EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2002, PIERWSZY TERMIN, CZĘĆ A, CZAS: 120 MIN.

Zadanie 1

W poczekalni do lekarza, w rzędzie złożonym z n krzeseł siedzi k pacjentów w ten sposób, że żadni dwaj z nich nie znajdujš się na sšsiednich krzesłach. Na ile różnych sposobów mogš być rozsadzeni ci pacjenci?

Zadanie 2

Pokaż, że jeli $\frac{3^n-1}{2}$ jest liczb
š pierwszš, to njest liczb
š pierwszš.

Zadanie 3

Oblicz liczbę funkcji ze zbioru $\{1, 2, ..., m\}$ <u>na</u> $\{1, 2, ..., n\}$.

Zadanie 4

W tamigtówce chińskich piercieni na pręt nałożonych jest n piercieni o numerach $1,2,3,\ldots,n$. Rozwiszanie łamigtówki polega na zdjęciu wszystkich piercieni z pręta. W jednym kroku możemy zdjść lub założyć piercień i gdy

- i = 1 lub
- \bullet piercień i-1 jest na pręcie a wszystkie wczeniejsze poza nim.

Jaka jest minimalna liczba kroków t_n koniecznych do rozwiszania tej łamigłówki? Ułóż zależnoć rekurencyjnš na t_n i rozwisż jš np. metodš anihilatorów wyznaczajśc jawny wzór na t_n .

Powodzenia!

EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2002, PIERWSZY TERMIN, CZĘĆ B, CZAS: 120 MIN.

Zadanie 5

Z szachownicy $n \times n$ usunięto dwa pola. Pokaż, że pozostał częć szachownicy można pokryć kostkami domina 1×2 dokładnie wtedy gdy n jest parzyste i usunięte pola s różnych kolorów.

Zadanie 6

Dany jest graf prosty G, n = |V(G)| > 3 w którym dla dowolnych trzech wierzchołków u, v, w istniejš co najmniej dwie sporód trzech krawędzi $\{u, v\}, \{v, w\}, \{w, u\}$. Wykaż, że w G istnieje cykl Hamiltona.

Zadanie 7

Niech wszystkie wierzchołki G poza v majš stopień d i niech indeks chromatyczny G wynosi d. Pokaż, że n = |V(G)| jest nieparzyste i $\deg(v) = 0$.

Zadanie 8

Każdš czšsteczkę węglowodoru o wzorze sumarycznym C_kH_{2k+2} można przedstawić w postaci grafu (spójnego). W grafie tym krawędzie oznaczajś wiszania chemiczne. Każdy atom wodoru (H) zwiszany jest z jednym innym atomem, a każdy atom węgla (C) zwiszany jest z czterema innymi atomami. Pokaż, że graf ten dla węglowodoru C_kH_{2k+2} jest drzewem. Każde dwa nieizomorficzne grafy tego typu wyznaczajś różne izomery. Ile jest różnych izomerów C_5H_{12} ?

POWODZENIA!