- 1 For the function $f(x,y) = \cos(x+y) \exp(x-y)$ calculate $\partial f/\partial x$, $\partial f/\partial y$, $\partial^2 f/\partial x^2$, $\partial^2 f/\partial y^2$, $\partial^2 f/\partial x \partial y$, $\partial^2 f/\partial y \partial x$. Use your results to show that $\partial^2 f/\partial x^2 = -\partial^2 f/\partial y^2$ and $\partial^2 f/\partial x \partial y = \partial^2 f/\partial y \partial x$.
- 2 Let F(t) be the value of the function $f(x,y,z) = \cos(xy)z$ restricted to the helix $x = \cos(t)$, $y = \sin(t)$, z = t which is parametrised by t and $-\infty < t < \infty$. Calculate dF/dt as a function of t (i) directly by substituting the equations of the helix into f(x,y,z) to calculate F(t) as a function of t and then differentiating, and (ii) using the chain rule. Note how similar these approaches are.
- 3 If $\mathbf{a} = \sin 2t \, \mathbf{e_1} + e^t \, \mathbf{e_2} (t^3 5t) \, \mathbf{e_3}$, find
 (a) $d\mathbf{a}/dt$, (b) $||d\mathbf{a}/dt||$, (c) $d^2\mathbf{a}/dt^2$, (d) $||d^2\mathbf{a}/dt^2||$, all at t = 0.
- 4 Find a unit vector tangent to the space curve $x = t^3$, y = t, $z = t^2$ at t = 2.
- 5 Use the chain rule to calculate df/dt when $f(\mathbf{x}) = \exp(-||\mathbf{x}||^2)$ is restricted to the curves:
 - (a) $\mathbf{x} = \mathbf{e_1} \log t + \mathbf{e_2} t \log t + \mathbf{e_3} t,$
 - (b) $(x, y, z) = (\cosh t, \sinh t, 0).$
- 6 Show that the curve C, given as points $\underline{x}(s) = \left(\sin(s/\sqrt{2}), \cos(s/\sqrt{2}), s/\sqrt{2}\right)$, is the arc-length parameterisation of a helix, that is that $\left|\frac{dx}{ds}\right| = 1 \quad \forall s$.
- 7 Describe the curve $\gamma : \underline{x}(t) = (2t+1, t-3, 6-2t)$. Find the arc-length parameterisation of γ , that is, re-parameterise the curve in terms of a parameter s, such that $\left|\frac{d\underline{x}(s)}{ds}\right| = 1 \ \forall s$.
- 8 *Harder:* Let **t** denote the unit tangent vector to a space curve $\mathbf{a} = \mathbf{a}(s)$ in \mathbb{R}^3 , where $\mathbf{a}(s)$ is assumed differentiable, and where s measures the arclength from some fixed point on the curve. Define the unit vector $\mathbf{n} = \frac{1}{\kappa} \frac{d\mathbf{t}}{ds}$, where κ is a scalar. Also define $\mathbf{b} = \mathbf{t} \times \mathbf{n}$ as the unit binormal vector to the space curve.

By considering the derivative of the product $\mathbf{t}.\mathbf{t}$, show that the 3 vectors $\mathbf{t}, \mathbf{n}, \mathbf{b}$ form an orthonormal basis of \mathbb{R}^3 .

Hence, prove that

$$\frac{d\mathbf{b}}{ds} = -\tau \mathbf{n}$$
, and $\frac{d\mathbf{n}}{ds} = \tau \mathbf{b} - \kappa \mathbf{t}$,

where τ is some real constant.

These formulae are of fundamental importance in differential geometry. They involve the curvature κ and the torsion τ . The reciprocals of these are the radius of curvature $(\rho = \frac{1}{\kappa})$ and the radius of torsion $(\sigma = \frac{1}{\tau})$.

Bonus 1 If $f(x,y) = F(r,\theta)$ with $x = r\cos\theta$ and $y = r\sin\theta$, use the chain rule to compute $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$ in terms of partial r- and θ - derivatives of F, and hence find the general rotationally-symmetric solution to $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ in two dimensions which is non-singular away from the origin.

Suggestion: Begin by writing $\partial r/\partial x$, $\partial r/\partial y$, $\partial \theta/\partial x$ and $\partial \theta/\partial y$ as functions of r and θ .