CELL FABRICATION

LAYER	MATERIAL	FABRICATION PROCESS	THICKNESS OF THE LAYER	RPM / TIME
SUBSTRATE	ITO(10cm2)	-	30nm	
HTL	PEDOT	SPIN COATING		4000rpm for 25s
ACTIVE LAYER	P3HT-PCBM	SPIN COATING		2000 rpm for 60s
ETL	zno	SPIN COATING		
ELECTRODE	Ag nws	SPIN COATING		2000 rpm for 50 s to

FABRICATION STEPS

- To prepare the small-area TPV devices (Glass/ITO/PEDOT/PTB7-Th:IEICO-4F/ ZnO/Ag NWs), the following steps were used.
- 1. The ITO substrate was ultrasonically cleaned with surfactants, deionized water and isopropanol in sequence.

HTL LAYER -

 PEDOT (diluted to 50% by water for use) was spin-coated on the ITO at 4000 rpm for 25 s, and then annealed at 120 °C for 10 min

ACTIVE LAYER -

- PTB7-Th and IEICO-4F were dissolved in chlorobenzene with 4% CN additive, and spin-coated on the PEDOT layer at 2000 rpm for 60 s, annealing at 100 °C for 10 min.
- By changing the ratio of donor and acceptor and the total concentration of the active layer solution, to obtain the active lightabsorbing layer with different thicknesses.

FABRICATION STEPS

ETL LAYER:

• The ZnO nanoparticles was then spin-coated on the active layer to form the electron transport layer.

ELECTRODE:

. Next, Ag NWs were spin-coated on the ZnO layer at 2000 rpm for 50 s to form the top transparent electrode.

Fabrication model

Electrode - Agnws

ETL - Zno

P3HT-PCBM

HTL - PEDOT

ITO substrate/electrode

ALTERNATIVE MATERIALS ..

- ALTERNATIVE MATERIALS USED FOR EACH LAYER :
- ELECTRODEs (TCO) =1. ITO(most commonly used electrode)
 - 2. Agnws (silver nanowires (AgNWs) are introduced, as the primary material to replace indium tin oxide for fabricating cost-effective flexible organic solar cells (FOSCs), because of their remarkable solution-processing, flexibility, transparency, and conductivity, along with their enhanced properties in terms of light-scattering, plasmonic effects, and transmittance in the near infrared region
 - 3. FTO = [If the process involves high temperatures (>250 C), it is better choice to use FTO instead if ITO because ITO loses its conductivity at high temperatures

Alternate materials for electron transport layer: Tio2, Zno,
 but we choose Zno because ZnO features good transparency, low thermal expansion, high thermal resistance

Alternate materials for Hole transport layer :

Most commonly used as a hole transport layer is the material PEDOT:PSS, which offers desired properties such as transparency, simple processing and good ohmic contact between anode and photoactive ma- terial.

but P3HT, PTTA, also considerable as an alternative material.

Alternate materials for active layer: PCDTBT:PC₇₁BM (transparency level – 40%) currently using material: PTB7-Th and IEICO-4F (transparency level – 73%)

• Alternate materials for each layer :

LAYER	ALTERNATIVE MATERIAL
SUBSTRATE /ELECTRODE	FTO layerd glass = [If the process involves high temperatures (>250 C)
HTL(HOLE TRANSPORT LAYER)	P3HT, PTTA
ACTIVE LAYER	PCDTBT:PC ₇₁ BM (transparency level – 40%)
ETL (ELECTRON TRANSPORT LAYER)	Tio2
COUNTER ELECTRODE	ITO

The best alternative method for spin coating is:

~10 micron thick nanocrystalline TiO2 film was deposited on conducting PET plastics by various methods such as Spray coating, spin coating, and screen printing.

(Krishna C. Mandal, Anton Smirnov, D. Peramunage and R. David Rauh (2002). Low-Cost, Large-Area Nanocrystalline TiO2 -Polymer Solar Cells on Flexible Plastics. MRS Proceedings, 737, F8.45 doi:10.1557/PROC-737-F8.45.)

So if we want to deposit ~10 micron thick layer and above we can use spray coating and screen printing
as an alternative fabrication method for spin coating technique

• In this review, silver nanowires (AgNWs) are introduced, as the primary material **to replace indium tin oxide for fabricating cost-effective flexible organic solar cells** (FOSCs), because of their remarkable solution-processing, flexibility, transparency, and conductivity, along with their enhanced properties in terms of ...

BILL OF MATERIALS

- ITO SUBSTRATE RS 379
- ITO Glass Substrate Carbon Conductive tape Manufacturer from Nagpur (indiamart.com)

- HOLE TRANSPORT LAYER
- PEDOT PSS AL 4083 100ml Rs – 17600
- PEDOT:PSS | PH1000, Al4083,
 HTL Solar & HTL Solar 3, F HC
 Solar | Ossila

- PTB7-Th (ACTIVE MATERIAL)
- PTB7-Th 1469791-66-9 (sigmaaldrich.com)

- IEICO 4F (ACTIVE MATERIAL)
- https://www.ossila.com/enin/products/ieico-4f?variant=36037448695971

- FOR THE PREAPARATION OF ZNO (ETL.) LAYER:
- Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques | Nature Photonics

BILL OF MATERIALS (Tabular)

Material	QUANTITY	Cost	Requird in ml
ITO GLASS	1 piece	Rs/- 379	
HTL layer (pedot pss)	100ml	Rs/- 17600	
Active layers (PTB7-Th)	100mg		

ANALYSIS ON MIT (Massachusetts Institute of Technology) SOLAR CELL

sequentially deposited via thermal evaporation

TRANSPARENT SUBSTRATE	QUARTZ (thermal evaporation)
ELECTRODE	ITO(thermal evaporation)
ETL	MOo3(thermal evaporation)
ACTIVE LAYER	CIAIPc-C60(thermal evaporation)
HTL	BCP(thermal evaporation)
COUNTER ELECTRODE	ITO (rf-sputtering)

Lunt, Richard R., and Vladimir Bulovic. "Transparent, Nearinfrared Organic Photovoltaic Solar Cells for Window and Energy-scavenging Applications." Applied Physics Letters 98.11 (2011): 113305. © 2011 American Institute of Physics

Simulation softwares list :

Solar Cells

(- free software available)

- AFORS-HET (Helmholtz Center Berlin, Germany)
- AMPS-1D (Pennsylvania State University, USA)
 - ASPIN3 (University of Ljubljana, Slovenia)
 - **CROWM** (University of Ljubljana, Slovenia)
- GPVDM (University of Nottingham, UK)
 - PC-1D (University of New South Wales, Australia)
- **PV Lighthouse:** software collection for photovoltaics
- RaySim (University of New South Wales, Australia): ray-tracing SETFOS (Fluxim AG) - thin-film photovoltaics
- Solcore Phyton-based library of tools
- Solis (Université de Lorraine, France)
 SunShine (University of Ljubljana, Slovenia)

please send updates to software(at)nusod.or

3D SIMULATION OF SOLAR CELL

• JV CURVE AT INITIAL VALUES :

Current density - Applied voltage

Case -1 changing active layer thickness

Here we can see that active layer (P3HT-PCBM) thickness at 4E-07m(400nm) shows the maximum efficiency so by fixing active layer thickness at 4E-07m(400nm) and we change ther layer thickness one by one...

Case 2: chaging the thickness of ITO (electrdoe)

	PCE (%)		case 2
	. 52 (75)	PCE (%)	Thickness (m) of thelayer
	5 —	4.338	1.00E-08
	4.5	4.339	3.00E-08
	4	4.311	5.00E-08
	3.5	4.328	7.00E-08
	2.5	4.314	9.00E-08
	2	4.21	2.00E-07
→ PCE	1.5	4.046	4.00E-07
	0.5	3.918	6.00E-07
	0.5	3.756	8.00E-07
		3.679	1.00E-06
	, out 3 out 20 to	2.641	3.00E-06
	2, 3, 2, 4, 4, 8, 5, 8, 8, 8, 8, 2, 3, 2, 2,	1.893	5.00E-07

Layer name	Thicknes (m)	Optical material	Layer type	Solve optical problem	Solve thermal problem	ID
ITO	3e-08	oxides/ito	contact ~	Yes v	Yes v	e4e.
PEDOT:PSS	1e-07	polymers/pedotpss	other ~	Yes v	Yes ∨	ba2.
P3HT:PCBM	4e-07	blends/p3htpcbm	active layer ~	Yes v	Yes ∨	dc5.
ZNO	1e-07	oxides/zno	other ~	Yes v	Yes ∨	ida1
agnws	1e-07	metal/ag	contact ~	Yes v	Yes ∨	656.

Case3: changing HTL layer thickness

Case: 4 changing ETL layer thickness...

Final thickness of all layers to achieve best efficiency

08 polymers/pedotpss other Ves Ves bai 07 blends/p3htpcbm active layer Ves Ves dct 08 oxides/zno other Ves Ves ida	PEDOT:PSS 1e-08 polymers/pedotpss other Ves Ves bai P3HT:PCBM 4e-07 blends/p3htpcbm active layer Ves Ves dct ZNO 3e-08 oxides/zno other Ves Ves ida	Layer name	Thicknes (m)	Optical material	Layer type	1	Solve o		Solve t prol	hermal olem	1
07 blends/p3htpcbm active layer Yes Ves dct 08 oxides/zno other Yes Ves ida	P3HT:PCBM 4e-07 blends/p3htpcbm active layer Yes Yes dct ZNO 3e-08 oxides/zno other Yes Yes ida	ITO	3e-08	 oxides/ito	contact	~	Yes	~	Yes	~	e4
08 oxides/zno other V Yes V Yes V ida	ZNO 3e-08 oxides/zno other V Yes V Yes V ida	PEDOT:PSS	1e-08	 polymers/pedotpss	other	~	Yes	~	Yes	~	ba
		РЗНТ:РСВМ	4e-07	 blends/p3htpcbm	active layer	~	Yes	~	Yes	~	dc
07 metal/ag contact v Yes v 656	agnws 1e-07 metal/ag contact v Yes v Yes v 650	ZNO	3e-08	 oxides/zno	other	~	Yes	~	Yes	~	ida
		agnws	1e-07	 metal/ag	contact	~	Yes	~	Yes	~	65
		agnws	1e-07	 metal/ag	contact	~	Yes	~	Yes		~

Optimised solar cell model view

• So the final efficiency of solar cell is: 5.0313%