

Fakultät Mathematik Institut für Stochastik, Professur für Stoch. Analysis und Finanzmathematik

VERTIEFUNG IN DER STOCHASTIK

Prof. Dr. Martin Keller-Ressel

Wintersemester 2019/20

Autor : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Inhaltsverzeichnis

1	Einführung	2
	1.1 Zentrale Fragestellungen der Finanzmathematik	2
	1.2 Mathematisches Finanzmodell	3
	1.3 Anleihen und grundlegende Beispiele für Derivate	5
	1.4 Elementare Replikations- und Arbitrageargumente	7
	1.5 Bedingte Erwartungswerte und Martingale	8
2	Cox-Ross-Rubinstein-Modell	16
	2.1 Anlagestrategien im CRR-Modell	17

— Kapitel 1 — EINFÜHRUNG

1.1 Zentrale Fragestellungen der Finanzmathematik

1.1.1 Bewertung von Derivaten und Abischerung gegen aus deren Kauf/Verkauf entstehende Risiken

Definition 1.1 (Derivat)

Ein **Derivat** ist ein Finanzprodukt, dessen Auszahlung sich vom Preis eines oder mehrerer Basisgüter [underlying] ableitet.

Beispiel 1.2

- Recht in drei Monaten 100.000 GBP gegen 125.000 EUR zu erhalten (Call-Option; underlying: Wechselkurs GBP in EUR)
- Recht innerhalb des nächsten Jahres 100.000 MWh elektrische Energie zum Preis von 30 EUR/MWh zu konsumieren mit Mindestabnahme 50.000 MWh (Swing-Option; underlying: Strompreis)
- Kauf- und Verkaufsoptionen auf Aktien (underlying: Aktienkurs)

Fragestellungen:

- Was ist der "faire" Preis für solch ein Derivat? ("Pricing" / Bewertung)
- Wie kann sich der Verkäufer gegen die eingegangenen Risiken absichern? ("Hedging" / Absicherung)

1.1.2 Optimale Investition: Zusammenstellen von nach Risiko-/ Ertragsgesichtspunkten optimalen Portfolios

- Wie wäge ich Risiko gegen Ertrag ab?
- Was bedeutet optimal?
- Lösung des resultierenden Optimierungsproblems

1.1.3 Risikomanagement und Risikomessung

gesetzliche Vorschriften (Basel und Solvency) sollen Stabilität des Banken- und Versicherungssystems angesichts verschiedener Risiken sicherstellen

→ mathematische Theorie der konvexen und kohärenten Risikomaße

Mathematische Werkzeuge: Wahrscheinlichkeitstheorie und stochastische Prozesse (Dynamik in der Zeit), zusätzlich etwas lineare Algebra, Optimierung, Maßtheorie

1.2 Mathematisches Finanzmodell

Wir betrachten

- (1) einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$, später auch weitere Maße \mathbb{Q}, \ldots auf demselben Maßraum (Ω, \mathcal{F}) . Die $\omega \in \Omega$ werden als **Elementarereignisse** oder "Szenarien" bezeichnet.
- (2) Zeitachse I entweder $I = \{t_1, t_2, \dots t_N = T\}$ (N-Perioden-Modell; diskretes Modell) oder I = [O, T] (stetiges Modell) Dabei wird T als **Zeithorizont** bezeichnet.

Definition 1.3 (stochastischer Prozess)

Ein stochastischer Prozess S ist eine messbare Abbildung

$$S: \left\{ \begin{array}{ccc} (\Omega \times I) & \to & \mathbb{R}^d \\ (\omega, t) & \mapsto & S_t(\omega) \end{array} \right.$$

Insbesondere ist

- $t \mapsto S_t(\omega)$ eine Funktion $I \to \mathbb{R}^d$ für jedes $\omega \in \Omega$
- ullet $\omega \mapsto S_t(\omega)$ eine Zufallsvariable $\Omega \to \mathbb{R}^d$ für jedes $t \in I$

(3) **Definition 1.4 (Filtration)**

Eine Filtration ist eine Folge von σ -Algebren $(\mathcal{F}_t)_{t\in I}$ mit der Eigenschaft

$$\mathcal{F}_s \subseteq \mathcal{F}_t \quad \forall s, t \in I, s \le t \quad \text{und} \quad \mathcal{F}_t \subseteq \mathcal{F} \quad \forall t \in I$$

Interpretation. \mathcal{F}_t beschreibt die den Marktteilnehmern zum Zeitpunkt t bekannte bzw. verfügbare Information. Ein Ereignis $A \in \mathcal{F}_t$ gilt als "zum Zeipunkt t bekannt".

Erinnerung. Eine \mathbb{R}^d -wertige Zufallsvariable X heißt \mathcal{F}_t -messbar, wenn

$$X^{-1}(B) \in \mathcal{F}_t \quad \forall \text{ Borelmengen } B \subseteq \mathbb{R}^d$$

Beispiel 1.5

Sei S ein stochastischer Prozess. Dann heißt

$$\mathcal{F}_t^S = \sigma(\{(S_r) : r \in I, r \le t\})$$

von S erzeugte Filtration.

Definition 1.6 (adaptierter Prozess)

Ein stochastischer Prozess $(S_t)_{t\in I}$ auf (Ω, \mathcal{F}) heißt **adapiert** bezüglich einer Filtration $(\mathcal{F}_t)_{t\in I}$, wenn gilt S_t ist \mathcal{F}_t -messbar für alle $t\in I$.

Interpretation: Der Wert S_t ist zum Zeitpunkt t "bekannt".

Warum Filtrationen in der Finanzmathematik?

- Unterscheidung Zunkunft/Vergangenheit
- Unterscheidung Informationen (Insider/Outsider) Unterscheidung Filtration $(\mathcal{F}_t)_{t\in I}$ bzw. $(\mathcal{G}_t)_{t\in I}$
- (4) Anlagegüter [assets]: \mathbb{R}^{d+1} -wertiger stochastischer Prozess mit Komponenten

$$S^{i} \colon \left\{ \begin{array}{ccc} (\Omega \times I) & \to & \mathbb{R} \\ (\omega, t) & \mapsto & S^{i}_{t}(\omega) \end{array} \right. \quad (i \in \{0, 1, \dots, d\})$$

 S_t^i beschreibt dabei den Preis des *i*-ten Anlageguts zum Zeitpunkt $t. S^i$ $(i \in \{1, ..., d\})$ ist typischerweise

- Aktien [stock], Unternehmensanteil
- Währung [currency] bzw. Wechselkurs
- Rohstoff [commodity] wie z.B. Öl, Edelmetall, Elektrizität
- Anleihe [bond] ... Schuldverschreibung

Hauptannahme: S^i ist liquide gehandelt (z.B. Börse), d.h. der Kauf und Verkauf zum Preis S^i_t ist jederzeit möglich. Der "Numeraire" S^0 hat eine Sonderrolle und beschreibt die Verzinsung von nicht in (S^1, \ldots, S^d) angelegtem Kapital. Er wird als risikolos betrachtet.

Definition 1.7

Ein Finanzmarktmodell (FFM) mit Zeitachse I ist gegeben durch

- (1) einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ mit Filtration $(\mathcal{F}_t)_{t \in I}$
- (2) einem an $(\mathcal{F}_t)_{t\in I}$ adaptierten, \mathbb{R}^{d+1} -wertigen stiochastischen Prozess $S_t = (S_t^0, S_t^1, \dots, S_t^d)$ mit $t \in I$.

Beispiel 1.8 (Cox-Ross-Rubinstein-Modell)

Das CRR-Modell ist ein zeitdiskretes Modell beschrieben durch

- $S_n^0 = (1+r)^n$... Verzinsung mit konstanter Rate r
- $S_n^1 = S_0^1 \prod_{k=1}^n (1+R_k)$, wobei (R_1, R_2, \dots) unabhängige Zufallsvariablen mit zwei möglichen Werten a < b sind

 \hookrightarrow rekombinierender Baum,

Abbildung 1.1: Cox-Ross-Rubinstein-Modell Ereignisse ω entsprechen Pfaden im Baum

Beispiel 1.9 (Black-Scholes-Modell, zeitstetig)

Beim Black-Scholes-Modell handelt es sich um ein zeitstetiges Modell auf einem unendlichen Wahrscheinlichkeitsraum.

$$S_t^0 = e^{rt}$$
 (Verzinsung mit konstanter Rate r)
$$S_t^1 = S_0^1 \cdot \exp\left((\mu - \frac{\sigma^2}{2}) + \sigma B_t\right)$$
 mit $\mu \in \mathbb{R}, \sigma > 0, S_0^1 > 0$

Der Term $\mu - \frac{\sigma^2}{2}$ beschreibt dabei eine Trendkomponenten, B_t eine "Brownsche Bewegung" (zeitstetiger Prozess).

Abbildung 1.2: Black-Scholes-Modell

1.3 Anleihen und grundlegende Beispiele für Derivate

Hier betrachten wir immer nur ein Basisgut $S_t = S_t^1$.

(a) Anleihe [bond] (genauer: Null-Kupon-Anleihe [zero-coupon bond])

Der Emittent (Herausgeber) einer Anleihe mit Endfälligkeit [maturity] T garantiert dem Käufer zum Zeitpunkt T den Betrag N (EUR/USD/...) zu zahlen. Typische Emittenten sind z.B. Staaten [government bond] oder Unternehmen (als Alternative zur Kreditaufnahme). Nach Emission werden Anleihen auf dem Sekundärmarkt weiterverkauft, d.h. liquide gehandelte Wertpapiere.

Preis bei Emission: B(0,T)

Preis bei Weiterverkauf zum Zeitpunkt $t \leq T$: B(t,T)

Es ist B(T,T) = N und wir normieren stets $N = 1 \implies B(T,T) = 1$.

Anleihen von West-/ Nord-/ Mitteleuropäischen Staaten und den USA sowie Kanada werden als risikolos betrachtet (sichere Zahlung). Sonst: Kreditrisiko

Risikofreie Anleihen können als Numeraire $S_t^0 = B(t,T)$ genutzt werden.

Abbildung 1.3: Zahlungsstrom einer Anleihe

(b) **Terminvertrag** [forward contract]

aus Käufersicht: Vereinbarung zu bestimmtem zukünftigen Zeitpunkt T eine Einheit des Basisguts S zum Preis K zu kaufen (Kaufverpflichtung). Beliebt ist dieser bei Rohstoffen und Elektrizität.

Auszahlungsprofil: ${\cal F}_T = {\cal S}_T - {\cal K}$ Preis zum Zeitpunkt $t{:}~{\cal F}_t$

Abbildung 1.4: Auszahlungsprofil eines Terminvertrags

(c) (Europäische) Put- bzw. Call-Option

Recht zu einem zukünftigen Zeitpunkt T eine Einheit des Basisguts S zum Preis K zu verkaufen (put) bzw. zu kaufen (call) \rightarrow keine Kaufverpflichtung!

Auszahlungsprofil:

■ Call:
$$C_T = \begin{cases} S_T - K & S_T \ge K \\ 0 & S_T < K \end{cases} = (S_T - K)_+$$

■ Put:
$$P_T = \begin{cases} 0 & S_T \ge K \\ K - S_T & S_T < K \end{cases} = (K - S_T)_+$$

(d) Amerikanische Put- bzw. Call-Option

wie Put/Call, aber mit Ausübung zu beliebigem Zeitpunkt $\tau \in [0, T]$.

Preis zum Zeitpunkt t: P_t^{AM} , C_t^{AM}

Auszahlungsprofil zum Zeitpunkt τ : $(S_{\tau} - K)_{+}, (K - S_{\tau})_{+}$

Der Zeitpunkt τ muss im Allgemeinen als Lösung eines stochastischen Optimierungsproblems bestimmt werden (optimales Stopp-Problem).

1.4 Elementare Replikations- und Arbitrageargumente

Was können wir (mit elementaren Mitteln) über die "fairen" Preise $B(t,T), F_t, C_t, P_t$ aussagen? Wir verwenden:

- Replikationsprinzip: zwei identische, zukünftige Zahlungsströme haben auch heute denselben Wert (ein Zahlungsstrom "repliziert" den anderen)
- No-Arbitrage-Prinzip: "Ohne Kapitaleinsatz kann kein sicherer Gewinn ohne Verlustrisiko erzielt werden." (Arbitrage = risikofreier Gewinn)
- Superreplikationsprinzip (schwächere Form des Replikationsprinzips): Ist ein Zahlungsstrom in jedem Fall größer als ein anderer, so hat er auch heute den größeren Wert.

stark	Replikationsprinzip	eingeschränkt anwendbar
+	Superreplikationsprinzip	<u> </u>
schwach	No-Arbitrage-Prinzip	immer anwendbar

Lemma 1.10

Für den Preis C_T des europäischen Calls gilt:

$$(S_t - KB(t,T))_{\perp} \le C_t \le S_t$$

Beweis. untere Schranke: Für Widerspruch nehme an, dass $S_t - KB(t,T) - C_t = \varepsilon > 0$.

Portfolio	Wert in t	Wert in T	
FOLCIOIIO	vvert in t	$S_T \leq K$	$S_T > K$
Kaufe Call	C_t	0	$S_T - K$
Verkaufe Basisgut	$-S_T$	$-S_T$	$-S_T$
Kaufe Anleihe	$\varepsilon + KB(t,T)$	$\frac{\varepsilon}{B(t,T)} + K$	$\frac{\varepsilon}{B(t,T)} + K$
Σ	0	$K - S_T + \frac{\varepsilon}{B(t,T)} > 0$	$\frac{\varepsilon}{B(t,T)} > 0$
	kein Anfangskapital	sicherer Gew	inn

Dies steht jedoch im Widerspruch zum No-Arbitrage-Prinzip. Somit ist $S_t - KB(t,T) \leq C_T$. Außerdem ist $C_t \geq 0$, d.h. $C_t \geq (S_t - KB(t,T))_+$.

obere Schranke: ↗ Übung

Lemma 1.11 (Put-Call-Parität)

Für Put P_t , Call C_t mit selbem Ausübungspreis K und Basisgut S_t gilt

$$C_t - P_t = S_t - B(t, T) \cdot K$$

Beweis. Mit Replikationsprinzip:

Portfolio 1	Wert in t	Wert in T	
		$S_T \leq K$	$S_T > K$
Kaufe Call	C_t	0	$S_T - K$
Kaufe Anleihe	$K \cdot B(t,T)$	K	K
Wert Portfolio 1	$C_t + K \cdot B(t,T)$	K	S_T

Portfolio 2	Wert in t	Wert in T	
		$S_T \leq K$	$S_T > K$
Kaufe Put	P_t	$K-S_T$	0
Kaufe Basisgut	S_t	S_T	S_T
Wert Portfolio 2	$P_t + S_t$	K	S_T

Replikationsprinzip: $C_t + K \cdot B(t,T) = P_t + S_t \implies C_t + P_t = S_t - K \cdot B(t,T)$

1.5 Bedingte Erwartungswerte und Martingale

1.5.1 Bedingte Dichte und bedingter Erwartungswert

Motivation: Gegeben seien zwei Zufallsvariablen (X, Y) mit Werten in $\mathbb{R}^m \times \mathbb{R}^n$ und gemeinsamer Dichte $f_{XY}(x, y)$.

Aus Dichte f_{XY} können wir ableiten:

- $f_Y(y) := \int_{\mathbb{R}^m} f_{XY}(x,y) \, dx$, die Randverteilung von Y
- $\blacksquare \ S_y := \{y \in \mathbb{R}^n : f_Y(y) > 0\},$ der Träger von Y

Definition 1.12

Die bedingte Dichte von X bzgl. Y ist definiert als

$$f_{X|Y}(x,y) = \begin{cases} \frac{f_{XY}(x,y)}{f_Y(y)} & y \in S_y \\ 0 & \notin S_y \end{cases}$$

Betrachte folgende Problemstellung: Was ist die beste Vorhersage von X gegeben eine Beobachtung Y = y?

Kriterium: Minimiere quadratischen Abstand bzw. das zweite Moment bzw. die L_2 -Norm.

Vorhersage: messbare Funktion $g: \mathbb{R}^n \to \mathbb{R}^m, y \mapsto g(y)$.

$$\min \left\{ \mathbb{E}\left[(X - g(y))^2 \right] : g \text{ messbar } \mathbb{R}^n \to \mathbb{R}^m \right\}$$
 (min-1)

Proposition 1.13

Wenn (X,Y) eine gemeinsame Dichte besitzen und $\mathbb{E}\left[|X|^2\right]<\infty$ gilt, dann wird (min-1) minimiert durch die bedingte Erwartung

$$g(y) = \mathbb{E}[X|Y = y] := \int_{\mathbb{R}^m} x f_{X|Y}(x, y) dx$$

Wir bezeichnen $\mathbb{E}[X|Y=y]$ als Erwartungswert von X bedingt auf Y=y.

Allgemeiner gilt:

Theorem 1.14

eien (X,Y) Zufallsvariablen mit gemeinsamer Dichte auf $\mathbb{R}^m \times \mathbb{R}^n$ und $h \colon \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ messbar mit $\mathbb{E}[h(X,Y)^2]$. Dann wird das Minimierungsproblem

$$\min \left\{ \mathbb{E} \left[(h(X, Y) - g(Y))^2 \right] : g \text{ messbar } \mathbb{R}^n \to \mathbb{R} \right\}$$

gelöst durch

$$g(y) = \mathbb{E}\left[h(X,Y)|Y=y\right] = \int_{\mathbb{R}^m} h(x,y) \cdot f_{X|Y}(x,y) \ \mathrm{d}x$$

Beweis (nur Proposition für m=1, Theorem analog). Setze $g(y)=\int_{\mathbb{R}}xf_{X|Y}(x,y)~\mathrm{d}x$. Sei $p\colon\mathbb{R}^n\to\mathbb{R}$ eine beliebige messbare Funktion mit $\mathbb{E}\left[p(Y)^2\right]<\infty$. Setze weiter $g_\varepsilon(y)=g(y)+\varepsilon p(y)$. Minimiere $F(\varepsilon):=\mathbb{E}\left[(X-g(y))^2\right]=\mathbb{E}\left[(X-g(y)-\varepsilon p(y))^2\right]=\mathbb{E}\left[(X-g(Y))^2\right]-2\varepsilon\mathbb{E}\left[(X-g(Y))p(Y)\right]+\varepsilon^2\mathbb{E}\left[p(Y)^2\right]$.

$$\begin{split} \frac{\partial F}{\partial \varepsilon}(\varepsilon) &= 2\varepsilon \mathbb{E}\left[p(Y)^2\right] - 2\mathbb{E}\left[(X - g(Y))p(Y)\right] \ \Rightarrow \ \varepsilon_* := \frac{\mathbb{E}\left[(X - g(Y))p(Y)\right]}{\mathbb{E}\left[p(Y)^2\right]} = \frac{A}{B} \\ A &= \mathbb{E}\left[Xp(Y)\right] - \mathbb{E}\left[g(Y)p(Y)\right] \\ &= \int_{\mathbb{R}\times\mathbb{R}^n} xp(y)f_{XY}(x,y) \ \mathrm{d}x \ \mathrm{d}y - \int_{S_y} g(y)p(y)f_Y(y) \ \mathrm{d}y \\ &= \int_{\mathbb{R}\times\mathbb{R}^n} xp(y)f_{XY}(x,y) \ \mathrm{d}x \ \mathrm{d}y - \int_{\mathbb{R}\times S_y} xp(y)\underbrace{f_{X|Y}(x,y)f_Y(y)}_{=f_{XY}(x,y)} \ \mathrm{d}y = 0 \end{split}$$

Damit ist $\varepsilon^* = 0$ unabhängig von p und g(y) minimiert (min-1).

Beispiel

Seien (X,Y) normalverteilt auf $\mathbb{R} \times \mathbb{R}$ mit

$$\mu = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix} \qquad \Sigma = \begin{pmatrix} Var[X] & \mathbb{C}\text{ov}\left(X,Y\right) \\ \mathbb{C}\text{ov}\left(X,Y\right) & \mathbb{V}\text{ar}\left(Y\right) \end{pmatrix} = \begin{pmatrix} \sigma_x^2 & \rho\sigma_x\sigma_y \\ \rho\sigma_x\sigma_y & \sigma_y^2 \end{pmatrix} \qquad \rho \in [-1,1]$$

Dann ist die bedingte Dichte $f_{X|Y}(x,y)$ wieder die Dichte einer Normalverteilung mit

$$\mathbb{E}[X|Y=y] = \mu_X + \rho \frac{\sigma_X}{\sigma_Y} (y - \mu_Y)$$

$$\mathbb{V}\text{ar}(X|Y=y) = \sigma_X^2 (1 - \rho^2)$$

 \rightarrow siehe Übung.

Die Abbildung $y \mapsto \mu_X + \rho \frac{\sigma_X}{\sigma_Y} (Y - \mu_Y)$ heißt Regressionsgerade für X gegeben Y = y.

Die Steigung wird im Wesentlichen durch ρ bestimmt.

Für diskrete Zufallsvariablen, d.h. wenn X,Y nur endliche viele Werte $\{x_1,\ldots,x_m\}$ bzw. $\{y_1,\ldots,y_n\}$ annehmen, dann erhalten wir mit ähnlichen Überlegungen als Lösung von (min-1)

$$\mathbb{E}\left[X|Y=y_j\right] = \sum_{i=1}^m x_i \mathbb{P}(X=x_i|Y=y_j)$$

wobei direkt die bedingten Wahrscheinlichkeiten

$$\mathbb{P}(X = x_i | Y = y_j) = \begin{cases} \frac{\mathbb{P}(X = x_i \land Y = y_j)}{\mathbb{P}(Y = y_j)} & \text{wenn } \mathbb{P}(Y = y_j) > 0\\ 0 & \text{wenn } \mathbb{P}(Y = y_j) = 0 \end{cases}$$

folgen.

1.5.2 Bedingte Erwartung: Maßtheoretischer Zugang

Wir betrachten den Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$. Für eine Zufallsvariable $X : \Omega \to \mathbb{R}$ und $p \in [1, \infty)$ definieren wir, doe L_p -Norm

$$\|X\|_p := \mathbb{E}\left[|X|^p\right]^{\frac{1}{p}} = \left(\int_{\Omega} |X(\omega)|^p \ \mathrm{d}\mathbb{P}(\omega)\right)^{\frac{1}{p}}$$

und den L_p -Raum

$$L_p(\Omega, \mathcal{F}, \mathbb{P}) := \left\{ X \colon \Omega \to \mathbb{R} \mid \mathcal{F}\text{-messbar}, \|X\|_p < \infty \right\}$$

Dabei identifizieren wir Zufallsvariablen, die sich nur auf \mathbb{P} -Nullmengen unterscheiden miteinander, d.h. $\mathbb{P}(X \neq X') = 0 \Rightarrow X = X'$ in L_p . Aus der Maßtheorie bekannt: Die Räume $L_p(\Omega, \mathcal{F}, \mathbb{P})$ mit Norm $\|...\|_p$ mit $p \in [1, \infty)$ sind

- Banachräume, d.h. vollständige, normierte Vektorräume.
- \blacksquare für p=2 auch Hilbertraum mit inneren Produkt

$$\langle X, Y \rangle = \mathbb{E}[XY] = \int_{\Omega} X(\omega)Y(\omega) d\mathbb{P}(\omega)$$

Für $\mathcal{G} \subseteq \mathcal{F}$ Unter- σ -Algebra ist $L_p(\Omega, \mathcal{G}, \mathbb{P}) \subseteq L_p(\Omega, \mathcal{F}, \mathbb{P})$ ein abgeschlossener Unterraum.

KAPITEL 1. EINFÜHRUNG

Wir verallgemeinern das "Vorhersageproblem" als dem letzten Abschnitt: Gegeben sei ein Zufallsvariale X aus $L_2(\Omega, \mathcal{F}, \mathbb{P})$ und $\mathcal{G} \subseteq \mathcal{F}$ eine Unter- σ -Algebra. Was ist die beste \mathcal{G} -messbare Vorhersage für X?

$$\min \left\{ \mathbb{E}\left[(X - G)^2 \right] : G \in L_2(\Omega, \mathcal{G}, \mathbb{P}) \right\}$$
 (min-2)

Aus Hilbertraumtheorie folgt, dass (min-2) besitzt eine eindeutige Lösung $G_* \in L_(\Omega, \mathcal{G}, \mathbb{P})$. G_* ist die Orthogonalprojektion (bzgl. $\langle \cdot, \cdot \rangle$) von $X \in L_2(\Omega, \mathcal{F}, \mathbb{P})$ auf den abgeschlossenen Unterraum $L_2(\Omega, \mathcal{G}, \mathbb{P})$.

Wir bezeichnen G_* mit $\mathbb{E}[X|\mathcal{G}]$ als bedingten Erwartunswert von X bezüglich \mathcal{G} .

Theorem 1.15

Seien $X,Y\in L_2(\Omega,\mathcal{F},\mathbb{P})$ und $\mathcal{G}\subseteq\mathcal{F}$ eine Unter- σ -Algebra. Dann gilt

- Linearität: $\mathbb{E}[aX + bY|\mathcal{G}] = a\mathbb{E}[X|\mathcal{G}] + b\mathbb{E}[Y|\mathcal{G}]$
- Turmregel: Für jede weitere σ -Algebra $\mathcal{H} \subseteq \mathcal{G}$ gilt $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]|\mathcal{H}\right] = \mathbb{E}\left[X|\mathcal{H}\right]$
- Pull-out-Property: $\mathbb{E}[XZ|\mathcal{G}] = Z \cdot \mathbb{E}[X|\mathcal{G}]$ für alle beschränkten und \mathcal{G} -messbaren Zufallsvariablen Z. Für Z \mathcal{G} -messbar mit $\mathbb{E}[|XZ|] < \infty$ gilt $\mathbb{E}[XZ|\mathcal{G}] = Z \cdot \mathbb{E}[X|\mathcal{G}]$. Insbesondere gilt für \mathcal{G} -messbare X schon $\mathbb{E}[X|\mathcal{G}] = X$.
- Monotonie: $X \leq Y \implies \mathbb{E}[X|\mathcal{G}] \leq \mathbb{E}[Y|\mathcal{G}]$
- Dreiecksungleichung: $|\mathbb{E}[X|\mathcal{G}]| \leq \mathbb{E}[|X||\mathcal{G}]$
- Unabhängigkeit: X unabhängig von $\mathcal{G} \Rightarrow \mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$
- triviale σ -Algebra: $\mathcal{G} = \{\emptyset, \Omega\} \Rightarrow \mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$

Beweis. siehe VL "Wahrscheinlichkeitstheorie mit Martingalen"

Die für $X \in L_2(\Omega, \mathcal{F}, \mathbb{P})$ definierte bedingte Erwartung $\mathbb{E}[X|\mathcal{G}]$ lässt sich durch Approximation auf alle $X \in L_1(\Omega, \mathcal{F}, \mathbb{P})$ erweitern. Alle Eigenschaften aus Theorem 1.5 bleiben erhalten.

Sei Y eine Zufallsvariable und $\mathcal{G} = \sigma(Y)$ die von Y erzeugte σ -Algebra. Wir schreiben $\mathbb{E}[X|Y] = \mathbb{E}[X|\sigma(Y)]$; dies ist eine \mathcal{G} -messbare Zufallsvariable.

Aus der Maßtheorie sag uns das Doob-Dynkin-Lemma, dass eine messbare Funktion $g: \mathbb{R}^n \to \mathbb{R}$ existiert, sodass $\mathbb{E}[X|Y] = g(Y)$. Dabei ist g genau die Funktion aus (min-1).

Zusammenfassung

Sei X, Y aus $L_1(\Omega, \mathcal{F}, \mathbb{P})$ und $\mathcal{G} \subseteq \mathcal{F}$ eine Unter- σ -Algebra.

- (a) $\mathbb{E}[X|Y=y]$ ist eine messbare Funktion $g\colon \mathbb{R}^n\to\mathbb{R}^m$ und falls eine bedingte Dichte existiert, dann gilt $\mathbb{E}[X|Y=y]=\int_{\mathbb{R}^m}xf_{X|Y}(x,y)$ dx.
- (b) $\mathbb{E}[X|Y]$ ist eine $\sigma(Y)$ -messbare Zufallsvariable und kann als g(Y) dargestellt werden. Falls eine bedingte Dichte existiert, dann gilt $\mathbb{E}[X|Y](\omega) = \int_{\mathbb{R}}^{n} x f_{X|Y}(x, Y(\omega)) dx$.
- (c) $\mathbb{E}[X|\mathcal{G}]$ ist eine \mathcal{G} -messbare Zufallsvariable. Falls $\mathcal{G} = \sigma(Y)$ tritt Fall (b) ein.

In allen Fällen kann $\mathbb{E}[X|\cdot]$ interpretiert werden als beste Vorhersage für X gegeben

- (a) eine punktweise Betrachtung Y = y
- (b) die Beobachtung Y
- (c) die Information \mathcal{G}

1.5.3 Martingale

Prototyp eines "neutralen" stochastischen Prozesses, der weder Aufwärts- noch Abwärtstrend besitzt. Wir betrachten hier den Prozess nur in diskreter Zeit $I = \mathbb{N}_0$.

Definition 1.16

Sei $(X)_{n\in\mathbb{N}_0}$ ein stochastischer Prozess. Wenn gilt

$$\mathbb{E}[|X_n|] < \infty \qquad \forall n \in \mathbb{N}$$

$$\mathbb{E}[X_{n+1}|X_1, \dots, X_n] = X_n \qquad \forall n \in \mathbb{N}$$
(1.1)

dann heißt $(X_n)_{n\in\mathbb{N}}$ Martingal.

Wenn wir $\mathcal{F}_n^X = \sigma(X_1, \dots, X_n)$ definieren, können wir (b) schreiben als

$$\mathbb{E}\left[X_{n+1}|\mathcal{F}_n^X\right] = X_n \qquad \forall n \in \mathbb{N}$$

Konvention: Alle stochastischen Prozesse $(X_n)_{n\in\mathbb{N}_0}$ haben deterministischen Startwert X_0 .

Interpretation: Beste Vorhersage für zukünftigen Wert X_{n+1} basierend auf Vergangenheit $\sigma(X_1, \dots, X_n)$ ist der momentane Wert X_n . Aus der Turmregel folgt:

$$\mathbb{E}\left[X_{n+k}|\mathcal{F}_n^X\right] = X_n \qquad \forall n, k \in \mathbb{N}_0$$

denn

$$\mathbb{E}\left[X_{n+k}|\mathcal{F}_n^X\right] = \mathbb{E}\left[\underbrace{\mathbb{E}\left[X_{n+k}|\mathcal{F}_{n+k-1}^X\right]}_{=X_{n+k-1}}|\mathcal{F}_n^X\right] = \mathbb{E}\left[X_{n+k-1}|\mathcal{F}_n^X\right] \stackrel{k \text{ mal }}{=} X_n$$

Man kann von $(\mathcal{F}_n^X)_{n\in\mathbb{N}}$ auf beliebige Filtrationen $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ erweitert werden.

Definition

Sei $(X_n)_{n\in\mathbb{N}_0}$ ein stochastischer Prozess, adaptiert an eine Filtration $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$. Wenn gilt

$$\mathbb{E}\left[|X_n|\right] < \infty \ \forall n \in \mathbb{N}_0$$

$$\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right] = X_n \forall n \in \mathbb{N}_0$$

dann heißt $(X_N)_{n\in\mathbb{N}}$ Martingal bezüglich der Filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$.

Interpretation: Beste Vorhersage für zukünftigen Wert X_{n+1} , basierend auf verfügbarer Infor-

mation \mathcal{F}_n ist der momentane Wert X_n .

Definition

Falls in Punkt (b) statt "=" die Ungleichung " \leq " oder " \geq " gilt, so heißt $(X_n)_{n\in\mathbb{N}}$ Super- bzw. Submartingal.

■ Wenn $X = (X_n)_{n \in \mathbb{N}}$ ein Martingal ist, dann gilt $\mathbb{E}[X_n] = X_0$, d.h. $n \mapsto \mathbb{E}[X_n]$ ist konstant. Begründung:

$$\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right] = X_n \quad \Rightarrow \quad \underbrace{\mathbb{E}\left[\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right]\right]}_{=\mathbb{E}\left[X_{n+1}\right]} = \mathbb{E}\left[X_n\right] \stackrel{n \text{ mal }}{\Rightarrow} \mathbb{E}\left[X_n\right] = X_0$$

- $\blacksquare \ X$ Submartingal $\Rightarrow n \mapsto \mathbb{E}\left[X_n\right]$ ist monoton steigend
- X Supermartingal \Rightarrow $n \mapsto \mathbb{E}[X_n]$ ist monoton fallend

"Das Leben ist ein Supermartingal – die Erwartungen fallen mit der Zeit" ©

Beispiel 1.17

■ Seien $(Y_n)_{n\in\mathbb{N}}$ unabhängige Zufallsvariablen in $L_1(\Omega, \mathcal{F}, \mathbb{P})$ mit $\mathbb{E}[Y_n] = 0$. Betrachten wir die Partialsummen $X_n := \sum_{k=1}^n Y_k$ und $X_0 = 0$. Dann ist $(X_n)_{n\in\mathbb{N}_0}$ ein Martingal, denn

$$\mathbb{E}\left[|X_n|\right] \le \sum_{k=1}^n \mathbb{E}\left[|Y_k|\right] < \infty \qquad \forall n \in \mathbb{N}$$

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n^X\right] = \mathbb{E}\left[Y_{n+1} + X_n \mid \mathcal{F}_n^X\right]$$

$$= \mathbb{E}\left[y_{n+1} \mid \mathcal{F}_n^X\right] + \mathbb{E}\left[X_n \mid \mathcal{F}_n^X\right] = \underbrace{\mathbb{E}\left[Y_{n+1}\right]}_{=0} + X_n$$

$$= X_n$$

Definition

Sei $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ eine Filtration. Ein stochastischer Prozess $(H_n)_{n\in\mathbb{N}}$ heißt **vorhersehbar** [predictable] bezüglich $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ wenn gilt

$$H_n$$
 ist \mathcal{F}_{n-1} -messbar $\forall n \in \mathbb{N}$

Bemerkung

Vorhersehbarkeit ist eine stärkere Eigenschaft als Adaptiertheit.

Definition

Sei X ein adaptierter und H ein vorhersehbarer stochastischer Prozess bezüglich $(\mathcal{F}_n)_{n\in\mathbb{N}}$. Dann heißt

$$(H \bullet X)_n := \sum_{k=1}^n H_k(X_k - X_{k-1}) \tag{*}$$

diskretes stochastisches Integral von H bezüglich X.

Bemerkung

Summen (\star) heißen in der Analysis Riemann-Stieltjes-Summen und werden für die Konstruktion des Riemann-Stieltjes-Integrals $\int h \ d\rho$ verwendet.

Definition

Ein stochastischer Prozess $(H_n)_{n\in\mathbb{N}}$ heißt lokal beschränkt, wenn eine deterministische Folge $c_n \in \mathbb{R}_{>0}$ existiert, sodass

$$|H_n| \le c_n$$
 fast sicher $\forall n \in \mathbb{N}$

Satz 1.18

Sei X adaptierter stochastischer Prozess (bezüglich Filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$). Dann sind äquivalent:

- (1) X ist Martingal bezüglich $(\mathcal{F}_n)_{n\in\mathbb{N}}$.
- (2) $(H \bullet X)$ ist Martingal für alle lokal beschränkten, vorhersbaren Prozesse H

Das heißt, dass das stochastische Integral die Martingaleigenschaft erhält.

Beweis.
$$(\Rightarrow) (H \bullet X)_n = \sum_{k=1}^n H_k(X_k - X_{k-1}).$$

$$\mathbb{E}\left[\left|H_k(X_k - X_{k-1})\right|\right] \le c_k \cdot \left(\mathbb{E}\left[\left|x_k\right|\right] + \mathbb{E}\left[\left|X_{k+1}\right|\right]\right) < \infty$$

$$\mathbb{E}\left[(H \bullet X)_n \mid \mathcal{F}_{n-1}\right] = (H \bullet X)_{n-1} + \mathbb{E}\left[H_n(X_n - X_{n-1}) \mid \mathcal{F}_{n-1}\right] = (H \bullet X)_{n-1} + H_n \cdot \underbrace{\left(\mathbb{E}\left[X_n \mid X_{n-1} \mid X_{n-$$

again the processe H and the second of th (\Leftarrow) Fixiere $N \in \mathbb{N}$. Setze $H_n := \mathbb{1}_{n=N}$, dieser ist lokal beschränkt und deterministisch (also auch vorhersehbar). Man stellt fest, dass $(H \bullet X)_n = 0$ für alle $n \leq N - 1$. Für alle $n \geq N$ gilt dagegen $(H \bullet X)_n = X_N - X_{N-1}$. Wir überprüfen nur die Martingaleigenschaft (Integrierbarkeit folgt aus Dreiecksungleichung). Wir wissen, dass $(H \bullet X)$ ein Martingal ist.

$$0 = (H \bullet X)_{N-1} = \mathbb{E}\left[(H \bullet X)_N \mid \mathcal{F}_{N-1} \right] = \mathbb{E}\left[x_N - X_{N-1} \mid \mathcal{F}_{N-1} \right] = \mathbb{E}\left[X_N \mid \mathcal{F}_{N-1} \right] - X_{N-1}$$

Somit ist X ein Martingal.

Korollar 1.19

Sei $X = (X_n)_{n=1,\dots,N}$ ein adaptierter stochastischer Prozess bezüglich einer Filtration $(\mathcal{F}_n)_{n=1,\dots,N}$ Wenn $\mathbb{E}[(H \bullet X)_N] = 0$ für alle lokal beschränkten vorhersehbaren Prozesse H, dann ist Xein Martingal bezüglich (\mathcal{F}_n) .

Beweis. Fixiere $K \in [N] := \{1, 2, ..., N\}$ und eine Menge $A \in \mathcal{F}_{K-1}$. Definiere $H_n(\omega) =$ $\mathbb{1}_{A}(\omega) \cdot \mathbb{1}_{\{n=K\}}$, dieser ist lokale beschränkt und vorhersehbar. Es ist $(H \bullet X)_n = 0$ für alle

 $n \leq K-1$. Für alle $n \geq K$ gilt $(H \bullet X)_n = \mathbbm{1}_A \cdot (X_K - X_{K-1})$.

für beliebige K. Somit ist X ein Martingal.

Bemerkung 1.20

Wir schreiben $[N]:=\{1,2,\ldots,N\}$ und $[N]_0:=\{0,1,2,\ldots,N\}.$

Kapitel 2

COX-ROSS-RUBINSTEIN-MODELL

Das Cox-Ross-Rubinstein-Modell (kurz: CRR-Modell) wird auch Binomialmodell genannt und wurde 1979 von Cox, Ross und Rubinstein entwickelt.

Es handelt sich dabei um ein Modell für die Preisentwicklung eines Wertpapiers plus ein Verrechnungskonto mit konstanter Verzinsung (Numeraire) in diskreter Zeit.

Parameter:

r	Zinsrate
b	Rendite des Wertpapiers bei Aufwärtsbewegung ("up")
a	Rendite des Wertpapiers bei Abwärtsbewegung ("down")
$p \in (0,1)$ Wahrscheinlichkeit für "up"	
$S_0 > 0$	Preis Wertpapier zum Zeitpunkt Null
$N \in \mathbb{N}$	Anzahl der Zeitschritte

Annahmen: r > -1, b > a > -1

Wir modellieren Wertpapiere $(S_k)_{k\in[N]}$ und Verrechnungskonto $(S_k^0)_{k\in\mathbb{N}}$ als stochastische Prozesse auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$.

- $S_0^0 = 1$ und $S_n^0 = (1+r)^n$
- Wir definieren die **Rendite** $R_n(\omega)$ in der *n*-ten Marktperiode durch

$$R_n = \begin{cases} b & \text{mit } p \\ a & \text{mit } 1 - p \end{cases}$$

Die Renditen (R_1, \ldots, R_N) sind unabhängig.

$$S_n = S_0 \cdot \prod_{k=1}^n (1 + R_k)$$

Der Verlauf von S lässt sich grafisch als Binomialbaum darstellen:

$$S_0 \xrightarrow{S_0(1+b)^2} S_0(1+b)^2$$

$$S_0 \xrightarrow{S_0(1+a)} S_0(1+a)(1+b)$$

$$S_0(1+a) \xrightarrow{S_0(1+a)^2} S_0(1+a)^2$$

Man nennt dies auch ein "rekombinierendes Baummmodell". Es hat den Vorteil, dass die Anzahl der Knoten nur linear mit n wächst.

- Abgezinster Preisprozess $\widetilde{S}_n := \frac{S_n}{S_n^0} = S_0 \cdot \prod_{k=1}^n \frac{1+R_k}{1+r}$.
- Filtration: natürliche Filtration $\mathcal{F}_n = \sigma(S_1, \ldots, S_n)$.

Proposition 2.1

Im CRR-Modell gilt:

- (a) Die Anzahl der Aufwärtsbewegungen $U_n := \#\{k \in [n]: R_k = b\}$ ist binomialverteilt, d.h. $U_n \sim \text{Bin}(n, p)$.
- (b) Es gilt

$$\log\left(\frac{\widetilde{S}_n}{S_0}\right) = U_n \log\left(\frac{1+b}{1+a}\right) + n \log\left(\frac{1+a}{1+r}\right)$$

d.h. $\log\left(\frac{\widetilde{S}_n}{S_0}\right)$ ist nach Skalen-Lagen-Transformation binomial verteilt.

(c) Die Verteilung von S_n ist gegeben durch

$$\mathbb{P}\left(S_n = S_0(1+b)^k (1+a)^{n-k}\right) = \binom{n}{k} p^k (1-p)^{n-k}$$

Beweis. (zu a) klar

(zu b)
$$\frac{\widetilde{S}_n}{S_0} = \left(\frac{1+b}{1+a}\right)^{U_n} \cdot \left(\frac{1+a}{1+r}\right)^n \implies \log\left(\frac{\widetilde{S}_n}{S_0}\right) = U_n \log\left(\frac{1+b}{1+a}\right) + n \log\left(\frac{1+a}{1+r}\right)$$

(zu c) Es ist
$$S_n = S_0(1+b)^{U_1}(1+a)^{n-U_n}$$
. Also

$$\mathbb{P}\left(S_n = S_0(1+b)^k (1+a)^{n-k}\right) = \mathbb{P}(U_n = k) \stackrel{(a)}{=} \binom{n}{k} p^k (1-p)^{n-k} \qquad \Box$$

Bemerkung. Teil (b) suggeriert Konvergenz von $\log\left(\frac{\widetilde{S}_n}{S_0}\right)$ gegen Normalverteilung für $n \to \infty$ (nach Skalierung) \leadsto Black-Scholes-Modell (\nearrow Kapitel 3).

2.1 Anlagestrategien im CRR-Modell

Eine Anlagestrategie soll durch ein Anfangskapital w und einen stochastischen Prozess $(\eta_n, \xi_n)_{n \in [N]}$ dargestellt werden.

- Dabei steht ξ_n für die "Anzahl" der Wertpapiere, die im Zeitintervall (n-1,n] gehalten werden. Negative Werte von ξ_n sind sogenannte Leerverkäufe. Wir erlauben beliebige Anteile $\xi_n \in \mathbb{R}$.
- Weiter beschreibt η_n den Stand des Verrechnungskontos in Geldeinheiten zum Zeitpunkt Null. Negative Werte von η_n entsprechend einer Kreditaufnahme. Außerdem sei das Anfangskapital $w \in \mathbb{R}$.

Gesamtwert des Portfolios

$$\Pi_n = \eta_n \cdot S_n^0 + \xi_n \cdot S_n
\Pi_0 = w$$
(Port)

Man nennt (Port) die **Portfoliogleichung**.

Annahmen an die Strategie: