Lösungen Testat STOC SW10

Daniel Winz

16. Mai 2013 00:18

Inhaltsverzeichnis

1	Aufgabe 1	3
	1.1 a	3
	1.2 b	3
	1.3 c	3
	1.4 d	4
	1.5 e	5
	1.6 f	6
	1.7 g	7
	1.8 h	8
	1.9 i	8
	1.10 j	9
	1.11 k	10
	1.12 1	11
2	Aufgabe 2	11
	2.1 a	11
	2.2 b	12
	2.3 c	12
	2.4 d	12
	2.5 e	12
	2.6 f	12
	2.7 g	13
	2.8 h	13
	2.9 i	13
	Af., 1 - 9	10
3	Aufgabe 3	13 13
	3.1 a	
	3.2 b	13
	3.3 c	13
	3.4 d	14
4	Aufgabe 4	14
_	4.1 a	14
	4.2 b	15

5	Aufgabe 5	15
	.1 a	15
	.2 b	15
	.3 c	15
	.4 d	15
6	Aufgabe 6	16
	.1 a	16
	2 h	16

1 Aufgabe 1

Zunächst eine Korrektur:

Rauchmelder älteren Herstelldatums enthielten radioaktives Material. Bei aktuell hergestellten Brandmeldern kommen durchwegs andere Detektionsverfahren zum Einsatz. Siehe auch http://www.emsc.ch/Publikationen/Elektronik/DerIonisationsBrandmelderSEV06-623.pdf

> anzexp=c(18, 28, 56, 105, 126, 146, 164, 161, 123, 101, 74, 53, 23, 15, 9, 5) > anzer=2:17

1.1 a

> sum(anzexp*anzzer)

[1] 10102

1.2 b

- > repmess=rep(anzzer,anzexp)
- > hist(repmess,breaks=c(0,2:16,25),freq=TRUE)

Histogram of repmess

1.3 c

> hist(repmess,breaks=c(0,2:16,25),freq=FALSE)

1.4 d
> plot(anzzer,anzexp/(sum(anzexp)),type='h')

1.5 €

- > plot(anzzer,anzexp/(sum(anzexp)),type='h')
- > meanmess=mean(repmess)
- > abline(v=meanmess,col='red')
- > sdmess=sd(repmess)
- > abline(v=meanmess+sdmess,col='green')
- > abline(v=meanmess-sdmess,col='green')

1.6 f

- > anzexpsum=cumsum(anzexp);
 > plot(anzzer,anzexpsum/(sum(anzexp)),type='s')

1.7

Poissonverteilung mit Lambda = Mittelwert (siehe e)

- > plot(0:30,dpois(x=0:30,lambda=meanmess),type='h')
- > abline(v=meanmess,col='red')
- > abline(v=meanmess+sqrt(meanmess),col='green')
 > abline(v=meanmess-sqrt(meanmess),col='green')

1.8 h

> 1e6*(1-ppois(q=19,lambda=meanmess))

[1] 442.8934

1.9 i

> plot(0:30, dnorm(x=0:30, mean=meanmess, sd=sqrt(meanmess)), type='h')

 $1.10 \quad \textbf{j} \\ > plot(0:300, dexp(x=seq(from=0, to=30, by=0.1), rate=1/meanmess), type='h')$

1.11 k

- > plot(0:300,dexp(x=seq(from=0,to=30,by=0.1),rate=1/meanmess),type='h')
- > abline(v=meanmess*10,col='red')
- > abline(v=2*meanmess*10,col='green')

1.12 l

$\mathbf{2}$ Aufgabe 2

2.1 \mathbf{a}

- > plot(0:70,dnorm(x=0:70,mean=32,sd=6),type='h')
- > abline(v=26,col='green')
 > abline(v=38,col='green')

2.2 b

> pnorm(q=40,mean=32,sd=6)

[1] 0.9087888

2.3 c

> pnorm(q=27,mean=32,sd=6)

[1] 0.2023284

2.4 d

> qnorm(p=0.975,mean=32,sd=6)

[1] 43.75978

2.5 e

> qnorm(p=0.1,mean=32,sd=6)

[1] 24.31069

2.6 f

> pnorm(q=38,mean=32,sd=6)-pnorm(q=26,mean=32,sd=6)

[1] 0.6826895

- 2.7 g
- 2.8 h
- 2.9 i

3 Aufgabe 3

3.1 a

- 1. Modell $X \sim N(\mu, \sigma_x^2), \sigma_x$ bekannt
- 2. Nullhypothese $H_0: \mu = \mu_0$ $H_A: \mu > \mu_0$
- 3. Teststatistik

$$Z = \frac{\sqrt{n} \cdot (\bar{X}_n - \mu_0)}{\sigma_x}$$

Verteilung der Teststatistik unter $H_0: Z \sim N(0,1)$

- 4. Signifikanzniveau $\alpha = 0.05$
- 5. Verwerfungsbereich der Teststatistik $K = [\Phi^{-1}(1-\alpha), \infty]$
 - > qnorm(p=0.95)

[1] 1.644854

6. Testentscheid $Z=\frac{\sqrt{16\cdot(204.2-200)}}{10}=1.68$ Z liegt im Verwerfungsbereich $\to H_0$ kann verworfen werden.

3.2 b

> 1-pnorm(q=205,mean=205,sd=10)

[1] 0.5

3.3 c

> pnorm(q=205,mean=200,sd=10)

[1] 0.6914625

3.4 d

1. Modell

 $X \sim N(\mu, \sigma_x^2), \sigma_x$ wird durch $\hat{\sigma_x}$ geschätzt.

2. Nullhypothese

$$H_0: \mu = \mu_0$$

 $H_A: \mu > \mu_0$

3. Teststatistik

$$T = \frac{\sqrt{n} \cdot (\bar{X}_n - \mu_0)}{\hat{\sigma}_x}$$

Verteilung der Teststatistik unter $H_0: T \sim t_{15}$

4. Signifikanzniveau

 $\alpha = 0.05$

5. Verwerfungsbereich der Teststatistik

$$K = [t_{n-1;1-\alpha}, \infty]$$

[1] 1.75305

$$T = \frac{\sqrt{16} \cdot (204.2 - 200)}{10} = 1.68$$

6. Testentscheid $T = \frac{\sqrt{16} \cdot (204.2 - 200)}{10} = 1.68$ T liegt im Verwerfungsbereich $\rightarrow H_0$ kann verworfen werden.

Aufgabe 4

> v=c(71,69,67,68,73,72,71,71,68,72,69,72)

4.1 \mathbf{a}

1. Modell

Xbeliebige Verteilung

2. Nullhypothese

 $H_0: \mu = \mu_0 \ (\mu \text{ ist der Median})$

 $H_A: \mu < \mu_0$

3. Teststatistik

V: Anzahl X_i mit $(X_i < \mu_0)$

Verteilung der Teststatistik unter $H_0: V \sim Bin(n, \pi_0)$ mit $\pi_0 = 0.5$

4. Signifikanzniveau

 $\alpha = 0.05$

5. Verwerfungsbereich der Teststatistik

$$K = [0, c_u]$$

cu=qbinom(p=0.05,size=length(v),prob=0.5)

6. Testentscheid

> sum(v<70)

[1] 5

 \rightarrow Nullhypothese kann nicht verworfen werden.

4.2 b

> wilcox.test(v,mu=70,alternative="less")

Wilcoxon signed rank test with continuity correction

data: v

V = 44.5, p-value = 0.6838

alternative hypothesis: true location is less than 70

5 Aufgabe 5

5.1 a

- gepaarte Stichproben Messung vor und nach dem Rauchen gehören zusammen.
- einseitiger Test Nur Erhöhung interessiert
- Die Anhäufung der Blutplättchen ändert sich nicht.
- Die Anhäufung der Blutplättchen steigt an.

5.2 b

- gepaarte Stichproben Paare mit jeweils nahezu gleichen Bedingungen
- einseitiger Test Nur Erhöhung interessiert
- Die Höhe beider Pflanzen ist identisch.
- Die fremdbefruchteten Pflanzen sind höher.

5.3 c

- ungepaarte Stichproben keine Paarbildung
- zweiseitiger Test Veränderung interessiert
- Der systolische Blutdruck ändert sich nicht.
- Der systolische Blutdruck ändert sich.

5.4 d

- ungepaarte Stichproben keine Paarbildung
- zweiseitiger Test Veränderung interessiert
- Die Form des Eisens hat keinen Einfluss auf die Aufnahme.
- Die Form des Eisens hat einen Einfluss auf die Aufnahme.

6 Aufgabe 6

```
> d.nebel <- read.table("sw10_6.dat",header=T,sep=",")
> nebel.v=d.nebel[,2]
> nebel.dist=d.nebel[,3]
```

6.1 a

> plot(nebel.v,nebel.dist)

6.2 b

> lm(nebel.dist ~ nebel.v)

Call:

lm(formula = nebel.dist ~ nebel.v)

Coefficients:

(Intercept) nebel.v 0.399098 0.001373

> plot(nebel.v,nebel.dist)

> abline(lm(nebel.dist ~ nebel.v))

