★Upward Intergenerational Social Mobility

Leon Luo, Mark Fu, Tony Pappas (Team Social Mobilizers)

July 29, 2021

Project motivation and goals

The motivation:

★ Intersection of data science and economics/social sciences

The goal:

 To present a model incorporating various socioeconomic factors predicting social mobility

What is intergenerational mobility?

Definition

Intergenerational mobility is the difference in income between child and parent (Chetty et al. 2020)

Data background

- Socioeconomic data
 - * Education level, family income, etc.
- Via Opportunity Insights
 - * Research and policy institute
- Collected from publicly available federal government records
- ★ 2000+ data points

Data cleanup

- * Two datasets from Opportunity Insights
- * College tier: categorical to numerical conversion
 - Using the given 14 tier conversions accompanying the dataset
- * Redefinitions (for ease of presentation)
 - · Parent and child median incomes measured in thousands of dollars
 - Mobility rate measured as percentage
- * Extraneous variables were deleted
- Merge by par q1 and state
 - par_q1 is % of parents earning in 1st quintile. This variable was not used in our analysis and was merely used to merge datasets.

Predictor variables

We chose median child income, median parent income, and school tier as predictor variables. We chose these variables because we believe factors such as education and family background highly influence mobility rate.

Descriptive statistics

Name	Non-null count	Mean	Median	Standard dev
Mobility rate	2198	1.93	1.61	1.31
Median child income	2198	36.9	34.3	12.8
Median parent income	2198	77.7	74.3	28.5
School tier (1 - 14)	2198	7.11	6.00	2.26

Preliminary analysis

Figure 1: Correlation matrix. Note strong correlation between $k_{\rm median}$ and par_median, indicating collinearity.

Preliminary analysis

Figure 2: Histogram shows majority of children make less than parents. This is accounted for because parent income is defined by household, while child income is defined by individual.

The predictive model

We chose to use multiple linear regression because we wanted to assess the strength and importance of relationship between mobility and each of the predictor variables.

Two of our predictor variables, k_median and par_median, are collinear. We thus present two regressions to separate the collinear predictors.

The predictive model

		OLS Reg	ression Re	sults		
Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	Th	Least Squar u, 29 Jul 20 02:18: 21	DLS Adj. Pes F-sta 221	R-squared: tistic:):	0.118 0.117 147.1 1.07e-60 -3573.9 7154. 7171.
	coef	std err	t	P> t	[0.025	0.975]
k_median	0.0468	0.212 0.003 0.017	15.983	0.000	0.041	
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	2.3				1.760 14425.849 0.00 320.

Figure 3: Regression including predictors k_median and tier. Note that despite a lower $R^2=0.118$, the low pvalues all indicate significant results.

The predictive model

Dep. Variable	e: no	rmed_mr_kq					0.06
Model:					R-squared:		0.06
Method:						73.1	
Date:	Т				(F-statistic):		1.70e-3
Time:		02:1	18:17		ikelihood:		-3641.
No. Observat:			2198	AIC:			7289
Df Residuals:				BIC:			7306
Df Model:			2				
Covariance Ty	/pe:	nonro	bust				
	coef	std err		t	P> t	[0.025	0.975
const	4.2382	0.193	21	.919	0.000	3.859	4.61
par_median	-0.0132	0.001	-10	.480	0.000	-0.016	-0.01
tier	-0.1811	0.016	-11	.429	0.000	-0.212	-0.15
Omnibus:		120	7.920	Ducki	n-Watson:		2.01
Omnibus: Prob(Omnibus)	٠.				e-Bera (JB):		20783.74
Skew:	, .		2.500	Prob(· /		0.0
Kurtosis:			7.211	Cond.			595

Figure 4: Regression including predictors par_median and tier. Note that despite a lower $R^2=0.063$, the low pvalues all indicate significant results.

Conclusions

- We conclude that child income is positively correlated with mobility. This makes intuitive sense; if the child earns more, they will be more likely to earn more than their parents.
- Parent income is negatively correlated with mobility. This result is also intuitively correct; if the parents earn more, it will be harder for the child to earn more than them.
- * Finally, school tier is both positively and negatively correlated with mobility, depending on the regression model. This can be explained by examining **const**. In the first model, with tier showing positive correlation, const = -0.64, while in the second model, with tier showing negative correlation, const = 4.2. Thus, the two regressions fit different intercepts but still move in the same direction.

Future Research Questions

- How would social mobility be affected by location, race, gender?
- ♣ What should parents do to set the next generation up for positive social mobility?
- ★ What does a wealth gap look like in terms of social mobility?
- ★ How can social mobility solve a wealth gap?
- How does policy affects social mobility?