Cálculo Numérico

Lista de Exercícios 2 - Total 52 pontos Cada grupo entregar ao professor até o dia 5/09/17 no início da aula

Professores do DCC/UFPB

Nota: quando não declarado, considere 4 dígitos de precisão para os cálculos e arredondamento.

Questão 1 (4 points)

Implemente os métodos da bisseção, posição falsa, Newton-Raphson e secante usando o *software* de sua preferência. Inclua a saída de pelo menos três exemplos para cada método identificando claramente qual foi a equação e os dados que foram utilizados para cada exemplo.

Sugestão: Use o Python, o Octave ou o MatLab.

Instruções: salvar os *scripts* como seguem: SeuGrupo_listaN.m , onde N é o número da lista; reunir os arquivos de *script* e funções em uma única pasta com o seu nome; enviar a pasta comprimida SeuGrupo.zip para aparecido@ci.ufpb.br até o dia 5/09/17 no início da aula com o texto Lista N - SeuGrupo como assunto.)

Questão 2 (3 points)

A seguir está plotado o gráfico da função

$$f(x) = \begin{cases} x sen(3x), & \text{se } -3.0 \le x < 0.0\\ x sen(x) - 1, & \text{se } 0.0 \le x < 1.0\\ sen^2(x)cos(x), & \text{se } 1.0 \le x < 3.0 \end{cases}$$

Considerando o domínio da função, pergunta-se:

- 1. Podemos aplicar o Teorema do Valor Intermediário (TVI) a todo o domínio da função? Explique.
- 2. Arbitrando um limitante adequado para o erro absoluto, localize subintervalos para os quais uma raiz existe e poderia ser determinada com precisão por alguma técnica de refinamento.
- 3. Há um intervalo para o qual a derivada de f(x) preserva o seu sinal. Podemos afirmar, então, pelo TVI, que existe uma raiz única neste intervalo?

Questão 3 (2 points)

Dadas as funções:

a)
$$x^3 + 3x - 1 = 0$$
,

b)
$$x^2 - sen(x) = 0$$
,

plote seus gráficos, pesquise a existência de raízes reais e isole-as em intervalos.

Questão 4 (1 point)

Justifique que a função:

$$f(x) = \cos\left(\frac{\pi(x+1)}{8}\right) + 0.148x - 0.9062$$

possui uma raiz no intervalo (-1,0) e outra no intervalo (0,1).

Questão 5 (4 points)

Use o método da bisseção e uma calculadora para obter aproximações das raizes da equação f(x)=0 usando como critério de parada o Erro Absoluto em x e a tolerância $TOL=10^{-2}$. Indique claramente qual o intervalo de pesquisa que foi utilizado em cada caso e como foi determinado. Inclua nas respostas os valores de todas as aproximações e os cálculos dos erros.

Se fosse exigido uma tolerância de $TOL=10^{-5}$, qual seria o número mínimo de iterações necessárias?

(a)
$$x^3 - 6x^2 - x + 30 = 0$$
.

(b)
$$x + \log(x) = 0$$
.

(c)
$$3x - cos(x) = 0$$
.

(d)
$$x + 2\cos(x) = 0$$
.

Questão 6 (4 points)

Use o método da posição falsa e uma calculadora para obter aproximações das raizes da equação f(x)=0 usando como critério de parada o Erro Absoluto em x e a tolerância $TOL=10^{-3}$. Indique claramente qual o intervalo de pesquisa que foi utilizado em cada caso e como foi determinado. Inclua nas respostas os valores de todas as aproximações e os cálculos dos erros.

(a)
$$x^2 - 10 \ln(x) - 5 = 0$$
.

(b)
$$x^3 - e^{2x} + 3 = 0$$
.

(c)
$$2x^3 + x^2 - 2 = 0$$
.

(d)
$$sen(x) - ln(x) = 0$$
.

Questão 7 (1 point)

A equação x + ln(x) = 0 possui uma raíz ξ no intervalo I = [0.2, 2].

Se o objetivo for obter uma aproximação x_k para esta raíz de tal forma que $|x_k - \xi| < 10^{-5}$, é aconselhável usar o método da posição falsa tomando I com intervalo inicial? Justifique gráfica e analiticamente sem efetuar iterações numéricas.

Cite outros métodos nos quais este objetivo possa ser atingido.

Questão 8 (1 point)

Ao se aplicar o método do ponto fixo (MPF) na forma $x = \varphi(x)$ à resolução de uma equação f(x) = 0 obtivemos os seguintes resultados nas iterações indicadas:

$$x_{10} = 1.50000$$
 $x_{14} = 2.14128$
 $x_{11} = 2.24702$ $x_{15} = 2.14151$
 $x_{12} = 2.14120$ $x_{16} = 2.14133$
 $x_{13} = 2.14159$ $x_{17} = 2.14147$

Escreva o que puder a respeito da raíz procurada.

Questão 9 (1 point)

Verifique analiticamente que num MPF na forma $x = \varphi(x)$, se $\varphi'(x) < 0$ num intervalo I centrado numa raíz ξ da equação f(x) = 0 (ou $x = \varphi(x)$), então, dado $x_0 \in I$, a sequência $x_{k+1} = \varphi(x_k)$ é oscilante em torno de ξ .

Questão 10 (3 points)

Considere a equação $x^2 - x - 2 = 0$, cujas raízes são $\xi_1 = -1.0$ e $\xi_2 = 2.0$.

(a) Determine as seguintes funções de iteração para implementação de um método de ponto fixo (MPF):

(i)
$$\varphi_1(x) = x^2 - 2$$
.

(ii)
$$\varphi_2(x) = \sqrt{2+x}$$
.

(iii)
$$\varphi_3(x) = 1 + \frac{2}{x}$$
.

(iii)
$$\varphi_4(x) = \frac{2}{x-1}$$
.

- (b) Use uma calculadora e teste o MPF para cada uma das funções de iteração do item a) para aproximar a raíz $\xi_1 = -1$ da equação considerando a aproximação inicial $x_0 = -0.5$. Inclua nas respostas os valores de todas as iterações realizadas e responda em cada caso se há tendência de convergência para a raíz ξ_1 .
- (c) Use uma calculadora e teste o MPF para cada uma das funções de iteração do item a) para aproximar a raíz $\xi_2 = 2$ da equação considerando a aproximação inicial $x_0 = 2.5$. Inclua nas respostas os valores de todas as iterações realizadas e responda em cada caso se há tendência de convergência para a raíz ξ_2 .

Questão 11 (5 points)

Considere a equação $2x^2 - 5x + 2 = 0$, cujas raízes são $\xi_1 = 0.5$ e $\xi_2 = 2.0$.

(a) Determine as seguintes funções de iteração para implementação de um método de ponto fixo (MPF):

(i)
$$\varphi_1(x) = \frac{2x^2+2}{5}$$
.

(ii)
$$\varphi_2(x) = \sqrt{\frac{5x}{2} - 1}$$
.

- (b) Qual das duas funções de iteração você utilizaria num MPF para aproximar a raíz ξ_1 ? Por que?
- (c) Use uma calculadora e verifique numericamente a sua resposta do item (b). Inclua os valores de todas as iterações realizadas.
- (d) Repita os itens (b) e (c) para a raíz ξ_2 .

Questão 12 (3 points)

Considere as seguintes funções de iteração: $\psi_1(x) = 2x - 1$, $\psi_2(x) = x^2 - 2x + 2$ e $\psi_3(x) = x^3 - 3x + 3$.

- (a) Verifique que $\xi = 1$ é raíz das equações $x = \varphi(x)$, para cada função de iteração.
- (b) Qual delas você escolheria para obter aproximar a raíz $\xi=1$, utilizando um MPF?
- (c) Com a sua escolha no item (b) use uma calculadora e exiba a sequência de iteradas considerando a aproximação inicial $x_0 = 1.2$.

Questão 13 (2 points)

Deseja-se obter a raíz positiva da equação: $bx^2 + x - a = 0$, em que a > 0 e b > 0, através de um MPF com a função de iteração $\varphi(x) = a - bx^2$. Quais condições devemos impor em a e b para que o MPF seja convergente? Por que?

Questão 14 (2 points)

A equação $x^2 - a = 0$, com a > 0, possui a raíz positiva $\xi = \sqrt{a}$. Considere a função de iteração x = a/x. Explique algébrica e geometricamente porque a sequência de iteradas $x_{k+1} = \frac{a}{x_k}$ não converge para \sqrt{a} qualquer que seja o valor da aproximação inicial x_0 . Use uma calculadora e ilustre iterações para algum valor de a. Ilustre numa mesma figura os gráficos de y = x, de $y = \varphi(x)$ e os pontos $(x_k, \varphi(x_k))$ para o valor de a escolhido.

Questão 15 (3 points)

Use o método de Newton-Raphson e uma calculadora para obter aproximações da **menor** raíz positiva das equações a seguir usando como critério de parada o Erro Absoluto em x e a tolerância $TOL=10^{-3}$. Tome a aproximação inicial x_0 sendo um dos extremos do intervalo selecionado contendo tal raíz. Em cada ítem faça uma tabela e o gráfico de k pelo valor absoluto do Erro Absoluto EA_k e comprove a ordem de convergência quadrática.

(a)
$$x/2 - tg(x) = 0$$
.

(b)
$$2\cos(x) = \frac{e^x}{2}$$
.

(c)
$$x^5 - 6 = 0$$
.

Questão 16 (1 point)

Use o método de Newton-Raphson e uma calculadora para tentar determinar uma raíz da equação $x^3 - 2x^2 - 3x + 10 = 0$ tomando como aproximação inicial $x_0 = 1.9$. Justifique o que acontece. Exiba tabelas de valores, gráficos, etc..

Questão 17 (3 points)

Sabe-se que equação $e^x - 4x^2 = 0$ possui uma raíz ξ no intervalo (0,1). Tomando a aproximação inicial $x_0 = 0.5$ determine uma aproximação desta raíz com tolerância $TOL = 10^{-3}$ usando uma calculadora e:

(a) o MPF com
$$\varphi(x) = \frac{1}{2}e^{x/2}$$
;

(b) o método de Newton-Raphson.

Compare os resultados. Qual funcionou melhor? Por quê? Quantas iterações foram necessárias em cada caso? Exiba tabelas com a iterações.

Questão 18 (3 points)

Use o método da secante e uma calculadora para obter aproximações da **menor** raíz positiva das equações a seguir usando como critério de parada o Erro Absoluto em x e a tolerância $TOL=10^{-3}$. Tome as duas aproximações iniciais x_0 e x_1 sendo os extremos do intervalo selecionado contendo tal raíz. Em cada ítem faça uma tabela e o gráfico de k pelo valor absoluto do Erro Absoluto EA_k e compare com os resultados obtidos via o método de Newton-Raphson em termos do número de iterações.

(a)
$$x/2 - tg(x) = 0$$
.

(b)
$$2\cos(x) = \frac{e^x}{2}$$
.

(c)
$$x^5 - 6 = 0$$
.

Questão 19 (6 points)

O polinômio $p(x) = x^5 - \frac{10}{9}x^3 + \frac{5}{21}$ tem cinco raizes reais, todas no intervalo (-1,1).

- (a) Verifique que as raizes estão assim distribuidas: $\xi_1 \in (-1, -0.75)$, $\xi_2 \in (-0.75, -0.25)$, $\xi_3 = 0$, $\xi_4 \in (0.3, 0.8)$ e $\xi_5 \in (0.8, 1)$.
- (b) Determine aproximações das raizes considerando uma tolerância $TOL = 10^{-3}$, usando uma calculadora e o método indicado:

 ξ_1 , Newton-Raphson com aproximação inicial $x_0 = -0.8$;

 ξ_2 , bisseção considerando o intervalo [-0.75, -0.25];

 ξ_3 , posição falsa considerando o intervalo [-0.25, 0.25];

 ξ_4 , MPF considerando uma função de iteração adequada no intervalo [0.2, 0.6] e com aproximação inicial $x_0 = 0.4$;

 ξ_5 , secante com aproximações iniciais $x_0=0.8$, $x_1=1$.