BRAC UNIVERSITY Department of Computer Science and Engineering

Examination: Quiz - 2 Duration: 25 minutes

Semester: Fall 2024 Full Marks: 15

CSE 340: Computer Architecture

Name: Solution ID: Section:

Write RISC-V assembly code that checks if the number stored in register X25 is divisible by 2 or not. If divisible then store 1 in register X26 otherwise store 0. [4] Answer:

In the RISC-V architecture, each instruction is encoded as a 32-bit binary sequence. In this 2. standard format, the rs (source register) and rd (destination register) fields are typically 5 bits in

Suppose we are working with a prototype version of RISC-V that includes 60 registers. For this prototype version, what would be the required size of the rs or rd field? [3]

Find the RISC-V code of the following machine Codes.

3. Find the RISC-V Could go in Ox00AA9B93 f6

Answer: 0000 0000 1010 1010 1001 1011 1001 0011

a hex number imme rast f3 rad opcode > Itype

S119 X23, X21, 10 to find the imstruction ii. 0x08C2BAB3 Answer: 0000 1000 1100 0010: 1011 1010 1011 0011

frimet & 12 1201 f3 rd opcode > Rtype

funct 3 + funct & to find

the imtourtion

4. Although SLLI is an I-type instruction, the immediate field is restricted to 6 bits. Explain the reason for this constraint? [2]

Answer: Register Size = 64 bits. If we left/right shift a mumber by 64 bits, the value becomes 0. So, at max we can shift 63 times. [valid shifting]

Hence, imm. field size in restricted to 6 bits.

Format	Instruction	Opcode	Funct3	Funct7/Funct6
R	ADD	0110011	001	0000000
	SUB	0110011	110	0000001
	AND	0110011	010	0000001
	OR	0110011	011/	0000100 /
	SLL	0110011	101	0000100
1	LD	0000011	000	N/A
	LW	0000011	010	N/A
	LH	0000011	011	N/A
	LB	0000011	001	N/A
	ADDI	0010011	000	N/A
	SLLI	0010011	001	000000
	SRLI	0010011	010	000000
	ORI	0010011	011	N/A
S	SD	0100011	000	N/A
	sw	0100011	001	N/A
	SH	0100011	010	N/A
	SB	0100011	011	N/A