```
import pandas as pd
shows=pd.read_csv('/content/tv_shows (1).csv')
type(shows)
shows.head()
```

	Unnamed: 0	Э	ID	Title	Year	Age	IMDb	Rotten Tomatoes	Netflix	Hulu	Prime Video	Disney+	Туре
0	C)	1	Breaking Bad	2008	5	1.1/10	100/100	1	0	0	0	1
1	1	1	2	Stranger Things	2016	5	1.5/10	96/100	1	0	0	0	1
2	2	2	3	Attack on Titan	2013	5	1.8/10	95/100	1	1	0	0	1
3	3	3	4	Better Call Saul	2015	5	1.8/10	94/100	1	0	0	0	1
4	4	4	5	Dark	2017	5	2.3/10	93/100	1	0	0	0	1

shows['IMDb']=shows['IMDb'].str.replace('/10',' ').astype(float)

```
x= shows.iloc[:,[1,5]].values
type(x)
y=shows.iloc[:,4].values
type(y)
print(y)
```

```
[ 5 5 5 ... 18 18 18]
```

```
import matplotlib.pyplot as plt
class1=shows[shows.Age == 18]
class2=shows[shows.Age == 5]
plt.title("Shows analysis")
plt.xlabel("ID")
plt.ylabel("Age")
plt.scatter(class1.ID, class1.Age, color= "red", label= "above 18", alpha=0.7)
plt.scatter(class2.ID, class2.Age, color= "blue", label= "above 5", alpha=0.7)
plt.legend()
plt.show()
```



```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(x,y, test_size=0.4, random_state=1)
from sklearn.naive_bayes import GaussianNB
classifier= GaussianNB()

classifier.fit(X_train, Y_train)
GaussianNB()
```

```
▼ GaussianNB
GaussianNB()
```

y_pred= classifier.predict(X_test)

from sklearn.metrics import confusion_matrix
ConfMat=confusion_matrix(Y_test, y_pred)
print(ConfMat)

[[219 0 0 0 0] [3 336 3 0 0] [0 0 5 0 0] [0 0 3 398 0] [0 0 0 7 309]]

from sklearn.metrics import classification_report
print(classification_report(Y_test, y_pred))

	precision	recall	f1-score	support
5 7 13 16 18	0.99 1.00 0.45 0.98 1.00	1.00 0.98 1.00 0.99 0.98	0.99 0.99 0.62 0.99 0.99	219 342 5 401 316
accuracy macro avg weighted avg	0.88 0.99	0.99 0.99	0.99 0.92 0.99	1283 1283 1283