CINEMÁTICA VETORIAL

AULA 1 - DESLOCAMENTO VETORIAL

Deslocamento Vetorial

Deslocamento **escalar** é medido no percurso da trajetória. Por isso, ele irá **depender da forma da trajetória**.

Já o deslocamento **vetorial** é independente da forma da trajetória, pois é medido pelo módulo do vetor que liga a posição inicial e a posição final, independentemente do trajeto percorrido entre as duas posições.

Obs: o deslocamento escalar será sempre maior ou igual ao deslocamento vetorial.

AULA 2 - VELOCIDADE VETORIAL MÉDIA

Velocidade Vetorial Média (\vec{v}_m)

A velocidade vetorial média (\overrightarrow{v}_m) de um móvel é um vetor dado pela relação do deslocamento $\overrightarrow{\Delta S}$ e o intervalo de tempo Δt correspondente:

$$|\overrightarrow{v}_m| = \frac{|\overrightarrow{\Delta S}|}{\Delta t}$$

AULA 3 - VETOR ACELERAÇÃO

Aceleração Tangencial (\overrightarrow{a}_t)

É a aceleração que causa a variação do módulo do vetor velocidade \overrightarrow{v} .

Aceleração Centrípeta (\vec{a}_c)

É a aceleração que causa variação da direção do vetor velocidade \overrightarrow{v} .

Aceleração Resultante (a)

Se a velocidade vetorial \vec{v} varia em módulo e também em direção (movimento variado curvilíneo), existem as duas acelerações vetoriais, a tangencial \vec{a}_t e a centrípeta \vec{a}_c . Portanto a aceleração resultante \vec{a} é a adição vetorial das duas acelerações \vec{a}_t e \vec{a}_c .

$$\overrightarrow{a} = \overrightarrow{a_t} + \overrightarrow{a_c}$$

Como os vetores \vec{a}_t e \vec{a}_c possuem direções ortogonais, o módulo da aceleração resultante é dado pelo Teorema de Pitágoras (hipotenusa ao quadrado igual à soma dos quadrados dos catetos).

$$|\overrightarrow{a}|^2 = |\overrightarrow{a_t}|^2 + |\overrightarrow{a_c}|^2$$

AULA 4 - COMPOSIÇÃO DA VELOCIDADE

Da composição de dois movimentos, sempre há um movimento resultante. O princípio da simultaneidade, proposto por Galileu, permite análise de cada um dos movimentos separadamente. Segundo Galileu, o tempo gasto no movimento resultante é igual ao tempo gasto no movimento, se consideradas as duas direções separadamente. A composição de movimentos se faz sempre de forma vetorial.

$$\overrightarrow{v_{A/C}} = \overrightarrow{v_{A/B}} + \overrightarrow{v_{B/C}}$$