Exercise 1 (Vector norms).

(a) Let $(V, \|\cdot\|)$ be a normed vector space. Prove that

$$\Big|||x|| - ||y||\Big| \le ||x \pm y||$$

for all $x, y \in V$.

(b) Prove that all norms in \mathbb{R}^n are equivalent. This means that for arbitrary norms $\|\cdot\|_*$ and $\|\cdot\|_{**}$ there exists constants α, β such that for all $x \in \mathbb{R}^n$ it is

$$\alpha \|x\|_* \le \|x\|_{**} \le \beta \|x\|_*.$$

Hint: It suffices to show that every norm on \mathbb{R}^n is equivalent to the Euclidean norm $\|\cdot\|_2$. Definition 1 and Theorem 2 below could be helpful.

Definition 1. A set $X \subset (\mathbb{R}^n, \|\cdot\|_2)$ is called **bounded** if there exists C > 0 such that $\|x\|_2 \leq C$ for all $x \in X$. X is **open** : \Leftrightarrow any point of X is an interior point. X is **closed** : $\Leftrightarrow \mathbb{R}^n \setminus X$ is open. X is called **compact** if it is closed and bounded.

Theorem 2 (Weierstrass extreme value theorem). Let $X \subset (\mathbb{R}^n, \|\cdot\|_2)$ be compact and $f: X \to \mathbb{R}$ be continuous. Then f(X) is compact and there exist $x_{min}, x_{max} \in X$ such that for all $x \in X$

$$f(x_{min}) \le f(x) \le f(x_{max}).$$

Suggested Solution. (a) From the triangle inequality it follows that for all $x, y \in \mathbb{R}^n$

$$||x|| = ||x + y - y|| \le ||x + y|| + ||y||$$

i.e.

$$||x|| - ||y|| \le ||x + y||.$$

Swapping x and y yields

$$|||x|| - ||y||| \le ||x + y||.$$

Replacing y by -y finally proves the assertion.

(b) We show that any norm $\|\cdot\|$ is equivalent to the Euclidean norm $\|\cdot\|_2$. First, for any $x \in \mathbb{R}^n$ we let $\sum_k x_k e_k := x$. We can estimate

$$||x|| = ||\sum_{k} x_k e_k|| \le \sum_{k} |x_k| ||e_k|| \le ||x||_2 \sum_{k} ||e_k|| =: \beta ||x||_2.$$

Next, we show that

$$f: \mathbb{R}^n \to \mathbb{R}, \quad f(x) = ||x||$$

is (Lipschitz) continuous: For any $x, y \in \mathbb{R}^n$ we have

$$|f(x) - f(y)| = |||x|| - ||y||| \le ||x - y|| \le \beta ||x - y||_2.$$

Thus for any given $\varepsilon > 0$ and $a \in \mathbb{R}^n$ there exists a $\delta > 0$ (e.g. one can choose $\delta \coloneqq \frac{\varepsilon}{\beta}$) s.t.

$$|f(x) - f(a)| < \varepsilon$$
 for all $x \in U_{\delta}(a)$.

Now we show that the (Euclidean) unit sphere $\mathbb{S} := \{x \in \mathbb{R}^n \mid ||x||_2 = 1\}$ is compact:

(1) $\underline{\mathbb{S}}$ is closed: $\Leftrightarrow \mathbb{R}^n \backslash \mathbb{S}$ is open: Let $y \in \mathbb{R}^n \backslash \mathbb{S}$ and r := |||y|| - 1|. We claim that $B_r(y) \subset \mathbb{R}^n \backslash \mathbb{S}$: Assume the contrary. Then $\exists p \in B_r(y) \cap \mathbb{S}$. But then

$$\left| \|y\|_2 - \underbrace{\|p\|_2}_{-1} \right| \le \|y - p\|_2 < r = \left| \|y\|_2 - 1 \right|$$

yields a contradicion.

(2) $\underline{\mathbb{S}}$ is bounded: for all $x \in \mathbb{S}$: $||x||_2 \le C = 1$.

Now we can apply the Weierstrass extreme value theorem to ensure the existence of a $x_{\min} \in \mathbb{S}$ ($\Rightarrow x_{\min} \neq 0$) s.t.

$$||x|| = f(x) \ge f(x_{\min}) = ||x_{\min}|| =: \alpha > 0 \quad \forall x \in \mathbb{S}.$$

For arbitrary $x \in \mathbb{R}^n$ we note that $\frac{x}{\|x\|_2} \in \mathbb{S}$ and therefore

$$\left\| \frac{x}{\|x\|_2} \right\| \ge \alpha \quad \Leftrightarrow \quad \alpha \|x\|_2 \le \|x\|.$$

Exercise 2 (matrix norms). Let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^n and $\|\cdot\|_*$ the induced matrix norm. Prove the following

- (a) $\|\cdot\|_*$ is a vector norm on (the vector space) $\mathbb{R}^{n\times n}$.
- (b) $\|\cdot\|_*$ is compatible with $\|\cdot\|$, i.e. $\|Ax\| \leq \|A\|_* \|x\|$ for all $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$.
- (c) $\|\cdot\|_*$ is submultiplicative, i.e. for all $A, B \in \mathbb{R}^{n \times n}$ one has

$$||AB||_* \le ||A||_* ||B||_*.$$

- (d) $||E_n||_* = 1$.
- (e) If $\| \cdot \|$ is another vector norm on $\mathbb{R}^{n \times n}$ that is compatible with $\| \cdot \|$ then

$$||A||_* \leq |||A||$$

for all $A \in \mathbb{R}^{n \times n}$.

Suggested Solution.

(a) <u>definiteness:</u> We show: $||A||_* = 0 \implies A = 0$. If

$$0 = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

then Ax = 0 for all $x \in \mathbb{R}^n$, i.e. A = 0.

positive homogeneity:

$$\|\lambda A\|_* = \sup_{x \neq 0} \frac{\|\lambda Ax\|}{\|x\|} = |\lambda| \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} = |\lambda| \|A\|_*.$$

triangle inequality:

$$||A + B||_* = \sup_{x \neq 0} \frac{||(A + B)x||}{||x||}$$

$$\leq \sup_{x \neq 0} \frac{\|Ax\| + \|Bx\|}{\|x\|}$$

$$\leq \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} + \sup_{x \neq 0} \frac{\|Bx\|}{\|x\|}$$

$$= \|A\|_* + \|B\|_*$$

(b) compatibility: We conclude

$$||A||_* = \sup_{x \neq 0} \frac{||Ax||}{||x||} \ge \frac{||Ax||}{||x||}$$

 $\Leftrightarrow ||Ax|| \le ||A||_* ||x||.$

(c) submultiplicativity: Let $A, B \in \mathbb{R}^{n \times n}$. Then

$$\|AB\|_* = \max_{\|x\|=1} \|A(Bx)\| \overset{(b)}{\leq} \max_{\|x\|=1} \|A\|_* \|Bx\| = \|A\|_* \max_{\|x\|=1} \|Bx\| = \|A\|_* \|B\|_*.$$

(d) $||E||_* = 1$: We have

$$||E||_* = \sup_{x \neq 0} \frac{||Ex||}{||x||} = \sup_{x \neq 0} \frac{||x||}{||x||} = 1.$$

Alternatively:

$$||E||_* = \max_{||x||=1} ||Ex|| = \max_{||x||=1} ||x|| = 1.$$

(e) $||A||_* \leq |||A|||_*$: Simply apply sup over $\mathbb{R}^n \setminus \{0\}$ to

$$\frac{\|Ax\|}{\|x\|} \le \frac{\|A\| \|x\|}{\|x\|} = \|A\|.$$

Exercise 3 (Spectral norm and spectral radius). Let $A \in \mathbb{R}^{n \times n}$. Prove that for the spectral norm on \mathbb{R}^n it holds

$$||A||_2 = \sqrt{\rho(A^T A)},$$

where for $B \in \mathbb{R}^{n \times n}$

$$\rho(B) \coloneqq \max_{\lambda \in \sigma(B)} |\lambda|$$

denotes the largest absolute eigenvalue of B and is called the **spectral radius** of B.

Hint: Use that A^TA as a symmetric matrix has an orthonormal eigenbasis and a positive spectrum (i.e. only real eigenvalues ≥ 0). Then, represent each vector x in the equation

$$||A||_2 = \max_{||x||_2=1} \langle Ax, Ax \rangle^{\frac{1}{2}} = \max_{||x||_2=1} (x^T A^T Ax)^{\frac{1}{2}}$$

with respect to this basis and compute the resulting expression.

Suggested Solution. Since A^TA is symmetric there exists an orthonormal eigenbasis $\{v_1, \ldots, v_n\}$ with $Av_i = \lambda_i v_i$ and the positive semi-definiteness of A^TA yields $\lambda_i \geq 0$. For arbitrary $x \in \mathbb{R}^n$ we let $\sum_j \mu_j v_j := x$. Then

$$\langle Ax, Ax \rangle = \langle x, A^T Ax \rangle$$

$$= \langle \sum_{i} \mu_i v_i, A^T A \sum_{j} \mu_j v_j \rangle$$

$$= \sum_{i,j} \mu_i \mu_j \langle v_i, \underbrace{A^T A v_j}_{=\lambda_j v_j} \rangle$$

$$= \sum_{i,j} \mu_i \mu_j \lambda_j \underbrace{\langle v_i, v_j \rangle}_{=\delta_{ij}}$$

$$= \sum_{i} \mu_i^2 \lambda_i$$

$$\leq \lambda_{i_0} \sum_{i} \mu_i,$$
(1)

where $\lambda_{i_0} = \rho(A^T A)$ is the largest eigenvalue of $A^T A$. Specializing to A := E and $||x||_2 = 1$ in (1) yields $\sum_i \mu_i^2 = 1$ (and further $\mu_i^2 = 1$ when substituting $x = v_i$). From this and (2) we can, on the one hand, estimate for all normalized x

$$||Ax||_2^2 \leq \lambda_{i_0}$$

and therefore

$$||A||_2 \le \sqrt{\lambda_{i_0}}.$$

Letting $x := v_i$ in (1) we obtain on the other hand

$$\max_{\|x\|_2=1} \|Ax\|_2 \ge \|Av_{i_0}\|_2 = \sqrt{\mu_{i_0}^2 \lambda_{i_0}} = \sqrt{\lambda_{i_0}}.$$