厦门大学《微积分 I-2》课程期末试卷

试卷类型:(理工类A卷) 考试时间:2021.06.18

一、判别下列级数的敛散性: (第一小题 6 分,第二小题 8 分,共 14 分)

1	$\sum_{n=1}^{\infty} (2n)!$	
1.	$\sum_{n=1}^{\infty} \overline{3^n(n!)}^n$	2

得 分	
评阅人	

2. $\sum_{n=1}^{\infty} (-1)^n \left(\ln \frac{n+1}{n} + \frac{\sin n}{n^2} \right)$.

二、(每小题8分,共16分) 求下列微分方程满足所给初值条件的特解:

1. $y^2y'' + (y')^3 = y(y')^2$, y(0) = 1, y'(0) = 1;

得 分	
评阅人	

2. $y'' + y = 2\sin x$, y(0) = 0, y'(0) = 1.

三、(本题 8 分) 计算三重积分 $\iint\limits_{\Omega} \sqrt{x^2+y^2+z^2} \; \mathrm{d}x\mathrm{d}y\mathrm{d}z$,其中 Ω

得 分 评阅人

是由球面 $z = x^2 + y^2 + z^2$ 所围成的有界闭区域。

四、(本题 8 分) 计算第一类曲线积分 $I=\oint_L (y^2+xy^2) \mathrm{d} s$,其中 L 为星形线 $x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$ 。

得 分	
评阅人	

五、(本题 10 分) 计算第二类曲线积分 $I = \int_L \frac{y \, \mathrm{d}x - x \, \mathrm{d}y}{x^2 + y^2}$,其中 L 为

得 分	
评阅人	

曲线 $y = \frac{\pi}{2} \cos x$ 从点 $(0, \frac{\pi}{2})$ 到点 $(\frac{\pi}{2}, 0)$ 的一段有向弧。

六、(本题 8 分) 计算第一类曲面积分 $I = \iint_{\Sigma} xz + yz + z^2 \, dS$, 其中

得 分	
评阅人	

 Σ 为平面x + y + z = 1在第一卦限的部分。

七、(本题 10分) 计算第二类曲面积分

$$I = \iint_{\Sigma} (y^2 + z^2) x \, dy \, dz + (x^2 + z^2) y \, dz \, dx + (x^2 + y^2) z \, dx \, dy,$$

得 分	
评阅人	

其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ (0 $\leq z \leq 1$)的上侧。

八、(**本题 10 分**) 求幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{2n+2}{(2n+1)!} x^{2n+1}$ 的和函数。

得 分	
评阅人	

九、(本题 10 分) 将函数 $f(x) = \ln(2 - x - x^2)$ 展开成 x 的幂级数。

得 分	
评阅人	

十、(本题 6 分) 设级数 $\sum_{n=1}^{\infty} u_n$ 的一般项都不为零,且满足 $\lim_{n\to\infty} \frac{n}{u_n} = 1$ 。

得 分	
评阅人	

证明:级数 $\sum_{n=1}^{\infty} (-1)^n (\frac{1}{u_{n+1}} + \frac{1}{u_n})$ 为条件收敛。