Rats Abrolhos

Tati Micheletti / Instituto Brasileiro para Medicina da Conserva??o 28 September 2019

Abrolhos 2019

Santa Barbara 1

Home range results (sigma estimate, lcl = lowe95%CI; ucl = upper95%CI):

	link	estimate	SE.estimate	lcl	ucl
g0 sigma	logit log	$0.0112862 \\ 16.7599743$		0.0006155 3.6564336	$0.174637 \\ 76.822602$

Density results (D estimate, lcl = lowe95%CI; ucl = upper95%CI):

	estimate	SE.estimate	lcl	ucl	CVn	CVa	CVD
esa	0.1847541	NA	NA	NA	NA	NA	NA
D	64.9511822	69.25073	11.77253	358.3475	0.2886751	1.026373	1.066197

Santa Barbara 2

Home range results (sigma estimate, lcl = lowe95%CI; ucl = upper95%CI):

	link	estimate	SE.estimate	lcl	ucl
g0	logit	0.1061979	0.0605182	0.0329329	0.2930611
$_{\rm sigma}$	\log	40.0084173	29.1860594	11.1208514	143.9344347

Density results (D estimate, lcl = lowe95%CI; ucl = upper95%CI):

	estimate	SE.estimate	lcl	ucl	CVn	CVa	CVD
esa	3.680491	NA	NA	NA	NA	NA	NA
D	2.173623	2.641974	0.3360791	14.05811	0.3535534	1.162913	1.21547

RESULTS

For Santa Barbara 1, we have **65** rats/ha (CI95%: 12-358), with home range of **16.75m** (CI95%: 3.66-76.82).

For Santa Barbara 2, we have $\mathbf{2.17}$ rats/ha (CI95%: 0.34-14), with home range of $\mathbf{40m}$ (CI95%: 11.12-143.93).

Obs.: In my opinion, the deviation is really too big. We need to collect more data (ie. trapping for longer time and probably with a bigger grid...) \sim TM