

Ibaraki prefektuuris on N linna ja M teed. Linnad on nummerdatud $0\ldots N-1$ rahvaarvu kasvamise järjekorras. Iga tee ühendab kaht erinevat linna ja kõik teed on kahesuunalised. On teada, et igast linnast saab neid teid mööda igasse teise linna.

Sul on plaanis Q reisi (nummerdatud $0 \dots Q - 1$), kus reis i ($0 \le i \le Q - 1$) viib linnast S_i linna E_i .

Sa oled libahunt, kellel on kaks kuju: **inimese** ja **hundi** kuju. Iga reisi alguses oled inimese kujul. Iga reisi lõpuks pead olema hundi kujul. Iga reisi vältel pead Sa **muunduma** (muutuma inimesest hundiks) täpselt ühe korra. Muundumine on võimalik ainult linnades (sealhulgas linnades S_i ja E_i).

Libahundi elu pole meelakkumine. Inimese kujul liikudes pead Sa vältima väikeseid ja hundi kujul liikudes suuri linnu. Iga reisi i ($0 \le i \le Q-1$) jaoks on antud kaks lävendit L_i ja R_i ($0 \le L_i \le R_i \le N-1$), mis näitavad, milliseid linnu peab vältima. Täpsemalt pead Sa inimese kujul vältima linnu $0,1,\ldots,L_i-1$ ja hundi kujul linnu $R_i+1,R_i+2,\ldots,N-1$. See tähendab, et muunduda võid Sa ainult linnades L_i,L_i+1,\ldots,R_i .

Sinu ülesanne on teha iga reisi kohta kindlaks, kas linnast S_i on võimalik pääseda linna E_i ilma eeltoodud piiranguid rikkumata. Teekond võib olla mistahes pikkusega.

Realisatsioon

Lahendusena tuleb realiseerida funktsioon

```
int[] check_validity(int N, int[] X, int[] Y, int[] S, int[] E, int[]
L, int[] R)
```

- N: linnade arv.
- X, Y: massiivid pikkusega M. Tee j ($0 \le j \le M-1$) ühendab linnu X[j] ja Y[j].
- S, E, L, R: massiivid pikkusega Q, mis kirjeldavad reise.

Pane tähele, et M ja Q on massiivide pikkused ja need saab kätte lehel "Realisatsioon" kirjeldatud viisidel.

Funktsiooni check_validity kutsutakse igas testis välja täpselt üks kord. Funktsioon peab tagastama massiivi A pikkusega Q. Elemendi A_i ($0 \le i \le Q-1$) väärtus peab

olema 1, kui reis i on ilma eelpool kirjeldatud piiranguid rikkumata võimalik, ja 0, kui ei ole.

Näide

Olgu
$$N=6$$
, $M=6$, $Q=3$, $X=[5,1,1,3,3,5]$, $Y=[1,2,3,4,0,2]$, $S=[4,4,5]$, $E=[2,2,4]$, $L=[1,2,3]$, $R=[2,2,4]$.

Keskkond kutsub esmalt välja

check_validity(6, [5, 1, 1, 3, 3, 5], [1, 2, 3, 4, 0, 2], [4, 4, 5], [2, 2, 4], [1, 2, 3], [2, 2, 4]).

Reisil 0 saab linnast 4 linna 2 järgmiselt:

- Alusta linnast 4 (oled inimese kujul).
- Liigu linna 3 (oled inimese kujul).
- Liigi linna 1 (oled inimese kujul).
- Muundu hundiks (oled hundi kujul).
- Liigu linna 2 (oled hundi kujul).

Reisid 1 ja 2 ei ole võimalikud.

Seega peaks Sinu programm tagastama [1,0,0].

Abimaterjalide ZIP-arhiivis olevad failid sample-01-in.txt ja sample-01-out.txt vastavad sellele näitele. Arhiivis on ka teine sisendi ja väljundi näide.

Piirangud

- $2 \le N \le 200\,000$
- $N-1 \le M \le 400\,000$
- $1 \le Q \le 200\,000$

- Iga $0 \le j \le M-1$ korral
 - $0 \le X_j \le N 1$
 - $0 \le Y_j \le N 1$
 - $\circ X_j \neq Y_j$
- Antud teid mööda on võimalik pääseda igast linnast igasse teise.
- Mistahes kahe linna vahel on ülimalt üks tee. Teisisõnu, iga $0 \le j < k \le M-1$ korral $(X_j,Y_j) \ne (X_k,Y_k)$ ja $(Y_j,X_j) \ne (X_k,Y_k)$.
- Iga $0 \le i \le Q 1$ korral
 - $\circ \ 0 \leq L_i \leq S_i \leq N-1$
 - $\circ \ 0 \leq E_i \leq R_i \leq N-1$
 - $\circ S_i
 eq E_i$
 - $\circ L_i \leq R_i$

Alamülesanded

- 1. (7 punkti) $N \le 100$, $M \le 200$, $Q \le 100$
- 2. (8 punkti) $N \leq 3\,000$, $M \leq 6\,000$, $Q \leq 3\,000$
- 3. (34 punkti) M=N-1 ja igast linnast väljub ülimalt 2 teed (linnad on teedega ühendatud jadaks)
- 4. (51 punkti) Lisapiirangud puuduvad

Hindamisprogramm

Arhiivis olev hindamisprogramm loeb sisendit järgmises vormingus:

- rida 1: *N M Q*
- rida 2 + j ($0 \le j \le M 1$): $X_j Y_j$
- rida 2+M+i ($0\leq i\leq Q-1$): S_i E_i L_i R_i

Hindamisprogramm väljastab funktsiooni check_validity tagastatud väärtuse järgmises vormingus:

• rida 1 + i ($0 \le i \le Q - 1$): A_i