

44

-DG,
30.07.2004
(29)

CLAIMS

1. (Twice Amended) A hermetic compressor having a sealed housing storing therein lubricating oil and receiving therein a motor element and a compression element driven by said motor element, said compression element comprising a shaft having an eccentric shaft portion, and an auxiliary shaft portion and a main shaft portion coaxially provided on upper and lower sides of said eccentric shaft portion so as to sandwich it therebetween, a cylinder block provided with a compression chamber of a substantially cylindrical shape, a main bearing fixed to or formed integral with said cylinder block so as to be substantially perpendicular to an axis of said compression chamber and supporting an upper half portion of said main shaft portion of said shaft, an auxiliary bearing fixed to or formed integral with said cylinder block and supporting said auxiliary shaft portion, a piston that performs reciprocating motion in said compression chamber, and connecting means for coupling said piston and said eccentric shaft together, wherein said shaft is provided with an oil feed mechanism having a lower end communicating with said lubricating oil and an upper end penetrately open to an upper

45

end portion of said auxiliary shaft portion, and
said auxiliary bearing is provided with an oil
fence for receiving the lubricating oil spouting
out from the upper end portion of said oil feed
5 mechanism and an oil feed passage for conducting
the lubricating oil to a sliding surface of said
piston.

2. A hermetic compressor according to claim 1,
10 wherein an oil pool for storing said lubricating
oil is concavely formed in said oil feed passage
on an upper surface of said auxiliary bearing.

3. A hermetic compressor according to claim 1,
15 wherein an oil dispersion hole communicating with
said oil feed mechanism is formed in a
substantially horizontal direction at a portion of
said auxiliary shaft portion above an upper
surface of said auxiliary bearing.

20

4. A hermetic compressor according to claim 1,
wherein said oil fence is made to project upward
and is provided on an upper surface of said
auxiliary bearing in the vicinity of said oil feed
25 passage.

45-1

5. A hermetic compressor according to claim 1,
wherein an opening portion is provided, said

opening portion communicating with said oil feed passage provided on an upper surface of said auxiliary bearing and being open above an oil feed passage provided at a portion of said cylinder 5 block above said compression chamber.

6. A hermetic compressor according to claim 5, wherein an oil guide projecting downward is provided in the vicinity of the opening portion on 10 the side of a lower end surface of said auxiliary bearing.

7. A hermetic compressor according to claim 5, wherein a cylindrical piston pin fixed to said 15 piston and coupling a connecting rod being connecting means and said piston together is provided, and the opening portion is located right above said piston pin in the vicinity of a bottom dead center of said piston and is larger than a 20 horizontal section of said piston pin.

8. A hermetic compressor according to claim 1, wherein a cylinder communicating hole having one 25 end communicating with and open to an upper portion in the compression chamber of said cylinder block is provided in said oil feed

passage.

9. A hermetic compressor according to claim 1,
wherein a substantially annular oil feed groove
5 communicating with said oil feed passage in the
vicinity of a bottom dead center of said piston is
concavely formed on an outer periphery of said
piston.

10 10. A hermetic compressor according to claim 1,
wherein an oil bath communicating with sliding
surfaces between said auxiliary shaft portion and
said auxiliary bearing is formed around said
auxiliary shaft portion.

15

11. A hermetic compressor according to claim 10,
wherein an oil feed hole is formed on said
auxiliary shaft portion, said oil feed hole
establishing communication between said oil bath
20 and said oil feed mechanism and having a bottom
surface located above a bottom surface of said oil
bath.

12. (canceled)

47-1

5

10 13. A hermetic compressor according to claim 1,
wherein an oil fence projecting upward is provided
on a surface of said cylinder block above the
compression chamber, and said oil feed passage is
formed in the surface of said cylinder block above
15 said compression chamber.

14. A hermetic compressor according to claim 1,
which is inverter-driven at a plurality of
operating frequencies including at least an
20 operating frequency lower than a power supply
frequency.

15. A hermetic compressor according to claim 14,
wherein said operating frequency lower than said
25 power supply frequency includes at least an
operating frequency lower than 30Hz.

48-1

16. (New) A hermetic compressor having a sealed housing storing therein lubricating oil and receiving therein a motor element and a compression element driven by said motor element,
5 said compression element comprising a shaft having an eccentric shaft portion, and an auxiliary shaft portion and a main shaft portion coaxially provided on upper and lower sides of said eccentric shaft portion so as to sandwich it therebetween, a cylinder block provided with a
10 compression chamber of a substantially cylindrical shape, a main bearing fixed to or formed integral with said cylinder block so as to be substantially perpendicular to an axis of said compression chamber and supporting an upper half portion of
15 said main shaft portion of said shaft, an auxiliary bearing fixed to or formed integral with said cylinder block and supporting said auxiliary shaft portion, a piston that performs reciprocating motion in said compression chamber,
20 and connecting means for coupling said piston and said eccentric shaft together, wherein said shaft is provided with an oil feed mechanism having a lower end communicating with said lubricating oil and an upper end penetratively open to an upper
25 end portion of said auxiliary shaft portion, and

48-2

said cylinder block is provided with an oil fence
for receiving the lubricating oil spouting out
from the upper end portion of said oil feed
mechanism and an oil feed passage for conducting
5 the lubricating oil to a sliding surface of said
piston.

17. (New) A hermetic compressor according to claim
16, wherein an oil dispersion hole communicating
10 with said oil feed mechanism is formed in a
substantially horizontal direction at a portion of
said auxiliary shaft portion above an upper
surface of said auxiliary bearing.