

DEFINING THE PROBLEM AS STATE SPACE

RATNA MUFIDAH, S.Kom., M.Kom.

PROBLEM ???

FORMAL DESCRIPTION OF A PROBLEM

- Space of all possible configurations where each configuration is call a state
- An initial state
- One or more goal state
- Set of rules/operators which move the problem from one state to the next

HOW TO DEFINE THE PROBLEM?

Create a state space

 state space is a space that contains all circumstances that may occur Determine the initial state

Determine the final state/destinatio n/goals

Define a set of rules

 rules that can be used to change one state to another

Water Bucket Case

- There are 2 buckets where each bucket has a capacity of 4 liters (Bucket A) and 3 liters (Bucket B).
- There is a water pump used to fill the water in the bucket.
- How would you fill exactly 2 liters of water into bucket A?

Bucket A
Capacity: 4 liters

Bucket BCapacity: 3 liters

1. State space identification

- a. x =The amount of water filled into bucket A (4 liters), $x \in \{0,1,2,3,4\}$
- b. $Y = \text{The amount of water filled into bucket B (3 liters)}, y \subseteq \{0,1,2,3\}$

2. Initial state and destination/goal state

- a. **Initial state**: Both buckets are empty, so it can be described that x,y = (0,0)
- b. **Goal state**: bucket A is filled with exactly 2 liters of water, so we can plot x,y = (2, n) where **n** is any value

3. The state space of a bucket can be described as follows:

4. Rules for the water bucket case:

No	IF	THEN
1.	(x,y) x<4	(4,y), Fill bucket A until it is full
2	(x,y) y<3	(x,3), Fill bucket B until it is full
3	(x,y) x>0	(x-d,y), Pour some of the water out of bucket A
4	(x,y) y>0	(x,y-d), Pour some of the water out of bucket B
5	(x,y) x>0	(0,y), Empty bucket A by dumping the water on the ground

4. Rules for the water bucket case:

No	IF	THEN
6	(x,y) y>0	(x,0), Empty bucket B by dumping the water on the ground
7	(x, y) x+y≥ 4 and y >0	(4, y-(4-x)), Pour water from bucket B into bucket A until bucket A is full
8	(x,y) x+y≥ 3 and x > 0	(x-(3-y),3), Pour water from bucket A into bucket B until bucket B is full
9	(x,y) x+y≤ 4 and y > 0	(x+y, 0), Pour all the water from bucket B into bucket A

4. Rules for the water bucket case:

No	IF	THEN	
10	(x,y) x+y≤ 3 dan x > 0	(0,x+y), Pour all the water from bucket A into bucket B	
11	(0,2)	(2,0), Pour 2 liters of water from bucket B into bucket A	
12	(2,y)	(0,y), Empty 2 liters of water from bucket A by dumping the water on the ground	

Find a solution based on the rules that have been made

Bucket A (I)	Bucket B (I)	Rule
0	0	1
4	0	8
1	3	6
1	0	10
0	1	1
4	1	8
2	3	solved

Bucket A (I)	Bucket B (I)	Rule
0	0	2
0	3	9
3	0	2
3	3	7
4	2	5
0	2	9
2	0	solved

Water Bucket Case — Define the problem Find a solution based on the rules that have been made

Bucket A (I)	Bucket B (I)	Rule
0	0	1
4	0	2
4	3	5
0	3	7
3	0	2
3	3	7
4	2	5
0	2	9
2	0	solved

5. State space representation with tree:

The search for a solution can be described using a tree. Each node shows one state. The path from parent to child shows 1 operation. Each node has child nodes which represent states that can be reached by the parent.

State space representation

Image source: https://www.freetimelearning.com/

State space representation - Tree

- a. The tree structure is used to describe a hierarchical state
- b. The node located at level 0 is called the root
- c. A node that has no children is called a leaf. The leaf indicates the end of a search which can be a goal or dead end

State space representation - Tree

Water bucket case

- Graph consists of nodes that indicate the state which consists of the initial state and the new state that will be achieved using operators
- b. The nodes in the state graph are connected to each other by using arcs with arrows to indicate the direction from one state to the next

Initial state: M, Destination(Goal) state: T

There are 4 paths from M to T
 M-A-B-C-E-T
 M-A-B-C-E-H-T
 M-D-C-E-T
 M-D-C-E-H-T

 There are some paths that don't get the destination (T)

M-A-B-C-E-F-G M-A-B-C-E-I- J M-D-C-E- F-G M-D-C-E-I-J M-D-I-J

Rumania Map Case

- a. Rudi is on vacation in Romania. His current position is in Arad . He has to fly from Bucharest Airport tomorrow.
- b. Initial state: Arad
- c. Goal: Bucharest
- d. Formulation of the problem:
 - Action: Drive from town to town
 - State: Cities in Romania

Rumania Map Case

Rumania Map Case

Solution Search: A series of destination cities

- a. Arad, Sibiu, Fagaras, Bucharest
- b. Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest
- c. Arad, Zerind, Oradea, Sibiu, Fagaras, Bucharest
- d. Arad, Timisoara, Lugoj, Mehadia, Dobreta, Craiova, Pitesti, Bucharest
- e. etc

State space representation - AND/OR Tree

An AND/OR tree is a tree whose internal nodes are labeled either "AND" or "OR".

AND/OR Tree expected to shorten the process in achieving the goal.

Problem M can only be solved with A AND B AND C AND D

Problem M has 4 possible solutions: A OR B OR C OR D

Image source: https://www.freetimelearning.com/

Searching Methods

Searching Methods

A process looking for a solution from a problem through a group of possible state spaces.

There are two types of searching methods commonly used:

a. Blind Searching/ Uninformed Searching

There isn't any initial information that can be used in the search process.

Some examples of blind search methods include: Breadth-First Search (BFS), Depth-First Search (DFS), Uniform Cost Search (UCS), Depth Limited Search (DLS), Iterative Deeping Depth First Search (IDDFS), Bidirectional Search (BS)

Searching Methods

b. Heuristic Searcing/Informed Searching

There is initial information that can be used in the search process.

Some examples of blind search methods include: Generate and Test, Hill Climbing, Best First Search, Alpha Beta Prunning, Simulated Annealing, Min-Max, Local Search Algorithms, Local Beam Search.

Class Discussion (20 minutes)

- The class will be divided into several groups
- 2. One group consists of 4 to 5 members
- 3. Group discussions are held for 20 minutes
- 4. The results of the group discussion will be presented in front of the class for 10 to 15 minutes
- 5. The presenter will get 1 to 2 questions from other groups

Discussion Materials - 02

Solve the following problems

"How can a farmer, a sheep, a wolf, and vegetables cross safely?"

State space identification

Farmer = f, Vegetables = v, Sheep = s, Wolf= w

Initial State

Origin Area = (f, v, s, w) Opposite Area = (0,0,0,0)

Goal

Origin Area = (0,0,0,0) Opposite Area = (f, v, s, w)

Discussion Materials - 02

A Set of Rules

No	Rule
1	A Sheep and a farmer crossing
2	Vegetables and a farmer crossing
3	A wolf and a farmer crossing
4	A sheep and a farmer returned
5	Vegetables and a farmer returned
6	A wolf and a farmer returned
7	A farmer returned

THANKS!

See You

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

