

One Model ... or Three

The use of model averaging to streamline the stock assessment process

Colin Millar Ernesto Jardim Richard Hillary Ruth King

European Commission Joint Research Center

Context

This has all been developed within the a4a framework

The Problem

There are often several plausible assessment models

Solutions

- Choose one model
- Present several models
- Hierarchical modelling
- Combine models

Solutions

- Choose one model
- Present several models
- Hierarchical modelling
- Combine models

An Assessment Process

Model Averaging

Model Choices in a4a

With a linear model you can fit

- · linear and smooth functions of age and year
- seperable models
- · partially seperable
- · non-seperable
- step changes (in level, in smoother form)
- covariates (smoothed and linear)

These can be applied to log **F**, log **catchability**, **stock recruit** parameters, observation **variance**.

Model Choices in a4a

For example in selectivity

$$\log Q \sim \overline{\log \text{Contact Selectivity}} + \underbrace{\log \text{Availability}}_{\text{formula}}$$

Model Selection in a4a

- · likelihood based
 - AIC (Akaike Information Criterion)
 - BIC (Bayesian or Schwarz Information Criterion)
- Posterior model probabilities
 - HME (Harmonic Mean Estimator)
 - BMA (Bayesian Model Averaging)

All these balance complexity and fit.

Model Choices

(log) fishing mortality

```
fmodel1 <- \sim s(age, k = 4, by = breakpts(year, c(199 + s(year, k = 8)) fmodel2 <- \sim te(age, year, k = c(4, 8))
```

(log) survey catchability

```
qmodel1 <- \sims(age, k = 4)
qmodel2 <- \simpoly(age, 2)
```

AIC	fmodel1	fmodel2
qmodel1	317.238	316.506
qmodel2	317.174	316.0118

17th July 2013 Research Centre 10

Model Fits: Fbar

Model Fits: SSB

- · weighted simulation schemes
 - AIC
 - posterior model probability (HME)
- Full model averaging schemes
 - smooth AIC (bootstrap)
 - RJMCMC

- · weighted simulation schemes
 - AIC
 - posterior model probability (HME)
- Full model averaging schemes
 - smooth AIC (bootstrap)
 - RJMCMC

We want to sample from:

P(model, model parameters | data)

Weighted simulation schemes do:

1. simulate: $\tilde{P}(\text{model} \mid \text{data})$

 $\tilde{P}(\text{parameters} \mid \text{model})$

We want to sample from:

P(model, model parameters | data)

Full model averaging schemes do:

1. simulate: $\tilde{P}(\text{model}, \text{model parameters} | \text{data})$

16

Final year Fbar

Final thoughts

With model averaging

- We incorporate uncertainty from scenario choice
- It removes the need for model selection
- moves focus onto specifying plausible scenarios
- we can simulate, Fbar, reference points, current state w.r.t. ref points