- (1) Sprawdzić, że norma $\|\cdot\|$ na przestrzeni liniowej X zadaje w tej przestrzeni metrykę ρ wzorem $\rho(x,y) = ||x-y||$. Zauważyć, że taka metryka jest niezmiennicza na przesunięcia: $\rho(x+z,y+z) = \rho(x,y) \text{ dla } x,y,z \in X.$
- (2) Sprawdzić, że funkcja $d_r \colon \mathbb{R}^2 \to [0, \infty)$ zdefiniowana na wykładzie jest metryką (tzw. metryka "rzeka").
- (3) Sprawdzić, że wzór $\|f\|_{\infty}=\sup_{x\in[0,1]}|f(x)|$ określa normę w przestrzeni C[0,1] funkcji ciągłych na [0,1].
- (4) Sprawdzić, że wzór $||f|| = \int_0^1 |f(x)| \, dx$ także określa normę w przestrzeni C[0,1].
- (5) Sprawdzić, że wzór $\|f\| = |f(0)| + \sup_x |f'(x)|$ określa normę w przestrzeni $C^1[0,1]$, funkcji mających ciagła pochodną.
- (6) Dla podanych podzbiorów prostej rzeczywistej wyznaczyć ich wnętrze, domknięcie i brzeg: \emptyset , \mathbb{R} , \mathbb{Q} , \mathbb{N} , $\mathbb{R} \setminus \mathbb{N}$, $\mathbb{R} \setminus \mathbb{Q}$, [0,1), $(0,\infty)$, $(0,1) \cap \mathbb{Q}$.
- (7) Na płaszczyźnie euklidesowej (\mathbb{R}^2, d_e) wyznaczyć wnętrze, brzeg i domknięcie zbiorów
 - (a) $A = \{(x, y) : 0 \le x < 1, 0 \le y < 1\};$
 - (b) $B = \mathbb{R} \times \{0\};$
 - (c) $C = \mathbb{N} \times \mathbb{R}$;
 - (d) $D = \{(x, y): x^2 + y^2 \le 1\};$ (e) $E = \{(x, y): y = x^2\}.$

Następnie wyznaczyć wnętrze, brzeg i domknięcie powyższych zbiorów w metryce "rzeka".

- (8) Udowodnij wzory dla podzbiorów przestrzeni metrycznej (X, ρ) i podaj przykład na istotność inkluzji:
 - (a) $\overline{A} = \overline{A}$;
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$;
 - (c) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$;
 - (d) $X \setminus \overline{A} = \operatorname{Int}(X \setminus A);$
 - (e) $X \setminus \text{Int}(A) = \overline{X \setminus A}$.
- (9) Sprawdzić, że w przestrzeni metrycznej (X, ρ) sfera postaci $\{y : \rho(x, y) = r\}$ jest zbiorem domkniętym.
- (10) Pokazać, że w przestrzeni metrycznej (X,d) domknięcie \overline{A} zbioru $A\subseteq X$ jest równe zbiorowi tych $x \in X$, dla których $B(x,\delta) \cap A \neq \emptyset$ dla każdego promienia $\delta > 0$.
- (11) Zbadać, czy zawsze $\overline{B(x,r)} = \{y : d(x,y) \le r\}.$
- (12) W przestrzeni metrycznej X brzeg Bd(A) zbioru A można zdefiniować przez warunek $x \in \operatorname{Bd}(A)$ jeśli $B(x,\delta) \cap A \neq \emptyset \neq B(x,\delta) \setminus A$ dla każdego $\delta > 0$. Sprawdzić następujące zależności (i pokazać na przykładzie, że inkluzja może być właściwa)
 - (a) Int $(A) = A \setminus Bd(A)$;
 - (b) $\overline{A} = A \cup \operatorname{Bd} A$;
 - (c) $\operatorname{Bd}(A \cup B) \subseteq \operatorname{Bd}(A) \cup \operatorname{Bd}(B)$;
 - (d) $\operatorname{Bd}(A) = \operatorname{Bd}(X \setminus A)$.