国际经济学

短期汇率决定理论:一种资产方法

鲁晓东

岭南学院 中山大学

2018年11月10日

提纲

- 1 Motivation
- 2 UIP 无抛补利率平价理论
- 3 comparative static 比较静态分析
- 4 CIP 有抛补利率平价理论

- 1 Motivation
- 2 UIP 无抛补利率平价理论
- 3 comparative static 比较静态分析
- 4 CIP 有抛补利率平价理论

Motivation

- 外汇是一种货币,还是一种资产?
- 由于投资者可以在本国债券 (存款) 和外国债券 (存款) 中实现转换, 因此汇率可以被视为资产的相对价格
- 资产的价格由它的供给和需求决定
- 影响一项资产需求的因素有哪些?其中最重要的因素是什么?

本节的内容就是从资产的视角来讨论汇率的决定,可以称为**汇率的资产理论(**asset approach to exchange rates

 Motivation
 UIP 无抛补利率平价理论
 comparative static 比较静态分析
 CIP 有抛补利率平价理论

Arbitrage and Interest Rates

- Overview of the two kinds of arbitrage
 - Exchange rate risk refers to changes in the value of an asset due to a change in the exchange rate.
- Risky arbitrage 风险套利
 - Investor does not cover the risk and invests according to the current and expected future exchange rate.
 - Since the future spot exchange rate is not know, there is exchange rate risk —the investor is not covered against this risk
 - No-arbitrage condition is known as uncovered interest parity (UIP).
- Riskless arbitrage 无风险套利
 - Investor covers the risk of the exchange rate changing in the future by using a forward contract.
 - No exchange rate risk because there is no chance the exchange rate on the contract will change.
 - No-arbitrage condition is known as covered interest parity (CIP).

国际经济学 2018 年 11 月 10 日

Building Block of UIP

Home

Input of the model: known variables (exogenous variables)

Nominal interest rate, $i_{\$}$ Expected future exchange rate, $E_{\$/\epsilon}$ Output of the model: unknown variables (endogenous variables)

Exchange rate, i_{ϵ} Exchange rate, i_{ϵ}

鲁晓东

- 1 Motivation
- 2 UIP 无抛补利率平价理论
- 3 comparative static 比较静态分析
- 4 CIP 有抛补利率平价理论

The Demand for Currency

- Most important determinant of demand: belief about future value
 - Expected rate of return
 - Expected future exchange rate
- Rate of return definitions:
 - Rate of return: the % change in value that an asset offers during a time period
 - Real rate of return: inflation-adjusted rate of return
 - if inflation=0 ⇒ rate of return=real rate of return

国际

Some other considerations

- In addition to expected return, investors care about:
 - 1 risk: Uncertainty about future real returns
 - 2 liquidity: Ease of selling currency?
- For now, we will ignore these considerations
- Assume certain knowledge of future, and liquid market

Comparing assets

Example: Should we invest in a US bond or a Euro bond?

- Return of 1 USD in US bonds in US $\Rightarrow R_{USD,t}$
- Return of 1 USD in Euro bonds in US: $\Rightarrow \left(\frac{E_{USD/EURO,t+1}^e}{E_{USD/EURO,t}}\right) (1 + R_{EURO,t}) 1$

A convenient approximation

- Return of 1 USD in Euro bonds in US: $\left(\frac{E_{USD/EURO,t+1}^e}{E_{USD/EURO,t}}\right)(1+R_{EURO,t})-1$
- $\blacksquare \text{ Some algebra: } R_{EURO,t} + \frac{E_{USD/EURO,t+1}^{\text{e}} E_{USD/EURO,t}}{E_{USD/EURO,t}} + R_{EURO,t} \frac{E_{USD/EURO,t+1}^{\text{e}} E_{USD/EURO,t}}{E_{USD/EURO,t}}$
- Final term is usually small
- Return of 1 USD in Euro bonds in US is approximately $R_{EURO,t} + rac{E_{USD/EURO,t+1}^v E_{USD/EURO,t}}{E_{USD/EURO,t}}$
- Euro interest rate plus the rate of depreciation of the USD against the Euro

鲁晓东

Using our approximation

- $\blacksquare \text{ Approximation } R_{EURO,t} + \frac{E_{USD/EURO,t+1}^e E_{USD/EURO,t}}{E_{USD/EURO,t}}$
- \blacksquare Buy the USD bond if: $R_{\textit{USD},t} R_{\textit{EURO},t} \frac{E_{\textit{USD}/\textit{EURO},t+1}^e E_{\textit{USD}/\textit{EURO},t}}{E_{\textit{USD}/\textit{EURO},t}} > 0$

Case studies

-3 Comparing	Comparing Dollar Rates of Return on Dollar and Euro Deposits			
Dollar Interest Rate	Euro Interest Rate $R_{m{\epsilon}}$	Expected Rate of Dollar Depreciation against Euro $\frac{E_{\$/\epsilon} - E_{\$/\epsilon}}{E_{\$/\epsilon}}$	Rate of Return Difference between Dollar and Euro Deposits $R_{\$} - R_{€} - \frac{(E_{\$/€}^{e} - E_{\$/€})}{E_{\$/€}}$	
Case R_{\S}				
0.10	0.06	0.00	0.04	
0.10	0.06	0.04	0.00	
0.10	0.06	0.08	-0.04	
0.10	0.12	-0.04	0.02	
	Dollar Interest Rate R _{\$} 0.10 0.10 0.10 0.10	Dollar Interest Rate Euro Interest Rate $R_{\$}$ $R_{€}$ 0.10 0.06 0.10 0.06 0.10 0.06 0.10 0.06	Dollar Interest Rate Euro Interest Rate Expected Rate of Dollar Depreciation against Euro R_{\S} R_{\S} R_{\S} 0.10 0.06 0.00 0.10 0.06 0.04 0.10 0.06 0.08	

小结

- We have seen who trades currency
- We have seen how currency is traded
- We have seen what drives currency demand
- Now (partial) equilibrium in the financial market

14 / 33

Before we begin

- Need to know how people form beliefs about future interest rates
- This is the concern of the next two chapters (next session)
- For now future exchange rate taken as given

Interest rate parity

- In equilibrium, all assets should give the same expected return
- Why?
- Using our approximation: $R_{USD,t} = R_{EURO,t} + \frac{E_{USD/EURO,t+1}^e E_{USD/EURO,t}}{E_{USD/EURO,t}}$

Interest rate parity

In other words, arbitrage ensures that the domestic interest rate equals the foreign interest rate plus the expected percentage depreciation of the domestic currency.

$$E_{USD/EURO,t+1}^{e} = E_{USD/EURO,t} \Rightarrow R_{USD,t} = R_{EURO,t}$$

Effect of current exchange rates on return

- All else equal (including future exchange rate)
 - Current depreciation of USD lowers the USD return on Euro bonds
 - Appreciation of USD raises the USD return on Euro bonds
- Intuitive, because depreciation means one can buy less Euros today!

鲁晓东 国际经济学 2018 年 11 月 10 日 18 / 33

Effect of current exchange rates on return

Today's Dollar/Euro Exchange Rate	Interest Rate on Euro Deposits	Expected Dollar Depreciation Rate against Euro	Expected Dollar Return on Euro Deposits
$E_{\S/\epsilon}$	R_{ϵ}	$\frac{1.05-E_{\$/\epsilon}}{E_{\$/\epsilon}}$	$R_{\in} + \frac{1.05 - E_{\$/}}{E_{\$/} \in}$
1.07	0.05	-0.019	0.031
1.05	0.05	0.00	0.05
1.03	0.05	0.019	0.069
1.02	0.05	0.029	0.079
1.00	0.05	0.05	0.10

Table 14-3: Comparing Dollar Rates of Return on Dollar and Euro Deposits

- Same thing in a chart rather than a table
- Remember, keep future exchange rates fixed

Equilibrium in the Foreign Exchange Market

The 'Equilibrium Exchange Rate'

- Assume that the USD interest rate R_{USD} , the Euro interest rate R_{EURO} , and the expected future USD/EURO exchange rate E_e , are all given
- Basically, solve our parity condition for $E_{USD/EURO,t}$

$$R_{USD,t} = R_{EURO,t} + \frac{E_{USD/EURO,t+1}^{e} - E_{USD/EURO,t}}{E_{USD/EURO,t}}$$

Equilibrium exchange rate

$$R_{USD,t} = R_{EURO,t} + \frac{E_{USD/EURO,t+1}^{c} - E_{USD/EURO,t}}{E_{USD/EURO,t}}$$
 美元兑欧元的即期汇率由三个因素决定: 两国存款利率、预期汇率

FIGURE 14-4

Determination of the Equilibrium Dollar/Euro Exchange Rate

Equilibrium in the foreign exchange market is at point 1, where the expected dollar returns on dollar and euro deposits are equal.

- 1 Motivation
- 2 UIP 无抛补利率平价理论
- 3 comparative static 比较静态分析
- 4 CIP 有抛补利率平价理论

Changing interest rates and exchange rate

$$R_{USD,t} = R_{EURO,t} + \frac{E_{USD/EURO,t+1}^{e} - E_{USD/EURO,t}}{E_{USD/EURO,t}}$$

Rise in interest rate results in current currency appreciation

FIGURE 14-5 Effect of a Rise in the Dollar Interest Rate

A rise in the interest rate offered by dollar deposits from R_s^1 to R_s^2 causes the dollar to appreciate from $E_{s/e}^1$ (point 1) to $E_{s/e}^2$ (point 2).

Changing interest rates and exchange rate

$$R_{USD,t} = R_{EURO,t} + \frac{E_{USD/EURO,t+1}^{e} - E_{USD/EURO,t}}{E_{USD/EURO,t}}$$

Rise in interest rate of Euro results in current currency deppreciation

FIGURE 14-6

Effect of a Rise in the Euro Interest Rate

A rise in the interest rate paid by euro deposits causes the dollar to depreciate from $E_{\frac{1}{2}/6}$ (point 1) to $E_{\frac{3}{2}/6}$ (point 2). (This figure also describes the effect of a rise in the expected future \$% exchange rate.)

25 / 33

Changing future exchange rate and current exchange rate

$$R_{USD,t} = R_{EURO,t} + \frac{E_{USD/EURO,t+1}^{e} - E_{USD/EURO,t}}{E_{USD/EURO,t}}$$

a rise in the expected future exchange rate causes a rise in the current exchange rate

FIGURE 14-6

Effect of a Rise in the Euro Interest Rate

A rise in the interest rate paid by euro deposits causes the dollar to depreciate from $E_{\frac{1}{2}/6}^1$ (point 1) to $E_{\frac{5}{2}/6}^2$ (point 2). (This figure also describes the effect of a rise in the expected future \$\epsilon \epsilon \ext{exchange rate.})

- 1 Motivation
- 2 UIP 无抛补利率平价理论
- 3 comparative static 比较静态分析
- 4 CIP 有抛补利率平价理论

Riskless Arbitrage: Covered Interest Parity

- Forward Exchange Rate
 - The price of forward contracts.
 - Forward contracts allow investors holding deposits in foreign currencies to be certain about the future value of these deposits (measured in home currency).
 - No exchange rate risk in the future.
- Riskless arbitrage implies that the rate of return on identical investments in two different locations will generate the same rate of return.

Example

- Consider investing \$1 in a bank deposit in two places: New York and Europe.
 - In one year, you will earn a $(1 + i_{\$})$ rate of return in dollars in the account in New York.
 - In one year, you will earn a $(1+i_{\epsilon})$ rate of return in euros in the account in Europe.
- Not comparable! Different currencies!
- We must calculate the dollar return in Europe:
 - Today, one U.S. dollar buys $1/E_{\$/€}$ euros.
 - In one year, you will have $(1 + i_{\epsilon})/E_{\$/\epsilon}$ euros.
 - You do not know the $E_{\$/\epsilon}$ spot exchange rate that will prevail in one year when you convert your euros back into U.S. dollars
 - You may choose to employ a forward contract to cover this risk.
 - In this case, your rate of return on the European deposit would be $(1+i_{\epsilon})F_{\$/\epsilon}/E_{\$/\epsilon}$ U.S. dollars.
- Riskless arbitrage implies these two strategies will yield the same rate of return in dollars

Covered Interest Parity (CIP) condition

- No arbitrage condition
- For the market to be in equilibrium the riskless returns must be equal when expressed in a common currency:

$$\underbrace{\left(1+i_{\$}\right)}_{\text{gross dollar return}} = \underbrace{\left(1+i_{\$}\right)}_{\text{gross dollar return}} \underbrace{F_{\$/\$}}_{\text{gross dollar return}}$$

鲁晓东

Riskless Arbitrage: Covered Interest Parity

What Determines the Forward Rate?

- Covered interest parity is a no-arbitrage
- covered interest parity can be seen as providing us with a theory of what determines the forward exchange rate condition

$$F_{\text{s/e}} = E_{\text{s/e}} \frac{1 + i_{\text{s}}}{1 + i_{\text{e}}}$$

- In practice, this is exactly how the forex market works and how the price of a forward contract is set.
- CIP 和 UIP 分别确定了及其和远期汇率,但是它们都是基于利率水平的,那么利率又是如何确定的呢? next chapter

Summary

Chapter 13:

- National income accounting
- Measuring value of a nation's annual production
- Balance of payments accounting
- Measuring a nation's debt to other countries

Chapter 14:

- Currency markets
- Currency demand
- Interest rate parity
- Partial equilibrium ex. rate determination