六. 自相关 (Matlab)

1. 读取数据

1978-1996年间国民生产总值与进出口总额

年份	1978	1980	1985	1987	1988	1989	1990
GDP (x)	3624.1	4517.8	8989.1	11954.5	14922.3	16918	18598
进出口总额 (y)	206.4	381.4	696	826.5	1027.1	1117	1154.4
年份	1991	1992	1993	1994	1995	1996	
GDP (x)	21662.5	26652	34561	46670	57494.9	67560	
进出口总额 (y)	1356.3	1655.3	1957	2366.2	2808.6	2899	

```
x=[3624.1; 4517.8; 8989.1; 11954.5; 14922.3; 16918; 18598; 21662.5; 26652; 34561; 46670; 57494.9; 67560]; 
y=[206.4; 381.4; 696; 826.5; 1027.1; 1117; 1154.4; 1356.3; 1655.3; 1957; 2366.2; 2808.6; 2899];
```

2. 自相关性判断

2.1 图解法

按时间顺序会制残差图

- 若多个点连续在 t 轴上方, 或多个点连续位于 t 轴下方, 则模型可能存在正相关;
- 若相邻的散点总是倾向于分布在 t 轴的上下两侧,则模型可能存在负相关。

```
stats=regstats(y,x,'linear',{'r'});
plot(stats.r,'*','markersize',20);
hold on;
line([1:length(stats.r)]',stats.r,'color','r','linewidth',3);
plot([0,14],[0,0],'--','linewidth',3);
xlabel('t');
ylabel('r');
```


2.1 DW检验

```
dw= (norm(diff(stats.r))).^2/(norm(stats.r)).^2;
```

求解可得dw = 0.64811814206819 可知模型存在一阶正相关自相关的处理:

3. 自相关的处理

杜宾两步法

```
b=regress(y,[ones(13,1) lagmatrix(y,1) x lagmatrix(x,1)]);
stats3=regstats(y-b(2)*lagmatrix(y,1),x-b(2)*lagmatrix(x,1),'linear',
{'tstat','beta','r'}); stats3.tstat.se;
stats3.tstat.pval;
stats3.tstat.beta;
rr=stats3.r(2:13,:);
dw=(norm(diff(rr)))^2/(norm(rr))^2;
```

查表得dw= 1.331, 因此不存在自相关。

由135.6720/(1-b(2)) = 2440.4 得,处理自相关的模型为: y=2440.4+0.0245x