Course-B.Tech.	Type- Specialization Core II	
Course Code- CSET228	Course Name- Data Mining and Predictive Modellin (Lab)	
Year- 2024	Semester- Even	
Date- 15/04/2024	Batch- 2022-2025	

CO-Mapping

Q(s)	CO1	CO2	CO3
Q1		$\sqrt{}$	

Objectives

Students will be able to gain understanding of Anova and MLP

- 1. Read the data 'Diet.csv' which holds the data for 90 people.
 - a) Normalize the 'age', 'height', pre weight', and 'post weight' on z-scale.
 - b) Perform one-way anova for different diets on the difference of pre_weight and post_weight
 - c) Check whether the F statistics is significant on alpha=.05.
- **2.** Design a feed-forward neural network (also popularly known as a Multilayer Perceptron) classifier using the load digits dataset.
 - a) Load the dataset using load_digits() function and finally store the data in data_and_labels variable. Plot the data using subplot and imshow functions.
 - b) Get the Data in X variable, Target Data in Y variable and Target Names in tar variable.
 - c) Use MLPClassifier function from sklearn.neural_network library . Train the model on 50,000 number of data points.

Kindly use following configuration for the model:

- Input Layer 7 neurons
- 1 Hidden layer of 3 neurons
- Output Layer 2 neurons
- Batch Size 10
- Epoch − 10
- Learning Rate 0.09
- Activation in Intermediate Layers ReLu Activation
- Activation in Output Layer Softmax
- Parameter Initialization He Normalization