Probabilistic Quantitative Precipitation Forecasts (PQPF)

Jeffrey T. Davis WFO Tucson, AZ

Artificial Neural Network (ANN)...Exponential Method (EXPO)

Gridded PQPF in AWIPS using IDV

Includes: Calibrated SREF PQPF using an Artificial Neural Network, version of WFO Tulsa PQPF method, and the raw SREF PQPF.

Threat Color Coded KML File in Google Earth

Includes: Tabular and histogram charts of the Artificial Neural Network,
Tulsa method, and raw SREF for grid points. Designed for
situational awareness. Threat color coded for the 87 hour
forecast period of the SREF.

Gridded PQPF in AWIPS using IDV

AWIPS Start-up Menu

IDV Software

Threat Color Coded KML File in Google Earth

KML files are on LAN under Linux\\204.228.177.157\data\SREF More info: http://www.wrh.noaa.gov/twc/monsoon/SAP.pdf

WFO Tulsa Probability of Exceedance (POE) Method

Ensemble Mean Dressing Approach

Unconditional uPOE

$$uPOE(x) = (PoP) * (e^{-x/\mu})$$

<u>μ</u> is the Raw SREF mean QPF

PoP is the Raw SREF PQPF value for greater than .01 of an inch

x is the POE threshold value:

QPF > .01 of an inch

QPF > .25 of an inch

QPF > .50 of an inch

QPF > 1.0 of an inch

More Info on Tulsa's Method:

http://www.esrl.noaa.gov/gsd/ProbFcst/Meeting_no tes/Workshop.html

Artificial Neural Network (ANN) Calibration Method

Why the Need for Calibration?

Results of Stensrud & Yussouf study of NCEP's SREF PQPF http://journals.ametsoc.org/doi/pdf/10.1175/WAF968.1

Found: Raw SREF forecasts over predict the probability of precipitation for all thresholds.

Results of Edman & Coauthors study of NCEP's SREF WR PoP www.emc.ncep.noaa.gov/gmb/ens/ens2008/Edman WR Ensemble Pres.ppt

Found: Raw SREF forecasts over predict the probability of precipitation greater than .01 of an inch. PoPs of 100% calibrate to 70-80 percent verification.

Thus... lower adjusted (by a calibration method) probabilities are greatly desired for all thresholds.

Artificial Neural Network (ANN) Calibration Method

- Non-linear algorithm
- Good for pattern recognition
- ANN for each SREF cycle(03,09,15,21)
- ANN for both cool and warm seasons

Typical Network Structure

SREF PQPF Network

Elev, Fcst hr, Cape POEs, mean pwater, 4 QPF POEs

4 to 8 nodes...depending on Network

Values between 0 and 1 for all 4 POEs

Tropical Storm Beryl Case

May 27, 2012 ... SREF 09Z run... Valid at 18Z

ANN lowers PQPF values...Decreases areal coverage of highest probabilities

ANN lowers PQPF values creating an eye feature in the Tropical Storm... Decreases areal coverage of highest probabilities

Closer Look at Tropical Storm Beryl

May 27, 2012...SREF 09Z run....Valid at 18Z

Deep Convection Case

Mar 14, 2012 ... SREF 03Z run Time Step 9... valid Mar 15 at 06Z

ANN increases...rather than lowers...PQPF values over both the RAW and EXPO

WR High Impact Event Case

March 28, 2012 - 3:30 PM MDT

Threat color coded Situational Awareness Product (SAP) Highlighted heavy precipitation areas for this WR event

PQPF versus MOS POP: Comparing Apples to Oranges

SREF 3 hrly vs 6 and 12 hrly MOS...Point vs 40km grid cell average...etc.

Questions?