	Reaction	Propensity	Rate constant		Species	Initial value
R_1	$E_A \to E_A + A$	$a_1 = c_1[E_A]$	$c_1 = 15$	X_1	A	2000 molec.
R_2	$E_B \to E_B + B$	$a_2 = c_2[E_B]$	$c_2 = 15$	X_2	B	1500 molec.
R_3	$E_A + B \to E_A B$	$a_3 = c_3[E_A][B]$	$c_3 = 0.0001$	X_3	E_A	950 molec.
R_4	$E_A B \to E_A + B$	$a_4 = c_4 [E_A B]$	$c_4 = 0.6$	X_4	E_B	950 molec.
R_5	$E_AB + B \rightarrow E_AB_2$	$a_5 = c_5[E_A B][B]$	$c_5 = 0.0001$	X_5	$E_A B$	200 molec.
R_6	$E_A B_2 \to E_A B + B$	$a_6 = c_6 [E_A B_2]$	$c_6 = 0.6$	X_6	E_AB_2	50 molec.
R_7	$A \to 0$	$a_7 = c_7[A]$	$c_7 = 0.5$	X_7	$E_B A$	200 molec.
R_8	$E_B + A \rightarrow E_B A$	$a_8 = c_8[E_B][A]$	$c_8 = 0.0001$	X_8	$E_B A_2$	50 molec.
R_9	$E_B A \to E_B + A$	$a_9 = c_9 [E_B A]$	$c_9 = 0.6$			
R_{10}	$E_B A + A \rightarrow E_B A_2$	$a_10 = c_10[E_BA][A]$	$c_10 = 0.0001$			
R_{11}	$E_B A_2 \to E_B A + A$	$a_1 1 = c_1 1 [E_B A_2]$	$c_1 1 = 0.6$			
R_{12}	$B \to 0$	$a_1 2 = c_1 2[B]$	$c_1 2 = 0.5$			