ARCALL FROM OUR INTEGRAL TEST THAT THE "P-SERIES" GIVEN BY $\sum_{n=1}^{\infty} \frac{1}{n^{n}}$

CONVERCES PROVIDED THAT P>1. IT DIVERCES IF $P\leqslant 1$. WE NOW CONSIDER SERIES THAT CAN BE COMPARED TO A P-SERIES TO SER IF IT CONVERCES OR DIVERGES.

COMPARIJON TESTS FOR SERIES ARE VERY SIMILAR TO THAT FOR IMPROPER INTECRALS WHERE A COMPARIJON TEST WAS LIKED. THE FIRST RESULT IS:

THEOREM! (CLP THEOREM 3.3.8). LET $N_o > 0$ BE AN INTEGER. THEN

(I) IF $|q_n| < C_n$ FOR ALL $n > N_o$ AND $\sum C_n$ CONVERCES, THEN $\sum Q_n$ CONVERGES

(II) IF $q_n > d_n$ FOR ALL $n > N_o$ AND $\sum d_n$ DIVERCES, THEN $\sum Q_n$ ALLO DIVERCES.

WE WILL NOT GIVE A FORMAL PROOF HERE.

REMARK IN (I) WE HAVE I AND SO q_n COULD HAVE DIFFERENT SIGNS. WE OBJERVE THAT IF $\sum_{n=0}^{\infty} |q_n|$ CONVERCES THEN SO MUST $\sum_{n=0}^{\infty} q_n$. THIS IS BE CALL IF $-|q_n| \le q_n \le |q_n|$ For ALL n.

AND SO $-\sum_{n=0}^{\infty} |q_n| \le \sum_{n=0}^{\infty} q_n \le \sum_{n=0}^{\infty} |q_n|$ THUS $-S \le \sum_{n=0}^{\infty} q_n \le S$ with $S = \sum_{n=0}^{\infty} |q_n|$, And so $\sum_{n=0}^{\infty} q_n$ converges.

LET'S USE THIS TEST IN A FEW EXAMPLES:

EXAMPLE 1 DOE, $\sum_{n=1}^{\infty} \frac{1}{n^2+2n+3}$ converge on diverge?

SO WE EXPECT CONVERGENCE SINCE p=2 FOR p-SERIES. WE NOW CONFIRM THE INTUITION: WE WANT $q_n < C_n$ with $\sum_{n=1}^{N} C_n$ converge.

NOTICE THAT n2 + 2n + 3 > n2 FOR ALL n > 1. SO FLIPPING THIS: $\frac{1}{n^2+2n+3} \leq \frac{1}{n^2}$ FOR D? 1. $\sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} C_n \quad \text{with} \quad C_n = \frac{1}{U_n} \quad \text{and} \quad \sum_{n=1}^{\infty} C_n \quad \text{converge}.$ BY PART (I) OF THEOREM I WE HAVE $\sum_{n=1}^{\infty} \frac{1}{n^2+2n+3}$ converges. EXAMPLE 2 DOES $\sum_{n=1}^{\infty} \frac{1}{3n^2-5}$ converge or diverge? SOLUTION LET $q_n = \frac{1}{3n^2-5}$ THEN FOR N LARGE $q_n = \frac{1}{3n^2}$ AND SINCE 1 2 1/ 12 CONVERCE), THIS INTHITION PREDICTS Z 90 CONVERCES. NOW CONFIAM INTUITION WITH A PROOF. WE WE WANT and Con FOR ALL DENO AND & Converges. SO WE NEED AN INEQUALITY $30^2 - 5 > 50$ mething WE WRITE $3n^2-5 = 2n^2 + (n^2-5) > 2n^2$ if n > 3. BUT $\frac{1}{2} \sum_{n=3}^{\infty} \frac{1}{n^2}$ converge, so $\sum_{n=3}^{\infty} \frac{1}{3n^2 \cdot 5}$ converge, by PART I of theorem THU $\rightarrow \sum_{n=1}^{80} \frac{1}{3n^2-5} \quad (\text{onverge}).$ EXAMPLE 3 DOES $\frac{20+1}{60^3-5}$ CONVERGE OR DIVERGE?

SOLUTION $q_n = \frac{2n+1}{6n^3-5} \cong \frac{1}{3n^2}$ for n large 10 our intuition expects convergnce. However, it is now a bit more tedious to make a paper. We need $\frac{2n+1}{6n^3-5} \lesssim C_n$ with $\sum C_n$ converging.

OBJERVE $6n^3 - 5 = 5n^3 + (n^3 - 5) \ge 5n^3$ IF $n^3 - 5 > 0$, i.e. $n \ge 2$ $6n^3 - 5 > 5n^3$ if n > 22 1 +1 = 3 1 + (1-1) { 31 11 1> 1. AND (OMBINING THEIR Together) $\frac{2n+1}{6n^3 \cdot 5} \le \frac{3n}{5n^3} = \frac{3}{5n^2}$ IF $n \ge 2$. SIN(F $\frac{3}{5}$ $\frac{5}{5}$ $\frac{1}{7^2}$ (ONVERGE) SO DOES $\frac{5}{5}$ $\frac{20^{11}}{50^3}$. EXAMPLE 4 NOW MODIFY THIS TO $\sum_{n=1}^{\infty} \frac{2n+1}{6n^2-5}$ CONVERGE OR diverge? SOLUTION FOR LARGE D, $q_n = \frac{2n+1}{\sqrt{-1}} \approx \frac{1}{30} BUT \frac{1}{30} \times \frac{1}{30} diverge)$ SO INTUITION PARDICTS DIVERGENCE. WE NOW MAKE A PROOF. WE WANT an > dn with E dn diverging. $60^{2}-5 < 60^{2}$ FOR ALL $0 = 1/2 \implies \frac{1}{60^{2}-5} > \frac{1}{60^{2}}$. 10 2n+1 > 2n For All n $\frac{2n+1}{6n^2-5}$ > $\frac{2n}{6n^2}$ = $\frac{1}{3n}$ FOR ALL n:1,2,...COMBINING WE GET SINCE 1/3 $\frac{8}{5}$ 1/0 diverges, THEN SO DOES $\frac{8}{5}$ $\frac{2}{10}$ BY (II) OF THEOREMS MORE COMPLICATED EXAMPLES IT GETS REALLY TEDIOUS TO FIND EXPLICIT BOUNDS ON D TO ENJURE THAT EITHER an & Cn FOR n? No an > do For n> No.

THE NEXT THEOREM AVOIDS THIS DETAIL AND FOCUES ONLY ON COMPARING THE LARGE N BEHAVIOR OF THE SFRIET

THEOREM ? [LIMIT COMPARIJON THEOREM CLP 3.3.]]

LET $\sum_{n=1}^{\infty} q_n$ and $\sum_{n=1}^{\infty} b_n$ be two jeries with $b_n > 0$ for all n.

A)JUME THAT $\lim_{n \to \infty} \frac{q_n}{b_n} = 1$ EXIJTS.

THEN

(I) IF $\sum_{n=1}^{\infty} b_n$ converges, we have that $\sum_{n=1}^{\infty} a_n$ converges.

(II) IF $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

PROOF (JEE CLP BOOK). THE IDEA IJ THAT IF 90 HAJ THE SAME BEHAVIOR AJ $D \rightarrow \emptyset$ AJ DOEJ DD THEN BOTH SERIES EITHER.

REMARK IN (II), $L \neq 0$ I) ESSENTIAL. TO JEK THIS SUPPOSE THAT $Q_0 : V_0$ And $D_0 : V_0$. WE know Z_0 converges And Z_0 diverges And $Z_0 : V_0$ And Z

LETY USE THIS LIMIT COMPARISON TEST FOR A FEW NONTRIVIAL EXAMPLES.

EXAMPLE 1 LET $q_n = \frac{2n+1}{6n^3-5}$ DOE, $\sum_{n=1}^{\infty} q_n$ converge or diverge.

TEDIOUS. NOW IT IS EASY! FOR O LARGE $q_0 = \frac{1}{30^2}$. So CHOOSE $b_0 = \frac{1}{30^2}$.

(ALCULATE $\frac{4n}{0-1} = \frac{1}{6n^3-5} = \frac{1}{3} = L$

SINCE L: 1/2 AND \$ 1/02 (ONVERGE), BY (I) OF THEOREM 2 -> Zan converge).

EXAMPLE 2 DOES
$$\sum_{n=2}^{\infty} \frac{\sqrt{2n^2+1}}{n^2-2}$$
 converge or diverge?

$$\frac{1011110N}{1011110N} \quad LET \quad Q_D = \frac{\sqrt{2D^2+1}}{D^2-2} \quad FOR \quad D \quad |arge|, \quad Q_D = \frac{\sqrt{2}}{D} \quad JO \quad WE$$

WE CALCULATE
$$\lim_{n\to\infty} \frac{q_n}{b_n} = \lim_{n\to\infty} \frac{n\sqrt{2n^2+1}}{n^2+2} = \sqrt{2}$$
.

SINCE L:
$$\sqrt{2} \neq 0$$
, WE HAVE BY (II) OF THEOREM 2 (LIMIT COMPARISON TEST)

THAT $\sum_{n=2}^{\infty} \frac{\sqrt{2n^2+1}}{n^2-2}$ DIVERGES.

EXAMPLE 3 DOES
$$\sum_{n=2}^{\infty} \frac{n^2 + 2 \sin(n)}{\sqrt{9n^8 + 1}}$$
 converge on diverge?

$$\frac{\text{SOLUTION}}{\sqrt{9n^8+1}}$$
LET $q_0 = \frac{n^2+2\text{SIM}(n)}{\sqrt{9n^8+1}}$

NOW JINGE $|SIN(D)| \le 1$, FOR ALL D, THEN $Q_D = \frac{D^2}{3D^4} = \frac{1}{3D^2}$ FOR LARGE D. SINGE $\ge \frac{1}{1}$ (ON verge) WE EXPECT ION VERGENCE.

WE NOW COMPARE WITH $b_0 = 1/\Omega^2$ IN LIMIT COMPARISON TEST.

WE CALCULATE
$$\lim_{n\to\infty} \frac{q_n}{b_n} = \lim_{n\to\infty} \frac{n^2(n^2 + 25 \ln n)}{\sqrt{q_n s_{+1}}} = \lim_{n\to\infty} \frac{n^4(1 + \frac{2}{n^2}5 \ln n)}{n^4\sqrt{q_{+}1/n^8}}$$

THE LIMIT IS SIMPLY L= 1/3. SINCE \$ 1/02 CONVERGES TWEN

BY (I) OF COMPARIJON TEST (THE OREM 2) WE HAVE THAT

$$\sum_{0}^{1.5} \frac{\sqrt{40_8+1}}{\sqrt{40_8+1}}$$

OUR FINAL EXAMPLES ARE A BIT MORE SUBTLE AND NOW THE LIMIT COMPARIJON TEST TO CETHER WITH THE INTEGRAL COMBINE TEST FROM THE EARLIER NOTES.

EXAMPLE 4 DOES THE SERIES $\sum_{n=6}^{\infty} \frac{1}{n\sqrt{3\log n+2}}$ converge or diverge?

SOLUTION METHOD 1 $q_D = \frac{1}{D\sqrt{3\log D+2}} \stackrel{\triangle}{=} \frac{1}{D\sqrt{3\log D}} = \frac{1}{\sqrt{3}} \frac{1}{D(\log D)^{1/2}}$ for large D.

WE MIGHT BE WRONGLY ANCLINED TO COMPARE WITH bo = 1/D IF WE DID THU WE WOULD CALCULATE $\lim_{n\to\infty} \frac{q_n}{b_n} = \lim_{n\to\infty} \frac{1}{\sqrt{3\log n}} = \lim_{n\to\infty} \frac{1}{\sqrt{3\log n}} = 0$.

LE O. OOPJ. (II) OF THEOREM 2 (LIMIT COMPARISON TEST) HAS

NOTHING TO JAY. LET'S INSTEAD COMPARK WITH $b_n = \frac{1}{n \log n} h$.

WE NOW CALCULATE $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n (\log n)^{1/2}}{\sqrt{3} n (\log n)^{1/2}} (1 + 2/3 \log n)^{1/2} = L$.

10 L= 1/J3. ALL WE NEED TO DO 11 DETERMINE WHETHER & bo

converges or diverges and then WE (AN LIFE EITHER (I) OR

(II) OF THE LIMIT (DMPARIJON TEIT TO EITABLIJH THAT FOR Ξ QD. $\sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{n$

LET $f(x) = \frac{1}{x\sqrt{\log x}}$ CLEARLY f(x) > 0 FOR x > 1 AND IJ DECREATING.

WE CALCULATE $I = \int_{6}^{\infty} \frac{1}{x\sqrt{\log x}} dx$: $\lim_{L \to \infty} \int_{6}^{L} \frac{1}{x\sqrt{\log x}} dx = \lim_{L \to \infty} \int_{0}^{\log L} \frac{1}{u} du$

אנונעונידנ Bul xpol : ע

THEN BY (II) OF LIMIT COMPARISON TEST $\Rightarrow \sum_{n=6}^{2} \frac{1}{n \operatorname{Blogn} + 2} \frac{1}{n \operatorname{Blogn} +$

 $\frac{\text{ME THOD 2}}{\text{ON }} = \frac{\text{WE (OULD MAVE DIED INTECLAL TE)T OLAECTLY}}{\text{TO NO 10, LET }} = \frac{1}{x\sqrt{3\log x + 2}}$ $\frac{1}{\sqrt{3\log x + 2}} = \frac{1}{x\sqrt{3\log x + 2}}$ $\frac{1}{\sqrt{3\log x + 2}} = \frac{1}{x\sqrt{3\log x + 2}}$ $\frac{1}{\sqrt{3\log x + 2}} = \frac{1}{\sqrt{3\log x + 2}}$ $\frac{1}{\sqrt$

REMARK IF Instead we asked whether $\frac{\omega}{n} = \frac{1}{n(3\log n + 2)^{3/2}}$ (ONVERGE) OF diverges, we could Repeat same procedure with $\frac{\omega}{n}$ by ANO $\frac{1}{n} = \frac{1}{n(3\log n + 2)^{3/2}}$. NOW, WE WO LLD FIND $\frac{\omega}{n}$ by Converges by integral test $\implies \frac{\omega}{n} = \frac{1}{n(3\log n + 2)^{3/2}}$.

CONVERGE).

LTERNATING SERIES

THE INTEGRAL TEST ONLY WORKS FOR SERIES \$ 90 WITH 90 > 0, AND On decreasing FREQUENTLY WE HAVE TO DEAL WITH ALTERNATING SERIES WHERE ALTERNATES BETWEEN BEING + AND -. FOR INSTANCE > (-1)

IJ A JIMPLE CRITERIA TO JEE IF ALTERNATING JERIEJ CONVERGE. THERE

THEOREM (ALTERNATING SERIES TEST - CLP 3.3.14) CONSIDER

A LTERNATING SERIES TAE

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 - \dots$$
 WITH $b_n > 0$ FOR $n = 1, 2, \dots$

THEN, IF

. bn > bn+1 FORALL D > No (FOR JOME No)

AND

INFINITE SERIES IS CONVERGENT. THE

- (i) A PROOF OF THIS GIVEN IN THE APPENDIX; SEE ALSO REMARK THE CLP I SECTION 3.3.10 (OPTIONAL)
 - (;;) WE ONLY NEED THAT box o FOR D Large enough SIN(F WE CAN A | WAY) WRITE $\sum_{n=0}^{\infty} (-1)^{n-1} b_n = \sum_{n=0}^{\infty} (-1)^{n-1} b_n + \sum_{n=0}^{\infty} (-1)^{n-1} b_n$
 - (iii) A NICE WAY TO CHECK IF ON IS A DECREASING SEQUENCE IS TO DEFINE bo = f(0) AND SEE IF f/(X) TO WITH X A CONTINUOUS VARIABLE.

 $\frac{\text{EXANPLE I}}{\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n!}} converges?$

SOLUTION let by = 1. CLEARLY flm by = 0 AND put & put to the ALL D=1,2,...

THUI, BY Alternating Jeries test the series converges.

EXAMPLE 2 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\log n}{n^2}$ converges?

 $\frac{\text{10 LUTION}}{\text{LET}} \quad b_{D} = \frac{\log D}{D^{2}} \quad \text{WE HAVE} \quad b_{D} > 0 \quad \text{for } D = 2, \dots \text{ with } b_{r} = 0.$ $\frac{\mathcal{D}}{D^{2}} \quad \frac{\log D}{D^{2}} \quad \text{Since } b_{r} = 0.$

NOW $b_n = f(n)$ for $n \ge 2$ where $f(x) = \frac{\log x}{x^2} = x^{-2} \log x$. WE (ALCULATE $f'(x) = x^{-3} - 2x^{-3} \log x = x^{-3} \left(1 - 2 \log x\right) < 0$ if $x > e^{\frac{1}{2}} = (2.718...)$

SO $f'(x) \neq 0$ IF $x \geq 2$ WORKI. THUS, $b_{n+1} \leq b_n$ FOR $n \geq 2$. $\rightarrow b_n$ DECREASING SEQUENCE

By Alternating series test, $\sum_{n=2}^{\infty} (-1)^{n-1} \frac{\log n}{n^2}$ converges.

EXAMPLE 3 $\sum_{n=1}^{\infty} (-1)^{n-1} \sqrt{n}$ converges?

 $\frac{\text{JOLUTION}}{\text{DEFINE}} \quad b_0 = \frac{\sqrt{D}}{D + \Delta} \quad \text{CLEARLY} \quad b_0 \longrightarrow 0 \quad \text{AI} \quad D \rightarrow \infty \quad \text{SINCE}$

WE HAVE $b_0 = \frac{\sqrt{D}}{D} = \frac{1}{\sqrt{D}} A_1 D \rightarrow \infty$.

NOW DEFINE $f(x) = \frac{\sqrt{x}}{x+4}$ WE CALCULATE $f'(x) = \frac{1}{2\sqrt{x}}(x+4)^2(4-x) < 0$

IF X > 4 so that b_n is a decreasing sealer test we have that $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+4}$

converges.

EXAMPLE 4 INVESTIGATE THE CONVERCENCE DIVERGENCE OF

$$(I) \qquad \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2}{n^2 + 5}$$

$$(II) \qquad \sum_{n=1}^{\infty} (-1)^{n-1} \cos\left(\frac{\pi}{n}\right)$$

S DLUTION FOR (I) WE HAVE $b_0 = \frac{n^2}{n^2+5}$. SIN (I $\lim_{n\to\infty} b_n = 1 \neq 0$

NO INFORMATION ABOUT CONVERCENCE OR DIVERCENCE.

HOWEVER, IF WE PROCEED ANOTHER WAY AND DEFINE $Q_{n} = (-1)^{n-1} \frac{n^{2}}{n^{2}+5}$ THEN FOR LARCE n WE HAVE $q_{n} = (-1)^{n-1}$ WHICH <u>ooe) NOT</u> TEND TO ZERO A) $n \to \infty$. SINCE $q_{n} \neq 0$ A) $n \to \infty$ WE HAVE FROM OUR BAJIC DIVERCENCE TEST THAT $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^{2}}{n^{2}+5}$ Is divergent.

RECARDING (II) WE LET $b_n = co, (\frac{\pi}{n})$. SIN(F $\lim_{n\to\infty} b_n = 1 \neq 0$

THE ALTERNATING JERRIE TEST 00EI NOT APPLY AGAIN. NOTICE THAT $a_0: (-1)^{D_1}(o)(\frac{\pi}{0}) \approx (-1)^{D_2}$ As n = 0. Thus, by our basic divergence test $\frac{\omega}{2}(A)^{D_2}(o)(\frac{\pi}{0})$ so so not converge.

EXAMPLE 5 [OPTIONAL] SHOW THAT $\sum_{n=1}^{N-1} \frac{(-1)^{n-1}}{n} = \log 2$.

PROOF BY ALTERNATING JERIE) TEJT WE NAVE FROM EXAMPLE I THAT $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ CONVERGED. THE DIFFICULT PART IJ TO DETERMINE THE FINITE NUMBER THAT IT CONVERGED TO. (1-9. $\log 2$). TO JHOW THIS REGULARD A LITTLE CREATINITY. WE BEGIN WITH THE FINITE GEOMETRIC SUM $1 + \Gamma + \Gamma^2 + ... + \Gamma^{-1} = \frac{1-\Gamma}{1-\Gamma}^N$

E NOW INTEGRATE IN
$$\Gamma$$
 BOTH SIDES FROM $-1 \le \Gamma \le 0$:
$$\int_{-1}^{0} (1 + \Gamma + \Gamma^{2} + ... + \Gamma^{N-1}) d\Gamma = \int_{-1}^{0} \frac{1}{1 - \Gamma} d\Gamma - \int_{-1}^{0} \frac{\Gamma^{N}}{1 - \Gamma} d\Gamma.$$

$$[HIJ CIVE]: \left(\Gamma + \frac{\Gamma^{2}}{2} + \frac{\Gamma^{3}}{3} + ... + \frac{\Gamma^{N}}{N} \right) \Big|_{-1}^{0} = -\log (1 - \Gamma) \Big|_{-1}^{0} - \int_{-1}^{0} \frac{\Gamma^{N}}{1 - \Gamma} d\Gamma.$$

$$-\left(\frac{(-1)+\frac{(-1)^{2}}{2}+\frac{(-1)^{3}}{3}-\frac{(-1)^{N}}{N}\right)=\frac{\log 2-\int_{-1}^{0}\frac{\Gamma}{1-\Gamma}d\Gamma}{1-\Gamma}d\Gamma.$$

$$=\frac{1-\frac{1}{2}+\frac{1}{3}-\frac{(-1)^{N-1}}{N}=\frac{\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}=\log 2-\int_{-1}^{0}\frac{\Gamma}{1-\Gamma}d\Gamma.$$

THUS, WE HAVE FOR ANY INTECTA
$$N > 1$$
 THAT
$$\sum_{n=1}^{N} \frac{(-1)^{n-1}}{n} = \log 2 - \left| \frac{1}{1-r} \right| dr.$$

THU II EXACT! WE NOW WANT TO TAKE THE LIMIT $N \longrightarrow \infty$ ON BOTH SIDEJ AND EJTIMATE $E_N \equiv -\int_{-1}^{0} \frac{\Gamma}{1-\Gamma} d\Gamma$ (ERROR TERM).

SINCE
$$\sum_{n=1}^{N} \frac{(-1)^{n-1}}{n!} = \log 2 + E_N \qquad (x)$$

IF WE CAN JHOW THAT EN \rightarrow 0 A) N \rightarrow 0, THEN $\frac{\infty}{2} \frac{(-1)}{0} = \log 2$

AND WE ARE DONE. SO LET'S FIGHT WITH EN:

$$E_{N} \equiv -\int_{0}^{\infty} \frac{\Gamma^{N}}{1-\Gamma} d\Gamma.$$

let U:-P. THEN $E_N = (-1)^N \int_0^N \frac{u^N}{1+u} du = -(-1)^N \int_0^1 \frac{u^N}{1+u} du = -(-1)^N \int_0^1 \frac{u^N}{1+u} du$.

THIS ME AND
$$|E_N| \leq \int_0^1 L^N dL = \frac{1}{N+1}$$
 AND SO $E_N \to 0$ AS $N \to \infty$.

 $(*)$ THEN CIVES $\geq (-1)^{n-1} = \log 2$.

THEOREM 2 (REMAINDER). IF $S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is a convergent of the remainder $S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is a convergent $S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is a convergent $S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ and $S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is a convergent $S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is a convergent S =

SATISFIES THE BOUND

Rn = 15-5n 1 & bnx1.

I.E. THE REMAINDER IJ BOUNDED BY THE FIRST NECLECTED TERM ANTTER

REMARK THE PROOF OF THIS RESULT IS GIVEN IN THE APPENDIX (DPTIONAL)

EXAMPLE WE RECALL THAT $e^{X} = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ HOW MANY TERMI IN THE INFINITE JUM ARE NEEDED TO GET AN ERROR OF 2.5 x 10 FOR e^{-1} .

SOLUTION LET X = -1. $e^{-1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ by e^{-1} is decreasing Jeguenie, positive, and e^{-1} for e^{-1} .

THE REMAINDER ESTIMATE GIVES

THUS IF N=10, WE CALCULATE $\frac{1}{11'_0} \stackrel{?}{=} 2.5 \times 10^{-8}$. So $e^{-1} \stackrel{?}{=} 1 - \frac{1}{1'_0} + \frac{1}{2'_0} = \frac{1}{10'_0} = \frac{3678794642 \pm 2.5 \times 10^{-8}}{10'_0}$.

A REALLY GOOD ESTIMATE WITH 10 TERMS.

EXAMPLE HOW MANY TERMS IN $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^6}$ IS NERDED

TO GET AN APPROXIMATION TO THE INFINITE JUM WITHIN AN ERROR

of 10⁻⁵?

SOLUTION LET $S_N = \sum_{n=1}^{M} \frac{(-1)^{n+1}}{n^6}$ AND BY ALTERNATING JERIES TEST

SN -> S A) N -> & (INFINITE JERIE) (ONVEIGE). THEN, BY REMAINDER THEOREM,

 $|S-S_N| \leq \frac{1}{(N+1)^6}$

10 WANT $\frac{1}{(N+1)^6}$ < 1×10^{-5} or $(N+1) > (1 \times 10^{-5})^{1/6} = 6.812$ T 44 N > 5. 812.

SO TAKE N: 6 TO get thu error.

EXAMPLE IF WE HAVE THE INFINITE SERIES $\sum_{i=1}^{\infty} \frac{(-1)^{n-1}}{n}$ (which we

KNOW IS log 2 BY EXAMPLE 5) WE HAVE

 $|\log 2 - S_N| \leq \frac{1}{N}$ WITH $S_N = \sum_{i=1}^{N} \frac{(-1)^{n-1}}{n}$.

70 get 1/392- SN 1 < 1 × 10⁻⁵ WE NEED 10

NAI > 1x105 TEAMJ.

AN ENDRMOUS NUMBER OF TERMS SINCE the relier conneider 20 reit 2/0 m/d.

PROOF OF THEOREM I (ALTERNATING SERIES TEST)

DEFINE $S_{N} = \sum_{n=1}^{N} (-1)^{n-1} b_{n}$. AJJUME $b_{n} \ge 0$ AND $b_{n} - b_{n+1} \ge 0$ FOR n = 1, 2, ...(1.c. b_{n} II A POSITIVE, DECREASING JEQUENCE) WITH $b_{n} \to 0$ AN $n \to \infty$.

WE CALCULATE SN WHEN N IS EVEN AS FOLLOWS ?

$$S_2 = b_1 - b_2 \ge 0$$

 $S_4 = (b_1 - b_2) + (b_3 - b_4) = S_2 + (b_3 - b_4) \ge S_2$
 $\iff 0 \Rightarrow$
 $S_6 = S_4 + (b_5 - b_6) \ge S_4$.

CONTINUING ON, WE GET $S_{20} = S_{20-2} + b_{20-1} - b_{20} \geqslant S_{20-2}$ for $\Omega = 2,3,4,...$ SINCE $S_{20} \geqslant S_{20-2}$ for $\Omega = 2,3,4,...$ WE HAVE THAT $\frac{1}{2} \leq S_{20} \leq S_{20} \leq S_{20-2}$ FOR $\Omega = 2,3,4,...$ WE HAVE THAT $\frac{1}{2} \leq S_{20} \leq S_{20-2} \leq S_{20-2}$ FOR $\Omega = 2,3,4,...$ WE HAVE THAT $\frac{1}{2} \leq S_{20} \leq S_{20-2} \leq$

WE WRITE Son = b, - b2 + b3 - b4 -- - b2n-2 + b2n-1 - b2n.

GROUP TRAM! A! SHOWN: S_{2n} : $b_1 - (b_2 - b_3) - (b_4 - b_5) - \dots - (b_{2n-2} - b_{2n-1}) - b_{2n}$. $\iff 0 \rightarrow \iff 0 \rightarrow \iff$

THIS SHOWS THAT SON FOR ALL N = 2,3,4, ...

WE CONCLUDE THAT $S_{2D}S_{1}$ is an increasing sequence that is by ounded above by b_1 . As such $\lim_{N\to\infty}S_{2D}$ exists and we denote it by $S=\lim_{N\to\infty}S_{2D}$.

NOW OBJERNE THAT $S_{2n+1} = S_{2n} + b_{2n+1}$. SINCE $b_n \to 0$ A) $n \to \infty$ we have $\lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} S_{2n} \Longrightarrow S = \lim_{n \to \infty} S_{2n+1}$. So, Finally, $\frac{1}{3}S_{2n}$ And $\frac{1}{3}S_{2n+1}$ are convergent jequences with the same limiting value $\longrightarrow \frac{1}{3}S_{2n}$ is convergent jequence. With same summing $S_{2n+1} = S_{2n+1}$.

WE WRITE
$$S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$$
 AND THEN SHBTRACT TO GET

$$S - S_N = \sum_{n=1}^{\infty} (-1)^{n-1} b_n = \begin{cases} -b_{N+1} + (b_{N+2} - b_{N+3}) + (b_{N+4} - b_{N+5}) & \text{if N odd} \\ + 20 & \text{if N even} \end{cases}$$

$$b_{N+1} - (b_{N+2} - b_{N+3}) - (b_{N+4} - b_{N+5}) & \text{if N even} \end{cases}$$

$$b_{N+1} - (b_{N+2} - b_{N+3}) - (b_{N+4} - b_{N+5}) & \text{if N even} \end{cases}$$

THIS SHOWS THAT
$$S-S_N>-b_{N+1}$$
 IF N DDO) (8)
$$S-S_N < b_{N+1}$$
 IF N EVEN.

NOW GROUP THE TERMS IN A DIFFERENT WAY:

$$S-S_{N}=-\left(b_{N+1}-b_{N+2}\right)-\left(b_{N+3}-b_{N+4}\right)...$$

$$\iff 0 \implies \iff 0 \implies$$
THIS GIVES
$$S-S_{N} < 0 \text{ IF } N \text{ ODD.} \} \tag{+}$$

SIMILARLY, IF N IJ R VEN,

$$S - S_{N} : (b_{N+1} - b_{N+2}) + (b_{N+3} - b_{N+4}) \cdots$$

$$\leftarrow ? O \rightarrow \qquad \leftarrow ? O \rightarrow$$

THU GIVEL S-SH > O IF N EVEN, (++)

FINALLY COMBINE (*), (+), AND (++) TO CONCLUDE THAT

WE CAN COMBINE THESE TOgether TO CONCLUDE THAT

THEREFORE THE ERROR IN APPROXIMATING BY N TRRMJ 15
SIMPLY THE FIRST NEGLECTED TERM.