Информационный поиск и ранжирование Качество поиска

Андросов Дмитрий, 03.03.2025, Al Masters

План лекции

- Вспоминаем основы
- Введение в ранжирование
- Векторное представление текста
- Оценка качества поиска

Вспоминаем

Ранжирующая система

Поисковая система

Поисковая система

Задача информационного поиска

- Дано:
 - Набор документов $D = \{d_1, d_2, \dots, d_n\}$
 - Запрос $Q = \{q_1, q_2, \dots, q_m\}$
- Найти:
 - Набор документов $D^* \subset D$, релевантных запросу Q

Inverted Index

Inverted Index

with document frequency

Inverted Index

with document frequency and term frequency

Boolean Retrieval Model

Query: «преступление AND наказание»

Result: 3 5 13 25

Введение в ранжирование

Boolean Retrieval Model

- Хорошо работает для пользователей-«экспертов» тех кто точно понимает свои потребности, знает, как их сформулировать в виде запроса, хорошо знаком с коллекцией документов
- Не очень хорошо работает для большинства пользователей:
 - Сложно написать / сформулировать правильный запрос
 - Пользователям не нужны тысячи документов в ответе системы

Ranked Boolean Retrieval Model

2 этапа:

- Получение документов, удовлетворяющих ограничениям (запросу)
- Сортировка (ранжирование) полученных документов на основе величины, определяющей степень соответствия документа запросу

Ranked Boolean Retrieval Model

2 этапа:

- Получение документов, удовлетворяющих ограничениям (запросу)
- Сортировка (ранжирование) полученных документов на основе величины, определяющей степень соответствия документа запросу
- Но это не ранжирование по релевантности! Это ранжирование по соответствию условиям-ограничениям

Boolean Retrieval Model

Advantages and disadvantages

- Простота с точки зрения работы поисковой системы
- **Интерпретируемость**: легко понять почему документ был получен / не получен
- **Контролируемость**: легко определить полноту выдачи мало документов (AND) или много документов (OR)

Boolean Retrieval Model

Advantages and disadvantages

- Простота с точки зрения работы поисковой системы
- Интерпретируемость: легко понять почему документ был получен / не получен
- **Контролируемость**: легко определить полноту выдачи мало документов (AND) или много документов (OR)
- Ответственность за качество и эффективность лежит на пользователе
- Не поддерживается ранжирование документов по релевантности

- На соответствие документа информационным потребностям пользователя влияет множество факторов: актуальность, свежесть, авторство, оформление, сложность, новизна и т.д.
- Релевантность теме: документ относится к той же тематике, что и запрос
- Релевантность пользователю: прочие факторы

- На соответствие документа информационным потребностям пользователя влияет множество факторов: актуальность, свежесть, авторство, оформление, сложность, новизна и т.д.
- Релевантность теме: документ относится к той же тематике, что и запрос
- Релевантность пользователю: прочие факторы
- Цель: предсказать релевантность теме (topical relevance)

- Best-match retrieval model модель, предсказывающая степень релевантности документа запросу
- Наилучшая модель: relevance(Q, d)

- Best-match retrieval model модель, предсказывающая степень релевантности документа запросу
- Наилучшая модель: relevance(Q,d)
- На практике: similarity(Q, d)

- Best-match retrieval model модель, предсказывающая степень релевантности документа запросу
- Наилучшая модель: relevance(Q, d)
- На практике: similarity(Q, d)
- Основываясь на функции similarity(Q,d) можно составить отранжированный список (ranked list) документов:
 - Некоторые документы более релевантны запросу, некоторые документы менее релевантны запросу

- Best-match retrieval model модель, предсказывающая степень релевантности документа запросу
- Наилучшая модель: relevance(Q,d)
- На практике: similarity(Q, d)
- Основываясь на функции similarity(Q,d) можно составить отранжированный список (ranked list) документов:
 - Некоторые документы более релевантны запросу, некоторые документы менее релевантны запросу

Ranked retrieval

- Запросы: текст (естественный язык)
- Документы ранжируются по релевантности / близости запросу
- Результаты обработки запроса контролируемы по объему:
 - Отдаем десятки / сотни результатов

- Запросы: текст (естественный язык)
- Документы ранжируются по релевантности / близости запросу
- Результаты обработки запроса контролируемы по объему:
 - Отдаем десятки / сотни результатов
- Предположения:
 - Топ отранжированных документов более вероятно удовлетворяют пользовательскому запросу
 - Скор документа основывается на его релевантности запросу
- Главный вопрос в определении score(d,Q) = f(similarity(d,Q))

Мера (коэффициент) Жаккара

• Определяет пересечение 2 наборов токенов А и В:

$$Jaccard(A, B) = \frac{A \cap B}{A \cup B}$$

- Документы и запрос представляются как мешок слов (BoW)
- score(d, Q) = Jaccard(d, Q)

Мера (коэффициент) Жаккара

• Определяет пересечение 2 наборов токенов А и В:

$$Jaccard(A, B) = \frac{A \cap B}{A \cup B}$$

- Пример:
 - d = «Раскольников совершил преступление»
 - Q = «Преступление и наказание»

•
$$score(d, Q) = Jaccard(d, Q) = \frac{1}{5} = 0.2$$

Мера (коэффициент) Жаккара — недостатки

• Не учитывает частота встречаемости токена в документе (term frequency)

Мера (коэффициент) Жаккара — недостатки

- Не учитывает частота встречаемости токена в документе (term frequency)
- Все токены считаются одинаково важными:
 - Нет понятия важности токена

Мера (коэффициент) Жаккара — недостатки

- Не учитывает частота встречаемости токена в документе (term frequency)
- Все токены считаются одинаково важными:
 - Нет понятия важности токена
- Нет нормализации на длину документа:
 - $|d_1| = 5, |d_2| = 100, |Q| = 3, d_1 \subset d_2$
 - $score(d_1, Q) >> score(d_2, Q)$

Важность токенов

Почему нужно считать важность?

• Какие более и какие менее релевантные документы?

Почему нужно считать важность?

- Какие более и какие менее релевантные документы?

Нужна мера важности токена

Document scoring

$$score(d, Q) = \begin{cases} \sum_{t \in Q} f(d, t) \\ \prod_{t \in Q} g(d, t) \\ \dots \end{cases}$$

Document scoring

$$score(d, Q) = \begin{cases} \sum_{t \in Q} f(d, t) \\ \prod_{t \in Q} g(d, t) \\ \dots \end{cases}$$

- Запрос: «преступление и наказание»
- score(d,Q) = f(d, "преступление") + f(d, "и") + f(d, "наказание")

Document scoring

$$score(d, Q) = \begin{cases} \sum_{t \in Q} f(d, t) \\ \prod_{t \in Q} g(d, t) \\ \dots \end{cases}$$

- Запрос: «преступление и наказание»
- score(d,Q) = f(d, "преступление") + f(d, "и") + f(d, "наказание")
- $f(\cdot), g(\cdot)$ определяют важность токенов

- tf(t,d) терма t в документе d определяется как количество раз, которое терм встречается в документе
- Можно использовать tf для определения важности документа для запроса

- tf(t,d) терма t в документе d определяется как количество раз, которое терм встречается в документе
- Можно использовать tf для определения важности документа для запроса
- Допустим $tf(t,d_1)=10,\ tf(t,d_2)=100.$ Значит ли это, что $relevance(d_2)=10\cdot relevance(d_1)?$

- tf(t,d) терма t в документе d определяется как количество раз, которое терм встречается в документе
- Можно использовать tf для определения важности документа для запроса
- Допустим $tf(t,d_1)=10,\ tf(t,d_2)=100.$ Значит ли это, что $relevance(d_2)=10\cdot relevance(d_1)$? Heт! Но значит, что $relevance(d_2)>relevance(d_1)$

- Релевантность зависит от tf нелинейно
- Логично предположить, что рост релевантности замедляется при достаточно больших значениях tf:

Term frequency (tf) — logarithm scaling

• Эвристика:

$$w(t,d) = \begin{cases} 1 + \log_{10} tf(t,d) \\ 0, otherwise \end{cases}$$

Term frequency (tf) - logarithm scaling

• Эвристика:

$$w(t,d) = \begin{cases} 1 + \log_{10} tf(t,d) \\ 0, otherwise \end{cases}$$

• $tf(t,d) \implies w(t,d): 0 \implies 0; 1 \implies 1; 2 \implies 1.3; 10 \implies 2; 1000 \implies 4$

Term frequency (tf) — logarithm scaling

• Эвристика:

$$w(t,d) = \begin{cases} 1 + \log_{10} tf(t,d) \\ 0, otherwise \end{cases}$$

- $tf(t,d) \implies w(t,d): 0 \implies 0; 1 \implies 1; 2 \implies 1.3; 10 \implies 2; 1000 \implies 4$
- Скор пары запрос-документ сумма по всем термам запроса:

$$scaled_tf_score(Q, d) = \sum_{t \in Q} (1 + log_{10} tf(t, d))$$

• Если ни один терм $t \in Q$ не присутствует в документе d, то $scaled_tf_score(Q,d) = 0$

Редкие токены

• Редко встречающиеся токены более информативны, чем частые токены

Редкие токены

- Редко встречающиеся токены более информативны, чем частые токены
- Пример: «Преступление и наказание»
- Документы содержащие термы «преступление», «наказание» более релевантны запросу, чем документы, содержащие «и»

Редкие токены

- Редко встречающиеся токены более информативны, чем частые токены
- Пример: «Преступление и наказание»
- Документы содержащие термы «преступление», «наказание» более релевантны запросу, чем документы, содержащие «и»
- Ещё пример: «купить большой холодильник»

Редкие токены

- Редко встречающиеся токены более информативны, чем частые токены
- Пример: «Преступление и наказание»
- Документы содержащие термы «преступление», «наказание» более релевантны запросу, чем документы, содержащие «и»
- Ещё пример: «купить большой холодильник»
- Почему бы тогда не давать больший вес редким токенам?

Редкие токены

- Редко встречающиеся токены более информативны, чем частые токены
- Пример: «Преступление и наказание»
- Документы содержащие термы «преступление», «наказание» более релевантны запросу, чем документы, содержащие «и»
- Ещё пример: «купить большой холодильник»
- Почему бы тогда не давать больший вес редким токенам?

Нужна мера редкости токена

- Мы хотим задавать больший вес редким токенам
- Мы хотим задавать меньший (но положительный) вес частым токенам, поскольку найти частый токен в документе всё ещё лучше, чем его не найти

- Мы хотим задавать больший вес редким токенам
- Мы хотим задавать меньший (но положительный) вес частым токенам, поскольку найти частый токен в документе всё ещё лучше, чем его не найти
- Будем использовать $document\ frequency$ как меру редкости токена
- $document\ frequency\ (df(t))$ токена t определяется как количество документов коллекции, в которых хотя бы раз встретился токен t

Inverse document frequency (idf)

- df(t) токена t определяется как количество документов коллекции, в которых хотя бы раз встретился токен t
- df(t) является обратной мерой информативности токена t

Inverse document frequency (idf)

- df(t) токена t определяется как количество документов коллекции, в которых хотя бы раз встретился токен t
- df(t) является обратной мерой информативности токена t
- Inverse document frequency определяется как:

$$idf(t) = log_{10} \frac{N}{df(t)}$$

- ullet где N количество документов коллекции
- idf(t) является мерой информативности токена t

TF-IDF term weighting

- Важность тем больше, чем чаще токен встречается в документе tf
- Важность тем больше, чем более редкий токен в коллекции -idf
- Комбинация tf и idf:

$$w(t,d) = (1 + \log_{10} tf(t,d)) \cdot \log_{10} \frac{N}{df(t)}$$

Vector Space Model

Incidence vectors

- Вектор представления токена (term incidence vector, TIV) векториндикатор встречаемости данного токена в документах корпуса
- Вектор представления документа (document incidence vector, DIV) вектор-индикатор встречаемости токенов словаря в данном документе

DIV(doc_2)

TIV(мама)

	мама мыла раму	мама мыла пол	деревянная рама
мама	1	1	0
МЫТЬ	1	1	0
рама	1	0	1
пол	0	1	0
деревянный	0	0	1

Incidence vectors

- Вектор представления токена (term incidence vector, TIV) векториндикатор встречаемости данного токена в документах корпуса
- Вектор представления документа (document incidence vector, DIV) вектор-индикатор встречаемости токенов словаря в данном документе

DIV(doc_2)

TIV(мама)

	мама мыла раму	мама мыла пол	деревянная рама
мама	1	1	0
МЫТЬ	1	1	0
рама	1	0	1
пол	0	1	0
деревянный	0	0	1

• Нет представления о частотности токена, его позиции и т.д.

Vector Space Model

- Представляем запрос и документ в виде векторов в едином пространстве
- Вычисляем близость между векторами

$$score(Q, d) = vector_similarity(\overrightarrow{Q}, \overrightarrow{d})$$

• Ранжируем документы по близости вектора к вектору запроса

Евклидово расстояние

Для данных
$$\overrightarrow{X} = \{x_1, x_2, \dots, x_n\}, \ \overrightarrow{Y} = \{y_1, y_2, \dots, y_n\}$$
 найти близость

• Евклидово расстояние (Euclidean_distance):

Euclidean_distance(
$$\overrightarrow{X}, \overrightarrow{Y}$$
) = $\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$

• Вычисляется, насколько близки векторы в данном векторном пространстве

Евклидово расстояние

- Схожесть документов обратно пропорциональна расстоянию
- Расстояние большое для векторов разных длин
 - Представим $\overrightarrow{d_2} = 2 \cdot \overrightarrow{d_1}$
 - Семантически $\overrightarrow{d_1}$ и $\overrightarrow{d_2}$ близки
 - Однако Евклидово расстояние велико

Скалярное произведение

Для данных
$$\overrightarrow{X} = \{x_1, x_2, \dots, x_n\}, \ \overrightarrow{Y} = \{y_1, y_2, \dots, y_n\}$$
 найти близость

• Скалярное произведение (*dot_product*):

$$vector_similarity(\overrightarrow{X}, \overrightarrow{Y}) = \sum_{i=1}^{n} x_i \cdot y_i = X^T Y$$

- $dot_product(\overrightarrow{X}, \overrightarrow{Y}) = 0 \implies \overrightarrow{X} \perp \overrightarrow{Y}$
- Если мы работаем с бинарным представлением (1 если токен встретился, 0 иначе), то скалярное произведение равно количеству токенов, встретившихся (хотя бы один раз) в X и в Y

Скалярное произведение

- Какой документ более релевантен запросу $Q = \{q_1, q_2, q_3\}$:
 - Документ, состоящий из 20 токенов, среди которых есть 3 токена запроса?
 - Документ, состоящий из 200 токенов, среди которых есть 3 токена запроса?

Скалярное произведение

- Какой документ более релевантен запросу $Q = \{q_1, q_2, q_3\}$:
 - Документ, состоящий из 20 токенов, среди которых есть 3 токена запроса?
 - Документ, состоящий из 200 токенов, среди которых есть 3 токена запроса?
- При прочих равных, длинные документы более вероятно содержат в себе токены запроса, чем более короткие документы
- Скалярное произведение не учитывает, что документы могут сильно отличаться по длине
- Таким образом, скалярное произведение склоняет к более длинным документам

Нормализация на длину вектора

• Можно нормализовать вектор, поделив его компоненты на длину вектора — его L_2 -норму:

$$\|\overrightarrow{x}\| = \sqrt{\sum_{i} x_i^2}$$

- Таким образом, мы приводим векторы к одинаковой длине
- Длинные и короткие документы теперь имеют сравнимые представления

Косинусная близость

Для данных
$$\overrightarrow{X} = \{x_1, x_2, \dots, x_n\}, \ \overrightarrow{Y} = \{y_1, y_2, \dots, y_n\}$$
 найти близость

• Косинусная близость (cosine_similarity):

$$cosine_similarity(\overrightarrow{X}, \overrightarrow{Y}) = \frac{\sum_{i} x_{i} \cdot y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \cdot \sqrt{\sum_{i} y_{i}^{2}}}$$

• $cosine_similarity \in [0, 1]$

Близость векторов запроса и документа

$$score(Q, d) = cosine_similarity(\overrightarrow{Q}, \overrightarrow{d}) = \frac{\sum_{i=1}^{|vocab|} Q_i \cdot d_i}{\sqrt{\sum_i Q_i^2} \cdot \sqrt{\sum_i d_i^2}} = \sum_{t \in Q} w(t, Q) \cdot w(t, d)$$

• где w(t,Q), w(t,d) — веса токена t в запросе Q и документе d

Подход 1 — бинарный

•
$$w(t,d) = \begin{cases} 1, & \text{if } t \in d \\ 0, & \text{otherwise} \end{cases}$$

- Документ бинарный вектор (множество токенов)
- Близость пересечение токенов

$$score(Q, d) = \sum_{t} I_{t \in Q} \cdot I_{t \in d}$$

• где I — индикатор

Подход 2 — взвешенный

• w(t,d) = tf(t,d):

$$score(Q, d) = \sum_{t} tf(t, Q) \cdot tf(t, d)$$

Подход 2 — взвешенный

• w(t,d) = tf(t,d):

$$score(Q, d) = \sum_{t} tf(t, Q) \cdot tf(t, d)$$

• Проблема — длинные документы имеют преимущества над короткими, поскольку вероятно имеют больший tf(t,d)

Подход 3 — взвешенный, нормализованный на длину

•
$$w(t,d) = \frac{tf(t,d)}{|d|}$$
:

$$score(Q, d) = \sum_{t} tf(t, Q) \cdot \frac{tf(t, d)}{|d|}$$

Подход 3 — взвешенный, нормализованный на длину

•
$$w(t,d) = \frac{tf(t,d)}{|d|}$$
:

$$score(Q, d) = \sum_{t} tf(t, Q) \cdot \frac{tf(t, d)}{|d|}$$

. Почему не делается нормализация на длину запроса $\dfrac{\mathit{tf}(t,Q)}{|Q|}$?

Подход 3 — взвешенный, нормализованный на длину

•
$$w(t,d) = \frac{tf(t,d)}{|d|}$$
:

$$score(Q, d) = \sum_{t} tf(t, Q) \cdot \frac{tf(t, d)}{|d|}$$

- Почему не делается нормализация на длину запроса $\frac{\mathit{tf}(t,Q)}{|Q|}$?
- Скор будет отличаться, но ранжирование останется прежним, поскольку мы для всех пар запрос-документ поделим скор на одно и то же число

Подход 4 — редкие токены

•
$$w(t,d) = \frac{tf(t,d)}{|d|} \cdot \log \frac{N}{df(t)}$$
:
$$score(Q,d) = \sum_{t} tf(t,Q) \cdot \frac{tf(t,d)}{|d|} \cdot \log \frac{N}{df(t)}$$

- Больший вес получают редкие токены за счет IDF
- Проблема линейная зависимость от частоты встречаемости (tf)

Взвешивание токенов

Подход 5 — TF logarithm scaling

•
$$w(t,d) = (1 + log \frac{tf(t,d)}{|d|}) \cdot log \frac{N}{df(t)}$$
:

$$score(Q,d) = \sum_{t} tf(t,Q) \cdot (1 + log \frac{tf(t,d)}{|d|}) \cdot log \frac{N}{df(t)}$$

Взвешивание токенов

Подход 5 — TF logarithm scaling

•
$$w(t,d) = (1 + log \frac{tf(t,d)}{|d|}) \cdot log \frac{N}{df(t)}$$
:

$$score(Q, d) = \sum_{t} tf(t, Q) \cdot \left[(1 + log \frac{tf(t, d)}{|d|}) \cdot log \frac{N}{df(t)} \right]$$

$$w(t, Q)$$

$$w(t, d)$$

BM25 Model (Best Matching 25)

Вспоминаем TF-IDF

• $TF - IDF(t, d) = TF(t, d) \cdot IDF(t)$

Вспоминаем TF-IDF

- $TF IDF(t, d) = TF(t, d) \cdot IDF(t)$
- **Цель**: быть чувствительным к TF(t,d) и длине документа, при этом не добавляя большого количества параметров в модель.

Функция насыщаемости (saturation function)

• Функция насыщаемости:

$$TF(t,d) = \frac{tf(t,d)}{k_1 + tf(t,d)}$$

Функция насыщаемости (saturation function)

• Функция насыщаемости:

$$TF(t,d) = \frac{tf(t,d)}{k_1 + tf(t,d)}$$

• Дополнительно:

$$TF(t,d) = \frac{(k_1+1) \cdot tf(t,d)}{k_1 + tf(t,d)}$$

• $(k_1 + 1)$ не изменяет ранжирование, но выравнивает скор: при $tf(t,d) = 1 \implies TF(t,d) = 1$

Нормализация на длину документа

• Длина документа:

$$document_length = dl = \sum_{t \in d} tf(t, d)$$

• avdl — средняя длина документов коллекции

Нормализация на длину документа

• Длина документа:

$$document_length = dl = \sum_{t \in d} tf(t, d)$$

- avdl средняя длина документов коллекции
- Компонента нормализации на длину:

$$B = \left(1 - b + b \cdot \frac{dl}{avdl}\right), \ 0 \le b \le 1$$

Нормализация на длину документа

• Длина документа:

$$document_length = dl = \sum_{t \in d} tf(t, d)$$

- *avdl* средняя длина документов коллекции
- Компонента нормализации на длину:

$$B = \left(1 - b + b \cdot \frac{dl}{avdl}\right), \quad 0 \le b \le 1$$

- b = 0 нет нормализации
- b = 1 полная нормализация на среднюю длину документа

TF с насыщаемостью и нормализацией на длину

$$TF(t,d) = \frac{(k_1+1) \cdot tf(t,d)}{k_1 \cdot \left(1 - b + b \cdot \frac{dl}{avdl}\right) + tf(t,d)}$$

Нормализация на длину документа

TF с насыщаемостью и нормализацией на длину

$$BM25(t,d) = IDF(t) \cdot \frac{(k_1 + 1) \cdot tf(t,d)}{k_1 \cdot \left(1 - b + b \cdot \frac{dl}{avdl}\right) + tf(t,d)}$$

- k_1 контролирует масштаб tf:
 - $k_1 = 0$ бинарная модель (0 терм не встретился, 1 встретился)
 - при увеличении k_1 мы приближаемся к $t\!f$
- b контролирует нормализацию на длину
- Обычно на практике используется:
 - $k_1 \in [1.2, 2], b \approx 0.75$

IDF эвристики

$$IDF(t) = log\left(\frac{N}{df(t)}\right)$$

IDF эвристики

$$IDF(t) = log\left(\frac{N}{df(t)}\right)$$

- Недостатки:
 - деление на df(t) = 0
 - излишнее влияние редких токенов
 - нет сглаживания

IDF эвристики

- Эвристика: $IDF(t) oup rac{P(document\ does\ not\ contain\ t)}{P(document\ contains\ t)}$
- Пришли к:

$$IDF(t) = log\left(\frac{N}{df(t)}\right) \rightarrow log\left(\frac{N - df(t) + 0.5}{df(t) + 0.5} + 1\right)$$

Ранжирующая функция

$$BM25(t,d) = log\left(\frac{N - df(t) + 0.5}{df(t) + 0.5} + 1\right) \cdot \frac{(k_1 + 1) \cdot tf(t,d)}{k_1 \cdot \left(1 - b + b \cdot \frac{dl}{avdl}\right) + tf(t,d)}$$

Ранжирующая функция

$$BM25(t,d) = log\left(\frac{N - df(t) + 0.5}{df(t) + 0.5} + 1\right) \cdot \frac{(k_1 + 1) \cdot tf(t,d)}{k_1 \cdot \left(1 - b + b \cdot \frac{dl}{avdl}\right) + tf(t,d)}$$

$$score(Q, d) = \sum_{t \in Q \cap d} weight(t, d) = \sum_{t \in Q \cap d} BM25(t, d)$$

Ранжирующая функция

$$score(Q, d) = \sum_{t \in Q \cap d} log\left(\frac{N - df(t) + 0.5}{df(t) + 0.5} + 1\right) \cdot \frac{(k_1 + 1) \cdot tf(t, d)}{k_1 \cdot \left(1 - b + b \cdot \frac{dl}{avdl}\right) + tf(t, d)}$$

 $\sum_{t\in Q\cap d}$ — чем больше общих слова в запросе и документе, тем лучше

Ранжирующая функция

$$score(Q,d) = \sum_{t \in Q \cap d} log\left(\frac{N - df(t) + 0.5}{df(t) + 0.5} + 1\right) \cdot \frac{(k_1 + 1) \cdot tf(t,d)}{k_1 \cdot \left(1 - b + b \cdot \frac{dl}{avdl}\right) + tf(t,d)}$$

- $\sum_{t \in Q \cap d}$ чем больше общих слова в запроса и документе, тем лучше
- tf(t,d) чем больше встречаемость токена в документе, тем лучше

Ранжирующая функция

$$score(Q, d) = \sum_{t \in Q \cap d} log\left(\frac{N - df(t) + 0.5}{df(t) + 0.5} + 1\right) \cdot \frac{(k_1 + 1) \cdot tf(t, d)}{k_1 \cdot \left(1 - b + b \cdot \frac{dl}{avdl}\right) + tf(t, d)}$$

- $\sum_{t \in Q \cap d}$ чем больше общих слова в запроса и документе, тем лучше
- tf(t,d) чем больше встречаемость токена, тем лучше

•
$$log\left(\frac{N-df(t)+0.5}{df(t)+0.5}+1\right)$$
 — более частые токены — менее важные

Оценка поисковой системы

• Какой алгоритм сортировки лучше: «быстрая» или «пузырьком»?

- Какой алгоритм сортировки лучше: «быстрая» или «пузырьком»?
 - Быстрая: $O(n \cdot log(n))$
 - Пузырьком: $O(n^2)$

- Какой алгоритм сортировки лучше: «быстрая» или «пузырьком»?
 - Быстрая: $O(n \cdot log(n))$
 - Пузырьком: $O(n^2)$
- Но результат работы одинаков!

- Какой алгоритм сортировки лучше: «быстрая» или «пузырьком»?
- Какая IR модель лучше: TF-IDF или BM25?

- Какой алгоритм сортировки лучше: «быстрая» или «пузырьком»?
- Какая IR модель лучше: TF-IDF или BM25?
- Можно оценивать по:
 - скорости работы системы
 - качеству результатов работы

- Какой алгоритм сортировки лучше: «быстрая» или «пузырьком»?
- Какая IR модель лучше: TF-IDF или BM25?
- Можно оценивать по:
 - скорости работы системы понятно как измерять
 - качеству результатов работы непонятно как измерять

- Данные:
 - Коллекция документов
 - Набор запросов
 - Разметка информация о том, для какого запроса какой документ является релевантным

- Данные:
 - Коллекция документов
 - Набор запросов
 - Разметка информация о том, для какого запроса какой документ является релевантным
- Предположения:
 - Релевантность документа запросу объективно понятна
 - Все релевантные документы коллекции известны
 - Все релевантные документы одинаково сложно найти (нет влияния на перфоманс)
 - Релевантность документа не зависит от релевантности других документов

- У пользователя есть потребность
- Потребность формулируется в виде запроса
- Документы могут быть релевантными и нерелевантными
- Идеальная поисковая система возвращается все и только релевантные документы

Сравнение нескольких IR систем

- Запрос $Q = \{q_1, q_2, \dots, q_n\}$
- В коллекции есть 8 документов, релевантных запросу

Set-based Metrics

Precision, recall

•
$$precision = \frac{retrieved_relevant}{retrieved} = \frac{\#TP}{\#TP + \#FP}$$
• $recall = \frac{retrieved_relevant}{total_relevant} = \frac{\#TP}{\#TP + \#FN}$

Confusion matrix	Retrieved	Not retrieved
Relevant	TP	FN
Irrelevant	FP	TN

Комбинация Precision и Recall

• $F_1 - score$ — среднее гармоническое Precision и Recall:

$$F_1 = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Комбинация Precision и Recall

• $F_1 - score$ — среднее гармоническое Precision и Recall:

$$F_1 = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

• Больше гибкости — F_{β} — score:

$$F_1 = \frac{(\beta^2 + 1) \cdot Precision \cdot Recall}{\beta^2 \cdot Precision + Recall}$$

Комбинация Precision и Recall

• $F_1 - score$ — среднее гармоническое Precision и Recall:

$$F_1 = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

• Больше гибкости — F_{β} — score:

$$F_{\beta} = \frac{(\beta^2 + 1) \cdot Precision \cdot Recall}{\beta^2 \cdot Precision + Recall}$$

- β контролирует относительную важность Precision и Recall :
 - $\beta = 1 \implies Precision$ и Recall равно важны ($F_1 score$)
 - $\beta = 3 \implies Recall$ в 3 раза важнее, чем Precision

Set-based Metrics

Precision, recall

- *Precision*: измеряет способность возвращать релевантные документы в топе выдачи
- Recall: измеряет способность находить все релевантные документы коллекции

Set-based Metrics

Precision, recall

- *Precision*: измеряет способность возвращать релевантные документы в топе выдачи
- Recall: измеряет способность находить все релевантные документы коллекции
- С увеличением количества возвращаемых системой документов:
 - больше шансов найти все релевантные документы: $Recall \uparrow$
 - больше шансов найти больше нерелевантных документов: $Precision \downarrow$

Set-based metrics

- Рассмотрим 2 системы А и В
- Обе системы вернули 10 документов
- Обе системы вернули 5 релевантных документов
- Precision, Recall и F_1 score для этих двух систем равны

Set-based metrics

- Рассмотрим 2 системы А и В
- Обе системы вернули 10 документов
- Обе системы вернули 5 релевантных документов
- Precision, Recall и F_1 score для этих двух систем равны
- Но правда ли, что они имеют одинаковое качество?

Precision@K

- К параметр
- Измеряет Precision для top-K найденных документов
- Важно, что K зафиксирован для всех систем одинаковым

R—Precision

- Предположим, что мы знаем R число документов, релевантных запросу, в коллекции
- R параметр, специфичный для запроса
- Важно, что R разный для разных запросов
- Мера «идеальности» системы

Average Precision (AP)

Rank	Туре	Recall	Precision	
1	Rel	0.2	1.0	
2	Non-Rel			
3	Rel	0.4	0.67	
4	Non-Rel			
5	Non-Rel			
6	Rel	0.6	0.5	
-	Rel	0.8	0.0	
-	Rel	1.0	0.0	

Average Precision (AP)

Rank	Туре	Recall	Precision
1	Rel	0.2	1.0
2	Non-Rel		
3	Rel	0.4	0.67
4	Non-Rel		
5	Non-Rel		
6	Rel	0.6	0.5
-	Rel	0.8	0.0
-	Rel	1.0	0.0

$$AP = \frac{1}{5} \cdot \left(1 + \frac{2}{3} + \frac{3}{6}\right)$$

Average Precision (AP)

Rank	Туре	Recall	Precision
1	Rel	0.2	1.0
2	Non-Rel		
3	Rel	0.4	0.67
4	Non-Rel		
5	Non-Rel		
6	Rel	0.6	0.5
∞	Rel	0.8	0.0
∞	Rel	1.0	0.0

$$AP = \frac{1}{5} \cdot \left(1 + \frac{2}{3} + \frac{3}{6}\right)$$

$$AP = \frac{1}{N_{rel}} \sum_{d_i \in Rel} \frac{i}{Rank(d_i)}$$

Нацелена на то, чтобы релевантные документы находились как можно выше

Mean Average Precision (MAP)

Mean Average Precision (MAP)

• Vital: документы, без которых запрос неполноценен

- Vital: документы, без которых запрос неполноценен
- Useful: документы, которые дают полный ответ на запрос и обладают полезными свойствами (например, авторитетность автора)

- Vital: документы, без которых запрос неполноценен
- **Useful**: документы, которые дают полный ответ на запрос и обладают полезными свойствами (например, авторитетность автора)
- Relevant+: документы, подходящие запросу

- Vital: документы, без которых запрос неполноценен
- **Useful**: документы, которые дают полный ответ на запрос и обладают полезными свойствами (например, авторитетность автора)
- Relevant+: документы, подходящие запросу
- Relevant—: документы, не подходящие запросу, но имеющие отношение к теме запроса

- Vital: документы, без которых запрос неполноценен
- **Useful**: документы, которые дают полный ответ на запрос и обладают полезными свойствами (например, авторитетность автора)
- Relevant+: документы, подходящие запросу
- Relevant—: документы, не подходящие запросу, но имеющие отношение к теме запроса
- Irrelevant: документы, совсем не подходящие запросу

- Vital: документы, без которых запрос неполноценен
- **Useful**: документы, которые дают полный ответ на запрос и обладают полезными свойствами (например, авторитетность автора)
- Relevant+: документы, подходящие запросу
- Relevant—: документы, не подходящие запросу, но имеющие отношение к теме запроса
- Irrelevant: документы, совсем не подходящие запросу

• N.B.: в ответе не обязательно содержатся все типы релевантностей

1. Цель оценки

Определить, насколько документ соответствует поисковому запросу пользователя, используя пятибалльную шкалу релевантности. Оценка должна быть объективной и основываться на содержании документа, его полезности и соответствии запросу.

2. Шкала релевантности

• Vital (5 баллов):

Документ является критически важным для запроса. Без него ответ на запрос будет неполным или недостаточным.

Пример: Запрос «как сделать СЛР» — официальное руководство от Красного Креста с пошаговой инструкцией.

Useful (4 балла):

Документ полностью отвечает на запрос и обладает дополнительными полезными свойствами, такими как авторитетность источника, структурированность, актуальность или уникальность информации. *Пример*: Запрос «лучшие практики SEO» — статья от известного эксперта с примерами и исследованиями.

• Relevant+ (3 балла):

Документ подходит запросу, но может быть недостаточно полным, авторитетным или полезным. *Пример*: Запрос «как вырастить помидоры» — статья с базовыми советами, но без деталей или научного обоснования.

• Relevant — (2 балла):

Документ не полностью подходит запросу, но имеет косвенное отношение к теме. *Пример*: Запрос «рецепт пиццы» — статья о истории пиццы без конкретных рецептов.

• Irrelevant (1 балл):

Документ совсем не подходит запросу и не имеет отношения к теме. Пример: Запрос «как починить велосипед» — статья о покупке автомобиля.

3. Критерии оценки

• Соответствие запросу:

- Документ должен напрямую отвечать на вопрос или соответствовать теме запроса
- Учитывайте синонимы, близкие по смыслу формулировки и контекст

• Полнота информации:

- Документ должен содержать достаточно информации для ответа на запрос
- Если запрос требует конкретных данных (например, инструкция, статистика), они должны быть представлены

• Авторитетность и надежность:

- Оценивайте источник информации. Официальные, экспертные или научные источники имеют больший вес
- Учитывайте наличие ссылок на исследования, цитаты экспертов или подтвержденные данные

• Актуальность:

• Информация должна быть актуальной на момент оценки. Устаревшие данные снижают релевантность

• Полезные свойства:

• Дополнительные преимущества, такие как структурированность, наличие иллюстраций, видео, таблиц или интерактивных элементов

4. Примеры оценки

Запрос	Документ	Оценка	Обоснование
Как испечь торт	Пошаговая инструкция с фото и видео от известного кулинарного блога	5 (Vital)	Полный ответ, полезные свойства (фото, видео), авторитетный источник
Как испечь торт	Подробный рецепт с объяснением техник выпечки от профессионального повара	4 (Useful)	Полный ответ, полезные свойства (техники, объяснения), авторитетный источник
Как испечь торт	Статья с общими советами по выпечке без конкретного рецепта	3 (Relevant+)	Подходит запросу, но не дает полного ответа
Как испечь торт	Статья о истории тортов	2 (Relevant –)	Косвенно относится к теме, но не отвечает на запрос
Как испечь торт	Новости о футбольном матче	1 (Irrelevant)	Не имеет отношения к запросу

5. Рекомендации

- Внимательно читайте запрос и документ. Учитывайте контекст и возможные интерпретации запроса.
- Не оценивайте документ только по заголовку. Изучайте содержание.
- Если запрос допускает несколько интерпретаций, оценивайте документ по наиболее вероятному смыслу.
- Избегайте субъективных оценок. Ориентируйтесь на факты и объективные критерии.

6. Частые ошибки

- **Переоценка**: Присвоение высокой оценки (Vital/Useful) документу, который не полностью отвечает на запрос.
- **Недооценка**: Присвоение низкой оценки (Relevant /Irrelevant) документу, который частично или полностью отвечает на запрос.
- **Игнорирование контекста**: Неучет синонимов или альтернативных формулировок в запросе.

7. Проверка и контроль

- Регулярно сверяйте свои оценки с эталонными примерами.
- Если возникают сомнения, обсудите их с командой или руководителем.
- Следите за обновлениями в критериях оценки.

Cumulative Gain

- Пусть наши документы могут иметь важности: $G = \{0, 1, 2, 3\}$
- Пусть наша выдача состоит из документов важностей соответственно:

$$G = \{3, 2, 3, 0, 0, 1, 2, 2, 3, 0, \dots\}$$

Cumulative Gain:

$$CG@K = \sum_{i=1}^{K} G[i]$$

• CG@1 = 3, CG@2 = 3 + 2 = 5, CG@5 = 3 + 2 + 3 + 0 + 0 = 8, ...

Discounted Cumulative Gain

- Пусть наши документы могут иметь важности: $G = \{0, 1, 2, 3\}$
- Пусть наша выдача состоит из документов важностей соответственно:

$$G = \{3, 2, 3, 0, 0, 1, 2, 2, 3, 0, \dots\}$$

Discounted Cumulative Gain:

$$DCG@K = \sum_{i=1}^{K} \frac{G[i]}{log(i+1)}$$

•
$$DCG@1 = \frac{3}{log(2)}$$
, $DCG@2 = \frac{3}{log(2)} + \frac{2}{log(3)}$, ...

Normalized Discounted Cumulative Gain

- Пусть наши документы могут иметь важности: $G = \{0, 1, 2, 3\}$
- Пусть наша выдача состоит из документов важностей соответственно:

$$G = \{3, 2, 3, 0, 0, 1, 2, 2, 3, 0, \dots\}$$

Normalized Discounted Cumulative Gain:

$$nDCG@K = rac{DCG@K}{iDCG@K}$$
, где

• iDCG@K = DCG@K при отсортированном по убыванию G: $G_{ideal} = \{3, 3, \ldots, 3, 2, 2, \ldots, 2, 1, \ldots, 1, 0, \ldots\}$

DCG and nDCG

- В поисковой системе важно сначала оптимизировать DCG, а уже затем оптимизировать nDCG:
 - При оптимизации DCG мы обращаем больше внимания на те запросы, по которым существуют хорошие результаты, и мы стараемся хорошо работать на них
 - Оптимизация nDCG осуществляет оптимизацию «длинного хвоста» запросов

Информационный поиск и ранжирование Качество поиска

Андросов Дмитрий, 03.03.2025, Al Masters