- 3.1.12. Dokažte, že má-li graf G s alespoň jednou hranou všechny vrcholy sudého stupně, potom G obsahuje cyklus.
- 3.1.13. Dokažte, že je-li $\delta(G) \geq 2$, potom G obsahuje cyklus.
- 3.1.14. Dokažte, že je-li $\delta(G) \geq 2$, potom G obsahuje dokonce i cyklus délky alespoň $\delta(G) + 1$.
- 3.1.15. Ukažte, že ve stromu T s alespoň třemi vrcholy je excentricita listového vrcholu vždy větší, než excentricita sousedního vrcholu.
- 3.1.16. Ukažte, že ve stromu T s alespoň třemi vrcholy je vždy rad(T) < diam(T).

3.2. Kostry

V minulé podkapitole jsme ukázali, že stromy mají výsadní postavení na hranici souvislosti a acykličnosti: ze stromu není možné žádnou hranu vynechat aniž by se porušila souvislost a do stromu není možné žádnou hranu přidat aniž by se porušila acykličnost. Má proto smysl hledat v souvislém grafu podgraf, který je strom. Takový podgraf zůstane souvislý a přitom vyřadíme "nadbytečné" hrany.

Definice Faktor grafu, který je stromem, se nazývá kostrou grafu.

Z definice ihned vidíme, že kostra existuje pouze pro souvislé grafy, nesouvislé grafy kostru nemají. Z předchozích kapitol víme, že kostra je speciální podgraf grafu G:

- kostra je faktor (obsahuje všechny vrcholy grafu G),
- ullet kostra je souvislá (mezi každými dvěma vrcholy grafu G existuje cesta, která obsahuje jen hrany kostry),
- pro pevně zvolenou kostru grafu G je cesta mezi dvěma vrcholy po hranách kostry určena jednoznačně,
- kostra je acyklická.

Kostry grafu využijeme například při sestavování soustavy lineárně nezávislých rovnic z Kirchhoffových zákonů. Nejprve najdeme kostru v grafu reprezentujícím elektrickou síť a potom přidáváme různé hrany tak, abych uzavřeli různé obvody a pro každý sestavíme lineární rovnici.

Mějme dán graf G. Úloha najít nějakou kostru grafu G je dobře známá. Existují algoritmy, které najdou kostru grafu s n vrcholy a m hranami v čase řádově O(m+n) (Cvičení 3.2.3.). Dokonce je možno v čase $O((m+n)\log n)$ najít minimální kostru hranově ohodnoceného grafu G. Problému nalezení minimální kostry se v tomto textu nebudeme věnovat. Naproti tomu ukážeme, jak určit počet všech koster kompletního grafu, jestliže rozlišujeme jeho vrcholy.

V důkazu následujícího tvrzení budeme pracovat s kořenovým stromem, což je dvojice (T,r), kde T je nějaký strom a $r \in V(T)$ je kořen stromu T. V každém kořenovém stromu můžeme všechny hrany (dle Věty 3.4. jednoznačně) zorientovat, například od listů ke kořenům.

Věta 3.7. Cayleyho vzorec

Pro každé $n \ge 2$ je počet různých stromů na n vrcholech roven n^{n-2} .

 $D\mathring{u}kaz$. Důkaz provedeme metodou dvojího počítání. Dvěma způsoby spočítáme tzv. povykosy ($postup v\mathring{y}$ roby kořenových stromů) na n vrcholech.

Nejprve vyrobíme kořenový strom tak, že mezi vrcholy postupně nakreslíme hrany a jeden vrchol zvolíme za kořen (Obrázek 3.1.). Vezměme libovolný strom T_n na n vrcholech. Strom T_n má n-1 hran, které můžeme postupně přidat v libovolném pořadí. Počet takových pořadí je (n-1)!. Za kořen r můžeme vybrat libovolný z n vrcholů. Označíme-li k(n) počet různých stromů na n vrcholech, tak počet různých povykosů je n(n-1)!k(n) (nezávislé volby: k(n) různých koster; n možností, jak zvolit kořen; (n-1)! pořadí, jak přidat hrany).

Obrázek 3.1.: Kořenový strom s n vrcholy a postupně přidanými n-1 hranami.

V kořenovém stromu (T_n,r) zorientujeme hrany od listů ke kořenu. Přitom z žádného vrcholu jistě nemůže vést více než jedna hrana, příchozích hran může být libovolný počet. Povykosy můžeme sestavovat druhým způsobem, kdy přidáváme orientované hrany mezi n izolovaných vrcholů (Obrázek 3.2.). Současně dbáme ta to, aby v každé komponentě takto sestavovaného lesa byl právě jeden vrchol (kořen komponenty), ze kterého žádná orientovaná hrana nevychází. Přidáme-li v nějakém kroku novou orientovanou hranu mezi dvě komponenty, koncový vrchol hrany můžeme zvolit libovolně, ale výchozí vrchol můžeme volit pouze mezi kořeny zbývajících i-1 komponent. Při konstrukci povykosu přidáme celkem n-1 hran (poslední hranu přidáváme mezi dvě komponenty) a existuje proto

$$\prod_{i=2}^{n} n(i-1) = n^{n-1}(n-1)!$$

různých způsobů sestavení povykosů.

Obrázek 3.2.: Kořenový "les" s n vrcholy a několika přidanými orientovanými hranami.

Dvěma různými způsoby jsme spočítali počet stejných objektů. Porovnáme oba vztahy a dostaneme

$$n(n-1)!k(n) = n^{n-1}(n-1)!$$
 \Rightarrow $k(n) = n^{n-2}$.

Tento důkaz z roku 1998, jehož autorem je Jim Pitman, je nejkratší ze známých důkazů Cayleyho vzorce.

Cayleyho vzorec udává obecný vztah pro počet koster kompletního grafu. Například graf K_4 má 16 koster, jestliže rozlišíme vrcholy čtyřmi barvami (Obrázek 3.3.). Pokud bychom vrcholy nerozlišovali, existují jen dva stromy na čtyřech vrcholech, které se liší svou strukturou: P_4 a $K_{1,3}$. Co to znamená "lišit se strukturou" rozebereme podrobně v kapitole 4.

Obrázek 3.3.: Graf K₄ má 16 různých koster.

Ze Cvičení 3.2.3. plyne, že každý souvislý graf má kostru. Snadno nahlédneme, že každý strom T_n je kostrou nějakého grafu (například sebe sama nebo kompletního grafu na $n = |V(T_n)|$ vrcholech). Následující věta dává postačující podmínku pro to, aby strom daný byl podgrafem nějakého grafu.

Věta 3.8. Mějme strom T s k hranami a graf G. Je-li $\delta(G) \geq k$, tak T je podgrafem G.

Důkaz tohoto tvrzení je ponechán jako Cvičení 4.1.9. Všimněte si, že opačné tvrzení neplatí. Například cesta P_6 má 5 hran a je podgrafem cyklu C_6 , přičemž $\delta(C_6)=2 \not> 5$. Na druhou stranu nerovnost ve Větě 3.8. není možno zpřísnit, protože například hvězda $K_{1,k}$ má k hran, K_k má $\delta(K_k)=k-1$, ale $K_{1,k}$ jistě není podgrafem K_k (proč?).

Cvičení

- 3.2.1. Kolik koster má unicyklický graf? (Unicyklický graf obsahuje jediný cyklus.)
- 3.2.2. Kolik koster má bicyklický (graf s právě dvěma cykly) graf? Nápověda: které možnosti musíme rozlišit?
- 3.2.3. Navrhněte algoritmus pro hledání kostry (ne nutně minimální), který pracuje se složitostí řádově O(m+n).