DES

김현지

https://youtu.be/7W64z7bG0BQ

Contents

01. Block cipher

02. Product cipher

03. DES

04. 예제

❖ 특정 길이의 n-bit 블록을 n −bit 블록으로 변환

❖ Feistel vs SPN

	Feistel	SPN
Encryption & Decryption	같음	다름
반복 연산 효과	2-round =	= 1-round
1-round 당 암호화 bit 수	32 bit 씩	128 bit 씩
병렬성	낮음	높음
대표 알고리즘	DES	AES

❖장점

- 블록동기화 필요 x
- 비트에러 발생 시에도 해당 블록에만 영향
- 병렬화 x : 고속구현에 적절

❖ 단점

- 결정론적 암호화
- 트래픽분석 가능
- 이전 블록과 독립적으로 암호화
- 대체공격에 취약

❖ Idea

- 모든 블록의 암호가 연결 : 암호문은 이전 모든 평문 블록따라 다름 → 비결정론적
- Initial vector 이용 → random
- ▶ 블록 내 평문 비트의 암호는 동일한 블록 내 다른 평문에 의존

❖ 암호화 / 복호화

■ 첫 블록 (i=1)

$$\rightarrow$$
 Y₁ = $e_K(X_1 \oplus IV) / X_1 = e_K^{-1}(Y_1) \oplus IV$

■ 그외(i>=2)

$$\rightarrow$$
 Y_i = e_K(X_i \bigoplus Y_{i-1}) / X_i = e_K⁻¹ (Y_i) \bigoplus Y_{i-1}

02. Product cipher

02. Product cipher

❖ Product cipher (곱암호)

- 혼동과 확산을 함께 사용 시, 안전한 암호의 설계가 가능하다고 제안
- 각 round는 혼동과 확산 연산 수행 : S-box & P-box
- Round가 반복되는 구조
- DES도 곱암호 구조

N-round product cipher

02. Product cipher: Confusion

❖ Confusion(혼동)

- 암호문 키 사이의 관계를 숨김
- 키의 단일 비트가 변하면 암호문의 거의 모든 비트가 변함

02. Product cipher: Diffusion

❖ Diffusion (확산)

- 암호문 평문 사이의 관계를 숨김
- 하나의 평문 기호가 많은 암호문 기호에 영향을 미치도록 하는 암호 연산
- 평문의 통계적 특성을 숨기는 것이 목적
- DES (비트 치환), AES (Mixcolumn 연산)

02. Product cipher

Feistel SPN 평문 R_{i-1} $E(R_{i-1})$ P **S**₃ S₈ Key Р 치환 암호문

02. Product cipher

❖ Feistel 네트워크 구조

Mixer

$$L_{i-1} \oplus f(R_{i-1}, K_i)$$

Swapper

$$L_{i-1} \oplus f(R_{i-1}, K_i) \rightarrow R_i$$
으로
 $R_{i-1} \rightarrow L_1$ 으로

03. DES

❖ 구조

	DES
Block Size	64 bits
Key Length	56 bits
Round	16 rounds
Structure	Feistel

P-box 2개 : IP, IP-1 feistel round function 16개 Round-key generator

① 64 비트의 평문 X는 Initial Permutation 후, 반으로 나뉨 \rightarrow L₀,R₀ \rightarrow DES의 안전성 증대에는 영향 x

Initial permutation 비트 교환 예시

			1	P			
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Initial permutation table

32

❖ S-box

- ① DES에서 유일한 비선형 함수
- ② 입력값 1 비트 상이 → 출력값은 2 비트 이상 상이
- ③ 암호학적 강도 측면에서 DES의 핵심
- → 혼동(Confusion) 에 관여

❖ P-box

- ① 확장 P-box 1개 : 32비트 → 48비트
- ② 단순 P-box 1개 : 32비트 → 32비트
- → 확산(Diffusion) 에 관여
- ▶ F-함수 결과 : L_{i-1} 의 암호화 위해 XOR 마스크로 사용

1 round라고 할 때, (i=1)

F-함수의 결과 값 \bigoplus L₀ \rightarrow R₁ 으로 감 R₀ \rightarrow L₁로 감

각 round마다 입력 비트의 왼쪽 L₁₋₁만 암호화

$$L_i = R_{i-1},$$

$$R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$$

⑦ 16 round까지 진행 후, L₁₆, R₁₆을 교환 후 Final Permutation
→ Initial Permutation의 역연산

Final permutation 비트 교환 예시

-	San Property Control		- 15 12			and the same of	
		50 人	IP	, -1			
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	1118	51	19	59	27
34	2	42	10	50	18	58	26
33	11	41	9	49	17	57	25

Final permutation: IP-1

***** KEY

- 56비트의 비밀키
- Round-key generator 에 의해 56비트짜리 주 키(K)에서 16개의 서로 다른 서브키(K_i) 생성
 - → 각 round에서는 48비트의 서로 다른 서브키 사용
- 각 56 bit key가 서로 다른 round-key 에서 사용되도록 설계
 - → 각 bit는 거의 16개중 14개 round-key 에서 사용
- 복호화 = 암호화 (feistel 구조)
 - → 반대의 키스케줄링만 필요 → HW 구현에서의 장점

❖ 키 스케줄

- 원래의 56 비트 키로부터 48 비트인 16개의 round-key K_i 유도
- 64 비트 (입력 key) but 각 8번째 비트는 앞 7 비트의 홀수 패리티 비트로 사용
 - → parity bit : 실제 키 비트 X, 안전성 증대에 영향 X
- PC-1: parity bit 제거
 - → 56비트로 축소 (parity drop)
- PC-2 : 축약 전치
 - → 56 bit (입력비트) 전치 후 → 48 bit

			PC	' -1		an rail	21 77 1
57	49	41	33	25	17	9	1
58	50	42	34	26	18	10	2
59	51	43	35	27	19	11	3
60	52	44	36	63	55	47	39
31	23	15	7	62	54	46	38
30	22	14	6	61	53	45	37
29	21	13	5	28	20	12	4

	115		PC	'-2	图 50	PART.	
14	17	11	24	1.41	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

❖ 키 스케줄 과정

- ① PC-1
 - : Parity bit (8 bit) 제거 → 56비트
- ② 56 비트 키는 C₀와 D₀로 반으로 나뉨
- ③ 각 28 비트는 순환 : round 별 규칙따라 왼쪽으로 순환 이동 : i = 1,2,9,16 (왼쪽으로 1 비트) & 나머지 round (왼쪽 2 비트)
- ③ 순환 위치의 수 ((4*1) + (12*2)) = 28 → C₀ = C₁₆, D₀= D₁₆ ?????
 : 복호화 키스케줄링에 유용
- 4 PC-2
 - : 48 비트 round-key (K_i) 유도 위해 입력비트(C_i, D_i) 전치 → 8개 제거 (56 → 48 비트)
- ⑤ K_i: 48 bit의 round-key 생성

❖ 안전성

Avalance Effect (쇄도효과) & Completeness (완비성) 이 높아 암호문에서 평문 추론 어려움

** Avalance Effect : 평문 또는 키 값의 작은 변화가 암호문에는 매우 큰 변화를 가져오는 성질

** Completeness : 암호문의 각 비트가 평문의 많은 비트들에 의존

But 소모적 키탐색(무작위 공격)에 취약

56 비트의 키 사용 → 키 공간 크기(256)가 너무 작아 현대에는 안전하지 않음

- → 중요 정보의 암호화에는 사용할 수 없어짐
- → 단일 DES는 단기적 안전성 필요 시 or 암호화된 데이터 가치가 매우 낮은 분야에 사용
- → AES의 적용 전까지 3DES 사용

∜KEY

1. Key = HANSUNG : 8 bit 7개 : 56 bit

: 01110010 01100101 01111000 10000011 10000101 01111000 01110001

2. Parity bit 추가 : 8 bit 8개 : 64 bit

: 01110010 00110011 01011111 00010001 00111001 00101011 11100001 11100010

3. PC-1 적용

: 11000000 11000101 11110011 00011111 01110000 01000011 01001111 (56bit)

4. 반으로 나눔

: $C_0 = 11000000 \ 11000101 \ 11110011 \ 0001 \ (28bit)$

: $D_0 = 11110111 00000100 00110100 1111 (28bit)$

					The state of the s		
			PC	-1		200 200	23 771.1
57	49	41	33	25	17	9	1
58	50	42	34	26	18	10	2
59	51	43	35	27	19	11	3
60	52	44	36	63	55	47	39
31	23	15	7	62	54	46	38
30	22	14	6	61	53	45	37
29	21	13	5	28	20	12	4

3번 과정의 PC -1

5. Round 규칙 따라 왼쪽 shift (1round 이므로 1bit left shift)

: C₁: 10000001 10001011 11100110 0011

: D₁: 11101110 00001000 01101001 1111

 \rightarrow 다음 round-key는 이 C_1 과 D_1 으로 생성

6. PC-2 적용

: $\mathbf{K_1} = 01001001\ 10001100\ 01101010\ 11101110\ 00100101\ 11100010\ (48\ bit)$

▶ 각 round의 5번 과정의 C_i과 D_i으로 5~6번 과정 반복하여 round-key 생성

	PC-2											
14	17	11	24	人1 特	5	3	28					
15	6	21	10	23	19	12	4					
26	8	16	7	27	20	13	2					
41	52	31	37	47	55	30	40					
51	45	33	48	44	49	39	56					
34	53	46	42	50	36	29	32					

6번 과정의 PC -2

Encryption

1. 평문 : PLAINTEXT: 72bit → PLAINTEX : 64bit (block cipher)

: 01010000 01001100 01000001 01001001 01001110 01010100 01000101 01011000

2. Initial Permutation

3. 반으로 나눔 (각 32 bit)

 $: L_0 = 111111111 10100001 01110010 01001100$

 $: R_0 = 00000000 \ 00000000 \ 10011010 \ 00010000$

4. Expansion Permutation : $E(R_0)$

: 000000 000000 000000 000001 010011 110100 000010 100000 (48bit)

: subkey와 길이 같음

and a	6 01	2 3,6	E	54	
3:	2 1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	2 13	14	15	16	17
16	3 17	18	19	20	21
20	21	22	23	224	25
24	1 25	26	27	28	29
28	3 29	30	31	32	80 191

4번 과정의 E-box (확장전치)

5. round-key와 확장된 R₀ XOR

6. 6bit 8개로 나눔

: 010010 011000 110001 101011 101000 010110 010101 000010

7. S-box: 1 & 6bit (행), 2 & 3 & 4 & 5 bit (열)

: $S_1(0,9) / S_2(0,10) / S_3(3,8) / S_4(3,5) / S_5(2,4) / S_6(0,11) / S_7(1,10) / S_8(0,1) \rightarrow 10 12 4 1 10 4 5 2$

: 결과 값을 binary로 바꿈 → 1010 1100 0100 0001 1010 0100 0101 0010 (32bit)

8. P-box

: 10000011 10011011 00000010 10011000 (32bit)

: L₀과 길이 동일

	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
уу0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
уу1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
уу0	0	14	7	11	10	4	13	1	.5	8	12	6	9	3	2	15
vv1	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

S-box 2

Oi	81	92	18 L	P	5 8		
16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

9. $L_0 \bigoplus f(R_0, k_1)$

: L₀ = 11111111 10100001 01110010 01001100

: $f(R_0, k_1) = 10000011 10011011 00000010 10011000$

: $L_0 \oplus f(R_0, k_1) = 011111100 \ 00111010 \ 01110000 \ 11010100 \ (32bit)$

10. L, R 교환

 $: L_1 = R_0 = 00000000 00000000 10011010 00010000$

: $R_1 = L_0 \oplus f(R_0, k_1) = 011111100 00111010 01110000 11010100$

ightharpoonup 4~10 의 과정을 16-round까지 반복 ightharpoonup ightharpoon

Q&A

