctgcgctgc tatgaggaat gcttgccctcc gagcgatgat gaggaggacg	960
aggaggcgat tcgagctgcg gtgaaccagg gagtgaaaac tgcgggcgag agctttagcc	1020
tggactgtcc tactctgccc ggacacggct gtaagtcttgc tgaatttcat cgcatgaata	1080
ctggagataa gaatgtgatg tgtgcctgt gctatatgag agcttacaac cattgtgttt	1140
acagtaagtg tgattaactt tagttggaa ggcagagggt gactgggtgc tgactggttt	1200
atttatgtat atgtttttt atgtgttagt cccgtctctg acgttagatga gacccccact	1260
tcagagtgca tttcatcacc cccagaaatt ggcgaggaac cggccgaaga tattattcat	1320
agaccagttg cagtgagagt caccggcgag agagcagctg tggagagttt ggatgacttg	1380
ctacagggtg gggatgaacc tttggacttg tgtacccgga aacgccccag gcactaagtg	1440
ccacacatgt gtgtttactt aaggtgatgt cagtatttattt agggtgtgga gtgcaataaa	1500
atccgtgttgc acctttaagtgc gctgttttat gactcagggg tggggactgt gggtatataa	1560
gcaggtgcag acctgtgtgg tcagttcaga gcaggactca tggagatctg gactgtcttgc	1620
gaagactttc accagacttag acagttgcta gagaactcat cggagggagt ctcttacctg	1680
tggagattct gcttcggtgg gcctctagct aagctagtct atagggccaa acaggattat	1740

aaggaacaat ttgaggatat tttgagagag tgtcctggta ttttgactc tctcaacttg	1800
ggccatcagt ctcactttaa ccagagtatt ctgagagccc ttgactttc tactcctggc	1860
agaactaccg ccgcggtagc ctttttgcc tttattctt acaaatggag tcaagaaaacc	1920
catttcagca gggattaccg tctggactgc ttagcagtag ctttgtggag aacatggagg	1980
tgccagcgcc tgaatgcaat ctccggctac ttgccagtac agccggtaga cacgctgagg	2040
atcctgagtc tccagtcacc ccaggaacac caacgcccgc agcagccgca gcaggagcag	2100
cagcaagagg aggaccgaga agagaacccg agagccggc tggaccctcc ggtggcggag	2160
gaggaggagt agctgacttg tttcccgagc tgccgggtt gctgacttagg tcttccagtg	2220
gacgggagag ggggattaag cgggagaggc atgaggagac tagccacaga actgaactga	2280
ctgtcagtct gatgagccgc aggcgcggc aatcggtgt gtggcatgag gtgcagtcgc	2340
aggggataga tgaggtctcg gtgatgcatg agaaatattc cctagaacaa gtcaagactt	2400
gttgggttgg gccccaggat gattgggagg tagccatcag gaattatgcc aagctggctc	2460
tgaagccaga caagaagtac aagattacca aactgattaa tatcagaaat tcctgctaca	2520
tttcaggaa tggggccgag gtggagatca gtaccagga gagggtggcc ttcagatgtt	2580
gtatgatgaa tatgtacccg ggggtgggtt gcatggaggg agtcaccttt atgaacacga	2640
ggttcagggg tgatgggtat aatgggggtt tctttatggc caacaccaag ctgacagtgc	2700
acggatgctc cttctttggc ttcaataaca tgtgcatcga ggcctggggc agtgtttcag	2760
tgaggggatg cagctttca gccaaactgga tgggggtcgt gggcagaacc aagagcaagg	2820
tgtcagtgaa gaaatgcctg ttcgagaggt gccacctggg ggtgatgagc gagggcgaag	2880
ccaaagtcaa acactgcgcc tctaccgaga cgggctgctt tgtgctgatc aaggcaatg	2940
cccaagtcaa gcataacatg atctgtgggg cctcggatga gcgcggctac cagatgctga	3000
cctgcgccgg tgggaacagc catatgctgg ccaccgtcga tgtggcctcg caccggcga	3060
agacatggcc cgagttcgag cacaacgtca tgaccgctg caatgtgcac ctgggctccc	3120
gccgaggcat gttcatgccc taccagtgc acatgcaatt tgtgaaggtg ctgctggagc	3180
ccgatgcccgt gtccagagtg agcctgacgg ggggttttga catgaatgtg gagctgtgga	3240
aaattctgag atatgatgaa tccaagacca ggtgccgggc ctgcgaatgc ggaggcaagc	3300
acgccaggct tcagccgtg tgtgtggagg tgacggagga cctgcgaccc gatcatttgg	3360
tgttgtcctg caacgggacg gagttcggct ccagcgggaa agaatctgac tagagtgagt	3420
agtgtttgg gctgggtgtg agcctgcatg aggggcagaa tgactaaaat ctgtggttt	3480
ctgtgtgttg cagcagcatg agcggaaagcg cctcccttga gggagggta ttcagccctt	3540
atctgacggg gcgtctcccc tcctggcgg gagtgctgc aatgtgtat ggatccacgg	3600
tggacggccg gcccgtcag cccgcgaaact cttcaaccct gacctacgcg accctgagct	3660
cctcgccgt ggacgcagct gccgcgcag ctgctgcttc cgccgcgc gccgtgcgcg	3720
aatggccct gggcgcggc tactacagct ctctggtggc caactcgagt tccaccaata	3780
atcccgccag cctgaacgag gagaagctgc tgctgctgat ggcccagctc gaggccctga	3840

cccaagcgcct gggcgagctg acccagcagg tggctcagct gcaggcggag acgcgggccc	3900
cggttgccac ggtaaaaacc aaataaaaaaa tgaatcaata aataaacgga gacggttgtt	3960
gatttaaca cagagtcttg aatctttatt tgattttcg cgcgcggtag gccctggacc	4020
accggtctcg atcattgagc acccggtgga tctttccag gacccggtag aggtggcctt	4080
ggatgtttag gtacatgggc atgagccgt cccgggggtg gaggtagctc cattgcaggg	4140
cctcgtgctc ggggatggtg ttgtaaatca cccagtcata gcaggggcgc agggcgttgt	4200
gctgcacgat gtccttgagg aggagactga tggccacggg cagccccctg gtgttaggtgt	4260
tgacgaacct gttgagctgg gagggatgca tgcggggggaa gatgagatgc atcttggcct	4320
ggatctttag attggcgatg ttcccggcca gatcccggcg ggggttcatg ttgtgcagga	4380
ccaccagcac ggtgtatccg gtgcacttgg ggaatttgtc atgcaacttg gaaggaaagg	4440
cgtgaaaagaa tttggagacg cccttgcac cgcccagggtt ttccatgcac tcatccatga	4500
tgatggcgat gggcccgtagt gcgccggcct gggcaaagac gtttcgggggg tcggacacat	4560
cgtagttgtg gtcctgggtg agctcgcat aggccatttt aatgaatttg gggcggaggg	4620
tgcccactg ggggacgaag gtgcctcga tcccggggc gtagttgccc tcgcagatct	4680
gcatctccca ggccttgagc tcggaggggg ggatcatgtc cacctgcggg gcgtgaaaaa	4740
aaacggtttc cggggcggggg gagatgagct gggccgaaag caggttccgg agcagctggg	4800
acttgccgca accgggtgggg ccgtagatga ccccgatgac cggctgcagg tggtagttga	4860
gggagagaca gctgccgtcc tcgcccggga gggggggccac ctcgttcatc atctcgca	4920
catgcattt ctcgcgcacg agttccgcca ggaggcgctc gccccccagc gagaggagct	4980
cttgcagcga ggcgaagttt ttcaagcggtc tgagtccgtc ggccatgggc attttggaga	5040
gggtctgttcaagagttcc agacggtccc agagctcggt gatgtgctct agggcatctc	5100
gatccagcag acctcctcgt ttccgggtt gggcgactg cgggagtagg gcaccaggcg	5160
atgggcgtcc agcgaggcca gggtccggc cttccaggc cgcagggtcc gcgtcagcgt	5220
ggtctccgtc acggtaagg ggtgcgcgcc gggctggcg cttgcgaggg tgcgcttcag	5280
gctcatccgg ctggtcgaga accgctcccg gtcggcgccc tgcgcgtcgg ccaggttagca	5340
attgagcatg agttcgtagt tgagcgctc ggccgcgtgg cccttggcgcc ggagcttacc	5400
tttggaaagtgtgtccgcaga cgggacagag gagggacttg agggcgtaga gcttgggggc	5460
gaggaagacg gactcggggg cgtaggcgctc cgcgcgcag ctggcgacaa cggctcgca	5520
ctccacgagc caggtgaggt cggggcggtt ggggtcaaaa acgaggtttc ctccgtcgtt	5580
tttgcgttgcgttttaccc tggctccat gagctcggt ccccgctggg tgacaaagag	5640
gctgtccgtg tccccgtaga ccgactttat gggccggtcc tcgagcgggg tgccgcggtc	5700
ctcgctgtc taggaaccccg cccactccga gacgaaggcc cgggtccagg ccagcacgaa	5760
ggaggccacg tgggagggggt agcggtcggtt gtccaccacg gggtccaccc tctccagggt	5820
atgcaagcac atgtccccct cgtccacatc caggaaggtt attggcttgc aagtgttaggc	5880

cacgtgaccg	ggggtcccg	ccgggggggt	ataaaagggg	gcgggcccct	gctcgtcctc	5940
actgtcttcc	ggatcgctgt	ccaggagcgc	cagctgttgg	ggtaggtatt	ccctctcgaa	6000
ggcgggcatg	acctcggcac	tcaggttgc	agtttctaga	aacgaggagg	atttgatatt	6060
gacggtgccg	ttggagacgc	ctttcatgag	cccctcgtcc	atttggtcag	aaaagacgat	6120
cttttgttg	tcgagcttgg	tggcgaagga	gccgttagagg	gcgttggaga	gcagcttggc	6180
gatggagcgc	atggtcttgt	tcttttcctt	gtcggcgcgc	tccttggcgg	cgatgtttag	6240
ctgcacgtac	tcgcgcgcca	cgcaattcca	ttcgggaaag	acggtggtga	gctcgtcggg	6300
cacgattctg	acccgcccagc	cgcggttgtg	cagggtgatg	aggtccacgc	tggtgccac	6360
ctcgccgcgc	aggggctcgt	tggtccagca	gaggcgcggc	cccttgcgcg	agcagaaggg	6420
gggcagcggg	tccagcatga	gctcgtcggg	ggggtcggcg	tccacggtga	agatgccggg	6480
caggagctcg	gggtcgaagt	agctgatgca	ggtgcccaga	ttgtccagcg	ccgcttgcaca	6540
gtcgcgcacg	gccagcgcgc	gctcgtaggg	gctgaggggc	gtgccccagg	gcatggggtg	6600
cgtgagcgcg	gaggcgtaca	tgccgcagat	gtcgtagacg	tagagggct	cctcgaggac	6660
gccgatgtag	gtggggtagc	agcgccccc	gcggatgctg	gcgcgcacgt	agtctacag	6720
ctcgtgcgag	ggcgcgagga	gccccgtgcc	gaggttggag	cgttgcggct	tttcggcgcg	6780
gtagacgatc	tggcggaaaga	tggcgtggga	gttggaggag	atggtgggccc	tttggaaagat	6840
gttgaagtgg	gcgtggggca	ggccgaccga	gtccctgatg	aagtggcgt	aggagtccctg	6900
cagcttggcg	acgagctcgg	cggtgacgag	gacgtccagg	gcgcagtagt	cgagggtctc	6960
ttggatgatg	tcataacttga	gctggccctt	ctgcttccac	agctcgccgt	tgagaaggaa	7020
ctcttcgcgg	tccttccagt	actttcgag	ggggAACCCG	tcctgatcgg	cacggtaaga	7080
gcccaccatg	tagaactgg	tgacggcctt	gtaggcgcag	cagcccttct	ccacggggag	7140
ggcgttaagct	tgcgccgcct	tgcgcaggg	ggtgtgggt	agggcgaagg	tgtcgcgcac	7200
catgaccttg	aggaactgg	gcttgaagtc	gaggtcgtcg	cagccccc	gctcccagag	7260
ttggaagtcc	gtgcgccttct	tgtaggcggg	gttaggcaaa	gcgaaagtaa	catcggtgaa	7320
gaggatcttg	cccgcgccgg	gcatgaagtt	gcgagtgtatg	cggaaaggct	ggggcacctc	7380
ggcccccgtt	ttgatgacct	gggcggcgag	gacgatctcg	tcaagccgt	tgtatgttg	7440
cccgcacgt	tagagttcca	cgaatcgcgg	gcggccctt	acgtggggca	gcttcttgag	7500
ctcgtcgtag	gtgagctcgg	cggggtcgct	gagccgtgc	tgctcgaggg	cccagtcggc	7560
gacgtgggg	ttggcgctga	ggaaggaagt	ccagagatcc	acggccaggg	cggtctgcaa	7620
gcggtcccgg	tactgacgga	actgttggcc	cacggccatt	ttttcgggg	tgacgcagta	7680
gaaggtgcgg	gggtcgccgt	gccagcggc	ccacttgagc	tggagggcga	ggtcgtggc	7740
gagctcgacg	agcggcggt	ccccggag	tttcatgacc	agcatgaagg	ggacgagctg	7800
cttgcgcgaag	gaccccatcc	aggtgttaggt	ttccacatcg	taggtgagga	agagcctttc	7860
ggtgcgagga	tgcgagccga	tgggaaagaa	ctggatctcc	tgccaccagt	tggaggaatg	7920
gctgtttagt	tgtatggaaagt	agaaatgccg	acggcgcgc	gagcactcgt	gcttgtgttt	7980

atacaagcgt ccgcagtgcg cacaacgctg cacggatgc acgtgctgca cgagctgtac	8040
ctgggttcct ttggcgagga atttcagtgg gcagtggagc gctggcggtc gcatctcgta	8100
ctgtactacg tcttggccat cggcgtggcc atcgctgccc tcgatggtgg tcatgctgac	8160
gagcccgcgc gggaggcagg tccagacctc ggctcggacg ggtcggagag cgaggacgag	8220
ggcgcgcagg ccggagctgt ccagggtcct gagacgctgc ggagtcaggt cagtggcag	8280
cggcggcgcg cggttgactt gcaggagctt ttccagggcg cgcggaggt ccagatggta	8340
cttgcattcc acggcgcgt tggtggtac gtccacggct tgcaagggtc cgtccccctg	8400
gggcgccacc accgtgcccc gtttcttctt gggcgctgct tccatgtcgg tcagaagcgg	8460
cggcgaggac gcgcgcggg cggcaggggc ggctcggggc cgggaggcag gggcggcagg	8520
ggcacgtcgg cgccgcgcgc gggcagggttc tggtaactgcg cccggagaag actggcgtga	8580
gcgacgacgc gacggttgac gtccctggatc tgacgcctct gggtgaaggc cacggaccc	8640
gtgagttga acctgaaaga gagttcgaca gaatcaatct cggtatcggt gacggcggcc	8700
tgcgcagga tctcttgac gtcgcggag ttgtcctgggt aggcgatctc ggtcatgaac	8760
tgctcgatct cctcctcctg aaggctcccg cggccggcgc gctcgacggt ggccgcgagg	8820
tcgttggaga tgcggcccat gagctgcgag aaggcggtca tgccggcctc gttccagacg	8880
cggctgtaga ccacggctcc gtcgggtcgc cgccgcgcga tgaccacctg ggcaagggtt	8940
agctcgacgt ggccgcgtgaa gaccgcgttag ttgcagaggc gctggtagag gtagttgagc	9000
gtggtggcga tgtgctcggt gacgaagaag tacatgatcc agcggcggag cggcatctcg	9060
ctgacgtcgc ccagggcttc caagcggtcc atggcctcgat agaagtccac ggcaagttt	9120
aaaaactggg agttgcgcgc cgagacggtc aactccctt ccagaagacg gatgagctcg	9180
gcgatggtgg cgccgcaccc gcgctcgaag gccccgggg gctcctcttc catcctcc	9240
tcttcctcct ccactaacat ctcttctact tcctcctcag gaggcggtgg cgggggaggg	9300
gccctgcgtc gccggcggcg cacggcaga cggtcgatga agcgctcgat ggtctccccg	9360
cgccggcgac gcatggtctc ggtgacggcg cggccgtcct cgccggggccg cagcatgaag	9420
acgcccgcgc gcatctccag gtggccggcg ggggggtctc cgttggcag ggagagggcg	9480
ctgacgatgc atcttatcaa ttgaccgtt gggactccgc gcaaggacct gagcgtctcg	9540
agatccacgg gatccaaaaa ccgctgaacg aaggcttcga gccagtcgca gtcgcaaggt	9600
aggctgagcc cggtttcttg ttcttcgggt atttggtcgg gaggcgccgc ggcaatgtcg	9660
ctgggtatga agttgaagta ggcggcctcg agacggcggta tggtggtcgag gagcaccagg	9720
tccttggcc cggcttgctg gatgcgcaga cggtcggcca tgccccaggc gtggcctcgat	9780
cacctggcga ggtccttgcgtatgatccat gtagcctgc atgagccgtt ccacggcac ctcctcc	9840
cccgccggc cgtgcgtcg cgtgagcccg aacccgcgt gcccgtggac gagcggcagg	9900
tcggcgcacga cgcgcgtcgat gaggatggcc tgctggatct gggtgagggt ggtctggaa	9960
tcgtcgaagt cgacgaagcg gtggtaggct ccgggttgcgttggtagga gcagttggcc	10020

atgacggacc agttgacggt ctggtgccg ggtcgacga gctcgtggta cttgaggcgc 10080
 gagtaggcgc gcgtgtcgaa gatgtagtcg ttgcaggcgc gcacgaggta ctggtatccg 10140
 acgaggaagt gcggcggcgg ctggcggtag agcggccatc gctcggtggc gggggcgccg 10200
 ggcgcgaggt cctcgagcat gaggcggtgg tagccgtaga tgtacctgga catccaggtg 10260
 atgccggcgg cggtggtgg aactcgccg cgcggttcca gatgttgcgc 10320
 agcggcagga agtagttcat ggtggccgcg gtctggccc tgaggcgcgc gcagtcgtgg 10380
 atgctctaga catacgggca aaaacgaaaag cggtcagcgg ctcgactccg tggcctggag 10440
 gctaagcgaa cgggttgggc tgcgctgtc ccccggttcg aatctcgaat caggctggag 10500
 ccgcagctaa cgtggtactg gcactcccgt ctcgacccaa gcctgctaac gaaacctcca 10560
 ggatacggag gcgggtcggtt tttggcctt ggtcgctggt cataaaaaac tagtaagcgc 10620
 ggaaagcggc cgcccgcgat ggctcgctgc cgtagtcgtt agaaagaatc gccagggttg 10680
 cgttcggtg tgccccgggtt cgagcctcag cgctcggcgc cggccggatt ccgcggctaa 10740
 cgtggcgtg gctgccccgt cgttccaaag accccttagc cagccgactt ctccagttac 10800
 ggagcggagcc ccttttttt ttttttgtt ttttgcaga tgcatcccg actgcggcag 10860
 atgcgcccccc accctccacc acaaccgccc ctaccgcagc agcagcaaca gccggcgctt 10920
 ctgccccgc cccagcagca gccagccact accgcggcgg ccgcgggtgag cggagccggc 10980
 gttcagtatg acctggcctt ggaagagggc gaggggctgg cgcggctggg ggcgtcgctg 11040
 ccggagcggc acccgcgctg gcagatgaaa agggacgctc gcgaggcccta cgtgccaag 11100
 cagaacctgt tcagagacag gagcggcgag gagcccggg agatgcgcgc ctcccgcttc 11160
 cacgcggggc gggagctgctg gcgcggcctg gaccgaaagc gggtgctgag ggacgaggat 11220
 ttcgaggcgg acgagctgac gggatcagc cccgcgcgcg cgcacgtggc cgcggccaac 11280
 ctggtcacgg cgtacgagca gaccgtgaag gaggagagca acttccaaaa atccttcaac 11340
 aaccacgtgc gcacgctgat cgcgcgcgag gaggtgaccc tggccctgat gcacctgtgg 11400
 gacctgctgg aggccatcgt gcagaacccc acgagcaagc cgctgacggc gcagctgttt 11460
 ctgggtgtgc agcacagtgc ggacaacgag acgttcaggg aggcgctgct gaatatcacc 11520
 gagcccgagg gccgctggct cctggacctg gtgaacatgg tgcagagcat cgtggtgcag 11580
 gagcgcgggc tgccgctgtc cgagaagctg gcggccatca acttctcggt gctgagtctg 11640
 ggcaagtact acgctaggaa gatctacaag accccgtacg tgcccataga caaggaggtg 11700
 aagatcgacg gttttacat gcgcattgacc ctgaaagtgc tgaccctgag cgacgatctg 11760
 ggggtgttacc gcaacgacag gatgcaccgc gcggtgagcg ccagccgccc gcgcgagctg 11820
 agcgcaccagg agctgatgca cagcctgcag cggccctga cggggggccgg gaccgagggg 11880
 gagagctact ttgacatggg cgccggacctg cgctggcagc ccagccgccc ggccttggaa 11940
 gctgccggcg gttcccccta cgtggaggag gtggacgatg aggaggagga gggcgagtac 12000
 ctggaaagact gatggcgcga ccgtatTTT gctagatgca gcaacagcca ccgcggccgc 12060
 ctccctgatcc cgcgatgcgg gcggcgctgc agagccagcc gtccggcatt aactccctcg 12120

acgattggac ccaggccatg caacgcacca tggcgctgac gaccgcata cccgaagcct 12180
 ttagacagca gcctcaggcc aaccggctct cggccatcct ggaggccgtg gtgcctcgc 12240
 gctcgAACCC cacgcacgag aaggtgctgg ccatcgtaa cgcgctggtg gagaacaagg 12300
 ccatccgcgg tgacgaggcc gggctggtgt acaacgcgt gctggagcgc gtggcccgt 12360
 acaacagcac caacgtgcag acgaacctgg accgcataa gaccgacgtg cgcgaggcgg 12420
 tgtcgagcg cgagcggttc caccgcgagt cgaacctggg ctccatggtg gcgcgtgaacg 12480
 ccttcctgag cacgcagccc gccaacgtgc cccggggcca ggaggactac accaacttca 12540
 tcagcgcgct gcggctgatg gtggccgagg tgccccagag cgaggtgtac cagtcggggc 12600
 cggactactt cttccagacc agtcgccagg gcttgcagac cgtgaacctg agccaggctt 12660
 tcaagaactt gcagggactg tggggcgtgc aggccccgt cggggaccgc gcgcacgggt 12720
 cgagcctgct gacgcccgaac tcgcgcctgc tgctgctgct ggtggcgccc ttacggaca 12780
 gcggcagcgt gagccgcgac tcgtacctgg gctacctgct taacctgtac cgcgaggcca 12840
 tcggacaggc gcacgtggac gagcagaccc accaggagat caccacgtg agccgcgcgc 12900
 tggggcagga ggacccgggc aacctggagg ccacccctgaa cttcctgctg accaaccgg 12960
 cgcagaagat cccgccccag tacgcgtga gcaccgagga ggagcgcac ctcgcgtacg 13020
 tgcagcagag cgtggggctg ttctgtatgc aggagggggc cacgcccagc gcggcgctcg 13080
 acatgaccgc gcgcaacatg gagcccagca tgtacgccc caaccgccc ttcatcaata 13140
 agctgatgga ctacttgcatt cggcgcccg ccatgaactc ggactactt accaacgcca 13200
 tcttgaaccc gcactggctc ccggccccc ggttctacac gggcgagtac gacatgccc 13260
 accccaacga cgggttcctg tggacgacg tggacagcag cgtgttctcg ccgcgtccag 13320
 gaaccaatgc cgtgtggaag aaagagggcg gggaccggcg gccgtcctcg gcgcgtccg 13380
 gtcgcgcgg tgctgccgcg gcgggtcccg aggccgcag ccccttccc agcctgcct 13440
 ttgcgtgaa cagcgtgcgc agcagcgc tgggtcggt gacgcgaccg cgcctgtgg 13500
 gcgaggagga gtacctgaac gactccttgt tgaggcccga gcgcgagaag aacttcccc 13560
 ataacggat agagagcctg gtggacaaga tgagccctg gaagacgtac gcgcacgagc 13620
 acagggacga gccccgagct agcagcgcag gcacccgtag acgcccagcgg cacgacaggc 13680
 agcggggact ggtgtggac gatgaggatt cgcgcacga cagcagcgtg ttggacttgg 13740
 gtgggagtgg tggtaacccg ttgcgtcacc tgcccccgc tatcgggcgc ctgatgtaa 13800
 aatctgaaaa aataaaagac ggtactcacc aaggccatgg cgaccagcgt gcgttcttct 13860
 ctgttgtttg tagtagtatg atgaggcgcg tgtacccgga gggtcctcct ccctcgtacg 13920
 agagcgtgat gcagcaggcg gtggcggcgg cgtgcagcc cccgctggag gcgccttacg 13980
 tgcccccgcg gtacctggcg cctacggagg ggcggaaacag cattcggtac tcggagctgg 14040
 cacccttgcg cgtataccacc cgggtgtacc tggtgacaa caagtccggca gacatgcct 14100
 cgctgaacta ccagaacgac cacagcaact tcctgaccac cgtggtgacg aacaacgatt 14160

tcaccccccac ggaggccagc acccagacca tcaacttga cgagcgctcg cgggtggcg 14220
 gccagctgaa aaccatcatg cacaccaaca tgcccaacgt gaacgagttc atgtacagca 14280
 acaagttcaa ggcgcgggtg atggtctcgc gcaagacccc caacgggtg gatgatgatt 14340
 atgatggtag tcaggacgag ctgacctacg agtgggtgga gtttgagctg cccgagggca 14400
 acttctcggt gaccatgacc atcgatctga tgaacaacgc catcatcgac aactacttgg 14460
 cgggtggcg gcagaacggg gtgctggaga ggcacatcgg cgtgaagttc gacacgcgca 14520
 acttccggct gggctggac cccgtgaccg agctggtgat gccggcggtg tacaccaacg 14580
 aggccttcca ccccgacatc gtccctgctgc ccggctgcgg cgtggacttc accgagagcc 14640
 gcctcagcaa cctgctggc atccgcaagc ggcagccctt ccaggagggc ttccagatcc 14700
 tgtacgagga cctggagggg ggcaacatcc cgcgcgtctt ggatgtcgaa gcctacgaga 14760
 aaagcaagga ggatagcacc gccgcggcga ccgcagccgt ggccaccgccc tctaccgagg 14820
 tgcggggcga taattttgct agcgctgcgg cagcggccga ggcggctgaa accgaaaagta 14880
 agatagtcat ccagccggtg gagaaggaca gcaaggacag gagctacaac gtgctgcgg 14940
 acaagaaaaa caccgcctac cgcagctggt acctggccta caactacggc gaccccggaga 15000
 agggcgtgcg ctcctggacg ctgctcacca cctcggacgt cacctgcggc gtggagcaag 15060
 tctactggtc gctgcccac atgatgcaag acccggtcac cttccgctcc acgcgtcaag 15120
 ttagcaacta cccgggtgtg ggcgccgagc tcctgcccgt ctactccaag agcttcttca 15180
 acgagcaggc cgtctactcg cagcagctgc gcgccttcac ctcgctcacg cacgtttca 15240
 accgcttccc cgagaaccag atcctcgltcc gcccgcgc gcccaccatt accaccgtca 15300
 gtgaaaacgt tcctgctctc acagatcacg ggaccctgccc gctgcgcagc agtatccggg 15360
 gagtccagcg cgtgaccgtc actgacgcca gacgcccac ctgcccctac gtctacaagg 15420
 ccctggcgt agtcgcgcg cgcgtccctc cgagccgcac cttctaaaaa atgtccattc 15480
 tcatctcgcc cagtaataac accgggttggg gcctgcgcgc gcccagcaag atgtacggag 15540
 ggcgcgcac acgctccacg caacaccccg tgcgcgtgcg cgggcacttc cgcgtccct 15600
 ggggcgcct caagggccgc gtgcgcgcgc gcaccaccgt cgacgacgtg atcgaccagg 15660
 tggtgccga cgcgcgaac tacacgccc cgcgcgcgc cgtctccacc gtggacgcgc 15720
 tcatcgacag cgtggtgcc gacgcccgc ggtacgccc caccaagagc cggcggcggc 15780
 gcatcgcccc gcgccaccgg agcaccccg ccatgcgcgc ggcgcgagcc ttgctgcgc 15840
 gggccaggcg cacgggacgc agggccatgc tcagggcggc cagacgcgcg gcctccggca 15900
 gcagcagcgc cggcaggacc cgcagacgcg cggccacggc ggcggcggcg gccatgcaca 15960
 gcatgtcccc cccgcggcgc ggcaacgtgt actgggtgcg cgacgcccgc accggtgtgc 16020
 gcgtgcccgt gcgcaccgc cccctcgca cttgaagatg ctgacttcgc gatgttgatg 16080
 tgtcccagcg gcgaggagga tgtccaagcg caaatacaag gaagagatgc tccaggtcat 16140
 cgcgcctgag atctacggcc cgcgcgcgc ggtgaaggag gaaagaaaagc cccgc当地
 gaagcgggtc aaaaaggaca aaaaggagga ggaagatgac ggactggtgg agtttgtgc 16260

cgagttcgcc ccccggcggc gcgtgcagtgcg ggcggggcgg aaagtgaaac cggtgctgcg 16320
 gccccggcacc acggtgttct tcacgcccgg cgagcgttcc ggctccgcct ccaagcgctc 16380
 ctacgacgag gtgtacgggg acgaggacat cctcgagcag gcggtcgagc gtctggcga 16440
 gtttgcgtac ggcaagcgca gccgccccgc gcccttggaaa gaggaggcgg tgtccatccc 16500
 gctggaccac ggcaacccca cgccgagcct gaagccggtg accctgcagc aggtgctacc 16560
 gagcgcggcg ccgcgcccgg gcttcaagcg cgagggcggc gaggatctgt acccgaccat 16620
 gcagctgatg gtgccaagc gccagaagct ggaggacgtg ctggagcaca tgaaggtgga 16680
 ccccgggtg cagcccgagg tcaaggtgcg gcccatcaag caggtggccc cgggcctgg 16740
 cgtcagacc gtggacatca agatccccac ggagcccatg gaaacgcaga ccgagccgt 16800
 gaagcccagc accagcacca tggaggtgca gacggatccc tggatgccag caccagcttc 16860
 caccagcact cgccgaagac gcaagtacgg cgccggcagc ctgctgatgc ccaactacgc 16920
 gctgcattcc tccatcatcc ccacgcccgg ctaccgcggc acgcgttct accgcggcta 16980
 caccagcagc cgccgcccga agaccaccac ccgcccgt cgtcgcagcc gccgcagcag 17040
 caccgcgact tccgccttgg tgccggaggt gtatcgagc gggcgcgagc ctctgaccct 17100
 gccgcgcgcg cgctaccacc cgagcatcgc catttaacta ccgcctccta cttgcagata 17160
 tggccctcac atgccccttc cgctccccca ttacggctta ccgaggaaga aagccgcgcc 17220
 gtagaaggct gacggggAAC gggctgcgtc gccatcacca ccggcggcgg cgcccatca 17280
 gcaagcggtt gggggggaggc ttccctgcccgg cgctgatccc catcatcgcc gcggcgatcg 17340
 gggcgatccc cgccatagct tccgtggcgg tgccaggcctc tcagcgccac tgagacacaa 17400
 aaaagcatgg atttgtataa aaaaaaaaaa tggactgacg ctccctggtcc tgtgtatgt 17460
 gtttttagat ggaagacatc aatttttcgt ccctggcacc ggcacacggc acgcggccgt 17520
 ttatgggcac ctggagcgac atcggcaaca gccaactgaa cggggggcgcc ttcaattgga 17580
 gcagtctctg gagcgggctt aagaatttcg ggtccacgct caaaacctat ggcaacaagg 17640
 cgtgaaacag cagcacaggg caggcgctga gggaaaagct gaaagaacag aacttccagc 17700
 agaagggtgt tgatggctcg gcctcaggca tcaacgggggt ggttgacctg gccaaccagg 17760
 ccgtgcagaa acagatcaac agccgcctgg acgcggtccc gcccgcgggg tccgtggaga 17820
 tgccccaggt ggaggaggag ctgcctcccc tggacaagcg cggcgacaag cgaccgcgtc 17880
 ccgacgcgga ggagacgctg ctgacgcaca cggacgagcc gccccgtac gaggaggcgg 17940
 tgaactggg cctgcccacc acgcggcccg tggcgctct ggccaccgga gtgctgaaac 18000
 ccagcagcag ccagcccgcg accctggact tgcctccgccc tcgccttc acagtggcta 18060
 agccctgccc gccggtgccc gtcgcgtcgc ggcggcccg aggccgcccc caggcgaact 18120
 ggcagagcac tctgaacagc atcgtgggtc tggagtgca gagtgtgaag cgccgcgcgt 18180
 gctattaaaa gacactgttag cgcttaactt gcttgcgtgt gtgtatatgt atgtccgcgcg 18240
 accagaagga ggagtgtgaa gaggcgcggtc gcccggatgc aagatggcca ccccatcgat 18300

gctgccccag tggcggtaca tgcacatcgc cggacaggac gcttcggagt acctgagtcc	18360
gggtctggtg cagttcgccc gcgccacaga cacctacttc agtctgggaa acaagtttag	18420
gaaccccacg gtggcgccc cgacatgt gaccaccgac cgccagccagc ggctgacgct	18480
gcgcttcgtg cccgtggacc gcgaggacaa cacctactcg tacaaagtgc gctacacgct	18540
ggccgtggc gacaaccgcg tgctggacat ggccagcacc tacttgaca tccgcggcgt	18600
gctggaccgg ggccctagct tcaaacccta ctctggcacc gcctacaaca gcctagctcc	18660
caagggagct cccaattcca gccagtggga gcaagcaaaa acaggcaatg ggggaactat	18720
ggaaacacac acatatggtg tggcccaat gggcggagag aatattacaa aagatggtct	18780
tcaaatttga actgacgtta cagcgaatca gaataaacca atttatgccc acaaaacatt	18840
tcaaccagaa ccgcaagtag gagaagaaaa ttggcaagaa actgaaaact tttatggcgg	18900
tagagctctt aaaaaagaca caaacatgaa accttgctat ggctcctatg ctagacccac	18960
caatgaaaaa ggaggtcaag ctaaacttaa agttggagat gatggagttc caaccaaaga	19020
attcgacata gacctggctt tctttgatac tcccgggtggc accgtgaacg gtcaagacga	19080
gtataaagca gacattgtca tgtataccga aaacacgtat ttggaaactc cagacacgca	19140
tgtggtatac aaaccaggca aggtatgtgc aagttctgaa attaacctgg ttcagcagtc	19200
tatgccaac agacccaact acattgggtt cagggacaac tttatcggtc ttatgtacta	19260
caacagcact ggcaaatatgg gtgtgcttgc tggtcaggcc tcccagctga atgctgttgt	19320
tgatttgcaa gacagaaaaca ccgagctgtc ctaccagctc ttgcttgact ctttgggtga	19380
cagaacccgg tattttagta tgtggAACCA ggcgggtggac agttatgacc ccgatgtgcg	19440
catcatcgaa aaccatggtg tggaggatga attgccaaac tattgcttcc ctttggacgg	19500
ctctggcact aacgcccgc accaagggtgt gaaagaaaa gatggtaag atggtgatgt	19560
tgagagtcaa tggaaaaatg acgatactgt tgcagctcga aatcaattat gtaaaggtaa	19620
catttcgccc atggagatta atcccgaggc taacctgtgg agaagttcc tctactcgaa	19680
cgtggccctg tacctgccc actcctacaa gtacacgccc accaacgtca cgctgcccac	19740
caacaccaac acctacgatt acatgaatgg cagagtgaca cttccctcgc tggtagacgc	19800
ctacctcaac atcggggcgc gctggtcgct ggacccatg gacaacgtca accccttcaa	19860
ccaccaccgc aacgcgggccc tgcgctaccg ctccatgctc ctgggcaacg ggcgctacgt	19920
gcccttccac atccaggtgc cccaaaagtt tttcgccatc aagagcctcc tgctcctgcc	19980
cgggtcctac acctacgagt ggaacttccg caaggacgtc aacatgatcc tgcagagctc	20040
cctaggcaac gacctgcgca cggacggggc ctccatcgcc ttcaccagca tcaacctcta	20100
cgcacacccatc ttccccatgg cgcacaacac cgccctccacg ctcgaggcca tgctgcgaa	20160
cgacaccaac gaccagtcc tcaacgacta cctctcgccg gccaaacatgc tctacccat	20220
cccgcccaac gccaccaacg tgcccatctc catccccctcg cgcaactggg ccgccttccg	20280
cggatggtcc ttacagcgcc tgaagacccg cgagacgccc tcgctcggtc ccgggttcga	20340
ccccctacttc gtctactcgg gctccatccc ctaccttagac ggcaccttct acctcaacca	20400

caccttcaag aaggcttcca tcaccccgta ctcctccgtc agctggccc gcaacgaccg 20460
 cctcctgacg cccaaacgagt tcgaaaatcaa gcgcaccgtc gacggagagg gataacaacgt 20520
 ggcccagtgc aacatgacca aggactggtt cctgggtccag atgctggccc actacaacat 20580
 cggttaccag ggcttctacg tgcccggagg ctacaaggac cgcatgtact ccttcttccg 20640
 caacttccag cccatgagcc gccagggtcg ggacgagggtc aactacaagg actaccaggc 20700
 cgttaccctg gcctaccagc acaacaactc gggcttcgtc ggctacccgt cgccccaccat 20760
 gcgccagggc cagccctacc ccgccaacta cccctacccg ctcatcgca agagcgccgt 20820
 cgccagcggtc acccagaaaa agttcctctg cgaccgggtc atgtggcgca tccccttctc 20880
 cagcaacttc atgtccatgg gcgcgtcac cgacccgtgc cagaacatgc tctacgccaa 20940
 ctccgcccac gcgctagaca tgaatttcga agtcgacccc atggatgagt ccacccttct 21000
 ctatgttgc ttcaaatgtct tcgacgtcggtt ccagggtgtc cagcccccacc gcggcggtcat 21060
 cgaagccgtc tacctgcgca cgcccttctc ggccggcaac gccaccaccc aagccgtct 21120
 tgcttcttgc aagatgacgg cgggctccgg cgagcaggag ctcagggcca tcctccgca 21180
 cctgggctgc gggccctgct tccctggcac cttcgacaag cgcttccctg gattcatggc 21240
 cccgcacaag ctggcctgctg ccacatcgaa cacggccggc cgcgagaccg gggcgagca 21300
 ctggctggcc ttgcgttgaa acccggtcac ccacacatgc taccttctg acccccttcgg 21360
 gttctcggac gagcgccctca agcagatcta ccagttcgag tacgagggcc tgctcggtcg 21420
 cagcgccctg gccaccgagg accggtcggtc caccctggaa aagtccaccc agaccgtgca 21480
 gggtccgcgc tcggccgcct gcgggctctt ctgctgcacg ttcctgcacg cttcgtgca 21540
 ctggcccgac cgcccccattgg acaagaaccc caccatgaac ttactgacgg gggtgcccaa 21600
 cggcatgctc cagtcgcccc aggtggaaacc caccctgcgc cgcaaccagg aagcgctcta 21660
 ccgcttcctc aatgcccact ccgcctactt tcgctcccac cgcgcgca tcgagaaggc 21720
 caccgccttc gaccgcgtga atcaagacat gtaaaaaaaaacc ggtgtgtgttgttgtaaatgt 21780
 ttattcataa taaacagcac atgtttatgc caccttctct gaggctctga ctttatttag 21840
 aaatcgaagg ggttctggc gctctcgca tggcccgccgg gcagggatac gttgcggAAC 21900
 tggtaacttgg gcagccactt gaactcggtt atcagcagct tgggcacggg gaggtcgggg 21960
 aacgagtcgc tccacagctt gcgcgtgagt tgcaggcgcc ccagcagggtc gggcgccgg 22020
 atcttgaat cgcagttggg acccggttc tgcgcgcgag agttgcggta cacggggtttgc 22080
 cagcaacttggaa acaccatcg ggcgggtgc ttcacgttgc ccagcaccgt cgctcggtg 22140
 atgccttcca cgtccagatc ctcggcggttgc gccatcccga aggggggtcat cttgcagggtc 22200
 tgccggccca tgctgggcac gcagccgggc ttgtgggtgc aatgcagtg cagggggatc 22260
 agcatcatct gggccctgctc ggagctcatg cccgggtaca tggccttcac gaaagccctcc 22320
 agctggcgga aggccctgctg cgcccttgcgc ccctcggtga agaagacccc gcaggacttg 22380
 ctagagaact ggttgggtggc gcagccggcg tcgtgcacgc agcagcgccgc gtcgttgg 22440

gccagctgca ccacgctgcg ccccccagcgg ttctgggtga tcttggcccg gttggggttc 22500
 tccttcagcg cgcgctgccc gttctcgctc gccacatcca tctcgatagt gtgctcccttc 22560
 tggatcatca cggtcccggt caggcacccgc agcttgcctt cggcttcgggt gcagccgtgc 22620
 agccacagcg cgcaagccgt gcactcccag ttcttggtgg cgatctggga gtgcgagtg 22680
 acgaagccct gcaggaagcg gcccattcatc gcggtcaggg tcttgggtgc ggtgaaggtc 22740
 agcgggatgc cgcggtgctc ctcgttccaca tacaggtggc agatgcggcg gtacacctcg 22800
 ccctgctcgg gcatcagctg gaaggcggac ttcaggtcgc tctccacgcg gtaccggtcc 22860
 atcagcagcg tcatcacttc catgcccttc tcccaggccg aaacgatcgg caggctcagg 22920
 gggttcttca cggccattgt catcttagtc gccgcccgg aggtcagggg gtcgttctcg 22980
 tccagggtct caaacactcg cttgcccgtcc ttctcgatga tgcgcacggg gggaaagctg 23040
 aagcccacgg cgcgcagctc ctccctcggcc tgccttcgt cctcgctgtc ctggctgatg 23100
 tcttgcaaag gcacatgctt ggtcttgcgg ggtttttttt tgggcggcag aggcggcggc 23160
 gatgtgctgg gagagcgcga gttctcgttc accacgacta tttcttcttc ttggccgtcg 23220
 tccgagacca cgcggcggtta ggcattgcctc ttctggggca gaggcggagg cgacgggctc 23280
 tcgcggttcg gcggggcggtt ggcagagccc cttccgcgtt cgggggtgcg ctcctggcgg 23340
 cgctgctctg actgacttcc tccgcggccg gccattgtgt tctcttaggg agcaacaaca 23400
 agcatggaga ctcagccatc gtcgccaaca tcgccccatctg ccccccgcgc caccgcgcac 23460
 gagaaccagc agcagaatga aagcttaacc gccccgcgc ccagccccac ctccgcgcac 23520
 gcggcccccag acatgcaaga gatggaggaa tccatcgaga ttgacctggg ctacgtgacg 23580
 cccgcggagc acgaggagga gctggcagcg cgctttcag ccccgaaaga gaaccaccaa 23640
 gagcagccag agcaggaagc agagaacgag cagaaccagg ctgggcacga gcatggcgcac 23700
 tacctgagcg gggcagagga cgtgctcatc aagcatctgg cccgccaatg catcatcg 23760
 aaggacgcgc tgctcgaccg cgccgaggtg cccctcagcg tggcggagct cagccgcgc 23820
 tacgagcgca acctcttctc gccgcgcgtg ccccccgaagc gccagcccaa cggcacctgt 23880
 gagcccaacc cgcgcctcaa cttctaccccg gtcttcgcgg tgcccggagc cctggccacc 23940
 taccacctct ttttcaagaa ccaaaggatc cccgtctccct gccgcgcacaa ccgcacccgc 24000
 gccgacgccc tgctcaacct gggccccggc gcccgcctac ctgatatcac ctcccttggaa 24060
 gaggttccca agatcttcga gggcttggc agcgacgaga ctcggccgcg gaacgctctg 24120
 caaggaagcg gagaggagca tgagcaccac agcgccctgg tggagttgga aggcgacaac 24180
 gcgcgcctgg cggtcctcaa gcgcacggc gagctgaccc acttcgccta cccggcgctc 24240
 aacctgcccc ccaagggtcat gagcgccgtc atggaccagg tgctcatcaa gcgcgcctcg 24300
 cccctctcgg aggaggagat gcaggacccc gagagttcgg acgagggcaa gcccgtggtc 24360
 agcgacgagc agctggcgcg ctggctggga gcgagtagca ccccccagag cctggaaagag 24420
 cggcgcaagc tcatgatggc cgtggtcctg gtgaccgtgg agctggagtg tctgcgcgc 24480
 ttctttgccg acgcggagac cctgcgcacag gtcgaggaga acctgcacta cctcttcagg 24540

cacgggttcg tgccgcaggc ctgcaagatc tccaacgtgg agctgaccaa cctggtctcc 24600
 tacatgggca tcctgcacga gaaccgcctg gggcaaaacg tgctgcacac caccctgcgc 24660
 ggggaggccc gccgcgacta catccgcac tgcgtctacc tgtacctctg ccacacctgg 24720
 cagacgggca tgggcgtgtg gcagcagtgc ctggaggagc agaacctgaa agagctctgc 24780
 aagctcctgc agaagaacct caaggccctg tggaccgggt tcgacgagcg taccaccgcc 24840
 tcggacctgg ccgacacctcat cttccccgag cgccctgcggc tgacgctgcg caacgggctg 24900
 cccgacttta tgagccaaag catgttgcaa aacttcgct ctttcattcct cgaacgctcc 24960
 gggatcctgc ccgccacctg ctccgcgtg ccctcgact tcgtgccgct gacccctccgc 25020
 gagtgcccccc cgccgctctg gagccactgc tacttgcgtc gcctggccaa ctacctggcc 25080
 taccactcgg acgtgatcga ggacgtcagc ggcgagggtc tgctggagtg ccactgcccgc 25140
 tgcaacctct gcacgcccga ccgctccctg gcctgcaacc cccagctgct gagcagagacc 25200
 cagatcatcg gcacccctcga gttgcaaggc cccggcgacg gcgaggggcaa ggggggtctg 25260
 aaactcaccc cggggctgtg gacctcgcc tacttgcgca agttcgtgcc cgaggactac 25320
 catcccttcg agatcaggtt ctacgaggac caatcccagc cgcccaaggc cgagctgtcg 25380
 gcctgcgtca tcacccaggg ggccatcctg gcccaattgc aagccatcca gaaatcccgc 25440
 caagaatttc tgctgaaaaa gggccacggg gtctacttgg accccccagac cggagaggag 25500
 ctcaacccca gcttccccca ggatgccccg aggaagcagc aagaagctga aagtggagct 25560
 gcccggcccg gaggatttgg aggaagactg ggagagcagt caggcagagg aggaggagat 25620
 ggaagactgg gacagcactc aggcagagga ggacagcctg caagacagtc tggaggagga 25680
 agacgaggtg gaggaggcag aggaagaagc agccggccgc agaccgtcgt cctcggcgga 25740
 gaaagcaagc agcacggata ccatctccgc tccgggtcgg ggtcgccggc gccggggccca 25800
 cagtaggtgg gacgagaccg ggcgcttccc gaacccacc acccagaccg gtaagaagga 25860
 gcggcaggga tacaagtccct ggcggggca caaaaacgcc atcgtctcct gcttgcagc 25920
 ctgcgggggc aacatctccct tcacccggcg ctacctgcctc ttccaccgcg gggtaactt 25980
 ccccccac acatccgtatt actaccgtca cctccacagc ccctactact gtttccaaga 26040
 agaggcagaa acccagcagc agcagaaaaac cagcggcagc agcagctaga aaatccacag 26100
 cggcggcagg tggactgagg atgcggcga acgagccggc gcagacccgg gagctgagga 26160
 accggatctt tcccaccctc tatgccatct tccagcagag tcggggcag gagcaggaac 26220
 taaaagtcaa gaaccgttct ctgcgtcgc tcacccgcag ttgtctgtat cacaagagcg 26280
 aagaccaact tcagcgcact ctcgaggacg ccgaggctct cttcaacaag tactgcgcgc 26340
 tcactcttaa agatgtgtccc gcgcggccccc acacacggaa aaaggcggga attacgtcac 26400
 cacctgcgcc cttcgcccgaa ccatcatgag caaagagatt cccacgcctt acatgtggag 26460
 ctaccagccc cagatgggccc tggccgcggc cgccgcccag gactactcccccgc 26520
 ctggctcagt gcccggcccg cgatgtatc acgggtaat gacatccgcg cccaccgaaa 26580

ccagatactc ctagaacagt cagcgatcac cgccacgccc cgccatcacc ttaatccgcg 26640
 taattggccc gccgcctgg tgtaccagga aattccccag cccacgaccg tactacttcc 26700
 gcgagacgcc caggccgaag tccagctgac taactcaggt gtccagctgg ccggcggcgc 26760
 cgcctgtgt cgtcaccgccc cgcgtcaggg tataaagcgg ctggtgatcc gaggcagagg 26820
 cacacagctc aacgacgagg tggtgagctc ttgcgtgggt ctgcgacctg acggagtctt 26880
 ccaactcgcc ggatcgggga gatttccctt cacgcctcgt caggccgtcc tgactttgga 26940
 gagttcgtcc tcgcagcccc gctcgggccc catcggcaact ctccagttcg tggaggagtt 27000
 cactccctcg gtctacttca accccttctc cggctccccc ggccactacc cggacgagtt 27060
 catcccgaac ttgcacgcca tcagcgagtc ggtggacggc tacgattgaa tgtcccatgg 27120
 tggcgcagct gacctagctc ggcttcgaca cctggaccac tgccgcccgt tccgctgctt 27180
 cgctcggat ctcgcccagt ttgcctactt tgagctgccc gaggagcacc ctcagggccc 27240
 agcccacgga gtgcggatca tcgtcgaagg gggcctcgac tcccacctgc ttgcgatctt 27300
 cagccagcga ccgatcctgg tcgagcgcga acaaggacag acccttctta ctttgtactg 27360
 catctgcaac caccgggcc tgcataaagg tctttgttgcgatctt ctgcgtgttgcgatctt 27420
 taaaagctga gatcagcgac tactccggac tcgattgtgg tgttcctgtct atcaaccgg 27480
 ccctgttctt caccgggaaac gagaccgagc tccagctcca gtgttaagccc cacaagaagt 27540
 acctcacctg gctgttccag ggctcccgat tcgcccgttgcgatctt caaccactgc gacaacgacg 27600
 gagtcctgct gagcggccct gccaacctta cttttccac ccgcagaagc aagctccagc 27660
 tcttccaacc cttcccccgggaccccttgcgatctt ctgcgtgttgcgatctt 27720
 tccacctgat cccgaataacc acagcgccgc tcccgctac taacaaccaa actacccacc 27780
 aacgccaccg tcgcgaccccttgcgatctt ctaataccac taccggaggt gagctccgag 27840
 gtcgaccaac ctctggatt tactacggcc cctggaggt ggtgggttgcgatctt 27900
 gcctagttgc ggggtggctt ttggttctct gctacctata cctcccttgc tggttgcgatctt 27960
 tagtggtgct gtgttgctgg tttaagaaat gggaaagatc accctagtga gctgcgggtgc 28020
 gctgggtggcg gtgttgcttt cgattgtggg actggggccgc gcccgtgttgc tggttgcgatctt 28080
 ggccgatcccc tgcttgcat tcaatcccaa caaatgccag ctgcgtgttgc tggttgcgatctt 28140
 caatcggtgc gcggacttgc tcaagtgcgg atggaaatgc gagaacgtga gaatcgagta 28200
 caataacaag actcggaaca atactctcgc gtccgtgtgg cagcccgcccc accccgagtg 28260
 gtacaccgtc tctgtccccg gtgcgtacgg ctcccgccgc accgtgaata atactttcat 28320
 ttttgcgcac atgtcaaca cggcatgtg gatgagcaag cagtcgttgc tggttgcgatctt 28380
 cacgaaggag aacatcggtgg tcttctccat cgcttacagc ctgtgcacgg cgctaatcacc 28440
 cgctatcggtgc tgccgtggca ttccatgtcttgc catgcgttgc cggcccgcccc accccgatctt 28500
 gaaagagaaaa cagccataaac acgttttttc acacaccccttgc ttttacaga caatgcgtct 28560
 gttaaaatttt ttaaacattt tgctcgttat tgcgttgc tctgggtatgc caaacatata 28620
 gaaaaccctt tatgttaggat ctgtatggat actagagggt acccaatcac aagccaaagg 28680

tgcatggtat ttttatagaa ccaacactga tccagttaaa ctttgttaagg gtgaattgcc 28740
 gcgtacacat aaaactccac ttacatttag ttgcagcaat aataatctta cactttttc 28800
 aattacaaaa caatatactg gtacttatta cagtacaac tttcatacag gacaagataa 28860
 atattatact gttaaggttag aaaatcctac cactcctaga actaccacca ccaccactac 28920
 tgcaaagccc actgtgaaaa ctacaactag gaccaccaca actacagaaa ccaccaccag 28980
 cacaacactt gctgcaacta cacacacaca cactaagcta accttacaga ccactaatga 29040
 tttgatcgcc ctgctgcaaa agggggataa cagcaccact tccaatgagg agataccaa 29100
 atccatgatt ggcattattg ttgctgttagt ggtgtcatg ttgatcatcg ctttgtcat 29160
 ggtgtactat gccttctgct acagaaagca cagactgaac gacaagctgg aacacttact 29220
 aagtgttgaa ttttaatttt ttagaaccat gaagatccta ggccctttta gttttctat 29280
 cattacctct gctcttgtg aatcagtggta tagagatgtt actattacca ctggttctaa 29340
 ttatacactg aaagggccac cctcaggtat gcttcgtgg tattgctatt ttggaactga 29400
 cactgatcaa actgaattat gcaattttca aaaaggcaaa acctcaaact ctaaaatctc 29460
 taattatcaa tgcaatggca ctgatctgat actactcaat gtcacgaaag catatggtgg 29520
 cagttattat tgccctggac aaaacactga agaaatgatt ttttacaaag tggaaagtgg 29580
 tgatcccact acaccaccca ccaccacaac tattcatacc acacacacag aacaaacacc 29640
 agaggcaaca gaagcagagt tggccttcca ggttcacgga gattccttg ctgtcaatac 29700
 ccctacaccc gatcagcggt gtccggggcc gctagtcagc ggcattgtcg gtgtcttc 29760
 gggatttagca gtcataatca tctgcatgtt cattttgct tgctgctata gaaggctta 29820
 ccgacaaaaaa tcagacccac tgctgaacct ctatgtttaa tttttccag agccatgaag 29880
 gcagttagcg ctctagttt ttgttcttg attggcattg ttttaatag taaaattacc 29940
 agagttagct ttattaaaca tgttaatgta actgaaggag ataacatcac actagcaggt 30000
 gtagaaggtg ctcaaaacac cacctggaca aaataccatc taggatggag agatattgc 30060
 acctggaatg taacttatta ttgcatacga gttaatctta ccattgttaa cgctaaccaa 30120
 tctcagaatg ggttaattaa aggacagagt gttagtgtga ccagtgtgg gtactatacc 30180
 cagcatagtt ttaactacaa cattactgtc ataccactgc ctacgcctag cccacctagc 30240
 actaccacac agacaaccac atacagtaca tcaaattcagc ctaccaccac tacagcagca 30300
 gaggttgcca gctcgctgg ggtccgagtg gcattttga tggggcccc atctagcagt 30360
 cccactgcta gtaccaatga gcagactact gaattttgtt ccactgtcga gagccacacc 30420
 acagctacct ccagtgcctt ctctagcacc gccaatctct cctcgcttc ctctacacca 30480
 atcagccccg ctactactcc tagccccgct cctcttccca ctccccgtaa gcaaacagac 30540
 ggcggcatgc aatggcagat cacccctgctc attgtgatcg ggttgggtcat cctggccgtg 30600
 ttgctctact acatcttctg ccggcgcatt cccaaacgcgc accgcaagcc ggcctacaag 30660
 cccatcgta tcgggcagcc ggagccgctt caggtgaaag ggggtctaaag gaatcttctc 30720

ttctctttta cagtatggtg attgaactat gattcctaga caattcttga tcactattct 30780
 tatctgcctc ctccaagtct gtgccaccct cgctctggtg gccaacgcca gtccagactg 30840
 tattgggccc ttcgcctcct acgtgctctt tgccctcgac acctgcacatct gctgctgttag 30900
 catagtctgc ctgcttatca ccttcttcca gttcattgac tggatctttg tgccatcg 30960
 ctacctgcgc caccaccccc agtaccgcga ccagcgagtg gcgcagctgc tcaggctcct 31020
 ctgataagca tgcgggctct gctacttctc gcgcttctgc tgtagtgct ccccggtccc 31080
 gtcgacccccc ggtcccccac tcagtccccc gaggaggttc gcaaatgcaa attccaagaa 31140
 ccctggaaat tcctcaaatg ctaccgc当地 aaatcagaca tgcacccag ctggatcatg 31200
 atcattggga tcgtgaacat tctggcctgc accctcatct cctttgtat ttacccctgc 31260
 tttgactttg gttggaactc gccagaggcg ctctatctcc cgccctgaacc tgacacacca 31320
 ccacagcagc aacctcaggc acacgcacta ccaccaccac agcctaggcc acaatacatg 31380
 cccatattag actatgagggc cgagccacag cgaccatgc tccccgtat tagttacttc 31440
 aatctaaccg gcggagatga ctgacccact ggccaataac aacgtcaacg accttctcct 31500
 ggacatggac ggccgcgcct cggaggcagcg actcgcccaa cttcgcattc gtcagcagca 31560
 ggagagagcc gtcaaggagc tgcaggacgg catagccatc caccagtgc agagaggcat 31620
 cttctgcctg gtgaaacagg ccaagatctc ctacgaggc acccagaccg accatgcct 31680
 ctcctacgag ctcctgc当地 agcgc当地 gttcacctgc ctggc当地 tcaacccat 31740
 cgtcatcacc cagcagtc当地 gcgat当地 gggtgc当地 cactgctcct gc当地 31800
 cgactgc当地 cacactctga tcaagaccct ctgc当地 cgc当地 tccccatgaa 31860
 ctaatcaccc ctttatccag tgaat当地 aatcatattga ttagtattta aataaaaaaaa 31920
 ataatcattt gattt当地 aaagat当地 tcatattgat gattt当地 taacaaaaat 31980
 aaagaatcac ttactt当地 tctgatacca ggtctctgc当地 catgttt当地 gccaacacca 32040
 cctcaactccc ctcttccag ctctggact gcaggcccg gc当地 aacttccctcc 32100
 acacgctgaa gggatgtca aattccctct gtc当地 ctat当地 tcttctatca 32160
 gatgtccaaa aagcgc当地 gggatgtca tgacttc当地 cccgtctacc cctacgatgc 32220
 agacaacgc当地 cc当地 ccttcatca cccccc当地 gtctctt当地 atggattcca 32280
 agagaagccc ctgggggtgt tgccctgc当地 actggctgac cccgtcacca ccaagaacgg 32340
 ggaaatcacc ctcaagctgg gagagggggt ggacctcgac tc当地 aactcatctc 32400
 caacacggcc accaaggccg cc当地 cctct cagat当地 aacaacacca tt当地 32460
 aactgctgcc ctttctaca acaacaatgg aactt当地 aactgctct cc当地 32520
 agcagtattt cccacat当地 aactt当地 tagg cataagtctt gggaaacggc当地 ttc当地 32580
 aaataagttg ttgactgtac aactaactca tc当地 tccat当地 ttc当地 atagcatc 32640
 agtaaaaaaca gacaaaggc当地 tatatattaa ctccagtgga aacagaggac tt当地 32700
 tataagccta aaaagaggac tagttt当地 ga cggtatgct attgcaacat atattgaaa 32760
 tggcttagac tatggatctt atgat当地 tggaaaaca agacccgtaa tt当地 32820

tggagcagga taaaattttg atgctaacaa agcaatacgct gtcaaactag gcacaggttt 32880
 aagtttgac tccgctggtg ccttgacagc tggaaacaaa caggatgaca agctaacaact 32940
 ttggactacc cctgacccaa gccctaattt tcaattactt tcagacagag atgccaattt 33000
 tactctctgt cttacaaaat gcggtagtca aatacttaggc actgtggcag tggcggctgt 33060
 tactgttagga tcagcactaa atccaattaa tgacacagtc aaaagcgcca tagtttcct 33120
 tagattttagt tccgatggtg tactcatgtc aaactcatca atggtaggtt attactggaa 33180
 cttagggag ggacagacca ctcaaagtgt agcctataca aatgctgtgg gattcatgcc 33240
 aaatataggt gcatatccaa aaacccaaag taaaacacactt aaaaatagca tagtcagtca 33300
 ggtatattta actggagaaa ctactatgcc aatgacacta accataactt tcaatggcac 33360
 ttagtggactat aaggacaaaaa atattacctt tgctaccaac tcattctttt tttcctacat 33480
 cgcccaggaa taatcccacc cagcaagcca acccctttc ccaccacctt tgtctatatg 33540
 gaaactctga aacagaaaaa taaagttcaa gtgtttatt gaatcaacag ttttacagga 33600
 ctcgagcagt tatttttcct ccaccctccc aggacatgga atacaccacc ctctcccccc 33660
 gcacagcctt gaacatctga atgccattgg ttagtggacat gctttggtc tccacgttcc 33720
 acacagtttca agagcgagcc agtctcgat cggtcaggaa gatgaaaccc tccgggact 33780
 cccgcacatctg cacctcacag ctcaacagct gaggattgtc ctcgggtggc gggatcacgg 33840
 ttatctggaa gaagcagaag agcggcggtg ggaatcatag tccgcgaacg ggatcggccg 33900
 gtggtgtcgc atcaggcccc gcagcagtcg ctgcccgcgc cgctccgtca agctgctgct 33960
 cagggggttc gggtccaggg actccctcag catgatgccc acggccctca gcatcagtcg 34020
 tctggtgcgg cgggcgcagc agcgcattgcg aatctcgctc aggtcactgc agtacgtgca 34080
 acacaggacc accaggttgt tcaacagtcc atagttcaac acgctccagc cgaaactcat 34140
 cgcgggaagg atgctaccca cgtggccgtc gtaccagatc ctcaggtaaa tcaagtggcg 34200
 ctccctccag aagacgctgc ccatgtacat gatctccctt ggcattgtggc gtttaccac 34260
 ctcccggtac cacatcaccc tctggttgaa catgcagccc cggatgatcc tgcggAACCA 34320
 cagggccagc accgccccgc ccgcattgca gcgaagagac cccggatccc ggcaatgaca 34380
 atggaggacc caccgctcgt acccggtggat catctggag ctgaacaagt ctatgttggc 34440
 acagcacagg catatgctca tgcattctt cagcaacttc agtcctcgg gggtaaaaac 34500
 catatccctcag ggcacgggaa actcttgcag gacagcgaac cccgcagaac agggcaatcc 34560
 tcgcacataa cttacattgt gcatggacag ggtatcgcaa tcaggcagca ccgggtgatc 34620
 ctccaccaga gaagcgcggg tctcggtctc ctcacagcgt ggttaaggggg ccggccgata 34680
 cgggtgatgg cgggacgcgg ctgatcggtgt tctcgaccgt gtcattgtgc agttgtttc 34740
 ggacattttc gtacttgctg tagcagaacc tggtccgggc gctgcacacc gatcgccggc 34800
 ggcggtctcg gcgcttgaa cgctcggtgt taaagtgtaa aacagccac tctctcagac 34860

cgtgcagcag atctagggcc tcaggagtga tgaagatccc atcatgcctg atagctctga 34920
tcacatcgac caccgtggaa tgggccaggc ccagccagat gatgcaattt tgttgggttt 34980
cggtgacggc gggggaggga agaacaggaa gaaccatgat taactttaa tccaaacggt 35040
ctcgagcac ttcaaatga aggtcacgga gatggcacct ctcgcccccg ctgtgttgt 35100
ggaaaataac agccaggtca aaggtgatac ggttctcgag atgttccacg gtggcttcca 35160
gcaaagcctc cacgcgcaca tccagaaaca agacaatagc gaaagcggga gggttctcta 35220
attcctcaac catcatgtta cactcctgca ccattccccag ataattttca ttttccagc 35280
cttgaatgat tcgaactagt tcctgaggtta aatccaagcc agccatgata aaaagctcgc 35340
gcagagcacc ctccaccggc attcttaagc acaccctcat aattccaaga tattctgctc 35400
ctggttcacc tgcagcagat tgacaagcgg aatatcaaaa tctctgcccgc gatccctgag 35460
ctcctccctc agcaataact gtaagtactc tttcatatcg tctccgaaat ttttagccat 35520
aggaccccca ggaataagag aagggaagc cacattacag ataaaccgaa gtccccccca 35580
gtgagcattg ccaaatgtaa gattgaaata agcatgctgg cttagaccgg tgatatcttc 35640
cagataactg gacagaaaat cgggtaagca atttttaaga aaatcaacaa aagaaaaatc 35700
ttccaggtgc acgttttaggg cctcgggaac aacgatggag taagtgcaag gggtgcgttc 35760
cagcatggtt agttagctga tctgtaaaaa aacaaaaaat aaaacattaa accatgctag 35820
cctggcgaac aggtggtaa atcggtctct ccagcaccag gcaggccacg gggtctccgg 35880
cgccgaccctc gtaaaaattt tcgctatgat tgaaaaccat cacagagaga cgttcccggt 35940
ggccggcgtg aatgattcga gaagaagcat acaccccccgg aacattggag tccgtgagtg 36000
aaaaaaaaagcg gccgaggaag caatgaggca ctacaacgct cactctcaag tccagcaaag 36060
cgatgccatg cggatgaagc aaaaaatttt caggtgcgtt aaaaatgtaa ttactccct 36120
cctgcacagg cagcgaagct cccgatccct ccagatacac atacaaagcc tcagcgtcca 36180
tagcttaccg agcggcagca gcagcggcac acaacaggcg caagagtcag agaaaagact 36240
gagctctaac ctgtccgccc gctctctgct caatatatag ccccgatct acactgacgt 36300
aaaggccaaa gtctaaaaat acccgccaaa taatcacaca cgcccagcac acgcccagaa 36360
accgggtgaca cactcagaaa aatacgcgca cttcctcaaa cggccaaact gccgtcattt 36420
ccgggttccc acgctacgtc atcaaaaacac gactttcaaa ttccgtcgcac cgttaaaaac 36480
atcacccgccc ccgcccccaa cggtcgcccgc tcccgcagcc aatcaccttc ctccctcccc 36540
aaattcaaac agctcatgg catattaacg cgcaccaaaa gtttgaggtta tattattgat 36600
gatg 36604

<210> 3
<211> 36535
<212> DNA
<213> chimpanzee adenovirus serotype Pan7

<400> 3
catcatcaat aatacacctc aaactttgg tgcgcgttaa tatgcaaatg agctgttgta 60

atttggggag ggaggaaggt gattggccga gagacgggcg accgttaggg gcggggcggg	120
tgacgtttt aatacgtggc cgtgaggcgg agccggtttcaagttctcg tggaaaaagt	180
gacgtcaaac gaggtgttgt ttgaacacgg aaatactcaa ttttcccgcg ctctctgaca	240
ggaaatgagg tgtttctggg cggatgcaag tgaaaacggg ccattttcgc gcgaaaactg	300
aatgaggaag tgaaaatctg agtaatttcg cgtttatggc agggaggagt atttgccgag	360
ggccgagtag actttgaccg attacgtggg gtttcgatt accgtatTT tcacctaaat	420
ttccgcgtac ggtgtcaaag tccggtgttt ttacgttaggc gtcagctgat cgccaggta	480
tttaaacctg cgctctctag tcaagaggcc actcttgagt gccagcgagt agagtttct	540
cctccgcgcc gcgagtcaga tctacacttt gaaagatgag gcacctgaga gacctgccc	600
gtaatgttt cctggctact gggAACGAGA ttctggatt ggtggtggac gccatgatgg	660
gtggcgaccc tcctgagccc cctacccat ttgaggcgcc ttcgctgtac gatttgtatg	720
atctggaggt ggatgtgcc gagaacgacc ccaacgagga ggcggtaat gatttgttta	780
gcgatgccgc gctgctggct gccgagcagg ctaatacggc ctctggctca gacagcgatt	840
cctctctcca taccccgaga cccggcagag gtgagaaaaa gatccccgag cttaaagggg	900
aagagctcga cctgcgctgc tatgaggaat gcttcctcc gagcgatgat gaggaggacg	960
aggaggcgat tcgagctgca tcgaaccagg gagtgaaaagc tgccggcggaa agcttagcc	1020
tggactgtcc tactctgccc ggacacggct gtaagtcttg tgaatttcat cgcatgaata	1080
ctggagataa gaatgtgatg tgtccctgt gctatatgag agcttacaac cattgtgttt	1140
acagtaagtg tgattaactt tagttggaa ggcagagggt gactgggtgc tgactggttt	1200
atttatgtat atgtttttt atgtgttagt cccgtctctg acgttagatga gaccccaact	1260
tcagagtgca tttcatcacc cccagaaatt ggcgaggaac cggccgaaga tattattcat	1320
agaccagttg cagtgagagt caccggcgg agagcagctg tggagagttt ggatgacttg	1380
ctacagggtg gggatgaacc tttggacttg tgtaccgg aacgccccag gcactaagtg	1440
ccacacatgt gtgtttactt aaggtgatgt cagtattt aggggtgtgaa gtgcaataaa	1500
atccgtgtt acctaagtg cgtgtttat gactcagggg tggggactgt gggtatataa	1560
gcaggtgcag acctgtgtgg tcagttcaga gcaggactca tggagatctg gacggcttg	1620
gaagactttc accagactag acagctgcta gagaactcat cggagggggc ctcttacctg	1680
tggagattct gcttcggtgg gcctctagct aagctagtct atagggccaa acaggattat	1740
aaggatcaat ttgaggatat tttgagagag tgtcctggta tttttgactc tctcaacttg	1800
ggccatcaat ctcactttaa ccagagtatt ctgagagccc ttgactttt tactcctggc	1860
agaactaccg ccgcggtagc ctttttgcc tttatccttg acaaatggag tcaagaaacc	1920
catttcagca gggattaccg tctggactgc ttagcagtag ctttgtggag aacatggagg	1980
tgccagcgcc tgaatgcaat ctccggctac ttgccagtagc agccggtaga cacgctgagg	2040
atcctgagtc tccagtcacc ccaggaacac caacgcccgc agcagccgca gcaggaggcag	2100
cagcaagagg aggaggagga tcgagaagag aacccgagag ccggcttgaa ccctccgggtg	2160

gcggaggagg aggagtagct gacttgttc ccgagctgcg ccgggtgctg actaggtctt	2220
ccagtggacg ggagaggggg attaagcggg agaggcatga ggagactagc cacagaactg	2280
aactgactgt cagtctgatg agccgcaggc gcccagaatc ggtgtggtgg catgaggttc	2340
agtgcaggg gatagatgag gtctcggtga tgcagatgaa atattccctg gaacaagtca	2400
agacttgtt gttggagcct gaggatgatt gggaggtgc catcaggaat tatgccaagc	2460
tggctctgaa gccagacaag aagtacaaga ttaccaaact gattaatatc agaaattcct	2520
gctacatttc agggaatggg gccgaggtgg agatcagtac ccaggagagg gtggcittca	2580
gatgttgtat gatgaatatg tacccggggg tggtggcat ggagggagtc acctttatga	2640
acgcgaggtt caggggttat gggataatg ggggtgtt tatggccaac accaagctga	2700
cagtgcacgg atgctccttc tttgggttca ataacatgtg catcgaggcc tggggcagtg	2760
tttcagttag gggatgcagc tttcagcca actggatggg ggtcggtggc agaaccaaga	2820
gcaaggtgtc agtgaagaaa tgcctgttcg agaggtgccs cctgggggtg atgagcgagg	2880
gcgaagccaa agtcaaacac tgccctcta ctgagacggg ctgctttgtg ctgatcaagg	2940
gcaatgccc a agtcaagcat aacatgatct gtggggcctc ggatgagcgc ggctaccaga	3000
tgctgacctg cgccgggtggg aacagccata tgctggccac cgtgcatttg acctcgacc	3060
cccgcaagac atggccc gag ttcgagcaca acgtcatgac ccgatgcaat gtgcacctgg	3120
ggtcccgcg aggcatgtt atgccttacc agtgcacat gcaatttgc aaggtgctgc	3180
tggagccccga tgccatgtcc agagttagcc tgacgggggt gtttgcacatg aatgtggagc	3240
tgtggaaaat tctgagatgat gatgaatcca agaccagggtg ccgggcctgc gaatgcggag	3300
gcaagcacgc caggcttcag cccgtgtgtg tggaggtgac ggaggacctg cgacccgatc	3360
atttgggttt gtcctgcaac gggacggagt tcggctccag cggggaaagaa tctgactaga	3420
gtgagtagtg ttggggggag gtggagggtc tgtatgaggg gcagaatgac taaaatctgt	3480
gttttctgt gtgttgccagc agcatgagcg gaagcgcctc ctttggggga ggggtattca	3540
gcccttatct gacggggcgt ctccctcct gggcggaggt gcgtcagaat gtgatggat	3600
ccacgggtgga cggccggccc gtgcagcccg cgaactcttc aaccctgacc tacgcaccc	3660
tgagctcctc gtccgtggac gcagctgccc ccgcagctgc tgcttccgcc gccagcgccg	3720
tgcgccgaat ggccctgggc gccggctact acagctctt ggtggccaaac tcgacttcca	3780
ccaataatcc cgccagcctg aacgaggaga agctgctgct gctgatggcc cagctcgagg	3840
ccctgaccca ggcgcctgggc gagctgaccc agcaggtggc tcagctgcag gcccggacgc	3900
ggccggcgggt tgccacgggtg aaaaccaaatt aaaaaatgaa tcaataaaata aacggagacg	3960
gttggattt ttaacacaga gtcttgaatc tttatgtat ttttcgcgcg cggtaggccc	4020
tggaccaccg gtctcgatca ttgagcaccc ggtggatttt ttccaggacc cggttagaggt	4080
gggcttggat gttgaggtac atggcatga gcccgtcccg ggggtggagg tagctccatt	4140
gcagggcctc gtgctcgggg gtgggtttt aaatcaccca gtcatagcag gggcgcaggg	4200

cgtggtgctg cacgatgtcc ttgaggagga gactgatggc cacgggcagc cccttggtgt	4260
aggtgttgac gaacctgttg agctgggagg gatgcatgct gggggagatg agatgcatct	4320
tggcctggat cttgagattt gcgatgttcc cgcccagatc ccgcgggggg ttcatgttgt	4380
gcaggaccac cagcacggtg tatccggtgc acttgggaa tttgtcatgc aacttggaa	4440
ggaaggcgtg aaagaattt gagacgcct tttgacccct tttgtcatgc aacttggaa	4500
ccatgatgat ggcgatggc ccgtggcgg cggcctggc aaagacgtt cgggggtcgg	4560
acacatcgta ttgtggtcc tgggtgact cgtcataggc cattttaatg aatttgggc	4620
ggaggggtgcc cgactgggg acgaagggtgc cctcgatccc gggggcgtag ttgcctcgc	4680
agatctgcat ctcccaggcc ttgagctcg agggggggat catgtccacc tgccccggcga	4740
tgaaaaaaac gtttccggg gcgggggaga ttagctggc cgaaagcagg ttccggagca	4800
gctggactt gccgcagccg gtggggccgt agatgacccc gatgaccggc tgcagggttgt	4860
atggagggg gagacagctg ccgtcctcg ggaggagggg gcccacctcg ttcatcatct	4920
cgcgcacatg catgttctcg cgacagtt ccgcaggag gcgcctcgc cccagcgaga	4980
ggagctttt cagcgaggcg aagttttca gcggctttag yccgtcggcc atggcattt	5040
tggagagggt ctgttgcaag agttccagac ggtcccagag ctcggtgatg tgctctaggg	5100
catctcgatc cagcagacct cctcgtttcg cgggtttggg cgaactgcggg agtagggcac	5160
caggcgatgg gcgtccagcg aggccagggt ccggcccttc cagggtcgca gggccgcgt	5220
cagcgtggtc tccgtcacgg tgaaggggtg cgccgcggc tggcgcttg cgagggtgcg	5280
cttcaggctc atccggctgg tcgagaaccg ctcccggtcg gcgcctcgc cgtcggccag	5340
gtagcaattt agcatgagtt cgtagtttag cgcctcgcc gctggccct tggcgccgg	5400
cttacctttt gaagtgtgtc cgacagacggg acagaggagg gacttgagggg cgtagagctt	5460
gggggcgagg aagacggact cggggcgta ggcgtcccgcc cgcacgtgg cgcacacgg	5520
ctcgcaactcc acgagccagg tgagggtcgcc cgggtttggg tcaaaaacga gtttccctcc	5580
gtgcttttgc atgcgtttct tacctctgtt ctccatgagc tcgtgtcccc gctgggtgac	5640
aaagaggctg tccgtgtccc cgtagaccga ctttatgggc cggcctcgc gcccgggtgcc	5700
gcggcctcg tcgttagagga accccgcccc cttcgagacg aaggccccggg tccaggccag	5760
cacgaaggag gccacgtggg agggtagcg gtcgtgtcc accagcgggt ccaccttctc	5820
cagggtatgc aagcacatgt cccctcgtc cacatccagg aaggtgattt gctttaagt	5880
gtaggccacg tgaccggggg tcccgccgg ggggtataa aaggggggcg gcccctgctc	5940
gtcctcactg tcttccggat cgctgtccag gagcgccagc tgggggttta ggtattccct	6000
ctcgaaggct ggcataacct cggcactcag gttgtcagtt tctagaaacg aggaggattt	6060
gatattgacg gtgccgttg agacgcctt catgagcccc tcgtccatct ggtcagaaaa	6120
gacgatcttt ttgttgcga gcttgggtggc gaaggagccg tagagggcg tggagaggag	6180
cttggcgatg gagcgcattt tctgggttctt ttccctgtcg gcgcgtcct tggcgccat	6240
gtttagctgc acgtactcgc gcgccacgca cttccattcg gggaaagacgg tggtagctc	6300

gtcgggcacg attctgaccc gccagccgcg gttgtcagg gtatgaggt ccacgcttgt	6360
ggccacctcg ccgcgcaggg gtcgttggt ccagcagagg cccccccct tgcgcgagca	6420
gaaggggggc agcgggtcca gcatgagctc gtcgggggg tcggcgtcca cggtaaagat	6480
gccgggcaga agctcggtt cgaagtagct gatgcaggtg tccagatcgt ccagcgcgc	6540
ttgccagtcg cgcacggcca gcgcgcgctc gtagggctg aggggcgtgc cccagggcat	6600
gggggtgcgtg agcgcggagg cgtacatgcc gcagatgtcg tagacgtaga ggggctcctc	6660
gaggacgccc atgttaggtgg ggtagcagcg ccccccgcgg atgctggcgc gcacgtagtc	6720
gtacagctcg tgcgagggcg cgaggagccc cgtgccgagg ttggagcgtt gcggctttc	6780
ggcgcggtag acgatctggc ggaagatggc gtgggagttg gaggagatgg tggcctctg	6840
gaagatgttg aagtggcgt gggcaggcc gaccgagtcc ctgatgaagt gggcgttagga	6900
gtcctgcagc ttggcaca gctcggcggt gacgaggacg tccagggcgc agtagtcgag	6960
ggtctcttgg atgatgtcgt acttgagctg gcccttctgc ttccacagct cgcggttgag	7020
aaggaactct tcgcggtcct tccagtaactc ttcgaggggg aaccgcgtt gatcggcacf	7080
gtaagagccc accatgtaga actgggttgc ggccttgcgc ggcgcagcagc ctttctccac	7140
ggggagggcg taagcttgcg cggccttgcg cagggaggtg tgggtgaggg cgaaggtgtc	7200
gcgcaccatg accttgagga actgggtgtt gaagtcgagg tcgtcgcagc cgcctgctc	7260
ccagagctgg aagtccgtgc gctcttgcg ggcggggtt ggcaaagcga aagtaacatc	7320
gttgaagagg atcttgcggc cgcggggcat gaagttgcga gtatgcgga aaggctgggg	7380
cacctcggcc cggttgttga tgacctggc ggcgaggacg atctcgtcga agccgttgat	7440
gttgtgccc acgatgtaga gttcacgaa tcgcggcggt cccttaacgt gggcagctt	7500
cttgagctcg tcgttaggtga gctcggcggt gtcgctgagc ccgtgctgt cgagggccca	7560
gtcggcgacg tgggggttgg cgctgaggaa ggaagtccag agatccacgg ccagggcggt	7620
ctgcaagcgg tcccggtaact gacggaaactg ctggcccacg gccataaaa cgggggtgac	7680
gcagtagaaat gtgcgggggt cgccgtgcca gcggtcccac ttgagctgga gggcgaggc	7740
gtgggcgagc tcgacgagcg gcgggtcccc ggagagttt atgaccagca tgaaggggac	7800
gagctgcttgcg ccgaaggacc ccatccaggt gtaggtttcc acatcgttagg tgaggaagag	7860
ccttcggcg cggatgcg agccgatggg gaagaactgg atctcctgcc accagttgga	7920
ggaatggctg ttgatgtgat ggaagtagaa atgcccacgg cgccgcgagc actcgtgtt	7980
gtgtttatac aagcgtccgc agtgcgtcga acgctgcacg ggatgcacgt gctgcacgag	8040
ctgtacctgg gttccttgcg cggatggattt cagtgccgcg tggagcgtcg gcggctgc	8100
ctgggtgtgt actacgtcct ggcacatcggt gtggccatcg tctgcctcga tgggtgtcat	8160
gctgacgagc ccgcgcggga ggcagggtcca gacttcggct cggacgggtc ggagagcgag	8220
gacgagggcg cgcaggccgg agctgtccag ggtcctgaga cgctgcggag tcaggtcagt	8280
gggcagcggc ggcgcgcggg tgacttgcag gagctttcc agggcgcgcg ggaggtccag	8340

atggtacttg atctccacgg cgccgttgtt ggcgacgtcc acggcttgca gggtcccgtg	8400
ccccctgggc gccaccaccc tgccccgttt cttcttggc gctgcttcca tgccggtcag	8460
aaggcggcggc gaggacgcgc gccggggcggc agggggcggct cgggacccgg aggccaggggc	8520
ggcaggggca cgtcggcgcc gcgcgcggc aggttcttgtt actgcgccc gagaagactg	8580
gcgtgagcga cgacgcgacg gttgacgtcc tggatctgac gcctctgggt gaaggccacg	8640
ggacccgtga gtttgaacct gaaagagagt tcgacagaat caatctcggt atcgttgcg	8700
gcggcctgccc gcaggatctc ttgcacgtcg cccgagttgt cctggtaggc gatctcggtc	8760
atgaactgct cgatctccctc ctccctgaagg tctccgcggc cggcgcgctc gacggtggcc	8820
gcgaggtcgt tggagatgcg gcccattgagc tgcgagaagg cgttcatgcc ggccctcggtc	8880
cagacgcggc tgttagaccac ggctccgtcg gggtcgcgcg cgccatgac cacctgggcg	8940
aggtttagct cgacgtggcg cgtgaagacc gcgtagttgc agaggcgctg gtagaggttag	9000
ttgagcgtgg tggcgtatgtg ctccgtgacg aagaagtaca tgatccagcg gcggagcggc	9060
atctcgctga cgtcgcccag ggcttccaag cgctccatgg cctcgtagaa gtccacggcg	9120
aagttgaaaa actgggagtt gcgcgcccag acggtaact cctcctccag aagacggatg	9180
agctcagcga tggtggcgcg cacctcgcc tcgaaggccc cggggggctc ctcttcttcc	9240
atctttccct cctccactaa catctttct acttccttccct caggaggcgg cggcggggga	9300
ggggccctgc gtcgcggcg gcgcacgggc agacggtcga tgaagcgctc gatggcttcc	9360
ccgcgcggc gacgcattgtt ctccgtgacg gcgcgcggcgt cctcgcgggg ccgcagcgtg	9420
aagacgcgcg cgcgcatttc caggtggccg ccgggggggt ctccgttggg cagggagagg	9480
gcgcgtacga tgcatttat caattggccc gttagggactc cgccaaagga cctgagcg	9540
tcgagatcca cgggatccga aaaccgctga acgaaggctt cgagccagtc gcagtcgca	9600
ggtaggctga gcccggtttc ttgttcttcg gggatttcgg gaggcggcg ggcgatgctg	9660
ctgggtatga agttgaagta ggccgttctg agacggcgaa tgggtggcgag gagcaccagg	9720
tccttggcc cggcttgcgt gatgcgcaga cggtcggcca tgccccaggc gtggcttgc	9780
cacctggcga ggtccttgcgt gtatgcgtc atgagccgtt ccacgggcac ctcccttcg	9840
cccgccggc cgtgcattgcg cgtgagcccg aacccgcgtt gggctggac gagcgcagg	9900
tcggcgacga cgcgcctcgcc gaggatggcc tgctgtatct gggtaggggt ggtcttggaa	9960
tcgtcgaagt cgacgaagcg gtggtaggtt ccgggtttga tggtagatggc gcagttggcc	10020
atgacggacc agttgacggt ctggtggccg ggtcgcacga gctcgttgcgatggcgc	10080
gagtaggcccgcg cgtgtcgaa gatgtatgtc ttgcagggtgc gcacgaggta ctggatccg	10140
acgaggaagt gcccggcgctt ctggcggttag agcggccatc gctcggtggc gggggcgccc	10200
ggcgcggaggt cctcgagcat gaggcgggtgg tagccgtaga tgtacctggc catccagg	10260
atgcggcggc gggtgggttgg ggcgcgcggg aactcgcggc cgcggttcca gatgttgcgc	10320
agcggcaggaa agtagttcat ggtggcccg gttctggcccg tgaggcgcgc gcagtcgtgg	10380
atgcgttgcatacggca aaaacgaaag cggtcagcgg ctgcactccg tggcctggag	10440

gctaagcgaa cgggttggc tgcgcgtgta ccccggttcg aatctcgaaat caggctggag 10500
 ccgcagctaa cgtggtactg gcactcccgt ctcgacccaa gcctgctaac gaaacctcca 10560
 ggatacggag gcgggtcggtt tttggcctt ggctcgctgg cataaaaaac tagtaagcgc 10620
 ggaagcgac cgccccgcat ggctcgctgc cgtagtcgtt agaaaagaatc gccagggttg 10680
 cgttgcggtg tgccccgggtt cgagcctcag cgctcggcgc cggccggatt ccgcggctaa 10740
 cgtggcggtg gctgccccgt cgttccaag accccttagc cagccgactt ctccagttac 10800
 ggagcgagcc cctcttttc ttgtgtttt gccagatgca tcccgactg cggcagatgc 10860
 gcccccaccc tccacctcaa ccgcgcctac cgccgcagca gcagcaacag ccggcgcttc 10920
 tgcccccgcc ccagcagcag ccagccacta ccgcggcggc cgccgtgagc ggagccggcg 10980
 ttcagtatga cctggccttgaagagggcg aggggctggc gcggctgggg gcgtcgctgc 11040
 cggagcggca cccgcgcgtg cagatgaaaa gggacgctcg cgaggcctac gtgccaagc 11100
 agaacctgtt cagagacagg agcggcgagg agcccgagga gatgcgcgcc tcccgcttcc 11160
 acgcggggcg ggagctgcgg cgccgcctgg accgaaagcg ggtgctgagg gacgaggatt 11220
 tcgaggcggc cgagctgacg gggatcagcc ccgcgcgcgc gcacgtggcc gcggccaacc 11280
 tggtcacggc gtacgagcag accgtgaagg aggagagcaa cttccaaaaaa tccttcaaca 11340
 accacgtgcg cacgctgatc gcgcgcgagg aggtgaccct gggcctgatg cacctgtggg 11400
 acctgctgga ggcacatcgta cagaacccca cgagcaagcc gctgacggcg cagctgtttc 11460
 tggtgtgca gcacagtccg gacaacgaga cgttcaggga ggcgctgctg aatatcaccg 11520
 agcccgaggg ccgctggctc ctggacctgg tgaacattct gcagagcattc gtggtgcagg 11580
 agcgcggct gccgctgtcc gagaagctgg cggctatcaa cttctcggtg ctgagcctgg 11640
 gcaagtacta cgcttaggaag atctacaaga ccccgatcgatc gcccatagac aaggagggtga 11700
 agatcgacgg gttttacatg cgcacatgaccc taaaatgtct gaccctgagc gacgatctgg 11760
 gggtgttaccg caacgacagg atgcacccgcg cggtgagcgc cagccgcggc cgcgagctga 11820
 gcgaccagga gctgatgcac agcctgcagc gggccctgac cggggccggg accgaggggg 11880
 agagctactt tgacatggc gcggacctgc gctggcagcc cagccgcggc gccttggaaag 11940
 ctgcggcgg ttccccctac gtggaggagg tggacatgaa ggaggaggag ggcgagttacc 12000
 tggaaagactg atggcgcgac cgtatTTTG ctatgcgtt caacagccac cgcctcctga 12060
 tcccgatc cgggcggcgc tgcacatgca gccgtccggc attaactcct cggacgattt 12120
 gaccaggcc atgcaacgca tcatggcgct gacgacccgc aatcccgaag ccttagaca 12180
 gcagcctcgatc gccaaccggc tctcgccat cctggaggcc gtgggtccct cgcgtcgaa 12240
 cccacgcac gagaagggtgc tggccatcgat gaacgcgtcg gtggagaaca aggccatccg 12300
 cggcgacgag gcccggctgg tgtacaacgc gctgctggag cgcgtggccc gctacaacag 12360
 caccacgtt cagacgaacc tggaccgcac ggtgaccgac gtgcgcgagg cgggtgcgca 12420
 gcgcgagcgg ttccaccgcg agtcgaacct gggctccatg gtggcgctga acgccttcct 12480

cgaggccttc caccggaca tcgtcctgct gcccggctgc ggcgtggact tcaccgagag 14640
 ccgcctcagc aacctgtgg gcatccgcaa gcggcagccc ttccaggagg gcttccagat 14700
 cctgtacgag gacctggagg gggcaacat ccccgcgctc ttggatgtcg aagcctatga 14760
 gaaaagcaag gaggaggccg ccgcagcggc gaccgcagcc gtggccaccg cctctaccga 14820
 ggtgcggggc gataatttg ctagcgccgc ggcagtggcc gaggcggctg aaaccgaaag 14880
 taagatagtc atccagccgg tggagaagga cagcaaggac aggagctaca acgtgctcgc 14940
 ggacaagaaa aacaccgcct accgcagctg gtacctggcc tacaactacg gcgaccccg 15000
 gaagggcgtg cgctcctgga cgctgctcac cacctcggac gtcacctgctg gcgtggagca 15060
 agtctactgg tcgctgcccc acatgatgca agacccggtc accttccgct ccacgcgtca 15120
 agttagcaac tacccggtgtgg tggcgccga gctcctgccc gtctactcca agagttctt 15180
 caacgagcag gccgtctact cgacgcgtc ggcgcgccttc acctcgctca cgcacgtctt 15240
 caaccgccttc cccgagaacc agatcctcgt ccgcccgcgc gcgcccacca ttaccaccgt 15300
 cagtgaaaac gttcctgctc tcacagatca cgggaccctg ccgctgcgca gcagtatccg 15360
 gggagtccag cgcgtgaccg tcactgacgc cagacgcgc acctgcccct acgtctacaa 15420
 ggccctgggc gtagtcgcgc cgcgcgtcct ctcgagccgc accttctaaa aaatgtccat 15480
 tctcatctcg cccagtaata acaccggttg gggcctgctgc gcgcgcacca agatgtacgg 15540
 aggcgctcgc caacgcctca cgcacacacc cgtgcgcgtc gcgcggcact tccgcgtc 15600
 ctggggcgcc ctcaagggcc gcgtgcgcgc gcgcaccacc gtcgacgcgc tgatgcacca 15660
 ggtggtgcc gacgcgcgca actacacgc cggccgcgc cccgcctcca ccgtggacgc 15720
 cgtcatcgac agcgtggtgg ccgatgcgc cgggtacgccc cgcgcaccaaga gcccggcggc 15780
 ggcgcaccc cggcggcacc ggagcaccacc cgcgcgcgc gcggcgcgc cttgcgtgc 15840
 cagggccagg cgcacgggac gcagggccat gtcagggcg gccagacgc cggcctccgg 15900
 cagcagcagc gccggcagga cccgcacgc cgcggccacg gcggcggcgg cggccatcgc 15960
 cagcatgtcc cgcgcgcgc gcggcaacgt gtactgggtg cgcgcacgc caccgggtgt 16020
 ggcgcgtccc gtgcgcaccc gccccctcg cactgaaga tgctgacttc gcgtgttga 16080
 tgtgtcccaag cggcgaggag gatgtccaag cgcacataca aggaagagat gctccaggc 16140
 atcgcgcctg agatctacgg cccgcgggtg aaggaggaaa gaaagccccg caaactgaag 16200
 cgggtcaaaa aggacaaaaa ggaggaggaa gatgtggacg gactgggtgg gttgtgcgc 16260
 gagttcgccc cccggcgcgc cgtgcagtgg cgcggcggaa aagtgaaacc ggtgctgcgg 16320
 cccggcacca cggtggtctt cacgcgcgc gacgcgtccg gtcgcgcctc caagcgctcc 16380
 tacgacgagg tgtacgggaa cgaggacatc ctcgagcagg cggtcgagcg tctggcggag 16440
 tttgcttacg gcaagcgac ccgcggcgcg cccttggaaag aggaggcggt gtccatcccg 16500
 ctggaccacg gcaacccac gccgagcctg aagccggta ccctgcagca ggtgctgcgc 16560
 agcgcggcgc cgcgcgggg cttcaagcgc gaggcggcgc aggtatgtta cccgaccatg 16620

cagctgatgg tgcccaagcg ccagaagctg gaggacgtgc tggagcacat gaaggtggac 16680
 cccgaggtgc agccc gaggt caaggtgcgg cccatcaagc aggtggcccc gggcctggc 16740
 gtgcagaccg tggacatcaa gatccccacg gagcccatgg aaacgcagac cgagcccttg 16800
 aagcccagca ccagcaccat ggaggtgcag acggatccct ggatgccggc gccggcttcc 16860
 accactcgcc gaagacgcaa gtacggcgcg gccagctgc tggatgcccctt ctacgcgctg 16920
 catccttcca tcataccccac gccgggctac cgccgcacgc gcttctaccg cggtacacc 16980
 agcagccgccc gcaagaccac cacccgcgcg cgccgtcgcc gcacccgccc cagcagcacc 17040
 gcgacttccg ccgcccgcctt ggtgcggaga gtgtaccgca gcggggcgca gcctctgacc 17100
 ctgcccgcg cgcgtacca cccgagcatc gccatttaac tctgcccgtcg cctcctactt 17160
 gcagatatgg ccctcacatg ccgcctccgc gtcccccatta cgggctaccg aggaagaaag 17220
 cccgcgcgta gaaggctgac ggggaacggg ctgcgtcgcc atcaccaccg gcggcggcgc 17280
 gccatcagca agcggttggg gggaggcttc ctgcccgcgc tgatccccat catgcgcg 17340
 gcgatcgaaa cgatccccgg catacgatcc tgggcgggtgc aggccctctca gcgcactga 17400
 gacacagctt gaaaaatttg taataaaaaaa atggactgac gctcctggtc ctgtatgt 17460
 tgtttttaga tggaaagacat caattttcg tccctggcac cgccacacgg cacgcggccg 17520
 ttatggca cctggagcga catcgcaac agccaaactga acggggggcgc cttcaattgg 17580
 agcagtctct ggagcgggct taagaatttc gggccacgc tcaaaaaccta tggcaacaag 17640
 gcgtggaaca gcagcacagg gcaggcgctg agggaaaagc tgaaagagca gaacttccag 17700
 cagaaggtgg tcgatggcct ggcctcgggc atcaacgggg tggtgaccc tggcaaccag 17760
 gccgtgcaga aacagatcaa cagccgcctg gacgcggtcc cgccgcggg gtccgtggag 17820
 atgccccagg tggaggagga gctgcctccc ctggacaagc gcggcgacaa gcgcgcgt 17880
 cccgacgcgg aggagacgct gctgacgcac acggacgagc cgcccccgta cgaggaggcg 17940
 gtgaaactgg gtctgcccac cacgcggccc gtggcgcctc tggccaccgg ggtgctgaaa 18000
 cccagcagca gcagccagcc cgccacccctg gacttgcctc cgccgtcttc ccgccttcc 18060
 acagtggcta agccctgccc gccgggtggcc gtcgcgtcgcc gcgcgggggg aggccgcccc 18120
 cagggcgaact ggcagagcac tctgaacagc atcgtgggtc tgggagtgca gagtgtgaag 18180
 cgccgcgcgt gctattaaaa gacactgttag cgcttaactt gcttgcgtgt gtgtatatgt 18240
 atgtccgcgc accagaagga ggaagaggcg cgtcgcgcgag ttgcaagatg gccacccat 18300
 cgatgctgcc ccagtggcg tacatgcaca tcgcccggaca ggacgcttcg gagtacctga 18360
 gtccgggtct ggtgcaggcc gcccgcgcca cagacaccta cttcagtcgt gggacaagt 18420
 ttaggaaccc cacggtggcg cccacgcacg atgtgaccac cgaccgcagc cagcggctga 18480
 cgctgcgtt cgtgcccgtg gaccgcgagg acaacaccta ctcgtacaaa gtgcgtac 18540
 cgctggccgt gggcgacaaac cgcgctgg acatggccag cacctacttt gacatccgcg 18600
 gcgtgctgga tcggggggcc agcttcaaacc cctactccgg caccgcctac aacagcctgg 18660
 ctcccaaggg agcgcccaac acttgccagt ggacatataa agctgggtat actgatacag 18720

aaaaaaccta tacatatgga aatgcacctg tgcaaggcat tagcattaca aaggatggta 18780
ttcaacttgg aactgacagc gatggtcagg caatctatgc agacgaaact tatcaaccag 18840
agcctcaagt gggtgatgct gaatggcatg acatcactgg tactgatgaa aaatatggag 18900
gcagagctct taagcctgac accaaaatga agccttgcta tggttcttt gccaaagccta 18960
ccaataaaga aggaggccag gcaaatgtga aaaccgaaac aggcggtacc aaagaatatg 19020
acattgacat ggcattcttc gataatcgaa gtgcagctgc cgccggccta gccccagaaa 19080
ttgtttgtta tactgagaat gtggatctgg aaactccaga taccatatt gtatacaagg 19140
caggtacaga tgacagttagc tcttctatca atttgggtca gcagtccatg cccaaacagac 19200
ccaactacat tggcttcaga gacaactta tcggctgtat gtactacaac agcactggca 19260
atatgggtgt actggctgga caggcctccc agctgaatgc tgtggtggac ttgcaggaca 19320
gaaacaccga actgtcctac cagctttgc ttgactctct gggtgacaga accaggtatt 19380
tcagttatgtg gaatcaggcg gtggacagtt atgaccggaa tgtgcgcatt attaaaaatc 19440
acggtgtgga ggatgaactt cctaactatt gctccccct ggatgctgtg ggtagaactg 19500
atacttacca gggattaag gccaatggtg ataatcaaac cacctggacc aaagatgata 19560
ctgttaatga tgctaattgaa ttggcaagg gcaatccctt cgccatggag atcaacatcc 19620
aggccaacct gtggcggAAC ttcctctacg cgaacgtggc gctgtacctg cccgactcct 19680
acaagtacac gcccggcaac atcacgctgc ccaccaacac caacacctac gattacatga 19740
acggccgcgt ggtggcgccc tcgctggtgg acgcctacat caacatcggg ggcgcgttgt 19800
cgctggaccc catggacaac gtcaacccct tcaaccacca cgcacacgcg ggcctgcgat 19860
accgcctccat gctcctggc aacgggcgct acgtccctt ccacatccag gtgccccaaa 19920
agttttcgc catcaagagc ctccctgc tggccggcctt ctacacctac gagtggaaact 19980
tccgcaagga cgtcaacatg atcctgcaga gctccctcgg caacgacctg cgcacggacg 20040
gggcctccat cgccttcacc agcatcaacc tctacgccac cttctccccc atggcgcaca 20100
acaccgcctc cacgctcgag gccatgctgc gcaacgacac caacgaccag tccttcaacg 20160
actacctctc ggcggccaac atgctctacc ccatccggc caacgccacc aacgtgccc 20220
tctccatccc ctcgcgcaac tggccgcct tccgcggctg gtccttcacg cgcctcaaga 20280
cccgcgagac gcccgcgtc ggctccgggt tcgaccccta cttcgtctac tcggcgtcca 20340
tcccctacct cgacggcacc ttctacctca accacacctt caagaaggta tccatcacct 20400
tcgactcctc cgtcagctgg cccggcaacg accgcctccct gacgcccac gagttcgaaa 20460
tcaagcgcac cgtcgcacgga gaggggtaca acgtggccca gtgcaacatg accaaggact 20520
ggttcctgggt ccagatgctg gcccactaca acatggctca ccagggcttc tacgtgccc 20580
agggctacaa ggaccgcacg tactccttct tccgcaactt ccagcccacg agccgcagg 20640
tcgtggacga ggtcaactac aaggactacc aggcgtcac cctggcctac cagcacaaca 20700
actcgggctt cgtcggctac ctcgcgcccc ccatgcgcca gggccagccc taccggcca 20760

actaccctta cccgctcatc ggcaagagcg ccgtcgccag cgtcacccag aaaaagttcc 20820
tctgcgaccg ggtcatgtgg cgcatcccct tctccagcaa cttcatgtcc atgggcgcgc 20880
tcaccgacct cggccagaac atgctctacg ccaactccgc ccacgcgcta gacatgaatt 20940
tcgaagtcga cccccatggat gagtccaccc ttctctatgt tgtcttcgaa gtcttcgacg 21000
tcgtccgagt gcaccagccc caccgcggcg tcatcgaggc cgtctacctg cgacacccct 21060
tctcgccgg caacgccacc acctaaggct cttgcttctt gcaagatgac ggcctgcgcg 21120
ggctccggcg agcagggagct cagggccatc ctccgcgacc tgggctgcgg gccctgcttc 21180
ctgggcaccc tcgacaagcg cttccggga ttcatggccc cgacacaagct ggcctgcgc 21240
atcgtaaca cggccggccg cgagaccggg ggctggcact ggctggcctt cgccctggaac 21300
ccgcgctccc acacctgcta cctcttcgac cccttcgggt tctcggacga ggcctcaag 21360
cagatctacc agttcgagta cgagggcctg ctgcgtcgca ggcctctggc caccgaggac 21420
cgctgcgtca ccctggaaaa gtccacccag accgtgcagg gtccgcgc 21480
gggctttct gctgcatgtt cctgcacgcc ttcgtgcact ggcccgaccg cccatggac 21540
aagaaccca ccatgaactt gctgacgggg gtgcccacg gcatgctcca gtcgccccag 21600
gtggaaccca ccctgcgccc caaccaggag ggcctctacc gcttcctcaa gcccactcc 21660
gcctactttc gctcccaccc cgccgcaccc gagaaggcca ccgccttcga ccgcataat 21720
caagacatgt aatccggtgt gtgtatgtga atgctttatt catcataata aacagcacat 21780
gtttatgcca cttctctga ggctctgact ttattnagaa atcgaagggg ttctgcccggc 21840
tctcggcatg gcccgcgggc agggatacgt tgccggactg gtacttggc agccacttga 21900
actcggggat cagcagcttc ggcacggggaa ggctcgcc 21960
gcgtgagttg caggcgcccc agcagggtcg ggccggagat cttgaaatcg cagttggac 22020
ccgcgttctg cgccgcagag ttacggtaca cggggttgca gcactggaac accatcagg 22080
ccgggtgctt cacgctcgcc agcaccgtcg cgccggatgat gccctccacg tccagatcct 22140
ccgcgttggc catcccgaag ggggtcatct tgccggatcg ccgcggatcg ctggcaccgc 22200
agccgggctt gtgggtgcaa tcgcagtgcg gggggatcag catcatctgg gcctgctcg 22260
agctcatgcc cgggtacatg gccttcatga aagcctccag ctggcgaaag gcctgctgcg 22320
ccttgcgcgc ctcggtaag aagacccgc aggacttgcg agagaactgg ttgggtggcgc 22380
agccagcgcc gtgcacgcag cagcgcgcgt cggtgtggc cagctgcacc acgctgcgc 22440
cccagcggtt ctgggtgatc ttggcccggt cgggggtctc cttcagcgcc cgctgcccgt 22500
tctcgtcgcc cacatccatc tcgatgtgt gtccttcgt gatcatcacc gtcccgatcg 22560
ggcaccgcag cttgcctcg gcctcggtgc acccgtcgag ccacagcgcc cagccggatcg 22620
tctcccgatc ttgtggcg atctggagt gcgagtgcac gaagccctgc aggaagcggc 22680
ccatcatcggt ggtcagggtc ttgttgctgg tgaaggtcag cggaaatgccc cggtgctcc 22740
cgttcacata caggtggcag atacggcggt acacctcgcc ctgctcgccg atcagctgga 22800
aggcggactt caggtcgctc tccacgcgggt accgggtccat cagcagcgcc atcacttcca 22860

tgcccttctc ccaggccgaa acgatcgca ggctcagggg gttcttcacc gttgtcatct 22920
 tagtcgccgc cgccgaagtc agggggtcgt tctcgccag ggtctcaaac actcgcttgc 22980
 cgtcccttctc ggtgatgcgc acggggggaa agctgaagcc cacggccgac agctccctc 23040
 cggccctgcct ttcgtcctcg ctgtcctggc tggatgtcttg caaaggcaca tgcttggct 23100
 tgcggggttt cttttgggc ggcagaggcg gcggcggaga cgtgctggc gagcgcgagt 23160
 tctcgctcac cacgactatt tcttctcctt ggccgtcgac cgagaccacg cggcggtagg 23220
 catgcctctt ctggggcaga ggcggaggcg acgggctctc gcgggttcggc gggcggctgg 23280
 cagagccccct tccgcgttcg ggggtgcgtc cctggcggcg ctgctctgac tgacttcctc 23340
 cgcggccggc cattgtgttc tcctagggag caagcatgga gactcagcca tcgtcgccaa 23400
 catcgccatc tgcccccgcc gccgcccacg agaaccagca gcagcagaat gaaagcttaa 23460
 ccgccccgccc gcccagcccc acctccgacg ccgcagcccc agacatgcaa gagatggagg 23520
 aatccatcga gattgacctg ggctacgtga cgcggcggaa gcacgaggag gagctggcag 23580
 cgcgcctttc agccccggaa gagaaccacc aagagcagcc agagcaggaa gcagagagcg 23640
 agcagaacca ggctgggctc gagcatggcg actacctgag cggggcagag gacgtgctca 23700
 tcaagcatct ggcccgccaa tgcatcatcg tcaaggacgc gctgctcgac cgcccgagg 23760
 tgccctctag cgtggcggag ctgcgcgcg cctacgacgc caacctttc tcgcgcgcg 23820
 tgccccccaa gcgcgcaccc aacggcacct gcgcgcaccc cccgcgcctc aacttctacc 23880
 cggtcttcgc ggtgcccggag gcccggcca cctaccaccc tttttcaag aaccaaagga 23940
 tccccgtctc ctgcgcgcgc aaccgcaccc gcgcgcacgc cctgctcaac ctggggcccc 24000
 gcgcgcgcct acctgatatac gcctccttgg aagaggttcc caagatcttc gaggttctgg 24060
 gcagcgcacga gactcgggccc gcgaacgcgc tgcaaggaag cggagaggag catgagcacc 24120
 acagcgcctt ggtggagttt gaaggcgcaca acgcgcgcctt ggcggcgcctc aagcgcacgg 24180
 tcgagctgac ccacttcgccc tacccggcgc tcaacctgcc ccccaagggtc atgagcgcgc 24240
 tcatggacca ggtgctcatc aagcgcgcctt cgcgccttc ggaggaggag atgcaggacc 24300
 ccgagagctc ggacgagggc aagcccggtt tcagcgcacga gcagctggcg cgctggctgg 24360
 gagcgcgttag caccccccggc agcgcgcaccc gctcatgtat ggcgtggcc 24420
 tggtgaccgt ggagctggag tgtctgcgc gcttcttcgc cgacgcggag accctgcgc 24480
 aggtcgagga gacacgtcac tacctttca gacacgggtt cgtgcgcaccc gcctgcaaga 24540
 tctccaaacgt ggagctgacc aacctgggtt cctacatggg catcctgcac gagaaccgc 24600
 tggggcagaa cgtgcgcac accaccctgc gcggggaggc cgcgcgcac tacatccgc 24660
 actgcgtcta cctgtaccc tgcgcacaccc ggcgcacggg catgggcgtt tggcagcagt 24720
 gcctggagga gcagaacctg aaagagctct gcaagctcct gcagaagaac ctcaaggccc 24780
 tgtggaccgg gttcgacgag cgcaccaccc cgcgcgcaccc ggccgcaccc atcttcccc 24840
 agcgcctgcg gctgacgcgtc cgcaacgggc tgccgcactt tatgagccaa agcatgttgc 24900

aaaacttcg ctcttcatc ctcgaacgct ccgggatcct gccccccacc tgctccgcgc 24960
tgccctcgga cttcgtgccg ctgaccttcc gcgagtgccc cccgcccgtc tggagccact 25020
gctacctgct gcgcctggcc aactacctgg cctaccactc ggacgtgatc gaggacgtca 25080
gcggcgaggg cctgctcgag tgccactgcc gctgcaacct ctgcacgccc caccgctccc 25140
tggcctgcaa cccccagctg ctgagcgaga cccagatcat cggcaccttc gagttgcaag 25200
gccccggcga gggcaagggg ggtctgaaac tcacccggg gctgtggacc tcggcctact 25260
tgcgcaagtt cgtgcccggag gactaccatc cttcgagat caggttctac gaggaccaat 25320
cccagccgccc caaggccgag ctgtcggcct gcgtcatcac ccagggggcc atcctggccc 25380
aattgcaagc catccagaaa tcccgccaag aatttctgct gaaaaagggc cacgggtct 25440
acttggaccc ccagaccgga gaggagctca accccagctt ccccccaggat gccccgagga 25500
agcagcaaga agctgaaagt ggagctgccc cgcgcgcgg aggatttggg ggaagactgg 25560
gagagcagtc aggtagagga ggaggagatg gaagactggg acagcaactca ggcagaggag 25620
gacagcctgc aagacagtct ggaggaggaa gacgaggtgg aggaggcaga ggaagaagca 25680
gccgcgcgca gaccgtcgtc ctccggggag gaggagaaag caagcagcac ggataccatc 25740
tccgctccgg gtcggggctcg cggcggccgg gcccacagta gatgggacga gaccggcgc 25800
ttcccgAACCC ccaccaccca gaccggtaag aaggagcggc agggatacaa gtcctggcgg 25860
gggcacaaaa acgccccatcg tccctgcttg caagcctgctg ggggcaacat tcccttcacc 25920
cgccgctacc tgctttcca ccgcggggtg aacttcccccc gcaacatctt gcattactac 25980
cgtcacccctcc acagccccata ctactgtttc caagaagagg cagaaaccca gcagcagcag 26040
cagcagcaga aaaccagcgg cagcagctag aaaatccaca gcggcggcag gtggactgag 26100
gatcgccggcg aacgagccgg cgccagaccccg ggagctgagg aaccggatct ttcccaccct 26160
ctatgccatc ttccagcaga gtcggggca agagcagggaa ctgaaagtca agaaccgttc 26220
tctgcgtcg ctcacccgca gttgtctgta tcacaagagc gaagaccaac ttcagcgcac 26280
tctcgaggac gccgaggctc tcttcaacaa gtactgcgcg ctcactctta aagagtagcc 26340
cgccgcggcc cacacacgga aaaaggcggg aattacgtca ccacctgcgc cttcgcccg 26400
accatcatca tgagcaaaga gattcccacg ctttacatgt ggagctacca gccccagatg 26460
ggcctggccg ccggcgccgc ccaggactac tccacccgca tgaactggct cagtggcggg 26520
cccgccatga tctcacgggt gaatgacatc cgcccccacc gaaaccagat actcctagaa 26580
cagtcagcga tcaccgcccac gccccccat caccttaatc cgcttaatttgc gcccgcgc 26640
ctgggttacc agggaaattcc ccagcccacg accgtactac ttccgcgaga cgcccaggcc 26700
gaagttccagc tgactaactc aggtgtccag ctggccggcg gcgcgcgcct gtgtcgctac 26760
cgccccgctc agggataaaa gcggctggtg atccgaggca gaggcacaca gctcaacgac 26820
gaggtggta gctcttcgct gggctgca cctgacggag tcttccaact cgccggatcg 26880
gggagatctt cttcacgccc tcgtcaggcc gtcctgactt tggagagttc gtcctcgac 26940
ccccgctcgg gtggcatcggt cactctccag ttcgtggagg agttcaactcc ctcggctac 27000

ttcaaccct tctccggctc ccccgccac tacccggacg agttcatccc gaacttcgac	27060
gccatcagcg agtcgggttga cggctacgat tgaatgtccc atgggtggcgc ggctgaccta	27120
gctcggttc gacaccttggc ccactgcccgc cgcttccgct gcttcgctcg ggatctcgcc	27180
gagtttgccct actttgagct gcccggaggag caccctcagg gcccgccccca cggagtgcgg	27240
atcgctcgatcg aagggggtct cgactcccac ctgcttcggc tcttcagcca gcgtccgatc	27300
ctggccgagc gcgagcaagg acagaccctt ctgaccctgt actgcacatcg caaccacccc	27360
ggcctgcatt aaagtctttt tggtctgctg tgtactgagt ataataaaaag ctgagatcag	27420
cgactactcc ggacttccgt gtgttccgtc tatcaaccag tccctgttct tcaccggaa	27480
cgagaccgag ctccagctcc agtgtaagcc ccacaagaag tacctcacct ggctgttcca	27540
gggctctccg atcgccgttg tcaaccactg cgacaacgac ggagtcctgc tgagcggccc	27600
tgc当地 acccttccca cccgcagaag caagctccag ctcttccaac ctttccccc	27660
cgggacctat cagtcgtct cgggaccctg ccatcacacc ttccacactga tcccgaatac	27720
cacagcgtcg ctccccgcta ctaacaacca aactacccac caacgcccacc gtcgcgaccc	27780
ttcctctggg tctaataccca ctaccggagg tgagctccga ggtcgaccaa cctctgggat	27840
ttactacggc ccctgggagg tggtagggtt aatagcgcta ggcctagttg cgggtgggct	27900
tttggctctc tgctaccat acctcccttg ctgttgcgtac tttagtggcgc tgtgttgctg	27960
gtttaagaaa tggggaaagat cacccttagtg agctcggttg tgctggcgc ggtggcgtt	28020
tcgattgtgg gactggcg cgccgtgtt gtgaaggaga aggccgatcc ctgcttgcatt	28080
ttcaatcccg acaaatgcca gctgagttt cagcccgatg gcaatcggtg cgccgtgctg	28140
atcaagtgcg gatggaaatg cgagaacgtg agaatcgagt acaataacaa gactcgaaac	28200
aataactctcg cgtccgtgtg gcagccccggg gaccccgagt ggtacaccgt ctcttccccc	28260
ggtgctgacg gctcccccg caccgtaat aataacttca ttttgcgca catgtgcgac	28320
acggtcatgt ggatgagcaa gcagtcgtat atgtggccccc ccacgaagga gaacatcggt	28380
gtcttctcca tcgcttacag cgtgtgcacg gcgctaatca ccgctatcg gtgcctgagc	28440
attcacatgc tcatcgctat tcgccccaga aataatgccc aaaaagaaaa acagccataa	28500
cacgtttttt cacacaccc ttccagacca tggcctctgt taaaattttt ctttatttt	28560
ccagtcgtcat tgccgtcatt catggaaatga gtaatgagaa aattactatt tacactggca	28620
ctaattcacac attgaaaggt ccagaaaaag ccacagaagt ttcatggat tgttattttt	28680
atgaatcaga tgcgtatctact gaaactctgtg gaaacaataa caaaaaaaaaat gagagcatta	28740
ctctcatcaa gtttcaatgt ggatctgact taaccctaat taacatcact agagactatg	28800
taggtatgtt ttatggact acagcaggca ttccggacat ggaattttat caagtttctg	28860
tgtctgaacc caccacgcct agaatgacca caaccacaaa aactacaccc gttaccacta	28920
tacagctcac taccaatggc ttttttgcct tgcttcaagt ggctgaaaat agcaccagca	28980
ttcaaccac cccacccagt gaggaaattc ccagatccat gattggcatt attgttgctg	29040

tagtgtgtg catgttgc atcgccctgt gcatggtgta ctatgccttc tgctacagaa 29100
 agcacagact gaacgacaag ctggaacact tactaagtgt tgaattttaa ttttttagaa 29160
 ccatgaagat cctaggcctt ttagttttt ctatcattac ctctgctcta tgcaattctg 29220
 acaatgagga cgttactgtc gttgtcgat caaattatac actaaaaggt ccagaaaaag 29280
 gtatgcttgc gtggattgt tgggtcgaa ctgacgagca acagacagaa ctttgcattg 29340
 ctcaaaaagg caaaacctca aattctaaaa tctctaatta tcaatgcaat ggcactgact 29400
 tagtattgct caatgtcactg aaagcatatg ctggcagttt cacctgccct ggagatgatg 29460
 cccacaatat gatTTTTTAC aaagtggaaag tggttgcattt cactactcca ccgcccacca 29520
 ccacaactac tcataaccaca cacacagaac aaacaccaga ggcagcagaa gcagagttgg 29580
 ccttccaggt tcacggagat tccttgctg tcaatacccc tacacccgat cagcggtgtc 29640
 cggggctgct cgtcagcggc attgtcggtg tgcttcggg attagcagtc ataatcatct 29700
 gcatgttcat ttttgcatttgc tgctatagaa ggctttaccg acaaaaatca gacccactgc 29760
 tgaacctcta tggtaattt ttccagagc catgaaggca gttagcgctc tagtttttg 29820
 ttcttgatt ggcattttt ttagtgcgtt gttttgaaa aatcttacca ttatgaagg 29880
 tgagaatgcc actcttagtgg gcatcagtgg tcaaaatgtc agctggctaa aataccatct 29940
 agatgggtgg aaagacattt gcgattggaa tgtcactgtg tatacatgta atggagttaa 30000
 cctcaccatt actaatgccca cccaaatgtca gaatggtagg tttaagggcc agatTTTcac 30060
 tagaaataat gggtatgaat cccataacat gtttatctat gacgtcactg tcatacagaaa 30120
 tgagactgcc accaccacac agatgcccac tacacacagt tctaccacta ctaccatgca 30180
 aaccacacag acaaccacta catcaactca gcatatgacc accactacag cagcaaagcc 30240
 aagttagtgca ggcctcagc cccaggcttt ggctttgaaa gctgcacaac ctagtacaac 30300
 tactaggacc aatgagcaga ctactgaatt ttgtccact gtcgagagcc acaccacagc 30360
 tacctccagt gccttctcta gcaccgccaa tctctcctcg ctttcctcta caccaatcag 30420
 tcccgctact actcccaccc cagctttct ccccaactccc ctgaagcaaa ctgaggacag 30480
 cggcatgcaa tggcagatca ccctgctcat tgtgatcggtt ttggtcatcc tggccgtgtt 30540
 gctctactac atcttctgcc gcccattcc caacgcgcac cgcaaaaccgg cctacaagcc 30600
 catcgttatc gggcagccgg agccgcttca ggtggaaagg ggtctaagga atcttcttt 30660
 ctctttaca gtatggtgat tgaactatga ttccctagaca attcttgatc actattctta 30720
 tctgcctcctt ccaagtctgt gccaccctcg ctctggtggc caacgcccagt ccagactgta 30780
 ttggccctt cgcctcctac gtgtcttttgc ctttcatcac ctgcattctgc tgctgttagca 30840
 tagtctgcct gcttattcacc ttcttccagt tcattgactg gatctttgtg cgcatgcct 30900
 acctgcgcca ccaccccccag taccgcgacc agcgagtgcc gcccgtgctc aggctcctct 30960
 gataagcatg cgggctctgc tacttctcgc gcttctgctg tttagtgcattcc cccgccccgt 31020
 cgaccccccgg tcccccaactc agtccccca agaggtccgc aaatgcaat tccaagaacc 31080
 ctggaaattc ctcaaattgtt accgccaaaa atcagacatg cttccagct ggatcatgat 31140

cattgggatc gtgaacattc tggcctgcac cctcatctcc tttgtgattt accccctgctt 31200
 tgacttttgtt tggaactcgc cagaggcgct ctatctccg cctgaacctg acacaccacc 31260
 acagcaacct caggcacacg cactaccacc accacagcct aggccacaat acatgccat 31320
 attagactat gaggccgagc cacagcgacc catgctcccc gctatttagtt acttcaatct 31380
 aaccggcgga gatgactgac ccactggcca acaacaacgt caacgacctt ctccctggaca 31440
 tggacggccg cgcctcgag cagcgactcg cccaaactcg cattcgccag cagcaggaga 31500
 gagccgtcaa ggagctgcag gacggcatag ccatccacca gtgcaagaaa ggcatcttct 31560
 gcctggtgaa acaggccaag atctcctacg aggtcaccccc gaccgaccat cgcccttcct 31620
 acgagctcct gcagcagcgc cagaagttca cctgccttgtt cgaggtaaac cccatcgta 31680
 tcacccagca gtcgggcat accaaggggt gcatccactg ctccctgcac tcccccgact 31740
 gcgtccacac tctgatcaag accctctgcg gcctccgcga cctcctcccc atgaactaat 31800
 caccccccta tccagtgaaa taaatatcat attgatgatg atttaaataa aaaataatca 31860
 tttgatttga aataaagata caatcatatt gatgatttga gttttaaaaaa ataaagaatc 31920
 acttacttga aatctgatac caggtctctg tccatgtttt ctgccaacac cacctcactc 31980
 ccctcttccc agctctggta ctgcagaccc cggcgggctg caaacttcct ccacacgctg 32040
 aaggggatgt caaattcctc ctgtccctca atcttcattt tatcttctat cagatgtcca 32100
 aaaagcgcgt ccgggtggat gatgacttcg accccgtcta cccctacgat gcagacaacg 32160
 caccgaccgt gcccttcatc aaccccccct tcgtctcttc agatggattc caagagaagc 32220
 ccctgggggt gctgtccctg cgactggctg accccgtcac caccaagaac gggggaaatca 32280
 ccctcaagct gggagagggg gtggacctcg actcctcggg aaaactcatic tccaacacgg 32340
 ccaccaaggc cgccgccccct ctcagttttt ccaacaacac cattttccctt aacatggata 32400
 cccctcttta taccaaagat ggaaaattat ctttacaagt ttctccaccc tttaaacatat 32460
 taaaatcaac cattctgaac acattagctg tagcttatgg atcagggtttt ggactgagtg 32520
 gtggcactgc tcttgcagta cagttggcct ctccactcac ttttgcataaa aaaggaaata 32580
 tttaaaattaa cctagccagt ggtccattaa cagttgatgc aagtcgactt agtataact 32640
 gcaaaagagg ggtcaactgatc actacctcag gagatgcaat tgaaagcaac ataagctggc 32700
 ctaaaaggat aagatttgc ggtatggca tagctgcaaa cattggcaga ggattggat 32760
 ttggaaccac tagtacagag actgatgtca cagatgcata cccaaattcaa gttaaattgg 32820
 gtactggcct taccttgac agtacaggcg ccattttgc ttggaacaaa gaggatgata 32880
 aacttacatt atggaccaca gccgacccct cgccaaattg caaaatatac tctgaaaaag 32940
 atgccaaact cacacttgc ttgacaaagt gtggaagtca aattctgggt actgtgactg 33000
 tattggcagt gaataatgga agtctcaacc caatcacaaa cacagtaagc actgcactcg 33060
 tctccctcaa gtttgcataa agtggagttt tgcttaagcag ctccacatta gacaaagaat 33120
 attggaaactt cagaaaggaa gatgttacac ctgctgagcc ctataactat gctatagtt 33180

ttatgcctaa cataaaggcc tattcctaaaa acacatctgc agcttcaaaa agccatattg 33240
 tcagtcaagt ttatctcaat gggatgagg ccaaaccact gatgctgatt attactttt 33300
 atgaaactga ggatgcaact tgcacctaca gtatcacttt tcaatggaaa tggatagta 33360
 ctaagtacac aggtgaaaca cttgctacca gtcacccac cttctcctac atcgcccaag 33420
 aatgaacact gtatcccacc ctgcacatcca acccttccca cccactctg tctatggaaa 33480
 aaactctgaa gcacaaaata aaataaagtt caagtgtttt attgattcaa cagtttaca 33540
 ggattcgagc agttattttt cttccaccct cccaggacat ggaatacacc accctctccc 33600
 cccgcacagc cttgaacatc tgaatgccat tggatgga catgctttt gtcacgt 33660
 tccacacagt ttcagagcga gccagtctcg ggtcggtcag ggagatgaaa ccctccggc 33720
 actccgcacat ctgcacccatc cagctcaaca gctgaggatt gtcctcggtg gtcggatca 33780
 cggttatctg gaagaagcag aagagcggcg gtggaatca tagtccgcga acggatcgg 33840
 ccgggttgtt cgcattcaggc cccgcagcag tcgctgccgc cgccgctccg tcaagctgct 33900
 gctcaggggg tccgggtcca gggactccct cagcatgatg cccacggccc tcagcatcag 33960
 tcgtctggtg cggcgggcgc agcagcgcacat gcggatctcg ctcaggctcg tgcagtagt 34020
 gcaacacagg accaccagg tttcaacag tccatagttc aacacgctcc agccgaaact 34080
 catcgccggaa aggatgctac ccacgtggcc gtcgtaccag atcctcaggaaatcaagtg 34140
 ggcgcctcc cagaacacgc tgcccacgta catgatctcc ttggcatgt ggcggttcac 34200
 cacctcccg taccacatca ccctctggttt gaacatgcag ccccgatga tcctgcggaa 34260
 ccacaggggcc agcaccggcc cggccat gcagcgaaga gacccgggt cccggcaatg 34320
 gcaatggagg acccaccgct cgtacccgtg gatcatctgg gagctgaaca agtctatgtt 34380
 ggcacagcac aggcataatgc tcatgcattt cttcagcact ctcagctcc cgggggtcaa 34440
 aaccatatcc cagggcacgg ggaactcttg caggacagcg aaccccgag aacaggcggaa 34500
 tcctcgacaca taacttacat tgtcatgga caggatcg caatcaggca gcaccgggtg 34560
 atcctccacc agagaagcgc gggctcggt ctcctcacag cgtggtaagg gggccggccg 34620
 atacgggtga tggcgggacg cggctgatcg tggatcgac cgtgtcatga tgcagttct 34680
 ttcggacatt ttcgtacttg ctgtacgaga acctggccg ggcgctgcac accgatcgcc 34740
 ggcggcggc cggcgcttg gaacgctcg gttgaaatt gtaaaacagc cactctctca 34800
 gaccgtgcag cagatctagg gcctcaggag tggatgaaat cccatcatgc ctgatagctc 34860
 tgatcacatc gaccaccgtg gaatggccca gacccagccaa gatgatgcaa ttttgggg 34920
 tttcggtgac ggcgggggag ggaagaacag gaagaaccat gattaacttt taatccaaac 34980
 ggtctcgag cacttcaaaa tgaaggtcgc ggagatggca cctctcgccc cgcgtgttt 35040
 ggtggaaaat aacagccagg tcaaagggtga tacggatctc gagatgttcc acgggtggctt 35100
 ccagcaaagc ctccacgcgc acatccagaa acaagacaat agcgaaagcg ggagggttct 35160
 ctaattcctc aatcatcatg ttacactctc gcaccatccc cagataattt tcattttcc 35220
 agcattgaat gattcgaact agttcctgag gtaaaatccaa gccagccatg ataaagagct 35280

cgcgcagagc	gccctccacc	ggcattctta	agcacaccct	cataattcca	agatattctg	35340
ctcctggttc	acctgcagca	gattgacaag	cggaatatca	aatctctgc	cgcgatccct	35400
aagctcctcc	ctcagcaata	actgtaaagta	ctcttcata	tcctctccga	aatttttagc	35460
cataggacca	ccaggaataa	gattagggca	agccacagta	cagataaaacc	gaagtccctcc	35520
ccagtgagca	ttgccaaatg	caagactgct	ataagcatgc	tggctagacc	cggtgatatc	35580
ttccagataa	ctggacagaa	aatcacccag	gcaattttta	agaaaaatcaa	caaaagaaaa	35640
atcctccagg	tgcacgttta	gagcctcggg	aacaacgatg	aagtaaatgc	aagcggtgcg	35700
ttccagcatg	gttagtttagc	tgatctgtaa	aaaacaaaaaa	ataaaacatt	aaaccatgct	35760
agcctggcga	acaggtgggt	aaatcggtct	ctccagcacc	aggcaggcca	cggggctctcc	35820
ggcgcgaccc	tcgtaaaaat	tgtcgctatg	attgaaaacc	atcacagaga	gacgttcccgg	35880
gtggccggcg	tgaatgattc	gacaagatga	atacaccccc	ggaacattgg	cgtccgcgag	35940
tgaaaaaaaaag	cgcggagga	agcaataagg	caactacaatg	ctcagtctca	agtccagcaa	36000
agcgatgcca	tgcggatgaa	gcacaaaaatc	ctcaggtgcg	tacaaaatgt	aattactccc	36060
ctcctgcaca	ggcagcgaag	cccccgatcc	ctccagatac	acatacaaag	cctcagcgtc	36120
catagcttac	cgagcagcag	cacacaacag	gchgcaagagt	cagagaaagg	ctgagctcta	36180
acctgtccac	ccgctctctg	ctcaatataat	agcccagatc	tacactgacg	taaaggccaa	36240
agtctaaaaa	tacccgccaa	ataatcacac	acgcccagca	cacgcccaga	aaccggtgac	36300
acactcaaaa	aaatacgcgc	acttcctcaa	acgcccääac	tgccgtcatt	tccgggttcc	36360
cacgctacgt	catcggatt	cgactttcaa	attccgtcga	ccgttaaaaaa	cgtcaccgc	36420
cccgcccccta	acggtcgccc	gtctctcggc	caatcacctt	cctccctccc	caaattcaaa	36480
cagctcattt	gcatattaac	gcgcaccaaa	agtttgaggt	atattattga	tgatg	36535

<210> 4
<211> 34264
<212> DNA
<213> simian adenovirus SV-1

<400> 4	tccttattct	ggaaacgtgc	caatatgata	atgagcgggg	aggagcgagg	cggggccggg	60
	gtgacgtgcg	gtgacgtggg	gtgacgcggg	gtggcgcgag	ggcggggcgg	gagtggggag	120
	gchgcttagtt	tttacgtatg	cggaaggagg	ttttataccg	gaagttgggt	aatttgggcg	180
	tatacttgta	agttttgtgt	aatttggcgc	gaaaacccggg	taatgaggaa	gtttaggtta	240
	atatgtactt	tttatgactg	ggcggaaattt	ctgctgatca	gcagtgaact	ttggcgctg	300
	acggggaggt	ttcgctacgt	ggcagtagcca	cgagaaggct	caaaggtccc	atttattgtta	360
	ctcctcagcg	tttgcgtgg	gtatttaaac	gctgtcagat	catcaagagg	ccactcttga	420
	gtgccggcga	gttagagttt	ctcctccgcg	ctgcccgcgt	gaggctgggt	cccgagatgt	480
	acgggttttt	ctgcagcgag	acggcccgga	actcagatga	gctgcttaat	acagatctgc	540
	tggatgttcc	caactcgccct	gtggcttcgc	ctccgtcgct	tcatgatctt	ttcgatgtgg	600

aagtggatcc accgcaagat cccaacgagg acgcggtaaa cagtatgttc cctgaatgtc	660
tgttgaggc ggctgaggag ggttctcaca gcagtgaaga gagcagacgg ggagaggaac	720
tggacttgaa atgctacgag gaatgtctgc cttctagcga ttctgaaacg gaacagacag	780
ggggagacgg ctgtgagtcg gcaatgaaaa atgaacttgt attagactgt ccagaacatc	840
ctggcatgg ctgccgtgcc tgtgctttc atagaaatgc cagcggaaat cctgagactc	900
tatgtgctct gtgttatctg cgccttacca gcgattttgt atacagtaag taaagtgttt	960
tcattggcgt acggtagggg attcggtgaa gtgcgggtg acttattatg tgtcattatt	1020
tctaggtgac gtgtccgacg tggaaaggaa aggagataga tcaggggctg ctaattctcc	1080
ttgcactttg ggggctgtgg ttccagttgg cattttaaa ccgagttgtg gaggagaacg	1140
agccggagga gaccgagaat ctgagagccg gcctggaccc tccagttgaa gactaggtgc	1200
tgaggatgat cctgaagagg ggactagtgg ggggtctagg aaaaagcaaa aaactgagcc	1260
tgaacctaga aacttttga ataggtgac tgtaagccata atgaatcggc agcgtcctga	1320
gacgggttt tggactgagt tggaggatga gttcaagaag gggaaattaa acctcttcta	1380
caagtatggg tttgagcagt tgaaaactca ctgggtggag ccgtggagg atatggaaat	1440
ggctctagac acctttgcta aagtggctct gcggccggat aaagtttaca ctattcgccg	1500
cactgttaat ataaaaaaga gtgttatgt tatcggccat ggagctctgg tgcaggtgca	1560
gaccccagac cgggtggctt tcaattgcgg catgcagagt ttggccccgg ggggtatagg	1620
tttgaatgga gttacatttc aaaatgtcag gtttacttgt gatgattttt atggctctgt	1680
gtttgtgact agcacccagc taaccctcca cgggttttac ttttttaact ttaacaatac	1740
atgtgtggag tcatgggta ggggtctct gggggctgc agttttcatg gttgctggaa	1800
ggcgggtggtg ggaagaatta aaagtgtcat gtctgtgaag aaatgcataat ttgaacgctg	1860
tgtgatagct ctagcagtag aggggtacgg acggatcagg aataacgccc catctgagaa	1920
tggatgtttt ctttgctga aaggtacggc cagcgtaag cataatatga tttgcggcag	1980
cggcctgtgc ccctcgcagc tcttaacttg cgcatgttga aactgtcaca cttgcgcac	2040
cgtgcacata gtgtccact cgcgcgcac ctggccaaca tttgagcaca atatgctcat	2100
gcgttgcgcc gttcacctag gtgttagacg cggcgtgttt atgccttac aatgtactt	2160
tagtcatact aagattttgc tggaaactga ttccttccct cgagtatgtt tcaatgggt	2220
gtttgacatg tcaatggAAC ttttAAAGT gataagat gatgaaacca agtctcggt	2280
tcgctcatgt gaatgcggag ctaatcattt gaggttgtat cctgttaaccc tgaacgttac	2340
cgaggagctg aggacggacc accacatgct gtctgcctg cgtaccgact atgaatccag	2400
cgtgaggag tgaggtgagg ggcggagcca caaagggtat aaagggcat gaggggtggg	2460
cgcgggttt caaatgagc gggacgacgg acggcaatgc gtttgggggg ggagtgttca	2520
gcccatatct gacatctcggtt cttcccttccct gggcaggagt tcgtcagaat gtagtggct	2580
ccaccgttggaa cggacggccg gtcggccctg caaattccgc caccctcacc tatgccaccg	2640

tgggatcatc	gttggacact	gccgcggcag	ctgccgcttc	tgctgccgct	tctactgctc	2700
gcggcatggc	ggctgatttt	ggactatata	accaactggc	caactgcagct	gtggcgctc	2760
ggtctctgg	tcaagaagat	gccctgaatg	tgatcttgc	tcgcctggag	atcatgtcac	2820
gtcgcctgga	cgaactggct	gcmcagat	cccaagctaa	ccccgatacc	gcttcagaat	2880
cttaaaaataa	agacaaacaa	atttgtgaa	aagtaaaatg	gctttatgg	ttttttttgg	2940
ctcggtaggc	tcgggtccac	ctgtctcggt	cgttaaggac	tttgtgtatg	ttttccaaaa	3000
cacggtacag	atgggcttgg	atgttcaagt	acatgggcat	gaggccatct	ttgggggtgga	3060
gataggacca	ctgaagagcg	tcatgttccg	gggtggatt	gtaaatcacc	cagtcgtac	3120
agggtttttg	agcgtggAAC	tggaatatgt	ccttcaggag	caggctaatt	gccaagggt	3180
gacccttagt	gtaggtgttt	acaaagcggt	tgagctggga	gggatgcatt	cggggggaga	3240
tgatatgcatt	cttggcttgg	attttgaggt	tagctatgtt	accacccagg	tctctgcggg	3300
ggttcatgtt	atgaaggacc	accagcacgg	tatagccagt	gcatttgggg	aacttgtcat	3360
gcagtttgg	ggggaaaggcg	tggaagaatt	tagatacccc	tttgtgcccc	ccttaggttt	3420
ccatgcactc	atccataata	atggcaatgg	gaccctggc	ggccgcttta	gcaaacacgt	3480
tttgggggtt	ggaaacatca	tagtttgct	ctagagttag	ctcatcatag	gccatcttta	3540
caaagcgggg	taggagggtg	cccgactggg	ggatgatagt	tccatctgg	cctggagcgt	3600
agttgccctc	acagatctgc	atctcccagg	ccttaattt	cgaggggggg	atcatgtcca	3660
cctggggggc	gataaaaaaac	acggttctg	gcgggggggtt	aatgagctgg	gtggaaagca	3720
agttacgcaa	cagctggat	ttgccgcaac	cggtgggacc	gtagatgacc	ccgatgacgg	3780
gttgcagctg	gtagttcaga	gaggaacagc	tgccgtcggg	gcmcaggagg	ggagctacct	3840
cattcatcat	gcttctgaca	tgtttatttt	caactactaa	gttttgc	agcctctccc	3900
caccaggga	taagagttct	tccaggctgt	tgaagtgttt	cagcggtttc	aggccgtcgg	3960
ccatggcat	ctttcaagc	gactgacgaa	gcaagtacag	tcggtcccag	agctcggtga	4020
cgtgctctat	ggaatctcg	tccagcagac	ttcttggttt	cgggggttgg	gccgactttc	4080
gctgttagggc	accagccgt	gggcgtccag	ggccgcgagg	ttctgtcct	tccagggtct	4140
cagcgttcgg	gtgagggtgg	tctcggtgac	ggtgaaggga	tgagccccgg	gctgggcgt	4200
tgcgagggtg	cgcttcaggg	tcatcctgct	ggtgctgaag	cggcgtcgt	ctccctgtga	4260
gtcggccaga	tagcaacgaa	gcatgagg	gtagctgagg	gactcggccg	cgtgtccctt	4320
ggcgcgcagc	tttcccttgg	aaacgtgctg	acatttggtg	cagtgcagac	acttgagg	4380
gtagagtttt	ggggccagga	agaccgactc	gggcgagtag	gcgtcggctc	cgcactgagc	4440
gcagacggc	tcgcactcca	ccagccacgt	gagctcggt	ttagcggat	aaaaaacc	4500
gttgcctcca	tttttttga	tgcgttctt	accttgcgtc	tccatgagtc	tgtgtcccgc	4560
ttccgtgaca	aaaaggctgt	cggtatcccc	gtagaccgac	ttgagggggc	gatcttccaa	4620
aggtgttccg	aggcttccg	cgtacaggaa	ctgggaccac	tccgagacaa	aggctcggt	4680
ccaggctaacc	acgaaggagg	cgatctgcga	gggtatctg	tcgtttcaa	tgaggggtc	4740

cacctttcc	agggtgtgca	gacacaggc	gtcctcctcc	gcgtccacga	aggtgattgg	4800
ctttaagt	taggtcacgt	gaccgcacc	cccccaaggg	gtataaaaagg	gggcgtgccc	4860
actctccccg	tcactttctt	ccgcacgc	gtggaccaga	gccagctgtt	cgggtgagta	4920
ggccctctca	aaagccggca	tgatttcggc	gctcaagttg	tcagttctca	caaacgaggt	4980
ggatttgate	ttcacgtgcc	ccgcggcgat	gcttttgatg	gtggaggggt	ccatctgatc	5040
agaaaaacacg	atcttttat	tgtcaagttt	ggtggcgaaa	gaccgtaga	gggcgttgaa	5100
aagcaacttg	gcatggagc	gcagggtctg	attttctcc	cgatcggccc	tctccttgcc	5160
ggcgatgtt	agttgcacgt	actcgccggc	cacgcaccgc	cactcgggaa	acacggcggt	5220
gcgcgtcg	ggcaggatgc	gcacgcgca	gccgcggtt	tgcagggtga	tgaggtccac	5280
gctggtggcc	acctccccgc	ggaggggctc	gttggtccaa	cacaatcgcc	ccccctttct	5340
ggagcagaac	ggagggcaggg	gatctagcaa	gttggcgggc	gggggggtcgg	cgtcgatggt	5400
aaatatgccg	ggtacgagaa	tttttattaaa	ataatcgatt	tcggtgtccg	tgtcttgcaa	5460
cgcgtcttcc	cacttctca	ccgccaggc	ccttcgttag	ggattcagg	gcggccccca	5520
gggcatgggg	tgggtcaggg	ccgaggcgta	catgccgcag	atgtcgtaca	cgtacagggg	5580
ctccctcaac	accccgatgt	aagtgggta	acagcgcccc	ccgcggatgc	tggctcgcac	5640
gtagtcgtac	atctcgtgag	agggagccat	gagccgtct	cccaagtgg	tcttgtgggg	5700
tttttcggcc	cggtagagga	tctgcctgaa	gatggcgtgg	gagtttggaa	agatagtggg	5760
gcgttggaaag	acgttaaagt	tggctccggg	cagtcccacg	gagtcttgg	tgaactgggc	5820
gtaggattcc	cggagcttgt	ccaccaggc	tgcggttacc	agcacgtcga	gagcgcagta	5880
gtccaaacgtc	tcgcggacca	ggtttaggc	cgtctttgt	tttttctccc	acagttcgcg	5940
attgaggagg	tattcctcgc	ggtctttcca	gtactctcg	gcgggaaatc	cttttcgtc	6000
cgctcggtaa	gaacctaaca	tgtaaaattc	gttcacggct	ttgtatggac	aacagcctt	6060
ttctaccggc	agggcgtacg	cttgagcggc	cttctgaga	gaggtgtgg	tgagggcgaa	6120
ggtgtcccg	accatcactt	tcaaggactg	atgtttgaag	tccgtgtcgt	cgcaggcgcc	6180
ctgttcccac	agcgtgaagt	cgggtcgctt	tttctgcctg	ggattgggg	ggcgaatgt	6240
gacgtcgtaa	aagaggattt	tcccggcg	ggcatgaag	ttgcgagaga	tcctgaaggg	6300
tccgggcacg	tccgagcgg	tgtttagtgc	ttgcggcc	aggacgatct	cgtcgaagcc	6360
gtttagtttgc	tggcccacga	tgtaaagttc	gataaagcgc	ggctgtccct	tgagggccgg	6420
cgcttttttc	aactcctcgt	aggtgagaca	gtccggcg	gagagaccca	gctccgcccc	6480
ggcccagtcg	gagagctgag	ggttagccgc	gaggaaagag	ctccacaggt	caagggctag	6540
cagagttgc	aagcggtcgc	ggaactcg	aaacttttc	cccacggcca	ttttctccgg	6600
cgtcaccacg	tagaaagtgc	agggcgggtc	gttccagacg	tcccatcgga	gctctagggc	6660
cagctcg	gcttgcacaa	cgagggtctc	ctcgcccg	acgtgcata	ccagcatgaa	6720
gggtaccaac	tgtttccg	acgagccat	ccatgtgt	gtttctacgt	cgttaggtac	6780

aaagagccgc tgggtgcgcg cgtgggagcc gatcgggaag aagctgatct cctgccacca 6840
gttggaggaa tgggtgtta tgtggtaaaa gtagaagtcc cgccggcgca cagagcattc 6900
gtgctgatgt ttgtaaaagc gaccgcagta gtcgcagcgc tgacgcgtct gtatctcctg 6960
aatgagatgc gctttcgcc cgccgaccag aaaccggagg gggaaagtga gacggggct 7020
tggtgccccg gcatccccctt cgcccttggcg gtgggagttc gcgtctgcgc cctccttctc 7080
tgggtggacg acgggtggga cgacgacgccc ccgggtgccc caagtccaga tctccgcccac 7140
ggaggggcgc aggcgttgcg ggaggggacg cagctgccc ctgtccaggg agtcgaggc 7200
ggccgcgctg aggtcggcgg gaagcgtttgc caagttcaact ttcagaagac cgtaagac 7260
gtgagccagg tgcacatggt acttgatttc caggggggtg ttggaagagg cgtccacggc 7320
gtagaggagg ccgtgtccgc gcggggccac caccgtgccc cgaggaggtt ttatctca 7380
cgtcgaggc gagcgccggg gggtagaggc ggctctgcgc cggggggcag cggaggcagt 7440
ggcacgttt cgtgaggatt cggcagcggt ttagtgcacgag cccggagact gctggcgtgg 7500
gcgacgacgc ggcgggttag gtcctggatg tgccgtctct gcgtgaagac caccggcccc 7560
cggtcctga acctgaaaga gagttccaca gaatcaatgt ctgcacatcgaa aacggcggcc 7620
tgcctgagga tctcctgtac gtcgcccgg tagtgcacgatctc ggccatgaac 7680
tgctccactt cttccctcgcg gaggtcgccc tggcccgctc gtcacacggt ggcggccagg 7740
tcgttggaga tgcgacgcat gagttgagag aaggcgtaga ggccgttctc gttccacacg 7800
cggtgtaca ccacgtttcc gaaggagtcg cgacgtcgca tgaccacctg ggccacgttg 7860
agttccacgt ggcgggcgaa gacggcgtag tttctgagggc gctggaaagag gtagttgagc 7920
gtgggtggcgaa tggctcgca gacgaagaag tacatgatcc agcggccgcag ggtcatctcg 7980
ttgatgtctc cgatggcttc gagacgctcc atggcctcgat agaagtcgac ggcgaagttt 8040
aaaaattggg agttgcgggc ggccaccgtg agttcttctt gcaggaggcg gatgagatcg 8100
gcgaccgtgt cgccgtaccc tcgtcgaaa gcgcggcgg ggcctctgc ttctccctcc 8160
ggctccctt cttccagggg cacgggttcc tccggcagct ctgcacacgg gacggggcgg 8220
cgacgtcgac gtcgtacccgg caggcggtcc acgaagcgct cgatcatttc gccgcgcccgg 8280
cgacgcattgg tctcggtgac ggcgcgtccg tttcgcgag gtcgcagttc gaagacgccc 8340
ccgcgcagag cgccccgtg cagggagggt aagtggtag ggccgtcggg cagggacacg 8400
gcgcgtacga tgcattttat caattgctgc gtggcactc cgtgcaggaa tctgagaacg 8460
tcgaggtcga cgggatccga gaacttctct agggaaagcgat ctatccaatc gcagtcgcaa 8520
ggtaagctga ggacgggtggg cgcgtgggg ggcgtccgcgg gcagttgggaa ggtatgtctg 8580
ctgatgtatgt aattaaagta ggcggtcttc aggccggcga tgggtggcgag gaggaccacg 8640
tctttggggcc cggcctgttg aatgcgcagg cgctcgccca tgccccaggc ctcgtctga 8700
cagcgacgca ggtctttgtt gtagtcttgc atcagtcgtcc ccaccggaaac ctctgcttct 8760
ccccgtctg ccatgcgagt cgagccgaac ccccgccagg gctgcagcaa cgcttaggtcg 8820
gccacgaccc tctcggtccag cacggcgtgt tggatctgcg tgagggtggg ctggaaatcg 8880

tccagggtcca cgaagcggtg ataggccccc gtgttcatgg ttaggtgca gttggccatg	8940
acggaccagt tgacgacttg catgccgggt tgggtatct ccgtgtactt gagggcgag	9000
taggcgcggg actcgaacac gtagtcgttgcatgtcgta ccagatactg gtagccaacc	9060
aggaagtggg gaggcggggtc tcggtacagg ggccagccga ctgtggcggg ggcgccgggg	9120
gacaggtcgt ccagcatgag gcgtatggtag tggtagatgt agcgggagag ccaggtgatg	9180
ccggccgagg tggtcgcggc cctggtaat tcgcggacgc gttccagat gttgcgcagg	9240
ggcgaaagc gctccatggt gggcacgctc tgccccgtga ggcggggcga atcttgtacg	9300
ctcttagatgg aaaaaagaca gggcggtcat cgactccctt ccgtagctcg ggggtaaag	9360
tcgcaagggt gccggcggcgg ggaaccccggtt cggagaccg gccggatccg ccgctcccga	9420
tgcgcctggc cccgcattcca cgacgtccgc gtcgagaccc agccgcgacg ctccgcccc	9480
atacggaggg gagtcttttgcgttttgcgtatgcgtccgtgtcg ggcagatgcg	9540
acctcagacg cccaccacca ccgcccgcggc ggcagtaaac ctgagcggag gcggtgacag	9600
ggaggaggag gagctggctt tagacctgga agagggagag gggctggccc ggctgggagc	9660
gccgtccccca gagagacacc ctagggttca gctcgtgagg gacgccaggc aggctttgt	9720
gccgaagcag aacctgttta gggaccgcag cggtcaggag gcgaggaga tgcgcgatttgc	9780
caggtttcgg gcgggttagag agctgagggc gggcttcgtat cgggagcggc tcctgaggc	9840
ggaggatttc gagcccgacg agcgttctgg ggtgagcccg gcccgcgtc acgtctcggc	9900
ggccaaacctg gtgagcgcgt acgagcagac ggtgaacgag gagcgcaact tccaaaagag	9960
ctttaacaat cacgtgagga ccctgatcgc gagggaggag gtgaccatcg ggctgatgca	10020
tctgtggac ttcgtggagg cctacgtgca gaacccggcc agcaaacctc tgacggccc	10080
gctgttcctg atcgtgcagc acagccgcga caacgagacg ttccgcgacg ccatgttgc	10140
catcgccggag cccgagggtc gctggcttttggatctgatt aacatcctgc agagcatgt	10200
ggtgcaggag aggggcctca gcttagcggca aaggtggcg gccattaact attcgatgca	10260
gagcctgggg aagttctacg ctcgcaagat ctacaagacg cttacgtgc ccatagacaa	10320
ggaggtgaag atagacagct tttacatgcg catggcgctg aaggtgctga cgctgagcga	10380
cgacacctggc gtgtaccgta acgacaagat ccacaaggcg gtgagcgcac gccggccggc	10440
ggagctgagc gacagggagc tgcgtacacag cctgcagagg gcgtggcgg ggcggggg	10500
cgaggagcgc gaggcttact tcgacatgg agccgatctg cagtggcgac ccagcgcgc	10560
ccgcctggag gcggcggtt accccgacga ggaggatcgg gacgatttgg aggaggcagg	10620
cgagtacgag gacgaaggct gaccggcgag gtgttgcgtt agatgcagcg gccggcggac	10680
ggggccaccg cggatccgc acttttggca tccatgcaga gtcaaccttc gggcgtgacc	10740
gcctccgatg actggcgcc ggcattggac cgcattatgg cgctgactac cgcaccc	10800
gaggctttta gacagcaacc ccaggcaac cgttttcgg ccatcttggaa agcgggtgg	10860
ccctccgcac ccaacccac acacgagaaa gtcctgacta tcgtgaacgc cttggtagac	10920

agcaaggcca	tccgcccgcga	cgaggcgggc	ttgatttaca	acgctctgct	ggaacgggtg	10980
gcgcgcata	acagcactaa	cgttcagacc	aatctggatc	gcctcaccac	cgacgtgaag	11040
gaggcgctgg	ctcagaagga	gcggtttctg	agggacagca	atctgggctc	tctggtggca	11100
ctcaacgcct	tcctgagcac	gcagccggcc	aacgtcccc	gcgggcagga	ggactacgtg	11160
agcttcatca	gcgcgtctgag	gctgtctgg	tccgaggtgc	cccagagcga	ggtgtatcag	11220
tctggccgg	attacttctt	ccagacgtcc	cgacagggt	tgcaaacggt	gaacctgact	11280
caggcctta	aaaacttgca	aggcatgtgg	ggcgtaagg	ccccgggtgg	cgatcgagcc	11340
accatctcca	gtctgctgac	ccccaaacact	cgcctgctgc	tgctcttgc	cgcgccgttc	11400
accaacagta	gcactatcag	ccgtgactcg	tacctgggtc	atctcatcac	tttgttaccgc	11460
gaggccatcg	gtcaggctca	gatcgacgag	cacacatatc	aggagatcac	taacgtgagc	11520
cgggcccctgg	gtcaggaaga	taccggcagc	ctggaagcca	cgttgaactt	tttgctaacc	11580
aaccggaggc	aaaaaaataacc	ctcccagttt	acgttaagcg	ccgaggagga	gaggattctg	11640
cgatacgtgc	agcagtccgt	gagtctgtac	ttgatgcggg	agggcgccac	cgcttccacg	11700
gcttttagaca	tgacggctcg	gaacatggaa	ccgtcctttt	actccgcca	ccggccgttc	11760
attaaccgtc	tgatggacta	cttccatcgc	gcggccgcca	tgaacgggga	gtacttcacc	11820
aatgccatcc	tgaatccgca	ttggatgccc	ccgtccggct	tctacaccgg	cgagtttgac	11880
ctgcccgaag	ccgacgacgg	cttctttgg	gacgacgtgt	ccgacagcat	tttcacgccc	11940
ggcaatcgcc	gattccagaa	gaaggagggc	ggagacgagc	tccccctctc	cagcgtggag	12000
gcggcctcta	ggggagagag	tccctttccc	agtctgtctt	ccgccagcag	tggtcgggta	12060
acgcgcccgc	ggttgccggg	ggagagcgcac	tacctgaacg	accccttgc	gcggccggct	12120
aggaagaaaa	atttccccaa	caacgggtg	gaaagttgg	tggataaaat	gaatcggtgg	12180
aagacctacg	cccaggagca	gcgggagtgg	gaggacagtc	agccgcgacc	gctggttccg	12240
ccgcactggc	gtcgtcagag	agaagacccg	gacgactccg	cagacgatag	tagcgtgttgc	12300
gacctggag	ggagcggagc	caaccccttt	gctcaattgc	aacccaagg	gcgttccagt	12360
cgccctact	aataaaaaag	acgcggaaac	ttaccagagc	catggccaca	gcgtgtgtcc	12420
tttcttcctc	tctttcttcc	tcggcgcggc	agaatgagaa	gagcggtgag	agtcacgccc	12480
gcggcgtatg	agggtccgccc	cccttcttac	gaaagcgtga	tggatcagc	gaacgtgccc	12540
gccacgctgg	aggcgcccta	cgttcctccc	agatacctgg	gacctacgga	gggcagaaac	12600
agcatccgtt	actccgagct	ggcacccctg	tacgatacca	ccaaggtgt	cctggtggac	12660
aacaagtcgg	cggacatcgc	ctccctgaat	tatcaaaacg	atcacagcaa	ttttctgact	12720
accgtggtgc	agaacaatga	tttcaccccg	acggaggcgg	gcacgcagac	cattaacttt	12780
gacgagcgtt	cccgctgggg	cggtcagctg	aaaaccatcc	tgcacaccaa	catgcccac	12840
atcaacgagt	tcatgtccac	caacaagttc	agggccaggg	tgatggttaa	aaaggctgaa	12900
aaccagcctc	ccgagttacga	atggtttgag	ttcaccattc	ccgagggcaa	ctattccgag	12960
accatgacta	tcgatctgat	gaacaatgcg	atcgtggaca	attacctgca	agtggggagg	13020

cagaacgggg tattggaaag cgatatcgcc gtaaaatttg ataccagaaa cttccgactg 13080
 ggtgggatc ccgtgaccaa gctggtgatg ccaggcgtgt acaccaacga ggctttcac 13140
 cccgacatcg tgctgctgcc ggggtgcggt gtggacttca ctcagagccg tttgagtaac 13200
 ctgttaggga tcagaaagcg ccgccccttc caagagggct ttcagatcat gtatgaggac 13260
 ctggaagggat gtaacattcc aggttgcta gacgtgccgg cgtatgaaga gagtgttaaa 13320
 caggcggagg cgcagggacg agagattcga ggcgacacct ttgccacgga acctcacgaa 13380
 ctggtaataa aacctctgga acaagacagt aaaaaacgga gttacaacat tatatccggc 13440
 actatgaata ccttgtaccg gagctggttt ctggcttaca actacggggta tcccgaaaag 13500
 ggagtgagat catggaccat actcaccacc acggacgtga cctgcggctc gcagcaagt 13560
 tactggtccc tgccggatat gatcaagac ccggtcaccc tccgccccctc caccctacg 13620
 agcaacttcc cgggtggggg caccgagctg ctgcccgtcc atgccaagag cttctacaac 13680
 gaacaggccg tctactcgca actcattcgc cagtcacccg cgcttaccca cgtgttcaat 13740
 cgctttcccg agaaccagat tctggtgcbc cctcccgctc ctaccattac caccgtcagt 13800
 gaaaacgttc ccgcctcac agatcacgga accctgccgc tgcgcagcag tatcagtgg 13860
 gttcagcgcg tgaccatcac cgacgcccaga cgtcgaacct gtcctacgt ttacaaagct 13920
 cttggcgtag tggctcctaa agtgcctct agtcgcaccc tctaaacatg tccatcctca 13980
 tctctcccgtaa taacaacacc ggctggggac tggctccgg caagatgtac ggcggagcca 14040
 aaaggcgctc cagtcagcac ccagttcgag ttcggggcca cttccgtgct ccctggggag 14100
 cttacaagcg aggactctcg ggccgaacgg cggtagacga taccatagat gccgtgattg 14160
 ccgacgcccgg cgggtacaac cccggaccgg tcgctagcgc cgccctccacc gtggattccg 14220
 tgatcgacag cgtggtagct ggcgctcggg cctatgctcg ccgcaagagg cggctgcattc 14280
 ggagacgtcg ccccaccgccc gccatgctgg cagccagggc cgtgctgagg cggggccgg 14340
 gggtaggcag aagggtatg cgcgcgctg ccgcacacgc cgccgcccgg agggcccgcc 14400
 gacaggctgc cggccaggct gctgcccaca tcgctagcat ggccagacccc aggagaggaa 14460
 acgtgtactg ggtgcgcgat tctgtacgg gagtccgagt gccggcgcgc agccgaccc 14520
 cccgaagtta gaagatccaa gctgcaaga cggcggtact gagtctccct gttgttatca 14580
 gcccaacatg agcaagcgca agttaaaga agaactgctg cagacgctgg tgcctgagat 14640
 ctatggccct cggacgtga agcctgacat taagccccgc gatatacgat gtgtaaaaaa 14700
 gcggggaaaag aaagaggaac tcgccccgtt agacgatggc ggagtggaaat ttatttaggag 14760
 tttcgcccccg cgacgcagggtt caaatggaa agggcggcgg gtacaacgcg ttttggggcc 14820
 gggcaccgcg gtagttttta ccccgggaga gcggcggcc gttaggggtt tcaaaaggca 14880
 gtacgacgag gtgtacggcg acgaggacat attggAACAG gcggctcaac agatcgaggaa 14940
 atttgccctac ggaaagcgat cgcgtcgca agacctggcc atcgcttttag acagcggcaa 15000
 cccccacgcggcc accctcaaaac ctgtgacgct gcagcagggtg ctcccggtga ggcgcac 15060

ggacagcaag agggaaataa aaagagaaaat ggaagatctg cagcccacca tccagctcat 15120
 ggtccctaaa cgccagaggc tggaaagaggt cctggagaaa atgaaagtgg acccaagcat 15180
 agagccggac gtcaaagtca ggccgatcaa agaagtggcc cctggtctcg gggtgagac 15240
 ggtggatatc cagatccccg tcacgtcagc ttcgaccgccc gtggaaagcca tggaaacgca 15300
 aacggaaacc cctgcccgcga tcggttaccag ggaagtggcg ttgcaaacccg accccctggta 15360
 cgaatacgcc gcccctcggc gtcagaggcg acccgctcgta cagggccccg ccaacgccc 15420
 catgccagaa tatgcgtcgc atccgtctat cctgcccacc cccggctacc ggggagtgac 15480
 gtatcgccc tcaggaaccc gccgcccgaac ccgtcgccgc cgccgctccc gtcgtgtct 15540
 ggccccctgt tcgggtgcgc gcgtAACACG ccggggaaag acagttacca ttcccaaccc 15600
 ggcgttaccac cctagcatcc tttaatgact ctggctttt gcagatggct ctgacttgcc 15660
 gcgtgcgcct tcccgttccg cactatcgag gaagatctcg tcgttaggaga ggcattggcgg 15720
 gtagtggtcg ccggcgggct ttgcgcaggc gcatgaaagg cggaaattta cccgctctga 15780
 taccataat cgccgcccgc atcggtgcca tacccggcgt cgcttcagtg gccttgcaag 15840
 cagctcgtaa taaataaaacg aaggctttt cacttatgtc ctggctctga ctatttatg 15900
 cagaaagagc atggaagaca tcaattttac gtcgtggct ccgcggcacg gtcgcggcc 15960
 gctcatgggc acctggaacg acatcgac cagtcagctc aacggggcg ctttcaattg 16020
 ggggagcctt tggagcggca taaaaaactt tggctccacg attaaatcct acggcagcaa 16080
 agccttggaaac agtagtgctg gtcagatgct ccgagataaa ctgaaggaca ccaacttcca 16140
 agaaaaagtg gtcaatgggg tgggtgaccgg catccacggc gcggtagatc tcgccaacca 16200
 agcgggtgcag aaagagattt acaggcggtt ggaaagctcg cgggtgcgc cgcagagagg 16260
 ggttggatgtg gaggtcgagg aagtagaagt agagggaaag ctgccccgc tggagaaagt 16320
 tcccggtgcg cctccgagac cgcagaagcg acccaggcca gaactagaag aaactcttgt 16380
 gacggagagc aaggagcctc cctcgtaacga gcaaggcttg aaagagggcg cctctccacc 16440
 ctacccaaatg acaaaaaccga tcgcgcctat ggctcgccgc gtgtacggga aggactacaa 16500
 gcctgtcacg ctagagctcc ccccgccgc accgcccggc cccacgcgcc cgaccgttcc 16560
 cccccccctg ccggctccgt cggcgggacc cgtgtccgca cccgtcgccg tgcctctgcc 16620
 agccgcccgc ccagtggccg tggccactgc cagaaacccc agaggccaga gaggagccaa 16680
 ctggcaaaagc acgctgaaca gcatcggtgg cctggagtg aaaagcctga aacgcccgc 16740
 ttgctattat taaaagtgtt gctaaaaaat ttcccggtt atacgcctcc tatgttaccg 16800
 ccagagacgc gtgactgtcg ccgcgagcgc cgcttcaag atggccaccc catcgatgat 16860
 gcccgcgtgg tcttacatgc acatcgccgg gcaggacgcc tcggagtacc tgagccccgg 16920
 tctcggtcag ttccggccgc ccaccgacac ctacttcagc ttggggaaaca agtttagaaa 16980
 ccccccaccc acgatgtaac cacggaccgc tcgcaaaggc tgaccctgcg 17040
 ttttgtgccc gtagaccggg aggacaccgc gtactttac aaagtgcgt acacgctggc 17100
 cgttagggac aaccgagtgc tggacatggc cagcacctac tttgacatcc ggggagtgct 17160

ggatcgccgt cccagttta agccctactc gggtaccgcg tacaattccc tggctcccaa 17220
 gggcgctccc aaccctgcag aatggacgaa tttagacagc aaagttaaag tgagggcaca 17280
 ggcgcctttt gttagctcgt atggtgctac agcgattaca aaagaggta tttaggtgg 17340
 agtaaccta acagactccg gatcaacacc acagtatgca gataaaacgt atcagcctga 17400
 gccgcaaatt ggagaactac agtggAACAG cgatgttgg accgatgaca aaatagcagg 17460
 aagagtgcta aagaaaacaa cgcgcattttt cccttggatgg ctgcataatg ccaggcccac 17520
 taatgaaaaa ggaggacagg caacaccgtc cgctagtcaa gacgtgcaaa atccccgatt 17580
 acaattttttt gcctctacta atgtcgccaa tacaccaaaa gcagttctat atgcggagga 17640
 cgtgtcaatt gaagcgccag acactcactt ggtgttcaaa ccaacagtca ctgaaggcat 17700
 tacaagttca gaggctctac tgacccaaca agctgctccc aaccgtccaa actacatagc 17760
 ctttagagat aattttattt gtctcatgta ctacaatagc acaggttaaca tgggagttact 17820
 ggcaggccag gcttctcagc taaatgcagt tggtgacctg caagacagaa atactgagct 17880
 gtcctaccaa ctcatgttgg acgcgcgttgg agaccgcgtt cgggtactttt ctatgtggaa 17940
 ccaagctgtg gatagttacg atcctgatgt aagaatcata gaaaaccatg gcgtagaaga 18000
 tgaattgcct aattatttgc ttcccttggg aggcatggca gtaaccgaca cctactcgcc 18060
 tataaaggtt aatggaggag gcaatggatg ggaagccaat aacggcggtt tcaccgaaag 18120
 aggagtggaa atagtttcag ggaacatgtt tgccatggag attaacctgc aagccaaacct 18180
 atggcgttagc tttctgtact ccaatattgg gctgtacccgt ccagactctc tcaaaatcac 18240
 tcctgacaac atcacactcc cagagaacaa aaacacccat cagtatatga acggtcgcgt 18300
 gacgccaccc gggctgggtt acacccatgt taacgtgggc ggcgcgtggt ccccccgtatgt 18360
 catggacagt attaaccctt ttaatcacca ccgcaacgccc ggactccgct accgttccat 18420
 gctcctggaa aacggacgct acgtgcccctt ccacatccag gtgccccaga aattcttgc 18480
 aattaaaaac ctgctgctgc tccccgggttc ctacacccatc gagtggact tccgcaagga 18540
 cgtgaacatg atcttgcaga gctcgctggg caatgacccgtt ccgtggacg gggccagcat 18600
 ccgcttcgac agcatcaacc tgtacgccaa cttttcccccc atggcccaca acacggcctc 18660
 cacccctggaa gccatgctgc gcaacgcacac caacgcacaa tctttcaacg actacctgt 18720
 cgcggccaac atgctgtacc ccatccccgc caacgcaccc accgtgcccata tctccattcc 18780
 ctctcgcaac tgggcagcct tcagggggctg gagtttccacc cgcctcaaaa ccaaggagac 18840
 cccctcgctg ggctccgggt tcgaccccta cttcgctac tccggctcca tcccttacct 18900
 ggacggcacc ttctacctca accatacttt caaaaagggtt tcaatcatgt tcgactccctc 18960
 cgtcagctgg cccggcaacg accgtctgctt gacgcacccac gagttcgaaa tcaagcggtt 19020
 ggtggacggtt gaagggtaca acgtggctca gagcaacatg accaaggact ggttcctgat 19080
 tcagatgctc agccactaca acatcggttca ccagggttcc tacgtgccccg aaaattacaa 19140
 ggaccgcacgt tactcttct tcagaaactt ccaacccatg agccgcacaa ttgttagattc 19200

aacggcttac actaattatc aggatgtgaa actgccatac cagcataaca actcagggtt 19260
cgtggctac atgggaccca ccatgcgaga ggggcaggcc taccggcca actatcccta 19320
tcccgtatt gggccacccg ccgtgcccag cctcacgcag aaaaagttcc tctgcgaccg 19380
ggtgatgtgg aggatccccct tctctagcaa cttcatgtct atgggctccc tcaccgacct 19440
ggggcagaac atgctgtacg ccaactccgc tcacgcctt gatatgacct ttgaggtgga 19500
tcccatggat gagcccacgc ttctctatgt tctgtttgaa gtcttcgacg tggtgcgcac 19560
ccaccagccg caccgcggcg tcacgcggc cgtctacctg cgacacaccc ttctgtccgg 19620
taacgccacc acctaaagaa gccgatgggc tccagcgaac aggagctgca ggccattgtt 19680
cgcgacctgg gctgcgggccc ctactttttg ggcacccctg acaagcgttt tccggcttc 19740
atgtcccccc acaagccggc ctgtgccatc gttAACACGG ccggacggga gaccgggggg 19800
gtccactggc tcgccttcgc ctggAACCCG cgtaaccgca cctgctaccc ttgcacccct 19860
tttggtttct ccgacgaaag gctgaagcag atctaccagt tcgagtacga ggggctccctc 19920
aagcgacgc ctctggcctc cacggccgac cactgcgtca ccctggaaaa gtccacccaa 19980
acggtccagg ggccctctc ggccgcctgc gggctttct gttgcatttt tttgcacgc 20040
ttcgtgcact ggcctcacac ccccatggat cacaacccca ccatggatct gtcacccga 20100
gtgccaaca gcatgctca cagccccag gtcgccccca ccctgcgcgg taaccaggaa 20160
cacctgtatc gctttctggg gaaacactct gcctattttc gccgccaccc gcagcgcatc 20220
gaacggggca cggccttcga aagcatgagc caaagagtgt aatcaataaa aaacatTTT 20280
atTTgacatg atacgcgtt ctggcgTTT attaaaaatc gaagggttcg agggagggggt 20340
cctcgtgccc gctggggagg gacacgttgc gatactggaa acgggcgcctc caacgaaact 20400
cggggatcac cagccgcggc aggggcacgt cttctaggTT ctgcttccaa aactgcccga 20460
ccagctgcag ggctcccatg acgtcggcgcc ccgatatctt gaagtcgcag ttagggccgg 20520
agctccgcg gctgtgcgg aacacggggt tggcacactg gaacaccaggc acgccccgg 20580
tgtggatact ggccaggggcc gtcgggtcgg tcacctccga cgcatccaga tcctcggcgt 20640
tgctcaggGC aaacggggTC agcttgacAA tctgccc aatctggggT actaggTCG 20700
gcttggtag gcagtcgcag cgcaGAGGGTA tcaggatgcg tcgctgccc cgTTgcATGA 20760
tagggtaact cggccagg aactcctcca tttgacggaa ggccatctgg gcttgcgc 20820
cctcgggtta gaatagcccc caggacttgc tagagaatac gttatgaccc cagttgacgt 20880
cctccgcgcga gcagcggcg tcttcgttct tcagctgaac cacgttgcgg ccccaacgg 20940
tctggaccac cttggctcta gtgggggtcct cttcagcgc cccgtgtccg ttctcgctgg 21000
ttacatccat ttccaacacg tgctccttcg agaccatctc cactccgtgg aagcaaaaca 21060
ggacgcctc ctgctggta ctgcgtatgc cccatacggc gcacccggg ggctcccgac 21120
tcttgggttt taccccccgcg taggcttcca tgtaagccat aaggaatctg cccatcagct 21180
cggtgaaggt cttctgggtt gtgaaggTTA gcggcaggcc gcgggtgcTCC tcgttcaacc 21240
aagtttgaca gatcttgcgg tacaccgctc cctggcggg cagaaactta aaagccgcTc 21300

tgctgtcgtt gtctacgtgg aacttctcca ttaacatcat catggtttcc atacccttct 21360
 cccacgctgt caccagtgg ttgctgtcg gggttcttcac caacacggcg gtagagggc 21420
 cctcgccggc cccgacgtcc ttcatggtca ttctttgaaa ctccacggag ccgtccgcgc 21480
 gacgtactct ggcgaccgg a gggtagctga agcccaccc caccacggtg ctttcgcct 21540
 cgctgtcgga gacaatctcc gggatggcg gcggcgccgg tgcgccttg cgagccttct 21600
 tcttgggagg gagctgaggg gcctcctgct cgcgctcgga gctcatctcc cgcaagtagg 21660
 gggtaatgga gctgcctgct tgggtctgac gggtggccat tgtatcctag gcagaaagac 21720
 atggagctta tgcgcgagga aactttaacc gccccgtccc ccgtcagcga cgaagatgtc 21780
 atcgtcgaac aggacccggg ctacgttacg ccgcccggg atctggaggg gcctgaccgg 21840
 cgcgacgcta gtgagcggca ggaaaatgag aaagaggagg cctgctaccc cctggaaggc 21900
 gacgtttgc taaagcattt cgccaggcag agcaccatag ttaaggaggc cttgcaagac 21960
 cgctccgagg tgcccttgaa cgtcgcccgc ctctccagg cctacgaggc gaacctttc 22020
 tcgcctcgag tgccctccaa gagacagccc aacggcacct gcgagccaa cccgcgactc 22080
 aacttctacc ccgtgttgc cgtaccagag gcgcgtggca cctatcacat tttttcaaa 22140
 aaccaacgca tccccctatc gtgccgggccc aaccgcaccc cgccgatag gaatctcagg 22200
 cttaaaaacg gagccaacat acctgatatac acgtcgctgg aggaagtgcc caagatttc 22260
 gagggtctgg gtcgagatga gaagcggcg gcgaacgctc tgcagaaaga acagaaagag 22320
 agtcagaacg tgctgggtgaa gctggagggg gacaacgcgc gtctggccgt cctcaaacgc 22380
 tgcataagaag tctcccactt cgccctacccc gccctcaact tgccacccaa agttatgaaa 22440
 tcggtcatgg atcagctgct catcaagaga gctgagcccc tggatcccga ccaccccgag 22500
 gcggaaaact cagaggacgg aaagcccgtc gtcagcgcacg aggagctcga gcgggtggctg 22560
 gaaaccaggg acccccaaca gttgcaagag aggcccaaga tggatgtggc ggccgtgctg 22620
 gtcaccgtgg agctggaatg cctgcaacgg ttttcagcg acgtggagac gctacgaaa 22680
 atcggggaat ccctgcacta caccccccgc caggctacg tccgcccaggc ctgcaagatc 22740
 tccaaacgtgg agctcagcaa cctggcttcc tacatggca tcctccacga gaaccggctg 22800
 gggcagagcg tgctgcactg cacccgtcaa ggcgaggcgc ggcgggacta cgtgcgagac 22860
 tgcatactacc tcttcctcac cctcacctgg cagaccgcca tggcgctctg gcagcagtgc 22920
 ttggaaagaga gaaacctcaa agagctagac aaactcctct gccgcccagcg gcgcgcctg 22980
 tggccgggtt tcagcgagcg cacggctgccc agcgctctgg cggacatcat cttccggag 23040
 cgcctgatga aaaccttgc aaacggcctg ccggatttca tcagtcaaag cattttgcaa 23100
 aacttccgct ctttgcctt ggaacgctcc gggatcttgc ccgcctatgag ctgcgcgcta 23160
 ctttcgtact ttgtccccct ctcctaccgc gagtgccctc ccccaactgtg gagccactgc 23220
 tacctttcc aactggccaa ctttctggcc taccactccg acctcatgga agacgtaagc 23280
 ggagagggtt tactggagtg ccactgcccgc tgcaaccgtt gcacccccc cagatcgctg 23340

gcctgcaaca ccgagctact cagcgaaacc caggtcatag gtacccatcg gatccagggg 23400
 ccccagcagc aagaggggtgc ttccggcttg aagctcactc cggcgctgtg gacctcggt 23460
 tacttacgca aattttagtc cgaggactac cacgcccaca aaattcagtt ttacgaagac 23520
 caatctcgac caccgaaagc cccctcactg gcctgcgtca tcacccagag caagatcctg 23580
 gccaattgc aatccatcaa ccaagcgcbc cgcgatttcc ttttggaaaaa gggtcgaaaa 23640
 gtgtacctgg accccccagac cggcgaggaa ctcaacccgt ccacactctc cgtcgaaagca 23700
 gccccccga gacatgccgc ccaagggAAC cgccaaagcag ctgatcgctc ggcagagagc 23760
 gaagaagcaa gagctgctcc agcagcaggt ggaggacgag gaagagatgt gggacagcca 23820
 ggcagaggag gtgtcagagg acgaggagga gatggaaagc tggcacagcc tagacgagga 23880
 ggaggacgag ctttcagagg aagaggcgac cgaagaaaaa ccacctgcac ccagcgcgcc 23940
 ttctctgagc cgacagccga agccccggcc cccgacgccc cccggccggct cactcaaagc 24000
 cagccgtagg tggacgcca ccgaatctcc agcggcagcg gcaacggcag cggtaaggc 24060
 caaacgcgag cggcgaaaaatttgcctg gcgggcccac aaaaggcagta ttgtgaactg 24120
 cttgcaacac tgccccggaa acatctcctt tgcccgacgc tacctcctct tccatcacgg 24180
 tgtggccttc cctcgcaacg ttctctatta ttaccgtcat ctctacagcc cctacgaaac 24240
 gctcggagaa aaaagctaag gcctccctcg ccgcgaggaa aaactccgccc gccgctgccc 24300
 ccgccaagga tccaccggcc accgaagagc tgagaaagcg catcttccc actctgtatg 24360
 ctatcttca gcaaagccgc gggcagcacc ctcagcgca actgaaaata aaaaaccgct 24420
 cttccgctc gctcaccgc agctgtctgt accacaagag agaagaccag ctgcagcgca 24480
 ccctggacga cgccgaagca ctgttcagca aatactgctc agcgtctctt aaagactaaa 24540
 agacccgcgc tttttcccccc tcggccgcca aaacccacgt catcgccagc atgagcaagg 24600
 agattcccac cccctacatg tggagctatc agccccagat gggcctggcc gcggggccg 24660
 cccaggacta ctccagcaag atgaactggc tcagcgccgg ccccccacatg atctcacgag 24720
 ttaacggcat ccgagcccac cgaaaccaga ttctcttaga acaggcggca atcaccgcca 24780
 caccggcgcc ccaactcaac ccccttagtt ggcccgccgc ccaggtgtat cagaaaaatc 24840
 cccgcccac cacagtccctc ctgccacgcg acgcggaggc cgaagtccctc atgactaact 24900
 ctggggtaca attagcgggc gggtccaggt acgccaggtc cagaggtcgg gccgctcctt 24960
 actctcccg gagtataaaag agggtatca ttcgaggccg aggtatccag ctcaacgacg 25020
 agacggtgag ctccctcaacc ggtctcagac ctgacggagt cttccagctc ggaggagcgg 25080
 gccgctcttc cttcaccact cgccaggcct acctgaccct gcagagctct tcctcgacg 25140
 cgcgctccgg gggaatcgcc actctccagt tcgtggaaaga gttcggttccc tccgtctact 25200
 tcaacccctt ctccggctcg cctggacgct acccgacgc cttcattccc aactttgacg 25260
 cagtgagtga atccgtggac ggctacgact gatgacagat ggtcgcccg tgagagctcg 25320
 gctgcgacat ctgcatcact gccgtcagcc tcgctgctac gctcgccggagg cgatcgctt 25380
 cagctacttt gagctgcccgg acgagcaccc tcagggtccg gctcacgggt tgaaactcga 25440

gatcgagaac gcgcgtcgagt ctcgcctcat cgacaccctc accgcccggac ctctccctgg 25500
 agaaaatccaa cgggggatca ctaccatcac cctgttctgc atctgccccca cgccccggatt 25560
 acatgaagat ctgtgttgatc atctttgcgc tcagtttaat aaaaactgaa ctttttgcgg 25620
 cacctcaac gccatctgtg atttctacaa caaaaaagttc ttctggcaaa ggtacacaaa 25680
 ctgtatTTTA ttcttaattct acctcatcta tcgtgctgaa ctgcgcctgc actaacgaac 25740
 ttatccagtg gattgcaaac ggtagtgtgt gcaagtactt ttgggggaac gatatagtta 25800
 gtagaaataa cagccttgc gagcactgca actcctccac actaatcctt tatccccat 25860
 ttgttactgg atggtatatg tgcgttggct ccggTTTaaa tcctagttgc tttcataagt 25920
 ggTTTCTACA aaaagagacc cttcccaaca attctgttgc ttTTTTCGCC ctatcctact 25980
 gctgttctcc ctctggttac tcttcaaac ctctaaattgg tatttttagct ttgatactca 26040
 taatctttat taactttata ataattaaca acttacagta aacatgcttgc ttctactgct 26100
 cgccacatct ttgcgtctct ctcacgcccag aacaagtatt gttggcgcag gttacaatgc 26160
 aactcttcaa tctgcttaca tgccagattc cgaccagata ccccatatta cgtggtaactt 26220
 acaaacctcc aaacctaatt cttcattttta tgaaggaaac aaactctgcg atgactccga 26280
 caacagaacg cacacatttc cccacccttc actacaattc gaatgcgtaa acaaaagctt 26340
 gaagctttac aacttaaagc cttcagattc tggcttgcgtac catgctgttag ttgaaaaaag 26400
 taatttagaa gtccacagtg attacattga attgacggtt gtggacctgc cacctccaaa 26460
 atgtgaggtt tcctcctctt accttgaagt tcaaggcgtg gatgcctact gcctcataca 26520
 cattaactgc agcaactcta aatatccagc tagaatttac tataatggac aggaaagtaa 26580
 tctttttat tatttaacaa caagcgtgg taacggtaaa cagttacctg actattttac 26640
 tgctgttgcgtt gaattttcca cctacagaga aacgtatgcc aagcggcctt acaatttctc 26700
 atacccgttt aacgacctt gcaatgaaat acaagcgtc gaaactggaa ctgattttac 26760
 tccaattttc attgctgcca ttgttgcgtt cttattacc attattgtca gcctagcatt 26820
 ttactgcttt tacaagccca aaaaccctaa gttgaaaaa cttaaactaa aacctgtcat 26880
 tcaacaagtg tgattttgtt ttccagcatg gtagctgcatt ttctacttct cctctgtcta 26940
 cccatcattt tcgtctcttc aactttcgcc gcagTTTCCC acctggaaacc agagtgccta 27000
 ccgccttttgcgttatct gatttcacc ttgtttgtt gtatatccat ttgcagtata 27060
 gcctgctttt ttataacaat cttcaagcc gccgactatt ttacgtgcg aattgcttac 27120
 tttagacacc atcctgaata cagaatcaa aacgttgcct cttacttttgcgtt 27180
 ttaagttatt gctgatactt aattatttac ccctaataatcaa ctgttaattgtt ccattcacca 27240
 aaccctggtc attctacacc tgTTTGTATA aaatccccga cactccgtt gcttggcttt 27300
 acgcagccac cgccgcTTG gtattttat ctacttgcct tggagtaaaa ttgtatTTA 27360
 ttttacacac tgggtggcta catcccagag aagatttacc tagatatcct cttgtaaacg 27420
 cttttcaattt acagcctctg cttccctcctg atcttcttcc tcgagctccc tctattgtga 27480

gctactttca actcaccggg ggagatgact gactctcagg acattaatat tagtgtggaa 27540
 agaatagctg ctcagcgta gcgagaaaacg cgagtgttg aatacctgga actacagcaa 27600
 cttaaagagt cccactggtg tgagaaaagga gtgctgtgcc atgttaagca ggcagccctt 27660
 tcctacgatg tcagcgta gggacatgaa ctgtcttaca ctttgccctt gcagaaaacaa 27720
 accttctgca ccatgatggg ctctacctcc atcacaatca cccaacaagc cgggcctgta 27780
 gagggggcta tcctctgtca ctgtcacgca cctgattgca tgtccaaact aatcaaaaact 27840
 ctctgtgctt taggtgatat ttttaagggtg taaatcaata ataaacttac cttaaatttg 27900
 acaacaaatt tctggtgaca tcattcagca gcaccactt acccttcc cagctctcgt 27960
 atgggatgcg atagtgggtg gcaaacttcc tccaaaccct aaaagaaaata ttggtatcca 28020
 cttccttgc ctcacccaca attttcatct tttcatagat gaaaagaacc agagttgatg 28080
 aagacttcaa ccccgtctac ccctatgaca ccacaaccac tcctgcagtt ccctttatata 28140
 cacccccctt tgtaaacagc gatggcttc aggaaaaccc cccaggtgtt ttaagtctgc 28200
 gaatagctaa acccctataat ttcgacatgg agagaaaact agcccttca cttggaagag 28260
 ggttgacaat taccgcccggcc ggacaattag aaagtacgca gagcgtacaa accaaccac 28320
 cgttgataat taccaacaac aacacactga ccctacgtca ttctcccccc ttaaacctaa 28380
 ctgacaatag ctttagtgcta ggctactcga gtcctctccg cgtcacagac aacaaactta 28440
 catttaactt cacatcacca ctccgttatg aaaatgaaaa ccttactttt aactatacag 28500
 agcctcttaa acttataaaat aacagccttgc ccattgacat caattcctca aaaggcctta 28560
 gtagcgtcgg aggctacta gctgtaaacc tgagttcaga cttaaagttt gacagcaacg 28620
 gatccatagc ttttggcata caaaccctgt ggaccgctcc gacctcgact ggcaactgca 28680
 ccgtctacag cgagggcgat tccctactta gtctctgtt aaccaaatgc ggagctcag 28740
 tcttaggaag tgtaagttt accggtttaa caggaaccat aacccaaatg actgatattt 28800
 ctgtcaccat tcaatttaca tttgacaaca atggtaagct actaagcttccacttataa 28860
 acaacgcctt tagtattcga cagaatgaca gtacggcctc aaaccctacc tacaacgccc 28920
 tggcgtttat gcctaacagt accatataatg caagaggggg aggtgggtgaa ccacgaaaca 28980
 actactacgt ccaaacgtat ctttagggaa atgttcaaaa accaatttactt cttactgtaa 29040
 cctacaactc agtcgcccaca ggatattcct tatctttaa gtggactgct cttgcacgtg 29100
 aaaagttgc aaccccaaca acctcgaaaa gctacattac agaacaataa aaccgtgtac 29160
 cccaccgttt cgtttttttc agatgaaacg ggcgagagtt gatgaagact tcaacccagt 29220
 gtacccttat gaccccccac atgctcctgt tatgccccttc attactccac ctttacctc 29280
 ctcggatggg ttgcaggaaa aaccacttgg agtgttaagt ttaaactaca gagatcccat 29340
 tactacgcaa aatgagtc ttcataattaa actaggaaac ggcctcactc tagacaacca 29400
 gggacaacta acatcaacccg ctggcgaagt agaacctcca ctcactaacg ctaacaacaa 29460
 acttgcactg gtctatagcg atccttttagc agtaaagcgc aacagcctaa ctttatcgca 29520
 caccgctccc cttgttatttgc ctgataactc ttttagcatttgc caagttttagt agccttatttt 29580

tataaatgac aaggacaaac tagccctgca aacagccgcg cccttgtaa ctaacgctgg 29640
 caccccttcgc ttacaaagcg ccgc(ccttt aggcatcgca gaccAAACCC taaaactcct 29700
 gtttaccaac cctttgtact tgcaagaataa ctttctcacg ttagccattt aacgacccct 29760
 tgccatttacc aataactggaa agtggctct acagctctcc ccaccgctac aaacagcaga 29820
 cacaggctt actttgcaaa ccaacgtgcc attaactgtt agcaacggga ccctaggctt 29880
 agccataaag cgcccactta ttatttcagga caacaacttg tttttggact tcagagctcc 29940
 cctgcgtctt ttcaacagcg acccagtact agggcttaac ttttacaccc ctcttgcgg 30000
 acgcgatgag gcgcacttactg ttaacacagg ccgcggcctc acagtggatt acgtggttt 30060
 aattttaaat cttggtaagg atttcgctt tgacaacaac accgtttctg tcgctcttag 30120
 tgctgctttg cctttacaat acactgatca gcttcgcctt aacgtggcg ctgggctgcg 30180
 ttacaatcca gtgagtaaga aattggacgt gaaccccaat caaaacaagg gtttaacctg 30240
 ggaaaaatgac tacctcattt taaagctagg aatggatta ggttttgatg gcgtggaaa 30300
 catagctgtt tctcctcaag ttacatcgcc tgacaccta tggaccactg ccgacccatc 30360
 ccccaattgt tccatctaca ctgattttaga tgccaaaatg tggctctcg tggtaaaaaca 30420
 aggggggtgtg gttcacggtt ctgttgcctt aaaagcattt aaggaaccc tattgagtcc 30480
 tacggaaagc gccattgtta ttatactaca ttttgcataat tatggagtgc gaattctcaa 30540
 ttatcccact ttgggcactc aaggcacgtt gggaaataat gcaacttggg gttataggca 30600
 gggagaatct gcagacacta atgtactcaa tgcacttagca tttatgccc gttcaaaaag 30660
 gtacccaaga gggcgtggaa gcgaagttca gaatcaaact gtggctaca cttgtataca 30720
 gggtgacttt tctatgccc taccgtacca aatacagtac aactatggac caactggcta 30780
 ctccctttaaa tttatTTGGA gaactgtttc aagacaacca tttgacatcc catgctgttt 30840
 tttctcttac attacggaaag aataaaaacaa cttttcttt ttatTTTCTT tttatTTTAC 30900
 acgcacagta aggcttcctc cacccttcca tctcacagca tacaccagcc tctccccctt 30960
 catggcagta aactgttgg agtcagtccg gtatTTGGGA gttaagatcc aaacagtctc 31020
 tttggtgatg aaacatggat ccgtgatgga cacaatccc tgggacaggt tctccaaacgt 31080
 ttccggtaaaa aactgcatac cgccttacaa aacaaacagg ttcaggctct ccacgggtta 31140
 tctccccat caaactcaga cagagtaaag gtgcgtatgat gttccactaa accacgcagg 31200
 tggcgctgtc tgaacctctc ggtgcgactc ctgtgaggct ggtaagaagt tagattgtcc 31260
 agcagcctca cagcatggat catcagtcta cgagtgcgtc tggcgcagca ggcgcatacga 31320
 atctcactga gattccggca agaatcgac accatcacaa tcaggttggt catgatccca 31380
 tagctgaaca cgctccagcc aaagctcatt cgctccaaaca ggcgcaccgc gtgtccgtcc 31440
 aaccttactt taacataaatt caggtgtctg ccgcgtacaa acatgctacc cgcatacaga 31500
 acctcccccggg gcaaaccctt gttcaccacc tgcctgtacc agggaaacct cacatttac 31560
 agggagccat agatagccat tttaaaccctt ttagcttaaca ccgc(cccacc agctctacac 31620

tgaagagaac cgggagagtt acaatgacag tgaataatcc atctctcata acccctaatt 31680
 gtctgatgga aatccagatc taacgtggca cagcagatac acactttcat atacattttc 31740
 atcacatgtt tttcccaggc cgtaaaaata caatccaaat acacgggcca ctcctgcagt 31800
 acaataaagc taataacaaga tggtatactc ctcacccac taacatttg catgttcata 31860
 tttcacatt ctaagtaccg agagttctcc tctacaacag cactgcccg gtcctcacaa 31920
 ggtggtagct ggtgacgatt gtaaggagcc agtctgcagc gataccgtct gtcgcgttgc 31980
 atcgttagacc agggaccgac gcacccctc gtacttgtag tagcagaacc acgtccgctg 32040
 ccagcacgtc tccaagtaac gccggccct gcgtcgctca cgctccctcc tcaacgc当地 32100
 gtgcaaccac tcttgtaatt cacacagatc cctctcgcc tccggggcga tgcacaccc 32160
 aaacctacag atgtctcggt acagttccaa acacgttagt agggcgagtt ccaaccaaga 32220
 cagacagcct gatctatccc gacacactgg aggtggagga agacacggaa gaggcatgtt 32280
 attccaagcg attcaccaac gggtcgaaat gaagatcccg aagatgacaa cggtcgcc 32340
 cggagccctg atggaattta acagccagat caaacattat gcgatttcc aggctatcaa 32400
 tcgcggcc 32460
 tattatcaa 32520
 ttctccactc 32580
 gcaaatgatg 32640
 tcgcggcc 32700
 atcgggctcc 32760
 atcgcgaatc 32820
 tccatccgca 32880
 atctgttaac 32940
 tccgcgttag 33000
 gtagatgtt 33060
 ggatggcgcc 33120
 aaactcacta 33180
 gaaccgctcc 33240
 cgagtagcaa 33300
 aactgtgaa 33360
 tatattcagt 33420
 tcgtgcaagt 33480
 actgaagcaa 33540
 ctgtgcgggaa 33600
 atatgcacag 33660
 caaaaaaaaat 33720

cctccccgt cattatcata ttggcacgtt tccagaataa ggtatattat tgatgcagca	33780
aaacaatccc tctgggagca atcacaaaat cctccggtaa aaaaagcaca tacatattag	33840
aataaccctg ttgctggggc aaaaaggccc gtcgtcccag caaatgcaca taaatatgtt	33900
catcagccat tgccccgtct taccgcgtaa acagccacga aaaaatcgag ctAAAATCCA	33960
cccaacagcc tatagctata tatacactcc acccaatgac gctaataccg caccacccac	34020
gaccaaagtt cacccacacc cacaaaaccc gcgaaaatcc agcgccgtca gcacttccgc	34080
aatttcagtc tcacaacgtc acttccgcgc gcctttcac tttcccacac acgcccTTCG	34140
cccgcccccc ctcgcgccac cccgcgtcac cccacgtcac cgcacgtcac cccggccccg	34200
cctcgctcct ccccgctcat tatcatattt gcacgTTTCC agaataaggt atattatttg	34260
tgca	34264

<210> 5
<211> 31044
<212> DNA
<213> simian adenovirus SV-25

<400> 5	
catcatcaat aatatacctt attctggaaa cgtgccaata tgataatgag cggggaggag	60
cgaggcgggg ccgggggtgac gtgcggtgac gcgggggtggc gcgaggcg ggcaaggcgc	120
gcgggtgtgt gtgtgggagg cgcttagttt ttacgtatgc ggaaggaggt tttataccgg	180
aagatgggta atttgggctt atacttgtaa gttttgtgtt atttggcgcg aaaactgggt	240
aatgaggaag ttgaggttaa tatgtacttt ttatgactgg gcggaaatttc tgctgtatcag	300
cagtgaacctt tgggcgtga cggggaggtt tcgctacgtg acagtaccac gagaaggctc	360
aaaggccc tttattgtac tcttcagcgt tttcgctggg tatttaaacg ctgtcagatc	420
atcaagaggc cactctttag tgctggcgag aagagtttc tcctccgtgc tgccacgtat	480
aggctggtcc ccgagatgta cgggtttt agcgacgaga cgggtcgtaa ctcagatgac	540
ctgctgaatt cagacgcgt ggaaatttcc aattcgccctg tgctttcgcc gccgtcactt	600
cacgacctgt ttgtgtttt gctcaacgct tagcaacgtg ttatataggg tcaagaagga	660
gcaggagacg cagtttgcta ggctgttggc cgataactcct ggagttttt tggctctgga	720
tctaggccat cactctcttt tccaagagaa aattatcaaa aacttaactt ttacgtctcc	780
tggtcgcacg gttgcttccg ctgcctttat tacctatatt ttggatcaat ggagcaacag	840
cgacagccac ctgtcgtggg agtacatgct ggattacatg tcgatggcgc tgtggaggc	900
catgctgcgg aggagggttt gcatttactt gcgggcgcag cctccgcggc tggaccgagt	960
ggaggaggag gacgagccgg gggagaccga gaacctgagg gccgggctgg accctccaac	1020
ggaggactag gtgctgagga tgatcccga gaggggacta gtggggctag gaagaagcaa	1080
aagactgagt ctgaacctcg aaactttttt aatgagttga ctgtgagttt gatgaatcgt	1140
cagcgtccgg agacaatttt ctggtctgaa ttggaggagg aattcaggag gggggactg	1200
aacctgctat acaagtatgg gttgaacag ttaaaaactc actggttgga gccgtggag	1260

gattttggaa ccgccttgg aactttgtc aaagtggctc tgccggccgga taaggttac 1320
actatccgcc gcactgttaa cataaagaag agtgtttatg ttataggcca tggagctctg 1380
gtcaggtgc aaaccgtcg ccgggtggcc tttagttgcg gtatgcaaaa tctggcccc 1440
ggggtgatag gcttaaatgg tgtaacattt cacaatgtaa ggtttactgg tgaaagttt 1500
aacggctctg tgtttgc当地 taacacacag ctgacgctcc acggcgaaa ctttttaac 1560
tttaataaca catgtgtgga gtcgtgggc agggtgtctt tgaggggctg ctgtttcac 1620
ggctgctgga aggccgggtggt gggaaagactt aaaagtgtaa catctgtaaa aaaatgcgtg 1680
ttttagcggt gtgtgttggc tttaactgtg gagggctgtg gacgcattag gaataatgcg 1740
gcgtctgaga atggatgttt tctttgcta aaaggcacgg ctatgtttaaa gcataacatg 1800
atatgcggca gcggctgtta cccttcacag ctgttaactt gcgcggatgg aaactgtcag 1860
acccctgc当地 ccgtgcacat agcgtcccac cagcgccgca cctggccaaac attcgagcac 1920
aatatgctta tgcgttgtgc cgtccacttg ggcccttaggc gaggcgtgtt tgcgtttac 1980
cagtgttaact ttagccatac caagattttt ctagaacctg ataccttctc tcgagtgtgt 2040
ttcaatgggg tgtttgc当地 gtcaatggaa ctgtttaaag tgataagata tgatgaatcc 2100
aagtctcggtt gtcgccc当地 tgaatgc当地 gctaattcatc tgagggttgc当地 tcctgttaacc 2160
ctaaacgtta ccgaggagct gaggacggat caccacatgt tgcgttgc当地 gcgcaccgac 2220
tatgaatcca gc当地gagga gtgagggtgag gggcggagcc acaaagggtt taaaggggcg 2280
tgagggttgg gtgtgtatgat tcaaaatgag cggacgacg gacggcaacg cggttgggg 2340
tggagtgttc agcccttatac tgacatctg tcttc当地cc tggcaggag tgcgtcagaa 2400
tgttagtgggc tccaccgtgg acggacgacc ggtcgccc当地 gcaaattccg ccaccctcac 2460
ctatgccacc gtgggatcat cgttggacac tgccgc当地 gctgccc当地 ctgctgccc当地 2520
ttctactgct cgc当地gatgg cggctgatgg tggactgtat aaccaactgg ccactgc当地 2580
tgtggc当地t cggctctgg ttcaagaaga tggccctgaat gtatc当地tga ctc当地ctgg 2640
gatcatgtca cgtc当地tgg acgaaactggc tgc当地cagata tcccaagctt accccgatac 2700
cacttc当地gaa tcctaaaata aagacaaaca aatatgttga aaagtaaaaat ggctttatgg 2760
gttttttttgg gctcggtagg ctc当地ggtcca cctgtctgg tcgttaagaa ctttgtgtat 2820
gttttccaaa acacggtaca gatggcttgc gatgttcaag tacatggca tgaggccatc 2880
tttggggtga agataggacc attgaagagc gtc当地atgctcc ggggtgggtgt tgtaaattac 2940
ccagtc当地tag cagggttctt gggc当地tggaa ctggaaagatg tc当地tttagga gtaggctgat 3000
ggccaaagggc aggcccttag tgc当地gtgtt tacaaagcgg ttaagctggg agggatgc当地 3060
gc当地ggggag atgatatgca tcttggcttgc gatcttggagg ttagctatgt taccacccag 3120
gtctctgccc ggggttcatgt tatgaaggac caccagcacg gtc当地agccgg tgc当地ttggg 3180
gaacttgc当地 tgc当地gttgg aggggaaggc gtc当地agaat tttagagaccc ccttgc当地 3240
cccttaggttt tccatgc当地t caccataat gatggcaatg ggacccctgg cggcccttgc当地 3300

ggcaaacacg	ttttgggggt	tggaaacatc	atagtttgc	tctagagtga	gctcatcata	3360
ggccatctta	acaaagcggg	gtaggagggt	gcccgactgg	gggatgatag	ttccatctgg	3420
gcctggggcg	tagttaccct	cacagatctg	catctcccag	gccttaattt	ccgagggggg	3480
tatcatgtcc	acctgggggg	caataaaagaa	cacggttct	ggcgggggat	tgatgagctg	3540
ggtgaaagc	aagttacgca	gcagttgaga	tttgcacag	ccggtggggc	cgtagatgac	3600
cccgatgacg	ggttgcagct	ggtagttgag	agaggaacag	ctgccgtcgg	ggcgcaggag	3660
gggggctacc	tcattcatca	tgcttctaac	atgtttattt	tcactcacta	agtttgcaa	3720
gagcctctcc	ccacccaggg	ataagagttc	ttccaggctg	ttgaagtgtt	tcagcggttt	3780
taggccgtcg	ccatgggca	tctttcgag	cgactgacga	agcaagtaca	gtcggtcccc	3840
gagctcggtg	acgtgctcta	tggaatctcg	atccagcaga	cttcttggtt	gcgggggttg	3900
ggtcacttt	cgctgttaggg	caccagccgg	tggcgtcca	gggcccgcag	ggttctgtcc	3960
ttccagggtc	tcagcgtccg	ggtgagggtg	gtctcggtga	cggtaaggg	atgagccccg	4020
ggctggcgc	ttgcgagggt	gcgcattcagg	ctcatcctgc	tggtgctgaa	gcggacgtcg	4080
tctccctgt	agtcggccag	atagcaacga	agcatgaggt	cgtagctgag	ggactcggcc	4140
gcgtgtccct	tggcgcgcag	ctttcccttg	gaaacgtgct	gacatttgg	gcagtgcaga	4200
cattggaggg	cgtagagttt	gggggccagg	aagaccgact	cgggcgagta	ggcgtcggct	4260
ccgcactgag	cgcagacggt	ctcgcaactcc	actagccacg	tgagctcggg	tttagcggga	4320
tcaaaaacca	agttgcctcc	atttttttt	atgcgtttct	tacttgcgt	ttccatgagt	4380
tttgtggcccg	cttccgtgac	aaaaaggctg	tcgggtgtc	cgtagacaga	cttgaggggg	4440
cgatcttcca	aagggtgtcc	gaggtcttcc	gcgtacagga	actgggacca	ctccgagacg	4500
aaggctctgg	tccaggctaa	cacgaaggag	gcaatctgcg	aggggtatct	gtcgaaaa	4560
atgaggggg	ccacctttc	cagggtgtgc	agacacaggt	cgtcctccctc	cgcgtccacg	4620
aagggtattt	gcttgcata	gttaggtcacg	tgatctgcac	cccccaaagg	ggtataaaa	4680
ggggcgtgcc	caccctctcc	gtcactttct	tccgcacgc	tgtggaccag	agccagctgt	4740
tcgggtgagt	aggccctctc	aaaagccgc	atgatctcg	cgtcaagtt	gtcagttct	4800
acaaacgagg	tggatttgat	attcacgtgc	ccgcggcga	tgctttgtat	ggtggagggg	4860
tccatctgat	cagaaaacac	gatctttt	ttgtcaagtt	ttgtggcgaa	agacccgtag	4920
agggcggtgg	aaagcaactt	ggcgatggag	cgcagggtct	gattttctc	ccgatcggcc	4980
ctctccctgg	cggcgatgtt	gagttgcacg	tactccggg	ccgcgcaccc	ccactcgggg	5040
aacacggcgg	tgcgctcg	ggcaggatg	cgcacgcgc	agccgcgatt	gtcagggtg	5100
atgaggtcca	cgctggtagc	cacccccc	cggaggggct	cgttggtcca	acacaatcgc	5160
cccccttttc	tggagcagaa	cggaggcagg	ggatctagca	agttggcggg	cgggggggtcg	5220
gcgtcgatgg	tgaagatacc	ggtagcagg	atcttattaa	aataatcgat	ttcgggtgtcc	5280
gtgtcttgca	acgcgtttc	ccacttctt	accgcacggg	cccttcgt	gggattcagg	5340
ggcggtcccc	agggcatggg	gtgggtcagg	gccgaggcgt	acatgcgc	gatgtcata	5400

acgtacaggg gttccctcaa caccggatg taagtgggt aacagcgccc cccgcggatg	5460
ctggctcgca ctagtcgta catctcgcbc gagggagcca tgaggccgtc tcccaagtgg	5520
gtcttgtgg gttttcggc ccggtagagg atctgtctga agatggcgtg ggagttggaa	5580
gagatggtgg ggcgttgaa gacgttaaag ttggccccgg gtatcccac ggagtcttgg	5640
atgaactggg ctaggattc ccggagtttgc tccaccaggc cggcggtcac cagcacgtcg	5700
agagcgcagt agtccaacgt ctgcggacc aggttgttagg ccgtctcttgc tttttctcc	5760
cacagttcgc gttttagggat gtattcctcg cggtcttcc agtactcttc ggcggaaat	5820
ccttttcgt ccgctcgta agaacctaac atgtaaaatt cgttcaccgc tttgtatgga	5880
caacagcctt ttttaccgg cagggcgtac gctttagcgg cctttctgag agaggtgtgg	5940
gtgagggcga aggtgtcccg caccatcaacttccgtact gatgtttgaa gtccgtgtcg	6000
tcgcaggcgc cctgttccca cagcgtgaag tcgggtgcgt ttttctgcct gggattgggg	6060
agggcgaagg tgacatcgaa aaagagtatt ttcccgccgc gggcatgaa gttgcgagag	6120
atccctgaagg gcccggcac gtccgagcgg ttgtttagtgc cctgcgccc caggacgatc	6180
tcgtcgaagc cggtgtatgtt gtgacccacg atgtaaagtt cgatgaagcg cggctgtccc	6240
ttgagggccg ggcgtttttt caactcctcg taggttagac agtccggcga ggagagaccc	6300
agctcagccc gggcccagtc ggagagttga ggattagccg caaggaagga gctccataga	6360
tccaaggcca ggagagtttgc aagcggtcg cgaaactcgc ggaactttt ccccacggcc	6420
attttctccg gtgtcaactac gtaaaagggtt tggtggcggt tttccacac gtcccatcg	6480
agctctaggc ccagctcgca ggcttggcga acgagggtct cctcgccaga gacgtgcata	6540
accagcataa agggtaccaa ctgtttcccg aacgagccc tccatgtgtt gtttctacg	6600
tcgttaggtga caaagagccg ctgggtgcgc gcgtggagc cgatcgaaa gaagctgatc	6660
tcctgccacc agctggagga atgggtgttta atgtgggttga agtagaaatc ccgcggcgc	6720
acagagcatt cgtgctgtatgtt tttgtaaaag cgaccgcagt agtgcgcacg ctgcacgctc	6780
tgtatctcctt gaacgagatg cgctttcgc ccgcgcacca gaaaccggag gggaaagttt	6840
agacgggggg ctgggtgggc gacatcccct tcgccttggc ggtggagtc tgcgtctgc	6900
tcctccttctt ctgggtggac gacgggtgggg acgacgacgc cccgggtgcc gcaagtccag	6960
atctccgcca cggaggggtg caggcgctgc aggagggac gcagctgccc gctgtccagg	7020
gagtcgaggg aagtcgcgtt gaggtcgccgc ggaagcgttt gcaagttcac tttcagaaga	7080
ccggtaagag cgtgagccag gtgcagatgg tacttggattt ccaggggggtt gttggatgaa	7140
gcgtccacgg cgtagaggag tccgtgtccg cgcggggcca ccaccgtgcc ccgaggaggt	7200
tttatctcact tcgtcgaggcg ctagcgccgg ggggttagagg cggctctgcg ccggggggca	7260
gcggaggcag aggcacgttt tcgtgaggat tcggcagcgg ttgtatgacga gcccggagac	7320
tgctggcgtg ggcgacgacg cggcggttgc ggtcctggat gtgcgtctc tgcgtgaaga	7380
ccaccggccc ccgggtccctg aacctaaaga gagttccaca gaatcaatgt ctgcacgttt	7440

aacggcggcc tgcctgagga tctcctgcac gtcgccc gag ttgtcctgat aggcgatctc	7500
ggccatgaac tgttccactt cttcctcgcg gaggtcaccg tggcccgctc gctccacgg	7560
ggcggccagg tcgttggaga tgcggcgcat gagttgagag aaggcggtga ggccgttctc	7620
gttccacacg cggctgtaca ccacgttcc gaaggagtcg cgcgctcgca tgaccacctg	7680
ggccacgtt agttccacgt ggcggcgaa gacggcgtag tttctgaggc gctggaagag	7740
gtagttgagc gtggtggcgta tgtgctcgca gacgaagaag tacataatcc agcggcccg	7800
ggtcatctcg ttgatgtctc cgatggcttc gagacgctcc atggcctcgta agaagtgcac	7860
ggcgaagttt aaaaattttt agttgcgggc ggccaccgtg agttcttctt gcaggaggcg	7920
gatgagatcg ggcggcggtcg cgccgaccc tcgttcgaaa ggcggcccgag ggcgcctctgc	7980
ttcttcctcc ggctcctccct ctccagggg ctccgggttcc tccggcagct ctgcgacggg	8040
gacggggcg ggacggtcg tcgtgaccgg caggcggtcc acgaagcgct cgatcatttc	8100
gccgcgcgg cgacgcattgg tctcggtgac ggccgcgtccg ttttcgctgag gtcgcagttc	8160
gaagacgccc cgcgcagag cgccccgtg cagggagggt aagtggtag ggccgtcg	8220
cagggacacg ggcgtgacga tgcattttat caattgctgc gttaggcactc cgtgcaggaa	8280
tctgagaacg tcgaggtcgta cggatccga gaacttctct aggaaagcgta ctatccaatc	8340
gcaatcgcaa ggtaaagctga gaacgggtgg tcgctggggg gcgttcgcgg gcagttggaa	8400
ggtgatgctg ctgatgatgt aattaaagta ggccgtcttc aggccggcgaa tggtggcgag	8460
gaggaccacg tctttgggcc cggcctgttg aatgcgcagg cgctcggcca tgcccccaggc	8520
ctcgctctga cagcgacgca ggtcttgcata gaagtcttcgatc atcagtctct ccaccggAAC	8580
ctctgcttct cccctgtctg ccatgcgagt cgagccgaac ccccgccagg gctgcagcaa	8640
cgctaggtcg gccacgaccc tttcgccag cacggcctgt tgaatctgcg tgaggggtggc	8700
ctggaagtcg tccaggtcca cgaagcggtg ataggcccccc gtgttgcattt tgtaggtgca	8760
gttggccatg acggaccagt tgacgacttg catgcccgggt tgggtgatct ccgtgtactt	8820
gaggccgag taggcccgg actcgaacac gtatgcgttgcatgtgcgcca ccagatactg	8880
gtagccgacc aggaagtgcg gaggccgctc tcggtaacagg ggccagccaa cggccggccgg	8940
ggccggccggg gacaggtcgcc ccagcatgag gcgggtggtag tggtagatgt agcggggag	9000
ccaggtgatg cccgcggagg tgggtgcggc cctggtaat tcgcccggacgc gggtccagat	9060
gttgcgcagg ggaccaaagc gctccatggt gggcacgctc tgcccccgtga ggcggccgca	9120
atcttgtacg ctctagatgg aaaaaagaca gggcggtcat cgactccctt ccgtagcttgc	9180
gggggtaaag tcgcaagggt gcggccggcgg ggaaccccggtt tcgagaccg gccggatccg	9240
ccgctcccgta tgcgcctggc cccgcattca cgacgtccgc gcccggaccc agccgcgacg	9300
ctccgcggccca atacggagggg gagtttttgcgtt gtagatgcattcccgatcccgatcc	9360
ggcagatgcg accccagacg cccactacca cccgcgtggc ggcagtaaac ctgagcgag	9420
gcgggtgacag ggaggaggaa gagctggctt tagacctgga agagggagag gggctggccc	9480
ggctgggagc gccatccccca gagagacacc cttagggttca gctcgtgagg gacggccaggc	9540

aggctttgt gccgaagcag aacctgtta gggaccgcag cggtcaggag gcggaggaga	9600
tgcgcgattt caggttcgg gcgggcagag agctcaggc gggcttcgat cgggagcggc	9660
tcctgagggc ggaggatttc gagcccgacg acgttctgg ggtgagccc gccccgcgtc	9720
acgtatcgcc ggccaacctg gtgagcgcgt acgagcagac ggtgaacgag gagcgcaact	9780
tccaaaagag cttaacaat cacgtgagga ccgtatcgc gagggaggag gtgaccatcg	9840
ggctgatgca tctgtggac ttctgtggagg cctacgtgca gaacccggct agcaaacc	9900
tgacggccca gctgttcctg atcgtgcgc acagccgcga caacgagacg ttccgcgc	9960
ccatgttcaa catcgccggag cccgagggtc gctggcttt ggatctgatt aacatcctgc	10020
agagcatcgt ggtgcaggag aggggcctga gtttagcggaa caaggtggcg gccattaact	10080
attcgatgca gagcctgggg aagttctacg ctcgcaagat ctacaagagc ccttacgtgc	10140
ccatagacaa ggaggtgaag atagacagct ttatcatgcg catggcgctg aaggtgctga	10200
cgttgcgcga cgacctcggc gtgtaccgtt acgacaagat ccacaaggcg gtgagcgc	10260
gccgccggcg ggagctgagc gacagggagc tgatgcacag cctgcagagg ggcgtggcg	10320
gcccggggcg cgaggagcgc gaggcttact tcgacatggg agccgatctg cagtggcg	10380
ccagcgcgcg cgccttggag gcggcggtt atcccacga ggaggatcgg gacgatttgg	10440
aggaggcagg cgagtacgag gacgaagcct gaccggcag gtgttgtttt agatgcagcg	10500
gccggcggac gggaccaccg cggatccgc acttttggca tccatgcaga gtcaac	10560
ggcgtgacc gcctccgatg actggcgcc gcgcattggac cgcatcatgg cgctgacc	10620
ccgcaacccg gaggcttta ggcagcaacc ccaggccaaac cgttttcgg ccatcttgg	10680
agcggtggtg cgcgcgcga ccaacccgac gcacgagaaa gtcctgacta tcgtaacgc	10740
cctggtagac agcaaggcca tccgcgtga cgaggcggtc ttgatttaca acgcttttt	10800
ggaacgcgtg ggcgcgtaca acagcactaa cgtgcagacc aatctggacc gcctcacc	10860
cgacgtgaag gaggcgctgg cgcagaagga gcggttctg agggacagta atctggc	10920
tctggtggca ctgaacgcct tcctgagctc acagccggcc aacgtgcccc gcggcag	10980
ggattacgtg agcttcatca gcgcgttgact gactgctggc tccgaggtgc cccagagc	11040
ggtgttaccag tctggccgg attactttt ccagacgtcc cgacaggct tgcaaacgg	11100
gaacctgact caggcctta aaaacttgca aggcatgtgg ggggtcaagg ccccggtgg	11160
cgatcgcgcc actatctcca gtctgctgac ccccaacact cgcctgctgc tgctttgat	11220
cgcaccgttt accaacagta gcactatcg ccgtgactcg tacctgggtc atctcatcac	11280
tctgtaccgc gaggccatcg gccaggctca gatcgacgag catacgatc aggagattac	11340
taacgtgagc cgtgcctgg gtcaggaaga taccggcagc ctggaaagcca cgttgaactt	11400
tttgctaacc aaccggaggc aaaaaatacc ctcccagttc acgttaagcg ccgaggagga	11460
gaggattctg cgatacgtgc agcagtccgt gaggcctgtac ttgatgcgcg agggcgccac	11520
cgcttccacg gcttagaca tgacggctcg gaacatggaa ccgtccttt actccgccc	11580

ccggccgttc attaaccgtc tcatggacta cttccatgc gcggccgcca tgaacgggaa 11640
 gtacttccacc aatgccatcc tgaatccgca ttggatgccc ccgtccggct tctacaccgg 11700
 ggagttgac ctgccccaaag ccgacgacgg ctttctgtgg gacgacgtgt ccgatagcat 11760
 tttcacgccc gctaattcgcc gattccagaa gaaggagggc ggagacgagc tccccctctc 11820
 cagcgtggaa gcggccctcaa ggggagagag tccctttcca agtctgtctt ccgcccagttag 11880
 cggtcgggta acgcgtccac ggttgccggg ggagagcgc tacctgaacg acccccttgct 11940
 gcgaccggct agaaaagaaaa atttcccaa taacggggtg gaaagcttgg tggataaaaat 12000
 gaatcgttgg aagacgtacg cccaggagca gcgggagtgg gaggacagtc agccgcggcc 12060
 gctggtaccg ccgcattggc gtcgccagag agaagaccccg gacgactccg cagacgatag 12120
 tagcgtttg gacctgggag ggagcggagc caaccccttt gctcaattgc aacccaaggg 12180
 gcgctcgagt cgccctgtatt aataaaaaaag acgcggaaac ttaccagagc catggccaca 12240
 gcgtgtgtgc tttcttcctc tctttcttcc tcggcgccgc agaatgagaa gagcggtgag 12300
 agtcacgccc gcggcgtatg agggcccgcc cccttcttac gaaagcgtga tggatcagc 12360
 gaacgtgccg gccacgctgg aggccgccta cgttccccc agataacctgg gacctacgga 12420
 gggcagaaac agcatccgtt actccgagct ggcgcctcg tacgatacca ccaaggtgt 12480
 cctggtggac aacaagtccg cggacatcgc ctccctgaat taccaaaacg atcacagtaa 12540
 ctttctgact accgtggtgc agaacaatga cttcaccccg acggaggcgg gcacgcagac 12600
 cattaacttt gacgagcggtt cccgctgggg cggtcagctg aaaaccatcc tgacacaccaa 12660
 catgcccac atcaacgagt tcatgtccac caacaagttc agggctaagc tcatggtaga 12720
 aaaaagtaat gcggaaactc ggcagccccc atacgagtgg ttcgagttt ccattccaga 12780
 gggcaactat tccgaaacta tgactatcga tctcatgaat aacgcgatcg tggacaatta 12840
 cctgcaagtg gggagacaga acgggggtgct ggaaagcgat atcggcgtga aattcgatac 12900
 cagaaacttc cgactggggt gggatcccgt gaccaagctg gtatgccag gcgtgtacac 12960
 caacgaggct tttcacccgg acatcgtct gctgccggg tgccgtgtgg acttcactca 13020
 gagccgttt agtaacctgt taggaattag aaagcgcgc cccttccaag agggcttca 13080
 aatcatgtat gaggacctgg agggaggtaa tataccgccttactggacg tgtcgaagta 13140
 cgaagcttagc atacaacgcg ccaaagcggg gggtagagag attcggggag acaccccttgc 13200
 ggtagctccc caggacctgg aaatagtgcc tttactaaa gacagcaaag acagaagctaa 13260
 caatattata aacaacacga cggacaccct gtatcggagc tggtttctgg cttacaacta 13320
 cggagacccc gagaaaggag tgagatcatg gaccatactc accaccacgg acgtgacctg 13380
 tggctcgccag caagtgtact ggtccctgccc ggatatgatg caagacccgg tcacccctcg 13440
 cccctccacc caagtcagca acttcccgtt ggtggcacc gagctgctgc ccgtccatgc 13500
 caagagcttc tacaacgagc aggcgtcta ctcgcaactt attcgccagt ccaccgcgt 13560
 taccacgtt ttcaatcgct ttcccgagaa ccagattctg gtgcgcctc ccgctcctac 13620
 cattaccacc gtcagtgaaa acgttccgc cctcacagat cacggaaaccc tgccgctgct 13680

cagcagtatc agtggaggttc agcgcgtgac catcaccgac gccagacgtc gaacctgccc 13740
 ctacgtttac aaagcgcttg gcgtggtggc tcctaaagtt ctttctagtc gcacccctcta 13800
 aaaacatgtc catcctcatc tctcccgata acaacacccgg ctggggactg ggctccggca 13860
 agatgtacgg cgagccaaa aggcgctcca gtcagcaccc agttcgagtt cggggccact 13920
 tccgcgctcc ttggggagct tacaagcgag gactctcggg tcgaacggct gtagacgata 13980
 ccatagatgc cgtgattgcc gacgccccgcc ggtacaacccc cggaccggtc gctagcgccg 14040
 cctccaccgt ggattccgtg atcgacagcg tggtagccgg cgctcgggccc tatgctcgcc 14100
 gcaagaggcg gctgcatcg agacgtcgcc ccaccgcccgc catgctggca gccagggccg 14160
 tgctgaggcg ggcccgagg gcagggcagaa gggctatgcg ccgcgctgcc gccaacgccc 14220
 ccgcccggag ggcccgccga caggctgccc gccaggctgc cgctgccatc gctagcatgg 14280
 ccagacccag gagagggAAC gtgtactggg tgcgtgattc tgtgacggga gtccgagtgc 14340
 cggcgcgcag ccgacccccc cgaagttaga agatccaagc tgcgaagacg gcggtactga 14400
 gtctccctgt tgttatcagc ccaacatgag caagcgcaag tttaaagaag aactgctgca 14460
 gacgctggtg cctgagatct atggccctcc ggacgtgaag ccagacatta agcccccgcga 14520
 tatcaagcgt gttaaaaAGC gggAAAAGAA agaggaactc gcggtggtag acgtggcg 14580
 agtggaaATTt attaggagtt tcgccccgcg acgcagggtt caatggaaag ggcggccgg 14640
 acaacgcgtt ttgaggccgg gcaccgcgtt agttttacc ccggagagac ggtcggccgt 14700
 taggggtttc aaaaggcagt acgacgaggt gtacggcgac gaggacatat tggaacaggc 14760
 ggctcaacag atcggagaat ttgcctacgg aaagcgttcg cgtcgcaag acctggccat 14820
 cgccttagac agcggcaacc ccacgcccag cctcaaaccgc gtgacgctgc agcagggtct 14880
 tcccgtgagc gccagcacgg acagcaagag gggattaag agagaaatgg aagatctgca 14940
 tcccaccatc caactcatgg tccctaaacg gcagaggctg gaagaggccc tggagaagat 15000
 gaaagtggac cccagcatag agccggatgt aaaagtcaaga cctattaagg aagtggcccc 15060
 cggctttggg gtgcaaacgg tggacattca aatccccgtc accaccgtt caaccgcgt 15120
 ggaagctatg gaaacgcAAA cggagacccc tgccgcgtc ggtaccagg aagtggcg 15180
 gcaaacggag ccttggtacg aatacgcagc ccctcggcgt cagaggcgtt ccgctcgta 15240
 cggccccgccc aacgcctatca tgccagaata tgcgctgcat ccgtctattc tgcccactcc 15300
 cggataccgg ggtgtgacgt atcgccccgtc tggaaacccgc cgccgaaccc gtcggccgg 15360
 ccgctcccggt cgcgctctgg cccccgtgtc ggtgcggcgt gtgacccgccc gggaaaagac 15420
 agtcgtcatt cccaaacccgc gttaccaccc tagcatcctt taataactct gccgtttgc 15480
 agatggctct gacttgcgcgt gtgcgccttc ccgttccgca ctatcgagga agatctcg 15540
 gtaggagagg catgacgggc agtggtcgccc ggcgggcttt ggcgcaggcgc atgaaaggcg 15600
 gaattttacc cgcctgata cccataattt ccgcccgcatt cggtgccata cccggcggtt 15660
 cttcagtggc gttgcaagca gctcgtaata aataaacaAAA ggctttgccttatgacct 15720

ggtcctgact attttatgca gaaagagcat ggaagacatc aattttacgt cgctggctcc 15780
 gcggcacggc tcgcggccgc tcatgggcac ctggAACGAC atcggcacca gtcagctcaa 15840
 cggggcgct ttcaattggg ggagccttg gagcggcatt aaaaactttg gctccacgat 15900
 taaatcctac ggcagcaaag cctggaacag tagtgctggt cagatgctcc gagataaact 15960
 gaaggacacc aacttccqag aaaaagtggt caatggggtg gtgaccggca tccacggcgc 16020
 ggttagatctc gccaaccaag cggtgcagaa agagattgac aggcgTTGG aaagctcgcg 16080
 ggtgccgccc cagagagggg atgaggtgga ggtcgaggaa gtagaagttag aggaaaagct 16140
 gcccccgctg gagaaagttc ccgggtgcgc tccgagaccg cagaagcggc ccaggccaga 16200
 actagaagag actctggta cggagagcaa ggagcCTCCC tcgtacgagc aagcTTGAA 16260
 agagggcgcc tctccacccct cctacccgat gactaAGCCG atcgcaccca tggctcgacc 16320
 ggtgtacggc aaggattaca agcccgtcac gctagagctg cccccacccgc cccccacgcg 16380
 cccgaccgtc cccccccgtc cgactccgtc ggCGGCCGCG gcgggacccg tgtccgcacc 16440
 atccgctgtg cctctgccag ccgcccgtcc agtggccgtg gccactgcca gaaaccccag 16500
 aggccagaga ggagccaact ggcaaAGCAC gctgaacagc atcgtgggCC tggagtgaa 16560
 aagcctgaaa cgccGCCGTT gctattatta aaaaagtgtA gctaaaaagt ctcccgTTGT 16620
 atacgcctcc tatgttaccc cgagagacga gtgactgtcg ccgcgagcgc cgcttcaag 16680
 atggccaccc catcgatgat gccgcagtgg tcttacatgc acatgcGCCG ccaggacGCC 16740
 tcggagtacc tgagtcccg cctcgtgcag tttgcccgcg ccaccgacac ctacttcagc 16800
 ttgggaaaca agtttagaaa ccccaccgtg gccccaccc acgatgtgac cacggaccgc 16860
 tcgcagaggc tgaccctgCG ctttgtgccc gttagaccggg aggacaccgc gtactcttac 16920
 aaagtgcgct acacgttggc cgtaggggac aaccgagtgc tggacatggc cagcacctac 16980
 tttgacatcc ggggggtgct ggatcggggt cccagcttca agccctattc cggcaccgct 17040
 tacaactccc tggcccccaa gggagctccc aaccctcgg aatggacgga cacttccgac 17100
 aacaaactta aagcatatgc tcaggctccc taccagagtc aaggacttac aaaggatggt 17160
 attcaggTTG ggctagttgt gacagagtca ggacAAACAC cccaaatATGC aaacAAAGTG 17220
 taccaacccg agccacAAAT tggggAAAAC caatggAAATT tagaacaAGA agataAAAGCG 17280
 gcgggaagag tcctaaAGAA agataACCCCT atgtttccCT gctatgggtc atatGCCAGG 17340
 cccacAAACG aacaaggagg gcaggcaAAA aaccaAGAAG tagatttACA gtttttGCC 17400
 actccggcgc acacccAGAA cacggctAAA gtggTacttt atgctgAAAAA tgtcaacCTG 17460
 gaaactccag atactcaTT agtgttAAA cccgatgacg acagcaccaG ttcaAAACTT 17520
 cttcttggc acgaggctgc acctaACAGA cccaaCTACA taggtttAG agataATTt 17580
 attggTTAA tgtactacaA tagcactgGA aacatgggcG tgctggCCG acaggCTTCT 17640
 caattGAATG ccgtagTCGA cttgcaggAC agaaACACCG agttgtCCTA ccagCTGATG 17700
 ctggacgcac tggggatcg cagccgatat tttcaatgt ggaatcaggc agtagacAGC 17760
 tatgacccag acgttagAAAT tatAGAAAAC cacggagtgg aagacgaact gccaAACTAT 17820

tgtttcctc	tgggaggaat	ggtggtgact	gacaattaca	actctgtgac	gcctcaaaat	17880
ggaggcagtg	gaaatacatg	gcaggcagac	aatactacat	ttagtcaaag	aggagcgcag	17940
attggctccg	gaaacatgtt	tgccctggaa	attaacctac	aggccaacct	ctggcgccgc	18000
ttcttgtatt	ccaatattgg	gttgtatctt	ccagactctc	tgaaaatcac	ccccgacaac	18060
atcacgctgc	cagaaaacaa	aaacacttat	cagtacatga	acggtcgcgt	aacgccaccc	18120
gggctcatag	acacctatgt	aaacgtgggc	gcmcgcgtgg	cccccgatgt	catggacagc	18180
attaaccctt	tcaaccacca	ccgtaacgcg	ggcttgcgc	accgctccat	gctcttgggc	18240
aacggccgtt	atgtgccttt	tcacattcag	gtgccccaaa	aattcttgc	cattaaaaac	18300
ctgctgcttc	tccccggttc	ctatacctat	gagtggaaact	tccgcaagga	tgtcaacatg	18360
atcctgcaga	gctcgctggg	taatgacctg	cgagtggacg	gggccagcat	acgctttgac	18420
agcattaacc	tgtatgccaa	ctttttccc	atggcccaca	acacggcctc	taccctggaa	18480
gccatgctgc	gcaacgacac	caatgaccag	tccttcaacg	actacctgtg	cgcggctaac	18540
atgctgtacc	ccatccccgc	caacgccacc	agcgtgccc	tttctattcc	ttctcggaac	18600
tgggctgcct	tcaggggctg	gagtttact	cgcctcaaaa	ccaaggagac	tccctcgctg	18660
ggctccggtt	ttgacccta	ctttagttac	tccggctcca	ttccctacact	agatggcacc	18720
ttttaccta	accacacttt	caaaaagggtg	tctattatgt	ttgactcctc	ggttagctgg	18780
cccgccaacg	accgcctgct	aacgcccac	gagttcgaaa	ttaagcgttc	cgtggacggt	18840
gaagggtaca	acgtggccca	gagcaacatg	accaaggact	ggtttcta	tcaaatgctc	18900
agtcaactata	atataaggta	ccagggcttc	tatgtgccc	agaactacaa	ggaccgcac	18960
tactccttct	tccgcaactt	ccaaccaatg	agccggcagg	tggtagatac	cgtacttat	19020
acagactaca	aagatgtcaa	gctcccctac	caacacaaca	actcagggtt	cgtggcgtac	19080
atgggaccct	ccatgcgaga	gggacaggcc	tacccggcca	actatccct	ccccctgatc	19140
ggagagactg	ccgtaccctag	cctcacgcag	aaaaagttcc	tctgcgaccg	ggtgatgtgg	19200
aggataccct	tctctagcaa	ctttagtgcg	atgggctccc	tcaccgac	ggggcagaac	19260
atgctgtacg	ccaactccgc	tcacgcctt	gacatgactt	ttgaggtgga	tcccatggat	19320
gagcccacgc	ttctctatgt	tctgttgaa	gtcttcgacg	tggtgcgc	ccaccagccg	19380
caccgcggcg	tcatcgaggc	cgtctacctg	cgcacac	tctctgccgg	taacgccacc	19440
acctaaagaa	gctgatgggt	tccagcgaac	aggagttgca	ggccattgtt	cgcgac	19500
gctgcgggccc	ctgtttttg	ggcaccttcg	acaagcg	tcccgatttc	atgtcccccc	19560
acaagccggc	ctgcgcacatc	gttaacacgg	ccggacggga	gacagggggg	gtgcactggc	19620
tcgccttcgc	ctggAACCCG	cgcaaccgca	cctgctac	gttcgacc	tttggtttct	19680
ccgacgaaag	gctgaagcag	atctaccaat	tcgagttacga	ggggctcctc	aagcgcagcg	19740
ctctggccctc	cacgccccgac	cactgcgtca	ccctgaaaaa	gtccacccag	acggtccagg	19800
ggcccccctc	ggccgcctgc	gggttttct	gttgcatgtt	tttgacgccc	ttcgtgcact	19860

ggcctcacac ccccatggag cgcaacccca ccatggatct gtcaccgga gtgccaaaca 19920
 gcatgcttca cagtccccag gtcgccccca ccctgcgtcg caatcaggac cacctgtatc 19980
 gctttctggg gaaacactct gcctattcc gccgccaccg gcagcgcac 20040
 cggccttcga aagcatgagc caaagagtgt aatcaataaa aaccgtttt atttgacatg 20100
 atacgcgctt ctggcgttt tattaaaaat cgaagggttc gagggagggg tcctcgatc 20160
 cgctgggag ggacacgttg cggtactgga atcgggcgtc ccaacgaaac tcgggatca 20220
 ccagccgcgg cagggccacg tcttccatgt tctgcttcca aaactgtcgc accagctgca 20280
 gggctccat cacgtcgggc gctgagatct tgaagtcgc 20340
 ggctgttgcg gaacacgggg ttggcacact ggaacaccaa cacgctgggg ttgtggatac 20400
 tagccagggc cgtcgggtcg gtcacctccg atgcacccag atcctcggca ttgctcagg 20460
 cgaacggggt cagcttgcac atctgccgcg cgtatctggg taccaggtcg cgcttgcg 20520
 ggcagtcgc 20580
 ggcagtcgc ggcgcagagg atgaggatgc gacgctgccc gcgttgcac 20640
 tcgcccgcag 20700
 gaaactccctc atctgacgga aggccatctg ggccttgacg ccctcggtga
 aaaatagccc acaggacttgc 20760
 ctggaaaaca cgttattgccc acagttgatg tcttccgcgc
 agcagcgcgc atcttcgttc tttagctgaa ccacgttgcg accccagcgg ttctgaacca
 ccttggcttt 20820
 cgtggatgc tccttcagcg cccgctgtcc gttctcgctg gtcacatcca
 tttccaccac gtgctccttgc 20880
 cagaccatct ccactccgtg gaaacagaac agaatgcct
 cctgttgggt attgcgtatgc tcccacacgg cgaccccggt ggactcccg 20940
 tcaccccgcc 21000
 gtaggcttcc atgtaagcca ttagaaatct gcccattcagc tcagtgaagg
 tcctctggtt 21060
 ggtgaagggtt agcggcaggc cgccgtgttc ctcgttcaac caagtttgc
 agatcttgcg 21120
 gtacacggct ccctggtcgg gcagaaactt aaaagtcgtt ctgctctcg
 tgtccacgtg 21180
 gaacttctcc atcaacatcg tcatgacttc catgcccttc tcccaggcag
 tcaccagcgg 21240
 cgcgctctcg gggttcttca ccaacacggc ggtggagggg ccctcgccgg
 ccccgacgtc 21300
 cttcatggac attttttgaa actccacggt gccgtccgcg cggcgtaactc
 tgcgcatcgg 21360
 agggtagctg aagcccacct ccatgacggt gcttcgccc tcgctgtcgg
 agacgatctc 21420
 cggggagggc ggcggAACGG gggcagactt gcgagccttc ttcttggag
 ggagcggagg 21480
 cacctccgtc tcgcgtcg 21540
 gactcatctc cccgaatgtg ggggtgtatgg
 agcttcctgg ttggttctga 21600
 cggttggcca ttgtatccta ggcagaaaga catggagctt
 atgcgcgagg 21660
 aaactttaac cgccccgtcc cccgtcagcg acgaagaggt catgtcgaa
 caggacccgg 21720
 gctacgttac gccgcccggag gatctggagg ggcccttaga cgaccggcgc
 gacgctagtg 21780
 agcggcagga aaatgagaaa gaggaggagg agggctgcta cctcctggaa
 ggcgacgttt 21840
 tgctaaagca tttcgccagg cagacccatca tactcaagga ggccttgcaa
 gaccgctccg 21900
 aggtgcctcc gaagagacag cccaaacggca cctgcgagcc caacccgcga
 ctcaacttct 21960
 accccgtgtt cgccgtgcgg gaggcgttgcg ccacctacca catcttttc

aaaaaccagc gcattccctt ttcctgccgg gccaaccgca ccgcggccga taggaagcta 22020
acactcagaa acggagtcag catacctgat atcacgtcac tggaggaagt gcctaagatc 22080
ttcgagggtc tgggtcgaga tgagaagcgg gcggcgaacg ctctgcagaa agaacagaaa 22140
gagagtcaga acgtgcttgtt ggagctggag ggggacaacg cgcgtctgac cgtcctcaaa 22200
cgttgcatacg aagtttccca cttcgctac ccggccctca acctgcccgc caaagttatg 22260
aaatcggtca tggaccagct actcatcaag agagctgagc ccctgaatcc cgaccaccct 22320
gaggcggaaa actcagagga cgaaaagccc gtcgtcagcg acgaggagct cgagcgggtgg 22380
ctggaaacca gggaccccca gcagttgcaa gagaggcgca agatgtatgat ggcggccgtg 22440
ctggtcacgg tggagctaga atgcctgcaa cggttttca ggcacgtgga gacgctacgc 22500
aaaatcgggg agtccctgca ctacacccctc cgccagggtc acgttcgcca ggcctgcaaa 22560
atctccaaacg tagagctcag caacctggtt tcctacatgg gcatcctcca cgagaaccgg 22620
ctggggcaga gcgtgctgca ctgcacccctt caaggcgagg cgcaaggga ctacgtccga 22680
gactgcgtct acctcttcct caccctcacc tggcagaccg ccatggcggt gtggcagcag 22740
tgcttggaaag agagaaacct caaagagctg gacaaactcc tctgcccgcga gcggcgggccc 22800
ctctggaccg gcttcagcga ggcacggtc gcctgcgccc tggcagacat cattttccca 22860
gaacgcctga tgaaaacctt gcagaacggc ctgcccggatt tcatacgtca gagcatctt 22920
caaaacttcc gctccttcgt cctggagcgc tccggatct tgccccccat gagctgcgcg 22980
ctgccttctg actttgtccc ctttcctac cgcgagtgcc ctcccccaact gtggagccac 23040
tgctacctct tccaactggc caactttctg gcctaccact ccgacctcat ggaagacgtg 23100
agcggagagg ggctgctgca gtgccactgc cgctgcaacc tctgcacccccc ccacagatcg 23160
ctggcctgca acaccgagct gctcagcgaa acccaggtca taggtacctt cgagatccag 23220
gggccccagc agcaagaggg tgcttccggc ttgaagctca ctccggcgct gtggacctcg 23280
gcttacttac gcaaatttgc agccgaggac taccacgccc acaaaaattca gttttacgaa 23340
gaccaatctc gaccaccgaa agccccctc acggcctgca tcatacaccga gagcaaaatc 23400
ctggcccaat tgcaatccat caaccaagcg cgccgagatt tcctttgaa aaagggtcgg 23460
ggggtgtacc tggaccccca gaccggcgag gaactcaacc cgtcccacact ttccgtcgaa 23520
gcagcccccc cgagacatgc caccaaggg aaccgccaag cagctgatcg ctcggcagag 23580
agcgaagaag caagagctgc tccagcagca ggtggaggac gaggaagagc tgtggacag 23640
ccaggcagag gaggtgtcag aggacgagga ggagatggaa agctggaca gcctagacga 23700
ggaggacgag ctttcagagg aagaggcgac cgaagaaaaa ccacctgcat ccagcgcgc 23760
ttctctgagc cgacagccga agccccggcc cccgacgccc ccggccggct cactcaaagc 23820
cagccgtagg tgggacgcca ccggatctcc agcggcagcg gcaacggcag cgggttaaggc 23880
caaacgcgag cgggggggtt attgctcctg gcggacccac aaaagcagta tcgtgaactg 23940
cttgcaacac tgcggggaa acatctcctt tgccccacgc tacctcctct tccatcacgg 24000

tgtggccttc cctcgcaacg ttctctatta ttaccgtcat ctctacagcc cctacgaaac 24060
 gctggagaa aaaagctaag gcctcctctg ccgcgaggaa aaactccgccc gccgctgccg 24120
 ccaaggatcc gccggccacc gaggagctga gaaagcgcattttccact ctgtatgcta 24180
 tcttcagca aagccgcggg cagcacccctc agcgcgaact gaaaataaaa aaccgctcct 24240
 tccgctcact cacccgcagc tgtctgtacc acaagagaga agaccagctg cagcgcaccc 24300
 tggacgacgc cgaagcactg ttcagcaaattactgctcagc gtctcttaaa gactaaaaga 24360
 cccgcgcttt ttccccctcg ggcgccaaaa cccacgtcat cgccagcatg agcaaggaga 24420
 ttccccacccc ttacatgtgg agctatcagc cccagatggg cctggccgcg ggggcccgc 24480
 aggactactc cagcaaaatg aactggctca gcgcggcccc ccacatgatc tcacgagtt 24540
 acggcatccg agcccaccga aaccagatcc tcttagaaca ggcggcaatc accgcccacac 24600
 cccggcgcca actcaacccg cccagttggc cgcggccca ggtgtatcag gaaactcccc 24660
 gcccgaccac agtcctcctg ccacgcgacg cggaggccga agtcctcatg actaactctg 24720
 gggtacaatt agcgggcggg tccaggtacg ccaggtacag aggtcgggccc gtccttact 24780
 ctccccggag tataaagagg gtgatcattc gaggccgagg tatccagctc aacgacgagg 24840
 cggtagctc ctcaaccggc ttcagacctg acggagtctt ccagctcggg gaagcgggccc 24900
 gctttccctt caccactcgc caggcctacc tgaccctgca gagctttcc tcgcagccgc 24960
 gctccggggg aatcggcact ctccagttcg tggaaagagtt cgtccctcc gtctacttca 25020
 acccgttttc cggctcacct ggacgctacc cggacgcctt cattcccaac tttgacgcag 25080
 tgagtgaatc cgtggacggc tacgactgat gacagatggt gcggccgtga gagctcggct 25140
 ggcacatctg catcaactgcc gcagccctcg ctgctacgct cgggaggcga tcgtgttcag 25200
 ctacttttagt ctgcccggacg agcaccctca gggaccggct cacgggttga aactcgagat 25260
 tgagaacgcg cttgagtctc acctcatcga cgccttccacc gcccggccctc tcctggtaga 25320
 aaccgaacgc gggatcacta ccatcacccct gttctgcattc tgccccacgc ccggattaca 25380
 tgaagatctg ttttgtcatc tttgcgtca gtttaataaa aactgaactt tttgcgtac 25440
 cttcaacgcc acgcgttgg ttccttgcggaaaaaaaaggatccctt aacttacaca 25500
 tagcaaaaacc cttgtatccc accatagaaaa aacaacttagc ctttcaatt ggaaaagggt 25560
 taacaatttc tgctacagga cagttggaaa gcacagcaag cgtacaggac agcgtacac 25620
 caccctacg tggatttcc cttttaaaagc tgacagacaa cgggttaaca ttaagctatt 25680
 cagatccctt cgtgtggta ggtgaccaac ttacgtttaa ttttacttct ccactacgtt 25740
 acgaaaatgg cagtcttaca ttcaactaca cttctcccat gacactaata aacaacagtc 25800
 ttgctttaaa cgtcaataacc tccaaaggcc tcagtagtga caacggcaca ctcgctgtaa 25860
 atgttactcc agattttaga tttaacagct ctgggtccctt aactttggc atacaaagtc 25920
 tatggacttt tccaacccaaa actcctaact gtaccgtgtt taccgaaagt gactccctgc 25980
 tgagtcttgc tttgactaaa tgccggagctc acgtacttgg aagcgtgagt ttaagcggag 26040
 tggcaggaac catgctaaaa atgacccaca cttctgttac cggtcgttt tcgtttgatg 26100

acagtggtaa actaatattc tctccacttg cgaacaacac ttgggggttt cgacaaagcg 26160
 agagtccgtt gcccccaaccca tccttcaacg ctctcacgtt tatgccaaac agtaccattt 26220
 attcttagagg agcaagtaac gaacctcaaa acaattatta tgtccagacg tatcttagag 26280
 gcaacgtgcg aaaggcaatt ctactaactg ttacacctaa ctcagttaat tcaggatatt 26340
 ccttaacttt taaatggat gctgtcgcca atgaaaaatt tgccactcct acatttcgt 26400
 tttgctatgt tgcagagcaa taaaaccctg ttaccccacc gtctcgffff tttcagatga 26460
 aacgagcgag agttgatgaa gacttcaacc cagtgtaccc ttatgacccc ccatacgctc 26520
 ccgtcatgcc cttcattact ccgccttttta cctcctcgga tgggttgcag gaaaaaccac 26580
 ttggagtgtt aagtttaaac tacagggatc ccattactac aaaaaatggg tctctcacgt 26640
 taaaactagg aaacggcctc actctaaaca accagggaca gttAACATCA actgctggcg 26700
 aagtggagcc tccgctcaact aatgctaaca acaaacttgc actagcctat agcgaaccat 26760
 tagcagtaaa aagcaaccgc ctaactctat cacacaccgc tcccccgtt atcgctaata 26820
 attcttagc gttgcaagtt tcagagccta tttttgtaaa tgacgatgac aagctagccc 26880
 tgcagacagc cgccccccctt gtaaccaacg ctggcacccct tcgcttacag agcgctgccc 26940
 ctttaggatt ggttggaaat actcttaaac tgctgttttca taaacccttg tatttgcaaa 27000
 atgattttct tgcatttagcc attgaacgccc ccctggctgt agcagccgca ggtactctga 27060
 ccctacaact tactccctca taaaagacta acgatgacgg gctaacacta tccacagtcg 27120
 agccatttaac tgtaaaaaac ggaaacctag gcttgcaaattt atcgccccc ttagttgttc 27180
 aaaacaacgg cctttcgctt gctattaccc ccccgctgcg tttgtttaac agcgaccccg 27240
 ttcttggttt gggcttcaact tttcccttag ctgtcacaaa caaccccttc tccttaaaca 27300
 tggagacgg agttaaactt acctataata aactaacagc caattttgggt agggattttac 27360
 aatttgaaaa cggtgcgatt gccgtAACGC ttactgccga attaccccttca aatacacta 27420
 acaaacttca actgaatatt ggagctggcc ttcgttacaa tggagccagc agaaaaactag 27480
 atgtaaacat taaccaaaat aaaggcttaa cttggacaa cgatgcagtt attcccaaacc 27540
 taggatcggg cttacaattt gaccctaattt gcaacatcgc tgttatccct gaaaccgtga 27600
 agccgcaaacc gttatggacg actgcagatc cctcgccctaa ctgctcagtg taccaggact 27660
 tggatgccag gctgtggctc gctcttggta aaagtggcga catggtgcat ggaagcattt 27720
 ccctaaaaggc cctaaaaggc acgttgctaa atcctacagc cagctacatt tccattgtga 27780
 tatattttta cagcaacgga gtcaggcgta ccaactatcc aacgtttgac aacgaaggca 27840
 ccttagctaa cagcgccact tggggatacc gacagggggca atctgctaactt actaatgtga 27900
 ccaatgccac tgaatttatg cccagctcaa gcaggtaccc cgtgaataaa ggagacaaca 27960
 ttcaaaatca atcttttca tacacctgtt taaaaggaga ttttgctatgt cctgtcccgt 28020
 tccgtgttaac atataatcac gccctggaaag ggtattccct taagttcacc tggcgcgttg 28080
 tagccaatca ggccttgat attccttgct gttcattttca atacatcaca gaataaaaaaa 28140

ccacttttc atttaattt ctttttattt tacacgaaca gtgagacttc ctccaccctt 28200
 ccatttgaca gcatacacca gcctctcccc cttcatagca gtaaaactgtt gtgaatcagt 28260
 ccggtatttg ggagttaaaa tccaaacagt ctcttggtg atgaaacgtc gatcagtaat 28320
 ggacacaaat ccctgggaca ggtttccaa cgtttggtg aaaaactgca caccgccta 28380
 caaaacaaac aggttcaggc tctccacggg ttatctcccc gatcaaactc agacaggta 28440
 aagggtcggt ggtgttccac taaaccacgc aggtggcgct gtctgaacct ctggtgca 28500
 ctccctgtgag gctggtaaga agtagattg tccagtagcc tcacagcatg tatcatcagt 28560
 ctacgagtgc gtctggcgca gcagcgcac tgaatctcac tgagattccg gcaagaatcg 28620
 cacaccatca caatcagggtt gttcatgatc ccatagctga acacgctcca gccaaagctc 28680
 attcgctcca acagcgccac cgctgtccg tccaacctta cttaacata aatcaggtgt 28740
 ctgcccgta caaacatgct acccacatac agaacttccc ggggcaggcc cctgttcacc 28800
 acctgtctgt accagggaaa cctcacattt atcagggagc catagatggc catttaaac 28860
 caattagcta ataccgcccc accagctcta cactgaagag aaccgggaga gttacaatga 28920
 cagtgaataa tccatctctc ataacccctg atggtctgat gaaaatctag atctaacgtg 28980
 gcacaacaaa tacacacttt catatacatt ttcataacat gttttccca ggccgttaaa 29040
 atacaatccc aatacacggg ccactctgc agtacaataa agctaataca agatggtata 29100
 ctccctcacct cactgacact gtgcacatgtt atatttcac attctaagta ccgagagttc 29160
 tcctctacag cagcactgct gcggcctca caaggtggta gctggtgatg attgttaggg 29220
 gccagtctgc agcgataaccg tctgtcgctg tgcatcgtag accaggaacc gacgcacctc 29280
 ctgcgtacttgc tggtagcaga accacgtccg ctgccagcac gtctccacgt aacgccggtc 29340
 cctgcgtcgc tcacgctccc tcctcaatgc aaagtgcac cactcttgta atccacacag 29400
 atccctctcg gcctccgggg ttagtgcacac ctcaaaccta cagatgtctc ggtacagttc 29460
 caaacacgta gtgagggcga gttccaacca agacagacag cctgatctat cccgacacac 29520
 tggaggtgga ggaagacacg gaagaggcat gttattccaa gcgattcacc aacgggtcga 29580
 aatgaagatc ccgaagatga caacggtcgc ctccggagcc ctgatgaaat ttaacagcca 29640
 gatcaaacgt tatgcgattc tccaaagctat cgatcgccgc ttccaaaaga gcctggaccc 29700
 gcacttccac aaacaccagc aaagcaaaag cactattatc aaactcttca atcatcaagc 29760
 tgcaggactg tacaatgcct aagtaatttt cgtttctcca ctcgcgaatg atgtcgccgc 29820
 agatagtctg aaggttcatc ccgtgcaggd taaaaagctc cgaaagggcg ccctctacag 29880
 ccatgcgtag acacaccatc atgactgcaa gatatcgggc tcctgagaca cctgcagcag 29940
 atttaacaga tcaagggtcag gttgctctcc gcgatcacga atctccatcc gcaaggtcat 30000
 ttgcaaaaaa ttaaataaat ctatgccac tagatctgtc aactccgcatt taggaaccaa 30060
 atcaggtgtg gctacgcagc acaaaagttc cagggatggc gccaaactca ctagaaccgc 30120
 tcccgagtaa caaaactgat gaatgggagt aacacagtgt aaaatgtgca accaaaaatc 30180
 actaagggtgc tcctttaaaa agtccagtagc ttcttatattc agtccgtgca agtactgaag 30240

caactgtgcg ggaatatgca caacaaaaaa aatagggcgg ctcagataca tggaccta 30300
 aaataaaaag aatcattaaa ctaagaagc ttggcgaacg gtggataaa tgacacgctc 30360
 cagcagcaga caggcaaccg gctgtcccg ggaaccgcgg taaaattcat ccgaatgatt 30420
 aaaaagaaca acagaaacctt cccaccatgt actcggttgg atctcctgag cacacagcaa 30480
 tacccccctc acattcatgt ccgccacaga aaaaaaacgt cccagatacc cagcggggat 30540
 atccaacgac agctgcaaag acagaaaaac aatccctctg ggagcgatca caaaatccctc 30600
 cggtaaaaaa agcacatata tattagaata accctgttgc tggggcaaaa aggcccggcg 30660
 tcccagcaaa tgcacataaa tatgttcatc agccattgcc ccgtcttacc gcgtaatcag 30720
 ccacgaaaaa atcgagctaa aattcaccca acagcctata gctatatata cactccgccc 30780
 aatgacgcta ataccgcacc acccacgacc aaagttcacc cacacccaca aaacccgcga 30840
 aaatccagcg ccgtcagcac ttccgcaatt tcagtctcac aacgtcacatt ccgcgcgcct 30900
 tttcacattc ccacacacac ccgcgcctt cgccccgccc tcgcgccacc ccgcgtcacc 30960
 gcacgtcacc ccggcccccgc ctgcgcctc cccgctcatt atcatattgg cacgtttcca 31020
 gaataaggta tattattgtat gatg 31044

<210> 6
 <211> 34115
 <212> DNA
 <213> simian adenovirus SV-39

<400> 6
 catcatcaat ataacaccgc aagatggcga ccgagttAAC atgcaaATGA ggtgggcggA 60
 gttacgcgac ctttgttttggaaacgcggaa agtgggcggcg gcggtttcg gggaggagcg 120
 cggggcgggg cgggcgtgtc gcgcggcggt gacgcgcgg ggacccggaa attgagtagt 180
 ttttattcat tttgcaagtt tttctgtaca ttttggcgcg aaaactgaaa cgaggaagt 240
 aaaagtgaaa aatgccgagg tagtcaccgg gtggagatct gacctttgcc gtgtggagtt 300
 taccgcgtga cgtgtgggtt tcggctctta tttttcact gtggtttcc gggtacggtc 360
 aaaggcccccc attttatgac tccacgtcag ctgatcgcta gggtatTTAA tgcgcctcag 420
 accgtcaaga ggccactttt gagtgccggc gagaagagtt ttctcctccg cgttccgcca 480
 actgtgaaaa aatgaggaac ttcttgctat ctccggggct gccagcgacc gtggccggcg 540
 agctgttggaa ggacattgtt accggagctc tgggagacga tcctcaggtg atttctcact 600
 tttgtgaaga ttttagtctt catgtatctt atgatattga tccgggttttggagggcaag 660
 aggtgaatg gctggagtcgt gtggatgggt ttttccggc cgctatgctg cttagggctg 720
 atttgcacc acctcacaac tctcacactg agcccgagtc agctgctatt cctgaattgt 780
 catcaggtga acttgacttg gcttggttacg agactatgcc tccggagtcg gatgaggagg 840
 acagcgggat cagcgatccc acggcttttta tggtctctaa ggcgattgct atactaaaag 900
 aagatgatga tggcgatgtt ggatTTGAC tggacgctcc ggcgggtgccc gggagagact 960
 gtaagtcctg tgaataaccac cgggatcgta ccggagaccc gtctatgttgc ttctctgt 1020

gttatctccg tcttaacgct gctttgtct acagtaagtg ttttgcgtt ttttaccctg	1080
tggcttggtt gagtttattt ttttctgtgt ctcatagggt gttgtttattt ataggcctg	1140
tttcagatgt ggaggaacct gatagtacta ctggaaatga ggaggaaaag ccctccccgc	1200
cggaaactaac tcagcgctgc agacctaata tttttaggacc ctcggcccag cgtgtgtcat	1260
cccgaaaaacg tgctgctgtt aattgcatag aagatttattt ggaagagccc actgaacctt	1320
tggacttgtc cttaaagcga ccccgccccgc agtagggcgc ggtgccagtt ttttctctt	1380
agcttccggg tgactcagtca caataaaaaat tttcttggca acaggtgtat gtgtttactt	1440
tacgggcggg aagggatttag gggagtataa agctggaggg gaaaaatctg aggctgtcag	1500
atcgagtgag aagttccatg gacttgtacg agagcctaga gaatctaagt tcttgcgac	1560
gtttgctgga ggaggcctcc gacagaacct cttacatttgc gaggttctg ttcggttccc	1620
ctctgagtcg cttttgcac cgggtgaagc gagagcacct gacggaattt gatgggcttt	1680
tagagcagct gcctggactg tttgattctt tgaatctcgg ccaccggacg ctgctagagg	1740
agaggctttt tccacaattt gacttttccct ctccaggccg tctgtgttca ggccttgctt	1800
ttgctgtaca tctgttggac agatggaacg agcagacgca gctcagcccg gtttacactc	1860
tggacttcct gacgctatgc ctatggaagt tcggaatcag gagggggagg aagctgtacg	1920
ggcgcttggt ggagaggcat ccgtctctgc gccagcagcg tctgcaagct caagtgcgc	1980
tgaggcggga ggatctggaa gccatttcgg aggaggagag cggcatggaa gagaagaatc	2040
cgagagcggg gctggaccct ccggcggagg agtagggggg ataccggacc ctttcctga	2100
gttggctttg gggcgggtgg gggcgccttc tgtggtacgt gaggatgaag agggcgcca	2160
acgcggtcag aagagggagc attttgagtc ctcgactttc ttggctgtatg taaccgtggc	2220
cctgatggcg aaaaacaggc tggaggtggt gtggtacccg gaagtatggg aggactttga	2280
gaagggggac ttgcacctgc tggaaaaata taacttttag caggtaaaaa catactggat	2340
gaaccggat gaggactggg aggtggtttt gaaccgatac ggcaaggtag ctctgcgtcc	2400
cgactgtcgc taccaggttc gcgacaagggt ggtccctgcga cgcaacgtgt acctgttggg	2460
caacggcgcc accgtggaga tggggaccc cagaaggggt ggtttgtgg ccaatatgca	2520
agaaaatgtgc cctgggggtgg tgggcttgc tggggtagact tttcatagtg tgaggtttag	2580
cggtagcaat tttgggggtg tggatttac cgcgaacact cctgtggtcc tgcataatttgc	2640
ctactttttt ggcttcagca acacctgtgt ggaaatgagg gtgggaggca aagtgcgcgg	2700
gtgttcctt tacgcttgct ggaaggggt ggtgagccag ggttaaggcta aagtgtctgt	2760
tcacaagtgt atgttggaga gatgcacctt gggcatttcc agtgagggtc tcctccacgc	2820
cagcacaac gttggcttctg acaacggctg cgccttctt atcaaggag ggggtcgcat	2880
ctgtcacaac atgatatgcg gccctgggaa tgtccccca aagccttacc agatggttac	2940
ctgcacagat ggcaagggtgc gcatgctcaa gcctgtgcac attgtgggccc accggcgcca	3000
ccgctggcca gagtttgaac acaatgtgat gaccggctgt agcttgcgttacc tggggaggcag	3060

gcgaggagtt ttcttgccca gacagtgtaa cctggcccac tgcaacgtga tcatggaaca	3120
atccggcgtt acccaggttt gctttggagg aatatttgcataa gatcctgcgc tacgacgact gtcgggctcg tactcgaacc tgcaactgca gggccctca	3180
cctgtgtaac ctgactgtga tggggatggt gactgaggag gtgcactgg accactgtca	3240
gcactcttgc ctgcgggagg agtttcttc ctcggacgag gaggactagg taggtgggtt	3300
ggcggtggcc agcgagaggg tggctataa aggggaggtg tcggctgacg ctgtcttctg	3360
ttttcaggt accatgagcg gatcaagcag ccagaccgcg ctgagcttc acggggccgt	3420
gtacagcccc tttctgacgg ggcgcttgcc tgcctggcc ggagtgcgtc agaatgttac	3480
cggttcgacc gtggacggac gtcccgtgga tccatcta ac gctgcttcta tgcaactacgc	3540
tactatcagc acatctactc tggacagcgc cgctgccgc gcagccgcca ctcagccgc	3600
tctctccgcc gccaagatca tggctattaa cccaagcctt tacagccctg tatccgtgga	3660
cacctcagcc ctggagctt accggcgaga tctagctcaa gtggtggacc aactcgcagc	3720
cgtgagccaa cagttgcagc tgggtgcac ccgagtgag caactttccc gccctcccc	3780
gtaaccgcaa aaattcaata aacagaattt aataaacagc acttgagaaa agtttaact	3840
tgtggttgac tttattcctg gatagctggg gggagggAAC ggcgggAAC gtaagacctg	3900
gtccatcggtt cccggtcgtt gagaacacgg tggattttt ccaagaccgc atagaggtgg	3960
gtctgaacgt tgagatacat gggcatgagc ccgtctcggg ggtggaggta gcccactgc	4020
agggcctcgt tttcaggggt ggtgttgtaa atgatccagt cgtaggcccc ccgctggcg	4080
tgggtctgga agatgtcctt cagcagcaag ctgatggcaa cgggaagacc cttggtag	4140
gtgttgacaa agcggttgag ttgggagggg tgcattgcgg gactgtatgag gtgcattttt	4200
gcctggatct tgaggttgc tatgttgcgg cccagatcgc gcctgggatt catgttatgc	4260
aagaccacca gcaccgagta accgggtcag cgggggatt tgcgtgcag cttggaggg	4320
aaagcgtgga agaatttggaa gaccctcgg tgccgccta gttttccat gcactcatcc	4380
atgatgatgg cgatggggcc cggggaggca gcctggcaa aacgttgcg ggggtccgtg	4440
acatcgtagt tgtggtcctg ggtgagttca tcataggaca ttttgacaaa ggcggcag	4500
agggtcccag actggggaaat gatggttcca tccggccgg gggcgtagtt gccctcgac	4560
atttgcattt cccaggctt gattcagag ggaggatca tgtcaacctg gggggcgatg	4620
aaaaaaaaatgg tctctggggc gggggatgag agctgggtgg aaagcaggaa ggcgaagagc	4680
tgtgacttgc cgcagccgtt gggccctgtatgacagacta tgacgggttg cagggtgtag	4740
tttagagagc tacaactgccc atcatccttcaaaaacggggccacactgtt taaaagttct	4800
ctaacatgtaa gttttcccg cactaagtcc tgcaggagac gtgaccctcc tagggagaga	4860
agttcaggaa gcgaagcaaa gtttttaagt ggcttgaggc catcgccaa gggcaagttc	4920
ctgagagttt gactgagcag ttccagccgg tcccagagct cggttacgtg ctctacggca	4980
tctcgatcca gcagacccctcc tcgtttcggg ggttggggcg gctctggctg tagggatga	5040
ggcggtgggc gtccagctgg gccatggtgc ggtccctcca tgggcgcagg gttctttca	5100
	5160

gggtggtctc	ggtcacggtg	aatgggtggg	ccccgggctg	ggcgctggcc	agggtgcgct	5220
tgaggctgag	gcggctggtg	gcgaaccgtt	gctttcgtc	tcccgtcaag	tcagccaaat	5280
agcaacggac	catgagctca	tagtccaggc	tctctgcggc	atgtcctttg	gcgcgaagct	5340
tgcctttgga	aacgtgccc	cagtttgagc	agagcaagca	tttagcgcg	tagagtttg	5400
gcgc当地	cacggattcc	gggaaataag	catccccacc	gcagttggag	caaacggttt	5460
cgcattccac	cagccaggtc	agctgaggat	ctttgggtc	aaaaacccaag	cgcccgccgt	5520
ttttttgat	gcgc当地	cctcgggtct	ccatgaggcg	gtgcccgcgt	tcgggtgacga	5580
agaggctgtc	ggtgtctcc	tagacggagg	tcagggcg	ctccctccagg	ggggtcccgc	5640
ggtc当地	gtagagaaac	tcgc当地	ctgacataaa	cgc当地	caggctagga	5700
cgaatgaggc	gatgtggaa	gggtaccggt	cgttatcgat	gaggggtcg	gtttttcca	5760
aggtgtgcag	gcacatgtcc	ccctcgtcc	cttccaaaaa	tgtgattggc	ttgttaggtgt	5820
aagtacgtg	atcctgtcct	tccgc当地	tataaaagg	ggc当地	ccctcctcgt	5880
cactcttcc	cgttgcgt	tcgccaagg	ccagctgtt	gggtacgtaa	acgc当地	5940
aggc当地	gacctgtgc	ctgagggtgt	cagttctat	atacgaggaa	gatttgcattgg	6000
cgagc当地	cgtggagat	cccttgcagg	gctc当地	catttgc当地	gaaaacacaa	6060
tctgtcggtt	atcaagctt	gtggcaaaag	acccgttagag	ggc当地	agcaacttgg	6120
cgttgc当地	ctggggttgg	ttttttccc	ggtc当地	ttc当地	gc当地	6180
gctggacgt	ctccctggcc	acgc当地	agccggaaa	aacggccgt	cgctcgtcc	6240
gcaccaggc	cacgctccat	ccgc当地	gcagggtat	gacgtcgat	ctggggtcc	6300
cctctccg	caggggctcg	ttggtcc	agaggcgacc	gcccttgc	gagcagaagg	6360
ggggcagg	gtcaagcagg	cgctcgtcc	gggggtc	gtcgatggta	aagatggcgg	6420
gcagcagg	tttgtcaaag	taatcgat	gatgccc	gcaacgcagg	gc当地	6480
agtcccgc	cgc当地	cgctcgtat	gactgagg	ggc当地	ggcatggat	6540
gcgtcagg	cgaggcgt	atgccc	tgtcatagac	gtaaagg	tc当地	6600
cgccgagg	ggtgggtag	cagc当地	cgccgat	ggcccgtac	tagtcgt	6660
gctcg	ggggccaga	agg	tgaggtgagc	g	gc当地	6720
ggaagagg	ctgc当地	ag	gttggagga	gatgg	ggc当地	6780
tgttgaagc	ggc当地	agaccc	gacgg	aaagtgg	ggc当地	6840
gcagctt	caccagg	g	gc当地	ggccgtt	ttggat	6900
ccgc当地	gtcataat	tc当地	tttcc	gagg	tc当地	6960
actcttgc	gtcttcc	act	tttgg	gagg	ttggat	7020
agcccaac	gtaaaactgg	ttgacgg	gatagg	aca	gc当地	7080
gc当地	cagg	ggcc	ttgc当地	agg	gtgtgc当地	7140
ccataactt	tacaaactgg	tactt	aaagt	ggc当地	gtgtgc当地	7200

ctgagtagtc tgtgcgcittt ttgtgcttgg ggtaggcag ggagtaggtg acgtcgtaa 7260
 agaggatttt gccacatctg ggataaaagt tgcgagagat tctgaagggg ccgggcacct 7320
 ccgagcggtt gttgatgact tggcagcca ggagaatttc gtcgaagccg ttgatgttgt 7380
 gccccacgac gtagaactct atgaaacgcg gagcgcgcg cagcaggggg cactttcaa 7440
 gttgctggaa agtaagttcc cgccgctcga cgccgttgc cgtgcggctc cagtcctcca 7500
 ccgggtttcg ctccacaaaa tcctgccaga tgtggtcac tagcaagagc tgcaagtcggt 7560
 cgcaaaattc gcgaaattt ctgccgatgg cttgcttctg ggggttcaag caaaaaaagg 7620
 tgtctgcgtg gtcgcgccag gcgtcccagc cgagctcgcg agccagattc agggccagca 7680
 gcaccagagc cggtcaccg gtgattttca tgacgaggag aaagggcacc agctgtttc 7740
 cgaacgcgcc catccaggtg taggtctcca cgtcgttagt gagaaacaga cgttcggtcc 7800
 gcgggtgcga tcccaggggg aaaaacttga tgggctgcca ccattgggag ctctggcgt 7860
 gnatgtatg gaagtaaaag tcccggcgcc gcgtgaaaca ttcgtgctgg tttttgtaaa 7920
 agcggccgca gtggtcgcag cgcgagacgg agtgaaggct gtgaatcagg tgaatcttgc 7980
 gtcgctgagg gggccccaga gccaaggcggc ggagcgggaa cgaccgcgcg gccacttcgg 8040
 cgtccgcagg caagatggat gagggttcca ccgttcccg cccgcggacc gaccagactt 8100
 ccgcccagctg cggcttcagt tcttgcacca gctctcgacag cgttcgtcg ctggcgaat 8160
 cgtgaatacg gaagttgtcg ggtagaggcg ggaggcggtg gacttccagg aggtgtgtga 8220
 gggccggcag gagatgcagg tggtaacttga tttcccacgg atgacggtcg cggcgtccca 8280
 aggcaagag atgaccgtgg ggccgcggcg ccaccagcgt tccgcggggg gtcttatcg 8340
 gcggcggggc cggctcccg gcggcagcgg cggctcggga cccgcggggca agtcggcag 8400
 cggcacgtcg gcgtggagct cggcagggg ctggtgctgc gcgcggagct gactggcaaa 8460
 ggctatcacc cggcgattga cgtcttggat ccggcggcgc tgcgtgaaga ccaccggacc 8520
 cgtggtcttgc aacctgaaag agagttcgac agaatcaatc tcggcatcgta taaccgcggc 8580
 ctggcgcagg atttcggcca cgtccccggat tttgtcttgc tacgcgatatt ctgccttgc 8640
 ctggtcgatt tcctcttcct gcaagtctcc gtgaccggcg cgttcgacgg tggccgcgag 8700
 atcgttggag atgcggccca tgagctggaa aaaggcattt atgcgcaccc cgttccacac 8760
 tcggctgtac accaccttc cgtgaacgtc gcggcgcgc atcaccaccc gggcgagatt 8820
 gagttccacg tggcgggcga aaaccggata gtttcggagg cgctgataca gatagttgag 8880
 ggtggtggcg gcgtgctcgg ccacaaaaaa atacatgatc cagcggcggaa gggtcagctc 8940
 gttgatgtcg cccagcgcct ccaggcgttc catggcctcg taaaagtcca cggcaaaatgg 9000
 gaaaaattgg ctgttccctgg ccgagaccgt gagctttct tccaaagagcc gaatgagatc 9060
 cggcacggtg gccctgactt cgcgttcgaa agccccgggt gcctcctcca cctcttcctc 9120
 ctcgacttct tcgaccgcctt cggcacccctc ctcttcctcg accaccaccc caggcggggc 9180
 tcggcggcgc cggcggcggaa cggcaggcg gtcgacgaaa cgctcgatca tttccccccct 9240
 ccgtcgacgc atggtctcgg tgacggcgcg accctgttcg cgaggacgca gggtaaggc 9300

gccgcccggc	agcggaggta	acagggagat	cggggggcgg	tcgtggggga	gactgacggc	9360
gctaaactatg	catctgatca	atgtttgcgt	agtacctcg	ggtcggagcg	agctcagcgc	9420
ttgaaaatcc	acgggatcgg	aaaaccgttc	caggaacgcg	tctagccaat	cacagtcgca	9480
aggttaagctg	aggaccgtct	cgggggcttg	tctgttctgt	cttcccgcgg	tggtagtgc	9540
gatgaggtag	ttgaagttagg	cgctcttgag	gcggcggatg	gtggacagga	gaaccacgtc	9600
tttgcgcccc	gcttgcgtta	tccgcaggcg	gtcggccatg	ccccacactt	ctccttgaca	9660
gcggcggagg	tccttgcgt	attcttgcat	cagccttcc	acgggcaccc	cgtcttcttc	9720
ttccgcgtcg	ccggacgaga	gccgcgtcag	gccgtacccg	cgctgcccct	gtggtagtggag	9780
cagggccagg	tcggccacga	cgcgcgtcggc	cagcacggcc	tgctggatgc	gggtgagggt	9840
gtcctgaaag	tcgtcgagat	ccacaaagcg	gtggtagtgc	ccagtgttga	tggtagtgcgt	9900
gcagttgctc	atgacggacc	agtttacggt	ctgggtgcca	tggcccacgg	tttccaggtt	9960
gcggagacgc	gagtaggccc	gcgtctcgaa	gatgttagtgc	ttgcaggatcc	gcagcaggta	10020
ctggtagccc	accagcagat	gcggcggcgg	ctggcggtag	aggggcccacc	gctgggtggc	10080
gggggcgttg	ggggcgagat	cttccaacat	gaggcggtga	tagccgtaga	tgtagcgcga	10140
catccaagtg	atgcccgtgg	ccgtgggtgct	ggcgcgggccc	tagtcgcgaa	cgcgttcca	10200
gatgtttcgc	agcggctgga	agtactcgat	ggtggggcga	ctctgcccgg	tgaggcgggc	10260
gcagtcggcg	atgctctacg	ggaaaaaaaga	agggccagtg	aacaaccgccc	ttccgttagcc	10320
ggaggagaac	gcaagggggt	caaagaccac	cgaggctcgg	gttcgaaacc	cgggtggcgg	10380
cccgaatacg	gagggcggtt	ttttgcgttt	ttctcagatg	catcccgtgc	tgcggcagat	10440
gcgtccgaac	gcggggtccc	agtcggcggc	ggtgcctgcg	gccgtacgg	cggcttctac	10500
ggccacgtcg	cgctccaccc	cgccttaccac	ggcccaggcg	gcgggtggctc	tgcgcggcgc	10560
aggggaaccc	gaagcagagg	cgggttttgg	cgtggaggag	ggccagggggt	tggctcggct	10620
gggggcctg	agtcccggc	ggcacccgcg	cgtggctctg	aagcgcgacg	cggcggaggc	10680
gtacgtcggc	cggagcaatc	tgtttcgcga	ccgcagcggc	gaggaggccc	aggagatgcg	10740
agacttgcgt	tttcggggcgg	ggagggagtt	gcgtcacggg	ctggaccggc	agagggttct	10800
gagagaggag	gactttgagg	cggacgagcg	cacgggggtg	agtcccgcgc	gggctcacgt	10860
ggcggccgccc	aacctggtga	gcgcgtacga	gcagacggc	aaggaggaga	tgaacttcca	10920
gaagagcttc	aatcatcaccg	tgcgcacgct	gattgcgcgc	gaagagggtgg	ccatcggcct	10980
catgcacatcg	tgggattttg	tggaggcgta	cgttcagaac	cccagcagca	agccgctgac	11040
ggctcagctg	ttcctcatcg	tgcaacatag	tgcagacaac	gaaacgttca	gggaggccat	11100
gctgaacatt	gcagagcctg	aggggcgtg	gctcttggat	ctcattaaca	tcttgcagag	11160
tatcgtagtg	caggagcgct	cgctgagcct	ggccgacaag	gtggctgcca	tcaactacag	11220
catgctgtcg	ctgggcaat	tttacggccc	caagatctac	aagtctccgt	tcgtccccat	11280
agacaaggag	gtgaagatag	acagtttta	catgcgcatt	gctcaagg	tgctgactct	11340

aagcgacgac ctgggggtgt accgcaacga ccgcatacac aaggcggta ggcgcagccg 11400
 cccgcgcgag ctgagcgacc gcgagcttt gcacagcctg catcggcggt tgactgggtgc 11460
 cggcagcgcc gaggcggccg agtactttga cgccggagcg gacttgcgtt ggcagccatc 11520
 cgcacgcgcg ctggaggcgg ctggcgtcgg ggagtacggg gtcgaggacg acgtgaagc 11580
 ggacgacgag ttgggcattt acttgttagcc gtttttcgtt agatatgtcg gcaacgagc 11640
 cgtctgcggc cgccatggtg acggcggcgg ggcgcggccca ggacccggcc acgcgcgcgg 11700
 cgctgcagag tcagccttcc ggagtgacgc ccgcggacga ctggtccgag gcatgcgtc 11760
 gcatcctggc gctgacggcg cgcaaccccg aggctttcg gcagcagccg caggcaaacc 11820
 ggtttgcggc cattttggaa gcgggtggtc cctccagacc caaccccacc cacaaaaagg 11880
 tgctggccat cgtcaacgcc ctggcggaga ccaaggccat ccgcccagac gaggccgggc 11940
 aggtttacaa cgcgctgcta gaaagggtgg gacgctacaa cagctccaac gtgcagacca 12000
 atctggaccg cttgggtgacg gacgtgaagg aggccgtac ccagcggagag cggttttca 12060
 aggaagccaa tctgggctcg ctggtggccc tcaacgcctt cctgagcacg ctgcggcga 12120
 acgtgccccg cggtcaggag gactacgtga actttctgag cgcctccgc ctgatggtgg 12180
 ccgaggtgcc gcagagcgag gtgtaccagt ctggcccaa ctactacttc cagacctccc 12240
 ggcagggcct gcagacggtt aacctgacgc aggccttca gaacctgcag ggcctttggg 12300
 ggtgcgcgc tccgctggc gaccgcagca cggtgtccag cctgctgacc ccaatgccc 12360
 ggctgctctt gcttctcatt gctccgttca ccgacagcgg ttccatcagc cgcaactctt 12420
 acctgggaca cctgctcacc ctgtaccggg aggccatcgg gcaggcgcgg gtggacgagc 12480
 agacgtacca gaaaatcacc agcgtgagcc ggcgcgtgg gcaggaggac acggcagct 12540
 tggaggcgac tctgaacttc ctgctgacca accggcggca ggccttacct cccagtagc 12600
 cgctgaacgc ggaggaggag cgcatcctgc gtttcgtca gcagagcacc ggcgtgtact 12660
 tgatgcggga aggcgcctct cccagcgctt cgctggacat gacggcggcc aacatggagc 12720
 catcgttcta cggcccaac cgcccttcg tcaaccggct aatggactat ttgcacgcgg 12780
 cggccgcctt gaacccggaa tactttacta acgtcatcctt gaacgaccgt tggctgccac 12840
 ctcccgctt ctacacgggg gagttcgacc tcccggaggc caacgacggt ttcatgtggg 12900
 acgacgtgga cagcgtttc ctggccggca agaaggaggc gggtaactct cagagccacc 12960
 ggcgcgcctt cgcaacccctg ggggcgaccg ggcgcgttc tccgctgcct cgcctgccc 13020
 ggcgcgcgtt cggccaggcg gggcggtga ggcgtccgc ctcagcggtt gaggaggact 13080
 ggtggAACGA tccgctgctc cgtccggccc gcaacaaaaa cttcccaac aacgggatag 13140
 aggatttggt agacaaaatg aaccgttggaa agacgtatgc ccaggagcat cgggagtggc 13200
 aggcgaggca acccatggc cctgttctgc cgcctctcg ggcgcgcgc agggacgaag 13260
 acgcccacga ttcaagccat gacagcagcg tggatctt gggcgaggac gggaaacccct 13320
 ttgcacccacgt gcaacctcgc ggcgtggtc ggcgtggcg ctagaaaaaa aaattattaa 13380
 aagcacttac cagagccatg gtaagaagag caacaaaggt gtgtcctgct ttctcccg 13440

tagaaaaatg cgtcgggcgg tggcagttcc ctccgcggca atggcgtag gcccgcggcc 13500
ttcttacgaa agcgtgatgg cagcggccac cctgcaagcg ccgttggaga atccttacgt 13560
gccgcgcga tacctggagc ctacgggcgg gagaaacacgc attcgtaact cgagactgac 13620
gcccctgtac gacaccaccc gcctgtaccc ggtggacaac aagttagcag atatcgccac 13680
cttgaactac cagaacgacc acagcaactt ttcacgtcc gtggtgaga acagcgacta 13740
cacgcccggcc gaagcgagca cgagaccat taacttggac gaccgctcgc gctggggcgg 13800
ggacttgaaa accattctgc acactaacat gccaaacgtg aacgagttca tgtttaccaa 13860
ctcggtcagg gctaaactta tgggtggcgca cgaggccgac aaggacccgg tttatgagtg 13920
ggtgcaagctg acgctgcccgg agggaaactt ttcagagatt atgaccatag acctgatgaa 13980
caacgcccatt atcgaccact acctggcggt agccagacag caggggtga aagaaagcga 14040
gatcggcgtc aagtttgaca cgcaactt tcgtctggc tgggacccgg agacggggct 14100
tgtgtatggcg ggggtgtaca cgaacgaagc tttccatccc gacgtggtcc tcttgccggg 14160
ctgcgggggtg gactttaccc acagccgggt aaacaacctg cttaggcatac gcaagagaat 14220
gccccttcag gaagggtttc agatccgtta cgaggacctg gagggcggt acatccggc 14280
cctgctggac gtgccggcgt acgaggagag catcgccaac gcaaggagg cgccgatcag 14340
gggcgataat ttccggcgcc agccccaggc ggctccaacc ataaaacccg ttttggaga 14400
ctccaaaggg cggagctaca acgtaatagc caacaccaac aacacggctt acaggagctg 14460
gtatctggct tataactacg gcgacccggaa agagggggtt agggcctggaa ccctgctcac 14520
caactccggac gtgacgtgcg gttcagagca ggtctactgg tcgctgcctg acatgtacgt 14580
ggaccctgtg acgtttcgct ccacgcagca agtttagcaac taccctgtgg tgggagcgga 14640
gcttatggcg attcacagca agagcttttcaacacggcag gccgtctact cacagctcat 14700
tcgtcagacc accgcctaa cgcacgtttt caaccgcctt cccgagaacc aaatcctagt 14760
gcgacctcca gcgcacca tcaccaccgt cagcgagaac gtgcggcgtc taaccgtatca 14820
cgggacgctg ccttgcaga acagcatccg cggagttcag cgagttacca tcacggacgc 14880
ccgtcgtcgg acctgtccct acgtctacaa agccttggga atcgtggccc cgccgctcct 14940
gtcgagtcgc actttctaga tgtccatcct catctctccc agcaacaata ccggttgggg 15000
tctggcggtg accaaaaatgt acggaggcgc caaacgacgg tccccacaac atcccgatcg 15060
agtgcgcggg cacttttagag ccccatgggg gtcgcacacg cgccggcgc caacggcgaac 15120
caccgtcgac gacgtgatcg atagcgtggt ggccgacgcg cgcaactacc agcccgctcg 15180
atccacggtg gacgaagtca tcgacggcgt ggtggccgac gccaggccct acgcccgcag 15240
aaagtctcggt ctgcggccgc gccgttcgt aaagcgcccc acggccgcca tgaaagccgc 15300
tcgctctctg ctgcgtcggt cacgtatcgt ggtgcggcgc gccgcccagac ggcgacgcgc 15360
caacgcggcc gccggccgag tgcggccgcg ggccgcccag caggccgccc ccgcctctc 15420
cagtctatcc gccccccgac gcgggaatgt gtactgggtc agggactcgg ccaccggcgt 15480

gcgagttccc gtgagaaccc gtcctcctcg tccctgaata aaaagttcta agcccaatcg 15540
 gtgttccgtt gtgtgttcag ctcgtcatga ccaaacgcaa gtttaaagag gagctgctgc 15600
 aagcgctggt cccccaaatc tatgcgccgg cgccggacgt gaaaccgcgt cgcgtgaaac 15660
 gcgtgaagaa gcaggaaaag ctagagacaa aagaggaggc ggtggcgttg ggagacgggg 15720
 aggtggagtt tgtgcgtcg ttgcgcgc gtcggcgagt gaattggaag gggcgcaagg 15780
 tgcaacgggt gctgcgtccc ggcacggtgg tgtcttcac cccgggtgaa aaatccgcct 15840
 ggaagggcat aaagcgcgt tacgatgagg tgtacgggga cgaagacatt ctggagcagg 15900
 cgctggatag aagcggggag tttgcttacg gcaagagggc gaggacgggc gagatcgcca 15960
 tcccgcgtga cacttccaac cccacccca gtctgaaacc cgtgacgcgt caacaggtgt 16020
 tgccgggtgag cgccccctcg cgacgcggca taaaacgcga gggcggcgag ctgcagccca 16080
 ccatgcagct cctggttccc aagaggcaga aactagagga cgtactggac atgataaaaa 16140
 tggagcccga cgtgcagccc gatattaaaa tccgtcccat caaagaagt ggcgcgggaa 16200
 tggcgtgca gaccgtggac atccagattc ccatgaccag cgccgcacag gcggtagagg 16260
 ccatgcagac cgacgtgggg atgatgacgg acctgcccgc agctgctgcc gccgtggcca 16320
 ggcgcgcgac gcaaacggaa gccggcatgc agaccgaccc gtggacggag ggcgcgtgc 16380
 agccggccag aagacgcgtc agacggacgt acggccccgt ttctggcata atgcccggagt 16440
 acgcgcgtca tccttccatc atccccaccc ccggctaccg gggcgcacc taccgtccgc 16500
 gacgcagcac cactcgccgc cgtcgcgcga cgccacgagt cgccaccgccc agagtgagac 16560
 gcgtaacgac acgtcgccgc cgccgcttga ccctgcccgt ggtgcgtac catcccagca 16620
 ttctttaaaa aaccgctcct acgttgcaga tgggaagct tacttgtcga ctccgtatgg 16680
 ccgtgcccgg ctaccgagga agatccgc gacgacggac tttgggagggc agcggtttgc 16740
 gccgcgtcg ggcggttcac cggcgcctca agggaggcat tctgcccggc ctgatcccc 16800
 taatcgccgc agccatcgaa gccattcccg gaatcgccag ctagcggtg caggctagcc 16860
 agcgccactg attttactaa ccctgtcggt cgccgcgtct ctttcggcag actcaacgccc 16920
 cagcatggaa gacatcaatt tctcctctt ggccccgcgg cacggcacgc ggccgtatat 16980
 ggggacgtgg agcgagatcg gcacgaacca gatgaacggg ggcgtttca attggagcgg 17040
 tgtgtggagc ggcttggaaaa atttcggttc cactctgaaa acttacggca accgggtgtg 17100
 gaactccagc acggggcaga tgctgagggc caagctaaag gacacgcagt ttcagcaaaa 17160
 ggtgggtggac ggcacgcgtt cgggcctcaa cggcgcgcgtc gacctggcca accaggccat 17220
 tcaaaaggaa attaacagcc gcctggagcc gcccgcgcag gtggaggaga acctgcccc 17280
 tctggaggcg ctgccccca agggagagaa gcccgcgcgg cccgacatgg aggagacgct 17340
 agttactaag agcgaggagc cgccatcata cgaggaggcg gtgggttagct cgcagctgcc 17400
 gtccctcactg ctgaagccca ccacctatcc catgaccaag cccatgcct ccatggcgcg 17460
 ccccggtggaa gtcgacccgc ccatgcacgc ggtggccact ttggacctgc cgcgcggcga 17520
 accccggcaac cgcgtgcctc ccgtcccat cgctccgcg gtttctcgcc cgcgcgtccg 17580

ccccgtcgcc gtggccactc cccgctatcc gagccgcaac gccaaactggc agaccaccct 17640
caacagtatt gtcggactgg gggtaagtc tctgaagcgc cgtcgctgtt tttaaagcac 17700
aatttattaa acgagtagcc ctgtcttaat ccatacggtt atgtgtgcct atatcacgcg 17760
ttcagagcct gaccgtccgt caagatggcc actccgtcga tgatgcccga gtggtcgtac 17820
atgcacatcg ccgggcagga cgcctcgag tacctgagcc cgggtcttgt gcagtttgcc 17880
cgtgcgacgg aaacctactt ctcaactggc aacaagttca ggaacccac cgtggcgccc 17940
acccacgacg tcaccaccga tcggtcccag cgactgacaa tccgcttcgt cccctggac 18000
aaggaagaca ccgcttactc ctacaaaacc cgcttcacgc tggccgtggg cgacaaccgg 18060
gtgctagaca tggccagttac ctactttgac atccgcggcg tgatcgaccg cggacctagc 18120
ttcaaggcctt actccggcac ggcttacaac tcactggctc ccaaaggggc gccaacaac 18180
agccaatgga acgccacaga taacgggaac aagccagtgt gttttgctca ggcagcttt 18240
ataggtcaaa gcattacaaa agacggagtg caaatacaga actcagaaaa tcaacaggct 18300
gctgccgaca aaacttacca accagagcct caaattggag tttccacctg ggataccaac 18360
gttaccagta acgctgccgg acgagtgtt aaagccacca ctcccatgct gccatgttac 18420
ggttcatatg ccaatccac taatccaaac gggggtcagg caaaaacaga aggagacatt 18480
tcgctaaact ttttcacaac aactgcggca gcagacaata atcccaaagt ggtttttac 18540
agcgaagatg taaaccttca agcccccgat actcaacttag tatataagcc aacggtgga 18600
gaaaacgtta tcgcccaga agccctgcta acgcagcagg cgtgtcccaa cagagcaaac 18660
tacataggtt tccgagataa ctttatcggt ttaatgtatt ataacagcac agggAACATG 18720
ggagttctgg caggtcaggc ctcgcagttt aacgcagttg tagacctgca agatcgaaac 18780
acggaactgt cctatcagct aatgctagat gctctgggtg acagaactcg atatttctca 18840
atgtggaatc aggccgtgga cagctacgat ccagacgtt ggattatcga gaaccatggg 18900
gtggaagacg agctgcccaa ttactgtttt ccactcccag gcatgggtat ttttaactcc 18960
tacaaggggg taaaaccaca aaatggcggt aatggtaact gggaaagcaaa cggggaccta 19020
tcaaatgcca atgagatcgc ttttaggaaac atttttgcca tggaaattaa cctccacgca 19080
aacctgtggc gcagcttctt gtacagcaat gtggcgctgt acctgccaga cagctataaa 19140
ttcactcccg ctaacatcac tctgcccggc aaccaaaaaca cctacgagta tatcaacggg 19200
cgcgtcactt ctccaaaccctt ggtggacacc tttgttaaca ttggagcccg atggtcggc 19260
gatcccattgg acaacgtcaa ccccttttaac catcaccgga acgcgggcctt ccgttaccgc 19320
tccatgctgc tggaaatgg acgcgtggtg cctttccaca tacaagtgcc gcaaaaattt 19380
ttcgcgatta agaacctcct gctttgccc ggctccata cttacgagtg gagcttcaga 19440
aaagacgtga acatgattct gcagagcacc ctgggcaatg atcttcgagt ggacggggcc 19500
agcgtccgca ttgacagcgt caacttgtac gccaactttt tcccatggc gcacaacacc 19560
gcttctaccc tggaaagccat gctgcgaaac gacaccaacg accagtcgtt taacgactac 19620

ctcagcgccg ccaacatgct ttatcccatt ccggccaacg ccaccaacgt tcccatttcc	19680
attccctccc gcaactgggc ggccctccgg gnatggagct tcacccgcct taaagccaag	19740
gaaacgcctt ccttgggctc cggctttgac ccctactttg tgtactcagg caccattcct	19800
tacctggacg gcagctttt cctcaaccac actttcaaac gtctgtccat cgttgcgtat	19860
tcttcgtaa gttggccggg caacgaccgc ctccgtacgc cgaacgagtt cgaaattaag	19920
cgcattgtgg acggggaagg ctacaacgtg gctcaaagta acatgaccaa agactggttt	19980
ttaattcaaa tgctcagcca ctacaacatc ggctaccaag gcttctatgt tcccggggc	20040
tacaaggatc gnatgtattt tttcttccga aactttcagc ccatgagccg ccaggtgccc	20100
gatcccaccc ctgcccgtta tcaagccgtt cccctgcccc gacaacacaa caactcgccc	20160
tttgtgggt acatgggccc gaccatgcgc gaaggacagc catacccccgc caactacccc	20220
tatcccctga tcggcgctac cgccgtcccc gccattaccc agaaaaagtt tttgtgcgac	20280
cgcgtcatgt ggcgcataacc ttttccagc aactttatgt caatggggc cctgaccgac	20340
ctcggacaga acatgctttt cgctaactcc gcccatgccc tggatatgac ttttgagggt	20400
gacccatga acgagccac gttgctgtac atgcttttgg aggtgttcga cgtggcaga	20460
gtgcaccagc cgccaccgcg tattatcgag gccgtgtacc tgccgcacccc cttctctgcg	20520
ggcaatgccca ccacataagc cgctgaacta gctggttttt accccagatc ccatgggctc	20580
cacggaagac gaactgcggg ccattgtgcg agacctggc tgccgaccct acttcctggg	20640
caccttgcac aagcggtttc ccgggttcgt gtctccgc aaactcgct ggcgcgt	20700
gaataccgcc ggccgagaga ccggaggaga gcattggcta gctctggct ggaacccccc	20760
ctcgccacg ttttccctgt tcgacccctt tggctttca gaccaacgct tgaagcagat	20820
ctatgcattt gaatatgagg gtctactcaa gcgaagcgcg ctggcctcct ccggcgtatca	20880
ctgtctaaccc ctggtaaaaga gcactcagac ggttcaggc cctcacagcg ccgcctgtgg	20940
cctttttgt tgcacgcctt tgtgaactgg ccggacacccc ccatggaaaa	21000
caacccacc atggacctcc tgactggcgt tcccaactcc atgctccaaa gccccagcgt	21060
gcagaccacc ctccctccaaa accagaaaaa tctgtacgcc tttctgcaca agcactctcc	21120
ctactttcgc cgccatcgcc aacaaataga aaatgcaccc gcgttaaca aaactctgtat	21180
acgtttaata aatgaacttt ttattgaact ggaaaacggg tttgtgatTT taaaaatca	21240
aagggttga gctggacatc catgtggag gccggaaggg tgggtttctt gtactggtag	21300
ttggcagcc acttaaactc tggaatcaca aacttggca gcggatattc tggaaagtgg	21360
tcgtgccaca gctggcggtt cagctgaatgc gcctgcagaa catcgccggc ggagatctt	21420
aagtcgcagt ttatctggtt cacggcacgc gcgttgcgtt acatgggatt ggcacactga	21480
aacaccagca ggctgggatt cttgatgcta gccaggcca cggcgtcggt cacgtcaccg	21540
gtgtcttcta tggatggacag cgaaaaaggc gtgactttgc aaagctggcg tcccgccg	21600
ggcacgcaat ctcccaggta gttgcactca cagcggatgg gcagaagaag atgcttgg	21660
ccgcgggtca tgttagggata ggcgcgtgcc ataaaagctt cgatctgcct gaaagcctgc	21720

ttggccttgt	gcccttcgtt	ataaaaaaaca	ccgcaggact	tgttgaaaaa	ggtattactg	21780
gcfgcaagcgg	catcgtaaaa	gcaagcgcgt	gcgtcttcgt	ttcgtaactg	caccacgctg	21840
cggccccacc	ggttctgaat	cacccggcc	ctgcccgggt	tttccttgag	agcgcgctgg	21900
ccggcttcgc	tgcccacatc	cattccacg	acatgcct	tgttaatcat	ggccagaccg	21960
tggaggcagc	gcagccttc	gtcatcgctg	gtgcagtgtat	gctcccacac	gacgcagcca	22020
gtgggctccc	acttgggctt	ggaggcctcg	gcaatgccag	aatacaggag	aacgttagtgg	22080
tgcagaaaaac	gtcccacatc	ggtgccaaag	gtttctggc	tgctgaaggt	catcggcag	22140
tacccctcagt	cctcgtaag	ccaagtgttgc	cagatcttcc	tgaagaccgt	gtactgatcg	22200
ggcataaaagt	ggaactcatt	gcgctcggtc	ttgtcgatct	tatacttttc	catcagacta	22260
tgcataatct	ccatgccctt	ttcccaggcg	caaacaatct	tggtgctaca	cgggttaggt	22320
atggccaaag	tggggccct	ctgaggcggc	gcttggctt	cctcttgagc	cctctcccga	22380
ctgacggggg	ttgaaagagg	gtgccccttgc	gggaacggct	tgaacacggt	ctggcccgag	22440
gcgtcccgaa	aatctgcat	cgggggatttgc	ctggccgtca	tggcgatgtat	ctgaccccg	22500
ggctccctca	tttcgtccctc	ctcgggactt	tcctcggtct	tttcggggga	cggtagggaa	22560
gtagggggaa	gagcgcggcg	cgccttcttc	ttggggggca	gttccggagc	ctgctcttga	22620
cgactggcca	ttgtcttctc	ctaggcaaga	aaaacaagat	ggaagactct	ttctccctcct	22680
cctcgtaac	gtcagaaagc	gagtcttcca	ccttaagcgc	cgagaactcc	cagcgcata	22740
aatccgatgt	gggctacgag	actccccccg	cgaacttttc	gccggcccccc	ataaacacta	22800
acgggtggac	ggactacctg	gcccttaggag	acgtactgct	gaagcacatc	aggcggcaga	22860
gcgttatcg	gcaagatgt	ctcaccgagc	gactcggtt	tccgctggaa	gtggcggAAC	22920
ttagcgccgc	ctacgagcga	acccttttct	ccccaaagac	tcccccacag	aggcaggcta	22980
acggcacctg	cgagccta	cctcgactca	acttctaccc	tgccttgc	gtgcagagg	23040
tactggctac	gtaccacatt	tttttccaaa	accacaaaat	ccctctctcg	tgccgcgcca	23100
accgcaccaa	agccgatcgc	gtgctgcac	tggaggaagg	ggctcgacata	cctgagattg	23160
cgtgtctgga	ggaagtccca	aaaatcttgc	aaggctggg	ccgcgacgaa	aagcggcag	23220
caaacgctct	ggaagagaac	gcagagagtc	acaacagcgc	cttggtagaa	ctcgagggcg	23280
acaacgcccag	actggccgtc	ctcaaacggt	ccatagaagt	cacgcacttc	gcctaccccg	23340
ccgttaacct	ccctccaaaa	gttatgacag	cggcatgga	ctcgctgctc	ataaaagcgc	23400
ctcagccctt	agacccagag	cacaaaaaca	acgtgacga	aggaaaacccg	gtgggttctg	23460
atgaggagtt	gagcaagtgg	ctgtcctcca	acgaccccg	cacgttggag	gaacgaagaa	23520
aaaccatgat	ggccgtgggt	ctagttaccg	tgcaattaga	atgtctgcag	aggttctttt	23580
cccacccaga	gaccctgaga	aaagtggagg	aaacgctgca	ctacacatit	aggcacggct	23640
acgtgaagca	agcctgcaag	atttccaacg	tagaacttag	caacctcatc	tcctacctgg	23700
ggatcttgca	cgaaaaccgc	ctcgacaaa	acgtgctgca	cagcacactg	aaaggagaag	23760

cccggcgaga ctatgtgcga gactgcgtgt tcctagcgct agtgtacacc tggcagagcg 23820
 gaatgggagt ctggcagcag tgccctggagg acgaaaacct caaagagc tt gaaaagctgc 23880
 tggtcgcctc cagaaggc cttgtggacca gtttgacga gcgcaccgcc gcgcgagacc 23940
 tagctgatat tatttttccct cccaagctgg tgcagactct ccgggaagga ctgcccagatt 24000
 ttatgagtca aagcatcttgc aaaaacttcc gctcttcat cttggAACgc tcggaaatct 24060
 tgcccgccac tagctgcgcc ctacccacag attttgc tctccactac cgcaatgcc 24120
 caccggcgct gtggccgtac acttacttgc ttaaactggc caactttcta atgttccact 24180
 ctgacctggc agaagacgtt agcggcgagg ggctgctaga atgccactgc cgctgcaacc 24240
 tgtgcaccccc ccaccgctct ctagtatgca acactccct gctcaatgag acccagatca 24300
 tcggtacctt taaaactcac agccggactg tggacctccg cctacttgc caaatttgc ccagaagact 24420
 atcacgccc acaaattaaa ttttacgaaa accaatcaaa accacccaaa agcgagttaa 24480
 cggcttgcgt cattacgcag agcagcatag ttggcagtt gcaagccatt aacaaagcgc 24540
 ggcaagagtt tctcctaaaa aaaggaaaaag gggtctactt ggaccccccag accggcgagg 24600
 aactcaacgg accctccctca gtcgcagggtt gtgtgccccaa tgccgccccaa aaagaacacc 24660
 tcgcagtgg a catgcccaga gacggaggaa gaggagtggc gcagtgtgag caacagcgaa 24720
 acggaggaag agccgtggcc cgaggggtgc aacggggaaag aggacacggc gggacggcga 24780
 agtcttcgccc gaagaactct cgccgctgccc cccgaagtcc cagccggccg cctcgccccaa 24840
 agatccccca cacacccgta gatggatag caagacaaa aagccggta agagaacgc 24900
 tcgccccccc cagggctacc gctcggtggag aaagcacaaa aactgcatct tatcggttt 24960
 gctccagtgc ggcggagacg tttcgttcac ccgtagatac ttgcttttca acaaagggtt 25020
 ggccgtcccc cgtaacgtcc tccactacta ccgtcactct tacagctccg aagcggacgg 25080
 ctaagaaaaac gcagcagttg ccggcggag gactgcgtct cagcgccccga gaaccccccag 25140
 ccaccaggaa gctccgaaac cgcatatttc ccaccctcta cgctatctt cagcaaagcc 25200
 gggggcagca gcaagaactg aaaataaaaaa accgcacgct gaggtcgctt acccgaagct 25260
 gcctctatca caagagcga gaggcgtgc agcgaaccct ggaggacgca gaagcgctgt 25320
 tccagaagta ctgcgcgacc accctaaata actaaaaaaag cccgcgcgcg ggacttcaaa 25380
 ccgtctgacg tcaccagccg cgcccaaaa tgagcaaaga gattcccacg ctttacatgt 25440
 ggagttacca gccgcagatg ggattagccg ccggcgcgcg ccaggattac tccacgaaaa 25500
 tgaactggct cagcgccggg ccccacatga tttccgcgt aaacgacatt cgcgcccacc 25560
 gcaatcagct attgttagaa caggctgctc tgaccgccac gccccgtaat aacctgaacc 25620
 ctcccagctg gccagctgcc ctgggtgtacc aggaaacgccc tccacccacc agcgtacttt 25680
 tgccccgtga cgcccaggcg gaagtccaga tgactaacgc gggcgcgc aatggcggcg 25740
 gatcccgggtt tcggtacaga gttcacggcg ccgcacccta tagcccaggt ataaagaggc 25800
 tgatcattcg aggcaagggt gtccagctca acgacgagac agtgcgtct tcgccttggtc 25860

tacgaccaga cgaggatgttc cagctcgccg gctcgggccc ctcttcgttc acgcctcgcc 25920
 aggcatcacct gactctgcag agctctgcct ctcagcctcg ctcggggagga atcggacccc 25980
 ttcagtttgt ggaggagttt gtgccctcggt tctactttca gcctttctcc ggatcgccc 26040
 gccagtaccc ggacgagttc atccccaaact tcgacgcggg gaggacttct gtggacgggtt 26100
 atgactgtatc tcgagccgc ttcaagtgtca gtggaaacaag cgcggctcaa tcacctgggtt 26160
 cggtggccccc gccgctgctg cgtggctcgac gacttgagct tagctctcaa gtttgtaaaa 26220
 aacccgtccg aaaccgggag cgctgtgcac gggttggagc tagtgggtcc tgagaaggcc 26280
 accatccacg ttctcagaaa ctttggaa aaaccattt tggtaaacg agatcagggg 26340
 cctttgtaa tcagcttact ctgcacctgt aaccatgttgc accttcacga ctatttatg 26400
 gatcatttgt ggcgtgaatt caataagtaa agcgaattct taccaagatt atgatgtcca 26460
 tgactgttcc tcgcccactat acgatgttgtt ggcagtaaac tctcttgcg acatctatct 26520
 gaactgttcc ttttggtccg cacagcttac ttgggtactac ggtgacaccg tcctttctgg 26580
 ctcactgggc agctcacacg gaataacact tcaccccttt tcgcccgttgc gatacggaaa 26640
 ctacagctgt cgtgcccgtta cctgcctcca cggtttcaat cttcagccct gtccaccgac 26700
 caaacttgta tttgtcgact ctaagcactt acagctcaac tgccggattc taggccccag 26760
 tatcttggg acataacaata aaatcagggtt ggtggaaattt gtctactacc cacccagcgc 26820
 ccgcgggtttt gggaaattt cttccagat ctactacaac tatcttgcca cacattatgc 26880
 aagtcaacag caactaaact tgcaaggcacc cttcacgcca ggagagttact cctgtcacgt 26940
 aggctcctgc acagaaactt ttattctctt caacagatct tctgcatttgc aacgcttcac 27000
 tactaactac ttttagaaacc aagttgtgct tttcactgac gaaaccccta acgtcaccct 27060
 ggactgtgca tggttttctc atgacaccgt aacttggact cttaacaata ctctctggct 27120
 cgcgttgcgtt aacccaaagct tgattgttaa aaattttgtt ttaacccctt ctaaaccctc 27180
 tcctcgcgaa atagttatct ttgtcccttt taatccaaaa actaccccttgc cctgtcaggt 27240
 tttgtttaag ctttgccaaa caaactttaa gtttggatatt ttgcctccgc aatctgtcaa 27300
 actcatagaa aaatacaaca aagcgcccg tttggctcct aaaacccctt accactggct 27360
 aacccatcacg gggctgtttt cactaattgt tttttccctt attaacattt ttatatgttt 27420
 cttgccttcc tccttctttt cgcgaacacc gttgccgcgaaagacccctt ccttattact 27480
 gtagcgcttgc tatacaaaaa ccaagagtgg tcaaccgtgc tctcaatctt ttttcaattt 27540
 ttcattttgtt ccttaataact ttctcttatt gtcgttaaca atgatctggatgcattggct 27600
 cgcctttttt tggctgctta gtgcaaaagc cactatttt cacaggtatg tggaagaagg 27660
 aacttagcacc ctcttacga tacctgaaac aattaaggcg gctgtatgaaat tttcttggtt 27720
 caaaggctcg ctctcagacg gcaaccactc attctcagga cagacccttt gcatccaaga 27780
 aacttattttt aaatcagaac tacaatacag ctgcataaaaa aacttttcc atctctacaa 27840
 catctcaaaaa ccctatgagg gtatattacaa tgccaaagggtt tcagacaact ccagcacacg 27900

gaactttac tttaatctga cagttattaa agcaattcc attcctatct gtgagtttag 27960
 ctcccagttt ctttctgaaa cctactgttt aattactata aactgcacta aaaatcgccct 28020
 tcacaccacc ataatctaca atcacacaca atcaccctgg gttttaaacc taaaattttc 28080
 tccacacatg ccttcgcaat ttctcacgca agtaccgtc tctaacadaa gcaagcagtt 28140
 tggctttac tatccttcc acgaactgtg cgaaataatt gaagccgaat atgaaccaga 28200
 ctactttact tacattgccat ttggtgtaat cgttgcttgc ctttgcttgc ttattggggg 28260
 gtgtgtttat ttgtacattc agagaaaaat attgctctcg ctgtgctcct gcggttacaa 28320
 agcagaagaa agaattaaaaa tctctacact ttattaatgt tttccagaaa tggcaaaact 28380
 aacgctccta cttttgccttc tcacgcccgt gacgctttt accatcactt tttctgcccgc 28440
 cgccacactc gaacctcaat gttgccacc gggtgaagtc tactttgtct acgtgttgct 28500
 gtgctgcgtt agcgtttgcgtt acgtttgcgtt gttttcttc agtgcattga 28560
 ctacttctgg gtcagactct actaccgcag acacgcgcct cagtatcaa atcaacaaat 28620
 tgccagacta ctcggctcgc catgattgtc ttgtattttt ccctgatttt ttttccacctt 28680
 acttgcgtt gtgattttca cttcactcaa ttttgaaaaa cgcaatgctt cgaccgcgc 28740
 ctctccaacg actggatgat ggctcttgca attgccacgc ttggggcgtt tggacttttt 28800
 agtggtttg ctttgcatca caaatttaag actccatgga cacatggctt tctttcagat 28860
 tttccagtttta cacctactcc gcccctccc cggccatcg acgtgcctca gtttccctca 28920
 ctttctccat ctgtctgcag ctactttcat ctgtaatggc cgacccatggaa tttgacggag 28980
 tgcaatctga gcaaagggtt atacacttcc aacgcccgtc ggaccgcgaa cgcaaaaaca 29040
 gagagctgca aaccatacaa aacacccacc aatgtaaacg cggatattt tgtattgtaa 29100
 aacaagctaa gctccactac gagttctat ctggcaacga ccacgagctc caatacgtgg 29160
 tcgatcagca gcgtcaaacc ttttgttattt taattggagt ttccccatt aaagttactc 29220
 aaaccaaggg tgaaaccaag ggaaccataa ggtgctcatg tcacctgtca gaatgcctt 29280
 acactctagt taaaacccta tgtggcttac atgattctat ccccttaat taaataaaact 29340
 tactttaat ctgcaatcac ttcttcgtcc ttgtttttgt cgccatccag cagcaccacc 29400
 ttccccctt cccaaacttcc atagcatatt ttccgaaaag aggctactt tcgcccacacc 29460
 tttaaaggaa cgtttacttc gcttcaagc tctcccacga ttttcattgc agatatgaaa 29520
 cgccccaag tgaaagaagg atttaacccc gtttatccct atggatattc tactccgact 29580
 gacgtggctc ctcccttgc agcctctgac ggtctcaag aaaacccacc tggggcttg 29640
 tccctaaaaa tatccaaacc tttaactttt aatgcctcca aggctctaag cctggctatt 29700
 ggtccaggat taaaaattca agatggtaaa ctagtggggg agggacaagc aattcttgca 29760
 aacctgcccgc ttcaaatcac caacaacaca atttcactac gttttggaa cacacttgcc 29820
 ttgaatgaca ataatgaact ccaaaccaca ctaaaatctt catgcccct taaaatcaca 29880
 gaccagactc tttcccttaa catagggac agccttgcaa tttaagatga caaactagaa 29940
 agcgctttc aagcgaccct cccactctcc attagcaaca acaccatcag cctcaacgtg 30000

ggcacccggac tcaccataaa tggaaacgtt ttacaagctg ttcccctaaa tgctctaagt 30060
 cccctaacta tttccaacaa taacatcagc ctgcgcstatg gcagttccct gacggtgctt 30120
 aacaatgaac tgcaaagcaa cctcacagtt cactccccctt taaaactcaa ctccaacaac 30180
 tcaatttctc tcaacactct atctccgttt agaatcgaga atggttccct cacgctctat 30240
 ttgggaacaa aatctggctt gctagttcaa aacagtggct taaaagttca agcgggctac 30300
 ggcctgcaag taacagacac caatgctctc acattaagat atctcgctcc actgaccatt 30360
 ccagactcgg gctcagaaca aggattctt aaagtaaaca ctggacaggg cctaagtgtg 30420
 aaccaagctg gagcgcttga aacatcccta ggaggtggat taaaatatgc tgataacaaa 30480
 ataacccttg atacaggaaa cgactgaca ttatctgaaa ataaacttgc agtagctgca 30540
 ggttagtggtc taacttttag agatggtgcc ttggtagcca cgggaaccgc atttacgcaa 30600
 acactgtgga ctacggctga tccgtctccc aactgcacaa ttatacagga ccgcacaca 30660
 aaatttactt tggcgcttac cattagtggg agccaagtgc tggggacggt ttccattatt 30720
 ggagtaaaag gcccccttcc aagtagcata ccgtcagcta ccgttacagt acaacttaac 30780
 tttgattcca acggagccct attgagctcc tcttcactta aaggttactg ggggtatcgc 30840
 caaggccctt caattgaccc ttacccata attaatgcct taaaactttat gccaaactca 30900
 ctggcttatac cccccggaca agaaatccaa gcaaaatgta acatgtacgt ttctactttt 30960
 ttacgaggaa atccacaaaag accaatacgat ttaaacatca ctttaataaa tcaaaccagc 31020
 gggttttcca ttagatttac atggacaaat ttaaccacag gagaagcatt tgcaatgccc 31080
 ccatgcactt tttcctacat tgctgaacaa caataaaacta tgtaaccctc accgttaacc 31140
 cgcctccgccc cttccatTTT attttataaa ccacccgatc cacctttca gcagtaaaca 31200
 attgcattgtc agtagggca gtaaaacttt tgggagttaa aatccacaca gtttcttcac 31260
 aagctaagcg aaaatcagtt acacttataa aaccatcgct aacatcgac aaagacaagc 31320
 atgagtcacaa agcttccggc tctggatcag attttgttc attaacagcg ggagaaacag 31380
 cttctggagg attttccatc tccatctcct tcattcgttc caccatgtcc accgtggtca 31440
 tctgggacga gaacgacagt tgtcatacac ctcataagtc accggcgtat gacgaacgta 31500
 cagatctcga agaatgtcct gtcggccct ttcggcagca ctggggccgaa ggcgaaacgc 31560
 cccatgttta acaatggcca gcacccggc cttcatcagg cgcctagttc ttttagcgca 31620
 acagcgcattt cgcagctcgc taagactggc gcaagaaaca cagcacagaa ccaccagatt 31680
 gttcatgatc ccataagcg gtcgacacca gcccataacta acaaattgtt tcactattct 31740
 agcatgaatg tcatactgat gttcaagta aattaaatgg cgccccctta tgtaaacact 31800
 tccccacgtac aacacctcct ttggcatctg ataattaacc acctcccgat accaaataca 31860
 tctctgatta atagtcgccc cgtacactac ccgattaaac caagttgcca acataatccc 31920
 ccctgccata cactgcaaag aacctggacg gctacaatga cagtgcaaag tcccacaccc 31980
 gttgccatgg ataactgagg aacgccttaa gtcaatagtgcacactaa tacaaacatg 32040

taaaatagtgt ttcaacaagt gccactcgta tgaggtgagt atcatgtccc agggAACGGG 32100
 ccactccata aacactgcaa aaccaacaca tcctaccatc ccccgacgg cactcacatc 32160
 gtgcattggtg ttcatatcac agtccggaag ctgaggacaa ggaaaagtct cgggagcatt 32220
 ttcatagggc ggttagtgggt actccttgta ggggttcagt cggcaccgg 32280
 cttctggcc ataacacaca agttgagatc tgatttcaag gtactttctg aatgaaaacc 32340
 aagtgcTTTc ccaacaatgt atccgatgtc ttcggcccc gcgtcggtag cgctccttgc 32400
 agtacacacg gaacaaccac tcacgcaggc ccagaagaca gtttccgcg gacggtgaca 32460
 agttaatccc cctcagtctc agagccaata tagttcttc cacagtagca taggccaac 32520
 ccaaccagga aacacaagct ggcacgtccc gttcaacggg aggacaaggaa agcagaggca 32580
 gaggcatagg caaagcaaca gaatttttat tccaactgggt cacgtagcac ttcaaacacc 32640
 aggtcacgt aatggcagcg atcttgggtt tcctgatgga acataacagc aagatcaaac 32700
 atgagacgt tctcaagggtg attaaccaca gctggatta aatcctccac gcgcacattt 32760
 agaaacacca gcaataaaaaa agcccggttt tctccgggat ctatcatagc agcacagtca 32820
 tcaattagtc ccaagtaatt ttcccgtttc caatctgtta taatttgcag aataatgccc 32880
 tgtaaatcca agccggccat ggcggaaagc tcagataatg cactttccac gtgcattcgt 32940
 aaacacaccc tcattttgtc aatccaaaaa gtcttcttct tgagaaacct gtagtaaatt 33000
 aagaatcgcc aggttaggtc cgatgcctac atcccgagc ttcatctca gcatgcactg 33060
 caaatgatcc agcagatcag aacagcaatt agcagccagc tcattccccgg tttccagttc 33120
 cggagttccc acggcaatta tcactcgaaa cgtggacaa atcggaaataa catgagctcc 33180
 cacgtgagca aaagccgtag ggcaggatgcgataatcacag aaccagcgga aaaaagattg 33240
 cagctcatgt ttcaaaaagc tctgcagatc aaaattcagc tcattgcaat aacacagtaa 33300
 agtttgcgtt atagtaaccg aaaaccacac gggtcgacgt tcatttgcgtt cggcttacct 33360
 aaaaaagaag cacattttta aaccacagtc gcttcctgaa caggaggaaa tatggtgcgg 33420
 cgtaaaaacca gacgcgccac cggatctccg gcagagccct gataatacag ccagctgtgg 33480
 ttAAACAGCA aaacctttaa ttccggcaacg gttgagggtct ccacataatc agcggccaca 33540
 aaaatcccattt ctcgaacttgc tcgcgttagg gagctaaaat ggccagtata gccccatggc 33600
 acccgaaacgc taatctgcaatgtatgaga gccacccat tcggcggtt cacaatca 33660
 gtcggagaaa acaacgtata caccggac tgcaaaagct gttcaggcaaa acgcccctgc 33720
 ggtccctctc ggtacaccag caaaggctcg ggtaaagcag ccatgccaag cgcttaccgt 33780
 gccaagagcg actcagacga aaaagtgtac tgaggcgctc agagcagcg 33840
 tacctgtgac gtcaagaacc gaaagtcaaa agttcaccgg gcgccggc aaaaacccgc 33900
 gaaaatccac ccaaaaagcc cgcggaaaac acttccgtat aaaattccg ggttaccggc 33960
 gcgtcaccgc cgccgcacac gcccggcccg ccccgccgctc ctcccccggaaa cccggccgc 34020
 ccacttccgc gttcccaaga caaaggctcg gtaactccgc ccacccatt tgcatgtttaa 34080
 ctcggtcgccc atcttgcgtt gttatattga tgatg 34115

<210> 7
<211> 44
<212> DNA
<213> Artificial

<220>
<223> primer P5L

<400> 7
gcmcacgcgt ctctatcgat gaattccatt ggtgatggac atgc 44

<210> 8
<211> 36
<212> DNA
<213> Artificial

<220>
<223> primer P5ITR

<400> 8
gcmcatttaa atcatcatca ataataataacc tcaaac 36

<210> 9
<211> 31
<212> DNA
<213> Artificial

<220>
<223> primer P5XTOP

<400> 9
gatacctagg aacgaggagg atttgatatt g 31

<210> 10
<211> 20
<212> DNA
<213> Artificial

<220>
<223> primer P5XBOT

<400> 10
atgtacgcct ccgcgctcac 20

<210> 11
<211> 31
<212> DNA
<213> Artificial

<220>
<223> primer P5E4

<400> 11
gatcgaattc ccactctgta ccccatctct g 31

<210> 12
<211> 31967
<212> DNA
<213> Simian adenovirus

<220>

<221> CDS
 <222> (13796)..(15322)

<220>
 <221> CDS
 <222> (18257)..(21010)

<220>
 <221> CDS
 <222> (27192)..(29015)

<400>	12					
catcatcata atatacccta	tttgggaacg	gtgccaatat gataatgagg	aggcggggtt	60		
aggggtggag	tgagggtggg	gtgcggatga	cgcggcgcg	gggcgggggtg	ggagtctgac	120
gtggggcgcg	gggtggagcg	cgagggtgag	ggcggggcga	gggcggcgaa	cgcggcgaa	180
ttgacgtaca	cggtagtaag	tttgagcggaa	aattaagtga	attgggcgtg	tttttgtaa	240
cttttgtacg	tacacggtag	taagttttag	cgaaaattaa	gtgaatttggg	cgttttttt	300
gtaaactttt	gacgtacacg	gtagtaagtt	tgagcggaaa	ttaagtgaat	tggcgtgtt	360
tttttgtaact	tttgacgta	cacggtagta	agttttagcg	gaaattaagt	gaattggcg	420
tgtttttgt	aacttttga	cgtacacggt	agtaagtttgc	agcggaaatt	aagtgaatttgc	480
ggcgtgtttt	ttgtaacttt	ttgacgtaca	cggtagtaag	tttgagcggaa	aattaagtga	540
attggcgtg	tttttgtaa	cttttgtacg	tacacggtag	taagttttag	cgaaaattaa	600
gtgaatttggg	cgtttttttt	gtaaactttt	ggtcatttttgc	gcfgaaaac	tgagtaatga	660
ggaagtgaga	cggactctgc	ccttttttac	ggttgggagg	aaaaactgct	gatcagcgct	720
gaacttttggg	ctctgacgcg	gtggtttccc	tacgtggcag	tgccacgaga	aggctcaaag	780
tcctcgtttt	attgtgtgct	cagcctttt	gagggtattt	aaacaccgtc	agaccgtcaa	840
gaggccactc	ttgagtgcga	gcgagtagag	ttttccctc	cgtcgtgcc	gcggctgctc	900
agtcttaccg	ccaggatgcg	aatgctgccg	gagatcttca	ccgggtcctg	ggaagatgtt	960
ttccagggac	ttttagaatc	tgaagacaac	tttccccaaac	ctcctgagcc	ggaggagcta	1020
cctgagggtt	cgcttcacga	tctgtttgac	gtggaggtgg	agagccccga	cgagagatccg	1080
aacgaggaag	ctgttgcgtgg	tatgttcccc	gactggatga	tatctcagag	cgagagtgc	1140
gaaggcagtg	cggactcggg	cgtttctggg	gttggaaacc	ttgtggaggt	ggatctggac	1200
ttgaagtgtt	acgaggaagg	ttttccctc	agcgactcag	agactgtat	agcctcagaa	1260
gcgaaaggc	aagaggagtc	tgtgtgtgg	tatgtgaaga	ttaatgaggg	ggagaacctg	1320
ctgggtttgg	actgtccgg	ccaacctgg	catggctgtc	gagcctgtga	ctttcaccgg	1380
gggaccagcg	gaaaccgg	agctatctgt	gctttgtgc	acatgcgtct	gaacgagcac	1440
tgcataataca	gtgagtgtt	ttcatgggtt	atttatgggg	aaagtttgggg	gaaagtcttgc	1500
agaagggaa	aagtttaaca	tgtcattttt	gtacttgata	ggtccagttt	cgacgcgtga	1560
gggggattct	gagtccctg	ctggtccttc	ccagccctca	ccctgctt	tgaccgcccac	1620
gcccgcaccc	gacctagtt	gaccaacgccc	ctgcccagtg	tcctgttagac	gacgtgcagc	1680
tgttaattgc	atagaagatt	tattggcccc	tgatgacgag	aacgcaccc	tgaacctgtg	1740

cctgaaacgc cctaagacat cttgagtgtt tatgctgtta ataaaagtgt tgacccttag	1800
atcctgtgtt tattcccttgg gcgtgtgcgc gggtatataa agcagctgcg ggctggagtg	1860
ttagtttatt ctgatggagt actggagtga gctgcagaat taccagagcc tccggcgcc	1920
gctggagttg gcctctgcca gaacatccac ctgctggagg ttctgttttg gctcgactct	1980
cagtaacgtg gtgtatcggg tgaagcaaga gtacagctcg cgctttctg agctgttggc	2040
ccgctacccg gctgttttg tttctctgga tctaggccat cacgttattt tccaagaagc	2100
tgtagtcaga tatttggatt tttctactcc cgggcgtgcg gtttctgcga ttgccttc	2160
ctgctttgtg ctagatcgat ggagcgccca aacccgcctg agcccggggt acaccctgga	2220
ctacctgacc atgtccctgt ggagggccat gctgcggaag aggagggtct caggcttc	2280
gccggcgcgg cctccgcacg gactggatcc ggtgctggag gagtcggagc tggaggagga	2340
ggagaacccg agggccggcc tggaccctcc ggcggaatag tgacggaacc ggaggatccc	2400
caagaggta ctagtcaggg gggagggggg ccgaagagaa agcgggatga agaggaggcg	2460
atggaccccg acaggtttct aaaagaactg actttaagct taatgtctaa gagaagaccc	2520
gagacggtgt ggtggctctga tttggagaag gagttccacc agggggagat gaatctgttg	2580
tacaagtatg gtttgagca ggtgaagact cactggctgg aagcctggga ggactggag	2640
atggctttta acatgtttgc caaggtggcg ctgcgcggg acactatttta caccgtgact	2700
aagacggtgg aaatccgcaa gcctgtgtat gtgattggca acggggccgt ggttcggttc	2760
cagaccaccc accgggtggc ctttaattgc tgtatgcaga acctgggccc ggggtgatt	2820
aatcttaatg gagtgacctt ttgcaatgtc agattcgccg gggatggatt caacgggacg	2880
gtgtttcccg ccaccaccca gataacccta cacgggtgt tcttcagca tgttaggcgg	2940
gcttgtgttag atacctggc gagggcctct gtgaggggct gcacctttgt gggctgttgg	3000
aaagcggtgg tgggtcgacc caagagtgtg ctgtctgtga agaaatgtgt gtttgagaga	3060
tgtctgatgg ccatgggtgt ggagggccag ggttaggatcc gccataacgc gggctccgag	3120
aataacctgtt ttgcctgct gaagggtacg gcgaccgtga agcataacat gatctgcggg	3180
gtgggtcact cgcagctgct gacctgtgcg gatggcaact gccaggccct ggcacggcg	3240
catgtggtgt cccaccggcg ccgccccctgg ccggtgtttgg aacataacat gctgatgcgc	3300
tgtaccatgc acctgggcta ccggccgcggc gtgtttgtgc cccatcagtg taacctgacc	3360
cacaccaagg ttttgcgttga gacggatgct ttttcgcgag tgaatctgaa tgggggttgc	3420
gatctgacta tggagatgtt caagatagtg agatttgatg aatcaaagac ccgtgtcgc	3480
ccctgcgagt gcggtgccaa tcacctgagg atgtatccc tgaccctgaa cgtgacggag	3540
gagctgcgcc cggaccacca gatgctgtcc tgtctgcga ccgattacga aagcagcgat	3600
gaggattaag aggtgagggg cggggcttgc atgggtata aaggtggggg aggaggtggg	3660
gagggggaaa acccaaaatg agcggatcga tggaaaggag cgctgtgagt tttgagggcg	3720
gggtgttcag cccatatctg acaacccgtc tcccccgcctg ggcaggagtg cgtcagaatg	3780

tgggtggctc	caacgtggac	ggacgtccgg	tggccctgc	caactccgcc	actctcacct	3840
acgccaccgt	cggatcgctcg	ctggacacccg	ccgctgccgc	cgccgcttca	gccgccgctt	3900
ctactgctcg	cggtatggca	gctgatttcg	gactgtatca	gcaactggct	gcgcctcgct	3960
cgtcgctgag	agaagatgat	gccctgtccg	tggtgctgac	ccgcctggag	gagctgtccc	4020
agcagctgca	agagctgtct	gccaaagtgg	atgcacagaa	cgtccccgct	acccaatgaa	4080
taaataaacg	agacaccgag	tgtgtttgga	aatcaaaatg	tgtttttatt	tgtttttct	4140
ggcgcggtag	gcccttgacc	acctgtcgcg	gtcgtaagg	accttgtgga	tgttttccag	4200
cacccggtag	aggtgggctt	ggatgttgag	gtacatgggc	atgagccccgt	ctcgggggtg	4260
gaggttagcac	cactggaggg	cgtcgctcg	gggggtgggt	ttgttagataa	tccagtcgt	4320
gcagggtttt	tgggcatgga	agcggaaagat	gtctttgaga	agcaggctga	tggccagggg	4380
gaggcccttg	gtgttaggtgt	tcacaaagcg	gttgagctgg	gagggatgca	tgcgggggga	4440
gatgagatgc	atctggcct	gaatcttgag	gttggcgatg	ttgccgccc	gatcccggcc	4500
ggggctcatg	tttgtcagga	ccaccaggac	ggtgtagccg	gtgcacttgg	ggaatttgc	4560
atgcaacttg	gaagggaagg	cgtggaagaa	cttggagacc	cccttgtggc	cgccgagggtt	4620
ctccatgcat	tcgtccatga	tgtggcgat	gggaccctg	gcggccgccc	tggcgaagac	4680
gttgtcgaaa	tgggagacgt	cgtagttctg	ttccaggggt	agctcgctgt	aggccatttt	4740
gacgaagcgg	gggagcaggg	tgcccgactg	ggggacgatg	gtaccttcgg	gaccggggc	4800
gtagttgccc	tcgcagattt	gcatctccca	ggccttgatc	tccgaggggg	ggatcatgtc	4860
cacctggggc	gcgatgaaga	agacggtctc	cggggcgggg	ttgatgagct	gggaggagag	4920
gaggttgcgg	gcagactgctg	acttgcgc	cccggtggc	ccgtagatga	ccccgatgac	4980
gggtagcgc	tggtagttt	aggagctgca	gctgccgtcc	tcgcgcagga	acggggcgac	5040
ctcggtcatc	atgcttctga	cgtgatggtt	ttccctgacg	aggctttgca	agagccgctc	5100
gccgcccagg	gagagaagct	cttccaggct	gcfgaaatgc	ttgaggggtt	tgaggccgtc	5160
ggccatggtc	atcttttcca	gggactggcg	gagcaggtac	aggcggtccc	agagctcggt	5220
gacgtttct	acggcatctc	gatccagcag	acttcttgg	tgcgaaaa	ggggcggctt	5280
tggctgtagg	ggaccagccg	gtgcgcgtcc	agggaggcga	gggtgacgtc	tttccagggc	5340
cgcagcggtc	gcgtgagggt	ggtctcggt	acggtaagg	gatgcgcgtcc	cggttggcgc	5400
ctggccaggg	tcctctttag	actcatcctg	ctggtggtg	agcgggcgtc	ttctccctgg	5460
gagtcggcca	ggtagcattt	gagcatgagg	tcgtagctga	gggcctcggt	cgcgtggccc	5520
ttggcgcgca	gcttgccccc	ggagacgtgt	ccgcaggcgg	gacagtgcag	gcacttgagg	5580
gcgttagagct	tggggccag	gaagacggac	tcggggaggt	aggcgtcggc	gccgcactga	5640
gcgcacgtgg	tctcgcaactc	gacgagccag	gtgagctccg	ggtgttgggg	atcaaaaacc	5700
agctggccccc	cgtgtttttt	gatgcgcgttc	ttacctcggt	tctccatgag	gcggcggtcc	5760
gcttcgggtga	cgaagaggct	gtcgggtgtcg	ccgtagacgg	atttgagcgc	gcgctgctcc	5820
aggggaaatcc	cgcgatcctc	cgcgtgcagg	aactcggacc	actctgagac	gaaggcccg	5880

gtccacgcga ggacaaagga ggcgatctgg gacggtagc ggtcggtctc caccaggga	5940
tccaccccttct ccagggtgtg caggcagagg tcgtccctcct ccgcgtccat gaagggtatt	6000
ggcttgcataa tgtatgtcac gtgaccgtcg gggtcgcgcg tgggcttata aaagggggcg	6060
tgccccggcct ccccgtcaact ttcttccgca tcgctgtggta cgagatccag ctgctcggtt	6120
gagtaggcgc gctggaaggc gggcatgacc tcggcgctga gggtgtcagt ttccacgaac	6180
gaggtggatt tgatatttgc acgtccggcg gcgtatgttt tgacgggtggc ggggtccatc	6240
ttggtcagaaaa agacgatctt ttttgttgc agcttggtgg cgaacgaccc gtagagggcg	6300
ttggagagca gcttggcgat ggagcgcagg gtctgggtct tctcgcggtc ggcgcgctcc	6360
ttggcggcga tggtgagctg gacgtactcg cgggccacgc agcgcattc gggaaagacg	6420
gtggcgcgct cgtccggcag gaggcgcacg cgccagccgc ggttgtgcag ggtgatgagg	6480
tccacgcgtgg tggccaccc gccgcgcagt ggctcggtgg tccagcagag gcgcggccc	6540
ttgcgcgagc agaagggggg caggacgtcg agctggcttcc cgccgggggg gtcggcgctg	6600
atggtaaga tgcccggttag caggtggcg gtcgaagttagt cgatggcgac cgcgggtcg	6660
gcgagggcgc gttcccagtc cctgaccgc agggcgcgt ctaggggtt gagggcgcc	6720
ccccaggcgtggatgggt gagggccgag gcgtacatgc cgccagatgtc gtagacgttag	6780
aggggctcgc ggagcacgcc gaggttaggtg ggtatgcacg gtccgcgcg gatgtggcg	6840
cgcacgttagt cgtacatctc gtgcgagggg gcgaggaggc cgccctccgag gtcgcgcgc	6900
tgcggtctga cggcccgta ggtgacctgg cggaaagatgg cgtgcgagtt ggaggagatg	6960
gtggccgct ggaagatgtt gaagctggcc tcggggagtc cgacggcgctc gtggacgaac	7020
tgggcgttagg agtcgcgcag cttctgcacg agcgcggcg tgacgagcac gtccaggcg	7080
cagtagtcga gggtctcgcg gacgaggctcg taacgggtctt cttccagagt	7140
tcgcggttga ggaggtactc ctcgcgatcc ttccagtagt cttcgccgg aaagccgcgt	7200
tcgtccgcga ggtaaaacc cagcatgtag aagcggttga cggctcggtta gggacagcag	7260
cccttctcga cgggcaggga gtaggcctgc gcggcccttc tgagcgaggt gtgggtgagg	7320
gcgaagggtgt cgcgcaccat gaccttgagg aactggaaacc tgaagtcggt gtcgtcgac	7380
gcgcggccgtt cccagagccc gtagtcggtg cgttctggc tgccgggggtt gggcaggcg	7440
aaggtgacgt cggtgaagag gatcttgccg gcgcgcggca tgaagttcg ggtgatcctg	7500
aaggggcccg gcacgtccga gcgggttta atgacctggg cgcgcaggac gatctcgatc	7560
aagccgttga tgggtggcc gacgatgttag agctcgacga agcgcggcg cccctgcagc	7620
ttgggggcct tcttgcgttc ctcgttaggtg aggcaagtcgg gcgagtagag gcccagctcc	7680
tgtcgccccc attcggccac ctgggggttg gcttgcaga aagcccgcca gagctgcagg	7740
gcgagctggg tctggaggcg gtcgcggtag tcgcggact ttttgcac cgcgcac	7800
tcgggggtga ccacgttagaa ggtgcggccg tcctggcccc aggctccca gttctgcgtcg	7860
cgggcgagac ggcaggccctc ctcgcacgagg gcctccccc cggagagatg catgactagc	7920

atgaagggga cgagttgctt gccgaaggca cccatccacg ttaggtctc tacgtcgtag	7980
gtgacgaaga gacgttcggt gcgaggatgc gagccgagag gaaagaagtt gatccctgc	8040
caccagccgg aggagtgggc gttgacgtgg tggaagtaga agtcacgcgg gcggaccgtg	8100
cattcgtgct gatatttcta aaagcgggcg cagtactcgc agcgctgcac gctctgcact	8160
tcctgaacga gatgcacccg gcgcggcgc accaggaggc ggagggggca gtccagtgg	8220
gcttcggcgc gctgtccctc agcctcgtca tgctctctg cacctgcacg ctccctgctgt	8280
gggtggagga cggagggagt gacgacgcgg cgccgagccgc aggtccagat gtcgacgcgc	8340
ggcggcctga ggctcagcgc cagggtgcgg atctgagcgg cgtccagggta gtcgaggaag	8400
gcctcgctga ggtcgacggg cagcgtccgc cggtggactt gcaggagacg gtaagggcc	8460
ggcggcaggc gctgatggta cttgatctcg agcggttcgt tgggtggaggt gtcgatggcg	8520
tagagcaggg cctgaccgcg ggccggcga cg atggtgccgc ggtgccggcg gtaggtggcg	8580
tattcggggg ggctcggtac atcacccgccc tgggcctggc gccgggcggc agcgggggtt	8640
ctggcccgc cggcatgggc ggcagcggca cgtcggcgcg gggctccggc agcggctgg	8700
gctgagctcg cagctgactg gcgtgcgcga cgacgcggcg gttgaggtcc tggatgtgcc	8760
tccgctgcgt gaagaccacc ggtccccggc ctcggAACCT gaaagagagat tcgacagaat	8820
caatctcggc atcggtgacg gccgcctgac gcaggatctc ctgcacgtcg cccgagttgt	8880
cctggtaggc gatctcgac atgaactggt cgatctctc ctccctggagt tcgcccgcgc	8940
cggcgcttc gacggtgcc gcgaggtcgt tggagatgcg agccatgagc tggagaagg	9000
cgttggggcc gttctcggtt cacacgcgc ac ttagacgc gttgccgacg gcgtcccggg	9060
cgcgcacgcac cacctgcgcg acgttgcgc ccacgtgtcg cgcaagacg gcgtagttgc	9120
gcaggcgctg gaagaggttag ttgagggtgg tggcgatgtg ctcgcagacg aagaagtaca	9180
tgaccgcgc ggcgcagcgtc atctcggttga tgtctccgag ggcttccaag cgctccatgg	9240
cctcgtagaa gtcgacggcg aagttgaaga actggagtt gcgcgcggcg accgtcagct	9300
cgtcttgcaa gagccggatc agctgggcca cggctcccg cacctcgct tcgaaggccc	9360
ccggcgcttc ttccctctt ggttcctcgg cggcctcttc ttccatgacg gttcccttt	9420
cctccgggttc ctcgggcacg ggcctccggc ggcgcacggcg cctgtggc accgggtcca	9480
cgaagcggttc gatgtatctt cgcggcgcc ggcgcacgggtt ttcggtgacg gcgcggccgt	9540
tctctcggttcccgac aagacgcgc cgcgcaggcc gccggcgccg ccgagagggg	9600
gcaggagggtg ggggccttcg ggcagcgaga gggcgtgac gatgcaccgt atcatctgtt	9660
gcgttaggtac agctctccag gagtcgttga gcgagtccag ttggacggga tccgagaact	9720
tttcgaggaa agcttcgatc caatcgacgt cgcaaggtaa gctgaggacg gtggatgag	9780
gggcttggcg ggaggcgag gcggcagaag aggaggagga gggcaggctg gaggtgtac	9840
tgctgatgtat gtaattgaag taggcgggtt tcaaacggcg gatggtgccg aggaggacga	9900
cgtcttgggg cccggcctgc tggatgcgc ggcggcggc catgccccag gcgtggctct	9960
ggcatcgccg caggtccctt tagtagtctt gcatgagtct tcgcacgggg acgtcgctt	10020

cgtcgcccg gtcggccatg cgggtggagc cgaacccgcg caggggctgc agcagggcca 10080
 ggtcgccgac cacgcgttcg gccagcacgg cctgctggat ctgggtgagc gtggtctgga 10140
 agtcgtccag gtccacgaag cggtggtagg agcccgtagt gatggtgtag gtgcagttgg 10200
 ccatgacgga ccagttgacg acttgcatgc cgggctgggt gatctcggtg tagcggaggc 10260
 gcgagtaggc ccgcgactcg aagacgtagt cggtgcaggt ggcacgagg tactggtagc 10320
 cgacgaggaa gtgcggccgc ggctcgccgt agaggggcca ggcacgggt gcgggggcgc 10380
 cgggggcccag gtcctccagc atgaggcggt ggtagtggt aacgtagcgc gagagccagg 10440
 ttagtgcggc ggcggaggtg gcggcgccgg cgaagtcgcg gacgcgggtc cagatgttgc 10500
 gcaagggggc gaagcgctcc atggtggca cgctctggcc ggtgaggcgg ggcagtcct 10560
 gcacgctcta gacgggacag agagcgggag gttagcggct ccgcctccgtg gcctggggga 10620
 cagaccgcca gggtgcgacg gcggggaaacc ccggttcgag accggctgga tccgtccgtc 10680
 cccgacgcgc cggccccgcg tccacgaccc caccagaggc cgacgacccag ccgcgggtgcc 10740
 cggaccccaag atacggaggg gagccctttt gtggttttt cccgtagatg catccgggt 10800
 tgccgacagat ggcgtccgtcg ccagcgccgc cgacgcagcc gccgctcccg ccccccacta 10860
 ggcgcgcggc ggctctgtcc ggccggccgcg ggcacccggaa ggaggaggcc atcctcgact 10920
 tggagaagg cgagggcctg gcccggctgg gagcgcctc ccccgagcgc catccccgcg 10980
 tgcagctggc gagagactcg cgccaggcct acgtgcgcgc gcagaatctg ttcaaggacc 11040
 gcagcggcca ggagcccggag gagatgaggg accgcagggt tcacgcgggg cggagctgc 11100
 ggcggggctt cgaccgtcgg cgggtgttgc ggcggcaaga cttcgagccc gacgacgcga 11160
 gcggagtaag tccggcacgg ggcacgtgt cggcggccaa cctgggtgacc ggcgtacgac 11220
 agacggtgaa cgaggagcgg agcttcaga aaagcttcaa caaccacgtg cgcaccctga 11280
 tcgcgcgcga ggaggtggcc atcggcctga tgcacatgtg ggactttgtg gaggcgtacg 11340
 tgcagaaccc gtcgagcaag ccgcgtacgg cgacgtgtt cctgatcgtg cagcacagtc 11400
 gggacaacga gacgttccgc gaggcgatgc tgaacatcgc ggagcccggag ggccgctggc 11460
 tcttgaccc gattaacatc ctgcagagca tcgtggtgca ggagcgcagc ctgagcctgg 11520
 ccgacaaggt ggcggccatc aactacagca tggtagcct gggcaagtt tacgcccgc 11580
 agatctacaa gagccctac gtgcctatag acaaggaggt gaagatcgc acgtttaca 11640
 tgcggatggc gctgaaagtg ctgacgctga ggcacgtatct ggggtgtac cgcaacgacc 11700
 gcatccacaa ggccgtgagc ggcacgcgc ggcgcgagct gagcgcaccgc gagctgtatgc 11760
 acagcctgcg gagggcgctg gcgggcgcgc ggcgcggcga ggaggccggag tcctacttcg 11820
 acatgggggc ggacttgca tggcagccca ggcgcgcggc cctggaggcg gcccgttacc 11880
 gcccggccgg cggcgtggtc gagggcggagg acgaggacga ggtggagtac gaggaggagg 11940
 actgatcggc gaggtgtttt cgtagatgca ggcgcgcacg gcccggcga gcgggcccga 12000
 gggggacccc gccgtgctgg cggccctgca gagccaacct tcggcgtga acgcctccga 12060

tgactggcg gcggccatgg accgcatttt ggccttgcacc acccgcaacc ccgaggcctt 12120
tagacagcag ccgcaggcca accgcctttc ggccatcttg gaagccgtgg tgccctcgcg 12180
caccaacccc acgcacgaga aggtcctggc ggtggtaaac gcgcgtctgg agagcaaggc 12240
gatccgcaag gacgaggcgg ggctgattta caaccccctg ctggagcggg tggcgcgcta 12300
caacagcacc aacgtgcagg ccaacctgga ccgtctgacg acggacgtgc gggaggcgg 12360
ggcgcagcgg gagcgcttca tgcgcacac gaacctggc tcgcaggtgg ccctgaacgc 12420
cttcctgagc acgcagccgg ccaacgtgcc gcgcggcag gaggactacg tcagttcat 12480
cagcgcgtg cgcctcctgg tggccgaggt gccgcagagc gaggtgtacc agtcgggtcc 12540
ggactacttc ttccagacct cgccggcaggg cctgcagacg gtgaacctga cgcaggcctt 12600
caagaacctg gaaggcatgt gggcggtgcg ggccccgtg ggccgaccggg cgacgatctc 12660
cagcttgctg acgccaaca cgcggctgct gctgctgctg atcgcgcct tcaccaatag 12720
cagtaccatc agccgcact cgtacctggg ccacctgatc acgctgtacc gcgaggccat 12780
cggcaggcg caggtggacg agcagacctt ccaggagatt acgagcgtga gccgggccc 12840
ggggcagcag gacacgggta gcctggaggc gacgctgaat tttctgctga ccaaccggcg 12900
gcagaagatc ccctcccagt acacgctgag cacggaggag gagcgcacatc tgcgctacgt 12960
gcagcagtcc gtgagcctgt atctgatgcg cgagggggcg agcccctcgt cggcgtgg 13020
catgacggcc cgtaacatgg agccgtcgct gtacgcggcc caccggccgt tcgtgaaccg 13080
cctgatggac tacctgcacc gcgcgcgcgc catgaacggc gagtaatttgcgaacgc 13140
cctgaacccg cactggatgc cggcgtccgg tttctacacg gggactttg acatgcccga 13200
gggcgacgac gggttccctgt gggacgacgt gtcggacagc gtgttcgcgc cggcgtcc 13260
ggcaagaag gagggcggcg acgagctgcc gctgtccgtg gtggaggcgg cgtcgcgcgg 13320
ccagagcccg ttccccagcc tcccgtcggt gtcggcggc acgagcagcg gccgggtctc 13380
gcgcgcgcgg ctggagggcg actacctgaa cgacccgctg ctgcgcctcg cccggcccaa 13440
gaactttccc aacaacgggg tggagagcct agtggataag atgaatcgct ggaagaccta 13500
cgcccaggag cagcggaggt gggaggagag tcagccccgc cccctgcctc cgccgcgtc 13560
caggtggcgc cggcgggaag aagacccgga agactcggcg gacgatagca gcgttgttgg 13620
cttggggggg accggtgccg cctcgacaaa cccgttcgcc caccgtcgcc cgcaggccg 13680
gctgggtcgg ctgtatttag gaaagaaaact aataaaaagaa aaaagagctt gcttaccaga 13740
gccatggtcg cagcgtcggt ccccttgcgt gtgtttctc ctccccggta gcgaa atg
Met
1
agg cgc gcg gtg gga gtg ccg ccg gtg atg gcg tac gcc gag ggt cct 13846
Arg Arg Ala Val Gly Val Pro Pro Val Met Ala Tyr Ala Glu Gly Pro
5 10 15
cct cct tct tac gaa acg gtg atg ggc gcc gcg gat tcg ccg gcc acg 13894
Pro Pro Ser Tyr Glu Thr Val Met Gly Ala Ala Asp Ser Pro Ala Thr
20 25 30
ctg gag gcg ctc tac gtc cct ccc cgc tac ctg ggg cct acg gag ggg 13942

Leu	Glu	Ala	Leu	Tyr	Val	Pro	Pro	Arg	Tyr	Leu	Gly	Pro	Thr	Glu	Gly	
35					40					45						
agg	aac	agc	atc	cgt	tac	tca	gag	ctg	gcg	ccg	ctg	tac	gac	acc	acc	13990
Arg	Asn	Ser	Ile	Arg	Tyr	Ser	Glu	Leu	Ala	Pro	Leu	Tyr	Asp	Thr	Thr	
50					55				60					65		
'cgc	gtg	tac	ctg	gtg	gat	aac	aag	tcg	gcg	gac	atc	gcg	tcg	ctg	aac	14038
Arg	Val	Tyr	Leu	Val	Asp	Asn	Lys	Ser	Ala	Asp	Ile	Ala	Ser	Leu	Asn	
					70				75					80		
tac	cag	aac	gac	cat	agc	aac	ttt	ctg	acc	acg	gtg	gtg	cag	aac	aat	14086
Tyr	Gln	Asn	Asp	His	Ser	Asn	Phe	Leu	Thr	Thr	Val	Val	Gln	Asn	Asn	
							90						95			
gac	ttt	acc	ccg	gtg	gag	gcg	ggc	acg	cag	acc	ata	aat	ttc	gac	gag	14134
Asp	Phe	Thr	Pro	Val	Glu	Ala	Gly	Thr	Gln	Thr	Ile	Asn	Phe	Asp	Glu	
					100			105					110			
cgc	tcg	cgg	tgg	ggc	ggc	gac	ctg	aaa	acc	atc	ctg	cgc	acc	aac	atg	14182
Arg	Ser	Arg	Trp	Gly	Gly	Asp	Leu	Lys	Thr	Ile	Leu	Arg	Thr	Asn	Met	
						115		120			125					
ccc	aac	atc	aac	gag	ttc	atg	tcc	acc	aac	aag	ttc	agg	gcc	cgg	ttg	14230
Pro	Asn	Ile	Asn	Glu	Phe	Met	Ser	Thr	Asn	Lys	Phe	Arg	Ala	Arg	Leu	
					130		135			140			145			
atg	gta	gag	aaa	gtg	aac	aag	gaa	acc	aat	gcc	cct	cga	tac	gag	tgg	14278
Met	Val	Glu	Lys	Val	Asn	Lys	Glu	Thr	Asn	Ala	Pro	Arg	Tyr	Glu	Trp	
					150			155					160			
ttt	gag	ttc	acc	ctg	ccc	gag	ggc	aac	tac	tcg	gag	acc	atg	acc	ata	14326
Phe	Glu	Phe	Thr	Leu	Pro	Glu	Gly	Asn	Tyr	Ser	Glu	Thr	Met	Thr	Ile	
					165			170					175			
gac	ctg	atg	aat	aac	gcg	atc	gtg	gac	aac	tac	ttg	gaa	gtg	ggg	cgg	14374
Asp	Leu	Met	Asn	Asn	Ala	Ile	Val	Asp	Asn	Tyr	Leu	Glu	Val	Gly	Arg	
					180		185					190				
cag	aac	ggg	gtg	ctg	gag	agc	gac	atc	ggg	gtg	aag	ttt	gac	acg	cgc	14422
Gln	Asn	Gly	Val	Leu	Glu	Ser	Asp	Ile	Gly	Val	Lys	Phe	Asp	Thr	Arg	
					195		200			205						
aac	ttc	cgg	ctg	ggc	tgg	gac	ccg	gtc	acc	aag	ctg	gtc	atg	ccc	ggc	14470
Asn	Phe	Arg	Leu	Gly	Trp	Asp	Pro	Val	Thr	Lys	Leu	Val	Met	Pro	Gly	
					210		215			220				225		
gtg	tac	acc	aac	gag	gcc	ttc	cac	ccc	gac	atc	gtc	ctg	ctg	ccc	ggc	14518
Val	Tyr	Thr	Asn	Glu	Ala	Phe	His	Pro	Asp	Ile	Val	Leu	Leu	Pro	Gly	
					230			235					240			
tgc	ggc	gtg	gac	ttc	acg	cag	agc	cg	ctg	agc	aac	ctg	ctg	ggg	atc	14566
Cys	Gly	Val	Asp	Phe	Thr	Gln	Ser	Arg	Leu	Ser	Asn	Leu	Leu	Gly	Ile	
					245			250					255			
cgc	aag	cgg	atg	ccc	ttc	cag	gcg	ggt	ttt	cag	atc	atg	tac	gag	gac	14614
Arg	Lys	Arg	Met	Pro	Phe	Gln	Ala	Gly	Phe	Gln	Ile	Met	Tyr	Glu	Asp	
					260		265					270				
ctg	gag	ggc	ggc	aac	atc	ccc	gcc	ttg	cta	gac	gtg	gcg	aaa	tac	gag	14662
Leu	Glu	Gly	Gly	Asn	Ile	Pro	Ala	Leu	Leu	Asp	Val	Ala	Lys	Tyr	Glu	
					275		280					285				
gcc	agc	att	cag	aag	gcg	cg	gag	cag	ggc	cag	gag	atc	cgc	gac	gac	14710
Ala	Ser	Ile	Gln	Lys	Ala	Arg	Glu	Gln	Gly	Gln	Glu	Ile	Arg	Gly	Asp	
					290		295			300				305		
aac	ttt	acc	gtc	atc	ccc	cg	gac	gtg	gag	atc	gtg	ccc	gtg	gag	aag	14758
Asn	Phe	Thr	Val	Ile	Pro	Arg	Asp	Val	Glu	Ile	Val	Pro	Val	Glu	Lys	

310	315	320	
gat agc aag gac cgc agt tac aac cta ctc ccc ggc gac cag acc aac Asp Ser Lys Asp Arg Ser Tyr Asn Leu Leu Pro Gly Asp Gln Thr Asn 325	330	335	14806
acg gcc tac cgc agc tgg ttc ctg gcc tac aac tac ggc gac ccc gag Thr Ala Tyr Arg Ser Trp Phe Leu Ala Tyr Asn Tyr Gly Asp Pro Glu 340	345	350	14854
aag ggc gtc agg tcc tgg acg ctg ctg acc acc acg gac gtc acc tgc Lys Gly Val Arg Ser Trp Thr Leu Leu Thr Thr Asp Val Thr Cys 355	360	365	14902
ggc tcg cag cag gtg tac tgg tcg ctc ccg gac atg atg caa gac ccc Gly Ser Gln Gln Val Tyr Trp Ser Leu Pro Asp Met Met Gln Asp Pro 370	375	380	14950
gtg acc ttc cgg ccc tcc agc caa gtc agc aac tac ccc gtg gtg gga Val Thr Phe Arg Pro Ser Ser Gln Val Ser Asn Tyr Pro Val Val Gly 390	395	400	14998
gtc gag ctc ctg ccg gtg cac gcc aag agc ttt tac aac gag cag gcc Val Glu Leu Leu Pro Val His Ala Lys Ser Phe Tyr Asn Glu Gln Ala 405	410	415	15046
gtc tac tcg cag ctc atc cgc cag tcc acc gcg ctc acg cac gtc ttc Val Tyr Ser Gln Leu Ile Arg Gln Ser Thr Ala Leu Thr His Val Phe 420	425	430	15094
aac cgc ttc ccc gag aac cag atc ctg gtg cgc ccg ccc gct ccg acc Asn Arg Phe Pro Glu Asn Gln Ile Leu Val Arg Pro Pro Ala Pro Thr 435	440	445	15142
att acc acc gtc agt gaa aac gtt ccc gcc ctc aca gat cac gga acc Ile Thr Thr Val Ser Glu Asn Val Pro Ala Leu Thr Asp His Gly Thr 450	455	460	15190
ctg ccg ctg cgc agc agt atc agt gga gtc cag cgc gtg acc atc act Leu Pro Leu Arg Ser Ser Ile Ser Gly Val Gln Arg Val Thr Ile Thr 470	475	480	15238
gac gcc cgg cga agg acc tgc ccc tac gtg cac aag gcc ctg ggc ata Asp Ala Arg Arg Thr Cys Pro Tyr Val His Lys Ala Leu Gly Ile 485	490	495	15286
gtc gct ccc aaa gtg ctc tct agc cgc acc ttt taa caagcatgtc Val Ala Pro Lys Val Leu Ser Ser Arg Thr Phe 500	505		15332
cattctcatc tcgcccaca acaaaccgg ctggggcctg cgctcgccg gcatgtacgg			15392
cggcgccaag cggcgctcca gcgagcaccc cgtccgcgtc cgcggccact accgggcccc			15452
ctggggcgcc cacaagcgcg gcgtctccac ggcgaccacc gtcgacgacg ccatcgacgc			15512
cgtcggtgcc caggccagac gctaccgccc gcccaagtgc acggtgacg ccgtcatcga			15572
cagcgtggtg gccgacgcgc ggcgatacgc tcgacgcaag cggcgtctgc accgcccgtcg			15632
ccgtccccacc gccgcccattgc tggccgccag agcggtcctg agacgcgcgc gccgcgtggg			15692
ccgcccggcc atgcgcccag ccgcggccaa cgcgcgcgc ggtcgcgcgc gtcgtcaggc			15752
cgcggccggcag gccgcccggc ccatcgccaa cctggcccaa ccccgccggg gaaacgtgta			15812
ctgggtgcga gacgcgtcgg gcgtgcgcgt gccggtgccgc acccgcccccc ctcggagtt			15872
gaagacaaaa agacggacga agactgagtt tccctgtcgt tgccagcatg agcaagcgca			15932

agttcaaaga agagctgctg gaggccctcg tgcccagat ctacggccccg gccggccgctg 15992
 ccgcccgggt ggcggacgtc aagcccgaag ttaagccccg cgcgctgaag cgggttaaaa 16052
 agcgggaaaa gaaagaggag aagcaggaag cagggttgct agacgtcgcac gacggcgtgg 16112
 agttcgtgcg gtccttcgcg ccccgctcgcc ggggtcagtg gcggggtcgc cgctcaagc 16172
 tcgtcccgcg gccgggcacc gtggtgtctt tcaccccccgg cctgcgttcg gccacgcgcg 16232
 gcctgaagcg cgagtacgac gaggtctatg gcgacgaaga catcctggag caggccgccc 16292
 agcagctcgg ggagtttgc tacggcaagc gcggccgcta cggggaggtg gcgctggcgc 16352
 tggaccaggg caatcccacg cccagcctca agcccgtcac gctgcagcag gtgctgccc 16412
 tgagcgcgtc gaccgagagc aaggggggca tcaagaggg aatgggcac ctgcagccca 16472
 ccatgcaact catggtgcac aaacggcaga agctggagga cgtgctggag aacatgaaag 16532
 tggatcccag catcgagccc gaagtgaaag tgcgaccat caaggaagtg ggcccgccc 16592
 taggcgtgca gacggtggac attcagatcc ccgtgcgcgc ctccccctt tctgccacca 16652
 ctacgacggc cgtggaggcc atgaaacgc agacggagct gcccgccggcc ttggcggcag 16712
 ccgcccaccgc cgccgcggct acccgagaga tggcatgca gaccgacccc tggtagt 16772
 tcgcccggccc cgcccgctgt ccacgagccc gtcggtacgc ggcgaccacc tccccgtc 16832
 ctgactacgt cttgcattct tccatcacgc cgacgcccgg ctaccgcggg acgaccttcc 16892
 gccccggctcg cgccgcgacc accacccgccc gtcgtcgcac caccgcgcgc cgtcgcagcc 16952
 gtcgcgcact ggctcccatc gcgggtcgcc gcgtcgccg ccgggtcgc acgctgaccc 17012
 tgcccaccgc gcgttaccac cccagcatcg tcatttaacc tgcgtgccc tttgcagat 17072
 ggctctgacg tgccgctttc gctcccccgt tcggactac cgaggaagat ctcggcttag 17132
 gactggctca gcgccagcg gtctccgacg ccggccgcgc gcgggtgcacc ggcgcatt 17192
 gggcggcatt ctgcccgcgc tgatccccat tatcgccgc gccatcgaaa cgatccccgg 17252
 cgtggcctcg gtggccttgc aagcagctcg caaaaattaa ataaagaagg cttgacactc 17312
 actgcctggt cctgactgtt tcatgcagac aagacatggg agacatcaat tttgcgtcgt 17372
 tggccccgcg gcacggctcg cggccgttca tggcacctg gaacgagatc ggcaccagcc 17432
 agctcaacgg gggcgctttc agttggagca gcctgtggag cggcattaaa aactttgggt 17492
 ccacgattaa gacctatggc aacaaggcgt ggaacagtag cactggtcag atgctccgc 17552
 ataagctgaa ggaccagaac ttccagcaga aagtggtaga cggtctggcc tcggcatca 17612
 acgggggtggt ggacctggcc aaccaggcgg tgcagaacca gatcaaccag cgtctggaga 17672
 acagccgcga gccggccgcg cccctgcagc agcgtccgc ggtggaggag gtggaaagtgg 17732
 aggagaagct gccgccccctg gagacgggtg cggccgtggg cgtgccttagc aagggggaga 17792
 agcggccgcg gcccgcgtc gaggagaccc tagtgcaccg gaccctggag ccgcctcg 17852
 acgagcaggc cttgaaagag gggccacgc ccctgccttcat gaccggccccc atcggaccc 17912
 tggccccgacc ggtctacggc aaggaacaca aagccgtgac gctagagctg cctccgcgg 17972

cgcccaccgt acccccgatg cccggtccca ccctggcac cgccgtgcct cgtcccgccg	18032
ccccgcccgt cgccgtggcc acgcccgcgc gcccagtcg cggagccaac tggcagagca	18092
ctctgaacag catcgtggc ctggagtgaa aaagctgaa acgcccgg tgttactatt	18152
aaagccagct aaatacccat gtgttgtatg cgcctctgt gtcacgccag aaaaagccag	18212
ccgagtgacg ggtcaccgcc gccgccaaga gcgcccctt caag atg gcc acc ccc Met Ala Thr Pro	18268
	510
tcg atg atg ccg cag tgg tct tac atg cac atc gcc ggg cag gac gcc Ser Met Met Pro Gln Trp Ser Tyr Met His Ile Ala Gly Gln Asp Ala	18316
515 520 525	
tcg gag tac ctg agc ccg ggc ctg gtg cag ttc gcc cgc gcc acc gac Ser Glu Tyr Leu Ser Pro Gly Leu Val Gln Phe Ala Arg Ala Thr Asp	18364
530 535 540	
acg tac ttc agc ctg ggc aac aag ttt agg aac ccc acg gtg gcc ccc Thr Tyr Phe Ser Leu Gln Asn Lys Phe Arg Asn Pro Thr Val Ala Pro	18412
545 550 555 560	
acc cac gac gtg acg acg gac ccg tcc cag cgg ctg acg ctg cgg ttc Thr His Asp Val Thr Asp Arg Ser Gln Arg Leu Thr Leu Arg Phe	18460
565 570 575	
gtg ccc gtc gac cgc gag gac acc gcg tac tcg tac aaa gtg cgc ttc Val Pro Val Asp Arg Glu Asp Thr Ala Tyr Ser Tyr Lys Val Arg Phe	18508
580 585 590	
acg ctg gcc gtg ggc gac aac cgc gtg ctg gac atg gcc agc acg tac Thr Leu Ala Val Gly Asp Asn Arg Val Leu Asp Met Ala Ser Thr Tyr	18556
595 600 605	
ttt gac atc cgc ggc gtg ttg gac cgc ggt ccc agc ttc aaa ccc tac Phe Asp Ile Arg Gly Val Leu Asp Arg Gly Pro Ser Phe Lys Pro Tyr	18604
610 615 620	
tcc ggc acc gcc tac aac tcc ctg gcc ccc aag ggc gcc ccc aac ccg Ser Gly Thr Ala Tyr Asn Ser Leu Ala Pro Lys Gly Ala Pro Asn Pro	18652
625 630 635 640	
tca gaa tgg aag ggc tca gac aac aaa att agt gta aga ggt cag gct Ser Glu Trp Lys Gln Ser Asp Asn Lys Ile Ser Val Arg Gly Gln Ala	18700
645 650 655	
ccg ttt ttt agt aca tcc att aca aag gat ggt att caa gtg gcc act Pro Phe Phe Ser Thr Ser Ile Thr Lys Asp Gly Ile Gln Val Ala Thr	18748
660 665 670	
gat act tct agc gga gct gtg tat gct aaa aag gaa tat cag cct gaa Asp Thr Ser Ser Gly Ala Val Tyr Ala Lys Lys Glu Tyr Gln Pro Glu	18796
675 680 685	
cca caa gta ggg caa gaa caa tgg aac agc gaa gcc agt gat agt gat Pro Gln Val Gly Gln Glu Gln Trp Asn Ser Glu Ala Ser Asp Ser Asp	18844
690 695 700	
aaa gta gct ggt agg att cta aaa gac aca aca ccc atg ttc cct tgt Lys Val Ala Gly Arg Ile Leu Lys Asp Thr Thr Pro Met Phe Pro Cys	18892
705 710 715 720	
tac ggt tcc tac gcc aag ccc aca aat gaa cag ggg ggg caa ggc act Tyr Gly Ser Tyr Ala Lys Pro Thr Asn Glu Gln Gly Gln Gln Gly Thr	18940
725 730 735	
aat act gta gat ctg cag ttc ttt gcc tct tca tcg gct acc tct acg	18988

Asn Thr Val Asp Leu Gln Phe Phe Ala Ser Ser Ser Ala Thr Ser Thr			
740	745	750	
cct aaa gcc gta ctc tat gcc gag gac gtg gca ata gaa gca cca gac			19036
Pro Lys Ala Val Leu Tyr Ala Glu Asp Val Ala Ile Glu Ala Pro Asp			
755	760	765	
acc cat ttg gtg tac aaa ccg gca gtt aca acc acg acc act agt tcc			19084
Thr His Leu Val Tyr Lys Pro Ala Val Thr Thr Thr Ser Ser			
770	775	780	
caa gac ctg cta act cag cag gct gct ccc aac cga ccc aac tac att			19132
Gln Asp Leu Leu Thr Gln Gln Ala Ala Pro Asn Arg Pro Asn Tyr Ile			
785	790	795	800
ggc ttc agg gat aat ttt atc ggt ctc atg tat tac aac tcc act ggc			19180
Gly Phe Arg Asp Asn Phe Ile Gly Leu Met Tyr Tyr Asn Ser Thr Gly			
805	810	815	
aat atg ggt gtt ttg gca ggg caa gct tct cag cta aac gcg gtg gtt			19228
Asn Met Gly Val Leu Ala Gly Gln Ala Ser Gln Leu Asn Ala Val Val			
820	825	830	
gac ttg caa gac aga aac acc gag ctg tcc tac cag ctc atg ctt gat			19276
Asp Leu Gln Asp Arg Asn Thr Glu Leu Ser Tyr Gln Leu Met Leu Asp			
835	840	845	
gct ttg ggc gac cgc agt cgt tac ttc tcc atg tgg aac cag gcc gta			19324
Ala Leu Gly Asp Arg Ser Arg Tyr Phe Ser Met Trp Asn Gln Ala Val			
850	855	860	
gac agc tat gac cct gat gtc aga att att gaa aat cat ggt gtg gag			19372
Asp Ser Tyr Asp Pro Asp Val Arg Ile Ile Glu Asn His Gly Val Glu			
865	870	875	880
gat gag ctg cca aac tac tgt ttc ccg cta gga ggg tcg cta gta act			19420
Asp Glu Leu Pro Asn Tyr Cys Phe Pro Leu Gly Gly Ser Leu Val Thr			
885	890	895	
gaa act tat aca ggc cta tca ccc caa aac gga agt aac acg tgg aca			19468
Glu Thr Tyr Thr Gly Leu Ser Pro Gln Asn Gly Ser Asn Thr Trp Thr			
900	905	910	
acc gac agc acc acc tat gca act aga ggg gtg gaa atc ggc tct ggc			19516
Thr Asp Ser Thr Thr Tyr Ala Thr Arg Gly Val Glu Ile Gly Ser Gly			
915	920	925	
aac atg ttc gcc atg gaa att aat ttg gcg gcc aat cta tgg agg agt			19564
Asn Met Phe Ala Met Glu Ile Asn Leu Ala Asn Leu Trp Arg Ser			
930	935	940	
ttc ctg tac tcc aac gtg gcc ctg tac ctg ccc gac gag tac aag ctc			19612
Phe Leu Tyr Ser Asn Val Ala Leu Tyr Leu Pro Asp Glu Tyr Lys Leu			
945	950	955	960
acc ccc gac aac atc acc ctc ccc gac aac aaa aac act tac gac tac			19660
Thr Pro Asp Asn Ile Thr Leu Pro Asp Asn Lys Asn Thr Tyr Asp Tyr			
965	970	975	
atg aac ggc cgc gtg gcc ccc agc tcc ctc gac acc tac gtc aac			19708
Met Asn Gly Arg Val Ala Ala Pro Ser Ser Leu Asp Thr Tyr Val Asn			
980	985	990	
atc ggg gcg cgc tgg tcc ccc gac ccc atg gac aac gtc aac ccc ttc			19756
Ile Gly Ala Arg Trp Ser Pro Asp Pro Met Asp Asn Val Asn Pro Phe			
995	1000	1005	
aac cac cac cgc aac gcg gga ctg cgc tac cgc tcc atg ctg ctg			19801
Asn His His Arg Asn Ala Gly Leu Arg Tyr Arg Ser Met Leu Leu			

1010	1015	1020	
ggc aac ggc cgc tac gta ccc Gly Asn G1y Arg Tyr Val Pro 1025	ttc cac atc caa gtg ccc cag aaa Phe His Ile Gln Val Pro Gln Lys 1030	1035	19846
ttc ttc gcc atc aaa aac ctc Phe Phe Ala Ile Lys Asn Leu 1040	ctg ctc ctc ccc ggg tcc tac acc Leu Leu Leu Pro G1y Ser Tyr Thr 1045	1050	19891
tac gag tgg aac ttc cgc aag Tyr Glu Trp Asn Phe Arg Lys 1055	gac gtc aac atg atc ctc cag agc Asp Val Asn Met Ile Leu Gln Ser 1060	1065	19936
agc ctg ggt aac gac ctc cgc Ser Leu Gly Asn Asp Leu Arg 1070	gtc gac ggg gcc agc gtc agg ttc Val Asp Gly Ala Ser Val Arg Phe 1075	1080	19981
gac agc atc aac ctg tac gcc Asp Ser Ile Asn Leu Tyr Ala 1085	aac ttc ttc ccc atg gcc cac aac Asn Phe Phe Pro Met Ala His Asn 1090	1095	20026
acc gcc tcc acg ctc gag gcc Thr Ala Ser Thr Leu Glu Ala 1100	atg ctg cgc aac gac acc aac gac Met Leu Arg Asn Asp Thr Asn Asp 1105	1110	20071
cag tcg ttc aac gac tac ctc Gln Ser Phe Asn Asp Tyr Leu 1115	tgc gct gcc aac atg ctc tac ccc Cys Ala Ala Asn Met Leu Tyr Pro 1120	1125	20116
atc ccc gcc aac gcc acc agc Ile Pro Ala Asn Ala Thr Ser 1130	gtg ccc atc tcc att ccc tcg cgg Val Pro Ile Ser Ile Pro Ser Arg 1135	1140	20161
aac tgg gcc gcc ttc cgg ggc Asn Trp Ala Ala Phe Arg Gly 1145	tgg agc ttc acc cgg ctc aag acc Trp Ser Phe Thr Arg Leu Lys Thr 1150	1155	20206
aag gag acc ccc tct ctg ggc Lys Glu Thr Pro Ser Leu Gly 1160	tcc ggc ttc gat ccc tac ttc acc Ser Gly Phe Asp Pro Tyr Phe Thr 1165	1170	20251
tac tcg ggc tcc atc ccc tac Tyr Ser Gly Ser Ile Pro Tyr 1175	ctg gac ggc acc ttc tac ctc aac Leu Asp Gly Thr Phe Tyr Leu Asn 1180	1185	20296
cac act ttc aag aag gtc tcc His Thr Phe Lys Lys Val Ser 1190	atc atg ttc gac tcc tcc gtc agc Ile Met Phe Asp Ser Ser Val Ser 1195	1200	20341
tgg ccc ggc aac gac cgc ctg Trp Pro Gly Asn Asp Arg Leu 1205	ctg acc ccc aac gag ttc gag atc Leu Thr Pro Asn Glu Phe Glu Ile 1210	1215	20386
aag cgc acc gtg gac ggg gaa Lys Arg Thr Val Asp Gly Glu 1220	ggg tac aac gtg gcc cag tgc aac Gly Tyr Asn Val Ala Gln Cys Asn 1225	1230	20431
atg acc aag gac tgg ttc ctc Met Thr Lys Asp Trp Phe Leu 1235	atc cag atg ctc agc cac tac aac Ile Gln Met Leu Ser His Tyr Asn 1240	1245	20476
atc ggc tac cag ggc ttc tac Ile Gly Tyr Gln Gly Phe Tyr 1250	gtg ccc gag ggc tac aag gac agg Val Pro Glu Gly Tyr Lys Asp Arg 1255	1260	20521
atg tac tct ttc ttc cgc aac Met Tyr Ser Phe Phe Arg Asn 1265	ttc caa ccc atg agc cgc cag gtg Phe Gln Pro Met Ser Arg Gln Val 1270	1275	20566

gtc gac acc acc acc tac acc	gac tac aaa aac gtc	acc ctc ccc	20611	
Val Asp Thr Thr Thr Tyr Thr	Asp Tyr Lys Asn Val	Thr Leu Pro		
1280	1285	1290		
ttc cag cac aac aac tcg ggg	ttc gtg gga tac atg	ggc ccc acc	20656	
Phe Gln His Asn Asn Ser Gly	Phe Val Gly Tyr Met	Gly Pro Thr		
1295	1300	1305		
atg cgc gag ggg cag gcc tac	ccc gcc aac tac ccc	tac ccc ctg	20701	
Met Arg Glu Gly Gln Ala Tyr	Pro Ala Asn Tyr Pro	Tyr Pro Leu		
1310	1315	1320		
atc ggc aag acc gcc gtg ccc	agc ctc acg cag aaa	aag ttc ctc	20746	
Ile Gly Lys Thr Ala Val Pro	Ser Leu Thr Gln Lys	Lys Phe Leu		
1325	1330	1335		
tgc gac cgc acc atg tgg cgc	atc ccc ttc tcc agt	aac ttc atg	20791	
Cys Asp Arg Thr Met Trp Arg	Ile Pro Phe Ser Ser	Asn Phe Met		
1340	1345	1350		
tcc atg ggg gcg ctc acc gac	ctg ggg cag aac atg	ctg tac gcc	20836	
Ser Met Gly Ala Leu Thr Asp	Leu Gly Gln Asn Met	Leu Tyr Ala		
1355	1360	1365		
aac tcc gcc cac gcc ctc gac	atg acc ttc gag gtg	gac ccc atg	20881	
Asn Ser Ala His Ala Leu Asp	Met Thr Phe Glu Val	Asp Pro Met		
1370	1375	1380		
gat gag ccc acg ctt ctc tat	gtt ctg ttc gaa gtg	ttc gac gtc	20926	
Asp Glu Pro Thr Leu Leu Tyr	Val Leu Phe Glu Val	Phe Asp Val		
1385	1390	1395		
gtg cgc atc cac cag ccg cac	cgc ggc gtc atc gag	gcc gtc tac	20971	
Val Arg Ile His Gln Pro His	Arg Gly Val Ile Glu	Ala Val Tyr		
1400	1405	1410		
ctg cgc acg ccg ttc tcg gcc	ggt aac gcc acc acc	taa ggagggggcc	21020	
Leu Arg Thr Pro Phe Ser Ala	Gly Asn Ala Thr Thr			
1415	1420	1425		
ggcgacggat gggctccagc gagccggagc tggtcgccccat cgcgcgac ctgggctgcg				21080
ggccctactt cctgggcacc ttgacaaac gcttccggg cttcgtggcg ccgcacaagc				21140
tggcctgcgc catcgtaac accgcggac gcgagaccgg cggcgtccac tggctggccc				21200
tggctggaa ccccccgcagc cgaacctgct acctcttcga ccccttcggc ttctcggacg				21260
acaggctcag gcagatctac cagttcgagt acgaaggcct gctccggcgc agcgcctcg				21320
cctccacccc cgaccactgc gtcaccctcg tcaagtccac ccagaccgtc caggggcccc				21380
gctcggccgc ctgcggcctc ttctgctgca tggtccctgca cgcccttcgtg cgctggcccg				21440
cctcccccatt ggacggcaac cccaccatgg acctccttac gggcgttccc aacagcatgc				21500
ttcagagtcc ccaggtcgag cccaccctcc accgcaacca ggaggaactc tacgccttcc				21560
tggctcggca ctccccctac ttgcggcacc accgcgagcg catagaaaag gccaccgcgt				21620
ttgacaaaat gaacgactag atttctgtg aaaaacactc aataaaggct ttattggttc				21680
accacacgtg cacgcatgca gacttttat ttaaaaggc tccgcctcct cgtcgcccgt				21740
gctggtgaaa agggagacgt tgcgatactg caggcggag ctccatctga actcggaat				21800
cagcagcttg ggcagggggc cctcgacgtt ctcgctccac agcttgcgca ccagctgcag				21860

ggcgcccagc aggtcggcg cgagatctt gaagtcgcag ttggggccct ggttgccgc 21920
 ggagttgcgg tacaccgggt tggcgactg gaacaccagc acgctgggt gctcgatgct 21980
 ggccagcgcc gtcttgtcgg tcacacctcgtc gccgcgcagg gactccgcgt tgctcagcgc 22040
 gaaggcggtc agttgcaca gctgccgacc cagcacggc acccccgtcg gctggttcag 22100
 gcagtcgcag cgcatagcca tcagcagccg cttctgcccc tgctgcacatct tcggatagtc 22160
 ggctcgcatg aaggcctcca tctgcccggaa ggccgtctgc gccttgctgc cctccgagaa 22220
 gaacagcccg caggacttgc cgagagaacac gttgttgcgg cagtcacgt cttccacgca 22280
 gcagcgcgcg tcgtcggttct tcagctgcac cacgctgcgg ccccagcggt tctgcaccac 22340
 cttggtcttgc ccggatgtt ctttcaggc cccgtggccg ttctcgctgg tcacgtccat 22400
 ctccaccacc tgctccttct ggatcatctc cagcccggtt tagcagcgcga gcacgcccctc 22460
 ctgctcggttgc caccctgtca gccagacggc gcagccggc ggctccagct gttgaggttt 22520
 caccctggcg taggtctcca cgtacgccc caggaagcgg cccatcatct ccacaaaggt 22580
 cttctgaccgcgtgaaggtaa gctgcagccc gcgtatgcgtcc tcgttgagcc acgtctgaca 22640
 gatcttgcgg tacaccattgc cctgctcggtt cagaaacttgc aaagcggcct tctccctcggtt 22700
 ctccacgtgg tacttctcca tcagcgccga catcagctcc atgccccttct cccaggccga 22760
 caccagcggc tccgcgcggg gttcaccac cgcctatgcct cgggaagtgc cggggcgctc 22820
 atcttcctcc tcctcctcgatcttgc cttcttgc cccatgcgttgc ggcggcgttgc 22880
 tctcttgcgg ttggccttct ggacgtatctc caccgcgggg tgggtgaacc cgtggggccac 22940
 caccacttcg tcctccttccttgc cttcgctgtc gggcacgact tcgggagagg gaggcggcgg 23000
 aggaaccggcgtc gcggccactg cggccatcgc ggcgttcttgc cgcgccttct tggggggcag 23060
 aggcggcggtc tcgcgtcccg ggctggtctc ttgcaggttag ggcgtgtatgg tgtgggaggt 23120
 ggggcgtct ggctgacggc cggccatgct gatgcttgc tccttagggcga aaagatggag 23180
 gaggatcttgc gacagccga gcccgtctcc gaaaccttaa ccaccccccgc ctctgagggtc 23240
 ggcgcccggcg agctagacat gcaacgggag gaggaggagg acgtgcgagt ggagcaagac 23300
 ccgggctacgtgacgccc cggccatcgc gggccatcgc ggcgttcttgc cgcgccttct tggggggcag 23360
 agcgaagccg actaccttggg aggggaggac gacgtgtcgatctc tgaaggcaccttgc 23420
 agcaccatcg tgcaggaggc cctcaaggag cgcgaggagg tcccgctgc ggtggaggag 23480
 ctcagccggc cctacgaagc caacctcttc tcgcccggg tggcccccggc 23540
 aacggcaccttgc gcgagcccaa ccccccgcctc aacttctacc ccgtcttgc ggtggccgg 23600
 gcgctggcca cctatcacat cttttcaag aaccagcgcga tcccccctctc gtgcccgcgc 23660
 aaccggcaccc gcgccgaccgc cctccgtcat ctccgagccg gcgccgccttgc acctgagatc 23720
 gcctccctgg aggaagtccc caagatcttc gaaggtctcg gcaaggacga gaagcgcgcg 23780
 gcaaacgctc tggaaaagaa cgagagcgag ggtcagaacg tgctggtcga gctggaaggc 23840
 gacaacgcgcgtc gtctggccgt gctcaaacgc accatcgaag tctcccactt cgcctacccc 23900
 gcgctcaacc ttccccccaa ggtcatgcgc tcggcatgg atcagctgtc catcaagcgc 23960

gcccggcccc tcgagaacga ctccgagggtg gattccgagg acggaaaacc cgtggtctcg 24020
 gacgaggagc tcgcgcgctg gctgggcacg caggaccccg ccgagttgca agagcggcgc 24080
 aagatgtga tggcggccgt gctggtcacc gccgagctcg agtgcctgca ggccttcttc 24140
 gcccggaccccg agaccctgca gaaaggcgtgag gagtccctgc actacgcctt ccgcacggc 24200
 tacgtgcgcc aggccctgcaa gatctccaac gtggagctta gcaacctggt ctcctacatg 24260
 ggcatcctgc acgagaacccg cctcgggcag aacgtcctcc actgcacccct gaccggggag 24320
 gcccggccgc actacgtccg cgactgcac tacctcttc tcaccctcac ctggcagacc 24380
 gccatggggg tctggcagca gtgtctggag gagcgcaacc ttgcgcagct cgacaagcta 24440
 ctgagccgcg agcgccgcga gctctggacg gctttcagcg agcgcacccgc cgcctgcccgt 24500
 ctggccgacc tcatcttccc cgagcgactc aggcaaaccc tccagaacgg cctgcccgac 24560
 tttgtcagcc agagcatgct gcaaaacttt cgctccctca tcctggagcg atccggcatc 24620
 ttggccgcca tgagctgcgc cctgcccctcc gatttcgtcc ccctcttatta tcgcgagtgc 24680
 ccccccgcgc tctggagcca ctgctacctg ctgcgtctgg ccaactacct cgcacccac 24740
 tccgaccta tggaaagactc cagcggcgag gggctgctgg agtgcactg ccgcgtcaac 24800
 ctctgcaccc cccacccgctc gctggctctgc aacacccgagc tgctcagcga gacgcaagt 24860
 atcggtaccc tttagatcca gggaccagag gggccggagg gtgcttccaa cctcaagctc 24920
 agcccccgcgc tctggacttc cgccctacctg cgcaaaattta tcccccggagga ctatcacgcc 24980
 caccagatcc aattctacga agaccaatcg cgacccccc aagcccccct cacggcctgt 25040
 gtcatcaccc agagccagat tctggcccaa ttgcaagcca tccagcaggc ccgc当地agag 25100
 ttcctccgtca aaaagggtca cggggcttat ctggacccccc agaccggcga ggaactcaac 25160
 accccgtcac cctccgcgc cgcttcgtgc cgcccgacca accatgccgc ccaaggaa 25220
 caagcaggcc atcgcccagc ggccggccaa gaagcagcaa gagtccagg agcagtggga 25280
 cgaggagtcc tgggacagcc aggccggagga agtctcagac gaggaggagg acatggagag 25340
 ctgggacagc ctagacgagg aggaggaggc cgaggagcta gaggacgagc ctctcgagga 25400
 ggaagagccc agcagccgcg cggcaccatc ggcttccaaa gaagcggctc ggagccggcc 25460
 ggccccgaag cagcagaagc agcaacagcc gccaccgtcg ccccccgcacgc caccaccagg 25520
 ctcactcaaa gccagccgta ggtgggacgc ggtgtccatc gcgggatcgc ccaagcccc 25580
 agtcggtaag ccacccgggc ggtcgccgc ggggtactgt tcctggcgc cccacaagag 25640
 caagatcgcc gcctgcctcc agcaactgccc gggcaacatc tccttcgtgc ggcgtactt 25700
 gctcttccac gacgggggtgg cggtgccgcg caacgtcctc tactattacc gtcatctcta 25760
 cagccctac gagacagaag gcccggcctc cgcgtaaagac cagccgcccag acggtctcct 25820
 ccgc当地atcgcc gacccgcccag gactcggccg ccacgcagga gctcagaaaa cgcatcttc 25880
 ccacccctgta tgctatcttc cagcagagcc gcggccagca gctggaaactg aaagtaaaaa 25940
 accgctccct gcgttcgtc acccgccagct gtctgtacca caggagggaa gaccaactgc 26000

agcgcacgct cgaggacgcc gaggcactgt tcaataaaata ctgctcggtg tctcttaagg 26060
 actgaaaagcc cgcgctttt cagaggctca ttacgtcatc atcatcatga gcaaggacat 26120
 tccccacgcct tacatgtgga gctaccagcc gcagatggga ctggcggccg gcgcctccca 26180
 ggattactcc agtcgcatga actggctgag tgccggcccc cacatgatcg ggcgggtcaa 26240
 tgggattcgt gccacccgca atcagatact gctgaaacag gccgcctca cctccacccc 26300
 gcgacgtcag ctgaacccgc ccgcggccgccc cgccgcccag gtgtaccagg aaaacccgc 26360
 cccgaccaca gtcctcctgc cacgcgacgc ggaggccgaa gtccagatga ctaactccgg 26420
 ggcgcaatta gcgggcccgc cccgcccacgt cgtcgctccc gggtagcagag gtcggccgc 26480
 accctacccc tccggcccta taaagaggct gatcattcga ggccgaggtt tccagctcaa 26540
 cgacgaggtg gtgagctcct cgaccggctc tcggcccgac ggagtcttcc agcttggagg 26600
 cgccggccgc tcttccttca ccactcgcca ggcctacctg acgctccaga gctttcctc 26660
 ccagcctcgc tccggccggca tcggcaccct ccagttcgtg gaggagttcg tgccctcggt 26720
 ctacttcaac ccgttctccg gctctcccg ccgctaccccg gacagcttca tcccaacta 26780
 cgacgcggtg agcgaatccg tggacggcta cgattgatga ccgatggtgc ggccgtaact 26840
 ggcgcccggc aacatctgca tcactgccc catcgctcggt gcttcgcccgg ggaggcctgt 26900
 gagttcatct acttccagct cgcccccggac cagttcagg gcccttcgca cggcgtaag 26960
 ctcgtatag aggaagagct cgagagtagc tgcctcgct gttttacctc gcgcacccatc 27020
 ctagtcgaga gggAACGCGG taggaccacc ctcacccctc actgcaccccg tgactcccg 27080
 gaattacatg aagatctgtg ttgccttcta tgtgccgaac aataacccct cttgtacta 27140
 cctacatcca caataaaacca gaatttggaa actcccttcg tttgtttgca g atg aaa 27197
 Met Lys

cgc	gcc	cgc	ctc	gac	gac	gac	tgc	aac	ccc	gtc	tac	ccc	tat	gac	27242
Arg	Ala	Arg	Leu	Asp	Asp	Asp	Phe	Asn	Pro	Val	Tyr	Pro	Tyr	Asp	
1430							1435					1440			
act	ccc	aac	gct	ccc	tct	gtt	ccc	ttc	atc	act	cct	ccc	ttc	gtc	27287
Thr	Pro	Asn	Ala	Pro	Ser	Val	Pro	Phe	Ile	Thr	Pro	Pro	Phe	Val	
1445							1450					1455			
tcc	tcg	gac	ggc	ttg	caa	gaa	aaa	cca	ccc	gga	atg	ctc	agt	ctc	27332
Ser	Ser	Asp	Gly	Leu	Gln	Glu	Lys	Pro	Pro	Gly	Met	Leu	Ser	Leu	
1460							1465					1470			
aac	tac	caa	gat	cct	att	acc	acc	caa	aac	ggg	gca	tta	act	cta	27377
Asn	Tyr	Gln	Asp	Pro	Ile	Thr	Thr	Gln	Asn	Gly	Ala	Leu	Thr	Leu	
1475							1480					1485			
aag	ctt	ggc	agc	gga	ctg	aac	ata	aac	caa	gat	ggg	gaa	ctt	acc	27422
Lys	Leu	Gly	Ser	Gly	Leu	Asn	Ile	Asn	Gln	Asp	Gly	Glut	Leu	Thr	
1490							1495					1500			
tca	gac	gcc	agc	gtt	ctc	gtc	act	ccc	ccc	att	aca	aaa	gcc	aac	27467
Ser	Asp	Ala	Ser	Val	Leu	Val	Thr	Pro	Pro	Ile	Thr	Lys	Ala	Asn	
1505							1510					1515			
aac	aca	ata	ggc	cta	gcc	tgc	aat	gca	cct	ctt	acc	ttg	caa	agc	27512
Asn	Thr	Ile	Gly	Leu	Ala	Phe	Asn	Ala	Pro	Leu	Thr	Leu	Gln	Ser	
1520							1525					1530			

gat	act	tta	aat	ctt	gct	tgt	aac	gcc	cca	ctt	acc	gtg	caa	gac		27557
Asp	Thr	Leu	Asn	Leu	Ala	Cys	Asn	Ala	Pro	Leu	Thr	Val	Gln	Asp		
1535							1540					1545				
aat	agg	ttg	gga	ata	aca	tac	aac	tct	ccc	ctc	acc	ttg	caa	aac		27602
Asn	Arg	Leu	Gly	Ile	Thr	Tyr	Asn	Ser	Pro	Leu	Thr	Leu	Gln	Asn		
1550							1555					1560				
agc	gaa	ctt	gcc	cta	gcg	gtc	acc	ccg	cct	ctt	gac	act	gcc	aat		27647
Ser	Glu	Leu	Ala	Leu	Ala	Val	Thr	Pro	Pro	Leu	Asp	Thr	Ala	Asn		
1565							1570					1575				
aac	aca	ctt	gcg	ctt	aaa	acc	gcc	cgg	cct	ata	att	aca	aac	tct		27692
Asn	Thr	Leu	Ala	Leu	Lys	Thr	Ala	Arg	Pro	Ile	Ile	Thr	Asn	Ser		
1580							1585					1590				
aat	aac	gag	ctt	aca	ctc	tcc	gct	gat	gct	ccc	cta	aac	acc	agc		27737
Asn	Asn	Glu	Leu	Thr	Leu	Ser	Ala	Asp	Ala	Pro	Leu	Asn	Thr	Ser		
1595							1600					1605				
acg	ggt	acc	ctc	cgc	cta	caa	agc	gca	gca	cca	ctg	ggg	cta	gtt		27782
Thr	Gly	Thr	Leu	Arg	Leu	Gln	Ser	Ala	Ala	Pro	Leu	Gly	Leu	Val		
1610							1615					1620				
gac	caa	acc	ctg	cga	gtg	ctt	ttt	tct	aac	cca	ctc	tac	ttg	caa		27827
Asp	Gln	Thr	Leu	Arg	Val	Leu	Phe	Ser	Asn	Pro	Leu	Tyr	Leu	Gln		
1625							1630					1635				
aac	aac	ttt	ctc	tca	cta	gcc	att	gaa	cgc	cca	ttg	gct	tta	act		27872
Asn	Asn	Phe	Leu	Ser	Leu	Ala	Ile	Glu	Arg	Pro	Leu	Ala	Leu	Thr		
1640							1645					1650				
acc	act	ggt	tct	atg	gct	atg	cag	att	tcc	caa	cca	tta	aaa	gtg		27917
Thr	Thr	Gly	Ser	Met	Ala	Met	Gln	Ile	Ser	Gln	Pro	Leu	Leu	Lys	Val	
1655							1660					1665				
gaa	gac	gga	agc	tta	agc	ttg	agc	att	gaa	agc	cct	cta	aat	cta		27962
Glu	Asp	Gly	Ser	Leu	Ser	Leu	Ser	Ile	Glu	Ser	Pro	Leu	Asn	Leu		
1670							1675					1680				
aaa	aac	gga	aat	ctt	act	tta	gga	acc	caa	agt	ccc	cta	act	gtc		28007
Lys	Asn	Gly	Asn	Leu	Thr	Leu	Gly	Thr	Gln	Ser	Pro	Leu	Thr	Val		
1685							1690					1695				
act	ggt	aac	aac	ctc	agc	ctt	aca	aca	gcc	cca	tta	acg	gtt		28052	
Thr	Gly	Asn	Asn	Leu	Ser	Leu	Thr	Thr	Ala	Pro	Leu	Thr	Val			
1700							1705					1710				
cag	aac	aac	gct	cta	gcc	ctc	tca	gtg	tta	ctg	ccg	ctt	aga	cta		28097
Gln	Asn	Asn	Ala	Leu	Ala	Leu	Ser	Val	Leu	Leu	Pro	Leu	Arg	Leu		
1715							1720					1725				
ttt	aat	aac	acc	tca	ctg	gga	gtg	gca	ttc	aac	cca	ccc	att	tct		28142
Phe	Asn	Asn	Thr	Ser	Leu	Gly	Val	Ala	Phe	Asn	Pro	Pro	Ile	Ser		
1730							1735					1740				
tca	gca	aac	aac	ggg	ctg	tct	ctt	gac	att	gga	aat	ggc	ctt	aca		28187
Ser	Ala	Asn	Asn	Gly	Leu	Ser	Leu	Asp	Ile	Gly	Asn	Gly	Leu	Thr		
1745							1750					1755				
ctg	caa	tac	aac	agg	ctc	gta	gtg	aac	att	ggc	ggc	ggg	cta	cag		28232
Leu	Gln	Tyr	Asn	Arg	Leu	Val	Val	Asn	Ile	Gly	Gly	Gly	Leu	Gln		
1760							1765					1770				
ttt	aac	aac	ggt	gct	att	acc	gct	tcc	ata	aat	gca	gct	ctg	ccg		28277
Phe	Asn	Asn	Gly	Ala	Ile	Thr	Ala	Ser	Ile	Asn	Ala	Ala	Leu	Pro		
1775							1780					1785				

ttg cag tat tcc aat aac cag ctt tct ctt aat att gga ggc ggg Leu Gln Tyr Ser Asn Asn Gln Leu , Ser Leu Asn Ile Gly Gly Gly 1790 1795 1800	28322
ctg cga tac aac ggc act tac aaa aat tta gcc gtc aaa acc gac Leu Arg Tyr Asn Gly Thr Tyr Lys Asn Leu Ala Val Lys Thr Asp 1805 1810 1815	28367
tct ttt agg ggt ctt gaa att gac agt aat cag ttc ctg gtg cca Ser Phe Arg Gly Leu Glu Ile Asp Ser Asn Gln Phe Leu Val Pro 1820 1825 1830	28412
aga ctg ggt tct ggt cta aag ttt gat caa tat ggg tac att agc Arg Leu Gly Ser Gly Leu Lys Phe Asp Gln Tyr Gly Tyr Ile Ser 1835 1840 1845	28457
gtc ata cct cca act gtt acg cca aca aca ctt tgg act aca gca Val Ile Pro Pro Thr Val Thr Pro Thr Thr Leu Trp Thr Thr Ala 1850 1855 1860	28502
gac cct tct ccc aac gct act ttt tac gac agc tta gat gct aag Asp Pro Ser Pro Asn Ala Thr Phe Tyr Asp Ser Leu Asp Ala Lys 1865 1870 1875	28547
gta tgg ctg gcc tta gta aaa tgc aac ggc atg gtt aat gga acc Val Trp Leu Ala Leu Val Lys Cys Asn Gly Met Val Asn Gly Thr 1880 1885 1890	28592
ata gcc ata aag gct tta aaa ggt act ctg ctc caa cct acg gct Ile Ala Ile Lys Ala Leu Lys Gly Thr Leu Leu Gln Pro Thr Ala 1895 1900 1905	28637
agt ttt att tct ttt gtt atg tat ttt tac agc aat ggc acc aga Ser Phe Ile Ser Phe Val Met Tyr Phe Tyr Ser Asn Gly Thr Arg 1910 1915 1920	28682
aga act aac tac ccc acg ttt gaa aat gaa ggc ata cta gct agt Arg Thr Asn Tyr Pro Thr Phe Glu Asn Glu Gly Ile Leu Ala Ser 1925 1930 1935	28727
agt gct aca tgg ggt tat cgtcaa gga aac tcg gca aac acc aac Ser Ala Thr Trp Gly Tyr Arg Gln Asn Ser Ala Asn Thr Asn 1940 1945 1950	28772
gtc acc agt gcc gtt gaa ttt atg cct agc tcc aca aga tat cct Val Thr Ser Ala Val Glu Phe Met Pro Ser Ser Thr Arg Tyr Pro 1955 1960 1965	28817
gtt aac aag ggt act gag gtt cag aac atg gaa ctc acc tac act Val Asn Lys Gly Thr Glu Val Gln Asn Met Glu Leu Thr Tyr Thr 1970 1975 1980	28862
ttc ttg cag gga gac ccc act atg gcc ata tca ttt caa gct att Phe Leu Gln Gly Asp Pro Thr Met Ala Ile Ser Phe Gln Ala Ile 1985 1990 1995	28907
tat aac cat gct ttg gaa ggt tac tct tta aaa ttt acc tgg cga Tyr Asn His Ala Leu Glu Gly Tyr Ser Leu Lys Phe Thr Trp Arg 2000 2005 2010	28952
gtt cgc aac agg gaa cgc ttt gat atc ccc tgc tgt tct ttt tct Val Arg Asn Arg Glu Arg Phe Asp Ile Pro Cys Cys Ser Phe Ser 2015 2020 2025	28997
tac ata acg gaa gaa taa acactgtttt tctttcaat gttttattc Tyr Ile Thr Glu Glu 2030	29045

tgcttttta cacagttcga accgtcagac tccctcccc cttccacttc acccggtaca 29105
Page 122

cctcccgctc cccctggatc gctgcgtaca actgcagttt ggtgttcaga cacgggttct 29165
 taggtgacag tatccacacg gcctcttgc cggccaggcg ctggtccgta atgctcacaa 29225
 atccctccga cacgtcctcc agacacacgg tggaatccaa ggcccgtc tacaaaacaa 29285
 acacagtcat gctctccacg ggttctctcc tcggtcgtac tgccgcaggcg tgaacggcg 29345
 atggtgctcc atcagggctc gcagcaaccg ctgtcggcgc ggctcaccca ggctccggcg 29405
 aaaagcgccc cgtctggag tgcttattcaa aaaacgcacc gcctttatca acagtctcct 29465
 cgtgcggcgg ggcgcaggcgc gcacctggat ctctgtcagg tctttacaat aggtacagcc 29525
 catcaccacc atgttgtta aaatcccaa gctaaacacg ctccacccaa atgacatgaa 29585
 ttccagcacc gccgcggcgt ggccatcata caatatgcgg aggtaaatca ggtgccgccc 29645
 cctaatacaa acgctccccata tatacatcac ctcccttaggc agttgataat taaccaccc 29705
 ccggtaccag ggaaacctca cgtttactaa agccccaaac accaacatTT taaaccagtt 29765
 agccagcacc acccctcccg ctttacactg cagcgacccc ggctgtttac aatgacagt 29825
 aatcaccacc ctctcataacc ccctaattgac ctggcgtggc tccacatcta tagtagcaca 29885
 gcacacgcac accctcatgt aatgcttcat cacaatctt tcccaagggg ttagtatcat 29945
 gtcccagggt acgggcaact cctgcagcac ggtgaaaggt acgcaggcgg gaacagtcc 30005
 cacctcggac acataatgca tattcagatg ttcacactct aaaaccccg ggctccctc 30065
 caacgcagcc actggcaagt tctcagaggg tgggtgttaagg cggtggtgct gatagggact 30125
 caatctgtgt cgacaccgtc tgtcgcgttg catcgtagac caacgcttgg cgccaccgc 30185
 cgtacttcgc ccaaagaaaa cgggtgcgac gccaacacac ttccgcgtac cgtgggttcc 30245
 gcactcgagc tcgctcagtt ctcaacgcatt aatgcagcca ttccctgtat ccacacaaca 30305
 gtcgctcggc ttccaaagag atgtgcacct cgtatctt aacgtcccgat tatatatcca 30365
 agcaggcagt cagggccact tgcaaccagt gcacgcaggc ggactgatcg cgacacactg 30425
 gaggtggagg gagagacgga agaggcatgt tactccagac ggtcgaaaag cggatcaaag 30485
 tgcagatcgc gaagatggca gcgatcccg ccgctacgct ggtgatagat cacagccagg 30545
 tcaaacataa tgcggtttc caaatgacct attaccgcct ccaccagagc cgccacgcgc 30605
 acttccagaa acaccagcac ggctacggca ttctcctcaa aatcttcaaa cattaagctg 30665
 catgattgaa tcaccccaa ataattctcc tccttccatt ctcgcacaaat ttgagtaaaa 30725
 acctctcgca gattagctcc gtggcgttca aaaaggtcac ttagagcgcc ctccaccgc 30785
 atgcgcaagc acaccctcat gattaaaaa tgccagtctc ctgaaccacc tgcaaggat 30845
 ttaaaagacc tatatttagga tcaattccac tctcccgtag ctccacgcgt agcattagct 30905
 gcaaaaaagtc atttaaatct tcgcaaacta gcgcggtaag ctcgcccgg ggaatttaggt 30965
 ctgaaggcgt caccacacac ataatttcca gtgaaggagt cagtctaagc agcaaaaagc 31025
 cgcatgagca gtgtgaaaaa ggaggggtca cgcaatgtaa catatgcagc caaaaatctc 31085
 caaggtgtct gtgcataaac tccaccactg aaaagtccaa atcatgtaaa tatgccatca 31145

ccgcctcagg aaccaccacg gacacaaaaaa cgggccgtag caaatacatg gtgtcctgca 31205
 aagcaaaaac acatttatac catagaggcg cgaattactt gggaaaaat cactcgctcc 31265
 aaaactaaac aggccaccgt ctgaccgcgc cagccataaa aaaagcggtt cgaatgatta 31325
 aaaagaataa tagacacctc ccaccaggta ctcggctgca actcgtgcgc ccctatcaa 31385
 accccgcgga cgttcatgtc ggccatagaa aaaatgcggc ccaaataatcc caccggaatc 31445
 tccacggcca gctgcagtga tagcaaaaga acgccatgag gagcaatcac aaaatttca 31505
 ggcataaaaa gcacataaag gttagaatag ccctgctgca caggtataa agcccgag 31565
 ctcagcaaat gcacataaac cgcttcagcc atcccgctt accgcgaaca aaaggctcac 31625
 agtacacagt tactcaaccc acacgcccaca cagtatttat acactcctca atcgccacgt 31685
 caccgc(ccc) gaacaaactc caaaagtccaa aaaagtccaa aacgcccgcg taaaagccc 31745
 ccaaaacagc acttcctcat ttactctccc acagtagtc acttccgcgc cgccgc(ccc) 31805
 cctcgccccg ccctcacccct cgcgctccac cccgc(ccc) acgtcagact cccac(ccc)gc 31865
 cccgc(ccc)cg cgtcatccgc accccacccct cactccaccc ctaac(ccc)gc ctcc(c)att 31925
 tcataattggc accgttccca aataaggtat attatgatga tg 31967

<210> 13
 <211> 508
 <212> PRT
 <213> Simian adenovirus

<400> 13

Met Arg Arg Ala Val Gly Val Pro Pro Val Met Ala Tyr Ala Glu Gly
 1 5 10 15

Pro Pro Pro Ser Tyr Glu Thr Val Met Gly Ala Ala Asp Ser Pro Ala
 20 25 30

Thr Leu Glu Ala Leu Tyr Val Pro Pro Arg Tyr Leu Gly Pro Thr Glu
 35 40 45

Gly Arg Asn Ser Ile Arg Tyr Ser Glu Leu Ala Pro Leu Tyr Asp Thr
 50 55 60

Thr Arg Val Tyr Leu Val Asp Asn Lys Ser Ala Asp Ile Ala Ser Leu
 65 70 75 80

Asn Tyr Gln Asn Asp His Ser Asn Phe Leu Thr Thr Val Val Gln Asn
 85 90 95

Asn Asp Phe Thr Pro Val Glu Ala Gly Thr Gln Thr Ile Asn Phe Asp
 100 105 110

Glu Arg Ser Arg Trp Gly Gly Asp Leu Lys Thr Ile Leu Arg Thr Asn
 115 120 125

Met Pro Asn Ile Asn Glu Phe Met Ser Thr Asn Lys Phe Arg Ala Arg
 Page 124

130 135 140

Leu Met Val Glu Lys Val Asn Lys Glu Thr Asn Ala Pro Arg Tyr Glu
145 150 155 160

Trp Phe Glu Phe Thr Leu Pro Glu Gly Asn Tyr Ser Glu Thr Met Thr
165 170 175

Ile Asp Leu Met Asn Asn Ala Ile Val Asp Asn Tyr Leu Glu Val Gly
180 185 190

Arg Gln Asn Gly Val Leu Glu Ser Asp Ile Gly Val Lys Phe Asp Thr
195 200 205

Arg Asn Phe Arg Leu Gly Trp Asp Pro Val Thr Lys Leu Val Met Pro
210 215 220

Gly Val Tyr Thr Asn Glu Ala Phe His Pro Asp Ile Val Leu Leu Pro
225 230 235 240

Gly Cys Gly Val Asp Phe Thr Gln Ser Arg Leu Ser Asn Leu Leu Gly
245 250 255

Ile Arg Lys Arg Met Pro Phe Gln Ala Gly Phe Gln Ile Met Tyr Glu
260 265 270

Asp Leu Glu Gly Gly Asn Ile Pro Ala Leu Leu Asp Val Ala Lys Tyr
275 280 285

Glu Ala Ser Ile Gln Lys Ala Arg Glu Gln Gly Gln Glu Ile Arg Gly
290 295 300

Asp Asn Phe Thr Val Ile Pro Arg Asp Val Glu Ile Val Pro Val Glu
305 310 315 320

Lys Asp Ser Lys Asp Arg Ser Tyr Asn Leu Leu Pro Gly Asp Gln Thr
325 330 335

Asn Thr Ala Tyr Arg Ser Trp Phe Leu Ala Tyr Asn Tyr Gly Asp Pro
340 345 350

Glu Lys Gly Val Arg Ser Trp Thr Leu Leu Thr Thr Asp Val Thr
355 360 365

Cys Gly Ser Gln Gln Val Tyr Trp Ser Leu Pro Asp Met Met Gln Asp
370 375 380

Pro Val Thr Phe Arg Pro Ser Ser Gln Val Ser Asn Tyr Pro Val Val
385 390 395 400

Gly Val Glu Leu Leu Pro Val His Ala Lys Ser Phe Tyr Asn Glu Gln
405 410 415

Ala Val Tyr Ser Gln Leu Ile Arg Gln Ser Thr Ala Leu Thr His Val
420 425 430

Phe Asn Arg Phe Pro Glu Asn Gln Ile Leu Val Arg Pro Pro Ala Pro
435 440 445

Thr Ile Thr Thr Val Ser Glu Asn Val Pro Ala Leu Thr Asp His Gly
450 455 460

Thr Leu Pro Leu Arg Ser Ser Ile Ser Gly Val Gln Arg Val Thr Ile
465 470 475 480

Thr Asp Ala Arg Arg Arg Thr Cys Pro Tyr Val His Lys Ala Leu Gly
485 490 495

Ile Val Ala Pro Lys Val Leu Ser Ser Arg Thr Phe
500 505

<210> 14

<211> 917

<212> PRT

<213> Simian adenovirus

<400> 14

Met Ala Thr Pro Ser Met Met Pro Gln Trp Ser Tyr Met His Ile Ala
1 5 10 15

Gly Gln Asp Ala Ser Glu Tyr Leu Ser Pro Gly Leu Val Gln Phe Ala
20 25 30

Arg Ala Thr Asp Thr Tyr Phe Ser Leu Gly Asn Lys Phe Arg Asn Pro
35 40 45

Thr Val Ala Pro Thr His Asp Val Thr Thr Asp Arg Ser Gln Arg Leu
50 55 60

Thr Leu Arg Phe Val Pro Val Asp Arg Glu Asp Thr Ala Tyr Ser Tyr
65 70 75 80

Lys Val Arg Phe Thr Leu Ala Val Gly Asp Asn Arg Val Leu Asp Met
85 90 95

Ala Ser Thr Tyr Phe Asp Ile Arg Gly Val Leu Asp Arg Gly Pro Ser
100 105 110

Phe Lys Pro Tyr Ser Gly Thr Ala Tyr Asn Ser Leu Ala Pro Lys Gly
115 120 125

Ala Pro Asn Pro Ser Glu Trp Lys Gly Ser Asp Asn Lys Ile Ser Val
130 135 140

Arg Gly Gln Ala Pro Phe Phe Ser Thr Ser Ile Thr Lys Asp Gly Ile
145 150 155 160

Gln Val Ala Thr Asp Thr Ser Ser Gly Ala Val Tyr Ala Lys Lys Glu
165 170 175

Tyr Gln Pro Glu Pro Gln Val Gly Gln Glu Gln Trp Asn Ser Glu Ala
180 185 190

Ser Asp Ser Asp Lys Val Ala Gly Arg Ile Leu Lys Asp Thr Thr Pro
195 200 205

Met Phe Pro Cys Tyr Gly Ser Tyr Ala Lys Pro Thr Asn Glu Gln Gly
210 215 220

Gly Gln Gly Thr Asn Thr Val Asp Leu Gln Phe Phe Ala Ser Ser Ser
225 230 235 240

Ala Thr Ser Thr Pro Lys Ala Val Leu Tyr Ala Glu Asp Val Ala Ile
245 250 255

Glu Ala Pro Asp Thr His Leu Val Tyr Lys Pro Ala Val Thr Thr Thr
260 265 270

Thr Thr Ser Ser Gln Asp Leu Leu Thr Gln Gln Ala Ala Pro Asn Arg
275 280 285

Pro Asn Tyr Ile Gly Phe Arg Asp Asn Phe Ile Gly Leu Met Tyr Tyr
290 295 300

Asn Ser Thr Gly Asn Met Gly Val Leu Ala Gly Gln Ala Ser Gln Leu
305 310 315 320

Asn Ala Val Val Asp Leu Gln Asp Arg Asn Thr Glu Leu Ser Tyr Gln
325 330 335

Leu Met Leu Asp Ala Leu Gly Asp Arg Ser Arg Tyr Phe Ser Met Trp
340 345 350

Asn Gln Ala Val Asp Ser Tyr Asp Pro Asp Val Arg Ile Ile Glu Asn
355 360 365

His Gly Val Glu Asp Glu Leu Pro Asn Tyr Cys Phe Pro Leu Gly Gly
370 375 380

Ser Leu Val Thr Glu Thr Tyr Thr Gly Leu Ser Pro Gln Asn Gly Ser
385 390 395 400

Asn Thr Trp Thr Thr Asp Ser Thr Thr Tyr Ala Thr Arg Gly Val Glu
405 410 415

Ile Gly Ser Gly Asn Met Phe Ala Met Glu Ile Asn Leu Ala Ala Asn
Page 127

420

425

430

Leu Trp Arg Ser Phe Leu Tyr Ser Asn Val Ala Leu Tyr Leu Pro Asp
435 440 445

Glu Tyr Lys Leu Thr Pro Asp Asn Ile Thr Leu Pro Asp Asn Lys Asn
450 455 460

Thr Tyr Asp Tyr Met Asn Gly Arg Val Ala Ala Pro Ser Ser Leu Asp
465 470 475 480

Thr Tyr Val Asn Ile Gly Ala Arg Trp Ser Pro Asp Pro Met Asp Asn
485 490 495

Val Asn Pro Phe Asn His His Arg Asn Ala Gly Leu Arg Tyr Arg Ser
500 505 510

Met Leu Leu Gly Asn Gly Arg Tyr Val Pro Phe His Ile Gln Val Pro
515 520 525

Gln Lys Phe Phe Ala Ile Lys Asn Leu Leu Leu Pro Gly Ser Tyr
530 535 540

Thr Tyr Glu Trp Asn Phe Arg Lys Asp Val Asn Met Ile Leu Gln Ser
545 550 555 560

Ser Leu Gly Asn Asp Leu Arg Val Asp Gly Ala Ser Val Arg Phe Asp
565 570 575

Ser Ile Asn Leu Tyr Ala Asn Phe Phe Pro Met Ala His Asn Thr Ala
580 585 590

Ser Thr Leu Glu Ala Met Leu Arg Asn Asp Thr Asn Asp Gln Ser Phe
595 600 605

Asn Asp Tyr Leu Cys Ala Ala Asn Met Leu Tyr Pro Ile Pro Ala Asn
610 615 620

Ala Thr Ser Val Pro Ile Ser Ile Pro Ser Arg Asn Trp Ala Ala Phe
625 630 635 640

Arg Gly Trp Ser Phe Thr Arg Leu Lys Thr Lys Glu Thr Pro Ser Leu
645 650 655

Gly Ser Gly Phe Asp Pro Tyr Phe Thr Tyr Ser Gly Ser Ile Pro Tyr
660 665 670

Leu Asp Gly Thr Phe Tyr Leu Asn His Thr Phe Lys Lys Val Ser Ile
675 680 685

Met Phe Asp Ser Ser Val Ser Trp Pro Gly Asn Asp Arg Leu Leu Thr
690 695 700

Pro Asn Glu Phe Glu Ile Lys Arg Thr Val Asp Gly Glu Gly Tyr Asn
705 710 715 720

Val Ala Gln Cys Asn Met Thr Lys Asp Trp Phe Leu Ile Gln Met Leu
725 730 735

Ser His Tyr Asn Ile Gly Tyr Gln Gly Phe Tyr Val Pro Glu Gly Tyr
740 745 750

Lys Asp Arg Met Tyr Ser Phe Phe Arg Asn Phe Gln Pro Met Ser Arg
755 760 765

Gln Val Val Asp Thr Thr Tyr Thr Asp Tyr Lys Asn Val Thr Leu
770 775 780

Pro Phe Gln His Asn Asn Ser Gly Phe Val Gly Tyr Met Gly Pro Thr
785 790 795 800

Met Arg Glu Gly Gln Ala Tyr Pro Ala Asn Tyr Pro Tyr Pro Leu Ile
805 810 815

Gly Lys Thr Ala Val Pro Ser Leu Thr Gln Lys Lys Phe Leu Cys Asp
820 825 830

Arg Thr Met Trp Arg Ile Pro Phe Ser Ser Asn Phe Met Ser Met Gly
835 840 845

Ala Leu Thr Asp Leu Gly Gln Asn Met Leu Tyr Ala Asn Ser Ala His
850 855 860

Ala Leu Asp Met Thr Phe Glu Val Asp Pro Met Asp Glu Pro Thr Leu
865 870 875 880

Leu Tyr Val Leu Phe Glu Val Phe Asp Val Val Arg Ile His Gln Pro
885 890 895

His Arg Gly Val Ile Glu Ala Val Tyr Leu Arg Thr Pro Phe Ser Ala
900 905 910

Gly Asn Ala Thr Thr
915

<210> 15
<211> 607
<212> PRT
<213> Simian adenovirus

<400> 15

Met Lys Arg Ala Arg Leu Asp Asp Asp Phe Asn Pro Val Tyr Pro Tyr
1 5 10 15

Asp Thr Pro Asn Ala Pro Ser Val Pro Phe Ile Thr Pro Pro Phe Val
20 25 30

Ser Ser Asp Gly Leu Gln Glu Lys Pro Pro Gly Met Leu Ser Leu Asn
35 40 45

Tyr Gln Asp Pro Ile Thr Thr Gln Asn Gly Ala Leu Thr Leu Lys Leu
50 55 60

Gly Ser Gly Leu Asn Ile Asn Gln Asp Gly Glu Leu Thr Ser Asp Ala
65 70 75 80

Ser Val Leu Val Thr Pro Pro Ile Thr Lys Ala Asn Asn Thr Ile Gly
85 90 95

Leu Ala Phe Asn Ala Pro Leu Thr Leu Gln Ser Asp Thr Leu Asn Leu
100 105 110

Ala Cys Asn Ala Pro Leu Thr Val Gln Asp Asn Arg Leu Gly Ile Thr
115 120 125

Tyr Asn Ser Pro Leu Thr Leu Gln Asn Ser Glu Leu Ala Leu Ala Val
130 135 140

Thr Pro Pro Leu Asp Thr Ala Asn Asn Thr Leu Ala Leu Lys Thr Ala
145 150 155 160

Arg Pro Ile Ile Thr Asn Ser Asn Asn Glu Leu Thr Leu Ser Ala Asp
165 170 175

Ala Pro Leu Asn Thr Ser Thr Gly Thr Leu Arg Leu Gln Ser Ala Ala
180 185 190

Pro Leu Gly Leu Val Asp Gln Thr Leu Arg Val Leu Phe Ser Asn Pro
195 200 205

Leu Tyr Leu Gln Asn Asn Phe Leu Ser Leu Ala Ile Glu Arg Pro Leu
210 215 220

Ala Leu Thr Thr Gly Ser Met Ala Met Gln Ile Ser Gln Pro Leu
225 230 235 240

Lys Val Glu Asp Gly Ser Leu Ser Leu Ser Ile Glu Ser Pro Leu Asn
245 250 255

Leu Lys Asn Gly Asn Leu Thr Leu Gly Thr Gln Ser Pro Leu Thr Val
260 265 270

Thr Gly Asn Asn Leu Ser Leu Thr Thr Thr Ala Pro Leu Thr Val Gln
275 280 285

Asn Asn Ala Leu Ala Leu Ser Val Leu Leu Pro Leu Arg Leu Phe Asn
Page 130

290

295

300

Asn Thr Ser Leu Gly Val Ala Phe Asn Pro Pro Ile Ser Ser Ala Asn
305 310 315 320

Asn Gly Leu Ser Leu Asp Ile Gly Asn Gly Leu Thr Leu Gln Tyr Asn
325 330 335

Arg Leu Val Val Asn Ile Gly Gly Leu Gln Phe Asn Asn Gly Ala
340 345 350

Ile Thr Ala Ser Ile Asn Ala Ala Leu Pro Leu Gln Tyr Ser Asn Asn
355 360 365

Gln Leu Ser Leu Asn Ile Gly Gly Leu Arg Tyr Asn Gly Thr Tyr
370 375 380

Lys Asn Leu Ala Val Lys Thr Asp Ser Phe Arg Gly Leu Glu Ile Asp
385 390 395 400

Ser Asn Gln Phe Leu Val Pro Arg Leu Gly Ser Gly Leu Lys Phe Asp
405 410 415

Gln Tyr Gly Tyr Ile Ser Val Ile Pro Pro Thr Val Thr Pro Thr Thr
420 425 430

Leu Trp Thr Thr Ala Asp Pro Ser Pro Asn Ala Thr Phe Tyr Asp Ser
435 440 445

Leu Asp Ala Lys Val Trp Leu Ala Leu Val Lys Cys Asn Gly Met Val
450 455 460

Asn Gly Thr Ile Ala Ile Lys Ala Leu Lys Gly Thr Leu Leu Gln Pro
465 470 475 480

Thr Ala Ser Phe Ile Ser Phe Val Met Tyr Phe Tyr Ser Asn Gly Thr
485 490 495

Arg Arg Thr Asn Tyr Pro Thr Phe Glu Asn Glu Gly Ile Leu Ala Ser
500 505 510

Ser Ala Thr Trp Gly Tyr Arg Gln Gly Asn Ser Ala Asn Thr Asn Val
515 520 525

Thr Ser Ala Val Glu Phe Met Pro Ser Ser Thr Arg Tyr Pro Val Asn
530 535 540

Lys Gly Thr Glu Val Gln Asn Met Glu Leu Thr Tyr Thr Phe Leu Gln
545 550 555 560

Gly Asp Pro Thr Met Ala Ile Ser Phe Gln Ala Ile Tyr Asn His Ala
565 570 575

Leu Glu Gly Tyr Ser Leu Lys Phe Thr Trp Arg Val Arg Asn Arg Glu
580 585 590

Arg Phe Asp Ile Pro Cys Cys Ser Phe Ser Tyr Ile Thr Glu Glu
595 600 605

<210> 16
<211> 24
<212> DNA
<213> Artificial

<220>
<223> synthetic oligomer

<400> 16
gcgacgggcc gacgctgccc ggct

24

<210> 17
<211> 4
<212> PRT
<213> Artificial

<220>
<223> artificial

<400> 17

Arg Arg Ala Ser
1

<210> 18
<211> 24
<212> DNA
<213> Artificial

<220>
<223> synthetic oligomer

<400> 18
gcggcgcc gacgctgccc ggct

24

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.