Aim of Experiment- Perform simple Linear Regression using Data Analysis Toolbox of Excel or with python and interpret the regression table.

Theory- Simple linear regression is useful for finding relationship between two continuous variables. One is predictor or independent variable and other is response or dependent variable. It looks for statistical relationship but not deterministic relationship. Relationship between two variables is said to be deterministic if one variable can be accurately expressed by the other. For example, using temperature in degree Celsius it is possible to accurately predict Fahrenheit. Statistical relationship is not accurate in determining relationship between two variables. For example, relationship between height and weight.

Major uses for regression analysis are:-

- 1. Determining the strength of predictors
- 2. Forecasting an effect
- 3. Trend forecasting.

How to create Regression?

- 1. First download any excel file having numeric and other data.
- 2. Row and column should not be empty.
- 3. Select "Data" from the toolbar. The "Data" menu displays.
- 4. Select "Data Analysis". The Data Analysis Analysis Tools dialog box displays.
- 5. From the menu, select "Linear Regression" and click "OK".
- 6. In the Regression dialog box, click the "Input Y Range" box and select the dependent variable data (Glucose)

- 7. Click the "Input X Range" box and select the independent variable data (BloodPressure)
- 8. Select Output range and output require (Residuals, Residual Plots, Line Fit Plots, Normal Probability Plots).
- 9. Click "OK" to run the results.

Input:-

Pregnan cies	Glucose	BloodPr essure	SkinThicknes s	Insuli n	ВМІ	DiabetesPedigre eFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1
4	110	92	0	0	37.6	0.191	30	0
10	168	74	0	0	38	0.537	34	1
10	139	80	0	0	27.1	1.441	57	0
1	189	60	23	846	30.1	0.398	59	1
5	166	72	19	175	25.8	0.587	51	1
7	100	0	0	0	30	0.484	32	1
0	118	84	47	230	45.8	0.551	31	1
7	107	74	0	0	29.6	0.254	31	1
1	103	30	38	83	43.3	0.183	33	0
1	115	70	30	96	34.6	0.529	32	1
3	126	88	41	235	39.3	0.704	27	0
8	99	84	0	0	35.4	0.388	50	0
7	196	90	0	0	39.8	0.451	41	1
9	119	80	35	0	29	0.263	29	1
11	143	94	33	146	36.6	0.254	51	1
10	125	70	26	115	31.1	0.205	41	1
7	147	76	0	0	39.4	0.257	43	1
1	97	66	15	140	23.2	0.487	22	0
13	145	82	19	110	22.2	0.245	57	0

Tool:-

Result(Output):-

SUMMARY OUT	TPUT							
egression Statisti	ics							
Multiple R	0.2433882635							
R Square	0.05923784683							
Adjusted R Squa	0.02439480412							
Standard Error	32.86499492							
Observations	29							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	1836.328313	1836.328313	1.700134151	0.2032782116			
Residual	27	29162.91307	1080.107891					
Total	28	30999.24138			,			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 95%
Intercept	107.5894041	18.61310279	5.78030462	0.0000037818086	69.3984722	145.780336	69.3984722	145.780336
BloodPressure	0.3385474957	0.2596438319	1.303891925	0.203278209	-0.1941976359	0.8712926273	-0.1941976359	0.8712926273

SIDUAL OU	TPUT		PROBABILITY OUTPU	Т
Observation	Predicted Glucose	Residuals	Percentile	Glucose
1	131.9648238	16.03517623	1.724137931	78
2	129.9335388	-44.9335388	5.172413793	85
3	129.2564438	53.74355619	8.620689655	89
4	129.9335388	-40.9335388	12.06896552	97
5	121.1313039	15.86869609	15.51724138	99
6	132.6419188	-16.64191877	18.96551724	100
7	124.5167789	-46.51677887	22.4137931	103
8	107.5894041	7.410595912	25.86206897	107
9	131.2877288	65.71227122	29.31034483	110
10	140.0899637	-15.08996367	32.75862069	115
- 11	138.7357737	-28.73577369	36.20689655	115
12	132.6419188	35.35808123	39.65517241	116
13	134.6732037	4.32679626	43.10344828	118
14	127.9022538	61.09774617	46.55172414	119
15	131.9648238	34.03517623	50	125
16	107.5894041	-7.589404088	53.44827586	125
17	136.0273937	-18.02739372	56.89655172	126
18	132.6419188	-25.64191877	60.34482759	137
19	117.745829	-14.74582896	63.79310345	139
20	131.2877288	-16.28772878	67.24137931	143
21	137.3815837	-11.3815837	70.68965517	145
22	136.0273937	-37.02739372	74.13793103	147
23	138.0586787	57.9413213	77.5862069	148
24	134.6732037	-15.67320374	81.03448276	166
25	139.4128687	3.587131321	84.48275862	168
26	131.2877288	-6.287728783	87.93103448	183
27	133.3190138	13.68098624	91.37931034	189
28	129.9335388	-32.9335388	94.82758621	196
29	135.3502987	9.649701269	98.27586207	197

BloodPressure Residual Plot

BloodPressure Line Fit Plot

Normal Probability Plot

