Exercises: Hashing and Digital Signatures

Exercises

- 1. For each of the following hash functions, find two message values m_1 and m_2 such that $\#(m_1) = \#(m_2)$:
 - (a) Messages are simply plaintext phrases, e.g., 'This message is made of words.' The hash function is defined by #(m) = number of words in m. E.g., #('The revolution will not be televised') = 6.
 - (b) Messages are elements $m \in \mathbb{N}$. The hash function is defined by $\#(m) = m \mod 1024$.
 - (c) Messages are elements $\{n \in \mathbb{N} \mid 0 \le n \le 255\}$. The hash function is defined by #(m) being the number of 1s in the binary representation of m. E.g., $\#(123) = \#(01111011_2) = 6$.
 - (d) Messages are elements $\{n \in \mathbb{N} \mid 0 \le n \le 255\}$. Let L(m) be the left four bits of the 8-bit binary representation of m and let R(m) be the right four bits of the 8-bit binary representation of m. The hash function is defined by $\#(m) = L(m) \oplus R(m)$. E.g., $\#(123) = 0111 \oplus 1011 = 1100$.
- 2. Alice has set up her public RSA key as $(n_A, e_A) = (1003, 65)$. Bob has set up his public RSA key as $(n_B, e_B) = (1007, 41)$. They both agree to sign their messages using the third hash function described above: #(m) is the number of 1s in the 8-bit binary representation of m.
 - (a) Bob wants to send the message m = 321 to Alice. Encrypt m using Alice's public key by calculating $m^{e_A} \mod n_A$.
 - (b) Calculate #(m).
 - (c) Calculate Bob's private key d_B .
 - (d) Sign #(m) by calculating $\#(m)^{d_B} \mod n_B$.
 - (e) Calculate Alice's private key d_A .
 - (f) Show that $(m^{e_A})^{d_A} = m \mod n_A$ and $(\#(m)^{d_B})^{e_B} = \#(m) \mod n_B$.

Answers

- 1. For each of the following hash functions, find two message values m_1 and m_2 such that $\#(m_1) = \#(m_2)$:
 - (a) #('Mathematics') = #('Security')
 - (b) For any message value m: $m = m + 1024 \mod 1024$. So taking $m_1 = 1$, we can find $m_2 = 1 + 1024 = 1025$. Then $m_1 = 1 = 1025 = m_2 \mod 1024$.
 - (c) Let $m_1 = 1$ and $m_2 = 2$. The binary representations of these values are $0000\,0001$ and $0000\,0010$, respectively. So #(1) = #(2).
 - (d) Let $m_1 = 18$ and $m_2 = 3$. The binary representations of these values are $0001\,0010$ and $0000\,0011$, respectively. Then $\#(m_1) = 0011 = \#(m_2)$.
- 2. Alice has set up her public RSA key as $(n_A, e_A) = (1003, 65)$. Bob has set up his public RSA key as $(n_B, e_B) = (1007, 41)$. They both agree to sign their messages using the third hash function described above: #(m) is the number of 1s in the 8-bit binary representation of m.
 - (a) Bob wants to send the message m = 321 to Alice. Encrypt m using Alice's public key by calculating $m^{e_A} \mod n_A$.

$$m^{e_A} = 321^{65} = 287 \mod 1003$$

(b) Calculate #(m).

$$\#(m) = \#(321) = \#(1\,0100\,0001_2) = 3$$

(c) Calculate Bob's private key d_B .

$$d_B = 137$$

(d) Sign #(m) by calculating $\#(m)^{d_B} \mod n_B$.

$$\#(m)^{d_B} = 3^{137} = 675 \mod 1007$$

(e) Calculate Alice's private key d_A .

$$d_A = 257$$

(f) Show that $(m^{e_A})^{d_A} = m \mod n_A$ and $(\#(m)^{d_B})^{e_B} = \#(m) \mod n_B$.

$$(m^{e_A})^{d_A} = 287^{257} = 321 \mod 1007$$

$$(\#(m)^{d_B})^{e_B} = 675^{41} = 3 \mod 1003$$

Practicing RSA

Try the following randomisable question. Make sure that you can perform the calculations by hand and use your spreadsheets to check your answers. $\bf Test$

Yourself Visit the URL below to try a numbas exam:

https://numbas.mathcentre.ac.uk/question/155037/rsa-encryption/embed/

