

Lecture

Electricity and Magnetism

Electrostatic Field vs. Magnetostatic Field

Electricity and Magnetism, Prof. Dr. Gabriele Schrag

1

Electrostatic Field vs. Magnetostatic Field

Phänomenlogische Gegenüberstellung

$$ec{E}$$
 -Field

act on resting and moving charges; Coulomb's force

Field generated by: (resting) electric charges

Gauss's law:

$$\int_{\partial V} \vec{D}(\vec{r}) d\vec{a} = Q(V(\vec{r})) = \int_{V} \rho(\vec{r}) d^3r$$

 $div\vec{D}(\vec{r}) = \rho(\vec{r})$ or differential:

"The sources of the electrostatic field are the electric charges."

act on moving charges: Lorentz force

Moving charges = electric current (there are no magnetic charges).

solenoidality of B-field:

$$\int \vec{B}(\vec{r})d\vec{a}=0$$

$$div\vec{B}(\vec{r}) = 0$$

There are no magnetic charges, not magnetic monopoles; B-Feld is solenoidal.

Electrostatic Field vs. Magnetostatic Field

 \vec{E} -Field

 \vec{B} -Field

Field lines:

Field lines start and end at eletric charges

Is a potential field (conservative); gradient field

$$rot\vec{E}(\vec{r}) = 0$$

Field lines are always closed.

http://www.chemgapedia.de/vsengine/vlu/vsc/de/ph/14/ep/einfuehrung/magnet feld/stroeme.vlu.html

Is not conservative, no potential field, not a gradient field

$$rot\vec{B}(\vec{r}) \neq 0$$

Field generation - mathematical description

By electric charges Gauss's law, Poisson's equation

$$\int_{\partial V} \vec{D}(\vec{r}) d\vec{a} = Q(V(\vec{r})) = \int_{V} \rho(\vec{r}) d^{3}r$$

Electricity and Magnetism, Prof. Dr. Gabriele Schrag

By electric currents Ampère's circuital law

$$\int_{\partial A} \vec{H}(\vec{r}) d\vec{r} = I(A) = \int_{A} \vec{j}(\vec{r}) d\vec{a}$$

3

Electrostatic Field vs. Magnetostatic Field

\vec{B} -Field

Corresponding fields:

 \vec{E} -Field: takes into account materials, is the "measurable field"

 \overrightarrow{D} -Feld: takes into account only field-generating quantities (charges)

$$\vec{D}(\vec{r}) = \varepsilon \vec{E}(\vec{r})$$

 \vec{B} -Field: takes into account materials, is the "measurable field"

 \vec{H} -Feld: takes into account only field-generating quantities (electric currents)

$$\vec{B}(\vec{r}) = \mu \vec{H}(\vec{r})$$

Electromagnetism: coupling between \vec{E} -field und \vec{B} -field

Ampére-Maxwell's circuital law:

 \vec{H} -Feld generated by electric currents, but also by time-varying \vec{D} -fields:

$$\int_{\partial A} \vec{H}(\vec{r}) d\vec{r} = I(A) = \int_{A} (\vec{j}(\vec{r}) + \frac{\partial \vec{D}}{\partial t}) d\vec{a}$$

<u>Chapter 4: Induction:</u> \vec{E} -fields also generated by time-varying \vec{B} -fields