ASSIGNMENT-4

Packages Used:

- Caret
- Rpart
- Rpart.plot
- Naïvebayes

Steps and Formula

- Using condition if G3<10; mark as Fail or else Pass and converted G3 column
 - R Formula: record\$G3<-ifelse(record\$G3<10,"Fail","Pass")
 - record\$G3<-factor(record\$G3)
- Set the random sample seed to 1234
- Divided the entire data with 70% of being the training data and remaining 30% being the testing data
 - o **R Formula:** sample(2,nrow(record),replace=TRUE,prob = c(0.7,0.3))->partition
 - o record[partition==1,]->training_dataset
 - record[partition==2,]->validation_dataset

DECISION TREE

- The following tree is plot using all variables.
 - R Formula: rpart(G3~ .,training_dataset,method = "class")->tree
 - rpart.plot(tree)

- On the basis of the above plot, we have predicted the 30% Test Data Set
 - R Formula: predict(tree,validation_dataset,type='class')->test
- Following is the Matrix of the test data based on the Decision Tree Algorithm
 - R Formula: (table(validation_dataset\$G3,test1)->table_DT)

	Fail	Pass
Fail	15	25
Pass	11	64

- Following are the criteria to validate the model
 - Accuracy: It is the proportion of true positive and true negative over the sum of the matrix. This model has 68.7% accuracy
 - R Formula: sum(diag(table_DT))/sum(table1)->accuracy_DT
 - Recall: Recall measures how many truly relevant results are returned. This model has
 57.7% recall rate
 - R Formula: (table DT[1,1])/(sum(table DT[,1]))->recall DT
 - o Precision: This is a measure of result relevancy. This model has 37.5% precision
 - R Formula: (table_DT[1,1])/(sum(table_DT[1,]))->precision_DT

NAÏVE BAYES ALGORITHM

- Run Naïve Bayes Algorithm on the Training Data and Plot it
 - o **R Formula:** naive_bayes(G3~ .,data=training_dataset)->naive
 - o plot(naive)
 - Please note the plots are below
- Following is the Matrix of the test data based on the Naïve Bayes Algorithm
 - R Formula: predict(naive,validation_dataset,type='class')->test2
 - (table(validation dataset\$G3,test2)->table NB)

	Fail	Pass
Fail	20	20
Pass	8	67

- Following are the criteria to validate the model
 - Accuracy: 75.65%
 - R Formula: sum(diag(table_NB))/sum(table_NB)->accuracy_NB
 - Recall: 71.42%
 - R Formula: (table_NB[1,1])/(sum(table_NB[,1]))->recall_NB
 - o Precision: 50%
 - R Formula: (table_NB[1,1])/(sum(table_NB[1,]))->precision_NB

ANALYSIS

According to Accuracy of both the models , Naïve Bayes algorithm has better accuracy than Decision tree for this particular data(Avoiding Correlation and Feature selection)

Note:- The Accuracy of data may be change if uses correlation or feature selection.

PLOTS OF NAÏVE BAYES

0.10

0.05

0.00

1.0

1.5

2.0

2.5

3.0

Dalc

3.5

4.0

4.5

5.0

