Firms That Automate: Theory and Evidence

Joel Kariel

Department of Economics, University of Oxford

RES Conference 2021

Facts on Automation

- New technologies have replaced workers:
 - Robots displaced 400,000 U.S. jobs (Acemoglu and Restrepo, 2020)
 - Robots destroyed 275,000 German manuf. jobs (Dauth et al., 2021)
 - 5% fall in global employment due to robots (Carbonero et al., 2020)
- But heterogeneity is important some industries expand while others contract.
- So on aggregate, not ex-ante clear impact of automation.
- Little work exploring the micro-macro automation relationship.

Overview

Data

- Insights from unique Italian firm survey data:
 - 1. Wide range of automation technologies
 - 2. Panel of large sample
 - 3. Track when firms automate

Results

- Automaters are larger, more productive & grow faster.
- Adoption of automation technology boosts firm employment.

Model

- Why? To understand aggregate effects.
- What? Hopenhayn (1992) with skilled/unskilled labour and automation technology.
- Findings? Reconcile firm-level and aggregate findings.

Roadmap

Overview

000

- Literature Review
- 2 Data
- Results
- Model
- Conclusions

Empirical Research on Automating Firms

The little research on firm-level automation is limited:

- 1. Time periods (Bartelsman et al., 1998; Dinlersoz and Wolf, 2018; Kwon and Stoneman, 1995; Zator, 2019)
- 2. Automation technologies (Zator, 2019; Acemoglu et al., 2020; Stapleton and Webb, 2020; Koch et al., 2019; Cheng et al., 2019)
- 3. Sample of firms (Dinlersoz and Wolf, 2018; Kromann and Sorensen, 2019; Doms et al., 1997; Bartel et al., 2007)

I use a novel dataset which asks about many automation technologies in recent years, across a panel of nationally representative firms.

Survey of Industrial and Service Firms (Banca d'Italia)

- Around 4,500 firms in each year.
- Approx. 3,500 firms in panel, 2010 2018.
- Firms employed across services and manufacturing.
- Representative of population of firms, with weights to adjust.
- Crucial: information on automation across firms.
- Great data because:
 - 1. Depth of automation technologies
 - 2. Timing of automation behaviour
 - 3. Panel component can track firms over time
 - 4. Size of sample

Questions on Automation

- 1. Firms asked in 2015 and 2017 about the use of:
 - Artificial Intelligence
 - Big Data
 - Internet of Things
 - Cloud Computing
 - Industrial Robotics
 - 3D Printing
- 2. Firms asked when they adopted each technology.
- 3. Share of investment in automation technologies.

Automation Adopters Are Larger

Further Evidence Acres Size Distribution

Less Clear Variation in Adoption by Age

Growth Rates

Firms that automate generally **grow faster** than non-adopters:

Growth Rates by Technology

Matching Automating Firms and Non-Adopters

Firms matched to compare size across 'similar' firms that did/did not adopt automation technologies:

Table 1: Propensity Score Matching Regression Results, 2015

Dependent variable: Log Employment							
	Any Tech.	Cloud	AI & Big Data	ΙοΤ	Industrial Robotics	3D Printing	
Tech. Adoption	0.461***	0.822***	0.623***	0.475***	0.370***	0.330**	
(nearest)	(0.06)	(0.07)	(0.11)	(80.0)	(0.10)	(0.11)	
N	1914	1376	674	1042	720	524	
Tech. Adoption	0.586***	0.400***	0.818***	0.583***	0.535***	0.537**	
(full)	(0.05)	(0.06)	(0.07)	(0.06)	(0.07)	(80.0)	
N	2554	2580	2547	2541	2544	2538	

Automating Firms Over Time

Leverage panel component of data to ask: what happens to automating firms over time, and what is the impact of automation?

1. Two-Way Fixed-Effects (TWFE):

Table

Automating Firms Over Time

Leverage panel component of data to ask: what happens to automating firms over time, and what is the impact of automation?

1. Two-Way Fixed-Effects (TWFE)

$$\begin{array}{lll} \text{In} & \underbrace{Y_{it}}_{\text{Employment}} &= \alpha_i + \gamma_t + \delta & \underbrace{X_{it}}_{\text{Age}} & +\beta \mathbb{1} & \underbrace{\text{Tech}_i}_{\text{Tech Adoption}} & +\epsilon_i \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

2. Event Studies:

$$\begin{array}{ll} \text{In} & \underbrace{Y_{it}}_{\text{Employment}} = \alpha_i + \gamma_t + \delta X_{it} + \sum_{j=\underline{j},j\neq -1}^{\overline{j}} \beta_j \mathbb{1} & \underbrace{\left(D_{it} = j\right)}_{\text{Relative time from adoption}} + \epsilon_{it} \end{array}$$

Event Study Estimates

Plots of estimated β_j for employment regressions.

%∆ in Employment for Tech Adopters

More regressions

What Have We Learned?

The following facts will be critical to the model:

- 1. Automating firms are larger, more productive and pay higher wages.
- 2. Adopters grow faster across age and size distributions.
- 3. Firms expand when adopting automation technologies.

Why do we need a model?

- Aggregate impact of automation (productivity and employment)
- General equilibrium effects (via prices and wages)

Why do we need a model?

- Aggregate impact of automation (productivity and employment)
- General equilibrium effects (via prices and wages)

Basic Intuition: the incentive to automate rises in the savings to MC, falls in the automation FC, and rises in firm productivity. Simple Model

Model Outline

Standard heterogeneous firm dynamics model:

- Hopenhayn (1992).
- Adjustment costs on labour.

Model Outline

Standard heterogeneous firm dynamics model:

- Hopenhayn (1992).
- Adjustment costs on labour.

New ingredients:

- Task-based production function.
- Routine/nonroutine labour produce different sets of tasks.
- Automation allows routine workers to be replaced with technology.

Model Outline

Standard heterogeneous firm dynamics model:

- Hopenhayn (1992).
- Adjustment costs on labour.

New ingredients:

- Task-based production function.
- Routine/nonroutine labour produce different sets of tasks.
- Automation allows routine workers to be replaced with technology.

Automating firms are larger and more productive, pay higher wages, grow faster, employ more skilled workers.

Model in Words

- Firms produce with decreasing returns to scale.
- Heterogeneous in productivity z, which follows AR(1) process.
- Firms face fixed costs to enter and produce.
- There is a productivity cut-off, below which firms exit.
- Furthermore, firms can choose to automate, paying a fixed cost.
- A subset of firms endogenously choose to automate if they are very productive.

Task-based Production Function with Automation

• Firm output depends on productivity and production over a set of tasks *x* of increasing 'difficulty':

$$\ln y = \ln z + \int_0^\phi \ln y(x) dx$$
 where $\phi < 1$ for DRTS

Production of a task is determined:

$$y(x) = \begin{cases} r(x) = R(x) + n^{r}(x) & \text{for } x \in [0, \gamma) \\ n^{n}(x) & \text{for } x \in [\gamma, \phi) \end{cases}$$

- Assume $\frac{q}{w_r} < 1$ such that automating is beneficial. However firms must pay a fixed cost c_a to use automation technology R.
- Therefore

In
$$y = \ln z + (\phi - \gamma) \ln n^n + \gamma \ln r$$

 $y = z(n^n)^{\alpha} r^{\gamma}$ where $r = (n^r + R)$
Where $\alpha = \phi - \gamma$

Model with Automation

- Firms endogenously choose to automate.
- They do automate if they are very productive.
 - So additionally $\exists z^a : \forall z \geq z^a$, firms automate.

$$\begin{split} v_t^{a}(z_t, n_{t-1}) &= \max_{R_t, n_t^{p}, n_t^{r} \geq 0} \{ p_t z_t(n_t^{n})^{\alpha} (n_t^{r} + R_t)^{\gamma} - w_t^{n} n_t^{n} - w_t^{r} n_t^{r} - q_t R_t - g(n_t, n_{t-1}) \\ &- c_f + \beta \max \{ \int v_{t+1}^{a} (z_{t+1}, n_t) dF(z_{t+1} | z_t), -g(0, n_t) \} \} \end{split}$$

$$v_t(z_t, n_{t-1}) &= \max_{n_t^{r}, n_t^{n} \geq 0} \{ p_t z_t(n_t^{n})^{\alpha} (n_t^{r})^{\gamma} - w_t^{n} n_t^{n} - w_t^{n} n_t^{r} - g(n_t, n_{t-1}) - c_f \\ &+ \beta \max \{ \int v_{t+1}(z_{t+1}, n_t) dF(z_{t+1} | z_t), -g(0, n_t) \} \} \end{split}$$

$$\tilde{v}(z_t, n_{t-1}) &= \max \{ v_t^{a}(z_t, n_{t-1}) - c_a, v_t(z_t, n_{t-1}) \}$$

Calibrated Model

Introduction of automation technology leads to:

- 1. Productive firms automate, and expand due to low-cost input.
- 2. Reallocation towards more-productive firms raises output-weighted productivity.
- 3. GE effect: price falls and low productivity firms exit.
- 4. Overall fall in employment, skewed towards routine workers.

Table

Automation Boosts Firm-level Employment

Extensions

Endogenous labour supply - what happens when wages adjust to respond to automation?

Conclusions

- Firms that automate are different ex-ante: larger, and more productive.
- Thus endogenous automation decision matters for aggregate outcomes.
- Automation boosts employment of skilled workers.
- Aggregate effects: reallocation towards more productive firms; exit of marginal firms; fall in total employment.

Firm Size Distribution

Firm Age Distribution

Adoption More Common in Larger Firms

Less Systematic Variation in Adoption by Age

Regressions: Automation Investment Share

Table 2: Estimated Coefficients from Advanced Tech. Investment Regressions

Dependent variable: Share of Investment in Advanced Tech.							
	2016			2017			
log(Emp.)	0.279*** (0.025)	0.278*** (0.025)	0.254*** (0.026)	0.337*** (0.028)	0.329*** (0.028)	0.299*** (0.028)	
Age		-0.0000004 (0.001)	0.0002 (0.001)		0.0034** (0.001)	0.0026* (0.001)	
Sector FE			✓			✓	
Region FE			\checkmark			\checkmark	
N	3756	3749	3749	3926	3926	3926	

Estimates are significant at levels of 0.1%: ***, 1%: **, 5%: *. Return

Growth Rates by Technology

Return

Simple Static Theoretical Framework

Consider simple production function with single input and DRS $y = zx^{\alpha}$.

The optimal choice of the input is $x = \left(\frac{z\alpha}{w}\right)^{\frac{1}{1-\alpha}}$. A firm can choose labour n with wage w or robots R with unit cost q < w but fixed per-period cost c.

For a firm with productivity z, the optimal profit functions are:

$$\pi = z \left(\frac{z\alpha}{w}\right)^{\frac{\alpha}{1-\alpha}} - w \left(\frac{z\alpha}{w}\right)^{\frac{1}{1-\alpha}}$$
$$\pi^{a} = z \left(\frac{z\alpha}{q}\right)^{\frac{\alpha}{1-\alpha}} - q \left(\frac{z\alpha}{q}\right)^{\frac{1}{1-\alpha}} - c$$

A firm will automate if $\pi^a > \pi$ (see next slide).

Return

Simple Static Theoretical Framework

Incentive to automate if:

$$\begin{split} z^{\frac{1}{1-\alpha}}\alpha^{\frac{\alpha}{1-\alpha}}q^{\frac{-\alpha}{1-\alpha}} - z^{\frac{1}{1-\alpha}}\alpha^{\frac{1}{1-\alpha}}q^{\frac{-\alpha}{1-\alpha}} - c > z^{\frac{1}{1-\alpha}}\alpha^{\frac{\alpha}{1-\alpha}}w^{\frac{-\alpha}{1-\alpha}} - z^{\frac{1}{1-\alpha}}\alpha^{\frac{1}{1-\alpha}}w^{\frac{-\alpha}{1-\alpha}} \\ \Longrightarrow q^{\frac{-\alpha}{1-\alpha}} - \frac{c}{z^{\frac{1}{1-\alpha}}}\frac{1}{\alpha^{\frac{\alpha}{1-\alpha}}-\alpha^{\frac{1}{1-\alpha}}} > w^{\frac{-\alpha}{1-\alpha}} \\ \Longrightarrow \frac{-\alpha}{1-\alpha}\ln\left(\frac{q}{w}\right) > \ln\left(\frac{c}{z^{\frac{1}{1-\alpha}}}\frac{1}{\alpha^{\frac{\alpha}{1-\alpha}}-\alpha^{\frac{1}{1-\alpha}}}\right) \\ \Longrightarrow \ln\left(\frac{w}{q}\right) > \frac{1-\alpha}{\alpha}\ln c - \frac{1}{\alpha}\ln z - \frac{1-\alpha}{\alpha}\ln A(\alpha) \end{split}$$

Therefore, the incentive to automate rises in the savings to MC, falls in the automation FC, and rises in firm productivity.

Return

Model Results

Table 3: Percentage point change relative to 'No Automation' model

Aggregates:	Price	-3.2
	# firms	-9.0
	Output	+3.7
	Employment	-25.5
	Output-weighted productivity	+6.7
	Share routine employment	-10.0
Firm Level:	Employment per firm	+2.5
	Output per firm	+7.5
	% firms that automate	+24.0

Industry Breakdown of Technology Adopters

Table 4: Technology Adoption by Industry 2017 Graphs

Technology	High Adoption	Low Adoption	
Cloud Computing	Real Estate Transport & Comms.	Hotels & Restaurants	
AI	Metal Manuf.	Chems, Rubber & Plastics Other Manuf.	
Big Data	Real Estate Transport & Comms. Energy & Extraction	Hotels & Restaurants	
Internet of Things	Metal Manuf. Energy & Extraction	Hotels & Restaurants Real Estate	
Industrial Robotics	Metal Manuf.	Hotels & Restaurants	
3D Printing	Metal Manuf. Other Manuf.	Wholesale & Retail Hotels & Restaurants	

Industry Breakdown

Exporting Behaviour of Tech Adopters

Table 5: Average proportion of sales from exports by group, 2015

Technology	Cloud Computing	AI & Big Data	ΙοΤ	Industrial Robotics	3D Printing
Adopters	0.09	0.06	0.04	0.05	0.11
Non-Adopters	0.11	0.10	0.11	0.10	0.10

Notes: Summary statistics from 2015 for firms that do and don't use advanced technologies. All values are weighted means. Bold values are the larger of the two, if there is a significant difference between adopters and non-adopters at the 1% level, computed with Welch's t-test and the Welch-Sattherwaite equation for degrees of freedom.

Exporting Behaviour of Tech Adopters

Figure 2: Tech Adoption by Exporting Status 2015 Return

TWFE Estimates

The set of β are shown for total employment, blue-collar employment, and turnover per worker.

Table 6: Estimates of β from homogeneous effect TWFE model: the % change in variables when adopting technology, relative to non-adopters

		Cloud Computing	AI & Big Data	lоТ	Industrial Robotics	3D Printing
Employment	Coeff	0.020***	0.052***	0.051***	0.042***	0.056***
	SE	(0.0043)	(0.0061)	(0.0048)	(0.0062)	(0.0066)
Blue-collar Emp.	Coeff	-0.036*	-0.030	0.0008	0.048	-0.025
	SE	(0.015)	(0.027)	(0.021)	(0.027)	(0.028)
Turnover per worker	Coeff	0.0057	-0.017	0.017*	0.065***	0.019
	SE	(0.0066)	(0.0096)	(0.0075)	(0.0097)	(0.010)

Notes: Robust standard errors clustered at firm level. Coefficients labelled by statistical significance at: *** 0.1%, ** 1%, * 5%.

Further Event Study Estimates

Plots of estimated β_j for hours regressions.

%∆ in Hours for Tech Adopters

*linearize pretrends (Borusyak and Jaravel 2017)

Further Event Study Estimates

Plots of estimated β_i for turnover regressions.

%∆ in Turnover for Tech Adopters

Further Event Study Estimates

Plots of estimated β_i for wages regressions.

%∆ in Wages for Tech Adopters

*linearize pretrends (Borusyak and Jaravel 2017)

Value Function Plots

Figure 3: Entry cut-off Return

Value Function Plots

Figure 4: Automation cut-off Return

References I

- Acemoglu, D., Lelarge, C., and Restrepo, P. (2020). Competing with robots: Firm-level evidence from france. ASSA 2020 Papers and Proceedings.
- Acemoglu, D. and Restrepo, P. (2020). Robots and jobs: Evidence from U.S. labor markets. Journal of Political Economy, (23285).
- Bartel, A., Ichniowski, C., and Shaw, K. (2007). How does information technology affect productivity? plant-level comparisons of product innovation, process improvement, and worker skills. The Quarterly Journal of Economics, 122(4):1721–1758.
- Bartelsman, E., Van Leeuwen, G., and Nieuwenhuijsen, H. (1998). Adoption of advanced manufacturing technology and firm performance in the netherlands. *Economics of Innovation and New Technology*, 6(4):291–312.
- Carbonero, F., Ernst, E., and Weber, E. (2020). Robots worldwide: The impact of automation on employment and trade. Working papers, IAB.
- Cheng, H., Jia, R., Li, D., and Li, H. (2019). The rise of robots in china. Journal of Economics Perspectives, 33(2):71–88.
- Dauth, W., Findeisen, S., Südekum, J., and Wößner, N. (2021). The Adjustment of Labor Markets to Robots. *Journal of the European Economic Association*.
- Dinlersoz, E. and Wolf, Z. (2018). Automation, labor share, and productivity: Plant-level evidence from u.s. manufacturing. Working Papers 18-39, Center for Economic Studies, U.S. Census Bureau.
- Doms, M., Dunne, T., and Troske, K. (1997). Workers, wages, and technology. *The Quarterly Journal of Economics*, 112(1):253–290.

References II

- Hopenhayn, H. (1992). Entry, exit, and firm dynamics in long run equilibrium. *Econometrica*, 60(5):1127–50.
- Koch, M., Manuylov, I., and Smolka, M. (2019). Robots and firms. CESifo Working Paper, 7608.
- Kromann, L. and Sorensen, A. (2019). Automation, performance, and international competition: A firm-level comparison of process innovation. *Working Papers 03-2015, Copenhagen Business School, Department of Economics.*
- Kwon, M. J. and Stoneman, P. (1995). The impact of technology adoption on firm productivity. *Economics of Innovation and New Technology*, 3(3-4):219–234.
- Stapleton, K. and Webb, M. (2020). Automation, trade and multinational activity: Micro evidence from Spain. CSAE Working Paper Series 2020-16, Centre for the Study of African Economies, University of Oxford.
- Zator, M. (2019). Digitization and automation: Firm investment and labor outcomes.