VERHANDELINGEN

DER

KONINKLIJKE AKADEMIE

VAN

WETENSCHAPPEN

EERSTE SECTIE

(Wiskunde - Natuurkunde - Scheikunde - Kristallenleer - Sterrenkunde - Weerkunde en Ingenieurswetenschappen.)

DEEL X

MET 2 PLATEN

AMSTERDAM — JOHANNES MÜLLER April 1911 California Academy of Sciences

RECEIVED BY EXCHANGE

VERHANDELINGEN

DER

KONINKLIJKE AKADEMIE

VAN

WETENSCHAPPEN

EERSTE SECTIE

(Wiskunde - Natuurkunde - Scheikunde - Kristallenleer - Sterrenkunde - Weerkunde en Ingenieurswetenschappen.)

DEEL X

MET 2 PLATEN

AMSTERDAM — JOHANNES MÜLLER April 1911

INHOUD.

- M. Brückner. Ueber die Ableitung der allgemeinen Polytope und die nach Isomorphismus verschiedenen Typen der allgemeinen Achtzelle (Oktatope). Mit 2 Tafeln.
- 2. M. J. VAN UVEN. Algebraische Strahlencongruenzen und verwandte complexe Ebenen als Schnitte derselben.

Digitized by the Internet Archive in 2012 with funding from California Academy of Sciences Library

Ueber die Ableitung der allgemeinen Polytope und die nach Isomorphismus verschiedenen Typen der allgemeinen Achtzelle (Oktatope)

VON

Prof. Dr. M. BRÜCKNER (Bautzen, Sachsen).

Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam.

(EERSTE SECTIE).

Deel X. Nº 1.

(Mit 2 Tafeln.)

AMSTERDAM,
JOHANNES MÜLLER.
Maart 1909.

Ueber die Ableitung der allgemeinen Polytope und die nach Isomorphismus verschiedenen Typen der allgemeinen Achtzelle (Oktatope)

VON

Prof. Dr. M. BRÜCKNER (Bautzen, Sachsen).

Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam.

(EERSTE SECTIE).

Deel X. N° 1.

(Mit 2 Tafeln.)

AMSTERDAM,
JOHANNES MÜLLER.
1909.

	•		
			•
·		•	
~			
			•
		•	

Einleitung: Von den allgemeinen konvexen Polyedern.

Das Problem der Bestimmung der allgemeinen konvexen Polyeder (mit nur dreikantigen Ecken) einer gewissen bestimmten Zahl von Begrenzungsflächen ist auf verschiedene Weise gelöst worden 1). Am nächstliegenden ist die Ableitung der von n+1 Flächen begrenzten Polyeder aus den als bekannt vorausgesetzten n-flachen durch die sogen. Fundamentalkonstruktionen 2), die wir im Folgenden einer kurzen Betrachtung zu unterziehen haben, ehe wir die Konstruktionen der allgemeinen Polytope erläutern können 3).

Sollen aus den allgemeinen *n*-flachen p_n alle p_{n+1} abgeleitet werden, so schneidet man von den p_n durch eine Ebene eine, zwei, drei.... (benachbarte) Ecken einer Fläche ab, fügt also der Oberfläche des p_n ein Dreieck, Viereck, Fünfeck.... ein, wobei die Kantenzahlen einiger andrer Flächen des p_n geändert werden. Es mögen die p_n von der ersten, zweiten, dritten... Klasse heissen, je nachdem die Begrenzungsflächen geringster Kantenzahl Drei-, Vier-, Fünf-... ecke sind. Dann ergibt sich ein p_{n+1} erster Klasse, wenn irgend eine Ecke eines p_n beliebiger Klasse durch einen dreiseitigen Schnitt entfernt wird; denn das p_{n+1} enthält mindestens ein Dreieck, nämlich das neueingeführte (erste Fundamentalkonstruktion). Die zweite Fundamentalkonstruktion zur Erzeugung der allgemeinen p_{n+1} besteht darin, dass durch einen vierseitigen Schnitt eine Kante AB des p_n entfernt wird. Nur die beiden Scheitelflächen in A und B erhalten dadurch in p_{n+1} je eine Kante mehr. Hieraus folgt: Die p_{n+1} zweiter Klasse sind durch die zweite Fundamentalkonstruktion aus allen p_n von der zweiten

¹⁾ Vergl. Brückner, Vielecke und Vielflache, Leipzig 1900. S. 93.

²) A. a. O. S. 84.

²) Für die Polytope beziehen wir uns bes. auf Р. Н. Schoute, Mehrdimensionale Geometrie, 2. Teil. Leipzig 1905.

Klasse ab zu konstruieren, sowie aus den p_n erster Klasse, die nur ein Dreieck besitzen (man schneide eine Scheitelkante dieses Dreiecks ab) oder zwei Dreiecke mit gemeinsamer Scheitelkante AB (man unterwerfe diese Scheitelkante der zweiten Konstruktion). Schneidet man zwei aufeinanderfolgende Kanten AB, BC einer Grenzfläche des p_n durch ein Fünfeck ab, so erhalten die beiden Scheitelflächen in A und C je eine Kante mehr, aber an Stelle der das Kantenpaar AB, BC enthaltenden Fläche tritt eine Fläche mit um eins geringerer Kantenzahl. Diese dritte Fundamentalkonstruktion zur Erzeugung der p_{n+4} dritter Klasse braucht offenbar die p_n erster Klasse nicht mehr zu berücksichtigen und von den p_n zweiter Klasse kommen nur solche Polyeder in Frage, bei denen die Scheitelflächen in A und C allein Vierecke sind, während die Fläche mit dem Kantenzuge ABC mindestens sechskantig sein muss. Ueberdies sind zur Konstruktion der p_{n+1} dritter Klasse sämtliche p_n dritter Klasse zu verwenden; aber auch dabei muss die Fläche mit dem Kantenzuge ABC mindestens sechskantig sein. Es existieren nun bekanntlich nur allgemeine Polyeder dieser drei ersten Klassen, da stets

$$3f_3 + 2f_4 + f_5 = 12 + f_7 + 2f_8 + \dots$$

sein muss. 1) Somit ist eine vierte Fundamentalkonstruktion nicht nötig; denn die Einführung eines Sechsecks erübrigt sich, da das dadurch zu erzeugende p_{n+1} sicher Drei-, Vier- oder Fünfecke enthalten muss, also durch eine der 3 ersten Fundamentalkonstruktionen sich aus einem p_n ergeben würde. 2) Nur mit Rücksicht auf die Ableitung der allgemeinen Polytope betrachten wir noch weitere Schnitte der Polyeder. In erster Linie kommen hier die Schnitte durch Ebenen in Betracht, die sich als Weiterführung der bisherigen drei Konstruktionen auffassen lassen, wenn nämlich ein Polyeder durch eine Ebene so geschnitten wird, dass μ auf einanderfolgende von den λ Ecken einer Grenzfläche ($\mu < \lambda - 1$) auf eine Seite dieser Ebene zu liegen kommen, ohne dass auch irgend eine seitende Fläche des A-ecks ihrer ganzen Erstreckung nach mit auf diese Seite der Ebene fällt. Es entsteht dann durch diese " μ —te Konstruktion" aus dem p_n ein p_{n+1} das sich natürlich auch durch eine der Konstruktionen $\mu=1$, 2, 3 erhalten liess. Jedenfalls kann man an einem p_n das als Vieleck grösster Kantenzahl ein λ —eck enthält $\mu = \lambda$ —1 solcher Konstruktionen an dieser

¹⁾ Vielecke u. Vielflache, S. 84. SCHOUTE, a. a. O. S. 56.

²) Die dritte Konstr. wird erst nötig bei Ableitung der p_{12} aus den p_{11} und führt auf das einzige p_{12} dritter Klasse, ein von 12 Fünfecken begrenztes Polyeder, das mit dem regulären Dodekaeder isomorph ist.

Fläche ausführen. Von besonderer Bedeutung sind im Folgenden mit Rücksicht hierauf solche p_n , die von zwei (n-1)-ecken mit gemeinsamer Kante und in Folge dessen von 2 Dreiecken und n-4 Vierecken begrenzt werden. Man bezeichnet sie als Hufe. Von den n-1 Ecken A_1 , A_2 , ... A_{n-1} einer Grenzfläche eines solchen Hufes p_n [A_1 A_{n-1} sei die gemeinsame Kante der beiden (n-1)-ecke] werden durch die μ -te Konstruktion die μ aufeinanderfolgenden Ecken des Kantenzuges $A_i A_{i+1} \dots A_{i+n-1}$ durch ein $(\mu + 2)$ -eck abgeschnitten. Durch die letzte zulässige, d. h. die (n-2)-te Konstruktion ergeben sich dann die folgenden p_{n+4} , je nachdem die nicht mit abgeschnittene letzte Ecke eine der am Ende vermerkten Ecken ist:

- a) Der Huf p_{n+1} (2 f_3 ; (n-3). f_4 ; 2 f_n). A_1 oder A_{n-1} .
- b) $\operatorname{Ein} p_{n+1} (2f_3; (n-4), f_4; 1, f_5; 1, f_{n-1}; 1, f_n)$. $A_2 \operatorname{oder} A_{n-2}$.
- c) τ Typen p_{n+1} (3 f_3 ; (n—6). f_4 ; 2 f_5 ; 1. f_{n-1} , 1. f_n) A_3 oder A_{n-3} , A_4 oder A_{n-4} u. s. w.

Unter c) sind $\tau = \frac{n-4}{2}$ oder $\tau = \frac{n-5}{2}$ allomorphe Typen enthalten, je nachdem n gerade oder ungerade ist.

Für $\mu = \lambda$ fällt das oben erwähnte λ —eck völlig auf die eine Seite der schneidenden Ebene, und das erzeugte Polyeder, aus dem gegebenen durch Abschneiden eines \(\lambda\)—seitigen Prismas entstanden, ist wieder ein p_n , das mit dem ursprünglichen isomorph ist. Es existieren aber für jedes p_n noch weitere zulässige Schnitte, wenn nur verlangt wird, dass keine seiner Grenzflächen ihrer ganzen Ausdehnung nach auf die dem Polyeder abgewandte Seite der schneidenden Ebene fällt: z. B. wenn das Tripel von Kanten einer Ecke durch ein Sechseck abgeschnitten wird, u. s. w. 1).

Wir werden auf diese Konstruktionen, so weit sie im Folgenden gebraucht werden, an Ort und Stelle zurückkommen.

In den Figuren 1—8 liegen für spätere Verwendung die allgemeinen Polyeder für n=5, 6, 7 gezeichnet vor. Es ist das Polyeder zentral so aus einem ausserhalb liegenden Punkte auf eine seiner Grenzflächen projiziert, dass alle seine Eckpunkte innerhalb dieser Fläche liegen. Man bezeichnet diese Bilder der Polyeder als ihre Diagramme. 2) Das Problem, alle p_n zu bestimmen, unter deren Grenzflächen ein λ -eck vorkommt ist dann, da ein allgemeines p_n 2n-4 Ecken besitzt, identisch mit dem, $2n-4-\lambda$ Punkte

¹⁾ Vergl. O. Hermes, Ueber Anzahl und Form von Vielflachen. Progr. d. Kölln. Gymn. Berlin 1894.

²) Schoute, a. a. O. S. 23. Die Diagramme aller allgem. Vielflache bis n=10vergl. Vielecke u. V. Taf. II-V.

innerhalb des Perimeters eines λ -ecks so unter einander und mit den λ Ecken des Aussenpolygons zu verbinden, dass jeder der Binnenpunkte mit nur je 3 andern Punkten, jeder der äussern Polygonpunkte aber nur mit einem Binnenpunkte verbunden und die Fläche des λ -ecks in n-1 einfachzusammenhängende Zellen geteilt wird. Es ist ersichtlich, dass dieses Problem der Polygonteilung, weil gewisse Zerlegungen verschiedenkantiger Vielecke Diagramme desselben Polyeders p_n auf verschiedenkantige seiner Grenzflächen bezogen 1) darstellen, seine wahre Bedeutung erst erhält, wenn man die geteilten Polygone als Diagramme dreidimensionaler Polyeder auffasst. 2)

🖇 1. Von den allgemeinen konvexen Polytopen.

Unter einem Polytop (Vielzell) versteht man eine Reihe von Polyedern, die im vierdimensionalen Raume derart mit einander verbunden sind, dass je ein Polyeder jede seiner begrenzenden Flächen mit einem und nur einem andern Polyeder gemein hat, wobei durch diese Reihe der Polyeder der R_4 in 2 getrennte Gebiete zerlegt wird, ein "inneres" (endliches) und ein "äusseres" (unendliches). Jedes der dreidimensionalen Polyeder liegt dabei in einem anderen dreidimensionalen Raume. Die gemeinsame Fläche zweier Grenzpolyeder liegt in der Schnittebene der beiden benachbarten Räume. Ein Polytop heisst allgemein, wenn jede seiner Ecken von nur 4 Polyedern gebildet wird, also in jeder seiner Kanten 3 Polyeder aneinandergrenzen. 3) An jeder Ecke nehmen 6 Flächen Teil. Ist e die Zahl der Ecken, k der Kanten, f der Flächen und p der Polyeder des Polytopes, so gelten neben der Gleichung

$$e - k + f - p = 0$$

für ein allgemeines Polytop die Relationen 4):

$$k = 2e$$
; $f = e + p$.

Während für ein allgemeines Polyeder des dreidimensionalen Raumes, das von n Flächen begrenzt wird, die Zahlen der Ecken und Kanten durch die Gleichungen e = 2n - 4, k = 3n - 6 be-

¹) Vergl. die Diagramme Fig. 1^a und 1^b desselben p_s .

²) Wir bezeichnen die allgemeinen n-flache mit p_n und verstehen unter p_n stets den Huf, unter p_n das Prisma, während die mit weiteren Indices versehenen p_n^{III} , p_n^{IV} ,... die übrigen (für $n \equiv 7$ durch die Figuren 6–8 erläuterten) Polyeder p_n sind.

³⁾ SCHOUTE, a. a. O. S. 28.

[&]quot;) SCHOUTE, a. a. O. S. 65.

stimmt sind, gilt der Satz: Die Anzahl der Ecken eines allgemeinen Polytopes mit p Polyedern (p > 5) ist nur an die Ungleichung bezw. Gleichung gebunden:

$$3p-10 < e < \frac{p(p-3)}{2}$$
.

In Verbindung mit den obigen Gleichungen folgt hieraus für die Anzahl der 2- und 3-dimensionalen Begrenzungsstücke:

$$2 (3 p - 10) \leq k \leq p (p - 3);$$

$$2(2p-5) \le f < \frac{p(p-1)}{2}.$$

Dabei werden für jede Zahl p der Polyeder die unteren und oberen Grenzen für e, k und f wirklich erreicht, wie später zu beweisen ist.

Ein konvexes Polytop in R_4 wird von einer Geraden, die nicht vollständig in einem Grenzraume R_3 liegt, in 2 Punkten geschnitten. ¹) Verbindet man also einen Punkt ausserhalb des Polytopes in R_4 mit allen seinen Ecken, so schneiden diese Geraden bei passender Wahl der Lage des Punktes einen Grenzraum in ebensoviel Punkten, wie die ausserhalb dieses Grenzraumes noch liegenden Ecken des Polytopes betragen, und es ergibt sich somit eine zentrale Projektion der übrigen begrenzenden Polyeder in diesen Raum, die als Diagramm der Polytopes zu bezeichnen ist. Wir werden im allgemeinen das Polytop möglichst in ein Grenzpolyeder grösster Flächenzahl projizieren.

Ein in Zellen geteiltes allgemeines Polyeder ist also als Diagramm eines allgemeinen Polytopes aufzufassen, wenn in jedem der Binnenpunkte 4 Zellen, in jeder Verbindungskante zweier Punkte 3 Zellen aneinandergrenzen; das umhüllende allgemeine Polyeder ist der letzte Grenzraum. Die Figuren 9—13 stellen die Diagramme der allgemeinen Polytope P_7 dar. Projiziert man dasselbe Polytop in verschiedene seiner Grenzräume, so erhält man verschiedene Diagramme d. h. Polyederteilungen, wie die Figuren 10 und 10° erläutern, in denen dasselbe P_7 einmal in ein begrenzendes p_6 , das zweite Mal in ein p_5 projiziert ist. Als Polyederteilung hat man somit zwei verschiedene Lösungen, die ihr wahres Wesen erst offenbaren, wenn man die Figuren als Diagramme vierdimensionaler Polytope auffasst. — Unter diesen besitzen 2 Arten besonders ein-

¹⁾ SCHOUTE, a. a. O. S. 28, N°. 10.

fachen Charakter. Unter einem Hufe verstehe man ein Polytop, ¹) dessen sämtliche Ecken zwei isomorphen p_n zugehören, die eine homologe Grenzfläche gemeinsam haben. Für dasselbe p_n lassen sich demnach soviel Hufe in R_4 konstruieren, als wesentlich nach Isomorphismus verschiedene Grenzflächen von p_n in Frage kommen, und es sind die erhaltenen Hufe der Zahl der Ecken etc nach verschieden. Ist die gemeinsame Fläche der beiden p_n ein λ -eck so ist für den Huf ²):

$$e = 4 n - 8 - \lambda; k = 8 n - 16 - 2 \lambda;$$

 $f = 5 n - 7 - \lambda; p = n + 1.$

Es sind z. B. die drei Siebenzelle P_7^{1} , P_7^{2} , P_7^{4} (Fig. 9, 10 und 12) Hufe aus zwei p_6 , in denen der Reihe nach ein Fünfeck, Viereck und Dreieck gemeinsame Fläche der beiden p_6 ist. 3) Das Siebenzell P_7 (Fig. 11) ist ein Huf aus zwei p_6 ". — Die zweite Art von Polytopen besondern Charakters sind die Prismen. Ein vierdimensionales Prisma entsteht, wenn ein Polyeder p_n so in R_4 bewegt wird, dass seine Ecken aequipollente Strecken 4) beschreiben, aber nicht in demselben Raume R_3 bleiben. Es besitzt also 2 kongruente "Deckräume" und n dreidimensionale Prismen als "Mantelräume". Der Huf P_7^3 ist zugleich ein Prisma aus einem p_5 als Deckraum, wie sich erkennen lässt, wenn man das Polytop in eines der vier p_5 (z. B. EIA, FKB) projiziert 5), oder aus Fig. 11; nur sind die von den Ecken E, I, u. s. w, beschriebenen Strecken EH, IM, ... im Diagramm nicht aequipollent. Wir teilen nun analog den Polyedern zur Uebersicht die Polytope in R_A in Klassen, wobei wir das Vorkommen von Polyedern bestimmter Flächenzahl als Grenzpolyeder zum Einteilungsprincip wählen. Ein Polytop der ersten Klasse besitze unter seinen Grenzräumen p_4 (d. i. Tetraeder) und irgend welche p_n grösserer Flächenzahl (wenn p > 5 ist). Ein Polytop der zweiten Klasse besitze keine p_4 mehr, aber p_5 und Polyeder grösserer Flächenzahl. Ein Polytop *i-ter Klasse* besitzt keine $p_4, p_5, \ldots p_{i+2}$, wohl aber p_{i+3}

¹⁾ Das Beiwort allgemein ist künftig stets weggelassen.

²) Vergl. meine "Elemente der vierdimens. Geometrie". Zwickau 1894. S. 46.

³) In Fig. 9 ist das Fünfeck ABCDG gemeinsame Fläche der beiden p^1_6 ; in den andern Figuren ist die gemeinsame Fläche schraffiert und für das innenliegende Polyeder ist die fünfeckige Fläche mit dem Kantenzuge LIGAB bezw. NMFBK aus dem hintersten Fünfeck der äusseren Umhüllungszelle bis auf eine Kante heraustretend vorzustellen.

[&]quot;) SCHOUTE, a. a. O. S. 37.

s) Vergl. Elem. der vierdim. Geom. Taf. II. Fig. 17^b . Die Diagramme der P_s und P_c sind dort auf den Tafeln gezeichnet. P_5 (Taf. I Fig. 8) ist das aus 5 Tetraedern gebildete "Simplex" (vergl. Schoute a. a. O. S. 1) des R_4 . P_6^{-1} (Fig. 13^a auf Taf. II) ist ein Prisma aus p_4 als Deckraum; P_6^{-2} (Fig. 14^a) ein Huf über p_5 .

und weitere. Da unter den Grenzpolyedern eines konvexen P_p ein p_{n-1} das Vielflach höchster Flächenzahl sein kann (es sind dann noch p-1 Polyeder vorhanden, von denen jedes eine seiner Flächen mit dem p_{p-1} gemein hat) so kann ein P_p zur 1, 2, 3.... (p-4)-ten Klasse gehören.

Es wird sich zeigen, dass für jeden Wert von p Polytope dieser sämtlichen Klassen existieren 1) und sich konstruieren lassen. Diese unsre nächste Aufgabe: Die Konstruktion sämtlicher Polytope P_{p+1} aus den als bekannt vorauszusetzenden P_n , werden wir an den Diagrammen erläutern.

Ist A eine Ecke eines Polytopes P_p , und sind A_1 , A_2 , A_3 , A_4 Punkte auf den 4 von A ausgehenden Kanten, so konstruiere man das Tetraeder A_1 A_2 A_3 A_4 und tilge die innerhalb desselben liegenden Teile jener 4 Kanten sowie die Ecke A selbst. Dadurch wird auf die 4 Polyeder in A die erste Polyederkonstruktion angewandt, d. h. von jedem wird eine Ecke abgeschnitten. Das neue Polytop P_{p+1} gehört der ersten Klasse nach obiger Einteilung an, denn es enthält mindestens das eine $p_4 \equiv A_1 A_2 A_3 A_4$.

Aus einem $P_p(e, k, f, p)$ beliebiger Klasse ergibt sich durch diese erste Polytopkonstruktion ein Polytop erster Klasse P_{p+1} (e + 3, k+6, f+4, p+1). Da durch alle weiterhin zu besprechenden Konstruktionen die Zahl der Ecken um mehr als 3 erhöht wird, so ergeben sich die Polytope mit der Minimalzahl der Ecken durch wiederholte Anwendung dieser ersten Konstruktion. Es besitzt daher, weil für p=5 auch e=5 ist, ein P_p das Minimum der Ecken e=5+(p-5). 3=3p-10, wie früher behauptet war. Ueberdies leuchtet ein, dass zur Erzeugung der P_{p+1} erster Klasse diese erste Konstruktion auf sämtliche P_p zu erstrecken ist, und es sind alle deren Ecken zu berücksichtigen. Ebenso wie bei Konstruktion der Polyeder in R_3 wird auch hier dasselbe P_{p+4} sich zuweilen aus mehreren P_p ergeben, ja in Folge der Symmetrie selbst mehrere Male aus demselben P_{ν} . Inverse d. h. spiegelbildlich-isomorphe Diagramme sollen dabei überhaupt als gleichwertig angesehen werden.

Die zweite Polytopkonstruktion. Ist AB eine Kante im Diagramm eines P_p , so seien A_1 , A_2 , A_3 und B_1 , B_2 , B_3 Punkte auf den übrigen je 3 von A und B ausgehenden Kanten, derart dass $A_{\mathbf{1}}$ und B_1 , A_2 und B_2 , A_3 und B_3 je auf Kanten derselben von den 3 Flächen liegen, die die Kante AB gemein haben. Diese 6 Ecken A_1 , A_2 , A_3 , B_1 , B_2 , B_3 sind die eines p_5 , das nach Tilgung der

¹⁾ Man beachte den Unterschied der Klassenzahl der Gebilde in R3 und R4.

Kante AB und der innerhalb p_5 liegenden Kantenteile AA_1 u. s. w. als neues Grenzpolyeder dem Polytope bezw. Diagramme eingefügt ist. Dabei wird auf die 2 Scheitelpolyeder der Kante AB in A und B die erste Polyederkonstruktion angewandt; aus den 3 Polyedern, die die Kante AB gemeinsam hatten, wird durch die zweite Polyederkonstruktion ebenfalls je ein Polyeder mit um 1 vermehrter Flächenzahl. Aus dem P_p (e, k, f, p) wird ein P_{p+1} (e + 4, k+8, f+5, p+1). Da diese zweite Polytopkonstruktion zu einem P_{n+1} mit mindestens dem eingefügten p_5 führt, so ist sie zur Ableitung der P_{n+1} zweiter Klasse zunächst auf alle P_n zweiter und höhrer Klasse anzuwenden. Zweitens aber noch auf alle diejenigen P_p erster Klasse die nur ein p_4 besitzen; sowohl auf dessen Kanten selbst als Kanten AB, sowie auf seine Scheitelkanten, denn in beiden Fällen tritt an Stelle dieses p_4 ein p_5 . Endlich sind auch die P, erster Klasse zu berücksichtigen, unter deren Grenzkörpern nur 2 Tetraeder A_1 A_2 A_3 A_4 und B_1 B_2 B_3 B_4 mit der Scheitelkante $A_i B_j$ auftreten, wobei an Stelle dieser Kante $A_i B_j$ das neue p_5 tritt.

Mit dieser zweiten Polytopkonstruktion ist die Eindeutigkeit der Konstruktionen schon erschöpft, da bereits für p_6 zwei verschiedene Typen existieren, d. h. die Polytope dritter Klasse ihren Charakter als solcher sowohl dem Vorkommen von p_6 wie p_6 verdanken können. Es soll nun zunächst die Einfügung der $Hufe\ p_6', p_7', \ldots p_n'$ genauer betrachtet werden und wir bezeichnen die dazu nötige Konstruktion als Polytopkonstruktion 3', 4'...¹). Es liege das Diagramm irgend eines P_{ν} vor, das 2 Polyeder mit einem gemeinsamen λ -eck enthält. $\mu + 2$ aufeinander folgende Ecken dieses λ -ecks seien e_0 , e_1 , e_2 , ... $e_{\mu-1}$, e_{μ} , $e_{\mu+1}$, wobei im ungünstigsten Falle e_0 mit $e_{\mu+1}$ identisch ist. 2) (Allgemein sei $\mu+2<\lambda$, so dass noch weitere Ecken des λ-ecks vorhanden sind). Man verbinde einen Punkt e_1^3 auf e_1 e_0 mit einem Punkte e_{μ}^3 auf e_{μ} $e_{\mu+1}$ durch die Strecke e_1^3 e_μ^3 , die also ganz innerhalb des Perimeters des λ -ecks verläuft. Auf den noch verbleibenden je 2 Kanten von den Ecken $e_1, e_2, \ldots e_{\mu}$ im Diagramm, die nicht dem λ -eck angehören, fixiere man die Punkte $e_1^{\ 1}$, $e_1^{\ 2}$; $e_2^{\ 1}$, $e_2^{\ 2}$; $e_3^{\ 1}$, $e_3^{\ 2}$; ... $e_{\mu}^{\ 1}$, $e_{\mu}^{\ 2}$ so, dass die Punkte $e_1^{\ 1}$, $e_2^{\ 1}$, $e_3^{\ 1}$... $e_{\mu}^{\ 1}$, sowie die Punkte $e_1^{\ 2}$, $e_2^{\ 2}$, $e_3^{\ 2}$... $e_{\mu}^{\ 2}$ für sich je in einer Ebene durch die Kante $e_1{}^3$ $e_\mu{}^3$ liegen. Durch diese beiden ($\mu+2$)-ecke, die beiden Dreiecke $e_1^{-1}e_1^{-2}e_1^{-3}$, $e_\mu^{-1}e_\mu^{-2}e_\mu^{-3}$ und die μ —1 Vierecke $e_1^{\ 1}$ $e_1^{\ 2}$ $e_2^{\ 2}$ $e_2^{\ 1}$, $e_2^{\ 1}$ $e_2^{\ 2}$ $e_3^{\ 2}$ $e_3^{\ 1}$, ... $e_{\mu-1}^{1}$

^{&#}x27;) Es werde allgemein die Einfügung eines p_n' , p_n'' , p_n''' , $p_n^{\rm HI}$,... in das Diagramm durch die Konstruktion (n-3)', (n-3)'', $(n-3)^{\rm HI}$,... geleistet.

²) Vergl. Fig. 13^a für $\mu = 4$.

 $e_{\mu^2_{-1}} e_{\mu^2} e_{\mu^1}$ wird ein Huf $p_{\mu_{+3}}$ begrenzt, durch dessen Einfügung das Diagramm eines P_{p+1} entsteht. 1) Wir bezeichnen diese Konstruktion als die Konstruktion μ' .

Aus dem Polytop P_p (e, k, f, p) entsteht durch sie ein

$$P_{p+1}(e + \mu + 2, k + 2\mu + 4, f + \mu + 3, p + 1);$$

denn es ist $e' = e - \mu + (2\mu + 2), k' = k - (\mu - 1) + (3\mu + 3),$ während Flächen und Polyeder nicht verloren gehen, sondern nur neu hinzukommen. Bei Ausführung der geschilderten Konstruktion erleiden die beteiligten Polyeder des Diagrammes die folgenden Veränderungen. Durch die dreikantigen Schnitte e_1^{-1} e_1^{-2} e_1^{-3} und e_{μ}^{-1} e_{μ}^{-2} e_{μ}^{-3} wird von den beiden Scheitelpolyedern Π_1 und Π_{μ} des Kantenzuges e_1 e_2 ... e_{μ} eine Ecke abgeschnitten (erste Polyederkonstruktion). Durch die μ — 1 Vierecke e_1^{-1} e_1^{-2} e_2^{-2} e_2^{-1} u. s. w. werden die Kanten e_1 e_2 ... von μ — 1 Polyedern $\Pi_{1,2}$, $\Pi_{2,3}$, ... $\Pi_{\mu=1,\mu}$ abgeschnitten (zweite Polyederkonstruktion), während die beiden Polyeder Λ und Λ' , die das λ -eck gemein hatten, der als μ te bezeichneten Polyederkonstruktion unterworfen wurden. Beachten wir jetzt, das die Polytopkonstruktion nur dazu dienen soll, einen Huf $p_{\mu+3}$ dem P_p einzufügen, so darf sie nur ausgeführt werden, wenn nach ihrer Erledigung das Polytop P_{n+1} keine Polyeder geringerer Flächenzahl, also auch keinen Huf niedrer Flächenzahl besitzt, denn sonst hätte dessen Einfügung die höhere Konstruktion unnötig gemacht, Wir setzen allerdings hierbei die Erledigung der Einfügung aller Polyeder geringerer Flächenzahl überhaupt voraus. Es dient die Einfügung eines Hufes $p_{\mu+3}$ sonach erst zur Ableitung der $P_{\mu+4}$ μ -ter Klasse aus den P_p und es ist diese Konstruktion auf alle P_p von der μ -ten Klasse ab (die niedern Klassen ausgeschlossen) anzuwenden. Nur von der $(\mu - 1)$ -ten Klasse der P_n sind noch gewisse Typen mit zuzuziehen, nämlich solche, die das λ-eck in der geschilderten Weise im Diagramm besitzen, und bei denen die Polyeder $p_{\mu+2}$ lediglich längs des zu entfernenden Kantenzuges $e_1, e_2, \ldots e_{\mu}$ liegen, also eine Kante dieses Zuges, oder wenigstens eine der Ecken e_1 und e_μ besitzen.

Das Maximum der Eckenzahl eines allgemeinen P_p ist vorhanden, wenn alle begrenzenden Polyeder (p-1)-flache sind. Da ein (p-1)-flach 2p-6 Ecken hat, so besitzen die p Polyeder p (2p-6) Ecken und das Polytop, da dann jede Ecke vierfach gezählt ist, $\frac{p}{4}$ d. h. $\frac{p}{2}$ Ecken, wie oben angegeben wurde. Wir

^{&#}x27;) Für $\mu = 1$ und 2 sind die eingefügten Polyeder ein p_4 und p_5 , und wir haben die schon erläuterte 1. und 2. Konstruktion.

beweisen jetzt den früher behaupteten Satz, dass für jeden Wert von p > 5 Polytope existieren, deren Eckenzahl dieses Maximum erreicht, durch den Schluss von p auf p+1. Es existiere das Maximum $M=\frac{p (p-3)}{2}$ für ein P_p , und wir setzen voraus, dass dann das Polytop einen $Huf p'_{p-1}$ besitze (das vorher mit Λ bezeichnete Polyeder).

Die Zulässigkeit dieser Annahme wird sich zeigen. ¹) Auf diesen Huf wenden wir die Konstruktion $\mu'=p-3$ an. Dies ist statthaft, denn die Fläche mit der Maximalzahl der Kanten des Hufes p'_{p-1} ist ein (p-2)-eck; man kann also einen Kantenzug mit p-3 Ecken abschneiden, und zwar geschehe dies nach dem Schema a) der Einleitung. Der dem Polytopdiagramm dadurch eingefügte Huf hat dann 2(p-3)+2=2p-4 Ecken. Das neue Polytop besitzt also sicher mindestens diesen einen Huf! Die Zahl seiner Ecken ist aber gleich der Zahl der Ecken des ursprünglichen Polytopes, vermindert um p-3 und vermehrt um 2(p-3)+2, d. h. es ist e'=M+p-1, oder

$$e^{'} = \frac{p \; (p-3)}{2} + p-1 = \frac{(p+1) \; (p-2)}{2} = \frac{p' \; (p'-3)}{2}$$

für p'=p+1, d. h. das neue P_{p+1} hat die Maximalzahl M' der Ecken. Nun existieren für p=5, 6, 7 Polytope mit der Maximalzahl der Ecken und mit Hufen, also... u. s. w.

Dass umgekehrt sämtliche Grenzpolyeder eines P_{p+1} mit M' Ecken p-flache sind, ist nach dem Vorhergehenden selbstverständlich. Für p=5,6,7 existiert nur je ein Polytop mit der Maximalzahl der Ecken und es sind sämtliche Grenzpolyeder in diesen drei Fällen $Hufe\ p'_{p-1}$. Schon für p=8 gibt es vier nach Isomorphismus verschiedene Polytope mit der Maximalzahl von 20 Ecken, und unter diesen wieder eins, das lediglich von Hufen p_7 begrenzt wird. Solche Polytope gibt es für jeden Wert von p. Zum Beweise dieses Satzes betrachten wir das Polytop p_7 , bezw. sein Diagramm (Vergl. Fig. 13).

Sind e_1 e_2 e_3 e_4 e_5 und e_1 e_2 e_3 e_4 e_5 die beiden Fünfecke irgend eines beliebigen Hufes von $P_7^{\,5}$, so sind e_1 e_2 und e_4 e_5 gemeinsame Kanten je eines verschiedenen Dreiecks und Fünfecks. Die 4 Nachbarkanten dieser beiden Kanten, die nicht Scheitelkanten der beiden Fünfecke sind, sind stets Scheitelkanten der beiden Fünfecke sind,

¹⁾ Damit ist natürlich nicht ausgeschlossen, dass überdies auch Polytope mit der Maximalzahl der Ecken existieren, unter deren Grenzpolyedern sich keine Hufe befinden.

ecke eines benachbarten Hufes, und zwar die Scheitelkanten, die einem Dreieck und Viereck gemeinsam sind, so dass die 7 Dreiecke im Diagramm derart eine geschlossene Reihe bilden, dass jedes eine Ecke mit dem folgenden gemein hat:

$$A'EI' - I'KN' - N'MO' - O'GH' - H'DC' - C'LB' - B'FA'.$$

Daraus folgt, dass die dritte durch e_1 e_2 bezw. e_4 e_5 gehende gemeinsame Fläche der beiden weiteren Hufe in diesen Kanten stets ein Fünfeck ist. Die übrigen Kanten der Fünfecke des ersten Hufes sind somit stets Scheitelkanten der Fünfecke der Nachbarhufe. Wendet man nun auf den Kantenzug e_2 e_3 e_4 e_5 die vierte Polytopkonstruktion an (auf das Polyeder die Konstruktion des Schema a) der Einleitung), so sieht man leicht ein. dass sämtliche in Anspruch genommenen Polyeder wieder zu Hufen werden a) und es ergibt sich ein neues Diagramm (Vergl. Fig. 49), das wieder denselben oben geschilderten Bau aufweist, wie das ursprüngliche. Durch die gleiche Betrachtung dieses und der folgenden Diagramme erschliesst man also, dass für jedes a0 ein Polytop aus lauter Hufen a1 existiert.

Schliesslich ist auch noch durch Betrachtung des Diagrammes eines P_p mit der Maximalzahl der Ecken zu zeigen, wie man aus ihm Diagramme von Polytopen P_{p+1} sämtlicher zugehörender Klassen ableitet, womit deren Existeuz bewiesen ist. An dem Hufe $\Lambda \equiv p'_{p-1}$ befinde sich der Kantenzug e_1 , e_2 , e_3 , ... e_{p-3} . Wendet man auf je 1, 2, 3 ... (p-3) aufeinanderfolgende Ecken die Konstruktion 1', 2', 3' ... (p-3)' an, so erhält man p-3 Polytope der 1., 2., 3 ... (p-3)-ten Klasse, d. h. aller für P_{p+1} vorhandenen Klassen der Polytope, denn es ist $p-3 \equiv (p+1)-4$.

Wir kehren nun zurück zur Ableitung der P_{p+1} dritter und höhrer Klasse aus den P_p . Dass die bisher betrachteten Konstruktionen μ' der Einfügung von Hufen in die Diagramme nicht hinreichend sein können zur Ableitung sämtlicher P_{p+1} , geht schon daraus hervor, dass Polytope existieren, unter deren Polyedern sich keine Hufe befinden. 2) Als fernere Konstruktionen allgemeineren

^{&#}x27;) Die Abschneidung der Ecken e_2 und e_5 der Hufe in den Enden des Kantenzuges unterwirft diese der ersten Polyederkonstruktion in der gemeinsamen Ecke der beiden Fünfecke; die Abschneidung von Scheitelkanten e_3 e_4 u.s.w. der Fünfecke eines Hufes durch die zweite Polyederkonstruktion führt aber stets wieder auf Hufe.

²) Z. B. die (allgemeinen) regulären Polytope Z_8 und Z_{120} (Schoute, a. a. O. S. 207 und 213) — Hiernach sind auch die in "Elemente d. vierdim. Geom." S. 40 etc. erläuterten Konstruktionen zur Ableitung der Tetraederpolytope (Schoute, a. a. O. S. 34) nicht hinreichend; denn sie sind nur die den bisher abgehandelten Konstruktionen der allgemeinen Polytope dualistisch zugeordneten. Der kundige Leser wird sich die weiteren Tetraederpolytopkonstruktionen leicht ergänzen.

Charakters, die wir mit 3", 4", ... μ " bezeichnen wollen, betrachten wir die Einfügung eines $Prisma\ p''_{\mu+3}$ in das Diagramm des P_p . Da seine Grund- und Deckfläche ($\mu-1$)-Ecke sind, so ist die Konstruktion folgendermassen auszuführen. Es sei $e_1\ e_2\ ...\ e_{\mu+1}$ eine gemeinsame Fläche zweier Polyeder Λ und Λ' des Diagramms. Nimmt man auf den zwei von jeder der Ecken e ausgehenden weitern Kanten die Punkte e^1 und e^2 an, so dass die je $\mu+1$ Punkte $e_1^{-1}\ e_2^{-1}\ ...\ e^1_{\mu+4}$ und $e_1^{-2}\ e_2^{-2}\ ...\ e^2_{\mu+4}$ in einer Ebene liegen, so bilden diese beiden ($\mu+1$)-ecke und die $\mu+1$ Vierecke $e_i^1\ e_i^2\ e_{i+1}^2\ e_{i+1}^4\ e_{i+1}^4$ ein Prisma $p''_{\mu+3}$, das dem Diagramm eingefügt ist. Die beiden Polyeder Λ und Λ' sind dadurch morphologisch nicht geändert, sämtliche dritte Polyeder an den Kanten $e_i\ e_{i+4}$ sind der zweiten Polyederkonstruktion unterworfen. Aus dem $P_p\ (e,\ k,\ f,\ p)$ entsteht durch die Konstruktion μ'' ein $P_{p+1}(e+\mu+1,k+2\mu+2,f+2\mu+2,f+\mu+2,f+1)$.

Dabei ist festzuhalten, dass eine Konstruction μ'' nur zur Erzeugung eines P_{p+4} μ' -ter (= 3, 4, 5...) Klasse auszuführen ist, also das neue Polytop keine Polyeder $p_{\mu+2}$ (oder niederer Flächenzahl) mehr besitzt, oder mit andern Worten nur an den P_n μ -ter und höhrer Klasse und überdies an den P_{ν} (μ — 1)-ter Klasse, wenn die hierin noch vorkommenden $p_{\mu+2}$ durch die Konstruktion in $p_{\mu+3}$ übergehen. Dabei soll noch vorausgesetzt werden, dass die Konstruktionen μ' den μ'' voranzustellen sind. Durch diese Bedingung wird die Anwendbarkeit von μ'' bereits bedeutend eingeschränkt. Was nun die weiteren Konstruktionen zur Ableitung der Diagramme der P_{p+1} vierter und höhrer Klasse anbetrifft, 1) so wollen wir nur die Erzeugung der Polytope vierter Klasse noch betrachten, da sich von da aus das weitere Verfahren klar überblicken lässt. Wir hatten bei den Konstruktionen μ' und μ'' gewisse ebene Kantenzüge $e_1 e_2 \dots e_{\mu}$ bezw. $e_1 e_2 \dots e_{\mu+1}$ zweier Polyeder Λ und Λ' mit gemeinsamer Grenzfläche ins Auge gefasst, die für $\mu = 1, 2, 3$ durch folgende einfache Figuren gegeben sind, durch deren Eliminierung und Ersetzung durch das beivermerkte Polyeder das P_p in ein P_{p+1} überging, und zwar in eins der am Ende angezeigten Klasse:

$$\overset{\centerdot}{\boldsymbol{e}}_{\!\scriptscriptstyle 1}\,(\boldsymbol{p}_{\!\scriptscriptstyle 4})\,[\boldsymbol{\mu}'=1];$$
 1. Klasse.

$$e_{1} \overline{\qquad} e_{2} \, (p_{5}) \, \big[\mu' = 2 \big]; \, \underbrace{ e_{1}^{e_{3}}}_{e_{2}} \, (p_{5}) \, \big[\mu'' = 2 \big]; \, \, 2. \, \, \text{Klasse}.$$

¹) Die Polytope dritter Klasse sind erledigt, da nur der Huf $p_{\rm e}{'}$ und das Prisma $p_{\rm e}{''}$ existieren.

$$e_1 \underbrace{\hspace{1cm}}_{e_2} e_3 \ (p_6') \ [\mu' = 3]; \underbrace{\hspace{1cm}}_{e_1} e_3 \ (p_6'') \ [\mu'' = 3]^{\, 1}); \ 3. \ \text{Klasse}.$$

Für die Konstruktion der P_{p+1} vierter Klasse kommen nun zunächst die beiden schon erledigten Polyedereinfügungen in Frage, die durch die folgenden Figuren charakterisiert sind:

$$e_{1} \underbrace{\sum_{e_{2}}^{e_{4}}}_{e_{3}} (p_{7}^{'}) \big[\mu^{'} = 4 \big]; \, e_{1} \underbrace{\sum_{e_{2}}^{e_{5}}}_{e_{3}} (p_{7}^{'}), \big[\mu^{''} = 4 \big].$$

Weiter kann aber ein P_{p+1} vierter Klasse dadurch erzeugt werden, dass in das Diagramm P_p eins der drei noch verfügbaren Siebenflache p_7^{III} , p_7^{IV} , p_7^{V} eingefügt wird. Für diese Polyeder sind die der Konstruktion zu Grunde liegenden Kantenzüge die folgenden:

$$\underbrace{e_{2}}_{e_{3}}\underbrace{e_{4}}_{e_{4}}(p_{7^{\text{III}}}), [\mu^{\text{III}} = 4]; \underbrace{e_{1}}_{e_{2}}\underbrace{e_{3}}_{e_{4}}(p_{7^{\text{IV}}}), [\mu^{\text{IV}} = +]; e_{1}\underbrace{e_{2}}_{e_{5}}\underbrace{e_{4}}_{e_{5}}(p_{7^{\text{V}}}), [\mu^{\text{V}} = 4].$$

Von den 3 Kanten der ersten Figur gehören je 2 derselben Grenzfläche einer Polyeders des Diagrammes an. Von den Ecken e_2 , e_3 , e_4 gehen demnach noch 3 freie Kanten, von e_1 noch eine freie Kante aus. Bestimmt man auf diesen 10 Kanten die Punkte e_2^1 , e_2^2 , e_2^3 ; e_3^1 , e_3^2 , e_3^3 ; e_4^1 , e_4^2 , e_4^3 und e_1^1 , so lässt sich aus diesen 10 Punkten ein p_7^{III} konstruieren (vergl. Fig. 7) mit den Flächen: $\mathbf{z} = e_2^2$ e_3^2 e_3^2 e_3^2 e_3^3 e_4^2 e_4^3 ; $\mathbf{\beta}_1 = e_2^2$ e_4^3 e_4^1 e_1^1 e_1^2 ; $\mathbf{\beta}_2 = e_4^1$ e_4^2 e_3^3 e_3^1 e_3^1 ; $\mathbf{\beta}_3 = e_3^1$ e_3^2 e_3^2 e_2^1 e_4^1 ; $\mathbf{\gamma}_1 = e_4^3$ e_4^2 e_4^1 ; $\mathbf{\gamma}_2 = e_3^3$ e_3^2 e_3^2 e_3^1 ; $\mathbf{\gamma}_3 = e_3^3$ e_3^2 e_2^2 e_2^1 . Das P_p (e, k, f, p) wird durch Einfügung dieses p_7^{III} zu einem P_{p+4} (e + 6, k + 12, f + 7, p + 1).

Von den 3 Kanten der zweiten obigen Figur liegen e_1 e_2 und e_2 e_3 , sowie e_2 e_3 und e_3 e_4 je in einer Ebene eines Polyeders des Diagrammes. Auf den 10 freien Kanten dieser 4 Ecken setze man die Punkte e_1^1 e_1^2 e_1^3 ; e_2^1 , e_2^2 ; e_3^1 , e_3^2 ; e_4^1 , e_4^2 , e_4^3 so fest, dass diese die Ecken eines p_7^{IV} bilden, das dem Diagramm einzufügen ist.

¹⁾ Die Konstruktion $\mu''=2$ ist entbehrlich. Denn hat sich ein gewisses P_{p+1} durch sie aus einem P_p ergeben, so reduciere man dieses P_{p+1} durch Anwendung der Umkehrung von p'=2 auf dieses eingefügte $p_{\scriptscriptstyle 5}$ in ein $P_{\scriptscriptstyle p}$, das natürlich ein andres sein muss, wie das ebengenannte, denn die Konstruktion $\mu'=2$ erhöhte die Eckenzahl um 4, $\mu''=2$ jedoch nur um 3. Es wird sich also das durch p''=2 erzeugte P_{p+1} bereits unter den mittels $\mu'=2$ gefundenen Polytopen finden.

(Vergl. Fig. 52^n und den Text in § 2). Es entsteht dadurch ein P_{n+1} mit derselben Formel wie vorher.

Es ist kaum nötig, die Einfügung eines $p_7^{\ v}$ in das Diagramm eines P, durch Benutzung der dritten der obigen Figuren, bei der die Kante e_1 e_2 nicht in der Ebene des Vierecks e_2 e_3 e_4 e_5 liegt, zu erläutern. Das neue P_{p+1} besitzt aber hier die Formel P_{p+1} (e+5,k+10,f+6,p+1), da das Viereck $e_2 e_3 e_4 e_5$ bei der Konstruktion getilgt wird. Die oben gezeichneten Linearfiguren der Kanten eines Polyeders im Diagramme des P_n sind nun nichts anderes, als die Deckkantensysteme der p₇ im Sinne von O. Hermes; 1) und es lässt sich also die betreffende Konstruktion μ so oft an dem Diagramme des P_n ausführen, als das zugehörige Deckkantensystem an den Polyedern des Diagrammes ausfindig gemacht werden kann. Abgesehen von dem mehrfachen Ergebnis desselben P_{p+4} durch verschiedene Konstruktionen erfährt die Anwendung jeder eine Einschränkung durch die früher festgesetzte Folge der Einfügung der Polyeder p_7 nach ihrem oberen Index. Es ist nun leicht zu übersehen, wie die Konstruktionen $\mu^{\rm III}$, $\mu^{\rm IV}$, $\mu^{\rm V}$... ($\mu=5$, 6, 7...) mit den Deckkantenzügen der $p_8, p_9...$ in Zusammenhang zu bringen sind. Wir erläutern jetzt den bisherigen theoretischen Teil durch die Ableitung aller allgemeinen Oktatope aus den bekannten fünf allgemeinen Siebenzellen.

§ 2. Die allgemeinen Oktatope oder Achtzelle.

a). Die Oktatope erster Klasse. Die Konstruktion $\mu'=1$, d. h. die Einfügung eines Tetraeders p_4 in die Diagramme der Siebenzelle zur Erzeugung sämtlicher P_8 erster Klasse ist an allen Ecken der P_7 auszuführen, so weit nicht schon ein Blick auf das Diagramm des P_7 zeigt, dass in Folge seines symmetrischen Baues eine Reihe von Ecken übergangen werden kann, da sich durch ihre Beanspruchung keine weiteren isomorph verschiedenen P_8 ergeben können. Die Anzahl der Ecken, Kanten und Flächen der P_7 , sowie die Zahl der begrenzenden Polyeder p_i sind zur Uebersicht in der folgenden Tabelle zusammengestellt, nebst dem Hinweis auf die Figur des Diagrammes.

^{&#}x27;) Vergl. Vielecke und Vielflache S. 97.

Bezeichnung u. Figur.	e	k	f	p	p_4	p_5	p_6	$p_6^{''}$	Klasse.
P_7^1 Fig. 9	11	22	18	7	2	2	3		1
P_7^2 Fig. 10 u. 10^a	12	24	19	7	1	2	4		1
P_7^3 Fig. 11						4		3	2
P_7^4 Fig. 12	13	26	20	7	_	2	4	1	2
$P_7^{\ 5}$ Fig. 13	14	28	21	7	-		7	_	3

Das Diagramm Fig. 9 von P_7^4 ist offenbar symmetrisch (natürlich ganz allgemein morphologisch aufgefasst) gegen die Ebene des Dreiecks A F L und gegen die Ebene des Fünfecks C D H F E. Es ergibt sich daraus sofort, welche Ecken, Kanten, Kantenpaare u. s. w. morphologisch gleichwertig sind, z. B. die Ecken C, D; B, E, K, G, H, I; A, F, L. Es ist also die Konstruktion $\mu' = 1$ nur an 3 Ecken auszuführen, z. B. A, B, und C. Ersetzen wir diese Ecken durch die je 4 Ecken A_1, A_2, A_3, A_4 u. s. w., so ergeben sich die folgenden 3 Oktatope erster Klasse. Durch Tilgung von A entsteht das Achtzell P_8^4 (Fig. 14), ein Huf über der Fläche α von p_7^{III} . 1) Die Tilgung der Ecke B gibt das Achtzell P_8^2 (Fig. 15), einen Huf über der Fläche α von p_7^{IV} . Tritt an Stelle der Ecke C das $p_4 = C_1 C_2 C_3 C_4$, so ergibt sich der Huf P_8^3 (Fig. 16) über der Fläche α von p_7^{IV} . Diese 3 Oktatope erster Klasse sind die einzigen vom Minimum e = 14 der Zahl der Ecken.

Der symmetrische Bau des Diagrammes des Hufes P_7^2 ist am deutlichsten an Fig. 10^a zu erkennen, in welcher die Ebene des Vierecks B E M L Symmetrieebene ist. Allgemein gilt: Die gemeinsame Ebene zweier begrenzender dreidimensionaler Hufe eines vierdimensionalen Hufes ist Symmetrieebene des Diagrammes des Polytopes ²). Das Diagramm von P_7^2 ist aber auch symmetrisch gegen die Ebene des Vierecks K H G I, wie sowohl Fig 10 als 10^a erkennen lässt. In Bezug auf diese beiden Symmetrieebenen sind die Ecken A, C; G, H; I, K; D, F; bezw. A, D; B, E; C, F; L, M gleichwertig; woraus folgt, dass die Konstruktion $\mu' = 1$ an

¹) In den Figuren 14 u.s. w. der Diagramme der Oktatope ist den nicht durch die vorgenommene Konstruktion getilgten Ecken der Diagramme der P_{τ} derselbe Buchstabe belassen. Nur soweit sich die Art der begrenzenden Polyeder leicht aus der Figur der P_{s} erkennen lässt, ist sie nicht besonders angeführt (vergl. hierzu auch die Haupttabelle am Schlusse).

²) Dies leuchtet sofort ein, wenn man das Diagramm dadurch bildet, dass man die Hufe mit dieser Ebene aussen an einander setzt und dann homologe Ecken durch Gerade verbindet.

5 Ecken auszuführen ist, z. B. B, L, C, G und I. Es ergeben sich jedoch nur die folgenden 3 Achtzelle erster Klasse. Durch Tilgung der Ecke B erhält man das Diagramm (Fig. 17) eines P_8^4 , eines Hufes über einer Fläche β von $p_7^{\rm III}$. Die Ersetzung der Ecke Lin P_7^2 durch das $p_4 = L_1 L_2 L_3 L_4$ gibt das Diagramm (Fig. 18) eines Hufes P_8^5 über einer Fläche β von p_7^{IV} . Tritt an Stelle der Ecke C von P_7^2 das $p_4 = C_1 C_2 C_3 C_4$, so ergibt sich das Diagramm (Fig. 19) eines P_8^6 allgemeineren Charakters. Zwei p_7^{IV} haben das Sechseck C_1 C_4 B L K H gemein, und über dem inneren p_7^{IV} ist der Punkt D mit den Ecken A und G des untern (bezw. innern) und mit den Ecken E und F des umhüllenden p_7^{IV} des Diagrammes zu verbinden. Ersetzt man die Ecke G in P_7^2 durch ein p_4 , so ergibt sich ein mit Fig. 17 isomorphes Diagramm, wenn man das zunächst erhaltene in einen andern Grenzkörper projiziert. Die Ersetzung der Ecke I durch ein p_4 führt auf ein mit Fig. 18 isomorphes Diagramm. Um nicht zu weitläufig zu werden, sollen im Folgenden solche Ergebnisse isomorpher Diagramme von vornherein unberücksichtigt bleiben.

Die Symmetrieeigenschaften des Diagrammes Fig. 11 von P_7^3 sind leicht zu übersehen. Bei Ersetzung der Ecke G durch das Tetraeder G_1 G_2 G_3 G_4 ergibt sich das einzige durch $\mu'=1$ aus P_7^3 zu erhaltende Achtzell P_8^7 (Fig. 20). Dieses P_8^7 ist ein vierdimensionaler Huf über einer Fläche α von p_7^{V} . Das Diagramm des Siebenzelles P_7^4 (Fig. 12) besitzt die Symmetrieebene der Flächen I K N und L M N. Daher sind nur noch 5 Ecken zur Konstruktion $\mu'=1$ heranzuziehen, z. B. B, K, N, G, L; doch ergeben sich nur 3 neue Oktatope. Durch Abschneiden der Ecke B in Fig. 12 mittels $p_4=B_1$ B_2 B_3 B_4 ergibt sich das Diagramm allgemeineren Charakters (Fig. 21) eines $P_8^{\ 8}$ erster Klasse, das nur noch ein p_4 enthält. Die Ersetzung der Ecke K führt zu dem Hufe $P_8^{\ 9}$ über einer Fläche γ von $p_7^{\ 1V}$, dessen Diagramm Fig. 22 darstellt. Tritt an Stelle der Ecke N in Fig. 12 ein p_4 , so ergibt sich das Diagramm (Fig. 23) eines Hufes $P_8^{\ 10}$ über der Fläche β_1 eines $p_7^{\ 1}$.

Ehe wir auf die Ecken des Siebenzells P_7^5 (Fig. 13) die Konstruktion $\mu'=1$ anwenden, sei es noch einer genaueren Betrachtung unterzogen. Es ist nach Früherem einleuchtend, dass dieses P_7^5 sieben isomorphe Diagramme ergibt, wenn man es der Reihe nach in jedes seiner 7 Grenzpolyeder p_6' projiziert. Seine Ecken sind zweierlei Art. Sieben Ecken werden von 2 Dreiecken, 1 Viereck und 3 Fünfecken gebildet, nämlich A', B', C', H', I', N', O'. Die andern 7 Ecken D, E, F, G, K, L, M von 1 Dreieck, 3 Vierecken

und 2 Fünfecken. In jedem der sieben p_6' liegen diese Ecken verschiedener Art wie die durch e und e' unterschiedenen Ecken des Sechsflaches in Fig. 2. Wendet man die Konstruktion p'=1 auf die Ecken derselben Art an, so ergeben sich isomorphe Diagramme, und es resultieren daher nur 2 durch Isomorphismus unterschiedene Oktatope. Um auch bei weitern Konstruktionen, die auf $P_7^{\,5}$ anzuwenden sind, die Zuordnung der Achtzelle leichter übersehen zu können, seien die begrenzenden 7 Sechsflache p_6' einzeln bezeichnet: (vergl. Fig. 13).

$$\begin{split} \mathbf{I} &\equiv \textit{A'} \; \textit{B'} \; \textit{C'} \; \textit{D} \; \textit{E} \; \textit{F} \; \textit{G} \; \textit{H'} \; ; \\ \mathbf{II} &\equiv \textit{A'} \; \textit{B'} \; \textit{C'} \; \textit{D} \; \textit{E} \; \textit{I'} \; \textit{K} \; \textit{L} \; ; \\ \mathbf{III} &\equiv \textit{I'} \; \textit{A'} \; \textit{B'} \; \textit{L} \; \textit{K} \; \textit{N'} \; \textit{M} \; \textit{F} \; ; \\ \mathbf{IV} &\equiv \textit{N'} \; \textit{I'} \; \textit{A'} \; \textit{F} \; \textit{M} \; \textit{O'} \; \textit{G} \; \textit{E} \; ; \\ \mathbf{V} &\equiv \textit{O'} \; \textit{N'} \; \textit{I'} \; \textit{E} \; \textit{G} \; \textit{H'} \; \textit{D} \; \textit{K} \; ; \\ \mathbf{VI} &\equiv \textit{O'} \; \textit{H'} \; \textit{C'} \; \textit{L} \; \textit{M} \; \textit{N'} \; \textit{K} \; \textit{D} \; ; \\ \mathbf{VII} &\equiv \textit{C'} \; \textit{H'} \; \textit{O'} \; \textit{M} \; \textit{L} \; \textit{B'} \; \textit{F} \; \textit{G} \; . \end{split}$$

Das Achtzell P_8^{-11} mit dem Diagramme Fig. 24 ergibt sich durch Tilgung der Ecke L von P_7^{-5} . Die begrenzenden Polyeder sind hier: $\mathbf{I} = p_6'$; $\mathbf{II} \sim p_7^{-1V}$; $\mathbf{III} \sim p_7^{-1V}$; $\mathbf{IV} = p_6'$; $\mathbf{V} = p_6'$; $\mathbf{VI} \sim p_7^{-1V}$; $\mathbf{VII} \sim p_7^{-1V}$ und das neu eingefügte p_4 (L_1 L_2 L_3 L_4), wobei z. B. $\mathbf{II} \sim p_7^{-1V}$ bedeutet, dass das Polyeder II des Siebenzells durch $\mu' = 1$ im Achtzell in ein Siebenflach p_7^{-1V} übergegangen ist, während $\mathbf{I} = p_6'$ andeutet, dass das Sechsflach I des Siebenzells als p_6' erhalten blieb.

 P_8^{12} ist das Achtzell mit dem Diagramm Fig. 25, entstanden durch Ersetzung der Ecke A' durch ein p_4 . Die übrigen 7 Grenzpolyeder sind: I $\sim p_7^{\text{IV}}$; II $\sim p_7'$; III $\sim p_7'$; IV $\sim p_7^{\text{IV}}$; V = p_6' ; VI = p_6' , VII = p_6' . Hiermit sind die Oktatope erster Klasse erschöpft und es existieren also deren zwölf mit 14 bis 17 Ecken; eins derselben hat $3p_4$, vier haben $2p_4$, während 7 nur noch ein Tetraeder unter ihren begrenzenden Polyedern besitzen.

b) Die Oktatope zweiter Klasse. Um ein solches aus dem Siebenzell P_7^{-1} zu erhalten, hat man die Konstruktion $\mu'=2$ nach den allgemeinen Erörterungen nur auf die Kante CD in Fig. 9 anzuwenden. Es ergibt sich ein vierdimensionaler Huf P_8^{-13} mit 15 Ecken über einer Fläche α von p_7 ", dessen Diagramm in Fig. 26 dargestellt ist. Der Huf $p_5=C_1$ C_2 C_3 D_1 D_2 D_3 ist das durch die Konstruktion an Stelle der Kante CD getretene Polyeder.

Aus P_7^2 ergeben sich 3 isomorph verschiedene Oktatope zweiter Klasse durch Tilgung der Kanten LK, LM, KI des Tetraeders, bezw. seiner Scheitelkanten KH und ME. Tritt an Stelle der Kante LK das Fünfflach L_1 L_2 L_3 K_1 K_2 K_3 , so ergibt sich das

Achtzell P_8^{14} , dessen Diagramm Fig. 27 zeigt. Die Ersetzung der Kante LM von P_7^2 führt auf das P_8^{15} (Fig. 28), einen vierdimensionalen Huf über der Fläche β_2 von p_7 . Auf dasselbe Achtzell führt die Konstruktion $\mu'=2$ an der Kante KI. Das Diagramm Fig. 29 ist das eines $P_8^{\ 16}$, das aus $P_7^{\ 2}$ sowohl durch Anwendung von $\mu' = 2$ auf die Kante KH als ME resultiert. Wir haben hier einen vierdimensionalen Huf über einer Fläche β von $p_7^{\rm v}$. Das Siebenzell $P_7^{\rm s}$ ergibt nur durch Tilgung einer Kante wie $\dot{M}L$ ein Achtzell P_8^{17} , das nicht mit bereits abgeleiteten isomorph ist. Das Polytop, dessen Diagramm Fig. 30 zeigt, ist ein Huf über einer Fläche β von p_7 " und zugleich ein vierdimensionales Prisma über p_6' . Wir wenden nun die Konstruktion $\mu'=2$ auf das Siebenzell P_7^4 an. Wegen der Symmetrie seines Diagrammes braucht sie nur auf die Kanten BC, CD, CK, KI, CG und GL augewandt zu werden. Wird die Kante BC von P_7^4 durch das Fünfflach B_1 B_2 B_3 C_1 C_2 C_3 ersetzt, so ergibt sich das Diagramm Fig. 31 eines Oktatopes P_8^{-18} , das ein Huf über einer Fläche γ von p_7^{-111} ist. Die Ersetzung der Kante CD führt auf den Huf P₈ 19 über einem Dreieck δ von p_7^{IV} . Das Diagramm zeigt Fig. 32. Ersetzt man die Kante CK von $P_7^{\ 4}$ durch das Fünfflach C_1 C_2 C_3 K_1 K_2 K_3 , so erhält man das Diagramm Fig. 33 eines $P_8^{\ 20}$ allgemeineren Charakters. Der vierdimensionale Huf P_8^{21} (Fig. 34) über einer Fläche γ des p_7 ist erzeugt durch Anwendung von $\mu'=2$ auf die Kante KI von P_7^4 . Die Ersetzung der Kante CG von P_7^4 durch ein p_5 führt auf das Oktatop allgemeineren Charakters $P_8^{\ 22}$, dessen Diagramm Fig. 35 zeigt. Die Anwendung von $\mu'=2$ auf die Kante GL von P_7^4 endlich ergibt das Achtzell $P_8^{\ 23}$ mit dem Diagramme Fig. 36.

Um aus dem Siebenzell P_7^5 durch die Konstruktion $\mu'=2$ Achtzelle abzuleiten, ist zu beachten, dass die Kanten von P_7^5 von dreierlei Art sind, je nachdem sie 2 Ecken e, 2 Ecken e', oder eine Ecke e mit einer Ecke e' nach der früheren Bezeichnung verbinden. Es ergeben sich daher 3 durch Isomorphismus verschiedene Oktatope mit 18 Ecken. Durch Tilgung der Kante LM vom Typus e, e ergibt sich das Achtzell P_8^{24} (Fig. 37) mit den Grenzpolyedern 1): $I = p_6'$; $II \sim p_7^{IV}$; $III \sim p_7'$; $IV \sim p_7^{IV}$; $V = p_6'$; $VI \sim p_7^{V}$; $VII \sim p_7^{V}$ und dem eingefügten p_5 (L_1 L_2 L_3 M_1 M_2 M_3).

Bei Ersetzung der Kante OH durch ein p_5 ergibt sich das Diagramm Fig. 38 eines ${P_8}^{25}$, das im übrigen von den Polyedern begrenzt wird: $I \sim {p_7}^{\text{IV}}$; $II = p_6'$; $III = p_6'$; $IV \sim {p_7}^{\text{IV}}$; $V \sim {p_7}^{\text{IV}}$;

¹) In allen folgenden aus P_{τ}^{5} abgeleiteten Diagrammen ist die obere Strichelung der Eckenbuchstaben weggelassen.

 ${
m VI} \sim p_7^{"}; \ {
m VII} \sim p_7^{{
m IV}}.$ Die Elimination der Kante LC endlich ergibt das Achtzell $P_8^{{
m 26}}$ (Fig. 39) mit den Polyedern: ${
m I} \sim p_7^{{}}; \ {
m II} \sim p_7^{{}}; \ {
m III} \sim p_7^{{}}; \ {
m II} \sim p_7^{{}}; \ {
m VI} \sim p_7^{{}}; \ {
m VII} \sim p_7^{{}}$ und dem Fünfflach p_5 (L_1 L_2 L_3 C_1 C_2 C_3). Es haben sich somit im ganzen 14 Oktatope zweiter Klasse mit 15 bis 18 Ecken ergeben.

c). Die Oktatope dritter Klasse. Um diese Polytope abzuleiten, haben wir zunächst die Konstruktion $\mu'=3$ zu beachten. Nach den allgemeinen Erörterungen braucht sie auf die Siebenzelle $P_7^{\ 1}$ und $P_7^{\ 2}$ nicht mehr angewandt zu werden, und von dem $P_7^{\ 3}$ kommt nur ein Kantenzug in Frage, durch dessen Tilgung sämtliche p_5 in Sechsflache übergehen. Tilgt man den Kantenzug M L K in Fig. 11, so ergibt sich das Achtzell $P_8^{\ 27}$ mit 17 Ecken, dessen Diagramm Fig. 40 zeigt. Es ist ein vierdimensionaler Huf über der Fläche γ_1 von $p_7^{\ V}$.

Auf P_7^4 ist die Konstruktion $\mu'=3$ nur für solche Kantenpaare anzuwenden, bei deren Tilgung die beiden vorhandenen p_5 zerstört werden. Zur leichtern Uebersicht führen wir für die Grenzpolyeder von P_7^4 hier die Abkürzungen ein:

$$\begin{split} a &\equiv p_6' \, (L\,H\,D\,I\,N\,K\,C\,G); \\ b &\equiv p_6' \, (M\,E\,A\,I\,N\,K\,B\,F); \\ c &\equiv p_6' \, (N\,M\,F\,B\,K\,C\,G\,L); \\ d &\equiv p_6' \, (I\,A\,E\,M\,N\,L\,H\,D); \\ e &\equiv p_5 \, (FEHG\,L\,M); \\ f &\equiv p_6'' \, (A\,B\,C\,D\,E\,F\,G\,H); \\ g &\equiv p_5 \, (A\,B\,C\,D\,I\,K). \end{split}$$

²) Die Reihenfolge der Buchstaben der Ecken der neuen p ist im Ausschluss an die Figuren 2 bis 8 der Diagramme stets so gewählt, dass zunächst die Ecken der "Grundfläche" und dann die Ecken des "Deckkantenzuges" geschrieben sind.

zufinden. Die Ersetzung pes Kantenzuges MEA durch ein p_6 erzeugt ein P_8^{29} (Fig. 42) mit den begrenzenden Polyedern:

$$\begin{split} b &\sim p_7^{\text{IV}}(N\,M_3\,M_2\,F\,B\,K;\,I\,A_3\,A_2\,E_2);\\ c &\sim p_7^{\text{IV}}(\,M_4\,N\,K\,B\,F\,M_2;\,M_1\,L\,G\,C);\\ d &\sim p_7^{''}\ (H\,D\,I\,N\,L;\,M_1E_1A_1A_3M_3);\\ e &\sim p_6^{'}\ (G\,F\,E_2\,E_1\,H;\,L\,M_1\,M_2);\\ f &\sim p_7^{''}\ (A_1\,A_2\,B\,C\,D;H\,E_1\,E_2\,F\,G);\\ g &\sim p_6^{'}\ (A_2\,B\,C\,D\,A_1;\,A_3\,I\,K);\\ a &= p_6^{'}\ (L\,N\,I\,D\,H;\,G\,C\,K); \end{split}$$

dazu das neu eingefügte $p_6{'}(M_3\,A_3\,A_2\,E_2\,M_2\,;M_1\,E_1\,A_1).$

Tritt an Stelle des Kantenzuges HDA ein p_6 so ergibt sich ein Achtzell P_8 30 (Fig. 43) mit folgenden Polyedern:

$$\begin{split} a \sim & p_7^{\text{ V}} (NLGCK; ID_1D_2H_2H_1); \\ b \sim & p_7^{\text{ III}} (MEA_2A_1IN; FBK_1A_2); \\ d \sim & p_7^{\text{ III}} (A_1A_3EMNI; D_1H_1H_3; L); \\ f \sim & p_7^{\text{ V}} (H_3H_2GFE; A_3A_2BCD_2); \\ e \sim & p_6^{\text{ V}} (EFGH_2H_3; H_1LM); \\ g \sim & p_6^{\text{ V}} (IKCD_2D_1; A_1A_2B); \\ \text{und } c = & p_6^{\text{ V}} (NLGCK; BFM). \end{split}$$

Dazu das eingefügte $p_6'(H_3\,A_3\,A_2\,D_2\,H_2;H_1\,D_1\,A_1)$. Diese 3 Achtzelle besitzen je 18 Ecken.

Um aus dem Siebenzell $P_7^{\ 5}$ durch $\mu'=3$ Achtzelle abzuleiten, hat man zu beachten, dass die zweikantigen Züge wegen der zu unterscheidenden Ecken e und e' verschiedenartig gewählt werden können. E szeigt die Untersuchung, dass die folgenden Anordnungen auf neue isomorph verschiedene Oktatope führen.

Der Zug e', e, e, e, z. B. I' K L (Kanten eines Fünfeckes); der Zug e', e', e z. B. A' B' L' (desgl.); der Zug e', e', e' z. B. A' B' C (desgl.), sowie der Zug e, e', e z. B. G H' D (Kantenzug eines Vierecks). Ein Zug e', e, e' tritt nur an Dreiecken auf, ist also zur Konstruktion unbrauchbar, und der Zug e, e, e der an Vierecken vorkommt (z. B. K L M) führt auf dasselbe Polytop wie e' e' e'. Es ergeben sich danach die folgenden 4 durch Isomorphismus unterschiedenen Oktatope mit 19 Ecken. Das Achtzell P_8 (Fig. 44), erzeugt durch Ersetzung des Kantenzuges I' K L, besitzt die begrenzenden Polyeder:

$$\begin{split} \mathbf{I} &= p_{6}^{'} \; (B \; CD \; EA; \; FG \; H); \\ \mathbf{II} &\sim p_{7}^{''} \; (A \; B \; CD \; E; \; I_{2} \; I_{3} \; L_{3} \; L_{2} \; K_{2}); \\ \mathbf{III} &\sim p_{7}^{\mathrm{IV}} (I_{1} \; I_{3} \; A \; FM \; N; \; K_{1} \; L_{1} \; L_{3} \; B); \\ \mathbf{IV} &\sim p_{7}^{'} \; (I_{1} \; I_{3} \; A \; FM \; N; \; O \; G \; E \; I_{2}); \end{split}$$

$$\begin{split} & \text{V} \sim p_{7}{'} \; (O \; G \; E \; I_{2} \; I_{1} \; N; \; K_{1} \; K_{2} \; D \; H); \\ & \text{VI} \sim p_{7}{'} \; (O \; N \; K_{1} \; K_{2} \; D \; H; \; C \; L_{2} \; L_{1} \; M); \\ & \text{VII} \sim p_{7}{}^{\text{IV}} (L_{2} \; C \; H \; O \; M \; L_{1}; \; L_{3} \; B \; F \; G); \end{split}$$

dazu das neu eingeführte p_6' ($L_3 I_3 I_2 K_2 L_2$; $L_1 K_1 I_1$).

Das Achtzell P_8^{-32} (Fig. 45) entsteht aus P_7^{-5} durch Ersetzung des Kantenzuges A'B'L mittels des Sechsflaches

$$p_6' (A_3 L_3 L_2 B_2 A_2; A_1 B_1 L_1).$$

Die übrigen Polyeder sind:

Ersetzt man den Kantenzug A'B'C' durch das Sechsflach $p_6'(A_3 C_3 C_2 B_2 A_2; A_1 B_1 C_1)$ so entsteht das Achtzell P_8^{33} (Fig. 46) dessen übrige Polyeder sind:

$$\begin{split} &\mathbf{I} \sim p_{7}^{\ V} \ (A_{2} \ A_{3} \ C_{3} \ C_{2} \ B_{2}; F \ G \ E \ D \ H); \\ &\mathbf{II} \sim p_{7}^{\ V} \ (B_{1} \ A_{1} \ A_{3} \ C_{3} \ C; L \ K I \ E \ D); \\ &\mathbf{III} \sim p_{7}^{\ IV} (A_{2} \ A_{1} \ I \ N \ M \ F; B_{2} \ B_{1} \ L \ K); \\ &\mathbf{IV} \sim p_{7}^{\ IV} (A_{1} \ I \ N \ M \ F \ A_{2}; \ A_{3} \ E \ G \ O); \\ &\mathbf{V} = p_{6}^{\ \prime} \ (O \ H \ D \ K \ N; \ I \ E \ G); \\ &\mathbf{VI} \sim p_{7}^{\ IV} (O \ H \ C_{2} \ C_{1} \ L \ M; \ N \ K \ D \ C_{3}); \\ &\mathbf{VII} \sim p_{7}^{\ IV} (L \ M \ O \ H \ C_{2} \ C_{1}; \ B_{1} \ B_{2} \ F \ G). \end{split}$$

Die Elimination des Kantenzuges G H' D endlich durch das Sechsflach p_6' $(G_3$ D_3 D_2 H_2 G_2 ; G_1 H_1 D_1) führt auf das Achtzell P_8^{34} (Fig. 47) mit den weiteren Grenzkörpern:

$$\begin{split} &\mathbf{I} \sim p_7^{\,\mathrm{III}}(A\,E\,D_3\,\,D_1\,\,C\,B\,;\,F\,G_1\,G_3\,;\,H_1);\\ &\mathbf{II} \sim p_7^{\,\mathrm{III}}(A\,E\,D_3\,D_1\,\,C\,B\,;\,L\,K\,I\,;\,D_2);\\ &\mathbf{III} = p_6{}'\,\,(I\,K\,L\,B\,A\,;\,F\,M\,N);\\ &\mathbf{IV} \sim p_7^{\,\mathrm{III}}(G_3\,E\,I\,N\,O\,G_2\,;\,G_1\,F\,A\,;\,M);\\ &\mathbf{V} \sim p_7^{\,\mathrm{III}}(O\,G_2\,G_3\,E\,I\,N\,;\,K\,D_2\,H_2\,;\,D_3);\\ &\mathbf{VI} \sim p_7^{\,\mathrm{IV}}(M\,L\,C\,H_1\,H_2\,O\,;\,N\,K\,D_2\,D_1);\\ &\mathbf{VII} \sim p_7^{\,\mathrm{IV}}(L\,M\,O\,H_2\,H_1\,C\,;\,B\,F\,G_1\,G_2). \end{split}$$

Weitere Oktatope dritter Klasse können sich nun mittels der Konstruktion $\mu''=3$ d. h. Einfügung eines Sechsflaches p_6 ergeben.

Da nach Erledigung der Konstruktion das Polytop keine p_6' enthalten darf, ebensowenig aber Polyeder geringerer Flächenzahl, so ist, da die Einführung des p_6'' nur 4 Grenzpolyeder von P_7 morphologisch ändert, die Konstruktion nur anwendbar, wenn die drei weiteren Polyeder bereits p_6'' sind. Die einzige zulässige Konstruktion ist deshalb in dem Siebenzell P_7^3 (Fig. 11) an dem geschlossenen Kantenzuge $I \ K \ L \ M$ auszuführen, durch dessen Elimination die vier p_5 in p_6'' übergehen. Das erzeugte P_8^{35} , dessen Diagramm mit 16 Ecken Fig. 48 zeigt, wird also von acht p_6'' gebildet und ist mit dem bekannten regulären Achtzell 1) aus 8 Hexaedern (Würfeln) isomorph. Damit haben sich in Summa 9 Achtzelle dritter Klasse mit 16 bis 19 Ecken ergeben.

d.) Die Oktatope vierter Klasse. Die erste Konstruktion zur Ableitung der Achtzelle vierter Klasse aus den P_7 , nämlich $\mu'=4$, die in der Einfügung eines p_7 besteht, kann ebenso wie die noch folgenden Konstruktionen nur an dem Siebenzell P_7 in Frage kommen, und ist an den Kanten des gemeinsamen Fünfecks irgend zweier begrenzenden p_6 auszuführen. Wir bezeichnen dabei die geänderten Polyeder in P_8 wieder mit den entsprechenden Nummern I, II... VII wie in P_7 und nennen das neu hinzugefügte Polyeder VIII.

Wählen wir als Polyeder Λ und Λ' der allgemeinen Erörterungen die Polyeder I und VII von P_7^5 mit der gemeinsamen Fläche B' C' H' G F, so führt die Anwendung von $\mu' = 4$ auf die 3 Kantenzüge B' F G H', C' B' F G und F B' C' H' zu 3 isomorph verschiedenen Åchtzellen.

Die Ersetzung des Kantenzuges B' F G H' durch ein Siebenflach p_7' führt auf das Achtzell P_8^{36} , dessen sämtliche Grenzpolyeder p_7' sind (Fig. 49). Diese 8 Polyeder sind:

```
\begin{split} &\mathbf{I} \sim p_{7}^{\ \prime} \left(A \, E \, D \, C \, B_{3} \, B_{2} \, ; \, F_{2} \, G_{2} \, H_{2} \, H_{3} \right); \\ &\mathbf{II} \sim p_{7}^{\ \prime} \left(A \, E \, D \, C \, B_{3} \, B_{2} \, ; \, B_{1} \, L \, K \, I \, I \right); \\ &\mathbf{III} \sim p_{7}^{\ \prime} \left(A \, I \, K \, L \, B_{1} \, B_{2} \, ; \, F_{2} \, F_{1} \, M \, N \right); \\ &\mathbf{IV} \sim p_{7}^{\ \prime} \left(N \, M \, F_{1} \, F_{2} \, A \, I \, ; \, E \, G_{2} \, G_{1} \, O \right); \\ &\mathbf{V} \sim p_{7}^{\ \prime} \left(O \, G_{1} \, G_{2} \, E \, I \, N \, ; \, K \, D \, H_{2} \, H_{1} \right); \\ &\mathbf{VI} \sim p_{7}^{\ \prime} \left(O \, N \, K \, D \, H_{2} \, H_{1} \, ; \, H_{3} \, C \, L \, M \right); \\ &\mathbf{VII} \sim p_{7}^{\ \prime} \left(H_{3} \, C \, L \, M \, O \, H_{1} \, ; \, G_{1} \, F_{1} \, B_{1} \, B_{3} \right); \\ &\mathbf{VIII} = p_{7}^{\ \prime} \left(B_{3} \, B_{2} \, F_{2} \, G_{2} \, H_{2} \, H_{3} \, ; \, H_{1} \, G_{1} \, F_{1} \, B_{1} \right). \end{split}
```

Wie bereits früher erwähnt bilden die 8 Dreiecke der Polyeder im Diagramm eine geschlossene Kette, die in Fig. 49 kenntlich

¹⁾ Vergl. SCHOUTE, a. a. O. S. 202 und S. 207.

gemacht ist. Durch Anwendung der Konstruktion $\mu'=4$ auf den Kantenzug C' B' F G in P_7^{-5} ergibt sich das Diagramm Fig. 50 des Achtzells P_8^{-37} , das von den folgenden Polyedern gebildet wird: II $\sim p_7^{\rm IV}$ $(AB_1B_2LKI;EDC_1C_2)$, d. h. das äusserste, alle übrigen Polyeder umhüllende im Diagramme;

III
$$\sim p_7' (IAB_1B_2LK; NMF_2F_1)$$
,

das eine sechskantige Fläche mit dem vorigen gemein hat; in Fig. 50 von den nachfolgenden darüberliegenden verdeckt zu denken;

$$\begin{split} \text{IV} &\sim p_7^{\ '} \ (IAF_1\,F_2\,M\,N;\ O\,G_2\,G_1\,E);\\ &\text{I} \sim p_7^{\ \ \text{IV}} \,(C_3\,G_3\,G_1\,F_1\,B_1\,C_1;\ H\,D\,E\,A);\\ &\text{V} \sim p_7^{\ \ \text{IV}} \,(G_1\,E\,I\,N\,O\,G_2\,;\ G_3\,H\,D\,K);\\ &\text{VI} \sim p_7^{\ \ \text{IV}} \,(M\,L\,C_2\,C_3\,H\,O\,;\ N\,K\,D\,C_1);\\ &\text{VII} \sim p_7^{\ '} \ (C_3\,G_3\,G_2\,F_2\,B_2\,C_2\,;\ L\,M\,O\,H) \text{ und}\\ &\text{VIII} = p_7^{\ '} \ (C_3\,C_2\,B_2\,F_2\,G_2\,G_3\,;\ G_1\,F_1\,B_1\,C_1). \end{split}$$

Die Ersetzung des Kantenzuges FB'C'H' endlich durch ein p_7' führt auf ein Polytop $P_8^{\,38}$, dessen Diagramm Fig. 51 zeigt. Die begrenzenden Polyeder sind hier:

$$\begin{split} &\mathbf{I} \sim p_7^{\text{ III}} \left(B_1 \ C_1 \ H_1 \ H_3 \ F_3 \ F_1 \ ; \ A \ E \ D \ ; \ G \right); \\ &\mathbf{II} \sim p_7^{\text{ IV}} \left(B_1 \ B_2 \ L \ K \ I \ A \ ; \ E \ D \ C_1 \ C_2 \right); \\ &\mathbf{III} \sim p_7^{\text{ II}} \left(A \ B_1 \ B_2 \ L \ K \ I \ ; \ N \ M \ F_2 \ F_1 \right); \\ &\mathbf{IV} \sim p_7^{\text{ III}} \left(N \ M \ F_2 \ F_1 \ A \ I \ ; \ E \ G \ O \ ; \ F_3 \right); \\ &\mathbf{V} \sim p_7^{\text{ IV}} \left(K \ D \ H_1 \ H_2 \ O \ N \ ; \ I \ E \ G \ H_3 \right); \\ &\mathbf{VI} \sim p_7^{\text{ IV}} \left(N \ K \ D \ H_1 \ H_2 \ O \ ; \ M \ L \ C_2 \ C_1 \right); \\ &\mathbf{VII} \sim p_7^{\text{ IV}} \left(B_2 \ F_2 \ F_3 \ H_3 \ H_2 \ C_2 \ ; \ L \ M \ O \ G \right) \end{split}$$

und das sie im Diagramme alle umhüllende neueingeführte Polyeder

VIII =
$$p_7'$$
 ($H_3 F_3 F_1 B_1 C_1 H_1$; $H_2 C_2 B_2 F_2$).

Wendet man auf das gemeinsame Fünfeck irgend zweier Grenzpolyeder Λ und Λ' von P_7^5 die Konstruktion $\mu''=4$ an, so erscheinen diese Polyeder unverändert wieder als p_6' ; es ergibt sich also kein Achtzell vierter Klasse. Die Konstruktion $\mu'''=4$, mittels der ein p_7^{III} in das Diagramm eingeführt wird, kann nur ein Tripel von Kanten wie die 3 von G ausgehenden Kanten G E, G F, G H' des Diagrammes Fig. 13 entfernen, da nur dann die 3 Zwischenflächen sämtlich mehr als dreikantig sind. Es führt aber diese Konstruktion wieder auf P_8^{38} . Ein neues, isomorph von den bisherigen verschiedenes, Achtzell ergibt schliesslich noch die Konstruktion $\mu^{\text{IV}}=4$. Schneidet man ein Sechsflach p_6' , z. B. V(O'GEI'N';KDH') von P_7^{5} durch eine Ebene so, dass der Kantenzug G E D K auf einer Seite dieser Ebene liegt, sämtliche übrigen Ecken des p_6' aber

auf der andern Seite der Ebene, so entstehen aus dem Sechsflache zwei Siebenflache p_7^{IV} . Durch Elimination des Kantenzuges G EDK aus dem Diagramme P_7^5 und Ersetzung durch ein p_7^{IV} tritt also an Stelle des Polyeders V ein p_7^{IV} ($G_2 G_1 E_1 K_2 K_1 D_1$; HONI). Vergl. Fig. 52^a und die Fig. 52 des neuen Diagrammes. Die übrigen Grenzpolyeder von P_7^5 werden in folgender Weise verändert. Von dem Sechsflach I wird der Kantenzug GED durch einen fünfkantigen Schnitt entfernt (dritte Polyederkonstruktion) und es entsteht ein p_7^{IV} ($HCBFG_3 G_2$; $D_1 D_2 E_2 A$).

Von dem Sechsflach II wird durch die gleiche Konstruktion der Zug EDK abgeschnitten, und es ergibt sich das p_7^{IV} ($BAIK_2K_3L$; $CD_2E_2E_1$). Der zweiten Polyederkonstruktion, Abschneiden der Kanten DK und GE durch einen vierseitigen Schnitt, werden die beiden Sechsflache VI und IV unterworfen. Es entstehen die Siebenflache VI $\sim p_7^{\text{V}}$ ($NK_1D_1HO; MLCD_2K_3$); IV $\sim p_7^{\text{V}}$ (MFAIN; $OG_1E_1E_2G_3$).

Die erste Polyederkonstruktion d. h. Abschneiden der Ecken G und K durch ein Dreieck wird auf die beiden Sechsflache VII und III angewandt, und es entstehen die Siebenflache VII $\sim p_7^{\text{IV}}$ (BFG_3G_2HC ; $LMOG_1$) und III $\sim p_7^{\text{IV}}$ (AIK_2K_3LB ; $FMNK_1$). Hierzu kommt als achtes Grenzpolyeder des Oktatopes P_8^{39} das eingeführte Siebenflach VIII $= p_7^{\text{IV}}$ ($K_1D_1G_2G_1E_1K_2$; $K_3D_2E_2G_3$). In Fig. 52 sind die sieben aus den Polyedern von P_7^{5} entstandenen Grenzkörper des P_8 in das Siebenflach VIII projiziert.

Die Konstruktion $\mu^{V}=4$ kann kein Oktatop vierter Klasse ergeben, da das Abschneiden eines Kantenzuges von der Form wie sie hier vorgeschrieben ist, ein p_6 wieder in ein solches zurückführt. Es haben sich also nur 4 Oktatope vierter Klasse und damit im ganzen 39 isomorph verschiedene Achtzelle ergeben, die mit ihren Begrenzungsstücken etc. in der am Schlusse folgenden Tabelle übersichtlich zusammengestellt sind.

Natürlich sind mit den allgemeinen konvexen Achtzellen auch die Tetraederpolytope mit 8 Ecken bestimmt; aber die Figuren der Diagramme werden weniger übersichtlich. Was aber die weitere Konstruktion der Polytope P_9 aus den nun bekannten P_8 mittels der geschilderten Methoden betrifft, so zeigt sich bald, dass deren Anzahl bereits ganz bedeutend ist, und es darf wohl der Satz Cayleys wiederholt werden, mit dem er die Unterlassung der Ableitung der neuneckigen Trigonalpolyeder aus den achteckigen begründete: "for although perfectly practicable, it would be no commensurate advantage in doing so."

TABELLE.

e, k, f, p.	Bez.	Fig.	p_4	$p_{\mathfrak{s}}$	p_{ϵ}	$p_{\epsilon}^{"}$	p,'	p_7 "	p_{7} III	P ₇ IV	$p_1^{\mathbf{V}}$	Klasse.
e = 14. k = 28 $f = 22. p = 8$	$P_{8}^{1} \\ P_{3}^{2} \\ P_{8}^{3}$	Fig. 14 Fig. 15 Fig. 16	3 2 2	2 3	$\begin{bmatrix} 3\\2\\- \end{bmatrix}$		_ _ 3		2	$-\frac{2}{2}$		1 1 1 1
e = 15. k = 30 f = 23. p = 8	$P_{8}^{4} \\ P_{8}^{5} \\ P_{8}^{6} \\ P_{8}^{7} \\ P_{3}^{13}$	Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 26	$\begin{bmatrix} 2\\1\\2\\1\\- \end{bmatrix}$	$\begin{bmatrix} 1\\3\\-2\\5 \end{bmatrix}$	$\begin{bmatrix} 2\\1\\4\\2 \end{bmatrix}$	_ _ _ _	1 1 -		2			1 1 1 1 2
e = 16. k = 32 $f = 24. p = 8$	P_{8}^{8} P_{9}^{9} P_{8}^{10} P_{8}^{14} P_{8}^{15} P_{3}^{16} P_{8}^{17} P_{8}^{3}	Fig. 21 Fig. 22 Fig. 23 Fig. 27 Fig. 27 Fig. 29 Fig. 30 Fig. 48	1 1 1	1 1 2 4 4 3 2	3 2 - - 2 2	1 1 1 - 2 8	$\begin{vmatrix} -1\\ 1\\ 4\\ -4\\ -\end{vmatrix}$		1	$ \begin{array}{c c} 1 \\ 2 \\ \hline 4 \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	1	1 1 1 2 2 2 2 2 3
$e = 17. \ k = 34$ $f = 25. \ p = 8$	$P_{8}^{11} \\ P_{8}^{12} \\ P_{8}^{13} \\ P_{8}^{19} \\ P_{8}^{20} \\ P_{8}^{21} \\ P_{8}^{22} \\ P_{8}^{23} \\ P_{8}^{27}$	Fig. 24 Fig. 25 Fig. 31 Fig. 32 Fig. 33 Fig. 34 Fig. 35 Fig. 36 Fig. 40	1 1.		$ \begin{array}{c} 3 \\ 3 \\ 2 \\ \hline 1 \\ \hline 2 \\ \hline 4 \\ 2 \\ 3 \end{array} $				$\frac{2}{2}$	2 2 2 2 2 - - 2		1 1 2 2 2 2 2 2 2 2 3
e = 18. k = 36 f = 26. p = 8	P_{8}^{24} P_{8}^{25} P_{8}^{26} P_{8}^{28} P_{8}^{29} P_{8}^{30}	Fig. 37 Fig. 38 Fig. 39 Fig. 41 Fig. 42 Fig. 43		1 1 1 —	2 2 2 3 4 4	 	1 2 - -		- 1 - 2	2 4 1 2 2	$ \begin{array}{c c} 2 \\ - \\ 1 \\ 2 \\ - \\ 2 \end{array} $	2 2 3 3 3
$e = 19. \ k = 38 f = 27. \ p = 8$	P_{8}^{31} P_{8}^{32} P_{8}^{33} P_{8}^{34}	Fig. 44 Fig. 45 Fig. 46 Fig. 47		_	2 2 2 2		1 3 -	1	$\frac{1}{4}$	2 3 4 2	1 2	3 3 3
$e = 20. \ k = 40$ $f = 28. \ p = 8$	P_{8}^{36} P_{8}^{37} P_{8}^{38} P_{8}^{39}	Fig. 49 Fig. 50 Fig. 51 Fig. 52		_			$\begin{bmatrix} 8 \\ 4 \\ 2 \\ - \end{bmatrix}$		_ _ 2 _		_	4 4 4 4

ig:45,

VI

Algebraische Strahlencongruenzen und verwandte complexe Ebenen als Schnitte derselben

VON

M. J. VAN UVEN.

Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam.
(EERSTE SECTIE).

DEEL X. N°. 2.

AMSTERDAM,
JOHANNES MÜLLER.
April 1911.

Algebraische Strahlencongruenzen und verwandte complexe Ebenen als Schnitte derselben

VON

M. J. VAN UVEN.

Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam.
(EERSTE SECTIE).

DEEL X. N°. 2.

AMSTERDAM,
JOHANNES MÜLLER.
1910.

EINLEITUNG.

Bekanntlich erhält man eine geometrische Darstellung der ∞^2 complexen Zahlen w = u + iv, indem man jeder Zahl w denjenigen Punkt einer Ebene zuordnet, der in Bezug auf ein fest angenommenes rechtwinkeliges Axenkreuz die Coordinaten u, v hat. Handelt es sich um eine geometrische Abbildung der ∞^4 Zahlenpaare w, w', so liegt der Gedanke nahe, den vierdimensionalen Strahlenraum heranzuziehen.

In der vorliegenden Arbeit sollen die complexen Grössen w und w', in der oben erwähnten Weise, den Punkten zweier parallelen Ebenen [w] und [w'] zugeordnet werden, welche im Abstande h derart gestellt sind, dass die "reelle" und "imaginäre" Axen der einen Ebene die orthogonalen Projektionen der analogen Axen der zweiten Ebene sind.

Das Zahlenpaar (w, w') möge alsdann durch die Gerade vertreten werden, welche die "Punkte" w und w' verbindet 1).

¹⁾ Als ich bereits einen Teil der vorliegenden Arbeit beendet hatte, erfuhr ich durch eine Fussnote auf Seite 319 von Band III 2, Heft 3 der "Encyklopädie der mathematischen Wissenschaften", dass Weierstrasz dasselbe Prinzip in seiner Arbeit über die Abelschen Funktionen angewandt hatte (Mathem. Werke. Heft IV).

Allerdings fand ich in Weierstrasz: Vorlesungen über die Theorie der Abelschen Transcendenten, Sechzehntes Kapitel: Die Perioden der Abelschen Integrale erster und zweiter Art, S. 323, folgendes:

[&]quot;Die Eigenschaft des algebraïschen Gebildes, dass zwei beliebige seiner Stellen verbunden werden können, ohne dass die Verbindingslinie einen willkürlich angenommenen Kreis von Werthepaaren kreuzt, kann man sich in folgender Weise geometrisch veranschaulichen: Man denke sich die Werthe von x und die von y in zwei parallelen Ebenen durch Punkte dargestellt, und ein Werthepaar (x, y) durch den Strahl, welcher entsprechende Punkte der beide Ebenen verbindet. Eine stetige Folge von Paaren (x, y) wird alsdann durch eine stetige Folge von Strahlen repläsentiert, die eine geradlinige Fläche bilden. Dann folgt aus dem vorhergehenden, wenn wir irgend zwei Strahlen s_1 und s_2 ins Auge fassen, dass es möglich ist, den Strahl s_1 so zu bewegen, dass er

Wenn zwei Grössen w und w' durch eine Funktionalbeziehung verknüpft sind, so werden einem Punkte w ein oder mehrere Punkte w' zugeordnet. Jede Combination (w, w'), welche der Beziehung genügt, wird durch einen bestimmten Strahl dargestellt.

Ist die Beziehung zwischen den Grössen w und w' algebraisch, so wird offenbar jeder Punkt von [w] mit einer endlichen Zahl von Punkten w' durch Strahlen vereinigt. Auf diese Weise wird aus der vierfach unendlichen Menge der Strahlen, welche alle Punkte von [w] mit allen Punkten von [w'] verbinden, eine zweifach unendliche Menge abgesondert, also ein zweidimensionales Strahlensystem, d.h. eine **Congruenz**.

Eine algebraïsche Funktion

$$w' = f(w)$$

wird daher repräsentirt durch eine algebraische Strahlencongruenz, deren Eigenschaften durch den Karakter der betrachteten Funktion und durch die Beschaffenheit der gewählten Abbildung bestimmt werden.

Bekanntlich wird durch die Funktion

$$w' = f(w)$$

eine conforme Abbildung auf die complexe Ebene [w] vermittelt, d. h. die Figuren in [w'] sind in den kleinsten Teilen den entsprechenden Figuren in [w] ähnlich.

Eine durch den Punkt w beschriebene Kurve wird bestimmt durch ihre Gleichung

$$\varphi\left(u,\,v\right)=0.$$

Ist nun aber w' durch die Funktion

$$w' = f(w)$$

beständig ein Strahl des Strahlensystems bleibt und schliesslich in s₂ übergeht, ohne im Verlaufe dieser Bewegung jemals mit einem Strahle der Fläche zusammen zu fallen. Der bewegliche Strahl kann allerdings die Fläche schneiden, aber ihr niemals in seiner ganzen Ausdehnung angehören. Das Strahlensystem verhält sich ähnlich wie eine Ringfläche, die z.B. durch einen erzeugenden Kreis nicht in zwei getrennte Theile zerlegt wird, auf der vielmehr zwei willkürlich angenommene Punkte stets ohne Überschreitung eines solchen Kreises durch eine auf der Fläche liegende Linie verbunden werden können.

Der Gedanke, dass die von mir skizzirte Methode auch dem Genie Weierstrasz'nützlich erschienen, übte freilich auf mich einen gewissen Reiz, obgleich ich es begreiflicherweise bedauerte, den Anspruch auf Priorität, sei es auch einem solchen Riesen abtreten zu müssen.

Dass ich mich aber doch entschloss die von mir angefangenen Untersuchungen fortzusetzen, dürfte gebilligt werden durch die Überlegung, dass Weierstrasz obige Methode nur in einem sehr speziellen Fall angewandt hat, indess es sich in meiner Arbeit um einfachere und allgemeinere Problemen handelt.

auf w bezogen, so wird auch w' = u' + iv' eine Bahn beschreiben, welche einer Gleichung

$$\varphi'(u',v')=0$$

entspricht, und die Abbildung der Bahn \(\varphi \) genaunt werden kann.

Die Kurve φ werde dann und wann mit dem Namen Objektkurve, die Kurve φ' dementsprechend mit dem Namen Bildkurve angegedeutet.

Die conformen Abbildungen, welche durch Funktionen w' = f(w) einfacher Natur veranlasst werden, brauchen jetzt nicht eingehend erforscht zu werden; sie sind ja schon gründlich erledigt.

Es ist vielmehr unsere Absicht die conformen Abbildungen zu ermitteln, welche zusammenhangen mit Funktionen, die in Compliziertheit der Gestalt über die auf diesem Gebiete gewöhnlich auftretenden hinausgehen.

Die Forschung wird von der oben dargelegten Methode wesentlich unterstützt.

Wie schon vorher bemerkt wurde, giebt jede algebraische Funktion zu einer gewissen Strahlencongruenz veranlassung. Es hat jedoch nicht jede Strahlencongruenz die Eigenschaften, welche es ihr ermöglichen die Darstellung einer Funktion zu sein.

Bekanntlich wird eine Congruenz vertreten durch zwei Gleichungen zwischen den vier unabhängigen Parametern p_1 , p_2 , p_3 , p_4 der Geraden, etwa durch

$$\begin{split} &\phi\left(p_{1},p_{2},p_{3},p_{4}\right)=0,\\ &\psi\left(p_{1},p_{2},p_{3},p_{4}\right)=0. \end{split}$$

Es lässt sich zeigen, dass von einer "Abbildungscongruenz" (ϕ, ψ) die Gleichung $\phi = 0$ willkürlich angenommen werden darf, dass jedoch die Funktion $\psi = 0$ zwei simultanen partiellen Differentialgleichungen genügen muss.

Für unseren Zweck ist nun folgender Satz von grösster Wichtigkeit: Eine Congruenz, welche eine gewisse Funktion darstellt, vertritt zugleich eine Gruppe anderer Funktionen, die im allgemeinen eine verwickeltere Form aufweisen.

Die Erläuterung dieses Satzes möge auf den sechsten Abschnitt verschoben werden, wo wir ausführlich darlegen werden, wie mit Hülfe einer nämlichen Congruenz mehrere Funktionen abgebildet werden können. Allein möchten wir, in Bezug auf die technische Analyse, welcher wir die zu untersuchende Congruenzen in den folgenden Abschnitten unterwerfen, hier betonen, dass das Hauptgewicht auf die Regelflächen fällt, die durch einen Congruenzstrahl erzeugt werden, wenn dieser beständig eine gewisse Kurve schneidet.

Zum Schluss dieser Einleitung wollen wir eine Übersicht über den Inhalt der folgendenden Abschnitte geben.

Den ersten Abschnitt widmen wir der Einführung einiger Coordinatensysteme, wie auch der Bezeichnung, welche wir im folgenden (möglichst consequent) anwenden werden.

Im zweiten Abschnitte werden die einfachsten zwei Strahlencongruenzen (wie zur Vorübung) analytisch untersucht, nämlich die Congruenzen, welche den Funktionen $w' = c^2 : w$ und $w' = w^2 : c$ angehören.

Der dritte Abschnitt enthält die Darlegung einer verkürzten algebraischen Operation, welche uns die Rechnung im nächsten Abschnitte zu erleichtern ermöglicht.

Im vierten Abschnitte werden die Congruenzen, welche die Funktionen $w^{'n} = w^m$ und $w^{'n} = 1 : w^m$ vertreten, eingehend analytisch behandelt.

Im fünften Abschnitte wenden wir die im IV. Abschnitte erhaltenen Resultaten, kurz gefasst, auf die Congruenzen an, welche die Funktionen $w' = w^3$, $w'^2 = w^3$ und $w' = 1 : w^2$ repräsentiren.

Der sechste Abschnitt bietet eine möglichst erschöpfende Übersicht über eine Methode, welche gestattet eine nämliche Congruenz für die Abbildung mehrerer Funktionen zu verwenden.

Gern hätten wir wenigstens die einfacheren Congruenzen geometrisch erörtert; der Kürze wegen haben wir diesem Vergnügen entsagen müssen. Daher sind alle Untersuchungen in analytischer Form dargestellt.

Zur Vorbeugung etwaigen Missverständnisses sei es uns erlaubt zu betonen, dass wir nicht beabsichtigten: conforme Abbildungen zu untersuchen, sondern nur die Untersuchung conformer Abbildungen zu erleichtern.

ERSTER ABSCHNITT.

Wahl der Coordinatensysteme.

Bezeichnungen.

§ 1. In Betracht der folgenden Erörterungen, welche von überwiegend analytischer Art sind, ist es von grösster Wichtigkeit genau zu überlegen, in Bezug auf welches Coordinatensystem wir unsere Gebilde durch Gleichungen bestimmen werden.

Handelt es sich um die wahre Gestalt der Figuren, so liegt es nahe, ein nicht-homogenes Coordinatensystem zu verwenden.

Betrifft es aber Eigenschaften, welche nur die gegenseitige Lage der verschiedenen Grundgebilde in Betracht ziehen, — wollen wir z. B. entscheiden, ob eine Kurve durch einen gewissen Punkt hindurchgehe, ob dieser Punkt singulär sei, welche seine Tangenten seien, oder ob eine gewisse Ebene eine gegebene Gerade enthalte, von welcher Ordnung eine gewisse Regelfläche sei, — so bietet ein homogenes Coordinatensystem unschätzbare Vorteile, besonders wenn seine Coordinatenebenen mit Ebenen zusammenfallen, welche in Bezug auf die zu untersuchenden Gebilde eine spezielle Bedeutung haben.

Die wahre Gestalt ist natürlich dann massgebend, wenn wir wissen wollen, wie es steht um die Bildkurve einer gewissen Kurve, z. B. eines Kreises. Es sei z. B. diese Bildkurve eine Lemniscate. Die synthetische Betrachtungen würden uns lehren, dass ein gewisser Kegelschnitt sich abbildet in eine biquadratische Kurve mit drei Doppelpunkten, von denen zwei überdies gewöhnliche Punkte des abgebildeten Kegelschnittes sind. Wenn wir jedoch nachher die beiden letztgenannten Punkte mit den Kreispunkten identifizirt haben, ergiebt sich für den Kegelschnitt ein Kreis und für die trinodale Kurve vierter Ordnung eine Lemniscate.

Wollten wir auch die Dimensionen dieser Figuren untersuchen, so würde die Anwendung eines nicht-homogenen Coordinatensystems zweckmässig sein.

Bevor wir jedoch über die Dimensionen und die Gestalt der betrachteten Figuren urteilen können, müssen wir sie erst in Hinsicht ihrer geometrischen Eigenschaften vollständig durchforschen, und hierbei kann ein homogenes Coordinatensystem Vorzügliches leisten.

Es lässt sich jetzt vorhersagen, wie beide Systeme benutzt werden sollen.

Da die Vorstellung der complexen Zahlen an ein rechtwinkliges cartesisches System geknüpft ist, werden wir beim Ansatz des Problems uns eines triorthogonalen, nicht-homogenen Systemes bedienen. So bald die vorliegenden Gebilde auf dieses System bezogen sind, wollen wir ein homogenes Coordinatensystem heranziehen, welches wir so lange beibehalten, bis die erwünschten Figuren in rein geometrischer Hinsicht bekannt geworden sind.

§ 2. I. Das triorthogonale cartesische System.

Den Anfangspunkt legen wir in den Nullpunkt O der [w]-Ebene. Die Z-Axe coincidirt mit der Normale von [w], welche die Nullpunkte O und O' von [w] und [w'] verbindet, und ist von O nach O' gerichtet.

Die Ebene z = 0 ist deshalb mit der Ebene [w] identisch.

Die X-Axe wird längs der Axe der positiven reellen Zahlen in $\lceil w \rceil$ gelegt.

Die Y-axe wird mit der Axe der positiven imaginären Zahlen zusammenfallen.

Die Grösse w = u + iv wird daher durch den Punkt abgebildet mit den Coordinaten

$$x = u,$$

$$y = v,$$

$$z = 0.$$

Die Grösse w' = u' + iv' wird nun durch den Punkt vertreten der bestimmt ist durch

$$x = u',$$

 $y = v',$
 $z = h.$

Eine durch w beschriebene Bahn bekommt deshalb die Gleichungen

$$q(x, y) = 0,$$

$$z = 0,$$

während eine durch w' erzeugte Kurve durch

$$\varphi'(x,y) = 0,$$

$$z = h.$$

dargestellt wird.

Der Strahl, welcher den Punkt w=u+iv mit dem Punkte w'=u'+iv' verbindet, wird somit durch

$$x = \lambda u + (1 - \lambda) u',$$

$$y = \lambda v + (1 - \lambda) v',$$

$$z = (1 - \lambda) / \mu,$$

oder, nach Elimination von A, durch

$$hx = u'z + u(h - z),$$

 $hy = v'z + v(h - z)$

gegeben.

Die Kreispunkte der Ebene z = 0 (also auch der Ebene z = h) werden mit I und J angedeutet.

Bedenken wir, dass wir fortwährend mit den Combinationen u + iv, u' + iv', also x + iy zu schaffen haben, so kann es uns nicht wundern, dass diese Kreispunkte im Folgenden eine bedeutende Rolle spielen werden.

§ 3. II. Die homogenen Coordinatensysteme.

Wir wählen

a) ein festes Coordinatentetraeder X_1 X_2 X_3 X_4 , wo X_1 mit dem Kreispunkte I (x-iy=0), X_2 mit dem Kreispunkte J (x+iy=0) zusammenfällt.

Die Ecke X_3 legen wir in O, die Ecke X_4 in O'.

Die Gleichungen der Ebenen dieses Tetraeders in Bezug auf das thriorthogonale System sind daher

Wir setzen nun

$$\begin{aligned} x_1 &= \frac{x+iy}{c}, \\ x_2 &= \frac{x-iy}{c}, \\ x_3 &= \frac{h-z}{h}, \\ x_4 &= \frac{z}{h} \cdot \end{aligned}$$

Hier ist c eine reelle Constante, über welche wir erst später verfügen werden.

Die Gleichungen der ehemaligen Coordinatenebenen sind nun

$$\begin{array}{l} Y \ O \ Z \ \text{oder} \ x = 0 \ldots \ x_1 + x_2 = 0 \, , \\ X \ O \ Z \ \ , \quad y = 0 \ldots \ x_1 - x_2 = 0 \, , \\ X \ O \ Y \ \ , \quad z = 0 \ldots \ x_4 = 0 . \end{array}$$

Eine zu $\lceil w \rceil$ und $\lceil w' \rceil$ parallele Ebene wird daher durch

$$x_3 = \mu x_4$$

bestimmt.

Da $\mu=0$ die Ebene $\lfloor w' \rfloor$ und $\mu=\infty$ die Ebene $\lfloor w \rfloor$ darstellt, werden wir gelegentlich die Ebene $\lfloor w' \rfloor$ mit ω_0 , die Ebene $\lfloor w \rfloor$ mit ω_{∞} andeuten; das Zeichen ω_{μ} möge einer willkürlichen zu $\lfloor w \rfloor$ und $\lfloor w' \rfloor$ parallelen Ebene $x_3=\mu x_4$ angehören.

Die unendlich ferne Gerade der Ebenen z=k, welche wir gelegentlich mit Λ_{∞} bezeichnen werden, hat somit die Gleichungen

$$\begin{array}{l} x_3 = 0 \,, \\ x_4 = 0 \,. \end{array}$$

Dagegen wird die Gerade OO' durch

$$\begin{array}{l} x_1 = 0 \,, \\ x_2 = 0 \end{array}$$

dargestellt.

Eine durch OO' gelegte Ebene werden wir durch

$$x_2 == tx_1$$

bestimmen; sie wird auch mit ε_t bezeichnet werden; ihr Schnittpunkt mit X_1 X_2 wird E_t heissen. Eine spezielle Bedeutung haben die Ebenen ε_t , wenn t eine Einheitswurzel ist.

Nennen wir die N-te Wurzel der Einheit τ_N , so wird offenbar die entsprechende Ebene ε_{τ_N} und ihr Schnittpunkt mit X_1X_2 E_{τ_N} genannt.

Unter diese speziellen Ebenen ragt die Ebene ε_1 , d. h. die Ebene $x_2 = x_1$ (die Ebene durch die reellen Axen) besonders hervor. Diese Ebene ε_1 werden wir häufig nur mit ε , ihren Schnittpunkt mit X_1 X_2 durch E bezeichnen.

Auch die Ebene ε_{-1} tritt öfters hervor (namentlicht im II. Abschnitte). Sie bekommt dann und wann den Namen ε , ihr Schnittpunkt mit X_1 X_2 das Zeichen E'. ε_{-1} oder ε' ist offenbar die Ebene durch die imaginären Axen.

Eine willkürliche Gerade l ist durch ihren Schnittpunkt A mit [w] $(x_4 = 0 \text{ oder } \omega_{\infty})$ und ihren Schnittpunkt B' mit [w'] $(x_3 = 0 \text{ oder } \omega_0)$ bestimmt.

Es sei der Punkt A in ω_x durch

$$\frac{x_1}{x_3} = a_1 \,, \ \frac{x_2}{x_3} = a_2 \,, \ x_4 = 0 \,,$$

der Punkt B' in ω_0 durch

$$\frac{x_1}{x_4} = b_1'$$
 , $\frac{x_2}{x_4} = b_2'$, $x_3 = 0$

festgelegt; die Gerad
c $A\,B'$ wird daher durch die Gleichungen

$$x_1 = a_1 x_3 + b_1' x_4,$$

 $x_2 = a_2 x_3 + b_2' x_4.$

vertreten.

Ist der Punkt B' vermöge einer gewissen Funktionalbeziehung dem Punkte A zugeordnet, so wird er nicht B' sondern A' genannt.

Eine Gerade, welche einen Punkt P in ω_{∞} mit einem ihm zugeordneten Punkte P' in ω_0 vereinigt, ist ein Congruenzstrahl.

Es sei P durch

$$\frac{x_1}{x_3} = p_1 \,, \; \frac{x_2}{x_3} = p_2 \,, \; x_4 = 0 \,,$$

P' durch

$$\frac{x_1}{x_4} = p_1^{'}, \ \frac{x_2}{x_4} = p_2^{'}, \ x_3 = 0$$

bestimmt, so erhellt, dass der Congruenzstrahl PP' durch

$$\begin{array}{l} x_1 = p_1 \; x_3 + {p_1}^{'} \, x_4 \, , \\ x_2 = p_2 \; x_3 + {p_2}^{'} \, x_4 \end{array}$$

dargestellt wird.

Oft sind wir gezwungen den Unterschied zu betonen zwischen einem festen Congruenzstrahle und einem beweglichen, welcher z.B. eine Regelfläche erzeugt.

In unserer Bezeichnung heben wir diesen Unterschied hervor, indem wir den festen Congruenzstrahl mit s, seine Spuren in ω_{∞}

und
$$\omega_0$$
 bez. mit $S\left(\frac{x_1}{x_3} = s_1$, $\frac{x_2}{x_3} = s_2$, $x_4 = 0\right)$ und $S'\left(\frac{x_1}{x_4} = s_1\right)$

 $=s_1', \frac{x_2}{x_4}=s_2', \ x_3=0 \text{), den beweglichen Strahl dagegen mit } p,\ q \ \text{oder } r, \text{ seine Spuren in } \omega_\infty \text{ mit } P\left(p_1,p_2\right),\ Q\left(q_1,q_2\right),\ R\left(r_1\,r_2\right), \text{ in } \omega_0 \ \text{mit } P'\left(p_1',p_2'\right),\ Q'\left(q_1',q_2'\right),\ R'\left(r_1',r_2'\right) \text{ bezeichnen.}$

Die Bestimmung einer Geraden l mittelst ihrer Spuren in ω_{∞} und ω_0 wird hinfällig, wenn sie den beiden Ebenen parallel ist und diese deshalb in demselben Punkte der unendlich fernen Geraden Λ_{∞} schneidet. In diesem Falle wird eine Grenzbetrachtung erfordert um die Schnittpunkte mit ω_{∞} in ω_0 in der Rechnung verwenden zu können.

Die in der Ebene ω_{μ} $(x_3 = \mu x_4)$ befindliche Gerade l_{μ} sei durch

$$egin{aligned} \mathbf{a}_x &= \mathbf{a}_1 \; x_1 + \mathbf{a}_2 \; x_2 + \mathbf{a}_3 \; x_3 + \mathbf{a}_4 \; x_4 = 0 \; , \\ x_3 &= \mu x_4 \end{aligned}$$

gegeben.

Es ist nun unsere Aufgabe sie mit

$$\begin{array}{l} x_1 = a_1 \; x_3 + b_1^{\; \prime} \; x_4 \, , \\ x_2 = a_2 \; x_3 + b_2^{\; \prime} \; x_4 \end{array} ,$$

zu identifiziren.

Die Ebene $x_3 = \mu x_4$ werde vorläufig durch die Gleichung

$$\alpha'_{x} \equiv \alpha_{1}' x_{1} + \alpha_{2}' x_{2} + \alpha_{3}' x_{3} + \alpha_{4}' x_{4} = 0$$

dargestellt, in welcher später

$$\mathbf{\alpha_{1}}^{'}=\mathbf{0}$$
 , $\mathbf{\alpha_{2}}^{'}=\mathbf{0}$, $\mathbf{\alpha_{4}}^{'}=-\mu\mathbf{\alpha_{3}}^{'}$

gesetzt wird.

Die Tatsache, dass die Schnittlinie der Ebenen $\mathbf{a}_x = 0$ und $\mathbf{a}_x' = 0$ mit der Gerade

$$x_1 = a_1 x_3 + b_1' x_4,$$

 $x_2 = a_2 x_3 + b_2' x_4$

zusammenfällt, bedingt die folgenden Identitäten

$$\begin{aligned} \mathbf{a_1} \ x_1 + \mathbf{a_2} \ x_2 + \mathbf{a_3} \ x_3 + \mathbf{a_4} \ x_4 &= \mathbf{\lambda_1} \ (x_1 - a_1 \ x_3 - b_1' \ x_4) + \\ &\quad + \mathbf{\lambda_2} \ (x_2 - a_2 \ x_3 - b_2' x_4) \,, \\ \mathbf{a_1'} \ x_1 + \mathbf{a_2'} \ x_2 + a_3' \ x_3 + \mathbf{a_4'} \ x_4 &\equiv \mathbf{\lambda_1'} \ (x_1 - a_1 \ x_3 - b_1' \ x_4) + \\ &\quad + \mathbf{\lambda_2'} \ (x_2 - a_2 \ x_3 - b_2' \ x_4). \end{aligned}$$

Durch Elimination von λ_1 , λ_2 , λ_1' und λ_2' ergiebt sich hieraus

demnach ist

$$\begin{split} a_1 &= \frac{- \ a_2^{'} \ a_3^{} + \ a_3^{'} \ a_2^{}}{a_2^{'} \ a_1^{} - a_1^{'} \ a_2^{}}, \quad a_2^{} &= \frac{a_1^{'} \ a_3^{} - a_3^{'} \ a_1^{}}{a_2^{'} \ a_1^{} - a_1^{'} \ a_2^{}}, \\ b_1^{'} &= \frac{- \ a_2^{'} \ a_4^{} + a_4^{'} \ a_2^{}}{a_2^{'} \ a_1^{} - a_1^{'} \ a_2^{}}, \quad b_2^{'} &= \frac{a_1^{'} \ a_4^{} - a_4^{'} \ a_1^{}}{a_2^{'} \ a_1^{} - a_1^{'} \ a_2^{}}, \end{split}$$

und daher

$$\frac{b_1'}{a_1} = \frac{-\alpha_2'\alpha_4 + \alpha_4'\alpha_2}{-\alpha_2'\alpha_3 + \alpha_3'\alpha_2}, \quad \frac{b_2'}{a_2} = \frac{\alpha_1'\alpha_4 - \alpha_4'\alpha_1}{\alpha_1'\alpha_3 - \alpha_3'\alpha_1}.$$

Wegen der Relationen $a_{1}'=a_{2}'=0$ und $a_{4}'=-\mu a_{3}'$ finden wir

$$\frac{b_{1}^{\;'}}{a_{1}} = -\; \mu \,, \quad \frac{b_{2}^{\;'}}{a_{2}} = -\; \mu \,, \quad$$

woraus hervorgehen würde

$$a_1 \ b_2{'} - a_2 \ b_1{'} = 0$$
 ,

wenn nicht a_1 , a_2 , b_1' und b_2' alle unendlich gross wären, weil ihr Nenner null ist.

In wirklichkeit jedoch wird dem Ausdrucke

$$a_1 b_2' - a_2 b_1' = \Delta$$

ein unendlich grosser Wert zukommen, und zwar von derselben Ordnung wie a_1 , a_2 , $b_1^{'}$ und $b_2^{'}$.

Um dies zu beweisen und zugleich a_1 , a_2 , b_1' , b_2' und \triangle zu bestimmen, setzen wir vorläufig

$$\begin{split} \frac{b_{1}^{\;\prime}}{a_{1}} &= -\; \mu_{1} \;, \\ \frac{b_{2}^{\;\prime}}{a_{2}} &= -\; \mu_{2}. \end{split}$$

Ersetzen wir in der zweiten Gleichung (1) b_1 und b_2 durch die hieraus fliessenden Ausdrücke, so folgt

$$\mu_1 \ \alpha_1 \ \alpha_1 + \mu_2 \ \alpha_2 \ \alpha_2 = \alpha_4.$$

Wir haben nunmehr

$$a_1 a_1 + a_2 a_2 = -a_3,$$

 $a_1 a_1 + a_2 a_2 = +a_4,$

und bekommen also

$$\begin{aligned} a_1 &= \frac{\mu_2 \, a_3 + a_4}{a_1 \, (\mu_1 - \mu_2)}, \\ a_2 &= -\frac{\mu_1 \, a_3 + a_4}{a_2 \, (\mu_1 - \mu_2)}. \end{aligned}$$

Demnach ist

$$\begin{split} b_1' &= -\mu_1 \, a_1 = -\frac{\mu_1 \, (\mu_2 \, \alpha_3 + \alpha_4)}{\alpha_1 \, (\mu_1 - \mu_2)}, \\ b_2' &= -\mu_2 \, a_2 = -\frac{\mu_2 \, (\mu_1 \, \alpha_3 + \alpha_4)}{\alpha_2 \, (\mu_1 - \mu_2)}, \end{split}$$

und schliesslich

$$\begin{split} \Delta &= a_1 \; b_2{'} - a_2 \; b_1{'} = \frac{(\mu_2 \alpha_3 + \alpha_4) \, (\mu_1 \alpha_3 + \alpha_4) \, (\mu_2 - \mu_1)}{\alpha_1 \; \alpha_2 \, (\mu_1 - \mu_2)^2} = \\ &= - \frac{(\mu_1 \; \alpha_3 + \alpha_4) \, (\mu_2 \; \alpha_3 + \alpha_4)}{\alpha_1 \; \alpha_2 \, (\mu_1 - \mu_2).} \end{split}$$

Der unendlich grosse Wert von a_1 , a_2 , b_1' , b_2' und \triangle findet seinen Ausdruck in dem Faktor $\mu_1 - \mu_2$ des Nenners. Dieser Faktor ist tatsächlich null, weil $\mu_1 = \mu_2 = \mu$.

Wir setzen jetzt

$$\mu_1 = \mu + \delta,$$
 $\mu_2 = \mu - \delta.$

In der Tat ist I eine unendlich kleine Grösse; wir dürfen sie

also neben endlichen Grössen vernachlässigen. Mit Rücksicht hierauf finden wir für a_1 , a_2 , b_1' , b_2' und \triangle die folgenden Ausdrücke

$$\begin{split} a_1 &= + \frac{\mu \alpha_3 + \alpha_4}{2 \alpha_1 \delta}, \\ a_2 &= - \frac{\mu \alpha_3 + \alpha_4}{2 \alpha_2 \delta}, \\ b_1' &= - \frac{\mu (\mu \alpha_3 + \alpha_4)}{2 \alpha_1 \delta}, \\ b_2' &= + \frac{\mu (\mu \alpha_3 + \alpha_4)}{2 \alpha_2 \delta}, \\ \Delta &= - \frac{(\mu \alpha_3 + \alpha_4)^2}{2 \alpha_1 \alpha_2 \delta}. \end{split}$$

Setzen wir schliesslich

$$\frac{\mu \, \alpha_3 + \alpha_4}{2 \, \alpha_1 \, \alpha_2} = a_0 \,,$$

so erhalten wir die folgenden Werte

$$\begin{split} & \alpha_1 = + \; \frac{\alpha_2 \, a_0}{\delta} \,, \\ & a_2 = - \; \frac{\alpha_1 \, a_0}{\delta} \,, \\ & b_1{}^{'} = - \; \frac{\mu \alpha_2 \, a_0}{\delta} \,, \\ & b_2{}^{'} = + \; \frac{\mu \alpha_1 \, a_0}{\delta} \,, \\ & \Delta = - \; \frac{(\mu \, \alpha_3 + \, \alpha_4) \, a_0}{\delta} \,. \end{split}$$

Es ist hieraus ersichtlich, dass Δ von derselben Ordnung unendlich gross ist, wie a_1 , a_2 , b_1 und b_2 , während überdies ihre Verhältnisse zu Tage treten.

Ein Resultat eine Gerade betreffend, welche ω_x und ω_0 im Endlichen schneidet, und zwar ω_x in A (a_1, a_2) , ω_0 in B' (b_1', b_2') , kann sofort auf eine zu ω_x und ω_0 parallelen Gerade l_x (bestimmt durch $\Sigma a_1 x_1 = 0$, $x_3 = \mu x_4$) übertragen werden, wenn nur die Grössen a_1 , a_2 , b_1' , b_2' und $\Delta = a_1 b_2' - a_2 b_1'$ durch die oben abgeleiteten Ausdrücke ersetzt werden; nachher müssen wir noch überall δ aus dem Nenner entfernen und schliesslich in die so erhaltene Gleichung $\delta = 0$ setzen.

Die Gerade l_{μ} schneidet X_1 X_2 oder Λ_{∞} im Punkte L_{μ} .

Die zu ω_{∞} und ω_0 parallele Ebene ω_{μ} wird X_3 X_4 (OO') in einem Punkte X_{μ} treffen, die Gerade l in C_{μ} , die Congruenzstrahlen p, q, r, s in P_{μ} , Q_{μ} , R_{μ} , S_{μ} .

Wir werden nunmehr eine andere Gruppe geometrischer Gebilde mit Namen versehen, welche ebenfalls in den folgenden Untersuchungen eine bedeutende Stelle einnehmen, nämlich die Kegelschnitte, welche durch die Punkte X_1 und X_2 hindurchgehen, also Kreise in Ebenen ω_{μ} , parallel oder identisch mit [w] oder [w']. Später sollen auch Ebenen parallel mit [w] und [w'] als Abbildungsebenen verwendet werden; es mögen daher die einfachsten Gebilde (Geraden und Kreise) dieser Ebenen zuvor erörtert werden.

Ein in ω_{μ} befindlicher Kegelschnitt γ_{μ} kann durch

$$\begin{aligned} \mathbf{a}_{3}\,\mathbf{\beta}_{3}\,x_{1}\,x_{2} + x_{1}\,(\mathbf{a}_{2}\,\mathbf{\beta}_{3}\,x_{3} + \mathbf{a}_{3}\,\mathbf{\beta}_{2}\,x_{4}) + x_{2}\,(\mathbf{a}_{1}\,\mathbf{\beta}_{3}\,x_{3} + \mathbf{a}_{3}\,\mathbf{\beta}_{1}\,x_{4}) + \\ &+ (\mathbf{a}_{0}\,\mathbf{\beta}_{3}\,x_{3}^{\ 2} + \mathbf{a}_{3}\,\mathbf{\beta}_{0}\,x_{4}^{\ 2}) = 0\,, \\ x_{3} = \mu x_{4} \end{aligned}$$

vertreten werden.

Die erste dieser Gleichungen verdankt ihre ziemlich verwickelte Form dem Umstande, dass sie so wohl für $\mu=\infty$ wie für $\mu=0$ die möglichst einfache Gestalt annimmt.

In der Tat giebt $\mu = \infty$

$$\gamma_{_{x}}\left\{\begin{array}{c} \mathbf{a}_{\!3}\,x_{\!1}\,x_{\!2}+\mathbf{a}_{\!2}\,x_{\!1}\,x_{\!3}+\mathbf{a}_{\!1}\,x_{\!2}\,x_{\!3}+\mathbf{a}_{\!0}\,x_{\!3}^{\,2}=0\,,\\ x_{\!4}=0\,, \end{array}\right.$$

und $\mu = 0$:

$$\gamma_0 \left\{egin{array}{l} eta_3 \, lpha_1 \, x_2 + eta_2 \, x_1 \, x_4 + eta_1 \, x_2 \, x_4 + eta_0 \, x_4^{\, 2} = 0 \, , \\ x_3 = 0 \, . \end{array} \right.$$

Wie bekannt ist der Ort der Punkte, wo ein Congruenzstrahl durch die ihm unendlich benachbarten geschnitten wird, im Allgemeinen eine Fläche, die s.g. Fokalfläche.

Die demnächst zu untersuchenden Congruenzen sind dadurch gekennzeichnet, dass ihre Fokalfläche aus zwei Kegeln besteht, deren Spitzen mit den Kreispunkten der Ebenen [w] und [w'] zusammenfallen. Diese Kegel sollen Fokalkegel genannt werden; den Fokalkegel, dessen Spitze in X_1 liegt, werden wir mit F_1 , den andren, dessen Spitze X_2 ist, mit F_2 andeuten.

Die Congruenzstrahlen können somit als die gemeinschaftlichen Tangenten der beiden Fokalkegel F_1 und F_2 betrachtet werden.

Ihre Berührungspunkte mit den Fokalkegeln sind die Brennpunkte. Der eine Brennpunkt liegt demnach auf F_1 , der andere auf F_2 . Die auf F_1 befindlichen Brennpunkte der Strahlen p, q, r, s werden mit P_{f1} , Q_{f1} , R_{f1} , S_{f1} ; die auf F_2 liegenden mit P_{f2} , Q_{f2} , R_{f2} , S_{f2} angedeutet.

b) Bewegliches homogenes Coordinatensystem, dessen Tetraeder Ξ_1 Ξ_2 Ξ_3 Ξ_4 eine solche Lage hat, dass Ξ_1 mit X_1 , Ξ_2 mit X_2 zusammenfällt, während Ξ_3 im Schnittpunkte A, P, Q, R, S der Gerade l, bez. des Congruenzstrahles p, q, r, s mit der Ebene ω_{∞} , und Ξ_4 im Schnittpunkte B', P', Q', R', S' derselben Gerade mit der Ebene ω_0 liegt.

Zwischen den letzteren und den vorigen homogenen Coordinaten giebt es sodann diese Beziehungen:

$$\left. \begin{array}{l} \xi_1 = x_1 - a_1 \, x_3 \, - b_1' \, x_4 \\ \xi_2 = x_2 - a_2 \, x_3 - b_2' \, x_4' \\ \xi_3 = x_3 \\ \xi_4 = x_4 \end{array} \right) \text{ oder } \left. \begin{array}{l} \xi_1 = x_1 - p_1 \, x_3 - p_1' \, x_4 \\ \xi_2 = x_2 - p_2 \, x_3 - p_2' \, x_4 \\ \xi_3 = x_3 \\ \xi_4 = x_4 \end{array} \right) \text{ u.s. w. }$$

Die betreffenden Geraden l oder Strahlen p, q, r, s werden daher durch

$$\begin{array}{l} \xi_1 = 0 \,, \\ \xi_2 = 0. \end{array}$$

bestimmt.

Der Gerade $X_3 \, X_4 \, (OO')$ kommen hier diese Gleichungen zu:

$$\begin{array}{l} \xi_1 + a_1 \, \xi_3 + b_1' \, \xi_4 = 0 \\ \xi_2 + a_2 \, \xi_3 + b_2' \, \xi_4 = 0 \end{array} \right) \, \text{oder} \quad \begin{array}{l} \xi_1 + p_1 \, \xi_3 + p_1' \, \xi_4 = 0 \\ \xi_2 + p_2 \, \xi_3 + p_2' \, \xi_4 = 0 \end{array} \right) \, \text{u.s.w.}$$

Sollten wir später Gebilden begegnen, welche in obigem Verzeichniss fehlen, so werden wir ihre Bezeichnung möglichst zweckmässig wählen.

Zum Schluss dieses Abschnittes fügen wir eine schematische Übersicht der bisher angenommenen Bezeichnungen hinzu.

§ 4. BEZEICHNUNGEN.

Which are the Combination WWZ	Namen.
Triorthogonales Coordinatensystem XYZ	r
Ebene der Punkte (Grössen) $w: z = 0$	
,, ,, ,, ,, w' : $z = h$ Nullpunkt von $[w]$ $x = 0$, $y = 0$, $z = 0$	$\begin{bmatrix} w \end{bmatrix}$,, ω_0
$,, (w') x = 0, \ y = 0, \ z = h . .$	O'
w = u + iv $w' = u' + iv'$	
Kreispunkte der Ebenen $z = k$	I und J
	Λ_{∞}
Unendlichferne Gerade in $z = k$	Δ _∞
Ebene der reellen Axen $y = 0$	ε_1 oder ε
Schnittpunkt von ε_1 oder ε mit Λ_{∞}	
Ebene der imaginären Axen $x = 0$	ε_{-1} ,, ε'
Schnittpunkt von ε_{-1} oder ε' mit Λ_{∞}	E_{-1} ,, E'
Die <i>N</i> -te Wurzel der Einheit, oder $e^{i\frac{2\hbar\pi}{N}}$	$ au_N$
Ebene durch $OO'(\frac{x-iy}{x+iy}) = t$	$oldsymbol{arepsilon}_t$
Schnittpunkt von ε_t mit Λ_{∞}	E_{t}
Ebene durch OO' , bestimmt durch $\frac{x-iy}{x+iy} = \tau_N$	
oder $\frac{y}{x} = -tg \frac{k \pi}{N}$	$arepsilon_{ au_N}$
Schnittpunkt von $\varepsilon_{ au_N}$ mit Λ_{∞}	$E_{ au_N}$
Festes homogenes Coordinatensystem $X_1 X_2 X_3 X_4$	1V
$x_1 = \frac{x + iy}{c}$	
$x_2 = \frac{x - iy}{c}$	
$x_3 = \frac{h - z}{h}$	
$x = \tilde{x}$	

Namen.

Coordinatentatrander V V V V	Namen.						
Coordinatentetraeder $X_1 X_2 X_3 X_4$	O'						
$X_1 = I, X_2 = J, X_3 = 0, X_4 = 0'$							
$x_1 = 0$ Gleichung der Ebene $X_2 X_3 X_4$, oder JOO'							
$x_2 = 0$, , , $X_1 X_3 X_4$							
$x_3 = 0$,, ,, $X_1 X_2 X_4$, " IJO' , oder $[w']$, oder $\pmb{\omega}_0$						
$x_4=0$,, ,, X_1 X_2 X_3 Willkürliche Gerade	$, ,, IJO, ,, \left[w\right] , ,, oldsymbol{\omega}_{\infty} .$						
Schnittpunkt von l mit ω_{∞}	A						
Cardinatan yan 4	x_1 x_2						
Coordinaten von A	$= a_1, = a_2, x_4 = 0.$						
Schnittpunkt von l mit ω_0	B'						
	x_1, \dots, x_2, \dots						
Coordinaten von B'	$a_1 = b_1', \frac{2}{x} = b_2', x_3 = 0.$						
Gleichungen von l	$x = a_1 x_3 + b_1 x_4,$ $x = a_1 x_2 + b_1 x_3$						
Beweglicher Congruengstrahl	$u_2 = u_2 u_3 + u_2 u_4$.						
Beweglicher Congruenzstrahl Schnittpunkt von p , q , r mit ω_{∞}	p, q, r						
Coordinaten von P u.s.w	$x_1 = p_1, \frac{x_2}{2} = p_2, x_4 = 0, \text{ u. s. w.}$						
	x_3 x_3 x_4						
Schnittpunkt von p , q , r mit ω_0 .							
Coordinaten von P' u.s.w	$\frac{x_1}{2} = p_1', \frac{x_2}{2} = p_2', x_2 = 0, \text{n. s. w.}$						
	*						
Gleichungen von nu sw	$x_1 = p_1 x_3 + p_1' x_4 $						
Gleichungen von p u.s.w	$x_2 = p_2 x_3 + p_2' x_4 $						
Fester Congruenzstrahl	8						
Schnittpunkt von s mit ω_{∞}	${\mathcal S}$						
Coordinates von s and ω_2	$x_1 - x_2 - x_3 - 0$						
Cooldinated von S	$x_3 = s_1, x_3 = s_2, x_4 = 0$						
Schnittpunkt von s mit ω_0	S'						
Coordinator von S'	$x_1 - x_1, x_2 - x_2, \dots = 0$						
Coordinaten von \mathcal{S}'	$x_4 = s_1$, $x_4 = s_2$, $x_3 = 0$						
,	$x_1 = s_1 x_3 + s_1' x_4$						
Gleichungen von s	$x_2 = s_2 x_3 + s_2' x_4$						
Ebene durch $X_1 X_2 (\Lambda_x)$	ω_{μ}						
Gleichung von ω_{μ}	$r_3 = \mu r_4$						
Schnittpunkt von ω_{μ} mit $X_3 X_4$	Λ_{μ}						
,, ,, ,, ,, ,,	$C_{\mu}^{^{r}}$						
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,							
,, ,, ,, ,, 8	$P_{\mu},\;\;Q_{\mu},\;\;R_{\mu}\ S_{\mu}$						
Gerade in ω_{μ}	l_{μ}						
Schnittpunkt von l_{μ} mit $X_1 X_2 (\Lambda_{\alpha})$.	L_{μ}						
1 rs -1 -2 (-2x)	B 2*						

Gleichungen von
$$l_{\mu}$$
 $\alpha_{1}x_{1} + \alpha_{2}x_{2} + \alpha_{3}x_{3} + \alpha_{4}x_{4} = 0$ $x_{3} = \mu x_{4}$ oder
$$x_{1} = a_{1}x_{3} + b_{1}{'}x_{4}$$
 $x_{2} = a_{2}x_{3} + b_{2}{'}x_{4}$,

wenn

$$\begin{split} a_1 &= + \frac{\alpha_2 a_0}{\delta}, \, a_2 = - \frac{\alpha_1 a_0}{\delta}, \, b_1{'} = - \frac{\mu \alpha_2 a_0}{\delta}, \, b_2{'} = + \frac{\mu \alpha_1 a_0}{\delta}, \\ \Delta &= a_1 b_2{'} - a_2 b_1{'} = - \frac{(\mu \alpha_3 + \alpha_4) a_0}{\delta}; \, \, a_0 = \frac{\mu \alpha_3 + \alpha_4}{2 \alpha_1 \alpha_2}. \end{split}$$

ð ist eine unendlich kleine Grösse.

Kegelschnitt durch $X_1 X_2$ (also in ω_μ). γ_μ Gleichungen von γ_μ :

Gleichungen von
$$\gamma_{x}$$
 $\alpha_{3}x_{1}x_{2} + \alpha_{2}x_{1}x_{3} + \alpha_{1}x_{2}x_{3} + \alpha_{0}x_{3}^{2} = 0$

Fokalkegel, dessen Spitze in
$$X_1$$
 . . . F_1 , F_2

Bewegliches homogenes Coordinatensystem $\Xi_1 \Xi_2 \Xi_3 \Xi_4$

$$\Xi_1 = X_1 \, ; \; \Xi_2 = X_2 \, ; \; \Xi_3 = \varLambda, \, P, \, Q, \, R, \, \mathcal{S}; \; \Xi_4 = \mathcal{B}', \, P', \, Q', \, R', \, \mathcal{S}'.$$

Substitutionsformeln:

$$\left. \begin{array}{l} \xi_1 = x_1 - a_1 \, x_3 - b_1^{'} \, x_4 \\ \xi_2 = x_2 - a_2 \, x_3 - b_2^{'} \, x_4 \\ \xi_3 = x_3 \\ \xi_4 = x_4 \end{array} \right\}, \qquad \left. \begin{array}{l} \xi_1 = x_1 - p_1 \, x_3 - p_1^{'} \, x_4 \\ \xi_2 = x_2 - p_2 \, x_3 - p_2^{'} \, x_4 \\ \xi_3 = x_3 \\ \xi_4 = x_4 \end{array} \right\} \text{ u. s. w. }$$

Namen.

oder

$$\begin{array}{c} x_1 = \xi_1 + a_1 \, \xi_3 + b_1' \, \xi_4 \\ x_2 = \xi_2 + a_2 \, \xi_3 + b_2' \, \xi_4 \\ x_3 = \xi_3 \\ x_4 = \xi_4 \end{array} \right), \quad \begin{array}{c} x_1 = \xi_1 + p_1 \, \xi_3 + p_1' \, \xi_4 \\ x_2 = \xi_2 + p_2 \, \xi_3 + p_2' \, \xi_4 \\ x_3 = \xi_3 \\ x_4 = \xi_4 \end{array} \right) \text{ if } 0.8 \, \text{w.}$$

Gleichungen von
$$l$$
, p , q , r , s $\xi_1 = 0$, $\xi_2 = 0$.

ZWEITER ABSCHNITT.

A. Die Congruenz, welche der Funktion

$$w' = \frac{c^2}{w}$$

angehört.

§ 1. Der Punkt (u, v) in [w], welcher die complexe Zahl w = u + iv vertritt, ist, wie im ersten Abschnitt angegeben, bestimmt durch die Coordinaten

$$\begin{cases}
 x = u \\
 y = v \\
 z = 0
 \end{cases},$$

oder

$$x_{1} = \frac{u + iv}{c}$$
 $x_{2} = \frac{u - iv}{c}$
 $x_{3} = 1$
 $x_{4} = 0$

oder

$$\frac{x_1}{x_3} = \frac{u + iv}{c}$$

$$\frac{x_2}{x_3} = \frac{u - iv}{c}$$

$$x_4 = 0$$

Der Punkt (u', v') in [w'], welcher der complexen Zahl w' = u' + iv' entspricht, ist angewiesen durch

$$x = u'$$
 $y = v'$
 $z = h$

oder

$$x_1 = \frac{u' + iv'}{c}$$
 $x_2 = \frac{u' - iv'}{c}$
 $x_3 = 0$
 $x_4 = 1$

oder

$$\begin{vmatrix} x_1 \\ x_4 \\ z \\ z \\ x_4 \\ z \\ z_3 \\ = 0 \end{vmatrix} \cdot \begin{vmatrix} u' + iv' \\ c \\ z \\ z \\ z \\ z \\ z \end{vmatrix} .$$

Bezeichnen wir die homogenen Coordinaten dieses Punktes mit x_1' , x_2' , x_4' ($x_3'=0$), so können wir setzen

$$\frac{x_{1}^{'}}{x_{4}^{'}} = \frac{u' + iv'}{c},$$

$$\frac{x_{2}^{'}}{x_{4}^{'}} = \frac{u' - iv'}{c}.$$

Die zwischen w = u + iv und w' = u' + iv' bestehende Beziehung

$$uu' = (u + iv)(u' + iv') = c^2$$

giebt zu den folgenden Gleichungen zwischen den homogenen Coordinaten der Punkte w und w' Veranlassung:

$$\frac{x_{1}}{x_{3}} \cdot \frac{x_{1}^{'}}{x_{4}^{'}} = 1$$

und

$$\frac{x_2}{x_3} \cdot \frac{x_2}{x_4} = 1.$$

Diese Beziehung, eine Umformung von

$$(u - iv) (u' - iv') = (uu' - vv') - i (uv' + u'v) = c^2$$

geht aus der ersteren,

$$(u + iv) (u' + iv') = (uu' - vv') + i (uv' + u'v) = c^2$$

hervor, weil c eine reelle Constante darstellt.

Die Verwandtschaftsgleichungen

$$x_1 x_1' = x_2 x_2' = x_3 x_4'$$

zeigen, dass die Punkte w und w' einander in einer quadratischen Verwandtschaft zugeordnet sind, welche, ihrer nicht-homogenen Darstellung nach, aus einer Inversion und einer Spiegelung um die reelle Axe zusammengesetzt ist.

Der Punkt P in ω_{∞} wird (siehe I. Abschnitt) durch

$$\frac{x_1}{x_3} = p_1 \,, \ \frac{x_2}{x_3} = p_2 \,, \ x_4 = 0 \,,$$

der entsprechende Punkt P' in ω_0 durch

$$\frac{x_1'}{x_4'} = p_1', \frac{x_2'}{x_4'} = p_2', x_3' = 0$$

bestimmt.

Der Congruenzstrahl p = PP' wird demnach gegeben durch

$$\begin{array}{l} x_1 = p_1 \, x_3 + p_1^{\ \prime} \, x_4 \, , \\ x_2 = p_2 \, x_3 + p_2^{\ \prime} \, x_4 . \end{array}$$

Die Verwandtschaftsgleichungen

$$x_1 \, x_1{}' = x_2 \, x_2{}' = x_3 \, x_4{}'$$

bedingen die Beziehungen

$$p_1 p_1' = 1,$$

 $p_2 p_2' = 1,$

oder

$$p_{1}' = \frac{1}{p_{1}},$$
 $p_{2}' = \frac{1}{p_{2}}.$

Die Gleichungen eines Strahles der Congruenz, welche $w' = \frac{c^2}{w}$ vertritt, bekommen daher diese Gestalt:

$$\begin{vmatrix} x_1 = p_1 x_3 + \frac{1}{p_1} x_4 \\ x_2 = p_2 x_3 + \frac{1}{p_2} x_4 \end{vmatrix}. \qquad (1)$$

§ 2. Bündelgrad (Ordnung) und Feldgrad (Klasse).

Um den Bündelgrad zu bestimmen, betrachten wir in (1) x_1 , x_2 , x_3 und x_4 als feste Coordinaten, und suchen die Anzahl der Combinationen (p_1, p_2) , welche dann aus (1) hervorgehen.

Die Gleichungen (1) zeigen in der Form

$$x_3 p_1^2 - x_1 p_1 + x_4 = 0$$
,
 $x_3 p_2^2 - x_2 p_2 + x_4 = 0$,

unmittelbar, dass ein Punkt (x_1, x_2, x_3, x_4) (zwei Werte für p_1 und zwei Werte für p_2 veranlässt; wir finden deshalb vier Combinationen (p_1, p_2) , und somit vier Punkte P; diese Punkte P stützen die vier Congruenzstrahlen, deren Gleichungen den Beziehungen (1) entsprechen, weshalb sie in dem gegebenen Punkte (x_1, x_2, x_3, x_4) zusammentreffen.

Wir folgern hieraus dass durch einen gegebenen Punkt vier Congruenzstrahlen hindurchgehen, wonach der Bundelgrad vier ist.

Eine Ebene, mit der Gleichung

$$\mathbf{a}_{1}\,x_{1}+\,\mathbf{a}_{2}\,x_{2}+\mathbf{a}_{3}x_{3}+\mathbf{a}_{4}\,x_{4}=0$$
 ,

enthält einen Congruenzstrahl p, falls sie dem Ebenenbüschel angehört, welcher, mit p als Λxe , durch die beiden Ebenen (1) bestimmt ist.

Es ergiebt sich daher diese Identität:

$$\begin{split} \pmb{\lambda}_1 \ (x_1 - p_1 \ x_3 - \frac{1}{p_1} \ x_4) + \pmb{\lambda}_2 \ (x_2 - p_2 \ x_3 - \frac{1}{p_2} \ x_4) \\ &\equiv \pmb{\alpha}_1 \ x_1 + \pmb{\alpha}_2 \ x_2 + \pmb{\alpha}_3 \ x_3 + \pmb{\alpha}_4 \ x_4 \ , \end{split}$$

und demnach:

$$egin{align} \lambda_1 &= lpha_1 \ \lambda_2 &= lpha_2 \ , \ &- \left(\lambda_1 \, p_1 + \lambda_2 \, p_2
ight) = lpha_3 \ , \ &- \left(rac{\lambda_1}{p_1} + rac{\lambda_2}{p_2}
ight) = lpha_4 . \end{array}$$

Die letzten zwei Gleichungen führen die Werte von p_1 und p_2 herbei, welche den in der gegebenen Ebene liegenden Strahlen angehören.

Den Gleichungen

$$\begin{array}{c|c}
\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 = 0, \\
\alpha_2 p_1 + \alpha_1 p_2 + \alpha_4 p_1 p_2 = 0
\end{array}$$
(2)

genügen zwei Combinationen (p_1, p_2) . Folglich liegen in der gegebenen Ebene zwei Congruenzstrahle, und der Feldgrad ist zwei.

§ 3. Die Fokalfläche.

Ein Congruenzstrahl p wird bestimmt durch die beiden Gleichungen (1), von denen erstere eine Ebene durch X_2 , letztere eine Ebene durch X_1 darstellt. Erstere wird, wenn p_1 alle Werte durchläuft, einen Kegel mit X_2 als Spitze umhüllen, dessen Gleichung sich ergiebt, wenn wir die Diskriminante der ersten Gleichung (1) gleich Null setzen. Man erhält dann

$$x_1^2 - 4 x_3 x_4 = 0.$$

Der durch die Ebene $x_1 = p_1 x_3 + p_1^{-1} x_4$ umhüllte Kegel ist also vom *zweiten* Grade und werde durch F_2 angewiesen.

Der durch die Ebene $x_2 = p_2 x_3 + p_2^{-1} x_4$ umhüllte Kegel F_1 wird dargestellt durch

$$x_2^2 - 4 x_3 x_4 = 0.$$

Seine Spitze liegt in X_1 .

Wir sind also zu der Einsicht gelangt, dass von den beiden Ebenen, welche p enthalten, die erste den quadratischen Kegel F_2 , die zweite den quadratischen Kegel F_1 berührt. Folglich ist der Congruenzstrahl p selber eine gemeinschaftliche Tangente der beiden Kegel F_1 und F_2 .

Unsere Schlussfolgerung ist demnach:

Die Strahlen der Congruenz, welche die Beziehung $ww' = c^2$ vertritt, sind die gemeinschaftlichen Tangenten der beiden Kegel:

$$\begin{vmatrix}
F_1 \cdot \cdot \cdot x_2^2 - 4x_3 x_4 = 0 \\
F_2 \cdot \cdot \cdot x_1^2 - 4x_3 x_4 = 0
\end{vmatrix} \cdot \cdot \cdot (3)$$

Weil ein Punkt von F_1 , bez. F_2 , zwei unendlich benachbarte Strahlen trägt, müssen wir F_1 und F_2 als die beiden Teile betrachten, aus welchen die Fokalfläche zusammengesetzt ist. Die beiden Kegel werden deshalb nachher Fokalkegel genannt.

Der durch die Fokalkegel bestimmte Büschel quadratischer Flächen wird dargestellt durch

$$\mathbf{\lambda_1} \ (x_1^{\ 2} - 4 \, x_3 \, x_4) + \mathbf{\lambda_2} \ (x_2^{\ 2} - 4 \, x_3 \, x_4) = 0.$$

Das Gebilde dieses Büschels, für welches $\lambda_1 + \lambda_2 = 0$, hat die Gleichung

$$x_1^2 - x_2^2 = 0$$
,

ist somit in zweï Ebenen ausgeartet, welche zusammen die Schnittkurve vierten Grades der Kegel F_1 und F_2 enthalten müssen.

Die Ebene &, mit der Gleichung

$$x_1 - x_2 = 0$$
,

trägt also einen Kegelschnitt e, welcher F_1 und F_2 gemeinsam ist. In gleicher Weise enthält die durch

$$x_1 + x_2 = 0$$

bestimmte Ebene ε' einen Kegelschnitt e', welcher ebenfalls beiden Kegeln angehört.

Der Schnitt der Fokalkegel F_1 und F_2 besteht also aus zwei Kegelschnitten e und e', bez. in den Ebenen

$$\varepsilon'$$
 . . $x_1 + x_2 = 0$ (5)

Beide Ebenen gehen durch X_3 X_4 und sind zu den Coordinatenebenen X_1 X_3 X_4 und X_2 X_3 X_4 harmonisch conjugirt.

Die Gleichungen (3) der Fokalkegel zeigen, das dieselben die Ebenen $x_4=0$ und $x_3=0$ berühren, und zwar berührt F_1 die Ebene $x_4=0$, oder ω_{∞} , längs $X_1\,X_3$, die Ebene $x_3=0$, oder ω_0 , längs $X_1\,X_4$, während F_2 von ω_{∞} längs $X_2\,X_3$, von ω_0 längs $X_2\,X_4$ berührt wird.

§ 4. Singuläre Elemente.

Eine Ebene heisst *singulär*, wenn sie mehr als zwei Congruenzstrahlen, also deren eine unendliche Menge enthält.

Die Coordinaten p_1 und p_2 der Spur P eines in der Ebene

$$a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 = 0$$

liegenden Strahles, sind, wie aus § 2 hervorgeht, bestimmt durch

Die Ebene $\Sigma \alpha x = 0$ wird singulär sein, wenn diese beiden Gleichungen von einander abhängig sind.

Durch Elimination von p_2 finden wir

$$\mathbf{a_1} \cdot \mathbf{a_4} \, p_1^{\ 2} + (\mathbf{a_1}^{\ 2} - \mathbf{a_2}^{\ 2} + \mathbf{a_3} \, \mathbf{a_4}) \, p_1 + \mathbf{a_1} \, \mathbf{a_3} = 0.$$

Es ist p_1 unbestimmt, wenn die Bedingungen

$$\begin{array}{c} \mathbf{a_1} \, \mathbf{a_4} = 0 \, , \\ \mathbf{a_1}^2 - \mathbf{a_2}^2 + \mathbf{a_3} \, \mathbf{a_4} = 0 \, , \\ \mathbf{a_1} \, \mathbf{a_3} = 0 \end{array}$$

erfüllt sind. Ihnen wird genügt

1° durch

$$\mathbf{a}_1 = \mathbf{0}$$
 , $\mathbf{a}_2 = \sqrt{\mathbf{a}_3} \, \bar{\mathbf{a}_4}$

und demnach (siehe (2)) durch

$$\mathbf{a}_2:\mathbf{a}_3:\mathbf{a}_4=1:-p_2:-\frac{1}{p_2},$$

sodass die Gleichung der Ebene diese Form annimmt:

$$x_2 - p_2 x_3 - \frac{1}{p_2} x_4 = 0.$$

Sie stellt deshalb (siehe (1)) die Berührungsebene des Fokalkegels F_1 dar, welche den Strahl p enthält, also die Ebene, welche p mit X_1 verbindet.

Es zeigt sich somit, dass jede Ebene, welche einen Congruenzstrahl mit X_1 verbindet, singulär ist. Die in dieser Ebene befindlichen Strahlen umhüllen offenbar den Kegelschnitt, in dem der Fokalkegel F_2 die Ebene (p, X_1) schneidet. Jede Ebene (p, X_1) trägt ein Strahlensystem zweiter Klasse, ist somit eine singuläre Ebene zweiten Grades.

In derselben Weise wird gezeigt, dass jede Ebene, welche einen Strahl mit X_2 verbindet, singulär ist und ein Strahlengebilde zweiter Klasse trägt.

Diejenige von den Ebenen

$$p_2^2 x_3 - p_2 x_2 + x_4 = 0,$$

welche einen Strahl trägt, für welchen $p_2 = 0$ ist, ergiebt sich

als die Ebene $x_4=0$, d. h. $\omega_{_{\infty}}$. Auch die Ebene $x_3=0$, oder ω_0 , welche dem Werte $p_2=\infty$ entspricht, gehört den oben genannten Ebenen an.

Die Ebenen ω_{∞} und ω_0 sind demnach auch singulär; sie enthalten aber keine Strahlensysteme zweiter Klasse, wie wir demnächst zeigen werden.

2°. Der Abhängigkeitsbedingung genügt auch die Annahme

$$a_3 = 0,$$
 $a_4 = 0,$
 $a_1^2 - a_2^2 = 0,$

welche die Ebenen

$$x_1 - x_2 = 0$$
, oder ε

und

$$x_1 + x_2 = 0$$
, oder ε'

liefert. Diese Ebenen haben wir schon in § 3 als singuläre erkannt. Die in ε befindlichen Strahlen umhüllen den Kegelschnitt e, diejenigen in ε' den Kegelschnitt e'.

Die singulären Punkte treten zu Tage, wenn wir in

$$x_1 = p_1 x_3 + \frac{1}{p_1} x_4$$
$$x_2 = p_2 x_3 + \frac{1}{p_2} x_4$$

für p_1 oder p_2 unbestimmte Werte verlangen.

Es leuchtet sofort ein, dass p_1 unbestimmt bleibt, wenn gegeben ist:

$$x_1 = x_3 = x_4 = 0$$
;

folglich ist der Punkt X_2 singulär.

Ebenso finden wir, indem wir für p_2 einen unbestimmten Wert bedingen, dass X_1 ein singulärer Punkt ist.

Auch die Punkte X_3 und X_4 , wofür $p_1=p_2=0$, bez. $p_1=p_2=\infty$ gilt, sodass wir über das Verhältniss $p_1:p_2$ im Ungewissen bleiben, sind singulär.

Da die Bilder von X_3 und X_4 auf X_1 X_2 liegen, werden die durch X_3 hindurchgehenden Strahlen in der Ebene ω_{∞} , die sich auf X_4 stützenden Strahlen in der Ebene ω_0 liegen.

In der Absicht die Beschaffenheit der singulären Punkte X_3 und

 X_4 genauer fest zu stellen, wird es genügen den Zustand in den Ebenen ω_{∞} und ω_0 zu erforschen.

Ein Strahl p ist bestimmt durch seine Spur P in ω_{∞} , welche gegeben ist durch die Coordinaten

$$p_1 = \frac{y_1}{y_3}, \ p_2 = \frac{y_2}{y_3}, \ y_4 = 0.$$

Wenn wir in den Gleichungen (1) p_1 und p_2 durch diese Ausdrücke ersetzen, so finden wir

Der Punkt T $(x_1,\ x_2,\ x_3,\ x_4)$, welcher den Strahl trägt, wird nun in den Punkt Q' der Ebene ω_0 gelegt, sodass $x_3=0$ wird. Die Spur $(y_1,\ y_2,\ y_3)$ in ω_∞ ist in diesem Falle bestimmt durch

Diese Gleichungen liefern vier Punkte,

$$\begin{split} &1^{\circ} \, \left\{ \begin{array}{l} y_1 \, x_1 - y_3 \, x_4 = 0 \, , \\ y_2 \, x_2 - y_3 \, x_4 = 0 \, ; \\ \\ 2^{\circ} \, \left\{ \begin{array}{l} y_2 \, x_2 - y_3 \, x_4 = 0 \, , \\ y_3 = 0 \, ; \end{array} \right. \\ &3^{\circ} \, \left\{ \begin{array}{l} y_1 \, x_1 - y_3 \, x_4 = 0 \, , \\ y_3 = 0 \, ; \end{array} \right. \\ &4^{\circ} \, \left\{ \begin{array}{l} y_3 = 0 \, , \\ y_3 = 0 \, . \end{array} \right. \end{split}$$

Der erste Punkt hat die Coordinaten

$$\frac{y_1}{y_3} = \frac{x_4}{x_1}, \ \frac{y_2}{y_3} = \frac{x_4}{x_2},$$

und ist deshalb der Q' entsprechende Punkt Q in ω_{∞} ; die Verbindungslinie q = Q Q' ist der Congruenzstrahl, welcher Q mit seinem Bilde Q' vereinigt.

Der zweite Punkt ist X_1 ; der zugehörige Congruenzstrahl durch Q' ist also die Gerade $Q'X_1$.

Der dritte Punkt ist X_2 ; der dritte Congruenzstrahl durch Q' ist somit die Gerade Q' X_2 .

Der vierte Punkt liegt auf X_1X_2 und ist bis jetzt unbestimmt. Um die Lage dieses Punktes genau zu erörtern, werden wir T nicht in dem Punkte Q' von ω_0 annehmen, sondern in der Nähe von Q'. Die Coordinate x_3 wird dann einen kleinen Wert haben. Die Coordinate y_3 des Punktes, wo der Strahl ω_{∞} trifft, wird dann freilich nicht Null sein, sondern ebenfalls einen kleinen Wert haben.

Wir werden deshalb $y_3:y_1$ nach Potenzen von $x_3:x_1$ entwickeln. Setzen wir

$$\frac{y_3}{y_1} = y$$
, $\frac{x_3}{x_1} = x$

und

$$y = \alpha + \beta x + \gamma x^2 + \dots,$$

so ergiebt sich aus der Gleichung

$$y_1 y_3 x_1 - y_1^2 x_3 - y_3^2 x_4 = 0$$

zunächst

$$y - x = y^2 \frac{x_4}{x_1},$$

dann aber

$$\alpha + (\beta - 1) x + \gamma x^2 + \ldots = (\alpha + \beta x + \gamma x^2 + \ldots)^2 \frac{x_4}{x_1}$$

Die Gleichsetzung der Coefficienten gleicher Potenzen von x liefert

$$lpha = lpha^2 \cdot rac{x_4}{x_1},$$
 $eta - 1 = 2 \, lpha eta rac{x_4}{x_1}.$

Die Lösungen sind

$$1^{\circ} \qquad \qquad 1 = \alpha \frac{x_4}{x_1},$$

wonach

$$y = \frac{x_1}{x_4} + \beta x + \gamma x^2.$$

also für verschwindendes x:

$$y = \frac{x_1}{x_4}$$

oder

$$\frac{y_3}{y_1} = \frac{x_1}{x_4} \cdot$$

20

$$\alpha = 0$$
, $\beta = 1$,

sodass

$$y = x + \gamma x^2,$$

und für verschwindendes x:

y = x

oder

$$\frac{y_3}{y_1} = \frac{x_3}{x_1} \cdot$$

Ebenso finden wir für das Verhältniss $y_3:y_2$ zwei Werte, nämlich

$$\frac{y_3}{y_2} = \frac{x_2}{x_4},$$

$$\frac{y_3}{y_2} = \frac{x_3}{x_2}.$$

Die vier Spuren werden demnach bestimmt durch Combination der beiden Werte für $y_3:y_4$ mit den zwei Werten für $y_3:y_2$. Für den ersten Durchstosspunkt gilt somit

$$\frac{y_3}{y_1} = \frac{x_1}{x_4}, \\ \frac{y_3}{y_2} = \frac{x_2}{x_4}.$$

Wir finden also den Punkt, der an der Grenze in den Q' zugeordneten Punkt Q übergeht.

Für den zweiten Durchstosspunkt gilt

$$\frac{y_3}{y_1} = \frac{x_3}{x_1}, \\ \frac{y_3}{y_2} = \frac{x_2}{x_4}.$$

Bei verschwindendem x_3 fällt dieser Punkt zusammen mit

$$y_3 = 0, y_2 = 0,$$

also in X_1 .

Die dritte Spur wird dargestellt durch

Dieser Punkt gelangt schliesslich in X_2 . Die vierte Spur ist bestimmt durch

$$\frac{y_3}{y_1} = \frac{x_3}{x_1}, \\ \frac{y_3}{y_2} = \frac{x_3}{x_2},$$

so dass man hat

$$\frac{y_1}{y_2} = \frac{x_1}{x_2}.$$

Bei verschwindendem x_3 liefern die erste zwei Gleichungen freilich beide $y_3=0$, aber die dritte Gleichung besagt, dass das Verhältniss der Coordinaten y_1 und y_2 dem Verhältnisse der Coordinaten x_1 und x_2 von Q' gleich ist. Das heisst: der vierte Durchstosspunkt liegt in der Ebene welche Q' mit X_3 X_4 verbindet, also in dem Schnittpunkte von Q' X_4 mit X_1 X_2 . Der vierte Congruenzstrahl geht deshalb durch X_4 . Obige Untersuchung hat demnach ergeben, dass von den vier Strahlen, welche sich in einem Punkte Q' von ω_0 treffen, der erste Q' mit dem ihm zugeordneten Punkte Q, der zweite Q' mit X_4 , der dritte Q' mit X_2 , der vierte Q' mit X_4 verbindet.

Die vier Congruenzstrahlen durch Q' in ω_0 sind also die Geraden q = Q Q', $Q' X_1$, $Q' X_2$, $Q' X_4$.

In derselben Weise lässt sich zeigen, dass die vier Congruenzstrahlen, welche nach einem Punkte Q von ω_x zielen, die Geraden q = QQ', QX_1 , QX_2 und QX_3 sind.

Wir haben also gefunden, dass die Geraden, welche einen willkürlichen Punkt Q von ω_{∞} mit X_1 , X_2 und X_3 verbinden, alle Congruenzstrahlen sind und dass dasselbe bei den Geraden zutrifft, welche einen beliebigen Punkt Q' von ω_0 mit X_1 , X_2 und X_4 vereinigen.

Jetzt haben wir eine genaue Vorstellung von dem Zustand in den singulären Ebenen ω_0 und ω_z und in den singulären Punkten X_1 , X_2 , X_3 und X_4 .

Wir schliessen, dass die Ebene ω_x drei Strahlenbüschel mit X_1 , X_2 und X_3 als Scheitel trägt, während die Ebene ω_0 drei Strahlenbüschel mit X_1 , X_2 und X_4 als Scheitel enthält.

Der Punkt X_1 trägt zwei Strahlenbüschel, von denen der eine in ω_{∞} , der andere in ω_0 liegt.

Der Punkt X_2 zeigt dasselbe wie X_1 .

Der Punkt X_3 ist Träger eines Strahlenbüschels in ω_{∞} .

Der Punkt X_4 ist Mittelpunkt eines Strahlenbüschels in ω_0 .

Die obige Beweisführung wird dem Leser zweifellos etwas weitläufig erscheinen. Wir wollen ihm unmittelbar beistimmen. In der Tat können bei dieser einfachen Congruenz die gefundenen Resultate auf bedeutend kürzerem Wege abgeleitet werden, und zwar am besten in rein geometrischer Weise.

Wir bitten diese Betrachtungen lieber als Übungsbeispiel für die späteren verwickelteren Congruenzen denn als Muster eleganter Beweisführung aufzufassen.

§ 5. Die axiale Regelflüche einer willkürlichen Gerade 1.

Die Gerade
$$l$$
 möge ω_{∞} schneiden in $A\left(\frac{x_1}{x_3} = a_1, \frac{x_2}{x_3} = a_2, x_4 = 0\right)$

und
$$\omega_0$$
 in $B'\left(\frac{x_1}{x_4} = b_1', \frac{x_2}{x_4} = b_2', x_3 = 0\right)$.

Ihre Gleichungen lauten sodann

Die Gerade l wird einen Congruenzstrahl p [welcher ω_x in P (p_1 , p_2) und ω_0 in P' (p_1' , p_2') trifft] schneiden, wenn sie mit p in einer Ebene liegt; deren Gleichung sei

$$\lambda_1 \ (x_1 - a_1 \ x_3 - b_1' \ x_4) + \lambda_2 \ (x_2 - a_2 \ x_3 - b_2' \ x_4) = 0.$$

Diese Gleichung muss befriedigt werden durch alle Systeme (x_1, x_2, x_3, x_4) , welche den Gleichungen

$$x_1 = p_1 x_3 + p_1' x_4$$

 $x_2 = p_2 x_3 + p_2' x_4$

genügen.

Wir finden hieraus

$$\lambda_1 (p_1 x_3 + p_1' x_4 - a_1 x_3 - b_1' x_4) + \lambda_2 (p_2 x_3 + p_2' x_4 - a_2 x_3 - b_2' x_4) \equiv 0,$$

oder

$$\lambda_{1} (p_{1} - a_{1}) + \lambda_{2} (p_{2} - a_{2}) = 0 \lambda_{1} (p_{1}' - b_{1}') + \lambda_{2} (p_{2}' - b_{2}') = 0$$

folglich lautet die Bedingung für die Schneidung:

$$\frac{p_1' - b_1'}{p_1 - a_1} = \frac{p_2' - b_2'}{p_2 - a_2}, \quad (7)$$

oder, vermöge der Relationen

$$p_1 p_1' = 1, p_2 p_2' = 1:$$

$$\frac{1}{-} b_1' \quad \frac{1}{-} b_2'$$

$$\frac{\frac{1}{p_1} - b_1'}{p_1 - a_1} = \frac{\frac{1}{p_2} - b_2'}{p_2 - a_2}.$$

oder endlich:

$$p_1(p_1 - a_1)(1 - p_2 b_2) = p_2(p_2 - a_2)(1 - p_1 b_1)$$
. (8)

Die Gleichung der axialen Regelfläche von l ergiebt sich, wenn wir noch p_1 und p_2 aus den Gleichungen (1) des Congruenzstrahles und der Gleichung (8) eliminiren. Die Gleichung (8) schreiben wir in dieser Form:

Aus den Gleichungen (1) folgt

$$\begin{vmatrix}
x_3 & p_1^2 = x_1 & p_1 - x_4 \\
x_3 & p_2^2 = x_2 & p_2 - x_4
\end{vmatrix} (10)$$

Multipliziren wir (9) mit x_3 , so ergiebt sich die Gleichung

$$b_2' x_3 p_1^2 p_2 - b_1' x_3 p_1 p_2^2 - x_3 p_1^2 + x_3 p_2^2 - (a_1 b_2' - a_2 b_1') x_3 p_1 p_2 + a_1 x_3 p_1 - a_2 x_3 p_2 = 0.$$

Wir erniedrigen nur ihren Grad mit Hülfe der Ausdrücke (10) und erhalten dann

$$\begin{array}{l} b_2' x_1 p_1 p_2 - b_2' x_4 p_2 - b_1' x_2 p_1 p_2 + b_1' x_4 p_1 - x_1 p_1 + x_4 + x_2 p_2 - \\ - x_4 - (a_1 b_2' - a_2 b_1') x_3 p_1 p_2 + a_1 x_3 p_1 - a_2 x_3 p_2 = 0 \end{array}$$

oder

$$|b_2'x_1 - b_1'x_2 - (a_1b_2' - a_2b_1')x_3|p_1p_2 + (-x_1 + a_1x_3 + b_1'x_4)p_1 + (x_2 - a_2x_3 - b_2'x_4)p_2 = 0.$$

Setzen wir, der Kürze halber:

$$\begin{array}{c|c}
b_{2}' x_{1} - b_{1}' x_{2} - (a_{1} b_{2}' - a_{2} b_{1}') x_{3} = \beta_{3}, \\
- x_{1} + a_{1} x_{3} + b_{1}' x_{4} = \beta_{2}, \\
x_{2} - a_{2} x_{3} - b_{2}' x_{4} = \beta_{1},
\end{array}$$
(11)

so erhalten wir

$$\beta_3 p_1 p_2 + \beta_2 p_1 + \beta_1 p_2 = 0$$
 . . . (12)

Es ist nun unsere Absicht vier Gleichungen in p_1 , p_2 und p_1 , p_2 aufzustellen, aus denen wir dann diese Grössen eliminiren können. Diese Absicht wird erzielt durch eine wiederholte Benützung der Ausdrücke (10).

Durch Multiplikation mit $x_3 p_1$ wird (12) verwandelt in

$$\beta_3 \, x_3 \, p_{\scriptscriptstyle 1}{}^2 \, p_2 + \beta_2 \, x_3 \, p_{\scriptscriptstyle 1}{}^2 + \beta_{\scriptscriptstyle 1} \, x_3 \, p_{\scriptscriptstyle 1} \, p_2 = 0.$$

Ersetzung mittels (10) ergiebt

$$\beta_3 x_1 p_1 p_2 - \beta_3 x_4 p_2 + \beta_2 x_1 p_1 - \beta_2 x_4 + \beta_1 x_3 p_1 p_2 = 0$$

oder

$$(\beta_3 x_1 + \beta_1 x_3) p_1 p_2 + \beta_2 x_1 p_1 - \beta_3 x_4 p_2 - \beta_2 x_4 = 0.$$
 (13)

Multiplikation mit $x_3 p_2$ würde uns geführt haben zu

$$(\beta_3 x_2 + \beta_2 x_3) p_1 p_2 - \beta_3 x_4 p_1 + \beta_1 x_2 p_2 - \beta_1 x_4 = 0. \ (14)$$

Multipliziren wir schliesslich (13) mit $x_3 p_2$, so bekommen wir $(\beta_3 x_1 + \beta_1 x_3) x_3 p_1 p_2^2 + \beta_2 x_1 x_3 p_1 p_2 - \beta_3 x_3 x_4 p_2^2 - \beta_2 x_3 x_4 p_2 = 0,$ oder, mit Verwendung von (10),

$$(\beta_3 x_1 + \beta_1 x_3) x_2 p_1 p_2 - (\beta_3 x_1 + \beta_1 x_3) x_4 p_1 + \beta_2 x_1 x_3 p_1 p_2 - \beta_3 x_2 x_4 p_2 + \beta_3 x_4^2 - \beta_2 x_3 x_4 p_2 = 0,$$

oder endlich

$$(\beta_3 x_1 x_2 + \beta_2 x_1 x_3 + \beta_1 x_2 x_3) p_1 p_2 - (\beta_3 x_1 + \beta_1 x_3) x_4 p_1 - (\beta_3 x_2 + \beta_2 x_3) x_4 p_2 + \beta_3 x_4^2 = 0 (15)$$

Durch Elimination von p_1 , p_2 and p_1 , p_2 aus (12), (13), (14) und (15) erhalten wir die folgende Gleichung

$$\Delta \equiv \begin{vmatrix} \beta_3 & & & & & & & & & & & & & \\ \beta_3 x_1 & + \beta_1 x_3 & & & & & & & & & & & & & \\ \beta_3 x_2 & + \beta_2 x_3 & & & & & & & & & & & & & \\ \beta_3 x_2 + \beta_2 x_3 & & & & & & & & & & & & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & & & & & & & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & & & & & & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & & & & & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & & & & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 + \beta_1 v_2 x_3 & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 & & & \\ \beta_3 x_1 x_2 + \beta_2 x_1 v_3 & & & \\ \beta_3 x_1 x_2 + \beta_3 x_1 v_3 & & & \\ \beta_3 x_1 x_1 x_1 x_1 v_3 & & & \\ \beta_3 x_1 x_1 x_1 x_1 v_3 & & & \\ \beta_3 x_1 x_1 x_1 v_3 & & & \\ \beta_3 x_1 x_1 x_1 v_3 v_4 v_3 v_4 v_3 v_4 v_4 v_$$

Multipliziren wir die erste Reihe mit x_1x_2 , die zweite mit — x_2 , die dritte mit — x_4 , und addiren wir sie zu der vierten, so ergiebt sich

$$\Delta \equiv \begin{vmatrix} \beta_3 & , & \beta_2 & , & \beta_1 & , & 0 \\ \beta_3 x_1 + \beta_1 x_3 & , & \beta_2 x_1 & , -\beta_3 x_4 & , -\beta_2 x_4 \\ \beta_3 x_2 + \beta_2 x_3 & , -\beta_3 x_4 & , & \beta_1 x_2 & , -\beta_1 x_4 \\ 0 & , -\beta_1 x_3 x_4 & , -\beta_2 x_3 x_4 & , (\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_4) x_4 \end{vmatrix} = 0.$$

Nun ist wegen der Gleichungen (11)

$$\begin{array}{l} \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_4 = x_1 x_2 - a_2 x_1 x_3 - b_2^{'} x_1 x_4 - x_1 x_2 + \\ + a_1 x_2 x_3 + b_1^{'} x_2 x_4 + b_2^{'} x_1 x_4 - b_1^{'} x_2 x_4 - (a_1 b_2^{'} - a_2 b_1^{'}) x_3 x_4 = \\ = \{ -a_2 x_1 + a_1 x_2 - (a_1 b_2^{'} - a_2 b_1^{'}) x_4 \} x_3, \end{array}$$

oder, wenn wir

$$a_2 \, x_1 - a_1 \, x_2 + (a_1 \, b_2{}' - a_2 \, b_1{}') \, x_4 = \beta_0 \, . \quad . \quad (16)$$

setzen,

$$\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_4 = -\beta_0 x_3$$
. . . (17)

Durch Substitution dieses Ausdrucks in das letzte Element der Determinante erkennen wir, dass Δ durch $x_3 x_4$ teilbar ist. Die Division durch $x_3 x_4$ ergiebt

$$\Delta' \begin{vmatrix} \beta_3 & , & \beta_2 & , & \beta_1 & , & 0 \\ \beta_3 x_1 + \beta_1 x_3 & & \beta_2 x_1 & -\beta_3 x_4 & -\beta_2 \\ \beta_3 x_2 + \beta_2 x_3 & -\beta_3 x_4 & & \beta_1 x_2 & -\beta_1 \\ 0 & , & -\beta_1 x_4 & -\beta_2 x_4 & -\beta_0 \end{vmatrix} = 0. (18)$$

Weil β_3 , β_2 , β_1 und β_0 alle vom ersten Grade in x_4 , x_2 , x_3 , x_4 sind, ist die Gleichung (18) vom *sechsten* Grade.

Wenn wir β_3 , β_2 , β_1 und β_0 durch ihre in (11) und (16) gegebenen Werte ersetzen, so sind die Coefficienten der Gleichung ausschliesslich ausgedrückt in den die Gerade l bestimmenden Grössen a_1 , a_2 , b_1' und b_2' .

Es hat sich aus dem Obigen gezeigt, dass die axiale Regelfläche einer willkürlichen Gerade l vom sechsten Grade ist. Wir können die Gleichung dieser Fläche umgestalten, indem wir das Coordinatensystem so abändern, dass die Kante, welche früher mit $X_3 X_4$ zusammenfiel, jetzt in l = AB' gelegt wird.

Die hierzu benötigte Transformation lautet

$$x_{1} = \xi_{1} + a_{1} \xi_{3} + b_{1} \xi_{4},$$

$$x_{2} = \xi_{2} + a_{2} \xi_{3} + b_{2} \xi_{4},$$

$$x_{3} = \xi_{3},$$

$$x_{4} = \xi_{4},$$

vermöge welcher die Gerade / bezeichnet wird mit

$$\xi_1 = 0, \xi_2 = 0.$$

Die Ausdrücke für β_3 , β_2 , β_1 und β_0 gestalten sich nun wie folgt

$$\begin{split} \beta_3 &= b_2{}'(x_1 - a_1 x_3) - b_1{}'(x_2 - a_2 x_3) = \\ &= b_2{}'(\xi_1 + b_1{}'\xi_4) - b_1{}'(\xi_2 + b_2{}'\xi_4) = b_2{}'\xi_1 - b_1{}'\xi_2, \\ \beta_2 &= -\xi_1, \\ \beta_1 &= \xi_2, \\ \beta_0 &= a_2(x_1 - b_1{}'x_4) - a_1(x_2 - b_2{}'x_4) = \\ &= a_2(\xi_1 + a_1 \xi_3) - a_1(\xi_2 + a_2 \xi_3) = a_2 \xi_1 - a_1 \xi_2. \end{split}$$

Es ergiebt sich hieraus, dass alle Elemente der Determinante einen in ξ_1 und ξ_2 homogenen, linearen Faktor enthalten, so dass in der ausgearbeiteten Gleichung jedes Glied einen in ξ_1 und ξ_2 homogenen biquadratischen Faktor enthalten wird. Daher wird die Substitution $\xi_2 = \lambda \xi_1$ einen Faktor ξ_1^4 absondern, oder auch: die Gerade l ist vierfach auf ihrer axialen Regelfläche.

Den Schnitt dieser Fläche mit ω_x erhalten wir, indem wir in die Gleichung (18) $x_4 = 0$ substituiren, wodurch die Gleichung

$$\begin{vmatrix} \beta_3 & , & \beta_2 & , & \beta_1 & , & 0 \\ \beta_3 x_1 + \beta_1 x_3 , & \beta_2 x_4 , & 0 & , & \dots \beta_2 \\ \beta_3 x_2 + \beta_2 x_3 , & 0 & , & \beta_1 x_2 , & \dots \beta_1 \\ 0 & , & 0 & , & 0 & , \dots \beta_0 \end{vmatrix} =$$

$$= \beta_0 \beta_1 \beta_2 \begin{vmatrix} \beta_3 & , 1, 1 \\ \beta_3 x_1 + \beta_1 x_3, x_1, 0 \\ \beta_3 x_2 + \beta_2 x_3, 0, x_2 \end{vmatrix} = 0$$

entsteht.

Dieser Schnitt setzt sich also zusammen aus den drei Geraden

$$\beta_0 = 0$$
, $\beta_1 = 0$, $\beta_2 = 0$,

oder

$$a_2 \xi_1 - a_1 \xi_2 = 0, \xi_2 = 0, \xi_1 = 0,$$

oder

$$AX_3$$
, AX_1 , AX_2 ,

und einer kubischen Kurve.

Dieser kubischen Kurve sind wir aber schon früher begegnet. Ihre Gleichung ist keine andere als die Gleichung (9), wenn wir in dieser p_1 und p_2 durch $x_1 : x_3$ und $x_2 : x_{3}$ ersetzen.

Die Gleichung (9) stellte ja die Beziehung dar zwischen den Coordinaten p_1 , p_2 der Punkte P, wo die auf l ruhenden Strahlen die Ebene ω_z treffen. Es is daher selbstredend, dass die sämtlichen Spuren eine Kurve bilden, welche dem Schnitte von ω_{∞} mit der axialen Regelfläche von langehört.

Ersetzen wir p_1 und p_2 durch $x_1:x_3$ und $x_2:x_3$, so kommt

$$b_{2}' x_{1}^{2} x_{2} - b_{1}' x_{1} x_{2}^{2} - x_{1}^{2} x_{3} + x_{2}^{2} x_{3} - (a_{1} b_{2}' - a_{2} b_{1}') x_{1} x_{2} x_{3} + a_{1} x_{1} x_{2}^{2} - a_{2} x_{2} x_{3}^{2} = 0 \quad . \quad . \quad (19)$$

Fig. 1.

Diese Kurve geht offenbar durch die Punkte X_1 , X_2 und X_3 . Die Tangente in X_1 wird erhalten durch die Substitution $x_2 = \lambda x_3$, welche einen Faktor x_3 absondert; derjenige Wert von λ , welcher abermals einen Faktor x_3 frei macht, bestimmt dann die Tangente.

Dieses Verfahren wird darauf zurückgeführt, dass wir den Coefficient der höchsten Potenz von x_1 betrachten, welcher, gleich Null gesetzt,

eine in x_2 und x_3 quadratische Form ergiebt.

Der erwähnte Coefficient ist hier $b_2' x_2 - x_3$. Die Tangente in X_1 ist somit bestimmt durch

$$b_2{'}x_2 - x_3 = 0$$

oder

$$\frac{x_2}{x_3} = \frac{1}{b_2} \cdot$$

Diese Gerade vereinigt X_1 mit dem Bildpunkte $B\left(p_1 = \frac{x_1}{x_2} = \frac{1}{b_1}\right)$

$$p_2 = \frac{x_2}{x_3} = \frac{1}{b_2}$$
 der Spur B' von l in ω_0 .

Es zeigt sich in gleicher Weise, dass auch die Tangente in X_2 durch B hindurchgeht.

Die Substitution $x_1 = x_3 : b_1'$ und $x_2 = x_3 : b_2'$ besagt, dass B auf der Kurve liegt; die Substitution $x_1 = a_1 x_3$, $x_2 = a_2 x_3$, dass die Kurve auch den Punkt A enthält.

Die kubische Kurve schneidet $X_2 X_3$, oder $x_4 = 0$, in den Punkten, welche bestimmt sind durch

$$x_2^2 x_3 - a_2 x_2 x_3^2 = 0$$

oder

$$x_2 \, x_3 \, (x_2 \, - a_2 \, x_3) = 0 \; , \qquad$$

also in den Punkten X_2 und X_3 und in dem Punkte A_1 , wo die Gerade AX_1 die Gerade X_2 X_3 schneidet.

Ebenso lässt sich beweisen, dass die Kurve und die Gerade X_2 A sich und die Gerade X_1 X_3 in demselben Punkte A_2 treffen.

Die kubische Kurve weist also die folgenden Merkmale auf 1° sie enthält die Punkte X_1 , X_2 , X_3 , A, B (Bildpunkt von B'), $A_1 = (AX_1, X_2X_3)$ und $A_2 = (AX_2, X_1X_3)$.

2° Der Punkt B ist der Tangentialpunkt von X_1 und X_2 .

In der Figur 1 ist die betrachtete Kurve schematisch dargestellt. Den hier gefundenen Resultaten können wir noch hinzufügen, dass die Tangente in X_3 angewiesen ist durch

$$a_1 x_1 - a_2 x_2 = 0$$

oder

$$\frac{x_1}{x_2} = \frac{a_2}{a_1} .$$

Diese Gerade ist offenbar die axiale Projektion von A' (dem Bildpunkte in ω_0 von A) aus der Axe $X_3 X_4$ auf die Ebene ω_{∞} . Um die Tangenten in A aufzufinden, substituiren wir in (19)

$$x_1 = \xi_1 + a_1 \xi_3$$
,
 $x_2 = \xi_2 + a_2 \xi_3$,

wodurch wir die Ecke des Coordinatendreieckes von X_3 nach A verlegen. Wir bekommen dann

$$(b_2'\xi_1 - b_1'\xi_2)(\xi_1 + a_1\xi_3)(\xi_2 + a_2\xi_3) - \xi_1(\xi_1 + a_1\xi_3)\xi_3 + \xi_2(\xi_2 + a_2\xi_3)\xi_3 = 0.$$

Indem wir den Coefficient von $\xi_3^{\ 2}$ gleich Null setzen, erhalten wir

$$a_1 a_2 (b_2' \xi_1 - b_1' \xi_2) - a_1 \xi_1 + a_2 \xi_2 = 0$$
,

oder

$$\frac{\xi_1}{\xi_2} = \frac{a_1^{-1} - b_1'}{a_2^{-1} - b_2'}.$$

Die Ebene, welche diese Gerade mit l verbindet, schneidet ω_0 in einer durch dieselbe Gleichung dargestellten Gerade.

Diese in ω_0 liegende Gerade enthält offenbar den Punkt

$$\begin{array}{l} \xi_1 = (a_1^{-4} - b_1') \; \xi_4 \\ \xi_2 = (a_2^{-4} - b_2') \; \xi_4 \end{array} \label{eq:xi_1}$$

oder

$$\begin{aligned}
 x_1 &= \frac{1}{a_1} x_4 \\
 x_2 &= \frac{1}{a_2} x_4
 \end{aligned}$$

d. h. den Bildpunkt A' in ω_{∞} von A.

Es ist klar, dass die Tangente an der kubischen Kurve die axiale Projektion ist des Bildes A' von A, aus der Axe l auf die Ebene ω_{∞} .

Nach diesen Darlegungen, den Schnitt in ω_{∞} betreffend, brauchen wir die Schnittkurve in ω_0 nicht besonders zu betrachten. Sie wird offenbar, ausser den drei Geraden X_1B' , X_2B' und X_4B' , aus einer kubischen Kurve bestehen, deren Gleichung sich aus (19) ergiebt, wenn überall a_1 und b_1' , a_2 und b_2' , a_3 und a_4 verwechselt werden.

Es liegt uns mehr daran die *Doppelkurve* auf der axialen Regelfläche zu erörtern.

Ein Strahl p liegt mit l in der Ebene

$$\lambda_1 (x_1 - a_1 x_3 - b_1' x_4) + \lambda_2 (x_2 - a_2 x_3 - b_2' x_4) = 0,$$
 (20)

wenn

$$egin{align} \lambda_1 \left\langle \left(p_1-a_1
ight) x_3 + \left(rac{1}{p_1}-b_1'
ight) x_4
ight
angle + \ + \lambda_2 \left\langle \left(p_2-a_2
ight) x_3 + \left(rac{1}{p_2}-b_2'
ight) x_4
ight
angle \equiv 0 \ , \end{split}$$

also, wenn

$$\lambda_{1} (p_{1} - a_{1}) + \lambda_{2} (p_{2} - a_{2}) = 0,
\lambda_{2} (\frac{1}{p_{1}} - b_{1}') + \lambda_{2} (\frac{1}{p_{2}} - b_{2}') = 0.$$
(21)

Ein Strahl q liegt in derselben Ebene, wenn den Bedingungen

$$\lambda_{1} (q_{1} - a_{1}) + \lambda_{2} (q_{2} - a_{2}) = 0,
\lambda_{2} (\frac{1}{q_{1}} - b_{1}') + \lambda_{2} (\frac{1}{q_{2}} - b_{2}') = 0.$$
(22)

Genüge geleistet wird.

Der Strahl p schneidet den Strahl q, wenn die folgende Gleichung erfüllt ist (siehe (1)).

$$\begin{vmatrix} -1, & 0, & p_1, & \frac{1}{p_1} \\ 0, & -1, & p_2, & \frac{1}{p_2} \\ -1, & 0, & q_1, & \frac{1}{q_1} \end{vmatrix} = 0,$$

$$\begin{vmatrix} 0, & -1, & q_2, & \frac{1}{q_2} \end{vmatrix}$$

oder

$$(p_1 - q_1) (p_2 - q_2) (p_1 q_1 - p_2 q_2) = 0.$$

Da $p_1 - q_1 = 0$ und $p_2 - q_2 = 0$ bez. angeben, dass die Strahlen p und q in derselben Ebene durch X_2 und X_1 liegen, was hier nicht der Fall ist, handelt es sich nur um die Bedingung

Für den Schnittpunkt D von p und q hat man

$$\begin{aligned} x_1 &= p_1 \, x_3 + \frac{1}{p_1} \, x_4 = q_1 \, x_3 + \frac{1}{q_1} \, x_4, \\ x_2 &= p_2 \, x_3 + \frac{1}{p_2} \, x_4 = q_2 \, x_3 + \frac{1}{q_2} \, x_4, \end{aligned}$$

oder

also

$$x_3 = \frac{x_4}{p_1 q_1} = \frac{x_4}{p_2 q_2}, \dots$$
 (24)

welche Gleichungen sich vermöge (23) vertragen.

Aus (1) geht hervor

$$x_1 = \frac{p_1}{p_1 q_1} x_4 + \frac{1}{p_1} x_4 = \frac{p_1 + q_1}{p_1 q_1} x_4, \quad (25)$$

$$x_2 = \frac{p_2}{p_2 q_2} x_4 + \frac{1}{p_2} x_4 = \frac{p_2 + q_2}{p_2 q_2} x_4. \quad . \quad . \quad (26)$$

Falls p_1 , p_2 , q_1 und q_2 auch den Gleichungen (21) und (22) genügen, ist D der Schnittpunkt zweier Strahlen, welche sich beide auf l stützen; D ist demnach ein Punkt der Doppelkurve der axialen Regelfläche von l.

Letztere Erörterungen zusammenfassend, gelangen wir zu dem Schluss, dass der Punkt D der Doppelkurve, welcher sich in der Ebene

$$\lambda_1 (x_1 - a_1 x_3 - b_1' x_4) + \lambda_2 (x_2 - a_2 x_3 - b_2' x_4) = 0$$
 (20)

befindet, bestimmt ist durch

$$x_1 = \frac{p_1 + q_1}{p_1 q_1} x_4, \quad . \quad . \quad . \quad . \quad . \quad (25)$$

$$x_2 = \frac{p_2 + q_2}{p_2 q_2} x_4, \qquad (26)$$

$$x_3 = \frac{1}{p_1} \frac{1}{q_1} x_4 = \frac{1}{p_2} \frac{1}{q_2} x_4, \qquad (24)$$

wofern p_1 , p_2 , q_1 und q_2 die Gleichungen

$$\lambda_1 (p_1 - a_1) + \lambda_2 (p_2 - a_2) = 0 . . . (21)$$

$$\lambda_1 (q_1 - a_1) + \lambda_2 (q_2 - a_2) = 0 (22)$$

befriedigen.

Der zweiten der Gleichungen (21) bez. (22) wird schon deshalb Genüge geleistet, weil (20) erfüllt ist.

Um die Doppelkurve aufzufinden, müssen wir p_1 , p_2 , q_1 und q_2 aus den Gleichungen (21), (22), (23), (24), (25) und (26) eliminiren; wir erhalten dann zwei Gleichungen in λ_1 : λ_2 ; eliminiren wir ferner λ_1 : λ_2 aus diesen und aus der Gleichung (20), so bekommen wir zwei Gleichungen, in welchen neben den Constanten a_1 , a_2 , b_1' , b_2' nur die Coordinaten auftreten; sie stellen mithin Flächen dar, welche die Doppelkurve enthalten.

Bevor wir dieses Verfahren erledigen, wollen wir zunächst die Anzahl der Schnittpunkte von l mit der Doppelkurve feststellen.

Wenn der Punkt D auf l liegt, so schneiden die Strahlen p und q, welche nun l in demselben Punkte schneiden und mit l in einer Ebene liegen, die Ebene ω_{∞} in zwei Punkten P und Q, welche mit der Spur A von l in einer Gerade liegen.

Die Strahlen, welche den Punkt (x_1, x_2, x_3, x_4) gemein haben, treffen ω_{∞} in Punkten, deren Coordinaten p_1, p_2 zu bestimmen sind aus

$$x_3 p_1^2 - x_1 p_1 + x_4 = 0,$$

 $x_3 p_2^2 - x_2 p_2 + x_4 = 0.$

Zuerst formen wir das Coordinatentetraeder so um, dass die Kante, welche mit X_3 X_4 zusammenfiel, jetzt mit l coincidirt; und zwar mittels der Formeln

$$x_1 = \xi_1 + a_1 \xi_3 + b_1' \xi_1,$$

 $x_2 = \xi_2 + a_2 \xi_3 + b_2' \xi_1,$
 $x_3 = \xi_3,$
 $x_4 = \xi_1.$

Weiter setzen wir dementsprechend für einen Punkt in ω_{∞}

$$rac{m{\xi}_1}{m{\xi}_3} = \hat{m{\pi}_1}, rac{m{\xi}_2}{m{\xi}_3} = m{\pi}_2,$$

so dass

$$p_1 = \pi_1 + a_1, \ p_2 = \pi_2 + a_2.$$

Obige Gleichungen gestalten sich nun wie folgt:

$$\xi_3 (\pi_1 + a_1)^2 - (\xi_1 + a_1 \xi_3 + b_1' \xi_1)(\pi_1 + a_1) + \xi_1 = 0,$$

$$\xi_3 (\pi_2 + a_2)^2 - (\xi_2 + a_2 \xi_3 + b_2' \xi_1)(\pi_2 + a_2) + \xi_1 = 0.$$

oder

$$\xi_3 \pi_1^2 + (-\xi_1 + a_1 \xi_3 - b_1' \xi_4) \pi_1 + \{-a_1 \xi_1 + (1 - a_1 b_1') \xi_4\} = 0,$$

$$\xi_3 \pi_2^2 + (-\xi_2 + a_2 \xi_3 - b_2' \xi_4) \pi_2 + \{-a_2 \xi_2 + (1 - a_2 b_2') \xi_4\} = 0.$$

Der Punkt, wo die Strahlen zusammentreffen wird auf $l(\xi_1=0,\xi_2=0)$ liegen, wenn den Bedingungen

$$\xi_3 \pi_1^2 + (a_1 \xi_3 - b_1' \xi_4) \pi_1 + (1 - a_1 b_1') \xi_4 = 0$$
 . (27)

$$\xi_3 \pi_2^2 + (a_2 \xi_3 - b_2' \xi_4) \pi_2 + (1 - a_2 b_2') \xi_4 = 0 \quad . \quad (28)$$

genügt wird.

Es seien c_1 und c_1' die Wurzel von (27), c_2 und c_2' diejenigen von (28).

Zwei der vier durch (27) und (28) gegebenen Punkte werden mit dem Punkte A (wofür $\pi_1=0$, $\pi_2=0$) in einer Gerade liegen, wenn man hat

$$\frac{c_1}{c_2} = \frac{c_1}{c_2}',$$

oder

$$\frac{c_1}{c_2'} = \frac{c_1'}{c_2}$$
.

Beide Bedingungen werden zusammengefasst in der Gleichung

$$(c_1 c_2' - c_1' c_2) (c_1 c_2 - c_1' c_2') = 0$$
,

oder

$$c_1^{\ 2} c_2 c_2^{\ \prime} - c_1 c_1^{\ \prime} c_2^{\ \prime 2} - c_1 c_1^{\ \prime} c_2^{\ 2} + c_1^{\ \prime 2} c_2 \, c_2^{\ \prime} = 0 \ ,$$

oder

$$(c_{\scriptscriptstyle 1}{}^2 + c_{\scriptscriptstyle 1}{}^{'2})\,c_{\scriptscriptstyle 2}c_{\scriptscriptstyle 2}{}^{'} - c_{\scriptscriptstyle 1}\,c_{\scriptscriptstyle 1}{}^{'}\,(c_{\scriptscriptstyle 2}{}^2 + c_{\scriptscriptstyle 2}{}^{'2}) = 0\;.$$

oder endlich

$$(c_1 + c_1')^2 c_2 c_2' - c_1 c_1' (c_2 + c_2')^2 = 0.$$

Die Beziehungen

$$c_1 + c_1' = -\frac{a_1 \, \xi_3 - b_1' \, \xi_4}{\xi_3}, \quad c_1 \, c_1' = \frac{(1 - a_1 \, b_1') \, \xi_4}{\xi_3},$$
 $c_2 + c_2' = -\frac{a_2 \, \xi_3 - b_2' \, \xi_4}{\xi_3}, \quad c_2 \, c_2' = \frac{(1 - a_2 \, b_2') \, \xi_4}{\xi_3},$

bringen diese Gleichung in die Form

$$(a_1 \xi_3 - b_1' \xi_4)^2 (1 - a_1 b_1') \xi_4 - (a_2 \xi_3 - b_2' \xi_4)^2 (1 - a_2 b_2') \xi_4 = 0.$$

Wir finden also drei Werte für $\xi_3: \xi_4 = x_3: x_4$, welche die Ebenen bestimmen, welche die gesuchten auf l liegenden Punkte enthalten.

Es ist $\xi_1 = 0$, oder ω_x , eine dieser Ebenen; sie giebt den Punkt A. Dieser Punkt ist kein Punkt der Doppelkurve, zeigt sich aber hier, weil die Strahlen $X_1 A$, $X_2 A$ und $X_3 A$ alle ihren Schnittpunkt mit ω_x in A haben.

Die wirklichen Schnittpunkte von l mit der Doppelkurve befinden sich demnach in zwei Ebenen durch $X_1\,X_2$, welche bestimmt sind durch

$$(1 - a_1 b_1') (a_1 \xi_3 - b_1' \xi_4)^2 - (1 - a_2 b_2') (a_2 \xi_3 - b_2' \xi_4)^2 = 0 (29)$$

oder

$$(a_1 \xi_3 - b_1' \xi_1) \sqrt{1 - a_1 b_1'} = \pm (a_2 \xi_3 - b_2' \xi_1) \sqrt{1 - a_2 b_2'}. (30)$$

Es liegen also auf *l zwei* Punkte der Doppelkurve. Diese is somit vom *dritten* Grade.

Jetzt wollen wir die Doppelkurve analytisch bestimmen, indem wir das auf S. 44 entwickelte Programm ausführen.

Wir ziehen zunächst das zweite Coordinatensystem heran.

Die Ebene durch / wird jetzt dargestellt durch

$$\lambda_1 \xi_1 + \lambda_2 \xi_2 = 0, \dots$$
 (31)

der Schnittpunkt von p und q durch

$$\frac{\xi_1}{\xi_4} = \frac{x_1 - a_1 x_3 - b_1' x_4}{x_4} = \frac{(p_1 + q_1) - a_1 - b_1' p_1 q_1}{p_1 q_1},$$

also durch

$$\xi_1 = \frac{(p_1 + q_1) - a_1 - b_1' p_1 q_1}{p_1 q_1} \xi_4. \qquad (32)$$

$$\xi_2 = \frac{(p_2 + q_2) - a_2 - b_2' p_2 q_2}{p_2 q_2} \xi_1. \quad . \quad . \quad (33)$$

$$\xi_3 = \frac{1}{p_1 q_1} \xi_4 = \frac{1}{p_2 q_2} \xi_4.$$
 (34)

Aus den Gleichungen (21) und (22) ergiebt sich durch Addition

$$\lambda_1(p_1+q_1)-2\lambda_1a_1+\lambda_2(p_2+q_2)-2\lambda_2a_2=0$$

oder

$$\lambda_1(p_1 + q_1) + \lambda_2(p_2 + q_2) = 2(\lambda_1 a_1 + \lambda_2 a_2).$$
 (35)

Durch Multiplikation findet man alsdann

$$\lambda_1^2 p_1 q_1 - \lambda_1^2 a_1 (p_1 + q_1) + \lambda_1^2 a_1^2 = \lambda_2^2 p_2 q_2 - \lambda_2^2 a_2 (p_2 + q_2) + \lambda_2^2 a_2^2 (36)$$

Weil in allen diesen Gleichungen die Grössen $p_1 + q_1$, $p_2 + q_2$, $p_1 q_1$ und $p_2 q_2$ auftreten, setzen wir

$$p_1 + q_1 = \varphi_1,$$

$$p_2 + q_2 = \varphi_2$$

und

$$p_1 q_1 = p_2 q_2 = \frac{1}{\mu};$$

die Ebene welche den Schnittpunkt mit $X_1\,X_2$ verbindet erhält somit die Gleichung

$$x_3 = \mu x_4$$
 (37)

Die Gl. (32) bis (36) gestalten sich nun wie folgt

$$\xi_1 = (\mu \varphi_1 - a_1 \mu - b_1') \xi_1, \quad (38)$$

$$\xi_2 = (\mu \, \varphi_2 - a_2 \, \mu - b_2') \, \xi_4 \,, \quad . \quad . \quad . \quad (39)$$

$$\xi_3 = \mu \, \xi_4 \,, \ldots \, . \ldots \, . \ldots \, (40)$$

$$\lambda_1 \varphi_1 + \lambda_2 \varphi_2 = 2 (\lambda_1 a_1 + \lambda_2 a_2), \dots (41)$$

$$\lambda_1^2 - \lambda_1^2 a_1 \mu \varphi_1 + \lambda_1^2 a_1^2 \mu = \lambda_2^2 - \lambda_2^2 a_2 \mu \varphi_2 + \lambda_2^2 a_2^2 \mu.$$
 (42)

Das Eliminationsverfahren geht nun auf folgende Weise vor sich: φ_1 und φ_2 werden mittels (38) und (39) ausgedrückt in μ und in

die Coordinaten; diese Ausdrücke für φ_1 und φ_2 werden in (41) und (42) substituirt; schliesslich wird μ durch $\xi_3 : \xi_4$ ersetzt.

Aus (38) und (39) folgt

$$q_{1} = \frac{\xi_{1} + (a_{1} \mu + b_{1}') \xi_{1}}{\mu \xi_{1}},$$

$$\varphi_{2} = \frac{\xi_{2} + (a_{2} \mu + b_{2}') \xi_{4}}{\mu \xi_{4}}.$$

Durch Substitution dieser Werte für φ_1 und φ_2 in (41) erhalten wir

$$\lambda_1 \frac{\xi_1 + (a_1 \mu + b_1') \xi_1}{\mu \xi_1} + \lambda_2 \frac{\xi_2 + (a_2 \mu + b_2') \xi_1}{\mu \xi_4} = 2 (\lambda_1 a_1 + \lambda_2 a_2),$$

oder

$$[\lambda_1 (a_1 \mu - b_1') + \lambda_2 (a_2 \mu - b_2')] \xi_4 - (\lambda_1 \xi_1 + \lambda_2 \xi_2) = 0,$$

oder vermöge (31)

$$\lambda_1 (a_1 \mu - b_1') + \lambda_2 (a_2 \mu - b_2') = 0$$

und wegen (40)

$$\lambda_1 (a_1 \xi_3 - b_1' \xi_4) + \lambda_2 (a_2 \xi_3 - b_2' \xi_4) = 0$$
 . (43)

Ersetzen wir in (42) φ_1 und φ_2 durch ihre Ausdrücke, so folgt

$$\lambda_1^2 \, \xi_4 - \lambda_1^2 \, a_1 \, | \, \xi_1 + (a_1 \, \mu + b_1') \, \xi_4 \, | \, + \lambda_1^2 \, a_1^2 \, \mu \xi_4 = \\ = \lambda_2^2 \, \xi_4 - \lambda_2^2 \, a_2 \, | \, \xi_2 + (a_2 \, \mu + b_2') \, \xi_4 \, | \, + \lambda_2^2 \, a_2^2 \, \mu \, \xi_4,$$

oder

$$\lambda_1^2 \xi_4 - \lambda_1^2 a_1 b_1' \xi_4 - \lambda_1^2 a_1 \xi_1 = \lambda_2^2 \xi_4 - \lambda_2^2 a_2 b_2' \xi_4 - \lambda_2^2 a_2 \xi_2,$$
oder endlich

$$\lambda_1^2 \left\{ a_1 \, \xi_1 - (1 - a_1 \, b_1') \, \xi_4 \right\} = \lambda_2^2 \, \left\{ a_2 \, \xi_2 - (1 - a_2 \, b_2') \, \xi_4 \right\} \, (44)$$

Elimination von λ_1 und λ_2 aus (31) und (44) ergiebt schliesslich

$$\Phi \equiv \xi_2 (a_1 \, \xi_3 - b_1'' \, \xi_4) - \xi_1 (a_2 \, \xi_3 - b_2'' \, \xi_4) = 0 , \quad . \quad (45)$$

$$\Psi \equiv \xi_{2}^{2} \left\{ a_{1} \, \xi_{1} - (1 - a_{1} \, b_{1}') \, \xi_{1} \right\} - \xi_{1}^{2} \left\{ a_{2} \, \xi_{2} - (1 - a_{2} \, b_{2}') \, \xi_{1} \right\} = 0 \, .$$
(46)

Diese Gleichungen stellen zwei Flächen Φ und Ψ dar, die sich in einem Gebilde schneiden, dem die Doppelkurve angehört. Φ ist eine quadratische Fläche, welche die Gerade ($\xi_1 = 0$, $\xi_2 = 0$), oder l, enthält, Ψ eine kubische Fläche, auf welcher l Doppelgerade ist. Die Schnittkurve von Φ und Ψ enthält demnach die Gerade l, doppelt gezählt.

Jetzt werden wir zeigen, dass die Fläche Ψ mit einem zweiten kubischen Gebilde, das aus dem Hyperboloïd φ und einer durch I hindurchgehenden Ebene besteht, einen Büschel bestimmt, welchem noch eine derartige zerfallende kubische Fläche angehört.

Zur besseren Übersicht der Rechnung ersetzen wir die Coordinatenebenen $\xi_3 = 0$ und $\xi_4 = 0$ durch zwei andere, gleichfalls durch $X_1 X_2$ gelegte Ebenen $\xi_5 = 0$ und $\xi_6 = 0$, für welche

$$\xi_5 = a_1 \, \xi_3 - b_1' \, \xi_4,
\xi_6 = a_2 \, \xi_3 - b_2' \, \xi_4;$$
(47)

daher

$$\xi_4 = \frac{a_2 \, \xi_5 - a_1 \, \xi_6}{a_1 \, b_2' - a_2 \, b_1'} \cdot$$

Die Gleichungen $\Phi = 0$ und $\Psi = 0$ bekommen nun diese Gestalt:

$$\begin{split} \Phi &\equiv \xi_2 \, \xi_5 - \xi_1 \, \xi_6 = 0 \,, \\ \Psi &\equiv (a_1 \, b_2{}' - a_2 \, b_1{}') \, \xi_1 \, \xi_2 \, (a_1 \, \xi_2 - a_2 \, \xi_1) \, + \\ &+ \left[(1 - a_2 \, b_2{}') \, \xi_1{}^2 - (1 - a_1 \, b_1{}') \xi_2{}^2 \right] (a_2 \, \xi_5 - a_1 \, \xi_6) = 0. \end{split}$$

Beachten wir nun die Identität

$$\begin{aligned} (a_1b_2 - a_2b_1')\xi_1\xi_2(a_1\xi_2 - a_2\xi_1) + &|(1 - a_2b_2')\xi_1^2 - (1 - a_1b_1')\xi_2^2|(a_2\xi_5 - a_1\xi_6) = \\ &\equiv &|a_1(1 - a_2b_2')\xi_1 - a_2(1 - a_1b_1')\xi_2|(\xi_2\xi_5 - \xi_1\xi_6) + \\ &+ &(a_2\xi_1 - a_1\xi_2)[\xi_1|a_2b_1'\xi_2 + (1 - a_2b_2')\xi_5| - \xi_2|a_1b_2'\xi_1 + (1 - a_1b_1')\xi_6|], \end{aligned}$$

und setzen wir, der Kürze halber,

$$egin{aligned} a_1 \, (1 - a_2 \, b_2^{\, \prime}) \; \xi_1 - a_2 \, (1 - a_1 \, b_1^{\, \prime}) \; \xi_2 = V \,, \ & a_2 \, \xi_1 - a_1 \, \xi_2 = W \,, \ & \xi_1 \, [a_2 \, b_1^{\, \prime} \; \xi_2 + (1 - a_2 \, b_2^{\, \prime}) \; \xi_5] - \xi_2 \, [a_1 \, b_2^{\, \prime} \; \xi_1 + (1 - a_1 \, b_1^{\, \prime}) \; \xi_6] = \Omega \,, \end{aligned}$$

so lässt sich diese Identität darstellen in der Form

$$\Psi \equiv V\Phi + W\Omega.$$

Die beiden quadratischen Flächen Φ und Ω haben, ausser lVerhand, der Kon. Akad. v. Wetensch. (1e Sectie) Dl. X. $(\xi_1 = 0, \xi_2 = 0)$, eine kubische Raumkurve gemein, welche, vermöge obiger Identität, auch dem Durchschnitt von Ψ und Φ angehört.

Wir schliessen, dass die Doppelkurve der axialen Regelfläche von $l=AB^\prime$ der partielle Durchschnitt ist von

$$\Phi = \xi_2 \, \xi_5 - \xi_1 \, \xi_6 = 0$$

und

$$\Omega = \xi_1 (a_2 b_1' \xi_2 + (1 - a_2 b_2') \xi_5 | - \xi_2 | a_1 b_2' \xi_1 + (1 - a_1 b_1') \xi_6 | = 0,$$

oder, wenn wir ξ_5 und ξ_6 durch ihre in (47) gegebenen Ausdrücke ersetzen:

$$\Phi \equiv \xi_2 (a_1 \xi_3 - b_1' \xi_4) - \xi_1 (a_2 \xi_3 - b_2' \xi_4) = 0, . \quad . \quad (48)$$

$$\Omega \equiv -(a_1 b_2' - a_2 b_1') \xi_1 \xi_2 + (1 - a_2 b_2') (a_1 \xi_3 - b_1' \xi_4) \xi_1 - (1 - a_1 b_1') (a_2 \xi_3 - b_2' \xi_4) \xi_2 = 0, . . . (49)$$

Es ist sofort klar, dass die Doppelkurve die Ebene ω_{∞} , oder $\xi_{i}=0$, in den Punkten schneidet, welche bestimmt sind durch

$$(a_1 \xi_2 - a_2 \xi_1) \xi_3 = 0,$$

$$-(a_1 b_2' - a_2 b_1') \xi_1 \xi_2 + |a_1(1 - a_2 b_2') \xi_1 - a_2(1 - a_1 b_1') \xi_2| \xi_3 = 0.$$

Es sind dies die Punkte X_1 und X_2 und der Punkt, welcher ausser A, den Gleichungen

$$a_1 \xi_2 - a_2 \xi_1 = 0$$
,

$$-(a_1b_2'-a_2b_1')\xi_1\xi_2+|a_1(1-a_2b_2')\xi_1-a_2(1-a_1b_1')\xi_2|\xi_3=0,$$

also den Gleichungen

$$a_1 \, \xi_2 - a_2 \, \xi_1 = 0$$

$$-(a_1b_2'-a_2b_1')a_2\xi_1+|a_1^2(1-a_2b_2')-a_2^2(1-a_1b_1')|\xi_3=0$$

genügt.

Dieser Punkt ist kein andrer als der Schnitt von AX_3 ($a_1 \xi_2 - a_2 \xi_1 = 0$) mit der kubischen Kurve in ω_{∞} , welche der Spur der axialen Regelfläche angehört.

Es ist nun von Wichtigkeit, dass die Doppelkurve durch die Punkte X_1 und X_2 hindurchgeht und dass sie die Gerade l in zwei Punkten schneidet.

Aus dieser letzteren Tatsache geht hervor, dass die Gerade l

zweimal mit zwei Congruenzstralen zu einem Strahlenbüschel gehört; wonach der Axengrad (Rang) der Congruenz zwei ist.

§ 6. Die axiale Regelfläche einer Gerade l, welche $X_3 X_4$ schneidet. Wenn die Gerade l die Gerade $X_3 X_4$ schneidet, so gilt für die Coordinaten der Spuren A und B'

$$\frac{a_2}{a_1} = \frac{b_2'}{b_1'} = t,$$

sodass

$$a_1 b_2' - a_2 b_1' = 0.$$

In der Gleichung (18) der axialen Regelfläche sind nun β_3 , β_2 , β_1 und β_0 durch die folgenden Ausdrücke zu ersetzen (siehe Gl. (11) und (16)):

$$\beta_3 = b_1'(t x_1 - x_2),
\beta_2 = -x_1 + a_1 x_3 + b_1' x_4,
\beta_1 = x_2 - t a_1 x_3 - t b_1' x_4,
\beta_0 = a_1(t x_1 - x_2).$$

Die Gleichung (18) nimmt somit diese Form an:

$$\begin{vmatrix} b_{1}'(tx_{1}-x_{2}) & ,-(x_{1}-a_{1}x_{3}-b_{1}'x_{4}) & ,+(x_{2}-ta_{1}x_{3}-tb_{1}'x_{4}) & , & 0 \\ b_{1}'(tx_{1}-x_{2})x_{1}+ & -(x_{1}-a_{1}x_{3}-b_{1}'x_{4})x_{1} & ,-b_{1}'(tx_{1}-x_{2})x_{1} & ,+(x_{1}-a_{1}x_{3}-b_{1}'x_{4}) \\ +(x_{2}-ta_{1}x_{3}-tb_{1}'x_{4})x_{3}, & & = 0 \\ b_{1}'(tx_{1}-x_{2})x_{2}- & -b_{1}'(tx_{1}-x_{2})x_{4} & ,+(x_{2}-ta_{1}x_{3}-tb_{1}'x_{4})x_{2}, -(x_{2}-ta_{1}x_{3}-tb_{1}'x_{4}) \\ -(x_{1}-a_{1}x_{3}-b_{1}'x_{4})x_{3}, & & = 0 \\ 0. & (50)$$

Die kubische Kurve in ω_∞ bekommt nun die Gleichung (siehe (19))

$$b_1'(tx_1-x_2)x_1x_2-(x_1^2-x_2^2)x_3+a_1(x_1-tx_2)x_3^2=0.$$

Die Tangente im Punkte X_3 bestimmt sich aus

$$x_1 - tx_2 = 0$$

oder

$$\frac{x_2}{x_1} = \frac{1}{t}.$$

Sie ist die axiale Projektion aus X_3 X_4 des Bildes der Geraden AX_3

$$x_2 = tx_1$$

auf die Ebene ω_{∞} .

Die Schnittpunkte der Doppelkurve mit *l* sind nun angewiesen durch (siehe (29))

$$(1 - a_1 b_1') (a_1 \xi_3 - b_1' \xi_4)^2 - (1 - t^2 a_1 b_1') t^2 (a_1 \xi_3 - b_1' \xi_4)^2 = 0 ,$$
 also durch

$$(a_1 \xi_3 - b_1' \xi_4)^2 = 0.$$

Die Doppelkurve schneidet die Gerade l zweifach im Punkte

$$\begin{cases}
\xi_1 = 0, \\
\xi_2 = 0, \\
a_1 \xi_3 - b_1' \xi_4 = 0.
\end{cases}$$
(52)

Dieser Punkt ist in Bezug auf X_3 und X_4 dem Punkte

$$egin{array}{l} egin{array}{l} egin{array}{l} eta_1 = 0, \ eta_2 = 0, \ a_1 \, eta_3 + b_1' \, eta_4 = 0, \end{array} \end{array}$$

wo die Gerade l die Gerade l die Gerade l schneidet, harmonisch zugeordnet. Die Doppelkurve wird nun bestimmt aus den Gleichungen (45)

und (46), weil die Gleichung (49) entstanden ist nach Multiplikation mit dem hier verschwindenden Faktor $a_1 b_2' - a_2 b_4'$.

Ersetzen wir in (45) und (46) a_2 durch ta_1 und b_2 durch tb_1 , so erhalten wir

$$\Phi \equiv (\xi_2 - t\xi_1) (a_1 \xi_3 - b_1' \xi_4) = 0, . . . (53)$$

$$\Psi \equiv \xi_2^2 |a_1 \xi_1 - (1 - a_1 b_1') \xi_4| - \xi_1^2 |t a_1 \xi_2 - (1 - t^2 a_1 b_1') \xi_4| = 0. (54)$$

Die Ebene $\xi_2 - t\xi_1 = 0$ schneidet den kubischen Kegel $\Psi = 0$ zweimal in l ($\xi_1 = 0$, $\xi_2 = 0$) und einmal in der Gerade X_3 A ($\xi_2 - t\xi_1 = 0$, $\xi_4 = 0$).

Die Ebene

$$a_1 \xi_3 - b_1' \xi_4 = 0$$

hingegen schneidet den Kegel $\Psi = 0$ in einer kubischen Plankurve, welche also in diesem Falle die Doppelkurve bildet.

Der Kegel $\Psi = 0$, dessen Spitze $\Xi_3 \equiv A$ ist, geht durch die Punkte X_1 und X_2 und enthält die Gerade l als Doppelkante.

Die kubische Plankurve ist demnach circular und hat einen Doppelpunkt auf i. Letzteres entspricht dem soeben erhaltenen Resultat, nach dem die beiden Schnittpunkte der Doppelkurve mit i zusammengefallen sind.

§ 7. Die axiale Regelftäche einer Gerade l_{μ} , welche $X_1 X_2$ schneidet. Die Gerade l_{μ} , welche in der durch $X_1 X_2$ gelegten Ebene $\omega_{\mu} (x_3 = \mu x_4)$ liegt, wird dargestellt durch

$$\mathbf{a}_{1}x_{1} + \mathbf{a}_{2}x_{2} + \mathbf{a}_{3}x_{3} + \mathbf{a}_{4}x_{4} = 0,$$

$$x_{3} = \mu x_{4}.$$

Trotz der unendlich grossen Werte von a_1 , a_2 , b_1' und b_2' können diese Grössen doch verwendet werden, wenn wir nur, in Übereinstimmung mit dem in 1. Abschnitte Dargelegten, setzen

$$a_{1} = + \frac{\alpha_{2} a_{0}}{\delta},$$
 $a_{2} = -\frac{\alpha_{1} \alpha_{0}}{\delta},$
 $b_{1}' = -\frac{\mu \alpha_{2} a_{0}}{\delta},$
 $b_{2}' = + \frac{\mu \alpha_{1} a_{0}}{\delta},$
 $\Delta = a_{1} b_{2}' - a_{2} b_{1}' = -\frac{(\mu \alpha_{3} + \alpha_{4}) a_{0}}{\delta},$

WΟ

$$a_0 = \frac{\mu \, a_3 + a_4}{2 \, a_1 \, a_2}.$$

Die Ausdrücke β_3 , β_2 , β_1 und β_0 , welche in der Gleichung (18) der axialen Regelfläche auftreten, bekommen jetzt die folgende Gestalt (siehe (11) und (16)):

$$\begin{split} \beta_3 &= \frac{\mu \left(\alpha_1 x_1 + \alpha_2 x_2 \right) + \left(\mu \alpha_3 + \alpha_4 \right) x_3}{\delta} \, a_0, \\ \beta_2 &= \frac{-\delta x_1 + \alpha_2 \left(x_3 - \mu x_4 \right) a_0}{\delta}, \\ \beta_1 &= \frac{\delta x_2 + \alpha_1 \left(x_3 - \mu x_4 \right) a_0}{\delta}, \end{split}$$

$$\beta_0 = -\frac{\alpha_1 x_1 + \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4}{\delta} a_0.$$

Ersetzt man β_3 , β_2 , β_1 und β_0 in der Gleichung (18) durch diese Ausdrücke, und setzt man, nach Beseitigung der Nenner, $\delta = 0$, so findet man die Gleichung der axialen Regelfläche.

Die kubische Kurve in ω_{∞} wird dargestellt durch (siehe (19))

$$\frac{\mu \left(\alpha_{1} x_{1} + \alpha_{2} x_{2}\right) a_{0} x_{1} x_{2}}{\delta} - \frac{\left(x_{1}^{2} - x_{2}^{2}\right) x_{3} \delta}{\delta} + \frac{(\mu \alpha_{3} + \alpha_{4}) a_{0} x_{1} x_{2} x_{3}}{\delta} + \\ + \frac{(\alpha_{2} x_{1} + \alpha_{1} x_{2}) a_{0} x_{3}^{2}}{\delta} = 0,$$

$$x_{4} = 0,$$

oder

$$\left| \mu(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3) + \alpha_4 x_3 \right| x_1 x_2 + (\alpha_2 x_1 + \alpha_1 x_2) x_3^2 = 0,$$

$$x_4 = 0.$$
(55)

Diese Kurve schneidet X_1X_2 ($x_3=0$, $x_4=0$) im Schnittpunkte L_{μ} von l_{μ} mit X_1X_2 und in den Punkten X_1 und X_2 . Die Gerade

$$\mu(\alpha_{1}x_{1} + \alpha_{2}x_{2} + \alpha_{3}x_{3}) + \alpha_{4}x_{3} = 0$$

$$x_{4} = 0$$

hat in L_{μ} mit der Kurve zwei zusammenfallende Punkte gemeinsam, sie ist also die Tangente in L_{μ} . Diese Tangente ist offenbar die Projektion von l_{μ} aus X_4 auf ω_{∞} .

Die Tangenten in X_1 und X_2 schneiden sich hier in X_3 . Bei dieser Gerade l_{μ} haben wir, wo es sich um die Doppelkurve handelt, einen anderen Weg als im allgemeinen Falle gefolgten einzuschlagen. Wir haben ja damals mit den Coordinaten a_1 und a_2 der Spur von l mit ω_{∞} operirt, welche nun beide unendlich sind. Die betreffenden Rechnungen sind sonach hinfällig geworden, Wir werden deshalb, mit Beibehaltung der Methode, die Rechnungen so abändern, dass wir mit den Grössen a_1 , a_2 , b_1' und b_2' nichts mehr zu schaffen haben.

Eine Ebene durch l_{μ} wird dargestellt durch

$$(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_1 x_4) + \lambda(x_3 - \mu x_4) = 0 . (56)$$

Der Congruenzstrahl p wird dieser Ebene angehören, wenn man hat

$$\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 + \lambda = 0,$$

$$\frac{\alpha_1}{p_1} + \frac{\alpha_2}{p_2} + \alpha_4 - \mu \lambda = 0.$$
(57)

Der Strahl q wird in derselben Ebene liegen, falls

$$\begin{array}{c|c}
\alpha_1 q_1 + \alpha_2 q_2 + \alpha_3 + \lambda = 0, \\
\frac{\alpha_1}{q_1} + \frac{\alpha_2}{q_2} + \alpha_4 - \mu \lambda = 0.
\end{array}$$

$$(58)$$

Der Schnittpunkt von p und q ist also bestimmt durch die Gleichungen (24), (25) und (26).

Es ist nun unsere Aufgabe die Grössen p_1, p_2, q_1, q_2 und λ zu eliminiren aus dem System

$$\frac{x_1}{x_4} = \frac{p_1 + q_1}{p_1 q_1} \qquad (25)$$

$$\frac{x_2}{x_4} = \frac{p_2 + q_2}{p_2 q_2} \quad . \quad . \quad . \quad . \quad (26)$$

$$\frac{x_3}{x_4} = \frac{1}{p_1 q_1} = \frac{1}{p_2 q_2}. \quad . \quad . \quad . \quad (24)$$

$$\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 + \lambda = 0$$
 . . . (57)

$$\alpha_1 q_1 + \alpha_2 q_2 + \alpha_3 + \lambda = 0$$
 (58)

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + \lambda (x_3 - \mu x_4) = 0.$$
 (56)

Die zwei Gleichungen, die wir nach der Elimination übrig behalten, bestimmen dann zusammen die Doppelkurve.

Addiren wir die Gleichungen (57) und (58), so finden wir

$$\alpha_1(p_1 + q_1) + \alpha_2(p_2 + q_2) + 2(\alpha_3 + \lambda) = 0.$$
 (59)

Bringen wir die Glieder mit p_1 und q_4 nach der anderen Seite, so erhalten wir nach Multiplikation

$$\alpha_1^2 p_1 q_1 = \alpha_2^2 p_2 q_2 + \alpha_3 (\alpha_3 + \lambda) (p_2 + q_2) + (\alpha_3 + \lambda)^2. \quad (60)$$

Dividiren wir die Gleichungen (59) un (60) durch $p_1 q_1 = p_2 q_2$, so bekommen sie die Form

$$\alpha_{1} \frac{p_{1} + q_{1}}{p_{1} q_{1}} + \alpha_{2} \frac{p_{2} + q_{2}}{p_{2} q_{2}} + \frac{2(\alpha_{3} + \lambda)}{p_{1} q_{1}} = 0,$$

$$(\alpha_2^2 - \alpha_1^2) + \alpha_2(\alpha_3 + \lambda) \frac{p_2 + q_2}{p_2 q_2} + \frac{(\alpha_3 + \lambda)^2}{p_1 q_1} = 0.$$

Mit Verwendung der Gleichungen (24), (25) und (26) finden wir

$$\alpha_{1}x_{1} + \alpha_{2}x_{2} + 2(\alpha_{3} + \lambda)x_{3} = 0... (61)$$

$$(\alpha_{2}^{2} - \alpha_{1}^{2})x_{4} + \alpha_{2}(\alpha_{3} + \lambda)x_{2} + (\alpha_{3} + \lambda)^{2}x_{3} = 0;$$

letztere Gleichung schreibt sich, vermöge (61), auch also:

$$(\alpha_2^2 - \alpha_1^2) x_4 + (\alpha_3 + \lambda) \alpha_2 x_2 - \frac{\alpha_3 + \lambda}{2} (\alpha_1 x_1 + \alpha_2 x_2) = 0$$

oder

$$(\alpha_3 + \lambda)(\alpha_1 x_1 - \alpha_2 x_2) + 2(\alpha_1^2 - \alpha_2^2)x_4 = 0.$$
 (62)

Durch Elimination von λ aus (56), (61) und (62) ergiebt sich schliesslich

$$(\alpha_1 x_1 + \alpha_2 x_2 + 2 \alpha_3 x_3)(x_3 - \mu x_4) - 2(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4)x_3 = 0$$

oder

$$\Phi_{\mu} = (\alpha_1 x_1 + \alpha_2 x_2)(x_3 + \mu x_4) + 2(\mu \alpha_3 + \alpha_4)x_3 x_4 = 0 \quad (63)$$

und

$$[\alpha_{3}(\alpha_{1}x_{1} - \alpha_{2}x_{2}) + 2(\alpha_{1}^{2} - \alpha_{2}^{2})x_{4}](x_{3} - \mu x_{4}) - (\alpha_{1}x_{1} - \alpha_{2}x_{2})(\alpha_{1}x_{1} + \alpha_{2}x_{2} + \alpha_{3}x_{3} + \alpha_{4}x_{4}) = 0$$

oder

$$\Omega_{\mu} \equiv (\boldsymbol{\alpha}_{1} x_{1} - \boldsymbol{\alpha}_{2} x_{2}) \left[\boldsymbol{\alpha}_{1} x_{4} + \boldsymbol{\alpha}_{2} x_{2} + (\boldsymbol{\mu} \boldsymbol{\alpha}_{3} + \boldsymbol{\alpha}_{4}) x_{4} \right] - \\
- 2 (\boldsymbol{\alpha}_{1}^{2} - \boldsymbol{\alpha}_{2}^{2}) (x_{3} - \boldsymbol{\mu} x_{4}) x_{4} = 0. \quad (64)$$

Die Gleichungen (63) und (64) vertreten nun die quadratischen Flächen Φ_{μ} und Ω_{μ} , deren Durchschnitt die Doppelkurve enthält. Weil die Gerade

$$a_1 x_1 + a_2 x_2 = 0,$$

 $x_4 = 0,$

oder die Gerade X_3 L_{μ} auf den beiden Flächen liegt und keine Doppellinie ist, ist sie von dem Durchschnitt abzutrennen. Die Restkurve ist ein Kegelschnitt, welcher l_{μ} schneidet; er ist ein Teil der Doppelkurve.

Die Ebene dieses Kegelschnittes bildet mit der Ebene durch l_{μ} und X_3 L_{μ} [d. h. mit der Ebene (l_{μ} , X_3), deren Gleichung α_1 α_2 α_3 + α_4 α_4 α_4 = 0 lautet] ein Element des Büschels quadratischer Flächen, welches durch Φ_{μ} und Ω_{μ} bestimmt wird.

Es gilt nun die folgende Identität:

$$\begin{split} 2\left(\alpha_{1}^{2}-\alpha_{2}^{2}\right)\left[\left(\alpha_{1}\,x_{4}+\alpha_{2}\,x_{2}\right)\left(x_{3}+\mu x_{4}\right)+2\left(\mu \alpha_{3}+\alpha_{4}\right)\,x_{3}\,x_{4}\right]+\\ +\left(\mu \alpha_{3}+\alpha_{4}\right)\left[\left(\alpha_{1}\,x_{4}-\alpha_{2}\,x_{2}\right)\left|\alpha_{1}\,x_{4}+\alpha_{2}\,x_{2}+\left(\mu \alpha_{3}+\alpha_{4}\right)\,x_{4}\right]-\\ -2\left(\alpha_{1}^{2}-\alpha_{2}^{2}\right)\left(x_{3}-\mu x_{4}\right)\,x_{4}\right] \equiv\\ \equiv\left[\alpha_{1}\,x_{4}+\alpha_{2}\,x_{2}+\left(\mu \alpha_{3}+\alpha_{4}\right)\,x_{4}\right].\left[\left(\mu \alpha_{3}+\alpha_{4}\right)\left(\alpha_{1}\,x_{4}-\alpha_{2}\,x_{2}\right)+\\ +2\left(\alpha_{1}^{2}-\alpha_{2}^{2}\right)\left(x_{3}+\mu x_{4}\right)\right]. \end{split}$$

Setzen wir

$$\begin{aligned} \alpha_1 \, x_1 + \alpha_2 \, x_2 + (\mu \alpha_3 + \alpha_4) \, x_4 &= V_{\mu}, \\ (\mu \alpha_3 + \alpha_4) \, (\alpha_1 \, x_4 - \alpha_2 \, x_2) + 2 \, (\alpha_1^2 - \alpha_2^2) \, (x_3 + \mu x_4) &= W_{\mu} \end{aligned}$$

so gestaltet sich die Identität wie folgt

$$2 (\alpha_1^2 - \alpha_2^2) \Phi_{\mu} + (\mu \alpha_3 + \alpha_4) \Omega_{\mu} = V_{\mu} \cdot W_{\mu}$$

Die Ebene V_{μ} verbindet l_{μ} mit X_3 ; die Ebene W_{μ} enthält daher den Doppelkegelschnitt, welcher also dargestellt wird durch

$$\Phi_{\mu} = (\alpha_1 x_1 + \alpha_2 x_2) (x_3 + \mu x_4) + 2 (\mu \alpha_3 + \alpha_4) x_3 x_4 = 0, (63)$$

$$W_{\mu} = (\mu \alpha_3 + \alpha_4) (\alpha_1 x_1 - \alpha_2 x_2) + 2 (\alpha_1^2 - \alpha_2^2) (x_3 + \mu x_4) = 0. (65)$$

Der Kegelschnitt geht offenbar nicht durch X_1 und X_2 . Er schneidet l_{μ} im Punkte

$$egin{aligned} x_1 &= -rac{(\mu oldsymbol{lpha}_3 + oldsymbol{lpha}_4)^2 + 4}{2} rac{\mu}{lpha_3} rac{(oldsymbol{lpha}_3^2 - oldsymbol{lpha}_2^2)}{2} x_4, \ x_2 &= -rac{(\mu oldsymbol{lpha}_3 + oldsymbol{lpha}_4)^2 + 4}{2} rac{\mu}{lpha_2} rac{(\mu oldsymbol{lpha}_3 + oldsymbol{lpha}_4)}{2} x_4, \ x_3 &= \mu x_4, \end{aligned}$$

und $X_1 X_2$ im Punkte

$$egin{aligned} \pmb{lpha}_1 x_1 - \pmb{lpha}_2 \, x_2 &= 0 \,, \\ x_3 &= 0 \,, \\ x_4 &= 0 \,, \end{aligned}$$

der im Bezug auf X_1 und X_2 dem Punkte L_μ harmonisch zugeordnet ist.

Der Doppelkegelschnitt wird zur kubischen Doppelkurve vervollständigt durch die Gerade X_1X_2 , weil die Doppelkurve ja die Punkte X_1 und X_2 enthalten muss.

Dass $X_1 X_2$ sich als Bestandteil der Doppelkurve herausstellt, ist auch daraus klar, weil jeder Punkt Y von $X_1 X_2$ zwei Congruenzstrahlen YX_1 und YX_2 trägt, die beide mit $X_1 X_2$ identisch sind und l_{μ} schneiden.

Falls l_{μ} überdies $X_3 X_4$ schneidet, hat man

$$\mu \alpha_3 + \alpha_4 = 0$$
,

sodass die Grössen β_3 , β_2 , β_1 und β_0 die folgenden Werte aufweisen:

$$egin{aligned} eta_3 &= rac{\mu \; (lpha_1 \, x_1 + \, lpha_2 \, x_2) \, a_0}{\delta}, \ eta_2 &= rac{(lpha_2 x_3 - \, \mu lpha_2 \, x_4) \, a_0}{\delta}, \ eta_1 &= rac{(lpha_1 x_3 - \, \mu lpha_1 \, x_4) a_0}{\delta}, \ eta_0 &= rac{-\, (lpha_1 x_1 + \, lpha_2 x_2) \, a_0}{\delta}. \end{aligned}$$

Durch Substitution dieser Ausdrücke in die Gleichung (18) bekommt man die Gleichung der axialen Regelfläche der Gerade l_{μ} , welche X_3X_4 schneidet. Da die Gleichung sich zwar ein Wenig vereinfacht, jedoch vom selben Grade bleibt, werden wir sie nicht ausarbeiten.

Die kubische Kurve in ω_{∞} wird nun gegeben durch

$$\mu (\alpha_1 x_1 + \alpha_2 x_2) x_1 x_2 + (\alpha_2 x_1 + \alpha_1 x_2) x_3^2 = 0. \quad . \quad (66)$$

Die Tangente in X_3 ist bestimmt durch

$$\mathbf{\alpha}_2 x_1 + \mathbf{\alpha}_1 x_2 = 0;$$

sie ist die axiale Projektion aus $X_3 X_4$ auf ω_{∞} von derjenigen Gerade in ω_0 , welche das Bild der Gerade $X_3 L_{\mu}$ ist.

Die Tangenten in den Schnittpunkten L_{μ} , X_1 und X_2 mit der Gerade $X_1 X_2$ convergiren alle nach X_3 .

Der Doppelkegelschnitt der axialen Regelfläche würde nunmehr bestimmt sein durch (siehe (63) und (65))

$$\Phi_{\mu}' \equiv (\alpha_1 x_1 + \alpha_2 x) (x_3 + \mu x_4) = 0,$$

$$W_{\mu}' \equiv x_3 + \mu x_4 = 0.$$

Weil hier aber Φ_{μ}' die Ebene W_{μ}' enthält, ist diese Combination unzulässig. Die Kurve ist jedoch ebenso gut bestimmt durch (siehe (64))

$$\Omega_{\mu}' \equiv \alpha_1^2 x_1^2 - \alpha_2^2 x_2^2 - 2 (\alpha_1^2 - \alpha_2^2) (x_3 - \mu x_4) x_4 = 0, \quad (67)$$

Der Schnittpunkt mit der Gerade l_{μ} ist der Punkt L_{μ} auf X_1 X_2 . Der zweite Schnittpunkt mit X_1 X_2 ist wieder, in Bezug auf X_1 und X_2 , dem Punkte L_{μ} harmonisch zugeordnet.

Im Vorgehenden haben wir die Fälle erörtert, wo die Gerade l, auf welcher die Congruenzstrahlen ruhen, entweder willkürlich ist, oder eine besondere Stellung einnimmt, aber nicht in einer singulären Ebene liegt. Der Grad der axialen Regelfläche war auch in allen diesen Fällen sechs.

§ 8. Die axiale Regelfläche einer Gerade l in s.

Wir werden jetzt die axiale Regelfläche einer Gerade l in ε betrachten.

So bald die Gerade l in s liegt, ist die eine ihrer Gleichungen

$$x_1 - x_2 = 0;$$

für die Durchstosspunkte A und B' gilt somit

$$b_1' = b_2' = b'.$$
 (70)

Die Ausdsücke β_3 , β_2 , β_4 , β_0 gestalten sich nun in dieser Weise

$$\beta_3 = b' (x_1 - x_2),
\beta_2 = -(x_1 - ax_3 - b' x_4),
\beta_1 = (x_2 - ax_3 - b' x_4),
\beta_0 = a (x_1 - x_2).$$

Die Gleichung (18) lautet demnach

$$\Delta' = \begin{vmatrix} b'(x_1 - x_2) & , -(x_4 - ax_3 - b'x_4) & , +(x_2 - ax_3 - b'x_4) & , & 0 \\ b'x_1(x_4 - x_2) + & -x_1(x_4 - ax_3 - b'x_4), -b'x_4(x_4 - x_2) & , +(x_4 - ax_3 - b'x_4) \\ +x_3(x_2 - ax_3 - b'x_4) & , \\ b'x_2(x_4 - x_2) - & -b'x_4(x_4 - x_2) & , +x_2(x_2 - ax_3 - b'x_4), -(x_2 - ax_3 - b'x_4) \\ -x_3(x_4 - ax_3 - b'x_4) & , \\ 0 & , -x_4(x_2 - ax_3 - b'x_4), +x_4(x_4 - ax_3 - b'x_4), -a(x_4 - x_2) \end{vmatrix} = 0$$

Bezeichnen wir die vier Horizontalreihen mit R_1 , R_2 , R_3 und R_4 , so können wir die Determinante darstellen durch

$$\Delta' = \left| egin{array}{c} R_1 \ R_2 \ R_3 \ R_4 \end{array}
ight|,$$

oder auch durch

$$\Delta' = \begin{vmatrix} R_1 \\ R_2 - x_1 R_1 \\ R_3 - x_2 R_1 \\ R_4 - x_4 R_1 \end{vmatrix} = \begin{vmatrix} R_1 \\ R_2' \\ R_3' \\ R_4' \end{vmatrix}.$$

Nennen wir die vier Vertikalreihen dieser Determinante K_1 , K_2 , K_3 , K_4 , sodass die Determinante sich schreiben lässt

$$\Delta' = |K_1, K_2, K_3, K_4|,$$

so ergiebt eine zweite Umformung

$$\Delta' = | K_1 - x_3 K_4, K_2, K_3 + K_2 + x_2 K_4, K_4 |$$

= | K₁', K₂, K₃' K₄|.

Die Vertikalreihen K_1 und K_3 sind offenbar durch $(x_1 - x_2)$ teilbar. Wir setzen deshalb.

$$K_{1}' = (x_{1} - x_{2}) K_{1}'', K_{3}' = (x_{1} - x_{2}) K_{3}'',$$

mithin

$$\Delta' = (x_1 - x_2)^2 \mid K_1'', K_2, K_3'', K_4 \mid .$$

Eine dritte Operation liefert

$$\Delta' = (x_1 - x_2)^2 \mid K_1'', K_2 - x_1 K_3'', K_3'', K_4 + K_3'' \mid$$

= $(x_1 - x_2)^2 \mid K_1'', K_2'', K_3'', K_4'' \mid$.

Wir haben nun

$$\begin{split} K_{1}'' &= \frac{K_{1}'}{x_{1}-x_{2}} = \frac{K_{1}-x_{3}K_{4}}{x_{1}-x_{2}} \\ K_{2}'' &= K_{2}-x_{1}K_{3}'' = \frac{(x_{1}-x_{2})K_{2}-x_{1}K_{3}'}{x_{1}-x_{2}} = \\ &= \frac{(x_{1}-x_{2})K_{2}-x_{1}(K_{3}+K_{2}+x_{2}K_{4})}{x_{1}-x_{2}} = \frac{-x_{2}K_{2}-x_{1}K_{3}-x_{1}x_{2}K_{4}}{x_{1}-x_{2}}, \\ K_{3}'' &= \frac{K_{2}+K_{3}+x_{2}K_{4}}{x_{1}-x_{2}}, \\ K_{4}'' &= K_{4}+K_{3}'' = \frac{(x_{1}-x_{2})K_{4}+(K_{2}+K_{3}+x_{2}K_{4})}{x_{1}-x_{2}} = \frac{K_{2}+K_{3}+x_{1}K_{4}}{x_{1}-x_{2}}. \end{split}$$

Die erste Umgestaltung giebt

$$b'(x_4-x_2) , -(x_1-ax_3-b'x_4) , +(x_2-ax_3-b'x_4) , 0$$

$$= \begin{vmatrix} x_3(x_2-ax_3-b'x_4) & , & 0 & , -x_1x_2+ax_1x_3+b'x_2x_4, +(x_1-ax_3-b'x_4) \\ -x_3(x_1-ax_3-b'x_4), x_1x_2-ax_2x_3-b'x_1x_4, & 0 & , -(x_2-ax_3-b'x_4) \end{vmatrix} = 0$$

$$-b'x_4(x_4-x_2) , x_4(x_1-x_2) , x_4(x_1-x_2) , -a(x_1-x_2)$$

Es ist also

$$K_{i} = \begin{pmatrix} b'(x_{1} - x_{2}) \\ x_{3}(x_{2} - ax_{3} - b'x_{4}) \\ -x_{3}(x_{1} - ax_{3} - b'x_{4}) \\ -b'x_{4}(x_{1} - x_{2}) \end{pmatrix} \text{u.s.w.}$$

$$K_{1}'' = \frac{K_{1} - x_{3}K_{4}}{x_{1} - x_{2}} = \frac{1}{x_{1} - x_{2}} \begin{vmatrix} b' & (x_{1} - x_{2}) \\ -x_{3} & (x_{1} - x_{2}) \\ -x_{3} & (x_{1} - x_{2}) \end{vmatrix} = \begin{vmatrix} b' \\ -x_{3} \\ -x_{3} \\ ax_{3} - b'x_{4} \end{vmatrix}$$

$$K_{2}'' = -\frac{x_{2}K_{2} + x_{1}K_{3} + x_{1}x_{2}K_{4}}{x_{1} - x_{2}} =$$

$$= \frac{-1}{x_{1} - x_{2}} \begin{vmatrix} (ax_{3} + b'x_{4})(x_{1} - x_{2}) \\ ax_{1}x_{3}(x_{1} - x_{2}) \\ ax_{2}x_{3}(x_{1} - x_{2}) \\ (x_{1}x_{4} + x_{2}x_{4} - ax_{1}x_{2})(x_{1} - x_{2}) \end{vmatrix} = -\begin{vmatrix} ax_{3} + b'x_{4} \\ ax_{1}x_{3} \\ ax_{2}x_{3} \\ x_{1}x_{4} + x_{2}x_{4} - ax_{1}x_{2} \end{vmatrix}$$

$$K_{3}'' = \frac{K_{2} + K_{3} + x_{2}K_{4}}{x_{1} - x_{2}} =$$

$$= \frac{1}{x_{1} - x_{2}} \begin{cases} -(x_{1} - x_{2}) \\ ax_{3}(x_{1} - x_{2}) \\ (x_{2} - b'x_{4})(x_{1} - x_{2}) \\ (-ax_{2} + 2x_{4})(x_{1} - x_{2}) \end{cases} = \begin{cases} -1 \\ ax_{3} \\ x_{2} - b'x_{4} \\ -ax_{2} + 2x_{4} \end{cases}$$

$$K_{4}'' = \frac{K_{1} + K_{3} + x_{1}K_{4}}{x_{1} - x_{2}} =$$

$$= \frac{1}{x_{1} - x_{2}} \begin{cases} -(x_{1} - x_{2}) \\ (x_{1} - b'x_{4})(x_{1} - x_{2}) \\ ax_{3}(x_{1} - x_{2}) \\ (-ax_{1} + 2x_{3})(x_{1} - x_{2}) \end{cases} = \begin{cases} -1 \\ x_{1} - b'x_{4} \\ ax_{3} \\ -ax_{1} + 2x_{5} \end{cases}$$

Wir erhalten daher schliesslich

$$\Delta' = -(x_1 - x_2)^2 \begin{vmatrix} b' & ,ax_3 + b'x_4 & ,-1 & ,-1 \\ -x_3 & ,ax_1x_3 & ,ax_3 & ,x_1 - b'x_4 \\ -x_3 & ,ax_2x_3 & ,x_2 - b'x_4 & ,ax_3 \\ ax_3 - b'x_4, x_1x_4 + x_2x_4 - ax_1x_2, -ax_2 + 2x_4, -ax_1 + 2x_4 \end{vmatrix} = 0. (71)$$

Die axiale Regelfläche der in ε befindlichen Gerade l setzt sich demnach zusammen aus der doppelt zu zählenden Ebene ε und einer biquadratischen Fläche.

Die kubische Kurve in ω_{∞} wird jetzt dargestellt durch (siehe (19))

$$b'(x_1-x_2)(x_1,x_2-x_3)(x_1+x_2)(x_1-x_2)+ax_3^2(x_1-x_2) \Rightarrow 0$$

und ist deshalb zerfallen in die Gerade

$$x_1 - x_2 = 0$$
, oder $X_3 E$

und den Kegelschnitt $\gamma_∞$:

$$b' x_1 x_2 - (x_1 + x_2) x_3 + a x_3^2 = 0, \dots (72)$$

welcher durch X_1 und X_2 , aber *nicht* durch X_3 hindurchgeht. Die Tangente in X_1 ist angewiesen durch

$$b' x_2 - x_3 = 0,$$

oder

$$\frac{x_2}{x_3} = \frac{1}{b'};$$

sie ist also die Gerade, welche X_1 mit dem Bilde B von B' verbindet.

Der Punkt B ist der Schnittpunkt der Tangenten in X_1 und X_2 , also der Pol von X_4 X_2 in Bezug auf den Kegelschnitt γ_{∞} .

Der Kegelschnitt γ_{∞} begegnet X_2X_3 $(x_4 = 0)$ im Punkte X_4 und in dem Punkte, wofür

 $x_2 = ax_3, Fig. 2.$

also in dem Punkte A_1 , wo AX_1 die Gerade $X_2 X_3$ trifft.

In gleicher Weise zeigt man, das der Kegelschnitt γ_{∞} und die Gerade $X_2 X_3$ sich und die Gerade $X_4 X_3$ in demselben Punkte A_2 schneiden.

Es leuchtet ein, dass der Schnitt der biquadratischen Fläche mit ω_{∞} aus dem Kegelschnitte γ_{∞} und den beiden Geraden X_1 A und X_2 A zusammengesetzt ist.

Der Schnitt in ω_0 ist selbstredend gleichartig beschaffen.

Die Doppelkurve ist jetzt bestimmt durch (siehe (45) und (46))

$$\Phi = \xi_2(a\xi_3 - b'\xi_4) - \xi_1(a\xi_3 - b'\xi_4) = -(\xi_1 - \xi_2)(a\xi_3 - b'\xi_4) = 0,$$
 und

$$\begin{split} \Psi &= \xi_2^{\ 2} \left| a \xi_1 - (1 - ab') \xi_4 \right| - \xi_1^{\ 2} \left| a \xi_2 - (1 - ab') \xi_4 \right| = \\ &= - (\xi_1 - \xi_2) \left| a \xi_1 \xi_2 - (1 - ab') (\xi_1 + \xi_2) \xi_4 \right| = 0. \end{split}$$

Sie besteht offenbar aus der Gerade

$$\xi_1 = \xi_2 = 0,$$

d.h. 1, und dem Kegelschnitt

$$\begin{array}{c|c}
a\xi_3 - b' \xi_4 = 0, \\
a\xi_1 \xi_2 - (1 - ab')(\xi_1 + \xi_2)\xi_3 = 0.
\end{array}$$
(73)

Dieser Kegelschnitt enthält X_1 und X_2 , und trifft l im Punkte C_{μ} :

$$\begin{cases}
\xi_1 = 0, \\
\xi_2 = 0, \\
a\xi_3 - b' \xi_4 = 0.
\end{cases} (74)$$

Er schneidet die Ebene ε im Punkte

$$\xi_1 = \xi_2 = \frac{2(1 - ab')}{a} \xi_4,$$

$$a\xi_3 = b' \xi_4,$$

oder

$$x_1 = x_2 = \xi_1 + a\xi_3 + b'\xi_4 = \frac{2}{a}\xi_4 - 2b'\xi_4 + b'\xi_4 + b'\xi_4 = \frac{2}{a}\xi_4,$$

oder endlich

$$x_1 = x_2 = \frac{2}{a} x_4 = \frac{2}{b'} x_3 \quad . \quad . \quad . \quad (75)$$

Dies ist der Pol L der Gerade l $(x_1 = x_2 = ax_3 + b' x_4)$ im Bezug auf den Kegelschnitt e $(x_1^2 = x_2^2 = 4 x_3 x_4)$.

§ 9. Die axiale Regelfläche eines Congruenzstrahles s.

Die Gleichung dieser Fläche wird leichter auf direktem Wege als durch Umstaltung der Gleichung (18)) abgeleitet.

Ein Strahl p schneidet einen Strahl s, wenn (siehe (23)) der Bedingung

genügt wird.

So bald wir aus der Gleichungen

$$\begin{vmatrix} x_1 = p_1 x_3 + \frac{1}{p_1} x_4 \\ x_2 = p_2 x_3 + \frac{1}{p_2} x_4 \end{vmatrix} \cdot \cdot \cdot \cdot \cdot \cdot (1)$$

und aus (76) die Grössen p_4 und p_2 eliminiren, sind wir schon im Besitz der Gleichung der zu untersuchenden Regelfläche.

Aus (1) folgt

$$p_{1} = \frac{x_{1} \pm \sqrt{x_{1}^{2} - 4 x_{3} x_{4}}}{2 x_{3}},$$

$$p_{2} = \frac{x_{2} \pm \sqrt{x_{2}^{2} - 4 x_{3} x_{4}}}{2 x_{3}}.$$

Durch Substitution dieser Ausdrücke für p_1 und p_2 in (76) erhalten wir

$$s_1(x_1 \pm \sqrt{x_1^2 - 4x_3x_4}) = s_2(x_2 \pm \sqrt{x_2^2 - 4x_3x_4}),$$

oder

$$s_1 x_1 - s_2 x_2 = \overline{+} s_1 \sqrt{x_1^2 - 4 x_3 x_4} + s_2 \sqrt{x_2^2 - 4 x_3 x_4}$$

also

$$s_1^2 x_1^2 + s_2^2 x_2^2 - 2 s_1 s_2 x_1 x_2 = s_1^2 x_1^2 - 4 s_1^2 x_3 x_4 + s_2^2 x_2^2 - 4 s_2^2 x_3 x_4 + 2 s_1 s_2 \sqrt{(x_1^2 - 4 x_3 x_4)(x_2^2 - 4 x_3 x_4)},$$

oder

$$s_1 s_2 x_1 x_2 - 2 (s_1^2 + s_2^2) x_3 x_4 = \pm s_1 s_2 \sqrt{(x_1^2 - 4 x_3 x_4)(x_2^2 - 4 x_3 x_4)}$$

daher

$$s_1^2 s_2^2 x_1^2 x_2^2 - 4 s_1 s_2 (s_1^2 + s_2^2) x_1 x_2 x_3 x_4 + 4 (s_1^2 + s_2^2)^2 x_3^2 x_4^2 =$$

$$= s_1^2 s_2^2 x_1^2 x_2^2 - 4 s_1^2 s_2^2 x_1^2 x_3 x_4 - 4 s_1^2 s_2^2 x_2^2 x_3 x_4 + 16 s_1^2 s_2^2 x_3^2 x_4^2,$$

oder, nach Division durch $4x_3x_4$,

$$s_1 s_2 (s_1 x_1 - s_2 x_2)(s_2 x_1 - s_1 x_2) + (s_1^2 - s_2^2)^2 x_3 x_4 = 0.$$
 (77)

Die axiale Regelfläche eines Congruenzstrahles ist somit vom zweiten Grade.

Die Fläche schneidet ω_∞ in den Geraden

$$s_2 x_1 - s_1 x_2 = 0$$
,

d.h. $X_3 S$, und

$$s_1 x_1 - s_2 x_2 = 0$$

oder der axialen Projektion aus X_3X_4 auf ω_{∞} der Gerade X_4 S'.

§ 10. Die axiale Regelfläche eines Congruenzstrahles in ε . Befindet sich der Strahl in ε , so ist $s_1 = s_2$; mithin geht (77) über in

$$(x_1 - x_2)^2 = 0.$$

Das Hyperboloïd is demnach in die doppelt zu zählende Ebene ε ausgeartet.

§ 11. Die axiale Regelfläche einer Gerade m in ω_{∞} .

Zum Schluss wollen wir noch die axiale Regelfläche einer Gerade m in ω_{∞} einer analytischen Untersuchung unterwerfen.

Eine Gerade m in ω_{∞} ist ein spezieller Fall einer Gerade l_{μ} , welche $X_1 X_2$ schneidet und in der Ebene ω_{μ} liegt. Es wird hier die Ebene dargestellt durch $x_4 = 0$, also ist

$$\mu = \infty$$
.

Substituiren wir diesen Wert für μ in die Gleichungen, welche die Grössen β_3 , β_2 , β_1 und β_0 bestimmen, so ergiebt sich (siehe S. 58)

$$eta_3 = (lpha_1 x_1 + lpha_2 x_2 + lpha_3 x_3) a_0',$$
 $eta_2 = - lpha_2 x_4 a_0',$
 $eta_1 = - lpha_1 x_4 a_0',$
 $eta_0 = - lpha_3 x_4 a_0',$

wo

$$a_0' = \frac{\mu \, a_0}{\delta}.$$

Ersetzen wir in der Gleichung (18) β_3 , β_2 , β_1 und β_0 durch diese Ausdrücke so finden wir

oder, nach Division durch x_4^3 :

$$\Delta' \equiv x_4^{3} \begin{vmatrix} \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 & \alpha_2 & \alpha_1 & 0 \\ x_1 (\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3) - \alpha_1 x_3 x_4, & \alpha_2 x_1 & \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3, & \alpha_2 \\ x_2 (\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3) - \alpha_2 x_3 x_4, & \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3, & \alpha_1 x_2 & \alpha_1 \\ 0 & 0, -\alpha_1 x_4 & 0, -\alpha_2 x_4 & \alpha_3 x_3 \end{vmatrix} = 0.$$

Substrahiren wir ferner x_1 mal die erste Horizontalreihe von der zweiten, und x_2 mal die erste von der dritten, so finden wir

$$\Delta' \equiv x_4^3 \begin{vmatrix} \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3, \alpha_2 & \alpha_1 & 0 \\ -\alpha_1 x_3 x_4 & 0 & \alpha_2 x_2 + \alpha_3 x_3, \alpha_2 \\ -\alpha_2 x_3 x_4 & \alpha_1 x_1 + \alpha_3 x_3, 0 & \alpha_1 \\ 0 & -\alpha_1 x_4 & -\alpha_2 x_4 & \alpha_3 \end{vmatrix} = 0.$$
 (78)

Aus dieser Rechnung geht hervor, dass die axiale Regelfläche von m in ω_{∞} zerfallen ist in die dreifach zu zählende Ebene ω_{∞} und eine kubische Regelfläche.

Die Durchschnittskurve in ω_{∞} finden wir am leichtesten durch Substitution von $x_4 = 0$ in die Gleichung (78), wobei wir selbstverständig den Faktor x_4^3 weglassen.

Die Substitution $x_4 = 0$ liefert

$$\begin{vmatrix} \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3, & \alpha_2 & , & \alpha_1 & , & 0 \\ 0 & , & 0 & , & \alpha_2 x_2 + \alpha_3 x_3, & \alpha_2 \\ 0 & , & \alpha_1 x_1 + \alpha_3 x_3, & 0 & , & \alpha_1 \\ 0 & , & 0 & , & 0 & , & \alpha_3 \end{vmatrix} = 0$$

oder

$$(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3) (\alpha_1 x_1 + \alpha_3 x_3) (\alpha_2 x_2 + \alpha_3 x_3) = 0.$$

Nennen wir M_1 den Schnittpunkt von m mit X_2X_3 , M_2 den-

jenigen mit $X_1 X_3$, M_3 denjenigen mit $X_1 X_2$, so besteht die Schnittkurve mit ω_{∞} aus der Gerade m nebst den Geraden $X_1 M_1$ und $X_2 M_2$.

Es sei G der Schnittpunkt von $X_1 M_1$, und $X_2 M_2$, welcher also bestimmt ist durch

$$\alpha_1 x_1 = \alpha_2 x_2 = -\alpha_3 x_3$$
 . . (79)

Die Schnittkurve mit ω_0 wird ermittelt durch Substitution von $x_3 = 0$ in (78); man bekommt sodann

oder

$$(\alpha_1 x_1 + \alpha_2 x_2) (\alpha_3 x_1 x_2 + \alpha_2 x_1 x_4 + \alpha_1 x_2 x_4) = 0.$$

Diese Kurve ist deshalb zusammengesetzt aus dem Bilde von $X_3 M_3$ und dem Kegelschnitte μ , welcher in ω_0 der Geraden m in ω_{∞} zugeordnet ist.

Es sei ferner H der Schnittpunkt dieser beiden Linien.

Der Punkt H' wird nun bestimmt durch

$$\alpha_1 \alpha_3 x_1 = -\alpha_2 \alpha_3 x_2 = (\alpha_2^2 - \alpha_1^2) x_4.$$
 (80)

Die Doppelkurve der axialen Regelfläche

Fig. 4. B 5

einer in ω_{μ} befindlichen Gerade l_{μ} , bestand (siehe S. 56) aus der Gerade $X_1 X_2$ und einem Kegelschnitte, welcher durch die Gleichungen (63) und (65) bestimmt ward.

Wenn wir μ einen unendlich grossen Wert erteilen, so gehen diese Gleichungen über in

$$(\alpha_1 x_1 + \alpha_2 x_2 + 2 \alpha_3 x_3) x_4 = 0,$$

$$\alpha_3 (\alpha_1 x_1 - \alpha_2 x_2) + 2 (\alpha_1^2 - \alpha_2^2) x_4 = 0.$$

Der Kegelschnitt ist infolge dessen zerfallen in eine Gerade der Ebene ω_{∞} und in die Gerade

$$\alpha_{1} x_{1} + \alpha_{2} x_{2} + 2 \alpha_{3} x_{3} = 0,$$

$$\alpha_{3} (\alpha_{1} x_{1} - \alpha_{2} x_{2}) + 2 (\alpha_{1}^{2} - \alpha_{2}^{2}) x_{4} = 0.$$

$$(81)$$

$$\alpha_3(\alpha_1 x_1 - \alpha_2 x_2) + 2(\alpha_1^2 - \alpha_2^2)x_4 = 0.$$
 (82)

Diese Gerade ist also die Doppelgerade d_m der kubischen Regelfläche von m.

Wir können diese Gerade d_m auch durch die Gleichungen

$$x_{1} = -\frac{\alpha_{3}}{\alpha_{1}}x_{3} + \frac{\alpha_{2}^{2} - \alpha_{1}^{2}}{\alpha_{1}\alpha_{3}}x_{4} \left(. (83) \right)$$

$$x_{2} = -\frac{\alpha_{3}}{\alpha_{2}}x_{3} - \frac{\alpha_{2}^{2} - \alpha_{1}^{2}}{\alpha_{2}\alpha_{3}}x_{4}$$
 (84)

darstellen.

Aus dieser Form der Gleichungen ist es unmittelbar ersichtlich, dass die Gerade d_m sowohl den Punkt G wie den Punkt H' enthält.

Diejenigen Punkte von d_m , wo zwei unendlich benachbarte Erzeugenden (Congruenzstrahlen) zusammentreffen, sind die Zwickpunkte (Cuspidalpunkte). Dieselben liegen demnach auf der Fokalfläche.

Die Ebene, welche durch (83) dargestellt wird, verbindet d_m mit X_2 ; sie schneidet deshalb den Fokalkegel F_2 , (der durch die erste der Gleichungen (3) vertreten ist, in zwei Geraden durch X_2 , welche wir n und n' nennen werden.

Eine kleine Rechnung ergiebt, dass die Gerade n bestimmt ist durch

$$\frac{x_1}{-2\alpha_3(\alpha_1+\alpha_2)} = \frac{x_3}{(\alpha_1+\alpha_2)^2} = \frac{x_4}{\alpha_3^2},$$

und die Gerade n' durch

$$\frac{x_2}{-2\alpha_3(\alpha_1-\alpha_2)} = \frac{x_3}{(\alpha_1-\alpha_2)^2} = \frac{x_4}{\alpha_3^2}.$$

Der Schnittpunkt K von n mit der durch die Gleichung (84) bestimmten Ebene ist gegeben durch

$$\frac{x_1}{-2\alpha_3(\alpha_1+\alpha_2)} = \frac{x_2}{-2\alpha_3(\alpha_1+\alpha_2)} = \frac{x_3}{(\alpha_1+\alpha_2)^2} = \frac{x_4}{\alpha_3^2}. \quad (85)$$

Der Schnittpunkt K' von n' mit derselben Ebene ist bestimmt durch

$$\frac{x_1}{-2 \alpha_3 (\alpha_1 - \alpha_2)} = \frac{x_2}{+2 \alpha_3 (\alpha_1 - \alpha_2)} = \frac{x_3}{(\alpha_1 - \alpha_2)^2} = \frac{x_4}{\alpha_3^2}. (86)$$

Es zeigt sich also, dass der Punkt K in der Ebene ε $(x_1 = x_2)$ liegt und dass der Punkt K' sich in der Ebene ε' $(x_2 = -x_1)$ befindet.

Weil K sich sowohl auf F_2 wie in ε befindet, liegt dieser Punkt auf dem Kegelschnitte e in ε , daher auch auf F_1 . Der Punkt K' befindet sich auf dem Kegelschnitte e' in ε , somit auch auf F_1 .

Die Gerade d_m schneidet also die Fokalfläche auf den Kegelschnitten e und e'. Die Schnittpunkte K und K' sind die Zwickpunkte der Doppelgerade.

Die Torsallinien sind die Congruenzstrahlen, welche sich auf K und K' stützen.

Die Coordinaten p_1 und p_2 der Spur T_m des durch K hindurchgehenden Strahles sind bestimmt durch

$$\begin{aligned} x_3 p_1^2 - x_1 p_1 + x_4 &= 0, \\ x_3 p_2^2 - x_2 p_2 + x_4 &= 0, \end{aligned}$$

also in diesem Falle durch

$$(\alpha_1 + \alpha_2)^2 p_1^2 + 2 (\alpha_1 + \alpha_2) \alpha_3 p_1 + \alpha_3^2 = 0,$$

 $(\alpha_1 + \alpha_2)^2 p_2^2 + 2 (\alpha_1 + \alpha_2) \alpha_3 p_2 + \alpha_3^2 = 0,$

woher

$$p_1 = \frac{x_1}{x_3} = -\frac{\alpha_3}{\alpha_1 + \alpha_2}, \dots$$
 (87)

Die Coordinaten genügen der Gleichung $\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = 0$; der Strahl schneidet ja die Gerade m, welche auf der Fläche die Rolle der einfachen Leitlinie spielt.

Der Torsalpunkt T_m wird offenbar durch die Gleichungen (87),

(88) und $x_4 = 0$ dargestellt.

Die Torsallinie t von K ist der Congruenzstrahl durch T_m ; ihre Gleichungen lauten also:

$$x_1 = -\frac{\alpha_3}{\alpha_1 + \alpha_2} x_3 - \frac{\alpha_1 + \alpha_2}{\alpha_3} x_4, (89)$$

$$x_2 = -\frac{\alpha_3}{\alpha_1 + \alpha_2} x_3 - \frac{\alpha_1 + \alpha_2}{\alpha_3} x_4.(90)$$

Sie berührt den Kegelschnitt e im Punkte K. Der zweite Torsalpunkt T_{m} ist bestimmt durch

$$p_2 = \frac{x_2}{x_3} = + \frac{\alpha_3}{\alpha_1 - \alpha_2} \dots \dots (92)$$

und liegt offenbar ebenfalls auf m.

Die zweite Torsallinie t' wird dargestellt durch

$$x_1 = -\frac{\alpha_3}{\alpha_1 - \alpha_2} x_3 - \frac{\alpha_1 - \alpha_2}{\alpha_3} x_4 \dots (93)$$

$$x_2 = + \frac{\alpha_3}{\alpha_1 - \alpha_2} x_3 + \frac{\alpha_1 - \alpha_2}{\alpha_3} x_4 \dots (94)$$

und berührt den kegelschnitt e' im Punkte K'.

Die kubische Regelfläche der in ω_{∞} liegenden Geraden ist hiermit genügend erörtert.

§ 12. Es soll jetzt die Regelfläche untersucht werden, welche durch die Doppelgrade d_m beschrieben wird, wenn m um einen Punkt $A\left(\frac{x_4}{x_3} = a_1, \frac{x_2}{x_3} = a_2, x_4 = 0\right)$ rotirt.

Da die Gerade m stets durch den Punkt Λ gehen muss, besteht zwischen den Grössen α_1 , α_2 und α_3 die folgende Beziehung

$$\alpha_1 a_1 + \alpha_2 a_2 + \alpha_3 = 0.$$
 . . . (95)

Setzen wir, zur besseren Übersicht,

$$\frac{\alpha_1}{\alpha_3} = \varphi_1, \quad \dots \quad \dots \quad (96)$$

so wird die Doppelgerade d_m bestimmt durch (siehe (81) und (82))

$$\varphi_1 x_1 + \varphi_2 x_2 + 2 x_3 = 0, \dots (98)$$

$$\varphi_1 x_1 - \varphi_2 x_2 + 2 (\varphi_1^2 - \varphi_2^2) x_4 = 0$$
, . . (99)

während φ_1 und φ_2 durch (95) verbunden sind, also durch

$$a_1 \varphi_1 + a_2 \varphi_2 + 1 = 0.$$
 (100)

Durch Elimination von φ_1 und φ_2 aus den Gleichungen (98), (99) und (100) erhalten wir die Gleichung der durch d_m erzeugten Regelfläche.

Aus (98) und (100) geht hervor

$$q_1 = \frac{x_2 - 2 a_2 x_3}{a_2 x_1 - a_1 x_2},$$

$$q_2 = \frac{-x_1 + 2 a_1 x_3}{a_2 x_1 - a_1 x_2}.$$

Setzen wir diese Ausdrucke für φ_1 und φ_2 in (99) ein, so finden wir

$$\frac{x_1(x_2-2 a_2x_3)+x_2(x_4-2 a_1x_3)}{a_2x_4-a_1x_2}+$$

$$+2\frac{(x_2-2 a_2x_3)^2-(x_4-2 a_1x_3)^2}{(a_2x_4-a_1x_2)^2}x_4=0,$$

oder

$$|2 x_1 x_2 - 2 (a_2 x_1 + a_1 x_2) x_3| (a_2 x_1 - a_1 x_2) + + 2 x_4 |-x_1^2 + x_2^2 + 4 (a_1 x_1 - a_2 x_2) x_3 + 4 (-a_1^2 + a_2^2) x_3^2| = 0,$$

oder endlich

$$(x_1x_2 - a_2x_1x_3 - a_1x_2x_3)(a_2x_1 - a_1x_2) - x_4|x_1^2 - x_2^2 - 4(a_1x_1 - a_2x_2)x_3 + 4(a_1^2 - a_2^2)x_3^2| = 0 \quad (101)$$

Diese Gleichung stellt also die Regelfläche (d_m) dar, welche sonach vom dritten Grade ist.

Die Schnittkurve in ω_{∞} ($x_4 = 0$) wird gegeben durch

$$(x_1 x_2 - a_2 x_1 x_3 - a_1 x_2 x_3) (a_2 x_1 - a_1 x_2) = 0.$$
 (102)

Sie besteht aus der Gerade X_2A und einem durch X_1 , X_2 und X_3 hindurchgehenden Kegelschnitt γ_{∞} .

Die Tangenten in X_1 und X_2 an dem Kegelschnitte begegnen sich offenbar im Punkte A.

Die Schnittkurve der Regelfläche (d_m) in ω_0 $(x_3 = 0)$ wird durch die Gleichung

$$x_1 x_2 (a_2 x_1 - a_1 x_2) - (x_1^2 - x_2^2) x_4 = 0$$
 . (103)

vertreten.

Diese Gleichung stellt eine kubische Kurve dar, welche durch die Punkte X_1 , X_2 und A_3 (den Schnittpunkt von X_3 A mit X_1 X_2) hindurchgeht, und in X_4 einen Doppelpunkt aufweist, deren Tangenten X_4 mit den Punkten E und E' verbinden. Die Tangenten in X_4 und X_2 sind die Bilder von X_4 A und X_2 A. Sie schneiden sich in dem gleichfalls auf der Kurve liegenden Punkte A' ($x_4: x_4 = 1: a_1, x_2: x_4 = 1: a_2, x_3 = 0$).

Der Kegelschnitt γ_{∞} und die Gerade X_3A , welche zusammen den Durchschnitt von (d_m) mit ω_{∞} bilden, schneiden sich ausser X_3 , im Punkte B, wofür gilt

$$x_1 = 2 a_1 x_3, \ x_2 = 2 a_2 x_3, \ x_4 = 0.$$
 (104)

Dieser Punkt B muss ein Doppelpunkt des Schnittes in ω_0 sein; er ist also ein Punkt der Doppelgerade Δ der Regelfläche (d_m) . Auch X_4 , der Doppelpunkt des Schnittes in ω_0 , liegt auf Δ . Die Doppelgerade Δ von (d_m) wird daher durch die Gleichungen

$$x_1 = 2 a_1 x_3, x_2 = 2 a_2 x_3.$$
 . . . (105)

dargestellt.

Die einfache Leitlinie ist mit dem Congruenzstrahle a=AA' identisch, welcher A mit seinem Bilde A' in ω_0 verbindet. Diese Gerade wird ja durch jede Gerade d_m geschnitten, weil sie auf der axialen Regelfläche jeder Gerade m liegt.

Eine Ebene V durch die einfache Directrix ist bestimmt durch

$$\lambda_1 (a_1 x_1 - a_1^2 x_3 - x_4) + \lambda_2 (a_2 x_2 - a_2^2 x_3 - x_4) = 0 \quad (106)$$
oder

$$x_4 = \frac{\lambda_1 (a_1 x_1 - a_1^2 x_3) + \lambda_2 (a_2 x_2 - a_2^2 x_3)}{\lambda_1 + \lambda_2}.$$

Substituiren wir diesen Ausdruck für x_4 in die Gleichung (101) der Regelfläche (d_m) , so folgt:

$$(\lambda_{1} + \lambda_{2}) (x_{1}x_{2} - a_{2}x_{1}x_{3} - a_{1}x_{2}x_{3}) (a_{2}x_{1} - a_{1}x_{2}) - - |\lambda_{1}a_{1}x_{1} + \lambda_{2}a_{2}x_{2} - (\lambda_{1}a_{1}^{2} + \lambda_{2}a_{2}^{2}) x_{3}| \times \times |x_{1}^{2} - x_{2}^{2} - 4 (a_{1}x_{1} - a_{2}x_{2}) x_{3} + 4 (a_{1}^{2} - a_{2}^{2}) x_{3}^{2}| = 0.$$

Diese Gleichung stellt die Gesammtheit der drei Ebenen dar, welche X_4 mit den drei Geraden verbinden, die V mit (d_m) gemeinsam hat.

Diese drei Ebenen schneiden ω_0 $(x_3=0)$ in den drei Geraden, welche durch

$$(\lambda_1 + \lambda_2) x_1 x_2 (a_2 x_1 - a_1 x_2) - (\lambda_1 a_1 x_1 + \lambda_2 a_2 x_2) (x_1^2 - x_2^2) = 0$$

oder

$$(a_1 x_1 - a_2 x_2) (\lambda_1 x_1^2 + \lambda_2 x_2^2) = 0$$

bestimmt sind.

Den drei in V befindlichen Geraden gehört die einfache Directrix a an; diese wird aus X_4 durch die Ebene

$$a_1 x_1 - a_2 x_2 - (a_1^2 - a_2^2) x_3 = 0$$

projektirt, welche ω_0 in der Gerade

$$a_1 x_1 - a_2 x_2 = 0$$

schneidet.

Die projektirenden Ebenen der beiden anderen Geraden in V schneiden ω_0 deshalb in den beiden Geraden, welche zusammen durch

dargestellt werden.

Wenn die beiden in V liegenden Geraden zusammenfallen, vereinigen sie sich in einer Torsallinie; auch die aus X_4 projektirenden Ebenen coincidiren dann, ebenso wie ihre Spuren in ω_0 . In diesem Falle muss die Gleichung (107) offenbar zwei zusammenfallende Geraden darstellen; dies trifft zu, wenn

entweder
$$\lambda_1 = 0$$
, oder $\lambda_2 = 0$.

Es folgt vermöge der Gleichung (106) hieraus, dass die Ebenen

$$a_2 x_2 - a_2^2 x_3 - x_4 = 0$$

und

$$a_1 x_1 - a_1^2 x_3 - x_4 = 0$$

— das sind die Ebenen (X_1, a) und (X_2, a) — die beiden Torsallinien f_1 und f_2 enthalten. Sie schneiden deshalb die Doppelgerade Δ in den Zwickpunkten K_1 und K_2 .

Die Ebene (X_1, α) trifft \triangle in einem Punkte, welcher bestimmt ist durch

$$\frac{x_4}{2a_1} = \frac{x_2}{2a_2} = \frac{x_3}{1} = \frac{x_4}{a_2^2} \dots \dots \dots (108)$$

Dieser ist also der Punkt K_1 .

Der Punkt K_2 wird gegeben durch

$$\frac{x_4}{2a_1} = \frac{x_2}{2a_2} = \frac{x_3}{1} = \frac{x_4}{{a_1}^2} \dots \dots (109)$$

Der Zwickpunkt K_1 liegt offenbar auf dem Fokalkegel F_1 $(x_1^2 = 4 x_3 x_4)$, während K_2 sich auf F_2 befindet.

Wir können die beiden Zwickpunkte auch als diejenigen Punkte auffassen, welche \triangle ausser X_4 mit der Fokalfläche gemeinsam hat.

Die Torsallinie f_1 ist diejenige Gerade d_m , welche durch K_1 hindurchgeht; sie ist daher, vermöge (98) und (99), durch

$$2 a_1 \varphi_1 + 2 a_2 \varphi_2 + 2 = 0,$$

$$2 a_1 \varphi_1 - 2 a_2 \varphi_2 + 2 a_2^2 (\varphi_1^2 - \varphi_2^2) = 0,$$

also durch

$$\begin{aligned} a_1 \varphi_1 + a_2 \varphi_2 + 1 &= 0, \\ a_4 \varphi_1 - a_2 \varphi_2 + a_2^2 (\varphi_1^2 - \varphi_2^2) &= 0, \end{aligned}$$

bestimmt, so dass man hat

$$\begin{split} &\varphi_1=0\;,\\ &\varphi_2=-\frac{1}{a_2}\cdot \end{split}$$

Die Gleichungen der Torsallinie f₁ lauten demnach

$$\frac{x_2}{2a_2} = \frac{x_3}{1} = \frac{x_4}{a_2^2} \dots \dots \dots (110)$$

Die Torsallinie ist somit mit der Gerade $X_1 K_1$ identisch und daher eine Kante des Fokalkegels F_1 .

Ebenso ist die Torsallinie f_2 mit der Gerade X_2K_2 identisch und durch

$$\frac{x_1}{2a_1} = \frac{x_3}{1} = \frac{x_4}{a_1^2} \cdot \cdot \cdot \cdot \cdot (111)$$

bestimmt.

Der Schnittpunkt von f_1 mit a ist der eine Torsalpunkt auf der einfachen Directrix. Für diesen Punkt hat man offenbar

$$\frac{x_1}{a_1^2 + a_2^2} = \frac{x_2}{2 a_1 a_2} = \frac{x_3}{a_1} = \frac{x_4}{a_1 a_2^2}. \quad (112)$$

Derselbe ist der Punkt A_{f1} , wo a den Fokalkegel F_1 berührt. Der zweite Torsalpunkt ist der Berührungspunkt A_{f2} von a mit dem Fokalkegel F_2 ; er wird durch

$$\frac{x_1}{2a_1a_2} = \frac{x_2}{a_1^2 + a_2^2} = \frac{x_3}{a_2} = \frac{x_4}{a_1^2 a_2} \quad . \quad . \quad (113)$$

dargestellt.

Wir sehen daher, dass die beiden Torsalpunkte mit den Brennpunkten des durch A bestimmten Congruenzstrahles identisch sind.

Mit dem Vorigen ist auch die Untersuchung dieser kubischen Regelfläche erledigt.

Jeder Punkt A in ω_{∞} bestimmt eine kubische Regelfläche (d_m) , für welche a = AA' die einfache Directrix ist, während die Doppelgerade Δ den Punkt X_4 mit dem durch

$$x_1 = 2 a_1 x_3, \ x_2 = 2 a_2 x_3, \ x_4 = 0$$

bestimmten Punkte B verbindet.

Wenn A alle Positionen in der Ebene ω_0 durchläuft, so beschreibt die einfache Directrix die Strahlencongruenz und die Doppelgerade den Strahlenbündel, welcher X_4 zum Scheitel hat.

§ 13. Die Regelftäche der Congruenzstrahlen, welche auf einen durch die Punkte X_1 und X_2 hindurchgehenden Kegelschnitt ruhen.

Zum Schluss werden wir die Regelfläche untersuchen, welche von denjenigen Strahlen erzeugt wird, die auf einem durch X_1 und X_2 gelegten Kegelschnitt ruhen.

Ein solcher Kegelschnitt befinde sich in einer durch X_1X_2 hindurchgehenden, mit ω_{μ} bezeichneten Ebene

$$x_3 = \mu x_4$$
.

Diesen Kegelschnitt werden wir mit γ_{μ} andeuten. Der in ω_{μ} befindliche Kegelschnitt γ_{μ} werde durch

$$\alpha_{3} \beta_{3} x_{1} x_{2} + x_{1} (\alpha_{2} \beta_{3} x_{3} + \alpha_{3} \beta_{2} x_{4}) + x_{2} (x_{1} \beta_{3} x_{3} + \alpha_{3} \beta_{1} x_{4}) + (\alpha_{0} \beta_{3} x_{3}^{2} + \alpha_{3} \beta_{0} x_{4}^{2}) = 0, \qquad (114)$$

$$x_{3} = \mu x_{4} \dots \dots \dots (115)$$

dargestellt. Die eigentümliche Form der Gleichung (114) ist im I. Abschnitte (S. 16) erklärt.

Die Gleichung der Regelfläche wird ermittelt, indem man aus (114), (115) und den beiden Gleichungen (1) die Coordinaten x_1 , x_2 , x_3 und x_4 eliminirt; man erhält sodann eine Gleichung in p_1 und p_2 ; diese ist die Beziehung, welche zwischen den Coordinaten p_1 , p_2 der Spur P eines Congruenzstrahles p besteht, wenn dieser Strahl den Kegelschnitt schneidet. Eliminirt man ferner aus dieser Gleichung mit Hülfe von (1) die Grössen p_1 und p_2 , so bekommt man die Gleichungen der zu untersuchenden Regelfläche.

Die Elimination von x_3 giebt

$$lpha_3 eta_3 x_1 x_2 + (lpha_2 eta_3 \mu + lpha_3 eta_2) x_1 x_4 + (lpha_1 eta_3 \mu + lpha_3 eta_1) x_2 x_4 + \\ + (lpha_0 eta_3 \mu^2 + lpha_3 eta_0) x_4^2 = 0,$$
 $x_1 = \left(p_1 \mu + \frac{1}{p_1}\right) x_4,$
 $x_2 = \left(p_2 \mu + \frac{1}{p_2}\right) x_4.$

Durch Elimination von x_1 und x_2 und Beseitigung der Nenner erhält man

$$\begin{array}{l} \alpha_{3} \beta_{3} \mu^{2} p_{1}^{2} p_{2}^{2} + (\alpha_{2} \beta_{3} \mu + \alpha_{3} \beta_{2}) \mu p_{1}^{2} p_{2} + (\alpha_{1} \beta_{3} \mu + \alpha_{3} \beta_{1}) \mu p_{1} p_{2}^{2} + \\ + \alpha_{3} \beta_{3} \mu p_{1}^{2} + \alpha_{3} \beta_{3} \mu p_{2}^{2} + (\alpha_{0} \beta_{3} \mu^{2} + \alpha_{3} \beta_{0}) p_{1} p_{2} + \\ + (\alpha_{1} \beta_{3} \mu + \alpha_{3} \beta_{1}) p_{1} + (\alpha_{2} \beta_{3} \mu + \alpha_{3} \beta_{2}) p_{2} + \alpha_{3} \beta_{3} = 0, \end{array}$$
(116)

oder

$$\gamma_{0}p_{1}^{2}p_{2}^{2} + \gamma_{1}p_{1}^{2}p_{2} + \gamma_{2}p_{1}p_{2}^{2} + \gamma_{1}'p_{1}^{2} + \gamma_{2}'p_{2}^{2} + \gamma_{0}'p_{1}p_{2} + \gamma_{1}''p_{1} + \gamma_{2}''p_{2} + \gamma_{0}'' = 0 \quad . \quad . \quad (117)$$

Wenn wir nun p_1^2 durch $\frac{p_1x_1-x_4}{x_3}$ und p_2^2 durch $\frac{p_2x_2-x_4}{x_3}$ ersetzen, so finden wir

Der Kürze wegen setzen wir

$$\gamma_{0}x_{1}x_{2} + \gamma_{1}x_{1}x_{3} + \gamma_{2}x_{2}x_{3} + \gamma_{0}'x_{3}^{2} = \theta_{3},
\gamma_{1}'x_{1}x_{3} - \gamma_{0}x_{1}x_{4} + \gamma_{1}''x_{3}^{2} - \gamma_{2}x_{3}x_{4} = \theta_{2},
\gamma_{2}x_{2}x_{3} - \gamma_{0}x_{2}x_{4} + \gamma_{2}''x_{3}^{2} - \gamma_{1}x_{3}x_{4} = \theta_{1},
\gamma_{0}''x_{3}^{2} - (\gamma_{1}' + \gamma_{2}')x_{3}x_{4} + \gamma_{0}x_{4}^{2} = \theta_{0} ;$$
(119)

die Gleichung (118) bekommt nun die Form

$$\theta_3 p_1 p_2 + \theta_2 p_1 + \theta_1 p_2 + \theta_0 = 0.$$
 . (120)

Ebenso wie auf S. 36 die Gleichungen (13), (14) und (15) aus der Gleichung (12) abgeleitet wurden, können wir nun aus (120) die folgenden Gleichungen herleiten:

$$(\theta_3 x_1 + \theta_4 x_3) p_1 p_2 + (\theta_2 x_1 + \theta_0 x_3) p_4 - \theta_3 x_4 p_2 - \theta_2 x_4 = 0, \quad (121)$$

$$(\theta_3 x_2 + \theta_2 x_3) p_1 p_2 - \theta_3 x_4 p_1 + (\theta_1 x_2 + \theta_0 x_3) p_2 - \theta_1 x_4 = 0, \quad (122)$$

$$(\theta_3 x_1 x_2 + \theta_2 x_1 x_3 + \theta_1 x_2 x_3 + \theta_0 x_3^2) p_1 p_2 - (\theta_3 x_1 + \theta_1 x_3) x_4 p_1 - (\theta_3 x_2 + \theta_2 x_3) x_4 p_2 + \theta_3 x_4^2 = 0. (123)$$

Durch Elimination von p_1 , p_2 und p_1 , p_2 aus (120), (121), (122) und (123) bekommt man

Indem man zu der vierten Horizontalreihe x_1x_2 mal die erste, — x_2 mal die zweite und — x_4 mal die dritte addirt, erhält man

$$\Delta \equiv \begin{vmatrix} \theta_{3} & , \theta_{2} & , \theta_{4} & , \theta_{0} \\ \theta_{3}x_{1} + \theta_{4}x_{3}, \theta_{2}x_{1} + \theta_{0}x_{3} & , -\theta_{3}x_{4} & , -\theta_{2}x_{4} \\ \theta_{3}x_{2} + \theta_{2}x_{3}, -\theta_{3}x_{4} & , \theta_{1}x_{2} + \theta_{0}x_{3} & , -\theta_{1}x_{4} \\ \theta_{0}x_{3}^{2} & , -(\theta_{0}x_{2} + \theta_{1}x_{4})x_{3}, -(\theta_{0}x_{1} + \theta_{2}x_{4})x_{3}, \theta_{0}x_{4}x_{2} + \theta_{1}x_{1}x_{4} + \theta_{2}x_{2}x_{4} + \theta_{3}x_{4}^{2} \end{vmatrix} = 0.$$

Durch Einsetzung der Ausdrücke (119) für θ_3 , θ_2 , θ_4 und θ_0 findet man folgendes Resultat

$$\begin{array}{c} \theta_{0}x_{2}+\theta_{1}x_{4}=\gamma_{0}^{"}x_{2}x_{3}^{2}-\gamma_{1}^{'}x_{2}x_{3}x_{4}-\gamma_{2}^{'}x_{2}x_{3}x_{4}+\gamma_{0}x_{2}x_{4}^{2}+\\ +\gamma_{2}^{'}x_{2}x_{3}x_{4}-\gamma_{0}x_{2}x_{1}^{2}+\gamma_{2}^{"}x_{3}^{2}x_{4}-\gamma_{1}x_{3}x_{4}^{2}\\ =\left[\gamma_{0}^{"}x_{2}x_{3}-\gamma_{1}^{'}x_{2}x_{4}+\gamma_{2}^{"}x_{3}x_{4}-\gamma_{1}x_{4}^{2}\right]x_{3}\,,\\ \theta_{0}x_{1}+\theta_{2}x_{4}=\left[\gamma_{0}^{"}x_{1}x_{3}-\gamma_{2}^{'}x_{1}x_{4}+\gamma_{1}^{"}x_{3}x_{4}-\gamma_{2}x_{4}^{2}\right]x_{3}\,,\\ \theta_{0}x_{1}x_{2}+\theta_{1}x_{1}x_{4}+\theta_{2}x_{2}x_{4}+\theta_{3}x_{4}^{2}=\gamma_{0}^{"}x_{1}x_{2}x_{3}^{2}-\gamma_{1}^{'}x_{1}x_{2}x_{3}x_{4}-\gamma_{2}^{'}x_{1}x_{2}x_{3}x_{4}+\gamma_{0}x_{1}x_{2}x_{4}^{2}+\\ +\gamma_{2}^{'}x_{1}x_{2}x_{3}x_{4}-\gamma_{0}x_{1}x_{2}x_{4}^{2}+\gamma_{2}^{"}x_{1}x_{3}^{2}x_{4}-\gamma_{1}x_{1}x_{3}x_{4}^{2}+\\ +\gamma_{1}^{'}x_{1}x_{2}x_{3}x_{4}-\gamma_{0}x_{1}x_{2}x_{4}^{2}+\gamma_{1}^{'}x_{2}x_{3}^{2}x_{4}-\gamma_{2}x_{2}x_{3}x_{4}^{2}+\\ +\gamma_{0}x_{1}x_{2}x_{4}^{2}+\gamma_{1}x_{1}x_{3}x_{4}^{2}+\gamma_{2}x_{2}x_{3}x_{4}^{2}+\gamma_{0}^{'}x_{3}^{2}x_{4}^{2}\\ =\left[\gamma_{0}^{"}x_{1}x_{2}+\gamma_{2}^{"}x_{1}x_{4}+\gamma_{1}^{"}x_{2}x_{4}+\gamma_{0}^{'}x_{4}^{2}\right]x_{3}^{2}. \end{array}$$

Setzen wir weiter, zur Erleichterung der Übersicht,

$$\begin{array}{c} \gamma_{0}^{"} x_{2} x_{3} - \gamma_{1}^{'} x_{2} x_{4} + \gamma_{2}^{"} x_{3} x_{4} - \gamma_{1} x_{4}^{2} = \theta_{4}, \\ \gamma_{0}^{"} x_{1} x_{3} - \gamma_{2}^{'} x_{1} x_{4} + \gamma_{1}^{"} x_{3} x_{4} - \gamma_{2} x_{4}^{2} = \theta_{5}, \\ \gamma_{0}^{"} x_{1} x_{2} + \gamma_{2}^{"} x_{1} x_{4} + \gamma_{1}^{"} x_{2} x_{4} + \gamma_{0}^{'} x_{4}^{2} = \theta_{6}, \end{array}$$
 (124)

so können wir obige Gleichung, nachdem wir durch x_3^2 geteilt haben, in diese Gestalt bringen:

$$\Delta' \equiv \begin{vmatrix} \theta_3 & , & \theta_2 & , & \theta_1 & , & \theta_0 \\ \theta_3 x_1 + \theta_1 x_3 & , & \theta_2 x_1 + \theta_0 x_3 & , & -\theta_3 x_4 & , & -\theta_2 x_4 \\ \theta_3 x_2 + \theta_2 x_3 & , & -\theta_3 x_4 & , & \theta_1 x_2 + \theta_0 x_3 & , & -\theta_1 x_4 \\ \theta_0 & , & -\theta_4 & , & -\theta_5 & , & \theta_6 \end{vmatrix} = 0.$$

Subtrahiren wir von der zweiten Horizonralreihe x_1 mal die erste und von der dritten x_2 mal die erste, so folgt

$$\Delta' \equiv \begin{vmatrix} \theta_3 & , & \theta_2 & , & \theta_1 & , & \theta_0 \\ \theta_1 x_3 & , & \theta_0 x_3 & , & -(\theta_1 x_1 + \theta_3 x_4) & , & -(\theta_0 x_1 + \theta_2 x_4) \\ \theta_2 x_3 & , & -(\theta_2 x_2 + \theta_3 x_4) & , & \theta_0 x_3 & , & -(\theta_0 x_2 + \theta_1 x_4) \\ \theta_0 & , & -\theta_4 & , & -\theta_5 & , & \theta_3 \end{vmatrix} = 0.$$

Wir finden weiter

$$\theta_1 x_1 + \theta_3 x_4 = (\gamma_2' x_1 x_2 + \gamma_2'' x_1 x_3 + \gamma_2 x_2 x_4 + \gamma_0' x_3 x_4) x_3, \theta_2 x_2 + \theta_3 x_4 = (\gamma_1' x_1 x_2 + \gamma_1 x_1 x_4 + \gamma_1'' x_2 x_3 + \gamma_0' x_3 x_4) x_3.$$

Der Kürze halber setzen wir

$$\gamma_{2}' x_{1} x_{2} + \gamma_{2}'' x_{1} x_{3} + \gamma_{2} x_{2} x_{4} + \gamma_{0}' x_{3} x_{4} = \theta_{7},
\gamma_{1}' x_{1} x_{2} + \gamma_{1} x_{1} x_{4} + \gamma_{1}'' x_{2} x_{3} + \gamma_{0}' x_{3} x_{4} = \theta_{8},$$
(125)

und erhalten nunmehr

$$\theta_1 x_1 + \theta_3 x_4 = \theta_7 x_3,$$

 $\theta_2 x_2 + \theta_3 x_4 = \theta_8 x_3;$

gleichfalls gilt

$$\theta_0 x_1 + \theta_2 x_4 = \theta_5 x_3,$$

 $\theta_0 x_2 + \theta_1 x_4 = \theta_6 x_3.$

Substituiren wir diese Ausdrücke in die Gleichung der Regelfläche, so erscheint sie nochmals teilbar durch x_3^2 . Nach Teilung durch x_3^2 bekommen wir

$$\Delta'' = \begin{vmatrix} \theta_{3}, & \theta_{2}, & \theta_{1}, & \theta_{0} \\ \theta_{1}, & \theta_{0}, & --\theta_{7}, & --\theta_{5} \\ \theta_{2}, & --\theta_{8}, & \theta_{0}, & --\theta_{4} \\ \theta_{0}, & --\theta_{4}, & --\theta_{5}, & \theta_{6} \end{vmatrix} = 0.$$
 (126)

Die Grössen θ sind alle in den Coordinaten vom zweiten Grade; demnach ist die Gleichung (126) vom *achten* Grade.

Hieraus ergiebt sich, dass die Regelfläche der Strahlen, welche auf einen willkürlichen durch X_1 und X_2 gelegten Kegelschnitt γ_{μ} ruhen, vom achten Grade ist. Es erhellt, dass der Kegelschnitt γ_{μ} selber auf dieser Regelfläche eine vierfache Kurve ist.

Den Schnitt mit ω_{∞} erhalten wir, indem wir in der Gleichung (126) $x_4 = 0$ setzen; die Grössen θ bekommen sodann die folgenden Werte (siehe (119), (124) und (125)):

$$\theta_{3} = \gamma_{0} x_{1} x_{2} + \gamma_{1} x_{1} x_{3} + \gamma_{2} x_{2} x_{3} + \gamma_{0}' x_{3}^{2},
\theta_{2} = \gamma_{1}' x_{1} x_{3} + \gamma_{1}'' x_{3}^{2},
\theta_{1} = \gamma_{2}' x_{2} x_{3} + \gamma_{2}'' x_{3}^{2},
\theta_{0} = \gamma_{0}'' x_{3}^{2},
\theta_{4} = \gamma_{0}'' x_{2} x_{3},
\theta_{5} = \gamma_{0}'' x_{1} x_{3},
\theta_{6} = \gamma_{0}'' x_{1} x_{2},
\theta_{7} = \gamma_{2}' x_{1} x_{2} + \gamma_{2}'' x_{1} x_{3},
\theta_{8} = \gamma_{1}' x_{1} x_{2} + \gamma_{1}'' x_{2} x_{3}.$$
(127)

Die Gleichung (126) gestaltet sich nun folgendermassen:

Es gelten noch die folgenden Beziehungen:

$$egin{aligned} \gamma_{0} &= \mu^{2} \, lpha_{3} \, eta_{3} \,, \ \gamma_{1} &= \mu \, (lpha_{2} \, eta_{3} \, \mu + lpha_{3} \, eta_{2}) \,, \ \gamma_{2} &= \mu \, (lpha_{1} \, eta_{3} \, \mu + lpha_{3} \, eta_{1}) \,, \ \gamma_{0}{}' &= lpha_{0} \, eta_{3} \, \mu^{2} + lpha_{3} \, eta_{0} \,, \ \gamma_{1}{}' &= \mu \, lpha_{3} \, eta_{3} \,, \ \gamma_{2}{}' &= \mu \, lpha_{3} \, eta_{3} \,, \ \gamma_{1}{}'' &= lpha_{1} \, eta_{3} \, \mu + lpha_{3} \, eta_{1} \,, \ \gamma_{2}{}'' &= lpha_{2} \, eta_{3} \, \mu + lpha_{3} \, eta_{2} \,, \ \gamma_{0}{}'' &= lpha_{3} \, eta_{3} \,, \end{aligned}$$

und daher

Mit Hülfe der Gleichungen (130) können wir die Gleichung (nach Teilung durch $\gamma_0^{''}$) in dieser Form schreiben:

$$\begin{vmatrix} \mu^2 \gamma_0'' x_1 x_2 + \mu \gamma_2'' x_1 x_3 + \mu \gamma_1'' x_2 x_3 + \gamma_0' x_3^2, (\mu \gamma_0'' x_1 + \gamma_1'' x_3) x_3 & ,(\mu \gamma_0'' x_2 + \gamma_2'' x_3) x_3 & ,x_3^2 \\ (\mu \gamma_0'' x_2 & + \gamma_2'' x_3) x_3 & ,\gamma_0'' x_3^2 & ,-(\mu \gamma_0'' x_2 + \gamma_2'' x_3) x_1, -x_1 x_3 \\ (\mu \gamma_0'' x_1 & + \gamma_1'' x_3) x_3 & ,-(\mu \gamma_0'' x_1 + \gamma_1'' x_3) x_2, \gamma_0'' x_3^2 & ,-x_2 x_3 \\ \gamma_0'' x_3^2 & ,-\gamma_0'' x_2 x_3 & ,-\gamma_0'' x_1 x_3 & ,x_1 x_2 \end{vmatrix} = 0.$$

Wir multipliciren die zweite Horizontalreihe mit x_2 , die dritte mit x_4 , und addiren dann x_3 mal die vierte zu den in dieser Weise erhaltenen Reihen; es folgt dann

$$\begin{vmatrix} \mu^{2} \gamma_{0}'' x_{1} x_{2} + \mu \gamma_{2}'' x_{1} x_{3} + \mu \gamma_{1}'' x_{2} x_{3} + \gamma_{0}' x_{3}^{2}, (\mu \gamma_{0}'' x_{1} + \gamma_{1}'' x_{3}) x_{3} \\ (\mu \gamma_{0}'' x_{2}^{2} + \gamma_{2}'' x_{2} x_{3} + \gamma_{0}'' x_{3}^{2}) x_{3} &, 0 \\ (\mu \gamma_{0}'' x_{1}^{2} + \gamma_{1}'' x_{1} x_{3} + \gamma_{0}'' x_{3}^{2}) x_{3} &, -(\mu \gamma_{0}'' x_{1}^{2} + \gamma_{1}'' x_{1} x_{3} + \gamma_{0}'' x_{3}^{2}) x_{2}, \\ \gamma_{0}'' x_{3}^{2} &, -\gamma_{0}'' x_{2} x_{3} \\ & (\mu \gamma_{0}'' x_{2} + \gamma_{2}'' x_{3}) x_{3} &, x_{3}^{2} \\ & -(\mu \gamma_{0}'' x_{2}^{2} + \gamma_{2}'' x_{2} x_{3} + \gamma_{0}'' x_{3}^{2}) x_{1}, 0 \\ & 0 &, 0 \\ & -\gamma_{0}'' x_{1} x_{3} &, x_{1} x_{2} \end{vmatrix} = 0.$$

Jetzt multipliciren wir die erste Vertikalreihe mit x_1x_2 und addiren zu der also entstandenen Reihe x_1x_3 mal die zweite, x_2x_3 mal die dritte und $\gamma_0''x_3^2$ mal die vierte Vertikalreihe. Wir finden nunmehr

$$\begin{vmatrix} \Pi, (\mu \gamma_0'' x_1 + \gamma_1'' x_3) x_3 & , (\mu \gamma_0'' x_2 + \gamma_2'' x_3) x_3 & , x_3^2 \\ 0, & 0 & , (\mu \gamma_0'' x_2^2 + \gamma_2'' x_2 x_3 + \gamma_0'' x_3^2) x_1, 0 \\ 0, -(\mu \gamma_0'' x_1^2 + \gamma_1'' x_1 x_3 + \gamma_0'' x_3^2) x_2, & 0 & , 0 \\ 0, & -\gamma_0'' x_2 x_3 & , -\gamma_0'' x_1 x_3 & , x_1 x_2 \end{vmatrix} = 0$$

oder

$$x_1^2 x_2^2 \Pi(\mu \gamma_0'' x_1^2 + \gamma_1'' x_1 x_3 + \gamma_0'' x_3^2) (\mu \gamma_0'' x_2^2 + \gamma_2'' x_2 x_3 + \gamma_0'' x_3^2) = 0, (131)$$

wo, zur Abkürzung

$$\Pi = \mu^{2} \gamma_{0}^{"} x_{1}^{2} x_{2}^{2} + \mu \gamma_{2}^{"} x_{1}^{2} x_{2} x_{3} + \mu \gamma_{1}^{"} x_{1} x_{2}^{2} x_{3} + \mu \gamma_{0}^{"} x_{1}^{2} x_{3}^{2} + \mu \gamma_{0}^{"} x_{2}^{2} x_{3}^{2} + + \gamma_{0}^{"} x_{1} x_{2} x_{3}^{2} + \gamma_{1}^{"} x_{1} x_{3}^{3} + \gamma_{2}^{"} x_{2} x_{3}^{3} + \gamma_{0}^{"} x_{3}^{4}$$

$$(132)$$

gesetzt wurde.

Die Gleichung (128), welche nach Multiplikation mit $x_1^2 x_2^2$ in die Form (131) gebracht ist, erscheint deshalb gleichberechtigt mit den folgenden drei Gleichungen:

$$\Pi = 0,$$

$$\mu \gamma_0'' x_1^2 + \gamma_1'' x_1 x_3 + \gamma_0'' x_3^2 = 0,$$

$$\mu \gamma_0'' x_2^2 + \gamma_2'' x_2 x_3 + \gamma_0'' x_3^2 = 0.$$
(133)

In der Gleichung II = 0 erkennen wir die Gleichung (116), wenn in dieser p_1 und p_2 durch $x_1 : x_3$ und $x_2 : x_3$ ersetzt sind. Die zweite der Gleichungen (133) stellt zwei Geraden durch X_2 , die dritte zwei Geraden durch X_1 dar.

Der Schnitt von ω_x mit der betreffenden Regelfläche ist deshalb aus einer biquadratischen Kurve $\Pi = 0$, zwei Geraden durch X_1 und zwei Geraden durch X_2 zusammengesetzt.

Wir wollen nunmehr die Bedeutung der durch X_1 und X_2 hindurchgehenden Geraden erforschen.

Die Congruenzstrahlen, welche auf den in ω_{∞} befindlichen Geraden

$$x_1 = p_1 x_3, \ x_4 = 0$$

ruhen, liegen alle in der Ebene

Ebenso liegen alle Strahlen, welche die Gerade

$$x_1 = q_1 x_3, \ x_4 = 0$$

schneiden, in der Ebene

Die Schnittlinie der Ebenen (134) und (135) ist auch die Schnittlinie der Ebenen, welche den durch Addition und Substraktion von (134) und (135) erhaltenen Gleichungen

$$x_3 = \frac{1}{p_1 q_1} x_4 \quad . \quad . \quad . \quad . \quad (136)$$

und

$$2 x_1 = (p_1 + q_1) x_3 + \frac{p_1 + q_1}{p_1 q_1} x_4 \quad . \quad . \quad (137)$$

entsprechen.

Für die beiden Geraden, welche durch

$$\mu \gamma_0'' x_1^2 + \gamma_1'' x_1 x_3 + \gamma_0'' x_3^2 = 0$$

dargestellt werden, gilt

$$p_1 + q_1 = -\frac{\gamma_1''}{\mu \gamma_0''},$$
 $p_1 q_1 = \frac{1}{\mu}.$

Die auf diesen Geraden ruhenden Congruenzstrahlen liegen demnach in den Ebenen, die sich in der Gerade

$$\begin{vmatrix} x_3 = \mu x_4 \\ \gamma_0'' x_1 + \gamma_1'' x_4 = 0 \end{vmatrix} (138)$$

schneiden.

Diese Congruenzstrahlen ruhen also alle auf der durch die Gleichungen (138) vertretenen Gerade.

Ersetzen wir γ_0 " und γ_1 " dürch ihre aus (129) hervorgehenden Ausdrücke, so bekommen die Gleichungen (138) diese Gestalt:

$$egin{aligned} x_3 &= \mu x_4 \,, \ lpha_3 eta_3 x_4 + (lpha_1 eta_3 \mu + lpha_3 eta_4) \, x_4 = 0 \,, \end{aligned}$$

oder

$$\begin{array}{c}
x_3 = \mu x_4, \\
\alpha_3 \beta_3 x_1 + \alpha_1 \beta_3 x_3 + \alpha_3 \beta_1 x_4.
\end{array} (139)$$

Diese Gleichungen stellen aber (siehe (114) und (115)) die Tangenten in X_2 an dem Kegelschnitte γ_{μ} dar, welcher alle die Regelfläche erzeugenden Congruenzstrahlen trägt.

Dieses Ergebniss ermöglicht uns folgendes zu behaupten:

Wenn der bewegliche Congruenzstrahl längs dem gegebenen Kegelschnitte γ_{μ} gleitet, wird sein Schnittpunkt sich dem Punkte X_2 in einer durch die Tangente in X_2 bestimmten Richtung nähern. Die Strahlen, welche in dem X_2 unendlich benachbarten Punkte des Kegelschnittes auf diesem ruhen, werden entweder in ω_{∞} oder in ω_0 liegen, und zwei Strahlen werden sich in ω_{∞} , zwei in ω_0 befinden. Es sind nun die beiden in ω_{∞} befindlichen Strahlen, welche dem Schnitte der Regelfläche mit ω_{∞} angehören.

Die beiden anderen in ω_{∞} liegenden Strahlen, welche durch X_1 gehen und durch

$$\mu \gamma_0'' x_2^2 + \gamma_2'' x_2 x_3 + \gamma_0'' x_3^2 = 0$$

dargestellt werden, ruhen aus demselben Grunde in dem X_1 unendlich benachbarten Punkte auf dem Kegelschnitte γ_{μ} .

Die beiden durch X_1 gehenden Geraden sind gleichfalls die beiden Tangenten an der Kurve Π in ihrem Knotenpunkte X_1 . Analoges kann von den beiden Geraden durch X_2 behauptet werden.

Der Schnitt der Regelfläche mit ω_0 ist offenbar auf gleichartiger Weise zusammengezetzt.

§ 14. Die Regeftläche der Congruenzstrahlen, welche auf einem durch X_1 und X_2 gelegten, in ω_{∞} befindlichen Kegelschnitt ruhen.

Wir wollen uns nunmehr mit dem Falle beschäftigen, wo der Kegelschnitt γ_{μ} in der Ebene ω_{∞} liegt, und demnach mit γ_{∞} zu bezeichnen ist.

Wir haben nur in den obigen Gleichungen

$$\mu = \infty$$

zu setzen.

Der Kegelschnitt γ_{∞} wird somit durch

$$\alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 + \alpha_0 x_3^2 = 0$$
 $x_4 = 0$

dargestellt.

Die Grössen γ erhalten nun die folgenden Werte (siehe (129)):

$$egin{aligned} \gamma_0 &= \mu^2 lpha_3 \,, \ \gamma_1 &= \mu^2 lpha_2 \,, \ \gamma_2 &= \mu^2 lpha_1 \,, \ \gamma_0' &= \mu^2 lpha_0 \,, \ \gamma_1' &= \mu lpha_3 \,, \ \gamma_2' &= \mu lpha_1 \,, \ \gamma_2'' &= \mu lpha_1 \,, \ \gamma_2'' &= \mu lpha_2 \,, \ \gamma_0'' &= lpha_3 \,, \end{aligned}$$

wo der Faktor β_3 gestrichen ist.

Die Ausdrücke θ bekommen also die folgende Gestalt (siehe (119), (124) und (125)):

$$\begin{array}{l} \theta_{3} = \mu^{2} \left(\alpha_{3} x_{1} x_{2} + \alpha_{2} x_{1} x_{3} + \alpha_{1} x_{2} x_{3} + \alpha_{0} x_{3}^{2} \right), \\ \theta_{2} = -\mu^{2} \left(\alpha_{3} x_{1} + \alpha_{1} x_{3} \right) x_{4}, \\ \theta_{1} = -\mu^{2} \left(\alpha_{3} x_{2} + \alpha_{2} x_{3} \right) x_{4}, \\ \theta_{0} = \mu^{2} \alpha_{3} x_{4}^{2}, \\ \theta_{4} = -\mu^{2} \alpha_{2} x_{4}^{2}, \\ \theta_{5} = -\mu^{2} \alpha_{1} x_{4}^{2}, \\ \theta_{6} = \mu^{2} \alpha_{0} x_{4}^{2}, \\ \theta_{7} = \mu^{2} \left(\alpha_{1} x_{2} + \alpha_{0} x_{3} \right) x_{4}, \\ \theta_{8} = \mu^{2} \left(\alpha_{2} x_{4} + \alpha_{0} x_{3} \right) x_{4}. \end{array}$$

Die Gleichung (126) der Regelfläche erscheint demnach in dieser Form

$$\Delta'' \equiv \begin{vmatrix} \alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 + \alpha_0 x_3^2, & -(\alpha_3 x_1 + \alpha_1 x_3) x_4, & -(\alpha_3 x_2 + \alpha_2 x_3) x_4, & \alpha_3 x_4^2 \\ -(\alpha_3 x_2 + \alpha_2 x_3) x_4, & & \alpha_3 x_4^2, & -(\alpha_1 x_2 + \alpha_0 x_3) x_4, & \alpha_1 x_4^2 \\ -(\alpha_3 x_1 + \alpha_1 x_3) x_4, & & & -(\alpha_2 x_1 + \alpha_0 x_3) x_4, & \alpha_2 x_4^2, & \alpha_2 x_4^2 \\ \alpha_3 x_4^2, & & & & \alpha_2 x_4^2, & & \alpha_1 x_4^2, & \alpha_0 x_4^2 \end{vmatrix} = 0,$$

oder, nach Teilung durch x_4^4 :

$$\Gamma_{\infty} \equiv \begin{vmatrix} \alpha_{3}x_{1}x_{2} + \alpha_{2}x_{1}x_{3} + \alpha_{1}x_{2}x_{3} + \alpha_{0}x_{3}^{2}, & (\alpha_{3}x_{1} + \alpha_{1}x_{3})x_{4}, & (\alpha_{3}x_{2} + \alpha_{2}x_{3})x_{4}, & \alpha_{3}x_{4}^{2} \\ & -(\alpha_{3}x_{2} + \alpha_{2}x_{3}) & , & \alpha_{3}x_{4} & , & -(\alpha_{1}x_{2} + \alpha_{0}x_{3}) & , & \alpha_{1}x_{4} \\ & -(\alpha_{3}x_{1} + \alpha_{1}x_{3}) & , & -(\alpha_{2}x_{1} + \alpha_{0}x_{3}) & , & \alpha_{3}x_{4} & , & \alpha_{2}x_{4} \\ & \alpha_{3} & , & \alpha_{2} & , & \alpha_{4} & , & \alpha_{0} \end{vmatrix} = 0.(141)$$

Die Regelfläche der Congruenzstrahlen, welche auf einem durch X_1 und X_2 gelegten, in ω_{∞} befindlichen Kegelschnitt γ_{∞} ruhen, ist demnach vom *vierten* Grade.

Setzen wir $x_4 = 0$, so finden wir

$$\begin{vmatrix} \mathbf{\alpha}_{3}x_{1}x_{2} + \mathbf{\alpha}_{2}x_{1}x_{3} + \mathbf{\alpha}_{4}x_{2}x_{3} + \mathbf{\alpha}_{0}x_{3}^{2}, & 0 & , & 0 & , 0 \\ -(\mathbf{\alpha}_{3}x_{2} + \mathbf{\alpha}_{2}x_{3}) & , & 0 & , -(\mathbf{\alpha}_{1}x_{2} + \mathbf{\alpha}_{0}x_{3}), & 0 \\ -(\mathbf{\alpha}_{3}x_{1} + \mathbf{\alpha}_{4}x_{3}) & , -(\mathbf{\alpha}_{2}x_{1} + \mathbf{\alpha}_{0}x_{3}), & 0 & , 0 \\ \mathbf{\alpha}_{3} & , & \mathbf{\alpha}_{2} & , & \mathbf{\alpha}_{1} & , \mathbf{\alpha}_{0} \end{vmatrix} = 0$$

oder

$$(\mathbf{a}_{2}x_{1} + \mathbf{a}_{0}x_{3})(\mathbf{a}_{1}x_{2} + \mathbf{a}_{0}x_{3}) \times \times (\mathbf{a}_{3}x_{1}x_{2} + \mathbf{a}_{2}x_{1}x_{3} + \mathbf{a}_{1}x_{2}x_{3} + \mathbf{a}_{0}x_{3}^{2}) = 0.$$

Der Schnitt mit ω_{x} besteht also aus dem Kegelschnitt γ_{x} und aus den zwei Geraden, welche X_{1} und X_{2} bez. mit den Punkten M_{1} und M_{2} verbinden, wo γ_{x} die Geraden X_{2} X_{3} und X_{1} X_{3} trifft, und sich im Punkte A schneiden.

Fig. 6.

$$\begin{vmatrix} \alpha_3 x_1 x_2, & \alpha_3 x_1 x_4, & \alpha_3 x_2 x_4, & \alpha_3 x_4^2 \\ -\alpha_3 x_2, & \alpha_3 x_4, & -\alpha_1 x_2, & \alpha_1 x_4 \\ -\alpha_3 x_4, & -\alpha_2 x_1, & \alpha_3 x_4, & \alpha_2 x_4 \\ \alpha_3, & \alpha_2, & \alpha_1, & \alpha_0 \end{vmatrix} = 0$$

oder

$$(\mathbf{a}_{4}x_{4} + \mathbf{a}_{5}x_{4})(\mathbf{a}_{2}x_{2} + \mathbf{a}_{5}x_{4})(\mathbf{a}_{0}x_{4}x_{2} + \mathbf{a}_{4}x_{4}x_{4} + \mathbf{a}_{2}x_{2}x_{4} + \mathbf{a}_{5}x_{4}^{2}) = 0 \quad (142)$$

dargestellt.

Er ist aus dem durch X_1 und X_2 gehenden Bildkegelschnitte von γ_{∞} und zwei Geraden durch X_1 und X_2 zusammengesetzt.

Der Pol von $X_1 X_2$ in Bezug auf diesen Bildkegelschnitt ist durch

$$\frac{x_1}{\mathbf{a}_2} = \frac{x_2}{\mathbf{a}_1} = -\frac{x_4}{\mathbf{a}_0}$$

bestimmt. Es ist offenbar das Bild A' des Punktes A.

Auf dieser Regelfläche giebt es noch eine Doppelkurve, welche wir mit wenig Mühe bestimmen können.

Ein Congruenzstrahl p (p_1, p_2) schneidet γ_x , wenn der Gleichung

$$\alpha_3 p_1 p_2 + \alpha_2 p_1 + \alpha_1 p_2 + \alpha_0 = 0 \dots (143)$$

genügt wird.

Ein Strahl q (q_1, q_2) tut dasselbe, wenn man hat

$$\alpha_3 q_1 q_2 + \alpha_2 q_1 + \alpha_1 q_2 + \alpha_0 = 0.................. (144)$$

Die Strahlen p und q schneiden sich, wenn der Beziehung

genügt wird, während ihr Schnittpunkt durch

$$x_3 = \frac{1}{p_1 q_1} x_4 = \frac{1}{p_2 q_2} x_4 \quad . \quad . \quad . \quad (24)$$

bestimmt ist.

Es sollen die Grössen p_1 , p_2 , q_4 und q_2 aus den Gleichungen (143), (144), (23), (24), (25) und (26) eliminirt werden.

Die Elimination van q_2 aus (144) und (23) ergiebt

$$\alpha_3 p_1 q_1^2 + \alpha_2 p_2 q_1 + \alpha_1 p_1 q_1 + \alpha_0 p_2 = 0. \quad (145)$$

Eliminiren wir p_2 aus (145) und (143), so finden wir

$$\begin{array}{l} {{\alpha _3}^2}\,{p_1}^2\,{q_1}^2 + {\alpha _1}\,{\alpha _3}(\,{p_1} + {q_1})\,{p_1}\,{q_1} + ({\alpha _1}^2 - {\alpha _2}^2)\,{p_1}\,{q_1} - \\ - \,{\alpha _0}\,{\alpha _2}\,(\,{p_1} + {q_1}) - \,{\alpha _0}^2 = 0\,, \end{array}$$

oder

Mit Hülfe der Gleichungen (24) und (25) lässt sich diese Gleichung also schreiben:

$$\mathbf{a_3}^2 + \mathbf{a_1} \, \mathbf{a_3} \, \frac{x_1}{x_4} + (\mathbf{a_1}^2 - \mathbf{a_2}^2) \, \frac{x_3}{x_4} - \mathbf{a_0} \, \mathbf{a_2} \, \frac{x_1}{x_4} \cdot \frac{x_3}{x_4} - \mathbf{a_0}^2 \, \frac{{x_3}^2}{{x_4}^2} = 0 \; ,$$

oder

Diese Gleichung stellt einen quadratischen Kegel k_2 mit X_2 als Spitze dar.

Hätten wir zuerst p_1 und q_1 eliminirt, so würden wir einen quadratischen Kegel k_1 mit X_1 als Spitze gefunden haben, dessen Gleichung lautet:

Der Kegel k_2 schneidet die Ebene $x_4=0$ in der Gerade $X_1\,X_2$ und in der Gerade

$$\mathbf{\alpha}_2 x_1 + \mathbf{\alpha}_0 x_3 = 0,$$

d. h. in der Gerade $X_2 M_2$.

Der Kegel k_1 schneidet ω_{∞} in $X_1 X_2$ und in der Gerade

$$\mathbf{a}_{1} x_{2} + \mathbf{a}_{0} x_{3} = 0$$
,

d. h. in der Gerade $X_1 M_1$.

Es haben die beiden Kegel k_1 und k_2 daher ausser der Gerade $X_1 \, X_2$ eine kubische Raumkurve gemein, welche die Punkte X_1 und X_2 und den Punkt A enthält, wo die Geraden $X_1 \, M_1$ und $X_2 \, M_2$ sich schneiden.

Der Kegel k_2 schneidet $x_3=0$ (ω_0) in $X_1\,X_2$ und in der Gerade

$$\mathbf{a}_{1} x_{1} + \mathbf{a}_{3} x_{4} = 0.$$

Der Kegel k_1 dagegen schneidet ω_0 in $X_1 X_2$ und in der Gerade

$$\alpha_2 \, x_2 + \alpha_3 \, x_4 = 0.$$

Der Schnittpunkt B' dieser beiden Geraden, welcher durch

$$\mathbf{z}_1 \, x_1 = \mathbf{z}_2 \, x_2 = - \, \mathbf{z}_3 \, x_4$$

bestimmt ist, liegt auch auf der kubischen Raumkurve.

Für diesen Punkt gilt

$$\frac{x_1'}{x_4'} = -\frac{\alpha_3}{\alpha_1}, \ \frac{x_2'}{x_4'} = -\frac{\alpha_3}{\alpha_2}.$$
 (149)

Er ist der Bildpunkt des Punktes B in ω_x , welcher durch

$$\frac{x_1}{x_2} = -\frac{\alpha_1}{\alpha_2}, \ \frac{x_2}{x_2} = -\frac{\alpha_2}{\alpha_2},$$

oder durch

bestimmt ist.

Dieser Punkt B ist offenbar der Schnitt der Tangenten in X_1 und X_2 an γ_{∞} , also der Pol von $X_1 X_2$ in Bezug auf γ_{∞} .

Es leuchtet ein, dass die hier betrachtete kubische Raumkurve mit der gesuchten Doppelkurve identisch ist.

Wir haben also gefunden, dass die Doppelkurve der Regelfläche $\Gamma_{\mathbb{Z}}$, welche erzeugt wird durch die auf einem durch X_1 und X_2 gelegten, in $\omega_{\mathbb{Z}}$ befindlichen Kegelschnitt γ_{∞} ruhenden Strahlen, eine kubische Raumkurve ist, welche X_1 , X_2 , den Schnittpunkt A von X_1 M_1 und X_2 M_2 , und das Bild B' des in Bezug auf γ_{∞} der Gerade X_1 X_2 zugeordneten Poles B enthält.

§ 15. Die Regelfläche der Strahlen, welche sich stützen auf einen in ω_x befindlichen durch X_1 und X_2 gelegten Kegelschnitt, in Bezug auf welchen X_3 der Pol von X_1X_2 ist.

In diesem speziellen Falle ist der oben erwähnte Punkt B mit dem Punkte X_3 identisch.

Wir haben offenbar

$$\mathbf{z}_1 = \mathbf{0}$$
 , $\mathbf{z}_2 = \mathbf{0}$

zu setzen.

Die Gleichung des Kegelschnittes lautet

$$\alpha_3 x_1 x_2 + \alpha_0 x_3^2 = 0.$$
 (151)

Die Regelfläche wird somit (siehe (141)) durch

$$\begin{vmatrix} \alpha_3 x_1 x_2 + \alpha_0 x_3^2, & -\alpha_3 x_1 x_4, & -\alpha_3 x_2 x_4, & \alpha_3 x_4^2 \\ -\alpha_3 x_2 & , & \alpha_3 x_4 & , & -\alpha_0 x_3 & , & 0 \\ -\alpha_3 x_1 & , & -\alpha_0 x_3 & , & \alpha_3 x_4 & , & 0 \\ \alpha_3 & , & 0 & , & 0 & , & \alpha_0 \end{vmatrix} = 0,$$

oder durch

$$\alpha_0 \alpha_3 x_1 x_2 (\alpha_0^2 x_3^2 + \alpha_3^2 x_4^2) + \alpha_0^2 \alpha_3^2 (x_1^2 + x_2^2) x_3 x_4 + (\alpha_0^2 x_3^2 - \alpha_3^2 x_4^2)^2 = 0 \quad . \quad . \quad . \quad . \quad (152)$$

dargestellt.

Der Schnitt in ω_{∞} wird durch

$$x_3^2(\alpha_3 x_1 x_2 + \alpha_3 x_3^2) = 0$$
,

der Schnitt in ω_0 ($x_3 = 0$) durch

$$x_4^2(\alpha_0 x_1 x_2 + \alpha_3 x_4^2) = 0$$
 . . . (153)

angewiesen.

Die Doppelkurve ist nun (siehe (147) und (148)) durch

$$\begin{array}{l} {\bf \alpha_3}^2 x_4^2 - {\bf \alpha_0}^2 x_3^2 = 0 \ , \\ {\bf \alpha_3}^2 x_4^2 - {\bf \alpha_0}^2 x_3^2 = 0 \end{array}$$

gegeben.

Wir können also vorläufig nur behaupten, dass die Doppelkurve in ein Gebilde ausgeartet ist, welches zum Teil der Ebene ω_{ν_1} ($\alpha_0 x_3 + \alpha_3 x_4 = 0$), zum Teil der Ebene ω_{ν_2} ($\alpha_3 x_3 - \alpha_3 x_4 = 0$) angehört.

Substituiren wir in (152) $\alpha_0 x_3 = -\alpha_3 x_4$, so folgt

$$2 \alpha_0 \alpha_3 x_1 x_2 \cdot \alpha_3^2 x_4^2 - \alpha_0 \alpha_3^3 (x_1^2 + x_2^2) x_4^2 = 0$$
,

oder

$$x_4^2(x_1 - x_2)^2 = 0.$$

Die Ebene ω_{ν_4} ($\alpha_3 x_3 + \alpha_3 x_4 = 0$) schneidet demnach die Regelfläche in den Doppelgeraden $X_1 X_2$ und $X_{\nu_4} E$, deren letztere die Schnittlinie von ω_{ν_4} mit der Ebene ε ist.

Die Substitution $\alpha_0 x_3 = + \alpha_3 x_4$ giebt

$$x_4^2(x_1 + x_2)^2 = 0.$$

Die Ebene ω_{ν_2} ($\alpha_0 x_3 - \alpha_3 x_4 = 0$) schneidet somit die Fläche in den Doppelgeraden $X_1 X_2$ und $X_{\nu_2} E'$, von denen die letztere die Schnittlinie von ω_{ν_2} mit der Ebene ε' ist.

Die kubische Raumkurve ist deshalb in drei Geraden, nämlich X_1X_2 , $X_{\nu_1}E$ und $X_{\nu_2}E'$ ausgeartet.

§ 16. Die Regelfläche der Strahlen, welche auf einem durch X_1 , X_2 und X_3 gelegten Kegelschnitt ruhen.

Zum Schluss wollen wir den Spezialfall erledigen, wo der Kegelschnitt γ_{∞} den Punkt X_3 enthält.

In diesem Falle haben wir

$$\alpha_0 = 0$$
.

Demnach lauten die Gleichungen des Kegelschnittes

$$a_3 x_1 x_2 + a_2 x_1 x_3 + a_1 x_2 x_3 = 0,$$
 $x_4 = 0.$ (154)

Die Regelfläche wird nunmehr durch

$$\begin{vmatrix} \alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_4 x_2 x_3, & -(\alpha_3 x_1 + \alpha_1 x_3) x_4, & -(\alpha_3 x_2 + \alpha_2 x_3) x_4, \alpha_3 x_4^2 \\ -(\alpha_3 x_2 + \alpha_2 x_3) & , & \alpha_3 x_4 & , & -\alpha_1 x_2 & , \alpha_1 x_4 \\ -(\alpha_3 x_1 + \alpha_1 x_3) & , & -\alpha_2 x_1 & , & \alpha_3 x_4 & , \alpha_2 x_4 \\ \alpha_3 & , & \alpha_2 & , & \alpha_1 & , & 0 \end{vmatrix} = 0$$

dargestellt.

Addiren wir x_1 mal die erste, x_2 mal die dritte und x_1x_2 mal die vierte Horizontalreihe zu der ersten, so finden wir, nach Teilung durch x_4 ,

$$\begin{vmatrix} 0 & , -\alpha_1 x_3 x_4 , -\alpha_2 x_3 x_4 , \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_4 \\ -(\alpha_3 x_2 + \alpha_2 x_3) & , & \alpha_3 x_4 & , -\alpha_1 x_2 & , & \alpha_1 \\ -(\alpha_3 x_1 + \alpha_1 x_3) & , -\alpha_2 x_1 & , & \alpha_3 x_4 & , & \alpha_2 \\ \alpha_3 & , & \alpha_2 & , & \alpha_1 & , & 0 \end{vmatrix} = 0.$$

Addiren wir zu der zweiten Horizontalreihe x_2 mal und zu der dritten x_4 mal die vierte, so folgt

$$\begin{vmatrix}
0, -\alpha_{1}x_{3}x_{4}, -\alpha_{2}x_{3}x_{4}, & \alpha_{1}x_{1} + \alpha_{2}x_{2} + \alpha_{3}x_{4} \\
-\alpha_{2}x_{3}, & \alpha_{2}x_{2} + \alpha_{3}x_{4}, & 0, & \alpha_{1} \\
-\alpha_{1}x_{3}, & 0, & \alpha_{1}x_{1} + \alpha_{3}x_{4}, & \alpha_{2} \\
\alpha_{3}, & \alpha_{2}, & \alpha_{1}, & 0
\end{vmatrix} = 0.(155)$$

Diese Gleichung ist vom dritten Grade und vertritt die Regelfläche der Strahlen, welche auf dem durch X_4 , X_2 und X_3 gelegten Kegelschnitt ruhen. Vertauschen wir in (155) x_3 und x_4 , so erhalten wir die Gleichung (78); es ist ja auch der durch X_4 , X_2 und X_3 hindurchgehende Kegelschnitt das Bild derjenigen Gerade in ω_0 , welche durch

$$\left\{ \begin{array}{l} \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_4 = 0 \\ x_3 = 0 \end{array} \right\}$$

gegeben ist. Die hier untersuchte Regelfläche ist also mit der axialen Regelfläche der genannten Gerade identisch.

Für die Eigenschaften dieser Fläche dürfen wir somit auf die in § 11 gegebenen Darlegungen hinweisen.

§ 17. Die obigen analytischen Untersuchungen haben bis jetzt nur die rein geometrischen Eigenschaften der mit dieser Congruenz zusammenhangenden Gebilde erörtert. Es liegt nun nahe uns auch um die Gestalt dieser Gebilde zu kümmern. Diese Gestalt lässt sich freilich im Allgemeinen sehr bequem erkennen, wenn die Gleichungen der Gebilde auf ein rechtwinkliges Axenkreuz bezogen sind, und zwar mittels dieser Transformationsformeln:

$$x_{1} = \frac{x + iy}{c},$$

$$x_{2} = \frac{x - iy}{c},$$

$$x_{3} = \frac{h - z}{h},$$

$$x_{4} = \frac{z}{h}.$$

$$(156)$$

In den vorliegenden Untersuchungen aber würde eine derartige Transformation der Übersichtlichkeit der Gleichungen bedeutend schaden, weil eben die gewählten Coordinaten am meisten der Beschaffenheit der betreffenden Gebilde entsprechen.

Wir ziehen deshalb die homogenen Gleichungen vor, und wollen aus ihnen die Gestalt der Figuren zu erkennen versuchen. Dies ist nicht sehwer, indem die Tatsache, dass die Punkte X_1 und X_2 mit den Kreispunkten und die Punkte X_3 und X_4 bez. mit den Nullpunkten der Abbildungsebenen [w] und [w'] identisch sind, uns sofort über die Gestalt der Gebilde Aufschluss giebt.

In dem Folgenden beabsichtigen wir nun die wichtigsten Gleichungen in Hinsicht auf die Gestalt zu deuten, wobei wir gleichfalls die Resultate allgemeiner Art kurz zusammenfassen werden.

a). Der Feldgrad der Congruenz ist zwei, ihr Bündelgrad vier, ihr Axengrad zwei.

Um über den Gang der Strahlen eine möglichst klare Vorstellung zu gewinnen, betonen wir, dass von den vier Strahlen, welche nach einen willkürlichen reellen Punkt zielen, stets nur zwei reell sind. Dies ergiebt sich durch die folgende Überlegung.

Ein Strahl p ist reell, wenn er eine reelle Spur in ω_{∞} hat, d. h. wenn die Grössen $p_1 = \frac{x_1}{x_3} = \frac{x+iy}{c}$, $p_2 = \frac{x_2}{x_3} = \frac{x-iy}{c}$ conjugirt complex sind.

Es seien x_0 , y_0 , z_0 die Coordinaten von T; so werden p_1 und p_2 durch

$$\begin{split} \frac{x_0 + iy_0}{c} &= p_1 \cdot \frac{h - z_0}{h} + \frac{1}{p_1} \cdot \frac{z_0}{h}, \\ \frac{x_0 - iy_0}{c} &= p_2 \cdot \frac{h - z_0}{h} + \frac{1}{p_2} \cdot \frac{z_0}{h}, \end{split}$$

oder durch

$$c (h - z_0) p_1^2 - h (x_0 + iy_0) p_1 + cz_0 = 0, . (157)$$

$$c (h - z_0) p_2^2 - h (x_0 - iy_0) p_2 + cz_0 = 0 . (158)$$

bestimmt.

Weil die Coefficienten der Gleichung (158) den analogen Coefficienten der Gleichung (157) conjugirt sind, so sind auch die Wurzeln von (158) den Wurzeln von (157) conjugirt.

Nennen wir also die Wurzeln von (157)

$$\alpha_1 + i\beta_1$$
, $\alpha_2 + i\beta_2$,

so sind die Wurzeln von (158)

$$\alpha_1 - i\beta_1 , \alpha_2 - i\beta_2.$$

Es ist demnach zweimal ein Wert von p_2 einem Werte von p_1 conjugirt; daher sind von den vier Spuren der durch (x_0, y_0, z_0) gehenden Strahlen zwei reell, d.h. nur zwei der vier auf (x_0, y_0, z_0) ruhenden Strahlen sind reell.

b) Singuläre Ebenen sind:

1° die Ebene [w] mit drei Strahlenbüscheln, deren Scheitel in den Kreispunkten I und J und in dem Nullpunkte O liegen;

2° die Ebene [w'] mit drei Strahlenbüscheln, deren Mittelpunkte sich im Nullpunkte O' und in den Kreispunkten I und J befinden;

3° die Ebene der reellen Axen ($x_1 = x_2$) mit einem Strahlensystem der zweiten Klasse, welches einen Kegelschnitt e umhüllt; die Gleichungen von e lauten

$$h^2 x^2 + 4 c^2 z^2 - 4 c^2 hz = 0,$$

 $y = 0;$ (159)

der Kegelschnitt e ist daher eine Ellipse, welche OX in O und O'X' in O' berührt und deren Mittelpunkt mit dem Punkte

$$x = 0, y = 0, z = \frac{h}{2},$$

d. h. der Mitte von OO' identisch ist;

 4° die Ebene der imaginären Axen $(x_1 = -x_2)$ mit einem Strahlengebilde zweiter Klasse, welches einen Kegelschnitt e' umhüllt; die Kurve e' wird durch

dargestellt, und ist eine Hyperbel, welche OY in O, O'Y' in O' berührt und ebenfalls die Mitte von OO' zum Mittelpunkt hat;

- 5° . jede Ebene, welche einen Congruenzstrahl mit einem der Kreispunkte I oder J verbindet; sie trägt ein Strahlengebilde zweiter Klasse, welches einen Kegelschnitt umhüllt.
 - c) Singuläre Punkte sind:
 - 1° der Punkt O mit einem Strahlenbüschel in der Ebene [w];
 - 2° der Punkt O' mit einem Strahlenbüschel in der Ebene [w'];
 - 3° die beiden Kreispunkte I und J in den Ebenen [w] und [w'] mit Strahlenbüscheln in diesen Ebenen.
- d) Alle Congruenzstrahlen berühren zwei imaginäre Kegel (Cylinder), die bez. in den Kreispunkten I und J ihre Spitzen haben. Die Berührungspunkte (Brennpunkte) der Congruenzstrahlen sind im Allgemeinen imaginär. Die beiden Cylinder bilden zusammen die Fokalfläche.

Die Fokaleylinder sind durch

$$\frac{(x+iy)^2}{c^2} - \frac{4z(h-z)}{h^2} = 0,$$

$$\frac{(x-iy)^2}{c^2} - \frac{4z(h-z)}{h^2} = 0$$
(161)

angewiesen, sodass ihre Gesammtheit, die Fokalfläche, durch

$$\frac{(x^2 + y^2)^2}{c^4} - \frac{8 x z (h - z)}{c^2 h^2} + \frac{16 z^2 (h - z)^2}{h^4} = 0$$
 (162)

dargestellt wird.

e) Die Fokalfläche trägt zwei quadratische Doppelkurven, welche ihren einzigen reellen Bestandteil bilden.

Der eine Kegelschnitt liegt in der Ebene (y = 0) der reellen Axen und ist mit der durch

dargestellten Ellipse e identisch.

Der andere Kegelschnitt liegt in der Ebene (x=0) der imaginären Axen und fällt mit der durch

$$h^{2}y^{2} - 4 c^{2}z^{2} + 4 c^{2}hz = 0$$

$$x = 0$$
(160)

bestimmten Hyperbel e' zusammen.

f). Die axiale Regelfläche einer willkürlichen Gerade l, die [w] in A und [w'] in B' schneidet, ist eine Fläche vom sechsten Grade, auf welcher l eine vierfache Gerade ist. Zwei der vier Blätter sind aber stets imaginär.

Der Schnitt in [w] enthält die drei Geraden AO, AI und AJ und eine kubische Kurve (siehe (19) S. 39).

Diese kubische Kurve ist circular und geht durch die Punkte O, A, und den Bildpunkt B der Spur B' in [w']. Der Punkt B ist Tangentialpunkt der Kreispunkte.

Die Tangente in O ist die axiale Projektion aus OO' des in [w'] liegenden Bildes der Gerade OA.

Die Tangente in A ist die axiale Projektion aus der Axe l auf die Ebene $\lceil w \rceil$ des A zugeordneten Punktes A'.

Die axiale Regelfläche von l enthält eine circulare kubische Doppelkurve, welche l zweifach schneidet.

Wenn die Gerade l die Gerade OO' schneidet, so wird die Doppelkurve eine kubische circulare Plankurve mit einem Doppelpunkt auf l.

Wenn die Gerade l (l_{μ}) den Ebenen [w] und [w'] parallel ist, und ihr Schnittpunkt mit der unendlich fernen Gerade der Ebenen [w] und [w'] mit L_{μ} bezeichnet wird, so geht die kubische Kurve in [w] durch L_{μ} , während ihre Tangente in diesem Punkte die Projektion von l_{μ} aus O' auf [w] ist. Der gemeinschaftliche Tangentialpunkt der Kreispunkte liegt nun in O.

Die Doppelkurve ist hier aus einem Kegelschnitt und der unendlich fernen Gerade der Ebenen [w] und [w'] zusammengesetzt. Die Richtung des Schnittpunktes dieser beiden Bestandteile ist zur Richtung von l_{μ} rechtwinklig. Der Doppelkegelschnitt schneidet natürlich auch die Gerade l_{μ} .

Wenn l der Ebene [w] parallel ist und überdies OO' schneidet, so ergiebt sich die Tangente in O an der kubischen Kurve in [w] als die axiale Projektion aus OO' auf [w] derjenigen in [w'] liegenden Gerade, welche das Bild ist der mit l_{μ} parallelen durch O gehenden Gerade in [w], während die Asymptoten alle nach O convergiren. Die Doppelkurve ist jetzt aus einem der Ebene [w] parallelen Kegel-

schnitte und der unendlich fernen Gerade von $\lceil w \rceil$ zusammengesetzt.

g) Die axiale Regelfläche einer Gerade l, welche in der Ebene der reellen Axen liegt, besteht aus der zweifach zu zählenden Ebene der reellen Axen und einer biquadratischen Fläche, welche l als Doppelgerade trägt.

Die kubische Kurve in [w] ist jetzt ausgeartet in die Gerade OX und in einen Kreis, dessen Mittelpunkt B der Bildpunkt der Spur B' von l in [w'] ist. Der Kreis und die isotrope Gerade AI schneiden sich und die isotrope Gerade OJ im nämlichen Punkte A_1 . Ebenso treffen der Kreis und die isotrope Gerade AJ sich und die isotrope Gerade OI in demselben Punkte A_2 . Der Schnitt der Regelfläche mit [w] ist aus dem oben erwähnten Kreis und den beiden isotropen Geraden AI und AJ zusammengesetzt.

Die Schnittkurve in $\lfloor w' \rfloor$ hat offenbar dieselbe Gestalt. Auf der biquadratischen Fläche befindet sich noch ein Doppelkreis, welcher die Gerade l in einem Punkte C_{μ} schneidet.

Der Kreis schneidet die Ebene der reellen Axen, ausser C_μ , noch im Pole L von l im Bezug auf die Fokalellipse e.

h. Die axiale Regelfläche eines Congruenzstrahles s ist eine quadratische Fläche.

Der Schnitt in [w] besteht aus der Gerade, welche O mit der Spur S von s in [w] verbindet, und aus der orthogonalen Projektion derjenigen in [w'] liegenden Gerade, welche O' mit der Spur S' von s in [w'] vereinigt.

- i). Die axiale Regelfläche eines in der Ebene der reellen Axen befindlichen Congruenzstrahles besteht nur aus dieser, doppelt zu zählenden Ebene.
- j). Die axiale Regelfläche einer in [w] liegenden Gerade m ist vom dritten Grade. Sie trägt m als einfache Leitlinie.

Der Schnitt in [w] ist aus der Gerade m und aus den beiden Geraden IM_1 und JM_2 zusammengesetzt, wo M_1 den Schnittpunkt von m mit OJ und M_2 denjenigen von m mit OI bezeichnet. Die beiden Geraden IM_1 und JM_2 schneiden sich in einem Punkte G, welcher das Spiegelbild des Nullpunktes O in Bezug auf m ist.

Der Schnitt in [w'] besteht aus dem Bilde derjenigen durch O gehenden Gerade, welche mit m parallel ist, und aus einem durch O' gehenden Kreis μ , welcher die Gerade m abbildet. Beide Linien schneiden sich, ausser O', noch in einem Punkte H'.

Die Doppelgerade d_m verbindet G mit H'.

Die Zwickpunkte K und K' sind die Schnitte von d_m mit den Ebenen der reellen und imaginären Axen.

Die Torsallinien t und t' sind bez. die Tangenten in K an der

Fokalellipse in der Ebene der reellen Axen und in K' an der Fokalhyperbel in der Ebene der imaginären Axen.

Die $Torsalpunkte \ T_m$ und T'_m sind die Schnitte von m bez. mit der reellen und der imaginären Axe in [w].

k). Wenn wir die Gerade m um einen Punkt A rotiren lassen, so beschreibt die Doppelgerade d_m eine kubische Regelfläche.

Der Schnitt dieser Fläche mit [w] besteht aus der Gerade OA und einem Kreis γ_{∞} , welcher durch O geht und seinen Mittelpunkt in A hat.

Die Schnittkurve in [w'] ist eine circulare kubische Kurve, welche in O' einen Doppelpunkt hat, mit den Coordinatenaxen als Tangenten. Ihre reelle Asymptote verläuft parallel mit OA. Der Tangentialpunkt der Kreispunkte ist dem Punkte A zugeordnet.

Der Kreis γ_{∞} und die Gerade OA, welche zusammen den Schnitt in [w] bilden, treffen sich, ausser O, im Punkte B der Geraden OA, für welchen AB = OA ist.

Die Doppelgerade Δ der Regelfläche (d_m) verbindet O' mit B. Die einfache Leitlinie von (d_m) ist mit dem Congruenzstrahle a = AA' identisch.

Die Zwickpunkte K_1 und K_2 sind die Punkte, wo Δ , ausser O', die Fokalfläche trifft. Sie sind imaginär.

Die beiden Torsallinien f_1 und f_2 verbinden K_1 (auf F_1) mit $I (= X_1)$ und K_2 (auf F_2) mit $J (= X_2)$.

Die Torsalpunkte A_{f_1} und A_{f_2} sind die beiden Brennpunkte von a. Wenn der Punkt A die Ebene [w] durchläuft, so beschreibt Δ den Strahlenbündel O' und a die Congruenz.

l). Wir wollen jetzt die Regelfläche betrachten, welche erzeugt wird durch die auf einem durch X_1 und X_2 gelegten Kegelschnitt γ_{μ} ruhenden Strahlen. Dieser Kegelschnitt ist offenbar ein Kreis in einer mit $\lfloor w \rfloor$ parallelen Ebene.

Die betreffende Regelfläche ist vom achten Grade und hat in den Kreispunkten von $\lceil w \rceil$ vierfache Punkte.

Der Schnitt in [w] besteht aus zwei Geraden durch I, zwei Geraden durch J und einer bicircularen biquadratischen Kurve, deren Tangenten in den Kreispunkten I und J identisch sind mit den Linien, welche diese Kurve zum vollständigen Schnitt ergänzen. Die beiden Geraden durch I können auch als diejenigen Congruenzstrahlen betrachtet werden, welche in dem I unmittelbar vorangehenden Punkte auf dem Kreise γ_{μ} ruhen; analoges gilt für die beiden Geraden durch J.

m). Wenn der Kreis γ_{μ} in [w] liegt, und daher mit γ_{∞} bezeichnet werden muss, ist die Regelfläche vom *vierten* Grade, und hat die Kreispunkte von [w] zu Doppelpunkten.

Der Schnitt in [w] besteht aus dem Kreis γ_{∞} und aus den beiden Geraden, welche die Kreispunkte I und J bez. mit den Schnittpunkten M_1 und M_2 von γ_{∞} mit OJ und OI verbinden; $M_1 I$ schneidet $M_2 J$ in A.

Der Schnitt in [w'] besteht aus dem Kreis, der γ_{∞} abbildet, und aus zwei isotropen Geraden, welche nach dem Bildpunkte B' des Mittelpunktes B von γ_{∞} convergiren. Der Bildkreis von γ_{∞} hat seinen Mittelpunkt in dem A zugeordneten Punkte A'.

Auf der Regelfläche liegt noch eine kubische Doppelkurve, welche circular ist und durch die Punkte A und B' hindurchgeht.

Jeder zu [w] parallele Schnitt ist eine bicirculare biquadratische Kurve mit Doppelpunkt.

Dieser Doppelpunkt ist die Spur der Doppelkurve in der Schnittebene.

n). Falls der Mittelpunkt B von γ_{∞} in O liegt, ist der Schnitt in [w] aus dem Kreis γ_{∞} und aus der doppelt gezählten unendlich fernen Gerade zusammengesetzt.

Die Schnittkurve in [w'] besteht aus der doppelt zu zählenden unendlich fernen Gerade und aus dem Bildkreis von γ_{∞} .

Die Doppelkurve ist hier in drei Geraden ausgeartet, nämlich in die unendlich ferne Gerade von [w], eine in der Ebene der reellen Axen befindliche, zu diesen parallele Gerade und eine in der Ebene der imaginären Axen liegende, zu diesen parallele Gerade.

o). Wenn der Kreis γ_{∞} den Punkt O enthält, ist seine Regelfläche vom dritten Grade. Sie ist mit der axialen Regelfläche derjenigen in [w'] liegenden Gerade identisch, welche den gegebenen Kreis zur Bildkurve hat.

Die Umformungen der Gleichungen in solche mit triorthogonalen Coordinaten sind hier fast gänzlich unterlassen, und zwar deshalb, weil die meisten Gleichungen dadurch viel weniger übersichtlich werden. Sollte es sich um die *Dimensionen* der Figuren handeln, so kann man die entsprechenden Substitutionen ausführen.

B. Die Congruenz, welche der Funktion

$$w' = \frac{w^2}{c}$$

angehört.

§ 1. In den folgenden Betrachtungen werden wir im Allgemeinen die Reihenfolge der vorigen Abteilung beibehalten.

Ein Punkt P in ω_{∞} sei durch

$$\frac{x_1}{x_2} = p_1 \,, \ \frac{x_2}{x_2} = p_2 \,, \ x_4 = 0 \,,$$

der zugeordnete Punkt P' in ω_0 durch

$$\frac{{x_{1}}^{'}}{{x_{4}}^{'}} = p_{1}^{'}, \frac{{x_{2}}^{'}}{{x_{4}}^{'}} = p_{2}^{'}, x_{3}^{'} = 0$$

bestimmt.

Der Strahl PP' wird alsdann durch

$$x_1 = p_1 x_3 + p_1' x_4,$$

 $x_2 = p_2 x_3 + p_2' x_4$

dargestellt.

Vermöge der Ausdrücke

$$p_{1} = \frac{x_{1}}{x_{3}} = \frac{u + iv}{c} \text{ und } p_{1}{'} = \frac{x_{1}{'}}{x_{4}{'}} = \frac{u' + iv'}{c}$$

gelten die folgenden Beziehungen

$$\begin{split} \frac{p_1^{'}}{p_1^2} &= \frac{c \ (u^{'} + iv^{'})}{(u + iv)^2} = \frac{cw^{'}}{w^2} = 1 \ , \\ \frac{p_2^{'}}{p_2^2} &= \frac{c \ (u^{'} - iv^{'})}{(u - iv)^2} = 1 \ . \end{split}$$

Wir haben deshalb zu setzen

$$p_1' = p_1^2,$$

 $p_2' = p_2^2,$

wonach die Gleichungen eines der Congruenz von $w' = w^2 : c$ angehörenden Strahles diese Form erhalten:

§ 2. Bündelgrad und Feldgrad.

Der Bündelgrad wird ermittelt, wenn wir in (1) die Grössen x_1 , x_2 , x_3 und x_4 als feste Coordinaten betrachten und untersuchen, wie viel Combinationen (p_1, p_2) durch dieses Wertesystem bestimmt werden.

Wenn wir die Gleichungen (1) in der Form

$$x_4 p_1^2 + x_3 p_1 - x_1 = 0$$
,
 $x_4 p_2^2 + x_3 p_2 - x_2 = 0$

schreiben, so leuchtet sofort ein, dass ein Punkt (x_1, x_2, x_3, x_4) zwei Werte für p_1 und zwei Werte für p_2 anweist; wir erhalten demnach vier Combinationen (p_1, p_2) . Diese bestimmen die Spuren P der vier Congruenzstrahlen, welche nach dem gegebenen Punkt zielen.

Wir sehen also, dass der Bündelgrad vier ist.

Eine Ebene, welche durch

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = 0$$

dargestellt wird, enthält einen Congruenzstrahl p, wenn sie dem Ebenenbüschel angehört, welcher p als Axe hat und durch die beiden Ebenen (1) bestimmt ist.

Es gilt daher die Identät

$$\begin{array}{c} \lambda_1 \left(x_1 - p_1 \, x_3 - p_1^{\, 2} \, x_3 \right) + \lambda_2 \left(x_2 - p_2 \, x_3 - p_2^{\, 2} \, x_4 \right) \equiv \\ \equiv \alpha_1 \, x_1 + \alpha_2 \, x_2 + \alpha_3 \, x_3 + \alpha_4 \, x_4 \, , \end{array}$$

wonach

$$\lambda_1 = \alpha_1,$$

$$\lambda_2 = \alpha_2,$$

$$-(\lambda_1 p_1 + \lambda_2 p_2) = \alpha_3,$$

$$-(\lambda_1 p_1^2 + \lambda_2 p_2^2) = \alpha_4.$$

Die letzten zwei Gleichungen bestimmen die Werte von p_1 und p_2 , welche den in der gegebenen Ebene liegenden Strahlen entsprechen. Den Gleichungen

wird durch zwei Paaren (p1, p2) Genüge geleistet.

Es liegen deshalb in der gegebenen Ebene zwei Congruenzstrahlen, d.h. der Feldgrad ist zwei.

§ 3. Die Fokalfläche.

Von den beiden Gleichungen (1), welche zusammen einen Congruenzstrahl p bestimmen, stellt die erste eine Ebene durch X_2 , die zweite eine Ebene durch X_4 dar.

Wenn wir p_4 alle Werte erteilen, wird die erste Ebene einen Kegel mit X_2 als Spitze umhüllen, dessen Gleichung wir erhalten, indem wir die Diskriminante der genannten Gleichung verschwinden lassen. Sie lautet deshalb

$$4x_1x_4 + x_3^2 = 0.$$

Der durch die Ebene $x_1 = p_1 x_3 + p_1^2 x_4$ umhüllte Kegel ist daher vom zweiten Grade; er soll mit F_2 bezeichnet werden.

Der durch die Ebene $x_2 = p_2 x_3 + p_2^2 x_4$ umhüllte Kegel wird durch

$$4 x_2 x_4 + x_3^2 = 0$$

dargestellt, und hat seine Spitze in X_1 .

Aus dem Vorgehenden erhellt, dass die eine Ebene, welche den Congruenzstrahl p trägt, den quadratischen Kegel F_2 , die andere durch p gelegte Ebene den quadratischen Kegel F_4 berührt. Der Congruenzstrahl p ist demnach eine gemeinschaftliche Tangente der beiden Kegel F_4 und F_2 .

Wir gelangen also zu der Einsicht, dass die Strahlen der Congruenz, welche der Beziehung $w'=w^2:c$ angehört, die gemeinschaftlichen Tangenten sind der beiden Kegel

$$F_{1} \dots 4 x_{2} x_{4} + x_{3}^{2} = 0, F_{2} \dots 4 x_{1} x_{4} + x_{3}^{2} = 0.$$
 (3)

Weil ein Punkt von F_1 zwei zusammenfallende Strahlen trägt, und dasselbe von einem Punkte von F_2 gilt, haben wir F_4 und F_2 als die beiden Bestandteile der Fokalfläche zu betrachten.

Auch hier sollen diese Kegel Fokalkegel genannt werden.

Die beiden Fokalkegel bestimmen zusammen einen Büschel quadratischer Flächen, welcher durch

$$\lambda_1 (4 x_1 x_4 + x_3^2) + \lambda_2 (4 x_2 x_4 + x_3^2) = 0$$

dargestellt wird.

Das durch $\lambda_1 + \lambda_2 = 0$ angewiesene Gebilde hat die Gleichung

$$(x_1 - x_2) x_4 = 0.$$

Diese Fläche ist also in zwei Ebenen ausgeartet, welche zusam-

men die biquadratische Schnittkurve von F_1 und F_2 enthalten müssen. Die durch

$$x_1 - x_2 = 0$$

dargestellte Ebene ε trägt deshalb einen Kegelschnitt e, welcher sowohl F_4 wie F_2 angehört.

Die Ebene $\omega_{\infty}(x_4=0)$ berührt die beiden Kegel in der Gerade X_1X_2 . Wir sehen somit dass die beiden Folkalkegel sich und ω_{∞} längs

Wir sehen somit, dass die beiden Folkalkegel sich und ω_{∞} längs X_1X_2 berühren und überdies noch einen Kegelschnitt e gemeinsam haben, welcher sich in der Ebene

$$\varepsilon \dots x_1 - x_2 = 0 \dots \dots (4)$$

befindet

Der Fokalkegel F_4 berührt die Coordinatenebene $X_4 X_3 X_4$ ($x_2 = 0$) in $X_4 X_4$, während F_2 die Ebene $X_2 X_3 X_4$ ($x_1 = 0$) in $X_2 X_4$ berührt.

Der Kegelschnitt e berührt deshalb die Gerade $X_3 X_4$ in X_4 und die Gerade $X_3 E$ in E (1, 1, 0, 0).

§ 4. Singuläre Elementen.

Eine Ebene ist singulär, enthält also unendlich viele Strahlen, wenn die beiden Gleichungen

$$\begin{array}{c|c} \alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 = 0, \\ \alpha_1 p_1^2 + \alpha_2 p_2^2 + \alpha_4 = 0 \end{array}$$
 (2)

eine der Grössen p_1 und p_2 , oder beide, unbestimmt lassen.

Nach Elimination von p_2 finden wir

$$\alpha_1 (\alpha_1 + \alpha_2) p_1^2 + 2 \alpha_1 \alpha_3 p_1 + (\alpha_2 \alpha_4 + \alpha_3^2) = 0.$$

Die Bedingungen sind daher

$$lpha_1 \left(lpha_1 + lpha_2 \right) = 0$$
, $lpha_1 lpha_3 = 0$, $lpha_2 lpha_4 + lpha_3^2 = 0$.

Diesen Gleichungen wird genügt 1° durch

$$\mathbf{a}_1 = 0$$
 , $\mathbf{a}_3 = \sqrt{-\mathbf{a}_2 \mathbf{a}_4}$,

wonach (siehe (2))

$$\alpha_2 : \alpha_3 : \alpha_4 = 1 : -p_2 : -p_2^2;$$

die Gleichung der Ebene wird daher

$$x_2 - p_2 x_3 - p_2^2 x_4 = 0.$$

Diese Gleichung (siehe (1)) stellt die Berührungsebene des Fokalkegels F_1 dar, welche den Strahl p enthält, also die Ebene, welche diesen Strahl mit X_1 verbindet.

Wir erkennen also, dass jede Ebene, welche einen Congruenzstrahl mit X_1 verbindet, singulär ist. Die in dieser Ebene befindlichen Strahlen umhüllen offenbar den Kegelschnitt, in dem der Fokalkegel F_2 die Ebene (p, X_1) schneidet. Jede Ebene (p, X_1) ist demnach eine singuläre Ebene mit einem Strahlensystem von der zweiten Klasse.

Auf analoger Weise finden wir, dass auch jede Ebene, welche einen Strahl p mit X_2 verbindet, singulär ist und ein Strahlensystem zweiter Klasse enthält.

Betrachten wir besonders die Ebene (p, X_4) , in welcher der durch $p_2 = \infty$ bestimmte Strahl liegt, so erkennen wir (siehe (1)) in dieser die Ebene $x_4 = 0$, d. h. ω_{∞} .

Die Ebene ω_{∞} ist also auch singulär. Wir werden das in ihr befindliche Strahlensystem später erörtern.

2°. Den Beziehungen zwischen den Grössen α_1 , α_2 , α_3 und α_4 , welche p_1 unbestimmt lassen, wird auch genügt durch

$$lpha_1 + lpha_2 = 0$$
, $lpha_3 = 0$, $lpha_4 = 0$.

Diese Bedingungen liefern die Ebene

$$x_1 - x_2 = 0.$$

Die Ebene ε ist also auch singulär. Dies wurde bereits früher erkannt, als sich zeigte, dass die Ebene ε die beiden Fokalkegel im nämlichen Kegelschnitte e schneidet.

Die singulären Punkte werden gefunden duch die Überlegung, dass in

$$\begin{aligned}
x_1 &= p_1 x_3 + p_1^2 x_4 \\
x_2 &= p_2 x_3 + p_2^2 x_4
\end{aligned} . . . (1)$$

entweder p_1 oder p_2 unbestimmt werden muss.

Es leuchtet ein, dass p_1 unbestimmt ist, wenn

$$x_1 = x_3 = x_4 = 0$$
;

der Punkt X2 ist demnach singulär.

Auf analoger Weise gelangen wir zu der Überzeugung, dass auch X_1 ein singulärer Punkt ist.

Wenn wir die Gleichungen (1) subtrahiren, so folgt

$$x_1 - x_2 = (p_1 - p_2) [x_3 + (p_1 + p_2) x_4]$$
 (5)

Ein Strahl p ist durch p_1 und p_2 , also auch durch $p_1 - p_2$ und $p_1 + p_2$ bestimmt.

Wenn wir aber in (5)

$$x_1 - x_2 = 0$$
, $x_3 = 0$, $x_4 = 0$

setzen, so wird die Grösse $p_1 - p_2$ unbestimmt.

Der Punkt $(x_1 = x_2, x_3 = 0, x_4 = 0)$, d. h. der Punkt E ist daher auch singulär.

Weil die Congruenzstrahlen die beiden Fokalkegel berühren, und die drei Punkte X_1 , X_2 und E auf die Gerade X_1X_2 liegen, während überdies die beiden Fokalkegel durch ω_x längs X_1X_2 berührt werden, so werden die Strahlensysteme, welche durch die singulären Punkte X_1, X_2 und E gehen, in ihrer ganzen Ausdehnung in ω_x liegen müssen.

Es sind deshalb Strahlenbüschel mit X_1 , X_2 und E als Scheitel. Wir werden zunächst zeigen, dass diese drei Strahlenbüschel zusammen das ganze Strahlensystem bilden, welches sich in der singulären Ebene ω_{∞} befindet.

Ein Strahl p wird auch bestimmt durch seine Spur P' in ω_0 , welche die Coordinaten

$$p_1' = \frac{y_1'}{y_4'}, \ p_2' = \frac{y_2'}{y_4'}, \ y_3' = 0$$

hat.

Wenn wir p_1 und p_2 bez. durch ${p_1}'^{\frac{1}{2}}$ und ${p_2}'^{\frac{1}{2}}$ ersetzen, so gestalten die Gleichungen (1) sich wie folgt:

$$x_1 = p_1^{'\frac{1}{2}}x_3 + p_1^{'}x_4,$$

$$x_2 = p_2^{'\frac{1}{2}}x_3 + p_2^{'}x_4,$$

oder

$$(x_1 - p_1' x_4)^2 = p_1' x_3^2,$$

 $(x_2 - p_2' x_4)^2 = p_2' x_3^2.$

Die Substitution $p_1' = y_1' : y_4'$, $p_2' = y_2' : y_4'$ liefert

$$(y_4' x_1 - y_1' x_4)^2 = y_1' y_4' x_3^2,$$

 $(y_4' x_2 - y_2' x_4)^2 = y_2' y_4' x_3^2.$

Wir legen nunmehr den Punkt $T(x_1, x_2, x_3, x_4)$, der den Strahl trägt, in einen Punkt Q der Ebene ω_{∞} , so dass $x_4 = 0$ wird.

Die Spur (y_1', y_2', y_4') in ω_0 ist alsdann durch

$$y_4'(y_4'x_1^2 - y_1'x_3^2) = 0;$$

 $y_4'(y_4'x_2^2 - y_2'x_3^2) = 0$

bestimmt.

Diesen Gleichungen entsprechen vier Punkte, nl.:

$$1^{\circ} \begin{cases} y_{4}' x_{1}^{2} - y_{1}' x_{3}^{2} = 0, \\ y_{4}' x_{2}^{2} - y_{2}' x_{3}^{2} = 0; \end{cases}$$

$$2^{\circ} \begin{cases} y_{4}' x_{2}^{2} - y_{2}' x_{3}^{2} = 0, \\ y_{4}' = 0; \end{cases}$$

$$3^{\circ} \begin{cases} y_{4}' x_{1}^{2} - y_{1}' x_{3}^{2} = 0, \\ y_{4}' = 0; \end{cases}$$

$$4^{\circ} \begin{cases} y_{4}' = 0, \\ y_{4}' = 0. \end{cases}$$

Der erste Punkt hat die Coordinaten

$$\frac{y_1'}{y_4'} = \frac{x_1^2}{x_3^2}, \quad \frac{y_2'}{y_4'} = \frac{x_2^2}{x_3^2},$$

und ist somit der Q zugeordnete Punkt Q'.

Die Verbindungslinie q=QQ' is der Congruenzstrahl, welcher Q mit seinem Bilde Q' vereinigt.

Der zweite Punkt ist X_1 ; der zweite durch Q gehende Congruenzstrahl ist demnach die Gerade QX_1 .

Der dritte Punkt ist X_2 ; der dritte nach Q zielende Congruenzstrahl ist also QX_2 .

Der vierte Punkt liegt auf X_1X_2 und ist bis jetzt unbestimmt. Wie in der vorigen Abteilung (§ 4), wird auch hier der Punkt T in der Nähe der Ebene ω_{∞} angenommen, wonach die Grössen $y_4':y_1$ und $y_4':y_2'$ bez. nach Potenzen von $x_4:x_1$ und $x_4:x_2$ entwickelt werden.

Wir setzen nun

$$\frac{y_4'}{y_1'} = y, \quad \frac{x_4}{x_1} = x$$

und

$$y = \alpha + \beta x + \gamma x^2 + \dots$$

Man erhält dann aus

$$(y_4' x_1 - y_1' x_4)^2 = y_1' y_4' x_3^2$$

die Gleichungen

$$(y-x)^2 = y\left(\frac{x_3}{x_4}\right)^2$$

und

$$\{\boldsymbol{\alpha} + (\boldsymbol{\beta} - 1) x + \gamma x^2 + \ldots\}^2 = (\boldsymbol{\alpha} + \boldsymbol{\beta} x + \gamma x^2 + \ldots) \left(\frac{x_3}{x_4}\right)^2.$$

Durch Gleichsetzung der Coefficienten gleicher Potenzen von \boldsymbol{x} bekommt man

$$\alpha^{2} = \alpha \left(\frac{x_{3}}{x_{1}}\right)^{2},$$

$$2 \alpha (\beta - 1) = \beta \left(\frac{x_{3}}{x_{1}}\right)^{2},$$

$$(\beta - 1)^{2} + 2 \alpha \gamma = \gamma \left(\frac{x_{3}}{x_{1}}\right)^{2}.$$

Die Lösungen dieser Gleichungen sind die folgenden:

$$\alpha = \left(\frac{x_3}{x_4}\right)^2,$$

wonach

$$y = \left(\frac{x_3}{x_4}\right)^2 + \beta x + \gamma x^2 + \dots,$$

also für verschwindendes x:

$$y = \left(\frac{x_3}{x_4}\right)^2,$$

oder

$$\frac{y_4'}{y_1'} = \left(\frac{x_3}{x_4}\right)^2$$
.

$$\alpha = 0$$
, $\beta = 0$, $\gamma = \left(\frac{x_1}{x_3}\right)^2$

daher

$$y = \left(\frac{x_1}{x_3}\right)^2 \left(\frac{x_4}{x_4}\right)^2 = \left(\frac{x_4}{x_3}\right)^2$$

oder

$$\frac{y_4'}{y_1'} = \left(\frac{x_4}{x_3}\right)^2$$

Ebenso finden wir für das Verhältniss $y_4':y_2'$ zwei Werte, nl.:

$$\frac{y_4'}{y_2'} = \left(\frac{x_3}{x_2}\right)^2,$$

$$\frac{y_4'}{y_2'} = \left(\frac{x_4}{x_2}\right)^2.$$

Die vier Spuren werden ermittelt, indem man die zwei Werte für $y_4':y_1'$ mit den zwei Werten für $y_4':y_2'$ combinirt.

Die vier Spuren erhält man also für verschwindendes x ($x_4 = 0$) aus

1°
$$\begin{cases} \frac{y_4'}{y_1'} = \left(\frac{x_3}{x_1}\right)^2, \\ \frac{y_4'}{y_2'} = \left(\frac{x_3}{x_2}\right)^2, \end{cases}$$
d. h. Q' ;
$$\begin{cases} \frac{y_4'}{y_1'} = 0, \\ \frac{y_4'}{y_2'} = \left(\frac{x_3}{x_2}\right)^2, \end{cases}$$
d. h. X_1 ;
$$\begin{cases} \frac{y_4'}{y_1'} = \left(\frac{x_3}{x_1}\right)^2, \\ \frac{y_4'}{y_2'} = 0, \end{cases}$$
d. h. X_2 ;
$$\begin{cases} \frac{y_4'}{y_1'} = \left(\frac{x_4}{x_3}\right)^2, \\ \frac{y_4'}{y_1'} = \left(\frac{x_4}{x_2}\right)^2, \end{cases}$$
oder
$$\begin{cases} \frac{y_1'}{y_1'} = y_2', \\ y_4' = 0, \end{cases}$$
d. h. E .

Die vierte Spur ist demnach der Punkt E. Die vier durch Q hindurchgehenden Strahlen sind also QQ', QX_1 , QX_2 und QE.

Von den vier Strahlen, welche auf dem in ω_{∞} liegenden Punkte Q ruhen, sind daher *drei* in ω_{∞} enthalten.

Die Ebene ω_{∞} trägt also drei Strahlenbüschel von Congruenzstrahlen, deren Scheitel in X_1 , X_2 und E liegen.

Auch hier haben wir, zur Vorübung, die Beweisführung etwas breit gestaltet.

§ 5. Die axiale Regelfläche einer willkürlichen Gerade 1.

Die Gerade
$$l$$
 möge ω_{∞} in $A\left(\frac{x_1}{x_3}=a_1, \frac{x_2}{x_3}=a_2, x_4=0\right)$ und

$$\pmb{\omega}_0$$
 in \pmb{B}' $\left(\frac{x_1}{x_4} = b_1'$, $\frac{x_2}{x_4} = b_2'$, $x_3 = 0\right)$ schneiden.

Ihre Gleichungen lauten demnach

$$\begin{vmatrix}
 x_1 = a_1 x_3 + b_1' x_4, \\
 x_2 = a_2 x_3 + b_2' x_4.
\end{vmatrix}$$
(6)

Wenn l durch den Congruenzstrahl p (welcher ω_{x} in P (p_{1} , p_{2}) und ω_{0} in P' (p_{1}' , p_{2}') trifft) geschnitten wird, so muss (vergl. die analoge Stelle in Abteilung A, § 5, S. 35) der Gleichung

$$\frac{p_1' - b_1'}{p_1 - a_1} = \frac{p_2' - b_2'}{p_2 - a_2} \quad . \quad . \quad . \quad . \quad (7)$$

oder, vermöge der Beziehungen

$$p_1' = p_1^2$$
, $p_2' = p_2^2$,

der Gleichung

$$(p_2 - a_2)(p_1^2 - b_1') = (p_1 - a_1)(p_2^2 - b_2')$$
 . (8)

genügt werden, indem diese die zwischen den Coordinaten p_1 und p_2 (der Spur P in ω_{∞}) bestehenden Beziehung ausdrückt, falls der Strahl p die Gerade l schneidet.

Die Gleichung der axialen Regelfläche wird ermittelt, indem man aus den Gleichungen (1) und (8) p_1 und p_2 eliminirt.

Die Gleichung (8) lässt sich wie folgt schreiben:

$$p_1^2 p_2 - p_1 p_2^2 - a_2 p_1^2 + a_1 p_2^2 + b_2' p_1 - b_1' p_2 - (a_1 b_2' - a_2 b_1') = 0. (9)$$

Aus den Gleichungen (1) ergiebt sich

$$x_4 p_1^2 = -x_3 p_1 + x_1, x_4 p_2^2 = -x_3 p_2 + x_2.$$
 (10)

Multipliciren wir (9) mit x_4 und ersetzen $x_4 p_1^2$ und $x_4 p_2^2$ durch ihre Ausdrücke (10), so finden wir

$$(-x_2 + a_2x_3 + b_2'x_4) p_1 + (x_1 - a_1x_3 - b_1'x_4) p_2 + + |-a_2x_1 + a_1x_2 - (a_1b_2' - a_2b_1') x_4| = 0.$$

Setzen wir, der Kürze halber,

so bekommen wir

$$\beta_2 p_1 + \beta_1 p_2 + \beta_0 = 0...$$
 (12)

Wir versuchen wiederum mit Hülfe der Ausdrücke (10) vier Gleichungen in p_1 , p_2 und $p_1 p_2$ aufzustellen, aus welchen wir diese Grössen eliminiren können.

Multipliciren wir (12) mit x_4p_1 , so finden wir

$$\beta_2 x_4 p_1^2 + \beta_1 x_4 p_1 p_2 + \beta_0 x_4 p_1 = 0$$
,

oder mittels (10),

$$\begin{aligned} &-\beta_2 x_3 p_1 + \beta_2 x_1 + \beta_1 x_4 p_1 p_2 + \beta_0 x_4 p_1 = 0, \\ &\beta_1 x_4 p_1 p_2 + (-\beta_2 x_3 + \beta_0 x_4) p_1 + \beta_2 x_1 = 0. \end{aligned}$$
 (13)

Ebenso erhalten wir durch Multiplikation mit x_4p_2 schliesslich

$$\beta_2 x_4 p_1 p_2 + (-\beta_1 x_3 + \beta_0 x_4) p_2 + \beta_1 x_2 = 0$$
. (14)

Endlich multipliciren wir (13) mit p_2 , wonach

$$\beta_1 x_4 p_1 p_2^2 + (-\beta_2 x_3 + \beta_0 x_4) p_1 p_2 + \beta_2 x_1 p_2 = 0$$
,

oder, nach Verwendung von (10),

$$\left| - (\beta_1 + \beta_2) x_3 + \beta_0 x_4 \right| p_1 p_2 + \beta_1 x_2 p_1 + \beta_2 x_1 p_2 = 0. \quad (15)$$

Die Elimination von p_1 , p_2 und p_1 , p_2 aus (12), (13), (14) und (15) ergiebt die folgende Gleichung

$$\Delta = \begin{vmatrix} 0 & , & \beta_2 & , & \beta_1 & , \beta_0 \\ \beta_1 x_4 & , & -\beta_2 x_3 + \beta_0 x_4, & 0 & , \beta_2 x_1 \\ \beta_2 x_4 & , & 0 & , -\beta_1 x_3 + \beta_0 x_4, \beta_1 x_2 \\ -(\beta_1 + \beta_2) x_3 + \beta_0 x_4, & \beta_1 x_2 & , & \beta_2 x_1 & , & 0 \end{vmatrix} = 0.$$

Wir ersetzen die zweite Horizontalreihe durch die Summe der zweiten und der dritten, und die dritte durch deren Differenz, und erhalten somit

$$\begin{vmatrix}
0 & , & \beta_2 & , & \beta_1 & , \beta_0 \\
(\beta_1 + \beta_2)x_4 & , & -\beta_2x_3 + \beta_0x_4, -\beta_1x_3 + \beta_0x_4, \beta_2x_1 + \beta_1x_2 \\
(\beta_1 - \beta_2)x_4 & , & -\beta_2x_3 + \beta_0x_4, +\beta_1x_3 - \beta_0x_4, \beta_2x_1 - \beta_1x_2 \\
-(\beta_1 + \beta_2)x_3 + \beta_0x_4, & \beta_1x_2 & , & \beta_2x_1 & , 0
\end{vmatrix} = 0.$$

Wenn wir nun x_3 mal die erste Horizontalreihe zu der zweiten addiren, so folgt

$$\begin{vmatrix} 0 & ,\beta_{2} & ,\beta_{1} & ,\beta_{0} \\ (\beta_{1}+\beta_{2})x_{4} & ,\beta_{0}x_{4} & ,\beta_{0}x_{4} & ,\beta_{2}x_{1}+\beta_{1}x_{2}+\beta_{0}x_{3} \\ (\beta_{1}-\beta_{2})x_{4} & ,-\beta_{2}x_{3}+\beta_{0}x_{4},\beta_{1}x_{3}-\beta_{0}x_{4},\beta_{2}x_{1}-\beta_{1}x_{2} \\ -(\beta_{1}+\beta_{2})x_{3}+\beta_{0}x_{4},\beta_{1}x_{2} & ,\beta_{2}x_{1} & ,0 \end{vmatrix} = 0.$$

Nun ist

$$\beta_2 x_1 + \beta_1 x_2 + \beta_3 x_3 = -x_1 x_2 + a_2 x_1 x_3 + b_2' x_1 x_4 + x_1 x_2 - a_1 x_2 x_3 - b_1' x_2 x_4 - a_2 x_1 x_3 + a_1 x_2 x_3 - (a_1 b_2' - a_2 b_1') x_3 x_4 = [b_2' x_1 - b_1' x_2 - (a_1 b_2' - a_2 b_1') x_3] x_4,$$

oder, wenn wir

$$b_2'x_1 - b_1'x_2 - (a_1b_2' - a_2b_1')x_3 = \beta_3$$
. (16)

setzen,

$$\beta_2 x_1 + \beta_1 x_2 + \beta_0 x_3 = \beta_3 x_4.$$
 . . . (17)

Substituiren wir diesen Ausdruck in die obige Gleichung, so erscheint diese teilbar durch x_4 . Nach Teilung durch x_4 erhalten wir

$$\Delta' \equiv \begin{vmatrix} 0 & , & \beta_{2} & , \beta_{1} & , \beta_{0} \\ \beta_{1} + \beta_{2} & , & \beta_{0} & , \beta_{0} & , \beta_{3} \\ (\beta_{1} - \beta_{2})x_{4} & , -\beta_{2}x_{3} + \beta_{0}x_{4}, \beta_{1}x_{3} - \beta_{0}x_{4}, \beta_{2}x_{1} - \beta_{1}x_{2} \\ -(\beta_{1} + \beta_{2})x_{3} + \beta_{0}x_{4}, & \beta_{1}x_{2} & , \beta_{2}x_{1} & , 0 \end{vmatrix} = 0.$$
(18)

Die Grössen β_0 , β_1 , β_2 und β_3 sind alle linear in x_1 , x_2 , x_3 , x_4 ; die Gleichung (18) ist demnach vom *sechsten* Grade.

Wenn wir β_3 , β_1 , β_2 und β_3 durch ihre Ausdrücke (11) und (16) ersetzen, so enthalten die Coefficienten der Gleichung (18) ausschliesslich die Grössen a_1 , a_2 , b_1' und b_2' , welche die Gerade l bestimmen.

Die axiale Regelfläche einer willkürlichen Gerade l ist offenbar vom sechsten Grade.

Wie in der vorigen Abteilung werden wir die Gleichung (18) umgestalten, indem wir die Kante X_3X_4 des Coordinatentetraeders in $AB'\equiv l$ legen, und zwar mittels der Transformation

$$x_1 = \xi_1 + a_1 \xi_3 + b_1' \xi_4,$$

 $x_2 = \xi_2 + a_2 \xi_3 + b_2' \xi_4,$
 $x_3 = \xi_3,$
 $x_4 = \xi_4.$

Die Gerade l wird nun durch

$$\begin{array}{ccc} \xi_1 = 0 \,, \\ \xi_2 = 0 \end{array}$$

dargestellt.

Die Ausdrücke für β_0 , β_1 , β_2 und β_3 werden nun

$$\begin{split} \beta_0 &= -a_2(x_1 - b_1' x_4) + a_1(x_2 - b_2' x_4) \\ &= -a_2(\xi_1 + a_1 \xi_3) + a_1(\xi_2 + a_2 \xi_3) = -a_2 \xi_1 + a_1 \xi_2, \\ \beta_1 &= \xi_1, \\ \beta_2 &= -\xi_2, \\ \beta_3 &= b_2' (x_1 - a_1 x_3) - b_1' (x_2 - a_2 x_3) \\ &= b_2' (\xi_1 + b_1' \xi_4) - b_1' (\xi_2 + b_2' \xi_4) = b_2' \xi_1 - b_1' \xi_2. \end{split}$$

Alle Elementen der Determinante enthalten also einen in ξ_1 und ξ_2 homogenen linearen Faktor. In der entwickelten Gleichung wird sich daher in jedem Glied ein in ξ_1 und ξ_2 biquadratischer Faktor vorfinden, wonach erschlossen wird, dass l auf ihrer axialen Regelfläche eine vierfache Gerade ist.

Den Schnitt der Regelfläche mit ω_{∞} finden wir, indem wir in (18) $x_4 = 0$ setzen; wir bekommen dann

$$\begin{vmatrix} 0 & , & \beta_2 & , \beta_4 & , \beta_0 \\ \beta_1 + \beta_2 & , & \beta_0 & , \beta_0 & , \beta_3 \\ 0 & , -\beta_2 x_3, \beta_1 x_3, \beta_2 x_4 - \beta_1 x_2 \\ -(\beta_1 + \beta_2) x_3, & \beta_1 x_2, \beta_2 x_4, 0 \end{vmatrix} = (\beta_1 + \beta_2) \begin{vmatrix} 0 & , \beta_2 & , \beta_1 & , \beta_0 \\ 1 & , 0 & , 0 & , \beta_3 \\ 0 & , -\beta_2 x_3 & , \beta_4 x_3 & , \beta_2 x_4 - \beta_4 x_2 \\ -x_3, \beta_1 x_2 + \beta_0 x_3, \beta_2 x_4 + \beta_0 x_3, \beta_2 x_4 + \beta_0 x_3, 0 \end{vmatrix} = 0,$$

oder, da für $x_4 = 0$ die Beziehungen

$$\beta_1 x_2 + \beta_0 x_3 = -\beta_2 x_1 + \beta_3 x_4 = -\beta_2 x_1 \beta_2 x_1 + \beta_0 x_3 = -\beta_1 x_2 + \beta_3 x_4 = -\beta_1 x_2$$

gelten,

$$(eta_1 + eta_2) eta_1 eta_2 \begin{vmatrix} 0, & 1, & 1, eta_0 \\ 1, & 0, & 0, eta_3 \\ 0, & -x_3, & x_3, eta_2 x_1 - eta_1 x_2 \\ -x_3, & -x_4, & -x_2, 0 \end{vmatrix} = 0.$$

Der Schnitt besteht also aus den drei Geraden

$$eta_2 = 0$$
 , $eta_1 = 0$, $eta_1 + eta_2 = 0$,

oder

$$\xi_2 = 0$$
 , $\xi_1 = 0$, $\xi_1 = \xi_2$

oder endlich

$$AX_1$$
 , AX_2 , AE

und aus einer kubischen Kurve.

Die Gleichung der kubischen Kurve ergiebt sich aus (9) nach der Substitution $p_1 = x_1 : x_3$ und $p_2 = x_2 : x_3$ (siehe zur Erläuterung Abt. A S. 39).

Die Substitution liefert

$$x_1^2 x_2 - x_1 x_2^2 - a_2 x_1^2 x_3 + a_1 x_2^2 x_3 + b_2' x_1 x_3^2 - b_1' x_2 x_3^2 - (a_1 b_2' - a_2 b_1') x_3^3 = 0. (19)$$

Diese Kurve enthält die Punkte X_1 , X_2 und E, aber nicht den Punkt X_3 .

Die Tangente in X_1 ist durch

$$x_2 - a_2 x_3 = 0$$

angewiesen; sie ist offenbar mit AX_1 identisch.

Ebenso fällt die Tangente in X_2 mit AX_2 zusammen.

Der Punkt A gehört auch der Kurve an; er ist der gemeinschaftliche Tangentialpunkt von X_1 und X_2 .

Die Kurve trägt auch die Punkte, welche durch

$$x_1^2 = b_1' x_3^2,$$

 $x_2^2 = b_2' x_3^2,$

oder

$$\frac{x_1}{x_3}=\pm \sqrt{b_1'}$$
 , $\frac{x_2}{x_3}=\pm \cdot \sqrt{b_2'}$

bestimmt sind; es sind also die vier in ω_{∞} dem Punkte B' zugeordneten Punkte B, B_1 , B_2 , B_3 .

Die Tangente in A wird am leichtesten ermittelt, indem wir die Tetraederecke X_3 in A legen, etwa durch die Substitution

$$x_1 = \xi_1 + a_1 \xi_3,$$

 $x_2 = \xi_2 + a_2 \xi_3.$

Diese giebt alsdann

$$\xi_2(\xi_1 + a_1 \xi_3)^2 - \xi_1(\xi_2 + a_2 \xi_3)^2 + (b_2' \xi_1 - b_1' \xi_2) \xi_3^2 = 0.$$

Der Coefficient von ξ_3^2 , gleich Null gesetzt, ergiebt

$$(a_2^2 - b_2') \xi_1 - (a_1^2 - b_1') \xi_2 = 0$$

oder

$$\frac{\xi_1}{\xi_2} = \frac{a_1^2 - b_1'}{a_2^2 - b_2'}.$$

Diese Gleichung kommt auch derjenigen Gerade in ω_0 zu, welche die axiale Projektion aus l der genannten Tangente ist; diese Gerade geht offenbar durch den Punkt

$$\xi_{1} = (a_{1}^{2} - b_{1}') \xi_{4}, \xi_{2} = (a_{2}^{2} - b_{2}') \xi_{4},$$

oder

$$x_1 = a_1^2 x_4, x_2 = a_2^2 x_4,$$

d. h. durch den in ω_0 liegenden Bildpunkt A' von A.

Die Tangente in A an der kubischen Kurve in ω_{∞} ist deshalb die axiale Projektion aus l auf ω_{∞} des Bildes A' von A.

Der Schnitt der axialen Regelfläche mit ω_0 ist jetzt nicht dem Schnitt in ω_{∞} analog. Er ist nämlich eine Kurve sechsten Grades, deren Gleichung durch die Substitution $x_3 = 0$ aus (18) folgt, und daher lautet:

$$\begin{vmatrix} 0 & , \beta_{2} & , & \beta_{1} & , \beta_{0} \\ \beta_{1} + \beta_{2} & , \beta_{0} & , & \beta_{0} & , \beta_{3} \\ (\beta_{1} - \beta_{2}) x_{4} & , \beta_{0} x_{4} & , -\beta_{0} x_{4} & , \beta_{2} x_{1} - \beta_{1} x_{2} \\ \beta_{0} x_{4} & , \beta_{1} x_{2} & , & \beta_{2} x_{1} & , 0 \end{vmatrix} = 0. \quad (19a)$$

In dieser Gleichung hat man (siehe (11) und (16))

$$\beta_0 = -a_2 x_1 + a_1 x_2 - (a_1 b_2' - a_2 b_1') x_4,
\beta_1 = x_1 - b_1' x_4,
\beta_2 = -x_2 + b_2' x_4,
\beta_3 = b_2' x_1 - b_1' x_2$$

zu setzen.

Statt in der hier skizzirten Weise die Gleichung der Kurve sechsten Grades λ abzuleiten, wollen wir sie lieber dadurch zu erhalten versuchen, dass wir \(\lambda \) durch einen Strahlenbüschel (m) in ω_0 mit B' als Scheitel und einen zu diesem projektivischen Kegelschnittbüschel v erzeugt denken. Die Zuordnung geschieht alsdann in der Weise, dass der Kegelschnitt v das Bild derjenigen Gerade n ist, welche die ν entsprechende Gerade m (auf $X_1 X_2$) schneidet.

Eine Gerade m durch B' in ω_0 wird durch

$$\mu_{1} x_{1} + \mu_{2} x_{2} - (\mu_{1} b_{1}' + \mu_{2} b_{2}') x_{4} = 0$$

eine Gerade n durch A in ω_{∞} durch

$$v_1 x_1 + v_2 x_2 - (v_1 a_1 + v_2 a_2) x_3 = 0$$

dargestellt.

. Die Geraden n und m schneiden sich, wenn der Beziehung

$$\frac{\nu_1}{\nu_2} = \frac{\mu_1}{\mu_2}$$

genügt wird; wir können alsdann setzen:

$$\mathbf{v}_1 = \rho \mathbf{\mu}_1, \\
\mathbf{v}_2 = \rho \mathbf{\mu}_2.$$

Die Gleichung von n bekommt daher die Form

$$\mu_1 x_1 + \mu_2 x_2 - (\mu_1 a_1 + \mu_2 a_2) x_3 = 0$$
,

und ihr Bildkegelschnitt ν in ω_0 ist also durch

$$\mathbf{\mu_{1}}\,\sqrt{x_{\!\scriptscriptstyle 1}} + \mathbf{\mu_{2}}\,\sqrt{x_{\!\scriptscriptstyle 2}} - (\mathbf{\mu_{1}}\,a_{\!\scriptscriptstyle 1} + \mathbf{\mu_{2}}\,a_{\!\scriptscriptstyle 2})\,\sqrt{x_{\!\scriptscriptstyle 4}} = 0\,,$$

oder durch

$$\nu = \mu_1^4 x_1^2 + \mu_2^4 x_2^2 + (\mu_1 a_1 + \mu_2 a_2)^4 x_4^2 - 2 \mu_1^2 \mu_2^2 x_1 x_2 - 2 \mu_1^2 (\mu_1 a_1 + \mu_2 a_2)^2 x_1 x_4 - 2 \mu_2^2 (\mu_1 a_1 + \mu_2 a_2)^2 x_2 x_4 = 0$$
bestimmt.

Die Substitution

$$x_1 = \xi_1 + b_1' \xi_4,$$

 $x_2 = \xi_2 + b_2' \xi_4,$
 $x_4 = \xi_4,$

welche die Ecke X_4 nach B' versetzt, giebt für m die Gleichung

$$\mu_1 \xi_1 + \mu_2 \xi_2 = 0$$
,

und für v:

$$\begin{array}{l} \mu_1^{\ 4}(\xi_1+b_1^{\ \prime}\xi_4)^2+\mu_2^{\ 4}(\xi_2+b_2^{\ \prime}\xi_4)^2+(\mu_1a_1+\mu_2a_2)^4\xi_4^2-\\ -2\ \mu_1^{\ 2}\mu_2^{\ 2}(\xi_1+b_1^{\ \prime}\xi_4)(\xi_2+b_2^{\ \prime}\xi_4)-2\ \mu_1^{\ 2}(\mu_1a_1+\mu_2a_2)^2(\xi_1+b_1^{\ \prime}\xi_4)\xi_4-\\ -2\ \mu_2^{\ 2}(\mu_1a_1+\mu_2a_2)^2(\xi_2+b_2^{\ \prime}\xi_4)\xi_4=0. \end{array}$$

Durch Elimination von μ_4 und μ_2 erhalten wir

$$\begin{array}{l} \xi_{2}^{4}(\xi_{1}+b_{1}'\xi_{4})^{2}+\xi_{1}^{4}(\xi_{2}+b_{2}'\xi_{4})^{2}+(a_{2}\xi_{1}-a_{1}\xi_{2})^{4}\xi_{4}^{2}-\\ -2\xi_{1}^{2}\xi_{2}^{2}(\xi_{1}+b_{1}'\xi_{4})(\xi_{2}+b_{2}'\xi_{4})-2\xi_{2}^{2}(a_{2}\xi_{1}-a_{1}\xi_{2})^{2}(\xi_{1}+b_{1}'\xi_{4})\xi_{4}-\\ -2\xi_{1}^{2}(a_{2}\xi_{1}-a_{1}\xi_{2})^{2}(\xi_{2}+b_{2}'\xi_{4})\xi_{4}=0. \end{array} \qquad . \tag{19b}$$

Diese Gleichung stellt offenbar die Kurve λ dar.

Die Kurve λ schneidet $X_1 X_2$ in den durch

$$\xi_1^2 \xi_2^4 + \xi_1^4 \xi_2^2 - 2 \xi_1^3 \xi_2^3 = 0$$

oder

$$\xi_1^2 \xi_2^2 (\xi_1 - \xi_2)^2 = 0$$

bestimmten Punkten, also zweimal in X_1 , zweimal in X_2 und zweimal in E.

Die Tangenten in X_1 sind durch

$$(\xi_2 + b_2' \xi_4)^2 + a_2^4 \xi_4^2 - 2 a_2^2 (\xi_2 + b_2' \xi_4) \xi_4 = 0$$

oder

$$|\xi_2 + (b_2' - a_2^2) \xi_4|^2 = 0$$

angewiesen, und demnach in der Gerade

$$\xi_2 + (b_2' - a_2^2) \xi_4 = 0$$

oder

$$x_2 - a_2^2 x_4 = 0$$

zusammengefallen, also in der Gerade, welche X_1 mit dem Bilde A' von A vereinigt.

Wir folgern hieraus, dass X_1 ein Rückkehrpunkt ist, und dass seine Tangente durch A' geht. Es leuchtet ein, dass dasselbe auch von X_2 gilt. Die Punkte X_1 und X_2 sind auf der axialen Regelfläche uniplanar. Jeder durch X_1X_2 gelegte Schnitt hat in X_1 und X_2 Rückkehrpunkte.

Die Kurve λ berührt die Gerade $X_1 X_2$ in E.

Sie hat überdies in B' ($\xi_1 = 0$, $\xi_2 = 0$) einen vierfachen Punkt, dessen Tangenten bestimmt sind durch.

$$\begin{array}{l} b_1^{\ '2}\xi_2^{\ 4} + b_2^{\ '2}\xi_1^{\ 4} + (a_2\,\xi_1 - a_1\,\xi_2)^4 - 2\,b_1^{\ '}b_2^{\ '}\xi_1^{\ 2}\xi_2^{\ 2} - \\ - 2\,b_1^{\ '}(a_2\,\xi_1 - a_1\,\xi_2)^2\xi_2^{\ 2} - 2\,b_2^{\ '}(a_2\,\xi_1 - a_1\,\xi_2)^2\xi_1^{\ 2} = 0\,, \end{array}$$

oder

$$|b_2^{\ \prime}\,\xi_1^{\ 2} + b_1^{\ \prime}\,\xi_2^{\ 2} - (a_2\,\xi_1 - a_1\,\xi_2)^2|^2 = 4\;b_1^{\ \prime}\,b_2^{\ \prime}\,\xi_1^{\ 2}\,\xi_2^{\ 2}\,,$$

oder

$$b_2{'}\,\xi_1{}^2 + b_1{'}\,\xi_2{}^2 - (a_2\,\xi_1 - a_1\,\xi_2)^2 = \pm \,2\,\sqrt{\,b_1{'}} \cdot \sqrt{\,b_2{'}} \cdot \xi_1\,\xi_2$$

oder

$$\begin{array}{ll} 1^{\circ} & \pm (\xi_{1} \sqrt{\overline{b_{2}'}} - \xi_{2} \sqrt{\overline{b_{1}'}}) = a_{2} \xi_{1} - a_{1} \xi_{2}, \\ 2^{\circ} & \pm (\xi_{1} \sqrt{\overline{b_{2}'}} + \xi_{2} \sqrt{\overline{b_{1}'}}) = a_{2} \xi_{1} - a_{1} \xi_{2}, \end{array}$$

oder

$$. \frac{\xi_1}{\xi_2} = \frac{a_1 \pm \sqrt{b_1}}{a_2 \pm \sqrt{b_2}}.$$

Die axialen Projektionen dieser Geraden aus l auf ω_{∞} werden durch dieselbe Gleichungen angewiesen. Sie tragen die vier Punkte

$$\begin{array}{l} \xi_1 = (a_1 \pm \sqrt{b_1'}) \; \xi_3 \; , \; \\ \xi_2 = (a_2 \pm \sqrt{b_2'}) \; \xi_3 \; , \; \end{array}$$

oder

$$\begin{array}{l} x_1 = \pm \sqrt{b_1^{\,\prime}} \cdot x_3 \,, \\ x_2 = \pm \sqrt{b_2^{\,\prime}} \cdot x_3 \,, \end{array} \right\}$$

welche mit den vier Bildpunkten B, B_1 , B_2 , B_3 des Punktes B' identisch sind. Die vier Tangenten im vierfachen Punkte B'

sind demnach die axialen Projektionen aus l auf ω_0 der vier Bilder von B', oder der vier nach B' zielenden Congruenzstrahlen.

Betrachten wir jetzt die auf der axialen Regelfläche befindliche Doppelkurve. Wir werden dabei demselben Gedankengang wie in der vorigen Abteilung folgen.

Ein Strahl p liegt mit l in der Ebene

$$\lambda_1(x_1 - a_1 x_3 - b_1' x_4) + \lambda_2(x_2 - a_2 x_3 - b_2' x_4) = 0$$
, (20)

wenn die Identität

$$\lambda_1 |(p_1 - a_1)x_3 + (p_1^2 - b_1')x_4| + \lambda_2 |(p_2 - a_2)x_3 + (p_2^2 - b_2')x_4| \equiv 0,$$

und also die Bedingungen

$$\lambda_{1}(p_{1} - a_{1}) + \lambda_{2}(p_{2} - a_{2}) = 0,
\lambda_{1}(p_{1}^{2} - b_{1}') + \lambda_{2}(p_{2}^{2} - b_{2}') = 0$$
(21)

erfüllt sind.

Ein Strahl q liegt in derselben Ebene, wenn man hat

$$\lambda_{1}(q_{1} - a_{1}) + \lambda_{2}(q_{2} - a_{2}) = 0,
\lambda_{2}(q_{1}^{2} - b_{1}') + \lambda_{2}(q_{2}^{2} - b_{2}') = 0.$$
(22)

Der Strahl p schneidet den Strahl q, falls der Gleichung

$$\begin{vmatrix} -1, & 0, p_1, p_1^2 \\ 0, -1, p_2, p_2^2 \\ -1, & 0, q_1, q_1^2 \\ 0, -1, q_2, q_2^2 \end{vmatrix} = 0,$$

oder

$$(p_1 - q_1)(p_2 - q_2)[(p_1 + q_1) - (p_2 + q_2)] = 0$$

genügt wird.

Die Bedingungen $p_1 - q_1 = 0$ und $p_2 - q_2 = 0$ betreffen den Fall, wo die Strahlen p und q in der nämlichen Ebene durch X_2 oder X_4 liegen; wir behalten daher nur die Bedingung

Den Schnittpunkt D von p und q bestimmt man aus

$$x_{1} = p_{1}x_{3} + p_{1}^{2}x_{4} = q_{1}x_{3} + q_{1}^{2}x_{4},$$

$$x_{2} = p_{2}x_{3} + p_{2}^{2}x_{4} = q_{2}x_{3} + q_{2}^{2}x_{4},$$

oder

$$(p_1 - q_1)x_3 = -(p_1 - q_1)(p_1 + q_1)x_4, (p_2 - q_2)x_3 = -(p_2 - q_2)(p_2 + q_2)x_4,$$

also aus

$$x_3 = -(p_1 + q_1)x_4 = -(p_2 + q_2)x_4, \dots$$
 (24)

welche Gleichungen sich vermöge (23) vertragen.

Aus (1) folgt weiter

$$x_1 = -p_1(p_1 + q_1)x_4 + p_1^2x_4 = -p_1q_1x_4,$$
 (25)

$$x_2 = -p_2(p_2 + q_2)x_4 + p_2^2x_4 = -p_2q_2x_4. (26)$$

Wenn die Grössen p_1 , p_2 , q_1 und q_2 auch den Gleichungen (21) und (22) genügen, so ist D der Schnittpunkt zweier Strahlen, welche beide l schneiden; D ist alsdann ein Punkt der Doppelkurve der Axialen Regelfläche von l.

Obigen Gedankengang zusammenfassend, können wir behaupten, dass der in der Ebene

$$\lambda_1(x_1 - a_1 x_3 - b_1' x_4) + \lambda_2(x_2 - a_2 x_3 - b_2' x_4) = 0 \quad (20)$$

befindliche Punkt D der Doppelkurve durch

$$x_1 = -p_1 q_1 x_4, \dots$$
 (25)

$$x_3 = -(p_1 + q_1)x_4 = -(p_2 + q_2)x_4$$
. (24)

bestimmt ist, wenn p_1 , p_2 q_4 und q_2 den Bedingungen

$$\lambda_1(p_1 - a_1) + \lambda_2(p_2 - a_2) = 0$$
 . . (21)

$$\lambda_1(q_1 - a_1) + \lambda_2(q_2 - a_2) = 0$$
 . . (22)

genügen.

Die Gleichungen der Doppelkurve erhält man, indem man aus (21), (22), (23), (24), (25) und (26) p_1 , p_2 q_1 und q_2 eliminirt; wir bekommen dann zwei Gleichungen in $\lambda_1 : \lambda_2$, aus welchen wir mit Hülfe von (20) das Verhältniss $\lambda_1 : \lambda_2$ fortschaffen können. Es bleiben dann zwei Gleichungen übrig, in welchen neben den Constanten a_1 , a_2 , b_1 und b_2 nur die Coordinaten auftreten; sie stellen zwei Flächen dar, welche sich in der Doppelkurve schneiden.

Zunächst stellen wir die Anzahl der Schnittpunkte von I mit der Doppelkurve fest.

Wenn der Punkt D auf l liegt, so schneiden die Strahlen p und q, welche sich auf l treffen und mit l in einer Ebene liegen, die Ebene ω_{∞} in zwei Punkten P und Q, welche mit der Spur A von l in einer Gerade liegen.

Die Strahlen, welche nach einem Punkte (x_1, x_2, x_3, x_4) zielen, treffen ω_{∞} in Punkten, deren p_4 -Coordinate durch

$$x_4 p_1^2 + x_3 p_1 - x_1 = 0$$
,

und deren p_2 -Coordinate durch

$$x_4 p_2^2 + x_3 p_2 - x_2 = 0$$

gegeben ist.

Die Formeln

$$x_{1} = \xi_{1} + a_{1} \xi_{3} + b_{1}' \xi_{4},$$

$$x_{2} = \xi_{2} + a_{2} \xi_{3} + b_{2}' \xi_{4},$$

$$x_{3} = \xi_{3},$$

$$x_{4} = \xi_{4}$$

bringen die Kante X_3 X_4 des Coordinatentetraeders nach l = AB'. Diesen Bezeichnungen entsprechend, wird ein Punkt in ω_{∞} durch

$$\frac{\xi_1}{\xi_3} = \pi_1 \; , \; \frac{\xi_2}{\xi_3} = \pi_2$$

angewiesen, wonach

$$p_1 = \pi_1 + a_1$$
, $p_2 = \pi_2 + a_2$.

Die Gleichungen (1) gestalten sich nun derart:

$$\xi_4(\pi_1 + a_1)^2 + \xi_3(\pi_1 + a_1) - (\xi_1 + a_1 \xi_3 + b_1' \xi_4) = 0,$$

 $\xi_4(\pi_2 + a_2)^2 + \xi_3(\pi_2 + a_2) - (\xi_2 + a_2 \xi_3 + b_2' \xi_4) = 0,$

oder

$$\xi_{4} \pi_{1}^{2} + (\xi_{3} + 2 a_{1} \xi_{4}) \pi_{1} + |-\xi_{1} + (a_{1}^{2} - b_{1}') \xi_{4}| = 0,$$

$$\xi_{4} \pi_{2}^{2} + (\xi_{3} + 2 a_{2} \xi_{4}) \pi_{2} + |-\xi_{2} + (a_{2}^{2} - b_{2}') \xi_{4}| = 0.$$

Wenn der Punkt, durch den die Strahlen gehen, auf $l(\xi_1 = 0, \xi_2 = 0)$ liegen soll, so bekommen die Gleichungen in π_1 und π_2 die Form

$$\xi_4 \pi_1^2 + (\xi_3 + 2 a_1 \xi_4) \pi_1 + (a_1^2 - b_1') \xi_4 = 0, \qquad (27)$$

$$\xi_4 \pi_2^2 + (\xi_3 + 2 a_2 \xi_4) \pi_2^{\gamma \gamma} + (a_2^2 - b_2') \xi_4 = 0.$$
 (28)

Es seien c_1 und c_1' die Wurzeln von (27), c_2 und c_2' die Wurzeln von (28).

Der Punkt A ist durch

$$\pi_1 = 0$$
 , $\pi_2 = 0$

bestimmt.

Es werden zwei der vier durch (27) und (28) angewiesenen Punkte mit \mathcal{A} in gerader Linie liegen, wenn (vergl. Abt. \mathcal{A} S. 45) die Bedingung

$$(c_1 + c_1')^2 c_2 c_2' - c_1 c_1' (c_2 + c_2')^2 = 0$$

erfüllt ist.

Aus (27) und (28) geht hervor:

$$egin{align} c_1 + c_1' &= -rac{\xi_3 + 2\,a_1\,\xi_4}{\xi_4} \;,\; c_1\,c_1' = a_1^2 - b_1', \ c_2 + c_2' &= -rac{\xi_3 + 2\,a_2\,\xi_4}{\xi_4} \;,\; c_2\,c_2' = a_2^2 - b_2'; \ \end{cases}$$

die obige Bedingung erhält also diese Gestalt:

$$(a_2^2 - b_2')(\xi_3 + 2 a_1 \xi_4)^2 - (a_1^2 - b_1')(\xi_3 + 2 a_2 \xi_4)^2 = 0.$$
 (29)

Die Schnittpunkte von l mit der Doppelkurve liegen demnach in denjenigen zwei Ebenen durch X_1 X_2 , welche durch (29), oder durch

$$(\xi_3 + 2 a_1 \xi_4) \sqrt{a_2^2 - b_2'} = \pm (\xi_3 + 2 a_2 \xi_4) \sqrt{a_1^2 - b_1'}$$
 (30)

bestimmt sind.

Es befinden sich daher auf l zwei Punkte der Doppelkurve, welche somit, da eine durch l gelegte Ebene ausserhalb l einen Punkt der Doppelkurve liefert, vom dritten Grade ist.

Wir wollen jetzt die Doppelkurve analytisch behandeln.

Die Kante $X_3 X_4$ des Coordinatentetraeders wird wieder nach l = AB' verlegt.

Die Ebene durch l wird nun durch

$$\lambda_1 \, \xi_1 + \lambda_2 \, \xi_2 = 0$$

dargestellt.

Der Schnittpunkt D von p und q ist durch

$$\frac{\xi_{1}}{\xi_{4}} = \frac{x_{1} - a_{1} \, x_{3} - b_{1}{'} \, x_{4}}{x_{4}} = - \left[p_{1} \, q_{1} - a_{1} \left(p_{1} + q_{1} \right) + b_{1}{'} \right],$$

also durch

$$\xi_1 = - \left\{ p_1 \ q_1 - a_1 \left(p_1 + q_1 \right) + b_1' \right\} \xi_4, \quad . \quad (32)$$

$$\xi_2 = - \left(p_2 \, q_2 - a_2 \, (p_2 + q_2) + b_2' \right) \, \xi_4 \,, \quad . \quad (33)$$

$$\xi_3 = -(p_1 + q_1) \xi_4 = -(p_2 + q_2) \xi_4$$
 . (34)

bestimmt.

Aus den Gleichungen (21) und (22) werden durch Addition und Multiplikation die folgenden Beziehungen hergeleitet:

$$\lambda_1 (p_1 + q_1) + \lambda_2 (p_2 + q_2) = 2 (\lambda_1 a_1 + \lambda_2 a_2)$$
 (35)

und

$$\begin{array}{l} \lambda_{1}^{2} p_{1} q_{1} - \lambda_{1}^{2} a_{1} (p_{1} + q_{1}) + \lambda_{1}^{2} a_{1}^{2} = \\ = \lambda_{2}^{2} p_{2} q_{2} - \lambda_{2}^{2} a_{2} (p_{2} + q_{2}) + \lambda_{2}^{2} a_{2}^{2}. \end{array}$$
 (36)

Wir setzen

$$\begin{split} p_1\,q_1 &= \mathbf{p}_1\,,\\ p_2\,q_2 &= \mathbf{p}_2\,,\\ p_1 + q_1 &= p_2 + q_2 = -\ \mu\,, \end{split}$$

wonach die den Schnittpunkt D mit $X_1 X_2$ verbindende Ebene durch

dargestellt wird.

Die Gleichungen (32) bis (36) verwandlen sich nun in

$$\xi_1 = -(\varphi_1 + \mu a_1 + b_1') \xi_4, \quad . \quad . \quad . \quad (38)$$

$$\xi_2 = -(\varphi_2 + \mu a_2 + b_2') \xi_4, \dots (39)$$

$$\xi_2 = \mu \, \xi_A \,, \, \ldots \, \ldots \, \ldots \, \ldots \, \ldots \, (40)$$

$$(\lambda_1 + \lambda_2) \mu = -2 (\lambda_1 a_1 + \lambda_2 a_2), \quad . \quad (41)$$

$$\lambda_1^2 \varphi_1 + \lambda_1^2 \mu a_1 + \lambda_1^2 a_1^2 = \lambda_2^2 \varphi_2 + \lambda_2^2 \mu a_2 + \lambda_2^2 a_2^2.$$
 (42)

Durch Elimination von μ aus (40) und (41) erhält man

$$(\lambda_1 + \lambda_2) \xi_3 + 2 (\lambda_1 a_1 + \lambda_2 a_2) \xi_4 = 0$$
. (43)

Aus (38) und (39) folgern wir

$$\begin{split} & \varphi_1 = - \, \frac{\xi_1 + (\mu a_1 + b_1{}') \, \xi_4}{\xi_4} \, , \\ & \varphi_2 = - \, \frac{\xi_2 + (\mu a_2 + b_2{}') \, \xi_4}{\xi_4} \, . \end{split}$$

Die Substitution dieser Ausdrücke in (42) ergiebt

$$\begin{aligned} & - \lambda_1^2 \xi_1 - \lambda_1^2 (\mu a_1 + b_1') \xi_4 + \lambda_1^2 \mu a_1 \xi_4 + \lambda_1^2 a_1^2 \xi_4 = \\ & = - \lambda_2^2 \xi_2 - \lambda_2^2 (\mu a_2 + b_2') \xi_4 + \lambda_2^2 \mu a_2 \xi_4 + \lambda_2^2 a_2^2 \xi_4 \,, \end{aligned} \tag{44}$$

oder

$$\lambda_{1}^{2} |\xi_{1} + (b_{1}' - a_{1}^{2}) \xi_{4}| = \lambda_{2}^{2} |\xi_{2} + (b_{2}' - a_{2}^{2}) \xi_{4}| . \quad (44)$$

Zum Schluss wollen wir mittels (31) λ_1 und λ_2 aus (43) und (44) eliminiren; wir finden dann

$$\Phi \equiv (\xi_1 - \xi_2) \; \xi_3 + 2 \; (a_2 \, \xi_1 - a_1 \, \xi_2) \; \xi_4 = 0 \; , \qquad (45)$$

$$\Psi \! \equiv \! \xi_{2}{}^{2} |\xi_{1} \! + \! (b_{1}{}' \! - a_{1}{}^{2}) \, \xi_{4}| - \xi_{1}{}^{2} \, |\xi_{2} \! + \! (b_{2}{}' \! - a_{2}{}^{2}) \, \xi_{4}| = 0. \eqno(46)$$

Durch diese beiden Gleichungen werden zwei Flächen dargestellt, welchen die Doppelkurve angehört.

 Φ ist eine quadratische Regelfläche , welche die Gerade l $(\xi_1=0$, $\xi_2=0)$ trägt.

 Ψ ist eine kubische Regelfläche, auf der l Doppelgerade ist.

Der Schnitt von Φ und Ψ enthält also die doppelt zu zählende Gerade l. Ausserdem haben die beiden Flächen noch die Gerade AE ($\xi_1 = \xi_2$, $\xi_4 = 0$) gemeinsam. Der Restschnitt ist demnach eine kubische Raumkurve.

Wir setzen

$$\begin{aligned}
\xi_3 + 2 a_1 \xi_4 &= \xi_5, \\
\xi_3 + 2 a_2 \xi_4 &= \xi_6,
\end{aligned}$$
(47)

mithin

$$\xi_4 = \frac{\xi_5 - \xi_6}{2\;(a_1 - a_2)};$$

die Gleichungen $\Phi = 0$ und $\Psi = 0$ bekommen daher die folgende Gestalt:

$$\begin{split} \Phi &\equiv \xi_2 \, \xi_5 - \xi_1 \, \xi_6 = 0 \,, \\ \Psi &\equiv 2 \, (a_1 - a_2) \, (\xi_1 - \xi_2) \, \xi_1 \, \xi_2 \, + \\ &+ \{ (b_2{}' - a_2{}^2) \, \xi_1{}^2 - (b_1{}' - a_1{}^2) \, \xi_2{}^2 \} \, (\xi_5 - \xi_6) = 0 \,. \end{split}$$

Es gilt nun die Identität:

$$2 (a_{1} - a_{2}) (\xi_{1} - \xi_{2}) \xi_{1} \xi_{2} + |(b_{2}' - a_{2}^{2}) \xi_{1}^{2} - (b_{1}' - a_{1}^{2}) \xi_{2}^{2}| (\xi_{5} - \xi_{6}) \equiv \equiv |(b_{2}' - a_{2}^{2}) \xi_{1} - (b_{1}' - a_{1}^{2}) \xi_{2}| (\xi_{2} \xi_{5} - \xi_{1} \xi_{6}) + + (\xi_{1} - \xi_{2}) [\xi_{1} | 2 a_{1} \xi_{2} + (b_{2}' - a_{2}^{2}) \xi_{5}| - \xi_{2} | 2 a_{2} \xi_{1} + (b_{1}' - a_{1}^{2}) \xi_{6}|].$$

Setzen wir, zur Abkürzung,

$$\begin{array}{c} (b_{2}{'}-a_{2}{}^{2})\,\xi_{1}-(b_{1}{'}-a_{1}{}^{2})\,\xi_{2}=V,\\ \xi_{1}-\xi_{2}=W,\\ \xi_{1}\,[\,2\,a_{1}\,\xi_{2}+(b_{2}{'}-a_{2}{}^{2})\,\xi_{5}]-\xi_{2}\,[\,2\,a_{2}\,\xi_{1}+(b_{1}{'}-a_{1}{}^{2})\,\xi_{6}]=\Omega, \end{array}$$

so nimmt obige Identität diese Form an:

$$\Psi \equiv V \Phi + W \Omega.$$

Die beiden quadratischen Flächen Φ und Ω haben, ausser l ($\xi_1 = 0$, $\xi_2 = 0$), eine kubische Raumkurve gemein, welche vermöge der Identität auch dem Schnitte von Ψ und Φ angehört.

Es ist demnach klar, dass die Doppelkurve der axialen Regelfläche von l=AB' der partielle Schnitt ist von

$$\Phi \equiv \xi_2 \, \xi_5 - \xi_1 \, \xi_6 = 0$$

und

$$\Omega \equiv \xi_1 | 2 a_1 \xi_2 + (b_2' - a_2^2) \xi_5 | - \xi_2 | 2 a_2 \xi_1 + (b_1' - a_1^2) \xi_6 | = 0.$$

Wenn wir ξ_5 und ξ_6 durch ihre Ausdrücke (47) ersetzen, so finden wir

$$\Phi \equiv \xi_2 (\xi_3 + 2 a_1 \xi_4) - \xi_1 (\xi_3 + 2 a_2 \xi_4) = 0, . (48)$$

$$\Omega \equiv 2 (a_1 - a_2) \, \xi_1 \, \xi_2 + (b_2' - a_2^2) (\xi_3 + 2 \, a_1 \, \xi_4) \, \xi_1 - (b_1' - a_1^2) (\xi_3 + 2 \, a_2 \, \xi_4) \, \xi_2 = 0. \quad (49)$$

Die Doppelkurve schneidet ω_{∞} ($\xi_4 = 0$) offenbar in den durch

$$\begin{array}{c} (\xi_{1}-\xi_{2})\;\xi_{3}=0\,,\\ 2\;(a_{1}-a_{2})\;\xi_{1}\;\xi_{2}+|(b_{2}'-a_{2}^{2})\;\xi_{1}-(b_{1}'-a_{1}^{2})\;\xi_{2}|\;\xi_{3}=0 \end{array}$$

bestimmten Punkten, also in den Punkten X_1 und X_2 und in dem Punkte, welcher, mit A, den Gleichungen

$$\xi_{1} - \xi_{2} = 0,$$

$$2 (a_{1} - a_{2}) \xi_{1} \xi_{2} + |(b_{2}' - a_{2}^{2}) \xi_{1} - (b_{1}' - a_{1}^{2}) \xi_{2}| \xi_{3} = 0,$$

oder

$$\xi_{1} - \xi_{2} = 0,$$

$$2 (a_{1} - a_{2}) \xi_{1} + \{(b_{2}' - a_{2}^{2}) - (b_{1}' - a_{1}^{2}) | \xi_{3} = 0$$

genügt. Dieser Punkt ist der Schnittpunkt von AE ($\xi_1 - \xi_2 = 0$) mit der kubischen Kurve in ω_{∞} , welche dem Schnitt der axialen Regelfläche angehört.

Die Doppelkurve enthält die Punkte X_1 und X_2 .

Aus der Tatsache, dass *l* die Doppelkurve in zwei Punkten trifft, geht hervor, dass *l* zweimal mit zwei Congruenzstrahlen einem Strahlenbüschel angehört; d. h. der Axengrad der Congruenz ist zwei.

§ 6. Die axiale Regelfläche einer Gerade l, welche $X_3 X_4$ schneidet. Falls die Gerade l die Gerade $X_3 X_4$ schneidet, hat man für die Coordinaten der Spuren A und B' in ω_{∞} und ω_0

$$\frac{a_2}{a_1} = \frac{b_2'}{b_1'} = t,$$

wonach

$$a_1 b_2' - a_2 b_1' = 0.$$

Die Grössen β_0 , β_1 , β_2 und β_3 der Gleichung (18) erhalten nun die folgenden Werte (Siehe (11) und (16))

$$\begin{split} \beta_0 &= -a_1(tx_1 - x_2), \\ \beta_1 &= x_1 - a_1x_3 - b_1'x_4, \\ \beta_2 &= -x_2 + ta_1x_3 + tb_1'x_4, \\ \beta_3 &= b_1'(tx_1 - x_2). \end{split}$$

Die Gleichung (18) gestaltet sich daher wie folgt:

$$\Delta' \equiv \begin{vmatrix} 0 & , -x_2 + ta_1x_3 + tb_1'x_4 & , \\ x_1 - x_2 - (1 - t)(a_1x_3 + b_1'x_4) & , -a_1(tx_1 - x_2) & , \\ |x_1 + x_2 - (1 + t)(a_1x_3 + b_1'x_4)|x_4 & , (-x_2 + ta_1x_3 + tb_1'x_4)x_3 - a_1(tx_1 - x_2)x_4, \\ -(x_1 - x_2)x_3 - a_1(tx_1 - x_2)x_4 - (1 - t)(a_1x_3 + b_1'x_4)x_3 & , (x_1 - a_1x_3 - b_1'x_4)x_2 & , \\ x_1 - a_1x_3 - b_1'x_4 & , -a_1(tx_1 - x_2) & , \\ -a_1(tx_1 - x_2) & , b_1'(tx_1 - x_2) & \\ (x_1 - a_1x_3 - b_1'x_4)x_3 + a_1(tx_1 - x_2)x_4 & , -2x_1x_2 + (a_1x_3 + b_1'x_4)(tx_1 - x_2) \\ & (-x_2 + ta_1x_3 + tb_1'x_4)x_1 & , 0 \end{vmatrix} = 0. (50)$$

Die kubische Kurve in ω_{∞} ist jetzt durch (siehe (19))

$$x_4 x_2 (x_4 - x_2) - a_1 (t x_1^2 - x_2^2) x_3 + b_1' (t x_4 - x_2) x_3^2 = 0$$
 (51)

bestimmt. Sie enthält nun auch den Punkt X_3 , dessen Tangente durch

$$tx_1 - x_2 = 0$$

oder

$$x_2 = tx_1$$

gegeben, daher mit der Gerade $X_3 A$ identisch ist. Die Schnittkurve λ in ω_0 hat nun die Gleichung

$$\begin{split} &\xi_{2}^{4}(\xi_{1}+b_{1}'\xi_{4})^{2}+\xi_{1}^{4}(\xi_{2}+tb_{1}'\xi_{4})^{2}+a_{1}^{4}(t\xi_{1}-\xi_{2})^{4}\xi_{4}^{2}-\\ &-2\xi_{1}^{2}\xi_{2}^{2}(\xi_{1}+b_{1}'\xi_{4})(\xi_{2}+tb_{1}'\xi_{4})-2a_{1}^{2}\xi_{2}^{2}(t\xi_{1}-\xi_{2})^{2}(\xi_{1}+b_{1}'\xi_{4})\xi_{4}-\\ &-2a_{1}^{2}\xi_{1}^{2}(t\xi_{1}-\xi_{2})^{2}(\xi_{2}+tb_{1}'\xi_{4})\xi_{4}=0\,, \end{split}$$

welcher jetzt ebenso durch

$$\xi_1 = -b_1' \xi_4,$$

 $\xi_2 = -tb_1' \xi_4$

genügt wird.

Indem wir die Coordinatenecke wieder von B' nach X_4 zurückführen, und zwar mittels der Formeln

$$\begin{split} \xi_1 &= x_1 - b_1' x_4, \\ \xi_2 &= x_2 - t b_1' x_4, \\ \xi_4 &= x_4, \end{split}$$

so finden wir für λ diese Gleichung:

$$\begin{array}{l} (x_2-tb_1'x_4)^4x_1^2+(x_1-b_1'x_4)^4x_2^2+a_1^4(tx_1-x_2)^4x_4^2-\\ -2(x_1-b_1'x_4)^2(x_2-tb_1'x_4)^2x_1x_2-2a_1^2(x_2-tb_1'x_4)^2(tx_1-x_2)^2x_1x_4-\\ -2a_1^2(x_1-b_1'x_4)^2(tx_1-x_2)^2x_2x_4=0. \end{array}$$

Der Punkt X_4 erscheint hier als ein Doppelpunkt, dessen Tangenten durch

$$t^4 b_1^{'4} x_1^2 + b_1^{'4} x_2^2 - 2 t^2 b_1^{'4} x_1 x_2 = 0$$

oder

$$(t^2x_1 - x_2)^2 = 0$$

dargestellt werden.

Der Punkt X_4 ist demnach ein $R\ddot{u}ckkehrpunkt$, mit der Gerade

$$\frac{x_2}{x_1} = t^2$$

als Tangente; diese Gerade verbindet offenbar X_4 mit A'.

Die Doppelkurve der axialen Regelfläche wird nun die Ebene ω_0 in den Punkten X_1 , X_2 und X_4 treffen. Ihre Schnittpunkte mit l sind nun durch (siehe (29))

$$t(ta_1^2 - b_1')(\xi_3 + 2a_1\xi_4)^2 - (a_1^2 - b_1')(\xi_3 + 2ta_1\xi_4)^2 = 0 \quad (52)$$

bestimmt, während die Kurve durch

$$\Phi \equiv \xi_{2} (\xi_{3} + 2 a_{1} \xi_{4}) - \xi_{1} (\xi_{3} + 2 t a_{1} \xi_{4}) = 0, \quad (53)$$

$$\Omega \equiv 2 a_{1} (1 - t) \xi_{1} \xi_{2} + t (b_{1}' - t a_{1}^{2}) (\xi_{3} + 2 a_{1} \xi_{4}) \xi_{1} - (b_{1}' - a_{1}^{2}) (\xi_{3} + 2 t a_{1} \xi_{4}) \xi_{2} = 0 \quad (54)$$

dargestellt wird.

Die kubische Doppelkurve ist hier, im Gegensatz zu dem analogen Fall in der vorigen Congruenz, noch immer eine Raumkurve. Dies lässt sich erklären aus dem Umstande, dass die Punkte X_3 und X_4 in der jetzigen Congruenz *nicht* singulär sind.

§ 7. Die axiale Regelftäche einer Gerade l_{μ} , welche X_1 X_2 schneidet. Die Gerade l werde jetzt in eine durch X_1 X_2 gehende Ebene gelegt, z. B. in die Ebene ω_{μ} $(x_3 = \mu x_4)$. Ihre Gleichungen seien

$$\mathbf{a}_{1} x_{1} + \mathbf{a}_{2} x_{2} + \mathbf{a}_{3} x_{3} + \mathbf{a}_{4} x_{4} = 0,$$

 $x_{3} = \mathbf{\mu} x_{b}.$

Wenn wir in den in § 5 befindlichen Ausdrücken

$$a_1 = + rac{lpha_2}{\delta},$$
 $a_2 = -rac{lpha_1}{\delta},$
 $b_1' = -rac{\mu lpha_2}{\delta},$
 $b_2' = + rac{\mu lpha_1}{\delta},$
 $\Delta = a_1 b_2' - a_2 b_1' = -rac{(\mu lpha_3 + lpha_4) a_0}{\delta}$

setzen, so ist auf das unendlich werden der Coordinaten a_1 , a_2 , b_1' und b_2' Rücksicht genommen.

Die Grössen β_0 , β_1 , β_2 und β_3 (siehe (11) und (16)) erhalten nun die folgenden Werte:

$$\begin{split} \beta_0 &= \frac{\alpha_1 x_1 + \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4}{\delta} a_0, \\ \beta_1 &= \frac{\delta x_1 - \alpha_2 (x_3 - \mu x_4) a_0}{\delta}, \\ \beta_2 &= \frac{-\delta x_2 - \alpha_1 (x_3 - \mu x_4) a_0}{\delta}, \\ \beta_3 &= \frac{\mu (\alpha_1 x_1 + \alpha_2 x_2) + (\mu \alpha_3 + \alpha_4) x_3}{\delta} a_0. \end{split}$$

Indem man diese Ausdrücke in die Gleichung (18) einsetzt und, nach Fortschaffung der Nenner, $\delta = 0$ setzt, so findet man die Gleichung der axialen Regelfläche von l_{μ} .

Die kubische Kurve in ω_{∞} wird (siehe (19)) durch

$$\delta(x_1 - x_2)x_1x_2 + \left[\alpha_1x_1^2 + \alpha_2x_2^2 + \left|\mu(\alpha_1x_1 + \alpha_2x_2 + \alpha_3x_3) + \alpha_4x_3\right|x_3\right]x_3a_0 = 0,$$
oder

$$x_3 = 0$$

und

$$\alpha_1 x_1^2 + \alpha_2 x_2^2 + \left[\mu (\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3) + \alpha_4 x_3 \right] x_3 = 0 \quad (55)$$

dargestellt.

Die Kurve zerfällt also in die Gerade $X_1 X_2$ und einen Kegelschnitt. Dieser schneidet $X_1 X_2$ in den Punkten

$$\frac{x_2}{x_1} = \pm V - \frac{\alpha_1}{\alpha_2}$$
 , $x_3 = 0$,

daher in den Bildern desjenigen Punktes in ω_0 , welcher durch

$$\frac{x_2}{x_1} = -\frac{\alpha_1}{\alpha_2}$$
, $x_4 = 0$,

oder

$$\alpha_1 x_1 + \alpha_2 x_2 = 0, x_4 = 0$$

bestimmt ist; also des Punktes L_{μ} , wo die Gerade l_{μ} die Gerade $X_1 X_2$ schneidet, wobei dieser als Punkt von ω_0 betrachtet wird. Die Geraden AX_1 , AX_2 und AE, welche im allgemeinen Falle

die kubische Kurve in ω_{∞} zu einem Gebilde sechsten Grades ergänzen, sind nun alle, weil $A = L_{\mu}$ auf $X_1 X_2$ liegt, mit $X_1 X_2$ zusammengefallen. Ausserdem enthält die kubische Kurve die Gerade $X_1 X_2$ als Bestandteil.

Der Schnitt der Regelfläche mit ω_{∞} enthält also *vier*mal die Gerade $X_1 X_2$ und einen Kegelschnitt.

Die Schnittkurve λ in ω_0 wird (siehe S. 113) durch die Gleichungen

$$\mu_{1} \sqrt{x_{1} + \mu_{2} \sqrt{x_{2} - (\mu_{1} a_{1} + \mu_{2} a_{2})} \sqrt{x_{4}} = 0,}$$

$$\frac{\mu_{1}}{\mu_{2}} = -\frac{x_{2} - b_{2}' x_{4}}{x_{1} - b_{1}' x_{4}},$$

also durch

$$(x_2 - b_2' x_4) \sqrt{x_4 - (x_4 - b_1' x_4)} \sqrt{x_2} + + (a_2 x_4 - a_1 x_2 + (a_1 b_2' - a_2 b_1') x_4) \sqrt{x_4} = 0$$

dargestellt. Mit Verwendung der Ausdrücke für a_1 , a_2 , b_1' , b_2' und Δ finden wir

$$\mu \alpha_1 x_4 \sqrt{x_1} + \mu \alpha_2 x_4 \sqrt{x_2} + |\alpha_1 x_1 + \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4| \sqrt{x_4} = 0,$$

oder, nachdem wir die Wurzelgrössen fortgeschafft, und durch x_4^2 geteilt haben,

$$\left[\mu^2 (\alpha_1^2 x_1 + \alpha_2^2 x_2) x_4 - (\alpha_1 x_1 + \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4)^2 \right]^2 - 4 \mu^4 \alpha_1^2 \alpha_2^2 x_1 x_2 x_4^2 = 0.$$

Der Schnitt λ besteht daher aus der doppelt zu zählenden Gerade $X_1 X_2$ und einer biquadratischen Kurve, welche die Gerade $X_1 X_2$ in den vier durch

$$(\alpha_1 x_1 + \alpha_2 x_2)^4 = 0$$

bestimmten Punkten schneidet. Diese Schnittpunkte sind also in dem Schnittpunkt L_{μ} von l_{μ} mit $X_1 X_2$ zusammengefallen.

Die Kurve hat in L_{μ} einen Doppelpunkt, dessen beide Zweige die nämliche Tangente $X_1 X_2$ haben, während die Kurve in L_{μ} vier Punkten mit $X_1 X_2$ gemein hat.

Zur Auffindung der Gleichungen der Doppelkurve, müssen wir die Rechnung des allgemeinen Falles wiederholen, weil hier a_1 , a_2 , b_1' , b_2' und Δ unendlich gross sind, und die Betrachtungen auf S. 116 und ff. hinfällig werden.

Sie werden jetzt in der folgenden Weise abgeändert.

Eine durch l_{μ} gelegte Ebene wird durch

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + \lambda (x_3 - \mu x_4) = 0$$
 (56)

dargestellt.

In dieser Ebene befinden sich die Strahlen p und q, wenn den Beziehungen

$$\begin{array}{c|c} \mathbf{\alpha}_1 p_1 + \mathbf{\alpha}_2 p_2 + \mathbf{\alpha}_3 + \mathbf{\lambda} = 0, \\ \mathbf{\alpha}_1 p_1^2 + \mathbf{\alpha}_2 p_2^2 + \mathbf{\alpha}_4 - \mu \mathbf{\lambda} = 0 \end{array}$$
(57)

und

$$\begin{array}{c|c}
\alpha_1 q_1 + \alpha_2 q_2 + \alpha_3 + \lambda &= 0, \\
\alpha_1 q_1^2 + \alpha_2 q_2^2 + \alpha_4 - \mu \lambda &= 0
\end{array}$$
(58)

genügt wird.

Der Schnittpunkt von p und q bestimmt sich aus

$$x_1 = -p_1 q_1 x_4, \dots (25)$$

$$x_2 = -p_2 q_2 x_4, \dots (26)$$

$$x_3 = -(p_1 + q_1) x_4 = -(p_2 + q_2) x_4.$$
 (24)

Aus den Gleichungen (57) und (58) folgt

$$\alpha_1(p_1+q_1)+\alpha_2(p_2+q_2)+2(\alpha_3+\lambda)=0$$
 . (59)

und

$$\alpha_1^2 p_1 q_1 = \alpha_2^2 p_2 q_2 + \alpha_2 (\alpha_3 + \lambda) (p_2 + q_2) + (\alpha_3 + \lambda)^2, \quad (60)$$
oder, vermöge (24), (25) und (26),

$$(\alpha_1 + \alpha_2) x_3 - 2 (\alpha_3 + \lambda) x_4 = 0, \dots (61)$$

und

$$-\alpha_1^2 x_1 = -\alpha_2^2 x_2 - \alpha_2 (\alpha_3 + \lambda) x_3 + (\alpha_3 + \lambda)^2 x_4.$$

Die letzte Gleichung gestaltet sich mittels (61) wie folgt:

$$a_1^2 x_1 - a_2^2 x_2 - a_2 (a_3 + \lambda) x_3 + \frac{(a_1 + a_2) (a_3 + \lambda)}{2} x_3 = 0$$

oder

$$2(\alpha_3^2 x_4 - \alpha_2^2 x_2) + (\alpha_4 - \alpha_2)(\alpha_3 + \lambda)x_3 = 0. (62)$$

Die Elimination von λ aus (56), (61) und (62) ergiebt schliesslich

$$(x_3 - \mu x_4)[(\alpha_1 + \alpha_2)x_3 - 2\alpha_3x_4] + 2(\alpha_1x_1 + \alpha_2x_2 + \alpha_3x_3 + \alpha_4x_4)x_4 = 0,$$

oder

$$\Phi_{\mu} \equiv (\alpha_1 + \alpha_2) x_3 (x_3 - \mu x_4) + 2 (\alpha_1 x_4 + \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4) x_4 = 0, (63)$$

und

$$\begin{array}{l} \left| 2 \left(\alpha_1^2 x_1 - \alpha_2^2 x_2 \right) + \left(\alpha_1 - \alpha_2 \right) \alpha_3 x_3 \right| \left(x_3 - \mu x_4 \right) - \\ - \left(\alpha_1 - \alpha_2 \right) \left(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 \right) x_3 = 0 \,, \end{array}$$

oder

$$\Omega_{\mu} \equiv 2 (\alpha_1^2 x_1 - \alpha_2^2 x_2)(x_3 - \mu x_4) - (\alpha_1 - \alpha_2) |\alpha_1 x_1 + \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4| x_3 = 0.$$
(64)

Es gilt ferner diese Identität:

$$\begin{array}{l} \mu \left(\mathbf{\alpha}_{1} - \mathbf{\alpha}_{2} \right) \left[\left(\mathbf{\alpha}_{1} + \mathbf{\alpha}_{2} \right) x_{3} \left(x_{3} - \mu x_{4} \right) + 2 \left| \mathbf{\alpha}_{1} x_{1} + \mathbf{\alpha}_{2} x_{2} + \left(\mu \mathbf{\alpha}_{3} + \mathbf{\alpha}_{4} \right) x_{4} \right| x_{4} \right] + \\ + 2 \left[2 \left(\mathbf{\alpha}_{1}^{2} x_{1} - \mathbf{\alpha}_{2}^{2} x_{2} \right) \left(x_{3} - \mu x_{4} \right) - \left(\mathbf{\alpha}_{1} - \mathbf{\alpha}_{2} \right) \left| \mathbf{\alpha}_{1} x_{1} + \mathbf{\alpha}_{2} x_{2} + \left(\mu \mathbf{\alpha}_{3} + \mathbf{\alpha}_{4} \right) x_{4} \right| x_{3} \right] \equiv \\ \equiv \left(x_{3} - \mu x_{4} \right) \left[2 \left(\mathbf{\alpha}_{1} + \mathbf{\alpha}_{2} \right) \left(\mathbf{\alpha}_{1} x_{1} - \mathbf{\alpha}_{2} x_{2} \right) + \left(\mathbf{\alpha}_{1}^{2} - \mathbf{\alpha}_{2}^{2} \right) \mu x_{3} - 2 \left(\mathbf{\alpha}_{1} - \mathbf{\alpha}_{2} \right) \left(\mu \mathbf{\alpha}_{3} + \mathbf{\alpha}_{4} \right) x_{4} \right], \end{array}$$

oder, wenn wir

$$\begin{split} x_3 &- \mu x_4 = \omega_\mu \,, \\ 2 \left(\mathbf{\alpha}_1 + \mathbf{\alpha}_2 \right) \left(\mathbf{\alpha}_1 \, x_1 - \mathbf{\alpha}_2 \, x_2 \right) + \left(\mathbf{\alpha}_1^{\ 2} - \mathbf{\alpha}_2^{\ 2} \right) \mu x_3 - \\ &- 2 \left(\mathbf{\alpha}_1 - \mathbf{\alpha}_2 \right) \left(\mu \mathbf{\alpha}_3 + \mathbf{\alpha}_4 \right) x_4 = \mathcal{W}_\mu \end{split}$$

setzen,

$$\mu (a_1 - a_2) \Phi_{\mu} + 2 \Omega_{\mu} \equiv \omega_{\mu} \cdot W_{\mu}.$$

Die Ebene ω_{μ} schneidet Φ_{μ} in den Geraden ℓ_{μ} und $X_1 X_2$. Die Ebene W_{μ} schneidet die Fläche Φ_{μ} in einem durch

$$\Phi_{\mu} \equiv (\alpha_1 + \dot{\alpha}_2)x_3(x_3 - \mu x) + 2(\alpha_1 x_1 + \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4)x_4)x_4 = 0, (63)$$

$$W_{\mu} \equiv 2 (\alpha_1 + \alpha_2) (\alpha_1 x_1 - \alpha_2 x_2) + (\alpha_1^2 - \alpha_2^2) \mu x_3 - 2 (\alpha_1 - \alpha_2) (\mu \alpha_3 + \alpha_4) x_4 = 0 (65)$$

gegebenen Kegelschnitt, welcher die Punkte X_1 und X_2 nicht enthält. Er schneidet l_μ in dem Punkte

$$egin{aligned} x_1 &= -rac{4\,lpha_2\,(\mulpha_3 + lpha_4) + \mu\,(lpha_1^{\,2} - lpha_2^{\,2})}{4\,lpha_1\,(lpha_1 + lpha_2)}\,x_4, \ x_2 &= -rac{4\,lpha_1\,(\mulpha_3 + lpha_4) - \mu\,(lpha_1^{\,2} - lpha_2^{\,2})}{4\,lpha_2\,(lpha_1 + lpha_2)}\,x_4, \ x_3 &= \mu x_4, \end{aligned}$$

und $X_1 X_2$ in dem Punkte

welcher L_{μ} in Bezug auf X_1 und X_2 harmonisch zugeordnet ist.

Die Doppelkurve, welche im allgemeinen Falle eine kubische Raumkurve ist, zerfällt hier in die Gerade $X_1 X_2$ und den obigen Kegelschnitt.

Wenn die Gerade l_{μ} ausserdem X_3X_4 schneidet, so gilt

$$\mu\alpha_3 + \alpha_4 = 0$$
,

wonach sich für die Grössen β_0 , β_1 , β_2 und β_3 die folgenden Werte ergeben:

$$egin{align} eta_0 &= rac{lpha_1 x_1 + lpha_2 x_2}{\delta} \, a_0, \ eta_1 &= -rac{lpha_2 (x_3 - \mu x_4)}{\delta} \, a_0, \ eta_2 &= -rac{lpha_1 (x_3 - \mu x_4)}{\delta} \, a_0, \ eta_3 &= rac{\mu (lpha_1 x_1 + lpha_2 x_2)}{\delta} \, a_0. \ \end{pmatrix}$$

Durch Substitution dieser Ausdrücke in die Gleichung (18) erhalten wir die Gleichung der axialen Regelfläche. Die kubische Kurve in ω_{∞} besteht jetzt aus der Gerade $X_1 X_2$ und dem Kegelschnitte (siehe (55) S. 126)

$$\alpha_1 x_1^2 + \alpha_2 x_2^2 + \mu (\alpha_1 x_1 + \alpha_2 x_2) x_3 = 0$$
, . . (66)

welcher durch X_3 hindurchgeht und in X_3 durch

$$\alpha_1 x_1 + \alpha_2 x_2 = 0,$$

also durch die Gerade $X_3 L_{\mu}$ berührt wird.

Die Kurve λ sechsten Grades in ω_0 ist in die doppelt zu zählende Gerade $X_1 X_2$ und die biquadratische Kurve

$$\left[\mu^{2}(\mathbf{x}_{1}^{2}x_{1} + \mathbf{x}_{2}^{2}x_{2})x_{4} - (\mathbf{x}_{1}x_{1} + \mathbf{x}_{2}x_{2})^{2}\right]^{2} - 4\mu^{4}\mathbf{x}_{1}^{2}\mathbf{x}_{2}^{2}x_{1}x_{2}x_{4}^{2} = 0 \quad (66a)$$

ausgeartet. Diese Kurve enthält jetzt auch den Punkt X_i , sogar als einen Doppelpunkt, dessen Tangenten durch

$$({\pmb { a}_1}^2 \, x_1 + {\pmb { a}_2}^2 \, x_2)^2 - 4 \, {\pmb { a}_1}^2 \, {\pmb { a}_2}^2 \, x_1 \, x_2 = 0 \; ,$$
 $({\pmb { a}_1}^2 \, x_1 - {\pmb { a}_2}^2 \, x_2)^2 = 0$

bestimmt und deshalb in der Gerade

oder

$$\frac{x_2}{x_1} = \frac{{\boldsymbol{\alpha}_1}^2}{{\boldsymbol{\alpha}_2}^2},$$

d. h. der Bildgerade von X_3 L_{μ} , zusammengefallen sind. Der Punkt X_4 ist somit ein Rückkehrpunkt, dessen Tangente mit dem Bilde von X_3 L_{μ} identisch ist.

Die Doppelkurve besteht aus der Gerade X_1X_2 und aus einem Kegelschnitte, welcher nun diese Gleichungen hat:

$$\Phi_{\mu}' \equiv (\alpha_1 + \alpha_2) x_3 (x_3 - \mu x_4) + 2 (\alpha_1 x_1 + \alpha_2 x_2) x_4 = 0, \quad (67)$$

$$W_{\mu}' \equiv 2 \alpha_1 x_1 - 2 \alpha_2 x_2 + (\alpha_1 - \alpha_2) \mu x_3 = 0. \quad (68)$$

Ihr Schnittpunkt mit l_{μ} ist durch

$$egin{aligned} x_1 &= -rac{\mu\left(lpha_1 - lpha_2
ight)}{4lpha_1} x_4, \ x_2 &= +rac{\mu\left(lpha_1 - lpha_2
ight)}{4lpha_2} x_4, \ x_3 &= \mu x_4 \end{aligned}$$

angewiesen, indess sie wieder $X_1 X_2$ in demjenigen Punkte trifft, welcher L_{μ} in Bezug auf X_1 und X_2 harmonisch zugeordnet ist.

Wir haben jetzt einige Fälle zu erledigen, wo die Gerade / in einer singulären Ebene liegt, und ihre axiale Regelfläche somit von niedrigeren Grade ist.

§ 8. Die axiale Regelfläche einer Gerade l in z.

Wenn die Gerade l in ε liegt, so lautet die eine ihrer Gleichungen:

$$x_1 - x_2 = 0$$
,

wonach die Durchstosspunkte A und B' sich aus

$$a_1 = a_2 = a$$
, (69)

$$b_1' = b_2' = b'$$
 (70)

bestimmen.

Die Ausdrücke β_0 , β_1 , β_2 , β_3 erhalten jetzt diese Form:

$$\begin{split} &\beta_0 = - \, a \, (x_1 - x_2) \,, \\ &\beta_1 = x_1 - a x_3 - \, b' x_4 \,, \\ &\beta_2 = - \, x_2 + a x_3 + \, b' x_4 \,, \\ &\beta_3 = \, b' \, (x_1 - x_2) \,, \end{split}$$

sodass die Gleichung (18) sich verwandelt in

$$\Delta' \equiv \begin{vmatrix} 0 & , & -x_2 + ax_3 + b'x_4 & , \\ x_1 - x_2 & , & -a(x_1 - x_2) & , \\ (x_1 + x_2 - 2ax_3 - 2b'x_4)x_4 & , & (x_2 - ax_3 - b'x_4)x_3 - a(x_1 - x_2)x_4 & , \\ -(x_1 - x_2)(x_3 + ax_4) & , & (x_1 - ax_3 - b'x_4)x_2 & , \\ x_1 - ax_3 - bx_4 & , & -a(x_1 - x_2) & , \\ -a(x_1 - x_2) & , & b'(x_1 - x_2) & , \\ -a(x_1 - x_2) & , & b'(x_1 - x_2) & , \\ (x_1 - ax_3 - b'x_4)x_3 + a(x_1 - x_2)x_4 & , & 2x_1x_2 + (ax_3 + b'x_4)(x_1 + x_2) \\ -(x_2 - ax_3 - b'x_4)x_1 & , & 0 \end{vmatrix} = 0.$$

Wenn wir $(x_1 + x_2)$ mal die erste Horizontalreihe zu dem Doppelten der vierten addiren, so wird diese durch $(x_1 - x_2)$ teilbar. Teilen wir dann auch die zweite Horizontalreihe durch $(x_1 - x_2)$, so behalten wir

$$\Delta' = \frac{(x_1 - x_2)^2}{2} \begin{vmatrix} 0 & , -x_2 + ax_3 + b'x_4 & , \\ 1 & , -a & , \\ (x_1 + x_2 - 2ax_3 - 2b'x_4)x_4 & , & (x_2 - ax_3 - b'x_4)x_3 - a(x_1 - x_2)x_4 , \\ - (x_3 + ax_4) & , & x_2 + ax_3 + b'x_4 & , \\ x_1 - ax_3 - b'x_4 & , -a(x_1 - x_2) & \\ - a & , b' & \\ (x_1 - ax_3 - b'x_4)x_3 + a(x_1 - x_2)x_4 & , -2x_1x_2 + (ax_3 + b'x_4)(x_1 + x_2) \\ x_1 + ax_3 + b'x_4 & , -a(x_1 + x_2) \end{vmatrix} = 0.$$

Addiren wir jetzt — $(x_1 + x_2)x_4$ mal die zweite Horizontalreihe und x_3 mal die vierte zu der dritten, so folgt

$$\Delta' \equiv \frac{(x_1 - x_2)^2}{2} \begin{vmatrix} 0 & , -x_2 + ax_3 + b'x_4, \\ 1 & , -a & , \\ -x_3^2 - 3ax_3x_4 - 2b'x_4^2, & 2x_2(x_3 + ax_4), \\ -(x_3 + ax_4) & , x_2 + ax_3 + b'x_4, \end{vmatrix} = 0.$$

$$\begin{vmatrix} x_1 - ax_3 - b'x_4, -a(x_1 - x_2) \\ -a & , b' \\ 2x_1(x_3 + ax_4), -2x_1x_2 \\ x_1 + ax_2 + b'x_4, -a(x_1 + x_2) \end{vmatrix} = 0.$$

Schliesslich ersetzen wir die erste Horizontalreihe durch die Summe der ersten und vierten und die vierte durch ihre Differenz; wir bekommen alsdann:

$$\Delta' \equiv 2 (x_1 - x_2)^2 \begin{vmatrix} x_3 + ax_4 & , & ax_3 + b'x_4 & , & x_1 & , & ax_1 \\ 2 & , & a & , & a & , & b' \\ x_3^2 + 3 ax_3x_4 + 2 b'x_4^2, & x_2(x_3 + ax_4)^{\frac{1}{2}} x_1(x_3 + ax_4), & x_1x_2 \\ x_3 + ax_4 & , & x_2 & , & ax_3 + b'x_4 & , & ax_2 \end{vmatrix} = 0. (71)$$

Die axiale Regelfläche einer Gerade l in ε besteht also aus der doppelt zu zählenden Ebene ε und aus einer biquadratischen Fläche.

Die kubische Kurve in ω_{∞} wird jetzt (siehe (19)) durch

$$(x_1 - x_2) x_1 x_2 - a (x_1^2 - x_2^2) x_3 + b' (x_1 - x_2) x_3^2 = 0$$

dargestellt. Sie ist demnach in die Gerade

$$x_1 - x_2 = 0$$
,

oder

$$X_3 E$$
,

und in den Kegelschnitt 7/2:

$$x_1 x_2 - a (x_1 + x_2) x_3 + b' x_3^2 = 0$$
 . . . (72)

ausgeartet.

Der Kegelschnitt γ_{∞} enthält die Punkte X_1 und X_2 . Seine Tangente in X_1 ist durch

$$x_2 - ax_3 = 0$$

bestimmt, also mit der Gerade $X_1 A$ identisch.

Wir sehen daher, dass die Tangenten in X_1 und X_2 sich in A schneiden, wonach A der Pol von $X_1 X_2$ in Bezug auf γ_{∞} ist.

Der Kegelschnitt γ_{∞} wird durch seine Tangenten $X_1 A$ und $X_2 A$ zu dem biquadratischen Durchschnitt der axialen Regelfläche ergänzt.

Die Kurve sechsten Grades λ hat nun die folgende Gleichung:

$$\begin{array}{l} \xi_{2}^{4}(\xi_{1}+b'\xi_{4})^{2}+\xi_{1}^{4}(\xi_{2}+b'\xi_{4})^{2}+a^{4}(\xi_{1}-\xi_{2})^{4}\xi_{4}^{2}-\\ -2\xi_{1}^{2}\xi_{2}^{2}(\xi_{1}+b'\xi_{4})(\xi_{2}+b'\xi_{4})-2a^{2}\xi_{2}^{2}(\xi_{1}-\xi_{2})^{2}(\xi_{1}+b'\xi_{4})\xi_{4}-\\ -2a^{2}\xi_{1}^{2}(\xi_{1}-\xi_{2})^{2}(\xi_{2}+b'\xi_{4})\xi_{4}=0, \end{array}$$

oder

$$\begin{aligned} & \{\xi_2^{\ 2}(\xi_1 + b'\,\xi_4) - \xi_1^{\ 2}(\xi_2 + b'\,\xi_4)\}^2 + \\ & + a^2\xi_4(\xi_1 - \xi_2)^2 \left[a^2\xi_4(\xi_1 - \xi_2)^2 - 2\xi_2^2(\xi_1 + b'\xi_4) - 2\xi_1^2(\xi_2 + b'\xi_4)\right] = 0, \end{aligned}$$

oder endlich

$$\begin{aligned} &(\xi_1 - \xi_2)^2 \big[|\xi_1 \xi_2 + b'(\xi_1 + \xi_2) \xi_4|^2 + \\ &+ a^2 \xi_4 |a^2 \xi_4(\xi_1 - \xi_2)^2 - 2 \xi_2^2 (\xi_1 + b' \xi_4) - 2 \xi_1^2 (\xi_2 + b' \xi_4)| \big] = 0. \end{aligned}$$

Sie besteht also aus der doppelt zu zählenden Gerade X_4 E und einer biquadratischen Kurve, welche den Schnitt der biquadratischen Regelfläche mit ω_0 bildet.

Diese Kurve hat in X_1 einen Rückkehrpunkt, dessen Tangente durch

$$\xi_2 + (b' - a^2) \xi_4 = 0$$
,

oder durch

$$x_2 - a^2 x_4 = 0$$

angewiesen ist, und deshalb mit der Gerade X_1 A' zusammenfällt. Die biquadratische Kurve hat also in X_1 und X_2 Rückkehrpunkte, deren Tangenten sich im Bilde A' von A schneiden.

Es leuchtet ein, dass die Gerade l in ε auf der biquadratischen Regelfläche Doppelgerade ist.

Neben dieser Doppelgerade besitzt die Regelfläche aber noch eine Doppelkurve, welche durch (siehe (45) und (46))

$$\Phi \equiv (\xi_1 - \xi_2) \, \xi_3 + 2 \, a \, (\xi_1 - \xi_2) \, \xi_4 = (\xi_1 - \xi_2) \, (\xi_3 + 2 \, a \xi_4) = 0,$$

$$\Psi \equiv -\xi_1 \, \xi_2 \, (\xi_1 - \xi_2) - (b' - a^2) \, (\xi_1^2 - \xi_2^2) \, \xi_4 =$$

$$= -(\xi_1 - \xi_2) | \xi_1 \, \xi_2 + (b' - a^2) \, (\xi_1 + \xi_2) \, \xi_4 | = 0$$

bestimmt wird. Sie ist demnach ein Kegelschnitt, welcher durch

$$\xi_{3} + 2 a \xi_{4} = 0,
\xi_{1} \xi_{2} + (b' - a^{2}) (\xi_{1} + \xi_{2}) \xi_{4} = 0$$
(73)

dargestellt wird.

Dieser Kegelschnitt enthält die Punkte X_t und X_2 und schneidet I im Punkte C_{μ} :

$$\begin{cases} \xi_1 = \xi_2 = 0, \\ \xi_3 + 2 a \xi_4 = 0. \end{cases}$$
 (74)

Er trifft die Ebene ε , ausser in C_{μ} , im Punkte

$$\xi_1 = \xi_2 = 2 (a^2 - b') \xi_4,$$

 $\xi_3 + 2 a \xi_4 = 0,$

oder

$$x_{4} = x_{2} = \xi_{1} + a \xi_{3} + b' \xi_{4} =$$

$$= 2 a^{2} \xi_{4} - 2 b' \xi_{4} - 2 a^{2} \xi_{4} + b' \xi_{4} = -b' \xi_{4},$$

Fig. 8.

also

$$x_1 = x_2 = -b' x_4 = \frac{b'}{2a} x_3.$$
 (75)

Dieser Punkt ist der Pol L der Gerade l $(x_1 = x_2 = ax_2 + b'x_4)$ in Bezug auf den Kegelschnitt e:

$$x_3^2 + 4 x_1 x_4 = x_3^2 + 4 x_2 x_4 = 0.$$

Wir können noch erwähnen, dass die Tangente in C_{μ} an dem Doppelkegelschnitte die Gleichungen

$$\begin{array}{c|c}
\xi_1 + \xi_2 = 0, \\
\xi_3 + 2 a \xi_4 = 0
\end{array}$$

hat, und somit den Punkt E' von X_1X_2 enthält.

§ 9. Die axiale Regelfläche eines Congruenzstrahles s.

Auch hier soll die axiale Regelfläche eines Congruenzstrahles auf direkten Weg ermittelt werden.

Ein Strahl p schneidet den Strahl s, wenn die Beziehung

$$p_1 + s_1 = p_2 + s_2 \dots \dots (76)$$

gilt.

Es sollen nun p_1 und p_2 aus (1) und (76) eliminirt werden.

Aus (1) geht hervor

$$p_{1} = \frac{-x_{3} \pm \sqrt{x_{3}^{2} + 4x_{1}x_{4}}}{2x_{4}},$$

$$p_{2} = \frac{-x_{3} \pm \sqrt{x_{3}^{2} + 4x_{2}x_{4}}}{2x_{4}}.$$

Die Gleichung (76) ergiebt also

$$p_{1}-p_{2} = \frac{-x_{3} \pm \sqrt{x_{3}^{2} + 4x_{1}x_{4}}}{2x_{4}} - \frac{-x_{3} \pm \sqrt{x_{3}^{2} + 4x_{2}x_{4}}}{2x_{4}} = -(s_{1} - s_{2}),$$

oder

$$\pm \sqrt{x_3^2 + 4 x_1 x_4} \mp \sqrt{x_3^2 + 4 x_2 x_4} = -2 (s_1 - s_2) x_4$$
,

also

$$\begin{array}{l} x_{3}^{2} + 4x_{1}x_{4} + x_{3}^{2} + 4x_{2}x_{4} - 4(s_{1} - s_{2})^{2}x_{4}^{2} = \\ = \pm 2\sqrt{x_{3}^{4} + 4(x_{1} + x_{2})x_{3}^{2}x_{4} + 16x_{1}x_{2}x_{4}^{2}}, \end{array}$$

oder

$$|2x_3^2+4(x_1+x_2)x_4-4(s_1-s_2)^2x_4^2|^2=4\,x_3^4+1\,6(x_1+x_2)x_3^2x_4+64\,x_1x_2x_4^2,$$
 oder endlich

$$(x_1 - x_2)^2 - 2(s_1 - s_2)^2(x_1 + x_2)x_4 - (s_1 - s_2)^2x_3^2 + (s_1 - s_2)^4x_4^2 = 0. (77)$$

Die axiale Regelfläche eines Congruenzstrahles ist also ein Hyperboloid.

Die Fläche schneidet ω_0 in den Geraden

$$x_1 - x_2 - (s_1 - s_2) x_3 = 0,$$

oder SE, und

$$x_1 - x_2 + (s_1 - s_2)x_3 = 0$$
,

d. h. in der Gerade $S_1 E$, welche E mit dem Punkte S_1 :

$$p_1 = -s_1$$
 , $p_2 = -s_2$

verbindet, der mit S das Bild S' gemein hat.

§ 10. Die axiale Regelfläche eines Congruenzstrahles in ε . Wenn der Congruenzstrahl s in ε liegt, hat man

$$s_1 = s_2$$

wonach (77) sich in

$$(x_1 - x_2)^2 = 0$$

verwandelt.

Das Hyperboloid ist daher in die doppelt zu zählende Ebene

ausgeartet.

Zum Überflusse bemerken wir noch, dass die Ebene ε' ($x_1+x_2=0$), welche in der vorigen Congruenz singulär war, jetzt nicht singulär ist. Auch die Ebene ω_0 ist nunmehr nicht singulär.

§ 11. Die axiale Regelfläche einer Gerade m in ω_{∞} .

Eine in ω_{∞} befindliche Gerade m ist ein besondrer Fall einer Gerade l_{μ} , welche in der Ebene ω_{μ} liegt. Wir haben nl. jetzt

$$\mu = \infty$$

zu setzen.

Die Ausdrücke β_0 , β_1 β_2 und β_3 gestalten sich nun (siehe S. 126) wie folgt:

$$eta_0 = lpha_3 x_4 a_0', \ eta_1 = lpha_2 x_4 a_0', \ eta_2 = lpha_1 x_4 a_0', \ eta_3 = (lpha_1 x_4 + lpha_2 x_2 + lpha_3 x_3) a_0', \$$

wo

$$a_0' = \frac{\mu a_0}{\delta}$$

Ersetzen wir β_0 , β_1 , β_2 und β_3 in der Gleichung (18) durch die obigen Formen, so ergiebt sich

oder, nach Teilung durch x_4^3 :

$$\mathbf{A} = \begin{vmatrix}
0 & , \alpha_{1} & , \alpha_{2} & , \alpha_{3}v_{4} \\
\alpha_{1} + \alpha_{2} & , \alpha_{3} & , \alpha_{3} & , \alpha_{1}v_{1} + \alpha_{2}v_{2} + \alpha_{3}v_{3} \\
-(\alpha_{1} - \alpha_{2})x_{4} & , -\alpha_{1}v_{3} + \alpha_{3}v_{4}, \alpha_{2}v_{3} - \alpha_{3}v_{4}, (\alpha_{1}v_{1} - \alpha_{2}v_{2})v_{4} \\
-(\alpha_{1} + \alpha_{2})x_{3} + \alpha_{3}v_{4}, \alpha_{2}v_{2} & , \alpha_{1}v_{1} & , 0
\end{vmatrix} = 0. (78)$$

Die axiale Regelfläche ist demnach in die dreifach zu zählende Ebene ω_{∞} und eine kubische Regelfläche zerfallen.

Der Schnitt in ω_{∞} hat die Gleichung

$$\begin{vmatrix} 0 & , & \alpha_1 & , & \alpha_2 & , & 0 \\ \alpha_1 + \alpha_2 & , & \alpha_3 & , & \alpha_3 & , & \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 \\ 0 & , -\alpha_1 x_3, & \alpha_2 x_3, & 0 \\ -(\alpha_1 + \alpha_2) x_3, & \alpha_2 x_2, & \alpha_1 x_1, & 0 \end{vmatrix} = 0,$$

oder

$$x_3^2(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3) = 0.$$

Er ist offenbar ausgeartet in die Gerade m und in die doppelt zu zählende Gerade $X_1 X_2$.

Der Schnitt in ω_0 ist bestimmt durch

$$\begin{vmatrix} 0 & , \alpha_1 & , & \alpha_2 & , \alpha_3 x_4 \\ \alpha_1 + \alpha_2 & , \alpha_3 & , & \alpha_3 & , \alpha_1 x_1 + \alpha_2 x_2 \\ - (\alpha_1 - \alpha_2) x_4 & \alpha_3 x_4 & - \alpha_3 x_4 & (\alpha_1 x_1 - \alpha_2 x_2) x_4 \\ \alpha_3 x_4 & , \alpha_2 x_2 & \alpha_1 x_1 & 0 \end{vmatrix} = 0,$$

oder

$$x_4(\alpha_1^4 x_1^2 + \alpha_2^4 x_2^2 + \alpha_3^4 x_4^2 - 2\alpha_2^2 \alpha_3^2 x_2 x_4 - 2\alpha_1^2 \alpha_3^2 x_4 x_4 - 2\alpha_1^2 \alpha_2^2 x_4 x_2) = 0. (79)$$

Dieses Gebilde besteht aus der Gerade $X_1 X_2$ und aus dem Bildkegelschnitte μ der in ω_{∞} liegenden Gerade m.

Der Kegelschnitt μ berührt $X_1 X_2$ im Punkte

$$\begin{cases} \alpha_1^2 x_1 - \alpha_2^2 x_2 = 0, \\ x_b = 0, \end{cases}$$
 (80)

d. h. im Bildpunkte M_3' des Punktes M_3 , wo m und $X_1 X_2$ sich schneiden.

Die Doppelkurve der axialen Regelfläche einer in ω_{μ} liegenden Gerade besteht (siehe S. 130) aus der Gerade X_1 X_2 und aus einem Kegelschnitte, welcher durch die Gleichungen (63) und (64) dargestellt ist ((65) wird hier hinfällig).

Indem wir $\mu = \infty$ setzen, erhalten diese Gleichungen die folgende Form:

$$\begin{aligned} & \left| (\alpha_1 + \alpha_2) x_3 - 2 \alpha_3 x_4 \right| x_4 = 0, \\ & \left| 2 (\alpha_1^2 x_1 - \alpha_2^2 x_2) + (\alpha_1 - \alpha_2) \alpha_3 x_3 \right| x_4 = 0. \end{aligned}$$

Der Kegelschnitt ist offenbar in eine Gerade der Ebene ω_{∞} und in die Gerade

$$(\alpha_1 + \alpha_2) x_3 - 2 \alpha_3 x_4 = 0, \quad . \quad . \quad (81)$$

$$2\alpha_1^2 x_1 - 2\alpha_2^2 x_2 + (\alpha_1 - \alpha_2)\alpha_3 x_3 = 0$$
 . (82)

ausgeartet. Sie ist also die Doppelgerade dm der m zugehörigen kubischen Regelfläche.

Man ersieht ohne Mühe, dass die Gerade d_m auch den Punkt M_3 enthält.

Die Zwickpunkte, d. h. diejenigen Punkte auf m, wo zwei unendlich benachbarte Congruenzstrahlen sich treffen, gehören natürlich der Fokalfläche an.

Die Ebene (81) trifft den Fokalkegel F_4 , ausser in X_1 X_2 , noch in der Gerade

$$(\alpha_1 + \alpha_2)x_3 - 2\alpha_3x_4 = 0,$$
 . . . (81)
 $2(\alpha_1 + \alpha_2)x_2 + \alpha_3x_3 = 0,$. . . (83)

$$2(\alpha_1 + \alpha_2)x_2 + \alpha_3x_3 = 0, 1 \dots$$
 (83)

und den Fokalkegel F_2 , ausser in $X_1 X_2$, in der Gerade

$$(\alpha_1 + \alpha_2) x_3 - 2 \alpha_3 x_4 = 0, \quad . \quad . \quad , \quad (81)$$

$$2(\alpha_1 + \alpha_2)x_1 + \alpha_3x_3 = 0.$$
 (84)

Der eine Schnittpunkt von d_m mit der Fokalfläche ist der Punkt M_3' ; der zweite ist mit demjenigen Punkte K identisch, welcher durch

$$(\alpha_{1} + \alpha_{2})x_{3} - 2\alpha_{3}x_{4} = 0, (81)$$

$$2(\alpha_{1} + \alpha_{2})x_{1} + \alpha_{3}x_{3} = 0, (83)$$

$$2(\alpha_{1} + \alpha_{2})x_{2} + \alpha_{3}x_{3} = 0, (84)$$

K Fig. 9.

oder

$$\frac{x_1}{\alpha_3^2} = \frac{x_2}{\alpha_3^2} = \frac{x_3}{-2\alpha_3(\alpha_1 + \alpha_2)} = \frac{x_4}{(\alpha_1 + \alpha_2)^2}.$$
 (85)

angewiesen ist.

Der Punkt K befindet sich daher in der Ebene E, und zwar auf dem Kegelschnitt e.

Die Zwickpunkte sind also die Punkte M_3' und K.

Es erhellt ohne Weiteres, dass die durch M_3 gehende Torsallinie mit der Gerade $X_1 X_2$ identisch ist, und dass die durch K gehende Torsallinie durch

$$\begin{vmatrix}
x_4 p_1^2 - x_3 p_1 - x_1 = 0, \\
x_4 p_2^2 - x_3 p_2 - x_2 = 0,
\end{vmatrix}$$
(1)

also hier durch

$$\begin{array}{l}
(\alpha_1 + \alpha_2)^2 p_1^2 + 2 \alpha_3 (\alpha_1 + \alpha_2) p_1 + \alpha_3^2 = 0, \\
(\alpha_1 + \alpha_2)^2 p_2^2 + 2 \alpha_3 (\alpha_1 + \alpha_2) p_2 + \alpha_3^2 = 0
\end{array}. (86)$$

bestimmt ist, wonach

$$p_2 = \frac{x_2}{x_3} = -\frac{\alpha_3}{\alpha_1 + \alpha_2} \cdot \dots$$
 (88)

Diese Coordinaten genügen der Beziehung $\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = 0$; der Strahl schneidet ja auch die Gerade m, welche die einfache Leitlinie der Fläche ist. Der Torsalpunkt T wird durch die Gleichungen (87), (88) und $x_4 = 0$ dargestellt.

Die Torsallinie t, welche durch K geht, ist der durch T hindurchgehende Congruenzstrahl, also

$$x_1 = -\frac{\alpha_3}{\alpha_1 + \alpha_2} x_3 + \frac{{\alpha_3}^2}{(\alpha_1 + \alpha_2)^2} x_4, \dots$$
 (89)

$$x_2 = -\frac{\alpha_3}{\alpha_1 + \alpha_2} x_3 + \frac{\alpha_3^2}{(\alpha_1 + \alpha_2)^2} x_4. \quad . \quad . \quad (90)$$

Sie berührt den Kegelschnitt e im Punkte K.

Der zweite Torsalpunkt ist der Punkt M_3 , wo m die Gerade X_1X_2 trifft, daher:

Die zweite Torsallinie ist, wie schon oben bemerkt wurde, mit der Gerade X_1 X_2 identisch.

§ 12. Wenn die in ω_{∞} befindliche Gerade m um einen durch

$$\frac{x_1}{x_3} = a_1, \frac{x_2}{x_3} = a_2, x_4 = 0 (92)$$

gegebenen Punkt Λ rotirt, so wird die Doppelgerade d_m eine gewisse Regelfläche beschreiben.

Weil die Gerade m stets den Punkt A enthält, sind die Coefficienten α_1 , α_2 und α_3 durch die Beziehung

DIE CONGRUENZEN VON
$$w' = c^2 : w$$
 UND $w' = w^2 : c$. 141

$$\alpha_1 a_1 + \alpha_2 a_2 + \alpha_3 = 0$$
 (95)

verknüpft.

Wir setzen wieder

Die Doppelgerade d_m ergiebt sich alsdann (siehe (81 und (82)) aus

$$(\varphi_1 + \varphi_2)x_3 - 2x_4 = 0, \dots (98)$$

$$2q_1^2x_1 - 2q_2^2x_2 + (q_1 - q_2)x_3 = 0, . . (99)$$

während die Grössen φ_1 und φ_2 (siehe (95)) verbunden sind durch

$$a_1 \varphi_1 + a_2 \varphi_2 + 1 = 0 \dots \dots (100)$$

Es sollen jetzt, zur Ermittelung der durch d_m beschriebenen Regelfläche, φ_1 und φ_2 aus (98), (99) und (100) eliminirt werden. Aus (98) und (100) folgern wir

$$\varphi_1 = -\frac{x_3 + 2 a_2 x_4}{(a_1 - a_2) x_3},$$

$$\varphi_2 = +\frac{x_3 + 2 a_1 x_4}{(a_1 - a_2) x_3}.$$

Die Substitution dieser Ausdrücke in (99) ergiebt

$$2(x_3 + 2 a_2 x_4)^2 x_1 - 2(x_3 + 2 a_1 x_4)^2 x_2 - 2|x_3 + (a_1 + a_2) x_4|(a_1 - a_2) x_3^2 = 0,$$

oder

$$(x_1 - x_2) x_3^2 + 4 (a_2 x_1 - a_1 x_2) x_3 x_4 + 4 (a_2^2 x_1 - a_1^2 x_2) x_4^2 - (a_1 - a_2) |x_3 + (a_1 + a_2) x_4| x_3^2 = 0.$$
 (101)

Diese Gleichung stellt die Regelfläche (d_m) dar, welche offenbar vom dritten Grade ist.

Der Schnitt in ω_{∞} wird durch

$$\{x_1 - x_2 - (a_1 - a_2) x_3 | x_3^2 = 0$$
 . (102)

bestimmt.

Er ist also aus der doppelt gezählten Gerade $X_1\,X_2$, und der Gerade AE zusammengesetzt.

Der Schnitt in ω_0 hat die Gleichung

$$(a_2^2 x_1 - a_1^2 x_2) x_4^2 = 0.$$
 (103)

Er besteht aus der doppelt zu zählenden Gerade $X_1\,X_2$ und aus der Gerade

$$\frac{x_1}{x_2} = \frac{{a_1}^2}{{a_2}^2},$$

d.h. X_4A' .

Aus der Gleichung (101) erkennen wir, dass X_1X_2 die Doppelgerade Δ der Regelfläche ist.

Die einfache Leitlinie ist natürlich der Congruenzstrahl a = AA', welche A mit seinem Bilde A' in ω_0 vereinigt. Sie wird ja durch jede d_m geschnitten, weil sie der axialen Regelfläche jeder d_m angehört.

Ein Punkt

$$\begin{vmatrix}
\lambda_1 x_1 + \lambda_2 x_2 &= 0, \\
x_3 &= 0, \\
x_4 &= 0
\end{vmatrix}$$
 (104)

der Doppelgerade Δ trägt zwei Geraden d_m .

Eine Gerade d_m wird bestimmt durch die Liniencoordinaten φ_1 und φ_2 derjenigen Gerade m, auf deren axiale Regelfläche sie Doppelgerade ist.

Aus (99) und (100) geht hervor, dass ein Punkt (104) zwei Paare (φ_1, φ_2) bestimmt, also zwei Geraden m, und deshalb zwei Geraden d_m . Diese zwei Paare (φ_1, φ_2) sind durch

$$\lambda_2 \varphi_1^2 + \lambda_1 \varphi_2^2 = 0$$
, (105)

$$a_1 \varphi_1 + a_2 \varphi_2 + 1 = 0$$
 . . . (100)

gegeben.

Die Elimination von φ_1 ergiebt

$$(\lambda_1 a_1^2 + \lambda_2 a_2^2) \varphi_2^2 + 2 \lambda_2 a_2 \varphi_2 + \lambda_2 = 0. \quad . \quad (106)$$

Die beiden hieraus fliessenden Werte von φ_2 coincidiren, wenn man hat

$$\lambda_1 = 0$$
,

d. h. im Punkte X_1 ($x_2 = 0$, $x_3 = 0$, $x_4 = 0$) ruhen zwei unendlich

benachbarte Geraden d_m . Der Punkt X_1 ist demnach ein Zwickpunkt. In derselben Weise zeigt man, dass auch X_2 ein Zwickpunkt ist. Indem wir $\lambda_1 = 0$ setzen, finden wir aus (106)

$$q_2 = - - \frac{1}{a_2},$$

und daher aus (100)

$$\varphi_4 = 0$$
.

Die Torsallinie f_1 von X_1 ist somit durch

$$\begin{aligned} & -\frac{x_3}{a_2} - 2x_4 = 0, \\ & -\frac{2x_2}{a_2^2} + \frac{x_3}{a_2} = 0, \end{aligned}$$

oder durch

$$\begin{vmatrix}
x_3 + 2 a_2 x_4 = 0, \\
2 x_2 - a_2 x_3 = 0
\end{vmatrix} (110)$$

bestimmt.

Die Gerade f_4 liegt in der Ebene $x_2 - a_2 x_3 - a_2^2 x_4 = 0$ und schneidet den Congruenzstrahl a (einfache Leitlinie von (d_m)) in dem Torsalpunkte A_{f2} :

$$\frac{x_1}{-a_1(a_1-2a_2)} = \frac{x_2}{a_2^2} = \frac{x_3}{2a_2} = \frac{x_4}{-1} \quad . \quad . \quad (112)$$

Dieser Punkt A_{f^2} ist der Berührungspunkt von a mit dem Fokalkegel F_2 .

Die Torsallinie f_4 verbindet also X_4 mit dem Brennpunkte A_{f^2} des Congruenzstrahles a = AA'.

Die zweite Torsallinie (f_2) wird ebenso X_2 mit dem Torsalpunkte A_{f^1} , dem zweiten Brennpunkte von a, vereinigen. Ihre Gleichungen sind

während der zweite Torsalpunkt A_{ℓ^1} durch

$$\frac{x_1}{a_1^2} = \frac{x_2}{a_2(2a_1 - a_2)} = \frac{x_3}{2a_1} = \frac{x_4}{-1} \quad . \quad . \quad (113)$$

angewiesen wird.

Jeder Punkt A in ω_{∞} bestimmt eine derartige Regelfläche (d_m) , auf der a = AA' die einfache Leitlinie, X_1 X_2 die Doppelgerade ist.

Wenn wir A die ganze Ebene ω_{∞} beschreiben lassen, so wird die einfache Leitlinie die Strahlencongruenz erzeugen; die Doppelgerade dagegen bleibt immer mit der Gerade X_1 X_2 identisch, während X_1 und X_2 sich stets als Zwickpunkte verhalten.

§ 13. Die Regelfläche der Congruenzstrahlen, welche auf einem durch die Punkte X_1 und X_2 hindurchgehenden Kegelschnitt ruhen.

Wir legen den Kegelschnitt γ_{μ} , auf welchem die Erzeugenden der zu untersuchenden Regelfläche ruhen, in die Ebene ω_{μ} ,

$$x_3 = \mu x_4$$

und geben ihm die Gleichungen

$$\alpha_{3}\beta_{3}x_{1}x_{2} + x_{1}(\alpha_{2}\beta_{3}x_{3} + \alpha_{3}\beta_{2}x_{4}) + x_{2}(\alpha_{1}\beta_{3}x_{3} + \alpha_{3}\beta_{1}x_{4}) +
+ (\alpha_{0}\beta_{3}x_{3}^{2} + \alpha_{3}\beta_{0}x_{4}^{2}) = 0, (114)$$

(Vergl. I. Abschnitt, S. 20).

Die Erzeugenden der jetzigen Regelfläche haben diejenigen Coordinaten (p_1, p_2) , welche der durch Elimination von x_1, x_2, x_3 und x_4 aus (1), (114) und (115) ermittelten Beziehung genügen. Die Elimination von x_3 liefert

$$\alpha_{3}\beta_{3}x_{1}x_{2} + (\alpha_{2}\beta_{3}\mu + \alpha_{3}\beta_{2})x_{1}x_{4} + (\alpha_{1}\beta_{3}\mu + \alpha_{3}\beta_{4})x_{2}x_{4} + (\alpha_{0}\beta_{3}\mu^{2} + \alpha_{3}\beta_{0})x_{4}^{2} = 0,$$

$$x_{4} = (p_{4}\mu + p_{4}^{2})x_{4},$$

$$x_{2} = (p_{2}\mu + p_{2}^{2})x_{4}.$$

Durch Elimination von x_1 und x_2 gelangen wir zu

$$\alpha_{3}\beta_{3}p_{1}^{2}p_{2}^{2} + \alpha_{3}\beta_{3}\mu p_{1}^{2}p_{2} + \alpha_{3}\beta_{3}\mu p_{1}p_{2}^{2} + (\alpha_{2}\beta_{3}\mu + \alpha_{3}\beta_{2})p_{1}^{2} + + (\alpha_{1}\beta_{3}\mu + \alpha_{3}\beta_{1})p_{2}^{2} + \alpha_{3}\beta_{3}\mu^{2}p_{1}p_{2} + (\alpha_{2}\beta_{3}\mu + \alpha_{3}\beta_{2})\mu p_{1} + + (\alpha_{1}\beta_{3}\mu + \alpha_{3}\beta_{1})\mu p_{2} + (\alpha_{0}\beta_{3}\mu^{2} + \alpha_{3}\beta_{0}) = 0, \quad (116)$$

oder

$$\gamma_{0} p_{1}^{2} p_{2}^{2} + \gamma_{1} p_{1}^{2} p_{2} + \gamma_{2} p_{1} p_{2}^{2} + \gamma_{1}' p_{1}^{2} + \gamma_{2}' p_{2}^{2} + \gamma_{0}' p_{1} p_{2} + \gamma_{1}'' p_{1} + \gamma_{2}'' p_{2} + \gamma_{0}'' = 0. (117)$$

Wir ersetzen nun p_1^2 durch $\frac{-p_1x_3+x_1}{x_4}$, p_2^2 durch $\frac{-p_2x_3+x_2}{x_4}$, und erhalten dann

Setzen wir, der Kürze wegen,

$$\gamma_{0} x_{3}^{2} - (\gamma_{1} + \gamma_{2}) x_{3} x_{4} + \gamma_{0}' x_{4}^{2} = \theta_{3},
- \gamma_{0} x_{2} x_{3} + \gamma_{2} x_{2} x_{4} - \gamma_{1}' x_{3} x_{4} + \gamma_{1}'' x_{4}^{2} = \theta_{2},
- \gamma_{0} x_{1} x_{3} + \gamma_{1} x_{1} x_{4} - \gamma_{2}' x_{3} x_{4} + \gamma_{2}'' x_{4}^{2} = \theta_{1},
\gamma_{0} x_{1} x_{2} + \gamma_{1}' x_{1} x_{4} + \gamma_{2}' x_{2} x_{4} + \gamma_{0}'' x_{4}^{2} = \theta_{0},$$
(119)

so können wir (118) in der folgenden Form schreiben:

$$\theta_3 p_1 p_2 + \theta_2 p_1 + \theta_1 p_2 + \theta_0 = 0.$$
 (120)

Aus dieser Gleichung können mittels (1) oder (10) drei andere Gleichungen in p_1p_2 , p_1 und p_2 abgeleitet werden (vergl. S. 77). Wir multipliciren (120) mit x_4p_1 und erhalten dann

$$\theta_3 x_4 p_1^2 p_2 + \theta_2 x_4 p_1^2 + \theta_1 x_4 p_1 p_2 + \theta_0 x_4 p_1 = 0$$
,

oder nach Verwendung von (10):

$$-\theta_3 x_3 p_1 p_2 + \theta_3 x_1 p_2 - \theta_2 x_3 p_1 + \theta_2 x_1 + \theta_1 x_4 p_1 p_2 + \theta_0 x_4 p_1 = 0,$$

oder

$$(\theta_3 x_3 - - \theta_1 x_4) p_1 p_2 + (\theta_2 x_3 - - \theta_0 x_4) p_1 - - \theta_3 x_1 p_2 - - \theta_2 x_1 = 0. \quad (121)$$

Ebenso, durch Multiplikation mit $x_4 p_2$:

$$(\theta_3 x_3 - \theta_2 x_4) p_1 p_2 - \theta_3 x_2 p_1 + (\theta_1 x_3 - \theta_0 x_4) p_2 - \theta_1 x_2 = 0. \quad (122)$$

Schliesslich multipliciren wir (121) mit x_4p_2 , wonach sich ergiebt

$$(\theta_3 x_3 - \theta_1 x_4) x_4 p_1 p_2^2 + (\theta_2 x_3 - \theta_0 x_4) x_4 p_1 p_2 - \theta_3 x_1 x_4 p_2^2 - \theta_2 x_1 x_4 p_2 = 0,$$

also nach Benutzung von (10):

$$- (\theta_3 x_3 - \theta_1 x_4) x_3 p_1 p_2 + (\theta_3 x_3 - \theta_1 x_4) x_2 p_1 + (\theta_2 x_3 - \theta_1 x_4) x_4 p_1 p_2 + \theta_3 x_1 x_3 p_2 - \theta_3 x_1 x_2 - \theta_2 x_1 x_4 p_2 = 0 ,$$

oder

Wenn wir nun $p_1 p_2$, p_4 und p_2 aus (120), (121), (122) und (123) eliminiren, so bekommen wir die folgende Gleichung:

$$\Delta = \begin{vmatrix} \theta_3 & , \theta_2 & , \theta_1 & , \theta_0 \\ \theta_3 x_3 - \theta_1 x_4 & , \theta_2 x_3 - \theta_0 x_4 & , -\theta_3 x_1 & , -\theta_2 x_1 \\ \theta_3 x_3 - \theta_2 x_4 & , -\theta_3 x_2 & , \theta_1 x_3 - \theta_0 x_4 & , -\theta_1 x_2 \\ \theta_3 x_3^2 - (\theta_1 + \theta_2) x_3 x_4 + \theta_0 x_4^2, -(\theta_3 x_3 - \theta_1 x_4) x_2, -(\theta_3 x_3 - \theta_2 x_4) x_1, \theta_3 x_1 x_2 \end{vmatrix} = 0.$$

Indem wir x_3^2 mal die erste, — x_3^2 mal die zweite und — x_3 mal die dritte Horizontalreihe zu der vierten addiren, erhalten wir

$$\Delta \equiv \begin{vmatrix} \theta_{3} & , \theta_{2} & , \theta_{1} & , \theta_{0} \\ \theta_{3}x_{3} - \theta_{1}x_{4}, \theta_{2}x_{3} - \theta_{0}x_{4} & , -\theta_{3}x_{1} & , -\theta_{2}x_{1} \\ \theta_{3}x_{3} - \theta_{2}x_{4}, -\theta_{3}x_{2} & , \theta_{1}x_{3} - \theta_{0}x_{4} & , -\theta_{1}x_{2} \\ \theta_{0}x_{4}^{2} & , (\theta_{1}x_{2} + \theta_{0}x_{3})x_{4}, (\theta_{2}x_{1} + \theta_{0}x_{3})x_{4}, \theta_{3}x_{1}x_{2} + \theta_{2}x_{1}x_{3} + \theta_{1}x_{2}x_{3} + \theta_{0}x_{3}^{2} \end{vmatrix} = 0.$$

Die Beziehungen (119) gestatten uns die folgenden Reduktionen auszuführen:

$$\theta_{1}x_{2} + \theta_{0}x_{3} = -\gamma_{0}x_{1}x_{2}x_{3} + \gamma_{4}x_{1}x_{2}x_{4} - \gamma_{2}'x_{2}x_{3}x_{4} + \gamma_{2}''x_{2}x_{4}^{2} + \gamma_{0}x_{1}x_{2}x_{3} + \gamma_{1}'x_{1}x_{3}x_{4} + \gamma_{2}'x_{2}x_{3}x_{4} + \gamma_{0}''x_{3}x_{4} + \gamma_{0}''x_{3}$$

$$\begin{aligned} \theta_{3}x_{1}x_{2} + \theta_{2}x_{4}x_{3} + \theta_{4}x_{2}x_{3} + \theta_{0}x_{3}^{2} &= \gamma_{0}x_{4}x_{2}x_{3}^{2} - (\gamma_{1} + \gamma_{2})x_{4}x_{2}x_{3}x_{4} + \gamma_{0}^{'}x_{4}x_{2}x_{4}^{2} - \\ &- \gamma_{0}x_{4}x_{2}x_{3}^{2} + \gamma_{2}x_{4}x_{2}x_{3}x_{4} - \gamma_{1}^{'}x_{4}x_{3}^{2}x_{4} + \gamma_{1}^{''}x_{4}x_{3}x_{4}^{2} - \\ &- \gamma_{0}x_{4}x_{2}x_{3}^{2} + \gamma_{4}x_{4}x_{2}x_{3}x_{4} - \gamma_{2}^{'}x_{2}x_{3}^{2}x_{4} + \gamma_{2}^{''}x_{2}x_{3}x_{4}^{2} + \\ &+ \gamma_{0}x_{4}x_{2}x_{3}^{2} + \gamma_{1}^{'}x_{4}x_{3}^{2}x_{4} + \gamma_{2}^{'}x_{2}x_{3}^{2}x_{4} + \gamma_{0}^{''}x_{3}^{2}x_{4}^{2} + \\ &+ (\gamma_{0}^{'}x_{4}x_{2} + \gamma_{1}^{''}x_{4}x_{3} + \gamma_{2}^{''}x_{2}x_{3} + \gamma_{0}^{''}x_{3}^{2})x_{4}^{2}.\end{aligned}$$

Der Kürze halber, setzen wir noch

$$\begin{array}{l}
 \gamma_{1}x_{1}x_{2} + \gamma_{1}'x_{1}x_{3} + \gamma_{2}''x_{2}x_{4} + \gamma_{0}''x_{3}x_{4} = \theta_{4}, \\
 \gamma_{2}x_{1}x_{2} + \gamma_{2}'x_{2}x_{3} + \gamma_{1}''x_{1}x_{4} + \gamma_{0}''x_{3}x_{4} = \theta_{5}, \\
 \gamma_{0}'x_{1}x_{2} + \gamma_{1}''x_{1}x_{3} + \gamma_{2}''x_{2}x_{3} + \gamma_{0}''x_{3}^{2} = \theta_{6}.
 \end{array}$$

$$(124)$$

Die Gleichung der Regelfläche erscheint also teilbar durch x_4^2 ; nach dieser Teilung ergiebt sich

$$\Delta = \begin{vmatrix} \theta_3 & , \theta_2 & , \theta_4 & , \theta_0 \\ \theta_3 x_3 - \theta_1 x_4 , \theta_2 x_3 - \theta_0 x_4 , -\theta_3 x_4 & , -\theta_2 x_4 \\ \theta_3 x_3 - \theta_2 x_4 , -\theta_3 x_2 & , \theta_1 x_3 - \theta_0 x_4 , -\theta_1 x_2 \\ \theta_0 & , \theta_4 & , \theta_5 & , \theta_6 \end{vmatrix} = 0.$$

Subtrahiren wir x_3 mal die erste Horizontalreihe von der zweiten und von der dritten, so folgt:

$$\Delta' \equiv \begin{vmatrix} \theta_3 & \theta_2 & \theta_4 & \theta_0 \\ -\theta_1 x_4 & -\theta_0 x_4 & -\theta_0 x_4 & -\theta_0 x_4 \\ -\theta_2 x_4 & -\theta_0 x_2 & \theta_2 x_3 & -\theta_0 x_4 & -\theta_0 x_4 \\ \theta_0 & \theta_4 & \theta_5 & \theta_6 \end{vmatrix} = 0.$$

Eine kleine Reduktion ergiebt

$$\theta_3 x_2 + \theta_2 x_3 = (-\gamma_1 x_2 x_3 + \gamma_0' x_2 x_4 - \gamma_1' x_3^2 + \gamma_1'' x_3 x_4) x_4, \theta_3 x_1 + \theta_1 x_3 = (-\gamma_2 x_1 x_3 + \gamma_0' x_1 x_4 - \gamma_2' x_3^2 + \gamma_2'' x_3 x_4) x_4,$$

oder, wenn wir

$$\begin{array}{l} -\gamma_{1} x_{2} x_{3} + \gamma_{0} x_{2} x_{4} - \gamma_{1} x_{3}^{2} + \gamma_{1} x_{3} x_{4} = \theta_{7}, \\ -\gamma_{2} x_{1} x_{3} + \gamma_{0} x_{1} x_{4} - \gamma_{2} x_{3}^{2} + \gamma_{2} x_{3} x_{4} = \theta_{8} \end{array} \right) . (125)$$

setzen,

$$\theta_3 x_2 + \theta_2 x_3 = \theta_7 x_4,$$

 $\theta_3 x_1 + \theta_1 x_3 = \theta_8 x_4,$

während wir oben gefunden haben:

$$\begin{array}{l} \theta_1 \, x_2 + \, \theta_0 \, x_3 = \, \theta_4 \, x_4 \,, \\ \theta_2 \, x_1 + \, \theta_0 \, x_3 = \, \theta_5 \, x_4 . \end{array}$$

Wenn wir diese Ausdrücke in die Determinantengleichung einsetzen, so erscheint diese abermals durch x_4^2 teilbar; nach Teilung durch x_4^2 bekommt man:

$$\Delta'' \equiv \left| \begin{array}{c} \theta_3, & \theta_2, & \theta_1, & \theta_0 \\ \theta_1, & \theta_0, & \theta_8, & \theta_5 \\ \theta_2, & \theta_7, & \theta_0, & \theta_4 \\ \theta_0, & \theta_4, & \theta_5, & \theta_6 \end{array} \right| = 0. \quad . \quad . \quad (126)$$

Die Grössen θ sind alle vom zweiten Grade in den Coordinaten, wonach die Gleichung (126) vom achten Grade ist.

Wir sehen somit, dass die Regelfläche der Strahlen, welche auf einem willkürlichen, durch X_1 und X_2 gelegten Kegelschnitt γ_{μ} ruhen, vom achten Grade ist; es leuchtet ein, dass γ_{μ} auf dieser Regelfläche eine vierfache Kurve ist.

Der Durchschnitt mit ω_{∞} wird ermittelt, indem wir in der Gleichung (126) $x_4 = 0$ setzen; die Grössen θ erhalten dann die folgenden Werte (siehe (119), (124) und (125)):

$$\begin{array}{l} \theta_{3} = \gamma_{0} \, x_{3}^{2}, \\ \theta_{2} = -\gamma_{0} \, x_{2} \, x_{3}, \\ \theta_{1} = -\gamma_{0} \, x_{1} \, x_{3}, \\ \theta_{0} = \gamma_{0} \, x_{1} \, x_{2}, \\ \theta_{4} = \gamma_{1} \, x_{1} \, x_{2} + \gamma_{1}^{'} \, x_{1} \, x_{3}, \\ \theta_{5} = \gamma_{2} \, x_{1} \, x_{2} + \gamma_{2}^{'} \, x_{2} \, x_{3}, \\ \theta_{6} = \gamma_{0}^{'} \, x_{1} \, x_{2} + \gamma_{1}^{''} \, x_{1} \, x_{3} + \gamma_{2}^{''} \, x_{2} \, x_{3} + \gamma_{0}^{''} \, x_{3}^{2}, \\ \theta_{7} = - (\gamma_{2} \, x_{1} \, x_{3} + \gamma_{2}^{'} \, x_{3}^{2}), \\ \theta_{8} = - (\gamma_{1} \, x_{2} \, x_{3} + \gamma_{1}^{'} \, x_{3}^{2}). \end{array} \right)$$

Die Gleichung (126) verwandelt sich daher in:

$$\begin{vmatrix} \gamma_{0}x_{3}^{2}, -\gamma_{0}x_{2}x_{3} & , -\gamma_{0}x_{4}x_{3} & , \gamma_{0}x_{4}x_{2} \\ -\gamma_{0}x_{4}x_{3}, & \gamma_{0}x_{4}x_{2} & , -(\gamma_{2}x_{4}+\gamma_{2}'x_{3})x_{3}, (\gamma_{2}x_{4}+\gamma_{2}'x_{3})x_{2} \\ -\gamma_{0}x_{2}x_{3}, -(\gamma_{4}x_{2}+\gamma_{1}'x_{3})x_{3}, & \gamma_{0}x_{4}x_{2} & , (\gamma_{4}x_{2}+\gamma_{1}'x_{3})x_{4} \\ \gamma_{0}x_{4}x_{2}, & (\gamma_{4}x_{2}+\gamma_{1}'x_{3})x_{1}, & (\gamma_{2}x_{4}+\gamma_{2}'x_{3})x_{2}, \gamma_{0}'x_{4}x_{2}+\gamma_{1}''x_{4}x_{3}+\gamma_{2}''x_{2}x_{3}+\gamma_{0}''x_{3}^{2} \end{vmatrix} = 0. (128)$$

Die Grössen γ waren durch die folgenden Ausdrücke definirt:

$$egin{array}{l} \gamma_{0} &= lpha_{3}eta_{3}, \ \gamma_{1} &= \mulpha_{3}eta_{3}, \ \gamma_{2} &= \mulpha_{3}eta_{3}, \ \gamma_{0^{'}} &= \mu^{2}lpha_{3}eta_{3}, \ \gamma_{1^{'}} &= (lpha_{2}eta_{3}\mu + lpha_{3}eta_{2}), \ \gamma_{2^{'}} &= (lpha_{1}eta_{3}\mu + lpha_{3}eta_{1}), \ \gamma_{1^{''}} &= \mu \left(lpha_{2}eta_{3}\mu + lpha_{3}eta_{2}\right), \ \gamma_{2^{''}} &= \mu \left(lpha_{1}eta_{3}\mu + lpha_{3}eta_{1}\right), \ \gamma_{0^{''}} &= (lpha_{0}eta_{3}\mu^{2} + lpha_{3}eta_{0}), \end{array}
ight)$$

aus welchen diese Beziehungen hervorgehen:

$$egin{array}{ll} \gamma_{1} &= \gamma_{2} = \mu \gamma_{0}, \ \gamma_{0}^{'} &= \mu^{2} \gamma_{0}, \ \gamma_{1}^{''} &= \mu \gamma_{1}^{'}, \ \gamma_{2}^{''} &= \mu \gamma_{2}^{'}. \end{array} \end{array}$$

Vermöge (130) schreiben wir (128) in dieser Form:

$$\begin{vmatrix} \gamma_0 x_3^2, -\gamma_0 x_2 x_3 & , -\gamma_0 x_1 x_3 & , \gamma_0 x_1 x_2 \\ -\gamma_0 x_1 x_3, & \gamma_0 x_1 x_2 & , -(\mu \gamma_0 x_1 + \gamma_2 ' x_3) x_3, (\mu \gamma_0 x_1 + \gamma_2 ' x_3) x_2 \\ -\gamma_0 x_2 x_3, -(\mu \gamma_0 x_2 + \gamma_1 ' x_3) x_3, & \gamma_0 x_1 x_2 & , (\mu \gamma_0 x_2 + \gamma_1 ' x_3) x_1 \\ \gamma_0 x_1 x_2, & (\mu \gamma_0 x_2 + \gamma_1 ' x_3) x_1, -(\mu \gamma_0 x_1 + \gamma_2 ' x_3) x_2, \mu^2 \gamma_0 x_1 x_2 + \mu \gamma_1 ' x_1 x_3 + \mu \gamma_2 ' x_2 x_3 + \gamma_0 '' x_3^2 \end{vmatrix} = 0$$

Wir multipliciren die zweite und die dritte Horizontalreihe mit x_3 und addiren zu der neuen zweiten Reihe x_1 mal die erste, und zu der neuen dritten Reihe x_2 mal die erste. Wir erhalten dann

$$\begin{vmatrix} x_3^2, -\gamma_0 x_2 x_3 & , -\gamma_0 x_1 x_3 & , \\ 0, 0 & , -x_3 (\gamma_0 x_1^2 + \mu \gamma_0 x_1 x_3 + \gamma_2' x_3^2), \\ 0, -x_3 (\gamma_0 x_2^2 + \mu \gamma_0 x_2 x_3 + \gamma_1' x_3^2), 0 & , \\ x_1 x_2, & (\mu \gamma_0 x_2 + \gamma_1' x_3) x_1 & , & (\mu \gamma_0 x_1 + \gamma_2' x_3) x_2 & , \\ & & x_2 (\gamma_0 x_1^2 + \mu \gamma_0 x_1 x_3 + \gamma_2' x_3^2) & \\ & & x_2 (\gamma_0 x_1^2 + \mu \gamma_0 x_2 x_3 + \gamma_1' x_3^2) & \\ & & x_1 (\gamma_0 x_2^2 + \mu \gamma_0 x_2 x_3 + \gamma_1' x_3^2) & \\ & & \mu^2 \gamma_0 x_1 x_2 + \mu \gamma_1' x_1 x_3 + \mu \gamma_2' x_2 x_3 + \gamma_0'' x_3^2 \end{vmatrix} = 0.$$

Jetzt multipliciren wir die letzte Vertikalreihe mit x_3^2 und addiren zu ihr: $\gamma_0 x_1 x_2$ mal die erste, $x_1 x_3$ mal die zweite und $x_2 x_3$ mal die dritte Vertikalreihe; wir bekommen dann

$$\begin{vmatrix} x_3^2, -\gamma_0 x_2 x_3 & , -\gamma_0 x_1 x_3 & , & 0 \\ 0, & 0 & , -x_3 (\gamma_0 x_1^2 + \mu \gamma_0 x_1 x_3 + \gamma_2 x_3^2), & 0 \\ 0, -x_3 (\gamma_0 x_2^2 + \mu \gamma_0 x_2 x_3 + \gamma_1 x_3^2), & 0 & , & 0 \\ x_1 x_2, & (\mu \gamma_0 x_2 + \gamma_1 x_3) x_1 & , & (\mu \gamma_0 x_1 + \gamma_2 x_3) x_2 & , & \Pi \end{vmatrix} = 0,$$

oder

$$x_3^4 \Pi(\gamma_0 x_1^2 + \mu \gamma_0 x_1 x_3 + \gamma_2' x_3^2)(\gamma_0 x_2^2 + \mu \gamma_0 x_2 x_3 + \gamma_1' x_3^2) = 0, (131)$$

wo zur Abkürzung

$$\Pi = \gamma_0 x_1^2 x_2^2 + \mu \gamma_0 x_1^2 x_2 x_3 + \mu \gamma_0 x_1 x_2^2 x_3 + \gamma_1' x_1^2 x_3^2 + \gamma_2' x_2^2 x_3^2 + \mu \gamma_0 x_1 x_2 x_3^2 + \mu \gamma_1' x_1 x_3^3 + \mu \gamma_2' x_2 x_3^3 + \gamma_0'' x_3^4 = 0 \quad (132)$$

gesetzt ist.

Die Gleichung (128), welche nach Multiplikation mit x_3^4 in die Form (131) gebracht wurde, ist deshalb als die Gesammtheit der folgenden drei Gleichungen zu betrachten:

$$\Pi = 0,$$
 $\gamma_0 x_1^2 + \mu \gamma_0 x_1 x_3 + \gamma_2' x_3^2 = 0,$
 $\gamma_0 x_2^2 + \mu \gamma_0 x_2 x_3 + \gamma_1' x_3^2 = 0.$

Die Gleichung $\Pi = 0$, welche den nicht-geraden Bestandteil des Durchschnittes darstellt, würde natürlich auch erhalten sein, wenn in (116) p_1 und p_2 durch $x_1 : x_3$ und $x_2 : x_3$ ersetzt wären.

Die zweite der Gleichungen (133) bestimmt zwei Geraden durch X_2 , die dritte zwei Geraden durch X_4 .

Der Schnitt von ω_{∞} mit der Regelfläche der Congruenzstrahlen welche auf einem durch X_1 und X_2 gelegten, sich in der Ebene $x_3 = \mu x_4$ befindenden Kegelschnitt γ_{μ} ruhen, besteht also aus einer biquadratischen Kurve $\Pi = 0$, aus zwei Geraden durch X_1 und aus zwei Geraden durch X_2 .

Auch an dieser Stelle wollen wir die Bedeutung jener Geraden zu erforschen versuchen.

Die Congruenzstrahlen, welche auf der in ω_{∞} befindlichen Gerade

$$x_1 = p_1 x_3, \ x_4 = 0$$

ruhen, liegen in der Ebene

Die auf

$$x_1 = q_1 x_3, \quad x_4 = 0$$

ruhenden Strahlen befinden sich im

$$x_1 = q_1 x_3 + q_1^2 x_4$$
. (135)

Die Ebenen (134) und (135) haben dieselbe Schnittlinie wie die Ebenen

$$x_3 = -(p_1 + q_1)x_4, \dots (136)$$

$$2 x_1 = (p_1 + q_1) x_3 + (p_1^2 + q_1^2) x_4. \quad . \quad . \quad (137)$$

Für die zwei Geraden, welche durch

$$\gamma_0 x_1^2 + \mu \gamma_0 x_1 x_3 + \gamma_2' x_3^2 = 0$$

angewiesen sind, gilt

$$p_1 + q_1 = -\mu,$$

$$p_1 q_1 = \frac{\gamma_2}{\gamma_0}.$$

Die Congruenzstrahlen, welche diese beiden Geraden schneiden, liegen demnach in den Ebenen, welche sich schneiden in der Gerade

$$x_{3} = \mu x_{4}, \ 2 x_{1} + \mu x_{3} - rac{\mu^{2} \gamma_{0} - 2 \gamma_{2}^{'}}{\gamma_{0}} x_{4} = 0, \ \$$

oder

$$\begin{vmatrix}
x_3 = \mu x_4, \\
\gamma_0 x_1 + \gamma_2' x_4 = 0,
\end{vmatrix}$$
(138)

also, wegen (129),

$$x_3 = \mu x_4,$$

 $\alpha_3 \beta_3 x_1 + (\alpha_1 \beta_3 \mu + \alpha_3 \beta_1) x_4 = 0,$

oder

$$\begin{array}{c}
x_3 = \mu x_4, \\
\alpha_3 \beta_3 x_1 + \alpha_1 \beta_3 x_3 + \alpha_3 \beta_1 x_4 = 0.
\end{array}$$
(139)

Die fragliche Schnittlinie ist daher identisch mit der Tangente in X_2 an dem Kegelschnitt γ_{μ} , welcher alle Congruenzstrahlen trägt.

Die beiden Geraden durch X_1 , welche dem Schnitte in ω_{∞} angehören, sind offenbar die Congruenzstrahlen durch den X_1 vorangehenden Punkt von γ_{μ} , während die beiden Geraden durch X_2 die Strahlen sind, welche nach dem X_2 unendlich benachbarten Punkte von γ_{μ} zielen.

Die beiden Geraden durch X_1 sind ausserdem die Tangenten an der Kurve Π in ihrem Doppelpunkte X_1 ; dasselbe kann von den zwei Geraden durch X_2 behauptet werden.

Der Schnitt in ω_0 fordert $x_3 = 0$; für die Grössen θ finden wir daher die folgenden Ausdrücke:

$$\theta_{3} = \gamma_{0}' x_{4}^{2},
\theta_{2} = \gamma_{2} x_{2} x_{4} + \gamma_{1}'' x_{4}^{2},
\theta_{1} = \gamma_{1} x_{1} x_{4} + \gamma_{2}'' x_{4}^{2},
\theta_{0} = \gamma_{0} x_{1} x_{2} + \gamma_{1}' x_{1} x_{4} + \gamma_{2}' x_{2} x_{4} + \gamma_{0}'' x_{4}^{2},
\theta_{4} = \gamma_{1} x_{1} x_{2} + \gamma_{2}'' x_{2} x_{4},
\theta_{5} = \gamma_{2} x_{1} x_{2} + \gamma_{1}'' x_{1} x_{4},
\theta_{6} = \gamma_{0}' x_{1} x_{2},
\theta_{7} = \gamma_{0}' x_{2} x_{4},
\theta_{8} = \gamma_{0}' x_{1} x_{4}.$$
(127a)

Indem wir diese Werte in die Gleichung (126) einsetzen, erhalten wir die Gleichung der gesuchten Kurve. Sie ist vom achten Grade und nicht ausgeartet, weil die Ebene ω_0 keine singulären Eigenschaften aufweist.

§ 14. Die Regelfläche der Congruenzstrahlen, welche auf einem durch X_1 und X_2 gelegten, in ω_{∞} befindlichen Kegelschnitt ruhen. Der betreffende Kegelschnitt muss mit γ_{∞} bezeichnet werden. Wir haben ja in dem Obigen nur

$$\mu = \infty$$

zu setzen, wonach der Kegelschnitt Ym durch

$$\left. \begin{array}{c}
 \alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_4 x_2 x_3 + \alpha_0 x_3^2 = 0, \\
 x_4 = 0
 \end{array} \right). \quad (140)$$

angewiesen wird.

Die Grössen γ sind nun definirt durch

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

wo der Faktor β_3 gestrichen ist.

Die Ausdrücke θ bekommen nun diese Gestalt (siehe (119), (124) und (125)):

$$\begin{array}{l} \theta_{3} = \mu^{2} \alpha_{3} x_{4}^{2}, \\ \theta_{2} = \mu^{2} \alpha_{2} x_{4}^{2}, \\ \theta_{1} = \mu^{2} \alpha_{1} x_{4}^{2}, \\ \theta_{0} = \mu^{2} \alpha_{0} x_{4}^{2}, \\ \theta_{0} = \mu^{2} (\alpha_{1} x_{2} + \alpha_{0} x_{3}) x_{4}, \\ \theta_{5} = \mu^{2} (\alpha_{2} x_{1} + \alpha_{0} x_{3}) x_{4}, \\ \theta_{6} = \mu^{2} (\alpha_{3} x_{1} x_{2} + \alpha_{2} x_{1} x_{2} + \alpha_{1} x_{2} x_{3} + \alpha_{0} x_{3}^{2}), \\ \theta_{7} = \mu^{2} (\alpha_{3} x_{2} + \alpha_{2} x_{3}) x_{4}, \\ \theta_{8} = \mu^{2} (\alpha_{3} x_{1} + \alpha_{1} x_{3}) x_{4}. \end{array}$$

Die Gleichung (126) der Regelfläche nimmt alsdann die folgende Form an:

$$\Delta''' \!\! \equiv \! \begin{vmatrix} \alpha_3 x_4^2, \alpha_2 x_4^2 &, \alpha_4 x_4^2 &, \alpha_0 x_4^2 \\ \alpha_1 x_4^2, \alpha_0 x_4^2 &, (\alpha_3 x_1 \! + \! \alpha_1 x_3) x_4, (\alpha_2 x_1 \! + \! \alpha_0 x_3) x_4 \\ \alpha_2 x_4^2, (\alpha_3 x_2 \! + \! \alpha_2 x_3) x_4, \alpha_0 x_4^2 &, (\alpha_4 x_2 \! + \! \alpha_0 x_3) x_4 \\ \alpha_0 x_4^2, (\alpha_1 x_2 \! + \! \alpha_0 x_3) x_4, (\alpha_2 x_1 \! + \! \alpha_0 x_3) x_4, \alpha_3 x_4 x_2 \! + \! \alpha_2 x_4 x_3 \! + \! \alpha_4 x_2 x_3 \! + \! \alpha_0 x_3^2 \end{vmatrix} = 0,$$

oder, nach Teilung durch x_4^4 :

$$\begin{vmatrix}
\alpha_{3}, & \alpha_{2}, & \alpha_{4}, & \alpha_{5}, & \alpha_{4}, & \alpha_{5}, & \alpha_{5},$$

Die Regelfläche der Congruenzstrahlen, welche auf einem durch X_1 und X_2 gelegten und in ω_{∞} befindlichen Kegelschnitt γ_{∞} ruhen, ist demnach vom *vierten* Grade.

Der Schnitt in ω_{∞} ($x_4 = 0$) wird bestimmt durch

$$\begin{vmatrix} \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{2} & , \boldsymbol{\alpha}_{1} & , \boldsymbol{\alpha}_{0} \\ 0, 0 & , \boldsymbol{\alpha}_{3}x_{1} + \boldsymbol{\alpha}_{1}x_{3}, \boldsymbol{\alpha}_{2}x_{1} + \boldsymbol{\alpha}_{0}x_{3} \\ 0, \boldsymbol{\alpha}_{3}x_{2} + \boldsymbol{\alpha}_{2}x_{3}, 0 & , \boldsymbol{\alpha}_{1}x_{2} + \boldsymbol{\alpha}_{0}x_{3} \\ 0, 0 & , 0 & , \boldsymbol{\alpha}_{3}x_{1}x_{2} + \boldsymbol{\alpha}_{2}x_{1}x_{3} + \boldsymbol{\alpha}_{1}x_{2}x_{3} + \boldsymbol{\alpha}_{0}x_{3}^{2} \end{vmatrix} = 0,$$

oder

$$(\alpha_3 x_1 + \alpha_1 x_3)(\alpha_3 x_2 + \alpha_2 x_3)(\alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 + \alpha_0 x_3^2) = 0.$$

Der Schnitt in ω_{∞} besteht also aus dem Kegelschnitte γ_{∞} und aus seinen beiden Tangenten in X_1 und X_2 ; diese Tangenten schneiden sich in dem Pole B von X_1 X_2 in Bezug auf γ_{∞} . Hier erkennen wir einen eigentümlichen Unterschied mit der vorigen Congruenz, wo γ_{∞} durch die Geraden X_1 M_1 und X_2 M_2 (siehe S. 87) zu einer biquadratischen Kurve ergänzt wird. Im Übrigen ist die Ähnlichkeit der Determinante (141) mit der entsprechenden in der Abteilung A auffallend.

Die Schnittkurve in ω_0 ($x_3 = 0$) wird durch

$$\begin{vmatrix} \alpha_{3} & , & \alpha_{2} & , & \alpha_{1} & , & \alpha_{0} \\ \alpha_{1} x_{4} & , & \alpha_{0} x_{4} & , & \alpha_{3} x_{1} & , & \alpha_{2} x_{1} \\ \alpha_{2} x_{4} & , & \alpha_{3} x_{2} & , & \alpha_{0} x_{4} & , & \alpha_{1} x_{2} \\ \alpha_{0} x_{4}^{2} & , & \alpha_{1} x_{2} x_{4} & , & \alpha_{2} x_{1} x_{4} & , & \alpha_{3} x_{1} x_{2} \end{vmatrix} = 0 \quad . \quad (142)$$

bestimmt.

Sie ist die Bildkurve von γ_{∞} . In X_1 und X_2 hat sie Rückkehr-

punkte, deren Tangenten X_4 und X_2 mit dem B zugeordneten Punkte B' verbinden.

Im Allgemeinen wird ein Schnitt mit einer Ebene durch $X_1 X_2$ in X_1 und X_2 zwei Rückkehrpunkte besitzen, deren Tangenten sich auf der Gerade BB' schneiden.

Wir bestimmen nun die Doppelkurve welche sich auf der Regelfläche befindet.

Ein Congruenzstrahl $p_1(p_1, p_2)$ schneidet γ_{∞} , wenn der Beziehung

$$\alpha_3 p_1 p_2 + \alpha_2 p_1 + \alpha_1 p_2 + \alpha_0 = 0$$
, . . (143)

ein Strahl q (q_1, q_2) trifft γ_{∞} , wenn der Bedingung

$$\alpha_3 q_1 q_2 + \alpha_2 q_1 + \alpha_1 q_2 + \alpha_0 = 0$$
 . . (144)

genügt wird.

Die Strahlen p und q schneiden sich, wenn man hat

$$p_1 + q_1 = p_2 + q_2, \dots (23)$$

während ihr Schnittpunkt durch

$$\begin{vmatrix}
x_1 = -p_1 q_1 x_4, & & & \\
x_2 = -p_2 q_2 x_4, & & & \\
x_3 = -(p_1 + q_1) x_4 = -(p_2 + q_2) x_4
\end{vmatrix} . (25)$$
(25)

$$x_2 = -p_2 q_2 x_4, (26)$$

$$x_3 = -(p_1 + q_1)x_4 = -(p_2 + q_2)x_4 \qquad (24)$$

bestimmt ist.

Es sollen jetzt aus (143), (144), (23), (24), (25) und (26) die Grössen p_1 , p_2 , q_1 und q_2 eliminirt werden.

Die Elimination von q_2 aus (144) und (23) ergiebt

$$\alpha_3 p_1 q_1 + \alpha_3 q_1^2 - \alpha_3 p_2 q_1 + \alpha_1 p_1 - \alpha_1 p_2 + (\alpha_1 + \alpha_2) q_1 + \alpha_0 = 0. (145)$$

Durch die Elimination von p_2 aus (145) und (143) erhält man

$$\alpha_3^2 p_1 q_1 (p_1 + q_1) + \alpha_1 \alpha_3 (p_1 + q_1)^2 + 2 \alpha_2 \alpha_3 p_1 q_1 + (\alpha_1^2 + \alpha_1 \alpha_2 + \alpha_0 \alpha_3) (p_1 + q_1) + 2 \alpha_0 \alpha_1 = 0.$$
 (146)

Mit Hülfe von (24), (25) und (26) schreiben wir

Diese Gleichung stellt einen quadratischen Kegel k_2 , mit X_2 als Spitze, dar.

Hätten wir zuerst p_1 und q_4 eliminirt, so würden wir zu

$$k_1 \equiv \alpha_3^2 x_2 x_3 + \alpha_2 \alpha_3 x_3^2 - 2\alpha_1 \alpha_3 x_2 x_4 - (\alpha_2^2 + \alpha_1 \alpha_2 + \alpha_0 \alpha_3) x_3 x_4 + 2\alpha_0 \alpha_2 x_4^2 = 0 \qquad (148)$$

gelangt sein.

Diese Gleichung vertritt einen quadratischen Kegel k_1 mit X_1 als Spitze.

Der Kegel k_2 schneidet ω_{∞} in X_1X_2 und in der Gerade

$$\alpha_3 x_1 + \alpha_1 x_3 = 0,$$

d. h. in der Tangente $X_2 B$ an γ_{∞} .

Der Kegel k_1 durchbohrt ω_{∞} gleichfalls in X_1X_2 und überdies in der Gerade

$$\alpha_3 x_2 + \alpha_2 x_3 = 0,$$

d. h. in der Tangente $X_1 B$ an γ_{∞} .

Ausser der Gerade $X_1 X_2$ haben die beiden Kegel k_1 und k_2 offenbar eine kubische Raumkurve gemein, welche die Punkte X_1 , X_2 und B

$$\frac{x_1}{\alpha_1} = \frac{x_2}{\alpha_2} = \frac{x_3}{-\alpha_3} \quad . \quad . \quad . \quad (150)$$

enthält.

Der Kegel k_2 schneidet ω_0 in $X_1 X_2$ und in der Gerade

$$\alpha_2 \alpha_3 \alpha_4 - \alpha_0 \alpha_1 \alpha_4 = 0,$$

während der Schnitt von k_1 mit ω_0 aus X_1X_2 und der Gerade

$$\mathbf{\alpha}_1 \mathbf{\alpha}_3 \mathbf{x}_2 - \mathbf{\alpha}_0 \mathbf{\alpha}_2 \mathbf{x}_4 = 0$$

zusammengesetzt ist.

Der Schnittpunkt D dieser Geraden wird durch

$$\frac{x_1}{\alpha_0 \alpha_1^2} = \frac{x_2}{\alpha_0 \alpha_2^2} = \frac{x_4}{\alpha_1 \alpha_2 \alpha_3}$$

bestimmt, liegt demnach auf der Gerade

$$\frac{x_1}{x_2} = \frac{{\alpha_1}^2}{{\alpha_2}^2} ,$$

welche X_4 mit dem Bilde B' von B vereinigt.

Die Doppelkurve der Regelfläche ist also eine kubische Raumkurve, welche die Punkte X_1 , X_2 , den Pol B von X_1X_2 in Bezug auf γ_{∞} und den in ω_0 auf der Gerade X_4 B' befindlichen Punkt D enthält.

Es erhellt, dass jeder Schnitt mit einer Ebene durch X_1X_2 ausser den beiden Rückkehrpunkten X_1 und X_2 noch einen Doppelpunkt aufzuweisen hat.

§ 15. Die Regelfläche der Strahlen, welche sich stützen auf einem in ω_{∞} durch X_1 und X_2 gelegten Kegelschnitt, wofür X_3 der Pol von X_1 X_2 ist.

In dem vorliegenden Falle ist der Pol B von $X_1 X_2$ in Bezug auf γ_{∞} mit dem Punkte X_3 identisch.

Es gilt nunmehr

$$\alpha_1 = 0$$
, $\alpha_2 = 0$;

die Gleichung von Y∞ ist daher

$$\alpha_3 x_1 x_2 + \alpha_0 x_3^2 = 0...$$
 (151)

Die Gleichung der Regelfläche lautet jetzt (siehe (141)):

oder

Die Schnitte mit ω_{∞} und ω_{0} werden durch

$$\begin{aligned} x_1 \, x_2 (\alpha_3 \, x_1 \, x_2 + \alpha_0 \, x_3^2) &= 0 \,, \\ (\alpha_3^2 \, x_1 \, x_2 - \alpha_0^2 \, x_4^2)^2 &= 0 \end{aligned}$$

dargestellt.

Diese letzte Kurve besteht also aus einem doppelt zu zählenden Kegelschnitt, in Bezug auf welchen X_4 der Pol von X_1X_2 ist.

Wir bemerken beiläufig, dass ein Kegelschnitt in ω_{∞} nur dann in einen in ω_0 liegenden Kegelschnitt abgebildet wird, wenn er durch X_1 und X_2 geht und X_3 der Pol von X_4 X_2 ist.

Die Doppelkurve ist jetzt durch

$$x_3 (\mathbf{a}_3 x_1 - \mathbf{a}_0 x_4) = 0,$$

 $x_3 (\mathbf{a}_3 x_2 - \mathbf{a}_0 x_4) = 0$

bestimmt.

Der eine ihrer Bestandteile ist die Gerade

$$\alpha_3 x_1 - \alpha_0 x_4 = 0,$$
 $\alpha_3 x_2 - \alpha_0 x_4 = 0,$

welche in der Ebene ε liegt, und den Punkt X_3 trägt.

Der andere Bestandteil der Doppelkurve befindet sich in $x_3 = 0$; er ist offenbar der Kegelschnitt

$$\alpha_3^2 x_1 x_2 - \alpha_0^2 x_4^2 = 0$$
,

welchen wir oben als den Schnitt der Regelfläche mit ω_0 erkannten.

§ 16. Die Regelfläche der Strahlen, welche auf einem durch X_1 , X_2 und X_3 gelegten Kegelschnitt ruhen.

Zum Schluss wollen wir den Fall erledigen, wo γ_{∞} durch X_3 geht; man hat dann

$$\alpha_0 = 0$$

zu setzen. Die Gleichung von γ∞ lautet nun

$$\alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 = 0.$$
 . (154)

Die Regelfläche entspricht der Gleichung

$$\begin{vmatrix} \boldsymbol{\alpha}_{3} &, \boldsymbol{\alpha}_{2} &, \boldsymbol{\alpha}_{1} &, 0 \\ \boldsymbol{\alpha}_{1} x_{4}, 0 &, \boldsymbol{\alpha}_{3} x_{1} + \boldsymbol{\alpha}_{1} x_{3}, \boldsymbol{\alpha}_{2} x_{1} \\ \boldsymbol{\alpha}_{2} x_{4}, \boldsymbol{\alpha}_{3} x_{2} + \boldsymbol{\alpha}_{2} x_{3}, 0 &, \boldsymbol{\alpha}_{1} x_{2} \\ 0 &, \boldsymbol{\alpha}_{1} x_{2} x_{4} &, \boldsymbol{\alpha}_{2} x_{1} x_{4} &, \boldsymbol{\alpha}_{3} x_{1} x_{2} + \boldsymbol{\alpha}_{2} x_{1} x_{3} + \boldsymbol{\alpha}_{1} x_{2} x_{3} \end{vmatrix} = 0. (155)$$

Diese Fläche ist immer vom vierten Grade, in Gegensatz zu dem entsprechenden Fall in der vorigen Congruenz, wo die Fläche in ω_{∞} und in einer kubischen Regelfläche ausgeartet war. Dort war ja X_3 ein singulärer Punkt, während X_3 hier keine Singularitäten zeigt.

Der Grad der Regelfläche eines Kegelschnittes in ω_{∞} wird nur dann herabgedrückt, wenn diese Kurve das Bild einer in ω_0 befindlichen Gerade ist. Die Gleichung dieses Bildkegelschnittes ist dann $\beta_1 x_1^2 + \beta_2 x_2^2 + \beta_4 x_3^2 = 0$. Derselbe gehört also keiner der hier betrachteten Kurven an.

Der Schnitt der Regelfläche (155) mit ω_∞ wird durch (siehe S. 153)

$$(\alpha_3 x_1 + \alpha_1 x_3) (\alpha_3 x_2 + \alpha_2 x_3) (\alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3) = 0$$

dargestellt.

Die Schnittkurve in ω_0 hat die Gleichung

$$\begin{vmatrix} \alpha_3 & , & \alpha_2 & , & \alpha_1 & , & 0 \\ \alpha_1 x_4 & , & 0 & , & \alpha_3 x_1 & , & \alpha_2 x_1 \\ \alpha_2 x_4 & , & \alpha_3 x_2 & , & 0 & , & \alpha_1 x_2 \\ 0 & , & \alpha_1 x_2 x_4 & , & \alpha_2 x_1 x_4 & , & \alpha_3 x_1 x_2 \end{vmatrix} = 0, . . (142a)$$

und enthält demnach den Punkt X_4 (das Bild von X_3). Die Doppelkurve ist jetzt durch

$$k_{2} \equiv \alpha_{3}^{2} x_{4} x_{3} + \alpha_{1} \alpha_{3} x_{3}^{2} - 2\alpha_{2} \alpha_{3} x_{1} x_{4} - \alpha_{1} (\alpha_{1} + \alpha_{2}) x_{3} x_{4} = 0, \quad (147a)$$

$$k_{1} \equiv \alpha_{3}^{2} x_{2} x_{3} + \alpha_{2} \alpha_{3}^{2} - 2\alpha_{1} \alpha_{3} x_{3} x_{4} - \alpha_{3} (\alpha_{1} + \alpha_{2}) x_{3} x_{4} = 0 \quad (148a)$$

angewiesen.

Die kubische Raumkurve schneidet jetzt ω_{∞} , ausser X_4 und X_2 , im Punkte B, die Ebene ω_0 aber in X_4 .

Die biquadratische Kurve in ω_0 hat also in X_4 einen Doppelpunkt. Wenn der Kegelschnitt γ_{μ} , auf dem die Strahlen ruhen, in der Ebene ω_0 liegt, haben wir nur

$$\mu = 0$$

zu setzen.

Die so erhaltene Regelfläche wird ganz und gar mit der Regelfläche eines willkürlichen, durch X_1 und X_2 gelegten Kegelschnittes übereinstimmen. Die Ebene ω_0 ist ja nicht singulär und unterscheidet sich daher nicht von einer beliebigen durch X_1 X_2 gelegten Ebene ω_{μ} .

§ 17. Wie bei der Congruenz von $w'=c^2:w$, wollen wir hier abschliessen mit einer genaueren Beschreibung der Gestalt der betrachteten Gebilde, ohne jedoch alle Gleichungen auf triorthogonalen Coordinaten zu beziehen.

Wo diese Umformung erwünscht ist, verwenden wir die folgenden Formeln:

$$x_{1} = \frac{x + iy}{c},$$

$$x_{2} = \frac{x - iy}{c},$$

$$x_{3} = \frac{h - z}{h},$$

$$x_{4} = \frac{z}{h}.$$

$$(156)$$

Eine kurze Zusammenfassung der oben erhaltenen Resultate möge hier folgen.

a). Der Feldgrad der Congruenz ist zwei, ihr Bündelgrad vier, ihr Axengrad zwei.

Von den vier Strahlen, welche nach einem reellen Punkt T zielen, sind stets nur zwei reell.

Die Coordinaten p_1 und p_2 derjenigen Strahlen, welche sich in einem Punkte (x_0, y_0, z_0) schneiden, erhält man aus

$$cz_0 p_1^2 - c(h - z_0) p_1 + h(x_0 + iy_0) = 0, . . (157)$$

$$cz_0 p_2^2 - c(h - z_0) p_2 + h(x_0 - iy_0) = 0. . . (158)$$

Die Wurzeln von (158) sind also den Wurzeln von (157) complex conjugirt. Von den vier Combinationen (p_1, p_2) giebt es daher zwei, für welche $p_1 + p_2$ und $p_1 p_2$ reell sind.

b). Singuläre Ebenen sind

1° die Ebene [w] (z=0) mit drei Strahlenbüscheln, mit den Scheiteln in X_1, X_2 und E, d. h. in den beiden Kreispunkten I und J und in dem unendlich fernen Punkte X_{∞} der reellen Axe; diese Strahlenbüschel sind also alle aus parallelen Geraden zusammengesetzt;

2° die Ebene der reellen Axen ($x_1 = x_2$ oder y = 0) mit einem Strahlengebilde zweiter Klasse, welches einen Kegelschnitt e umhüllt.

Dieser Kegelschnitt wird durch

$$\begin{array}{c} x_3^2 + 4 x_1 x_4 = 0, \\ x_1 = x_2, \end{array}$$

oder

$$\frac{(h-z)^2}{h^2} + \frac{4 xz}{hc} = 0, y = 0,$$

oder

$$4 hxz + c(h-z)^{2} = 0, y = 0$$

dargestellt, ist demnach eine Hyperbel, welche OO' in O' und OX in in X_{∞} berührt, wonach OX Asymptote ist, indess ihr Mittelpunkt mit

$$x = \frac{c}{2}$$
, $y = 0$, $z = 0$,

zusammenfällt;

3° jede Ebene, welche einen Congruenzstrahl mit einem der Kreispunkte I oder J verbindet; sie trägt

ein Strahlengebilde zweiter Klasse, welches einen Kegelschnitt umhüllt.

c). Singuläre Punkte sind

1° der unendlich ferne Punkt X_{∞} auf der reellen Axe in [w] mit einem Büschel paralleler Geraden in [w];

 2° die beiden Kreispunkte I und J der Ebenen [w] und [w'] mit Strahlenbüscheln in der Ebene [w].

d). Alle Congruenzstrahlen berühren zwei imaginäre Kegel (Cylinder), von denen jeder einen der Kreispunkte I und J als Spitze hat. Die Berührungspunkte (Brennpunkte) der Congruenzstrahlen sind im Allgemeinen imaginär. Die beiden Cylinder bilden zusammen die Fokalfläche.

Die Fokalcylinder haben die Gleichungen

$$\frac{(h-z)^2}{h} + \frac{4(x+iy)z}{c} = 0,$$

$$\frac{(h-z)^2}{h} + \frac{4(x-iy)z}{c} = 0;$$
(162)

die Fokalfläche ist demnach durch

$$\frac{16(x^2 + y^2)z^2}{c^2} + \frac{8xz(h-z)^2}{ch} + \frac{(h-z)^4}{h^2} = 0 \quad . \quad (163)$$

bestimmt.

e). Die Fokalfläche hat eine quadratische Doppelkurve, welche in der Ebene (y = 0) der reellen Axen liegt und mit der durch

dargestellten Hyperbel e identisch ist.

Die beiden Fokalcylinder berühren ausserdem einander und die Ebene $\lceil w \rceil$ in der unendlich fernen Gerade von $\lceil w \rceil$.

Diese bildet mit der Hyperbel e den reellen Bestandteil der Fokalfläche.

f). Die axiale Regelfläche einer willkürlichen Gerade l, welche [w] in A und [w'] in B' schneidet, ist eine Fläche sechsten Grades, mit der vierfachen Gerade l. Zwei der vier Blätter sind immer imaginär.

Der Schnitt von [w] mit dieser Regelfläche besteht aus den drei Geraden AI, AJ und AX_{∞} und aus einer circularen kubischen Kurve, welche durch X_{∞} , durch A und durch die vier Bildpunkte B der Spur B' von l in [w'] geht. Der Punkt A ist überdies der gemeinschaftliche Tangentialpunkt der Kreispunkte. Die Tangente in A ist die axiale Projektion aus l auf [w] des Bildes A' von A.

Der Schnitt in [w'] ist eine Kurve sechsten Grades λ , welche in den beiden Kreispunkten I und J Rückkehrpunkte hat, deren Tangenten sich im Bilde A' von A schneiden.

Die Kreispunkte sind uniplanare Punkte der Regelfläche. Jeder Schnitt mit einer zu [w] parallelen Ebene hat ja in I und J zwei Rückkehrpunkte. Die Kurve λ berührt noch die unendlich ferne Gerade im Punkte X_{∞} der reellen Axe. Sie hat überdies in B' einen vierfachen Punkt, dessen Tangenten die axialen Projektionen aus l auf [w'] der vier nach B' zielenden Congruenzstrahlen sind.

Die axiale Regelfläche von *l* besitzt eine *circulare kubische Dop*pelkurve, welche *l* in zwei Punkten trifft.

Wenn l die Gerade OO' schneidet, so enthält der Schnitt in [w] den Punkt O und wird daselbst durch OA berührt, während die Kurve λ in O' einen Rückkehrpunkt hat, dessen Tangenten mit O'A' zusammenfallen.

Die Gerade OO' gehört der Regelfläche in ihren ganzen Ausdehnung an.

Die Doppelkurve hat keine speziellen Eigenschaften aufzuweisen. Wenn die Gerade l (l_{μ}) den Ebenen [w] und [w'] parallel ist, so zerfällt die kubische Kurve von [w] in die unendlich ferne Gerade und in einen Kegelschnitt; dieser trifft die unendlich ferne Gerade in zwei Punkten, welche die Bilder des unendlich fernen Punktes L_{μ} von l_{μ} sind.

Der Schnitt der Regelfläche mit $\lfloor w \rfloor$ besteht aus dem erwähnten Kegelschnitte und aus der vierfach zu zählenden unendlich fernen Gerade.

Die Schnittkurve λ ist in die doppelt zu zählende unendlich ferne Gerade und eine biquadratische Kurve zerfallen, welche in

 L_{μ} einen Doppelpunkt hat, und daselbst mit der unendlich fernen Gerade vier Punkte gemein hat.

Die Doppelkurve ist aus der unendlich fernen Gerade von [w] und aus einem Kegelschnitt zusammengesetzt. Letzterer schneidet die unendlich ferne Gerade in einem Punkte, dessen Richting derjenigen von l_{μ} normal ist; er schneidet auch die Gerade l_{μ} .

Wenn l_{μ} mit [w] parallel ist und ausserdem OO' schneidet, so enthält der Kegelschnitt in [w] den Punkt O; die Tangente in O ist mit l_{μ} parallel.

Die Kurve λ ist auch hier in die doppelt zu zählende unendlich ferne Gerade und in eine biquadratische Kurve zerfallen. Letztere hat in O' einen Rückkehrpunkt, dessen Tangente das Bild der mit l_{μ} parallellen durch O gehenden Gerade ist.

Die Doppelkurve besteht aus der unendlich fernen Gerade von [w] und aus einem Kegelschnitt, welcher l_{μ} schneidet und dessen Schnittpunkt mit der unendlich fernen Gerade von [w] normal zu l_{μ} ist.

g) Die axiale Regelfläche einer Gerade l in der Ebene der reellen Axen zerfällt in diese, doppelt zu zählende, Ebene und in eine biquadratische Fläche, auf welcher l Doppelgerade ist.

Die kubische Kurve von [w] ist in die reelle Axe und in einen Kreis ausgeartet. Dieser Kreis hat seinen Mittelpunkt in der Spur A von l in [w] und wird durch die beiden isotropen Geraden durch A zu dem biquadratischen Schnitte ergänzt.

Die Schnittkurve in [w'] ist biquadratisch und hat in den Kreispunkten Rückkehrpunkte, deren Tangenten sich im Bilde A' von A treffen.

Die Doppelkurve ist ein Kreis, dessen Ebene zu [w] parallel ist. Dieser Kreis schneidet die Ebene der reellen Axen in dem auf l befindlichen Punkte C_{μ} und in dem Pole L von l in Bezug auf die Fokalhyperbel e. Die Tangente in C_{μ} ist den imaginären Axen parallel.

h) Die axiale Regelfläche eines Congruenzstrahles s ist eine quadratische Fläche, deren Schnitt mit [w] aus denjenigen Geraden besteht, welche bez. durch die Spur S von s in [w] und durch ihr Spiegelbild in Bezug auf die reelle Axe hindurchgehen, und dieser letzteren Axe parallel sind.

Der Schnitt in $\lceil w' \rceil$ ist eine Parabel, deren Axe mit der reellen Axe identisch ist.

- i) Die axiale Regelfläche eines in der Ebene s liegenden Congruenzstrahles enthält nur diese, doppelt zu zählende, Ebene.
- j) Die axiale Regelfläche einer in [w] befindlichen Gerade m ist vom dritten Grade, und trägt m als einfache Leitlinie.

Der Schnitt mit [w] ist aus der doppelt zu zählenden unendlich fernen Gerade und aus der Gerade m zusammengesetzt.

Der Schnitt mit [w'] ist in die unendlich ferne Gerade und in den Bildkegelschnitt μ von m zerfallen. Der Kegelschnitt μ ist eine Parabel, deren Axe derjenigen Gerade parallel ist, welche die durch O gehende, mit m parallele Gerade abbildet.

Die Doppelgerade d_m ist zur Axe der Parabel μ parallel; sie schneidet die Ebene der reellen Axen in einem Punkte K der Fokalhyperbel e.

Der unendlich ferne Punkt $M_3^{'}$ der Parabel μ ist der eine Zwickpunkt; der andere ist K.

Die durch M_3 gehende *Torsallinie* ist mit der unendlich fernen Gerade von [w], die in K ruhende Torsallinie ist mit der Tangente in K an der Fokalhyperbel e identisch.

Der erste Torsalpunkt ist der unendlich ferne Punkt auf m. Der zweite ist der Schnittpunkt von m mit der reellen Axe.

Die zweite Torsallinie kann also auch betrachtet werden als die aus dem Schnittpunkte von *m* mit der reellen Axe an *e* gelegte Tangente. Der zweite Zwickpunkt ist der Berührungspunkt dieser Tangente.

k) Wenn wir die Gerade m um einen Punkt A rotiren lassen, so beschreibt die Doppelgerade d_m eine kubische Regelfläche.

Der Schnitt mit [w] besteht aus der doppelt zu zählenden unendlich fernen Gerade und aus der durch \mathcal{A} gehenden, zu der reellen Axe parallelen Gerade.

Der Schnitt mit [w'] ist zerfallen in die doppelt zu zählende unendlich ferne Gerade und in die Gerade, welche O' mit dem Bilde A' von A vereinigt.

Die Doppelgerade \triangle ist mit der unendlich fernen Gerade von [w] identisch. Die Zwickpunkte liegen in den Kreispunkten I und J.

Die einfache Leitlinie ist der Congruenzstrahl a = AA'.

Die Torsalpunkte sind die Brennpunkte A_{f1} und A_{f2} von a.

Die Torsallinien sind die Geraden IA_{f1} und JA_{f2} .

Beschreibt der Punkt A die Ebene [w], so fällt die Doppelgerade Δ immer mit der unendlich fernen Gerade zusammen; die Zwickpunkte behalten ihren Sitz in den Kreispunkten; die einfache Leitlinie a erzeugt die Strahlencongruenz.

l) Ein durch X_1 und X_2 gelegter Kegelschnitt γ_μ ist offenbar ein zu $\lceil w \rceil$ paralleler Kreis.

Wir haben also die Regelfläche derjenigen Strahlen zu betrachten welche sich auf einem zu [w] parallelen Kreise γ_{μ} stützen.

Diese Regelfläche ist vom achten Grade und had in den Kreispunkten vierfache Punkte.

Der Schnitt mit [w] besteht aus zwei durch I, zwei durch J gehenden Geraden, und aus einer biquadratischen Kurve, welche in den Kreispunkten Doppelpunkte hat und daselbst berührt wird durch die Geraden, welche sie zu dem vollständigen Schnitte ergänzen.

m) Die Regelfläche eines in [w] befindlichen Kreises γ_{∞} ist vom vierten Grade.

Der Schnitt in $\lfloor w \rfloor$ besteht aus dem Kreis γ_{∞} und seinen isotropen Tangenten.

Der Schnitt in [w'] ist eine biquadratische Kurve, welche in den Kreispunkten Rückkehrpunkte hat, deren Tangenten sich in dem Punkt B' schneiden, welcher dem Mittelpunkte B von γ_{∞} zugeordnet ist.

Im Allgemeinen wird ein mit [w] paralleler Schnitt in den Kreispunkten Rückkehrpunkte besitzen, deren Tangenten sich auf der Gerade BB' treffen. Auf der Regelfläche befindet sich noch eine circulare kubische Doppelkurve, welche den Mittelpunkt B von γ_{∞} enthält, während ihre Spur im Endlichen in [w'] auf der Gerade O'B' liegt.

Jeder mit [w] parallele Schnitt hat, ausser zwei Rückkehrpunkten in den Kreispunkten, noch einen gewöhnlichen Doppelpunkt aufzuweisen.

n) Wenn der Mittelpunkt B von γ_{∞} sich in O befindet, so ist der Schnitt in [w] aus dem Kreise γ_{∞} und den beiden isotropen Geraden durch O zusammengesetzt.

Der Schnitt in [w'] besteht aus einem Doppelkreise, dessen Mittelpunkt in O' liegt.

Die Doppelkurve ist in den letztgenannten Kreis und in eine der Ebene der reellen Axen angehörende Gerade zerfallen.

o) Wenn der Kreis γ_{∞} durch O geht, so gehört die Gerade OO' der Regelfläche an. Die in [w'] befindliche Kurve hat ja in O' einen Doppelpunkt.

Die, hier *nicht* ausgeartete, kubische Doppelkurve, enthält natürlich die Kreispunkte, den Mittelpunkt B von γ_{∞} und den Punkt O'.

Die Regelfläche der Strahlen, welche auf einem in $\lfloor w' \rfloor$ befindlichen Kreis ruhen, unterscheidet sich nicht wesentlich von der Regelfläche des Kreises γ_{μ} .

Hiermit ist unsere Aufgabe, die Congruenzen von $w' = c^2 : w$ und $w' = w^2 : c$ zu studiren, erledigt. Die Untersuchungen sind rein analytisch gehalten, weil sie in dieser Form am besten als Einführung in die späteren Entwickelungen dienen können.

Die obigen Congruenzen lassen sich aber auch sehr bequem rein geometrisch behandeln; die betreffenden Entwickelungen finden sich in meiner Inauguraldissertation. ¹)

¹⁾ M. J. VAN UVEN: Conforme Afbeelding door Stralencongruenties.

DRITTER ABSCHNITT.

Analyse irrationaler Kurvengleichungen.

§ 1. Nachdem wir im vorigen Abschnitte die zwei einfachsten abbildungsfähigen Stralencongruenzen erledigt haben, wollen wir uns nun beschäftigen mit den verwickelteren Congruenzen, welche den Funktionen

$$w' = w^N$$

entsprechen, wo N eine willkürliche rationale Zahl darstellt.

Die hier in Frage kommenden Congruenzen gehören zwei Rubriken an, für welche N bez. positiv und negativ ist.

Wenn N positiv ist, so soll die Congruenz parabolisch, wenn N negativ, hyperbolisch genannt werden.

Diese Namen sind offenbar den geometrischen Gebilden entnommen, welche den einfachsten Vertretern beider Gruppen,

$$w' = w^2$$
 und $ww' = 1$

entsprechen.

Im Allgemeinen wird N eine gebrochene Zahl sein, z. B. $\frac{m}{n}$. Es liegt also auf der Hand die folgenden zwei Typen zu untersuchen

1° .
$$w' = w^{\frac{m}{n}} c^{1 - \frac{m}{n}},$$

2° $w' = w^{-\frac{m}{n}} c^{1 + \frac{m}{n}},$

wo der Faktor c der Homogenität wegen eingeführt ist.

§ 2. Ein Congruenzstrahl werde wiederum durch die Gleichungen

$$\begin{array}{c|c}
x_1 = p_1 x_3 + p_1' x_4, \\
x_2 = p_2 x_3 + p_2' x_4
\end{array}$$
(1)

dargestellt, deren Bedeutung hier nicht erklärt zu werden braucht.

Da die Grössen p_1' und p_2' im Folgenden bez. den Ausdrücken $p_1^{\pm \frac{m}{n}}$ und $p_2^{\pm \frac{m}{n}}$ gleich sind, so leuchtet ein, dass wir uns zu beschäftigen haben mit Gleichungen von der Form

$$A_1 p_1^{\frac{m}{n}} + A_2 p_2^{\frac{m}{n}} + A_3 = 0, \dots$$
 (2)

wo A_1 , A_2 und A_3 ganze Funktionen von p_1 und p_2 darstellen.

Von vornherein ist es klar, dass wir uns vorläufig auf Gleichungen von der Gestalt

beschränken können, weil die Form (2) hieraus durch die Substitutionen

erhalten wird.

Setzen wir nunmehr

$$\frac{B_1}{B_3} = C_1^{\frac{1}{n}}, \quad \frac{B_2}{B_3} = C_2^{\frac{1}{n}}, \quad . \quad . \quad . \quad . \quad . \quad (5)$$

so verwandelt sich die Gleichung (3) in

$$(C_1 q_1)^{\frac{1}{n}} + (C_2 q_2)^{\frac{1}{n}} + 1 = 0,$$

welche, indem wir

setzen, diese Gestalt annimmt:

$$X_1^{\frac{1}{n}} + X_2^{\frac{1}{n}} + 1 = 0 \dots \dots$$
 (7)

Es empfiehlt sich, aus später zu erwähnenden Gründen, constante Coefficienten hinzuzufügen, wonach wir schliesslich zu

$$P_1 X_1^{\frac{1}{n}} + P_2 X_2^{\frac{1}{n}} + P_3 = 0 \dots$$
 (8)

gelangen, wo P_1 , P_2 und P_3 constant sind.

Die durch diese Gleichung vertretenen Kurven heissen Kurven von Lamé. Durch Einführung homogener Coordinaten verwandelt sie sich in

$$P_1 x_1^{\frac{1}{n}} + P_2 x_2^{\frac{1}{n}} + P_3 x_3^{\frac{1}{n}} = 0.$$

Die Kurve ist daher triangulär-symmetrisch.

§ 3. Wir fragen zuerst nach dem *Grade* der Gleichung, welche aus

$$P_1 X_1^{\frac{1}{n}} + P_2 X_2^{\frac{1}{n}} + P_3 = 0 \dots$$
 (8)

entsteht, wenn in dieser die gebrochenen Exponenten fortgeschafft werden.

Betrachten wir X_1 und X_2 als nicht-homogene (z. B. rechtwinklige) Coordinaten eines Punktes, dann stellt die Gleichung (8) eine gewisse algebraische Kurve dar, welche den Nullpunkt (X_1 =0, X_2 =0) nicht enthält.

Der Grad dieser Kurve stimmt überein mit der Anzahl der Punkte, welche eine durch den Ursprung gehende Gerade

mit ihr gemein hat.

Die Substitution (9) in (8) ergiebt

$$P_1 X_1^{\frac{1}{n}} + P_2 c^{\frac{1}{n}} X_1^{\frac{1}{n}} + P_3 = 0,$$

oder

Da $e^{\frac{1}{n}}$ hier n-deutig ist, so gilt dasselbe von dem Ausdruck für X_1 ; es ist somit klar dass, weil jeder Wert von X_1 vermöge (9) einen Wert von X_2 bestimmt, die Gerade $X_2 = e X_1$ ausserhalb des Anfangspunktes n Punkte mit der Kurve gemein hat. Weil sie in dem Coordinatenanfang keinen Punkt mit der genannten Gerade gemeinsam hat, ist die Kurve vom n^{ten} Grade.

Wenn also in der Gleichung

$$P_1 X_1^{\frac{1}{n}} + P_2 X_2^{\frac{1}{n}} + P_3 = 0$$

die gebrochenen Exponenten fortgeschaftt werden, bekommt man eine Gleichung n^{ten} Grades in X_1 und X_2 .

Mit welchen Exponenten treten nun die Coefficienten P_1 , P_2 und P_3 in der rationalisirten Gleichung auf?

Zur Erledigung dieser Frage setzen wir zunächst

$$\frac{P_1^n X_1}{P_3^n} = Y_1, \ \frac{P_2^n X_2}{P_3^n} = Y_2, \quad . \quad . \quad . \quad (11)$$

wonach die Gleichung (8) sich also gestaltet:

$$Y_1^n + Y_2^n + 1 = 0.$$
 . . . (12)

Durch Fortschaffung der gebrochenen Exponenten gelangt man zu einer Gleichung n^{ten} Grades in Y_4 und Y_2 , etwa zu

in welcher alle Coefficienten constant sind.

Die Substitutionen (11) ergeben nun, nach Beseitigung der Nenner:

$$(a_{1} P_{1}^{n^{2}} X_{1}^{n} + a_{1}' P_{1}^{n(n-1)} P_{2}^{n} X_{1}^{n-1} X_{2} + \dots + a_{2} P_{2}^{n^{2}} X_{2}^{n}) + + (b_{1} P_{1}^{n(n-1)} P_{3}^{n} X_{1}^{n-1} + b_{1}' P_{1}^{n(n-2)} P_{2}^{n} P_{3}^{n} X_{1}^{n-2} X_{2} + \dots + + b_{2} P_{2}^{n(n-1)} P_{3}^{n} X_{2}^{n-1}) + \dots + + (k_{1} P_{1}^{n} P_{3}^{n(n-1)} X_{1} + k_{2} P_{2}^{n} P_{3}^{n(n-1)} X_{2}) + a_{3} P_{3}^{n^{2}} = 0.$$
 (14)

Hieraus geht hervor, dass die Coefficienten P_1 , P_2 und P_3 in der Endgleichung homogen in der $n^{2^{\text{ten}}}$ Potenz auftreten.

Setzen wir in (12)

$$Y_1 = \frac{y_1}{y_3}, \quad Y_2 = \frac{y_2}{y_3}, \quad \dots \quad \dots \quad (15)$$

so folgt

$$y_1^{\frac{1}{n}} + y_2^{\frac{1}{n}} + y_3^{\frac{1}{n}} = 0; \dots$$
 (16)

diese Gleichung bekommt nach Rationalisirung diese Gestalt:

$$(a_1 y_1^n + a_1' y_1^{n-1} y_2 + a_1'' y_1^{n-2} y_2^2 + \dots + a_2 y_2^n) + + (b_1 y_1^{n-1} + b_1' y_1^{n-2} y_2 + b_1'' y_1^{n-3} y_2^2 + \dots + b_2 y_2^{n-1}) y_3 + + \dots + (k_1 y_1 + k_2 y_2) y_3^{n-1} + a_3 y_3^n = 0.$$
 (17)

Weil in (16) die Coordinaten y_1, y_2, y_3 involutorisch erscheinen, so wird auch die rationalisirte Gleichung (17) eine symmetrische Funktion dieser Coordinaten aufweisen. Man hat also

$$\begin{array}{c} a_1 = a_2 = a_3 = a \,, \\ a_1^{'} = a_2^{'} = b_1 = b_2 = k_1 = k_2 = a^{'} \,, \\ \text{u. s. w.} \end{array}$$

Man hat daher

$$(aP_{1}^{n^{2}}X_{1}^{n} + a'P_{1}^{n(n-1)}P_{2}^{n}X_{1}^{n-1}X_{2} + \dots + aP_{2}^{n^{2}}X_{2}^{n}) + + (a'P_{1}^{n(n-1)}P_{3}^{n}X_{1}^{n-1} + a''P_{1}^{n(n-2)}P_{2}^{n}P_{3}^{n}X_{1}^{n-2}X_{2} + \dots + + a'P_{2}^{n(n-1)}P_{3}^{n}X_{2}^{n-1}) + \dots + + a'P_{1}^{n}P_{3}^{n(n-1)}X_{1} + a'P_{2}^{n}P_{3}^{n(n-1)}X_{2} + aP_{3}^{n^{2}} = 0, \quad (18)$$

oder wenn wir

$$X_1 = \frac{x_1}{x_3}, \ X_2 = \frac{x_2}{x_3}$$

setzen,

$$(aP_{1}^{n^{2}}x_{1}^{n} + a'P_{1}^{n(n-1)}P_{2}^{n}x_{1}^{n-1}x_{2} + \ldots + aP_{2}^{n^{2}}x_{2}^{n}) + + (a'P_{1}^{n(n-1)}P_{3}^{n}x_{1}^{n-1}x_{3} + a''P_{1}^{n(n-2)}P_{2}^{n}P_{3}^{n}x_{1}^{n-2}x_{2}x_{3} + + \ldots + a'P_{2}^{n(n-1)}P_{3}^{n}x_{2}^{n-1}x_{3}) + \ldots + + + a'P_{1}^{n}P_{3}^{n(n-1)}x_{1}x_{3}^{n-1} + a'P_{2}^{n}P_{3}^{n(n-1)}x_{2}x_{3}^{n-1} + aP_{3}^{n^{2}}x_{3}^{n} = 0.$$
 (19)

Diese ist also die Gleichung, welche man erhält, wenn in

$$P_1 x_1^{\frac{1}{n}} + P_2 x_2^{\frac{1}{n}} + P_3 x_3^{\frac{1}{n}} = 0$$
 . . . (20)

die gebrochenen Exponenten fortgeschafft werden.

Von vornherein ist es einleuchtend, dass die Endform (19), zu welcher man durch Rationalisirung von (20) gelangt, von der Bedeutung der P_1 , P_2 und P_3 unabhängig sein muss. Diese Form wird ja vollständig bestimmt durch die Art und Weise, auf welche die Coordinaten x_1 , x_2 und x_3 verbunden sind.

Wenn wir voraussetzen, dass P_1 , P_2 und P_3 homogene Polynomia $r^{\rm ten}$ Grades in x_1 , x_2 und x_3 sind, so ist es klar, dass jedes Glied von (19) vom Grade

$$rn^2 + n$$

in den Coordinaten x_1 , x_2 und x_3 sein wird.

Handelt es sich um die Gleichung

$$P_1 x_1^{\frac{m}{n}} + P_2 x_2^{\frac{m}{n}} + P_3 x_3^{\frac{m}{n}} = 0$$
, . . (21)

wo P_1 , P_2 und P_3 homogene Polynomia r^{ten} Grades in x_1 , x_2 und x_3 sind, so wird der Grad der rationalisirten Gleichung

$$rn^2 + mn$$
.

Die obigen Betrachtungen lassen sich demnach in der folgenden Behauptung zusammenfassen:

Die Gleichung

$$P_1 x_1^{\frac{m}{n}} + P_2 x_2^{\frac{m}{n}} + P_3 x_3^{\frac{m}{n}} = 0, \quad . \quad . \quad (21)$$

in welcher P_1 , P_2 und P_3 homogene Polynomia r^{ten} Grades in x_1 , x_2 und x_3 sind, wird sich, nach Beseitigung der gebrochenen Exponenten, in eine Gleichung folgender Gestalt verwandeln:

$$a(P_{1}^{n^{2}}x_{1}^{mn} + P_{2}^{n^{2}}x_{2}^{mn} + P_{3}^{n^{2}}x_{3}^{mn}) + a'(P_{1}^{n(n-1)}P_{2}x_{1}^{m(n-1)}x_{2}^{m} + P_{1}^{n}P_{2}^{n(n-1)}x_{1}^{m}x_{2}^{m(n-1)} + P_{1}^{n(n-1)}P_{3}^{n}x_{1}^{m(n-1)}x_{3}^{m} + P_{2}^{n(n-1)}P_{3}^{n}x_{2}^{m(n-1)}x_{3}^{m} + P_{1}^{n}P_{3}^{n(n-1)}x_{1}^{m}x_{3}^{m(n-1)} + P_{2}^{n}P_{3}^{n(n-1)}x_{2}^{m}x_{3}^{m(n-1)} + \dots = 0. \quad \dots \qquad (22)$$

Diese Gleichung ist vom Grade

$$rn^2 + mn$$
.

§ 4. Wir wollen nunmehr aus der Gleichung

$$P_{1}x_{1}^{\frac{m}{n}} + P_{2}x_{2}^{\frac{m}{n}} + P_{3}x_{3}^{\frac{m}{n}} = 0$$

einige Eigenschaften der durch sie dargestellten Kurve herleiten.

Gelegentlich werden wir eine Coordinate gleich Null zu setzen haben; alsdann erfahren die Faktoren P_1 , P_2 und P_3 , welche von allen drei Veränderlichen abhängen, gewisse Vereinfachungen.

Mit

$$(P_k)_l$$

bezeichnen wir den Ausdruck, der sich ergiebt, wenn man $x_l = 0$ in P_k substituirt; wir haben somit

$$(P_k)_{x_k=0} \equiv (P_k)_l$$
 (23)

Es mögen zuerst die Schnittpunkten der Kurve mit der Gerade $x_3 = 0$ bestimmt werden. Sie sind offenbar durch

$$(P_4)_3 x_1^{\frac{m}{n}} + (P_2)_3 x_2^{\frac{m}{n}} = 0,$$

oder

$$(P_1)_3^n x_1^m - (-1)^n (P_2)_3^n x_2^m = 0$$
 . . (24)

gegeben.

Diese Gleichung würden wir aber nicht erhalten, wenn wir $x_3 = 0$ setzten in der rationalen Gleichung, welche vom Grade mn in den Coordinaten (explicit) und vom Grade n^2 in den Faktoren P_1 , P_2 und P_3 ist.

Weil die Schnittpunkte der Kurve mit der Gerade $x_3 = 0$ einmal keine anderen sein können als diejenigen, welche durch die Gleichung (24) bestimmt werden, und der Grad dieser Gleichung n mal zu niedrig ist, so muss die Substitution $x_3 = 0$ in der Endgleichung diese Gestalt haben:

$$|(P_1)_3^n x_1^m - (-1)^n (P_2)_3^n x_2^m|^n = 0.$$
 (25)

Während also die Gleichung (24) so viel Schnittpunkte mit $x_3 = 0$ bestimmt als ihr Grad angiebt, so zeigt die Gleichung (25) dass jeder Schnittpunkt n-fach zu zählen ist.

Wollen wir somit die Punkte auffinden, welche die Kurve mit der Gerade $x_3 = 0$ gemeinsam hat, so haben wir in der gegebenen Gleichung $x_3 = 0$ zu setzen, die resultirende Gleichung rational zu machen und nachher jeden der durch letztere bestimmten Punkte n-fach zu zählen.

Die Glieder, welche man erübrigt, wenn man in der rationalisirten Gleichung $x_3 = 0$ setzt, sind gerade die Glieder höchsten Grades in x_1 und x_2 . Die obige Überlegung ermöglicht uns diese Glieder zu bestimmen.

Ihre Gesammtheit ist nl. mit der linken Seite der Gleichung (25) identisch.

Die rationalisirte Gleichung hat somit die Form

$$|(P_4)_3^n x_4^m - (-1)^n (P_2)_3^n x_2^m|^n + \Psi(P_4, P_2, P_3, x_4, x_2, x_3) = 0. \quad (26)$$

So weit x_1 und x_2 explicit in Ψ auftreten, erscheinen sie höchstens im Grade m(n-1).

Falls P_4 , P_2 und P_3 lineare Polynomia in x_4 , x_2 und x_3 sind, etwa

$$P_1 \equiv p_{11} x_1 + p_{12} x_2 + p_{13} x_3, P_2 \equiv p_{21} x_1 + p_{22} x_2 + p_{23} x_3, P_3 \equiv p_{31} x_1 + p_{32} x_2 + p_{33} x_3,$$

so gilt

$$(P_1)_3 \equiv p_{11} x_1 + p_{12} x_2, (P_2)_3 \equiv p_{21} x_1 + p_{22} x_2, (P_3)_3 \equiv p_{31} x_1 + p_{32} x_2.$$

Die rationale Gleichung (21) ist sodann vom Grade

$$n^2 + mn$$
,

während die Gleichung (24) vom Grade

$$m + n$$

ist.

In diesem Falle hat die Kurve mit der Gerade $x_3 = 0$ m + n verschiedene Punkte gemein, von denen jeder n-fach zu zählen ist.

Wir setzen nun voraus, dass X_3 ($x_1 = 0$, $x_2 = 0$) ein k-facher Punkt ist, wonach die Substitution

$$x_2 = \lambda x_1$$

k Faktoren x_4 absondert. Die höchste Potenz, unter der x_3 erscheint, ist demnach in der rationalen Gleichung um k niedriger als der totale Grad.

Es muss also auch in der Gleichung (22) der Grad in x_3 niedriger als der totale sein. Wenn der Grad in x_3 demjenigen in x_4 gleich wäre, so würde er auch, wie oben gezeigt worden ist, nach der Rationalisirung diesem gleich sein. Umgekehrt: ist in

$$P_1 x_1^{\frac{m}{n}} + P_2 x_2^{\frac{m}{n}} + P_3 x_3^{\frac{m}{n}} = 0 (21)$$

der Grad in x_3 niedriger als derjenige der ganzen Gleichung, so weist dieses auf einen vielfachen Punkt in X_3 hin.

Zum Beispiel wählen wir

$$(a_{1}'x_{1} + a_{1}''x_{2} + a_{1}'''x_{3})x_{1}^{\frac{m}{n}} + (a_{2}'x_{1} + a_{2}''x_{2} + a_{3}'''x_{3})x_{2}^{\frac{m}{n}} + + (a_{3}'x_{1} + a_{3}''x_{2})x_{3}^{\frac{m}{n}} = 0. \qquad (27)$$

Der Grad dieser Gleichung ist $1 + \frac{m}{n}$

In der Annahme

ist der höchste Grad in x_3 nur $\frac{m}{n}$.

In diesem Falle ist X_3 also ein vielfacher Punkt.

Die Tangenten in X_3 ergeben sich, indem man diejenigen Werte für λ bestimmt, für welche durch die Substitution $x_2 = \lambda x_1$ einen oder mehrere Faktoren x_1 abgetrennt werden.

Die Gesammtheit dieser Tangenten wird offenbar ermittelt, indem man den Faktor der höchsten Potenz von x_1 gleich Null setzt.

In dem obigen Beispiel ergiebt dieses Verfahren

$$a_3' x_1 + a_3'' x_2 = 0.$$
 . . . (28)

Sämmtliche Tangenten in X_3 sind somit in der durch die Gleichung (28) bestimmten Gerade vereinigt.

Es bleibt noch die Frage zu beantworten: welche ist die Ordnung des singulären Punktes X_3 ?

Die rationale Gleichung enthält als Glied höchsten Grades in x_3

$$P_3^{n^2} x_3^{mn}$$
.

Der Faktor der höchsten Potenz von x_3 ist deshalb $P_3^{n^2}$ oder $(a_3'x_1+a_3''x_2)^{n^2}$.

Wir schliessen hieraus, dass der Punkt X_3 ein n^2 -facher ist und dass sämmtliche n^2 Tangenten mit der Gerade

$$a_3' x_1 + a_3'' x_2 = 0 \dots \dots \dots \dots (28)$$

zusammenfallen.

Wir können die Gültigkeit dieser Überlegungen noch erweitern bis zu dem Falle, wo x_4 , x_2 und x_3 lineare Funktionen der Coordinaten y_4 , y_2 und y_3 sind.

Die allgemeinste Form der gegebenen Gleichung, für welche die obige Betrachtung zulässig ist, lautet deshalb

$$P_{1}(\underbrace{x_{1}, x_{2}, x_{3}}) \cdot (b_{1}' x_{1} + b_{1}'' x_{2} + b_{1}''' x_{3})^{\frac{m}{n}} +$$

$$+ P_{2}(\underbrace{x_{1}, x_{2}, x_{3}}) \cdot (b_{2}' x_{1} + b_{2}'' x_{2} + b_{2}''' x_{3})^{\frac{m}{n}} +$$

$$+ P_{3}(\underbrace{x_{1}, x_{2}, x_{3}}) \cdot (b_{3}' x_{1} + b_{3}'' x_{2} + b_{3}''' x_{3})^{\frac{m}{n}} = 0 . \qquad (29)$$

Als Beispiel wählen wir

$$x_2(x_1 + b_1 x_3)^{\frac{m}{n}} - x_1(x_2 + b_2 x_3)^{\frac{m}{n}} + (a_2 x_1 - a_1 x_2) x_3^{\frac{m}{n}} = 0. (30)$$

Machen wir diese Gleichung rational, so wird sie vom Grade

$$mn + n^2$$
.

Man erhält offenbar die höchste Potenz von x_3 , indem man in den Binomen $x_1 + b_1 x_3$ und $x_2 + b_2 x_3$ nur die Glieder mit x_3 beibehält. Die höchste Potenz erkennt man somit in

$$x_2 \left(b_1 \, x_3\right)^{\frac{m}{n}} - x_1 \left(b_2 \, x_3\right)^{\frac{m}{n}} + \left(a_2 \, x_4 \, - a_1 \, x_2\right) x_3^{\frac{m}{n}}.$$

Der Faktor von $x_3^{\frac{m}{n}}$ ist daher

$$b_1^m x_2 - b_2^m x_1 + a_2 x_1 - a_1 x_2.$$

Der Punkt X_3 ist auch hier singulär von der Ordnung n^2 . Die höchste Potenz von x_3 ist ja nach dem Rationalisiren x_3^{mn} ; ihr Exponent ist mithin um n^2 niedriger als der totale Grad.

Die Tangenten in X_3 bestimmt man jetzt aus

$$b_1^{\frac{m}{n}}x_2 - b_2^{\frac{m}{n}}x_1 + a_2x_1 - a_1x_2 = 0$$
, . . . (31)

oder

$$\frac{x_1}{x_2} = \frac{b_1^{\frac{m}{n}} - a_1}{b_2^{\frac{m}{n}} - a_2}. (32)$$

Es sind hier sowohl der Zähler als der Nenner n-deutig. Der Bruch kann also n^2 verschiedene Werte erhalten.

Wenn entweder der Zähler oder der Nenner, oder beide (wie in diesem Bruche) unveränderliche Glieder enthalten, sind von den n^2 möglichen Werten keine zwei einander gleich.

Da die rechte Seite von (32) n^2 -deutig ist, so stellt diese Gleichung n^2 verschiedene Tangenten durch X_3 dar.

Wir folgern somit, dass der n^2 -fache Punkt X_3 n^2 verschiedene Tangenten besitzt.

Wollen wir untersuchen, ob ein gegebener Punkt ein gewöhnlicher oder ein vielfacher Punkt der Kurve ist, so ändern wir zuerst das Coordinatendreieck in der Weise ab, dass der fragliche Punkt zu einer Ecke wird; sodann untersuchen wir ob der höchste Grad, unter welchem die entsprechende Coordinate auftritt, dem totalen Grade der Gleichung gleich ist, oder hinter ihm zurückbleibt. Im letzteren Falle liegt der Punkt auf der Kurve.

Es ist nicht immer leicht herauszufinden, ob der Grad in x_3 niedriger ist als der totale.

In dem herangezogenen Beispiel zeigte X_3 sich schon in der irrationalen Gleichung als ein Punkt der Kurve. In anderen Fällen dagegen sind wir häufig gezwungen die gebrochenen Exponenten wenigstens teilweise zu beseitigen, damit der Grad in x_3 als niedriger als der totale erscheine.

Diesen letzten Fall werden wir ebenfalls durch ein Beispiel erläutern. Wir wählen wieder die Gleichung:

$$x_2(x_1 + b_1 x_3)^{\frac{m}{n}} - x_1(x_2 + b_2 x_3)^{\frac{m}{n}} + (a_2 x_1 - a_1 x_2) x_3^{\frac{m}{n}} = 0.$$
 (30)

Die Schnittpunkte mit der Gerade $x_3 = 0$ bestimmen wir aus

$$x_2 x_1^{\frac{m}{n}} - x_1 x_2^{\frac{m}{n}} = 0$$
,

oder

$$x_2^n x_1^m - x_1^n x_2^m = 0.$$

Da der totale Grad nicht m+n, sondern n(m+n) ist, so sind die Schnittpunkte tatsächlich durch

$$(x_2^n x_1^m - x_1^n x_2^m)^n = 0,$$

oder

$$x_1^{n^2} x_2^{n^2} (x_1^{m-n} - x_2^{m-n})^n = 0$$
 . . . (31)

angewiesen.

Die Gerade $x_3 = 0$ schneidet daher die Kurve n^2 mal in X_1 , n^2 mal in X_2 und n mal in den m-n Punkten, welche durch

$$x_1^{m-n} - x_2^{m-n} = 0$$

gegeben sind.

Es ist einer dieser Punkte durch

$$x_1 - x_2 = 0$$

bestimmt.

Wir wollen nunmehr die Ordnung der Singularität dieses Punktes erörtern.

Zuerst verlegen wir eine Ecke des Coordinatendreiecks in diesen Punkt, und zwar mittels der Formel

$$x_2 = x_1 + x_2'; \dots (32)$$

wir finden somit

$$(x_{1} + x_{2}')(x_{1} + b_{1}x_{3})^{\frac{m}{n}} - x_{1}(x_{1} + x_{2}' + b_{2}x_{3})^{\frac{m}{n}} + (a_{2} - a_{1})x_{1} - a_{1}x_{2}' x_{3}^{\frac{m}{n}} = 0. (33)$$

Der gegebene Punkt ist jetzt durch

$$x_2' = 0,$$

$$x_3 = 0$$

bestimmt.

Indem wir die höchste Potenz von x_4 herausfinden wollen, haben wir darauf Acht zu geben, dass einige Glieder sich beim Rationalisiren aufheben.

Wir schreiben zuerst die Gleichung (33) wie folgt

$$x_{1}(x_{1}+x_{2}'+b_{2}x_{3})^{\frac{m}{n}}=(x_{1}+x_{2}')(x_{1}+b_{1}x_{3})^{\frac{m}{n}}+|(a_{2}-a_{1})x_{1}-a_{1}x_{2}'|x_{3}^{\frac{m}{n}},$$

und potenziren die beiden Glieder mit n; wir finden dann

$$x_{1}^{n}(x_{1} + x_{2}' + b_{2}x_{3})^{m} = (x_{1} + x_{2}')^{n}(x_{1} + b_{1}x_{3})^{m} +$$

$$+ n(x_{1} + x_{2}')^{n-1}(x_{1} + b_{1}x_{3})^{\frac{m}{n}(n-1)}|(a_{2} - a_{1})x_{1} - a_{1}x_{2}'|x_{3}^{\frac{m}{n}} + \dots +$$

$$+ |(a_{2} - a_{1})x_{1} - a_{1}x_{2}'|^{n}x_{3}^{m},$$

oder

$$\begin{aligned} x_1^{n} [x_1^{m} + mx_1^{m-1}(x_2' + b_2x_3) + \ldots] &= |x_1^{n} + nx_1^{n-1}x_2' + \ldots] |x_1^{m} + mb_1x_1^{m-1}x_3 + \ldots] + \\ &+ n |x_1^{n-1} + (n-1)x_1^{n-2}x_2' + \ldots + x_2'^{n-1}| |x_1^{m-\frac{m}{n}} + \ldots| |(a_2 - a_1)x_1 - a_1x_2'| x_3^{\frac{m}{n}} + \\ &+ \ldots + |(a_2 - a_1)x_1 - a_1x_2'|^n x_3^{m}, \end{aligned}$$

oder endlich

$$x_1^{m+n} + mx_1^{m+n-1}(x_2' + b_2x_3) + \dots = x_1^{m+n} + (nx_2' + mb_1x_3)x_1^{m+n-1} + n(a_2 - a_1)x_1^{m+n-\frac{m}{n}} + R, \dots \dots \dots \dots (34)$$

wo R nur diejenigen Potenzen von x_1 enthält, welche niedriger sind als m+n-1 und $m+n-\frac{m}{n}$.

Da wir m > n, also $\frac{m}{n} > 1$ vorausgesetzt haben, und die beiden Glieder mit x_1^{m+n} sich aufheben, haben wir nur die Glieder mit x_1^{m+n-1} zu betrachten.

In der auf Null reducirten Gleichung (34) ist der Faktor von x_1^{m+n-1}

$$m(x_{2}' + b_{2}x_{3}) - (nx_{2}' + mb_{1}x_{3}).$$

Indem wir diesen Ausdruk gleich Null setzen, bekommen wir in der also entstandenen Gleichung

$$m(x_2' + b_2 x_3) - (nx_2' + mb_1 x_3) = 0$$
 . . (35)

die Darstellung der Tangente im gegebenen Punkte.

Der totale Grad der Gleichung (34) ist m + n, der Grad der rationalen Gleichung dagegen n(m + n). Wir schliessen hieraus, dass die Tangeuten durch

$$|m(x_2' + b_2x_3) - (nx_2' + mb_1x_3)|^n = 0$$

bestimmt werden, und erkennen, dass der gegebene Punkt ein *n*-facher ist, und dass sämmtliche *n* Tangenten in der durch (35) dargestellten Gerade vereinigt sind.

Die Gleichung (35) lässt sich auch in dieser Weise schreiben:

$$\frac{x_2'}{x_3} = -\frac{m(b_2 - b_1)}{m - n},$$

oder

$$x_1 - x_2 = \frac{m(b_2 - b_1)}{m - n} x_3.$$

Aus diesem Beispiel geht hervor, dass man bei der Umformung darauf zu achten hat, dass der Coefficient der höchsten Potenz der betreffenden Coordinate explicit erscheint.

§ 5. Wir wollen diesen Abschnitt beendigen mit einer kurzen Wiederholung des allgemeinsten, in ihm gewonnenen Resultates. Es sei gegeben die Gleichung

$$\begin{split} &P_{1}(x_{1},x_{2},x_{3}).\,(b_{1}^{'}x_{1}+b_{1}^{''}x_{2}+b_{1}^{'''}x_{3})^{\frac{m}{n}}+\\ &+P_{2}(x_{1},x_{2},x_{3}).\,(b_{2}^{'}x_{1}+b_{2}^{''}x_{2}+b_{3}^{'''}x_{3})^{\frac{m}{n}}+\\ &+P_{3}(x_{1},x_{2},x_{3}).\,(b_{3}^{'}x_{1}+b_{3}^{''}x_{2}+b_{3}^{'''}x_{3})^{\frac{m}{n}}=0\,, \end{split}$$

wo P_1 , P_2 und P_3 homogene Polynomia r^{ten} Grades in den Coordinaten x_1 , x_2 und x_3 sind.

Durch Rationalisirung bekommt diese Gleichung den Grad

$$mn + rn^2$$
.

Man findet die Schnittpunkte der durch sie dargestellten Kurve mit der Gerade X_1X_2 , indem man $x_3=0$ setzt, die erhaltene Gleichung rational macht, sie auf Null reducirt und nachher die linke Seite mit einer solchen Zahl potenzirt, dass der totale Grad zu $mn + rn^2$ wird.

Wollen wir die Schnittpunkte mit einer willkürlichen Gerade bestimmen, so ändern wir das Coordinatendreieck in der Weise ab, dass die gegebene Gerade mit einer Seite zusammenfällt; sodann wenden wir obiges Verfahren an.

Um zu entscheiden ob die Ecke X_3 des Coordinatendreiecks ein gewöhnlicher oder singulärer Punkt der Kurve sei, untersuchen wir, ob die höchste Potenz, unter welcher \dot{x}_3 vorkommt dem totalen Grade der Gleichung entspricht oder niedriger ist.

Im ersteren Falle befindet X_3 sich nicht auf der Kurve, im letzeren wohl. Es ist hierbei häufig notwendig wenigstens einen Teil der gebrochenen Exponenten wegzuschaffen, damit wir derjenigen Glieder los werden, welche beim Rationalisiren sich aufheben. Hat man entweder in der gegebenen Gleichung, oder in einer von ihr abgeleiteten, festgestellt, dass der Grad in x_3 um k niedriger ist als der totale, und ist der totale Grad $(mn + rn^2): N$, so schliesst man, dass X_3 ein kN-facher Punkt ist. Der Faktor $\Phi(x_1, x_2)$ der höchsten Potenz von x_3 (offenbar ein Polynomium k^{ten} Grades in x_4 und x_2), bestimmt die k verschiedenen Tangenten in X_3 , von denen jede N-fach zu zählen ist, wonach sie tatsächlich durch

$$\Phi^N(x_1, x_2) = 0$$

dargestellt werden; d. h. X_3 ist ein kN-facher Punkt mit k N-fachen Tangenten, deren Gesammtheit durch

$$\Phi\left(x_{1},\,x_{2}\right)==0$$

dargestellt wird.

Handelt es sich um einen willkürlichen gegebenen Punkt, so wird das Coordinatendreieck in der Weise transformirt, dass der gegebene Punkt zu einer ihrer Ecken wird, wonach die obigen Regeln angewandt werden.

Den im Vorigen dargelegten Operationen liegt der Gedanke zu Grunde, dass eine Form extremen (höchsten oder niedrigsten) Grades nach Beseitigung der gebrochenen Exponenten von extremem Grade bleibt. Dieses Prinzip ergiebt sich am einfachsten aus der geometrischen Deutung der Gleichung; diese ist ja unabhängig von etwaigen algebraischen Umformungen.

VIERTER ABSCHNITT.

Die Congruenzen von $w'^n = c^{n-m} w^n und w'^n w^m = c^{m+n}$.

§ 1. Es sollen jetzt die Congruenzen untersucht werden, welche den Verwandtschaften

$$w' = w^{+\frac{m}{n}} c^{1-\frac{m}{n}}$$
 und $w' = w^{-\frac{m}{n}} c^{1+\frac{m}{n}}$

entsprechen.

Die Congruenz, welche der Funktion

$$w' \stackrel{\cdot}{=} w^{+\frac{m}{n}} c^{1-\frac{m}{n}}$$

angehört, ist die typische parabolische Congruenz, während die Congruenz, welche die Funktion

$$w' = w^{-\frac{m}{n}} c^{1+\frac{m}{n}}$$

abbildet als Muster einer hyperbolischen Congruenz betrachtet werden kann.

Das hierzu erforderliche analytische Verfahren erleidet eine bedeutende Vereinfachung, wenn wir uns der irrationalen statt der rationalen Gleichungen bedienen können; mit Rücksicht darauf haben wir im vorigen Abschnitte eine Methode vorausgeschickt, welche uns ermöglicht aus ternären Gleichungen mit gebrochenen Exponenten die Eigenschaften der durch sie dargestellten Kurven zu erkennen.

Jedes Glied der Untersuchung soll gleichzeitig für die beiden Congruenzen ausgeführt werden damit die Übereinstimmung und der Unterschied zwischen ihnen um so deutlicher hervortreten.

§ 2a. Einführung in die parabolische Congruenz. Die parabolische Congruenz vertritt die Funktion

$$w' = w^{\frac{1-m}{n}} c^{1-\frac{m}{n}}$$

oder

$$w^{\prime n} = e^{n-m} w^m. \qquad (1a)$$

Wir setzen voraus

$$m > n$$
. (2)

Es sei w = u + iv, w' = u' + iv'. Ein Congruenzstrahl wird nun definirt als die Verbindungslinie des Punktes (x = u, y = v, z = 0) der Ebene [w] mit dem Punkte (x = u', y = v', z = h) der Ebene [w'].

Wir ziehen sofort das homogene Coordinatensystem heran, und setzen demuach

$$x + iy = cx_1,$$

$$x - iy = cx_2,$$

$$h - z = hx_3,$$

$$z = hx_4.$$
(3)

Es seien $(x_1', x_2', x_4', x_3' = 0)$ die Coordinaten desjenigen Punktes, der vermöge der Funktion (1a) dem Punkte $(x_1, x_2, x_3, x_4 = 0)$ zugeordnet ist. Hieraus ergeben sich die folgenden Beziehungen

$$\frac{x_1^{'n}}{x_1^{m}} = \frac{x_2^{'n}}{x_2^{m}} = \frac{x_4^{'n}}{x_2^{m}}. \qquad (4a)$$

Setzen wir noch für einen Punkt der Ebene $\lceil w \rceil$ oder ω_{∞}

$$\frac{x_1}{x_3} = p_1, \quad \frac{x_2}{x_3} = p_2, \quad \dots \quad \dots \quad (5)$$

so ist es klar, dass ein Strahl der parabolischen Congruenz durch die Gleichungen

$$\begin{vmatrix}
 x_4 = p_1 x_3 + p_1^{\frac{m}{n}} x_4, \\
 x_2 = p_2 x_3 + p_2^{\frac{m}{n}} x_4
 \end{vmatrix}
 (6a)$$

bestimmt wird.

Durch Wegschaffung der gebrochenen Exponenten gelangt man zu

$$(x_1 - p_1 x_3)^n = p_1^m x_4^n, (x_2 - p_2 x_3)^n = p_2^m x_4^n.$$
 (7a)

§ 2b. Einführung in die hyperbolische Congruenz. Die hyperbolische Congruenz vertritt die Funktion

$$w' = w^{-\frac{m}{n}} c^{1+\frac{m}{n}}$$

oder

$$w^{\prime n} w^m = c^{m+n}. \qquad (1b)$$

Die Verwandtschaftsgleichungen zwischen den Coordinaten $(x_1, x_2, x_3, x_4 = 0)$ (siehe (3)) eines in ω_{∞} liegenden Punktes und den Coordinaten $(x_1', x_2', x_4', x_3 = 0)$ des in ω_0 befindlichen Bildpunktes, lauten jetzt:

$$x_1^{\prime n} x_1^m = x_2^{\prime n} x_2^m = x_4^{\prime n} x_3^m.$$
 (4b)

Der Congruenzstrahl wird nunmehr durch

$$\begin{vmatrix} x_1 = p_1 x_3 + p_1^{-\frac{m}{n}} x_4, \\ x_2 = p_2 x_3 + p_2^{-\frac{m}{n}} x_4 \end{vmatrix} (6b)$$

dargestellt. Diese Gleichungen gestalten sich nach Beseitigung der gebrochenen Exponenten folgendermassen:

§ 3a. Der Bündelgrad und der Feldgrad der parabolischen Congruenz.

Aus (7a) geht hervor, dass ein einziges Wertesystem (x_1, x_2, x_3, x_4) m Werte für p_1 und m Werte für p_2 bestimmt, also m^2 Combinationen (p_1, p_2) anweist. Hieraus folgt, dass sich auf einem willkürlichen Punkt im Raume m^2 Congruenzstrahlen stützen, oder m. a. W.:

der Bündelgrad der parabolischen Congruenz ist m².

Der in ω_0 befindlichen, durch

$$\beta_1 x_1' + \beta_2 x_2' + \beta_4 x_4' = 0$$

dargestellten Gerade b' entspricht in ω_{∞} eine Kurve β , deren Gleichung lautet:

$$\beta_1 x_1^{\frac{m}{n}} + \beta_2 x_2^{\frac{m}{n}} + \beta_4 x_3^{\frac{m}{n}} = 0.$$

Diese Kurve ist, wie im III. Abschnitte dargelegt ward, vom Grade mn.

Eine durch b' gelegte Ebene schneidet ω_{∞} in der Grade α , welche die Kurve β in mn Punkten P trifft, deren Bilder P' auf b' liegen. In dieser Ebene befinden sich also mn Congruenzstrahlen PP', oder

der Feldgrad der parabolischen Congruenz ist mn.

§ 3b. Der Bündelgrad und der Feldgrad der hyperbolischen Congruenz.

Vermöge (7b) bestimmt ein Punkt (x_1, x_2, x_3, x_4) m + n Werte für p_1 und m + n Werte für p_2 , also $(m + n)^2$ Combinationen (p_1, p_2) . Hieraus ergiebt sich, dass ein willkürlicher Punkt des Raumes $(m + n)^2$ Congruenzstrahlen trägt, wonach wir behaupten können:

der Bündelgrad der hyperbolischen Congruenz ist $(m + n)^2$.

Wir denken uns wieder eine Ebene, welche ω_0 in der durch

$$\beta_1 x_1' + \beta_2 x_2' + \beta_1 x_1' = 0$$

dargestellten Gerade b' schneidet. Dieser Gerade entspricht in ω_{∞} eine Kurve β , welche die Gleichung

$$\beta_1 x_1^{-\frac{m}{n}} + \beta_2 x_2^{-\frac{m}{n}} + \beta_4 x_3^{-\frac{m}{n}} = 0$$

oder

$$\beta_{1}x_{2}^{m}x_{3}^{m} + \beta_{2}x_{3}^{m}x_{1}^{m} + \beta_{4}x_{1}^{m}x_{2}^{m} = 0$$

hat. Machen wir diese Gleichung rational, so wird sie vom Grade 2mn. Die Bildkurve β von b' ist daher vom Grade 2mn. Die genannte Ebene schneidet ω_{∞} in der Gerade α , welche die Kurve β in 2mn Punkten P trifft, deren Bilder P' sich auf b' befinden. Die Ebene enthält also 2mn Congruenzstrahlen PP', oder

der Feldgrad der hyperbolischen Congruenz ist 2mn.

§ 4a. Die Fokalfläche der parabolischen Congruenz. Die Ebene

$$x_2 = p_2 x_3 + p_2^{\frac{m}{n}} x_4 \dots \dots \dots \dots (6a)$$

welche den Congruenzstrahl p enthalt, geht durch X_1 . Wenn p_2 seine ∞^{-1} vielen Werte durchläuft, umhüllt die Ebene (p, X_1) einen Kegel mit X_1 als Spitze.

Die Gleichung dieses Kegels erhalten wir, indem wir die Diskriminante der rationalisirten Gleichung (6a) verschwinden lassen. Wir finden alsdann

$$(-1)^n (m-n)^{m-n} n^n x_3^m = m^m x_2^{m-n} x_4^n.$$
 (8a)

Der durch die Ebene (p, X_1) umhüllte Kegel ist also vom Grade m; wir wollen ihn mit F_1 bezeichnen.

Der Congruenzstrahl p ist offenbar eine Tangente des Kegels F_1 . In analoger Weise zeigt es sich, dass jeder Congruenzstrahl auch einen Kegel F_2 berührt, dessen Spitze in X_2 liegt, und dessen Gleichung lautet:

$$(-1)^n (m-n)^{m-n} n^n x_3^m = m^m x_4^{m-n} x_4^n . (9a)$$

Der Congruenzstrahl p kann also als eine gemeinschaftliche Tangente der beiden Kegel F_4 und F_2 betrachtet werden.

Ein Punkt (x_1, x_2, x_3, x_4) bestimmt (siehe 6a)) m Werte für p_2 , trägt demnach m Berührungsebenen von F_1 . Die beiden Kegel sind deshalb von der Klasse m.

Von den m Berührungsebenen, welche man aus einem auf F_1 liegenden Punkte an F_1 legen kann, sind zwei zusammengefallen, und zwar in die Berührungsebene jenes Punktes. Derselbe Punkt trägt m Berührungsebenen an F_2 . Von den m^2 gemeinschaftlichen Tangenten sind also 2m paarweise zusammengefallen. Wir haben aus diesem Grunde den Kegel F_1 als einen Bestandteil der Fokal-fläche zu betrachten. Es erhellt sofort, dass der zweite Kegel, F_2 , der andere Bestandteil der Fokalfläche ist.

Die beiden Kegel F_1 und F_2 bilden daher zusammen die Fokalfläche der Congruenz; also:

die Fokalfläche der parabolischen Congruenz besteht aus zwei Kegeln F_1 und F_2 , bez. mit X_1 und X_2 als Spitzen, von denen sowohl der Grad wie die Klasse m ist. Die Congruenzstrahlen sind die gemeinschaftlichen Tangenten der beiden Fokalkegel F_1 und F_2 .

Die Kegel

$$F_1 \dots Ax_3^m + Bx_2^{m-n}x_4^n = 0$$

und

$$F_2 \dots Ax_3^m + Bx_1^{m-n}x_4^n = 0$$

berühren sich und die Ebene ω_{∞} in der Gerade $X_1 X_2$.

Die Ebene ω_{∞} ($x_4=0$) hat m mal die Gerade X_1X_2 mit den beiden Kegeln gemein. Die Gerade X_1X_2 ist eine n-fache Kante der beiden Kegel, während sämmtliche durch X_1X_2 hindurchgehenden Blätter durch die Ebene ω_{∞} berührt werden.

Die beiden Kegel haben, wie hieraus hervorgeht, mn mal die Gerade X_1X_2 gemein.

Weil ihr Gesammtschnitt vom Grade m^2 ist, so wird der Restschnitt vom Grade m(m-n) sein.

Jede der m - n durch

$$x_1^{m-n} = x_2^{m-n}$$

bestimmten Ebenen hat mit den beiden Kegeln dieselbe Kurve m^{ten} Grades gemein. Der Restschnitt ist deshalb aus m-n Plankurven m^{ten} Grades zusammengesetzt, deren Ebenen durch

$$x_2 = \tau x_1$$

angewiesen sind, wenn

$$\tau^{m-n} = 1.$$

Es ist klar, dass jede der m-n Plankurven auch von der m^{ten} Klasse ist.

Der Berührungspunkt P_{f1} des Strahles p mit dem Kegel F_1 (erster Brennpunkt von p) ist gegeben durch

$$x_{1} = p_{1}x_{3} + p_{1}^{\frac{m}{n}}x_{4},$$

$$x_{2} = p_{2}x_{3} + p_{2}^{\frac{m}{n}}x_{4},$$

$$(m-n)^{m-n}n^{n}x_{3}^{m} - (-1)^{n}m^{m}x_{2}^{m-n}x_{4}^{n} = 0,$$

also durch

$$\frac{x_1}{p_1\left(mp_2^{\frac{m-n}{n}} - np_1^{\frac{m-n}{n}}\right)} = \frac{x_2}{(m-n)p_2^{\frac{m}{n}}} = \frac{x_3}{mp_2^{\frac{m-n}{n}}} = \frac{x_4}{-n}.$$
 (10a)

Der zweite Brennpunkt P_{f2} von p ist bestimmt durch

$$\frac{x_1}{(m-n)p_1^{\frac{m}{n}}} = \frac{x_2}{p_2\left(mp_1^{\frac{m-n}{n}} - np_2^{\frac{m-n}{n}}\right)} = \frac{x_3}{mp_1^{\frac{m-n}{n}}} = \frac{x_4}{-n}.$$
 (11a)

§ 4b. Die Fokalfläche der hyperbolischen Congruenz.

Ein Congruenzstrahl p (p_1, p_2) wird mit X_1 verbunden durch die Ebene

$$x_2 = p_2 x_3 + p_2^{-\frac{m}{n}} x_4.$$
 (6b)

Diese Ebene umhüllt bei veränderlichem p_2 einen Kegel F_1 , mit

 X_1 als Spitze, dessen Gleichung sich ergiebt, indem die Diskriminante von (6 δ) gleich Null gesetzt wird. Sie lautet somit:

$$n^n m^m x_2^{m+n} - (m+n)^{m+n} x_3^m x_4^n = 0.$$
 (8b)

Der durch die Ebene (p, X_1) umhüllte Kegel F_1 ist daher vom Grade m + n.

Der Strahl p ist offenbar eine Tangente an diesem Kegel F_1 , und gleichfalls an einem zweiten Kegel F_2 , welcher durch

$$n^n m^m x_1^{m+n} - (m+n)^{m+n} x_3^m x_4^n = 0$$
 . . (9b)

dargestellt wird, seine Spitze in X_2 hat, und auch vom Grade m+n ist.

Wie in § 4a, lässt sich auch hier beweisen, dass die beiden Kegel F_1 und F_2 von der Klasse m + n sind und zusammen die Fokalfläche der Congruenz bilden; wir behaupten daher:

die Fokalfläche der hyperbolischen Congruenz besteht aus zwei Kegeln F_4 und F_2 , bez. mit X_4 und X_2 als Spitzen, von denen sowohl der Grad wie die Klasse $\mathbf{m}+\mathbf{n}$ ist. Die Strahlencongruenz ist die Gesammtheit der gemeinschaftlichen Tangenten der beiden Fokalkegel F_4 und F_2 .

Die beiden Kegel F_1 und F_2 schneiden sich in einem Gebilde vom Grade $(m+n)^2$.

Jede der m + n durch

$$x_1^{m+n} = x_2^{m+n}$$

angewiesenen Ebenen schneidet die beiden Kegel in derselben Kurve vom Grade m + n. Der Schnitt der beiden Kegel zerfällt dennach in m + n Plankurven vom Grade m + n und von der Klasse m + n; diese befinden sich in den Ebenen

$$x_2 = \tau x_1$$

wenn

$$\tau^{m+n} = 1.$$

Die Gerade X_3 X_4 trifft jeden Kegel m mal in X_4 und n mal in X_3 , während ω_0 in X_4 mit den beiden Kegeln m+n, und ω_∞ in X_3 mit ihnen m+n Punkte gemein hat.

Es ist also X_4 ein m-facher Punkt, dessen Berührungsebenen in ω_0 vereinigt sind, und X_3 ein n-facher Punkt, dessen sämmtliche Berührungsebenen mit ω_{∞} zusammengefallen sind.

Der Brennpunkt $P_{/1}$ (Berührungspunkt mit F_{1}) ist bestimmt durch

$$x_{1} = p_{1}x_{3} + p_{1}^{-\frac{m}{n}}x_{4},$$

$$x_{2} = p_{2}x_{3} + p_{2}^{-\frac{m}{n}}x_{4},$$

$$n^{n} m^{m} x_{2}^{m+n} - (m+n)^{m+n} x_{3}^{m} x_{4}^{n} = 0,$$

oder durch

$$\frac{x_1}{mp_1^{\frac{m+n}{n}} + np_2^{\frac{m+n}{n}}} = \frac{x_2}{(m+n)p_1^{\frac{m}{n}}p_2} = \frac{x_3}{mp_1^{\frac{m}{n}}} = \frac{x_4}{np_1^{\frac{m}{n}}p_2^{\frac{m+n}{n}}}, \quad (10b)$$

Der zweite Brennpunkt, P_{f2} , wird dargestellt durch

$$\frac{x_1}{(m+n)p_1p_2^{\frac{m}{n}}} = \frac{x_2}{mp_2^{\frac{m+n}{n}}} + np_1^{\frac{m+n}{n}} = \frac{x_3}{mp_2^{\frac{m}{n}}} = \frac{x_4}{np_2^{\frac{m}{n}}p_1^{\frac{m+n}{n}}}.$$
 (11b)

§ 5a. Die singulären Elemente der parabolischen Congruenz. Singulär ist

1°. jede Ebene, welche einen Congruenzstrahl p mit einem der Punkte X_1 oder X_2 verbindet, und somit durch eine der Gleichungen (6a) dargestellt wird;

eine solche Ebene, z. B. (p, X_1) schneidet den Fokalkegel F_2 in einer Kurve die sowohl vom Grade m wie von der Klasse m ist; sämmtliche Tangenten dieser Kurve sind Congruenzstrahlen, da die Ebene (p, X_1) den Fokalkegel F_1 berührt; die Ebene (p, X_1) enthält also ein Strahlengebilde von der Klasse m;

 2° . jede der Ebenen $\varepsilon_{\tau_{m-n}}$, welche durch

$$x_1^{m-n} = x_2^{m-n}$$

bestimmt sind; in jeder dieser Ebenen liegt ja eine Kurve vom m^{ten} Grade und von der m^{ten} Klasse, welche auf den beiden Fokalkegeln liegt und deren Tangenten deshalb Congruenzstrahlen sind; es enthält daher jede Ebene $\varepsilon_{\tau_{m-n}}$ ($\tau_{m-n}^{m-n}=1$) ein Strahlengebilde von der Klasse m;

3°. die Ebene ω_{∞} ; wir werden zeigen, dass sich in dieser Ebene befinden zwei Strahlenbüschel bez. mit X_1 und X_2 als Scheitel und m-n Strahlenbüschel deren Spitzen mit den auf X_1 X_2 liegenden, durch $x_1^{m-n} = x_2^{m-n}$ bestimmten Punkten $E_{\tau_{m-n}}$ zusammenfallen.

Singuläre Punkte sind

- 1°. die Punkte X_1 und X_2 , jeder mit einem Strahlenbüschel in ω_{∞} ;
 - 2°. die Punkte $E_{\tau_{m-n}}$, jeder mit einem Strahlenbüschel in ω_{∞} .

Diese Aussagen wollen wir nunmehr beweisen. Wie im II. Abschnitt, betrachten wir die Congruenzstrahlen, welche nach einem in ω_{∞} liegenden Punkt zielen. Zuerst wollen wir einen Congruenzstrahl p durch die Coordinaten p_1 und p_2 seiner Spur P in ω_{∞} bestimmen. In diesem Falle hat der Strahl diese Gleichungen:

$$x_{1} = p_{1}^{\frac{n}{m}} x_{3} + p_{1}' x_{4},$$

$$x_{2} = p_{2}^{\frac{n}{m}} x_{3} + p_{2}' x_{4},$$
(12a)

oder

$$(x_1 - p_1' x_4)^n = p_1'^n x_3^m,$$

 $(x_2 - p_2' x_4)^n = p_2'^n x_3^m.$

Setzen wir noch

$$p_1' = \frac{y_1'}{y_1'}, \ p_2' = \frac{y_2'}{y_4'},$$

so finden wir

Befindet sich der Punkt $P(x_1, x_2, x_3, x_4)$ in ω_{∞} , so haben wir $x_4 = 0$ zu setzen, wonach wir erhalten:

$$\begin{array}{l} x_1^{\ m} y_4^{'m} = x_3^{\ m} y_1^{'n} y_4^{'m-n}, \\ x_2^{\ m} y_4^{'m} = x_3^{\ m} y_2^{'n} y_4^{'m-n}, \end{array}$$

oder

$$y_4^{\prime m-n}(x_1^m y_4^{\prime n} - x_3^m y_1^{\prime n}) = 0,$$

 $y_4^{\prime m-n}(x_2^m y_4^{\prime n} - x_3^m y_2^{\prime n}) = 0.$

Die Spuren P' sind also bestimmt durch

oder

$$\frac{y_1'}{y_4'} = {\binom{x_1}{x_3}}^m,$$

$$\frac{y_2'}{y_1'} = {\binom{x_2}{y_2}}^m,$$

die n^2 durch diese Gleichungen angewiesenen Punkte P' sind offenbar die n^2 in ω_0 liegenden Bilder P' des in ω_{∞} liegenden Punktes P; es zeigt sich, dass von den m^2 Strahlen, welche nach einem Punkte P in ω_{∞} zielen, n^2 den Punkt P mit seinen n^2 in ω_0 befindlichen Bildern P' verbinden;

oder

$$y_4^{'m-n} = 0,$$

 $y_2^{'n} = 0;$

diese Gleichungen bestimmen n(m-n) mal den Punkt X_1 ; wir folgern hieraus, dass von den m^2 durch P gehenden Strahlen, n(m-n) mit der Gerade PX_1 zusammenfallen;

3°.
$$x_1^m y_4'^n - x_3^m y_1'^n = 0,$$

$$y_4'^{m-n} = 0,$$

oder

$$y_4^{'n} = 0,$$

 $y_4^{'m-n} = 0;$

n(m-n) Strahlen verbinden also den Punkt P mit X_2 ;

4°.
$$y_4'^{m-n} = 0, y_4'^{m-n} = 0; y_4'^{m-n} = 0;$$

die $(m-n)^2$ übrigen Durchstosspunkte liegen alle auf der Gerade $X_1 X_2$, sind jedoch vorläufig noch nicht völlig bestimmt.

Die Lage dieser letzten Punkte ergiebt sich, wenn wir zuerst den Punkt P in der Nähe von ω_{z} annehmen — sodass x_4 zwar nicht null, aber doch klein ist — und nachher den Abstand zu ω_{z} verschwinden lassen.

Wenn x_4 klein ist, wird auch y_4 einen geringen Wert haben.

Wir entwickeln daher $y_4':y_1'$ nach Potenzen von $(x_4:x_4)^{\frac{1}{m-n}}$ und $y_4':y_2'$ nach Potenzen von $(x_4:x_2)^{\frac{1}{m-n}}$.

Zu diesem Zweck setzen wir

$$\frac{y_{4}'}{y_{1}'} = y, \quad \frac{x_{4}}{x_{1}} = x,$$

$$\frac{1}{w - x} = \rho,$$

und

$$y = \alpha + \beta x^{\rho} + \gamma x^{2\rho} + \ldots + \lambda x + \ldots + \sigma x^{m\rho} + \ldots$$

Die erste der Gleichungen (13a) lautet alsdann:

$$(y-x)^m = y^{m-n} \left(\frac{x_3}{x_1}\right)^m$$

oder, nach Elimination von y,

$$\begin{split} & \left[\alpha + \beta x^{\rho} + \gamma x^{2\rho} + \ldots + (\lambda - 1)x + \ldots + \sigma x^{m\rho} + \ldots\right]^{m} = \\ & = \left[\alpha + \beta x^{\rho} + \gamma x^{2\rho} + \ldots + \lambda x + \ldots + \sigma x^{m\rho} + \ldots\right]^{m-n} \left(\frac{x_{3}}{x_{4}}\right)^{m}. \end{split}$$

Durch Gleichsetzen der Coefficienten gleicher Potenzen von \boldsymbol{x} finden wir

$$\alpha^{m} = \alpha^{m-n} \left(\frac{x_{3}}{x_{4}}\right)^{n},$$

$$m\alpha^{m-1}\beta = (m-n)\alpha^{m-n-1}\beta \left(\frac{x_{3}}{x_{4}}\right)^{m},$$

$$\vdots$$

$$P_{1}\alpha = \beta^{m-n} + P_{1}'\alpha,$$

$$\vdots$$

$$(\lambda-1)^m+P_{m-n}\alpha+Q_{m-n}\beta+\ldots=\sigma^{m-n}\left(\frac{x_3}{x_4}\right)^m+P'_{m-n}\alpha+Q'_{m-n}\beta+\ldots$$

Diesen Bedingungen wird genügt durch

1°.
$$\alpha^n = \left(\frac{x_3}{x_4}\right)^m,$$

oder

$$\boldsymbol{\alpha} = \left(\frac{x_3}{x_4}\right)^{\frac{m}{n}};$$

wir erhalten dann

$$y = \left(\frac{x_3}{x_4}\right)^{\frac{m}{n}} + \beta x^{\rho} + \gamma x^{2\rho} + \dots,$$

also für verschwindendes x

$$y = \left(\frac{x_3}{x_1}\right)^{\frac{m}{n}},$$

oder

$$\frac{y_4'}{y_1'} = \left(\frac{x_3}{x_4}\right)^{\frac{m}{n}};$$

dieser Ausdruck ist n-deutig;

2°.
$$\alpha = 0, \beta = 0, \gamma = 0, \dots \lambda = 0, \dots (-1)^n = \sigma^{m-n} \left(\frac{x_3}{x_1}\right)^m, \dots$$

$$\alpha = 0, \beta = 0, \gamma = 0, \ldots \lambda = 0, \ldots \sigma = \left(-\frac{x_1}{x_3}\right)^{\frac{m}{m-n}},$$

wonach

$$y = \left(-\frac{x_1}{x_3}\right)^{\frac{m}{m-n}} x_1^{\frac{m}{m-n}} = \left(-\frac{x_1}{x_3}\right)^{\frac{m}{m-n}} \left(\frac{x_4}{x_1}\right)^{\frac{m}{m-n}} = \left(-\frac{x_4}{x_3}\right)^{\frac{m}{m-n}},$$

oder

$$\frac{y_4'}{y_1'} = \left(-\frac{x_4}{x_3}\right)^{\frac{m}{m-n}};$$

es sei T eine der $(m-n)^{\text{ten}}$ Wurzeln von $\left(-\frac{x_4}{x_3}\right)^m$ und τ_{m-n} eine der $(m-n)^{\text{ten}}$ Wurzeln von +1; wir haben alsdann

$$\frac{y_4'}{y_1'} = \tau_{m-n}^m T;$$

weil m und m-n keinen gemeinschaftlichen Teiler haben, so ist τ_{m-n}^m eine primitive Wurzel; wir können sie ebenfalls τ_{m-n} nennen; der Ausdruck für y_4 : y_1 wird sodann

$$\frac{y_4'}{y_1'} = \tau_{m-n} T;$$

dieser Ausdruck ist (m-n)-deutig.

In analoger Weise finden wir für das Verhältniss $y_4'\colon y_2'$ zwei Ausdrücke, nl.:

1°.
$$\frac{y_4'}{y_2'} = \left(\frac{x_3}{x_2}\right)^{\frac{m}{n}} (n\text{-deutig}),$$
2°.
$$\frac{y_4'}{y_2'} = \tau_{m-n} T ((m-n)\text{-deutig}).$$

Man erhält die m^2 Durchstosspunkte, indem man die m Ausdrücke für $y_4': y_1'$ mit den m Ausdrücken für $y_4': y_2'$ combinirt.

Die Spuren sind demnach an der Grenze $(x_4 = 0)$ bestimmt durch

1°:
$$\frac{y_{4}'}{y_{1}'} = \left(\frac{x_{3}}{x_{1}}\right)^{\frac{m}{n}}, d. h. die n^{2} Punkte P', . . . (14a)$$
$$\frac{y_{4}'}{y_{2}'} = \left(\frac{x_{3}}{x_{2}}\right)^{\frac{m}{n}}, d. h. die n^{2} Punkte P', . . . (14a)$$

2°.
$$\frac{y_{4}^{'}}{y_{1}^{'}} = \tau_{m-n} T = 0,$$

$$\frac{y_{4}^{'}}{y_{2}^{'}} = \left(\frac{x_{3}}{x_{2}}\right)^{\frac{m}{n}},$$
d. h. $n (m-n) \text{ mal } X_{1}, . \quad (15a)$

3°.
$$\frac{y_4'}{y_1'} = \left(\frac{x_3}{x_1}\right)^{\frac{m}{n}}, \\ \frac{y_4'}{y_2'} = \tau_{m-n} T = 0,$$
 d. h. $n (m-n) \text{ mal } X_2, . (16a)$

4°.
$$\frac{y_2'}{y_1'} = \tau_{m-n} T,$$

$$\frac{y_4'}{y_2'} = \tau_{m-n} T,$$

$$\frac{y_4'}{y_2'} = \tau_{m-n} T,$$

$$\frac{y_4'}{y_2'} = \tau_{m-n} T,$$

$$\frac{d. h. (m-n) \text{ mal jeder}}{der \text{ Punkte } E_{\tau_{m-n}}}.$$

$$(17a)$$

Die $(m-n)^2$ auf X_1X_2 liegenden, bisher noch nicht bestimmten Punkte sind also in Gruppen von (m-n) in die m-n Punkte $E_{\tau_{m-n}}$ zusammengefallen, welche gegeben sind durch

$$x_1^{m-n} = x_2^{m-n},$$

 $x_3 = x_4 = 0.$ (18a)

Von den m^2 sich in P treffenden Strahlen verbinden daher n^2 Geraden P mit seinen n^2 Bildern P'; n(m-n) vereinigen P mit

 X_1 , n(m-n) P mit X_2 . Die übrigen $(m-n)^2$ Strahlen verbinden P mit den m-n Punkten $E_{\tau m-n}$ und jeder von ihnen muss (m-n)-fach gezählt werden.

Die Ebene ω_{∞} enthält demnach einen n(m-n)-fachen Strahlenbüschel mit X_1 und einen n(m-n)-fachen Strahlenbüschel mit X_2 als Scheitel, während sie ausserdem noch m-n Strahlenbüschel enthält, von denen jeder einen der Punkte $E_{\tau_{m-n}}$ als Scheitel hat und (m-n)-fach zu zählen ist

Die obigen Betrachtungen zusammenfassend, können wir folgendes behaupten:

Die parabolische Congruenz hat als singuläre Ebenen:

- 1°. jede Ebene (p, X_1) und (p, X_2) mit einem Strahlengebilde von der Klasse \mathbf{m} ;
- 2°. jede der Ebenen $E_{\tau_{m-n}}$ mit einem Strahlengebilde von der Klasse \mathbf{m} ;
- 3° . die Ebene ω_{∞} mit n(m-n)-fachen Strahlenbüscheln in X_1 und X_2 und (m-n)-fachen Strahlenbüscheln in jedem der m-n Punkte $E_{\tau_{m-n}}$.

Ihre singulären Punkte sind

- 1°. X_1 und X_2 mit n(m-n)-fachen Strahlenbüscheln in ω_{∞} ;
- 2° . die m-n Punkte $E_{\tau_{m-n}}$ mit (m-n)-fachen Strahlenbüscheln in ω_{∞} .

§ 5b. Die singulären Elementen der hyperbolischen Congruenz. Singulär ist:

1°. jede Ebene, welche einen Congruenzstrahl p mit einem der Punkte X_1 oder X_2 verbindet, daher durch eine der Gleichungen (6 b) dargestellt wird, eine solche Ebene, z.B. (p, X_1) , schneidet den Fokalkegel F_2 in einer Kurve, deren Grad und Klasse beide m+n sind; weil die Ebene (p, X_1) den Fokalkegel F_1 berührt, sind alle Tangenten jener Kurve als Congruenzstrahlen zu betrachten; die Ebene (p, X_1) enthält somit ein Strahlengebilde von der Klasse m+n;

2°. jede der Ebenen $\varepsilon_{\tau_{m+n}}$, welche durch

$$x_1^{m+n} = x_2^{m+n}$$

bestimmt sind; in jeder dieser Ebenen liegt ja eine Kurve, deren Grad und Klasse beide m+n sind; diese Kurve befindet sich auf den beiden Fokalkegeln, wonach ihre Tangenten als Congruenzstrahlen zu betrachten sind; es enthält demnach jede der Ebenen $\varepsilon_{\tau_{m+n}}$ ($\tau_{m+n}^{m+n}=1$) ein Strahlengebilde von der Klasse m+n;

3°. die Ebenen ω_{∞} und ω_{0} . Wie in § 5a wollen wir auch hier die Natur der Singularität nachher erörtern.

Wir werden alsdann finden, dass ω_{∞} drei Strahlenbüschel enthält, deren Scheitel in X_1 , X_2 und X_3 liegen, während ω_0 drei Strahlenbüschel mit X_1 , X_2 und X_4 als Scheitel trägt.

Singuläre Punkte sind

1°. die Punkte X_1 und X_2 , jede mit einem Strahlenbüschel in ω_{∞} und einem in ω_0 ;

2°. die Punkte X_3 und X_4 , bez. mit einem Strahlenbüschel in ω_{∞} und ω_{0} .

Bei der Untersuchung der Singularität der Abbildungsebenen ω_{∞} und ω_{0} wollen wir den Congruenzstrahl p auch hier durch die Coordinaten p_{1}' und p_{2}' seiner Spur P' in ω_{0} bestimmen.

Der Strahl p hat sodann die Gleichungen

$$x_{1} = p_{1}^{'^{-\frac{n}{m}}} x_{3} + p_{1}^{'} x_{4},$$

$$x_{2} = p_{2}^{'^{-\frac{n}{m}}} x_{3} + p_{2}^{'} x_{4},$$
(12b)

oder

$$(x_1 - p_1' x_4)^m p_1'^n = x_3^m,$$

 $(x_2 - p_2' x_4)^m p_2'^n = x_3^m.$

Setzen wir

$$p_{1}' = \frac{y_{1}'}{y_{4}'}, \quad p_{2}' = \frac{y_{2}'}{y_{4}'}$$

so folgt

Wenn der Punkt P (x_1, x_2, x_3, x_4) in ω_{∞} liegt, wonach $x_4 = 0$ ist, so erhalten wir die Gleichungen

$$\left.\begin{array}{l} x_1^{\ m} y_4^{' m} y_1^{' n} = x_3^{\ m} y_4^{' m+n}, \\ x_2^{\ m} y_4^{' m} y_2^{' n} = x_3^{\ m} y_4^{' m+} \end{array}\right)$$

oder

$$y_4'^m (x_1^m y_1'^n - x_3^m y_4'^n) = 0,$$

 $y_4'^m (x_2^m y_2'^n - x_3^m y_4'^n) = 0.$

Die Spuren P' sind also bestimmt durch

1°.
$$x_1^m y_1'^n - x_3^m y_4'^n = 0, x_2^m y_2'^n - x_3^m y_4'^n = 0,$$

oder

$$\frac{y_1'}{y_4'} = \left(\frac{x_1}{x_3}\right)^{-\frac{m}{n}},$$

$$\frac{y_2'}{y_1'} = \left(\frac{x_2}{x}\right)^{-\frac{m}{n}};$$

die n^2 durch diese Gleichungen bestimmten Punkte P' sind offenbar die n^2 in ω_0 liegenden Bilder P' des in ω_{∞} befindlichen Punktes P; wir schliessen also, dass von den $(m+n)^2$ Strahlen, welche sich in einem in ω_{∞} befindlichen Punkt P treffen, n^2 den Punkt P mit seinen n^2 in ω_0 liegenden Bildern P' verbinden;

2°.
$$y_4{}'^m = 0, x_2{}^m y_2{}'^n - x_3{}^m y_4{}'^n = 0,$$

oder

$$y_4^{'m} = 0,$$

 $y_2^{'n} = 0;$

diese Gleichungen liefern mn mal den Punkt X_1 , weshalb von den $(m+n)^2$ durch P gehenden Strahlen mn in der Gerade PX_1 vereinigt sind;

3°.
$$x_1^m y_1'^n - x_3^m y_4'^n = 0,$$
$$y_4'^m = 0,$$

oder

$$y_1^{'n} = 0$$
, $y_4^{'m} = 0$;

Wir ersehen, dass mn Strahlen P mit X_2 verbinden;

$$y_4'^m = 0, y_5'^m = 0; y_5'^m = 0;$$

die übrigen m^2 Spuren befinden sich alle auf der Gerade $X_1 X_2$, sind jedoch noch nicht genauer bestimmt.

In der Absicht die Lage dieser letzten Punkte vollständig zu erörtern, legen wir (wie in § 5a) den Punkt P in die Nähe von ω_x , wodurch x_4 zwar nicht null, sondern klein ist. Es ist demzufolge auch y_4 klein, weshalb wir das Verhältniss y_4 : y_4 nach

Potenzen von $(x_4: x_1)^{\frac{1}{m+n}}$ und $y_4': y_2'$ nach Potenzen von $(x_4: x_2)^{\frac{1}{m+n}}$ entwickeln werden.

Wir setzen also

$$rac{y_4'}{y_1'} = y, \quad rac{x_4}{x_1} = x,$$
 $rac{1}{m+n} =
ho,$ $y = lpha + eta x^
ho + \gamma x^2
ho + \ldots + \lambda x^m
ho + \ldots + \sigma x + \cdots$

Die erste der Gleichungen (13b) erhält somit diese Gestalt:

$$(y-x)^m = y^{m+n} \left(\frac{x_3}{x_1}\right)^m,$$

oder, nach Elimination von y,

$$[\alpha + \beta x^{\rho} + \gamma x^{2\rho} + \ldots + \lambda x^{m\rho} + \ldots + (\sigma - 1) x + \ldots]^{m} =$$

$$= [\alpha + \beta x^{\rho} + \gamma x^{2\rho} + \ldots + \lambda x^{m\rho} + \ldots + \sigma x + \ldots]^{m+n} \left(\frac{x_{3}}{x_{1}}\right)^{m}.$$

Indem wir die Coefficienten der gleichen Potenzen von x einander gleich setzen, finden wir

$$oldsymbol{lpha}^m = oldsymbol{lpha}^{m+n} \left(rac{x_3}{x_4} \right)^m,$$
 $m oldsymbol{lpha}^{m-1} eta = (m+n) oldsymbol{lpha}^{m+n-1} eta \left(rac{x_3}{x_4} \right)^m,$
 $\dots \dots$
 $eta^m + P_1 oldsymbol{lpha} = P_1' oldsymbol{lpha},$
 $\dots \dots$

$$(\sigma-1)^m+P_{m+n}\alpha+Q_{m+n}\beta+\ldots=\lambda^{m+n}\left(\frac{x_3}{x_4}\right)^m+P'_{m+n}\alpha+Q'_{m+n}\beta+\ldots$$

Diesen Bedingungen wird genügt durch

$$1^{\circ}. \qquad 1 = \alpha^n \left(\frac{x_3}{x_4}\right)^m,$$

oder

$$\alpha = \left(\frac{x_3}{x_1}\right)^{-\frac{m}{n}},$$

wonach

196 DIE CONGRUENZEN VON $w'^n = c^{n-m} w^m$ UND $w'^n w^m = c^{m+n}$.

$$y = \left(\frac{x_3}{x_4}\right)^{-\frac{m}{n}} + \beta x^{\rho} + \gamma x^{2\rho} + \dots,$$

also für verschwindendes x

$$y = \left(\frac{x_3}{x_1}\right)^{-\frac{m}{n}}.$$

oder

$$\frac{y_{4}'}{y_{1}'} = \left(\frac{x_{3}}{x_{1}}\right)^{-\frac{m}{n}};$$

dieser Ausdruck ist n-deutig;

$$2^{\circ}$$
. $\alpha = 0$, $\beta = 0$, $\gamma = 0$,... $\lambda = 0$,... $(\sigma - 1)^m = 0$,

oder m mal:

$$\alpha = 0$$
, $\beta = 0$,... $\gamma = 0$,... $\lambda = 0$,... $\sigma = 1$,

wonach

$$y = x$$
,

oder

$$\frac{y_{4}'}{y_{1}'} = \frac{x_{4}}{x_{1}};$$

dieser eindeutige Ausdruck ist m-fach zu zählen.

In analoger Weise finden wir für das Verhältniss $y_4':y_2'$ zwei Ausdrücke, n.l.

1°.
$$\frac{y_4'}{y_2'} = \left(\frac{x_3}{x_2}\right)^{-\frac{m}{n}} (n\text{-deutig}),$$

2°.
$$\frac{y_4'}{y_2'} = \frac{x_4}{x_2}$$
(m-fach zu zählen).

Die $(m+n)^2$ Spuren werden ermittelt, indem wir die m+n Ausdrücke für $y_4':y_1'$ mit den m+n Ausdrücken für $y_4':y_2'$ combiniren.

Die Durchstosspunkte sind also an der Grenze ($x_4 = 0$) bestimmt durch

1°.
$$\frac{y_{4}'}{y_{1}'} = \left(\frac{x_{3}}{x_{4}}\right)^{-\frac{m}{n}}, d. \text{ h. die } n^{2} \text{ Punkte } P', \dots (14b)$$
$$\frac{y_{4}'}{y_{2}'} = \left(\frac{x_{3}}{x_{2}}\right)^{-\frac{m}{n}}, d. \text{ h. die } n^{2} \text{ Punkte } P', \dots (14b)$$

2°.
$$\frac{y_4'}{y_1'} = \frac{x_4}{x_1} = 0 \quad (m\text{-fach}),$$

$$\frac{y_4'}{y_2'} = \left(\frac{x_3}{x_2}\right)^{-\frac{m}{n}},$$
d. h. $mn \text{ mal } X_1, \dots (15b)$

3°.
$$\frac{y_4'}{y_1'} = \left(\frac{x_3}{x_4}\right)^{-\frac{m}{n}},$$

$$\frac{y_4'}{y_2'} = \frac{x_4}{x_2} = 0 \quad (m\text{-fach}),$$
d. h. $mn \text{ mal } X_2, \dots (16b)$

4°.
$$\frac{y_4'}{y_1'} = \frac{x_4}{x_1}$$
 (*m*-fach), $\frac{y_4'}{y_2'} = \frac{x_4}{x_2}$ (*m*-fach),

oder

$$\frac{y_1'}{y_2'} = \frac{x_1}{x_2}$$
 $(m^2$ -fach). (176)

Die m^2 auf $X_1 X_2$ liegenden Punkte, welche bisher noch unbestimmt waren, sind offenbar alle zusammengefallen in den Punkt, wo die Gerade X_3 P die Gerade X_4 X_2 trifft; sie sind also als die Spuren von m^2 Strahlen zu betrachten, welche alle in der Gerade $X_3 P$ vereinigt sind.

Von den $(m + n)^2$ nach P zielenden Strahlen verbinden also n^2 den Punkt P mit seinen n^2 Bildern P', mn P mit X_1 , mn P mit X_2 , während m^2 Strahlen P mit X_3 verbinden.

Analog können wir nachweisen, dass von den $(m + n)^2$ Strahlen, welche sich in einem in ω_0 liegenden Punkt Q' treffen, m^2 den Punkt Q' mit seinen m^2 Bildern in ω_{∞} , mn Q' mit X_1 , mn Q' mit X_2 und n^2 Q' mit X_4 verbinden.

Die Ebene ω_{∞} enthält, so schliessen wir, einem mn-fachen Strahlenbüschel mit X_1 , einen mn-fachen Strahlenbüschel mit X_2 und einen m^2 -fachen Strahlenbüschel mit X_3 als Scheitel.

Die Ebene ω_0 dagegen trägt einen mn-fachen Strahlenbüschel mit X_1 , einen mn-fachen Strahlenbüschel mit X_2 und einen n^2 -fachen Strahlenbüschel mit X_4 als Scheitel.

Das Obige kurz zusammenfassend, kommen wir also zu dem folgenden Resultat:

Die hyperbolische Congruenz hat als Singuläre Ebenen:

- 1°. jede Ebene (p, X_1) und (p, X_2) mit einem Strahlengebilde von der Klasse $\mathbf{m} + \mathbf{n}$;
- 2°. jede der Ebenen $\varepsilon_{\tau_{m+n}}$ mit einem Strahlengebilde von der Klasse $\mathbf{m} + \mathbf{n}$;
- 3°. die Ebene ω_{∞} mit **mn**-fachen Strahlenbüscheln in X_1 und X_2 und mit einem \mathbf{m}^2 -fachen Strahlenbüschel in X_3 ;
- 4° . die Ebene ω_0 mit **mn**-fachen Strahlenbüscheln in X_1 und X_2 und mit einem \mathbf{n}^2 -fachen Strahlenbüschel in X_4 .

Ihre singulären Punkte sind

- 1°. X_1 und X_2 , jede mit **mn**-fachen Strahlenbüscheln in ω_{∞} und ω_0 ;
 - 2°. X_3 mit einem \mathbf{m}^2 -fachen Strahlenbüschel in ω_{∞} ;
 - 3°. X_4 mit einem \mathbf{n}^2 -fachen Strahlenbüschel in $\boldsymbol{\omega}_0$.

§ 6a. Die axiale Regelfläche einer durchaus willkürlichen Gerade in der parabolischen Congruenz.

Wir wollen die Axe der Regelfläche mit l, ihre Spur in ω_{∞} mit A, ihre Spur in ω_0 mit B' bezeichnen.

Jeder Punkt von l trägt m^2 Congruenzstrahlen; die Gerade l ist demnach eine \mathbf{m}^2 -fache Gerade auf ihrer axialen Regelfläche.

Jede durch l gelegte Ebene enthält noch mn Strahlen; sie hat also mit der axialen Regelfläche diese mn Geraden und ausserdem noch die m^2 -fache Gerade l gemein; der Gesammtschnitt ist deshalb vom Grade $m^2 + mn = m (m + n)$, wonach wir zu diesem Schlusse gelangen:

Der Grad der axialen Regelfläche einer willkürlichen Gerade in der parabolischen Congruenz ist $\mathbf{m}(\mathbf{m}+\mathbf{n})$.

Die Punkte A und B' werden bez. durch

$$A....\frac{x_1}{x_3}=a_1,\frac{x_2}{x_3}=a_2,x_4=0,$$

$$B' \dots \frac{x_1}{x_2} = b_1', \frac{x_2}{x_2} = b_2', x_3 = 0$$

bestimmt.

Die Gerade 1 bekommt alsdann die Gleichungen

$$\begin{vmatrix}
 x_1 = a_1 x_3 + b_1' x_4, \\
 x_2 = a_2 x_3 + b_2' x_4.
\end{vmatrix}$$
(18)

Ein durch

$$\begin{vmatrix}
x_1 = p_1 x_3 + p_1^{\frac{m}{n}} x_4, \\
x_2 = p_2 x_3 + p_2^{\frac{m}{n}} x_4
\end{vmatrix} (6a)$$

gegebener Congruenzstrahl p schneidet l, falls er in der Ebene

$$\lambda_1 (x_1 - a_1 x_3 - b_1' x_4) + \lambda_2 (x_2 - a_2 x_3 - b_2' x_4) = 0 \quad (19)$$

liegt. Es sollen also p_1 und p_2 den folgenden Bedingungen Genüge leisten:

$$\left. \begin{array}{l} \lambda_{1} \left(p_{1} - a_{1} \right) + \lambda_{2} \left(p_{2} - a_{2} \right) = 0, \\ \lambda_{1} \left(p_{1}^{\frac{m}{n}} - b_{1}' \right) + \lambda_{2} \left(p_{2}^{\frac{m}{n}} - b_{2}' \right) = 0, \end{array} \right\}$$

aus denen, durch Elimination von λ_1 und λ_2 , die Beziehung

$$\frac{p_1'^{\frac{m'}{n}} - b_1'}{p_1 - a_1} = \frac{p_2'^{\frac{m}{n}} - b_2'}{p_2 - a_2} \qquad (20a)$$

hervorgeht.

Die Gleichung der axialen Regelfläche ergiebt sich, indem man p_1 und p_2 aus den beiden Gleichungen (6a) und aus der Gleichung (20a) eliminirt.

Die Gleichung (20a) stellt, wenn p_1 und p_2 bez. durch $x_1:x_3$ und $x_2:x_3$ ersetzt sind, auch den geometrischen Ort derjenigen Punkte in ω_{∞} dar, durch welche Strahlen gehen, die l schneiden. Dieser Ort bildet demnach einen Bestandteil des Schnittes von ω_{∞} mit der axialen Regelfläche.

Für (20a) lässt sich auch schreiben:

$$(p_2-a_2)p_1^{\frac{m}{n}}-(p_1-a_1)p_2^{\frac{m}{n}}+b_2'p_1-b_1'p_2-(a_1b_2'-a_2b_1')=0. (21a)$$

Wir ändern das Coordinatendreieck zuerst in der Weise ab, dass die Ecke X_3 nach A ($x_4 = a_1 x_3, x_2 = a_2 x_3$) verlegt wird. Solches geschieht mittels der folgenden Transformationsformeln:

$$\begin{array}{l} x_1 = \xi_1 + a_1 \, \xi_3, \\ x_2 = \xi_2 + a_2 \, \xi_3, \\ x_3 = \xi_3. \end{array}$$
 (22)

Setzen wir noch

$$\frac{\xi_1}{\xi_3} = \pi_1, \frac{\xi_2}{\xi_3} = \pi_2, \dots$$
 (23)

so haben wir

$$\begin{array}{l}
 p_1 = \pi_1 + a_1, \\
 p_2 = \pi_2 + a_2.
 \end{array}
 \qquad (24)$$

Durch die Substitution dieser Ausdrücke für p_1 und p_2 in (20 a) bekommen wir

$$\pi_2(\pi_1+a_1)^{\frac{m}{n}}-\pi_1(\pi_2+a_2)^{\frac{m}{n}}+b_2{'}\pi_1-b_1{'}\pi_2=0, \ . \ (25a)$$

oder, wenn wir π_1 durch $\xi_1:\xi_3$ und π_2 durch $\xi_2:\xi_3$ ersetzen,

$$\xi_{2}(\xi_{1}+a_{1}\xi_{3})^{\frac{m}{n}}-\xi_{1}(\xi_{2}+a_{2}\xi_{3})^{\frac{m}{n}}+(b_{2}'\xi_{1}-b_{1}'\xi_{2})\xi_{3}^{\frac{m}{n}}=0.(26a)$$

Vermöge des im III. Abschnitte Dargelegten, erhält diese Gleichung, nach Wegschaffung der gebrochenen Exponenten, den Grad n(m+n). Der oben erwähnte geometrische Ort is demnach eine Kurve vom Grade n(m+n). Weil der Gesammtschnitt der Regelfläche mit ω_x vom Grade m(m+n) sein muss, so wird die durch (26a) bestimmte Kurve zu dem vollständigen Schnitt ergänzt durch einem Gebilde vom Grade $(m+n)(m-n)=m^2-n^2$.

Zu den Congruenzstrahlen welche sich auf l stützen gehören auch die Geraden AX_1 , AX_2 und $AE_{\tau_{m-n}}$.

In § 5a ist nachgewiesen worden, dass die Geraden AX_1 und AX_2 als n(m-n)-fache und jede der Geraden $AE_{\tau_{m-n}}$ als (m-n)-fache Congruenzstrahlen zu betrachten sind. Diese Geraden bilden also zusammen eine Figur vom Grade 2n(m-n)+(m-n) (m-n)= =(m+n) $(m-n)=m^2-n^2$. Es leuchtet ein, dass diese Figur die Kurve (26a) zum vollständigen Schnitt ergänzt.

Wir haben also gefunden, dass der Schnitt der axialen Regelfläche einer willkürlichen Gerade l=AB' mit ω_{∞} zusammengesetzt ist aus einer Kurve vom Grade $\mathbf{n}(\mathbf{m}+\mathbf{n})$, ausserdem aus den je $\mathbf{n}(\mathbf{m}-\mathbf{n})$ -fach zu zählenden Geraden AX_1 und AX_2 , und schliesslich aus den $\mathbf{m}-\mathbf{n}$, je $(\mathbf{m}-\mathbf{n})$ -fach zu zählenden Geraden $AE_{\tau_{m-n}}$.

Wir wollen nunmehr die in ω_{∞} liegende Kurve einer besonderen Betrachtung unterwerfen. Ihre Gleichung ist, wie wir ersahen,

$$\xi_{2}(\xi_{1}+a_{1}\xi_{3})^{\frac{m}{n}}-\xi_{1}(\xi_{2}+a_{2}\xi_{3})^{\frac{m}{n}}+(b_{2}'\xi_{1}-b_{1}'\xi_{2})\xi_{3}^{\frac{m}{n}}=0. (26a)$$

Die höchste hierin vorkommende Potenz von ξ_1 ist $\xi_1^{\frac{m}{n}}$ (weil m > n). Der Coefficient von $\xi_1^{\frac{m}{n}}$ ist ξ_2 . Es enthält also in der rationalen Gleichung der Coefficient der höchsten (mn^{ten}) Potenz von ξ_1 den Faktor $\xi_2^{n^2}$. Wir schliessen daher, dass die Tangenten in X_1 durch

$$\xi_2^{n^2} = 0$$

angewiesen sind, und kommen also zu der Einsicht, dass X_1 ein \mathbf{n}^2 -facher Punkt ist, dessen sämmtliche Tangenten in die Gerade AX_1 zusammengefallen sind.

In derselben Weise lässt sich zeigen, dass X_2 ein \mathbf{n}^2 -facher Punkt ist, dessen Tangenten alle in AX_2 vereinigt sind.

Die Schnittpunkte mit $X_1 X_2$ ($\xi_3 = 0$) ergeben sich (siehe III. Abschnitt) aus

$$\xi_2 \xi_2^{\frac{m}{n}} - \xi_1 \xi_2^{\frac{m}{n}} = 0,$$

oder

$$\xi_2^n \xi_1^m - \xi_1^n \xi_2^m = 0,$$

oder

$$\xi_1^n \xi_2^n (\xi_1^{m-n} - \xi_2^{m-n}) = 0,$$

also in der rationalen Gleichung aus

$$\xi_1^{n^2} \xi_2^{n^2} (\xi_1^{m-n} - \xi_2^{m-n})^n = 0.$$

Hieraus folgern wir, dass die Kurve die Gerade X_1 X_2 schneidet: n^2 mal in dem $(n^2$ -fachen) Punkte X_1 , n^2 mal in dem $(n^2$ -fachen) Punkte X_2 und n mal in jedem der m-n Punkte $E_{\tau_{m-n}}$.

Bevor wir die Punkte $E_{\tau_{m-n}}$ untersuchen, wollen wir uns zuerst mit dem Punkte A ($\xi_1 = 0$, $\xi_2 = 0$) beschäftigen. Die höchste Potenz von ξ_3 in (26a) ist $\xi_3^{\frac{m}{n}}$. Der Coefficient von $\xi_3^{\frac{m}{n}}$ ist

$$a_1^{\frac{m}{n}}\xi_2 - a_2^{\frac{m}{n}}\xi_1 + b_2'\xi_1 - b_1'\xi_2.$$

Die Tangenten in A werden also durch

$$a_1^{\frac{m}{n}}\xi_2 - a_2^{\frac{m}{n}}\xi_1 + b_2'\xi_1 - b_1'\xi_2 = 0,$$

oder durch

$$\frac{\xi_1}{\xi_2} = \frac{a_1^{\frac{m}{n}} - b_1'}{a_2^{\frac{m}{n}} - b_2'} \qquad (27a)$$

bestimmt.

Wenn wir das Coordinatentetraeder X_1 X_2 X_3 X_4 durch das Tetraeder X_4 X_2 AB' ersetzen, und zwar mittels der Formeln

$$\begin{array}{l}
x_{1} = \xi_{1} + a_{1} \xi_{3} + b_{1}' \xi_{4}, \\
x_{2} = \xi_{2} + a_{2} \xi_{3} + b_{2}' \xi_{4}, \\
x_{3} = \xi_{3}, \\
x_{4} = \xi_{4},
\end{array}$$
(28)

so wird die Gerade 1 durch

$$\begin{cases} \xi_1 = 0, \\ \xi_2 = 0 \end{cases}$$

dargestellt.

Die Gleichung (27a) liefert sodann die Ebenen, welche l mit den in A an der Kurve in ω_{∞} gelegten Tangenten verbinden; die nämliche Gleichung (27a) weist auch die Spuren dieser Ebenen in ω_0 an. Wir beachten nun, dass diese Spuren durch die Punkte gehen, welche gegeben sind durch

$$\xi_{1} = (a_{1}^{\frac{m}{n}} - b_{1}') \xi_{4},$$

$$\xi_{2} = (a_{2}^{\frac{m}{n}} - b_{2}') \xi_{4},$$

oder, wenn wir zu dem ursprünglichen Coordinatensysteme zurückkehren, durch

$$x_1 = a_1^{\frac{m}{n}} x_4,$$

$$x_2 = a_2^{\frac{m}{n}} x_4,$$

oder

$$\frac{x_1}{x_4} = a_1^{\frac{m}{n}}, \frac{x_2}{x_4} = a_2^{\frac{m}{n}}.$$

Es erhellt aus dieser Form, dass diese Punkte mit den n^2 in ω_0 liegenden Bildern A' des in ω_{∞} liegenden Punktes A identisch sind.

Die durch (27a) dargestellten *Ebenen* vereinigen daher l mit den n^2 Punkten A', wonach wir die in A an die Kurve in ω_{∞} gelegten

Tangenten als die axialen Projektionen aus l auf ω_{∞} der n^2 Bilder A' von A betrachten können.

Das hiermit gewonnene Resultat lautet deshalb:

Der Punkt A ist ein \mathbf{n}^2 -facher Punkt der Kurve in ω_{∞} . Seine Tangenten sind die axialen Projektionen aus l auf ω_{∞} der \mathbf{n}^2 in ω_0 liegenden Bilder A' von A.

Dieses Resultat würde sich in geometrischer Weise ergeben haben durch die Überlegung, dass die Berührungsebenen an den Blättern der Fläche, welche sich in l durchsetzen, durch diejenige Congruenzstrahlen bestimmt werden, welche nach dem Berührungspunkte zielen.

Wir wenden uns jetzt den Punkten $E_{\tau_{m-n}}$ zu. Weil diese Punkte alle dieselben Eigenschaften haben, so genügt es einen von ihnen zu untersuchen; dieser Punkt werde mit E_{τ} bezeichnet, und habe die Coordinaten $x_2 = \tau x_1$, $x_3 = 0$ oder $\xi_2 = \tau \xi_1$, $\xi_3 = 0$.

Zuerst verlegen wir die Ecke X_1 in E_{τ} mittels der Formel

$$\xi_2 = \tau \, \xi_1 + \xi_2'$$

Die Gleichung (26a) verwandelt sich somit in

$$(\tau \, \xi_{1} + \xi_{2}') \, (\xi_{1} + a_{1} \, \xi_{3})^{\frac{m}{n}} - \xi_{1} \, (\tau \, \xi_{1} + \xi_{2}' + a_{2} \, \xi_{3})^{\frac{m}{n}} + + (b_{2}' \, \xi_{1} - b_{1}' \, \tau \, \xi_{1} - b_{1}' \, \xi_{2}') \, \xi_{3}^{\frac{m}{n}} = 0. \quad . \quad . \quad (29a)$$

Der Punkt E_{τ} ist jetzt durch

$$\xi_2' = 0, \xi_3 = 0,$$

gegeben; wir haben demnach die höchste Potenz von ξ_1 , d. h. $\xi_1^{\frac{m}{n}+1}$ zu betrachten. Der Faktor von $\xi_1^{\frac{m}{n}+1}$ ist $\tau = \tau^{\frac{m}{n}} = \tau (1-\tau^{\frac{m}{n}})=0$, und verschwindet also, wenn $\tau^{\frac{m-n}{n}}=1$. Wir müssen daher die Gleichung rational machen, oder wenigstens einige der gebrochenen Exponenten vertreiben. Wir schreiben sie dazu folgendermassen:

 $\xi_1(\tau \xi_1 + \xi_2' + a_2 \xi_3)^{\frac{m}{n}} = (\tau \xi_1 + \xi_2')(\xi_1 + a_1 \xi_3)^{\frac{m}{n}} + [(b_2' - b_1' \tau) \xi_1 - b_1' \xi_2'] \xi_3^{\frac{m}{n}}$ und potenziren nun mit *n*. Es folgt dann

$$\xi_{1}^{n}(\tau\xi_{1}+\xi_{2}'+a_{2}\xi_{3})^{m} = (\tau\xi_{1}+\xi_{2}')^{n}(\xi_{1}+a_{1}\xi_{3})^{m} + \\ + n(\tau\xi_{1}+\xi_{2}')^{n-1}(\xi_{1}+a_{1}\xi_{3})^{\frac{m(n-1)}{n}} |(b_{2}'-b_{1}'\tau)\xi_{1}-b_{1}'\xi_{2}'|\xi_{3}^{\frac{m}{n}} + \\ + \dots + |(b_{2}'-b_{1}'\tau)\xi_{1}-b_{1}'\xi_{2}'|^{n}\xi_{3}^{m},$$

oder

$$\xi_{1}^{n} | \tau^{m} \xi_{1}^{m} + m \tau^{m-1} \xi_{1}^{m-1} (\xi_{2}' + a_{2} \xi_{3}) + \ldots | =$$

$$= | \tau^{n} \xi_{1}^{n} + n \tau^{n-1} \xi_{1}^{n-1} \xi_{2}' + \ldots | | \xi_{1}^{m} + m \xi_{1}^{m-1} a_{1} \xi_{3} + \ldots | +$$

$$+ n | \tau^{n-1} \xi_{1}^{n-1} + (n-1) \tau^{n-2} \xi_{1}^{n-2} \xi_{2}' + \ldots | | \xi_{1}^{m-\frac{m}{n}} + \ldots | \times$$

$$\times | (b_{2}' - b_{1}' \tau) \xi_{1} - b_{1}' \xi_{2}' | \xi_{3}^{\frac{m}{n}} + \ldots . \qquad (30a)$$

Die höchste Potenz von ξ_1 ist nun scheinbar ξ_1^{m+n} . Wenn aber die Gleichung auf Null reducirt wird, ist der Coefficient von ξ_1^{m+n}

$$\tau^m - \tau^n = \tau^n \left(\tau^{m-n} - 1\right) = 0.$$

Hieraus ist ersichtlich, dass die höchste Potenz von ξ_1 tatsächlich nicht ξ_1^{m+n} sondern ξ_1^{m+n-1} ist (es ist ja $m+n-1>m+n-\frac{m}{n}$, weil $\frac{m}{n}>1$).

Der Faktor von ξ_1^{m+n-1} in der auf Null reducirten Gleichung ist jetzt

$$\begin{array}{l} m\tau^{m-1}(\xi_2'+a_2\,\xi_3)-m\tau^n\,a_1\,\xi_3-n\tau^{n-1}\,\xi_2'=\\ =\tau^{n-1}\left|m\tau^{m-n}(\xi_2'+a_2\,\xi_3)-m\tau a_1\,\xi_3-n\xi_2'\right|=\\ =\tau^{n-1}\left|m(\xi_2'+a_2\,\xi_3)-m\tau a_1\,\xi_3-n\xi_2'\right|. \end{array}$$

Die Tangenten in E_{τ} sind demnach bestimmt durch

$$m \, (\xi_{\scriptscriptstyle 2}{}^{'} + a_{\scriptscriptstyle 2} \, \xi_{\scriptscriptstyle 3}) - m \tau a_{\scriptscriptstyle 1} \, \xi_{\scriptscriptstyle 3} - n \xi_{\scriptscriptstyle 2}{}^{'} = 0$$
 ,

oder

$$\xi_{2}' = \frac{m(\tau a_{1} - a_{2})}{m - n} \xi_{3},$$

also im ursprünglichen Coordinatensystem durch

$$\xi_2 - \tau \xi_1 = \frac{m(\tau a_1 - a_2)}{m - n} \xi_3,$$

oder

$$(m-n)(\tau \xi_1 - \xi_2) + m(\tau a_1 - a_2)\xi_3 = 0.$$
 . (31a)

Hätten wir die Gleichung gänzlich rational gemacht, so würde der Grad n(m+n) geworden sein und nicht m+n, wie die Gleichung (30a) zeigt, aus welcher wir die Tangente (31a) bestimmt haben. Die vollständig rational gemachte Gleichung würde deshalb für die Tangenten in E_{τ}

$$[(m-n)(\tau \xi_1 - \xi_2) + m(\tau a_1 - a_2) \xi_3]^n = 0$$

geliefert haben. Wir schliessen demnach, dass der Punkt E_{τ} ein n-facher Punkt ist, dessen sämmtliche Tangenten zusammengefallen sind in die Gerade, welche durch die Gleichung (31a) dargestellt wird.

Diese Gerade enthält offenbar den Punkt T, wofür

$$(m-n) \xi_1 + ma_1 \xi_3 = 0,$$

 $(m-n) \xi_2 + ma_2 \xi_3 = 0,$

oder

$$\frac{\xi_1}{ma_1} = \frac{\xi_2}{ma_2} = \frac{\xi_3}{-(m-n)}. \qquad (32a)$$

Dieser Punkt T erscheint unabhängig von τ ; er liegt daher auf der Tangente jedes Punktes E_{τ} . Ausserdem befindet er sich auf der Gerade

$$\frac{\xi_1}{a_1} = \frac{\xi_2}{a_2},$$

d. h. der Gerade $X_3 A$.

Wir können somit den Punkt T bestimmen als den Schnittpunkt der Gerade X_3 Λ mit der Tangente in einem der Punkte E_{τ} , z. B. im Punkte E_1 , der durch $\tau = \tau_{m-n} = 1$, also durch $x_1 = x_2$ angewiesen ist.

Die Tangente in E_1 hat die Gleichung

$$(m-n)(\xi_1-\xi_2)+m(a_1-a_2)\xi_3=0.$$
 (33a)

Indem wir die letzten Resultaten zusammenfassen, können wir den folgenden Satz aussprechen:

Die $\mathbf{m} - \mathbf{n}$ Punkte $E_{\tau_{m-n}}$ sind alle \mathbf{n} -fache Punkte, von denen jeder \mathbf{n} zusammenfallende Tangenten besitzt. Diese Tangenten verbinden die Punkte $E_{\tau_{m-n}}$ mit dem Punkte T, welcher sich im Schnittpunkte von X_3 A mit der Tangente (33a) in E_4 ($x_1 = x_2$) befindet.

Zum Überflusse bemerken wir noch, dass der Punkt X_3 nicht auf der Kurve liegt (siehe (21a)).

Wir wollen jetzt den Schnitt der axialen Regelfläche mit ω_0 betrachten.

Indem wir die Spur P' eines Congruenzstrahles p in ω_0 durch

$$p_{1}' = \frac{x_{1}}{x_{4}}, \ p_{2}' = \frac{x_{2}}{x_{4}}$$

anweisen, so wird der Congruenzstrahl durch

$$x_{1} = p_{1}^{\frac{n}{m}} x_{3} + p_{1}' x_{4},$$

$$x_{2} = p_{1}^{\frac{n}{m}} x_{3} + p_{2}' x_{4},$$

$$(34a)$$

bestimmt. Dieser Strahl wird sich in der durch l gelegten Ebene (19 α) befinden, wenn den Bedingungen

$$\lambda_{1}(p_{1}^{\frac{n}{m}}-a_{1})+\lambda_{2}(p_{2}^{\frac{n}{m}}-a_{2})=0,$$

$$\lambda_{1}(p_{1}^{\prime}-b_{1}^{\prime})+\lambda_{2}(p_{2}^{\prime}-b_{2}^{\prime})=0,$$

also (nach Elimination von λ_1 und λ_2) der Bedingung

$$\frac{p_1'^{\frac{n}{m}} - a_1}{p_1' - b_1'} = \frac{p_2'^{\frac{n}{m}} - a_2}{p_2' - b_2'} \cdot \cdot \cdot \cdot \cdot \cdot (35a)$$

genügt wird.

Wenn man nun p_1' durch $x_1:x_4$ und p_2' durch $x_2:x_4$ ersetzt, so bekommt man die Gleichung des Ortes der Spuren der Congruenzstrahlen, welche l schneiden. Dieser Ort ist somit ein Bestandteil des Schnittes von ω_0 mit der axialen Regelfläche.

Wir verlegen jetzt die Ecke X_4 des Coordinatendreiecks in die Spur B von $l(x_1 = b_1' x_4, x_2 = b_2' x_4)$, benutzen also die Transformation

$$\begin{array}{c|cccc}
x_1 &= \xi_1 + b_1' \xi_4, \\
x_2 &= \xi_2 + b_2' \xi_4, \\
x_4 &= \xi_4.
\end{array} (36)$$

Überdies setzen wir

woraus sich ergiebt

$$\begin{array}{cccc}
p_1' = \pi_1' + b_1', \\
p_2' = \pi_2' + b_2'.
\end{array}$$
(38)

Indem wir diese Ausdrücke in (35a) substituiren, finden wir

$$\frac{(\pi_1' + b_1')^{\frac{n}{m}} - a_1}{\pi_1'} = \frac{(\pi_2' + b_2')^{\frac{n}{m}} - a_2}{\pi_2'},$$

oder

$$\pi_2'(\pi_1' + b_1')^{\frac{n}{m}} - \pi_1'(\pi_2' + b_2')^{\frac{n}{m}} + a_2\pi_1' - a_1\pi_2' = 0.$$
 (39a)

Wir ersetzen nun π_1' und π_2' durch ihre Werte (37) und gelangen sodann zu

$$\xi_{2}(\xi_{1}+b_{1}'\xi_{2})^{\frac{n}{m}}-\xi_{1}(\xi_{2}+b_{2}'\xi_{2})^{\frac{n}{m}}+(a_{2}\xi_{1}-a_{1}\xi_{2})\xi_{4}^{\frac{n}{m}}=0.$$
 (40a)

Diese Gleichung bekommt nach vollständiger Rationalisirung den Grad m(m+n), wonach der oben erwähnte Ort vom Grade m(m+n) ist, also von demselben Grade wie die axiale Regelfläche. Hieraus geht hervor, dass der Schnitt der axialen Regelfläche mit ω_0 nur aus der genannten, durch (40a) dargestellten Kurve besteht.

Die höchste Potenz von ξ_1 ist ξ_1^{-1} ; indem man ihren Faktor gleich Null setzt, erhält man

$$(\xi_2 + b_2' \xi_4)^{\frac{n}{m}} - a_2 \xi_4^{\frac{n}{m}} = 0$$
,

oder

$$(\xi_2 + b_2' \xi_4)^n = a_2^m \xi_4^n.$$

Die völlig ausgearbeitete Gleichung würde also für die Tangenten in X_4

$$\{(\xi_2 + b_2' \xi_4)^n - a_2^m \xi_4^n\}^m = 0$$

gegeben haben. Wir ersehen, dass X_1 hier ein mn-facher Punkt ist, von dessen Tangenten je m in einer der n Geraden zusammengefallen sind, welche dargestellt werden durch

$$(\xi_2 + b_2' \xi_4)^n - a_2^m \xi_4^n = 0$$
,

oder

$$\xi_2 + b_2' \xi_1 = a_2^{\frac{m}{n}} \xi_4,$$

also im alten Coordinatensysteme durch

Es sind diese Tangenten offenbar die n Geraden, welche X_1 mit den n^2 Bildern A' von A verbinden.

Die obigen Betrachtungen gestatten uns Folgendes zu behaupten: Der Schnitt der axialen Regelfläche mit ω_0 hat in X_1 einen mn-fachen Punkt, in dem je m Tangenten zusammengefallen sind mit einer der \mathbf{n} Geraden, welche X_1 mit den \mathbf{n}^2 Bildern A' der Spur A von l in ω_{∞} verbinden.

Dasselbe gilt in Bezug auf X_2 .

Die höchste Potenz von ξ_4 ist $\xi_4^{\frac{m}{m}}$. Indem wir ihren Coefficient verschwinden lassen, finden wir für die Tangente in B':

$$b_1^{\frac{n}{m}}\xi_1-b_2^{\frac{n}{m}}\xi_2+a_2\xi_1-a_1\xi_2=0$$
 ,

oder

$$\frac{\xi_1}{\xi_2} = \frac{{b_1'}^{\frac{n}{m}} - a_1}{{b_2'}^{\frac{n}{m}} - a_2} \quad . \quad . \quad . \quad . \quad (42a)$$

In Bezug auf das Coordinatentetraeder $X_1 X_2 AB'$ wird l durch $\xi_1 = 0$, $\xi_2 = 0$ angewiesen und stellt (42a) die Ebene dar, welche die Tangente in B' mit l verbindet, und auch die Gerade, in welcher diese Ebene die Abbildungsebene ω_{∞} schneidet.

Diese letzte Gerade geht offenbar durch den Punkt

$$\xi_1 + a_1 \, \xi_3 = b_1^{' \frac{n}{m}} \xi_3 \, , \, \Big| \ \xi_2 + a_2 \, \xi_3 = b_2^{' \frac{n}{m}} \xi_3 \, , \, \Big| \$$

welcher in den ursprünglichen Coordinaten durch

$$x_1 = b_1^{\frac{n}{m}} x_3,$$
 $x_2 = b_2^{\frac{n}{m}} x_3$

dargestellt wird.

Es vertreten diese beiden m-deutigen Gleichungen zusammen die m^2 Punkte B, in welche der in ω_0 liegende Punkt B' auf ω_{∞} abgebildet wird. Wir gelangen somit zu der Einsicht, dass der Punkt B' der Schnittkurve mit ω_{∞} ein \mathbf{m}^2 -facher Punkt ist, dessen Tangenten die axiale Projektionen aus l auf ω_0 der \mathbf{m}^2 Bilder B sind, welche in ω_{∞} dem Punkte B' entsprechen.

Die Gerade $X_1 X_2$ schneidet die Kurve in den Punkten, welche bestimmt sind durch

$$\xi_{2} \xi_{1}^{\frac{m}{n}} - \xi_{1} \xi_{2}^{\frac{m}{n}} = 0,$$

$$\xi_{1}^{n} \xi_{2}^{n} (\xi_{1}^{m-n} - \xi_{2}^{m-n}) = 0,$$

oder

also in der rationalen Gleichung durch

$$\xi_1^{mn} \xi_2^{mn} (\xi_1^{m-n} - \xi_2^{m-n})^m = 0.$$

Die in ω_0 befindliche Kurve schneidet daher X_1X_2 mn mal im (mn-fachen) Punkte X_1 , mn mal im (mn-fachen) Punkte X_2 und m mal in jedem der Punkte $E_{\tau_{m-n}}$.

Die Punkte $E_{\tau_{m-n}}$ werden auch hier untersucht, indem man X_1 in einen dieser Punkte, nl. E_{τ} (bestimmt durch $\xi_2 = \tau \xi_1$) verlegt, und zwar mittels der Formel

$$\xi_2 = \tau \xi_1 + \xi_2'$$

Die Gleichung (40a) bekommt alsdann diese Gestalt:

$$(\tau \xi_{1} + \xi_{2}') (\xi_{1} + b_{1}' \xi_{1})^{\frac{n}{m}} - \xi_{1} (\tau \xi_{1} + \xi_{2}' + b_{2}' \xi_{1})^{\frac{n}{m}} + + (a_{2} - \tau a_{1}) \xi_{1} - a_{1} \xi_{2}' |\xi_{1}^{\frac{n}{m}} = 0. . . (43a)$$

Der Punkt E_{τ} ist jetzt durch

$$\xi_{2}' = 0, \xi_{4} = 0$$

bestimmt. Wir haben demnach die höchste Potenz von ξ_1 , d. h. $\xi_1^{1+\frac{n}{m}}$ zu betrachten. Ihr Coefficient ist $\tau = \tau^{\frac{n}{m}} = \tau^{\frac{n}{m}} (\tau^{\frac{m-n}{m}} - 1)$, kann, vermöge $\tau^{m-n} = 1$, also Null sein. Wir sind daher genötigt die Gleichung (34*a*) umzuformen, und schreiben

$$\xi_{1}(\tau\xi_{1}+\xi_{2}'+b_{2}'\xi_{4})^{\frac{n}{m}} = (\tau\xi_{1}+\xi_{2}')(\xi_{1}+b_{1}'\xi_{4})^{\frac{n}{m}} + |(a_{2}-a_{1}\tau)\xi_{1}-a_{1}\xi_{2}'|\xi_{4}^{\frac{n}{m}}.$$

Wir potenziren beide Seiten mit m und erhalten

$$\xi_{1}^{m}(\tau\xi_{1}+\xi_{2}^{'}+b_{2}^{'}\xi_{4})^{n}=(\tau\xi_{1}+\xi_{2}^{'})^{m}(\xi_{1}+b_{1}^{'}\xi_{4})^{n}+\\+m(\tau\xi_{1}+\xi_{2}^{'})^{m-4}(\xi_{1}+b_{1}^{'}\xi_{4})^{\frac{n(m-4)}{m}}[(a_{2}-a_{1}\tau)\xi_{1}-a_{1}\xi_{2}^{'}]\xi_{4}^{\frac{n}{m}}+\\+\ldots+[(a_{2}-a_{1}\tau)\xi_{1}-a_{1}\xi_{2}^{'}]^{m}\xi_{4}^{n},$$

oder

$$\xi_{1}^{m}|\tau^{n}\xi_{1}^{n}+n\tau^{n-1}\xi_{1}^{n-1}(\xi_{2}'+b_{2}'\xi_{4})+...| = \\ =|\tau^{m}\xi_{1}^{m}+m\tau^{m-1}\xi_{2}'+...||\xi_{1}^{n}+n\xi_{1}^{n-1}b_{1}'\xi_{4}+...|+\\ +m|\tau^{m-1}\xi_{1}^{m-1}+(m-1)\tau^{m-2}\xi_{1}^{m-2}\xi_{2}'+...| \times \\ \times |\xi_{1}^{n-\frac{n}{m}}+...||(a_{2}-a_{1}\tau)\xi_{1}-a_{1}\xi_{2}'|\xi_{4}^{\frac{n}{m}}+... \qquad (44a)$$
Verhand, der Kon, Akad, v. Wetensch, (4e Sectie), Dl. X.

Der Coefficient der höchsten Potenz von ξ_1 (ξ_1^{m+n}) ist, wenn die Gleichung auf Null reducirt wird,

$$\tau^n - \tau^m = \tau^n (1 - \tau^{m-n}) = 0.$$

Tatsächlich ist also die höchste Potenz nicht ξ_1^{m+n} sondern $\xi_1^{m+n-\frac{n}{m}}$ (es ist ja $m+n-\frac{n}{m}>m+n-1$, da $\frac{n}{m}<1$).

Der Coefficient von $\xi_1^{m-n-\frac{n}{m}}$ ist

$$\xi_4^{\frac{n}{m}},$$

es werden also in der rationalen Gleichung die Tangenten in E_{τ} durch

$$\xi_4^n = 0$$

angewiesen.

Es erhellt, dass E_{τ} ein *n*-facher Punkt ist. Da X_1X_2 in E_{τ} *m* Punkte mit der Kurve gemein hat, so ist es klar, dass die *n* Tangenten in E_{τ} alle in X_1X_2 vereinigt sind und in E_{τ} *m* Punkte mit der Kurve gemein haben.

Wir gelangen also zu diesem Satz:

Die Kurve, in welcher die axiale Regelfläche die Ebene ω_0 schneidet, hat in jedem der Punkte $E_{\tau_{m-n}}$ einen \mathbf{n} -fachen Punkt, dessen sämmtliche Tangenten in $X_1\,X_2$ vereinigt sind. Die Tangente $X_1\,X_2$ hat in jedem der Punkte $E_{\tau_{m-n}}$ \mathbf{m} Punkte mit der Kurve gemein.

Auch hier bemerken wir beiläufig, dass der Punkt X_4 sich nicht auf der Kurve befindet.

Wir wollen jetzt die Punkte X_1 und X_2 als Punkte der Fläche etwas näher betrachten.

Die in der Nähe von X_1 auf der Regelfläche liegenden Punkte gehören den Congruenzstrahlen an, welche ω_0 in der Nähe von X_1 schneiden. Diese Congruenzstrahlen stützen sich deshalb auf l in der Nähe ihrer Spur A in ω_{∞} .

Die nach einem Punkte X (x_1, x_2, x_3, x_4) zielenden Congruenzstrahlen werden durch die Gleichungen

$$x_{1} = p_{1}^{\frac{n}{m}} x_{3} + p_{1}' x_{4},$$

$$x_{2} = p_{2}^{\frac{n}{m}} x_{3} + p_{2}' x_{4}$$

$$(34a)$$

bestimmt.

Die erste dieser Gleichungen liefert m Werte für p_1 , d.h. m

Geraden in ω_0 durch X_2 , auf welchen die Spuren P' der Strahlen p liegen müssen; jeder Wert von p_1' bestimmt daher eine Ebene durch X und X_2 , in welcher ein durch X gehender Strahl p liegen muss.

Die m Werte p_2' , welche aus der zweiten Gleichung (34a) folgen, bestimmen ebenfalls m Ebenen durch X und X_4 , welche einen solchen Strahl p-tragen.

Wenn X in ω_{∞} liegt, hat man $x_4 = 0$, wonach die erste Gleichung (34a) oder

$$(x_1 - p_1' x_4)^m - p_1'^n x_3^m = 0$$

sich verwandelt in

$$x_3^m p_1^{\prime n} - x_1^m = 0.$$

Es sind also m - n Werte von p_1 unendlich gross geworden; von den m durch $X_1 X_2$ gelegten Ebenen sind daher m - n mit ω_{∞} zusammengefallen. Die übrigen n Ebenen verbinden X_2 mit den n^2 nach X in ω_{∞} zielenden Congruenzstrahlen.

Wenn X mit A identisch ist, so sind diese n Ebenen durch

$$(x_1 - a_1 x_3)^n - a_1^m x_4^n = 0$$
 . . . (45a)

bestimmt.

Nehmen wir nun X in der Nähe von A an, so werden die n Ebenen nur wenig von der n Ebenen (45a) verschieden sein, während die übrigen m-n Ebenen beinahe mit ω_{∞} coincidiren.

Die Congruenzstrahlen, welche nahe bei X_2 ausmünden und demnach die Berührungsebenen in X_2 an der Regelfläche bestimmen, befinden sich also an der Grenze $(X \equiv A)$ in den Ebenen (45a).

Wir ziehen hieraus den Schluss, dass die Berührungsebenen in X_2 an der Regelfläche durch (45a) dargestellt werden; analog lässt sich zeigen, dass den Berührungsebenen in X_2 die Gleichungen

$$(x_2 - a_2 x_3)^n - a_2^m x_4^n = 0$$
 . . . (46a)

zukommen.

In dem Schnitte der Regelfläche mit ω_0 sind X_1 und X_2 beide mn-fache Punkte. Da die Ebene ω_0 nicht singulär ist, so wird der Schnitt ω_0 nicht wesentlich von dem Schnitt in irgend einer anderen durch $X_1 X_2$ gelegten Ebene $(x_3 = \mu x_4)$ verschieden sein. Jeder Schnitt mit einer Ebene $x_3 = \mu x_4$ hat also in x_1 und x_2 mn-fache Punkte, weshalb x_4 und x_2 auch mn-fache Punkte der Regelfläche sind. Der Tangentenkegel von x_4 , welcher vom Grade

mn sein muss, ist in mn Ebenen ausgeartet, von denen je m mit einer der n Ebenen (46 α) coincidiren. Der Tangentenkegel von X_2 , vom Grade mn, besteht aus mn Ebenen, von denen je m mit einer der Ebenen (45 α) zusammenfallen.

Wir sind also zu den folgenden Satz gelangt:

In der parabolischen Congruenz sind auf der axialen Regelftäche einer willkürlichen Gerade X_1 und X_2 beide $\operatorname{mn-fache}$ Punkte. Die Tangenten in X_4 befinden sich in mn Ebenen, von denen je m in einer der n Ebenen (46a) vereinigt sind, während die Tangenten in X_2 in mn Ebenen liegen, von denen je m in einer der n Ebenen (45a) vereinigt sind.

Die Ebenen (46a) schneiden ω_0 in den Geraden

$$x_2^n - a_2^m x_4^n = 0$$
,

in denen wir die Tangenten in X_1 an der Durchschnittskurve erkennen. Dieselben Ebenen durchdringen dagegen ω_0 in den Geraden

$$(x_2 - a_2 x_3)^n = 0.$$

Diese Geraden sind alle in AX_1 vereinigt, welche Gerade die einzige Tangente in X_1 an der Durchschnittsfigur war.

Die Kurve in ω_{∞} hatte in X_1 einen n^2 -fachen Punkt. Ausserdem enthielt der Gesammtschnitt noch n(m-n) mal die Gerade AX_1 , sodass X_1 in Bezug auf den Gesammtschnitt als ein $n^2 + n(m-n) = mn$ -facher Punkt zu betrachten ist.

Es gelten diese letzten Ergebnisse natürlich auch c.p. für X_2 . Wir werden nun die Punkte $E_{\tau_{m-n}}$ betrachten.

Diese Untersuchung soll nur mit einem dieser Punkte, n.l. mit dem Punkte E_{τ} , vorgenommen werden.

Da die Congruenzstrahlen, welche in E_{τ} ausmünden, dem Punkte A entspringen, so haben wir aufzufinden, wo die Congruenzstrahlen, welche einem nahe an A liegenden Punkte Y entstammen, eine durch X_1X_2 gelegte Ebene $x_3 = \mu x_4$ treffen.

Es seien X (x_4, x_2, x_3, x_4) und Y (y_4, y_2, y_3, y_4) zwei Punkte des Congruenzstrahles p; so bestehen die folgenden Gleichungen:

$$x_1 - p_1 x_3 = p_1^{\frac{m}{n}} x_4, \dots (47a)$$

$$x_2 - p_2 x_3 = p_2^{\frac{m}{n}} x_4, \quad . \quad . \quad . \quad . \quad (48a)$$

$$y_1 - p_1 y_3 = p_1^{\frac{m}{n}} y_4, \dots (49a)$$

$$y_2 - p_2 y_3 = p_2^{\frac{m}{n}} y_4.$$
 (50a)

Aus (47a) und (49a) finden wir

$$\frac{x_1 - p_1 x_3}{x_4} = \frac{y_1 - p_1 y_3}{y_4} \,,$$

wonach

$$p_1 = \frac{x_1 y_4 - x_4 y_1}{x_3 y_4 - x_4 y_3} \quad . \quad . \quad . \quad . \quad (51a)$$

und

$$\frac{x_1 - p_1 x_3}{x_4} = \frac{x_3 y_1 - x_1 y_3}{x_3 y_4 - x_4 y_3} \quad . \quad . \quad . \quad (52a)$$

Aus (47a), (51a) und (52a) folgt sodann

$$\frac{x_3y_1 - x_1y_3}{x_3y_4 - x_4y_3} = \left(\frac{x_1y_4 - x_4y_1}{x_3y_4 - x_4y_3}\right)^{\frac{m}{n}},$$

oder

$$(x_4 y_1 - x_1 y_4)^m = (x_1 y_3 - x_3 y_4)^n (x_4 y_3 - x_3 y_4)^{m-n}.$$
 (53a)

In gleicher Weise lässt sich aus (48a) und (50a) herleiten:

$$(x_4y_2 - x_2y_4)^m = (x_2y_3 - x_3y_2)^n (x_4y_3 - x_3y_4)^{m-n}.$$
 (54a)

Wenn wir Y festhalten und X beweglich denken, stellt die Gleichung (53a) m Ebenen dar, welche alle durch Y und X_2 gehen, während (54a) m durch Y und X_4 gelegte Ebenen anweist. Die beiden Gleichungen bestimmen zusammen die m^2 nach Y zielenden Congruenzstrahlen.

Es wird nun der Schnittpunkt Y dieser Strahlen in einen Punkt gelegt, welcher sich auf l nahe an A befindet, und somit angewiesen ist durch

$$y_{1} = a_{1}y_{3} + b_{1}'y_{4}, y_{2} = a_{2}y_{3} + b_{2}'y_{4}, y_{4} = \rho y_{3},$$

oder

$$y_{1} = (a_{1} + b_{1}'\rho)y_{3}, y_{2} = (a_{2} + b_{2}'\rho)y_{3}, y_{4} = \rho y_{3},$$
 (55a)

wo ρ eine kleine Grösse darstellt.

Um den Zustand im Punkte E_{τ} ($x_2 = \tau x_1$, $x_3 = x_4 = 0$) zu studiren, verlegen wir die Coordinatenecke X_1 nach E_{τ} , und zwar mittels der Formel

$$x_2 = \tau x_1 + x_2'.$$

Die Gleichungen der in Y zusammentreffenden Strahlen gestalten sich alsdann folgendermassen:

$$(x_4y_1 - x_1y_4)^m = (x_1y_3 - x_3y_4)^n (x_4y_3 - x_3y_4)^{m-n},$$
 (53a)

$$|x_4(\tau y_1 + y_2') - (\tau x_1 + x_2')y_4|^m =$$

$$= |(\tau x_1 + x_2')y_3 - x_3(\tau y_1 + y_2')|^n (x_4 y_3 - x_3 y_4)^{m-n}; \quad (56a)$$

der Punkt Y ist indess durch

$$\begin{cases}
 y_1 = (a_1 + b_1' \rho) y_3, \\
 \tau y_1 + y_2' = (a_2 + b_2' \rho) y_3, \\
 y_4 = \rho y_3
 \end{cases}
 . . . (57a)$$

gegeben.

Die Substitution (57a) liefert in den Gleichungen (53a) und (56a)

$$|(a_1 + b_1'\rho)x_4 - \rho x_4|^m = |x_4 - (a_1 + b_1'\rho)x_3|^n (x_4 - \rho x_3)^{m-n}, \quad (58a)$$

$$|(a_2 + b_2' \rho) x_4 - \rho (\tau x_1 + x_2')|^m = |\tau x_4 + x_2' - (a_2 + b_2' \rho) x_3|^n (x_4 - \rho x_3)^{m-n}. (59a)$$

Diese Gleichungen stellen daher zusammen die Strahlen dar, welche nach dem nahe bei A auf l liegenden Punkte Y zielen. Ihre Spuren in $x_3 = \mu x_4$ werden durch die Gleichungen

$$|(a_1 + b_1' \rho) x_4 - \rho x_4|^m = |x_1 - \mu(a_1 + b_1' \rho) x_4|^n (1 - \rho \mu)^{m-n} x_4^{m-n}, \quad (60a)$$

$$|(a_2 + b_2' \rho) x_4 - \rho (\tau x_1 + x_2')|^m =$$

$$= |\tau x_1 + x_2' - \mu (a_2 + b_2' \rho) x_4|^n (1 - \rho \mu)^{m-n} x_4^{m-n} . \quad (61a)$$

geliefert.

Diese Spuren befinden sich in der Nähe von E_{τ} , d. h. vom Punkte

$$x_2' = 0, \ x_4 = 0,$$

wonach ihre Coordinaten x_2' und x_4 kleine Werte aufweisen werden. Wir setzen darum

wo z eine kleine Grösse darstellt, und erhalten somit:

$$\begin{aligned} &[(a_1+b_1'\rho)z-\rho x_1]^n=[x_1-\mu(a_1+b_1'\rho)z]^n(1-\rho\mu)^{m-n}z^{m-n},\\ &[(a_2+b_2'\rho)z-\rho(\tau x_1+\lambda z)]^n=[\tau x_1+\lambda z-\mu(a_2+b_2'\rho)z]^n(1-\rho\mu)^{m-n}z^{m-n},\end{aligned}$$

oder

$$\begin{aligned} & \{ -\rho x_1 + (a_1 + b_1' \rho)z |^m = [x_1 - \mu(a_1 + b_1' \rho)z]^n (1 - \rho \mu)^{m-n} z^{m-n}, \\ & \{ -\rho \tau x_1 + (a_2 + b_2' \rho - \lambda \rho)z |^m = [\tau x_1 - (\mu a_2 + \mu b_2' \rho - \lambda)z]^n (1 - \rho \mu)^{m-n} z^{m-n}. \end{aligned}$$

Indem wir diese Formen nach Potenzen von z entwickeln und Potenzen mit Exponenten grösser als 1 vernachlässigen, finden wir

$$\begin{aligned} &(-\rho)^{m}x_{1}^{m}+m(-\rho)^{m-1}(a_{1}+b_{1}'\rho)x_{1}^{m-1}z=\\ &=|x_{1}^{n}-n\mu(a_{1}+b_{1}'\rho)x_{1}^{n-1}z|(1-\rho\mu)^{m-n}z^{m-n},\\ &(-\rho\tau)^{m}x_{1}^{m}+m(-\rho\tau)^{m-1}(a_{2}+b_{2}'\rho-\lambda\rho)x_{1}^{m-1}z=\\ &=|\tau^{n}x_{1}^{n}-n\tau^{n-1}(\mu a_{2}+\mu b_{2}'\rho-\lambda)x_{1}^{n-1}z|(1-\rho\mu)^{m-n}z^{m-n}.\end{aligned}$$

Durch Teilung entsteht hieraus

$$\frac{-\rho x_1 + m(a_1 + b_1'\rho)z}{-\rho \tau^{m-n+1} x_1 + m \tau^{m-n}(a_2 + b_2'\rho - \lambda \rho)z} = \frac{x_1 - n\mu(a_1 + b_1'\rho)z}{\tau x_1 - n(\mu a_2 + \mu b_2'\rho - \lambda)z},$$

also, wenn wir wieder z^2 vernachlässigen und die Relation $\tau^{m-n}=1$ beachten,

$$- \rho \tau x_1^2 + m (a_1 + b_1' \rho) \tau x_1 z + n \rho (\mu a_2 + \mu b_2' \rho - \lambda) x_1 z =$$

$$= - \rho \tau x_1^2 + m (a_2 + b_2' \rho - \lambda \rho) x_1 z + n \rho \mu (a_1 + b_1' \rho) \tau x_1 z,$$

oder

$$m(a_1+b_1'\rho)\tau+n\rho\mu(a_2+b_2'\rho)-n\rho\lambda=m(a_2+b_2'\rho)-m\lambda\rho+n\rho\mu(a_1+b_1'\rho)\tau,$$

also

$$\lambda = \frac{|a_2 - \tau a_1 + \rho (b_2' - \tau b_1')| (m - \mu \rho n)}{(m - n)\rho} \cdot . \quad (63a)$$

Es empfielt sich uns klar zu machen, wie weit wir der Lösung des vorliegenden Problems näher gerückt sind.

Wir hatten als Sammelpunkt der Strahlen den Punkt Ygewählt, welcher sich auf l in der Nähe von A befindet.

In Bezug auf das Coordinatentetraeder $E_{\tau} X_2 X_3 X_4$ werden die dem Punkte Y entstammenden Strahlen durch (58a) und (59a), ihre Spuren in $x_3 = \mu x_4$ durch (60a) und (61a) dargestellt.

Weil diese Spuren nahe an E_{τ} liegen müssen, setzten wir $x_4 = z$ und $x_2' = \lambda z$ an, wo z eine kleine Grösse und λ die Richtungsconstante der Gerade bezeichnet, welche E_{τ} mit einer

der betrachteten Spuren vereinigt. Diese Verbindungslinie geht offenbar, wenn Y mit A coincidirt, die Spur also in E_{τ} fällt, in die Tangente in E_{τ} über.

Diese Richtungsconstante λ haben wir mittels der Gleichung (63a) bestimmt.

Weil der in (63a) für λ gegebene Ausdruck eindeutig ist, fallen sämmtliche in der Nähe von E_{τ} liegenden Spuren längs derselben Gerade mit E_{τ} zusammen, m. a. W.: der Punkt E_{τ} besitzt nur eine einzige Tangente.

Die Richtungsconstante der Tangente stellt sich heraus, indem man in $(63a) \rho = 0$ setzt. Wir finden alsdann

$$\lambda = \infty$$
,

wofern \(\mu \) endlich ist.

Ist μ dagegen unendlich gross, so ist $\mu \rho n$, so lange ρ endlich ist, gross in Bezug auf m; der Ausdruck (63 α) nimmt für $\mu = \infty$, $\rho = 0$ diese Form an:

$$\lambda = -\frac{(a_2 - \tau a_1)n}{m - n} \mu.$$

In allen Ebenen $x_3 = \mu x_4$, für welche μ endlich ist, d. h. in allen durch $X_1 X_2$ gelegten Ebenen, ausgenommen ω_{∞} , wird die einzige Tangente in E_{τ} durch $\lambda = \infty$, also vermöge (62a) durch $x_4 = 0$ bestimmt; sie fällt demnach mit der Gerade $X_1 X_2$ zusammen.

In der Ebene ω_{∞} aber liegt die Sache anders; in ihr wird die Tangente von E_{τ} durch

$$\lambda = -\frac{(a_2 - \tau a_1) n}{m - n} \mu,$$

also durch

$$x_2' = -\frac{(a_2 - \tau a_1)n}{m - n} \mu x_4 = -\frac{(a_2 - \tau a_1)n}{m - n} x_3,$$

oder

$$x_2 - \tau x_1 + \frac{(a_2 - \tau a_1)n}{m - n} x_3 = 0$$
 . . . (64a)

angewiesen.

Durch die Transformation

$$x_{1} = \xi_{1} + a_{1} \xi_{3}, x_{2} = \xi_{2} + a_{2} \xi_{3}, x_{3} = \xi_{3}$$

verwandelt sich diese Gleichung in

$$(m + n)(\xi_2 - \tau \xi_1) + m(a_2 - \tau a_1) \xi_3 = 0.$$

Es ist diese Gleichung mit der Gleichung (31a) identisch, welche ja auch die Tangente in $E_{ au}$ an der in ω_{∞} befindlichen Kurve darstellt.

Die Gesammtheit der Tangenten in E_{τ} an den Schnittkurven aller Ebenen $x_3 = \mu x_4$ findet man, indem man in (63a) μ durch $x_3: x_4$ und λ durch $(x_2 - \tau x_4): x_4$ ersetzt. Man erhält sodann

$$x_2 - \tau x_1 = -\frac{a_2 - \tau a_1}{m - n} \left(\frac{m x_4}{\rho} + n x_3 \right)_{\rho = 0}$$

oder

$$x_4 = 0.$$

Es befinden sich daher alle in E_{τ} an der axialen Regelfläche gelegten Tangenten in der Ebene ω_{∞} , welche hier so zu sagen sich in der Gerade (64a) durchdringt.

Im Schnitte mit ω_0 war $E_{ au}$ ein *n*-facher Punkt. Es ist also $E_{ au}$ auch ein *n*-facher Punkt in jedem Schnitt mit einer durch $X_1 X_2$ gelegten Ebene, daher auch ein *n-*facher Punkt auf der Regelfläche.

Unser Schluss lautet demnach:

In der parabolischen Congruenz sind auf der axialen Regelfläche einer willkürlichen Gerade die Punkte $E_{\tau_{m-n}}$ alle **n**-fache Punkte. Die Tangenten befinden sich in **n** Ebenen, welche alle in ω_{∞} zusammengefallen sind. Die Tangenten an der Schnittkurve mit ω_∞ sind dagegen die Geraden, welche die Punkte $E_{ au_{m-n}}$ mit dem Schnittpunkte von X_3 A und der Gerade (33a) verbinden (siehe S. 205).

Auf der Regelfläche liegt noch eine Doppelkurve. Jede durch / gelegte Ebene trägt ja mn Strahlen, die sich in $\frac{mn(mn-1)}{2}$ Punkten schneiden. Diese Schnittpunkte gehören zwei wicht-unendlichbenachbarten Erzeugenden der Regelfläche an, sind daher Doppelpunkte.

Es leuchtet ein, dass die Doppelkurve mit einer durch / gelegten Ebene $\frac{mn(mn-1)}{2}$ Schnittpunkte liefert, welche ausserhalb / liegen. Der Grad der Doppelkurve ist bekannt, so bald man die Anzahl der Schnittpunkte von l mit der Doppelkurve kennt.

Im Folgenden wollen wir ein Verfahren darlegen, durch welches die Anzahl der Schnittpunkte bestimmt werden kann. Dieses Verfahren ist, falls m und n kleine Zahlen sind, gewiss nicht das kürzeste; wenn aber m und n gross sind, so sichert die hierunter beschriebene Methode am meisten ein brauchbares Resultat.

Es sei C (y_1, y_2, y_3, y_4) ein Punkt der Gerade l. Nach C zielen m^2 Congruenzstrahlen p, welche als die Schnittlinien von m Ebenen durch CX_1 mit m Ebenen durch CX_2 bestimmt sind. Die m durch CX_4 gelegten Ebenen schneiden ω_{∞} in m Geraden durch X_4 , welche durch

$$\frac{x_2}{x_3} = p_2$$

gegeben sind, wenn p_2 der Gleichung

$$(y_2 - p_2 y_3)^n - p_2^m y_4^n = 0$$
 . . . (65a)

genügt.

Wir denken uns den Punkt C in der Ebene $x_3 = \mu x_4$, wonach

$$y_3 = \mu y_4$$
.

Zuerst ersetzen wir das Coordinatentetraeder X_1 X_2 X_3 X_4 durch das Tetraeder X_4 X_2 AB' mittels der Formeln

$$y_{1} = y_{1} + a_{1}y_{3} + b_{1}'y_{4},$$

$$y_{2} = y_{2} + a_{2}y_{3} + b_{2}'y_{4},$$

$$y_{3} = y_{3},$$

$$y_{4} = y_{4},$$

$$p_{1} = \pi_{1} + a_{1},$$

$$p_{2} = \pi_{2} + a_{2}.$$
(66)

Bedenken wir noch, dass C sich auf l ($\eta_1 = \eta_2 = 0$) und in der Ebene $\eta_3 = \mu \eta_4$ befindet, so ist es klar, dass (65a) ersetzt wird durch

$$(b_2' - \mu \pi_2)^n - (\pi_2 + a_2)^m = 0. \quad . \quad . \quad (67a)$$

Diese Gleichung hat m Wurzeln, welche wir mit

$$(\boldsymbol{\pi}_2)_1, (\boldsymbol{\pi}_2)_2 \ldots (\boldsymbol{\pi}_2)_p, (\boldsymbol{\pi}_2)_q, (\boldsymbol{\pi}_2)_r, (\boldsymbol{\pi}_2)_s \ldots (\boldsymbol{\pi}_2)_m$$

bezeichnen werden.

Die m durch CX_2 gelegten Ebenen schneiden ω_{∞} in m Geraden durch X_2 , welche durch

$$\frac{x_1}{x_2} = p_1$$

gegeben sind, wenn p_1 der Gleichung

$$(y_1 - p_1 y_3)^n - p_1^m y_4^n = 0$$
 . . . (68*a*)

genügt. Durch die Transformation (66) geht diese Gleichung in die folgende über:

$$(b_1' - \mu \pi_1)^n - (\pi_1 + a_1)^m = 0.$$
 (69a)

Ihre m Wurzeln werden durch

$$(\pi_1)_1, (\pi_1)_2, \ldots, (\pi_1)_n, (\pi_1)_q, (\pi_1)_r, (\pi_1)_s, \ldots, (\pi_1)_m$$

angedeutet.

Die Spur P_{pq} eines durch C gelegten Strahles p_{pq} ist nun durch die Coordinaten

$$P_{pq} \cdot \cdot \cdot \frac{\pi_1 = (\pi_1)_p}{\pi_2 = (\pi_2)_q} \cdot \cdot \cdot \cdot \cdot \cdot (70)$$

angewiesen. Ebenso ist die Spur P_{rs} eines zweiten durch C gehenden Strahles p_{rs} durch

$$P_{rs} \dots \frac{\pi_1 = (\pi_1)_r}{\pi_2 = (\pi_2)_s} \dots \dots \dots (71)$$

bestimmt.

Wenn C ein Punkt der Doppelkurve sein soll, so muss C zwei Strahlen p_{pq} und p_{rs} tragen, welche mit l in einer Ebene liegen. Ihre Spuren P_{pq} und P_{rs} in ω_{∞} müssen dann aber mit der Spur A von l in einer Gerade liegen. Die Spur Λ ist durch

$$A...\frac{\pi_1 = 0}{\pi_2 = 0}$$
 (72)

gegeben, wonach die genannte Bedingung sich folgendermassen gestaltet:

$$\frac{(\pi_1)_p}{(\pi_2)_q} = \frac{(\pi_1)_r}{(\pi_2)_s}$$
,

oder

$$(\pi_1)_p \cdot (\pi_2)_s - (\pi_1)_r \cdot (\pi_2)_q = 0.$$
 (73)

In dieser Gleichung können die Indices p und s einander gleich sein, ebenso die q und r.

Ausserdem kann p = q, oder p = r, oder q = s, oder r = s sein.

Die Fälle p = r und q = s müssen hier abgesondert werden. Denn p = r bedeutet, dass die beiden Strahlen p_{pq} und p_{rs} in derselben durch CX_2 gelegten Ebene liegen. Die Bedingung (73) fordert alsdann $(\pi_2)_s = (\pi_2)_q$, weshalb die Strahlen gleichfalls in der selben durch CX_1 gelegten Ebene liegen. In diesem Falle sind die beiden Strahlen also identisch und hiervon ist nicht die Rede. Ebenso würde q = s die beiden Strahlen zur Coincidenz bringen.

Weil die Wurzeln von (67a) im Allgemeinen von denjenigen von (69a) verschieden sein, so haben die Beziehungen p = s, oder q = r, oder p = q, oder r = s keinen Einfluss auf die folgenden Betrachtungen.

Wenn wir alle Combinationen (73) ins Auge fassen, so lässt sich die Bedingung, dass C ein Punkt der Doppelkurve sei, ausdrücken, indem das Produkt aller Formen $(\pi_1)_p (\pi_2)_s \longrightarrow (\pi_1)_r (\pi_2)_q$ gleich Null gesetzt wird. Dieses Produkt ist eine symmetrische Funktion der Wurzeln von (67a) und (67b), daher auch eine Funktion der Coefficienten dieser Gleichungen, welche ausser a_1 , a_2 , b_1' und b_2' den Parameter μ enthalten, der die durch X_1 , X_2 und C gelegte Ebene bestimmt.

Die Gleichung

$$\Pi \left\{ (\pi_1)_p (\pi_2)_s - (\pi_1)_r (\pi_2)_q \right\} = 0$$

kann also umgestaltet werden in eine Gleichung

$$M(\mu) = 0$$
,

welche die Werte des Parameters μ für die Ebenen $x_3 = \mu x_4$ liefert, welche auf ℓ einen Punkt der Doppelkurve einschneiden.

Weil die Umformung einer symmetrischen Funktion der Wurzeln zweier Gleichungen in eine Funktion der Coefficienten nur bei kleinen Werten von m und n zu leidlichen Rechnungen Veranlassung giebt, wobei das Gelingen der Operationen überdies fast ganz und gar von einem Kniffe abhängt, so werden wir hierunter eine Methode geben, welche zwar etwas umständlicher ist, dafür aber weniger Kunstgriffe fordert.

Wir werden die Gleichung (69a) in π_1 mit

$$f_1(\pi_1) = 0, \dots, (74)$$

und die Gleichung (67a) in π_2 mit

bezeichnen. Beide Gleichungen sind von m^{ten} Grade.

Ersetzen wir in (75) π_2 durch $x : \pi_2'$, so erhalten wir

$$f_2\left(\frac{x}{\pi_2}\right) = 0.$$
 (76)

Ihre Wurzeln sind alsdann durch

$$\frac{x}{\boldsymbol{\pi_2}'} = (\boldsymbol{\pi_2})_{p,q\ldots},$$

also durch

$$oldsymbol{\pi_2}' = rac{x}{(oldsymbol{\pi_2})_{p,q,\dots}}$$

bestimmt.

Wenn (74) und (76) eine gemeinschaftliche Wurzel haben, so wird der Bedingung

$$(\pi_1)_p = rac{\alpha'}{(\pi_2)_s}$$

oder

$$x = (\pi_1)_p \cdot (\pi_2)_s \quad . \quad . \quad . \quad . \quad (77)$$

genügt.

Die Eliminante von (74) und (76) ist ein Ausdruck, in welchem nur die Coefficienten von (74) und (76) auftreten; sie ist also eine Funktion nur von a_1 , a_2 , b_1' , b_2' , μ und x.

Indem wir die Eliminante verschwinden lassen und a_1 , a_2 , b_1' , b_2' , μ als Constanten betrachten, bekommen wir eine Gleichung in x, welche wir durch

darstellen werden.

Jede Wurzel dieser Gleichung ist das Produkt (77) einer Wurzel von (74) mit einer Wurzel von (75).

Die Coefficienten von $\Phi(x)$ hangen nur von a_1 , a_2 , b_1' b_2' und μ ab. Hat nun $\Phi(x)$ zwei gleiche Wurzeln, so ergiebt sich, dass

ein Produkt $(\pi_4)_p$. $(\pi_2)_s$ einem Produkte $(\pi_4)_r$. $(\pi_2)_q$ gleich ist, eine Beziehung, welche eben durch die Gleichung (73) erfordert wird.

Die Funktion $\Phi(x)$ hat offenbar zwei gleiche Wurzeln, wenn ihre Diskriminante verschwindet. Diese Diskriminante ist eine Funktion der Coefficienten von $\Phi(x)$, enthält somit nur die Grössen a_1 , a_2 , b_1' , b_2' und μ . Indem wir sie verschwinden lassen, erhalten wir eine Gleichung von der Form

$$\Psi(a_1, a_2, b_1', b_2', \mu) = 0.$$

In dieser Gleichung sind a_1 , a_2 , b_1 und b_2 absolute Constanten. Daher ist diese Gleichung tatsächlich eine Gleichung in μ ,

$$F(\mu) = 0...$$
 (79)

Es erhellt, dass sie die Werte von μ liefert, welche den Punkten C auf l angehören, die auch auf der Doppelkurve liegen.

Wir haben jedoch zu beachten, dass unter den Formen $(\pi_1)_p(\pi_2)_s$ — $(\pi_4)_r(\pi_2)_q$ auch diejenigen vorkommen, in welchen p=r, oder q=s.

Wenn p = r, also $(\pi_1)_p = (\pi_1)_r$ ist, so wird die erwähnte Form

$$(\pi)_{v_1} | (\pi_{v_2})_{s_1} - (\pi_{v_2})_{s_1} |$$

Wenn aber $s \neq q$, so fordert das verschwinden dieser Form, dass die Gleichung $f_2(\pi_2)$ zwei gleiche Wurzeln habe. Hieraus folgt, dass der Gleichung (73) auch genügt wird durch diejenigen Werte von μ , welche zwei gleiche Wurzeln von $f_2(\pi_2) = 0$ liefern. Es ist also die Diskriminante von $f_2(\pi_2)$ ein Faktor von $F(\mu)$. Ebenso ist die Diskriminante von $f_4(\pi_4)$ ein Teiler von $F(\mu)$. Wenn wir die Diskriminanten von $f_4(\pi_4)$ und $f_2(\pi_2)$ bez. mit $g_4(\mu)$ und $g_2(\mu)$ bezeichnen, so können wir demnach schreiben

$$F(\mu) = \varphi_1(\mu). \ \varphi_2(\mu). \ \psi(\mu).$$

Es ist selbstredend, dass die gesuchten Punkte C nur durch die Gleichung

$$\psi(\mu) = 0$$

geliefert werden.

Wir wollen beiläufig bemerken, dass wir beim Berechnen der Diskriminante von $\Phi(x)$ zu einer Form gelangen werden, welche ein volkommenes Quadrat ist, weil wir durch Vertauschung der Indices p mit r und q mit s die Bedingung $(\pi_1)_p$. $(\pi_2)_s$ — $(\pi_1)_r$. $(\pi_2)_q$ = 0

in die gleichwertige Bedingung $(\pi_1)_r \cdot (\pi_2)_q - (\pi_1)_p \cdot (\pi_2)_s = 0$ transformiren.

Der Ausdruck $F(\mu)$ ist alsdann die Quadratwurzel aus der ursprünglichen Diskriminante.

Da die Grösse μ in ziemlich verwickelter Weise in den Coefficienten von $f_1(\pi_1)$ und $f_2(\pi_2)$ auftritt, so dürfte es schwer sein im allgemeinen Falle den Grad von $F(\mu)$, $\varphi_1(\mu)$ und $\varphi_2(\mu)$ zu bestimmen. Wir werden daher den Grad von $\psi(\mu)$ nicht berechnen, sondern ihn nur mit N bezeichnen.

Es liegen auf l also N Punkte der Doppelkurve.

Diese Kurve schneidet ausserdem eine durch l gelegte Ebene ausserhalb l in mn(mn-1): 2 Punkten.

Der Grad der Doppelkurve ist demnach

$$N+\frac{\mathit{mn}(\mathit{mn}-1)}{2}\,.$$

Es ist klar, dass die Doppelkurve die singulären Punkte X_1 , X_2 und $E_{\tau_{m-n}}$ der Regelfläche enthält.

Die Schnittkurve der axialen Regelfläche mit einer durch X_1X_2 gelegten Ebene ω_μ ($x_3=\mu x_4$) hat

in X_1 einen mn-fachen Punkt, von dessen Tangenten je m vereinigt sind in einer der n Geraden, in welchen die Ebene ω_{μ} durch die n Ebenen (46a) geschnitten wird;

in X_2 ebenfalls einen mn-fachen Punkt, dessen Tangenten die Spuren der n Ebenen (45 α) in der Ebene ω_{μ} sind;

in jedem der Punkte $E_{\tau_{m-n}}$ einen *n*-fachen Punkt, dessen Tangenten alle in X_1X_2 vereinigt sind (ausgenommen $\mu = \infty$);

im Schnittpunkte C_{μ} von l mit ω_{μ} einen m^2 -fachen Punkt, dessen Tangenten durch die nach C_{μ} zielenden Congruenzstrahlen bestimmt werden;

Doppelpunkte an den Stellen, wo ω_{μ} die Doppelkurve trifft.

§ 6b. Die axiale Regelfläche einer durchaus willkürlichen Gerade in der hyperbolischen Congruenz.

Wie in § 6α wird die Axe der Regelfläche mit l, ihre Spur in ω_{∞} mit A, ihr Schnittpunkt in ω_0 mit B' bezeichnet.

Es gehen jetzt durch jeden Punkt von $l (m+n)^2$ Congruenzstrahlen, wonach l eine $(\mathbf{m}+\mathbf{n})^2$ -fache Gerade auf ihrer axialen Regelfläche ist.

In jeder durch l gelegten Ebene befinden sich noch 2mn Strahlen. Eine solche Ebene hat also mit der axialen Regelfläche diese 2mn Geraden und ausserdem noch die $(m+n)^2$ -fache Gerade l gemein; der Gesammtschnitt ist demnach vom Grade $(m+n)^2 + 2mn$. Daher:

In der hyperbolischen Congruenz ist der Grad der axialen Regelfläche einer willkürlichen Gerade $(\mathbf{m} + \mathbf{n})^2 + 2\mathbf{m}\mathbf{n}$.

Die Punkte A und B' werden auch hier durch

$$A \dots \frac{x_1}{x_3} = a_1, \ \frac{x_2}{x_3} = a_2, \ x_4 = 0,$$
 $B' \dots \frac{x_1}{x_b} = b_1', \ \frac{x_2}{x_b} = b_2', \ x_3 = 0$

angewiesen. Die Gerade 1 ist also durch

$$\begin{array}{c|c}
x_1 = a_1 x_3 + b_1' x_4, \\
x_2 = a_2 x_3 + b_2' x_4
\end{array}$$
(18)

gegeben.

Ein durch

$$x_{1} = p_{1} x_{3} + p_{1}^{-\frac{m}{n}} x_{4},$$

$$x_{2} = p_{2} x_{3} + p_{2}^{-\frac{m}{n}} x_{4}$$

$$(6b)$$

bestimmter Congruenzstrahl p schneidet l, wenn er in der Ebene

$$\lambda_1 (x_1 - a_1 x_3 - b_1' x_4) + \lambda_2 (x_2 - a_2 x_3 - b_2' x_4) = 0 \quad (19)$$

liegt.

Die Coordinaten p_1 und p_2 haben somit den Bedingungen

$$\lambda_{1} (p_{1} - a_{1}) + \lambda_{2} (p_{2} - a_{2}) = 0,$$

$$\lambda_{1} (p_{1}^{-\frac{m}{n}} - b_{1}') + \lambda_{2} (p_{2}^{-\frac{m}{n}} - b_{2}') = 0$$

zu genügen, woraus, durch Elimination von λ_1 und λ_2 , die Gleichung

$$\frac{1 - b_1' p_1^{\frac{m}{n}}}{(p_1 - a_1) p_1^{\frac{m}{n}}} = \frac{1 - b_2' p_2^{\frac{m}{n}}}{(p_2 - a_2) p_2^{\frac{m}{n}}} \quad . \quad . \quad (20b)$$

hervorgeht.

Die Gleichung der axialen Regelfläche wird ermittelt, indem man aus den beiden Gleichungen (6b) und aus der Gleichung (20b) die Grössen p_1 und p_2 eliminirt.

Die Gleichung $(20\overline{b})$ stellt, wenn wir p_1 und p_2 bez. durch

 $x_1:x_3$ und $x_2:x_3$ ersetzen, auch den geometrischen Ort derjenigen Punkte von ω_{∞} dar, nach denen Congruenzstrahlen zielen, welche l schneiden.

Dieser Ort ist demnach ein Bestandteil des Schnittes von ω_{∞} mit der axialen Regelfläche.

Wir bringen (20b) zuerst in die Form

$$\begin{split} &(p_1-a_1)p_1^{\frac{m}{n}}-(p_2-a_2)p_2^{\frac{m}{n}}-\\ &-|b_2{'}(p_1-a_1)-{}^*b_1{'}(p_2-a_2)|p_1^{\frac{m}{n}}p_2^{\frac{m}{n}}=0 \quad . \quad (21b) \end{split}$$

und verlegen alsdann die Ecke X_3 nach A, und zwar mit Verwendung der folgenden Formeln

$$\begin{array}{c|c} x_1 = \xi_1 + a_1 \, \xi_3 \, , \\ x_2 = \xi_2 + a_2 \, \xi_3 \, , \\ x_3 = \xi_3 \, , \end{array}$$
 (22)

$$\frac{\xi_1}{\xi_3} = \pi_1, \frac{\xi_2}{\xi_3} = \pi_2, \dots$$
 (23)

Die Substitution dieser Ausdrücke in (216) liefert

$$\begin{split} &\pi_{1}(\pi_{1}+a_{1})^{\frac{m}{n}}-\pi_{2}(\pi_{2}+a_{2})^{\frac{m}{n}}-\\ &-(b_{2}{'}\pi_{1}-b_{1}{'}\pi_{2})(\pi_{1}+a_{1})^{\frac{m}{n}}(\pi_{2}+a_{2})^{\frac{m}{n}}=0\,,\quad .\quad (25b) \end{split}$$

oder, mittels (23),

$$\xi_{1}(\xi_{1} + a_{1} \xi_{3})^{\frac{m}{n}} \xi_{3}^{\frac{m}{n}} - \xi_{2}(\xi_{2} + a_{2} \xi_{3})^{\frac{m}{n}} \xi_{3}^{\frac{m}{n}} - (b_{2}' \xi_{1} - b_{1}' \xi_{2}) (\xi_{1} + a_{1} \xi_{3})^{\frac{m}{n}} (\xi_{2} + a_{2} \xi_{3})^{\frac{m}{n}} = 0. \quad (26b)$$

Nach Fortschaffung der gebrochenen Exponenten wird diese Gleichung vom Grade n(2m+n).

Der oben erwähnte Ort ist also eine Kurve vom Grade n(2m + n).

Der Gesammtschnitt der axialen Regelfläche mit ω_{∞} muss vom Grade $(m+n)^2 + 2mn$ sein. Die durch (26b) gegebene Kurve wird daher zum vollständigen Schnitt ergänzt durch ein Gebilde vom Grade $(m+n)^2 + 2mn - n(2m+n) = m(m+2n)$.

Zu den Congruenzstrahlen, welche l schneiden, gehören auch die Geraden AX_4 , AX_2 und AX_3 . Nach § 5θ haben wir die

Geraden AX_1 und AX_2 jede mn mal, die Gerade AX_3 m^2 mal zu rechnen. Diese drei Geraden bilden mithin zusammen eine Figur vom Grade $2mn + m^2 = m(m + 2n)$. Diese Figur ergänzt die Kurve (26b) zum Gesammtschnitt in ω_{∞} . Wir ziehen demnach diesen Schluss: Der Schnitt der axialen Regelfläche einer willkürlichen Gerade l = AB' mit ω_{∞} besteht aus einer Kurve vom Grade $\mathbf{n}(2\mathbf{m} + \mathbf{n})$, den Geraden AX_1 und AX_2 , jede \mathbf{mn} -fach gezählt, und schliesslich aus der Gerade AX_3 \mathbf{m}^2 -fach gerechnet.

Die Kurve in ω_{∞} werde nun einer eingehenderen Betrachtung unterworfen. Aus ihrer Gleichung:

$$\xi_{1}(\xi_{1} + a_{1}\xi_{3})^{\frac{m}{n}}\xi_{3}^{\frac{m}{n}} - \xi_{2}(\xi_{2} + a_{2}\xi_{3})^{\frac{m}{n}}\xi_{3}^{\frac{m}{n}} - (b_{2}'\xi_{1} - b_{1}'\xi_{2})(\xi_{1} + a_{1}\xi_{3})^{\frac{m}{n}}(\xi_{2} + a_{2}\xi_{2})^{\frac{m}{n}} = 0 . \quad (26b)$$

geht hervor, dass $\xi_1^{1+\frac{m}{n}}$ die höchste Potenz von ξ_1 ist. Ihr Coefficient ist $\xi_3^{\frac{m}{n}} - b_2'(\xi_2 + a_2\xi_3)^{\frac{m}{n}}$; daher werden die Tangenten in X_1 dargestellt durch

$$b_2'(\xi_2 + a_2 \xi_3)^{\frac{m}{n}} - \xi_3^{\frac{m}{n}} = 0,$$

oder

$$b_2^{\prime n}(\xi_2 + a_2 \xi_3)^m - \xi_3^m = 0$$
,

oder

$$b_2^{'n} x_2^m - x_3^m = 0$$
,

also in der rationalen Gleichung durch

$$(b_2^{'n} x_2^m - x_3^m)^n = 0.$$

Wir schliessen, dass X_1 ein mn-facher Punkt ist, von dessen Tangenten je n in einer der m Geraden

$$x_2 = {b_2'}^{-\frac{n}{m}} x_3$$

zusammengefallen sind. Es sind diese offenbar die Verbindungslinien von X_1 mit den m^2 in ω_{∞} liegenden Bildern B des in ω_0 befindlichen Punktes B'.

Wir dürfen also Folgendes behaupten:

Die Kurve in ω_{∞} hat in X_1 einen \mathbf{mn} -fachen Punkt, von dessen Tangenten je \mathbf{n} vereinigt sind in einer der \mathbf{m} Geraden, welche X_1 mit den \mathbf{m}^2 Bildern B von B' verbinden.

Für X_2 gilt natürlich dasselbe.

Die Gerade X_1 X_2 schneidet die Kurve in den Punkten, welche durch

$$(b_2'\xi_1 - b_1'\xi_2)\xi_1^{\frac{m}{n}}\xi_2^{\frac{m}{n}} = 0,$$

also in der rationalen Gleichung durch

$$(b_2'\xi_1 - b_1'\xi_2)^{n^2}\xi_1^{mn}\xi_2^{mn} = 0$$

bestimmt sind. Es ist klar, dass die Gerade $X_1 X_2$ die Kurve mn mal im (mn-fachen) Punkte X_1 , mn mal im (mn-fachen) Punkte X_2 und n^2 mal in dem Punkte schneidet, welcher durch

$$b_2' \xi_1 - b_1' \xi_2 = 0$$

gegeben und mit dem Schnittpunkte B_4 von X_4 B und X_1 X_2 identisch ist. Wir wollen die Beschaffenheit dieses Punktes später erörtern.

Zuerst wollen wir den Zustand im Punkte A erledigen.

Die höchste Potenz von ξ_3 ist $\xi_3^{\frac{2m}{n}}$. Thre Coefficient ist $a_1^{\frac{m}{n}}\xi_1$ — $-a_2^{\frac{m}{n}}\xi_2$ — $(b_2'\xi_1 - b_1'\xi_2) a_1^{\frac{m}{n}}a_2^{\frac{m}{n}}$, wonach die Tangenten in A durch

$$a_1^{\frac{m}{n}}\xi_1 - a_2^{\frac{m}{n}}\xi_2 - (b_2'\xi_1 - b_1'\xi_2)a_1^{\frac{m}{n}}a_2^{\frac{m}{n}} = 0,$$

oder

$$\frac{\xi_{1}}{\xi_{2}} = \frac{a_{2}^{"'} \left(1 - b_{1}' a_{1}^{"'}\right)}{a_{1}^{"'} \left(1 - b_{2}' a_{2}^{"'}\right)} = \frac{a_{1}^{-"'} - b_{1}'}{a_{2}^{-"'} - b_{2}'} \quad . \quad (27b)$$

bestimmt sind.

Durch die Umformung des Coordinatentetraeders X_4 X_2 X_3 X_4 in das Tetraeder X_1 X_2 AB' mittels der Formeln

wonach / durch

$$\begin{aligned} \xi_1 &= 0, \\ \xi_2 &= 0 \end{aligned}$$

gegeben ist, gewinnen wir die Einsicht, dass die Gleichung (27b) auch die axialen Projektionen aus l auf ω_0 jener Tangenten in A darstellt.

Die Gerade (27b), als Gerade in ω_0 betrachtet, enthält den Punkt

$$\xi_{1} = \left(a_{1}^{-\frac{m}{n}} - b_{1}'\right)\xi_{4},$$

$$\xi_{2} = \left(a_{2}^{-\frac{m}{n}} - b_{2}'\right)\xi_{4},$$

der im alten Coordinatensystem durch

$$x_{1} = a_{1}^{-\frac{m}{n}} x_{4},$$

$$x_{2} = a_{2}^{-\frac{m}{n}} x_{4}$$

angewiesen und deshalb mit dem Bilde A' des Punktes A identisch ist.

Weil der Ausdruck (27b) n^2 -deutig ist, so ist A ein n^2 -facher Punkt; seine Tangenten sind die axialen Projektionen aus l auf ω_{∞} der n^2 Bilder A' von A.

Wir sind also zum folgenden Resultate gelangt:

Der Punkt A ist ein \mathbf{n}^2 -facher Punkt der Kurve in $\boldsymbol{\omega}_{\infty}$. Seine Tangenten sind die axialen Projektionen aus l auf $\boldsymbol{\omega}_{\infty}$ der \mathbf{n}^2 in $\boldsymbol{\omega}_0$ liegenden Bilder A' von A.

Es ist in § 6a bemerkt worden, dass dieses Resultat auch in rein geometrischer Weise gewonnen worden könnte. Auch hier hätten wir die Tangenten in \mathcal{A} auffinden können durch die Überlegung, dass sie durch die nach \mathcal{A} zielenden Congruenzstrahlen bestimmt sind.

Untersuchen wir jetzt den Zustand im Punkte B_4' .

Wir verlegen zuerst die Ecke X_1 in B_4 mittels der Transformation

$$\xi_2 = \frac{b_2'}{b_1'} \xi_1 + \xi_2'.$$

Die Gleichung (26b) verwandelt sich alsdann in

$$\xi_{1}(\xi_{1} + a_{1}\xi_{3})^{\frac{m}{n}}\xi_{3}^{\frac{m}{n}} - \left(\frac{b_{2}'}{b_{1}'}\xi_{1} + \xi_{2}'\right)\left(\frac{b_{2}'}{b_{1}'}\xi_{1} + \xi_{2}' + a_{2}\xi_{3}\right)^{\frac{m}{n}}\xi_{3}^{\frac{m}{n}} + b_{1}'\xi_{2}'(\xi_{1} + a_{1}\xi_{3})^{\frac{m}{n}}\left(\frac{b_{2}'}{b_{1}'}\xi_{1} + \xi_{2}' + a_{2}\xi_{3}\right)^{\frac{m}{n}} = 0. \quad (29b)$$

Der Punkt B_4 ist jetzt durch

$$\xi_2' = 0, \ \xi_3 = 0$$

gegeben. Wir müssen demnach die höchste Potenz von ξ_1 betrachten. Wir setzen voraus

$$m > n$$
.

Die höchste Potenz von ξ_1 ist somit ξ_1^{n} . Ihr Coefficient ist ξ_2' . In der rationalen Gleichung hat ξ_1^{2mn} daher den Coefficient $\xi_2^{\prime n^2}$.

Der Punkt B_4 ist also ein n^2 -facher und seine sämmtlichen Tangenten sind mit der Gerade

$$\xi_{2}'=0$$

oder

$$b_2'\xi_1 - b_1'\xi_2 = 0$$
, (31b)

d. h. mit der Gerade, welche $B_4^{'}$ mit A verbindet, zusammengefallen.

Da $\boldsymbol{\xi_2}'=0$ in (29*b*) einen Faktor $\boldsymbol{\xi_3}^n$, also in der rationalen Gleichung einen Fakter $\boldsymbol{\xi_3}^{mn}$ absondert, so hat die Gerade AB_4' im n^2 -fachen Punkte B_4' mn Punkte mit der Kurve gemein.

Die obigen Überlegungen lassen sich folgendermassen zusammenfassen: Die Kurve in ω_{∞} hat, für m > n, in dem Schnittpunkte B_4' von X_4B' mit X_1X_2 einen n^2 -fachen Punkt, dessen Tangenten alle in der Gerade AB_4' vereinigt sind; es hat diese Gerade in B_4' mit der Kurve mn Punkte gemein.

Der Punkt X_3 gehört auch hier der Kurve in ω_{∞} an.

Bei der Untersuchung von X_3 werden wir die Gleichung (21b) verwenden, welche durch die Substitution $p_1 = x_1 : x_3, p_2 = x_2 : x_3$ diese Gestallt bekommt:

$$(x_{1} - a_{1} x_{3}) x_{1}^{\frac{m}{n}} x_{3}^{\frac{m}{n}} - (x_{2} - a_{2} x_{3}) x_{2}^{\frac{m}{n}} x_{3}^{\frac{m}{n}} -$$

$$- |b_{2}'(x_{1} - a_{1} x_{3}) - b_{1}'(x_{2} - a_{2} x_{3})| x_{1}^{n} x_{2}^{\frac{m}{n}} = 0. \quad . \quad (32b)$$

Die höchste Potenz von x_3 , d. h. $x_3^{1+\frac{m}{n}}$ hat nun den Coefficient $a_1x_1^{\frac{m}{n}} - a_2x_2^{\frac{m}{n}}$, sodass die Tangenten in X_3 bestimmt sind durch

$$a_1 x_1^{\frac{m}{n}} - a_2 x_2^{\frac{m}{n}} = 0$$
,

oder

$$a_1^n x_1^m - a_2^n x_2^m = 0,$$

also in der rationalen Gleichung durch

$$(a_1^n x_1^m - a_2^n x_2^m)^n = 0.$$

Der Punkt X_3 erscheint demnach als ein mn-facher Punkt, von dessen Tangenten je n in einer der m Geraden

$$\frac{x_1}{x_2} = \left(\frac{a_1}{a_2}\right)^{-\frac{n}{m}} \quad . \quad . \quad . \quad . \quad . \quad (33b)$$

vereinigt sind.

Es sind diese, wie leicht ersichtlich, die m Bilder der in ω_0 befindlichen Gerade

$$\frac{x_1}{x_2} = \frac{a_1}{a_2},$$

welche mit $X_3 A$ die Gerade $X_4 X_2$ im nämlichen Punkte A_3 schneidet, also mit $X_4 A_3$ identisch ist. Daher:

Die in ω_{∞} liegende Kurve hat in X_3 einen $\operatorname{mu-fachen}$ Punkt, von dessen Tangenten je n vereinigt sind in einer der m Bilder der Gerade X_4A_3 , welche X_4 mit dem Schnittpunkte A_3 von X_4X_2 und X_3A verbindet.

Hiermit beendigen wir die Untersuchung der Schnittkurve mit ω_{∞} . Während wir in der *parabolischen* Congruenz die Kurve in ω_0 besonders zu erforschen hatten, so genügt es hier zu bemerken, dass die Ebenen ω_{∞} nnd ω_0 fast gänzlich als gleichwertig zu betrachten sind, wenn wir nur in den obigen Resultaten m mit n, Λ mit B' und X_3 mit X_4 vertauschen.

Es giebt aber einen Unterschied, und zwar dort, wo wir die Ungleichheit m > n betont haben. Dies war der Fall bei der Erledigung der Beschaffenheit von B_4 .

Zuerst wollen wir bemerken, dass die Kurve in ω_0 zum vollständigen Schnitt ergänzt wird durch die Geraden X_1B' und X_2B' welche beide mn-fach zu zählen sind und durch die n^2 -fach zu rechnende Gerade X_3B' .

Aus diesem Letzteren geht hervor, dass auch der Schnittpunkt B_4' von X_3B' mit X_4X_2 ein n^2 -facher Punkt des Gesammtschnittes ist. Da B_4' auch ein n^2 -facher Punkt des in ω_{∞} befindlichen Gesammtschnittes war, so ist B_4' kein Punkt der Kurve in ω_0 .

In ω_{∞} war dagegen A_3 , der Schnittpunkt von X_1X_2 mit der m^2 -fachen Gerade X_3A , ein m^2 -facher Punkt des Gesammtschnittes. Es wird deshalb die Gerade X_1X_2 mit der Kurve in ω_0 m^2 -mal den Punkt A_3 gemein haben.

Wir wollen uns nunmehr besonders mit diesem Punkt A_3 beschäftigen.

Wenn wir in (26b) a_1 durch b_1' , a_2 durch b_2' , ξ_3 durch ξ_4 und m durch n ersetzen, so finden wir für die Kurve in ω_0 diese Gleichung:

$$\xi_{1}(\xi_{1} + b_{1}'\xi_{4})^{\frac{n}{m}}\xi_{4}^{\frac{n}{m}} - \xi_{2}(\xi_{2} + b_{2}'\xi_{4})^{\frac{n}{m}}\xi_{4}^{\frac{n}{m}} - (a_{2}\xi_{1} - a_{1}\xi_{2})(\xi_{1} + b_{1}'\xi_{4})^{\frac{n}{m}}(\xi_{2} + b_{2}'\xi_{4})^{\frac{n}{m}} = 0. \quad (40b)$$

Indem wir die Ecke X_1 in A_3 $(a_2 \xi_1 - a_1 \xi_2 = 0, \xi_4 = 0)$ verlegen mittels der Formel

$$\xi_2 = \frac{a_2}{a_1} \xi_1 + \xi_2',$$

so bekommt (40b) diese Gestalt:

$$\xi_{1}(\xi_{1} + b_{1}'\xi_{1})^{\frac{n}{m}}\xi_{1}^{\frac{n}{m}} - \left(\frac{a_{2}}{a_{1}}\xi_{1} + \xi_{2}'\right)\left(\frac{a_{2}}{a_{1}}\xi_{1} + \xi_{2}' + b_{2}'\xi_{1}\right)^{\frac{n}{m}}\xi_{1}^{\frac{n}{m}} - a_{1}\xi_{2}'(\xi_{1} + b_{1}'\xi_{1})^{\frac{n}{m}}\left(\frac{a_{2}}{a_{1}}\xi_{1} + \xi_{2}' + b_{2}'\xi_{1}\right)^{\frac{n}{m}} = 0. \quad (43b)$$

Der Punkt A_3 ist jetzt durch

$$\xi_{2}' = 0$$
, $\xi_{1} = 0$

gegeben. Die höchste Potenz von ξ_1 ist jetzt nicht $\xi_1^{\frac{2n}{m}}$, sondern $\xi_1^{\frac{1+\frac{n}{m}}{m}}$. Ihr Coefficient ist $\xi_4^{\frac{n}{m}} = \left(\frac{a_2}{a_1}\right)^{\frac{1+\frac{n}{m}}{m}} \xi_4^{\frac{n}{m}}$; also werden in der rationalen Gleichung die Tangenten in A_3 durch

$$\xi_{4}^{mn} = 0$$

bestimmt. Es erhellt, dass A_3 ein mn-facher Punkt ist, und dass seine sämmtlichen Tangenten mit $X_1 X_2$ zusammengefallen sind.

Da $\xi_4 = 0$ in (43b) den Faktor ξ_2 , also in der rationalen Gleichung den Faktor ξ_2 absondert, so hat $X_1 X_2$ in A_3 mit der Kurve m^2 Punkte gemein, wie auch oben gefunden wurde. Also:

Die Kurve in ω_0 hat in A_3 einen mn-fachen Punkt, dessen sämmtliche Tangenten mit X_1X_2 zusammengefallen sind. Die Gerade X_1X_2 hat in A_3 mit der Kurve m^2 Punkte gemein.

Im Übrigen weist die Kurve in ω_0 keine bemerkenswerten Abweichungen auf.

Es ist jetzt unsere Aufgabe das Verhalten der Punkte X_1 und X_2 als Punkte der Regelfläche zu erörtern.

Es waren X_1 und X_2 sowohl im Gesammtschnitte von ω_{∞} , wie auch in demjenigen von ω_0 beide 2mn-fache Punkte. Sie waren nämlich mn-fache Punkte der in diesen Ebenen befindlichen Kurven, und trugen ausserdem noch mn-mal bez. die Geraden X_1 A und X_2 A in ω_{∞} , X_1 B' und X_2 B' in ω_0 .

Die Punkte X_1 und X_2 sind demnach auch auf der Regelfläche 2mn-fache Punkte und es ist jetzt die Frage, wie steht es um die Taugenten in diesen Punkten?

Die Berührungsebenen in X_1 und X_2 werden durch diejenigen Congruenzstrahlen bestimmt, welche nach X_4 und X_2 zielen.

Es entstammen diese Strahlen entweder dem Punkte A oder dem Punkte B'.

Die Congruenzstrahlen, welche in einem Punkt X (x_1, x_2, x_3, x_4) zusammentreffen, befinden sich in m+n durch XX_1 und in m+n durch XX_2 gelegten Ebenen. Wenn X in A liegt, so sind, sowohl von den m+n Ebenen durch XX_1 wie von den m+n Ebenen durch XX_2 , m mit ω_{∞} zusammengefallen. Die übrigen n durch XX_2 gelegten Ebenen sind nun durch

$$(x_4 - a_1 x_3)^n a_4^m - x_4^n = 0$$
 . . . (45b)

angewiesen, während die übrigen n durch XX_1 gelegten Ebenen durch

$$(x_2 - a_2 x_3)^n a_2^m - x_4^n = 0$$
 . . . (466)

bestimmt sind. Um dies zu beweisen würde es genügen die Betrachtungen von S. 211 mit kleinen Abänderungen zu wiederholen.

Die in X_4 an der Regelfläche gelegten Tangenten sind also teilweise in den n Ebenen (46b) aufgespeichert.

Wenn wir X in B' gelegt hätten, so würden von den m+n durch X_2 gelegten Ebenen n mit ω_0 zusammengefallen sein; die übrigen m wären alsdann durch

$$(x_1 - b_1' x_4)^m b_1'^n - x_3^m = 0 \dots (45'b)$$

angewiesen, die m durch $B'X_4$ gelegten, nicht mit ω_0 zusammenfallenden Ebenen dagegen durch

$$(x_2 - b_2' x_4)^m b_2'^n - x_3^m = 0...$$
 (46'b)

Die in X_1 an der Regelfläche gelegten Tangenten befinden sich also auch teilweise in den m Ebenen (46'b).

Der 2mn-fache Punkt X_4 hat einen Tangentenkegel vom Grade

2mn, welcher dem Obigen nach in die n Ebenen (46 δ) und in die m Ebenen (46 δ) ausgeartet erscheint.

Wir haben, wegen der Vertauschbarkeit von m und n, den Zustand derweise zu betrachten, dass wir die n Ebenen (46b) jede für m und die m Ebenen (46b) jede für n zählen.

Diese Darlegungen gelten offenbar c. p. auch für X_2 .

Das Vorhergehende lässt sich also in dem folgenden Satz zusammenfassen:

In der hyperbolischen Congruenz sind auf der axialen Regelftäche einer willkürlichen Gerade X_1 und X_2 beide 2mn-fache Punkte. Die Tangenten von X_4 befinden sich in 2mn Ebenen, von denen mn zu ie m in den n Ebenen (46b) und die übrigen mn zu je n in den m Ebenen (46b) zusammenge fallen sind. Die Tangenten von X_2 liegen in 2mn Ebenen, von denen mn zu je m in den n Ebenen (45b) und die übrigen mn zu je n in den n Ebenen (45b) vereinigt sind.

Die Ebenen (46b) schneiden ω_{∞} in der *n*-fachen Gerade $x_2 - a_2 x_3 = 0$, d.h. in der Gerade AX_4 . Diese Gerade zählt also als Tangente am vollständigen Schnitte für mn. Sie ist auch tatsächlich ein mn-facher Bestandteil des ausgearteten Durchschnittsgebildes.

Die Ebenen (46'b) schneiden ω_{∞} in den m Geraden $b_2^{'n}x_2^m - x_3^m = 0$,

oder $x_2: x_3 = {b_2'}^{-\frac{n}{m}}$, d.h. in den m Bildern von X_1B' . Diese, jede für n zu zählenden Geraden sind auch wirklich die Tangenten in X_1 an der Kurve in ω_{∞} .

Für X_2 und für die Ebene ω_0 kann man analoge Betrachtungen halten.

Wir wollen jetzt auch die Punkte der Gerade X_3X_4 einer eingehenden Forschung unterwerfen.

Es seien X (x_1 , x_2 , x_3 , x_4) und Y (y_1 , y_2 , y_3 , y_4) zwei Punkte des Congruenzstrahles p; alsdann werden die folgenden Bedingungen erfüllt:

$$(x_1 - p_1 x_3) p_1^{\frac{m}{n}} = x_4, \dots (47b)$$

$$(x_2 - p_2 x_3) p_2^{\frac{m}{n}} = x_4, \dots (48b)$$

$$(y_1 - p_1 y_3) p_1^{"} = y_4, \dots (49b)$$

$$(y_2 - p_2 y_3) p_2^{\frac{m}{n}} = y_4. \quad . \quad . \quad . \quad (50b)$$

Aus (47b) und (49b) folgt

$$\frac{x_1 - p_1 x_3}{x_4} = \frac{y_1 - p_1 y_3}{y_4},$$

wonach

$$p_1 = \frac{x_1 y_4 - x_4 y_1}{x_3 y_4 - x_4 y_3} \dots \dots (51b)$$

und

$$\frac{x_4 - p_1 x_4}{x_4} = \frac{x_3 y_4 - x_1 y_3}{x_3 y_4 - x_4 y_3}. \qquad (52b)$$

Aus (47b), (51b) und (52b) geht nun hervor:

$$\left(\frac{x_3y_1-x_1y_3}{x_3y_4-x_4y_3}\right)\left(\frac{x_1y_4-x_4y_1}{x_3y_4-x_4y_3}\right)^{\frac{m}{n}}=1,$$

oder

$$(x_4y_1 - x_1y_4)^m (x_1y_3 - x_3y_1)^n = (x_4y_3 - x_3y_4)^{m+n}$$
. (53b)

In derselben Weise lässt sich aus (49b) und (50b) ableiten:

$$(x_4y_2 - x_2y_4)^m (x_2y_3 - x_3y_2)^n = (x_4y_3 - x_3y_4)^{m+n}$$
. (54b)

Indem wir Y festhalten und X beweglich machen, so stellt die Gleichung (53b) m+n, alle durch Y und X_2 hindurchgehenden Ebenen dar, während (54b) m+n Ebenen anweist, welche Y und X_4 enthalten. Die beide Gleichungen bestimmen zusammen die $(m+n)^2$ Congruenzstrahlen, welche nach Y zielen.

Wir legen jetzt den Punkt Y auf die Gerade X_3X_4 und setzen deshalb

$$y_1 = 0,$$
 $y_2 = 0,$
 $y_3 = \mu_3 y,$
 $y_4 = \mu_4 y.$

Die Gleichungen (53b) und (54b) bekommen dadurch diese Gestallt:

$$(-\mu_4)^m \mu_3^n x_1^{m+n} = (\mu_3 x_4 - \mu_4 x_3)^{m+n}, \quad . \quad . \quad (56b)$$

$$(-\mu_4)^m \mu_3^m x_2^{m+n} = (\mu_3 x_4 - \mu_4 x_3)^{m+n}$$
 . . . (57b)

Soll einer dieser Strahlen die Gerade l schneiden, so muss den Beziehungen

$$x_1 = a_1 x_3 + b_1' x_4,$$

 $x_2 = a_2 x_3 + b_2' x_4$

genügt werden, wonach wir erhalten:

$$(-\mu_4)^m \mu_3^n (a_1 x_3 + b_1' x_4)^{m+n} = (\mu_3 x_4 - \mu_4 x_3)^{m+n}, \quad (58b)$$

$$(-\mu_4)^m \mu_3^n (a_2 x_3 + b_2' x_4)^{m+n} = (\mu_3 x_4 - \mu_4 x_3)^{m+n}. \quad . \quad (59b)$$

Indem wir aus diesen Gleichungen x_3 und x_4 eliminiren, erhalten wir eine Gleichung in $\mu_3 : \mu_4$, welche diejenigen Punkte auf X_3X_4 bestimmt, denen Congruenzstrahlen entstammen, welche l schneiden.

Wir bemerken, dass ein Wert für $\mu_3: \mu_4$ m+n Werte für das Verhältniss $x_3: x_4$ bestimmt; wir schliessen somit, dass, wenn es überhaupt durch einen Punkt von X_3X_4 Congruenzstrahlen giebt, welche l schneiden, diese in der Zahl m+n vorkommen. Ein solcher Punkt von X_3X_4 ist daher ein (m+n)-facher.

Aus (58b) und (59b) folgt

$$\mu_3 x_4 - \mu_4 x_3 = (-\mu_4)^{\frac{m}{m+n}} \mu_3^{\frac{n}{m+n}} (a_1 x_3 + b_1' x_4),$$

und

$$\mu_3 x_4 - \mu_4 x_3 = (-\mu_b)^{\frac{m}{m+n}} \mu_3^{\frac{n}{m+n}} (a_2 x_3 + b_2' x_b),$$

also

$$\frac{\mu_4 + (-\mu_4)^{\frac{m}{m+n}} \mu_3^{\frac{n}{m+n}} a_1}{\mu_4 + (-\mu_4)^{\frac{m}{m+n}} \mu_3^{\frac{n}{m+n}} a_2} = \frac{\mu_3 - (-\mu_4)^{\frac{m}{m+n}} \mu_3^{\frac{n}{m+n}} b_1'}{\mu_3 - (-\mu_4)^{\frac{m}{m+n}} \mu_3^{\frac{n}{m+n}} b_2'},$$

oder

$$\mu_{3}\mu_{4} + (-\mu_{4})^{\frac{2m+n}{m+n}}\mu_{3}^{\frac{n}{m+n}}b_{2}' + (-\mu_{4})^{\frac{m}{m+n}}\mu_{3}^{\frac{m+2n}{m+n}}a_{4} - (-\mu_{4})^{\frac{2m}{m+n}}\mu_{3}^{\frac{2n}{m+n}}a_{4}b_{2}' =$$

$$= \mu_{3}\mu_{4} + (-\mu_{4})^{\frac{2m+n}{m+n}}\mu_{3}^{\frac{n}{m+n}}b_{1}' + (-\mu_{4})^{\frac{m}{m+n}}\mu_{3}^{\frac{m+2n}{m+n}}a_{2} - (-\mu_{4})^{\frac{2m}{m+n}}\mu_{3}^{\frac{2n}{m+n}}a_{2}b_{1}',$$

daher

$$(-\mu_4)^{\frac{m}{m+n}}\mu_3^{\frac{n}{m+n}}[\mu_3(a_1-a_2)+\mu_4(b_1'-b_2')-(-\mu_4)^{\frac{m}{m+n}}\mu_3^{\frac{n}{m+n}}(a_1b_2'-a_2b_1')]=0.$$

Wir finden demnach

$$\mu_4^m = 0,
\mu_3^n = 0$$

und

$$[\mu_3(a_1-a_2)+\mu_4(b_1'-b_2')]^{m+n}-(-\mu_4)^m\mu_3''(a_1b_2'-a_2b_1')^{m+n}=0. \quad (60b)$$

Die Gleichung $\mu_4^m = 0$ weist m mal den Punkt X_3 , die Gleichung $\mu_3^n = 0$ n mal den Punkt X_4 an.

Dagegen bestimmt die Gleichung (60b) m+n Punkte X_{μ} auf $X_3 X_4$, denen Congruenzstrahlen entstammen, welche l schneiden, also m+n Punkte der axialen Regelfläche von l.

Da jeder Punkt X_{μ} m+n Strahlen der Regelfläche trägt, so ist er ein (m+n)-facher Punkt.

Es liegen daher auf $X_3 X_4$, ausserhalb X_3 und X_4 , m + n (m + n)-fache Punkte, welche durch (60b) gegeben sind.

Wenn man einen der aus (60b) folgenden Werte $\mu_3:\mu_4$ in die Gleichung (58b) (oder (59b)) einsetzt, so findet man m+n Werte für $x_3:x_4$, welche die Punkte auf l anweisen, wo die dem X_μ entstammenden Congruenzstrahlen l schneiden.

Die Punkte X_3 und X_4 sind nicht (m+n)-fache, sondern mn-fache Punkte der Regelfläche. Die Gerade X_3X_4 hat ja mit der Regelfläche $(m+n)^2+2mn$ Punkte gemein von denen $(m+n)^2$ sich in den m+n (m+n)-fachen Punkten X_μ befinden, während die übrigen 2mn in X_3 und X_4 liegen, also mn in X_3 und mn in X_4 . Die Punkte X_3 und X_4 sind daher mn-fache.

Wir wollen nun die Congruenzstrahlen studiren, welche der Nähe von X_3 entstammen.

Ein Congruenzstrahl, welcher nahe bei X_3 verläuft, wird in der Nähe der Ebene ω_{∞} bleiben; wenn er ausserdem l schneiden soll, so muss er beinahe mit der Gerade X_3A coincidiren. Er wird alsdann ω_0 treffen in der Nähe von A_3 , dem Schnittpunkte von X_3A mit X_4X_2 .

Die Congruenzstrahlen aber, welche nahe an A_3 ausmünden, also ω_0 in der Nähe von X_4A_3 schneiden, werden ω_∞ treffen in Punkten, welche auf den Bildern von X_4A_3 liegen, m. a. W.: die Punkte P in der Nähe von X_3 , die Strahlen tragen, welche ω_0 nahe an A_3 durchbohren, müssen auf denjenigen Geraden X_3P liegen, deren Richtungen derjenigen von X_4A_3 zugeordnet sind. Wir gelangen somit zu der Einsicht, dass die zu X_3 benachbarten Punkte der Kurve in ω_∞ sich auf den m Bildern von X_4A_3 befinden müssen, oder auch: von den mn Tangenten in X_3 an der Kurve in ω_∞ sind je n vereinigt in einem der m Bilder von X_4A_3 .

Zu diesem Resultat sind wir auf S. 230 in analytischer Weise gelangt.

Wir wählen jetzt für den Sammelpunkt Y einen zu X_3 benachbarten Punkt in ω_{∞} , und setzen demgemäss

$$y_1 = \rho_1 y_3,$$

 $y_2 = \rho_2 y_3,$
 $y_4 = 0,$

wo ρ_1 und ρ_2 kleine Grössen darstellen.

Die durch diesen Punkt $Y(p_1 = \rho_1, p_2 = \rho_2)$ getragenen Strahlen sind offenbar durch

$$\begin{array}{cccc}
\rho_1^m (x_1 - \rho_1 x_3)^n = x_4^n, \\
\rho_2^m (x_2 - \rho_2 x_3)^n = x_4^n
\end{array}$$

bestimmt. Sollen sie l schneiden, so muss

$$\rho_1^m (a_1 x_3 + b_1' x_4 - \rho_1 x_3)^n = x_4^n,
\rho_2^m (a_2 x_3 + b_2' x_4 - \rho_2 x_3)^n = x_4^n,$$

wonach

$$\frac{a_1 - \rho_1}{a_2 - \rho_2} = \frac{b_1' - \rho_1^{-\frac{m}{n}}}{b_2' - \rho_2^{-\frac{m}{n}}},$$

oder, wenn wir

$$egin{aligned} egin{aligned} eta_1 &= \sigma_1 eta \ eta_2 &= \sigma_2 eta \end{aligned} ,$$

setzen,

$$\frac{a_{1}-\sigma_{1}\rho}{a_{2}-\sigma_{2}\rho}=\frac{b_{1}'-\sigma_{1}^{-\frac{m}{n}}\rho^{-\frac{m}{n}}}{b_{2}'-\sigma_{2}^{-\frac{m}{n}}\rho^{-\frac{m}{n}}},$$

daher -

$$\begin{split} &a_1\,b_2{'}-a_2\,b_1{'}-(\sigma_1\,b_2{'}-\sigma_2\,b_1{'})\rho \ +\\ &+(\sigma_1^{-\frac{m}{n}}a_2-\sigma_2^{-\frac{m}{n}}a_1)\rho^{-\frac{m}{n}}+(\sigma_1\,\sigma_2^{-\frac{m}{n}}-\sigma_2\,\sigma_1^{-\frac{m}{n}})\rho^{\frac{n-m}{n}}=0\ , \end{split}$$

oder

Wir setzen voraus: m > n, wonach $\rho^{\frac{m}{n}}$ klein ist in Bezug auf ρ . In der Voraussetzung m > n können wir demnach annäherend setzen:

$$\sigma_1^{-\frac{m}{n}}a_2 - \sigma_2^{-\frac{m}{n}}a_1 = (\sigma_2\sigma_1^{-\frac{m}{n}} - \sigma_1\sigma_2^{-\frac{m}{n}})\rho. \quad . \quad . \quad (61b)$$

Die nach dem Punkte Y $(p_1=\sigma_1\,\rho\,,\,p_2=\sigma_2\,\rho)$ zielenden Congruenzstrahlen sind durch

$$\begin{split} x_1 &- \sigma_1 \rho \, x_3 = \sigma_1^{-\frac{m}{n}} \rho^{-\frac{m}{n}} x_4 \,, \\ x_2 &- \sigma_2 \rho \, x_3 = \sigma_2^{-\frac{m}{n}} \rho^{-\frac{m}{n}} x_4 \end{split}$$

bestimmt.

Wir wollen ihre Spuren auffinden in einer durch $X_1\,X_2$ gelegten Ebene, welche wir durch

$$\begin{aligned} x_3 &= \mu_3 x, \\ x_4 &= \mu_4 x \end{aligned}$$

anweisen werden.

Die Spuren sind alsdann gegeben durch

$$\begin{split} x_1 &= (\mu_3 \, \sigma_1 \rho + \mu_4 \, \sigma_1^{-\frac{m}{n}} \rho^{-\frac{m}{n}}) x \,, \\ x_2 &= (\mu_3 \, \sigma_2 \rho + \mu_4 \, \sigma_2^{-\frac{m}{n}} \rho^{-\frac{m}{n}}) x. \end{split}$$

Indem wir ihre Verbindungslinien mit $A_3 (a_2 x_1 - a_1 x_2 = 0, x = 0)$ durch

$$x = \lambda (a_2 x_1 - a_1 x_2)$$

darstellen, ist λ bestimmt aus

$$1 = \lambda \left[\mu_3 (\sigma_1 a_2 - \sigma_2 a_1) \rho + \mu_4 (\sigma_1^{-\frac{m}{n}} a_2 - \sigma_2^{-\frac{m}{n}} a_1) \rho^{-\frac{m}{n}} \right],$$

oder

$$\lambda = -\frac{\mathbf{p}^{m}}{\mu_{3}(\sigma_{1} a_{2} - \sigma_{2} a_{1}) \mathbf{p}^{1 + \frac{m}{n}} + \mu_{4}(\sigma_{1}^{-\frac{m}{n}} a_{2} - \sigma_{2}^{-\frac{m}{n}} a_{1})}.$$

Mit Verwendung der Näherungsformel (61b) erhalten wir

$$\lambda = \frac{\rho^{\frac{m-n}{n}}}{\mu_3(\sigma_1 \, a_2 - \sigma_2 \, a_1)\rho^{\frac{m}{n}} + \mu_4(\sigma_2 \, \sigma_1^{-\frac{m}{n}} - \sigma_1 \, \sigma_2^{-\frac{m}{n}})}. \quad (62b)$$

Wenn wir $\rho = 0$ setzen, wonach die Spuren in A_3 hineinfallen, so stellt λ die Richtungsconstante der Tangenten in A_3 dar.

Wegen m > n, bekommen wir für $\rho = 0$:

$$\lambda = 0$$
,

wenn nur $\mu_4 \gtrsim 0$.

In allen durch $X_1\,X_2$ gelegten Ebenen, für welche $\mu_4\!\gtrsim\!0$, d.h. welche nicht mit ω_x zusammenfallen, wird die Schnittkurve der axialen Regelfläche in A_3 durch die Gerade $X_1\,X_2$ berührt.

Dagegen wird die Tangente in der Ebene ω_x ($\mu_4 = 0$) durch

$$\lambda = \frac{1}{\mu_3 (\sigma_1 \, a_2 - \sigma_2 \, a_1) \rho} = \infty$$

angewiesen; die Gleichung der Tangente lautet demnach

$$a_2 x_1 - a_1 x_2 = 0.$$

Die Tangente ist alsdami mit der Gerade $X_3 A_3$ (oder $X_3 A$) identisch.

In der Tat enthält der Schnitt mit ω_{∞} die Gerade X_3 A als Ausartungselement.

Die Gesammtheit aller Tangenten in den Ebenen $(x_3 = \mu_3 x, x_4 = \mu_4 x)$ wird ermittelt, indem wir in (62b) μ_3 durch $x_3 : x$, μ_4 durch $x_4 : x$ und λ durch $x : (a_2 x_1 - a_1 x_2)$ ersetzen. Wir finden alsdann

Für verschwindendes ρ wird dies

$$x_4 = 0.$$

Alle Tangenten im Punkte A_3 sind also in der Ebene ω_{∞} aufgespeichert, welche sich so zu sagen in X_3 A schneidet.

Da die mn durch X_3 gehenden Strahlen alle in A_3 ausmünden, so ist A_3 ein mn-facher Punkt. Sämmtliche Tangenten befinden sich in ω_{∞} .

Wir sind also zu dem folgenden Resultat gelangt:

In der hyperbolischen Congruenz ist X_3 auf der axialen Regelfläche einer willkürlichen Gerade ein mn-facher Punkt, dessen Tangenten sich alle in der Ebene ω_{∞} befinden, während die Schnittkurve mit ω_{∞} in X_3 durch die m Bilder von X_4 A_3 berührt wird. Der Punkt

 A_3 ist ebenfalls ein **mn**-facher Punkt; seine Tangenten sind alle in der Ebene ω_{\perp} aufgespeichert, während der Schnitt in ω_{∞} selber die Gerade A_3 X_3 enthält.

Das Verhalten der Punkte X_4 und B_4 auf die Fläche wird in gleicher Weise erledigt.

Die Strahlen, welche dem Punkt X_4 entstammen, münden in B_4 aus und umgekehrt. Die mn durch X_4 hindurchgehenden Strahlen liegen also in ω_0 . Die benachbarten Strahlen, welche ω_0 nahe bei X_4 treffen, schneiden ω_0 in Punkten, welche mit X_4 durch die n Bilder von X_3 B_4 verbunden werden.

Es lässt sich der Zustand in B_4 nicht ohne Weiteres durch Vertauschung von m und n aus dem in A_3 herleiten, weil bei der Untersuchung von A_3 die Ungleichheit m > n besonders betont werden musste.

Wir dürfen aber das Resultat übernehmen bis auf die Stelle, wo in (61b) eine Näherungsformel abgeleitet wurde. Die (61b) vorangehende Gleichung, in welcher noch nichts vernachlässigt worden ist, kann aber ohne Gefahr übersetzt werden.

Wir finden sodann

$$\sigma_{1}^{-\frac{n}{m}}b_{2}' - \sigma_{2}^{-\frac{n}{m}}b_{1}' = (\sigma_{2}\sigma_{1}^{-\frac{n}{m}} - \sigma_{1}\sigma_{2}^{-\frac{n}{m}})\rho + (a_{1}\dot{b_{2}} - a_{2}b_{1}')\rho^{\frac{n}{m}} + (\sigma_{1}a_{2} - \sigma_{2}a_{1})\rho^{1+\frac{n}{m}}.$$

Es ist jetzt ρ klein in Bezug auf $\rho^{\frac{n}{m}}$; wir dürfen also hier setzen

$$\sigma_1^{-\frac{n}{m}}b_2' - \sigma_2^{-\frac{n}{m}}b_1' = (a_1b_2' - a_2b_1')\rho^{\frac{n}{m}}.$$
 (63b)

Für λ erhalten wir zuerst diesen Ausdruck:

$$\lambda = \frac{\rho^{\frac{n}{m}}}{\mu_{4}(\sigma_{1} b_{2}^{'} - \sigma_{2} b_{1}^{'}) \rho^{\frac{1+\frac{n}{m}} + \mu_{3}(\sigma_{1}^{-\frac{n}{m}} b_{2}^{'} - \sigma_{2}^{-\frac{n}{m}} b_{1}^{'})}.$$

Vermöge (63b) können wir nun schreiben:

$$\lambda = \frac{1}{\mu_4(\sigma_1 \, b_2' - \sigma_2 \, b_1') \, \rho + \mu_3(a_1 \, b_2' - a_2 \, b_1')}. \quad . \quad (64b)$$

Unter der Annahme $\mu_3 \leq 0$ finden wir für $\rho = 0$

$$\lambda = \frac{1}{\mu_3(a_1 b_2' - a_2 b_1')},$$

oder, da
$$\lambda = \frac{x}{b_2' x_1 - b_1' x_2}, \ \mu_3 = \frac{x_3}{x}$$

$$b_2' x_1 - b_1' x_2 = (a_1 b_2' - a_2 b_1') x_3,$$

oder

$$b_2'(x_1 - a_1 x_3) = b_1'(x_2 - a_2 x_3).$$

Sämmtliche Tangenten befinden sich also in der Ebene, welche X_4 mit der Gerade AB_4 verbindet.

Nur wenn die durch $X_1\,X_2$ gelegte Ebene mit ω_0 zusammenfällt, liegt die Sache anders. Es ist dann $\mu_3=0$, wonach

$$\lambda = \infty$$
.

In ω_0 ist daher die Tangente durch

$$b_2' x_1 - b_1' x_2 = 0$$

angewiesen und also mit der Gerade X_4B' (oder X_4B_4') identisch. Da diese Gerade auch in der Ebene X_4AB_4' liegt, liefert die Ebene ω_0 tatsächlich keine Ausnahme von den anderen durch X_1X_2 gelegten Ebenen.

Die letzten Resultaten lassen sich folgendermassen zusammenfassen:

In der hyperbolischen Congruenz ist X_4 auf der axialen Regelfläche einer willkürlichen Gerade ein mn-facher Punkt, dessen Tangenten alle in der Ebene ω_0 liegen, während die Schnittkurve mit ω_0 in X_4 durch die n Bilder von X_3 B_4' berührt wird. Der Punkt B_4' ist aber hier ein \mathbf{n}^2 -facher Punkt (siehe den Schnitt mit ω_{∞}), während alle seine Tangenten sich in der Ebene X_4 AB_4' (X_4, l) befinden.

Es befindet sich auf der Regelfläche noch eine Doppelkurve vom Grade

$$N+\frac{2mn(2mn-1)}{2},$$

wenn N die Anzahl der Schnittpunkte von l mit der Doppelkurve anweist.

Diese Anzahl N lässt sich in derselben Weise wie bei der parabolischen Congruenz bestimmen. (Siehe S. 218—223).

Der Schnitt der axialen Regelfläche mit einer durch $X_1 X_2$ gelegten Ebene ω_{μ} $(x_3 = \mu x_4)$ hat

in X_1 einen 2mn-fachen Punkt, in welchem mn Tangenten zu Verhand, der Kon. Akad. v. Wetensch. (1° Sectie) Dl. X.

B 16

je m in die Geraden zusammengefallen sind, in denen die Ebene ω_{μ} durch die n Ebenen (46b) geschnitten wird, während die übrigen mn Tangenten zu je n in den m Geraden vereinigt sind, in denen ω_{μ} durch die m Ebenen (46b) geschnitten wird;

in X_2 einen 2mn-fachen Punkt, in dem mn Tangenten zu je m in die Geraden zusammengefallen sind, in welchen die Ebene ω_{μ} durch die n Ebenen (45b) geschnitten wird, während die übrigen mn Tangenten zu je n in den m Geraden vereinigt sind, in denen ω_{μ} durch die m Ebenen (45b) geschnitten wird;

in A_3 einen mn-fachen Punkt, dessen sämmtliche Tangenten in der Geraden X_1X_2 vereinigt sind (ausgenommen wenn die Ebene mit ω_{∞} identisch ist);

in B_4 einen n^2 -fachen Punkt, dessen Tangenten alle mit der Schnittlinie von ω_{μ} mit der Ebene $X_4 A B_4$ (X_4, l) identisch sind;

in C_{μ} , dem Schnittpunkte von ω_{μ} mit l einen $(m+n)^2$ -fachen Punkt, dessen Tangenten durch die $(m+n)^2$ nach C_{μ} zielenden Congruenzstrahlen bestimmt werden;

Doppelpunkte in den Punkten, wo ω_{μ} die Doppelkurve trifft. Falls die Ebene ω_{μ} mit einer der durch (60 δ) gegebenen Ebenen zusammenfällt, hat der Schnitt noch einen (m+n)-fachen Punkt im Schnittpunkte X_{μ} von ω_{μ} mit $X_3 X_4$.

§ 7a. Die axiale Regelfläche einer $X_3 X_4$ schneidenden Gerade in der parabolischen Congruenz.

Wenn die Axe l der Regelfläche die Gerade X_3X_4 schneidet, so treten einige neuen Eigenschaften hervor, da X_3X_4 auch ein Congruenzstrahl ist, und somit in diesem Falle der Regelfläche angehört.

Weil die Gerade l mit $X_3 X_4$ in einer Ebene liegt, so hat man

$$\frac{b_2'}{b_1'} = \frac{a_2}{a_1} = t, \qquad (81)$$

wonach zuerst

$$a_1 b_2' - a_2 b_1' = 0.$$
 . . . (82)

Die Gleichung (21a) der in ω_{∞} liegenden Kurve bekommt jetzt diese Gestalt (siehe S. 199):

$$(p_2-ta_1)p_1^{\frac{m}{n}}-(p_1-a_1)p_2^{\frac{m}{n}}+tb_1'p_1-b_1'p_2=0.$$

Ersetzen wir p_1 durch $x_1:x_3$ und p_2 durch $x_2:x_3$, so folgt

DIE CONGRUENZEN VON $w'^n = c^{n-m} w^m$ UND $w'^n w^m = c^{m+n}$. 243

$$(x_2 - ta_1 x_3) x_1^{\frac{m}{n}} - (x_1 - a_1 x_3) x_2^{\frac{m}{n}} + b_1' (tx_1 - x_2) x_3^{\frac{m}{n}} = 0. \quad (83a)$$

Es leuchtet ein, dass X_3 ein Punkt des in ω_{∞} liegenden Schnittes ist. Die Tangenten in X_3 werden durch

$$tx_1 - x_2 = 0$$
, (84a)

also in der rationalen Gleichung durch

$$(tx_1 - x_2)^{n^2} = 0$$

dargestellt. Der Punkt X_3 ist demnach ein n^2 -facher, dessen sämmtliche Tangenten mit der Gerade (84a), d. h. der Gerade X_3 A zusammengefallen sind.

Die Substitution $x_2 = tx_1$ sondert in (83*a*) einen Faktor $x_1^{\frac{m}{n}}$ ab; die Tangente (84*a*) hat also in X_3 mn Punkte mit der Kurve gemein. Daher:

Die Kurve, welche dem Schnitte von ω_{∞} mit der axialen Regelfläche einer $\mathbf{X}_3\mathbf{X}_4$ schneidenden Gerade angehört, hat in X_3 einen \mathbf{n}^2 -fachen Punkt, dessen Tangenten alle in X_3A vereinigt sind; diese Tangente hat in X_3 mn Punkte mit der Kurve gemein.

Die Gleichung (35a) verwandelt sich in

$$\frac{p_1^{'\frac{n}{m}}-a_1}{p_1^{'}-b_1^{'}}=\frac{p_2^{'\frac{n}{m}}-ta_1}{p_2^{'}-tb_1^{'}},$$

oder

$$(p_2'-tb_1')p_1'^{\frac{n}{m}}-(p_1'-b_1')p_2'^{\frac{n}{m}}+a_1(tp_1'-p_2')=0.$$

Wenn wir p_1' durch x_1 : x_4 und p_2' durch x_2 : x_4 ersetzen, so finden wir für die Gleichung des Schnittes in ω_0 :

$$(x_2 - tb_1' x_4)^{\frac{n}{m}} - (x_1 - b_1' x_4) x_2^{\frac{n}{m}} + a_1(tx_1 - x_2) x_4^{\frac{n}{m}} = 0. \quad (85a)$$

 X_4 erscheint hier als ein Punkt der Kurve. Der Coefficient der höchsten Potenz von x_4 , d. h. x_4^{-1} , ist $b_1{'}(tx_1^{\frac{n}{m}}-x_2^{\frac{n}{m}})$. Die Tangenten in X_4 werden somit durch

$$t x_1^{\frac{n}{m}} - x_2^{\frac{n}{m}} = 0$$
,

oder

$$t^m x_1^n - x_2^n = 0$$
, . . . (86a)

also in der rationalen Gleichung durch

$$(t^m x_1^n - x_2^n)^m = 0$$

bestimmt. Der Punkt X_4 is daher ein mn-facher. Von seinen Tangenten sind je m in einer der n durch (86a) dargestellten Geraden vereinigt. Die Gleichung (86a), oder

$$\frac{x_2}{x_1} = t^{\frac{m}{n}},$$

zeigt, dass es die n in ω_0 liegenden Bilder der Gerade X_3 A sind.

Die Substitution $x_2 = \overline{t^n} x_1$ sondert einen Factor x_1 ab; die Tangente hat also in X_4 m^2 Punkte mit der Kurve gemein. Also:

Der Schnitt von ω_0 mit der axialen Regelfläche einer $\mathbf{X_3}\,\mathbf{X_4}$ schneidenden Gerade, hat in X_4 einen mn-fachen Punkt, von dessen Tangenten je m mit einer der n Bilder von X_3 A zusammengefallen sind. Es hat jede dieser Tangenten in X_4 m² Punkte mit der Kurve gemein.

Wir wollen nun die Congruenzstrahlen untersuchen, welche durch einen Punkt von X_3X_4 gehen und l schneiden. Wir wählen vorläufig den Sammelpunkt Y in der Nähe von X_3X_4 , und setzen demgemäss

$$\begin{vmatrix}
y_1 = \rho_1 y_4, \\
y_2 = \rho_2 y_4, \\
y_3 = \nu y_4.
\end{vmatrix}$$
(87)

Die m^2 sich auf Y stützenden Strahlen sind hier (siehe (53a) und (54a) auf S. 213) durch

angewiesen.

Soll ein durch diese Gleichungen bestimmter Strahl / schneiden, so müssen die folgenden Gleichungen von einander abhängig sein:

$$\begin{array}{l} (\mathbf{1} a_1 x_3 + \mathbf{1} b_1' x_4 - \mathbf{1} a_3)^n (\mathbf{1} x_4 - x_3)^{m-n} - (\mathbf{1} a_1 x_4 - a_1 x_3 - b_1' x_4)^m = 0 \text{ ,} \\ (\mathbf{1} \mathbf{1} a_1 x_3 + \mathbf{1} \mathbf{1} \mathbf{1} b_1' x_4 - \mathbf{1} a_2 x_3)^n (\mathbf{1} \mathbf{1} x_4 - x_3)^{m-n} - (\mathbf{1} a_2 x_4 - \mathbf{1} a_1 x_3 - \mathbf{1} b_1' x_4)^m = 0. \end{array}$$

Es ist klar, dass die Abhängigkeit erfordert:

$$\rho_2 = t \rho_1 \dots \dots \dots \dots (89a)$$

Wenn wir den Punkt auf X3 X4 annehmen, so ist

$$\rho_1 = 0, \, \rho_2 = 0.$$

Die Gleichungen (87) reduciren sich somit auf

$$x_1^n = 0,$$

 $x_2^n = 0.$

Von den m^2 Strahlen, welche nach einem Punkte von $X_3 X_4$ zielen, fallen also n^2 mit $X_3 X_4$ zusammen.

Wir schneiden die Strahlen (88a) jetzt mit einer durch $X_1\,X_2$ gelegten Ebene

$$\begin{array}{l}
x_3 = \mu_3 x, \\
x_4 = \mu_4 x.
\end{array}$$

Die Schnittpunkte (x_1, x_2, x) mit dieser Ebene werden alsdann durch

$$(\nu x_1 - \mu_3 \rho_1 x)^n (\mu_4 \nu - \mu_3)^{m-n} x^{m-n} - (\mu_4 \rho_1 x - x_1)^m = 0, \quad (90a)$$

$$(\mathbf{v}x_2 - \boldsymbol{\mu}_3 \, \mathbf{\rho}_2 \, x)^n \, (\boldsymbol{\mu}_4 \mathbf{v} - \boldsymbol{\mu}_3)^{m-n} \, x^{m-n} - (\boldsymbol{\mu}_4 \, \mathbf{\rho}_2 \, x - x_2)^m = 0 \quad (91a)$$

angewiesen. Für die nahe an $X_3 X_4$ liegenden Schnittpunkte haben die Coordinaten x_1 und x_2 kleine Werte. Wir wollen daher x_1 nach Potenzen von ρ_1 entwickeln, und zwar folgendermassen:

$$x_1 = (\alpha_1 \rho_1 + \beta_1 \rho_1^{\lambda}) x,$$

wo $\lambda > 1$ vorausgesetzt wird.

Die Gleichung (90a) giebt sodann

$$(\nu \alpha_1 - \mu_3 + \nu \beta_1 \rho_1^{\lambda - 1})^n (\mu_4 \nu - \mu_3)^{m - n} - (\mu_4 - \alpha_1 - \beta_1 \rho_1^{\lambda - 1})^m \rho_1^{m - n} = 0. \quad (92a)$$

Setzen wir nun

$$\rho_1 = 0$$
,

so folgt

$$\nu \alpha_1 - \mu_3 = 0$$
,

wonach

$$\alpha_1 = \frac{\mu_3}{\nu}$$
,

also

$$x_1 = \frac{\mu_3}{\nu} \rho_1 x.$$

In gleicher Weise können wir aus (91a) herleiten:

$$x_2 = \frac{\mu_3}{\nu} \, \rho_2 x \,,$$

oder, mittels (89a),

$$x_2 = t \frac{\mu_3}{\mathbf{v}} \, \mathbf{\rho}_1 \, x.$$

Die Gerade, welche den Schnittpunkt des Congruenzstrahles mit der Spur X_{μ} von X_3X_4 verbindet, hat also die Gleichung

$$\frac{x_2}{x_1} = t.$$

Aus diesem Resultat geht hervor, dass in jeder durch $X_4 X_2$ gelegten Ebene die n^2 Tangenten des n^2 -fachen Punktes X_μ vereinigt sind in der Gerade, welche X_μ mit dem Schnittpunkte C_μ dieser Ebene mit ℓ verbindet.

Wir haben aber zu beachten, dass die obigen Betrachtungen hinfällig werden, so bald man hat

$$\mu_3 = 0$$
;

der obige Schluss gilt also tatsächlich für alle durch $X_1 X_2$ gelegten Ebenen, ausgenommen ω_0 .

Betrachten wir jetzt den Zustand in ω_0 . Indem wir $\mu_3 = 0$ setzen, verwandelt (92a) sich in

$$(\mathsf{n} \alpha_1 + \mathsf{n} \beta_1 \, \mathsf{p}_1^{\, \mathsf{l} - 1})^n \, (\mathsf{l} \alpha_4 \, \mathsf{n})^{m-n} - (\mathsf{l} \alpha_4 - \alpha_1 - \beta_1 \, \mathsf{p}_1^{\, \mathsf{l} - 1})^m \, \mathsf{p}_1^{\, m-n} = 0.$$

Nun liefert $\rho_1 = 0$

$$\alpha_1 = 0$$
,

daher

$$u^m \, \mu_4^{\ m-n} \, \beta_1^{\ n} \, \rho_1^{\ n(\lambda-1)} - - \mu_4^{\ m} \, \rho_1^{\ m+n} == 0$$

wenn höhere Potenzen von ρ_1 niedrigeren gegenüber vernachlässigt werden. Aus dieser Gleichung schliessen wir dass

$$1^{\circ}. \qquad n(\lambda-1)=m-n\,,$$

oder

$$\lambda = \frac{m}{n}$$
,

$$2^{\circ}. \qquad \qquad \nu^{m} \beta_{1}^{n} = \mu_{4}^{n},$$

oder

$$eta_i = rac{\mu_i}{m}, \ rac{\mu_n}{
u}$$

wonach wir für x_1 finden:

$$x_1 = \frac{\mu_4}{\frac{m}{\nu^n}} \rho_1^{\frac{m}{n}} x = \left(\frac{\rho_1}{\nu}\right)^{\frac{m}{n}} x_4.$$

In analoger Weise würden wir für x_2 erhalten

$$x_2 = \left(\frac{\rho_2}{\nu}\right)^{\frac{m}{n}} x_4 = \left(\frac{t\rho_1}{\nu}\right)^{\frac{m}{n}} x_4,$$

daher

$$\frac{x_2}{x_4} = t^{\frac{m}{n}}.$$

In ω_0 , so schliessen wir, sind die Tangenten in X_4 durch $x_2: x_1 = t^{\frac{m}{n}}$ angewiesen, demnach mit den n Bildern von X_3 A identisch.

Die oben gewonnenen Resultaten bekommen ihren Ausdruck im folgenden Satze:

Auf der axialen Regelfläche einer \mathbf{X}_3 \mathbf{X}_4 schneidenden Gerade ist X_3 X_4 eine \mathbf{n}^2 -fache Gerade, deren Berührungsebenen alle vereinigt sind in der Ebene, welche X_3 X_4 mit l verbindet. Nur in ω_0 liegt die Sache anders: dort ist X_4 ein \mathbf{mn} -facher Punkt, von dessen Tangenten je \mathbf{m} in einer der \mathbf{n} Bilder von X_3 A vereinigt sind.

Der Schnitt der Regelfläche mit einer durch X_1X_2 gelegten Ebene ω_{μ} ($x_3 = \mu x_4$) hat, ausser den Singularitäten des allgemeinen Falles (siehe S. 223), noch einen n^2 -fachen Punkt im Schnittpunkte X_{μ} der Ebene ω_{μ} mit X_3X_4 ; die Tangenten in X_{μ} sind alle vereinigt in der Gerade, welche X_{μ} mit der Spur C_{μ} von l in ω_{μ} verbindet (ausgenommen wenn $\mu = 0$).

Die Ebene, welche $X_1 X_2$ mit dem Schnittpunkt S von l und $X_3 X_4$ verbindet, hat in $X_{\mu} = S$ einen m^2 -fachen Punkt. Von den m^2 Tangenten sind n^2 in der Schnittlinie der Ebene ω_{μ} mit der durch $X_3 X_4$ und l gelegten Ebene $(x_2 = tx_4)$ zusammengefallen.

Wir wollen uns noch besonders beschäftigen mit zwei Lagen von I, welche für die axiale Regelfläche zu gewissen Eigentümlichkeiten Veranlassung geben, nl. mit den Fällen, wo l entweder X_3 oder X_4 enthält.

Zuerst betrachten wir den Fall, wo l durch X_3 hindurchgeht. Die Strahlen p, welche aus einem Punkte P' (p_1', p_2') von ω_0 entstammen, schneiden ω_{∞} in m^2 Punkten P, welche durch

$$p_1 = p_1^{'\frac{n}{m}}, p_2 = p_2^{'\frac{n}{m}}$$

gegeben sind. Die Coordinaten p_1 und p_2 sind also beide m-deutig. Wenn wir einen der m Werte von p_1 mit q_1 und einen der m Werte von p_2 mit q_2 bezeichnen und zwei m^{te}-Wurzeln der Einheit durch τ_m und τ_m anweisen, so haben wir

$$p_1 = \tau_m q_1, \ p_2 = \tau_m' q_2,$$

wonach

$$\frac{p_1}{p_2} = \frac{\boldsymbol{\tau}_m}{\boldsymbol{\tau}_m'} \cdot \frac{q_1}{q_2}.$$

Es geschieht m mal, dass $\tau_m' = \tau_m$; daher liegen jedesmal m Bilder P von P' in einer Gerade mit X_3 .

Fig. 11.

Eine durch l $(X_3 B')$ gelegte Ebene wird zwei Congruenzstrahlen p und q enthalten, wenn ihre Spuren P und Q in ω_{∞} in einer Gerade liegen mit der Spur X_3 von l in ω_{∞} . Durch die Spur P'von p in ω_0 gehen nun m Congruenzstrahlen deren Spuren P, $Q \dots$ mit X_3 allineirt sind.

Wenn also l in der Ebene (X_3, p) liegt, so liegt l auch in der Ebene (X_3, q) u. s. w.; die Ebene, welche l mit P' verbindet, enthält demnach m sich in P' treffende Congruenzstrahlen.

Wir ziehen den Schluss, dass in jedem Punkte des Schnittes der axialen Regelfläche mit ω_0 m Erzeugenden dieser Regelfläche zusammentreffen, wonach der Schnitt in ω_0 eine **m**-fache Kurve ist.

Der Schnitt in ω_0 , welcher im allgemeinen Falle eine Kurve vom Grade m (m+n) war, ist jetzt eine m-fache Kurve vom Grade m+n. Überdies leuchtet ein, dass die Ordnung jeder Singularität m-fach erniedrigt ist. Es ist also jetzt X_4 ein n-facher Punkt, dessen

Tangenten die Bilder sind der Gerade (früher $X_3 A$), in der die durch l und $X_3 X_4$ gelegte Ebene die Ebene ω_{∞} schneidet, also der Gerade $X_3 B_4'$.

Es ist ferner B' ein m-facher Punkt; da von den m^2 in ω_{∞} liegenden Bildern B von B' je m sich mit X_3 in einer Gerade befinden, werden sie aus l auf ω_0 axial projicirt in nur m verschiedene durch B' gehende Geraden, welche offenbar die Tangenten in B' sind.

Es ist X_1 nun ein n-facher Punkt, dessen Tangenten die n Bilder von X_1 A, d. h. X_2 sind. Diese n Bilder sind aber alle in der Gerade X_1 , X_2 vereinigt, wonach alle Tangenten des n-fachen Punktes X_1 mit X_1X_4 zusammengefallen sind. Ebenso ist X_2 ein n-facher Punkt, dessen Tangenten alle in X_2 X_4 vereinigt sind.

Die Untersuchung der Punkte E_{τ} muss aber aufs Neue angefangen werden, weil der Coefficient der höchsten Potenz von 54 $(\xi_1^{m+n-\frac{n}{m}})$ in der Gleichung (44a) (S. 209)

$$(a_2 - a_1 \tau) \xi_4^{\frac{n}{m}}$$

war. Dieser Coefficient verschwindet also hier, wo $a_1 = a_2 = 0$; unser frühere Schluss wird somit hinfällig.

Die Kurve in ω_0 ist jetzt (siehe (85a) S. 243) angewiesen durch

$$(x_2 - b_2' x_4) x_1^{\frac{n}{m}} - (x_1 - b_1' x_4) x_2^{\frac{n}{m}} = 0$$
,

oder

$$(x_2 - b_2' x_4)^m x_1^n - (x_1 - b_1' x_4)^m x_2^n = 0.$$
 (93a)

Indem wir

$$x_2 = \tau x_1 + x_2'$$

substituiren, finden wir

$$(\tau x_1 + x_2' - b_2' x_4)^m x_1^n = (x_1 - b_1' x_4)^m (\tau x_1 + x_2')^n,$$

oder

$$\tau^{m} x_{1}^{m+n} + m \tau^{m-1} x_{1}^{m+n-1} (x_{2}' - b_{2}' x_{4}) + \dots =$$

$$= (x_{1}^{m} - m b_{1}' x_{1}^{m-1} x_{4} + \dots) (\tau^{n} x_{1}^{n} + n \tau^{n-1} x_{1}^{n-1} x_{2}' + \dots)$$

$$= \tau^{n} x_{1}^{m+n} + \tau^{n-1} (n x_{2}' - m \tau b_{1}' x_{4}) x_{1}^{m+n-1} + \dots;$$

die Tangente in E_{τ} ist, vermöge $\tau^{m-n}=1$, bestimmt durch

$$m(x_{2}' - b_{2}' x_{4}) = n x_{2}' - m \tau b_{1}' x_{4},$$

oder

$$x_{2}' = \frac{m (b_{2}' - \tau b_{1}')}{m - n} x_{4},$$

also

$$(m-n)(x_2-\tau x_1)-m(b_2'-\tau b_1')x_4=0.$$
 (94a)

Die Punkte E_{τ} sind nun alle gewöhnliche Punkte. Ihre Tangenten sind in (94 α) gegeben. Sie convergiren offenbar alle nach dem Punkt T_0

$$T_0 \dots \frac{x_1}{mb_4'} = \frac{x_2}{mb_2'} = \frac{x_4}{m-n}, \dots$$
 (95a)

welcher sich auf der Gerade X4 B' befindet.

Die Kurve in ω_{∞} hat nun ihren n^2 -fachen Punkt A in X_3 . Ihre Gleichung lautet jetzt (siehe (83a), S. 243):

$$x_2 x_1^{\frac{m}{n}} - x_1 x_2^{\frac{m}{n}} + (b_2' x_1 - b_1' x_2)^{\frac{m}{n}} = 0.$$
 (96a)

Da die Rechnungen auf S. 203—205 ihre Gültigkeit behalten, so können wir in Bezug auf die Punkte E_{τ} das dort gewonnene Resultat übernehmen wenn nur $a_1 = a_2 = 0$ gesetzt wird.

Für die einzige Tangente im n-fachen Punkte E_{τ} finden wir alsdann (siehe (31a))

$$au oldsymbol{\xi}_1 - oldsymbol{\xi}_2 = 0$$
 ,

oder

$$\tau x_1 - x_2 = 0.$$

Die Tangenten in den Punkten E_{τ} verbinden also diese Punkte mit X_3 .

Die Überlegungen, durch welche wir damals (S. 212 u. f.) die Berührungsebenen in den Punkten E_{τ} bestimmt haben, erfahren hier auch eine geringe Änderung.

Aus der Gleichung (63a) (S. 215)

$$\lambda = \frac{|\mathbf{a_2} - \boldsymbol{\tau a_1} + \boldsymbol{\rho}(b_2' - \boldsymbol{\tau b_1'})| \ (m - \boldsymbol{\mu \rho n})}{(m - n)\boldsymbol{\rho}}$$

folgte damals bei verschwindendem ρ für λ

$$\lambda = \frac{\left(a_2 - \tau a_1\right) \left(m - \mu \rho n\right)}{\left(m - n\right) \rho},$$

jetzt aber

$$\lambda = \frac{(b_2' - \tau b_1') (m - \mu \rho n)}{m - n};$$

die Tangente hat nun also diese Gleichungen:

Bei verschwindendem ρ ist daher die Berührungsebene in E_{τ} durch

$$(m-n)(x_2-\tau x_4)-m(b_2'-\tau b_1')x_4=0$$

angewiesen. Es enthalten diese Berührungsebenen alle die Gerade t

$$\frac{x_1}{mb_1'} = \frac{x_2}{mb_2'} = \frac{x_4}{m - n}, \quad . \quad . \quad . \quad . \quad (95a)$$

welche X_3 mit dem in ω_0 liegenden Punkte T_0 verbindet.

Diese Gerade befindet sich offenbar in der durch l und $X_3 X_4$ gelegten Ebene.

Die Punkte E_{τ} sind jetzt m-fache Punkte.

Der Schnitt mit einer durch $X_1 X_2$ gelegten Ebene zeigt nun, verglichen mit dem Schnitte der allgemeinen Regelfläche, Abweichungen in den Punkten E_{τ} und natürlich in dem Schnittpunkte X_{μ} der Ebene ω_{μ} mit $X_3 X_4$, welcher auch hier ein n^2 -facher Punkt ist. Während im allgemeinen Falle die Tangente im n-fachen Punkte E_{τ} immer mit $X_1 X_2$ zusammenfällt (ausgenommen in ω_{∞}), vereinigen sich jetzt alle Tangenten des m-fachen Punktes E_{τ} in der Gerade, welche E_{τ} mit der Spur T_{μ} von t in ω_{μ} verbindet.

Betrachten wir jetzt den Fall, wol den Punkt X_4 enthält, so haben wir

$$b_1' = b_2' = 0.$$

Die Überlegung, welche uns im Vohergehenden zu dem Schlusse führte, dass die Kurve in ω_0 m-fach ist, wenn l durch X_3 geht, bringt uns jetzt, wo l durch X_4 geht, zu der Erkenntniss, dass die Kurve in ω_{∞} eine **n**-fache Kurve vom Grade m+n ist.

Es ist X_3 auf dieser Kurve ein *m*-facher Punkt, dessen Tangenten mit den *m* Bildern von X_4A_3 zusammenfallen.

Der Punkt X_1 ist jetzt ein *n*-facher, so wie auch der Punkt X_2 . Auch der Punkt A ist ein *n*-facher; seine *n* Tangenten sind die axialen Projektionen, aus l auf ω_{∞} , der n Geraden $X_4 A'$.

Die Gleichung der in ω_{∞} befindlichen Kurve lautet

$$(x_2 - a_2 x_3)^n x_1^m - (x_1 - a_1 x_3)^n x_2^m = 0.$$

Der Schnitt in ω_0 hat die Gleichung

$$x_2 x_1^{\frac{n}{m}} - x_1 x_2^{\frac{n}{m}} + (a_2 x_1 - a_1 x_2) x_4^{\frac{n}{m}} = 0.$$

Hier ist X_4 ein m^2 -facher Punkt, dessen Tangenten alle in $X_4 A_3$ vereinigt sind.

Da die Gleichung (63a) auf S. 215 hier zu demselben Resultate führt als im allgemeinen Falle, so werden die Punkte E_{τ} dieselben Eigenschaften aufweisen als bei der Regelfläche der durchaus willkürlichen Gerade.

Hieraus geht auch hervor, dass der Schnitt mit einer durch X_1X_2 gelegten Ebene ω_{μ} , ausser seinem n^2 -fachen Punkte X_{μ} , keine Abweichungen vom Schnitte der allgemeinen Regelfläche zeigt.

§ 7b. Die axiale Regelfläche einer X_3X_4 schneidenden Gerade in der hyperbolischen Congruenz.

Auch hier gelten die Beziehungen.

$$\frac{b_2'}{b_1'} = \frac{a_2}{a_1} = t \dots , \quad (81)$$

und

$$a_1 b_2' - a_2 b_1' = 0.$$
 (82)

Da l mit $X_3 X_4$ in einer Ebene liegt, so wird der Punkt A_3 , wo $X_3 A$ die Gerade $X_4 X_2$ schneidet, mit dem Punkte B'_4 identisch sein, wo die Gerade $X_4 X_2$ durch $X_4 B'$ getroffen wird.

Während wir in § 6b (S. 239—241) gefunden haben, dass auf der Fläche A_3 ein mn-facher und B_4 ein n^2 -facher Punkt ist, so werden wir nun in $A_3 \equiv B_4$ einen $mn + n^2 = n(m+n)$ -fachen Punkt erkennen.

Die in ω_{∞} liegende Kurve (siehe (32b), S. 229) wird nun durch

$$(x_1 - a_1 x_3) x_1^{\frac{m}{n}} x_3^{\frac{m}{n}} - (x_2 - t a_1 x_3) x_2^{\frac{m}{n}} x_3^{\frac{m}{n}} - b_1' (t x_1 - x_2) x_1^{\frac{m}{n}} x_2^{\frac{m}{n}} = 0 (83b)$$

dargestellt.

Es ist, wie im allgemeinen Falle, X_3 ein mn-facher Punkt, von dessen Tangenten je n in einem der m Bilder von $X_4A_3 \equiv X_4B'$ vereinigt sind.

Die Kurve schneidet auch die Gerade X_1X_2 , ausserhalb X_4 und X_2 , n^2 mal in $B_4' \equiv A_3$, während die Tangente $AB_4' \equiv X_3A$ in B_4' mn Punkte mit der Kurve gemein hat.

Ausser dem Zusammenfallen von B_4 mit A_3 finden wir also im Schnitte von ω_{∞} keine Abweichungen vom allgemeinen Falle.

Der Schnitt in ω_0 wird (siehe (40b), S. 231) durch

$$(x_1 - b_1' x_4) x_1^{\frac{n}{m}} x_4^{\frac{n}{m}} - (x_2 - tb_1' x_1) x_2^{\frac{n}{m}} x_4^{\frac{n}{m}} - a_1(tx_1 - x_2) x_1^{\frac{n}{m}} x_2^{\frac{n}{m}} = 0 \quad (85b)$$

dargestellt. Der Punkt $A_3 \equiv B_4'$ ist ein mn-facher; seine sämmtlichen Tangenten sind in $X_1 X_2$ vereinigt; es hat $X_1 X_2$ mit der Kurve m^2 Punkte gemein.

Die m+n durch (60b) (S. 236) bestimmten Schnittpunkte von X_3X_4 mit der Regelfläche sind nun alle im Punkte S

$$(a_1 - a_2)x_3 + (b_1' - b_2')x_4 = 0$$
,

wo l die Gerade $X_3 X_4$ schneidet, zusammengefallen.

Die Fläche hat also in S $(m+n)^2$ Punkte mit X_3X_4 gemein. Auf der Fläche ist $A_3 \equiv B_4$ ein $\mathbf{n}(\mathbf{m}+\mathbf{n})$ -facher Punkt; von den $\mathbf{m}\mathbf{n}+\mathbf{n}^2$ Berührungsebenen, in welche die Tangentenkegel ausgeartet ist, fallen $\mathbf{m}\mathbf{n}$ mit ω_∞ und \mathbf{n}^2 mit (X_4,l) , d. h. $(x_2=tx_1)$, zusammen. Die Gerade X_1X_2 hat in $A_3 \equiv B_4$ mit der Fläche $\mathbf{m}^2+\mathbf{n}^2$ Punkte gemein. Es schneidet X_3X_4 die Fläche $(\mathbf{m}+\mathbf{n})^2$ mal im Schnittpunkte S von l.

Der Schnitt mit einer durch $X_1 X_2$ gelegten Ebene ω_{μ} hat nun auch in $A_3 \equiv B_4'$ einen n(m+n)-fachen Punkt, von dessen Tangenten mn mit $X_1 X_2$ zusammengefallen sind und n^2 mit der Gerade, welche $A_3 \equiv B_4'$ verbindet mit dem Punkte C_{μ} , wo l die Ebene ω_{μ} trifft. Nur in ω_{∞} liegt die Sache anders: dort ist nämlich $X_3 A \equiv X_3 A_3$ ein m^2 -faches Ausartungsgebilde, aber zugleich die einzige Tangente im n^2 -fachen Punkte $A_3 \equiv B_4'$.

Dass die neuen Eigenschaften bei der hyperbolischen Congruenz nicht dieselbe Bedeutung haben als diejenigen bei der parabolischen, verdankt man dem Umstande, dass in der hyperbolischen Congruenz die Gerade X_3 X_4 nicht, wie in der parabolischen, Congruenzstrahl ist.

Betrachten wir jetzt den Fall, wo l den Punkt X_3 enthält.

Es ist nun jede Gerade in ω_{∞} , welche X_3 trägt, ein Congruenzstrahl, welcher ℓ schneidet.

Wir ersahen früher, dass jeder Strahl, welcher einen in ω_{∞} liegenden Punkt mit X_3 verbindet, ein m^2 -facher Strahl ist.

Dies ist aber nur der Fall, wenn diese Gerade als ein durch den ausserhalb X_3 liegenden Punkt hindurchgehender Strahl betrachtet wird.

Wir sind dagegen auch zu der Einsicht gelangt, dass X_3 mn Strahlen trägt, welche eine willkürliche Gerade l in A schneiden (wonach u. a. sowohl X_3 wie A_3 mn-fache Punkte auf der axialen Regelfläche der willkürlichen Gerade sind).

Wir sind also gezwungen jeden Strahl, welcher in ω_{∞} liegt und X_3 enthält, wenn er als ein durch X_3 gehender Strahl betrachtet wird, nur \mathbf{mn} -fach zu zählen.

Ebenso muss jeder in ω_0 liegende X_4 enthaltende Strahl, als Strahl durch X_4 betrachtet, immer *mn*-fach gerechnet werden.

Aus diesen Überlegungen geht nun unmittelbar hervor, dass von der betrachteten Regelfläche die Ebene ω_{∞} mn mal abgesondert wird; es bleibt also eine Fläche vom Grade $(m+n)^2 + 2mn - mn = (m+n)^2 + mn$.

Auf der Restfläche sind nun X_1 und X_2 mn-fache Punkte.

Ihre Berührungsebenen sind hier nur durch die Gleichungen (45'b) und (46'b) bestimmt.

Die Fläche schneidet jetzt die Gerade X_3X_4 mn mal in X_4 und $(m+n)^2$ mal in X_3 .

Auch hier (wie in der parabolischen Congruenz) ist die Kurve in ω_0 eine *m*-fache.

Der Gesammtschnitt in ω_0 enthält mn mal die Gerade $B'X_1$, mn mal die Gerade $B'X_2$, n^2 mal die Gerade $B'X_4$ und schliesslich noch ein Gebilde vom Grade $(m+n)^2+mn-2mn-n^2=m(m+n)$, welches offenbar eine m-fache Kurve vom Grade m+n ist.

Indem wir in (85b) $a_1 = 0$ und $a_2 = 0$ substituiren, finden wir, nach Teilung durch x_4 ,

$$(x_1 - b_1' x_4) x_1^{\frac{n}{m}} - (x_2 - b_2' x_4) x_2^{\frac{n}{m}} = 0$$
,

oder

$$(x_1 - b_1' x_b)^m x_1^n - (x_2 - b_2' x_b)^m x_2^n = 0.$$
 (93b)

Die Schnittpunkte dieser Kurve vom Grade m+n mit X_1X_2 sind durch

$$x_1^{m+n} - x_2^{m+n} = 0$$

bestimmt, oder, wenn wir $\tau_{m+n}^{m+n} = 1$ setzen, durch

$$x_2 = \tau_{m+n} x_1.$$

Die Kurve schneidet deshalb $X_1 X_2$ in den m+n Punkten $E_{\tau_{m+n}}$, wo die singulären durch $X_3 X_4$ gelegten Ebenen $\varepsilon_{\tau_{m+n}}$ die Gerade $X_4 X_2$ treffen.

Die Tangenten im Punkte E_{τ} ergeben sich durch die Substitution

$$x_2 = \tau x_1 + x_2';$$

wir finden somit

$$(x_1 - b_1' x_4)^m x_4^n = (\tau x_1 + x_2' - b_2' x_4)^m (\tau x_1 + x_2')^n$$

oder

$$x_1^{m+n} - mb_1'x_1^{m+n-1}x_4 + \ldots = \tau^{m+n}x_1^{m+n} + \tau^{m+n-1}x_1^{m+n-1}[m(x_2' - b_2'x_4) + nx_2'] + \ldots;$$

die Tangente in E_{τ} ist demnach durch

$$--m\tau b_{1}{'}x_{4}=mx_{2}{'}-mb_{2}{'}x_{4}+nx_{2}{'},$$

oder

$$x_2' = \frac{m(b_2' - \tau b_1')}{m + n} x_4,$$

also durch

$$(m+n)(\tau x_1 - x_2) + m(b_2' - \tau b_1') x_4 = 0$$
 . (94b)

angewiesen. Es convergiren alle diese Tangenten nach dem Punkte T_0 :

$$T_0' \dots \frac{x_1}{mb_1'} = \frac{x_2}{mb_2'} = \frac{x_4}{m+n}.$$
 (95b)

Die in ω_{∞} liegende Kurve wird jetzt durch

$$(x_1^{\frac{m+n}{n}} - x_2^{\frac{m+n}{n}}) x_3^{\frac{m}{n}} - (b_2' x_1 - b_1' x_2) x_1^{\frac{m}{n}} x_2^{\frac{m}{n}} = 0 . (96b)$$

dargestellt.

Es ist hier X_3 ein n(m+n)-facher Punkt, dessen durch

$$x_1^{\frac{m+n}{n}} - x_2^{\frac{m+n}{n}} = 0$$
,

oder

$$(x_1^{m+n} - x_2^{m+n})^n = 0$$

bestimmte Tangenten, in Gruppen von n mit denjenigen Geraden zusammenfallen, welche X_3 mit den m+n Punkten $E_{\tau_{m+n}}$ verbin-

den. Da $x_2 = \tau_{m+n} x_1$ einen Faktor $x_2^{\frac{2m+n}{n}}$ absondert, so hat jede Tangente in X_3 n(2m+n) Punkte, also ausserhalb X_3 keinen Punkt mit der Kurve gemein.

Die Kurve wird zum vollständigen Schnitte in ω_{∞} ergänzt durch m mal die m+n in X_3 an die Kurve in ω_{∞} gelegten Tangenten.

Zum Schluss den Fall, wo l den Punkt X_4 enthält, betrachtend, bemerken wir, dass die Ebene ω_0 mn mal abgesondert wird. Wir erübrigen wiederum eine Fläche vom Grade $(m+n)^2+mn$. Die Punkte X_4 und X_2 sind nun mn-fache. Von den Berührungsebenen sind je m in einer der n Ebenen (45b) bez. (46b) vereinigt.

Der Schnitt in ω_{∞} besteht aus mn mal AX_1 , mn mal AX_2 , m^2 mal AX_3 und aus einem Gebilde vom Grade n(m+n), welches aus einer n-fachen Kurve vom Grade m+n besteht.

Die Substitution $b_1' = 0$, $b_2' = 0$ liefert in der Gleichung (836), nach Teilung durch x_3 ,

$$(x_1 - a_1 x_3) x_1^{\frac{m}{n}} - (x_2 - a_2 x_3) x_2^{\frac{m}{n}} = 0$$
,

oder

$$(x_1 - a_1 x_3)^n x_1^m - (x_2 - a_2 x_3)^n x_2^m = 0.$$
 (93'b)

Die Eigenschaften dieser Kurve sind denen der Kurve (936) analog.

Der Schnitt in ω_0 enthält eine Kurve vom Grade $m^2+2\ mn$, deren Gleichung lautet:

$$(x_1^{\frac{m+n}{m}} - x_2^{\frac{m+n}{m}}) x_4^{\frac{n}{m}} - (a_2 x_1 - a_1 x_2) x_1^{\frac{n}{m}} x_2^{\frac{n}{m}} = 0.$$
 (96b')

Diese Kurve entspricht volkommen der Kurve (96b) in ω_{∞} .

Der Schnitt enthält noch die m + n in X_4 an dieser Kurve gelegten Tangenten, jede n-fach gezählt.

 \S 8a. Die axiale Regelfläche einer $X_1 X_2$ schneidenden Gerade in der parabolischen Congruenz.

Die axiale Regelfläche einer Gerade l_{μ} , welche X_1X_2 schneidet, hat denselben Grad wie die axiale Regelfläche einer durchaus will-kürlichen Gerade. Da X_1X_2 ein Congruenzstrahl ist, so wird diese Gerade jetzt der Regelfläche angehören und auf ihr eine vielfache Gerade sein.

Wie wir bereits im I. und II. Abschnitte ersahen, können wir in den meisten Fällen die der allgemeinen Regelfläche angehörenden Gleichungen aufrecht erhalten, wenn wir nur, statt der hier unendlich grossen a_1 , a_2 , b_1' , b_2' , setzen

$$a_{1} = +\frac{\alpha_{2} a_{0}}{\delta},$$

$$a_{2} = -\frac{\alpha_{1} a_{0}}{\delta},$$

$$b_{1}' = -\frac{\mu \alpha_{2} a_{0}}{\delta},$$

$$b_{2}' = +\frac{\mu \alpha_{1} a_{0}}{\delta},$$

$$\Delta = a_{1} b_{2}' - a_{2} b_{1}' = -\frac{(\mu \alpha_{3} + \alpha_{4}) a_{0}}{\delta},$$
(96)

wo $a_0 = \frac{\mu \alpha_3 + \alpha_4}{2 \alpha_1 \alpha_2}$ ist, und δ eine unendlich kleine Grösse darstellt.

Die Gleichungen von l_{μ} lauten:

Zuerst wollen wir wiederum die Kurven in ω_{∞} und ω_{0} untersuchen. Wir dürfen jetzt nicht die Gleichung (26a) anwenden, weil das Coordinatendreieck hier in eine Gerade ausgeartet ist. Es ist ja der Punkt A, wo l_{μ} ω_{∞} schneidet, mit dem Schnittpunkte L_{μ} von l_{μ} und $X_{1}X_{2}$ identisch.

Wir haben also nur die Coordinaten x_1 , x_2 , x_3 zur Verfügung. Die Gleichung der in ω_x liegenden Kurve wird erhalten, indem wir in (21a) auf S. 199 p_1 durch x_1 : x_3 und p_2 durch x_2 : x_3 ersetzen. Wir finden alsdann

$$(x_2 - a_2 x_3) x_1^{\frac{m}{n}} - (x_1 - a_1 x_3) x_2^{\frac{m}{n}} + (b_2' x_1 - b_1' x_2) x_3^{\frac{m}{n}} - (a_1 b_2' - a_2 b_1') x_3^{\frac{m+n}{n}} = 0.$$

Durch die Substitution (96) bekommt diese Gleichung die folgende Form:

$$\frac{\delta x_{2} + \alpha_{1} a_{0} x_{3}}{\delta} x_{1}^{\frac{m}{n}} - \frac{\delta x_{1} - \alpha_{2} a_{0} x_{3}}{\delta} x_{2}^{\frac{m}{n}} + \mu \frac{\alpha_{1} x_{1} + \alpha_{2} x_{2}}{\delta} a_{0} x_{3}^{\frac{m}{n}} + \frac{\mu \alpha_{3} + \alpha_{1}}{\delta} a_{0} x_{3}^{\frac{m+n}{n}} = 0,$$

oder

$$\left[\alpha_{1}x_{1}^{\frac{m}{n}} + \alpha_{2}x_{2}^{\frac{m}{n}} + \left|\mu\left(\alpha_{1}x_{1} + \alpha_{2}x_{2} + \alpha_{3}x_{3}\right) + \alpha_{4}x_{3}\right|x_{3}^{\frac{m-n}{n}}\right]x_{3} = 0.$$

Die Kurve in ω_{∞} ist daher zusammengesetzt aus n^2 mal der Gerade $X_1 X_2$ und einer Kurve vom Grade mn mit dieser Gleichung:

$$\alpha_{1} x_{1}^{\frac{m}{n}} + \alpha_{2} x_{2}^{\frac{m}{n}} + |\mu(\alpha_{1} x_{1} + \alpha_{2} x_{2} + \alpha_{3} x_{3}) + \alpha_{4} x_{3}| x_{3}^{\frac{m-n}{n}} = 0.$$
 (99a)

Diese Kurve schneidet X1 X2 in den Punkten, welche durch

$$\alpha_1 x_1^{\frac{m}{n}} + \alpha_2 x_2^{\frac{m}{n}} = 0,$$

also in der rationalen Gleichung durch

$$[\alpha_1^n x_1^m - (-\alpha_2)^n x_2^m]^n = 0$$

angewiesen sind. Von den mn Schnittpunkten sind also je n vereinigt in einem der m Punkte

$$\frac{x_2}{x_1} = \left(-\frac{\alpha_1}{\alpha_2}\right)^{\frac{n}{m}}, x_3 = 0, x_4 = 0,$$

welche die m Bilder L_{μ} sind des Punktes

$$\frac{x_2}{x_1} = -\frac{\alpha_1}{\alpha_2}, x_3 = 0, x_4 = 0$$

oder

$$\alpha_1 x_1 + \alpha_2 x_2 = 0$$
, $x_3 = 0$, $x_4 = 0$,

d. h. des Punktes L_{μ} , wo l_{μ} die Gerade X_1X_2 schneidet.

Die Rechnung zeigt, dass die Tangenten in L_{μ}' von der Grösse des Verhältnisses m:n abhängen; wir verzichten aber auf eine Erledigung verschiedener Fälle, und unterlassen somit die Ermittlung dieser Tangenten.

Der Schnitt in ω_0 hat die Gleichung:

$$(x_{2}-b_{2}'x_{4})x_{4}^{\frac{n}{m}}-(x_{1}-b_{1}'x_{4})x_{2}^{\frac{n}{m}}+(a_{2}x_{4}-a_{1}x_{2})x_{4}^{\frac{n}{m}}+\\+(a_{1}b_{2}'-a_{2}b_{1}')x_{4}^{\frac{m+n}{m}}=0.$$

Indem wir die Substitution (96) ausführen, erhalten wir

$$\frac{\delta x_2 - \mu \alpha_1 a_0 x_4}{\delta} x_1^{\frac{n}{m}} - \frac{\delta x_1 + \mu \alpha_2 a_0 x_4}{\delta} x_2^{\frac{n}{m}} - \frac{(\alpha_1 x_1 + \alpha_2 x_2) a_0 x_4^{\frac{n}{m}}}{\delta} - \frac{(\mu \alpha_3 + \alpha_4) a_0}{\delta} x_4^{\frac{m+n}{m}} = 0,$$

oder

$$\left[\mu(\alpha_{1}x_{1}^{\frac{n}{m}}+\alpha_{2}x_{2}^{\frac{n}{m}})x_{4}^{\frac{m-n}{m}}+(\alpha_{1}x_{1}+\alpha_{2}x_{2}+\alpha_{4}x_{4})+\mu\alpha_{3}x_{4}\right]x_{4}^{\frac{n}{m}}=0.$$

Der Schnitt in ω_0 besteht also aus mn mal der Gerade X_1X_2 und aus einer Kurve vom Grade m^2 , mit der Gleichung

$$\mu(\alpha_{1}x_{1}^{\frac{n}{m}} + \alpha_{2}x_{2}^{\frac{n}{m}})x_{4}^{\frac{m-n}{m}} + \alpha_{1}x_{1} + \alpha_{2}x_{2} + (\mu\alpha_{3} + \alpha_{4})x_{4} = 0.$$
 (100a)

Diese Kurve schneidet $X_1 X_2$ in den Punkten, welche durch

$$\alpha_1 x_1 + \alpha_2 x_2 = 0,$$

also in der rationalen Gleichung durch

$$(\alpha_1 x_1 + \alpha_2 x_2)^{m^2} = 0$$

angewiesen sind. Es sind die m^2 Schnittpunkte mit $X_4 X_2$ alle im Punkte L_{μ} vereinigt.

Da die Substitution

$$x_2 = -\frac{\alpha_1}{\alpha_2} x_1 + x_2'$$

die Gleichung (100a) verwandelt in

$$\mu[\alpha_{1}x_{1}^{\frac{n}{m}} + \alpha_{2}(-\frac{\alpha_{1}}{\alpha_{1}}x_{1} + x_{2}^{'})^{\frac{n}{m}}]x_{4}^{\frac{m-n}{m}} + \alpha_{2}x_{2}^{'} + (\mu\alpha_{3} + \alpha_{4})x_{4} = 0,$$

und der Coefficient der höchsten Potenz von x_1 (nl. x_1^m) x_4^m ist, so sind die Tangenten in L_μ durch

$$x_4^{m(m-n)} = 0$$

angewiesen. Der Punkt L_{μ} ist somit ein m(m-n)-facher Punkt, dessen sämmtliche Tangenten in X_1X_2 vereinigt sind. Die Gerade X_1X_2 hat in L_{μ} m^2 Punkte mit der Kurve gemein.

Weil die Ebene ω_0 mit jeder anderen durch X_1X_2 gelegten Ebene (ausgenommen ω_{∞}) gleichwertig ist, so ist die Gerade X_1X_2 auch auf der Fläche eine mn-fache Gerade.

Der Schnitt in jeder durch $X_1 X_2$ gelegten Ebene ω_{ν} ist vom

Grade m^2 und hat in L_{μ} einen m(m-n)-fachen Punkt, dessen Tangenten alle in X_1 X_2 vereinigt sind.

Nur in ω_{∞} liegt die Sache anders. Der Schnitt in ω_{∞} besteht aus n(m-n) mal X_1L_{μ} (= X_1X_2), n(m-n) mal X_2L_{μ} (= X_4X_2), (m-n) mal den m-n Geraden $E_{\tau}L_{\mu}$ (= X_4X_2) und aus der Restkurve, welche hier auch noch n^2 mal X_4X_2 enthält. Der Gesammtschnitt in ω_{∞} enthält demnach X_1X_2 als eine $2n(m-n)+(m-n)^2+n^2=m^2$ -fache Gerade.

Die Ebene ω_{μ} , in welcher l_{μ} sich befindet, trägt, ausser der m^2 -fachen Gerade l_{μ} , die mn-fache Gerade X_4 X_2 .

Wir schliessen somit:

Die axiale Regelfläche einer $\mathbf{X}_1\mathbf{X}_2$ schneidenden Gerade enthält X_1X_2 als eine mn-fache Gerade, deren Berührungsebenen alle mit $\boldsymbol{\omega}_{\infty}$ zusammenge fallen sind.

In jeder durch X_1X_2 gelegten Ebene (ausser ω_x) ist der Restschnitt eine Kurve vom Grade m^2 , welche in L_μ einen m (m-n)-fachen Punkt hat; die Tangenten sind alle vereinigt in der Gerade X_1X_2 , welche in L_μ m^2 Punkte mit der Kurve gemein hat.

Wir wollen jetzt den Fall betrachten, wo l_{μ} durch X_1 oder X_2 hindurchgeht.

Wenn die Gerade $l_{\mu} X_1$ enthält, so haben wir

$$\alpha_1 = 0$$
.

Die in ω_{∞} liegende Kurve besteht alsdann aus der n^2 -fachen Gerade $X_1 X_2$ und einer Kurve, welche durch

$$\alpha_{2} x_{2}^{\frac{m}{n}} + |\mu \alpha_{2} x_{2} + (\mu \alpha_{3} + \alpha_{4}) x_{3}| x_{3}^{\frac{m-n}{n}} = 0,$$

oder

$$[(-\alpha_2)^n x_2^m - [\mu \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_3]^n x_3^{m-n}]^n = 0 \quad (101a)$$

dargestellt wird.

Sie ist eine *n*-fache Kurve m^{ten} Grades, welche aber in m durch X_1 gehende Geraden ausgeartet ist.

Der Schnitt in ω_{∞} besteht aus der mn-fachen Gerade $X_1 X_2$ und aus einer Kurve mit der Gleichung

$$\mu \alpha_2 x_2^{\frac{n}{m}} x_4^{\frac{m-n}{m}} + \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4 = 0,$$

oder

$$\left[\mu^{m}\alpha_{2}^{m}x_{2}^{n}x_{4}^{m-n}-(-1)^{m}\left[\alpha_{2}x_{2}+(\mu\alpha_{3}+\alpha_{4})x_{4}\right]^{m}\right]^{m}=0. \quad (102a)$$

Diese Kurve ist offenbar aus m nach X_1 convergirenden m-fach zu zählenden Geraden zusammengesetzt. Diese Resultate würden sich auch in folgender (rein geometrischen) Weise ergeben haben.

Die durch X_1 gehende Gerade trägt m Berührungsebenen an dem Fokalkegel F_1 , von denen jede ein Strahlengebilde m^{ter} Klasse von Congruenzstrahlen enthält. Diese m Ebenen bilden also zusammen eine axiale Regelfläche vom Grade m^2 .

Ausserdem ist jede in ω_{∞} durch X_1 gelegte Gerade ein Congruenzstrahl.

Indem wir eine Gerade PX_1 in ω_{∞} als einen durch P gehenden Congruenzstrahl betrachten, ist sie n(m-n)-fach zu zählen (Siehe S. 191). Wenn wir nun P längs PX_1 sich X_1 nähern lassen, so werden die n^2 Bilder P' in ω_0 auch X_1 näher kommen; es werden die n^2 Strahlen, die P mit seinen in ω_0 befindlichen Bildern P' verbinden, schliesslich ebenfalls in X_1 ausmünden; es folgt somit, dass der Strahl PX_1 , als Strahl in ω_{∞} durch X_1 betrachtet, $n(m-n)+n^2=mn$ -fach zu zählen ist.

Wir sind demnach zu der Einsicht gelangt, dass ein Strahl PX_1 in ω_{∞} , als Strahl durch X_1 betrachtet, mn-fach zu rechnen ist.

Die Ebene ω_{∞} ist deshalb ein Bestandteil vom Grade mn der axialen Regelfläche einer durch X_t gehenden Gerade.

Der totale Grad dieser axialen Regelfläche ist somit $m^2 + mn = m(m+n)$.

Der Schnitt in einer durch $X_1 X_2$ gelegten Ebene enthält auch die Gerade $X_1 X_2$ als eine mn-fache Gerade, und ausserdem die m-fachen durch X_1 gehenden Geraden, in denen diese Ebene durch die m Berührungsebenen an dem Fokalkegel F_1 geschnitten wird.

Indem wir die durch X₄ gehende Gerade durch die Gleichungen

$$x_2 = -\frac{\mu \alpha_3 + \alpha_4}{\alpha_2} x_4,$$

$$x_3 = \mu x_4$$

darstellen, müssen die Coordinaten des Punktes Y, welchem die Congruenzstrahlen entstammen (siehe S. 212, 213), den Bedingungen

$$y_2 = -rac{\mulpha_3 + lpha_4}{lpha_2}y_4, \ y_3 = \mu y_4$$

genügen, wonach die Gleichung (54a) (S. 213) diese Form bekommt:

$$\left(-\frac{\mu\alpha_{3}+\alpha_{4}}{\alpha_{2}}x_{4}-x_{2}\right)^{m}=\left(\mu x_{2}+\frac{\mu\alpha_{3}+\alpha_{4}}{\alpha_{2}}x_{3}\right)^{n}(\mu x_{4}-x_{3})^{m-n}$$

oder

$$|\alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4|^m - (-1)^n \alpha_2^{m-n} |\mu \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_3|^n (x_3 - \mu x_4)^{m-n} = 0. (103a)$$

Es werden durch diese Gleichungen also m durch X_1 gelegte Ebenen angewiesen, welche die Congruenzstrahlen tragen, welche auf der durch X_1 gehenden Gerade ruhen; sie sind daher die m durch diese Gerade an den Fokalkegel F_1 gelegten Berührungsebenen.

Indem man in (103a) $x_4 = 0$ substituirt, erhält man (101a), während man durch die Substitution $x_3 = 0$ die Gleichung (102a) bekommt. Daher:

Die axiale Regelfläche einer durch X_1 gehenden Gerade ($\alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = 0$, $x_3 = \mu x_4$) besteht aus den m.-fachen Ebenen (103a) und aus der mn-fachen Ebene ω_{∞} .

Die Regelfläche einer durch X_2 gehenden Gerade lässt sich natürlich aus dem Vohergehenden durch Vertauschung der Indices 1 und 2 ableiten.

Einen anderen besonderen Fall einer $X_1 X_2$ schneidenden Gerade bildet eine Gerade in ω_{∞} und eine Grade in ω_0 .

Weil eine in ω_{∞} liegende Gerade sich in einer singulären Ebene befindet, so wird der Grad der axialen Regelfläche erniedrigt. Diesen Fall wollen wir bis nachher verschieben.

Betrachten wir jetzt die axiale Regelfläche einer in ω_0 liegenden Gerade. Wir haben alsdann in dem Obigen nur

$$\mu = 0$$

zu setzen.

Die Kurve in ω_{∞} wird nun (siehe (99a)) durch

$$\alpha_1 x_1^{\frac{m}{n}} + \alpha_2 x_2^{\frac{m}{n}} + \alpha_4 x_3^{\frac{m}{n}} = 0$$
 . . . (104a)

dargestellt. Wir erkennen in dieser Kurve vom Grade mn die Bildkurve in ω_{∞} der in ω_{0} befindlichen Gerade

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_4 x_4 = 0.$$

Der Schnitt in ω_0 wird jetzt (siehe (100a)) durch

$$(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_4 x_4)^{m^2} = 0$$

angewiesen, und besteht, wie zu erwarten war, aus der m^2 -fachen Axe der Regelfläche.

Die Gerade X₁ X₂ wird wiederum auf der Regelfläche eine mnfache Gerade sein. In ω_{∞} aber ist $X_1 X_2$ eine m^2 -fache Gerade.

Wenn die in ω_0 liegende Gerade durch X_1 geht, so besteht die Regelfläche aus den m Ebenen, welche (siehe (103a)) durch

$$(\alpha_2 x_2 + \alpha_4 x_4)^m - (-1)^n \alpha_2^{m-n} \alpha_4^n x_3^m = 0$$
 . (105a)

dargestellt werden (jede m-fach zu zählen), und aus der mn-fachen Ebene ω_{∞} .

Dasselbe gilt c. p. für die axiale Regelfläche einer Gerade in $\boldsymbol{\omega}_0$ durch X_2 .

Die axiale Regelfläche einer X₁X₂ schneidenden Gerade in der hyperbolischen Congruenz.

Auch hier setzen wir

$$a_{1} = + \frac{\alpha_{2} a_{0}}{\delta},$$

$$a_{2} = -\frac{\alpha_{1} a_{0}}{\delta},$$

$$b_{1}' = -\frac{\mu \alpha_{2} a_{0}}{\delta},$$

$$b_{2}' = + \frac{\mu \alpha_{1} a_{0}}{\delta},$$

$$\Delta = a_{1} b_{2}' - a_{2} b_{1}' = -\frac{(\mu \alpha_{3} + \alpha_{1}) a_{0}}{\delta},$$

$$(96)$$

wo $a_0 = \frac{\mu \alpha_3 + \alpha_4}{2 \alpha_1 \alpha_2}$ ist, und δ eine unendlich kleine Grösse bezeichnet.

Die Gerade l_{μ} wird durch

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = 0, \quad . \quad . \quad (97)$$

$$x_3 = \mu x_4$$
 . . . (98)

dargestellt.

Die Gleichung der in ω_{∞} liegenden Kurve war (siehe (32b), S. 229)

$$(x_{1} - a_{1}x_{3})x_{1}^{\frac{m}{n}}x_{3}^{\frac{m}{n}} - (x_{2} - a_{2}x_{3})x_{2}^{\frac{m}{n}}x_{3}^{\frac{m}{n}} - - |b_{2}'(x_{1} - a_{1}x_{3}) - b_{1}'(x_{2} - a_{2}x_{3})|x_{1}^{\frac{m}{n}}x_{2}^{\frac{m}{n}} = 0.$$
 (32b)

Die Substitutionen (96) ergeben sodann

$$\frac{\delta x_{1} - \alpha_{2} a_{0} x_{3}}{\delta} x_{1}^{\frac{m}{n}} x_{3}^{\frac{m}{n}} - \frac{\delta x_{2} + \alpha_{1} a_{0} x_{3}}{\delta} x_{2}^{\frac{m}{n}} x_{3}^{\frac{m}{n}} - \frac{1}{\delta} x_{2}^{\frac{m}{n}} x_{3}^{\frac{m}{n}} - \frac{1}{\delta} x_{2}^{\frac{m}{n}} x_{3}^{\frac{m}{n}} + \frac{1}{\delta} x_{2}^{\frac{m}{n}} x_{2}^{\frac{m}{n}} = 0,$$

oder

$$\alpha_{2}x_{1}^{\frac{m}{n}}x_{3}^{\frac{m+n}{n}} + \alpha_{4}x_{2}^{\frac{m}{n}}x_{3}^{\frac{m+n}{n}} + |\mu(\alpha_{1}x_{1} + \alpha_{2}x_{2}) + (\mu\alpha_{3} + \alpha_{4})x_{3}|x_{4}^{\frac{m}{n}}x_{2}^{\frac{m}{n}} = 0.$$
 (99b)

Die Kurve ist auch hier vom Grade n(2m+n). Die Gerade X_1X_2 wird hier nicht als Ausartungsgebilde abgesondert, weil sie nicht Congruenzstrahl ist.

Die Kurve (99b) hat in X_1 einen mn-fachen Punkt, dessen Tangenten in der rationalen Gleichung durch

$$x_2^{mn} = 0$$

bestimmt werden. Sie sind also alle in $X_1 X_3$ vereinigt.

Da $x_2 = 0$ in (99b) den Faktor $x_3^{\frac{m+n}{n}}$ absondert, so hat $X_4 X_3$ in $X_4 n(m+n)$ Punkte mit der Kurve gemein.

Für X_2 finden wir ein analoges Resultat; wir können daher Folgendes behaupten:

Die in ω_{∞} liegende Kurve hat in X_1 einen \mathbf{mn} -fachen Punkt, dessen sämmtliche Tangenten in X_1 X_3 vereinigt sind; es hat diese Tangente in X_1 $\mathbf{n}(\mathbf{m}+\mathbf{n})$ Punkte mit der Kurve gemein. In X_2 hat die Kurve ebenfalls einen \mathbf{mn} -fachen Punkt; seine Tangenten sind alle vereinigt in der Gerade X_2 X_3 , welche in X_2 mit der Kurve $\mathbf{n}(\mathbf{m}+\mathbf{n})$ Punkte gemein hat.

Die Gerade X_1X_2 schneidet die Kurve (99b) ausserhalb X_1 und X_2 noch n^2 mal im Punkte ($\alpha_1x_1 + \alpha_2x_2 = 0$, $x_3 = 0$), d. h. im Schnittpunkte L_{μ} von l_{μ} mit X_1X_2 .

Weil $\mu(\alpha_1 x_1 + \alpha_2 x_2) = -(\mu \alpha_3 + \alpha_4) x_3$ einen Faktor $x_3^{\frac{m+n}{n}}$ absondert, so ist die Tangente in L_{μ} durch

$$\mu(\alpha_1 x_1 + \alpha_2 x_2) + (\mu \alpha_3 + \alpha_4) x_3 = 0$$

angewiesen.

Diese Gleichung wird auch ermittelt durch die Elimination von x_4 aus (97) und (98); die Tangente in L_{μ} ist demnach die Projektion der Axe l_{μ} der Regelfläche aus X_4 auf ω_x .

Also:

Die Kurve in ω_{∞} hat in L_{μ} einen \mathbf{n}^2 -fachen Punkt, dessen Tangenten alle in der Projektion von l_{μ} aus X_4 auf ω_{∞} vereinigt sind. Es hat diese Tangente in L_{μ} mit der Kurve $\mathbf{n}(\mathbf{m}+\mathbf{n})$ Punkte gemein. Wie im allgemeinen Falle hat die Kurve in X_3 einen mn-fachen Punkt. Die Tangenten sind durch $\alpha_2^n x_1^m - (-\alpha_1)^n x_2^m = 0$ bestimmt und daher mit den **m** Bildern der Gerade $X_4 L_{\mu}$ identisch.

Da wir nirgends die Ungleichheit m > n angewandt haben, so können alle Eigenschaften der in ω_0 liegenden Kurve abgeleitet werden, indem wir im Obigen die Indices 3 mit 4 und m mit nvertauschen, während noch μ durch $1:\mu$ zu ersetzen ist.

Das Ausartungsgebilde, welches die Kurve in ω_{∞} zu einer Figur vom Grade $(m+n)^2+2mn$ ergänzt, ist aus mn mal der Gerade AX_4 , mn mal der Gerade AX_2 und m^2 mal der Gerade AX_3 zusammengesetzt. Weil A in L_{μ} auf $X_1 X_2$ ist angelangt, so besteht das Ergänzungsgebilde in ω_{∞} hier aus 2mn mal der Gerade X_1X_2 und m^2 mal der Gerade $X_3 L_{\mu}$.

Ebenso wird die Kurve in ω_0 hier durch 2mn mal X_1X_2 und n^2 mal $X_4 L_\mu$ ergänzt.

Der Punkt L_{μ} ist jetzt offenbar ein $(m+n)^2$ -facher, sowohl des Gesammtschnittes in ω_{∞} als desjenigen in ω_0 . Von den $(m+n)^2$ Zweigen durch L_{μ} in ω_{∞} sind ja m^2 in der Gerade $L_{\mu} X_3$, 2mnin der Gerade X_1X_2 und n^2 in den n^2 Zweigen der Kurve in ω_z vereinigt.

Es ist L_{μ} natürlich ein $(m+n)^2$ -facher Punkt, weil er der $(m+n)^2$ -fachen Gerade l_{μ} angehört.

Von den $(m+n)^2$ nach L_{μ} zielenden Congruenzstrahlen fallen m^2 mit $L_{\mu}X_3$ zusammen, 2mn mit X_1X_2 (als Gerade von ω_{μ} $(x_3 = \mu x_4)$ betrachtet) und n^2 in $L_{\mu} X_4$.

Der Tangentenkegel in L_{μ} ist somit in $(m+n)^2$ Ebenen ausgeartet, von denen m^2 mit ω_{∞} , 2mn mit ω_{μ} $(x_3 = \mu x_4)$ und n^2 mit ω_0 zusammenfallen.

Die Punkte X_1 und X_2 sind, wie im allgemeinen Falle, 2mn-fache Punkte. Die Berührungsebenen in X_4 sind in zwei Gruppen, jede von mn Ebenen, verteilt; die eine Gruppe ist in ω_{∞} , die andere in ω_0 vereinigt.

Es gilt dasselbe vom Punkte X_2 .

Die n^2 Tangenten im n^2 -fachen Punkte L_{μ} an der Kurve in ω_{∞} sind die Bilder der Gerade $X_4 L_{\mu}$. Die nahe an L_{μ} liegenden Punkte tragen Strahlen, welche nahe bei X_4 ausmünden.

Weil sie Erzeugenden der axialen Regelfläche sind, so schneiden sich auch l_{μ} und liegen demnach in der Ebene, welche l_{μ} mit X_4 verbindet. Sie schneiden eine durch $X_1 X_2$ gelegte Ebene in der Nähe von L_{μ} derart, dass die Gerade, welche diese Schnittpunkte mit L_{μ} verbindet, mit der Spur dieser Ebene in der Ebene (X_4, l_{μ}) zusammenfällt. Eine solche durch $X_1 X_2$ gelegte Ebene trägt somit eine Kurve, welche in L_{μ} einen vielfachen Punkt besitzt, von dem n^2 Zweige durch die Spur der Ebene (X_4, l_{μ}) berührt werden. Ebenso werden m^2 Zweige durch die Spur der Ebene (X_3, l_{μ}) berührt. Schliesslich werden 2mn Zweige durch die Gerade $X_1 X_2$ berührt.

Wir haben also folgendes:

Die axiale Regelfläche einer $\mathbf{X}_1\mathbf{X}_2$ in L_μ schneidenden Gerade l_μ hat in X_1 und X_2 2mn-fache Punkte, deren mn Berührungsebenen mit ω_∞ und mn mit ω_0 zusammenfallen. Sie hat in L_μ einen $(\mathbf{m}+\mathbf{n})^2$ -fachen Punkt, von dem \mathbf{m}^2 Berührungsebenen vereinigt sind in (X_3, l_μ) , \mathbf{n}^2 in (X_4, l_μ) und 2mn in der Ebene ω_μ $(x_3 = \mu x_4)$. Schliesslich sind X_3 und X_4 beide mn-fache Punkte, deren Verhalten nicht von dem im allgemeinen Falle abweicht.

Betrachten wir jetzt besonders den Fall, wo l_{μ} durch X_1 geht. Die durch X_1 gelegte Gerade trägt m+n Berührungsebenen an dem Fokalkegel F_1 . Weil von diesen jede ein (m+n)-faches Strahlengebilde enthält, so gelangen wir zu einer Fläche vom Grade $(m+n)^2$.

Da jeder Strahl durch X_1 in ω_{∞} ein mn-facher ist (auch wenn er als Strahl durch X_1 betrachtet wird), so müssen die Ebenen ω_{∞} und ω_0 beide als ein Bestandteil vom Grade mn angesehen werden.

In dieser Weise bekommen wir für den Gesammtgrad $(m+n)^2 + 2mn$.

Stellen wir die durch X_1 gehende Gerade durch

$$\alpha_{3}x_{2} + \alpha_{3}x_{3} + \alpha_{4}x_{4} = 0,$$

 $x_{3} = \mu x_{4},$

oder

$$x_{2} = -\frac{\mu \alpha_{3} + \alpha_{4}}{\alpha_{2}} x_{4},$$

$$x_{3} = \mu x_{4}$$

dar, so haben die Coordinaten des Sammelpunktes Y (Siehe S. 233, 234) den Bedingungen

$$y_2 = -\frac{\mu \alpha_3 + \alpha_4}{\alpha_2} y_4,$$

$$y_3 = \mu y_4$$

zu genügen, wonach die Gleichung (546) (S. 234) diese Gestallt annimmt:

$$(-\frac{\mu\alpha_3+\alpha_4}{\alpha_2}x_4-x_2)^m(\mu x_2+\frac{\mu\alpha_3+\alpha_4}{\alpha_2}x_3)^n=(\mu x_4-x_3)^{m+n},$$

oder

$$\begin{aligned} |\alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4|^m |\mu \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_3|^n - \\ - (-1)^n \alpha_2^{m+n} (x_3 - \mu x_4)^{m+n} &= 0 . . . (103b) \end{aligned}$$

Durch diese Gleichungen werden (siehe S. 261, 262) die m + n durch l_{μ} an dem Fokalkegel F_1 gelegten Berührungsebenen angewiesen.

Die Substitution $x_4 = 0$ liefert

$$x_2^m | \mu \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_3 |^n - (-1)^n \alpha_2^n x_3^{m+n} = 0; (101b)$$

diese Gleichung würde sich auch ergeben haben, wenn wir in (996) $\alpha_1 = 0$ gesetzt hätten.

Unser Schluss ist nun:

Die axiale Regelftäche einer durch X_1 gehenden Gerade ($\alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = 0$, $x_3 = \mu x_4$) besteht aus den m + n (m + n)-fachen Ebenen (103b), aus der mn-fachen Ebene ω_{∞} und aus der mn-fachen Ebene ω_0 .

Die Regelfläche einer durch X_2 gehenden Gerade hat jetzt keine Eigentümlichkeiten aufzuweisen.

Die Fälle, wo die Gerade in ω_{∞} oder ω_0 liegt, werden an dieser Stelle nicht erörtert, da diese Ebenen singulär sind.

§ 9a. Die axiale Regelfläche einer sowohl $X_3 X_4$ wie $X_1 X_2$ schneidenden Gerade, in der parabolischen Congruenz.

Um die Eigenschaften dieser Regelfläche aufzufinden haben wir nur die Resultate von § 7a und § 8a zu combiniren.

Eine Gerade 14

schneidet auch $X_3 X_4$, wenn man hat

$$\alpha_3 \mu + \alpha_4 = 0.$$

Die Gleichung der in ω_{∞} liegenden Kurve wird alsdann (siehe (99a), S. 258), ausser $x_3 = 0$,

$$\alpha_1 x_1^{\frac{m}{n}} + \alpha_2 x_2^{\frac{m}{n}} + \mu(\alpha_1 x_1 + \alpha_2 x_2) x_3^{\frac{m-n}{n}} = 0.$$
 (104a)

Der einzige Unterschied mit der Kurve auf S. 258 ist, dass

die Kurve jetzt auch den Punkt X_3 enthält und sogar an dieser Stelle einen n^2 -fachen Punkt besitzt, dessen sämmtliche Tangenten mit $X_3 L_{\mu}$ zusammenfallen; es hat diese Tangente in X_3 mn Punkte mit der Kurve gemein.

Die in ω_0 liegende Kurve besteht nun, ausser der mn-fachen Gerade X_1X_2 , aus der folgenden Kurve vom Grade m^2 :

$$\alpha_1 x_1 + \alpha_2 x_2 + \mu (\alpha_1 x_1^{\frac{n}{m}} + \alpha_2 x_2^{\frac{n}{m}}) x_4^{\frac{m-n}{m}} = 0. \quad . \quad (105a)$$

Diese Kurve hat, in Bezug auf die Kurve auf S. 259, die neue Eigenschaft, dass sie X_4 enthält und sogar in X_4 einen mn-fachen Punkt hat, dessen Tangenten durch

$$\mathbf{\alpha}_{1}x_{1}^{\frac{n}{m}}+\mathbf{\alpha}_{2}x_{2}^{\frac{n}{m}}=0$$

angewiesen, und daher mit den n (m-fach zu zählenden) Bildern von $X_3 L_\mu$ identisch sind.

Die axiale Regelfläche hat dieselben Eigenschaften wie die Fläche von § 8a. Es ist überdies X_3X_4 eine n^2 -fache Gerade, deren Berührungsebenen alle vereinigt sind in der Ebene, welche X_3X_4 mit l_μ verbindet. Nur in ω_0 ist X_4 ein mn-facher Punkt, von dessen Tangenten je m in einem der n Bilder von X_3L_μ vereinigt sind. In der durch l_μ und X_4X_2 gelegten Ebene liegt l_μ als eine m^2 -fache Gerade. Ihr Schnittpunkt $S \equiv X_\mu$ mit X_3X_4 ist denn auch ein m^2 -facher Punkt.

 \S 9b. Die axiale Regelfläche einer sowohl X_3 X_4 wie X_1 X_2 schneidenden Gerade, in der hyperbolischen Congruenz.

Auch hier haben wir nur die Ergebnisse von § 76 und § 86 zu vereinigen.

Da l_{μ} jetzt $X_3 X_4$ schneidet, so ist

$$\mu\alpha_3 + \alpha_4 = 0.$$

Die in ω_{∞} liegende Kurve wird nun durch

$$\alpha_{2} x_{1}^{\frac{m}{n}} x_{3}^{\frac{m+n}{n}} + \alpha_{1} x_{2}^{\frac{m}{n}} x_{3}^{\frac{m+n}{n}} + \mu (\alpha_{1} x_{1} + \alpha_{2} x_{2}) x_{1}^{\frac{m}{n}} x_{2}^{\frac{m}{n}} = 0 \quad (104b)$$
 dargestellt.

Das einzige Neue ist hier, dass die Tangente im Punkte L_{μ} diesen Punkt mit X_3 verbindet.

Im Übrigen weicht diese Regelfläche in keiner wesentlichen Hinsicht von der Fläche von § 8b ab.

 \S 10a. Die axiale Regelfläche einer in einer singulären Ebene $arepsilon_{ au}$ liegenden Gerade, in der parabolischen Congruenz.

Da die Ebene ε_{τ} (wo $\tau^{m-n} = 1$) eine singuläre Ebene ist, welche ein Strahlengebilde m^{ter} Klasse trägt, so wird diese Ebene, m-fach gezählt, von der axialen Regelfläche abgesondert. Die Restfläche ist also vom Grade m(m+n-1).

Von den m^2 Strahlen, welche nach einem Punkte auf l zielen, liegen m in ε_{τ} . Es liegen demnach auf der Restfläche, welche künftighin die axiale Regelfläche genannt werde, m(m-1) Strahlen, wonach die in ε_{τ} liegende Gerade l auf ihrer axialen Regelfläche eine m(m-1)-fache Gerade ist.

Der Schnitt der allgemeinen Regelfläche mit ω_{∞} besteht aus n(m-n)mal der Gerade AX_1 , n(m-n)mal der Gerade AX_2 , (m-n)mal den m-n Geraden $AE_{\tau_{m-n}}$ (von denen jetzt eine der Ebene ε_{τ} angehört) und aus einer Kurve vom Grade n(m+n).

Da jetzt A auf $X_3 E_{\tau}$ liegt, hat man

$$a_2 = \tau a_1,$$

während der Umstand, dass B' auf $X_4 E_{\tau}$ liegt, zu der Bedingung

$$b_{2}{'} = \tau b_{1}{'}$$

Veranlassung gieht.

Die m-n Ebenen $\varepsilon_{\tau_{m-n}}$ sind natürlich unter sich gleichwertig. Es genügt daher, dass wir l in eine dieser Ebenen legen. Der einfachen Rechnungen wegen werden wir voraussetzen, dass l sich in der durch

$$x_1 = x_2$$
 (106)

angewiesenen Ebene ε befindet.

Die Coordinaten von A genügen alsdann der Bedingung

$$a_1 = a_2 = a$$
, (107)

und zwischen den Coordinaten von B' besteht die Beziehung

$$b_1' = b_2' = b'$$
. (108)

Es gilt offenbar auch

$$a_1 b_2' - a_2 b_1' = 0.$$
 . . . (109)

Die Kurve in ω_{∞} hat (siehe (26a), S. 200) die Gleichung

$$\xi_{2}(\xi_{1}+a\xi_{3})^{\frac{m}{n}}-\xi_{1}(\xi_{2}+a\xi_{3})^{\frac{m}{n}}+b'(\xi_{1}-\xi_{2})\xi_{3}^{\frac{m}{n}}=0. \quad (110a)$$

Die rationale Gleichung ist durch $(\xi_1 - \xi_2)^n$ teilbar. Dies lässt sich nachweisen, indem wir (110a) in dieser Form schreiben:

$$\xi_2(\xi_1 + a\xi_3)^{\frac{m}{n}} = \xi_1(\xi_2 + a\xi_3)^{\frac{m}{n}} - b'(\xi_1 - \xi_2)\xi_3^{\frac{m}{n}}.$$

Durch Potenzirung beider Seiten mit n finden wir

$$\xi_{2}^{n}(\xi_{1}+a\xi_{3})^{m} = \xi_{1}^{n}(\xi_{2}+a\xi_{3})^{m} - nb'\xi_{1}^{n-1}(\xi_{2}+a\xi_{3})^{\frac{m}{n}(n-1)}(\xi_{1}-\xi_{2})\xi_{3}^{\frac{m}{n}} + \dots + (-1)^{n}b'^{n}(\xi_{4}-\xi_{2})^{n}\xi_{3}^{m},$$

oder

$$\begin{aligned} &\xi_{2}^{n}(\xi_{1}+a\xi_{3})^{m}-\xi_{1}^{n}(\xi_{2}+a\xi_{3})^{m}=\\ =&(\xi_{1}-\xi_{2})[-nb'\xi_{1}^{n-1}(\xi_{2}+a\xi_{3})^{\frac{m}{n}(n-1)}\xi_{3}^{\frac{m}{n}}+\ldots+(-1)^{n}b'^{n}(\xi_{1}-\xi_{2})^{n-1}\xi_{3}^{m}].\end{aligned}$$

Setzen wir, der Kürze wegen,

$$-nb'\xi_1^{n-1}(\xi_2+a\xi_3)^{\frac{m}{n}(n-1)}\xi_3^{\frac{m}{n}}+\ldots+(-1)^nb'^n(\xi_1-\xi_2)^{n-1}\xi_3^{m}=P,$$

so geht die vorhergehende Gleichung über in

$$\xi_2^n(\xi_1 + a\xi_3)^m - \xi_1^n(\xi_2 + a\xi_3)^m = (\xi_1 - \xi_2)P$$
,

oder

Die beiden Seiten sind offenbar durch $\xi_1 - \xi_2$ teilbar. Da der Grad der rationalen Gleichung das *n*-fache von dem von (111*a*) ist, so enthält die rationale Gleichung den Faktor $(\xi_1 - \xi_2)^n$.

Hieraus erfahren wir, dass die Spur in ω_{∞} aus n mal der Gerade $\xi_1 - \xi_2 = 0$, d. h. $X_3 E$, und aus einer Kurve vom Grade n(m+n-1) zusammengesetzt ist. Im Ganzen enthält der Gesammtschnitt also, ausser dieser Kurve, n(m-n) mal AX_1 , n(m-n) mal AX_2 , (m-n) mal die Geraden $AE_{\tau_{m-n}}$ (ausgenommen AE) und (m-n)+n=m mal die Gerade AE.

Von der allgemeinen Regelfläche hatte sich die Ebene ε m mal abgesondert; in diesem Ausartungsgebilde ist somit die Gerade AE m-fach enthalten. Die Restfläche schneidet demnach ω_{∞} in einer Kurve vom Grade n(m+n-1), in der n(m-n)-fachen Gerade AX_1 , in der n(m-n)-fachen Gerade AX_2 und in den m-n-1

(m-n)-fachen Geraden $AE_{\tau_{m-n}}(\tau_{m-n}\neq 1)$, weshalb der totale Grad n(m+n-1)+2n(m-n)+(m-n)(m-n-1)=m(m+n-1) ist.

Da n Zweige im Punkte A der ursprünglichen Kurve in $AE = X_3E$ vereinigt sind, so bleiben für die hier betrachtete Kurve in ω_x $n^2 - n = n(n-1)$ Zweige übrig. Der Punkt A ist also ein n(n-1)-facher Punkt.

Es fand sich dass X_3 , falls l die Gerade X_3X_4 schneidet, ein n^2 -facher Punkt ist, dessen sämmtliche Tangenten mit X_3A zusammenfallen.

Im vorliegenden Fall, wo A sich auf $X_3 E$ befindet, sind von den n^2 Zweigen n in $X_3 E$ vereinigt, wonach X_3 auf der Restkurve ein n(n-1)-facher Punkt ist, dessen Tangenten alle X_3 mit A (oder E) verbinden.

Der Punkt E gehört jetzt der Kurve nicht an.

Übrigens können wir, in Bezug auf diese Kurve in ω_{∞} , auf die Resultaten von S. 203 u. f. hinweisen.

Der Schnitt in ω_0 hat jetzt (siehe (40a), S. 207) die Gleichung

$$\xi_{2}(\xi_{1}+b'\xi_{4})^{\frac{n}{m}}-\xi_{1}(\xi_{2}+b'\xi_{4})^{\frac{n}{m}}+a(\xi_{1}-\xi_{2})\xi_{4}^{\frac{n}{m}}=0.$$
 (112a)

Von dieser Gleichung lässt sich zeigen, dass ihre rationalisirte Form den Faktor $(\xi_1 - \xi_2)^m$ enthält, wonach geschlossen wird, dass der Schnitt in ω_0 aus m mal der Gerade $X_4 E (\equiv B' E)$ und aus einer Kurve vom Grade m(m+n-1) besteht.

Es erhellt, dass die m-fache Gerade X_4E der m-fachen Ebene ε angehört, welche von der allgemeinen Regelfläche abgesondert ist. Die Restfläche schneidet daher ω_0 in der oben erwähnten Kurve vom Grade m(m+n-1).

Es ist auf diese Kurve B' ein m(m-1)-facher Punkt, für dessen Tangenten wir auf S. 208 hinweisen. Der Punkt X_4 ist nun ein mn-m=m(n-1)-facher Punkt. Seine Tangenten sind in § 7a auf S. 243, 244 erörtert.

Da die Punkte X_1 , X_2 und $E_{\tau_{m-n}}$ $(\tau_{m-n} \neq 1)$ nicht durch die Lage von l in ε beeinflusst werden, so lässt sicht von der exialen Regelfläche (Restfläche) folgendes behaupten:

Die axiale Regelfläche einer in ε befindlichen Gerade ist vom Grade $\mathbf{m}(\mathbf{m}+\mathbf{n}-1)$. Sie hat in X_1 einen \mathbf{mu} -fachen Punkt, von dessen Berührungsebenen je \mathbf{m} in einer der \mathbf{n} Ebenen (siehe (46a), S. 211)

$$(x_2 - ax_3)^n - a^m x_4^n = 0$$
 . . . (113a)

vereinigt sind. Der Punkt X_2 ist ebenfalls ein **mn**-facher; von seinen Tangenten sind je **m** mit einer der **n** Ebenen (siehe (45a), S. 211).

$$(x_1 - ax_3)^n - a^m x_4^n = 0$$
 . . . (114a)

vereinigt. Die $\mathbf{m}-\mathbf{n}-1$ Punkte $E_{\tau_{m-n}}$ $(\tau_{m-n}\neq 1)$ sind \mathbf{n} -fache Punkte, deren Berührungsebenen alle mit ω_{∞} zusammengefallen sind. Die Gerade X_3X_4 ist nun eine $\mathbf{n}(\mathbf{n}-1)$ -fache Gerade der Fläche, weil von den n^2 Blättern der allgemeinen Fläche von § 7a n mit ε zusammenfallen.

Wir können dies leicht ersehen, wenn wir bedenken, dass die n^2 Blätter in einem Punkte X_{μ} von X_3 X_4 durch die n^2 Congruenzstrahlen bestimmt werden, welche mit X_3 X_4 coincidiren. Von den m^2-n^2 übrigen Strahlen liegen m-n in jeder der m-n Ebenen $\varepsilon_{\tau_{m-n}}$, also auch m-n in ε . Da aber die Ebene ε m mal abgesondert wird, so müssen noch n Strahlen den n^2 entzogen worden, welche mit X_3 X_4 zusammenfallen.

Auf der Restfläche ist also X_3 X_4 eine n(n-1)-fache Gerade. Es sind alle Berührungsebenen in ε vereinigt (Ausnahme in ω_0). Nur der Schnittpunkt S von l mit X_3 X_4 ist ein m(m-1)-facher Punkt.

Wir sind jetzt im Stande die Singularitäten des Schnittes mit einer durch $X_1 X_2$ gelegten Ebene ω_{μ} zu bestimmen. Ein solcher Schnitt hat in X_1 und X_2 mn-fache Punkte, dessen Tangenten die Spuren in ω_{μ} bez. der n Ebenen (113a) und der n Ebenen (114a) sind (jede m mal gerechnet). Die m-n-1 Punkte $E_{\tau_{m-n}}$ ($\tau_{m-n} \neq 1$) sind n-fache Punkte, deren Tangenten alle mit $X_1 X_2$ zusammengefallen sind (Ausnahme in ω_x). Der Schnittpunkt C_{μ} von l mit ω_{μ} is ein m(m-1)-facher Punkt, dessen Tangenten durch die ausserhalb ε liegenden, nach C_{μ} zielenden Congruenzstrahlen bestimmt werden. Der Punkt X_{μ} , wo $\omega_{\mu} X_3 X_4$ trifft, ist ein n(n-1)-facher. Seine sämmtlichen Tangenten sind in $X_{\mu} E$ vereinigt (ausgenommen in ω_0).

Schliesslich hat der Schnitt Doppelpunkte in den Schnittpunkten von ω_{μ} mit der Doppelkurve.

Die Doppelkurve wird durch die Lage von l in ε wesentlich beeinflusst. Wir wollen sie daher besonders untersuchen.

Die Gleichungen (67a) und (68a) sind hier identisch geworden. Ihre gemeinschaftliche Form ist

$$f(\pi) \equiv (b' - \mu \pi)^n - (\pi + a)^m = 0.$$
 (115a)

Es liefert diese Gleichung sowohl die Coordinaten π_2 wie die π_1 . Die Spur P eines Strahles p, welcher einem Punkte C von l in ε entstammt, ist somit durch eine Combination (π_1, π_2) zweier der

m Wurzeln von (115a) bestimmt. Wir wollen diese Wurzeln mit

$$c_1$$
, c_2 , . . . c_m

bezeichnen.

Wir denken uns nunmehr zwei Spuren, nl.

$$P_{1,2}\ldots \pi_1=c_1, \pi_2=c_2,$$

und

$$P_{2,1} \ldots \pi_1 = c_2, \pi_2 = c_1.$$

Die Gerade, welche $P_{2,1}$ mit $P_{1,2}$ verbindet, hat alsdann die Gleichung

$$\xi_1 + \xi_2 - (c_1 + c_2) \, \xi_3 = 0 \, ; \quad . \quad . \quad (116a)$$

sie enthält also den Punkt E' auf $X_1 X_2$, welcher durch

$$x_1 + x_2 = 0$$

bestimmt ist. Es giebt daher jede Combination (c_k, c_l) zu einer durch E' gehenden Gerade Veranlassung.

Es leuchtet ein, dass die m Spuren $P_{4,4}$, $P_{2,2}$ $P_{m,m}$ sich auf X_3 E befinden.

Die m(m-1) ausserhalb $X_3 E$ liegenden Spuren werden nun paarweise mit E' verbunden durch $\frac{m(m-1)}{2}$ Geraden $P_{k,l} P_{l,k} E'$.

Wenn eine solche Gerade $P_{k,l}P_{l,k}E'$ durch A ($\xi_1=0$, $\xi_2=0$) geht, so folgt aus (116a)

$$c_1 + c_2 = 0.$$
 (117)

Sobald einem Punkte C von l zwei Strahlen $p_{k,l}$ und $p_{l,k}$ entstammen, deren Spuren $P_{k,l}$ und $P_{l,k}$ mit A in einer Gerade liegen, so ist dieser Punkt C ein Punkt $D_{k,l}$ der Doppelkurve.

Aus dem Obigen geht alsdann hervor, dass die Ebene, welche die zwei Strahlen $p_{k,l}$ und $p_{l,k}$ mit l verbindet, den Punkt E' enthält.

Wenn also der Gleichung (117) genügt wird, d. h. wenn zwei Wurzeln von $f(\pi) = 0$ (115a) sich nur durch das Vorzeichen unterscheiden, so liegt ein Punkt der Doppelkurve auf l, während die beiden durch diesen Punkt gehenden Strahlen sich in der Ebene (l, E') befinden.

Wir haben nun zu untersuchen, für welche Punkte C auf l die Gleichung (117) erfüllt ist.

Es ist (117) ein besonderer. Fall der Bedingung

$$\Pi(c_k + c_l) = 0$$
, (118)

deren linke Seite eine symmetrische Funktion der m Wurzeln von $f(\pi) = 0$ ist, sich also ausdrücken lässt in einer Form, welche nur die Coefficienten von $f(\pi) = 0$ enthält.

Weil die Coefficienten ausschliesslich von den Constanten a, b' und von der C kennzeichnenden Grösse μ abhängen, so wird (118) sich darstellen lassen in der Form

$$\Phi(\mu) = 0.$$
 (119)

Wenn m und n grosse Zahlen sind, so kann es geschehen, dass die Umformung der symmetrischen Wurzelfunktion in eine Funktion der Coefficienten zu ausserordentlichen Schwierigkeiten Veranlassung giebt. In diesem Falle können wir einer Methode folgen, welche zwar umständlich, aber von Kunstgriffen frei ist. Wir betrachten alsdann die Gleichung

$$f(-\pi) = 0,$$

deren Wurzeln sich offenbar von den Wurzeln von $f(\pi) = 0$ nur durch das Vorzeichen unterscheiden. Wenn nun $f(-\pi) = 0$ und $f(\pi) = 0$ eine gleiche Wurzel haben, so bedeutet dies

Man erhält alle Bedingungen $c_k + c_l = 0$, indem man die Eli-

minante von $f(\pi) = 0$ und $f(-\pi) = 0$ verschwinden lässt. Es ist selbstredend, dass neben der Bedingung, dass c_k von $f(\pi)$ dem $-c_l$ von $f(-\pi)$ gleich sei, auch die Bedingung auftritt, dass c_l von $f(\pi)$ dem $-c_k$ von $f(-\pi)$ gleich sei, so dass in der Eliminante der Fall $c_k + c_l = 0$ zweimal vertreten ist. Die Eliminante ist daher das Quadrat einer Funktion von a, b und μ .

Aus dem Obigen erhellt ohne Weiteres, dass die axiale Regelfläche von l in ε harmonisch-symmetrisch ist in Bezug auf die Ebene ε und den Punkt E' (welcher E in Bezug auf X_1 und X_2 harmonisch zugeordnet ist). Hieraus geht hervor, dass alle Geraden, wofern sie E' nicht enthalten, in Paaren vorkommen, deren Schnittpunkte sich in der Ebene ε befinden.

Es werden speziell die Verbindungslinien der Spuren $P_{p,q}$, $P_{r,s}$ sich in Paaren anordnen lassen, deren Schnittpunkte auf X_3E liegen. Wir ersehen hieraus, dass die beiden Geraden

$$P_{p,q}P_{r,s}\dots(c_q-c_s)\xi_1-(c_p-c_r)\xi_2+(c_pe_s-c_qc_r)\xi_3=0$$
 und
$$P_{q,p}P_{s,r}\dots(c_p-c_r)\xi_1-(c_q-c_s)\xi_2-(c_pe_s-c_qc_r)\xi_3=0$$

sich in dem auf X_3E liegenden Punkte $G_{pq,rs}$ schneiden; welcher durch

$$G_{pq,rs}\dots \xi_1 = \xi_2 = rac{c_p c_s - c_q c_r}{c_p - c_q - c_r + c_s} \, \xi_3$$

bestimmt ist.

Wenn nun die Gerade $P_{p,q}P_{r,s}$ A enthält, so ist dies auch mit $P_{q,p}P_{s,r}$ der Fall. Es treffen alsdann im Punkte C auf l vier Strahlen zusammen, nämlich $p_{p,q}, p_{r,s}, p_{q,p}$ und $p_{s,r}$, von denen die ersteren zwei mit l durch eine Ebene verbunden werden, und ebenfalls die letzteren zwei mit l in einer Ebene liegen.

Der auf l befindliche Punkt C, welcher diese Anordnung liefert, ist daher ein Doppelpunkt der Doppelkurve. Wir wollen ihn mit $D_{pq,rs}$ bezeichnen.

Wir können jetzt auch sagen, dass C ein Punkt $D_{pq,rs}$ sein wird, wenn der Punkt $G_{pq,rs}$ mit A zusammenfällt. Es ist dies der Fall, wenn

$$c_p c_s - c_q c_r = 0...$$
 (120)

Hier kann p = s und q = r sein. Dagegen kann weder p = q oder p = r sein, noch s = q oder s = r. Denn im Falle p = q würde die Gleichung (120) zerfallen in $c_p = 0$ und $c_s = c_r$, wonach s = r; es würde demnach entweder der Strahl in A ausmünden,

oder in irgend einem Punkte von X_3E , und dies ist ausgeschlossen. Nebst den Fällen, wo der Bedingung

$$c_p c_s - c_q c_r = 0$$
 $(p, q, r, s \text{ alle } \textit{ungleich})$

genügt wird, haben wir noch die Fälle zu betrachten, wo

$$c_p c_s - c_q^2 = 0$$
 (p, q und s alle ungleich).

Das Produkt

$$\Pi \left(c_p \, c_s - - c_q \, c_r \right)$$

aller Combinationen (120) ist offenbar eine symmetrische Funktion der Wurzeln von $f(\pi) = 0$ und somit eine Funktion von μ . Es kommen in diesem Produkt auch die Fälle vor, wo p = q oder r = s. Die Gleichheit p = q z. B. liefert den Faktor $(c_s - c_r)$, welcher verschwindet falls $f(\pi) = 0$ zwei gleiche Wurzeln hat.

Ferner giebt p = s und q = r zu $c_p^2 - c_q^2 = 0$ Veranlassung, also, neben $c_p - c_q = 0$, zu $c_p + c_q = 0$; doch ist diese Bedingung schon durch die Gleichung $\Phi(\mu) = 0$ (119) vertreten.

Die Funktion von μ , welche das Produkt $\Pi(c_p c_s - c_q c_r)$ ersetzt, wird ein Quadrat sein; wir setzen deshalb

$$\Pi\left(c_{n} c_{s} - c_{q} c_{r}\right) = \left[\varphi\left(\mu\right)\right]^{2}. \qquad (121)$$

Nach dem oben Dargelegten wird $\varphi(\mu)$ die Funktion $\Phi(\mu)$ und die Discriminante $\psi(\mu)$ von $f(\pi) = 0$ als Faktoren enthalten. Wir können somit schreiben:

$$\varphi(\mu) = \Phi(\mu). \quad \psi(\mu). \quad \Psi(\mu). \quad . \quad . \quad . \quad (122)$$

Die Gleichung

$$\Psi(\mu) = 0 \quad . \quad . \quad . \quad . \quad . \quad (123)$$

wird nun diejenigen Punkte auf l anweisen, welche zu den Gleichungen

$$c_p\,c_s -\!\!\!\!-\! c_q\,c_r =\!\!\!\!= 0$$

oder

$$c_p c_s - c_q^2 = 0$$

Veranlassung geben.

Auch hier wollen wir eine Methode angeben um $\Psi(\mu)$ zu

ermitteln, falls m und n so gross sind, dass die Umformung der symmetrischen Funktion scheitert.

Wir betrachten daher die Gleichung

$$f\binom{d}{\pi} = 0. \quad . \quad . \quad . \quad . \quad (124)$$

Ihre Wurzeln sind durch

$$\frac{x}{\pi} = c_1, c_2, \dots c_m,$$

oder durch

$$\pi = \frac{x}{c_{1,2,\dots,m}}$$

bestimmt.

Falls $f(\pi) = 0$ und $f\left(\frac{x}{\pi}\right) = 0$ eine gleiche Wurzel haben, so muss die Beziehung

$$c_p = \frac{x}{c_n}$$

oder

$$x = c_p c_s$$

erfüllt sein.

Die Eliminante von $f(\pi) = 0$ und $f\left(\frac{x}{\pi}\right) = 0$ ist ein Ausdruck, welcher, ausser von a und b', nur von μ und x abhängt.

Indem wir ihn durch G(x) darstellen, so sind die Coefficienten Funktionen von μ .

Die Wurzeln der Gleichung

$$G(x) = 0$$
 (125)

sind die Produkte $x = c_p c_s$ der Wurzelpaare von $f(\pi) = 0$.

Weil diese Produkte auch die Quadrate der Wurzeln enthalten, so werden auch die Werte $x = c_p^2$ der Gleichung (125) genügen.

Es sind diese Werte aber auch die Wurzeln der Gleichung $f(|\!\!/ x) = 0$, wonach die Form G(x) den Ausdruck $f(|\!\!/ x)$ als Faktor enthalten muss.

Wenn f(|/x) = 0 rationalisirt wird, möge sie die Gestalt g(x) = 0 annehmen. Wir haben alsdann

$$G(x) \equiv g(x) \cdot h(x)$$
. . . . (126)

Die Gleichung h(x) = 0 liefert sodann die Produkte $c_{\mu}c_{s}$ u.s.w. Es leuchtet ein, dass die Coefficienten von g(x) und h(x) noch ausschliesslich von μ abhängen.

Wenn h(x) zwei gleiche Wurzeln hat, so weist dies auf die Gleichheit

$$c_{\nu} c_{s} = c_{a} c_{r}$$

hin. Die Diskriminante von h(x) ist eine Funktion von μ , nl. $\varphi(\mu)$. Diejenigen auf l liegenden Punkte C, welche durch

$$\varphi(\mu) = 0$$

bestimmt sind, geben demnach zu der Gleichung $c_p c_s = c_q c_r$ Veranlassung; ihnen gehören somit die Punkte $D_{pq,rs}$ und $D_{k,l}$.

Den Überlegungen von S. 276 nach, bemerken wir, das $\varphi(\mu)$ den Ausdruck $\Phi(\mu)$ und die Diskriminante $\psi(\mu)$ von $f(\pi) = 0$ als Faktoren enthalten muss; wir können also, wie dort, schreiben

$$\varphi(\mu) = \Phi(\mu) \cdot \psi(\mu) \cdot \Psi(\mu).$$

Die Gleichung

$$\Psi(\mu) = 0$$

bestimmt besonders die Punkte $D_{pq, rs}$.

Es befinden sich unter diesen Punkten auch die Punkte $D_{pq,\,qs}$, welche die Gleichung

$$c_p c_s = c_q^2$$

veranlassen.

Obgleich das Verhalten dieser Punkte nicht von dem der Punkte $D_{pq,rs}$ verschieden ist, so wollen wir doch zeigen, wie wir sie von jenen trennen können.

Wir bemerken, dass die Bedingung (128) erfüllt ist, wenn die Gleichungen g(x) = 0 und h(x) = 0 eine gleiche Wurzel haben.

Indem wir die Eliminante von g(x) = 0 und h(x) = 0 von dem Faktor $\psi(\mu)$, der Diskriminante von $f(\mu)$ befreien, erübrigen wir eine Form $\Omega(\mu)$, welche, wenn gleich Null gesetzt, die Punkte $D_{pq,\,qs}$ bestimmt.

Wie wir ersahen, sind die Punkte $D_{pq,rs}$ (daher auch die Punkte $D_{pq,qs}$) Doppelpunkte der Doppelkurve, während die Punkte $D_{k,l}$ gewöhnliche Punkte der Doppelkurve sind.

Es sei $\Phi(\mu)$ vom Grade M, $\Psi(\mu)$ vom Grade N in μ . Es liegen alsdann M Punkte $D_{k,l}$ und N Punkte $D_{pq,rs}$ auf l.

Die Doppelkurve schneidet daher l in M + 2N Punkten.

Da jede durch l gelegte Ebene noch $\frac{mn(mn-1)}{2}$ Punkte der Doppelkurve enthält, so ist der Grad der Doppelkurve

$$M+2N+\frac{mn(mn-1)}{2}.$$

Von der Doppelkurve lässt sich also folgendes behaupten:

Die Doppelkurve auf der axialen Regelfläche einer in der Ebene ε befindlichen Gerade l schneidet die Gerade l in M gewöhnlichen und N Doppelpunkten. Die Strahlen, welche den M gewöhnlichen Punkten entstammen, liegen alle in der durch l und E' gelegten Ebene. Hier ist M der Grad der durch Umformung von $\Pi(c_k+c_l)=0$ erhaltenen Gleichung $\Phi(\mu)=0$, N der Grad der aus $\Pi(c_\mu c_s-c_q c_r)=0$ hergeleiteten Gleichung $\Psi(\mu)=0$. Der Grad der Doppelkurve ist $M+2N+\frac{mn\,(mn-1)}{2}$.

Betrachten wir jetzt den Fall, wo l durch X_3 hindurchgeht, so ist der Schnitt eine m-fache Kurve, deren Grad im allgemeinen Falle m+n ist. Es wird jetzt die m-fache Gerade X_3 E abgesondert, wonach wir eine m-fache Kurve vom Grade m+n-1 erübrigen. Auf dieser Kurve sind X_4 und X_2 n-fache Punkte (siehe S. 249); ihre Tangenten sind bez. mit X_1X_4 und X_2X_4 zusammengefallen. Die Punkte $E_{\tau_{m-n}}$ ($\tau_{m-n} \neq 1$) sind alle gewöhnliche Punkte; ihre Tangenten convergiren alle nach dem Punkt T_0 (siehe (95a), S. 250). Der Punkt E gehört jetzt der Restkurve nicht an. Es ist ferner B' ein (m-1)-facher Punkt, dessen Tangenten die ausserhalb ε liegenden Bilder von $X_3A=X_3E$ sind.

Die in ω_{∞} liegende Kurve hat einen n(n-1)-fachen Punkt in X_3 ; sie hat sonst keine Abweichungen von der obigen aufzuweisen.

Die m-n-1 Punkte $E_{\tau_{m-n}}$ $(\tau_{m-n}\neq 1)$ sind auf der Fläche n-fache Punkte. Ihre Tangenten liegen aber jetzt nicht in ω_{x} , sondern in den Ebenen, welche $E_{\tau_{m-n}}$ mit der Gerade X_3 T_0 (siehe S. 250) verbinden. Der Punkt E gehört der Fläche nicht an.

Es möge schliesslich die in ε liegende Gerade den Punkt X_4 enthalten. In ω_{∞} befindet sich alsdann eine n-fache Kurve vom Grade m+n-1. Auf dieser Kurve sind X_4 und X_2 (n-1)-fache Punkte, deren Tangenten bez. mit X_4 X_3 und X_2 X_3 zusammenfallen. Es ist X_3 ein (m-1)-facher Punkt, dessen Tangenten die m-1 ausser-

halb ε liegenden Bilder von X_4E sind. Es ist A ein (n-1)-facher Punkt, dessen Tangenten durch die ausserhalb ε liegenden Congruenzstrahlen bestimmt sind. Die Punkte $E_{\tau_{m-n}}$ $(\tau_{m-n} \neq 1)$ sind gewöhnliche Punkte; ihre Tangenten convergiren in einem auf X_3E befindlichen Punkt. Der Punkt E gehört der Kurve nicht an.

Die in ω_{∞} liegende Kurve hat in X_4 einen m(m-1)-fachen Punkt, dessen Tangenten alle in X_4 E vereinigt sind. Es weist übrigens diese Kurve keine Abweichungen auf.

Auf dieser Regelfläche verhalten die Punkte $E_{\tau_{m-n}}$ sich nicht anders als auf der allgemeinen Fläche. Nur der Punkt E befindet sich nicht auf der Fläche.

Der Schnitt mit einer durch $X_1 X_2$ gelegten Ebene ω_{μ} zeigt daher keine anderen Eigenschaften als diejenigen, welche bei der axialen Regelfläche einer willkürlichen in ε liegenden Gerade erwähnt sind.

§ 10b. Die axiale Regelfläche einer in einer singulären Ebene ε_{τ} liegenden Gerade, in der hyperbolischen Congruenz.

Die Ebene ε_{τ} $(\tau^{m+n}=1)$ ist singulär und trägt ein Strahlengebilde von der Klasse m+n; sie gehört also als Ausartungsgebilde vom Grade m+n der axialen Regelfläche an. Die Restfläche ist somit vom Grade (m+n)(m+n-1)+2mn.

Von den $(m+n)^2$ Strahlen, welche einem auf l in ε_{τ} liegenden Punkte entstammen, liegen m+n in der Ebene ε_{τ} . Auf der Restfläche liegen deren also (m+n)(m+n-1), wonach l auf der Restfläche eine (m+n)(m+n-1)-fache Gerade ist.

Wo kein Irrtum droht, wird mit der axialen Regelfläche die Restfläche gemeint.

Der Schnitt mit ω_x der allgemeinen Regelfläche besteht aus mn mal AX_1 , mn mal AX_2 , m^2 mal der Gerade AX_3 und aus einer Kurve vom Grade n(2m+n).

Die m^2 -fache Gerade AX_3 rührt von den m^2 Strahlen her, welche dem Punkte A entstammen und ω_0 in der Nähe von A_3 schneiden. Durch einen Punkt A von X_3E_{τ} gehen m+n Tangenten der in der Ebene ε_{τ} liegenden Fokalkurve. Von diesen Tangenten fallen m mit der Gerade $AE_{\tau} (\equiv X_3E_{\tau})$ zusammen. Es ist dies leicht ersichtlich, sobald man die Gleichung der Fokalkurve in Liniencoordinaten betrachtet.

Die Tangente wird (als Congruenzstrahl in der Ebene $x_4 = \tau x_2 = x_0$) durch

$$x_0 - p_1 x_3 - p_1^{-\frac{m}{n}} x_4 = 0$$

dargestellt. Ihre Liniencoordinaten φ_0 , φ_3 , φ_4 sind somit durch

$$\frac{\varphi_0}{1} = \frac{\varphi_3}{-p_1} = -\frac{\varphi_4}{-p_1^{-\frac{m}{n}}}$$

bestimmt, wonach

$$q_0^{m+n} - (-1)^{m+n} q_3^m q_4^n = 0.$$
 . (127)

Der Punkt A $(x_3 = ax_3, x_4 = 0)$ wird offenbar durch die tangentiale Gleichung

$$a\varphi_0 + \varphi_3 = 0$$
,

oder

$$\varphi_3 = --a\varphi_0$$

angewiesen. Durch die Substitution dieses Wertes in (28) findet man u. A. $\varphi_0^m = 0$; es sind also von den aus A an der Fokalkurve gelegten Tangenten m mit der Gerade $\alpha \varphi_0 + \underline{\varphi}_3 = 0$, $\varphi_0 = 0$, oder $\varphi_0 = 0$, $\varphi_3 = 0$, d. h. mit der Gerade AE zusammengefallen.

Wenn der auf l in ε_{τ} liegende Punkt Y sich nahe an A befindet, so trägt Y m Tangenten der Fokalkurve, welche in der Nähe von X_3 E_{τ} liegen. Im Ganzen werden durch Y m^2 Strahlen gehen, welche ω_0 nahe bei $E_{\tau} (\equiv A_3)$ schneiden. Von diesen m^2 Strahlen befinden sich also m in der Ebene ε_{τ} .

Wir schliessen demnach, dass von den m^2 Geraden AE_{τ} , welche A entstammen, nur m genau in ε_{τ} liegen, während die m(m-1) übrigen sich ursprünglich ausserhalb ε_{τ} befanden.

Es wird aber von dem Gesammtschnitte in ε_{τ} (m+n) mal die Gerade X_3E_{τ} abgesondert; aus dem Vorhergehenden leuchtet nun ein, dass von diesen m+n Geraden X_3E_{τ} m dem Ausartungsgebilde angehört haben, welches aus m^2 mal $X_3E_{\tau}(\equiv AE_{\tau})$ besteht. Wir müssen also schliessen, dass X_3E_{τ} noch n mal der in ω_{ε} liegenden Restkurve entnommen wird.

Die Restkurve, welche bei der willkürlichen Gerade vom Grade n(2m+n) war, wird jetzt vom Grade n(2m+n)-n=n(2m+n-1) sein.

Das Ausartungsgebilde, welches diese Restkurve zum vollständigen Schnitte von ω_{∞} mit der Restfläche ergänzt, besteht nunmehr aus mn mal AX_1 , mn mal AX_2 und m(m-1) mal $AX_3 \equiv X_3 E_{\tau}$.

Es ist somit der totale Grad n(2m + n - 1) + 2mn + m(m - 1) = (m + n)(m + n - 1) + 2mn.

Wie in der parabolischen Congruenz, genügt es den Fall zu erörtern, wo l in der Ebene ε $(x_1 = x_2)$ liegt.

Die Coordinaten von A erfüllen alsdann die Beziehung

$$a_1 = a_2 = a$$
,

und zwischen den Coordinaten von B' besteht die Verbindung

$$b_1' = b_2' = b',$$

wonach auch hier die Gleichung

$$a_1 b_2' - a_2 b_1' = 0$$

gilt.

Die in ω_z liegende Kurve (siehe (26b) S. 225) hat jetzt die Gleichung

$$\xi_{1}(\xi_{1} + a\xi_{3})^{\frac{m}{n}}\xi_{3}^{\frac{m}{n}} - \xi_{2}(\xi_{2} + a\xi_{3})^{\frac{m}{n}}\xi_{3}^{\frac{m}{n}} - b'(\xi_{1} - \xi_{2})(\xi_{1} + a\xi_{3})^{\frac{m}{n}}(\xi_{2} + a\xi_{3})^{\frac{m}{n}} = 0. \quad (110b)$$

Die rationale Gleichung wird nun durch $(\xi_1 - \xi_2)^n$ teilbar sein; wir können dies in analoger Weise wie in § 10a auf S. 270 nachweisen.

Die Kurve, welche vom Grade n(2m+n) war, ist daher zerfallen in n mal die Gerade X_3 E und eine Kurve vom Grade n(2m+n-1). Auf der allgemeinen Kurve in ω_{∞} ist A ein n^2 -facher Punkt.

Es sind jetzt n Zweige in AE' vereinigt und somit von der Kurve abgesondert. Die Restkurve hat also in A einen n(n-1)-fachen Punkt; seine Tangenten sind die axialen Projektionen aus l auf ω_{∞} der n(n-1) ausserhalb ε liegenden nach A zielenden Strahlen.

Der Punkt X_3 war damals ein mn-facher. Es sind aber jetzt von den mn Zweigen n in der abgesonderten Gerade X_3 E vereinigt. Es ist also X_3 auf der Restkurve ein n(m-1)-facher Punkt. Von den Tangenten sind je n mit einem der ausserhalb ε liegenden Bilder von X_4 E zusammengefallen. Der Punkt $A_3 \equiv B_4$ ist jetzt mit dem Punkte E identisch. In § 7b, wo l die Gerade X_3 X_4 traf, war $A_3 \equiv B_4$ ein n^2 -facher Punkt der Kurve in ω_{∞} . Es wird offenbar jetzt ein n(n-1)-facher Punkt sein, dessen sämmtliche Tangenten in X_3 E vereinigt sind. Es hat diese Gerade in E m(n-1) Punkte mit der Kurve gemein.

Die in ω_0 liegende Kurve ist jetzt zerfallen in m mal die Gerade

 $X_n E$ und in eine Restkurve vom Grade m(m+2n-1). Wir können zwar ihre Eigenschaften aus dem unmittelbar Vorangehenden ableiten, indem wir m und n, und die Indices 3 und 4 vertauschen, müssen jedoch bemerken, dass E auf dieser Kurve ein n(m-1)-facher Punkt ist und *nicht* ein m(n-1)-facher, wie man erwarten könnte.

Es lässt sich diese Abweichung wie folgt erklären.

Im Falle der willkürlichen Gerade zeigte sich, dass alle mn X_3 entstammenden Strahlen im Punkte A_3 ausmünden, und umgekehrt, wonach die Ordnung der Singularität von X_3 und A die nämliche war.

Diese Eigenschaft erhält sich stets aufrecht, auch falls von diesen Strahlen $X_3 A_3$ welche in eine singuläre Ebene abgesondert werden. Wie sich oben ergab, liegen von den mn nach X_3 zielenden Strahlen nur n genau in ε . Die übrigen n (m-1) Strahlen rühren vom auf der Restkurve in ω_0 liegenden Punkte E her. Wir schliessen, dass der Punkt E auf dieser Restkurve ein n(m-1)-facher ist. Sämmtliche Tangenten sind in der Gerade $X_1 X_2$ vereinigt, welche in Em(m-1) Punkte mit der Kurve gemein hat.

Die Punkte X_1 und X_2 erfahren selbstverständlich keinen Einfluss von der Lage von l in ε .

Falls l die Gerade $X_3 X_4$ (in S) trift, zeigt sich der Schnittpunkt Sals ein $(m+n)^2$ -facher Punkt der Fläche. Es leuchtet ein, dass, wenn l in ε liegt, der Tangentenkegel vom Grade $(m+n)^2$ von S in (m+n) mal die Ebene ε und einen Kegel vom Grade (m+n)(m+n-1) ausgeartet sein wird. Der Schnittpunkt S von $l \text{ mit } X_3 X_4 \text{ ist also hier ein } (m+n)(m+n-1) \text{-facher Punkt.}$

Die Gerade l schneidet die in ε befindliche Fokalkurve e in m+nPunkten L_e . Aus jedem Punkte L_e werden zwei zusammen fallendé Tangenten an e gelegt, also zwei coincidirende Congruenzstrahlen in ε . Bei der Absonderung der Ebene ε wird jede an e gelegte Tangente einmal der totalen axialen Regelfläche entnommen. Die m+n in den Punkten L_e gelegten Tangenten funktioniren also noch einmal als Erzeugende der Restfläche. Sie schneiden X_3X_4 in m + n Punkten X_a .

Die Gerade $X_3 X_4$ hat nun mit der Restfläche gemein: n(m-1)mal den Punkt X_3 , m(n-1) mal den Punkt X_4 , (m+n) (m+n-1)mal den Punkt S, und einmal die Punkte X_e , zusammen also

$$n(m-1) + m(n-1) + (m+n)(m+n-1) + m + n = (m+n)(m+n-1) + 2 mn$$
 Punkte.

Wir haben nun die folgenden Resultate aufzuweisen:

Die axiale Regelfläche einer in der singulären Ebene arepsilon liegenden Gerade ist vom Grade $(\mathbf{m}+\mathbf{n})(\mathbf{m}+\mathbf{n}-1)+2\mathbf{m}\mathbf{n}$. Die Punkte X_1 und X_2 sind beide 2mn-fache Punkte; die Tangenten in X_1 befinden sich in 2mn Ebenen, von denen mn zu je m in einer der n Ebenen

$$a^{m}(x_{2}-ax_{3})^{n}-x_{4}^{n}=0$$
 . . . (113b)

(siehe (46b) S. 232) und die übrigen **mn** zu je **n** in einer der **m** Ebenen

$$b'^{n}(x_{2} - b'x_{4})^{m} - x_{3}^{m} = 0$$
 . . . (113'b)

vereinigt sind; die Tangenten in X_2 sind in derselben Weise über die Ebenen

$$a^{m}(x_{1} - ax_{3})^{n} - x_{4}^{n} = 0$$
 . . . (114b)

und

$$b''(x_1 - b'x_4)^m - x_3^m = 0$$
 . . . (114'b)

verteilt.

Der Punkt X_3 ist ein $\mathbf{n}(\mathbf{m}-1)$ -facher Punkt, dessen Tangenten sich alle in ω_{∞} befinden. Der Punkt X_4 dagegen ist ein $\mathbf{m}(\mathbf{n}-1)$ -facher Punkt, dessen Tangenten alle in ω_0 liegen. Der Punkt E ist nun ein $(2\mathbf{m}\mathbf{n}-\mathbf{m}-\mathbf{n})$ -facher Punkt; $\mathbf{n}(\mathbf{m}-1)$ Berührungsebenen sind in ω_{∞} , $\mathbf{m}(\mathbf{n}-1)$ in ε vereinigt. Der Schnittpunkt S von l mit X_3X_4 ist ein $(\mathbf{m}+\mathbf{n})(\mathbf{m}+\mathbf{n}-1)$ -facher Punkt. Die Axe l ist eine $(\mathbf{m}+\mathbf{n})(\mathbf{m}+\mathbf{n}-1)$ -fache Gerade.

Der Schnitt in einer durch X_1X_2 gelegten Ebene ω_{μ} hat in X_1 und X_2 2mn-fache Punkte, dessen Tangenten die Schnittlinien von ω_{μ} mit den oben gegebenen Ebenen sind; er hat im Schnittpunkte von l mit ω_{μ} einen (m+n)(m+n-1)-fachen Punkt, dessen Tangenten durch die ausserhalb ε liegenden Congruenzstrahlen bestimmt sind. Der Punkt E ist ein (2mn-m-n)-facher Punkt, von dem n(m-1) Tangenten mit X_1X_2 und m(n-1) mit der Schnittlinie von ω_{μ} und ε zusammenfallen. Der Schnitt hat Doppelpunkte in den Schnittpunkten von ω_{μ} mit der Doppelkurve.

In Bezug auf die Doppelkurve dürfen wir hinweisen auf das am Ende von § 10a Dargelegte. Der Unterschied ist nur, dass die Gleichung $f(\pi) = 0$ eine andere Gestalt aufweist.

Betrachten wir jetzt noch den Fall, wo l den Punkt X_3 oder X_4 enthält.

Wenn l durch X_3 geht, so wird die Ebene ω_{∞} mn mal abgesondert. Man erübrigt eine Fläche vom Grade (m+n)(m+n-1)+mn, auf welcher X_4 und X_2 mn-fache Punkte sind.

Die Gerade X_3X_4 schneidet die Restfläche m(n-1) mal in X_4 ,

(m+n)(m+n-1) mal in X_3 und einmal in den m Schnittpunkten X_e der Tangenten, welche man in den m ausserhalb X_3 liegenden Schnittpunkten von l mit der Fokalkurve e an dieser legen kann.

Die in ω_0 liegende Kurve ist identisch mit der *m*-fachen Kurve (siehe (93b), S. 254)

$$\frac{(x_1 - b' x_4)^m x_1^n - (x_2 - b' x_4)^m x_2^n}{x_1 - x_2} = 0.$$

Diese ist vom Grade m+n-1 und schneidet X_1X_2 in den m+n-1 Punkten $E_{\tau_{m+n}}$ $(\tau_{m+n}\neq 1)$; die Tangenten in diesen Punkten convergiren alle nach T_0 (siehe (95b), S. 255).

Die in ω_{∞} liegende Kurve hat nun in X_3 einen n(m+n-1)-fachen Punkt; seine Tangenten verbinden X_3 mit den m+n-1 Punkten $E_{\tau_{m+n}}$ ($\tau_{m+n} \neq 1$). Es haben diese Tangenten in X_3 n(2m+n-1) Punkte mit der Kurve gemein. Übrigens haben wir keine Abweichungen aufzuweisen.

Wenn l in ε den Punkt X_4 enthält, so wird die Ebene ω_0 mn mal abgesondert. Wir erübrigen eine Fläche vom Grade (m+n) (m+n-1)+mn, auf welcher X_1 und X_2 mn-fache Punkte sind. Die Gerade X_3 X_4 schneidet die Fläche n(m-1) mal in X_3 , (m+n) (m+n-1) mal in X_4 und einmal in den n Schnittpunkten X_e der Tangenten, welche in den n ausserhalb X_4 liegenden Schnittpunkten von l mit der Fokalkurve e an diese gelegt werden.

Die in ω_{∞} befindliche Kurve ist in eine *n*-fache Kurve vom Grade m + n - 1 ausgeartet.

§ 11a. Die axiale Regelfläche einer in ε liegenden Gerade l_{μ} , welche \mathbf{X}_1 \mathbf{X}_2 (in E) schneidet, in der parabolischen Congruenz.

Weil jede durch E hindurchgehende Gerade in ω_{∞} ein Congruenzstrahl ist, so wird die Ebene ω_{∞} ein Bestandteil der Regelfläche sein. Um zu erledigen, wieviel mal ω_{∞} abzusondern ist, haben wir nur zu untersuchen, wieviel-fach ein Strahl in ω_{∞} durch E ist, wenn er als Grenzlage eines ausserhalb ω_{∞} liegenden Strahles betrachtet wird, oder, was dasselbe ist, wieviel ausserhalb ω_{∞} liegende Strahlen sich in einer willkürlichen durch E gelegten Ebene befinden

Diese Anzahl wird ermittelt, indem wir die Bildkurve einer in ω_{∞} liegenden durch E gehenden Gerade betrachten, und untersuchen, wieviel Punkte eine in ω_0 liegende, durch E gehende Gerade ausser E mit dieser Kurve gemein hat.

Die Bildkurve der durch

$$x_1 - x_2 + \lambda x_3 = 0$$

angewiesenen Gerade I wird durch

$$x_1^{\frac{n}{m}} - x_2^{\frac{n}{m}} + \lambda x_3^{\frac{n}{m}} = 0 .$$

dargestellt, oder wenn wir

$$x_2 = x_1 + x_2$$

setzen, durch

$$(x_1 + x_2')^{\frac{n}{m}} = x_1^{\frac{n}{m}} + \lambda x_3^{\frac{n}{m}},$$

also durch

$$(x_1 + x_2')^n = x_1^n + m\lambda x_1^{\frac{n}{m}(m-1)} x_3^{\frac{n}{m}} + \ldots + \lambda^m x_3^n,$$

oder

$$nx_1^{n-1}x_2'+\ldots+x_2'^n=m\lambda x_1^{\frac{n}{m}(m-1)}x_3^{\frac{n}{m}}+\ldots+\lambda^mx_3^n.$$

Hieraus ergiebt sich, dass, da die höchste Potenz von x_1 , d. h. $x_1^{\frac{n}{m}(m-1)}$, den Coefficient $x_3^{\frac{n}{m}}$ hat, der Punkt E ein n-facher ist. Eine durch E gelegte Ebene enthält daher mn-n=(m-1)n Strahlen ausserhalb ω_{∞} . Es sind somit n Strahlen in die Schnittlinie der Ebene mit ω_{∞} gefallen.

Es leuchtet ein, dass von der ursprünglichen Regelfläche die Ebene ω_{∞} n mal abzusondern ist, wonach man eine Restfläche vom Grade m(m+n-1)-n=(m+n)(m-1) erübrigt.

Es ist also in jedem Schnitte mit einer durch X_4X_2 gelegten Ebene die Gerade X_4X_2 n mal der in § 9a und § 10a hergeleiteten Kurve zu entnehmen. Die Resultaten von § 9a und § 10awirden am einfachsten combinirt, indem man in § 9a

$$\alpha_2 = -\alpha_1$$

einsetzt. Die Gleichung des in ω_{∞} befindlichen Schnittes ist alsdann, nach Teilung durch x_3 (siehe (104a), S. 262),

$$x_1^{\frac{m}{n}} - x_2^{\frac{m}{n}} - \mu(x_1 - x_2)x_3^{\frac{m-n}{n}} = 0.$$
 (128a)

Nach Rationalisirung erscheint diese Gleichung teilbar durch

 $(x_1-x_2)^n$. Die Kurve vom Grade mn ist nun in die n-fache Gerade X_3E und eine Kurve vom Grade n(m-1) zerfallen. Diese hat in X_3 einen n(m-1)-fachen Punkt, dessen sämmtliche Tangenten in X_3E vereinigt sind. Es hat diese Tangente ausser X_3 keinen Punkt mit der Kurve gemein. Der Punkt E gehört der Kurve nicht an.

Die in ω_0 liegende Kurve besteht jetzt aus der n(m-1)-fachen Gerade X_1X_2 und aus einer Kurve vom Grade m(m-1).

Die Gleichung

$$x_1 - x_2 + \mu (x_1^{\frac{n}{m}} - x_2^{\frac{n}{m}}) x_4^{\frac{m-n}{m}} = 0$$
 . (129a)

erscheint ja nach Rationalisirung teilbar durch $(x_1-x_2)^m$.

Es ist auf der Fläche X_1X_2 eine n(m-1)-fache, X_3X_4 eine n(n-1)-fache Gerade (Siehe weiter § 8a, § 9a, § 10a).

§ 116. Die axiale Regelfläche einer in ε liegenden Gerade l_{μ} , welche $\mathbf{X_1X_2}$ (in E) schneidet, in der hyperbolischen Congruenz.

Wir haben hier die Ergebnisse von § 9 δ und § 10 δ zu verschmelzen. Die Schnittkurve in ω_{∞} hat die Gleichung ($\dot{\alpha}_2 = -\alpha_1$)

$$x_1^{\frac{m}{n}}x_3^{\frac{m+n}{n}} - x_2^{\frac{m}{n}}x_3^{\frac{m+n}{n}} - \mu(x_1 - x_2)x_1^{\frac{m}{n}}x_2^{\frac{m}{n}} = 0. \quad (128b)$$

Nach Rationalisirung wird sie teilbar durch $(x_1-x_2)^*$.

Wir erübrigen also eine Kurve vom Grade n(2m+n-1).

Übrigens unterscheidet diese Regelfläche sich nicht wesentlich von der in § 10b erörterten Fläche.

§ 12a. Die axiale Regelfläche eines Congruenzstrahles in der parabolischen Congruenz.

Die Ebene, welche einen Congruenzstrahl s mit X_1 verbindet, ist singulär und trägt ein Strahlengebilde von der Klasse m. Es ist diese Ebene (s, X_1) daher als ein Bestandteil m^{ten} Grades der axialen Regelfläche zu betrachten. Aus denselben Gründen ist auch die Ebene, welche s mit X_2 vereinigt, als Bestandteil m^{ten} Grades zu betrachten.

Aus dem Obigen geht hervor, dass wir eine Fläche vom Grade m(m+n-2) erübrigen.

Von den m^2 Strahlen, welche sich in einem Punkte von s treffen, ist s selbst ein Exemplar; m-1 andere liegen in der Ebene (s, X_1) , noch m-1 andere liegen in der Ebene (s, X_2) ; es liegen deren also ausserhalb s auf der Restfläche $m^2-2(m-1)-1=(m-1)^2$. Der

Strahl s ist demnach auf seiner axialen Regelfläche eine $(m-1)^2$ -fache Gerade.

Der Schnitt von ω_{∞} mit der allgemeinen Regelfläche besteht aus n(m-n) mal der Gerade AX_1 , n(m-n) mal der Gerade AX_2 , (m-n) mal den m-n Geraden $AE_{\tau_{m-n}}$ und aus einer Kurve vom Grade n(m+n).

Der Fokalkegel F_2 hat in X_1X_2 eine n-fache Kante, deren sämmtliche Berührungsebenen in ω_{∞} vereinigt sind. Die Ebene (s,X_1) schneidet also F_2 in einer Kurve m^{ter} Klasse, welche in X_1 einen n-fachen Punkt hat. Die n Tangenten in X_1 sind alle in X_1S zusammengefallen, wenn mit S die Spur von s in ω_{∞} bezeichnet wird. Diese n Geraden X_1S können als die Grenzlagen von n Geraden betrachtet werden, welche einem auf s nahe bei S liegenden Punkte Y entstammen und überdies die Kurve m^{ter} Klasse berühren. Weil letztere auf der Fokalfläche liegt, so sind die n Tangenten Congruenzstrahlen. Wir stoszen hier auf einen Unterschied mit dem Falle, wo es sich um eine willkürliche Gerade l handelt. In diesem Falle sind die aus einem nahe bei M liegenden Punkte M2 an die in der Ebene M2 befindlichen Kurve gelegten Tangenten eben M2 congruenzstrahlen, da die Ebene M3 nicht singulär ist.

Die n Tangenten SX_4 erscheinen also als Congruenzstrahlen nur dann, wenn wir uns dem Punkte S längs einem Congruenzstrahle s nähern. Sie gehören somit den n(m-n) Geraden AX_4 sonst nicht an, werden deshalb jetzt der in ω_{∞} liegenden Restkurve entzogen, deren Grad demnach um 2n erniedrigt wird und also den Wert n(m+n-2) erhält. Die Ebene (s,X_4) ist im Ganzen m-fach abgesondert, SX_4 daher dem Gesammtschnitte in ω_{∞} m mal entnommen. Wie oben gezeigt wurde, werden von diesen m Geraden SX_4 n der Restkurve entzogen, und somit m-n den n(m-n) Geraden SX_1 , welche ursprünglich dem Ausartungsgebilde angehörten. Das Ausartungsgebilde enthält also jetzt (n-1)(m-n) mal die Gerade SX_4 und (n-1)(m-n) mal die Gerade SX_4 .

Unser Schluss ist demnach, dass die Restfläche, vom Grade m(m+n-2), die Ebene ω_{∞} schneidet in (n-1)(m-n) mal der Gerade SX_1 , (n-1)(m-n) mal der Gerade SX_2 , (m-n) mal den m-n Geraden $SE_{\tau_{m-n}}$ und in einer Restkurve vom Grade n(m+n-2).

Da die Spur S' von s in ω_0 eines der Bilder von S ist, so haben wir

$$a_1 = s_1, \quad a_2 = s_2, \\ b_1' = s_1^{\frac{m}{n}}, \quad b_2' = s_2^{\frac{m}{n}}.$$
 (130a)

Die in ω₂ liegende Kurve hat (siehe (26a), S. 200) die Gleichung

$$\xi_{2}(\xi_{1}+s_{1}\xi_{3})^{\frac{m}{n}}-\xi_{1}(\xi_{2}+s_{2}\xi_{3})^{\frac{m}{n}}+(s_{2}^{\frac{m}{n}}\xi_{1}-s_{1}^{\frac{m}{n}}\xi_{2})\xi_{3}^{\frac{m}{n}}=0. \quad (131a)$$

Wir bringen diese Gleichung in die Gestalt:

$$\xi_{9}(\xi_{1}+s_{1}\xi_{3})^{\frac{m}{n}}+s_{2}^{\frac{m}{n}}\xi_{4}\xi_{3}^{\frac{m}{n}}=\xi_{4}(\xi_{2}+s_{3}\xi_{3})^{\frac{m}{n}}+s_{1}^{\frac{m}{n}}\xi_{2}\xi_{3}^{\frac{m}{n}},$$

und potenziren die beiden Seiten mit n, wonach sich ergiebt

$$\xi_{2}^{n}(\xi_{1}+s_{1}\xi_{3})^{m}+ns_{2}^{\frac{m}{n}}\xi_{1}\xi_{2}^{n-1}(\xi_{1}+s_{1}\xi_{3})^{\frac{m(n-1)}{n}}\xi_{3}^{\frac{m}{n}}+..+s_{2}^{m}\xi_{1}^{n}\xi_{3}^{m}=$$

$$=\xi_{1}^{n}(\xi_{2}+s_{2}\xi_{3})^{m}+ns_{1}^{\frac{m}{n}}\xi_{1}^{n-1}\xi_{2}(\xi_{2}+s_{2}\xi_{3})^{\frac{m(n-1)}{n}}\xi_{3}^{\frac{m}{n}}+..+s_{1}^{m}\xi_{2}^{n}\xi_{3}^{m}.$$

Es zeigt sich, dass die Glieder mit $\xi_1^n \xi_3^m$ und $\xi_2^n \xi_3^m$ verschwinden, wonach die ganze Gleichung durch $\xi_1 \xi_2$ teilbar wird.

Die rationale Gleichung ist also teilbar durch $\xi_1^n \xi_2^n$, womit ausgedrückt wird, dass von der ursprünglichen Kurve n mal die Gerade SX_1 und n mal die Gerade SX_2 abgesondert wird.

Es erübrigt somit eine Kurve vom Grade n(m+n-2).

Der Punkt X_1 , wird jetzt ein n(n-1)-facher, dessen Tangenten alle noch mit SX_1 zusammenfallen.

Ebenso wird X_2 ein n(n-1)-facher Punkt sein, dessen Tangenten alle sich in SX_2 vereinigen.

Der Punkt S ist jetzt ein $(n-1)^2$ -facher, weil von den ursprünglichen n^2 Zweigen n mit SX_1 , n mit SX_2 zusammengefallen sind, während ein Zweig (da s selbst Congruenzstrahl ist) unbestimmt geworden ist.

Übrigens hat die Kurve in ω_{∞} keine besonderen Eigenschaften aufzuweisen.

Die in ω_0 liegende Kurve wird jetzt (siehe (40a), S. 207) durch

$$\xi_{2}(\xi_{1}+s_{1}^{\frac{m}{n}}\xi_{4})^{\frac{n}{m}}-\xi_{1}(\xi_{2}+s_{2}^{\frac{m}{n}}\xi_{4})^{\frac{n}{m}}+(s_{2}\xi_{1}-s_{1}\xi_{2})\xi_{4}^{\frac{n}{m}}=0 \quad (132a)$$

dargestellt. Nach Rationalisirung erscheint diese Gleichung teilbar durch $\xi_1^m \xi_2^m$; es wird somit der ursprünglichen Kurve m mal die Gerade $S'X_1$ und m mal die Gerade $S'X_2$ entnommen, wonach eine Restkurve vom Grade m(m+n-2) übrig bleibt.

Es ist auf dieser Restkurve X_1 ein m(n-1)-facher Punkt, von dessen Tangenten je m X_1 mit einem der ausserhalb $S'X_1$ liegenden Bilder von S verbinden. Ebenso ist X_2 ein m(n-1)-facher Punkt, von dessen Tangenten je m in eine der n-1 Geraden zusam-

menfallen, welche X_2 mit den n(n-1) ausserhalb $S'X_2$ liegenden Bildern von S verbinden.

Der Punkt S' ist ein $(m-1)^2$ -facher; seine Tangenten sind die axialen Projektionen aus s auf ω_0 der $(m-1)^2$ ausserhalb (s, X_1) und (s, X_2) liegenden nach S' zielenden Congruenzstrahlen.

Übrigens haben wir nichts wesentlich Neues zu vermelden.

Von den Punkten X_1 und X_2 als Punkten der Fläche lässt sich bemerken, dass beide m(n-1)-fache Punkte sind. Die Tangenten in X_4 befinden sich in m(n-1) Ebenen, von denen je m zusammenfallen in die n-1 Ebenen (siehe (46a), S. 211)

$$\frac{(x_2 - s_2 x_3)^n - s_2^m x_4^n}{x_2 - s_2 x_3 - s_2^{\frac{m}{n}} x_4} = 0, (133a)$$

wobei für $s_2^{\frac{m}{n}}$ im Nenner die der Spur S' von s in ω_0 entsprechende n-te Wurzel von s_2^m einzusetzen ist.

Die Tangenten in X_2 sind in m(n-1) Ebenen aufgespeichert, von denen je m zusammenfallen in die n-1 Ebenen (siehe (45a), S. 211)

$$\frac{(x_1 - s_1 x_3)^n - s_1^m x_4^n}{x_4 - s_1 x_3 - s_1^{\frac{m}{n}} x_4} = 0, \qquad (134a)$$

wo $s_1^{\frac{m}{n}}$ die Spur S' bestimmt.

Der Schnitt mit einer durch X_1X_2 gelegten Ebene ist eine Kurve vom Grade m(m+n-2), welche in X_4 und X_2 m(n-1)-fache Punkte aufweist. Von den Tangenten in X_4 sind je m in einer der n-1 Schnittlinien von ω_{μ} mit den n-1 Ebenen (133a), von denen in X_2 sind je m in einer der n-1 Spuren in ω_{μ} der n-1 Ebenen (134a) vereinigt.

Die Kurve hat im Schnittpunkte S_{μ} von s mit ω_{μ} einen $(m-1)^2$ fachen Punkt, dessen Tangenten durch die $(m-1)^2$ nach S_{μ} zielenden Congruenzstrahlen bestimmt werden.

Ferner besitzt die Kurve in den m-n Punkten $E_{\tau_{m-n}}$ n-fache Punkte, deren sämmtliche Tangenten in ω_{∞} aufgespeichert sind, während die Tangenten in ω_{∞} die Punkte $E_{\tau_{m-n}}$ verbinden mit dem Schnittpunkte von X_3 S und der Gerade

$$(m-n)(\xi_1-\xi_2)+m(s_1-s_2)\xi_3=0$$
 . (135a)

(siehe S. 217).

Die Kurve hat schliesslich Doppelpunkte in den Schnittpunkten von ω_{μ} mit der *Doppelkurve*.

Wir wollen diese Doppelkurve näher betrachten.

Die Gleichungen

$$f_1(\pi_1) = 0 \dots (74)$$

und'

$$f_2(\pi_2) = 0$$
, . . . , . . . (75)

welche zusammen die Spuren der Strahlen bestimmen, welche sich in einem Punkte von s schneiden, haben jetzt bez. die Wurzeln $\pi_4 = 0$ und $\pi_2 = 0$.

Die durch Fortschaffung dieser Wurzeln entstandenen Gleichungen wollen wir mit

$$s_2(\pi_2) = 0$$
 (137)

andeuten; sie sind nun vom Grade m-1.

Nachdem wir die Gleichungen (136) und (137) an die Stelle der Gleichungen (74) und (85) gesetzt haben, können wir das Verfahren von § 6a wiederholen. Weil die Zahl m jetzt um eins erniedrigt ist, so wird auch die Doppelkurve einen niedrigeren Grad aufweisen als im allgemeinen Falle.

§ 12b. Die axiale Regelftäche eines Congruenzstrahles in der hyperbolischen Congruenz.

Die singuläre Ebene, welche den Congruenzstrahl s mit X_1 verbindet, enthält ein Strahlengebilde von der Klasse m+n. Sie bildet demnach ein Bestandteil vom Grade m+n der axialen Regelfläche von s. Ebenso wird dieser axialen Regelfläche (m+n) mal die Verbindungsebene (s, X_2) entnommen. Die Restfläche ist daher vom Grade $(m+n)^2 + 2mn - 2(m+n) = (m+n)(m+n-2) + 2mn$.

Zu den $(m+n)^2$ Strahlen, welche nach einem Punkte von s zielen, gehören, ausser s, noch m+n-1 Strahlen in (s, X_1) und m+n-1 Strahlen in (s, X_2) , wonach deren nur $(m+n)^2-2(m+n-1)-1=(m+n-1)^2$ auf der Restfläche liegen; hierdurch erscheint s auf seiner axialen Regelfläche als eine $(m+n-1)^2$ -fache Gerade.

Der Schnitt der allgemeinen Regelfläche mit ω_{∞} setzt sich aus mn mal der Gerade AX_1 , mn mal der Gerade AX_2 , m^2 mal der Gerade AX_3 und aus einer Kurve vom Grade n(2m+n) zusammen.

Die $(m+n)^2$ Strahlen, welche nach einem auf s in der Nähe von der Spur S in ω_{∞} liegenden Punkte Y zielen, treffen die Ebene ω_0 in $(m+n)^2$ Punkten, deren gegenseitige Lage hierneben

(für m = 3, n = 2) skizzirt ist.

Nahe bei X_4 liegen mn Punkte (I), in der Nähe von X_2 befinden sich mn Punkte (II); nahe bei S_3 (dem Schnittpunkte von $X_3 S \min X_4 X_2$) liegen m^2 Punkte (III). Ferner hat man noch n^2 Punkte, welche nicht in der Nähe von $X_4 X_2$ liegen, und denen S', die Spur von s in ω_0 , angehört.

Wenn Y in S gelegt wird, so fallen die mn Punkte (I) mit X_1 , die mn Punkte (II) mit X_2 und die m^2 Punkte (III) mit S_3 zusammen.

Schon bevor Y mit S vereinigt wird, enthält die Ebene (s, X_1) , also die Gerade $S'X_1$, m Punkte (I) und die Ebene (s, X_2) , also die Gerade $S'X_2$, m Punkte (II). Die Ebene (s, X_1) trägt deshalb m Strahlen, absorbirt also m mal die in ω_{∞} liegende Gerade SX_1 . Von den mn Strahlen SX_1 bleiben demnach nur m(n-1) übrig. Ebenso entnimmt die Ebene (s, X_2) dem Schnitte m Strahlen SX_2 , wonach von den mn Strahlen SX_2 nur m(n-1) erübrigt werden.

Da die Ebene (s, X_1) im Ganzen eine (m + n)-fache ist, so wird, ausser m mal der Gerade SX_1 als Ausartungselement, noch n mal diese Gerade der Restkurve entzogen; auch SX_2 wird n mal von der Restkurve abgesondert.

Der Punkt S, welche auf der Restfläche ein $(m+n-1)^2$ -facher ist, trägt noch m(n-1) Strahlen SX_1 , m(n-1) Strahlen SX_2 , m^2 Strahlen SX_3 und $(n-1)^2$ Strahlen, welche S mit seinen ausserhalb $S'X_1$ und $S'X_2$ liegenden Bildern verbinden.

Die in ω_{∞} befindliche Restkurve ist jetzt vom Grade n(2m+n)-2n=n(2m+n-2). Wenn wir in der entsprechenden Gleichung ((26b), S. 225) des allgemeinen Falles

$$a_1 = s_1, a_2 = s_2,$$
 $b_1' = s_1^{-\frac{m}{n}}, b_2' = s_2^{-\frac{m}{n}}$. (130b)

$$\xi_{1}(\xi_{1} + s_{1}\xi_{3})^{\frac{m}{n}} \xi_{3}^{\frac{m}{n}} - \xi_{2}(\xi_{2} + s_{2}\xi_{3})^{\frac{m}{n}} \xi_{3}^{\frac{m}{n}} - (s_{2}^{-\frac{m}{n}}\xi_{1} - s_{1}^{-\frac{m}{n}}\xi_{2})(\xi_{1} + s_{1}\xi_{3})^{\frac{m}{n}}(\xi_{2} + s_{2}\xi_{3})^{\frac{m}{n}} = 0. \quad (131b)$$

Indem man diese Gleichung in die Gestalt

$$s_{1}^{\frac{m}{n}}s_{2}^{\frac{m}{n}}\xi_{1}(\xi_{1}+s_{1}\xi_{3})^{\frac{m}{n}}\xi_{3}^{\frac{m}{n}}+s_{2}^{\frac{m}{n}}\xi_{2}(\xi_{1}+s_{1}\xi_{3})^{\frac{m}{n}}(\xi_{2}+s_{2}\xi_{3})^{\frac{m}{n}}=\\=s_{1}^{\frac{m}{n}}s_{2}^{\frac{m}{n}}\xi_{2}(\xi_{2}+s_{2}\xi_{3})^{\frac{m}{n}}\xi_{3}^{\frac{m}{n}}+s_{2}^{\frac{m}{n}}\xi_{1}(\xi_{1}+s_{1}\xi_{3})^{\frac{m}{n}}(\xi_{2}+s_{2}\xi_{3})^{\frac{m}{n}}$$

bringt und nachher beide Seiten mit n potenzirt, erhält man

$$s_{1}^{m}s_{2}^{m}\xi_{1}^{n}(\xi_{1}+s_{1}\xi_{3})^{m}\xi_{3}^{m}+ns_{1}^{m}s_{2}^{m}\xi_{1}^{n-1}\xi_{2}(\xi_{1}+s_{1}\xi_{3})^{m}(\xi_{2}+s_{2}\xi_{3})^{m}\xi_{3}^{m}+\dots+\\+s_{2}^{m}\xi_{2}^{n}(\xi_{1}+s_{1}\xi_{3})^{m}(\xi_{2}+s_{2}\xi_{3})^{m}=s_{1}^{m}s_{2}^{m}\xi_{2}^{n}(\xi_{2}+s_{2}\xi_{3})^{m}\xi_{3}^{m}+\\+ns_{1}^{m}s_{2}^{m}\frac{m(n-1)}{s_{1}^{m}\xi_{2}^{n-1}(\xi_{1}+s_{1}\xi_{3})^{m}(\xi_{2}+s_{2}\xi_{3})^{m}\xi_{3}^{m}+\dots+s_{1}^{m}\xi_{1}^{n}(\xi_{1}+s_{1}\xi_{3})^{m}(\xi_{2}+s_{2}\xi_{3})^{m}.$$

Es erhellt, dass die Glieder mit $\xi_1^n \xi_3^{2m}$ und $\xi_2^n \xi_3^{2m}$ verschwinden, sodass die Gleichung durch $\xi_1 \xi_2$ teilbar wird.

Die rationale Gleichung wird daher durch $\xi_1^n \xi_2^n$ teilbar sein; vom der ursprünglichen Kurve ist somit n mal die Gerade SX_1 und n mal die Gerade SX_2 abgesondert; die Restkurve ist demnach vom Grade n(2m+n)-2n=n(2m+n-2), wie auch oben gefunden ist.

Von dieser Kurve lässt sich nun bemerken, dass X_1 ein n(m-1)facher Punkt ist, von dessen Tangenten je n in einer der m-1Geraden vereinigt sind, welche X_1 mit den $(m-1)^2$ ausserhalb SX_1 und SX_2 liegenden Bilder von S' verbinden. Ebenso ist X_2 ein n(m-1)-facher Punkt, von dessen Tangenten je n zusammengefallen sind in einer der m-1 Geraden, welche X_2 mit diesen $(m-1)^2$ Bildern von S' verbinden.

Der Punkt S ist ein $(n-1)^2$ -facher Punkt; seine Tangenten sind die axialen Projektionen aus s auf ω_{∞} der ausserhalb (s, X_1) und (s, X_2) liegenden nach S zielenden Congruenzstrahlen.

Falls man hat m > n, besitzt die Kurve in S_4 (dem Schnittpunkte von $X_4 S$ mit $X_1 X_2$) einen n^2 -fachen Punkt, dessen sämmtliche Tangenten in der Gerade SS_4 vereinigt sind; es hat diese Gerade in S_4 mit der Kurve mn Punkte gemein (siehe S. 229).

Der Punkt X_3 ist, wie früher, ein mn-facher Punkt, von dessen Tangenten je n in einem der m Bilder der Gerade X_4 S_3 zusammengefallen sind, die X_4 mit dem Schnittpunkte S_3 von SX_3 und X_4 X_2 verbindet.

Die Kurve in ω_0 unterscheidet sich nur im Verhalten des Punktes S_3 . Es ist dieser Punkt, für m > n, ein mn-facher Punkt, dessen Tangenten alle mit $X_1 X_2$ zusammengefallen sind; die Gerade $X_1 X_2$ hat in $S_3 m^2$ Punkte mit der in ω_0 liegenden Kurve gemein (siehe S. 231).

Die Punkte X_1 und X_2 sind jetzt auf der Fläche |2mn-(m+n)|fache Punkte. Die Tangenten von X_1 liegen in 2mn-(m+n)Ebenen. Von diesen Ebenen sind m(n-1) zu je m in einer der n-1 Ebenen

$$\frac{(x_2 - s_2 x_3)^n s_2^m - x_4^n}{x_2 - s_2 x_3 - s_2^{-m} x_4} = 0 \quad . \tag{133b}$$

vereinigt, wo s_2^{-m} die eine der beide Coordinaten von S' darstellt; von den übrigen sind je n in einer der m-1 Ebenen

$$\frac{(x_2 - s_2^{-\frac{m}{n}} x_4)^m s_2^{-m} - x_3^m}{x_2 - s_2 x_3 - s_2^{-\frac{m}{n}} x_4} = 0 (133'b)$$

zusammengefallen; die Grösse $s_2^{-\frac{m}{n}}$ hat sowohl im Zähler wie im Nenner die oben erwähnte Bedeutung.

Die Tangenten von X_2 befinden sich teilweise in den n-1 m-fachen Ebenen, welche durch

$$\frac{(x_1 - s_1 x_3)^n s_1^m - x_4^n}{x_1 - s_1 x_3 - s_1^{\frac{m}{n}} x_4} = 0 . . (134b)$$

dargestellt werden; es bedeutet $s_1^{-\frac{m}{n}}$ die andere Coordinate von S'. Der andere Teil ist in den m-1 n-fachen Ebenen

$$\frac{(x_1 - s_1^{-\frac{m}{n}} x_4)^m s_1^{-m} - x_3^m}{x_4 - s_1 x_3 - s_1^{-\frac{m}{n}} x_4} = 0 . . . (134'b)$$

enthalten; $s_1^{-\frac{m}{n}}$ hat wieder dieselbe Bedeutung wie in (134b).

Ausser der $(m+n-1)^2$ -fachen Gerade s und der Doppelkurve vom erniedrigten Grade, hat die Regelfläche keine neuen Eigenschaften aufzuweisen.

Der Schnitt mit einer durch X_1X_2 gelegten Ebene ω_{μ} hat jetzt in X_4 und X_2 |2mn-(m+n)|-fache Punkte. Von den 2mn-(m+n) Tangenten in X_4 sind m(n-1) zu je m in einer der n-1 Spuren der Ebenen (133b) in ω_{μ} vereinigt, von den anderen n(m-1) sind je n in einer der m-1 Spuren der Ebenen (133b) in ω_{μ} zusammengefallen. Analoges gilt für die Tangenten in X_2 .

Im Schnittpunkte S_{μ} von s mit ω_{μ} hat die Kurve einen $(m+n-1)^2$ -fachen Punkt, dessen Tangenten durch die ausserhalb (s, X_4) und (s, X_2) liegenden nach S_{μ} zielenden Strahlen bestimmt werden.

Die Punkte X_{μ} , S_3 und S_4' verhalten sich in derselben Weise wie im allgemeinen Falle.

Die Doppelkurve ist auch hier von niedrigerem Grade.

Waren früher $f_4(\pi_4)=0$ und $f_2(\pi_2)=0$ vom Grade m+n, so sind nun die durch Fortschaffung der Wurzeln $\pi_4=0$ und $\pi_2=0$ erhaltenen Gleichungen $s_4(\pi_4)=0$ und $s_2(\pi_2)=0$ vom Grade m+n-1.

§ 13a. Die axiale Regelfläche eines in einer singulären Ebene ε_{τ} liegenden Congruenzstrahles, in der parabolischen Congruenz.

Der Strahl s gehört nun drei singulären Ebenen an, n.l. den Ebenen ε_{τ} , (s, X_1) und (s, X_2) . Jede dieser Ebenen enthält ein Strahlengebilde m^{ter} Klasse. Die Restfläche ist somit vom Grade m(m+n) - 3m = m(m+n-3).

Es liegen ausserhalb der Ebenen (s, X_1) und (s, X_2) $(m-1)^2$ Strahlen, welche nach einem Punkte von s zielen. Von diesen befinden sich m-1 in ε_{τ} ; denn durch diesen Punkt gehen m in ε_{τ} liegende Strahlen, von denen s einer ist. Es liegen demnach ausserhalb der Ebenen (s, X_1) , (s, X_2) und ε_{τ} $(m-1)^2-(m-1)=(m-1)(m-2)$ Strahlen, wonach der Congruenzstrahl s auf seiner axialen Regelfläche eine (m-1)(m-2)-fache Gerade ist.

Im allgemeinen Falle trägt die Ebene ω_{∞} n(m-n) mal die Gerade AX_1 , n(m-n) mal die Gerade AX_2 , (m-n) mal die m-n Geraden $AE_{\tau_{m-n}}$ und eine Kurve vom Gerade n(m+n).

Dem in § 10a und § 12a Dargelegten entsprechend, lässt sich bemerken, dass die Ebene (s, X_4) (m-n) mal SX_4 , die Ebene (s, X_2) (m-n) mal SX_2 und die Ebene ε_{τ} (m-n) mal die Gerade SE_{τ} dem Ausartungsgebilde entnimmt, während die Ebene (s, X_4) n mal SX_4 , die Ebene (s, X_2) n mal SX_2 und die Ebene ε_{τ} n mal SE_{τ} von der Restkurve vom Grade n(m+n) abtrennt.

Die Restfläche des in ε_{τ} befindlichen Congruenzstrahles s hat also mit ω_{∞} gemein: (n-1)(m-n) mal SX_{1} , (n-1)(m-n)

mal SX_2 , (m-n) mal die m-n-1 Geraden $SE_{\tau_{m-n}}$ $(\tau_{m-n} \neq \tau)$ und eine Kurve vom Grade n(m+n-3).

Auch hier wollen wir nur die Ebene ε ($x_1 = x_2$) betrachten.

Die Gleichung der zu untersuchenden Kurve wird ermittelt indem wir in (26a) (S. 200)

$$a_1 = a_2 = s$$
,
 $b_1' = b_2' = s^{\frac{m}{n}}$ (138a)

einsetzen. Wir bekommen alsdann

$$\xi_{2}(\xi_{1}+s\,\xi_{3})^{\frac{m}{n}}-\xi_{1}(\xi_{2}+s\,\xi_{3})^{\frac{m}{n}}+s^{\frac{m}{n}}(\xi_{1}-\xi_{2})\,\xi_{3}^{\frac{m}{n}}=0. \ (139\dot{a})$$

Diese Gleichung erscheint nach Rationalisirung teilbar durch $\xi_1^n \xi_2^n (\xi_1 - \xi_2)^n$; auch in dieser Weise wird für den Grad der Restkurve der Wert n(m+n-3) ermittelt.

Es sind auf dieser Kurve X_1 und X_2 n(n-1)-fache Punkte, deren sämmtliche Tangenten bez. mit SX_1 und SX_2 zusammenfallen.

Der Punkt S ist ein (n-1)(n-2)-facher, weil von den $(n-1)^2$ in § 12a erhaltenen Zweigen noch n-1 in SE gefallen sind.

Die Tangenten werden durch die (n-1)(n-2) ausserhalb ε , (s, X_1) und (s, X_2) liegenden nach S zielenden Congruenzstrahlen bestimmt.

Der Punkt E gehört der Kurve nicht an.

Die Kurve hat in X_3 noch einen n(n-1)-fachen Punkt, dessen Tangenten alle mit $X_3 S \equiv X_3 E$ zusammenfallen.

Die in ω_0 befindliche Kurve wird ermittelt, indem man in (40a) (S. 207) die Substitution (138a) ausführt; man erhält sodann

$$\xi_{2}(\xi_{1}+s^{\frac{m}{n}}\xi_{1})^{\frac{n}{m}}-\xi_{1}(\xi_{2}+s^{\frac{m}{n}}\xi_{1})^{\frac{n}{m}}+s(\xi_{1}-\xi_{2})\xi_{1}^{\frac{n}{m}}=0. \quad (140a)$$

Diese Gleichung weist nach Rationalisirung den Faktor $\xi_1^{m}\xi_2^{m}(\xi_1-\xi_2)^m$ auf, wonach die Restkurve vom Grade m(m+n-3) ist.

Auf dieser Kurve ist X_4 ein m(n-1)-facher Punkt, von dessen Tangenten je m in einer der n-1 Geraden vereinigt sind, welche X_4 mit den n(n-1) ausserhalb $S'X_4$ liegenden Bildern von S verbinden. Ebenso ist X_2 ein m(n-1)-facher Punkt; von seinen Tangenten sind je m mit einer der n-1 Geraden zusammengefallen, welche X_2 mit den n(n-1) ausserhalb $S'X_2$ liegenden Bildern von S verbinden.

Der Punkt S' ist ein (m-1)(m-2)-facher; seine Tangenten sind die axialen Projektionen aus s auf ω_0 der (m-1)(m-2)

ausserhalb ε , (s, X_1) und (s, X_2) liegenden nach S' zielenden Congruenzstrahlen.

Der Punkt X_4 ist ein m(n-1)-facher Punkt, von dessen Tangenten je m in einer der n-1 ausserhalb X_4E liegenden Bilder von X_3E vereinigt sind (siehe § 7a, S. 244).

Die Punkte $E_{\tau_{m-n}}$ $(\tau_{m-n} \neq 1)$ erfahren keinen Einfluss von der Lage der Axe s.

Der Punkt E gehört auch dieser Kurve nicht an.

Es sind auf der Regelfläche X_4 und X_2 m(n-1)-fache Punkte; für ihre Tangenten dürfen wir auf § 12a verweisen.

Die m-n-1 Punkte $E_{\tau_{m-n}}(\tau_{m-n}\neq 1)$ sind n-fache Punkte; ihre Berührungsebenen sind mit ω_{∞} zusammengefallen.

Der Punkt E gehört der Fläche nicht an.

Es ist $X_3 X_4$ eine n(n-1)-fache Gerade; alle Berührungsebenen sind in ε vereinigt (Ausnahme in ω_0).

Der Schnitt mit einer durch X_1X_2 gelegten Ebene ω_{μ} hat in X_1 und X_2 m(n-1)-fache Punkte, deren Tangenten in § 12a angegeben sind. Er hat in den m-n-1 Punkten $E_{\tau_{m-n}}$ $(\tau_{m-n}\neq 1)$ n-fache Punkte, deren sämmtliche Tangenten mit X_1X_2 zusammengefallen sind (Ausnahme in ω_{∞}). Die Kurve hat im Schnittpunkte S_{μ} von s mit ω_{μ} einen (m-1)(m-2)-fachen Punkt, dessen Tangenten durch die (m-1)(m-2) ausserhalb ε , (s,X_1) und (s,X_2) liegenden nach S_{μ} zielenden Strahlen bestimmt werden. Ferner hat die Kurve im Schnittpunkte X_{μ} von X_3X_4 mit ω_{μ} einen n(n-1)-fachen Punkt, dessen Tangenten alle mit $X_{\mu}E$ zusammengefallen sind (Ausnahme in ω_0). Schliesslich haben wir noch Doppelpunkte aufzuweisen in den Schnittpunkten von ω_{μ} mit der Doppelkurve.

Hinsichtlich der Doppelkurve können wir bemerken, dass wir wie in § 10a zu verfahren haben.

Nur müssen wir beachten, dass die Gleichung $f(\pi) = 0$ (S. 272) jetzt eine Wurzel $\pi = 0$ hat. Nach Teiling durch π erhalten wir eine Gleichung

$$s(\pi) = 0\;,\;\ldots\;\;\ldots\;\;\ldots\;\;\ldots\;\;(141)$$

welche vom Grade m-1 ist.

Diese Gleichung wird nun in derselben Weise behandelt wie in § 12a die Gleichung $f(\pi) = 0$. Der Grad der Doppelkurve erscheint noch niedriger als damals.

§ 13b. Die axiale Regelfläche eines in einer singulären Ebene ε_{τ} liegenden Congruenzstrahles, in der hyperbolischen Congruenz.

Der Grad $(m+n)^2+2mn$ der allgemeinen Regelfläche wird um 3(m+n) erniedrigt, weil s jetzt in drei singulären Ebenen ε_{τ} , (s, X_1) und (s, X_2) liegt, von denen jede ein Strahlengebilde von der Klasse m+n trägt. Die Restfläche ist somit vom Grade (m+n)(m+n-3)+2mn.

Da von den $(m+n)^2$ nach einem Punkte von s zielenden Strahlen nur (m+n-1) (m+n-2) ausserhalb der drei singulären Ebenen liegen, so ist der in ε_{τ} befindliche Congruenzstrahl auf seiner axialen Regelfläche eine (m+n-1) (m+n-2)-fache Gerade.

Der Gesammtschnitt der allgemeinen Regelfläche mit ω_{∞} setzt sich aus mn mal AX_1 , mn mal AX_2 , m^2 mal AX_3 und einer Kurve vom Grade n(2m+n) zusammen. Dem in § 10b und § 12b Gefundenen entsprechend, erschliessen wir, dass dem Ausartungsgebilde m mal SX_1 durch (s, X_1) , m mal SX_2 durch (s, X_2) , m mal SX_3 durch ε_{τ} entzogen wird. Die Restkurve ist demnach hier vom Grade n(2m+n-3).

Wir wollen auch hier nur die Ebene ε ($x_4 = x_2$) betrachten und setzen dementsprechend

$$a_1 = a_2 = s,$$

 $b_1' = b_2' = s^{-\frac{m}{n}}$ (138b)

Die Gleichung (26b) (S. 225) erhält sodann diese Form:

$$\xi_{1}(\xi_{1} + s \xi_{3})^{\frac{m}{n}} \xi_{3}^{\frac{m}{n}} - \xi_{2}(\xi_{2} + s \xi_{3})^{\frac{m}{n}} \xi_{3}^{\frac{m}{n}} - \frac{s^{-\frac{m}{n}}(\xi_{1} - \xi_{2})(\xi_{1} + s \xi_{3})^{\frac{m}{n}}(\xi_{2} + s \xi_{3})^{\frac{m}{n}} = 0. \quad (139b)$$

Nach vollständiger Fortschaffung der gebrochenen Exponenten erscheint die Gleichung teilbar durch $\xi_1^n \xi_2^n (\xi_1 - \xi_2)^n$, sodass wir wiederum zu dem Schluss gelangen, dass der Grad der Restkurve n(2m+n-3) ist.

Es sind nun auf dieser Kurve X_1 und X_2 n(m-1)-fache Punkte; für ihre Tangenten dürfen wir auf § 12b (S. 293) verweisen.

Der Punkt S ist ein (n-1)(n-2)-facher; seine Tangenten sind gleichfalls leicht zu bestimmen.

In Bezug auf die Punkte $S_4 \equiv E$ und X_3 dürfen wir das in § 10 δ Gefundene heranziehen.

Die Kurve in ω_0 bedarf jetzt keiner näheren Untersuchung. Man achte aber auf das Verhalten von $S_3 \equiv E$.

Auf der Fläche sind X_1 und X_2 |2mn - (m+n)|-fache Punkte;

ihre Tangenten sind in § 12b (S. 294) genügend erörtert. Übrigens haben wir nur das in § 10b Darlegte zu wiederholen.

Der Schnit mit einer durch X_1X_2 gelegten Ebene ω_{μ} ist ebenso gänzlich bekannt, wenn wir nur die Ergebnisse von § 10 δ und § 12 δ verschmelzen.

Die Doppelkurve ist auch hier von niedrigerem Grade.

Statt der Gleichung $f(\pi) = 0$, welche vom Grade m + n war, operiren wir jetzt mit der Gleichung $s(\pi) = 0$, deren Grad m + n - 1 ist.

§ 14a. Die axiale Regelfläche einer in der Ebene ω_{∞} liegenden Gerade, in der parabolischen Congruenz.

Es gehen durch jeden Punkt A von der in ω_{∞} liegenden Gerade l_{∞} n(m-n) Strahlen AX_1 , n(m-n) Strahlen AX_2 und $(m-n)^2$ Strahlen $AE_{\tau_{m-n}}$. Die Ebene ω_{∞} wird somit als ein Bestandteil vom Grade $2n(m-n)+(m-n)^2=m^2-n^2$ der axialen Regelfläche entzogen. Die Restfläche ist also vom Grade $m(m+n)-(m^2-n^2)=mn+n^2=n(m+n)$.

Die Gerade l_{∞} ist auf ihrer axialen Regelfläche n^2 -fach, weil in jedem Punkte A n^2 ausserhalb ω_{∞} liegenden Strahlen sich auf ihr stützen.

Da die Gerade l_{∞} einen besonderen Fall der Gerade l_{μ} bildet, welche X_1X_2 schneidet, n.l. sofern $\mu=\infty$ zu setzen ist, so können wir unmittelbar bemerken, dass der Schnitt in ω_{∞} durch

$$(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3) \cdot x_3^{\frac{m-n}{n}} = 0$$

(siehe (99a), S. 258) dargestellt wird, welche Gleichung nach Rationalisirung lautet:

$$(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3)^{n^2} x_3^{n(m-n)} = 0.$$

Damals (siehe S. 258) war schon n^2 mal die Gerade $X_1 X_2$ abgesondert. Jetzt wird ausserdem abermals n(m-n) mal $X_1 X_2$ bei Seite gestellt, sodass der Gesammtschnitt aus mn mal $X_1 X_2$ und n^2 mal der gegebenen, durch

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = 0$$
 . . . (142)

dargestellten Gerade l_{∞} besteht.

Der Schnitt in ω_0 war (siehe S. 259) aus mn mal der Gerade $X_4 X_2$ und aus einer Kurve vom Grade m^2 zusammengesetzt, deren Gleichung für $\mu = \infty$ lautet:

$$(\alpha_1 x_1^{\frac{n}{m}} + \alpha_2 x_2^{\frac{n}{m}} + \alpha_3 x_4^{\frac{n}{m}}) x_4^{\frac{m-n}{m}} = 0$$
,

und welche demnach aus m(m-n) mal der Gerade $X_1 X_2$ und aus einer durch

$$\alpha_1 x_1^{\frac{n}{m}} + \alpha_2 x_2^{\frac{n}{m}} + \alpha_3 x_4^{\frac{n}{m}} = 0$$
 . . (143a)

gegebenen Kurve vom Grade mn besteht.

Der Gesammtschnitt in ω_0 ist somit aus m^2 mal X_1X_2 und der Kurve (143 α) vom Grade mn zusammengesetzt.

Weil aber schon (m^2-n^2) mal X_1X_2 in der (m^2-n^2) -fachen Ebene ω_{∞} enthalten ist, so schneidet ω_0 die Restfläche in n^2 mal X_1X_2 und in der durch (143a) angewiesenen Kurve vom Grade mn. Diese Kurve ist die in ω_0 liegende Bildkurve der in ω_{∞} befindlichen Gerade (142).

Die Kurve (143a) schneidet $X_1 X_2$ in den durch

$$\alpha_1 x_1^{\frac{n}{m}} + \alpha_2 x_2^{\frac{n}{m}} = 0$$
,

oder

$$a_1^m x_1^n = (-1)^m a_2^m x_2^n$$

gegebenen Punkten. Es sind diese offenbar die n Bilder L_3 in ω_0 des Schnittpunktes L_3 ($\alpha_1 x_1 + \alpha_2 x_2 = 0$) von l_{∞} mit $X_1 X_2$.

In jedem dieser n Punkte hat $X_1 X_2 m$ Punkte mit der Kurve gemein.

Wir wollen nunmehr das Verhalten eines solchen Punktes L_3 festzustellen versuchen.

Es ist einer der Punkte L_3 durch

$$x_2 = \left(-\frac{\alpha_1}{\alpha_2}\right)^n x_1, \ x_4 = 0$$

bestimmt. Wir verlegen die Coordinatenecke X_4 nach diesem Punkte L_3' , indem wir

$$x_2 = \left(-\frac{\alpha_1}{\alpha_2}\right)^{\frac{m}{n}} x_1 + x_2'$$

setzen und diesen Ausdruck für x_2 in der folgendermassen:

$$- \alpha_2 x_2^{\frac{n}{m}} = \alpha_1 x_1^{\frac{n}{m}} + \alpha_3 x_4^{\frac{n}{m}}$$

geschriebenen Gleichung (143a) substituiren. Wir erhalten sodann

$$-\alpha_{2}\left\{\left(-\frac{\alpha_{1}}{\alpha_{2}}\right)^{\frac{m}{n}}x_{1}+x_{2}'\right\}^{\frac{n}{m}}=\alpha_{1}x_{1}^{\frac{n}{m}}+\alpha_{3}x_{4}^{\frac{n}{m}},$$

oder

$$(-\alpha_2)^m \left\{ \left(-\frac{\alpha_1}{\alpha_2} \right)^{\frac{m}{n}} x_1 + x_2' \right\}^n = (\alpha_1 x_1^{\frac{n}{m}} + \alpha_3 x_4^{\frac{n}{m}})^m,$$

also

$$(-\alpha_{2})^{m} \left\{ \left(-\frac{\alpha_{1}}{\alpha_{2}} \right)^{m} x_{1}^{n} + n \left(-\frac{\alpha_{1}}{\alpha_{2}} \right)^{\frac{m(n-1)}{n}} x_{1}^{n-1} x_{2}' + \ldots + x_{2}'^{n} \right\} =$$

$$= \alpha_{1}^{m} x_{1}^{n} + m \alpha_{1}^{m-1} \alpha_{3} x_{1}^{\frac{n(m-1)}{m}} x_{4}^{\frac{n}{m}} + \ldots + \alpha_{3}^{m} x_{4}^{n},$$

oder

$$n(-\alpha_2)^m \left(-\frac{\alpha_1}{\alpha_2}\right)^{\frac{m(n-1)}{n}} x_1^{n-1} x_2' + \dots = m\alpha_1^{m-1} \alpha_3 x_1^{\frac{n(m-1)}{m}} x_4^{\frac{n}{m}} + \dots$$

Es ist in dieser Gleichung $x_1^{\frac{n(m-4)}{m}}$ die höchste Potenz von x_1 (weil ja $\frac{n}{m} < 1$); ihr Coefficient ist $x_4^{\frac{n}{m}}$, also in der rationalen Gleichung x_4^n . Die Punkte L_3' sind daher n-fache Punkte, deren sämmtliche Tangenten in X_4X_2 vereinigt sind. Es hat diese Gerade in jedem Punkte L_3' m Punkte mit der Kurve gemein.

In derselben Weise lässt sich zeigen, dass die Kurve die Gerade X_2X_4 (bez. X_4X_4) in den n Bildern L_1' (bez. L_2') des Schnittpunktes L_1 (bez. L_2) von l_x mit X_2X_3 (bez. X_4X_3) schneidet.

Es ist jeder der Punkte L_1' (bez. L_2') ein *n*-facher; seine sämmtliche Tangenten sind in X_2X_4 (bez. X_1X_4) vereinigt, welche Gerade dort m Punkte mit der Kurve gemein hat.

Auf der Fläche ist $X_1 X_2$ eine n^2 -fache Gerade. In der nichtsingulären Ebene ω_0 ist ja $X_1 X_2$ eine n^2 -fache Gerade. Dies ist in Übereinstimmung mit dem Umstande, dass durch den Punkt L_3 von l_{∞} n^2 Strahlen hindurchgehen, welche alle mit $X_1 X_2$, und zwar in der Ebene ω_{∞} zusammengefallen sind. Sämmtliche Berührungsebenen der n^2 -fache Gerade sind daher mit ω_{∞} vereinigt; es hat diese Ebene mit der axialen Regelfläche mn mal $X_1 X_2$ gemein.

Der Schnitt der Regelfläche mit einer durch $X_1 X_2$ gelegten Ebene ω_{μ} trägt, ausser der n^2 -fachen Gerade $X_1 X_2$, eine Kurve

vom Grade mn, welche in den n Punkten L_3 n-fache Punkte besitzt, deren Tangenten alle in X_1X_2 vereinigt sind.

Die Punkte L_3 sind auch n-fache Punkte der Fläche.

Wenn die Gerade l_x den Punkt X_3 enthält, so ist sie durch

$$x_2 = kx_1$$

darzustellen.

Die Coordinaten p_1 und p_2 der Spur in ω_{∞} jedes Strahles p müssen daher der Bedingung

$$p_2 = kp_1$$

genügen. Die Gleichungen (6a),

$$x_{1} = p_{1}x_{3} + p_{1}^{\frac{m}{n}}x_{4},$$

$$x_{2} = p_{2}x_{3} + p_{2}^{\frac{m}{n}}x_{4},$$

liefern jetzt

$$kx_1 - x_2 = (k - k^{\frac{m}{n}}) x_4 p_1^{\frac{m}{n}},$$

 $k^{\frac{m}{n}} x_1 - x_2 = (k^{\frac{m}{n}} - k) x_3 p_1,$

wonach

$$p_{1}^{\frac{m}{n}} = \frac{kx_{1} - x_{2}}{(k - k^{\frac{m}{n}})x_{4}},$$

$$p_{1} = \frac{k^{\frac{m}{n}}x_{1} - x_{2}}{-(k - k^{\frac{m}{n}})x_{2}}.$$

Nach Elimination von p_1 ergiebt sich

$$(k-k^{\frac{m}{n}})^{m-n}(kx_1-x_2)^nx_3^m=(-1)^m(k^{\frac{m}{n}}x_1-x_2)^mx_4^n. \quad (144a)$$

Es stellt offenbar diese Gleichung die axiale Regelfläche dar. Diese Gleichung ist aber n-deutig und vertritt demnach n verschiedene Regelflächen, von denen jede vom Grade m+n ist.

Die ursprüngliche Fläche ist also in n Regelflächen vom Grade m+n ausgeartet.

Eine solche Regelfläche enthält $X_1 X_2$ als eine n-fache Gerade,

während sämmtliche Berührungsebenen in ω_{∞} zusammengefallen sind.

Auch die Gerade $X_3 X_4$ ist eine *n*-fache; ihre Berührungsebenen sind alle in der Ebene $kx_4 - x_2 = 0$, d.h. in der durch X_4 und l_{∞} gelegten Ebene vereinigt.

Die Doppelkurve der axialen Regelfläche einer in ω_{∞} liegenden Gerade kann nicht in derselben Weise untersucht werden, wie früher geschah. Es ist hier ja von einer Spur der Gerade in ω_{∞} gar nicht die Rede.

Wir können hier folgendermassen verfahren.

Ein Punkt P von l_{∞} ist durch

$$x_1 = p_1 x_3$$
, $x_2 = p_2 x_3$

bestimmt. Die n^2 Bildpunkte P' von P sind durch

$$x_2 = p_1' \tau_n x_4, \quad x_2 = p_2' \tau_n' x_4$$

angewiesen, wo p_1' einen der Werte $p_1^{\frac{m}{n}}$, p_2' einen der Werte $p_2^{\frac{m}{n}}$ und τ_n und τ_n' *n*-te Wurzeln der Einheit darstellen.

Die Verbindungslinie zweier Punkte P' wird durch

$$\frac{x_1 - {p_1}' \, \tau_n \, x_4}{p_1' (\tau_n - \tau_n'') x_4} = \frac{x_2 - {p_2}' \, \tau_n' \, x_4}{p_2' (\tau_n' - \tau_n''') \, x_4}$$

gegeben. Wenn diese Gerade den Punkt L_3 trägt, so gehen durch P zwei Strahlen, deren Verbindungsebene die Gerade l_{∞} enthält.

Die Bedingung, dass diese Gerade L_3 trage, findet ihren Ausdruck in

$$x_1: x_2 = \alpha_2: -\alpha_1, \quad x_4 = 0,$$

wonach sich diese, Beziehung ergiebt:

$$\frac{\alpha_{2}}{p_{1}^{'}\left(\tau_{n}-\tau_{n}^{''}\right)}=\frac{-\alpha_{1}}{p_{2}^{'}\left(\tau_{n}^{'}-\tau_{n}^{'''}\right)},$$

oder

$$a_1 p_1' (\tau_n - \tau_n'') = -a_2 p_2' (\tau_n' - \tau_n'''),$$

also

$$\alpha_1^n p_1'^n (\tau_n - \tau_n'')^n = (-\alpha_2)^n p_2'^n (\tau_n' - \tau_n'')^n.$$

Der Relationen

$$\begin{split} \tau_{n} & - \tau_{n}{''} = \tau_{n}(1 - \overline{\tau}_{n}), \\ \tau_{n}{'} & - \tau_{n}{''} = \tau_{n}{'}(1 - \overline{\tau}_{n}{'}), \\ p_{1}{'^{n}} &= p_{1}{^{m}}, \\ p_{2}{'^{n}} &= p_{2}{^{m}} \end{split}$$

wegen, finden wir

$$\alpha_1^n p_1^m (1 - \overline{\tau}_n)^n = (-\alpha_2)^n p_2^m (1 - \overline{\tau}_n')^n$$
. (145a)

Der Punkt P muss sich auf l_{∞} befinden, daher

$$\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 = 0,$$

oder

$$p_2 = -\frac{\alpha_1 p_1 + \alpha_3}{\alpha_2}.$$

Die Substitution dieses Ausdruckes in (145a) liefert

$$\alpha_1^n p_1^m (1 - \overline{\tau})^n = (-\alpha_2)^n \left(\frac{\alpha_1 p_1 + \alpha_1}{-\alpha_2}\right)^m (1 - \overline{\tau}_n')^n,$$

oder

$$\alpha_1^n (-\alpha_2)^{n-n} (1-\overline{\tau}_n)^n p_1^m = (\alpha_1 p_1 + \alpha_3)^m (1-\overline{\tau}_n')^n.$$
 (146a)

Weil $(1 - \overline{\tau}_n)^n$ und $(1 - \overline{\tau}_n')^n$ beide *n*-deutig sind, so stellt (146a) tatsächlich n^2 verschiedene Gleichungen dar, jede vom Grade m in p_4 .

Es liegen demnach auf l_{∞} eine gewisse Zahl der Punkte P, welche zwei mit l_{∞} in einer Ebene liegende Strahlen tragen. Diese Punkte P sind daher Schnitte von l_{∞} mit der Doppelkurve.

Von den n^2 verschiedenen durch (146 α) vertretenen Gleichungen, ist eine identisch, n.l. diejenige, für welche $\overline{\tau}_n = 1$ und $\overline{\tau}_n' = 1$. Es geschieht ferner noch (n-1) mal, das $\overline{\tau} = \overline{\tau}_n'$, so dass n-1 Gleichungen (146 α) von dieser Form sind:

$$\alpha_1^n (-\alpha_2)^{m-n} p_1^m = (\alpha_1 p_1 + \alpha_3)^m$$

Diese Gleichung bestimmt m Punkte P, von denen jeder offenbar ein (n-1)-facher ist.

Die n-1 Gleichungen, für welche $\overline{\tau}_n=1$, $\overline{\tau}_n'\neq 1$, ergeben

$$(\alpha_1 p_1 + \alpha_3)^m = 0,$$

oder

$$p_2^m = 0$$
,

d.h. den Schnittpunkt L_2 von l_{∞} mit X_1X_3 , während die n-1 Gleichungen, in welchen $\overline{\tau}_n \neq 1$, $\overline{\tau}_n' = 1$ ist,

$$p_1^m = 0$$

liefern, also den Schnittpunkt L_1 von l_{∞} mit X_2X_3 .

Ausser diesen Gleichungen giebt es noch $n^2 - 3(n-1) - 1 = n^2 - 3n + 2 = (n-1)(n-2)$, deren jede m verschiedene Punkte P liefert.

In dieser Weise lässt sich also die Anzahl der Schnittpunkte von l_{∞} mit der Doppelkurve feststellen, daher auch der Grad der Doppelkurve, weil die Anzahl der ausserhalb l_{∞} in einer durch l_{∞} gelegten Ebene liegenden Doppelpunkte $\frac{mn(mn-1)}{2}$ ist.

Für diesen Grad finden wir
$$2m(n-1) + m(n-1)(n-2) + \frac{mn(mn-1)}{2} = mn(n-1) + \frac{mn(mn-1)}{2} = \frac{mn(mn+2n-3)}{2}$$
.

§ 14b. Die axiale Regelfläche einer in der Ebene ω_{∞} liegenden Gerade, in der hyperbolischen Congruenz.

Jeder auf l_{∞} in ω_{∞} liegende Punkt A trägt mn Strahlen AX_1 , mn Strahlen AX_2 und m^2 Strahlen AX_3 . Die Ebene ω_{∞} ist demnach ein Bestandteil vom Grade m(m+2n) der axialen Regelfläche. Die Restfläche ist somit vom Grade $(m+n)^2+2mn-m(m+2n)=$ =n(2m+n).

Auf dieser Restfläche ist l_{∞} eine n^2 -fache Gerade.

Es möge l_{∞} die Gerade X_2X_3 in L_1 , X_4X_3 in L_2 und X_4X_2 in L_3 schneiden.

Wir denken uns einen Punkt P, welcher sich längs l_{∞} bewegt. Die n^2 Bilder von P werden, wenn P in L_1 kommt, alle in X_1 , wenn P in L_2 kommt, alle in X_2 vereinigt sein. Die Geraden L_1X_1 und L_2X_2 befinden sich deshalb auf der Restfläche.

Da jeder Strahl in ω_{∞} durch X_1 oder durch X_2 ein mn-facher ist, so sind die Geraden L_1X_1 und L_2X_2 als mn-fache Elementen des Schnittes in ω_{∞} zu betrachten.

Der Schnitt in ω_{∞} besteht daher aus n^2 mal der durch

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = 0$$
 . . . (142)

angewiesenen Gerade l_{∞} , und aus mn mal den Geraden $L_1 X_1$ $(\alpha_2 x_2 + \alpha_3 x_3 = 0)$ und $L_2 X_2 (\alpha_1 x_1 + \alpha_2 x_3 = 0)$.

. Wenn der längs l_{∞} bewegliche Punkt P in L_3 kommt, so werden alle Bilder von P in X_4 fallen. Die Gerade X_4 L_3 ist demnach eine n^2 -fache Gerade der Fläche.

Der Schnitt mit ω_0 enthält jetzt, ausser der n^2 -fachen Gerade X_4 L_3 , eine Kurve vom Grade 2mn, welche die Bildkurve der in ω_{∞} liegenden Gerade ℓ_{∞} ist und durch

$$\alpha_1 x_1^{-\frac{n}{m}} + \alpha_2 x_2^{-\frac{n}{m}} + \alpha_3 x_4^{-\frac{n}{m}} = 0$$

oder durch

$$\alpha_{1} x_{2}^{\frac{n}{m}} x_{4}^{\frac{n}{m}} + \alpha_{2} x_{1}^{\frac{n}{m}} x_{4}^{\frac{n}{m}} + \alpha_{3} x_{1}^{\frac{n}{m}} x_{2}^{\frac{n}{m}} = 0 . . (143b)$$

dargestellt wird.

Diese Gleichung würde sich auch ergeben haben, wenn in § 8b $\mu = \infty$ eingesetzt wäre.

Es ist X₁ ein mn-facher Punkt; seine Tangenten werden durch

$$\alpha_3 x_2^{\frac{n}{\overline{m}}} + \alpha_2 x_4^{\frac{n}{\overline{m}}} = 0$$
,

oder durch

$$\frac{x_2}{x_4} = \left(-\frac{\alpha_3}{\alpha_2}\right)^{-\frac{m}{n}}$$

angewiesen; sie sind offenbar zu je m mit einem der n Bilder von $X_1 L_1 \left(\frac{x_2}{x_3} = -\frac{\alpha_3}{\alpha_2}\right)$ zusammengefallen.

Der Punkt X_2 ist ebenfalls ein *mn*-facher; von seinen Tangenten sind je m in den n Bildern von X_2L_2 vereinigt.

Auch der Punkt X_4 ist ein *mn*-facher; von seinen Tangenten sind je *m* mit den *n* Bildern von X_3L_3 vereinigt.

Auf der Fläche sind X_1 und X_2 mn-fache Punkte; die Tangenten befinden sich bei jedem Punkte in mn Ebenen, von denen je m in einer der n Ebenen zusammengefallen sind, welche X_1 L_1 (bez. X_2 L_2) mit ihren n Bildern X_1 L_1 (bez. X_2 L_2) verbinden.

Es ist L_3 natürlich ein n^2 -facher Punkt. Die Strahlen, welche in der Nähe von L_3 ausmünden, entstammen nahe bei X_4 liegenden Punkten. Die Congruenzstrahlen münden in ω_{∞} auf der Gerade l_{∞} aus; sie befinden sich also fast in der Ebene (l_{∞}, X_4) . Die Berührungsebenen des n^2 -fachen Punktes L_3 sind somit alle in (l_{∞}, X_4) vereinigt.

Der Schnitt mit einer durch X_1X_2 gelegten Ebene ω_{μ} ist eine Kurve vom Grade n(2m+n), auf welcher X_1 und X_2 mn-fache Punkte sind und L_3 ein n^2 -facher Punkt ist.

Die Tangenten in X_1 und X_2 sind die Schnittlinien von ω_{μ} mit den oben genannten Ebenen durch X_4 bez. X_2 . Die Tangenten von L_3 sind in der Schnittlinie von ω_{μ} mit der Ebene (l_{∞}, X_4) vereinigt.

Wenn die Gerade l_{∞} den Punkt X_3 enthält, so zerfällt die Fläche noch weiter.

Indem wir l_{∞} durch

$$x_2 = kx$$

darstellen, so muss für jeden Strahl p der Fläche der Bedingung

$$p_2 = kp_1$$

genügt werden. Die Gleichungen (6b),

$$x_{1} = p_{1}x_{3} + p_{1}^{-\frac{m}{n}}x_{4},$$

$$x_{2} = p_{2}x_{3} + p_{2}^{-\frac{m}{n}}x_{4},$$

liefern jetzt

$$kx_{1} - x_{2} = (k - k^{-\frac{m}{n}})x_{4} p_{1}^{-\frac{m}{n}},$$

$$k^{-\frac{m}{n}}x_{1} - x_{2} = (k^{-\frac{m}{n}} - k)x_{3} p_{1},$$

wonach

$$p_1^{-\frac{m}{n}} = \frac{kx_1 - x_2}{(k - k^{-\frac{m}{n}})x_4}$$

und

$$p_{1} = \frac{k^{-\frac{m}{n}}x_{1} - x_{2}}{-(k - k^{-\frac{m}{n}})x_{3}}.$$

Durch Elimination von p_1 erhält man

$$(kx_1 - x_2)^n (k^{-\frac{m}{n}} x_1 - x_2)^m = (-1)^m (k - k^{-\frac{m}{n}})^{m+n} x_3^m x_4^n. (144b)$$

Diese Gleichung ist wiederum n-deutig und vertritt daher n Regelflächen, jede vom Grade m + n.

Die Punkte X_1 und X_2 gehören nun der Fläche *nicht* an.

Die Ebene ω_{∞} ist der oben behandelten (allgemeineren) Fläche

mn mal entnommen. Die Restfläche vom Grade n(m+n) erscheint als eine n-fache.

In Bezug auf die Erörterung der Doppelkurve auf der axialen Regelfläche einer in ω_{∞} liegenden Gerade l_{∞} , genügt es auf die vollkommene Analogie mit der entsprechenden Untersuchung in der parabolischen Congruenz zu weisen, welche den Schluss von § 14α bildet.

§ 15a. Die axiale Regelfläche einer Gerade $X_3 E_{ au_{m-n}}$ in der parabolischen Congruenz.

Die Gerade $X_3 E_{\tau_{m-n}}$ befindet sich in zwei singulären Ebenen, n.l. in den Ebenen ω_{∞} und ε_{τ} . Der Grad der Regelfläche wird daher um $m^2 - n^2 + m$ erniedrigt.

Wir haben in der Gleichung (144a) (S. 302) $k = \tau_{m-n}$ einzusetzen. Wir wählen k = 1. Die erwähnte Gleichung lautet alsdann

$$(1 - \tau_n)^{m-n} (x_1 - x_2)^n x_3^m = (-1)^m (\tau_n x_1 - x_2)^m x_4^n. \quad (147a)$$

Eine dieser Gleichungen (nl. $\tau_n = 1$) hat die Form

$$(x_1 - x_2)^m x_4^n = 0.$$

Hieraus ist ersichtlich, dass der ganzen Fläche m mal die Ebene ε angehört. Ausserdem wird die Ebene ω_{∞} noch n mal abgesondert. Wir erübrigen also n-1 Regelflächen vom Grade m+n.

Es enthält jede X_1X_2 als eine *n*-fache Gerade mit ω_{∞} als einziger Berührungsebene. Die Gerade X_3X_4 ist auch eine *n*-fache; sie hat auch nur ω_{∞} als Berührungsebene.

Die Doppelkurve wird in derselben Weise bestimmt, wie am Ende von § 14a angegeben ist. Wir haben nur zu beachten, dass $\alpha_2 = -\alpha_1$ und $\alpha_3 = 0$ ist, wonach (146a) übergeht in

$$p_1^m == 0.$$

Der Punkt X_3 ist also der einzige, welcher einer näheren Betrachtung bedarf.

Die n^2 nach X_3 zielenden Strahlen fallen alle mit X_3 X_4 zusammen.

§ 15b. Die axiale Regelfläche einer Gerade $X_3 E_{\tau_{m+n}}$ in der hyperbolischen Congruenz.

Die axiale Regelfläche der Gerade $X_3 E_{\tau_{m+n}}$, z. B. der Gerade $X_3 E$, welche in ω_{∞} liegt und durch X_3 geht, zerfällt in n Flächen vom Grade m+n, von denen jede durch die Gleichung (144b)

dargestellt wird, wenn nur k=1 substituirt wird. Die Gleichung lautet deshalb:

$$(x_1 - x_2)^n (\tau_n x_1 - x_2)^m = (-1)^m (1 - \tau_n)^{m+n} x_3^m x_4^n. \quad (147b)$$

Für $\tau_n = 1$ bekommt man

$$(x_1 - x_2)^{m+n} = 0.$$

Diese Fläche besteht aus der (m+n)-fach zu zählenden Ebene ε . Es war auch schon von vornherein klar, dass die singuläre Ebene (m+n) mal abzusondern ist.

Was aus der Doppelkurve wird, ist leicht ersichtlich, wenn wir beachten, dass nur X_3 Strahlen trägt, welche mit X_3 E in einer Ebene liegen.

§ 16a. Die Regelfläche der Strahlen, welche auf einem durch X₁ und X₂ gelegten Kegelschnitte ruhen, in der parabolischen Congruenz.

Wir haben früher (§ 8a, S. 261) gefunden, dass ein in ω_{∞} liegender Strahl durch X_1 , wenn er als Strahl durch X_4 betrachtet wird, mn-fach zu zählen ist. Ebenso ist ein Strahl, welcher in ω_{∞} liegt und durch X_2 geht, als Strahl durch X_2 mn-fach zu rechnen.

Die Regelfläche der Strahlen, welche auf einem durch X_1 und X_2 gelegten Kegelschnitte ruhen, wird somit alle Strahlen durch X_4 in ω_{∞} und alle Strahlen durch X_2 in ω_{∞} enthalten, wonach der Grad der Regelfläche eines willkürlichen Kegelschnittes um 2mn erniedrigt werden muss.

Da die Regelfläche eines willkürlichen Kegelschnittes vom Grade 2m(m+n) ist (der Kegelschnitt ist ja in seiner Ebene eine m^2 -fache Kurve und jeder der mn in dieser Ebene befindlichen Strahlen ist als Bisekante des Kegelschnittes doppelt zu zählen), so wird der Grad der Regelfläche eines durch X_1 und X_2 gelegten Kegelschnittes $2m(m+n)-2mn=2m^2$ sein.

Dieser Kegelschnitt, welcher mit γ_{μ} bezeichnet werden soll, ist auf seiner Regelfläche eine m^2 -fache Kurve. Die Ebene ω_{μ} von γ_{μ} hat demnach ausser γ_{μ} nichts mit der Fläche gemein.

In § 8a (S. 261) haben wir gesehen, dass von den nach einem nahe bei X_1 liegenden Punkte zielenden Strahlen je m mit einer von m durch X_1 in ω_{∞} gehenden Geraden zusammenfallen. Ebenso sind von den nach einem nahe bei X_2 liegenden Punkte zielenden Strahlen je m in einer von m Geraden durch X_2 in ω_{∞} vereinigt. Die Strahlen, welche den X_1 und X_2 auf γ_{μ} vorangehenden Punkten entstammen, bilden also ein Ausartungsgebilde vom Grade $2m^2$

in ω_{∞} . Da jedoch die Ebene ω_{∞} schon 2mn mal abgesondert ist, so enthält die Restfläche in ω_{∞} noch m (m-n)-fache Strahlen durch X_1 und m (m-n)-fache Strahlen durch X_2 , welche daher zusammen eine Figur vom Grade 2m(m-n) bilden. Diese Figur wird zum vollständigen Schnitte vom Grade $2m^2$ ergänzt durch eine Kurve vom Grade 2mn.

Wir sind also zu der Einsicht gelangt, dass die Regelfläche eines durch X_1 und X_2 gelegten Kegelschnittes γ_{μ} die Ebene ω_{∞} schneidet in einer Kurve vom Grade 2mn und in m (m-n)-fachen Geraden durch X_1 und m (m-n)-fachen Geraden durch X_2 .

Wir wollen den Kegelschnitt γ_{μ} durch

darstellen.

Die Tangente in X_1 wird angewiesen durch

$$\alpha_{3}\beta_{3}x_{2} + \alpha_{2}\beta_{3}x_{3} + \alpha_{3}\beta_{2}x_{4} = 0,
x_{3} = \mu x_{4}.$$

Die einem nahe bei X_1 liegenden Punkte entstammenden Strahlen, welche in ω_{∞} liegen, werden (siehe § 8a, S. 261, 262) durch

$$\alpha_3^n \beta_3^n x_2^m - (-1)^n [\mu \alpha_3 \beta_3 x_2 + (\mu \alpha_2 \beta_3 + \alpha_3 \beta_2) x_3]^n x_3^{m-n} = 0 \quad (150a)$$

gegeben; man erhält diese Gleichung, indem man in (103a) (S. 262) $x_4 = 0$ einsetzt. Es bestimmt diese Gleichung die m (m-n)-fachen Geraden durch X_1 , welche mit den m (m-n)-fachen Geraden durch X_2 und der Kurve vom Grade 2mn den Gesammtschnitt bilden.

Die m (m-n)-fachen Geraden durch X_2 sind durch

$$\alpha_3^n \beta_3^n x_1^m - (-1)^n [\mu \alpha_3 \beta_3 x_1 + (\mu \alpha_1 \beta_3 + \alpha_3 \beta_1) x_3]^n x_3^{m-n} = 0$$
 (151a) angewiesen.

Die Kurve vom Grade 2mn ist der Ort der Spuren P (p_1, p_2) der Congruenzstrahlen p, welche γ_{μ} schneiden.

Die Gleichung dieses Ortes werd ermittelt, indem man aus den Gleichungen (148), (149) und (6a) die Coordinaten x_1, x_2, x_3 und x_4 eliminirt. Man bekommt alsdann:

$$\alpha_{3}\beta_{3}(\mu p_{1}+p_{1}^{\frac{m}{n}})(\mu p_{2}+p_{2}^{\frac{m}{n}})+(\mu p_{1}+p_{1}^{\frac{m}{n}})(\mu \alpha_{2}\beta_{3}+\alpha_{3}\beta_{2})+ \\
+(\mu p_{2}+p_{2}^{\frac{m}{n}})(\mu \alpha_{1}\beta_{3}+\alpha_{3}\beta_{4})+(\mu^{2}\alpha_{0}\beta_{3}+\alpha_{3}\beta_{0})=0,$$

oder

$$\alpha_{3} \beta_{3} p_{1}^{\frac{m}{n}} p_{2}^{\frac{m}{n}} + \mu \alpha_{3} \beta_{3} (p_{1}^{\frac{m}{n}} p_{2} + p_{1} p_{2}^{\frac{m}{n}}) + \mu^{2} \alpha_{3} \beta_{3} p_{1} p_{2} + \\
+ (\mu \alpha_{2} \beta_{3} + \alpha_{3} \beta_{2}) p_{1}^{\frac{m}{n}} + (\mu \alpha_{1} \beta_{3} + \alpha_{3} \beta_{1}) p_{2}^{\frac{m}{n}} + \\
+ \mu (\mu \alpha_{2} \beta_{3} + \alpha_{3} \beta_{2}) p_{1} + \mu (\mu \alpha_{1} \beta_{3} + \alpha_{3} \beta_{1}) p_{2} + (\mu^{2} \alpha_{0} \beta_{3} + \alpha_{3} \beta_{0}) = 0,$$
oder

$$\gamma_{0} p_{1}^{\frac{m}{n}} p_{2}^{\frac{m}{n}} + \gamma_{0}' (p_{1}^{\frac{m}{n}} p_{2} + p_{1} p_{2}^{\frac{m}{n}}) + \gamma_{0}'' p_{1} p_{2} + \gamma_{1} p_{1}^{\frac{m}{n}} +
+ \gamma_{2} p_{2}^{\frac{m}{n}} + \gamma_{1}' p_{1} + \gamma_{2}' p_{2} + \gamma_{3} = 0, . . (152a)$$

wo also

$$\gamma_{0} = \alpha_{3} \beta_{3}, \gamma_{0}' = \mu \alpha_{3} \beta_{3}, \gamma_{0}'' = \mu^{2} \alpha_{3} \beta_{3},
\gamma_{1} = \mu \alpha_{2} \beta_{3} + \alpha_{3} \beta_{2}, \gamma_{2} = \mu \alpha_{1} \beta_{3} + \alpha_{3} \beta_{1},
\gamma_{1}' = \mu (\mu \alpha_{2} \beta_{3} + \alpha_{3} \beta_{2}), \gamma_{2}' = \mu (\mu \alpha_{1} \beta_{3} + \alpha_{3} \beta_{1}),
\gamma_{3} = \mu^{2} \alpha_{0} \beta_{3} + \alpha_{3} \beta_{0}$$
(153)

ist.

Ersetzt man in (152a) p_1 durch $x_1:x_3$ und p_2 durch $x_2:x_3$, so folgt

Es stellt nun diese Gleichung die Kurve vom Grade 2mn dar, welche mit den Geraden durch X_1 und X_2 den vollständigen Schnitt in ω_{∞} bildet.

Die Punkte X_1 und X_2 sind mn-fache Punkte.

Die Tangenten in X_1 sind bestimmt durch

$$\gamma_0 x_2^{\frac{m}{n}} + \gamma_0' x_2 x_3^{\frac{m-n}{n}} + \gamma_1 x_3^{\frac{m}{n}} = 0$$
, (155a)

oder

$$\gamma_0 x_2^{\frac{m}{n}} = -(\gamma_0' x_2 + \gamma_1 x_3) x_3^{\frac{m-n}{n}},$$

also durch

$$\gamma_0^n x_2^m - (-1)^n (\gamma_0' x_2 + \gamma_1 x_3)^n x_3^{m-n} = 0.$$

Beachten wir die in (153) gegebene Bedeutung von γ_0 , γ_0' und γ_1 , so erscheinen diese Tangenten identisch mit den Geraden durch X_1 , welche dem Gesammtschnitte angehören (siehe (150a)).

In derselben Weise ersehen wir, dass die genannten Geraden durch X_2 (151a) auch die Tangenten in X_2 an der Kurve sind. Als Tangenten in X_4 und X_2 sind aber die Geraden (150a) und (151a) n-fach zu rechnen.

Mit anderen Worten: die Tangenten in X_1 (bez. X_2) an der in ω_{∞} liegenden Kurve sind die Congruenzstrahlen, welche sich in dem X_1 (bez. X_2) vorangehenden Punkte auf γ_{μ} stützen.

Wenn wir bedenken, dass

$$egin{aligned} \gamma_0^{''} &= \mu \gamma_0^{'} = \mu^2 \gamma_0, \ \gamma_1^{'} &= \mu \gamma_1, \ \gamma_2^{'} &= \mu \gamma_2, \end{aligned} \qquad (156a)$$

so lässt sich die Gleichung (154a) folgendermassen schreiben:

$$(\gamma_{0}x_{2}^{\frac{m}{n}} + \gamma_{0}'x_{2}x_{3}^{\frac{m-n}{n}} + \gamma_{1}x_{3}^{\frac{m}{n}})\left(x_{1}^{\frac{m}{n}} + \mu x_{1}x_{3}^{\frac{m-n}{n}} + \frac{\gamma_{2}}{\gamma_{0}}x_{3}^{\frac{m}{n}}\right) + \left(\gamma_{3} - \frac{\gamma_{1}\gamma_{2}}{\gamma_{0}}\right)x_{3}^{\frac{2m}{n}} = 0.$$

Aus dieser Form erhellt, dass die Substitution (155a) den Faktor $x_3^{\frac{2m}{n}}$, also in der rationalen Gleichung den Faktor x_3^{2mn} absondert; die Tangenten von X_4 haben daher dort 2mn zusammenfallende Punkte mit der Kurve gemein, enthalten demnach ausser X_4 keinen Punkt der Kurve. Ebenso lässt sich zeigen, dass von den Tangenten in X_2 alle Schnittpunkte mit der Kurve in X_2 vereinigt sind.

Der Schnitt der Regelfläche mit ω_0 wird ermittelt, indem wir aus den Gleichungen (148) und (149) von γ_μ und aus den Gleichungen

$$x_{1} = p_{1}^{'\frac{n}{m}} x_{3} + p_{1}' x_{4},$$

$$x_{2} = p_{2}^{'\frac{n}{m}} x_{3} + p_{2}' x_{4}$$

die Coordinaten x_1 , x_2 , x_3 und x_4 eliminiren. Wir finden alsdann

$$\begin{aligned} \mathbf{\alpha}_{3} \mathbf{\beta}_{3} (p_{1}' + \mu p_{1}'^{\frac{n}{m}}) (p_{2}' + \mu p_{2}'^{\frac{n}{m}}) + (p_{1}' + \mu p_{1}'^{\frac{n}{m}}) (\mu \mathbf{\alpha}_{2} \mathbf{\beta}_{3} + \mathbf{\alpha}_{3} \mathbf{\beta}_{2}) + \\ + (p_{2}' + \mu p_{2}'^{\frac{n}{m}}) (\mu \mathbf{\alpha}_{1} \mathbf{\beta}_{3} + \mathbf{\alpha}_{3} \mathbf{\beta}_{1}) + (\mu^{2} \mathbf{\alpha}_{3} \mathbf{\beta}_{0} + \mathbf{\alpha}_{0} \mathbf{\beta}_{3}) = 0, \end{aligned}$$

oder

$$\begin{split} & \pmb{\alpha}_{3} \pmb{\beta}_{3} p_{1}' p_{2}' + \mu \pmb{\alpha}_{3} \pmb{\beta}_{3} (p_{1}' p_{2}'^{\frac{n}{m}} + p_{1}'^{\frac{n}{m}} p_{2}') + \mu^{2} \pmb{\alpha}_{3} \pmb{\beta}_{3} p_{1}'^{\frac{n}{m}} p_{2}'^{\frac{n}{m}} + \\ & + (\mu \pmb{\alpha}_{2} \pmb{\beta}_{3} + \pmb{\alpha}_{3} \pmb{\beta}_{2}) p_{1}' + (\mu \pmb{\alpha}_{1} \pmb{\beta}_{3} + \pmb{\alpha}_{3} \pmb{\beta}_{1}) p_{2}' + \mu (\mu \pmb{\alpha}_{2} \pmb{\beta}_{3} + \pmb{\alpha}_{3} \pmb{\beta}_{2}) p_{1}'^{\frac{n}{m}} + \\ & + \mu (\mu \pmb{\alpha}_{1} \pmb{\beta}_{3} + \pmb{\alpha}_{3} \pmb{\beta}_{1}) p_{2}'^{\frac{n}{m}} + (\mu^{2} \pmb{\alpha}_{0} \pmb{\beta}_{3} + \pmb{\alpha}_{3} \pmb{\beta}_{0}) = 0 \,, \end{split}$$

also, vermöge (153),

$$\gamma_{0}p_{1}'p_{2}' + \gamma_{0}'(p_{1}'p_{2}'^{\frac{n}{m}} + p_{1}'^{\frac{n}{m}}p_{2}') + \gamma_{0}''p_{1}'^{\frac{n}{m}}p_{2}'^{\frac{n}{m}} + \gamma_{1}p_{1}' + \gamma_{2}p_{2}' + \gamma_{1}'p_{1}'^{\frac{n}{m}} + \gamma_{2}'p_{2}'^{\frac{n}{m}} + \gamma_{2}'p_{2}'^{\frac{n}{m}} + \gamma_{3} = 0. \quad . \quad . \quad (157a)$$

Wenn wir nun $p_1^{'}$ durch $x_1:x_4$ und $p_2^{'}$ durch $x_2:x_4$ ersetzen, so bekommen wir

$$\gamma_{0}x_{1}x_{2} + \gamma_{0}'(x_{1}x_{2}^{\frac{n}{m}} + x_{1}^{\frac{n}{m}}x_{2})x_{4}^{\frac{m-n}{m}} + \gamma_{0}''x_{1}^{\frac{n}{m}}x_{2}^{\frac{n}{m}}x_{3}^{\frac{2(m-n)}{m}} + \gamma_{1}x_{1}x_{4} +$$

$$+ \gamma_{2}x_{2}x_{4} + \gamma_{1}'x_{1}^{\frac{n}{m}}x_{4}^{\frac{2m-n}{m}} + \gamma_{2}'x_{2}^{\frac{n}{m}}x_{4}^{\frac{2m-n}{m}} + \gamma_{3}x_{4}^{2} = 0.$$
 (158a)

Nach Rationalisirung bekommt diese Gleichung den Grad $2m^2$. Sie stellt den Gesammtschnitt der Regelfläche mit ω_0 dar. Es ist diese Kurve zugleich die Bildkurve der in ω_{∞} liegenden Kurve; man ersieht dies am leichtesten wenn man darauf achtet, dass die Gleichung (157a) aus der Gleichung (152a) ermittelt werden kann,

wenn überall p_1 durch $p_1'^{\frac{n}{m}}$ und p_2 durch $p_2'^{\frac{n}{m}}$ ersetzt wird.

Die Kurve von Grade $2m^2$ in ω_0 hat in X_1 und X_2 m^2 -fache Punkte.

Die Tangenten in X_1 sind durch

$$\gamma_0 x_2 + \gamma_0' x_2^{\frac{n}{m}} x_4^{\frac{m-n}{m}} + \gamma_1 x_4 = 0, \dots$$
 (159a)

oder durch

$$(\gamma_0 x_2 + \gamma_4 x_4)^m - (-1)^m \gamma_0^{'m} x_2^n x_4^{m-n} = 0 \quad . \quad (160a)$$

bestimmt. Von den m^2 Tangenten in X_1 sind also je m in eine der m Geraden (160a) zusammengefallen.

Mit Benutzung von (153) verwandelt sich (160a) in

$$[\alpha_{3}\beta_{3}x_{2} + (\mu\alpha_{1}\beta_{3} + \alpha_{3}\beta_{4})x_{4}]^{m} - (-1)^{m}\mu^{m}\alpha_{3}^{m}\beta_{3}^{m}x_{2}^{n}x_{4}^{m-n} = 0.(161a)$$

Die Regelfläche der Strahlen, welche auf der in X_1 an γ_{μ} gelegten Tangente ruhen, besteht (siehe § 8n, S. 261, 262) aus den m Ebenen

$$\begin{aligned} & [\alpha_3 \beta_3 x_2 + (\mu \alpha_1 \beta_3 + \alpha_3 \beta_1) x_4]^m - \\ - (-1)^n \alpha_3^{m-n} \beta_3^{m-n} [\mu \alpha_3 \beta_3 x_2 + (\mu \alpha_1 \beta_3 + \alpha_3 \beta_1) x_3]^n (x_3 - \mu x_4)^{m-n} = 0. \end{aligned}$$

Der Schnitt dieser m Ebenen mit ω_0 ($x_3 = 0$) erscheint gerade zusammengesetzt aus den m m-fachen in X_1 an der Kurve in ω_0 gelegten Tangenten.

Dieses Ergebniss ist im Einklang mit der Vorstellung, nach der die in ω_0 nahe bei X_1 liegenden Punkte denjenigen Strahlen angehören, welche sich in den X_1 vorangehenden Punkte auf dem Kegelschnitte γ_{μ} stützen.

Mit Hülfe von (156a) lässt sich die Gleichung (158a) folgendermassen schreiben:

$$(\gamma_{0}x_{2} + \gamma_{0}'x_{2}^{\frac{n}{m}}x_{4}^{\frac{m-n}{m}} + \gamma_{1}x_{4})(x_{1} + \mu x_{1}^{\frac{n}{m}}x_{4}^{\frac{m-n}{m}} + \frac{\gamma_{2}}{\gamma_{0}}x_{4}) + (\gamma_{3} - \frac{\gamma_{1}\gamma_{2}}{\gamma_{0}})x_{4}^{2} = 0.$$

In der rationalen Gleichung sondert daher die Substitution (159 α) den Faktor $2m^2$ ab; es erhellt somit, dass die Tangente in X_4 alle ihren $2m^2$ Schnittpunkte mit der Kurve in X_4 vereinigt hat. Analoges lässt sich von den Tangenten in X_2 behaupten.

Auf der Fläche sind X_1 und X_2 m^2 -fache Punkte, von deren Berührungsebenen je m in einer von m Ebenen zusammengefallen sind. Es bilden diese m Ebenen die Regelfläche der Strahlen, welche auf der in X_1 (bez. X_2) an γ_{μ} gelegten Tangente ruhen.

Der Kegelschnitt γ_{μ} selbst ist auf seiner Regelfläche eine m^2 -fache Kurve.

Es befindet sich auf der Fläche noch eine Doppelkurve, deren Untersuchung dahingestellt bleiben möge.

§ 16b. Die Regelfläche der Strahlen, welche auf einem durch \mathbf{X}_1 und \mathbf{X}_2 gelegten Kegelschnitte ruhen, in der hyperbolischen Congruenz.

Die Regelfläche der Strahlen welche in der hyperbolischen Congruenz auf einem willkürlichen Kegelschnitte ruhen, ist vom Grade $2(m+n)^2+4mn$, weil der Kegelschnitt in seiner Ebene eine $(m+n)^2$ -fache Kurve ist und überdies noch zweimal durch jedem der 2mn in seiner Ebene liegenden Strahlen geschnitten wird.

Sobald der Kegelschnitt die Punkte X_1 und X_2 enthält, werden die Ebenen ω_{∞} und ω_0 abgesondert, weil jede durch X_1 oder X_2 in ω_{∞} oder ω_0 gelegte Gerade ein Congruenzstrahl ist.

Da eine durch X_1 in ω_{∞} gehende Gerade als ein mn-facher Strahl betrachtet werden muss, auch wenn X_1 als Sammelpunkt gewählt

ist, so wird die Ebene ω_{∞} 2mn mal abgesondert. Ebenso wird die Ebene ω_0 2mn mal der Fläche entnommen.

Die Restfläche eines durch X_1 und X_2 gelegten Kegelschnittes ist daher vom Grade $2(m+n)^2 + 4mn - 2 \times 2mn = 2(m+n)^2$.

Auf dieser Restfläche ist der Kegelschnitt selbst, welche mit γ_{μ} bezeichnet werden soll, eine $(m+n)^2$ -fache Kurve. Die Ebene ω_{μ} von γ_{μ} enthält somit ausser γ_{μ} keinen Bestandteil der Fläche.

Von den $(m+n)^2$ einem nahe bei X_1 liegenden Punkte Y entstammenden Strahlen befinden sich m(m+n) in ω_{∞} und n(m+n) in ω_{0} . Wenn Y sich längs der Gerade

$$\rho_2 x_2 + \rho_3 x_3 + \rho_4 x_4 = 0,
x_3 = \mu x_4$$

dem Punkte X_1 nähert, so sind (siehe § 8b, S. 267) von den Geraden in ω_{∞} je m in einer der m+n Geraden

$$x_2^{\ m} \left| \mu \mathbf{p}_2 x_2 + (\mu \mathbf{p}_3 + \mathbf{p}_4) \, x_3 \right|^n - (-1)^n \, \mathbf{p}_2^{\ n} \, x_3^{\ m+n} = 0$$

zusammengefallen, während von den Strahlen in ω_0 je n in den m + n Geraden

$$x_2^n [\rho_2 x_2 + (\mu \rho_3 + \rho_4) x_4]^m - (-1)^m \rho_2^m \mu^m x_4^{m+n} = 0$$

Wenn wir Y auf den Kegelschnitt γ_{μ} , also auf die Tangente in X_1 legen, so haben wir (siehe § 16a, S. 310)

$$\rho_2 = \alpha_3 \beta_3,$$
 $\rho_3 = \alpha_2 \beta_3,$
 $\rho_4 = \alpha_3 \beta_2$

zu setzen, wonach die sich auf dem nahe bei X_t auf γ_{μ} stützenden Strahlen, wofern sie in ω_{∞} liegen, durch

$$\alpha_2^m \left[\mu \alpha_3 \beta_3 x_2 + (\mu \alpha_2 \beta_3 + \alpha_3 \beta_2) x_3 \right]^n - (-1)^n \alpha_3^n \beta_3^n x_3^{m+n} = 0, (150b)$$

und, wofern sie in ω_0 liegen, durch

$$x_2^n [\alpha_3 \beta_3 x_2 + (\mu \alpha_2 \beta_3 + \alpha_3 \beta_2) x_4]^m - (-1)^m \mu^m \alpha_3^m \beta_3^m x_4^{m+n} = 0 (150'b)$$

bestimmt sind.

Die Strahlen welche dem nahe bei X_2 auf γ_{μ} liegenden Punkte entstammen, sind natürlich durch Gleichungen bestimmt, welche wir erhalten, indem wir in (150b) und (150b) die Indices 1 und 2 vertauschen.

Der Schnitt in ω_{∞} wird offenbar die Geraden (150*b*) und die entsprechenden Geraden durch X_2 enthalten. Von diesen 2(m+n) Geraden ist jede eine *m*-fache, wonach das Ausartungsgebilde des Schnittes in ω_{∞} vom Grade 2m(m+n) ist. Man erübrigt also eine Kurve vom Grade $2(m+n)^2-2m(m+n) \rightleftharpoons 2n(m+n)$.

Es sei A ein Schnittpunkt dieser Restkurve mit X_2X_3 , so liegt das Bild von A in X_4 ; die Gerade AX_4 ist daher ein Congruenzstrahl, welcher sich in einem Punkte von ω_{∞} auf der Kurve stützt, also eine Erzeugende der Regelfläche. Er muss aber alsdann mit einer der Geraden (150b) identisch sein. Die m+n Schnittpunkte der m+n m-fachen Geraden (150b) mit X_2X_3 sind demnach gleichfalls die Schnittpunkte dieser Gerade X_2X_3 mit der in ω_{∞} liegenden Restkurve. Letztere schneidet somit X_2X_3 , ausser X_4 , n mal in jedem jener m+n Punkte.

Dasselbe gilt offenbar auch von den Geraden durch X_2 .

Der Schnitt in ω_0 enthält jetzt eine Kurve vom Grade 2m(m+n) nebst den Geraden welche X_1 (bez. X_2) verbinden mit den m+n ausserhalb X_2 (bez. X_4) liegenden Schnittpunkten von X_2X_4 (bez. X_4X_4) mit der Restkurve; als Ausartungsbestandteil ist jede Gerade n-fach zu zählen.

Wir wollen jetzt die Gleichung der in ω_{∞} liegenden Kurve herleiten. Sie wird am leichtesten ermittelt, indem wir in der Gleichung (152a) überall das Vorzeichen des Exponenten $\frac{m}{n}$ umkehren, wonach sich ergiebt:

$$\gamma_{0}p_{1}^{-rac{m}{n}}p_{2}^{-rac{m}{n}}+\gamma_{0}{'}(p_{1}^{-rac{m}{n}}p_{2}+p_{1}p_{2}^{-rac{m}{n}})+\gamma_{0}{''}p_{1}p_{2}+\gamma_{1}p_{1}^{-rac{m}{n}}+\ +\gamma_{2}p_{2}^{-rac{m}{n}}+\gamma_{1}{'}p_{1}+\gamma_{2}{'}p_{2}+\gamma_{3}+0,$$

oder

$$\gamma_{0}'' p_{1}^{\frac{m+n}{n}} p_{2}^{\frac{m+n}{n}} + \gamma_{1}' p_{1}^{\frac{m+n}{n}} p_{2}^{\frac{m}{n}} + \gamma_{2}' p_{1}^{\frac{m}{n}} p_{2}^{\frac{m+n}{n}} + \gamma_{3} p_{1}^{\frac{m}{n}} p_{2}^{\frac{m}{n}} +$$

$$+ \gamma_{0}' (p_{1}^{\frac{m+n}{n}} + p_{2}^{\frac{m+n}{n}}) + \gamma_{2} p_{1}^{\frac{m}{n}} + \gamma_{4} p_{2}^{\frac{m}{n}} + \gamma_{0} = 0, \quad (152b)$$

wo die Grössen γ durch (153) bestimmt sind.

Wenn wir jetzt p_1 durch $x_1 : x_3$ und p_2 durch $x_2 : x_3$ ersetzen, so finden wir

Diese Gleichung stellt die fragliche Kurve vom Grade 2n(m+n) dar. Die Tangenten in X_1 sind durch

$$\gamma_0'' x_2^{\frac{m+n}{n}} + \gamma_1' x_2^{\frac{m}{n}} x_3 + \gamma_0' x_3^{\frac{m+n}{n}} = 0$$

angewiesen. Die Schnittpunkte mit $X_2 X_3$ sind durch $x_3^{\frac{m+n}{n}} = 0$ und

$$\gamma_0' x_2^{\frac{m+n}{n}} + \gamma_1 x_2^{\frac{m}{n}} x_3 + \gamma_0 x_3^{\frac{m+n}{n}} = 0$$
 . (155b)

bestimmt. Vermöge der Relationen (153) sind diese Gleichungen abhängig, woraus wir schliessen, dass die Tangenten in X_1 die Gerade X_2X_3 in denselben Punkten treffen wie die Kurve.

Es ist X_1 ein n(m+n)-facher Punkt. Von seinen Tangenten sind je n zusammengefallen in einer der m+n Geraden, welche durch (155b) bestimmt werden. Letztere Gleichung verwandelt sich nach Rationalisirung in die Form (150b).

Die Gleichung (154b) lässt sich auch folgendermassen umstalten:

$$({\gamma_0}' x_2^{\frac{m+n}{n}} + {\gamma_1} x_2^{\frac{m}{n}} x_3 + {\gamma_0} x_3^{\frac{m+n}{n}}) ({\gamma_0}' x_1^{\frac{m+n}{n}} + {\gamma_2} x_1^{\frac{m}{n}} x_3 + {\gamma_0} x_3^{\frac{m+n}{n}}) + \\ + ({\gamma_0} {\gamma_3} - {\gamma_1} {\gamma_2}) x_1^{\frac{m}{n}} x_2^{\frac{m}{n}} x_3^2 = 0 ,$$

oder

$$\gamma_0' x_2^{\frac{m+n}{n}} + \gamma_1 x_2^{\frac{m}{n}} x_3 = - \left[\gamma_0 x_3^{\frac{m+n}{n}} + \frac{(\gamma_0 \gamma_3 - \gamma_1 \gamma_2) x_1^{\frac{m}{n}} x_2^{\frac{m}{n}} x_3^{\frac{m}{n}} x_3^2}{\gamma_0' x_1^{\frac{m+n}{n}} + \gamma_2 x_1^{\frac{m}{n}} x_3 + \gamma_0 x_3^{\frac{m+n}{n}}} \right],$$

oder endlich

$$(\gamma_0' x_2 + \gamma_1 x_3) x_2^{\frac{m}{n}} = -[\gamma_0 x_3^{\frac{m+n}{n}} + x_1^{\frac{m}{n}} \varphi],$$

wenn

$$\varphi = \frac{(\gamma_0 \gamma_3 - \gamma_1 \gamma_2) x_2^{\frac{m}{n}} x_3^2}{\gamma_0' x_1^{\frac{m+n}{n}} + \gamma_2 x_1^{\frac{m}{n}} x_3 + \gamma_0 x_3^{\frac{m+n}{n}}}$$

gesetzt wird.

Durch Potenzirung mit n bekommen wir

oder

$$\begin{split} &({\gamma_0}' \, x_2 + {\gamma_1} \, x_3)^n \, x_2{}^m - (-1)^n \, {\gamma_0}^n \, x_3{}^{m+n} = \\ &= (-1)^n \big[n{\gamma_0}^{n-1} \, x_4{}^{\frac{m}{n}} \, x_3{}^{\frac{(m+n)(n-1)}{n}} \, \varphi + \ldots + x_4{}^m \, \varphi^n \big]. \end{split}$$

Die linke Seite dieser Gleichung ergiebt, wenn gleich Null gesetzt, die m+n Tangenten in X_1 , welche ausserdem die Gerade X_2X_3 ($x_1=0$) in denselben Punkten wie die Kurve schneiden.

Wenn man die Schnittpunkte dieser Geraden mit der Kurve verlangt, und dementsprechend die linke Seite gleich Null setzt,

so wird in der rechten Seite ein Faktor $x_1^{\frac{m}{n}}$ und eine in x_2 und x_3 homogene Form vom Grade m+n+1 abgetrennt.

In der rationalen Gleichung vom Grade n(m+n) würde alsdann der Faktor x_1^m und eine in x_2 und x_3 homogene Form vom Grade n(m+n+1) abgesondert sein. Es hat demnach jede Tangente in X_4 daselbst n(m+n+1) Punkte mit der Kurve gemein, und in ihrem Schnittpunkte mit X_2X_3 m Punkte.

Die Gerade X_2X_3 dagegen hat in X_2 n(m+n) Punkte und in sämmtlichen übrigen m+n Schnittpunkten n(m+n) Punkte, also in jedem Schnittpunkte n Punkte mit der Kurve gemein. Hieraus geht hervor, dass die Schnittpunkte von X_2X_3 mit der Kurve n-fache Punkte sind, deren sämmtliche Tangenten nach X_4 convergiren, und dass diese Gerade X_2X_3 in einem solchen Schnittpunkte m Punkte mit der Kurve gemein hat.

Der Zustand auf X_4X_3 und in X_2 ist dem oben Dargelegten völlig ähnlich.

Die Kurve in ω_0 unterscheidet sich, nach der Vertauschung von m mit n, der Indices 3 und 4, und von μ mit $1:\mu$, nur in sofern von der in ω_x liegenden Kurve, dass jede der in X_1 gelegten Tangenten jetzt in ihrem Schnittpunkte mit X_2X_4 n Punkte mit der Kurve gemein hat, während die Gerade X_2X_4 in einem solchen Punkte m Punkte der Kurve trägt. Ein solcher Schnittpunkt ist also wiederum ein n-facher Punkt, dessen Tangenten aber nunmehr alle mit X_2X_4 zusammenfallen, welche Gerade dort m Punkte mit der Kurve gemein hat.

 X_1 und X_2 sind auf der Fläche $(m+n)^2$ -fache Punkte. Die Tangenten von X_4 befinden sich alle in den m+n Ebenen, welche die axiale Regelfläche der in X_4 an γ_{μ} gelegten Tangente bilden. Diese Ebenen (siehe § 8b, S. 267) entsprechen der Gleichung

$$\frac{|\alpha_3 \beta_3 x_2 + (\mu \alpha_2 \beta_3 + \alpha_3 \beta_2) x_4|^m |\mu \alpha_3 \beta_3 x_2 + (\mu \alpha_2 \beta_3 + \alpha_3 \beta_2) x_3|^n - (-1)^n \alpha_3^{m+n} \beta_3^{m+n} (x_3 - \mu x_4)^{m+n} = 0. }$$

Wenn man die Indices 1 und 2 vertauscht, so bekommt man die Gleichung der m+n Berührungebenen von X_2 .

Der Kegelschnitt γ_{μ} ist auf seiner Regelfläche eine $(m+n)^2$ -fache Kurve.

Es liegt auf der Fläche noch eine Doppelkurve, welche hier nicht untersucht werden soll.

§ 17a. Die Regelfläche der Strahlen, welche ruhen auf einem durch \mathbf{X}_1 und \mathbf{X}_2 gelegten Kegelschnitte, in Bezug auf welchen der Pol von \mathbf{X}_1 \mathbf{X}_2 sich auf \mathbf{X}_3 \mathbf{X}_4 befindet, in der parabolischen Congruenz.

In dem vorliegenden Falle hat man

$$\alpha_1 = 0, \ \alpha_2 = 0,
\beta_1 = 0, \ \beta_2 = 0,$$

wonach die Gleichungen des Kegelschnittes lauten:

$$\mathbf{\alpha}_{3} \, \mathbf{\beta}_{3} \, x_{1} \, x_{2} + \mathbf{\alpha}_{0} \, \mathbf{\beta}_{3} \, x_{3}^{2} + \mathbf{\alpha}_{3} \, \mathbf{\beta}_{0} \, x_{4}^{2} = 0 \,, \qquad (162)$$

$$x_{3} = \mu x_{4} \,. \qquad (163)$$

Die Gleichung (150a) der in X_1 an der Kurve in ω_{∞} gelegten Tangenten verwandelt sich daher in

$$|x_2^n| |x_2^{m-n} - (-1)^n |x_3^{m-n}| = 0.$$
 (164a)

Die Tangenten in X_2 sind jetzt durch

$$x_1^n |x_1^{m-n} - (-1)^n x_3^{m-n}| = 0$$
 . (165a)

bestimmt.

Weil die Grössen γ_1 , γ_2 , γ_1' und γ_2' hier Null sind, während man $\gamma_0'' = \mu \gamma_0' = \mu^2 \gamma_0$ hat, so wird die in ω_{∞} liegende Kurve durch

$$x_{1}^{\frac{m}{n}}x_{2}^{\frac{m}{n}} + \mu(x_{1}^{\frac{m}{n}}x_{2} + x_{1}x_{2}^{\frac{m}{n}})x_{3}^{\frac{m-n}{n}} + \mu^{2}x_{1}x_{2}x_{3}^{\frac{2(m-n)}{n}} + \frac{\gamma_{3}}{\gamma_{0}}x_{3}^{\frac{2m}{n}} = 0 \quad (166a)$$

dargestellt. Es sind hier von den m verschiedenen in X_1 gelegten Tangenten n mit X_1X_3 und von den m in X_2 gelegten Tangenten n mit X_2X_3 zusammengefallen. Die Gerade X_1X_3 (bez. X_2X_3) hat jetzt in X_1 (bez. X_2) mit der Kurve 2mn Punkte gemein.

Die in ω_0 befindliche Kurve hat nun die Gleichung

$$x_{1}x_{2} + \mu(x_{1}x_{2}^{\frac{n}{m}} + x_{1}^{\frac{n}{m}}x_{2})x_{4}^{\frac{m-n}{m}} + \mu^{2}x_{1}^{\frac{n}{m}}x_{2}^{\frac{n}{m}}x_{4}^{\frac{2(m-n)}{n}} + \frac{\gamma_{3}}{\gamma_{0}}x_{4}^{2} = 0. (167a)$$

Von den m verschiedenen in X_1 (bez. X_2) gelegten Tangenten sind jetzt n mit X_1 X_4 (bez. X_2 X_4) zusammengefallen. Die Gerade X_1 X_4 (bez. X_2 X_4) hat in X_4 (bez. X_2) $2m^2$ Punkte mit der Kurve gemein.

Von den m verschiedenen Berührungsebenen des Punktes X_4 (bez. X_2), als Punkt der Fläche betrachtet, sind n in $X_4X_3X_4$ (bez. $X_2X_3X_4$) vereinigt. Ubrigens ist kein Unterschied zu erwähnen.

§ 17b. Die Regelfläche der Strahlen, welche ruhen auf einem durch \mathbf{X}_1 und \mathbf{X}_2 gelegten Kegelschnitte, in Bezug auf welchen der Pol von \mathbf{X}_1 \mathbf{X}_2 sich auf \mathbf{X}_3 \mathbf{X}_4 befindet, in der hyperbolischen Congruenz.

Auch hier hat man

$$\alpha_1 = 0, \quad \alpha_2 = 0,
\beta_1 = 0, \quad \beta_2 = 0;$$

der Kegelschnitt ist demnach wiederum durch die Gleichungen (162) und (163) angewiesen.

Die in X_1 an der Kurve in $\boldsymbol{\omega}_{\infty}$ gelegten Tangenten sind jetzt durch

$$\mu^n x_2^{m+n} - (-1)^n x_3^{m+n} = 0$$
 . (164b)

bestimmt, während die in X_1 an der Kurve in ω_0 gelegten Tangenten durch

$$x_{2}^{m+n} - (-1)^{m} \mu^{m} x_{4}^{m+n} = 0$$
 . . . (164'b)

dargestellt werden.

Übrigens behalten die Darlegungen von $\S~16b$ ihre volle Gültigkeit.

§ 18a. Die Regelfläche der Strahlen, welche ruhen auf einem durch \mathbf{X}_1 und \mathbf{X}_2 gelegten Kegelschnitte, welcher $\mathbf{X}_3\mathbf{X}_4$ schneidet, in der parabolischen Congruenz.

Wenn γ_{μ} die Gerade $X_3 X_4$ schneidet, so gilt

$$\alpha_0 = 0, \ \beta_0 = 0,$$

also

$$\gamma_3 = 0.$$

Der Kegelschnitt ist jetzt durch

DIE CONGRUENZEN VON $w'^n = e^{n-m} w^m$ UND $w'^n w^m = e^{m+n}$. 32 1

$$\mathbf{\alpha}_{3}\boldsymbol{\beta}_{3}x_{4}x_{2} + x_{4}(\boldsymbol{\alpha}_{2}\boldsymbol{\beta}_{3}x_{3} + \boldsymbol{\alpha}_{3}\boldsymbol{\beta}_{2}x_{4}) + x_{2}(\boldsymbol{\alpha}_{4}\boldsymbol{\beta}_{3}x_{3} + \boldsymbol{\alpha}_{3}\boldsymbol{\beta}_{4}x_{4}) = 0, \quad (168)$$

$$x_{3} = \boldsymbol{\mu}x_{4}$$

angewiesen.

Diese besondere Lage hat auf die Gleichungen der Berührungsebenen in den Punkten X_4 und X_2 keinen Einfluss. Sie macht sich nur darin bemerklich, dass X_3X_4 jetzt eine n^2 -fache Gerade der Regelfläche ist.

Die in ω_{∞} liegende Kurve wird jetzt durch

bestimmt. Es hat diese Kurve in X_3 einen n^2 -fachen Punkt, dessen Tangenten durch

$$\gamma_1{}'x_1+\gamma_2{}'x_2=0$$
 ,

oder

$$(\mu \alpha_2 \beta_3 + \alpha_3 \beta_2) x_1 + (\mu \alpha_1 \beta_3 + \alpha_3 \beta_4) x_2 = 0 \quad . \quad (171a)$$

gegeben sind. Sämmtliche n^2 Tangenten sind also in der Gerade (171a) vereinigt, welche die Spur in ω_{∞} ist der Ebene, die $X_3 X_4$ verbindet mit der im Schnittpunkte X_{μ} von $X_3 X_4$ mit γ_{μ} an dieser gelegten Tangente.

Die in ω_0 liegende Kurve hat nun die Gleichung

Sie hat in X_4 einen mn-fachen Punkt, von dessen Tangenten je m vereinigt sind in einer der n Geraden

$$\gamma_1' x_1^{\frac{n}{m}} + \gamma_2' x_2^{\frac{n}{m}} = 0$$
,

d. h. in den Bildern der in X_3 an der Kurve in ω_{∞} gelegten Tangente.

Die Berührungsebenen der n^2 -fachen Gerade $X_3 X_4$ sind alle mit der durch $X_3 X_4$ und die Tangente in X_4 an γ_{μ} gelegten Ebene zusammengefallen. Nur in ω_0 bilden, den obigen Betrachtungen entsprechend, die Tangenten in X_4 eine Ausnahme.

 \S 18b. Die Regelfläche der Strahlen welche ruhen auf einem durch \mathbf{X}_1 und \mathbf{X}_2 gelegten Kegelschnitte, welcher \mathbf{X}_3 \mathbf{X}_4 schneidet, in der hyperbolischen Congruenz.

Auch hier gilt

$$\alpha_0 = 0$$
 , $\beta_0 = 0$,

also

$$\gamma_3 = 0$$
 ,

wonach der Kegelschnitt durch die Gleichungen (168) und (169) vertreten wird.

Wie bei der parabolischen Congruenz, hat diese besondere Lage keinen Einfluss auf die Berührungsebenen in den Punkten X_4 und X_2 . Sogar die Gerade X_3X_4 giebt in ihrem Verhalten zu keinen Singularitäten Veranlassung.

Die in ω_{∞} liegende Kurve, welche jetzt durch

$$\gamma_{0}'' x_{1}^{\frac{m+n}{n}} x_{2}^{\frac{m+n}{n}} + \gamma_{1}' x_{1}^{\frac{m+n}{n}} x_{2}^{\frac{m}{n}} x_{3}^{\frac{m}{n}} + \gamma_{2}' x_{1}^{\frac{m}{n}} x_{2}^{\frac{m+n}{n}} x_{3}^{\frac{m+n}{n}} + \gamma_{1}^{\frac{m+n}{n}} x_{3}^{\frac{m+n}{n}} + \gamma_{1}^{\frac{m+n}{n}$$

dargestellt wird, unterscheidet sich auch nicht wesentlich von derjenigen im allgemeinen Falle.

§ 19a. Die Regelfläche der Strahlen, welche auf einem durch \mathbf{X}_1 und \mathbf{X}_2 gelegten, in ω_{∞} befindlichen Kegelschnitte ruhen, in der parabolischen Congruenz.

Wir dürfen die obigen Bezeichnungen benutzen, wenn nur

$$\mu = \infty$$

gesetz wird.

Der Kegelschnitt, welcher mit γ_{∞} angedeutet werden soll, hat die Gleichungen

$$\alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 + \alpha_0 x_3^2 = 0$$
, . (173)
 $x_4 = 0$. . . (174)

Zuerst bemerken wir, dass die Fläche dieses Kegelschnittes noch weiter ausgeartet ist.

Da jede in ω_{∞} durch X_1 oder X_2 verlaufende Gerade jetzt γ_{∞}

zum zweiten Male schneidet, und als ein n(m-n)-facher Strahl zubetrachten ist, so wird die Ebene ω_{∞} aufs Neue 2n(m-n) mal abgesondert. Ausserdem schneidet jede (m-n)-fache durch einen der m-n Punkte $E_{\tau_{m-n}}$ gehende Gerade den Kegelschnitt zweimal, wonach aus diesem Grunde die Ebene wiederum $2(m-n)^2$ mal der Fläche entzogen wird. Im ganzen wird die Ebene ω_{∞} also $2n(m-n)+2(m-n)^2=2m(m-n)$ mal von der Fläche abgetrennt.

Die Restfläche ist somit vom Grade $2m^2 - 2m(m-n) = 2mn$. Es ist auf dieser Fläche γ_{∞} eine n^2 -fache Kurve.

Die Schnittkurve in ω_{∞} wird zu einer Figur vom Grade 2mn durch ein Ausartungsgebilde vom Grade 2n(m-n) ergänzt. Es besteht dieses aus n(m-n) durch X_1 und n(m-n) durch X_2 gehenden Geraden. Die n(m-n) durch X_4 (bez. X_2) gehenden Geraden sind alle in die in X_4 (bez. X_2) an γ_{∞} gelegte Tangente zusammengefallen.

Die in ω_0 liegende Kurve ist die Bildkurve des Kegelschnittes γ_{∞} . Ihre in den Coordinaten p_1' und p_2' geschriebene Gleichung lautet:

$$a_{3}p_{4}^{\frac{n}{m}}p_{2}^{\frac{n}{m}}+a_{2}p_{4}^{\frac{n}{m}}+a_{4}p_{2}^{\frac{n}{m}}+a_{0}=0$$
 ,

also in den Coordinaten x_1 , x_2 und x_4 ausgedrückt:

$$\mathbf{a}_{3}x_{1}^{\frac{n}{m}}x_{2}^{\frac{n}{m}}+\mathbf{a}_{2}x_{1}^{\frac{n}{m}}x_{4}^{\frac{n}{m}}+\mathbf{a}_{4}x_{2}^{\frac{n}{m}}x_{4}^{\frac{n}{m}}+\mathbf{a}_{0}x_{4}^{\frac{2n}{m}}+\mathbf{a}_{0}x_{4}^{\frac{2n}{m}}=0...(175a)$$

Es hat diese Kurve in X_4 einen mn-fachen Punkt, dessen Tangenten durch

$$\alpha_3 x_2^{\frac{n}{\widetilde{m}}} + \alpha_2 x_4^{\frac{n}{m}} = 0 \dots (176a)$$

bestimmt und demnach zu je m mit einem der n Bilder der in X_1 an γ_{∞} gelegten Tangente identisch sind.

Analoges gilt von den Tangenten in X_2 .

Die Schnittpunkte mit X_2X_4 werden durch die Gleichung

$$(\mathbf{a}_{\scriptscriptstyle 1} x_{\scriptscriptstyle 2}^{\frac{n}{m}} + \mathbf{a}_{\scriptscriptstyle 0} x_{\scriptscriptstyle 4}^{\frac{n}{m}}) x_{\scriptscriptstyle 4}^{\frac{n}{m}} = 0$$

geliefert. Die Gerade X_2X_4 schneidet also die Kurve mn mal im mn-fachen Punkte X_2 und noch m mal in jedem der n Bilder M_1 ' des Schnittpunktes M_1 von γ_{∞} mit X_2X_3 .

Diese n Punkte M_1' sind n-fache Punkte, deren sämmtliche Tangenten mit X_2X_4 zusammengefallen sind. Der Punkt M_1 trägt ja n^2 Strahlen, welche zu je n die Ebene ω_0 in den n Bildern M_1'

treffen. In der Nähe der Punkte M_1' befinden sich also n Punkte der Kurve; m. a. W. diese Punkte sind n-fache.

Es sind auf der Fläche X_1 und X_2 mn-fache Punkte. Von den Berührungsebenen im X_4 (bez. X_2) sind je m vereinigt in einer der n Ebenen, welche die in X_4 (bez. X_2) an γ_{∞} gelegte Tangente mit ihren n Bildern in ω_0 verbinden.

Die n Geraden, welche den Punkt M_4 (bez. M_2) mit seinen n verschiedenen Bildern M_4' (bez. M_2') verbinden, sind n-fache Geraden der Fläche, deren Berührungsebenen alle in der Ebene $X_2X_3X_4$ (bez. $X_4X_3X_4$) vereinigt sind.

Der Schnitt der Regelfläche mit einer durch $X_4 X_2$ gelegten Ebene ω_{μ} ist eine Kurve vom Grade 2mn, welche in X_1 und X_2 mn-fache Punkte hat, deren Tangenten die Spuren in ω_{∞} der Berührungsebenen in X_1 und X_2 sind.

Die Punkte, wo die Ebene ω_{μ} die Geraden $M_1 M_1'$ (bez. $M_2 M_2'$) schneidet, sind *n*-fache Punkte, deren Tangenten in der Gerade $X_2 X_{\mu}$ (bez. $X_4 X_{\mu}$) vereinigt sind.

Auch hier wollen wir die Untersuchung der Doppelkurve unterlassen.

§ 19b. Die Regelfläche der Strahlen, welche auf einem durch \mathbf{X}_1 und \mathbf{X}_2 gelegten, in ω_{∞} befindlichen Kegelschnitte ruhen, in der hyperbolischen Congruenz.

Auch hier ist einzusetzen

$$\mu = \infty$$
,

wonach der Kegelschnitt γ_{∞} durch die Gleichungen (173) und (174) vertreten wird.

Die Fläche ist auch hier weiter ausgeartet.

Jede in ω_{∞} durch X_1 gehende Gerade schneidet ja γ_{∞} zum zweiten Male und zwar als ein mn-facher Strahl. Ebenso ist jede in ω_{∞} durch X_1 gehende Gerade nochmals als mn-facher Strahl zu rechnen.

Ausserdem ist jede durch X_3 in ω_{∞} gehende Gerade ein m^2 -facher Strahl; sie schneidet γ_{∞} zweimal. Die Ebene ω_{∞} ist also im Ganzen abermals $2mn + 2m^2 = 2m(m+n)$ mal abzusondern; die Restfläche ist somit vom Grade $2(m+n)^2 - 2m(m+n) = 2n(m+n)$.

Es ist auf dieser Fläche γ_{∞} eine n^2 -fache Kurve.

Es möge γ_{∞} die Gerade X_2X_3 in M_4 und die Gerade X_4X_3 in M_2 schneiden.

Die Geraden M_1X_1 und M_2X_2 sind Erzeugende der Regelfläche, weil sie Punkte von γ_{∞} mit ihren Bildern verbinden. Da M_1X_1

und M_2X_2 als Geraden durch X_1 und X_2 in ω_{∞} mn-fache Strahlen sind, so wird der n^2 -fache Kegelschnitt γ_{∞} zum vollständigen Schnitte vom Grade 2n(m+n) durch die mn-fachen Geraden X_1M_1 und X_2M_2 ergänzt.

Der Schnitt in ω_0 besteht aus der Bildkurve vom Grade 2mn von γ_{∞} und aus n n-fachen, durch jeden der Punkte X_1 und X_2 gelegten Geraden, welche nachher bestimmt werden sollen.

Die in ω_0 liegende Bildkurve hat in p_1 und p_2 die Gleichung

$$\alpha_3 p_1'^{-\frac{n}{m}} p_2'^{-\frac{n}{m}} + \alpha_2 p_1'^{-\frac{n}{m}} + \alpha_1 p_2'^{-\frac{n}{m}} + \alpha_0 = 0,$$

oder

$$a_0 p_1^{n \choose m} p_2^{n \choose m} + a_4 p_1^{n \choose m} + a_2 p_2^{n \choose m} + a_3 = 0$$
,

also in den Coordinaten x_1 , x_2 und x_4 :

$$\alpha_0 x_1^{\frac{n}{m}} x_2^{\frac{n}{m}} + \alpha_1 x_1^{\frac{n}{m}} x_4^{\frac{n}{m}} + \alpha_2 x_2^{\frac{n}{m}} x_4^{\frac{n}{m}} + \alpha_3 x_4^{\frac{2n}{m}} = 0. . (175b)$$

Die Tangenten im mn-fachen Punkte X_1 sind durch

$$\alpha_0 x_2^{\frac{n}{m}} + \alpha_1 x_4^{\frac{n}{m}} = 0$$

angewiesen; von ihnen sind offenbar je m in einem der n Bilder der Gerade $X_1 M_1$ (siehe oben) vereinigt.

Ebenso sind von den Tangenten in X_2 je m in ein der n Bilder von $X_2 M_2$ zusammengefallen.

Die in ω_0 liegende Kurve schneidet X_2X_4 , ausser mn mal in X_2 , m mal in jedem der n Punkte

$$\alpha_2 x_2^m + \alpha_3 x_4^m = 0.$$
 . . . (176b)

Die n Geraden, welche diese Punkte mit X_1 verbinden, sind Congruenzstrahlen und befinden sich auf der Fläche. Sie sind die n-fachen Geraden, welche dem Gesammtschnitte in ω_0 angehören. Ausserdem sind sie als die n Bilder der in X_1 an γ_{∞} gelegten Tangente zu betrachten.

Ebenso sind die n Geraden, welche X_2 verbinden mit den n m-fachen Schnittpunkten von $X_1 X_4$ mit der Kurve in ω_0 , n-fache Geraden der Fläche; sie sind auch die n Bilder der in X_2 an γ_{∞} gelegten Tangente.

Der Gesammtschnitt in ω_0 besteht deshalb aus der Kurve vom

Grade 2mn, den n n-fachen Geraden (176b) durch X_1 und den n entsprechenden n-fachen Geraden durch X_2 .

Die Schnittpunkte der in ω_0 liegenden Kurve mit X_2X_4 und X_1X_4 sind n-fache Punkte, deren Tangenten bez. mit X_2X_4 und X_1X_4 zusammenfallen. Es hat jede dieser Geraden in einem Berührungspunkte m Punkte mit der Kurve gemein.

Auf der Fläche sind X_1 und X_2 n(m+n)-fache Punkte. Ihre Berührungsebenen sind in zwei Gruppen verteilt; die erste Gruppe enthält mn Ebenen, deren je m vereinigt sind in einer der n Ebenen, welche die Gerade X_1 M_1 (bez. X_2 M_2) mit ihren n Bildern verbinden; die zweite Gruppe enthält n^2 Ebenen, deren je n zusammenfallen mit einer der n Ebenen, welche die an γ_{∞} in γ_{∞} in γ_{∞} in γ_{∞} gelegte Tangente mit ihren γ_{∞} Bildern in γ_{∞} verbinden.

Der Schnitt der Regelfläche mit einer durch X_1X_2 gelegten Ebene ist eine Kurve vom Grade 2n(m+n), welche in X_1 und X_2 n(m+n)-fache Punkte hat. Die Tangenten in diesen Punkten sind die Schnittlinien von ω_{μ} mit den Berührungsebenen von X_1 (bez. X_2).

Auch hier möge die Doppelkurve ausser Betracht bleiben.

§ 20a. Die Regelfläche der Strahlen, welche ruhen auf einem durch X_1 und X_2 gelegten, in ω_{∞} befindlichen Kegelschnitte, in Bezug auf welchen X_3 der Pol von X_1 X_2 ist, in der parabolischen Congruenz. Es gilt hier

$$\alpha_1 = 0$$
, $\alpha_2 = 0$.

Die Gleichungen von Y∞ sind

$$\alpha_3 x_1 x_2 + \alpha_0 x_3^2 = 0, \dots$$
 (177)
 $x_4 = 0. \dots$ (178)

Die Regelfläche ist wiederum vom Grade 2mn und trägt γ_{∞} als eine n^2 -fache Kurve.

Die in ω_0 liegende Kurve wird durch

$$\mathbf{a}_{3}x_{1}^{\frac{n}{m}}x_{2}^{\frac{n}{m}}+\mathbf{a}_{0}x_{4}^{\frac{2n}{m}}=0$$
,

oder

$$\alpha_3^{\frac{m}{n}} x_1 x_2 - (-1)^{\frac{m}{n}} \alpha_0^{\frac{m}{n}} x_4^2 = 0$$
 . . (179a)

dargestellt, und besteht demnach aus n m-fachen durch X_1 und X_2 gelegten Kegelschnitten, in Bezug auf welche X_4 der Pol von X_1 X_2 ist.

Die Punkte M_1 und M_2 sind jetzt bez. in X_1 und X_2 gelangt; so auch die Bildpunkte M_1' und M_2' . Die Verbindungslinien $M_1 M_1'$ und $M_2 M_2'$ sind also mit den Geraden $X_2 X_3$ und $X_4 X_3$ identisch geworden. Diese Geraden ergänzen, als n(m-n)-fache Strahlen, den n^2 -fachen Kegelschnitt γ_{∞} zu einem Gebilde vom Grade 2mn.

Die Fläche hat in X_1 und X_2 mn-fache Punkte, deren Berührungsebenen alle in $X_1 X_3 X_4$ (bez. $X_2 X_3 X_4$) gefallen sind.

Der Schnitt der Fläche mit einer durch X₄ X₂ gelegten Ebene ω_{μ} ist eine Kurve vom Grade 2mn, welche in X_1 und X_2 mn-fache Punkte hat; ihre Tangenten sind in $X_1 X_3 X_4$ (bez. $X_2 X_3 X_4$) zusammengefallen.

§ 20b. Die Regelfläche der Strahlen, welche ruhen auf einem durch X_1 und X_2 gelegten, in ω_{∞} befindlichen Kegelschnitte. in Bezug auf welchen X3 der Pol von X1 X2 ist, in der hyperbolischen Congruenz.

Wiederum hat man

$$\mathbf{z}_1 = 0, \mathbf{z}_2 = 0,$$

und für γ_{∞} die Gleichungen (177) und (178).

Die Regelfläche ist vom Grade 2n(m+m) und enthält γ_{∞} als eine n^2 -fache Kurve.

Die in ω_0 befindliche Kurve wird durch

$$\alpha_0 x_1^{\frac{n}{m}} x_2^{\frac{n}{m}} + \alpha_3 x_4^{\frac{2n}{m}} = 0$$
,

oder

$$a_0^{\frac{m}{n}} x_1 x_2 - (-1)^{\frac{m}{n}} a_3^{\frac{m}{n}} x_4^2 = 0$$
 . . (179b)

dargestellt. Auch hier ist diese Kurve in n m-fache durch X_1 und X_2 gelegte Kegelschnitte zerfallen, in Bezug auf welche X_4 der Pol von $X_1 X_2$ ist.

Diese Kurve wird durch die $2n^2$ -fache Gerade X_1X_2 zu einem Gebilde vom Grade 2n(m+n) ergänzt.

Die Gerade $X_1 X_2$ ergänzt, 2mn-fach gezählt, den n^2 -fachen Kegelschnitt γ_{∞} zum vollständigen Schnitte in ω_{∞} .

Die Gerade $X_1 X_2$ ist auf der Fläche eine $2n^2$ -fache Gerade mit ω_{∞} als Berührungsebene.

Die Fläche hat in X_1 und X_2 n(m+n)-fache Punkte, von deren Berührungsebenen mn mit ω_0 und n^2 mit ω_∞ zusammengefallen sind.

Die Regelfläche der Strahlen, welche auf einem durch X1, X₂ und X₃ gelegten Kegelschnitte ruhen, in der parabolischen Congruenz. In diesem Falle gilt

$$\alpha_0 = 0$$
,

wonach $\gamma_∞$ durch

$$\alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 = 0$$
, . . . (180)
 $x_4 = 0$. . . (181)

$$x_{i} = 0$$
 . . (181)

angewiesen ist.

Die Regelfläche ist vom Grade 2mn und trägt γ_{∞} als eine n^2 -fache Kurve.

Der in ω_{∞} liegende Schnitt ist, ausser dem n^2 -fachen Kegelschnitte γ_{∞} , aus den n(m-n)-fachen in X_1 und X_2 an γ_{∞} gelegten Tangenten zusammengesetzt.

Die in ω_0 liegende Bildkurve hat nun die Gleichung

$$\alpha_3 x_1^{\frac{n}{m}} x_2^{\frac{n}{m}} + \alpha_2 x_1^{\frac{n}{m}} x_4^{\frac{n}{m}} + \alpha_1 x_2^{\frac{n}{m}} x_4^{\frac{n}{m}} = 0.$$
 (182a)

Sie hat ausserdem in X_4 einen mn-fachen Punkt, von dessen Tangenten je m in ein der n Bilder der in X_3 an γ_{∞} gelegten Tangente zusammengefallen sind.

Die *n* Punkte M_1' und die *n* Punkte M_2' sind jetzt alle in X_4 gefallen, weil die beiden Punkte M_1 und M_2 in X_3 gelangt sind.

Es ist $X_3 X_4$ jetzt eine n^2 -fache Gerade auf der Fläche. Alle Berührungsebenen sind in der durch X_3X_4 und die in X_3 an γ_{∞} gelegte Tangente bestimmten Ebene vereinigt.

Der Schnitt der Regelfläche mit einer durch X_1 X_2 gelegten Ebene ω_{μ} ist jetzt eine Kurve vom Grade 2mn, welche, ausser den oben erwähnten mn-fachen Punkten in X_1 und X_2 , in X_{μ} einen n^2 -fachen Punkt hat, dessen sämmtliche Tangenten vereinigt sind in der Schnittlinie von ω_{μ} mit der Ebene, welche X_3X_4 und die in X_3 an γ_{∞} gelegte Tangente enthält.

§ 21b. Die Regelfläche der Strahlen welche auf einem durch X, ${f X}_2$ und ${f X}_3$ gelegten Kegelschnitte ruhen, in der hyperbolischen Congruenz. Wie in § 21a, hat man auch hier

$$\alpha_0 = 0$$
.

Da der Kegelschnitt γ_{∞} jetzt den Punkt X_3 enthält, so ist jede durch X_i in ω_{∞} verlaufende Gerade nochmals ein mn-facher Strahl (siehe S. 254) welcher den Kegelschnitt schneidet. Die Ebene ω_{∞} wird somit mn mal abgesondert, wonach man eine Fläche vom Grade 2n(m+n)-mn = n(m+2n) erübrigt. Daher verschwinden die mn-fachen Geraden $X_1 X_3$ und $X_2 X_3$ im vollständigen Schnitte

von ω_{∞} . An deren Stelle tritt die Gerade, welche den X_3 auf γ_{∞} vorangehenden Punkt mit seinem Bilde vereinigt, *mn*-fach gezählt, weil jeder Strahl durch X_3 in ω_{∞} *mn*-fach zu rechnen ist.

Der Schnitt in ω_{∞} enthält somit den n^2 -fachen Kegelschnitt γ_{∞} und die mn-fache Gerade, welche X_3 verbindet mit dem Bilde des X_3 auf γ_{∞} vorangehenden Punktes.

Die Bildkurve in ω_0 wird ermittelt, indem man in (175*b*) $\omega_0 = 0$ einsetzt und nachher durch $x_4^{\frac{n}{m}}$ teilt. Man findet alsdann

$$\alpha_1 x_1^{\frac{n}{m}} + \alpha_2 x_2^{\frac{n}{m}} + \alpha_3 x_4^{\frac{n}{m}} = 0$$
. (182b)

Diese Kurve vom Grade mn geht weder durch X_4 , noch durch X_2 , noch durch X_4 . Sie berührt X_2X_4 (bez. X_4X_4) in den n n-fachen Punkte, deren Verbindungslinien mit X_4 (bez. X_2) die Bilder der in X_4 (bez. X_2) an γ_{∞} gelegten Tangente sind. Diese Verbindungslinien, jede n-fach gerechnet, gehören auch dem Gesammtschnitte in ω_0 an.

Es sind auf der Fläche X_4 und X_2 nun n^2 -fache Punkte. Die Berührungsebenen bilden jetzt nur die zweite Gruppe des allgemeinen Falles (siehe S. 326).

Der Schnitt der Regelfläche mit einer durch X_1X_2 gelegten Ebene ω_{μ} ist jetzt eine Kurve vom Grade n(m+2n), welche sowohl in X_1 wie in X_2 einen n^2 -fachen Punkt hat. Die Tangenten in diesen Punkten sind die Spuren in ω_{μ} der Berührungsebenen.

- § 22. In Bezug auf die Regelfläche der Strahlen, welche einen durch X_1 und X_2 gelegten, in ω_0 befindlichen Kegelschnitt schneiden, dürfen wir, für die parabolische Congruenz, auf den allgemeinen Fall hinweisen, während in der hyperbolischen Congruenz die Ergebnisse von §§ 19b, 20b und 21b nur durch Vertauschung von m mit n und der Indices 3 und 4 abzuändern sind.
- § 23. Wir wollen nunmehr eine kurze Übersicht über die in diesem Abschnitte erhaltenen Resultate geben, und zwar so, dass die Bedeutung der Punkte X_1 und X_2 als Kreispunkte dabei hervortritt.

Zuerst möge aber betont werden, dass von den m^2 Strahlen, welche in der parabolischen Congruenz nach einem reellen Punkte zielen, nur m reell sind, während von den $(m+n)^2$ Strahlen, welche sich in der hyperbolischen Congruenz in einem reellen Punkte treffen, deren m+n reell sind.

Ein Strahl, welcher einem reellen Punkte entstammt, ist selber reell, wenn er die Ebene ω_{∞} ebenfalls in einem reellen Punkte trifft.

Soll ein Punkt (x, y) in der Ebene ω_{∞} oder [w] reell sein, so müssen die Coordinaten $p_1 = (x + iy) : c$ und $p_2 = (x - iy) : c$ conjugirt complex sein.

Die Strahlen, welche nach einem reellen Punkte (x_1, x_2, x_3, x_4) zielen, werden durch ihre Spuren in ω_{∞} bestimmt, deren Coordinaten p_1 und p_2 in der parabolischen Congruenz den Beziehungen

$$x_4^n p_1^m - (x_1 - x_3 p_1)^n = 0, \dots (183a)$$

$$x_4^n p_2^m - (x_2 - x_3 p_2)^n = 0, \dots (184a)$$

und in der hyperbolischen Congruenz den Bedingungen

$$p_1^{m} (x_1 - x_3 p_1)^n - x_4^n = 0, . . (183b)$$

$$p_2^{m} (x_2 - x_3 p_2)^n - x_4^n = 0 . . . (184b)$$

$$p_2^m (x_2 - x_3 p_2)^n - x_4^n = 0$$
 . . (184b)

genügen. In diesen beiden Fällen sind x_1 und x_2 , weil der Sammelpunkt reell ist, conjugirt complex; die Coefficienten der Gleichung (184a) (bez. (184b)) sind also conjugirt complex in Bezug auf die entsprechenden Coefficienten der Gleichung (183 α) (bez. (183b)).

Wir wollen die Gleichungen (183a) und (183b) in der Form

$$f_1(p_1^N) = 0, \dots (185)$$

und die Gleichungen (184a) und (184b) in der Form

$$f_2(p_2) = 0, \dots (186)$$

zusammenfassen.

Wir ersehen daher in den Gleichungen (185) und (186) zwei Gleichungen vom Grade N, während die Coefficienten von (186) den entsprechenden Coefficienten von (185) conjugirt sind.

Aus Letzterem geht hervor, dass auch die Wurzeln von (186) den Wurzeln von (185) conjugirt sind.

Indem wir nun die Wurzeln von (185) durch

$$\gamma_1 = \alpha_1 + i\beta_1, \ \gamma_2 = \alpha_2 + i\beta_2, \dots \ \gamma_N = \alpha_N + i\beta_N$$

darstellen, müssen wir diejenigen von (186) mit

$$\delta_1 = \alpha_1 - i\beta_1, \ \delta_2 = \alpha_2 - i\beta_2, \dots \ \delta_N = \alpha_N - i\beta_N$$

bezeichnen; in diesen Ausdrücken sind die Grössen $\pmb{\alpha}_k$ und $\pmb{\beta}_k$ offenbar reell.

Es giebt nur N reelle Combinationen (γ_k, ∂_l) oder (p_1, p_2) , n.l. diejenigen, für welche l = k. Die N Wurzelpaaren (p_1, p_2) , welche in ω_{∞} reelle Punkte anweisen, sind demnach

$$(\gamma_1, \delta_1), (\gamma_2, \delta_2), (\gamma_3, \delta_3), \ldots (\gamma_N, \delta_N).$$

Wenn es noch eine solche Combination, z. B. (γ_k, δ_l) gäbe, so würde man haben

$$\alpha_l - i \beta_l = \alpha_k - i \beta_k$$

wonach

$$\alpha_l = \alpha_k,
\beta_l = \beta_k,$$

also

$$\gamma_l = \gamma_k, \ \delta_l = \delta_k;$$

jede der Gleichungen (185) und (186) würde alsdann zwei gleiche Wurzeln haben. In Folge dessen würde aber die Anzahl der verschiedenen Combinationen nicht vergrössert werden. Denn hat $f_1(\stackrel{N}{p_1}) = 0$, also auch $f_2(\stackrel{N}{p_2}) = 0$, k gleiche Wurzeln, so giebt es ausserdem noch N-k andere Wurzelpaare, welche einen reellen Punkt anweisen. Die k gleichen Wurzeln bestimmen alsdann nur einen einzigen reellen Punkt.

Wir können somit Folgendes behaupten:

Von den N^2 Strahlen, welche durch die Gleichungen (185) und (186) angewiesen werden, sind, falls der Sammelpunkt reell ist, nur N reell.

Wir haben also nur N = m bei der parabolischen und N = m + n bei der hyperbolischen Congruenz zu setzen, um den vorliegenden Satz zu beweisen.

Dieses Resultat entspricht der Tatsache, dass die Beziehung

$$w'^n == c^{n-m} w^m$$

einem Punkte w'=u'+iv' in [w'] m Punkte w=u+iv in [w] zuordnet, während mit einem Punkte w=u+iv in [w] deshalb nur n Punkte w'=u'+iv' in [w'] übereinstimmen, weil von den m reellen durch den Punkt w gehenden Strahlen m-n in der Ebene [w] liegen.

Ebenso liegen bei der hyperbolischen Congruenz, welche der Beziehung

$$w'^n w^m = c^{m+n}$$

angehört, von den m+n einem reellen Punkte w von [w] entstammenden reellen Strahlen m in [w], wonach der Punkt w nur mit m reellen Punkten der Ebene [w'] verbunden wird; diese Beziehung ordnet ja einem Werte von w n Werte von w' zu. Von den m+n reellen Strahlen, welche nach einem reellen Punkte w' von [w'] zielen, befinden sich n in [w']; der Punkt w' wird also nur mit m reellen Punkten der Ebene [w] vereinigt; auch dieses Ergebniss entspricht der gegebenen algebraischen Gleichung.

Die Sammelpunkte, welche sowohl zu gleichen Wurzeln von $f_1(p_1) = 0$ wie zu gleichen Wurzeln von $f_2(p_2) = 0$ Veranlassung geben, tragen zwei zusammenfallende Berührungsebenen an dem Fokalkegel F_1 und ebenfalls zwei zusammenfallende Berührungsebenen an dem Fokalkegel F_2 , sodass sie sich auf der Schnittkurve dieser Fokalkegel befinden müssen. Die auf der Schnittkurve der Fokalkegel liegenden Punkte sind also als Verzweigungspunkte zu betrachten. In einem solchen Punkte werden eine gewisse Anzahl von reellen Strahlen sich durch stetigen Übergang nach ihrer Coincidenz in eine gleiche Anzahl imaginärer Strahlen verwandeln, und umgekehrt.

Der Axengrad der parabolischen und hyperbolischen Congruenzen ist die Anzahl der Schnittpunkte einer willkürlichen Gerade mit der auf der axialen Regelfläche dieser Gerade liegenden Doppelkurve.

Es sei μ der Bündelgrad, ν der Feldgrad der zu betrachtenden Congruenz.

In einer durch l gelegten Ebene V liegen ν Strahlen, welche l in ν Punkten P schneiden. Durch jeden Punkt P gehen noch $(\mu-1)$ andere Strahlen, welche mit l $(\mu-1)$ Ebenen W bestimmen. Der Ebene V werden also $\nu(\mu-1)$ Ebenen W zugeordnet. Es liegen in einer durch l gelegten Ebene V zwei Strahlen die sich auf l schneiden, wenn eine Ebene W mit einer entsprechenden Ebene V zusammenfällt. Da die Verwandtschaft $(\nu(\mu-1), \nu(\mu-1))$ der Ebenen V, W $2\nu(\mu-1)$ Coincidenzen aufweist, so geschieht es $2\nu(\mu-1)$ mal, dass eine Gerade l mit zwei Strahlen zu einem Strahlenbüschel gehört.

Unter diesen $2\nu(\mu-1)$ Fällen giebt es aber noch, welche für unseren Zweck keine Bedeutung haben.

In den beiden Arten von Congruenzen ist der Bündelgrad das Quadrat der Zahl M, welche sowohl den Grad wie die Klasse eines Fokalkegels anweist.

Die beiden Fokalkegel werden durch l in 2M Punkten R geschnitten. In einem solchen Punkte R sind 2M Strahlen $s_1 cdots s_{2M}$ paarweise zusammengefallen.

Die Ebene V welche l mit s_1 verbindet, bestimmt eine Ebene W welche auch s_1 liefert, also eine Coincidenz der Verwandtschaft der Ebenen V, W. Diese Coincidenz ist aber für uns von keiner Bedeutung, da die Verbindungsebene der beiden zusammenfallenden Strahlen s_1 , d. h. die Berührungsebene an dem Fokalkegel, die Gerade l nicht enthält.

In jedem Punkte R müssen also M Coincidenzen, und daher im Ganzen $2M^2 = 2\mu$ Coincidenzen gestrichen werden.

Wir erübrigen also $2\nu(\mu-1)-2\mu=2(\mu\nu-\mu-\nu)$ Coincidenzen. Da von diesen jede doppelt in Betracht kommt, so geschieht es in der Tat nur $(\mu\nu-\mu-\nu)$ mal, dass l mit zwei Strahlen einem Strahlenbüschel angehört, m. a. W.: der Axengrad der Congruenz ist

$$N = \mu \nu - \mu - \nu$$
.

Bei der parabolischen Congruenz hat man also

$$N = m^2 \cdot mn - m^2 - mn$$

bei der hyperbolischen Congruenz aber

$$N = (m + n)^2 \cdot 2mn - (m + n)^2 - 2mn$$
.

DIE PARABOLISCHE CONGRUENZ

 $w'^n = c^{n-m} w^m$

Der Bündelgrad ist m^2 .

Von den m^2 nach einem reellen Punkte zielenden Strahlen sind nur m reell.

Der Feldgrad ist mn.

Der Axengrad ist $N = mn. m^2 - mn - m^2$.

Die Fokalfläche besteht aus zwei Cylindern F_1 und F_2 , deren Spitzen in den Kreispunkten der Abbildungsebenen [w] und [w'] liegen.

Von diesen Cylindern ist sowohl der Grad wie die Klasse m. Die Congruenzstrahlen sind die gemeinschaftlichen Tangenten der beiden Fokalcylinder F_1 und F_2 .

Die Fokalcylinder haben mit der Ebene [w] m mal die unendlich ferne Gerade gemein. Es ist diese unendlich ferne Gerade eine n-fache Kante der beiden Cylinder, die also mn mal die unendlich ferne Gerade gemein haben.

Von den isotropen Geraden durch den Nullpunkt O' von [w'] ist jede eine (m-n)-fache Kante auf einem der beiden Cylinder. Die Fokalcylinder haben in O' m Punkte mit der Gerade OO' gemein.

Die Fokalcylinder durchbohren sich noch in m-n Plankurven vom Grade m und von der Klasse m, welche in den m-n Ebenen $\varepsilon_{\tau_{m-n}}$ liegen; zu diesen Ebenen gehört immer die Ebene der reellen Axen.

Singuläre Ebenen sind:

- 1° jede Ebene, welche einen Congruenzstrahl mit einem der Kreispunkte verbindet; sie enthält ein Strahlengebilde von der Klasse m;
- 2° jede der Ebenen $\varepsilon_{\tau_{m-n}}$ mit einem Strahlengebilde von der Klasse m ;

DIE HYPERBOLISCHE CONGRUENZ

 $w^{\prime n}w^m = c^{m+n}.$

Der Bündelgrad ist $(m + n)^2$.

Von den $(m+n)^2$ sich in einem *reellen* Punkte treffenden Strahlen sind nur m+n reell.

Der Feldgrad ist 2mn.

Der Axengrad ist $N = 2mn \cdot (m + n)^2 - 2mn - (m + n)^2$.

Die Fokalfläche ist aus zwei Cylindern F_1 und F_2 zusammengesetzt, deren Spitzen sich in den Kreispunkten der Ebenen [w] und [w'] befinden.

Von diesen Cylindern ist sowohl der Grad wie die Klasse m + n. Die Congruenzstrahlen sind die gemeinschaftlichen Tangenten der beiden Fokalcylinder F_1 und F_2 .

Von den durch den Nullpunkt O' von [w'] gehenden isotropen Geraden ist jede eine m-fache Kante auf einem der beiden Cylinder. Von den durch den Nullpunkt O von [w] verlaufenden isotropen Geraden ist jede eine n-fache Kante auf einem der beiden Cylinder.

Die durch die Gerade OO' gelegten isotropen Ebenen haben mit den Fokalcylindern bez. (m+n) mal die isotropen Geraden durch O und (m+n) mal die isotropen Geraden durch O' gemein.

Die Fokalcylinder schneiden sich in m+n Plankurven, deren *Grad* und *Klasse* m+n ist, und welche sich in den m+n Ebenen $\varepsilon_{\tau_{m+n}}$ befinden; zu diesen Ebenen gehört stets die Ebene der reellen Axen.

Singuläre Ebenen sind:

- 1° jede Ebene, welche einen Congruenzstrahl mit einem der Kreispunkte verbindet; sie enthält ein Strahlengebilde von der Klasse m + n;
- 2° jede der Ebenen $\varepsilon_{\tau_{m+n}}$ mit einem Strahlengebilde von der Klasse m+n;

 3° die Abbildungsebene [w] mit n(m-n)-fachen Strahlenbüscheln in den beiden Kreispunkten und (m-n)-fachen Strahlenbüscheln in jedem der m-n Punkte $E_{\tau_{m-n}}$, wo die Ebenen $\varepsilon_{\tau_{m-n}}$ die unendlich ferne Gerade treffen.

Singuläre Punkte sind:

1° die Kreispunkte in den Abbildungsebenen mit n(m-n)-fachen Strahlenbüscheln in der Ebene $\lceil w \rceil$;

2° die m-n unendlich fernen Punkte $E_{\tau_{m-n}}$ mit (m-n)-fachen Strahlenbüscheln in der Ebene $\lceil w \rceil$.

Die axiale Regelfläche einer durchaus willkürlichen Gerade i.

Der *Grad* ist m(m+n).

Die Gerade l ist eine m^2 -fache Gerade.

Die Kreispunkte in [w] und [w'] sind mn-fache Punkte; ihre Tangentenkegel sind völlig in Ebenen zerfallen. In jedem der Kreispunkte sind von den mn Berührungsebenen je m in einer der Ebenen (45a), bez. (46a) (siehe S. 211) vereinigt.

Die m-n Punkte $E_{\tau_{m-n}}$ sind alle n-fache Punkte; die Tangenten befinden sich in n Ebenen, welche alle in die Ebene [w] zusammengefallen sind.

Für die in $E_{\tau_{m-n}}$ an der in [w] befindlichen Schnittkurve gelegten Tangenten verweisen wir auf diese Kurve.

- 3° die Abbildungsebene [w] mit mn-fachen Strahlenbüscheln in den beiden Kreispunkten und einem m^2 -fachen Strahlenbüschel in dem Nullpunkte O;
- 4° die Abbildungsebene [w] mit mn-fachen Strahlenbüscheln in den Kreispunkten und einem n^2 -fachen Strahlenbüschel in dem Nullpunkte O'.

Singuläre Punkte sind:

- 1° die Kreispunkte der Abbildungsebenen mit mn-fachen Strahlenbüscheln in $\lceil w \rceil$ und mn-fachen Strahlenbüscheln in $\lceil w' \rceil$;
- 2° der Nullpunkt O von [w] mit einem m^2 -fachen Strahlenbüschel in [w];
- 3° der Nullpumkt O' von [w'] mit einem n^2 -fachen Strahlenbüschel in [w'].

Die axiale Regelfläche einer durchaus willkürlichen Gerade 1.

Der Grad ist $(m+n)^2 + 2mn$.

Es ist l eine $(m+n)^2$ -fache Gerade.

Die Kreispunkte in [w] und [w'] sind 2mn-fache Punkte; die Tangenten jedes dieser Punkte sind über 2mn Ebenen verteilt, von denen mn zu je m in einer der n Ebenen (45b), bez. (46b) (siehe S. 232), und mn zu je n in einer der m Ebenen (45'b), bez. (46'b) vereinigt sind.

Der Nullpunkt O von [w] ist ein mn-facher Punkt, dessen sämmtliche Tangenten sich in der Ebene [w] befinden.

Für die in O an die in $\lfloor w \rfloor$ liegende Schnittkurve gelegten Tangenten verweisen wir auf die für diese Kurve erhaltenen Resultaten.

Der Nullpunkt O' von [w'] ist ebenfalls ein mn-facher Punkt; alle Tangenten befinden sich in der Ebene [w'].

Für die in O' an die in $\lfloor w' \rfloor$ selbst liegende Kurve gelegten Tangenten verweisen wir auf hierunten.

Der unendlich ferne Punkt A_3 , wo die durch O und l gelegte Ebene die unendlich ferne Gerade von [w] schneidet, ist, unter der Voraussetzung m > n, ein mn-facher Punkt, dessen Tangenten alle in [w] liegen, während der Schnitt in [w] selbst die Gerade OA_3 enthält.

Der unendlich ferne Punkt B_4 , wo die durch O' und l gelegte Ebene die unendlich ferne Gerade von [w] trifft, ist, falls m > n, ein n^2 -facher Punkt, dessen sämmtliche Tangenten sich in der durch O' und l gelegten Ebene befinden.

Die Doppelkurve ist vom Grade $N + \frac{mn(mn-1)}{2}$, wenn N die

Anzahl der Schnittpunkte mit I, also den Axengrad andeutet.

Der Schnitt der Regelfläche mit der Ebene [w] besteht aus einer Kurve vom Grade n(m+n), aus den durch die Spur A von l in [w] gehenden isotropen Geraden, jede n(m-n)-fach gezählt, und schliesslich aus den m-n Geraden, welche A mit den Punkten $E_{\tau_{m-n}}$ verbinden, jede (m-n)-fach gerechnet.

Die in $\lceil w \rceil$ liegende Kurve hat

 1° in den Kreispunkten n^2 -fache Punkte, deren Tangenten alle nach A convergiren;

 2° im Punkte A einen n^2 -fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf $\lceil w \rceil$ der n^2 Bilder von A sind;

 3° in den m-n Punkten $E_{\tau_{m-n}}$ n-fache Punkte, deren sämmtliche Tangenten vereinigt sind in den m-n Geraden, welche diese Punkte mit dem auf OA liegenden Punkte T (32a) (S. 205) verbinden.

Der Schnitt der Regelfläche mit der Ebene [w'] ist eine Kurve vom Grade m(m+n).

Diese Kurve hat

1° in den Kreispunkten mn-fache Punkte, von deren Tangenten je m zusammengefallen sind in eine der n Geraden, welche diese Kreispunkte bez. mit den n^2 Bildern von \mathcal{A} verbinden;

 2° im Schnittpunkte B' von l mit [w'] einen m^2 -fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf [w'] der m^2

in $\lceil w \rceil$ liegenden Bilder von B' sind;

3° in den m-n Punkten $E_{\tau_{m-n}}$ n-fache Punkte, deren sämmtliche Tangenten mit der unendlich fernen Gerade vereinigt sind; es hat diese Gerade in jedem Punkte $E_{\tau_{m-n}}$ m Punkte mit der Kurve gemein.

Es liegen auf der Gerade OO' noch m+n durch (60b) (S. 236) bestimmte (m+n)-fache Punkte.

Die Doppelkurve ist vom Grade $N + \frac{2mn(2mn-1)}{2}$, wenn N die

Anzahl der Schnittpunkte mit I, also den Axengrad anweist.

Der Schnitt der Regelfläche mit der Ebene [w] besteht aus einer Kurve vom Grade n(2m+n), aus den durch die Spur A von l in [w] verlaufenden isotropen Geraden, jede mn-fach gezählt, und endlich aus der Gerade OA (= OA_3), m^2 -fach gerechnet.

Die in $\lceil w \rceil$ liegende Kurve hat

1° in den Kreispunkten mn-fache Punkte, von deren Tangenten je n in einer der m Geraden vereinigt sind, welche die Kreispunkte bez. mit den m^2 Bildern B der Spur B' von l in $\lfloor w' \rfloor$ verbinden;

2° im Punkte A einen n^2 -fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf $\lceil w \rceil$ der n^2 Bilder von A sind;

 3° im Punkte O einen mn-fachen Punkt, von dessen Tangenten je n vereinigt sind in einem der m Bilder der Gerade, welche O' mit dem unendlich fernen Punkte A_3 verbindet;

 4° im unendlich fernen Punkte B_4 einen n^2 -fachen Punkt, dessen sämmtliche Tangenten in A convergiren; die Gerade AB_4 hat in B_4 mn Punkte mit der Kurve gemein (vorausgesetzt: m > n).

Der Schnitt der Regelfläche mit der Ebene [w'] besteht aus einer Kurve vom Grade m(m+2n), aus den durch die Spur B' von l in [w'] gehenden isotropen Geraden, jede mn-fach gezählt und schliesslich aus der Gerade $O'B' (\equiv O'B_4')$, n^2 -fach gerechnet.

Die in $\lceil w' \rceil$ befindliche Kurve hat

1° in den Kreispunkten mn-fache Punkte, von deren Tangenten je m vereinigt sind in einer der n Geraden, welche die Kreispunkte bez. mit den n^2 Bildern A' der Spur A von l in $\lceil w \rceil$ verbinden;

2° im Punkte B' einen m^2 -fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf $\lfloor w' \rfloor$ der m^2 in $\lfloor w \rfloor$ liegenden Bilder von B' sind;

3° im Punkte O' einen mn-fachen Punkt, von dessen Tangenten je m zusammengefallen sind in ein der n Bilder der Gerade, welche O' mit dem unendlich fernen Punkte B_4' verbindet;

 4° im Punkte A_3 einen mn-fachen Punkt, dessen sämmtliche Tangenten in der unendlich fernen Gerade vereinigt sind; es hat diese Gerade in A_3 m^2 Punkte mit der Kurve gemein (vorausgesetzt ist m > n).

Der Schnitt der Regelfläche mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist vom Grade m(m+n) und hat

1° in den Kreispunkten mn-fache Punkte, deren Tangenten die Spuren in ω_{μ} der Berührungsebenen der Kreispunkte sind;

 2° im Schnittpunkte C_{μ} von ω_{μ} mit l einen m^2 -fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf ω_{μ} der m^2 nach C_{μ} zielenden Congruenzstrahlen sind;

3° in den m-n Punkten $E_{\tau_{m-n}}$ n-fache Punkte, deren Tangenten alle in der unendlich fernen Gerade vereinigt sind (Ausnahme in $\lceil w \rceil$);

 4° Doppelpunkte in den Schnittpunkten von ω_{μ} mit der Doppelkurve.

Die axiale Regelfläche einer Gerade 1, welche OO' schneidet.

Ausser den Eigenschaften, welche die Regelfläche der willkürlichen Gerade ℓ aufzuweisen hat, können wir noch Folgendes erwähnen:

Die Gerade OO' ist auf der Regelfläche eine n^2 -fache Gerade, deren sämmtliche Berührungsebenen vereinigt sind in der Ebene, welche OO' mit ℓ verbindet.

Für die in O' an die in [w'] liegende Kurve gelegten Tangente verweisen wir auf hierunten.

Die in [w] befindliche Kurve hat ausserdem

in O einen n^2 -fachen Punkt, dessen Tangenten alle in OA vereinigt sind; diese Gerade hat in O mn Punkte mit der Kurve gemein.

Die in $\lceil w' \rceil$ liegende Kurve hat noch

in O' einen mn-fachen Punkt, von dessen Tangenten je m vereinigt sind in einem der n Bilder von OA. Jede dieser Tangenten hat in O' m^2 Punkte mit der Kurve gemein.

Der Schnitt in einer zu den Abbildungsebenen parallelen Ebene ω_{μ} hat im Schnittpunkte X_{μ} von ω_{μ} mit OO' einen n^2 -fachen Punkt, dessen Tangenten alle in $X_{\mu} C_{\mu}$ vereinigt sind (Ausnahme in $\lceil w' \rceil$).

Der Schnitt der Regelfläche mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist vom Grade $(m+n)^2+2mn$ und hat

1° in den Kreispunkten 2mn-fache Punkte, deren Tangenten die Schnittlinien von ω_{μ} mit den Berührungsebenen der Kreispunkte sind;

2° im Schnittpunkte C_{μ} von ω_{μ} mit l einen $(m+n)^2$ -fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf ω_{μ} der $(m+n)^2$ sich in C_{μ} treffenden Congruenzstrahlen sind;

3° im Punkte A_3 einen mn-fachen Punkt, dessen sämmtliche Tangenten in der unendlich fernen Gerade vereinigt sind (vorausgesetzt ist m > n; Ausnahme in $\lceil w \rceil$);

 4° im Punkte B_4' einen n^2 -fachen Punkt, dessen Tangenten alle zusammengefallen sind in die Schnittlinie von ω_{μ} mit der durch O' und l gelegten Ebene (vorausgesetzt ist m > n);

 5° Doppelpunkte in den Schnittpunkten von ω_{μ} mit der Doppelkurve.

Wenn ω_{μ} mit einer der m + n durch (60b) (S 236) bestimmten Ebenen zusammenfällt, so hat die Schnittkurve noch einen (m + n)-fachen Punkt in der Spur X_{μ} von OO' in ω_{μ} .

Die axiale Regelfläche einer Gerade 1, welche OO' schneidet.

Neben den Eigenschaften der Regelfläche der willkürlichen Gerade lässt sich noch Folgendes bemerken:

Der Punkt $A_3 \equiv B_4$ ist ein n(m+n)-facher Punkt. Von den $mn+n^2$ Berührungsebenen, in welche der Tangentenkegel ausgeartet ist, fallen mn mit der Ebene [w] und n^2 mit der durch OO' und I gelegten Ebene zusammen.

Die unendlich ferne Gerade hat in $A_3 \equiv B_4$ mit der Fläche $m^2 + n^2$ Punkte gemein.

Die m+n (m+n)-fachen Punkte auf OO' sind jetzt in dem $(m+n)^2$ -fachen Schnittpunkte S von l mit OO' vereinigt.

Die in [w] liegende Kurve hat jetzt

in $A_3 \equiv B_4$ einen n^2 -fachen Punkt, dessen sämmtliche Tangenten in $AA_3 \equiv AB_4$ zusammengefallen sind; diese Gerade hat in $A_3 \equiv B_4$ mit der Kurve mn Punkte gemein.

Die in [w'] befindliche Kurve hat nun

in $A_3 \equiv B_4$ einen *mn*-fachen Punkt, dessen Tangenten alle in der unendlich fernen Gerade vereinigt sind; diese Gerade hat in $A_3 \equiv B_4$ mn Punkte mit der Kurve gemein.

Der Schnitt in einer zu den Abbildungsebenen parallelen Ebene ω_{μ} hat in $A_3 \equiv B_4$ einen n(m+n)-fachen Punkt, von dessen Tangenten mn in der unendlich fernen Gerade vereinigt sind und n^2

Die axiale Regelfläche einer durch O gehenden Gerade 1.

Wir haben hier die folgenden Eigentümlichkeiten zu erwähnen:

Die Punkte $E_{\tau_{m-n}}$ sind jetzt *n*-fache Punkte auf der Fläche.

Die Tangenten befinden sich alle in den Ebenen, welche die Punkte $E_{\tau_{m-n}}$ mit der Gerade t (95a) (S. 251) verbinden.

Die in $\lceil w \rceil$ liegende Kurve hat nun

in O einen n^2 -fachen Punkt, dessen sämmtliche Tangenten mit der Spur der durch l und OO' gelegten Ebene in [w] zusammengefallen sind.

Die in [w'] befindliche Kurve ist in eine m-fache Kurve vom Grade m+n ausgeartet. Diese hat

1° in den Kreispunkten *n*-fache Punkte, deren Tangenten alle in den durch O' gehenden isotropen Geraden vereinigt sind;

 2° im Punkte B' einen m-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf [w'] der m Geraden OB sind, welche O mit den in [w] liegenden Bildern von B' verbinden;

3° in den Punkten $E_{\tau_{m-n}}$ gewöhnliche Punkte, deren Tangenten convergiren in den Punkt T_0 (95a) (S. 251);

 4° im Punkte O' einen n-fachen Punkt, dessen Tangenten die Bilder der Gerade OB_4' sind.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} hat in den Punkten $E_{\tau_{m-n}}$ n-fache Punkte, deren sämmtliche Tangenten mit den Spuren der Ebenen $(E_{\tau_{m-n}},\ t)$ in ω_{μ} zusammengefallen sind.

Übrigens sind keine Abweichungen vom vorhergehenden Falle zu erwähnen.

Die axiale Regelfläche einer durch O' gehenden Gerade 1.

Der einzige Unterschied mit der Regelfläche einer willkürlichen, OO' schneidenden Gerade ist, dass die in [w] liegende Schnittkurve jetzt in eine n-fache Kurve vom Grade m+n zerfallen ist.

mit der Gerade, welche $A_3 \equiv B_4$ mit dem Schnittpunkte C_{μ} von ω_{μ} mit l verbindet (Ausnahme in $\lceil w \rceil$).

Die axiale Regelfläche einer durch O gehenden Gerade 1.

Von der allgemeinen Regelfläche wird jetzt die Abbildungsebene [w] mn mal abgetrennt. Es erübrigt eine Fläche vom Grade $(m+n)^2+mn$.

Die Gerade OO' schneidet nun die Fläche $(m+n)^2$ mal in O und mn mal in O'.

Die Kreispunkte sind jetzt *mn*-fache Punkte; ihre Berührungsebenen sind zu je *n* zusammengefallen.

Die in $\lceil w \rceil$ liegende Kurve hat nun

in O einen n(m+n)-fachen Punkt, von dessen Tangenten je n vereinigt sind in einer der m+n Geraden welche O mit den m+n Punkten $E_{\tau_{m+n}}$ verbinden.

Die in [w'] befindliche Kurve ist in eine m-fache Kurve vom Grade m+n zerfallen.

Diese Kurve enthält jetzt *nicht* die Kreispunkte, wohl aber die m+n Punkte $E_{\tau_{m+n}}$; die Tangenten dieser Punkte convergiren alle nach dem Punkte T_0' (95b) (S. 255).

Die Kurve hat ferner

1° in B' einen m-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf [w'] sind der m^2 (zu je m mit O geradlinig liegenden) in [w] befindlichen Bilder von B';

 2° in O' einen n-fachen Punkt, dessen Tangenten die n Bilder der Gerade OB_4' sind.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade $(m+n)^2+mn$ und hat in den Kreispunkten mn-fache Punkte, deren Tangenten zu je n zusammengefallen sind.

Im Übrigen haben wir, im Vergleich mit dem vorhergehenden Falle, in Bezug auf die Singularitäten keine Abweichungen zu constatiren.

Die axiale Regelfläche einer durch O' gehenden Gerade 1.

Die Ebene [w'] wird jetzt mn mal abgesondert. Es erübrigt somit eine Fläche vom Grade $(m+n)^2 + mn$.

Die Gerade OO' schneidet die Fläche $(m+n)^2$ mal in O' und mn mal in O.

Die Kreispunkte sind nun mn-fache Punkte; die mn Berührungsebenen sind zu je m in n Ebenen zusammengefallen. Diese Kurve hat

 1° in den Kreispunkten *n*-fache Punkte, deren Tangenten alle durch A hindurchgehen;

 2° im Punkte A einen n-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf $\lceil w \rceil$ der n Geraden O'A' sind;

3° in den m-n Punkten $E_{\tau_{m-n}}$ gewöhnliche Punkte, deren Tangenten alle in T (32a) (S. 205) convergiren;

 4° im Punkte O einen m-fachen Punkt, dessen Tangenten die m Bilder von $O'A_3$ sind.

Die in $\lceil w' \rceil$ liegende Kurve hat

in O' einen m^2 -fachen Punkt, dessen sämmtliche Tangenten in $O'A_3$ vereinigt sind.

Die axiale Regelfläche einer zu den Abbildungsebenen parallelen Gerade l_{μ} .

Diese Regelfläche enthält die unendlich ferne Gerade der Abbildungsebenen als eine mn-fache Gerade, deren Berührungsebenen alle in $\lceil w \rceil$ vereinigt sind.

Der Schnitt in [w] besteht aus der m^2 -fachen unendlich fernen Gerade und aus einer Kurve vom Grade mn.

Diese Kurve schneidet die unendlich ferne Gerade n mal in jedem der m Bilder des unendlich fernen Punktes L_{μ} auf l_{μ} , als ein Punkt von $\lceil w' \rceil$ betrachtet.

Die in [w'] befindliche Kurve ist aus mn mal der unendlich fernen Gerade und aus einer Kurve vom Grade m^2 zusammengesetzt.

Diese Kurve hat mit der unendlich fernen Gerade nur den Punkt L_{μ} gemein. Dieser Punkt L_{μ} ist ein m(m-n)-facher; sämmt-

Die in $\lfloor w \rfloor$ befindliche Kurve ist in eine *n*-fache Kurve vom Grade m+n ausgeartet. Die Eigenschaften dieser Kurve entsprechen völlig denjenigen der *m*-fachen in $\lfloor w' \rfloor$ liegenden Kurve vom vorigen Falle.

Die in [w'] liegende Kurve hat nun in O' einen m(m+n)-fachen Punkt.

Sie entspricht übrigens der in [w] befindlichen Kurve des vorigen Falles.

Die axiale Regelfläche einer zu den Abbildungsebenen parallelen Gerade l_{μ} .

Diese Regelfläche hat in den Kreispunkten 2mn-fache Punkte, von denen mn Berührungsebenen mit $\lfloor w \rfloor$ und die mn übrigen mit $\lfloor w' \rfloor$ zusammengefallen sind.

Der unendlich ferne Punkt L_{μ} auf l_{μ} ist ein $(m+n)^2$ -facher Punkt, von dem m^2 Berührungsebenen in der Ebene (O, l_{μ}) , n^2 in der Ebene (O', l_{μ}) und 2mn in der zu den Abbildungsebenen parallelen, die Gerade l_{μ} enthaltenden Ebene ω_{μ} vereinigt sind.

Übrigens hat man keinen Unterschied mit dem allgemeinen Falle aufzuweisen.

Die in [w] liegende Kurve hat

1° in den Kreispunkten mn-fache Punkte, deren Tangenten alle in die durch O gehenden isotropen Geraden zusammengefallen sind; diese isotropen Asymptoten haben in den Kreispunkten n(m+n) Punkte mit der Kurve gemein;

2° im Punkte L_{μ} einen n^2 -fachen Punkt, dessen Tangenten alle in der Projektion von l_{μ} aus O' auf [w] vereinigt sind; diese Tangente hat in L_{μ} n(m+n) Punkte mit der Kurve gemein;

3° im Punkte O einen mn-fachen Punkt, von dessen Tangenten je n in ein der m Bilder von $O'L_{\mu}$ zusammengefallen sind.

Die Kurve wird zum vollständigen Schnitte ergänzt durch 2mn mal die unendlich ferne Gerade und m^2 mal die Gerade OL_{μ} .

Die in [w'] befindliche Kurve hat

1° in den Kreispunkten mn-fache Punkte, deren Tangenten alle in die durch O' verlaufenden isotropen Geraden zusammengefallen sind; diese isotropen Asymptoten haben in den Kreispunkten m(m+n) Punkte mit der Kurve gemein;

liche Tangenten sind mit der unendlich fernen Gerade zusammengefallen, welche in L_{μ} mit der Kurve m^2 Punkte gemein hat.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{ν} besteht aus der unendlich fernen Gerade und aus einer Kurve vom Grade m^2 , welche in L_{μ} einen m(m-n)-fachen Punkt hat; sämmtliche Tangenten von L_{μ} sind in der unendlich fernen Gerade vereinigt, welche in L_{μ} m^2 Punkte mit der Kurve gemein hat (Ausnahme in $\lceil w \rceil$).

Die axiale Regelftäche einer durch einen der Kreispunkte gehenden Gerade.

Diese Regelfläche ist ausgeartet in mn mal die Abbildungsebene [w] und m mal die m Berührungsebenen, welche durch die gegebene Gerade an den zu ihr parallelen Fokalcylinder gelegt werden können (siehe (103a), S. 262).

Die axiale Regelfläche einer in der Abbildungsebene [w'] liegenden Gerade.

Es ist diese Gerade ein besonderer Fall von l_{μ} , nl l_0 .

Die Kurve in [w] ist jetzt die *Bildkurve* der in [w'] gegebenen Gerade.

Die in $\lfloor w' \rfloor$ liegende Kurve ist in die m^2 -fache gegebene Gerade ausgeartet.

Die axiale Regelfläche einer zu den Abbildungsebenen parallelen Gerade l_{μ} , welche die Gerade OO' schneidet.

Ausser den Eigenschaften der allgemeinen Regelfläche, lässt sich Folgendes erwähnen:

Die Gerade OO' ist auf der Fläche eine n^2 -fache, deren sämmtliche Berührungsebenen in der durch OO' und l_{μ} gelegten Ebene vereinigt sind (Ausnahme in $\lceil w \rceil$).

Die Regelfläche enthält noch die unendlich ferne Gerade der Abbildungsebenen als eine mn-fache Gerade, deren Berührungsebenen alle in $\lceil w \rceil$ zusammengefallen sind.

Der Schnitt in $\lceil w \rceil$ besteht aus 2mn mal der unendlich fernen

2° im Punkte L_{μ} einen m^2 -fachen Punkt, dessen Tangenten alle in der Projektion von l_{μ} aus O auf [w'] vereinigt sind; diese Tangente hat in L_{μ} m(m+n) Punkte mit der Kurve gemein;

 3° im Punkte O' einen mn-fachen Punkt, von dessen Tangenten je m in ein der n Bilder von OL_{μ} zusammengefallen sind.

Die Kurve wird zum Gesammtschnitte ergänzt durch 2mn mal die unendlich ferne Gerade und n^2 mal die Gerade $O'L_{\mu}$.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{ν} hat in L_{μ} einen $(m+n)^2$ -fachen Punkt; von den $m^2+2mn+n^2$ Tangenten in L_{μ} fallen m^2 mit der Spur der Ebene (O, l_{μ}) in ω_{ν} , n^2 mit der Spur der Ebene (O', l_{μ}) in ω_{ν} und 2mn mit der unendlich fernen Gerade zusammen.

Die axiale Regelfläche einer durch einen der Kreispunkte gehenden Gerade.

Diese Regelfläche ist zusammengesetzt aus mn mal der Ebene [w], mn mal der Ebene [w'] und (m+n)-mal den m+n Berührungsebenen, welche durch die gegebene Gerade an dem zu ihr parallelen Fokalcylinder zu legen sind (siehe (103b), S. 267).

Die axiale Regelfläche einer in der Abbildungsebene [w'] liegenden Gerade.

Weil die Abbildungsebene [w'] in dieser Congruenz singulär ist, so wird die axiale Regelfläche zerfallen. Wir wollen daher die Untersuchung verschieben.

Die axiale Regelfläche einer zu den Abbildungsebenen parallelen Gerade l_{μ} , welche die Gerade OO' schneidet.

Die Regelfläche hat, ausser den allgemeinen Eigenschaften, noch diese, dass von den 2mn Berührungsebenen der Kreispunkte mn in $\lceil w \rceil$ und mn in $\lceil w' \rceil$ fallen.

Es ist L_{μ} ein $(m+n)^2$ -facher Punkt; m^2+n^2 Berührungsebenen sind in der durch l_{μ} und OO' gelegten Ebene vereinigt, 2mn in der zu den Abbildungsebenen parallelen Ebene ω_{μ} , welche die Gerade l_{μ} enthält.

Die m+n (m+n)-fachen Punkte auf OO' sind wiederum im $(m+n)^2$ -fachen Schnittpunkte S von l_μ mit OO' vereinigt.

Der Schnitt in [w] besteht aus der m^2 -fachen unendlich fernen

Gerade und aus einer Kurve vom Grade mn, welche die unendlich ferne Gerade n mal in jedem der m Bilder von L_{μ} (als Punkt von $\lceil w' \rceil$ betrachtet) schneidet.

Die Kurve hat weiter in O einen n^2 -fachen Punkt, dessen Tangenten alle in OL_{μ} vereinigt sind; diese Gerade hat in O mn Punkte mit der Kurve gemein.

Der Schnitt in [w'] ist aus der mn-fachen unendlich fernen Gerade und aus einer Kurve vom Grade m^2 zusammengesetzt. Letztere hat

in L_{μ} einen m(m-n)-fachen Punkt, dessen Tangenten alle in der unendlich fernen Gerade vereinigt sind; diese hat in $L_{\mu} m^2$ Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{ν} besteht aus der mn-fachen unendlich fernen Gerade und aus einer Kurve vom Grade m^2 , die in L_{μ} einen m(m-n)-fachen Punkt hat; sämmtliche Tangenten von L_{μ} sind in der unendlich fernen Gerade vereinigt, welche in L_{μ} m² Punkte mit der Kurve gemein hat (Ausnahme in [w]).

Der Schnittpunkt X_{ν} der Ebene ω_{ν} mit OO' ist ein n^2 -facher Punkt, dessen sämmtliche Tangenten mit der Gerade $X_{\nu} L_{\mu}$ zusammengefallen sind (Ausnahme in [w']).

Die axiale Regelfläche einer in der Ebene ε der reellen Axen liegenden Gerade l.

Die allgemeine Regelfläche ist zerfallen in die m-fache Ebene ε und eine Restfläche vom Grade m(m+n-1).

Es ist l auf der Restfläche eine m(m-1)-fache Gerade.

Die Kreispunkte sind mn-fache Punkte; von ihren mn Berührungsebenen sind je m in n Ebenen ((113a), bez. (114a), S. 271, 272) vereinigt.

Gerade, aus m^2 mal der Gerade OL_{μ} und aus einer Kurve vom Grade n(2m+n). Diese hat

1° in den Kreispunkten mn-fache Punkte, deren Tangenten alle in den durch O gehenden isotropen Geraden vereinigt sind; diese isotropen Asymptoten haben in den Kreispunkten n(m+n) Punkte mit der Kurve gemein;

 2° im Punkte L_{μ} einen n^2 -fachen Punkt, dessen sämmtliche Tangenten in OL_{μ} zusammengefallen sind; diese Tangente hat in L_{μ} n(m+n) Punkte mit der Kurve gemein;

 3° im Punkte O einen mn-fachen Punkt, von dessen Tangenten je n in einem der m Bilder von $O'L_{\mu}$ vereinigt sind.

Der Schnitt in [w'] besteht aus 2mn mal der unendlich fernen Gerade, aus n^2 mal der Gerade $O'L_{\mu}$ und aus einer Kurve vom Grade m(m+2n). Letztere hat

1° in den Kreispunkten mn-fache Punkte, deren Tangenten alle in den durch O' gelegten isotropen Geraden vereinigt sind; diese isotropen Asymptoten haben in den Kreispunkten n(m+n) Punkte mit der Kurve gemein;

 2° im Punkte L_{μ} einen m^2 -fachen Punkt, deren Tangenten alle in $O'L_{\mu}$ zusammengefallen sind; diese Gerade hat in L_{μ} m(m+n) Punkte mit der Kurve gemein;

 3° in O' einen mn-fachen Punkt, von dessen Tangenten je m in einem der n Bilder von OL_{μ} vereinigt sind.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{ν} hat in L_{μ} einen $(m+n)^2$ -fachen Punkt. Von den $m^2+2mn+n^2$ Tangenten in L_{μ} fallen m^2+n^2 mit $X_{\nu}L_{\mu}$ und 2mn mit der unendlich fernen Gerade zusammen.

Die axiale Regelfläche einer in der Ebene \varepsilon der reellen Axen liegenden Gerade 1.

Die allgemeine Regelfläche ist in die (m+n)-fache Ebene ε und eine Restfläche vom Grade (m+n)(m+n-1)+2mn ausgeartet.

Es ist l auf der Restfläche eine (m+n)(m+n-1)-fache Gerade.

Die Kreispunkte sind 2mn-fache Punkte. Von den 2mn Berührungsebenen sind mn zu je m in n Ebenen ((113b), bez. (114b), S. 284) und mn zu je n in m Ebenen ((113'b), bez. (114'b), S. 284) vereinigt.

Die m-n-1 Punkte $E_{\tau_{m-n}}$ $(\tau_{m-n}\neq 1)$ sind n-fache, deren Berührungsebenen mit [w] zusammengefallen sind.

Die Gerade OO' ist eine n(n-1)-fache, deren sämmtliche Berührungsebenen in ε vereinigt sind (Ausnahme in $\lceil w' \rceil$).

Der Schnittpunkt S von l mit OO' ist ein m(m-1)-facher Punkt.

Der Schnitt in [w] besteht aus den zwei n(m-n)-fachen durch die Spur A von l in [w] gelegten isotropen Geraden, aus den m-n-1 (m-n)-fachen Geraden $AE_{\tau_{m-n}}(\tau_{m-n}\neq 1)$ und aus einer Kurve vom Grade n(m+n-1). Diese hat

- 1° in den Kreispunkten n^2 -fache Punkte, deren Tangenten alle nach A convergiren;
- 2° in A einen n(n-1)-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf $\lfloor w \rfloor$ der n(n-1) ausserhalb ε liegenden Bilder A' von A sind;
- 3° in den m-n-1 Punkten $E_{\tau_{m-n}}(\tau_{m-n}\neq 1)$ n-fache Punkte, deren Tangenten zusammenfallen mit den m-n-1 Geraden, welche diese Punkte mit dem auf A liegenden Punkte T ((32a), S. 205) verbinden;

der Punkt E gehört jetzt der Kurve nicht an;

 4° im Punkte O einen n(n-1)-fachen Punkt, dessen Tangenten alle in der reellen Axe vereinigt sind.

Der Schnitt in [w'] ist eine Kurve vom Grade m(m+n-1). Sie hat

- 1° in den Kreispunkten mn-fache Punkte, von deren Tangenten je m vereinigt sind in den n Geraden, welche die Kreispunkte bez. mit den n^2 Bildern von \mathcal{A} verbinden;
- 2° im Schnittpunkte B' von $\lceil w' \rceil$ mit l einen m(m-1)-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf $\lceil w' \rceil$ der m(m-1) ausserhalb ε liegenden Bilder B von B' sind;
- 3° im Punkte O' einen m(n-1)-fachen Punkt, von dessen Tangenten je m mit einem der n-1 ausserhalb ε liegenden Bilder der zu [w] gehörenden reellen Axe vereinigt sind:
 - 4° in den Punkten $E_{ au_{m-n}}$ $(au_{m-n}
 eq 1)$ n-fache Punkte, deren

Der Punkt O ist ein n(m-1)-facher, dessen Berührungsebenen alle in $\lceil w \rceil$ vereinigt sind.

Es ist O' ein m(n-1)-facher Punkt, dessen Tangenten sich alle in $\lfloor w' \rfloor$ befinden.

Der Punkt E ist ein (m+n)(n-1)-facher; von seinen Berührungsebenen liegen m(n-1) in $\lceil w \rceil$ und n(n-1) in ε vereinigt.

Der Schnittpunkt S von l mit OO' ist ein (m+n)(m+n-1)-facher Punkt.

Der Schnitt in [w] besteht aus den zwei mn-fachen durch die Spur A von l in [w] gelegten isotropen Geraden, aus der m(m-1)-fachen reellen Axe und aus einer Kurve vom Grade n(2m+n-1). Diese hat

1° in den Kreispunkten mn-fache Punkte, von deren Tangenten je n vereinigt sind in einer der m Geraden, welche die Kreispunkte bez. mit den m^2 Bildern B der Spur B' von l in $\lfloor w \rfloor$ verbinden:

2° in A einen n(n-1)-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf [w] der n(n-1) ausserhalb ε liegenden Bilder A' von A sind;

3° in O einen n(m-1)-fachen Punkt, von dessen Tangenten je n in einem der m-1 ausserhalb ε liegenden Bilder der zu $\lfloor w' \rfloor$ gehörenden reellen Axe vereinigt sind;

4° in E einen n(n-1)-fachen Punkt, dessen sämmtliche Tangenten in der reellen Axe vereinigt sind; diese Gerade hat im unendlich fernen Punkte E m(n-1) Punkte mit der Kurve gemein.

Der Schnitt in [w'] besteht aus den zwei mn-fachen durch die Spur B' von l in [w'] verlaufenden isotropen Geraden, aus der n(n-1)-fachen reellen Axe und aus einer Kurve vom Grade m(m+2n-1). Letztere hat

 1° in den Kreispunkten mn-fache Punkte, von deren Tangenten je m in einer der n Geraden vereinigt sind, welche die Kreispunkte bez. mit den n^2 Bildern A' von A verbinden;

 2° in B' einen m(m-1)-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf $\lfloor w' \rfloor$ der m(m-1) ausserhalb ε liegenden Bilder B von B' sind;

 3° in O' einen m(n-1)-fachen Punkt, von dessen Tangenten je m in einem der n-1 ausserhalb ε liegenden Bilder der zu $\lceil w \rceil$ gehörenden reellen Axe vereinigt sind;

4° in E einen m(n-1)-fachen Punkt, dessen Tangenten alle

Tangenten mit der unendlich fernen Gerade zusammengefallen sind; diese Gerade hat in jedem Punkte $E_{\tau_{m-n}}$ m Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade m(m+n-1) und hat

 1° in den Kreispunkten mn-fache Punkte, dessen Tangenten die Schnittlinien von ω_{μ} mit den Berührungsebenen der Kreispunkte sind;

 \mathfrak{L}° im Schnittpunkte C_{μ} von ω_{μ} mit l einen m(m-1)-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf ω_{μ} der m(m-1) ausserhalb ε liegenden nach C_{μ} zielenden Congruenzstrahlen sind;

 3° in den m-n-1 Punkten $E_{\tau_{m-n}}$ $(\tau_{m-n}\neq 1)$ n-fache Punkte, deren sämmtliche Tangenten in die unendlich ferne Gerade zusammengefallen sind (Ausnahme in $\lceil w \rceil$);

4° im Schnittpunkte X_{μ} von ω_{μ} mit OO' einen n(n-1)-fachen Punkt, dessen Tangenten alle zu den reellen Axen parallel sind;

 5° Doppelpunkte in den Schnittpunkten von ω_{μ} mit der Doppelkurve, für deren Erörterung wir auf das in § 10a (S. 272 u. f.) Dargelegte verweisen.

Die axiale Regelfläche einer in der Ebene ε der reellen Axen liegenden, durch O gehenden Gerade l.

Der Unterschied mit der unmittelbar vorangehenden Regelfläche ist zunächst, dass alle Berührungsebenen der m-n-1 Punkte $E_{\tau_{m-n}}$ ($\tau_{m-n} \neq 1$) diese Punkte mit der Gerade OT_0 (siehe S. 251) verbinden.

Die in [w] liegende Kurve hat in O einen n(n-1)-fachen Punkt.

Die in [w'] befindliche Kurve ist in eine m-fache Kurve vom Grade m+n-1 ausgeartet. Diese hat

mit der unendlich fernen Gerade zusammengefallen sind; diese Gerade hat in E m(m-1) Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade (m+n)(m+n-1)+2mn und hat

 1° in den Kreispunkten 2mn-fache Punkte, deren Tangenten die Schnittlinien von ω_{μ} mit den Berührungsebenen der Kreispunkte sind;

2° im Schnittpunkte C_{μ} von l mit ω_{μ} einen (m+n)(m+n-1)fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf ω_{μ} der (m+n)(m+n-1) ausserhalb ε liegenden nach C_{μ} zielenden Congruenzstrahlen sind;

3° im Punkte E einen (m+n)(n-1)-fachen Punkt, von dem m(n-1) Tangenten in der unendlich fernen Gerade und n(n-1) in der Schnittlinie von ω_{μ} und ε vereinigt sind;

4° Doppelpunkte in den Schnittpunkten von $ω_μ$ mit der Doppelkurve, für welche wir auf § 10a (S. 272 u. f.) hinweisen.

Die axiale Regelfläche einer in der Ebene z der reellen Axen liegenden, durch O gehenden Gerade l.

Von der vorhergehenden Regelfläche wird jetzt mn mal die Ebene [w] abgesondert. Wir erübrigen alsdann eine Fläche vom Grade (m+n)(m+n-1)+mn. Auf dieser Fläche sind die Kreispunkte mn-fache.

Die Gerade OO' schneidet die Fläche m(n-1) mal in O', (m+n)(m+n-1) mal in O und einmal in den m Schnittpunkten X_e der Tangenten, welche man in den ausserhalb O liegenden Schnittpunkten von l mit der Fokalkurve e an letztere legen kann.

Die in [w] liegende Kurve hat in O einen n(m+n-1)-fachen Punkt; seine Tangenten verbinden O mit den m+n-1 Punkten $E_{\tau_{m+n}}$ ($\tau_{m+n} \neq 1$); diese Tangenten haben in O n(2m+n-1) Punkte mit der Kurve gemein.

Die in [w'] befindliche Kurve besteht aus einer m-fachen Kurve vom Grade m+n-1. Diese schneidet die unendlich ferne Gerade in den m+n-1 Punkten $E_{\tau_{m+n}}$ ($\tau_{m+n} \neq 1$); die Tangenten dieser Punkte convergiren alle nach dem Punkte T_0' ((95b), S. 255). Die Kurve hat noch

1° in den Kreispunkten *n*-fache Punkte, deren Tangenten in den durch O' gehenden isotropen Geraden vereinigt sind;

2° im Punkte B' einen (m-1)-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf $\lceil w' \rceil$ der m(m-1) ausserhalb ε liegenden Bilder von B' sind;

3° in O' einen (n-1)-fachen Punkt, dessen Tangenten die ausserhalb ε liegenden Bilder der zu [w] gehörenden reellen Axe sind.

Der Schnitt in einer zu den Abbildungsebenen parallelen Ebene ω_{μ} zeigt nur einen Unterschied in den Tangenten der m-n-1 Punkte $E_{\tau_{m-n}}$ $(\tau_{m-n} \neq 1)$, welche jetzt alle nach der Spur der Gerade OT_0 in ω_{μ} convergiren.

Die axiale Regelfläche einer in der Ebene ε der reellen Axen liegenden, durch O' gehenden Gerade l.

Diese Regelfläche weicht nur ab in dem Schnitte mit [w], welcher in eine n-fache Kurve vom Grade m+n-1 ausgeartet ist.

Diese in $\lceil w \rceil$ liegende Kurve hat

1° in den Kreispunkten *n*-fache Punkte, deren Tangenten in den durch O verlaufenden isotropen Geraden vereinigt sind;

2° in A einen (n-1)-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf [w] der n(n-1) ausserhalb ε liegenden Bilder von A sind;

3° in O einen (m-1)-fachen Punkt, dessen Tangenten die ausserhalb ε liegenden Bilder der zu [w'] gehörenden reellen Axe sind.

 4° in den Punkten $E_{\tau_{m-n}}$ $(\tau_{m-n} \neq 1)$ gewöhnliche Punkte, deren Tangenten sich alle in einem Punkte auf der reellen Axe treffen; der Punkt E gehört der Kurve nicht an.

Die in [w'] liegende Kurve hat einen m(m-1)-fachen Punkt in O', dessen Tangenten in der reellen Axe vereinigt sind.

1° in B' einen (m-1)-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf [w'] der m(m-1) ausserhalb ε liegenden Bilder von B' sind;

2° in O' einen (n-1)-fachen Punkt, dessen Tangenten die n-1 ausserhalb ε liegenden Bilder der zu $\lceil w \rceil$ gehörenden reellen Axe sind.

Der Schnitt in einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade (m+n)(m+n-1)+mn. Sie hat in den Kreispunkten mn-fache Punkte.

Die axiale Regelfläche einer in der Ebene ε der reellen Axen liegenden, durch O' gehenden Gerade l.

Von der allgemeinen Regelfläche wird nun mn mal die Ebene [w'] abgesondert. Es erübrigt eine Fläche vom Grade (m+n)(m+n-1)+mn.

Auf dieser sind die Kreispunkte mn-fache Punkte; ihre mn Berührungsebenen fallen zu je m zusammen.

Die Gerade OO' schneidet die Fläche n(m-1) mal in O, (m+n)(m+n-1) mal in O' und n mal in den n Schnittpunkten X_e der Tangenten, welche man in den n ausserhalb O' liegenden Schnittpunkten von l mit der Fokalkurve e an letztere legen kann.

Die in [w] liegende Kurve besteht aus einer n-fachen Kurve vom Grade m+n-1. Diese schneidet die unendlich ferne Gerade in den m+n-1 Punkten $E_{\tau_{m+n}}$ ($\tau_{m+n} \neq 1$); die Tangenten convergiren nach einem Punkte. Die Kurve hat noch

1° in A einen (n-1)-fachen Punkt, dessen Tangenten die axialen Projektionen aus l auf [w] der n(n-1) ausserhalb ε liegenden Bilder von A sind;

2° in O einen (m-1)-fachen Punkt, dessen Tangenten die m-1 ausserhalb ε liegenden Bilder der zu [w'] gehörenden reellen Axe sind.

Die in [w'] liegende Kurve hat in O' einen m(m+n-1)-fachen Punkt, dessen Tangenten O' mit den m+n-1 Punkten $E_{\tau_{m+n}}$

Der Schnitt in einer zu den Abbildungsebenen parallelen Ebene ω_{μ} zeigt keine Abweichungen.

Die axiale Regelfläche einer in der Ebene ε der reellen Axen liegenden und zu diesen parallen Gerade l_{μ} .

Von der allgemeinen Regelfläche von l in ε wird jetzt n mal die Ebene [w] abgetrennt, wonach eine Fläche vom Grade m(m+n-1)-n=(m+n)(m-1) erübrigt wird.

Die unendlich ferne Gerade der Abbildungsebenen ist jetzt eine n(m-1)-fache Gerade, deren sämmtliche Berührungsebenen in $\lfloor w \rfloor$ vereinigt sind.

Die in [w] befindliche Kurve besteht aus der n(m-1)-fachen unendlich fernen Gerade und aus einer Kurve vom Grade n(m-1). Diese hat in O einen n(n-1)-fachen Punkt, dessen sämmtliche Tangenten in der reellen Axe zusammengefallen sind; diese Gerade hat ausser O keinen Punkt mit der Kurve gemein. Der Punkt E gehört der Kurve nicht an.

Der Schnitt in [w'] ist aus der n(m-1)-fachen unendlich fernen Gerade und aus einer Kurve vom Grade m(m-1) zusammengesetzt. Diese hat in E einen (m-1)(m-n)-fachen Punkt, dessen Tangenten alle in der unendlich fernen Gerade vereinigt sind; diese Gerade hat in E m(m-1) Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω , besteht aus der n(m-1)-fachen unendlich fernen Gerade und aus einer Kurve vom Grade m(m-1), welche in E einen (m-n)(m-1)-fachen Punkt hat. Sämmtliche Tangenten von E sind mit der unendlich fernen Gerade zusammengefallen; letztere hat in E m(m-1) Punkte mit der Kurve gemein.

Die axiale Regelfläche eines Congruenzstrahles s.

Die allgemeine Regelfläche ist zerfallen in die zwei m-fachen Ebenen, welche s mit den Kreispunkten verbinden, und in eine Restfläche vom Grade m(m+n-2).

Es ist s auf der Restfläche eine $(m-1)^2$ -fache Gerade.

Die Kreispunkte sind jetzt m(n-1)-fache Punkte; von ihren Berührungsebenen sind je m mit einer der n-1 durch (133a), bez. (134a) (S. 290) bestimmten Ebenen vereinigt.

 $(\tau_{m+n} \neq 1)$ verbinden; diese Tangenten haben in O'm(m+2n-1) Punkte mit der Kurve gemein.

Der Schnitt in einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade (m+n)(m+n-1)+mn. Die Kreispunkte sind mn-fache Punkte.

Die axiale Regelfläche einer in der Ebene ε der reellen Axen liegenden und zu diesen parallelen Gerade l_{μ} .

Auf dieser Regelfläche ist E jetzt ein (m+n)(m+n-1)-facher Punkt, von dem m(m-1)+n(n-1) Berührungsebenen mit ε vereinigt sind und 2mn mit der Ebene ω_{μ} , welche l_{μ} enthält.

Von den 2mn Berührungsebenen in jedem der Kreispunkte sind mn in $\lceil w \rceil$ und mn in $\lceil w' \rceil$ vereinigt.

Die in [w] liegende Kurve hat in E einen n(n-1)-fachen Punkt, dessen sämmtliche Tangenten in der reellen Axe vereinigt sind.

Die in [w'] befindliche Kurve hat in E einen m(m-1)-fachen Punkt, dessen Tangenten alle in der reellen Axe vereinigt sind.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{ν} hat in E einen (m+n)(m+n-1)-fachen Punkt. Von diesem fallen m(m-1)+n(n-1) Tangenten mit X_{ν} E und 2mn mit der unendlich fernen Gerade zusammen.

Die axiale Regelfläche eines Congruenzstrahles s.

Die allgemeine Regelfläche ist ausgeartet in die zwei (m+n)fachen Ebenen, welche s mit den Kreispunkten verbinden, und in
eine Restfläche vom Grade (m+n)(m+n-2)+2mn.

Der Strahl s ist auf der Restfläche eine $(m + n - 1)^2$ -fache Gerade.

Die Kreispunkte sind hier [2mn-(m+n)]-fache Punkte; von ihren Berührungsebenen fallen m(n-1) zu je m in n-1 Ebenen ((133b), bez. (134b), S. 294) und n(m-1) zu je n im m-1 Ebenen ((133'b), bez. (134'b), S. 294) zusammen.

Übrigens weicht diese Regelfläche von der allgemeinen nicht ab. Nur die Doppelkurve ist von niedrigerem Grade (siehe S. 291).

Der Schnitt mit [w] ist ausgeartet in die (n-1)(m-n)-fachen durch die Spur S von s in [w] gehenden isotropen Geraden, in die m-n (m-n)-fachen Geraden S $E_{\tau_{m-n}}$ und in eine Kurve vom Grade n(m-n-2). Diese hat

1° in den Kreispunkten n(n-1)-fache Punkte, deren Tangenten mit den durch S gelegten isotropen Geraden identisch sind;

 2° im Punkte S einen $(n-1)^2$ -fachen Punkt, dessen Tangenten die axialen Projektionen aus s auf [w] der $(n-1)^2$ ausserhalb der durch S' in [w'] gehenden isotropen Geraden liegenden Bilder von S sind;

 3° in den m-n Punkten $E_{\tau_{m-n}}$ n-fache Punkte , deren Tangenten alle zusammengefallen sind in den m-n Geraden , welche diese Punkte mit dem auf OS befindlichen Punkte T ((32a), S. 205) verbinden.

Der Schnitt in [w'] ist eine Kurve vom Grade m(m+n-2). Sie hat

1° in den Kreispunkten m(n-1)-fache Punkte, von deren Tangenten je m die Kreispunkte mit den n(n-1) ausserhalb der durch S' gehenden isotropen Geraden liegenden Bildern von S verbinden;

 2° im Punkte S' einen $(m-1)^2$ -fachen Punkt, dessen Tangenten die axialen Projektionen aus s auf [w'] der $(m-1)^2$ ausserhalb der singulären Ebenen liegenden Bilder von S' sind;

 3° in den m-n Punkten $E_{\tau_{m-n}}$ n-fache Punkte, deren sämmtliche Tangenten in der unendlich fernen Gerade zusammengefallen sind, welche in jedem der Punkte $E_{\tau_{m-n}}$ m Punkte mit der Kurve gemein hat.

Übrigens sind keine Abweichungen zu constatiren.

Nur von der Doppelkurve ist der Grad erniedrigt worden (siehe S. 291, 295).

Der Schnitt in [w] besteht aus den m(n-1)-fachen durch die Spur S von s in [w] gelegten isotropen Geraden, aus der m^2 -fachen Gerade OS und aus einer Kurve vom Grade n(2m+n-2). Diese hat

- 1° in den Kreispunkten n(m-1)-fache Punkte, von deren Tangenten je n vereinigt sind in einer der m-1 Geraden, welche die Kreispunkte mit den ausserhalb der singulären Ebenen liegenden Bildern von S' verbinden;
- 2° im Punkte S' einen $(n-1)^2$ -fachen Punkt; dessen Tangenten die axialen Projektionen aus s auf [w] der $(n-1)^2$ ausserhalb den durch S' in [w'] gelegten isotropen Geraden liegenden Bilder von S sind;
- 3° im Punkte O einen mn-fachen Punkt, von dessen Tangenten je n vereinigt sind in den m Bildern der Gerade $O'S_3$, welche O' mit dem unendlich fernen Punkte der Gerade OS verbindet;
- 4° im Punkte S_4' (Schnittpunkte von O'S' mit der unendlich fernen Gerade) einen n^2 -fachen Punkt, dessen sämmtliche Tangenten in der Gerade SS_4' zusammengefallen sind; diese Gerade hat in S_4' mn Punkte mit der Kurve gemein (Voraussetzung ist m > n).

Der Schnitt in [w'] besteht aus den n(m-1)-fachen durch die Spur S' von s in [w'] gehenden isotropen Geraden, aus der n^2 -fachen Gerade O'S' und aus einer Kurve vom Grade m(m+2n-2). Diese hat

- 1° in den Kreispunkten m(n-1)-fache Punkte, von deren Tangenten je m vereinigt sind in einer der n-1 Geraden, welche die Kreispunkte mit den ausserhalb der singulären Ebenen liegenden Bildern von S verbinden;
- 2° im Punkte S' einen $(m-1)^2$ -fachen Punkt, dessen Tangenten die axialen Projektionen aus s auf [w'] der $(m-1)^2$ ausserhalb den durch S gezogenen isotropen Geraden liegenden Bilder von S' sind;
- 3° im Punkte O' einen mn-fachen Punkt, von dessen Tangenten je m vereinigt sind in einer der n Bilder der Gerade OS'_4 , welche O mit dem unendlich fernen Punkte S'_4 der Gerade O'S' verbindet;
- 4° im Punkte S_3 (unendlich fernen Punkte auf OS) einen mn-fachen Punkt, dessen sämmtliche Tangenten mit der unendlich fernen Gerade zusammengefallen sind; diese Gerade hat in S_3 m^2 Punkte mit der Kurve gemein (vorausgesetzt ist m > n).

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade m(m+n-2). Diese hat

1° in den Kreispunkten m(n-1)-fache Punkte, deren Tangenten die Schnittlinien von ω_{μ} mit den Berührungsebenen an der Fläche sind; sie sind zu je m in n-1 Geraden vereinigt;

 2° im Schnittpunkte S_{μ} von s mit ω_{μ} einen $(m-1)^2$ -fachen Punkt, dessen Tangenten die axialen Projektionen aus s auf ω_{μ} der $(m-1)^2$ nach S_{μ} zielenden, ausserhalb der singulären Ebenen liegenden Congruenzstrahlen sind;

3° in den m-n Punkten $E_{\tau_{m-n}}$ n-fache Punkte, dessen Tangenten mit der unendlich fernen Gerade zusammengefallen sind (Ausnahme in $\lceil w \rceil$);

 4° Doppelpunkte in den Schnittpunkten von ω_{μ} mit der Doppelkurve, welche auch hier von niedrigerem Grade ist als im allgemeinen Falle, und für deren Erledigung wir auf S. 291 verweisen.

Die axiale Regelfläche eines in der Ebene ε der reellen Axen liegenden Congruenzstrahles s.

Die Regelfläche der willkürlichen Gerade ist jetzt zerfallen in die zwei m-fachen Ebenen, welche s mit den Kreispunkten verbinden, in die m-fache Ebene ε , und in eine Restfläche, welche offenbar vom Grade m(m+n-3) ist.

Auf der Restfläche ist s eine (m-1)(m-2)-fache Gerade.

Die Kreispunkte sind m(n-1)-fache Punkte; ihre Berührungsebenen sind bei der vorhergehenden Regelfläche beschrieben.

Die m-n-1 Punkte $E_{\tau_{m-n}}$ $(\tau_{m-n}\neq 1)$ sind n-fache; ihre Berührungsebenen sind in $\lceil w \rceil$ zusammengefallen.

Die Gerade OO' ist eine n(n-1)-fache Gerade, deren Berührungsebenen alle in ε vereinigt sind (Ausnahme in $\lceil w' \rceil$).

Der Schnittpunkt S_0 von s mit OO' ist ein (m-1)(m-2)-facher Punkt.

Die Doppelkurve ist wieder von niedrigerem Grade als im vorigen Falle (siehe S. 297).

Der Schnitt in einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade (m+n)(m+n-2)+2 mn. Diese hat

1° in den Kreispunkten |2mn - (m+n)|-fache Punkte, von denen m(n-1) Tangenten zu je m in n-1 Geraden und n(m-1) zu je n in m-1 Geraden vereinigt sind; diese Tangenten sind die Schnittlinien von ω_{μ} mit den an der Fläche gelegten Berührungsebenen;

 2° im. Schnittpunkte S_{μ} von s mit ω_{μ} einen $(m+n-1)^2$ -fachen Punkt, dessen Tangenten die axialen Projektionen aus s auf ω_{μ} der $(m+n-1)^2$ nach S_{μ} zielenden, ausserhalb der singulären Ebenen liegenden Congruenzstrahlen sind;

 3° im Punkte S_3 einen mn-fachen Punkt, dessen Tangenten, für m > n, alle mit der unendlich fernen Gerade zusammengefallen sind;

4° im Punkte S_4' einen n^2 -fachen Punkt, dessen sämmtliche Tangenten in der Schnittlinie von ω_{μ} mit der durch O' und s gelegten Ebene zusammengefallen sind (vorausgesetzt ist m > n);

5° Doppelpunkte in den Schnittpunkten von ω_{μ} mit der Doppelkurve, welche auch hier von niedrigerem Grade ist als im allgemeinen Falle. Auch hier verweisen wir auf S. 291, 295.

Die axiale Regelfläche eines in der Ebene z der reellen Axen liegenden Congruenzstrahles s.

Die Regelfläche der willkürlichen Gerade ist jetzt ausgeartet in die zwei (m+n)-fachen Ebenen, welche s mit den Kreispunkten verbinden, in die (m+n)-fache Ebene ε und in eine Restfläche, welche demnach vom Grade (m+n) (m+n-3)+2mn ist.

Auf der Restfläche ist s eine (m+n-1)(m+n-2)-fache Gerade. Die Kreispunkte sind $\lfloor 2mn-(m+n)\rfloor$ -fache Punkte; für ihre Berührungsebenen verweisen wir auf die vorige Regelfläche.

Der Punkt O ist ein n(m-1)-facher Punkt, dessen Berührungsebenen alle in $\lceil w \rceil$ vereinigt sind.

Der Punkt O' ist ein m(n-1)-facher Punkt, dessen Tangenten sich alle in $\lceil w' \rceil$ befinden.

Der Punkt $E (\equiv S_3 \equiv S_4')$ ist ein (m+n) (n-1)-facher; von seinen Berührungsebenen sind m(n-1) in [w] und n(n-1) in ε vereinigt.

Der Schnittpunkt S_0 von s mit OO' ist ein (m+n-1)(m+n-2)-facher Punkt.

Die Doppelkurve ist von noch niedrigerem Grade als im vorigen Falle (Siehe S. 297, 299).

Der Schnitt in [w] besteht aus den m(n-1)-fachen, durch die

die Spur S von s in $\lfloor w \rfloor$ gelegten isotropen Geraden, in die m-n-1 (m-n)-fachen Geraden $SE_{\tau_{m-n}}$ $(\tau_{m-n} \neq 1)$ und in eine Kurve vom Grade n(m+n-3). Diese hat

1° in den Kreispunkten n(n-1)-fache Punkte, deren Tangenten alle in den durch S gehenden isotropen Geraden vereinigt sind;

- 2° im Punkte S einen (n-1)(n-2)-fachen Punkt, dessen Tangenten die axialen Projektionen aus s auf [w] der (n-1)(n-2) ausserhalb der singulären Ebenen liegenden Bilder von S sind;
- 3° in den Punkten $E_{\tau_{m-n}}$ $(\tau_{m-n} \neq 1)$ n-fache Punkte, deren Tangenten alle nach dem Punkt T ((32a), S. 205) convergiren; der Punkt E gehört der Kurve nicht an;
- 4° in O einen n(n-1)-fachen Punkt, dessen sämmtliche Tangenten mit der reellen Axe zusammengefallen sind.

Der Schnitt in [w'] ist eine Kurve vom Grade m(m+n-3). Diese hat

- 1° in den Kreispunkten m(n-1)-fache Punkte, von deren Tangenten je m in einem der n-1 ausserhalb der singulären Ebenen liegenden Bilder von $\mathcal S$ vereinigt sind;
- 2° in S' einen (m-1)(m-2)-fachen Punkt, dessen Tangenten die axialen Projektionen aus s auf [w] der (m-1)(m-2) ausserhalb der singulären Ebenen liegenden Bilder von S' sind;
- 3° in den Punkten $E_{\tau_{m-n}}$ ($\tau_{m-n} \neq 1$) *n*-fache Punkte; ihre Tangenten sind zusammengefallen in der unendlich fernen Gerade, welche in jedem Punkte $E_{\tau_{m-n}}$ *m* Punkte mit der Kurve gemein hat; der Punkt E gehört der Kurve nicht an;
- 4° in O' einen m(n-1)-fachen Punkt, von dessen Tangenten je m in einem der n-1 ausserhalb ε liegenden Bilder der zu [w] gehörenden reellen Axe vereinigt sind.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade m(m+n-3). Diese hat

- 1° in den Kreispunkten m(n-1)-fache Punkte, dessen Tangenten die Schnittlinien von ω_{μ} mit den Berührungsebenen dieser Punkte sind;
- 2° im Schnittpunkte S_{μ} von s mit ω_{μ} einen (m-1)(m-2)fachen Punkt, dessen Tangenten die axialen Projektionen aus s auf

Spur S von s in [w] gehenden isotropen Geraden, aus der m(m-1)fachen reellen Axe und aus einer Kurve vom Grade n(2m+n-3).
Diese hat

1° in den Kreispunkten n(m-1)-fache Punkte, von deren Tangenten je n vereinigt sind in den m-1 Geraden, welche die Kreispunkte mit den ausserhalb der singulären Ebenen liegenden Bildern von S' verbinden;

2° im Punkte S einen (n-1)(n-2)-fachen Punkt, dessen Tangenten die axialen Projektionen aus s auf [w] der (n-1)(n-2) ausserhalb der singulären Ebenen liegenden Bilder von S sind;

3° im Punkte O einen n(m-1)-fachen Punkt, von dessen Tangenten je n in einem der m-1 ausserhalb der singulären Ebenen liegenden Bilder der zu $\lceil w' \rceil$ gehörenden reellen Axe vereinigt sind;

 4° in E einen n(n-1)-fachen Punkt, dessen Tangenten alle mit der reellen Axe zusammengefallen sind; diese Gerade hat in E m(n-1) Punkte mit der Kurve gemein.

Der Schnitt in [w'] besteht aus den n(m-1)-fachen durch die Spur S' von s in [w'] gelegten isotropen Geraden, aus der n(n-1)-fachen reellen Axe und aus einer Kurve vom Grade m(m+2n-3). Diese hat

1° in den Kreispunkten m(n-1)-fache Punkte, von deren Tangenten je m vereinigt sind in den n-1 Geraden, welche die Kreispunkte mit den ausserhalb der singulären Ebenen liegenden Bildern von S verbinden;

2° im Punkte S' einen (m-1)(m-2)-fachen Punkt, dessen Tangenten die axialen Projektionen aus s auf [w'] der (m-1)(m-2) ausserhalb der singulären Ebenen liegenden Bilder von S' sind;

3° im Punkte O' einen m(n-1)-fachen Punkt, von dessen Tangenten je m in einem der n-1 ausserhalb ε liegenden Bilder der zu $\lceil w \rceil$ gehörenden reellen Axe vereinigt sind;

 4° in E einen m(n-1)-fachen Punkt, dessen sämmtliche Tangenten mit der unendlich fernen Gerade zusammengefallen sind; diese Gerade hat in E m(m-1) Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade (m+n)(m+n-3)+2mn. Diese hat

 1° in den Kreispunkten |2mn-(m+n)|-fache Punkte, deren Tangenten die Schnittlinien von ω_{μ} mit den Berührungsebenen dieser Punkte sind ;

2° im Schnittpunkte S_{μ} von s mit ω_{μ} einen (m+n-1)(m+n-2)fachen Punkt, dessen Tangenten die axialen Projektionen aus s auf

 ω_{μ} der (m-1)(m-2) ausserhalb der singulären Ebenen liegenden nach S_{μ} zielenden Congruenzstrahlen sind;

3° im Schnittpunkte X_{μ} von ω_{μ} mit OO' einen n(n-1)-fachen Punkt, dessen Tangenten alle in die Gerade $X_{\mu}E$ zusammengefallen sind (Ausnahme in $\lceil w' \rceil$);

 4° in den m-n-1 Punkten $E_{\tau_{m-n}}$ $(\tau_{m-n} \neq 1)$ n-fache Punkte, deren sämmtliche Tangenten in der unendlich fernen Gerade vereinigt sind (Ausnahme in [w]);

5° Doppelpunkte in den Schnittpunkten von ω_{μ} mit der Doppelkurve.

Die axiale Regelfläche einer in der Abbildungsebene [w] liegenden Gerade l_{∞} .

Die allgemeine Regelfläche zerfällt hier in (m^2-n^2) mal die Abbildungsebene [w] und in eine Restfläche vom Grade n(m+n).

Die Gerade l_{∞} ist auf dieser Restfläche eine n^2 -fache Gerade.

Die unendlich ferne Gerade der Abbildungsebenen ist ebenfalls eine n^2 -fache Gerade.

Wenn l_{∞} die unendlich ferne Gerade in L_3 schneidet, so sind die n Bilder L_3 von L_3 , als Punkt von [w] betrachtet, n-fache Punkte auf der Restfläche; ihre Berührungsebenen sind in der Abbildungsebene [w] vereinigt, welche mit der Fläche mn mal die unendlich ferne Gerade gemein hat.

Die Doppelkurve wird in der auf S. 303 u.f. gegebenen Weise bestimmt.

Der Schnitt in $\lceil w \rfloor$ besteht aus der n^2 -fachen Gerade l_x und aus der mn-fachen unendlich fernen Gerade.

Der Schnitt in [w'] besteht aus der n^2 -fachen unendlich fernen Gerade und aus einer Kurve vom Grade mn, der Bildkurve von l_{∞} .

Die Kreispunkte I und J gehören dieser Bildkurve nicht an.

Die n Bilder L_3 von L_3 , als Punkt von [w] betrachtet, sind n-fache Punkte; die Tangenten sind alle in der unendlich fernen Gerade vereinigt, welche in jedem der Punkte L_3 m Punkte mit der Kurve gemein hat.

Wenn l_{∞} die isotrope Gerade OJ in L_1 und die isotrope Gerade OI in L_2 schneidet, so sind die 2n bez. auf O'J und O'J liegenden Bilder L_1' und L_2' n-fache Punkte, welche alle die Gerade

 ω_{μ} der (m+n-1)(m+n-2) ausserhalb der singulären Ebenen liegenden nach S_{μ} zielenden Congruenzstrahlen sind;

 3° im Punkte E einen (m+n)(n-1)-fachen Punkt, vom dem m(n-1) Tangenten mit der unendlich fernen Gerade und n(n-1) mit der Gerade $X_{\mu}E$ zusammenfallen;

 4° Doppelpunkte in den Schnittpunkten von ω_{μ} mit der Doppelkurve.

Die axiale Regelfläche einer in der Abbildungsebene [w] liegenden Gerade l_{∞} .

Die allgemeine Regelfläche ist hier in m(m+2n) mal die Abbildungsebene [w] und in eine Restfläche vom Grade n(2m+n) ausgeartet.

Die Gerade l_{∞} ist auf dieser Restfläche eine n^2 -fache Gerade.

Die Kreispunkte I und J sind mn-fache Punkte; ihre Tangenten befinden sich in mn Ebenen, die zu je m in n Ebenen vereinigt sind. Wenn l_{∞} die isotropen Geraden OJ und OI bez. in L_1 und L_2 schneidet, so verbinden diese n Ebenen die Geraden L_1I und L_2J bez. mit ihren n Bildern in [w'].

Der Punkt O' ist ein mn-facher Punkt, dessen Berührungsebenen alle in die Ebene [w] zusammengefallen sind.

Der Punkt O gehört jetzt der Restfläche nicht an.

Der Punkt L_3 , wo l_{∞} die unendlich ferne Gerade schneidet, ist ein n^2 -facher Punkt, dessen Berührungsebenen alle in der durch O' und l_{∞} gelegten Ebene vereinigt sind.

Die Gerade $O'L_3$ ist eine n^2 -fache.

Für die Doppelkurve verweisen wir auf S. 303 u.f., 308.

Der Schnitt in [w] besteht aus der n^2 -fachen Gerade l_{∞} und aus den mn-fachen Geraden $L_1 I$ und $L_2 J$ (siehe oben).

Der Schnitt in [w'] ist zerfallen in die n^2 -fache Gerade $O'L_3$ und in eine Kurve vom Grade 2mn, die Bildkurve von l_{∞} .

Die Kreispunkte I und J sind mn-fache Punkte; von ihren Tangenten sind je m bez. in ein der n Bilder von IL_1 und JL_2 zusammengefallen.

Der Punkt O' ist ebenfalls ein mn-facher; von seinen Tangenten sind je m in einem der n Bilder von OL_3 vereinigt.

O'I bez. O'J als Tangente haben; diese Geraden haben in jedem der Punkte L_1' und L_2' m Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} besteht aus der n^2 -fachen unendlich fernen Gerade und aus einer Kurve vom Grade mn. Diese hat in den n Punkten L_3' n-fache Punkte, deren sämmtliche Tangenten in der unendlich fernen Gerade vereinigt sind.

Die axiale Regelfläche einer in der Abbildungsebene [w] liegenden, durch O gehenden Gerade l_{∞} .

Die gerade erörterte Fläche zerfällt jetzt in n Regelflächen vom Grade m+n.

Jede dieser Regelflächen enthält die unendlich ferne Gerade als eine n-fache Gerade, deren sämmtliche Berührungsebenen in [w] vereinigt sind.

Die Gerade OO' ist ebenfalls eine n-fache; ihre Berührungsebenen sind alle in der durch O' und l_{∞} gelegten Ebene zusammengefallen.

Die Gleichungen dieser Regelflächen findet man in (144a) (S. 302).

Der Schnitt mit [w] ist zerfallen in die m-fache unendlich ferne Gerade und in die n-fache Gerade l_{∞} .

Der Schnitt in [w'] ist aus der n-fachen unendlich fernen Gerade und aus je einem der Bilder von l_x , jedem m mal gezählt, zusammengesetzt.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} enthält die n-fache unendlich ferne Gerade und eine Kurve vom Grade m, welche in X_{μ} einen n-fachen Punkt hat; alle seine Tangenten sind in $X_{\mu}L_3$ vereinigt.

Die axiale Regelfläche der in [w] liegenden reellen Axe.

Von den n gerade betrachteten Regelflächen vom Grade m+n ist eine jetzt in m mal die Ebene ε der reellen Axen und n mal die Abbildungsebene $\lceil w \rceil$ ausgeartet.

Die anderen n-1 Regelflächen zeigen, in Bezug auf das Vorhergehende, keine Abweichungen. Ihre Gleichungen sind in (147a) (S. 308) gegeben. Von einer wesentlichen Doppelkurve ist nicht mehr die Rede.

Der Schnitt mit einer zu den Abbildungsebenen paralellen Ebene ω_{μ} ist eine Kurve vom Grade n(2m+n). Diese hat in den Kreispunkten mn-fache Punkte, deren Tangenten die Schnittlinien von ω_{μ} mit den Berührungsebenen sind.

Der Punkt L_3 ist ein n^2 -facher; seine Tangenten sind alle in der Schnittlinie von ω_{μ} mit der durch O' und l_{∞} gelegten Ebene vereinigt.

Die axiale Regelfläche einer in der Abbildungsebene [w] liegenden, durch O gehenden Gerade l_{∞} .

Die gerade beschriebene Regelfläche ist hier in mn mal die Ebene $\lceil w \rceil$ und in n Regelflächen vom Grade m + n ausgeartet.

Keine dieser Regelflächen enthält jetzt die Kreispunkte.

Auf jeder dieser Flächen ist l_{∞} eine n-fache Gerade mit veränderlichen Berührungsebenen, die Gerade $O'L_3$ eine n-fache mit der Ebene (O', l_{∞}) als einziger Berührungsebene (diese Ebene hat mit der Fläche m mal $O'L_3$ gemein); eine der n Geraden $O'L_3'$ ist eine m-fache mit veränderlichen Berührungsebenen; schliesslich ist die entsprechende Gerade OL_3' eine n-fache mit [w] als einziger Berührungsebene.

Die Gleichungen dieser Regelflächen findet man in (144b) (S. 307). Der Schnitt in $\lceil w \rceil$ besteht aus n mal der Gerade l_{∞} und m mal der axialen Projektion $O'L_3'$ aus OO' eines der Bilder von l_{∞} .

Der Schnitt in [w'] zerfällt in n mal die axiale Projektion aus OO' von l_{∞} und in m mal ein der Bilder von l_{∞} (das nämliche wie oben).

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade m+n, welche in L_3 einen n-fachen Punkt hat, während die Tangenten vereinigt sind in der Gerade, in der ω_{μ} die Ebene (O', l_{Σ}) schneidet; es ist L_3' ein m-facher Punkt, dessen sämmtliche Tangenten in der Schnittlinie von ω_{μ} mit der Ebene $(OO'L_3)$ vereinigt sind.

Die axiale Regelfläche der in [w] liegenden reellen Axe.

Von den n Regelflächen vom Grade m+n, deren Eigenschaften wir gerade erörtert haben, ist eine jetzt in die (m+n)-fache Ebene ε der reellen Axen ausgeartet.

Die übrigen n-1 Regelflächen verhalten sich in analoger Weise wie die oben behandelten. Ihre Gleichungen findet man in (147b) (S. 309).

Die Regelfläche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen.

Von der einem willkürlichen Kegelschnitte angehörenden Regelfläche, welche vom Grade 2m(m+n) ist, wird 2mn mal die Abbildungsebene [w] abgetrennt, sodass wir eine Restfläche vom Grade $2m^2$ erübrigen.

Auf dieser Regelfläche ist der Kreis selbst eine m^2 -fache Kurve. Die Kreispunkte sind m^2 -fache; in jedem dieser Punkte sind von den Berührungsebenen je m in einer der m Ebenen vereinigt, welche die axiale Regelfläche der im Kreispunkte an dem Kreise gelegten Tangente, d. h. der durch den Mittelpunkt des Kreises gehenden isotropen Gerade, bilden.

Der Schnitt in [w] ist zerfallen in die m(m-n)-fachen Spuren der Berührungsebenen in den Kreispunkten und in eine Kurve vom Grade 2mn.

Die Kreispunkte sind auf dieser Kurve mn-fache Punkte; von ihren Tangenten fallen je n mit einer der m genannten Ausartungselementen zusammen; jede dieser Tangenten hat in einem Kreispunkte 2mn Punkte mit der Kurve gemein.

Der Schnitt in $\lceil w' \rceil$ ist eine Kurve vom Grade $2m^2$.

Die Kreispunkte sind m^2 -fache Punkte, von deren Tangenten je m in den m Spuren der Berührungsebenen der Kreispunkte vereinigt sind; jede Tangente hat in einem Kreispunkte $2m^2$ Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{ν} ist eine Kurve vom Grade $2m^2$, welche in den Kreispunkten m^2 -fache Punkte hat, während die Tangenten die Schnittlinien von ω_{ν} mit den Berührungsebenen der Kreispunkte sind.

Die Regelfläche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen, dessen Mittelpunkt auf OO' liegt. Diese Regelfläche weicht von der vorigen nur im Folgenden ab.

Von den *m* verschiedenen Berührungsebenen der Kreispunkte

Die Regelstäche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen.

Die Regelfläche eines willkürlichen Kegelschnittes ist vom Grade $2(m+n)^2+4mn$.

Dieser Fläche wird hier 2mn mal die Ebene [w] und 2mn mal die Ebene [w'] entzogen. Die Restfläche ist daher vom Grade $2(m+n)^2$.

Auf dieser Fläche ist der Kreis selbst eine $(m+n)^2$ -fache Kurve.

Die Kreispunkte sind $(m+n)^2$ -fache; in jedem dieser Punkte sind von den Berührungsebenen je m+n vereinigt in einer der m+n Ebenen, welche die axiale Regelfläche der im Kreispunkte an den Kreis gelegten Tangente, d. h. der durch den Mittelpunkt des Kreises gehenden isotropen Gerade, bilden.

Der Schnitt in [w] ist ausgeartet in die m-fachen Spuren der Berührungsebenen in den Kreispunkten und in eine Kurve vom Grade 2n(m+n).

Die Kreispunkte sind n(m+n)-fache; von ihren Tangenten sind je n mit einem der m+n genannten Ausartungselementen zusammengefallen; jede dieser Geraden hat in einem Kreispunkte n(m+n+1) Punkte mit der Kurve gemein.

Die Schnittpunkte der m+n durch den Kreispunkt I gehenden Ausartungselementen mit der isotropen Gerade OJ sind n-fache Punkte der Kurve; ihre Tangenten fallen ebenfalls mit den genannten Ausartungselementen zusammen, welche in diesen Berührungspunkten m Punkte mit der Kurve gemein haben.

Analoge Betrachtungen gelten in Bezug auf die Schnittpunkte der durch J gelegten Ausartungselementen mit OI.

Der Schnitt in [w'] wird am leichtesten ermittelt, indem wir in den Ergebnissen des in [w] befindlichen Schnittes die Zahlen m und n und die Abbildungsebenen [w] und [w'] vertauschen. Die Schnittpunkte mit O'J sind jetzt n-fache Punkte; ihre Tangenten sind mit O'J vereinigt, welche in jenen Punkten m Punkte mit der Kurve gemein hat.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{ν} ist eine Kurve vom Grade $2(m+n)^2$, welche in den Kreispunkten $(m+n)^2$ -fache Punkte hat, während die Tangenten die Schnittlinien von ω_{ν} mit den Berührungsebenen der Kreispunkte sind.

Die Regelfläche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen, dessen Mittelpunkt auf OO' liegt.

Die Abweichungen dieser Regelfläche von der vorigen sind nicht von wesentlicher Bedeutung.

sind je n mit den durch OO' gelegten isotropen Ebenen zusammengefallen.

Im Schnitte mit [w] sind dementsprechend von den m Ausartungselementen durch jeden Kreispunkt n mit einer durch O gehenden isotropen Gerade zusammengefallen.

Analoges gilt von dem Schnitt mit [w'] und mit einer zu den Abbildungsebenen parallelen Ebene ω_{ν} .

Die Regelfläche der Strahlen, welche ruhen auf einem zu den Abbildungsebenen parallelen Kreise, der OO' schneidet.

Die Abweichungen von der Regelfläche des willkürlichen zu den Abbildungsebenen parallelen Kreises sind diese, dass die Gerade OO' jetzt eine n^2 -fache Gerade der Fläche ist, deren sämmtliche Berührungsebenen OO' mit der an den Kreis im Schnittpunkte X_{μ} des Kreises mit OO' gelegten Tangente verbinden (Ausnahme in $\lceil w' \rceil$).

Dementsprechend hat die in [w] liegende Kurve in O einen n^2 -fachen Punkt, dessen sämmtliche Tangenten vereinigt sind in der Schnittlinie von [w] mit der genannten Berührungsebene von OO'.

Die in [w'] liegende Kurve hat dagegen in O' einen mn-fachen Punkt, von dessen Tangenten je n in einem der Bilder der in O an der Kurve in [w] gelegten Tangente vereinigt sind.

Die Regelfläche der Strahlen, welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen.

Die oben betrachtete Regelfläche zerfällt jetzt in 2m(m-n) mal die Abbildungsebene [w] und in eine Restfläche vom Grade 2mn.

Auf dieser Restfläche ist der Kreis eine n²-fache Kurve.

Die Kreispunkte sind nun mn-fache Punkte; von ihren Berührungsebenen sind je m vereinigt in einer der n Ebenen, welche bez. die in den Kreispunkten an den Kreis gelegten Tangenten (die durch den Mittelpunkt des Kreises verlaufenden isotropen Geraden) mit ihren n Bildern verbinden.

Wenn der Kreis die isotrope Gerade OJ in M_1 und die isotrope Gerade OI in M_2 schneidet, so sind die n Geraden, welche M_1 (bez. M_2) mit seinem n auf O'J (bez. O'I) liegenden Bildern verbinden, n-fache Geraden der Fläche, deren Berührungsebenen alle mit den durch OO' gelegten isotropen Ebenen zusammengefallen sind.

Der Schnitt in [w] besteht aus dem n^2 -fachen Kreise und aus seinen n(m-n)-fachen Tangenten in den Kreispunkten.

Der Schnitt in [w'] ist die *Bildkurve* des Kreises; sie ist vom Grade 2mn und hat

Die Regelfläche der Strahlen, welche ruhen auf einem zu den Abbildungsebenen parallelen Kreise, der OO' schneidet.

Auch diese Regelfläche weicht in keiner wesentlichen Hinsicht ab von der des willkürlichen zu den Abbildungsebenen parallelen Kreises.

Die Regelftäche der Strahlen, welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen.

Die oben betrachtete Regelfläche ist jetzt ausgeartet in 2m(m+n) mal die Abbildungsebene [w] und in eine Restfläche vom Grade 2n(m+n).

Auf dieser Fläche ist der Kreis eine n²-fache Kurve.

Der Kreis möge die isotrope Gerade OJ in M_1 und die isotrope Gerade OI in M_2 schneiden.

Die Kreispunkte sind n(m+n)-fache Punkte; von ihren Berührungsebenen sind mn zu je m vereinigt in den n Ebenen, welche die Gerade M_1I (bez. M_2J) mit ihren n Bildern verbinden, während von den übrigen n^2 je n vereinigt sind in einer der n Ebenen, welche die im Kreispunkte an den Kreis gelegte Tangente (die durch den Mittelpunkt des Kreises gehende isotrope Gerade) mit ihren n Bildern verbinden.

Der Schnitt in [w] ist aus dem n^2 -fachen Kreise und aus den mn-fachen Geraden M_1I und M_2J zusammengesetzt.

Der Schnitt in [w'] ist zerfallen in die 2n n-fachen Bilder der in den Kreispunkten an den Kreis gelegten Tangenten und in eine Kurve vom Grade 2mn, welche die Bildkurve des Kreises ist. Letztere hat

1° in den Kreispunkten *mn*-fache Punkte, von deren Tangenten je *m* in einem der *n* Bilder der in den Kreispunkten an den Kreisgelegten Tangenten vereinigt sind;

 2° in den n Bildpunkten M_1' von M_2 und in den n Bildpunkten M_2' von M_2 n-fache Punkte, deren Tangenten alle mit O'J, bez. O'I zusammengefallen sind; diese Tangenten haben in jedem der Punkte M_1' , bez. M_2' m Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade 2mn, welche in den Kreispunkten mn-fache Punkte hat; ihre Tangenten sind die Schnittlinien von ω_{μ} mit den Berührungsebenen in diesen Kreispunkten.

Die Punkte, wo ω_{μ} die 2n Geraden M_4 M_4' und M_2 M_2' schneidet, sind n-fache; ihre Tangenten fallen mit den durch X_{μ} gelegten isotropen Geraden zusammen.

Die Regelfläche der Strahlen, welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen, dessen Mittelpunkt O ist.

Die Regelfläche ist vom Grade 2000 und enthält den Kreis als

Die Regelfläche ist vom Grade 2mn und enthält den Kreis als eine n^2 -fache Kurve.

Die Kreispunkte sind mn-fache; ihre Berührungsebenen sind alle in die durch OO' gelegten isotropen Ebenen zusammengefallen.

Der Schnitt in [w] besteht aus den n(m-n)-fachen durch O gehenden isotropen Geraden und aus dem n^2 -fachen Kreise.

Der Schnitt in [w'] besteht aus n m-fachen concentrischen Kreisen, deren Mittelpunkt in O' liegt.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade 2mn, welche in den Kreispunkten mn-fache Punkte hat; ihre Tangenten convergiren alle nach X_{μ} .

Die Regelfläche der Strahlen, welche ruhen auf einem in der Abbildungsebene [w] liegenden Kreise, der O enthält.

Diese Regelfläche weicht nur sofern von der des willkürlichen in [w] liegenden Kreises ab, dass OO' jetzt eine n^2 -fache Gerade ist, deren sämmtliche Berührungsebenen vereinigt sind in der Ebene, welche die in O an den Kreis gelegte Tangente aus O' projizirt (Ausnahme in [w']).

Der Schnitt in $\lceil w \rceil$ besteht aus den früher genannten Elementen.

1° in den Kreispunkten mn-fache Punkte, von deren Tangenten je m in einem der n Bilder von M_1I , bez. M_2J vereinigt sind;

 2° in den n Schnittpunkten von O'J mit den n durch I gehenden Ausartungselementen und in den n Schnittpunkten von O'I mit den n durch J gehenden Ausartungselementen n-fache Punkte; ihre Tangenten fallen mit den Geraden O'J, bez. O'I zusammen; diese Geraden haben in jedem Berührungspunkte m Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade 2n(m+n), welche in den Kreispunkten n(m+n)-fache Punkte hat; ihre Tangenten sind die Schnittlinien von ω_{μ} mit den Berührungsebenen der Kreispunkte.

Die Regelfläche der Strahlen, welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen, dessen Mittelpunkt O ist.

Die Regelfläche ist vom Grade 2n(m+n) und enthält den Kreis als eine n^2 -fache Kurve.

Die Kreispunkte sind n(m+n)-fache; von ihren Berührungsebenen sind mn mit $\lceil w' \rceil$ und n^2 mit $\lceil w \rceil$ zusammengefallen.

Der Schnitt in [w] ist zerfallen in die 2mn-fache unendlich ferne Gerade und in den n^2 -fachen Kreis.

Der Schnitt in [w'] besteht aus der n^2 -fachen unendlich fernen Gerade und aus n m-fachen concentrischen Kreisen, deren Mittelpunkt in O' liegt.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade 2n(m+n), welche in den Kreispunkten n(m+n)-fache Punkte hat; ihre Tangenten sind alle mit der unendlich fernen Gerade zusammengefallen.

Die Regelfläche der Strahlen, welche ruhen auf einem in der Abbildungsebene [w] liegenden Kreise., der O enthält.

Der Regelfläche eines willkürlichen in [w] liegenden Kreises wird jetzt mn mal die Ebene [w] entzogen, wonach man eine Fläche vom Grade 2n(m+n)+mn erübrigt.

Die Kreispunkte sind nun n^2 -fache; ihre Berührungsebenen sind diejenigen der zweiten Gruppe.

Der Schnitt in [w] besteht aus dem n^2 -fachen Kreise und aus der mn-fachen Gerade, welche den O auf dem Kreise vorangehenden Punkt mit seinem Bilde verbindet.

Der Schnitt in [w'] hat nun in O' einen mn-fachen Punkt, von dessen Tangenten je m vereinigt sind mit einem der n Bilder der in O an den Kreis in [w] gelegten Tangente.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} hat jetzt in X_{μ} einen n^2 -fachen Punkt, dessen Tangenten alle in der Schnittlinie von ω_{μ} mit der Berührungsebene von OO' vereinigt sind.

Die in [w'] liegende Kurve ist vom Grade mn, sie ist die Bild-kurve des in [w] liegenden Kreises.

Diese Bildkurve enthält weder die Kreispunkte noch den Punkt O'. Sie trifft die durch O' gehenden isotropen Geraden jede m mal in n n-fachen Punkten, deren Tangenten mit diesen isotropen Geraden zusammenfallen.

Die Verbindungslinien der Berührungspunkte mit den gegenüberliegenden Kreispunkten gehören dem Gesammtschnitte in $\lceil w' \rceil$ an.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve vom Grade n(m+2n), welche in den Kreispunkten n^2 -fache Punkte hat.

Hiermit sollen die Untersuchungen der parabolischen und der hyperbolischen Congruenz beendet werden.

Freilich sind nur die Regelflächen von sehr speziellen Gebilden erörtert worden; wir glauben aber mit den Vorangehenden ausreichen zu können, weil unser Hauptzweck nicht eine möglichst vollständige Sammlung von Regelflächen war, sondern vielmehr eine Übersicht der Methode, nach der diese Regelflächen gelegentlich untersucht werden könnten und deshalb, wie zur Erläuterung, nebenan einige Anwendungen dieser Methode.

Im folgenden Abschnitte wollen wir zwei besondere parabolische und eine besondere hyperbolische Congruenz studiren, n.l. die, welche den Beziehungen

$$w' = c^{-2} w^3$$
, $w'^2 = c^{-1} w^3$ und $w' = c^3 w^{-2}$

angehören, und deren Erledigung durch die Analyse der Gleichungen dritten Grades bedingt wird.

FÜNFTER ABSCHNITT.

ABTEILUNG A.

Die Congruenz, welche der Beziehung

$$w' = c^{-2} w^3$$

entspricht.

§ 1. Allgemeine Eigenschaften.

Mit Hinweisung auf das im vierten Abschnitte Dargelegte, bemerken wir zuerst, dass man in dieser parabolischen Congruenz hat

$$m = 3, n = 1.$$

Der Bündelgrad der Congruenz ist also 9, ihr Feldgrad 3, ihr Axengrad N=15.

Von den 9 nach einem reellen Punkte zielenden Strahlen sind 3 reell.

Die Fokalfläche besteht aus zwei imaginären Cylindern, deren Spitzen sich in den Kreispunkten I und J der Abbildungsebenen befinden.

Die Gleichungen dieser Fokalcylinder lauten:

Die Abbildungsebene [w] ($x_4 = 0$) ist eine Inflexionsebene für beide Cylinder; die Tangente ist mit der unendlich fernen Gerade identisch.

Die Cylinder durchbohren sich noch in 2 kubischen Plankurven, welche in den Ebenen der reellen und imaginären Axen liegen. Die beiden Kurven haben im unendlich fernen Punkte E, bez. E' (oder E_{-4}), einen Wendepunkt, dessen Tangente mit der reellen, bez. imaginären Axe von [w] identisch ist, und im Punkte O' einen Rückkehrpunkt, dessen Tangente mit OO' zusammenfällt.

Die Gleichungen des Congruenzstrahles p sind hier

DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-1} w^3$ UND $w' = c^3 w^{-2}$. 377

$$\begin{vmatrix}
x_1 = p_1 x_3 + p_1^3 x_4, \\
x_2 = p_2 x_3 + p_2^3 x_4,
\end{vmatrix}$$
(2a)

Der Brennpunkt P_{f1} des Strahles p ist durch

$$\frac{x_1}{p_1(3p_2^2 - p_1^2)} = \frac{x_2}{2p_2^3} = \frac{x_3}{3p_2^2} = \frac{x_4}{-1}, \quad (3a)$$

der Brennpunkt P_{f2} durch

$$\frac{x_1}{2p_1^3} = \frac{x_2}{p_2(3p_1^2 - p_2^2)} = \frac{x_3}{3p_1^2} = \frac{x_4}{-1} \quad . \quad . \quad (4a)$$

bestimmt.

Singuläre Ebenen sind

1° jede Ebene, welche einen Strahl p mit einem der Kreispunkte verbindet; sie enthält ein Strahlengebilde 3^{ter} Klasse, dessen Einhüllende eine kubische Kurve mit einem Rückkehrpunkt ist;

 2° die Ebenen $x_1 = \pm x_2$, d. h. die Ebenen der reellen und imaginären Axen; sie tragen jede ein Strahlengebilde 3^{ter} Klasse, dessen Einhüllende mit der kubischen Fokalkurve identisch ist;

 3° die Abbildungsebene [w] $(x_4=0)$ mit Strahlenbüscheln in den Kreispunkten und in den unendlich fernen Punkten der reellen und der imaginären Axe.

Singuläre Punkte sind

1° die Kreispunkte mit Strahlenbüscheln in [w];

 2° die unendlich fernen Punkte der reellen und imaginären Axen in $\lceil w \rceil$ mit Strahlenbüscheln in $\lceil w \rceil$.

Von den 9 Strahlen, welche nach einem Punkte von [w] zielen, fallen 4 mit den durch diesen Punkt gehenden isotropen Geraden zusammen, 2 mit der durch diesen Punkt zu der reellen Axe parallel gelegten Gerade, 2 mit der durch diesen Punkt zu der imaginären Axe parallel gelegten Gerade. Der 9^{te} Strahl verbindet den Punkt mit seinem in [w'] befindlichen Bilde.

Die in [w] liegenden isotropen Geraden müssen, als Strahlen durch die Kreispunkte betrachtet, je 3-fach gezählt werden.

§ 2. Die axiale Regelfläche einer durchaus willkürlichen Gerade l. Der Grad dieser Regelfläche ist 3(3+1)=12.

Es ist I auf ihrer Regelfläche eine 9-fache Gerade.

Es sei $A(a_1, a_2)$ die Spur von l in [w], $B'(b_1', b_2')$ die von l in [w'].

Der Schnitt mit [w] besteht aus den 2-fachen durch A gehenden

isotropen Geraden, aus den 2-fachen durch A parallel zu den reellen und imaginären Axen gelegten Strahlen und aus einer Kurve $4^{\rm ten}$ Grades.

Diese hat in Bezug auf das Coordinatendreieck AIJ die Gleichung

$$\xi_2(\xi_1 + a_1 \xi_3)^3 - \xi_1(\xi_2 + a_2 \xi_3)^3 + (b_2' \xi_1 - b_1' \xi_2) \xi_3^3 = 0.$$
 (5a)

Diese Kurve 4^{ten} Grades ist circular. Die in den Kreispunkten gelegten Tangenten treffen sich in Λ . Die Kreispunkte sind Wendepunkte.

Der Punkt A liegt auf der Kurve und hat als Tangente die axiale Projektion aus l auf $\lceil w \rceil$ des Bildes A' von A.

Die Punkte E und E' gehören der Kurve auch an; ihre Tangenten convergiren nach dem Punkte I', der durch

$$\frac{\xi_1}{a_1} = \frac{\xi_2}{a_2} = -\frac{3\xi_3}{2},$$

oder

$$\frac{x_1}{a_1} = \frac{x_2}{a_2} = -\frac{x_3}{2} \qquad (6a)$$

angewiesen ist.

Der Schnitt mit $\lfloor w' \rfloor$ ist eine Kurve 12^{ten} Grades, deren auf das Coordinatendreieck B'IJ bezogene Gleichung lautet:

$$\xi_{2}(\xi_{1}+b_{1}'\xi_{4})^{\frac{1}{3}}-\xi_{1}(\xi_{2}+b_{2}'\xi_{4})^{\frac{1}{3}}+(a_{2}\xi_{1}-a_{1}\xi_{2})\xi_{4}^{\frac{1}{3}}=0,$$

oder

$$[\xi_{2}^{3}(\xi_{1} + b_{1}'\xi_{4}) - \xi_{1}^{3}(\xi_{2} + b_{2}'\xi_{4}) + (a_{2}\xi_{1} - a_{1}\xi_{2})^{3}\xi_{4}]^{3} + 27 \xi_{1}^{3} \xi_{2}^{3}(a_{2}\xi_{1} - a_{1}\xi_{2})^{3}(\xi_{1} + b_{1}'\xi_{1})(\xi_{2} + b_{2}'\xi_{4})\xi_{4} = 0.$$
 (7a)

Die Kreispunkte sind hier 3-fache; ihre Tangenten sind mit den durch A' gehenden isotropen Geraden identisch.

Der Punkt B' ist ein 9-facher; seine Tangenten sind die axialen Projektionen aus l auf $\lfloor w' \rfloor$ der 9 Bilder B von B'. Da von dieser 9 Bildern nur 3 reell sind, so sind auch von den 9 Zweigen durch B' nur 3 reell.

Die unendlich fernen Punkte der reellen und imaginären Axen gehören der Kurve als gewöhnliche Punkte an; ihre Asymptoten fallen mit der unendlich fernen Gerade zusammen, welche in den beiden Punkten je 3 Punkte mit der Kurve gemein hat; diese Gerade ist also eine doppelte Wendetangente und die unendlich fernen Punkte der Axen sind Wendepunkte.

Auf der Regelfläche sind die Kreispunkte dreifache. Die Berührungsebenen des Kreispunktes $I(X_1)$ sind in der Ebene

$$x_2 - a_2 x_3 - a_2^3 x_4 = 0$$
, (8a)

die des Punktes $J(X_2)$ in der Ebene

$$x_1 - a_1 x_3 - a_1^3 x_4 = 0$$
 . . . (9a)

vereinigt. Sie sind offenbar die Ebenen, welche den Strahl $a \equiv AA'$ mit den Kreispunkten verbinden.

Die unendlich fernen Punkte der reellen und imaginären Axen sind gewöhnliche; ihre Berührungsebenen sind mit der Ebene [w] zusammengefallen.

Die *Doppelkurve* dieser Regelfläche ist vom Grade N+3=15+3=18.

§ 3. Die axiale Regelfläche einer Gerade l, welche OO' schneidet. Diese Regelfläche enthält OO' als eine einfache Gerade, für welche alle Berührungsebenen mit der durch l und OO' gelegten Ebene zusammengefallen sind.

Es sei

$$x_2 = tx_1$$

die Gleichung der durch l und OO' gelegten Ebene; man hat alsdann (siehe IV. Abschnitt § 7a, (81) und (82), S. 242)

$$\frac{b_2'}{b_1'} = \frac{a_2}{a_1} = t,$$

$$a_1 b_2' - a_2 b_1' = 0.$$

Die in [w] liegende Kurve hat nun die Gleichung

$$(x_2 - t a_1 x_3) x_1^3 - (x_1 - a_1 x_3) x_2^3 + b_1' (t x_1 - x_2) x_3^3 = 0. (10a)$$

Sie hat in O einen Wendepunkt, dessen Tangente O mit A verbindet.

Die Gleichung der in [w] befindlichen Kurve lautet jetzt

$$(x_2 - tb_1' x_4) x_1^{\frac{1}{3}} - (x_1 - b_1' x_4) x_2^{\frac{1}{3}} + a_1 (tx_1 - x_2) x_4^{\frac{1}{3}} = 0,$$

oder

380 DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-1} w^3$ UND $w' = c^3 w^{-2}$.

$$[(x_2 - tb_1' x_4)^3 x_1 - (x_1 - b_1' x_4)^3 x_2 + a_1^3 (tx_1 - x_2)^3 x_4]^3 + + 27 x_1 x_2 x_4 (x_2 - tb_1' x_4)^3 (x_1 - b_1' x_4)^3 (tx_1 - x_2)^3 = 0.$$
 (11a)

Diese Kurve hat in O' einen dreifachen Punkt, dessen Tangenten in der Bildgerade $(x_2 = t^3 x_1)$ von OA vereinigt sind; diese Tangente hat in O' 9 Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} hat, ausser den Singularitäten des allgemeinen Falles, einen gewöhnlichen Punkt in der Spur X_{μ} von OO' in ω_{μ} ; die zu X_{μ} gehörende Tangente ist die Schnittlinie von ω_{μ} mit der durch l und OO' gelegten Ebene.

Wenn l den Punkt O enthält, so zerfällt die in [w] liegende Kurve in 3 mal die Kurve 4^{ten} Grades, deren Gleichung ist

$$(x_2 - b_2' x_4)^3 x_4 - (x_1 - b_1' x_4)^3 x_2 = 0.$$
 (12a)

Die Kreispunkte sind gewöhnliche; ihre Tangenten convergiren in O'.

Die unendlich fernen Punkte der reellen und imaginären Axen sind gewöhnliche; ihre Tangenten werden durch

$$2(x_2 + x_1) - 3(b_2 + b_1)x_4 = 0$$
 . . (13a)

dargestellt; sie schneiden die Gerade O'B' im Punkte T_0 , welcher durch

$$\frac{x_1}{3b_1'} = \frac{x_2}{3b_2'} = \frac{x_4}{2} \quad . \quad . \quad . \quad (14a)$$

gegeben ist.

In der Kurve, welche dem Schnitte von [w] angehört, und durch

$$x_2 x_1^3 - x_1 x_2^3 + (b_2' x_1 - b_1' x_2) x_3^3 = 0$$

dargestellt wird, ist der gewöhnliche Punkt \mathcal{A} in \mathcal{O} gefallen; seine Tangente ist die Schnittlinie von [w] mit der durch \mathcal{OO}' und \mathcal{I} gelegten Ebene, also die orthogonale Projektion von \mathcal{I} auf [w].

Die unendlich fernen Punkte der reellen und imaginären Axen haben, als dreifache Punkte der Fläche, jeder nur eine Berührungsebene, und zwar bez.

$$2(x_2 + x_1) - 3(b_2' + b_1')x_4 = 0.$$
 (13a)

Diese Ebene verbindet E, bez. E', mit der Gerade OT_0 :

$$\frac{x_1}{3b_1'} = \frac{x_2}{3b_2'} = \frac{x_4}{2}. \quad . \quad . \quad . \quad . \quad (14a)$$

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} hat jetzt ausser dem gewöhnlichen Punkte X_{μ} zwei dreifache Punkte in den unendlichen fernen Punkten der Axen; ihre Tangenten sind vereinigt in den Schnittlinien von ω_{μ} mit den Ebenen (13a).

Wenn l durch O' geht, so bleibt die in [w] liegende Kurve vom 4^{ten} Grade. Ihre Gleichung ist

$$(x_2 - a_2 x_3) x_1^3 - (x_1 - a_1 x_3) x_2^3 = 0.$$
 (15a)

Sie hat in O einen dreifachen Punkt, dessen Tangenten die Bilder sind der orthogonalen Projektion von l auf $\lceil w' \rceil$.

Der Schnitt in $\lceil w' \rceil$ hat die Gleichung

$$x_2 x_1^{\frac{1}{3}} - x_1 x_2^{\frac{1}{3}} + (a_2 x_1 - a_1 x_2) x_4^{\frac{1}{3}} = 0$$
,

oder

$$[x_2^3x_1-x_1^3x_2+(a_2x_1-a_1x_2)^3x_4]^3+27x_1^4x_2^4x_4(a_2x_1-a_1x_2)^3=0.(16a)$$

Der Punkt O' ist hier ein 9-facher; seine sämmtlichen Tangenten sind in der orthogonalen Projektion von l auf $\lceil w' \rceil$ vereinigt.

Die unendlich fernen Punkte der Axen zeigen dasselbe Verhalten wie im allgemeinen Falle.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} weist also, ausser seinem gewöhnlichen Punkte X_{μ} , keine Abweichungen mit dem Schnitte der allgemeinen Regelfläche auf.

§ 4. Die axiale Regelfläche einer zu den Abbildungsebenen parallelen Gerade l_{μ} .

Der Grad dieser Regelfläche ist, wie im allgemeinen Falle, 12. Die unendlich ferne Gerade der Abbildungsebenen ist jetzt auf dieser Fläche eine dreifache Gerade.

Es sei die Gerade l_{μ} gegeben durch

$$\alpha_{1} x_{1} + \underline{\alpha}_{2} x_{2} + \alpha_{3} x_{3} + \alpha_{1} x_{4}, \quad . \quad . \quad . \quad (17)$$

$$x_{3} = \mu x_{4}. \quad . \quad . \quad . \quad . \quad (18)$$

Der Schnitt in [w] besteht aus 9-mal der unendlich fernen Gerade und aus einer kubischen Kurve, deren Gleichung ist

$$\alpha_1 x_1^3 + \alpha_2 x_2^3 + |\mu(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3) + \alpha_4 x_3| x_3^2 = 0. \quad (19a)$$

Die Kurve schneidet die unendlich ferne Gerade in den 3 Bildern des unendlich fernen Punktes L_{μ} von l_{μ} , als Punkt von [w'] betrachtet; die Tangenten dieser Punkte convergiren alle nach dem der Kurve nicht angehörenden Punkte O.

Der Schnitt in $\lceil w' \rceil$ besteht aus der dreifachen unendlich fernen Gerade und aus dieser Kurve 9^{ten} Grades:

$$\mu(\alpha_1 x_1^{\frac{1}{3}} + \alpha_2 x_2^{\frac{1}{3}}) x_4^{\frac{1}{3}} + \alpha_1 x_1 + \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4 = 0,$$

oder

$$\left[\mu^3 \,\alpha_1^{\ 3} \,x_1 \,x_4^{\ 2} + \mu^3 \,\alpha_2^{\ 3} \,x_2 \,x_4^{\ 2} + |\alpha_1 \,x_4 + \alpha_2 \,x_2 + (\mu \alpha_3 + \alpha_4) \,x_4|^3 \right]^3 - \\ - 27 \,\mu^6 \,\alpha_1^{\ 3} \,\alpha_2^{\ 3} \,x_1 \,x_2 \,x_4^{\ 4} |\alpha_1 \,x_4 + \alpha_2 \,x_2 + (\mu \alpha_3 + \alpha_4) \,x_4|^3 = 0.$$
 (20a)

Sie schneidet die unendlich ferne Gerade nur im unendlich fernen Punkte L_{μ} von l_{μ} ; dieser Punkt ist ein 6-facher, dessen sämmtliche Tangenten mit der unendlich fernen Gerade zusammengefallen sind; diese Gerade hat in L_{μ} 9 Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} enthält ausser der 3-fachen unendlich fernen Gerade eine Kurve 9^{ten} Grades, welche in L_{μ} einen 6-fachen Punkt hat; sämmtliche Tangenten von L_{μ} sind in der unendlich fernen Gerade vereinigt (Ausnahme in $\lceil w \rceil$).

Wenn die Gerade l_{μ} den Kreispunkt $I(X_1)$ enthält, wonach $\alpha_1 = 0$, so besteht die axiale Regelfläche aus der 3-fachen Ebene [w] und aus den dreifachen durch l_{μ} an den Fokalcylinder F_1 gelegten Berührungsebenen. Letztere sind durch

$$|\alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4|^3 + \alpha_2^2 |\mu \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_3| (x_3 - \mu x_4)^2 = 0$$
 (21a) angewiesen.

Wenn l_{μ} sich in der Abbildungsebene [w'] befindet, wonach $\mu = 0$, so finden wir für die in [w] liegende Kurve

$$\alpha_1 x_1^3 + \alpha_2 x_2^3 + \alpha_4 x_3^3 = 0.$$
 . . . (22a)

Sie ist die Bildkurve der in $\lceil w' \rceil$ liegenden Gerade.

Der Schnitt in [w'] ist jetzt aus der 3-fachen unendlich fernen Gerade und der 9-fachen Gerade l_{μ} zusammengesetzt.

Wenn l_{μ} eine isotrope Gerade (durch $I(X_1)$) in $\lfloor w' \rfloor$ ist, so zerfällt die Regelfläche, ausser der 3-fachen Ebene $\lfloor w \rfloor$, in die 3 dreifachen Ebenen, welche der Gleichung

DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-4} w^3$ UND $w' = c^3 w^{-2}$. 383

$$(\alpha_2 x_2 + \alpha_4 x_4)^3 + \alpha_2^2 \alpha_4 x_3^3 = 0$$
 . . . (23a)

entsprechen.

§ 5. Die axiale Regelftäche einer zu den Abbildungsebenen parallelen Gerade l_{μ} , welche OO' schneidet.

Man hat hier

$$\mu\alpha_3 + \alpha_4 = 0.$$

Die in [w] liegende Kurve hat nun die Gleichung

$$\alpha_1 x_1^3 + \alpha_2 x_2^3 + \mu (\alpha_1 x_1 + \alpha_2 x_2) x_3^2 = 0.$$
 (24a)

Sie ist vom 3^{ten} Grade und hat in O einen Wendepunkt; die Wendetangente ($\alpha_1 x_1 + \alpha_2 x_2 = 0$) ist zu der gegebenen Gerade parallel.

Weil die Tangenten der 3 unendlich fernen Punkte L_{μ}' sich in O treffen, so sind diese Punkte sextactische und ist die unendlich ferne Gerade die harmonische Polare des Wendepunktes O.

Die kubische Kurve hat demnach in O einen Mittelpunkt. Die in $\lceil w' \rceil$ befindliche Kurve 9^{ten} Grades wird nun durch

dargestellt.

Die Kurve hat in O' einen dreifachen Punkt, dessen sämmtliche Tangenten vereinigt sind im Bilde der parallel mit l_{μ} verlaufenden Gerade OL_{μ} .

Die Regelfläche hat noch OO' als eine einfache Gerade, wonach der Schnitt mit ω_{μ} in X_{μ} einen gewöhnlichen Punkt hat.

§ 6. Die axiale Regelfläche einer in der Ebene \(\varepsilon\) der reellen Axen liegenden Gerade.

Die Eigenschaften der Regelfläche einer in ε' liegenden Gerade werden aus den der vorliegenden Fläche durch Vertauschung von x_2 mit — x_2 hergeleitet.

Die axiale Regelfläche einer in ε liegenden Gerade ist aus 3mal dieser Ebene und aus einer Restfläche 9^{ten} Grades zusammengesetzt.

Die Gerade l ist auf dieser Restfläche eine 6-fache.

Die Kreispunkte sind 3-fache Punkte; ihre Berührungsebenen sind in den Ebenen (8a) und (9a) vereinigt, wo $a_1 = a_2 = a$ einzusetzen ist.

Der Punkt E' ($x_1 = -x_2$) ist ein gewöhnlicher; seine Berührungsebene ist die Ebene $\lceil w \rceil$.

Die Gerade 00' gehört der Restfläche nicht an,

Dagegen ist der Schnittpunkt S von l mit OO' ein 6-facher Punkt. Der Schnitt in [w] besteht aus den zwei 2-fachen durch die Spur A von l in [w] gelegten isotropen Geraden, aus der einfachen durch A parallel zur imaginären Axe verlaufenden Gerade und aus einer kubischen Kurve, deren auf AIJ bezogene Gleichung lautet:

$$\frac{\xi_2(\xi_1+a\xi_3)^3-\xi_1(\xi_2+a\xi_3)^3+b'(\xi_1-\xi_2)\xi_3^3}{\xi_1-\xi_2}=0,$$

oder

$$\xi_1 \xi_2 (\xi_1 + \xi_2) + 3a \xi_1 \xi_2 \xi_3 + (b' - a^3) \xi_3^3 = 0.$$
 (26a)

Diese kubische Kurve ist circular; die isotropen Asymptoten convergiren in A; dieser Punkt gehört aber der Kurve nicht an.

Der unendlich ferne Punkt der reellen Axe liegt nicht auf der Kurve, wohl aber der unendlich ferne Punkt der imaginären Axe; die Tangente in diesem (gewöhnlichen) Punkte geht durch den Punkt T.

Der Punt O gehört auch der Kurve nicht an.

Der Schnitt in [w'] ist eine Kurve 9^{ten} Grades. Ihre auf B'IJ bezogene Gleichung ist

$$\frac{\xi_{2}(\xi_{1}+b'\xi_{4})^{\frac{1}{3}}-\xi_{1}(\xi_{2}+b'\xi_{4})^{\frac{1}{3}}+a(\xi_{1}-\xi_{2})\xi_{4}^{\frac{1}{3}}}{\xi_{4}-\xi_{3}}=0,$$

oder

$$\frac{\left[\xi_{2}^{3}(\xi_{1}+b'\xi_{4})-\xi_{1}^{3}(\xi_{2}+b'\xi_{4})+a^{3}(\xi_{1}-\xi_{2})^{3}\xi_{4}\right]^{3}+27a^{3}\xi_{1}^{3}\xi_{2}^{3}\xi_{4}(\xi_{1}+b'\xi_{4})(\xi_{2}+b'\xi_{4})(\xi_{1}-\xi_{2})^{3}}{(\xi_{4}-\xi_{2})^{3}}=0,$$

oder endlich

$$\begin{aligned} & [\xi_1 \, \xi_2 (\xi_1 + \xi_2) + b' (\xi_1^2 + \xi_1 \, \xi_2 + \xi_2^2) \, \xi_4 - a^3 (\xi_1 - \xi_2)^2 \, \xi_4]^3 - \\ & - 27a^3 \, \xi_1^3 \, \xi_2^3 \, \xi_4 (\xi_1 + b' \, \xi_4) (\xi_2 + b' \, \xi_4) = 0. \end{aligned} \tag{27a}$$

Die Kreispunkte sind 3-fache, deren Tangenten in die durch das Bild A' von A gehenden isotropen Geraden zusammengefallen sind.

Die Spur B' von l in [w'] ist ein 6-facher Punkt; seine Tan-

genten sind die axialen Projektionen der 6 ausserhalb der zu [w] gehörenden reellen Axe liegenden Bilder von B'.

Der Punkt O' gehört der Kurve nicht an.

Der unendlich ferne Punkt der imaginären Axe ist ein Wendepunkt, dessen Tangente im Unendlichen liegt.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve $9^{\rm ten}$ Grades.

Diese hat in den Kreispunkten 3-fache Punkte, deren Tangenten die Schnittlinien sind von ω_{μ} mit den Ebenen (8a) und (9a), (wo $a_1 = a_2 = a$ einzusetzen ist).

Der Schnittpunkt C_{μ} von l mit ω_{μ} ist ein 6-facher Punkt, dessen Tangenten die axialen Projektionen aus l auf $\lceil w \rceil$ der 6 ausserhalb der Ebene der reellen Axen liegenden, nach C_{μ} zielenden Congruenzstrahlen sind.

Der unendlich ferne Punkt der imaginären Axe ist ein Wendepunkt, dessen Tangente die unendlich ferne Gerade ist (Ausnahme in $\lceil w \rceil$).

Die Kurve hat ausserdem *Doppelpunkte* in den Schnittpunkten von ω_{μ} mit der *Doppelkurve*.

Da l in einer singulären Ebene liegt, so wird der Grad der Doppelkurve erniedrigt; wir wollen ihn somit auf direktem Wege zu bestimmen versuchen und fragen zu diesem Zweck nach der Anzahl der Schnittpunkte mit l.

Wir operiren nun mit der Gleichung (siehe IV. Abschnitt, § 10a, S. 272)

$$f(\pi) \equiv (b' - \mu \pi) - (\pi + a)^3 = 0$$
, . . (28a)

oder

$$\pi^3 + 3 a \pi^2 + (3a^2 + \mu) \pi + (a^3 - b') = 0.$$

Die Punkte, wo l die Doppelkurve schneidet, sind zunächst die Punkte $D_{k,l}$, welche die Bedingung

$$c_k + c_l = 0$$

veranlassen.

Wir haben also die folgende symmetrische Funktion der Wurzeln zu betrachten

$$(c_1 + c_2)(c_1 + c_3)(c_2 + c_3) = 0$$
,

oder

386 DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-4} w^3$ UND $w' = c^3 w^{-2}$.

$$c_1^2 c_2 + c_1^2 c_3 + c_2^2 c_4 + c_2^2 c_3 + c_3^2 c_4 + c_3^2 c_2 + 2 c_4 c_2 c_3 = 0$$
,

also

$$(c_1c_2 + c_1c_3 + c_2c_3)(c_1 + c_2 + c_3) - c_1c_2c_3 = 0.$$

Wenn wir über die Beziehungen

$$c_1 + c_2 + c_3 = -3a$$
,
 $c_1 c_2 + c_1 c_3 + c_2 c_3 = 3a^2 + \mu$,
 $c_1 c_2 c_3 = -(a^3 - b')$

verfügen, so verwandelt sich die Bedingung in

$$-3a(3a^2 + \mu) + (a^3 - b') = 0,$$

oder

$$\mu = -\frac{8a^3 + b'}{3a} \cdot \dots (29a)$$

Dieser Wert von μ bestimmt auf l den einzigen einfachen Schnittpunkt $D_{k,l}$ der Doppelkurve.

Die auf / befindlichen Doppelpunkte $D_{pq,rs}$ der Doppelkurve sind hier aus der Bedingung

$$c_p c_s - c_q^2 = 0$$

zu bestimmen; wir haben uns daher mit der folgenden symmetrischen Funktion der Wurzeln zu beschäftigen:

$$(c_2\,c_3 -\!\!\!\!- c_1^{\ 2})\,(c_1\,c_3 -\!\!\!\!- c_2^{\ 2})\,(c_1\,c_2 -\!\!\!\!- c_3^{\ 2}) =\!\!\!\!- 0$$
 ,

oder

$$\Sigma_3 c_1^{\ 3} c_2^{\ 3} - \Sigma_3 c_1^{\ 4} c_2 c_3 = 0$$
,

also

$$(c_1 c_2 + c_1 c_3 + c_2 c_3)^3 - c_1 c_2 c_3 (c_1 + c_2 + c_3)^3 = 0$$
,

oder

$$(3a^2 + \mu)^3 - 27a^3(a^3 - b') = 0$$
. . . . (30a)

Hieraus finden wir

$$\mu = -3a^2 + 3\tau_3 a \sqrt[3]{a^3 - b'}, \quad . \quad . \quad (31a)$$

wo au_3 eine der $3^{ ext{ten}}$ Wurzeln aus der Einheit darstellt.

Die Gleichung (30a) (oder (31a)) bestimmt die 3 auf l liegenden Doppelpunkte der Doppelkurve. Die Doppelkurve hat somit $2 \times 3 + 1 = 7$ Punkte mit l gemein.

Jede durch l gelegte Ebene liefert noch 3 ausserhalb l liegende Punkte dieser Kurve. Der Grad der Doppelkurve ist demnach 7+3=10.

Auf der axialen Regelfläche einer in der Ebene \varepsilon der reellen Axen befindlichen Gerade liegt eine Doppelkurve 10^{ten} Grades.

§ 7. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden Gerade, welche durch O geht.

Der Unterschied mit der vorhergehenden Regelfläche ist dieser, dass der Schnitt in [w'] jetzt in eine 3-fache Kurve 3^{ten} Grades zerfallen ist. Diese vertritt also einen Bestandteil 9^{ten} Grades der Doppelkurve. Der übrige lineare Teil ist mit der zu [w] gehörenden imaginären Axe zusammengefallen. Alle Schnittpunkte von l mit der Doppelkurve sind ja, vermöge (29a) und (31a), im Punkte O vereinigt.

Ausserdem ist der Strahl OE', d. h. die in [w] liegende imaginäre Axe, ein 2-facher, wonach auch E' der Doppelkurve angehört.

Die Gleichung der in $\lceil w \rceil$ liegenden Kurve ist

$$x_1 x_2 (x_1 + x_2) + b' x_3^3 = 0.$$
 (32a)

Die Kreispunkte und der unendlich ferne Punkt der imaginären Axe sind Wendepunkte, deren Tangenten alle in O convergiren.

Die 3-fache in [w] befindliche kubische Kurve wird durch

$$\frac{(\xi_1 + b' \xi_4) \xi_2^3 - (\xi_2 + b' \xi_4) \xi_1^3}{\xi_4 - \xi_2} = 0,$$

also durch

$$\xi_1 \xi_2 (\xi_1 + \xi_2) + b'(\xi_1^2 + \xi_1 \xi_2 + \xi_2^2) \xi_4 = 0$$
. (33*a*)

dargestellt.

Sie enthält die Kreispunkte und den unendlich fernen Punkt der imaginären Axe; die isotropen Asymptoten treffen sich in O'.

Der Punkt B' ist ein Doppelpunkt, dessen Tangenten durch

$$\xi_1^2 + \xi_1 \xi_2 + \xi_2^2 = 0$$
 . . . (34a)

bestimmt sind.

Die Tangente des unendlich fernen Punktes der imaginären Axe geht durch den auf der reellen Axe liegenden Punkt T_0 :

$$\frac{x_1}{3b'} = \frac{x_2}{3b'} = \frac{x_4}{2}. \quad . \quad . \quad . \quad . \quad (35a)$$

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 9-ten Grades, welche in den Kreispunkten 3-fache und im unendlich fernen Punkte der imaginären Axe einen Wendepunkt hat, mit der unendlich fernen Gerade als Tangente.

§ 8. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden Gerade, welche durch O' geht.

Die in [w] liegende Kurve bleibt hier eine einfache und behält also dieselben Eigenschaften wie im allgemeinen Falle.

Die in $\lceil w' \rceil$ befindliche Kurve hat nun die Gleichung

$$\frac{x_2 x_1^{\frac{1}{3}} - x_1 x_2^{\frac{1}{3}} + a (x_1 - x_2) x_4^{\frac{1}{3}}}{x_1 - x_2} = 0,$$

oder

$$|x_1x_2(x_1+x_2)-a^3(x_1-x_2)^2x_4|^3+27x_1^4x_2^4x_4=0.$$
 (36a)

Der Punkt O' ist ein 3-facher, dessen Tangenten in der reellen Axe vereinigt sind.

Der einfache Schnittpunkt von 1 mit der Doppelkurve ist jetzt durch

$$\mu = -\frac{8}{3}a^2$$
 (37a)

angewiesen, die doppelten Schnittpunkte dagegen durch

$$\mu = 3a^2(-1 + \tau_3).$$

Einer von ihnen wird durch $\mu = 0$ bestimmt und ist also mit dem Punkte O' identisch.

Die Doppelkurve ist noch immer vom 10^{ten} Grade.

§ 9. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden und zu diesen parallelen Gerade l_{μ} .

Die Fläche ist vom Sten Grade.

Die unendlich ferne Gerade der Abbildungsebenen ist eine Doppelgerade.

Die in [w] liegende Kurve ist aus der unendlich fernen Gerade und aus einem Kegelschnitte zusammengesetzt.

DIE CONGRUENZEN VON $w' = e^{-2} w^3$, $w'^2 = e^{-1} w^3$ UND $w' = e^3 w^{-2}$. 389

Wir haben in § 5

$$\alpha_2 = -\alpha_1$$

einzusetzen.

Die Gleichung (24a) verwandelt sich alsdann, nach Teilung durch $x_1 - x_2$, in

$$x_1^2 + x_1 x_2 + x_2^2 + \mu x_3^2 = 0.$$
 (38a)

Der Mittelpunkt dieses Kegelschnittes befindet sich in O.

Die in [w'] befindliche Kurve ist ausgeartet in die 2-fache unendlich ferne Gerade und in eine Kurve $6^{\text{ter.}}$ Grades, welche durch

$$[(x_1-x_2)^2 + \mu^3 \, x_4^{\ 2}]^3 - 27 \mu^6 \, x_1 \, \dot{x_2} \, x_4^{\ 4} = 0 \quad . \quad (39a)$$

dargestellt wird.

Diese Kurve hat im unendlich fernen Punkte der reellen Axe einen 4-fachen Punkt; alle Asymptoten sind in der unendlich fernen Gerade vereinigt, welche dort 6 Punkte mit der Kurve gemein hat.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} enthält die 2-fache unendlich ferne Gerade, nebst einer Kurve 6^{ten} Grades, welche auch in dem unendlich fernen Punkte der reellen Axe einen 4-fachen Punkt hat, dessen Tangenten alle in der unendlich fernen Gerade vereinigt sind; diese hat in ihrem Berührungspunkte 6 Punkte mit der Kurve gemein.

Wir werden jetzt den Grad der Doppelkurve bestimmen.

Weil hier $a = \infty$ und $b' = \infty$ gilt, so ist die Untersuchung von Neuem anzufangen.

Eine durch l_{μ} gelegte Ebene wird jetzt durch

$$x_1 - x_2 + \lambda(x_3 - \mu x_4) = 0$$
 . . . (40)

dargestellt.

Zwei Strahlen p und q der Regelfläche liefern einen Punkt der Doppelkurve, wenn ihre Spuren P und Q in [w] mit E in einer Gerade liegen, also wenn man hat

$$p_1 - p_2 = q_1 - q_2 = -\lambda. \quad . \quad . \quad . \quad (41)$$

Die nach einem Punkte

$$\frac{x_1}{\rho} = \frac{x_2}{\rho} = \frac{x_3}{\mu} = x_4$$

der betrachteten Gerade zielenden Congruenzstrahlen schneiden [w] in Punkten P (p_4 , p_2), für welche gilt:

$$\rho = p_1 \mu + p_1^3,$$

$$\rho = p_2 \mu + p_2^3.$$

Die beiden Coordinaten einer Spur P eines solchen Strahles in $\lceil w \rceil$ sind also durch zwei der drei Wurzeln von

$$c^3 + \mu c - \rho = 0$$
 (42a)

bestimmt.

Wenn wir die Wurzeln von (42a) mit c_4 , c_2 und c_3 bezeichnen, so gelten, vermöge (41), die folgenden Bedingungen:

$$\begin{split} c_1 &- c_2 = c_1 - c_3 \,, \\ c_1 &- c_2 = c_3 - c_1 \,, \\ c_1 &- c_2 = c_2 - c_3 \,, \\ c_1 &- c_2 = c_3 - c_2 \,, \\ c_1 &- c_2 = c_2 - c_1 \,, \\ \end{aligned}$$

$$\begin{array}{c} c_1 &- c_2 = c_2 - c_1 \,, \\ c_1 &- c_2 = c_2 - c_1 \,, \\ \end{array}$$

$$\begin{array}{c} \text{u. s. w. ;} \end{split}$$

es ist also entweder $c_k = c_t$ oder $c_1 + c_3 = 2 c_2$ u.s.w. Da $c_k = c_t$ unzulässig ist, so erübrigen wir die Bedingung

$$(c_2 + c_3 - 2c_1)(c_1 + c_3 - 2c_2)(c_1 + c_2 - 2c_3) = 0$$

oder

$$\begin{split} &2(c_1+c_2+c_3)^3-9(c_1c_2+c_1c_3+c_2c_3)(c_1+c_2+c_3)+27c_1c_2c_3=0,\\ &\text{also , vermöge }(42a), \end{split}$$

Der durch $\rho = 0$ bestimmte Punkt, d.h. X_{μ} , ist somit der einzige Punkt, nach dem zwei mit der gegebenen Gerade l_{μ} coplanäre Strahlen zielen, also der einzige Schnittpunkt von l_{μ} mit der Doppelkurve.

Die Wurzeln der entsprechenden Gleichung (42a), d. h. der Gleichung

$$c^3 + \mu c = 0$$
,

sind offenbar

DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-4} w^3$ UND $w' = c^3 w^{-2}$. 391

Die 9 nach X_{μ} zielenden Strahlen sind also bestimmt durch

$$\begin{aligned} 1^{\circ} \begin{vmatrix} p_{1} = c_{1} \\ p_{2} = c_{1} \end{vmatrix}, 2^{\circ} \begin{vmatrix} p_{1} = c_{1} \\ p_{2} = c_{2} \end{vmatrix}, 3^{\circ} \begin{vmatrix} p_{1} = c_{1} \\ p_{2} = c_{3} \end{vmatrix}, 4^{\circ} \begin{vmatrix} p_{1} = c_{2} \\ p_{2} = c_{1} \end{vmatrix}, 5^{\circ} \begin{vmatrix} p_{1} = c_{2} \\ p_{2} = c_{2} \end{vmatrix}, 6^{\circ} \begin{vmatrix} p_{1} = c_{2} \\ p_{2} = c_{3} \end{vmatrix}, 7^{\circ} \begin{vmatrix} p_{1} = c_{3} \\ p_{2} = c_{1} \end{vmatrix}, 8^{\circ} \begin{vmatrix} p_{1} = c_{3} \\ p_{2} = c_{2} \end{vmatrix}, 9^{\circ} \begin{vmatrix} p_{1} = c_{3} \\ p_{2} = c_{3} \end{vmatrix}. \end{aligned}$$

Es leuchtet ein, dass sowohl die Combination $(2^{\circ}, 7^{\circ})$ wie die Combination $(3^{\circ}, 4^{\circ})$ der Bedingung (41a) genügt.

Man hat für (2°, 7°)

$$p_1-p_2=q_1-q_2=-\lambda=-\sqrt{-\mu}, \ \ {\rm also} \ \ \lambda=+\sqrt{-\mu},$$
 und für $(3^\circ,4^\circ)$

$$p_1-p_2=q_1-q_2=-\lambda=+\sqrt{-\mu}, \text{ also } \lambda=-\sqrt{-\mu}.$$

Der Punkt X_{μ} erscheint somit als ein Doppelpunkt der Doppelkurve. Jede durch l_{μ} gelegte Ebene, schneidet [w] in einer Gerade des Strahlenbüschels (E), also in einem Congruenzstrahle.

Diese Ebene enthält also noch 2 andere Congruenzstrahlen, welche sich in einem Punkte der Doppelkurve schneiden.

Die Schnittpunkte in [w] dürfen nicht in Betracht gezogen werden, da die Ebene [w] schon der totalen axialen Regelfläche entzogen ist.

Eine durch l_{μ} gelegte Ebene enthält also ausserhalb l_{μ} einen gewöhnlichen Punkt und auf l_{μ} einen Doppelpunkt der Doppelkurve; diese ist also eine kubische Kurve mit einem Doppelpunkte, also eine kubische Plankurve.

Eine leichte Rechnung zeigt, dass diese Plankurve sich in der Ebene der imaginären Axen befindet.

§ 10. Die axiale Regelfläche eines Congruenzstrahles s.

Die Restfläche ist vom 6^{ten} Grade.

Der Strahl s ist auf seiner Regelfläche eine 4-fache Gerade.

Die Kreispunkte gehören nun der Regelfläche nicht an.

Die Punkte E und E' sind gewöhnliche, deren Berührungsebenen in die Ebene $\lceil w \rceil$ zusammengefallen sind.

Der Schnitt in [w] ist ausgeartet in die beiden 2-fachen reellen und imaginären Axen und in einen Kegelschnitt, dessen Gleichung ist:

392 DIE CONGRUENZEN VON $w' = e^{-2} w^3$, $w'^2 = e^{-4} w^3$ UND $w' = e^3 w^{-2}$.

$$\frac{\xi_2(\xi_1+s_1\xi_3)^3-\xi_1(\xi_2+s_2\xi_3)^3-(s_2^3\xi_1-s_1^3\xi_2)\xi_3^3}{\xi_1\xi_2}=0,$$

oder

$$\xi_1^2 - \xi_2^2 + 3(s_1 \xi_1 - s_2 \xi_2) \xi_3 + 3(s_1^2 - s_2^2) \xi_3^2 = 0$$
. (44a)

Die Spur S ($\xi_1 = \xi_2 = 0$) von s in [w] gehört dieser Kurve nicht an.

Die unendlich fernen Punkte des Kegelschnittes sind die Punkte E und E' der Axen. Der Kegelschnitt ist demnach eine rechtwinklige Hyperbel, deren Mittelpunkt der Schnittpunkt von OS mit der Gerade

$$2\left(\boldsymbol{\xi}_{1}-\!\!-\boldsymbol{\xi}_{2}\right)+3\left(\boldsymbol{s}_{1}-\!\!-\boldsymbol{s}_{2}\right)\boldsymbol{\xi}_{3}=0$$

ist, und somit durch

$$\frac{\xi_1}{3s_1} = \frac{\xi_2}{3s_2} = \frac{\xi_3}{-2} \quad . \quad . \quad . \quad (45a)$$

gegeben wird.

Die in [w'] liegende Kurve wird durch

$$\frac{\xi_{2}(\xi_{1}+s_{1}^{3}\xi_{4})^{\frac{1}{3}}-\xi_{1}(\xi_{2}+s_{2}^{3}\xi_{4})^{\frac{1}{3}}+(s_{2}\xi_{1}-s_{1}\xi_{2})\xi_{4}^{\frac{1}{3}}}{\xi_{1}\xi_{2}}=0,$$

also durch

dargestellt.

Der Punkt S' ist ein 4-facher; seine Tangenten sind die axialen Projektionen aus s auf [w'] der 4 auf der Fläche befindlichen nach S' zielenden Congruenzstrahlen.

Die unendlich fernen Punkte der reellen und imaginären Axen sind Wendepunkte, deren Tangenten im Unendlichen liegen.

Der Schnitt mit einer zu der Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 6^{ten} Grades. Diese hat im Schnittpunkte S_{μ} von s mit ω_{μ} einen 4-fachen Punkt, und in den unendlich fernen Punkten der reellen und imaginären Axen Wendepunkte, deren Tangenten im Unendlichen liegen.

Wir wollen jetzt die Doppelkurve in Betracht ziehen.

DIE CONGRUENZEN VON $w' = e^{-2} w^3$, $w'^2 = e^{-4} w^3$ UND $w' = e^3 w^{-2}$. 393

Die Gleichungen $s_1(\pi_1) = 0$ und $s_2(\pi_2) = 0$ vom IV. Abschnitte (§ 12a, S. 291) haben hier diese Gestalt:

$$s_1(\pi_1) \equiv \pi_1^2 + 3s_1\pi_1 + (3s_1^2 + \mu) = 0,$$
 . (47a)

$$s_2(\pi_2) \equiv \pi_2^2 + 3s_2\pi_2 + (3s_2^2 + \mu) = 0$$
. (48a)

Die Schnittpunkte der Doppelkurve mit s werden (siehe S. 220) durch die Gleichung

$$\Pi \left\{ (\pi_4)_p (\pi_2)_s - (\pi_4)_r (\pi_2)_q \right\} = 0$$

bestimmt. Bezeichnen wir die Wurzeln von $s_1(\pi_1) = 0$ mit c_1 und c_1' und die von $s_2(\pi_2) = 0$ mit c_2 und c_2' , so wird die Bedingung:

$$(c_1 c_2 - c_1' c_2')(c_1 c_2' - c_1' c_2) = 0,$$

oder

$$(e_1 + e_1')^2 e_2 e_2' - e_1 e_1' (e_2 + e_2')^2 = 0;$$

diese Gleichung lässt sich, vermöge (47a) und (48a), umformen in

$$\mu = 0$$
. (49a)

Der Schnittpunkt von s mit der Doppelkurve ist daher mit der Spur S' von s in $\lceil w' \rceil$ identisch.

Die 9 Bilder S, S_1 , $S_2 \dots S_8$ in [w] von S' sind bestimmt durch

$$egin{array}{lll} S & s_1 & s_2, \\ S_1 & au_3 s_1, au_3 s_2, \\ S_2 & au_3' s_1, au_3' s_2, \\ S_3 & s_1, au_3 s_2, \\ S_4 & s_1, au_3' s_2, \\ S_5 & au_3 s_1, au_3' s_2, \\ S_6 & au_3' s_1, au_2, \\ S_7 & au_3 s_1, au_3' s_2, \\ S_8 & au_3' s_1, au_3 s_2. \\ \end{array}$$

Hieraus folgt, dass S mit S_1 und S_2 in einer Gerade liegt, womit auch in geometrischer Weise nachgewiesen ist, dass S' der Doppelkurve angehört.

Die Spuren in [w] der 9 Strahlen $(s, p_1, p_2, \ldots, p_8)$, welche nach einem auf s liegenden Punkte C zielen, befinden sich auf 3 durch X_4 und 3 durch X_2 verlaufenden Geraden.

Die zwei Punkte P_5 und P_6 werden auch mit S in einer Gerade sein, wenn $P_3P_5P_6$ mit SX_4 also P_3 mit S zusammenfällt, d. h. wenn C zwei zusammenfallende Strahlen trägt. Wir schliessen hier-

Fig. 14.

aus, dass auch die beiden Brennpunkten S_{f^1} und S_{f^2} auf der Doppelkurve liegen.

Auf s befinden sich also 3 Punkte der Doppelkurve.

Jede durch s gelegte Ebene enthält ausser s noch zwei Strahlen, welche einen Punkt D der Doppelkurve liefern. Daher:

Die Doppelkurve ist eine rationale Raumkurve 4^{ten} Grades, welche s als Trisekante hat.

§ 11. Die axiale Regelfläche eines in der Ebene der reellen Axen liegenden Congruenzstrahles s.

Die Regelfläche ist vom 3^{ten} Grade und trägt s als Doppelgerade.

Der unendlich ferne Punkt E' der imaginären Axe ist ein gewöhnlicher, dessen Berührungsebene mit $\lceil w \rceil$ zusammenfällt.

Der Schnitt in [w] besteht aus der 2-fachen Gerade SE' (durch S zu der imaginären Axe parallel) und aus der Gerade

$$\xi_1 + \xi_2 + 3 s \xi_3 = 0$$
,

oder

$$x_1 + x_2 + sx_3 = 0.$$
 (50a)

Die Gerade SE' ist offenbar die Torsallinie t; die Gerade (50a) ist also die einfache Leitlinie, und S ist der eine Zwickpunkt von s.

Der Torsalpunkt T von t ist der Schnittpunkt der Gerade (50a) mit der durch $\xi_1 + \xi_2 = 0$ dargestellten Torsallinie t, also mit dem unendlich fernen Punkte E' der imaginären Axe identisch.

Die zwei Strahlen p_6 und p_7 (siehe Fig. 14), welche sich in einem Punkte C auf s stützen und nicht mit s in einer der singulären Ebenen liegen, sind die zwei Erzeugenden der kubischen Regelfläche, welche sich in diesem Punkte C der Doppelgerade s schneiden. Weil s, p_5 und p_8 immer durch ε verbunden bleiben, rücken die Strahlen p_5 , p_6 , p_7 , p_8 , also ins Besondere p_6 und p_7 zusammen, falls $p_3 = p_4$, also falls der auf s liegende Punkt C

zwei zusammenfallende Tangenten an der Fokalfläche trägt. Dies geschieht, wenn C der Schnittpunkt S_s (nicht der Berührungspunkt S_f) von s mit der Fokalfläche, oder, was dasselbe ist, mit der kubischen Fokalkurve in ε ist.

Dieser Punkt S_s wird durch

$$4 \xi_3 + 3 s^2 \xi_4 = 0$$
 (51a)

bestimmt und ist offenbar der zweite Zwickpunkt auf s.

Der fragliche Strahl p_s durch S_s schneidet [w] auf der reellen Axe in einem Punkte P_s , für welchen man hat

$$x_1 = x_2 = -\frac{s}{2} x_3,$$

oder

$$\xi_1 = \xi_2 = -\frac{3}{2} s \, \xi_3.$$
 (52a)

Der Punkt P_s liegt natürlich auf der einfachen Leitlinie (50a) und ist der zweite Torsalpunkt.

Der Schnitt der Regelfläche mit $\lfloor w' \rfloor$ ist offenbar die Bildkurve der einfachen Leitlinie und wird demnach durch

$$x_1^{\frac{1}{3}} + x_2^{\frac{1}{3}} + sx_4^{\frac{1}{3}} = 0$$
,

oder

$$(x_1 + x_2 + s^3 x_4)^3 - 27 s^3 x_1 x_2 x_4 = 0, \quad (53a)$$

oder auch durch

$$(\xi_1 + \xi_2)^3 + 9 s^3 (\xi_1^2 - \xi_1 \xi_2 + \xi_2^2) \xi_4 = 0 \qquad (54a)$$

dargestellt.

Aus (54a) geht hervor, dass S' ein Doppelpunkt ist, dessen Tangenten durch

$$\xi_1^2 - \xi_1 \xi_2 + \xi_2^2 = 0$$
 . . . (55a)

angewiesen sind.

Der unendlich ferne Punkt E' der imaginären Axe ist ein Wendepunkt, dessen Tangente im Unendlichen liegt.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine kubische Kurve, die im Schnittpunkte S_{μ} von s mit

 ω_{μ} einen Doppelpunkt hat und im unendlich fernen Punkte E' der imaginären Axe einen Wendepunkt, mit der unendlich fernen Gerade als Wendetangente.

Wenn wir für s die Gerade OO' wählen, so ist die kubische Regelfläche ausgeartet in die 3-fache Ebene der imaginären Axen, welche die kubische Fokalkurve trägt.

§ 12. Die axiale Regelfläche einer in der Abbildungsebene [w] liegenden Gerade l_x .

Die Fläche ist vom 4^{ten} Grade und trägt l_{∞} als eine einfache Leitlinie.

Die unendlich ferne Gerade der Abbildungsebenen ist eine einfache Erzeugende der Regelfläche; ihre Berührungsebene fällt mit [w] zusammen; diese Ebene hat mit der Fläche 3 mal die unendlich ferne Gerade gemein, welche also eine Inflexionskante der Fläche ist.

Der Schnitt mit [w] besteht also aus der *einfachen* Gerade l_{∞} und aus der 3-fachen unendlich fernen Gerade.

Die Gerade l∞ werde durch

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = 0$$
 (56)

dargestellt.

Der Schnitt in $\lfloor w' \rfloor$ besteht jetzt aus der einfachen unendlich fernen Gerade und aus einer kubischen Kurve, deren Gleichung lautet:

$$\alpha_{1}x_{1}^{3} + \alpha_{2}x_{2}^{3} + \alpha_{3}x_{4}^{3} = 0$$
,

oder

$$(\alpha_1^3 x_1 + \alpha_2^3 x_2 + \alpha_3^3 x_4)^3 - 27 \alpha_1^3 \alpha_2^3 \alpha_3^3 x_1 x_2 x_4 = 0. \quad (57a)$$

Diese Kurve hat die unendlich ferne Gerade und die durch O' gehenden isotropen Geraden als Wendetangenten. Die auf diesen Geraden liegenden Wendepunkte sind bez. durch

$$egin{aligned} L_3^{\ \prime} \dots \, {m lpha_1}^3 x_1 + {m lpha_2}^3 x_2 &= 0 \,, \ L_1^{\ \prime} \dots \, {m lpha_2}^3 x_2 + {m lpha_3}^3 x_3 &= 0 \,, \ L_2^{\ \prime} \dots \, {m lpha_1}^3 x_1 + {m lpha_3}^3 x_3 &= 0 \end{aligned}$$

bestimmt. Sie sind bez. die in [w'] befindlichen Bilder der Schnittpunkte L_3 , L_1 , L_2 von l_{∞} mit der unendlich fernen Gerade und den beiden durch O verlaufenden isotropen Geraden. Die Strahlen $L_1 L_1'$ und $L_2 L_2'$ sind Inflexionskanten mit den durch OO' gelegten isotropen Ebenen als Inflexionsebenen. Auch die Gerade $L_3 L_3'$, d.h. die unendlich ferne Gerade, ist, wie schon bemerkt wurde, eine Inflexionskante; ihre Inflexionsebene fällt mit [w] zusammen.

Vermöge des auf S. 302 u.f. Behandelten, hat l_x hier (wo n = 1) keinen Punkt mit der Doppelkurve gemein.

Jede durch l_{∞} gelegte Ebene enthält von der Doppelkurve 3 Punkte ausserhalb l_{∞} und keinen auf l_{∞} .

Diese Doppelkurve ist daher eine kubische Raumkurve.

§ 13. Die axiale Regelfläche einer in der Abbildungsebene [w] liegenden Gerade l_x , welche durch O geht.

Wenn wir die Gerade l∞ durch

$$x_2 = kx_1$$

darstellen, so ist die Gleichung ihrer axialen Regelfläche (siehe (144a), S. 302)

$$k^2(1-k^2)^2(kx_1-x_2)x_3^3+(k^3x_1-x_2)^3x_4=0$$
. (58a)

Auf dieser Fläche 4^{ten} Grades ist das Bild l' von l_{∞} ,

$$\begin{cases} k^3 x_1 - x_2 = 0, \\ x_3 = 0, \end{cases}$$

eine 3-fache Gerade. Diese Gerade enthält somit sämmtliche Doppelpunkte.

Die Fläche schneidet [w] in 3 mal der unendlich fernen Gerade und in der einfachen Gerade l_{∞} .

Die Ebene [w'] wird getroffen in der *einfachen* unendlich fernen Gerade und in der 3-fachen Gerade l', der *Bildgerade* von l_{∞} .

Die Gerade OO' ist eine einfache Erzeugende der Fläche.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} enthält die unendlich ferne Gerade und eine *kubische* Kurve, welche durch X_{μ} geht und im unendlich fernen Punkte L_{3}' von l' einen $R\ddot{u}ekkehrpunkt$ hat, dessen Tangente im Unendlichen liegt.

- § 14. Die axiale Regelfläche der zu [w] gehörenden reellen Axe. Diese Fläche ist in die 3-fache Ebene der reellen Axen und in die Abbildungsebene [w] zerfallen.
- § 15. Die Regeftläche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen.

Die Fläche ist vom 18^{ten} Grade und trägt den Kreis als eine 9-fache Kurve.

Der Kreis werde durch

$$\alpha_{3}\beta_{5}v_{4}v_{2} + x_{4}(\alpha_{2}\beta_{5}x_{3} + \alpha_{3}\beta_{2}x_{4}) + x_{2}(\alpha_{4}\beta_{3}x_{3} + \alpha_{5}\beta_{4}x_{4}) + (\alpha_{5}\beta_{3}x_{3}^{2} + \alpha_{3}\beta_{6}x_{4}^{2}) = 0, (59)$$

$$\alpha_{3} = \mu x_{4}$$

dargestellt.

Wir setzen noch

$$\gamma_{0} = \alpha_{3} \beta_{3}, \ \gamma_{0}' = \mu \alpha_{3} \beta_{3}, \ \gamma_{0}'' = \mu^{2} \alpha_{3} \beta_{3},
\gamma_{1} = \mu \alpha_{2} \beta_{3} + \alpha_{3} \beta_{2}, \ \gamma_{2} = \mu \alpha_{1} \beta_{3} + \alpha_{3} \beta_{1},
\gamma_{1}' = \mu (\mu \alpha_{2} \beta_{3} + \alpha_{3} \beta_{2}), \gamma_{2}' = \mu (\mu \alpha_{1} \beta_{3} + \alpha_{3} \beta_{1}),
\gamma_{3} = \mu^{2} \alpha_{0} \beta_{3} + \alpha_{3} \beta_{0}.$$
(61)

Die Ebene [w] wird in einer Kurve 6^{ten} Grades und in 3 2-fachen durch jeden der Kreispunkte gelegten Geraden geschnitten. Die Kurve in [w] hat diese Gleichung:

$$\gamma_{0}x_{1}^{3}x_{2}^{3} + \gamma_{0}'(x_{1}^{3}x_{2} + x_{1}x_{2}^{3})x_{3}^{2} + \gamma_{0}''x_{1}x_{2}x_{3}^{4} + \gamma_{1}x_{1}^{3}x_{3}^{3} + \gamma_{2}x_{2}^{3}x_{3}^{3} + \gamma_{1}'x_{1}x_{3}^{5} + \gamma_{2}'x_{2}x_{3}^{5} + \gamma_{3}x_{3}^{6} = 0... (62a)$$

Die Tangenten der Kreispunkte, welche auch die Ausartungselementen des Gesammtschnittes bilden, werden durch

und

$$\gamma_0 x_1^3 + (\gamma_0' x_1 + \gamma_2 x_3) x_3^2 = 0$$
 . . . (64a)

bestimmt.

Diese Tangenten haben ausser ihren Berührungspunkten keine Punkte mit der Kurve gemein.

Die in $\lfloor w \rfloor$ liegende Kurve hat offenbar in den Kreispunkten 3-fache Punkte, und ist somit tricircular.

Der Schnitt mit [w'] ist eine Kurve 18^{ten} Grades, deren Gleichung lautet

$$\gamma_{0}x_{1}x_{2} + \gamma_{0}'(x_{1}x_{2}^{\frac{1}{3}} + x_{1}^{\frac{1}{3}}x_{2})x_{4}^{\frac{2}{3}} + \gamma_{0}''x_{1}^{\frac{1}{3}}x_{2}^{\frac{1}{3}}x_{4}^{\frac{1}{3}} + \gamma_{1}x_{1}x_{4} +$$

$$+ \gamma_{2}x_{2}x_{4} + \gamma_{1}'x_{1}^{\frac{3}{3}}x_{4}^{\frac{3}{3}} + \gamma_{2}'x_{2}^{\frac{1}{3}}x_{4}^{\frac{1}{3}} + \gamma_{3}x_{4}^{2} = 0 , . (65a)$$

oder, nach Rationalisirung,

DIE CONGRUENZEN VON $w' = e^{-2} w^3$, $w'^2 = e^{-4} w^3$ UND $w' = e^3 w^{-2}$. 399

$$\begin{array}{c} {}^{3}(\gamma_{0}x_{2} + \gamma_{4}x_{4})^{3}x_{4}x_{4}^{2} + \mu^{3}(\gamma_{0}x_{1} + \gamma_{2}x_{4})^{3}x_{2}x_{4}^{2} + \mu^{6}\gamma_{0}^{3}x_{1}x_{2}x_{4}^{4} + (\gamma_{0}x_{4}x_{2} + \gamma_{4}x_{4}x_{4} + \gamma_{2}x_{2}x_{1} + \gamma_{3}x_{1}^{2})^{3}]^{3} - \\ - 27\ \mu^{6}(\gamma_{1}\gamma_{2} - \gamma_{0}\gamma_{3})^{2}x_{1}x_{2}x_{4}^{8}\ {}^{1}(\gamma_{1}\gamma_{2} - \gamma_{0}\gamma_{3})\gamma_{0}^{3}x_{1}x_{2}x_{4}^{6} + \\ - (\gamma_{1}\gamma_{2} - \gamma_{0}\gamma_{3})(\gamma_{0}x_{1}x_{2} + \gamma_{1}x_{4}x_{4} + \gamma_{2}x_{2}x_{4} + \gamma_{3}x_{4}^{2})^{3}x_{4}^{2} + \gamma_{0}(\gamma_{0}x_{1}x_{2} + \gamma_{1}x_{1}x_{4} + \gamma_{2}x_{2}x_{4} + \gamma_{3}x_{4}^{2}) \times \\ \mu^{3}(\gamma_{0}x_{2} + \gamma_{4}x_{4})^{3}x_{4}x_{4}^{2} + \mu^{3}(\gamma_{0}x_{4} + \gamma_{2}x_{4})^{3}x_{2}x_{4}^{2} + \mu^{6}\gamma_{0}^{3}x_{4}x_{2}x_{4}^{4} + (\gamma_{0}x_{4}x_{2} + \gamma_{4}x_{4}x_{4} + \gamma_{2}x_{2}x_{4} + \gamma_{3}x_{4}^{2})^{3}]^{1}_{1} = 0. \end{array}$$

Die Kreispunkte sind 9-fache. Von den Tangenten von I sind je 3 in einer der 3 Geraden

$$(\gamma_0 x_2 + \gamma_1 x_4)^3 + {\gamma_0}^{\prime 3} x_2 x_4^2 = 0$$

vereinigt, und von denjenigen von J je 3 in einer der 3 Geraden

$$(\gamma_0 x_1 + \gamma_2 x_4)^3 + \gamma_0'^3 x_1 x_4^2 = 0.$$

Jede dieser Tangenten hat alle ihre Schnittpunkte mit der Kurve in ihrem Berührungspunkte vereinigt.

Auf der Fläche sind die Kreispunkte 9-fache; von ihren Berührungsebenen sind je 3 bez. in einer der 3 Ebenen

$$(\gamma_0 x_2 + \gamma_1 x_4)^3 + \gamma_0^2 (\gamma_0' x_2 + \gamma_1 x_3)(x_3 - \mu x_4)^2 = 0 \quad (67a)$$

und

$$(\gamma_0 x_1 + \gamma_2 x_b)^3 + \gamma_0^2 (\gamma_0' x_1 + \gamma_2 x_3) (x_3 - \mu x_4)^2 = 0 \quad (68a)$$

zusammengefallen.

Diese Ebenen bilden bez. die Regelfläche der Strahlen, welche auf den durch den Mittelpunkt des gegebenen Kreises γ_{μ} gehenden isotropen Geraden ruhen.

§ 16. Die Regelfläche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen, dessen Mittelpunkt auf OO' liegt.

Wir haben im Vorhergehenden

$$\alpha_1 = 0, \ \alpha_2 = 0,
\beta_1 = 0, \ \beta_2 = 0$$

einzusetzen, wonach der Kreis durch

dargestellt wird.

Die in [w] liegende Kurve ist jetzt durch

400 DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-4} w^3$ UND $w' = c^3 w^{-2}$.

$$x_1^3 x_2^3 + \mu (x_1^2 + x_2^2) x_1 x_2 x_3^2 + \mu^2 x_1 x_2 x_3^4 + \frac{\gamma_3}{\gamma_0} x_3^6 = 0$$
 (71a)

bestimmt.

Die Tangenten der Kreispunkte, welche zugleich die Ausartungselemente des Gesammtschnittes bilden, sind jetzt durch

$$a_2(x_2^2 + \mu x_3^2) = 0$$
 (72a)

und

$$x_1(x_1^2 + \mu x_3^2) = 0$$
 (73a)

angewiesen.

Einer der Brennpunkte der Kurve liegt also in O. Die Gleichung der in $\lceil w' \rceil$ befindlichen Kurve lautet:

$$x_{1}x_{2} + \mu (x_{1}x_{2}^{\frac{1}{3}} + x_{1}^{\frac{1}{3}}x_{2})x_{4}^{\frac{2}{3}} + \mu^{2}x_{1}^{\frac{1}{3}}x_{2}^{\frac{1}{3}}x_{4}^{\frac{4}{3}} + \frac{\gamma_{3}}{\gamma_{0}}x_{4}^{2} = 0, \quad (74a)$$

oder

$$\begin{array}{l} \left[\mu^{3}\gamma_{0}^{3}x_{1}x_{2}(x_{1}^{2}+x_{2}^{2}+\mu^{3}x_{4}^{2})x_{4}^{2}+(\gamma_{0}x_{1}x_{2}+\gamma_{3}x_{4}^{2})^{3}\right]^{3}+\\ +27\,\mu^{6}\gamma_{0}^{3}\gamma_{3}^{2}x_{1}x_{2}x_{4}^{8} \left[\gamma_{0}^{3}\gamma_{3}x_{1}x_{2}x_{4}^{6}+\gamma_{3}(\gamma_{0}x_{1}x_{2}+\gamma_{3}x_{4}^{2})^{3}x_{4}^{2}-\\ -(\gamma_{0}x_{1}x_{2}+\gamma_{3}x_{4}^{2})\left[\mu^{3}\gamma_{0}^{3}x_{1}x_{2}(x_{1}^{2}+x_{2}^{2}+\mu^{3}x_{4}^{2})x_{4}^{2}+(\gamma_{0}x_{1}x_{2}+\gamma_{3}x_{4}^{2})^{3}\right]\right]=0. \end{array}$$

Von den 3 verschiedenen in jedem der Kreispunkte gelegten Tangenten ist eine mit einer durch O' verlaufenden isotropen Gerade zusammengefallen, wonach O' ein Brennpunkt der Kurve ist.

Von den 3 verschiedenen Berührungsebenen jedes Kreispunktes ist eine mit einer durch OO' gelegten isotropen Ebene zusammengefallen. Wir können also OO' als eine Brennlinie der Fläche betrachten.

§ 17. Die Regelfläche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen, der OO' schneidet. Wir haben nun

$$\alpha_0 = 0$$
 , $\beta_0 = 0$,

mithin

$$\gamma_3 = 0$$

einzusetzen.

Die Gleichungen des Kreises sind also

DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-4} w^3$ UND $w' = c^3 w^{-2}$. 401

$$\alpha_{3}\beta_{3}x_{1}\hat{x}_{2} + x_{1}(\alpha_{2}\beta_{3}x_{3} + \alpha_{3}\beta_{2}x_{4}) + x_{2}(\alpha_{1}\beta_{3}x_{3} + \alpha_{3}\beta_{1}x_{4}) = 0, \quad (76)$$

$$x_{3} = \mu x_{4}. \quad (77)$$

Es ist OO' hier eine einfache Gerade der Regelfläche. Die in [w] befindliche Kurve hat nun die Gleichung

$$\gamma_0 x_1^3 x_2^3 + \gamma_0' x_1 x_2 (x_1^2 + x_2^2) x_3^2 + \gamma_0'' x_1 x_2 x_3^4 + \gamma_1 x_1^3 x_3^3 + \gamma_2 x_2^3 x_3^3 + \gamma_1' x_1 x_3^5 + \gamma_2' x_2 x_3^5 = 0. (78a)$$

Sie hat in O einen gewöhnlichen Punkt, mit

$$\gamma_1' x_1 + \gamma_2' x_2 = 0$$
 (79a)

als Tangente.

Diese Gerade ist die Schnittlinie von ω_{μ} mit der Ebene, welche OO' mit der in X_{μ} (dem Schnittpunkte des Kreises mit OO') an den Kreis gelegten Tangente verbindet.

Die in [w'] liegende Kurve wird jetzt dargestellt durch

$$\gamma_{0}x_{1}x_{2} + \gamma_{0}'(x_{1}x_{2}^{\frac{1}{3}} + x_{1}^{\frac{1}{3}}x_{2})x_{4}^{\frac{2}{3}} + \gamma_{0}''x_{1}^{\frac{1}{3}}x_{2}^{\frac{1}{3}}x_{4}^{\frac{1}{3}} + \gamma_{1}x_{1}x_{4} + \gamma_{2}x_{2}x_{4} + \gamma_{1}'x_{1}^{\frac{1}{3}}x_{4}^{\frac{5}{3}} + \gamma_{2}'x_{2}^{\frac{1}{3}}x_{4}^{\frac{5}{3}} = 0, \dots (80a)$$

oder

$$\left[\mu^{3} (\gamma_{0} x_{2} + \gamma_{1} x_{4})^{3} x_{1} x_{4}^{2} + \mu^{3} (\gamma_{0} x_{1} + \gamma_{2} x_{4})^{3} x_{2} x_{4}^{2} + \mu^{6} \gamma_{0}^{3} x_{1} x_{2} x_{4}^{4} + \right. \\ + (\gamma_{0} x_{1} x_{2} + \gamma_{1} x_{1} x_{4} + \gamma_{2} x_{2} x_{4})^{3} \right]^{3} - 27 \mu^{6} \gamma_{1}^{2} \gamma_{2}^{2} x_{1} x_{2} x_{4}^{8} \times \\ \times \left[\gamma_{1} \gamma_{2} \gamma_{0}^{3} x_{1} x_{2} x_{4}^{6} + \gamma_{1} \gamma_{2} (\gamma_{0} x_{1} x_{2} + \gamma_{1} x_{1} x_{4} + \gamma_{2} x_{2} x_{4})^{3} x_{4}^{2} + \right. \\ + \left. \gamma_{0} (\gamma_{0} x_{1} x_{2} + \gamma_{1} x_{1} x_{4} + \gamma_{2} x_{2} x_{4}) \left[\mu^{3} (\gamma_{0} x_{2} + \gamma_{1} x_{4})^{3} x_{1} x_{4}^{2} + \right. \\ \left. + \mu^{3} (\gamma_{0} x_{1} + \gamma_{2} x_{4})^{3} x_{2} x_{4}^{2} + \mu^{6} \gamma_{0}^{3} x_{1} x_{2} x_{4}^{4} + \right. \\ \left. + (\gamma_{0} x_{1} x_{2} + \gamma_{1} x_{1} x_{4} + \gamma_{2} x_{2} x_{4})^{3} \right] \right\} = 0. \quad . \quad (81a)$$

Diese Kurve hat in O' einen 3-fachen Punkt; seine einzige Tangente ist

$$\gamma_1' x_1^{\frac{1}{3}} + \gamma_2' x_2^{\frac{1}{3}} = 0,$$

oder

$$\gamma_1^{'3} x_1 + \gamma_2^{'3} x_2 = 0, \dots (82a)$$

also das Bild der in O an die Kurve in [w] gelegten Tangente. Die Berührungsebenen längs OO' sind alle in die durch OO' und die Tangente von X_{μ} gelegte Ebene (79a) zusammengefallen.

B 26

§ 18. Die Regelfläche der Strahlen, welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen.

Die vorhergehende Regelfläche zerfällt jetzt in 12 mal die Abbildungsebene $\lceil w \rceil$ und in eine Fläche 6^{ten} Grades.

Auf dieser Restfläche ist der Kreis eine einfache Kurve.

Wir haben nur im Vorigen $\mu=0$ zu setzen, und finden alsdann für die Gleichungen des Kreises

Der Schnitt in [w] besteht nun, ausser dem Kreise, aus seinen isotropen Tangenten, jede doppelt gezählt.

Die in [w'] liegende Bildkurve des Kreises in [w] hat nun die Gleichung

$$\alpha_3 x_1^{\frac{1}{3}} x_2^{\frac{1}{3}} + \alpha_2 x_1^{\frac{1}{3}} x_4^{\frac{1}{3}} + \alpha_1 x_2^{\frac{1}{3}} x_4^{\frac{1}{3}} + \alpha_0 x_4^{\frac{2}{3}} = 0, \quad (85a)$$

oder

$$(\alpha_{3}^{3}x_{4}x_{2} + \alpha_{2}^{3}x_{4}x_{4} + \alpha_{1}^{3}x_{2}x_{4} + \alpha_{0}^{3}x_{4}^{2})^{3} -$$

$$- 27(\alpha_{1}\alpha_{2} - \alpha_{0}\alpha_{3})^{2}x_{1}x_{2}x_{4}^{2} \{(\alpha_{1}\alpha_{2} - \alpha_{0}\alpha_{3})(\alpha_{3}^{3}x_{1}x_{2} + \alpha_{0}^{3}x_{4}^{2}) +$$

$$+ \alpha_{0}\alpha_{3}(\alpha_{3}^{3}x_{1}x_{2} + \alpha_{2}^{3}x_{1}x_{4} + \alpha_{1}^{3}x_{2}x_{4} + \alpha_{0}^{3}x_{4}^{2})\} = 0.$$
 (86a)

Die Kreispunkte sind 3-fache; ihre Tangenten sind in den einzigen Bildern der isotropen Tangenten des Kreises vereinigt.

Die in $\lceil w' \rceil$ liegende Kurve schneidet die isotrope Gerade O'J 3 mal im 3-fachen Punkte J und noch 3 mal im Bilde M_1' des Punktes M_1 , wo der gegebene Kreis die Gerade OJ schneidet. Der Punkt M_1' ist ein Wendepunkt, mit $M_1'J \equiv OJ$ als Tangente. Analoges gilt für M_2' .

Auf der Fläche sind die Kreispunkte 3-fache; die Berührungsebenen in I (bez. J) sind alle 3 zusammengefallen in die Ebene, welche die isotrope Tangente des gegebenen Kreises mit ihrem Bilde verbindet.

Die Geraden $M_1 M_1'$ und $M_2 M_2'$ sind Inflexionskanten, mit den durch OO' gelegten isotropen Ebenen als Berührungsebenen.

Der Schnitt der Regelfläche mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine tricirculare Kurve 6^{ten} Grades. Die Schnittpunkte von ω_{μ} mit den Geraden $M_1 M_1'$ und $M_2 M_2'$ sind Wendepunkte.

DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-1} w^3$ UND $w' = c^3 w^{-2}$. 403

§ 19. Die Regelfläche der Strahlen, welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen, dessen Mittelpunkt O ist. Hier gilt

$$\alpha_1 = 0$$
, $\alpha_2 = 0$,

wonach der Kreis diese Gleichungen hat:

Die Regelfläche ist wiederum vom 6^{ten} Grade und trägt den Kreis als eine *einfache* Kurve.

Die isotropen Geraden, welche, doppelt gerechnet, auch dem Gesammtschnitte in [w] angehören, gehen jetzt durch O.

Die in $\lceil w' \rceil$ liegende Kurve hat die Gleichung

$$(\alpha_3^3 x_1 x_2 + \alpha_0^3 x_4^2)^3 = 0.$$
 (89a)

Der Schnitt in [w'] besteht also aus dem 3-fachen *Bildkreise* (89a) des gegebenen Kreises. Der Bildkreis hat seinen Mittelpunkt in O'.

Die Regelfläche hat in den Kreispunkten 3-fache Punkte, deren Berührungsebenen alle in den durch OO' gelegten isotropen Ebenen vereinigt sind.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine tricirculare Kurve 6^{ten} Grades, deren sämmtliche Brennpunkte in X_{μ} vereinigt sind.

§ 20. Die Regelfläche der Strahlen, welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen, der O enthält.

Jetzt ist

$$\alpha_0 = 0$$

einzusetzen.

Der Kreis wird also durch

$$\alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 = 0,
x_4 = 0$$
. . (90)

dargestellt.

Auch diese Regelfläche ist vom 6^{ten} Grade und trägt den gegebenen Kreis als eine einfache Kurve.

Der Schnitt in [w] besteht, ausser dem Kreise, aus dessen isotropen Tangenten, jede doppelt gezählt.

Die Gleichung der in $\lceil w' \rceil$ liegenden Bildkurve ist jetzt

$$\alpha_3 x_1^{\frac{1}{3}} x_2^{\frac{1}{3}} + \alpha_2 x_1^{\frac{1}{3}} x_4^{\frac{1}{3}} + \alpha_1 x_2^{\frac{1}{3}} x_4^{\frac{1}{3}} = 0, \quad . \quad (92a)$$

oder

$$(\alpha_3^3 x_1 x_2 + \alpha_2^3 x_1 x_4 + \alpha_1^3 x_2 x_4)^3 - 27 \alpha_1^3 \alpha_2^3 \alpha_3^3 x_1^2 x_2^2 x_4^2 = 0.$$
 (93a)

Der Punkt O' ist hier ein 3-facher; seine sämmtlichen Tangenten sind vereinigt im Bilde der in O an den Kreis in [w] gelegten Tangente.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine tricirculare Kurve 6^{ten} Grades, welche in X_{μ} einen gewöhnlichen Punkt hat; seine Tangente ist die Schnittlinie von ω_{μ} mit der Berührungsebene von OO', welche diese Gerade mit der in O an den Kreis gelegten Tangente verbindet.

ABTEILUNG B.

Die Congruenz, welche der Gleichung

$$w'^2 = c^{-1} w^3$$

angehört.

§ 1. *Allgemeine Eigenschaften.* In der vorliegenden *parabolischen* Congruenz hat man

$$m = 3, n = 2.$$

Der Bündelgrad der Congruenz ist also 9, ihr Feldgrad 6, ihr Axengrad N=39.

Von den 9 nach einem reellen Punkte zielenden Strahlen sind nur 3 reell.

Die Fokalfläche besteht aus zwei imaginären Cylindern, deren Spitzen sich in den Kreispunkten I und J der Abbildungsebenen befinden.

Diese Fokalcylinder haben die Gleichungen

Die beiden kubischen Cylinder haben die unendlich ferne Gerade der Abbildungsebenen als Rückkehrkante, mit der Abbildungsebene $\lceil w \rceil$ als Berührungsebene.

Die Cylinder schneiden sich ausserdem noch in einer kubischen Plankurve, welche in der Ebene der reellen Axen liegt. Diese Kurve hat im unendlich fernen Punkte der reellen Axe einen Rückkehrpunkt mit der zu [w] gehörenden reellen Axe als Tangente. Sie hat noch in O' einen Wendepunkt mit OO' als Tangente.

Die Gleichungen des Congruenzstrahles p lauten:

$$x_{1} = p_{1}x_{3} + p_{1}^{\frac{3}{2}}x_{4},$$

$$x_{2} = p_{2}x_{3} + p_{2}^{\frac{3}{2}}x_{4}.$$
(2b)

Der Brennpunkt P_{f1} des Strahles p ist durch

$$\frac{x_1}{p_1(3p_2^{\frac{1}{2}}-2p_1^{\frac{1}{2}})} = \frac{x_2}{p_2^{\frac{3}{2}}} = \frac{x_3}{3p_2^{\frac{1}{2}}} = \frac{x_4}{-2}, \quad . \quad . \quad (3b)$$

der Brennpunkt P_{f2} durch

$$\frac{x_1}{p_1^{\frac{3}{2}}} = \frac{x_2}{p_2(3p_1^{\frac{1}{2}} - 2p_2^{\frac{1}{2}})} = \frac{x_3}{3p_1^{\frac{1}{2}}} = \frac{x_4}{-2} \quad . \quad . \quad (4b)$$

bestimmt.

Singuläre Ebenen sind

1° jede Ebene, welche einen Strahl p mit einem der Kreispunkte verbindet; sie enthält ein Strahlengebilde 3^{ter} Klasse, dessen Einhüllende eine kubische Kurve mit einem Rückkehrpunkt im Kreispunkte ist;

 2° die Ebene $x_1 = x_2$, d. h. die Ebene der reellen Axen; sie trägt ein Strahlengebilde 3^{ter} Klasse, dessen Einhüllende mit der kubischen Fokalkurve identisch ist;

 3° die Abbildungsebene [w] $(x_4=0)$ mit Strahlenbüscheln in den Kreispunkten und im unendlich fernen Punkte der reellen Axe.

Singuläre Punkte sind

 1° die Kreispunkte mit Strahlenbüscheln in [w];

 2° der unendlich ferne Punkt der reellen Axen mit einem Strahlenbüschel in [w].

Von den 9 Strahlen, welche nach einem Punkte von [w] zielen, fallen 4 mit den durch diesen Punkt verlaufenden isotropen Geraden und einer mit der durch diesen Punkt zu der reellen Axe parallel verlaufenden Gerade zusammen. Die übrigen 4 Strahlen verbinden den Punkt mit seinen 4 in [w'] liegenden Bildern. Von diesen 4 Bildern sind nur 2 reell.

Als Strahlen, welche den Kreispunkten entstammen, sind die in [w] liegenden isotropen Geraden 6-fach zu zählen.

§ 2. Die axiale Regelfläche einer durchaus willkürlichenGerade l. Der Grad dieser Regelfläche ist 3(3+2)=15.

Es ist l auf ihrer Regelfläche eine 9-fache Gerade.

Es sei $A(a_1, a_2)$ die Spur von l in [w], $B'(b_1', b_2')$ die von l in [w'].

Der Schnitt in [w] besteht aus den 2-fachen durch A gelegten isotropen Geraden, aus der einfachen durch A zu der reellen Axe parallel verlaufenden Gerade und aus einer Kurve $10^{\rm ten}$ Grades. Diese hat, bezogen auf das Coordinatendreieck AIJ, die folgende Gleichung:

$$\xi_2(\xi_1 + a_1 \xi_3)^{\frac{3}{2}} - \xi_1(\xi_2 + a_2 \xi_3)^{\frac{3}{2}} + (b_2' \xi_1 - b_1' \xi_2) \xi_3^{\frac{3}{2}} = 0$$
,

oder

$$\begin{aligned} |\xi_{2}^{2}(\xi_{1} + a_{1}\xi_{3})^{3} + \xi_{1}^{2}(\xi_{2} + a_{2}\xi_{3})^{3} - (b_{2}'\xi_{1} - b_{1}'\xi_{2})^{2}\xi_{3}^{3}|^{2} - \\ - 4\xi_{1}^{2}\xi_{2}^{2}(\xi_{1} + a_{1}\xi_{3})^{3}(\xi_{2} + a_{2}\xi_{3})^{3} = 0. \quad . \quad (5b) \end{aligned}$$

Die Kreispunkte sind 4-fache; ihre sämmtlichen Tangenten sind in den durch A gehenden isotropen Geraden vereinigt.

Der unendlich ferne Punkt der reellen Axe ist ein Rückkehrpunkt, dessen Tangente durch

$$\xi_1 - \xi_2 + 3(a_1 - a_2)\xi_3 = 0$$

angewiesen ist; sie enthält den Punkt

$$\frac{\xi_1}{a_1} = \frac{\xi_2}{a_2} = -3\,\xi_3,$$

oder

Der Punkt Λ ist ein 4-facher; er hat als Tangenten die axialen Projektionen aus l auf [w] der sich in Λ treffenden Congruenzstrahlen.

Der Schnitt in [w'] ist eine Kurve 15^{ten} Grades.

Ihre auf B'IJ bezogene Gleichung lautet

$$\xi_{2}(\xi_{1}+b_{1}'\xi_{4})^{\frac{2}{3}}-\xi_{1}(\xi_{2}+b_{2}'\xi_{4})^{\frac{2}{3}}+(a_{2}\xi_{1}-a_{1}\xi_{2})\xi_{4}^{\frac{2}{3}}=0,$$

oder

$$\begin{split} & \big[\xi_2{}^3(\xi_1+b_1{}'\xi_4)^2 - \xi_1{}^3(\xi_2+b_2{}'\xi_4)^2 + (a_2\,\xi_1-a_1\,\xi_2)^3\,\xi_4{}^2\big]^3 + \\ & + 27\,\xi_1{}^3\,\xi_2{}^3(a_2\,\xi_1-a_1\,\xi_2)^3(\xi_1+b_1{}'\xi_4)^2(\xi_2+b_2{}'\xi_4)^2\,\xi_4{}^2 = 0. \end{split} \tag{7b}$$

Die Kreispunkte sind hier 6-fache; von den Tangenten sind je 3 in den durch die 4 Bilder A' von A verlaufenden isotropen Geraden vereinigt.

Der Punkt B' ist ein 9-facher; seine Tangenten sind die axialen Projektionen aus l auf $\lfloor w' \rfloor$ der 9 in B' convergirenden Congruenzstrahlen. Von den 9 Zweigen sind nur 3 reell.

Der unendlich ferne Punkt der reellen Axe ist ein Rückkehrpunkt, dessen Tangente im Unendlichen liegt.

Auf der Regelfläche sind die Kreispunkte 6-fache. Die Berührungsebenen des Kreispunktes $I(X_1)$ sind in den 2 Ebenen

diejenigen des Kreispunktes $J(X_2)$ in den 2 Ebenen

$$x_1 - a_1 x_3 \pm a_1^{\frac{3}{2}} x_4 = 0 (9b)$$

vereinigt. Sie sind offenbar die Ebenen, welche die 4 Strahlen a = AA' mit den Kreispunkten verbinden.

Der unendlich ferne Punkt der reellen Axe ist ein uniplanarer Doppelpunkt, dessen Berührungsebene mit [w] zusammenfällt.

Die *Doppelkurve* dieser Regelfläche ist vom Grade N+15=39+15=54.

§ 3. Die axiale Regelfläche einer Gerade l, welche OO' schneidet. Auf dieser Regelfläche ist OO' eine 4-fache Gerade; sämmtliche Berührungsebenen sind in der Ebene, welche OO' mit l verbindet, vereinigt.

Es sei

$$x_2 = tx_1$$

die Gleichung der durch l und OO' gelegten Ebene. Wir haben alsdann (siehe IV. Abschnitt § 7a, (81) und (82), S. 242)

$$\frac{b_2'}{b_1'} = \frac{a_2}{a_1} = t,$$

$$a_1 b_2' - a_2 b_1' = 0.$$

Die in $\lceil w \rceil$ liegende Kurve hat nun die Gleichung

$$(x_2 - ta_1 x_3) x_1^{\frac{3}{2}} - (x_1 - a_1 x_3) x_2^{\frac{3}{2}} + b_1' (tx_1 - x_2) x_3^{\frac{3}{2}} = 0,$$

oder

$$|(x_2 - ta_1 x_3)^2 x_1^3 + (x_1 - a_1 x_3)^2 x_2^3 - b_1'^2 (tx_1 - x_2)^2 x_3^3|^2 - 4 x_1^3 x_2^3 (x_2 - ta_1 x_3)^2 (x_1 - a_1 x_3)^2 = 0.$$
 (10b)

Diese Kurve hat in O einen 4-fachen Punkt, dessen sämmtliche Tangenten mit der Gerade OA zusammengefallen sind; diese Gerade hat in O 6 Punkte mit der Kurve gemein.

Der Schnitt in $\lceil w' \rceil$ wird durch

$$(x_2 - tb_1' x_4) x_1^{\frac{2}{3}} - (x_1 - b_1' x_4) x_2^{\frac{2}{3}} + a_1 (tx_1 - x_2) x_4^{\frac{2}{3}} = 0,$$

oder

$$[(x_2 - tb_1' x_4)^3 x_1^2 - (x_1 - b_1' x_4)^3 x_2^2 + a_1^3 (tx_1 - x_2)^3 x_4^2]^3 + + 27 x_1^2 x_2^2 x_4^2 (x_2 - tb_1' x_4)^3 (x_1 - b_1' x_4)^3 (tx_1 - x_2)^3 = 0$$
(11b)

dargestellt.

Diese Kurve hat in O' einen 6-fachen Punkt, von dessen Tangenten je 3 mit den 2 Bildern von OA zusammengefallen sind; jede dieser Tangenten hat in O' 9 Punkte mit der Kurve gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} hat, ausser den Singularitäten des allgemeinen Schnittes, einen 4-fachen Punkt in der Spur X_{μ} von OO' in ω_{μ} ; die Tangenten dieses Punktes sind in die Schnittlinie von ω_{μ} mit der durch l und OO' gelegten Ebene zusammengefallen.

Wenn l durch O geht, so ist die in [w] liegende Kurve zerfallen in 3 mal die Kurve 5^{ten} Grades, deren Gleichung lautet:

$$(x_2 - b_2' x_4)^3 x_1^2 - (x_1 - b_1' x_4)^3 x_2^2 = 0.$$
 (12b)

Die Kreispunkte sind Rückkehrpunkte, deren Tangenten sich in O' treffen.

Der unendlich ferne Punkt der reellen Axe ist ein gewöhnlicher; seine Tangente ist durch

$$x_1 - x_2 - 3(b_1' - b_2')x_4 = 0$$
 . . . (13b)

angewiesen; sie schneidet die reelle Axe im Punkte T_0 :

$$\frac{x_1}{3b_1'} = \frac{x_2}{3b_2'} = x_4. \quad . \quad . \quad . \quad (14b)$$

Die in [w] befindliche Kurve wird jetzt durch

$$x_2 x_1^{\frac{3}{2}} - x_1 x_2^{\frac{3}{2}} + b_1' (tx_1 - x_2) x_3^{\frac{3}{2}} = 0$$

oder

410 DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-1} w^3$ UND $w' = c^3 w^{-2}$.

$$|x_1^3 x_2^2 + x_1^2 x_2^3 - b_1'^2 (tx_1 - x_2)^2 x_3^3|^2 - 4 x_1^5 x_2^5 = 0 (15b)$$

dargestellt.

Der 4-fache Punkt A ist nun in O gefallen; seine Tangenten sind alle vereinigt in der Schnittlinie von [w] mit der durch OO' und l gelegten Ebene, also in der orthogonalen Projektion von l auf [w].

Der unendlich ferne Punkt der reellen Axe ist ein 3-facher Punkt auf der Fläche; seine einzige Berührungsebene ist die Ebene

$$(x_1 - x_2) - 3(b_1' - b_2')x_4 = 0;$$
 . . (13b)

sie verbindet jenen Punkt mit der Gerade OT_0 :

$$\frac{x_1}{3b_1'} = \frac{x_2}{3b_2'} = x_4. \quad . \quad . \quad . \quad (14b)$$

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} hat jetzt, ausser dem 4-fachen Punkte X_{μ} , einen 3-fachen Punkt im Unendlichen auf der reellen Axe; die Tangenten daselbst sind in der Schnittlinie von ω_{μ} mit der Ebene (13b) vereinigt.

Wenn die Gerade l durch O' geht, so zerfällt die in [w] befindliche Kurve in eine 2-fache Kurve 5^{ten} Grades, welche durch

$$(x_2 - a_2 x_3)^2 x_1^3 - (x_1 - a_1 x_3)^2 x_2^3 = 0$$
 . (15'b)

bestimmt ist.

Sie hat in O einen 3-fachen Punkt, dessen Tangenten die 3 Bilder sind der orthogonalen Projektion von l auf $\lceil w' \rceil$.

Die Kreispunkte sind jetzt Rückkehrpunkte, deren Tangenten sich in \mathcal{A} treffen.

Der Punkt A ist ein Doppelpunkt; seine Tangenten sind die axialen Projektionen aus l auf $\lceil w \rceil$ der 2 Geraden O'A'.

Der Schnitt in [w'] hat die Gleichung

$$x_2 x_1^{\frac{2}{3}} - x_1 x_2^{\frac{2}{3}} + (a_2 x_1 - a_1 x_2) x_4^{\frac{2}{3}} = 0$$
,

oder

$$[x_1^2x_2^3 - x_1^3x_2^2 + (a_2x_1 - a_1x_2)^3x_4^2]^3 + 27x_1^5x_2^5x_4^2(a_2x_1 - a_1x_2)^3 = 0. (16b)$$

Der Punkt O' ist hier ein 9-facher; seine sämmtlichen Tangenten sind in der orthogonalen Projektion von l auf $\lceil w' \rceil$ vereinigt.

Der unendlich ferne Punkt der reellen Axe zeigt dieselben Eigenschaften wie im allgemeinen Falle.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} zeigt ausser ihrem 4-fachen Punkte X_{μ} keinen Unterschied mit dem Schnitte der allgemeinen Regelfläche.

§ 4. Die axiale Regelfläche einer zu den Abbildungsebenen parallelen Gerade l_{μ} .

Der Grad dieser Regelfläche ist 15.

Die unendlich ferne Gerade der Abbildungsebenen ist hier eine 6-fache Gerade.

Wir wollen die Gerade l_{μ} durch

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = 0,$$
 . . . (17)
 $x_3 = x_4$. . . (18)

darstellen.

Der Schnitt in [w] besteht aus 9 mal der unendlich fernen Gerade und aus einer Kurve 6^{ten} Grades, deren Gleichung ist

$$a_{1}x_{1}^{\frac{3}{2}} + a_{2}x_{2}^{\frac{3}{2}} + |\mu(a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3}) + a_{4}x_{3}|x_{3}^{\frac{1}{2}} = 0$$
,

oder

$$[\alpha_1^2 x_1^3 + \alpha_2^2 x_2^3 - [\mu(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3) + \alpha_4 x_3]^2 x_3]^2 - 4\alpha_1^2 \alpha_2^2 x_1^3 x_2^3 = 0.(19b)$$

Die unendlich ferne Gerade schneidet diese Kurve 2 mal in jedem der 3 Bilder L_{μ}' des unendlich fernen Punktes L_{μ} von l_{μ} , als Punkt von $\lceil w' \rceil$ betrachtet.

Eine leichte Rechnung zeigt, dass die 3 Punkte L_{μ}' gewöhnliche Punkte sind, alle mit der unendlich fernen Gerade als Tangente.

Der Schnitt in [w'] besteht aus der 6-fachen unendlich fernen Gerade und aus einer Kurve 9^{ten} Grades, welche durch

$$\mu(\alpha_1 x_1^{\frac{2}{3}} + \alpha_2 x_2^{\frac{2}{3}}) x_4^{\frac{1}{3}} + \alpha_1 x_1 + \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4 = 0,$$

oder

dargestellt wird.

Der unendlich ferne Punkt L_{μ} von l_{μ} ist ein 3-facher. Sämmtliche Tangenten sind in der unendlich fernen Gerade vereinigt, welche daselbst 9 Punkte mit der Kurve gemein hat.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene

 ω_{μ} enthält, ausser der 6-fachen unendlich fernen Gerade, eine Kurve 9^{ten} Grades, welche in L_{μ} einen 3-fachen Punkt hat, dessen sämmtliche Tangenten im Unendlichen liegen (Ausnahme in $\lceil w \rceil$).

Wenn die Gerade l_{μ} durch den Kreispunkt $I(X_1)$ geht, wonach $\alpha_1 = 0$, so besteht die axiale Regelfläche aus der 6-fachen Ebene [w] und aus den 3 dreifachen durch l_{μ} an den Fokalcylinder F_1 gelegten Berührungsebenen; letztere haben die Gleichung

$$|\alpha_1 x_2 + (\mu \alpha_3 + \alpha_4) x_4|^3 - \alpha_2 |\mu \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_3|^2 (x_3 - \mu x_4) = 0.$$
 (21b)

Wenn l_{μ} in der Abbildungsebene $\lfloor w' \rfloor$ liegt, wonach $\mu = 0$, so finden wir für die in $\lceil w \rceil$ befindliche Kurve die Gleichung

$$\alpha_1 x_1^{\frac{3}{2}} + \alpha_2 x_2^{\frac{3}{2}} + \alpha_4 x_3^{\frac{3}{2}} = 0$$
,

oder

$$(\alpha_1^2 \alpha_1^3 + \alpha_2^2 \alpha_2^3 - \alpha_4^2 \alpha_3^3)^2 - 4 \alpha_1^2 \alpha_2^2 \alpha_1^3 \alpha_2^3 = 0. \quad . \quad (22b).$$

Sie ist die *Bildkurve* 6^{ten} Grades der in [w'] liegenden Gerade. Der Schnitt in [w'] besteht jetzt, ausser der 6-fachen unendlich fernen Gerade, aus der 9-fachen Gerade l_{μ} selbst.

Wenn die Gerade l_{μ} eine isotrope (durch $I(X_{1})$) Gerade in $\lfloor w' \rfloor$ ist, so zerfällt die Regelfläche, ausser in die 6-fache Ebene $\lfloor w \rfloor$, in diese 3 dreifachen Ebenen:

$$(\alpha_2 x_2 + \alpha_4 x_4)^3 - \alpha_2 \alpha_4^2 x_3^3 = 0.$$
 . . (23b)

 \S 5. Die axiale Regelfläche einer zu den Abbildungsebenen parallelen Gerade l_{μ} , welche OO' schneidet.

Es gilt hier

$$\mu\alpha_3 + \alpha_4 = 0.$$

Die in $\lceil w \rceil$ liegende Kurve wird jetzt durch

$${\alpha_1}{x_1^{\frac{3}{2}}} + {\alpha_2}{x_2^{\frac{3}{2}}} + \mu (\alpha_1 x_1 + \alpha_2 x_2){x_3^{\frac{1}{2}}} = 0,$$

oder

$$|\alpha_1^2 x_1^3 + \alpha_2^2 x_2^3 - \mu^2 (\alpha_1 x_1 + \alpha_2 x_2)^2 x_3|^2 - 4 \alpha_1^2 \alpha_2^2 x_1^3 x_2^3 = 0 \quad (24b)$$

dargestellt. Sie ist vom 6^{ten} Grade und hat in O einen 4-fachen Punkt, dessen sämmtliche Tangenten mit der durch O zu l_{μ} parallel verlaufenden Gerade zusammenfallen.

Die Kurve 9^{ten} Grades in [w'] ist jetzt durch

DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-1} w^3$ UND $w' = c^3 w^{-2}$. 413

bestimmt.

Diese Kurve hat in O' einen 6-fachen Punkt, von dessen Tangenten je 3 in einem der beiden Bilder der zu l_{μ} parallel verlaufenden Gerade OL_{μ} vereinigt sind.

Ausser den Eigenschaften des vorigen §, ist noch zu erwähnen, dass OO' eine 4-fache Gerade ist und dass der Schnitt mit ω_{μ} demnach in X_{μ} einen 4-fachen Punkt hat.

§ 6. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden Gerade 1.

Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden Gerade / besteht aus 3 mal dieser Ebene und aus noch einer Regelfläche vom 12^{ten} Grade.

Auf dieser Restfläche ist leine 6-fache Gerade.

Die Kreispunkte sind 6-fache; ihre Berührungsebenen sind in den Ebenen (8b) und (9b) vereinigt, wo noch $a_1 = a_2 = a$ zu setzen ist.

Die Gerade OO' ist eine Doppelgerade der Fläche und zwar eine Rückkehrkante; ihre Berührungsebene ist die Ebene der reellen Axen.

Der Schnittpunkt S von 1 mit OO' ist ein 6-facher Punkt.

Weder der unendlich ferne Punkt der imaginären Axe noch derjenige der reellen Axe gehört der Fläche an.

Der Schnitt in [w] besteht aus der 2 zweifachen durch die Spur A von l in [w] verlaufenden isotropen Geraden und aus einer Kurve 8^{ten} Grades, deren auf AIJ bezogene Gleichung läutet:

$$\frac{\xi_{2}(\xi_{1}+a\xi_{3})^{\frac{3}{2}}-\xi_{1}(\xi_{2}+a\xi_{3})^{\frac{3}{2}}+b'(\xi_{1}-\xi_{2})\xi_{3}^{\frac{3}{2}}}{\underline{\xi}_{1}-\underline{\xi}_{2}}=0,$$

oder

$$\{\xi_1^2 \xi_2^2 - 3 a^2 \xi_1 \xi_2 \xi_3^2 - a^3 (\xi_1 + \xi_2) \xi_3^3\}^2 - 2b'^2 \xi_3^3 [\xi_1^2 (\xi_2 + a\xi_3)^3 + \xi_2^2 (\xi_1 + a\xi_3)^3] + b'^4 (\xi_1 - \xi_2)^2 \xi_3^6 = 0. \quad (26b)$$

Die Kreispunkte sind 4-fache; ihre Tangenten convergiren alle nach A.

Der Punkt A ist hier ein Doppelpunkt; seine Tangenten sind durch

$$(a^3 - b'^2) \xi_1^2 + 2 (a^3 + b'^2) \xi_1 \xi_2 + (a^3 - b'^2) \xi_2^2 = 0$$

angewiesen.

Der Punkt O ist ein Rückkehrpunkt mit OA als Tangente.

Der unendlich ferne Punkt der reellen Axe gehört der Kurve nicht an.

Der Schnitt in [w'] ist eine Kurve 12^{ten} Grades, deren auf B'IJ bezogene Gleichung lautet:

$$\frac{\xi_{2}(\xi_{1}+b'\xi_{4})^{3}-\xi_{1}(\xi_{2}+b'\xi_{4})^{\frac{2}{3}}+a(\xi_{1}-\xi_{2})\xi_{4}^{\frac{2}{3}}}{\xi_{1}-\xi_{2}}=0,$$

oder

$$\frac{\left[\xi_{2}^{3}(\xi_{1}+b'\xi_{4})^{2}-\xi_{1}^{3}(\xi_{2}+b'\xi_{4})^{2}+a^{3}(\xi_{1}-\xi_{2})^{3}\xi_{4}^{2}\right]^{3}+27a^{3}\xi_{1}^{3}\xi_{2}^{3}\xi_{4}^{2}(\xi_{1}+b'\xi_{4})^{2}(\xi_{2}+b'\xi_{4})^{2}(\xi_{1}-\xi_{2})^{3}}{(\xi_{1}-\xi_{2})^{3}}=0,$$

oder endlich

$$\begin{aligned} \left[\xi_1^2 \xi_2^2 + 2b' \xi_1 \xi_2 (\xi_1 + \xi_2) \xi_4 + b'^2 (\xi_1^2 + \xi_1 \xi_2 + \xi_2^2) \xi_4^2 - a^3 (\xi_1 - \xi_2)^2 \xi_4^2 \right]^3 - \\ - 27 \, a^3 \xi_1^3 \xi_2^3 \xi_4^2 (\xi_1 + b' \xi_4)^2 (\xi_2 + b' \xi_4)^2 = 0. \quad . \quad (27b) \end{aligned}$$

Die Kreispunkte sind 6-fache; von ihren Tangenten sind je 3 in den durch die Bilder Λ' von Λ verlaufenden isotropen Geraden vereinigt.

Die Spur B' von l in $\lfloor w' \rfloor$ ist ein 6-facher Punkt, dessen Tangenten die axialen Projektionen der 6 ausserhalb der zu $\lfloor w \rfloor$ gehörenden reellen Axe liegenden Bilder von B' sind.

Der Punkt O' ist ein 3-facher; seine sämmtlichen Tangenten sind vereinigt im ausserhalb der zu [w'] gehörenden reellen Axe liegenden Bilde der reellen Axe von [w], d. h. in der imaginären Axe von [w'].

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 12^{ten} Grades. Diese hat in den Kreispunkten 6-fache Punkte, deren Tangenten die Schnittlinien von ω_{μ} mit den Ebenen (8b) und (9b) (wo $a_1 = a_2 = a$) sind.

Der Schnittpunkt C_{μ} von l mit ω_{μ} ist ein 6-facher Punkt, dessen Tangenten die axialen Projektionen aus l auf [w] der 6 ausserhalb der Ebene der reellen Axen liegenden nach C_{μ} zielenden Congruenzstrahlen sind.

Der unendlich ferne Punkt der imaginären Axe gehört der Kurve nicht an.

Der Schnittpunkt X_{μ} von ω_{μ} mit OO' ist ein Rückkehrpunkt, dessen Tangente die reelle Axe ist.

Die Kurve hat ausserdem *Doppelpunkte* in den Schnittpunkten von ω_{μ} mit der *Doppelkurve*.

Wir wollen zunächst den Grad dieser Doppelkurve bestimmen. Unseren Ausgangspunkt bildet die Gleichung (siehe IV. Abschnitt, § 10a, S. 272)

$$f(\pi) \equiv (b' - \mu \pi)^2 - (\pi + a)^3 = 0$$
, . . (28b)

oder

$$\pi^{3} + (3a - \mu^{2})\pi^{2} + (3a^{2} + 2\mu b')\pi + (a^{3} - b'^{2}) = 0.$$

Vermöge des in Abt. A (S. 385, 386) Dargelegten, werden die Schnittpunkte $D_{k,l}$ von l mit der Doppelkurve durch die Bedingung

$$(c_1 c_2 + c_1 c_3 + c_2 c_3) (c_1 + c_2 + c_3) - c_1 c_2 c_3 = 0$$

geliefert.

Nun gilt hier

$$c_1 + c_2 + c_3 = -(3 a - \mu^2),$$

 $c_1 c_2 + c_1 c_3 + c_2 c_3 = 3a^2 + 2 \mu b',$
 $c_1 c_2 c_3 = -(a^3 - b'^2);$

wir finden also diese Beziehung:

$$-(3a - \mu^2)(3a + 2\mu b') + (a^3 - b'^2) = 0,$$

oder

$$2b'\mu^3 + 3a^2\mu^2 - 6ab'\mu - (8a^3 + b'^2) = 0.$$
 (29b)

Diese Gleichung bestimmt die 3 Werte von μ , welche den 3 gewöhnlichen Schnittpunkten von l mit der Doppelkurve angehören.

In Abt. A (S. 386) haben wir gleichfalls gefunden, dass die auf l befindlichen Doppelpunkte $D_{pq,rs}$ der Doppelkurve angewiesen sind durch

$$(c_1 c_2 + c_1 c_3 + c_2 c_3)^3 - c_1 c_2 c_3 (c_1 + c_2 + c_3)^3 = 0$$
,

also hier durch

$$(3 a^2 + 2 \mu b')^3 - (a^3 - b'^2) (3 a - \mu^2)^3 = 0$$
,

oder

$$(a^{3} - b'^{2}) \mu^{6} - 9a(a^{3} - b'^{2}) \mu^{4} + 8b'^{3} \mu^{3} + 9a^{2}(3a^{3} + b'^{2}) \mu^{2} + 54a'^{4}b' \mu + 27a'^{3}b'^{2} = 0, \qquad (30b)$$

oder auch durch

$$\mu^2 - 3 a = -\tau_3 \frac{2 \mu b' + 3 a^2}{\sqrt[3]{a^3 - b'^2}}, \quad . \quad . \quad (31b)$$

wo au_3 eine der $3^{ ext{ten}}$ Wurzeln der Einheit darstellt.

Die Gleichung (30 δ) (oder (31 δ)) bestimmt die 6 auf l liegenden Doppelpunkte der Doppelkurve. Letztere hat somit $2 \times 6 + 3 = 15$ Punkte mit l gemein. Jede durch l gelegte Ebene trägt 6 Congruenzstrahlen, also ausserhalb l 15 Punkte der Doppelkurve.

Der Grad der Doppelkurve ist demnach 15+15=30. Also: Auf der axialen Regelfläche einer in der Ebene der reellen Axen liegenden Gerade liegt eine Doppelkurve 30^{ten} Grades.

§ 7. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden Gerade, welche durch O geht.

Die in $\lceil w' \rceil$ liegende Kurve ist jetzt in eine 3-fache Kurve 4^{ten} Grades zerfallen. Diese vertritt sonach einen Bestandteil 12^{ten} Grades der Doppelkurve. Es erübrigt also eine Doppelkurve 18^{ten} Grades.

Die Gleichung (29b), welche die gewöhnlichen auf / befindlichen Punkte der Doppelkurve liefert, nimmt für a = 0 diese Gestalt an:

$$\mu^3 - \frac{b'}{2} = 0, \dots (29'b)$$

während die Doppelpunkte der Doppelkurve jetzt durch

$$\mu^3 = 0$$

und

$$\mu^3 = 8 \, b'$$
 (31'b)

bestimint sind.

Auf l liegen also 3 einfache und 3 Doppelpunkte, welche zusammen 9 Punkte der Doppelkurve vertreten. In jeder durch l gelegten Ebene befinden sich daher ausserhalb l 9 Punkte.

Die Gleichung der in [w] liegenden Kurve 8^{ten} Grades lautet:

$$x_1^4 x_2^4 - 2 b'^2 x_1^2 x_2^2 (x_1 + x_2) x_3^3 + b'^4 (x_1 - x_2)^2 x_3^6 = 0.$$
 (32b)

Die Kreispunkte sind 4-fache, deren Tangenten alle nach O convergiren; diese Tangenten haben in ihrem Berührungspunkte 6 Punkte mit der Kurve gemein.

Es ist O ein Rückkehrpunkt mit der reellen Axe als Tangente. Die 3-fache Kurve $\mathbf{4}^{\text{ten}}$ Grades in [w'] wird durch

DIE CONGRUENZEN VON $w' = e^{-2} w^3$, $w'^2 = e^{-4} w^3$ UND $w' = e^3 w^{-2}$. 417

$$\xi_1^2 \xi_2^2 + 2 b' \xi_1 \xi_2 (\xi_1 + \xi_2) \xi_4 + b'^2 (\xi_1^2 + \xi_1 \xi_2 + \xi_2^2) \xi_4^2 = 0 \quad (33b)$$

angewiesen.

Die Kreispunkte sind Rückkehrpunkte, deren Tangenten sich in O' schneiden.

Der Punkt B' ist ein Doppelpunkt, dessen Tangenten durch

$$\xi_1^2 + \xi_1 \xi_2 + \xi_2^2 = 0$$
 (34b)

gegeben sind.

In Bezug auf das Coordinatendreieck O'IJ lautet (33b):

$$x_1^2 x_2^2 - 3b'^2 x_1 x_2 x_4^2 + 3b'^3 (x_1 + x_2) x_4^3 = 0.$$
 (33'b)

Hieraus geht hervor, dass O' ein gewöhnlicher Punkt ist, mit der imaginären Axe als Tangente.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 12^{ten} Grades, welche in den Kreispunkten 6-fache Punkte, in C_{μ} (auf l) einen 6-fachen, und in X_{μ} (auf OO') einen Doppelpunkt hat.

§ 8. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden Gerade, welche durch O' geht.

Die in [w] liegende Kurve zerfällt hier in eine 2-fache Kurve $\mathbf{4}^{\text{ten}}$ Grades, deren Gleichung lautet (b'=0):

$$\xi_1^2 \xi_2^2 - 3 a^2 \xi_1 \xi_2 \xi_3^2 - a^3 (\xi_1 + \xi_2) \xi_3^3 = 0.$$
 (26'b)

Sie hat in den Kreispunkten Rückkehrpunkte, deren Tangenten durch A gehen.

Der Punkt A ist ein gewöhnlicher, dessen Tangente zu der imaginären Axe parallel ist.

In Bezug auf OIJ ist die Gleichung

$$x_1^2 x_2^2 - 2 a x_1 x_2 (x_1 + x_2) x_3 + a^2 (x_1^2 + x_1 x_2 + x_2^2) x_3^2 = 0.$$
 (26"b)

Sie zeigt, dass O ein Doppelpunkt ist, dessen Tangenten durch

$$x_1^2 + x_1 x_2 + x_2^2 = 0$$

bestimmt sind.

Die in [w'] liegende Kurve hat jetzt die Gleichung

$$|x_1^2 x_2^2 - a^3 (x_1 - x_2)^2 x_4^2|^3 - 27 a^3 x_1^5 x_2^5 x_4^2 = 0. \quad . \quad (36b)$$

Der Punkt O' ist ein 6-facher, dessen Tangenten mit der reellen Axe zusammenfallen.

Die Kreispunkte sind 6-fache; ihre Tangenten treffen sich in den 4 Punkten A'.

Die Doppelkurve ist zerfallen in eine 2-fache Plankurve 4^{ten} Grades in [w] und in eine Kurve 26^{ten} Grades.

Die einfachen Schnittpunkte von 1 mit der Doppelkurve sind aus

$$\mu = \infty$$

und

$$\mu^2 = \frac{8}{3} a$$
, (37b)

die Doppelpunkte auf I dagegen aus

$$\mu^2 = 0$$

und

$$\mu^4 - 9 a \mu^2 + 27 a^2 = 0$$
 . . . (37'b)

bestimmt.

Die Restdoppelkurve hat also $2+2\times 6=14$ Punkte auf l. Jede durch l gelegte Ebene enthält daher noch ausserhalb l 12 Punkte der Doppelkurve.

§ 9. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden und zu diesen parallelen Gerade l_{μ} .

Die Fläche ist vom 10^{ten} Grade.

Die unendlich ferne Gerade der Abbildungsebenen ist eine 4-fache Gerade.

Der Schnitt in [w] ist zerfallen in 6 mal die unendlich ferne Gerade und in die Kurve 4^{ten} Grades, für welche

$$(x_1^2 + x_1 x_2 + x_2^2)^2 - 2 \mu^2 (x_1^3 + x_2^3) x_3 + \mu^4 (x_1 - x_2)^2 x_3^2 = 0.$$
 (38b)

Die Kreispunkte gehören dieser Kurve nicht an.

Die Kurve schneidet die unendlich ferne Gerade in den ausserhalb der reellen Axe liegenden Bildern des unendlich fernen Punktes der reellen Axe, als Punkt von [w'] betrachtet. Die Schnittpunkte sind gewöhnliche; sie haben ihre Tangenten im Unendlichen.

Der Punkt O ist ein Rückkehrpunkt mit der reellen Axe als Tangente.

Die in [w'] befindliche Kurve ist ausgeartet in die 4-fache unendlich ferne Gerade und in eine Kurve 6^{ten} Grades, welche durch

DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-1} w^3$ UND $w' = c^3 w^{-2}$. 419

$$|(x_1 - x_2)^2 + \mu^3(x_1 + x_2)x_4|^3 - 27\mu^6x_1^2x_2^2x_4^2 = 0 \quad (39b)$$

dargestellt wird.

Diese Kurve hat im Unendlichen auf der reellen Axe einen Rückkehrpunkt, dessen Tangente im Unendlichen liegt und daselbst 6 Punkte mit der Kurve gemein hat.

Der Punkt O' ist ein 3-facher, dessen sämmtliche Tangenten in der imaginären Axe vereinigt sind.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} enthält, ausser der 4-fachen unendlich fernen Gerade, eine Kurve 6^{ten} Grades, welche im unendlich fernen Punkte der reellen Axe dasselbe Verhalten zeigt wie die Kurve in $\lceil w' \rceil$.

Der Punkt X_{μ} ist ein Rückkehrpunkt, dessen Tangente zu den reellen Axen parallel ist.

Wir wollen nun den Grad der Doppelkurve bestimmen, und weisen somit auf das in Abt. A § 9 (S. 389 u.f.) Dargelegte.

Eine durch l_{μ} gelegte Ebene wird durch

$$x_1 - x_2 + \lambda (x_3 - \mu x_4) = 0$$
 . . . (40)

dargestellt.

Zwei Strahlen p und q schneiden sich in einem Punkte der Doppelkurve, wenn man hat

$$p_1 - p_2 = q_1 - q_2 = -\lambda$$
. (41)

Für die nach einem Punkte

$$\frac{x_1}{\rho} = \frac{x_2}{\rho} = \frac{x_3}{\mu} = x_4$$

zielenden Strahlen sind die Spuren P (p_1 , p_2) bestimmt durch

$$ho = p_1 \mu + p_1^{rac{3}{2}}, \
ho = p_2 \mu + p_2^{rac{3}{2}};$$

die beiden Coordinaten p_1 und p_2 sind also Wurzeln der Gleichung

$$c^3 - \mu^2 c^2 + 2 \rho \mu c - \rho^2 = 0.$$
 . . . (42b)

Die Bedingung (41) liefert nun

$$2(c_1+c_2+c_3)^3-9(c_4c_2+c_4c_3+c_2c_3)(c_1+c_2+c_3)+27c_4c_2c_3=0,$$
 also, vermöge (42b),

420 DIE CONGRUENZEN VON $w' = c^{-2} w^8$, $w'^2 = c^{-4} w^8$ UND $w' = c^8 w^{-2}$.

$$2\,\mu^{6}$$
 — $18\,
ho\mu^{3}$ + $27\,
ho^{2}$ = 0 ,

oder

$$\rho = \frac{(3 \pm 1/3) \,\mu^3}{9}. \quad . \quad . \quad . \quad . \quad (43b)$$

Diese 2 Punkte sind einfache. Wir wollen nunmehr zeigen, dass E, wofür $\rho = \infty$, ein Doppelpunkt der Doppelkurve ist.

Die Ebene (40) schneidet $\lceil w \rceil$ in der Gerade

$$x_1 - x_2 + \lambda x_3 = 0$$

und $\lceil w' \rceil$ in der Gerade

$$x_1 - x_2 - \lambda \mu x_4 = 0.$$

In dieser Ebene befindet sich der Congruenzstrahl p (p_1 , p_2), wenn man hat

$$p_1 - p_2 = -\lambda,$$
 $p_1^{\frac{3}{2}} - p_2^{\frac{3}{2}} = \lambda \mu;$

aus diesen Gleichungen folgt durch Elimination von p_2

$$p_{1}^{4} + \frac{18 \lambda - 4 \mu^{2}}{9} p_{1}^{3} + \frac{\lambda (5 \lambda - 2 \mu^{2})}{3} p_{1}^{2} + \frac{2 \lambda^{2} (\lambda - \mu^{2})}{3} p_{1} + \frac{\lambda^{2} (\lambda - \mu^{2})^{2}}{9} + 0.$$

Ein Wert für λ liefert 4 Werte für p_1 , d.h. in einer Ebene (40) befinden sich 4 Congruenzstrahlen, also 6 Punkte der Doppelkurve, ausserhalb l_{μ} .

Die Ebene $x_3 - \mu x_4$ wird durch $\lambda = \infty$ bestimmt, und liefert demnach $p_1^4 = \infty$. Alle Strahlen sind mit der Gerade $X_1 X_2$ zusammengefallen.

Wir setzen nun

$$\lambda = \frac{1}{\lambda'}$$
,

wonach die obige Gleichung sich verwandelt in

$$\begin{array}{l} 9 {\lambda'}^4 {p_1}^4 + {\lambda'}^3 (18 - 4 \, {\mu^2 \lambda'}) {p_1}^3 + 3 {\lambda'}^2 (5 - 2 \, {\mu^2 \lambda'}) {p_1}^2 + 6 \, {\lambda'} (1 - {\mu^2 \lambda'}) {p_1} + \\ + (1 - {\mu^2 \lambda'})^2 = 0. \end{array}$$

Wenn die durch l_{μ} gelegte Ebene beinahe mit $x_3 - \mu x_4 = 0$

zusammenfällt, wird sie durch einen kleinen Wert von λ' bestimmt. Wir dürfen alsdann in den Coefficienten λ' neben den Zahlen vernachlässigen. Wir erhalten daher angenähert

$$9\lambda'^4p_1^4 + 18\lambda'^3p_1^3 + 15\lambda'^2p_1^2 + 6\lambda'p_1 + 1 = (3\lambda'^2p_1^2 + 3\lambda'p_1 + 1)^2 = 0.$$

Diese Gleichung zeigt, dass von den 4 in der Ebene (λ') liegenden Strahlen je 2 mit X_1X_2 zusammenfallen, wonach E ein Doppelpunkt der Doppelkurve ist.

Auf l_{μ} befinden sich somit 4 Punkte der Doppelkurve; weil jede durch l_{μ} gelegte Ebene deren noch 6 ausserhalb l_{μ} trägt, so ist der Grad der Doppelkurve 10. Also:

Auf der vorliegenden Regelfläche liegt eine Doppelkurve 10^{ten} Grades.

§ 10. Die axiale Regelfläche eines Congruenzstrahles s.

Die Restfläche ist vom 9^{ten} Grade.

Der Strahl s ist auf seiner Regelfläche eine 4-fache Gerade.

Die Kreispunkte sind beide noch 3-fache Punkte.

Der Punkt E ist ein uniplanarer Doppelpunkt, dessen Tangenten sich in der Abbildungsebene $\lceil w \rceil$ befinden.

Der Schnitt in [w] zerfällt in die beiden einfachen durch die Spur \mathcal{S} von s in [w] verlaufenden isotropen Geraden, in die einfache reelle Axe und in eine Kurve 6^{ten} Grades, deren Gleichung ist

$$\frac{\boldsymbol{\xi}_{2}(\boldsymbol{\xi}_{1}+\boldsymbol{s}_{1}\boldsymbol{\xi}_{3})^{\frac{3}{2}}-\boldsymbol{\xi}_{1}(\boldsymbol{\xi}_{2}+\boldsymbol{s}_{2}\boldsymbol{\xi}_{3})^{\frac{3}{2}}+(\boldsymbol{s}_{2}^{\frac{3}{2}}\boldsymbol{\xi}_{1}-\boldsymbol{s}_{1}^{\frac{3}{2}}\boldsymbol{\xi}_{2})\boldsymbol{\xi}_{3}^{\frac{3}{2}}}{\boldsymbol{\xi}_{1}\boldsymbol{\xi}_{2}}=0,$$

oder

$$\frac{\left[\xi_{1}\xi_{2}(\xi_{1}+\xi_{2})+3(s_{1}+s_{2})\xi_{1}\xi_{2}\xi_{3}+3(s_{2}^{2}\xi_{1}+s_{1}^{2}\xi_{2})\xi_{3}^{2}+2s_{1}^{\frac{3}{2}}s_{2}^{\frac{3}{2}}\xi_{3}^{3}\right]^{2}-4(\xi_{1}+s_{1}\xi_{3})^{3}(\xi_{2}+s_{2}\xi_{3})^{3}=0. \quad (44b)$$

Die Kreispunkte sind hier Rückkehrpunkte, deren Tangenten sich in S treffen.

Der Punkt S ist ein gewöhnlicher, seine Tangente ist durch

$$s_2^{\frac{3}{2}}\xi_1 - s_1^{\frac{3}{2}}\xi_2 = 0$$

bestimmt; sie verbindet S mit der axialen Projektion des ausserhalb der singulären Ebenen liegenden Bildes S' ($x_1 = -s_1^{\frac{3}{2}}x_4$, $x_2 = -s_2^{\frac{3}{2}}x_4$) von S.

Der unendlich ferne Punkt E der reellen Axe ist ein Rückkehrpunkt, dessen Tangente durch

$$\xi_1 - \xi_2 + 3(s_1 - s_2)\xi_3 = 0$$
 . . . (45b)

bestimmt ist.

Die in $\lceil w' \rceil$ liegende Kurve hat die Gleichung

$$\frac{\xi_{2}(\xi_{1}+s_{1}^{\frac{3}{2}}\xi_{4})^{\frac{2}{3}}-\xi_{1}(\xi_{2}+s_{2}^{\frac{3}{2}}\xi_{4})^{\frac{2}{3}}+(s_{2}\xi_{1}-s_{1}\xi_{2})\xi_{4}^{\frac{2}{3}}}{\xi_{1}\xi_{2}}=0,$$

oder

$$\begin{split} \left[\xi_{1}\,\xi_{2}(\xi_{1}-\xi_{2})+2\,(s_{2}^{\frac{3}{2}}\xi_{1}^{2}-s_{1}^{\frac{3}{2}}\xi_{2}^{2})\,\xi_{4}+3s_{1}\,s_{2}(s_{2}\,\xi_{1}-s_{1}\,\xi_{2})\,\xi_{4}^{2}\right]^{3}-\\ -27\,(s_{2}\,\xi_{1}-s_{1}\,\xi_{2})^{3}(\xi_{1}+s_{1}^{\frac{3}{2}}\xi_{4})^{2}(\xi_{2}+s_{2}^{\frac{3}{2}}\xi_{4})^{2}\,\xi_{4}^{2}=0. \end{split} \tag{46b}$$

Die Kreispunkte sind hier 3-fache; ihre Tangenten sind bez. durch

$$(\xi_2 + 2 s_2^{\frac{3}{2}} \xi_4)^3 = 0$$
,

oder

$$(x_2 + s_2^{\frac{3}{2}} x_4)^3 = 0$$
,

und

$$(\xi_1 + 2 s_1^2 \xi_4)^3 = 0$$
,

oder

$$(x_1 + s_1^{\frac{3}{2}} x_4)^3 = 0$$

bestimmt; sie vereinigen sich alle in den beiden durch den Punkt

$$S''(x_1 = -s_1^{\frac{3}{2}}x_4, x_2 = -s_2^{\frac{3}{2}}x_4)$$
 gehenden isotropen Geraden.

Es is S'' eines der 4 Bilder von S.

Der Punkt S' ist ein 4-facher; seine Tangenten sind die axialen Projektionen aus s auf [w] der 4 auf der Fläche liegenden, nach S' zielenden Congruenzstrahlen.

Der unendlich ferne Punkt der reellen Axe ist ein Rückkehrpunkt, dessen Tangente im Unendlichen liegt.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} is eine Kurve 9^{ten} Grades, die im Schnittpunkte S_{μ} von s mit ω_{μ} einen 4-fachen Punkt hat und im unendlich fernen Punkte der reellen Axe einen Rückkehrpunkt mit der unendlich fernen Gerade als Tangente.

Wir wollen uns jetzt mit der Doppelkurve beschäftigen.

Die Gleichungen $s_1(\pi_1) = 0$ und $s_2(\pi) = 0$ vom § IV. Abschnitte (§ 12a, S. 291) haben hier diese Form:

$$s_1(\pi_1) \equiv \pi_1^2 + (3s_1 - \mu^2)\pi_1 + (3s_1^2 + 2\mu s_1^{\frac{3}{2}}) = 0, \quad (47b)$$

$$s_2(\pi_2) \equiv \pi_2^2 + (3s_2 - \mu^2)\pi_2 + (3s_2^2 + 2\mu s_2^2) = 0. \quad (48b)$$

Die Schnittpunkte von s mit der Doppelkurve werden (siehe S 221, 393) durch die Gleichung

$$(c_1 + c_1')^2 c_2 c_2' - c_1 c_1' (c_2 + c_2')^2 = 0$$

angewiesen.

Vermöge (47b) und (48b) giebt es also die folgende Bedingung:

$$\mu \left[2 \left(s_1 + s_1^{\frac{1}{2}} s_2^{\frac{1}{2}} + s_2 \right) \mu^4 + 3 \left(s_1 + s_2 \right) \left(s_1^{\frac{1}{2}} + s_2^{\frac{1}{2}} \right) \mu^3 - 12 s_1 s_2 \mu^2 - 18 s_1 s_2 \left(s_1^{\frac{1}{2}} + s_2^{\frac{1}{2}} \right) \mu - 18 s_1^{\frac{3}{2}} s_2^{\frac{3}{2}} \right] = 0. \quad (49b)$$

Ausser dem Schnittpunkte S' von s mit $\lfloor w \rfloor$, welcher durch $\mu = 0$ bestimmt wird, befinden sich auf s noch 4 andere Punkte der Doppelkurve.

Wie bei der vorigen Congruenz lässt sich hier zeigen dass die beiden Brennpunkte von s ebenfalls der Doppelkurve angehören. Es trägt s also im Ganzen 7 Punkte der Doppelkurve; da jede durch s gelegte Ebene ausser s noch 5 andere Congruenzstrahlen trägt, welche sich in 10 Punkten schneiden, so enthält eine solche Ebene im Ganzen 7 + 10 = 17 Punkte der Doppelkurve. Daher:

Auf der axialen Regelfläche eines Congruenzstrahles liegt eine Doppelkurve 17^{ten} Grades, welche s in 7 Punkten trifft.

§ 11. Die axiale Regelfläche eines in der Ebene der reellen Axen liegenden Congruenzstrahles s.

Die Regelfläche ist vom 6^{ten} Grade und trägt s als eine Doppelgerade.

Die Kreispunkte sind 3-fache.

Der unendlich ferne Punkt E der reellen Axe gehört der Fläche nicht an.

Es ist OO' eine Doppelgerade; sämmtliche Berührungsebenen sind in der Ebene der reellen Axen vereinigt (Ausnahme in [w']).

Der Schnitt mit [w] besteht aus den einfachen durch die Spur S von s in [w] gehenden isotropen Geraden und aus einer Kurve 4^{ten} Grades, welche diese Gleichung hat:

$$\frac{\xi_{2}(\xi_{1}+s\,\xi_{3})^{\frac{3}{2}}-\xi_{1}(\xi_{2}+s\,\xi_{3})^{\frac{3}{2}}+\frac{s^{\frac{3}{2}}(\xi_{1}-\xi_{2})\,\xi_{3}^{\frac{3}{2}}}{\xi_{1}^{2}\,\xi_{2}^{2}(\xi_{1}-\xi_{2})^{2}}=0\,,$$

oder

$$\xi_1^2 \xi_2^2 - 6 s^2 \xi_1 \xi_2 \xi_3^2 - 4 s^3 (\xi_1 + \xi_2) \xi_3^3 - 3 s^4 \xi_3^4 = 0$$
, (50b)

oder auch

$$x_1^2 x_2^2 - 2 s x_1 x_2 (x_1 + x_2) x_3 + s^2 (x_1 - x_2)^2 x_3^2 = 0.$$
 (50'b)

Die Kreispunkte sind Rückkehrpunkte, deren Tangenten sich in S schneiden.

Der Punkt S gehört jetzt der Kurve nicht an.

Der Punkt O ist dagegen ein Rückkehrpunkt, dessen Tangente mit der reellen Axe zusammenfällt.

Der Schnitt in [w'] hat die Gleichung

$$\frac{\xi_{2}(\xi_{1}+\frac{3}{s^{2}}\xi_{4})^{\frac{2}{3}}-\xi_{1}(\xi_{2}+\frac{3}{s^{2}}\xi_{4})^{\frac{2}{3}}+s(\xi_{1}-\xi_{2})\xi_{4}^{\frac{2}{3}}}{\xi_{1}\xi_{2}(\xi_{1}-\xi_{2})}=0,$$

oder

$$[\xi_1 \xi_2 + 2s^{\frac{3}{2}} (\xi_1 + \xi_2) \xi_4 + 3s^3 \xi_4^2]^3 - 27s^3 (\xi_1 + s^{\frac{3}{2}} \xi_4)^3 (\xi_2 + s^{\frac{3}{2}} \xi_4)^3 = 0, (53b)$$
oder auch

$$[x_1 x_2 + s^3(x_1 + x_2) x_4]^3 - 27 s^3 x_1^2 x_2^2 x_4^2 = 0. \quad . \quad (54b)$$

Die Kreispunkte sind auf dieser Kurve 6^{ten} Grades 3-fache Punkte; ihre Tangenten treffen sich alle im Punkte $S''(x_1 = -s^2 x_4)$, welcher mit S' dem Punkte S zugeordnet ist.

Es ist S' ein Doppelpunkt, dessen Tangenten S' mit den axialen Projektionen der ausserhalb der singulären Ebenen liegenden Bilder von S' verbinden.

Der Punkt O' ist ein 3-facher, dessen Tangenten alle in der imaginären Axe vereinigt sind.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 6^{ten} Grades, welche in den Kreispunkten 3-fache Punkte hat, im Schnittpunkte S_{μ} von s mit ω_{μ} einen Doppelpunkt und im Schnittpunkte X_{μ} von OO' mit ω_{μ} einen Rückkehrpunkt, dessen Tangente die reelle Axe ist.

Weil s in der singulären Ebene der reellen Axen liegt und daher die kubische Fokalkurve berührt, so hat jede durch s gelegte Ebene 2 zusammenfallende Strahlen in s. Es trägt diese Ebene also noch 4 Strahlen ausserhalb s welche sich in 6 Punkten schneiden. Die Ebene hat daher ausserhalb s 6 Punkte mit der Doppelkurve gemein.

Die Gleichung, welche die 2 ausserhalb der singulären Ebenen liegenden Strahlen bestimmt, welche nach einem Punkte C von s zielen, lautet:

$$s(\pi) \equiv \pi^2 + (3s - \mu^2)\pi + s(3s + 2\mu s^{\frac{1}{2}}) = 0.$$

Die beiden Spuren werden durch

$$\pi_1=c$$
 , $\pi_2=c'$

und

$$\pi_1 = c', \ \pi_2 = c$$

bestimmt.

Die Bedingung, dass die Verbindungslinie dieser Spuren durch S gehe, hat also diese Form:

$$c+c'=0$$
 ,

oder

$$3s - \mu^2 = 0$$
,

wonach

$$\mu = + 1/3 s$$
.

Es liegen daher auf s 2 Punkte der Doppelkurve. Diese ist also vom Grade 6 + 2 = 8. Sie bildet mit

Fig. 15.

der Doppelgerade s und der Doppelgerade OO' eine Doppelkurve 10^{ten} Grades, woraus hervorgeht, dass die Regelfläche hier vom Geschlecht null ist. Also:

Auf der axialen Regelfläche eines in \(\varepsilon\) liegt eine Doppelkurve vom \(\varepsilon^{\text{ten}}\) Grade, welche s in \(\varepsilon\) Punkten trifft. Wenn für s in \(\varepsilon\) die Gerade OO' gewählt wird, zerfällt diese

Regelfläche in die 3 mal durch OO' gelegten isotropen Ebenen.

§ 12. Die axiale Regelfläche einer in der Abbildungsebene [w] liegenden Gerade l_{∞} .

Die Fläche ist vom 10^{ten} Grade und trägt l_{∞} als eine 4-fache Gerade.

Die unendlich ferne Gerade der Abbildungsebenen ist hier eine 4-fache Gerade; sämmtliche Berührungsebenen sind vereinigt in der Ebene [w], welche mit der Fläche 6 mal die unendlich ferne Gerade gemein hat.

Diese 6-fache Gerade bildet mit der 4-fachen Gerade l_{∞} den Schnitt 10^{ten} Grades in $\lceil w \rceil$.

Der Schnitt in [w'] besteht aus der 4-fachen unendlich fernen Gerade und aus der Bildkurve 6^{ten} Grades von l_{∞} .

Wenn die Gerade l∞ durch

$$\alpha_1 x_2 + \alpha_2 x_2 + \alpha_3 x_3 = 0$$
 . . . (56)

dargestellt wird, so ist die Gleichung der Bildkurve

$$\alpha_1 x_1^{\frac{2}{3}} + \alpha_2 x_2^{\frac{2}{3}} + \alpha_3 x_4^{\frac{2}{3}} = 0$$
,

oder

$$(\alpha_1^3 x_1^2 + \alpha_2^3 x_2^2 + \alpha_3^3 x_4^2)^3 - 27 \alpha_1^3 \alpha_2^3 \alpha_3^3 x_1^2 x_2^2 x_4^2 = 0. \quad (57b)$$

Die 2 Punkte, wo diese Kurve die unendlich ferne Gerade schneidet, sind die Bilder L_3' in [w'] des unendlich fernen Punktes L_3 von l_{∞} ($\alpha_1 x_1 + \alpha_2 x_2 = 0$).

Die beiden Punkte L_3' sind Rückkehrpunkte, mit der unendlich fernen Gerade als Tangente.

Die Bildkurve schneidet die Gerade O'J ($x_1 = 0$) in den 2 Bildern L_1' des Schnittpunktes L_1 von l_{∞} mit OJ. Die beiden Punkte L_1' sind Rückkehrpunkte mit O'J als Tangente. Ebenso sind die beiden Punkte L_2' (die Bilder des Schnittpunktes L_2 von l_{∞} mit OI), wo die Bildkurve O'I schneidet, Rückkehrpunkte mit O'I als Tangente.

Die 2 Geraden L_1L_1' und die 2 Geraden L_2L_2' sind alle 4 Rückkehrkanten der Regelfläche; ihre Berührungsebenen fallen bez. mit den beiden durch OO' gelegten isotropen Ebenen zusammen.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} besteht aus der 4-fachen unendlich fernen Gerade und aus einer Kurve 6^{ten} Grades, welche in den beiden Punkten L_3 , in

den beiden Schnittpunkten von ω_{μ} mit den Geraden $L_1 L_1'$ und in den beiden Schnittpunkten von ω_{μ} mit den Geraden $L_2 L_2'$ Rückkehrpunkte hat, deren Tangenten bez. mit der unendlich fernen Gerade und mit den beiden durch den Schnittpunkt X_{μ} von ω_{μ} mit OO' gelegten isotropen Geraden zusammenfallen.

Von der Doppelkurve ist zu bemerken (siehe S. 303 u. f.), dass sie keinen Punkt mit l_{∞} gemein hat. Weil jede durch l_{∞} gelegte Ebene 6 Strahlen und somit 15 Punkte der Doppelkurve enthält, so ist der Grad der Doppelkurve 15. Also:

Auf der axialen Regelfläche einer Gerade l_{∞} in [w] liegt eine Doppelkurve 15^{ten} Grades.

§ 13. Die axiale Regelfläche einer in der Abbildungsebene [w] liegenden Gerade l_{∞} , welche durch O geht.

Wenn wir die Gerade l_{∞} durch

$$x_2 = kx_1$$

darstellen, so werden die beiden Bestandteilen ihrer axialen Regelfläche (siehe (144a), S. 302) durch

$$k(1-k^{\frac{1}{2}})(kx_1-x_2)^2x_3^3+(k^{\frac{3}{2}}x_1-x_2)^3x_4^2=0$$
 . (58b)

und

$$k(1+k^{\frac{1}{2}})(kx_1-x_2)^2x_3^3-(k^{\frac{3}{2}}x_1+x_2)^3x_4^2=0$$
 . (58'b)

angewiesen.

Auf jeder dieser Flächen 5 ten Grades ist ein der 2 Bilder l' von l_{∞}

$$k^2 x_1 - x_2 = 0 \,, \ x_3 = 0 \,,$$

bez.

$$k^{3} + x_{1} + x_{2} = 0, x_{3} = 0$$

eine 3-fache Gerade.

Auf den beiden Flächen sind noch die unendlich ferne Gerade, die Gerade OO' und l_{∞} Doppelgeraden.

Hieraus folgt, dass es ausserhalb dieser Geraden keine Doppelpunkte giebt.

Die beiden Flächen schneiden [w] in 3 mal der unendlich fernen Gerade und in 2 mal der Gerade l_{∞} .

Die Ebene [w'] wird getroffen in der 2-fachen unendlich fernen Gerade und in den beiden 3-fachen Geraden l'.

Eine zu den Abbildungsebenen parallele Ebene ω_{μ} schneidet jede der 2 Flächen in der 2-fachen unendlich fernen Gerade und in einer kubischen Kurve, welche im unendlich fernen Punkte L_3' des zugehörigen Bildes l' von l_{∞} einen Rückkehrpunkt hat, dessen Tangente im Unendlichen liegt.

§ 14. Die axiale Regelfläche der zu [w] gehörenden reellen Axe. Von den 2 oben betrachteten Flächen 5^{ten} Grades ist die eine in 3 mal die Ebene der reellen Axen und 2 mal die Abbildungsebene [w] ausgeartet.

Die andere Fläche 5^{ten} Grades hat die Gleichung

$$2(x_1 - x_2)^2 x_3^3 - (x_1 + x_2)^3 x_4^2 = 0.$$

Sie enthält die imaginäre Axe von [w'] als eine 3-fache Gerade, die unendlich ferne Gerade, die Gerade OO' und die reelle Axe von [w] als Doppelgeraden.

§ 15. Die Regelfläche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen.

Die Fläche ist vom 18^{ten} Grade und trägt den Kreis als eine 9-fache Gerade.

Der Kreis werde durch

$$\begin{array}{c|c}
\alpha_{3}\beta_{3}x_{4}x_{2} + x_{4}(\alpha_{2}\beta_{3}x_{3} + \alpha_{3}\beta_{2}x_{4}) + x_{2}(\alpha_{1}\beta_{3}x_{3} + \alpha_{3}\beta_{4}x_{4}) + (\alpha_{0}\beta_{3}x_{3}^{2} + \alpha_{3}\beta_{0}x_{4}^{2}) = 0, \\
x_{3} = \mu x_{4}
\end{array} \right\} (59)$$

dargestellt.

Wir ziehen noch die folgenden Bezeichnungen heran:

$$\gamma_{0} = \alpha_{3} \beta_{3}, \ \gamma_{0}' = \mu \alpha_{3} \beta_{3}, \ \gamma_{0}'' = \mu^{2} \alpha_{3} \beta_{3},
\gamma_{1} = \mu \alpha_{2} \beta_{3} + \alpha_{3} \beta_{2}, \ \gamma_{2} = \mu \alpha_{1} \beta_{3} + \alpha_{3} \beta_{1},
\gamma_{1}' = \mu (\mu \alpha_{2} \beta_{3} + \alpha_{3} \beta_{2}), \ \gamma_{2}' = \mu (\mu \alpha_{1} \beta_{3} + \alpha_{3} \beta_{1}),
\gamma_{3} = \mu^{2} \alpha_{0} \beta_{3} + \alpha_{3} \beta_{0}.$$
(61)

Die Ebene [w] wird in einer Kurve 12^{ten} Grades und in 3 einfachen durch jeden der Kreispunkte gelegten Geraden getroffen.

Die Kurve in [w] hat die Gleichung

$$\gamma_{0}x_{1}^{\frac{3}{2}}x_{2}^{\frac{3}{2}} + \gamma_{0}'(x_{1}^{\frac{3}{2}}x_{2} + x_{1}x_{2}^{\frac{3}{2}})x_{3}^{\frac{1}{2}} + \gamma_{0}''x_{1}x_{2}x_{3} + \gamma_{1}x_{1}^{\frac{3}{2}}x_{3}^{\frac{3}{2}} + \gamma_{2}x_{2}^{\frac{3}{2}}x_{3}^{\frac{3}{2}} + \\ + \gamma_{1}'x_{1}x_{3}^{2} + \gamma_{2}'x_{2}x_{3}^{2} + \gamma_{3}x_{3}^{3} = 0 \ ,$$

oder

Die Kreispunkte sind 6-fache; von ihren Tangenten sind je 2 in eine dieser 3 durch $I(X_1)$ gelegten Geraden

$$\gamma_0 x_2^{\frac{3}{2}} + \gamma_0' x_2 x_3^{\frac{1}{2}} + \gamma_1 x_3^{\frac{3}{2}} = 0$$
 ,

oder

$$\gamma_0^2 x_2^3 - (\gamma_0' x_2 + \gamma_1 x_3)^2 x_3 = 0$$
, . . (63b)

und in eine dieser 3 durch $J(X_2)$ gelegten Geraden

$$\gamma_0^2 x_1^3 - (\gamma_0' x_1 + \gamma_2 x_3)^2 x_3 = 0$$
 . . (64b)

zusammengefallen.

Diese Geraden sind überdies, als einfache betrachtet, die Ausartungselemente des Gesammtschnittes von $\lceil w \rceil$.

Diese Tangenten haben ausser ihren Berührungspunkten keinen Punkt mit der Kurve gemein.

Der Schnitt in [w'] ist eine Kurve 18^{ten} Grades, deren Gleichung ist

$$\gamma_{0}x_{1}x_{2} + \gamma_{0}'(x_{1}x_{2}^{\frac{2}{3}} + x_{1}^{\frac{2}{3}}x_{2})x_{4}^{\frac{1}{3}} + \gamma_{0}''x_{1}^{\frac{2}{3}}x_{2}^{\frac{2}{3}}x_{4}^{\frac{2}{3}} + \gamma_{1}x_{1}x_{4} + \gamma_{2}x_{2}x_{4} + \gamma_{1}x_{1}^{2}x_{4}^{\frac{2}{3}}x_{4}^{\frac{4}{3}} + \gamma_{2}x_{2}^{\frac{2}{3}}x_{4}^{\frac{4}{3}} + \gamma_{3}x_{4}^{2} = 0, \quad (65b)$$

oder

$$\begin{split} & [\mu^{3}(\gamma_{0}x_{2} + \gamma_{1}x_{4})^{3}x_{1}^{2}x_{4} + \mu^{3}(\gamma_{0}x_{1} + \gamma_{2}x_{4})^{3}x_{2}^{2}x_{4} + \mu^{6}\gamma_{0}^{3}x_{1}^{2}x_{2}^{2}x_{4}^{2} + \\ & + (\gamma_{0}x_{1}x_{2} + \gamma_{4}x_{1}x_{4} + \gamma_{2}x_{2}x_{4} + \gamma_{3}x_{4}^{2})^{3}]^{3} - 27\mu^{6}(\gamma_{1}\gamma_{2} - \gamma_{0}\gamma_{3})^{2}x_{1}^{2}x_{2}^{2}x_{4}^{6} \times \\ & \times \langle (\gamma_{1}\gamma_{2} - \gamma_{0}\gamma_{3})\gamma_{0}^{3}x_{1}x_{2}x_{4}^{6} + (\gamma_{1}\gamma_{2} - \gamma_{0}\gamma_{3})(\gamma_{0}x_{1}x_{2} + \gamma_{1}x_{1}x_{4} + \gamma_{2}x_{2}x_{4} + \gamma_{3}x_{1}^{2})^{3}x_{4}^{2} + \\ & + \gamma_{0}(\gamma_{0}x_{1}x_{2} + \gamma_{1}x_{1}x_{4} + \gamma_{2}x_{2}x_{4} + \gamma_{3}x_{4}^{2}) \times \\ & \times [\mu^{3}(\gamma_{0}x_{2} + \gamma_{1}x_{4})^{3}x_{1}^{2}x_{4} + \mu^{3}(\gamma_{0}x_{1} + \gamma_{2}x_{4})^{3}x_{2}^{2}x_{4} + \mu^{6}\gamma_{0}^{3}x_{1}^{2}x_{2}^{2}x_{4}^{2} + \\ & + (\gamma_{0}x_{1}x_{2} + \gamma_{1}x_{1}x_{4} + \gamma_{2}x_{2}x_{4} + \gamma_{3}x_{4}^{2})^{3}]_{1}^{1} = 0. \quad (66b) \end{split}$$

Die Kreispunkte sind 9-fache; von ihren Tangenten in I sind je 3 in eine der 3 Geraden

$$(\gamma_0 x_2 + \gamma_4 x_4)^3 + {\gamma_0}^{\prime 3} x_2^2 x_4 = 0$$
,

von denen in J sind je 3 in eine der 3 Geraden

$$(\gamma_0 x_1 + \gamma_2 x_4)^3 + {\gamma_0}^{\prime 3} x_1^2 x_4 = 0$$

zusammengefallen; jede dieser Tangenten hat alle ihre Schnittpunkte mit der Kurve in ihrem Berührungspunkte vereinigt.

Auf der Fläche sind die Kreispunkte 9-fache; von ihren Berührungsebenen sind je 3 bez. in eine der 3 Ebenen

$$(\gamma_0 x_2 + \gamma_1 x_4)^3 + \gamma_0^2 (\gamma_0' x_2 + \gamma_1 x_3)^2 (x_3 - \mu x_4) = 0$$
, (67b)

und

$$(\gamma_0 x_1 + \gamma_2 x_4)^3 + \gamma_0^2 (\gamma_0' x_1 + \gamma_2 x_3)^2 (x_3 - \mu x_4) = 0 \quad (68b)$$

zusammengefallen.

Diese Ebenen bilden bez. die Regelfläche der Strahlen, welche auf den durch den Mittelpunkt des gegebenen Kreises verlaufenden isotropen Geraden ruhen.

§ 16. Die Regelfläche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen, dessen Mittelpunkt auf OO' liegt.

Wir haben im Vorhergehenden

$$\mathbf{\alpha}_1 = 0, \ \mathbf{\alpha}_2 = 0,
 \mathbf{\beta}_1 = 0, \ \mathbf{\beta}_2 = 0$$

einzusetzen, wonach der Kreis durch

$$\alpha_{3}\beta_{3}x_{1}x_{2} + \alpha_{0}\beta_{3}x_{3}^{2} + \alpha_{3}\beta_{0}x_{4}^{2} = 0, \qquad (69)$$

$$x_{3} = \mu x_{4} \qquad (70)$$

dargestellt wird.

Die in [w] liegende Kurve ist jetzt durch

$$[x_1^3x_2^3 - \mu^2x_1^2x_2^2(x_1 + x_2)x_3 + (\mu^2x_1x_2 + \frac{\gamma_3}{\gamma_0}x_3^2)^2x_3^2]^2 - 4\frac{\gamma_3^2}{\gamma_0^2}x_1^3x_2^3x_3^6 = 0 (71b)$$

bestimmt.

Die Tangenten der Kreispunkte, welche zugleich die Ausartungselemente des Gesammtschnittes bilden, sind jetzt durch

$$x_2^2(x_2 + \mu^2 x_3) = 0$$
 (72b)

und

$$x_1^2(x_1 + \mu^2 x_3) = 0$$
 (73b)

angewiesen.

Es sind also 4 Brennpunkte in O vereinigt.

Die Gleichung der in $\lceil w' \rceil$ befindlichen Kurve lautet:

$$x_1 x_2 + \mu \left(x_1 x_2^{\frac{2}{3}} + x_1^{\frac{2}{3}} x_2\right) x_4^{\frac{1}{3}} + \mu^2 x_1^{\frac{2}{3}} x_2^{\frac{2}{3}} x_2^{\frac{2}{3}} + \frac{\gamma_3}{\gamma_0} x_4^2 = 0, \quad (74b)$$

oder

Die Tangenten der Kreispunkte sind jetzt durch

$$x_2^2(x_2 + \mu^3 x_4) = 0$$

und

$$x_1^2(x_1 + \mu^3 x_4) = 0$$

bestimmt.

Auch hier fallen 4 Brennpunkte in O' zusammen.

Von den 3 verschiedenen Berührungsebenen jedes Kreispunktes sind 2 mit einer durch OO' gelegten isotropen Ebene zusammengefallen. Die Gerade OO' kann also eine 4-fache Brennlinie genannt werden.

§ 17. Die Regelfläche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen, der OO' schneidet.

Wir haben nun

$$\alpha_0 = 0, \ \beta_0 = 0,$$

mithin

$$\gamma_3 = 0$$

einzusetzen.

Die Gleichungen des Kreises sind also

$$\alpha_{3}\beta_{3}x_{4}x_{2} + x_{1}(\alpha_{2}\beta_{3}x_{3} + \alpha_{3}\beta_{2}x_{4}) + x_{2}(\alpha_{4}\beta_{3}x_{3} + \alpha_{3}\beta_{4}x_{4}) = 0, \quad (76)$$

$$x_{3} = \mu x_{4}. \quad (77)$$

Es ist OO' hier eine 4-fache Gerade der Regelfläche; die Berührungsebenen längs OO' sind alle vereinigt in der Ebene, welche OO' mit der im Schnittpunkte X_{μ} von OO' mit dem Kreise an diesen gelegten Tangente verbindet.

Die Kurve in $\lceil w \rceil$ hat nun die Gleichung

$$[\gamma_0^2 x_1^3 x_2^3 - x_1^3 x_3 (\gamma_0' x_2 + \gamma_4 x_3)^2 - x_2^3 x_3 (\gamma_0' x_1 + \gamma_2 x_3)^2 + (\gamma_0'' x_1 x_2 + \gamma_1' x_1 x_3 + \gamma_2' x_2 x_3)^2 x_3^2]^2 - 4 x_1^3 x_2^3 x_3^2 [(\gamma_0' x_1 + \gamma_2 x_3) (\gamma_0' x_2 + \gamma_4 x_3) - \gamma_0 (\gamma_0'' x_1 x_2 + \gamma_1' x_1 x_3 + \gamma_2' x_2 x_3)]^2 = 0.$$
 (78b)

Sie hat in O einen 4-fachen Punkt mit

$$\gamma_1' x_1 + \gamma_2' x_2 = 0$$
 (79b)

als einzige Tangente.

Die Gleichung (79 δ) stellt auch die Berührungsebene von OO' dar. Die in [w'] befindliche Kurve hat jetzt die Gleichung

$$\gamma_{0}x_{1}x_{2} + \gamma_{0}'(x_{1}x_{2}^{\frac{2}{3}} + x_{1}^{\frac{2}{3}}x_{2})x_{4}^{\frac{1}{3}} + \gamma_{0}''x_{1}^{\frac{2}{3}}x_{2}^{\frac{2}{3}}x_{4}^{\frac{2}{3}} + \gamma_{1}x_{1}x_{4} + \gamma_{2}x_{2}x_{4} + \gamma_{1}'x_{1}^{\frac{2}{3}}x_{4}^{\frac{4}{3}} + \gamma_{2}'x_{2}^{\frac{2}{3}}x_{4}^{\frac{4}{3}} = 0, \dots (80b)$$

oder

$$\left[\mu^{3} (\gamma_{0}x_{2} + \gamma_{4}x_{4})^{3}x_{1}^{2}x_{4} + \mu^{3} (\gamma_{0}x_{1} + \gamma_{2}x_{4})^{3}x_{2}^{2}x_{4} + \mu^{6} \gamma_{0}^{3}x_{1}^{2}x_{2}^{2}x_{4}^{2} + (\gamma_{0}x_{4}x_{2} + \gamma_{4}x_{4}x_{4} + \gamma_{2}x_{2}x_{4})^{3} \right]^{3} - \\ -27 \mu^{6} \gamma_{1}^{2} \gamma_{2}^{2}x_{1}^{2}x_{2}^{2}x_{4}^{6} \left[\gamma_{1} \gamma_{2} \gamma_{0}^{3}x_{1}x_{2}x_{4}^{6} + \gamma_{1} \gamma_{2} (\gamma_{0}x_{1}x_{2} + \gamma_{1}x_{1}x_{4} + \gamma_{2}x_{2}x_{4})^{3}x_{4}^{2} + \\ + \gamma_{0} (\gamma_{0}x_{1}x_{2} + \gamma_{1}x_{1}x_{4} + \gamma_{2}x_{2}x_{4}) \left[\mu^{3} (\gamma_{0}x_{2} + \gamma_{1}x_{4})^{3}x_{1}^{2}x_{4} + \\ + \mu^{3} (\gamma_{0}x_{4} + \gamma_{2}x_{4})^{3}x_{2}^{2}x_{4} + \mu^{6} \gamma_{0}^{3}x_{1}^{2}x_{2}^{2}x_{4}^{2} + (\gamma_{0}x_{1}x_{2} + \gamma_{1}x_{1}x_{4} + \gamma_{2}x_{2}x_{4})^{3} \right] \right\} = 0.$$
 (81b)

Diese Kurve hat in O' einen 6-fachen Punkt, von dessen Tangenten je 3 mit den 2 Geraden

$$\gamma_1' x_1^{\frac{2}{3}} + \gamma_2' x_2^{\frac{2}{3}} = 0,$$

oder

$$\gamma_1^{'3} x_1^2 + \gamma_2^{'3} x_2^2 = 0, \dots (82)$$

d. h. mit den 2 Bildern der in O an die Kurve in [w] gelegten Tangente (79b) zusammenfallen.

§ 18. Die Regelfläche der Strahlen; welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen.

Die vorhergehende Regelfläche zerfällt jetzt in 6 mal die Abbildungsebene $\lceil w \rceil$ und in eine Fläche 12^{ten} Grades.

Auf dieser Restfläche ist der Kreis eine 4-fache Kurve.

Indem wir im Obigen $\mu = \infty$ einsetzen, so finden wir für die Gleichungen des Kreises:

$$\alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 + \alpha_0 x_3^2 = 0,$$
 (83)
 $x_4 = 0.$ (84)

Der Schnitt in [w] besteht nun, ausser dem Kreise, aus seinen isotropen Tangenten, jede doppelt gezählt.

Die in [w'] liegende Bildkurve des Kreises in [w] hat nun die Gleichung

$$\mathbf{a}_{3}x_{1}^{\frac{2}{3}}x_{2}^{\frac{2}{3}} + \mathbf{a}_{2}x_{1}^{\frac{2}{3}}x_{4}^{\frac{2}{3}} + \mathbf{a}_{1}x_{2}^{\frac{2}{3}}x_{4}^{\frac{2}{3}} + \mathbf{a}_{0}x_{4}^{\frac{4}{3}} = 0, \quad . \quad (85b)$$

oder

$$\begin{aligned} & (\boldsymbol{\alpha}_{3}^{3}x_{4}^{2}x_{2}^{2} + \boldsymbol{\alpha}_{2}^{3}x_{1}^{2}x_{4}^{2} + \boldsymbol{\alpha}_{1}^{3}x_{2}^{2}x_{4}^{2} + \boldsymbol{\alpha}_{0}^{3}x_{4}^{4})^{3} - \\ & - 27(\boldsymbol{\alpha}_{1}\boldsymbol{\alpha}_{2} - \boldsymbol{\alpha}_{0}\boldsymbol{\alpha}_{3})^{2}x_{1}^{2}x_{2}^{2}x_{4}^{2} \langle (\boldsymbol{\alpha}_{1}\boldsymbol{\alpha}_{2} - \boldsymbol{\alpha}_{0}\boldsymbol{\alpha}_{3})(\boldsymbol{\alpha}_{3}^{3}x_{1}^{2}x_{2}^{2} + \boldsymbol{\alpha}_{0}^{3}x_{4}^{4}) + \\ & + \boldsymbol{\alpha}_{0}\boldsymbol{\alpha}_{3}(\boldsymbol{\alpha}_{3}^{3}x_{1}^{2}x_{2}^{2} + \boldsymbol{\alpha}_{2}^{3}x_{1}^{2}x_{4}^{2} + \boldsymbol{\alpha}_{1}^{3}x_{2}^{2}x_{4}^{2} + \boldsymbol{\alpha}_{0}^{3}x_{4}^{4}) \rangle = 0. \end{aligned} (86b)$$

Die Kreispunkte sind auf dieser Kurve 12^{ten} Grades 6-fache Punkte; von ihren Tangenten sind je 3 in ein der 2 Bilder jeder isotropen an den Kreis gelegten Tangente zusammengefallen.

Die isotrope Gerade O'J schneidet die Kurve 6 mal im 6-fachen Punkte J und ausserdem noch 3 mal in jedem der beiden Bilder M_1' des Punktes M_1 , wo der gegebene Kreis die Gerade OJ schneidet.

Die beiden Punkte M_1' sind Rückkehrpunkte, mit O'J als gemeinschaftlicher Tangente. Analoges lässt sich von den beiden Punkten M_2' behaupten.

Auf der Fläche sind die Kreispunkte 6-fache. Von den Berührungsebenen von I (bez. J) sind je 3 vereinigt in einer der 2 Ebenen, welche die isotrope Tangente des Kreises mit ihren 2 Bildern verbinden.

Die beiden Geraden $M_1 M_1'$ und die beiden Geraden $M_2 M_2'$ sind Rückkehrkanten, mit den durch OO' gelegten isotropen Ebenen als Berührungsebenen.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 12^{ten} Grades, die in den Kreispunkten 6-fache Punkte hat. Die Schnittpunkte von ω_{μ} mit den Geraden M_1M_1' und M_2M_2' sind Rückkehrpunkte.

§ 19. Die Regelfläche der Strahlen, welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen, dessen Mittelpunkt O ist. Hier gilt

$$\alpha_1 = 0, \ \alpha_2 = 0,$$

wonach der Kreis diese Gleichungen hat:

$$\alpha_3 x_1 x_2 + \alpha_0 x_3^2 = 0$$
, (87)
 $x_4 = 0$ (88)

Verhand, der Kon. Akad. v. Wetensch. (1e Sectie). Dl. X.

Die Regelfläche ist wiederum vom 12^{ten} Grade und trägt den Kreis als eine 4-fache Kurve.

Die isotropen Geraden, welche, doppelt gerechnet, auch dem Gesammtschnitte in [w] angehören, gehen jetzt durch O.

Die in [w'] liegende Kurve hat die Gleichung

$$(\alpha_3^3 x_1^2 x_2^2 + \alpha_0^3 x_4^4)^3 = 0.$$
 . . . (89b)

Der Schnitt in [w'] besteht also aus der 3-fachen Bildkurve 4^{ten} Grades (89 δ) des gegebenen Kreises. Diese Bildkurve ist selbst wiederum aus 2 Kreisen

zusammengesetzt, welche beide ihren Mittelpunkt in O' haben.

Die Regelfläche hat in den Kreispunkten 6-fache Punkte, deren Berührungsebenen alle in den durch OO' gelegten isotropen Ebenen vereinigt sind.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 12^{ten} Grades, welche in den Kreispunkten 6-fache Punkte hat; sämmtliche Brennpunkte sind in X_{μ} vereinigt.

§ 20. Die Regelfläche der Strahlen, welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen, der O enthält.

Jetzt ist

$$\alpha_0 = 0$$

einzusetzen.

Der Kreis wird also durch

$$\alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 = 0,
x_4 = 0$$
. . (90)

dargestellt.

Auch diese Regelfläche ist vom 12^{ten} Grade und trägt den gegebenen Kreis als eine 4-fache Kurve.

Der Schnitt in [w] besteht, ausser dem Kreise, aus dessen isotropen Tangenten, jede doppelt gezählt.

Die Gleichung der in [w'] liegenden Bildkurve ist jetzt

$$\alpha_3 x_1^{\frac{2}{3}} x_2^{\frac{2}{3}} + \alpha_2 x_1^{\frac{2}{3}} x_4^{\frac{2}{3}} + \alpha_1 x_2^{\frac{2}{3}} x_4^{\frac{2}{3}} = 0, \dots (92b)$$

oder

$$(\boldsymbol{\alpha}_3^3 x_1^2 x_2^2 + \boldsymbol{\alpha}_2^3 x_1^2 x_4^2 + \boldsymbol{\alpha}_1^3 x_2^2 x_4^2)^3 - 27 \, \boldsymbol{\alpha}_1^3 \boldsymbol{\alpha}_2^3 \boldsymbol{\alpha}_3^3 x_1^4 x_2^4 x_4^4 = 0. \quad (93b)$$

Der Punkt O' ist hier ein 6-facher; von seinen Tangenten sind je 3 in die 2 Bilder der in O an den Kreis in [w] gelegten Tangente zusammengefallen.

Die Gerade OO' ist jetzt eine 4-fache der Fläche; sämmtliche Berührungsebenen sind vereinigt in der Ebene, welche OO' mit der in O an den Kreis gelegten Tangente verbindet.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 12^{ten} Grades mit 6-fachen Punkten in den Kreispunkten; sie hat noch einen 4-fachen Punkt in X_{μ} , dessen sämmtliche Tangenten in der Schnittlinie von ω_{μ} mit der Berührungsebene von OO' vereinigt sind.

ABTEILUNG C.

Die Congruenz, welche der Beziehung

$$w' = \frac{c^3}{w^2}$$

angehört.

§ 1. Allgemeine Eigenschaften.

Dem in IV. Abschnitte Abgehandelten entsprechend, bemerken wir zuerst, dass man in der vorliegenden hyperbolischen Congruenz hat

$$m = 2$$
, $n = 1$.

Der Bündelgrad der Congruenz ist also 9, ihr Feldgrad 4, ihr Axengrad N = 23.

Von den 9 nach einem reellen Punkte zielenden Strahlen sind nur 3 reell.

Die Fokalfläche besteht aus zwei imaginären Cylindern, deren Spitzen sich in den Kreispunkten I und J der Abbildungsebenen befinden.

Die Gleichungen dieser Fokalcylinder lauten

$$\begin{cases}
4 x_2^3 - 27 x_3^2 x_4 = 0, \\
4 x_1^3 - 27 x_3^2 x_4 = 0.
\end{cases}$$
(1c)

Die Cylinder haben die Gerade OI (bez. OJ) als Inflexionskante, mit [w] als Berührungsebene, und die Gerade O'I (bez. O'J) als Rückkehrkante mit [w] als Berührungsebene.

Sie durchbohren sich in 3 kubischen Plankurven, welche sich befinden in der Ebene der reellen Axen und in den beiden durch

$$x_1^2 + x_1 x_2 + x_2^2 = 0$$

oder

$$y = \pm x \sqrt{3}$$

bestimmten Ebenen, welche die Ebene der reellen Axen unter 60° schneiden.

Die 3 kubischen Fokalkurven haben alle einen Wendepunkt in O und einen Rückkehrpunkt in O'.

Die Gleichungen des Congruenzstrahles p sind nun

$$\begin{array}{c|c}
x_1 = p_1 x_3 + p_1^{-2} x_4, \\
x_2 = p_2 x_3 + p_2^{-2} x_4.
\end{array}$$
(2c)

Der Brennpunkt P_{f1} des Strahles p ist durch

$$\frac{x_1}{2\,{p_1}^3+{p_2}^3} = \frac{x_2}{3\,{p_1}^2\,p_2} = \frac{x_3}{2\,{p_1}^2} = \frac{x_4}{{p_1}^2\,{p_2}^3}, \quad . \quad . \quad (3c)$$

der Brennpunkt P_{f2} durch

$$\frac{x_1}{3p_1p_2^2} = \frac{x_2}{p_1^3 + 2p_2^3} = \frac{x_3}{2p_2^2} = \frac{x_4}{p_1^3p_2^2} \quad . \quad . \quad (4c)$$

bestimmt.

Singuläre Ebenen sind

1° jede Ebene, welche einen Strahl p mit einem der Kreispunkte verbindet; sie enthält ein Strahlengebilde 3^{ter} Klasse, dessen Einhüllende eine kubische Kurve mit einem Rückkehrpunkt ist;

2° die Ebenen $x_1^3 - x_2^3 = 0$, d.h. die Ebene der reellen Axen und die beiden Ebenen $y = \pm x \ / \ 3$; sie tragen jede ein Strahlengebilde 3^{ter} Klasse, dessen Einhüllende mit der kubischen Fokalkurve identisch ist;

 3° die Abbildungsebenen [w] und [w'] mit Strahlenbüscheln in den Kreispunkten und in den Nullpunkten.

Singuläre Punkte sind

1° die Kreispunkte mit Strahlenbüscheln in [w] und [w'];

2° der Nullpunkt von [w] mit einem Strahlenbüschel in [w];

3° der Nullpunkt von $\lceil w' \rceil$ mit einem Strahlenbüschel in $\lceil w' \rceil$.

Von den 9 Strahlen, welche nach einem Punkte von [w] zielen, fallen 4 mit den durch diesen Punkt gehenden isotropen Geraden zusammen, 4 mit der Gerade, welche diesen Punkt mit dem

Nullpunkte verbindet; der 9^{te} Strahl vereinigt den Punkt mit seinem in $\lceil w' \rceil$ befindlichen Bilde.

Von den 9 Strahlen, welche nach einem Punkte von [w'] zielen, fallen 4 mit den durch diesen Punkt gehenden isotropen Geraden zusammen, einer mit der Gerade, welche diesen Punkt mit dem Nullpunkte verbindet; die übrigen 4 Strahlen vereinigen den Punkt mit seinen 4 in [w] befindlichen Bildern.

Von den 4 in [w] liegenden Bildern eines reellen in [w'] befindlichen Punktes sind nur 2 reell.

 \S 2. Die axiale Regelfläche einer durchaus willkürlichen Gerade l.

Der Grad der Regelfläche ist $(2+1)^2 + 2 \times 2 = 13$.

Es ist l auf ihrer Regelfläche eine 9-fache Gerade.

Es sei A (a_1, a_2) die Spur von l in [w], $B'(b_1', b_2')$ die von l in [w'].

Der Schnitt in [w] besteht aus den 2-fachen durch A gehenden isotropen Geraden, aus der 4-fachen Gerade OA und aus einer Kurve 5^{ten} Grades. Diese hat in Bezug auf das Coordinatendreieck AIJ die folgende Gleichung:

$$\xi_1(\xi_1 + a_1 \xi_3)^2 \xi_3^2 - \xi_2(\xi_2 + a_2 \xi_3)^2 \xi_3^2 - (b_2' \xi_1 - b_1' \xi_2)(\xi_1 + a_1 \xi_3)^2 (\xi_2 + a_2 \xi_3)^2 = 0. \quad . \quad (5c)$$

Diese Kurve hat in den Kreispunkten Doppelpunkte, deren Tangenten sich in den 4 in [w] liegenden Bildern B des Punktes B' treffen.

Der Punkt A ist ein gewöhnlicher; seine Tangente ist die axiale Projektion aus l auf $\lceil w \rceil$ des Bildes A' von A.

Der Punkt B_4 , wo die Gerade O'B' die unendlich ferne Gerade schneidet, ist ein gewöhnlicher Punkt der Kurve; seine Tangente verbindet B_4 mit A.

Auf das Coordinatendreieck OIJ bezogen, lautet die Gleichung der Kurve:

$$(x_1 - a_1 x_3) x_1^2 x_3^2 - (x_2 - a_2 x_3) x_2^2 x_3^2 - b_2' (x_1 - a_1 x_3) - b_1' (x_2 - a_2 x_3) | x_1^2 x_2^2 = 0.$$
 (5'c)

Hieraus ist ersichtlich, dass O ein Doppelpunkt ist, dessen Tangenten die Bilder der durch O' zu OA parallel verlaufenden Geraden sind.

Der Schnitt mit [w'] besteht aus den 2-fachen durch B' gehenden

isotropen Geraden, aus der einfachen Gerade B'O' und aus einer Kurve 8^{ten} Grades, deren Gleichung lautet:

$$\xi_{1}(\xi_{1}+b_{1}'\xi_{4})^{\frac{1}{2}}\xi_{4}^{\frac{1}{2}}-\xi_{2}(\xi_{2}+b_{2}'\xi_{4})^{2}\xi_{4}^{\frac{1}{2}}-(a_{2}\xi_{1}-a_{1}\xi_{2})(\xi_{1}+b_{1}'\xi_{4})^{\frac{1}{2}}(\xi_{2}+b_{2}'\xi_{1})^{\frac{1}{2}}=0,$$

oder

$$\begin{split} \big[\xi_1^{\ 2} (\xi_1 + b_1^{\ \prime} \xi_1) \xi_4 + \xi_2^{\ 2} (\xi_2 + b_2^{\ \prime} \xi_4) \xi_4 - (a_2 \xi_1 - a_1 \xi_2)^2 (\xi_1 + b_1^{\ \prime} \xi_4) (\xi_2 + b_2^{\ \prime} \xi_1) \big]^2 - \\ - 4 \, \xi_1^{\ 2} \, \xi_2^{\ 2} (\xi_1 + b_1^{\ \prime} \xi_4) (\xi_2 + b_2^{\ \prime} \xi_4) \xi_4^2 &= 0. \quad . \quad . \quad (7c) \end{split}$$

Auf dieser Kurve sind die Kreispunkte $R\"{u}ckkehrpunkte$, deren Tangenten sich im Bilde A' von A treffen.

Der Punkt B' ist ein 4-facher, dessen Tangenten die axialen Projektionen aus l auf $\lceil w' \rceil$ der 4 Bilder B von B' sind.

Wenn wir das Coordinatendreieck B'IJ durch das Dreieck O'IJ ersetzen, so verwandelt sich die Gleichung (7e) in

$$\begin{aligned} & \big[(x_1 - b_1' x_4)^2 x_1 x_4 + (x_2 - b_2' x_4)^2 x_2 x_4 - \big[a_2 (x_1 - b_1' x_4) - a_1 (x_2 - b_2' x_4) \big]^2 x_1 x_2 \big]^2 - \\ & - 4 x_1 x_2 x_4^2 (x_1 - b_1' x_4)^2 (x_2 - b_2' x_4)^2 = 0. \end{aligned}$$

Der Punkt O' erscheint also als ein Rückkehrpunkt, dessen Tangente mit dem Bilde der Gerade OB_4' , d.h. der durch O zu O'B' parallel verlaufenden Gerade zusammenfällt.

Der unendlich ferne Punkt A_3 von OA liegt auch auf der Kurve; er ist ein Rückkehrpunkt mit der unendlich fernen Gerade als Tangente; diese Gerade hat in A_3 4 Punkte mit der Kurve gemein.

Auf der Regelfläche sind die Kreispunkte 4-fache. Von den Berührungsebenen des Kreispunktes $I(X_4)$ sind 2 mit der Ebene

$$a_2^2(x_2 - a_2 x_3) - x_4 = 0 \dots (8c)$$

zusammengefallen; die anderen 2 werden durch

$$b_2'(x_2 - b_2' x_4)^2 - x_3^2 = 0$$
 . . . (8'c)

angewiesen.

Von den Berührungsebenen des Kreispunktes $J(X_2)$ sind 2 mit der Ebene

$$a_1^2(x_1 - a_1 x_3) - x_4 = 0$$
 . . . (9c)

zusammengefallen; die anderen 2 werden durch

$$b_1'(x_1 - b_1'x_4)^2 - x_3^2 = 0$$
 . . . (9'c)

angewiesen.

Der Punkt O ist auf der Fläche ein *uniplanarer* Doppelpunkt mit der Abbildungsebene $\lceil w \rceil$ als Berührungsebene.

Der Punkt A_3 ist ebenfalls ein uniplanarer Doppelpunkt, dessen Berührungsebene mit $\lceil w \rceil$ identisch ist.

Der Punkt O' ist ein uniplanarer Doppelpunkt, dessen Berührungsebene mit der Abbildungsebene $\lceil w' \rceil$ zusammenfällt.

Der Punkt B_4' ist aber ein gewöhnlicher Punkt, dessen Berührungsebene B_4' mit l verbindet.

Auf der Gerade OO' liegen ausser den 2 Doppelpunkten O und O' 3 dreifache Punkte der Fläche; sie werden durch

$$\frac{x_3}{x_4} = \frac{\mu_3}{\mu_4}$$

bestimmt, wenn $\mu_3: \mu_4$ der Bedingung

$$\left[\mu_3(a_1 - a_2) + \mu_4(b_1' - b_2')\right]^3 - \mu_3 \mu_4^2(a_1 b_2' - a_2 b_1')^3 = 0$$

genügt.

Die *Doppelkurve* dieser Regelfläche ist vom Grade N+6=23+6=29.

§ 3. Die axiale Regelfläche einer Gerade l, welche OO' schneidet. Hier sind die Punkte A_3 und B_4 zusammengefallen. Der Punkt $A_3 \equiv B_4$ ist jetzt ein 3-facher Punkt. Es sei

$$x_2 = tx_1$$

die Gleichung der durch / und OO' gelegten Ebene; man hat alsdann

$$\frac{b_2'}{b_1'} = \frac{a_2}{a_1} = t,$$

$$a_1 b_2' - a_2 b_1' = 0.$$

Die in [w] liegende Kurve hat nun die Gleichung

$$(x_1 - a_1 x_3) x_1^2 x_3^2 - (x_2 - ta_1 x_3) x_2^2 x_3^2 - b_1' (tx_1 - x_2) x_1^2 x_2^2 = 0. (10c)$$

In Bezug auf die Singularitäten weicht diese Kurve von derjenigen des vorigen § nicht ab. Auch dem von der in [w'] liegenden Kurve Gesagten braucht nichts hinzugefügt zu werden.

Ihre Gleichung ist

$$[(x_1 - b_1' x_4)^2 x_1 x_4 + (x_2 - tb_1' x_4)^2 x_2 x_4 - a_1 (tx_1 - x_2)^2 x_1 x_2]^2 - 4 x_1 x_2 (x_1 - b_1' x_4)^2 (x_2 - tb_1' x_4)^2 x_4^2 = 0.$$
 (11c)

Die 3 dreifachen Punkte, wo die Fläche des vorigen \S die Gerade OO' schnitt, sind hier vereinigt im 9-fachen Punkte S

$$(a_1 - a_2)x_3 + (b_1' - b_2')x_4 = 0$$
,

oder

$$a_1x_3 + b_1'x_4 = 0$$
,

wo die 9-fache Gerade l die Gerade OO' schneidet.

Wie schon oben bemerkt wurde, ist der Punkt $A_3 \equiv B_4'$ ein 3-facher; von den 3 Berührungsebenen, in welche der Tangentenkegel ausgeartet ist, fallen 2 mit [w] zusammen und eine mit der durch l und $A_3 \equiv B_4'$, d.h. mit der durch OO' und l gelegten Ebene.

Die unendlich ferne Gerade der Abbildungsebenen hat in $A_3 \equiv B_4$ mit der Fläche 5 Punkte gemein.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} hat nun auch in $A_3 \equiv B_4'$ einen 3-fachen Punkt, von dessen Tangenten zwei mit der unendlich fernen Gerade zusammenfallen und die dritte $A_3 \equiv B_4'$ mit dem Schnittpunkte C_{μ} von ω_{μ} mit ℓ verbindet; letztere Gerade enthält auch den Schnittpunkt X_{μ} von ω_{μ} mit OO'.

Übrigens sind keine Abweichungen zu constatiren.

Wenn l durch O geht, so wird die Abbildungsebene [w] 2 mal abgetrennt. Es erübrigt sonach eine Fläche 11^{ten} Grades. Auf dieser sind die Kreispunkte Doppelpunkte, deren Berührungsebenen durch (8'e) und (9'e) gegeben sind. Die Gerade OO' schneidet jetzt die Fläche 2 mal in O' und 9 mal in O.

Die in $\lfloor w' \rfloor$ liegende Kurve ist in eine 2-fache kubische Kurve zerfallen, mit der Gleichung

$$(x_1 - b_1' x_4)^2 x_1 - (x_2 - b_2' x_4)^2 x_2 = 0.$$
 . (12c)

Sie schneidet die unendlich ferne Gerade in den nämlichen Punkten wie die 3 singulären Ebenen durch OO'; die Asymptoten convergiren nach dem Punkte T_0'

$$\frac{x_1}{2b_1'} = \frac{x_2}{2b_2'} = \frac{x_4}{3}. \quad . \quad . \quad . \quad (14c)$$

Die in $\lceil w \rceil$ befindliche Kurve ist durch

$$(x_1^3 - x_2^3) x_3^2 - (b_2' x_1 - b_1' x_2) x_1^2 x_2^2 = 0$$
 . (15c)

bestimmt.

Der Punkt O ist jetzt ein 3-facher, dessen Tangenten sich in den singulären Ebenen befinden und je 5 Punkte mit der Kurve gemein haben.

Wenn l durch O' geht, so wird die Abbildungsebene [w'] 2 mal abgesondert. Es erübrigt wiederum eine Fläche 11^{ten} Grades.

Auf dieser sind die Kreispunkte Doppelpunkte.

Die Gerade OO' schneidet nun die Fläche 2 mal in O und 9 mal in O'.

Der Schnitt in [w] ist ausgeartet in die 2-fachen durch A gehenden isotropen Geraden, in die 4-fache Gerade OA und in die einfache kubische Kurve, welche durch

$$(x_1 - a_1 x_3) x_1^2 - (x_2 - a_2 x_3) x_2^2 = 0$$
 . (15'c)

dargestellt wird. Diese schneidet die unendlich ferne Gerade in den Schnittpunkten der singulären Ebenen; die Asymptoten convergiren nach dem Punkte

$$\frac{x_1}{a_1} = \frac{x_2}{a_2} = \frac{x_3}{3}.$$

Der Punkt O ist ein Doppelpunkt, wie im allgemeinen Falle. Die in [w'] liegende Kurve hat nun die Gleichung

$$\left[(x_1^{\ 3} + x_2^{\ 3}) \, x_4 - (a_1 \, x_1 - a_2 \, x_2)^2 \, x_1 \, x_2\right]^2 - 4 \, x_1^{\ 3} \, x_2^{\ 3} \, x_4^{\ 2} = 0. \ (16c)$$

Der Punkt O' ist ein 6-facher; von seinen Tangenten sind je 2 mit einer der 3 Geraden zusammengefallen, in welchen die singulären Ebenen die Ebene $\lceil w' \rceil$ schneiden.

§ 4. Die axiale Regelfläche einer zu den Abbildungsebenen parallelen Gerade l_{μ} .

Der Grad dieser Regelfläche ist, wie im allgemeinen Falle, 13. Es sei die Gerade l_{μ} gegeben durch

Ihr unendlich ferner Punkt sei L_{μ} .

Der Schnitt in [w] besteht aus 4 mal der unendlich fernen Gerade, aus 4 mal der Gerade OL_{μ} , d.i. der durch O zu l_{μ} parallel verlaufenden Gerade, und aus einer Kurve $5^{\rm ten}$ Grades, deren Gleichung lautet:

$$\alpha_2 x_1^2 x_3^3 + \alpha_1 x_2^2 x_3^3 + |\mu(\alpha_1 x_1 + \alpha_2 x_2) + (\mu \alpha_3 + \alpha_4) x_3| x_1^2 x_2^2 = 0. (19c)$$

Die Kreispunkte sind Rückkehrpunkte, deren Tangenten sich in O treffen.

Der unendlich ferne Punkt L_{μ} ist ein Wendepunkt; seine Asymptote wird durch

$$\mu (\alpha_1 x_1 + \alpha_2 x_2) + (\mu \alpha_3 + \alpha_3) x_3 = 0$$

bestimmt, ist demnach mit der Projektion von l_{μ} aus O' auf [w] identisch.

Es ist O ein Doppelpunkt, deren Tangenten die Bilder von $O'L_{\mu}$, d. h. der durch O' zu l_{μ} parallel verlaufenden Gerade sind.

Der Schnitt in $\lfloor w' \rfloor$ besteht aus der 4-fachen unendlich fernen Gerade, aus der einfachen (durch O' zu l_{μ} parallel verlaufenden) Gerade $O'L_{\mu}$ und aus einer Kurve 8^{ten} Grades, welche durch

$$\mu \alpha_{2} x_{1}^{\frac{1}{2}} x_{4}^{\frac{3}{2}} + \mu \alpha_{1} x_{2}^{\frac{1}{2}} x_{4}^{\frac{3}{2}} + |\alpha_{1} x_{1} + \alpha_{2} x_{2} + (\mu \alpha_{3} + \alpha_{4}) x_{4}| x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}} = 0,$$
oder

$$[\mu^{2} \alpha_{2}^{2} x_{1} x_{4}^{3} + \mu^{2} \alpha_{1}^{2} x_{1} x_{4}^{3} - [\alpha_{1} x_{1} + \alpha_{2} x_{2} + (\mu \alpha_{3} + \alpha_{4}) x_{4}]^{2} x_{1} x_{2}]^{2} - 4 \mu^{4} \alpha_{1}^{2} \alpha_{2}^{2} x_{1} x_{2} x_{4}^{6} = 0 (20e)$$

dargestellt wird.

Die Kreispunkte sind Rückkehrpunkte, deren Tangenten daselbst 6 Punkte mit der Kurve gemein haben und sich im Doppelpunkte O' treffen.

Der unendlich ferne Punkt L_{μ} ist ein 4-facher, dessen sämmtliche Tangenten in der Gerade

$$\alpha_1 x_1 + \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4 = 0$$
,

d.h. in der Projektion von l_{μ} aus O auf [w'] vereinigt sind; diese Gerade hat in L_{μ} 6 Punkte mit der Kurve gemein.

Auf der Regelfläche sind die Kreispunkte 4-fache. Von ihren Berührungsebenen fallen 2 mit [w], 2 mit [w'] zusammen.

Der Punkt L_{μ} ist ein 9-facher, von dessen Berührungsebenen 4 mit der durch l_{μ} und O gelegten Ebene, eine mit der durch l_{μ} und O' gelegten Ebene, und 4 mit der Ebene ω_{μ} zusammenfallen.

Die Punkte O und O' sind beide Doppelpunkte, deren Verhalten nicht von dem auf der allgemeinen Regelfläche abweicht.

Wenn l_{μ} den Kreispunkt $I(X_1)$ enthält, wonach $\mathbf{z}_1 = 0$, so besteht die axiale Regelfläche aus den zweifachen Abbildungsebenen [w] und [w'] und aus den 3 dreifachen durch l_{μ} an den Fokalcylinder F_1 gelegten Berührungsebenen. Letztere werden durch

$$|\alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_4|^2 |\mu \alpha_2 x_2 + (\mu \alpha_3 + \alpha_4) x_3| + \alpha_2^3 (x_3 - \mu x_4)^3 = 0 \quad (22c)$$
 dargestellt.

§ 5. Die axiale Regelfläche einer zu den Abbildungsebenen parallelen Gerade l_{μ} , welche OO' schneidet.

Man hat hier

$$\mu\alpha_3+\alpha_4=0.$$

Die in $\lceil w \rceil$ liegende Kurve hat nun die Gleichung

$$\alpha_2 x_1^2 x_3^3 + \alpha_1 x_2^2 x_3^3 + \mu (\alpha_1 x_1 + \alpha_2 x_2) x_1^2 x_2^2 = 0.$$
 (24c)

Die Kreispunkte sind Rückkehrpunkte, deren Tangenten sich in O treffen.

Der Punkt L_{μ} ist ein Wendepunkt, dessen Tangente ebenfalls durch O geht.

Der Punkt O ist ein Doppelpunkt, dessen Tangenten die Bilder der durch O' zu l_{μ} parallel verlaufenden Gerade $O'L_{\mu}$ sind.

Die in $\lceil w' \rceil$ befindliche Kurve wird jetzt durch

$$[\mu^2 \alpha_2^2 x_1 x_4^3 + \mu^2 \alpha_1^2 x_2 x_4^3 - (\alpha_1 x_1 + \alpha_2 x_2)^2 x_1 x_2]^2 - 4\mu^4 \alpha_1^2 \alpha_2^2 x_4 x_2 x_4^6 = 0$$
 (25c) dargestellt.

Das einzige Neue ist hier, dass die Tangenten des 4-fachen Punktes L_{μ} auch alle durch O' gehen.

Auf der Regelfläche is L_{μ} wiederum ein 9-facher Punkt; es sind jetzt 5 Berührungsebenen mit der durch l_{μ} und O gelegten Ebene und 4 mit der Ebene ω_{μ} zusammengefallen.

§ 6. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden Gerade 1.

Die durch OO' verlaufenden singulären Ebenen waren

1° die Ebene der reellen Axen,

2° die Ebenen $y = \pm x \sqrt{3}$.

Wir wollen uns beschränken auf die Erledigung der axialen Regelfläche einer in der Ebene der reellen Axen liegenden Gerade.

Diese Regelfläche besteht aus 3 mal der Ebene dieser Axen und aus einer Restfläche 10^{ten} Grades.

Es ist l auf dieser Restfläche eine 6-fache Gerade.

Die Kreispunkte sind 4-fache; ihre Berührungsebenen sind durch (8c), (8'c), (9c) und (9'c) angewiesen, wo noch

$$a_1 = a_2 = a$$

 $b_1' = b_2' = b'$

einzusetzen ist.

Der Punkt O ist ein gewöhnlicher mit [w] als Berührungsebene.

Der Punkt O' gehört dagegen der Fläche nicht an.

Der unendlich ferne Punkt $E (\equiv A_3 \equiv B_4')$ ist auf der Fläche ein gewöhnlicher Punkt mit $\lceil w \rceil$ als Berührungsebene.

Der Schnitt in [w] besteht aus den 2-fachen durch die Spur A von I in [w] verlaufenden isotropen Geraden, aus der 2-fachen reellen Axe und aus einer Kurve 4^{ten} Grades, deren Gleichung lautet:

$$\frac{\xi_{1}(\xi_{1}+a\xi_{3})^{2}\xi_{3}^{2}-\xi_{2}(\xi_{2}+a\xi_{3})^{2}\xi_{3}^{2}-b'(\xi_{1}-\xi_{2})(\xi_{1}+a\xi_{3})^{2}(\xi_{2}+a\xi_{3})^{2}}{\xi_{1}-\xi_{2}}=0,$$

oder

$$\{(\xi_1^2 + \xi_1 \xi_2 + \xi_2^2) + 2a(\xi_1 + \xi_2)\xi_3 + a^2 \xi_3^2 | \xi_3^2 - b'(\xi_1 + a\xi_3)^2 (\xi_2 + a\xi_3)^2 = 0. (26c)$$

Diese Kurve hat in den Kreispunkten Doppelpunkte, deren Tangenten sich in den 4 Bildern B der Spur B' von l in [w] treffen.

Die Kurve enthält weder den Punkt A noch den Punkt E.

Der Punkt O dagegen ist ein gewöhnlicher Punkt; dies wird ersichtlich, wenn wir die Gleichung auf das Coordinatendreieck OIJ beziehen. Sie bekommt alsdann diese Gestalt:

$$b' x_1^2 x_2^2 - (x_1^2 + x_1 x_2 + x_2^2) x_3^2 + a (x_1 + x_2) x_3^3 = 0. \quad (26'c)$$

Die Tangente von O fällt also mit der imaginären Axe zusammen.

Der Schnitt in [w'] besteht aus den 2-fachen durch die Spur B' von l in [w'] gehenden isotropen Geraden und aus einer Kurve 6^{ten} Grades, welche dargestellt wird durch

$$\frac{\xi_{1}(\underline{\xi}_{1}+b'\xi_{4})^{\frac{1}{2}}\underline{\xi_{4}^{\frac{1}{2}}}-\xi_{2}(\xi_{2}+b'\xi_{4})^{\frac{1}{2}}\underline{\xi_{4}^{\frac{1}{2}}}-a(\xi_{1}-\xi_{2})(\underline{\xi}_{1}+b'\xi_{4})^{\frac{1}{2}}(\xi_{2}+b'\xi_{4})^{\frac{1}{2}}}{\xi_{1}-\xi_{2}}=0,$$

oder

$$\frac{[\underline{\xi_1}^2(\xi_1+b'\xi_1)\underline{\xi_4}+\underline{\xi_2}^2(\xi_2+b'\xi_4)\xi_4-a^2(\xi_1-\xi_2)^2(\xi_1+b'\xi_4)(\xi_2+b'\xi_4)]^2-1\xi_1^2\underline{\xi_2}^2\underline{\xi_4}^2(\xi_1+b'\xi_4)(\underline{\xi_2}+b'\xi_4)}{(\xi_1-\xi_2)^2} \underline{-0}^{(1)}$$

oder auch

$$\frac{|(\xi_1^2 + \xi_1 \xi_2 + \xi_2^2) + b'(\xi_1 + \xi_2)\xi_4|^2 \xi_4^2 + a^4(\xi_1 - \xi_2)^2 (\xi_1 + b'\xi_4)^2 (\xi_2 + b'\xi_4)^2 - 2a^2(\xi_1 + b'\xi_4)(\xi_2 + b'\xi_4)|\xi_1^2(\xi_1 + b'\xi_4) + \xi_2^2(\xi_2 + b'\xi_4)|\xi_4 = 0. (27c)$$

Die Kreispunkte sind auch hier Rückkehrpunkte; ihre Tangenten treffen sich im Bilde A' von A.

Der Punkt B' ist ein Doppelpunkt, dessen Tangenten die axialen Projektionen aus l auf [w'] der ausserhalb der Ebene der reellen Axen liegenden nach B' zielenden Congruenzstrahlen sind.

Der Punkt E ist ein gewöhnlicher; seine Tangente liegt im Unendlichen.

Der Punkt O' gehört der Kurve nicht an.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 10^{ten} Grades. Sie hat in den Kreispunkten 4-fache Punkte, deren Tangenten die Schnittlinien von ω_{μ} mit den Ebenen (8c), (8'c), (9c) und (9'c) sind (wo $a_1 = a_2 = a$).

Der Schnittpunkt C_{μ} von ω_{μ} mit l ist ein 6-facher, dessen Tangenten die axialen Projektionen aus l auf [w] der 6 ausserhalb der Ebene der reellen Axen liegenden, nach C_{μ} zielenden Congruenzstrahlen sind.

Der unendlich ferne Punkt E der reellen Axe ist ein gewöhnlicher Punkt, mit der unendlich fernen Gerade als Tangente.

Die Kurve hat noch *Doppelpunkte* in den Schnittpunkten von ω_{μ} mit der *Doppelkurve*.

Auch hier wollen wir den Grad der Doppelkurve bestimmen. Die Gleichung $f(\pi) = 0$ hat hier diese Form:

$$f(\pi) \equiv \mu (\pi + a)^3 - (\mu a + b')(\pi + a)^2 + 1 = 0$$
, (28c)

oder

$$\mu \pi^3 + (2 \mu a - b') \pi^2 + (\mu a - 2 b') a \pi - (a^2 b' - 1) = 0$$
,

wonach

$$c_1 + c_2 + c_3 = -rac{2\ \mu a - b'}{\mu},$$
 $c_1 c_2 + c_1 c_3 + c_2 c_3 = rac{(\mu a - 2\ b')\ a}{\mu},$ $c_1 c_2 c_3 = rac{a^2\ b' - 1}{\mu}.$

Die Punkte $D_{k,l}$, welche, wie wir in der Abt. A dieses Abschnittes ersahen, durch

$$(c_1 c_2 + c_1 c_3 + c_2 c_3)(c_1 + c_2 + c_3) - c_1 c_2 c_3 = 0$$

bestimmt sind, ergeben sich somit hier aus der Gleichung

$$\frac{-a(2\mu a - b')(\mu a - 2b') - \mu(a^2b' - 1)}{\mu^2} = 0,$$

also aus

$$\mu^2 = \infty$$

und

$$2 a^3 \mu^2 - (4 a^2 b' + 1) \mu + 2 a b'^2 = 0.$$
 (29c)

Die auf 1 liegenden Doppelpunkte der Doppelkurve, welche durch

$$(c_1 c_2 + c_1 c_3 + c_2 c_3)^3 - c_1 c_2 c_3 (c_1 + c_2 + c)^3 = 0$$

angewiesen werden, ergeben sich demnach aus

$$\frac{a^3(\mu a - 2b')\mu^3 + (a^2b' - 1)(2\mu a - b')^3}{\mu^4} = 0,$$

also aus

$$\mu^4 = \infty$$

und

$$a^{6} \mu^{4} + 2 a^{3} (a^{2} b' - 4) \mu^{3} + 12 a^{2} b' \mu^{2} - 2 a b'^{2} (a^{2} b' + 3) \mu - b'^{3} (a^{2} b' - 1) = 0.$$
 (30c)

Es ist leicht ersichtlich, dass die Lösung $\mu=\infty$, welche den Punkt A liefert, weder für die einfachen Schnittpunkte noch für die Doppelpunkte Bedeutung hat. Es erhellt alsdann, dass auf

l 2 einfache und 4 Doppelpunkte der Doppelkurve liegen, welche also zusammen 10 gewöhnliche Punkte vertreten. Da ferner jede durch l gelegte Ebene noch 6 gewöhnliche Punkte der Doppelkurve trägt, so ist der Grad dieser Kurve 10+6=16. Also:

Auf der axialen Regelfläche einer in der Ebene \varepsilon befindlichen Gerade liegt eine Doppelkurve 16ten Grades.

§ 7. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden Gerade, welche durch O geht.

Von der vorhergehenden Regelfläche wird nun 2 mal die Ebene [w] abgetrennt, wonach wir eine Fläche 8^{ten} Grades erübrigen.

Die Kreispunkte sind jetzt Doppelpunkte; ihre Berührungsebenen werden durch (8'c) und (9'c) angewiesen.

Die Gerade OO' schneidet die Fläche 6 mal im Punkte O und einmal in den beiden Schnittpunkten X_e der Tangenten, welche man in den ausserhalb des Wendepunktes O liegenden Schnittpunkten von l mit der kubischen Fokalkurve an letztere legen kann.

Der Schnitt in [w] besteht aus der Kurve 4^{ten} Grades, deren Gleichung lautet:

$$\frac{(x_1^3 - x_2^3) x_3^2 - b'(x_1 - x_2) x_1^2 x_2^2}{x_1 - x_2} = 0,$$

oder

$$b'x_1^2x_2^2 - (x_1^2 + x_1x_2 + x_2^2)x_3^2 = 0. . . (32c)$$

und aus ihren im Doppelpunkte O gelegten Tangenten

$$x_1^2 + x_1 x_2 + x_2^2 = 0$$
,

jede 2-fach gerechnet.

Der Schnitt in [w'] besteht aus den 2-fachen durch B' gehenden isotropen Geraden und aus dem 2-fachen Kegelschnitte, welcher durch

$$\frac{(x_1 - b'x_4)^2 x_1 - (x_2 - b'x_4)^2 x_2}{x_1 - x_2} = 0,$$

oder

$$x_1^2 + x_1 x_2 + x_2^2 - 2b'(x_1 + x_2)x_4 + b'^2 x_4^2 = 0$$
. (33c)

dargestellt wird.

Dieser schneidet die unendlich ferne Gerade in den nämlichen Punkten wie die singulären Ebenen

$$x_1^2 + x_1 x_2 + x_2^2 = 0.$$

Die Asymptoten treffen sich im Mittelpunkte

$$\frac{x_1}{2b'} = \frac{x_2}{2b'} = \frac{x_4}{3} \cdot \cdot \cdot \cdot (34c)$$

Der Punkt B' ist ein gewöhnlicher Punkt. In Bezug auf B'IJ ist die Gleichung

$$\frac{(\xi_1 + b' \xi_4) \xi_1^2 - (\xi_2 - b' \xi_4) \xi_2^2}{\xi_1 - \xi_2} = 0,$$

oder

$$\xi_1^2 + \xi_1 \xi_2 + \xi_2^2 + b'(\xi_1 + \xi_2) \xi_4 = 0.$$
 (33'c)

Hieraus folgt, dass die Tangente von B' durch

$$\xi_1 + \xi_2 = 0$$
 (35c)

bestimmt, somit zu der imaginären Axe parallel ist.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 8^{ten} Grades, welche in den Kreispunkten Doppelpunkte hat; ausserdem hat sie Doppelpunkte in den beiden durch

$$x_1^2 + x_1 + x_2^2 = 0$$

bestimmten unendlich fernen Punkten.

Die Doppelkurve enthält jetzt den 2-fachen Kegelschnitt in [w']. Es zeigt sich nach der Substitution a = 0 in (29c) und (30c), dass jetzt die 2 einfachen auf l liegenden Punkte der Doppelkurve durch

$$\mu = 0 \text{ und } \mu = \infty$$
,

und die 4 Doppelpunkte durch

$$\mu^4 = \infty$$

bestimmt sind.

Die Lösung $\mu = \infty$, welche den Punkt O liefert, wird hinfällig. Die Lösung $\mu = 0$ liefert den Punkt B', welcher dem 2-fachen Kegelschnitte angehört. Der übrige Teil der Doppelkurve hat also keinen Punkt mit l gemein. Da eine durch l gelegte Ebene ausser ihrer durch O gehenden Spur in [w] nur einen Strahl enthält, so ist, ausser dem 2-fachen Kegelschnitt und den 2-fachen isotropen Geraden durch B', von einer Doppelkurve gar nicht mehr die Rede.

§ 8. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden Gerade, welche durch O' geht.

Von der Regelfläche des § 6 wird nun 2 mal die Ebene [w'] abgetrennt. Wir erübrigen also wiederum eine Restfläche 8^{ten} Grades.

Auf dieser Fläche sind die Kreispunkte uniplanare Doppelpunkte, deren Berührungsebenen die Ebenen (8c) und (9c) sind.

Die Gerade OO' schneidet die Fläche einmal im Punkte O, 6 mal im Punkte O' und einmal im Schnittpunkte der Tangente, welche man in dem ausserhalb des Rückkehrpunktes O' liegenden Schnittpunkte von l mit der kubischen Fokalkurve an letztere legen kann.

Der Schnitt in [w] besteht aus den 2-fachen durch A gehenden isotropen Geraden, aus der 2-fachen reellen Axe und aus dem einfachen Kegelschnitte

$$\frac{(x_1 - ax_3)x_1^2 - (x_2 - ax_3)x_2^2}{x_4 - x_2} = 0,$$

oder

$$(x_1^2 + x_1 x_2 + x_2^2) - a(x_1 + x_2) x_3 = 0.$$
 . (26'c)

Dieser Kegelschnitt enthält O und wird daselbst durch die imaginäre Axe berührt.

Der Punkt A gehört der Kurve nicht an.

Die unendlich fernen Punkte liegen in den singulären Ebenen. Der Schnitt in [w'] enthält die Kurve 6^{ten} Grades, deren Gleichung ist

$$\frac{(x_1^{\frac{3}{2}}-x_2^{\frac{3}{2}})x_4^{\frac{4}{2}}-a(x_1-x_2)x_1^{\frac{4}{2}}x_2^{\frac{4}{2}}}{x_4-x_2}=0,$$

oder

$$a^{4}(x_{1}-x_{2})^{2}x_{1}^{2}x_{2}^{2}-2a^{2}(x_{1}^{3}+x_{2}^{3})x_{1}x_{2}x_{4}+(x_{1}^{2}+x_{4}x_{2}+x_{2}^{2})^{2}x_{4}^{2}=0$$
, (36c)

und ausserdem die Tangenten von O', jede einfach gezählt.

Der Punkt O' ist ein 4-facher, von dessen Tangenten je 2 in einer der Spuren der singulären Ebenen

$$x_1^2 + x_1x_2 + x_2^2 = 0$$

vereinigt sind.

Die Kreispunkte sind Doppelpunkte.

Der unendlich ferne Punkt E der reellen Axe ist ein gewöhnlicher Punkt mit der unendlich fernen Gerade als Tangente.

Die eintachen Schnittpunkte der Doppelpunkte mit l werden jetzt (wo b'=0), durch

$$\mu\left(\mu-\frac{1}{2a^3}\right) \doteq 0,$$

die Doppelpunkte aber durch

$$\mu^3 \left(\mu - \frac{8}{a^3}\right) = 0$$

geliefert.

Die Lösing $\mu = 0$ giebt den Punkt O'. Dieser Punkt ist hier aber nicht zulässig. Auf l befinden sich deshalb ein gewöhnlicher und ein Doppelpunkt. Jede durch l gelegte Ebene enthält noch 4 Strahlen, also 6 Punkte der Doppelkurve, deren Grad demnach 3+6=9 ist.

§ 9. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden und zu diesen parallelen Gerade l_{μ} .

Die Fläche ist vom 10^{ten} Grade.

Die in [w] liegende Kurve wird jetzt ($\alpha_2 = -\alpha_1$, siehe (19c), S. 443) durch

$$\mu x_1^2 x_2^2 - (x_1 + x_2) x_3^3 = 0$$
 . . . (38c)

dargestellt.

Die Kreispunkte sind Rückkehrpunkte, deren Tangenten sich in O treffen.

Der Punkt O ist ein gewöhnlicher mit der imaginären Axe als Tangente.

Die in [w'] befindliche Kurve hat (siehe (20c), S. 443) die Gleichung

$$(x_4 - x_2)^2 x_4^2 x_2^2 - 2\mu^2 (x_1 + x_2) x_1 x_2^2 x_4^3 + \mu^4 x_4^6 = 0. \quad (39c)$$

Die Kreispunkte sind Rückkehrpunkte, deren Tangenten sich in O' schneiden.

Der Punkt E ist ein gewöhnlicher Punkt, mit der unendlich fernen Gerade als Tangente.

Der Punkt O' gehört der Kurve nicht an.

Die kubische Gleichung, welche die sich auf l_{μ} schneidenden Strahlen liefert, ist hier

Die Bedingung

$$2(c_1 + c_2 + c_3)^3 - 9(c_1c_2 + c_1c_3 + c_2c_3)(c_1 + c_2 + c_3) + 27c_1c_2c_3 = 0$$

gestaltet sich hier folgendermassen:

$$\frac{2 \rho^3 - 27 \mu^2}{\mu^3} = 0,$$

oder

wo au_3 eine $3^{ ext{te}}$ Wurzel der Einheit darstellt.

Es befinden sich also auf l_{μ} 3 Punkte der Doppelkurve.

Jede durch l_{μ} gelegte Ebene enthält deren ausserhalb l_{μ} noch 6, wonach der Grad der Doppelkurve 3+6=9 ist.

§ 10. Die axiale Regelfläche eines Congruenzstrahles s.

Die Restfläche ist vom 7^{ten} Grade.

Der Strahl s ist auf ihrer Regelfläche eine 4-fache Gerade.

Die Kreispunkte sind nun auf der Fläche gewöhnliche Punkte; ihre Berührungsebenen sind bez. durch

$$x_2 = -s_2 x_3 + s_2^{-2} x_4$$

und

$$x_1 = -s_1 x_3 + s_1^{-2} x_4$$

bestimmt.

Der Schnitt in [w] ist in die 4-fache Gerade OS ($S \equiv \text{Spur}$ von s in [w]) und in eine kubische Kurve ausgeartet. Letztere wird durch

$$\begin{array}{l} (s_{1}^{\ 2}\ \xi_{1} - s_{2}^{\ 2}\xi_{2})\ \xi_{1}\ \xi_{2} + 2\ s_{1}s_{2}(s_{1}\xi_{1}^{\ 2} - s_{2}\xi_{2}^{\ 2})\ \xi_{3} - 2\ (s_{1}^{\ 3} - s_{2}^{\ 3})\ \xi_{1}\xi_{2}\xi_{3} + \\ + [(4s_{1}^{\ 3} - s_{2}^{\ 3})s_{2}\xi_{1} - (4s_{2}^{\ 3} - s_{1}^{\ 3})s_{1}\xi_{2}]\ \xi_{3}^{\ 2} + 2\ s_{1}s_{2}(s_{1}^{\ 3} - s_{2}^{\ 3})\xi_{3}^{\ 3} = 0\ \ (44c) \end{array}$$

dargestellt.

Die Kreispunkte sind gewöhnliche; ihre Tangenten treffen sich im Punkte

welcher, zusammen mit S, der Spur S' von s in [w'] entspricht. Der dritte unendlich ferne Punkt ist der Punkt

$$s_1^{\ 2}\,\xi_1 - s_2^{\ 2}\,\xi_2 = 0$$
 ,

d. h. der Punkt S_4 im Unendlichen auf O'S'; die Tangente dieses Punktes geht durch S.

Der Punkt S selbst gehört der Kurve nicht an.

Der Punkt O ist ein Doppelpunkt; seine Tangenten sind die zwei Bilder der Gerade $O'S_3$, welche O' mit dem unendlich fernen Punkte S_3 auf OS verbindet.

Der Schnitt in [w'] besteht aus den einfachen durch S' gehenden isotropen Geraden, aus der einfachen Gerade O'S' und aus einer Kurve 4^{ten} Grades, deren Gleichung ist

Die Kreispunkte gehören dieser Kurve nicht an.

Die unendlich ferne Gerade schneidet die Kurve 4 mal im Doppelpunkte S_3 .

Der Punkt S' ist ein gewöhnlicher; seine Tangente ist die axiale Projektion aus s auf $\lceil w' \rceil$ des Punktes (45c).

Der Punkt O' ist ein Rückkehrpunkt, dessen Tangente das Bild von OS_4' ist.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 7^{ten} Grades, welche im Schnittpunkte S_{μ} von s mit ω_{μ} einen 4-fachen Punkt hat. Die Kreispunkte sind gewöhnliche. Der Punkt S_4 ist auch ein gewöhnlicher; seine Tangente verbindet S_4 mit S_{μ} . Der Punkt S_3 ist ein Rückkehrpunkt, mit der unendlich fernen Gerade als Tangente.

Bei der Untersuchung der Doppelkurve bemerken wir, dass die Gleichungen $s_1(\pi_1) = 0$ und $s_2(\pi_2) = 0$ jetzt die folgende Form haben:

$$s_1(\pi_4) \equiv \mu s_1^2 \pi_4^2 + (2 \mu s_4^3 - 1) \pi_4 + (\mu s_4^3 - 2) s_4 = 0, (47c)$$

$$s_2(\pi_2) \equiv \mu s_2^2 \pi_2^2 + (2 \mu s_2^3 - 1) \pi_2 + (\mu s_2^3 - 2) s_2 = 0. (48c)$$

Die Schnittpunkte von 8 mit der Doppelkurve, welche durch

$$(c_1 + c_1')^2 c_2 c_2' - c_1 c_1' (c_2 + c_2')^2 = 0$$

bestimmt werden, ergeben sich also hier aus

$$\mu = \infty$$

$$4 s_1^3 s_2^3 \mu^2 + (s_1^3 + s_2^3) \mu - 2 = 0.$$
 (49c)

Weil die Lösung $\mu=\infty$ (welche den Punkt $\mathcal S$ liefert) nicht zulässig ist, so giebt es auf s 2 gewöhnliche Punkte der Doppelkurve.

Auch die beiden Brennpunkte sind als solche zu betrachten. Im Ganzen befinden sich daher auf s 4 Punkte der Doppelkurve. Da jede durch s gelegte Ebene noch 3 andere Strahlen trägt und also 3 Punkte der Doppelkurve enthält, so ist der Grad dieser letzteren 4+3=7.

Auf der Regelfläche eines Congruenzstrahles s liegt eine Doppelkurve 7^{ten} Grades, mit s als Quadrisekante.

§ 11. Die axiale Regelfläche einer in der Ebene der reellen Axen liegenden Congruenzstrahles.

Die Regelfläche ist vom $4^{\rm ten}$ Grade und trägt s als Doppelgerade.

Die Kreispunkte sind gewöhnliche, ihre Berührungsebenen sind durch

$$x_2 = -sx_3 + s^{-2}x_4,$$

 $x_4 = -sx_3 + s^{-2}x_4,$

angewiesen.

Der Schnitt in [w] besteht aus der 2-fachen reellen Axe und aus dem Kreise

$$\xi_1 \, \xi_2 + 2 \, s \, (\xi_1 + \xi_2) \, \xi_3 + 3 \, s^2 \, \xi_3^2 = 0$$
, . (50c)

dessen Mittelpunkt im Punkte $x_1 = x_2 = -sx_3$ liegt. Der Kreis enthält den Punkt O und wird daselbst durch die imaginäre Axe berührt.

Der Schnitt in [w'] ist zusammengesetzt aus den beiden durch S' gehenden isotropen Geraden und aus einem Kegelschnitte

$$s^4(\xi_1 - \xi_2)^2 - 2 s^2(\xi_1 + \xi_2) \xi_4 - 3 \xi_4^2 = 0.$$
 (54c)

Diese Kurve berührt die unendlich ferne Gerade im Punkte L. Sie ist offenbar eine Parabel, deren Axe mit der reellen Axe identisch ist.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine circulare Kurve 4^{ten} Grades, deren Brennpunkt sich befindet im Schnittpunkte von ω_{μ} mit der Gerade $x_1 = x_2 = -sx_3 + s^{-2}x_4$.

Die Kurve berührt noch die unendlich ferne Gerade auf der reellen Axe.

Der Schnittpunkt S_{μ} von s mit ω_{μ} ist ein Doppelpunkt.

Die Gleichung $s(\pi) = 0$ hat hier diese Gestalt:

$$s(\pi) \equiv \mu s^2 \pi^2 + (2 \mu s^3 - 1) \pi + (\mu s^3 - 2) s = 0.$$

Die Schnittpunkte von s mit der Doppelkurve werden durch die Bedingung

$$c + c' = 0$$
,

also hier durch

$$2 \mu s^3 - 1 = 0$$

oder

$$\mu = \frac{1}{2 \, s^3}$$

geliefert.

Die Doppelkurve hat also nur einen Punkt mit s gemein. Da jede durch s gelegte Ebene nur noch 2 Strahlen, daher nur einen Punkt der Doppelkurve trägt, so ist die Doppelkurve ein Kegelschnitt.

§ 12. Die axiale Regelfläche einer in der Abbildungsebene [w] liegenden Gerade l_{∞} .

Die Fläche ist vom 5^{ten} Grade und trägt l_{∞} als eine einfache Leitlinie.

Die Kreispunkte sind Doppelpunkte, deren Berührungsebenen zunächst in Betracht kommen.

Es möge l_{∞} die unendlich ferne Gerade in L_3 , die isotropen Geraden OJ und OI bez. in L_1 und L_2 schneiden.

Der Schnitt in [w] besteht nun aus der Gerade l_{∞} und aus den 2-fachen Geraden L_1I und L_2J .

Die Gerade l_{∞} werde durch

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = 0$$
 . . . (56)

dargestellt.

Der Schnitt in [w'] ist zusammengesetzt aus der einfachen durch O' zu l_{∞} parallelen Gerade $O'L_3$ und aus der Bildkurve 4^{ten} Grades von l_{∞} . Diese Bildkurve hat die Gleichung

$$a_1 x_1^{-\frac{1}{2}} + a_2 x_2^{-\frac{1}{2}} + a_3 x_4^{-\frac{1}{2}} = 0$$
,

oder

$$(\alpha_3^2 x_1 x_2 - \alpha_2^2 x_1 x_4 - \alpha_1^2 x_2 x_4)^2 - 4 \alpha_1^2 \alpha_2^2 x_1 x_2 x_4^2 = 0. (57c)$$

Diese Kurve hat in den Kreispunkten Rückkehrpunkte, deren Tangenten die Bilder von IL_1 und JL_2 sind.

Es ist O' ebenfalls ein Rückkehrpunkt; seine Tangente ist das Bild der durch O zu l_{∞} parallelen Gerade OL_3 .

Die Berührungsebenen der Kreispunkte sind die Ebenen, welche IL_1 und JL_2 bez. mit ihren Bildern verbinden.

Der unendlich ferne Punkt L_3 von l_{∞} ist auf der Fläche ein gewöhnlicher, dessen Berührungsebene l_{∞} mit O' vereinigt.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine Kurve 5^{ten} Grades, welche in den Kreispunkten Rückkehrpunkte hat, deren Tangenten die Schnittlinien von ω_{μ} mit den Berührungsebenen sind.

Der Punkt L_3 ist ein gewöhnlicher.

Es ist hier n=1, wonach sich auf l_{∞} kein Punkt der Doppelkurve befindet. Weil jede durch l_{∞} gelegte Ebene 6 Punkte der Doppelkurve trägt, so ist diese vom $\mathbf{6}^{\text{ten}}$ Grade.

§ 13. Die axiale Regelfläche einer in der Abbildungsebene [w] liegenden Gerade l_{∞} , welche durch O geht.

Es sei

$$x_2 = kx_1$$

die Gleichung der Gerade l_{∞} .

Die Gleichung der axialen Regelfläche ist nun (siehe (144b), S. 307)

$$(kx_1 - x_2)(k^{-2}x_1 - x_2)^2 - (k - k^{-2})^3 x_3^2 x_4 = 0$$
,

oder

$$k^2 (kx_1 - x_2)(x_1 - k^2 x_2)^2 - (k^3 - 1)^3 x_3^2 x_4 = 0.$$
 (58c)

Die durch

$$x_1 - k^2 x_2 = 0$$
, $x_3 = 0$

dargestellte Bildgerade l' von l_{∞} ist die *Doppelgerade* dieser *kubischen* Regelfläche.

Die Gerade l_{∞} selbst ist die einfache Leitlinie.

Die Ebene $\lceil w \rceil$ enthält ausser l_{∞} noch die 2-fache Gerade

$$x_1 - k^2 x_2 = 0$$
,

d.h. die durch O zu der Bildgerade l' parallel verlaufende Gerade;

diese ist offenbar eine *Torsallinie*. Der zugeordnete *Zwickpunkt* ist der unendlich ferne Punkt L_3' auf l'; der Torsalpunkt ist O.

Die durch OO' und l_{∞} gelegte Ebene

$$kx_1 - x_2 = 0$$

hat mit der Regelfläche die Gerade l_{∞} und 2 mal die durch O' zu l_{∞} parallel verlaufende Gerade gemein. Letztere ist demnach die zweite *Torsallinie*. Der entsprechende *Zwickpunkt* ist O'; der Torsalpunkt ist mit dem unendlich fernen Punkte L_3 von l_{∞} identisch.

Eine zu den Abbildungsebenen parallele Ebene enthält eine kubische Kurve mit L_3 als Rückkehrpunkt und $X_{\mu} L_3$ als Rückkehrtangente. Die Kurve hat noch einen Wendepunkt in L_3 mit $X_{\mu} L_3$ als Tangente.

Die axiale Regelfläche einer in [w'] liegenden Gerade, welche durch O' geht, besteht aus diesen 2 kubischen Regelflächen:

$$k(kx_1 - x_2)^2(x_1 - \sqrt{k}x_2) + (k\sqrt{k} - 1)^3x_3x_4^2 = 0$$

und

$$k(kx_1-x_2)^2(x_1+\sqrt{k}x_2)-(k\sqrt{k}+1)^3x_3x_4^2=0.$$

Ihre Eigenschaften sind denen der vorigen Regelfläche analog.

§ 14. Die axiale Regelfläche der zu [w] gehörenden reellen Axe. Diese Fläche besteht aus der 3-fachen Ebene der reellen Axen. Die axiale Regelfläche der zu [w'] gehörenden reellen Axe ist zerfallen in die 3-fache Ebene der reellen Axen und in die kubische Regelfläche

$$(x_1 - x_2)^2 (x_1 + x_2) - 8 x_3 x_4^2 = 0.$$

§ 15. Die Regelfläche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen.

Die Fläche ist vom 18^{ten} Grade und trägt den Kreis als eine 9-fache Kurve.

Der Kreis möge durch

$$\alpha_{2}\beta_{3}x_{4}x_{2} + x_{4}(\alpha_{2}\beta_{3}x_{3} + \alpha_{3}\beta_{2}x_{4}) + x_{2}(\alpha_{1}\beta_{3}x_{3} + \alpha_{3}\beta_{4}x_{4}) + (\alpha_{0}\beta_{3}x_{3}^{2} + \alpha_{2}\beta_{0}r_{4}^{2}) = 0, (59)$$

$$x_{3} = \mu x_{4}$$

dargestellt werden.

Wir benutzen wiederum die folgenden Bezeichnungen:

458 DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-1} w^3$ UND $w' = c^3 w^{-2}$.

$$\gamma_{0} = \alpha_{3} \beta_{3}, \ \gamma_{0}' = \mu \alpha_{3} \beta_{3}, \ \gamma_{0}'' = \mu^{2} \alpha_{3} \beta_{3},
\gamma_{1} = \mu \alpha_{2} \beta_{3} - \alpha_{3} \beta_{2}, \ \gamma_{2} = \mu \alpha_{1} \beta_{3} - \alpha_{3} \beta_{1},
\gamma_{1}' = \mu (\mu \alpha_{2} \beta_{3} - \alpha_{3} \beta_{2}), \ \gamma_{2}' = \mu (\mu \alpha_{1} \beta_{3} - \alpha_{3} \beta_{1}),
\gamma_{3} = \mu^{2} \alpha_{0} \beta_{3} - \alpha_{3} \beta_{0}.$$
(61)

Die Ebene [w] enthält eine Kurve 6^{ten} Grades und 3 zweifache durch jeden der Kreispunkte gelegte Geraden.

Die Kurve ist gegeben durch

$$\gamma_{0}' x_{1}^{3} x_{2}^{3} + \gamma_{1}' x_{1}^{3} x_{2}^{2} x_{3} + \gamma_{2}' x_{1}^{2} x_{2}^{3} x_{3} + \gamma_{3} x_{1}^{2} x_{2}^{2} x_{3}^{2} + \gamma_{0}' (x_{1}^{3} + x_{2}^{3}) x_{3}^{3} + \gamma_{2} x_{1}^{2} x_{3}^{4} + \gamma_{1} x_{2}^{2} x_{3}^{4} + \gamma_{0} x_{3}^{6} = 0.$$
 (62c)

Die Tangenten der Kreispunkte sind durch

$$\gamma_0'' x_2^3 + \gamma_1' x_2^2 x_3 + \gamma_0' x_3^3 = 0$$
 . . (63c)

und

$$\gamma_0'' x_1^3 + \gamma_2' x_1^2 x_3 + \gamma_0' x_3^3 = 0 \quad . \quad . \quad . \quad (64c)$$

angewiesen.

Diese Gleichungen bestimmen ebenfalls (siehe (61)) die Schnittpunkte der Kurve bez. mit den isotropen Geraden OJ und OI.

Die Geraden (63c) (bez. (64c)) haben im 3-fachen Punkte I (bez. J) 4 Punkte mit der Kurve gemein und berühren diese noch in den Schnittpunkten mit OJ (bez. OI).

Der Schnitt in [w'] besteht aus einer Kurve 12^{ten} Grades und aus 3 einfachen durch jeden der Kreispunkte verlaufenden Geraden.

Die Gleichung der Kurve 12^{ten} Grades lautet:

oder

Die Tangenten in den 6-fachen Kreispunkten ergeben sich aus

$$(\gamma_0 x_2 + \gamma_1 x_4)^2 x_2 - {\gamma_0}'^2 x_4^3 = 0.$$
 (63'c)

und

$$(\gamma_0 x_1 + \gamma_2 x_4)^2 x_1 - \gamma_0'^2 x_4^3 = 0.$$
 (64'c)

Diese Gleichungen liefern (siehe (61)) auch die Schnittpunkte der Kurve bez. mit den isotropen Geraden O'J und O'I. Diese Punkte sind alle gewöhnliche Punkte und haben die isotropen Geraden als Tangenten.

Die Geraden (63'c) (bez. (64'c)) haben im 6-fachen Punkte I (bez. J) 8 Punkte mit der Kurve gemein und enthalten noch die Punkte, wo die Kurve die Gerade O'J (bez. O'I) schneidet.

Auf der Fläche sind die Kreispunkte 9-fache; von ihren Berührungsebenen sind je 3 bez. mit den Ebenen

$$(\gamma_0 x_2 + \gamma_1 x_4)^2 (\gamma_0' x_2 + \gamma_1 x_3) + \gamma_0^3 (x_3 - \mu x_4)^3 = 0$$
. (67c)

und

$$(\gamma_0 x_1 + \gamma_2 x_4)^2 (\gamma_0' x_1 + \gamma_2 x_3) + \gamma_0^3 (x_3 - \mu x_4)^3 = 0$$
. (68c)

zusammengefallen. Diese bilden bez. die Regelfläche der Strahlen, welche auf den durch den Mittelpunkt des Kreises verlaufenden isotropen Geraden ruhen.

§ 16. Die Regelfläche der Strahlen, welche auf einem zu der Abbildungsebenen parallelen Kreise ruhen, dessen Mittelpunkt auf OO' liegt.

Wir haben nun

$$\alpha_1 = 0, \quad \alpha_2 = 0,
\beta_1 = 0, \quad \beta_2 = 0$$

einzusetzen, wonach der Kreis durch

bestimmt ist.

Die in [w] liegende Kurve hat jetzt die Gleichung

$$\mu^2 x_1^3 x_2^3 + \frac{\gamma_3}{\gamma_0} x_1^2 x_2^2 x_3^2 + \mu (x_1^3 + x_2^3) x_3^3 + x_3^6 = 0.$$
 (71c)

Die Tangenten der Kreispunkte, welche zugleich die Kurve zum Gesammtschnitte ergänzen, sind nun durch

$$\mu x_2^3 + x_3^3 = 0$$
 (72c)

$$\mu x_1^3 + x_3^3 = 0 \dots (73c)$$

angewiesen.

460 DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-4} w^3$ UND $w' = c^3 w^{-2}$.

Die Gleichung der in $\lceil w' \rceil$ befindlichen Kurve ist

$$x_{1}^{\frac{3}{2}}x_{2}^{\frac{3}{2}} + \frac{\gamma_{3}}{\gamma_{0}}x_{1}^{\frac{1}{2}}x_{2}^{\frac{1}{2}}x_{4}^{2} + \mu(x_{1}^{\frac{3}{2}} + x_{2}^{\frac{3}{2}})x_{4}^{\frac{3}{2}} + \mu^{2}x_{4}^{3} = 0, \quad (74c)$$

oder

$$[x_{1}x_{2}(\gamma_{0}x_{1}x_{2} + \gamma_{3}x_{4}^{2})^{2} - \mu^{2}\gamma_{0}^{2}(x_{1}^{3} + x_{2}^{3})x_{4}^{3} + \mu^{4}\gamma_{0}^{2}x_{4}^{6}]^{2} - 4\mu^{2}\gamma_{0}^{2}\gamma_{3}^{2}x_{1}x_{2}x_{4}^{10} = 0. (75c)$$

Die Tangenten der Kreispunkte ergeben sich aus

$$x_2^3 - \mu^2 x_4^3 = 0$$
,

und

$$x_1^3 - \mu^2 x_4^3 = 0.$$

Die Berührungsebenen der Kreispunkte an der Fläche sind

$$\mu x_2^3 + (x_3 - \mu x_4)^3 = 0$$
,

und

$$\mu x_1^3 + (x_3 - \mu x_4)^3 = 0.$$

§ 17. Die Regelfläche der Strahlen, welche auf einem zu den Abbildungsebenen parallelen Kreise ruhen, der OO' schneidet.

Es gilt hier

$$\alpha_0 = 0$$
 , $\beta_0 = 0$,

mithin

$$\gamma_3 = 0$$
.

Die Gleichungen des Kreises sind also

$$\alpha_{3}\beta_{3}x_{1}x_{2} + x_{1}(\alpha_{2}\beta_{3}x_{3} + \alpha_{3}\beta_{2}x_{4}) + x_{2}(\alpha_{1}\beta_{3}x_{3} + \alpha_{3}\beta_{1}x_{4}) = 0,$$

$$(76)$$

$$\alpha_{3} = \mu x_{4}.$$

$$(77)$$

Die in [w] befindliche Kurve hat nun die Gleichung

$$\gamma_0'' x_1^3 x_2^3 + \gamma_1' x_1^3 x_2^2 x_3 + \gamma_2' x_1^2 x_2^3 x_3 + \gamma_0' (x_1^3 + x_2^3) x_3^3 +$$

$$+ \gamma_2 x_1^2 x_3^4 + \gamma_1 x_2^2 x_3^4 + \gamma_0 x_3^6 = 0. . . . (78c)$$

Die Tangenten der Kreispunkte behalten ihre Gleichungen (63e) und (64e).

Die in $\lceil w' \rceil$ liegende Kurve wird durch

DIE CONGRUENZEN VON $w' = e^{-2} w^3$, $w'^2 = e^{-4} w^3$ UND $w' = e^3 w^{-2}$. 461

dargestellt. Die Tangenten der Kreispunkte sind auch hier durch die Gleichungen (63'e) und (64'e) angewiesen.

§ 18. Die Regelfläche der Strahlen, welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen.

Die vorhergehende Regelfläche ist zerfallen in 12 mal die Abbildungsebene [w] und in eine Fläche 6^{ten} Grades.

Auf dieser Fläche ist der Kreis eine einfache Kurve.

Es gilt hier $\mu = \infty$, wonach der Kreis durch

$$\alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 + \alpha_0 x_3^2 = 0,$$
 (83)
 $x_4 = 0$. (84)

bestimmt ist.

Wenn der Kreis die isotrope Gerade OJ (bez. OI) in M_4 (bez. M_2) schneidet, so besteht der Schnitt in [w] aus dem gegebenen Kreise und aus den 2-fachen Geraden IM_4 und JM_2 .

Der Schnitt in $\lceil w' \rceil$ besteht aus den einfachen isotropen Geraden

$$\alpha_2^2 x_2 - \alpha_3^2 x_4 = 0$$

und

$$\alpha_1^2 x_1 - \alpha_3^2 x_4 = 0$$

und aus der Bildkurve 4^{ten} Grades des Kreises. Diese Bildkurve hat die Gleichung

$$\mathbf{a}_{3}x_{1}^{-\frac{1}{2}}x_{2}^{-\frac{1}{2}} + \mathbf{a}_{2}x_{1}^{-\frac{1}{2}}x_{4}^{-\frac{1}{2}} + \mathbf{a}_{1}x_{2}^{-\frac{1}{2}}x_{4}^{-\frac{1}{2}} + \mathbf{a}_{0}x_{4}^{-1} = 0, \quad (85c)$$

oder

$$[\alpha_0^2 x_1 x_2 - \alpha_1^2 x_1 x_4 - \alpha_2^2 x_2 x_4 + \alpha_3^2 x_4^2]^2 - 4(\alpha_0 \alpha_3 - \alpha_1 \alpha_2) x_1 x_2 x_4^2 = 0. (86c)$$

Die Kreispunkte sind Rückkehrpunkte, deren Tangenten durch

$$\alpha_0^2 x_2 - \alpha_1^2 x_4 = 0$$

und

$$\alpha_0^2 x_1 - \alpha_2^2 x_4 = 0$$

gegeben, sonach mit den Bildern von IM_4 und JM_2 identisch sind. Die Bildkurve berührt die durch O' gehenden isotropen Geraden

in den Punkten, wo die Ausartungselemente diese Geraden treffen.

Auf der Fläche sind die Kreispunkte 3-fache; von den Berührungsebenen von I (bez. J) sind 2 zusammengefallen in die Ebene, welche IM_1 (bez. JM_2) mit ihrem Bilde verbindet; die dritte Ebene verbindet die in I (bez. J) an den Kreis gelegte Tangente mit ihrem in $\lceil w' \rceil$ liegenden Bilde.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine tricirculare Kurve 6^{ten} Grades.

§ 19. Die Regelfläche der Strahlen, welche auf einem in der Abbildungsebene [w] liegenden Kreise ruhen, dessen Mittelpunkt O ist.

Man hat jetzt

$$\alpha_1 = 0$$
, $\alpha_2 = 0$,

wonach der Kreis diese Gleichungen hat:

Die Regelfläche ist wiederum vom 6^{ten} Grade und trägt den Kreis als eine einfache Kurve.

Der Schnitt in [w] besteht aus der 4-fachen unendlich fernen Gerade und aus dem einfachen Kreise.

Die Fläche schneidet [w'] in der 2-fachen unendlich fernen Gerade und im 2-fachen Bildkreise des in [w] gegebenen Kreises.

Die Gleichung des Bildkreises lautet

$$\alpha_0^2 x_1 x_2 - \alpha_3^2 x_4^2 = 0.$$
 (89c)

Der Mittelpunkt ist O'.

Die unendlich ferne Gerade der Abbildungsebenen ist eine Doppelgrade der Fläche,

Die Kreispunkte sind 3-fache; von ihren Berührungsebenen fallen 2 mit $\lceil w' \rceil$ und eine mit $\lceil w \rceil$ zusammen.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} besteht aus der 2-fachen unendlich fernen Gerade und aus einer eireularen Kurve 4^{ten} Grades.

§ 20. Die Regelfläche der Strahlen, welche ruhen auf einem in der Abbildungsebene [w] liegenden Kreise, der O enthält.

Jetzt hat man

DIE CONGRUENZEN VON $w' = c^{-2} w^3$, $w'^2 = c^{-4} w^3$ UND $w' = c^3 w^{-2}$. 463

Der Kreis hat die Gleichungen

$$\alpha_3 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 = 0,
x_4 = 0.$$
. . (90)

Die Ebene [w] wird 2 mal abgetrennt. Es erübrigt also eine Fläche 4^{ten} Grades, welche den Kreis als eine einfache Kurve trägt.

Der Schnitt in [w] besteht aus dem gegebenen Kreise und aus der 2-fachen Gerade, welche O mit dem Bilde des O vorangehenden Punktes verbindet, also aus der Gerade

$$\alpha_2^2 x_1 - \alpha_1^2 x_2 = 0.$$

Die in [w'] liegende Bildkurve ist ein Kegelschnitt und wird durch

$$(\alpha_1^2 x_1 + \alpha_2^2 x_2 - \alpha_3^2 x_4)^2 - 4 \alpha_1^2 \alpha_2^2 x_1 x_2 = 0$$
 . (93c)

dargestellt. Er wird durch die Geraden

$$\alpha_2^2 x_2 - \alpha_3^2 x_4 = 0$$

und

$$\mathbf{\alpha_1}^2 x_1 - \mathbf{\alpha_3}^2 x_4 = 0$$

zu einem Gebilde 4^{ten} Grades ergänzt. Diese Geraden schneiden bez. die isotropen Geraden O'J und O'I in denselben Punkten, wo die Bildkurve letztere berührt.

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ω_{μ} ist eine circulare Kurve $4^{\rm ten}$ Grades.

SECHSTER ABSCHNITT.

Funktionen, welche in Bezug auf ihre conforme Abbildung mit den parabolischen und hyperbolischen Congruenzen zusammenhangen.

§ 1. Im vorliegenden Abschnitte werden wir eine Übersicht liefern über die Art und Weise, in welcher die Strahlencongruenzen bei der conformen Abbildung von Funktionen zu verwerten sind.

Betrachten wir zunächst die einfachste Funktion, nämlich die lineare Beziehung

$$w' = \gamma w + b$$
,

wo γ und *b reell* gedacht werden.

Wir setzen

$$b = -\gamma a$$

und erhalten somit

$$w' = \gamma (w - a).$$

Indem wir w', w und a als Vektoren auffassen, ist die reelle Grösse a ein der X-Axe der reellen Zahlen paralleler Vektor.

Der Vektor (w-a) ist die Gerade, welche den Punkt a(x=a, y=0) mit dem Punkte w(x=u, y=v) verbindet.

Weil γ eine reelle Zahl ist, so ist der Vektor w' in der Ebene [w'] zu dem Vektor (w-a) in [w] parallel; dabei ist der Tensor von w' das γ -fache von dem Tensor von (w-a).

Demzufolge schneidet die Verbindungslinie ww' die Verbindungslinie aO' in einem solchen Punkte C, wofür

$$aC: O'C = 1: \gamma.$$

Hieraus ist sogleich ersichtlich, dass C ein fester Punkt auf der festen Gerade aO' ist.

Jeder Congruenzstrahl ww' der Funktion $w' = \gamma w + b$ zielt also nach diesem festen Punkte C, welcher sich in der Ebene der reellen Axen befindet. Also:

Die Funktion

$$w' = \gamma w + b$$

wird vertreten durch einen Strahlenbündel, dessen Scheitel C in der Ebene der reellen Axen liegt.

§ 2. Es handelt sich nunmehr um die Frage, wie eine nämliche Congruenz zur Abbildung mehrerer Funktionen dienen kann.

Es sei h der Abstand der Ebenen [w] und [w'].

Wir legen eine Ebene [W] parallel zu den Ebenen [w] und [w'], in einem Abstande ph von der Ebene [w].

Ein Congruenzstrahl w w' schneidet die neue Ebene [W] in einem Punkte W = U + iV, und zwar so, dass zwischen den Vektoren w, w' und W der folgende Verband besteht:

$$\frac{W-w}{w'-w}=p,$$

wonach

$$W = pw' + (1 - p) w.$$
 (1)

Indem wir eine zweite Ebene [W'] parallel zu [w] und [w'] legen, in einem Abstande p'h von [w], so gilt für den Vektor des Schnittpunktes W' = U' + iV' dieser Ebene mit dem Congruenzstrahle ww':

W' = p'w' + (1 - p')w. (2)

Die Grössen w und w' mögen durch die Funktion

Verhand, der Kon. Acad. v. Wetensch. (1e Sectie) Dl. X.

verknüpft sein. Alsdann sind auch die Grössen W und W' durch eine gewisse Beziehung

$$\Phi(W, W') = 0 \dots (4)$$

einander zugeordnet.

Die Gestalt der Funktion Φ wird ermittelt, indem man aus den drei Gleichungen

$$\begin{split} W &= pw' + (1 - p) w, \\ W' &= p'w' + (1 - p') w, \\ \varphi(w, w') &= 0 \end{split}$$

die Grössen w und w' eliminirt.

Da aus (1) und (2) folgt

$$w = \frac{p'W - pW'}{p' - p}, \dots (5)$$

$$w' = \frac{(p'-1)W - (p-1)W'}{p'-p}, \dots (6)$$

so liefern (3) und (4)

$$\Phi(W, W') \equiv \varphi\left(\frac{p'W - pW'}{p' - p}, \frac{(p' - 1)W - (p - 1)W'}{p' - p}\right) = 0.$$
 (7)

Setzen wir noch

$$\frac{p'}{p'-p} = \alpha, \quad \frac{p'-1}{p'-p} = \alpha', \quad \dots \quad (8)$$

wonach

$$\frac{p}{p'-p} = \alpha - 1$$
, $\frac{p-1}{p'-p} = \alpha' - 1$, . (9)

so verwandelt sich (7) in

$$\Phi(W, W') \equiv \varphi(\alpha W + (1 - \alpha) W', \alpha' W + (1 - \alpha') W'). (10)$$

Wir wollen nunmehr die Punkte W um eine Strecke δ verschieben, wonach wir einen Punkt erhalten, dessen Affix \overline{W} durch

$$\overline{W} = W + \delta$$

bestimmt ist; sodann wollen wir alle Vektoren W in demselben

Verhältniss γ vergrössern, wonach wir zu Punkten gelangen, deren Affixen durch

$$\overline{w} = \gamma \overline{W}$$

gegeben sind; im letzteren Falle haben wir also

$$\overline{w} = \gamma(W + \delta)$$

oder

$$W = \frac{\overline{w}}{\gamma} - \delta. \quad . \quad . \quad . \quad . \quad (11)$$

Wenn wir in derselben Weise mit den Punkten w' verfahren, so bekommen wir ein durch

$$\overline{w}' = \gamma' (W' + \delta')$$

bestimmtes Punktsystem \overline{w}' ; im Letzteren hat man daher

$$W' = \frac{\overline{w}'}{\gamma'} - \delta'. \quad . \quad . \quad . \quad (12)$$

Die Ausdrücke, welche in (10) erscheinen, werden somit folgerdermassen umgeformt:

$$\alpha W + (1 - \alpha) W' = \frac{\alpha}{\gamma} \overline{w} + \frac{1 - \alpha}{\gamma'} \overline{w}' - |\alpha \delta + (1 - \alpha) \delta'|,$$

$$\alpha' W + (1 - \alpha') W' = \frac{\alpha'}{\gamma} \overline{w} + \frac{1 - \alpha'}{\gamma'} \overline{w}' - |\alpha' \delta + (1 - \alpha') \delta'|.$$

Indem wir

$$\frac{\alpha}{\gamma} = a, \quad \frac{1-\alpha}{\gamma'} = b, \quad -|\alpha\delta + (1-\alpha)\delta'| = c, \\ \frac{\alpha'}{\gamma} = a', \quad \frac{1-\alpha'}{\gamma'} = b', \quad -|\alpha'\delta + (1-\alpha')\delta'| = c',$$
 (13)

setzen, verwandelt sich die Gleichung (10) in

$$\overline{\varphi}(\overline{w}, \overline{w}') \equiv \varphi(a\overline{w} + b\overline{w}' + c, \ a'\overline{w} + b'\overline{w}' + c') = 0.$$
 (14)

Hieraus ersehen wir, dass die Funktion $\overline{\varphi}$ aus der Funktion φ hergeleitet werden kann, indem die Veränderlichen w und w' von φ durch ganze lineare Formen dieser Grössen ersetzt werden.

Die Gleichung $\varphi(w,w')=0$ möge auch durch die Kurve ver-

treten worden, welche durch diese Gleichung in den Cartesischen Coordinaten w, w' dargestellt wird; diese Kurve wollen wir als das Diagram von $\varphi(w, w') = 0$ bezeichnen.

Wir können alsdann Folgendes behaupten:

Das Diagram von $\overline{\varphi}$ $(\overline{w}, \overline{w}') = 0$ wird aus dem Diagram von $\varphi(w, w') = 0$ durch eine projective Transformation hergeleitet, bei der die unendlich fernen Gebilde im Unendlichen bleiben.

Von dieser affinen Transformation bildet die Verschiebung nebst Drehung einen besonderen Fall. In diesem Falle ist nämlich

$$a = \cos \theta$$
, $b = -\sin \theta$,
 $a' = \sin \theta$, $b' = \cos \theta$.

Wenn diese Bedingungen nicht erfüllt werden, so setzen wir

$$a = \rho r \cos \theta, \ b = -\rho r' \sin \theta, \ c = \rho \lambda, a' = \rho' r \sin \theta, \ b' = \rho' r' \cos \theta, \quad c' = \rho' \lambda'.$$
 (15)

Durch die Substitution dieser Ausdrücke in (14) gestaltet letztere sich in

$$\overline{\varphi}(\overline{w}, \overline{w}') \equiv \varphi \left[\rho \left(r \overline{w} \cos \theta - r' \overline{w}' \sin \theta + \lambda \right), \rho' \left(r \overline{w} \sin \theta + r' \overline{w}' \cos \theta + \lambda' \right) \right],$$
 wonach

$$w = \rho (r\overline{w} \cos \theta - r'\overline{w}' \sin \theta + \lambda), w' = \rho' (r\overline{w} \sin \theta + r'\overline{w}' \cos \theta + \lambda').$$
 (16)

Der Ubergang vom Diagram von $\varphi(w, w') = 0$ zum Diagram von $\overline{\varphi}(\overline{w}, \overline{w}')$ besteht also zuerst in einer Verkleinerung der Coordinaten w und w' bez. im Verhältniss $1 : \rho$ und $1 : \rho'$, sodann in einer Verschiebung (λ, λ') und einer Drehung um θ , und schliesslich in einer Verkleinerung der zuletzt erhaltenen Coordinaten bez. im Verhältniss 1 : r und 1 : r'.

Dies sind die Operationen, welche ein gegebenes Diagram in ein anderes umformen, das derselben Strahlencongruenz entspricht.

In den Beziehungen (13) sind alle Grössen α , α' , γ , γ' , δ und δ' reell gedacht, wonach auch α , α' , δ , δ' , c und c' reell sind.

Umgekehrt: setzen wir ρ , ρ' , λ , λ' , r, r' und θ als reell voraus, so werden auch a, b, c, a', b' und c' reell sein; da ferner die Gleichungen (13) in α , α' , γ , γ' , δ und δ' linear sind, so werden auch diese Grössen reelle Werte bekommen.

Wir schliessen, dass jede reelle Transformation (16) durch reelle Operationen mit den Abbildungsebenen und den in diesen befindlichen Kurven dargestellt werden kann.

Damit die Operationen mit den Abbildungsebenen und den in diesen befindlichen Kurven reell seien, genügt es, dass α und α' reell sind. Wenn γ und γ' complex sind, so bedeutet dies, dass eine durch den Punkt \overline{w} bez. \overline{w}' beschriebene Kurve nebst ihrer ähnlichen Vergrösserung noch eine Drehung erfährt, während complexe Werte von δ und δ' einer zu der Axe der reellen Zahlen nicht-parallelen Verschiebung entsprechen.

Wir sind also im Stande mit einer Strahlencongruenz Operationen zu bewerkstelligen, welche imaginären Transformationen des Diagrams entsprechen (z. B. die Multiplikation einer Coordinate mit einem imaginären Faktor). Diese Eigenschaft ermöglicht uns aus dem Diagram ein anderes herzuleiten, welches zwar in rein geometrischer, nicht aber in metrischer Hinsicht dem ursprünglichen Diagram verwandt ist.

Betrachten wir z.B. die Ellipse und die Hyperbel, welche, auf ihren Axen bezogen, durch die Gleichungen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 und $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Dieses Verfahren wird aber jetzt ausser Betracht bleiben, weil die Anwendung dieses Prinzips für jede Art von Kurven eine andere ist.

§ 3. Die Gleichung $\varphi(w, w') = 0$ kann noch weitere Umstaltungen erfahren, ohne dass die Strahlencongruenzen aufhören ihre Dienste zu leisten.

Zuerst bemerken wir, dass die Coordinaten \overline{w} und \overline{w}' durch gewisse Funktionen

$$\overline{w} = f(w_1),$$

 $\overline{w}' = f'(w_1')$

in Coordinaten w_1 und w_1' übergeführt werden können. Wenn \overline{w} und \overline{w}' der Beziehung

$$\overline{\varphi}(\overline{w}, \overline{w}') \equiv \varphi(a\overline{w} + b\overline{w}' + c, a'\overline{w} + b'\overline{w}' + c') = 0$$

genügen, so werden w_1 und w_1' durch die Beziehung

$$q_1(w_1, w_1') = \varphi[af(w_1) + bf'(w_1') + c, a'f(w_1) + b'f'(w_1') + c'] = 0$$
 (17) verknüpft sein.

Um die conforme Abbildung dieser Funktion φ_1 zu ermitteln betrachten wir zuerst eine durch die (complexe) Coordinate w_1 beschriebene Kurve $[w_1]$. Die entsprechende Bahn $[\overline{w}]$ der Coordinate \overline{w} ergiebt sich alsdann vermittelst der Congruenz $\overline{w} = f(w_1)$.

Wenn wir diese Bahn, nötigenfalls nach Verschiebung, Vergrösserung und Drehung, in die erforderliche Abbildungsebene (Parallelebene) der Congruenz $\varphi(w,w')=0$ legen, so werden wir die Kurve $[\overline{w}']$ von \overline{w}' (eventuell in verschobenem, verkleinertem und gedrehtem Stande) in einer anderen Abbildungsebene, jedoch in der nämlichen Congruenz, auffinden. Die Bahn $[\overline{w}']$ von \overline{w}' wird schliesslich durch die Strahlencongruenz $\overline{w}'=f'(w_1')$ in die Bahn $[w_1']$ von w_1' umgestaltet. Es ist alsdann diese Kurve $[w_1']$ in $\varphi_1(w_1,w_1')=0$ der Bahn $[w_1]$, von welcher wir ausgingen, zugeordnet.

Noch allgemeiner verfahren wir, wenn wir jede Funktion als die Beziehung zwischen zwei Abbildungsebenen einer anderen Funktion betrachten.

Es sei z. B. gegeben:

$$\psi(a_1 w_1 + \overline{a} \overline{w} + a_0, b_1 w_1 + \overline{b} \overline{w} + b_0) = 0,
\psi'(a_1' w_1' + \overline{a}' \overline{w}' + a_0', b_1' w_1' + \overline{b}' \overline{w}' + b_0') = 0,$$
(18)

mit dieser Beziehung zwischen \overline{w} und \overline{w}' :

$$\varphi(a\overline{w} + b\overline{w}' + c, \ a'\overline{w} + b'\overline{w}' + c') = 0. \quad . \quad (19)$$

Durch die Elimination von \overline{w} und \overline{w}' findet man die Beziehung

$$\psi_1(w_1, w_1') = 0, \dots (20)$$

welche noch allgemeiner als die oben hergeleitete ist.

Wenn wir in diesem Falle die conforme Abbildung von $\psi_1(w_1, w_1') = 0$ erörtern wollen, so betrachten wir eine Kurve $[w_1]$ als die Bahn der Coordinate w_1 . Durch Verschiebung, Vergrösserung und eventuelle Drehung verwandelt sich diese Bahn in eine neue, welche in eine Abbildungsebene der Congruenz $\psi(w, w')$ zu legen ist; es befindet sich alsdann in einer anderen Abbildungsebene eine Kurve, welche nach Verschiebung, Vergrösserung (und Drehung) in die Bahn $[\overline{w}]$ von \overline{w} übergeht. Indem wir nun diese Bahn $[\overline{w}]$, nötigenfalls umgeformt, in die Congruenz $\varphi(w, w') = 0$ legen, so finden wir in einer anderen Abbildungsebene, nach even-

tueller Umstaltung, die Bahn $[\overline{w}']$ von \overline{w}' . Diese Bahn wird schliesslich mittels der Congruenz $\psi'(w,w')=0$ in die Bahn $[w_1']$ von w_1' umgeformt. Die zuletzt erhaltene Bahn ist sodann die Bildkurve der Bahn $[w_1]$ von w_1 in der conformen Abbildung der Funktion $\psi_1(w_1,w_1')=0$.

Es leuchtet ein, dass wir in dieser Weise mit Hülfe immer neuer Congruenzen fortfahren können.

Das schwierige ist hierbei die gegebene Funktion $\psi_1(w_1, w_1') = 0$ so zu zerlegen, dass sie die Anwendung von Strahlencongruenzen einfacher Funktionen ermöglicht.

§ 4. Im Folgenden wird nur von parabolischen und hyperbolischen Congruenzen die Rede sein; sie gehören, wie wir ersahen, den Funktionen

$$w' = w^{\frac{m}{n}}$$

und

$$w' = w^{-\frac{m}{n}}.$$

an.

Es wird sich zeigen dass wir mit Hülfe dieser Congruenzen die conformen Abbildungen einer ziemlich ausgedehnten Gruppe von Funktionen zu ermitteln im Stande sind.

Wenn wir zuerst den allgemeinen Fall des vorigen § ins Auge fassen, so sind, falls *nur parabolische* Congruenzen in Betracht kommen, den Funktionen ψ , ψ' und φ die folgenden Gestalten zu verleihen

$$\psi(w, w') \equiv w^m - w'^n = 0,
\psi'(w, w') \equiv w^{m'} - w'^{n'} = 0,
\varphi(w, w') \equiv w^M - w'^N = 0.$$

Wir setzen voraus, dass immer die Bedingungen

$$m > n$$
, $m' > n'$, $M > N$

erfüllt sind.

Indem wir den Funktionen ψ , ψ' und φ in (18) und (19) die obigen Formen erteilen, finden wir

$$f(w, \overline{w}) \equiv (a_1 w_1 + \overline{a} \, \overline{w} + a_0)^m - (b_1 w_1 + \overline{b} \, \overline{w} + b_0)^n = 0, (21)$$

$$f'(w_1', \overline{w}') \equiv (a_1' w_1' + \overline{a}' \overline{w}' + a_0')^{m'} - (b_1' w_1' + \overline{b}' \overline{w}' + b_0')^{n'} = 0, (22)$$

$$F(\overline{w}, \overline{w}') \equiv (a \, \overline{w} + b \, \overline{w}' + c)^M - (a' \, \overline{w} + b' \, \overline{w}' + c')^N = 0. (23)$$

Die Elimination von \overline{w} und \overline{w}' ergiebt im Allgemeinen eine Gleichung vom Grade mm'M in w_1 und w_1' , d.h. es ist $\psi_1(w_1, w_1') = 0$ im Allgemeinen vom Grade mm'M. Da m, m' und M alle grösser als 1 sind, so wird der Grad von ψ_1 durch eine Zahl mit drei Teilern angewiesen. Gleichungen, deren Grad unteilbar ist, oder nur zwei Faktoren hat, können somit in dieser Weise nicht analysirt werden.

Wir wollen deshalb nunmehr untersuchen, in welchen Fällen diese Methode einen Grad für ψ_1 liefert, welcher weniger Faktoren enthält.

Zuerst setzen wir

$$w_1 = \frac{x_1}{x_5}, \ w_1' = \frac{x_2}{x_5}, \ \overline{w} = \frac{x_3}{x_5}, \ \overline{w}' = \frac{x_4}{x_5},$$

und ändern die Bezeichnungen der Coefficienten folgendermassen ab:

$$f(x_1, x_3, x_5) \equiv (p_4x_1 + p_3x_3 + p_5x_5)^m - (q_1x_1 + q_3x_3 + q_5x_5)^n x_5^{m-n} = 0,(24)$$

$$f'(x_2, x_4, x_5) \equiv (p_2'x_2 + p_4'x_4 + p_5'x_5)^{m'} - (q_2'x_2 + q_4'x_4 + q_5'x_5)^{n'}x_5^{m'-n'} = 0,(25)$$

$$F(x_3, x_4, x_5) \equiv (P_3x_3 + P_4x_4 + P_5x_5)^M - (Q_3x_3 + Q_4x_4 + Q_5x_5)^N x_5^{M-N} = 0.(26)$$

Wir betrachten jetzt x_1, x_2, x_3, x_4 und x_5 als die auf das Fünfzell $X_1 X_2 X_3 X_4 X_5$ bezogenen Coordinaten eines Punktes in einem vierdimensionalen Raume.

In diesem Falle stellt $f(x_1, x_2, x_5) = 0$ einen Raum m^{ten} Grades dar, welcher aus Ebenen zusammengesetzt ist, die alle die Gerade $X_2 X_4$ enthalten.

Die Ebene λ

$$\lambda \left\{ \begin{array}{l} (p) \equiv p_1 x_1 + p_3 x_3 + p_5 x_5 = 0 \ , \\ (q) \equiv q_1 x_1 + q_3 x_3 + q_5 x_5 = 0 \end{array} \right.$$

ist eine n-fache Ebene dieses Raumes; sämmtliche Berührungsräume sind mit dem Raume (q) = 0 zusammengefallen.

Die durch (p) = 0 und $x_5 = 0$ bestimmte Ebene θ ist eine (m-n)-fache Ebene, deren Berührungsräume alle in $x_5 = 0$ vereinigt sind.

Aus demselben Grunde stellt $f'(x_2, x_4, x_5) = 0$ einen Raum vom Grade m' dar, welcher besteht aus Ebenen, die alle die Gerade X_1X_3 tragen.

Die Ebene λ'

$$\lambda' \left\{ egin{array}{l} (p') \equiv p_2{}^{'}x_2 + p_4{}^{'}x_4 + p_5{}^{'}x_5 = 0 \ (q') \equiv q_2{}^{'}x_2 + q_4{}^{'}x_4 + q_5{}^{'}x_5 = 0 \end{array}
ight.$$

ist eine n'-fache Ebene dieses Raumes, deren sämmtliche Berührungsräume in dem Raume (q') = 0 vereinigt sind.

Die durch (p') = 0 und $x_5 = 0$ angewiesene Ebene θ' ist eine (m'-n')-fache Ebene, mit $x_5 = 0$ als einzigem Berührungsraume.

Schliesslich bestimmt $F(x_3, x_4, x_5) = 0$ einen Raum M^{ten} Grades, welcher aus Ebenen zusammengesetzt ist, die alle auf der Gerade X_1X_2 ruhen.

Die Ebene A

$$\Lambda \left\{ \begin{array}{l} (P) \equiv P_3 \, x_3 + P_4 \, x_4 + P_5 \, x_5 = 0, \\ (Q) \equiv Q_3 \, x_3 + Q_4 \, x_4 + Q_5 \, x_5 = 0 \end{array} \right.$$

ist eine N-fache Ebene dieses Raumes, deren Berührungsräume alle im Raume (Q) = 0 zusammengefallen sind.

Die durch (P)=0 und $x_5=0$ bestimmte Ebene Θ ist eine (M-N)-fache Ebene, deren sämmtliche Berührungsräume in $x_5=0$ vereinigt sind.

Die Elimination von x_3 und x_4 bedeutet in geometrischem Sinne eine Projektion aus der Gerade X_3X_4 auf die Ebene $X_1X_2X_5$ der vierdimensionalen Kurve, welche die drei Räume f=0, f'=0 und F=0 gemein haben.

Die gemeinschaftliche Kurve ist vom Grade mm'M. Wenn die Gerade X_3X_4 nichts mit dieser Kurve gemein hat (wie im allgemeinen Falle), so ist der projizirende Raum und deshalb ebenso die in der Ebene $X_1X_2X_5$ befindliche Projektionskurve vom Grade mm'M.

Wenn aber die vierdimensionale Kurve einige, entweder einfache oder vielfache, zusammen μ einfache Punkte vertretende Punkte mit der Gerade X_3X_4 gemein hat, so ist der Grad der Projektionskurve $mm'M-\mu$.

Die Gerade X3 X4 wird durch die Gleichungen

$$x_1 = x_2 = x_5 = 0$$

angewiesen.

Indem man diese Ausdrücke in (24), (25) und (26) substituirt, erhält man

$$\begin{split} p_3 \, x_3 &= 0 \,, \\ p_4^{'} \, x_4^{} &= 0 \,, \\ P_3 \, x_3^{} + P_4 \, x_4^{} &= 0 \,. \end{split}$$

Soll es einen Schnittpunkt der Schnittkurve mit X_3X_4 geben, so muss er durch eine der obigen Gleichungen bestimmt sein.

Der Fall, wo allen Gleichungen identisch genügt wird, d.h. wo $p_3=p_4^{'}=P_3=P_4=0$ ist, ist hier ausgeschlossen, weil alsdann die Gleichung $F(x_3,x_4,x_5)=0$ in die beiden Gleichungen $x_5^{M-N}=0$ und $(Q_3x_3+Q_4x_4+Q_5x_5)^N=P_5^Mx_5^N$, oder $Q_3x_3+Q_4x_4+Q_5x_5-1^N\overline{P_5^M}x_5=0$ d.h. in $x_5^{M-N}=0$ und N lineare Beziehungen zwischen x_3 , x_4 und x_5 zerfallen würde.

Es sind also die folgenden drei Fälle zu unterscheiden:

I. der Schnittpunkt S ist durch

$$x_3 = 0$$

bestimmt; man hat alsdann

$$p_4' = 0$$
 und $P_4 = 0$;

II. der Schnittpunkt S' ist durch

$$x_{4} = 0$$

angewiesen; es gilt sodann

$$p_3 = 0$$
 und $P_3 = 0$;

III. Der Schnittpunkt S" ist durch

$$P_3 x_3 + P_4 x_4 = 0$$

gegeben; es giebt alsdann die Bedingungen

$$p_3 = 0$$
 und $p_4' = 0$.

I. Im ersten Falle lauten die Gleichungen:

$$f(x_1,x_3,x_5) \equiv (p_4x_1 + p_3x_3 + p_5x_5)^m - (q_4x_1 + q_3x_3 + q_5x_5)^n x_5^{m-n} = 0,$$

$$f'(x_2,x_4,x_5) \equiv (p_2'x_2 + p_5'x_5)^{m'} - (q_2'x_2 + q_4'x_4 + q_5'x_5)^{n'} x_5^{m'-n'} = 0,$$

$$F(x_3,x_4,x_5) \equiv (P_3x_3 + P_5x_5)^M - (Q_3x_3 + Q_4x_4 + Q_5x_5)^N x_5^{M-N} = 0.$$

Da weder f'=0 noch F=0 die Coordinate x_1 enthält, so können diese Gleichungen auch die Flächen vertreten, in welchen die Räume f'=0 und F=0 den Raum $x_1=0$ schneiden. Wir haben sodann zu erforschen, wie sich der Punkt X_4 als Punkt der Schnittkurve der Flächen f'=0 und F=0 verhält. Die Fläche f'=0 wird durch die Ebene $x_5=0$ in der (m'-n')-fachen Gerade X_3X_4 berührt; die Ebene $x_5=0$ berührt die Fläche F=0 in der (M-N)-fachen Gerade X_2X_4 .

In der Nähe von X_4 sind die Gleichungen folgendermassen umzugestalten:

$$p_{2}'x_{2} + p_{5}'x_{5} = (q_{2}'x_{2} + q_{4}'x_{4} + q_{5}'x_{5})^{\frac{n'}{n'}}x_{5}^{\frac{n'-n'}{n'}},$$

$$P_{3}x_{3} + P_{5}x_{5} = (Q_{3}x_{3} + Q_{4}x_{4} + Q_{5}x_{5})^{\frac{N}{M}}x_{5}^{\frac{M-N}{M}}.$$

Es erhellt, dass $p_2'x_2$ verschwindend klein wird wie $q_4^{\frac{n'}{m'}}x_5^{\frac{m'-n'}{m'}}$, und dass P_3x_3 sich der Null nähert wie $Q_4^{\frac{N}{M}}x_5^{\frac{M-N}{M}}$. Die Elimination von x_5 aus

$$p_{2}'x_{2} = q_{4}'^{\frac{n'}{m'}}x_{5}^{\frac{m'-n'}{m'}}$$

und

$$P_3 x_3 = Q_4^{\frac{N}{M}} x_5^{\frac{M-N}{M}}$$

ergiebt alsdann eine Beziehung zwischen x_2 und x_3 , welche zu betrachten ist als die Darstellung der Projektion der Raumkurve auf $x_5 = 0$ in der Nähe von X_4 . Die erwähnte Elimination liefert

$${p_2}'^{\frac{m'}{m'-n'}}{q_4}'^{-\frac{n'}{m'-n'}}x_2^{\frac{m'}{m'-n'}} = P_3^{\frac{M}{M-N}}Q_4^{-\frac{N}{M-N}}x_3^{\frac{M}{M-N}}$$

oder

$$p_2{}'^{m'(M-N)}\,Q_4{}^{N(m'-n')}\,x_2{}^{m'(M-N)} = P_3{}^{M(m'-n')}\,q_4{}'^{n'(M-N)}\,x_3{}^{M(m'-n')}.$$

Es ist jetzt die Frage, welche von den Exponenten m'(M - N) und M(m' - n') der grössere ist; wir gelangen also zu zwei Fällen.

A.
$$m'N > Mn'$$
, wonach $m'(M-N) < M(m'-n')$.

Der Punkt X_4 ist ein m'(M-N)-facher mit $x_2 = 0$ als Tangente. Auf der Raumkurve ist X_4 sodann ebenfalls ein m'(M-N)-facher Punkt.

Die beiden Räume f' = 0 und F = 0 durchbohren sich in einer Fläche, welche die Gerade X_1X_4 als eine m'(M-N)-fache Gerade trägt.

Betrachten wir jetzt den Schnitt des Raumes f = 0 mit dem Raume $x_1 = 0$ (welcher *nicht* ein Berührungsraum ist), so finden wir für die Schnittfläche

$$(p_3 x_3 + p_5 x_5)^m - (q_3 x_3 + q_5 x_5)^n x_5^{m-n} = 0;$$

diese Fläche besteht also aus m durch die Gerade X_2X_4 gelegten Ebenen, deren keine die Raumkurve berührt, weil $x_2 = 0$ die einzige Tangente in X_4 ist.

Jede der m Ebenen hat in $X_4 m'(M-N)$ Punkte mit der Raumkurve gemein. Der Punkt X_4 ist also im Ganzen als ein mm'(M-N)- facher Punkt der in $x_1 = 0$ befindlichen Raumkurve, daher auch der vierdimensionalen Kurve zu betrachten.

Im Falle A finden wir demnach für die Ordnung des vielfachen Schnittpunktes X_4 von X_3X_4 mit der Schnittkurve

$$\mu = mm'(M-N),$$

wonach der Grad des diese Kurve aus X₃X₄ projizirenden Raumes ist

$$m'mM - \mu = mm'M - mm'(M-N) = mm'N.$$

B.
$$m'N < Mn'$$
, wonach $m'(M - N) > M(m' - n')$.

Der Punkt X_4 der in $x_5 = 0$ liegenden Projektionskurve ist jetzt ein M(m'-n')-facher. Die Überlegungen des vorigen Falles führen uns hier zum Schluss, dass die Ordnung des vielfachen Punktes X_4 , als Punkt der vierdimensionalen Schnittkurve betrachtet, ist

$$\mu = mM(m' - n').$$

Demnach ist der Grad des projizirenden Raumes

$$mm'M - \mu = mm'M - mM(m' - n') = mMn'.$$

II. Im zweiten Falle gilt

$$p_3 = 0$$
 und $P_3 = 0$.

Die Gleichungen der Räume sind nunmehr

$$f(x_1,x_3,x_5) \equiv (p_1x_1 + p_5x_5)^m - (q_1x_1 + q_3x_3 + q_5x_5)^n x_5^{m-n} = 0,$$

$$f'(x_2,x_4,x_5) \equiv (p_2'x_2 + p_4'x_4 + p_5'x_5)^{m'} - (q_2'x_2 + q_4'x_4 + q_5'x_5)^{n'}x_5^{m'-n'} = 0,$$

$$F(x_3,x_4,x_5) \equiv (P_4x_4 + P_5x_5)^M - (Q_3x_3 + Q_4x_4 + Q_5x_5)^N x_5^{M-N} = 0.$$

Est ist X_3 jetzt ein vielfacher Punkt der vierdimensionalen Schnittkurve. Wir können die Betrachtungen des vorigen Falles ganz und gar wiederholen, wenn wir nur m' und n' bez. durch m und nersetzen. Also:

A.
$$mN > Mn$$
.

Der Punkt X_3 ist ein m(M - N)-facher. Der projizirende Raum ist vom Grade

$$mm'N$$
.

B.
$$mN < Mn$$
.

Der Punkt X_3 ist ein M(m-n)-facher.

Der projizirende Raum ist vom Grade

$$m'Mn$$
.

III. Der dritte Fall ergiebt

$$p_3 = 0$$
 und $p_4' = 0$.

Die Räume haben jetzt die Gleichungen:

$$f(x_1, x_3, x_5) \equiv (p_1 x_1 + p_5 x_5)^m - (q_1 x_1 + q_3 x_3 + q_5 x_5)^n x_5^{m-n} = 0,$$

$$f'(x_2, x_4, x_5) \equiv (p_2' x_2 + p_5' x_5)^{m'} - (q_2' x_2 + q_4' x_4 + q_5' x_5)^{n'} x_5^{m'-n'} = 0,$$

$$F(x_3, x_4, x_5) \equiv (P_3 x_3 + P_4 x_4 + P_5 x_5)^M - (Q_5 x_3 + Q_4 x_4 + Q_5 x_5)^N x_5^{M-N} = 0.$$

Die Gerade $X_3 X_4$ gehört in ihrem ganzen Umfang sowohl dem Raume f = 0 wie dem Raume f' = 0 an. Es giebt wiederum zwei Fälle, nl.

A.
$$mn' > m'n$$
.

Die Gerade X_3X_4 ist als Schnittlinie der beiden Räume eine m(m'-n')-fache; sämmtliche Berührungsräume sind mit $x_1=0$ zusammengefallen.

B.
$$mn' < m'n$$
.

Die Gerade $X_3 X_4$ ist eine m'(m-n)-fache, deren Berührungs-räume alle in $x_2 = 0$ vereinigt sind.

Weil der Raum F=0 weder den Raum $x_2=0$ noch den Raum $x_2=0$ berührt, so schliessen wir, dass im Falle A der Schnittpunkt S''=0 mit X_3X_4 (wofür gilt $x_1=0$, $x_2=0$, $x_5=0$, $P_3x_3+P_4x_4=0$) ein mM(m'-n')-facher Punkt und im Falle B ein m'M(m-n)-facher Punkt der vierdimensionalen Kurve ist.

Der Grad des projizirenden Raumes ist also im Falle A

$$mMn'$$
,

im Falle B

$$m'Mn$$
.

Es sind hiermit alle Fälle erledigt, wo eine Funktion $\Psi(x_1, x_2, x_5) = 0$ durch die Elimination von x_3 und x_4 aus den Gleichungen f = 0, f' = 0 und F = 0 erhalten ist.

Wir ersahen, dass im allgemeinen Falle der Grad von Ψ mm'M ist, in besonderen Fällen aber mm'N, mMn', oder m'Mn werden kann.

Jedenfalls enthält, weil n, n' oder N den Wert 1 haben können, die Zahl, welche den Grad anweist, mindestens zwei Faktoren.

Gleichungen deren Grad unteilbar ist, können in dieser Weise noch ebensowenig zerlegt werden. M. a. W.:

Wenn eine Funktion

$$\psi_1(w_1, w_1') = 0$$

von unteilbarem Grade gegeben ist, so kann diese nicht entstanden gedacht werden durch die Elimination von \overline{w} und \overline{w}' aus

$$\begin{split} f\left(w_{1},\overline{w}\right) &\equiv (a_{1}w_{1} + \overline{a}\,\overline{w} + a_{0})^{n} - (b_{1}w_{1} + \overline{b}\,\overline{w} + b_{0})^{n} = 0 \text{ ,} \\ f'\left(w_{1}^{'},\overline{w}^{'}\right) &\equiv (a_{1}^{'}w_{1}^{'} + \overline{a}^{'}\overline{w}^{'} + a_{0}^{'})^{n'} - (b_{1}^{'}w_{1}^{'} + \overline{b}^{'}\overline{w}^{'} + b_{0}^{'})^{n'} = 0 \text{ ,} \\ F(\overline{w},\overline{w}^{'}) &\equiv (a\,\overline{w} + b\,\overline{w}^{'} + c) - (a^{'}\overline{w} + b^{'}\overline{w}^{'} + c^{'})^{N} = 0 \end{split}$$

(es wäre denn, dass $F(\overline{w}, \overline{w}')$ in M linearen Gleichungen zerfiele). Weil unser Hauptziel ist die Gleichungen zweiten und dritten Grades zu untersuchen, deren conforme Abbildung mittelst parabolischer und hyperbolischer Congruenzen studirt werden kann, so werden wir, so bald wir nach der Elimination zu Gleichungen von teilbarem Grade gelangen, unsere Untersuchung abbrechen.

Falls F = 0 eine lineare Gleichung ist, können wir mittelst ihrer \overline{w}' in f' = 0 durch \overline{w} ersetzen, wodurch weder der Grad noch die Gestalt von f' eine Änderung erfährt.

Es handelt sich also darum, die Gleichungen

$$f(w_1, \overline{w}) \equiv (a_1 w_1 + \overline{a} \, \overline{w} + a_0)^m - (b_1 w_1 + \overline{b} \, \overline{w} + b_0)^n = 0, \quad (27)$$

$$f'(w_1', \overline{w}) \equiv (a_1'w_1' + \overline{a}'\overline{w} + a_0')^{m'} - (b_1'w_1' + \overline{b}'\overline{w} + b_0')^{n'} = 0 \quad (28)$$

zu betrachten.

Zuerst wollen wir die Bezeichnungen abändern, indem wir setzen

$$w_1 = \frac{x_1}{x_4}, \ w_{1'} = \frac{x_2}{x_4}, \ \overline{w} = \frac{x_3}{x_4},$$

wodurch unsere Gleichungen sich verwandeln in:

$$f(x_1, x_3, x_4) \equiv (p_1 x_1 + p_3 x_3 + p_4 x_4)^m - (q_1 x_1 + q_5 x_3 + q_4 x_4)^n x_4^{m-n} = 0, (29)$$

$$f'(x_2, x_3, x_4) \equiv (p_2' x_2 + p_3' x_3 + p_4' x_4)^{m'} - (q_2' x_2 + q_3' x_3 + q_4' x_4)^{n'} x_4^{m'-n'} = 0. (30)$$

Die Fläche f = 0 ist ein Kegel mit X_2 als Spitze; die Gleichung f' = 0 stellt einen Kegel mit X_4 als Spitze dar.

Auf dem Kegel f = 0 ist die durch

$$l \left(\begin{array}{c} (p) \equiv p_1 x_1 + p_3 x_3 + p_4 x_4 = 0, \\ (q) \equiv q_1 x_1 + q_3 x_3 + q_4 x_4 = 0 \end{array} \right)$$

gegebene Gerade l eine n-fache Kante, mit der Ebene (q) = 0 als einziger Berührungsebene.

Die Gerade t ((p) = 0, $x_4 = 0)$ ist eine (m-n)-fache Kante mit $x_4 = 0$ als einziger Berührungsebene.

Der Kegel f' = 0 hat die durch

$$l' \dots \begin{cases} (p') \equiv p_2' x_2 + p_3' x_3 + p_4' x_4 = 0, \\ (q') \equiv q_2' x_2 + q_3' x_3 + q_4' x_4 = 0 \end{cases}$$

bestimmte Gerade l' als eine n'-fache Kante, deren sämmtliche Berührungsebenen in (q') = 0 vereinigt sind.

Die Gerade t'(p') = 0, $x_4 = 0$ ist eine (m' - n')-fache Kante, deren einzige Berührungsebene $x_4 = 0$ ist.

Die Elimination von x_3 aus (29) und (30) bedeutet geometrisch: Projektion aus X_3 (z. B. auf $x_3 = 0$) der beiden Kegeln gemeinsamen Schnittkurve.

Die Raumkurve, in der f = 0 und f' = 0 sich schneiden, ist vom Grade mm'. Falls X_3 dieser Kurve nicht angehört, ist auch der projizirende Kegel vom Grade mm'. Durch die Elimination von \overline{w} aus (27) und (28) erhält man also im Allgemeinen eine Gleichung in w_4 und w_4' von teilbarem Grade; wir brauchen daher diesen Fall nicht weiter zu betrachten.

Wenn X_3 beiden Kegeln angehören soll, so muss die Bedingung

$$p_3 = 0$$
 und $p_3' = 0$

erfüllt sein. Wir haben alsdann die folgenden Gleichungen zu betrachten

$$f(x_1,x_3,x_4) \equiv (p_1x_1 + p_4x_4)^m - (q_1x_1 + q_3x_3 + q_4x_4)^n x_4^{m-n} = 0$$
, $f'(x_2,x_3,x_3) \equiv (p_2'x_2 + p_4'x_4)^{m'} - (q_2'x_2 + q_3'x_3 + q_4'x_4)^{m'} x_4^{m'-n'} = 0$.

Die Ordnung der Singularität von X_3 ist nunmehr

A. für
$$mn' > m'n$$
 $m(m'-n')$,
B. , $mn' < m'n$ $m'(m-n)$,
C. , $mn' = m'n$ $m(m'-n') = m'(m-n)$.

Da die Fälle A und B nicht wesentlich verschieden sind, wollen wir uns nur mit den Fällen A und C beschäftigen.

Im Falle A ist der Grad des projizirenden Kegels

im Falle C ist dieser

$$mn' = m'n$$
.

Bevor wir die Gleichungen f = 0 und f' = 0 eingehender betrachten, wollen wir zuerst die folgende Coordinatentransformation bewerkstelligen:

$$p_1 x_1 + p_4 x_4 = y_1,$$
 $p_2' x_2 + p_4' x_4 = y_2,$
 $x_3 = y_3,$
 $x_4 = y_4,$

woher die Gleichungen diese Gestalt annehmen:

$$f(y_1, y_3, y_4) \equiv y_1^m - (c_1 y_1 + c_3 y_3 + c_4 y_4)^n y_4^{m-n} = 0,$$
 (31)

$$f'(y_2, y_3, y_4) \equiv y_2^{m'} - (c_2' y_2 + c_3' y_3 + c_4' y_4)^{n'} y_4^{m'-n'} = 0.$$
 (32)

A.
$$mn' > m'n \text{ oder } \frac{m}{n} > \frac{m'}{n'}$$
:

$$y_1^{\frac{m}{n}} = (c_1 y_1 + c_3 y_3 + c_4 y_4) y_4^{\frac{m-n}{n}}, \dots (33)$$

$$y_2^{\frac{m'}{n'}} = (c_2'y_2 + c_3'y_3 + c_4'y_4)y_4^{\frac{m'-n'}{n'}}. \qquad (34)$$

Die Elimination von y_3 ergiebt

$$c_{3}' \left| y_{4}^{\frac{m}{n}} - (c_{1}y_{4} + c_{4}y_{4}) y_{4}^{\frac{m-n}{n}} \right| = c_{3} \left| y_{2}^{\frac{m'}{n}} - (c_{2}'y_{2} + c_{4}'y_{4}) y_{4}^{\frac{m'-n'}{n'}} \right| y_{4}^{\frac{m}{n} - \frac{m'}{n'}},$$

oder

$$c_{3}'y_{4}^{\frac{m}{n}} - c_{3}'(c_{1}y_{4} + c_{4}y_{4})y_{4}^{\frac{m-n}{n}} = c_{3}y_{2}^{\frac{m'}{n'}}y_{4}^{\frac{m}{n} - \frac{m'}{n'}} - c_{3}(c_{2}'y_{2} + c_{4}'y_{4})y_{4}^{\frac{m-n}{n}}. (35)$$

Es zeigt sich, dass der Grad dieser Gleichung mn' ist, und zwar am leichtesten, wenn wir einen Strahlenbüschel durch die *nicht* auf der Kurve liegende Coordinatenecke $Y_1(y_2 = 0, y_4 = 0)$ legen.

Die Substitution

$$y_2 = \lambda y_4$$

ergiebt

$$c_3' y_1^{\frac{m}{n}} - c_3' (c_1 y_1 + c_4 y_4) y_4^{\frac{m-n}{n}} = c_3 \lambda^{\frac{m'}{n'}} y_4^{\frac{m}{n}} - c_3 (c_2' \lambda + c_4') y_4^{\frac{m}{n}},$$

oder

$$c_{3}'y_{4}^{\frac{m}{n}} = \left|c_{3}'(c_{1}y_{4} + c_{4}y_{4}) + c_{3}\lambda^{\frac{m'}{n'}}y_{4} - c_{3}(c_{2}'\lambda + c_{4}')y_{4}\right|y_{4}^{\frac{m-n}{n}},$$

also

$$c_3^{'n}y_4^{'n} = [c_3'c_1y_1 + (c_3'c_4 + c_3\lambda^{\frac{m'}{n'}} - c_3c_2'\lambda - c_3c_4')y_4]^ny_4^{m-n}.$$

Ein Wert von λ bestimmt n' Werte für $\lambda^{n'}$, und ein Paar $(\lambda, \lambda^{n'})$ liefert m Werte für $y_1 : y_4$, wonach ein durch Y_4 gelegter Strahl mn' Schnittpunkte mit der Kurve gemein hat.

Die Gleichung (35), wenn geschrieben in der Form

$$\begin{aligned} &c_3'y_1^{\frac{m}{n}} + \{-c_3'c_1y_1 + c_3c_2'y_2 + (c_3c_4' - c_3'c_4)y_4\}y_4^{m-n} - c_3y_2^{\frac{m'}{n'}}y_4^{\frac{m}{n} - \frac{m'}{n'}} = 0, (36) \\ &\text{zeigt uns, dass die höchste Potenz von } y_2 \text{ den Exponent } \frac{m'}{n'} \text{ hat,} \\ &\text{wonach } Y_2 \text{ ein } nn' \left(\frac{m}{n} - \frac{m'}{n'}\right) = (mn' - m'n) \text{-facher Punkt ist, dessen sämmtliche Tangenten mit } y_4 = 0 \text{ zusammengefallen sind; eshat diese Gerade in } Y_2 mn' \text{ Punkte mit der Kurve gemein.} \end{aligned}$$

Unser Schluss ist, dass die Elimination von y_3 aus (31) und (32) eine Gleichung in y_4 , y_2 und y_4 veranlässt, welche eine Kurve vom Grade mn' darstellt, während die Gerade $y_4 = 0$ diese Kurve nur im einzigen ((mn' - m'n)-fachen) Punkte Y_2 trifft.

In der ursprünglichen Fassung lautet dieser Schluss: Damit eine Funktion

$$\psi_1(w_1, w_1) = 0$$

vom Grade mn' als durch die Elimination von \overline{w} aus

$$f(w_1, \overline{w}) \equiv (a_1 w_1 + a_0)^n - (b_1 w_1 + \overline{b} \overline{w} + b_0)^n = 0,$$

$$f'(w_1', \overline{w}) \equiv (a_1' w_1' + a_0')^{n'} - (b_1' w_1' + \overline{b}' \overline{w} + b_0')^{n'} = 0$$

entstanden zu betrachten sei, ist es nötig (nicht ausreichend) dass mn' > m'n sei, und dass das Diagram von ψ_1 nur den (mn' - m'n)-fachen unendlich fernen Punkt der w'-Axe mit der unendlich fernen Gerade gemein habe.

Von den Kegelschnitten kommen nur die Parabeln in Betracht, von den kubischen Kurven nur die, welche im Unendlichen auf der Axe der Ordinaten einen Wendepunkt oder einen Rückkehrpunkt haben, dessen Tangenten mit der unendlich fernen Gerade zusammenfällt.

Wir wenden uns jetzt dem Falle C zu.

C.
$$mn' = m'n \text{ oder } \frac{m}{n} = \frac{m'}{n'}$$

Es sei p der grösste gemeine Teiler von m und n, p' derjenige von m' und n'. Man hat alsdann

$$m = p \mu, \quad n = p \nu,$$

$$m' = p' \mu, \quad n' = p' \nu,$$

$$\frac{m}{n} = \frac{m'}{n'} = \frac{\mu}{\nu}.$$

wo $\frac{\mu}{\nu}$ einen unhebbaren Bruch darstellt.

Die Gleichungen (31) und (32) lassen sich nun folgendermassen schreiben:

$$y_1^{p\mu} - (c_1 y_1 + c_3 y_3 + c_4 y_4)^{p\nu} y_4^{\nu(\mu-\nu)} = 0,$$

$$y_2^{p'\mu} - (c_2' y_2 + c_3' y_3 + c_4' y_4)^{p'\nu} y_4^{\nu'(\mu-\nu)} = 0,$$

oder

$$y_4^{\mu} - (\sqrt[l]{1})(c_1y_1 + c_3y_3 + c_4y_4)^{\nu}y_4^{\mu-\nu} = 0$$
, . (37)

$$y_2^{\mu} - (\sqrt[p]{1})(c_2'y_2 + c_3'y_3 + c_4'y_4)^{\nu}y_4^{\mu-\nu} = 0.$$
 (38)

Wir haben also p Gleichungen (37) mit p' Gleichungen (38) zu combiniren. Unter allen diesen Combinationen, wollen wir nur diejenige behandeln, wofür

$$\sqrt[p]{1} = 1$$
, $\sqrt[p]{1} = 1$.

Wir finden alsdann nach Elimination von y_3 (siehe (35)):

$$c_{3}' y_{4}^{\frac{\mu}{\nu}} - c_{3}' (c_{4} y_{4} + c_{4} y_{4}) y_{4}^{\frac{\mu - \nu}{\nu}} = c_{3} y_{2}^{\nu} - c_{3} (c_{2}' y_{2} + c_{4}' y_{4}) y_{4}^{\frac{\mu - \nu}{\nu}},$$

oder

$$c_{3}' y_{4}^{\mu} - c_{3} y_{2}^{\nu} + \left[-c_{3}' c_{4} y_{4} + c_{3} c_{2}' y_{2} + (c_{3} c_{4}' - c_{3}' c_{4}) y_{4} \right] y_{4}^{\mu - \nu} = 0. (39)$$

Diese Gleichung ist nach Rationalisirung vom Grade

µv.

Durch die Elimination von y_3 aus (31) und (32) finden wir also, in der Annahme mn' = m'n, pp' Gleichungen (39) vom Grade $\mu\nu$.

Da wir im Allgemeinen solche Gleichungen, wie (31) und (32), wo m und n, oder m' und n' unter sich teilbar sind, ausser Betracht lassen, so handelt es sich um zwei Gleichungen (31) und (32), wo $m = m' = \mu$ und $n = n' = \nu$ (μ und ν unter sich unteilbar). Durch die Elimination von y_3 ergiebt sich alsdann eine Gleichung von der Form (39), welche eine Kurve vom Grade $\mu\nu$ darstellt. Die Schnittpunkte dieser Kurve mit $y_4 = 0$ werden durch

$$c_{3}'y_{1}^{\frac{\mu}{\nu}}-c_{3}y_{2}^{\frac{\mu}{\nu}}=0$$
,

oder

$$c_3^{\prime \nu} y_1^{\mu} - c_3^{\nu} y_2^{\mu} = 0$$

bestimmt. Die Gerade $y_4 = 0$ hat also an μ Stellen einen ν -fachen Schnittpunkt mit der Kurve.

Um das Verhalten dieser Schnittpunkte zu erörtern verlegen wir eine Coordinatenecke in einen dieser Punkte, setzen aber vorher

$$c_{3}' = \gamma_{1}{}^{\mu}, \ c_{3} = \gamma_{2}{}^{\mu},$$

wonach (39) sich verwandelt in

$$\gamma_1^{\mu} y_1^{\frac{\mu}{\nu}} = \gamma_2^{\mu} y_2^{\frac{\mu}{\nu}} + \left[c_1 \gamma_1^{\mu} y_1 - c_2' \gamma_2^{\mu} y_2 + (c_4 \gamma_1^{\mu} - c_4' \gamma_2^{\mu}) y_4 \right] y_4^{\frac{\mu - \nu}{\nu}} = 0 ,$$
 oder

$$\gamma_{1}^{\mu\nu}y_{1}^{\mu} = \gamma_{2}^{\mu\nu}y_{2}^{\mu} + \nu\gamma_{2}^{\mu(\nu-1)}y_{2}^{\mu(\nu-1)} + (c_{1}\gamma_{1}^{\mu}y_{1} - c_{2}^{\prime}\gamma_{2}^{\mu}y_{2} + (c_{4}\gamma_{1}^{\mu} - c_{4}^{\prime}\gamma_{2}^{\mu})y_{4} + y_{4}^{\mu-\nu} + \dots$$

Jetzt setzen wir

$$\gamma_1^{\nu} y_1 = \gamma_2^{\nu} y_2 + y_1^{\prime}$$

und bekommen sodann

$$\gamma_{2}^{\mu\nu}y_{2}^{\mu} + \mu\gamma_{2}^{(\mu-1)\nu}y_{2}^{\mu-1}y_{1}' + \dots = \gamma_{2}^{\mu\nu}y_{2}^{\mu} + \nu\gamma_{2}^{\mu(\nu-1)}y_{2}^{\frac{\mu(\nu-1)}{\nu}} \times \\ \times [c_{1}\gamma_{1}^{\mu-\nu}\gamma_{2}^{\nu}y_{2} + c_{1}\gamma_{1}^{\mu-\nu}y_{1}' - c_{2}'\gamma_{2}^{\mu}y_{2} + (c_{1}\gamma_{1}^{\mu} - c_{1}'\gamma_{2}^{\mu})y_{1}]y_{4}^{\frac{\mu-\nu}{\nu}} + \dots$$

Der Exponent der höchsten Potenz von y_2 ist nun entweder $\mu = 1$, oder $\mu = \frac{\mu - \nu}{\nu}$.

a) $\frac{\mu-\nu}{\nu}>1$, oder $\mu>2\nu$; es ist $y_2^{\mu-1}$ die höchste Potenz von y_2 .

Der Punkt Y_2' ($y_4'=0$, $y_4=0$) ist ein ν -facher, dessen sämmtliche Tangenten vereinigt sind in $y_4'=0$, d.h. in der Verbindungslinie dieses Punktes met Y_4 . Es hat diese Tangente in ihrem Berührungspunkte $\mu - \nu$ Punkte mit der Kurve gemein.

b) $\frac{\mu-\nu}{\nu} < 1$, oder $\mu < 2\nu$; es ist $y_2^{\frac{\mu-\nu}{\nu}}$ die höchste Potenz von y_2 .

Der Punkt Y_2' ist jetzt ein $(\mu - \nu)$ -facher, dessen Tangenten alle mit $y_4 = 0$ zusammengefallen sind; diese Gerade hat im Berührungspunkte ν Punkte mit der Kurve gemein.

c)
$$\frac{\mu - \nu}{\nu} = 1$$
, oder $\mu = 2\nu$; also $\mu = 2$, $\nu = 1$, wonach (39) lautet:

$$c_3^{'}y_1^{'2}-c_3y_2^{'2}+\left|--c_3^{'}c_1y_1+c_3c_2^{'}y_2+(c_3c_4^{'}-c_3^{'}c_4)y_4\right|y_4=0\;,$$

und demnach einen Kegelschnitt darstellt.

Wir wollen diesen Fall nicht weiter erledigen, da wir zunächst die quadratische Gleichung eingehend erörtern werden.

Die letzten Ergebnisse zusammenfassend, können wir behaupten, dass die durch die Elimination von y_3 aus (31) und (32) erhaltene Gleichung bei der Annahme $m=m'=\mu$, $n=n'=\nu$ eine Kurve vom Grade $\mu\nu$ darstellt, welche für $\mu>2\nu$ mit der Gerade $y_4=0$ μ ν -fache Punkte gemein hat, deren einzige Tangenten sich alle in Y_4 treffen und in ihren Berührungspunkten je $\mu-\nu$ Punkte mit der Kurve gemein haben, dagegen für $\nu<\mu<2\nu$ mit der Gerade $y_4=0$ μ ($\mu-\nu$)-fache Punkte gemein hat, deren jeder $y_4=0$ als Tangente mit ν -fachem Contakte hat.

Übersetzen wir dies in die ursprüngliche Fassung, so folgt:

Für Behandlung mit der Strahlencongruenz $w^{\mu} = w'^{\nu}$ vermöge der Gleichungen (31) und (32) kommt in Betracht:

1° für $\mu > 2\nu$ ein Diagram vom Grade $\mu\nu$, welches im Unendlichen μ ν -fache Punkte hat, die sich aus einer Binomialgleichung ergeben, und deren Asymptoten alle nach dem Ursprung convergiren;

 2° für $\nu < \mu < 2\nu$ ein Diagram vom Grade $\mu\nu$, welches im Unendlichen μ ($\mu - \nu$)-fache Punkte hat, welche durch eine Binomialgleichung bestimmt werden, und deren sämmtliche Tangenten im Unendlichen liegen, und eine ν -fache Berührung aufweisen.

§ 5. Wir wollen jetzt die Darlegungen des vorigen § nur auf hyperbolischen Congruenzen anwenden. Wir haben demnach den Funktionen Ψ , Ψ' und φ diese Formen zu erteilen:

$$egin{aligned} \psi(w,w') &\equiv w^m \, w'^n - 1 = 0 \,, \\ \psi'(w,w') &\equiv w^{m'} w'^{n'} - 1 = 0 \,, \\ g(w,w') &\equiv w^M w'^N - 1 = 0. \end{aligned}$$

Die Funktionen f, f' und F erhalten somit die folgende Gestalt:

$$f(w_{1}, \overline{w}) \equiv (a_{1}w_{1} + \overline{a}\overline{w} + a_{0})^{n}(b_{1}w_{1} + \overline{b}\overline{w} + b_{0})^{n} - 1 = 0, \quad (40)$$

$$f'(w_{1}', \overline{w}') \equiv (a_{1}'w_{1}' + \overline{a}'\overline{w}' + a_{0}')^{n'}(b_{1}'w_{1}' + \overline{b}'\overline{w}' + b_{0}')^{n'} - 1 = 0, \quad (41)$$

$$F(\overline{w}, \overline{w}') \equiv (a\overline{w} + b\overline{w}' + c)^{M}(a'\overline{w} + b'\overline{w}' + c')^{N} - 1 = 0. \quad (42)$$

Wir setzen voraus

$$m \ge n$$
, $m' \ge n'$, $M \ge N$.

Die Elimination von \overline{w} und \overline{w}' ergiebt im Allgemeinen eine Gleichung vom Grade (m+n)(m'+n')(M+N) in w_1 und w_1' , d. h. es ist $\psi_1(w_1, w_1') = 0$ im Allgemeinen vom Grade (m+n)(m'+n')(M+N).

Der Grad ist sonach eine Zahl mit drei Teilern. Es handelt sich wieder um die Frage, in welchem Falle dieser Grad erniedrigt wird.

Wir bringen zuvor die Gleichungen (40), (41) und (42) in diese Form:

$$f(x_1,x_3,x_5) \equiv (p_1x_1 + p_5x_3 + p_5x_5)^m (q_1x_1 + q_3x_3 + q_5x_5)^n - x_5^{m+n} = 0,$$

$$f'(x_2,x_4,x_5) \equiv (p_2'x_2 + p_4'x_4 + p_5'x_5)^{m'} (q_2'x_2 + q_4'x_4 + q_5'x_5)^{n'} - x_5^{m'+n'} = 0,$$

$$F(x_3,x_4,x_5) \equiv (P_3x_3 + P_4x_4 + P_5x_5)^M (Q_3x_3 + Q_4x_4 + Q_5x_5)^N - x_5^{M+N} = 0.$$

Es stellt f = 0 einen Raum vom Grade m + n dar.

Die Ebene $(x_5 = 0, (p) = 0)$ ist eine *m*-fache und hat (p) = 0 als einzigen Berührungsraum.

Die Ebene $(x_5 = 0, (q) = 0)$ ist eine *n*-fache und hat (q) = 0 als einzigen Berührungsraum.

Die Betrachtungen betreffende f'=0 und F=0 sind völlig analog.

Es fragt sich auch hier, ob die Gerade X_3X_4 einen Punkt mit der vierdimensionalen Schnittkurve gemein hat.

Der Raum f = 0 schneidet $X_3 X_4$ im (m + n)-fachen Punkt X_4 , wenn nicht $p_3 = 0$ oder $q_3 = 0$.

Ist $p_3 = 0$, so ist $X_3 X_4$ eine *m*-fache Gerade von f = 0; $q_3 = 0$, ergiebt $X_3 X_4$ als eine *n*-fache Gerade.

Wenn man sowohl $p_3 = 0$ wie $q_3 = 0$ hat, so kann f = 0 in m + n linearen Gleichungen $r_1x_1 + r_5x_5$ zerlegt werden.

Der Raum f' = 0 schneidet $X_3 X_4$ im (m' + n')-fachen Punkt X_3 , wenn nicht $p_4' = 0$ oder $q_4' = 0$.

Hat man $p_4' = 0$, so ist $X_3 X_4$ eine m'-fache Gerade; $q_4' = 0$ macht $X_3 X_4$ zu einer n'-fachen Gerade.

Ist zugleich $p_4'=0$ und $q_4'=0$, so ist f'=0 in m'+n' Gleichungen $r_2'x_2+r_5'x_5=0$ zu zerlegen.

Der Raum F=0 trifft X_3X_4 M mal in $S(P_3x_3+P_4x_4=0)$ und N mal in $T(Q_3x_3+Q_4x_4=0)$.

Ist $P_3 = 0$, so ist X_3 ein M-facher Punkt; für $Q_3 = 0$ wird X_3 ein N-facher Punkt; $P_4 = 0$ ergiebt X_4 als einen M-fachen Punkt; $Q_4 = 0$ macht X_4 zu einem N-fachen Punkte.

Wenn S mit T identisch ist, so hat man $P_3: Q_3 = P_4: Q_4$. Setzen wir $P_3x_3 + P_4x_4 = y_3$, so ist $Q_3x_3 + Q_4x_4 = \rho y_3$, wonach die Gleichung F = 0 in M + N Gleichungen $R_3y_3 + R_5x_5 = 0$ zu zerlegen ist.

Die Berührungsräume coincidiren niemals.

Schneiden die Räume sich in X_3 , so sind die Bedingungen

$$p_3 = 0$$
 oder $q_3 = 0$

und

$$P_3 = 0$$
 oder $Q_3 = 0$

zu erfüllen.

Die Combination $p_3 = 0$, $P_3 = 0$ ergiebt X_3 als einen mM(m' + n')fachen Punkt. Der projizirende Raum ist nun vom Grade

$$(m+n)(m'+n')(M+N)-mM(m'+n')=(m'+n')(mN+nM+nN).$$

Diese Zahl hat mindestens zwei Faktoren.

In derselben Weise finden wir, dass auch die anderen zu X_3 gehörenden Combinationen, und ebenso, dass alle zu X_4 gehörenden Combinationen Zahlen von mindestens zwei Teilern veranlassen.

Wenn der Schuittpunkt mit S identisch ist, so ist dieser Punkt ein mm'M-facher. Der projizirende Raum ist alsdann vom Grade (m+n)(m'+n')(M+N)-mm'M, also mindestens vom 7^{ten} Grade.

Auch dieser Fall findet deshalb für uns keine Anwendung.

Wir schliessen daher, dass auch hier keine Gleichung von niedrigerem Grade abzuleiten ist.

Wir wollen uns deshalb mit den zwei Gleichungen

$$f(w_1, \overline{w}) \equiv (a_1 w_1 + \overline{a} \overline{w} + a_0)^n (b_1 w_1 + \overline{b} \overline{w} + b_0)^n - 1 = 0, \quad (43)$$

$$f'(w_1', \overline{w}) \equiv (a_1' w_1' + \overline{a}' \overline{w} + a_0')^{n'} (b_1' w_1' + \overline{b}' \overline{w} + b_0')^{n'} - 1 = 0 \quad (44)$$

beschäftigen, oder mit den homogenen Formen

$$f(x_1, x_3, x_4) \equiv (p_1 x_1 + p_3 x_3 + p_4 x_4)^m (q_1 x_1 + q_3 x_3 + q_4 x_4)^n - x_4^{m+n} \equiv 0, (45)$$

$$f'(x_2, x_3, x_4) \equiv (p_2' x_2 + p_3' x_3 + p_4' x_4)^{m'} (q_2' x_2 + q_3' x_3 + q_4' x_4)^n - x_4^{m'+n'} \equiv 0. (46)$$

Die Fläche f = 0 ist ein Kegel mit X_2 als Spitze.

Die Gerade $((p) = 0, x_4 = 0)$ ist eine *m*-fache Kante mit (p) = 0 als einziger Berührungsebene.

Die Gerade $((q) = 0, x_4 = 0)$ ist eine *n*-fache Kante mit (q) = 0 als einziger Berührungsebene.

Analoges ergiebt sich für f' = 0.

Die Schnittkurve ist vom Grade (m + n) (m' + n')

Wir fordern wiederum, dass X_3 auf dieser Kurve liege.

Dann hat man die Bedingungen

$$p_3 = 0$$
 oder $q_3 = 0$,

und

$$p_3' = 0 \text{ oder } q_3' = 0.$$

Die Combination $p_3 = 0$, $p_3' = 0$ giebt X_3 als einen mm'-fachen Punkt. Der projizirende Kegel ist alsdann vom Grade

$$(m + n)(m' + n') - mm' = mn' + m'n + nn'.$$

Behalten wir die Annahme

$$m \ge n$$
, $m' \ge n'$,

so leuchtet ein, dass die Combination $p_3 = 0$, $p_3' = 0$ eine Projektionskurve vom niedrigsten Grade liefert; dieser Grad is wenigstens 3.

Wir wollen diesen Fall eingehend betrachten.

Für $p_3 = 0$, $p_3' = 0$ lauten die Gleichungen:

$$f(x_1, x_3, x_4) \equiv (p_1 x_1 + p_4 x_4)^m (q_1 x_1 + q_3 x_3 + q_4 x_4)^n - x_4^{m+n} = 0,$$

$$f'(x_2, x_3, x_4) \equiv (p_2' x_2 + p_4' x_4)^{m'} (q_2' x_2 + q_3' x_3 + q_4' x_4)^{n'} - x_4^{m'+n'} = 0.$$

Die Coordinatentransformation

$$p_{1}x_{1} + p_{4}x_{4} = y_{1},$$

$$p'_{2}x_{2} + p'_{4}x_{4} = y_{2},$$

$$x_{3} = y_{3},$$

$$x_{4} = y_{4}$$

verwandelt die obigen Gleichungen in die folgenden:

$$f(y_1, y_3, y_4) \equiv y_1^m (c_1 y_1 + c_3 y_3 + c_4 y_4)^n - y_4^{m+n} = 0, \quad (47)$$

$$f'(y_2, y_3, y_4) \equiv y_2^{m'} (c_2' y_2 + c_3' y_3 + c_4' y_4)^{n'} - y_4^{m'+n'} \equiv 0. \quad (48)$$

Die Elimination von y_3 liefert

$$c_{3}y_{1}^{\frac{m}{n}}y_{4}^{\frac{m'+n'}{n'}} - c_{3}'y_{2}^{\frac{m'}{n'}}y_{4}^{\frac{m+n}{n}} + [c_{3}'c_{1}y_{1} - c_{3}c_{2}'y_{2} + (c_{3}'c_{4} - c_{5}c_{4}')y_{4}]y_{1}^{\frac{m}{n}}y_{2}^{\frac{m'}{n'}} = 0.$$
 (49)

Diese Gleichung stellt eine Kurve vom Grade mn' + m'n + nn' dar. Der Punkt Y_1 ist ein m'n-facher; seine Tangenten sind mit der Gerade $y_2 = 0$ zusammengefallen, welche in ihrem Berührungspunkte Y_1 (m' + n')n Punkte mit der Kurve gemein hat.

Der Punkt Y_2 ist ein mn'-facher, während seine Tangenten in der Gerade $y_1 = 0$ vereinigt sind; diese Gerade hat in Y_2 (m+n)n' Punkte mit der Kurve gemein.

Die Gerade Y_1 Y_2 schneidet die Kurve ausserdem n' mal im Punkte

$$c_3'c_1y_1 - c_3c_2'y_2 = 0$$
, $y_4 = 0$.

Dieser Punkt ist ein nn'-facher; seine einzige Tangente ist durch

$$c_3'c_1y_1 - c_3c_2'y_2 + (c_3'c_4 - c_3c_4')y_4 = 0$$

angewiesen; diese Gerade hat, falls m'n > mn', in ihrem Berührungs-Punkte (m'+n')n Punkte und falls mn' < m'n, (m+n)n' Punkte mit der Kurve gemein.

Der Punkt Y_n ist ein m'n- oder ein mn'-facher, je nachdem m'n < mn' oder m'n > mn' ist.

A.
$$m'n < mn'$$
, oder $\frac{m'}{n'} < \frac{m}{n}$;

der Punkt Y_4 ist ein m'n-facher; seine Tangenten sind in $y_2 = 0$ vereinigt, welche in ihrem Berührungspunkte Y_4 mn' Punkte mit der Kurve gemein hat.

B.
$$m'n > mn'$$
, oder $\frac{m'}{n'} > \frac{m}{n}$;

der Punkt Y_4 ist ein mn'-facher; seine Tangenten sind in $y_4 = 0$ vereinigt, welche in ihrem Berührungspunkte Y_4 m'n Punkte mit der Kurve gemein hat.

C.
$$m'n = mn'$$
, oder $\frac{m'}{n'} = \frac{m}{n} = \frac{\mu}{\nu}$.

Wir nehmen wiederum an, dass μ und ν unter sich unteilbar sind. Die Gleichung (49) erhält diese Gestalt:

$$c_{3}y_{1}^{\nu}y_{4}^{\nu} - c_{3}'y_{2}^{\nu}y_{4}^{\nu} - c_{3}'y_{2}^{\nu}y_{4}^{\nu} + (c_{3}'c_{1}y_{1} - c_{3}c_{2}'y_{2} + (c_{3}'c_{4} - c_{3}c_{4}')y_{4})y_{1}^{\nu}y_{2}^{\nu} = 0. (50)$$

Die Kurve ist vom Grade $(2 \mu + \nu) \nu$. Der Punkt Y_4 ist ein $\mu\nu$ -facher; seine Tangenten sind durch

$$c_3 y_1^{\frac{\mu}{\nu}} - c_3' y_2^{\frac{\mu}{\nu}} = 0$$
,

oder

$$c_3^{\nu} y_1^{\mu} - c_3^{'\nu} y_2^{\mu} = 0$$

bestimmt und demnach zu je ν in μ Geraden vereinigt. Die Rechnung weist nach, dass jede dieser Tangenten in Y_i $\mu(\nu+1)$ Punkte mit der Kurve gemein hat.

Die Gerade Y₁ Y₂ schneidet die Kurve noch im v²-fachen Punkte

$$c_3^{'}c_1y_1-c_3c_2^{'}y_2=0$$
 , $y_4=0$,

dessen Tangente durch

$$c_3'c_1y_1 - c_3c_2'y_2 + (c_3'c_4 - c_3c_4')y_4 = 0$$

angewiesen wird, und in ihrem Berührungspunkte $(\mu + \nu)\nu$ Punkte mit der Kurve gemein hat.

Indem wir unsere Ergebnisse kurz wiederholen, dürfen wir sagen, dass durch die Elimination von y_3 aus (47) und (48) eine Kurve vom Grade mn'+m'n+nn' entsteht, welche in Y_4 einen m'n-fachen Punkt hat mit $y_2=0$ als einziger Tangente, während diese Gerade in Y_4 (m'+n')n Punkte mit der Kurve gemein hat, — welche in Y_2 einen mn'-fachen Punkt hat, dessen $y_4=0$ die einzige Tangente ist und in ihrem Berührungspunkte Y_2 (m+n)n' Punkte mit der Kurve gemein hat, — welche auf Y_1 Y_2 noch einen nn'-fachen Punkt hat, dessen einzige Tangente für $\frac{m}{n} > \frac{m'}{n}$ (m+n)n', für $\frac{m}{n} < \frac{m'}{n'}$ (m'+n')n, und für $\frac{m}{n} = \frac{m'}{n'} = \frac{\mu}{\nu}$ ($\mu+\nu$) ν Punkte mit der Kurve gemein hat, — und welche schliesslich in Y_4 :— falls $\frac{m}{n} > \frac{m'}{n'}$, einen m'n-fachen Punkt hat, dessen einzige Tangente $y_2 = 0$ ist und in Y_4 mit der Kurve mn' Punkte gemein hat, — falls $\frac{m}{n} < \frac{m'}{n'}$, einen mn'-fachen Punkt hat, mit $y_4 = 0$ als einziger Tangente, während diese in Y_4 mit der Kurve m'n Punkte gemein

hat, — falls $\frac{m}{n} = \frac{m'}{n'} = \frac{\mu}{\nu}$, einen $\mu\nu$ -fachen Punkt hat mit μ ver-

schiedenen ν -fachen Tangenten, deren jede in Y_4 mit der Kurve $\mu(\nu+1)$ Punkte gemein hat.

Oder, in der ursprünglichen Fassung:

Die Behandlung mit den Strahlencongruenzen $w^m w'^n = 1$ und $w^{m'} w'^{n'} = 1$ vermöge der Gleichungen (43) und (44) ist anzuwenden auf:

ein Diagram vom Grade mn' + mn' + nn', das im Unendlichen auf der w'-Axe einen m'n-fachen Punkt hat mit der w-Axe als einziger Asymptote, während diese in jenem Berührungspunkte (m' + n')nPunkte mit dem Diagram gemein hat, — das im Unendlichen auf der w'-Axe einen mn'-fachen Punkt hat, mit der w'-Axe als einziger Asymptote, welche in diesem Berührungspunkte (m + n)n' Punkte mit dem Diagram gemein hat, - das im Unendlichen noch einen nn'-fachen Punkt hat, dessen Tangente für $\frac{m}{n} > \frac{m'}{n'}$ (m+n)n', für $\frac{m}{n} < \frac{m'}{n'} (m' + n') n$ und für $\frac{m}{n} = \frac{m'}{n'} = \frac{\mu}{\nu} (\mu + \nu) \nu$ Punkte mit dem Diagram gemein hat, - und das schliesslich im Ursprunge: falls $\frac{m}{n} > \frac{m'}{n'}$, einen m'n-fachen Punkt hat, dessen Tangenten alle mit der w-Axe zusammenfallen, welche in diesem Berührungspunkte mn' Punkte mit der Kurve gemein hat, — falls $\frac{m}{n} < \frac{m'}{n'}$, einen mn'-fachen Punkt hat, dessen Tangenten alle mit der w'-Axe zusammenfallen, während diese in dem vorliegenden Berührungspunkte m'n Punkte mit der Kurve gemein hat, — falls $\frac{m}{n} = \frac{m'}{n} = \frac{\mu}{n}$, einen μν-fachen Punkt hat, von dessen Tangenten je ν in μ Geraden vereinigt sind, welche durch eine Binomialgleichung bestimmt sind, und deren jede im Ursprunge $\mu (\nu + 1)$ Punkte mit der Kurve gemein hat.

§ 6. Wir wollen schliesslich gewisse Combinationen von hyperbolischen und parabolischen Congruenzen betrachten.

Es sind, bei drei gegebenen Funktionen f=0, f'=0 und F=0 zwei Voraussetzungen möglich, n.l zwei Funktionen parabolisch und die dritte hyperbolisch, oder zwei Funktionen hyperbolisch und die dritte parabolisch. Aus dem Vorhergehenden wird ersichtlich sein, dass in Bezug auf die Erniedrigung des Grades des projizirenden Raumes, die drei Funktionen f=0, f'=0 und F=0 gleichbedeutend sind; wir haben uns also nur mit zwei Fällen zu beschäftigen.

Diese Untersuchung wird hier nicht eingehend beschrieben werden, weil sich dabei kein neues Moment darbietet. Es genüge zu bemerken, dass die vielfachen Ebenen der hyperbolischen Räume niemals mit denjenigen der parabolischen Räume den Berührungsraum gemein haben, wonach die Singularität eines eventuellen Schnittpunktes auf X_3X_4 immer von niedriger Ordnung bleibt. Diese Ordnung ist z. B. mM(m'-n'), oder m'N(m-n), u.s.w. Der Grad des projizirenden Raumes ist jedenfalls noch immer eine Zahl mit mindestens zwei Teilern. Wir lassen demnach diesen Fall ausser Betracht und wenden uns dem Falle zweier Funktionen, einer hyperbolischen und einer parabolischen, zu.

Es sei gegeben

$$f(w_{1}, \overline{w}) \equiv (a_{1}w + \overline{a}\overline{w} + a_{0})^{n} (b_{1}w + \overline{b}\overline{w} + b_{0})^{n} = 0, \quad (51)$$

$$f'(w_{1}', \overline{w}) \equiv (a_{1}'w + \overline{a}'\overline{w} + a_{0}')^{n'} (b_{1}'w + \overline{b}'\overline{w} + b_{0}')^{n'} = 0, \quad (52)$$

oder in homogener Form

$$f(x_1,x_3,x_4) \equiv (p_1x_1 + p_3x_3 + p_4x_4)^m (q_1x_1 + q_3x_3 + q_4x_4)^n - x_4^{m+n} = 0, (53)$$

$$f'(x_2,x_3,x_4) \equiv (p_2'x_2 + p_3'x_3 + p_4'x_4)^{m'} - (q_2'x_2 + q_3'x_3 + q_4'x_4)^{n'}x_4^{m'-n'} = 0. (54)$$

Soll jede dieser Flächen den Punkt X_3 enthalten, so muss den Bedingungen

$$p_3 = 0$$
 , $p_3' = 0$

oder den Bedingungen

$$q_3 = 0$$
, $p_3' = 0$

genügt sein.

Weil die Zahlen m und n gleichwertig sind, so dürfen wir uns auf einen dieser Fälle beschränken. Wir setzen also voraus

$$p_3 = 0$$
, $p_3' = 0$.

Durch Coordinatentransformation gelangen wir zu

$$f(y_1, y_3, y_4) \equiv y_1^m (c_1 y_4 + c_3 y_3 + c_4 y_4)^n - y_4^{m+n} = 0, \quad (55)$$

$$f'(y_2, y_3, y_4) \equiv y_2^{m'} - (c_2' y_2 + c_3' y_3 + c_4' y_4)^n y_4^{m'-n'} = 0. \quad (56)$$

Die Elimination von y_3 ergiebt

$$c_{3}y_{1}^{m}y_{2}^{m'}+|c_{3}c_{1}y_{1}-c_{3}c_{2}'y_{2}+|c_{3}'c_{4}-c_{3}c_{4}')y_{4}|y_{1}^{m}y_{4}^{m'-n'}-c_{3}'y_{1}^{m}+\frac{m'}{n'}=0.$$
(57)

Diese Kurve ist vom Grade mn' + m'n (weil m' > n' und $m \ge n$ ist, so ist der niedrigste Wert dieses Grades 3).

Der Punkt Y_1 ist ein n(m'-n')-facher; seine einzige Tangente ist $y_4=0$; sie hat in Y_1 m'n Punkte mit der Kurve gemein.

Der Punkt Y_2 ist ein mn'-facher; seine einzige Tangente ist $y_1 = 0$, welche in $Y_2 mn' + m'n$ Punkte mit der Kurve gemein hat. Der Punkt Y_4 gehört der Kurve nicht an.

Wir behaupten daher:

Für Behandlung mit den Strahlencongruenzen $w^m w'^n = 1$ und $w''' = w'^{n'}$, vermöge der Gleichungen (51) und (52), kommt in Betracht: ein Diagram vom Grade mn' + m'n, das im Unendlichen auf

der w-Axe einen n(m'-n')-fachen Punkt hat, mit der unendlich fernen Gerade als einziger Tangente, während diese im vorliegenden Berührungspunkte m'n Punkte mit dem Diagram gemein hat, — oder das im Unendlichen auf der w'-Axe einen mn'-fachen Punkt hat mit der w'-Axe als einziger Tangente, während diese in ihrem Berührungspunkte mn' + m'n Punkte mit dem Diagram gemein hat.

§ 7. Der Vollständigkeit wegen haben wir noch den Fall einer Gleichung f = 0 zu erörtern, wo \overline{w} durch w_1 ersetzt wird. Betrachten wir zuerst die parabolische Gleichung

$$f(w_1, w_1') \equiv (aw_1 + a'w_1' + a_0)^m - (bw_1 + b'w_1' + b_0)^n = 0.$$

Das Diagram ist offenbar eine Kurve vom Grade m, welche im Schnittpunkte der Geraden $aw_1 + a'w_1' + a_0 = 0$ und $bw_1 + b'w_1' + b_0 = 0$ einen n-fachen Punkt hat, mit letzterer Gerade als einziger Tangente, — und welche im unendlich fernen Punkte der Gerade $aw_1 + a'w_1' + a_0 = 0$ einen (m-n)-fachen Punkt hat, mit der unendlich fernen Gerade als einziger Tangente.

Dagegen weist eine hyperbolische Gleichung, z.B.

$$f(w_{\!\scriptscriptstyle 4},w_{\!\scriptscriptstyle 4}^{'})\!\equiv\!(aw_{\!\scriptscriptstyle 4}+a^{'}w_{\!\scriptscriptstyle 4}^{'}+a_{\!\scriptscriptstyle 0})^{\scriptscriptstyle m}(bw_{\!\scriptscriptstyle 4}+b^{'}w_{\!\scriptscriptstyle 4}^{'}+b_{\!\scriptscriptstyle 0})^{\scriptscriptstyle n}-1=0$$
 ,

als Diagram eine Kurve vom Grade m+n an, welche im unendlich fernen Punkte auf $aw_1+a'w_1'+a_0=0$ einen m-fachen Punkt hat, mit dieser Gerade als einziger Tangente, während die Gerade $bw_1+b'w_1'+b_0=0$ die einzige Asymptote eines n-fachen unendlich fernen Punktes ist.

§ 8. In den vorhergehenden Paragraphen haben wir die Frage erledigt, welchen Bedingungen das Diagram von $\psi_1(w_1, w_1') = 0$ genügen muss, damit diese Gleichung zu einer Erörterung mittels

einer oder zweier parabolischen oder hyperbolischen Strahlencongruenzen geeignet sei.

Es leuchtet ohne Weiteres ein, dass wir das erhaltene Diagram noch um einen willkürlichen Betrag verschieben und jede der Coordinaten in einem willkürlichen sogar imaginären Verhältnisse vergrössern dürfen.

Alle einem solchen Diagramme aufgelegten Bedingungen sind überhaupt einer Vergrösserung jeder der Coordinaten fähig, während bei der Coordinatentransformation von x_k in y_k das Prinzip der Verschiebung schon herangezogen ist.

§ 9. Die Gleichung zweiten Grades.

Wir wollen, auch im Folgenden, die verschiedenen Gleichungen der geometrischen Eigenschaften ihrer Diagrammen nach unterscheiden.

Statt w und w' werden wir uns nachher häufig von x und y bedienen.

Betrachten wir zuerst die Gleichung der Parabel.

Es sei gegeben

$$(a_0x + b_0y)^2 + a_1x + b_1y + c_2 = 0.$$

Wir erkennen in dieser Gleichung unmittelbar die Form

$$(aw + a'w' + a_0)^m - (bw + b'w' + b_0)^n = 0$$

(siehe S. 492); wir benutzen deshalb die Strahlencongruenz

$$kw' = w^2$$
.

wo der Faktor k der Homogeneiteit wegen eingeführt ist. Wir setzen nun

$$a_0 x + b_0 y = w$$
,
 $a_1 x + b_1 y + c_2 = k w'$.

Die Transformation

$$x = x' - \frac{b_0 c_2}{a_1 b_0 - a_0 b_1} = x' + \xi,$$

 $y = y' + \frac{a_0 c_2}{a_1 b_0 - a_0 b_1} = y' + \eta,$

$$a_1 = ka_0',$$

 $b_1 = kb_0'$

ergiebt

$$a_0 x' + b_0 y' = w$$
,
 $a_0 x' + b_0 y' = w'$,

wonach

$$x' = \frac{b_0' w - b_0 w'}{a_0 b_0' - a_0' b_0},$$

$$y' = \frac{-a_0' w + a_0 w'}{a_0 b_0' - a_0' b_0},$$

oder

$$\begin{split} \frac{a_0\,b_0'-a_0'\,b_0}{b_0'-b_0}\,x' &= \frac{b_0'}{b_0'-b_0}\,w + \frac{-\,b_0}{b_0'-b_0}\,w', \\ \frac{a_0\,b_0'-a_0'\,b_0}{a_0-a_0'}\,y' &= \frac{-\,a_0'}{a_0-a_0'}\,w + \frac{a_0}{a_0-a_0'}\,w'. \end{split}$$

Setzen wir noch

$$\frac{a_0 b_0' - a_0' b_0}{b_0' - b_0} = \alpha, \quad \frac{a_0 b_0' - a_0' b_0}{a_0 - a_0'} = \beta,$$

$$\frac{-b_0}{b_0' - b_0} = p, \quad \frac{a_0}{a_0 - a_0'} = q,$$

wonach

$$\frac{b_0'}{b_0'-b_0}=1-p, \ \frac{-a'_0}{a_0-a'_0}=1-q,$$

so folgt

$$\begin{aligned} x'' &= \mathbf{a} x' = p w' + (1 - p) w \,, \\ y'' &= \beta y' = q w' + (1 - q) w. \end{aligned}$$

In dieser Weise ist die gegebene Gleichung der Congruenz $kw' = w^2$ angepasst.

Die hier angewandte Rechnungsweise würde scheitern, wenn die Grössen p und q unendlich gross wären, oder wenn eine der Grössen α und β unendlich gross oder null würde; die Beziehungen

$$b_0' - b_0 = 0$$
,
 $a_0' - a_0 = 0$,
 $a_0 b_0' - a_0' b_0 = 0$

dürfen also nicht erfüllt sein."

Die letzte Gleichung bedingt

$$\frac{a_0}{b_0} = \frac{a_0'}{b_0'} = \frac{a_1}{b_1};$$

sie würde besagen, dass die Gleichung der Parabel zwei parallele Geraden darstellte; dies ist aber ausgeschlossen.

Den Gleichungen $b_0' = b_0$ und $a_0' = a_0$, oder $b_1 = kb_0$ und $a_1 = ka_0$ kann vorgebeugt werden, indem man einen anderen Wert für k wählt; auch hierin braucht also keine Schwierigkeit zu liegen.

Beispiel. Man fragt nach der Bahn von y, wenn x die reelle Axe beschreibt.

Aus

$$x' = x - \xi,$$

$$x'' = \alpha x',$$

wo ξ und α beide reell sind, folgt, dass auch x'' die reelle Axe beschreibt.

Die Ebene von x'' wird in der Höhe ph parallel zur Abbildungsebene $\lceil w \rceil$ gestellt.

Den Bezeichnungen in homogenen Coordinaten entsprechend, haben wir alsdann

$$\mu = \frac{x_3}{x_4} = \frac{h-z}{z} = \frac{1-p}{p}.$$

Die Ebene von y'' wird durch

$$x_3 - y x_4 = 0$$

angewiesen, wenn v sich ergiebt aus

$$\nu = \frac{1 - q}{q}.$$

Es handelt sich nun offenbar um die Regelfläche der Gerade

$$x_1 - x_2 = 0$$
,
 $x_3 - \mu x_4 = 0$.

Diese Regelfläche besteht aus der 2-fachen Ebene der reellen Axen, aus der einfachen Abbildungsebene [w] und aus der kubischen Regelfläche (siehe S. 126, $\alpha_1=1$, $\alpha_2=-1$, $\alpha_3=\alpha_4=0$)

$$(x_1 - x_2)^2 x_4 - 2 (x_1 + x_2) (x_3 - \mu x_4)^2 - \mu (2x_3 - \mu x_4) (x_3 - \mu x_4)^2 = 0.$$

Der Schnitt dieser Fläche mit der Ebene $x_3 = \nu x_4$ besteht aus der unendlich fernen Gerade und aus dem Kegelschnitte

$$(x_1 - x_2)^2 - 2(\nu - \mu)^2(x_1 + x_2)x_4 - \mu(2\nu - \mu)(\nu - \mu)^2x_4^2 = 0$$

der also in cartesischen Coordinaten durch

$$\dot{y}^2 + \frac{k(p-q)^2}{p^2 q} x + \frac{k^2(1-p)(2p-q-pq)(p-q)^2}{p^4 q} = 0,$$

oder

$$y^2 = 2 m(x - t)$$

dargestellt wird.

Die Bahn von y'' ist daher eine in Bezug auf die reelle Axe symmetrische Parabel.

Die Transformationen

$$y'' = \beta y'$$
$$y' = y - \eta$$

vergrössern diese Parabel gleichförmig und verschieben sie längs der reellen Axe, wobei sie in Bezug auf diese Axe symmetrisch bleibt.

Also: die Bahn, welche die Ordinate y beschreibt, wenn x die reelle Axe durchläuft, ist aus einer in Bezug auf die reelle Axe symmetrischen Parabel, aus der reellen Axe selbst und aus der unendlich fernen Gerade zusammengesetzt.

Wenn wir also in der Gleichung

$$(a_0x + b_0y)^2 + a_1x + b_1y + c_2 = 0$$

die Abscisse x alle reelle Werte von $+\infty$ an durchlaufen lassen, so werden jedem Werte von x während einiger Zeit reelle Werte von y entsprechen, und zwar so lange, bis die Tangente der y-Axe parallel geworden ist; in diesem Augenblicke verlässt die Ordinate in ihrer complexen Ebene die reelle Axe und bewegt sich weiter längs einer Parabel.

So bald x einen unendlich grossen Wert erhält, ist die Tangente

wiederum der y-Axe parallel geworden; die Ordinate verlässt sodann die Parabel und kehrt (längs der unendlich fernen Gerade) zu der reellen Axe zurück. Indem wir dieses Verfahren wiederholen, dürfen wir die Ordinate, wenn sie zum zweiten Male die Parabel betritt, längs dem anderen Teil dieser Kurve fortbewegen, wonach sie abermals (längs der unendlich fernen Gerade) in die reelle Axe gelangt.

Bei dieser Wiederholung dürfen wir auch die reellen Werte der Abscisse den anderen reellen Werten der Ordinate zuordnen.

In Fig. 18 (hinten angefügte Figurentafel) sind die entsprechende Punkte der Diagramparabel und der Bahn der Ordinate durch übereinstimmende Ziffern angewiesen.

Jeder Punkt der Diagramparabel, d.h. jede Combination (x, y) wird natürlich durch einen Strahl vertreten; dieser Strahl umhüllt, sofern der reelle Teil des Diagrams beschrieben wird, einen Kegelschnitt in der Ebene der reellen Axen; sobald der Punkt (x, y) aber den reellen Teil verlässt, betritt der Strahl die kubische Regelfläche. Auch hierbei können wir dem Strahle eine stetige Bahn anweisen.

Wir wollen jetzt die Gleichung des Mittelpunktskegelschnittes erledigen.

Durch eine Verschiebung lässt sich der Mittelpunkt stets in den Ursprung verlegen. Wir werden auch ausschliesslich diese Lage betrachten.

Es sei also gegeben

$$a_0 x^2 + 2 b_0 xy + c_0 y^2 + c_2 = 0.$$

Falls die Gesammtheit der quadratischen Glieder in reelle Faktoren zerlegt werden kann, ist die Behandlung sehr einfach.

Wir betrachten alsdann die Gleichung

$$(ax + by)(a'x + b'y) - c^2 = 0$$
,

wo a, b, a', b' und c reelle Werte haben.

Wir setzen nun

$$ax + by = w,$$

$$a'x + b'y = w',$$

and können offenbar die Congruenz $ww'=c^2$ anwenden.

Wir finden sodann

$$x = \frac{b'w - bw'}{ab' - a'b},$$

$$y = \frac{-a'w + aw'}{ab' - a'b},$$

oder

$$\frac{ab' - a'b}{b' - b} x = \frac{b'}{b' - b} w + \frac{-b}{b' - b} w',$$

$$\frac{ab' - a'b}{a - a'} y = \frac{-a'}{a - a'} w + \frac{a}{a - a'} w'.$$

Setzen wir noch

$$\frac{ab' - a'b}{b' - b} = \alpha, \quad \frac{ab' - a'b}{a - a'} = \beta,$$
$$\frac{-b}{b' - b} = p, \quad \frac{a}{a - a'} = q,$$

wonach

$$\frac{b'}{b'-b} = 1 - p$$
, $\frac{-a'}{a-a'} = 1 - q$,

so bekommen wir

$$x' = \alpha x = pw' + (1 - p) w,$$

 $y' = \beta y = qw' + (1 - q) w.$

Diese Zerlegung der gegebenen Gleichung würde scheitern, wenn eine der Grössen p und q unendlich gross wäre, oder wenn eine der Grössen α und β unendlich gross oder null würde; es gälte dann eine der Beziehungen

$$b' - b = 0$$
,

oder

$$a' - a = 0$$

oder

$$ab' - a'b = 0.$$

Diese letzte Bedingung ist aber niemals erfüllt, da sie ausdrückt, dass das quadratische Glied ein Quadrat ist.

Die Gleichung b' - b = 0 oder a' - a = 0 kann beseitigt werden, indem man z. B. der Gleichung diese Form verleiht:

$$\left(\frac{a}{\rho}x + \frac{b}{\rho}y\right)(\rho a'x + \rho b'y) - c^2 = 0.$$

Damit ist die Gleichung der Hyperbel zur Anwendung der Congruenz $ww' = c^2$ geeignet geworden.

Beispiel. Man fragt die Bahn von x und y, wenn der Punkt (x, y) der Schnittpunkt ist der Hyperbel mit den reellen Geraden eines Strahlenbüschels mit reellem Scheitel P(X, Y).

Um diese Frage zu lösen, wollen wir zuerst untersuchen, wie eine reelle Gerade durch eine Strahlencongruenz dargestellt wird.

Die Gerade möge durch

$$w' = \gamma (w - u_0)$$

angewiesen sein, wo γ und u_0 reelle Grössen sind.

Wir haben auf S. 465 gefunden, dass die lineare Funktion mit reellen Constanten durch einen Strahlenbündel vertreten wird, dessen Scheitel C in der Ebene der reellen Axen liegt und zwar auf der Gerade, welche den Punkt W_0 (wofür $w = u_0$ gilt) mit O' verbindet.

Die Lage von C auf dieser Gerade wird durch die Beziehung

$$W_0 C: O'C = 1: \gamma$$

bestimmt.

Ist w = X, w' = Y (X und Y reell) ein der linearen Gleichung genügendes System, so muss der Strahl XY nach dem Punkte C zielen.

Umgekehrt, soll

$$w' = \gamma (w - u_0)$$

eine Beziehung sein, welche durch w = X, w' = Y erfüllt wird, so muss der Scheitel C sich auf der Gerade XY befinden.

Das System (X, Y) weist in gewöhnlichen cartesischen Coordinaten einen reellen Punkt P an, $w' = \gamma (w - u_0)$ eine reelle Gerade.

Die Bedingung, dass (X, Y) auf der Gerade $w' = \gamma (w - u_0)$ liegen soll, wird also ersetzt durch die Forderung, dass C sich auf XY befinde.

Alle reelle Geraden $w' = \gamma (w - w_0)$, welche sich in P(X, Y) treffen, werden also vertreten durch die Gesammtheit aller Strahlen, welche auf XY ruhen,

oder auch:

jeder, reelle oder imaginäre, Punkt Q ($w = \xi$, $w' = \eta$), welcher mit P durch eine reelle Gerade verbunden wird, wird durch einen auf X Y ruhenden Strahl dargestellt.

Soll ein solcher Punkt $Q(\xi, \eta)$ überdies einer anderen Kurve angehören, so muss die Gerade ξ_{η} zugleich ein Strahl derjenigen Congruenz sein, welche die Gleichung der gegebenen Diagramkurve vertritt.

Also: die Gesammtheit aller, reellen oder imaginären, Punkte einer gegebenen Kurve, welche mit P durch eine reelle Gerade verbunden werden, oder auch: die Gesammtheit aller Schnittpunkte der gegebenen Kurve mit dem reellen durch P gelegten Strahlenbüschel wird dargestellt durch alle Strahlen der zugehörigen Congruenz, welche auf der (in der Ebene der reellen Axen liegenden) Gerade XY ruhen.

Es ist also unsere Aufgabe für die genannte Congruenz die axiale Regelfläche der Gerade XY zu bestimmen.

Wir wollen jetzt dieses Prinzip anwenden auf die Congruenz von

$$(ax + by)(a'x + b'y) - c^2 = 0.$$

Durch die Transformation

$$x = \frac{x'}{\alpha}, \ y = \frac{y'}{\beta}$$

wird diese Strahlencongruenz übergeführt in die von

$$ww' = c^2$$

Die Gerade XY verwandelt sich in die Gerade, welche den Punkt X' der x'-Ebene (z = ph) mit dem Punkte Y' der y'-Ebene (z = qh) verbindet. Diese Gerade X'Y' schneidet die Ebene [w] in einem Punkte A(w = A) und die Ebene [w'] in einem Punkte B'(w' = B').

Vermöge der herbeigeführten Substitutionen sind A und B' durch

$$A = aX + bY,$$

$$B' = a'X + b'Y$$

bestimmt.

Die axiale Regelfläche einer in der Ebene der reellen Axe liegenden Gerade wurde auf S. 62 (Gl. (71)) abgeleitet. Wir haben in der dort gefundenen Gleichung (71) nur α durch A und b' durch B' zu ersetzen, und erhalten sodann die Gleichung der hier in Frage kommenden Regelfläche. Diese Gleichung lautet:

$$\begin{vmatrix} B' & , & Ax_3 + B'x_4 & , & -1 & , & -1 \\ -x_3 & , & Ax_4x_3 & , & Ax_3 & , & x_4 - B'x_4 \\ -x_3 & , & Ax_2x_3 & , & x_2 - B'x_4 & , & Ax_3 \\ Ax_3 - B'x_4 & , & (x_1 + x_2)x_4 - Ax_1x_2 & , & -Ax_2 + 2x_4 & , & -Ax_1 + 2x_4 \end{vmatrix} = 0,$$

oder, nach Reduktion:

$$\begin{vmatrix} x_1-x_2 & ,x_1+x_2-2(Ax_3+B'x_4),0 & ,0 \\ x_1+x_2-2(Ax_3-B'x_4),x_1-x_2 & ,-2x_3 & ,2A(Ax_3-B'x_4)x_3 \\ -2 & ,0 & ,B' & ,-(Ax_3-B'x_4) & =0. \\ 2A^2x_3-2(AB'-2)x_4,0 & ,-(Ax_3+B'x_4),-Ax_1x_2+(x_1+x_2)(A^2x_3+x_4)- \\ & -2A_1A^2x_3-(AB'-2)x_4|x_3 \end{vmatrix}$$

Die Bahn von x' befindet sich nun in der Ebene

$$x_3 = \mu x_4$$

wenn

$$\mu = \frac{1 - p}{p};$$

die Bahn von y' liegt in der Ebene

$$x_3 = \nu x_4$$
,

wenn

$$\nu = \frac{1-q}{q}.$$

Indem wir diese Werte für x_3 in die obige Gleichung einsetzen und ausserdem

$$x_1 + x_2 = \frac{2x}{c}$$

$$x_1 - x_2 = \frac{2iy}{c}$$

$$x_4 = \frac{h}{z} (= p \text{ oder } q)$$

setzen, bekommen wir die bez. durch x' und y' beschriebenen Kurven.

Beide sind bicirculare Kurven 4^{ten} Grades mit einem Doppelpunkt. Dieser Doppelpunkt C_{μ} , bez. C_{ν} , ist der Schnittpunkt der Gerade AB' mit der Ebene von x', bez. y'; er befindet sich auf der reellen Axe.

Die beiden Kurven sind symmetrisch in Bezug auf die reellen Axen.

Die Bahnen von x und y zeigen dieselben Eigenschaften.

In Fig. 19 (hinten angefügte Figurentafel) sind dargestellt:

- a) die Gerade AB' mit der Fokalellipse in der Ebene ε ,
- b) die Diagramhyperbel mit den Transversalen durch P,
- c) die Bahn von x',
- d) die Bahn von y'.

Die entsprechenden Punkte dieser Figuren sind durch die nämlichen Ziffern angedeutet.

Im Allgemeinen ist ein imaginäres y einem imaginären x zugeordnet. Wenn y' im Doppelpunkte C_v seiner Bahn die reelle Axe trifft (also y' reell ist), so ist die durch P gelegte Gerade senkrecht zur y-Axe. Zu diesem Werte von y' gehören zwei imaginäre Werte von x'.

Die Bahn von x' hat einen isolirten Punkt C_{μ} ; dieser entspricht derjenigen durch P gelegten Gerade, welche auf der x-Axe senkrecht steht, und deren Schnittpunkte mit der Hyperbel somit dieselbe Abscisse haben.

Auch hier dürfen wir sowohl x' wie y' einer stetigen Bahn folgen lassen.

Die reellen Schnittpunkten werden durch die den Fokalkegelschnitt umhüllenden, in der Ebene der reellen Axen liegenden Strahlen vertreten.

Sobald der Scheitel C des eine durch P gehende Gerade darstellenden Strahlenbündels in seiner Bewegung längs AB' innerhalb des Fokalkegelschnittes gelangt, giebt es aus C keine reelle Tangenten an dieser Kurve. Im Augenblicke, wo C den Fokalkegelschnitt trifft, verlässt der Strahl die Ebene der reellen Axen und betritt die biquadratische axiale Regelfläche von AB'.

Wenn der Punkt P innerhalb der Diagramhyperbel liegt, so liefert jede durch P gelegte Transversale zwei reelle Schnittpunkte; die Gerade AB' liegt alsdann in ihrer ganzen Ausdehnung ausserhalb des Fokalkegelschnittes, sodass aus jedem ihrer Punkte zwei reelle Tangenten an diese Kurve zu legen sind. Die axiale Regelfläche von AB' ist alsdann imaginär, wonach auch die durch x und y beschriebenen biquadratischen Kurven verschwinden.

Wir wollen uns nunmehr der Erörterung der Gleichung einer Ellipse zuwenden.

Wir bringen sie in die Gestalt

$$x^2 + 2\cos\beta xy + y^2 = c^2$$

$$(x + e^{i\beta}y)(x + e^{-i\beta}y) = c^2$$
,

und setzen noch

$$\begin{split} x + e^{i\beta}y &= \rho w \,, \\ x + e^{-i\beta}y &= \frac{1}{\rho} \, w' \,; \end{split}$$

wir sind also zu der Beziehung

$$ww' = c^2$$

zurückgelangt.

Für x und y finden wir die Ausdrücke

$$x = \frac{e^{-i\beta} \rho w - e^{i\beta} \rho^{-1} w'}{-2i \sin \beta}.$$
$$y = \frac{\rho w - \rho^{-1} w'}{2i \sin \beta}.$$

Wenn wir mit den beiden Ausdrücken in derselben Weise verfahren wollten wie in den vorigen Fällen, so würden wir bei der Behandlung von x imaginäre Werte für p erhalten, welche doch für unsere Darstellungsweise unbrauchbar sind. Der Wert von q bei y ist aber reell; wir finden nl.

$$q = \frac{-\rho^{-1}}{\rho - \rho^{-1}} = \frac{1}{1 - \rho^2}.$$

Die Grösse y ist sodann aus

$$\frac{2i\rho\sin\beta}{\rho^{2}-1}y = qw' + (1-q)w = y'$$

bestimmt.

Hieraus ergiebt sich bei gegebenem w der Wert für iy, welcher durch Drehung der ganzen y-Ebene um seinen Nullpunkt, durch einen Winkel — $\frac{\pi}{2}$, in den Wert von y verwandelt wird.

Ist umgekehrt der Wert von y, oder die Bahn von y gegeben, so drehen wir diese(n) zuerst durch einen Winkel $+\frac{\pi}{2}$ um den Nullpunkt und vergrössern ihn (sie) nachher im Verhältnisse 1 zu $\frac{2\rho\sin\beta}{\rho^2-1}$.

Wir erhalten alsdann den Wert oder die Bahn der Grösse $y' = \frac{2i\rho\sin\beta}{\rho^2-1}y$, welche(r), in die Ebene z=qh gelegt, die entsprechenden Congruenzstrahlen bestimmt und somit auch die Werte oder die Bahn von w (und w').

Es handelt sich nun darum, die zugeordneten Werte oder die Bahn von x zu finden. Zu diesem Zweck ziehen wir zwei neue Veränderlichen \overline{w} und \overline{w}' heran, welche durch

$$\overline{w} = e^{-ieta}w$$
 , $\overline{w}' = e^{ieta}w'$

bestimmt sind.

Weil diese Grössen auch der Beziehung

$$\overline{w}\,\overline{w}' = c^2$$

genügen, so haben wir uns mit derselben Strahlencongruenz zu beschäftigen, oder auch, indem wir die Grösse w in [w] durch eine Drehung um den Winkel — β durch die Grösse \overline{w} ersetzen, so stimmt in derselben Congruenz mit \overline{w} eine Grösse \overline{w}' in der Ebene [w'] überein, welche der Beziehung

$$\overline{w}' = e^{i\beta} w'$$

genügt.

Es ist jetzt x bestimmt durch

$$\frac{-2i\rho\sin\beta}{\rho^2-1}x = \frac{1}{1-\rho^2}\overline{w}' + \frac{-\rho^2}{1-\rho^2}\overline{w},$$

oder, wenn wir setzen

$$\frac{1}{1-\rho^2}=p,$$

durch

$$\frac{-2i\rho\sin\beta}{\rho^2-1}x = p\,\overline{w}' + (1-p)\,\overline{w} = x'.$$

In der Congruenz $\overline{w}\overline{w}' = c^2$ finden wir alsdann in der Ebene z = ph für einen gegebenen Wert (Bahn) von \overline{w} den entsprechenden Wert (Bahn) von x'; wenn wir diese(n) im Verhältniss 1 zu $\frac{2 \rho \sin \beta}{\rho^2 - 1}$

verkleinern und nachher die x'-Ebene um einen Winkel $+\frac{\pi}{2}$ drehen, so erhalten wir den fraglichen Wert (Bahn) von x.

Die obigen Überlegungen lassen sich folgendermassen zusammenfassen:

Um zu einem gegebenen Wert (Bahn) von y den zugeordneten Wert (Bahn) von x zu finden, haben wir

- 1° den Wert (Bahn) von y im Verhältniss 1 zu $\frac{2 \rho \sin \beta}{\rho^2 1}$ zu vergrössern;
- 2° diesen Wert (Bahn) um einen Winkel $+\frac{\pi}{2}$ zu drehen, wonach wir den Wert (Bahn) der Grösse y' erhalten;
- 3° den Wert (Bahn) von y' in die Ebene z=qh zu legen, in der Congruenz von $ww'=c^2$, und die Punkte (Bahn) zu bestimmen, wo die sich auf den Punkten y' stützenden Strahlen (die Regelfläche der Bahn von y') die Ebene [w] schneiden;
- 4° die Werte (Bahn) von w um einen Winkel β zu drehen, wonach wir die Werte (Bahn) von \overline{w} erhalten;
- 5° die Strahlen (die Regelfläche der Strahlen) zu bestimmen, welche den Punkten \overline{w} entstammen (auf der Bahn von \overline{w} ruhen);
- 6° diese Strahlen (diese Regelfläche) mit der Ebene z = ph zu schneiden, wodurch die Werte (Bahn) von x' sich ergeben;
 - 7° die x'-Ebene um einen Winkel $+\frac{\pi}{2}$ zu drehen, und die so

erhaltenen Werte (Bahn) im Verhältniss 1 zu $\frac{2 \rho \sin \beta}{\rho^2 - 1}$ zu verkleinern, wonach wir die Werte (Bahn) von x bekommen.

Wir können noch über ρ verfügen; jedoch dürfen wir nicht $\rho = +1$, oder $\rho = -1$ setzen. Wir wählen ρ so, dass

$$\frac{2\rho\sin\beta}{\rho^2-1}=1,$$

wonach ρ sich ergiebt aus der Beziehung

$$ho^2-2$$
 ρ sin $eta-1=0$,

also

$$\rho = \sin \beta \pm \sqrt{1 + \sin^2 \beta}. \quad . \quad . \quad . \quad (58)$$

Durch diese Wahl von ρ verschwindet die Vergrösserung und die Verkleinerung in den Ebenen von x' und y'.

Es erhellt, dass der Wert (58) von ρ unbrauchbar wird, wenn $\sin \beta = 0$ ist. Es ist dann aber $\cos \beta = \pm 1$, wonach die linke Seite der gegebenen Gleichung der Ellipse ein Quadrat wird, und die Gleichung somit in zwei lineare Gleichungen zu zerlegen ist.

Wir bemerken noch, dass wir für p und q dieselben Werte erhalten haben; die Ebenen von x' und y' fallen daher zusammen.

Würde diese Coincidenz eventuelle Schwierigkeiten veranlassen, so können wir für ρ einen anderen Wert wählen; wir dürfen alsdann für die Bestimmung von y den einen Wert (58) nehmen, und für die Bestimmung von x den anderen.

Bevor wir zu einem Beispiel übergehen, haben wir noch zu untersuchen, in welcher Weise die Frage der Schneidung des Diagrammes mit den Strahlen eines reellen Strahlenbüschels in diesem Falle zu lösen ist.

Der Scheitel des Strahlenbüschels sei durch

$$x = X, y = Y$$

angewiesen, wo X und Y reell sind.

Die diesen entsprechenden Werte W und W_0' sind aus

$$\rho W = X + e^{i\beta} Y,$$
 $\rho^{-1} W'_0 = X + e^{-i\beta} Y$

bestimmt.

Ein Punkt (x, y) der Ellipse wird in den Ebenen [w] und [w'] durch

$$\rho w = x + e^{i\beta} y$$
$$\rho^{-1} w' = x + e^{-i\beta} y$$

vertreten.

Wenn dieser Punkt (x, y) mit dem Scheitel (X, Y) durch eine reelle Gerade verbunden wird, so gilt die Beziehung

$$y - Y = m(x - X),$$

wo m reell ist.

Übersetzen wir sie in eine Beziehung zwischen den Punkten der Ebenen $\lceil w \rceil$ und $\lceil w' \rceil$, so finden wir

$$\begin{split} \rho(w-W) &= (1+me^{i\rho})\,(x-X)\,,\\ \rho^{-1}(w'-W_0') &= (1+me^{-i\beta})\,(x-X)\,, \end{split}$$

woraus sich durch Teilung ergiebt

$$\frac{\rho(w-W)}{\rho^{-1}(w'-W_0')} = \frac{1+me^{i\beta}}{1+me^{-i\beta}} = e^{2i\psi}.$$

Hieraus folgt, dass $\rho(w - W)$ und $\rho^{-1}(w' - W_0')$ gleiche Moduln haben.

Wenn wir noch

$$\begin{array}{l} \rho w = w_1 \,, \; \rho W = W_1 \,, \\ \rho^{-1} \, w' = w_1' \,, \; \rho^{-1} \, W_0' = W_{10} \end{array}$$

setzen, so bekommen wir

$$mod(w_1 - W_1) = mod(w_1' - W_{10}').$$

Ausserdem sind W_4 und W_{40} conjugirt complex.

Aus diesen Bedingungen folgt nun eine Bahn für den Punkt w_1 und eine solche für den Punkt w_1' .

Um diese Bahn zu ermitteln, legen wir zuerst die Ebene $[w_1']$ in die Ebene $[w_1]$; überdies ersetzen wir jedes w_1 durch seinen conjugirt complexen Wert w_4 ".

Es fällt W_{10} mit W_1 zusammen, also

$$W_{10}^{"} == W_1.$$

Die Punkte w_1 und w_1'' liegen nun mit dem Nullpunkt in einer Gerade und sind ihre gegenseitigen Inversionen in Bezug auf den Kreis 7 mit Radius c.

Bekanntlich sind zwei Punkte, welche durch Inversion in Bezug auf den Kreis y zusammenhangen, zu betrachten als die Schnitt-

Fig. 20.

punkte einer durch den Nullpunkt (Mittelpunkt von Y) gehenden Gerade mit einem Orthogonalkreise von V.

Die Bedingung

$$mod(w_1 - W_1) = mod(w_1'' - W_1)$$

fordert nun, dass diese Punkte auch auf einem Kreise mit W_4 als Mittelpunkt liegen.

Der geometrische Ort der Punkte w_4 und w_4 " ist somit der Orthogonalkreis von γ , dessen Mittelpunkt W_1 ist.

Wir haben also den Ort der Punkte w_4 gefunden. Durch gleichförmige Verkleinerung im Verhältniss 1 zu ρ , mit dem Nullpunkt als Ähnlichkeitspunkt, erhalten wir für den Ort der Punkte w den Orthogonalkreis (w) des Kreises, dessen Radius $\frac{c}{\rho}$ und dessen Mittelpunkt W ist.

Die Bahn von y' erscheint nun als die Schnittkurve der Ebene $z=qh\,(q=\frac{1}{1-\rho^2},\;\rho=\sin\beta\pm\sqrt{1+\sin^2\beta})$ mit der Regelfläche der Strahlen, welche auf dem in der Ebene [w] liegenden Kreise (w) ruhen; die Bahn von y wird erhalten, indem man die Bahn von y' um den Winkel $-\frac{\pi}{2}$ dreht.

Um die Bahn von x zu bekommen, müssen wir zuerst den Kreis (w) durch den Winkel — β um den Nullpunkt drehen, bis er in die Lage (\overline{w}) gelangt, sodann die Regelfläche bestimmen der Strahlen, welche auf (\overline{w}) ruhen, und schliesslich die Schnittkurve dieser Fläche mit der Ebene z=ph $(p=\frac{1}{1-\rho^2}=q)$ um den Winkel $+\frac{\pi}{2}$ drehen.

Beispiel I. Man fragt die Bahn von y, wenn x die reelle Axe beschreibt.

Wir betrachten also die reelle Axe in der Ebene z = ph. Die Bahn von x' = ix ist alsdann die imaginäre Axe.

Die axiale Regelfläche der in der Ebene $z=p\hbar$ liegenden imaginären Axe, also der Gerade

$$x_1 + x_2 = 0$$

$$x_3 = \mu x_4 \ (\mu = \frac{1 - p}{p} = - \rho^2)$$

zerfällt in die Ebene der imaginären Axen und in eine Fläche 4^{ten} Grades, auf welcher die gegebene Gerade eine Doppelgerade ist und die Kreispunkte Doppelpunkte sind.

Die biquadratische Fläche schneidet die Ebene [w] in der 2-fachen unendlich fernen Gerade und in einem Kreise, dessen Mittelpunkt mit dem Nullpunkte identisch ist (siehe z. B. S. 54).

Die durch den Punkt \overline{w} beschriebene Bahn besteht demnach aus der imaginären Axe, aus der unendlich fernen Gerade und aus einem Kreise, dessen Mittelpunkt im Nullpunkte liegt, und dessen Gleichung lautet:

$$\mu x_1 x_2 + x_3^2 = 0,$$

oder

$$u^2 + v^2 = \rho^2 c^2.$$

Weil reelle Combinationen (x, y) complexe Werte von \overline{w} und \overline{w}' liefern, so ist dieser Kreis, welcher mit Γ bezeichnet werde, die Abbildung der reellen Punkte der Ellipse.

Dieser Kreis ändert sich nicht bei der Drehung $+\beta$, welche auszuführen ist um die Bahn von w zu erhalten.

Die auf I ruhenden Strahlen schneiden die Ebene von y wiederum in der imaginären Axe, wonach die entsprechende Bahn von y die reelle Axe ist.

Von grosser Bedeutung ist aber die Bahn der complexen Werte von y, welche zu reellen Werten von x gehören.

Diese Bahn rührt von der imaginären Axe in der Ebene $\lceil \overline{w} \rceil$ her.

Die imaginäre Axe der \overline{w} -Ebene entspricht in der w-Ebene einer Gerade, welche den Winkel $+\beta$ mit der imaginären Axe bildet, deren Gleichung somit lautet:

$$x\cos\beta + y\sin\beta = 0.$$

Wenn wir sie durch

$$\alpha_1 x_1 + \alpha_2 x_2 = 0$$

darstellen wollen, so haben wir zu setzen

$$\alpha_1 = \frac{e^{-i\beta}}{2}, \ \alpha_2 = \frac{e^{i\beta}}{2}.$$

Die axiale Regelfläche dieser Geraden ist ein Hyperboloïd, dessen Gleichung sich ergiebt, indem man in (78) (S. 66) $\alpha_3 = 0$ einsetzt und nachher durch x_4 teilt. Man findet alsdann

$$\alpha_1 \alpha_2 (\alpha_1 x_1 + \alpha_2 x_2) (\alpha_2 x_1 + \alpha_1 x_2) - (\alpha_1^2 - \alpha_2^2)^2 x_3 x_4 = 0.$$

Wenn diese Gleichung in cartesische Coordinaten übergeführt wird, verwandelt sie sich in

$$(x\cos\beta + y\sin\beta)(x\cos\beta - y\sin\beta) = \frac{c^2}{\hbar^2}\sin^2 2\beta \cdot z(z-h).$$

Diese Regelfläche schneidet z = qh in der Kurve

$$(x\cos\beta+y\sin\beta)(x\cos\beta-y\sin\beta)=c^2\sin^22\beta\cdot q(q-1)\,,$$

oder

$$\frac{x^2}{4c^2sin^2\boldsymbol{\beta}\cdot\boldsymbol{q}(q-1)} - \frac{y^2}{4c^2cos^2\boldsymbol{\beta}\cdot\boldsymbol{q}(q-1)} = 1 ,$$

also in einer Hyperbel, welche die reelle und die imaginäre Axe als Axen hat.

Diese Hyperbel ist nun die Bahn von y'. Die Bahn von y wird ermittelt, indem man jene Kurve um den Winkel $\frac{\pi}{2}$ dreht.

Man findet sodann

$$\frac{y^2}{4\,c^2 sin^2 \beta \cdot q(q-1)} - \frac{x^2}{4\,c^2 sin^2 \beta \cdot q(q-1)} = 1.$$

Beispiel II. Man fragt die Bahnen von x und y, wenn der Punkt (x, y) der Schnittpunkt ist der Ellipse mit den reellen Geraden eines Strahlenbüschels mit reellem Scheitel P(X, Y).

Nach dem auf S. 506 u. 507 Dargelegten, haben wir nur noch die Regelfläche zu bestimmen der Strahlen, welche auf dem Orthogonalkreise (w) ruhen.

Da der Radius r dieses Kreises durch

$$r^2 = (mod \ W)^2 - \frac{c^2}{\rho^2}$$

angewiesen ist, und man hat

$$\rho W = X + e^{i\beta} Y,$$

also

$$\rho^2 (mod W)^2 = (X + \cos \beta Y)^2 + \sin^2 \beta Y^2 = X^2 + 2\cos \beta X Y + Y^2$$

so finden wir für die Gleichung von (w)

$$(w) = u^2 + v^2 - 2 \frac{X + \cos \beta Y}{\rho} u - 2 \frac{\sin \beta Y}{\rho} v + \frac{c^2}{\rho^2} = 0.$$

Setzen wir, der Kürze wegen,

$$X + \cos \beta Y = cR \cos \Theta$$
,
 $\sin \beta Y = cR \sin \Theta$,

so lässt sich die Gleichung bringen in die Gestalt

$$\alpha_1 x_1 x_2 + \alpha_2 x_1 x_3 + \alpha_1 x_2 x_3 + \alpha_0 x_3^2 = 0$$

$$\begin{split} & \pmb{\alpha}_3 = \pmb{\rho}^2\,, \\ & \pmb{\alpha}_2 = --\pmb{\rho} R e^{-i\Theta}, \\ & \pmb{\alpha}_1 = --\pmb{\rho} R e^{i\Theta}, \\ & \pmb{\alpha}_0 = 1\,. \end{split}$$

Die Gleichung der fraglichen Regelfläche in dieser Form finden wir in (141) auf S. 84.

Die Bahn von y' ergiebt sich nach der Substitution $x_3 = -\rho^2 x_4$. Die vorliegende Regelfläche ist vom 4^{ten} Grade und trägt eine circulare kubische Raumkurve (kubischen Kreis).

Der Schnitt mit einer zu den Abbildungsebenen parallelen Ebene ist demnach eine Kurve 4^{ten} Grades, welche in den Kreispunkten Doppelpunkte und ausserdem noch einen Doppelpunkt hat.

Die Rechnung weist nach, dass der Schnitt mit der Ebene

$$z = \frac{1}{1 - \rho^2} h$$

eine solche biquadratische Kurve ist, dessen Brennpunkte symmetrisch in Bezug auf die imaginäre Axe liegen. Ihre Coordinate sind

$$x=-rac{
ho\,c\,(1+R^2)}{R}\cos\Theta$$
 , $y=-rac{
ho\,c\,(1+R^2)}{R}\sin\Theta$.

Der Doppelpunkt im Endlichen liegt auf der imaginären Λ xe und ist durch

$$x = 0$$
,
 $y = 2 \rho c R sin \Theta$

bestimmt.

Durch Drehung durch den Winkel $+\frac{\pi}{2}$ verwandelt sich diese Kurve in eine congruente, welche jetzt aber symmetrisch in Bezug auf die *reelle* Axe ist. Es ist diese Kurve die fragliche Bahn von y.

Die Bestimmung der Bahn von x bedarf nach diesem Beispiel keiner besonderen Erläuterung.

Wir wollen uns nunmehr besonders mit dem Falle beschäftigen, wo die Axen der gegebenen Ellipse mit den Coordinatenaxen zusammenfallen.

Durch Vergrösserung der Coordinaten ist zuerst die Gleichung in die des Kreises

$$x^2 + y^2 = c^2$$

oder

$$(x + iy)(x - iy) = c^2$$

zu verwandeln.

Wir haben also hier

$$eta=rac{\pi}{2}$$
 ,

wonach p gegeben ist durch

$$\rho = 1 \pm 1/2.$$

Wenn wir jetzt x die reelle Axe beschreiben lassen, so durchläuft \overline{w} den Kreis

$$u^2 + v^2 = \rho^2 v^2$$

und die imaginäre Axe, also w denselben Kreis und die reelle Axe. Die axiale Regelfläche dieser letzteren besteht aus der Ebene der reellen Axen; es beschreibt daher y' die reelle und y die imaginäre Axe, m.a. W.: mit reellen Werten von x stimmen entweder reelle oder rein imaginäre Werte von y überein.

Das Problem der Schneidung mit einem Strahlenbüschel liefert nach dem oben Erörterten nichts Neues. Nur können wir bemerken, dass der Punkt W jetzt durch

$$\rho W = X + i Y$$

bestimmt ist, so dass die Lage des Punktes $W_4=\rho W$ in der Ebene [w] dieselbe ist wie diejenige des Scheitels P in der Diagramebene.

§ 10. Wir gehen jetzt über zur Gleichung dritten Grades.

Es handelt sich zuerst darum, zu erforschen, wie eine Gleichung dritten Grades in der in § 4, 5, 6 und 7 dargelegten Weise entstehen kann.

Wir erinnern uns, dass eine Gleichung in w_1 und w_1' , deren Grad eine *unteilbare Zahl* ist,

1° entweder unmittelbar gegeben war,

 2° oder durch die Elimination einer Grösse \overline{w} erhalten wurde. Die dem 1^{ten} Falle angehörenden Gleichungen waren

A.
$$F_A(w_1, w_1') \equiv (aw_1 + a'w' + a_0)^m - (bw_1 + b'w_1' + b_0)^n = 0$$
,

B.
$$F_B(w_1, w_1') \equiv (aw_1 + a'w' + a_0)^m (bw_1 + b'w_1' + b_0)^n - 1 = 0.$$

Die Gleichungen des 2^{ten} Falles ergaben sich durch die Elimination von \overline{w} aus den folgenden Paaren:

$$C... \begin{cases} f(w_1, \overline{w}) \equiv (a_1 w_1 + a_0)^m - (b_1 w_1 + \overline{b} \overline{w} + b_0)^n = 0, & m \geq m' \\ f'(w_1', \overline{w}) \equiv (a_1' w_1' + a_0')^{m'} - (b_1' w_1' + \overline{b} \overline{w} + b_0')^{n'} = 0, & m \geq m' \\ D... \begin{cases} f(w_1, \overline{w}) \equiv (a_1 w_1 + a_0)^{\mu} - (b_1 w_1 + \overline{b} \overline{w} + b_0)^{\nu} = 0, \\ f'(w_1', \overline{w}) \equiv (a_1' w_1' + a_0')^{\mu} - (b_1' w_1' + \overline{b}' \overline{w} + b_0')^{\nu} = 0, \end{cases}$$

mit drei Unterfällen, n.l.

$$\begin{split} &D_{1} \dots \mu > 2 \, \nu \,, \quad D_{2} \dots \mu < 2 \nu \,, \quad D_{3} \dots \mu = 2 \, \nu \,, \quad \text{d.h.} \quad \mu = 2 \,, \quad \nu = 1 \,; \\ &\mathbf{E} \dots \left\{ \begin{matrix} f(w_{1}, \overline{w}) \equiv (a_{1}w_{1} + a_{0})^{m} \, (b_{1}w_{1} + \overline{b}\,\overline{w} + b_{0})^{n} - 1 = 0 \,, & \frac{m}{n} \geq \frac{m'}{n'} ; \\ f'(w_{1}', \overline{w}) \equiv (a_{1}'w_{1}' + a_{0}')^{m'} (b_{1}'w_{1}' + \overline{b}'\overline{w} + b_{0}')^{n'} - 1 = 0 \,, & \frac{m}{n} \geq \frac{m'}{n'} ; \\ &\mathbf{F} \dots \left\{ \begin{matrix} f(w_{1}, \overline{w}) \equiv (a_{1}w_{1} + a_{0})^{\mu} \, (b_{1}w_{1} + \overline{b}\,\overline{w} + b_{0})^{\nu} - 1 = 0 \,, \\ f'(w_{1}', \overline{w}) \equiv (a_{1}'w_{1} + a_{0}')^{\mu} \, (b_{1}'w_{1}' + \overline{b}'\overline{w} + b_{0}')^{\nu} - 1 = 0 \,, \\ \end{matrix} \right. \\ &\mathbf{G} \dots \left\{ \begin{matrix} f(w_{1}, \overline{w}) \equiv (a_{1}w_{1} + a_{0})^{m} \, (b_{1}w_{1} + \overline{b}\,\overline{w} + b_{0})^{n} - 1 = 0 \,, \\ f'(w_{1}', \overline{w}) \equiv (a_{1}'w_{1}' + a_{0}')^{m'} - (b_{1}'w_{1}' + \overline{b}'\overline{w} + b_{0}')^{n'} = 0 . \end{matrix} \right. \end{split}$$

In allen anderen Fällen, d.h. wenn die Form, welche mit der höchsten Zahl (m, m') oder μ) potenzirt wird, ein Glied mit \overline{w} enthält, oder wenn die Gleichung aus der Elimination zweier Grössen \overline{w} und \overline{w}' entsteht, erhält man eine Gleichung, deren Grad wenigstens zwei Teiler hat.

Es kann aber geschehen, dass eine solche Gleichung in zwei oder mehrere Gleichungen zu zerlegen ist, deren eine von unteilbarem Grade ist. Dieser Fall wird aber in dieser Abhandlung nicht betrachtet.

Wir wenden uns vielmehr zu den Gleichungen dritten Grades, welche einer der 7 Rubriken A—G zuzuordnen sind.

Mit Hinweisung auf das in § 4, 5, 6 und 7 Dargelegte, bemerken wir zuerst, dass der Grad Δ der resultirenden Gleichung durch die folgenden Ausdrücke gegeben ist:

A:
$$\Delta = m$$
;
B: $\Delta = m + n$;
C: $1^{\circ} \frac{m}{n} > \frac{m'}{n'}$, $\Delta = mn'$; $2^{\circ} \frac{m}{n} < \frac{m'}{n'}$, $\Delta = m'n$;
D: $\Delta = \mu \nu$;
E: $\Delta = mn' + m'n + nn'$;
F: $\Delta = (2\mu + \nu)\nu$;
G: $\Delta = mn' + m'n$.

Beachten wir, dass in der parabolischen Gleichung immer m > n, m' > n', $\mu > \nu$ gelten muss, so folgt, dass wir *kubische* Gleichungen in den folgenden Fällen erhalten:

A
$$A_1$$
 $m=3$, $n=1$; A_2 $m=3$, $n=2$;
B $m=2$, $n=1$;
C C_1 $m=3$, $n=1$, $m'=2$, $n'=1$; C_2 $m=2$, $n=1$, $m'=3$, $n'=1$;
D $\mu=3$, $\nu=1$ (also D_1);
E niemals;
F $\mu=1$, $\nu=1$;
G $m=1$, $n=1$, $m'=2$, $n'=1$.

Indem wir C_1 mit C_2 gleichwertig achten, da Vertauschung der Grössen w_1 und w_1' zulässig ist, so erübrigen wir die folgenden 7 Typen:

$$\begin{split} F_{A_1}(w_1,w_1') &\equiv (aw_1 + a'w_1' + a_0)^3 - (bw_1 + b'w_1' + b_0) = 0 \;; \\ F_{A_2}(w_1,w_1') &\equiv (aw_1 + a'w_1' + a_0)^3 - (bw_1 + b'w_1' + b_0)^2 = 0 \;; \\ F_B(w_1,w_1') &\equiv (aw_1 + a'w_1' + a_0)^2 \; (bw_1 + b'w_1' + b_0) - 1 = 0 \;; \\ F_C(w_1,w_1') &\equiv \overline{b'}(a_1w_1 + a_0)^3 - \overline{b}(a_1'w_1' + a_0')^2 - \overline{b'}(b_1w_1 + b_0) + \overline{b}(b_1'w_1' + b_0') = 0 \;; \\ F_D(w_1,w_1') &\equiv \overline{b'}(a_1w_1 + a_0)^3 - \overline{b}(a_1'w_1' + a_0')^3 - \overline{b'}(b_1w_1 + b_0) + \overline{b}(b_1'w_1' + b_0') = 0 \;; \\ F_F(w_1,w_1') &\equiv |\overline{b'}(b_1w_1 + b_0) - \overline{b}(b_1'w_1 + b_0')| \; (a_1w_1 + a_0) \; (a_1'w_1' + a_0) + \overline{b'}(a_1'w_1' + a_0') = 0 \;; \\ F_G(w_1,w_1') &\equiv b(a_1w_1 + a_0)(a_1'w_1' + a_0')^2 + \\ &+ |\overline{b'}(b_1w_1 + b_0) - \overline{b}(b_1'w_1' + b_0')| \; (a_1w_1 + a_0) - \overline{b'} = 0 \;. \end{split}$$

Durch Verschiebung des Anfangspunktes sind diese Gleichungen in die folgenden einfacheren Formen zu bringen, wo noch w_1 durch x_1, w_1' durch y und die Coefficienten durch andere ersetzt sind.

$$\begin{split} F_{A_1}(x,y) &\equiv (ax+by)^3 + cx + dy = 0 \;; \\ F_{A_2}(x,y) &\equiv (ax+by)^3 + (cx+dy)^2 = 0 \;; \\ F_B(x,y) &\equiv (ax+by)^3 (cx+dy) - e = 0 \;; \\ F_C(x,y) &\equiv ax^3 + by^2 + cx + d = 0 \;; \\ F_D(x,y) &\equiv ax^3 + by^3 + cx + dy + e = 0 \;; \\ F_F(x,y) &= ax^2y + bxy^2 + cxy + dx + ey = 0 \;; \\ F_G(x,y) &\equiv axy^2 + bx + cy + d = 0 \;. \end{split}$$

Wir werden von diesen Kurven nach einander die kennzeichnenden Eigenschaften ermitteln und nachher untersuchen, durch welche Transformationen eine gegebene kubische Kurve in eine der obigen Typen umgeformt werden kann.

$$A_1$$
 $F(x, y) \equiv (ax + by)^3 + cx + dy = 0.$

Diese Kurve F_{A_1} hat im Ursprunge einen Wendepunkt mit der Gerade

$$cx + dy = 0$$

als Tangente.

Sie hat ausserdem im Unendlichen auf der Gerade

$$ax + by = 0$$

einen Rückkehrpunkt mit der unendlich fernen Gerade als Tangente.

$$A_2$$
 $F(x,y) \equiv (ax + by)^3 + (cx + dy)^2 = 0.$

Diese Kurve F_{A_2} hat im Ursprunge einen $R\"{u}ckkehrpunkt$, mit der Gerade

$$cx + dy = 0$$

als Tangente.

Sie had noch im Unendlichen auf der Gerade

$$ax + by = 0$$

einen Wendepunkt, mit der unendlich fernen Gerade als Tangente.

B
$$F(x, y) \equiv (ax + by)^2 (cx + dy) - e = 0.$$

Diese Kurve F_B hat im Unendlichen auf der Gerade

$$ax + by = 0$$

einen Rückkehrpunkt mit dieser Gerade als Tangente.

Sie hat noch im Unendlichen auf der Gerade

$$cx + dy = 0$$

einen Wendepunkt mit dieser Gerade als Tangente.

C
$$F(x,y) \equiv ax^3 + by^2 + cx + d = 0$$
,

oder, für b = -1,

$$y^2 = ax^3 + cx + d.$$

Diese Kurve F_C ist symmetrisch in Bezug auf die x-Axe und hat einen Wendepunkt im Unendlichen.

Sie hat auf der x-Axe einen Doppelpunkt, wenn die Bedingung

$$4c^3 + 27ad^2 = 0$$

erfüllt ist. In diese Kurve lässt sich jede kubische Kurve durch eine projektive Transformation umformen.

D
$$F(x,y) \equiv ax^3 + by^3 + cx + dy + e = 0$$
,

oder für a = 1, b = 1

$$x^3 + y^3 + cx + dy + e = 0.$$

Diese Kurve F_D hat drei unendlich ferne Punkte, deren Richtungen durch eine Binomialgleichung bestimmt werden. Die Asymptoten convergiren alle nach dem Anfangspunkt. Dieser liegt auf der Kurve von Hesse, während eine der Geraden, in welche sein Polkegelschnitt ausgeartet ist, im Unendlichen liegt.

Auch diese Kurve kann durch eine projektive Transformation aus jeder kubischen Kurve erhalten werden.

Sie hat einen Doppelpunkt, wenn

$$(4 c^3 + 4 d^3 + 27 e^2)^2 = 64 c^3 d^3.$$
 F
$$F(x,y) \equiv ax^2y + bxy^2 + cxy + dx + ey = 0.$$

Diese Kurve F_F hat drei reelle unendlich fernen Punkte, deren zwei cotangential sind. De Asymptoten der cotangentialen Punkte fallen mit der x-Axe und der y-Axe zusammen. Der Anfangspunkt liegt auf der Kurve.

G
$$F(x,y) \equiv axy^2 + bx^2 + cx + d = 0$$
.

Diese Kurve F_G ist symmetrisch in Bezug auf die x-Axe.

Sie berührt die unendlich ferne Gerade im unendlich fernen Punkte der x-Axe und hat einen Wendepunkt im Unendlichen auf der y-Axe, mit dieser Axe als Tangente.

Sie hat einen Doppelpunkt im Unendlichen, wenn

$$b = 0$$
,

und einen Doppelpunkt auf der x-Axe, wenn der Bedingung

$$4 \, bd = c^2$$

genügt wird.

Aus dem Vorhergehenden erhellt, dass wir eine kubische Kurve

unmittelbar mittels der hyperbolischen und parabolischen Congruenzen analysiren können, wenn sie, nötigenfalls nach Verschiebung, einer der obigen 7 Typen angehört.

Jede andere kubische Kurve ist, wenn sie nicht als Ausartungsbestandteil eines Typus höheren Grades betrachtet werden kann, erst durch eine projektive Transformation auf einen der vorigen Typen zurückzuführen.

Weil die projektive Transformation im Allgemeinen nötig ist, so wollen wir die Kurven vom Geschlecht 1 alle in den nämlichen Typus überführen, und zwar in die Kurve F_c , deren Gleichung lautet:

$$y^2 = ax^3 + cx + d.$$

Zuerst wird die Coordinate y mittels der Transformation

$$y^2 = y'$$

in eine Grösse y' verwandelt, und diese durch die Verschiebung

$$y' = y'' + d$$

in eine Grösse y'', welche alsdann mit x verbunden ist durch die Beziehung

$$y'' = ax^3 + cx,$$

oder

$$\frac{y''}{a+c} = \frac{a}{a+c}x^3 + \frac{c}{a+c}x.$$

Sollte a + c = 0 sein, so ersetzen wir x durch ρx . Die Grosse y''', welche durch

$$y''' = \frac{y''}{a + c}$$

bestimmt ist, ergiebt sich aus dem Schnittpunkt der Ebene z = ph, wo

$$p = \frac{a}{a+c}$$

ist, mit dem Strahl, welcher in der Congruenz

$$x' = x^3$$

dem Punkte x entstammt.

Wir beschäftigen uns also mit der Congruenz

$$w' = w^3$$

wo der Homogeneiteitsfaktor c gleich 1 gesetzt ist.

Überdies nehmen wir an, dass x derart vergrössert ist, dass

$$a+c=1.$$

Zuerst wollen wir die Bahn von y erforschen, wenn x die reelle Axe beschreibt.

Aus der Gleichung folgt schon sofort, dass diese Bahn aus der reellen und aus der imaginären Axe besteht.

Zweitens wollen wir untersuchen, welche Bahn x durchläuft, wenn y die reelle Axe beschreibt.

Wenn y sich längs der reellen Axe bewegt, so durchläuft y' ebenfalls die reelle Axe, also auch y''. Die entsprechende Bahn von x ist alsdann (siehe (38 α) S. 389) durch

$$x_1^2 + x_1 x_2 + x_2^2 + \mu x_3^2 = 0$$

bestimmt, wo

$$\mu = \frac{1 - p}{p} = \frac{c}{a},$$

also durch

$$3x^2-y^2+\frac{c}{a}=0.$$

Der übrige Teil der Bahn von x ist die reelle Axe.

Die Bahn von x besteht deshalb aus der reellen Axe und aus einer Hyperbel, deren Axen mit der reellen und mit der imaginären Axe zusammenfallen und deren Asymptoten mit der reellen Axe einen Winkel von 60° einschliessen.

Ist $\frac{c}{a}$ positiv, so schneidet die imaginäre Axe die Kurve.

Drittens wollen wir erörtern, welche die Bahn von x ist, wenn y die imaginäre Axe beschreibt.

Wenn y die imaginäre Axe durchläuft, bewegt y' sich längs der reellen Axe, ebenso y''. Die Bahn von x ist demnach mit der des vorigen Falles identisch.

Viertens wollen wir die Bahn von x bestimmen, wenn y in ihrer Ebene die Gerade

$$y = x tg \psi$$

durchläuft.

Die Gleichung dieser Gerade lautet in homogenen Coordinaten:

$$\frac{x_1}{x_2} = \frac{x + iy}{x - iy} = \frac{1 + i \, tg \, \Psi}{1 - i \, tg \, \Psi} = e^{2 \, i \Psi}$$

Die Bahn von $y' = y^2$ ist alsdann durch

$$\frac{x_1}{x_2} = e^{ii\psi},$$

d.h. durch

$$x \sin 2 \psi - y \cos 2 \psi = 0$$

angewiesen.

Die Grösse y'' = y' - d beschreibt sonach die Gerade

$$x \sin 2 \psi - y \cos 2 \psi + d \sin 2 \psi = 0$$
,

oder

$$ix_1e^{-2i\psi} - ix_2e^{2i\psi} + \frac{2 d \sin 2\psi}{p} x_4 = 0$$
,

wonach (siehe S. 381)

$$\alpha_1 = i e^{-2i\psi}$$
, $\alpha_2 = -i e^{2i\psi}$, $\mu \alpha_3 + \alpha_4 = \frac{2 d \sin 2 \psi}{p}$, $p = \frac{a}{a+c} = a$.

Diese Bahn befindet sich in der Ebene z = ph, oder $x_3 = \frac{1-p}{p}x_4 = \frac{c}{a}x_4$, mithin $\mu = \frac{c}{a}$.

Die axiale Regelfläche dieser Gerade schneidet die Abbildungsebene in der kubischen Kurve (Gl. (19a), S. 381)

$$\alpha_1 x_1^3 + \alpha_2 x_2^3 + \mu (\alpha_1 x_1 + \alpha_2 x_2) x_3^2 + (\mu \alpha_3 + \alpha_4) x_3^3 = 0,$$

oder

$$ie^{-2i\psi}(x+iy)^3 - ie^{2i\psi}(x-iy)^3 + \frac{c}{a}|ie^{-2i\psi}(x+iy) - ie^{2i\psi}(x-iy)| + \frac{2 d \sin 2 \psi}{a} = 0$$

oder auch

$$x^{3} \sin 2 \psi - 3x^{2} y \cos 2 \psi - 3xy^{2} \sin 2 \psi + y^{3} \cos 2 \psi + \frac{c}{a} (x \sin 2 \psi - y \cos 2 \psi) + \frac{d \sin 2 \psi}{a} = 0.$$

Die Asymptoten dieser kubischen Kurve convergiren alle nach dem Nullpunkt, welcher somit ein Punkt der *Hessischen* Kurve ist. Die Gesammtheit der Asymptoten wird dargestellt durch

$$i e^{-2i\psi} x_1^3 - i e^{2i\psi} x_2^3 = 0$$

oder durch

$$\frac{x_1}{x_2} = e^{\frac{i(4\psi + 2k\pi)}{3}},$$

also, wenn wir

$$x = r \cos \Theta$$
, $y = r \sin \Theta$

setzen, durch

$$\Theta = \frac{2\,\Psi + k\,\pi}{3}\,,$$

d.h.:

$$\Theta_1 = \frac{2\psi}{3}; \ \Theta_2 = \frac{2\psi}{3} + \frac{\pi}{3}; \ \Theta_3 = \frac{2\psi}{3} + \frac{2\pi}{3}.$$

Die Asymptoten schliessen einen Winkel von 60° ein, und eine von ihnen bildet mit der reellen Axe den Winkel $\frac{2\psi}{3}$.

Wenn wir

$$tg \ 2 \ \psi = \lambda$$

setzen, so lässt sich die Gleichung der kubischen Kurve folgendermassen schreiben:

$$y\left(3x^{2}-y^{2}+\frac{c}{a}\right)-\lambda\left(x^{3}-3xy^{2}+\frac{c}{a}x+\frac{d}{a}\right)=0.$$

Hieraus erhellt, dass, wenn die Bahn von y den Strahlenbüschel um den Nullpunkt beschreibt, die Bahn von x einen Büschel kubischer Kurven durchläuft.

Setzen wir noch

$$tg\psi = t$$
,

wonach t der Parameter des in der y-Ebene befindlichen Büschels darstellt, so sind die beiden Parameter t und λ verknüpft durch die Beziehung

$$\lambda = \frac{2t}{1-t^2},$$

oder

$$\lambda t^2 + 2 t - \lambda = 0;$$

hieraus folgt, dass ein Wert t einen Wert λ bestimmt, aber ein Wert λ zwei Werte t.

Die nämliche kubische Kurve in der x-Ebene gehört ja auch zwei auf einander senkrechten Geraden an.

Sämmtliche kubische Kurven schneiden die reelle Axe in den Punkten, für welche im Diagram y = 0 ist.

Schliesslich wollen wir untersuchen, welche Bahn x beschreibt, wenn y einen Kreis um den Nullpunkt als Mittelpunkt durchläuft.

Es sei dieser Kreis gegeben durch

$$x^2 + y^2 = R^2$$
,

oder

$$x_1 x_2 - R^2 x_3^2 = 0.$$

Die Bahn von $y' = y^2$ ist alsdann ebenfalls ein Kreis mit dem Nullpunkte als Mittelpunkt. Ihre Gleichung ist

$$x_1 x_2 - R^4 x_4^2 = 0$$
,

oder

$$x^2 + y^2 = R^4$$
.

Die Bahn von y'' = y' - d ergiebt sich nun aus

$$(x+d)^2 + y^2 = R^4$$
,

oder

$$x_1 x_2 + d(x_1 + x_2) x_3 + (d^2 - R^4) x_3^2 = 0.$$

Wenn wir diese Bahn in die Ebene z=ph legen, so erhält sie die folgende Gleichung:

$$x_1 x_2 + d(x_1 + x_2) \frac{x_4}{p} + (d^2 - R^4) \frac{x_4^2}{p^2} = 0$$
,

während

$$x_3 = \mu x_4 = \frac{1-p}{p} x_4.$$

Indem wir noch diese Gleichungen mit den Gleichungen (59), (60) und (61) auf S. 398 identifiziren, zeigt sich, dass wir

$$egin{aligned} oldsymbol{\gamma}_0 &= 1 \,, \ oldsymbol{\gamma}_4 &= oldsymbol{\gamma}_2 = rac{d}{p}, \ oldsymbol{\gamma}_3 &= rac{d^2 - R^4}{p^2}, \end{aligned}$$

und sonach

$$\gamma_{0}' = \frac{1 - p}{p}, \ \gamma_{0}'' = \frac{(1 - p)^{2}}{p^{2}},$$
 $\gamma_{1}' = \gamma_{2}' = \frac{(1 - p) d}{p^{2}}$

zu setzen haben.

Die Regelfläche der Strahlen, welche auf dem in der y''-Ebene befindliche Kreise ruhen, schneidet die x-Ebene in der Kurve 6^{ten} Grades (siehe (62a), S. 398)

$$\begin{split} x_1{}^3x_2{}^3 + \frac{1-p}{p}(x_1{}^2 + x_2{}^2)x_1x_2x_3{}^2 + \frac{d}{p}(x_1{}^3 + x_2{}^3)x_3{}^3 + \frac{(1-p)^2}{p^2}x_1x_2x_3{}^4 + \\ + \frac{(1-p)\,d}{p^2}(x_1 + x_2)x_3{}^5 + \frac{d^2-R^4}{p^2}x_3{}^6 = 0 \; , \end{split}$$

oder

$$(x^{2} + y^{2})^{3} + \frac{2c}{a}(x^{4} - y^{4}) + \frac{2d}{a}x(x^{2} - 3y^{2}) + \frac{c^{2}}{a^{2}}(x^{2} + y^{2}) + \frac{2cd}{a^{2}}x + \frac{d^{2}}{a^{2}} - \frac{R^{4}}{a^{2}} = 0.$$

Diese Kurve ist tricircular.

Von den 9 Schnittpunkten der in den Kreispunkten gelegten Tangenten sind höchstens 3 reell. Diese befinden sich auf der reellen Axe. Sie sind (siehe (63a) und (64a)) durch

$$ax^2 + cx + d = 0$$

angewiesen. Sie liefern also die
jenigen Werte von x, für welche y null wird.

Die Brennpunkte bilden den einzigen reellen Bestandteil der Ausartungsfigur, welche die obige Kurve 6^{ten} Grades zum Gesammtschnitte der Regelfläche ergänzt.

Die Schnittpunkte der Kurve mit der x-Axe sind aus

$$x^6 + rac{2\,c}{a}x^4 + rac{2\,d}{a}x^3 + rac{c^2}{a^2}x^2 + rac{2\,cd}{a^2}x + rac{d^2}{a^2} - rac{R^4}{a^2} = 0$$
 ,

oder durch

$$(ax^3 + cx + d)^2 - R^4 = 0$$

bestimmt.

Wir bemerken wiederum, dass dem Büschel concentrischer Kreise um den Nullpunkt in der y-Ebene ein Büschel tricircularer Kurven 6^{ten} Grades entspricht, dem die 6-fache unendlich ferne Gerade angehört. Sämmtliche Elementen des Büschels haben in den Kreispunkten die Tangenten gemein.

Dieser Büschel ist also zugleich eine Schar.

Der Parameter des Büschels concentrischer Kreise ist R^2 , derjenige der Kurven 6^{ten} Grades ist R^4 . Einem in der y-Ebene liegenden Kreise ist also eine in der x-Ebene liegende Kurve 6^{ten} Grades zugeordnet, während eine in der z-Ebene liegende Kurve 6^{ten} Grades mit zwei Kreisen in der y-Ebene übereinstimmt, deren jedoch einer imaginär ist.

Ein Strahl des Strahlenbüschels um den Nullpunkt schneidet einen Kreis des concentrischen Kreisbüschels in zwei Punkten y, welche jedoch entgegengesetzten Werten von y entsprechen. Vermöge der gegebenen Gleichung liefern beide dieselben drei Werte für x.

Es gehört jedes Element des Büschels kubischer Kurven zu 2 Strahlen des in der y-Ebene befindlichen Strahlenbüschels, welche zusammen mit einem Kreise des Kreisbüschels 4 Punkte y also 6 Punkte x bestimmen.

Aus diesem geht hervor, dass jede kubische Kurve des Büschels jede Kurve 6^{ten} Grades der Büschelschar in 6 reellen Punkten schneidet, so lange die genannten 4 Werte für y ausschliesslich imaginäre Werte für x bestimmen.

Von den 18 Schnittpunkten einer kubischen Kurve mit eine Kurve 6^{ten} Grades sind also immer wenigstens 12 imaginär.

Wir beendigen diese Betrachtungen mit der Bemerkung, dass, weil der Strahlenbüschel und der Büschel concentrischer Kreise in der y-Ebene sich rechtwinklig schneiden, auch die kubischen Kurven und die Kurven 6^{ten} Grades orthogonale Trajektorien sind, und ausserdem die x-Ebene in elementare Quadrate einteilen.

Bevor wir die Erörterung dieser kubischen Gleichung schliessen, wollen wir uns noch kurz beschäftigen mit der Frage nach der Anzahl der Zweige des Diagrammes, und nach dem Geschlecht dieser Kurve.

In der gegebenen Gleichung

$$y^2 = ax^3 + cx + d$$

wird die Bedingung dreier reellen Schnittpunkte mit der x-Axe durch die folgenden Ungleichheiten angewiesen:

$$4 c^3 + 27 a d^2 < 0 \text{ für } a > 0$$
,

und

$$4c^3 + 27ad^2 > 0$$
 für $a < 0$.

In diesem Falle enthält demnach die Kurve zwei Zweige. Dagegen giebt es nur einen Zweig, wenn

$$4 c^3 + 27 a d^2 > 0$$
 für $a > 0$,

und

$$4c^3 + 27ad^2 < 0$$
 für $a < 0$.

Ein Doppelpunkt ist vorhanden, falls

$$4 c^3 + 27 ad^2 = 0.$$

Wenn es zwei Zweige giebt, so müssen, falls x die reelle Axe beschreibt, die beiden Werte von y zuerst reell, dann imaginär, dann wieder reell und schliesslich wieder imaginär werden.

Mit dieser Bewegung von y ist ebenso eine bestimmte Bahn von y' verbunden; y' beschreibt zuerst die positive, dann die negative, nachher wieder die positive und endlich wieder die negative Seite der reellen Axe, während die Bahn von y' erhalten wird, indem man die Bahn von y' einen Betrag d in der positiven Richtung verschiebt.

Wenn x sich längs der reellen Axe bewegt, so umhüllt der Congruenzstrahl in der Congruenz $x' = x^3$ die Fokalkurve 3^{ter} Klasse in der Ebene der reellen Axen. Diese Kurve hat im Nullpunkte der x'-Ebene einen Rückkehrpunkt mit der Verbindungslinie der Nullpunkte als Tangente. Ausserdem befindet sich im Unendlichen auf der reellen Axe ein Wendepunkt, dessen Tangente mit der reellen Axe der x-Ebene zusammenfällt.

Weil einem positiven x ein positives x' entspricht, so darf zwischen den beiden Abbildungsebenen kein reeller Teil der Kurve

liegen. Wir erhalten somit eine Kurve, wie in der Fig. 21 (hinten angefügte Figurentafel) skizzirt ist.

Wir wollen den Abstand der Abbildungsebenen der Einfachheit wegen der Einheit gleich setzen. Die Gleichung der Kurve (der Einhüllenden von $\frac{z}{1} = \frac{x-t}{t^3-t}$) lautet alsdann:

$$4(1-z)^3 + 27x^2z = 0$$
 (59)

Eine neue Abbildungsebene (y''), in der Höhe $z = ph = p = \frac{a}{a+c} = a$, wird die Ebene der reellen Axen in der Gerade z = a schneiden. In dieser Abbildungsebene wird auf der reellen Axe der Nullpunkt \overline{O}' der y'-Ebene in den Punkt gelegt, welcher im Abstand d auf der negativen Seite von der z-Axe entfernt ist.

Die reelle Axe der y'-Ebene wird daher durch

$$z = a$$

dargestellt, und der Nullpunkt O' dieser Ebene durch

$$x = -d,$$

$$z = a.$$

Indem wir für die reelle Axe a < 0 oder a > 1 wählen, so wird der Ausdruck

$$4c^3 + 27ad^2 = 4(1-a)^3 + 27ad^2$$
 . . . (60)

einen positiven Wert erhalten für a < 0, wenn

$$d^2 < \frac{4(1-a)^3}{-27a},$$

und einen negativen Wert für a>1, wenn

$$d^2 < \frac{4(a-1)^3}{27 a}$$
.

Wenn wir \overline{O}' auf der Kurve angenommen hätten, so würden wir

$$d^2 = \frac{4(1-a)^3}{27 \, a}$$

(siehe (59)) bekommen haben.

Hieraus geht hervor, dass wir eine Kurve mit zwei Zweigen

erhalten, wenn der Nullpunkt \overline{O}' der y'-Ebene innerhalb der Fokalkurve angenommen wird.

Eine Kurve mit einem Zweige finden wir offenbar, wenn wir den Nullpunkt \overline{O}' ausserhalb der Fokalkurve legen.

Eine rationale Kurve wird sich aber ergeben, sobald wir den Nullpunkt \overline{O}' auf der Fokalkurve wählen.

Dass das Vorhandensein zweier Zweigen mit der Lage von \overline{O}' innerhalb der Fokalkurve zusammenhängt, lässt sich auch folgendermassen nachweisen.

Wir denken uns drei zu der x-Axe parallele Geraden, die eine, l_1 , unterhalb der x-Ebene, die zweite, l_2 , zwischen den Abbildungsebenen, die dritte, l_3 , oberhalb der x'-Ebene.

Die Gerade l_1 schneidet die Kurve in zwei reellen endlichen Punkten A_1 und B_4 , die Gerade l_2 schneidet die Kurve nicht im Endlichen, die Gerade l_3 trifft die Kurve in den reellen endlichen Punkten A_3 und B_3 .

Ein Punkt P_k auf einer dieser Geraden, l_k , wird durch den Abstand p_k von P_k zum Schnittpunkte von l_k mit der z-Axe angewiesen; dieser Abstand wird in derselben Richtung positiv gerechnet wie die Punkte der reellen x-Axe.

Wir stellen uns auch noch vor, dass der Congruenzstrahl über die Fokalkurve rollt, und zwar mit der Anfangslage ($x=+\infty$, $x'=+\infty$). Für den Schnittpunkt P_4 des Strahles mit l_4 wird nun gelten

$$-\infty < p_1 < b_1,$$

bis der Berührungspunkt in B_1 angelangt ist, wo $p_1 = b_1$.

Indem der Strahl weiter rollt, nimmt p_1 wiederum ab, bis der Berührungspunkt (nach zweimaligem Durchgang durch das Unendliche) in den Punkt A_1 gelangt ist, wo $p_1 = a_1 = -b_1$.

Nachher nimmt p_1 wiederum zu und erhält schliesslich den Wert $+\infty$.

Es erhellt, dass P_4 die Strecke $A_4 B_4$ dreimal zurücklegt.

Befindet sich nun \overline{O}' auf l_1 innerhalb der Kurve, d.h. innerhalb der Strecke $A_1 B_1$, so passirt der Punkt P_1 dreimal den Punkt \overline{O}' .

Anfangs ist y' negativ, von $-\infty$ an, also y imaginär; dann wird y' positiv (in maximo $= \overline{O}'B_1$), daher y reell; nachher wird y' wiederum negativ (in minimo $\overline{O}'A_1$), also y wieder imaginär; und schliesslich wird y' wieder positiv, bis $+\infty$, daher y wieder reell. Das Diagram hat demnach zwei Zweige.

Wenn \overline{O}' auf l_1 ausserhalb der Strecke A_1B_1 läge, so würde P_1 nur einmal den Punkt \overline{O}' passiren, es würde y' somit nur einmal

das Vorzeichen wechseln und y nur einmal von imaginär reell werden, wonach das Diagram nur einen Zweig hätte.

Wenn der Strahl über die Fokalkurve rollt, so durchläuft sein Schnittpunkt P_2 mit l_2 diese Gerade von $+\infty$ an bis $-\infty$ ohne Rückkehrpunkte. Falls \overline{O}' also auf l_2 liegt, wird P_2 nur einmal den Punkt \overline{O}' passiren, so dass jeder zwischen den reellen Axen liegende Punkt \overline{O}' einem einteiligen Diagram entspricht:

Der Schnittpunkt P_3 des Strahles mit l_3 wird sich längs l_3 bewegen, zuerst von $+\infty$ an bis B_3 , dann zurück von B_3 bis A_3 und endlich wieder zurück von A_3 bis $-\infty$. Die Strecke A_3 B_3 wird deshalb auch hier dreimal zurückgelegt.

Ein innerhalb der Strecke A_3B_3 angenommener Punkt \overline{O}' wird demnach dreimal von P_3 durchlaufen. Einem solchen Punkte \overline{O}' entspricht ein zweiteiliges Diagram.

Ebenso leuchtet ein, dass ein ausserhalb der Strecke $A_3 B_3$ auf l_3 befindlicher Punkt \overline{O}' einem einteiligen entspricht.

Mit diesen Darlegungen wollen wir die Untersuchung der erwähnten Gleichung dritten Grades und gleichfalls diesen Abschnitt abschliessen.

Obgleich nur wenige Gleichungen 3^{ten} Grades und gar keine Gleichungen höheren Grades behandelt sind, dürften die herbeigeführten Beispiele zu einer weiteren Anwendung der hier gefolgten Methode ausreichen.

ERRATUM.

S. 217 Z. 5 von oben lies: (m-n) $(\xi_2 - \tau \xi_1)$ u. s. w. statt (m+n) $(\xi_2 - \tau \xi_1)$ u. s. w.

GEDRUKI BIJ — JOH. ENSCHEDÉ EN ZONEN ⊶

- CANA SANGE