/Users/bps/PycharmProjects/hypothesis_tesing/venv/bin/python /Users/bps/PycharmProjects/hypothesis_tesing/main.py

Welcome to the Hypothesis Testing calculator made by ALIAS GEORGE

Select the Calculator (type the no corresponding eg 1 for one mean Large sample)

- 1. One Mean Large sample
- 2. One Mean Small sample
- 3. Two Mean Large sample
- 4. Two Mean Small sample with both normal and $\sigma 1 = \sigma 1$
- 5. Matched Pair t-Test
- 6. One Variance Test
- 7. Two Variance Test
- 8. One Proportion Test
- 9. Multi Proportion Test
- 10. Two Proportion Difference Test
- 11. R and C Analysis Test
- 12. Goodness Fit Test

12

12. Goodness Fit Test

Select the Calculator

Discrete Distribution

- 1. Goodness Fit for Poisson Test
- 2. Goodness Fit for Binomial Test

- 3. Goodness Fit for Geometric Test
- 4. Goodness Fit for Hyper Geometric Test
- 5. Goodness Fit for Uniform Discrete Test

Continuous Distribution

- 6. Goodness Fit for Normal Test
- 7. Goodness Fit for Log Normal Test
- 8. Goodness Fit for Alpha Test
- 9. Goodness Fit for Beta Test
- 10. Goodness Fit for Gamma Test
- 11. Goodness Fit for Weibull Test
- 12. Goodness Fit for Exponential Test
- 13. Goodness Fit for Uniform Continuous Test 6

6. Goodness Fit for Normal Test

Level of significance: 0.05

Enter the mean μ : 4

Enter the standard deviation σ : 2.5

Enter the no of Categories : 10

Does the interval is a continuous one ? eg: <10 , 10 <20 etc

- 1. yes
- 2. no

1

Enter the Enter the Highest of each interval_0: 0 Enter the Observed Frequency for interval_0: 4

- Enter the Enter the Highest of each interval_1: 1 Enter the Observed Frequency for interval_1: 5 Enter the Enter the Highest of each interval_2: 2 Enter the Observed Frequency for interval_2: 10 Enter the Enter the Highest of each interval_3: 3 Enter the Observed Frequency for interval_3: 13 Enter the Enter the Highest of each interval_4: 4 Enter the Observed Frequency for interval_4: 18 Enter the Enter the Highest of each interval_5: 5 Enter the Observed Frequency for interval_5: 16 Enter the Enter the Highest of each interval_6: 6 Enter the Observed Frequency for interval_6: 9 Enter the Enter the Highest of each interval_7: 7 Enter the Observed Frequency for interval_7: 9
- Enter the Enter the Highest of each interval_8: 8 Enter the Observed Frequency for interval_8: 4

Enter the Lowest of Interval of_9: 8
Enter the Observed Frequency for Interval of_9: 2

X	Observed Frequency	Normal Probabilities of Interval area	Expected Frequency
< 0	4	0.0548	4.932
0 < 1	5 	0.0603	5.427
1 < 2	10	0.0968	8.712
2 < 3	13 I	0.1327	11.9430000000000001
3 < 4	18 I	0.1554	13.986
4 < 5	16	0.1554	13.986
5 < 6	9	0.1327	11.9430000000000001
6 < 7	9	0.0968	8.712
7 < 8	4	0.0603	5.427
8 >	2 l	0.0548	4.932

Combined categories (initial, final) [(0, 1), (8, 9)]

			L	
		Normal Probabilities of Interval area		·
	9	0.1151000000000001	10.359	0.178
	10	0.0968	8.712	0.19
	13	0.1327	11.943000000000001	0.094
	18	0.1554	13.986	1.152
	16	0.1554	13.986	0.29

9	0.1327	11.943000000000001	0.725	
9	0.0968	8.712	0.01	
6	0.1151000000000001	10.359	1.834	

Null hypothesis: Random variable has a Normal distribution with μ = 4.0 and standard deviation = 2.5. Alternative hypothesis: Random variable does not have the Normal distribution with μ = 4.0 and standard deviation = 2.5.

Calculations

Total Chi_square: 4.473

Decision

The null must be rejected if $\chi^2 > 14.0671$

Since χ^2 = 4.473 does not exceed 14.0671, the null hypothesis cannot be rejected; we cannot reject that the Normal distribution with μ = 4.0 and standard deviation = 2.5 provides a good fit at level α = 0.05.

Process finished with exit code 0