PageRank

Serve também de revisão dos conceitos essenciais das aulas anteriores sobre Cadeias de Markov

Motivação

E um pouco de História ..

Como descobrir informação na web?

- Primeiras tentativas:
 - Listas criadas por humanos
 Directórios da Web
 - Yahoo, DMOZ, LookSmart
- Segunda geração: Web Search
 - Information Retrieval:
 - Procura de documentos relevantes num conjunto pequeno e de confiança
 - Artigos de jornais, Patentes, etc.
 - MAS: A Web é gigantesca, cheia de documentos sobre os quais não temos garantias de ser de confiança, cheia de SPAM, etc.

A Web como um grafo

A Web como um Grafo

- Nós /nodos/vértices : Páginas Web
- Ligações/arcos: Hyperlinks

Uma pequena parte das páginas da UA

Outros grafos na web: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Outros grafos na web: Redes de informação

Citation networks and Maps of science

[Börner et al., 2012]

Estrutura do grafo

As páginas da web Não são todas igualmente "importantes"

www.joe-schmoe.com vs. www.ua.pt

Existe um grande diversidade nas ligações

 Ideia: Usar a estrutura das ligações para saber quais as páginas "importantes"

Os primeiros motores de procura

- Baseavam-se em percorrer (crawl) a web e listar os termos (palavras ou outras sequências de caracteres excluindo os espaços) de cada página, num índice invertido
- Um índice invertido/inverson (inverted index) é uma estrutura de dados que torna simples, dado um termo, descobrir (apontar para) todas as páginas em que o termo ocorre.
 - Asssunto da área de Information Retrieval

Ataques de spam

 Rapidamente estes primeiros motores de procura foram atacados.

- Sendo sensíveis às palavras nas páginas, facilmente os detentores de páginas com menos escrúpulos podiam inflacionar a importância das suas páginas:
 - Adicionando muitas cópias de uma ou várias palavras ao conteúdo da página e tornando essa parte invisível quando mostrada num browser
 - Usando o motor de procura para saber a página mais importante segundo o seu algoritmo e copiando o seu conteúdo para as suas páginas (mantendo esta parte invisível no browser) 2019-2020 MIECT/LEI

Contribuição da Google

 Não calcular a relevância das páginas apenas com base nos termos que contém mas usar também informação sobre as ligações a essa página

- Desenvolvendo e patenteando o Pagerank
- Que começou como um projecto de investigação

Ideia base

Random surfers / Passeios aleatórios

- Simular onde passeios aleatórios (de surfistas aleatórios / random surfers) pelas páginas, começando numa página aleatória, tendem a passar mais se se escolherem aleatoriamente os links de saída de uma página (em que se encontram)
 - E permitindo que o processo se repita muitas vezes
- As páginas visitadas por muitos passeios (ou surfers) serão "mais importantes" do que páginas raramente visitadas.
- O Google dá preferência a páginas mais importante ao decidir quais as páginas a mostrar primeiro em resposta a um query
 - Mas obviamente as páginas têm de conter os termos ...

Versão base 'ideal'

- Consideremos a web como um grafo orientado (directed),
- em que as páginas são os nodos (ou vértices)
- e existe um arco (ou ligação) da página P_1 para a página P_2 se existe um ou mais links de P_1 para P_2
- Exemplo:
- Muito pequena rede: apenas 4 páginas
- A página A tem links para as outras 3
- A página B tem ligações apenas para a A e a D;
- A página C tem apenas um link, para a A
- E a página D tem links apenas para B e C

• • •

- Suponhamos que o surfista aleatório começa na página A:
- Existem links para B, C e D, logo o surfista estará de seguida numa dessas 3 páginas, com probabilidade 1/3 [1 a dividir pelos links de saída]
 - E probabilidade zero de estar em A
- O surfista aleatório B terá, no próximo passo, probabilidade 1/2 de estar em A, 1/2 de estar em D e 0 de estar em C

Questão

- Estes passeios permitem mesmo aproximar a noção intuitiva de "importância" de uma página?
- Possíveis Justificações:
 - Os utilizadores da web "votam com os seus pés". Tendem a colocar links para páginas que consideram boas ou com informação útil
 - E não ligam a páginas de má qualidade ou inúteis
 - O comportamento dos random surfers indica quais a páginas que utilizadores da web visitarão com maior probabilidade.
 - Os utilizadores visitam mais páginas úteis do que não úteis.
- Independentemente das justificações anteriores, este método provou na prática que é capaz de atribuir uma medida de "importância" que permite um bom desempenho em procuras na web.
- Veremos de seguida como funciona ...

Definição de pagerank

- O PageRank é uma função/algoritmo que atribui um número real a cada página da Web
 - (ou a porção dela que foi processada e as ligações obtidas)
 - Designamos esse número por pagerank
 - Quanto maior é o valor mais "importante" é a página.
- Baseia-se na ideia dos random surfers

- Não existe propriamente um algoritmo fixo, havendo variações do algoritmo
 - Que podem dar valores diferentes de pagerank

pagerank

• O pagerank (r) de uma página P_j é, por definição:

$$r(P_j) = \sum_{i} \frac{r(P_i)}{d_i}$$

sendo:

i o índice das páginas que apontam para P_j

 d_i o número de páginas para as quais P_i aponta ou seja, número de links de saída

Calculo do pagerank

- O pagerank de uma página depende do pagerank das páginas que têm links para ela
 - identificadas pelo índice i
- O que sugere um cálculo iterativo

$$r_{k+1}(P_j) = \sum_{i} \frac{r_k(P_i)}{d_i}$$

• A condição inicial é $r_0(P_i)=1/n$, com n igual ao número de páginas

- Uma simplificação do sistema do PageRank,
- Cada bola representa uma página e o tamanho de cada uma a sua importância (PageRank).
- Quanto maior a bola, mais valor tem seu voto:
- Repare que a bola superior vermelha é grande mesmo recebendo só um voto, pois o voto que ela recebe, da bola maior amarela, tem mais valor

Forma matricial

Definindo a matriz de hyperlinks H como

•
$$H_{ji} = \begin{cases} \frac{1}{d_i} \end{cases}$$
, se existir link de i para j 0, caso contrário

• Teremos $r^{(k+1)} = H r^{(k)}$

- Sendo $r^{(k)}$ o vector com pageranks na iteração k

Forma matricial

 A matriz H pode ser interpretada como contendo as probabilidades de transição entre páginas (os estados).

• Em consequência pode aplicar-se o que aprendemos nas aulas anteriores e calcular probabilidades após múltiplas transições, estudar o comportamento com o número de transições (iterações) tende para infinito, etc.

Matriz para o nosso exemplo?

 Qual será então a matriz H para a nossa mini web?

Solução

$$\begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

Acertaram ?

Limite

- Sabemos que a distribuição dos pageranks atingirá um estado estacionário, em que r=Hr
 - Pelo menos em certas condições:
 - O grafo ser fortemente ligado, sendo possível ir de qualquer página para qualquer página
 - Não existirem becos sem saída (dead ends): páginas que não têm links de saída
- O limite é atingido quando multiplicando os pageranks por H mais uma vez a distribuição de pageranks não se altera

Aplicando ao nosso exemplo

- Aplicando $r^{(k+1)} = H r^{(k)}$ sucessivamente
 - e iniciando com 1/n

$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}, \begin{bmatrix} 9/24 \\ 5/24 \\ 5/24 \\ 5/24 \end{bmatrix}, \begin{bmatrix} 15/48 \\ 11/48 \\ 11/48 \end{bmatrix}, \begin{bmatrix} 11/32 \\ 7/32 \\ 7/32 \\ 7/32 \end{bmatrix}, \dots, \begin{bmatrix} 3/9 \\ 2/9 \\ 2/9 \\ 2/9 \end{bmatrix}$$

Comentário

Esta diferença em probabilidade é pequena

 Mas na web real, com biliões de páginas the grande variedade de importância, a verdadeira probabilidade de uma página como <u>www.amazon.com</u> é ordens de magnitude superior à probabilidade de outras páginas, como uma página pessoal

Questões

• É mesmo assim tão simples ?

Converge sempre?

Converge para o que queremos?

Os resultados são razoáveis?

A realidade é sempre mais complicada ...

Estrutura da web

 Será a web tão fortemente ligada como o nosso exemplo ?

- Seria bom que fosse...
- Mas, na prática, não é
 - Pelo menos não na sua totalidade

Estrutura da web

- Um estudo antigo da web revelou a estrutura à direita
- Existe uma parte fortemente ligada (o SCC)
- Mas também muitas páginas com:
 - Ligações ao SCC mas às quais não é possível chegar a partir do SCC (incomponent)
 - Ligações a partir do SCC mas sem forma de chegar ao SCC (outcomponent)
 - Ligações do in-component mas incapazes de aceder a esse componente
 - Etc ..

Isto traz problemas

Temos dois tipos de problemas que têm de ser resolvidos

- 1. Becos sem saída (dead ends)
- 2. Grupos de páginas que têm links de saída mas apenas para esse grupo, impedindo a ida para outras páginas
 - Estas estruturas são chamadas de spider traps
 - Porquê ?

A spider is a program run by a <u>search engine</u> to build a summary of a website's content (*content index*). Spiders create a text-based summary of content and an address (<u>URL</u>) for each webpage.

Problemas (continuação)

1. Dead ends (sem links de saída)

Passeio aleatório não tem para onde ir

2. Spider traps:

(todos os links de saída para o grupo)

 O passeio aleatório fica "preso" na armadilha (trap)

Qual o efeito nos pageranks?

Dead end

Efeito de *dead ends* e *spider traps* no pagerank

E como resolver.

Efeitos dos Dead ends

 Neste caso as colunas correspondentes ficam com zeros e a sua soma é zero

 Em consequência a matriz de transição deixa de ser estocástica

O que implica ?

Dead Ends – Exemplo

 Removendo a ligação de C para A, C passa a ser um dead end.

$$\bullet \quad \mathsf{H} = \begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

 Multiplicando várias vezes H pelo estado inicial temos:

$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}, \begin{bmatrix} 3/24 \\ 5/24 \\ 5/24 \\ 5/24 \end{bmatrix}, \begin{bmatrix} 5/48 \\ 7/48 \\ 7/48 \\ 7/48 \end{bmatrix}, \begin{bmatrix} 21/288 \\ 31/288 \\ 31/288 \\ 31/288 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Dead Ends – Exemplo 2

	y	a	111
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

m

• Exemplo:

Iteração 0, 1, 2, ...

O PageRank "desaparece" pois a matriz não é estocástica.

Spider Traps – Exemplo 1

Consideremos a seguinte rede e matriz

$$\begin{bmatrix} 0 & 1/2 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 1 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

Teremos para o vector estado

$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}, \begin{bmatrix} 3/24 \\ 5/24 \\ 11/24 \\ 5/24 \end{bmatrix}, \begin{bmatrix} 5/48 \\ 7/48 \\ 29/48 \\ 7/48 \end{bmatrix}, \begin{bmatrix} 21/288 \\ 31/288 \\ 205/288 \\ 31/288 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Spider Traps – Exemplo 2

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

Exemplo:

Iteração 0, 1, 2, ...

O PageRank é todo "apanhado" pelo nó m.

Solução para spider traps

- Em cada passo, o surfista aleatório tem duas opções
 - Com probabilidade β :
 - Seguir um link aleatoriamente
 - Com probabilidade **1-** β ,
 - · Saltar aleatoriamente para uma página qualquer

- O surfista teletransporta-se para fora da spider trap ao fim de alguns passos
- Valores usuais para β : intervalo 0.8 to 0.9

Solução para dead ends

- Teletransportar (teleport) sempre
- Implica ajustar a matriz por forma a:
 - seguir um link com probabilidade 1/n

Os teletransportes resolvem?

SIM

- Nunca fica preso numa spider trap
 - ao garantir teletransporte num número finito de passos

- Deixa de haver dead-ends
 - Existe sempre para onde ir
 - Matriz passa a ser estocástica

Solução: *Random Teleports* (teletransportes aleatórios)

- A solução da Google resolve ambos
- Em cada passo, o surfista aleatório tem duas opções
 - Com probabilidade β :
 - Seguir um link aleatoriamente
 - Com probabilidade **1**- β :
 - Saltar aleatoriamente para uma página qualquer
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

A Matriz da Google

Matriz da Google:

$$A = \beta H + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N_{\mathsf{f}}}$$

[1/N]_{NxN}...matriz N por N com todas entradas iguais a 1/N

- Temos um problema recursivo: $r = A \cdot r$
- A que se pode aplicar o método das potências (Power)
- β?
 - Na prática $\beta = 0.8, 0.9$ (5 passos em média para saltar)

Exemplo: Random Teleports ($\beta = 0.8$)

o.8 1/2 1/2 0 1/2 0 0 0 1/2 1 + 0.2 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3

[1/N]_{NxN}

y 7/15 7/15 1/15 a 7/15 1/15 1/15 m 1/15 7/15 13/15

A

0.20

PageRank in Matlab

Ver

http://www.mathworks.com/moler/ex m/chapters/pagerank.pdf para mais informação

Aplicação a uma "pequena rede"

- Consideremos apenas um número reduzido de páginas
 - exemplo: N=20 páginas acedíveis a partir de http://www.ua.pt
- Principais passos:
 - Obter informação das páginas e suas ligações
 - Com base nos links obter M (ou H)
 - Criar a matriz A aplicando o método da Google para evitar dead ends e spider traps
 - Aplicar power method
 - Apresentar resultados

Obter informação das páginas e suas ligações

- Uma forma simples, em Matlab, é usando a função surfer()
 - disponibilizada em
 http://www.mathworks.com/moler/exm/exmfilelist.ht
 ml
 - Copyright 2013 Cleve Moler & The MathWorks, Inc.
- Fazendo: [U,L]=surfer('http://www.ua.pt',20);
- Temos em U as URLs
- E em L as ligações

Resultados exemplificativos

```
>> U{1:6}
ans =
   'http://www.ua.pt'
   'http://static.ua.pt/js/jquery/jquery-1.11.3.min.js'
'http://static.ua.pt/js/uacookies/1/cookies.pt.min.js'
   'http://
   'http://my.ua.pt'
   'http://uaonline.ua.pt'
```

L:

imagesc(L);
colormap(gray);

Obter H e A

```
H=full(L);
c=sum(full(L)); % número de ligações (d)
H=H./repmat(c,N,1)
p = 0.85
A=p*H+(1-p)*ones(N)/N % matriz da Google
                        % resolver dead ends
A(isnan(A))=1/N
```


Aplicar "power method"

```
x0=ones(N,1)/N;
% -----
iter=1;
x=x0;
epsilon=1e-3;
while 1
  fprintf(1,'iteração %d\n',iter);
  xold=x;
  x=A*x;
  if max(abs(x-xold))<epsilon break; end
  iter=iter+1;
end
```

Χ

Apresentar resultados

Resultados finais

```
PageRank=0.108: http://www.ua.pt/cookies,
PageRank=0.104: http://www.ua.pt,
PageRank=0.071: http:,
PageRank=0.065: http://my.ua.pt,
PageRank=0.062: http://static.ua.pt/js/uacookies/1/cookies.pt.min.js,
PageRank=0.056: http://static.ua.pt/js/jquery/jquery-1.11.3.min.js,
PageRank=0.056: http://
PageRank=0.056: http://www.ua.pt/40anos,
PageRank=0.042: http://elearning.ua.pt,
PageRank=0.039: http://sinbad.ua.pt,
PageRank=0.039: http://portefolio.ua.pt,
```

- Estes resultados podem ser confirmados usando
- r=pagerank(U,L)
 - A diferença entre o vector x obtido e r tem de ser zero

Para casa

- Obter surfer() e pagerank() de Cleve Moler
 - https://www.mathworks.com/matlabcentral/fileexchange/4822
 -using-numerical-computing-with-matlab-in-theclassroom/content/surfer.m
- Fazer com que o Matlab consiga encontrar essas funções
 - Adicionado o directório em que as colocar à path ou colocandoas no seu directório de trabalho
- Fazer os exemplos em <u>http://www.mathworks.com/moler/exm/chapters/pagerank.pdf</u>
- Experimentar o código dos slides anteriores
- Experimentar com outras "mini redes"

E na realidade?

Apenas 2 ou 3 slides para terem uma ideia, pois começa a sair do âmbito de MPEI

Calcular para toda a web ...

- O passo mais importante é a multiplicação $r^{k+1} = A \cdot r^k$
- Fácil se desse para ter tudo em memória: **A**, **r**^{k+1}, **r**^k
- Se $N = 10^9$ páginas
 - 1 bilião na América, 1000 milhões na Europa
- E considerarmos 4 bytes por entrada
- Temos:
 - 2x 10⁹ posições para os 2 vectores (aprox. 8GB)
 - Uma matriz A com N² elementos
 - Ou seja 10¹⁸

Partes da solução ...

- Aproveitar o facto da matriz ser esparsa
- Codificá-la com base apenas nas entradas nãonulas

origem	grau	Nós destino
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

- Espaço proporcional aproximadamente ao número de links
- Por exemplo: 10N, or $4*10*10^9$ ≈ 40GB
- Contínua a "não caber" em memória mas cabe em disco

Algoritmo básico: Passo de actualização

- Assumindo que r^{k+1} cabe em memória
 - $-\mathbf{r}^k$ e a matriz no disco
- 1 passo da iteração do método das potências :

```
Inicializar todas as entradas de r^{k+1} com (1-\beta) / N
Para cada página i (com grau d_i):
Ler para memória: i, d_i, dest_1, ..., dest_{d_i}, r^k(i)
Para j = 1...d_i
r^{k+1}(dest_i) += \beta r^k(i) / d_i
```

Exemplo

Inicializar todas as entradas de r^{k+1} com (1- β) / N Para cada página ORIGEM i (com grau d_i): Ler para memória: i, d_i , $dest_1$, ..., $dest_{d^i}$, $r^k(i)$ Para $j = 1...d_i$ $r^{k+1}(dest_i) += \beta r^k(i) / d_i$

E se nem r^{k+1} cabe em memória ?

- Dividir r^{k+1} em k blocos que caibam em memória
- Processar a Matriz e r^k uma vez para cada bloco

Alguns problemas do Page Rank

- Mede a importância genérica
 - Não tem em conta "autoridades" num tópico específico
- Solução: Topic-Specific PageRank
- Usa uma medida única de importância
- Solução: Hubs-and-Authorities
- Susceptível a spam de links
 - Por exemplo "spam farms": topografias artificiais de links criadas para aumentar o pagerank
- Solução: TrustRank

Para saber mais

- Capítulo Link Analysis do livro Mining of Massive Datasets
 - Disponível em http://infolab.stanford.edu/~ullman/mmds/book.pdf
- Capítulo PageRank do livro Experiments with MATLAB de C. Moler
 - e respectivo software
 - http://www.mathworks.com/moler/exm/chapters.html
- Notas do Prof. Paulo Jorge Ferreira "MPEI pagerank"
 - Disponíveis no elearning
- Artigos dos autores do PageRank e fundadores da Google
 - É uma questão de usar o Google ☺

Nesta apresentação foram usados e/ou adaptados slides da seguinte apresentação:

Analysis of Large Graphs: Link Analysis, PageRank

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford
University

http://www.mmds.org

Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own/needs1 # you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org