Contributing Factors To Car Accidents In The US

Aaron Chen, Rita Chen, Tiffany Chen

Significance/Goal

Determine relationship among factors and how they affect the number of car crashes, severity (scale from 1- 4 on its impact on traffic), and distance (length of the road extent affected)

Create multiple predictive models for car crashes based on significant factors

Create visualizations of these models through graphs and charts

Dataset (~930,000 sample size)

A countrywide accident dataset, with data from Feb 2016 to the end of Dec 2021.							
# Severity	☐ Start_Time	☐ End_Time	# Start_Lat	# Start_Lng	# End_Lat	# End_Lng	# Distance(mi)
Shows the severity of the accident, a number between 1 and 4, where 1 indicates the least impact on traffic (i.e., short delay	Shows start time of the accident in local time zone.	Shows end time of the accident in local time zone. End time here refers to when the impact of accident on traffic flow	Shows latitude in GPS coordinate of the start point.	Shows longitude in GPS coordinate of the start point.	Shows latitude in GPS coordinate of the end point.	Shows longitude in GPS coordinate of the end point.	The length of the road extent affected by the accident.
1 4		8Feb16 31Dec21	24.6 49	-125 -67.1	24.6 49.1	-125 -67.1	0 18
3	2016-02-08 00:37:08	2016-02-08 06:37:08	40.10890999999995	-83.09286	40.11206	-83.03187	3.23
2	2016-02-08 05:56:20	2016-02-08 11:56:20	39.86542	-84.0628	39.86501	-84.04873	0.747
2	2016-02-08 06:15:39	2016-02-08 12:15:39	39.10266	-84.52468	39.102090000000004	-84.52396	0.055
2	2016-02-08 06:51:45	2016-02-08 12:51:45	41.062129999999996	-81.53784	41.06217	-81.53546999999998	0.123000000000000000
3	2016-02-08 07:53:43	2016-02-08 13:53:43	39.172393	-84.492792000000002	39.170476	-84.501798	0.5

<u>Variables</u>: Severity, Start_Time, Distance(mi), State, Bump, Crossing, Sunrise_Sunset, etc.

Exploratory Visualizations

2.0 - 1.5 - 1.0 - 1.5 - 1.0 - 1.5 - 1.0 - 1.5 - 1.0 - 1.5 - 1.0 - 1.5 - 1.0 - 1.5 - 1.0 - 1.5 - 1.0 - 1.5 - 1.0 - 1.5 - 1.0 - 1.5 - 1.0 - 1.5 - 1.0 - 1.5 - 1.0 -

Severity By State

3.5

3.0

Top 35 states: large gap between top two states and the rest ~150,000

Top 35 states: severity ranges between 2 and 3.5

Time vs Number of Accidents

- ➤ Most accidents appear to occur from noon to 6 PM and between October and December
- > Visible increase in the number of accidents per year (may be due to differences in number of samples/records)

Day vs Night

Large proportion of accidents are during the day

Florida and California have the most accidents during the day and night, as expected. Majority of other states are also during the day.

Severity of 2 was extremely common

Histogram of Temperature(F) On Number of Accidents

Majority of the number of accidents occurred around ~40F to ~80F

Distance(mi) Affected by Accident

Most accidents affect up to 20 miles of road

Attempting To Predict Categorical Values

OLS Regression Results							
Dep. Variable Model: Method: Date: Time: No. Observat: Df Residuals Df Model: Covariance Ty	ions: :	Least Squ Sat, 03 Dec 16:3 94	2022 6:20 3318 3315 2	F-sta Prob	ared: R-squared: tistic: (F-statistic): ikelihood:		0.002 0.002 1085. 0.00 -4.2622e+05 8.524e+05 8.525e+05
	coef	std err		t	P> t	[0.025	0.975]
The state of the s	2.1063 9.644e-05 -0.0051	6.73e-05	-1	.433		-0.000	2.109 3.55e-05 -0.005
Omnibus: Prob(Omnibus Skew: Kurtosis:):	3	.124 .000 .975 .713	Jarqu		1	1.380 6247753.636 0.00 52.4

```
x = df[['Hour', 'Month']]
y = df[["Severity"]]

regr = linear_model.LinearRegression()
regr.fit(x, y)

print('Intercept: \n', regr.intercept_)
print('Coefficients: \n', regr.coef_)

# with statsmodels
x = sm.add_constant(x) # adding a constant

model = sm.OLS(y, x).fit()
predictions = model.predict(x)

print_model = model.summary()
print(print_model)
```

Linear regression doesn't work well with predicting categorical values (In this case, we tried to predict Severity, a scale from 1-4 using the hour and month of which the car accident happened)

Classifying Severity Using Hour and Month

Logistic Regression: Accuracy Score = 0.9425998954048821

Extreme Problem of overfitting: Almost all of accidents were labeled as a severity of 2

KNeighbors: Accuracy score = 0.9418613690652872

Note: True Label 0 = Severity 1; True Label 1 = Severity 2; True Label 2 = Severity 3; True Label 3 = Severity 4

Majority of accidents occur during "good weather" and when visibility(mi) is high

Presence of Object vs Number of Accidents

Note: The Presence of one object and another is mutually exclusive

Pairwise scatterplots

- Severity
- Distance (mi)
- Wind Speed (mph)
- Precipitation (in)

Pairwise scatter plots

- Severity
- Distance(mi)
- Temperature(F)
- Humidity(%)
- Visibility(mi)

Linear Regression & Classification Modeling

• Train: 70%

• Test: 30%

- Want to predict Distance and Severity
- Regression based on Weather features
 - Temperature
 - Humidity
 - Visibility
 - Wind Speed
 - Precipitation

Distance Regression

Continuous y variable

Regression Models:

- Linear
- Ridge
- Lasso
- Elastic

All models had a very low score

About 0.005 for all

```
model = linear_model.LinearRegression()
model.fit(X_train, y_train)
model.score(X_train, y_train), model.score(X_test, y_test)

(0.005237966826281859, 0.005580352350720741)

Ridge_reg = linear_model.RidgeCV(cv=2)
Ridge_reg.fit(X_train, y_train)
Ridge_reg.score(X_train, y_train), Ridge_reg.score(X_test, y_test)

(0.00523796682586819, 0.005580351053086963)
```

```
Lasso_reg = linear_model.LassoCV(cv=2)
Lasso_reg.fit(X_train, y_train)
Lasso_reg.score(X_train, y_train), Lasso_reg.score(X_test, y_test)
(0.005237624820073172, 0.005579344253808682)
```

```
Elastic_reg = linear_model.ElasticNetCV(cv=2)
Elastic_reg.fit(X_train, y_train)
Elastic_reg.score(X_train, y_train), Elastic_reg.score(X_test, y_test)
(0.005237620613651184, 0.0055793294625275935)
```

Severity Classification

- Categorical y variable
- Classification Models
 - Logistic
 - Decision Tree
 - KNeighbors
 - Random Forest

- Regression based on Weather features
 - Temperature
 - Humidity
 - Visibility
 - Wind Speed
 - Precipitation

Logistic Classification

Classification Report

	precision	recall	f1-score	support		
1	0.00	0.00	0.00	3232		
2	0.94	1.00	0.97	267046		
3	0.00	0.00	0.00	4053		
4	0.00	0.00	0.00	8665		
accuracy			0.94	282996		
macro avg	0.24	0.25	0.24	282996		
weighted avg	0.89	0.94	0.92	282996		
2000						
Accuracy score = 0.9436246448713056						

Confusion Matrix

- Model had good accuracy, but overfitted
- Severity 2 was predicted majority of the time
- Only 4 samples were not classified as Severity 2

Confusion Matrix

Decision Tree Classification

Classification Report

		precision	recall	f1-score	support
	1	0.01	0.00	0.01	3219
	2	0.94	0.98	0.96	267138
	3	0.01	0.00	0.01	3972
	4	0.03	0.01	0.01	8667
accui	cacy			0.93	282996
macro	avg	0.25	0.25	0.25	282996
weighted	avg	0.89	0.93	0.91	282996
Accuracy score = 0.9275254773919066					

- Model had slightly less accuracy, still overfitted
- Severity 2 still predicted majority of the time, but somewhat less
- Other severities now have precision and recall greater than 0

Confusion Matrix

KNeighbors Classification

Classification Report

		precision	recall	f1-score	support	
	1	0.01	0.00	0.00	3253	
	2	0.94	0.99	0.97	266856	
	3	0.02	0.00	0.00	4048	
	4	0.03	0.00	0.00	8839	
accur	acy			0.94	282996	
macro	avg	0.25	0.25	0.24	282996	
weighted	avg	0.89	0.94	0.91	282996	
Accuracy score = 0.9368754328683091						
necuracy	DOOL	0.7500754	3200000	-		

- Model had slightly better accuracy, overfitting increased
- Severity 2 was predicted more often again
- Other severities decreased in their precision and recall

Random Forest Classification

n_estimators = 10

	precision	recall	f1-score	support		
1	0.41	0.12	0.19	3253		
2	0.95	0.99	0.97	266856		
3	0.38	0.08	0.13	4048		
4	0.40	0.10	0.15	8839		
accuracy			0.94	282996		
macro avg	0.53	0.32	0.36	282996		
weighted avg	0.92	0.94	0.92	282996		
Accuracy score = 0.9408330859800138						

Classification Report

Confusion Matrix

n_estimators = 100

Classification Report

Confusion Matrix

- Using 100 trees was only slightly better than 10
- Difference was0.0.00142404839
- Take into account computational cost
- Other severities increased in their precision and recall

Conclusions

- Many accidents occurred...
 - In FL and CA both during the day and night (in general, majority of accidents were during the day)
 - From **noon to 6 PM** and between **October and December**
 - During "good weather" with high visibility (10 miles)
 - Between 40°F and 80°F
 - With a severity of 2

Remarks

- Our classification data could be susceptible to overfitting/bias when classifying the expected severity
- There also could've been unequal sampling from all the states in the US (ex: a few hundred samples from in some states and tens of thousands of samples from other states)
- Some of the descriptions of our data were vague such as the scale of severity being unclear, 1 indicates the least impact on traffic (i.e., short delay as a result of the accident) and 4 indicates a significant impact on traffic (i.e., long delay) but short/long isn't measurable
- Variables like population size, traffic/road density, rush hours, holidays, state proximity, etc.
 are not included

References

Data:

Moosavi, S. (no date) US Accidents: A Countrywide Traffic Accident Dataset (2016 - 2021), Kaggle. Kaggle. Available at:

https://www.kaggle.com/datasets/sobhanmoosavi/us-accidents (Accessed: November 18, 2022).