Algunos teoremas de geometría afín

Teorema de Tales

Tales de Mileto, (624 a.c. - 546 a.c)

Teorema de Pappus

Pappo (o Pappus) de Alejandría, (290 d.c. - 350 d.c.)

Teorema de Menelao

Menelao (o Menelaus) de Alejandría (70 d.c. - 140 d.c.)

Teorema de Ceva

Giovanni Ceva, (1648 - 1734)

Teorema de Desargues

Gérard Desargues (1591 - 1661)

Sea $\mathbb L$ una recta en un plano afín $\mathbb P$ y sea $\langle \overrightarrow{u} \rangle$ la dirección de una recta no paralela a $\mathbb L$. La aplicación $\pi: \mathbb P \longrightarrow \mathbb P$, tal que $\pi(a) \in \mathbb L$ y $\overrightarrow{a\pi(a)} \in \langle \overrightarrow{u} \rangle$, para todo $a \in \mathbb P$, se llama proyección sobre $\mathbb L$ en la dirección de $\langle \overrightarrow{u} \rangle$.

Sea $\mathbb L$ una recta en un plano afín $\mathbb P$ y sea $\langle \overrightarrow{u} \rangle$ la dirección de una recta no paralela a $\mathbb L$. La aplicación $\pi: \mathbb P \longrightarrow \mathbb P$, tal que $\pi(a) \in \mathbb L$ y $\overrightarrow{a\pi(a)} \in \langle \overrightarrow{u} \rangle$, para todo $a \in \mathbb P$, se llama proyección sobre $\mathbb L$ en la dirección de $\langle \overrightarrow{u} \rangle$.

Proposición

La aplicación π es afín.

Sea $\mathbb L$ una recta en un plano afín $\mathbb P$ y sea $\langle \overrightarrow{u} \rangle$ la dirección de una recta no paralela a $\mathbb L$. La aplicación $\pi: \mathbb P \longrightarrow \mathbb P$, tal que $\pi(a) \in \mathbb L$ y $\overrightarrow{a\pi(a)} \in \langle \overrightarrow{u} \rangle$, para todo $a \in \mathbb P$, se llama proyección sobre $\mathbb L$ en la dirección de $\langle \overrightarrow{u} \rangle$.

Proposición

La aplicación π es afín.

Demostración

Ejercicio

Sea $\mathbb L$ una recta en un plano afín $\mathbb P$ y sea $\langle \overrightarrow{u} \rangle$ la dirección de una recta no paralela a $\mathbb L$. La aplicación $\pi: \mathbb P \longrightarrow \mathbb P$, tal que $\pi(a) \in \mathbb L$ y $\overrightarrow{a\pi(a)} \in \langle \overrightarrow{u} \rangle$, para todo $a \in \mathbb P$, se llama proyección sobre $\mathbb L$ en la dirección de $\langle \overrightarrow{u} \rangle$.

Proposición

La aplicación π es afín.

Demostración

Ejercicio

Solución

Ver apuntes.

Sea $\mathcal{A}=(A,V)$ un espacio afín. Si $a,b,c,d\in A$ son cuatro puntos con $c\neq d$ tales que $\overrightarrow{ab}=\lambda \overrightarrow{cd}$, entonces la razón $\overrightarrow{ab}=\lambda$ está bien definida.

Sea $\mathcal{A}=(A,V)$ un espacio afín. Si $a,b,c,d\in A$ son cuatro puntos con $c\neq d$ tales que $\overrightarrow{ab}=\lambda \overrightarrow{cd}$, entonces la razón $\overrightarrow{ab}=\lambda$ está bien definida.

Ejercicio

Demuestra que se cumple la igualdad

$$\frac{\overrightarrow{ab}}{\overrightarrow{cd}} \cdot \frac{\overrightarrow{cd}}{\overrightarrow{ef}} = \frac{\overrightarrow{ab}}{\overrightarrow{ef}}$$

Sea $\mathcal{A}=(A,V)$ un espacio afín. Si $a,b,c,d\in A$ son cuatro puntos con $c\neq d$ tales que $\overrightarrow{ab}=\lambda \overrightarrow{cd}$, entonces la razón $\overrightarrow{ab}=\lambda$ está bien definida.

Ejercicio

Demuestra que se cumple la igualdad

$$\frac{\overrightarrow{ab}}{\overrightarrow{cd}} \cdot \frac{\overrightarrow{cd}}{\overrightarrow{ef}} = \frac{\overrightarrow{ab}}{\overrightarrow{ef}}.$$

Solución

Sea
$$\lambda = \overrightarrow{\frac{ab}{cd}}$$
 y $\lambda' = \overrightarrow{\frac{cd}{ef}}$.

Sea $\mathcal{A}=(A,V)$ un espacio afín. Si $a,b,c,d\in A$ son cuatro puntos con $c\neq d$ tales que $\overrightarrow{ab}=\lambda \overrightarrow{cd}$, entonces la razón $\overrightarrow{ab}=\lambda$ está bien definida.

Ejercicio

Demuestra que se cumple la igualdad

$$\frac{\overrightarrow{ab}}{\overrightarrow{cd}} \cdot \frac{\overrightarrow{cd}}{\overrightarrow{ef}} = \frac{\overrightarrow{ab}}{\overrightarrow{ef}}$$

Solución

Sea
$$\lambda = \frac{\overrightarrow{ab}}{\overrightarrow{cd}}$$
 y $\lambda' = \frac{\overrightarrow{cd}}{\overset{d}{ef}}$.

Solo hay que ver que $\lambda\lambda' = \frac{\overrightarrow{ab}}{e^f}$, y esto es claro ya que

Sea $\mathcal{A}=(A,V)$ un espacio afín. Si $a,b,c,d\in A$ son cuatro puntos con $c\neq d$ tales que $\overrightarrow{ab}=\lambda \overrightarrow{cd}$, entonces la razón $\overrightarrow{ab}=\lambda$ está bien definida.

Ejercicio

Demuestra que se cumple la igualdad

$$\frac{\overrightarrow{ab}}{\overrightarrow{cd}} \cdot \frac{\overrightarrow{cd}}{\overrightarrow{ef}} = \frac{\overrightarrow{ab}}{\overrightarrow{ef}}.$$

Solución

Sea
$$\lambda = \frac{\overrightarrow{ab}}{\overset{\rightarrow}{cd}} \text{ y } \lambda' = \frac{\overrightarrow{cd}}{\overset{\rightarrow}{ef}}.$$

Solo hay que ver que $\lambda\lambda'=\frac{\overrightarrow{ab}}{\overrightarrow{ef}}$, y esto es claro ya que

$$\overrightarrow{ab} = \lambda \overrightarrow{cd} = \lambda(\lambda' \overrightarrow{ef}) = \lambda \lambda' \overrightarrow{ef}.$$

Demuestra que se cumple la igualdad

$$\frac{\overrightarrow{ab}}{\overrightarrow{cd}} \cdot \frac{\overrightarrow{ef}}{\overrightarrow{gh}} = \frac{\overrightarrow{ab}}{\overrightarrow{gh}} \cdot \frac{\overrightarrow{ef}}{\overrightarrow{cd}}.$$

Demuestra que se cumple la igualdad

$$\frac{\overrightarrow{ab}}{\overrightarrow{cd}} \cdot \frac{\overrightarrow{ef}}{\overrightarrow{gh}} = \frac{\overrightarrow{ab}}{\overrightarrow{gh}} \cdot \frac{\overrightarrow{ef}}{\overrightarrow{cd}}.$$

Solución

Ver apuntes.

Demuestra que si $\frac{\overrightarrow{ab}}{\overrightarrow{ac}} = \frac{\overrightarrow{a'b}}{\overrightarrow{a'c}}$ con $b \neq c$, entonces a = a'.

Demuestra que si $\frac{\overrightarrow{ab}}{\overrightarrow{ac}} = \frac{\overrightarrow{a'b}}{\overrightarrow{a'}}$ con $b \neq c$, entonces a = a'.

Solución

Sea
$$\frac{\overrightarrow{ab}}{\overrightarrow{ac}} = \lambda = \frac{\overrightarrow{a'b}}{\overrightarrow{a'c}}$$
.

Nótese que
$$\overrightarrow{aa'} = \overrightarrow{ab} + \overrightarrow{ba'} = \lambda(\overrightarrow{ac} + \overrightarrow{ca'}) = \lambda \overrightarrow{aa'}$$
. Tenemos que $(1 - \lambda)\overrightarrow{aa'} = \overrightarrow{0}$.

Tenemos que
$$(1-\lambda)\overrightarrow{aa'} = \overrightarrow{0}$$
.

Ahora bien, como $b \neq c$, tenemos que $\lambda \neq 1$, y por eso a = a'.

Tales de Mileto, (624 a.c. - 546 a.c)

Teorema de Tales

Sea $\mathbb P$ un plano y sean $\mathbb L, \mathbb L', \mathbb L_1, \mathbb L_2$ cuatro rectas diferentes en $\mathbb P$. Sean o, a, a', b, b' be cuatro puntos diferentes del plano $\mathbb P$. Si $\mathbb L \cap \mathbb L' = \{o\}$, $\mathbb L \cap \mathbb L_1 = \{a\}$, $\mathbb L \cap \mathbb L_2 = \{b\}$, $\mathbb L' \cap \mathbb L_1 = \{a'\}$ y $\mathbb L' \cap \mathbb L_2 = \{b'\}$, entonces las siguientes afirmaciones se cumplen.

(i)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$.

(ii)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\overrightarrow{bb'} = \overrightarrow{ob}$ \overrightarrow{ob} \overrightarrow{oa} .

(i)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$.

Si $\mathbb{L}_1//\mathbb{L}_2$, entonces tomamos π como la proyección sobre \mathbb{L}' en la dirección de $\mathbb{L}_1.$

(i)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overset{}{oa'}}$.

Si $\mathbb{L}_1//\mathbb{L}_2$, entonces tomamos π como la proyección sobre \mathbb{L}' en la dirección de \mathbb{L}_1 . Nótese que $\pi(o)=o$, $\pi(a)=a'$ y $\pi(b)=b'$.

(i)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$.

Si $\mathbb{L}_1//\mathbb{L}_2$, entonces tomamos π como la proyección sobre \mathbb{L}' en la dirección de \mathbb{L}_1 . Nótese que $\pi(o)=o$, $\pi(a)=a'$ y $\pi(b)=b'$. Sea $\lambda\in\mathbb{K}$ tal que $\overrightarrow{ob}=\lambda\overrightarrow{oa}$.

(i)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$.

Si $\mathbb{L}_1//\mathbb{L}_2$, entonces tomamos π como la proyección sobre \mathbb{L}' en la dirección de \mathbb{L}_1 . Nótese que $\pi(o) = o$, $\pi(a) = a'$ y $\pi(b) = b'$. Sea $\lambda \in \mathbb{K}$ tal que $\overrightarrow{ob} = \lambda \overrightarrow{oa}$. Como π es afín, $\overrightarrow{\pi}(\overrightarrow{oa}) = \overrightarrow{oa'}$ y $\overrightarrow{\pi}(\overrightarrow{ob}) = \overrightarrow{ob'}$, lo que implica $\overrightarrow{ob'} = \overrightarrow{\pi}(\overrightarrow{ob}) = \overrightarrow{\pi}(\lambda \overrightarrow{oa}) = \lambda \overrightarrow{oa'}$.

(i)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$.

Si $\mathbb{L}_1//\mathbb{L}_2$, entonces tomamos π como la proyección sobre \mathbb{L}' en la dirección de \mathbb{L}_1 . Nótese que $\pi(o)=o$, $\pi(a)=a'$ y $\pi(b)=b'$. Sea $\lambda\in\mathbb{K}$ tal que $\overrightarrow{ob}=\lambda\overrightarrow{oa}$. Como π es afín, $\overrightarrow{\pi}(\overrightarrow{oa})=\overrightarrow{oa'}$ y $\overrightarrow{\pi}(\overrightarrow{ob})=\overrightarrow{ob'}$, lo que implica $\overrightarrow{ob'}=\overrightarrow{\pi}(\overrightarrow{ob})=\overrightarrow{\pi}(\lambda\overrightarrow{oa})=\lambda\overrightarrow{oa'}$. Por lo tanto,

$$\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \lambda = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}.$$

(i)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$.

Si $\mathbb{L}_1//\mathbb{L}_2$, entonces tomamos π como la proyección sobre \mathbb{L}' en la dirección de \mathbb{L}_1 . Nótese que $\pi(o)=o$, $\pi(a)=a'$ y $\pi(b)=b'$. Sea $\lambda\in\mathbb{K}$ tal que $\overrightarrow{ob}=\lambda\overrightarrow{oa}$. Como π es afín, $\overrightarrow{\pi}(\overrightarrow{oa})=\overrightarrow{oa'}$ y $\overrightarrow{\pi}(\overrightarrow{ob})=\overrightarrow{ob'}$, lo que implica $\overrightarrow{ob'}=\overrightarrow{\pi}(\overrightarrow{ob})=\overrightarrow{\pi}(\lambda\overrightarrow{oa})=\lambda\overrightarrow{oa'}$. Por lo tanto,

$$\overrightarrow{ob'} = \overrightarrow{\pi}(\overrightarrow{ob}) = \overrightarrow{\pi}(\lambda \overrightarrow{oa}) = \lambda \overrightarrow{oa'}$$
. Por lo tanto,

$$\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \lambda = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}.$$

Por otro lado, si
$$\lambda = \frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overset{}{oa'}}$$
, entonces la homotecia $h_{(o,\lambda)}$ transforma \mathbb{L}_1 en \mathbb{L}_2 ,

lo que implica que $\mathbb{L}_1//\mathbb{L}_2$.

(ii)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\dfrac{\overrightarrow{bb'}}{\overrightarrow{aa'}} = \dfrac{\overrightarrow{ob}}{\overrightarrow{oa}}$.

(ii)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\frac{\overrightarrow{bb'}}{\overrightarrow{aa'}} = \frac{\overrightarrow{ob}}{\overrightarrow{oa}}$.

Nótese que $\overrightarrow{oa'} = \overrightarrow{oa} + \overrightarrow{aa'}$ y $\overrightarrow{ob'} = \overrightarrow{ob} + \overrightarrow{bb'}$.

(ii)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\overrightarrow{\overrightarrow{bb'}} = \overrightarrow{\overrightarrow{ob}}$ $\overrightarrow{\overrightarrow{oa}}$.

Nótese que
$$\overrightarrow{oa'} = \overrightarrow{oa} + \overrightarrow{aa'}$$
 y $\overrightarrow{ob'} = \overrightarrow{ob} + \overrightarrow{bb'}$

Nótese que
$$\overrightarrow{oa'} = \overrightarrow{oa} + \overrightarrow{aa'}$$
 y $\overrightarrow{ob'} = \overrightarrow{ob} + \overrightarrow{bb'}$.
Por (i), solo hay que ver que $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$ si y solo si $\frac{\overrightarrow{bb'}}{\overrightarrow{aa'}} = \frac{\overrightarrow{ob}}{\overrightarrow{oa}}$.

(ii)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\overrightarrow{\overrightarrow{bb'}} = \overrightarrow{\overrightarrow{ob}}$ $\overrightarrow{\overrightarrow{oa}}$.

Nótese que
$$\overrightarrow{oa'} = \overrightarrow{oa} + \overrightarrow{aa'}$$
 y $\overrightarrow{ob'} = \overrightarrow{ob} + \overrightarrow{bb'}$

Nótese que $\overrightarrow{oa'} = \overrightarrow{oa} + \overrightarrow{aa'}$ y $\overrightarrow{ob'} = \overrightarrow{ob} + \overrightarrow{bb'}$. Por (i), solo hay que ver que $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$ si y solo si $\frac{\overrightarrow{bb'}}{\overrightarrow{oa'}} = \frac{\overrightarrow{ob}}{\overrightarrow{oa}}$. (\Rightarrow) Sea

$$\lambda = \frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$$

(ii)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\overrightarrow{\overrightarrow{bb'}} = \overrightarrow{\overrightarrow{ob}}$ $\overrightarrow{\overrightarrow{oa}}$.

Nótese que
$$\overrightarrow{oa'} = \overrightarrow{oa} + \overrightarrow{aa'}$$
 y $\overrightarrow{ob'} = \overrightarrow{ob} + \overrightarrow{bb'}$

Nótese que $\overrightarrow{oa'} = \overrightarrow{oa} + \overrightarrow{aa'}$ y $\overrightarrow{ob'} = \overrightarrow{ob} + \overrightarrow{bb'}$. Por (i), solo hay que ver que $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$ si y solo si $\frac{\overrightarrow{bb'}}{\overrightarrow{aa'}} = \frac{\overrightarrow{ob}}{\overrightarrow{oa}}$. (\Rightarrow) Sea

$$\lambda = \frac{ob}{\overrightarrow{oa}} = \frac{ob'}{\overrightarrow{oa'}}$$

Lo que implica $\overrightarrow{bb'} = \overrightarrow{ob'} - \overrightarrow{ob} = \lambda(\overrightarrow{oa'} - \overrightarrow{oa}) = \lambda \overrightarrow{aa'}$.

(ii)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\overrightarrow{\overrightarrow{bb'}} = \overrightarrow{\overrightarrow{ob}}$.

Nótese que
$$\overrightarrow{oa'} = \overrightarrow{oa} + \overrightarrow{aa'}$$
 y $\overrightarrow{ob'} = \overrightarrow{ob} + \overrightarrow{bb'}$

Nótese que $\overrightarrow{oa'} = \overrightarrow{oa} + \overrightarrow{aa'}$ y $\overrightarrow{ob'} = \overrightarrow{ob} + \overrightarrow{bb'}$. Por (i), solo hay que ver que $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$ si y solo si $\frac{\overrightarrow{bb'}}{\overrightarrow{aa'}} = \frac{\overrightarrow{ob}}{\overrightarrow{oa}}$. (\Rightarrow) Sea

$$\lambda = \frac{o\dot{b}}{\overrightarrow{oa}} = \frac{o\dot{b'}}{\overrightarrow{oa'}}$$

Lo que implica $\overrightarrow{bb'} = \overrightarrow{ob'} - \overrightarrow{ob} = \lambda(\overrightarrow{oa'} - \overrightarrow{oa}) = \lambda \overrightarrow{aa'}$. Por lo tanto, $\lambda = \frac{\overrightarrow{bb'}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob}}{\overrightarrow{oa}}$.

Por lo tanto,
$$\lambda = \frac{bb'}{\overrightarrow{oa'}} = \frac{ob}{\overrightarrow{oa}}$$
.

(ii)
$$\mathbb{L}_1//\mathbb{L}_2$$
 si y solo si $\overrightarrow{\frac{bb'}{aa'}} = \overrightarrow{\frac{ob}{oa}}$.

Nótese que
$$\overrightarrow{oa'} = \overrightarrow{oa} + \overrightarrow{aa'}$$
 y $\overrightarrow{ob'} = \overrightarrow{ob} + \overrightarrow{bb'}$

Nótese que $\overrightarrow{oa'} = \overrightarrow{oa} + \overrightarrow{aa'}$ y $\overrightarrow{ob'} = \overrightarrow{ob} + \overrightarrow{bb'}$. Por (i), solo hay que ver que $\overrightarrow{ob} = \overrightarrow{ob'}$ si y solo si $\overrightarrow{bb'} = \overrightarrow{ob}$. (\Rightarrow) Sea

$$\lambda = \frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{ob'}{\overrightarrow{oa'}}$$

Lo que implica $\overrightarrow{bb'} = \overrightarrow{ob'} - \overrightarrow{ob} = \lambda(\overrightarrow{oa'} - \overrightarrow{oa}) = \lambda \overrightarrow{aa'}$. Por lo tanto, $\lambda = \frac{\overrightarrow{bb'}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob}}{\overrightarrow{oa}}$.

Por lo tanto,
$$\lambda = \frac{bb'}{\overrightarrow{oa}} = \frac{\overrightarrow{ob}}{\overrightarrow{oa}}$$

(⇒) La prueba en el otro sentido es análoga. Escribe los detalles.

Sea \mathbb{P} un plano y sean $\mathbb{L}, \mathbb{L}', \mathbb{L}_1$ y \mathbb{L}_2 cuatro rectas diferentes en \mathbb{P} . Sean o, a, a', b, b' be cuatro puntos diferentes del plano \mathbb{P} . Si $\mathbb{L} \cap \mathbb{L}' = \{o\}$, $\mathbb{L} \cap \mathbb{L}_1 = \{a\}, \ \mathbb{L} \cap \mathbb{L}_2 = \{b\}, \ \mathbb{L}' \cap \mathbb{L}_1 = \{a'\} \ \text{y} \ \mathbb{L}' \cap \mathbb{L}_2 = \{b'\}. \ \text{Entonces} \ \mathbb{L}_1 / / \mathbb{L}_2 \ \text{si}$ y solo si $\frac{\overrightarrow{ob}}{\overrightarrow{ob}} = \frac{\overrightarrow{ob'}}{\overrightarrow{ob'}}$.

Solución

Por el teorema de Tales, $\mathbb{L}_1//\mathbb{L}_2$ si y solo si $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$.

Por lo tanto, solo hay que ver que $\frac{\overrightarrow{ob}}{\overrightarrow{oa}} = \frac{\overrightarrow{ob'}}{\overrightarrow{oa'}}$ si y solo si $\frac{\overrightarrow{ob}}{\overrightarrow{ab}} = \frac{\overrightarrow{ob'}}{\overrightarrow{ab'}}$.

Escribe los detalles...

Pappo (o Pappus) de Alejandría, (290 d.c. - 350 d.c.)

Teorema de Pappus

En un plano afín, sean a,b,c tres puntos de una recta \mathbb{L}_1 y a',b'c' tres puntos de una recta \mathbb{L}_2 distinta de \mathbb{L}_1 . Si $\mathbb{L}_{ab'}//\mathbb{L}_{ba'}$ y $\mathbb{L}_{bc'}//\mathbb{L}_{cb'}$, entonces $\mathbb{L}_{ac'}//\mathbb{L}_{ca'}$.

• Sea
$$\overrightarrow{ob} = \lambda_1 \overrightarrow{oa}$$
, $\overrightarrow{oc} = \lambda_2 \overrightarrow{ob}$

- Sea $\overrightarrow{ob} = \lambda_1 \overrightarrow{oa}$, $\overrightarrow{oc} = \lambda_2 \overrightarrow{ob}$
- Consideremos las homotecias $h_1=h_{(0,\lambda_1)}$ y $h_2=h_{(0,\lambda_2)}$. Sabemos que $h_1\circ h_2=h_2\circ h_1$.

- Sea $\overrightarrow{ob} = \lambda_1 \overrightarrow{oa}$, $\overrightarrow{oc} = \lambda_2 \overrightarrow{ob}$
- Consideremos las homotecias $h_1=h_{(0,\lambda_1)}$ y $h_2=h_{(0,\lambda_2)}$. Sabemos que $h_1\circ h_2=h_2\circ h_1$.
- Por el teorema de Tales $h_1(b') = a'$ y $h_2(c') = b'$.

- Sea $\overrightarrow{ob} = \lambda_1 \overrightarrow{oa}$, $\overrightarrow{oc} = \lambda_2 \overrightarrow{ob}$
- Consideremos las homotecias $h_1=h_{(0,\lambda_1)}$ y $h_2=h_{(0,\lambda_2)}$. Sabemos que $h_1\circ h_2=h_2\circ h_1$.
- Por el teorema de Tales $h_1(b') = a'$ y $h_2(c') = b'$.
- Como $h_2(h_1(a))=c$ y $h_1(h_2(c'))=a'$, tenemos que $h_1\circ h_2$ transforma la recta $\mathbb{L}_{ac'}$ en la recta $\mathbb{L}_{a'c}$.

Primero, asumimos $\mathbb{L}_1 \cap \mathbb{L}_2 = \{o\}$.

- Sea $\overrightarrow{ob} = \lambda_1 \overrightarrow{oa}$, $\overrightarrow{oc} = \lambda_2 \overrightarrow{ob}$
- Consideremos las homotecias $h_1=h_{(0,\lambda_1)}$ y $h_2=h_{(0,\lambda_2)}$. Sabemos que $h_1\circ h_2=h_2\circ h_1$.
- Por el teorema de Tales $h_1(b') = a'$ y $h_2(c') = b'$.
- Como $h_2(h_1(a)) = c$ y $h_1(h_2(c')) = a'$, tenemos que $h_1 \circ h_2$ transforma la recta $\mathbb{L}_{ac'}$ en la recta $\mathbb{L}_{a'c}$.
- Además, las homotecias transforman rectas en rectas paralelas, de ahí que $\mathbb{L}_{ac'}//\mathbb{L}_{a'c}.$

Primero, asumimos $\mathbb{L}_1 \cap \mathbb{L}_2 = \{o\}$.

- Sea $\overrightarrow{ob} = \lambda_1 \overrightarrow{oa}$, $\overrightarrow{oc} = \lambda_2 \overrightarrow{ob}$
- Consideremos las homotecias $h_1 = h_{(0,\lambda_1)}$ y $h_2 = h_{(0,\lambda_2)}$. Sabemos que $h_1 \circ h_2 = h_2 \circ h_1$.
- Por el teorema de Tales $h_1(b') = a'$ y $h_2(c') = b'$.
- Como $h_2(h_1(a)) = c$ y $h_1(h_2(c')) = a'$, tenemos que $h_1 \circ h_2$ transforma la recta $\mathbb{L}_{ac'}$ en la recta $\mathbb{L}_{a'c}$.
- Además, las homotecias transforman rectas en rectas paralelas, de ahí que $\mathbb{L}_{ac'}//\mathbb{L}_{a'c}.$

Finalmente, si $\mathbb{L}_1//\mathbb{L}_2$, entonces procedemos por analogía usando traslaciones, en lugar de homotecias (ver los detalles en los apuntes).

Menelao (o Menelaus) de Alejandría (70 d.c. - 140 d.c.)

Teorema de Menelao

En un plano afín, sea abc un triángulo y sean a',b' y c' puntos de los lados bc, ca y ab, respectivamente. Los puntos b',a' y c' son colineales si y solo si

$$\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = 1. \tag{1}$$

Primero vamos a asumir que b',a' y c' son colineales. Sea $\mathbb L$ la recta que pasa por esos tres puntos. Sea π la proyección sobre $\mathbb L$ en la dirección de un vector \overrightarrow{u} no paralelo a $\mathbb L$. Sean $\pi(a)=a''$, $\pi(b)=b''$ y $\pi(c)=c''$.

Primero vamos a asumir que b',a' y c' son colineales. Sea $\mathbb L$ la recta que pasa por esos tres puntos. Sea π la proyección sobre $\mathbb L$ en la dirección de un vector \overrightarrow{u} no paralelo a $\mathbb L$. Sean $\pi(a)=a''$, $\pi(b)=b''$ y $\pi(c)=c''$.

Por el teorema de Tales.

Primero vamos a asumir que b', a' y c' son colineales. Sea $\mathbb L$ la recta que pasa por esos tres puntos. Sea π la proyección sobre $\mathbb L$ en la dirección de un vector \overrightarrow{u} no paralelo a $\mathbb L$. Sean $\pi(a) = a''$, $\pi(b) = b''$ y $\pi(c) = c''$.

paralelo a \mathbb{L} . Sean $\pi(a)=a''$, $\pi(b)=b''$ y $\pi(c)=c''$. Por el teorema de Tales, $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}}=\frac{\overrightarrow{b''b}}{\overrightarrow{c''c}}, \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}}=\frac{\overrightarrow{c''c}}{\overrightarrow{a''a}}$ y $\frac{\overrightarrow{c'a}}{\overrightarrow{c'b}}=\frac{\overrightarrow{a''a}}{\overrightarrow{b''b}}$. Por lo tanto,

4 D > 4 D > 4 E > 4 E > E 990

Primero vamos a asumir que b',a' y c' son colineales. Sea $\mathbb L$ la recta que pasa por esos tres puntos. Sea π la proyección sobre $\mathbb L$ en la dirección de un vector \overrightarrow{u} no paralelo a $\mathbb L$. Sean $\pi(a)=a''$, $\pi(b)=b''$ y $\pi(c)=c''$.

paralelo a \mathbb{L} . Sean $\pi(a)=a''$, $\pi(b)=b''$ y $\pi(c)=c''$. Por el teorema de Tales, $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}}=\frac{\overrightarrow{b''b}}{\overrightarrow{c''c}}$, $\frac{\overrightarrow{b'c}}{\overrightarrow{b'a}}=\frac{\overrightarrow{c''c}}{\overrightarrow{a''a}}$ y $\frac{\overrightarrow{c'a}}{\overrightarrow{c'b}}=\frac{\overrightarrow{a''a}}{\overrightarrow{b''b}}$. Por lo tanto,

$$\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \overrightarrow{\overrightarrow{b'c}} \cdot \overrightarrow{\overrightarrow{c'a}} = \frac{\overrightarrow{b''b}}{\overrightarrow{c''c}} \cdot \overrightarrow{\overrightarrow{c''c}} \cdot \overrightarrow{\overrightarrow{a''a}} = 1.$$

Vamos a asumir ahora que $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = 1$. Veamos si b', a' y c' son colineales.

Vamos a asumir ahora que $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = 1$. Veamos si b', a' y c' son colineales. Sin perder generalidad, podemos asumir que $\mathbb{L}_{c'a'} \cap \mathbb{L}_{ac} \neq \varnothing$, ya que el caso $\mathbb{L}_{c'a'} / / \mathbb{L}_{ac}$, $\mathbb{L}_{c'b'} / / \mathbb{L}_{bc}$ and $\mathbb{L}_{a'b'} / / \mathbb{L}_{ab}$ conduce a $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} < 0$, que es una contradicción.

Vamos a asumir ahora que $\frac{\overrightarrow{a'b}}{a'c} \cdot \frac{\overrightarrow{b'c}}{b'a} \cdot \frac{\overrightarrow{c'a}}{c'b} = 1$. Veamos si b', a' y c' son colineales. Sin perder generalidad, podemos asumir que $\mathbb{L}_{c'a'} \cap \mathbb{L}_{ac} \neq \varnothing$, ya que el caso $\mathbb{L}_{c'a'} / / \mathbb{L}_{ac}$, $\mathbb{L}_{c'b'} / / \mathbb{L}_{bc}$ and $\mathbb{L}_{a'b'} / / \mathbb{L}_{ab}$ conduce a $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{b'a} \cdot \frac{\overrightarrow{c'a}}{c'b} < 0$, que es una contradicción.

Sea $\{b^*\} = \mathbb{L}_{c'a'} \cap \mathbb{L}_{ac}$. Como b^*, a' y c' son colineales,

Vamos a asumir ahora que $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{c'b} = 1$. Veamos si b', a' y c' son colineales. Sin perder generalidad, podemos asumir que $\mathbb{L}_{c'a'} \cap \mathbb{L}_{ac} \neq \varnothing$, ya que el caso $\mathbb{L}_{c'a'} / / \mathbb{L}_{ac}$, $\mathbb{L}_{c'b'} / / \mathbb{L}_{bc}$ and $\mathbb{L}_{a'b'} / / \mathbb{L}_{ab}$ conduce a $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} < 0$, que es una contradicción.

Sea $\{b^*\} = \mathbb{L}_{c'a'} \cap \mathbb{L}_{ac}$. Como b^*, a' y c' son colineales, por la primera parte del teorema, $\frac{a'b}{c'c} \cdot \frac{b}{b^*a} \cdot \frac{c'a}{c'b} = 1$. Por lo tanto,

$$\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = \frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b*c}}{\overrightarrow{b*a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}}.$$

Lo que implica que $\frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} = \frac{\overrightarrow{b*c}}{\overrightarrow{b*a}}$, y por eso $b' = b^*$.

Giovanni Ceva, (1648 - 1734)

Teorema de Ceva

En un plano afín, sea abc un triángulo y sean a',b', y c' puntos de los lados bc, ca y ab, respectivamente. Si las rectas $\mathbb{L}_{aa'}$, $\mathbb{L}_{bb'}$ y $\mathbb{L}_{cc'}$ son concurrentes o paralelas, entonces

$$\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = -1.$$
 (2)

Si $\mathbb{L}_{aa'}//\mathbb{L}_{bb'}//\mathbb{L}_{cc'}$, entonces por el teorema de Tales $\frac{\overrightarrow{b'c}}{b'a} = \frac{\overrightarrow{bc}}{\overrightarrow{ba'}}$ y $\frac{\overrightarrow{c'a}}{c'b} = \frac{\overrightarrow{ca'}}{\overrightarrow{cb}}$. De ahí que,

$$\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \overrightarrow{\overrightarrow{b'a}} \cdot \overrightarrow{\overrightarrow{c'a}} = \frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \overrightarrow{\overrightarrow{ba'}} \cdot \overrightarrow{\overrightarrow{ca'}} = -1.$$

Por lo tanto, se cumple

$$\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = -1.$$

Si $\mathbb{L}_{aa'} \cap \mathbb{L}_{bb'} \cap \mathbb{L}_{cc'} = \{o\}$ entonces aplicamos el teorema de Menelao para la recta b'ob y el triángulo cac', y para la recta a'oa y el triángulo cbc'. De ahí que

$$\frac{\overrightarrow{b'a}\cdot\overrightarrow{oc}\cdot\overrightarrow{oc}\cdot\overrightarrow{bc'}}{\overrightarrow{b'c}\cdot\overrightarrow{oc'}}\cdot\frac{\overrightarrow{bc'}}{\overrightarrow{ba}}=1\quad\text{y}\quad\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}}\cdot\frac{\overrightarrow{oc}}{\overrightarrow{oc}}\cdot\frac{\overrightarrow{ac'}}{\overrightarrow{ab}}=1.$$

De esas igualdades se deduce $\frac{\overrightarrow{b'a}}{\overrightarrow{b'c}} \cdot \frac{\overrightarrow{bc'}}{\overrightarrow{ba}} = \frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{ac'}}{\overrightarrow{ab}}$, y de ahí se obtiene

$$\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = -1.$$

Sea abc un triángulo, y a',b',c' puntos (diferentes de a,b y c) de los segmentos \overline{bc} , \overline{ca} y \overline{ab} , respectivamente. Prueba que si $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = -1$, entonces las rectas $\mathbb{L}_{aa'}$, $\mathbb{L}_{bb'}$ y $\mathbb{L}_{cc'}$ son concurrentes.

Sea abc un triángulo, y a',b',c' puntos (diferentes de a,b y c) de los segmentos \overline{bc} , \overline{ca} y \overline{ab} , respectivamente. Prueba que si $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = -1$, entonces las rectas $\mathbb{L}_{aa'}$, $\mathbb{L}_{bb'}$ y $\mathbb{L}_{cc'}$ son concurrentes.

Solución

Sea
$$\mathbb{L}_{aa'} \cap \mathbb{L}_{bb'} = \{o\}$$
 y $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = -1$. Sea $\{c^*\} = \mathbb{L}_{co} \cap \mathbb{L}_{ab}$.

Sea abc un triángulo, y a',b',c' puntos (diferentes de a,b y c) de los segmentos \overline{bc} , \overline{ca} y \overline{ab} , respectivamente. Prueba que si $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = -1$, entonces las rectas $\mathbb{L}_{aa'}$, $\mathbb{L}_{bb'}$ y $\mathbb{L}_{cc'}$ son concurrentes.

Solución

$$\mathsf{Sea}\ \mathbb{L}_{aa'} \cap \mathbb{L}_{bb'} = \{o\}\ \mathsf{y}\ \tfrac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \tfrac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \tfrac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = -1.\ \mathsf{Sea}\ \{c^*\} = \mathbb{L}_{co} \cap \mathbb{L}_{ab}.$$

Por el teorema de Ceva, $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c^*a}}{\overrightarrow{c^*b}} = -1$.

Sea abc un triángulo, y a',b',c' puntos (diferentes de a,b y c) de los segmentos \overline{bc} , \overline{ca} y \overline{ab} , respectivamente. Prueba que si $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = -1$, entonces las rectas $\mathbb{L}_{aa'}$, $\mathbb{L}_{bb'}$ y $\mathbb{L}_{cc'}$ son concurrentes.

Solución

Sea
$$\mathbb{L}_{aa'} \cap \mathbb{L}_{bb'} = \{o\}$$
 y $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c'a}}{\overrightarrow{c'b}} = -1$. Sea $\{c^*\} = \mathbb{L}_{co} \cap \mathbb{L}_{ab}$.

Por el teorema de Ceva, $\frac{\overrightarrow{a'b}}{\overrightarrow{a'c}} \cdot \frac{\overrightarrow{b'c}}{\overrightarrow{b'a}} \cdot \frac{\overrightarrow{c*a}}{\overrightarrow{c*b}} = -1$.

Por lo tanto, $\frac{\overrightarrow{c'a}}{c'\overrightarrow{b}} = \frac{\overrightarrow{c^*a}}{c^*\overrightarrow{b}}$, lo que implica que $c' = c^*$, y por eso $\mathbb{L}_{aa'}$, $\mathbb{L}_{bb'}$ and $\mathbb{L}_{cc'}$ son concurrentes.

Gérard Desargues (1591 - 1661)

Teorema de Desargues

Sea \mathcal{P} un plano afín. Si abc y a'b'c' son dos triángulos de \mathcal{P} , sin vértices comunes, cuyos lados son respectivamente paralelos, entonces las rectas $\mathbb{L}_{aa'}$, $\mathbb{L}_{bb'}$ y $\mathbb{L}_{cc'}$ son paralelas o concurrentes.

Con las premisas del teorema, $\mathbb{L}_{a'c'}$ es la paralela a \mathbb{L}_{ac} que pasa por a', y $\mathbb{L}_{b'c'}$ la paralela a \mathbb{L}_{bc} que pasa por b'.

Con las premisas del teorema, $\mathbb{L}_{a'c'}$ es la paralela a \mathbb{L}_{ac} que pasa por a', y $\mathbb{L}_{b'c'}$ la paralela a \mathbb{L}_{bc} que pasa por b'.

Caso 1.

Si las rectas $\mathbb{L}_{aa'}$, $\mathbb{L}_{bb'}$ y $\mathbb{L}_{cc'}$ son paralelas, entonces ya estamos.

Con las premisas del teorema, $\mathbb{L}_{a'c'}$ es la paralela a \mathbb{L}_{ac} que pasa por a', y $\mathbb{L}_{b'c'}$ la paralela a \mathbb{L}_{bc} que pasa por b'.

Caso 1.

Si las rectas $\mathbb{L}_{aa'}$, $\mathbb{L}_{bb'}$ y $\mathbb{L}_{cc'}$ son paralelas, entonces ya estamos.

Caso 2.

Si $\mathbb{L}_{aa'}\cap\mathbb{L}_{bb'}=\{o\}$, entonces la homotecia $h_{(o,\lambda)}$ que transforma a en a' también transforma b en b' (Tales nuevamente). Sea $c^*=h_{(o,\lambda)}(c)$. Como $h_{(o,\lambda)}$ transforma una recta en una paralela, $\mathbb{L}_{a'c^*}//\mathbb{L}_{ac}$ y $\mathbb{L}_{b'c^*}//\mathbb{L}_{bc}$.

Con las premisas del teorema, $\mathbb{L}_{a'c'}$ es la paralela a \mathbb{L}_{ac} que pasa por a', y $\mathbb{L}_{b'c'}$ la paralela a \mathbb{L}_{bc} que pasa por b'.

Caso 1.

Si las rectas $\mathbb{L}_{aa'}$, $\mathbb{L}_{bb'}$ y $\mathbb{L}_{cc'}$ son paralelas, entonces ya estamos.

Caso 2.

Si $\mathbb{L}_{aa'}\cap\mathbb{L}_{bb'}=\{o\}$, entonces la homotecia $h_{(o,\lambda)}$ que transforma a en a' también transforma b en b' (Tales nuevamente). Sea $c^*=h_{(o,\lambda)}(c)$. Como $h_{(o,\lambda)}$ transforma una recta en una paralela, $\mathbb{L}_{a'c^*}//\mathbb{L}_{ac}$ y $\mathbb{L}_{b'c^*}//\mathbb{L}_{bc}$.

De ahí que, $\mathbb{L}_{a'c'} = \mathbb{L}_{a'c^*}$, ya que hay una sola paralela a \mathbb{L}_{ac} que pasa por a'. Análogamente, $\mathbb{L}_{b'c'} = \mathbb{L}_{b'c^*}$

Con las premisas del teorema, $\mathbb{L}_{a'c'}$ es la paralela a \mathbb{L}_{ac} que pasa por a', y $\mathbb{L}_{b'c'}$ la paralela a \mathbb{L}_{bc} que pasa por b'.

Caso 1.

Si las rectas $\mathbb{L}_{aa'}$, $\mathbb{L}_{bb'}$ y $\mathbb{L}_{cc'}$ son paralelas, entonces ya estamos.

Caso 2.

Si $\mathbb{L}_{aa'} \cap \mathbb{L}_{bb'} = \{o\}$, entonces la homotecia $h_{(o,\lambda)}$ que transforma a en a' también transforma b en b' (Tales nuevamente). Sea $c^* = h_{(o,\lambda)}(c)$. Como $h_{(o,\lambda)}$ transforma una recta en una paralela, $\mathbb{L}_{a'c^*}//\mathbb{L}_{ac}$ y $\mathbb{L}_{b'c^*}//\mathbb{L}_{bc}$.

De ahí que, $\mathbb{L}_{a'c'} = \mathbb{L}_{a'c^*}$, ya que hay una sola paralela a \mathbb{L}_{ac} que pasa por a'.

Análogamente, $\mathbb{L}_{b'c'} = \mathbb{L}_{b'c^*}$

En resumen,
$$\{c^*\} = \{c'\} = \mathbb{L}_{a'c'} \cap \mathbb{L}_{b'c'}$$
, y por eso el resultado se cumple. \square