Mathematische Methoden

	_	3	1	1 ~	
ı	I)r.	- M1	chae	I (:)	zerner

Name:

Aufgabe 1: Multiple Choice

Welche der Aussagen trifft/treffen zu?

- \square Für die Determinante eines Produktes zweier Matrizen gilt $\det(AB) = \det(A) + \det(B)$
- □ Das Spatprodukt lässt sich über die Determinante $\vec{a} \cdot (\vec{b} \times \vec{c}) = \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$ darstellen.
- \square Das lineare Gleichungssystem $A\vec{x} = \vec{b}$ mit $\vec{b} \neq \vec{0}$ hat genau dann eine eindeutige Lösung, wenn det $A \neq 0$.
- \Box Zu jeder Matrix A existiert eine Matrix $A^{-1},$ sodass $A\cdot A^{-1}=E$
- \square Das Produkt einer $(n \times m)$ und einer $(m \times k)$ Matrix ergibt eine $(k \times n)$ Matrix.

Aufgabe 2: Multiple Choice

Welche der Aussagen trifft/treffen zu?

- \square rot(grad ϕ) = 0
- \Box div(rot \vec{a}) = 0
- \square Falls die Hesse-Matrix $H(x_1, x_2, \ldots, x_n)$ einer beliebig oft stetig differenzierbaren Funktion $f(x_1, x_2, \ldots, x_n)$ semidefinit ist, liegt ein Sattelpunkt vor.
- \Box das infinitesimale Volumenelement lautet in Kugelkoordinaten $\mathrm{d}V = r^2 \sin \varphi \, \mathrm{d}r \mathrm{d}\varphi d\theta$, wobei r der Radius, θ der Polarwinkel und φ der Azimutalwinkel ist.
- \Box Der Azimutalwinkel φ in Kugelkoordinaten lässt sich eindeutig über $\varphi=\arctan y/x$ bestimmen.

Aufgabe 3: Multiple Choice

Welche der Aussagen trifft/treffen zu?

- □ Wenn eine Zentralkraft in kartesischen Koordinaten vorliegt, ist diese auch eine Zentralkraft in Kugelkoordinaten.
- \square Für die Berechnung der Kraft \vec{F} aus dem Potential U gilt: $-\nabla \cdot \vec{F} = U$
- \Box Für eine konservative Kraft \vec{F} gilt immer: $\nabla \times \vec{F} = \vec{0}$
- □ Bei konservativen Kräften ist die Arbeit nicht abhängig von der Wahl des Weges.
- \Box Der Weg ist geschlossen, wenn für eine konservative Kraft \vec{F} gilt: $\int \vec{F} \cdot d\vec{r} = 0$

Aufgabe 4: Multiple Choice

Welche der Aussagen trifft/treffen zu?

Seien $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$

$$\square \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

$$\Box \ \vec{a} \cdot (\vec{b} \cdot \vec{c}) = (\vec{a} \cdot \vec{b}) \cdot \vec{c}$$

$$\Box \ \vec{a} \cdot \vec{b} \ge 0$$

$$\Box -1 \le \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \le 1$$

$$\Box \ \vec{a} \times \left(\vec{b} \times \vec{c} \right) = \vec{b} \cdot (\vec{a} \cdot \vec{c}) - \vec{c} \cdot \left(\vec{a} \cdot \vec{b} \right)$$

Aufgabe 5: Multiple Choice

Welche der Aussagen trifft/treffen zu?

- \Box Eine Menge von Vektoren im \mathbb{R}^3 ist genau dann linear unabhängig, wenn alle Vektoren in verschiedene Richtungen zeigen.
- \square m Vektoren bilden eine Basis des \mathbb{R}^n genau dann, wenn die Vektoren linear unabhängig sind.
- \square n Vektoren bilden eine Basis des \mathbb{R}^n genau dann wenn die Vektoren linear unabhängig sind.
- \Box Wenn die Spalten in einer quadratischen Matrix Alinear unabhängig sind, ist $A\vec{x}=\vec{b},\,\vec{b}\neq\vec{0}$ eindeutig lösbar.
- \Box Wenn die Spalten in einer quadratischen Matrix Alinear abhängig sind, ist $A\vec{x}=\vec{b},\,\vec{b}=\vec{0}$ lösbar.

Aufgabe 6: Multiple Choice Welche der Aussagen trifft/treffen zu?
\square Das Volumenintegral hängt von den verwendeten Koordinaten ab.
\square Die Funktionaldetermiante in Kugelkoordinaten (r, θ, φ) ist $r^2 \cot(\theta)$.
\Box Die Funktionaldetermiante in Zylinderkoordinaten (ρ,φ,z) ist $\rho.$
\Box Die Funktionaldetermiante in kartesischen Koordinaten (x,y,z) ist 1.
$\square \ \ \text{Der Einheitsvektor} \ \vec{e_r} \ \text{in Kugelkoordinten ist:} \ (\cos(\varphi)\sin(\theta),\sin(\varphi)\sin(\theta),\cos(\theta))^T$
Aufgabe 7: Multiple Choice Welche der Aussagen trifft/treffen zu?
Für zwei diagonalisierbare Matrizen $A,B\in\mathbb{R}^{n\times n}$ mit $AB-BA=0$ gilt
\square A und B kommutieren
\square A und B besitzen die selben Eigenwerte
\square A und B haben immer eine gemeinsame Eigenbasis, in der sie diagonalisiert werden können
Aufgabe 8: Multiple Choice Welche der Aussagen trifft/treffen zu? Der Drehimpuls $\vec{L}=\vec{r}\times\vec{p}$ einer Punktmasse ist eine Erhaltungsgröße, wenn
\Box Alle wirkenden Kräfte senkrecht auf \vec{r} stehen
$\Box \ \vec{r}$ senkrecht auf \vec{p} steht und $ \vec{p} $ eine Erhaltungsgröße ist
□ Alle wirkenden Kräfte zeitunabhängig sind

Aufgabe 9: Multiple Choice Welche der Aussagen trifft/treffen zu? Die Abbildung

$$\langle .,. \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \ (x,y) \mapsto \langle x,y \rangle := \sum_{k=1}^n x_k^m y_k^m$$

ist	ein	Skalarr	orodukt	auf dem	\mathbb{R}^n .	falls

	m	=	$\frac{\pi}{2}$
-	110	_	•

$$\square m \approx \frac{\pi}{3}$$

 \square m gerade ist

 \square m ungerade ist

Aufgabe 10: Multiple Choice

Welche der Aussagen trifft/treffen zu?

- ☐ Ein allgemeiner Vektor ist immer darstellbar durch einen Pfeil.
- \square Die Basisvektoren sind immer rechtwinklig zueinander.
- \square Die Komponente a_i eines Vektors \vec{a} in Richtung eines Einheitsvektors $\vec{e_i}$ lässt sich durch $a_i = \vec{a} \cdot \vec{e_i}$ gewinnen.
- \square Wenn 3 Vektoren aus dem \mathbb{R}^3 in einer Ebene liegen, sind sie linear unabhängig.
- \Box Für normierte Vektoren $\hat{\vec{r}}$ gilt immer $|\vec{r}|=1$

Aufgabe 11: Multiple Choice

Welche der Aussagen trifft/treffen zu?

- □ Ein Axiom ist ein Grundsatz einer Theorie, der innerhalb dieses Systems weder begründet noch deduktiv abgeleitet wird.
- □ Die träge Masse und die schwere Masse sind in der Newtonschen Mechanik zwei unterschiedliche Größen. Erst die allgemeine Relativitätstheorie zeigt deren Äquivalenz.
- ☐ Die Newtonschen Axiome gelten in jedem Bezugssystem.

Aufgabe 12: Multiple Choice Welche der Aussagen trifft/treffen zu?
\Box Das Standard-Skalarprodukt lässt sich in jeder Basis mit Hilfe der Komponenten ganz einfach durch $\vec{a}\cdot\vec{b}=\sum_i a_ib_i$ berechnen
□ Das Kreuzprodukt ist kommutativ
$\square \vec{r} \cdot \vec{r} > 0 \Leftrightarrow r_i > 0 \ \forall i \in \{1, 2, 3\}$
\Box Es gibt mindestens einen Spezialfall in dem die Dreiecksungleichung $ \vec{a}+\vec{b} \leq \vec{a} + \vec{b} $ nicht erfüllt ist.
Aufgabe 13: Multiple Choice Welche der Aussagen trifft/treffen zu?
\Box Wenn zwei Matrizen vertauschen, also $AB-BA=0$ gilt, dann sind sie quadratisch.
\Box Für eine Kreisbewegung ergibt sich die Krümmung κ durch den Radius R des Kreises, $\kappa=1/R.$
\Box Die Parametrisierung einer Kurve ist immer einde utig.
\Box Für eine 2-fach stetig differenzierbare Funktion f ist die Hesse-Matrix $H_f(\vec{x})$ symmetrisch

 \Box Eine Funktion fist explizit von der Zeit tabhängig, wenn gilt: $\frac{\partial f}{\partial t}=0$