Kalman Filtering

Kevin Mead

May 23, 2014

1 Introduction

The task is to compute the coordinates and velocities of a moving vehicle. The calculations were done with a constant velocity kinematic model. Measurement values in the Excel document, *Measurement.xls*, give us the position and speed of the vehicle measured in 2 second intervals. Other values given are:

- PSD (power spectral density) of the random acceleration: 0.01 m²s³
- Standard deviation of measured coordinates (both components): 3 m
- Standard deviation of measured abs. velocity: 0.5 m/s
- Standard deviation of initial velocity (both components): 3 m/s
- Standard deviation of initial coordinates (both components): 10 m

2 Methodology

Matlab was used to solve for the following parameters and all of the following equations were taken from the technical report: Kalman Filtering. [1] The steps and equations from the Kalman filtering algorithm are documented in the Matlab code. We start off with the matrix differential equation,

$$\dot{\mathbf{x}}(t) = \mathbf{F}(t)x(t) + \mathbf{G}(t)\mathbf{u}(t) \tag{1}$$

where $\mathbf{x} = [e \text{ n } v_e \text{ } v_n]^T$, the east and north positions and their velocity components. \mathbf{F} , \mathbf{G} , and \mathbf{u} are given by,

$$\mathbf{F} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} \omega_{ae} \\ \omega_{an} \end{bmatrix}$$

We do not know ${\bf u}$ because it represents white noise. The discrete solution to Equation (1) is

$$\mathbf{x}_k = \mathbf{T}_{k-1,k} \mathbf{x}_{k-1} + \mathbf{w}_{k-1,k}$$

where values of k represent discretization of time. The transition matrix, $\mathbf{T}_{k-1,k}$, can be approximated by,

$$\mathbf{T}_{k-1,k} = \mathbf{I} + \mathbf{F}_k \Delta t = egin{bmatrix} 1 & 0 & \Delta t & 0 \ 0 & 1 & 0 & \Delta t \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

The covariance of \mathbf{w}_k , \mathbf{Q}_k , is evaluated by use of the power spectral density (PSD) of the random acceleration, which are initially given. We can now represent the covariance of \mathbf{w}_k as,

$$\mathbf{Q}_k = \mathbf{Q}_G \Delta t + (\mathbf{F} \mathbf{Q}_G + \mathbf{Q}_G \mathbf{F}^{\mathrm{T}}) \frac{\Delta t^2}{2} + \mathbf{F} \mathbf{Q}_G \mathbf{F}^{\mathrm{T}} \frac{\Delta t^3}{3}$$

where

$$\mathbf{Q}_G = \mathbf{G}\mathbf{Q}\mathbf{G}^{\mathrm{T}} \quad \mathbf{Q} = \begin{bmatrix} q_{ae} & 0 \\ 0 & q_{an} \end{bmatrix}$$

2.1 Kalman Filter

The main steps of the discrete Kalman Filter algorithm are:

1. Initialization:

$$\mathbf{x}_0, \ \mathbf{Q}_{x0} = \text{var}[x_0]$$

2. Time propagation

$$\mathbf{x}_k^- = \mathbf{T}_{k-1,k} \mathbf{x}_{k-1}, \quad \mathbf{Q}_{x,k}^- = \mathbf{T}_{k-1,k} \mathbf{Q}_{x,k-1} \mathbf{T}_{k-1,k}^\mathrm{T} + \mathbf{Q}_k$$

3. Gain calculation:

$$\mathbf{K}_k = \mathbf{Q}_{x,k}^{-} \mathbf{H}_k^{\mathrm{T}} [\mathbf{R}_k + \mathbf{H}_k \mathbf{Q}_{x,k}^{-} \mathbf{H}_k^{\mathrm{T}}]^{-1}$$

4. Measurement update

$$\mathbf{x}_k = \mathbf{x}_k^- + \mathbf{K}_k [\tilde{L}_k - \mathbf{h}_k(x_k^-)]$$

5. Covariance update

$$\mathbf{Q}_{x,k} = [\mathbf{I} - \mathbf{K}_k \mathbf{H}_k] \mathbf{Q}_{x,k}^-$$

2.2 Smoothing

After the Kalman Filter algorithm, we then smooth the results using the smoothed estimations for previous epochs,

$$\hat{\mathbf{x}}_k = \mathbf{x}_k + \mathbf{D}_k [\hat{\mathbf{x}}_{k+1} - \mathbf{x}_{k+1}^-]$$

$$\mathbf{D}_{k} = \mathbf{Q}_{x,k} \mathbf{T}_{k-1,k}^{T} (Q_{x,k+1}^{-})^{-1}$$

with a covariance matrix of,

$$\hat{\mathbf{Q}}_{x,k} = \mathbf{Q}_{x,k} + \mathbf{D}_k[\hat{\mathbf{Q}}_{x,k+1} - \mathbf{Q}_{x,k+1}^{-}]\mathbf{D}_k^{\mathrm{T}}$$

3 Results

A comparison of the filtered and smoothed coordinates with the original and true measurements are shown in Figure 1. Table 1 and 2 are the coordinates after filtering and smoothing.

Figure 1: Comparison of filtered, smoothed, original, and true coordinates.

4 Analysis and Discussion

- What happens if we change the values of
 - 1. PSD
 - 2. standard deviations of measurements
 - 3. standard deviations of initial state variables
- Can we draw any conclusion/implications from the results?

 We can conclude that the smoothed coordinates are a better approximation to the true values than the filtered coordinates.

Figure 2: Comparison of filtered, smoothed, and true velocities.

Figure 3: Plot of differences between true values and the filtered and smoothed coordinates.

Filtered Estimations and standard deviations						
t	$x_e \pm \sigma_e$	$x_n \pm \sigma_n$	$v_e \pm \sigma_{v_e}$	$v_n \pm \sigma_{v_n}$		
0	-9.62 ± 10.00	0.11 ± 10.00	3.46 ± 3.00	0.84 ± 3.00		
2	5.71 ± 1.71	4.00 ± 1.71	5.09 ± 0.90	1.31 ± 2.52		
4	15.74 ± 1.33	8.98 ± 1.64	4.95 ± 0.51	1.97 ± 1.05		
6	23.36 ± 1.23	19.32 ± 1.53	4.49 ± 0.37	3.35 ± 0.58		
8	33.40 ± 1.19	25.17 ± 1.42	4.66 ± 0.30	3.20 ± 0.40		
10	44.56 ± 1.17	28.26 ± 1.31	4.93 ± 0.27	2.68 ± 0.31		
12	53.82 ± 1.15	33.15 ± 1.24	4.86 ± 0.25	2.62 ± 0.27		
14	65.20 ± 1.13	36.34 ± 1.19	5.06 ± 0.24	2.32 ± 0.25		
16	76.79 ± 1.11	41.27 ± 1.16	5.30 ± 0.23	2.38 ± 0.24		
18	87.52 ± 1.09	46.04 ± 1.14	5.29 ± 0.23	2.37 ± 0.24		
20	98.70 ± 1.09	49.89 ± 1.13	5.36 ± 0.23	2.24 ± 0.24		
22	107.87 ± 1.08	56.46 ± 1.13	5.14 ± 0.23	2.53 ± 0.24		
24	117.40 ± 1.08	63.85 ± 1.13	5.01 ± 0.23	2.85 ± 0.24		
26	124.41 ± 1.08	69.08 ± 1.13	4.58 ± 0.23	2.78 ± 0.24		
28	134.62 ± 1.08	72.63 ± 1.13	4.73 ± 0.23	2.50 ± 0.24		
30	145.07 ± 1.08	81.00 ± 1.13	4.86 ± 0.23	2.96 ± 0.24		
32	156.58 ± 1.08	85.84 ± 1.13	5.07 ± 0.23	2.78 ± 0.24		
34	166.60 ± 1.08	91.13 ± 1.12	5.04 ± 0.23	2.74 ± 0.24		
36	177.15 ± 1.08	95.37 ± 1.12	5.07 ± 0.23	2.55 ± 0.24		
38	188.30 ± 1.08	97.05 ± 1.12	5.23 ± 0.23	2.07 ± 0.24		
40	196.25 ± 1.08	101.75 ± 1.13	4.89 ± 0.23	2.16 ± 0.24		
42	206.72 ± 1.08	104.80 ± 1.13	4.96 ± 0.23	1.97 ± 0.24		
44	216.74 ± 1.08	109.52 ± 1.13	4.99 ± 0.23	2.08 ± 0.24		
46	225.83 ± 1.08	116.11 ± 1.13	4.88 ± 0.23	2.43 ± 0.24		
48	236.10 ± 1.08	120.72 ± 1.13	4.94 ± 0.23	2.39 ± 0.24		

Table 1: The easting and northing coordinates and velocities are given with their standard deviations.

• Are results reliable and accurate?

I believe the results are reliable and accurate because the standard deviations dropped when the coordinates were smoothed and the state vector was a better approximation of the true values.

References

[1] M. Horemuž, "Kalman filtering," Royal Institute of Technology, Tech. Rep., 2014.

Table of Contents

Kalman Filter	1
Import numbers from excel	1
A priori statistics	1
State variables and Equations	1
FOR LOOP	
Smoothing	3
Plot	

Kalman Filter

Import numbers from excel

Measured values from sheet 1

```
data.s1 = xlsread('Measurement.xlsx');
meas.time = data.s1(1:25,1);
meas.east = data.s1(1:25,2);
meas.north = data.s1(1:25,3);
meas.speed = data.s1(1:25,4);
% True values from sheet 2
data.s2 = xlsread('Measurement.xlsx','True values');
true.time = data.s2(1:25,1);
true.east = data.s2(1:25,2);
true.north = data.s2(1:25,3);
true.vel_east = data.s2(1:25,4);
true.vel_north = data.s2(1:25,5);
```

A priori statistics

```
PSD = 0.01; % - PSD (power spectral density) of the
% random acceleration
meas.sd_coord = 3; % m - Standard error of measured coordinates
meas.sd_abs_vel = 0.5; % m/s - Standard error of measured
% abs. velocity
sd_ini_vel = 3; % m/s - Standard error of initial velocity
sd_ini_coord = 10; % m - Standard error of initial coordinates
ve = 3.53; % m/s
vn = 0.86; % m/s
dt = 2; % time difference -> 2 sec between measurements
```

State variables and Equations

```
xk = [meas.east(1) meas.north(1) ve vn];
```

```
xk = padarray(xk,24,0,'post');
xk = xk';
% Equation 4
F = zeros(4);
F(1,3) = 1;
F(2,4) = 1;
G = zeros(4,2);
G(3,1) = 1;
G(4,2) = 1;
% Equation 5
Tk = eye(length(F)) + dt * F;
% Equation 9
Q = [PSD 0; OPSD];
% Equation 11
QG = G*Q*G';
% Equation 12
Qk = QG * dt + (F*QG + QG*F')*dt^2/2 + F*QG*F'*dt^3/3;
% Equation 15
% covariance matrix of initial state
Qx(:,:,1) = diag([sd_ini_coord^2 ...
    sd_ini_coord^2 sd_ini_vel^2 sd_ini_vel^2]);
Rk = diag([meas.sd_coord meas.sd_coord meas.sd_abs_vel]);
Qxm_predicted = zeros(4,4,25);
```

FOR LOOP

```
for i=1:25
    % Equation 16 Time propagation
   xkm\_predicted(:,i) = Tk * xk(:,i);
         Qx = cov(xk(:,i));
   Qxm\_predicted(:,:,i) = Tk * Qx(:,:,i) * Tk' + Qk;
   vm_predicted = sqrt(xkm_predicted(3,i)^2 + ...
       xkm_predicted(4,i)^2); % should be equal to speed_meas(1)
   Hk(:,:,i) = [1,0,0,
                                0;...
        0, 1, 0,
                        0;...
        0, 0, xkm_predicted(3,i)/vm_predicted,
       xkm_predicted(4,i) /vm_predicted];
    % Equation 17 Gain
   Kk(:,:,i) = Qxm_predicted(:,:,i) * Hk(:,:,i)'*inv([Rk + ...
       Hk(:,:,i) * Qxm_predicted(:,:,i) * Hk(:,:,i)']);
   Lk(:,i) = [meas.east(i) meas.north(i)...
       meas.speed(i)]';
   hkm_predicted = [xkm_predicted(1,i) xkm_predicted(2,i) ...
        sqrt(xkm_predicted(3,i)^2 + xkm_predicted(4,i)^2)]';
   xk(:,i+1) = xkm\_predicted(:,i) + Kk(:,:,i)*[Lk(:,i) ...
        - hkm_predicted ]; % Equation18
         Measurement update
    % Equation 19
   Qx(:,:,i+1) = [eye(length(Kk(:,:,i)*...
       Hk(:,:,i))-Kk(:,:,i)*Hk(:,:,i)]*Qxm_predicted(:,:,i);
    % Equation 22
         Lk = [meas.east(i) meas.north(i)...
```

```
% sqrt((xk(3,i))^2 + (xk(4,i))^2)]';

% Hk = inv(xk(:,i))*Lk;
final.xplot(:,i+1) = xk(:,i);
and
```

Smoothing

Plot

```
final.x1 = xk(1,:)'; % final x values
final.y1 = xk(2,:)'; % final y values
meas.x2 = meas.east; % original x
meas.y2 = meas.north; % original y
true.x3 = true.east; % true x
true.y3 = true.north; % true y
figure('Units', 'pixels', ...
    'Position', [100 100 500 375]);
hold on;
y1_plot = plot(final.x1,final.y1, ... % Before Smoothing
xkhat(1,:),xkhat(2,:), ...
                                       % Smoothing
meas.x2,meas.y2, ...
                                       % Original
                                       % True Plot
true.x3,true.y3)
hTitle = title('Kalman filtering');
hXLabel = xlabel('Easting [m]');
hYLabel = ylabel('Northing [m]');
hLegend = legend(...
    'Before Smoothing',...
    'Smoothing',...
    'Original',...
    'True Plot',...
    'location','best');
set( gca
    'FontName' , 'Helvetica' );
set([hTitle, hXLabel, hYLabel], ...
    'FontName' , 'AvantGarde');
set([hLegend, gca]
    'FontSize' , 10
                               );
set([hXLabel, hYLabel] , ...
    'FontSize' , 11
                               );
```

Published with MATLAB® R2013a

Smoothed Estimations and standard deviations					
t	$x_e \pm \sigma_e$	$x_n \pm \sigma_n$	$v_e \pm \sigma_{v_e}$	$v_n \pm \sigma_{v_n}$	
0	5.20 ± 1.22	1.26 ± 1.53	4.92 ± 0.81	2.60 ± 2.47	
2	15.13 ± 0.42	6.48 ± 0.37	4.96 ± 0.37	2.62 ± 0.97	
4	25.14 ± 0.62	11.72 ± 0.41	4.98 ± 0.19	2.61 ± 0.46	
6	35.28 ± 0.62	16.90 ± 0.37	5.03 ± 0.07	2.57 ± 0.24	
8	45.53 ± 0.60	21.97 ± 0.46	5.10 ± 0.07	2.50 ± 0.10	
10	55.84 ± 0.59	26.94 ± 0.53	5.14 ± 0.10	2.47 ± 0.08	
12	66.18 ± 0.60	31.88 ± 0.58	5.17 ± 0.12	2.48 ± 0.12	
14	76.48 ± 0.61	36.87 ± 0.61	5.16 ± 0.12	2.52 ± 0.13	
16	86.66 ± 0.62	41.99 ± 0.63	5.13 ± 0.13	2.60 ± 0.13	
18	96.69 ± 0.63	47.24 ± 0.65	5.05 ± 0.13	2.66 ± 0.13	
20	106.60 ± 0.64	52.63 ± 0.65	4.98 ± 0.13	2.72 ± 0.13	
22	116.47 ± 0.64	58.11 ± 0.65	4.94 ± 0.13	2.74 ± 0.13	
24	126.38 ± 0.64	63.56 ± 0.65	4.94 ± 0.13	2.70 ± 0.13	
26	136.43 ± 0.65	68.90 ± 0.65	4.98 ± 0.13	2.64 ± 0.13	
28	146.56 ± 0.64	74.11 ± 0.65	5.05 ± 0.13	2.57 ± 0.13	
30	156.71 ± 0.65	79.17 ± 0.65	5.08 ± 0.13	2.47 ± 0.13	
32	166.79 ± 0.64	83.98 ± 0.66	5.06 ± 0.13	2.34 ± 0.13	
34	176.81 ± 0.65	88.56 ± 0.66	5.03 ± 0.13	2.25 ± 0.13	
36	186.75 ± 0.65	92.99 ± 0.67	4.99 ± 0.13	2.19 ± 0.13	
38	196.63 ± 0.65	97.39 ± 0.67	4.95 ± 0.13	2.21 ± 0.14	
40	206.49 ± 0.65	101.87 ± 0.67	4.93 ± 0.14	2.26 ± 0.14	
42	216.34 ± 0.67	106.45 ± 0.68	4.93 ± 0.15	2.32 ± 0.15	
44	226.22 ± 0.73	111.15 ± 0.74	4.93 ± 0.16	2.38 ± 0.17	
46	236.10 ± 0.85	115.93 ± 0.88	4.94 ± 0.19	2.40 ± 0.20	

Table 2: The easting and northing coordinates and velocities are given with their standard deviations.

Figure 4: Plot of differences between true values and the filtered and smoothed velocities.