LAUREA TRIENNALE IN INFORMATICA, UNIVERSITÀ DI ROMA TOR VERGATA

Calcolo delle Probabilità (ed insegnamenti mutuati)

Anno accademico: 2014-2015. Titolare del corso: Claudio Macci

Appello del 4 Settembre 2015

Esercizio 1. Un'urna contiene 6 palline con i numeri 0,0,0,2,2,4. Si estraggono a caso 3 palline, una alla volta e con reinserimento.

- D1) Trovare la densità discreta della variabile aleatoria X che conta il numero di volte che viene estratto il numero 2.
- D2) Calcolare la probabilità di estrarre la sequenza (0, 2, 0).

Esercizio 2. Un'urna ha 1 pallina bianca, 1 rossa e 1 nera. Si estrae una pallina a caso e viene tolta dall'urna. Poi vengono messe nell'urna due palline, una per ognuno dei due colori delle palline rimaste nell'urna (per fare un esempio: se viene tolta la pallina rossa, vengono messe nell'urna una pallina bianca e una nera). Infine si estrae una pallina a caso.

- D3) Calcolare la probabilità di estrarre una pallina bianca alla seconda estrazione.
- D4) Calcolare la probabilità di aver estratto la pallina rossa alla prima estrazione sapendo di aver estratto una pallina bianca alla seconda estrazione.

Esercizio 3. Consideriamo la seguente densità congiunta: $p_{X_1,X_2}(x_1,x_2)=(\frac{1}{2})^{x_1}\cdot\frac{6^{x_2}}{x_2!}e^{-6}$ per $x_1\geq 1$ e $x_2\geq 0$ interi.

- D5) Calcolare $P(X_1 = X_2)$.
- D6) Calcolare $P(X_1 + X_2 = 2)$.

Esercizio 4. Sia X una variabile aleatoria con densità continua $f_X(t) = \frac{t}{50} 1_{(0,10)}(t)$.

- D7) Trovare la densità continua di $Y = X^2$.
- D8) Calcolare P([X] = 2) dove $[x] = \max\{k \in \mathbb{Z} : k \le x\}$ è la parte intera di x.

Esercizio 5.

D9) Sia $N_t = \sum_{n \geq 1} 1_{T_n \leq t}$ (per $t \geq 0$) un processo di Poisson con intensità di $\lambda = \frac{3}{7}$. Calcolare $\mathbb{E}[T_3]$. D10) Sia X una variabile aleatoria con distribuzione Normale di media 1 e varianza 16. Trovare x per cui si ha $P(X \leq x) = \Phi(-1)$.

Esercizio 6. Sia $\{X_n : n \geq 1\}$ una successione di variabili aleatorie i.i.d. (indipendenti e identicamente distribuite).

D11) Dire per quale valore di m si ha

$$\lim_{n\to\infty}P\left(\left|\frac{X_1+\cdots+X_n}{n}-m\right|>\varepsilon\right)=0 \text{ per ogni } \varepsilon>0,$$

nel caso in cui le variabili aleatorie $\{X_n : n \ge 1\}$ abbiano distribuzione uniforme su (-1,0).

D12) Calcolare, usando l'approssimazione Normale, $P(420 < X_1 + \cdots + X_{100} < 430)$ nel caso in cui le variabili aleatorie $\{X_n : n \ge 1\}$ abbiano distribuzione di Poisson di parametro $\lambda = 4$.

Esercizio 7 (solo per Lauree Magistrali). Consideriamo una catena di Markov omogenea $\{X_n : n \geq 0\}$ con spazio degli stati $E = \{1, 2, 3, 4\}$ e matrice di transizione

$$P = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 1/3 & 1/3 & 1/3 \\ 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- D13) Calcolare la probabilità di passaggio in $C = \{2, 3\}$ partendo da 1.
- D14) Calcolare $P(X_1 = 1, X_2 = 2 | X_0 = 1)$.

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

D1) Si ha $p_X(k) = \binom{3}{k}(2/6)^k(1-2/6)^{3-k}$ per $k \in \{0,1,2,3\}$, e quindi $p_X(0) = \frac{8}{27}$, $p_X(1) = \frac{12}{27}$, $p_X(2) = \frac{6}{27}$ e $p_X(3) = \frac{1}{27}$.

D2) La probabilità richiesta è uguale a $\frac{3}{6}\frac{2}{6}\frac{3}{6} = \frac{1}{12}$.

Esercizio 2. Indichiamo con B_k , R_k e N_k gli eventi "estratta bianca (rossa e nera, rispettivamente) alla kestrazione".

D3) Per la formula delle probabilità totali si ha $P(B_2) = P(B_2|B_1)P(B_1) + P(B_2|R_1)P(R_1) + P(B_2|N_1)P(N_1) =$ $0 \cdot \frac{1}{3} + \frac{2}{4} \cdot \frac{1}{3} + \frac{2}{4} \cdot \frac{1}{3} = 0 + \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}.$

D4) Per la formula di Bayes, e tenendo conto del valore $P(B_2)$ calcolato prima, si ha $P(R_1|B_2) = \frac{P(B_2|R_1)P(R_1)}{P(B_2)} = \frac{P(B_2|R_1)P(R_1)}{P(B_2)}$ $\frac{\frac{2}{4} \cdot \frac{1}{3}}{1/3} = \frac{1}{2}.$

Esercizio 3.

D5) Si ha
$$P(X_1 = X_2) = \sum_{k=1}^{\infty} p_{X_1, X_2}(k, k) = \sum_{k=1}^{\infty} (\frac{1}{2})^k \cdot \frac{6^k}{k!} e^{-6} = e^{-6} \sum_{k=1}^{\infty} \frac{3^k}{k!} = e^{-6} (e^3 - 1) = e^{-3} - e^{-6}.$$

D6) Si ha $P(X_1 + X_2 = 2) = p_{X_1, X_2}(1, 1) + p_{X_1, X_2}(2, 0) = (\frac{1}{2})^1 \cdot \frac{6^1}{1!} e^{-6} + (\frac{1}{2})^2 \cdot \frac{6^0}{0!} e^{-6} = (3 + \frac{1}{4})e^{-6} = \frac{13}{4}e^{-6}.$

Esercizio 4.

D7) Si vede che $P(0 < Y < 10^2) = 1$ e quindi $F_Y(y) = 0$ per $y \le 0$ e $F_Y(y) = 1$ per $y \ge 100$. Per $y \in (0, 100)$ si ha $F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(X \le \sqrt{y}) = \int_0^{\sqrt{y}} \frac{t}{50} dt = [t^2/100]_{t=0}^{t=\sqrt{y}} = \frac{y}{100}$. Quindi $f_Y(y) = \frac{1}{100} \cdot 1_{(0,100)}(y)$ (in altri termini la variabile aleatoria Y ha distribuzione uniforme su (0, 100)).

D8) Si ha
$$P([X] = 2) = P(2 \le X < 3) = \int_2^3 \frac{t}{50} dt = [t^2/100]_{t=2}^{t=3} = \frac{9-4}{100} = \frac{5}{100} = \frac{1}{20}$$
.

Esercizio 5.

D9) Si ha $\mathbb{E}[T_3] = \frac{3}{3/7} = 7$.

D10) Si ha $P(X \le x) = P(\frac{X-1}{\sqrt{16}} \le \frac{x-1}{\sqrt{16}}) = \Phi(\frac{x-1}{4})$; quindi si deve avere $\frac{x-1}{4} = -1$, da cui segue x = -3 con semplici calcoli.

Esercizio 6.

D11) Per la legge dei grandi numeri il valore di m richiesto è $m=-\frac{1}{2}$ per formula note sulla distribuzione

D12) Le variabili aleatorie $\{X_n:n\geq 1\}$ hanno media 4 e varianza 4 per le formule sulla distribuzione di Poisson. Quindi, se indichiamo con Z la standardizzata di $X_1 + \cdots + X_{100}$, si ha $\{420 < X_1 + \cdots + X_{100} < \cdots < 0\}$ 430} = $\{\frac{420-400}{\sqrt{4}\sqrt{100}} < Z < \frac{430-400}{\sqrt{4}\sqrt{100}}\}$ e, per l'approssimazione normale, $P(420 < X_1 + \cdots + X_{100} < 430) = \Phi(30/20) - \Phi(20/20) = \Phi(1.5) - \Phi(1) = 0.93319 - 0.84134 = 0.09185.$

Esercizio 7.

D13) L'insieme D_C degli stati che comunicano con $C = \{2,3\}$ e che non appartengono a $C \in D_C = \{1\}$; infatti lo stato 4 è assorbente. Allora, detta λ la probabilità di passaggio richiesta, questa è soluzione della seguente equazione:

$$\lambda = \frac{1}{4} + \frac{1}{4} + \frac{1}{4}\lambda.$$

In corrispondenza si ottiene $\frac{3}{4}\lambda=\frac{2}{4}$, e quindi $\lambda=\frac{2}{3}$, con semplici calcoli. D14) La probabilità richiesta è $P(X_1=1,X_2=2|X_0=1)=p_{11}p_{12}=\frac{1}{4}\cdot\frac{1}{4}=\frac{1}{16}$.

Commenti.

La somma dei valori di ciascuna densità discreta che appare è 1 in accordo con la teoria.

D3-D4) Quello che succede per ciascuno dei tre colori in ballo, succede anche per gli altri. Del resto, come si può verificare direttamente facendo i calcoli, si ha: $P(R_2) = P(N_2) = \frac{1}{3}$ (come accade per $P(B_2)$); $P(N_1|B_2) = \frac{1}{2}$ (come accade per $P(R_1|B_2)$, essendo ovviamente $P(B_1|B_2) = 0$); $P(B_1|N_2) = P(R_1|N_2) = \frac{1}{2}$ e $P(N_1|N_2) = 0$; $P(B_1|R_2) = P(N_1|R_2) = \frac{1}{2}$ e $P(R_1|R_2) = 0$.

D13) Qui calcoliamo λ in un altro modo. Iniziamo osservando che, prima o poi, la catena finirà nello stato 4 (unico stato assorbente; gli altri sono tutti transitori) dove resterà per sempre. Allora $1-\lambda$ rappresenta la probabilità di finire nello stato 4 (partendo dallo stato 1) senza passare per l'insieme di stati C; quindi si ha

$$1 - \lambda = P(X_1 = 4 | X_0 = 1) + P(X_1 = 1, X_2 = 4 | X_0 = 1) + P(X_1 = 1, X_2 = 1, X_3 = 4 | X_0 = 1) + \cdots$$
$$= \frac{1}{4} + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^3 + \cdots = \frac{1/4}{1 - 1/4} = \frac{1}{3},$$

da cui segue (con alcuni calcoli) che $\lambda=1-\frac{1}{3}=\frac{2}{3}$. D13) Osserviamo che $\lambda=\frac{1/4+1/4}{1/4+1/4+1/4}$. Quindi abbiamo la seguente interpretazione del valore λ : si tratta di considerare la probabilità di andare da 1 in C, e di normalizzare con la probabilità che, partendo da 1, si finisca in $\{2,3,4\}$ lasciando lo stato 1 definitivamente.