eRando em Ciênc1a de D4do\$

Luís Gustavo Schuck 09/09/2023

Índice

Be	em v Vers	indo sões
So	bre o	Autor 8
I	R F	t rodução à Linguagem R oundation
	Con	nunidade
1	Intr	odução 12
	1.1	,
		1.1.1 Executando Comandos
		1.1.2 Erros
	1.2	Objetos
		1.2.1 Vetores (Atômicos)
	1.3	Criação de Objetos
	1.4	Operações com Objetos
		1.4.1 Coerção
	1.5	Usando Funções
		1.5.1 Argumentos de Funções
		1.5.2 Armazenando Retorno
	1.6	Exibindo Objetos
	1.7	Remoção de Objetos
	1.8	Iniciando o RStudio
	1.9	Trabalhando com Scripts
		1.9.1 Comentários
2	Non	neando Objetos 28
_	2.1	Regras
		2.1.1 Primeiro Caractere
		2.1.2 Case Sensitive
	2.2	Resumo
	2.3	Convenções

3	Vet		33
	3.1	3	33
	3.2	Selecionando Elementos	34
	3.3	Nomeando Componentes	34
	3.4	Testando	35
4	Tipo	os de Dados	36
	-		36
			37
	4.2	Inteiros (Integer)	38
	4.3	Ponto Flutuante (Double)	39
		4.3.1 Not a Number (NaN)	39
		4.3.2 Inf e -Inf	40
	4.4	Fatores (Factor)	42
5	Δml	bientes	43
•			43
	5.2		44
	5.3		44
			45
6	One	erações Lógicas	47
U	6.1	, -	47
	6.2		48
	0.2	6.2.1 Ou Exclusivo (Xor)	49
	6.3	,	49
	6.4	All e any	51
	6.5	•	54
_			
7			55
	7.1	•	55
			55
	7.3	· ·	55
	7.4	Nomeando Componentes	56
		7.4.1 Nomes Abreviados	57
8		a Frames	58
	8.1	O que são data frames ?	58
		8.1.1 Criando Data Frames	59
		8.1.2 Aplicar convenções de nomes	59
			60
	8.3	Dimensões	61

	8.4	8.4.1 Índices	61 61
			62 63
	8.5		66
9	•	•	69
	9.1 9.2	•	69 71
10	Funç	cões	7 3
	•	Criando Funções	73
	40.0	O	73
	10.2	,	73 74
	10.3	·	, ¬ 77
			77
		,	77
	10.5	Funções Genéricas	78
11	Dade	os Externos	79
	11.1	·	79
		' '	79
		· · ·	80
	11.2	!	80
		, ,	80 80
12			81
		3	81 81
			o 1 82
			84
			84
		•	86
	12.7	Break e Next	87
	12.8	Repeat	87
13	Gráf	icos	88
			88
			92
14	Sum	arização de Dados	94
		•	96

15	Utilidades 15.1 Listar Arquivos	98 98 98
П	Pacotes O que são pacotes?	100 101
16	Introdução a Pacotes 16.1 Pacotes Instalados	102 104 105 105 106
Ш	RStudio O que é o RStudio?	107 108
17	Introdução ao RStudio 17.1 Layout	110 110 110 110 110 113
18	Menu Tools 18.1 Install Packages 18.2 Check for Package Updates 18.3 Version Control 18.4 Terminal 18.4.1 Background Jobs 18.5 Global Options 18.5.1 Geral > Basic	115 116 119 119 119 119
IV	Estatística O que é Estatística	122 123
19	Introdução 19.1 População	124 124 124 124 124

19.3.2 Ordinal	124
19.3.3 Intervalar	124
19.3.4 Razão	124
/ Ciência de Dados Definições	125
0 Trade-Off Viés x Variância	127
Bases de Dados	128
Banco Central do Brasil	128
BNDES	
Convenções	129
Marcações no Texto	129
Status do Material	
Referências	131

Bem Vindo

Este é um livro sobre a utilização da linguagem R em Ciência de Dados.

Este material é um projeto pessoal usado como fonte de consulta e aprendizado, sem compromisso com uma estrutura específica.

Muitas vezes o exposto aqui é a prática (para fixação e exploração) de conceitos apresentados em outros materiais. Assim todas as fontes utilizadas, mesmo que de forma subjetiva, são citadas.

Versões

A versão deste material é: 0.1.0.09-09-2023.

A versão do **R** utilizada é: 4.3.0, Already Tomorrow.

A versão do **RStudio** é: 2023.06.1+524, Mountain Hydrangea.

A versão do Quarto é: 1.2.475.

Última atualização: 20/08/2023 - 22:47:23

Sobre o Autor

Status □□□

Luís Gustavo Schuck é formado em Gestão Financeira (2013) pelo Centro Universitário Internacional - Uninter. Possui Especialização em Business Analytics (2021) pela Universidade Federal do Rio Grande do Sul - UFRGS, MBA em Administração e Finanças (2017) pelo Centro Universitário Internacional - Uninter e MBA em Gestão Bancária (2015) pelo Centro Universitário Leonardo da Vinci - Uniasselvi. Possui certificação ANBIMA CPA-10 (Certificação Profissional ANBIMA Série-10).

Atualmente é aluno do curso de **Análise e Desenvolvimento de Sistemas** pela Universidade Feevale e atua como **Analista na Unidade de Risco de Crédito** do Banco do Estado do Rio Grande do Sul (Banrisul). Utiliza R desde 2017.

Última atualização: 12/08/2023 - 15:56:19

Parte I Introdução à Linguagem R

Status □□□

Conforme o **R Core Team** (R Core Team 2023c) 'R é uma linguagem e ambiente para computação estatística e gráficos'. Criada na década de 1990, R é uma **linguagem livre** e é distribuída sob a licença GPLv2.

Mantida pela R Foundation, atualmente (setembro/2023) é uma das linguagens mais usadas para Ciência de Dados e está entre as linguagens mais buscadas no Google como pode ser visto pelo PYPL - PopularitY of Programming Language.

Rank	Change	Language	Share	Trend
1		Python	27.27 %	-0.5 %
2		Java	16.35 %	-1.6 %
3		JavaScript	9.52 %	+0.2 %
4		C#	6.92 %	-0.3 %
5		C/C++	6.55 %	-0.4 %
6		PHP	5.1 %	-0.5 %
7		R	4.34 %	-0.2 %
8		TypeScript	2.88 %	+0.3 %
9	^	Swift	2.3 %	+0.1 %
10	V	Objective-C	2.13 %	-0.1 %

Figura 1: 05/2023 - PYPL PopularitY of Programming Language

No IEEE Spectrum Top Programming Languages 2022 a linguagem R também aparece com bastante relevância.

R Foundation

A R Foundation é uma organização sem fins lucrativos que tem como objetivo promover o desenvolvimento da linguagem R e ser ponto de referência para entidades que desejem

interagir com a comunidade de desenvolvimento do R.

A R Foundation possui uma grande quantidade de apoiadores e doadores. Dentre os principais Patronos do R está a empresa **Posit**, anteriormente **RStudio**, que desenvolve o principal IDE para R, também chamado de **RStudio**.

Você pode ser um apoiador!

Comunidade

Uma grande vantagem da liguagem R é a existência de uma grande comunidade de desenvolvimento, assim como uma gama enorme de conteúdos distribuídos através da Internet, muitos de forma livre e de fácil acesso. Abaixo alguns sites com conteúdos muito ricos sobre R:

- Análise de Dados Financeiros e Econômicos com o R Versão Online
- Introdução à Linguagem R: seus fundamentos e sua prática
- R Manuals
- Big Book of R
- R for Data Science
- Datacamp
- Statistics Globe
- R Charts
- Statistical tools for high-throughput data analysis

Última atualização: 24/08/2023 - 22:31:08

1 Introdução

Status □□□

Este capítulo tem como objetivo fornecer uma visão inicial mínima para que o usuário possa dar os primeiros passos na linguagem.

1.1 Console do R

A tela inicial do R em si é um console, onde são passados comandos e seu interpratador os executa e, se for o caso, exibe saídas. O cursor fica posicionado ao lado do símbolo do *prompt* do R, >. Este símbolo indica que o sistema está pronto para receber novo comando.

```
R version 4.3.0 (2023-04-21 ucrt) -- "Already Tomorrow"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> |
```

Figura 1.1: Tela Inicial

1.1.1 Executando Comandos

A tela inicial fornece algumas sugestões para consulta a dados sobre R, como licença da linguagem, citação, ajudas, etc. Usaremos como exemplo inicial o comando license(). Após a digitação do comando devemos confirmar com **ENTER** para que o R execute o comando informado e exiba na tela o resultado, no caso a licença da própria linguagem. Após a execução um novo sinal do *prompt* é exibido em aguardo de um possível próximo comando.

Podemos digitar q(), por exemplo, que é a função que efetua o encerramento do R.

Agora considere um cenário diferente, onde executamos o comando license() seguido do comando citation() (que mostra como deve ser feita a citação da Linguagem R). Conforme os comandos forem sendo passados, o console vai sendo preenchido com estes comandos e suas respectivas saídas. A medida que a tela vai ficando "cheia" os dados exibidos no topo vão "sumindo" para dar lugar aos mais recentes, na parte inferior.

Buscando Comandos Anteriores

Para buscar comandos executados anteriormente, pode-se usar a seta para cima do teclado. Os comandos vão sendo apresentados do mais recente ao mais antigo.

1.1.2 Erros

Sempre que ocorrer algum erro na execução de um comando será exibida no console uma mensagem com o termo **Error**. Muitas vezes a mensagem de erro auxilia na identificação da causa do erro reportado. Abaixo um exemplo com erro retornado pelo R após a tentativa de execução de uma função inexistente (erro na digitação do comando).

```
citatin()
```

Error in citatin(): não foi possível encontrar a função "citatin"

1.2 Objetos

R opera sobre entidades que são conhecidas como **objetos** (R Core Team 2023a, cap 3). Existem diversos tipos de objetos em R como listas, matrizes, bases de dados, séries temporais, gráficos, modelos, etc. Neste capítulo inicial serão utilizados os **vetores**, pois são as estruturas mais básicas.

```
R version 4.3.0 (2023-04-21 ucrt) -- "Already Tomorrow"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors. Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> license()
This software is distributed under the terms of the GNU General
Public License, either Version 2, June 1991 or Version 3, June 2007.
The terms of version 2 of the license are in a file called COPYING
which you should have received with
this software and which can be displayed by RShowDoc("COPYING").
Version 3 of the license can be displayed by RShowDoc("GPL-3").
Copies of both versions 2 and 3 of the license can be found
at https://www.R-project.org/Licenses/.
A small number of files (the API header files listed in
R_DOC_DIR/COPYRIGHTS) are distributed under the
LESSER GNU GENERAL PUBLIC LICENSE, version 2.1 or later.
This can be displayed by RShowDoc("LGPL-2.1"),
or obtained at the URI given.
Version 3 of the license can be displayed by RShowDoc("LGPL-3").
'Share and Enjoy.'
```

Figura 1.2: Tela Inicial - Licença

```
R version 4.3.0 (2023-04-21 ucrt) -- "Already Tomorrow"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> license()
This software is distributed under the terms of the GNU General
Public License, either Version 2, June 1991 or Version 3, June 2007.
The terms of version 2 of the license are in a file called COPYING
which you should have received with
this software and which can be displayed by RShowDoc("COPYING").
Version 3 of the license can be displayed by RShowDoc("GPL-3").
Copies of both versions 2 and 3 of the license can be found
at https://www.R-project.org/Licenses/.
A small number of files (the API header files listed in
R_DOC_DIR/COPYRIGHTS) are distributed under the
LESSER GNU GENERAL PUBLIC LICENSE, version 2.1 or later.
This can be displayed by RShowDoc("LGPL-2.1"),
or obtained at the URI given.
Version 3 of the license can be displayed by RShowDoc("LGPL-3").
'Share and Enjoy.'
> q()|
```

Figura 1.3: Tela Inicial - Quit (sair)

```
This software is distributed under the terms of the GNU General Public License, either Version 2, June 1991 or Version 3, June 2007.
The terms of version 2 of the license are in a file called COPYING
which you should have received with
this software and which can be displayed by RShowDoc("COPYING"). Version 3 of the license can be displayed by RShowDoc("GPL-3").
Copies of both versions 2 and 3 of the license can be found
at https://www.R-project.org/Licenses/.
A small number of files (the API header files listed in R_DOC_DIR/COPYRIGHTS) are distributed under the LESSER GNU GENERAL PUBLIC LICENSE, version 2.1 or later. This can be displayed by RShowDoc("LGPL-2.1"),
or obtained at the URI given.
Version 3 of the license can be displayed by RShowDoc("LGPL-3").
'Share and Enjoy.'
> citation()
To cite R in publications use:
   R Core Team (2023). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. <a href="https://www.R-project.org/">https://www.R-project.org/</a>.
A BibTeX entry for LaTeX users is
   @Manual{,
      radiual,,

title = {R: A Language and Environment for Statistical Computing},

author = {{R Core Team}},

organization = {R Foundation for Statistical Computing},
      address = {Vienna, Austria},
      year = {2023},
url = {https://www.R-project.org/},
We have invested a lot of time and effort in creating R, please cite it when using it for data analysis.
See also 'citation("pkgname")' for citing R packages.
```

Figura 1.4: Tela Inicial - Atualização do Console

Variáveis

Tipo

logical integer

double

raw

complex

character

Muitas vezes objetos em R são chamados de **variáveis**, no sentido de que variáveis armazenam dados. Isto ocorre principalmente para objetos que armazenam um único valor, como um único número ou texto.

1.2.1 Vetores (Atômicos)

Vetores são entidades que armazenam dados em posições (R Core Team 2023b, cap 2). Os vetores são ditos **atômicos**, pois seus dados são todos do mesmo tipo. Você pode pensar em um vetor como uma "local" onde serão armazenados dados. Os vetores podem ser de um dos 6 tipos abaixo:

Descrição Exemplo
valor lógico TRUE, FALSE

1 1.5

1i

'R é software livre.'

Tabela 1.1: Tipos de Vetores

1.3 Criação de Objetos

número inteiro

texto (strings)

bytes

número complexo

número com ponto flutuante (real)

Para criação de objetos no R são usados os operadores de atribuição, <- e =. O operador mais usado é o <-. Assim para criação de um objeto do tipo vetor, pode ser usado o código abaixo, onde o objeto1 receberá o valor 10.

```
objeto1 <- 10
```

Para criação de variáveis do tipo texto, devem ser usadas aspas, simples ou duplas. Aqui o **objeto2** foi criado com uso de aspas ao início e ao final de **texto** para que o R trate o valor como *character*. Caso Não sejam colocadas as aspas, o R entenderá que texto é o nome de um objeto.

```
objeto2 = 'texto'
```

Você pode ver o conteúdo de um objeto informando seu nome no console seguido de **EN-TER**.

```
objeto1
[1] 10
objeto2
[1] "texto"
```

1.4 Operações com Objetos

Objetos podem ser atualizados/alterados, novamente, com o operador <-. No exemplo abaixo vamos criar um vetor de nome **objeto3** com o operador :, que cria sequências de valores. Na sequência o **objeto3** será atualizado recebendo seu próprio conteúdo acrescido do valor 10.

```
objeto3 <- 1:5
objeto3

[1] 1 2 3 4 5

objeto3 <- objeto3 + 10
objeto3

[1] 11 12 13 14 15</pre>
```

O vetor objeto3 foi criado com 5 posições, armazenando os valores de 1 a 5. Podemos acessar, por exemplo a terceira posição do vetor, através do operador de extração [em combinação com o índice do vetor. Abaixo operação apra retornar o valor da posição 4 do objeto3.

```
objeto3[4]
```

Podemos também operar sobre este valor, por exemplo, adicionando 10 ao valor da quarta posicao do objeto3.

```
objeto3[4] + 10
```

Note que sem o operador de atribuição o valor da posição 4 do objeto3 não é atualizada, apenas exibida no console. Para atualizar seu valor usamos:

```
objeto3

[1] 11 12 13 14 15

objeto3[4] <- objeto3[4] + 10
objeto3

[1] 11 12 13 24 15
```

1.4.1 Coerção

Quando vetores recebem dados de um tipo diferente o R tenta fazer uma operação de **co-erção**, transformando os valores a fim de "atender" a todos. Nem sempre esta operação é possível e ela muitas vezes altera o vetor original. No exemplo abaixo o valor da posição 1 do vetor será atualizado para receber a letra **A**. Como o vetor originalmente era do tipo **integer**, o R fará a conversão dos valores para tipo **character**. Desta forma operações matemáticas não serão mais possíveis sobre este vetor.

```
objeto3[1] <- 'A'
objeto3

[1] "A" "12" "13" "24" "15"
objeto3 + 10
```

Error in objeto3 + 10: argumento não-numérico para operador binário

1.5 Usando Funções

O coração da linguagém R são suas funções. Através delas são feitas as mais diversas operações sobre os objetos. Basicamente funções devem ser usadas através de seus nomes e com os argumentos dentro de parênteses: funcao(argumento1, argumento2, ...).

Por exemplo, a função typeof exige a informação de um argumento (um objeto do R). O R processa esta função e devolve seu retorno, no caso qual o tipo do **objeto1**.

```
typeof(objeto1)
[1] "double"
```

A função is.vector, por sua vez, testa se um objeto é um vetor e retorna um valor lógico como resposta do teste, TRUE ou FALSE.

```
is.vector(5)
[1] TRUE
```

O valor armazenado em um objeto pode ser visualizado com a função print.

```
print(objeto1)
[1] 10
```

1.5.1 Argumentos de Funções

As funções em R podem ter diversos argumentos e muitas vezes estes argumentos possuem valores definidos por padrão. Assim caso o usuário não informe nenhum valor para os argumentos da função esta usará os valores previamente definidos em seu código.

Importante notar que os argumento possuem nomes e estes nomes podem ser omitidos na chamada da função. Voltemos a função typeof, ela possui apenas um argumento de nome **x**. Inserindo o argumento na função de forma explícita se obtém mesmo resultado anterior.

```
typeof(x = objeto1)
[1] "double"
```

Nos casos de omissão do nome dos argumentos, estes receberão os valores informados de acordo com a ordem presente no código. Por exemplo a função rep.int retorna os valores indicados no argumento **x** n (argumento **times**) vezes.

```
rep.int(5, 4)

[1] 5 5 5 5

rep.int(x = 5, times = 4)

[1] 5 5 5 5
```

Perceba que os argumentos podem ser informados em ordem diversa, entretanto devem ser atribuidos de forma explícita. Veja que rep.int(times = 4, x = 5) é diferente de rep.int(4, 5).

```
rep.int(times = 4, x = 5)

[1] 5 5 5 5

rep.int(4, 5)
```

i Nota

[1] 4 4 4 4 4

Algumas funções não possuem argumentos e "apenas" executam seu código, não exigindo interação de entrada por parte do usuário, como por exemplo as funções Sys.Date() e Sys.time(), que retornam a data e data e hora respectivamente.

1.5.2 Armazenando Retorno

Até aqui as funções foram usadas de forma que seus retornos foram apenas exibidos no console. Para que o valor retornado por uma função seja armazenado em um objeto se faz o uso do operador de atribuição.

```
tipo_objeto1 <- typeof(objeto1)
print(tipo_objeto1)

[1] "double"</pre>
```

Agora o objeto **tipo_objeto1** armazena o valor "double" que foi retornado pelo função typeof. Veja que a função is.double que testa se o objeto é double retorna FALSE, pois o objeto **tipo_objeto1** recebeu um valor em formato texto. Dentro deste texto está contida a palavra double, mas isto não significa que o tipo do vetor **tipo_objeto1** passou a ser double. Cuidado para não confundir o tipo do objeto com seu conteúdo.

```
is.double(tipo_objeto1)

[1] FALSE

   typeof(tipo_objeto1)

[1] "character"

   is.character(tipo_objeto1)

[1] TRUE
```

1.6 Exibindo Objetos

O R possui a função 1s que exibe os objetos existentes no ambiente. Veja que a função 1s possui valores padrão em seus argumentos, assim ela pode ser processada apenas com a digitação do código 1s(). Mais detalhes em Funções.

```
ls()
[1] "objeto1" "objeto2" "objeto3" "tipo_objeto1"
```

1.7 Remoção de Objetos

Objetos podem ser removidos (excluídos) com a função rm.

1.8 Iniciando o R...Studio

R é uma linguagem de programação e não está focada em oferecer uma interface sofisticada de interação com o usuário. Este papel fica por conta de outras ferramentas, como o **RStudio**, o **IDE** mais usado para a linguagem. Na prática "ninguém" usa o R puro para desenvolver seus projetos.

Desta forma usaremos o RStudio como ferramenta de desenvolvimento, pois ela irá nos fornecer muitas funcionalidades como preenchimento de código (*code completion*), janelas para instalar pacotes, janelas com arquivos de scripts, navegação por pastas, visualização e exportação de gráfico e claro comunicação direta com o R.

Ao longo deste livro serão usadas diversas funcionalidades do RStudio. Porém o foco será sempre no conteúdo, pois o detalhamento das principais funcionalidades do RStudio é tratada em seção específica.

Figura 1.5: Tela Inicial do RStudio

Neste capítulo focaremos no painel **Console**, que "abriga" o R e no **Source**, que permite utilização de scripts.

Figura 1.6: Aba Console

i Outros IDE's

Além do RStudio existem outras ferramentas para utilização em conjunto com R, entre elas: Jupyter, VS Code e RKWard.

1.9 Trabalhando com Scripts

Scripts são arquivos de texto que recebem códigos e conforme desejo do usuário são enviados ao console para execução. Na prática usar o console diretamente é útil para pequenas operações. No Rstudio você pode criar um script em File > New File > R Script. O arquivo de script será aberto no painel **Source**.

Para executar comandos de um arquivo de script você pode usar atalhos de teclado (Ctrl + Enter) ou através do botão Run no topo superior direito da aba Source. Ambas opções executam ou a linha corrente ou a parte do texto selecionada.

```
Intitled**

| Source on Save | Source | Sour
```

Figura 1.7: Aba Source

Figura 1.8: Script - Painel Source

Figura 1.9: Source - Botão Run

Figura 1.10: Script - Código a Processar

Figura 1.11: Console - Resultado

1.9.1 Comentários

R aceita comentários em seu código através do caractere sustenido (hashtag), '#'. Comentários são muito importantes para facilitar a leitura do código posteriormente. Uma forma interessante de organizar o seu código é criar uma linha de comentário para separação de etapas de processamento. Perceba que as linhas de comentários foram passadas para o console e este não emitiu nenhuma mensagem, tampouco efetuou qualquer operação.

Porquê...

Em operações mais complexas procure colocar comentários que expliquem os motivos de se executar alguma operação e não o que o código está fazendo. Foque no 'porquê' de cada operação e não no 'o que'.

Última atualização: 08/09/2023 - 22:32:37

2 Nomeando Objetos

Status □□□

2.1 Regras

A linguagem R aceita muitas possibilidades para nomeação de objetos. Inclusive podem ser criados objetos com espaços em seus nomes e até mesmo com caracteres especiais (desde que entre aspas ou crases).

```
x <- 10
.x <- 10
`nome com espaco` <- 55
'teste 1' <- 2</pre>
```

Nomes Significativos

Escolha nomes intuitivos e que facilitem a identificação do conteúdo armazenado nos objetos.

Um objeto criado através do uso de aspas ou crases tem seu conteúdo acessado quando "chamado" com crases (*backticks*). Aspas são entendidas como sinalização para strings e assim não retornam o conteúdo do objeto e sim a própria string informada.

```
'teste 1' # retorna como string

[1] "teste 1"

`teste 1` # Exibe conteúdo do objeto

[1] 2
```

2.1.1 Primeiro Caractere

Existem algumas regras para iniciar o nome dos objetos. Alguns caracteres "especiais" não podem ser usados, bem como os números.

Perceba que números podem ser usados nos nomes, desde que o primeiro caractere seja 'válido'. Mas o mesmo não ocorre com caracteres "especiais".

```
x55x <- 888
x55x

[1] 888

x$ <- 10

Error: <text>:1:4: unexpected assignment
1: x$ <-</pre>
```

Uma alternativa se dá mais uma vez com o uso de aspas ou crases. Com elas é possível 'burlar' estas limitações.

```
`teste @!&` <- 123456
`teste @!&`
```

[1] 123456

```
'55 teste @!&' <- 10

`55 teste @!&`

[1] 10
```

Apesar de possível, objetos com nomes mais complicados como os exemplificados acabam tornando a vida do programador um pouco mais difícil. Em geral, evite caracteres caracteres especiais e espaços nos nomes. Caso algum dado (bases de dados) seja carregado de arquivo externo com este tipo de caracteres, faça a uniformização dos nomes o quanto antes.

2.1.1.1 Objetos "Ocultos"

Objetos podem ser criados com "." no início de seus nomes desde que o segundo carctere seja uma letra. Estes são objetos "ocultos" e portanto não aparecem em um comando 1s "puro", por exemplo. Tampouco são exibidos na aba Environment do RStudio. Para visualizálos através da função 1s deve ser usado o parâmetro all.names = T.

2.1.2 Case Sensitive

R é uma linguagem *case sensitive*, ou seja, ela diferencia maiúsculas de minúsculas. Assim um objeto com nome de Teste é diferente teste, tesTe, TESTE...

```
teste <- 10
Teste <- 15
tesTe <- 20
```

```
TESTE <- 25
ls()
```

[1]	"55 teste @!&"	"nome com espaco"	"teste"	"tesTe"
[5]	"Teste"	"TESTE"	"teste @!&"	"teste 1"
[9]	"x"	"x55x"		

Campos de Tabelas

Campos (variáveis) de dados tabulados, como planilhas de Excel, seguem as mesmas regras. Este tipo de dado será tratado no capítulo sobre data frames.

2.2 Resumo

Tabela 2.1: Resumo das Regras para Nomes

Caracteres	Regra	Exceção	Exemplo
Letras	Permitido		objeto variavel
Números	Permitido, após primeiro caractere	Iniciado com '.'	objeto1 1objeto .1objeto
Espaços	Não permitido	Permitido com uso de aspas ou crases	teste 1 'teste 2' '2 teste'
Caracteres especiais	Não permitido	Permitido com uso de aspas ou crases	#teste '# teste' 't #\$\$%'
Ponto '.'	Uso livre inclusive no início		objeto.2 .objeto.2

2.3 Convenções

Conforme o seu código em R (e de outra linguagem qualquer) for crescendo você perceberá rapidamente a necessidade de identificar de forma intuitiva os objetos criados. Assim, é muito

interessante a utilização de alguma convenção para facilitar sua vida. Existem diversas delas, como camelCase, snake_case, SCREAMING_SNAKE_CASE, PascalCase, etc.

```
# camelCase
objetoTeste <- 'Teste camelCase'

# snake_case
objeto_teste <- 'Teste snake_case'</pre>
```

Um bom guia é o The tidyverse style guide. Tenha sempre em mente que sue código deve ser lido com facilidade no futuro e muitas vezes por outros usuários.

Neste material os nomes de objetos e derivados seguirão a tabela abaixo. Estas definições foram escolhidas a fim de uniformizar o conteúdo apresentado e se baseiam em experiência de uso e no **Tidyverse Style Guide**. Mais detalhes em **Convenções**.

Tipo Objeto	Convenção	Exemplo
Data.frame, tibble ou data.table	snake_case iniciado por df (d ata f rame)	df_clientes
Variáveis de datasets Funções	SCREAMING_SNAKE_CASE camelCase iniciado por fn , sendo a primeira palavra após fn um verbo	df_clientes\$NOME_CLIENTE fnBuscarClientes
Demais (vetores, listas, etc.)	snake_case	nomes_cidades

Evite usar "." em nome de objetos, pois através do **ponto** o R acessa funções (métodos) de acordo com a classe do objeto. Usar o ponto pode causar certa confusão. Mais detalhes Funções.

Grolemund (2014)

R Core Team (2023a)

Wikipedia (2023)

Última atualização: 16/08/2023 - 20:32:17

3 Vetores

Status □□□

3.1 Introdução

Vetores são o tipo de estrutura de dados mais básica no R. Os vetores podem ser criados de diversas formas. Serão criados dois vetores uma com a função seq, que cria uma sequência de acordo com os parâmetros informados, e com o operador :.

```
vetor_1 <- seq(1, 10)
vetor_2 <- 1:10</pre>
```

Podemos testar se dois objetos são idênticos com a função identical.

```
identical(vetor_1, vetor_2)
[1] TRUE
```

Uma outra função muito útil para avaliar um objeto é a função str, que exibe a estrutura do objeto.

```
str(vetor_1)

int [1:10] 1 2 3 4 5 6 7 8 9 10

str(vetor_2)

int [1:10] 1 2 3 4 5 6 7 8 9 10
```

3.2 Selecionando Elementos

Podemos selecionar elementos de **vetores** com os operadores [e [[. A diferença principal é que o primeiro pode selecionar diversos elementos, enquanto o segundo apenas um.

```
vetor_1[5]

[1] 5
    vetor_1[[5]]

[1] 5
    vetor_2[5:6]

[1] 5 6
    vetor_2[[5:6]]

Error in vetor_2[[5:6]]: attempt to select more than one element in vectorIndex
```

3.3 Nomeando Componentes

Os componentes de vetores podem ser nomeados com a função names e posteriormente acessados pelo seu nome.

Usando a função str podemos ver que agora o vetor possui **atributos**, neste caso nomes. Como foram inseridos apenas nomes para os primeiros dois elementos os demais possuem valor NA.

```
Str(vetor_1)

Named int [1:10] 1 2 3 4 5 6 7 8 9 10
- attr(*, "names") = chr [1:10] "componente_1" "componente_2" NA NA ...

attributes(vetor_1)

$names
[1] "componente_1" "componente_2" NA NA NA NA NA NA
[6] NA NA NA NA NA NA NA
```

3.4 Testando

Podemos testar se um objeto é um vetor com a função is.vector.

```
is.vector(vetor_1)
[1] TRUE
```

R Core Team (2023a)

Última atualização: 30/08/2023 - 20:05:14

4 Tipos de Dados

Status □□□

4.1 Lógico (Logical)

Dados do tipo lógico podem assumir basicamente dois valores, verdadeiro (TRUE) e falso (FALSE). Estes valores podem ser abreviados por T e F, respectivamente.

```
is.logical(TRUE)

[1] TRUE

is.logical(FALSE)

[1] TRUE

typeof(T)

[1] "logical"

typeof(F)

[1] "logical"

is.logical(1)

[1] FALSE
```

```
is.logical(0)
```

[1] FALSE

Testes lógicos retornam valores lógicos.

```
is.logical(5 > 5)

[1] TRUE

typeof(10 < 9)

[1] "logical"</pre>
```

TRUE e FALSE são palavras reservadas, portanto não podem ser usadas como objetos.

```
TRUE <- 10
```

Error in TRUE <- 10: lado esquerdo da atribuição inválida (do_set)

4.1.1 Valores Faltantes (NA)

Em R a constante NA (*Not Available*) é usada para expressar valores faltantes. O NA é do tipo lógico, mas pode ser atribuído a vetores de outros tipos (exceto *raw*) através de coerção.

```
typeof(NA)
[1] "logical"
  is.na(NA)
```

```
vetor_1 <- c(1:5, NA, 6:10)
vetor_1

[1] 1 2 3 4 5 NA 6 7 8 9 10

typeof(vetor_1)

[1] "integer"</pre>
```

Os valores faltantes são muito importantes na análise de dados, pois podem influenciar cálculos e transformações. Até mesmo operações aritméticas básicas são influenciadas pelo valores faltantes.

```
1 + 5 + NA
[1] NA
```

Funções também são influenciadas pela presença dos dados faltantes. A função \max , por exemplo, que retorna o maior valor dentre os informados, retorna NA se este estiver presente.

```
max(vetor_1)
[1] NA
```

4.2 Inteiros (Integer)

Números inteiros são do tipo integer e devem ser criados com a letra **L** ao seu lado. Sem este indicador, por padrão, o R entende o número como do tipo double.

```
typeof(1L)
[1] "integer"
```

```
typeof(1)
[1] "double"
Para testar se um número é do tipo inteiro pode-se utiliazr a função is.integer.
   is.integer(1)
[1] FALSE
Para transformar um valor para inteiro usa-se a função as.integer.
   is.integer(as.integer(1))
[1] TRUE
```

4.3 Ponto Flutuante (*Double*)

as.integer(1.99)

De forma grosseira, doubles são valores numéricos com decimais.

```
is.double(1)
[1] TRUE
```

[1] 1

4.3.1 Not a Number (NaN)

Valores NaN ('não um número') são valores de tipo **double**. Valores NaN impactam operações lógicas e matemáticas.

```
typeof(NaN)
[1] "double"
```

```
NaN > 10

[1] NA

NaN * 10

[1] NaN

10/NaN

[1] NaN

5 + NaN
```

4.3.2 Inf e -Inf

No R os valores **Inf** e **-Inf** representam infinito e infinito negativo, respectivamente. Estes valores impactam cálculos.

```
is.infinite(Inf)

[1] TRUE

5 + Inf

[1] Inf

Inf + Inf
[1] Inf
```

```
-Inf * -1
[1] Inf
  Inf - Inf
[1] NaN
Mas operações lógicas seguem o 'senso comum'.
  Inf > 10
[1] TRUE
  Inf > -Inf
[1] TRUE
  Inf == Inf
[1] TRUE
Valores infinitos podem ser gerados se muito grandes ou por valores divididos por zeros.
  10^308
[1] 1e+308
  10^309
[1] Inf
  10/0
[1] Inf
```

```
-10/0

[1] -Inf

Mas veja que zero dividido por zero é NaN.

0/0

[1] NaN

0/Inf

[1] 0

4.4 Fatores (Factor)
```

Última atualização: 07/09/2023 - 21:07:52

5 Ambientes

Status □□□

5.1 Global Env

O **Global Env** é o ambiente "atual" do usuário. É nele que ficam armazenados por padrão os objetos e as funções criadas pelos usuários por exemplo. Ele pode ser "visualizado" com os comandos abaixo:

```
globalenv()
<environment: R_GlobalEnv>
    .GlobalEnv
<environment: R_GlobalEnv>
```

Os objetos presentes no ambiente desejado podem ser visualizados com a função 1s.

```
variavel <- 5
ls(globalenv())

[1] "variavel"

ls()

[1] "variavel"</pre>
```

5.2 Ambiente de Pacotes

Os pacotes também possuem ambientes e podemos listar seu "conteúdo" com a função 1s. Abaixo usando ls para mostrar os 10 primeiros elementos presentes no ambiente do pacote data.table.

```
library(data.table)
  as.environment("package:data.table")
<environment: package:data.table>
attr(,"name")
[1] "package:data.table"
attr(,"path")
[1] "C:/Users/luisg/AppData/Local/R/win-library/4.3/data.table"
  ls(as.environment('package:data.table'))[1:10]
 [1] "%between%"
                     "%chin%"
                                     "%flike%"
                                                      "%ilike%"
 [5] "%inrange%"
                     "%like%"
                                     ":="
                                                      "address"
                     "as.data.table"
 [9] "alloc.col"
```

5.3 Ambientes "Pai"

Cada ambiente possui um ambiente de nível superior associado, com exceção do **R_EmptyEnv**.

```
# Ambiente superior ao GlobalEnv
parent.env(.GlobalEnv)

<environment: package:data.table>
attr(,"name")
[1] "package:data.table"
attr(,"path")
[1] "C:/Users/luisg/AppData/Local/R/win-library/4.3/data.table"
```

```
# Ambiente superior ao do apcote stats e base
  parent.env(as.environment("package:stats"))

<environment: package:graphics>
attr(,"name")
[1] "package:graphics"
attr(,"path")
[1] "C:/Program Files/R/R-4.3.0/library/graphics"

  parent.env(as.environment("package:base"))

<environment: R_EmptyEnv>
```

5.4 Criando Ambientes

Em R é possível que se faça a criação de novos ambientes.

```
amb1 <- new.env()
amb1

<environment: 0x00000018a6b107780>

parent.env(amb1)

<environment: R_GlobalEnv>
```

Objetos criados dentro de um ambiente podem ser acessados através do operador \$ após o nome do ambiente. Também é possível utilizar a função 1s com o nome do ambiente desejado para que sejam listados seus objetos.

```
# Objeto x do amb1
amb1$x <- 10
amb1$y <- 99
# Objeto x do GlobalEnv</pre>
```

```
x <- 15
x

[1] 15
amb1$x

[1] 10
ls(amb1)

[1] "x" "y"
amb1$x * amb1$y

[1] 990
```

Grolemund (2014)

Dowle e Srinivasan (2023)

Mastropietro (2019)

Última atualização: 27/08/2023 - 23:43:16

6 Operações Lógicas

Status □□□

A linguagem R oferece uma série de operadores para utilização em testes lógicos.

6.1 Operadores Relacionais

Operador	Função
>	Maior que
<	Menor que
>=	Maior ou igual a
<=	Menor ou igual a
==	Igual a
!=	Diferente de

5 > 6

[1] FALSE

5 <= 6

[1] TRUE

5 == 6

[1] FALSE

5 l = 6

[1] TRUE

6.2 Operadores Lógicos

Operador	Função
!	Negação
&	E
	Ou
xor	Ou exclusivo
isTRUE	Testa se verdadeiro
isFALSE	Testa se falso

```
!FALSE
[1] TRUE
  !TRUE
[1] FALSE
  5 > 6
[1] FALSE
  !5 > 6
[1] TRUE
  isTRUE(5 > 6)
[1] FALSE
  isFALSE(5 > 6)
[1] TRUE
```

6.2.1 Ou Exclusivo (Xor)

O operador xor fornece saída verdadeira quando apenas um dos valores for verdadeiro.

```
# Falso XOR Falso = Falso
xor(5 > 6, 6 > 9)

[1] FALSE

# Verdadeiro XOR Verdadeiro = Falso
xor(5 > 4, 6 > 5)

[1] FALSE

# Verdadeiro XOR Falso = Verdadeiro
xor(5 > 4, 6 > 9)

[1] TRUE

# Falso XOR Verdadeiro = Falso
xor(5 > 6, 6 > 5)
```

6.3 Precedência

[1] TRUE

Na utilização de testes lógicos é importante observar a ordem (precedência) de aplicação dos operadores. O uso de parênteses altera a o escopo de aplicação dos operadores.

Tabela 6.3: Precedência de Operadores

Ordem	Operador
1	<, >, <=, >=, ==, !=
2	!
3	&

Ordem	Operador
4	1

Abaixo alguns testes.

```
# Falso E Falso = Falso 
5 > 6 & 4 > 5
```

[1] FALSE

```
# Verdadeiro E Verdadeiro = Verdadeiro
!5 > 6 & !4 > 5
```

[1] TRUE

```
# Verdadeiro E Falso = Falso
!5 > 6 & 4 > 5
```

[1] FALSE

```
# Negação de(Falso E Falso) = Verdadeiro
!(5 > 6 & 4 > 5)
```

[1] TRUE

```
# Falso OU Falso = Falso
5 > 6 | 4 > 5
```

[1] FALSE

```
# Verdadeiro OU Verdadeiro = Verdadeiro
!5 > 6 | !4 > 5
```

[1] TRUE

```
# Verdadeiro OU Falso = Verdadeiro
!5 > 6 | 4 > 5

[1] TRUE

# Negação de (Falso OU Falso) = Verdadeiro
!(5 > 6 | 4 > 5)
[1] TRUE
```

6.4 All e any

As funções all e any testam se vetores possuem valores TRUE, todos ou pelo menos 1, respectivamente.

```
vetor_logico <- c(T, T, T)
all(vetor_logico)

[1] TRUE

any(vetor_logico)

[1] TRUE

Apenas valores FALSE:

vetor_logico <- c(F, F, F)
all(vetor_logico)

[1] FALSE

any(vetor_logico)</pre>
```

[1] FALSE

Vetor com apenas 1 valor TRUE.

```
vetor_logico <- c(T, F, F, F)
all(vetor_logico)

[1] FALSE
any(vetor_logico)</pre>
```

Vetor com todos os valores falsos (FALSE).

```
vetor_logico <- c(F, F, F, F)
all(vetor_logico)

[1] FALSE
any(vetor_logico)</pre>
```

[1] FALSE

[1] TRUE

Note que a presença de valores NA altera completamente o retorno da função all, mas não da função any.

```
vetor_logico <- c(T, F, T, NA)
all(vetor_logico)

[1] FALSE
any(vetor_logico)</pre>
```

[1] TRUE

Isto ocorre, pois a função any só retorna NA se existirem valores NA e FALSE no vetor.

```
vetor_logico <- c(F, NA, NA, NA)
any(vetor_logico)

[1] NA

vetor_logico <- c(NA, NA, NA, NA)
any(vetor_logico)

[1] NA</pre>
```

Ambas as funções aceitam o parâmetro na.rm, que remove no valores NA antes de fazer a avalição.

```
vetor_logico <- c(T, T, T, NA)
all(vetor_logico, na.rm = T)

[1] TRUE

any(vetor_logico, na.rm = T)

[1] TRUE</pre>
```

Com presença de valores falsos;

```
vetor_logico <- c(T, F, F, NA)
all(vetor_logico, na.rm = T)</pre>
```

[1] FALSE

```
any(vetor_logico, na.rm = T)
```

[1] TRUE

Equivalente a:

```
vetor_logico <- c(T, F, F)
all(vetor_logico, na.rm = T)

[1] FALSE

any(vetor_logico, na.rm = T)

[1] TRUE</pre>
```

6.5 Operador %in%

O operador binário %in% efetua teste de presença do objeto da esquerda (*left hand side*) no da direita (*right hand side*).

```
x <- c(1, 2, 3, 4)
y <- c(3, 4, 5)

x %in% y

[1] FALSE FALSE TRUE TRUE

y %in% x</pre>
```

[1] TRUE TRUE FALSE

Veja que o retorno é dado pelo tamanho do objeto da esquerda. Assim $x \in x$ ún y é uma operação completamente diferente de $y \in x$.

R Core Team (2023c)

Última atualização: 28/08/2023 - 21:31:07

7 Listas

Status □□□

7.1 Introdução

Listas são objetos que armazenam outros objetos, podendo ser de variados tipos.

7.2 Criando Listas

Abaixo um exemplo de criação de **lista** através da função list. Os seus componentes serão um data frame, um vetor de números de 1 até 10 e um vetor com as letras do alfabeto.

```
lista_1 <- list(mtcars, 1:10, letters)</pre>
```

7.3 Acessando Componentes

Para acessar os elementos das listas pode-se usar o operador [[...]].

```
class(lista_1[[1]])
[1] "data.frame"
```

Deve-se tomar cuidado ao usar o operador [], pois este operador é genérico e não retorna o componente 1 da lista em sua "forma" original e sim de uma lista contendo o objeto da lista original. Desta forma, não é possível fazer extração de objetos do vetor retornado.

```
class(lista_1[1])
[1] "list"
```

```
lista_1[2][5]
[[1]]
NULL
```

Usando [[...]] o objeto retornado mantém sua forma original e a extração ocorre normalmente

```
class(lista_1[[2]])
[1] "integer"
  lista_1[[2]][5]
[1] 5
```

7.4 Nomeando Componentes

Os componentes das listas podem ser nomeados com a função names.

```
names(lista_1) <- c('df_mtcars', 'vetor', 'letras')
lista_1$letras

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"

identical(lista_1$letras, lista_1[[3]])

[1] TRUE

identical(lista_1$letras, lista_1[['letras']])</pre>
[1] TRUE
```

7.4.1 Nomes Abreviados

Para acessar componentes de listas nomeadas é possível informar seus nomes de forma abreviada.

```
lista_1$le

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" [20] "t" "u" "v" "w" "x" "y" "z"

#equivalente a lista_1$letras

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" [20] "t" "u" "v" "w" "x" "y" "z"
```

Veja que a abreviação deve identificar de forma exclusiva os componentes, caso contrário o valor retornado é NULL. A **lista_3** possui dois componentes que começam com 'le' e assim não é possível fazer a seleção.

```
lista_3 <- list(letras = letters[1:10], letras_maiusculas = LETTERS[1:10])
lista_3$le</pre>
```

NULL

R Core Team (2023a)

Última atualização: 29/08/2023 - 20:37:02

8 Data Frames

Status □□□

8.1 O que são data frames ?

Conforme o R Core Team (2023b), **data frame** é a estrutura que imita de forma mais próxima um dataset do **SAS** ou **SPSS**. De forma resumida um **data frame** é uma estrutura tabular com colunas (variáveis, atributos, etc) e linhas (registros, casos, observações, instâncias, etc). Diferente de uma matriz um **data frame** pode ter diferentes tipos de dados em suas colunas.

Um data frame possui todas as colunas com o mesmo tamanho (quantidade de regitros). A classe de um objeto data frame possui o nome data.frame. Abaixo pode ser visualizada a classe do data frame iris (muito usado em exemplos em Ciência de Dados) e também as primeiras linhas com o comando head.

```
class(iris)
[1] "data.frame"
  head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
                                                 0.2 setosa
           5.1
                       3.5
                                    1.4
1
2
           4.9
                       3.0
                                    1.4
                                                 0.2 setosa
                       3.2
3
           4.7
                                    1.3
                                                 0.2 setosa
           4.6
                       3.1
                                    1.5
                                                 0.2 setosa
                       3.6
                                                 0.2 setosa
5
           5.0
                                    1.4
           5.4
                       3.9
                                    1.7
                                                 0.4 setosa
```

Um data frame é na verdade uma lista, assim as operações efetuadas em listas possuem equivalência em data frames.

```
typeof(iris)
[1] "list"
```

8.1.1 Criando Data Frames

Objetos da classe data.frame podem ser criados com a função data.frame.

Aqui serão usadas as convenções de nomes conforme capítulos Nomeando Objetos e Convenções.

```
df_exemplo <- data.frame(
    VAR_A = c(1:5),
    VAR_B = c(101:105)
)
df_exemplo

VAR_A VAR_B
1    1    101
2    2    102
3    3    103
4    4    104
5    5    105</pre>
```

8.1.2 Aplicar convenções de nomes

Para continuar os próximos tópicos vamos trabalhar com um **data frame** (**df_iris**) criado a partir do **data frame iris**. Faremos ajustes nos nomes deste data frame.

```
# criar data frame df_iris
df_iris <- iris
# mudar nomes para maiusculas
names(df_iris) <- toupper(names(df_iris))
# substituir '.' por '_'
names(df_iris) <- gsub(names(df_iris), pattern = "\\.", replacement = "_")
class(df_iris)

[1] "data.frame"</pre>
```

head(df_iris)

```
SEPAL_LENGTH SEPAL_WIDTH PETAL_LENGTH PETAL_WIDTH SPECIES
                                                 0.2
           5.1
                       3.5
                                     1.4
1
                                                      setosa
2
           4.9
                       3.0
                                     1.4
                                                 0.2
                                                      setosa
3
           4.7
                       3.2
                                     1.3
                                                 0.2
                                                      setosa
4
           4.6
                       3.1
                                     1.5
                                                 0.2 setosa
5
           5.0
                       3.6
                                     1.4
                                                 0.2 setosa
           5.4
                       3.9
                                     1.7
                                                 0.4 setosa
```

8.2 Atributos

Os atributos "padrão" de um **data frame** são: names, class e row.names. É possível acessálos com a função attributes. O atributo names também pode ser obtido com a função names.

```
attributes(df_iris)
```

\$names

[1] "SEPAL_LENGTH" "SEPAL_WIDTH" "PETAL_LENGTH" "PETAL_WIDTH" "SPECIES"

\$class

[1] "data.frame"

\$row.names

```
[1]
            2
                                  7
                                      8
                                              10
                                                      12
        1
                 3
                         5
                             6
                                          9
                                                  11
                                                           13
                                                               14
                                                                   15
                                                                        16
                                                                            17
                                                                                18
 [19]
       19
           20
               21
                    22
                        23
                            24
                                 25
                                     26
                                         27
                                              28
                                                  29
                                                       30
                                                           31
                                                               32
                                                                   33
                                                                        34
                                                                            35
                                                                                36
 [37]
       37
           38
               39
                    40
                        41
                            42
                                 43
                                     44
                                         45
                                              46
                                                  47
                                                       48
                                                           49
                                                               50
                                                                   51
                                                                        52
                                                                            53
                                                                                54
 [55]
                                                  65
                                                                            71
                                                                                72
       55
           56
               57
                    58
                        59
                            60
                                 61
                                     62
                                         63
                                              64
                                                      66
                                                           67
                                                               68
                                                                   69
                                                                        70
 [73]
           74
       73
               75
                    76
                        77
                            78
                                 79
                                         81
                                              82
                                                  83
                                                      84
                                                           85
                                                               86
                                                                   87
                                                                        88
                                                                            89
                                                                                90
                                     80
 [91]
       91
           92 93
                    94
                        95
                            96
                                 97
                                     98
                                         99 100 101 102 103 104 105 106 107 108
[109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
[127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
[145] 145 146 147 148 149 150
```

```
names(df_iris)
```

[1] "SEPAL_LENGTH" "SEPAL_WIDTH" "PETAL_LENGTH" "PETAL_WIDTH" "SPECIES"

8.3 Dimensões

A função dim retorna as dimensões de um **data frame** (linhas e colunas). Estes dados também podem ser obtidos com as funções nrow e ncol.

```
dim(df_iris)

[1] 150     5

    nrow(df_iris)

[1] 150

    ncol(df_iris)
```

8.4 Acessando Dados

8.4.1 Índices

Como a estrutura de um **data frame** é organizada em linhas e colunas, podemos acessar os dados utilizando colchetes ([]): base[linha, coluna]. Podem ser usados intervalos de índices com o operador :.

```
# Acessar primeira linha e segunda coluna (Sepal.Width)
df_iris[1, 2]

[1] 3.5

# Acessar linhas 1 até 3 e a segunda coluna
df_iris[1:3, 2]

[1] 3.5 3.0 3.2
```

Apesar de ser possível, utilizar o índice faz com que a referência seja relativa, ou seja, a variável '1' pode mudar caso o **data frame** seja editado. Por exemplo, caso em algum momento anterior a variável **PETAL_LENGTH** tenha sido excluída, uma nova variável assumirá o índice 1. Além disto, no momento da leitura do código por um usuário não fica claro qual variável está sendo acessada.

8.4.2 Usando Nomes das Colunas

Existem diversas outras formas para acessar dados de um **data frame**, inclusive utilizando o nome da coluna de forma explícita.

```
# Acessar primeira linha e segunda coluna (pelo nome)
df_iris[1:3, 'SEPAL_WIDTH']
[1] 3.5 3.0 3.2
```

Uma forma bastante comum é através da utilização do operador \$ para acessar a coluna pelo seu nome.

```
# Acessar primeira linha e segunda coluna
df_iris[1, ]$SEPAL_WIDTH

[1] 3.5

# Acessar linhas 1 até 3 e a segunda coluna
df_iris[1:3, ]$SEPAL_WIDTH
```

[1] 3.5 3.0 3.2

Nome Abreviado

Assim como nas **listas**, variáveis de um **data frame** podem ser acessadas com o mínimo de caracteres que as identifiquem dentro do **data frame**. Por exemplo, df_iris\$SP retornará a variável **SPECIES**.

8.4.3 Filtrando Dados

Digamos que se deseje acessar apenas dados que cumpram determinada condição. Para isto, na seleção das linhas do **data frame**, deve ser informada condição lógica na forma abaixo:

```
# Retorna valores de Speal.Width onde Petal.Length for maior do que 6
x <- df_iris[df_iris$PETAL_LENGTH > 6, 'SEPAL_WIDTH']
y <- df_iris[df_iris$PETAL_LENGTH > 6.5, ]$SEPAL_WIDTH
x

[1] 3.0 2.9 3.6 3.8 2.6 2.8 2.8 3.8 3.0

y

[1] 3.0 3.8 2.6 2.8

# Função que compara os objetos
identical(x, y)
[1] FALSE
```

O retorno é dado pelas linhas em que a variável **PETAL_LENGTH** atende as condições declaradas. Este teste retorna um vetor de valores lógicos, e os valores TRUE são os que "permanecem". Abaixo outro exemplo:

```
head(df_iris$PETAL_LENGTH) > 1.4
[1] FALSE FALSE FALSE TRUE FALSE TRUE
```

Aplicando este vetor de valores lógicos, o R entende que as posições correspondentes a TRUE devem ser mantidas. No exemplo abaixo, as posições (linhas) 4 e 6 atendem a condição especificada, portanto apenas estas serão selecionadas.

```
df_iris2 <- head(df_iris)
filtro <- head(df_iris2$PETAL_LENGTH) > 1.4
filtro
```

[1] FALSE FALSE FALSE TRUE FALSE TRUE

```
df_iris2[filtro, 'SEPAL_WIDTH']
[1] 3.1 3.9
```

Equivalente ao comando abaixo:

```
df_iris2[c(4, 6), 'SEPAL_WIDTH']
[1] 3.1 3.9
```

8.4.3.1 Classes de retorno

Os filtros em **data frames** usados com \$ ou [] (com apenas 1 variável) retornam vetores e não **data frames**. Desta forma se perde a classe e a estrutura tabular característica do **data frame** original.

```
class(df_iris[1:3, 1])

[1] "numeric"

class(df_iris[1:3, 'SEPAL_WIDTH'])

[1] "numeric"
```

Entretanto, sendo selecionadas mais de uma coluna, a classe retornada segue sendo data.frame.

```
class(df_iris[1:3, c("SEPAL_LENGTH", "SEPAL_WIDTH")])

[1] "data.frame"

class(df_iris[1:3, 1:2])

[1] "data.frame"
```

8.4.3.2 Função Subset

A função subset permite efetuar filtro em um **data frame** e muitas vezes oferece uma forma mais organizada visualmente, principalmente quando em filtros com muitas condiões. Uma outra vantagem é que a função subset retorna faz a seleção em um data.frame e retorna um **data frame**, mesmo com a seleção de apenas 1 variável.

Esta função também permite seleção de colunas a serem mantidas. Note que a função subset não demanda que o **data frame** seja referenciado antes das variáveis e também aceita os nomes das variáveis sem aspas. Isto torna o código mais legível.

```
class(subset(df_iris, select = SEPAL_WIDTH))
[1] "data.frame"
  df_mtcars <- mtcars</pre>
  # mudar nomes para maiusculas
  names(df_mtcars) <- toupper(names(df_mtcars))</pre>
  subset(x = df_mtcars, # dados
         subset = MPG > 25, # filtro
         select = c(MPG, CYL, HP)) # colunas
               MPG CYL HP
              32.4 4 66
Fiat 128
Honda Civic 30.4 4 52
Toyota Corolla 33.9 4 65
Fiat X1-9
          27.3 4 66
Porsche 914-2 26.0 4 91
Lotus Europa 30.4 4 113
```

Usando um filtro um pouco mais complexo e sem inserir o nome dos argumentos da função (x, subset e select):

```
MPG CYL HP
Porsche 914-2 26.0 4 91
Lotus Europa 30.4 4 113
```

8.5 Junção de Dados

Uma grande necessidade ao se trablahar com dados tabulados é a junção de dados. A junção nada mais é do que usar bases de dados diferentes e carregar dados entre elas a partir de uma chave de identificação. Vamos usar duas bases de dados, uma com código e nome do município e outra com o código do município e sua população. Estes dados foram buscados em IBGE (s.d.).

```
df_cidades <-
    data.frame(
      COD_MUNICIPIO = c('4314902', '3550308', '3304557'),
      NOME = c('Porto Alegre', 'São Paulo', 'Rio de Janeiro')
    )
  df_populacao <-
    data.frame(
      COD_MUNICIPIO = c('4314902', '3550308', '3304557'),
      POPULACAO = c(1332570, 11451245, 6211423)
    )
  head(df_cidades)
  COD_MUNICIPIO
                          NOME
1
        4314902
                  Porto Alegre
2
        3550308
                     São Paulo
3
        3304557 Rio de Janeiro
  head(df_populacao)
 COD_MUNICIPIO POPULACAO
1
        4314902
                  1332570
2
        3550308 11451245
3
        3304557
                 6211423
```

Para juntar estes dados, usaremos como chave de identificação presente nas duas tabelas o campo **COD_MUNICIPIO**. A função usada, merge exige dois argumentos **x** e **y**, que são as bases de dados que usaremos para a junção.

Este exemplo é o mais básico, onde os dados presentes em ambas tabelas são das mesmas ciades e também são ligadas por apenas uma chave de identificação. Vejamos um exemplo um pouco mais realista, onde alguns dados não estão presentes em ambas tabelas.

Veja que os dados de Belo Horizonte e do Município de código 4106902 (Curitiba) não foram inseridos no data frame resultante. Por padrão a função merge faz a junção pelos dados presentes nos dois data frames. Caso desejemos especificar, usamos os parâmetros all.x e all.y.

Usando all.x informamos ao R que desejamos que todas as linhas presentes na base passada como argumento x sejam mantidas. Onde não existirem dados para estas linhas na tabela y serão preenchidos com NA.

```
df_completo_x <- merge(x = df_cidades, y = df_populacao,</pre>
                       by = "COD_MUNICIPIO", all.x = T)
  head(df_completo_x)
 COD_MUNICIPIO
                          NOME POPULAÇÃO
1
        3106200 Belo Horizonte
                                    <NA>
2
        3304557 Rio de Janeiro
                                 6211423
3
        3550308
                     São Paulo 11451245
        4314902
                Porto Alegre
                                1332570
```

De forma análoga, usar all. y informa para que as linhas da base y sejam mantidas.

Para cruzamento de todas as linhas das duas tabelas usamos o argumento all.

```
df_completo <- merge(x = df_cidades, y = df_populacao,</pre>
                       by = "COD_MUNICIPIO", all = T)
  head(df_completo)
 COD_MUNICIPIO
                         NOME POPULAÇÃO
1
       3106200 Belo Horizonte
                                    <NA>
2
       3304557 Rio de Janeiro 6211423
3
                     São Paulo 11451245
       3550308
4
       4106902
                          <NA>
                               1773733
       4314902
                Porto Alegre 1332570
```

Última atualização: 29/08/2023 - 20:29:07

9 Operador Pipe

Status □□□

9.1 Introdução

Muitas vezes seu código demanda muitas transformações e acaba ficando muito verboso e de dificíl entendimento. Uma forma de facilitar a compreensão em torno das operações em sequência é criar um fluxo em que as operações vão sendo efetuadas em sequência, onde as entradas são as saídas do passo anterior.

O operador |> (pipe) existe com este intuito, organizar as operações em um fluxo contínuo. O pipe foi implementado a partir da versão 4.1.0 do R e passa um valor para uma função. Os dados são passados do lado esquerdo (**Ifs** - *left hand side*) para o lado direito (**rhs** - *right hand side*). O valor do lado esquerdo (**Ihs**) é passado como o primeiro argumento da função do lado direito (**rhs**).

Vejamos um exemplo simplificado onde o vetor que possue números de 1 até 20 é passado para a função head. Com o uso do |> o vetor é passado como **primeiro argumento** da função head e esta por sua vez exibe os seis primeiros elementos.

```
c(1:20) |> head()
[1] 1 2 3 4 5 6
```

O código acima é equivalente a:

```
head(c(1:20))
[1] 1 2 3 4 5 6
```

Caso se deseje alterar o número de elementos, basta usar o argumento n.

```
c(1:20) \mid > head(n = 10)
```

```
[1] 1 2 3 4 5 6 7 8 9 10
```

Equivalente a:

```
head(c(1:20), n = 10)
[1] 1 2 3 4 5 6 7 8 9 10
```

Vejamos um outro exemplo, um pouco mais realista e complexo: usar a base **mtcars** e a partir desta selecionar casos em que o campo **mpg** seja maior do que 10 e após criar uma variável chamada **media_hp**, que será a média a partir do campo **hp**. Poderia ser feito algo do tipo:

```
df_mtcars <- subset(mtcars, mpg > 10)
media_hp <- mean(df_mtcars$hp)
media_hp</pre>
```

[1] 146.6875

Mesmo sendo um processo pequeno com apenas 2 operações bastante corriqueiras, ler o código já se torna enfadonho, para dizer o mínimo. Também não fica claro, em uma passada de olhos, se as operações possuem relação entre si.

Imagine agora criar as mesmas operações de forma "concatenada" em que uma transformação é passada para a seguinte até que se chegue ao final do fluxo. Em linguagem "humana" algo do tipo:

data frame □ filtrar casos □ selecionar variável □ calcular média

Em R:

mtcars |>

```
mtcars |>
    subset(mpg > 10) |>
    subset(select = hp, drop = T) |>
    mean()

[1] 146.6875

# ou de forma mais sucinta
```

```
subset(mpg > 10, select = hp, drop = T) |>
mean()

[1] 146.6875
```

Este código é equivalente ao anterior, porém aqui fica mais claro que todas as transformações foram feitas a fim de obter o valor da média de **hp** dos casos desejados (**mpg > 10**). Para fazer a atribuição do resultado em uma variável basta, como de costume, ao início ou ao final usar o operador de atribuição <-.

```
media_hp <- mtcars |>
    subset(mpg > 10) |>
    subset(select = hp, drop = T) |>
    mean()

media_hp

[1] 146.6875

# ou de forma menos usual
mtcars |>
    subset(mpg > 10) |>
    subset(select = hp, drop = T) |>
    mean() -> media_hp

media_hp
```

9.2 Placeholder

[1] 146.6875

A partir da versão **4.2.0** o *pipe* passou a ter um *placeholder* (símbolo _) que serve para que o valor **Ifs** seja passado para outro argumento que não o primeiro da função **rhs**.

```
8 |> head(c(1:20), n = _)
[1] 1 2 3 4 5 6 7 8
```

Equivalente a:

```
head(c(1:20), n = 8)
[1] 1 2 3 4 5 6 7 8
```

A partir da versão **4.3.0** o *placeholder* também pode ser utilizado para operações de extrações com [. Replicando o exemplo do cálculo de **media_hp**, porém agora fazendo a extração da variável **hp** que é retornada como um vetor e passada para a função mean.

```
media_hp <- mtcars |>
    subset(mpg > 10) |>
    _$hp |>
    mean()

media_hp

[1] 146.6875
```

R Core Team (2023d)

Wickham (2023/04/21)

Última atualização: 14/08/2023 - 20:55:44

10 Funções

Status □□□

10.1 Criando Funções

Funções podem ser criadas através do comando function.

```
fnSomar <- function(param1, param2) {
  param1 + param2
}
fnSomar(5, 8)</pre>
```

[1] 13

Para visualizar o código de uma função podemos usar seu nome sem os parênteses.

```
fnSomar

function(param1, param2) {
  param1 + param2
}
```

10.1.1 Argumentos - Valores Padrão

10.2 Função x Ambiente

As funções possuem seus próprios ambientes. Abaixo uma função criada para exibir seu ambiente e seu ambiente 'pai'.

```
fnExibirEnvs <- function() {
   print('Ambiente atual:')
   print(environment())

print(paste(
     'Ambiente Pai:',
   environmentName(parent.env(environment()))))
}

fnExibirEnvs()

[1] "Ambiente atual:"
<environment: 0x000001cd36c661c8>
[1] "Ambiente Pai: R_GlobalEnv"
```

10.2.1 Objetos no Ambiente da Função

Objetos que são criados dentro de uma função existem apenas dentro do ambiente desta função. Abaixo um exemplo de variável criada dentro do ambiente da função e que não é acessível no **GlobalEnv**.

```
fnTeste <- function(){
    y <- 15
    x <- 80
    ls()
}

fnTeste()

[1] "x" "y"

y

Error in eval(expr, envir, enclos): objeto 'y' não encontrado</pre>
```

Objetos que existam no ambiente corrente não são alterados caso por estarem dentro do ambiente de fuma função. A variável **x** é inicializada com valor 10 no ambiente corrente. Ela pode ser acessada pela função mesmo não sendo informada em algum argumento.

```
x <- 10
fnTeste2 <- function(){
   y <- 15
   x + y
}
fnTeste2()

[1] 25

y

Error in eval(expr, envir, enclos): objeto 'y' não encontrado
   x

[1] 10</pre>
```

Entretando, caso a variável ${\bf x}$ seja alterada no ambiente da função ela não é alterada no ambiente corrente.

```
x <- 10

fnTeste3 <- function(){
   y <- 15
   x <- 80
   x + y
}

fnTeste3()

[1] 95

x</pre>
```

10.2.1.1 Operador de Super Atribuição (<<-)

Usando o operador de super atribuição <<- é possível alterar objetos que estejam fora do ambiente de uma função. Neste caso a variável **x** é atualizada no ambiente que está acima do ambiente da função. A variável **y** continua não existindo fora da função, porém agora a variável **x** é atualizada em ambos ambientes.

```
ls(envir = globalenv())
[1] "fnExibirEnvs" "fnSomar"
                                    "fnTeste"
                                                    "fnTeste2"
                                                                    "fnTeste3"
[6] "x"
  X
[1] 10
  fnTeste4 <- function(){</pre>
    y <- 15
    x <<- 80
    x + y
  fnTeste4()
[1] 95
  у
Error in eval(expr, envir, enclos): objeto 'y' não encontrado
  X
[1] 80
```

Apesar de, neste caso, produzirem o mesmo retorno, as funções fnTeste3 e fnTeste4 impactam de formas distintas o ambiente do R.

10.3 Retorno

Na criação de funções, é possível utilizar o comando return a fim de definir o que será retornado pela função.

```
fnRetorno <- function(){
   return('Este é o retorno da função!')
}
fnRetorno()

[1] "Este é o retorno da função!"</pre>
```

10.4 Recursividade

Como outras linguagens de programação, R permite o uso recursivo de funções.

```
fnRecursividade <- function(x){
   if(x > 100) return('X ultrapassou 100. Fim!')
   x <- x + 1
   print(paste('Valor atual de x:', x))
   fnRecursividade(x)
}

fnRecursividade(95)

[1] "Valor atual de x: 96"
[1] "Valor atual de x: 97"
[1] "Valor atual de x: 98"
[1] "Valor atual de x: 99"
[1] "Valor atual de x: 100"
[1] "Valor atual de x: 101"</pre>
[1] "X ultrapassou 100. Fim!"
```

10.4.1 Buscar Ambiente Pai (Recursivamente)

Abaixo função que busca recursivamente os ambientes e seus 'pais' até que se chege no 'último' ambiente, o **R_EmptyEnv**.

```
fnBuscarEnvsPai <- function(ambiente, nivel = 1){</pre>
      if(environmentName(ambiente) == "R_EmptyEnv"){
      return ('Ambiente informado é R_EmptyEnv. Fim da busca.')
      marcacao <- ''
      for (i in 1:nivel){
        marcacao <- pasteO(' ', marcacao)</pre>
      }
      writeLines(paste0(marcacao, '|-- ', environmentName(parent.env(ambiente))))
      nivel <- nivel + 1
      fnBuscarEnvsPai(parent.env(ambiente), nivel = nivel)
  fnBuscarEnvsPai(globalenv())
 |-- tools:quarto
  |-- tools:quarto
   |-- package:stats
   |-- package:graphics
    |-- package:grDevices
      |-- package:utils
      |-- package:datasets
       |-- package:methods
         |-- Autoloads
          |-- base
           |-- R_EmptyEnv
[1] "Ambiente informado é R_EmptyEnv. Fim da busca."
```

10.5 Funções Genéricas

Grolemund (2014) Última atualização: 27/08/2023 - 23:27:47

11 Dados Externos

Status □□□

11.1 Arquivo Csv

11.1.1 Importar Arquivos csv

Muitas vezes os dados que o usuário possui acesso em sua Instituição estã armazenados em bancos de dados. Porém dados distribuídos por entidades públicas muitas vezes estão em formato **csv**.

Neste exemplo vamos importar a base **Estatísticas de Aprovações - Por Porte de Empresa** do BNDES.

- 11.1.2 Exportar Arquivos csv
- 11.2 Arquivos RDS
- 11.2.1 Importar Arquivos RDS
- 11.2.2 Exprotar Arquivos RDS

Última atualização: NA

12 Controles de Fluxo

Status □□□

12.1 Introdução

Assim como outras linguagens de programação R oferece uma série de operadores para controle de fluxo de código.

i Nota

Controles de fluxo são declarações usadas na linguagem, mas não são funções.

12.2 If

O controle **if** é a estrutura de controle mais básica que tomada de decisão e "direcionamento" de código. Em caso negativo do teste lógico nenhuma operação é executada.

```
x <- 5

# Códigos equivalentes
if(x > 4) print('x é maior do que quatro')

[1] "x é maior do que quatro"

if(x > 4) { print('x é maior do que quatro')}

[1] "x é maior do que quatro"
```

```
if(x > 4) {
   print('x é maior do que quatro') }

[1] "x é maior do que quatro"

if(x > 4) { print('x é maior do que quatro') }

[1] "x é maior do que quatro"

if(x > 4) {
   print('x é maior do que quatro') }
   # o mais organizado
[1] "x é maior do que quatro"
```

Note que se o teste não retornar TRUE ou FALSE o R reportará erro.

```
x \leftarrow NA
if (x > 4) print('x é maior do que quatro')
```

Error in if (x > 4) print("x é maior do que quatro"): valor ausente onde TRUE/FALSE necessár

12.3 Ifelse

R possui a **função** ifelse, que apesar de não ser para controle de fluxo, possui lógica de uso muito semelhante ao **if** e por este motivo será tratada neste capítulo. Esta função efetua teste em valor de entrada e define um valor a ser retornado caso verdadeiro e outro caso falso.

O retorno de ifelse possui o mesmo formato da estrutura informada no argumento **test**. Esta função pode ser usada para atribuição em data frames de forma mais sucinta.

Vejamos um exemplo:

```
df_mtcars6 <-
    mtcars |>
    subset(select = c('hp', 'mpg', 'cyl')) |>
    head()
  df_mtcars6
                   hp mpg cyl
Mazda RX4
                  110 21.0
Mazda RX4 Wag
                 110 21.0
                  93 22.8
Datsun 710
                             4
Hornet 4 Drive
                  110 21.4
                             6
Hornet Sportabout 175 18.7
                             8
Valiant
                  105 18.1
  df_mtcars6[df_mtcars6$hp > 100, 'RESULTADO'] <-</pre>
    df_mtcars6[df_mtcars6$hp > 100, ]$mpg
  df_mtcars6[df_mtcars6$hp <= 100, 'RESULTADO'] <-</pre>
    df_mtcars6[df_mtcars6$hp <= 100,]$cyl</pre>
  df_mtcars6
                   hp mpg cyl RESULTADO
Mazda RX4
                  110 21.0
                            6
                                    21.0
                                    21.0
Mazda RX4 Wag
                 110 21.0
                             6
Datsun 710
                  93 22.8
                            4
                                     4.0
Hornet 4 Drive
                  110 21.4
                           6
                                    21.4
Hornet Sportabout 175 18.7 8
                                   18.7
Valiant
                  105 18.1 6
                                    18.1
  # com ifelse
  df_mtcars6$RESULTAD02 <-</pre>
    ifelse(df_mtcars6$hp > 100,
           df_mtcars6$mpg,
           df_mtcars6$cyl)
  df mtcars6
```

	hp	mpg	cyl	RESULTADO	RESULTADO2
Mazda RX4	110	21.0	6	21.0	21.0
Mazda RX4 Wag	110	21.0	6	21.0	21.0
Datsun 710	93	22.8	4	4.0	4.0
Hornet 4 Drive	110	21.4	6	21.4	21.4
Hornet Sportabout	175	18.7	8	18.7	18.7
Valiant	105	18.1	6	18.1	18.1

12.4 If Else

O **if else** pode ser usado para inserir uma ação após o retorno negativo do teste feito pelo **if**

```
x <- 3
if(x > 4) {
  print('x é maior do que quatro')
} else {
  print('x não é maior do que quatro')
}
```

[1] "x não é maior do que quatro"

Veja que podem ser usadas muitas declaração **else** em sequência.

```
x <- 3
if(x > 3) {
   print('x é maior do que três')
} else if (x < 3){
   print('x é menor do que três')
} else if (x == 3){
   print('x é igual a três')
}</pre>
```

[1] "x é igual a três"

12.5 Laço For

Um laço **for** é uma estrutura que efetua uma determinada quantidade de passos de acordo com a sequência informada. a declaração deve ser feita no formato: for(x in seq), sendo

x a variável que será atualizada a cada iteração iniciando no ´rimeiro valor informado em seq e ecerrando no último. Um exemplo:

```
for(x in 1:5){
   print(paste('Iteração:', x))
}

[1] "Iteração: 1"
[1] "Iteração: 2"
[1] "Iteração: 3"
[1] "Iteração: 4"
[1] "Iteração: 5"
```

Caso se deseje mudar o incremento a cada passo pode ser usada a função seq. Também é possível usar um passo decrescente.

```
for(x in seq(2, 1, -0.25)) {
    print(paste('Valor de x:', x))
}

[1] "Valor de x: 2"
[1] "Valor de x: 1.75"
[1] "Valor de x: 1.5"
[1] "Valor de x: 1.25"
[1] "Valor de x: 1.25"
```

No eemplo acima, x é inicializado com valor 1 e vvai sendo incrementado em 1 unidade ao início do próximo passo. Um laço **for** também pode fazer iterações sobre vetores com texto, por exemplo.

```
for(i in c('São Paulo', 'Rio de Janeiro', 'Porto Alegre')){
   print(paste('Cidade atual:', i))
}

[1] "Cidade atual: São Paulo"
[1] "Cidade atual: Rio de Janeiro"
[1] "Cidade atual: Porto Alegre"
```

No laço **for** a sequência no qual será feita a iteração é considerada antes de se iniciar o laço, assim mesmo se houver alguma alteração nesta sequência em um dos passos esta alteração não impactará na execução.

```
x <- 3
for(i in 1:x) {
    x <- x + 2
    print(x)
}

[1] 5
[1] 7
[1] 9</pre>
```

12.6 While

For x While

Um laço for é utilizado quando se tem uma sequência definida de passos. Caso se deseje executar alguma operação até o atendimeto de uma condição, use **while**.

A estrutura **while** possui a seguinte configuração: while(condição). Assim, a repetição do código dentro de um bloco while ocorre até que a condição não seja mais satisfeita. Exemplo:

```
condicao <- 5
while(condicao < 7){
  print(condicao)
  condicao <- condicao + 1
}</pre>
[1] 5
[1] 6
```

A variável condicao é iniciada com valor 5 e atende a condição **se < 7**. O código então é executado, imprimindo no console o valor da variavél e após esta recebe seu próprio valor mais 1. Na iteração seguinte seu valor é 6 e ainda atende a condição de **se < 7**. Na terceira iteração seu valor, novamente atualizado, será 7 e não cumprindo a condição o **while** é encerrado.

A estrutura **while** pode ficar operando indefinidamente se por algum motivo a condição seja sempre atendida. Teste o código abaixo e veja que ele rodará indefinidamente. Você pode pará-lo teclando **ESC** no teclado.

```
while(TRUE){
  print(condicao)
  condicao <- condicao + 1
}</pre>
```

12.7 Break e Next

12.8 Repeat

E estrutura repeat funciona de forma análoga ao while, entretanto esta não testa condição de parada. Para efetuar a parada o usuário deve fazer de forma explícita.

```
x <- 1
y <- 2

repeat{
    x <- x + y
    print(x)
    if (x > 11) break
}

[1] 3
[1] 5
[1] 7
[1] 9
[1] 11
[1] 13
```

DataMentor (s.d.)

Última atualização: 21/08/2023 - 23:39:21

13 Gráficos

Status □□□

13.1 Introdução

R oferece uma série de funções nativas para criação de gráficos. Estas funções possuem muitos parâmetros que permitem melhorar visualamente as apreesentações dos gráficos.

Abaixo um exemplo de um gráfico de criado com a função plot do pacote **graphics**. Os argumentos x e y são usados nas coordenadas e já são suficientes para a geração de um gráfico.

```
df_mtcars <- mtcars
names(df_mtcars) <- toupper(names(df_mtcars))
plot(x = df_mtcars$HP, y = df_mtcars$MPG)</pre>
```


Podemos customizar com diversos parâmetros. Por exemplo main é o argumento que define o título do gráfico, enquanto que xlab e ylab são os *labels* dos eixos. O argumento col define a cor. Note que o R possui muitas cores que podem ser identificadas como *strings*. Você pode ver as disponíveis com a função colors.

Gráfico HP x MPG

Veja que o gráfico foi exibido com pontos para os valores. O parâmetro type permite outras opções:

- p (padrão): pontos
- 1: linhas
- b: pontos e linhas
- c: pontos 'vazios' ligados por linhas

Obviamente, nem todos os tipos de gráficos se enquadram para todos os tipos de dados. Se usarmos um gráfico de pontos e linhas nos dados do exemplo acima, as linhas não farão muito sentido.

Gráfico HP x MPG

Podemos criar um gráfico de linhas com a base de dados da Taxa Selic Acumulado no Mês divulgada pelo Banco Central do Brasil. Vamos utilizar os parâmetros 1ty (de *line type*) para determinar o tipo de linha e 1wd (de *line width*) para determinar a largura da linha.

Taxa Selic Acumulada Mensal

13.2 Histograma

Abaixo um exemplo de um histograma:

```
hist(df_mtcars$HP, col ='cyan4',
    main = 'Histograma', xlab = 'HP',
    ylab = 'Qtde')
```

Histograma

Kassambara (s.d.)

Schmuller (2019)

Última atualização: 28/08/2023 - 22:06:17

14 Sumarização de Dados

Status □□□

Uma tarefa muito rotineira em análise de dados é a sumarização de valores por grupos de interesse.

Vejamos um exemplo na base Estatísticas de Aprovações - Por Porte de Empresa (BNDES). Uma informação de intersse, por exemplo, pode ser o valor total de Aprovações por ano para cada porte das empresas. Como a base de dados originalmente traz os valores abertos para cada mês, será necessária operação de agregação.

```
df_aprovacoes_porte <-
    read.csv(
      './data/aprovacoes-por-porte-de-empresa-aprovacoes.csv',
      header = T,
      sep = ';',
      dec = ',',
      quote = "\""
  # ajustar nomes
  names(df_aprovacoes_porte) <- toupper(names(df_aprovacoes_porte))</pre>
  head(df_aprovacoes_porte)
             MICRO PEQUENA
                             MEDIA
  ANO MES
                                     GRANDE
1 1995 1 128.4699
                       0 10.18922 380.2330
2 1995 2 106.3283
                       0 16.21161 495.5282
3 1995 3 234.5488
                       0 13.69085 715.9591
4 1995 4 125.2196
                       0 16.44511 403.9919
                      0 20.88794 477.2529
5 1995 5 209.4168
6 1995 6 122.5179
                       0 23.86818 473.2194
```

Podemos então fazer a agregação usando a variável **ANO** como variável chave na função aggregate. Esta função exige (dentre outros argumentos opcionais) um objeto sobre os quais a função informada será aplicada, uma lista de elementos para definir o agrupamento

e a função a ser aplicada. No exemplo, usaremos a função sum, que retorna a soma dos valores.

```
somatorio <-
   aggregate(subset(df_aprovacoes_porte, select = c(-ANO, -MES)),
            by = list(df_aprovacoes_porte$ANO),
            sum)
 head(somatorio)
 Group.1
           MICRO PEQUENA
                              MEDIA
                                     GRANDE
1
    1995 1711.645 0.000000 216.8279 7048.91
2
    1996 1431.916  0.000000  271.6768 11362.08
    3
4
    1998 1375.066 34.909957 1454.6207 20161.79
    1999 1394.739 426.779631 1083.7491 16634.18
    2000 2366.893 864.823930 1534.4957 22858.39
```

Veja que a função subset foi usada pois as somas de **ANO** e **MES** não são de interesse aqui. Sem removê-las a função aggregate faria a soma de seus valores.

A mesma operação pode ser feita usando o pipe:

```
df_aprovacoes_porte |>
   subset(select = c(-ANO, -MES)) |>
   aggregate(by = list(df_aprovacoes_porte$ANO),
           sum) |>
   head()
          MICRO
               PEQUENA
                          MEDIA
                                GRANDE
 Group.1
   1995 1711.645 0.000000 216.8279 7048.91
2
   3
   4
   1998 1375.066 34.909957 1454.6207 20161.79
   1999 1394.739 426.779631 1083.7491 16634.18
5
   2000 2366.893 864.823930 1534.4957 22858.39
```

Uma forma equivalente e ainda mais sucinta é possível com a utilização do . (indicando todas as variáveis) e do ~ (indicando que as variáveis "dependem" ou são "explicadas" pela variável **ANO**). Como aqui a variável **ANO** será indicada como "explicativa" das demais ela não deve ser descartada no comando subset, como feito no exemplo anterior.

```
df_aprovacoes_porte |>
    subset(select = -MES) |>
    aggregate(by = . ~ ANO, sum) |>
    head()

ANO MICRO PEQUENA MEDIA GRANDE
1 1995 1711.645    0.000000    216.8279    7048.91
2 1996 1431.916    0.000000    271.6768 11362.08
3 1997 2179.985    1.053206    137.0893 16672.74
4 1998 1375.066    34.909957 1454.6207 20161.79
5 1999 1394.739 426.779631 1083.7491 16634.18
6 2000 2366.893 864.823930 1534.4957 22858.39
```

14.1 Valores Faltantes - NA

A função aggregate possui como padrão o argumento na.action = na.omit, assim os valores NA são omitidos. Caso seja necessáiro considerar os valores faltantes deve ser informada uma função "alternativa", que trata estes registros. No exemplo abaixo foi informado NULL, ou seja, "nenhuma" função a ser aplicada sobre os valores faltantes. Assim eles serão considerados no cálculo.

```
df_aprovacoes_porte_na <- df_aprovacoes_porte</pre>
  df_aprovacoes_porte_na[1,]$MICRO <- NA</pre>
  head(df_aprovacoes_porte_na)
                               MEDIA
  ANO MES
             MICRO PEQUENA
                                       GRANDE
1 1995
                          0 10.18922 380.2330
                 NA
       1
2 1995 2 106.3283
                          0 16.21161 495.5282
3 1995 3 234.5488
                          0 13.69085 715.9591
4 1995
        4 125.2196
                          0 16.44511 403.9919
5 1995
        5 209.4168
                          0 20.88794 477.2529
6 1995
         6 122.5179
                          0 23.86818 473.2194
  df_aprovacoes_porte_na |>
    subset(select = -MES) |>
    aggregate(by = . ~ ANO, sum,
              na.action = NULL) |>
```

head()

```
ANO
         MICRO
                PEQUENA
                              MEDIA
                                      GRANDE
1 1995
            NA
                 0.000000
                           216.8279 7048.91
2 1996 1431.916
                 0.000000
                           271.6768 11362.08
3 1997 2179.985
                 1.053206 137.0893 16672.74
4 1998 1375.066
                34.909957 1454.6207 20161.79
5 1999 1394.739 426.779631 1083.7491 16634.18
6 2000 2366.893 864.823930 1534.4957 22858.39
```

Veja que agora a soma para o ano de 1995 para o porte MICRO é NA.

Caso seja for inserido na.rm = T como argumento da função sum, os valores faltantes são desconsiderados novamente, mesmo na.action sendo nulo.

```
df_aprovacoes_porte_na |>
    subset(select = -MES) |>
    aggregate(by = . ~ ANO, sum, na.rm = T,
              na.action = NULL) |>
    head()
  ANO
         MICRO
                PEQUENA
                              MEDIA
                                      GRANDE
1 1995 1583.175
                 0.000000
                           216.8279 7048.91
2 1996 1431.916
                 0.000000
                           271.6768 11362.08
3 1997 2179.985
                 1.053206 137.0893 16672.74
4 1998 1375.066 34.909957 1454.6207 20161.79
5 1999 1394.739 426.779631 1083.7491 16634.18
6 2000 2366.893 864.823930 1534.4957 22858.39
```

Última atualização: 28/08/2023 - 21:33:22

15 Utilidades

Status □□□

R oferece uma série de funções para interação com o ambiente externo.

15.1 Listar Arquivos

A função list.files exibe arquivos em um diretório informado no argumento path.

```
list.files('./data/')
[1] "aprovacoes-por-porte-de-empresa-aprovacoes.csv"
[2] "csv_serie-sgs-4390.csv"
```

Podem ser retornados os caminos completos dos arquivos com o parâmetro full.names.

```
list.files('./data/', full.names = T)
[1] "./data/aprovacoes-por-porte-de-empresa-aprovacoes.csv"
[2] "./data/csv_serie-sgs-4390.csv"
```

15.2 Informações de arquivos

A função file.info retorna uma série de informações sobre o arquivo como tamanho, modo, horário de modificação, etc.

```
t(file.info('./data/csv_serie-sgs-4390.csv'))
```

```
./data/csv_serie-sgs-4390.csv
size "9482"
isdir "FALSE"
mode "444"
mtime "2023-08-28 20:15:06"
ctime "2023-08-28 20:15:06"
atime "2023-09-09 15:35:39"
exe "no"
```

Última atualização: 09/09/2023 - 15:31:49

Parte II

Pacotes

O que são pacotes?

Um pacote em R é basicamente um conjunto de funções e/ou funcionalidades criadas por terceiros que "expandem" o poder da linguagem. A principal opção para instalação de pacotes é através do CRAN. O CRAN é um repositório que contém milhares de pacotes (19836 em 09/09/2023). Nele também podem ser encontrados pacotes em suas versões "antigas". Caso algum pacote não esteja hospedado no CRAN, ele também pode ser instalado, diretamente do arquivo fornecido pelo desenvolvedor do pacote por exemplo (muitos distribuem através do Github).

Existem alguns pacotes "especiais" em R que compõem a própria linguagem. Estes pacotes possuem suas versões idênticas à da linguagem e são "classificados" com prioridade "base". Assim quando se faz a instalação da linguagem R, muitos pacotes também são instalados.

R Core Team (2023c)

Última atualização: 12/08/2023 - 20:39:38

16 Introdução a Pacotes

Status □□□

16.1 Pacotes Instalados

Podemos ver os pacotes instalados com o comando installed.packages:

```
# Exibindo 5 primeiros
as.data.frame(installed.packages())$Package[1:5]

[1] "abind" "askpass" "backports" "base64enc" "bit"
```

A função installed.packages retorna uma série de informações a respeito dos pacotes. Abaixo alguns exemplos de pacotes bastante utilizados. Para simplificar a visualização foi usada função t, que transpõe o data.frame de colunas para linhas.

```
pacotes <- as.data.frame(installed.packages())
# pacote base
t(pacotes[pacotes$Package == 'base',])</pre>
```

```
base
                       "base"
Package
LibPath
                       "C:/Program Files/R/R-4.3.0/library"
Version
                       "4.3.0"
                       "base"
Priority
Depends
                       NΑ
                       NA
Imports
LinkingTo
                       NA
Suggests
                       "methods"
Enhances
                       "Part of R 4.3.0"
License
License_is_FOSS
```

```
License_restricts_use NA
OS_type
                       NA
                       NA
MD5sum
NeedsCompilation
                       NA
                       "4.3.0"
Built
  # pacote MASS
  t(pacotes[pacotes$Package == 'MASS',])
                       MASS
                       "MASS"
Package
LibPath
                       "C:/Program Files/R/R-4.3.0/library"
                       "7.3-58.4"
Version
                       "recommended"
Priority
Depends
                       "R (>= 4.3.0), grDevices, graphics, stats, utils"
Imports
                       "methods"
LinkingTo
                       NA
Suggests
                       "lattice, nlme, nnet, survival"
Enhances
License
                       "GPL-2 | GPL-3"
License_is_FOSS
License_restricts_use NA
OS_type
                       NA
\mathtt{MD5sum}
                       NΑ
NeedsCompilation
                       "yes"
                       "4.3.0"
Built
  # pacote data.table
  t(pacotes[pacotes$Package == 'data.table',])
                       data.table
                       "data.table"
Package
LibPath
                       "C:/Users/luisg/AppData/Local/R/win-library/4.3"
                       "1.14.8"
Version
Priority
                       NA
Depends
                       "R (>= 3.1.0)"
                       "methods"
Imports
LinkingTo
                       NA
                       "bit64 (>= 4.0.0), bit (>= 4.0.4), curl, R.utils, xts,\nnanotime, zoo
Suggests
Enhances
                       NA
```

```
License "MPL-2.0 | file LICENSE"
License_is_FOSS NA
License_restricts_use NA
OS_type NA
MD5sum NA
NeedsCompilation "yes"
Built "4.3.0"
```

Pode ser visto no campo *Priority* que para o pacote base o conteúdo é "base", isto significa que este faz parte da instalação do R. Já o pacote MASS, por exemplo, é um pacote recomendado. O pacote data.table, que é um pacote "normal", não possui informação no campo *Priority*.

Também podemos visualizar dados do pacote (arquivo *DESCRIPTION* do próprio pacote) com o comando packageDescription:

```
Package: base
Version: 4.3.0
Priority: base
Title: The R Base Package
Author: R Core Team and contributors worldwide
Maintainer: R Core Team <do-use-Contact-address@r-project.org>
Contact: R-help mailing list <r-help@r-project.org>
Description: Base R functions.
License: Part of R 4.3.0
Suggests: methods
Built: R 4.3.0; ; 2023-04-21 09:22:06 UTC; windows
-- File: C:/PROGRA~1/R/R-43~1.0/library/base/Meta/package.rds
```

16.2 Pasta de Instalação

O R possui pastas de instalação dos pacotes. Para visualizá-las basta usar o comando .libPaths. A pasta padrão de instalação traz os diversos pacotes que foram instalados junto com o R (os "básicos" e os recomendados).

```
.libPaths()
```

```
[1] "C:/Users/luisg/AppData/Local/R/win-library/4.3"
[2] "C:/Program Files/R/R-4.3.0/library"
  # Exibir 10 primeiros da primeira pasta
  list.files(.libPaths()[1])[1:10]
 [1] "abind"
                "askpass"
                             "backports" "base64enc" "bit"
                                                                 "bit64"
 [7] "blob"
                 "brio"
                             "broom"
                                         "bslib"
  # Exibir 10 primeiros da segunda pasta
  list.files(.libPaths()[2])[1:10]
 [1] "base"
                "boot"
                             "class"
                                         "cluster"
                                                     "codetools" "compiler"
 [7] "datasets" "foreign"
                             "graphics"
                                         "grDevices"
```

16.3 Pacotes Disponíveis

A função available.packages procura pacotes disponíveis no valor informado no argumento repos. Por padrão é buscado de getOption("repos").

16.4 Dependências de Pacotes

Os pacotes podem e em sua maioria utilizam funções de outros pacotes. Estes "outros pacotes" são denominadas de dependências. As informações de dependências também constam no *DESCRIPTION* do pacote.

O pacote tools, que faz parte da base do R, oferece uma função para busca de dependências de pacotes. Inclusive existe a opção de recursividade, ou seja, busca também as dependências das dependências do pacote desejado.

```
tools::package_dependencies('dplyr')
$dplyr
 [1] "cli"
                  "generics"
                                "glue"
                                             "lifecycle" "magrittr"
 [6] "methods"
                  "pillar"
                                "R6"
                                             "rlang"
                                                           "tibble"
[11] "tidyselect" "utils"
                                "vctrs"
  tools::package_dependencies('dplyr', recursive = T)
$dplyr
 [1] "cli"
                  "generics"
                                "glue"
                                             "lifecycle"
                                                           "magrittr"
                  "pillar"
                                "R6"
 [6] "methods"
                                             "rlang"
                                                           "tibble"
[11] "tidyselect" "utils"
                                "vctrs"
                                             "fansi"
                                                           "utf8"
                                             "graphics"
[16] "pkgconfig"
                  "withr"
                                "grDevices"
                                                           "stats"
```

16.5 Instalação de Pacotes

Para efetuar a instalação de pacotes usa-se a função install.packages. Os pacotes podem ser instalados diretamente de repositórios na Internet (como o CRAN) ou de arquivos locais.

Última atualização: 12/08/2023 - 20:42:38

Parte III

RStudio

O que é o RStudio?

O **RStudio** é um IDE (Integrated Development Environment) criado pela **Posit** para as linguagens R e Python. Apesar de não ser necessário para uilização de R, o RStudio fornece muitas funcionalidades para programação. Nesta seção serão apresentados alguns de seus principais recursos.

Figura 16.1: RStudio - Tela inicial

RStudio - User Guide

IDE

Última atualização: 12/08/2023 - 20:23:16

Figura 16.2: About RStudio

17 Introdução ao RStudio

17.1 Layout

Status □□□

O RStudio possui basicamente 4 painéis dimensionáveis e cada um deles painéis pode trazer uma série de abas. Você pode configurar a localização de cada painel conforme sua preferência nos menus: View > Panes > Pane Layout ou em Tools > Global Options > Pane Layout.

Dentro dos painéis *Environment* e *Files* podem ser adicionadas ou removidas diversas abas (basta marcar/desmarcar *checkbox*). Muitas delas ficam ocultas e são "chamadas" pelo RStudio apenas quando necessárias.

17.2 Console

Neste painel está embutido o R propriamente dito.

17.3 Output

Painel com diversas saídas fornecidas. Gráficos (*Plots*), Estrutura de Pastas(*Files*), Ajuda (*Help*), Pacotes(*Packages*), etc aparecem neste painel. Este é um painel muito útil para navegação nos arquivos do projeto e visualização/exportação de gráficos.

17.4 Environment

Apresenta os objetos criados no ambiente do R.

Figura 17.1: Pane Layout

```
Console Terminal & Background Jobs & CR4.3.0 · Cr/Users/luisg/OneDrive/Area de Trabalho/r/ecd/ PR4.3.0 · Cr/Users/luisg/OneDrive/Are
```

Figura 17.2: Console

Figura 17.3: Files

Figura 17.4: Environment

17.5 *Source*

Aqui são abertos os arquivos de códigos (scripts, Rmarkdown, Quarto, SQL, etc).

RStudio - User Guide

IDE

Última atualização: 16/08/2023 - 20:02:32

Figura 17.5: Source

18 Menu Tools

Status □□□

O menu Tools oferece uma série de funcionalidades para configuração do ambiente de trabalho.

Figura 18.1: Menu Tools

18.1 Install Packages

Nesta opção é aberta a janela para instalação de pacotes.

Figura 18.2: Install Packages

- Install From: local de busca dos pacotes a serem instalados
 - Repository: repositório configurado
 - Packages: nome dos pacotes a serem instalados. Podem ser escolhidos múltiplos pacotes, devendo ser separados por espaço ou vírgula
 - Package Archive File: opção para busca de arquivo a partir da máquina do usuário. Esta opção habilita botão para busca do pacote
 - * Package archive: arquivo do pacote a ser instalado
- Install to Library: pasta de instalação dos pacotes
- **Install Dependencies:** marcação para que seja feita instalação de dependências dos pacotes selecionados.

18.2 Check for Package Updates

Este opção abre a janela Update Packages, permitindo visualizar quais pacotes possuem versões mais recentes. A coluna NEWS possibilita visualizar o arquivo com dados de atuializações feitas no pacote.

Figura 18.3: Install From

Figura 18.4: Package Archive File

Figura 18.5: Check for Package Updates

18.3 Version Control

Oferece opção de controle de versões de código através do Git ou SVN.

18.4 Terminal

Permite acesso ao terminal do sistema operacional a partir do RStudio.

18.4.1 Background Jobs

Fornece opções para execução de 'Jobs', basicamente scripts em R, em outra instância do R. Desta forma a sessão aberta no RStudio não fica ocupada e permite que o usuário continue seu trabalho. Esta opção é muito útil para processamentos mais demorados.

18.5 Global Options

Esta opção abre a janela Options do RStudio onde podem ser feitas as principais configurações de comportamento da ferramenta.

18.5.1 Geral > *Basic*

Nesta tela incial Geral > Basic podemos definir muitas características do RStudio, algumas das principais:

R Sessions

- R Version: versão a ser usada do R dentro do RStudio. Esta versão pode ser alterada caso exista uma outra isntalação no computador.
- Restore most recently opened project at startup: define se o projeto mais recente será carregado ao inicializar.
- Restore previously open source documents at startup: define se arquivos de código (sources) recentemente usados serão carregados al inicializar.

Workspace

Figura 18.6: Global Options

- Restore .RData into workspace at startup: define se ao ser inicializado o RStudio carregará o arquivo .RData do projeto. Esta opção pode ser muito útil, pois resgata a sessão anterior onde ela foi fechada. Entretando caso sejam usados arquivos muito grandes o inicialização pode demorar.
- Save workspace to .RData on exit: o "inverso" do anterior, define se os dados da sessão serão salvas ao fechar o RStudio. As opções são: Always, Never e Ask.

History

- Always saves History: os comandos passados para o R serão ou não armazenados para consulta posterior?
- Remove duplicate entries: elimina as repetições, muitas vezes quando se efetuam testes os mesmos comandos são executados diversas vezes.

· Other

 Automatically notify me of RStudio updates: verificar e avisar o usuário se existirem atualizações do RStudio.

RStudio - User Guide

IDE

Última atualização: 16/08/2023 - 20:37:17

Parte IV Estatística

_					
C	٠.	ь.	-		
0	ы	LU	15	1 1	1 1

O que é Estatística

Para Larso	n e Farbe	er (2007),	'estatísitica	é a	ciência	que	se	ocupa	de	coletar,	organiz	zar
analisar e ir	nterpretar	dados a f	im de tomar	dec	sões'.							

Última atualização: 24/08/2023 - 22:13:17

19 Introdução

Status □□□

Neste capítulo serão discutidos alguns dos principais conceitos de Estatística e que serão base para a continuação.

19.1 População

O termo população é usado em estatística no sentido de todo um conjunto de dados de interesse.

19.2 Amostra

Amostra é a definição usada para frações de uma população.

19.3 Tipos de Dados

19.3.1 Nominal

19.3.2 **Ordinal**

19.3.3 Intervalar

19.3.4 Razão

Última atualização: 26/08/2023 - 15:39:08

Parte V Ciência de Dados

Status □□□

Definições

Segundo Provost e Fawcett (Provost e Fawcett 2016, p 3) 'data science é um conjunto de princípios fundamentais que norteiam a extração de conhecimentos a partir de dados'.

Uma definição da IBM (2023) para Ciência de Dados:

'A ciência de dados combina matemática e estatística, programação especializada, análise avançada, inteligência artificial (IA) e aprendizado de máquina com conhecimento em domínio específico para revelar insights acionáveis ocultos nos dados de uma organização'.

Uma definição mais sucinta da AWS (2023):

'A ciência de dados é o estudo dos dados para extrair insights significativos para os negócios'.

Última atualização: 12/08/2023 - 20:28:18

20 Trade-Off Viés x Variância

Status: □□□			

Última atualização: 12/08/2023 - 20:23:23

Bases de Dados

Neste materrial são usadas diversas bases de dados abertas. Abaixo as fontes e as descrições.

Banco Central do Brasil

Taxa de juros - Selic acumulada no mês

Acesso em: 28/08/2023 - 20:15

Taxa de juros que representa a taxa média ajustada das operações compromissadas com prazo de um dia útil lastreadas com títulos públicos federais custodiados no Sistema Especial de Liquidação e de Custódia (Selic). Divulgação em % a.m.

BNDES

Por porte de empresa - Aprovações

Acesso em: 22/08/2023 - 20:20

Dicionário de dados.

Descrição: Estatísticas de aprovações de financiamentos considerando porte do cliente, setor, distribuição regional, grupo de produtos e outros.

Última atualização: 28/08/2023 - 20:18:43

Convenções

Status □□□

Marcações no Texto

A fim de facilitar a leitura e evidenciar itens importantes no texto, serão adotadas as seguintes marcações:

Tipo do Texto	Marcação	Exemplo
Funções, argumentos, operadores do R Objetos criados no R (vetores, data frames, variáveis de data frames) e termos relevantes	Código Negrito	print df_mtcars
Palavras de língua estrangeira	Itálico	pipe

Nomes de Objetos

Abaixo convenções a serem usadas neste material.

Tabela 20.2: Convenções de código

Tipo Objeto	Convenção	Exemplo
Data.frame, tibble ou data.table	snake_case iniciado por df (d ata f rame)	df_clientes
Variáveis de datasets Funções	SCREAMING_SNAKE_CASE camelCase iniciado por fn , sendo a primeira palavra após fn um verbo	df_clientes\$NOME_CLIENTE fnBuscarClientes
Demais (vetores, listas, etc.)	snake_case	nomes_cidades

Status do Material

Para indicação de status do material apresentado serão usados os símbolos baixo no topo de cada capítulo:

Indicador	Estrutura	Conteúdo	Status Geral
	não iniciado	não iniciado	não iniciado
	incipiente	não criado	incipiente
	incipiente	incipiente	incipiente
	incipiente	em revisão	incipiente
	em revisão	em revisão	em revisão
	em revisão	amadurecido	em revisão
	em revisão	incipiente	incipiente
	incipiente	amadurecido	incipiente
	incipiente	desatualizado	desatualizado
	amadurecido	incipiente	incipiente
	amadurecido	em revisão	em revisão
	amadurecido	desatualizado	desatualizado
	amadurecido	amadurecido	amadurecido

- □ **incipiente:** recém iniciado, é o status mais volátil. Após melhores definições passa a ser marcado como □.
- □ em revisão: em alterações (grandes) para melhorias. Após este status será marcado como □.
- □ amadurecido: já passado por revisão. Pode sofrer pequenas alterações e atualizações. Caso se identifique que necessite de grandes alterações será marcado como:
 - − □ para revisão por decisão
 - □ para revisão por desatualização
- desatualizado: necessita ser reescrito por força maior, como desatualização de conceitos ou códigos.
 - □ **não iniciado:** serve como marcação de 'todo'. usado para seções que se entendem necessárias mas que ainda não foram iniciadas.

Última atualização: 27/08/2023 - 22:44:24

Referências

AWS. 2023. "O que é ciência de dados?" 2023. https://aws.amazon.com/pt/what-is/data-science/.

DataMentor. s.d. "R repeat loop". https://www.datamentor.io/r-programming/repeat-loop.

Dowle, Matt, e Arun Srinivasan. 2023. data.table: Extension of 'data.frame'.

Grolemund, Garrett. 2014. *Hands-On Programming with R.* O'Reilly. https://rstudio-education.github.io/hopr/.

IBGE. s.d. "IBGE - Cidades". https://cidades.ibge.gov.br/.

IBM. 2023. "What is data science?" 2023. https://www.ibm.com/topics/data-science.

Kassambara, Alboukadel. s.d. "Statistical tools for high-throughput data analysis". http://www.sthda.com/english/.

Larson, Ron, e Betsy Farber. 2007. Estatística Aplicada. Prentice Hall.

Mastropietro, Daniel. 2019. "Getting an environment's name in R: the envnames package". 2019. https://www.r-bloggers.com/2019/05/getting-an-environments-name-in-r-the-envnames-package.

Provost, Foster, e Tom Fawcett. 2016. DataScience para Negócios. Alta Books.

- R Core Team. 2023a. *An Introduction to R*. R Foundation for Statistical Computing. https://cran.r-project.org/doc/manuals/r-release/R-intro.html.
- ——. 2023b. *R Language Definition*. R Foundation for Statistical Computing. https://cran.r-project.org/doc/manuals/r-release/R-lang.html.
- ——. 2023c. *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- ——. 2023d. "R: A Language and Environment for Statistical Computing". Vienna, Austria: R Foundation for Statistical Computing. 2023. https://cran.r-project.org/doc/manuals/r-devel/NEWS.html.

Schmuller, Joseph. 2019. Análise Estatística com R. Alta Books.

Wickham, Hadley. 2023/04/21. "Differences between the base R and magrittr pipes". 2023/04/21. https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/.

Wikipedia, the free encyclopedia. 2023. "Naming convention (programming)". 2023. https://en.wikipedia.org/wiki/Naming convention (programming).