LaPIS Diagnostic Test Workbook - Mathematics

Name : Dharankumar S

Class: 7

Section : B

School : AKV Public School

Login ID : AKV136

Dharankumar S's Performance Report

Score: 11/40 Percentage: 27.5%

Dharankumar S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
_					
	Class Teacher S	Signature	Princi	ipal Signature	

Basic arithmetic

Topics to be Improved			
Types of angles	Identification of types of angles		
LCM	Finding LCM		

......

Hi, here in this video you will learn **Types of Angles**

Question: 1

Find the angles.

Answer:

The angle ranges from $___{\circ}$ to $___{\circ}$.

The angle perpendicular to 0° is ____ $^{\circ}$.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

The angle formed between West and East is ____° and it is called _____ angle.

The angle formed between North and East is ____° and it is called _____ angle.

The angle formed between East and South is ____° and it is called _____ angle.

Question: 3

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is _____°

The measurement of right angle is _____°.

Straight angle + Right angle = $___$ + $___$ = $___$

It is called as _____ angle.

Hi, here in this video you will learn **LCM**

Question: 4

Fill the hexagon with factors and multiples of 10.

.....

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10			
2 x = 10	x = 10			

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

	1 14 1 440
Therefore, factors of 10 are	and multiples of 10 are
$\underline{\textit{Question: 5}} \hspace{1cm} \dots \dots \dots$	
Find the LCM of 50, 100.	
Answer:	
Complete the division using least commo	on multiple.
	50 , 100
	, 100
The LCM of 50, 100 is 2 x 2 x x	·
Question: 6	
Every number is the multiple of	
Answer:	
Let's find the first ten multiple of random	n numbers,
Multip	ple of $1 = \underline{\hspace{1cm}}$
	ple of $2 = \underline{\hspace{1cm}}$
	le of 13 =
Multipl	le of $20 = $
Here, is the common factor of ex	very number.

Mensuration

	Topics to be Improved
Area	Area of rectangle

Hi, here in this video you will learn Area

Question: 7

Find which of the shaded portion in the given shape represent it's area.

......

.....

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 8

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = _____.

The area of garden = $\underline{\qquad}$ x $\underline{\qquad}$ = $\underline{\qquad}$ cm^2

Question: 9

Shade the possible dimension of the door whose area is 500 m^2

$$50~m~\times~10~m$$

$$\left| 25 \ m \ \times \ 20 \ m \right|$$

.....

Answer:	A	ns	w	er	•
---------	---	----	---	----	---

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25\text{m} \times 25\text{m}$			
$25m \times 20m$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved			
Chance of probability Basis of probability, Sample space in probability			
Range	Finding the range		

......

Hi,	here in	this	video	you	will	learn	Basics	of	probabilit	\mathbf{y}
-----	---------	------	-------	-----	------	-------	--------	----	------------	--------------

\sim \cdot \cdot	10
Question:	10
a accomon.	10

Identify the sure events and impossible events

- (i) The sun rises in the west.
- (ii) Water is colourless.
- (iii) Clock rotates in clock wise direction.
- (iv) Ball is square in shape.

Answer:

Events that always occur are called Events that cannot occur are called	(sure/ impossible) events.
Here, The sun rises in the west isevent.	event. Water is colourless is
Clock rotates in clock wise direction is — event.	event. Ball is square in shape is
Question: 11	
Probability of sure events is	_ (greater / smaller) than probability of impossible events.
Answer:	
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/	any number).
Probability of impossible event =	$_{-}$ (0/1/ any number).
Therefore, Probability of sure event	Probability of impossible event.

Question: 12

Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.

Answer:

Things Raju have
Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is $(0/1)$
Then probability of getting pen from his box is (0/1)
Hi, here in this video you will learn Range
Question: 13
Range of the data =
Answer:
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =
<u>Question: 14</u>
Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9
$-20+51$ $\frac{-38-51}{2}$ $51+38$ $\frac{51+20}{2}$
Answer:
Range = Arranging the data in ascending order, In the given data, Highest value = , Lowest value = , Range = =
Question: 15
Find the range of first 10 multiple of 5.
Answer:
First 10 multiple of 5 = Therefore, Highest value =, Lowest value =, Range = =
Hi, here in this video you will learn Basics of probability
Question: 16
Which of the following contains list of all possible outcomes.
Probability Sample space Sure events Impossible events

_____ and _____ balls.

If one of the ball is blue in colour, then other ball can be ______ or _____.

If one of the ball is green in colour, then other ball can be ______ or _____.

If one of the ball is red in colour, then other ball can be ______ or _____.

Therefore, if two balls are taken out then possible outcomes are blue + ______,

Geometry

Topics to be Improved					
Sum of lengths of two sides of a triangle Sum of two sides of a triangle					
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles				
Related angles	Complementary angles, Basic of angles				
Transversal angle made by transversal	Basics of Transversal angle				
Angle sum property of triangle	Angle sum property of triangle				
Right angle triangle and pythagoras property	Basics of Pythagoras property				
Faces vertex and edges	aces vertex and edges Idenfication of faces, edges and vertices				

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 19

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

 $Side AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______

Question: 20

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is _____ than the other side of the triangle.

Example: In triangle XYZ,

Question: 21

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ____ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

------<u>-</u>

Hi, here in this video you will learn Criteria of congruence

Circle the groups that contain congruent images.

Question: 22

......

Two geometrical shapes are said to be congruent if they are _____ (identical/non-identical) in shapes and size.

Example: Square and Rectangle are _____ (congruent/not congruent).

Question: 23

If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $____$ (SSS/ASA/SAS) criteria .

Answer:

Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

......

Question: 24

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____

The side PR is equal to the side in ΔLNM . Therefore, length of side $PR =$		
Hi, here in this video you will learn Related Angles		
Question: 25		
1. Two angles are complementary if their sum is equal to		
2. Two angles are supplementary if their sum is equal to		
Answer:		
1. When sum of the two angles is equal to 90°, they are called as Example: 45° and 45°,, and	angle.	
2. When sum of the two angles is equal to 180°, they are called as Example: 90° and 90°,, and	angle.	
Question: 26Shade the complementary angles. $85^{\circ}, 95^{\circ}$ $45^{\circ}, 45^{\circ}$ $6^{\circ}, 84^{\circ}$ $73^{\circ}, 107^{\circ}$ $36^{\circ}, 64^{\circ}$	90°, 90°	
Answer:		
Two angles are said be complementary if the sum of their angles are equal to	·	
$85^{\circ} + 95^{\circ} =$ and this is (a / not a) complementa $45^{\circ} + 45^{\circ} =$ and this is angles. $6^{\circ} + 84^{\circ} =$ and this is angles. $73^{\circ} + 107^{\circ} =$ and this is angles. $36^{\circ} + 64^{\circ} =$ and this is angles. $90^{\circ} + 90^{\circ} =$ and this is angles.	ary angles.	

$\underline{\textit{Question: 27}}$

Find the complement and supplement of 15° and 90°

Answer:

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 90° .

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180° .

Complement of $15^{\circ} = \underline{\hspace{1cm}}$, Supplement of $15^{\circ} = \underline{\hspace{1cm}}$, Complement of $90^{\circ} = \underline{\hspace{1cm}}$. Supplement of $90^{\circ} = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Basics of Transversal angle

Question: 28

......

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are ____

Question: 29

Find the transversal, alternate angles and corresponding angles in a given diagram.

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles			
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,			

Question: 30

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Angle sum property

Question: 31

Sum of the angles of triangle is ______

Answer:

$$\angle A + \angle B + \angle C = \underline{\qquad}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 32

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is ______

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C =$ _____ = _____

In $\triangle PQR$, Sum of the angles = _____ = ___ = ____

In $\triangle KLM$, Sum of the angles = _____ = ___ = ____

In $\triangle XYZ$, Sum of the angles = _____ = ____ = ____

Therefore, the triangles that satisfy the angle sum property are = ______

Question: 33

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is _____

Let's consider the angles of triangle be 8x, ____ and ____

We know sum of the angles of a triangle is ____

Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$

The angles of the triangle are _____

Hi, here in this video you will learn Pythagoras property

Question: 34

In a right angled triangle, square of the $\underline{\hspace{1cm}}$ = sum of the squares of the legs.

......

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____ .

Question: 35

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$

Therefore, hypotenuse of the triangle is _____.

Question: 36

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the = sum of the squares on
Is Pythagoras theorem applicable in rectangle? (yes/ no). Given: breadth =, length of diagonal =
By Pythagoras theorem, $()^2 = ()^2 + ()^2$ = +
Therefore, diagonal of the rectangle is
Hi, here in this video you will learn Related Angles
Question: 37
(i) When two rays of an angle are perpendicular, then the angle formed between them is a angle .
(ii) When two rays of an angle are in opposite sides, then the angle formed between them is a angle .
Answer:
A (line segment /ray) begins from one point and travels endlessly in a directio
(i) The angle formed between two perpendicular rays is° and it is called angle.
(ii) If two rays starting at same point moves in opposite direction, they form a (straight / perpendicular) line. The measure of the angle formed is and it is called angles.
Question: 38
Find the angle of $\angle DBE$

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC =$ ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 39

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ _____, and its complement angle is _____.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Basics of 3D model

Question: 40

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

.....

Answer:
has two end point (line/line segment/ray). A is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,
Question: 41
Mark and find the number of vertices, edges and faces in a cube.
Answer:
Mark the vertex, edges and faces in a cube.
Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.
Question: 42

How many vertices, edges and faces does dices have?

A	ns	11)6	r:
		ωı	,, ,

The shape of d	ice is	·	
Dices have	vertices,	$\underline{\hspace{1cm}}$ edges and $\underline{\hspace{1cm}}$	faces

Number system

Topics to be Improved					
Law of Exponents Law of Exponents					
Positive and negative rational numbers	Identification of positive rational numbers				
Fractions	Division of fraction, Multiplication of fractions				
Exponents	Solving exponents				
Operations on rational numbers	Division of rational numbers, Subtraction of rational numbers				

Hi,	here in	this	video	you	will	learn	Law	of	exponents
-----	---------	------	-------	-----	------	------------------------	-----	----	-----------

Question: 43	
$(x)^0$ is equal to $_$	
$\underline{Answer:}$	
(1	Exponents/Base) tells us how many times a number should be multiplied by itself

to get the desired result.

In
$$(x)^0$$
 base = _____
Power = ____

Any number or variable with power zero is equal to ______. Therefore, $(x)^0$ equal to ______.

Question: 44

i.
$$a^m \times a^n = \underline{\hspace{1cm}}$$

ii.
$$a^m \div a^n = \underline{\hspace{1cm}}$$

Answer:

Multiplication of two numbers with same base with different power, their exponents are _____ (added/ subtracted)

Division of two numbers with same base with different power, their exponents are _____ (added/ subtracted).

Question: 45 Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$

$$a+n+x$$
 bmy 1 $ab+mn+xy$ 0 anx $b+m+y$

Answer:

Any number with power zero is equal to______ (One/ Zero).

Any number with power one is equal to ______ (same/ different) number.

$$(a^{0} \times b^{1}) + (m^{1} \times n^{0}) + (x^{0} \times y^{1}) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{0} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$$

$$= \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 46

Segregate positive and negative rational number.

.....

Answer:

- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

Question: 47

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number. Answer: $\underline{\hspace{1cm}}$ number, -4 is a $\underline{\hspace{1cm}}$ number. Division of $\frac{-3}{-4} = \square$ and this _____ rational number. (Positive / Negative / Neither positive nor negative rational number) Question: 48 The product of a positive rational number and a negative rational number is _____ rational number. (Positive/ Negative/ neither positive nor negative) Answer: Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number \times Negative rational number = = = and this is _____ rational number Hi, here in this video you will learn **Division on fractions** Question: 49 Find the shape which contains the improper fraction of $5\frac{2}{7}$. Answer: $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ______, 2 is _____ and 7 is _____. To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ $5\frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\boxed{}}{\boxed{}}$ Question: 50 Solve: $\frac{1}{3} \div \frac{14}{3}$ Answer: To divide a fraction by another fraction, multiply the dividend by _____ (same / reciprocal) of the divisor. Here, dividend = _____ and divisor = ____.

1	_	14	=	1	×		=	
3	•	3		3	^	\Box		

......

......

.....

Question:	51
Question.	σ

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{\hspace{1cm}} = \frac{12}{40} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Then the answer is _____

Hi, here in this video you will learn Exponents and power

Question: 52

Find the exponential form of 1000.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

1000 can be written as = $10 \times$ ____ \times ____ 10 is raised to the power of ____ = (10)

Question: 53

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ = ___.

Question: 54

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Multiplication on fractions

Question: 55

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to $___$ (zero/one). Therefore, 2 can be written as $___$ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 56

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 57

Solve : $2\frac{7}{4} \times \frac{2}{3}$

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction.

Here, 2 is ______, 7 is ______ and 4 is _____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} =$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn **Operation on rational num**bers

Question: 58

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

.....

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ____ (same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 59

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of 0.6 =______,

when any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = ____.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 60

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\boxed{}} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn **Operation on rational numbers**

Question: 61

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{}{} =$$

Question: 62

Find the addition of shaded part of box A and shaded part of box B.

.....

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box $A = \underline{\hspace{1cm}}$

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$

Question: 63

Find the missing values in the given figure.

$$= \qquad \qquad + \qquad \qquad \qquad \downarrow$$

$$1L \qquad \qquad (700 \text{ ml}) \frac{7}{10} \qquad (-\text{ml}) = \boxed{}$$

Answer:

Given: $1 = \frac{7}{10} + \underline{\hspace{1cm}}$ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} = \underline{\hspace{1cm}}$ Therefore, result is $\underline{\hspace{1cm}}$.

Comparing Quantities

	Topics to be Improved
Equivalent ratios	Basic of proportion
Simple interest	Calculation of simple interest
Percentage	Basic of percentage

Hi, here in this video you will learn Basics of proportion	
Question: 64	
If a:b and c:d are equivalent ratio, then it can be expressed as	
$\underline{Answer:}$	
A (proportion / ratio) is used to express (one/two) equivalent r Standard form to express proportion is	atios.
$Question: \ 65$	

Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalent?

A

Ar	isw	er:

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is Fractional form =
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
Quartient 66

If a: b:: c: d is proportion, shade the correct expression

1 1 1

Hi, here in this video you will learn Simple Interest	
then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$	
Therefore, $a \times d = \underline{\hspace{1cm}},$	
terms.	
In proportion, product of extreme terms is (equal to/ not equal to) product of middle	
First and fourth term are called and second and third term are called	
or $\underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ (in fraction).	
Two equivalent ratio which are proportion, it can be written as a: b:: c: d	

Question: 67

Match the following.

	Column A
i	Principle(P)
ii	Amount (A)
iii	Rate (R)
iv	Time period (T)

	Column B
a	Interest calculated based on this
b	Total sum you borrow
С	Number of years
d	Total sum with interest

Answer:

Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is

Question: 68

Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.

Answer:

Given:			
Amount =	, Principle =	, Time period =	Ē,
If Amount and pri	nciple is given, then formula	a for calculating interest is _	,
$Interest = \underline{\hspace{1cm}}$	= =	=	
Question: 69			

The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.

Answer:				
Interest =	$_{}$, Time period =	, F	Principal =	 -
Rate of interest =	= x 100 Principal x			
Substituting values	s in the formula,			
Rate of interest	= x 100 Principal x			
Rate of interest =		0A		
Therefore, the rate	e of interest is	%		
Hi, here in this	s video you will learn	Basics of perc	centage	
Question: 70				
2% can be written	as			
$\underline{Answer:}$				
Percentages are nu	merators of fractions with	h denominator $2\% = \frac{\square}{\square}$		
Question: 71				
Arun attended the Arun?	LaPIS test for 100 marks	s and got 75% mark	s. What is the mar	rk scored by
$\underline{Answer:}$				
Arun attended Lal	PIS test for	marks. He got _	marl	KS.
75% can be written	en in fraction form	<u> </u>]		
Then the mark sec	ored by Arun = Total m	ark × 75% =	×	=
Quartien. 70				

 $\underline{Answer:}$

apples.

There are _____ apples in a basket.

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten

Number of rotten apples are	
Fraction form of rotten apples in a basket $=$ -	
••	
Convert it into a percent= x	_% =

Algebra

	Topics to be Improved
subtraction of algebraic expressions	subtraction of algebraic expressions
Monomials, binomials, trinomials and polynomials	Types of algebraic expression
Addition and subtraction of algebraic expressions	Like terms and Unlike terms
Basics of simple equation	Formating of simple equation, Solving of simple equation

Hi.	here in	this	video	vou	will	learn	Subtraction	on	expression
,	11010 111	CIII	11400	., 0 01	* * * * * *	100111		~	CIPI CODIOI

Question: 73
Find the sum of two expressions $a + b + c$ and $b + c + d$
Answer:
The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) terms.
The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$.

Question: 74

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

The answer is _____

(i) Number of boys in school A = _____,

Number of boys in school B = _____.

Total number of boys in school A and school B is _____ + ___ = ____

(ii) Number of boys in school B = _____,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___+$ $___=$

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 75

Solve the following:

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c}
13x + \underline{\hspace{1cm}} \\
(+) \quad 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
3a - 5b \\
(-) & 5a - 7b \\
\hline
-2a - \underline{\hspace{1cm}}
\end{array}$$

......

 $\operatorname{Hi},$ here in this video you will learn \mathbf{Types} of $\mathbf{expression}$

Question: 76

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are _______, ______, and _______.

Therefore, there are ______ terms in the expression.

Question: 77

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a ______
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 78

 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial)

Answer:

The terms in expression $5m^2 + m + 0$ are _____. Here, the expression has _____ terms and it is called a _____ expression.

Hi, here in this video you will learn Addition on expression

Question: 79

Shade the like terms.

......

Answer:

Given terms are

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 80

Complete the expression $7r^2 + r \Box - 2 \Box = r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

Question: 81					
Sam have 3a chocolates and 9	y icecrean	n. Ram have 7	7a chocolates	and 5y icecream	ı .
(i) Total chocolates Ram a	nd Sam hə	ave :			
(ii) How many icecreams Sa	ım have m	ore than Ram	:	·	
Answer:					
		Chocolates	Icecream		
	Sam				
	Ram				
	late + San	n's chocolates		=	
(ii) How many icecreams Sa icec				=	
Hi, here in this video ye application Question: 82	ou will le	earn Solvin	g an equa		
•	Box A	A Bo) ox B		
Box B contains times	s the numb	per of chocolat	ses in Box A		
Answer:					
Box A contains choco Box B contains choco No. of chocolates in Box B =	olates.	⟨ (No. of choo	colates in Box	x A)	
Question: 83					
Write the equation for the foll Subtracting four times of m f	_				

 $\underline{Answer:}$

	Four times of $m = \underline{\hspace{1cm}}$
Subtracting four	times of m from $4 = \underline{\hspace{1cm}}$

The equation is
Question: 84
Compare the given two statements $(<,>,=)$ Sum of $2a$ and 9 Add 9 to the product of a and 2
Answer:
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$ Product of a and $2 = \underline{\hspace{1cm}}$ Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and 9 \square Add 9 to the product of a and 2
Hi, here in this video you will learn Solving an equation
<u>Question: 85</u>
If $©=5$, then $5 © +5 = $
Answer:
The value of the given smiley \odot is Substituting the value in the expression = $5(__)$ + $5 = __$ + =
Question: 86
Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2) $7 \square + 3 = -4$
Answer:
The given equation is 7 $+3$ =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle, $7 \times$ $+3$ = is the number that can be placed in a box to make the equation correct.
Question: 87

Arrange the terms in the descending order when the value of x is 2. 2x $5x \times 1$ x + 3 2x - 4 $\frac{1}{2}x$

Answer:

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____, ____.
Their respective algebraic terms are ____, ____, ____, ____, ____.