Characterising representable positive relation algebras with Priestley duality

Daniel Rogozin

1 Distributive lattice representation and Priestley duality

Given a bounded distributive lattice \mathcal{L} , a proper subset $F \subset \mathcal{L}$ is said to be a *filter* if it is upward closed and closer under finite infima. A filter F is *prime* if $a + b \in F$ implies either $a \in F$ or $b \in F$. The spectrum of \mathcal{L} , denoted as $\text{Spec}(\mathcal{L})$, is the set of all prime filters.

A filter is *complete* if whenever ΠT exists for $T \subseteq F$, then $\Pi T \in F$. A filter is *completely prime* if whenever ΣT exists for $T \subseteq F$, then there exists $t \in T$ such that $t \in F$. The dual definitions are for ideals.

Proposition 1. Let $h: \mathcal{L} \to \mathcal{R}$ be a representation, then then

$$h^{-1}[x] = \{a \in \mathcal{L} \mid x \in h(a)\} \in \operatorname{Spec}(\mathcal{L})$$

Recall that a Priestley space is a triple $\mathcal{X}=(X,\tau,\leqslant)$ such that (X,τ) is a compact topological space, (X,\leqslant) is a bounded poset such that if $x\leqslant y$, then there exists a clopen U such that $x\in U$ and $y\notin U$. Given a bounded distributive lattice \mathcal{L} , define the map $\phi:\mathcal{L}\to 2^{\operatorname{Spec}(\mathcal{L})}$ such that

$$\phi: a \mapsto \{F \in \operatorname{Spec}(\mathcal{L}) \mid a \in F\}$$

Fact 1.

- 1. The sets $\phi(a)$ and $-\phi(a)$ form the subbasis of the topology τ on $\operatorname{Spec}(\mathcal{L})$.
- 2. $(\operatorname{Spec}(\mathcal{L}), \tau, \subseteq)$ is a Priestley space.

Given a Priestley space $\mathcal{X} = (X, \tau, \leq)$, the set $\mathrm{ClOp}(\mathcal{X})$ consists of all clopens of \mathcal{X} . The structure $(\mathrm{ClOp}(\mathcal{X}), \cap, \cup, \emptyset, X)$ is a distributive lattice.

Fact 2. Let \mathcal{L} be a distributive lattice and let \mathcal{X} be a Priestley space:

- 1. $\mathcal{L} \hookrightarrow \mathcal{L}^+ = (2^{\operatorname{Spec}(\mathcal{L})}, \cap, \cup, \varnothing, \operatorname{Spec}(\mathcal{L})),$
- 2. $\mathcal{L} \cong \text{ClOp}(\text{Spec}(\mathcal{L})),$
- 3. $\mathcal{X} \cong \operatorname{Spec}(\operatorname{ClOp}(\mathcal{X})),$
- 4. The categories of Priestley spaces and bounded distributive lattices are dually equivalent.

1.1 Completely representable distibutive lattices

Let \mathcal{L} be a bounded distributive lattice, then a set $S \subseteq 2^{\mathcal{L}}$ is said to be distinguishing if for every $a, b \in \mathcal{L}$ such that $a \neq b$ there exists $s \in S$ such that either $a \in s$ and $b \notin b$ or vice versa.

Theorem 1. Let \mathcal{L} be a bounded distributive lattice, then

- 1. \mathcal{L} is completely representable iff \mathcal{L} has a distinguishing set of complete, completely prime filters.
- 2. $(\mathcal{L}_{+})^{+}$ is completely representable.

TODO: read [EH12]

2 Representatiting positive relation algebras

Definition 1. A positive relation algebra is a algebra $\mathcal{R} = (R, \cdot, +, \cdot, \smile, 0, 1, 1')$ such that

- 1. $(R, \cdot, +, 0, 1)$ is a bounded distributive lattice,
- 2. $(R,;,\mathbf{1}')$ is a monoid,
- 3. for all $a, b, c \in R$

(a)
$$a; (b+c) = a; b+a; c,$$

(b)
$$a^{\smile} = a$$
,

(c)
$$(a+b)^{\smile} = a^{\smile} + b^{\smile}$$
,

$$(d) (a;b)^{\smile} = b^{\smile}; a^{\smile},$$

(e)
$$(a;b) \cdot c^{\smile} = 0 \leftrightarrow (b;c) \cdot c^{\smile} = 0.$$

A positive relation algebra \mathcal{R} is representable if there exists a one-to-one function $h: \mathcal{R} \to 2^{X \times X}$ over the base set $X \neq \emptyset$ such that:

- $f(a \cdot b) = f(a) \cap f(b)$,
- f(a + b) = f(a) + f(b),
- $f(0) = \emptyset$,
- $f(1) = \bigcup_{a \in \mathcal{R}} f(a),$
- $f(\mathbf{1}') = \Delta_X$,
- $f(a;b) = \{(x,z) \mid \exists y \in X ((x,y) \in f(a) \& (y,z) \in f(b))\} = f(a)|f(b),$
- $f(a) = \{(y, x) \mid (x, y) \in f(a)\}.$

A positive relation algebra is *completely representable* if it is representable and its bounded distributive lattice reduct is completely representable.

2.1 Priestley duality for positive relation algebras

Given a positive relation algebra $\mathcal{R} = (R, \cdot, +, :, \smile, \mathbf{1}', 0, 1)$, let $A, B \subseteq \mathcal{R}$, define the usual pointwise product operation:

$$A; B = \{a; b \mid a \in A, b \in B\}$$

We modify this operation with the upward closure:

$$A \bullet B = \uparrow (A; B)$$

We use the \bullet operation to analyse the following properties of filters in positive relation algebras:

Fact 3. Let \mathcal{R} be a positive relation algebra, then

- 1. If $F \subseteq \mathcal{R}$ is a filter, then for each $X, Y \subseteq \mathcal{R}$ $X; Y \subseteq F$ iff $X \bullet Y \subseteq F$
- 2. If $F_1, F_2 \subseteq \mathcal{R}$ are filters, so is $F_1 \bullet F_2$,
- 3. Let F_1, F_2 be filters and $F_3 \in \operatorname{Spec}(\mathcal{R})$ such that $F_1 \bullet F_2 \subseteq F_3$, then there are $F_1', F_2' \in \operatorname{Spec}(\mathcal{R})$ such that $F_1 \subseteq F_1', F_2 \subseteq F_2'$ and $F_1' \bullet F_2' \subseteq F_3$.

First of all, given a positive relation algebra $\mathcal{R} = (R, \cdot, +, ;, \smile, 0, 1, \mathbf{1}')$, we define its canonical extension \mathcal{R}^+ on the subsets of the spectrum $\operatorname{Spec}(\mathcal{R})$ by piggybacking Priestley representation of bounded distibutive lattices.

TODO:

A PRA-space is a structure (X, τ, \leq, R, I, E) where $X = (X, \tau, \leq)$ is a Priestley space and $R \subseteq X^3$, $I \subseteq X^2$ and $E \subseteq X$ such that:

- 1. For all $x, y, z \in X$ such that R(x, y, z):
 - $x \ge x'$ for $x' \in X$ implies R(x', y, z),
 - $y \le y'$ for $y' \in X$ implies R(x, y', z),
 - $z \le z'$ for $z' \in X$ implies R(x, y, z').
- 2. For all $x, y, z, w \in X$ there exists $u \in X$ such that R(x, y, u) and R(u, z, w) iff there exists $v \in X$ such that R(y, z, v) and R(x, v, w),
- 3. If $A, B \subseteq X$ are upward closed, so is $R[A, B, _]$,
- 4. I(A) is upward closed clopen whenever A is upward closed clopen,
- 5. I(x) is closed for each $x \in X$,
- 6. For all $x, y, z \in X$, $x \leq y$ and I(x, z) imply I(y, z),
- 7. For all $x, y \in X$ there exists $z \in X$ such that x = y iff I(z, y) and I(x, z),
- 8. For all $x, y, z \in X$ there exists $u \in X$ such that I(u, z) and R(x, y, u) iff there exist $u, w \in X$ such that R(v, w, z), I(y, v) and I(x, w).
- 9. For all $x, y, u, v \in X$, R(u, v, y) and I(x, u) implies R(x, y, v),
- 10. E is upward closed clopen such that for each clopen $A \subseteq X$ one has

$$R[A, E, _] = R[E, A, _] = A$$

Theorem 2. Let \mathcal{R} be a positive relation algebra and \mathcal{X} a PRA-space, then

- 1. $\mathcal{R} \hookrightarrow \mathcal{R}^+ = (2^{\operatorname{Spec}(R)}, \cup, \cap, \emptyset, \operatorname{Spec}(R), \bullet, \iota, \epsilon),$
- 2. $\mathcal{R} \cong \text{ClOp}(\text{Spec}(\mathcal{R})),$
- 3. $\mathcal{X} \cong \operatorname{Spec}(\operatorname{ClOp}(\mathcal{X})),$
- 4. The categories of positive relation algebras and PRA-spaces are dually equivalent.

Proof.

- 1. We check only the cases of \bullet , ι and ϵ .
- 2. Note that the dual space of a positive relation algebra $\mathcal R$ is a PRA-space.

TODO: check the claim above

3. The dual space of a PRA-space is a positive relation algebra.

TODO: check the claim above

4.

3 The main result

For that we need such model theoretic notions as saturation and types, see [Hod93, Section 6.3].

Definition 2. Let \mathcal{M} be a first-order structure of a signature L and $S \subseteq \mathcal{M}$. Let L(S) be an extension of L with copies of elements from S as additional constants. We assume that Cnst(L) and S are disjoint.

- 1. Let $n < \omega$, an n-type over S is a set \mathcal{T} of L(S) formulas $A(\overline{x})$, where \overline{x} is a fixed n-tuple of elements from S. Notation: $\mathcal{T}(\overline{x})$. A type is an n-type for some $n < \omega$.
- 2. An n-type $\mathcal{T}(\overline{x})$ is realised in \mathcal{M} , if there exists $\overline{m} \in \mathcal{M}^n$ such that $\mathcal{M} \models A(\overline{m})$ for every $A \in \mathcal{T}(\overline{x})$. \mathcal{M} omits $\mathcal{T}(\overline{x})$, if $\mathcal{T}(\overline{x})$ is not realised in \mathcal{M} .
- 3. $\mathcal{T}(\overline{x})$ is finitely satisfied in \mathcal{M} , if every finite subtype $\mathcal{T}_0(\overline{x}) \subseteq \mathcal{T}(\overline{x})$ is realised in \mathcal{M} . We can reformulate that as $\mathcal{M} \models \exists \overline{a} \bigwedge_{A \in \mathcal{T}_0} A(\overline{a})$.
- 4. Let T be a theory, then a type \mathcal{T} over the empty set of constants is T-consistent, if there exists a model $\mathcal{M} \models T$ such that \mathcal{T} is finitely satisfied in \mathcal{M} .
- 5. Let κ be a cardinal, then \mathcal{M} is κ -saturated, if for every $S \subseteq \mathcal{M}$ with $|S| < \kappa$ every finitely satisfied 1-type \mathcal{T} is realised in \mathcal{M} .

By default, a saturated model is an ω -saturated model for us. The useful facts, they are from [CK90] and [Hod93]:

Fact 4. Let \mathcal{M} be an FO-structue and κ a cardinal, then:

- 1. \mathcal{M} is κ -saturated iff every finitely satisfiable α -type (an arbitrary $\alpha \leq \kappa$) with fewer than κ parameters is realised in \mathcal{M} .
- 2. If \mathcal{M} is κ -saturated, then \mathcal{M} is λ -saturated for every $\lambda < \kappa$.
- 3. Every consistent theory has a κ -saturated model and every model has an elementary κ -saturated extension.
- 4. Let $(\mathcal{M}_i)_{i<\omega}$ a family of structures of the (at most) countable signature and D a non-principal ultrafilter over ω , then $\Pi_D \mathcal{M}_i$ is ω_1 -saturated.

Let \mathcal{A} be a positive relation algebra, define the first-order relational language of the form

$$\mathcal{L}(\mathcal{A}) = (=, \{R_a^2\}_{a \in \mathcal{A}})$$

The $\mathcal{L}(\mathcal{A})$ -theory $T_{\mathcal{A}}$ consists of the following statements:

- $\sigma_1 = \forall x \forall y (\mathbf{1}'(x,y) \leftrightarrow (x=y))$
- $\sigma_+(R, S, T) = \forall x \forall y (R(x, y) \leftrightarrow S(x, y) \lor T(x, y))$
- $\sigma.(R, S, T) = \forall x \forall y (R(x, y) \leftrightarrow S(x, y) \land T(x, y))$
- $\sigma_1(R, S, T) = \forall x \forall y (R(x, y) \leftrightarrow \exists z (S(x, z) \land T(z, y)))$
- $\sigma_{\smile}(R,S) = \forall x \forall y (R(x,y) \leftrightarrow S(y,x))$
- $\sigma_{\neq 0} = \exists x \exists y R(x,y)$ for any R_a such that $a \neq 0$
- $\sigma_0 = \neg \exists x \exists y 0(x,y)$
- $\sigma_1 = \forall x \forall y (R(x,y) \to \mathbf{1}(x,y))$

Proposition 2. T_A is satisfiable whenever A is representable.

Theorem 3. Let A be a positive relation algebra, then R is representable iff R^+ is completely representable.

Proof. The right-to-left implication is easy. If \mathcal{R}^+ is representable (no completeness needed here), so is $ClOp(Spec(\mathcal{L}))$ as a subalgebra of \mathcal{R}^+ . But, by Priestley duality for positive relation algebras, $ClOp(Spec(\mathcal{L})) \cong \mathcal{L}$, so \mathcal{L} is representable.

Assume that \mathcal{R} is representable, then $T_{\mathcal{R}}$ is satisfiable, let $M \models T_{\mathcal{R}}$ and M is ω -saturated. Define a map $h: \mathcal{R}^+ \to 2^{M \times M}$ as

$$h: F \mapsto \{(x, y) \in 1^M \mid f_{x, y} \in F\}$$

where

$$f_{x,y} = \{ a \in \mathcal{R} \mid M \models R_a(x,y) \}$$

Claim 1. $f_{x,y} \in \operatorname{Spec}(\mathcal{R})$ whenever $M \models 1(x,y)$.

Proof. Let $a \in f_{x,y}$ and $a \leq b$.

Then $M \models R_a(x,y)$. But $a \leq b$ iff $a \cdot b = a$, so, from the axiom $R(R_a, R_a, R_b)$ we have $M \models R_b(x,y)$.

Let $a, b \in f_{x,y}$, so $M \models R_a(x,y) \land R_b(x,y)$, so $R_{a \cdot b}(x,y)$ by the axiom $R.(R_a, R_a, R_b)$ again. Let $a + b \in f_{x,y}$, so $M \models R_{a+b}(x,y)$, then we have either $M \models R_a(x,y)$ or $M \models R_b(x,y)$, so either $a \in f_{x,y}$ or $b \in f_{x,y}$. Claim 2. h is one-to-one.

Claim 3. h is a complete representation of the bounded lattice reduct.

Proof. Follows from the fact that $Spec(\mathcal{L})$ is a Hausdorff space. (????)

Claim 4. h preserves the structure of an involutive monoid.

Theorem 4. RPRA is a canonical variety. (is it a variety at all?)

4 Union-free reducts of positive relation algebras

TODO: [BJ11].

References

[AM11] Hajnal Andréka and Szabolcs Mikulás. Axiomatizability of positive algebras of binary relations. *Algebra universalis*, 66(1-2):7, 2011.

 \Box

- [BJ11] Guram Bezhanishvili and Ramon Jansana. Priestley style duality for distributive meetsemilattices. *Studia Logica*, 98:83–122, 2011.
- [CK90] Chen Chung Chang and H Jerome Keisler. Model theory. Elsevier, 1990.
- [EH12] Robert Egrot and Robin Hirsch. Completely representable lattices. *Algebra universalis*, 67(3):205–217, 2012.
- [Gal03] Nikolaos Galatos. Varieties of residuated lattices. Vanderbilt University, 2003.
- [Geh14] Mai Gehrke. Canonical extensions, esakia spaces, and universal models. Leo Esakia on duality in modal and intuitionistic logics, pages 9–41, 2014.
- [GJ04] Mai Gehrke and Bjarni Jónsson. Bounded distributive lattice expansions. *Mathematica Scandinavica*, pages 13–45, 2004.
- [Gol89] Robert Goldblatt. Varieties of complex algebras. Annals of pure and applied logic, 44(3):173–242, 1989.
- [HH97] Robin Hirsch and Ian Hodkinson. Complete representations in algebraic logic. *The Journal of Symbolic Logic*, 62(3):816–847, 1997.
- [HH02] Robin Hirsch and Ian Hodkinson. Relation algebras by games. Elsevier, 2002.
- [HM00] Ian Hodkinson and Szabolcs Mikulás. Axiomatizability of reducts of algebras of relations. *Algebra universalis*, 43:127–156, 2000.
- [Hod93] Wilfrid Hodges. Model theory. Cambridge University Press, 1993.
- [Jón82] Bjarni Jónsson. Varieties of relation algebras. Algebra universalis, 15(3):273–298, 1982.