

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2024-25

Course Information

Programme	B.Tech.
Class, Semester	Second Year (CSE and IT), Sem IV

Course Code 7IT221 Course Name **Fuzzy Set and Statistics**

Desired Requisites: Mathematics course at Higher Secondary Level

Teaching	Scheme	Examination Scheme (Marks)						
Lecture	3 Hrs/week	MSE	ISE	ESE	Total			
Tutorial	-	30	20	50	100			
		Credits: 03						

Course Objectives

- Familiarize the students with techniques in probability and statistics. 1
- Design a statistical hypothesis about the real world problem and conduct appropriate test for 2 drawing valid inference about the population characteristics.
- 3 To give insights about the properties, operations and relations on Fuzzy sets.

Course Outcomes (CO) with Bloom's Taxonomy Level

СО	Course Outcome Statements	Bloom's Taxonomy Level	Bloom's Taxonomy Descriptor
CO1	Understand the concept of Fuzzy sets with case studies.	II	Understanding
CO2	Understand probability distributions for discrete and continuous random variable.	II	Understanding
CO3	Apply various discrete & continuous distributions to solve real life problems.	III	Applying
CO4	Apply numerical descriptions of data, measures of central tendency, measures of dispersion.	III	Applying
CO5	Test hypothesis particularly about mean and proportion and goodness of fit to make decisions in real life problems using concepts of Sampling distribution.	III	Applying

Module	Module Contents	Hours
I	Fuzzy Sets: Introduction to characteristics functions, First decomposition theorem, Fuzzy relations, examples, Fuzzy equations, Operations on Fuzzy sets.	7
II	Random Variable: Definition, Discrete random variable, Continuous random variable, Probability mass function, Probability density function, cumulative distribution function for discrete random variable and continuous random variable, bivariate discrete random variable, joint probability distribution, joint distribution function of two dimensional discrete random variable.	7

		babilit									_				
III	Pois		distribu Even		Gaus	sıan	(Norm	al) d	istribu	tion,	Expon	ential		6	
		distribution, Examples. Basic Statistics:													
IV	Introduction, Measures of Central tendency, Measures of dispersion,														
1,4	moments, skewness and kurtosis.												6		
	Sam	pling	Distrib	oution:	<u> </u>										
						sample	s, Met	hods o	f samp	oling, la	arge sa	mple,		-	
V	sma	ll sam	ple, pa	aramet	er, sta	tistic,	standa	rd erro	or of	Statisti	c, san	npling		7	
•	distribution of mean, sampling distribution of proportion, Examples.														
										regio	n, lev	el of			
	+ -	ificanc			ror, on	e taile	d test, t	wo tail	led test	•					
		lied St			. 1				.1 .		C				
			-			-	_			testing		-		6	
VI							-		-	popula grees					
V1		•		_				•		grees the sig					
							_	_		on: De					
	1			_		_	_			off fit, E					
	r	1		1		1		- 6		,	- r				
							Textbo								
1	"An 2008		uction	to pro	babilit	y and S	Statistic	es", V.	K. Roh	natgi , V	Wiley	Public	ation, 2	e nd Edit	ion,
2		zzy Set cation							ions",	George	J. Kli	r and B	o Yuar	ı, Pears	son
						R	Referen	res							
1	"Int	roduct	ion to l	Probab	ility ar				neers d	and Sci	entists	", Shel	don M	Ross,	
1	Aca	demic	Press, ((2009).	<u> </u>										
2			•							& Sons					
3					iematic	cal Stai	tistics"	, Gupta	a and K	Lapoor,	S. Cha	and & S	Sons Pu	ıblıshe	rs,
	10 th Edition, 2000.														
	Useful Links														
1		s://ww							ability						
	2 https://nptel.ac.in/courses/111/105/111105041/														
3 4	3 https://youtu.be/IZWTduVCrf8?si=h5irtq4mAHaos 4 https://youtu.be/ToaI2MEC5x0?si=Lv6McGvy_db36HpW														
4	пцр	s.// you	iu.DE/ I	Oaizivi) Map		2011p v	Y					
	Programme Outcomes (PO) PSO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	1	1	2									2	2	
CO2 CO3	2	2	2	2									1	3	
CO4	2	-	1	2								-	2	1	1

CO4

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute) AY 2024-25 Course Information Programme B.Tech. (Information Technology) Class, Semester Second Year B. Tech., Sem IV Course Code 7IT222 Course Name Software Engineering Desired Requisites: Object Oriented Language

Teachir	ng Scheme	Examination Scheme (Marks)					
Lecture	2 Hrs/week	ISE	Total				
Tutorial	-	20	30	50	100		
		Credits: 2					

	Course Objectives						
1	To introduce the concepts of software development process						
2	To illustrate process of software project management						
3	To explain software quality through testing						

Course Outcomes (CO) with Bloom's Taxonomy Level

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Choose appropriate process model for software development life cycle (SDLC)	III	Applying
CO2	Study various phases of SDLC like Analysis, Design, Implementation, and Testing	IV	Analyzing
CO3	Compare various types of testing for software quality assurance	IV	Analyzing
CO4	Estimate cost of software deployment using various components and frameworks	V	Evaluating

Module	Module Contents	Hours					
Module	Introduction to Software Processes	110015					
I	The S/W problem, the software Engineering Approach & Benefits. Software Process, Characteristics of a software process. Software requirements, problem Analysis, Requirements Specification.						
	Software Project Management						
II	Cost estimation, project scheduling, staffing and personnel planning, Software Configuration Management plans, Quality Assurance plans, Project Monitoring Plans, Risk Management						
	Software Design						
III	Objective, Design principles, module level concepts, Design notation and specifications, Classes, Relationships, Common mechanisms. Diagrams, Class	5					
	Diagrams, Interfaces, Use case diagram, Sequence Diagram and State Diagrams						
IV	Agile Processes Agile Methodologies, Dynamic system development, Feature-driven Design, Crystal Agile Modelling.	4					
	Software Testing						
V	Testing Fundamentals (manual and automated testing), Testing Levels, Functional testing, Structural testing, Testing object oriented Programs, Regression Testing, Types of testing tools	5					

VI	Software Deployment Components, Deployment, Collaboration, Patterns and Frame works, Component Diagrams and Deployment Diagrams 4				
	Textbooks				
1	Sommerville, "Software Engineering", Pearson Education India,New Delhi, 10 th Edition, 2017				
2	Roger S Pressman, "Software Engineering – A Practitioner's Approach", McGraw Hill, USA,8 th Edition, 2019				
	References				
1	Pfleeger, "Software Engineering", Pearson Education India, New Delhi, 4th Edition, 2009				
2	Mike O'Docherty, "Object-Oriented Analysis & Design: Understanding System Development with UML 2.0", John Wiley & Sons Publication, 1st Edition, 2005				
Useful Links					
1	https://onlinecourses.nptel.ac.in/noc20_cs68/preview				
2	https://archive.nptel.ac.in/courses/106/105/106105182/				

	CO-PO Mapping													
		Programme Outcomes (PO) PSO					SO							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1		2									2	
CO2	2	2	1											3
CO3	2		3	1									1	
CO4	3	2		3									3	2

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

Walchand College of Engineering, Sangli					
	(Government Aided Autonomous Institute)				
	AY 2024-25				
Course Information					
Programme	B.Tech. (Information Technology)				
Class, Semester	Second Year B. Tech., Sem IV				
Course Code	7IT223				
Course Name	Operating System				
Desired Requisites:	Computer Architecture				
_					

Teachin	g Scheme	Examination Scheme (Marks)								
Lecture	3 Hrs/week	ISE	MSE	ESE	Total					
Tutorial	-	20	30	50	100					
	-		Credits: 3							

Course Objectives

- To Introduce concepts, functions and services of operating systems. 1
- 2
- To inculcate the concepts of inter-process communication techniques.

 To compare various memory management techniques of operating systems. 3
- To explore file system structures and storage management 4

Course Outcomes (CO) with Bloom's Taxonomy Level

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Discuss various services provided by operating system to manage system resources	II	Understanding
CO2	Classify various process scheduling algorithm for multiprogramming	III	Applying
CO3	Study memory management techniques for logical to physical address	IV	Analysing
CO4	Analyse the file system management of operating systems	IV	Analysing

Module	Module Contents	Hours
I	Introduction: Notion of operating systems, Computer system organization, Computer System architecture, Computer System Structure, Operating System Operations, Process Management, Memory Management, Storage Management, protection and security. System Structure: Operating system services, user operating system interface, system calls, types of system calls, system programs, operating system design and implementation, operating system structure.	5
II	Process Process Concept, Process Scheduling, Operation on process, Cooperating process, Threads, Inter-process Communication (Algorithms evaluation). Process Scheduling: Basic concept, Scheduling Criteria, Scheduling Algorithms (FCFS, SJF, RR, Priority, Multilevel Queue Scheduling), Multiple processor scheduling, Real time scheduling.	8
III	Inter-process Synchronization Background, Classical problems of synchronization, Critical Region, The critical section problem, Peterson's Solution, Synchronization Hardware, Monitors, Semaphores.	6

IV	Deadlocks System modes, Deadlock characterization, Methods for handling deadlocks Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.						
V	Memory Management Background, Logical Versus Physical Address space, Swapping Contiguous Allocation, Paging, Segmentation, Segmentation with paging. Virtual Memory: Background, Demand paging, Page replacement, Page Replacement Algorithms (FIFO, LRU, Optimal), Allocation of frames, thrashing (Only concept), Demand segmentation. Memory Management in Various Operating Systems						
VI	File System Management File concept, access methods, directory and disk structure, file-system mounting, file sharing, protection. File system structure, file-system implementation, directory implementation, Allocation Methods (Contiguous, Linked, Indexed), free-space management						
	Text Books						
1	James. L. Peterson and A. Silberchatz ,"Operating System Concepts", Addison Publication, 9th Edition, 2018	Westley					
2	Milan Milenkovic, "Operating System - Concept and Design", TMGH,1st Edition,20	01					
	References						
1	William Stallings," Operating Systems : Internals and Design Principles", Publication,7th Edition,2013	Peterson					
2	Crowley Charles "Operating Systems : A Design Oriented Approach" Mc Graw Hill						
	Useful Links						
1	https://www.gatevidyalay.com/operating-system/						
2	https://www.javatpoint.com/os-tutorial						
3	https://www.geeksforgeeks.org/operating-systems/						
4	https://onlinecourses.swayam2.ac.in/cec20_cs06/preview						

CO-PO Mapping														
	Programme Outcomes (PO)									PS	O			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		1										2	2	2
CO2	2	1	2	3									3	
CO3		2	1		1								2	1
CO4		2			1									3

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute) AY 2024-25 Course Information Programme B.Tech. (Information Technology) Class, Semester Second Year B. Tech., Sem IV Course Code 7IT224 Course Name Theory of Computation Desired Requisites: Discrete Mathematics

Teach	ing Scheme									
Lecture	3 Hrs/week	ISE	MSE	ESE	Total					
Tutorial	-	20	30	50	100					
			Credits: 3							

	Course Objectives							
1	To discuss fundamentals of theoretical computer science and its applications							
2	To describe formal languages, grammar and their relationships							
3	To explain automata designs as language descriptors and recognizers							

Course Outcomes (CO) with Bloom's Taxonomy Level

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Draw directed graphs by labelling the path between nodes	I	Remembering
CO2	Outline problem formulation by following relevant solving approaches	II	Understanding
CO3	Demonstrate grammar productions and parsing by practicing derivation trees	III	Applying
CO4	Distinguish language based problems by identifying suitable solutions and complexity classes	IV	Analysing
CO5	Design abstract machines for language acceptance by recognizing its probable applications	VI	Creating

Module	Module Contents	Hours
I	Proofs and Regular Languages Types of Proofs, Mathematical Induction and Recursive definitions, Regular expressions & Regular languages, Operations on Regular languages	6
П	Finite State Machines Deterministic Finite Automata (DFA) representation, DFA design examples, Nondeterministic finite automata (NFA), NFA with Null (^) transitions, Equivalence of DFAs, NFAs and NFA-^s. Kleene's Theorem & Proofs, Minimization of DFA	8
III	Grammar & Languages Definition and Types of grammars and languages, Derivation trees and ambiguity, Context Free Languages (CFL) & Non CFL's., Union, Concatenation and Kleene's operations, Intersection and complements of CFLs, Pumping Lemma.	6
IV	Push Down Automata (PDA) Definition, Deterministic PDA, Types of acceptance and conversions to each other, PDA design examples, CFGs & PDAs., Top-Down, & Bottom-up parsing	7

V	Conunit	Chomsky Normal Form (CNF) Context Free Grammar (CFG) & CNF notations, eliminating ^ production and unit productions from a CFG, Eliminating useless variables from CFG, CNF Significance, Applications												
VI	Mod TMs	Turing Machines (TM) Models of Computation, definition of TM as Language Acceptor, Combining TMs, Turing computable functions, TM design examples, Variations in TM, nondeterministic TM, and Universal TM.												
							extboo							
1	John 2010		artin,	"Intro	luction	to La	anguag	ges &	Theory	of C	omputa	ation",	ТМН,	4th Ed.
2		E. Hoguages									uction	to Auto	omata	Γheory,
							eferen							
1	J. P. Tremblay & R. Manohar, "Discrete Mathematical Structures with Applications to Computer Science", TMH, 2008													
2	Micl 2014		pser, "	Introdu	iction	to The	ory of	Comp	utation	s", Th	omson	Brook	s/Cole,	3rd Ed.
3	K.L.	P. Mis	hra &	N. Cha	ndrase	ekaran.	, "The	ory of	Compi	iter Sc	ience",	PHI, 3	rd Ed.	2006
						Use	eful Li	nks	•		·	·		
1	https	:://npte	l.ac.in/	course	es/106/	104/10	061040)28/						
2	https	s://cgla	b.ca/~1	michie	l/Theo	ryOfC	omput	ation/1	Theory	OfCon	nputati	on.pdf		
3	https	s://wwv	w.geek	sforge	eks.org	g/intro	duction	n-of-th	eory-o	f-comp	outatio	n/		
								pping						
	Programme Outcomes (PO) PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3				2							1		
CO2		3	2										1	1
CO3				3	2				1				1	
CO4		2	2	1					1			3		
CO5			3	1									2	

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2024-25

Course Information

Course Information						
Programme	B.Tech. (Information Technology)					
Class, Semester	Second Year B. Tech., Sem III/IV					
Course Code	7IT271					
Course Name	Java Programming Lab					
Desired Requisites:	Object Oriented Programming					

Teachin	g Scheme	Examination Scheme (Marks)							
Practical	2 Hrs/ Week	LA1	LA2	Lab ESE	Total				
		30	30	40	100				
Lecture	1 Hrs/week		Credits: 2						

Course Objectives

- 1 To introduce the object-oriented concepts of Java
- 2 To inculcate the Java APIs like multithreading and socket programming
- 3 To instruct about various applications of the GUI packages of Java

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Demonstrate concepts of Object Oriented Technology using java programming	III	Applying
CO2	Apply multi-threading and socket programming concepts to solve real time problems	III	Applying
CO3	Analyse the concepts of event handling in java using AWT	IV	Analyzing
CO4	Design and implement GUI using java swing	V	Creating

Module	Module Contents	Hours
I	Fundamental Programming in Java Structure of Java Program, Java programming environment-JVM, JIT Compiler, Bytecode, A simple Java program, source file declaration rules, naming conventions, objects and classes – declaring classes and objects, declaring member variables, defining methods, constructors, using objects, this keyword, final and static keyword, garbage collection	3
II	Inheritance and package What is inheritance, types of inheritance, interfaces, super keyword, final classes and methods, packages – importing packages, naming a package, creating a package	2
III	Exception Handling and I/O Exception handling – what is exception? dealing with errors, hierarchy of exception, types of exceptions, IO stream classes	2
IV	Event Handling, AWT and Swing Event handling – basics of event handling, AWT hierarchy, types of events, AWT components, swing advanced components.	2
V	Multithreading and Networking Processes and threads, runnable interface, thread class, thread objects, thread states, thread priorities, socket programming	2
VI	Database Handling and Collections Framework Database – design of JDBC, the structured query language, JDBC types, Driver Manager - statement, connection, result-set, Collections - Collection framework	2

List of Experiments / Lab Activities/Topics

List of Experiments:

- 1. Program on input/output stream.
- 2. Program on class and objects.
- 3. Program on Constructor/Destructors.
- 4. Program static variables/class/functions.
- 5. Program on polymorphism.
- 6. Program on different types of inheritance and interface.
- 7. Program on exception handling objects.
- 8. Program on multithreading.
- 9. Program on TCP/UDP communication.
- 10. Program on Swing components.
- 11. Program on AWT components.
- 12. Program on Database Connectivity and operations for data handling.
- 13. Program on different collections like TreeSet, Set, HashMap, ArrayList, Date, etc.

Textbooks Cay S. Horstmann, "Core Java Volume I Fundamentals", Prentice Hall, 12th Edition, 2020 1 References Herbert Schildt, "Java: The Complete Reference", McGraw Hill Education, 11th Edition, 2019 1 E. Balguruswamy, "Programming with Java: A Primer", McGraw Hill Education, 7th Edition, 2 2023 **Useful Links** https://onlinecourses.nptel.ac.in/noc22_cs47/preview 1 2 https://nptel.ac.in/courses/106105191 https://www.codecademy.com/learn/learn-java 3

CO-PO Mapping														
	Programme Outcomes (PO)									PS	SO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		2		1	1								2	
CO2					3				2					2
CO3	1		2	2	2								3	1
CO4	2			1	3				2				1	2

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks	
	Lab activities,		During Week 1 to Week 8		
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30	
	journal		Week 8		
	Lab activities,		During Week 9 to Week 16		
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30	
	journal		Week 16		
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19		
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40	
	performance	applicable	Week 19		

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute) AY 2024-25 Course Information Programme B.Tech. (Information Technology) Class, Semester Second Year B. Tech., Sem III/IV Course Code 7IT272 Course Name Android Programming Lab Desired Requisites: Object oriented Programming concepts

Teachir	ng Scheme	Examination Scheme (Marks)							
Lecture	1 Hrs/ Week	LA1	LA2	Lab ESE	Total				
Practical	2 Hrs/ Week	30	30	40	100				
		Credits: 2							

	Course Objectives							
1	To introduce the android architecture and tools for developing Android applications							
2	To impart current client side and server side web technologies on Android platform							
3	To provide user interface application development							

Course Outcomes (CO) with Bloom's Taxonomy Level

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Describe the life cycles of android application development	III	Applying
CO2	Choose appropriate database for android application	III	Applying
CO3	Use the major components of Android API to develop application	IV	Analysing
CO4	Deploy applications to the Android marketplace for distribution	VI	Creating

Module	Module Contents	Hours
I	Android Overview Introduction to mobile computing, installing of required software and preparing the working environment, creating your first Android Application	2
II	Intents and Layouts XML, Android View Hierarchies, Linear Layouts, Relative Layout, Table Layout, Frame Layout Sliding, Using Padding and Margins with Layouts. What is Intent? Android Intent Messaging via Intent Objects, Types of Intents, Using Intents with Activities, Sending Intents (Telephony, SMS), Broadcast Receivers	3
III	Input Controls, Input Events, Dialogs Buttons, Text Fields, Checkboxes, Radio Buttons, Toggle Buttons, Spinners, Event Listeners, Event Handlers, Touch Mode, Handling Focus, Dialogs: Alerts, Popups, Toasts	2
IV	Menus, Notification and Action Bar Menus, Options menu, Context menu, Popup menu, Handling menu click events, Creating a Notification, Notification actions, Notification priority, Managing Notifications, Removing notifications	2
V	Android Database Installing SQLite plugin, DB Helper, The Database Schema and Its Creation, Four Major Operations, Cursors, Example, overview of other database used for Android	2

VI Publishing Android Application. VI To deploy and publish the Mobile Apps, Introduction to Flutter and Kotlin, Permissions, Application resources.	2
--	---

List of Experiments / Lab Activities/Topics

List of Lab Activities:

List of Lab Activities:

- 1. Installation of Android SDK, emulator, creating simple project and study of android project structure.
- 2. Installing apk on mobile device/tablet, configuring mobile device/tablet in Android Studio with developer option and running app directly on mobile device/tablet.
- 3. Write a program to use of different layouts.(Create Login form using Linear Layout and Relative

Layout).

- 4. Write a program to study Intents for switching between activities. Create Registration Activity and Registration Layout
- 5. Write a program to use of Intents for SMS and Telephony
- 6. Write a program to study and demonstrate BroadcastReceiver
- 7. Write a program to demonstrate Buttons, Text Fields, Checkboxes, Radio Buttons, and Toggle Buttons with their events handler (Create an app which will cover the different components, and try adding the components and different events henceforth so as to create a fully developed Android application)
- 8. Write a program to demonstrate Spinners, Touch Mode, Alerts, Popups, and Toasts with their events handler
- 9. Write a program to demonstrate Touch Mode, Menus with their events handler
- 10. Write a program to demonstrate notification with their action
- 11. Write a program to study and use of SQLite database
- 12. Study of publishing app to the Android Market.

	Textbooks							
1	Beginning Android application development by Wei-Mag Lee							
2	Learning Android by Marko Gargenta Publisher: O'Reilly Media							
3	Android Apps for Absolute Beginners by Wallace Jackson 2 nd Edition							
References								
1	Robert Laffore, "Object Oriented Programming in c++", SAMS publication,							
1	4thEdition,2008.							
	Useful Links							
1	Beginning Android4 Application Development, By Wei-Meng Lee WILEY India Edition							
1	WROX Publication s							
2	Professional Android 4 Application Development, By Reto Meier WROX							

CO-PO Mapping														
	Programme Outcomes (PO)									PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		2		1	2									1
CO2					3				2				2	3
CO3		1		2	2								2	1
CO4		3		1	3								3	

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing (min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks						
	Lab activities,		During Week 1 to Week 8							
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30						
	journal		Week 8							
	Lab activities,		During Week 9 to Week 16							
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30						
	journal		Week 16							
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19							
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40						
	performance	applicable	Week 19							

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)							
AY 2024-25							
Course Information							
Programme	B.Tech. (Information Technology)						
Class, Semester	Second Year B. Tech., Sem IV						
Course Code	7VSIT245						
Course Name	Mini Project 1						
Desired Requisites:	Programming fundamentals						

Teachi	ng Scheme	Examination Scheme (Marks)								
Practical	2 Hrs/ Week	LA1	LA2	Lab ESE	Total					
	-	30	30	40	100					
		Credits: 1								

	Course Objectives
1	To provide guidance to select & build the ideas.
2	To help students to address real-world challenges by IT based Solution.
3	To guide students to acquaint with team spirit.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Exploit the concepts of Programming languages, tools and technologies	III	Applying
CO2	Analyze performance of mobile application	IV	Analyzing
CO3	Survey existing challenges & try to address it	V	Evaluating
CO4	Design project modules to report solutions to various problems.	VI	Creating

List of Experiments / Lab Activities/Topics

List of Lab Activities:

Mini-project is to be carried out in a group of maximum 3 to 5 students.

Each group will carry out mini-project on developing any mobile application software based on following areas.

- 1. Android/C/C++/Python or any equivalent language.
- 2. Industry Problem Statement (Sponsored Project)
- 3. Problem statements based on current or previously learned Technology.
- 4. Data analysis using spreadsheets

Project/Mini-Project group should submit workable project at the end of second semester. Project report (pre-defined template) should be prepared using Latex/Word and submitted along with soft copy on CD/DVD (with code, PPT, PDF, Text report document & reference material) or on online Github.

Students should maintain a project log book containing weekly progress of the project.

	Textbooks								
1									
	References								
1									
	Useful Links								
1									

CO-PO Mapping														
		Programme Outcomes (PO)											PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		1			2								3	
CO2	2		2		3						2		2	1
CO3	2	1		3	3					3	1			3
CO4		2		2	3					1				

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing (min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks	
	Lab activities,		During Week 1 to Week 8		
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30	
	journal		Week 8		
	Lab activities,		During Week 9 to Week 16		
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30	
	journal		Week 16		
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19		
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40	
	performance	applicable	Week 19		

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2024-25

Course Information

Programme B.Tech. (Information Technology)

Class, Semester Second Year B. Tech., Semester IV

Course Code 7MDIT221

Course Name Data Structures and Algorithms

Desired Requisites:

Teachi	ng Scheme	Examination Scheme (Marks)								
Lecture	Lecture 3 Hrs/week		MSE	ESE	Total					
Tutorial	-	20	30	50	100					
		Credits: 3								

Course Objectives

- 1 Exploring basics of data structures and algorithms.
- 2 Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs
- 3 Familiarize sorting and pattern matching algorithms

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Apply various data structures for problem solving	III	Applying
CO2	Apply important algorithmic design paradigms and methods of analysis	III	Applying
CO3	Compare various Searching and sorting techniques	IV	Analyzing
CO4	Evaluate efficiency of the programs based on performance of the algorithm	V	Evaluating

Module	Module Contents	Hours
I	Introduction Basic Concepts: Algorithm, Pseudo-code, ADT, Data Structure, Algorithmic Efficiency, And Recursion, Dynamic Memory allocation, Introduction of Pointers	4
	to Arrays ,functions and Structures	
II	Linear Lists, Stacks and Queues Sequential and linked implementations, equivalence problem, linked lists, doubly linked lists, circular lists	6
III	Non-Linear Structures Basic terminology, binary trees and its representation, binary tree traversals, operations	8
IV	Searching and Sorting Techniques: Importance of searching, Sequential, Binary, Insertion Sort, Bubble Sort, Quick sort and Merge sort	8
V	Introduction to Computer Algorithm Design and Analysis of Algorithm Greedy Algorithms: Knapsack problem, Huffman codes, Dynamic Programming	7
VI	Backtracking Programming Concept, Advantages & Disadvantages, Applications, Implementation using problems like N-Queen Problem	6

Textbooks

1	Richard F. Gilberg, Behrouz A. Forouzan, "Data Structures, A Pseudocode Approach With C", Cengage Learning, 2nd Edition, 2007								
2	Cormen T, Introduction to Algorithms, MIT Press,4th Edition, 2022								
	References								
1	Brad Miller and David Ranum, Luther College, "Problem Solving with Algorithms and								
1	Data Structures Using Python," Franklin, Beedle &Associates, 2017								
2	Wirth, N., "Algorithms and Data Structures", Prentice-Hall of India, 2013								
	Useful Links								
1	https://nptel.ac.in/courses/106/102/106102064/								
2	https://nptel.ac.in/courses/106/106/106106127/								
3	https://nptel.ac.in/courses/106/103/106103069/								

CO-PO Mapping														
		Programme Outcomes (PO)											PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2												2
CO2	2	3			1								1	
CO3		1	2		2								3	
CO4	3	2	1											1

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.