Homogeneity tests for independent samples						
Data		2 Samples	> 2 Samples			
Continuous & Meets Normality Assumption	Mean	$\begin{aligned} \mathbb{H}_0: \mu_1 &= \mu_2 \\ \mathbb{H}_1: \mu_1 \neq \mu_2 \\ 2 \text{ Sample t-test if } \sigma_1 &= \sigma_2 \\ \text{Welch's t-test if } \sigma_1 \neq \sigma_2 \end{aligned}$	$\mathbb{H}_0: \mu_1 = \mu_2 = \dots = \mu_K$ $\mathbb{H}_1: \exists i \neq j, \ \mu_i \neq \mu_j$ ANOVA if $\sigma_1 = \dots = \sigma_K$			
	Standard Deviation	$\mathbb{H}_0: \sigma_1 = \sigma_2$ $\mathbb{H}_1: \sigma_1 \neq \sigma_2$ Fisher test	$\mathbb{H}_0: \sigma_1 = \sigma_2 = \dots = \sigma_K$ $\mathbb{H}_1: \exists i \neq j, \ \sigma_i \neq \sigma_j$ Bartlett's test			
Continuous & Non normal	$\mathbb{H}_0: \eta_1 = \eta_2 \ \mathbb{H}_1: \eta_1 eq \eta_2 \ \mathbb{H}_1: \eta_1 eq \eta_2 \ \mathbb{H}_1$ Mann Whitney test		$\mathbb{H}_0: \eta_1 = \eta_2 = \dots = \eta_K \ \mathbb{H}_1: \exists i eq j, \ \eta_i eq \eta_j \ ext{Kruskal-Wallis test}$			
Discrete	$\begin{array}{c c} \mathbb{H}_0: \Pi_1 = \Pi_2 \\ \mathbb{H}_1: \Pi_1 \neq \Pi_2 \\ \end{array}$ screte Proportion Asymptotic Z-test & Fisher exact test in the Bernoulli model		$\begin{array}{c} \mathbb{H}_0: \Pi_1 = \Pi_2 = \cdots = \Pi_K \\ \mathbb{H}_1: \exists i \neq j, \ \Pi_i \neq \Pi_j \\ \chi^2 \ \text{test} \end{array}$			

Homogeneity tests for dependent samples (matched/paired data)					
Data	2 Samples	> 2 Samples			
Continuous	Wilcoxon signed rank test	Friedman test			
Discrete	Mc Nemar's test	Cochran Q-test			

Goodness of Fit for a Single Distribution						
Paramet	ric model	Non Parametric model				
General model Nonasymptotic test Student–Wald test	Gaussian model Tests for μ : • σ^2 known: Z-test • σ^2 unknown: t-test Test for σ^2 : F-test	Discrete model χ^2 test	Continuous model Kolmogorov Smirnov test (asymptotic or non asymptotic Anderson Darling test			

Goodness-of-fit for a family of distributions

• Discrete model: χ^2 test

• Continuous model: Lilliefors test, Shapiro–Wilk test, d'Agostino's K-squared test

Independence tests

• Discrete model: χ^2 test

• General model: (Kendal) τ test

• Regression-based independence tests:

- Linear: t- and F-tests

– Logistic: likelihood ratio test