Algèbre bilinéaire

Formes bilinéaires symétriques et formes quadratiques

Exercice 1 [00001] [correction]

Etablir que

$$q(P) = \int_0^1 P(t)P''(t) dt$$

définit une forme quadratique sur $\mathbb{R}[X]$ et exprimer sa forme polaire.

Exercice 2 [00002] [correction]

Soient $f_1, f_2 \in E^*$ et $q(x) = f_1(x)f_2(x)$. Montrer que q définit une forme quadratique sur E et exprimer sa forme polaire.

Exercice 3 [00003] [correction]

Soit E un \mathbb{R} -espace vectoriel de dimension finie.

- a) Soient f, g deux formes linéaires de E. Montrer que q(x) = f(x)g(x) est une forme quadratique.
- b) Soient q une forme quadratique et H un hyperplan. On suppose que pour tout $x \in H$, q(x) = 0. Montrer que q est le produit de deux formes linéaires.

Exercice 4 X MP [02940] [correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$.

On suppose que $\{X \in \mathbb{C}^n/X^*AX = X^*BX = 0\} = \{0\}.$

Montrer qu'il existe $P \in GL_n(\mathbb{C})$ telle que P^*AP et P^*BP sont triangulaires supérieures.

Exercice 5 X MP [03078] [correction]

Soit q une forme quadratique non nulle sur $\mathcal{M}_2(\mathbb{C})$ telle que

$$\forall (A, B) \in \mathcal{M}_2(\mathbb{C}), q(AB) = q(A)q(B)$$

Montrer que q s'annule sur le complémentaire de $\mathrm{GL}_2(\mathbb{C})$ puis que q est le déterminant.

Positivité

Exercice 6 [00004] [correction]

Soit q une forme quadratique associée à une forme bilinéaire symétrique positive φ sur un \mathbb{R} -espace vectoriel E. Soit $x \in E$, montrer

$$q(x) = 0 \Leftrightarrow \forall y \in E, \varphi(x, y) = 0$$

Exercice 7 [00005] [correction]

Pour $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, on pose

$$q(x) = x_1^2 + \dots + x_p^2 - (x_{p+1}^2 + \dots + x_{p+q}^2)$$

avec $p + q \leq n$.

Soit F un sous-espace vectoriel de E tel que $q_{|F}$ soit définie positive. Montrer que $\dim F\leqslant p.$

Exercice 8 Centrale MP [00006] [correction]

Montrer que si q est une forme quadratique réelle est définie, celle-ci est positive ou négative.

Exercice 9 [00007] [correction]

Montrer qu'une forme quadratique positive est une fonction convexe.

Exercice 10 Mines-Ponts MP [02764] [correction]

Condition sur α pour que la forme quadratique Q_{α} définie par :

$$\forall (x_1, \dots, x_n) \in \mathbb{R}^n, Q_{\alpha}(x_1, \dots, x_n) = \sum_{i=1}^n x_i^2 - \alpha \left(\sum_{i=1}^n x_i\right)^2$$

soit définie positive?

Exercice 11 Mines-Ponts MP [02763] [correction]

On pose, pour $X \in \mathbb{R}^n$,

$$q(X) = \det \left(\begin{array}{cc} 0 & {}^{t}X \\ X & A \end{array} \right)$$

où A est une matrice symétrique réelle définie positive d'ordre n. Montrer que q est une forme quadratique définie négative (indice : commencer par le cas où A est diagonale).

Exercice 12 [01340] [correction]

Soit $A \in \mathcal{S}_n(\mathbb{R})$. Si $(X,Y) \in (\mathbb{R}^n)^2$, on pose

$$\Phi(X,Y) = -\det \left(\begin{array}{cc} 0 & {}^{t}X \\ Y & A \end{array} \right)$$

- a) Démontrer que Φ est une forme bilinéaire symétrique sur \mathbb{R}^n .
- b) A quelle condition sur A, l'application Φ est-elle un produit scalaire sur \mathbb{R}^n ?

Exercice 13 Mines-Ponts MP [02765] [correction]

Soient E un \mathbb{R} -espace vectoriel et q une forme quadratique sur E de forme polaire B.

$$C_q = \{x \in E, q(x) = 0\} \text{ et } N_q = \{x \in E, \forall y \in E, B(x, y) = 0\}$$

Montrer que $C_q = N_q$ si, et seulement si, q est positive ou négative.

Exercice 14 Centrale MP [03062] [correction]

Soient $a_1, \ldots a_n > 0$ et deux à deux distincts.

Pour
$$(x_1, \ldots, x_n) \in \mathbb{R}^n$$
, on pose $q(x) = \sum_{i,j=1}^n \frac{x_i x_j}{a_i + a_j}$.

Montrer que q est une forme quadratique définie positive.

Endomorphismes autoadjoints positifs

Exercice 15 [00008] [correction]

Soient $f \in \mathcal{L}(E)$ et $u = f^* \circ f$. Montrer que $u \in \mathcal{S}^+(E)$.

Exercice 16 [00009] [correction]

Soit u un endomorphisme symétrique positif d'un espace vectoriel euclidien E.

- a) Montrer qu'il existe un endomorphisme v symétrique positif tel que $u=v^2$.
- b) Etablir l'unicité de v en étudiant l'endomorphisme induit par v sur les sous-espaces propres de u.

Exercice 17 Centrale MP [02399] [correction]

Soit $(E, \langle | \rangle)$ un espace euclidien et A un endomorphisme symétrique défini positif de $(E, \langle | \rangle)$. On pose

$$\langle x \mid y \rangle_A = \langle A^{-1}x \mid y \rangle$$

pour tous $x, y \in E$.

a) Montrer que $\langle \, | \, \rangle_A$ est un produit scalaire.

Soit B un endomorphisme autoadjoint de $(E, \langle | \rangle)$.

b) Montrer que AB est diagonalisable

Si M est un endomorphisme diagonalisable de E, on note $\lambda_{\min}(M)$ (resp.

 $\lambda_{\max}(M)$) sa plus petite (resp. grande) valeur propre.

c) Montrer que l'image de $E \setminus \{0\}$ par

$$x \mapsto \frac{\langle Bx \mid x \rangle}{\langle A^{-1}x \mid x \rangle}$$

n'est autre que le segment d'extrémités $\lambda_{\min}(AB)$ et $\lambda_{\max}(AB)$.

d) Montrer que

$$\lambda_{\min}(A)\lambda_{\min}(B) \leqslant \lambda_{\min}(AB) \leqslant \lambda_{\max}(AB) \leqslant \lambda_{\max}(A)\lambda_{\max}(B)$$

Exercice 18 Centrale MP [02400] [correction]

Soit u un automorphisme d'un espace euclidien E.

- a) Montrer que $v = u^*u$ est autoadjoint défini positif.
- b) Montrer qu'il existe w autoadjoint positif tel que $v=w^2$, et ρ orthogonal tel que $u=\rho w$.
- c) Montrer que cette décomposition de u est unique.
- d) Comment interpréter ces résultats de façon matricielle?

Exercice 19 Mines-Ponts MP [02753] [correction]

Soient E un espace euclidien et $u \in \mathcal{L}(E)$ symétrique défini positif. Montrer que, pour tout $x \in E$,

$$||x||^4 \leqslant \langle u(x), x \rangle \langle u^{-1}(x), x \rangle$$

Donner une condition nécessaire et suffisante pour qu'il y ait égalité.

Exercice 20 [00629] [correction]

Soit E un espace euclidien. Montrer l'équivalence des assertions suivantes

- (i) $uu^*u = u$,
- (ii) uu^* est un projecteur orthogonal.
- (iii) u^*u est un projecteur orthogonal,
- (iv) $(\ker u)^{\perp} = \{x \in E / ||u(x)|| = ||x||\}.$

Exercice 21 [03329] [correction]

Soit u un endomorphisme autoadjoint d'un espace euclidien E de dimension n non nulle.

On pose

$$H_u = \{ x \in E / (u(x) \mid x) = 1 \}$$

- a) Enoncer une condition nécessaire et suffisante portant sur le spectre de u pour qu'il existe un vecteur unitaire élément de H_u .
- b) Trouver une condition nécessaire et suffisante portant sur le spectre de $v^{-1} \circ u$ pour que $H_u \cap H_v \neq \emptyset$.

Exercice 22 [03330] [correction]

Soit $v \in \mathcal{L}(E)$ autoadjoint défini positif.

- a) Montrer qu'il existe un endomorphisme s autoadjoint défini positif vérifiant $s^2=v$.
- b) En déduire que $v^{-1} \circ u$ est diagonalisable.

Matrices symétriques positives

Exercice 23 [00010] [correction]

Soient a, b, c trois vecteurs de \mathbb{R}^3 et $M = \begin{pmatrix} a.a & a.b & a.c \\ b.a & b.b & b.c \\ c.a & c.b & c.c \end{pmatrix}$.

Montrer que M diagonalisable, de valeurs propres positives et $\det M \geqslant 0$.

Exercice 24 [00011] [correction]

Soit $A \in \mathcal{S}_n(\mathbb{R})$. Montrer que $A \in \mathcal{S}_n^+(\mathbb{R})$ si, et seulement si, ses valeurs propres sont positives ou nulles.

Exercice 25 [00013] [correction]

Soit $A = (a_{i,j}) \in \mathcal{S}_n^+(\mathbb{R})$.

- a) Montrer que pour tout $i \in \{1, ..., n\}, a_{i,i} \ge 0$.
- b) Observer que si $a_{i,i} = 0$ alors, pour tout $j \in \{1, ..., n\}, a_{i,j} = 0$.

Exercice 26 [03091] [correction]

Soit $A \in \mathcal{S}_n^+(\mathbb{R})$. On veut montrer qu'il existe une unique matrice $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que

$$B^2 = A$$

a) Prouver l'existence.

On considère maintenant $B \in \mathcal{S}_n^+(\mathbb{R})$ vérifiant $B^2 = A$

b) Etablir par le lemme de décomposition des noyaux que pour tout $\lambda > 0$

$$\ker(B - \sqrt{\lambda}I_n) = \ker(A - \lambda I_n)$$

c) Montrer aussi

$$\ker B = \ker A$$

d) Conclure l'unicité.

Exercice 27 [00015] [correction]

Soit $A \in \mathcal{S}_n^+(\mathbb{R})$. On veut montrer qu'il existe une unique matrice $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que

$$B^2 = A$$

- a) Prouver l'existence.
- b) Etablir que si $B \in \mathcal{S}_n^+(\mathbb{R})$ vérifie $B^2 = A$ alors pour tout $\lambda \in \operatorname{Sp} A$,

$$\ker(B - \sqrt{\lambda}I_n) \subset \ker(A - \lambda I_n)$$

puis

$$\ker(B - \sqrt{\lambda}I_n) = \ker(A - \lambda I_n)$$

c) Conclure l'unicité.

Exercice 28 [03090] [correction]

Soit $S \in \mathcal{S}_n^+(\mathbb{R})$.

- a) Montrer qu'il existe une matrice $A \in \mathcal{S}_n^+(\mathbb{R})$ qui est un polynôme en S vérifiant $A^2 = S$
- b) Soit $B \in \mathcal{S}_n^+(\mathbb{R})$ vérifiant $B^2 = S$. Montrer que B commute avec A puis que B = A.

Exercice 29 [00016] [correction]

Soit $A \in \mathcal{S}_n^+(\mathbb{R})$. Montrer qu'il existe une unique matrice $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que $B^2 = A$.

Exercice 30 [00018] [correction]

Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que $A = {}^t MM \in \mathcal{S}_n^+(\mathbb{R})$. Inversement pour $A \in \mathcal{S}_n^+(\mathbb{R})$ établir qu'il existe $M \in \mathcal{M}_n(\mathbb{R})$ tel que $A = {}^t MM$.

Exercice 31 [00020] [correction]

[Décomposition de Cholesky]

Soit $S \in \mathcal{S}_n^+(\mathbb{R})$. Montrer qu'il existe $T \in T_n^+(\mathbb{R})$ telle que $S = {}^tTT$.

Exercice 32 Mines-Ponts MP [02759] [correction]

On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire canonique. On note $\mathcal{A}_n(\mathbb{R})$ l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{S}_n^+(\mathbb{R})$ l'ensemble des matrices symétriques positives.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que pour tout $U \in \mathcal{O}_n(\mathbb{R})$, $\operatorname{tr}(AU) \leqslant \operatorname{tr} A$.

- a) Déterminer le supplémentaire orthogonal de $\mathcal{A}_n(\mathbb{R})$.
- b) Soit $B \in \mathcal{A}_n(\mathbb{R})$. Montrer que pour tout $x \in \mathbb{R}$, $\exp(xB) \in \mathcal{O}_n(\mathbb{R})$.
- c) Montrer que $A \in \mathcal{S}_n^+(\mathbb{R})$.
- d) Etudier la réciproque.
- e) Montrer que pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$ il existe $S \in \mathcal{S}_n^+(\mathbb{R})$ et $U \in \mathcal{O}_n(\mathbb{R})$ telles que M = SU.

Exercice 33 [03150] [correction]

Soient $A, B \in \mathcal{S}_n^+(\mathbb{R})$. Montrer

$$\operatorname{tr}(AB) \leqslant \operatorname{tr}(A)\operatorname{tr}(B)$$

Exercice 34 [03168] [correction]

Soient $A, B \in \mathcal{S}_n^+(\mathbb{R})$. Montrer

$$\operatorname{tr}(AB) \geqslant 0$$

Exercice 35 [03169] [correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique positive dont tous les coefficients sont non nuls.

On pose

$$B = (1/a_{i,j})_{1 \leqslant i,j \leqslant n}$$

Montrer

$$B \in \mathcal{S}_n^+(\mathbb{R}) \Leftrightarrow \operatorname{rg} A = 1$$

Exercice 36 [03175] [correction]

Soit $A = (a_{i,j}) \in \mathcal{S}_n^+(\mathbb{R})$. On note m le plus coefficient de la diagonale de m. Etablir

$$\forall 1 \leq i, j \leq n, |a_{i,j}| \leq m$$

Matrices symétriques définies positives

Exercice 37 [03158] [correction]

Soit

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 2 \\ \vdots & \vdots & & \vdots \\ 1 & 2 & \cdots & n \end{pmatrix} = (\min(i, j))_{1 \leqslant i, j \leqslant n} \in \mathcal{M}_n(\mathbb{R})$$

Montrer que la matrice A est symétrique définie positive.

Exercice 38 [00022] [correction]

[Matrice de Hilbert]

Soit

$$H = \left(\frac{1}{i+j-1}\right)_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{R})$$

Montrer que H est diagonalisable à valeurs propres strictement positives.

Exercice 39 [00012] [correction]

Etablir que $\mathcal{S}_n^{++}(\mathbb{R})$ est dense dans $\mathcal{S}_n^{+}(\mathbb{R})$.

Exercice 40 [00014] [correction]

Soit $A = (a_{i,j}) \in \mathcal{S}_n^{++}(\mathbb{R})$.

- a) Montrer que $\varphi(X,Y) = {}^t XAY$ définit un produit scalaire sur $\mathcal{M}_{n,1}(\mathbb{R})$.
- b) En appliquant Cauchy-Schwarz, en déduire que pour tout $i \neq j : a_{i,j}^2 < a_{i,i}a_{j,j}$.

Exercice 41 [00021] [correction]

[Mineurs de Gauss]

Pour $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{S}_n(\mathbb{R})$, on pose $A_p = (a_{i,j})_{1 \leq i,j \leq p}$ pour tout $p \in \{1,\ldots,n\}$

a) On suppose que A est définie positive.

Justifier que $\det A > 0$.

b) On suppose encore A est définie positive.

Etablir que pour tout $p \in \{1, ..., n\}$, det $A_p > 0$.

c) Justifier la réciproque en raisonnant par récurrence sur $n \in \mathbb{N}^*$.

Enoncés

Exercice 42 [03151] [correction]

Soient $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{S}_n^+(\mathbb{R})$.

Montrer que la matrice $I_n + AB$ est inversible.

Exercice 43 [00017] [correction]

[Décomposition de Cartan]

Soit $A \in \mathrm{GL}_n(\mathbb{R})$.

- a) Etablir que ${}^t AA \in \mathcal{S}_n^{++}(\mathbb{R}).$
- b) Montrer qu'il existe une matrice $S \in \mathcal{S}_n^{++}(\mathbb{R})$ telle que

$$S^2 = {}^t A A$$

c) Conclure

$$\forall A \in \mathrm{GL}_n(\mathbb{R}), \exists (O, S) \in \mathcal{O}_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}), A = OS$$

d) Etablir l'unicité de l'écriture.

Exercice 44 Mines-Ponts MP [02761] [correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que A est symétrique positive si, et seulement si, il existe $P \in \mathcal{M}_n(\mathbb{R})$ telle que $A = {}^t PP$.

Montrer que A est symétrique définie positive si, et seulement si, il existe $P \in GL_n(\mathbb{R})$ telle que $A = {}^tPP$.

Exercice 45 Mines-Ponts MP [02754] [correction]

a) Déterminer le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ engendré par $\mathcal{S}_n^{++}(\mathbb{R})$. Soit A_1, \ldots, A_k des éléments de $\mathcal{S}_n^{++}(\mathbb{R})$ et $\lambda_1, \ldots, \lambda_k$ des réels. On pose

$$A = \sum_{i=1}^{k} \lambda_i A_i$$
 et $B = \sum_{i=1}^{k} |\lambda_i| A_i$.

- b) Montrer que, pour $X \in \mathbb{R}^n$, $|^t XAX| \leq {}^t XBX$.
- c) Montrer que $|\det A| \leq \det B$.

Exercice 46 Mines-Ponts MP [02755] [correction]

Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{S}_n^{+}(\mathbb{R})$.

- a) Montrer l'existence de $C \in \mathcal{S}_n^{++}(\mathbb{R})$ tel que $C^2 = A^{-1}$.
- b) On pose D = CBC. Montrer que $(\det(I+D))^{1/n} \ge 1 + (\det D)^{1/n}$.
- c) Montrer que $(\det(A+B))^{1/n} \ge (\det A)^{1/n} + (\det B)^{1/n}$.

Exercice 47 [03170] [correction]

Soient $A, B \in \mathcal{S}_n^{++}(\mathbb{R})$. Montrer

$$(A+B)^{-1} \neq A^{-1} + B^{-1}$$

5

Exercice 48 [03174] [correction]

Soit $S \in \mathcal{S}_n(\mathbb{R})$. Montrer que la comatrice de S est symétrique.

Même question avec $S \in \mathcal{S}_n^{++}(\mathbb{R})$ puis $S \in \mathcal{S}_n^{+}(\mathbb{R})$.

Diagonalisation de forme bilinéaire symétrique

Exercice 49 [00024] [correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ inversible.

- a) Justifier que tAA est la matrice dans la base canonique d'un produit scalaire sur \mathbb{R}^n .
- b) En orthonormalisant la base canonique pour ce produit scalaire, établir qu'il existe une matrice triangulaire supérieure à coefficients diagonaux strictement positifs P vérifiant

$$^tP^tAAP = I_n$$

- c) Etablir qu'il existe Q orthogonale et R triangulaire supérieure à coefficients diagonaux strictement positifs vérifiant A = QR.
- d) Etudier l'unicité de cette écriture.

Exercice 50 [00019] [correction]

[Décomposition de Cholesky]

Soit $S \in \mathcal{S}_n^{++}(\mathbb{R})$. Montrer qu'il existe une unique matrice triangulaire supérieure T à coefficients diagonaux positifs vérifiant $S = {}^tTT$.

Exercice 51 Mines-Ponts MP [02760] [correction]

Montrer que le déterminant d'une matrice symétrique réelle définie positive est majoré par le produit de ses éléments diagonaux.

Exercice 52 [03087] [correction]

[Inégalité de Hadamard]

Soit $S = (s_{i,j}) \in \mathcal{S}_n^{++}(\mathbb{R})$.

a) Montrer qu'il existe $T \in T_n^+(\mathbb{R})$ vérifiant $S = {}^tTT$.

Enoncés

6

b) En déduire que

$$\det S \leqslant \prod_{i=1}^{n} s_{i,i}$$

c) Etablir que pour tout $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$

$$|\det A| \leqslant \left(\prod_{j=1}^n \sum_{i=1}^n a_{i,j}^2\right)^{1/2}$$

Diagonalisation simultanée de formes bilinéaires symétriques

Exercice 53 [00025] [correction]

Soient $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{S}_n(\mathbb{R})$.

Etablir qu'il existe une matrice $P \in GL_n(\mathbb{R})$ et une matrice $D \in D_n(\mathbb{R})$ vérifiant

$$A = {}^{t}PP$$
 et $B = {}^{t}PDP$

Exercice 54 Centrale MP [02405] [correction]

Soit $A \in \mathcal{S}_n(\mathbb{R})$ et $B \in \mathcal{S}_n^{++}(\mathbb{R})$.

Montrer que le polynôme $\det(A - XB)$ est scindé sur \mathbb{R} .

Exercice 55 Centrale MP [02398] [correction]

Soient A et B dans $\mathcal{S}_n^{++}(\mathbb{R})$.

a) Montrer qu'il existe $P \in GL_n(\mathbb{R})$ et $\Delta \in \mathcal{M}_n(\mathbb{R})$ diagonale à coefficients diagonaux > 0 telles que

$$A = {}^{t}PP$$
 et $B = {}^{t}P\Delta P$

b) Montrer que

$$\det(A+B) \geqslant \det A + \det B$$

c) Montrer que l'inégalité de b) subsiste si $A, B \in \mathcal{S}_n^+(\mathbb{R})$.

Exercice 56 Centrale MP [02407] [correction]

Soient A et B dans $\mathcal{S}_n^{++}(\mathbb{R})$ telles que : $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), {}^tXAX \leqslant {}^tXBX$. Montrer que det $A \leqslant \det B$. Exercice 57 Centrale MP [02402] [correction]

Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B \in \mathcal{S}_n(\mathbb{R})$.

Montrer que AB est diagonalisable.

Exercice 58 Mines-Ponts MP [02756] [correction]

Soient $A, B \in \mathcal{S}_n^+(\mathbb{R})$.

- a) Montrer que si A est définie positive alors il existe $P \in GL_n(\mathbb{R})$ et $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telles que $A = {}^tPP$ et $B = {}^tPDP$.
- b) Montrer que $(\det A)^t(\det B)^{1-t} \leq \det(tA + (1-t)B)$ pour tout $t \in]0,1[$.

Exercice 59 Centrale MP [02406] [correction]

Soit $\mathcal{P} = \{ A \in \mathcal{M}_n(\mathbb{R}), A + {}^t A \in \mathcal{S}_n^{++}(\mathbb{R}) \}.$

a) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $A \in \mathcal{P}$ si, et seulement si, :

 $\forall X \in \mathbb{R}^n \backslash \left\{0\right\}, {}^t X A X > 0.$

b) Soient $A \in \mathcal{P}$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$. Montrer, si λ est valeur propre complexe de SA, que $\text{Re}\lambda > 0$.

Rang d'une forme quadratique

Exercice 60 [00026] [correction]

Soient $f_1, f_2 \in E^*$ indépendantes et q la forme quadratique définie par $q(x) = f_1(x) f_2(x)$.

Déterminer le rang de la forme quadratique q.

Exercice 61 [00027] [correction]

Soit φ une forme bilinéaire symétrique non dégénérée, c'est à dire de rangn, sur un \mathbb{K} -espace vectoriel E de dimensionn.

Pour F sous-espace vectoriel deE, on note

$$F^{\perp} = \{ x \in E / \forall y \in F, \varphi(x, y) = 0 \}$$

- a) Montrer que F^{\perp} est un sous-espace vectoriel de E de dimension $n \dim F$.
- b) Justifier $F^{\perp \perp} = F$.
- c) Montrer que $F \oplus F^{\perp} = E$ si, et seulement si, la restriction de φ à F est non dégénérée.

Exercice 62 Mines-Ponts MP [02762] [correction] Soit sur \mathbb{R}^n la forme quadratique $Q(x_1,\ldots,x_n)=\sum\limits_{1\leqslant i,j\leqslant n,i\neq j}x_ix_j$. Trouver son rang.

Signature d'une forme quadratique

Exercice 63 [02630] [correction]

Déterminer la signature de $q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3$.

Exercice 64 [02632] [correction]

 $A = (\min(i,j))_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ et q la forme quadratique canoniquement associée à A.

Former une décomposition de Gauss de q et déterminer la signature de A.

Exercice 65 [02633] [correction]

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique.

Montrer que A est définie positive si, et seulement si,

$$\forall 1 \leqslant k \leqslant n, \Delta_k = \det((a_{i,j})_{1 \leqslant i,j \leqslant k}) > 0$$

Exercice 66 [02634] [correction]

Montrer que $\varphi:(A,B)\mapsto \operatorname{tr}(AB)$ est une forme bilinéaire symétrique.

En étudiant sa restriction à $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$, en déterminer la signature.

Exercice 1 : [énoncé]

$$\varphi(P,Q) = \frac{1}{4} \left(q(P+Q) - q(P-Q) \right) = \frac{1}{2} \int_0^1 P(t)Q''(t) + P''(t)Q(t) dt$$

est une forme bilinéaire symétrique et donc q est une forme quadratique dont φ est la forme polaire.

Exercice 2: [énoncé]

 $\varphi(x,y) = \frac{1}{4} \left(q(x+y) - q(x-y) \right) = \frac{1}{2} \left(f_1(x) f_2(y) + f_1(y) f_2(x) \right)$ est une forme bilinéaire symétrique et donc q est une forme quadratique dont φ est la forme polaire.

Exercice 3 : [énoncé]

- a) q est la forme quadratique associée à la forme bilinéaire symétrique $\varphi(x,y)=\frac{1}{2}(f(x)g(y)+f(y)g(x)).$
- b) Soit a un vecteur n'appartenant pas à H. Pour tout $x \in E$, on écrit de manière unique $x = h + \lambda a$ et on observe aisément que $x \mapsto h$ et $x \mapsto \lambda$ sont des applications linéaires. En introduisant φ la forme polaire de q, on a $q(x) = q(h) + 2\lambda \varphi(a,h) + \lambda^2 q(a) = \lambda(2\varphi(a,h) + \lambda q(a)) = f(x)g(x)$ avec $f(x) = \lambda$ et $g(x) = 2\varphi(a,h) + \lambda q(a)$ formes linéaires.

Exercice 4: [énoncé]

Raisonnons par récurrence sur $n \in \mathbb{N}^{\star}$.

Pour n = 1: ok

Supposons la propriété établie au rang $n-1 \ge 1$.

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ vérifiant $\{X \in \mathbb{C}^n / X^* A X = X^* B X = 0\} = \{0\}.$

Considérons $P(\lambda) = \det(A + \lambda B)$.

Cas det A, det $B \neq 0$.

P est un polynôme complexe non constant donc il existe λ , nécessairement non nul tel que $P(\lambda) = 0$.

Par suite, il existe $X \in \mathbb{C}^n$, $X \neq 0$ tel que $AX + \lambda BX = 0$.

Soit $F = \{Y \in \mathbb{C}^n / Y^* AX = 0\}.$

Puisque $\lambda \neq 0$, $F = \{Y \in \mathbb{C}^n / Y^* BX = 0\}$.

Si $X \in F$ alors $X^*AX = 0$ et donc $X^*BX = 0$ ce qui entraı̂ne X = 0 ce qui est exclu.

De même $AX \neq 0$ car comme ci-dessus AX = 0 entraı̂ne X = 0.

On en déduit que F est un hyperplan et $\mathbb{C}^n = \text{Vect}(X) \oplus F$.

Soient φ et ψ les formes sesquilinéaires représentées par A et B.

On peut appliquer l'hypothèse de récurrence aux restrictions à F des formes sesquilinéaires φ et ψ . En formant une base de \mathbb{C}^n en accolant X et une base de F trigonalisant les restrictions de ψ et ψ , on obtient une base de \mathbb{C}^n trigonalisant φ et ψ puisque $\forall Y \in F, \varphi(Y, X) = Y^*AX = 0$ et $\psi(Y, X) = Y^*BX = 0$.

Par formule de changement de base, ce qui précède signifie qu'il existe $P \in GL_n(\mathbb{C})$ vérifiant P^*AP et P^*BP sont triangulaires supérieures.

Exercice 5 : [énoncé]

Commençons par quelques résultats préliminaires...

Calculons $q(I_2)$.

Puisque $I_2 = I_2^2$, on a $q(I_2) = q(I_2^2) = q(I_2)q(I_2)$ donc $q(I_2) = 0$ ou 1.

Si $q(I_2) = 0$ alors pour tout $A \in \mathcal{M}_2(\mathbb{C})$, $q(A) = q(A \times I_2) = q(A)q(I_2) = 0$ et donc q = 0 ce qui est exclu.

On en déduit $q(I_2) = 1$.

Etudions maintenant les valeurs de q sur des matrices semblables.

Soient $A, B \in \mathcal{M}_2(\mathbb{C})$ semblables.

Il existe $P \in GL_2(\mathbb{C})$ tel que $B = P^{-1}AP$ et alors $q(B) = q(P^{-1})q(A)q(P) = q(A)$ car $q(P^{-1})q(P) = q(I_2) = 1$.

Ainsi q prend les mêmes valeurs sur des matrices semblables.

Calculons q(A) pour

$$A = E_{1,2} = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right)$$

Puisque $E_{1,2}^2 = O_2$, on a $q(E_{1,2})^2 = q(E_{1,2}^2) = q(O_2) = 0$ et donc $q(E_{1,2}) = 0$. Calculons q(A) pour

$$A = E_{1,1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$$

Puisque $E_{1,1}^2 = E_{1,1}$, on a $q(E_{1,1})^2 = q(E_{1,1}^2) = q(E_{1,1})$ et donc $q(E_{1,1}) = 0$ ou 1.

Par l'absurde, supposons $q(E_{1,1}) = 1$

Puisque A est semblable à $E_{2,2}$, $q(E_{1,1}) = q(E_{2,2})$.

Par l'identité du parallélogramme

 $q(E_{1,1} + E_{2,2}) + q(E_{1,1} - E_{2,2}) = 2(q(E_{1,1}) + q(E_{2,2})) = 4.$

Or $q(E_{1,1} + E_{2,2}) = q(I_2) = 1$ et $q(E_{1,1} - E_{2,2}) = 1$ ou -1 car $(E_{1,1} - E_{2,2})^2 = I_2$. C'est absurde.

On en déduit q(A) = 0 et au passage on observe $q(E_{1,1} - E_{2,2}) = -1$.

Considérons maintenant $A \in \mathcal{M}_2(\mathbb{C})$ non inversible.

La matrice est semblable à

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \text{ ou } \left(\begin{array}{cc} 0 & 0 \\ 0 & \lambda \end{array}\right)$$

Dans les deux cas q(A) = 0.

Considérons maintenant $A=\left(\begin{array}{cc}\lambda & 0\\ 0 & \mu\end{array}\right)$ et montrons $q(A)=\lambda\mu.$

$$A = \lambda \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) + \mu \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right)$$

donc

$$q(A) = \lambda^2 q(E_{1,1}) + 2\lambda \mu \varphi(E_{1,1}, E_{2,2}) + \mu^2 q(E_{2,2})$$

Or $q(E_{1,1}) = q(E_{2,2}) = 0$ et

$$\varphi(E_{1,1}, E_{2,2}) = \frac{1}{4} \left(q(E_{1,1} + E_{2,2}) - q(E_{1,1} - E_{2,2}) \right) = \frac{1}{2}$$

donc $q(A) = \lambda \mu = \det A$.

L'identité qui précède est encore vraie si A est diagonalisable et puisque l'application q et l'application det sont continues et coïncident sur l'ensemble des matrices diagonalisables qui est une partie dense dans $\mathcal{M}_2(\mathbb{C})$, on peut conclure que l'application q est le déterminant sur $\mathcal{M}_2(\mathbb{C})$.

Exercice 6: [énoncé]

 (\Leftarrow) : il suffit de prendre y = x.

 (\Rightarrow) : Par Cauchy Schwarz, on sait $|\varphi(x,y)| \leq q(x)q(y)$.

Exercice 7 : [énoncé]

Soit $x \in F \cap \text{Vect}(e_{p+1}, \dots, e_n)$. On a $q(x) \ge 0$ et $q(x) \le 0$ donc q(x) = 0 puis x = 0.

Par suite F et $Vect(e_{p+1}, \ldots, e_n)$ sont en somme directe et donc nécessairement $\dim F \leq p$.

Exercice 8: [énoncé]

Soient $a, b \in E$. L'application

$$t \mapsto q((1-t)a+tb)) = (1-t)^2 q(a) + 2t(1-t)\varphi(a,b) + t^2 q(b)$$

est continue et prend la valeur q(a) en t = 0 et q(b) en t = 1.

Si q(a)q(b) < 0 alors cette application s'annule et donc puisque l'on suppose q définie, il existe $t \in]0,1[$ tel que (1-t)a+tb=0. Mais alors (1-t)a=-tb donne $(1-t)^2q(a)=t^2q(b)$ et donc $q(a)q(b)\geqslant 0$.

Il y a contradiction et donc pour tout $a, b \in E$, $q(a)q(b) \ge 0$ c'est-à-dire q(a) et q(b) sont de même signe.

On peut alors conclure que q est définie positive ou définie négative.

Exercice 9 : [énoncé]

 $\begin{array}{l} q((1-\lambda)a+\lambda b)=(1-\lambda)^2q(a)+2(1-\lambda)\lambda\varphi(a,b)+\lambda^2q(b).\\ \text{Or par l'inégalité de Cauchy-Schwarz, }\varphi(a,b)\leqslant\sqrt{q(a)q(b)}\leqslant\frac{1}{2}\left(q(a)+q(b)\right)\text{ donc}\\ q((1-\lambda)a+\lambda b)\leqslant(1-\lambda)^2q(a)+(1-\lambda)\lambda\left(q(a)+q(b)\right)+\lambda^2q(b)\text{ puis}\\ q((1-\lambda)a+\lambda b)\leqslant(1-\lambda)q(a)+\lambda q(b). \end{array}$

Exercice 10: [énoncé]

La matrice de Q_{α} dans la base canonique de \mathbb{R}^n est

$$\begin{pmatrix}
1-\alpha & (\alpha) \\
& \ddots \\
(\alpha) & 1-\alpha
\end{pmatrix}$$

Si n=1, seul $1-\alpha$ est valeur propre et une condition nécessaire et suffisante est que $\alpha<1$.

Si $n \ge 2$ alors les valeurs propres sont $1 - n\alpha$ et $1 - 2\alpha$. Une condition nécessaire et suffisante pour que Q_{α} soit définie positive est $1 - n\alpha > 0$ et $1 - 2\alpha > 0$ i.e. $\alpha < 1/n$.

Exercice 11 : [énoncé]

Cas $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ avec $\lambda_i > 0$.

En développant le déterminant selon la première colonne :

$$q(x_1, \dots, x_n) = -\lambda_1 \dots \lambda_n \left(\frac{x_1^2}{\lambda_1} + \dots + \frac{x_n^2}{\lambda_n} \right)$$

q est évidemment une forme quadratique définie négative.

Cas général : on peut écrire $A = {}^t PDP$ avec $P \in \mathcal{O}_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, $\lambda_i > 0$.

On observe

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & P \end{array}\right) \left(\begin{array}{cc} 0 & {}^tX \\ X & A \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & {}^tP \end{array}\right) = \left(\begin{array}{cc} 0 & {}^t(PX) \\ PX & D \end{array}\right)$$

et donc

$$q(X) = \det \left(\begin{array}{cc} 0 & {}^{t}PX \\ PX & D \end{array} \right)$$

car $\det P = 1$. Cela permet de conclure.

Exercice 12 : [énoncé]

- a) L'application Φ est bien définie de $\mathbb{R}^n \times \mathbb{R}^n$ vers \mathbb{R} .
- Par linéarité du déterminant en la première colonne, on obtient

$$\Phi(X, \lambda_1 Y_1 + \lambda_2 Y_2) = \lambda_1 \Phi(X, Y_1) + \lambda_2 \Phi(X, Y_2)$$

De plus, le déterminant d'une matrice étant celui de sa transposée

$$\Phi(X,Y) = -\det\begin{pmatrix} 0 & {}^{t}Y \\ X & {}^{t}A \end{pmatrix} = -\det\begin{pmatrix} 0 & {}^{t}Y \\ X & A \end{pmatrix} = \Phi(Y,X)$$

Ainsi Φ est une forme bilinéaire symétrique sur \mathbb{R}^n .

b) En vertu du théorème spectral, la matrice A est orthogonalement semblable à une matrice diagonale

$$A = {}^{t}PDP$$
 avec $P \in \mathcal{O}_{n}(\mathbb{R})$ et $D = \operatorname{diag}(\alpha, \beta, \gamma)$

On observe alors

$$\begin{pmatrix} 0 & {}^{t}X \\ X & A \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & {}^{t}P \end{pmatrix} \begin{pmatrix} 0 & {}^{t}Y \\ Y & D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix} \text{ avec } Y = PX$$

On a ainsi $\Phi(X,X) = \Psi(Y,Y)$ avec

$$\Psi(Y,Y) = -\det \left(\begin{array}{cc} 0 & {}^tY \\ Y & D \end{array} \right) = \beta \gamma y_1^2 + \alpha \gamma y_2^2 + \alpha \beta y_3^2$$

On en déduit que la forme bilinéaire symétrique Φ est définie positive si, et seulement si,

$$\alpha\beta,\beta\gamma,\alpha\gamma>0$$

ce qui signifie que les réels α, β, γ sont de même signe strict.

Exercice 13: [énoncé]

Notons que l'inclusion $N_q \subset C_q$ est toujours vraie (il suffit de prendre y = x). Cas q positive :

Soit $x \in C_q$. Par l'inégalité de Cauchy-Schwarz, pour tout $y \in E$,

$$|B(x,y)| \leqslant q(x)q(y) = 0$$

donc B(x,y)=0. Ainsi $x\in N_q$ et donc $C_q\subset N_q$ puis l'égalité.

Cas q négative :

Il suffit d'étudier -q.

Inversement, montrons que si q n'est ni négative, ni positive alors $C_q \neq N_q$.

Supposons qu'il existe $x, y \in E$ tel que q(x) > 0 et q(y) < 0.

Par continuité de la fonction $t\mapsto q(tx+(1-t)y)$, on peut affirmer qu'il existe $t\in]0,1[$ tel que

$$z = tx + (1 - t)y \in C_q$$

Si par l'absurde $z \in N_a$ alors

$$B(z, x) = B(z, y) = 0$$

Or par développement

$$B(z,x) = tq(x) + (1-t)B(x,y)$$
 et $B(z,y) = tB(x,y) + (1-t)q(y)$

Ceci entraı̂ne une incompatibilité de signe sur B(x,y).

On peut donc affirmer que $z \notin N_q$ et donc $C_q \neq N_q$.

Exercice 14: [énoncé]

Notons E l'espace des fonctions continues de]0,1] dans $\mathbb R$ et de carrés intégrables. On définit un produit scalaire ϕ sur E par

$$\phi(f,g) = \int_{]0,1]} f(t)g(t) dt$$

Pour $i \in \{1, ..., n\}$, posons $f_i : t \mapsto t^{a_i - 1/2}$ élément de E. Pour $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n)$ éléments de \mathbb{R}^n , posons

$$b(x,y) = \phi\left(\sum_{i=1}^{n} x_i f_i, \sum_{i=1}^{n} y_i f_i\right)$$

L'application b est évidemment une forme bilinéaire symétrique sur \mathbb{R}^n et pour celle-ci

$$b(x,x) = \int_{]0,1]} \sum_{i,j=1}^{n} x_i x_j t^{a_i + a_j - 1} dt = \sum_{i,j=1}^{n} \frac{x_i x_j}{a_i + a_j} = q(x)$$

Ainsi q est une forme quadratique.

De plus, puisque la forme bilinéaire symétrique ϕ est positive, il en de même de b et donc la forme quadratique q est positive.

Enfin, si
$$q(x) = 0$$
 alors $\sum_{i=1}^{n} x_i f_i = 0$.

Ainsi
$$\sum_{i=1}^{n} x_i t^{a_i - 1/2} = 0$$
 pour tout $t \in]0, 1]$.

En multipliant par $t^{1/2}$, on obtient

$$\sum_{i=1}^{n} x_i t^{a_i} = 0 \text{ pour tout } t \in]0,1] \text{ (*)}$$

En posant t = 1, on obtient l'équation $\sum_{i=1}^{n} x_i = 0$.

En dérivant (*) et en multipliant par t, on obtient

$$\sum_{i=1}^{n} a_i x_i t^{a_i} = 0 \text{ pour tout } t \in]0,1] \text{ (**)}$$

En posant t = 1, on obtient l'équation $\sum_{i=1}^{n} a_i x_i = 0$.

En reprenant ce principe, on obtient

$$\sum_{i=1}^{n} a_i^k x_i = 0 \text{ pour tout } k \in \{0, \dots, n-1\}$$

Le n-uplet (x_1,\ldots,x_n) est alors solution d'un système linéaire homogène à n équations qui est un système de Cramer car son déterminant est un déterminant de Vandermonde non nul puisque les a_1,\ldots,a_n sont deux à deux distincts. Par suite $x_1=\ldots=x_n=0$ et ainsi $q(x)=0 \Rightarrow x=0$.

Finalement q est une forme quadratique définie positive.

Exercice 15: [énoncé]

 $u^* = (f^* \circ f)^* = f^* \circ f = u \text{ donc } u \in \mathcal{S}(E)$

Si λ est valeur propre de u associée au vecteur propre $x \neq 0$ alors $(x \mid u(x)) = \lambda \|x\|^2$ et $(x \mid u(x)) = \|f(x)\|^2$ donc $\lambda = \frac{\|f(x)\|^2}{\|x\|^2} \geqslant 0$.

Exercice 16: [énoncé]

- a) u est diagonalisable et ses valeurs propres $\lambda_1, \ldots, \lambda_r$ sont positives. E est la somme directe orthogonale des sous-espaces propres $E_{\lambda_1}, \ldots, E_{\lambda_r}$, notons p_1, \ldots, p_r les projecteurs orthogonaux associés à cette décomposition.
- On a $u = \lambda_1 p_1 + \dots + \lambda_r p_r$ et en posant $v = \sqrt{\lambda_1} p_1 + \dots + \sqrt{\lambda_r} p_r$, on a $v^2 = u$ avec v endomorphisme symétrique positif. On peut aussi proposer une résolution matricielle via représentation dans une base orthonormée
- b) Soit v solution. Pour tout $\lambda \in \operatorname{Sp}(u)$, $F = E_{\lambda}(u)$ est stable par v car u et v commutent. $v_F \in \mathcal{S}^+(F)$ et $v_F^2 = \lambda \operatorname{Id}_F$ donc via diagonalisation de v_F , on obtient $v_F = \sqrt{\lambda} \operatorname{Id}_F$. Ceci détermine v de manière unique sur chaque sous-espace propre de u et puisque ceci sont en somme directe égale à E, on peut conclure à l'unicité de v.

Exercice 17: [énoncé]

- a) $A \in \mathcal{S}_n^{+\star}(E)$ donc $A^{-1} \in \mathcal{S}_n^{+\star}(E)$ et par suite $\langle \, | \, \rangle_A$ est un produit scalaire sur E.
- b) On a

$$\langle x \mid ABy \rangle_A = \langle A^{-1}x \mid ABy \rangle = \langle x \mid By \rangle = \langle Bx \mid y \rangle = \langle ABx \mid y \rangle_A$$

L'endomorphisme AB est autoadjoint dans $(E, \langle | \rangle_A)$ donc diagonalisable.

c) On a

$$\frac{\langle Bx \mid x \rangle}{\langle A^{-1}x \mid x \rangle} = \frac{\langle ABx \mid x \rangle_A}{\|x\|_A^2}$$

En introduisant une base orthonormée $\mathcal{B} = (e_1, \dots, e_n)$ de $(E, \langle | \rangle_A)$ formée de vecteurs propres de AB, on peut écrire pour $x = x_1e_1 + \dots + x_ne_n$,

$$\frac{\langle ABx \mid x \rangle_A}{\|x\|_A^2} = \frac{\lambda_1 x_1^2 + \dots + \lambda_n x_n^2}{x_1^2 + \dots + x_n^2}$$

en notant $\lambda_1, \ldots, \lambda_n$ les valeurs propres de AB. Il est clair que cette quantité est comprise entre $\lambda_{\min}(AB)$ et $\lambda_{\max}(AB)$. De plus ces deux valeurs propres sont valeurs prise par

$$\frac{\langle ABx \mid x \rangle_A}{\|x\|_A^2}$$

en x vecteur propre associé. Enfin $E \setminus \{0\}$ est connexe par arcs et l'image d'un connexe par arcs par une application continue est un connexe par arcs. On peut donc conclure que les valeurs prises par

$$x \mapsto \frac{\langle Bx \mid x \rangle}{\langle A^{-1}x \mid x \rangle}$$

sur $E \setminus \{0\}$ constituent le segment

$$[\lambda_{\min}(AB), \lambda_{\max}(AB)]$$

d) On a $\langle Bx \mid x \rangle \leqslant \lambda_{\max}(B) \|x\|^2$ et $\langle A^{-1}x \mid x \rangle \geqslant \lambda_{\min}(A^{-1}) \|x\|^2$ donc

$$\frac{\langle Bx \mid x \rangle}{\langle A^{-1}x \mid x \rangle} \leqslant \frac{\lambda_{\max}(B)}{\lambda_{\min}(A^{-1})}$$

Or $\lambda_{\min}(A^{-1}) = \frac{1}{\lambda_{\max}(A)}$ donc

$$\frac{\langle Bx \mid x \rangle}{\langle A^{-1}x \mid x \rangle} \leqslant \lambda_{\min}(A)\lambda_{\max}(B)$$

et la conclusion est dès lors facile.

Exercice 18: [énoncé]

a) $v^* = v \, \text{et}(v(x) \mid x) = ||u(x)||^2 \ge 0 \, \text{et} = 0 \Leftrightarrow x = 0 \, \text{car} \, u \in \text{GL}(E).$

b) Il existe une base orthonormée \mathcal{B} dans laquelle la matrice de v est de la forme $\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$ avec $\lambda_i>0$. L'endomorphisme w dont la matrice dans \mathcal{B} est $\operatorname{diag}(\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n})$ convient. Notons que cet endomorphisme est autoadjoint car représenté par une matrice symétrique dans une base orthonormée.

On pose ensuite $\rho = uw^{-1}$ et on vérifie sans peine $\rho^*\rho = \operatorname{Id} \operatorname{donc} \rho \in \mathcal{O}(E)$.

c) Si $u=\rho w$ alors $w^2=v$. Nous allons établir l'unicité de w.v est diagonalisable donc E est somme des sous-espaces propres $E_{\lambda}(v)$ avec $\lambda\geqslant 0$. Comme v et w commutent, ces sous-espaces sont stables par w. Or w est diagonalisable donc l'endomorphisme induit par w sur $E_{\lambda}(v)$ aussi et puisque les valeurs propres de w sont positives, il est nécessaire que l'endomorphisme induit par w sur $E_{\lambda}(v)$ soit $\sqrt{\lambda} \mathrm{Id}$. Ceci détermine w de manière unique et puisque $\rho=uw^{-1}$, r aussi est unique.

d) $\forall A \in GL_n(\mathbb{R}), \exists !(O, S) \in \mathcal{O}_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}), A = OS$ (décomposition de Cartan).

Exercice 19: [énoncé]

Pour x = 0, il y a égalité.

Pour $x \neq 0$ et pour $\lambda \in \mathbb{R}$, $\langle u(x + \lambda u^{-1}(x)) \mid x + \lambda u^{-1}(x) \rangle \geqslant 0$ donc $\lambda^2 \langle x, u^{-1}(x) \rangle + 2\lambda \langle x \mid x \rangle + \langle u(x), x \rangle \geqslant 0$ avec $\langle x, u^{-1}(x) \rangle \neq 0$ car $u^{-1} \in \mathcal{S}^{++}(E)$. Par suite $\Delta = 4 \|x\|^4 - 4 \langle u(x), x \rangle \langle u^{-1}(x), x \rangle \leqslant 0$ puis l'inégalité proposée. De plus, il y a égalité si, et seulement si, il existe $\lambda \in \mathbb{R}$ vérifiant $x + \lambda u^{-1}(x) = 0$ i.e. si, et seulement si, x est vecteur propre de u.

Exercice 20: [énoncé]

Rappelons les propriétés classiques suivantes utiles pour la suite :

$$(\ker u)^{\perp} = \operatorname{Im} u^{\star}, \operatorname{rg}(u^{\star}u) = \operatorname{rg} u^{\star} = \operatorname{rg} u, \text{ et } u^{\star}u \in \mathcal{S}^{+}(E).$$

(i) \Rightarrow (ii) Supposons $uu^*u = u$. On a alors $uu^*(uu^*) = (uu^*u)u^* = uu^*$ donc uu^* est un projecteur.

De plus $(uu^*)^* = u^{**}u^* = uu^*$ donc le projecteur uu^* est orthogonal.

(ii) \Rightarrow (iii) Supposons uu^* projecteur orthogonal. On a $uu^*uu^* = uu^*$ donc $u(u^*uu^*u) = u(u^*u)$ puis $u \circ (u^*uu^*u - u^*u) = \tilde{0}$. Par suite, l'endomorphisme $u^*uu^*u - u^*u$ prend ses valeurs dans ker u. Or il prend aussi ses valeurs dans $\operatorname{Im} u^* = (\ker u)^{\perp}$, c'est donc l'endomorphisme nul.

(iii) \Rightarrow (iv) Supposons u^*u projecteur orthogonal.

Puisque $\operatorname{Im} u^* u \subset \operatorname{Im} u^*$ et puisque $\operatorname{rg}(u^* u) = \operatorname{rg} u^*$, on a

 $\operatorname{Im}(u^{\star}u) = \operatorname{Im}u^{\star} = (\ker u)^{\perp}.$

Ainsi u^*u est la projection orthogonale sur $(\ker u)^{\perp}$.

Soit $x \in (\ker u)^{\perp}$.

$$\|u(x)\|^2 = (u(x) \mid u(x)) = (u^*u(x) \mid x) = (x \mid x) = \|x\|^2.$$

Inversement, supposons $||u(x)||^2 = ||x||^2$

Par les calculs qui précédent, on obtient $(x - u^*u(x) \mid x) = 0$.

On peut écrire x = a + b avec $a = u^*u(x) \in (\ker u)^{\perp}$ et $b \in \ker u$.

 $(x - u^*u(x) \mid x) = 0$ donne $(b \mid a + b) = 0$ puis $(b \mid b) = 0$ et donc b = 0.

Ainsi $x = a + b = a \in (\ker u)^{\perp}$.

 $(iv) \Rightarrow (i)$ Supposons $(\ker u)^{\perp} = \{x \in E / ||u(x)|| = ||x||\}.$

Puisque ker u est stable par u^*u , $(\ker u)^{\perp}$ est stable par $(u^*u)^* = u^*u$.

L'endomorphisme induit par u^*u sur $(\ker u)^{\perp}$ est un endomorphisme autoadjoint positif conservant la norme, c'est donc l'identité car sa seule valeur propre possible est 1.

Puisque l'endomorphisme u^*u est nul sur ker u et égal à l'identité sur $(\ker u)^{\perp}$, on peut affirmer que les endomorphismes $uu^*u = u(u^*u)$ et u sont égaux car ils coïncident sur les deux espaces supplémentaires ker u et $(\ker u)^{\perp}$.

Exercice 21 : [énoncé]

a) Si $\lambda_{\min}=\min \mathrm{Sp}u$ et $\lambda_{\max}=\max \mathrm{Sp}u$, on montre en introduisant une base orthonormée diagonalisant u que

$$\forall x \in E, \lambda_{\min} \|x\|^2 \leqslant (u(x) \mid x) \leqslant \lambda_{\max} \|x\|^2$$

Pour qu'il existe un vecteur unitaire appartenant à H_u il est nécessaire que $1 \in [\lambda_{\min}, \lambda_{\max}]$.

Inversement, supposons $1 \in [\lambda_{\min}, \lambda_{\max}]$.

Si $\lambda_{\min} = \lambda_{\max}$ alors la réciproque est immédiate.

Supposons désormais $\lambda_{\min} < \lambda_{\max}$. On introduit e_{\min} vecteur propre unitaire associé à λ_{\min} et e_{\max} vecteur propre unitaire associé à λ_{\max} . Considérons enfin

$$e_{\theta} = \cos(\theta)e_{\min} + \sin(\theta)e_{\max}$$

Puisque e_{\min} et e_{\max} sont unitaires et orthogonaux, on vérifie $||e_{\theta}|| = 1$. Considérons ensuite $f(\theta) = (u(e_{\theta}) | e_{\theta})$. La fonction f est continue, $f(0) = \lambda_{\min}$ et $f(\pi/2) = \lambda_{\max}$ dont, en vertu du théorème des valeurs intermédiaires, il existe $\theta \in [0, \pi/2]$ vérifiant $e_{\theta} \in H_u$.

b) Considérons le produit scalaire défini par

$$\langle x, y \rangle = (v(x) \mid y)$$

On observe

$$(v(x) \mid x) = \langle x, x \rangle$$
 et $(u(x) \mid x) = \langle v^{-1} \circ u(x), x \rangle$

L'endomorphisme $v^{-1} \circ u$ est autoadjoint pour le produit scalaire $\langle .,. \rangle$ et l'étude du a) adaptée au contexte en cours, assure qu'il existe $x \in E$ vérifiant

$$\langle x, x \rangle = 1 \text{ et } \langle v^{-1} \circ u(x) \mid x \rangle = 1$$

si, et seulement si, 1 est compris entre

$$1 \in \left[\min \operatorname{Sp}(v^{-1} \circ u), \max \operatorname{Sp}(v^{-1} \circ u)\right]$$

Exercice 22 : [énoncé]

a) Soit \mathcal{B} une base orthonormé diagonalisant v:

$$\operatorname{Mat}_{\mathcal{B}}(v) = \begin{pmatrix} \lambda_1 & & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix} \text{ avec } \lambda_k > 0$$

L'endomorphisme s déterminé par

$$\operatorname{Mat}_{\mathcal{B}}(s) = \begin{pmatrix} \sqrt{\lambda_1} & (0) \\ & \ddots & \\ (0) & \sqrt{\lambda_n} \end{pmatrix}$$

vérifie $s^2 = v$ et puisque sa matrice dans une base orthonormée est symétrique, c'est endomorphisme est autoadjoint. Enfin $\operatorname{Sp} s \subset \mathbb{R}^{+\star}$ donc s est défini positif. b) On a

$$v^{-1} \circ u = s^{-1} \circ s^{-1} \circ u = s^{-1} \circ (s^{-1} \circ u \circ s^{-1}) \circ s$$

L'endomorphisme $w=s^{-1}\circ u\circ s^{-1}$ est autoadjoint donc diagonalisable puis l'endomorphisme semblable $s^{-1}\circ w\circ s$ est aussi diagonalisable.

Exercice 23: [énoncé]

Soit P la matrice dont les colonnes sont les composantes des vecteurs a,b,c dans une base orthonormée. On observe que $M={}^tPP$. La matrice M est donc symétrique positive ce qui permet de conclure.

Exercice 24: [énoncé]

Si $A \in \mathcal{S}_n^+(\mathbb{R})$ alors pour toute colonne X on a ${}^tXAX \geqslant 0$.

Pour X vecteur propre associé à la valeur propre λ , on a ${}^tXAX=\lambda^tXX$ donc $\lambda\geqslant 0$.

Si $A \in \mathcal{S}_n(\mathbb{R})$ alors toute colonne X est décomposable dans une base de vecteurs propres et on a ${}^t XAX = \sum_{i=1}^n \lambda_i x_i^2 \geqslant 0$ en notant x_i la composante de X selon un vecteur propre associé à la valeur propre λ_i .

Exercice 25 : [énoncé]

- a) Pour $X = E_i$, ${}^tXAX = a_{i,i} \ge 0$.
- b) Pour $X = E_i + \lambda E_j$, ${}^tXAX = a_{i,i} + 2\lambda a_{i,j} + \lambda^2 a_{j,j}$. Si $a_{i,i} = 0$ alors, pour tout $\lambda \in \mathbb{R}$, $2\lambda a_{i,j} + \lambda^2 a_{j,j} = 0$ donc $a_{i,j} = 0$.

Exercice 26 : [énoncé]

a) Puisque A est symétrique réelle, A est orthogonalement diagonalisable et donc il existe $P \in \mathcal{O}_n(\mathbb{R})$, vérifiant $A = PDP^{-1}$ avec $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, $\lambda_i \geqslant 0$. Posons alors $B = P\Delta P^{-1}$ avec $\Delta = \operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n})$. On vérifie $B^2 = A$ et ${}^tB = B$ (car ${}^tP = P^{-1}$) et les valeurs propres de B sont évidemment positives. b) Pour $\lambda > 0$.

$$X^{2} - \lambda = \left(X - \sqrt{\lambda}\right)\left(X + \sqrt{\lambda}\right)$$

avec $X-\sqrt{\lambda}$ et $X+\sqrt{\lambda}$ premier entre eux. Par le lemme de décomposition des noyaux

$$\ker(A - \lambda I_n) = \ker(B - \sqrt{\lambda} I_n) \oplus \ker(B + \sqrt{\lambda} I_n)$$

or $\ker(B + \sqrt{\lambda}I_n) = \{0\}$ car les valeurs propres de B sont positives et donc

$$\ker(A - \lambda I_n) = \ker(B - \sqrt{\lambda}I_n)$$

c) Il est immédiat que $\ker B \subset \ker B^2 = \ker A$. Inversement, soit $X \in \ker A = \ker B^2 = \ker^t BB$. On a ${}^tBBX = 0$ donc ${}^tX^tBBX = 0$ i.e. $\|BX\|^2 = 0$. On en déduit $X \in \ker B$ et donc $\ker A = \ker B$ d) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Puisque A est diagonalisable, on peut écrire

$$X = \sum_{\lambda \in \operatorname{Sp} A} X_{\lambda} \text{ avec } X_{\lambda} \in \ker(A - \lambda I_n)$$

Puisque $\ker(A - \lambda I_n) = \ker(B - \sqrt{\lambda} I_n)$, on a alors

$$BX = \sum_{\lambda \in \operatorname{Sp}B} BX_{\lambda} = \sum_{\lambda \in \operatorname{Sp}B} \sqrt{\lambda} X_{\lambda}$$

ce qui détermine B de façon unique.

Exercice 27 : [énoncé]

a) Puisque A est symétrique réelle, A est orthogonalement diagonalisable et donc il existe $P \in \mathcal{O}_n(\mathbb{R})$, vérifiant $A = PDP^{-1}$ avec $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, $\lambda_i \geqslant 0$. Posons alors $B = P\Delta P^{-1}$ avec $\Delta = \operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n})$. On vérifie $B^2 = A$ et ${}^tB = B$ (car ${}^tP = P^{-1}$) et les valeurs propres de B sont évidemment positives.

b) Soit $X \in \ker(B - \sqrt{\lambda}I_n)$, $BX = \sqrt{\lambda}X$ donc $AX = B^2X = \lambda X$ puis $X \in \ker(A - \lambda I_n)$.

Puisque A est diagonalisable,

$$\mathcal{M}_{n,1}(\mathbb{R}) = \bigoplus_{\lambda \in \operatorname{Sp}A} \ker(A - \lambda I_n)$$

Puisque B est diagonalisable,

$$\mathcal{M}_{n,1}(\mathbb{R}) = \bigoplus_{\mu \in \operatorname{Sp}B} \ker(B - \mu I_n)$$

Or les valeurs propres de B sont positives et leurs carrés sont valeurs propres de A donc

$$\operatorname{Sp} B \subset \left\{ \sqrt{\lambda} / \lambda \in \operatorname{Sp} A \right\}$$

Ceci permet d'écrire :

$$\mathcal{M}_{n,1}(\mathbb{R}) = \bigoplus_{\lambda \in \operatorname{Sp}A} \ker(B - \sqrt{\lambda}I_n)$$

quitte à introduire quelques espaces nuls.

On en déduit

$$\dim \mathcal{M}_{n,1}(\mathbb{R}) = \sum_{\lambda \in \operatorname{Sp}A} \dim \ker(B - \sqrt{\lambda}I_n) = \sum_{\lambda \in \operatorname{Sp}A} \dim \ker(A - \lambda I_n) \ (1)$$

Or l'inclusion $\ker(B - \sqrt{\lambda}I_n) \subset \ker(A - \lambda I_n)$ donne

$$\dim \ker(B - \sqrt{\lambda}I_n) \leq \dim \ker(A - \lambda I_n)$$
 (2)

L'égalité (1) et la majoration (2) donne alors

$$\dim \ker(B - \sqrt{\lambda}I_n) = \dim \ker(A - \lambda I_n)$$

pour tout $\lambda \in \operatorname{Sp} A$.

Par inclusion et égalité des dimensions

$$\ker(B - \sqrt{\lambda}I_n) = \ker(A - \lambda I_n)$$

c) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Puisque A est diagonalisable, on peut écrire

$$X = \sum_{\lambda \in \operatorname{Sp} A} X_{\lambda} \text{ avec } X_{\lambda} \in \ker(A - \lambda I_n)$$

Puisque $\ker(A - \lambda I_n) = \ker(B - \sqrt{\lambda} I_n)$, on a alors

$$BX = \sum_{\lambda \in \operatorname{Sp}B} BX_{\lambda} = \sum_{\lambda \in \operatorname{Sp}B} \sqrt{\lambda} X_{\lambda}$$

ce qui détermine B de façon unique.

Exercice 28 : [énoncé]

a) Il existe $P \in \mathcal{O}_n(\mathbb{R})$, vérifiant $S = PDP^{-1}$ avec $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, $\lambda_i \geqslant 0$. Considérons alors un polynôme Π , construit par interpolation de Lagrange vérifiant

$$\forall 1 \leqslant i \leqslant n, \pi(\lambda_i) = \sqrt{\lambda_i}$$

Posons ensuite $A = \Pi(S)$. A est un polynôme en S, A est symétrique réelle et

$$P^{-1}AP = P^{-1}\Pi(S)P = \Pi(D) = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$$

Les valeurs propres de A sont positives donc $A \in \mathcal{S}_n^+(\mathbb{R})$. Enfin, puisque

$$P^{-1}A^2P = \operatorname{diag}(\lambda_1, \dots, \lambda_n) = D$$

on a $A^2 = S$.

b) Soit $B \in \mathcal{S}_n^+(\mathbb{R})$ vérifiant $B^2 = S$. On a $BS = S^3 = SB$ donc B commute avec S et donc avec A qui est un polynôme en S. Puisque A et B sont diagonalisables et qu'elle commutent toutes deux, elles sont codiagonalisables. Ainsi, il existe une matrice de passage $Q \in \mathrm{GL}_n(\mathbb{R})$ vérifiant

$$Q^{-1}AQ = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) \text{ et } Q^{-1}BQ = \operatorname{diag}(\mu_1, \dots, \mu_n)$$

Or $A^2 = S = B^2$ donc $\mu_i^2 = \lambda_i$ puis $\mu_i = \sqrt{\lambda_i}$ car $\mu_i \geqslant 0$. Finalement A = B

Exercice 29 : [énoncé]

Existence : Il existe $U \in \mathcal{O}_n(\mathbb{R})$ et D diagonale positive telle que ${}^tUAU = D$. Soit Δ la matrice diagonale dont les coefficients sont les racines carrée des coefficients de D. Δ est diagonale positive et $\Delta^2 = D$.

Pour $B = U\Delta^t U$, on a $B \in \mathcal{S}_n^+(\mathbb{R})$ et $B^2 = A$ donc B solution.

Unicité : Supposons B solution et introduisons un espace vectoriel euclidien E de dimension n et $u, v \in \mathcal{L}(E)$ représentés par A et B dans une base orthonormée.

Avec des notations immédiates $E_{\lambda}(v) \subset E_{\lambda^2}(u)$, or $E = \bigoplus_{\lambda \in \mathbb{R}^+} E_{\lambda}(v)$ et

 $E = \bigoplus_{\lambda \in \mathbb{R}^+} E_{\lambda^2}(u)$ donc dim $E_{\lambda}(v) = \dim E_{\lambda^2}(u)$ puis $E_{\lambda}(v) = E_{\lambda^2}(u)$. Ceci

détermine entièrement v et permet de conclure à l'unicité de B.

Exercice 30 : [énoncé]

 ${}^{t}XAX = {}^{t}(MX)MX \geqslant 0 \text{ donc } A \in \mathcal{S}_{n}^{+}(\mathbb{R}).$

Pour $A \in \mathcal{S}_n^+(\mathbb{R})$, il existe $P \in \mathcal{O}_n(\mathbb{R})$ tel que $P^{-1}AP = D$ avec

 $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ et $\lambda_i \geqslant 0$. Posons $M = P\Delta P^{-1}$ avec

 $\Delta = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$. On a $M \in \mathcal{S}_n(\mathbb{R})$ et $M^2 = A$ donc $A = {}^tMM$.

Exercice 31 : [énoncé]

Par récurrence sur $n \in \mathbb{N}^*$.

Pour n = 1, S = (a) avec $a \ge 0$ donc $T = (\sqrt{a})$ convient.

Supposons la propriété établie au rang $n-1 \ge 1$.

Soient
$$S = \begin{pmatrix} a & L \\ {}^tL & S' \end{pmatrix} \in S_n^+(\mathbb{R})$$
 et $T = \begin{pmatrix} \alpha & \Lambda \\ 0 & T' \end{pmatrix} \in T_n^+(\mathbb{R})$. On observe ${}^tTT = \begin{pmatrix} \alpha^2 & \alpha\Lambda \\ \alpha^t\Lambda & S'' \end{pmatrix}$ avec $S'' = {}^t\Lambda\Lambda + {}^tT'T'$.

Pour $X = E_1$, la relation ${}^tXSX \ge 0$ donne $a \ge 0$.

Si a = 0 alors, en exploitant ${}^tXSX \ge 0$ avec $X = E_1 + \lambda E_j$ pour $\lambda \in \mathbb{R}$, on obtient L = 0.

De plus il est immédiat qu'alors $S' \in \mathcal{S}_{n-1}^+(\mathbb{R})$ et en prenant $\alpha = 0$, $\Lambda = 0$ et $T' \in T_{n-1}^+(\mathbb{R})$ tel que $S' = {}^tT'T'$ on conclut.

Si a>0 alors on pose $\alpha=\sqrt{a}$ et $\Lambda=\frac{1}{\alpha}L$ et il reste à déterminer T' tel que $S'={}^t\Lambda\Lambda+{}^tT'T'$.

Posons $\Sigma=S'-{}^t\Lambda\Lambda$ et montrons $\Sigma\in\mathcal{S}_{n-1}^+(\mathbb{R})$ ce qui permettra de conclure via l'hypothèse de récurrence.

Pour tout $X = \begin{pmatrix} x_1 \\ X' \end{pmatrix}$, ${}^tXSX \ge 0$ donne $ax_1^2 + 2x_1LX' + {}^tX'S'X' \ge 0$ et pour $x_1 = -\frac{1}{a}LX'$ on obtient ${}^tX'S'X' - \frac{1}{a}(LX')^2 \ge 0$ ce qui donne ${}^tX'\Sigma X' \ge 0$ et permet de conclure.

Récurrence établie.

Exercice 32 : [énoncé]

a) C'est $\mathcal{S}_n(\mathbb{R})$ car ces espaces sont évidemment orthogonaux et supplémentaires. b)

$$^{t}\exp(xB)\exp(xB) = \exp(^{t}(xB))\exp(xB) = \exp(-xB)\exp(xB)$$

Or -xB et xB commutent donc

$$^{t}\exp(xB)\exp(xB) = \exp(-xB + xB) = \exp(0) = I_{n}$$

c) La fonction dérivable $f: x \mapsto \operatorname{tr}(A \exp(xB))$ admet un maximum en 0 donc f'(0) = 0 ce qui donne $\operatorname{tr}(AB) = 0$ pour tout $B \in \mathcal{A}_n(\mathbb{R})$. Ainsi A est une matrice symétrique. Par le théorème spectrale $A = {}^t PDP$ avec $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ et $P \in \mathcal{O}_n(\mathbb{R})$.

Posons $V = \operatorname{diag}(\varepsilon_1, \dots, \varepsilon_n)$ avec $\varepsilon_i = \pm 1$ et $\varepsilon_i \lambda_i = |\lambda_i|$ et $U = PV^t P \in \mathcal{O}_n(\mathbb{R})$.

$$\operatorname{tr}(AU) = \operatorname{tr}(APV^{t}P) = \operatorname{tr}(^{t}PAPV) = \operatorname{tr}(DV) = |\lambda_{1}| + \dots + |\lambda_{n}|$$

et

$$\operatorname{tr}(A) = \lambda_1 + \dots + \lambda_n$$

La propriété $\operatorname{tr}(AU) \leqslant \operatorname{tr} A$ entraı̂ne $\lambda_i \geqslant 0$ pour tout i.

d) Supposons $A \in \mathcal{S}_n^+(\mathbb{R})$. On peut écrire $A = {}^tPDP$ avec $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, $\lambda_i \geq 0$ et $P \in \mathcal{O}_n(\mathbb{R})$. Pour tout $U \in \mathcal{O}_n(\mathbb{R})$, $\operatorname{tr}(AU) = \operatorname{tr}(DV)$ avec $V = (v_{i,j}) = {}^tPUP \in \mathcal{O}_n(\mathbb{R})$.

On a alors

$$\operatorname{tr}(DV) = \sum_{i=1}^{n} \lambda_{i} v_{i,i} \leqslant \sum_{i=1}^{n} \lambda_{i} = \operatorname{tr}(A)$$

 $\operatorname{car} v_{i,i} \leq 1.$

e) L'application réelle $f: V \to \operatorname{tr}(MV)$ est continue sur le compact $\mathcal{O}_n(\mathbb{R})$, elle y admet donc un maximum en un certain $U \in \mathcal{O}_n(\mathbb{R})$. On a alors pour tout $V \in \mathcal{O}_n(\mathbb{R})$,

$$\operatorname{tr}(MV) \leqslant \operatorname{tr}(MU)$$

Posons alors A = MU. Pour tout $W \in \mathcal{O}_n(\mathbb{R})$,

$$\operatorname{tr}(AW) \leqslant \operatorname{tr}A$$

donc $A \in \mathcal{S}_n^+(\mathbb{R})$ et ainsi $M = AU^{-1}$ avec $A \in \mathcal{S}_n^+(\mathbb{R})$ et $U^{-1} \in \mathcal{O}_n(\mathbb{R})$.

Exercice 33: [énoncé]

Puisque la matrice A est symétrique réelle positive, elle est orthogonalement semblable à une matrice diagonale à coefficients positifs. On peut donc écrire

$$A = PDP^{-1}$$
 avec $P \in \mathcal{O}_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \lambda_k \geqslant 0$

On a alors

$$tr(AB) = tr(PDP^{-1}B) = tr(DC)$$

avec $C = P^{-1}BP$ qui est encore une matrice symétrique réelle positive. On a alors

$$\operatorname{tr}(DC) = \sum_{i=1}^{n} \lambda_{i} c_{i,i} \leqslant \left(\sum_{i=1}^{n} \lambda_{i}\right) \left(\sum_{i=1}^{n} c_{i,i}\right) = \operatorname{tr}(D) \operatorname{tr}(C)$$

car les scalaires λ_i et les coefficients $c_{i,i}$ sont positifs.

Puisque deux matrices semblables ont même trace, on parvient à l'inégalité voulue.

Exercice 34 : [énoncé]

Puisque symétrique réelle positive, la matrice A est orthogonalement semblable à une matrice diagonale à coefficients positifs ce qui permet décrire

$$A = {}^{t}PDP$$

avec $P \in \mathcal{O}_n(\mathbb{R})$, $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, $\lambda_i \geqslant 0$. On a alors

$$\operatorname{tr}(AB) = \operatorname{tr}(DPB^tP) = \operatorname{tr}(DB')$$

avec $B' = PB^tP$. On vérifie aisément que B' est symétrique positive car B l'est et alors ces coefficients diagonaux sont positifs puisque

$$b'_{ii} = {}^{t}E_{i}BE_{i} \geqslant 0$$

On a alors

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \lambda_i b'_{ii} \geqslant 0$$

Exercice 35 : [énoncé]

Supposons $B \in \mathcal{S}_n^+(\mathbb{R})$.

Pour tout $1 \le i < j \le n$, les sous-matrices

$$\begin{pmatrix} a_{i,i} & a_{i,j} \\ a_{j,i} & a_{j,j} \end{pmatrix} \text{ et } \begin{pmatrix} 1/a_{i,i} & 1/a_{i,j} \\ 1/a_{j,i} & 1/a_{j,j} \end{pmatrix}$$

sont symétriques positives donc de déterminants positifs. Ainsi

$$a_{i,i}a_{j,j} - a_{i,j}^2 \geqslant 0 \text{ et } \frac{a_{i,j}^2 - a_{i,i}a_{j,j}}{a_{i,i}a_{j,j}a_{i,j}^2} \geqslant 0$$

On en déduit

$$a_{i,i}a_{j,j} - a_{i,j}^2 = 0$$

Ainsi toutes les matrices de taille 2 extraites de A sont non inversibles et donc $\operatorname{rg} A < 2$. Puisque les coefficients de A sont non nuls, on peut affirmer

$$rgA = 1$$

Inversement, supposons rgA = 1. Toutes les colonnes de A sont colinéaires entre elles ce qui perme d'écrire

$$A = (\alpha_i \beta_j)_{1 \leqslant i, j \leqslant n}$$

La relation

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), {}^{t}XAX \geqslant 0$$

donne alors

$$\forall x_1, \dots, x_n \in \mathbb{R}, \sum_{i,j=1}^n \alpha_i \beta_j x_i x_j \geqslant 0$$

puis en posant $x_i = y_i/\alpha_i^2$,

$$\forall y_1, \dots, y_n \in \mathbb{R}, \sum_{i,j=1}^n \frac{1}{\alpha_i \beta_j} y_i y_j \geqslant 0$$

ce qui permet d'affirmer que la matrice symétrique B est positive.

Exercice 36 : [énoncé]

Notons que les coefficients diagonaux de A sont positifs car

$$a_{i,i} = {}^{t}E_{i}AE_{i} \geqslant 0$$

Il est alors immédiat que

$$\forall i \in \{1, \dots, n\}, |a_{i,i}| = a_{i,i} \leq m$$

Pour $i \neq j \in \{1, ..., n\}$, introduisons $X = \lambda E_i + E_j \in \mathcal{M}_{n,1}(\mathbb{R})$ avec $\lambda \in \mathbb{R}$. On a

$${}^{t}XAX = \lambda^{2}a_{i,i}^{2} + 2\lambda a_{i,j} + a_{j,j}^{2} \geqslant 0$$

Si $a_{i,i} = 0$ alors on a nécessairement $a_{i,j} = 0$ et donc $|a_{i,j}| \leq m$.

Si $a_{i,i} \neq 0$ alors puis que le trinôme du second degré est de signe constant, on a

$$\Delta = 4a_{i,j}^2 - 4a_{i,j}a_{j,j} \leqslant 0$$

puis

$$a_{i,j}^2 \leqslant a_{i,i}a_{j,j} \leqslant m^2$$

d'où

$$|a_{i,j}| \leqslant m$$

Exercice 37 : [énoncé]

La matrice A est évidemment symétrique.

Posons

$$T = \begin{pmatrix} 1 & \cdots & 1 \\ & \ddots & \vdots \\ (0) & & 1 \end{pmatrix} \in GL_n(\mathbb{R})$$

On remarque

$$A = {}^{t}TT$$

On en déduit que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$

$${}^{t}XAX = {}^{t}(TX)TX = ||TX||^{2} \geqslant 0$$

avec égalité si, et seulement si, TX = 0 ce qui donne X = 0.

Exercice 38: [énoncé]

 ${\cal H}$ est symétrique donc diagonalisable.

H est la matrice du produit scalaire

$$(P,Q)\mapsto \int_0^1 P(t)Q(t)\,\mathrm{d}t$$

sur $\mathbb{R}_{n-1}[X]$ donc H est définie positive et donc à valeurs propres strictement positives.

Exercice 39 : [énoncé]

Pour $A \in \mathcal{S}_n^+(\mathbb{R})$, on vérifie que $A_p = A + \frac{1}{p}I_n \to A$ avec $A_p \in \mathcal{S}_n^{++}(\mathbb{R})$.

Exercice 40: [énoncé]

- a) φ est clairement bilinéaire, symétrique car A l'est et définie positive car $A \in \mathcal{S}_n^{++}(\mathbb{R})$.
- b) Notons E_1, \ldots, E_n les matrices élémentaires de $\mathcal{M}_{n,1}(\mathbb{R})$.

 $\varphi(E_i, E_j) = a_{i,j}, \, \varphi(E_i, E_i) = a_{i,i} \text{ et } \varphi(E_j, E_j) = a_{j,j} \text{ donc l'inégalité de Cauchy-Schwarz donne } a_{i,j}^2 \leq a_{i,i}a_{j,j}.$

De plus, s'il y a égalité alors E_i et E_j sont colinéaires ce qui ne peut être le cas que si $E_i = E_j$.

Exercice 41 : [énoncé]

- a) Si A est définie positive alors $\operatorname{Sp} A \subset \mathbb{R}^{+\star}$. De plus A est symétrique réelle donc diagonalisable et $\det A$ est le produit des valeurs propres de A comptées avec multiplicité. Par suite $\det A>0$.
- b) $A_p \in \mathcal{S}_p(\mathbb{R})$ et pour tout $X \in \mathcal{M}_{p,1}(\mathbb{R})$, ${}^tXA_pX = {}^tX'AX'$ avec $X' \in \mathcal{M}_{n,1}(\mathbb{R})$ la colonne obtenue en poursuivant la colonne X de coefficients nuls. On en déduit que si $A \in \mathcal{S}_n^{++}(\mathbb{R})$ alors $A_p \in \mathcal{S}_p^{++}(\mathbb{R})$ puis det $A_p > 0$.
- c) La propriété est immédiate au rang n=1.

Supposons la propriété acquise au rang $n \ge 1$.

Soit $A \in \mathcal{S}_{n+1}(\mathbb{R})$ vérifiant pour tout $p \in \{1, \dots, n+1\}$, det $A_p > 0$.

Par blocs, A est de la forme

$$A = \left(\begin{array}{cc} A_n & C_n \\ {}^tC_n & \lambda \end{array}\right)$$

Par application de l'hypothèse de récurrence, $A_n \in \mathcal{S}_n^{++}(\mathbb{R})$. Il existe donc $P_n \in \mathcal{O}_n(\mathbb{R})$ vérifiant ${}^tPAP = D_n = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ avec $\lambda_i > 0$.

Considérons alors

$$P_{n+1} = \begin{pmatrix} P_n & X_n \\ 0 & 1 \end{pmatrix} \in GL_{n+1}(\mathbb{R})$$

On a

$${}^{t}P_{n+1}AP_{n+1} = \left(\begin{array}{cc} D_n & Y_n \\ {}^{t}Y_n & \star \end{array}\right)$$

avec $Y_n = {}^tP_n(AX_n + C_n)$.

En choisissant $X_n = -A_n^{-1}C_n$, on obtient

$${}^{t}P_{n+1}AP_{n+1} = \left(\begin{array}{cc} D_n & 0\\ 0 & \star \end{array}\right)$$

avec $\lambda_{n+1} > 0$ car det A > 0 entraı̂ne $\lambda_1 \dots \lambda_{n+1} > 0$.

On peut alors affirmer que A est symétrique définie positive car A représente une telle forme bilinéaire symétrique dans une certaine base.

Récurrence établie.

Exercice 42: [énoncé]

On peut écrire

$$I_n + AB = A\left(A^{-1} + B\right)$$

La matrice $A^{-1} + B$ est symétrique réelle et vérifie

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, {}^{t}X(A^{-1} + B)X = {}^{t}XA^{-1}X + {}^{t}XBX > 0$$

On en déduit que $A^{-1} + B$ est inversible car élément de $\mathcal{S}_n^{++}(\mathbb{R})$ et donc $I_n + AB$ est inversible par produit de matrices inversibles.

Exercice 43: [énoncé]

- a) ${}^{t}X{}^{t}AAX = {}^{t}(AX)AX \ge 0$ et ${}^{t}X{}^{t}AAX = 0 \Rightarrow AX = 0 \Rightarrow X = 0$.
- b) Par le théorème spectral, il existe $P \in \mathcal{O}_n(\mathbb{R})$ tel que

 ${}^{t}P^{t}AAP = \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n}) \text{ avec } \lambda_{i} > 0.$

La matrice $S = {}^{t}P \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})P$ est alors solution.

- c) Posons $O = AS^{-1}$. On a A = OS et ${}^tOO = {}^tS^{-1}{}^tAAS^{-1} = I_n$ donc $O \in \mathcal{O}_n(\mathbb{R})$ et A = OS.
- d) Si A = OS alors $S^2 = {}^tAA$.

Pour $\lambda \in \operatorname{Sp}({}^tAA)$, $\ker({}^tAA - \lambda I_n) = \ker(S^2 - \lambda I_n)$. Or par le lemme de décomposition des noyaux, $\ker(S^2 - \lambda I_n) = \ker(S - \sqrt{\lambda} I_n) \oplus \ker(S + \sqrt{\lambda} I_n)$ car $\lambda > 0$. Or $\ker(S + \sqrt{\lambda} I_n) = \{0\}$ car $\operatorname{Sp}S \subset \mathbb{R}^{+\star}$. Ainsi pour tout $\lambda \in \operatorname{Sp}({}^tAA)$, $\ker({}^tAA - \lambda I_n) = \ker(S - \lambda I_n)$ ce qui suffit à établir l'unicité deS car $\mathcal{M}_{n,1}(\mathbb{R}) = \bigoplus_{\lambda \in \operatorname{Sp}({}^tAA)} \ker({}^tAA - \lambda I_n)$.

Exercice 44: [énoncé]

Si $A = {}^t PP$ alors il est facile d'établir que A est symétrique positive (voire définie positive si P est inversible). Inversement, si A est symétrique positive alors par le théorème spectral, on peut écrire $A = {}^t QDQ$ avec $Q \in \mathcal{O}_n(\mathbb{R})$,

 $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ et $\lambda_i \ge 0$ (voire $\lambda_i > 0$ si A est définie positive). Pour $P = \Delta Q$ avec $\Delta = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$ on dispose d'une matrice solution (inversible dans le cas où est définie positive.)

Exercice 45: [énoncé]

a) Vect $S_n^{++}(\mathbb{R}) = S_n(\mathbb{R})$ notamment parce qu'une matrice symétrique peut s'écrire comme différence de deux matrices symétriques définies positives via diagonalisation.

b)
$${}^{t}XAX = \sum_{i=1}^{k} \lambda_{i}{}^{t}XA_{i}X$$
 avec ${}^{t}XA_{i}X \geqslant 0$ donc $|{}^{t}XAX| \leqslant \sum_{i=1}^{k} |\lambda_{i}|{}^{t}XA_{i}X = {}^{t}XBX$.

c) Cas $B = I_n$.

La matrice A est diagonalisable et pour tout X, $|{}^tXAX| \leqslant {}^tXX$ assure que ses valeurs propres λ vérifient $|\lambda| \leqslant 1$ et donc $|\det A| \leqslant 1 = \det B$. Cas général :

Si les λ_i sont tous nuls, c'est immédiat. Sinon, $B \in \mathcal{S}_n^{++}(\mathbb{R})$. On peut écrire $B = C^2$ avec $C \in \mathcal{S}_n^{++}(\mathbb{R})$. Considérons ensuite $A' = C^{-1}AC^{-1} \in \mathcal{S}_n(\mathbb{R})$ Pour tout $X \in \mathbb{R}^n$, $|{}^tXA'X| = |{}^t(C^{-1}X)A(C^{-1}X)| \leq {}^t(C^{-1}X)B(C^{-1}X) = {}^tXX$. Par l'étude précédente, $|\det A'| \leq 1$ donc $|\det A| \leq (\det C)^2 = \det B$.

Exercice 46 : [énoncé]

a) On peut écrire $A = {}^t PDP$ avec $P \in \mathcal{O}_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ avec $\lambda_i > 0$. La matrice $C = {}^t P\Delta P$ avec $\Delta = \operatorname{diag}(1/\sqrt{\lambda_1}, \dots, 1/\sqrt{\lambda_n})$ convient.

b) ${}^tD = D$ et ${}^tXDX = {}^t(CX)B(CX) \ge 0$ donc $D \in \mathcal{S}_n^+(\mathbb{R})$. En notant $\mu_1, \ldots, \mu_n \ge 0$ ses valeurs propres, l'inégalité voulue revient à

 $\prod_{i=1}^{n} (1+\lambda_i)^{1/n} \geqslant 1 + \prod_{i=1}^{n} \lambda_i^{1/n}$ qui s'obtient en appliquant l'inégalité de Jensen à la convexité de la fonction $x \mapsto \ln(1+e^x)$.

c) $(\det C)^2 \det(A + B) = \det(CAC + CBC) = \det(I + D)$ avec $(\det C)^2 = 1/\det A$.

Exercice 47: [énoncé]

Par l'absurde supposons $(A + B)^{-1} = A^{-1} + B^{-1}$. On a alors

$$(A+B)(A^{-1}+B^{-1}) = I_n$$

et en développant

$$BA^{-1} + AB^{-1} + I_n = O_n$$

En multipliant à droite par la matrice A, on obtient

$$B + AB^{-1}A + A = O_n$$

Pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul, on obtient

$${}^{t}XBX + {}^{t}(AX)B(AX) + {}^{t}XAX = 0$$

avec

$${}^{t}XBX, {}^{t}(AX)B(AX), {}^{t}XAX > 0$$

ce qui est absurde.

Exercice 48: [énoncé]

Le coefficient d'indice (i, j) de la comatrice de S est

$$(-1)^{i+j}\Delta_{i,j}$$

avec $\Delta_{i,j}$ le mineur d'indice (i,j) de la matrice S i.e. le déterminant de la matrice obtenue en supprimant la *i*ème ligne et la *j*ème colonne de S. Or le déterminant d'une matrice est aussi celui de sa transposée et puisque la matrice S est symétrique, le mineur d'indice (i,j) est égal à celui d'indice (j,i). On en déduit que la comatrice de S est symétrique.

Si $S \in \mathcal{S}_n^{++}(\mathbb{R})$ alors

$$com S = {}^{t}(com S) = det(S)S^{-1}$$

Puisque S est définie positive, son inverse S^{-1} l'est aussi et $\det S>0$ donc $\mathrm{com} S$ est définie positive.

Si $S \in \mathcal{S}_n^+(\mathbb{R})$ alors pour tout t > 0,

$$S_t = S + tI_n \in \mathcal{S}_n^{++}(\mathbb{R})$$

puis

$$com(S_t) \in \mathcal{S}_n^{++}(\mathbb{R})$$

et donc

$$com(S) = \lim_{t \to 0^{\pm}} com(S_t) \in \overline{S_n^{++}(\mathbb{R})} = S_n^{+}(\mathbb{R})$$

Exercice 49: [énoncé]

- a) La matrice ${}^{t}AA$ est définie positive.
- b) Par le procédé de Schmidt, on peut orthonormaliser la base canonique de \mathbb{R}^n et la matrice de passage correspondante est alors triangulaire supérieure. Puisque la matrice d'un produit scalaire dans une base orthonormée est l'identité, la formule de changement de base donne ${}^tP^tAAP = I_n$ avec P triangulaire supérieure inversible.
- c) Les matrices Q = AP et $R = P^{-1}$ conviennent.
- d) Si A=QR=Q'R' alors $QQ'^{-1}=R'R^{-1}$ est une matrice orthogonale triangulaire supérieure à coefficients diagonaux strictement positifs. En étudiant successivement ses colonnes, on obtient $QQ'^{-1}=R'R^{-1}=I_n$ puis l'unicité de la décomposition.

Exercice 50 : [énoncé]

Existence : Soit φ la forme bilinéaire symétrique sur \mathbb{R}^n représentée par S dans la base canonique \mathcal{B} de \mathbb{R}^n .

 φ est un produit scalaire car $S \in \mathcal{S}_n^{++}(\mathbb{R})$.

Soit \mathcal{B}' l'orthonormalisée de Schmidt de la famille \mathcal{B} pour le produit scalaire φ . Notons T la matrice de passage de \mathcal{B}' à \mathcal{B} . Celle-ci est triangulaire supérieure à coefficients diagonaux positifs.

Puisque la matrice de la forme bilinéaire symétrique φ dans la base orthonormée \mathcal{B}' est I_n , la formule de changement de base donne $S = {}^tTI_nT = {}^tTT$.

Unicité : Supposons T, T' solutions. Puisque S est inversible, les matrices T et T' sont elles aussi inversibles.

On a
$${}^{t}TT = {}^{t}T'T'$$
 donc $TT'^{-1} = {}^{t}T^{-1}tT' = {}^{t}(T'T^{-1})$.

Or la matrice TT'^{-1} est triangulaire supérieure alors que ${}^t(T'T^{-1})$ est triangulaire inférieure. On en déduit que $TT'^{-1} = D$ avec D matrice diagonale. De plus les coefficients diagonaux de T et T' étant strictement positifs, l'égalité T = DT' entraı̂ne que les coefficients diagonaux de D sont eux aussi positifs. Enfin, l'égalité ${}^tTT = {}^tT'T'$ donne ${}^tT'D^2T' = {}^tT'T'$ puis $D^2 = I_n$ d'où $D = I_n$ et finalement T = T'.

Exercice 51 : [énoncé]

Soit $M \in \mathcal{S}_n^{++}(\mathbb{R})$. $\varphi(x,y) = {}^t X M Y$ définit un produit scalaire sur $E = \mathbb{R}^n$. En orthonormalisant pour le produit scalaire φ la base canonique \mathcal{B} de \mathbb{R}^n par le procédé de Schmidt, on obtient une base \mathcal{B}' et la matrice de passage P de \mathcal{B}' à \mathcal{B} est triangulaire supérieure. Par changement de base $\varphi(x,y) = {}^t X' Y' = {}^t X^t P P Y$

donne
$$M = {}^{t}PP$$
. D'une part $m_{i,i} = \sum_{j=1}^{n} p_{i,j}^{2} \geqslant p_{i,i}^{2}$ et d'autre part

$$\det M = (\det P)^2 = \prod_{i=1}^n p_{i,i}^2$$
 permettent de conclure.

Exercice 52 : [énoncé]

a) Soit φ la forme bilinéaire symétrique sur \mathbb{R}^n représentée par S dans la base canonique \mathcal{B} de \mathbb{R}^n .

 φ est un produit scalaire car $S \in \mathcal{S}_n^{++}(\mathbb{R})$.

Soit \mathcal{B}' l'orthonormalisée de Schmidt de la famille \mathcal{B} pour le produit scalaire φ . Notons T la matrice de passage de \mathcal{B}' à \mathcal{B} . Celle-ci est triangulaire supérieure. Puisque la matrice de la forme bilinéaire symétrique φ dans la base orthonormée \mathcal{B}' est I_n , la formule de changement de base donne $S = {}^tTI_nT = {}^tTT$.

b) Notons $t_{i,j}$ les coefficients de la matrice T.

On a

$$s_{i,i} = \sum_{k=1}^{i} t_{k,i}^2 \geqslant t_{i,i}^2$$

donc

$$\prod_{i=1}^{n} s_{i,i} \geqslant \prod_{i=1}^{n} t_{i,i}^{2} \geqslant (\det T)^{2} = \det S$$

c) Si $A \notin GL_n(\mathbb{R})$, la propriété est immédiate.

Si $A \in GL_n(\mathbb{R})$ alors $S = {}^tAA \in \mathcal{S}_n^{++}(\mathbb{R})$ et $s_{j,j} = \sum_{i=1}^n a_{i,j}^2$ donc

$$(\det A)^2 = \det S \leqslant \prod_{j=1}^n \sum_{i=1}^n a_{i,j}^2$$

puis l'inégalité proposée.

Exercice 53: [énoncé]

Sur \mathbb{R}^n muni de sa base canonique, A est la matrice d'un produit scalaire. Pour ce produit scalaire, il existe une base orthonormée telle que la forme bilinéaire symétrique représentée par B soit une matrice diagonale D. La matrice du produit scalaire dans cette base orthonormée est l'identité et par la formule de changement de base, $A = {}^tPI_nP$ et $B = {}^tPDP$.

Exercice 54 : [énoncé]

Par diagonalisation d'une forme bilinéaire symétrique dans un espace euclidien dont le produit scalaire est défini par la matrice B, on peut écrire affirmer qu'il existe $P \in GL_n(\mathbb{R})$ vérifiant $B = {}^tPP$ et $A = {}^tPDP$. On a alors $\det(A - XB) = (\det P)^2\chi_D(X)$ scindé.

Exercice 55: [énoncé]

a) Sur $E = \mathcal{M}_{n,1}(\mathbb{R})$, $\varphi(X,Y) = {}^t XAY$ définit un produit scalaire et $\psi(X,Y) = {}^t XBY$ définit une forme bilinéaire symétrique. Par le théorème spectral, il existe une base orthonormée de E pour φ diagonalisant la forme bilinéaire symétrique ψ . Pour la matrice de passage P de la base canonique de E (dans laquelle φ et ψ sont représentées par A et B) vers la base orthonormée précédente la relation de changement de base donne : $A = {}^t PI_nP$ et $B = {}^t P\Delta P$. De plus, la forme bilinéaire symétrique ψ étant définie positive, les valeurs diagonales de Δ sont strictement positives.

b) Notons $\lambda_1, \ldots, \lambda_n$ les valeurs diagonales de Δ . det $A = (\det P)^2$, det $B = \lambda_1 \ldots \lambda_n (\det P)^2$ et det $(A + B) = (1 + \lambda_1) \ldots (1 + \lambda_n) (\det P)^2$ Les λ_i étant positifs :

$$1 + \lambda_1 \dots \lambda_n \leqslant (1 + \lambda_1) \dots (1 + \lambda_n)$$

donc

$$\det A + \det B \leqslant \det(A + B)$$

c) Toute matrice symétrique réelle positive peut-être diagonalisée via une matrice orthogonale en une matrice diagonale à coefficients diagonaux positifs. Cette dernière peut se voir comme limite d'une suite de matrices diagonales à coefficients diagonaux strictement positifs. Par suite $\mathcal{S}_n^{+\star}(\mathbb{R})$ est dense $\mathcal{S}_n^+(\mathbb{R})$. Par continuité du déterminant et densité, la relation précédente s'étend à $A, B \in \mathcal{S}_n^+(\mathbb{R})$.

Exercice 56: [énoncé]

Par diagonalisation d'une forme bilinéaire symétrique dans un espace euclidien dont le produit scalaire est défini par la matrice A, on peut écrire affirmer qu'il existe $P \in GL_n(\mathbb{R})$ vérifiant $A = {}^tPP$ et $B = {}^tPDP$ avec D diagonale, $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

En notant E_j les colonnes élémentaires, pour $X = P^{-1}E_j$, la condition ${}^tXAX \leqslant {}^tXBX$ donne $1 \leqslant \lambda_j$.

On a alors
$$\det B = (\det P)^2 \prod_{j=1}^n \lambda_j \geqslant (\det P)^2 = \det A$$
.

Exercice 57: [énoncé]

Par diagonalisation d'une forme bilinéaire symétrique dans un espace euclidien dont le produit scalaire est défini par la matrice A, on peut écrire affirmer qu'il existe $P \in \mathrm{GL}_n(\mathbb{R})$ vérifiant $A = {}^t PP$ et $B = {}^t PDP$ avec D diagonale. On a alors $AB = {}^t PP^t PDP$ donc $({}^t P)^{-1}AB^t P = P^t PDP^t P$. La matrice AB est donc semblable à $P^t PDP^t P$ qui est une matrice symétrique réelle donc diagonalisable.

Exercice 58 : [énoncé]

a) $\varphi:(X,Y)\mapsto{}^tXAY$ et $\psi:(X,Y)\mapsto{}^tXBY$ définissent respectivement un produit scalaire et une forme bilinéaire symétrique sur $\mathcal{M}_{n,1}(\mathbb{R})$ représentés par les matrices A et B dans la base canonique. Par le théorème spectral, il existe une base orthonormée pour le produit scalaire φ diagonalisant la forme bilinéaire symétrique ψ . En notant P la matrice de changement de base correspondante, les formules de passage donnent $A = {}^tPI_nP = {}^tPP$ car la nouvelle base est orthonormée pour φ et $B = {}^tPDP$ avec D diagonale car celle-ci diagonalise ψ . b) Cas :la matrice A est définie positive.

Par le résultat précédent, il suffit d'établir $(\det D)^{1-t} \leq \det(tI_n + (1-t)D)$ avec D matrice diagonale à coefficients diagonaux $\lambda_1, \ldots, \lambda_n$ positifs. On souhaite donc établir,

$$\left(\prod_{i=1}^{n} \lambda_i\right)^{1-t} \leqslant \prod_{i=1}^{n} \left(t + (1-t)\lambda_i\right)$$

Or pour tout $\lambda \geqslant 0$, $\lambda^{1-t} \leqslant t + (1-t)\lambda$.

En effet pour $\lambda = 0$, la propriété est immédiate et pour $\lambda > 0$, celle-ci équivaut à $t \ln 1 + (1-t) \ln \lambda \leq \ln(t+(1-t)\lambda)$ qui découle de la concavité du logarithme. On peut donc conclure en multipliant les comparaisons $0 \leq \lambda_i^{1-t} \leq t + (1-t)\lambda_i$. Cas : la matrice A est positive.

La matrice $A_p = A + \frac{1}{n}I_n$ est définie positive et donc

 $(\det A_p)^t(\det B)^{1-t} \leqslant \det(tA_p + (1-t)B)$ pour tout $t \in]0,1[$.

En passant à la limite quand $p \to +\infty$, on obtient

 $(\det A)^t(\det B)^{1-t}\leqslant \det(tA+(1-t)B)$ (avec ici $\det A=0$ si An'est pas définie positive).

Exercice 59 : [énoncé]

a) Supposons $A + {}^tA \in \mathcal{S}_n^{++}(\mathbb{R})$. Pour $X \in \mathbb{R}^n \setminus \{0\}$, ${}^tXAX = {}^tX{}^tAX$ donc ${}^tXAX = \frac{1}{2} \left({}^tX(A + {}^tA)X \right) > 0$.

Inversement, si la condition $\forall X \in \mathbb{R}^n \setminus \{0\}$, ${}^tXAX > 0$ est vérifiée alors on a aussi $\forall X \in \mathbb{R}^n \setminus \{0\}$, ${}^tX^tAX > 0$ donc $\forall X \in \mathbb{R}^n \setminus \{0\}$, ${}^tX(A + {}^tA)X > 0$. Puisque la matrice $A + {}^tA$ est évidemment symétrique, on obtient $A + {}^tA \in \mathcal{S}_n^{++}(\mathbb{R})$.

b) Commençons par observer que pour $A \in \mathcal{P}$, les valeurs propres complexes de A sont de partie réelle strictement positive. Soit $\lambda \in \mathbb{C}$ et $Z \in \mathbb{C}^n \setminus \{0\}$ vérifiant $AZ = \lambda Z$. En écrivant Z = X + iY avec X, Y colonnes réelles et $\lambda = \alpha + i\beta$ avec $\alpha, \beta \in \mathbb{R}$, la partie réelle de la relation $Z^*AZ = \lambda Z^*Z$ donne ${}^tXAX + {}^tYAY = \alpha \|Z\|^2$. On en déduit $\alpha > 0$.

Pour $A \in \mathcal{P}$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$, on peut écrire $S = {}^tPP$ avec $P \in GL_n(\mathbb{R})$. On a alors $({}^tP)^{-1}SA^tP = PA^tP$. En posant $B = PA^tP$, on peut affirmer que SA et B sont semblables et ont donc les mêmes valeurs propres.

Pour $X \in \mathbb{R}^n \setminus \{0\}$, ${}^tXBX = {}^tYAY$ avec $Y = {}^tPX \neq 0$ donc ${}^tXBX > 0$. Par suite $B \in \mathcal{P}$ ce qui permet de conclure.

Exercice 60 : [énoncé]

La forme polaire de la forme quadratique q est donnée par

$$\varphi(x,y) = \frac{1}{2} (f_1(x)f_2(y) + f_1(y)f_2(x))$$

On a

$$x \in \ker \varphi \Leftrightarrow \forall y \in E, f_1(x)f_2(y) + f_1(y)f_2(x) = 0$$

Les formes linéaires f_1 et f_2 étant indépendantes, les hyperplans $\ker f_1$ et $\ker f_2$ sont distincts.

Pour $y \in \ker f_1 \setminus \ker f_2$, on obtient $f_1(x) = 0$. De même on montre $f_2(x) = 0$ et ainsiker $\varphi \subset \ker f_1 \cap \ker f_2$.

L'inclusion réciproque étant immédiate, il en résulte

$$rg\varphi = codim \ker \varphi = 2$$

Exercice 61 : [énoncé]

a) Soit (e_1, \ldots, e_p) une base de F.

 F^{\perp} est un sous-espace vectoriel de E car intersection des noyaux des formes linéaires $f_i: x \mapsto \varphi(x, e_i)$.

Ces formes linéaires étant indépendantes (car φ non dégénérée) doncdim $F^{\perp}=n-p$.

- b) On a $F \subset F^{\perp \perp}$ et égalité des dimensions donc égalité des espaces.
- c) Supposons $F \oplus F^{\perp} = E$. La matrice de φ dans une base adaptée est de la forme $\left(\begin{array}{c|c} A & 0 \\ \hline 0 & B \end{array}\right)$ avec $A \in \mathcal{M}_p(\mathbb{K})$ et $B \in \mathcal{M}_{n-p}(\mathbb{K})$. Or cette matrice est de rang n donc $\operatorname{rg} A = p$ et donc $\varphi_{|F|}$ n'est pas dégénérée.

Supposons $\varphi_{|F}$ non dégénérée. Soit $x \in F \cap F^{\perp}$. On a pour tout $y \in F$, $\varphi(x,y) = 0$, or φ est non dégénérée donc x = 0 puis $F \oplus F^{\perp} = E$.

Exercice 62: [énoncé]

Dans la base canonique, la matrice de Q est $\frac{1}{2}\begin{pmatrix} 0 & & (1) \\ & \ddots & \\ (1) & & 0 \end{pmatrix}$ de déterminant

$$\frac{(n-1)(-1)^{n-1}}{2^n}$$
.
Si $n = 1$, rg $Q = 0$. Sinon rg $Q = n$.

Exercice 63: [énoncé]

 $q(x_1, x_2, x_3) = (x_1 + x_2 + x_3)^2 - 2x_2x_3 = (x_1 + x_2 + x_3)^2 + \frac{1}{2}(x_2 + x_3)^2 - \frac{1}{2}(x_2 - x_3)^2$. De signature (2, 1).

Exercice 64 : [énoncé]

$$q(x_1, \dots, x_n) = \sum_{i=1}^n ix_i^2 + 2\sum_{i=1}^n \sum_{j=i+1}^n ix_i x_j =$$

$$(x_1 + \dots + x_n)^2 - 2\sum_{i=1}^n \sum_{j=i+1}^n x_i x_j + \sum_{i=2}^n (i-1)x_i^2 + 2\sum_{i=1}^n \sum_{j=i+1}^n ix_i x_j$$

$$\operatorname{donc} q(x_1, \dots, x_n) = (x_1 + \dots + x_n)^2 + \sum_{i=2}^n (i-1)x_i^2 + 2\sum_{i=2}^n \sum_{j=i+1}^n (i-1)x_i x_j =$$

$$\sum_{i=1}^{n} (x_i + \dots + x_n)^2.$$

Les formes linéaires $\varphi_i: (x_1, \dots, x_n) \mapsto x_i + \dots + x_n$ sont indépendantes, la signature de q est (n,0), c'est une forme quadratique définie positive.

Exercice 65: [énoncé]

Soit φ la forme bilinéaire symétrique représentée par A dans la base canonique de \mathbb{K}^n .

Si A est définie positive alors $\varphi_k=\varphi_{|\mathrm{Vect}(e_1,\dots,e_k)}$ l'est encore donc det $\varphi_k=\Delta_k>0$.

Inversement, supposons $\forall 1 \leqslant k \leqslant n$, $\Delta_k = \det((a_{i,j})_{1 \leqslant i,j \leqslant k}) > 0$ et montrer par récurrence sur $1 \leqslant k \leqslant n$ que φ_k est définie positive.

Pour k = 1: ok

Supposons la propriété établie au rang $1 \le k \le n-1$.

La restriction de φ_{k+1} a $\text{Vect}(e_1, \dots, e_k)$ étant définie positive, la signature de φ_{k+1} est (k, 1), (k, 0) ou (k+1, 0).

Dans une base orthogonale le déterminant de φ_{k+1} est alors respectivement <0,0 ou >0.

Or $\Delta_{k+1} > 0$ donc φ_{k+1} est de signature (k+1,0) donc définie positive.

Exercice 66 : [énoncé]

 φ est clairement bilinéaire et symétrique car $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Si $A \in \mathcal{S}_n(\mathbb{R})$ alors $\operatorname{tr}({}^t A A) = \sum_{i,j=1}^n a_{i,j}^2 > 0$ pour tout $A \neq 0$. $\varphi_{|S_n(\mathbb{R})}$ est définie positive.

Si $A \in \mathcal{A}_n(\mathbb{R})$ alors $\operatorname{tr}({}^t A A) = -\sum_{i,j=1}^n a_{i,j}^2 < 0$ pour tout $A \neq 0$. $\varphi_{|A_n(\mathbb{R})}$ est définie négative.

Si $A \in \mathcal{S}_n(\mathbb{R})$ et $B \in \mathcal{A}_n(\mathbb{R})$ alors $\varphi(A, B) = \operatorname{tr}(AB) = \operatorname{tr}(^t(AB)) = \operatorname{tr}(^tB^tA) = -\operatorname{tr}(BA) = -\varphi(A, B)$ donc $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont orthogonaux.

Dans une base adaptée, on observe que la signature de φ est $\left(\frac{n(n+1)}{2}, \frac{n(n-1)}{2}\right)$.