Standardisation - Loi normale

J-M., GALHARRET

LMJL, Faculté de Psychologie, Nantes Université

Standardisation des données Scores z

Position du problème

- Un score brut n'indique rien. Si on passe un test pour mesurer notre créativité et qu'on obtient un score de $X=30\ldots$ on ne peut rien conclure.
- Par contre si on sait que la moyenne des scores de créativité est $\mu=15$, alors on peut dire au moins que notre score est supérieur au score "typique". Mais ce n'est pas encore suffisant

Allons plus loin

Si de plus on sait que l'écart type des scores est 11 alors notre score est compris entre $\mu+\sigma$ et $\mu+2*\sigma$ et on peut même chercher précisemment à quelle déviation (en écart type) on se trouve de la moyenne $X=\mu+Z\sigma$ ce qui donne

$$Z = \frac{X - \mu}{\sigma}.$$

Dans notre exemple Z=1.4 donc d'après BT et si on considère que la répartion des scores autour de la moyenne est symétrique on fait parti des 24.5 % des scores les plus créatifs.

Définition des scores z

Etant donnée une variable X_i de moyenne μ et d'écart type σ on appelle score standardisé ou normalisé ou score z le score Z_i défini par :

$$Z_i = \frac{X_i - \mu}{\sigma}.$$

Si on ne connait pas (μ, σ) et qu'on possède un échantillon de valeurs $(X_i)_{i=1,\ldots,n}$ alors le score Z_i est défini par

$$Z_i = \frac{X_i - \bar{X}}{s},$$

où s est l'écart type corrigé.

Pour aller plus loin

Autre exemple

- On a également été testé en terme d'intelligence émotionnelle et on a obtenu un score de 175 avec un questionnaire étalonné de moyenne $\mu=150$ et d'écart type $\sigma=20$.
- A-t-on un meilleur score en termes d'IE ou de créativité ?

Solution : On calcule le score $Z_{IE}=1.2$ et on avait $Z_{Crea}=1.4$. \leadsto on est plus proche de la moyenne en terme d'intelligence émotionnelle que de créativité. On est donc plutôt créatif!

Résumé

- Les scores standardisés permettent de comparer le score d'un individu par rapport aux caractéristiques d'une population ou d'un échantillon (moyenne et écart type).
- les scores standardisés permettent de comparer des scores entre eux même si ils ne sont pas sur la même échelle.
- Quelle que soit la variable de départ X, la variable standardisée Z a pour moyenne 0 et pour écart type 1.

Loi normale centrée réduite

Loi de probabilité

On peut associer une loi de probabilité à une variable numérique .

Exemple On jette deux fois une pièce et on définit X comme le nombre de fois où la pièce est tombée sur pile. X peut prendre les valeurs 0,1,2 et on a

- $ightharpoonup \mathbb{P}(X=1) = \frac{1}{2}$
- $ightharpoonup \mathbb{P}(X=2) = \frac{1}{4}$

- Lorsque la variable est continue c'est plus compliqué : il faut définir pour toute valeur de x de X on va définir la valeur $\mathbb{P}(X < x)$.
- L'une des lois les plus utilisées est la loi normale centrée réduite...
- Si une variable Z suit une loi normale centrée réduite on note $Z \sim \mathcal{N}(0,1)$

Représentation graphique

La courbe de $Z \sim \mathcal{N}(0,1)$ (courbe gaussienne) est :

Propriétés:

La loi normale centrée réduite :

- \triangleright est symétrique, donc sa médiane est égale à sa moyenne (=0).
- a une très faible probabilté de prendre des petites (ou des grandes) valeurs!
- \blacktriangleright est telle que pour tout z on a $\mathbb{P}(Z < z) = \mathbb{P}(Z \le z)$, autrement dit $\mathbb{P}(Z = z) = 0$

Table

La table ci-dessous donne les valeurs de $\mathbb{P}(Z \leq z)$ pour $Z \sim \mathcal{N}(0,1)$, z étant égal à la somme de la valeur de la ligne et celle de la colonne.

	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.500	0.504	0.508	0.512	0.516	0.520	0.524	0.528	0.532	0.536
0.5	0.691	0.695	0.698	0.702	0.705	0.709	0.712	0.716	0.719	0.722
1	0.841	0.844	0.846	0.848	0.851	0.853	0.855	0.858	0.860	0.862
1.5	0.933	0.934	0.936	0.937	0.938	0.939	0.941	0.942	0.943	0.944
2	0.977	0.978	0.978	0.979	0.979	0.980	0.980	0.981	0.981	0.982

$$\mathbb{P}(Z>z)=1-\mathbb{P}(Z\leq z)$$

Exemple Calculer $\mathbb{P}(Z>0.75)$

$$\mathbb{P}(a < Z < b) = \mathbb{P}(Z \le b) - \mathbb{P}(Z \le a)$$

Exemple Calculer $\mathbb{P}(1.2 < Z < 1.35)$

$$\mathbb{P}(-a < Z < a) = 2 \times \mathbb{P}(Z < a) - 1$$

Exemple Calculer $\mathbb{P}(-1.2 < Z < 1.2)$

Lois normales $\mathcal{N}(\mu, \sigma)$:

- ▶ Une loi normale $X \sim \mathcal{N}(\mu, \sigma)$ est une variable dont le score $Z \sim \mathcal{N}(0, 1).$
- Une loi normale $X \sim \mathcal{N}(\mu, \sigma)$ a pour moyenne μ et pour écart type σ . Donc une loi normale est symétrique autour de sa moyenne.

Intervalles à connaitre

Retour sur la créativité :

Si on suppose que le score de créativité est $X\sim\mathcal{N}(15,11)$ alors le score Z=1.4 correspondant à X=30 vérifie :

$$\mathbb{P}(Z > 1.4) = 8.1 \%.$$