Herramientas de Teledetección Cuantitativa

Clase 5

Francisco Nemiña

Unidad de Educación y Formación Masiva Comisión Nacional de Actividades Espaciales

Esquema de presentación

Clasificaciones temáticas Escenas del capítulo anterior Nueva idea

Clustering Introducción k-means Problemas

Consideraciones finales Tecnicas pos-clasificación

Práctica

Motivación

Mapas temáticos

Queremos cambiar de información espectral a categorías. Seguimos reduciendo la dimensionalidad de la imagen con otras técnicas.

Imagen de la zona de interés en combinación RGB.

Clustering en $R^2.1$

Mapa temático de la zona de interés.

¿Cómo?

Realizando clasificaciones en el espacio vectorial de la imagen. Estos algoritmos se van a basar en los valores individuales de cada vector (píxel)

Línea de tiempo de distintos métodos de clasificación.²

²http://gisgeography.com. Image Classification Techniques in Remote Sensing.

Esquema de presentación

Clasificaciones temáticas Escenas del capítulo anterior Nueva idea

Clustering

Introducción k-means

Problemas

isodata

Consideraciones finales
Tecnicas pos-clasificación

Práctica

Distancia

Para poder trabajar cómodos en el espacio vectorial vamos a tener que definir la distancia entre dos vectores

$$d(\rho_1, \rho_2) = (|\rho_{1,i} - \rho_{2,i}|^p)^{1/p}$$

Taxisita

Cuando p = 1 tenemos

$$d(\rho_1, \rho_2) = (|\rho_{1,i} - \rho_{2,i}|)$$

Euclídea

Cuando p = 2 tenemos

$$d(\rho_1, \rho_2) = (|\rho_{1,i} - \rho_{2,i}|^2)^{1/2}$$

Criterio habitual

Encontrar clases ci que minimice

$$SSE = \sum_{c_i} \sum_{x \in c_i} (x - x_i)^2$$

donde x_i es el promedio de todos los valores de cada clase.

Una solución

Si $c_i = x_i$ esto da cero y es mínimo. Entonces tiene al menos una solución.

Otras soluciones

Tenemos que encontrar N categorías c_i que minimicen esto.

Cuentas

Esto son MUCHAS cuentas y tomaría mucho tiempo. Tenemos que buscar otra manera más eficiente de hacerlo.

Ejemplo en 1-D

Edades.

Imagen a clasificar.³

³Andrei Pandre. Cluster Analysis: see it 1st.

Proceso paso a paso.4

Proceso paso a paso.⁵

Proceso paso a paso.⁶

Descripción del algoritmo

- 1. Selecciono N clases iniciales
- 2. Asigno los píxeles a estas clases
- 3. Calculo los centroides de las clases clasificadas
- 4. Repito 2 4 con los nuevos centroides hasta converger

⁷John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

Problemas

Mínimo local vs. mínimo global en 1-D.8

Problemas

Seleccion inicial de clases

Lo que determina a que mínimo converge es la selección inicial de clases. Además no siempre me garantizo generar N clases, puedo generar menos de las deseadas.

Como elijo las medias iniciales

- De forma estocástica
- Con algún criterio estadístico

isodata

Diferencias con respecto a kmeans

El algoritmo es básicamente el mismo, pero implementa tres condiciones adicionales.

- ▶ Eliminar cluster si no son estadísticamente relevantes.
- ► Fusionar cluster si espectralmente son similares.
- Partir clusters que son muy alargados.

Clasificación no supervisada por isodata.9

Esquema de presentación

Clasificaciones temáticas Escenas del capítulo anterior Nueva idea

Clustering

Introducción k-means Problemas

Consideraciones finales Tecnicas pos-clasificación

Práctica

Filtrado

Nos va a permitir reducir algunos mitigar una limitación común en la clasificación como es la existencia de parches de escasa superficie. Suavizan las clasificaciones.

Ejemplo de filtrado por mayoría. 10

Fusión

Nos permite convertir las clases de clasificación generadas por algun algoritmo en clases temáticas.

Imagen con clases fusionadas.

Imagen con clases fusionadas.

Imagen con clases fusionadas.

Esquema de presentación

Clasificaciones temáticas Escenas del capítulo anterior Nueva idea

Clustering
Introducción
k-means
Problemas

Consideraciones finales Tecnicas pos-clasificación

Práctica

Práctica

Actividades prácticas de la cuarta clase

- 1. Abrir imágenes Landsat 8 y digitalizar coberturas de interés.
- 2. Clasifique la imagen por el método k-means con 7 clases.
- 3. Clasifique la imagen por el método k-means con 70 clases.
- 4. Utilizar la herramienta de estadísticas globales para estimar las áreas correspondientes a cada uso y cobertura.

