## Session 8 - Batch Normalization and Regularization

- Due Mar 16 by 11:30am
- Points 0
- Available after Mar 16 at 11am

# SESSION 8 - BATCH NORMALIZATION & REGULARIZATION



## **Image Normalizing**

In image processing, **normalization** is a process that changes the range of pixel intensity values.

For example, if the intensity range of the image is 50 to 180 and the desired range is 0 to 255, the process entails subtracting 50 from each pixel intensity, making the range 0 to 130. Then each pixel is multiplied by 255/130, making the range 0 to 255.





Reference: Normalizing input (LeCun et al 1998 "Efficient Backprop") (http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf)

# Why redistribution of data?

Why the redistribution of data is important for us?



Fig. 10. Examples of thermal face images. Raw thermal image (left). Normalized thermal image (right).



REF (https://developers.google.com/machine-learning/data-prep/transform/normalization)

# Normalization is not Equalization

The normalization is quite simple, it looks for the maximum intensity pixel

(we will use a grayscale example here) and a minimum intensity and then will determine

a factor that scales the minimum intensity to black and the maximum intensity to white.

This is applied to every pixel in the image which produces the final result.

The equalize will attempt to produce a histogram with equal amounts of

pixels in each intensity level. This can produce unrealistic images since the intensities

can be radically distorted but can also produce images very similar to normalization which preserves relative levels in which the equalization process does not.

So if you are concerned about keeping an image realistic then use normalization,

but if you want a more even distribution of intensity levels then equalize can help with that. **SOURCE** 

(http://www.roborealm.com/forum/index.php?thread\_id=4350)







normalized image



equalized image



Let's look at normalization working on other kinds of data.





UnNormalized.png





How to normalize?



# Loss & Weights with/without normalization

Let's think about our un-normalized kernels and how the loss function would look like:

0



If we had normalized our kernels (indirect channels), this is how it would look like:



Let's look at the top view to appreciate the trouble here:



## **Un-normalized**



## **Normalized**





## **Batch Normalization**

### **Batch Normalization**

(http://jmlr.org/proceedings/papers/v37/ioffe15.pdf) (BN), introduced in 2015

and is now the de facto standard for all CNNs and RNNs.



# **Batch Normalization** solves a problem called the **Internal Covariate shift**.

To understand BN we need to understand what is CS.

Covariate means input features.

Covariate shift means that the distribution of the features is different in different parts of the training/test data.

# Internal Covariate shift refers to changes within the neural network,

between layers. A kernel always giving out higher activation makes next-layer

kernels always expect this higher activation and so on.

Just see how it <u>elevates</u> (<u>https://gradientscience.org/batchnorm/</u>) a bit of a problem for us to get the right learning rates!



Very Deep nets can be trained faster and generalize better when the distribution of activations is kept normalized during BackProp.

We regularly see Ultra-Deep ConvNets like Inception, Highway

Networks,

and ResNet.

0

And giant RNNs for speech recognition, <u>machine translation</u> (<a href="https://research.googleblog.com/2016/09/a-neural-network-for-machine.html">https://research.googleblog.com/2016/09/a-neural-network-for-machine.html</a>), etc.

#### **Explain BN to a 5-year-old!**

It reduces the dependency of the network's output on the scale of its inputs!

This reduces overfitting!

This allows us to train at higher learning rates!

## **BN Mathematics**

This is how we implement "batch" normalization:

**Input:** Values of x over a mini-batch:  $\mathcal{B} = \{x_{1...m}\}$ ; Parameters to be learned:  $\gamma$ ,  $\beta$ 

Output:  $\{y_i = BN_{\gamma,\beta}(x_i)\}$ 

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$$
 // mini-batch mean 
$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance 
$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize 
$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

# Some crucial points:

How many gammas and betas? And what do they depend on?

0

BIAS GET'S SUBTRACTED OUT IN BATCH NORMALIZATION

#### ReLU before BN or BN before ReLU?

# Why position doesn't matter ⇒ (https://www.youtube.com/watch? v=GUtlrDbHhJM&t=3182s)?

Batch Normalization calculates its normalization statistics over each minibatch

of data separately while training but during inference a moving average of training

statistics are used, simulating the expected value of the normalization statistics.

## Read this research paper:

http://proceedings.mlr.press/v37/ioffe15.pdf (http://proceedings.mlr.press/v37/ioffe15.pdf)

#### 0

# What are SOTAs using today?

# NLP> Layer Normalization Vision> BN

| Accuracy | Paper      | Date            | Normalization     |
|----------|------------|-----------------|-------------------|
| 90.2%    | Meta       | 1 March<br>2021 | Batch             |
|          | Pseudo     |                 | Normalization     |
|          | Labels     |                 | Decay/Momentum    |
| 89.2%    | NFNet-F4   | 11 Feb 2021     | Normalization     |
|          |            |                 | Free (but is not) |
| 88.64%   | ALIGN      | 11 Feb 2021     | Batch             |
|          |            |                 | Normalization     |
| 88.61%   | SAM        | 29 April        | Batch             |
|          |            | 2021            | Normalization     |
| 88.55%   | ViT-H/14   | 22 Oct 2020     | Group Norm        |
|          |            |                 | Layer Norm        |
| 78.25%   | ResNet-101 | 10 Dec          | Batch             |
|          |            | 2015            | Normalization     |

**Batch Normalization Decay or Momentum** 

$$\mu_{mov} = \alpha * \mu_{mov} + (1 - \alpha) * \mu_B$$
  
$$\sigma_{mov}^2 = \alpha * \sigma_{mov}^2 + (1 - \alpha) * \sigma_B^2$$

# Group, Instance, and Layers Normalization

normalization\_types.png

# Regularization



Regularization is a key component in preventing overfitting.

Also, some techniques of regularization can be used to reduce model parameters while maintaining accuracy, for example, to drive some of the parameters to zero.

This might be desirable for reducing the model size or driving down the cost of evaluation in a mobile environment where

processor power is constrained.

## Regularization effect of batch size



Figure 1: Impact of batch size on classification error

Most common techniques of regularization used nowadays in the industry:

## Dataset augmentation

An overfitting model (neural network or any other type of model) can perform better if the learning algorithm processes more training data.



## Early stopping

Early-stopping combats overfitting interrupting the training procedure

once the model's performance on a *validation* set get worse.





(What gets dropped? How does it help? What happens during inference?)

## Weight penalty L1 and L2

L1 and L2 are the most common types of regularization.

These update the general cost function by adding another term known as the regularization term.

# L1 & L2 Regularization

## L1 Regularization(Lasso Regression)

L1 regularization adds an L1 penalty equal to the absolute value of the *magnitude of coefficients*.

When our input features have weights closer to zero this leads to a sparse L1 norm.

In the Sparse solution, the majority of the input features have zero weights and

very few features have non-zero weights.



$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j| \right]$$

#### Features:

L1 penalizes the sum of the absolute value of weights.

L1 has a sparse solution

L1 generates a model that is simple and interpretable but cannot

## L2 Regularization(Ridge regularization)

L2 regularization is similar to L1 regularization.

But it adds a **squared magnitude of coefficient** as a penalty term to the loss function.

L2 will *not* yield sparse models and all coefficients are shrunk by the same factor

(none are eliminated like L1 regression)



#### Features:

L2 regularization penalizes the sum of square weights.

L2 has a non-sparse solution

L2 regularization is able to learn complex data patterns

## L2 has no feature selection

## L2 is not robust to outliers

# L1/L2 in Pytorch

L2

```
optimizer_sgd = torch.optim.SGD(params, lr=10e-
4, momentum=0, dampening=0, weight_decay=0, nesterov=False)
optimizer_adam = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-5)
```

```
0
```

# **Assignment**

## Your Assignment is:

loss = mse(pred, target)

loss.backward()
optimizer.step()

for p in net.parameters():
 l1 = l1 + p.abs().sum()
loss = loss + lambda\_l1 \* l1

- 1. Change the dataset to CIFAR10
- 2. Make this network:
  - 1. C1 C2 c3 P1 C4 C5 C6 c7 P2 C8 C9 C10 GAP c11
    - 1. cN is 1x1 Layer
  - 2. Keep the parameter count less than 50000
  - 3. Max Epochs is 20
- 3. You are making 3 versions of the above code (in each case achieve above 70% accuracy):
  - 1. Network with Group Normalization
  - 2. Network with Layer Normalization
  - 3. Network with Batch Normalization
- 4. Share these details
  - 1. Training accuracy for 3 models

- 2. Test accuracy for 3 models
- 2. Find 10 misclassified images for the BN, GN and LN model, and show them as a 5x2 image matrix in 3 separately annotated images.
- 3. write an explanatory README file that explains:
  - 1. what is your code all about,
  - 2. your findings for normalization techniques,
  - 3. add all your graphs
  - 4. your collection-of-misclassified-images
- 4. Upload your complete assignment on GitHub and share the link on LMS

# Studio ERA V2 S8 Studio