Higher Linear Algebra MATH2621 UNSW

Jeremy Le *

2023T2

Contents

1	Assumed Knowledge	3
2	Inequalities and Sets of Complex Numbers2.1 Equalities and Inequalities2.2 Properties of Sets2.3 Arcs	3 3 4
3	Functions of a Complex Variable 3.1 The function $w = 1/z$	5 5
4	Limits and Continuity 4.1 Limits	6 6 8
5	Complex Differentiability5.1 The Cauchy-Riemann Equations5.2 Properties of the Derivative5.3 Inverse Functions5.4 Differentiable Definition	8 9 9 10 10
6	Harmonic Functions	11
7	Power Series	11
8	Exponential, Hyperbolic and Trigonometric Functions 8.1 The Exponential Function	13 13 13 14

^{*}With some inspiration from Hussain Nawaz's Notes

9	Logarithms and Roots	14
10	Inverses of Exponential and Related Functions	15
	10.1 The Exponential Function	15
	10.2 Complex Powers	15
	10.3 Inverse Hyperbolic Trigonometric Functions	16
11	Contour Integrals	16
12	The Cauchy-Goursat Theorem	18
	12.1 Simply Connected Domains	18
	12.2 Multiply Connected Domains	18
13	Cauchy's Integral Formula	19
14	Morera's Theorem and Analytic Continuation	20
	14.1 Morera's Theorem	20
	14.2 Analytic Continuation	20

1 Assumed Knowledge

- the definition of complex numbers,
- their arithmetic,
- Cartesian and polar representations,
- the Argand diagram,
- de Moivre's theorem, and
- extracting *n*th roots of complex numbers.

2 Inequalities and Sets of Complex Numbers

2.1 Equalities and Inequalities

Modulus Squared of a Sum For all complex numbers w and z,

$$|w + z|^2 = |w|^2 + 2\operatorname{Re}(w\bar{z}) + |z|^2.$$

Triangle Inequality For all complex numbers w and z,

$$|w+z| \le |w| + |z| \qquad \forall w, z, \in \mathbb{C}.$$

Circle Inequality For all complex numbers w and z,

$$||w| - |z|| \le |w - z|.$$

Modulus of e^z If $z \in \mathbb{C}$, then

$$|e^z| = e^{\operatorname{Re}(z)}.$$

Modolus of $e^z - 1$ inequality For all real numbers θ ,

$$|e^{i\theta} - 1| \le |\theta|.$$

2.2 Properties of Sets

Open Ball The open ball with centre z_0 and radius ϵ , written $B(z_0, \epsilon)$, is the set $\{z \in \mathbb{C} : |z - z_0| < \epsilon\}$.

Punctured Open Ball The punctured open ball with centre z_0 and radius ϵ , written $B^{\circ}(z_0, \epsilon)$, is the set $\{z \in \mathbb{C} : 0 < |z - z_0| < \epsilon\}$.

Interior, Exterior and Boundary Points Suppose that $S \subseteq \mathbb{C}$. For any point z_0 in \mathbb{C} , there are three mutually exclusive and exhaustive possibilities:

- (1) When the positive real number ϵ is sufficiently small, $B(z_0, \epsilon)$ is a subset of S, that is, $B(z_0, \epsilon) \cap S = B(z_0, \epsilon)$. In this case, z_0 is an interior point of S.
- (2) When the positive real number *epsilon* is sufficiently small, $B(z_0, \epsilon)$ does not meet S, that is, $B(z_0, \epsilon)$ $cap S = \emptyset$. In this case, z_0 is an exterior point of S.
- (3) No matter how small the positive real number ϵ is, neither of the above holds, that is, $\emptyset \subset B(z_0, \epsilon) \cap S \subset B(z_0, \epsilon)$. In this case, z_0 is a boundary point of S.

Open, Closed, Closure, Bounded, Compact, Region Sets Suppose that $S \subseteq \mathbb{C}$.

- (1) The set S is open if all its points are interior points.
- (2) The set S is closed if it contains all of its boundary points, or equivalently, if its complement $\mathbb{C} \setminus S$ is open.
- (3) The closure of the set S is the set consisting of the points of S together with the boundary points of S.
- (4) The set is bounded if $S \subseteq B(0, R)$ for some $R \in \mathbb{R}^+$
- (5) The set S is compact if it is both closed and bounded.
- (6) The set S is a region if it is an open set together with none, some, or all of its boundary points.

2.3 Arcs

Polygonal Arc A polygonal arc is a finite sequence of finite directed line segments, where the end point of one line segment is the initial point of the next one.

Simple Closed Polygonal Arc A simple closed polygonal arc is a polygonal arc that does not cross itself, but the final point of the last segment is the initial point of the first segment.

Interior and Exterior Arc The complement of a simple closed polygonal arc is made up of two pieces: one, the interior of the arc, is bounded, and the other, exterior is not.

Polygonally Path-connectedness Let $X \subseteq \mathbb{C}$ be a subset of the complex plane.

- (1) The set X is polygonally path-connected if any two points of X can be joined by a polygonal arc lying inside X.
- (2) The set X is simply polygonally connected if it is polygonally path-connected and if the interior of every simple closed polygonal arc in X lies in X, that is, if "X has no holes".
- (3) The set X is a domain if it is open and polygonally path-connected.

3 Functions of a Complex Variable

Complex Function A complex function is one whose domain, or whose range, or both, is a subset of the complex plane \mathbb{C} that is not a subset of the real line \mathbb{R} .

Complex Polynomial A complex polynomial is a function $p: \mathbb{C} \to \mathbb{C}$ of the form

$$p(z) = a_d z^d + \dots + a_1 z + a_0,$$

where $a_d, \ldots, a_1, a_0 \in \mathbb{C}$. If $a_d \neq 0$, we say that p is of degree d. A rational function is a quotient of polynomials.

The Fundamental Theorem of Algebra Every nonconstant complex polynomial p of degree d factorizes: there exists $\alpha_1, \alpha_2, \ldots, \alpha_d$ and c in \mathbb{C} such that

$$p(z) = c \prod_{j=1}^{d} (z - a_j).$$

Polynomial Division and Partial Fractions Suppose that p and q are polynomials. Then

$$\frac{p(z)}{q(z)} = s(z) + \frac{r(z)}{q(z)},$$

where r and s are polynomials, and the degree of r is strictly less than the degree of q. Further, if

$$q(z) = c \prod_{j=1}^{e} (z - \beta_j)^{m_j},$$

then we may decompose the term r/q into partial fractions:

$$\frac{r(z)}{q(z)} = \sum_{j=1}^{e} \sum_{k=1}^{m_j} \frac{a_{jk}}{(z - \beta_j)^k}.$$

Real and Imaginary Parts To a function $f: S \to \mathbb{C}$, where $S \subseteq \mathbb{C}$, we associate two real-valued functions u and v of two real variables:

$$f(x+iy) = u(x,y) + iv(x,y).$$

Then $u(x,y) = \operatorname{Re} f(x+iy)$ and $v(x,y) = \operatorname{Im} f(x+iy)$.

3.1 The function w = 1/z

Consider the mapping w = 1/z.

(1) The image of a line through 0 (with the origin removed) is a line through 0 (with the origin removed).

- (2) The image of a line that does not pass through 0 is a circle (with the origin removed). If p is the closest point on the line to 0, then the line segment between 0 and 1/p is a diameter of the circle.
- (3) The image of a circle that passes through 0 is a line. If q is the furthest point on the circle from 0, then the closest point on the line to 0 is 1/q.
- (4) The image of a circle that does not pass through 0 is a circle. If p and q are the closest and furthest point on the circle from 0, then the closest and furthest point on the image circle to 0 are 1/q and 1/p.

3.2 Fractional Linear Transformations

Factorising Matrices Every 2×2 complex matrix with determinant 1 may be written as a product f at most three matrices of the following special types:

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$
 and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Image of Lines and Circles Let T_M be a fractional linear transformation. Then the image of a line under T_M is a line or a circle, and the image of a circle under T_M is also a line or a circle.

4 Limits and Continuity

4.1 Limits

Definition of a Limit Suppose that f is a complex function and that z_0 is in Domain $(f)^-$. We say that f(z) tends to ℓ as z tends to z_0 , or that ℓ is the limit of f(z) as z tends to z_0 , and we write $f(z) \to \ell$ as $z \to z_0$, or

$$\lim_{z \to z_0} f(z) = \ell,$$

if, for every $\epsilon \in \mathbb{R}^+$, there exists $\delta \in \mathbb{R}^+$ such that $|f(z) - \ell| < \epsilon$ provided that z is in $\operatorname{Domain}(f)$ and $0 < |z - z_0| < \delta$.

Limit within a Subset Suppose also S is a subset of Domain(f) and that $z_0 \in \overline{S}$. We say that f(z) tends to ℓ as z tends to z_0 in S, or that ℓ is the limit of f(z) as z tends to z_0 in S, and write $f(z) \to \ell$ as $z \to z_0$ in S, or

$$\lim_{\substack{z \to z_0 \\ z \in S}} f(z) = \ell,$$

if, for every $\epsilon \in \mathbb{R}^+$, there exists $\delta \in \mathbb{R}^+$ such that $|f(z) - \ell| < \epsilon$ provided that $z \in S$ and $0 < |z - z_0| < \delta$.

Limits at Infinity Suppose that f is a complex function, that $\ell \in \mathbb{C} \subset \{\infty\}$, and that either $z_0 \in \text{Domain}(f)^-$ or Domain(f) is not bounded and $z_0 = \infty$. We say that f(z) tends to ℓ as z tends to z_0 , or that ℓ is the limit of f(z) as z tends to z_0 , and we write $f(z) \to \ell$ as $z \to z_0$, or

$$\lim_{z \to z_0} f(z) = \ell,$$

if for all $\epsilon \in \mathbb{R}^+$, there exists $\delta \in \mathbb{R}^+$ such that $f(z) \in B(\ell, \epsilon)$ provided that $z \in B^{\circ}(z_0, \delta)$.

Standard Limits Suppose that $\alpha, c \in \mathbb{C}$. Then

$$\lim_{z \to \alpha} c = c$$

$$\lim_{z \to \alpha} z - c = \alpha - c$$

$$\lim_{z \to \alpha} \frac{1}{z - \alpha} = \infty$$

$$\lim_{z \to \alpha} \frac{1}{z - \alpha} = 0$$

Lemmas on Limits

- 1. Suppose that f is a complex function, that $T \subseteq S \subseteq \text{Domain}(f)$, and that $z_0 \in \overline{T}$. If $\lim_{\substack{z \to z_0 \ z \in S}} f(z)$ exists, then so does $\lim_{\substack{z \to z_0 \ z \in T}} f(z)$, and they are equal.
- 2. Suppose that f is a complex function, and that $z_0 \in \text{Domain}(f)^-$. If $\lim_{z \to z_0} f(z)$ exists, then it is unique.

Algebra of Limits Suppose that f and g are complex functions and that $c \in \mathbb{C}$. Then

$$\lim_{z \to z_0} cf(z) = c \lim_{z \to z_0} f(z)$$

$$\lim_{z \to z_0} f(z) + g(z) = \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z)$$

$$\lim_{z \to z_0} f(z)g(z) = \lim_{z \to z_0} f(z) \lim_{z \to z_0} g(z)$$

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)},$$

in the sense that if the right hand side exists, then so does the left hand size and they are equal. In particular, for the quotient, we require that $\lim_{z\to z_0} g(z) \neq 0$.

Limits and Complex Conjugation Suppose that f is a complex function and that either Domain(f) is unbounded and $z_0 = \infty$ or $z_0 \in \text{Domain}(f)^-$. Then

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} f(z)$$

$$\lim_{z \to z_0} \operatorname{Re}(f(z)) = \operatorname{Re} \lim_{z \to z_0} f(z)$$

$$\lim_{z \to z_0} \operatorname{Im}(f(z)) = \operatorname{Im} \lim_{z \to z_0} f(z)$$

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} \operatorname{Re}(f(z)) + i \lim_{z \to z_0} \operatorname{Im}(f(z)),$$

in the sense that if the right hand side exists, then so does the left hand size, and they are equal. In particular, f(z) tends to ℓ as z tends to z_0 if and only if Re(f(z)) tends to $\text{Re}(\ell)$ and Im(f(z)) tends to $\text{Im}(\ell)$ as z tends to z_0 .

4.2 Continuity

Definition Suppose that the complex function f is defined in a set $S \subseteq \mathbb{C}$, and that $z_0 \in S$. We say that f is continuous at z_0 if

$$\lim_{z \to z_0} f(z) = f(z_0);$$

that is, the limit exists, $f(z_0)$ exists, and they are equal.

We say that f is continuous in S if it is continuous at all points of S, and continuous if it is continuous in its domain.

Properties of Continuous Functions

- Suppose that $c \in \mathbb{C}$, and that $f: S \to \mathbb{C}$ and $g: S \to \mathbb{C}$ are continuous complex functions in $S \subseteq \mathbb{C}$. Then $cf, f+g, |f|, \bar{f}, \operatorname{Re} f, \operatorname{Im} f$ and fg are continuous in S, as is f/g provided that $g(z) \neq 0$ for any z in S.
- Suppose that $f: S \to \mathbb{C}$ and $g: T \to \mathbb{C}$ are continuous complex functions in $S \subseteq \mathbb{C}$ and $T \subseteq \mathbb{C}$. Then $f \circ g$ is continuous where it is defined, that is, in $\{z \in T, g(z) \in S\}$.

Continuity and Boundedness Suppose that the set $S \subseteq \mathbb{C}$ is compact (i.e., closed and bounded) and that f is a continuous complex function defined on S. Then there exists a point z_0 in S such that

$$|f(z_0)| = \max\{|f(z)| : z \in S\}.$$

The Log Function The function Log : $\mathbb{C} \setminus \{0\} \to \mathbb{C}$ is defined by

$$Log(z) = ln |z| + iArg(z).$$

5 Complex Differentiability

Definition Suppose that $S \subseteq \mathbb{C}$ and that $f: S \to \mathbb{C}$ is a complex function. Then we say that f is differentiable at the point z_0 in S if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}, \quad \text{or equivalently} \quad \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h},$$

exists. If it exists, it is called the derivative of f at z_0 , and written $f'(z_0)$ or $\frac{df(z_0)}{dz}$.

5.1 The Cauchy-Riemann Equations

Definition Suppose that Ω is an open subset of \mathbb{C} , that f is a complex function defined in Ω , that f(x+iy) = u(x,y) + iv(x,y), where u and v are real-valued functions of two real variables, adn that f is differentiable at $z_0 \in \Omega$. Then the partial derivative

$$\frac{\partial u}{\partial x}(x_0, y_0), \qquad \frac{\partial u}{\partial y}(x_0, y_0), \qquad \frac{\partial v}{\partial x}(x_0, y_0), \qquad \frac{\partial v}{\partial y}(x_0, y_0)$$

all exists, and

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)$$
 and $\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0).$

Further,

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0).$$

Differentiability by Cauchy-Riemann If the four partial derivatives $\partial u/\partial x$, $\partial v/\partial x$, $\partial u/\partial y$ and $\partial v/\partial y$ are all continuous in an open set Ω , then f is complex differentiable at $z_0 \in \Omega$ if and only if the Cauchy-Riemann equations hold at z_0 , and if so, then

$$f'(x_0 + iy_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0).$$

5.2 Properties of the Derivative

Differentiability Implies Continuity Suppose that f is a complex function and that $z_0 \in \text{Domain}(f)$. If f is differentiable at z_0 , then f is continuous at z_0 .

Algebra of Derivatives Suppose that $z_0 \in \mathbb{C}$, that the complex functions f and g are differentiable at z_0 , and that $c \in \mathbb{C}$. Then the functions cf, f + g and fg are differentiable at z_0 and

$$(cf)'(z_0) = cf'(z_0),$$

$$(f+g)'(z_0) = f'(z_0) + g'(z_0),$$

$$(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0).$$

Further, if $g(z_0) \neq 0$, then the function f/g is differentiable at z_0 , and

$$\left(\frac{f}{g}\right)'(z_0) = \frac{f'(z_0)g(z_0) - f(z_0)g'(z_0)}{g(z_0)^2}.$$

Composed Functions Suppose that $z_0 \in \mathbb{C}$, that the complex function f is differentiable at $g(z_0)$, and that the complex function g is differentiable at z_0 . Then the function $f \circ g$ is differentiable at z_0 , and

$$(f \circ g)'(z_0) = f'(g(z_0))g'(z_0).$$

L'Hôpital's Rule Suppose that $z_0 \in \mathbb{C} \cup \{\infty\}$ and that the complex functions f and g are differentiable at z_0 . If $\lim_{z\to z_0} f(z)/g(z)$ is indeterminate, that is, of the form 0/0 or ∞/∞ , and if $\lim_{z\to z_0} f'(z)/g'(z)$ exists, then

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f'(z)}{g'(z)}.$$

Consequences of the Cauchy-Riemann Equations Suppose that f is differentiable in a domain Ω in \mathbb{C} . Then

- (a) if f' = 0 in Ω , then f is constant on Ω ;
- (b) if |f| is constant, then f is constant on Ω ;
- (c) if Re(f) or Im(f) is constant, then f is constant on Ω .

Polar Coordinates Suppose that the complex function f is differentiable at the point $z_0 \in \mathbb{C} \setminus \{0\}$, and that $z_0 = r_0 e^{i\theta_0}$. Then

$$\frac{\partial u}{\partial \theta}(r_0, \theta_0) = -r_0 \frac{\partial v}{\partial r}(r_0, \theta_0)$$
 and $\frac{\partial v}{\partial \theta}(r_0, \theta_0) = r_0 \frac{\partial u}{\partial r}(r_0, \theta_0).$

Further,

$$f'(z_0) = e^{-i\theta_0} \left(\frac{\partial u}{\partial r}(r_0, \theta_0) + i \frac{\partial v}{\partial r}(r_0, \theta_0) \right)$$
$$= \frac{-ie^{-i\theta_0}}{r} \left(\frac{\partial u}{\partial \theta}(r_0, \theta_0) + i \frac{\partial v}{\partial \theta}(r_0, \theta_0) \right).$$

Log is Differentiable The function Log is differentiable in $\mathbb{C} \setminus (-\infty, 0]$.

5.3 Inverse Functions

Differentiability of Inverse Functions Suppose that Ω and Υ are open subsets of \mathbb{C} , that $f:\Omega\to\Upsilon$ is one-to-one, and that $f(z_0)=w_0$. If f is differentiable at z_0 and f^{-1} is differentiable at w_0 , then $(f^{-1})'(w_0)=1/f'(z_0)$.

5.4 Differentiable Definition

Holomorphic Suppose that Ω is an open subset of \mathbb{C} and $f:\Omega\to\mathbb{C}$ is a function. If f is differentiable in Ω , that is, if it is differentiable at every point of Ω , then we say that f is holomorphic or (complex) analytic or regular in Ω , and we write $f\in H(\Omega)$.

Entire If $\Omega = \mathbb{C}$ and f is differentiable in Ω , then we say that f is entire.

6 Harmonic Functions

Harmonic Functions Suppose that $u: \Omega \to \mathbb{R}$ is a function, where Ω is an open subset of \mathbb{R}^2 , and that u is twice continuously differentiable, that is, all the partial derivatives $\partial u/\partial x, \partial u/\partial y, \partial^2 u/\partial x^2, \partial^2 u/\partial x \partial y, \partial^2 u/\partial y \partial x$ and $\partial^2 u/\partial y^2$ exists and are continuous. Then we say that u is harmonic in Ω if

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Finding Harmonic Functions Suppose that $f \in H(\Omega)$, where Ω is an open subset of \mathbb{C} , that f is twice continuously differentiable in Ω , and that

$$f(x+iy) = u(x,y) + iv(x,y)$$

in Ω , where u and v are real-valued. Then u and v are harmonic functions.

Existence of Harmonic Functions If Ω is a simply polygonally connected domain, and $u:\Omega\to\mathbb{R}$ is harmonic, then there exists a harmonic function $v:\Omega\to\mathbb{R}$ such that f, given by

$$f(x+iy) = u(x,y) + iv(x,y)$$

in Ω is holomorphic. Any two such functions v differ by an additive constant.

Harmonic Conjugate The function v is called a harmonic conjugate of u. The function f may often be determined using the fact that

$$f'(x+iy) = u_x(x,y) + iv_x(x,y) = u_x(x,y) - iu_y(x,y).$$

7 Power Series

Definition A (complex) power series is an expression of the form

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n,$$

where the centre z_0 and the coefficients a_n are all fixed complex numbers, and the variable z is complex. We take $(z-z_0)^0$ to be 1 for all z, even when $z=z_0$.

Radius of Convergence Every power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ has a radius of convergence ρ , given by the formulae

$$\rho = \left(\lim_{n \to \infty} \sup |a_n|^{1/n}\right)^{-1} = \left(\lim_{k \to \infty} \sup_{n \ge k} |a_n|^{1/n}\right)^{-1}.$$

The radius of convergence $\rho \in [0, +\infty]$ satisfies:

- (a) $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges if $|z-z_0| < \rho$
- (b) $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ does not converge if $|z-z_0| > \rho$
- (c) $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ may converge for no, some or all z such that $|z-z_0|=\rho$.

The Ratio Test The radius of convergence is given by

$$\rho = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|},$$

as long as the limit exists or is $+\infty$.

The Root Test The radius of convergence is given by

$$\rho = \lim_{n \to \infty} \frac{1}{|a_n|^{1/n}}.$$

as long as the limit exists or is $+\infty$.

The Algebra of Power series Suppose that $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ and $\sum_{n=0}^{\infty} b_n(z-z_0)^n$ converge in $B(z_0, \rho)$ to f(z) and g(z), and that $c \in \mathbb{C}$. Then the following series also converge in $B(z_0, \rho)$:

- (a) $\sum_{n=0}^{\infty} ca_n(z-z_0)^n$, and its sum is cf(z);
- (b) $\sum_{n=0}^{\infty} (a_n + b_n)(z z_0)^n$, and its sum is f(z) + g(z);
- (c) $\sum_{n=0}^{\infty} c_n(z-z_0)^n$, where $c_n = \sum_{j=0}^n a_j b_{n-j}$, and its sum is f(z)g(z).

Power Series are Differentiable Suppose that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ in $B(z_0, \rho)$ and $\rho > 0$. Then f is differentiable in $B(z_0, \rho)$, and

$$f'(z) = \sum_{n=1}^{\infty} a_n n(z - z_0)^{n-1} = \sum_{m=0}^{\infty} a_{m+1}(m+1)(z - z_0)^m$$

in $B(z_0, \rho)$.

Repeatedly Differentiating Power Series Suppose that $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ in $B(z_0, \rho)$. Then f may be differentiated as many times as desired, and

$$f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1) \dots (n-k+1) a_n (z-z_0)^{n-k}.$$

In particular,

$$f^{(k)}(z_0) = k! a_k$$

. Further, the real valued functions u and v, such that f(x+iy) = u(x,y) + iv(x,y), may be differentiated as many times as desired, and all their partial derivatives are continuous.

Power Series that Vanish on an Interval Suppose that $g(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ in $B(z_0, \rho)$, and that $\epsilon > 0$. If $g(z_0 + t) = 0$ for all real t in $(-\epsilon, \epsilon)$, then g(z) = 0 for all z in $B(z_0, \rho)$.

Power Series that are Equal near the Centre Suppose that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ and moreover that $g(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$ in $B(z_0, \rho)$. If $f(z_0 + t) = g(z_0 + t)$ for all $t \in (-\epsilon, \epsilon)$, then f(z) = g(z) for all $z \in B(z_0, \rho)$.

8 Exponential, Hyperbolic and Trigonometric Functions

8.1 The Exponential Function

Definition We define the exponential series by the formula

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!} \quad \forall z \in \mathbb{C}.$$

Properties of the Exponential Series

- 1. $\exp(0) = 1$;
- 2. $\exp(z+w) = \exp(z) \exp(w)$ for all $z, w \in \mathbb{C}$;
- 3. $\exp(-z) = \exp(z)^{-1}$ for all $z \in \mathbb{C}$;
- 4. $\exp(z) \neq 0$ for all $z \in \mathbb{C}$;
- 5. $\exp'(z) = \exp(z)$ for all $z \in \mathbb{C}$;
- 6. if a function $f: \mathbb{C} \to \mathbb{C}$ satisfies f(0) = 1 and f'(z) = f(z) for all $z \in \mathbb{C}$, then $f(z) = \exp(z)$ for all $z \in \mathbb{C}$;
- 7. $\exp(x+iy) = e^x(\cos(y) + i\sin(y))$ for all $x, y \in \mathbb{R}$.

Periodicity of the Exponential Mapping The exponential exp maps \mathbb{C} onto $\mathbb{C} \setminus \{0\}$, and $\exp(z_1) = \exp(z_2)$ if and only if $z_1 - z_2 \in 2\pi i \mathbb{Z}$.

8.2 The Hyperbolic Functions

Definition We define the complex hyperbolic cosine and sine by the formulae

$$\cosh(z) = \frac{\exp(z) + \exp(-z)}{2} = \sum_{n \in \mathbb{N}} \frac{z^{2n}}{(2n)!}$$

and

$$\sinh(z) = \frac{\exp(z) - \exp(-z)}{2} = \sum_{n \in \mathbb{N}} \frac{z^{2n+1}}{(2n+1)!}$$

for all $z \in \mathbb{C}$.

Properties of the Hyperbolic Sine and Cosine

- (i) $\cosh(-z) = \cosh(z)$
- (ii) $\sinh(-z) = -\sinh(z)$
- (iii) $\cosh'(z) = \sinh(z)$
- (iv) $\sinh'(z) = \cosh(z)$
- (v) $\cosh(z + 2\pi i k) = \cosh(z)$
- (vi) $\sinh(z + 2\pi i k) = \sinh(z)$
- (vii) $\cosh(z+w) = \cosh(z)\cosh(w) + \sinh(z)\sinh(w)$
- (viii) $\sinh(z+w) = \sinh(z)\cosh(w) + \cosh(z)\sinh(w)$
- $(ix) \cosh^2(z) \sinh^2(z) = 1$
- (x) $\cosh(x+iy) = \cosh(x)\cos(y) + i\sinh(y)\sin(y)$
- (xi) $\sinh(x + iy) = \sinh(x)\cos(y) + i\cosh(x)\sin(y)$.

for all $w, z \in \mathbb{C}$, all $k \in \mathbb{Z}$ and all $x, y \in \mathbb{R}$.

8.3 The Trigonometric Functions

Definition We define the complex cosine and sine by the formulae

$$\cos(z) = \frac{\exp(iz) + \exp(-iz)}{2} = \sum_{n \in \mathbb{N}} \frac{(-1)^n z^{2n}}{(2n)!}$$

and

$$\sin(z) = \frac{\exp(iz) - \exp(-iz)}{2i} = \sum_{n \in \mathbb{N}} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$

for all $z \in \mathbb{C}$.

9 Logarithms and Roots

Square Root We define the principle value of the square root as:

$$PVw^{1/2} = \begin{cases} |w|^{1/2} e^{i\text{Arg}(w)/2} & \text{if } w \neq 0\\ 0 & \text{if } w = 0. \end{cases}$$

Logarithm Suppose that $w = e^z$ and z = x + iy. Then $w = e^x e^{iy}$, so

$$|w| = e^x$$
 and $\operatorname{Arg} w = \operatorname{Arg} e^{iy}$.

Then $x = \ln |w|$, and x is single-valued, but $y = \operatorname{Arg}(w) + 2\pi k$, where $k \in \mathbb{Z}$; and y is multiple-valued. When $w \neq 0$, we write $z = \log(w)$ to indicate that z can be any one of the infinitely many complex numbers such that $e^z = w$ and we write $z = \operatorname{Log}(w)$ to indicate the choice that $z = \ln |w| + i\operatorname{Arg}(w)$.

nth Roots The principle value of the nth root is given by

$$PVz^{1/n} = \exp\left(\frac{\text{Log}(z)}{n}\right) = |z|^{1/n}e^{i\text{Arg}(z)/n}.$$

The function $PVz^{1/n}$ is differentiable in $\mathbb{C} \setminus (-\infty, 0]$.

10 Inverses of Exponential and Related Functions

10.1 The Exponential Function

Inverse of The Exponential Function The principle branch of the complex logarithm is the function Log from $\mathbb{C} \setminus \{0\}$ to \mathbb{C} , given by

$$Log(z) = ln |z| + iArg(z),$$

where Arg(z) takes values in the range $(-\pi, \pi]$.

Differentiability For any branch \log_{θ} of the complex logarithm,

$$\log'_{\theta}(w) = \frac{1}{w}$$

for all $w \in \mathbb{C} \setminus R_{\theta}$.

10.2 Complex Powers

Definition Given $z \in \mathbb{C} \setminus \{0\}$ and $\alpha \in \mathbb{C}$, we define

$$z^{\alpha} = \exp(\alpha \log(z)).$$

The principle branch of z^{α} is found by using Log, the principle branch of the logarithm. That is, $PVz^{\alpha} = \exp(\alpha Log(z))$.

Differentiability of Complex Powers The function $z \mapsto PVz^{\alpha}$ is differentiable in $C \setminus (-\infty, 0]$, with derivative $\alpha PVz^{\alpha}/z$.

10.3 Inverse Hyperbolic Trigonometric Functions

Inverse Hyperbolic Sine The principal branch of the inverse hyperbolic sine function is given by

$$PV \sinh^{-1} w = Log(w + PV(w^2 + 1)^{1/2}).$$

Differentiability of Inverse Hyperbolic Cosine The principle branch of the inverse hyperbolic sine function is differentiable in $\mathbb{C} \setminus ([i, +i\infty) \cup (-i\infty, -i])$. Further,

$$(PV \sinh^{-1})'(w) = \frac{1}{PV\sqrt{w^2 + 1}}.$$

Inverse Hyperbolic Cosine Similarly, we define

$$PV \cosh^{-1}(w) = Log(w + PV(w+1)^{1/2}PV(w-1)^{1/2}).$$

11 Contour Integrals

Curves Suppose that $\gamma:[a,b]\to\mathbb{C}$ is a curve and

$$\gamma(t) = \gamma_1(t) + i\gamma_2(t),$$

where $\gamma_1, \gamma_2 : [a, b] \to \mathbb{R}$. Then we define

$$\gamma'(t) = \gamma_1'(t) + i\gamma_2'(t),$$

when both $\gamma_1'(t)$ and $\gamma_2'(t)$ exist. That is,

$$\operatorname{Re}(\gamma'(t)) = (\operatorname{Re}(\gamma))' \quad \text{ and } \quad \operatorname{Im}(\gamma') = (\operatorname{Im}(\gamma))'.$$

Contour A contour is an oriented range of a piecewise smooth curve in the complex plane.

Integral of a Complex-Valued Function Suppose that $u, v : [a, b] \to \mathbb{R}$ are real-valued functions, and that $f : [a, b] \to \mathbb{C}$ is given by f = u + iv. We define

$$\int_a^b f(t)dt = \int_a^b (u(t) = iv(t))dt = \int_a^b u(t)dt + i \int_a^b v(t)dt,$$

provided that the two real integrals on the right hand side exist.

That is,

$$\operatorname{Re}\left(\int_{a}^{b} f(t)dt\right) = \int_{a}^{b} \operatorname{Re}(f(t))dt$$
 and $\operatorname{Im}\left(\int_{a}^{b} f(t)dt\right) = \int_{a}^{b} \operatorname{Im}(f(t))dt$.

Properties of Integration For $a, b, c, d \in \mathbb{R}$, $\lambda, \mu \in \mathbb{C}$, a real-valued differentiable function $h : [c, d] \to [a, b]$ such that h(c) = a and h(d) = b, and complex-valued functions f and g.

$$\int_{a}^{b} \lambda f(t) + \mu g(t)dt = \lambda \int_{a}^{b} f(t)dt + \mu \int_{a}^{b} g(t)dt$$

$$\int_{c}^{d} f(h(t))h'(t)dt = \int_{a}^{b} f(s)ds$$

$$\int_{a}^{b} f'(t)g(t)dt = [f(b)g(b) - f(a)g(a)] - \int_{a}^{b} f(t)g'(t)dt$$

$$\int_{a}^{b} e^{\lambda t}dt = \left[\frac{e^{\lambda t}}{\lambda}\right]_{t=a}^{t=b} = \frac{e^{\lambda b} - e^{\lambda a}}{\lambda}$$

$$|\int_{a}^{b} f(t)dt| \leq \int_{a}^{b} |f(t)|dt.$$

Complex Line Integrals Given a (not necessarily simple) piecewise smooth curve γ : $[a,b] \to \mathbb{C}$ and a continuous (not necessarily differentiable) function f defined on the range of γ , we define the complex line integral $\int_{\gamma} f(z)dz$ by

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt,$$

provide that the integral on the right hand side exists.

Properties of Complex Line Integrals Suppose that $\lambda, \mu \in \mathbb{C}$, that $\lambda : [a, b] \to \mathbb{C}$ is a piecewise smooth curve, and that f and g are complex functions defined on Range(λ). Then the following hold.

(a) The integral is linear:

$$\int_{\gamma} \lambda f(z) + \mu g(z) dz = \lambda \int_{\gamma} f(z) dz + \mu \int_{\gamma} g(z) dz.$$

(b) The integral is independent of parametrisation: if δ is a reparametrisation of γ that is also a piecewise smooth curve, then

$$\int_{\lambda} f(z)dz = \int_{\delta} f(z)dz.$$

(c) The integral is additive for joins: if $\gamma = \alpha \sqcup \beta$, then

$$\int_{\gamma} f(z)dz = \int_{\alpha} f(z)dz + \int_{\beta} f(z)dz.$$

(d) The integral depends on the orientation:

$$\int_{\gamma^*} f(z)dz = -\int_{\gamma} f(z)dz.$$

(e) We may estimate the size of the integral:

$$\left| \int_{\gamma} f(z)dz \right| \le ML,$$

where L is the length of γ and M is a number such that $|f(z)| \leq M$ for all $z \in \text{Range}(\gamma)$.

Contour Integrals We define

$$\int_{\Gamma} f(z)dz = \int_{\gamma} f(z)dz,$$

where γ is any parametrisation of Γ .

12 The Cauchy-Goursat Theorem

12.1 Simply Connected Domains

The Cauchy-Goursat Theorem Suppose that Ω is a simply connected domain, that $f \in H(\Omega)$, and that Γ is a closed contour in Ω . Then

$$\int_{\Gamma} f(z)dz = 0.$$

Independence of Contour Suppose that Ω is a simply connected domain in \mathbb{C} , that $f \in H(\Omega)$, and that Γ and Δ are contours with the same initial point p and the same final point q. Then

$$\int_{\Gamma} f(z)dz = \int_{\Delta} f(z)dz.$$

Existence of Primitives Suppose that Ω is a simply connected domain in \mathbb{C} , and that $f \in H(\Omega)$. Then there exists a function F on Ω such that

$$\int_{\Gamma} f(z)dz = F(q) - F(p)$$

for all simple contours Γ in Ω from p to q. Further, F is differentiable, and F' = f. Finally, if F_1 is any other function such that $F'_1 = f$, then $F_1 - F$ is a constant and

$$\int_{\Gamma} f(z)dz = F_1(q) - F_1(p),$$

where p and q are the initial and final points of Γ .

12.2 Multiply Connected Domains

Cauchy-Goursat Suppose that Ω is a bounded domain whose boundary $\partial\Omega$ consists of finitely many contours, $\Gamma_0, \Gamma_1, \ldots, \Gamma_n$. Suppose also that $f \in H(\Upsilon)$, where $\bar{\Omega} \subset \Upsilon$. Then

$$\int_{\partial} \Omega f(z) dz = \sum_{i=0}^{n} \int_{\Gamma_{j}} f(z) dz = 0.$$

Corollary Suppose that Υ is a simply connected domain, that Γ is a simple closed contour in Υ , and that f is a differentiable function in Υ . Then

$$\int_{\Gamma} f(z)dz = 0.$$

Existence of Primitives Suppose that Ω is a bounded domain whose boundary $\partial\Omega$ consists of finitely many contours $\Gamma_0, \Gamma_1, \ldots, \Gamma_n$, that $\bar{\Omega} \subset \Upsilon$, and that f is a differentiable function in Υ . If $\int_{\Gamma_j} f(z)dz = 0$ when $j = 1, \ldots, n$, then $\int_{\Gamma} f(z)dz = 0$ for any closed contour in Ω , and further, there is a differentiable function F in Ω such that F' = f and

$$\int_{\Delta} f(z)dz = F(q) - F(p)$$

for all simple contours Δ in Ω from p to q.

13 Cauchy's Integral Formula

Cauchy's Integral Formula Suppose that Ω is a simply connected domain in \mathbb{C} , that $f \in H(\Omega)$, that Γ is a simple closed contour in Ω and that $w \in \text{Int}(\Gamma)$. Then

$$f(w) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - w} dz.$$

Independence of Contour Suppose that w lies in a simply connected domain Ω , and that $f \in H(\Omega)$. If Gamma and Δ are simple closed contours such that $w \in Int(\Gamma)$ and $w \in Int(\Delta)$, then

$$\int_{\Gamma} \frac{f(z)}{z - w} dz = \int_{\Delta} \frac{f(z)}{z - w} dz.$$

Mean Value Formula Suppose that Ω is a simply connected domain in \mathbb{C} , that $f \in H(\Omega)$, and that $w \in \Omega$. If $\bar{B}(w,r) \subset \Omega$, then

$$f(w) = \frac{1}{2\pi} \int_0^{2\pi} f(w + re^{i\theta}) d\theta.$$

Cauchy's Generalised Integral Formula Suppose that $f \in H(B(z_0, R))$, and that Γ is a simple closed contour in $B(z_0, R)$ such that $z_0 \in Int(\Gamma)$. Then

$$f(w) = \sum_{n=0}^{\infty} c_n (w - z_0)^n \qquad \forall w \in B(z_0, R),$$

where

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz.$$

The radius of convergence of the power series is at least R.

This combined with the fact that $f^{(n)}(z_0) = n!c_n$, implies that

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz.$$

Liouville's Theorem Suppose that f is a bounded entire function. Then f is constant.

The Fundamental Theorem of Algebra Suppose that f is a nonconstant complex polynomial. Then f has at least one root, and hence f may be factorised as a product of a constant and finitely many linear factors.

Holomorphic Function Near a Zero Suppose that $f(z) = \sum_{n=0}^{\infty} a_n (z-w)^n$ for all $z \in B(w,r)$, and that $a_n \neq 0$ for some $n \in \mathbb{N}$. Let $N = \min\{n \in \mathbb{N} : a_n \neq 0\}$. Then

$$\lim_{z \to w} \frac{f(z)}{a_N (z - w)^N} = 1.$$

Zeros of a Holomorphic Funciton are Isolated Suppose that Ω is an open set, that $f \in H(\Omega)$, and that f(w) = 0 for some $w \in \Omega$. Then there exists $r \in \mathbb{R}^+$ such that either f(z) = 0 for all $z \in B(w, r)$ or $f(z) \neq 0$ for all $z \in B^{\circ}(w, r)$.

14 Morera's Theorem and Analytic Continuation

14.1 Morera's Theorem

Morera's Theorem Suppose that Ω is a domain, that hte function $f:\Omega\to\mathbb{C}$ is continuous, and that

$$\int_{A} f(z)dz = \int_{B} f(z)dz,$$

whenever the simple contours A and B have the same initial point and the same final point. Then f is holomorphic in Ω .

Holomorphic Extension Suppose that Λ is a (possibly infinite) line segment in an open set Ω and $\Omega \setminus \Lambda$ is open. If function $f : \Omega \to \mathbb{C}$ is continuous in Ω and is holomorphic in $\Omega \setminus \Lambda$, then f is holomorphic in Ω .

14.2 Analytic Continuation

f is 0 for Ball in Ball Suppose that $B(z_1, r_1) \subset B(w, r)$, that $f \in H(B(w, R))$, and that f(z) = 0 for all $z \in B(z_1, r_1)$. Then f(z) = 0 for all $z \in B(w, R)$.

Theorem Suppose that Υ is a nonempty open subset of a domain Ω in \mathbb{C} , and that $f \in H(\Omega)$. If f(z) = 0 for all z in Υ , then f(z) = 0 for all z in Ω .

Corollary Suppose that Υ is a nonempty open subset of a domain Ω in \mathbb{C} , and that $f, g \in H(\Omega)$. If f(z) = g(z) for all z in Υ , then f(z) = g(z) for all z in Ω .