Question 1:

n_estimators	Gini Avg	Entropy Avg
10	0.9630957926	0.9507995652
25	0.9525850024	0.9560937742
50	0.9543393882	0.9578481602

Number of physical cores: 8

[{'model': 'Random Forest', 'cv_results': mean_fit_time std_fit_time ... mean_train_score std_train_score

0	0.116068	0.157353	0.970563	0.005660
1	0.048829	0.001452	0.980226	0.005208
2	0.052915	0.001886	0.981986	0.001647
3	0.071135	0.002308	0.982866	0.002143

[4 rows x 21 columns]}, {'model': 'Hist Gradient Boosting', 'cv_results': mean_fit_time std_fit_time ... mean_train_score std_train_score

0	0.074950	0.004682	0.989456	0.002557
1	0.116507	0.002719	1.000000	0.000000
2	0.162627	0.013374	1.000000	0.000000
3	0.197447	0.013229	1.000000	0.000000

[4 rows x 21 columns]}]

Speed-score trade-off of tree-based ensembles

Train time (s) - lower is better Predict time (s) - lower is better

Question 4: Utility

Rocky: 2km/h = 30min/km Sandy: 3km/h = 20min/km Smooth: 5km/h = 12min/km

Part 1:

EU(Route1): (0.2 * 20 + 0.3 * 12 + 0.5 * 30)*5 = 113

EU(Route2): (0.4 * 20 + 0.2 * 12 + 0.4 * 30)*7 = 156.8

EU(Route3): (0.5 * 20 + 0.4 * 12 + 0.1 * 30)*6 = 106.8

Route 3 would be the fastest.

Part 2:

Route1 edit: -20 * 0.7 + 0.3 * 15 = -9.5

113 - 9.5 = 103.5

This would make route1 the fastest

Part 3:

$$(0.6 * 20 + 0.4 * 12)*7 = 117.6$$

Part 4:

0.4 Rocky so 0.6 not Rocky

Part 5:

30*7 = 210

Part 6:

0.4*210 + 0.6*117.6 = 142.8

156.8 - 142.8 = 14

We should wait 14 minutes for the satellite