UNIT 4 - (i)

Fourier series

Euler's Formulae
Change of Interval
Functions Having Points of Discontinuity

PERIODIC FUNCTIONS

If the value of each ordinate f(t) repeats itself at equal intervals in the abscissa, then f(t) is said to be a periodic function.

If
$$f(t) = f(t + T) = f(t + 2T) = \dots$$
 then T is called the period of the function $f(t)$.

For example:

 $\sin x = \sin (x + 2\pi) = \sin (x + 4\pi) = \dots$ so $\sin x$ is a periodic function with the period 2π . This is also called sinusoidal periodic function.

DIRICHLET'S CONDITIONS FOR A FOURIER SERIES

If the function f(x) for the interval $(-\pi, \pi)$

- (1) is single-valued (2) is bounded
- (3) has at most a finite number of maxima and minima.
- (4) has only a finite number of discontinuous
- (5) is $f(x + 2\pi) = f(x)$ for values of x outside $[-\pi, \pi]$, then

$$S_p(x) = \frac{a_0}{2} + \sum_{n=1}^{P} a_n \cos nx + \sum_{n=1}^{P} b_n \sin nx$$

converges to f(x) as $P \to \infty$ at values of x for which f(x) is continuous and to

$$\frac{1}{2}[f(x+0)+f(x-0)]$$
 at points of discontinuity.

FOURIER SERIES (EULER'S FORMULAE)

Definition Let f be a piecewise continuous function on $[-\pi, \pi]$. Then the **Fourier series** of f is the series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

where the coefficients a_n and b_n in this series are defined by

$$a_0 = \frac{1}{n\pi} \int_{-\pi}^{\pi} f(x) \, dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$

and are called the Fourier coefficients of f.

FOURIER SERIES (EULER'S FORMULAE)

Definition If f is a piecewise continuous function on [-L, L], its Fourier series is

$$\oint (\times) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$

where

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) \, dx$$

and, for $n \ge 1$,

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx \qquad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

USEFUL INTEGRALS

The following integrals are useful in Fourier Series.

$$(i) \int_0^{2\pi} \sin nx \, dx = 0$$

$$(iii) \int_0^{2\pi} \sin^2 nx \, dx = \pi$$

$$(v) \int_0^{2\pi} \sin nx \cdot \sin mx \, dx = 0$$

$$(vii) \int_0^{2\pi} \sin nx \cdot \cos mx \, dx = 0$$

(ix)
$$\int uv \, dx = uv_1 - u'v_2 + u''v_3 - u'''v_4 + \dots$$

$$(ii) \int_0^{2\pi} \cos nx \, dx = 0$$

$$(iv) \int_0^{2\pi} \cos^2 nx \, dx = \pi$$

$$(vi) \int_0^{2\pi} \cos nx \cos mx \, dx = 0$$

$$(viii) \int_0^{2\pi} \sin nx \cdot \cos nx \, dx = 0$$

where $v_1 = \int v \, dx$, $v_2 = \int v_1 \, dx$ and so on $u' = \frac{du}{dx}$, $u'' = \frac{d^2u}{dx^2}$ and so on and

(x)
$$\sin n \pi = 0$$
, $\cos n \pi = (-1)^n$ where $n \in I$

Question | Find the Fourier coefficients and Fourier series of the square-wave function f defined by

$$f(x) = \begin{cases} 0 & \text{if } -\pi \le x < 0 \\ 1 & \text{if } 0 \le x < \pi \end{cases} \quad \text{and} \quad f(x + 2\pi) = f(x)$$

SOLUTION Using the formulas for the Fourier coefficients in Definition 7, we have

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{2\pi} \int_{-\pi}^{0} 0 \, dx + \frac{1}{2\pi} \int_{0}^{\pi} 1 \, dx = 0 + \frac{1}{2\pi} (\pi) = \frac{1}{2\pi}$$

and, for $n \ge 1$,

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{0} 0 \, dx + \frac{1}{\pi} \int_{0}^{\pi} \cos nx \, dx$$

$$= 0 + \frac{1}{\pi} \frac{\sin nx}{n} \bigg|_{0}^{\pi} = \frac{1}{n\pi} (\sin n\pi - \sin 0) = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{0} 0 \, dx + \frac{1}{\pi} \int_{0}^{\pi} \sin x \, dx$$

$$= -\frac{1}{\pi} \frac{\cos nx}{n} \bigg]_0^{\pi} = -\frac{1}{n\pi} (\cos n\pi - \cos 0) = \begin{cases} 0 & \text{if } n \text{ is even} \\ \frac{2}{n\pi} & \text{if } n \text{ is odd} \end{cases}$$

Fourier series in sigma notation as

$$f(x) = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{2}{(2k-1)\pi} \sin(2k-1)x$$

Fourier Convergence Theorem If f is a periodic function with period 2π and f and f' are piecewise continuous on $[-\pi, \pi]$, then the Fourier series (7) is convergent. The sum of the Fourier series is equal to f(x) at all numbers x where f is continuous. At the numbers x where f is discontinuous, the sum of the Fourier series is the average of the right and left limits, that is

$$\frac{1}{2}[f(x^{+}) + f(x^{-})]$$

Question

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi, \text{ and has period } 2\pi \end{cases}$$

a) Sketch a graph of f(x) in the interval $-2\pi < x < 2\pi$

STEP ONE

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 1 \cdot dx + \frac{1}{\pi} \int_{0}^{\pi} 0 \cdot dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} \mathrm{d}x$$

$$= \frac{1}{\pi} \left[x \right]_{-\pi}^{0}$$

$$= \quad \frac{1}{\pi} \left(0 - (-\pi) \right)$$

$$= \frac{1}{\pi} \cdot (\pi)$$

i.e.
$$a_0 = 1$$

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

STEP TWO

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \cos nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 1 \cdot \cos nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} 0 \cdot \cos nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} \cos nx \, dx$$

$$= \frac{1}{\pi} \left[\frac{\sin nx}{n} \right]_{-\pi}^{0} = \frac{1}{n\pi} \left[\sin nx \right]_{-\pi}^{0}$$

$$= \frac{1}{n\pi} \left(\sin 0 - \sin(-n\pi) \right)$$

$$= \frac{1}{n\pi} (0 + \sin n\pi)$$
i.e. $a_{n} = \frac{1}{n\pi} (0 + 0) = 0$.

STEP THREE

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} f(x) \sin nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 1 \cdot \sin nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} 0 \cdot \sin nx \, dx$$

i.e.
$$b_n = \frac{1}{\pi} \int_{-\pi}^0 \sin nx \, dx = \frac{1}{\pi} \left[\frac{-\cos nx}{n} \right]_{-\pi}^0$$

 $= -\frac{1}{n\pi} [\cos nx]_{-\pi}^0 = -\frac{1}{n\pi} (\cos 0 - \cos(-n\pi))$
 $= -\frac{1}{n\pi} (1 - \cos n\pi) = -\frac{1}{n\pi} (1 - (-1)^n),$
i.e. $b_n = \begin{cases} 0, & n \text{ even} \\ -\frac{2}{n\pi}, & n \text{ odd} \end{cases}$, since $(-1)^n = \begin{cases} 1, & n \text{ even} \\ -1, & n \text{ odd} \end{cases}$

We now have that

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]$$

with the three steps giving

$$a_0 = 1$$
, $a_n = 0$, and $b_n = \begin{cases} 0, & n \text{ even} \\ -\frac{2}{n\pi}, & n \text{ odd} \end{cases}$

It may be helpful to construct a table of values of b_n

Substituting our results now gives the required series

$$f(x) = \frac{1}{2} - \frac{2}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

c) Pick an appropriate value of x, to show that

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Comparing this series with

$$f(x) = \frac{1}{2} - \frac{2}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right],$$

we need to introduce a minus sign in front of the constants $\frac{1}{3}$, $\frac{1}{7}$,...

So we need $\sin x = 1$, $\sin 3x = -1$, $\sin 5x = 1$, $\sin 7x = -1$, etc

The first condition of $\sin x = 1$ suggests trying $x = \frac{\pi}{2}$.

This choice gives $\sin \frac{\pi}{2} + \frac{1}{3} \sin 3\frac{\pi}{2} + \frac{1}{5} \sin 5\frac{\pi}{2} + \frac{1}{7} \sin 7\frac{\pi}{2}$ i.e. $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7}$

Looking at the graph of f(x), we also have that $f(\frac{\pi}{2}) = 0$.

Picking
$$x = \frac{\pi}{2}$$
 thus gives

$$f(x) = \begin{cases} 1, & -\pi < x < 0 \\ 0, & 0 < x < \pi \end{cases}$$

$$0 = \frac{1}{2} - \frac{2}{\pi} \left[\sin \frac{\pi}{2} + \frac{1}{3} \sin \frac{3\pi}{2} + \frac{1}{5} \sin \frac{5\pi}{2} + \frac{1}{7} \sin \frac{7\pi}{2} + \dots \right]$$

i.e.
$$0 = \frac{1}{2} - \frac{2}{\pi} \begin{bmatrix} 1 - \frac{1}{3} + \frac{1}{5} \\ - \frac{1}{7} + \dots \end{bmatrix}$$

A little manipulation then gives a series representation of $\frac{\pi}{4}$

$$\frac{2}{\pi} \left[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \right] = \frac{1}{2}$$
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}.$$

Question

$$f(x) = \left\{ \begin{array}{ll} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi, \end{array} \right. \text{ and has period } 2\pi$$

a) Sketch a graph of f(x) in the interval $-3\pi < x < 3\pi$

STEP ONE

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot dx + \frac{1}{\pi} \int_{0}^{\pi} x \, dx$$

$$= \frac{1}{\pi} \left[\frac{x^2}{2} \right]_0^{\pi}$$

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases} = \frac{1}{\pi} \left(\frac{\pi^2}{2} - 0 \right)$$

i.e.
$$a_0 = \frac{\pi}{2}$$
.

STEP TWO

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \cos nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \cos nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} x \cos nx \, dx$$

i.e.
$$a_n = \frac{1}{\pi} \int_0^{\pi} x \cos nx \, dx = \frac{1}{\pi} \left\{ \left[x \frac{\sin nx}{n} \right]_0^{\pi} - \int_0^{\pi} \frac{\sin nx}{n} \, dx \right\}$$

(using integration by parts)

i.e.
$$a_n = \frac{1}{\pi} \left\{ \left(\pi \frac{\sin n\pi}{n} - 0 \right) - \frac{1}{n} \left[-\frac{\cos nx}{n} \right]_0^{\pi} \right\}$$

$$= \frac{1}{\pi} \left\{ (0 - 0) + \frac{1}{n^2} [\cos nx]_0^{\pi} \right\}$$

$$= \frac{1}{\pi n^2} \left\{ \cos n\pi - \cos 0 \right\} = \frac{1}{\pi n^2} \left\{ (-1)^n - 1 \right\}$$
i.e. $a_n = \begin{cases} 0, & n \text{ even} \\ -\frac{2}{\pi n^2}, & n \text{ odd} \end{cases}$, see TRIG.
$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$

STEP THREE

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \sin nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \sin nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} x \sin nx \, dx$$
i.e.
$$b_{n} = \frac{1}{\pi} \int_{0}^{\pi} x \sin nx \, dx = \frac{1}{\pi} \left\{ \left[x \left(-\frac{\cos nx}{n} \right) \right]_{0}^{\pi} - \int_{0}^{\pi} \left(-\frac{\cos nx}{n} \right) \, dx \right\}$$
(using integration by parts)
$$= \frac{1}{\pi} \left\{ -\frac{1}{n} \left[x \cos nx \right]_{0}^{\pi} + \frac{1}{n} \int_{0}^{\pi} \cos nx \, dx \right\}$$

$$= \frac{1}{\pi} \left\{ -\frac{1}{n} \left(\pi \cos n\pi - 0 \right) + \frac{1}{n} \left[\frac{\sin nx}{n} \right]_{0}^{\pi} \right\}$$

$$= -\frac{1}{n} (-1)^{n} + \frac{1}{\pi n^{2}} (0 - 0), \text{ see TRIG}$$

$$= -\frac{1}{n} (-1)^{n}$$

i.e.
$$b_n = \begin{cases} -\frac{1}{n} & , n \text{ even} \\ +\frac{1}{n} & , n \text{ odd} \end{cases}$$

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$

We now have

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]$$

where
$$a_0 = \frac{\pi}{2}$$
, $a_n = \begin{cases} 0 & , n \text{ even} \\ -\frac{2}{\pi n^2} & , n \text{ odd} \end{cases}$, $b_n = \begin{cases} -\frac{1}{n} & , n \text{ even} \\ \frac{1}{n} & , n \text{ odd} \end{cases}$

Constructing a table of values gives

n	1	2	3	4	5
a_n	$-\frac{2}{\pi}$	0	$-\frac{2}{\pi}\cdot\frac{1}{3^2}$	0	$-\frac{2}{\pi}\cdot\frac{1}{5^2}$
b_n	1	$-\frac{1}{2}$	$\frac{1}{3}$	$-\frac{1}{4}$	$\frac{1}{5}$

This table of coefficients gives

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$

$$f(x) = \frac{1}{2} \left(\frac{\pi}{2} \right) + \left(-\frac{2}{\pi} \right) \cos x + 0 \cdot \cos 2x$$

$$+ \left(-\frac{2}{\pi} \cdot \frac{1}{3^2} \right) \cos 3x + 0 \cdot \cos 4x$$

$$+ \left(-\frac{2}{\pi} \cdot \frac{1}{5^2} \right) \cos 5x + \dots$$

$$+ \sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots$$

i.e.
$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right] + \left[\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots \right]$$

and we have found the required series!

c) Pick an appropriate value of x, to show that

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$

(i)
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Comparing this series with

$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right] + \left[\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots \right],$$

the required series of constants does <u>not</u> involve terms like $\frac{1}{3^2}$, $\frac{1}{5^2}$, $\frac{1}{7^2}$, So we need to pick a value of x that sets the $\cos nx$ terms to zero. The TRIG section shows that $\cos n\frac{\pi}{2} = 0$ when n is odd, and note also that $\cos nx$ terms in the Fourier series all have odd n

i.e.
$$\cos x = \cos 3x = \cos 5x = ... = 0$$
 when $x = \frac{\pi}{2}$,

i.e.
$$\cos \frac{\pi}{2} = \cos 3\frac{\pi}{2} = \cos 5\frac{\pi}{2} = \dots = 0$$

Setting $x = \frac{\pi}{2}$ in the series for f(x) gives

$$\begin{split} f\left(\frac{\pi}{2}\right) &= \frac{\pi}{4} - \frac{2}{\pi} \left[\cos\frac{\pi}{2} + \frac{1}{3^2} \cos\frac{3\pi}{2} + \frac{1}{5^2} \cos\frac{5\pi}{2} + \ldots \right] \\ &+ \left[\sin\frac{\pi}{2} - \frac{1}{2} \sin\frac{2\pi}{2} + \frac{1}{3} \sin\frac{3\pi}{2} - \frac{1}{4} \sin\frac{4\pi}{2} + \frac{1}{5} \sin\frac{5\pi}{2} - \ldots \right] \\ &= \frac{\pi}{4} - \frac{2}{\pi} [0 + 0 + 0 + \ldots] \\ &+ \left[1 - \frac{1}{2} \underbrace{\sin\pi}_{=0} + \frac{1}{3} \cdot (-1) - \frac{1}{4} \underbrace{\sin2\pi}_{=0} + \frac{1}{5} \cdot (1) - \ldots \right] \end{split}$$

The graph of f(x) shows that $f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$, so that

$$\frac{\pi}{2} = \frac{\pi}{4} + 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
i.e.
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$

Pick an appropriate value of x, to show that

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$

(ii)
$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

Compare this series with

$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right] + \left[\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots \right].$$

This time, we want to use the coefficients of the $\cos nx$ terms, and the same choice of x needs to set the $\sin nx$ terms to zero

Picking x = 0 gives

$$\sin x = \sin 2x = \sin 3x = 0$$
 and $\cos x = \cos 3x = \cos 5x = 1$

Note also that the graph of f(x) gives f(x) = 0 when x = 0

So, picking
$$x = 0$$
 gives

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi . \end{cases}$$

$$0 = \frac{\pi}{4} - \frac{2}{\pi} \left[\cos 0 + \frac{1}{3^2} \cos 0 + \frac{1}{5^2} \cos 0 + \frac{1}{7^2} \cos 0 + \dots \right]$$

$$+ \sin 0 - \frac{\sin 0}{2} + \frac{\sin 0}{3} - \dots$$
i.e.
$$0 = \frac{\pi}{4} - \frac{2}{\pi} \left[1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots \right] + 0 - 0 + 0 - \dots$$

We then find that

$$\frac{2}{\pi} \left[1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots \right] = \frac{\pi}{4}$$
and
$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}.$$

Some important series deduction from Fourier series

$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots \qquad = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \qquad \frac{\pi}{\sinh \pi} = 1 + 2 \left[-\frac{1}{2} + \frac{1}{5} - \frac{1}{10} + \dots \right]$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \qquad \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} \dots \infty = \frac{1}{4} (\pi - 2)$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots \qquad \sum \frac{1}{n^4} = \frac{\pi^4}{90} \qquad \sum \frac{1}{(2n-1)^2} = \frac{\pi^4}{12} = \frac{\pi$$

$$\sum \frac{1}{n^4} = \frac{\pi^4}{90} \qquad \sum \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$$