machine learning

Feature Selection and Dimensionality Reduction

Lecture VII

פיתוח: ד"ר יהונתן שלר משה פרידמן

סוגי בעיות בלמידה לא מונחית - חזרה

Clustering: represent each input case using a prototype example (e.g., k-means, mixture models)

Dimensionality reduction: represent each input case using a small number of variables (e.g., principal components analysis, factor analysis, independent components analysis)

Density estimation: estimating the probability distribution over the data space

a typical supervised learning flowdiving in

Supervised learning diagram

Feature selection

Feature selection – techniques - reminder

- 1. Low Variance
- 2. Remove highly correlated features
- 3. Select features with high correlation to target

Feature selection – techniques 4. Recursive feature elimination

Feature selection using classification errors

Wrapper approach:

 The feature selection is driven by the prediction accuracy of the classifier (regressor) actually used

How to find the appropriate feature set?

- Idea: Greedy search in the space of classifiers
 - Gradually add features improving most the quality score
 - Score should reflect the accuracy of the classifier (error) and also prevent overfit
- Two ways to measure overfit
 - Regularization: penalize explicitly for each feature parameter
 - Cross-validation (m-fold cross validation)

Dimensionality Reduction

What is the difference between "simple" feature selection and dimensionality reduction?

* The difference is that the set of features made by feature selection must be a subset of the original set of features, and the set made by dimensionality reduction doesn't have to

Dimensionality Reduction

What is the difference between "simple" feature selection and dimensionality reduction?

- * Feature selection: Choosing k < d important features, ignoring the remaining d k
 - Subset selection algorithms
- * dimensionality reduction project the original x_i , i =1,...,d dimensions to new k < d dimensions, z_j , j =1,...,k
 - Principal Components Analysis (PCA) <u>explained</u> <u>later</u>

Dimensionality Reduction – example

Classification problem example:

- We have an input data $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$ such that $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$
 - and a set of corresponding output labels $\{y_1, y_2, ..., y_N\}$
- Assume the dimension d of the data point x is very large
- We want to classify x

Dimensionality Reduction – example

Solutions:

- Selection of a smaller subset of inputs (features) from a large set of inputs; train classifier on the reduced input set
- Combination of high dimensional inputs to a smaller set of features $\phi_k(\mathbf{x})$; train classifier on new features

– (dimension reduction) הורדת מימדים מוטיבציה - <u>Data Compression</u>

Motivation I: Data Compression

- * We may want to reduce the dimension of our features if we have a lot of redundant data.
- * Dimensionality reduction will reduce the total data we have to store in computer memory and will speed up our learning algorithm.

– (dimension reduction) הורדת מימדים מוטיבציה - <u>Data Compression</u>

- ☐ If number of observables is increased
 - More time to compute
 - More memory to store inputs and intermediate results
 - More complicated explanations (knowledge from learning)
 - Regression from 100 vs. 2 parameters
 - No simple visualization
 - 2D vs. 10D graph
 - Need much more data (curse of dimensionality)
 - 1M of 1-d inputs is not equal to 1 input of dimension 1M

– (dimension reduction) הורדת מימדים מוטיבציה - <u>Data Compression</u> - הסבר

- Some features (dimensions) bear little or nor useful information (e.g. color of hair for a car selection)
 - Can drop some features
 - Have to estimate which features can be dropped from data

- Several features can be combined together without loss or even with gain of information (e.g. income of all family members for loan application)
 - Some features can be combined together
 - Have to estimate which features to combine from data

– (dimension reduction) הורדת מימדים מוטיבציה - <u>Data Compression</u> - שימוש

- Have data of dimension d
- Reduce dimensionality to k<d
 - * Discard unimportant features (we saw this also before)
 - Combine several features in one
- Use resulting k-dimensional data set for
 - * Learning for classification problem (e.g. parameters of probabilities $P(x \mid C)$
 - Learning for regression problem (e.g. parameters for model y=g(x | Thetha)

הורדת מימדים (dimension reduction) –דוגמה

- ☐ Divide the original 372x492 image into patches:
 - Each patch is an instance that contains 12x12 pixels on a grid
- ☐ Consider each as a 144-D vector

הורדת מימדים (dimension reduction) –דוגמה

D6 <-- D144 הורדת המימדים

הורדת מימדים (dimension reduction) –דוגמה

6 most important eigenvectors:

– (dimension reduction) הורדת מימדים מוטיבציה - <u>Visualization</u>

Motivation II: Visualization

- * It is not easy to visualize data that is more than three dimensions. We can reduce the dimensions of our data to 3 or less in order to plot it
- * We need that can deficiently summarize all the other features.
- * <u>Data exploration</u> The right visualization method may reveal problems with the experimental data.

– (dimension reduction) הורדת מימדים (k=10) k-mean דו' עבור <u>Visualization</u>

– (dimension reduction) הורדת מימדים מוטיבציה - <u>Noise reduction</u>

Motivation III: Noise reduction

By selecting most significant eigenvectors and reproducing

– (dimension reduction) הורדת מימדים מוטיבציה - <u>Noise reduction</u> - דוגמה

Noisy image

– (dimension reduction) הורדת מימדים מוטיבציה - <u>Noise reduction</u> - דוגמה

De-noised image

– (dimension reduction) הורדת מימדים מוטיבציה – <u>Deriving new data</u>

Motivation IV: Deriving new data

* Here the goal is opposite from feature selection, the goal here is to find correlation within the features in order to find new knowledge

– (dimension reduction) הורדת מימדים מוטיבציה – Deriving new data – דוגמה

Vector Representation

We can define a word by a vector of counts over contexts, For Example:

	song	cucumber	meal	black
tomato	0	6	5	0
book	2	0	2	3
pizza	0	2	4	1

- Each word is associated with a vector of dimension |V| (the size of the vocabulary)
- We expect similar words to have similar vectors
- Given the vectors of two words, we can determine their similarity (more about that later)

These vectors are:

 \circ huge – each of dimension |V| (the size of the vocabulary $\sim 100K +$)

הורדת מימדים (dimension reduction) – <u>הגדרה</u>

הגדרת הורדת המימדים:

- d נתונות לנו n דוגמאות במימד
- (k < d) נרצה למצוא יצוג לכל הדוגמאות במימד למצוא יצוג אינוג לכל הדוגמאות במימד *

?איך עושים זאת

הורדת מימדים (dimension reduction) – <u>הגדרה</u>

הגדרת הורדת המימדים:

- d נתונות לנו n דוגמאות במימד
- (k < d) נרצה למצוא יצוג לכל הדוגמאות במימד d נמוך יותר *

k למימד d למימד הטלה ממימד איך עושים זאת? הטלה

- של המאפיינים PCA + דו' בה ההיטל מורכב מקומבינציות לינאריות של המאפיינים
- של המאפיינים tSNE + דו' בה ההיטל מורכב קומבינציות לא לינאריות של המאפיינים

הורדת מימדים - PCA

$$z_1 = \vec{w}_1 \cdot \vec{x}$$

הורדת מימדים - <u>PCA</u>

PCA – Principal component analysis

- d נתונות לנו n דוגמאות במימד
- (k < d) נרצה למצוא יצוג לכל הדוגמאות במימד נמוך יותר *
 - האמצעי: קומבינציות לינאריות של המאפיינים * כלומר: הטלה ממימד d למימד הטלה כלומר:

$$\vec{x}_i = (x_{i,1}, x_{i,2}, ..., x_{i,d})$$
 $z_{i,j} = \vec{w}_j \cdot \vec{x}_i$

$$\vec{z}_i = \left(\vec{w}_1 \cdot \vec{x}_i, \vec{w}_2 \cdot \vec{x}_i, \dots, \vec{w}_k \cdot \vec{x}_i\right) = (z_{i,1}, z_{i,2}, \dots, z_{i,k})$$

הורדת מימדים - PCA

$$z_1 = \vec{w}_1 \cdot \vec{x}$$

$$z_2 = \vec{w_2} \cdot \vec{x}$$

הורדת מימדים - PCA

$$\vec{z} \in \mathbb{R}^k$$

 $ec{z} \in \mathbb{R}^k$ מחפשים ליצג את $ec{x} \in \mathbb{R}^d$ באמצעות st

. ע"י שימוש בקומבינציות לינאריות $ec{w}_1,\ldots,ec{w}_k$ של המאפיינים arphi

 $ec{w_1}, \dots, ec{w_k}$ ש: איך נבחר את איך נבחר את

ת: שגיאת שחזור מינימלית.

PCA: Motivation

PCA:

- Orthogonal projection of the data onto a lower-dimension linear space that...
 - maximizes variance of projected data (purple line)
 - minimizes the mean squared distance between
 - data point and
 - projections (sum of blue lines)

PCA: Motivation

- Choose directions such that a total variance of data will be maximum
 - Maximize Total Variance

- Choose directions that are orthogonal
 - Minimize correlation

 Choose k<d orthogonal directions which maximize total variance

PCA: Motivation

– PCA – פעולות מרכזיות

PCA does the following:

- finds orthonormal basis for data
- Sorts dimensions in order of "importance"
- Discard low significance dimensions

Explanations:

- * Principal components the W_i vectors
- Singular values the coefficients of the principal components
 - higher coefficients mean more important principal components
- * λ_i eigenvalues square of singular values

PCA - How to choose k?

Principal components – the W_i vectors

Singular values – the coefficients of the principal components

* λ_i - eigenvalues – square of singular values

How do we choose k?

Use the following proportion:
$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_k}$$

when λ_i are sorted in descending order

- * Typically, stop when proportion>0.9
- * K could be also predefined

Using PCA

Notations

- Reduced dataset Z
- ♦ W principal components
- * X^{scaled} = standartized original dataset

PCA Flow

- Find principal components
- Sort principal components, by the singular values/eigen values
- Select the most significant principal components

Transfer dataset in the following way:

$$\star Z = W^{T*} X^{scaled^T}$$

PCA – pros and cons

Pros

- Reflect intuition of the data
- Dramatic reduce in size of data
 - Improve performance, reduce overfitting
- Interested in resulting uncorrelated variables which explain large portion of total sample variance
- Sometimes interested in explained shared variance (common factors) that affect data

Cons

- PCA is limited to linear dimensionality reduction
- Doesn't know class labels
- PCA Does not try to explain noise
 - Large noise can become new dimension/largest PC
- * Too expensive for some applications
- In cases of sparse data, there are better ways to deal with the dimensionality

PCA vs Feature selection

- Feature selection
 - Supervised: drop features which don't introduce large errors (validation set)
 - Unsupervised: keep only uncorrelated features (drop features that don't add much information)
- Dimensionality Reduction
 - ■PCA Linearly combine feature into smaller set of features
 - PCA Supervised data explain most of the total variability