PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék

Digitális Rendszerek és Számítógép Architektúrák

3. előadás: Aritmetikai egységek - adatkezelés

Előadó: Dr. Vörösházi Zsolt

voroshazi.zsolt@virt.uni-pannon.hu

M

Jegyzetek, segédanyagok:

- Könyvfejezetek:
 - □ http://www.virt.uni-pannon.hu
 - → Oktatás → Tantárgyak → Digitális Rendszerek és Számítógép Architektúrák (nappali)

(chapter03.pdf)

- Fóliák, óravázlatok .ppt (.pdf)
- Frissítésük folyamatosan

100

Ismétlés

- Korai számítógépek teljesítményét főként ballisztikus számításoknál (hadászatban)
- Információ ábrázolás
- Használt utasításkészlet (RISC vs. CISC)
- Adatkezelő / műveletvégző egység: Alapvető ALU (Aritmetikai és Logikai funkciók)
 - Univerzális / funkcionális teljesség
 - Aritmetikai operátorok: + → -,*,/ (alapműveletek)
 - Logikai operátorok:
 NAND,NOR → NOT,AND,OR,XOR (AV),NXOR
 (EQ) mai CMOS VLSI technológia esetén

ALU felépítése

- Utasítások hatására a (S_m-S₀) "vezérlőjelek" jelölik ki a végrehajtandó aritmetikai / logikai műveletet. További adatvonalak kapcsolódhatnak közvetlenül a státusz regiszterhez, amelyben fontos információkat tárolunk: pl.
 - □ zero bit
 - □ *carry-in, carry-out* átviteleket,
 - □ *előjel* bitet (sign),
 - túlcsordulást (overflow), vagy alulcsordulást (underflow) jelző biteket,
 - Paritás, stb.

Státusz- (flag) jelzőbitek

- Az aritmetikai műveletek eredményétől függően hibajelzésre használatos jelzőbitek. Ezek megváltozása az utasításkészletben előre definiált utasítások végrehajtásától függ.
 - □ a.) Előjelbit (sign): 2's komplemens (MSB)
 - □ b.) Átvitel kezelő bit (carry in/out): helyiértékes átvitel
 - □ c.) Alul / Túlcsordulás jelzőbit (underflow / overflow)
 - □ d.) Zero bit: kimeneten az eredmény 0-e?
 - PI: 0-val való osztás!
 - (szorzásnál egyszerűsíthetőség adatfüggés)
 - □ e.) Paritás bit: páros, páratlan
 - □ ...

a.) Előjelbit (sign)

re.

b.) Átvitel-kezelő bit (carry)

c.) Zéró bit

d.) Túlcsordulást jelző bit (overflow)

PI: N=4-bites ALU felépítése és működése

- Két N=4-bites operandus (A, B)
- Eredmény (F) bitszélessége:
 - □ N+(1 CarryOut) bit, ha +;-
 - □ 2×N bites, ha *
- H.értékes átvitel: CarryIn/ Out
- S2: Aritmetikai/ logikai mód választó (MUX)
- S0, S1: művelet kiválasztó
 (S2 értékétől függően
 - Aritmetikai vs. Logikai

IC: '181 ALU 4-bites (74LS181)

4-bites ALU szimbolikus rajza

ALU működését leíró függvénytáblázat

(egy lehetséges működés, a funkciók bővíthetők):

Művelet kiválasztás:		Művelet:	Megvalósított függvény:		
S2	S1	S0	Cin		
0	0	0	0	F=A	'A' átvitele
0	0	0	1	F=A+1	'A' értékének növelése 1-el (increment)
0	0	1	0	F=A+B	Összeadás
0	0	1	1	F=A+B+1	Összeadás carry figyelembevételével
0	1	0	0	$F = A + \overline{B}$	A + 1's komplemens B
0	1	0	1	$F = A + \overline{B} + 1$	Kivonás
0	1	1	0	F=A-1	'A' értékének csökkentése 1-el (decrement)
0	1	1	1	F=B	'B' á tvitele
1	0	0	X	$F = A \wedge B$	AND
1	0	1	X	$F = A \vee B$	OR
1	1	0	X	$F = A \oplus B$	XOR
1	1	1	X	$F = \overline{A}$	'A' negáltja (NOT A)

^{*} Forrás: Könyv függeléke (appendix)

ALU felépítése:

Lebegőpontos műveletvégző egységek

Lebegőpontos műveletvégző egységek

- Probléma:
 - □ Mantissza igazítás → Exponens beállítás
 - □ Normalizálás, Utó-(Post) Normalizálás
 - (DEC-32, IEEE-32, IBM-32)
- Műveletvégző elemek:
 - □ Összeadó-,
 - □ Kivonó-,
 - □ Szorzó-,
 - Osztó áramkörök.

M

a.) Lebegőpontos összeadó

- Művelet: $A=B+C=M_B\times r^{E_B}+M_C\times r^{E_C}=(M_B\times r^{|E_B-E_C|}+M_C)\times r^{|E_C|}$
 - Komplex feladat: a mantisszák hosszát egyeztetni kell (MSB bitek azonos helyiértéken legyenek)
 - □ Legyen: 0<B<C
 - □ B → C vagyis |E_B-E_C|
 pozícióval jobbra
 igazítjuk az M_B
 mantisszát; ez változás
 az exponensben is
 - ALU: Összeadás!: sign-magnitude formátumban
 - Végül minimális postnormalizáció kell

re.

FPN: összeadás (kivonás)

r_b=2, IEEE-754 (bináris 32-bites rendszer):

■ A = B + C =
$$10.0001 + 1101.1 = //B < C//$$
 $(1.00001 \times 2^{1}) + (1.1011 \times 2^{3}) =$
 $(0.0100001 \times 2^{3}) + (1.1011 \times 2^{3}) =$
 $(0.0100001 + 1.1011) \times 2^{3} =$

■ 1.1111001 × 2^{^3} = A (itt éppen nem kell post-normalizálás)

b.) Lebegőpontos kivonó

- Művelet: $A=B-C=M_B\times r^{E_B}-M_C\times r^{E_C}=(M_B\times r^{|E_B-E_C|}-M_C)\times r^{E_C}$
 - Komplex feladat: a mantisszák hosszát egyeztetni kell (MSB bitek azonos helyiértéken legyenek)
 - □ Legyen: 0<B<C
 - □ B → C vagyis |E_B-E_C|
 pozícióval jobbra
 igazítjuk az M_B
 mantisszát, ez
 változás az
 exponensben is
 - ☐ Kivonás! (ALU)

M

c.) Lebegőpontos szorzó

■ Művelet: $A=B\times C=M_B\times r^{E_B}\times M_C\times r^{E_C}=(M_B\times M_C)\times r^{E_B+E_C}$

- □ A: szorzat
- □ B: szorzandó
- □ C: szorzó
- Könnyű végrehajtani
- Nincs szükség az operandusok beállítására
- Minimális postnormalizációt kell csak végezni
- □ ALU: szorzás!

d.) Lebegőpontos osztó

■ Művelet: $A=B/C=M_B\times r^{E_B}/M_C\times r^{E_C}=(M_B/M_C)\times r^{E_B-E_C}$

□ A: hányados

□ B: osztandó

□ C: osztó

- Könnyű végrehajtani
- Nincs szükség az operandusok beállítására
- Minimális postnormalizációt kell csak végezni
- □ Osztás! (ALU)

Összeadó / Kivonó áramkörök

a.) Fél-összeadó – Half Adder

1-bites Half Adder

igazságtáblázat

Ai	Bi	Cout	Si
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Nem kezeli a Cin-t!

Cout

Karnaugh táblái:

Kimeneti fgv-ei:

$$S_i = A_i \oplus B_i$$

$$T_{HA} = 1G$$

1 bites FA felépítése 2 db HA segítségével:

м

b.) Teljes összeadó – Full Adder

■ FA: 1-bites Full Adder

Ez a FA egy lehetséges CMOS kapcsolási rajza: (itt T_{FA} = 3G!)

		. / 1	
igaz	sad	táb	làzat
.9~-	-		

A _i	B _i	Cin	Cout	Sum _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Karnaugh táblái:

Kimeneti fgv-ei:

$$C_{out} = A_i \cdot B_i + A_i \cdot C_{in} + B_i \cdot C_{in}$$

c.) Átvitelkezelő összeadó – Ripple Carry Adder (RCA)

■ Pl. 6-bites RCA: [5..0] (LSB Cin = GND!)

Számítási időszükséglet (RCA):

 $T_{(RCA)} = N^*T_{(FA)} = N^*(2^*G) = 12 G$ (6-bites RCA esetén) ahol a min. 2G az 1-bites FA kapukésleltetése ([ns], [ps])

M

d.) LACA: Look Ahead Carry Adder:

Képlet (FA) átalakításából kapjuk:

$$C_{out} = A_i \cdot B_i + A_i \cdot C_{in} + B_i \cdot C_{in}$$

$$\Rightarrow A_i \cdot B_i + C_{in} \cdot (A_i + B_i) = C_G + C_{in} \cdot C_P$$

$$CarryGenerate CarryPropagate$$

$$S_i = A_i \oplus B_i \oplus C_{in}$$

<u>LACG</u>: Look Ahead Carry Generator egy **b** bites ALU-hoz kapcsolódik, mindenegyes állapotban a Cin generálásáért felel a CP és CG (LACA-tól) érkező jeleknek megfelelően ("LACG looks at CP and CG from adders").

N-bites LACA számítási időszükséglete: $T_{LACA} = 2 + 4 \times (\left\lceil \log_b(N) \right\rceil - 1)$

ahol N: bitek száma, b: LACG bitszélessége (hány LACA-hoz tartozik egy LACG)

Megjegyzés: LACA – CG átírása XOR kapcsolatra (nem triviális forma)

 CG előállítása: alkalmazott másik érvényes forma a XOR kapcsolattal megadott kifejezés

igazságtáblázat

A _i	B _i	Cin	Cout	Sum _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Karnaugh tábla:

A 00 01 11 10

Cout: 0 0 0 1 1 0 2

A 1 0 4 1 5 1 6

Kimeneti fgv:

$$C_{out} = \overline{A_i} \cdot B_i \cdot C_{in} + A_i \cdot \overline{B_i} \cdot C_{in} + A_i \cdot B_i =$$

$$= A_i \cdot B_i + C_{in} \cdot (A_i \oplus B_i) =$$

$$= C_C + C_{in} \cdot C_P$$

Példa: 4-bites LACA

Legyen b=4 (LACG), és N=4 (LACA). Áramkör felépítése, és időszükséglete?

M

Példa (folyt.): 4-bites LACA számítási műveletei (carry terjesztés)

■ LSB → MSB felé az összeadások

$$C_1 = G_0 + P_0 \cdot C_0$$

$$C_2 = G_1 + P_1 \cdot C_1$$

$$C_3 = G_2 + P_2 \cdot C_2$$

$$C_4 = G_3 + P_3 \cdot C_3$$

Behelyettesítések: adott C_i -t → a C_{i+1} -be

$$\begin{split} C_1 &= G_0 + P_0 \cdot C_0 \\ C_2 &= G_1 + G_0 \cdot P_1 + C_0 \cdot P_0 \cdot P_1 \\ C_3 &= G_2 + G_1 \cdot P_2 + G_0 \cdot P_1 \cdot P_2 + C_0 \cdot P_0 \cdot P_1 \cdot P_2 \\ C_4 &= G_3 + G_2 \cdot P_3 + G_1 \cdot P_2 \cdot P_3 + G_0 \cdot P_1 \cdot P_2 \cdot P_3 + C_0 \cdot P_0 \cdot P_1 \cdot P_2 \cdot P_3 \end{split}$$

Magasabb b-bites LACG hierarchia szintek felé GP (group propagate) és GG (group generate) számítása:

$$GG = G_3 + G_2 \cdot P_3 + G_1 \cdot P_3 \cdot P_2 + G_0 \cdot P_3 \cdot P_2 \cdot P_1$$

$$PG = P_0 \cdot P_1 \cdot P_2 \cdot P_3$$

Példa: 4x16-bites LACA

Legyen b=64 (LACG), és N=4x16 (LACA). Áramkör felépítése, és időszükséglete?

64-bites (16×4) LACA összeadó

$$T_{LACA} = 2 + 4 \times (\left[\log_4(64)\right] - 1) = 10$$

- Komponensek:
 - '182 = SN74LS181: **N=4-**bites ALU (összeadás)
 - '181 = SN74LS182: **b=4** bites LACG generátor

e.) Teljes kivonó - Full Subtractor (FS)

FS: 1-bites Full Subtractor

igazságtáblázat

X _i	Y _i	Bin	Bout	$\mathbf{F_{i}}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

szimbólum

Karnaugh táblái:

Kimeneti fgv-ei:

$$B_{out} = \overline{X_i} \cdot Y_i + \overline{X_i} \cdot B_{in} + Y_i \cdot B_{in}$$

Logikai kapcsolási rajz Bout-ra (F előállítása ugyanaz, mint FA-nál):

$$F_i = X_i \oplus Y_i \oplus B_{in}$$

M

e.) Bináris kivonás végrehajtása (folyt)

I. módszer:

Bináris kivonás FS segítségével *****

- II. módszer: Kivonás visszavezetése az univerzálisan teljes bináris összeadás segítségével (2's komplemens alak):
 - ☐ FA, RCA, vagy LACA

$$F_i = X_i + 2 's comp(Y_i)$$

^{*:} azt jelöli, amikor az adott helyiértéken '1'-et kell kivonni még az X_i értékéből (borrow from X_i)

Szorzó áramkörök

- I. Iteratív szorzási módszerek
- II. Közvetlen "szorzási" módszerek

I.) Iteratív szorzási módszerek

De.

Iteratív szorzási módszerek alapjai

Tényezők:

$$P = A \times B$$

- P: szorzat, A:szorzandó, B:szorzó
- ☐ PI: Legyenek:
 - 'A' és 'B' 5-bites számok (0...2⁵-1)=0...31
 - Maximálisan P=31*31=961 lehet (10 biten ábr.)
- Tehát: N-bites számok szorzatát 2×N biten tudjuk eltárolni!

$$P = A \times B = A \times B_4 B_3 B_2 B_1 B_0 =$$

$$= A \times B_4 \times 2^4 + A \times B_3 \times 2^3 + A \times B_2 \times 2^2 + A \times B_1 \times 2^1 + A \times B_0 \times 2^0$$

Ismétlés: Regiszterek

- A következő fontos elem a regiszter. Olyan szélesnek kell lennie, hogy benne, a buszokról, memóriákból, ALU-ból érkező információ eltárolható legyen. Adott vezérlőjelek hatására a bemenetén lévő adatokat betölti, és ideiglenesen eltárolja. Más vezérlőjelek hatására a kimenetére rakja a tárolt adatokat, vagy például egy vezérlőjel hatására, lépteti (shift-eli) a benne lévő adatokat.
- Megvalósítások működési mód szerint:
 - a) Hagyományos reg.: párhuzamos betöltésű/kiolvasású
 - b) Léptető (Shift regiszter): soros betöltésű (kiolvasású)

Ismétlés: D flip-flop

D tároló

Csak szinkron módon értelmezhető

Működése:

- D=`0' == D-FF állapota változik ('0'-t
 tárol)
- □ D= `1' == D-FF állapota változik ('1'-et tárol)
- Tehát egy órajel ciklus (CLK) ideig tároljuk a bemenetre érkezett értéket, változás a CLK élére történhet

Egyszerűsített DNF alak és elvi logikai rajz:

$$Q = f_y(D, y) = D$$

a.) 4-bites Parallel In/ Parallel Out regiszter (D-tárolókból felépítve)

Katalógus adat: SN54/74LS175

M

b.) 4-bites Shift/léptető regiszter(Serial in/Paralel Out – D-tárolós)

Katalógus adat : SN54/74LS95

м.

PR

Iteratív szorzási műveletek:

■ Hagyományos (Shift&Add) módszer (MSB ← LSB)

				X	A4 B4	A3 B3	A2 B2	A1 B1	A0 B0
PP0					A4*B0	A3*B0	A2*B0	A1*B0	A0*B0
PP1				A4*B1	A3*B1	A2*B1	A1*B1	A0*B1	
PP2			A4*B2	A3*B2	A2*B2	A1*B2	A0*B2		
PP3		A4*B3	A3*B3	A2*B3	A1*B3	A0*B3			
PP4	A4*B4	A3*B4	A2*B4	A1*B4	A0*B4				
DD									

az egyes oszlopok összege

■ Fordított sorrendű (MSB → LSB):

		A 3	A2	A1	A 0				
Х	B4	B3	B2	B1	B0				
PP0	A4*B4	A3*B4	A2*B4	A1*B4	A0*B4				
PP1		A4*B3	A3*B3	A2*B3	A1*B3	A0*B3			
PP2			A4*B2	A3*B2	A2*B2	A1*B2	A0*B2		
PP3				A4*B1	A3*B1	A2*B1	A1*B1	A0*B1	
PP4					A4*B0	A3*B0	A2*B0	A1*B0	A0*B0

az egyes oszlopok összege

100

1.) Általános Shift&Add módszer

- P=A×B (A:szorzandó, B:szorzó)
- Parciális szorzat (PPi) összegeket az LSB → MSB bitek felől képezi (mivel a B szorzat biteket is ebben a sorrendben tölti be a Shift regiszterből N CLK alatt)
- AND kapuk: PPi-k képzése
- Shift-elés: Huzalozott eltolással (a visszacsatolt ágban 1. ← 0.)

Shift&Add szorzó építőelemei (folyt):

- 2-input AND gates (prepare partial products)
- '165 1db 8-bit paralle input serial Shift Register
- '283 2db 4-bit Adder: itt helyettesíteni lehetne akár 1db 8-bites Adder-el
- '273 2db 8-bit Parallel Register (D-FFs): helyettesíteni lehetne, 1db 16-bites Register-el

Időzítési jelek:

- A MIER_CLK-H (B): magas-aktív órajel vezérli a bemeneti 165'-ös SHIFT (paralel in- serial out) regisztert
- MIER_LD-L: load jel hatására, képes az összes bemenetére érkező jelet egy lépésben betölti
- A PROD_CLK-H: magas-aktív órajel (273' D tárolókból álló regiszternél)
- PROD_CLR-L: törlőjel, amely hozzáadás előtt törli a 273'regiszterek tartalmát

Folyamatábra (Shift&Add)

- Alapvetően adatfüggetlen, DE:
- Adatfüggővé tehető gyorsítható algoritmus!
 - Bemenő (A,B) értékek figyelésétkell megoldani: zérus-e?
- Időszükséglet: Done Yes

 $T_{Mult} = T_{Setup} + N \times T_{Iter}$ ahol

$$T_{Iter} = T_{AND} + T_{Sum} + T_{Reg}$$

- •T(SETUP): kezdeti ellenőrzések, inicializálás ill. szorzat regiszter törlése
- •T(AND): AND függvények végrehajtása, parciális szorzatok képzése
- •T(SUM): parciális szorzatok összeadása
- •T(REG): betöltésük a regiszterbe

2.) Fordított sorrendű módszer

- P=A×B (A:szorzandó, B:szorzó)
- Parciális szorzat (PP_i) összegeket itt fordított sorrendben, az MSB → LSB bitek felé haladva képzi
 - Tehát a B szorzat biteket fordított sorrendben tölti be, illetve elsőként az MSB pozíción lévő PPi értéke kerül a szorzat (C) regiszterbe
- Adatfüggőség: bemenetek figyelésekor ha a szorzandó, vagy szorzó bitek értéke zérus, nem kell elvégezni a szorzást (vizsgálata N-bit szélességű AND kapukkal)

Példa: két N=8-bites szám Fordított sorrendű szorzására

Az Adder olyan széles, mint a P szorzat regiszter (16)

Adatfüggőség: zérus-e? PLIER_ZERO_L/ PCAND_ZERO_L

Az AND_BIT_H jel feltételesen határozza meg, hogy az "A" szorzandó regiszter (benne a "B" szorzó-regiszter értékeivel) a "P" szorzatregiszterbe másolható-e

Ha az MSB='1' (B<7>), akkor szorzandó és szorzó reg. tartalma összeadható;

Ha MSB='0' a B szorzó- és az A szorzandóregiszter tartalma 1-bitpozícióval shift-elődik jobbra:

- •Szorzó: alacsonyabb bitpozíciók felé.
- Szorzandó: magasabb bitpozíciók felé egyszerre
 46

Fordított c

Fordított sorrendű szorzó építőelemei (folyt):

- 2-input AND gates (partial product)
- '195 4-bites Shift Regiszter
 - □ 2 db szorzó reg. (B) tárolására, shiftelésére
 - □ 2 db szorzandó reg. (A) tárolására és shiftelésére
- '164 1 db 8-bites Shift regiszter
- '283 4db 4-bit Adder: itt a 4 db Adder olyan széles kell legyen, mint a P szorzat regiszter
 - □ (helyettesíthető lenne egyetlen 16-bites Adder-el)
- '273 2db 8-bit Parallel Regiszter (2x8 D-FFs)
 - □ Helyettesíthető lenne egyetlen 16-bites Parallel Regiszterrel
- Előnye: nem kellenek AND-ek a PPi-k képzéséhez;
- Hátránya: viszont szélesebb összeadó, és A szorzandó reg. kell (szemben a Shift&Add módszerrel).

Folyamatábra (fordított sorrendű)

- Adatfüggő algoritmus gyorsított végrehajtás
 - □ Bemenő (A,B) értékeket figyeli, hogy zérus-e?
- Időszükséglet:

$$T_{Mult} = T_{Setup} + N imes T_{Iter}$$
 ahol
$$T_{Iter} = T_{AND} + T_{Sum} + T_{Reg}$$

T(SETUP): kezdeti ellenőrzések,
inicializálás ill. szorzat regiszter törlése
T(AND): AND függvények végrehajtása,
parciális szorzatok képzése
T(SUM): parciális szorzatok összpadása

- •T(SUM): parciális szorzatok összeadása
- •T(REG): betöltésük a regiszterbe

c.) Előjeles szorzás Booth-algoritmussal:

- Negatív számokkal is lehet szorzást végezni!
 - □ Legyen a következő B 2's komplemens 6-bites szám

$$\Box B = B_5 B_4 B_3 B_2 B_1 B_0 = B_5 \times (-2^5) + B_4 \times 2^4 + B_3 \times 2^3 + B_2 \times 2^2 + B_1 \times 2^1 + B_0 \times 1 .$$

□ Újrakódolási technika (séma):

B(2' komplemens) =
$$B_5 \times (-32) + B_4 \times 16 + B_3 \times 8 + B_2 \times 4 + B_1 \times 2 + B_0 \times 1 = TRÜKK!!$$

=
$$B_5 \times (-32) + B_4 \times (32-16) + B_3 \times (16-8) + B_2 \times (8-4) + B_1 \times (4-2) + B_0 \times (2-1) =$$
 (azonos numerikus értékek összerendelése)

$$= B_5 \times (-32) + B_4 \times 32 - B_4 \times 16 + B_3 \times 16 - B_3 \times 8 + B_2 \times 8 - B_2 \times 4 + B_1 \times 4 - B_1 \times 2 + B_0 \times 2 - B_0 \times 1 =$$

=
$$-32 \times (B_5 - B_4) - 16 \times (B_4 - B_3) - 8 \times (B_3 - B_2) - 4 \times (B_2 - B_1) - 2 \times (B_1 - B_0) - 1 \times (B_0 - 0)$$
.

- Az előző oldalon lévő *átzárójelezéssel* a megfelelő értékeket két bitpár kivonásával kapjuk (a zárójeles kifejezés értéke ha +: akkor kivonás,/ ha 0: akkor áteresztés / ha -: összeadás történik). A súlytényezők 2 hatványai, és a szorzást a súlytényezők shiftelésével oldják meg ('165 Shift-regiszterrel). //Egy összeadást mindig egy kivonás követ alternáló jelleggel.
- Példa:

543210 (bitpozíciók)

011001= 25

..A"

101101 = -19

"B"

Végrehajtjuk **P=A**×**B**-t!

Az újrakódolást bitpárokon végezzük el:

$$-1 \times (B_0 - 0) = -1$$

$$P0=0-1*A$$

Mivel – volt az érték, ezért kivonjuk a 0-ból az A-t.

$$-2 \times (B_1 - B_0) = +2$$

$$P1=P0+2*A$$

Mivel + volt az érték, ezért hozzáadjuk P0-hoz a 2*A-t.

$$-4\times(B_2-B_1)=\underline{-4}$$

$$-8 \times (B_3 - B_2) = 0$$

$$-16 \times (B_4 - B_3) = +16 \mid P4 = P3 + 16 \cdot A$$

$$-32 \times (B_5 - B_4) = -32$$
 P5=P4-32*A

$$P_{n+1} = P_n - 2^n \times (B_n - B_{n-1}) \times A$$

D/A

Példa: Booth algoritmus (folyt.)

Végrehajtjuk **P=A×B**-t!

```
P0=0-1*A =0-1*25= -25

P1=P0+2*A= -25+2*25=25

P2=P1-4*A= 25-4*25= -75

P3=P2 = -75

P4=P3+16*A = -75+16*25=325

P5=P4-32*A = 325-32*25= -475
```

```
543210 (bitpozíciók) N= 6, P = 2 \times N

011001= 25 "A" Ellenőrzés:

101101= -19 "B" P = -475

// 1110 0010 0101
```

INPUT (7:0) -H В PIER LD-L PIER CLK-H PCAND CLK-H HI Α 1165 8 Bit Shift Register ds 174 amb 1273 8 Bit Register B1-L B1-H B0-H BO-L 1181 181 4 Bit ALU 4 Bit ALU F3 F2 F1 F0 F3 F2 F1 F0 PROD CLR-L 1273 1273 8 Bit Register 8 Bit Register 8 6 6 6 6 6 6 6 6 6 PRODUCT (15:0) -H

<u>Példa:</u> két 8-bites szám Booth alg. szorzására

A '74 D tároló (késleltetés!) B0_H ill. a "B" szorzóregiszter kimenetéről B1 H jelek a szorzó shiftelődésének megfelelően generálódnak (egymást követő pozíciókat vizsgálunk). Ezek állítják elő megfelelő PROD_CLK-H kombinációs hálózat P (2 NAND kapu, és 1 Inverter) segítségével az S0-S3 kiválasztó jeleket

az ALU-nál.

De.

Közvetlen "szorzási" módszerek

- Először a rész-szorzatokat (Partial Products: PPi) állítják elő, majd pedig azokat összeadják:
 - □ soronként vagy,
 - oszloponként.
- A rész-szorzatok eltolása egységnyi kapu késleltetéssel megvalósítható.
- Fajtái (rész-szorzat képzés):
 - □ Lineáris modell,
 - □ Fa modell,
 - □ Full Adder felhasználásával,
 - □ Sorcsökkentős megvalósítás (row reduction),
 - CSA: Carry Save Adder.

a.) Lineáris modell

A PPi-k a parciális szorzatképzés után azonnal összeadhatók soronként, így gyorsabban megkapjuk az eredményt. N bites számok esetén (N-1) db összeadóra van szükségünk. Lassabb, mint a következő fa modell, mivel több összeadó szintű a késleltetés.

Időszükséglet: (T_{Sum} = N×T_{FA})

$$T_{\text{(DIRECT-LINE)}} = (N-1)^*T_{\text{(SUM)}}$$

A: Szorzandó

01101001

b.) Fa modell

■ A PPi-k parciális szorzatok azonnal összeadhatók soronként. Gyorsabb a lineáris modellnél, mivel ebben az esetben (N=8 bit esetén) csak 3-szintű a hierarchia, így kevesebb a késleltetés. N bites számok esetén (N-1) db összeadóra van szükségünk.

Időszükséglet: $T_{DIRECT-TREE} = \lceil \log_2(N) \rceil * T_{SUM}$

A:	Szorzan	ldó 01101001
B:	Szorzó	01011010
▼ PP()	0000000
◀ PP1		01101001
PP2	2	0000000
PP3	3	01101001
PP4	1	01101001
PP5	5	0000000
PP6	5 0	1101001
PP 7	7 00	000000
P:	001	0010011101010

56

c.) Full Adder-es megvalósítás

FA

Az ábrán két 4-bites szám szorzását valósítjuk meg. Az oszlopokat, mint parciális szorzatokat adjuk össze FA-k segítségével. Jel: R x,y, ahol x a sor száma, y a sor eleme (oszlop).

(A3 A2 A1 A0) P=AxBB0) B2 B1 R 0,3 R 0,2 R 0,1 R 0,0 PP0 R 1,3 R 1,2 R 1,1 R 1,0 PP1 R 2,3 R 2,2 R 2,1 R 2,0 PP2 PP3 R 3,3 R 3,2 R 3,1 R 3,0 R 3,3 P<u>1</u> P6 P3 P2

d.) CSA: Carry Save Adder

- •CSA: olyan Full Adder, amely az előző szint átvitelét (Cout) eltárolja, és a következő szint Cin-jének továbbítja. Ezzel a módszerrel a szorzás sebessége tovább növelhető. A késleltetés *mindig 2G / CSA*.
- •Az utolsó sorban **FA**-kat használunk, míg itt az első két sorban CSA-k találhatók. A CSA csökkenti az összeadandó sorok számát (3-2 sorcsökkentő egységnek felel meg).

58

e.) Sorcsökkentős megvalósítás (row reduction)

- Példa: Két N=56 bites számot szeretnénk összeszorozni ezzel a megoldással (eredmény P= 2*N=112 bites lesz).
- Sorcsökkentő: Egy "k" kimenetű sorcsökkentő egység 0 2^k-1 értéket tud reprezentálni, ezért 2^k-1 bemenetet tud kezelni. Így definiálhatók 31-5, 15-4, 7-3, 3-2 sorcsökkentő egységek. Nagy előnyük, hogy a parciális részletszorzatok (PPi) összeadását párhuzamosan végzik. Így egy N bites bemenetet végül 2 bitesre tudunk redukálni, amely után egy egyszerű Pl. teljes összeadó (FA) vagy LACA összeadó használható.
- Most 56x56 bites szorzást végzünk: egy megkötésünk, hogy a legnagyobb alkalmazható sorcsökkentő egység 15-4. Az utolsó előtti 3-2 sorcsökkentő egység a carry save adder (CSA), amelyet végül egy LACA (tekintsük egy b=8 bites CP-t propagáló és CG-t generáló LACG egységnek), amelyik a 2*56=112 bites eredményt számolja ki. Így LACA számítási szükséglete a következő:

$$T_{LACA} = 2 + 4 \times (\lceil \log_8(112) \rceil - 1) = 2 + 4 \times (3 - 1) = 10G$$

e.) Sorcsökkentős megvalósítás (row reduction) /folytatás/

Osztó áramkörök

Osztó áramkörök:

- I.) Hagyományos "lassú" vagy közvetlen iteratív osztási algoritmus
 - □ Euklideszi osztás
- II.) "Gyors" iteratív osztási algoritmusok (egyéb numerikus módszerek)

I.) Hagyományos közvetlen osztási algoritmus:

Ez az osztási folyamat igen lassú eljárás. Lépései:

- 1. az *osztót* a Ds regiszterbe rakjuk, az *osztandót* (Dd) pedig a Q regiszterbe.
- 2. töröljük az R regisztert
- iterációs lépés: kivonjuk az R-ből a Ds osztót. Ha **R-Ds>0** akkor folytatódik, tehát ezt a megváltozott értéket visszatesszük az R-be, és egy '1'-est teszünk a Q regiszterbe. Ha **R-Ds<0** akkor R regiszter tartalma nem változik, és egy '0'-át teszünk a Q regiszterbe (vagy hogyha nincs több osztandó bit, akkor vége az osztásnak).
- 4. Minden iterációs lépésben egy-egy új bit jön létre, amelyet a Q regiszterbe shiftelünk, ahogyan az R regiszterbe az osztandót
- 5. Az osztandó legnagyobb helyiértékű (MSB) bitjével kezdjük az összehasonlítást (míg a legkisebbtől a legnagyobb helyiértékek felé, balra haladva shift-elünk a visszaszorzásnál)
- 6. A hányados generálódik elsőként az MSB felől, és a Q-ba shift-elődik 1 bittel balra
- 7. A folyamat végén a maradék Az R-ben, a hányados pedig a Q-ban lesz

$$D_d = Q \times D_s + R$$

Példa: Hagyományos osztási algoritmus

Dd=Q*Ds + R

Egy kikötésünk van: R<Ds esetén leáll az osztás!

Decimális számok esetén:

101

11

5|8:5=1|10.8

Bináris számok esetén hasonlóan

Q hányados (Ds hányszor van meg Dd-ben)

	111010	Dd osztandó
101/		Ds osztó
	111 010	111-ben megvan "101" ezért 1? Q
	101	Visszaszorzás 1*"101"-el
	10 📗	Ez a kivonás eredménye 111-101=10
	100 00	100-ban nincs meg az '101', ezért 0? Q
	000	Visszaszorzás 0*'101'-el
	100	Ez a kivonás eredménye 100-000=100
	1001 0	1001-ban megvan '101', ezért 🛛? Q
	101	Visszaszorzás 1*'101'-el
from	100	Ez a kivonás eredménye: 1001-101=100
itrol	1000	1000-ban megvan az '101', ezért 1 ? Q

Visszaszorzás 1*'101-el

Ez a maradék R!

Kivonás eredménye: 1000-101=11

Hagyományos osztó áramkör

Folyamatábra: osztási algoritmus

II.) Iteratív osztási algoritmus

- a.) "Gyors" osztás Newton- Raphson módszerrel
- b.) Közvetlen "gyors" osztó

a.) Gyors osztás Newton- Raphson módszerrel

Az előzőnél gyorsabb osztási művelet reciprokképzéssel valósul meg. Szorzó segítségével végezzük el az osztást. A Newton-Raphson iteráció alapformulája a következő:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Van egy megfelelő f függvényünk és egy x0 kezdeti értékünk. Iterációs lépésekkel megkapjuk az osztás eredményét az f(x)=0 egyenlet megoldásaként. Az f-et úgy kell (jól) megválasztanunk, hogy a reciprok gyökkel rendelkezzen. Legyen

$$f(x) = \frac{1}{x} - w$$

Az fenti egyenlet gyöke, f(x)=0 esetén az x=1/w. Ha f(x)=1/x-w, akkor

$$f'(x) = -\frac{1}{x^2}$$

Ekkor visszahelyettesítve az eredeti Newton-Raphson iterációs képletbe a következőt kapjuk:

$$x_{i+1} = x_i - \frac{\frac{1}{x_i} - w}{-\frac{1}{x_i^2}} = x_i + (x_i - wx_i^2) = 2x_i - wx_i^2 = x_i(2 - wx_i)$$

Tehát az A/B műveletet A*(1/B) alakra írtuk át, és az 1/B reciprokképzést egy szorzóval és egy kivonóval valósíthatjuk meg. A függvény Taylor sorának kiterjesztésével (négyzetes konvergencia) belátható, hogy minden egyes iterációs lépésben a helyes bitek száma megduplázódik. Tehát megfelelő iterációs lépés kiválasztásával a kívánt pontosság elérhető!

Példa: Newton Raphson Szám négyzetgyökének közelítése

• $\sqrt{612} = ?$ 612 négyzetgyökét keressük, azonos a következővel:

$$x^2 = 612$$

A következő függvényt átalakítással kapjuk, amely Newton Raphson módszerben használható (gyök keresés, f(x) = 0):

$$f(x) = x^2 - 612$$

Deriváltja:

 $x_5 = \vdots$

$$f'(x) = 2x$$

= 24.7386338

Kezdeti érték x₀ = 10-nek választásával kapjuk:

Várt érték: 24.73863375370...

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 10 - \frac{10^2 - 612}{2 \cdot 10} = 35.6$$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 35.6 - \frac{35.6^2 - 612}{2 \cdot 35.6} = \underline{2}6.3955056$
 $x_3 = \vdots = \underline{24.7906355}$
 $x_4 = \vdots = \underline{24.7386}883$

Aláhúzások, már a korrekt számjegyeket jelölik, az egyes iterációkban

69

b.) Közvetlen gyors osztó

Az iteratív osztási művelet másik módszere a következő: Q=D_D/D_S kiszámolható a következő egyenlettel, ha a successive (egymást követő) f_k –k úgy vannak megválasztva, hogy a nevező az 1-hez konvergáljon.

$$Q = \frac{D_D \times f_0 \times f_1 \times f_2...}{D_S \times f_0 \times f_1 \times f_2...}$$

Közvetlen gyors osztó működése

- A számláló iterációja ennél a módszernél D_{Dn+1} = D_{Dn}×f_n. . A nevező iterációját a megismert módon használjuk a következő f-ek meghatározására.
- Tegyük fel, hogy szorzóink, 2'komplemens képző egységeink vannak, valamint a kezdő értéket tartalmazó ROM, vagy regiszter.
- Ezzel az iteratív osztási módszerrel az eredményt közvetlenül megkapjuk. Feltételezzük, hogy a számok itt normalizált lebegőpontos számok, az osztót és osztandót egy törtkifejezésként írjuk fel (mantissza egy normalizált tört).
- Keressük a Q hányados (quotient) értékét. Hogy megkapjuk, mind az osztó, mind pedig az osztandó értékét ugyanazokkal az f k értékekkel kell megszorozni, amelyet úgy határozunk meg, hogy a nevező egységnyi legyen az iterációk elvégzése után. Így később a számláló értékéből megkapjuk a Q pontos értékét. Tudjuk, hogy D_S normalizált tört, ezért így ábrázoljuk: D_S = 1-x, ahol x-et D_S határozza meg, és mivel D_S kisebb 1-nél, így az x is kisebb 1-nél.

Közvetlen gyors osztó (számítás)

- Az osztás művelete f_o kiszámolásával kezdődik. Válasszuk $f_o = 1+x = 1+(1-D_S) = 2-D_S$. Így $D_S \times f_o = (1-x)(1+x) = 1-x^2$. Így sokkal közelebb kerültünk 1-hez, mintha csak a D_S -et használtuk volna. Minden iterációs lépésben a számláló és a nevező is f_K tényezőkkel szorzódik, és közelebb kerülünk a Q pontos értékéhez. Legyen $f_1 = 1+x^2$. Így $D_S \times f_o \times f_1 = 1-x^4$ és ez tovább ismételhető iteratív módon
- Tehát azt kapjuk, hogy $D_{Dn+1} = D_{Dn} \times f_{n}$.
- Egy kérdés vetődik fel: hogyan válasszuk meg f következő értékét. f1 = 1+x² = 1+(1-D_S × f_o) = 2- D_S × f_o. Tehát minden egyes új f k-t úgy kapunk meg, hogy vesszük az f k-1 és a Ds (nevező) szorzatának 2's komplemensét. Az iterációs lépéseket a kívánt pontosság eléréséig kell ismételni, amelyet f kértéke határoz meg. Amikor f közelítőleg 1, akkor a Q eredmény elegendően közel lesz a kívánt eredményhez (amely az alkalmazástól és a bitek számától függ). Általában előre definiált fix számú iterációs lépést végzünk el. Ezért kell ROM-ot használni, amelyben az fo megfelelő kezdeti értékét tároljuk.
- (Példák: könyvben)

r,e

Közvetlen gyors osztó áramköri felépítése

Példa 1.

Legyen az osztandó $D_D=0.4$, osztó $D_S=0.7$, és 6 iterációs lépésig számoljunk (7 tizedesjegy pontosságú számokkal). Ekkor fo=2– $D_S=2-0.7=1,3000000$. Kérdés $Q=D_D/D_S$? $D_{Dn+1}=D_{Dn}\times fn$./

- **2.** $D_{D2}=0.5668000$ $D_{S2}=0.9918999$ f2=1.0081000
- **3.** $D_{D3} = 0.5713911$ $D_{S3} = 0.9999344$ f3 = 1.0000656
- **4.** D_{D4} **=0,5714286** D_{S4} **=**0,9999999 f4**=**1,0000000
- 5. D_{D5}=0,5714286 D_{S5}=1,0000000 f5=1,0000000
- 6. $D_{D6} = 0.5714286 D_{S6} = 1.00000000$

Látható, hogy már a 4. Iterációs lépésben megkaptuk a helyes eredményt (D_{D4} =0,5714286), mivel Ds elég közel volt az 1-hez, és x=0.3 volt. (x=1-Ds).

Várt érték: 0.57142857142857142857

Példa 2.

Legyen az osztandó $D_D=0.1$, osztó $D_S=0.15$, és 6 iterációs lépésig számoljunk (7 tizedesjegy pontosságú számokkal). Ekkor fo=2– $D_S=2-0.15\approx1,8499999$. Kérdés $Q=D_D/D_S$? $D_{Dn+1}=D_{Dn}\times fn$./

- 0. $D_{DO} = 0,1000000 D_{SO} = 0,1500000 fo = 1,8500000$
- 1. $D_{D1}=0,1850000$ $D_{S1}=0,2775000$ f1=1,7224999
- **2.** $D_{D2}=0.3186625$ $D_{S2}=0.4779938$ f2=1.5220062
- **3.** $D_{D3} = 0.4850063$ $D_{S3} = 0.7275094$ f3 = 1.2724905
- 4. $D_{D4}=0.6171659$ $D_{S4}=0.9257489$ f4=1.0742511
- 5. D_{D5}=0,6629912 D_{S5}=0,9944868 f5=1,0055132
- 6. D_{D6}=0,6666464 D_{S6}=0,9999696

Látható, hogy itt nem kapjuk meg a kívánt értéket (D_{D6}=0,6666464) 6 iterációs lépés alatt. Ezért hogy elérjük a kívánt pontosságot véges számú lépés alatt, ROM-ot kell használni (ahol f_o kezdeti értékét tároljuk).

Várt érték:

75

Extra bitek kezelése

- Truncation (levágás)
- Rounding (normál kerekítés)
- Zero-bias rounding (zéróhoz kerekítés R*)
- Jamming to fix value (von Neumann)
- ROM-Rounding

Extra bit: probléma

■ Pl. Két *lebegőpontos* szám pl. "összeadása" (mantissza 6-bit), exponens egyeztetés után:

No.

a.) Truncation (levágás)

- Levágás: egyszerűen elhagyjuk az extra biteket.
 - □ Hibája a pontosság: a kapott/korrigált végleges M_{Final} mantissza eltér a valós mantissza M_{Real} értékétől:

ERR
$$_{TRUNC} = M_R - M_F$$

- Bias: akár pozitív, akár negatív eltérések (hibák) összege
 - □ n-bites bias (offset) hibája: tárolt érték mindig kisebb lesz, mint a valós/aktuális érték (mindig pozitív bias-t kapunk, M_R > M_F)
 - Kevesebb extra bittel (pl. 2 helyett 1-el) kisebb lesz a bias, így a hiba is csökken.

Truncation: példa

■ ∑ ERR → bias: mindig pozitív

ERR
$$_{TRUNC} = M_R - M_F$$

cases	MR	MF	ERR _{TRUNC}
а	xx0.00	xx0.	0.00
b	xx0.01	xx0.	+0.01
С	xx0.10	xx0.	+0.10
d	xx0.11	xx0.	+0.11
е	xx1.00	xx1.	0.00
f	xx1.01	xx1.	+0.01
g	xx1.10	xx1.	+0.10
h	xx1.11	xx1.	+0.11

Bias:
$$\sum ERR_{TRUNC} = +11.0_2 = +3_{10}$$

b.) Rounding (kerekítés)

Bias csökkentése a cél, úgy hogy a levágás (truncate) előtt az LSB pozíció értékének felét (0.1₂) hozzáadjuk az összeghez:

Nagyobb mantissza

+ 110010

+ 11011010

2 bitpoz. igazítva

11011010 8 bites eredmény

+00000010 (=rounding!)

Végeredmény (majd truncate!)

Extra bits

PI: Rounding (kerekítés)

ERR → bias: hiba itt is ugyan megmarad, de már pozitív és negatív is lehet (bias-a kisebb, mint a levágás esetén)

case	MR	MR+1/2 LSB	MF	ERR _{ROUND}		
а	xx0.00	xx0.10	xx0.	0.00		
b	xx0.01	xx0.11	<u>x</u> x0	±0.01		
С	xx0.10	xx1.00	xx1.	-0.10	_	
d	xx0.11	xx1.01	x <u>x</u> 1•	I <u>-</u> 0.01		
е	xx1.00	xx1.10	xx1.	0.00	/	Változás a
f	xx1.01	xx1.11	xx1	+0.01		truncate-hez
g	xx1.10	xy0.00	xy0.	-0.10		képest!
h	xx1.11	xy0.01	xy0.	I -0.01		Nopost:

Bias: $\sum ERR_{ROUND} = -1.0_2 = -1_{10}$

xy: g.)/h.) eseteknél "carry propagate" van, xx helyett ("xx incremented to xy")

c.) Round-to-Zero (R* rounding)

- Cél. A hiba minimalizálása, lehetőleg zérus bias elérése, kerekítéssel (round-tozero bias).
- ERR_{ZERO} –kat összeadva a teljes bias értéke nulla lesz.
- legkisebb a hibája (bias = 0), szemben a többi extra-bit kezelő technikával!

Ha az M_R "**levágandó**" tizedes jegyeinek legfelsőbb helyiértékű (MSB) bitje '1', a többi '0', akkor az M_R+1/2 legkisebb helyiértékű (LSB) bitjére egy '1'-est rakunk (majd levágunk), egyébként csak levágás.

0200	MR	MR+1/2 LSB	truncated M F	ERR _{ZERO}
case			IVIT	
а	xx0.00	xx0.10	xx0.	0.00
р	xx0.01	xx0.11	xx0.	+0.01
С	xx0.10	xx1	xx1.	-0.10
d	xx0.11	xx1.01	xx1.	-0.01
е	xx1.00	xx1.10	xx1.	0.00
f	xx1.01	xx1.11	xx1.	+0.01
g	xx1.10	xx1	xx1.	+0.10
h	xx1.11	xx1.11	xy0.	-0.01

Eltérés a Rounding-hoz képest!

Bias: ∑ ERR _{Bound to Zero} = 0!

Normál kerekítéshez képest a **c.)**/**g.)** eseteknél egy '1'-es lett **direkt beállítva** (force) az LSB helyén (xx1). De csak a **g.)** esetnél lesz más a hiba értéke (ERR_{ZERO}).

d.) Jamming (~fix értéken rögzítés)

- "Von Neumann rounding" néven is ismert.
- Pl. *Jam to '1':* LSB bitet fix-en '1'-re rögzítik, az extra bitek értékétől függetlenül!
- Cél: Csökkenteni az összhibát (jobb módszer, mint a truncation).
 - □ Ennek a módszernek ugyan nagyobb a hibája, mint a legtöbb extra bit kezelő módszernek, de idővel ugyanolyan kicsi lesz a bias-a (összhiba), mint a normál kerekítésnek (rounding).
- Nagyon gyors módszer viszont: mint pl. a truncation.
 - □ itt nincs időszükséglet, mint a kerekítési fázisban, LSB-t mindig fixen (pl. '1'-re) rögzítjük, ráadásul kicsi lesz bias értéke.

e.) ROM rounding

- Extra bitek vizsgálata: rounding, majd döntés alapján az LSB-biteket hozzáadják a számhoz
- Döntési folyamathoz ROM-ból való értékek kiolvasását használjuk (ROM LUT táblázat kiolvasás). Elve hasonló a hagyományos kerekítéshez, azonban gyorsabb nála:
 - Összeadás helyett ROM-ból kiolvasott értéteket használnak.
- Biztosítja, hogy az LSB-nél nagyobb bitpozíciókba nem kell "carry-t propagáltatni" (mint rounding-nál): ezáltal gyorsabb
- Bias jól kontrollálható (akár zérus is lehet végül).

Extra-bit kezelő módszerek hibáinak összehasonlítása:

86