Multi-Objective Portfolio Optimization

Parastoo Azizeddin Amirreza Hatamipour

outline

- Introduction
- Problem definition
- Multi-objective Optimization Definition
- Solving Methods
- Methodology & Approach
- Result

Introduction

- financial portfolio selection problem
- finding the most appropriate stocks to hold, based on fluctuations of each of the stocks.
- Goal → reaching high returns with low risks

Problem definition

we can formulate the problem in the following three different ways

1. Minimizing the risk with the constraint of having lower limit on return value:

```
Minimize F_{\Omega}(\mathbf{w})

s.t \mathbb{E}(\mathbf{R}(\mathbf{w})) \ge R^{-1}

1^{T}w = 1

w_{i} \ge 0, \forall_{i} = 1, 2, \dots, n
```

Problem definition

2. Maximizing the return with the constraint of having upper limit on risk value:

```
Maximize \mathbb{E}(R(w))

s.t \ F_{\Omega}(w) \leq L

1^{T}w = 1

w_{i} \geq 0, \ \forall_{i} = 1, 2, \dots, n
```

Problem definition

3. Design a multi-objective problem for maximizing return while minimizing risk level

Maximize
$$\mathbb{E}(R(w))$$

Minimize $F_{\Omega}(w)$
 $s.t \ 1^{T}w = 1$
 $w_{i} \ge 0, \ \forall_{i} = 1, 2, \dots, n$

Multi-objective Optimization Definition

- are realistic models for many complex engineering optimization problems.
- A reasonable solution: is to investigate a set of solutions, each of which satisfies the objectives at an acceptable level without being dominated by any other solution
- A general multi-objective optimization problem can be described as a vector function:

$$min/max \ x = f(x) = (f_1(x), f_2(x), ..., f_n(x))$$
 $subject \ to \ x = (x_1, x_2, ..., x_m) \in X$
 $y = (y_1, y_2, ..., y_m) \in Y$

Multi-objective optimization in Portfolio optimization

we write the problem in multi-objective format:

```
Minimize (-\mathbb{E}(R(w)), F_{\Omega}(w))

s.t \ 1^{T}w = 1

x \ge 0
```

Our Novel Contribution

- We changed the objective function in order to have better portfolio optimization
- Added the term called "Score":

```
Minimize (-\mathbb{E}(R(w)), F_{\Omega}(w), -\text{Score}(x))

s.t \ 1^Tw = 1

x \ge 0
```

Genetic Algorithms

Solving Methods: NGSA-II

```
for each p \in P
  S_p = \emptyset
 f or each q \in P
    if (p < q) then
                                        If p dominates q
     S_P = S_P \cup q
                                       Add q to the set of solutions dominated
   elseif (q \prec p) then
     n_{p} = n_{p} + 1
                                       Increment the domination counter of p
 if n_n = 0 then
                                       p belongs to the first front
     p_{rank} = 1
                                     Initialize the f ront counter
while F_i \neq \emptyset
   Q = \emptyset
                                     Used to store the members of the next fr
   for each p \in F_i
      for each q \in S_p
          n_q = n_q - 1
          if n_a = 0 then
                                     q belongs to the next f ront
             q_{rank} = i + 1
             Q = Q \cup q
i = i + 1
F_i = Q
```

Solving Methods: SPEA-2 Algorithms

input: N population size

 \overline{N} archive size

T maximum nember of generations

Output: A nondominated set

Step 1: Initialization: Generate an initial population P_0 and create the empty archive (external set) $\overline{P_0} = \emptyset$. set t = 0.

Step 2: Fitness assignment: calculate f itness values of individuals in P_t and P_t

Step3: Environmental selection: Copy all nondominated individuals in P_t and $\overline{P_t}$ to $\overline{P_{t+1}}$.

If size of $\overline{P_{t+1}}$ exceeds N then reduce $\overline{P_{t+1}}$ by means of the truncation operator, otherwise

if size of $\overline{P_{t+1}}$ is less than \overline{N} then fill $\overline{P_{t+1}}$ with dominated individuals in P_t and $\overline{P_t}$

Solving Methods: SPEA-2 Algorithms

Step 4: Termination: If $t \ge T$ or another stopping criterion is satisfied then set A to the set of decision vectors represented by the nondominated individuals in $\overline{P_{t+1}}$.

Stop.

Step 5: Mating selection: Perf orm binary tournament selection with replacement on $\overline{P_{t+1}}$ in order to fill the mating pool.

Step 6: Variation: Apply recombination and mutation operators to the mating pool and set P_{t+1} to the resulting population. Increment generation counter (t = t + 1) and go to Step 2.

Solving Methods: SPEA-2

the fitness assignment in a maximization problem:

Methodology & Approach: Data

- monthly return of 10 shares in the Iran stock market:
 - 1. Mellat bank (MLT)
 - 2. hiweb (HW),
 - 3. Tondgooyan Petrochemical (TOP)
 - 4. Iran national copper industry (NCI)
 - 5. Persian Golf Petrochemical (PGP)
 - 6. Iran khodro Investigation (IKHI)
 - 7. Ghadir Investigation (GHI)
 - 8. Shooyandeh Industry (SHI)
 - 9. Bandar Abbas oil refining(BAOR)
 - 10. Barekat Pharmacy (BPH)
- the data collected for 12 months.

2 cases with different objective functions

```
Case 1:
               Minimize (-\mathbb{E}(R(w)), F_{\Omega}(w))
               s.t 1^{\mathrm{T}}w = 1
               x \ge 0
Case 2:
               Minimize (-\mathbb{E}(R(w)), F_{\Omega}(w), -Score(x))
               s.t 1^{\mathrm{T}} w = 1
```

 $x \ge 0$

NGSA-2 algorithm

SPEA-2 algorithm

0.04

0.03

0.02

0.01

-0.06

-0.055

-0.05

-0.045

1 st Objective

-0.04

-0.035

-0.03

Example of normal case using NGSA-II:

	Solution
Retrun	0.04809
Risk	0.021445

Portfolio in case 1

using SPEA-2

algorithm:

	Solution
MLT	0.0167
HW	0.0018
TOP	0.0004
NCI	0.0000
PGP	0.0581
IKHI	0.0014
GHI	0.2871
SHI	0.0009
BAOR	0.6333
BPH	0.0003
Retrun	0.046179
Risk	0.050178

Example of normal case using NGSA-II:

	Solution
Retrun	0.061405
Risk	0.078709
Score	11.345

Portfolio in case 2

using SPEA-2

algorithm:

	Solution
MLT	0.0362
HW	0.0000
TOP	0.0026
NCI	0.0000
PGP	0.0000
IKHI	0.0229
GHI	0.3034
SHI	0.0000
BAOR	0.6348
BPH	0.0000
Retrun	0.045311
Risk	0.046755
Score	8.007

Future Work

Add term liquidity to objective func

Minimize
$$(-\mathbb{E}(R(w)), F_{\Omega}(w), -\text{Score}(x), -\text{Liquidity}(x))$$

 $s.t \ 1^Tw = 1$
 $x \ge 0$

Thanks for your attention!