# Optinet Software de Gestión Web para centros Ópticos

José Ángel Parada Jiménez

Ingeniería Técnica en Informática de Gestión Universidad de Cádiz

28 de junio de 2013





#### Índice

- Introducción
- 2 Desarrollo del proyecto
- Conclusiones
- Posibles mejoras

- Introducción
- Desarrollo del proyecto
- Conclusiones
- Posibles mejoras

#### Salud visión

#### El proyecto surge por:

- Petición del gerente de Salud Visión construir un sistema de gestión.
- Interés personal por el desarrollo de un software de gestión.
- Interés personal por programación web.



#### Localización

#### Salud Visión Ópticos





#### Software Actual



#### Software Actual



#### **Problemas**

- Aspecto visual.
- Problema de usabilidad.
- Carencias de funcionalidades.



#### Objetivos principales

• Construir aplicación web para gestionar un centro óptico.



- Construir aplicación web para gestionar un centro óptico.
- Gestión de productos, proveedores, pedidos, ventas...



- Construir aplicación web para gestionar un centro óptico.
- Gestión de productos, proveedores, pedidos, ventas...
- Generar informes.



- Construir aplicación web para gestionar un centro óptico.
- Gestión de productos, proveedores, pedidos, ventas...
- Generar informes.
- Control de las acciones que realizan los usuarios.



- Construir aplicación web para gestionar un centro óptico.
- Gestión de productos, proveedores, pedidos, ventas...
- Generar informes.
- Control de las acciones que realizan los usuarios.
- Multi-idioma y multi-plataforma.



- Construir aplicación web para gestionar un centro óptico.
- Gestión de productos, proveedores, pedidos, ventas...
- Generar informes.
- Control de las acciones que realizan los usuarios.
- Multi-idioma y multi-plataforma.
- Segura, fiable y tener un rendimiento adecuado.

### Desarrollo del proyecto

- Introducción
- Desarrollo del proyecto
- Conclusiones
- Posibles mejoras

### Metodología



- Se ha utilizado la metodología RUP al ser la más utilizada para la construcción de sistemas orientados a objetos.
- En cada fase participan todas las disciplinas, pero dependiendo de la fase el esfuerzo dedicado a una disciplina varía.

#### Calendario



### Estimación de tiempos

| Fase                               | Tiempo estimado   | Tiempo real |
|------------------------------------|-------------------|-------------|
| Fase de iniciación                 | 60 horas          | 75 horas    |
| Fase de elaboración y construcción | 400 horas         | 550 horas   |
| Fase de documentación              | 30 horas 50 horas |             |
| Fase de transición                 | 50 horas          | 70 horas    |
| Total                              | 540 horas         | 745 horas   |

Se realizó la planificación de los tiempos de las tareas pero no se cumplieron debido a problemas no esperados o dificultad añadida no prevista.



• Control de acceso y roles de los usuarios.

- Control de acceso y roles de los usuarios.
- Organización de los productos agrupados por familias.

- Control de acceso y roles de los usuarios.
- Organización de los productos agrupados por familias.
- Creación de documentos e informes con el logotipo.

- Control de acceso y roles de los usuarios.
- Organización de los productos agrupados por familias.
- Creación de documentos e informes con el logotipo.
- Control de los clientes.

- Control de acceso y roles de los usuarios.
- Organización de los productos agrupados por familias.
- Creación de documentos e informes con el logotipo.
- Control de los clientes.
- Control de los proveedores del sistema.

- Control de acceso y roles de los usuarios.
- Organización de los productos agrupados por familias.
- Creación de documentos e informes con el logotipo.
- Control de los clientes.
- Control de los proveedores del sistema.
- Control de las citas que se generen.

- Control de acceso y roles de los usuarios.
- Organización de los productos agrupados por familias.
- Creación de documentos e informes con el logotipo.
- Control de los clientes.
- Control de los proveedores del sistema.
- Control de las citas que se generen.
- Control de los pedidos, ventas, devoluciones, reservas y apartados que generen los usuarios.

- Control de acceso y roles de los usuarios.
- Organización de los productos agrupados por familias.
- Creación de documentos e informes con el logotipo.
- Control de los clientes.
- Control de los proveedores del sistema.
- Control de las citas que se generen.
- Control de los pedidos, ventas, devoluciones, reservas y apartados que generen los usuarios.
- Control de los cambios realizados en el sistema.

- Control de acceso y roles de los usuarios.
- Organización de los productos agrupados por familias.
- Creación de documentos e informes con el logotipo.
- Control de los clientes.
- Control de los proveedores del sistema.
- Control de las citas que se generen.
- Control de los pedidos, ventas, devoluciones, reservas y apartados que generen los usuarios.
- Control de los cambios realizados en el sistema.
- Control de los arqueos realizados en el sistema.

- Control de acceso y roles de los usuarios.
- Organización de los productos agrupados por familias.
- Creación de documentos e informes con el logotipo.
- Control de los clientes.
- Control de los proveedores del sistema.
- Control de las citas que se generen.
- Control de los pedidos, ventas, devoluciones, reservas y apartados que generen los usuarios.
- Control de los cambios realizados en el sistema.
- Control de los arqueos realizados en el sistema.
- Control de los permisos disfrutados por los usuarios.

#### Actores del sistema

Se definieron las distintas responsabilidades de los usuarios del sistema quedando de la siguiente manera:

|                     | Administrador | Empleado | Médico |
|---------------------|---------------|----------|--------|
| Gestión operaciones | Χ             | Χ        | Χ      |
| Ver informes        | X             | X        | Χ      |
| Crear informes      | -             | -        | Χ      |
| Administración      | X             | -        | -      |

### Arquitectura física



Varios usuarios trabajando sobre la aplicación simultáneamente.



## Arquitectura lógica



El patrón MVC es una arquitectura de diseño software para separar los componentes de aplicación en tres niveles, interfaz de usuario, lógica de control y lógica de negocio.

#### Diseño



Antes de llegar al diseño definitivo de la imagen se crearon bocetos con la herramienta Pencil App.

## **Implementación**

- Se realizó un estudio del entorno de trabajo para la construcción de la aplicación.
- Se barajaron diferentes lenguajes de programación PHP, JSP, ASP
- Se eligió PHP ( rapidez, documentación, variedad de módulos, similar a C, especializado para web...)
- Una vez elegido el lenguaje, se estudiaron los diferentes frameworks de PHP: Codeigniter, Symfony, Yii, CakePHP.

### Lenguajes utilizados









# Framework Symfony2



Symfony2 es un framework de PHP rápido, flexible y fácil de aprender.

#### Características Symfony2

- Versátil.
- Seguridad.
- Flexible.
- Rendimiento.

- Soporte.
- Documentación.
- Comunidad.
- Popular.

# Framework jQuery



Es un framework de JavaScript que proporciona un conjunto de funciones heredadas de JavaScript listas para utilizarlas de una manera muy simplificada.

#### Características jQuery

- Eventos.
- Manipulación CSS.
- Efectos y animaciones.
- Selección y modificaciones del DOM.

- AJAX.
- Soporta extensiones.
- Gran compatibilidad con navegadores.

#### Bibliotecas utilizadas



































# Flujo de una petición en Symfony2



## Modelo - Vista - Controlador

Modelo: Representa los datos de la aplicación.

 Se hace uso del ORM doctrine para convertir las tablas de nuestra base de datos en clases y los registros en objetos que podemos manejar con facilidad.



## Modelo - Vista - Controlador

Vistas: Son las encargadas de mostrar información del usuario.

- Se hace uso de las plantillas twig para poder escribir plantillas concisas y fáciles de leer.
- Permite el uso de herencia de plantillas: una plantilla base de la que heredan todas las demás.



## Modelo - Vista - Controlado

Controlador: Es el que se encarga de manejar las peticiones.

- Capa petición es manejada por un controlador frontal (app.php , app\_dev.php).
- El enrutador lee la información de la petición y se llama al controlador asociado.
- El controlador es ejecutado creando y devolviendo un objeto respuesta.

# Acceso a la aplicación



Se hace uso del algoritmo de encriptación md5 + salt.



# Tipos de Pruebas

#### Pruebas en el desarrollo

- Pruebas unitarias.
- Pruebas de integración.

# Tipos de Pruebas

#### Pruebas en el desarrollo

- Pruebas unitarias.
- Pruebas de integración.

#### Pruebas finalizado el desarrollo

- Pruebas de sistema.
  - Pruebas funcionales.
  - Pruebas no funcionales.
- Pruebas de aceptación.

Calendario y metodología Análisis Diseño Implementación Pruebas

### Pruebas de sistema

#### Pruebas funcionales.

 Se probaron todos los escenarios principales y alternativos de los casos de uso.

### Pruebas de sistema

#### Pruebas funcionales.

 Se probaron todos los escenarios principales y alternativos de los casos de uso.

#### Pruebas no funcionales.

- Portabilidad Herramienta online BrowseStack.
- Mantenibilidad Estructura de directorios Symfony2.
- Seguridad Fundación OWASP.
- Fiabilidad Plan de pruebas exhaustivo.
- Rendimiento Herramienta online GTmetrix y PigDom(Uso de YuiCompressor, CDN, gzip).

## Pruebas de sistema - Portabilidad





Calendario y metodología nálisis Diseño mplementación

## Pruebas de sistema - Rendimiento

#### GTmetrix:



#### PigDom



# Pruebas de aceptación

Se realizaron diferenciando dos tipos de personas:



- Personas con nivel alto de conocimientos informáticos.
  - Compañeros de la universidad con acceso al código de la aplicación.
    - Fallos: Detectaron algunos fallos de seguridad.

# Pruebas de aceptación

Se realizaron diferenciando dos tipos de personas:



- Personas con nivel alto de conocimientos informáticos.
  - Compañeros de la universidad con acceso al código de la aplicación.
    - Fallos: Detectaron algunos fallos de seguridad.
- Personas con nivel bajo de conocimientos informáticos.
  - Cliente final y amigos que no dominan la informática.
    - Fallos: Detectaron problemas en usabilidad y diseño.



## Conclusiones

- Introducción
- Desarrollo del proyecto
- Conclusiones
- 4 Posibles mejoras

### Objetivos cumplidos

 Se ha construido una aplicación web para gestionar un centro óptico.√

- Se ha construido una aplicación web para gestionar un centro óptico.√
- La aplicación gestiona correctamente los productos, proveedores, ventas...√

- Se ha construido una aplicación web para gestionar un centro óptico.√
- La aplicación gestiona correctamente los productos, proveedores, ventas...√
- La aplicación genera informes.√

- Se ha construido una aplicación web para gestionar un centro óptico.√
- La aplicación gestiona correctamente los productos, proveedores, ventas...√
- La aplicación genera informes.√
- La aplicación tiene control de las acciones que hacen los usuarios.√

- Se ha construido una aplicación web para gestionar un centro óptico.√
- La aplicación gestiona correctamente los productos, proveedores, ventas...√
- La aplicación genera informes.√
- La aplicación tiene control de las acciones que hacen los usuarios.√
- La aplicación es multi-idioma y multi-plataforma.√

- Se ha construido una aplicación web para gestionar un centro óptico.√
- La aplicación gestiona correctamente los productos, proveedores, ventas...√
- La aplicación genera informes.√
- La aplicación tiene control de las acciones que hacen los usuarios.√
- La aplicación es multi-idioma y multi-plataforma.√
- La aplicación es segura, fiable y tiene un rendimiento adecuado.√

- Se ha construido una aplicación web para gestionar un centro óptico.√
- La aplicación gestiona correctamente los productos, proveedores, ventas...√
- La aplicación genera informes.√
- La aplicación tiene control de las acciones que hacen los usuarios.√
- La aplicación es multi-idioma y multi-plataforma.√
- La aplicación es segura, fiable y tiene un rendimiento adecuado.√
- Plena satisfacción del cliente.√

# Lecciones aprendidas

#### Lecciones aprendidas

- Lenguajes de programación: HTML, CSS, JavaScript, PHP.
- Utilización de un framework PHP: Symfony2.
- Utilización de un framework Javascript: Jquery.
- Repaso y ampliación de conocimientos de ingeniería del software

# Posibles mejoras

#### Posibles mejoras

- Registro de citas por internet.
- Realización de una aplicación móvil.

Gracias por su atención