Сравнения по модулю разности и ещё пара идей

Ключевая идея. $a \equiv b \pmod{a-b}$ и $a \equiv -b \pmod{a+b}$.

Идея. Числа взаимно просты тогда и только тогда, когда у них нет общего простого делителя.

Натуральные a и b взаимно просты. Докажите, что $HOД(a+b, a^2+b^2) \leq 2$. -1.

Замена через НОД. Пусть НОД
$$(a,b)=d$$
. Тогда $a=a_0\cdot d, b=b_0\cdot d,$ НОД $(a_0,b_0)=1;$ НОК $(a_0,b_0)=a_0b_0;$ НОК $(a,b)=\frac{ab}{\text{HOД}(a,b)}=a_0\cdot b_0\cdot d.$

Комментарий. Стратегия рассмотрения выражения по модулю общего простого делителя полезна, когда хочется что-то понять про НОД. Замена через НОД, в свою очередь, позволяет использовать взаимную простоту в контексте сравнений по модулю.

Идея. Если произведение делится на натуральное число n, но ни один из сомножителей не делится на n, то n — составное.

- Натуральные числа a,b,c и d таковы, что ab=cd. Докажите, что число 0. s = a + b + c + d — составное.
- Найдите все пары натуральных a и b таких, что $a^2 + b$ кратно $b^2 + a$, если **5**. $b^2 + a$ (a) простое число; (б) простое в целой степени (выше первой).
- Найдите все пары натуральных чисел x, y такие, что $x^3 + 1$ делит $(x+1)^y$. 6.
- Придумайте числа b > a > 1000, для которых $a^b 1$ делится на $b^a 1$. 7.
- Натуральные числа a, b, c таковы, что $b^2 + c^2 a^2$ делится на a + b + c. 8. Докажите, что число a + b + c — составное.
- **9.** Натуральные числа a, b и c, таковы, что $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$. Докажите, что число 2a + 2b + c — составное.
- Докажите, что натуральные числа a и b равны, если 10.

 - (a) $a^2 + ab + 1$ кратно $b^2 + ab + 1$; (b) $a^2 + ab + b^2$ кратно $a^2 ab + b^2$.