Cars Prices Prediction Linear Regression

A Chinese automobile company Geely Auto aspires to enter the US market by setting up their manufacturing unit there and producing cars locally to give competition to their US and European counterparts.

Business Goal

We are required to model the price of cars with the available independent variables. It will be used by the management to understand how exactly the prices vary with the independent variables. They can accordingly manipulate the design of the cars, the business strategy etc. to meet certain price levels. Further, the model will be a good way for management to understand the pricing dynamics of a new market.

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [2]: data_df=pd.read_csv('CarPrice_Assignment.csv')
data_df.shape

Out[2]: (205, 26)
```

understanding the data

```
In [3]: data_df.info()
            <class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
            Data columns (total 26 columns):
# Column Non-Null Count Dtype
              # Column
                    car_ID
                                                205 non-null
                                                                          int64
                    symboling
CarName
                                                205 non-null
205 non-null
                                                                          int64
                                                                          object
object
                     fueltype
                                                 205 non-null
                    aspiration
doornumber
                                                 205 non-null
                                                                          object
object
                                                 205 non-null
                    carbody
drivewheel
                                                205 non-null
205 non-null
                                                                          object
object
                    enginelocation wheelbase
                                                205 non-null
205 non-null
                                                                          object
float64
              10
11
                    carlength
carwidth
                                                205 non-null
205 non-null
                                                                          float64
float64
              12
13
                    carheight
curbweight
                                                205 non-null
205 non-null
                                                                          float64
                                                                          int64
              14
15
                    enginetype
cylindernumber
                                                205 non-null
205 non-null
                                                                          object
                                                                          object
int64
                     enginesize
                    fuelsystem
boreratio
                                                                          object
float64
              17
                                                 205 non-null
                                                 205 non-null
                    stroke 205 non-null
compressionratio 205 non-null
              19
                                                                          float64
              20
                                                                          float64
              21
22
                   horsepower
peakrpm
                                                205 non-null
205 non-null
                                                                          int64
int64
              23 citympg
24 highwaympg
                                                205 non-null
205 non-null
                                                                          int64
int64
            25 price 205 non-null fl
dtypes: float64(8), int64(8), object(10)
memory usage: 41.8+ KB
                                                                          float64
```

In [4]: data_df.describe()

Out[4]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	boreratio	stroke	compressionratio	horsepowei
coun	t 205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000
mea	n 103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	126.907317	3.329756	3.255415	10.142537	104.117073
st	d 59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	41.642693	0.270844	0.313597	3.972040	39.544167
mi	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61.000000	2.540000	2.070000	7.000000	48.000000
259	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	97.000000	3.150000	3.110000	8.600000	70.000000
509	6 103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	120.000000	3.310000	3.290000	9.000000	95.000000
759	6 154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	141.000000	3.580000	3.410000	9.400000	116.000000
ma	x 205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	326.000000	3.940000	4.170000	23.000000	288.000000
4												

cleaning data

detecting nulls

```
In [5]: df_null=data_df_null

Out[5]: car_ID symboling CanName fueltype aspiration doornumber carbody drivewheel enginelocation wheelbase carlength carwidth carheight curbweight enginetype cylindernumber enginesize fuelsystem boreration stroke compressionration horsepower peakrpm citympg highwaympg price dtype: int64
       In [5]: df_null=data_df.isna().sum()
    df_null
```

check duplicates

```
In [6]: data_df.duplicated().value_counts()
Out[6]: False 205
dtype: int64
```

detecting outliers

```
In [7]: data_df['price'].hist(bins=50)
```

Out[7]: <AxesSubplot:>

In [8]: import seaborn as sns
sns.boxplot(x=data_df['price'])

Out[8]: <AxesSubplot:xlabel='price'>

5000 10000 15000 20000 25000 30000 35000 40000 45000 price

In [9]: data_df.shape

Out[9]: (205, 26)

removing outliers using SPSS

importing the new CSV file

In [10]: data_cleaned=pd.read_csv('carprice.csv')
 data_cleaned

Out[10]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 enginesize	fuelsystem	boreratio
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	 152	mpfi	2.68
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	 109	mpfi	3.19
4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	 136	mpfi	3.19
183	201	-1	volvo 145e (sw)	gas	std	four	sedan	rwd	front	109.1	 141	mpfi	3.78
184	202	-1	volvo 144ea	gas	turbo	four	sedan	rwd	front	109.1	 141	mpfi	3.78
185	203	-1	volvo 244dl	gas	std	four	sedan	rwd	front	109.1	 173	mpfi	3.58
186	204	-1	volvo 248	diesel	turbo	four	sedan	rwd	front	109.1	 145	idi	3.01
187	205	-1	volvo 264gl	gas	turbo	four	sedan	rwd	front	109.1	 141	mpfi	3.78

188 rows × 26 columns

In [11]: data_cleaned.shape

Out[11]: (188, 26)

box plot after removing outliers

In [12]: sns.boxplot(x=data_cleaned['price'])

Out[12]: <AxesSubplot:xlabel='price'>

5000 7500 10000 12500 15000 17500 20000 22500 25000

In [13]: data_cleaned['price'].hist(bins=50)

Out[13]: <AxesSubplot:>

handling car name to be standard

```
In [29]: data_cleaned['CarName'] = data_cleaned['CarName'].str.split(' ',expand=True)
data_cleaned['CarName'].unique()
maxda:mazda, Nissan:nissan, toyouta:toyota, vokswagen:volkswagen, vw:volkswagen
In [17]: data_cleaned['CarName'].unique()
dropping Car ID column
In [15]: data_cleaned=data_cleaned.drop(['car_ID'],axis=1)
      data_cleaned.info()
          enginelocation
                       188 non-null
                                   object
          wheelbase
                       188 non-null
          carlength
                       188 non-null
                                   float64
       10 carwidth
                       188 non-null
                                   float64
       11 carheight
                       188 non-null
                                   float64
       12 curbweight
                       188 non-null
                                   int64
       13 enginetype
14 cylindernumber
                       188 non-null
188 non-null
                                   object
                                   object
       15 enginesize
                       188 non-null
                                   int64
                                   object
       16 fuelsystem
                       188 non-null
```

preparing data

17 boreratio

20 horsepower

23 highwaympg

21 peakrpm

22 citympg

24 price

18 stroke

19

setting symboling to be from 1 to 7 to be analoyzed using SPSS

188 non-null

compressionratio 188 non-null

dtypes: float64(8), int64(7), object(10) memory usage: 36.8+ KB

float64

float64

int64

int64

int64

int64

float64

separating the data into 2 data frames , one for categorical and the othe for numerical

```
In [19]: cat_col = data_cleaned.select_dtypes(include=['object']).columns
    num_col = data_cleaned.select_dtypes(exclude=['object']).columns
    df_cat = data_cleaned[cat_col]
    df_num = data_cleaned[num_col]
```

exporting 3 csv files to show relationships between variables using SPSS (categorical data file ,numerical data file, cleaned data file)

```
In [20]: df_cat.to_csv('df_cat.csv')
    df_num.to_csv('df_num.csv')

In [21]: data_cleaned.to_csv('data_cleaned.csv')
```

we found that the variables (Wheel base,Horse power,Car length,Car width and Engine size) have relashionship with Price

Statistics

		symboling	price
N	Valid	188	188
	Missing	0	0
Skewnes	S	.148	.852
Std. Error	of Skewness	.177	.177
Kurtosis		621-	117-
Std. Error	of Kurtosis	.353	.353

CORRELATIONS

/VARIABLES=symboling price /PRINT=TWOTAIL NOSIG /MISSING=PAIRWISE.

Correlations

Correlations

		symboling	price
symboling	Pearson Correlation	1	097-
	Sig. (2-tailed)		.188
	N	188	188
price	Pearson Correlation	097-	1
	Sig. (2-tailed)	.188	
	N	188	188

Statistics

		wheelbase	carlength	carwidth	carheight	enginesize	boreratio	stroke	compressionr atio	horsepower	peakrpm	price
N	Valid	188	188	188	188	188	188	188	188	188	188	188
	Missing	0	0	0	0	0	0	0	0	0	0	0
Skewness	S	.982	037-	.675	.104	.664	.112	-1.032-	2.758	.861	.059	.852
Std. Error	of Skewness	.177	.177	.177	.177	.177	.177	.177	.177	.177	.177	.177
Kurtosis		.977	134-	.800	425-	161-	671-	2.350	6.067	.164	.351	117-
Std. Error	of Kurtosis	.353	.353	.353	.353	.353	.353	.353	.353	.353	.353	.353

Correlations

				Corre	lations					
		wheelbase	carlength	carwidth	carheight	enginesize	boreratio	horsepower	peakrpm	price
wheelbase	Pearson Correlation	1	.856**	.785**	.626**	.549**	.504**	.369**	281-**	.652
carlength	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000	.000	.00
	N	188	188	188	188	188	188	188	188	18
carlength	Pearson Correlation	.856**	1	.832**	.526**	.678**	.593**	.560**	233-**	.731
	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000	.001	.00
carwidth F carheight F enginesize F	N	188	188	188	188	188	188	188	188	18
carwidth	Pearson Correlation	.785**	.832**	1	.324**	.677**	.521**	.603**	151-*	.775
	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000	.039	.00
	N	188	188	188	188	188	188	188	188	18
enginesize F	Pearson Correlation	.626**	.526**	.324**	1	.153	.202**	052-	296-**	.226
	Sig. (2-tailed)	.000	.000	.000		.036	.005	.477	.000	.00
	N	188	188	188	188	188	188	188	188	18
	Pearson Correlation	.549**	.678**	.677**	.153	1	.574**	.762**	303-**	.731
	Sig. (2-tailed)	.000	.000	.000	.036		.000	.000	.000	.00
	N	188	188	188	188	188	188	188	188	18
boreratio	Pearson Correlation	.504**	.593**	.521**	.202**	.574**	1	.492**	295-**	.495
	Sig. (2-tailed)	.000	.000	.000	.005	.000		.000	.000	.00
	N	188	188	188	188	188	188	188	188	18
horsepower	Pearson Correlation	.369**	.560**	.603**	052-	.762**	.492**	1	.133	.746
	Sig. (2-tailed)	.000	.000	.000	.477	.000	.000		.069	.00
	N	188	188	188	188	188	188	188	188	18
peakrpm	Pearson Correlation	281-**	233-**	151-*	296-**	303-**	295-**	.133	1	083
	Sig. (2-tailed)	.000	.001	.039	.000	.000	.000	.069		.25
	N	188	188	188	188	188	188	188	188	18
price	Pearson Correlation	.652**	.731**	.775**	.226**	.731**	.495**	.746**	083-	
	Sig. (2-tailed)	.000	.000	.000	.002	.000	.000	.000	.255	
	N	188	188	188	188	188	188	188	188	18

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Nonparametric Correlations

Correlations

			stroke	compressionr atio	price
Spearman's rho	stroke	Correlation Coefficient	1.000	056-	.123
		Sig. (2-tailed)		.449	.092
		N	188	188	188
	compressionratio	Correlation Coefficient	056-	1.000	200-**
		Sig. (2-tailed)	.449		.006
		N	188	188	188
	price	Correlation Coefficient	.123	200-**	1.000
		Sig. (2-tailed)	.092	.006	
		N	188	188	188

^{**.} Correlation is significant at the 0.01 level (2-tailed).

box plot visuals to the independent variables having relationship with price according to SPSS

```
In [22]: sns.boxplot(x=df_num['wheelbase'])
```

Out[22]: <AxesSubplot:xlabel='wheelbase'>


```
In [23]: sns.boxplot(x=df_num['horsepower'])
```

Out[23]: <AxesSubplot:xlabel='horsepower'>


```
In [24]: sns.boxplot(x=df_num['carlength'])
```

Out[24]: <AxesSubplot:xlabel='carlength'>


```
In [25]: sns.boxplot(x=df_num['carwidth'])
```

Out[25]: <AxesSubplot:xlabel='carwidth'>


```
In [26]: sns.boxplot(x=df_num['enginesize'])
```

Out[26]: <AxesSubplot:xlabel='enginesize'>

exporting a temporary csv file for the categorical data to deal with the categorical variables in SPSS

Descriptives

	fueltype			Statistic	Std. Error
price	"gas"	Mean		11120.60332	348.197067
		95% Confidence Interval	Lower Bound	10433.25649	
		for Mean	Upper Bound	11807.95014	
		5% Trimmed Mean		10845.16450	
		Median		9549.00000	
		Variance		20732244.75	
		Std. Deviation		4553.267480	
		Minimum		5118.000	
		Maximum		24565.000	
		Range	19447.000		
		Interquartile Range		6990.000	
		Skewness		.844	.186
		Kurtosis	188-	.369	
	"diesel"	Mean	13455.23529	1346.147385	
		95% Confidence Interval	Lower Bound	10601.53032	
		for Mean	Upper Bound	16308.94027	
		5% Trimmed Mean		13136.31699	
		Median		13200.00000	
		Variance		30805917.32	
		Std. Deviation		5550.307858	
		Minimum		7099.000	
		Maximum		25552.000	
		Range		18453.000	
		Interquartile Range		9566.000	
		Skewness		.721	.550
		Kurtosis		278-	1.063

Descriptives

	aspiratio	on		Statistic	Std. Error
price	"std"	Mean		10489.31169	339.849981
		95% Confidence Interval	Lower Bound	9817.90736	
		for Mean	Upper Bound	11160.71602	
		5% Trimmed Mean		10202.39394	
		Median		8948.50000	
		Variance		17786693.48	
		Std. Deviation		4217.427353	
		Minimum		5118.000	
		Maximum		24565.000	
		Range		19447.000	
		Interquartile Range		6030.000	
		Skewness		1.024	.195
		Kurtosis	.307	.389	
	"turbo"	Mean	15147.29903	831.644551	
		95% Confidence Interval	Lower Bound	13455.30547	
		for Mean	Upper Bound	16839.29259	
		5% Trimmed Mean		15015.84206	
		Median		14679.00000	
		Variance		23515510.39	
		Std. Deviation		4849.279368	
		Minimum		7689.000	
		Maximum		25552.000	
		Range		17863.000	
		Interquartile Range		7351.250	
		Skewness		.224	.403
		Kurtosis		723-	.788

Descriptives

	doornu	ımber		Statistic	Std. Error
price	"two"	Mean		10471.13169	483.166710
		95% Confidence Interval	Lower Bound	9509.59929	
		for Mean	Upper Bound	11432.66409	
		5% Trimmed Mean		10220.66827	
		Median		9095.00000	
		Variance		18909455.67	
		Std. Deviation		4348.500393	
		Minimum		5118.000	
		Maximum	22018.000		
		Range	16900.000		
		Interquartile Range	6616.000		
		Skewness		.794	.267
		Kurtosis	384-	.529	
	"four"	Mean	11983.18224	467.936772	
		95% Confidence Interval	Lower Bound	11055.45208	
		for Mean	Upper Bound	12910.91241	
		5% Trimmed Mean		11641.10644	
		Median		10245.00000	
		Variance		23429236.03	
		Std. Deviation		4840.375608	
		Minimum		6229.000	
		Maximum		25552.000	
		Range		19323.000	
		Interquartile Range		7852.000	
		Skewness	.862	.234	
		Kurtosis		161-	.463

T-Test

Group Statistics

	fueltype	N	Mean	Std. Deviation	Std. Error Mean
price	"gas"	171	11120.60332	4553.267480	348.197067
	"diesel"	17	13455.23529	5550.307858	1346.147385

Independent Samples Test

		Levene's Test Varia			t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidenc Differ Lower	e Interval of the rence Upper		
price	Equal variances assumed	1.200	.275	-1.975-	186	.050	-2334.63198-	1181.874037	-4666.23321-	-3.030743-		
	Equal variances not assumed			-1.679-	18.205	.110	-2334.63198-	1390.450999	-5253.50565-	584.241696		

T-Test

Group Statistics

	aspiration	N	Mean	Std. Deviation	Std. Error Mean
price	"std"	154	10489.31169	4217.427353	339.849981
	"turbo"	34	15147.29903	4849.279368	831.644551

Independent Samples Test

		Levene's Test Varia					t-test for Equality	of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidenc Differ	e Interval of the rence Upper
price	Equal variances assumed	1.957	.163	-5.669-	186	.000	-4657.98734-	821.663117	-6278.96443-	-3037.01025-
	Equal variances not assumed			-5.185-	44.673	.000	-4657.98734-	898.404512	-6467.83242-	-2848.14226-

T-Test

Group Statistics

	doornumber	N	Mean	Std. Deviation	Std. Error Mean
price	"two"	81	10471.13169	4348.500393	483.166710
	"four"	107	11983.18224	4840.375608	467.936772

Independent Samples Test

		Levene's Test for Equality of Variances		t-test for Equality of Means						
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidenc Differ Lower	e Interval of the rence Upper
price	Equal variances assumed	1.520	.219	-2.215-	186	.028	-1512.05055-	682.676065	-2858.83397-	-165.267134-
	Equal variances not assumed			-2.248-	180.564	.026	-1512.05055-	672.617940	-2839.25293-	-184.848170-

	carbody			Statistic	Std. Error
price "convertible"	"convertible"	Mean		14814.75000	1387.303762
		95% Confidence Interval	Lower Bound	10399.73027	
		for Mean	Upper Bound	19229.76973	
		5% Trimmed Mean		14835.05556	
		Median		14997.50000	
		Variance		7698446.917	
		Std. Deviation		2774.607525	
		Minimum		11595.000	
		Maximum		17669.000	
		Range		6074.000	
		Interquartile Range		5306.750	
		Skewness	238-	1.014	
		Kurtosis		-3.098-	2.619
	"hardtop"	Mean		9384.00000	678.337428
	·	95% Confidence Interval	Lower Bound	7225.22756	
		for Mean	Upper Bound	11542.77244	
		5% Trimmed Mean		9346.22222	
		Median		9044.00000	
		Variance	1840566.667		
		Std. Deviation	1356.674857		
		Minimum	8249.000		
		Maximum		11199.000	
		Range		2950.000	
		Interquartile Range		2510.000	
		Skewness		.992	1.014
		Kurtosis	433-	2.619	
	"hatchback"	Mean		10071.95894	508.832542
	1101011100111	95% Confidence Interval	Lower Bound	9056.59941	000.002012
		for Mean	Upper Bound	11087.31847	
		5% Trimmed Mean	oppor bound	9803.72089	
		Median		8845.00000	
		Variance		17864828.38	
		Std. Deviation		4226.680539	
		Minimum		5118.000	
		Maximum		22018.000	
		Range		16900.000	
		Interquartile Range		6188.000	
		Skewness		.903	.289
		Kurtosis		099-	.570

	enginety	/pe		Statistic	Std. Error
rice "ohc"	Mean		10675.91667	391.806574	
	95% Confidence Interval	Lower Bound	9901.34192		
		for Mean	Upper Bound	11450.49142	
		5% Trimmed Mean		10274.56703	
		Median		8921.00000	
		Variance		21798759.56	
		Std. Deviation		4668.914173	
		Minimum		5195.000	
		Maximum		25552.000	
		Range		20357.000	
		Interquartile Range		5643.250	
		Skewness	1.274	.203	
		Kurtosis	.894	.404	
	"dohc"	Mean	14959.70000	1023.794142	
		95% Confidence Interval	Lower Bound	12643.71675	
		for Mean	Upper Bound	17275.68325	
		5% Trimmed Mean		15070.88889	
		Median		15874.00000	
		Variance		10481544.46	
		Std. Deviation		3237.521344	
		Minimum	9298.000		
		Maximum	18620.000		
		Range	9322.000		
		Interquartile Range	4450.250		
		Skewness		-1.034-	.687
		Kurtosis		.018	1.334
	"ohcv"	Mean		16834.87500	1041.184944
		95% Confidence Interval	Lower Bound	14372.86383	
		for Mean	Upper Bound	19296.88617	
		5% Trimmed Mean		16761.86111	
		Median		16849.50000	
		Variance		8672528.696	
		Std. Deviation		2944.915737	
		Minimum		13499.000	
		Maximum		21485.000	
		Range		7986.000	
		Interquartile Range		5650.000	
		Skewness		.292	.752
		Kurtosis		-1.145-	1.481

.

	cylindernumber			Statistic	Std. Error
price		Mean		13020.00000	1039.531144
		95% Confidence Interval	Lower Bound	9711.74795	
	for Mean	Upper Bound	16328.25205		
	5% Trimmed Mean		12989.44444		
		Median		12745.00000	
		Variance		4322500.000	
		Std. Deviation		2079.062289	
		Minimum		10945.000	
		Maximum		15645.000	
		Range		4700.000	
		Interquartile Range		3975.000	
		Skewness	Skewness		
		Kurtosis	-1.355-	2.619	
	"four"	Mean	10285.75472	311.003940	
		95% Confidence Interval	Lower Bound	9671.49330	
		for Mean	Upper Bound	10900.01613	
		5% Trimmed Mean	10043.56115		
		Median		8948.00000	
		Variance	15379028.68		
		Std. Deviation	3921.610470		
		Minimum	5118.000		
		Maximum	22625.000		
		Range	17507.000		
		Interquartile Range	5091.000		
		Skewness		1.032	.192
		Kurtosis		.227	.383
	"five"	Mean		18738.89588	1452.417634
		95% Confidence Interval	Lower Bound	15304.47392	
		for Mean	Upper Bound	22173.31783	
		5% Trimmed Mean		18662.82875	
		Median		17784.58350	
		Variance		16876135.86	
		Std. Deviation		4108.057431	
		Minimum		13295.000	
		Maximum	25552.000		
		Range		12257.000	
		Interquartile Range		6836.250	
		Skewness		.670	.752
		Kurtosis		227-	1.481

Kruskal-Wallis Test

Ranks

	carbody	N	Mean Rank
price	"convertible"	4	141.38
	"hardtop"	4	85.00
	"hatchback"	69	78.02
	"sedan"	87	103.21
	"wagon"	24	104.08
	Total	188	

Test Statistics^{a,b}

Kruskal-Wallis H	12.390
df	4
Asymp. Sig.	.015

- a. Kruskal Wallis Test
- b. Grouping Variable: carbody

Kruskal-Wallis Test

Ranks

	enginetype	N	Mean Rank
price	"ohc"	142	85.78
	"dohc"	10	141.00
	"ohcv"	8	156.94
	"ohcf"	12	65.13
	"rotor"	4	127.00
	" "	12	135.88
	Total	188	

Test Statistics a,b

	price
Kruskal-Wallis H	33.345
df	5
Asymp. Sig.	.000

- a. Kruskal Wallis Test
- b. Grouping Variable: enginetype

Kruskal-Wallis Test

Ranks

	cylindernumber	N	Mean Rank
price	"two"	4	127.00
	"three"	1	2.00
	"four"	159	83.95
	"five"	8	165.00
	"six"	16	161.78
	Total	188	

Test Statistics^{a,b}

p	ri	C	е

Kruskal-Wallis H	48.187
df	4
Asymp. Sig.	.000

- a. Kruskal Wallis Test
- b. Grouping Variable: cylindernumber

We found that:

aspiration

door number

car body

engine type

cylinder number

have significant change on price