CORRECTION SÉANCE 4 (8 FÉVRIER)

Exercice 13. 4) Soit $P \in \mathbb{C}[X]$ un polynôme non constant. On pose

$$P(X) = \sum_{i=0}^{n} a_i X^i.$$

avec $n \ge 1$ par hypothèse (P est non constant). On considère également le polynôme

$$Q(X) = \sum_{i=0}^{n} \overline{a_i} X^i = \overline{P(\overline{X})} \in \mathbb{C}[X].$$

Par définition, on a, pour $z \in \mathbb{C}$, $P(\overline{z}) = \overline{Q(z)}$. Comme Q est holomorphe (c'est un polynôme), on peut appliquer la question 2) et dire que \overline{Q} est dérivable en z si et seulement si Q'(z) = 0. Comme Q' est aussi un polynôme, non nul car Q est non constant, il s'annule en un nombre fini de points (au plus n-1 points), d'où le résultat.

Exercice 14.

1) Comme γ est de classe \mathcal{C}^1 , pour $t \in [0,1]$, on peut calculer un développement limité (pour x assez petit)

$$\gamma(t+s) = \gamma(t) + \gamma'(t)s + o(s).$$

De même, pour $z \in D$, on peut calculer un développement limité (pour h assez petit)

$$f(z+h) = f(z) + f'(z)h + o(h).$$

Par composition, on trouve

$$f(\gamma(t+s)) = f(\gamma(t) + \gamma'(t)s + o(s))$$

$$= f(\gamma(t)) + f'(\gamma(t))(\gamma'(t)s + o(s)) + o(\gamma'(t)s + o(s))$$

$$= f(\gamma(t)) + f'(\gamma(t))\gamma'(t)s + f'(\gamma(t))o(s) + o(\gamma'(t)s + o(s))$$

Comme $\gamma'(t)s + o(s) = s(\gamma'(t) + o(1))$ tend vers 0 quand s tend vers 0, on a $o((\gamma'(t)s + o(s)) = o(s)$. Ensuite, on a $f'(\gamma(t))o(s) = o(s)$ car $f'(\gamma(t))$ est une constante. D'où

$$f(\gamma(t+s)) = f(\gamma(t)) + f'(\gamma(t))\gamma'(t)s + o(s) + o(s) = f(\gamma(t)) + f'(\gamma(t))\gamma'(t)s + o(s).$$

Donc $f \circ \gamma$ est dérivable en t, avec $(f \circ \gamma)'(t) = f'(\gamma(t))\gamma'(t)$.

2) Soit $t \in [0,1]$. Par la question précédente on a $(f \circ \gamma)'(t) = f'(\gamma(t))\gamma'(t) = 0$. On pose $f_1 = \Re e(f)$ et $f_2 = \Im e(f)$, de sorte que $f(z) = f_1(z) + if_2(z)$ avec $f_1(z), f_2(z) \in \mathbb{R}$. Comme les fonctions $\Re e$ et $\Im e$ m sont linéaires, on a

$$f_1(\gamma(t+h)) = \Re e(f(\gamma(t+h)))$$

$$= \Re e(f(\gamma(t)) + o(h))$$

$$= \Re e(f(\gamma(t))) + o(h) = f_1(\gamma(t)) + o(h).$$

Donc $(f_1 \circ \gamma)'(t) = 0$, et de même $(f_2 \circ \gamma)'(t) = 0$. Les fonctions $f_1 \circ \gamma$ et $f_2 \circ \gamma$ sont donc des fonctions $[0,1] \to \mathbb{R}$ dont la dérivée est identiquement nulle. Par le théorème des accroissements finis, elles sont constantes. La fonction $f \circ \gamma = (f_1 \circ \gamma) + i(f_2 \circ \gamma)$ est alors constante, d'ou $f(\gamma(1)) = f(\gamma(0))$.

- 3) Comme D est un disque, il s'agit en particulier d'un ensemble convexe. Ainsi, si $z, z' \in \mathbb{D}$, le chemin $\gamma : t \mapsto tz + (1-t)z'$ est un chemin de z vers z' dans D.
- 4) On fixe un point $z_0 \in D$. Pour tout point $z \in D$, on considère un chemin γ de z_0 vers z dans D. D'après la question 2), on a $f(z) = f(\gamma(1)) = f(\gamma(0)) = f(z_0)$. La fonction f est alors constante et égale à $f(z_0)$ sur D.

Exercice 15.

1) Pour montrer que X est fermé dans U, on considère une suite de X qui converge dans U, et on montre que sa limite est dans X. Soit donc $(x_n)_{n\in\mathbb{N}}$ une suite dans X qui admet une limite x dans U. Pour $n\in\mathbb{N}$, on a $x_n\in X$, donc $f(x_n)=f(z_0)$ par définition de X. La suite $(f(x_n))_{n\in\mathbb{N}}$ est donc constante égale à $f(z_0)$. Comme la fonction f est continue (car holomorphe, donc \mathbb{R} -différentiable), on a

$$f(z_0) = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(x).$$

Ainsi, $f(x) = f(z_0)$ et $x \in X$, qui est donc fermé.

Autre méthode plus rapide : par définition, on a $X = f^{-1}(\{f(z_0)\})$ est l'image réciproque du fermé $\{f(z_0)\}$ par l'application continue f, il s'agit donc d'un fermé.

2) Soit $z \in X$. Comme $z \in U$ qui est un ouvert, il existe un disque ouvert $D \subset U$ centré en z. Par l'exercice précédent, on sait que

$$\forall x \in F, f(x) = f(z) = f(z_0).$$

Ainsi, $U \subset X$ par définition. Comme X contient un voisinage de chacun de ses points, il s'agit d'un ouvert.

3) Comme U est connexe, les seuls sous-ensembles de U qui sont à la fois ouverts et fermés sont \emptyset et U. Comme X est non vide $(z_0 \in X$ par définition), et est un ouvert fermé de U par les questions précédentes, on a X = U. Autrement dit, pour tout $z \in U$, on a $z \in X$ donc $f(z) = f(z_0)$. La fonction f est donc constante sur U, égale à $f(z_0)$.

Si U est non connexe, on a juste que f est constante sur les composantes connexes de U (localement constante). Par exemple, pour $U = \mathbb{D}(-10,1) \sqcup \mathbb{D}(10,1)$, on peut prendre

$$f(z) = \begin{cases} 1 & \text{si } z \in \mathbb{D}(-10, 1), \\ -1 & \text{si } z \in \mathbb{D}(10, 1). \end{cases}$$

On vérifie directement que f est holomorphe, sans être constante.

Exercice 17. On pose $f: \mathbb{C} \to \mathbb{C}$ envoyant z sur z^3 (il s'agit d'une fonction polynômiale, donc d'un polynôme). On veut construire la réciproque g de f. Soit $z \in \mathbb{C}$, g(z) doit être une racine cubique de z, en posant $z = r^{i\theta}$, on cherche à résoudre l'équation

$$g(z)^{3} = re^{i\theta} \Leftrightarrow \rho^{3}e^{3i\psi} = re^{i\theta} \Leftrightarrow \begin{cases} \rho^{3} = r \\ 3\psi \equiv \theta[2\pi] \end{cases} \Leftrightarrow \begin{cases} \rho = \sqrt[3]{r} \\ \psi \equiv \frac{\theta}{3} \left[\frac{2\pi}{3}\right] \end{cases}$$

(avec $g(z) := \rho e^{i\psi}$ la forme polaire de g(z)). On obtient donc trois valeurs possibles pour g(z),

$$\begin{cases} \sqrt[3]{r}e^{i\psi/3}, \\ \sqrt[3]{r}e^{i(\psi/3+2\pi/3)} = j\sqrt[3]{r}e^{i\psi/3}, \\ \sqrt[3]{r}e^{i(\psi/3+4\pi/3)} = j^2\sqrt[3]{r}e^{i\psi/3}. \end{cases}$$

On veut faire un choix cohérent, qui donne une fonction continue, on choisit donc de poser $g(z) = \sqrt[3]{r}e^{i\psi/3}$. Il reste à montrer qu'il s'agit bien d'une fonction holomorphe sur $\mathbb{C} \setminus \mathbb{R}_-$ envoyant 1 sur 1.