

	● 53
数字滤波器传	传递函数可以分为两类:IIR和FIR
一个数字滤波	皮器的设计过程大约可归纳为以下三个步骤:
(1) 按照实	实际需求确定滤波器的性能要求。
(2) 用一个	个因果稳定的系统函数(即传递函数)去 <mark>逼近</mark> 这个性能要求。
(3) 用一个	个有限精度的运算去(<mark>綜合</mark>)实现这个传递函数。包括选择运算
111111111111111111111111111111111111111	联型、并联型、卷积型、频率采样型、以及快速卷积 (FFT) 型
等等。还包括	1括选择合适的字长和有效数字的处理方法等等。
我们从本章	置开始,分两章来讨论以上第(2)部分的内容,也即传递函数的
设计问题。首	首先我们讨论IIR滤波器的传递函数的设计,然后在下一章再讨
设计问题。首	
设计问题。首	首先我们讨论IIR滤波器的传递函数的设计,然后在下一章再讨
设计问题。首约 论FIR滤波器传	曾先我们讨论IIR滤波器的传递函数的设计,然后在下一章再讨 传递函数的设计。
设计问题。首: 论FIR滤波器传 本章主	值先我们讨论IIR.滤波器的传递函数的设计,然后在下一章再讨 传递函数的设计。 5.1 IIR.滤波器设计的特点; 5.2 脉冲响应不变法

	5.1 IIR滤波器设计的特点	道大學
	一个N阶IIR滤波器的传递函数可表示为	
	$H(z) = \sum_{l=0}^{N} a_l z^{-l}$ $= A \prod_{l=1}^{N} (l-c_l z^{-l})$ 传递函数的设计就是确定系数 a_l,b_l 或字、根点 c_l,d_l ,以使滤波器满足给定的性能要求。这种设计一般可以有三种方法: (1) 简单滤波器的零、极点位置累试法	
	· · · · · · · · · · · · · · · · · · ·	
	我们在第一章系统频响的几何确定法中已经看到,如果在单位圆内,在 $d=re^{\pm im_0}$ 处设置一对共轭极点的话、那么频响在 O_0 处将有	
ш	一峰值。	
	它的作用与模拟网络中的单回路相似。当r越接近1,即极点越接近单位网、蜂值就越尖锐,相当于单回路Q值越高。	
Ш	5.1 IIR滤波器设计的特点 10/7/2022	3

	相反,如果在单位圆上C=e ^{z-jes} 处设置一个零点,频响就会在 [©] 。 处出现传输零点,也即可以实现陷波,如图所示。			
	† <i>JIm</i> [<i>z</i>]			
	e Jm (re m)			
	$e^{-j\omega_0} \xrightarrow{Re[z]} Re[z]$			
	1. 网络过生子对亚龙 子山王松玉郡 抽下 马拉加亚一大阳林巴			
	如果特性这不到要求,可以再移动零、极点,这样做两三次调整后 就可以获得一些简单要求的网络。用这种零、 <mark>极点累试法</mark> ,可以设计要 求简单和阶数很低 (一、二阶) 的网络。			
	5.1 IIR滤波器设计的特点 10/7/2022	4		
<u>(</u>	2) 利用模拟滤波器的理论来设计数字滤波器 由于模拟网络逼近综合理论已经发展得很成熟,很多常用的模拟 滤波器不仅有简单而严格的设计公式,而且已经表格化了,设计起来 根方便。因此自然应该将这些成果继承下来,作为设计数字滤波器的 明在下目	发展大學		
_	2) 利用模拟滤波器的理论来设计数字滤波器 由于模拟网络逼近综合理论已经发展得很成熟,很多常用的模拟 滤波器不仅有简单而严格的设计公式,而且已经表格化了,设计起来	灰道大學 		
_	2) 利用模拟滤波器的理论来设计数字滤波器 由于模拟网络逼近综合理论已经发展得很成熟,很多常用的模拟 滤波器不仅有简单而严格的设计公式,而且已经表格化了,设计起来 很方便。因此自然应该将这些成果继承下来,作为设计数字滤波器的 现存工具。	文 4 人学		
-	2) 利用模拟滤波器的理论来设计数字滤波器 由于模拟网络适近综合理论已经发展得很成熟,很多常用的模拟 滤波器不仅有简单而严格的设计公式,而且已经表格化了,设计起来 很方便。因此自然应该将这些成果继承下来,作为设计数字滤波器的 现存工具。 3) 用最优化技术设计参数 最优化技术设计法一般分两步来进行, 第一步,要选择一种最优的准则。例如最小均方误差准则,即是指在一组离	K A L ME TO SERVE		
_	2) 利用模拟滤波器的理论来设计数字滤波器 由于模拟网络通过综合理论已经发展得很成熟,很多常用的模拟滤波器不仅有简单而严格的设计公式,而且已经表格化了,设计起来很方便。因此自然应该将这些成果继承下来,作为设计数字滤波器的现产工具。 3) 用最优化技术设计参数 最优化设计法一般分两步来进行,第一步 要选择一种最优的准则。例如最小均方误差准则,即是指在一组离散的频率(ω) $\{i=1,2,M\}$ 上,所设计的相应特性 $H(e^{i\omega})$ 与所需要的理想特性 $H_a(e^{i\omega})$ 的均方误差 \mathcal{E} 最小。 $\varepsilon = \sum_{i=1}^{n} [H(e^{i\omega})]^{-1} H_a(e^{i\omega})]^{2}$ 此外还可以有其它多种误差最小的准则。	交通大學		
	2) 利用模拟滤波器的理论来设计数字滤波器 由于模拟网络通过综合理论已经发展得很成熟,很多常用的模拟滤波器不仅有简单而严格的设计公式,而且已经表格化了,设计起来很方便。因此自然应该将这些成果继承下来,作为设计数字滤波器的现在工具。 3) 用最优化技术设计参数 最优化设计法一般分两步来进行,第一步 要选择一种最优的推测。例如最小均方误差准则,即是指在一组离散的频率 $\{o_i\}_i = 1, 2, \dots M$ 上,所设计的相应转性 $H(e^{in})$ 与所需要的理想特性 $H_s(e^{in})$ 的均方误差 \mathcal{E} 最小。 $\varepsilon = \sum_{i=1}^M [H(e^{in})]^{-1} H_s(e^{in})]^{-1}$	交通大學		

● 西安克通大学

在以上三种设计方法中,我们着重排第二种方法,这是因为数字滤波器在很多场合所委完成的任务正和模拟滤波器相同。例如做低通、高通、带通以及带阻网络等。这时数字滤波器,就是从已知的模拟滤波器传递函数H_α(s)设计数字滤波器的递函数H_α(s)。因此,它归根到底是一个由。平面到2平面的变换,这个变换通常是复变函数的映射变换。这种映射变换应该递循两个基本的目标:

(1) H(z) 的频响应该模仿H_α(s) 的频响,也即s平面的虚轴 βΩ 应该映射到z平面的单位圆 e^{lin} 上。
(2) H_α(s) 的因果稳定性通过映射后H(z) 仍应保持,也即s平面的左半平面 Rc[s] < 0 应该映射到z平面的单位圆以内 |z| < 1。

下面我们就分别讨论两种常见的变换方法。

● 百步炎至太	学
应该指出, $z=e^{sT}$ 的映射关系反映的是 $H_a(s)$ 的周期延拓与 $H(z)$ 的关系,	
 而不是 $H_a(s)$ 本身直接与 $H(z)$ 的关系。因此使用脉冲响应不变法时,从 $H_a(s)$	
到 $H(z)$ 并没有一个由s平面到z平面的——对应的简单代数映射关系,即没有一个 $s=f(z)$ 的代数关系式。	
从式 (4-2) 我们也可看到,数字滤波器的频响并不是简单的重现	
模拟滤波器的频响,而是模拟滤波器频响的周期延拓:	
$H(e^{j\omega}) = \frac{1}{T} \sum_{m = -\infty}^{\infty} H_{a}\left(j \frac{\omega + 2\pi m}{T}\right) \tag{4-3}$	
正如我们在第一章1.1采样定律中所讨论的那样,如果模拟滤波器的频响 是带限于折叠频率以内的,即	
$H_a(j\Omega) = 0$, $ \Omega \ge \pi/T$	
这时才能使数字滤波器的频响不失真地重现模拟滤波器的频响(在折叠频率以内)。	
$H(e^{j\omega}) = \frac{1}{T}H_a\left(j\frac{\omega}{T}\right), \qquad \omega < \pi$ (4-4)	
5, 2 脉冲响应不变法 10/7/2022 9	

		5453+4
I	在实际应用脉冲响应不变法时往往稍 ℓ 频响 $H(e^{i\sigma})$ 与 T 成反比:	数做一点修正,由式(4-4),
	$H\left(e^{j\omega}\right) = \frac{1}{T}H_{a}\left(j\frac{\omega}{T}\right),$	$ \omega < \pi$
	因此如果采样频率很高,即T 很小时,数字递 希望的。为了使数字滤波器的增益不随采样剩 令	
	$\label{eq:hamiltonian} h \left(n \right) = T h_a \left(n T \right)$ 这样相应就有	(4-8)
l.	$H(z) = \sum_{i=1}^{N} \frac{TA_i}{1 - e^{s_i T} z^{-1}}$	(4-9)
	$H(e^{j\omega}) = \sum_{m=-\infty}^{\infty} H_a\left(j\frac{\omega + 2\pi m}{T}\right) \approx H_a$	$_{s}\left(j\frac{\omega}{T}\right), \left \omega\right < \pi \qquad (4-10)$
	下来举例说明脉冲响应不变法的应用。	
	5.2 脉冲响应不变法	10/7/2022 12

	€ 市步文道大學
	例: 巴知模拟低通滤波器的传递函数为
11,18	$H_a(s) = \frac{2}{s^2 + 3s + 2} = \frac{2}{s + 1} - \frac{2}{s + 2}$
	$s^2 + 3s + 2$ $s + 1$ $s + 2$
	直接用式 (4-9) , 我们就可以得到用脉冲响应不变法的数字
	滤波器传递函数
	$H\left(z\right) = \frac{2T}{1 - e^{-T}z^{-1}} - \frac{2T}{1 - e^{-2T}z^{-1}} = \frac{2T\left(e^{-T} - e^{-2T}\right)z^{-1}}{1 - \left(e^{-T} + e^{-2T}\right)z^{-1} + e^{-3T}z^{-2}}$
	例
	这时它们的频响分别为
ŀ	$H_a(j\Omega) = \frac{2}{(2-\Omega^2) + j3\Omega} \qquad H_a(j\Omega) $
П	$H(e^{j\Omega}) = \frac{0.465 1e^{-j\Omega}}{1 - 0.503 2e^{-j\Omega} + 0.04979 e^{-j2\Omega}} \left H(e^{j\Omega}) \right ^{\frac{2\pi}{3} + \Omega}$
	幅度頻响如图所示,可以看到 由于頻谱交叠所带来的明显失真。
	5.2 脉冲响应不变法 10/7/2022 13

● •	安文五大学
通过以上讨论我们可以看到,脉冲响应不变法的一个重要特点是频率坐标 的变换是线性的变换,因此如果模拟滤波器频响是带限于折叠频率以内的话,	
通过变换后数字滤波器的频响可以不失真的反映原响应与频率的关系。	
$H\left(e^{j\Omega T}\right) = H_a\left(j\Omega\right), \qquad \left \Omega\right < \pi/T$	
例如模拟滤波器是线性相位的贝塞尔低通滤波器,那么通过脉冲响应不	
变法得到的仍然是线性相位的低通数字滤波器。	
另外,在某些场合,要求数字滤波器在时城上能模仿模拟滤波器	
的功能,这时采用脉冲响应不变法也是很合适的,它能实现时城冲激	
响应的模仿。同样,如果需要阶跃响应的模仿,可以用类似的方法,	
将模拟滤波器阶跃响应的采样作为数字滤波器的阶跃序列响应,这种	
方法称为 <mark>阶跃响应不变法</mark> ,其结果与脉冲响应不变法较接近。	
5.2 脉冲响应不变法 10/7/2022	14

● お子文主人寺
脉冲响应不变法的最大缺点是有频谱周期延拓效应。因此只能用于
带限的频响特性,例如衰减特性很好的低通,或带通,而且高频衰减越
大,频响的混淆效应就越小。至于高通和带阻滤波器,由于它们在高频
部分不衰减,因此将完全混淆在低频响应中,从而使整个频响面目全非。
所以如果要对高通和带阻实行脉冲响应不变法,必须先对高通和带阻滤
波器加一保护滤波器,滤掉高于折叠频率以上的频带。然后再使用脉冲
响应不变法转换为数字滤波器。这样会增加设计复杂性和滤波器的阶数,
因而只有在一定要追求频率线性关系或保持网络瞬态响应时才采用。
5. 2 脉冲响应不变法 10/7/2022 15

	● 万安文	至大学
首先, 当 z=e ^{jω} 时, 代入式 (4-11)		
 $s = \frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} = j tg\left(\omega/2\right) = j\Omega$	(4-13)	
即 s 的虛軸映射到 z 平面正是单位圓,同时 $s=\sigma+j\Omega$ 代入	. (4-12) 式	
$z = \frac{(l+\sigma)+J\Omega}{(l-\sigma)-J\Omega} \qquad \qquad \qquad z = \frac{\sqrt{(l+\sigma)^2}}{\sqrt{(l-\sigma)^2}}.$	是映射在单位圆 样。因此稳定的	
双线性变换比起脉冲响应不变法来,其主要的优点从 平面是单值的——对应关系、整个10轴是单值的对应于 周,这个关系就是式 (4-13) 所表示的关系:		
$\Omega = tg(\omega/2)$	(4-14)	
5.3 双线性变换法	10/7/2022	18

(金) 百安克至大学 这个关系表示在图4.6上,从图中我们看到在 零頻附近它们的关系接近于线性关系,但当 Ω 进 $\Omega = tg\left(\frac{\omega}{2}\right)$ 一步増加时, ω 増长得就越来越慢,最后当 $\Omega o \infty$ 时,ω 终止在折叠频率 ω = π 处,因而双线性变 换就不会出现高频部分超过折叠频率而混淆到低 但是双线性变换的这个特点是靠频率的 严重非线性关系而得到的,这种 Ω 与 ω 的 非线性关系使数字滤波器与模拟滤波器在响 应与频率的对应关系上发生畸变。 例如:如果模拟滤波器是最平时延滤波器,它的相位与频率是直线 关系。而通过双线性变换后,所得的数字滤波器就不再保持相位与频率 的直线关系了,因而这个数字滤波器也就不再是一个最平时延特性的滤 波器。 5.3 双线性变换法

		● お子気毛	生学
	最后,双线性变换比起脉冲响应不变法来, 直接和简单。因为s与z之间有简单的代数关系、		
	可以直接通过代数置换得到数字滤波器的传递函		
	$H(z) = H_a(s) _{s=\frac{1-z^{-1}}{1+z^{-1}}} = H_a\left(\frac{1-z^{-1}}{1+z^{-1}}\right)$	(4-15)	
	频响也可用直接置换得到		
	$H(e^{j\omega}) = H_a(j\Omega) _{\Omega = tg(\frac{\omega}{2})} = H_a(jtg(\frac{\omega}{2}))$	(4-16)	
١.	$\mathcal{K} \qquad H\left(e^{j\Omega_{i}T}\right) = H_{a}\left(jtg\frac{\Omega_{i}T}{2}\right)$	(4-17)	
	这些都比脉冲响应不变法的部分分式分解要简捷得多	,	
	因此,一般说,当着眼于滤波器的瞬态响应时,	717/17/11/11/12/17	
	较好。而在其他情况下,在IIR滤波器设计中,则大	多米用双线性变换。	
	5.3 双线性变换法	10/7/2022	21

5.4 原型变换 在模拟滤波器中已经形成了许多成熟的设计方法。如巴特瓦兹滤波器、 契比雪夫滤波器、考尔滤波器、贝塞尔滤波器等,每种滤波器都有自己的 一套准确的计算公式。 同时,业已置备了大量归一化的设计表格与曲线,大大便到了滤波器的设计和计算,因此在模拟滤波器的设计中,只要掌握原型变换,就可以通过归一化低通原型的参数,去设计各种实际的低通、高通、带通或带组滤波器。 这一套成熟的、行之有效的设计方法,也可以通过稍面所讨论的各种变换应用于数字滤波器的设计。 下面我们通过举例举讨论应用模拟滤波器低通原型设计各种数字滤波器的设计。 下面我们通过举例举讨论应用模拟滤波器低通原型设计各种数字滤波器的基本原理,我们特着重于双线性变换法,其他变换方法如果需要,可以举一反三面得。

	● 4岁久後	大字
	一、低通变换	
	一般说,通过模拟原型设计数字滤波器大约可按以下四个步骤进行:	
	① 确定数字滤波器的性能要求,确定各临界頻率 {ω _κ } 值。	
	② 由变换关系将 $\{\omega_{\kappa}\}$ 映射到模拟域,得出模拟滤波器的临界频率值 $\{\Omega_{\kappa}\}$ 。	
	③ 按照临界頻率 $\{\Omega_{\kappa}\}$ 设计模拟滤波器传递函数 $H_{a}(s)$ 。	
	④ 通过变换将 $H_a(s)$ 转换为数字滤波器传递函数 $H(z)$	
	现举例说明。设采样周期 T=250 _{LUS} (即采样频率为 4kHz) , 要	
	求用脉冲响应不变法及双线性变换法设计一个三阶的巴特瓦兹低通滤	
١.	波器, 其 $3dB$ 截止頻率为 $f_c = 1kHz$ 。	
Ш	1、脉冲响应不变法	
	由于脉冲响应不变法的频率关系是线性的,所以我们可以直接	
	按 $f_c = 1kHz$ 设计一个三阶巴特瓦兹模拟低通滤波器,然后再按照公	
	式(4-9)变换为数字滤波器。	
	5.4 原型变换 10/7/2022	23

	● 百安克道	大字
我们知道巴特瓦兹滤波器传递函数为	III.	
$H_a(s)H_a(-s) = \frac{1}{1 + (-1)^N (s/\Omega_c)^{2N}}$	(4-18)	
$H_a(s) = \frac{\Omega_c^N}{\prod_{K=0}^{N-1} (s - s_K)}$	(4-19)	
其中根 s_{κ} 为 $s_{\kappa} = \Omega_{\epsilon} e^{\sqrt{\left[\frac{\pi}{N}(\kappa + \frac{1}{2})^{\frac{\pi}{2}}\right]}}$	(4-20)	
当 $N=3$ 时 $H_a(s)=\frac{\Omega_c^3}{\left(s+\Omega_c\right)\left(s-\Omega_c e^{-\frac{s^2}{3}s}\right)\left(s-\Omega_c e^{-\frac{s^2}{3}s}\right)}$ 精加整理即可得到	(4-21)	
$H_a(s) = \frac{1}{1 + 2(s/\Omega_c) + 2(s/\Omega_c)^2 + (s/\Omega_c)^3}$	(4-22)	
以上传递函数也可以直接从查表来得到,即先从常用的滤波器设 巴特瓦兹多项式的系数,然后以 s/Ω_c 代替其归一化频率,则可		
5.4 原型变换 10	/7/2022	24

⊕ •	安克通大學
根据式(4-22),只要将 $\Omega_c = 2\pi f_c$ 代入,就完成了三阶巴特瓦兹模拟滤波器的计算。但一般来说,具体数值应该放在完成了数字滤波器的变换后最后	
一次代入,以减少数值运算中的误差累积。	
为了进行脉冲响应不变法应该将式(4-21)展成部分分式的结构。	
$H_a(s) = \frac{\Omega_c}{s + \Omega_c} + \frac{-\left(\Omega_c/\sqrt{3}\right)e^{j\pi/\delta}}{s + \Omega_c\left(1 - j\sqrt{3}\right)/2} + \frac{-\left(\Omega_c/\sqrt{3}\right)e^{-j\pi/\delta}}{s + \Omega_c\left(1 + j\sqrt{3}\right)/2}$	
将此部分分式的系数代入式 (4-9) 就得到	
$H(z) = \frac{\omega_c}{1 - e^{-\omega_c z^{-1}}} + \frac{-(\omega_c/\sqrt{3})e^{j\%_6}}{1 - e^{-\omega_c(1-j\sqrt{3})/2}z^{-1}} + \frac{-(\omega_c/\sqrt{3})e^{-j\%_6}}{1 - e^{-\omega_c(1+j\sqrt{3})/2}z^{-1}}$	
其中 $\omega_c = \Omega_c T$ 是数字滤波器数字频域的截止频率。将上式两项共轭复根	
$H(z) = \frac{\omega_c}{1 - e^{-\alpha_c}z^{-1}} - \frac{\left(\omega_c / \sqrt{3}\right) \left[2\cos \pi / 6 - 2z^{-1}e^{-\alpha_c/2}\cos\left(\frac{\sqrt{3}\omega_c}{2} - \frac{\pi}{6}\right)\right]}{1 - 2z^{-1}e^{-\alpha_c/2}\cos\left(\frac{\sqrt{3}\omega_c}{2} - \frac{\pi}{6}\right)}$	
$I - 2z^{-1}e^{-\alpha_{z}}z^{-1}$ $I - 2z^{-1}e^{-\alpha_{z}/2}\cos\left(\frac{\sqrt{3}\omega_{z}}{2}\right) + e^{-\alpha_{z}}z^{-2}$	
5.4 百刑本協 30/7/2022	25

€ 6步炎	至大學
从这个结果我们看到最后 $H(z)$ 只与数字频域参数 ω_c 有关。也即只与临界频 $= f_c$ 与采样频率 f_z 的相对值有关,而与他们的绝对大小无关。例如 $f_z = 4kHz$,	
$f_\varepsilon=1kHz$ ·与 $f_z=40kHz$, $f_\varepsilon=10kHz$ 的数字滤波器将具有同一个传递函数。这个结论适合于所有的数字滤波器设计。	
将 $\omega_c = 2\pi f_c T = 0.5\pi$ 代入上式、就得到最后的传递函数: $H(z) = \frac{1.571}{1 - 0.2079z^{-7}} + \frac{-0.571 + 0.5541z^{-7}}{1 - 0.1905z^{-7} + 0.2079z^{-2}} \qquad (4-23)$	
这个形式正好是用一个一阶节及一个二阶节并联起来实现。脉冲 响应不变法由于需要通过部分分式来实现变换,因而对采用并联型的 运算结构来说是比较方便的。	
由于最终的传递函数贝取决于数字频域的参数,因此又可以有另一种 计算方法。即我们不必像上面那样首先计算一个实际的模拟滤波器 H _a (s) 作为数字滤波器的模方对象。而只要计算一个相对于采样频率归一化的 "样本"传递函数就行了。	
5.4 原型变换 10/7/2022	26

	(★) # # \$ \$ \$ 1.00 miles 1	大字
	这个计算方法是这样:	
	首先确定数字滤波器的临界频率 $\omega_c = \Omega T = 0.5\pi$,然后直接以 ω_c 作为模拟滤波器的临界频率。计算传递函数:	
	$H_a(s) = \frac{1}{1 + 2(s/\omega_c) + 2(s/\omega_c)^2 + (s/\omega_c)^3}$	
	这个传递函数实际上就是对采样频率归一化的模拟"样本"传递函数。	
	然后将它展成部分分式:	
	$H_a(s) = \frac{A_0}{s + d_0} + \frac{A_1}{s + d_1} + \frac{A_1}{s + d_1^*}$	
	代入式(4-9)时 已经归一化为1了,因此	
li.	$H(z) = \frac{A_0}{I - e^{-d_0}z^{-l}} + \frac{A_l}{I - e^{-d_l}z^{-l}} + \frac{A_l^*}{I - e^{-d_l}z^{-l}}$	
	不难证明,这个等式代入数值后得到的结果与式(4-23)完全相同。	
	这种计算方法,虽然概念上有一点曲折,但是计算起来更加简洁明了,使 用起来更方便。	
Ш	5.4 原型变换 10/7/2022	27

对于第一种方案,设计办法完全和我们上面讨论的低通设计一样。即首先确定临界频率 {0z}, 然后转换成相应模拟滤波器的临界频率 {12z}。
剩下的问题就完全是高通、带通或带阻模拟滤波器的设计问题了。最后再将设计好的 Hz(s) 代公式转换成 H(z)即可。
第二种方案更为简捷便利,得到普遍采用。

另外,由于脉冲响应不变法对于高通、带阻等都不能直接采用,或者只能在加了保护滤波器以后使用。因此一般脉冲响应不变法使用直接频率变换要有许多特殊考虑,故对于脉冲响应不变法来说,采用第一种方案有时更方便一些。

我们下面只考虑双线性变换,实际使用中多数情况也正是这样。

		€ 百安克道大学
	5.5 Z平面变换法	
	上一节我们讨论了由模拟网络的低通原型来设 方法,这种原型变换的设计方法同样也可直接在参	
	如果我们已经有了一个数字滤波器的低通原型函数 定的变换,来设计其他各种不同的数字滤波器函数 $H(z)$ 所在的 z 平面到 $H(z)$ 所在的 z 平面的一个映射变换。	
	为了便于区分变换前后两个不同的Z平面,我	们可以把变换前的Z平
	面定义为U平面,并将这一映射关系用一个函数 g	来表达
	$u^{-l} = g\left(z^{-l}\right)$	(4-33)
	这样,数字滤波器的原型变换就可以表达为	
H	$H\left(z\right) = H_{p}\left(u\right)_{\left u^{-1} = g\left(z^{-1}\right)\right }$	(4-34)
Ш	在式 (4-33) 中所以选用 u^{-1} 及 z^{-1} 而不用 u 及 z	,是因为实际上在传递函
Ш	数中 u 和 z 都是以负幂形式出现的。	
	5.5 z平面变换法	10/7/2022 40

		(金) 万安克亚
现在	,我们分析一下函数 $g(z^{-l})$ 的一般特性。 $ ight)$	7先,我们希望变换以后的传递
函数应该	保持稳定性不变,因此要求u的单位圆内部	必须对应于z的单位圆之内。
其次两个	函数的頻响要满足一定的变换要求,因此u	的单位圆应映射到z的单位圆
上,若以	$e^{j\theta}$ 表示u的单位圆,以 $e^{j\omega}$ 表示z的单位圆	,则式 (4-33) 应满足
	$e^{-j\theta} = g(z^{-l}) = g(e^{-j\omega}) e^{j\phi(\omega)}$	(4-35)
其中 ø(ω	是 $g\left(e^{-j\omega}\right)$ 的相位函数,从上式我们得到	
	$g(e^{-j\omega}) \equiv I$	(4-36)
也即函数	$g(z^{-l})$ 在单位圆上的幅度必须恒等于1, i	这种函数称为全通函数。
全通函数	具有以下一些基本特性:	
	$g(z^{-I}) = \pm \prod_{i=I}^{N} \frac{z^{-I} - \alpha_{i}^{*}}{I - \alpha_{i} z^{-I}}$	(4-37)
即 α_i	\mathcal{C}_i 为它的极点,可以是实数,也可以是共轭 $< I$,以保证变换的稳定性不变; $\mathbf{g}(\mathbf{z}^{-l})$ 的 全通函数的阶数,当 ω 由 $0 \rightarrow \pi$ 时,其相	所有零点都是其极点的共轭倒数;
	5.5 z平面变换法	10/7/2022

		● 百步交通大	学
	根据全通函数的这些基本特点,下面具体讨论各	种原型变换。	
1111	一、低通—低通		
	在低通到低通的变换中, H,(e''')及H(e''')者	B是低通函数,只是截止	
	频率互不相同,因此当 θ由0变到π时,相应ω+	也应由0 变到π,根据全通	
	函数相位 φ(ω)变化量为Nπ 的性质就可确定全边	1函数的阶数必须为1,并	
	且必须满足以下两条件: $g(I)=I$		
	g(-I) = -I		
	从式(4-33)我们可以看到,满足以上要求的映	射函数应该是	
١.	$g\left(z^{-l}\right) = \frac{z^{-l} - \alpha}{l - \alpha z^{-l}}$	(4-38)	
	其中 α 是实数,而且 $ \alpha < 1$ 。当我们将 $z = e^{j\omega}$	及 $u = e^{i\theta}$ 代入上式,就	
	可以找到这个变换所反映的变换关系是		
	$e^{j\theta} = \frac{e^{-j\omega} - \alpha}{1 - \alpha e^{-j\omega}}$	(4-39)	
П	5.5 z平面变换法	10/7/2022	<u></u>

_		
		(金) 百安克亚大学
	二、低通一高通	$\left(z^{-1}\right) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}, \qquad \left(4 - 38\right)$
	如果我们将 Z 变换为-Z, 我们就将单位[圆上的频响旋转了一个
	角度,因此这个变换也称为旋转变换。利用水	旋转变换,原 2平面上
	的低通就变换为相应的高通了,所以只要将:	式 (4-38) 中的 z-1代之
	以-z-1,就完成了由低通-高通的原型变换,	其相应公式列入表4-1。
	(注意,这时 θ_c 对应的不是 ω_c 而是 $\pi+\omega_c$)	•
	三、低通一带通	
		the or are at the or which
	若带通的中心频率为 ω, 它应该对应于	
	即 $\theta=0$ 点; 当带通的频率由 $\omega_0 \rightarrow \pi$ 时, 是由	白通带走向止带,因此
	应该对应于 θ 由 $0 \rightarrow \pi$; 同样, 当 ω 由 $\omega_0 \rightarrow 0$	时, 也是由通带走向
ш	另一边止带,它对应的是低通原型的镜像部分	β , 即相应于 θ 由 $0 \rightarrow -\pi$
ш		
П		
	5.5 z平面变换法	10/7/2022 44

		至大学
这样我们看到,当 ω 由 0 变化到 π 时, θ 。 即全通函数的阶数 N 必须为 2 ,这时	必须相应变化2π,也	
$g\left(z^{-l}\right) = \pm \frac{z^{-l} - \alpha^*}{l - \alpha z^{-l}} \frac{z^{-l} - \alpha}{l - \alpha^* z^{-l}}$	(4-42)	
当我们将带通的上、下截止频率 ω_2 、 ω_1 与	j其对应的低通原型截止频	
率 θ_c 、 $-\theta_c$ 带入式(4-42)后,整个变换函数 θ 果列入表4-1中。	5参数就可以确定了, 其结	
四、低通一带阻		
由带通到带阻的变换同样可以通过旋转	· 变换来完成,其相应结	
果也列于表4-1中。		
5.5 z平面变换法	10/7/2022	45

	表 4-1	● も子文名 the pursue and
	₹ 4-1	
变换关系	$g(z^{-l})$	参数的确定
低通-低通	$\frac{z^{-l} - \alpha}{l - \alpha z^{-l}}$	$\alpha = \frac{\sin\left(\frac{\theta_c - \omega_c}{2}\right)}{\sin\left(\frac{\theta_c + \omega_c}{2}\right)}$
低通-高通	$-\left(\frac{z^{-l}+\alpha}{l+\alpha z^{-l}}\right)$	$\alpha = -\frac{\cos\left(\frac{\theta_c + \omega_c}{2}\right)}{\cos\left(\frac{\theta_c - \omega_c}{2}\right)}$

	表 4-1 (续)	
变换关系	$g(z^{-l})$	参数的确定
低通-带通	$-\left(\frac{z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1}z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + 1}\right)$	$\alpha = \frac{\cos\left(\frac{\omega_2 + \omega_1}{2}\right)}{\cos\left(\frac{\omega_2 - \omega_1}{2}\right)}$ $k = ctg\left(\frac{\omega_2 - \omega_1}{2}\right) tg\frac{\theta_c}{2}$
低通-带阻	$\frac{z^{-2} - \frac{2\alpha}{I+k} z^{-l} + \frac{I-k}{I+k}}{\frac{I-k}{I+k} z^{-2} - \frac{2\alpha}{I+k} z^{-l} + I}$	$\alpha = \frac{\cos\left(\frac{\omega_{x} + \omega_{y}}{2}\right)}{\cos\left(\frac{\omega_{z} - \omega_{y}}{2}\right)}$ $k = \lg\left(\frac{\omega_{z} - \omega_{z}}{2}\right)\lg\frac{\theta_{z}}{2}$
	$\frac{I-k}{I+k}z^{-2} - \frac{2\alpha}{I+k}z^{-l} + I$, ,