Dylan R. Sanderson, Ph.D.

Johns Hopkins University \cdot National Institute of Standards and Technology Website \cdot Google Scholar \cdot LinkedIn \cdot Email

Summary

Coastal engineer with modeling expertise in assessing the impacts of natural and climatic hazards on the built and social environments at regional scales. Experience using coastal models - such as XBeach and SFINCS - to assess the impacts of coastal flooding and improve community resilience. Proven ability to communicate technical findings and collaborate effectively on interdisciplinary teams. Have work experience in academic/government settings and am particularly interested in applying my skills to problems in industry.

Experience

Johns Hopkins University

2025-Present

 $Associate \ Research \ Scientist \cdot \ NIST \ PREP \ Associate \ | \ Structures \ Group$

- Numerical modeling of hurricane storm surge and wave attenuation through the built environment using XBeach. Focus on overland hazards such as waves, currents, and storm surge.
- Hurricane Ian and Fort Myers Beach, Florida used as a testbed.

National Institute of Standards and Technology

2023-2025

National Research Council Postdoctoral Fellow | Community Resilience Group

- Developed geospatial decision-support models for community resilience planning for coastal flooding. Involved assessing future flood impacts on buildings and infrastructure under multiple sea level rise scenarios.
- Independently learned to run SFINCS (Super-Fast INundation of CoastS) to simulate future flooding driven by tropical cyclones and sea level rise.
- Collaboratively organized the 2024 Disaster Resilience Research Grant Symposium. Two day symposium held virtually with 300+ attendees and 50+ speakers. Required effective organization and leadership skills.

Oregon State University

2018-2023

Graduate Research Assistant | Coastal Engineering Focus

- Contributed to IN-CORE, a spatially explicit decision-support tool for community resilience planning for natural hazards. Point of contact for Seaside, Oregon virtual testbed. Evaluate damages, losses, and risks from earthquake/tsunami hazards. First author on four journal papers contributing to or using IN-CORE.
- Member of three interdisciplinary teams addressing community risk and resilience to coastal hazards. Collaboratively worked with social scientists, engineers, economists, earth scientists, urban planners, and others.
- Collaboratively established a multi-institution seminar series for late stage graduate students to present their research. This work was completed with a team that was entirely remote.

US Army Corps of Engineers Research and Development Center

2016-2018

Research Civil Engineer | Coastal and Hydraulics Lab

- Principal investigator for two coastal storm risk management models Beach-fx and G2CRM that are used throughout the US Army Corps of Engineers (USACE). Served as the primary point of contact for these two models across USACE.
- Completed coastal storm risk management projects. Required beach morphology modeling, working with large coastal hazard databases, and identifying beach renourishment plans.
- Independently managed an annual budget of approximately \$300k. This consisted of preparing contracts for future model development and team management.

Education

Ph.D., Civil Engineering, Oregon State University	2020-2023
M.S., Civil Engineering, Oregon State University	2018-2020
B.S., Ocean Engineering, Texas A&M University	2012-2016

Programming Languages: Python, Julia, Go, Matlab.

Coastal Models and Tools: XBeach, SFINCS, Beach-fx, G2CRM, CSHORE, SBEACH, GENESIS.

Geographic Tools, Software, and Packages: QGIS, Geopandas, GDAL.

Machine Learning Tools and Methods: Flux.jl, Reinforcement Learning, PyTorch (beginner).

Computing: SLURM (HPC), Linux, Google Cloud Computing.

Select Publications

Peer Reviewed Papers

- [9] Sanderson, D., McAllister, T., and Helgeson, J. (2025). Simulating Future Household Adaptation to Sea Level Rise using Agent-Based Modeling and Reinforcement Learning. *International Journal of Disaster Risk Reduction*. https://doi.org/10.1016/j.ijdrr.2025.105742
- [8] Sanderson, D., and McAllister, T. (2025). Quantifying future local impacts of sea-level rise on buildings and infrastructure. International Journal of Disaster Risk Reduction, 127. https://doi.org/10.1016/j.ijdrr.2025.10 5649
- [7] Meselhe, A., Cox, D., Sanderson, D., and Tilt, J. (2025). Human-centered connectivity and transportation network recovery following a Cascadia Subduction Zone Earthquake and Tsunami. Sustainable and Resilient Infrastructure, 1-23. https://doi.org/10.1080/23789689.2025.2525697
- [6] Amini, M., Sanderson, D., Cox, D., and Barbosa, A. (2024). Methodology to incorporate seismic damage and debris to evaluate strategies to reduce life safety risk for multi-hazard earthquake and tsunami. *Natural Hazards*. https://doi.org/10.1007/s11069-023-05937-8
- [5] Amini, M., Jeon, H., Sanderson, D., Cox, D., Barbosa, A., and Cutler, H. (2023). Integrated Engineering-Economic Analysis for Multi-hazard Damage and Loss Assessment. ASCE Journal of Infrastructure Systems, 29(4). https://doi.org/10.1061/JITSE4.ISENG-2229
- [4] Sanderson, D., and Cox, D. (2023). Comparison of National and Local Building Inventories for Damage and Loss Modeling of Seismic and Tsunami Hazards: From Parcel- to City-Scale. *International Journal of Disaster Risk Reduction*, 93. https://doi.org/10.1016/j.ijdrr.2023.103755
- [3] Sanderson, D., Cox, D., Amini, M., and Barbosa, A. (2022). Coupled urban change and natural hazard consequence model for community resilience planning. *Earth's Future*, 10(12). https://doi.org/10.1029/2022 EF003059
- [2] Sanderson, D., Cox, D., Barbosa, A., and Bolte, J. (2022). Modeling regional and local resilience of infrastructure networks following disruptions from natural hazards. ASCE Journal of Infrastructure Systems, 28(3). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000694
- [1] **Sanderson, D.**, Gravens, M., and Permenter, R. (2019). Methodology for identifying a subset of representative storm surge hydrographs from a coastal storm modeling database. *Journal of Coastal Research*, 35(5), 1095-1105. https://doi.org/10.2112/JCOASTRES-D-18-00052.1

Technical Reports and Notes

- [3] Johnson, B., and Sanderson, D. (2020). On the use of CSHORE for Beach-fx. *ERDC/CHL Technical Notes Collection* (ERDC/CHL CHETN-II-59), U.S. Army Engineer Research and Development Center, Vicksburg, MS. http://dx.doi.org/10.21079/11681/37949
- [2] Sanderson, D., and Gravens, M. (2017). Representative storm selection tool: An automated procedure for the selection of representative storm events from a probabilistic database. ERDC/CHL Technical Notes Collection (ERDC/CHL CHETN-VIII-10), U.S. Army Engineer Research and Development Center, Vicksburg, MS. http://dx.doi.org/10.21079/11681/26829
- [1] Gravens, M., and Sanderson, D. (2017). Identification and selection of representative storm events from a probabilistic storm database. *ERDC/CHL Technical Notes Collection* (ERDC/CHL CHETN- VIII-9), U.S. Army Engineer Research and Development Center, Vicksburg, MS. http://dx.doi.org/10.21079/11681/26341