Circalize

Author: Sherry Yuan

Program Description:

Circalize is a game where a ball swings around a pin (circular motion), once the mouse is pressed, the ball will be released and undergo projectile motion. By pressing the mouse again, the ball can re-connect to the nearest pin, if the ball's instantaneous path is tangent to the circle around the pin, the ball can successfully attach the pin and undergo circular motion.

IPO Chart

Input	Processing	Output
Mouse events	Detach ball from pin/re-	-welcoming screen
-click buttons	establish connection to a	-instruction screen
-game control	pingame screen	
	If the ball is connected but	
Key Events	not in circular motion, then	
-g	check if the ball's path is	
	tangent to the circle.	
	Key Events: Switch to	
	gravitational mode	

List of Knowns & Unknown

Known	Unknown
G (gravitational acceleration 0 / 0.13)	Game state (0-5) control by the user
Shadow (always follows that path of the ball)	Ball's speed (according to the game's
Pin's position is random, moving from right	process)
to left	Game over (to be determined by the game
	process)

Methods

tangent	Check if ball's path is tangent to the nearest center	
intro	Draw game intro page	
instruct	Draw the instruction page	
game	Draw game page	
game over	Draw game over page	
radian	Convert from degree to radian	
degree	Convert from radian to degree	

Classes

Center	Store position of the pin	
Shadow	Store position of the shadow	
Paint (inherited JPanel)	Class for drawing and displaying	
var	Class for storing variables for all class	
Main	Run and execute the whole program	
Events	Mouse / key Listeners	

Output Screen Sketch

Simple Flow Chart

Main page → click start → game page → game over page (if loss) → Main / Game page

Main page → instruction page → main / game page → game over page (if loss) → Main /

Game page

If mouse-clicked \rightarrow start = 1 (game started) \rightarrow ball in free fall \rightarrow if the mouse clicked again \rightarrow connect to nearest pin. It does not undergo circular motion unless the motion path is tangent.

If ball off the screen and not in circular motion \rightarrow game over page \rightarrow Main / Game page

Test/Debugging

- 1. Test if tangent can be found accurately by running the game.
- 2. Test for the accurate gravitational acceleration on screen
- 3. Test for relationship between angular velocity and linear velocity
- 4. Test if center of the spin matches the position of current pin
- 5. Test the allowance angle for tangent check is enough
- 6. Test if pins & block with position less than 0 on x-axis is deleted

7. Boundary check on collision of the ball with the block

Drawbacks/Limitation:

The relationship between linear velocity and angular velocity is now still an approximate estimate.

Hard for the balls to attach at the tangent

Crude graphics of pin & block