Name:	

MASTERY QUIZ DAY 18

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\3\\-2 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a nonpivot column, the set is linearly dependent.

S3. Let $W = \operatorname{span} \left\{ \begin{bmatrix} 2\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\-8\\-1 \end{bmatrix} \right\}$. Find a basis for this vector space.

Solution:

$$RREF \begin{pmatrix} \begin{bmatrix} 2 & 3 & 0 \\ 0 & 1 & 2 \\ 2 & -1 & -8 \\ 1 & 1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus $\left\{ \begin{bmatrix} 2\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\-1\\1 \end{bmatrix} \right\}$ is a basis of W.

S4. Let W be the subspace of $\mathbb{R}^{2\times 2}$ given by $W = \operatorname{span}\left(\left\{\begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\right\}\right)$. Compute the dimension of W.

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -2 & 3 & 1 & 0 \\ 0 & 6 & 1 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so dim(W) = 3.

A1. Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_3\\3x_2 - x_3 \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^4 and \mathbb{R}^2 .

Solution:

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 3 & -1 & 0 \end{bmatrix}$$

A2. Determine if $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} e^x \\ e^y \end{bmatrix}$ is a linear transformation.

Solution: It is not linear. For example,

$$\begin{bmatrix} e^2 \\ 1 \end{bmatrix} = T \left(\begin{bmatrix} 2 \\ 0 \end{bmatrix} \right) \neq 2T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2e \\ 1 \end{bmatrix}$$

S1:

S3:

S4:

A1:

A2: