Original Research

Lack of Vitamin D Receptor Causes Dysbiosis and Changes the Functions of the Murine Intestinal Microbiome

Dapeng Jin, MS¹; Shaoping Wu, PhD¹; Yong-guo Zhang, PhD¹; Rong Lu, PhD¹; Yinglin Xia, PhD²; Hui Dong, PhD³; and Jun Sun, PhD¹

¹Department of Biochemistry, Rush University Medical Center, Chicago, Illinois; ²Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York; and ³Department of Gastroenterology, Xinggiao Hospital, The Third Military Medical University, Chongging, China

ABSTRACT

Purpose: The microbiome modulates numerous aspects of human physiology and is a crucial factor in the development of various human diseases. Vitamin D deficiency and downregulation of the vitamin D receptor (VDR) are also associated with the pathogenesis of diseases such as inflammatory bowel disease, cancers, obesity, diabetes, and asthma. VDR is a nuclear receptor that regulates the expression of antimicrobial peptides and autophagy regulator ATG16L1. Vitamin D may promote a balanced intestinal microbiome and improve glucose homeostasis in diabetes. However, how VDR regulates microbiome is not well known. In the current study, we hypothesize that VDR status regulates the composition and functions of the intestinal bacterial community.

Methods: Fecal and cecal stool samples were harvested from Vdr knockout $(Vdr^{-/-})$ and wild-type mice for bacterial DNA and then sequenced with 454 pyrosequencing. The sequences were denoised and clustered into operational taxonomic units, then queried against the National Center for Biotechnology Information database. Metagenomics were analyzed, and the abundances of genes involved in metabolic pathways were compared by reference to the Kyoto Encyclopedia of Genes and Genomes and Clusters of Orthologous Groups databases.

Findings: In the $Vdr^{-/-}$ mice, Lactobacillus was depleted in the fecal stool, whereas Clostridium and Bacteroides were enriched. Bacterial taxa along the Sphingobacteria-to-Sphingobacteriaceae lineage were enriched, but no genera reached statistical significance. In the cecal stool, Alistipes and Odoribacter were depleted, and Eggerthella was enriched. Notably, all of the taxa upstream of Eggerthella remained unchanged. A comparison of $Vdr^{-/-}$ and wild-type samples revealed 40 (26 enriched, 14 depleted) and 72 (41 enriched, 31 depleted) functional modules that were significantly altered in the cecal and fecal microbiomes, respectively (both, P < 0.05), due to the loss of Vdr. In addition to phylogenetic differences in gut microbiome with different intestinal origins, we identify several important pathways, such as nucleotide-binding oligomerization domain-like receptor, affected by Vdr status, including amino acid, carbohydrate, and fatty acid synthesis and metabolism, detoxification, infections, signal transduction, and cancer and other diseases.

Implications: Our study fills knowledge gaps by having investigated the microbial profile affected by VDR. Insights from our findings can be exploited to develop novel strategies to treat or prevent various diseases by restoring VDR function and healthy microbe–host interactions. (*Clin Ther.* 2015;37:996–1009) © 2015 Elsevier HS Journals, Inc. All rights reserved.

Accepted for publication April 9, 2015. http://dx.doi.org/10.1016/j.clinthera.2015.04.004 0149-2918/\$-see front matter

© 2015 Elsevier HS Journals, Inc. All rights reserved.

Scan the QR Code with your phone to obtain FREE ACCESS to the articles featured in the Clinical Therapeutics topical updates or text GS2C65 to 64842. To scan QR Codes your phone must have a QR Code reader installed.

Key words: *Bacteroides*, *Clostridium*, dysbiosis, immunity, inflammation, intestine, microbiome, NOD-like receptor, vitamin D, vitamin D receptor.

INTRODUCTION

Microbial habitats in the human body include the skin surface and the mucosa covering the mouth, pharynx, respiratory tract, urogenital tract, and gut, which accommodate and interact with commensal bacteria to fulfill various physiologic functions. The gastrointestinal tract, in particular, harbors the most abundant microflora (100 trillion). The human genome contains over 23,000 genes; however, it is vastly underestimated if we take the microbiome into consideration, which outnumbers the human cells by an order of magnitude.² The symbiotic relationship that coevolves over time bestows humans with functions that do not need to be encoded within their own genomes, or at least not completely,³ and contributes to interindividual differences. 4,5 The gut microbiome not only has been correlated with disorders such as inflammatory bowel diseases (IBD), obesity, and diabetes⁶⁻⁸ but has also been shown to have extended effects in other, distant organs, including autism spectrum disorder and Alzheimer disease, 9,10 conditions previously thought irrelevant to gastrointestinal bacteria, thus heralding a new era of microbiome studies.

Vitamin D/vitamin D receptor (VDR) deficiency has been associated with various effects in humans, including higher risks for IBD, including ulcerative colitis and Crohn disease. 11,12 Vitamin D supplementation has been reported to have clinical benefit in reducing IBD occurrence and relapse and in improving outcomes. 12 VDR regulates the expression of cathelicidin antimicrobial peptides (CAMPs), β-defensins, and autophagy regulator ATG16L1¹³⁻¹⁵ and therefore possesses some antibiotic properties. For example, [1,25(OH)₂D₃] leads to up-regulation of CAMPs and the killing of intracellular Mycobacterium tuberculosis in human monocytes. 16 These findings give rise to the inference that vitamin D/VDR signaling may dramatically change the bacterial landscape in the gut. Recent studies have reported that the absence of VDR is associated with shifts in the bacterial load and profile. 15,17 However, an accurate characterization of VDR regulation of the microbiota remains unavailable.

In the present study, we hypothesized that VDR status regulates the composition and functions of the bacterial community in the intestine. We investigated fecal and cecal stool samples from whole-body Vdr knockout $(Vdr^{-/-})$ and wild-type (WT) mice, aiming to profile the intestinal microbiomes of animals of different Vdr status. Our study may greatly enrich our understanding of the mechanisms underlying defects caused by VDR deficiency and help us to better navigate therapeutic interventions targeting host–bacteria interactions.

METHODS AND MATERIALS Statement of Ethics

All animal work was approved by the Committee on Animal Resources, Rush University Medical Center (Chicago, Illinois).

Mice

WT and $Vdr^{-/-}$ C57BL/6 mice (purchased from Jackson Laboratory, Bar Harbor, Maine) were bred as previously described. ¹⁸ Tail snips were collected 4 weeks after the mice were born. Littermates 6 to 8 weeks old were chosen from each group and cohoused until the experiments were performed.

Microbial Sampling and Sequencing

The tubes for microbial sampling were autoclaved and then irradiated with ultraviolet light to destroy the contaminating environmental bacterial DNA. The mice were then anesthetized and dissected. Fresh cecal and fecal stools were isolated from the gut and placed into the specially prepared tubes. The samples were kept at low temperature with dry ice and were mailed to the Research and Testing Laboratory for 454 pyrosequencing. The sequences were denoised and subjected to quality checks. Taxonomic identifications were assigned by queries against the National Center for Biotechnology Information database. Initially, 249,435 reads were generated. After denoising, the number was reduced to 173,119, which was then diminished to 160,248 after quality checking. On alignment, 151,543 operational taxonomic units (OTUs) were obtained. For each sample, the number ranged from 1853 to 9264, with a mean of 4736.

454 Pyrosequencing

The V4–V6 region of the samples was amplified for pyrosequencing in the Research and Testing

Laboratory using forward and reverse fusion primers. The forward primer was constructed (5'-3') with the Roche A linker (CCATCTCATCCCTGCGTGTC TCCGACTCAG), an 8- to 10-bp barcode, and the 530F GTGCCAGCMGCNGCGG primer. The reverse fusion primer was constructed (5'-3') with a biotin molecule, the Roche B linker (CCTATCCCCT GTGTGCCTTGGCAGTCTCAG), and the 1100R GGGTTNCGNTCGTTR primer (Roche Diagnostics Deutschland GmbH, Mannheim, Germany). Amplifications were performed in 25-µL reaction volumes with Qiagen HotStar Taq master mix (Qiagen Inc, Valencia, California), 1 μL of each primer (5 μmol/L), and 1 µL of template. Reactions were performed on ABI Veriti thermocyclers (Applied Biosytems, Carlsbad, California) under the following thermal profile: 95°C for 5 minutes, then 35 cycles at 94°C for 30 seconds, 54°C for 40 seconds, 72°C for 1 minute, followed by 1 cycle at 72°C for 10 minutes and a 4°C hold. The amplicons were 570 bp in length.

Amplification products were visualized with eGels (Life Technologies, Grand Island, New York). Products were then pooled to equimolar levels, and each pool was cleaned with Diffinity RapidTip (Diffinity Genomics, West Henrietta, New York) and sizeselected using Agencourt AMPure XP (Beckman Coulter Inc, Indianapolis, Indiana) after the Roche 454 protocols (454 Life Sciences, Branford, Connecticut). Size-selected pools were then quantified, and 150 ng of DNA was hybridized to Dynabeads M-270 (Life Technologies) to create single-stranded DNA after Roche 454 protocols (454 Life Sciences). Single-stranded DNA was diluted and used in emulsion-based polymerase chain reactions, which were performed and subsequently enriched. Sequencing followed established manufacturer's protocols (454 Life Sciences).

Bioinformatics

Clustering of the reads with 4% divergence on the seed sequences was performed using USEARCH, version 6.0.98 to identify similar clusters. 19 Chimera checking was detected using the de novo method of UCHIIME, version 4.2.40.20 The sequences were denoised according to a size criterion. For taxonomic identification, the sequences were clustered into OTUs with 0% divergence using USEARCH. 19 The seed sequence was queried against National Center for Biotechnology Information database using

a distributed .net algorithm, which makes use of BLASTN+, version 2.2.27 (KrakenBLAST, www. krakenblast.com). Unweighted UniFrac distances were analyzed with the Quantitative Insights Into Microbial Ecology suite software, version 1.9.0 (www.qiime.org) to reflect sample distributions. Alpha and beta diversity, in combination with the metadata, were visualized using the Shannon diversity index, the Chao1 richness index, and principal coordinate analysis (PCoA) plots.²¹ Phylotypic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), version 1.0.0 was used together with HMP Unified Metabolic Analysis Network (HUMAnN), version 0.99²² for analyzing the metagenomics and to compare the abundances of genes involved in metabolic pathways by reference to the Kyoto Encyclopedia of Genes and Genomes (KEGG)²³ and Clusters of Orthologous Groups²⁴ databases. Bacterial genomes were imputed according to the similarity of sequenced genomes to reference GreenGenes sequences.²⁵

Statistical Analysis

The data are expressed as mean (SD). Differences between 2 samples were analyzed using the t test. $P \le 0.05$ was considered statistically significant. Differences between ≥ 3 groups were analyzed using ANOVA (SAS version 9.2; SAS Institute Inc, Cary, North Carolina).

RESULTS

Effects of Vdr Status and Intestinal Location on the Bacterial Community in the Gut

The OTU data were used for obtaining taxonomic assignments of the microbiomes of the tested samples. On the phylum level, Firmicutes and Bacteroidetes together accounted for a major part of the bacterial population in all samples (90.02%–98.10%). For better differentiation from sample to sample, we present the changes in the intestinal microbiota at the class level, which showed that Bacilli, Clostridia, Erysipelotrichia, Bacteroidia, Actinobacteria, and Verrucomicrobiae topped the list of the most represented classes (92.77%–99.92% combined) (Figure 1).

In the *Vdr*^{-/-} samples, Bacteroidia and Sphingobacteria were enriched, and Bacilli was depleted in the fecal stool, whereas Bacteroidia was depleted in cecal stool. In WT mice, Clostridia were enriched, while Bacteroidia and Flavobacteria were depleted in the

Figure 1. Taxonomic composition of the bacterial community at the class level in stool samples from vitamin D receptor gene knockout $(Vdr^{-/-})$ mice (n=5) and wild-type (WT) mice (n=3). VDR status and intestinal location were associated with taxonomic alterations of the bacterial community in the gut. Bacilli, Clostridia, Erysipelotrichia, Bacteroidia, Actinobacteria, and Verrucomicrobiae were the most represented bacterial classes.

transition from cecal to fecal stool. Bacteroidia, Flavobacteria, Sphingobacteria, and Cytophagia were depleted in $Vdr^{-/-}$ mice in the cecal-to-fecal transition. Vdr status and intestinal location thus altered the bacterial community in the gut. Clearly, Vdr deficiency was associated with dysbiotic changes in the gut.

Microbiome Diversity Indexes of Vdr Statuses

Another crucial criterion of microbial changes is diversity metrics (**Figure 2A and B**), which can be used for assessing the influence of Vdr status on microbiome diversity. The Shannon diversity and Chao1 richness indexes suggested both intragroup and intergroup variability in microbial diversity. We also used PCoA to cluster the cecal and fecal microbiomes from $Vdr^{-/-}$ and WT mice. The $Vdr^{-/-}$ and WT samples clustered independently on the PCoA scale, as did the cecal and fecal samples (**Figure 2C**). Therefore, Vdr status and intestinal location did cause variations in bacterial diversity.

Phylogenetic Differences in the Gut Microbiome, by Vdr Status

In the *Vdr*^{-/-} mice, on the genus level, *Lactobacillus* was depleted in fecal stool, whereas *Clostridium* and *Bacteroides* were enriched (Figure 3A). At higher

taxonomic levels, Lactobacillales, which includes lactic acid bacteria other than *Lactobacillus*, was also depleted (from 62.71% [4.63%] to 33.23% [10.80%]; P < 0.01), indicating a dramatic decrease in the production of lactic acid. The Bacteroidia-to-*Bacteroides* lineage was consistently enriched. Greater than *Clostridium*, the lineage Clostridiaceae was also enriched (from 2.48% [0.81%] to 9.24% [4.58%]; P < 0.05). Bacterial taxa were enriched along the Sphingobacteria-to-Sphingobacteriaceae lineage, but no genera reached statistical significance.

In cecal stool, *Alistipes* and *Odoribacter* were depleted, and *Eggerthella* was enriched (Figure 3B) in the *Vdr*^{-/-} samples. The lineage from Bacteroidetes to Bacteroidales was depleted in *Vdr*^{-/-} mice, as were the Rikenellaceae-to-*Alistipes* and Peptococcaceae-to-*Odoribacter* lineages. Notably, all the taxa upstream of *Eggerthella* remained unchanged. Compared with the changes in the fecal microbiota, the relative abundance of cecal genera affected by Vdr status was much less.

Taken together, the dramatic reduction of lactic acid bacteria in the fecal microbiome in $Vdr^{-/-}$ mice is likely the most important alteration influencing intestinal homeostasis. The fecal microbiome is more severely affected by Vdr status than is the cecal microbiome at the taxonomic level. Taxonomically,

Figure 2. Diversity metrics of the microbiome in fecal and cecal samples from vitamin D receptor gene knockout $(Vdr^{-/-})$ mice (n=5) and wild-type (WT) mice (n=3). A, Shannon index. B, Chao1 richness index. C, Unweighted UniFrac distances of stool samples from $Vdr^{-/-}$ and WT mice on a principal coordinate analysis (PCoA) scale. Shannon index and Chao1 richness reflected variability in microbial diversity within or between groups. The samples were then separated into different clusters on a PCoA scale. cest = cecal contents; dryst = fecal stool; $1 = Vdr^{-/-}$; 2 = WT.

the colon is the major site affected by Vdr status. The Vdr-associated defects in the intestinal microbiome may be related to the weakened capacity of the colon to increase lactic acid bacteria and to contain the growth of *Clostridium* and *Bacteroides*.

Phylogenetic Differences in Gut Microbiomes, by Intestinal Origin

To examine the influences of the intestinal environment on the microbiome, taxonomic alterations between cecal and fecal stool were evaluated. In WT mice, Clostridium and Ruminococcus were depleted in fecal stool compared with those in the cecal stool, whereas Tannerella, Butyricimonas, Bacteroides, Alitipes and Paraprevotella were enriched (Figure 4A). In Vdr^{-/-} mice, Lactobacillus was depleted in fecal stool compared with that in cecal stool, whereas Tannerella, Odoribacter, Porphyromonas, Butyricimonas, Bacteroides, Prevotella, Rikenella, Pedobacter and Limibacter were enriched (Figure 4B). In both the WT and Vdr^{-/-} mice, the switch from the cecal to the fecal microbiome was associated with quite diversified

Figure 3. Mean (SD) phylogenetic differences associated with vitamin D receptor gene knockout ($Vdr^{-/-}$). The phylogenetic trees of taxa related to Vdr status and percentages of the affected genera were compared between fecal (A) and cecal (B) contents from $Vdr^{-/-}$ mice (n = 5) and WT mice (n = 3). Only taxa with significantly different abundance or upstream of affected genera were included. Gray denotes statistically unchanged; blue denotes significantly depleted; yellow denotes significantly enriched in $Vdr^{-/-}$ mice. *P < 0.05; **P < 0.01; ***P < 0.001.

Clinical Therapeutics

Figure 4. Mean (SD) phylogenetic differences in the transition from the fecal to the cecal microbiome in $Vdr^{-/-}$ mice (n = 5) and WT mice (n = 3). The phylogenetic trees of taxa related to Vdr status and percentages of the affected genera were compared between fecal and cecal microbiome from WT mice (A) and $Vdr^{-/-}$ mice (B). Only taxa with significantly different abundances or that were upstream of affected genera were included. Gray denotes statistically unchanged; blue denotes significantly depleted; yellow denotes significantly enriched in $Vdr^{-/-}$ mice. *P < 0.05; **P < 0.01; ***P < 0.001.

changes in taxonomic assignment, which can be ascribed to changes in luminal contents caused by differences in absorption, digestion, fermentation, and secretion. Different sections of the intestinal tract harbor different bacterial communities, which are partially modulated by the host. Among those affected, *Tannerella*, *Butyricimonas*, and *Bacteroides* were similarly enriched in both WT and *Vdr*^{-/-} mice, indicating a constitutive event in the transition from the cecal to the fecal microbiome, whereas the rest of the affected genera were correlated with Vdr status.

The Bacteroidetes-to-Bacteroidales lineage and some of its lower branches, as well as the Bacteroidetes-to-Flavobacteriaceae lineage, were similarly enriched in samples with different Vdr status in the transition from the cecal to the fecal microbiome. What differed was that *Porphyromonas* and *Odoribacter* were also enriched in *Vdr*^{-/-} mice in the transition from the cecal to the fecal microbiome. In addition, Bacteroidetes-to-*Pedobacter* and Bacteroidetes-to-*Limibacter* lineages were enriched. Finally, instead of depletions of Firmicutes to *Clostridium* and a depletion of Firmicutes to

Ruminococcus, which were seen in the WT mice, there was a depletion of Lactobacillaceae to *Lactobacillus* in the Vdr^{-l-} mice.

Alterations in KEGG Modules of the Gut Microbiome, by Vdr Status

Although the taxonomic assignments revealed interesting findings, functional analyses may prove more meaningful in annotating clinical relevance. With the use of bioinformatics tools, a comparison between $Vdr^{-/-}$ and WT samples revealed 40 (28 enriched, 12) depleted) and 72 (41 enriched, 31 depleted) functional modules that were significantly altered (P < 0.05) in the cecal and fecal microbiomes, respectively, due to the loss of Vdr (Figure 5 and see Supplemental Tables I-IV in the online version at http://dx.doi.org/10. 1016/j.clinthera.2015.04.004). Several important pathways were likely affected by Vdr knockout, including those involved in amino acid, carbohydrate, and fatty acid synthesis and metabolism; detoxification (eg, reduced xylene and dioxin degradation in fecal stool; increased metabolism of drug and xenobiotics by cytochrome P-450 and caprolactam degradation in cecal stool); infections, cancer, and other diseases (eg, increased prion diseases and prostate cancer in fecal stool; increased tuberculosis, renal cell carcinoma, and type II diabetes mellitus in cecal stool); and signal transduction (eg, increased epithelial cell signaling in Helicobacter pylori infection in fecal stool; increased peroxisome proliferator-activated receptor, nucleotide-binding oligomerization domain [Nod]-like receptor [Nlr], mitogen-activated protein kinase, and adipocytokine signaling in cecal stool). These data suggest that on Vdr knockout, the colon is insulted by more toxins and experiences higher risks for cancer, infections, and other diseases, whereas the effects on the cecum are mainly restricted to the metabolite profile.

Alterations in KEGG Modules of Gut Microbiomes, by Intestinal Origin

We also compared the influence of location on the gut microbiome. As shown in **Supplemental Tables I–IV** (in the online version at http://dx.doi.org/10. 1016/j.clinthera.2015.04.004), in $Vdr^{-/-}$ mice, 94 functional modules (66 enriched, 28 depleted) were affected in the fecal compared with the cecal microbiome. In WT mice, 99 functional modules (73 enriched, 26 depleted) were significantly altered in

the fecal compared with the cecal microbiome (P <0.05). As shown in Figure 6A, in WT mice, with the shift from cecal to fecal microbiome, the affected functional profile involved an extensive increase in metabolite synthesis/metabolism and the enrichment of modules related to diseases such as pertussis, diabetes mellitus, Alzheimer disease, tuberculosis, and renal cell carcinoma and other cancers, as well as decreases in modules involved in bacterial growth, proliferation, and motility, including transcription factors, transporters, germination, sporulation, and flagellar assembly. However, in $Vdr^{-/-}$ mice, from the cecal to fecal microbiome (Figure 6B), we found an enrichment of modules related to the synthesis and degradation of metabolites or to diseases, such as pertussis, prostate cancer, and type I diabetes mellitus, as well as modules related to the biosynthesis of vancomycin-group antibiotics and streptomycin, whereas modules for transporters, cell cycle of Caulobacter, sporulation, prion diseases, and detoxification were reduced. Some modules were affected in both $Vdr^{-/-}$ and WT mice; for example, we detected increases in lipopolysaccharide biosynthesis, glycan biosynthesis and metabolism, and protein digestion and absorption, as well as decreases in sporulation and electron transfer, suggesting that these events are less likely related to the genetic difference. Consistent with what we found on comparing the $Vdr^{-/-}$ and WT samples, the fact that in the transition from the cecal to fecal microbiome detoxification by microbiota was weakened in $Vdr^{-/-}$ mice suggests that the colon is the major segment of the intestine subjected to the negative influences of unbalanced microbiota.

DISCUSSION

The findings from our study suggest that VDR status influences the intestinal microbiome at both the taxonomic and functional levels and correlates the VDR-associated bacterial changes in clinical diseases. Differences in the microbiomes of the different segments of the intestine were also evaluated. We report that VDR is crucial for the maintenance and "fine-tuning" of host–microbe interactions and therefore plays a key role in intestinal and microbial homeostasis.

On the taxonomic level, the Lactobacillales-to-Lactobacillus lineage was decreased in $Vdr^{-/-}$ fecal stool samples, correlating VDR with bacteria that produce lactic acid, which benefits the intestine by

Figure 5. Functional alterations of the intestinal microbiome related to vitamin D receptor (VDR) status. Top 10 enriched and top 10 depleted Kyoto Encyclopedia of Genes and Genomes (KEGG) modules in the microbiome of fecal (A) and cecal (B) samples from $Vdr^{-/-}$ mice (n = 5) and WT mice (n = 3). Phylotypic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), version 1.0.0, in combination with HMP Unified Metabolic Analysis Network (HUMAnN), version 0.99, 22 would be used for comparing the abundances of bacterial gene modules by reference to the KEGG and Clusters of Orthologous Groups (COG) databases. KEGG modules related to amino acid, carbohydrate, and fatty acid synthesis and metabolism, detoxification, several signal pathways, infections, cancer, and other diseases were affected by Vdr status. *P < 0.05; **P < 0.01; ***P < 0.001.

Figure 6. Functional alterations in intestinal microbiomes of different intestinal origins. Top 10 enriched and top 10 depleted Kyoto Encyclopedia of Genes and Genomes (KEGG) modules in the microbiomes of fecal stool compared with that of cecal contents from WT mice (A; n = 3) and $Vdr^{-/-}$ mice (B; n = 5). Phylotypic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), version 1.0.0, in combination with HMP Unified Metabolic Analysis Network (HUMAnN), version 0.99,²² would be used for comparing the abundances of bacterial gene modules by reference to KEGG and Clusters of Orthologous Groups (COG) databases. In the transition from cecal to fecal microbiome, some KEGG modules were similarly affected in $Vdr^{-/-}$ and WT mice, such as enriched lipopolysaccharide biosynthesis, glycan biosynthesis and metabolism, protein digestion and absorption, and depleted sporulation, electron transfers. In the $Vdr^{-/-}$ mice, the transition is accompanied by a weakened capacity of detoxification and enriched antibiotic-producing modules like biosynthesis of vancomycin group antibiotics and streptomycin. *P < 0.05; **P < 0.01; ***P < 0.001.

lowering the pH and balancing the microflora²⁶ and also by its anti-inflammatory 27-29 and antitumor features. $^{30-32}$ In $Vdr^{-/-}$ fecal stool, the increased levels of *Bacteroides* may predispose the mice to colon cancer, 33 consistent with the observation that $Vdr^{-/-}$ mice are more prone to colonic tumorigenesis. Quite a number of species of Clostridium can be pathogenic and have been correlated with colitis, enteritis, and food poisoning. 34-37 The fact that Clostridium was enriched in $Vdr^{-/-}$ fecal stool therefore potentially increased the risks for gut disorders. Alistipes, Odoribacter, and Eggerthella were altered in the cecal stool of $Vdr^{-/-}$ mice. However, the cecum may not be the site where Vdr exerts its primary effects, because the microbial profile of cecal samples was not changed as dramatically as it was in fecal samples. Specifically, Eggerthella were enriched in cecal stool of Vdr-/mice, which may be correlated with abdominal sepsis, IBD, and bacteremia. 38,39 This increase may pose a devastating threat to intestinal health. In the present study, its enrichment was restricted only in the cecum. In comparison to those in fecal microbiota, the genera affected by Vdr status in cecal microbiota were much less in relative abundance in both WT and Vdr-/mice, implying that colon may be the major site of microbiome regulation.

Functionally, gut microbiota fulfill a series of important roles, including: (1) digestion of food ingredients to glean extra energy and synthesis of bioactive factors; (2) detoxification; (3) stimulation of epithelial healing and homeostasis; (4) exclusion of pathogens by competing for nutrients and binding sites and by antimicrobial secretions; (5) stimulation of the maturation of both innate and adaptive immunity; and (6) behavioral patterns and cardiac size. 1,40 In this study, the microbiome was categorized into functional modules by PIC-RUSt analysis. 22-24 We found that the functional relevance of Vdr status mainly manifested in nutrient metabolism and synthesis, indicating a crucial role for VDR in regulating the nutritional pattern determined by the microbiome. DNA repair, cell cycle, motility, and transporters accounted for a minor part of the affected functional modules. Overall, the data suggest that the $Vdr^{-/-}$ mice had higher risks for infections, cancer, inflammation, and other conditions.

In the present study, littermates were selected by genotyping and were cohoused before the

experiments were performed; therefore, the influences of external factors could be mostly ruled out, and differences in the microbiomes of the $Vdr^{-/-}$ and WT mice could be ascribed to the genotypes. A number of genes were enriched or depleted in the microbiome of $Vdr^{-/-}$ mice (eg., dioxin degradation, prostate cancer in fecal samples, Nlr signaling), which provide a combination of microbial markers for diagnosing VDR deficiency. The switch from the cecal to the fecal environment is accompanied by dramatic enrichment of modules for metabolism and biosynthesis; increased risks for pertussis, diabetes mellitus, tuberculosis, and renal cell carcinoma and other cancer pathways; as well as reduced bacterial growth, motility, transporters, sporulation, germination, and detoxification. In the colon, the microbiome may therefore play an important role in the digestion and generation of metabolites for the host where bacterial growth and migration may not be as necessary or where these functions are inhibited by the host. In WT mice, detoxification modules were not affected in fecal compared with cecal contents, but they were reduced in $Vdr^{-/-}$ mice, suggesting physiologic disadvantages of the mutations. In the $Vdr^{-/-}$ mice, the biosynthesis of vancomycin-group antibiotics and streptomycin was increased; this change could dramatically alter the bacterial pattern, disturbing bacterial homeostasis.

VDR polymorphisms have been correlated with type II diabetes mellitus, and VDR mutations have been shown to contribute to its pathogenesis.⁴¹ We consistently detected an increase in the KEGG module for type II diabetes mellitus in the cecal microbiome of Vdr knockout mice. Some polymorphisms in VDR have been associated with renal cell carcinoma in specific populations, but the correlation remains to be confirmed. 42-44 Variations in VDR may also affect the risk for prostate cancer. 45 In general, VDR is antiproliferative and has a protective role against malignancy. In this study, we detected an increase in the KEGG module of microbiota related to prostate cancer in fecal samples as well as an increase in the module related to renal cell carcinoma in cecal samples, indicating that the antitumor effects of VDR may also be executed through the intestinal microbiome. Vitamin D/VDR signaling is crucial for immunomodulation and immune responses, 46,47 especially in intestinal mucosa.⁴⁸ Our findings support this notion. For example, Vdr knockout led to an

increase in KEGG modules of microbiota related to antigen processing and presentation in fecal samples and a decrease in those related to pertussis in cecal samples.

Causes of IBD have been ascribed to a comprehensive list of factors, including genes, environment, immune responses, and microbiota.⁴⁹ In this study, KEGG modules related to peroxisome proliferatoractivated receptor (P < 0.01), Nlr (P < 0.01), and mitogen-activated protein kinase (P < 0.01) signaling pathways were significantly upregulated in the fecal microbiome of $Vdr^{-/-}$ mice compared with that in WT mice (see Supplemental Tables I-IV in the online version at http://dx.doi.org/10.1016/j.clin thera.2015.04.004). Although all of them are closely related to immunity and inflammatory statuses, the enriched KEGG module related to Nlr signaling appeared to be of particular importance, because NOD2 is among the 3 most often-defined genes underlying the risk for IBD.⁵ Still unknown is how much other NLRs were affected and to what extent the altered NLR signaling-related KEGG module manifests disturbance of the normal NLR signaling and cellular outcome in the hosts. But it did provide a strong indication that Vdr knockout might lead to abnormal Nod2 signaling and other aspects of Nlr signaling and increase murine susceptibility to dextran sodium sulfateinduced colitis and intestinal inflammation, as previously observed. 50,51 Studies have reported a correlation between transmissible bacteria and susceptibility to IBD, such as by fecal microbiota transplantation (FMT) in Nod2 mice and cohousing of Atg16l mice. 15,50 In addition to upregulation of CAMPs and extermination Mycobacterium tuberculosis in monocytes, 16 intestinal epithelial VDR regulates autophagy and Paneth cells through the autophagy gene ATG16L1, thus changing the microbiome profile.¹⁵ VDR controls expression in cooperation with certain transcriptional factors. 13-15,52 Overall, VDR mediates gene expression, inflammation, and the microbiota of the intestinal tract, therefore playing a crucial role in intestinal homeostasis.

We recognize that the limited number of mice available prevented us from further mining information from the data. The full *Vdr* knockout is pleiotropic, with symptoms such as growth retardation, flat face, compensatory parathyroid hyperplasia, and alopecia.⁵³ The design of future studies should include more samples and possibly introduce intestinal

epithelial conditional Vdr knockout mice, which have been used by our laboratory. Because the PICRUSt analysis revealed that Vdr status influenced KEGG modules related to metabolism, future experiments in the metabolome may obtain additional findings. In addition, bioinformatic predictions of physiologic relevance cannot substitute for biochemical and histologic tests, which were not performed in the present study. Therefore, the Vdr-associated functions of the intestinal microbiota found in the present study will require verification by molecular assays. In the future, we can attempt to restore Vdr-associated dysbiotic changes by FMT, the full-spectrum transfer of microbiota from one host to another, or, vice versa, to transfer Vdr deficiency-associated phenotypes by FMT from a defective host.

Based on a literature search, the present study is the first attempt to decipher the influences of Vdr on functions of the intestinal microbiome. We also compared the microbiomes of different segments of the intestinal tract. Our study fills knowledge gaps by having investigated Vdr regulation of the intestinal microbial profile. The illustration of the microbial profiles of the mouse gut improves our understanding of the physiologic role of VDR and how VDR exerts its effects, therefore casting light on clinical therapeutics that restore VDR function and healthy microbehost interactions.

CONCLUSIONS

The present study fills knowledge gaps by having investigated the microbial profile affected by Vdr. Insights from our findings can be exploited to develop novel strategies to treat or prevent various diseases by restoring VDR function and healthy microbe–host interactions.

ACKNOWLEDGMENTS

This work was supported by the Swim Across America Cancer Research Award and Piccolo/Gavers Cancer Award to Jun Sun. We sincerely thank David Gerard, Rush University, for revising and proofreading the manuscript. The study sponsors were not involved in the collection, analysis, and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication.

CONFLICTS OF INTEREST

The authors have indicated that they have no conflicts of interest with regard to the content of this article.

SUPPLEMENTAL MATERIAL

Supplemental tables accompanying this article can be found in the online version at http://dx.doi.org/10. 1016/j.clinthera.2015.04.004.

REFERENCES

- 1. Turnbaugh PJ, Ley RE, Hamady M, et al. The Human Microbiome Project. *Nature*. 2007;449:804–810.
- 2. Evans JM, Morris LS, Marchesi JR. The gut microbiome: The role of a virtual organ in the endocrinology of the host. *J Endocrinol*. 2013;218:R37–R47.
- 3. Ley RE, Lozupone CA, Hamady M, et al. Worlds within worlds: Evolution of the vertebrate gut microbiota. *Nat Rev Microbiol.* 2008;6:776–788.
- 4. Gurwitz D. The gut microbiome: Insights for personalized medicine. *Drug Dev Res.* 2013;74:341–343.
- Jin D, Zhang H, Sun J. Manipulation of microbiome, a promising therapy for inflammatory bowel diseases. J Clin Cell Immunol. 2014;5:234.
- Scaldaferri F, Gerardi V, Lopetuso LR, et al. Gut microbial flora, prebiotics, and probiotics in IBD: their current usage and utility. *Biomed Res Int.* 2013;2013:435268.
- Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9: 599-608.
- Zak-Golab A, Olszanecka-Glinianowicz M, Kocelak P, Chudek J. The role of gut microbiota in the pathogenesis of obesity. *Postepy Hig Med Dosw (Online)*. 2014;68:84–90.
- Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. *Cell.* 2013;155:1451–1463.
- 10. Bhattacharjee S, Lukiw WJ. Alzheimer's disease and the microbiome. *Front Cell Neurosci*. 2013;7:153.
- 11. Kim JH, Yamaori S, Tanabe T, et al. Implication of intestinal VDR deficiency in inflammatory bowel disease. *Biochim Biophys Acta*. 2013;1830:2118–2128.
- Reich KM, Fedorak RN, Madsen K, Kroeker KI. Vitamin D improves inflammatory bowel disease outcomes: Basic science and clinical review. World J Gastroenterol. 2014;20: 4934–4947.
- 13. Gombart AF. The vitamin D-antimicrobial peptide pathway and its role in protection against infection. *Future Microbiol.* 2009;4:1151–1165.
- Campbell Y, Fantacone ML, Gombart AF. Regulation of antimicrobial peptide gene expression by nutrients and byproducts of microbial metabolism. *Eur J Nutr.* 2012;51: 899–907.

- 15. Wu S, Zhang Y-G, Lu R, et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. *Gut*. 2014;30. [Epub ahead of print].
- Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol. 2007;179:2060–2063.
- Ooi JH, Li Y, Rogers CJ, Cantorna MT. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. J Nutr. 2013;143: 1679–1686.
- Li YC, Pirro AE, Amling M, et al. Targeted ablation of the vitamin D receptor: An animal model of vitamin D-dependent rickets type II with alopecia. *Proc Natl Acad Sci U S A*. 1997;94:9831–9835.
- 19. Edgar RC. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics*. 2010;26:2460-2461.
- 20. Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics*. 2011;27:2194–2200.
- 21. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. *Nat Methods*. 2010;7:335–336.
- 22. Abubucker S, Segata N, Goll J, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. *PLoS Comput Biol.* 2012;8:e1002358.
- 23. Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and interpretation of large-scale molecular data sets. *Nucleic Acids Res.* 2012;40:D109–D114.
- Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278:631–637.
- 25. McHardy IH, Li X, Tong M, et al. HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. *Microbiome*. 2013;1:26.
- Salminen S, Salminen E. Lactulose, lactic acid bacteria, intestinal microecology and mucosal protection. Scand J Gastroenterol Suppl. 1997;222:45–48.
- 27. Maekawa T, Hajishengallis G. Topical treatment with probiotic *Lactobacillus brevis* CD2 inhibits experimental periodontal inflammation and bone loss. *J Periodontal Res.* 2014;49:785–791.
- 28. Park JE, Oh SH, Cha YS. *Lactobacillus brevis* OPK-3 isolated from kimchi inhibits adipogenesis and exert anti-inflammation in 3T3-L1 adipocyte. *J Sci Food Agric*. 2014; 94:2514–2520.
- Thiraworawong T, Spinler JK, Werawatganon D, et al. Anti-inflammatory properties of gastric-derived *Lactobacillus plantarum* XB7 in the context of *Helicobacter pylori* infection. *Helicobacter*. 2014;19:144–155.
- 30. Fukui M, Fujino T, Tsutsui K, et al. The tumor-preventing effect of a mixture of several lactic acid bacteria on 1,2-dimethylhydrazine-induced colon carcinogenesis in mice. *Oncol Rep.* 2001;8:1073–1078.

- Kandasamy M, Bay BH, Lee YK, Mahendran R. Lactobacilli secreting a tumor antigen and IL15 activates neutrophils and dendritic cells and generates cytotoxic T lymphocytes against cancer cells. Cell Immunol. 2011;271:89–96.
- 32. Han DJ, Kim JB, Park SY, et al. Growth inhibition of hepatocellular carcinoma Huh7 cells by *Lactobacillus casei* extract. *Yonsei Med J.* 2013;54:1186–1193.
- 33. Zackular JP, Baxter NT, Iverson KD, et al. The gut microbiome modulates colon tumorigenesis. *MBio*. 2013;4:e00692-00613.
- Antharam VC, Li EC, Ishmael A, et al. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol. 2013;51:2884–2892.
- 35. Chen J, Ma M, Uzal FA, McClane BA. Host cell-induced signaling causes *Clostridium perfringens* to upregulate production of toxins important for intestinal infections. *Gut Microbes*. 2013;5:96–107.
- Gould LH, Walsh KA, Vieira AR, et al. Surveillance for foodborne disease outbreaks—United States, 1998-2008. MMWR Surveill Summ. 2013;62:1-34.
- 37. Fitzpatrick LR, Small JS, Greene WH, et al. *Bacillus coagulans* GBI-30, 6086 limits the recurrence of *Clostridium difficile*-induced colitis following vancomycin withdrawal in mice. *Gut Pathog.* 2012; 4:13.
- Gardiner BJ, Korman TM, Junckerstorff RK. Eggerthella lenta bacteraemia complicated by spondylodiscitis, psoas abscess and meningitis. *J Clin Microbiol*. 2014;52:1278–1280.
- Thota VR, Dacha S, Natarajan A, Nerad J. Eggerthella lenta bacteremia in a Crohn's disease patient after ileocecal resection. Future Microbiol. 2011;6:595–597.
- 40. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. *EMBO Rep.* 2006;7:688-693.

- 41. Manchanda PK, Bid HK. Vitamin D receptor and type 2 diabetes mellitus: Growing therapeutic opportunities. *Indian J Hum Genet*. 2012;18:274–275.
- 42. Gandini S, Gnagnarella P, Serrano D, et al. Vitamin D receptor polymorphisms and cancer. *Adv Exp Med Biol*. 2014;810:69–105.
- Khan MI, Bielecka ZF, Najm MZ, et al. Vitamin D receptor gene polymorphisms in breast and renal cancer: Current state and future approaches. *Int J Oncol*. 2014;44: 349–363.
- 44. Ou C, Zhao HL, Zhu B, et al. Association of vitamin D receptor gene polymorphism with the risk of renal cell carcinoma: A metaanalysis. J Recept Signal Transduct Res. 2014;34:463–468.
- Zhang Q, Shan Y. Genetic polymorphisms of vitamin D receptor and the risk of prostate cancer: a metaanalysis. J BUON. 2013;18:961–969.
- Adorini L, Penna G. Control of autoimmune diseases by the vitamin D endocrine system. *Nat Clin Pract Rheumatol*. 2008;4:404–412.
- Blaney GP, Albert PJ, Proal AD. Vitamin D metabolites as clinical markers in autoimmune and chronic disease. *Ann N Y Acad Sci.* 2009;1173:384–390.

- 48. Sun J. Vitamin D and mucosal immune function. *Curr Opin Gastroenterol*. 2010;26:591–595.
- 49. Sartor RB. Key questions to guide a better understanding of host-commensal microbiota interactions in intestinal inflammation. *Mucosal Immunol*. 2011;4:127–132
- Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer.
 J Clin Invest. 2013;123:700–711.
- 51. Kong J, Zhang Z, Musch MW, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. *Am J Physiol Gastrointest Liver Physiol*. 2008;294:G208-G216.
- Goeman F, De Nicola F, D'Onorio De Meo P, et al. VDR primary targets by genome-wide transcriptional profiling. J Steroid Biochem Mol Biol. 2014;143:348–356.
- 53. Hofbauer LC, Heufelder AE. Vitamin D receptor knock-out mice: the expectational and the exceptional. *Eur I Endocrinol*. 1998;138:372–373.
- 54. Sun J, Chang EB. Exploring gut microbes in human health and disease: pushing the envelope. *Genes Dis.* 2014;1:132–139.

Address for correspondence: Jun Sun, PhD, Department of Biochemistry, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL 60612. E-mail: jun_sun@rush.edu

SUPPLEMENTARY MATERIAL

Supplemental Table I. Total abundance of functional modules in the fecal microbiomes of vitamin D receptor gene knockout $(Vdr^{-/-})$ and wild-type (WT) mice.

Prion diseases		Vdr ^{-/-}	Fecal	WT	Fecal	Fold Change,	
Sportulation	Substance	Mean	SD	Mean	SD	$Vdr^{-/-}$ to WT	Р
Nirrotoluene degradation Biosynthesis of ansamycins	Prion diseases	4.64E-05	1.79E-05	1.41E-05	1.11E-05	3.298085	0.03232
Biosynthesis of ansamycins 0.000656 0.000122 0.000372 0.000373 0.12-0.5 1.764205 0.010	Sporulation	0.003211	0.001126	0.001193	0.000331	2.691036	0.02590
Huntington disease Prostate cancer 0.0003191	Nitrotoluene degradation	0.00037	7.32E-05	0.000174	0.000103	2.123957	0.01906
Huntington disease Prostate cancer 0.0003191		0.000656	0.000122	0.000372	6.12E-05	1.764205	0.01033
Prostate cancer NOD-like receptor signaling pathway NOD-like receptor infection infection infection infection infection infection infe		0.000465		0.000266	5.66E-05	1.744314	0.02121
NOD-like receptor signaling pathway Proteasome 0,00362 4,78E-05 0,000229 2,02E-05 1,587158 0,003 entreproteasome 0,00362 4,73E-05 0,000229 2,04E-05 1,582677 0,003 entreproteasome 0,00362 4,73E-05 0,000229 2,04E-05 1,582677 0,003 entreproteasome 0,000362 4,73E-05 0,000229 2,04E-05 1,582677 0,003 entreproteasome 0,000362 4,73E-05 0,000229 2,04E-05 1,582677 0,003 entreproteasome 0,000362 4,73E-05 0,000229 2,04E-05 1,582677 0,003 entreproteasome 0,000367 4,73E-05 0,000229 2,04E-05 1,583667 0,003 entreproteasome 0,00047 4,65E-05 0,000229 2,04E-05 1,583687 0,003 entreproteasome 0,000467 4,65E-05 0,00029 5,4E-05 1,583689 0,004 entreproteasome 0,000467 0,000961 0,00315 0,000461 1,494327 0,012 entreproteasome 0,00059 1,000315 0,000461 1,494327 0,012 entreproteasome 0,00059 1,000359 0,00010 1,494327 0,012 entreproteasome 0,00059 1,000359 0,00010 1,494327 0,012 entreproteasome 0,00059 1,000389 0,000389 0,00010 1,494327 0,000 entreproteasome 0,00059 0,000389 0,00010 1,494327 0,000 entreproteasome 0,00059 0,000363 0,00040 1,494327 0,000 entreproteasome 0,00059 0,000363 0,000639 0,00011 1,454582 0,000 entreproteasome 0,00059 0,000359 0,	0						0.00491
Processome 0.000362 4.738-05 0.000229 2.04E-05 1.582677 0.003 Artigiep processing and presentation 0.000362 4.738-05 0.00029 2.04E-05 1.582677 0.003 Progesterone-mediated oocyte maturation 0.000362 4.73E-05 0.00029 2.04E-05 1.582677 0.003 pright-lail cell signaling in <i>Indiciobacter ypiori</i> infection 0.000727 0.00032 0.00460 3.5E-05 1.582677 0.003 Sociation in allialisation discontration of secondary metabolites 0.00467 0.000501 0.000309 0.00146 1.578893 0.004 Sociation in allialisation of secondary metabolites 0.000551 4.71E-05 0.000399 0.0014 1.494327 0.012 Adipocytokine signaling pathway 0.000551 8.91E-05 0.000399 0.0001 1.494327 0.0012 Accorbate and Idarate metabolism 0.001688 0.000102 0.00099 0.0001 1.445482 0.0014 Pherylalanine, tyrosine and tryptophan biosynthesis 0.001629 0.00013 0.000333 1.429314 0.004 <							0.00388
Antigen processing and presentation Projectsterone-mediated oocyte maturation O.000362 4.73E-05 0.000229 2.04E-05 1.582677 0.003 Perphicial cell signaling in Helikobacter pylori infection O.000727 0.000132 0.00046 3.5E-05 1.579354 0.015 soquinoline alkaloid biosynthesis O.000447 4.65E-05 0.00029 5.4E-05 1.579354 0.015 soquinoline alkaloid biosynthesis O.000467 0.000941 0.000315 0.000465 1.527891 0.039 Biosynthesis and biodegradation of secondary metabolites O.000559 8.91E-05 0.000399 0.000104 1.494327 0.012 Algoocytokine signaling pathway O.000569 8.91E-05 0.000389 0.000104 1.494327 0.012 Algoocytokine signaling pathway O.000569 0.000102 0.00059 0.00011 1.454582 0.012 O.000369 0.000104 1.494327 0.012 O.000590 0.000104 1.494327 0.012 O.000590 0.000104 1.494327 0.012 O.000590 0.000101 1.454582 0.012 O.000590 0.000104 0.00033 1.429314 0.004 Ascorbate and didarate metabolism O.001268 0.000196 0.0009 0.00033 1.429314 0.004 O.000689 0.000187 0.000139 0.00013 1.383082 0.000 O.000690 0.000690							0.00399
Progestrone-mediated oocyte maturation							0.00399
Epithelia cell signaling in Helicobacter pylori infection 0,000277 0,000132 0,00046 3,5E-05 1,579354 0,015 stoaquinoline allacloid biosynthesis 0,000447 4,65E-05 0,00029 0,000104 1,248437 0,009 prophyrin and chlorophyll metabolism 0,004607 0,000961 0,003015 0,000465 1,527891 0,039 biosynthesis and biodegradation of secondary metabolism 0,000551 4,71E-05 0,000369 0,000104 1,494327 0,012: 440pcoycologia signaling pathway 0,000569 8,91E-05 0,000389 0,000389 0,000114 1,494327 0,012: 440pcoycologia signaling pathway 0,000589 0,000112 0,000399 0,00011 1,454582 0,012: 440pcoylation pylorida and tryptophan biosynthesis 0,006589 0,000102 0,00099 0,00011 1,454582 0,012: 440pcoylation pylorida and tryptophan biosynthesis 0,001626 0,000196 0,00099 0,00024 1,409494 0,049 0,00094 0,00095 0,00094 0,00095 0,00094 0,00095 0,00094 0,00095 0,00094 0,00095 0,00094 0,00095 0,00094 0,00095 0,00094 0,00095 0,00094 0,00095 0,00094 0,00095 0,00094 0,00095 0,000							0.00399
							0.01592
Porphynin and chlorophyli metabolism 0.004607 0.000961 0.00315 0.000465 1.527891 0.039 Biosynthesis and biodegradation of secondary metabolites independency silvents in a pathway 0.000569 8.91E-05 0.000369 0.00114 1.494327 0.0122 Adipocytokine signaling pathway 0.000589 8.91E-05 0.000389 0.000333 1.429434 0.024 Phenylalainine, yrosine and tryptophan biosynthesis 0.006389 0.000150 0.000333 0.00333 1.429434 0.004 Uysine degradation 0.001637 0.000160 0.00096 0.00033 0.00163 0.666-05 1.401181 0.013 Phenylpropanoid biosynthesis 0.001452 0.000187 0.001033 0.00153 1.398277 0.018 Phenylpropanoid biosynthesis 0.001637 0.001150 0.000119 0.000133 1.398277 0.018 Phenylpropanoid biosynthesis 0.001637 0.000118 0.000118 0.000118 0.000118 0.000118 0.000118 0.000113 1.383082 0.040 Phenylprophynic in division <							
Biosynthesis and biodegradation of secondary metabolites 0.000551 4.71E-05 0.000369 0.000104 1.494327 0.0124 Adiopocytokine signaling pathway 0.000569 8.91E-05 0.000389 6.67E-05 1.462434 0.024 Ascorbate and aldarate metabolism 0.000588 0.000102 0.00059 0.00011 1.454582 0.0124 Ascorbate and aldarate metabolism 0.000588 0.000102 0.00059 0.00011 1.454582 0.0124 Ascorbate and aldarate metabolism 0.0006639 0.000733 0.004645 0.000333 1.429314 0.004 MAPK signaling pathway—yeast 0.000569 5.65E-05 0.000363 6.06E-05 1.401181 0.0132 MAPK signaling pathway—yeast 0.000569 5.65E-05 0.000363 6.06E-05 1.401181 0.0132 MAPK signaling pathway—yeast 0.000688 8.96E-05 0.000139 0.000153 1.398277 0.0183 Cell division 0.00068 8.96E-05 0.000189 0.000115 1.383082 0.040 Phenylalanine metabolism 0.001637 0.000111 0.001198 0.00028 1.366679 0.071 Tropane, piperidine and pyridine alkaloid biosynthesis 0.00082 5.87E-05 0.000719 8.49E-05 1.3566734 0.001 Novobiocin biosynthesis 0.00155 9.8E-05 0.000854 6.8E-05 1.352515 0.003 CS-branched dibasic acid metabolism 0.002602 0.000241 0.01891 0.000187 1.322346 0.009 Petrose and glucuronate interconversions 0.004337 0.00036 0.003422 0.000194 1.267635 0.004 Cliyosylate and dicarboxylate metabolism 0.001485 0.000276 0.003638 0.000344 1.232728 0.004 Cliyosylate and dicarboxylate metabolism 0.001485 0.000276 0.003638 0.000144 1.232728 0.004 Carbohydrate metabolism 0.001979 0.001020 0.000660 0.000149 0.000569 1.191978 0.000 Carbohydrate metabolism 0.001979 0.001020 0.000660 0.000149 0.000660 0.000140 0.000660 0.000140 0.000660 0.000140 0.000660 0.000140 0.000660 0.000140 0.000660 0.000140 0.000660 0.000140 0.000660 0.000140 0.000660 0.000660 0.000660 0.000660 0.000660 0.000660 0.000660 0.000660 0.000660 0.00066							
Adipocytokine signaling pathway Ascorbate and aldarate metabolism 0.000858 0.000102 0.00059 0.00011 1.454582 0.012 Ascorbate and aldarate metabolism 0.000858 0.000102 0.00059 0.00013 1.454582 0.012 Phenylalanine, tyrosine and tryptophan biosynthesis 0.006639 0.000196 0.00009 0.000224 1.40944 0.049 0.049 0.049 0.04027 0.000187 0.000187 0.000189 0.000183 1.398277 0.018 Cell division Phenylalpropanoid biosynthesis 0.001452 0.000187 0.000187 0.000189 0.000124 0.000185 1.383082 0.040 0.001699 0.000224 0.000185 1.383082 0.040 0.001699 0.000224 0.000185 1.383082 0.040 0.001699 0.000218 1.366679 0.0017 Tropane, piperidine and pyridine alkaloid biosynthesis 0.001637 0.000111 0.001188 0.000199 0.000218 1.366679 0.0017 Tropane, piperidine and pyridine alkaloid biosynthesis 0.001637 0.000115 0.000854 0.000854 0.88E-05 0.000854 0.88E-05 0.000854 0.88E-05 0.000854 0.88E-05 0.000857 0.000854 0.88E-05 0.000857 0.000854 0.88E-05 0.000857 0.000857 0.000859 0.000854 0.88E-05 0.000857 0.000859 0.00							
Ascorbate and aldarate metabolism							
Phenylalanine, tyrosine and tryptophan biosynthesis							
Lysine degradation 0.001268 0.000196 0.0009 0.000224 1.409494 0.049 NAPK signaling pathway—yeast 0.000509 5.65E-05 0.000363 0.000363 1.398277 0.018 Phenylpropanoid biosynthesis 0.001452 0.000187 0.001039 0.000153 1.398277 0.018 Cell division 0.00068 8.96E-05 0.000492 0.000115 1.383082 0.040 Phenylalanine metabolism 0.001637 0.000111 0.001198 8.49E-05 1.366643 0.0017 Tropane, piperidine and pyridine alkaloid biosynthesis 0.00185 0.88E-05 0.000719 8.49E-05 1.366643 0.0017 Tropane, piperidine and pyridine alkaloid biosynthesis 0.00185 0.88E-05 0.000719 8.49E-05 1.366434 0.0018 Novobiocin biosynthesis 0.00155 9.8E-05 0.000719 8.49E-05 1.366434 0.0019 Novobiocin biosynthesis 0.00185 0.800037 0.000841 0.00187 1.323346 0.009 Histidine metabolism 0.006148 0.000307 0.004823 0.000187 1.227458 0.001 Pertose and glucuronate interconversions 0.004337 0.00036 0.003422 0.000124 1.267635 0.006 Peroxisome 0.001797 0.000203 0.001434 0.000192 1.253159 0.047 Glyoxylate and dicarboxylate metabolism 0.004485 0.000276 0.003638 0.000344 1.232728 0.008 Energy metabolism 0.009168 0.000565 0.00745 0.000566 1.230619 0.005 beta-Alanine metabolism 0.001979 0.000203 0.001434 0.000191 1.227986 0.0172 PPAR signaling pathway 0.00934 4.91E-05 0.000783 5.69E-05 1.193565 0.007 Arginine and proline metabolism 0.011298 0.000713 0.000487 0.000163 0.000161 1.227986 0.0172 PPAR signaling pathway Valine, leucine and isoleucine biosynthesis 0.00160 0.00060 0.000364 0.000563 0.000569 1.191978 0.0002 Arginine and proline metabolism 0.001530 0.000606 0.000364 0.000563 0.000569 1.191978 0.0002 Palant-pathogen interaction 0.001323 0.000106 0.000149 1.29E-05 1.150811 0.0038 Valine, leucine and isoleucine biosynthesis 0.000569 0.000369 0.000939 0.000931 0.000037 0.00037 0.00038 0.000037 0.00038 0.000038 0.000037 0.00038 0.000037 0.00039 0.000037 0.00039 0.000037 0.000039 0.000037 0.000039 0.0000037 0.000039 0.0000037 0.000039 0.0000037 0.000039 0.0000037 0.000039 0.0000000000000000000000000000							
MAPK signaling pathway—yeast 0.000509 5.65E-05 0.00363 6.06E-05 1.401181 0.013 Phenylpropanoid biosynthesis 0.001452 0.000187 0.001039 0.00153 1.398277 0.018 Cell division 0.00068 8.96E-05 0.000492 0.001155 1.383082 0.040 Phenylalanine metabolism 0.001637 0.001111 0.001198 0.00028 1.366679 0.017 Tropane, piperidine and pyridine alkaloid biosynthesis 0.00155 9.8E-05 0.000719 8.49E-05 1.366679 0.001 Novobiocin biosynthesis 0.00155 9.8E-05 0.000781 6.8E-05 1.352515 0.001 Schranched dibasic acid metabolism 0.002502 0.000201 0.00187 1.322346 0.001 Pertose and glucuronate interconversions 0.004337 0.0036 0.03422 0.00124 1.26635 0.006 Pertose and glucuronate interconversions 0.001478 0.000203 0.001434 0.00194 1.26635 0.006 Pertose and glucuronate interconversions 0.001797							
Phenylpropanoid biosynthesis Cell division C							
Cell division							
Phenyalalanine metabolism							
Tropane, piperidine and pyridine alkaloid biosynthesis 0.000982 5.87E-05 0.000719 8.49E-05 1.366434 0.001 Novobiocin biosynthesis 0.00155 9.8E-05 0.000854 6.8E-05 1.352515 0.003 C5-branched dibasic acid metabolism 0.002502 0.000241 0.001891 0.000187 1.323346 0.009 Histidine metabolism 0.006148 0.000307 0.004823 0.000355 1.27458 0.001 Pentose and glucuronate interconversions 0.004337 0.00036 0.003422 0.000124 1.267635 0.006 Peroxisome 0.001797 0.000203 0.001434 0.000192 1.253159 0.047 Glyoxylate and dicarboxylate metabolism 0.004485 0.000565 0.00745 0.000566 1.230619 0.005 Energy metabolism 0.009168 0.000565 0.00745 0.000566 1.230619 0.005 Energy metabolism 0.001947 0.000148 0.001586 0.000161 1.227986 0.017 ENERGY 0.00743 0.000743 0.000748 0.000161 1.227986 0.017 ENERGY 0.00744 0.000748 0.000748 0.000569 1.191978 0.009 Entrapialing pathway 0.00179 0.000748 0.000783 5.69E-05 1.193565 0.007 Entrapialing pathway 0.00179 0.000748 0.000783 5.69E-05 1.193565 0.007 Entrapialing pathway 0.00179 0.000748 0.000783 0.000569 1.191978 0.009 Entrapialing pathway 0.00179 0.000748 0.000748 0.000569 1.191978 0.009 Entrapialing pathway 0.00179 0.000748 0.000748 0.000569 1.191978 0.009 Entrapialing pathway 0.00179 0.000748 0.000745 0.000745 0.000745 0.000745 0.0007							0.0402
Novobiocin biosynthesis 0.001155 9.8E-05 0.000854 6.8E-05 1.352515 0.003 CS-branched dibasic acid metabolism 0.002502 0.000241 0.00187 0.000367 0.000355 1.27458 0.001 Pentose and glucuronate interconversions 0.004337 0.00036 0.003422 0.000124 1.267635 0.006 Peroxisome 0.001797 0.000203 0.001434 0.000192 1.253159 0.046 Peroxisome 0.001797 0.000203 0.001434 0.000192 1.253159 0.046 Peroxisome 0.001797 0.000203 0.001434 0.000192 1.253159 0.047 0.001444 0.000192 1.253159 0.047 0.001444 0.000192 1.253159 0.047 0.00144 0.000144 0.000144 0.000145 0.000565 0.00745 0.000566 0.000366 0.000366 0.000367 0.000566 0.000161 1.227986 0.017: 0.00148 0.001199 0.000713 0.000748 0.000569 1.191978 0.009 0.001199 0.000713 0.000748 0.000569 1.191978 0.004 0.00148 0.000569 1.191978 0.008 0.00149 0.00140 0.00140 0.00141 0.00164 0.001659 0.00173 0.00038 0.00185 0.00173 0.00185 0	,						0.01752
CS-branched dibasic acid metabolism	· · · · · · · · · · · · · · · · · · ·	0.000982	5.87E-05			1.366434	0.00189
Histidine metabolism 0.006148 0.000307 0.004823 0.000355 1.27458 0.001 Pentose and glucuronate interconversions 0.004337 0.00036 0.003422 0.000124 1.267635 0.006 Peroxisome 0.001797 0.000207 0.000203 0.001434 0.000192 1.253159 0.047 Glyoxylate and dicarboxylate metabolism 0.004485 0.000276 0.003638 0.000344 1.232728 0.008 Energy metabolism 0.009168 0.000565 0.00745 0.000566 1.230619 0.001 Deta-Alanine metabolism 0.001947 0.000184 0.001586 0.000161 1.227986 0.017 PPPAR signaling pathway 0.001947 0.000173 0.009478 0.000569 1.191978 0.009 Carbohydrate metabolism 0.0011298 0.000713 0.009478 0.000569 1.191978 0.009 Carbohydrate metabolism 0.001179 3.84E-05 0.001 0.00164 1.179682 0.048 Valine, leucine and isoleucine biosynthesis 0.00666 0.000364 0.005633 0.000585 1.172742 0.025 Plant-pathogen interaction 0.001323 0.000106 0.001149 1.29E-05 1.150811 0.033 Glycine, serine and threonine metabolism 0.00856 0.000104 0.007715 0.000339 1.109523 0.001 Other transporters 0.002141 1.66E-05 0.001934 0.000131 1.106631 0.010 Butirosin and neomycin biosynthesis 0.00584 0.00584 0.005631 0.000185 1.071173 0.007 Pantothenate and CoA biosynthesis 0.00848 0.00228 0.00546 0.000185 1.071173 0.007 Pantothenate and methionine metabolism 0.008962 0.00013 0.008591 0.000237 1.043173 0.026 Bacterial toxins 0.004284 0.000228 0.005450 0.001493 0.00237 1.043173 0.026 Bacterial toxins 0.00484 0.000228 0.005450 0.001493 0.001217 0.940335 0.0042 Peptidoglycan biosynthesis 0.00484 0.000228 0.005450 0.001493 0.000375 0.993731 0.004 Peptidoglycan biosynthesis 0.00484 0.000280 0.006811 0.000292 0.094093 0.000375 0.993731 0.004 Peptidoglycan biosynthesis 0.004269 0.000217 0.004695 0.00337 0.000377 0.9907275 0.0174 Photosynthesis proteins 0.00382 0.000195 0.004216 0.000241 0.000241 0.000377 0.000377 0.0907275 0.0174 Photosynthesis proteins 0.00382 0.000195 0.004216 0.000241 0.000241 0.000377 0.000377 0.00078	,				6.8E-05		0.00359
Pentose and glucuronate interconversions 0.004337 0.00036 0.003422 0.000124 1.267635 0.006 Peroxisome 0.001797 0.000203 0.001434 0.000192 1.253159 0.047 0.000276 0.003638 0.000344 1.232728 0.008 Energy metabolism 0.004485 0.000276 0.003638 0.000344 1.232728 0.008 Energy metabolism 0.009168 0.000565 0.00745 0.000566 1.230619 0.005 beta-Alanine metabolism 0.001947 0.000148 0.001586 0.000161 1.227986 0.017: PPAR signaling pathway 0.000934 4.91E-05 0.000783 0.009478 0.000569 1.191978 0.007 Arginine and proline metabolism 0.0011298 0.000713 0.009478 0.000569 1.191978 0.009 Arginine and isoleucine biosynthesis 0.001606 0.000364 0.005633 0.000585 1.172742 0.025 Plant-pathogen interaction 0.001323 0.000106 0.001149 1.29E-05 1.150811 0.033 Clycine, serine and threonine metabolism 0.00856 0.00014 0.007715 0.000339 1.109523 0.001 Other transporters 0.002141 1.66E-05 0.001934 0.000131 1.106631 0.010 Butirosin and neomycin biosynthesis 0.00848 1.04E-05 0.000792 3.08E-05 1.071173 0.007 Pantothenate and CoA biosynthesis 0.008862 0.00013 0.008591 0.000237 1.043173 0.026 DNA repair and recombination proteins 0.030697 0.00032 0.001040 0.001245 0.00127 0.940335 0.042 Purine metabolism 0.004284 9.14E-05 0.00485 0.000175 0.000375 0.093731 0.004 Peptidoglycan biosynthesis 0.00485 0.00220 0.005695 0.000375 0.00375 0.00375 0.00375 0.09371 0.004 Peptidoglycan biosynthesis 0.004284 0.00228 0.005546 0.001217 0.940335 0.042 Purine metabolism 0.004284 0.00228 0.00588 0.000171 0.940335 0.042 Purine metabolism 0.004284 0.00228 0.00588 0.000171 0.940335 0.0024 Purine metabolism 0.004284 0.00268 0.000275 0.004269 0.000375 0.00375 0.939731 0.004 Peptidoglycan biosynthesis 0.004286 0.000290 0.006811 0.000377 0.993731 0.004 Photosynthesis proteins 0.00382 0.00195 0.004216 0.000241 0.000434 0.000377 0.000377 0.907275 0.0174 0.000599 0.000377 0.000377 0.000775 0.000377 0.000775 0.000377 0.000775 0.000478 0.000478 0.0006105 0.000478 0.000678 0.000678 0.000678 0.000678 0.000678 0.000679 0.000679 0.000679 0.000679 0.000679 0.000679 0.000679 0.000679 0	C5-branched dibasic acid metabolism	0.002502	0.000241	0.001891	0.000187	1.323346	0.00976
Peroxisome 0.001797 0.000203 0.001434 0.000192 1.253159 0.047 Glyoxylate and dicarboxylate metabolism 0.004485 0.000276 0.003638 0.000344 1.232728 0.008 Energy metabolism 0.009168 0.000565 0.000745 0.000566 1.230619 0.005 beta-Alanine metabolism 0.001947 0.000148 0.001586 0.000161 1.227986 0.017: PPAR signaling pathway 0.000934 4.91E-05 0.000783 5.69E-05 1.193565 0.007 Arginine and proline metabolism 0.011298 0.000713 0.009478 0.000569 1.191978 0.009 Carbohydrate metabolism 0.001179 3.84E-05 0.001 0.000164 1.179682 0.048 Valine, leucine and isoleucine biosynthesis 0.006606 0.000364 0.005633 0.000585 1.172742 0.025 Plant-pathogen interaction 0.001323 0.000106 0.001149 1.29E-05 1.150811 0.033 Glycine, serine and threonine metabolism 0.00886 0.000104 0.007715 0.000339 1.109523 0.0011 0.0014 1.00050 0.00050		0.006148	0.000307	0.004823	0.000355	1.27458	0.00138
Clyoxylate and dicarboxylate metabolism	Pentose and glucuronate interconversions	0.004337	0.00036	0.003422	0.000124	1.267635	0.00606
Energy metabolism	Peroxisome	0.001797	0.000203	0.001434	0.000192	1.253159	0.04718
beta-Alanine metabolism 0.001947 0.000148 0.001586 0.000161 1.227986 0.0175 PPAR signaling pathway 0.000934 4.91E-05 0.000783 5.69E-05 1.193565 0.007 Arginine and proline metabolism 0.011298 0.000713 0.009478 0.000569 1.191978 0.004 Carbohydrate metabolism 0.001179 3.84E-05 0.001 0.00164 1.179682 0.048 Valine, leucine and isoleucine biosynthesis 0.006606 0.000344 0.005633 0.000585 1.172742 0.025 Plant-pathogen interaction 0.001323 0.000106 0.001149 1.29E-05 1.150811 0.033 Glycine, serine and threonine metabolism 0.00856 0.000104 0.007715 0.000339 1.109523 0.001 Other transporters 0.002141 1.66E-05 0.001934 0.000131 1.106631 0.010 Butirosin and neomycin biosynthesis 0.00848 1.04E-05 0.000792 3.08E-05 1.071173 0.007 Patrothenate and CoA biosynthesis 0.0089	Glyoxylate and dicarboxylate metabolism	0.004485	0.000276	0.003638	0.000344	1.232728	0.00834
PPAR signaling pathway 0.000934 4.91E-05 0.000783 5.69E-05 1.193565 0.007 Arginine and proline metabolism 0.011298 0.000713 0.009478 0.000569 1.191978 0.009 Carbohydrate metabolism 0.001179 3.84E-05 0.001 0.000164 1.179682 0.048 Valine, leucine and isoleucine biosynthesis 0.006606 0.000364 0.005633 0.000585 1.172742 0.025 Plant-pathogen interaction 0.00856 0.000104 0.001149 1.29E-05 1.150811 0.033 Glycine, serine and threonine metabolism 0.00856 0.000104 0.007715 0.000339 1.109523 0.001 Other transporters 0.002141 1.66E-05 0.001934 0.000131 1.106631 0.010 Butirosin and neomycin biosynthesis 0.00848 1.04E-05 0.000792 3.08E-05 1.071173 0.007 Pantothenate and CoA biosynthesis 0.00594 0.000228 0.005546 0.000185 1.070958 0.045 Cysteine and methionine metabolism <	Energy metabolism	0.009168	0.000565	0.00745	0.000566	1.230619	0.00593
Arginine and proline metabolism 0.011298 0.000713 0.009478 0.000569 1.191978 0.009 Carbohydrate metabolism 0.001179 3.84E-05 0.001 0.000164 1.179682 0.048 Valine, leucine and isoleucine biosynthesis 0.006606 0.000364 0.005633 0.000885 1.172742 0.025 Plant-pathogen interaction 0.001323 0.000106 0.001149 1.29E-05 1.150811 0.033 Glycine, serine and threonine metabolism 0.00856 0.000104 0.007715 0.000339 1.109523 0.0010 Other transporters 0.002141 1.66E-05 0.001934 0.000131 1.106631 0.010 Other transporters 0.002141 1.66E-05 0.001934 0.000131 1.106631 0.010 Other transporters 0.002411 1.66E-05 0.000792 3.08E-05 1.071173 0.007 Butirosin and neomycin biosynthesis 0.00594 0.000228 0.005546 0.000185 1.070958 0.045 Cysteine and methionine metabolism 0.008962	beta-Alanine metabolism	0.001947	0.000148	0.001586	0.000161	1.227986	0.01752
Carbohydrate metabolism 0.001179 3.84E-05 0.001 0.000164 1.179682 0.048 Valine, leucine and isoleucine biosynthesis 0.006606 0.000364 0.005633 0.000585 1.172742 0.025 Plant-pathogen interaction 0.001323 0.000106 0.001149 1.29E-05 1.150811 0.033 Glycine, serine and threonine metabolism 0.00856 0.000104 0.007715 0.000339 1.109523 0.001 Other transporters 0.002141 1.66E-05 0.00134 0.000131 1.106631 0.010 Butirosin and neomycin biosynthesis 0.000848 1.04E-05 0.000792 3.08E-05 1.071173 0.007 Pantothenate and CoA biosynthesis 0.00594 0.000228 0.005546 0.000185 1.070958 0.045 Cysteine and methionine metabolism 0.008962 0.00013 0.008591 0.000237 1.043173 0.026 Bacterial toxins 0.00141 3.77E-05 0.001493 3.47E-05 0.944695 0.021 DNA repair and recombination proteins <t< td=""><td>PPAR signaling pathway</td><td>0.000934</td><td>4.91E-05</td><td>0.000783</td><td>5.69E-05</td><td>1.193565</td><td>0.00709</td></t<>	PPAR signaling pathway	0.000934	4.91E-05	0.000783	5.69E-05	1.193565	0.00709
Carbohydrate metabolism 0.001179 3.84E-05 0.001 0.000164 1.179682 0.048 Valine, leucine and isoleucine biosynthesis 0.006606 0.000364 0.005633 0.000585 1.172742 0.025 Plant-pathogen interaction 0.001323 0.000106 0.001149 1.29E-05 1.150811 0.033 Glycine, serine and threonine metabolism 0.00856 0.000104 0.007715 0.000339 1.109523 0.001 Other transporters 0.002141 1.66E-05 0.00134 0.000131 1.106631 0.010 Butirosin and neomycin biosynthesis 0.000848 1.04E-05 0.000792 3.08E-05 1.071173 0.007 Pantothenate and CoA biosynthesis 0.00594 0.000228 0.005546 0.000185 1.070958 0.045 Cysteine and methionine metabolism 0.008962 0.00013 0.008591 0.000237 1.043173 0.026 Bacterial toxins 0.00141 3.77E-05 0.001493 3.47E-05 0.944695 0.021 DNA repair and recombination proteins <t< td=""><td>Arginine and proline metabolism</td><td>0.011298</td><td>0.000713</td><td>0.009478</td><td>0.000569</td><td>1.191978</td><td>0.00976</td></t<>	Arginine and proline metabolism	0.011298	0.000713	0.009478	0.000569	1.191978	0.00976
Plant-pathogen interaction 0.001323 0.000106 0.001149 1.29E-05 1.150811 0.033 Glycine, serine and threonine metabolism 0.00856 0.000104 0.007715 0.000339 1.109523 0.0010 Other transporters 0.002141 1.66E-05 0.001934 0.000131 1.106631 0.010 Butirosin and neomycin biosynthesis 0.00848 1.04E-05 0.000792 3.08E-05 1.071173 0.007 Pantothenate and CoA biosynthesis 0.00594 0.000228 0.005546 0.000185 1.070958 0.045 Cysteine and methionine metabolism 0.008962 0.00013 0.008591 0.000237 1.043173 0.026 Bacterial toxins 0.00141 3.77E-05 0.001493 3.47E-05 0.944695 0.021 DNA repair and recombination proteins 0.030697 0.000932 0.032645 0.001217 0.940335 0.042 Nucleotide excision repair 0.004284 9.14E-05 0.004559 7.56E-05 0.939731 0.004 Peptidoglycan biosynthesis 0.008357		0.001179	3.84E-05	0.001	0.000164	1.179682	0.04868
Plant-pathogen interaction 0.001323 0.000106 0.001149 1.29E-05 1.150811 0.033 Glycine, serine and threonine metabolism 0.00856 0.000104 0.007715 0.000339 1.109523 0.0010 Other transporters 0.002141 1.66E-05 0.001934 0.000131 1.106631 0.010 Butirosin and neomycin biosynthesis 0.00848 1.04E-05 0.000792 3.08E-05 1.071173 0.007 Pantothenate and CoA biosynthesis 0.00594 0.000228 0.005546 0.000185 1.070958 0.045 Cysteine and methionine metabolism 0.008962 0.00013 0.008591 0.000237 1.043173 0.026 Bacterial toxins 0.00141 3.77E-05 0.001493 3.47E-05 0.944695 0.021 DNA repair and recombination proteins 0.030697 0.000932 0.032645 0.001217 0.940335 0.042 Nucleotide excision repair 0.004284 9.14E-05 0.004559 7.56E-05 0.939731 0.004 Peptidoglycan biosynthesis 0.008357	Valine, leucine and isoleucine biosynthesis	0.006606	0.000364	0.005633	0.000585	1.172742	0.02522
Glycine, serine and threonine metabolism 0.00856 0.000104 0.007715 0.000339 1.109523 0.0010 Other transporters 0.002141 1.66E-05 0.001934 0.000131 1.106631 0.010 Butirosin and neomycin biosynthesis 0.000848 1.04E-05 0.000792 3.08E-05 1.071173 0.007 Pantothenate and CoA biosynthesis 0.00594 0.000228 0.005546 0.000185 1.070958 0.045 Cysteine and methionine metabolism 0.008962 0.00013 0.008591 0.000237 1.043173 0.026 Bacterial toxins 0.00141 3.77E-05 0.001493 3.47E-05 0.944695 0.021 DNA repair and recombination proteins 0.030697 0.000932 0.032645 0.001217 0.940335 0.042 Nucleotide excision repair 0.004284 9.14E-05 0.004559 7.56E-05 0.939731 0.004 Peptidoglycan biosynthesis 0.008357 0.000236 0.008931 0.000375 0.935728 0.035 Terpenoid backbone biosynthesis 0.	· · · · · · · · · · · · · · · · · · ·	0.001323	0.000106	0.001149	1.29E-05	1.150811	0.03366
Other transporters 0.002141 1.66E-05 0.001934 0.000131 1.106631 0.010 Butirosin and neomycin biosynthesis 0.000848 1.04E-05 0.000792 3.08E-05 1.071173 0.007 Pantothenate and CoA biosynthesis 0.00594 0.000228 0.005546 0.000185 1.070958 0.045 Cysteine and methionine metabolism 0.008962 0.00013 0.008591 0.000237 1.043173 0.026 Bacterial toxins 0.00141 3.77E-05 0.001493 3.47E-05 0.944695 0.021 DNA repair and recombination proteins 0.030697 0.000932 0.032645 0.001217 0.940335 0.042 Nucleotide excision repair 0.004284 9.14E-05 0.004559 7.56E-05 0.939731 0.004 Peptidoglycan biosynthesis 0.008357 0.000236 0.008931 0.000375 0.935728 0.035 Terpenoid backbone biosynthesis 0.00628 0.000202 0.006811 0.000292 0.921942 0.021 Purine metabolism 0.01245 0.000939 0.026588 0.000617 0.921641 0.014 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00163</td></t<>							0.00163
Butirosin and neomycin biosynthesis 0.000848 1.04E-05 0.000792 3.08E-05 1.071173 0.007 Pantothenate and CoA biosynthesis 0.00594 0.000228 0.005546 0.000185 1.070958 0.045 Cysteine and methionine metabolism 0.008962 0.00013 0.008591 0.000237 1.043173 0.026 Bacterial toxins 0.00141 3.77E-05 0.001493 3.47E-05 0.944695 0.021 DNA repair and recombination proteins 0.030697 0.000932 0.032645 0.001217 0.940335 0.042 Nucleotide excision repair 0.004284 9.14E-05 0.004559 7.56E-05 0.939731 0.004 Peptidoglycan biosynthesis 0.008357 0.000236 0.008931 0.000375 0.935728 0.035 Terpenoid backbone biosynthesis 0.00628 0.000202 0.006811 0.000292 0.921942 0.021 Purine metabolism 0.024505 0.000939 0.026588 0.000617 0.921641 0.014 Aminoacyl-tRNA biosynthesis 0.01292							0.01029
Pantothenate and CoA biosynthesis 0.00594 0.000228 0.005546 0.000185 1.070958 0.045 Cysteine and methionine metabolism 0.008962 0.00013 0.008591 0.000237 1.043173 0.026 Bacterial toxins 0.00141 3.77E-05 0.001493 3.47E-05 0.944695 0.021 DNA repair and recombination proteins 0.030697 0.000932 0.032645 0.001217 0.940335 0.042 Nucleotide excision repair 0.004284 9.14E-05 0.004559 7.56E-05 0.939731 0.004 Peptidoglycan biosynthesis 0.008357 0.000236 0.008931 0.000375 0.935728 0.035 Terpenoid backbone biosynthesis 0.00628 0.000202 0.006811 0.000292 0.921942 0.021 Purine metabolism 0.024505 0.000939 0.026588 0.000617 0.921641 0.014 Aminoacyl-tRNA biosynthesis 0.012922 0.000201 0.014084 0.000588 0.917474 0.005 Glycerolipid metabolism 0.004269 0.0							0.00780
Cysteine and methionine metabolism 0.008962 0.00013 0.008591 0.000237 1.043173 0.026 Bacterial toxins 0.00141 3.77E-05 0.001493 3.47E-05 0.944695 0.021 DNA repair and recombination proteins 0.030697 0.000932 0.032645 0.001217 0.940335 0.042 Nucleotide excision repair 0.004284 9.14E-05 0.004559 7.56E-05 0.939731 0.004 Peptidoglycan biosynthesis 0.008357 0.000236 0.008931 0.000375 0.935728 0.035 Terpenoid backbone biosynthesis 0.00628 0.000202 0.006811 0.000292 0.921942 0.021 Purine metabolism 0.024505 0.000939 0.026588 0.000617 0.921641 0.014 Aminoacyl-tRNA biosynthesis 0.012922 0.000201 0.014084 0.000588 0.917474 0.005 Glycerolipid metabolism 0.004269 0.000217 0.004695 8.33E-05 0.909354 0.019 Photosynthesis 0.016035 0.000803	, ,						0.04590
Bacterial toxins 0.00141 3.77E-05 0.001493 3.47E-05 0.944695 0.0212 DNA repair and recombination proteins 0.030697 0.000932 0.032645 0.001217 0.940335 0.042 Nucleotide excision repair 0.004284 9.14E-05 0.004559 7.56E-05 0.939731 0.004 Peptidoglycan biosynthesis 0.008357 0.000236 0.008931 0.000375 0.935728 0.035 Terpenoid backbone biosynthesis 0.00628 0.000202 0.006811 0.000292 0.921942 0.0213 Purine metabolism 0.024505 0.000939 0.026588 0.000617 0.921641 0.0144 Aminoacyl-tRNA biosynthesis 0.012922 0.000201 0.014084 0.000588 0.917474 0.005 Glycerolipid metabolism 0.004269 0.000217 0.004695 8.33E-05 0.909354 0.019 Photosynthesis proteins 0.003839 0.000192 0.004225 0.000242 0.908482 0.045 Amino sugar and nucleotide sugar metabolism 0.016035 0.000803 0.017673 0.000377 0.907275 0.0174 Photosynthesis 0.00382 0.000195 0.004216 0.000241 0.906105 0.042	· · · · · · · · · · · · · · · · · · ·						0.02640
DNA repair and recombination proteins 0.030697 0.000932 0.032645 0.001217 0.940335 0.042 Nucleotide excision repair 0.004284 9.14E-05 0.004559 7.56E-05 0.939731 0.004 Peptidoglycan biosynthesis 0.008357 0.000236 0.008931 0.000375 0.935728 0.035 Terpenoid backbone biosynthesis 0.00628 0.000202 0.006811 0.000292 0.921942 0.021 Purine metabolism 0.024505 0.000939 0.026588 0.000617 0.921641 0.014 Aminoacyl-tRNA biosynthesis 0.012922 0.000201 0.014084 0.000588 0.917474 0.005 Glycerolipid metabolism 0.004269 0.000217 0.004695 8.33E-05 0.909354 0.019 Photosynthesis proteins 0.003839 0.000192 0.004225 0.000242 0.908482 0.045 Amino sugar and nucleotide sugar metabolism 0.016035 0.000803 0.017673 0.000377 0.907275 0.0174 Photosynthesis 0.004269 0.000195 0.004216 0.000241 0.906105 0.042 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•						
Nucleotide excision repair 0.004284 9.14E-05 0.004559 7.56E-05 0.939731 0.004 Peptidoglycan biosynthesis 0.008357 0.000236 0.008931 0.000375 0.935728 0.035 Terpenoid backbone biosynthesis 0.00628 0.000202 0.006811 0.000292 0.921942 0.021 Purine metabolism 0.024505 0.000939 0.026588 0.000617 0.921641 0.014 Aminoacyl-tRNA biosynthesis 0.012922 0.000201 0.014084 0.000588 0.917474 0.005 Glycerolipid metabolism 0.004269 0.000217 0.004695 8.33E-05 0.909354 0.019 Photosynthesis proteins 0.003839 0.000192 0.004225 0.000242 0.908482 0.045 Amino sugar and nucleotide sugar metabolism 0.016035 0.000803 0.017673 0.000377 0.907275 0.0174 Photosynthesis 0.00382 0.000195 0.004216 0.000241 0.906105 0.042							
Peptidoglycan biosynthesis 0.008357 0.000236 0.008931 0.000375 0.935728 0.035 Terpenoid backbone biosynthesis 0.00628 0.000202 0.006811 0.000292 0.921942 0.0219 Purine metabolism 0.024505 0.000939 0.026588 0.000617 0.921641 0.014 Aminoacyl-tRNA biosynthesis 0.012922 0.000201 0.014084 0.000588 0.917474 0.005 Glycerolipid metabolism 0.004269 0.000217 0.004695 8.33E-05 0.909354 0.019 Photosynthesis proteins 0.003839 0.000192 0.004225 0.000242 0.908482 0.045 Amino sugar and nucleotide sugar metabolism 0.016035 0.000803 0.017673 0.000377 0.907275 0.0174 Photosynthesis 0.00382 0.000195 0.004216 0.000241 0.906105 0.042							
Terpenoid backbone biosynthesis 0.00628 0.000202 0.006811 0.000292 0.921942 0.02192 Purine metabolism 0.024505 0.000939 0.026588 0.000617 0.921641 0.014 Aminoacyl-tRNA biosynthesis 0.012922 0.000201 0.014084 0.000588 0.917474 0.005 Glycerolipid metabolism 0.004269 0.000217 0.004695 8.33E-05 0.909354 0.019 Photosynthesis proteins 0.003839 0.000192 0.004225 0.000242 0.908482 0.045 Amino sugar and nucleotide sugar metabolism 0.016035 0.000803 0.017673 0.000377 0.907275 0.0174 Photosynthesis 0.00382 0.000195 0.004216 0.000241 0.906105 0.042							
Purine metabolism 0.024505 0.000939 0.026588 0.000617 0.921641 0.014 Aminoacyl-tRNA biosynthesis 0.012922 0.000201 0.014084 0.00588 0.917474 0.005 Glycerolipid metabolism 0.004269 0.000217 0.004695 8.33E-05 0.909354 0.019 Photosynthesis proteins 0.003839 0.000192 0.004225 0.000242 0.908482 0.045 Amino sugar and nucleotide sugar metabolism 0.016035 0.000803 0.017673 0.000377 0.907275 0.0174 Photosynthesis 0.00382 0.000195 0.004216 0.000241 0.906105 0.042	1 0, ,						
Aminoacyl-tRNA biosynthesis 0.012922 0.000201 0.014084 0.000588 0.917474 0.005 Glycerolipid metabolism 0.004269 0.000217 0.004695 8.33E-05 0.909354 0.019 Photosynthesis proteins 0.003839 0.000192 0.004225 0.000242 0.908482 0.045 Amino sugar and nucleotide sugar metabolism 0.016035 0.000803 0.017673 0.000377 0.907275 0.0174 Photosynthesis 0.00382 0.000195 0.004216 0.000241 0.906105 0.042	•						
Glycerolipid metabolism 0.004269 0.000217 0.004695 8.33E-05 0.909354 0.019 Photosynthesis proteins 0.003839 0.000192 0.004225 0.000242 0.908482 0.045 Amino sugar and nucleotide sugar metabolism 0.016035 0.000803 0.017673 0.000377 0.907275 0.0174 Photosynthesis 0.00382 0.000195 0.004216 0.000241 0.906105 0.042							
Photosynthesis proteins 0.003839 0.000192 0.004225 0.000242 0.908482 0.045 Amino sugar and nucleotide sugar metabolism 0.016035 0.000803 0.017673 0.000377 0.907275 0.0174 Photosynthesis 0.00382 0.000195 0.004216 0.000241 0.906105 0.042							
Amino sugar and nucleotide sugar metabolism 0.016035 0.000803 0.017673 0.000377 0.907275 0.0174 Photosynthesis 0.00382 0.000195 0.004216 0.000241 0.906105 0.042							0.01919
Photosynthesis 0.00382 0.000195 0.004216 0.000241 0.906105 0.042	,						0.04543
· · · · · · · · · · · · · · · · · · ·	e e						0.01749
Prenyltransferases 0.004057 0.00028 0.00464 0.000132 0.874253 0.016							0.04267
	Prenyltransferases	0.004057	0.00028	0.00464	0.000132	0.874253	0.01607

1009.e1 Volume 37 Number 5

	Vdr ^{-/-}	Fecal	WT Fecal		Fold Change,	
Substance	Mean	SD	Mean	SD	$Vdr^{-/-}$ to WT	Р
Galactose metabolism	0.007537	0.000298	0.00877	0.001026	0.859437	0.038715
Glycolysis/gluconeogenesis	0.012319	0.000775	0.014442	0.000397	0.853014	0.004982
Fructose and mannose metabolism	0.010457	0.001202	0.012302	0.000337	0.850013	0.045022
Signal transduction mechanisms	0.004534	0.000362	0.005343	0.000298	0.848592	0.017664
RNA transport	0.001478	0.000142	0.001752	8.76E-05	0.843922	0.025364
RNA polymerase	0.001917	0.000104	0.002283	0.000109	0.839359	0.003172
Glycosyltransferases	0.003987	0.000462	0.004782	0.000256	0.83365	0.036149
D-Alanine metabolism	0.001376	9.5E-05	0.001713	0.000136	0.803306	0.00584
Primary bile acid biosynthesis	0.000433	1.9E-05	0.000565	5.62E-05	0.765569	0.00236
Secondary bile acid biosynthesis	0.000432	2.08E-05	0.000564	5.46E-05	0.765012	0.00229
Synthesis and degradation of ketone bodies	0.000402	5.6E-05	0.000537	5.67E-05	0.74737	0.016282
Nucleotide metabolism	0.000756	0.000138	0.001038	4.87E-05	0.728427	0.015734
Penicillin and cephalosporin biosynthesis	0.000457	0.000102	0.00063	8.43E-05	0.725093	0.048993
β-Lactam resistance	0.000393	7.61E-05	0.000581	4.28E-05	0.676055	0.00843
Xylene degradation	0.00043	9.4E-05	0.000671	9.24E-05	0.641212	0.01239
Renal cell carcinoma	0.000113	3.69E-05	0.000183	2.53E-05	0.615278	0.027984
Dioxin degradation	0.000568	0.000128	0.000956	0.000125	0.593928	0.005824
Phosphotransferase system (PTS)	0.005045	0.001154	0.009064	0.001503	0.556639	0.005115
Staphylococcus aureus infection	0.000677	0.000242	0.001395	0.000136	0.485215	0.003574

May 2015 1009.e2

Clinical Therapeutics

Supplemental Table II. Total abundance of functional modules in the cecal microbiomes of vitamin D receptor gene knockout $(Vdr^{-/-})$ and wild-type (WT) mice.

Substance	Vdr ^{-/-}	Cecal	WT	Cecal	Fold Change,	
	Mean	SD	Mean	SD	$Vdr^{-/-}$ to WT	Р
Arachidonic acid metabolism	0.000386	0.000207	4.55E-05	2.33E-05	8.475838	0.03348
Nonhomologous end-joining	0.000327	0.000116	7.76E-05	2.83E-05	4.213825	0.011795
Renal cell carcinoma	0.000218	6.57E-05	8.85E-05	3.57E-05	2.464992	0.021432
Geraniol degradation	0.000328	0.000101	0.000158	7.16E-05	2.081122	0.044191
Drug metabolism—cytochrome P-450	0.000576	9.49E-05	0.000327	6.2E-05	1.763651	0.007134
Metabolism of cofactors and vitamins	0.001431	0.000226	0.000852	0.000155	1.680562	0.008318
Riboflavin metabolism	0.002112	0.00039	0.00129	0.000195	1.637011	0.015759
Caprolactam degradation	0.000415	8.88E-05	0.000282	1.29E-05	1.473584	0.04605
Metabolism of xenobiotics by cytochrome P-450	0.00045	3.97E-05	0.000313	5.17E-05	1.441043	0.005189
Retinol metabolism	0.00045	3.95E-05	0.000314	5.36E-05	1.435395	0.005776
Synthesis and degradation of ketone bodies	0.000651	0.000112	0.000468	6.63E-05	1.391024	0.044793
Sulfur relay system	0.002594	0.00025	0.001902	0.000167	1.363691	0.005721
Citrate cycle (TCA cycle)	0.0054	0.000703	0.004089	0.000676	1.320517	0.041503
Protein processing in endoplasmic reticulum	0.000669	8.18E-05	0.00052	7.3E-05	1.287437	0.041168
Glutathione metabolism	0.002524	0.000261	0.001963	0.00013	1.285371	0.014565
Type II diabetes mellitus	0.000523	6.8E-05	0.000414	2.39E-05	1.263106	0.04019
Fatty acid metabolism	0.002384	0.000275	0.001926	1.47E-05	1.238152	0.031543
Taurine and hypotaurine metabolism	0.001773	0.000144	0.001459	0.000176	1.215261	0.03270
Tuberculosis	0.001572	0.000102	0.001355	0.000125	1.159817	0.03596
Base excision repair	0.005249	0.000326	0.004529	0.000222	1.158877	0.015733
Glycerophospholipid metabolism	0.005974	0.000187	0.00523	0.000344	1.142262	0.00662
Propanoate metabolism	0.005791	0.000308	0.005153	0.000437	1.123875	0.04949
Other transporters	0.002219	0.000118	0.001998	0.000105	1.110128	0.037766
Bacterial toxins	0.001565	7.16E-05	0.001418	5.86E-05	1.104162	0.024189
Cysteine and methionine metabolism	0.008632	0.000432	0.007863	0.000305	1.097698	0.037125
Translation proteins	0.009297	0.000437	0.008503	0.000457	1.093379	0.04969
Selenocompound metabolism	0.00371	6.39E-05	0.003525	0.00012	1.052531	0.02644
General function prediction only	0.034715	0.000893	0.033172	0.000113	1.046495	0.027864
Methane metabolism	0.011181	0.00048	0.012449	0.000107	0.898122	0.004683
C5-branched dibasic acid metabolism	0.002037	0.000182	0.002407	0.000248	0.846406	0.04979
Galactose metabolism	0.007235	0.000714	0.009011	0.000727	0.802937	0.014762
Inositol phosphate metabolism	0.001032	0.000245	0.001445	0.0002	0.713903	0.04977
Sphingolipid metabolism	0.002064	0.000509	0.002998	0.000542	0.688428	0.04923
Glycosphingolipid biosynthesis—globo series	0.000968	0.00025	0.001559	0.000252	0.620956	0.017973
Other glycan degradation	0.002301	0.000749	0.004111	0.000984	0.559687	0.02499
Flagellar assembly	0.003258	0.001495	0.006459	0.002247	0.504462	0.04905
Flavone and flavonol biosynthesis	9.94E-05	6.87E-05	0.000257	9.93E-05	0.387333	0.03628
D-Arginine and D-ornithine metabolism	5.15E-05	3.68E-05	0.000134	4.73E-05	0.384669	0.03204
Pertussis	7.81E-06	8.19E-06	3.23E-05	2.07E-05	0.241557	0.04995
Protein digestion and absorption	7.56E-06	7.35E-06	3.32E-05	2.22E-05	0.227947	0.047912

1009.e3 Volume 37 Number 5

Supplemental Table III. Total abundance of functional modules in the cecal and fecal microbiomes of wild-type (WT) mice.

	WT	Cecal	WT	Fecal	Fold Change,	
Substance	Mean	SD	Mean	SD	Cecal to Fecal	Р
Protein digestion and absorption	3.32E-05	2.22E-05	0.000153	5.97E-05	4.623081	0.03092
Stilbenoid, diarylheptanoid, and gingerol biosynthesis	1.44E-06	5.98E-07	6.53E-06	1.7E-06	4.5399	0.00802
Pertussis	3.23E-05	2.07E-05	0.000144	5.62E-05	4.444783	0.03237
Glycan biosynthesis and metabolism	4.32E-05	2.3E-05	0.000153	5.83E-05	3.549003	0.03822
Proximal tubule bicarbonate reclamation	0.000157	2.28E-05	0.000439	6.22E-05	2.792809	0.00181
Glycosphingolipid biosynthesis—ganglio series	0.000315	9.82E-05	0.000831	0.000142	2.636234	0.00665
Lipopolysaccharide biosynthesis	0.001233	0.000382	0.002768	0.000516	2.244594	0.01437
Penicillin and cephalosporin biosynthesis	0.000295	6.55E-05	0.00063	8.43E-05	2.131738	0.00559
Renal cell carcinoma	8.85E-05	3.57E-05	0.000183	2.53E-05	2.069985	0.01996
β-Lactam resistance	0.000289	5.84E-05	0.000581	4.28E-05	2.009693	0.00221
Glycosaminoglycan degradation	0.000663	0.000166	0.001236	0.000189	1.86521	0.01693
Restriction enzyme	0.000886	0.00032	0.001597	0.000211	1.801805	0.03269
Membrane and intracellular structural molecules	0.003204	0.000595	0.005659	0.00037	1.766255	0.00373
Toluene degradation	0.000753	0.000245	0.001273	5.43E-05	1.690323	0.02288
Ubiquinone and other terpenoid-quinone biosynthesis	0.001849	0.000281	0.003092	0.000155	1.67193	0.00257
Pores ion channels	0.001854	0.000286	0.003088	0.00028	1.66549	0.00593
Riboflavin metabolism	0.00129	0.000195	0.002138	0.000161	1.657526	0.00435
Biotin metabolism	0.000733	0.00014	0.001164	0.000122	1.58875	0.01575
Lipoic acid metabolism	0.000363	8.18E-05	0.000574	6.06E-05	1.579775	0.02316
Lipopolysaccharide biosynthesis proteins	0.00225	0.000396	0.003548	0.000483	1.576837	0.02280
Citrate cycle (TCA cycle)	0.004089	0.000676	0.0062	0.000507	1.51627	0.01239
Protein processing in endoplasmic reticulum	0.00052	7.3E-05	0.000781	4.16E-05	1.501552	0.00577
Prenyltransferases	0.003106	0.000546	0.00464	0.000132	1.49419	0.00909
β-Alanine metabolism	0.001138	0.000189	0.001586	0.000161	1.393889	0.03535
Folate biosynthesis	0.002647	0.00024	0.003656	0.000252	1.381205	0.00740
Type I diabetes mellitus	0.000494	6.09E-05	0.000673	8.35E-05	1.360995	0.04025
Secondary bile acid biosynthesis	0.000418	8.34E-06	0.000564	5.46E-05	1.350407	0.010118
Primary bile acid biosynthesis	0.000419	6.95E-06	0.000565	5.62E-05	1.348501	0.011133
Glycosyltransferases	0.003556	0.000313	0.004782	0.000256	1.344772	0.00632
Bacterial secretion system	0.004729	0.000455	0.006302	0.000706	1.332594	0.03156
D-Glutamine and D-glutamate metabolism	0.001433	0.000142	0.001885	0.000188	1.315452	0.02944
Alzheimer disease	0.00045	4.12E-05	0.000584	2.05E-05	1.29931	0.00716
Oxidative phosphorylation	0.008645	0.000567	0.011231	0.000487	1.299027	0.00391
Carbon fixation pathways in prokaryotes	0.007608	0.000828	0.009823	0.000469	1.291123	0.01574
Tuberculosis	0.001355	0.000125	0.001749	6.82E-05	1.290208	0.00865
Terpenoid backbone biosynthesis	0.005283	0.000631	0.006811	0.000292	1.289157	0.01903
Pathways in cancer	0.000323	2.6E-05	0.000412	7.95E-06	1.277314	0.00466
Type II diabetes mellitus	0.000414	2.39E-05	0.000527	2.96E-05	1.272101	0.00684
Taurine and hypotaurine metabolism	0.001459	0.000176	0.001847	7.61E-05	1.266212	0.024762
RNA degradation	0.004173	0.000377	0.005206	7.67E-05	1.247647	0.00964
Zeatin biosynthesis	0.000438	3.97E-05	0.000543	3.55E-05	1.23879	0.02719
Ribosome	0.023089	0.002132	0.028293	0.001925	1.225367	0.03491
Ribosome biogenesis in eukaryotes	0.000437	3.83E-05	0.000533	3.12E-05	1.218171	0.02869
Translation factors	0.00525	0.00036	0.00638	0.000372	1.215427	0.01940
Glutathione metabolism	0.001963	0.00013	0.002374	8.43E-05	1.209439	0.01012
Chaperones and folding catalysts	0.009256	0.000593	0.011187	0.000281	1.208683	0.00699
Glycerophospholipid metabolism	0.00523	0.000344	0.006281	0.000216	1.20111	0.01098
RNA polymerase	0.001916	0.000198	0.002283	0.000109	1.191935	0.04799
Replication, recombination and repair proteins	0.007488	0.000681	0.008925	0.000567	1.191904	0.04833
Biosynthesis of vancomycin group antibiotics	0.000605	1.63E-05	0.000717	2.98E-05	1.185069	0.00467
DNA replication	0.006549	0.000536	0.007737	0.000503	1.181306	0.04881
Nucleotide excision repair	0.003863	0.00022	0.004559	7.56E-05	1.18004	0.00663
Protein export	0.005589	0.000415	0.006581	0.000411	1.177633	0.04228
One carbon pool by folate	0.005537	0.000333	0.006509	0.000303	1.175548	0.02014
Ribosome Biogenesis	0.013368	0.00103	0.015621	0.000694	1.168549	0.03479
Mismatch repair	0.007849	0.000508	0.009145	0.000489	1.165198	0.03344

May 2015 1009.e4

Clinical Therapeutics

Substance	WT	Cecal	WT	Fecal	Fold Change, Cecal to Fecal	Р
	Mean	SD	Mean	SD		
Photosynthesis	0.003636	0.000247	0.004216	0.000241	1.159442	0.04363
Base excision repair	0.004529	0.000222	0.005237	6.2E-05	1.156349	0.00601
DNA replication proteins	0.011692	0.000713	0.013496	0.000796	1.15431	0.04308
Cell cycle—Caulobacter	0.004967	0.000301	0.005726	0.000288	1.152891	0.03421
Glycolysis/gluconeogenesis	0.012608	0.000786	0.014442	0.000397	1.145467	0.02260
DNA repair and recombination proteins	0.028506	0.001652	0.032645	0.001217	1.145212	0.02502
Amino acid metabolism	0.001829	0.00012	0.002094	8.95E-05	1.145133	0.03714
Streptomycin biosynthesis	0.002955	0.000155	0.003355	0.000136	1.135442	0.02844
Purine metabolism	0.023494	0.001673	0.026588	0.000617	1.131711	0.03974
Thiamine metabolism	0.004264	0.000178	0.004818	0.00013	1.129979	0.01215
Translation proteins	0.008503	0.000457	0.009569	4.69E-05	1.125336	0.01589
Alanine, aspartate, and glutamate metabolism	0.009249	0.000266	0.010188	0.000469	1.101524	0.03935
Cysteine and methionine metabolism	0.007863	0.000305	0.008591	0.000237	1.092514	0.03100
Glutamatergic synapse	0.000898	3.69E-05	0.000976	2.47E-05	1.086844	0.03831
Amino acid related enzymes	0.014177	0.000398	0.015289	0.000405	1.078398	0.02752
General function prediction only	0.033172	0.000113	0.034391	0.000169	1.036746	0.00048
Pentose phosphate pathway	0.009019	0.000201	0.008438	0.000151	0.935566	0.01600
Glycerolipid metabolism	0.005502	0.000142	0.004695	8.33E-05	0.853282	0.00104
C5-branched dibasic acid metabolism	0.002407	0.000248	0.001891	0.000187	0.785438	0.04511
Plant-pathogen interaction	0.001479	8.15E-05	0.001149	1.29E-05	0.777037	0.00228
Transcription factors	0.020305	0.00126	0.014845	0.000512	0.731089	0.00225
ABC transporters	0.037074	0.003103	0.026059	0.001429	0.702872	0.00504
Two-component system	0.016029	0.002006	0.011005	0.001352	0.686539	0.02279
Pentose and glucuronate interconversions	0.005116	0.000825	0.003422	0.000124	0.668864	0.02451
Phosphonate and phosphinate metabolism	0.000737	0.000136	0.000482	7.1E-05	0.653983	0.04471
Transporters	0.091666	0.012021	0.058375	0.004447	0.636823	0.01083
Protein kinases	0.003532	0.000527	0.002199	0.000317	0.622698	0.01984
Carbohydrate metabolism	0.00168	0.000355	0.001	0.000164	0.595003	0.03928
Ascorbate and aldarate metabolism	0.001047	0.000232	0.00059	0.00011	0.56326	0.03652
Amyotrophic lateral sclerosis (ALS)	0.000327	7.16E-05	0.000164	4.98E-05	0.50119	0.03157
Biosynthesis of ansamycins	0.000788	0.000131	0.000372	6.12E-05	0.472084	0.00758
Porphyrin and chlorophyll metabolism	0.006854	0.001316	0.003015	0.000465	0.439878	0.00887
Germination	0.000193	3.61E-05	5.31E-05	5.23E-06	0.275619	0.00269
Electron transfer carriers	0.000601	0.000222	0.000141	1.64E-05	0.234743	0.02312
Sporulation	0.005211	0.001194	0.001193	0.000331	0.228982	0.00493
Bacterial chemotaxis	0.005356	0.001603	0.001182	0.000334	0.220732	0.01156
Mineral absorption	7.01E-06	2.24E-06	1.46E-06	1.72E-06	0.20777	0.02701
Bacterial motility proteins	0.011922	0.003677	0.002376	0.001123	0.199247	0.01263
Flagellar assembly	0.006459	0.002247	0.000796	0.000383	0.123287	0.01260
Flavone and flavonol biosynthesis	0.000257	9.93E-05	2.56E-05	1.77E-05	0.099901	0.01657
Prion diseases	0.000142	4.73E-05	1.41E-05	1.11E-05	0.099356	0.01041
D-Arginine and D-ornithine metabolism	0.000134	4.73E-05	1.19E-05	9.38E-06	0.088754	0.01184

1009.e5 Volume 37 Number 5

Supplemental Table IV. Total abundance of functional modules in the cecal and fecal microbiomes of vitamin D receptor gene knockout $(Vdr^{-/-})$ mice.

	Vdr ⁻	-/- Cecal	Vdr ^{-/-}	Fecal	Fold Change,	
Substance	Mean	SD	Mean	SD	Cecal To Fecal	Р
Protein digestion and absorption	7.56E-06	7.35E-06	0.00021622	4.68406E-05	28.60644	9.57E-0
Pertussis	7.81E-06	8.19E-06	0.000195097	4.5237E-05	24.99046	1.69E-0
Glycosphingolipid biosynthesis—ganglio series	0.000199	9.84E-05	0.0009722	0.000173309	4.896001	2.41E-0
Glycan biosynthesis and metabolism	6.36E-05	3.01E-05	0.000253472	8.6275E-05	3.988096	0.00164
Lipopolysaccharide biosynthesis	0.001144	0.000588	0.003421523	0.000719491	2.990456	0.0005
Adipocytokine signaling pathway	0.000229	3.97E-05	0.00056871	8.91448E-05	2.485872	5.28E-0
Glycosaminoglycan degradation	0.000591	0.000192	0.001422714	0.000308326	2.407208	0.0009
N-glycan biosynthesis	0.000138	6.84E-05	0.000315045	3.57694E-05	2.288647	0.0008
Lipopolysaccharide biosynthesis proteins	0.002137	0.000495	0.004318864	0.000817478	2.021163	0.0009
Pores ion channels	0.001863	0.000362	0.003614931	0.000403516	1.940219	9.04E-0
Biotin metabolism	0.000737	0.000302	0.001397437	0.000283322	1.897122	0.0013
	0.001063	0.000422	0.001944657	0.000416936	1.829121	0.0104
Lysosome						
Membrane and intracellular structural molecules	0.003528	0.000487	0.006288046	0.000825152	1.782215	0.0002
Lipoic acid metabolism	0.000346	5.56E-05	0.000605686	4.30134E-05	1.749845	3.47E-0
Glycosphingolipid biosynthesis—globo series	0.000968	0.00025	0.001687631	0.00023645	1.743797	0.00158
Cell division	0.000391	0.000133	0.000680175	8.95898E-05	1.741208	0.0037
MAPK signaling pathway—yeast	0.000295	6.06E-05	0.00050885	5.64876E-05	1.725306	0.0004
Other glycan degradation	0.002301	0.000749	0.003676415	0.000702807	1.597939	0.0172
Geraniol degradation	0.000328	0.000101	0.000501312	9.54988E-05	1.5274	0.0235
β-Alanine metabolism	0.001292	0.000161	0.001947256	0.000148104	1.507311	0.0001
Epithelial cell signaling in Helicobacter pylori infection	0.000497	5.89E-05	0.000727172	0.000132278	1.462797	0.0074
Peroxisome	0.001235	0.00012	0.001796635	0.000203409	1.454585	0.0007
Folate biosynthesis	0.002742	0.000268	0.003975145	0.000334059	1.449917	0.0002
Restriction enzyme	0.001251	0.00021	0.00180323	0.000131348	1.440885	0.0010
Ubiquinone and other terpenoid-quinone biosynthesis	0.001934	0.000428	0.002779186	0.000355529	1.437162	0.0093
Vitamin B ₆ metabolism	0.001409	0.000101	0.001952253	0.000105993	1.385308	3.36E-0
Prostate cancer	0.000285	6.63E-05	0.000390861	5.77957E-05	1.373171	0.0270
Pantothenate and CoA biosynthesis	0.000283	0.000455	0.005939913	0.000228313	1.332256	
· · · · · · · · · · · · · · · · · · ·						0.0001
Phenylalanine, tyrosine and tryptophan biosynthesis	0.004994	0.000746	0.006638512	0.000733047	1.329176	0.0079
Oxidative phosphorylation	0.009065	0.000724	0.012043546	0.000923537	1.32854	0.0004
Biosynthesis of vancomycin group antibiotics	0.000557	3.12E-05	0.000738663	5.77432E-05	1.325924	0.0002
Type I diabetes mellitus	0.000508	5.11E-05	0.000668144	2.83829E-05	1.315974	0.0002
Novobiocin biosynthesis	0.000895	0.000112	0.00115542	9.80467E-05	1.291529	0.0044
Citrate cycle (TCA cycle)	0.0054	0.000703	0.006966225	0.000461964	1.290068	0.0031
Butirosin and neomycin biosynthesis	0.000665	7.43E-05	0.0008484	1.0409E-05	1.275266	0.0006
Streptomycin biosynthesis	0.00279	0.000133	0.003490727	0.000125877	1.251237	2.68E-
Polyketide sugar unit biosynthesis	0.001645	0.000198	0.002055614	0.000193223	1.249717	0.0104
Valine, leucine and isoleucine biosynthesis	0.005356	0.000533	0.006606412	0.000363613	1.233519	0.0025
Protein processing in endoplasmic reticulum	0.000669	8.18E-05	0.000822855	4.78304E-05	1.229143	0.0067
C5-Branched dibasic acid metabolism	0.002037	0.000182	0.002501844	0.000241029	1.228022	0.0088
PPAR signaling pathway	0.000767	5E-05	0.000934456	4.90901E-05	1.218818	0.0006
Alanine, aspartate, and glutamate metabolism	0.008727	0.000396	0.010503358	0.000446076	1.203543	0.0001
Biosynthesis and biodegradation of secondary metabolites		6.44E-05	0.000551478	4.70822E-05	1.203543	0.0320
,		0.000182		0.000112454	1.194251	
One carbon pool by folate	0.005687		0.006791265			2.91E-0
Histidine metabolism	0.005153	0.000806	0.006147774	0.000307342	1.193112	0.0326
Bacterial secretion system	0.005416	0.000606	0.006435057	0.000541889	1.188064	0.0230
Energy metabolism	0.007805	0.001144	0.009168472	0.000565065	1.174748	0.0437
Chaperones and folding catalysts	0.009367	0.000436	0.010994584	0.000375892	1.173817	0.0002
Carbon fixation pathways in prokaryotes	0.009048	0.000955	0.010612798	0.000520929	1.17298	0.0123
Prenyltransferases	0.00353	0.000364	0.004056902	0.000279875	1.149422	0.0331
RNA degradation	0.004528	0.000269	0.005196694	0.000131656	1.147767	0.0010
Glycine, serine and threonine metabolism	0.007509	0.00027	0.008559847	0.000104423	1.139965	3.94E-
Zeatin biosynthesis	0.000469	2.93E-05	0.000531612	2.5473E-05	1.132638	0.0071
Lipid biosynthesis proteins	0.00567	0.000362	0.006368893	0.000312488	1.12328	0.0113
Arginine and proline metabolism	0.010138	0.000557	0.01129809	0.000312100	1.114462	0.0209
D-Glutamine and D-glutamate metabolism	0.001557	0.000129	0.001726176	5.46E-05	1.108855	0.0269
- Catamine and D gratamate metabolism				0.000135405		0.0020
Protein export	0.005904	0.000285	0.006536028		1.107026	

May 2015 1009.e6

Clinical Therapeutics

Substance	Vdr ^{−/−} Cecal		$Vdr^{-/-}$ Fecal		Fold Change,	
	Mean	SD	Mean	SD	Cecal To Fecal	Р
Primary bile acid biosynthesis	0.000392	2.43E-05	0.000432578	1.90408E-05	1.103196	0.019017
Secondary bile acid biosynthesis	0.000392	2.43E-05	0.00043153	2.08464E-05	1.100525	0.02499
Translation factors	0.005488	0.000289	0.006037921	6.89646E-05	1.100239	0.00326
Carbon fixation in photosynthetic organisms	0.005572	0.00012	0.006094554	0.000214449	1.093874	0.00143
Methane metabolism	0.011181	0.00048	0.012170609	0.000722087	1.088538	0.03403
Ribosome biogenesis in eukaryotes	0.00047	2.77E-05	0.000501442	7.94075E-06	1.06736	0.03983
Lysine biosynthesis	0.007558	0.000181	0.008050973	0.000187745	1.065236	0.00286
Cell cycle—Caulobacter	0.005241	0.000224	0.005550626	0.000116164	1.059125	0.02521
Amino acid related enzymes	0.014394	0.000326	0.015237772	0.000180727	1.058627	0.00096
Pentose phosphate pathway	0.008979	0.000224	0.008276583	0.000403437	0.921804	0.00932
Propanoate metabolism	0.005791	0.000308	0.005312466	0.000187729	0.917341	0.01792
Function unknown	0.015325	0.000113	0.014005517	0.000749822	0.913921	0.00461
Bacterial toxins	0.001565	7.16E-05	0.001410092	3.77212E-05	0.900855	0.00265
Cytoskeleton proteins	0.003941	0.000377	0.003441119	0.000181533	0.873219	0.02840
Two-component system	0.014527	0.001149	0.012640043	0.001146434	0.870091	0.03163
Sulfur relay system	0.002594	0.00025	0.002231828	0.000241127	0.860244	0.04793
Glycerolipid metabolism	0.005011	0.000322	0.004269376	0.000216942	0.851942	0.00269
Chloroalkane and chloroalkene degradation	0.00248	0.000176	0.002079025	0.000328332	0.838247	0.04270
Carbohydrate metabolism	0.001436	0.000188	0.00117921	3.83699E-05	0.821197	0.01717
RNA transport	0.001807	0.000109	0.001478164	0.000142096	0.81786	0.00339
Benzoate degradation	0.003133	0.000193	0.002527748	0.000306766	0.806837	0.00577
Lipid metabolism	0.001722	7.44E-05	0.001341788	6.53639E-05	0.779121	2.62E-0
Transcription factors	0.018636	0.001075	0.01411196	0.001274457	0.757244	0.0003
ABC transporters	0.036675	0.002311	0.026996889	0.002562584	0.736107	0.00024
Phosphotransferase system (PTS)	0.00703	0.001328	0.005045259	0.00115418	0.717665	0.03566
Transporters	0.078468	0.007272	0.056242763	0.005554531	0.716758	0.00062
Retinol metabolism	0.00045	3.95E-05	0.000320739	8.94372E-05	0.712146	0.01800
Dioxin degradation	0.000823	0.000154	0.000568082	0.000128182	0.690357	0.02180
Metabolism of xenobiotics by cytochrome P-450	0.00045	3.97E-05	0.000299018	8.77652E-05	0.663984	0.00793
Xylene degradation	0.000656	8.99E-05	0.000430407	9.40074E-05	0.656556	0.00474
Drug metabolism—cytochrome P-450	0.000576	9.49E-05	0.000370909	0.000130777	0.644121	0.02196
Synthesis and degradation of ketone bodies	0.000651	0.000112	0.000401616	5.60109E-05	0.617388	0.00214
Biosynthesis of siderophore group nonribosomal peptides	0.000221	5.34E-05	0.000133863	2.26153E-05	0.606703	0.01014
Renal cell carcinoma	0.000218	6.57E-05	0.000112697	3.68862E-05	0.516682	0.01406
Sporulation	0.006536	0.002217	0.003210745	0.001126353	0.491213	0.01733
Electron transfer carriers	0.000621	0.000319	0.000236937	0.000171618	0.381528	0.04511
Prion diseases	0.000144	5.63E-05	4.64253E-05	1.792E-05	0.323005	0.00620

1009.e7 Volume 37 Number 5