Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Лабораторная работа №6 «Работа с системой компьютерной вёрстки TeX» по дисциплине «Информатика»

Вариант N_{2} 49

Группа: Р3114

Студент: Кондратьева К. М.

Преподаватель: Балакшин П. В.

АНДРЕЙ НИКОЛАЕВИЧ КОЛМОГОРОВ

определения которых есть множество $M = \{A, B\}$ из букв A и B и значения которых принадлежат тому же множеству, т. е. отображения множества M в себя.

Таких функций существует всего четыре. Зададим их табличным способом:

x	$f_1(x)$		$f_3(x)$	$f_4(x)$	
A	A	В	A	В	
В	A	В	В	A	

Функци f_1 и f_2 являются константами т. е. постоянными: множество значений каждой из этих функций состоит их одного-единственного элемента.

Функции f_3 и f_4 отображают множество М на себя. Функция f_3 может быть задана формулой

$$f_3(x) = x$$
.

Это - *тождественное* отображение: каждый элемент множества E отображается в самого себя.

Чтобы закончить выясление смысла самого понятия «функция», остается обратить внимание на то, что выбор букв для обозначения «независимого переменного», т.е. произвольного элемента области определения, и «зависимого переменного», т.е. произвольного элемента множества значений, совершенно несуществен. Записи

$$x \xrightarrow{f} \sqrt{x}, \ \xi \xrightarrow{f} \sqrt{\xi}, \ y \to \sqrt{y},$$

$$f(x) = y = \sqrt{x}, f(\xi) = \eta = \sqrt{\xi}, f(y) = x = \sqrt{y}$$

определяют одну и ту же функцию f, которая отображает неотрицательное число в арифметический квадратный корень из него. Пользуясь любой из этих записей, мы получим f(1) = 1, f(4) = 2, f(9) = 3 и т.д.

Обратимая функция

Функция

$$y = f(x)$$

называется $\mathit{oбратимой}^2,$ если каждое свое

значение она принимает один-единственный раз. Таковы функции $f_3(x)$ и $f_4(x)$ из примера 4. Функции же $f_1(x)$ и $f_2(x)$ из примера 4 и функции из примеров 1, 2, и 3 необратимы.

Чтобы доказать, что какая-либо функция необратима, достаточно указать какие-либо два значения аргумента $x_1 \neq x_2$, для которых

$$f(x_1) = f(x_2)$$

В примере 3 достаточно заметить, что Петя дежурит как 1-го, так и 5-го февраля. Поэтому функция примера 3 необратима.

Пример 5. Функция

$$x \xrightarrow{f} y = -\sqrt{x}$$

обратима. Она определена на множестве ${\bf R}_+$ неотрицательных чисел. Множеством ее значений является множество

$$\mathbf{R}_{-}=(-\infty;0]$$

всех неположительных чисел. Задав любое y из множества \mathbf{R}_- , можно найти соотвествующее x по формуле $x=y^2$.

 Φ ункция q

$$y \xrightarrow{g} x = y^2$$
 при $y \le 0$,

есть функция, обратная к функции f. Она отображает множество \mathbf{R}_{-} на множество \mathbf{R}_{+} . Как уже говорилось, выбор букв для обозначения независимого и зависимого переменного несуществен.

Функции fи g можно записать в виде

$$f(x) = -\sqrt{x}$$
 при $x > 0$,

$$q(x) = x^2$$
 при $x < 0$.

На рисунке 4 изображены графики взаимно обратных функций f и g.

Пример 6. Функция f, заданная таблицей

\boldsymbol{x}	A	Б	В	Γ	Д
u	3	1	2	5	4

определена на множестве первых пяти букв русского алфавита, а на множество ее значений есть множество первых пяти натуральных чи-

² Происхождение названия выясняются дальше: функция обратима, если для нее существует обратная ей функция.

ЧТО ТАКОЕ ФУНКЦИЯ?

сел. Обратная функция g задается таблицей

x	1	2	3	4	5
y = g(x)	Б	В	Α	Д	Γ

На рисунке 5 даны графики этих функций. Дадим точные определения. Пусть f - отображение множества E на множество M. Если для любого элемента y из множества M существует один-единственный элемент

$$x = g(y)$$

	Values				Total	
		A	В	С	D	Total
Range	min	4	8	15	16	43
rtange	max	23	42	25	34	124
Another total		27	50	40	50	167

•	k	0	1	2	3	4
	0	1	0	0	0	0
	1	1	1	0	0	0
	2	1	2	1	0	0
	3	1	3	3	1	0
	4	1	4	6	4	1
	5	1	5	10	10	5