Category Theory

Summer of Science 2025 Project

Bhavya Tiwari*

May 13, 2025

^{*}Roll number 24B0913

Contents

I.	. Category Theory in Context		
1.	Categories, Functors, Natural Transformations	7	
	1.1. Abstract and concrete categories	7	
	1.2. Duality	7	
11.	Tom Leinster	9	

Part I. Category Theory in Context

1. Categories, Functors, Natural Transformations

1.1. Abstract and concrete categories

1.1.i

Proof. Observe that $gfh: y \to x$. Also gfh = (gf)h = h and gfh = g(fh) = g, thus g = h. This means that f has an inverse morphism g such that $fg = 1_x$ and $gf = 1_y$, so f must be an isomorphism.

1.1.ii

Proof. First we show that the collection of isomorphisms in \mathcal{C} with the objects of \mathcal{C} forms a category. The identity morphism exists in the new category since it is its own inverse and therefore an isomorphism. Associativity is inherited from morphisms on \mathcal{C} . To prove composability, say $f: x \to y$ and $g: y \to z$ are isomorphisms, i.e., there exist f_* and g_* such that $ff_* = 1_y$, $f_*f = 1_x$ and $gg_* = 1_z$, $g_*g = 1_y$. Clearly gf is a morphism since so are f and g. We claim that f_*g_* is its inverse morphism, which is trivial to verify. Hence gf is an isomorphism. It is clear that the resultant category is a groupoid so let us prove its maximality. Suppose to the contrary that there is a larger groupoid \mathcal{C}' containing it. Since they have the same objects, \mathcal{C}' must contain an isomorphism not in \mathcal{C} . This is a contradiction because \mathcal{C} contains all the isomorphisms between its objects.

1.1.iii

Proof. Associativity follows in either case because the maps in \mathcal{C} are associative.

- (i) First note that there is an identity morphism for every $f: c \to x$ because we can take g = f. To show composability, let $h_1: a \to b$ be from $f: c \to a$ to $g: c \to b$ and $h_2: b \to d$ be from $g: c \to b$ to $h: c \to d$. Note that $g = h_1 f$ and $h = h_2 g$ implies $h = h_2(h_1 f) = (h_2 h_1) f$ and so the diagram with $h_2 h_1$ also commutes.
- (ii) Identity morphism for f is found by taking g = f. To show composability, proceed as before $f = gh_1 = (hh_2)h_1 = h(h_2h_1)$.

1.2. Duality

Part II. Tom Leinster