GREAT ZIMBABWE UNIVERSITY

HCS 123

GARY MAGADZIRE SCHOOL OF NATURAL SCIENCES

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

BSc HONOURS IN COMPUTER SCIENCE: PART 1 SEMESTER 1

EXAMINATION: ASSIGNMENT I

HCS123: DISCRETE MATHEMATICS

DATE:12 July 2021

Time: OF YOUR CHOICE hours

Candidates may attempt **ALL** questions: 80 MARKS

- **A1.** (a) Find the unit vector in the same direction as the vector $\mathbf{a} = 2\mathbf{i} 3\mathbf{j} + \mathbf{k}$. [4]
 - (b) Determine whether or not the point (22, 9, -1) lies on the straight line that passes through the point (2, 1, 3) and is parallel to the vector $5\mathbf{i} + 2\mathbf{j} 1\mathbf{k}$. [3]
 - (c) Find b if $3\mathbf{i} + b\mathbf{j} + 2\mathbf{k}$ and $2\mathbf{i} 3\mathbf{j} + 5\mathbf{k}$ are orthogonal. [3]
 - (d) Let $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j} 4\mathbf{k}$ and $\mathbf{a} = 3\mathbf{i} 2\mathbf{j} \mathbf{k}$. Find the vector component of \mathbf{b} onto \mathbf{a} .
 - (e) Calculate the cosine of the angle θ between the vectors $\mathbf{a} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = -\mathbf{i} + 2\mathbf{j} + \mathbf{k}$. [3]
 - (f) Let π be a plane which contains the point (1, 2, 1) and suppose the vector $3\mathbf{i} 2\mathbf{j} \mathbf{k}$ is normal to the plane. Find the vector equation and the Cartesian equation of the plane π .

$\mathbf{A2}.$	(a)	As	two	planes	fly	by	each	other,	their	flight	paths	are	given	by	straight	lines
----------------	-----	----	-----	--------	-----	----	------	--------	-------	--------	-------	-----	-------	----	----------	-------

$$L_1: x = 1 - t_1, \ y = -2 - 3t_1, \ z = 4 + t_1.$$

$$L_2: x = 2 - 2t_2, \ y = -4 + 3t_2, \ z = 1 + 4t_2.$$

Show that the lines are skew, and therefore that there is no danger of the planes colliding. [10]

- (b) The straight line l passes through the point (2, -1, -3) and is parallel to the vector $1\mathbf{i} + 1\mathbf{j} 2\mathbf{k}$ and the straight line m that passes through the point (1, 2, 1) and is parallel to the vector $1\mathbf{i} 1\mathbf{j} 3\mathbf{k}$. Determine whether or not the lines intersect and if they intersect find the points of intersection.
- (c) Find the vector equation of a straight line passing through the point (2, -1, 3) and parallel to the vector $5\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}$.
- (d) Give an example of a relation R on $A = \{a, b, c\}$ such that,
 - (i) R is both symmetric and antisymmetric. [2]
 - (ii) R is neither symmetric nor antisymmetric. [2]
 - (iii) R is transitive but $R \cup R^{-1}$ is not transitive(R). [3]
- **A3.** (a) Suppose C is a collection of relations S on a set A, and let T be the intersection of the relations S in C, that is, $T = \bigcap (S \in C)$. Prove that
 - (i) If every S is symmetric, then T is symmetric. [5]
 - (ii) If every S is transitive, then T is transitive.
- **A4.** (a) Consider the following five relations on the set $G = \{a, b, c\}$

 $R = \{(a, a); (a, b); (a, c); (c, c)\}, \quad \emptyset = \text{empty relation},$

 $S = \{(a, a); (a, b); (b, a); (b, b); (c, c)\}, G \times G = \text{universal relation},$

 $T = \{(a, a); (a, b); (b, b); (b, c)\}.$

Determine whether or not each of the above relations on G is

- (i) reflexive [3]
- (ii) symmetric [3]
- (iii) transitive [3]
- (iv) antisymmetric. [3]
- (b) Consider the \mathbb{Z} of integers and an integer m > 1. We say that x is congruent to y modulo m, written as $x \equiv y \pmod{m}$ if x y is divisible by m. Show that this defines an equivalence relation on \mathbb{Z} .

END OF QUESTION PAPER

[5]