## 1 PART I

Consider the Neo-Classical growth model. Time is discrete and goes on forever. There is a representative agent that derives utility only from consumption and discounts future utility at a rate  $\beta$ . The agent owns  $k_0$  units of capital and has an endowment of time that can be used for labor or leisure every period. The time endowment is normalized to 1. There is a representative firm that hires labor and rents capital to produce using a constant returns to scale technology. Capital rental rate is r and the wage is w. Capital depreciates fully after use (i.e.  $\rho = 1$ ).

The utility function is:

$$u(c,l) = \frac{c^{1-\sigma}}{1-\sigma} - \chi \frac{l^{1+\eta}}{1+\eta}$$

1. Define a competitive equilibrium for this economy.

A competitive equilibrium is a sequence of prices  $\{p_t, w_t, r_t\}_{t=0}^{\infty}$ , allocations for the firm  $\{k_t^d, l_t^d, y_t\}_{t=0}^{\infty}$  and allocations for the household  $\{c_t, i_t, x_{t+1}, k_t^s, l_t^s\}_{t=0}^{\infty}$  such that

• Given prices  $\{p_t, w_t, r_t\}_{t=0}^{\infty}$ , the allocation of the representative firm solves:

$$\max_{\{y_t, k_t, l_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} p_t (y_t - r_t k_t - w_t l_t)$$

subject to:

$$y_t = F(k_t, l_t) \forall t \ge 0$$

• Given prices  $\{p_t, w_t, r_t\}_{t=0}^{\infty}$ , the allocation of the representative household solves:

$$\max_{\{c_{t}, i_{t}, x_{t+1}, k_{t}^{s}, n_{t}^{s}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} U(c_{t}, l_{t})$$

$$subject \ to$$

$$\sum_{t=0}^{\infty} p_{t}(c_{t} + i_{t}) \leq \sum_{t=0}^{\infty} p_{t}(r_{t}k_{t} + w_{t}n_{t}) + \pi$$

$$x_{t+1} = (1 - \delta)x_{t} + i_{t}, \ \forall t \geq 0$$

$$0 \leq l_{t} \leq 1, \ 0 \leq k_{t} \leq x_{t}, \ \forall t \geq 0$$

$$c_{t}, x_{t+1} \geq 0, \ \forall t \geq 0$$

$$x_{0} \ given$$

· Markets clear

$$y_t = c_t + i_t$$
 Goods market  $k_t^d = k_t^s$  Capital market  $l_t^d = l_t^s$  Labor market

2. Find the steady state value for  $\{c, l, k, y, r, w\}$ 

For this problem we set up the social planners problem as:

$$\max_{c_t, l_t, k_{t+1}} \sigma_{t=0}^{\infty} \beta^t \left[ \frac{c^{1-\sigma}}{1-\sigma} - \chi \frac{l^{1+\eta}}{1+\eta} \right]$$

subject to

$$c_t + k_{t+1} - (1 - \delta)k_t = zk_t^{\alpha} l_t^{1-\alpha}$$

and the non negativity constraints

$$y_t, k_t, l_t \ge 0, l_t \le 1, k_0 = \bar{k}_0 \ given$$

The procedure requires obtaining the first order conditions for  $c_t$ ,  $l_t and k_{t+1}$  and rearranging them. After all the algebra we obtain the following:

$$\frac{k}{l} = \left(\frac{1 - \beta(1 - \delta)}{\alpha z \beta}\right)^{\frac{1}{\alpha - 1}} = \Psi$$

$$\frac{c}{l} = z \left(\frac{k}{l}\right)^{\alpha} - \delta\left(\frac{k}{l}\right) = \Lambda = z\Psi^{\alpha} - \delta\Psi$$

Combining the f.o.c of consumption and labor we obtain:

$$l = \left(\frac{z(1-\alpha)\Psi^{\alpha}}{\chi\Lambda^{\sigma}}\right)^{\frac{1}{\sigma+\eta}}$$

Finally,

$$k^{ss} = \Psi l^{ss}$$
 
$$c^{ss} = \Lambda l^{ss}$$
 
$$y^{ss} = z(k^{ss})^{\alpha} (l^{ss})^{\alpha} = z \Psi^{\alpha} l^{ss}$$
 
$$r^{ss} = \alpha z(k^{ss})^{\alpha-1} (l^{ss})^{1-\alpha} = \alpha z M^{\alpha-1}$$
 
$$w^{ss} = (1-\alpha)z(k^{ss})^{\alpha} (l^{ss})^{-\alpha} = (1-\alpha)z \Psi^{\alpha}$$

3. Pose the planner's dynamic programming problem. Write down the appropriate Bellman equation.

$$V(k) = \max_{k',l} \left\{ \frac{(zk^{\alpha}l^{1-\alpha} + (1-\delta)k - k')^{1-\sigma}}{1-\sigma} - \chi \frac{l^{1+\eta}}{1+\eta} + \beta V(k') \right\}$$

Subject to

$$0 \le k' \le zk^{\alpha}l^{1-\alpha} + (1-\delta)k$$
$$0 < l < 1$$

For the following exercises, assume that  $\alpha=1, z=1, \sigma=2, \eta=1$ 

- 4. Find  $\chi$  such that  $l_{ss} = 0.4$
- 5. Solve the planner's problem numerically using value function iteration.
  - (a) Plain VFI.
  - (b) Modified Howard's Policy Iteration (you must choose the number of policy iterations).
  - (c) MacQueen-Porteus Bounds.

Use an equally space grid for capital between  $[10^{-5}, 2k_{ss}]$ , vary the number of grid points until you get a maximum error of 1% in your Euler Equation. For each method report the time and number of iterations.

- 6. Use the solution to the planner's problem to obtain the path of  $\{c, k, r, w, y\}$  starting from the steady state after the following changes:
  - I. Capital decreases to 80%
    - Consumption

• Capital

AAA

• Interest Rate

AAA

• Wage

AAA

• Production

AAA

II. Productivity increases permanently by 5%

• Consumption

AAA

• Capital

AAA

• Production AAA

7. Prove that the mapping used in Howard's policy iteration algorithm is a contraction.