

Esempi

$$\partial_{m} = 1$$

$$\partial_{n} = \begin{cases} +1 & m=2k \\ -1 & m=2k+1 \end{cases}$$

$$a = \frac{1}{n}$$
 $m \neq 0$

$$\Delta_1 = 2^m$$

.

Comportamento asintotico

Intorni

Definizione.

Dato un punto $\rho \in \mathbb{R}$ chiameremo intorno di ρ un qualunque intervallo aperto $(a,b) \subseteq \mathbb{R}$ tale che

$$a $(p-\epsilon, p+\epsilon)$ $\forall \epsilon > 0$

$$\frac{(p-\epsilon, p+\epsilon)}{p-\epsilon}$$$$

II limite

Definizione.

Data una successione $\{a_n\} \subseteq \mathbb{R}$ diremo che a_n ha limite l se

per ogni J_l intorno di l $\exists \overline{n} \in \mathbb{N}$ tale che

Esempi

$$J_{n} = \frac{?}{m} \xrightarrow{?} O$$

$$J_{n} = (-\epsilon_{1} \epsilon)$$

$$\xi > O$$

$$\lambda \longrightarrow O$$

Due teoremi importanti!

Teorema (Unicità del limite).

Il limite di una successione $\{a_n\}\subseteq \mathbb{R}$, se esiste, è

Esempi

Successioni monotone

Definizione.

Una successione $\{a_n\} \subseteq \mathbb{R}$ si dice

- i. (strettamente) crescente se $a_n < a_{n+1}$
- ii. non decrescente se $a_n \le a_{n+1}$
- iii. non crescente se $a_n \ge a_{n+1}$
- iv. (strettamente) decrescente se $a_n > a_{n+1}$

Teorema di regolarità delle successioni monotone. Ogni {a_n} ⊆ IR successione **monotona** possiede limite.

