Section 4 First Examples of Mathematical Proofs

Even and Odd Numbers

- · Quix 3 today. Read questions carefully!
- · HW1 scores to be released Soon. Review your graded work.

Consider the following webpages:

P(x,y): x has a link to y.

T: (y,x)q (yE)(x+y)

(ヨれ)(∀y) p(x,y): F (ヨれ)(∀y≠れ) p(x,y): T

Suggestion: Tabulate P(x,y)
truth value of.

P(a,y) A B C H x (ty) Pa,y) All are F's. So (Ex) (Ay) P(x,y) is follow Sec 3. Ex Example: Negation of multiply quantified sentences. (Calculus) Let f be a function from IR to IR and let aGIR. To say that f is continuous at a means that for each $\epsilon>0$, there exist a $\delta>0$ such that for each 161R, if $|12-\alpha|<\delta$, then $|f(x)-f(\alpha)|<\epsilon$. (4 E>0) (35 >0) (4x EIR) [(2-a) < 8 => (1 for) - for) < 8 To say that I is not cts. at a means, in symbols, (∃ €>0) (∀ S>0) (∃ x ∈ IR) | 11-a| < 8 / Ifm-fm | >> €

Even Numbers and Odd Numbers

Definitions

Definition 1 (Even and Odd Numbers)

- To say that x is an even number means that there exists an integer k such that x = 2k.
- To say that x is an odd number means that there exists an integer k such that x = 2k + 1.

•
$$A = 2 \cdot 2^{n}$$
 (even)
• $-7 = 2 \cdot (-4) + 1$ (odd) [Wrong: $-7 = 2(-3) - 1$]
• $0 = 20$ (even)

Examples

Example 2 (Sum of Odd Numbers)

If x is odd and y is odd, then x + y is even.

Your Suppose to is odd and y is odd. (WTS 144y is even.)

Since I is odd, we can find an integer k such that

$$\chi = 2k+1$$
Likewise, since y is odd, we can find an integer L such that

 $\chi = 2l+1$

2+y=(2k+1)+(2l+1)

= 2k+2l+2 = 2(k+l+1). Thus, they is even because it is 2(k+l+1) where k+l+1 is an integer.

d	y	x+ y	
odd	odd	even	< Just showed
odd	even	odd	7
even	odd	odd	4 tew
even	even	even	

How about 2+y+ 2?

Examples (cont')

Example 3 (Product with Even Numbers)

Let x and y be integers. If x is even or y is even, then xy is even.

Proof. Suppose It is even or y is even. (WTS my is even.)

case 1 It is even. Then we can find an integer the such that 1 = 2 le

Then xy = (2k)y = 2(ky). Since ley is an integer, my is even.

5/8

Case 2 y is even. Then we can find an integer k such that y = 2k.

Then xy = x(2k) = (2k) x = 2(kx).

Since led is an integer, my is even.

In either case, we showed that my is even. Thus, if it is even or y is even, then my is even.

X	y	хy	_
odd	odd	odd	∠ HW
odd	even	even	} - just showed
even	odd	even	Just showed
even	even	even	J

Fundamental Properties

Even/Odd Dichotomy (I)

Let x be an integer. Then:

- $\mathbf{1}$ x is even or x is odd.
- 2 If x is not even, then x is odd.
- 3 If x is not odd, then x is even.

Note. If P stands for "x is even" and Q stands for "x is odd", then three statements above are $P \lor Q$, $\neg P \Rightarrow Q$, and $\neg Q \Rightarrow P$, respectively. Note that the three sentences are logically equivalent.

P	Q	PVQ	7P => Q	7Q=>P
T	T			
$\overline{}$	F			
F	T			
F	F			

Fundamental Properties (cont')

Even/Odd Dichotomy (II)

Let x be an integer. Then:

- x is not both even and odd.
- 2 If x is even, then x is not odd.

Note. If P stands for "x is even" and Q stands for "x is odd", then three statements above are $\neg(P \land Q), P \Rightarrow \neg Q$, and $Q \Rightarrow \neg P$, respectively. Note that the three sentences are logically equivalent.

P	Q	7(P / Q)	P=> -Q	Q > P
T	T			
$\overline{}$	F			
F	T			
F	F			

Examples

Example 4 (When Sum of Two Integers Is Odd)

Let x and y be integers. If x+y is odd, then x is even or y is even.

Homework (1/28; due Wed 2/2)

Section 4: #1, 2, 3, 4, 5, 6