Contents

- problema 1 punctul a tema 3
- problema 1 punctul b tema 3
- problema 2 varianta 5 tema 3
- problema 3 tema 3

problema 1 punctul a tema 3

```
A=[0 1 1;2 1 5; 4 2 1]
b=[3;5;1]
fprintf('solutia este\n')
gaussPivTot(A,b);
type('gaussPivTot');
    0 1 1
    2 1 5
    4 2 1
b =
    3
    5
    1
solutia este
   -1
    2
    1
function [x] = gaussPivTot(A,b)
%GaussPivPart rezolva sisteme patratice
%Synopsis: x=gaussPivTot(A,b)
```

```
b=vectorul termenilor liberi
%Output: x=solutia sistemului
%-----Verificare matrice patratica
[n,m]=size(A);
if n~=m
   error('Matricea nu este patratica');
   x=[];
   return
end
%-----Verificare daca e vector coloana si daca nu e, il traspunem ca sa fie
[n1,m1]=size(b);
if m1 \sim =1
  b=transpose(b);
end
nr=length(b);
if n~=nr
   warning('Vectorul nu are aceeasi dimensiune cu matricea A')
   x=[];
   return;
end
%construim matricea extinsa
A=[A,b];
for i=1:n
index(i)=i;
end
for k=1:n-1
```

A=matricea asociata sistemului

%Input:

```
max=-1;
    for i=k:n
       for j=k:n
          if abs(A(i,j))>max;
               max=abs(A(i,j));
              p=i;m=j;
           end
       end
   end
   if A(p,m) == 0
       warning('Sist incomp. sau comp. nedet')
       x=[];
       return
   end
   if p~=k
    A([p,k],:)=A([k,p],:);
   end
     if m~=k
         A(:,[m,k])=A(:,[k,m]);
         index([m,k])=index([k,m]);
     end
     for l=k+1:n
         M(1,k) = A(1,k)/A(k,k);
         A(1,:)=A(1,:)-M(1,k)*A(k,:);
     end
end
   if A(n,n) == 0
       warning('Sist. incomp. sau comp. nedet.');
       return
   end
   y=subsDesc(A(:,1:n),A(:,n+1));
    for j=1:n
```

```
x(index(j))=y(j);
end
for i=1:n
    disp(x(i));
end
```

problema 1 punctul b tema 3

```
A=[0 1 -2;1 -1 1; 1 0 -1]
b=[4;6;2]

fprintf('solutia este\n')
gaussPivTot(A,b);
type('gaussPivTot')
```

```
A =
```

```
0 1 -2
1 -1 1
1 0 -1
```

b =

6

%Input:

```
solutia este
Warning: Sist. incomp. sau comp. nedet.
function [x] = gaussPivTot(A,b)
%GaussPivPart rezolva sisteme patratice
%Synopsis: x=gaussPivTot(A,b)
```

A=matricea asociata sistemului

```
b=vectorul termenilor liberi
%Output: x=solutia sistemului
%-----Verificare matrice patratica
[n,m]=size(A);
if n~=m
   error('Matricea nu este patratica');
   x=[];
   return
%-----Verificare daca e vector coloana si daca nu e, il traspunem ca sa fie
[n1,m1]=size(b);
if m1~=1
  b=transpose(b);
end
nr=length(b);
if n~=nr
   warning('Vectorul nu are aceeasi dimensiune cu matricea A')
   x=[];
   return;
end
%construim matricea extinsa
A=[A,b];
for i=1:n
index(i)=i;
for k=1:n-1
   max=-1;
```

for i=k:n

```
for j=k:n
           if abs(A(i,j))>max;
              max=abs(A(i,j));
              p=i;m=j;
           end
       end
   end
   if A(p,m) == 0
       warning('Sist incomp. sau comp. nedet')
       x=[];
       return
   end
   if p~=k
     A([p,k],:)=A([k,p],:);
   end
     if m~=k
         A(:,[m,k])=A(:,[k,m]);
        index([m,k])=index([k,m]);
     end
     for l=k+1:n
         M(1,k) = A(1,k)/A(k,k);
         A(1,:)=A(1,:)-M(1,k)*A(k,:);
     end
end
   if A(n,n) == 0
       warning('Sist. incomp. sau comp. nedet.');
       return
   end
   y=subsDesc(A(:,1:n),A(:,n+1));
   for j=1:n
          x(index(j))=y(j);
   end
```

```
for i=1:n \label{eq:disp} \text{disp}\left(x\left(i\right)\right); end
```

problema 2 varianta 5 tema 3

```
A=matrice(10)

b=solutie(10)

fprintf('solutia este\n')
gaussPivTot(A,b);
type('gaussPivTot')
```

A =

21	-7	0	0	0	0	0	0	0	0
-7	21	-7	0	0	0	0	0	0	0
0	-7	21	-7	0	0	0	0	0	0
0	0	-7	21	-7	0	0	0	0	0
0	0	0	-7	21	-7	0	0	0	0
0	0	0	0	-7	21	-7	0	0	0
0	0	0	0	0	-7	21	-7	0	0
0	0	0	0	0	0	-7	21	-7	0
0	0	0	0	0	0	0	-7	21	-7
0	0	0	0	0	0	0	0	-7	21

b =

1

1

1

1

2

solutia este

0.1429

0.1429

0.1429

0.1429

0.1429

0.1429

0.1429

0.1429

0.1429

0.1429

function [x] = gaussPivTot(A,b)

%GaussPivPart rezolva sisteme patratice

%Synopsis: x=gaussPivTot(A,b)

%Input: A=matricea asociata sistemului

% b=vectorul termenilor liberi

%Output: x=solutia sistemului

```
%-----Verificare matrice patratica
[n,m]=size(A);
if n~=m
   error('Matricea nu este patratica');
   x=[];
   return
%-----Verificare daca e vector coloana si daca nu e, il traspunem ca sa fie
[n1,m1]=size(b);
if m1 \sim = 1
   b=transpose(b);
end
nr=length(b);
if n~=nr
   warning('Vectorul nu are aceeasi dimensiune cu matricea A')
   x=[];
   return;
end
%construim matricea extinsa
A=[A,b];
for i=1:n
index(i)=i;
end
for k=1:n-1
   max=-1;
   for i=k:n
       for j=k:n
           if abs(A(i,j))>max;
               \max=abs(A(i,j));
```

```
p=i;m=j;
          end
       end
   end
   if A(p,m) == 0
       warning('Sist incomp. sau comp. nedet')
      x=[];
      return
   end
   if p~=k
    A([p,k],:)=A([k,p],:);
   end
     if m~=k
        A(:,[m,k])=A(:,[k,m]);
        index([m,k])=index([k,m]);
     end
     for l=k+1:n
       M(1,k) = A(1,k)/A(k,k);
        A(1,:)=A(1,:)-M(1,k)*A(k,:);
     end
end
   if A(n,n) == 0
      warning('Sist. incomp. sau comp. nedet.');
      return
   end
   y=subsDesc(A(:,1:n),A(:,n+1));
   for j=1:n
         x(index(j))=y(j);
   end
   for i=1:n
      disp(x(i));
   end
```

problema 3 tema 3

```
A=matrice(10)
b=solutie(10)
InvDet(A,b);
type('InvDet')
```

21	-7	0	0	0	0	0	0	0	0
-7	21	-7	0	0	0	0	0	0	0
0	-7	21	-7	0	0	0	0	0	0
0	0	-7	21	-7	0	0	0	0	0
0	0	0	-7	21	-7	0	0	0	0
0	0	0	0	-7	21	-7	0	0	0
0	0	0	0	0	-7	21	-7	0	0
0	0	0	0	0	0	-7	21	-7	0
0	0	0	0	0	0	0	-7	21	-7
0	0	0	0	0	0	0	0	-7	21

b =

inversa matricei este

: Columns 1 through 7

0.0546	0.0208	0.0080	0.0030	0.0012	0.0004	0.0002
0.0208	0.0625	0.0239	0.0091	0.0035	0.0013	0.0005
0.0080	0.0239	0.0637	0.0243	0.0093	0.0035	0.0014
0.0030	0.0091	0.0243	0.0639	0.0244	0.0093	0.0036
0.0012	0.0035	0.0093	0.0244	0.0639	0.0244	0.0093
0.0004	0.0013	0.0035	0.0093	0.0244	0.0639	0.0244
0.0002	0.0005	0.0014	0.0036	0.0093	0.0244	0.0639
0.0001	0.0002	0.0005	0.0014	0.0035	0.0093	0.0243
0.0000	0.0001	0.0002	0.0005	0.0013	0.0035	0.0091
0.0000	0.0000	0.0001	0.0002	0.0004	0.0012	0.0030

Columns 8 through 10

0.0001	0.0000	0.0000
0.0002	0.0001	0.0000
0.0005	0.0002	0.0001
0.0014	0.0005	0.0002
0.0035	0.0013	0.0004
0.0093	0.0035	0.0012
0.0243	0.0091	0.0030
0.0637	0.0239	0.0080
0.0239	0.0625	0.0208
0.0080	0.0208	0.0546

solutia sistemului este

0.1429

0.1429

0.1429

0.1429

0.1429

```
0.1429
   0.1429
   0.1429
   0.1429
determinantul este: 5.0029e+12
function [Det,x] = InvDet(A,b)
%Inv det cu Gauss Piv Totala calc inv
%Synopsis: Det, x=InvDet(A,b)
%Input:
            A=matricea asociata sistemului
%Output: x=matricea inversa cu ajutorul careia rezolvam
             sistemul Ax=b
             Det=determinantul matricei asociate
%-----Verificare matrice patratica
[n,m]=size(A);
if n~=m
  warning('Matricea nu este patratica');
   x=[];
   return
end
%construim matricea extinsa
A=[A, eye(n)];
Det=1;
for i=1:n
```

0.1429

```
index(i)=i;
for k=1:n-1
   max=-1;
   for i=k:n
      for j=k:n
          if abs(A(i,j))>max;
              \max=abs(A(i,j));
             p=i;m=j;
          end
       end
   end
   if A(p,m) == 0
       warning('Sist incomp. sau comp. nedet')
      x=[];
      return
   end
   if p~=k
    A([p,k],:)=A([k,p],:);
    Det=Det*(-1);
   end
    if m~=k
        A(:,[m,k])=A(:,[k,m]);
        index([m,k])=index([k,m]);
        Det=Det*(-1);
     end
     for l=k+1:n
        M(1,k) = A(1,k)/A(k,k);
       A(1,:)=A(1,:)-M(1,k)*A(k,:);
     end
```

for i=1:n

```
Det=Det*A(i,i);
end
  if A(n,n) == 0
      warning('Sist. incomp. sau comp. nedet.');
      return
  end
  for i=1:n
      y=subsDesc(A(:,1:n),A(:,n+i));
      for j=1:n
         x(index(j))=y(j);
      A=[A,transpose(x)];
  end
  fprintf('inversa matricei este\n:');
  x=A(:, (2*n+1):end);
  disp(x);
  fprintf('solutia sistemului este\n');
  disp(A(:,(2*n+1):end)*b);
  fprintf('determinantul este:');
  disp(Det);
```

Published with MATLAB® R2017b