TODO(you should know).

TODO(motivation)

1 Sobolev spaces

Definice 1.1 (Multiindex)

 α je multi-index $\equiv \alpha = (\alpha_1, \dots, \alpha_d), \ \alpha_i \in \mathbb{N}$. Length of multi-index α is $|\alpha| := \alpha_1 + \dots + \alpha_d$. If $u \in C^k(\Omega)$ then $D^{\alpha} := \frac{\partial^{|\alpha|} u}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}, \ \alpha \leqslant k$.

Definice 1.2 (Weak derivative)

Let $u, v_{\alpha} \in L^{1}_{loc}(\Omega)$ and α be a multi-index. We say that v_{α} is the α -th weak derivative of u in Ω iff $\forall \varphi \in C_{0}^{\infty}(\Omega) : \int_{\Omega} u D^{\alpha} \varphi = (-1)^{|\alpha|} \int v_{\alpha} \varphi$.

Lemma 1.1

Weak derivative is unique. If the classical derivative exists then it is also the weak derivative.

 $D\mathring{u}kaz$

Let v_{α}^{1} and v_{α}^{2} be two weak derivatives. Then

$$\int_{\Omega} (v_{\alpha}^{1} - v_{\alpha}^{2})\varphi = 0 \qquad \forall \varphi \in C_{0}^{\infty}(\Omega)$$

 $\implies v_{\alpha}^1 = v_{\alpha}^2$ almost everywhere in Ω .

If classical $D^{\alpha}u$ exists, then

$$\int_{\Omega} \underbrace{D^{\alpha} u}_{v_{-}} \varphi \stackrel{\mathrm{BP}}{=} (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi.$$

Poznámka (Notation for this course)

 D^{α} always means the weak derivative.

Definice 1.3 (Sobolev space)

Let $\Omega \subseteq \mathbb{R}^d$ be open, $k \in \mathbb{N}$, $p \in [1, \infty]$. We define $W^{k,p}(\Omega) = \{u \in L^p(\Omega) | \forall \alpha, |\alpha| \leqslant k : D^{\alpha}u \in L^p(\Omega) \}$.

$$||u||_{W^{k,p}(\Omega)} = \left(\sum_{\alpha,|\alpha| \leqslant k} ||D^{\alpha}u||_{L^p(\Omega)}^p\right)^{\frac{1}{p}}$$

$$||u||_{W^{k,\infty}(\Omega)} = \sup_{\alpha, |\alpha| \le k} ||D^{\alpha}u||_{L^{\infty}(\Omega)}$$

Lemma 1.2 (Base properties of Sobolev spaces)

Let $u, v \in W^{k,p}(\Omega)$, $k \in \mathbb{N}$ and α is multi-index. Then

- $D^{\alpha}u \in W^{k-|\alpha|,p}(\Omega)$, if $|\alpha| \leq k$:
- $\lambda u + \mu v \in W^{k,p}(\Omega) \ \forall \lambda, \mu \in \mathbb{R} \ (D^{\alpha}(\lambda u + \mu v) = \lambda D^{\alpha} u + \mu D^{\alpha} v);$
- $\tilde{\Omega} \subset \Omega$ open, $u \in W^{k,p}(\tilde{\Omega})$:
- $\forall \eta \in C^{\infty}(\Omega) : \eta \cdot u \in W^{k,p}(\Omega).$

TODO?

Věta 1.3 (Properties of Sobolev spaces)

 $\Omega \subseteq \mathbb{R}^d$, $p \in [1, \infty]$, $k \in \mathbb{N}$:

- 1. $W^{k,p}(\Omega)$ is a Banach space;
- 2. if $p < \infty$, then $W^{k,p}(\Omega)$ is separable;
- 3. if $p \in (1, \infty)$, then $W^{k,p}(\Omega)$ is reflexive.

 $D\mathring{u}kaz$ (1.)

"Linear space" is from Minkowski inequality. "Completeness": u^n is Cauchy in $W^{k,p}(\Omega)$ $\implies \exists u \in W^{k,p}(\Omega) \implies u^n \to u \text{ in } L^p(\Omega), D^\alpha u^n \to v_\alpha \text{ in } L^p(\Omega) \ \forall |\alpha| \leq k. \text{ We must check}$ that $v_{\alpha} = D^{\alpha}u^{\alpha}$:

$$\int_{\Omega} v_{\alpha} \eta dx = \int_{\Omega} (v_{\alpha} - D^{\alpha} u^{n}) \eta + \int_{\Omega} D^{\alpha} u^{n} \eta =$$

$$\stackrel{IBP}{=} \int_{\Omega} (v_{\alpha} - D^{\alpha} u^{n}) \eta + (-1)^{|\alpha|} \int_{\Omega} u^{n} D^{\alpha} \eta = TODO?$$

$$\left| \int_{\Omega} (v_{\alpha} - D^{\alpha} u^n) \eta \right| \leq \|\eta\|_{\infty} \cdot \|v_{\alpha} - D^{\alpha} u^n\|_{L^p} \to 0.$$

 $D\mathring{u}kaz$ (2. + 3. for $W^{1,p}(\Omega)$)

$W^{1,p}(\Omega) = X \subseteq L^p(\Omega) \times \dots L^p(\Omega)$ (d + 1 times) and it is closed.

Approximation of Sobolev functions 1.1

Věta 1.4

 $\Omega \subseteq \mathbb{R}^d \text{ open, bounded. } k \in \mathbb{N}, \ p \in [1, \infty). \text{ Then}$

$$\overline{\mathcal{C}^{\infty}(\Omega)}^{\|\cdot\|_{k,p}} = W^{k,p}(\Omega).$$

Důkaz TODO!!!

Pozor

$$\overline{\mathcal{C}^{\infty}(\overline{\Omega})}^{\|\cdot\|_{k,p}} \neq W^{k,p}(\Omega).$$

Poznámka

If $\Omega \subset \mathbb{R}^d$ open, connected, then $u = \text{const} \Leftrightarrow \frac{\partial u}{\partial x_i} = 0 \ \forall_i = 1, \dots, d$.

 $W^{1,1}(I), I$ interval. Then $W^{1,1}(I) \hookrightarrow C(\overline{I})$.

 $D\mathring{u}kaz$,, \Longrightarrow ": easy. ,, \longleftarrow ": $u_{\varepsilon}=u*\eta_{\varepsilon},\ \Omega_{\varepsilon}:=\{x\in\Omega, \mathrm{dist}(x,\partial\Omega)>\varepsilon\}.$

$$x \in \Omega_{\varepsilon} : \frac{\partial u_{\varepsilon}}{\partial x_1}(x) = \left(\frac{\partial u}{\partial x_i}\right)_{\varepsilon}(x) = 0 \implies u_{\varepsilon} \equiv \text{const in } \Omega_{\varepsilon}.$$

Fix $\varepsilon_0 > 0$: $\varepsilon \leqslant \varepsilon_0$: $u_{\varepsilon} \to u$ in $W^{1,1}(\Omega_{\varepsilon_0}) \implies u \equiv \text{const in } \Omega_{\varepsilon_0}$. $u \in W^{1,1}(I)$.

$$\tilde{u}(x) := \int_0^x \frac{\partial u(y)}{\partial y} dy, \qquad \|\tilde{u}(x)\|_{\infty} \leqslant \int_0^1 |\nabla u| dx.$$

Aim $\frac{\partial \tilde{u}}{\partial x} = \frac{\partial u}{\partial x}$. $\eta \in C_0^{\infty}(0, 1)$:

$$\begin{split} \int_0^1 \tilde{u}(x) \frac{\partial \eta}{\partial x}(x) dx &= \int_0^1 \int_0^1 \frac{\partial u(y)}{\partial y} \frac{\partial \eta(x)}{\partial x} \chi_{\{0 \leqslant y \leqslant x\}} dx dy = \\ &= \int_0^1 \int_y^1 \frac{\partial u}{\partial y}(y) \frac{\partial \eta(x)}{\partial x_i} dx dy = \\ &= -\int_0^1 \frac{\partial u(y)}{\partial y} \eta(y) dy. \end{split}$$

 $\tilde{u} - u = \text{const} =: c.$

$$|u(x_1) - u(x_2)| = |\tilde{(}x_1) - c - \tilde{u}(x_2) + c| = |\tilde{u}(x_1) - \tilde{u}(x_2)| \le \int_{x_1}^{x_2} \left| \frac{\partial u}{\partial y} \right| dy \to 0.$$

 $||u||_{\infty} \leq K \cdot ||u||_{1}$ ":

$$|c| = \int_0^1 |c| = \int_0^1 |\tilde{u}(x) - u(x)| \le ||\tilde{u}||_{\infty} + ||u||_1 \le ||u||_{1,1}.$$

 $W^{d,1}(\Omega) \hookrightarrow C(\overline{\Omega})$ (for Lipschitz domain Ω).

1.2 Characterization of Sobolev functions

m V'eta~1.5

Let $\Omega \subset \mathbb{R}^d$, $p \in [1, \infty]$, $\Omega_d := \{x \in \Omega | \operatorname{dist}(x, \partial \Omega) > \delta\}$. 1. Then

$$u \in W^{1,p}(\Omega) : \|\Delta_i^n u\|_{L^p(\Omega_\delta)} \le \left\| \frac{\partial u}{\partial x_i} \right\|_{L^p(\Omega)},$$

where $\triangle_i^n u(x) = \frac{u(x+he_i)-u(x)}{h}$.

2. If $\forall h, i, \delta : \|\Delta_i^h u\|_{L^p(\Omega_\delta)} \leq c_i \ (p > 1)$. Then

$$\exists \frac{\partial u}{\partial x_i}, \qquad \left\| \frac{\partial u}{\partial x_i} \right\|_{L^p(\Omega)} \leqslant c_i.$$

Pozor

This works only for (p > 1).

Definice 1.4 (Domains of class $C^{k,\alpha}$)

Let $\Omega \subseteq \mathbb{R}^d$ open bounded set. We say that $\Omega \in C^{k,\mu}$ $(\partial \Omega \in C^{k,\mu})$ iff:

- there exist M coordinate systems $\mathbf{x} = (x_{r_1}, \dots, x_{r_d}) = (x'_r, x_{r_d})$ and functions $a_r : \Delta_r \to \mathbb{R}$ where $\Delta_r = \{x'_r \in \mathbb{R}^{d-1} | |x_{r_i}| \leq \alpha\}$ such that $a_r \in C^{k,\mu}(\Delta_r)$,
- denoting Tr the orthogonal transformation from (x'_r, x_{r_d}) to (x', x_d) , then $\forall x \in \partial \Omega$ $\exists r \in \{1, \ldots, M\}$ such that $x = Tr\left(x'_{r_1}, a(x_{r_d})\right)$,
- $\exists \beta > 0$, if we define

$$V_r^+ := \{ (x_r', x_{r_d}) \in \mathbb{R}^d | x_r' \in \Delta_r, a(x_r') < x_{r_d} < a(x_r') + \beta \}$$

$$V_r^- := \{ (x_r', x_{r_d}) \in \mathbb{R}^d | x_r' \in \Delta_r, a(x_r') - \beta < x_{r_d} < a(x_r') \}$$

$$\Lambda_r := \{ (x'_r, x_{r_d}) \in \mathbb{R}^d | x'_r \in \Delta_r, a(x'_r) = x_{r_d} \}$$

Then $Tr(V_r^+) \subset \Omega$, $Tr(V_r^-) \subset \mathbb{R}^d \setminus \overline{\Omega}$, $Tr(\Lambda_r) \subseteq \partial \Omega$ and $\bigcup_{r=1}^M Tr(\Lambda_r) = \partial \Omega$.

Věta 1.6 (Density)

Let $\Omega \in C^{0,1}$ and $p \neq \infty$, then $W^{k,p}(\Omega) = \overline{C^{\infty}(\overline{\Omega})}^{\|\cdot\|_{k,p}}$.

Věta 1.7 (Extension)

Let $\Omega \in C^{0,1}$, $k \in \mathbb{N}$, $p \in [1,\infty]$. Then \exists continuous bounded operator $E: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^d)$ such that

- 1. $||Eu||_{W^{k,p}}(\mathbb{R}^d) \leq c \cdot ||u||_{W^{k,p}(\Omega)}$ (Eu has compact support);
- 2. Eu = u almost everywhere in Ω .

Věta 1.8 (Trace)

Let $\Omega \in C^{0,1}$, $p \in [1, \infty]$. Then \exists continuous bounded operator $\operatorname{tr}: W^{1,p}(\Omega) \to L^p(\partial\Omega)$ such that:

1. $\|\operatorname{tr} u\|_{L^p(\partial\Omega)} \leqslant c \cdot \|u\|_{W^{1,p}(\Omega)};$

2. $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega}) \implies \operatorname{tr} u = u|_{\partial\Omega}$.

Definice 1.5

$$\overline{W_0^{k,p}(\Omega) = \overline{u \in C_0^{\infty}(\Omega)}^{\|\cdot\|_{k,p}}}.$$

Poznámka

$$W_0^{1,p}(\Omega) = \{ u \in W^{1,p}(\Omega) | \operatorname{tr} u = 0 \}.$$

TODO!!!

1.3 Existence theory via Lax-Milgram

Definice 1.6 (Eliptic forms)

Let $B: V \times V \to \mathbb{R}$ a linear form and V be a Hilbert space. We say that B is elliptic iff

- 1. B is V-bounded, it is $\exists c_2 \ \forall u, \varphi \in V : |B(u, \varphi)| \leq c_2 ||u||_V \cdot ||\varphi||_V$;
- 2. B is V-coercive, it is $\exists c_1 > 0 \ \forall u \in V : B(u, u) \geqslant c_1 ||u||_V^2$.

Věta 1.9 (Lax–Milgram)

Let B be linear and satisfying two previous properties. Then $\forall F \in V^* \exists ! u \in V : \forall \varphi \in V : B(u,\varphi) = \langle F,\varphi \rangle$.

Definice 1.7 (Lipschitz, uniformly monototne)

Let $B: V \to V^*$. We say that B is

- 1. Lipschitz iff $\forall u, v \in V : ||B(u) B(v)||_{V^*} \leq \overline{c_2}||u v||_V$;
- 2. uniformly monotone iff $\forall u, v \in V : \langle B(u) B(v), u v \rangle \geqslant \overline{c_1} \|u v\|_V^2$.

Věta 1.10 (Non-linear Lax–Milgram)

Let V be a Hilbert space, $B: V \to V^*$ be Lipschitz and uniformly monotone. Then $\forall F \in V^* \exists ! u \in V : \forall \varphi \in V : \langle B(u), \varphi \rangle = \langle F, \varphi \rangle$. (B(u) = F.)

 $D\mathring{u}kaz$ (Lax–Milgram by using non-linear version)

Define $B: V \to V^*: \langle B(u), \varphi \rangle =: B(u, \varphi)$. We show that B is Lipschitz and uniformly monotone:

$$\|B(u) - B(v)\|_{V^*} = \sup_{\varphi \in V, \|\varphi\| \leqslant 1} \langle B(u) - B(v), \varphi \rangle = \sup_{\varphi} (B(u, \varphi) - B(v, \varphi)) \stackrel{\text{linear}}{=} \sup_{\varphi} B(u - v, \varphi) \stackrel{\text{bounded}}{\leqslant} \sup_{\varphi} c_2 |$$

$$\langle B(u) - B(v), u - v \rangle = B(u, u - v) - B(v, u - v) = B(u - v, u - v) \ge c_1 ||u - v||_V^2.$$

 $D\mathring{u}kaz$ (Non-linear Lax-Milgram) "Uniqueness": $u_1 \neq u_2$:

$$\forall \varphi : \langle B(u_1), \varphi \rangle = \langle B(u_2), \varphi \rangle = \langle F \rangle \implies \forall \varphi \in V : \langle B(u_1) - B(u_2), \varphi \rangle = 0.$$

$$\varphi = u_1 - u_2 \implies 0 = \langle B(u_1) - B(u_2), u_1 - u_2 \rangle \geqslant \overline{c_1} \|u_1 - u_2\|_V^2 \implies u_1 = u_2$$

"Existence": $\forall \langle B(u), \varphi \rangle = \langle F, \varphi \rangle \Leftrightarrow \exists \varepsilon > 0 : (u, \varphi)_V = (u, \varphi)_V - \varepsilon (\langle B(u), \varphi \rangle - \langle F, \varphi \rangle)$. Desire $M: V \to V, v \mapsto u$:

$$(u, v)_V = (v, \varphi)_V - \varepsilon \left(\langle B(v), \varphi \rangle - \langle F, \varphi \rangle \right).$$

If M is well-defined and if it has a fixed point then we find solution.

M well defined::

$$\forall v \in V \ \exists \tilde{F} \in V^* \left\langle \tilde{F}, \varphi \right\rangle_V = (v, \varphi)_V - \varepsilon \left(\left\langle B(v), \varphi \right\rangle - \left\langle F, \varphi \right\rangle \right).$$

$$\mathrm{Riesz} \implies \exists ! u \in V(u, \varphi) = \Big\langle \tilde{F}, \varphi \Big\rangle.$$

",M contraction": We want bound $||M(u) - M(v)||_V^2$.

$$M(u) = \overline{u}, \qquad (\overline{u}, \varphi) = (u, \varphi) - \varepsilon \left(\langle B(u), \varphi \rangle - \langle F, \varphi \rangle \right).$$

$$M(v) = \overline{v}, \qquad (\overline{v}, \varphi) = (v, \varphi) - \varepsilon \left(\langle B(v), \varphi \rangle - \langle F, \varphi \rangle \right).$$

$$(\overline{u} - \overline{v}, \varphi) = (u - v, \varphi) - \varepsilon \langle B(u) - B(v), \varphi \rangle.$$

Riesz: $\exists ! w_1 : \langle B(u), \varphi \rangle = (w_1, \varphi)$ and $\exists ! w_2 : \langle B(v), \varphi \rangle = (w_2, \varphi)$.

$$(*)\|\overline{u} - \overline{v}\|_{V}^{2} = \|u - v - \varepsilon(w_{1} - w_{2})\|_{V}^{2} = \|u - v\|_{V}^{2} + \varepsilon^{2}\|w_{1} - w_{2}\|_{V}^{2} - 2\varepsilon(w_{1} - w_{2}, u - v).$$

$$(w_1 - w_2, w_1 - w_2) = \|w_1 - w_2\|_V^2 = \langle B(u) - B(v), w_1 - w_2 \rangle \leqslant \|B(u) - B(v)\|_{V^*} \cdot \|w_1 - w_2\|_V \implies \|w_1 - w_2\|_V : \|w_1 - w_2\|_V \iff \|w_1 - w_2\|_V : \|w_1 - w_2\|_V$$

$$(w_1 - w_2, u - v) = \langle B(u) - B(v), u - v \rangle$$
Uniformly monotone $c_1 ||u - v||_V^2$

By (*):

$$||M(u) - M(v)||_V^2 \le ||u - v||_V^2 + \varepsilon^2 \overline{c}_2^2 ||u - v||_V^2 - 2\varepsilon \overline{c}_1 ||u - v||_V^2 =$$

$$= (1 + \varepsilon^2 \overline{c}_2 - 2\varepsilon \overline{c}_1) ||u - v||_V^2.$$

 $\implies M$ is contraction and has a fixed point (for ε such that this constant is less than 1, so $\varepsilon(\varepsilon c_2^2 - 2c_1) < 0$, so $0 < \varepsilon < \frac{2c_1}{c_2^2}$).

${f V}$ éta 1.11

Let $B_{L,\sigma}$ be bilinear, V-bounded and V-elliptic. Then $\exists ! u$ weak solution:

$$u_0 \in W^{1,2}, \qquad u - 0 \in V, \qquad B_{L,\sigma}(u,\varphi) = \langle f, \varphi \rangle + \int_{\Gamma_2 \cup \Gamma_3} g\varphi.$$

 $D\mathring{u}kaz$

"Uniqueness": $u_1, u_2 \implies u_1 - u_0 \in V, u_2 - u_0 \in V \text{ TODO!!!}$

"Existence": $w \in V \ (u - u_0 = w)$:

$$B_{L,\sigma}(w,\varphi) = \langle f, \varphi \rangle + \int_{\Gamma_2 \cup \Gamma_3} g\varphi - B_{L,\sigma}(u_0,\varphi) := \langle \overline{F}, \varphi \rangle.$$

Find $w \in V$.

$$\langle \overline{F}, \varphi \rangle := \langle f, \varphi \rangle + \int_{\Gamma_2 \cup \Gamma_3} g\varphi + \int_{\Omega} -A\nabla u \cdot \nabla \varphi - bu_0 \varphi - \mathbf{c} \cdot \nabla u_0 \varphi + \mathbf{d} \cdot \nabla \varphi u_0 - \int_{\Gamma_2} \sigma u_0 \varphi.$$

Is \overline{F} in V^* ? $(\varphi \in V \subseteq W^{1,2}(\Omega))$

$$|\langle \overline{F}, \varphi \rangle| \leq ||\varphi||_{V} c \left(||f||_{V^*} + ||g||_{L^2(\partial\Omega)} + ||A||_{\infty} \cdot ||u_0||_{1,2} + ||b||_{\infty} ||u_0||_{2} + ||c||_{\infty} ||u_0||_{1,2} + \ldots \right).$$

TODO!!!

1.4 Existence theory via Fredholm alternative

Lemma 1.12 (Fredholm alternative)

Let H be a Hilbert space and $K: H \to H$ be linear compact.

F1 $\operatorname{Ker}(I-K)$ has finite dimension $(u \in \operatorname{Ker}(I-K) \Leftrightarrow (I-K)(u) = 0)$;

 $F2 \ \operatorname{Rng}(I-K) \ is \ closed \ (u \in \operatorname{Rng}(I-K) \Leftrightarrow \exists w \in H(I-K)w = u);$

F3 $\operatorname{Rng}(I - K) = (\operatorname{Ker}(I - K^*))^{\perp} (u \in \operatorname{Rng}(I - K), w \in \operatorname{Ker}(I - K^*) \Leftrightarrow (u, w) = 0);$

 $F4! \operatorname{Ker}(I - K) = \{\mathbf{o}\} \Leftrightarrow \operatorname{Rng}(I - K) = H;$

 $F5 \dim(\operatorname{Ker}(I-K)) = \dim(\operatorname{Ker}(I-K^*)) < \infty;$

F6 spectrum of K is at most countable and if it is infinite then zero is the only attracting point.

Věta 1.13 (Fredholm alternative for PDR)

Let $\Omega \in C^{0,1}$, $u_0 = 0$ and $\Gamma_1 = \partial \Omega$ and L be an elliptic operator.

- 1. Either $\forall f \in L^2(\Omega) \ \exists ! u \in W_0^{1,2}(\Omega) : Lu = f \ in \ \Omega \ and \ u = 0 \ on \ \partial \Omega, \ or \ \exists u \neq 0 : Lu = 0 \ in \ \Omega \ and \ u = 0 \ on \ \partial \Omega.$
- 2. $N_L := \{u \in V | Lu = \mathbf{o}\}: B_L(u, \varphi) = 0 \ \forall \varphi \in W_0^{1,2}(\Omega), \ N_{L^*} := \{\varphi \in V | L^*\varphi = \mathbf{o}\}. \ Then N_L \ and N_{L^*} \ are \ closed \ subspaces \ of \ W_0^{1,2}(\Omega), \ \dim N_L = \dim N_{L^*} < \infty.$
- 3. For $f \in L^2(\Omega)$: $(\exists u \in W_0^{1,2} : Lu = f) \Leftrightarrow (\forall \varphi \in N_{L^*} : \int_{\Omega} f\varphi = 0)$.

Where

$$Lu = -\operatorname{div}(A\nabla u) + \mathbf{c} \cdot \nabla u + \operatorname{div}(\mathbf{d}u) + bu,$$

$$L^*\varphi = -\operatorname{div}(A^T\nabla\varphi) - \mathbf{d} \cdot \nabla\varphi - \operatorname{div}(\mathbf{c}\varphi) + b\varphi.$$

$$Lu = f \Leftrightarrow \forall \varphi : B_L(u, \varphi) = \int_{\Omega} f\varphi, \qquad L^*\varphi = g \Leftrightarrow \forall u : B_L(\varphi, u) = \int_{\Omega} gu.$$

 $D\mathring{u}kaz$

From Lax–Milgram $\exists p > 0$:

$$\forall f \in L^2 \ \exists ! u \in W_0^{1,2}(\Omega) L_p u := Lu + pu = f.$$

$$B_{L,p}(u,\varphi) = B_L(u,\varphi) + p \cdot \int_{\Omega} u\varphi.$$