Applying Computer Vision to Measuring Algal Diversity

Emma Clow, M.S. Aquatic Resources Tristan Pedro, B.S. Computer Science

Problem Statement

- ➤ Rejection of dissolved constituents → RO concentrate (ROC)
- > Freshwater recovery limited by solubility limits

How to Reduce Waste and Increase Freshwater Recovery? Diatoms!

Research Objectives

- Previous research focused on unialgal culture *G. flavovirens*
- ➤ Mixed algal cultures show faster silica removal from ROC

Research Objectives

- Investigate effect of diversity in diatom cultures on ROC treatability performance
- ➤ Biodiversity-Ecosystem Function (BEF) Theory
- ➤ Measuring diversity:
 - Metagenomics
 - Microscopy
 - > FlowCam

FlowCam: Flow Imaging Microscopy

Particles move through a flow cell as images are captured in real-time by a high-speed camera (https://www.fluidimaging.com/)

Raw Data

- **≻**Images
- **➢**Binary images
- ➤.lst file

Current Labeling Process: Manual

- > FlowCam software statistical analysis vs. machine learning
- ➤ Bottleneck: **TIME**

Anticipated Outcome

- Expedite classification and eliminate images that can't be classified
 - > Empty
 - Blurry
 - Partial
 - Duplicate
- ➤ Genus species counts based on size and morphology

Data Preprocessing: Step 1

1. Sheet of Images from FlowCam

2. Looking Inside One of the Sheets

TLDR: Images from FlowCam to Individual Processable Images

3. Individual Images in Directory

Solution to Step 1: Contours!

- ➤ Load Sheet of Images from FlowCam
- ➤ Convert to Grayscale & Binarization
- > Contour Detection:
 - Contours are continuous lines that represent boundaries of objects in an image.
- ➤ Use Each Contour as a Bounding Box to Extract Each Image
 - Valid contours are sorted based on the position of their bounding box's top-left corner

Data Preprocessing: Step 2

➤ Filtering Out Empty/Blurred Cell Images

"Empty" cells in circled in red.

Solution to Step 2: Edge Detection

VS

Normal Cell Image

"Empty/Blurred" Cell Image

Edge Detection Algorithm Explained

- Gaussian Filter:
 - > Smoothens (blurs) the image to reduce noise.
- Gradient at X and Y:
 - Computes the gradient (rate of change) of pixel intensity in both horizontal and vertical directions
- > Intensity Gradient
 - Combines the gradients to determine the overall intensity gradient at each pixel
- Edge Direction:
 - Calculates the direction of edges based on the gradient
- > Non-Maximum Suppression
 - Suppresses non-maximum edge responses to preserve only the strongest edge pixels
- Hysteresis Thresholding
 - Applies high and low thresholds to identify and link edges, creating continuous edge contours

OpenCV's Canny Edge Detector Algorithm Pipeline

Data Preprocessing: Step 3

Filtering out the images that have partial cells

Solution to Step 3: Edge Detection Again!

- ➤ Utilize OpenCV's Canny Edge Detection Algorithm Again
- This time, we focus on detecting edges near image borders to find partial cells
- ➤ Visualized results to fine-tune the border size parameter

Partial Cell Image

Normal Cell Image

Data Preprocessing: Step 4

> Filtering out the duplicate cell images

Raw Data Subset

Solution to Step 4: Feature Matching

- ➤ Scale-Invariant Feature Transform (SIFT)
 - Algorithm detects and matches key points invariant to scale and rotation
- ➤ High number of consistent key points between images indicates a match
- ➤ Effective for filtering duplicates

Group of Same Cells

Group of Different Cells

Accuracy of Algorithms on a Manually Labeled Subset

- >Algorithms stronger at filtering for Aggregates, most Halamphoras, and Multiples
- > Weaker at filtering Nitzchia, and some of the Halamphoras, due to the edge detector not finding edges in a few of the manually classified images

Data Preprocessing Still?: Step 5

- ➤ Grouping Similar Cell Images
 - "Genus species counts based on size and morphology"

- ➤Two Steps
 - Feature Extraction
 - ☐Getting information from the image
 - Clustering
 - ☐ Finding relationships (grouping)
- ➤ A lot failed to show me anything meaningful...

Feature Extraction: Hu Moments

➤ What are Hu Moments?

Set of seven numbers derived from the moments of an image

➤ Why Hu Moments?

- Invariant to Image Transformations
- Robust for comparing image shapes

> Feature Extraction

Compact representation of an image's shape, allowing for analysis based on geometric features

Scatter Plot of Hu Moments

Hu Moments: Outcome

- ➤ Applying Principal Component Analysis (PCA)
 - Used PCA to go from 7 Hu Moments for each image (7D) into a 2D space
- ➤ Insightful Groupings
 - After applying K-means, k=4 achieved the best silhouette score (87%)
 - Silhouette score measures how similar an image is to its own cluster, compared to other clusters

Future ML/DL Exploration Options

Covered unsupervised to an extent I'm happy with for now

- Explore Supervised Methods (if we get labeled data)
 - Baseline (Decision Tree, etc.)
 - Possible Model Selections (CNN, SVM, etc.)
 - Methods requiring few labels (semi-supervised and active learning, etc.)

Questions? or Suggestions?