МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2 по дисциплине «ИНФОРМАТИКА»

по теме: СИНТЕЗ ПОМЕХОУСТОЙЧИВОГО КОДА

Вариант №466985 = 68

Выполнил:

Студент группы Р3117 Павленко И. Д.

Проверил:

Марухленко Д. С.

СОДЕРЖАНИЕ

1	ЗАД	[АНИЕ	3
2	OCH	НОВНЫЕ ЭТАПЫ ВЫЧИСЛЕНИЯ	4
	2.1	Задание 1: №50	4
	2.2	Задание 2: №87	4
	2.3	Задание 3: №12	5
	2.4	Задание 4: №91	6
	2.5	Задание 5: №68	6
	2.6	Задание 6: $N_{2}(50 + 87 + 12 + 91 + 68)*4 = 1232$	7
	2.7	Дополнительное задание	8
3	ЗАК	ЛЮЧЕНИЕ	10
CI	ІИСС	К ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	11

1 ЗАДАНИЕ

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждо-го часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

2 ОСНОВНЫЕ ЭТАПЫ ВЫЧИСЛЕНИЯ

2.1 Задание 1: №50

r1	r2	i1	r3	i2	i3	i4
1	0	0	1	0	1	1

Таблица 1 — № 50

Посчитаем контрольные суммы:

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

 $s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$
 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	r ₂	i_1	r ₃	i_2	i ₃	i ₄	S
1	X	-	X	-	X	-	X	S_1
2	-	X	X	-	-	X	X	S_2
4	-	-	ı	X	X	X	X	S_3

Таблица 2 — Таблица кода Хэмминга

$$s = (s_1, s_2, s_3) = 001$$

Ошибка содержится в символе r_3 .

Так как ошибка содержалась в контрольном бите, сообщение передалось корректно.

Правильное сообщение: 0011.

2.2 Задание 2: №87

r1	r2	i1	r3	i2	i3	i4
0	0	1	1	1	1	0

Таблица 3 — № 87

Посчитаем контрольные суммы:

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

 $s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	r ₂	i_1	r ₃	i_2	i ₃	i ₄	S
1	X	-	X	-	X	_	X	S_1
2	-	X	X	-	-	X	X	S_2
4	-	-	ı	X	X	X	X	S_3

Таблица 4 — Таблица кода Хэмминга

$$s = (s_1, s_2, s_3) = 001$$

Ошибка содержится в символе r_3 .

Так как ошибка содержалась в контрольном бите, сообщение передалось корректно.

Правильное сообщение: 1110.

2.3 Задание 3: №12

r1	r2	i1	r3	i2	i3	i4
1	1	0	0	0	0	0

Таблица 5 — № 12

Посчитаем контрольные суммы:

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$$

	1	2	3	4	5	6	7	
2 ^x	r_1	r ₂	i ₁	r ₃	i_2	i ₃	i ₄	S
1	X	-	X	-	X	-	X	S_1
2	-	X	X	-	-	X	X	S ₂
4	-	-	-	X	X	X	X	S_3

Таблица 6 — Таблица кода Хэмминга

$$s = (s_1, s_2, s_3) = 110$$

Ошибка содержится в символе i_1 .

Правильное сообщение: 1000.

2.4 Задание 4: №91

r1	r2	i1	r3	i2	i3	i4
0	1	1	1	1	1	0

Таблица 7 — № 91

Посчитаем контрольные суммы:

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	r ₂	i_1	r ₃	i_2	i ₃	i ₄	S
1	X	-	X	-	X	-	X	S_1
2	-	X	X	-	-	X	X	S_2
4	-	-	-	X	X	X	X	S_3

Таблица 8 — Таблица кода Хэмминга

$$s = (s_1, s_2, s_3) = 011$$

Ошибка содержится в символе із.

Правильное сообщение: 1100.

2.5 Задание 5: №68

1	r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11
(0	0	1	1	1	0	0	0	1	0	0	0	1	0	0

Таблица 9 — №68

Посчитаем контрольные суммы:

$$s_{1} = r_{1} \oplus i_{1} \oplus i_{2} \oplus i_{4} \oplus i_{5} \oplus i_{7} \oplus i_{9} \oplus i_{11} = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$s_{2} = r_{2} \oplus i_{1} \oplus i_{3} \oplus i_{4} \oplus i_{6} \oplus i_{7} \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 = 1$$

$$s_{3} = r_{3} \oplus i_{2} \oplus i_{3} \oplus i_{4} \oplus i_{8} \oplus i_{9} \oplus i_{10} \oplus i_{11} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$s_{4} = r_{4} \oplus i_{5} \oplus i_{6} \oplus i_{7} \oplus i_{8} \oplus i_{9} \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	\mathbf{r}_1	r ₂	i_1	r ₃	i_2	i ₃	i ₄	r ₄	i ₅	i ₆	i ₇	i ₈	i ₉	i ₁₀	i ₁₁	S
1	X	-	X	-	X	-	X	-	X	-	X	-	X	-	X	S_1
2	-	X	X	-	-	X	X	-	-	X	X	-	-	X	X	S ₂
4	-	-	-	X	X	X	X	-	-	-	-	X	X	X	X	S_3
8	_	-	-	_	-	-	-	X	X	X	X	X	X	X	X	S ₄

Таблица 10 — Таблица кода Хэмминга

$$s = (s_1, s_2, s_3, s_4) = 0110$$

Ошибка содержится в символе із.

Правильное сообщение: 11<mark>1</mark>01000100.

2.6 Задание 6: $N_{2}(50 + 87 + 12 + 91 + 68)*4 = 1232$

1232 - Количество информационных разрядов, которое содержит передаваемое сообщение.

Должно соблюдаться неравенство: $2^{r} \ge r+i+1$, где r - число контрольных разрядов, i - число информационных разрядов.

Минимальное г, при котором соблюдается неравенство - 11.

$$2^{11} \ge 1232 + 11 + 1$$

Коэффициент избытычности = $\frac{r}{i+r} = \frac{11}{1232+11} \approx 0,00885$

2.7 Дополнительное задание

Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

```
a = input()
2 r1, r2, i1, r3, i2, i3, i4 = [int(i) for i in a]
s1 = (r1 + i1 + i2 + i4) \% 2
4 	ext{ s2} = (r2 + i1 + i3 + i4) \% 2
  s3 = (r3 + i2 + i3 + i4) \% 2
  s = int(f'{s3}{s2}{s1}', 2)
   if s == 0:
       print(f'No errors: {i1}{i2}{i3}{i4}')
   if s == 1:
10
       print("r1 error")
11
       print(f'Correct message: {i1}{i2}{i3}{i4}')
12
   elif s == 2:
13
       print("r2 error")
14
       print(f'Correct message: {i1}{i2}{i3}{i4}')
15
   elif s == 3:
16
       print("i1 error")
17
       print(f'Correct message: {int(not i1)}{i2}{i3}{i4}')
18
   elif s == 4:
19
       print("r3 error")
20
       print(f'Correct message: {i1}{i2}{i3}{i4}')
2.1
   elif s == 5:
22
       print("i2 error")
23
       print(f'Correct message: {i1}{int(not i2)}{i3}{i4}')
24
   elif s == 6:
25
       print("i3 error")
26
       print(f'Correct message: {i1}{i2}{int(not i3)}{i4}')
27
```

Листинг 1 — Код программы

```
0111110
i3 error
Correct message: 1100
```

Рисунок 1 — Результат выполнения программы

3 ЗАКЛЮЧЕНИЕ

В ходе выполнения работы я узнал, что такое код Хэмминга, познакомился с принципом его работы, научился искать ошибки в сообщении.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. *А.И. Королев*. Коды и устройства помехоустойчивого кодирования информации. Мн., 2002. С. 286.
- 2. *Л.С. Казарин*. Введение в теорию кодирования, сжатия и восстановления информации : учебно-методическое пособие. Ярославский гос. университет им. П.Г. Демидова, 2020. С. 112.