ChemEd X Data: an open web platform to allow students discover chemical trends Xavier Prat-Resina

Center for Learning Innovation BCCE August 4th 2014 http://chemdata.r.umn.edu/bcce14.pptx

U of Minnesota Rochester

- Our new campus is a "little special"
 - Started accepting students in 2009 (~120/year)
 - One single major in Health Sciences
 - Multiple faculty teaching one course: recitation sessions are spread through the week as personalized one-to-one help
 - Laptop program: all students bring the same laptop model to class
 - No "lecture halls" but discussion
 - Downtown: 3rd and 4th floor of a shopping mall
 University of Minnesota

Chemistry: learning the conflict

"...we should teach them to judge between conflicting influences. That is the essence of our subject, for it is rare that a single property governs the outcome of a reaction. We need to train our students to judge the likely outcome of conflict" P. Atkins. Pure Appl. Chem., Vol. 71, No. 6, pp. 927-929, 1999.

"...I assume there are exceptions to this rule because there is an exception to pretty much every rule in chemistry." Gen Chem student.

Which line is longer?

Often, we remember older problems and apply to new problems the <u>older solution</u>
In an ever changing world older solutions may not be that useful

higher-order thinking is more important than ever

Data-driven learning

- 1. Look at this graph
- 2. See what I want you to see
- 3. Explain how everything perfectly fits
- 4. No exceptions

- 1. Choose some data
- 2. Represent it
- 3. Find patterns
- 4. Find exceptions

Skills required: Self-regulation Self-evaluation

Unstructured open data

Unstructured but easy to represent, parse and sort data

http://chemdata.r.umn.edu/

Elements, Organic/inorganic comp, reactions (Ac/Base, Redox, Solub)

Data	Topic
Ionization energies, atomic radius	Atomic structure
Bond energies, bond length	Chemical bond
ΔH_{vap} , T_{boil} , dipoles	Intermolecular interactions
pKa, Ksp	Ionic equilibria
E° _{red}	Electrochemistry

Organic molecules

Sorting, filtering tables

Fur

Molecular Properties

Alkanes Haloalkanes **Phase Change** Reactions Solubility Alcohols Ethers Aldehydes Carboxylic Boiling point (K) Solubility ΔH_{form} gas (kJ/mol) Melting point (K) ΔH_{form} liq (kJ/mol) Henry's K (mol/kg*bar)) Heat capacity liq(J/mol*K) ΔH_{comb} gas (kJ/mol) Heat capacity gas(J/mol*K) ΔH_{comb} liq (kJ/mol) ΔH_{vaporiz} (kJ/mol)

ΔH_{fusion} (kJ/mol)

http://chemdata.r.umn.edu

Periodic table trends

Based on "Periodic Table Live" graphs http://www.chemeddl.org/resources/ptl/charts/

Inorganic molecules

1 H 2					13	14
2 Li Be					В	С
3 Na Mg 3 4	5 6	7 8 9	10	11 12	Al	Si
4 K Ca Sc Ti		in Fe Co	Ni	Cu Zn	Ga	Ge
5 Rb Sr Y Z		c Ru Rh	Pd	Ag Cd	In	Sn
6 Cs Ba La H		te Os Ir	Pt	Au Hg	TI	РЬ
7 Fr Ra Ac R		h Hs Mt	Ds	Rg Cn	113	114
Lanthanides Ce Pr Nd		Gd Tb Dy	Ho Er	Tm Yb	Lu	
Actinides Th Pa U	Np Pu Am (Cm Bk Cf	Es Fm	Md No	Lr	
Select All	Select	None	Click	to Sele	ct R	ows
SI	10W 100 \$	entries				
Sear	reh:					
Name	Formula	Compo		Boiling Point	3	
\$	\$	\$		(K)		
Sodium Oxide	Na ₂ O	Oxide		2223		
Magnesium Oxide	MgO	Oxide		3873		
Aluminum Oxide	Al ₂ O ₃	Oxide		3250		
Silicon Dioxide	SiO ₂	Oxide		2503		
Phosphorus(III) Oxide	P ₄ O ₆	Oxide	•	173.1		
Phosphorus(V) Oxide	P ₄ O ₁₀	Oxide		633		
Sulfur Dioxide	SO ₂	Oxide		263		
Sulfur Trioxide	SO ₃	Oxide		318		
Chlorine Dioxide	ClO ₂	Oxide		284		

Reaction data

Redox reactions

Acid-Base reactions

how 10 + entries			
earch:			
Reactants	Products	Labels	Eredo
	•	÷ .	0.045
$Li^{(+)}(aq) + e^{(-)}$	Li _(s)	redox	-3.045
$Rb^{(+)}_{(aq)} + e^{(-)}$	Rb _(s)	redox	-2.925
$K^{(+)}_{(aq)} + e^{(-)}$	K _(s)	redox	-2.925
Ba ⁽²⁺⁾ (aq) + 2 e(-)	Ba _(s)	redox	-2.9
Sr ⁽²⁺⁾ (aq) + 2 e ⁽⁻⁾	Sr _(s)	redox	-2.89
Ca ⁽²⁺⁾ (aq) + 2 e ⁽⁻⁾	Ca _(s)	redox	-2.87
$Na^{(+)}_{(aq)} + e^{(-)}$	Na _(s)	redox	-2.714
$Mg^{(2+)}_{(aq)} + 2 e^{(-)}$	$Mg_{(s)}$	redox	-2.37
$H_{2(g)} + 2 e^{(-)}$	2 H ⁽⁻⁾ (aq)	redox	-2.25
SiO ₃ ⁽²⁻⁾ (aq) + 3 H ₂ O + 4 e ⁽⁻⁾	Si _(s) + 6 OH ⁽⁻⁾ (aq)	redox	-1.7

Select all	Select None	ect None Click rows to select (Shif		
Show 10 + entrie Search:				
Reactants	Product	Labels	pK	
HPO ₄ ⁽²⁻⁾ + H ₂ O	H ₂ PO ₄ ⁽⁻⁾ + (OH ⁽⁻⁾ Weak base	6.80	
SO ₃ ⁽²⁻⁾ + H ₂ O	HSO ₃ (-) + (OH ⁽⁻⁾ Weak base	6.80	
$H_2S + H_2O$	HS ⁽⁻⁾ + H ₃	O ⁽⁺⁾ Weak acid	7.00	
HS ⁽⁻⁾ + H ₂ O	H ₂ S + OF	I ⁽⁻⁾ Weak base	7.00	
Cu(H ₂ O) ₅ OH ⁽⁺⁾ + H ₂ O	- Cu(H ₂ O) ₆ ⁽² OH ⁽⁻⁾	Weak base	7.20	
HSO ₃ ⁽⁻⁾ + H ₂ O	SO ₃ ⁽²⁻⁾ + H	3O ⁽⁺⁾ Weak acid	7.20	
H ₂ PO ₄ ⁽⁻⁾ + H ₂ O	HPO ₄ ⁽²⁻⁾ + H	I ₃ O ⁽⁺⁾ Weak acid	7.21	
H ₂ AsO ₄ ⁽⁻⁾ + H ₂ O	HAsO ₄ ⁽²⁻⁾ + 1	H ₃ O ⁽⁺⁾ Weak acid	7.25	
SeO ₃ ⁽²⁻⁾ + H ₂ O	HSeO ₃ (-) + (OH ⁽⁻⁾ Weak base	7.40	
HOCl + H ₂ O	OCI ⁽⁻⁾ + H ₃	O ⁽⁺⁾ Weak acid	7.46	
CO	100			

NESOTA

Showing 61 to 70 of 128 entries

Synchronize mouse Drag and minimize

Show/Hide properties fluoromethane Show/Hide properties difluoromethane Show/Hide properties MEP Partial Charges | Molecular Dipole Bond Dipoles Symmetry MEP Partial Charges Molecular Dipole MEP Partial Charges Molecular Dipole Bond Dipoles Symmetry

JSmo

Group= C3v

trifluoromethane

Bond Dipoles Symmetry

Popup window Take a picture

Popup window

Take a picture

Different questions, different levels

Explanatory questions (pre-selected sets of data. One right answer).

"Why do these molecules show this trend for property X?"

<u>Problem solving questions</u>:(pre-selected sets of data. One right answer)

"If the heavier the molecule the larger the heat capacity. Why does the heat capacity decrease in the following set of data?"

Show evidence: (open-ended)

Choose a set of molecules that show that hydrogen bonds are stronger than dipole-dipole interaction but much weaker than ionic bonds.

Building knowledge: (open-ended)

Choose a set of data to describe what molecular properties have an influence in heat of combustion.

University of Minnesota

Implementation

Questions with one right answer. Two kinds of skills:

- 1. Skill 1: Design an experiment where you minimize correlation vs causation
- 2. Skill 2: Interpret the experiment without "external interference".

What is the effect of mass on boiling points? Select a set of molecules that is evidence of your statement. (one right answer)

- →100% students gave the correct answer
- 69.8% selected a set of molecules that was "good evidence"
- Out 30.2% who didn't. 12.7% chose a set of molecules that was proving the opposite of what they said. The right answer for the wrong reason.

Implementation

Questions without a right answer. Three kinds of skills:

- 1. Design an experiment where you minimize correlation vs causation
- 2. Interpret the experiment without "external interference".
- 3. Identify the existence of exceptions.

What has a stronger influence? A heavy molecule with a weak intermolecular force or a light molecule with a strong intermolecular force? Are there exceptions?

- 60.3% said mass has a stronger influence
- 39.7% said intermolecular forces have a stronger influence
- 50.8% chose molecules that was evidence of their statement
- Out of the other 49.2%: 39.7% was inconclusive, but 9.5% was evidence
 of the opposite and didn't acknowledge the existence of exceptions.

Conclusions

- Collected properties of organic / Inorganic compounds and reactions
- Representations in plots and 3D Jsmol
- Download data
 ChemEd X Data dataset. figshare. http://dx.doi.org/10.6084/m9.figshare.1121665
- Paper: JCE ASAP
 http://pubs.acs.org/doi/abs/10.1021/ed500316m
- Future directions
 - Include more data to align them with more Chemistry topics
 - Quantitative assessment