Lecture 16

Hash Function

Hash functions

- Hash function: h = H(M)
 - M can be of any size
 - h is always of fixed size
 - Typically, h << size(M)

One use case - using hash function

- Initialization: A and B share a common secret, S_{AB}
- Message, M
- A calculates MD_M = H (S_{AB} | | M)
- B recalculates MD'_M, and check
- MD'_M = MD_M

This scheme cannot provide authentication.

Requirements for secure hash functions

- 1. can be applied to any sized message M
- 2. produces fixed-length output h
- 3. is easy to compute h=H(M) for any message M
- 4. given h is infeasible to find x s.t. H(x) = h
 - one-way property or preimage resistance
- 5. given x is infeasible to find x' s.t. H(x') = H(x)
 - weak collision resistance or second pre-image resistant
- 6. infeasible to find any pair of x, x' s.t. H(x') = H(x)
 - strong collision resistance

Hash Function: Collision Resistance

- Collision: Two different inputs with the same output
 - $x \neq x'$ and H(x) = H(x')
 - Can we design a hash function with no collisions?
 - No, because there are more inputs than outputs (pigeonhole principle)
 - However, we want to make finding collisions infeasible for an attacker
- Collision resistance: It is infeasible to (i.e. no polynomial time attacker can) find any pair of inputs $x' \neq x$ such that H(x) = H(x')

Secure hash function

- A hash function that satisfies the first five properties is referred to as a weak hash function
- **Security:** random/unpredictability, no predictable patterns for how changing the input affects the output
 - Changing 1 bit in the input causes the output to be completely different
 - Also called "random oracle" assumption
- A message digest
 - a fixed size numeric representation of the contents of a message, computed by a hash function
- Examples: SHA-1 (Secure Hash Algorithm 1), SHA-2, SHA-3, MD5

Hash Function: Examples

- MD5
 - Output: 128 bits
 - Security: Completely broken
- SHA-1
 - Output: 160 bits
 - Security: Completely broken in 2017
 - Was known to be weak before 2017, but still used sometimes
- SHA-2
 - Output: 256, 384, or 512 bits (sometimes labeled SHA-256, SHA-384, SHA-512)
 - Not currently broken, but some variants are vulnerable to a length extension attack
 - Current standard
- SHA-3 (Keccak)
 - Output: 256, 384, or 512 bits
 - Current standard (not meant to replace SHA-2, just a different construction)

Length Extension Attacks

- Length extension attack: Given H(x) and the length of x, but not x, an attacker can create $H(x \mid \mid m)$ for any m of the attacker's choosing
 - Length extension attack Wikipedia
- SHA-256 (256-bit version of SHA-2) is vulnerable
- SHA-3 is not vulnerable