사물인터넷 (Internet of Things)

김태운

목차

■ Non-IP 기반의 WPAN 기술: Bluetooth

Network Layer: Non-IP 기반의 WPAN 기술 Bluetooth

참고문헌:

- Internet of Things for Architects, Perry Lea (2018), Packt Publishcing Ltd.
- P. Bhagwat, "Bluetooth: Technology for Short-Range Wireless Apps," IEEE Internet Computing, May-June 2001.
- Bluetooth and Bluetooth Smart, lecture note, R. Jain, 2014, WUSTL

Non-IP 기반의 WPAN 기술

- WPAN (Wireless Personal Area Networks)
 - Sensor, actuator 등은 인터넷에 연결되기 위해 데이터를 송수신하는 기법이 필요
 - PAN(Personal Area Network)은 근거리 통신(수 미터~수백 미터)을 통칭하는 기술이며, 특히 Wireless PAN 기술은 사물인터넷 분야에서 사물-사물 간 및 사물이 인터넷에 연결되기 위해 사용하는 일반적인 기술을 말함
 - 6LoWPAN 과 같이 전통적인 IP 프로토콜(Internet Protocol)을 기반으로 하는 기술이 있는 반면, Bluetooth (BLE)와 같이 IP 프로토콜에 기반을 두지 않은 프로토콜도 다수 사용됨
 - 기존 네트워킹 시스템과의 호환성 및 확장성이 중요한 경우에는 IP 프로토콜 기반의 네트워킹 기술을 사용함
 - 비용 및 배터리 사용 최소화를 중요시 하는 시스템의 경우 비-IP 프로토콜 기반의 네트워킹 기술을 사용함

Non-IP 기반의 WPAN 기술

- IEEE 802.15 표준 ("표준" 관련 내용은 다음 강의에서 추가로 정리할 예정
 - 사물인터넷에서 사용하는 다양한 WPAN 네트워킹 기술은 802.15 표준에 기반을 두고 있음
 - 802.15 표준 및 관련 활동은 wearable device 를 목표로 개발 되었으나, 다양한 수요를 맞추기 위해 높은 데이터 전송률, 긴 전송 거리(수 미터~수 킬로 미터) 등을 지원하기 위해 기능이 확장됨
 - 현재, 802.15 기반의 네트워킹 표준을 사용하는 단말이 <u>매일</u> 백 만대 이상 출하되고 있음
 - 관련 표준 목록

802.15	Wireless personal area network definition		
802.15.1	Original foundation of the Bluetooth PAN		
802.15.2	Coexistence specifications for WPAN and WLAN for Bluetooth		
802.15.3	High data rate (55 Mbps+) on WPAN for multimedia		
802.15.4	Low data rate, simple, simple design, multi-year battery life specifications (Zigbee)		
802.15.5	Mesh networking		
802.15.6	Body area networking for medical and entertainment		
802.15.7	Visible light communications using structured lighting		
802.15.8	2.15.8 Peer Aware Communications (PAC) infrastructure-less peer to peer at 10 Kbps to 55 Mbps		
802.15.9	Key Management Protocol (KMP), management standard for key security		
802.15.10	.10 Layer 2 mesh routing, recommend mesh routing for 802.15.4, multi-PAN		
802.15.12	Upper layer interface, attempts to make 802.15.4 easier to use 802.11 or 802.3		

사물인터넷 !

- 저전력 통신
 - 블루투스 기술은 키보드, 이어폰 등 주변기기를 연결하는 대표적인 무선 통신 기술로써, 단말의 전력 사용량을 최소화 하기 위해 개발된 네트워킹 기술
 - 초창기에는 RS-232 유선 케이블을 무선으로 대체하기 위한 목적으로 1994년 Ericsson에 의해 고안 되었으며, 2007년에는 coin cell battery 만으로도 동작할 수 있는 Bluetooth Low Energy (BLE) 버전이 개발됨
- Bluetooth의 개정 이력 (다음 페이지 계속…)

Revision	Features	Release date
Bluetooth 1.0 and 1.0B	Basic rate Bluetooth (1 Mbps) 호기 버전 Initial version released.	1998
Bluetooth 1.1	IEEE 802.15.1-2002 standardized 1.0B specification defects resolved Non-encrypted channel support Received Signal Strength Indicator (RSSI)	2002
Bluetooth 1.2	IEEE 802.15.1-2005 Rapid connection and discovery Frequency hopping spread spectrum (AFH) Host controller interface (three-wire UART) Flow control and retransmission modes	
Bluetooth 2.0 (+EDR optional)	Enhanced Data Rate Mode (EDR): 3 Mbps 데이터 전송 속도 개선	2004
Bluetooth 2.1 (+EDR optional) Secure Simple Pairing (SSP) using public key cryptography with four unique authentication methods Extended Inquiry Response (EIR) allows for better filtering and reduced power		2007

■ Bluetooth의 개정 이력

Revision	Features	
Bluetooth 3.0 (+ EDR optional) (+HS optional)	EDR optional) Alternate MAC/PHY (AMP) 24 Mbps using 802.11 PHY	
Bluetooth 4.0 (+ EDR optional) (+HS optional) (+LE optional)	AKA BluetoothSmart Introduced Low Energy mode (LE) Introduced ATT and GATT protocols and profiles Dual mode: BR/EDR and LE mode Security manager with AES encryption 전력소모 최소화, 배터리 수명 연장	
Bluetooth 4.1	Mobile wireless service (MWS) coexistence Train nudging (coexistence feature) Interlaced scanning (coexistence feature) Devices support multiple simultaneous roles	
Bluetooth 4.2	LE secure connections Link layer privacy IPv6 support profile	
Bluetooth 5.0	Slot availability masks (SAM) 2 Mbps PHY and LE LE long range mode LE extended advertising modes Mesh networking	

■ Bluetooth의 개정 이력 (요약): 초기 버전 → 전송 속도 개선 → 전력소모 개선

표 준 안	특 징	구분	
Bluetooth 1,X	• 초창기 Bluetooth로 최대 전송속도 723kbps		
Bluetooth 2,X	 최대 전송속도 3Mbps SSP(Secure Simple Pairing) 기능 추가 EIR(Extended Inquiry Response)를 통한 커넥션 필터 링강화 	 Classic Bluetooth 기존 Bluetooth 기술 	
Bluetooth 3,X	 최대 전송속도 24Mbps 3.0+HS(High Speed)만 최대 전송속도 지원 Bluetooth Link는 접속에만 사용 PAL(Protocol Adaptation Layer)을 통한 Wi-Fi 고속 전송 	Bluetooth High Speed Wi-Fi를 활용한 고속기술 중점	
Bluetooth 4,X	전력소모 최소화, 배터리 수명 연장 사물인터넷 연결성 강화 개인정보보호 강화	• Bluetooth Low Energy	
• 비저 에 비싼 소스시기가 소드 버리트 게 시티 요란		• 전력소모의 소화 및 배터리 수명 중점	

- WPAN Design 고려사항
 - 배터리 사용량 최소화 필요
 - 토폴로지가 동적으로 변화하는 환경에서 동작할 수 있어야 함
 - 통신 인프라(예: AP, BS 등)가 없는 경우에도 동작할 수 있어야 함
 - 비 면허 ISM 대역을 사용할 경우 전송 전력이 높은 다른 LAN 기기와의 간섭이 발생 ==> 통신 간섭을 피할 수 있는 방법이 필요
 - 단말 수를 기준으로 수백만~수십억 수준의 스케일로 네트워크 확장이 가능해야 함
 - 몇 달러 수준의 저비용으로 통신 모듈을 제작할 수 있어야 함
- BT: 핵심 특징 요약(Key Features)
 - 저전력: 대기 모드에서는 10 uA, 전송 중에는 약 50 mA (참고: 소비전력 = 전류 * 사용하는 배터리의 전압)
 - 저비용: BT 통신 모듈 제작 비용은 \$5 수준
 - 소형화: BT 단일 칩의 경우 9mm^2 수준의 크기로 소형화하여 제작 가능

- BT: 핵심 특징 요약(Key Features)
 - 동작 주파수: 2402 2480MHz (ISM 대역)
 - 전송 전력:
 - Class 1: 최대 100 mW (전송 거리: 최대 100미터)
 - Class 2: 2.5 mW
 - Class 3: 1 mW (전송 거리: 약 10m)
 - 전송 거리: 10 100m 수준
 - Radio Frequency Hopping:
 - 동일한 ISM 대역을 사용하는 단말로부터의 간섭을 최소화 하기 위해, 신속하게 주파수를 변경하면서 통신함
 - 전체 사용 채널: 79 RF channels (USA)
 - 주파수(채널) 변경 속도: 1600 times/second
 → 즉, 하나의 채널에서 625 us의 시간동안 머무르며 통신을 수행함

- 동작 방식
 - BT의 동작 방식(또는 동작 모드)은 Basic Rate (BR) 와 Low Energy (LE)로 구분됨
 - BR은 BT 규격 2.0에 기반하고 있으며 스트리밍 오디오와 같은 분야(Use Case)에 적합한 구현방법으로, 상대적으로 짧은 전송거리와 지속적인 무선 연결을 지원
 - 참고: 기본 전송률(BR) 및 개선된 전송률(EDR)을 지원하는 BT를 BT Classic이라 부름
 - (송수신 데이터가 없더라도) 지속적인 연결을 유지하며, 이로 인해 사용이 편리하고 신속한 데이터 송수신이 가능한 대신 배터리 소모가 큼
 - LE는 경량화 된 BT 규격 4.0에 기반하고 있으며 긴 전송거리를 지원함. 연속적인 무선 연결을 필요치 않고, 주기적 또는 간헐적으로 짧은 시간 동안의 데이터 전송을 수행 하는 저전력 사물인터넷 응용분야에 적합
 - BT LE를 Bluetooth Smart 라고도 부름
 - 추가로, BR과 LE 모드를 동시에 지원하는 Dual-Mode 형태로도 구현 가능

■ BT Protocol Stack (v1.1 기준)

전통적인 OSI 7-Layer 네트워크 구조와는 다른데, 그 이유는

- 참여하는 단말 간 Ad Hoc 통신 지원
- 단말의 사용 전력 최소화
- 모든 Layer 기능을 구현할 수 없을 정도의 낮은 수준의 자원을 가진 단말의 통신을 지원하기 위해 특화된 프로토콜 스택을 개발했기 때문.

■ BT Protocol Stack 별 기능 (v1.1 기준)

기능	설명	
RF (radio)	 무선 안테나 특성, 통신 주파수, 채널 할당, 전송 전력 단위, 통신 수신 감도 등을 정의 	
Baseband	 BT의 PHY(물리) 및 MAC(매체 접근 제어) 기능을 제어 주변의 BT 기기 탐지, 통신용 링크 형성, 동기/비동기 통신 등을 제어 	
Link Manager	 BT 단말은 configuration 및 baseband connection 관리를 위해 다수의 제어 메시지를 교환하는데, 이 때 사용하는 메시지는 LMP 프로토콜을 따름 Link Manager는 LMP(Link Manager Protocol) 프로토콜을 수행하는 entity임 	
HCI (Host Controller Interface)	 BT chip(HW)과 BT 단말에서 구동하는 SW간의 인터페이스 역할 수행 BT 단말에서 구동하는 SW는 HCI command를 통해서 BT HW와 통신하거나 BT HW를 제어할 수 있음 HCI를 통해서 전달되는 메시지는 해당 단말 내에서만 교환됨(즉, 네트워크를 통해 다른 단말로 전송되지 않음) 	
(다 음 페이지 계속…)	(다음페이지 계속…)	

■ BT Protocol Stack 별 기능 (v1.1 기준)

기능	설명	
(계속)	(계속)	
L2CAP	 L2CAP: Logical Link Control and Adaptation Protocol BT의 Link Layer에 해당하며, 일반적으로 L2CAP 및 그 위의 계층은 SW로 구현됨 L2CAP은 상위 계층으로 부터 받은 패킷을 통신용 링크에 연결해 주는 역할을 담당 BT 기기는 다른 기기와 통신 반경 내에 있다면 즉시 L2CAP 연결을 수립할 수 있고, BT 단말은 해당 단말이 제공하는 서비스가무엇인지를 탐지하는 service discovery를 수행 함 	
SDP	 SDP: Service Discovery Protocol 주변의 BT 단말이 제공하는 서비스 및 그 속성을 discover 하는 방법을 정의 단, SDP는 service discovery 기법만을 정의하며, 어떻게 해당 서비스에 access 하는지는 정의하지 않음 	
RFCOMM	 BT airlink에서 RS-232 유선 연결을 에뮬레이트 하는 방법을 정의 COM port를 사용해서 통신하는 전통적인 애플리케이션과의 통신을 지원함 	

- Profile Specification (PS)
 - BT 기술은 서로 다른 제조사 기기간 연동을 중요시 하며, 다양한 WPAN 기반의 응용 분야에서 사용하는 것을 목적으로 함
 - BT SIG는 13가지 Use Case에 대한 controller 및 stack 파라미터를 사전에 정의해 두었고, 이를 profile specification (PS)라고 함
 - SIG: Special Interest Group, 공통의 표준이 되는 기능을 정의하는 전문가 그룹
 - PS를 구현하는 모든 제조사의 BT 단말은 서로 호환이 가능해야 하며, 호환성 테스트를 통과해야 BT 인증기 관의 인증을 받고 BT 로고를 제품에 부착할 수 있음

• 13가지 Use Case에 대한 Bluetooth Profile Specification 설명: (다음 페이지)

■ 13가지 Use Case에 대한 Bluetooth Profile Specification

Use case	Description		
Generic access	Generic procedures for discovery and link management of connecting to Bluetooth devices.		
Service delivery	Features and procedures for a Bluetooth device application to discover services registered in other devices.		
Cordless telephone	Features and procedures for interoperability between different units active in a "3-in-1"phone.		
Intercom	Requirements for supporting intercom functionality within a "3-in-1" phone.		
Serial port	Requirements for setting up emulated serial cable connections using RFCOMM between two peer devices.		
Headset	End-user service requirements and interoperability features for Bluetooth devices implementing headsets.		
Dial-up networking	End-user service requirements and interoperability features for Bluetooth devices implementing dial-up networking.		
Fax	End-user service requirements and interoperability features for Bluetooth devices implementing fax services.		
LAN access	Definition of (a) how Bluetooth devices can access LAN services using PPP and (b) how the PPP mechanisms form a network.		
Generic object exchange	Requirements for Bluetooth devices to support object exchange usage models.		
Object push	Application requirements for Bluetooth devices to support the object push usage model.		
File transfer	Application requirements for Bluetooth devices to support the file transfer usage model.		
Synchronization	Application requirements for Bluetooth devices to support the synchronization usage model.		

- Radio Front End (또는 RF Front End, RFFE)
 - Baseband 신호를 수신하여 정보를 추출하고, 상위 계층으로부터 전달받은 정보를 무선 안테나로 전송하기 위해 radio-signal로 변환하는 기능 담당
 - 2.4GHz 대역에서 통신하며, 미국을 기준으로 83.5MHz 크기의 대역 및 79개 채널을 할당하여 사용함 (국 가별로 대역폭 및 채널수가 일부 상이함)
 - 2.4GHz 대역은 비 면허 ISM 대역으로 다양한 통신 기술이 공통으로 사용하는 대역이며, 이로 인해 통신 시 간섭이 많음
 - BT 단말간 통신에서 간섭을 최소화 하기 위해 FHSS(Frequency-Hopping Spread-Spectrum) 기술을 사용
 - BT 단말은 pseudo-random hopping sequence를 따라 주파수를 바꿔가며 통신함
 - Channel hopping 속도: 1600 채널 / 1초
 - 기본 전송 속도: 약 1Mbps
 - Gaussian Frequency Shift Keying, GFSK, 등의 간단한 모듈레이션 기법 사용
 - GFSK: FSK(아래 그림 참고) + 가우시안 필터 적용

 1v
 0v
 Input binary sequence time

 1v
 0v
 -1v
 f₁
 f₂

FSK Modulated output wave

고속 데이터 전송을 지원하는 EDR 모드에서는 DQPSK(2 Mbps) 또는 8DPSK (3Mbps) modulation 기법을 사용함

- Piconet 및 scatternet
 - BT 단말을 그룹으로 묶는 다양한 형태를 지칭함

Figure 2. Piconet (left) and scatternet (right). The master device at the center of a piconet can serve up to seven slaves; members of two or more piconets are called bridge nodes, which support interpiconet communication.

- Piconet: 같은 통신 채널(즉, 동일한 hopping sequence)을 공유하는 BT 단말 그룹
 - 하나의 piconet은 하나의 master 와 다수의 slave가 star topology 형태로 연결된 구조를 가짐
 - 하나의 piconet에는 최대 7개의 slave 단말이 active 상태가 될 수 있고, 비 활성(parked) 상태인 단말을 포함하여, 하나의 piconet은 최대 255개의 단말로 구성할 수 있음
 - Active 상태인 slave만 master로 부터 통신 서비스를 받을 수 있음(즉, master와 데이터 통신을 할 수 있음)
 - Master 단말은 각각의 active 단말에게 전송 기회를 주며, 전송 기회를 얻은 slave 단말이 전송할 데이터가 있다면 master로 데이터를 전송함
 - Master는 최대 7대의 active 상태인 slave와 통신할 수 있는데, 8대 이상의 slave와 통신을 하려면 7대 active 단말과 통신 후 해당 단말을 parked mode로 전환 요청 후 현재 parked mode인 단말에게 active 상태로 전환 요청 과정을 반복
 - BT 는 소규모 그룹 내에서의 local communication 상황을 가정하고 있으며, active 단말의 수가 늘어나면 별도의 piconet을 형성하고 해당 그룹 내에서 통신을 수행하는 것을 권장함
 - 하나의 piconet에 속한 slave는 master clock 과 동기화를 수행하고, 동일한 channel-hopping sequence 에 따라 채널을 변경하면서 master 와 통신함
 - Channel-hopping sequence 는 master 기기의 주소를 입력으로 하는 pseudorandom sequence 에 따라 결정되며, random 특성을 가지고 있으므로 주변의 다른 piconet 과의 collision 이 발생할 가능성이 매우 낮음
 - 단, 단말의 밀집도가 높아지면 collision 으로 인한 성능 저하가 발생함

- Scatternet: 다수의 piconet을 연결한 구조
 - BT 는 하나의 piconet 내에서의 local communication 을 수행하는 것을 주 목적으로 하지만, 서로 다른 piconet 간에 데이터 송수신이 필요할 수 있음
 - Piconet 간 통신을 지원하기 위해 piconet이 서로 연결된 scatternet 구조를 지원하며, 이 때 Bridge Node 를 통해서 piconet 을 서로 연결함
 - Bridge node(BN) 를 통해서 piconet 이 서로 연결되며, BN는 time-sharing 기반으로 두 piconet 에 번갈 아 가며 참여함
 - 예를 들어, BN 는 일정 시간 동안 Piconet-1 의 channel-hopping sequence 를 따르고, 다음으로 일정 시간 동안은 Piconet-2 의 channel-hopping sequence 를 따름
 - 이러한 과정을 반복하여 BN 는 piconet 간 정보 전달을 할 수 있음
 - BN 는 두 piconet 에서 모두 slave 이거나, 하나의 piconet 에서는 slave 이고 다른 piconet 에서는 master 가 될 수 있음 (단, 두 piconet 모두에서 master 가 될 수는 없음)

- Inquiry and Paging
 - BT 단말은 "inquiry"라는 절차를 통해 다른 BT 단말을 탐지(discover)/발견 할 수 있고, 이후 "paging" 절차를 통해 연결을 수립함
 - 새로운 piconet 형성하기
 - Inquiry 및 paging 절차는 개념적으로 단순하나, BT 단말은 channel-hopping 을 수행하고, 서로 다른 채널을 사용하는 BT 단말은 서로 통신할 수 없다는 문제가 있음
 - 이를 위해 사전에 정의된 inquiry-hopping sequence 를 사용하며, BT 단말은 sender 또는 listener 중 하나의 역할을 맡게 됨
 - [Discovery Procedure] Sender는 hopping sequence를 이동하며 신호를 전송하고 listener로 부터의 응답(단말의 주소)을 수집
 - BT 단말은 48비트 길이의 주소(BD_ADDR)를 가지며, 그 중 상의 24비트는 제조사 특화 주소를 사용하고 하위 24비트는 제조사에서 임의로 정한 주소 규칙을 사용함
 - [Paging Procedure] Sender는 연결을 원하는 listener 단말에게 unicast 방식으로 paging 메시지를 보내고, listener 단말로 부터 ACK를 수신하면 master(sender)-slave(listener) 관계를 맺으며 새로운 piconet을 생성함
 - 기존의 piconet 에 새로운 단말을 추가하기
 - Master 단말은 [Discovery Procedure]를 통해 새로운 단말을 찿아서 piconet 에 초대하거나, 또는 scan (listen) state 에서 대기하며 다른 단말에 의해 discovered 되기를 대기함
 - 어떤 방식을 사용하는지에 관계없이, 현재 piconet 에서의 통신을 일시적으로 중단해야 함

- Class BT (BR/EDR) 단말의 동작 모드
 - Piconet 에 포함된 BT 단말의 기본 동작 모드는 active mode 로, slave BT 단말은 master 와 데이터를 송수 신 하거나 또는 master 로 부터 데이터 수신을 기다림
 - BT 에는 다양한 저전력 모드가 정의되어 있으며 이를 통해 배터리 지속시간을 늘릴 수 있음

Mode	설명	
Hold mode	 BT 단말을 지정된 기간 동안 sleep 상태로 전환 Master 단말이 새로운 단말을 찿는 과정에서, piconet 에 소속된 slave 단말의 활동을 잠시 중단시킬 때사용 	
Sniff mode	• Low-duty cycle mode 로써, slave 는 (항상 active 상태가 아닌) 주기적으로 sleep 에서 active 상태로 전환하여 master 단말과 통신함	
Park(ed) mode	 Slave 단말이 master 와 동기화를 유지한 채로 inactive 상태로 전환하는 것 이를 통해, 하나의 piconet 에 7대 이상의 slave 단말을 포함시킬 수 있음 BT 5부터 더 이상 사용하지 않음 	

• Piconet 에 포함되어 있지 않은 경우, BT 단말은 turn off 상태에 있거나, 또는 주기적으로 wake up 상태로 전환하여 inquiry 메시지를 송수신함

- Class BT (BR/EDR) 단말의 동작 모드
 - BT 단말의 상태 전이 다이어그램 (parked mode 를 제외한 다이어그램)

- BLE (Bluetooth 4.0 이후의 Low Energy) 단말의 동작 모드
 - Advertising
 - 단말의 이름, 주소 등을 포함한 advertising packet 을 advertising 전용 채널에서 전송
 - Scanning
 - Advertising packet 을 수신하기만 하고, 연결은 하지 않음
 - Initiating
 - Advertising packet 을 수신한 단말이 연결을 수립하기 위해 connect packet 을 전송
 - Connected
 - BT 단말간 연결이 수립되고, master-slave 관계가 형성됨
 - 이때, initiate 를 수행한 단말이 master (central device) 가 되고, advertising packet 을 전송한 단말이 slave (peripheral device)가 됨
 - Standby
 - 다른 단말과 연결되지 않은 상태

- BLE (Bluetooth 4.0 이후의 Low Energy) 단말의 동작 모드
 - BT 단말의 상태 전이 다이어그램

- Piconet Channels
 - Channel-hopping 을 수행함에 따라, 각 piconet 채널을 625us 동안(= 하나의 타임 슬롯, time slot) 데이터 송수신에 사용 가능하고, 해당 시간이 경과하면 다른 채널로 이동함
 - 하나 또는 다수의 연속된 슬롯 동안 master-slave 간 통신이 가능하며, slave 간 직접 통신은 불가능
 - Slave 간 통신 필요 시, master 를 통해서 간접적으로 통신을 수행해야 함
 - 전송 오류를 탐지하기 위해 CRC(Cyclic Redundancy Check) 를 사용하고, 수신 데이터에 오류 발견 시 재 전송을 통해 오류를 해소함

■ 다항 코드Polynomial Code 기반의 순환 중복 검사 (CRC Cyclic Redundancy Code): 다음 페이지

- 다항 코드Polynomial Code 기반의 순환 중복 검사 (CRC Cyclic Redundancy Code)
 - 통신 프로토콜에서 가장 많이 사용하는 오류 검출 기법
 - 일반 네트워크에서 발생하는 오류는 특정 위치에서 집중적으로 발생하는 (burst error) 형태가 많은데, 다항 코드 방식은 이러한 오류를 검출하는 확률이 높음
 - 다항식 코드를 이용한 나눗셈 연산의 결과를 데이터 블록에 추가하여 전송하는 방식
 - 블록의 길이에 관계 없이 전체 블록을 검사할 수 있고, 이진 나눗셈 연산에 기반함

- 다항 코드Polynomial Code 기반의 순환 중복 검사 (CRC Cyclic Redundancy Code)
 - 동작 방식
 - [Sender]
 - 전송할 데이터를 생성 다항식으로 나눔
 - 이 때, <u>나머지</u> 값을 <u>체크섬</u>이라 하고, 전송하려는 데이터 뒤에 체크섬을 붙인(concatenate) 후 전송
 - [Receiver]
 - 수신한 데이터 전체(데이터+체크섬)를 Sender가 사용한 것과 동일한 생성 다항식으로 나눔
 - 나머지가 0이면 수신한 데이터에 오류가 없고, 0이 아니면 오류가 있다고 판단
 - 생성 다항식 (generator polynomial)
 - Sender 에서는 체크섬을 생성하기 위해 사용하고, Receiver 에서는 수신 데이터의 오류 검사를 위해 사용
 - 계수가 0과 1인 다항식 형태를 기반
 - 예) 다항 코드 $100101 = 1x^5 + 0x^4 + 0x^3 + 1x^2 + 0x^1 + 1x^0 =$ 생성 다항식 $x^5 + x^2 + 1$ 과 같음

- 다항 코드Polynomial Code 기반의 순환 중복 검사 (CRC Cyclic Redundancy Code)
 - 동작 방식
 - 'n+1' 개의 비트로 구성된 G(x)를 생성 다항식(= 다항 코드)으로 사용(n: 생성 다항식의 최대 차수)
 - [Sender] 전송 데이터: m 비트로 구성된 프레임 M(x) 를 전송하려는 상황
 - M(x) 뒤에 n 개의 이진수 0을 덧붙여 M(x), 생성
 - M(x)'을 G(x)로 나눈 나머지(= n 비트 길이의 체크섬)를 M(x)'의 마지막 n개의 비트에 덮어쓰기
 - M(x)'을 전송
 - [Receiver]
 - 수신한 프레임을 G(x)로 나누고, 나머지를 계산
 - IF(나머지 == 0) : 전송 오류가 없다고 판단
 - IF(나머지!= 0): 전송 오류가 있다고 판단

그림 4-19 생성 다항식

- 다항 코드Polynomial Code 기반의 순환 중복 검사 (CRC Cyclic Redundancy Code)
 - 이진수 나누기 연산
 - 이진수 나눗셈은 뺄셈 연산만 수행
 - 뺄셈 (및 덧셈)은 배타적 논리합(XOR) 연산 결과와 동일

$1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ 1$	$1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ 1$
-1 1 0 0 0 1 1 1 0 1 1 0	XOR +1 1 0 0 0 1 1 1 0 1 1 0
010110011011	010110011011

- 체크섬 동작 예
 - 생성 다항식 G(x) = x⁵ + x² + 1 = 100101 (n=4)
 - 전송 하려는 데이터 : 101101001
 - 체크섬: 계산을 통해 얻은 나머지 00010
 - 송신데이터 : 10110100100010
 - 송신데이터를 G(x)로 나눈 나머지 = 0 (즉, 오류가 없는 상황)

다항 코드:

4+1 비트

- 다항 코드Polynomial Code 기반의 순환 중복 검사 (CRC Cyclic Redundancy Code)
 - 국제 표준으로 이용되는 생성 다항식

Common name	Degree	Polynomial
LRCC-8	8	$x^{8} + 1$
CRC-12	12	$x^{12} + x^{11} + x^3 + x^2 + x + 1$
CRC-16	16	$x^{16} + x^{15} + x^2 + 1$
CRC-CCITT	16	$x^{16} + x^{12} + x^5 + 1$
LRCC-16	16	$x^{16} + 1$
CRC-32	32	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x^{10} + x^{10}$
		x+1

Source: Ramabadran and Gaitonde (1988)

• BT에서 사용하는 생성 다항식

The CRC is defined using the CRC-CCITT generator polynomial

$$g(D) = D^{16} + D^{12} + D^5 + 1$$

• 참고: Specification of the Bluetooth systems, vol. 2, Bluetooth SIG. 2, Dec. 2014.

- SCO and ACL
 - BT 기술은 동기 및 비동기 링크 방식을 운영함
 - 동기 링크(SCO, synchronous link):
 - 주기적으로 반복되는 예약된 슬롯을 통해 데이터 송수신
 - 실시간 음성 통신 등 실시간 성을 만족해야 하는 응용 분야에 활용
 - 비동기 링크(ACL, asynchronous data link):
 - 주기적으로 발생하지 않는 데이터 전송을 지원하는 목적이며, 사용 되지 않는 슬롯을 필요에 따라 예약하고 예약된 슬롯을 통해 데이터를 송수신 함
- Service Discovery Protocol (SDP)
 - 서버-클라이언트 구조로 동작하는 프로토콜로써, 상대 BT 단말이 제공하는 서비스 내역을 조회하는 기능 수행
 - 서버 역할을 담당하는 단말은 구동중인 서비스 목록을 유지하고 있으며, 새로운 서비스를 생성할 때 마다 서비스에 고유한 UUID (Universally Unique Identifier)를 할당하여 서비스 간 충돌을 방지

