Managerial Economics & Business Strategy

Baye Chapters 4-5

Edited by DF 10/12

McGraw-Hill/Irwin

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved

Overview

- I. Consumer Behavior
 - Indifference Curve Analysis
 - Consumer Preference Ordering
- II. Constraints
 - The Budget Constraint
 - Changes in Income
 - Changes in Prices
- III. Consumer Optimum
- IV. Generating Demand Curves
 - Individual Demand
 - Market Demand

Michael R Baye Managerial Fornamics and Rusiness Strategy Se

Comprisht © 2006 by The McGrays-Hill Communies. Inc. All rights reserved

Consumer Behavior

- Consumer Opportunities
 - The possible goods and services consumer can afford to consume.
- Consumer Preferences
 - The goods and services consumers actually consume.
- Given the choice between 2 bundles of goods a consumer either
 - Prefers bundle A to bundle B: A > B, or U(A)>U(B)
 - Prefers bundle B to bundle A: $A \prec B$, or U(A) < U(B)
 - Is indifferent between the two: $A \sim B$, or U(A)=U(B)

Michael R. Baye, Managerial Economics and Business Strategy,

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reser

Indifference Curve Analysis

Indifference Curve

- A curve that defines the combinations of 2 or more goods that give a consumer the same level of satisfaction.

 Good Y
- Represented by U(X,Y), whose partial derivatives are denoted U_X, U_Y

Marginal Rate of Substitution

- The rate at which a consumer is willing to substitute one good for another and maintain the same satisfaction level.
- MRS = U_X/U_Y

Consumer Preference Ordering Properties

- Complete—everything can be compared
- Monotone—More is Better
- Diminishing Marginal Rate of Substitution
- Transitive

dichael R. Baye, Managerial Economics and Business Strategy, 5e.

opyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserve

Complete Preferences

- Completeness Property Good Y
 - Consumer is capable of expressing preferences (or indifference) between all possible bundles. ("I don' t know" is NOT an option!)
 - If the only bundles available to a consumer are A, B, and C, then the consumer
 - is indifferent between A and C (they are on the same indifference curve).
 - will prefer B to A.
 will prefer B to C.

Good Y

III.

I.

Good X

opyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserv

More Is Better! • More Is Better Property • Bundles that have at least as much of every good and more of some good are preferred to other bundles. • Bundle B is preferred to A since B contains at least as much of good Y and strictly more of good X. • Bundle B is also preferred to C since B contains at least as much of good X and strictly more of good Y. • More generally, all bundles on IC_{III} are preferred to bundles on IC_{III} are preferred to bundles on IC_{III} are preferred to IC_I. Michael R. Buye, Managerial Economics and Business Strategy, Sc. Cappright © 2006 by The McGrane-Hill Companies, Inc. All rights reserved.

Price Changes and Consumer Equilibrium

- Substitute Goods
 - An increase (decrease) in the price of good X leads to an increase (decrease) in the consumption of good Y.
 - Examples:
 - Coke and Pepsi.
 - Verizon Wireless or AT&T.
- Complementary Goods
 - An increase (decrease) in the price of good X leads to a decrease (increase) in the consumption of good Y.
 - · Examples:
 - DVDs and DVD players.
 - Computer CPUs and monitors.

Michael R Bave Managerial Fornamics and Rusiness Strategy Se

murielit © 2006 by The McGram-Hill Communies. Inc. All rights reserve

Income Changes and Consumer Equilibrium

- · Normal Goods
 - Good X is a normal good if an increase (decrease) in income leads to an increase (decrease) in its consumption.
- Inferior Goods
 - Good X is an inferior good if an increase (decrease) in income leads to a decrease (increase) in its consumption.

Michael R. Baye, Managerial Economics and Business Strategy, 5

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserve

Decomposing the Income and Substitution Effects

Initially, bundle A is consumed. A decrease in the price of good X expands the consumer's opportunity set.

The substitution effect (SE) causes the consumer to move from bundle A to B.

A higher "real income" allows the consumer to achieve a higher indifference curve.

The movement from bundle B to C represents the income effect (IE). The new equilibrium is achieved at point C.

Individual Demand Curve

 An individual's demand curve is derived from each new equilibrium point found on the indifference curve as the price of good X is varied.

Michael R. Baye, Managerial Economics and Business Strategy, 5e.

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved

Market Demand

- The market demand curve is the horizontal summation of individual demand curves.
- It indicates the total quantity all consumers would purchase at each price point.

Conclusion

- Indifference curve properties reveal information about consumers' preferences between bundles of goods.
 - Completeness.
 - More is better.
 - Diminishing marginal rate of substitution.
 - Transitivity.
- Indifference curves along with price changes determine individuals' demand curves.
- Market demand is the horizontal summation of individuals' demands.

Michael R. Baye, Managerial Economics and Business Strategy, 5

opyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserve

Production and Cost: Overview

- I. Production Analysis
 - Total Product, Marginal Product, Average Product
 - Isoquants
 - Isocosts
 - Cost Minimization
- II. Cost Analysis
 - Total Cost, Variable Cost, Fixed Costs
 - Cubic Cost Function
 - Cost Relations

III. Multi-Product Cost Functions

IV. Learning Curve

Michael R. Baye, Managerial Economics and Business Strategy, 5e.

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserve

Production Analysis

- Production Function
 - Q = F(K,L)
 - The maximum amount of output that can be produced with K units of capital and L units of labor
- Short-Run vs. Long-Run Decisions
- Fixed vs. Variable Inputs

Michael R. Baye, Managerial Economics and Business Strategy, 5e.

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved

Total Product

- Cobb-Douglas Production Function
- Example: Q = F(K,L) = K.5 L.5
 - K is fixed at 16 units in short run.
 - Short run production function:

$$Q = (16)^{.5} L^{.5} = 4 L^{.5}$$

• Output when 100 units of labor are used?

$$Q = 4 (100)^{.5} = 4(10) = 40$$
 units

Michael R. Baye, Managerial Economics and Business Strategy, 5e.

opyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserv

Marginal Productivity Measures

- Marginal Product of Labor: $MP_{\tau} = dQ/dL$
 - Measures the output produced by the last worker.
 - Slope of the short-run production function (with respect to labor)
- Marginal Product of Capital: $MP_K = dQ/dK$
 - Measures the output produced by the last unit of capital.
 - When capital is allowed to vary in the short run, MP_K is the slope of the production function (with respect to capital).

Michael R. Bave. Manaverial Economics and Business Stratevu. 5e.

Covarient © 2006 by The McGraw-Hill Companies, Inc. All rights reserves

Average Productivity Measures

- · Average Product of Labor
 - \blacksquare AP_L = Q/L.
 - Measures the output of an "average" worker.
 - Example: $Q = F(K,L) = K^{.5} L^{.5}$
 - If the inputs are K = 16 and L = 16, then the average product of labor is $AP_L = [(16)^{0.5}(16)^{0.5}]/16 = 1$.
- Average Product of Capital
 - $AP_{vv} = O/K$
 - Measures the output of an "average" unit of capital.
 - Example: $Q = F(K,L) = K^{.5} L^{.5}$
 - If the inputs are K = 16 and L = 16, then the average product of labor is $AP_L = [(16)^{0.5}(16)^{0.5}]/16 = 1$.

Michael R. Baye, Managerial Economics and Business Strategy, 5e.

Increasing, Diminishing and Negative Marginal Returns

Michael R. Baye, Managerial Economics and Business Strategy, 5

ryright © 2006 by The McGraw-Hill Companies, Inc. All rights reserve

Guiding the Production Process

- Producing on the production function
 - Aligning incentives to induce maximum sustainable worker effort.
- Employing the right level of inputs
 - When labor or capital vary in the short run, to maximize profit a manager will hire
 - labor until the value of marginal product of labor equals the wage: $VMP_L = w$, where $VMP_L = P \times MP_L$.
 - capital until the value of marginal product of capital equals the rental rate: $VMP_K = r$, where $VMP_K = P \times MP_K$.

Michael R. Baye, Managerial Economics and Business Strategy, 5e

pyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved

Isoquant

- The combinations of inputs (K, L) that yield the producer the same level of output.
- The shape of an isoquant reflects the ease with which a producer can substitute among inputs while maintaining the same level of output.

dichael R. Baye, Managerial Economics and Business Strategy, 5e

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved

Marginal Rate of Technical Substitution (MRTS)

• The rate at which two inputs are substituted while maintaining the same output level.

$$MRTS_{KL} = \frac{MP_L}{MP_K}$$

Michael R. Baye, Managerial Economics and Business Strategy, 5e.

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserve

Linear Isoquants • Capital and labor are perfect substitutes • Q = aK + bL • MRTS_{KL} = b/a • Linear isoquants imply that inputs are substituted at a constant rate, independent of the input levels employed. Michael R. Baye. Managerial Economics and Business Stratege, 5c. Cappright © 2006 by The McGraur-Hill Companies, Inc. All rights reserved.

Marginal product per dollar spent should be equal for all inputs used: \[\frac{MP_L}{w} = \frac{MP_K}{r} \igorightarrow \frac{MP_L}{MP_K} = \frac{w}{r} \] • But, this is just \[MRTS_{KL} = \frac{w}{r} \]

Cost Minimization

Optimal Input Substitution • A firm initially produces Q_0 by employing the combination of inputs represented by point A at a cost of C_0 . • Suppose w_0 falls to w_1 . • The isocost curve rotates counterclockwise; which represents the same even for output, Q_0 , the firm will produce on a lower isocost line (C_1) at a price of the new isocost line (C_2) at a price interpresents the lower wage relative to the rental rate of capital. Michael R. Baye. Managerial Economics and Business Strategs, 5e. **Corporight 9.2006 by The McGraw-Hill Companies, Inc. All rights reserved.**

Cubic Cost Function

- $C(Q) = f + a Q + b Q^2 + cQ^3$
- Marginal Cost?
 - Memorize:

$$MC(Q) = a + 2bQ + 3cQ^2$$

■ Calculus:

$$dC/dQ = a + 2bQ + 3cQ^2$$

Michael R. Baye, Managerial Economics and Business Strategy, 5

opyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserve

An Example

- Total Cost: $C(Q) = 10 + Q + Q^2$
- Variable cost function:

$$VC(Q) = Q + Q^2$$

■ Variable cost of producing 2 units:

$$VC(2) = 2 + (2)^2 = 6$$

■ Fixed costs:

$$FC = 10$$

■ Marginal cost function:

$$MC(Q) = 1 + 2Q$$

■ Marginal cost of producing 2 units:

$$MC(2) = 1 + 2(2) = 5$$

Michael R. Baye, Managerial Economics and Business Strategy, 5e.

yright © 2006 by The McGraw-Hill Companies, Inc. All rights reserve

Multi-Product Cost Function

- C(Q₁, Q₂): Cost of jointly producing two outputs.
- General function form:

$$C(Q_1, Q_2) = f + aQ_1Q_2 + bQ_1^2 + cQ_2^2$$

Michael R. Baye, Managerial Economics and Business Strategy, 5e.

opyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserv

Economies of Scope

- $C(Q_1, 0) + C(0, Q_2) > C(Q_1, Q_2)$.
 - It is cheaper to produce the two outputs jointly instead of separately.
- Example:
 - It is cheaper for Big Creek Lumber to produce 2x4s and sawdust mulch jointly than separately.

Michael R. Bave. Managerial Economics and Business Strategy. 5e.

Covarient © 2006 by The McGraw-Hill Companies. Inc. All rights reserved

Cost Complementarity

• The marginal cost of producing good 1 declines as more of good two is produced:

$$\Delta MC_1(Q_1,Q_2)/\Delta Q_2 < 0.$$

- Example:
 - Cow hides and steaks.

Michael R Baye, Managerial Fornamics and Business Strategy Se

Conurieht © 2006 by The McGram-Hill Communies. Inc. All rights reserve

Quadratic Multi-Product Cost Function

- $C(Q_1, Q_2) = f + aQ_1Q_2 + (Q_1)^2 + (Q_2)^2$
- $MC_1(Q_1, Q_2) = aQ_2 + 2Q_1$
- $MC_2(Q_1, Q_2) = aQ_1 + 2Q_2$
- Cost complementarity: a < 0
- Economies of scope: $f > aQ_1Q_2$ $C(Q_1,0) + C(0,Q_2) = f + (Q_1)^2 + f + (Q_2)^2$ $C(Q_1,Q_2) = f + aQ_1Q_2 + (Q_1)^2 + (Q_2)^2$ $f > aQ_1Q_2$: Joint production is cheaper

fichael R. Baye, Managerial Economics and Business Strategy, 5e

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reser

A Numerical Example:

- $C(Q_1, Q_2) = 90 2Q_1Q_2 + (Q_1)^2 + (Q_2)^2$
- Cost Complementarity?

Yes, since a = -2 < 0

$$MC_1(Q_1, Q_2) = -2Q_2 + 2Q_1$$

• Economies of Scope?

Yes, since $90 > -2Q_1Q_2$

Michael R. Baye, Managerial Economics and Business Strategy, 5

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserve

Learning Curve

- Cost declines with accumulated output A
- $A = \Sigma Q_S$, s=0 to t.
- Idea: efficiency improves with experience due to individual learning and better team coordination.
- Original examples: aircraft and ship building in WWII.
- · Recent examples: microprocessors, fuel cells
- $\ln MC = a b \ln A$ is usual functional form
- The incremental cost decreases b% when accumulated output increases 1%

dichael R. Baye, Managerial Economics and Business Strategy, 5e.

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved

Conclusion

- To maximize profits (minimize costs) managers must use inputs such that the value of marginal of each input reflects price the firm must pay to employ the input.
- The optimal mix of inputs is achieved when the $MRTS_{KL} = (w/r)$.
- Cost functions are the foundation for helping to determine profit-maximizing behavior in future chapters.

Michael R. Baye, Managerial Economics and Business Strategy, 5e.

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserve