Fondamenti di Calcolo Numerico 2025

Progetto 1: scadenza per la consegna 31 Marzo 2025 (ore 12:00) - Voto massimo : 3/30

Nota: per risolvere numericamente gli esercizi proposti nel seguito, si suggerisce di creare uno script all'interno di una cartella nel vostro file system personale, e di salvarlo con il nome

Progetto_1.m

1 Analisi circuitale: modello matematico

Figure 1: Rete di resistori pilotata in tensione.

Si consideri la rete di resistori lineari e tempo invarianti rappresentata nella Figura 1. La convenzione per il segno della corrente i che attraversa un nodo del circuito è: i > 0 se la corrente è uscente dal nodo, i < 0 se la corrente è entrante nel nodo.

- 1. Scrivere le leggi di Kirchhoff alle correnti per ogni nodo della rete.
- 2. Scrivere la legge di Ohm per ogni corrente di lato, indicando con $G=R^{-1}$ la conduttanza di lato.
- 3. Scrivere la legge di Kirchhoff alla tensione per la maglia di ingresso costituita dal generatore di tensione V_{in} e le resistenze R_{in} , R_2 e R_4 .
- 4. Riportare l'elenco delle incognite del problema e verificare che il numero di equazioni è uguale al numero di incognite. Motivare la risposta.

2 Analisi circuitale con metodi diretti

Assegnare i seguenti valori dei parametri del circuito: $V_{in}=5\mathrm{V},\,R_{in}=600\Omega$ e

$$R_k = \frac{R_{in}}{k}$$
, per $k = 1, \dots, 4$.

- 1. Dopo avere eliminato le correnti $i_j, j = 1, ..., 10$, in funzione dei potenziali nodali $v_q, q = 1, ..., 6$, definire in Matlab la matrice delle ammettenze $\mathbf{Y} \in \mathbb{R}^{6 \times 6}$ e il termine noto $\mathbf{b} \in \mathbb{R}^{6 \times 1}$. Riportare qui sotto i valori visualizzati sulla finestra di comando.
- 2. Eseguire il comando format short e. Verificare l'esistenza ed unicità della fattorizzazione LU di \mathbf{Y} con $L_{ii} = 1, i = 1, ..., 6$. Riportare i comandi utilizzati e risultati della verifica.
- 3. Calcolare la fattorizzazione LU utilizzando il comando 1u di Matlab. Riportare qui sotto i coefficienti diagonali della matrice U e determinare se é stato eseguito il pivoting.
- 4. Eseguire il comando format long e. Si consideri la soluzione del sistema

$$\mathbf{Y}\mathbf{x} = \mathbf{b}.\tag{1}$$

Utilizzare la fattorizzazione LU di Y calcolata precedentemente per risolvere il sistema (1) con le funzioni fwsub.m e bksub.m utilizzate nel Lab 2. Memorizzare nel vettore xc la soluzione del sistema triangolare superiore. Risolvere il sistema (1) utilizzando il comando \ di Matlab e memorizzare nel vettore xm il risultato ottenuto. Visualizzare sulla finestra di comando i vettori xm e xc e riportarli e riportarli qui sotto.

5. Eseguire il comando format short e. Calcolare la norma infinito della differenza tra xm e xc e riportare il risultato ottenuto.

3 Analisi circuitale con metodi iterativi

- 1. Verificare che la matrice \mathbf{Y} è simmetrica e definita positiva utilizzando gli opportuni comandi Matlab. Riportare qui sotto l'esito della verifica e i comandi utilizzati.
- 2. Eseguire il comando format long e. Si ponga x0=zeros(6,1), toll=1e-12 e nmax=1000. Si utilizzi la function gs.m utilizzata nel Lab 3 per risolvere il sistema (1) con il metodo di Gauss-Seidel e si memorizzi la soluzione calcolata nel vettore xGS. Riportare il numero di iterazioni k_{GS} effettuate per raggiungere la precisione prescritta.
- 3. Eseguire il comando format short e. Si calcoli e si riporti l'errore relativo commesso

$$\mathtt{true_rel_err} = \frac{\|\mathtt{xm} - \mathtt{xGS}\|_2}{\|\mathtt{xm}\|_2}.$$

4. Si calcoli il raggio spettrale ρ_{GS} della matrice di iterazione B_{GS} utilizzata al punto precedente e si confronti l'errore relativo precedentemente calcolato con ρ_{GS}^k , dove k_{GS} è il numero di iterazioni effettuate dal metodo di Gauss–Seidel. Riportare ρ_{GS} e motivare i risultati ottenuti alla luce della teoria.

5. Ripetere i tre punti precedenti utilizzando il metodo di Richardson stazionario con parametro α ottimale e x0, toll e nmax come sopra. Per approssimare la soluzione del sistema (1) si utilizzi la funzione richardson.m e si memorizzi la soluzione calcolata nel vettore xR. Si riporti il numero di iterazioni k_R effettuate per raggiungere la precisione prescritta e l'errore relativo commesso

$$\mathtt{true_rel_err} = \frac{\|\mathtt{xm} - \mathtt{xR}\|_2}{\|\mathtt{xm}\|_2}.$$

Infine, si confronti tale risultato con ρ_R^k dove ρ_R è il raggio spettrale corrispondente alla matrice di iterazione di Richardson. Si riporti ρ_R e si commentino i risultati ottenuti alla luce della teoria.