Sejtautomaták

 $\mathop{\rm Nagy\ P\acute{e}ter}_{M07\rm ILF}$

2018.05.5.

Tartalomjegyzék

1.	Conway élet játék	3
	1.1. Nyílt peremfeltétel	3
	1.2. Élő határ	3
	Függelék 2.1. Conway élet játék	5

1. Conway élet játék

A sejtautomaták egyik legismertebbike a John Conway által kifejlesztett életjáték. Ebben a modellben a sejtjeink egy sakktábla szerű terepen helyezkednek el, ahol minden sejtnek nyolc darab szomszédja van. A sejtek két féle álapotban lehetnek, vagy élő vagy halott állapotban. A rendszer diszkrét lépésekben fejlödik és a sejtek müködése a következő:

- Ha a sejtnek n élő szomszédja van akkor a sejt állapota nem változik
- Ha n+1 szomszédja van akkor a sejt élő lesz, függetlenül a jelenlegi állapotától
- Minden más esetben a sejt elpusztul

Az életjáték sok összetett rendszer növekedését, csökkenését vagy mozgását tudja szimulálni. A szimuláció Turing-teljes vagyis bármit amit kilehet algoritmusokkal számolni azt képes kiszámolni.Conway egyik sejtése az volt, hogy a növekedésnek van egy felső korláta. 1970-ben ötven dolláros jutalmat kínált azért, hogy ezt valakí igazolja vagy cáfolja.

1.1. Nyílt peremfeltétel

Első esetben nézzük meg milyen lesz a nyílt határokkal a szimulációt.

	1	1	1	0	1	0	1	1	()	1	1	1	0	0	0	1
n=1 eset:	0	0	1	0	C	0	0	1	-	1	1	0	1	1	0	0	1
n=1 eset.	1	1	0	0	C	0	0	0	()	1	0	0	0	0	0	0
	0	0	1	1	1	0	1	1	()	1	1	1	1	1	0	1
	1	1	1	0	C	1	1	0	()	1	1	0	0	0	1	0
0 4	0	0	1	0	C	0	1	0	()	0	0	1	0	1	0	1
n=2 eset:	1	1	0	0	C	1	0	1	()	1	0	1	0	1	0	1
	0	0	1	1	C	1	1	0	()	1	1	0	0	1	1	0
	1	1	1	0	C	1	0	0	()	0	0	0	0	0	1	0
9 4	0	0	1	0	C	0	1	0	()	1	1	0	0	0	0	0
n=3 eset:	1	1	0	0	C	1	1	0	()	0	0	0	0	0	0	0
	0	0	1	1	C	0	0	0	()	0	0	0	0	0	0	0
	1	1	1	0	C	0	0	0	()	0	0	0	0	0	0	0
4	0	0	1	0	1	0	0	0	()	0	0	0	0	0	0	0
n=4 eset:	1	1	0	0	C	0	0	0	()	0	0	0	0	0	0	0
	0	0	1	1	C	0	0	0	()	0	0	0	0	0	0	0
	1	1	1	0	C	0	0	0	()	0	0	0	0	0	0	0
4	0	0	1	0	C	1	0	0	()	0	0	0	0	0	0	0
n=4 eset:	1	1	0	0	C	0	0	0	()	0	0	0	0	0	0	0
	0	0	1	1	C	0	0	0	()	0	0	0	0	0	0	0
	1	1	1	0	C	0	0	0	()	0	0	0	0	0	0	0
F ,	0	0	1	0	C	0	0	0	()	0	0	0	0	0	0	0
n=5 eset:	1	1	0	0	C	0	0	0	()	0	0	0	0	0	0	0
	0	0	1	1	C	0	0	0	()	0	0	0	0	0	0	0

1.2. Élő határ

Ebben az esetben vizsgáljuk az életjátékot különböző n értékekre úgy, hogy a határon mindenhol élő sejteket feltételezünk.

n=1 eset:	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	0	1	1	0	0	1	1	0	0	1	1	0	0	0	0	0
	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
n=2 eset:	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
	0	1	1	0	0	1	1	0	0	1	1	0	0	0	0	0
	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
n=3 eset:	0	1	0	1	0	1	0	0	0	1	0	0	0	1	0	0
	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1
	0	1	1	0	1	0	0	0	1	0	0	1	1	0	0	1
	1	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0
n=4 eset:	0	1	0	1	0	0	1	1	0	1	1	0	0	1	1	0
	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1
	0	1	1	0	0	0	0	1	1	0	0	1	1	0	0	0
	1	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0
n=5 eset:	0	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
n=6 eset:	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0
n=7 eset:	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

2. Függelék

2.1. Conway élet játék

Hivatkozások