IN THE CLAIMS:

The following is a listing of the pending claims. This listing of the Claims replaces all prior versions and listings of the Claims in the application. Please amend the Claims as indicated hereinbelow. Any Claim that is cancelled is cancelled without prejudice.

1-19. (Cancelled)

20. (Currently Amended) A method for the prophylaxis or treatment of migraine headaches in a patient comprising administering to said patient a headache relieving effective amount of a compound of the formula:

wherein

R is aryl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group or electron donating group;

 R_1 is lower alkyl_and R_1 is unsubstituted or substituted with an electron donating group or electron withdrawing group;

R₂ is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y,

R₃ is lower alkyl, lower alkynyl, aryl, aryl lower alkyl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower

cycloalkyl lower alkyl or ZY; wherein R₂ and R₃ may be unsubstituted or substituted with at least one electron withdrawing group or electron donating group and wherein heterocyclic in R₂ and R₃ is furyl, thienyl, pyrazolyl, pyrrolyl, imidazolyl, indoyl, thiazolyl, oxazolyl, isothiazolyl, isoxazolyl; piperidyl, pyrrolinyl, piperazinyl, quinolyl, triazoyl, tetrazolyl, isoquinolyl, benzofuryl, benzothienyl, morpholinyl, benzoxazolyl, tetrahydrofuryl, pyranyl, indazolyl, purinyl, indolinyl, pyrazolindinyl, imidazolinyl, imidazolindinyl, pyrrolidinyl, furazanyl, N-methylindolyl, methylfuryl, pyridazinyl, pyrimidinyl, pyrazinyl, epoxy, aziridino, oxetanyl, or azetidinyl;

Z is O, \underline{S} or NR₆';

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower alkynyl, and Y may be unsubstituted or substituted with an electron donating group or an electron withdrawing group, or

ZY taken together is NR₄NR₅R₇, NR₄OR₅, or ONR₄R₇

R₄ and R₅ are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower alkynyl, wherein R₄ and R₅ are independently unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

 R_6 ' is hydrogen or lower alkyl and R_6 ' may be unsubstituted or substituted with an electron withdrawing group or an electron donating group;

R₇ is COOR₈ COR₈, hydrogen, lower alkyl, aryl, or aryl lower alkyl, which R₇ may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

R₈ is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

n is 1;

wherein

the electron withdrawing group and electron donating group are selected from the group consisting of halo, nitro, lower alkenyl, lower alkynyl, formyl, aryl, trifluoromethyl, aryl lower alkanoyl, hydroxy, lower alkoxy, lower alkyl, mercapto, lower alkylthio and lower alkyldithio.

- 21. (Previously Presented) The method according to Claim 20 wherein R₂ is hydrogen.
- 22-24. (Cancelled)
- 25. (Previously Presented) The method according to Claim 20 wherein R₂ is hydrogen, lower alkyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl or ZY; and R₃ is lower alkyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl or ZY; wherein R₂ and R₃ are independently unsubstituted or substituted with said electron withdrawing group or electron donating group.
- 26. (Previously Presented) The method according to Claim 25 wherein R₂ is hydrogen and R₃ is lower alkyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, or ZY;

which R₃ may be unsubstituted or substituted with said electron withdrawing group or electron donating group.

- 27. (Previously Presented) The method according to Claim 26 wherein R₂ is hydrogen and R₃ is lower alkyl, which may be unsubstituted or substituted with said electron donating or electron withdrawing group.
- 28. (Previously Presented) The method according to Claim 26 wherein R₃ is lower alkyl which is unsubstituted or substituted with hydroxy or lower alkoxy or NR₄OR₅ wherein R₄, and R₅ are independently hydrogen or lower alkyl, R is aryl lower alkyl, which aryl group may be unsubstituted or substituted with said electron withdrawing group and R₁ is lower alkyl.
 - 29. (Original) The method according to Claim 26 wherein R₃ is heterocyclic.
- 30. (Original) The method according to Claim 29 wherein heterocyclic is heteroaromatic.
- 31. (Original) The method according to Claim 30 wherein R₃ is furyl, pyridyl, thienyl or thiazolyl.
 - 32. (Original) The method according to Claim 28 wherein aryl is phenyl.

- 33. (Original) The method according to Claim 28 wherein aryl is phenyl and is unsubstituted or substituted with halo.
- 34. (Previously Presented) The method according to Claim 20 wherein the compound is

(R)-N-Benzyl-2 acetamido-3-methoxy- propionamide;

O-methyl-N-acetyl-D-serine-m-fluorobenzylamide;

O-methyl-N-acetyl-D-serine-p-fluorobenzylamide;

N-acetyl-D-phenylglycinebenzylamide;

D-1,2-(N, O-dimethylhydroxylamino)-2 acetamide acetic acid benzylamide; or

D-1,2-(O-methylhydroxylamino)-2-acetamide acetic acid benzylamide.

35-55. (Cancelled)

56. (Original) The method according to Claim 20 wherein the carbon atom which is substituted by R₂ and R₃ is in the D configuration.

57-62. (Cancelled)

63. (Previously Presented) The method according to Claim 20 wherein Ar is unsubstituted aryl or aryl substituted with said electron donating or electron withdrawing group and wherein the compound has the formula:

and Q is lower alkoxy.

- 64. (Original) The method according to Claim 63 wherein Q is methoxy.
- 65. (Original) The method according to Claim 63 wherein Q is methoxy and Ar is unsubstituted aryl or aryl substituted with halo.
- 66. (Original) The method according to Claim 63 wherein the carbon atom which is bonded to CH₂Q is in the D configuration.
- 67. (Original) The method according to Claim 63 wherein the carbon atom which is bonded to CH₂Q is in the D configuration.

68-72. (Cancelled)

73. (Previously Presented) The method according to Claim 63 wherein Ar is unsubstituted aryl or aryl substituted with halo.

- 74. (Previously Presented) The method according to Claim 20 wherein R is benzyl which may be unsubstituted or substituted with an electron withdrawing group or electron donating group.
 - 75. (Previously Presented) The method according to Claim 20 where R_1 is methyl.
- 76. (Previously Presented) The method according to Claim 20 wherein R is benzyl, R₁ is lower alkyl and R₂ is hydrogen.
- 77. (Previously Presented) The method according to Claim 76 wherein R₃ is CH₂Q, NR₄OR₅ or NR₄NR₅R₇, wherein Q is lower alkoxy, R₄ is hydrogen or alkyl containing 1-3 carbon atoms, R₅ is hydrogen or alkyl containing 1-3 carbon atoms and R₇ is hydrogen or alkyl containing 1-3 carbon atoms.
 - 78. (Previously Presented) The method according to Claim 77 wherein R_3 is CH_2Q .
- 79. (Previously Presented) The method according to Claim 20 wherein R₁ is methyl, R is benzyl, R₂ is hydrogen, and R₃ is CH₂Q wherein Q is methoxy.
- 80. (Previously Presented) The method according to Claim 20 wherein R₁ is methyl, R is m-fluorobenzyl, R₂ is H and R₃ is CH₂Q, wherein Q is methoxy.

- 81. (Previously Presented) The method according to Claim 20 wherein R_1 is methyl, R is p-fluorobenzyl, R_2 is H, and R_3 is CH_2Q wherein Q is methoxy.
- 82. (Previously Presented) The method according to Claim 20 wherein R_1 is methyl, R_2 is hydrogen and R_3 is phenyl.
- 83. (Previously Presented) The method according to Claim 20 wherein R_1 is methyl, R is benzyl, R_2 is hydrogen and R_3 is $N(CH_3)OCH_3$.
- 84. (Previously Presented) The method according to Claim 20 wherein R_1 is methyl, R is benzyl, R_2 is hydrogen and R_3 is NH(OCH₃).
- 85. (Previously Presented) The method according to Claim 20 wherein R₁ is methyl, R is fluorophenyl, R₂ is H, and R₃ is CH₂Q, wherein Q is methoxy.
- 86. (Currently Amended) A method for the prophylaxis or treatment of migraine headaches in a patient comprising administering to said patient a headache relieving effective amount of a compound of the formula:

$$\begin{array}{c|c} R - NH - \begin{array}{c|c} & R_2 \\ \hline & C - CNH - \\ \hline & D \end{array} \begin{array}{c} C - R_1 \\ \hline & O \end{array}$$
wherein

R is aryl lower alkyl and R is unsubstituted or is substituted with at least one electron withdrawing group or electron donating group selected from the group consisting of halo, nitro, lower alkenyl, lower alkynyl, formyl, aryl, trifluoromethyl, aryl lower alkanoyl, hydroxy, lower alkoxy, lower alkyl, mercapto, lower alkylthio, and lower alkyldithio;

R₁ is methyl, and is unsubstituted or substituted with an electron donating group or an electron withdrawing group selected from the group consisting of halo, nitro, lower alkenyl, lower alkynyl, formyl, aryl, trifluoromethyl, lower alkoxy carbonyl, aryl lower alkanoyl, hydroxy, lower alkoxy, lower alkyl, mercapto, lower alkylthio, and lower alkyldithio;

R₂ is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, or ZY;

R₃ is lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl or ZY;

wherein R₂ and R₃ may be unsubstituted or substituted with at least one electron withdrawing group or electron donating group and wherein heterocyclic in R₂ and R₃ is furyl, thienyl, pyrazolyl, pyrrolyl, imidazolyl, indolyl, thiazolyl, oxazolyl, isothiazolyl, isoxazolyl, piperidyl, pyrrolinyl, piperazinyl, quinolyl, triazolyl, tetrazolyl, isoquinolyl, benzofuryl, benzothienyl, morpholinyl, benzoxazolyl, tetrahydrofuryl, pyranyl, indazolyl, purinyl, indolinyl, pyrazolindinyl, imidazolinyl, imidazolindinyl, pyrrolidinyl, furazanyl, N-methylindolyl, methylfuryl, pyridazinyl, pyrimidinyl, pyrazinyl, epoxy, aziridino, oxetanyl or azetidinyl;

Z is O, \underline{S} , or NR₆';

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl or lower alkynyl, and Y may be unsubstituted or substituted with an electron donating group or an electron withdrawing group, or

ZY taken together is NR₄NR₅R₇, NR₄OR₅, or ONR₄R₇;

R₆' is hydrogen or lower alkyl;

R₄ and R₅ are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower alkynyl, and R₄ and R₅ may be independently unsubstituted or substituted with an electron withdrawing group or an electron donating group;

R₇ is COOR₈, COR₈, hydrogen, lower alkyl, aryl or aryl lower alkyl, which R₇ may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

R₈ is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

n is 1.

- 87. (Previously Presented) The method according to Claim 86 wherein R₁ is methyl which is unsubstituted.
- 88. (Previously Presented) The method according to Claim 86 wherein R is benzyl, which is unsubstituted or substituted on the phenyl ring with said electron donating group or electron withdrawing group.

- 89. (Previously Presented) The method according to Claim 87 wherein R is benzyl, which is unsubstituted or substituted on the phenyl ring with said electron donating group or electron withdrawing group.
 - 90. (Previously Presented) The method according to Claim 86 wherein R_2 is hydrogen.
 - 91. (Previously Presented) The method according to Claim 87 wherein R_2 is hydrogen.
 - 92. (Previously Presented) The method according to Claim 88 wherein R₂ is hydrogen.
 - 93. (Previously Presented) The method according to Claim 89 wherein R₂ is hydrogen.
- 94. (Previously Presented) The method according to Claim 86 wherein R₃ is a lower alkyl which is unsubstituted or substituted with an electron donating group or electron withdrawing group selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, aryl, carboxyamido, trifluoromethyl, lower alkoxycarbonyl, aryl lower alkanoyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, dilower alkylamino, aryloxy, mercapto or lower alkylthio.
- 95. (Previously Presented) The method according to Claim 87 wherein R₃ is a lower alkyl which is unsubstituted or substituted with an electron donating group or electron

withdrawing group selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, aryl, carboxyamido, trifluoromethyl, lower alkoxycarbonyl, aryl lower alkanoyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, dilower alkylamino, aryloxy, mercapto or lower alkylthio.

96. (Previously Presented) The method according to Claim 88 wherein R₃ is a lower alkyl which is unsubstituted or substituted with an electron donating group or electron withdrawing group selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, aryl, carboxyamido, trifluoromethyl, lower alkoxycarbonyl, aryl lower alkanoyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, dilower alkylamino, aryloxy, mercapto or lower alkylthio.

97. (Previously Presented) The method according to Claim 89 wherein R₃ is a lower alkyl which is unsubstituted or substituted with an electron donating group or electron withdrawing group selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, aryl, carboxyamido, trifluoromethyl, lower alkoxycarbonyl, aryl lower alkanoyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, dilower alkylamino, aryloxy, mercapto or lower alkylthio.

98. (Previously Presented) The method according to Claim 90 wherein R₃ is a lower alkyl which is unsubstituted or substituted with an electron donating group or electron withdrawing group selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, aryl, carboxyamido, trifluoromethyl, lower alkoxycarbonyl, aryl lower

alkanoyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, dilower alkylamino, aryloxy, mercapto or lower alkylthio.

99. (Previously Presented) The method according to Claim 91 wherein R₃ is a lower alkyl which is unsubstituted or substituted with an electron donating group or electron withdrawing group selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, aryl, carboxyamido, trifluoromethyl, lower alkoxycarbonyl, aryl lower alkanoyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, dilower alkylamino, aryloxy, mercapto or lower alkylthio.

100. (Previously Presented) The method according to Claim 92 wherein R₃ is a lower alkyl which is unsubstituted or substituted with an electron donating group or electron withdrawing group selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, aryl, carboxyamido, trifluoromethyl, lower alkoxycarbonyl, aryl lower alkanoyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, dilower alkylamino, aryloxy, mercapto or lower alkylthio.

101. (Previously Presented) The method according to Claim 93 wherein R₃ is a lower alkyl which is unsubstituted or substituted with an electron donating group or electron withdrawing group selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, aryl, carboxyamido, trifluoromethyl, lower alkoxycarbonyl, aryl lower alkanoyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, dilower alkylamino, aryloxy, mercapto or lower alkylthio.

- 102. (Previously Presented) The method according to any one of Claims 86-101 wherein R₃ is lower alkyl substituted by said electron donating group.
- 103. (Previously Presented) The method according to Claim 102 wherein R_3 is lower alkyl substituted by lower alkoxy.