Data Science – Machine Learning – Simple Linear Regression

9. Data Science – Machine Learning – Simple Linear Regression

Contents

1. Regression	2
2. A line	2
3. The goal	3
4. Linear Regression	4
5. Types of linear regression	4
6. Simple linear regression	4
7. Multiple linear regression	4
8. Simple linear regression example	5
8.1. Problem statement	5
8.2. The solution	5
9. Machine learning Terminology	6
9.1. Features	6
9.2. Label or target	6
9.3. Models	6
9.4. Prediction	6
9.5. Formula	6
10. Intercept and coefficient	17
11. Y = m * X + b (m is coefficient and b is intercept)	18
12. Best fitted line	19
13. Predicting a group of home prices	21

9. Data Science - Machine Learning - Simple Linear Regression

1. Regression

- ✓ Regression analysis is used to explain the relationship between a two variables.
- ✓ Also called as it's a relationship in between dependent variable and one or more independent variables.

2. A line

- ✓ If two variables having relationship then if we draw this relationship in a two dimensional then we get a straight line.
- ✓ The picture of linear regression is simple.
- ✓ Let us say we have some points, a line will travel in between these points

3. The goal

- ✓ The goal of linear regression is to draw the best fitted line.
- ✓ Best fitted line means that the line which passes as close as possible to these points.

4. Linear Regression

✓ This is a technique and it explains the relationship between the
dependent variable and independent variables

5. Types of linear regression

- √ There are two types of linear regression
 - o Simple linear regression
 - o Multiple linear regression

6. Simple linear regression

✓ When you have only 1 independent variable and 1 dependent variable, it
is called simple linear regression.

7. Multiple linear regression

✓ When you have 2 or more independent variable and 1 dependent variable, it is called multiple linear regression.

8. Simple linear regression example

✓ When you have only 1 independent variable and 1 dependent variable, it
is called simple linear regression.

8.1. Problem statement

✓ Assuming that we are planning to buy a new house and need to predict the price of a house

8.2. The solution

✓ While buying house first we need to check the area of the house

area	price
2600	550000
3000	565000
3200	610000
3600	680000
4000	725000

9. Machine learning Terminology

9.1. Features

✓ From the given problem the feature is area and price.

9.2. Label or target

✓ Price of the house

9.3. Models

- ✓ A machine learning model is simply a rule, or a formula, which predicts a label from the features.
- ✓ In this case, the model is the equation we found for the price.

9.4. Prediction

- ✓ The prediction is simply the output of the model.
- ✓ If the model gives the result as "Hey Guru I think the house with 36000 area is going to cost \$300", then the prediction is 300.

9.5. Formula

√ Home price = m * (area) + b

Reminder

✓ Once please walk through our maths regression chapter (Chapter 7. Statistics - PART - 7 - Regression) which we have already discussed, thanks

Loading house prices dataset Program demo1.py Name import pandas as pd df = pd.read_csv("homeprices.csv") print(df.head()) Output price area 2600 550000 3000 565000 3200 610000 3600 680000 4000 725000

Creating scatter plot using matplotlib Program demo2.py Name import pandas as pd import matplotlib.pyplot as plt df=pd.read_csv("homeprices.csv") # plotting the dataset plt.xlabel('area') plt.ylabel('price') plt.scatter(df.area, df.price, color = 'red', marker = '*') plt.show() Output 725000 700000 675000 650000 625000 600000 575000 550000 2600 2800 3000 3200 3600 3800 4000 3400

```
Loading the data set
Program
           demo3a.py
Name
           import pandas as pd
           from sklearn.linear_model import LinearRegression
           df = pd.read_csv("homeprices.csv")
           new_df = df.drop('price', axis = 'columns')
           print(df)
           print()
           print(new_df)
Output
              area price
              2600 550000
              3000 565000
              3200 610000
              3600 680000
           4 4000 725000
              area
              2600
              3000
              3200
              3600
              4000
```

```
Loading the data set
Program
           demo3b.py
Name
           import pandas as pd
           from sklearn.linear_model import LinearRegression
           df = pd.read_csv("homeprices.csv")
           new_df = df.drop('price', axis = 'columns')
           print(new_df.values)
           print()
           print(df.price.values)
Output
           [[2600]
             [3000]
            [3200]
            [3600]
            [4000]]
           [550000 565000 610000 680000 725000]
```

Creating LinearRegression object

demo3.py

import pandas as pd

from sklearn.linear_model import LinearRegression

df = pd.read_csv("homeprices.csv")

new_df = df.drop('price', axis = 'columns')

Training the Algorithm
reg = LinearRegression()

reg.fit(new_df.values, df.price.values)

print("Training the Algorithm")

Output

Training the Algorithm

Predict price of a home with area = 3300 sqr ft

Name demo4.py

import pandas as pd

from sklearn.linear_model import LinearRegression

df=pd.read_csv("homeprices.csv")

new_df = df.drop('price', axis='columns')

reg = LinearRegression()

reg.fit(new_df.values, df.price.values)

Making Predictions

print(reg.predict([[3300]]))

Output

[628715.75342466]

Predict price of a home with area = 5000 sqr ft

demo5.py

import pandas as pd

from sklearn.linear_model import LinearRegression

df=pd.read_csv("homeprices.csv")

new_df = df.drop('price', axis='columns')

reg = LinearRegression()

reg.fit(new_df.values, df.price.values)

Making Predictions

print(reg.predict([[5000]]))

Output

[859554.79452055]

Capture the coefficient from regression

demo6.py

import pandas as pd

from sklearn.linear_model import LinearRegression

df=pd.read_csv("homeprices.csv")

new_df = df.drop('price', axis='columns')

reg = LinearRegression()

reg.fit(new_df.values, df.price.values)

print(reg.coef_)

Output

[135.78767123]

Capture the intercept from regression

demo7.py

import pandas as pd

from sklearn.linear_model import LinearRegression

df=pd.read_csv("homeprices.csv")

new_df = df.drop('price', axis='columns')

reg = LinearRegression()

reg.fit(new_df.values, df.price.values)

print(reg.intercept_)

Output

180616.43835616432

10. Intercept and coefficient

✓ Intercept = 180616.43835616432 ✓ Coefficient = 135.78767123

11. Y = m * X + b (m is coefficient and b is intercept)

- ✓ Let's calculate the above formula.
- ✓ In the given formula m is coefficient and b is intercept
- ✓ Y = m * X + b
- ✓ Y = 135.78767123 * 3300 + 180616.43835616432
- ✓ Y = 628715.75342466
- ✓ Awesome....!!!!

12. Best fitted line

- ✓ Let's calculate the above formula.
- ✓ We can draw a line

```
Drawing a best fitted line
Program
Name
            demo8.py
            import pandas as pd
            import matplotlib.pyplot as plt
            from sklearn.linear model import LinearRegression
            df=pd.read_csv("homeprices.csv")
            new df = df.drop('price', axis='columns')
            reg = LinearRegression()
            reg.fit(new df.values, df.price.values)
            plt.xlabel('area')
            plt.ylabel('price')
            plt.scatter(df.area.values, df.price.values, color = 'red', marker =
            '*')
            plt.plot(df.area.values, reg.predict(df[['area']].values), color =
            'blue')
            plt.show()
```


13. Predicting a group of home prices

✓ By using above model we can predict the group of home prices as well

```
Loading a group of house areas
Program
            demo9.py
Name
            import pandas as pd
            from sklearn import linear_model
            from sklearn.linear model import LinearRegression
            df = pd.read csv("homeprices.csv")
            new df = df.drop('price', axis='columns')
            reg = LinearRegression()
            reg.fit(new df.values, df.price.values)
            area df = pd.read csv("areas.csv")
            print(area_df)
Output
                 area
                 1000
                 1500
                 2300
                 3540
                 4120
                 4560
                 5490
                 3460
                 4750
                 2300
                 9000
                 8600
            12 7100
```

Predicting a group of home prices

demo10.py

import pandas as pd

from sklearn.linear model import LinearRegression

df = pd.read_csv("homeprices.csv")

new_df = df.drop('price', axis='columns')

reg = LinearRegression()

reg.fit(new_df.values, df.price.values)

area_df = pd.read_csv("areas.csv")

prices = reg.predict(area_df.values)

print(prices)

Output

316404.10958904 384297.94520548 492928.08219178 661304.79452055 740061.64383562 799808.21917808 926090.75342466 650441.78082192 825607.87671233 492928.08219178 1402705.47945205 1348390.4109589 1144708.90410959]

```
Create a csv file with predictions
Program
            demo11.py
Name
            import pandas as pd
            from sklearn.linear model import LinearRegression
            df = pd.read_csv("homeprices.csv")
            new_df = df.drop('price', axis='columns')
            reg = LinearRegression()
            reg.fit(new_df.values, df.price.values)
            area_df = pd.read_csv("areas.csv")
            p = reg.predict(area_df.values)
            area_df['prices'] = p
            area df.to csv('output.csv')
            print("Please check in current directory for output.csv")
Output
```

Please check in current directory for output.csv