Data Science & Engineering

Cahyo Listyanto
Head of Data Science and Engineering
Technology Department

November 2018

About Bizzy

Data Case Study

People

Process

Technology

QnA

Bizzy has relentless MISSION to accomplish

To underpin a clean economy by powering an inclusive digital business ecosystem that enables transparent, efficient and accountable commerce for all stakeholders

Bizzy enables execution of strategic, tactical and operational procurement activities

Data Case Study

Data Case Study

Daily Notification of end to end process

Addressing bottleneck to increase SLA

Internal Notification:

- Finance Pending Approval
- Buyer Pending PO(Back Order)
- Vendor Pending GR
- Pending Shipment
- Pending DO Collection
- Finance Pending Invoice
- Vendor Pending Payment
- Customer Pending Payment
- Etc

Add Machine Learning prediction to detect potential bottleneck item

Data Case Study

Daily Notification of end to end process

Addressing bottleneck to increase SLA

External Notification:

- Customer AR Statement Reminder
- Vendor Payment Notification
- Customer Weekly Spending Summary

Delivery Channel

- Chat Reporting
- Email Reporting
- Reports Web Portal
- Power BI Dashboard
- Excel Reporting

Leverage channel which the user **used** in day to day operation

Delivery Channel - Chat/Text Messages

Delivery Channel – Email Reporting

Delivery Channel – Dashboard

Framework for Business/Digital Transformation

People

Process

- JIRA (Agile Methodology)
 - Scrum
 - Kanban
- Confluence (Wiki/Documentation)
- Bitbucket (Repository)

Technology – Data Architecture

Azure Databricks Spark & Azure Data Factory

Various Data Pipelines & Technology

Data Warehouse

Real-time Dashboard

Data Warehouse - Star Schema

Data Warehouse - Data Vault

Data Vault – Hubs / Links / Satellites SatCarrierReg

Technology – Data Architecture

Azure Databricks Spark & Azure Data Factory

Big Data Infrastucture

Cloud

- Leasing cost model with easier chargeback representation.
- Can be cheaper for low uptime workloads(midnight ETL). Separation of compute and storage.
- Elasticity. For example, the ability to spin up huge numbers of instances to completely run a new release while running the old release at the same time.
- Software based managed services as an option.
- Integrates well with data sources already stored in the cloud.
- No control of hardware, and limited control of software especially if you use a cloud vendor's distribution.
- Latency when interoping with on-premise resources. E.g. warehouse.
- Software level privacy, rather than hardware.
- Lock-in. This can be alleviated some if you use something like Cloudera,
 Hortonworks, or MapR.

On - Premise

- Typically cheaper for non-elastic workloads at the moment.
- Since most Cloud providers use some type of network storage, performance is typically better for a bare-metal based deployment.
- Full control of the Hadoop hardware + software.
- Latency to and from systems you integrate with can be minimized.
- Physical data isolation and privacy.
- Infrastructure managed services. E.g. smart hands to install servers and network.
- Barrier to entry is typically higher since there is commonly "hardware friction" in getting new infrastructure on the floor and operating. (Private Clouds can help reduce "hardware friction" for proof of concepts and development/testing environments.)
- Chargeback models for Hadoop can be complex.

Spark ETL Generator – Source to Staging

```
val srcDb = "catalog"
val tgtDb = "stg_phx_catalog"
val tables = List("attribute_code","attribute_set","attribute_value","brand", "category", "category_temp", "misc", "uom",
"product_group", "product_group_attribute", "product_variant", "product_variant_migration", "product_vendor",
"product_vendor_migration", "stocking_uom")
import com.bizzy.dbrk.etl.JdbcEtlProcess

val notebookPath = dbutils.notebook.getContext.notebookPath.get
val jdbc = new JdbcEtlProcess(notebookPath, spark, jdbcUrl, connectionProperties)
jdbc.process(srcDb, tgtDb, tables, "overwrite", 3, 1000)
```


Spark ETL Generator – Staging to Archive

```
val staging = "stg_phx_catalog"
val archive = "dlv_phx_catalog"
val tables = List("brand", "category", "category_temp", "product_group", "product_variant", "product_vendor")
for(table <- tables ) {
    Archive.archive(s"$staging.$table", s"$archive.$table", s"$tmp.$table", id, date, "phx")
}</pre>
```


THANKS! QnA

PT Bizzy Commerce Indonesia

Dimo Space Building, 2nd Floor Jl. Timor No 6, Menteng Jakarta Pusat, 10350

021-278 999 55

Bizzy Indonesia

(in) Bizzy-Indonesia

Bizzy.co.id/blog