Enumeración Total en Programación Lineal Entera

MII-471, Optimización Combinatorial

Primer período académico 2008

Carlos Castro
Departamento de Informática
UTFSM
Abril de 2008

- Enumeración de todas las posibilidades
- Verifica todas las posibilidades implicadas por los valores de las variables discretas, calculando para cada una la mejor elección de las variables continuas
- Entre las combinaciones que producen soluciones factibles aquellas con el mejor valor para la función objetivo son las soluciones óptimas
- Resuelve eficientemente modelos que involucran una pequeña cantidad de variables de decisión binarias

Considerando el siguiente modelo de PLB:

$$Max z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

Sujeto a

$$6x_{1} + 3x_{2} + 5x_{3} + 2x_{4} \leq 10$$

$$x_{3} + x_{4} \leq 1$$

$$-x_{1} + x_{3} \leq 0$$

$$-x_{2} + x_{4} \leq 0$$

$$x_{i} \in \{0, 1\} \ \forall i = 1, \dots, 4$$

	Solución		Factibilidad	${f z}$	Solución				Factibilidad	${f z}$	
x_1	x_2	x_3	x_4			x_1	x_2	x_3	x_4		
0	0	0	0	$\sqrt{}$	0	1	0	0	0	\checkmark	9
0	0	0	1	×	_	1	0	0	1	×	-
0	0	1	0	×	-	1	0	1	0	×	-
0	0	1	1	×	_	1	0	1	1	×	-
0	1	0	0	$\sqrt{}$	5	1	1	0	0	$\sqrt{}$	14
0	1	0	1	$\sqrt{}$	9	1	1	0	1	×	-
0	1	1	0	×	_	1	1	1	0	×	-
0	1	1	1	×	_	1	1	1	1	×	_

3

Por lo tanto, la solución óptima es: $x^* = (1, 1, 0, 0)$ con $z^* = 14$

Considerando el siguiente modelo de PL entera mixta:

$$Max z = 20x_1 + 30x_2 - 550y_1 - 800y_2$$

Sujeto a

$$\frac{1}{2}x_1 + 4x_2 \leq 300$$

$$x_1 \leq 400y_1$$

$$x_2 \leq 75y_2$$

$$x_1, x_2 \geq 0$$

$$y_1, y_2 \in \{0, 1\}$$

Analizando las 2^2 combinaciones de valores de las variables binarias:

Sujeto a

$$Max \ z = 20x_1 + 30x_2 - 550y_1 - 800y_2$$

$$\frac{1}{2}x_1 + 4x_2 \le 300$$

$$x_1 \le 400y_1$$

$$x_2 \le 75y_2$$

$$x_1, x_2 \ge 0$$

$$y_1, y_2 \in \{0, 1\}$$

Haciendo $y_1 = 0 \land y_2 = 0$:

Sujeto a

$$\frac{1}{2}x_1 + 4x_2 \leq 300$$

$$x_1 \leq 0$$

$$x_2 \leq 0$$

$$x_1, x_2 \geq 0$$

 $Max z = 20x_1 + 30x_2$

Obviamente, $x^* = (0, 0) \text{ con } z^* = 0.$

Sujeto a

$$Max \ z = 20x_1 + 30x_2 - 550y_1 - 800y_2$$

$$\frac{1}{2}x_1 + 4x_2 \le 300$$

$$x_1 \le 400y_1$$

$$x_2 \le 75y_2$$

$$x_1, x_2 \ge 0$$

$$y_1, y_2 \in \{0, 1\}$$

Haciendo $y_1 = 0 \land y_2 = 1$:

$$Max \ z = 20x_1 + 30x_2 - 800$$

Sujeto a

$$\frac{1}{2}x_1 + 4x_2 \leq 300$$

$$x_1 \leq 0$$

$$x_2 \leq 75$$

$$x_1, x_2 \geq 0$$

Por simple inspección, la solución óptima es: $x^* = (0,75)$ con $z^* = 1.450$.

Sujeto a

$$Max \ z = 20x_1 + 30x_2 - 550y_1 - 800y_2$$

$$\frac{1}{2}x_1 + 4x_2 \le 300$$

$$x_1 \le 400y_1$$

$$x_2 \le 75y_2$$

$$x_1, x_2 \ge 0$$

$$y_1, y_2 \in \{0, 1\}$$

Haciendo $y_1 = 1 \land y_2 = 0$:

$$Max z = 20x_1 + 30x_2 - 550$$

Sujeto a

$$\frac{1}{2}x_1 + 4x_2 \leq 300$$

$$x_1 \leq 400$$

$$x_1, x_2 \geq 0$$

Por simple inspección, la solución óptima es: $x^* = (400, 0)$ con $z^* = 7.450$.

Sujeto a

$$Max \ z = 20x_1 + 30x_2 - 550y_1 - 800y_2$$

$$\frac{1}{2}x_1 + 4x_2 \le 300$$

$$x_1 \le 400y_1$$

$$x_2 \le 75y_2$$

$$x_1, x_2 \ge 0$$

$$y_1, y_2 \in \{0, 1\}$$

Haciendo $y_1 = 1 \land y_2 = 1$:

$$Max \ z = 20x_1 + 30x_2 - 1.350$$

Sujeto a

$$\frac{1}{2}x_1 + 4x_2 \leq 300$$

$$x_1 \leq 400$$

$$x_2 \leq 75$$

$$x_1, x_2 \geq 0$$

Aplicando el método simplex, la solución óptima es: $x^* = (400, 25)$ con $z^* = 7.400$

x_1	x_2	y_1	y_2	${f Z}$
0	0	0	0	0
0	75	0	1	1.450
400	0	1	0	7.450
400	25	1	1	7.400

Por lo tanto, la solución óptima del problema es:

$$(x_1^*, x_2^*, y_1^*, y_2^*) = (400, 0)$$

con

$$z^* = 7.450$$

9