

Image Source: deeplearning.ai

Computer Vision Problems

Classical Computer Vision Pipeline

CV experts

- 1. Select / develop features: SURF, HoG, SIFT, RIFT, ...
- Add on top of this Machine Learning for multi-class recognition and train classifier

Classical CV feature definition is domain-specific and time-consuming

Neural Network

Warren McCulloch

Walter Pitts

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY, Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133 (1943).

Neural Network

Here x1 and x2 are normalized attribute value of data.

y is the output of the neuron, i.e the class label.

x1 and x2 values multiplied by weight values w1 and w2 are input to the neuron x.

Value of x1 is multiplied by a weight w1 and values of x2 is multiplied by a weight w2.

Given that

- \circ w1 = 0.5 and w2 = 0.5
- Say value of x1 is 0.3 and value of x2 is 0.8,
- So, weighted sum is:
- \circ sum= w1 x x1 + w2 x x2 = 0.5 x 0.3 + 0.5 x 0.8 = 0.55

Fig1: an artificial neuron

Why We Need Multi Layer?

Edge Detection

Vertical edges

Horizontal edges

How do we detect these edges

Image Source: deeplearning.ai

Neural Network?

- □Suppose an image is of the size 68 X 68 X 3
 - Input feature dimension then becomes 12,288
- ☐ If Image size is of 720 X 720 X 3
 - Input feature dimension becomes 1,555,200
- ■Number of parameters will swell up to a HUGE number ă
- Result in more computational and memory requirements

Another Application

Digit Recognition

 $X_1,...,X_n \in \{0,1\}$ (Black vs. White pixels)

 $Y \in \{5,6\}$ (predict whether a digit is a 5 or a 6)

The Bayes Classifier

In class, we saw that a good strategy is to predict:

$$\arg\max_{Y} P(Y|X_1,\ldots,X_n)$$

• (for example: what is the probability that the image represents a 5 given its pixels?)

So ... how do we compute that?

The Bayes Classifier

Use Bayes Rule!

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$
Normalization Constant

Why did this help? Well, we think that we might be able to specify how features are "generated" by the class label

The Bayes Classifier

Let's expand this for our digit recognition task:

$$P(Y = 5|X_1, ..., X_n) = \frac{P(X_1, ..., X_n|Y = 5)P(Y = 5)}{P(X_1, ..., X_n|Y = 5)P(Y = 5) + P(X_1, ..., X_n|Y = 6)P(Y = 6)}$$

$$P(Y = 6|X_1, ..., X_n) = \frac{P(X_1, ..., X_n|Y = 6)P(Y = 6)}{P(X_1, ..., X_n|Y = 5)P(Y = 5) + P(X_1, ..., X_n|Y = 6)P(Y = 6)}$$

To classify, we'll simply compute these two probabilities and predict based on which one is greater

Model Parameters

For the Bayes classifier, we need to "learn" two functions, the likelihood and the prior

How many parameters are required to specify the prior for our digit recognition example?

Model Parameters

How many parameters are required to specify the likelihood?

(Supposing that each image is 30x30 pixels)

Drive into CNN

In a convolutional network (ConvNet), there are basically three types of layers:

- 1.Convolution layer
- 2.Pooling layer
- 3. Fully connected layer

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

These are the network parameters to be learned.

1	O	O	0	O	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	O	0	1	0
0	0	1	0	1	0

6 x 6 image

1	-1	-1	
-1	1	-1	Fi
-1	-1	1	

Filter 1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

Dot product 3 -1

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	0	0	0	1	0

3 -3

6 x 6 image

Filter 1

stride=1

6 x 6 image

3 -2 -2 -1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Convolution over Volume

Convolution v.s. Fully Connected

Fullyconnected

Suppose we have 10 filters applying on input (6 X 6 X 3), each of shape 3 X 3 X 3. What will be the number of parameters in that layer?

- Number of parameters for each filter = 3*3*3 =
 27
- There will be a bias term for each filter, so total parameters per filter = 28
- As there are 10 filters, the total parameters for that layer = 28*10 = 280

• Size of feature vector : (n+2p-f)/s +1

• n : dimension of matrix

• p : size of padding

• f : size of filter

• s : size of stride

The whole CNN

Max Pooling

1 -1 -1 -1 1 -1 -1 -1 1	Filter 1	-1 -1 -1	1 1 1	-1 -1 -1	Filter 2
3 -1 -3 0	-3	-1 -1		-1 -2	1
-3 -3 0 3 -2	1 -1	-1 (-2 -4	3

Why Pooling

Subsampling pixels will not change the object

We can subsample the pixels to make image fewer parameters to characterize the image

A CNN compresses a fully connected network in two ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

Max Pooling

The whole CNN

cat dog

Classic Networks

1.LeNet-5

2.AlexNet

3.VGG

LeNet-5

•Parameters: 60k

•Layers flow: Conv→ Pool → Conv→ Pool → FC→ FC→ Output

•Activation functions: Sigmoid/tanh and ReLU

AlexNet

•Parameters: 60 million

•Activation functions: ReLU

VGG-16

Parameters: 138 million

•Pool: MAX with stride 2

•CONV layer: stride 1

Image Source: deeplearning.ai

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

