Zusammenfassung Heft 1 ANA

Ida Hönigmann

13. November 2020

1 Die reellen Zahlen

1.1 Körper

Definition 1.1 (Körper). (K, +, *) heißt Körper, falls:

- 1. $K \neq \emptyset$
- 2. $0, 1 \in K$
- 3. (a1)(x+y) + z = x + (y+z)
- 4. (a2) x + 0 = 0 + x = x
- 5. $(a3) \forall x \in K : \exists (-x) \in K$
- 6. $(a4) \forall x, y \in K : x + y = y + x$
- 7. $(m1) \forall x, y \in K : (x * y) * z = x * (y * z)$
- 8. $(m2) \forall x \in K \setminus \{0\} : x * 1 = 1 * x = x$
- 9. (m3) $\forall x \in K \setminus \{0\} : \exists x^{-1} \in K : x * (x^{-1}) = (x^{-1}) * x = 1$
- 10. $(m4) \ \forall x, y \in K : x * y = y * x$
- 11. (d) $\forall x, y, z \in K : x * (y + z) = (x * y) + (x * z)$

Bemerkung. Wenn (K, +, *) ein Körper ist, dann ist (K, +) und $(K \setminus \{0\}, *)$ eine kommutative Gruppe.

Schreibweise. Wenn (K, +, *) ein Körper und $u, w, x, y, z \in K$ ist schreiben wir auch:

- $xy \coloneqq x * y$
- $\frac{x}{y} := x * y^{-1} \text{ bei } y \neq 0$
- uw + xy := (u * w) + (x * y)

•
$$x - y \coloneqq x + (-y)$$

Lemma 1.1. (K, +, *) ... Körper, dann gelten folgende Regeln:

- $\forall x \in K : (-(-x)) = x$
- $\forall x \in K \setminus \{0\} : (x^{-1})^{-1} = x$
- $\bullet \ \forall x \in K : x * 0 = 0$
- $\forall x, y \in K \setminus \{0\} : x * y \neq 0$
- $(x*y)^{-1} = x^{-1}*y^{-1}$
- $(-x)^{-1} = -(x^{-1})$
- (-1)*(-1) = 1
- $\bullet \ \ x(-y) = -(x * y)$
- $\bullet (-x)(-y) = x * y$
- $\bullet \ x(y-z) = xy xz$
- $\forall a, b, c, d \in K, b, d \neq 0 : \frac{a}{b} * \frac{c}{d} = \frac{ac}{bd}$

Schreibweise. (K, +, *) ... $K\ddot{o}rper$, $A, B \subseteq K$

- $-A = \{-x : x \in A\}$
- $A + B = \{x + y : x \in A, y \in B\}$
- $A B = \{x y : x \in A, y \in B\}$
- $A * B = \{x * y : x \in A, y \in B\}$

Definition 1.2. $(K, +, *)...K\"{o}rper, x \in K, n \in \mathbb{N}$ n*x ist definiert durch: 1*x = x und (n+1)*x = n*x + x

 x^n ist definiert durch: $x^1 = x$ und $x^{n+1} = x^n * x$

1.1.1 angeordnete Körper

Definition 1.3 (angeordneter Körper). (K, +, *)...Körper hei βt angeordneter Körper, falls $\exists P \subseteq K$ mit:

•
$$(p1) K = P \cup \{0\} \cup (-P)$$

•
$$(p2) x, y \in P \implies x + y \in P$$

•
$$(p3) x, y \in P \implies x * y \in P$$

 $F\ddot{u}r \ x, y \in K \ gelte$:

•
$$x < y$$
, falls $y - x \in P$

•
$$x > y$$
, falls $x - y \in P$

•
$$x \le y$$
, falls $y - x \in P \cup \{0\}$

•
$$x \ge y$$
, falls $x - y \in P \cup \{0\}$

Lemma 1.2. Sei K ein angeordneter Körper. $a, b, x, y, z \in K$. Dann gilt:

•
$$x \le y \land y \le x \implies x = y$$

•
$$x \le y \land y \le z \implies x \le z$$

•
$$x \le y \lor y \le x$$

•
$$x \le y \land a \le b \implies x + a \le y + b$$

•
$$x \le y \implies -x \ge -y$$

$$\bullet \ z > 0 \land x \leq y \implies x*z \leq y*z$$

$$\bullet \ z < 0 \land x \le y \implies x*z \ge y*z$$

•
$$x \neq 0 \implies x^2 > 0$$
, insbesondere gilt $1 > 0$

$$\bullet \ x>0 \implies x^{-1}>0$$

•
$$0 \le x \le y \implies \frac{x}{y} \le 1 \le \frac{y}{x}$$

•
$$0 \le x \le y \implies x^{-1} \ge y^{-1}$$

•
$$0 < x \le y \land 0 < a \le b \implies x * a \le y * b$$

•
$$x < y \implies x < \frac{x+y}{2} < y$$

1.1.2 Ordnungen auf Körpern

Körper). **Definition 1.4** (Halbordnung, Totalordnung). $K\ddot{o}rper$, M...Menge, $R \subseteq M \times M...Relation$ R heißt eine Halbordnung, falls

•
$$\forall x \in M : xRx$$

•
$$\forall x, y \in M : xRy \land yRx \implies x = y$$

•
$$\forall x, y, z \in M : xRy \land yRz \implies xRz$$

R heißt eine Totalordnung, falls zusätzlich gilt:

• $\forall x, y \in M : xRy \lor yRx$

Definition 1.5 (Supremum, Infimum). K...Menge, $\leq ...Totalordnung auf <math>K, x, y \in K, A \subseteq K \land A \neq \emptyset$

•
$$max(x, y) := x \text{ falls } x \ge y \text{ und als } y \text{ falls } x < y$$

•
$$min(x, y) := x$$
 falls $x < y$ und als y falls $x > y$

•
$$max(A) = m \in A$$
, $sodass \forall a \in A : m < a$

•
$$min(A) = m \in A$$
, $sodass \forall a \in A : m \ge a$

A heißt nach oben beschränkt, falls $\exists x \in K : \forall a \in A : x \geq a$. Dafür schreibt man $A \leq x$. Jedes solches x heißt obere Schranke.

A heißt nach unten beschränkt, falls $\exists x \in K : \forall a \in A : x \leq a$. Dafür schreibt man $A \geq x$. Jedes solches x heißt untere Schranke.

Falls A nach oben und unten beschränkt ist, heißt A auch beschränkt.

Falls $\{x \in K : A \leq x\}$ ein Minimum hat, so heißt dieses Supremum von A. Dafür schreibt man $\sup(A)$.

Falls $\{x \in K : A \ge x\}$ ein Maximum hat, so heißt dieses Infimum von A. Dafür schreibt man in f(A).

Lemma 1.3. K...totalgeordnete Menge

Falls $A \subseteq K$ ein Maximum hat, so ist dieses auch Supremum. Falls $A \subseteq K$ ein Minimum hat, so ist dieses auch Infimum.

$$\begin{array}{ll} A\subseteq B\subseteq K \implies \{x\in K: B\leq x\}\subseteq \{x\in K: A\leq x\} \end{array}$$

Falls $A \subset B \subset K$ und falls A und B ein Maximum haben, gilt $Max(A) \leq Max(B)$. Falls A und B ein Minimum haben, gilt $Min(A) \geq Min(B)$.

Falls $A \subset B \subset K$ und A und B ein Supremum haben, gilt $sup(A) \leq sup(B)$. Falls A und B ein Infimum haben gilt $inf(A) \geq inf(B)$.

 $\begin{array}{lll} \textbf{Lemma 1.4.} & K...angeordneter & \textit{K\"{o}rper}, \ x,y \ \in \ K, \\ A \subset K \end{array}$

•
$$x \le y \Leftrightarrow -y \le -x$$

•
$$x < A \Leftrightarrow -A < -x$$

•
$$A < x \Leftrightarrow -x < -A$$

•
$$min(-A) = -max(A)$$

•
$$max(-A) = -min(A)$$

•
$$inf(-A) = -sup(A)$$

•
$$sup(-A) = -inf(A)$$

Definition 1.6. $K...angeordneter\ K\"{o}rper,\ a,b\in K$

$$\bullet \ (a,b) := \{x \in K : a < x < b\}$$

•
$$[a,b] := \{x \in K : a \le x \le b\}$$

•
$$[a,b) := \{x \in K : a \le x < b\}$$

$$\bullet \ (a,b] := \{x \in K : a < x \le b\}$$

•
$$(a, +\infty) := \{x \in K : a < x\}$$

•
$$(-\infty, b) := \{x \in K : x < b\}$$

Lemma 1.5. $K...angeordneter\ K\"{o}rper,\ a,b\in K,$ a < b

Es gilt sup((a,b)) = b und inf((a,b)) = a.

Definition 1.7 (Signumfunktion, Absolutbetrag). $K...angeordneter\ K\ddot{o}rper$

Die Funktion sgn(x) := -1, falls x < 0; 0, falls x = 0 und 1, falls x > 0.

Die Funktion |.| := x, falls $x \ge 0$ und 1, falls x < 0. Es gilt $sgn : K \to \{-1, 0, 1\}$ und $|.| : K \to K$.

Lemma 1.6. $K...angeordneter\ K\"{o}rper,\ x,y\in K$

$$\bullet$$
 $|x| = sgn(x) * x$

$$\bullet \ \ x = sgn(x) * |x|$$

•
$$|x * y| = |x| * |y|$$

•
$$max(x,y) = \frac{x+y+|x-y|}{2}$$

•
$$min(x,y) = \frac{x+y-|x-y|}{2}$$

$$\bullet ||x+y| \le |x| + |y|$$

$$\bullet ||x| - |y|| \le |x - y|$$

Lemma 1.7. $K...angeordneter\ K\"{o}rper,\ x\in K,\ x\geq -1$

Dann gilt $\forall n \in \mathbb{N} : (1+x)^n \ge 1 + n * x$

1.1.3 archimedisch angeordnete Körper

Definition 1.8 (archimedisch angeordnet). Ein angeordneter Körper (K, +, *, P) heißt archimedisch angeordnet falls $\mathbb{N} \subseteq K$ nicht nach oben beschränkt ist.

Satz 1.8. K... archimedisch angeordneter Körper, $x, y \in K$, x < y

Dann existiert ein $p \in \mathbb{Q}$ mit x .

1.2 Ganze Zahlen

Definition 1.9. \mathbb{N}_1 , \mathbb{N}_2 ... Körper von \mathbb{N} disjunkte isomorphe Kopien. Mit $\phi : \mathbb{N} \to \tilde{\mathbb{N}}$ bijektiv.

$$\mathbb{Z} := \mathbb{N}_1 \cup \{0\} \cup \mathbb{N}_2$$

$$\psi: \mathbb{N}_1 \to \mathbb{N}_2$$

 $-: \mathbb{Z} \to \mathbb{Z}$ definiert als $-n: \psi(n)$, falls $n \in \mathbb{N}_1$, 0, falls n = 0 und $\psi^{-1}(n)$, falls $n \in \mathbb{N}_2$.

 $\mathbb{N} := \mathbb{N}_1 \ und - \mathbb{N} := \mathbb{N}_2 \ ergibt \ die \ neue \ Definition$ $\mathbb{Z} := -\mathbb{N} \cup \{0\} \cup \mathbb{N}.$

*: $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ definiert als |p| * |q|, falls $p \neq 0$, $q \neq 0$, sgn(p) = sgn(q), 0, falls $p = 0 \lor q = 0$ und -(|p| * |q|), falls $p \neq 0$, $q \neq 0$, $sgn(p) \neq sgn(q)$.

 $|.|: \mathbb{Z} \to \mathbb{Z}$ definiert durch 0, falls n = 0, n, falls $n \in \mathbb{N}$ und -n, falls $n \in -\mathbb{N}$.

 $sgn: \mathbb{Z} \to \{0, 1, -1\}$ definiert durch 1, falls $n \in \mathbb{N}$, 0, falls n = 0 und -1, falls $n \in -\mathbb{N}$.

 $\begin{array}{l} +: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \ definiert \ durch \ p+q, \ falls \ p,q \in \mathbb{N}, \\ -(|p|+|q|), \ falls \ p,q \in -\mathbb{N}, \ p-|q|, \ falls \ p,-q \in \mathbb{N}, p > \\ -q, \ -(|q|-p), \ falls \ p,-q \in \mathbb{N}, p < -q, \ -(|p|-q), \ falls \\ -p,q \in \mathbb{N}, -p > q, \ q-|p|, \ falls \ -p,q \in \mathbb{N}, -p < q \\ und \ 0, \ falls \ p=-q. \end{array}$

Schreibweise. Wenn $p, q \in \mathbb{Z}$ wird p-q := p+(-q).

Satz 1.9. Für $(\mathbb{Z}, +, *)$ gelten folgende Aussagen:

• + ist kommutativ, assoziativ und 0 ist neutrales Element bezgl. +.

- $F\ddot{u}r \ p \in \mathbb{Z}$ ist -p ein inverses Element bezgl. +.
- * ist kommutativ, assoziativ und 1 ist neutrales Element bzgl. *, aber es bildet keine Gruppe.
- Distributivgesetz: p * (q + r) = (p * q) + (p * r)
- $p \neq 0 \land q \neq 0 \implies p * q \neq 0$

Definition 1.10. $p, q \in \mathbb{Z}$

$$p < q \Leftrightarrow q - p \in \mathbb{N} \ und \ p \le q \Leftrightarrow q - p \in \mathcal{V} \cap \{0\}$$

Definition 1.11. $(K, +, *)...K\"{o}rper, p \in \mathbb{Z}, x \in K, x \neq 0$

 $x^p \coloneqq x^p$, falls $p \in \mathbb{N}$, 1, falls p = 0 und $\frac{1}{x^{-p}}$, falls $p \in -\mathbb{N}$.

Eigenschaften von x^p : Wenn $x \in K \setminus \{0\}$, $p, q \in \mathbb{Z}$ gilt $x^p * x^q = x^{x+q}$, $(x^p)^q = x^{p*q}$ und $x^{-p} = \frac{1}{x^p}$.

Lemma 1.10. (K, +, *, P)... angeordneter Körper mit $x, y \ge 0$, $n \in \mathbb{N}$.

 $x < y \Leftrightarrow x^n < x^n \text{ und } x, y > 0 : x < y \Leftrightarrow x^{-n} > y^{-n}$

1.3 Rationale Zahlen

Definition 1.12. $\sim \subseteq (\mathbb{Z} \times \mathbb{N}) \times (\mathbb{Z} \times \mathbb{N})$ sei definiert durch $(p, n) \sim (\hat{p}, \hat{n}) \Leftrightarrow p * \hat{n} = \hat{p} * n$.

Lemma 1.11. \sim ist Äquivalenzrelation.

Definition 1.13. $\mathbb{Q} := \mathbb{Z} \times \mathbb{N} / \sim = \{[(x,n)] \sim : (x,n) \in \mathbb{Z} \times \mathbb{N} \}$

 $+: (\mathbb{Z} \times \mathbb{N}) \times (\mathbb{Z} \times \mathbb{N}) \to \mathbb{Z} \times \mathbb{N}$ definiert durch $(x,n) + (y,m) \coloneqq (x*m+y*n,n*m)$

 $*: (\mathbb{Z} \times \mathbb{N}) \times (\mathbb{Z} \times \mathbb{N}) \to \mathbb{Z} \times \mathbb{N}$ definiert durch (x,n)*(y,m) := (x*y+n*m)

Lemma 1.12. +, * sind kommutativ und assoziativ auf $\mathbb{Z} \times \mathbb{N}$.

Definition 1.14. $sgn : \mathbb{Z} \times \mathbb{N} \to \{-1, 0, 1\}$ definiert $mit \ sgn((x, n)) := sgn(x)$

Lemma 1.13. $(x,n) \sim (\hat{x},\hat{n}), (y,m) \sim (\hat{y},\hat{m})$

- $\implies sgn((x,n)) = sgn((\hat{x},\hat{n}))$
- \implies $(x,n) + (y,m) \sim (\hat{x},\hat{n}) + (\hat{y},\hat{m})$
- \implies $(x,n)*(y,m) \sim (\hat{x},\hat{n})*(\hat{y},\hat{m})$

Definition 1.15. $+: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ definiert durch $[(x,n)]_{\sim} + [(y,m)]_{\sim} := [(x,n) + (y,m)]_{\sim}$

* : $\mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ definiert durch $[(x,n)]_{\sim}$ * $[(y,m)]_{\sim} := [(x,n)*(y,m)]_{\sim}$

 $sgn: \mathbb{Q} \to \{-1,0,1\}$ definiert als $sgn([(x,n)]_{\sim}) := sgn((x,n))$

Lemma 1.14. • +, * $sind\ assoziativ\ und\ kommutativ$

- Es gilt das Distributivgesetz
- [(0,1)]_∼ ist das additiv neutrale Element. Man schreibt dafür auch 0.
- [(1,1)]_∼ ist das multiplikativ neutrale Element. Man schreibt dafür auch 1.
- $[(x,n)]_{\sim} \in \mathbb{Q} \implies [(-x,n)]_{\sim} \text{ ist Inverses bezgl.}$
- $[(x,n)]_{\sim} \neq 0 \implies [(sgn(x)*n,|x|)]_{\sim} \text{ ist Inverses } bezql. *.$
- $P := \{ [(x,n)]_{\sim} : sgn([(x,n)]_{\sim}) = 1 \}$
- $-P := \{[(x,n)]_{\sim} : sgn([(x,n)]_{\sim}) = -1\}$
- \mathbb{Z} lässt sich in \mathbb{Q} isomorph einbetten, d.h. \exists eine injektive Funktion $\phi : \mathbb{Z} \to \mathbb{Q}$.
- $\phi(\mathbb{N}) \subseteq \mathbb{Q}$ hat keine obere Schranke Daher ist $(\mathbb{Q}, +, *)$ ein Körper.

Lemma 1.15. Sei (K, +, *, P) ein beliebiger angeordneter Körper.

Dann existiert eine eindeutige Abbildung $\phi: \mathbb{Q} \to K$ die verträglich mit + und * ist. ϕ ist dabei immer injektiv und mit < und < verträglich.

Schreibweise. $[(x,n)]_{\sim} \in \mathbb{Q}$

$$[(x,n)]_{\sim} = \frac{\phi(x)}{\phi(n)} = \frac{x}{n}$$