Modal Logic Solutions to Exercise Set 03

- 1. Prove that the following frame conditions are equivalent.
 - (a) R is an equivalence relation (i.e. it is reflexive, symmetric, and transitive);
 - (b) R is reflexive and euclidean;
 - (c) R is serial, symmetric, and euclidean;
 - (d) R is serial, symmetric, and transitive.

Solution: We first show (a) \Rightarrow (b). Let R be an equivalence relation. It suffices to prove that R is euclidean. Let u, v, w be such that uRv and uRw. By symmetry wRu so by transitivity, wRv.

For (b) \Rightarrow (c), reflexivity implies seriality: for any u, u itself witnesses the existence of an x such that uRx. For symmetry, let u, v be such that uRv. By reflexivity, uRu, so by euclideanness, vRu.

To prove (c) \Rightarrow (d), we only need to prove transitivity. Let u, v, w be such that uRv and vRw. By symmetry vRu, so by euclideanness, uRw.

Finally we prove (d) \Rightarrow (a). Let u be arbitrary. By seriality there exists an x such that uRx. By symmetry xRu, so by transitivity uRu, proving reflexivity.

2. The class of transitive and converse well-founded frames \mathbf{GL} is defined by the Löb axiom $\Box(\Box A \to A) \to \Box A$. Prove that every instance of the Löb axiom is valid in every frame $F \in \mathbf{GL}$.

Solution: Let (W, R) be a transitive, converse well-founded frame. We reason by induction on R^{-1} : let $u \in W$ be arbitrary and assume that for all $x \in W$ such that $uRx, x \Vdash \Box(\Box A \to A) \to \Box A$.

Assume for a contradiction that $u \Vdash \Box(\Box A \to A)$ and that $u \not\Vdash \Box A$. Let y be a witness to the latter, i.e. $y \not\Vdash A$. By the former, $y \Vdash \Box A \to A$, so by modus tollens, $y \not\Vdash \Box A$.

By modus tollens on the induction hypothesis, $y \not\Vdash \Box(\Box A \to A)$, so there exists $z \in W$ such that yRz, $z \Vdash \Box A$, and $z \not\Vdash A$. By transitivity, uRz, and hence $z \Vdash \Box A \to A$. So by modus ponens, $z \Vdash A$, which is the contradiction we were looking for.

Consequently, $u \vdash \Box(\Box A \to A) \to \Box A$, so by induction, the Löb axiom holds for every world.

3. Prove that if every instance of the Löb axiom is valid in a frame F then F is transitive and converse well-founded.

Solution: Assume that (W,R) is not transitive, so there are u,v,w such that uRv and vRw but not uRw. Let $x \Vdash p$ iff $x \neq v$ or $x \neq w$. Clearly, $u \not\Vdash \Box p$. Now let y be any world such that uRy. $y \neq w$ since it's not the case that uRw. If y = v then since $v \not\Vdash \Box p$, $y \Vdash (\Box p \to p)$. If $y \neq v$ then $y \Vdash p$ by the construction of \Vdash , and so $y \Vdash (\Box p \to p)$. Hence, since y was arbitrary, $u \Vdash \Box(\Box p \to p)$.

Now assume that (W, R) is not converse well-founded, so there is an infinite sequence $S = \{x_n | n \in \mathbb{N}\}$ such that for all $n \in \mathbb{N}$, $x_n R x_{n+1}$. Let p be a propositional variable and for all $z \in W$, let $z \Vdash p$ iff $z \notin S$. Let x_k be an arbitrary element of the infinite sequence, so there must be an x_{k+1} . By construction, $x_{k+1} \not \Vdash p$, so $x_k \not \Vdash \Box p$.

Let y be any world such that $x_k Ry$. If $y \in S$ then $y \not\Vdash \Box p$ by the same argument as above, and hence $y \Vdash (\Box p \to p)$. If $y \not\in S$ then $y \Vdash p$ and so $y \Vdash (\Box p \to p)$. So since y was arbitrary, $x_k \Vdash \Box (\Box p \to p)$, and so the Löb axiom fails at x_k .

4. (\blacktriangle) A frame (W, R) is converse well-quasi-ordered if the converse accessibility relation R^{-1} is a well-quasi-ordering: it is well-founded and contains no infinite antichains. Find a modal scheme defining the class of converse well-quasi-ordered frames, or prove that no such scheme exists.