EMA2: Lecture contents, week 10

3.3. Absolute convergence of series

Theorem.

Consider a series $\sum_{k=2n_0}^{\infty} a_k$.

If $\sum_{\infty} a_k$ converges absolutely, then also $\sum_{\infty} a_{2k}$ and $\sum_{\infty} a_{2k+1}$ converge and $\sum_{k=2n_0}^{\infty} a_k = \sum_{k=n_0}^{\infty} a_{2k} + \sum_{k=n_0}^{\infty} a_{2k+1}.$

Not true for conditional convergence, see $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$.

Theorem.

Consider a series $\sum_{k=n_0}^{\infty} a_k$.

If $\sum a_k$ converges absolutely, then for every choice of signs $\varepsilon_k = \pm 1$ also $\sum \varepsilon_k a_k$ converges. If $\sum a_k$ converges conditionally, then there is a choice of signs $\varepsilon_k = \pm 1$ such that $\sum \varepsilon_k a_k = \infty$.

Definition.

Consider a series $\sum_{k=1}^{\infty} a_k$.

By a **rearrangement** of $\sum_{k=n_0}^{\infty} a_k$ we mean any series $\sum_{k=n_0}^{\infty} a_{\pi(k)}$, where π is an arbitrary bijective mapping of $\{n_0, n_0 + 1, n_0 + 2, \dots\} \subset \mathbb{Z}$ onto $\{n_0, n_0 + 1, n_0 + 2, \dots\}$, i.e. π is a permutation of $\{n_0, n_0 + 1, n_0 + 2, \dots\}$.

Theorem.

Consider a series $\sum_{k=n_0}^{\infty} a_k$.

If $\sum a_k$ converges absolutely, then also all its rearrangements $\sum a_{\pi(k)}$ converge and we have $\sum_{k=n_0}^{\infty} a_{\pi(k)} = \sum_{k=n_0}^{\infty} a_k.$

If $\sum_{k=0}^{\infty} a_k$ converges conditionally, then $\forall c \in \mathbb{R} \cup \{\pm \infty\}$ there exists its rearrangement such that $\sum_{k=0}^{\infty} a_{\pi(k)} = c.$

4. Sequences and series of functions

Definition.

By a sequence of functions we mean an ordered set $\{f_k\}_{k=n_0}^{\infty} = \{f_{n_0}, f_{n_0+1}, f_{n_0+2}, \dots\},$ where f_k are functions.

Remark: Given a sequence of functions $\{f_k\}_{k=n_0}^{\infty}$ and $x \in \bigcap D(f_k)$, then $\{f_k(x)\}$ is a standard sequence of real (complex) numbers.

Definition.

Let $\{f_k\}_{k\geq n_0}$, f be functions on a set M. We say that $\{f_k\}$ converges (pointwise) to f on M, denoted $f_k \to f$ or $f = \lim_{k\to\infty} (f_k)$,

if $\forall x \in M$: $\lim_{k \to \infty} (f_k(x)) = f(x)$.

Example.

Consider
$$f_k(x) = \arctan(kx)$$
. Then $\lim_{k \to \infty} (f_k(x)) = \begin{cases} 0, & x = 0; \\ \frac{\pi}{2}, & x > 0; \\ -\frac{\pi}{2}, & x < 0. \end{cases}$

Definition.

Let $\{f_k\}_{k>n_0}$, f be functions on a set M.

We say that $\{f_k\}$ converges uniformly to f on M, denoted $f_k \stackrel{\rightarrow}{\Longrightarrow} f$, $\text{if } \forall \varepsilon > 0 \\ \exists N_0 \in I\!\!N \text{ such that } \forall k \geq N_0 \\ \forall x \in M: |f(x) - f_k(x)| < \varepsilon.$

Theorem.

Let $f_k \rightrightarrows f$ on M.

- (i) If all f_k are continuous on M, then also f is continuous there.
- (ii) If all f_k have a derivative on M, then also f has it there and $f' = \lim_{k \to \infty} (f'_k)$ on M. (iii) If all f_k have antiderivative on M, then also f has it there and $\int_{x_0}^x f \, dx = \lim_{k \to \infty} (\int_{x_0}^x f_k \, dx)$ for $\overline{x_0,x}\subseteq M$.

Definition.

A series of functions is a symbol $\sum_{k=n_0}^{\infty} f_k = f_{n_0} + f_{n_0+1} + f_{n_0+2} + \dots$, where f_k are functions.

Remark: Given a series of functions $\sum_{k=0}^{n-n} f_k$ and $x \in \bigcap_{k=0}^{n-n} D(f_k)$, then $\sum_{k=0}^{n-n} f_k(x)$ is a standard series of real (complex) numbers.

Definition.

Consider a series of functions $\sum_{k=n_0}^{\infty} f_k$.

The **region of convergence** of this series is the set $\{x \in \bigcap D(f_k); \sum f_k(x) \text{ converges}\}$. By defining $f(x) = \sum_{k=n_0}^{\infty} f_k(x)$ we then obtain a function f on this set called the **sum of the series**,

denoted $\sum_{k=n_0}^{\infty} f_k = f$.

The region of absolute convergence of this series is the set

 $\{x \in \bigcap D(f_k); \sum f_k(x) \text{ converges absolutely}\}.$

We say that this series converges uniformly to f on M, denoted $\sum f_k \rightrightarrows f$ on M, if the sequence of partial sums $\left\{\sum_{k=n_0}^N f_k(x)\right\}$ converges uniformly to f on M.

Theorem.

Consider series of functions
$$\sum f_k$$
 and $\sum g_k$.
If $\sum_{k=n_0}^{\infty} f_k = f$ on M and $\sum_{k=n_0}^{\infty} g_k = g$ on M , then $\forall a, b \in \mathbb{R}$: $\sum_{k=n_0}^{\infty} (af_k + bg_k) = af + bg$ on M .

(Weierstrass criterion) Theorem.

Let f_k for $k \geq n_0$ be functions on M. Let $a_k \geq 0$ satisfy $\forall x \in M \forall k \geq n_0$: $|f_k(x)| \leq a_k$. If $\sum a_k$ converges, then $\sum f_k$ converges uniformly on M.

 $\sum x^k = \frac{1}{1-x}$ on (-1,1), but the convergence is not uniform. It will be uniform if we restrict our attention to $[-\varrho, \varrho]$ for $\varrho \in (0, 1)$.

Theorem.

Let $\sum f_k \rightrightarrows f$ on M.

- (i) If all f_k are continuous on M, then also f is continuous there.
- (ii) If all f_k have a derivative on M, then also f has it there and $f' = \sum_{k=-\infty}^{\infty} f'_k$ on M.
- (iii) If all f_k have an antideriative on M, then also f has it there and $\int_{x_0}^x f \, dx = \sum_{k=n_0}^\infty \int_{x_0}^x f_k \, dx$ for $\overline{x_0,x}\subseteq M$.

None of this is true in general for ordinary (pointwise) convergence.

4.1. Power series

Definition.

Let $z_0 \in \mathbb{R}$.

By a **power series with center** x_0 we mean any series of functions of the form $\sum_{k=0}^{\infty} a_k(x-x_0)^k$, where $a_k \in IR$.

Theorem.

Consider a power series $\sum_{k=0}^{\infty} a_k (x - x_0)^k$.

There exists $r \in \mathbb{R}_0^+ \cup \{\infty\}$ such that $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ converges absolutely on

 $U_r(x_0) = (x_0 - r, x_0 + r)$ and diverges for $|x - x_0| > r$. Moreover, $r = \frac{1}{\limsup(\sqrt[k]{|a_k|})}$.

Remark: We also have $r = \frac{1}{\lim_{k \to \infty} (\frac{|a_{k+1}|}{|a_k|})}$, assuming that this limit exists.

Remark: A power series always converges (absolutely) at $x = x_0$.

Definition.

Consider a power series $\sum_{k=0}^{\infty} a_k (x - x_0)^k$.

The number r with properties as in the previous theorem is called the **radius of convergence** of this series.

$$\sum_{k=1}^{\infty} \frac{(2x)^k}{k \, 3^k} = \sum_{k=1}^{\infty} \frac{2^k}{k \, 3^k} (x-0)^k, \text{ hence } x_0 = 0.$$

Absolute convergence by limit root test: $\sqrt[k]{|a_k|} = \frac{2|x|}{3\sqrt[k]{k}} \to \frac{2|x|}{3} = \varrho$.

 $\varrho < 1 \iff \frac{2|x|}{3} < 1 \iff |x| < \frac{3}{2}$, thus the radius of convergence $r = \frac{3}{2}$. $x_0 \pm r = \pm \frac{3}{2}$: $x = \frac{3}{2}$: $\sum \frac{1}{k} = \infty$.

 $x = -\frac{3}{2}$: $\sum_{k=0}^{\infty} \frac{(-1)^k}{k}$ converges. Region of convergence $\left[-\frac{3}{2}, \frac{3}{2}\right)$, region of absolute convergence $\left(-\frac{3}{2}, \frac{3}{2}\right)$.

Example.

$$\sum \frac{(2x-4)^k}{k!} = \sum \frac{2^k}{k!} (x-2)^k, \text{ hence } x_0 = 2.$$

Absolute convergence by limit ratio test: $\frac{|a_{k+1}|}{|a_k|} = \frac{2}{k+1}|x-2| \to 0 = \lambda$.

 $\lambda < 1$ is true $\forall x$, hence radius of convergence $r = \infty$.

Region of convergence and region of absolute convergence \mathbb{R} .

Example.

 $\sum k^k (2x+3)^k = \sum k^k 2^k \left(x - \left(-\frac{3}{2}\right)\right)^k$, hence $x_0 = -\frac{3}{2}$.

Absolute convergence by limit root test:

$$\sqrt[k]{|a_k|} = 2k|x + \frac{3}{2}| \to \begin{cases} \infty, & x \neq -\frac{3}{2}; \\ 0, & x = -\frac{3}{2} \end{cases} = \varrho.$$

 $\varrho < 1 \iff x = -\frac{3}{2}$, hence radius of convergence r = 0.

Region of convergence ans radius of absolute convergence $\left\{-\frac{3}{2}\right\}$.

Theorem.

Let $x_0 \in \mathbb{R}$, assume that $\sum_{k=0}^{\infty} a_k (x-x_0)^k = f$, $\sum_{k=0}^{\infty} b_k (x-x_0)^k = g$ have radii of convergence r_f and r_a .

(i) Then $\forall a,b \in I\!\!R$: $\sum_{k=0}^{\infty} (aa_k + bb_k)(x - x_0)^k = af + bg$ has radius of convergence $r = \min(r_f, r_g)$.

(ii) The series $\sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} a_i b_{k-i} \right) (x-x_0)^k = \left(\sum_{k=0}^{\infty} a_k (x-x_0)^k \right) \cdot \left(\sum_{k=0}^{\infty} b_k (x-x_0)^k \right) = f \cdot g$ has radius of convergence $r = \min(r_f, r_q)$.

Let $\sum_{k=0}^{\infty} a_k (x-x_0)^k = f$ have radius of convergence r > 0.

(i) For any $\varrho \in (0,r)$: $\sum_{k=0}^{\infty} a_k (x-x_0)^k \stackrel{\longrightarrow}{\to} f$ on $U_{\varrho}(x_0)$.

(ii) f is continuous, it has the derivative $f'(x) = \sum_{k=1}^{\infty} k a_k (x-x_0)^{k-1}$ with radius of convergence

r and an antiderivative $F(x) = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (x-x_0)^{k+1}$ with radius of convergence r.

Corollary.

Let
$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$
 on $U_r(x_0)$.

Then on $U_r(x_0)$ we have for $n \in I\!\!N$ also derivatives

$$f^{(n)}(x) = \sum_{k=n}^{\infty} k(k-1) \cdot \ldots \cdot (k-n+1) a_k(x-x_0)^{k-n}.$$

Remark: At endpoints $x_0 \pm r$ anything can happen, there is no theorem that would also include behaviour there, so we can lose properties there (convergence for instance).

Example.

 $f(x) = -\ln(1-x) = \sum_{k=1}^{\infty} \frac{1}{k+1} x^{k+1}$ converges on [-1,1), but $f'(x) = \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k$ converges only on (-1,1).