LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping

Student Name: Daoming Chen

Student Number: 2132643

Authors Name: Tixiao Shan, Brendan Englot, Drew Meyers, Wei

Wang, Carlo Ratti, and Daniela Rus

A brief intro to LIO-SAM

- A lidar-based simultaneous localization and mapping (SLAM) framework.
- Based on Lidar Odometry and Mapping (LOAM).
- A framework of tightly-coupled lidar inertial odometry via smoothing and mapping

Motivation

Optimize the LOAM method, which suffers from Loop closure detection problem and drift in large-scale tests.

What makes LIO-SAM stand out?

Results comparing with LOAM and LIOM

- More precise and less drift
- Fusion of absolute measurements
- Map correction in real-time
- Fast loop closure detection

Dataset	LOAM	LIOM	LIO-SAM	Stress test
Rotation	83.6	Fail	41.9	13×
Walking	253.6	339.8	58.4	$13 \times$
Campus	244.9	Fail	97.8	$10 \times$
Park	266.4	245.2	100.5	$9 \times$
Amsterdam	Fail	Fail	79.3	11×

Runtime of mapping for processing one scan (ms)

(a) Trajectory comparison

(b) LIO-SAM map aligned with Google Earth

Method explain:

The system structure of LIO-SAM

Thanks for Watching!

Resources of this paper:

LIO-SAM paper on IEEE

LIO-SAM experiment results on YouTube

LIO-SAM framework code on GitHub