Understanding Neural Networks through Representation Learning

Jiwei Li, Will Monroe and Dan Jurafsky

Motivation

Word embedding

- Black box
 - What does each word vector dimension stand for?
 - What do hidden units in intermediate levels stand for?
 - How does the model combine meaning from different parts of the sentence, filtering the informational wheat from the chaff?

One of the hidden layers

- How is the final decision made at the output layer?
- If we can answer these,
 - Error analysis may lead to correcting model mistakes.

Methodology

- Several techniques of erasure
 - interpret decisions from a neural model by observing the effects on the model of **erasing** various parts of the representation, such as
 - input word-vector dimensions
 - intermediate hidden units,
 - or input words
- Evaluated in two ways
 - computing its impact on evaluation metrics
 - Compute the log-likelihood difference when a particular dimension is erased
 - using reinforcement learning to erase the minimum set of input words in order to flip a neural model's decision.

Linking Word Vector Dimensions to Linguistics Features

- Train classifier models on benchmarks for
 - POS tagging
 - NER tagging
 - Chunking
 - Prefix and suffix (predicting a prefix/suffix given a word)
 - Sentiment
 - Shape (X, XX, XXX... very easy task that depends on the model to reason on the length of the word)
 - Frequency (regression for the frequency in Wikipedia)
- Then employ our method, explained in the next slide

"Importance" concept

$$S(e,c) = -log P(L_e = c)$$
 Everything same but dimension d is erased
$$I(d) = \frac{1}{|E|} \sum_{e \in E} \frac{S(e,c) - S(e,c,\neg d)}{S(e,c)}$$
 examples

Some details on training and the model

- Train a 50 dimensional embedding on Gigaword-Wiki corpus
 - Word2vec
 - GloVe
- 4-layer NN
 - Input, 2 intermediate and output layer
 - o 50 neurons for each

(d) GloVe, no dropout; 31rd dimension removed.

(b) Word2vec, with dropout.

(e) GloVe, no dropout; 31rd, 26th dimensions removed.

(c) GloVe, no dropout.

(f) GloVe, with dropout.

Figure 3: Correlation with word frequency of the magnitude of (a) the 31st dimension ($R^2 = 0.55$, $p < 1 \times 10^{-5}$) and (b) the 26th dimension ($R^2 = 0.27$, $p < 1 \times 10^{-5}$) of GloVe vectors.

Compare Word2vec and GloVe on this aspect

. . .

From the paper: "presumably because tokens are omitted in proportion to word-type frequency in word2vec models"

Paper says "this indicates robustness"

..

I ask: What if we choose more than one dimension at once? From different layers?

Word level

- Stanford Sentiment Treebank dataset
- Same as before but now we erase word units
- Three models
 - O RNN
 - LSTM
 - o Bi-LSTM

Reinforcement Learning

Objective:

$$\min_{D} |D| \quad s.t. \ L_{e-D} \neq L_e$$

- Naive method
 - Enumerate all combinations of word units and try. Intractable.
- Proposal: Reinforcement learning based method
 - Reward function

$$L(e,D) = \frac{1}{|D|} \cdot \mathbf{1}(L_{e-D} \neq L_e)$$

$$\Omega(e, z) = \gamma \sum_{s \in S} \sum_{t \in s} |z_t - z_{t-1}|$$

$$J(\theta) = \mathbb{E}_{\pi}(R(e)|\theta)$$

$$R(e) = L(e, D) - \Omega(z_{1:N})$$

- (1) clean updated room. friendly efficient staff. rate was too high 199 plus they charged 10 day for internet access in the room.
- (2) the location is fantastic. the staff are helpful and service oriented. sleeping rooms meeting rooms and public lavatories not cleaned on a daily basis. the hotel seems a bit old and a bit tired overall. trolley noise outside can go into the wee hours. if you get a great price for a few nights this hotel may be a good choice. breakfast is very nice remember if you just stick to the cold buffet it is cheaper.
- (3) location is nice. but goes from bad to worse once you walk through the door. staff very surly and unhelpful. room and hallway had a very strange smell. rooms very run down. so bad that i checked out immediately and went to another hotel. intercontinental chain should be ashamed.
- (4) i took my daughter and her step sister to see a show at webster hall . it is so overpriced i 'm in awe . i felt safe . the rooms were tiny . lots of street noise all night from the partiers at the ale house below .

(a) Examples of minimal set of erased words based on Bi-LSTM model

- (1) clean updated room. friendly efficient staff. rate was too high 199 plus they charged 10 day for internet access in the room.
- the location is fantastic. the staff are helpful and service oriented. (2) sleeping rooms meeting rooms and public lavatories not cleaned on a daily basis. the hotel seems a bit old and a bit tired overall. trolley noise outside can go into the wee hours. if you get a great price for a few nights this hotel may be a good choice. breakfast is very nice remember if you just stick to the cold buffet it is cheaper.
- (3) location is nice. but goes from bad to worse once you walk through the door. staff very surly and unhelpful. room and hallway had a very strange smell. rooms very run down. so bad that i checked out immediately and went to another hotel. intercontinental chain should be ashamed.
- (4) i took my daughter and her step sister to see a show at webster hall . it is so overpriced i 'm in awe . i felt safe . the rooms were tiny . lots of street noise all night from the partiers at the ale house below .

References

- Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.
- Anh Nguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 427–436.
 IEEE.