Surfaces and intersection of two surfaces

sphere $x^{2} + y^{2} + z^{2} = r^{2}$ sphere $(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = r^{2}$

sphere
$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

$$x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + a^{2} + b^{2} + c^{2} = r^{2}$$

ellipsoid
$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = r^2$$

$$y^2 + z^2 = r^2$$

circular paraboloid

$$z = x^2 + y^2$$

elliptic paraboloid

$$z = 4x^2 + y^2$$

hyperbolic paraboloid (saddle)

$$z = x^2 - y^2$$

Tutorial 8 Q6

$$z = 4 - x^2 - y^2$$

Inverted paraboloid

elliptic cone
$$x^2 + \frac{y^2}{4} = z^2$$

(B) Intersection of two surfaces

C is the intersection of the circular cylinder $x^2+y^2 = 4$ and the plane x+z = 3

Intersection of plane and sphere is always circle

Intersection of plane and ellipsoid is always ellipse

Intersection of plane and cylinder

Intersection of plane and paraboloid

Intersection of hyperbolic paraboloid (saddle) and cylinder

Surface defined on the base of cylinder

Intersection of two cylinders

Volume of the solid

= 8 times of the volume of this solid

Tutorial 8 Q2

http://www.math.tamu.edu/~Tom.Kiffe/calc3/ newcylinder/2cylinder.html

Intersection of two cylinders

animation

Intersection of two surfaces

The paraboloid $z = 2 - x^2 - y^2$ and the conic surface

cone
$$z = \sqrt{x^2 + y^2}$$
 and cylinder $x^2 + y^2 = 4$

the sphere and the cone.

Example 1

Determine projection into x-y plane of the curve of intersection of a plane and a sphere

$$x + y + z = 94$$
 $x^2 + y^2 + z^2 = 4506$

Solve the above, get rid of z, we get

$$x^{2} + y^{2} + (94 - x - y)^{2} = 4506$$
 projection into x-y plane

which is an ellipse

Example 2

Determine projection into x-y plane of the curve of intersection of the following surfaces

$$z = 1 - y^2$$
$$z = x^2 + y^2$$

Solve the above, get rid of z, we get

$$1-y^2=x^2+y^2$$
 projection into x-y plane

SO

$$x^2 + 2y^2 = 1$$
, which is an ellipse

Example 3

Determine projection into x-y plane of the curve of intersection of the following surfaces

$$z = 2x^2 + 3y^2$$

$$z = 5 - 3x^2 - 2y^2$$

Solve the above, get rid of z, we get

$$5x^2 + 5y^2 = 5$$
 projection into x-y plane

$$x^2 + y^2 = 1$$
, which is a circle

Appendix

http://www.mhhe.com/math/calc/smithminto n2e/cd/folder structure/text/chap14/section0 4.htm

Green's theorem

http://www.mhhe.com/math/calc/smithminto n2e/cd/folder structure/text/chap10/section0 6.htm

Surfaces in space

http://www.mhhe.com/math/calc/smithminto n2e/cd/folder structure/text/chap14/section0 3.htm

Indep of path

http://www.mhhe.com/math/calc/smithminto n2e/cd/folder structure/text/chap14/section0 8.htm

Stokes' Theorem

http://www.mhhe.com/math/calc/smithminto n2e/cd/folder_structure/text/chap14/section0 6.htm

Surface integral