

DS-UA 112 Introduction to Data Science

Week 4: Lecture 2

Tables - Grouping and Pivoting Data

What can we learn from rearranging a table to group related records?

DS-UA 112 Introduction to Data Science

Week 4: Lecture 2

Tables - Grouping and Pivoting Data

Announcements

- ► Please check Week 4 agenda on NYU Classes
 - ►Homework 2
 - Lab 3
 - ►Survey 2
- ► Remember to post to Piazza

Access Columns

		- ,
	Candidate	Party
Year		
1980	Reagan	Republican
1980	Carter	Democratic
1980	Anderson	Independent
1984	Reagan	Republican
1984	Mondale	Democratic
1988	Bush	Republican

Use brackets with a label or list of labels for the columns

elections["Candidate"].head(6)				
Year				
1980	Reagan			
1980	Carter			
1980	Anderson			
1984	Reagan			
1984	Mondale			
1988	Bush			
Name:	Candidate,	dtype:	objec	ť

Access Rows

Use brackets with numeric range or True/False

elections[elections['Party'] == 'Independent']

elections[[False, False, False, False, False, False, True, False, False, True, False, False, False, False, False, False, False, False, True]]

_	Candidate	Party	%	Year	Result
7	Clinton	Democratic	43.0	1992	win
10	Clinton	Democratic	49.2	1996	win
14	Bush	Republican	47.9	2000	win
22	Trump	Republican	46.1	2016	win

		el	ectio	ns[0:3]
	Candidate	Party	%	Result
Year				
1980	Reagan	Republican	50.7	win
1980	Carter	Democratic	41.0	loss
1980	Anderson	Independent	6.6	loss

You must use & for "and", | for "or", ~ for "not"

Access Rows

elections[(elections['Result'] == 'win')
& (elections['%'] < 50)]</pre>

elections[[False, False, False, False, False, False, True, False, False, True, False, False, False, True, False, False, False, False, False, False, True]]

	Candidate	Party	%	Year	Result
7	Clinton	Democratic	43.0	1992	win
10	Clinton	Democratic	49.2	1996	win
14	Bush	Republican	47.9	2000	win
22	Trump	Republican	46.1	2016	win

Use brackets with numeric range or True/False

elections[0:3] Candidate % Result **Party** Year 1980 Reagan Republican 50.7 win 1980 Carter Democratic 41.0 loss 1980 Anderson Independent 6.6 loss

Access Rows and Columns

```
elections.loc[[0, 1, 2, 3, 4], ['Candidate', 'Party', 'Year']]
```

- Use loc and iloc to specify both rows and columns
- ▶ loc accesses by
 - ▶ value of label
 - ► True or False

elections.iloc[0:3, 0:3]

Candidate		Party	Year
0	Reagan	Republican	1980
1	Carter	Democratic	1980
2	Anderson	Independent	1980
3	Reagan	Republican	1984
4	Mondale	Democratic	1984

- ▶ iloc accesses by
 - row number
 - ▶ column number

Question

Link the following definitions to their corresponding Pandas data structure:

- 1. A sequence of row labels
- 2. Two-dimensional (tabular data)
- 3. One-dimensional (column data)
- □ Data Frame: 1, Series: 2, Index: 3
- □ Data Frame: 2, Series: 1, Index: 3
- \square Data Frame: 2, Series: 3, Index: 1
- \square Data Frame: 3, Series: 2, Index: 1

Question

Link the following definitions to their corresponding Pandas data structure:

- 1. A sequence of row labels
- 2. Two-dimensional (tabular data)
- 3. One-dimensional (column data)
- □ Data Frame: 1, Series: 2, Index: 3
- □ Data Frame: 2, Series: 1, Index: 3
- Data Frame: 2, Series: 3, Index: 1
- \square Data Frame: 3, Series: 2, Index: 1

Question

Which of the following statements about Pandas Indices are false?

- \square Indices must integers
- ☐ Indices may be non-numeric, and are always unique
- \square Indices need not be unique, but must be numeric
- ☐ Indices need not be unique, and can be non-numeric

Question

Which of the following statements about Pandas Indices are false?

- Indices must integers
- Indices may be non-numeric, and are always unique
- Indices need not be unique, but must be numeric
- ☐ Indices need not be unique, and can be non-numeric

Question

V	Which of the following statements regarding iloc are true?
	\Box It is harder to make mistakes with iloc than with loc
	\Box It is easier to read iloc code than loc code
	\square iloc doesn't use labels
	□ iloc is vulnerable to changes in the ordering of rows and columns in a Data Frame

Question

Which of the following statements regarding iloc are true?

- ☐ It is harder to make mistakes with iloc than with loc
- \square It is easier to read iloc code than loc code
- loc doesn't use labels
- iloc is vulnerable to changes in the ordering of rows and columns in a Data Frame

Question

Which of the following statements regarding iloc are true?

- ☐ It is harder to make mistakes with iloc than with loc
- \square It is easier to read iloc code than loc code
- loc doesn't use labels
- iloc is vulnerable to changes in the ordering of rows and columns in a Data Frame

Agenda

- Operations on Tables
 - Inspecting
 - Sorting
 - Summarizing
- Grouping and Pivoting
 - ► Find the most popular name in New York
 - Find all names that start with E.
 - Sort names by occurrence of dr and ea
 - ► Find the name whose popularity has changed the most.
 - ► Count the number of female and male babies born in each year

References

- ► Nolan, Lau, Gonzalez (Chapter 3.3)
- ► McKinney (Chapter 5, 8)

How can we change the granularity of data in a table?

Key Data

- A 3
- B 1
- C 4
- A 1
- B 5
- C 9
- A 2
- B 6
- C 5

How can we change the granularity of data in a table?

Key Data

A 3

B 1

C 4

A |

B 5

C 9

A 2

B 6

C 5

A 3

A 1

A 2

How can we change the granularity of data in a table?

Key Data

A 3

B 1

C 4

A 1

B 5 Split into Groups

C 9

A 2

B 6

C 5

A 3

A 1

A 2

B 1

B 5

B 6

C 4

C 9

C 5

How can we change the granularity of data in a table?

Key Data

A 3

B 1

C 4

A 1

B 5 Split into Groups

C 9

A 2

B 6

C 5

A 3

A 1

A 2

B 1

B 5

B 6

C 4

C 9

C 5

Aggregate Function

Α

6

How can we change the granularity of data in a table?

Key Data			
A 3		A 3	A cuerra cuerta
B 1		A 1	Aggregate A 6
C 4		A 2	
A 1		B 1	
B 5	Split into Groups	В 5	Aggregate B 12
C 9		В 6	TOTICHOTT
A 2			
B 6		C 4 C 9	Aggregate C 18
C 5		C 5	Function

How can we change the granularity of data in a table?

Pivoting

How can we change the granularity of data in a table?

Key Key

R C Data

A U 3

B V 1

C U 4

A V 1

B U 5

C V 9

A U 2

B V 6

D U 5

Pivoting

How can we change the granularity of data in a table?

Pivoting

How can we change the granularity of data in a table?

Unstack the groups into a pivot table

Function

Summary

- Operations on Tables
 - Inspecting
 - Sorting
 - Summarizing
- Grouping and Pivoting
 - ► Find the most popular name in New York
 - Find all names that start with E.
 - Sort names by occurrence of dr and ea
 - ► Find the name whose popularity has changed the most.
 - ► Count the number of female and male babies born in each year

Goals

- Apply
- ▶ Group
 - ▶ agg
 - ▶ size,...
 - ▶ filter,
- ▶ Pivot

Questions

- Questions on Piazza?
 - Please provide your feedback along with questions
- Question for You!

Why use Python for studying data instead of another programming language?

Questions

- Questions on Piazza?
 - Please provide your feedback along with questions
- Question for You!

Why use Python for studying data instead of another programming language?

