UGA Algebra Qualifying Exam Questions

D. Zack Garza

Tuesday 9th June, 2020

Contents

1	Spring 2020	4
	1.1 1	4
	1.2 2	5
	1.3 3	5
	1.4 4	5
	1.5 5	5
	1.6 6	5
	1.7 7	6
	1.8 8	6
2	Spring 2019	6
	2.1 1	6
	2.2 2	6
	2.3 3	6
	2.4 4	6
	2.5 5	7
	2.6 6	7
	2.7 7	7
	2.8 8	8
3	E-II 2010	8
3	Fall 2019	8
	3.1 1	_
	3.2 2	8
	3.3 3	8
	3.4 4	8
	3.5 5	9
	3.6 6	9
	3.7 7	9
	3.8 8	9
4	2019 Course Exams	10
	4.1 Midterm	10
	4.9 Fi1	10

5	Sprii	g 2018	11
	5.1	1	11
	5.2	2	11
	5.3	3	11
	5.4	1	12
	5.5	5	12
	5.6	3	12
	5.7	7	13
	5.8	3	13
6	Fall	018	13
	6.1	1	13
	6.2	2	13
	6.3	3	
	6.4	4	14
	6.5)	14
	6.6	3	
	6.7	7	
,	C	2017	15
7	5prii 7.1	g 2017	15
	7.2	2	
	7.3	3	
	7.4	1	
	7.5	5	
	7.6	3	
	7.7	7	
	7.8	B	
n	- -11	017	17
8	Fall 8.1	01 <i>1</i> L	
	8.2	2	•
	8.3	2	
		1	17
	8.4		
	8.5	5	_
	8.6 8.7	3	
9	Sprii 9.1	g 2016 l	19 19
	9.1		
		2	
	9.3		
	9.4	1	
	9.5	5	_
	9.6	j	_
	9.7	7	_
	9.8	3	20

Contents 2

10	Fall	20	16																															:	20
	10.1	1														 													 						20
	10.2	2														 													 						20
	10.3	3													_			_																	21
	10.4																																		21
	10.5	_																																	21
	10.6	-																																	$\frac{21}{21}$
	10.7																																		$\frac{21}{21}$
	10.8	1	•		•		•	•	•		•	•	 •	•	•	 	•	•			•	•	 ٠	•	 •	•	•	٠	 	•	٠	•	•	•	21
11	Sprii	nσ	20	15	ľ	·W	/in	nte	r '	20 [.]	15	")																						•	21
	11.1	_			•							,				 													 						$\frac{-}{21}$
	11.2																																		21
	11.3																																		$\frac{21}{22}$
	11.4																																		$\frac{22}{22}$
	11.5																																		$\frac{22}{22}$
																																			$\frac{22}{22}$
	11.6																																		
	11.7																																		23
	11.8	8	•		•		•	٠	٠		٠	٠	 •	٠	•	 	٠	•	•		٠	•	 ٠	٠	 ٠		•	٠	 	•	٠	٠	•	•	23
12	Fall	20	15																																23
	12.1																																		23 23
	12.1																																		23 23
																																			23 23
	12.3																																		_
	12.4																																		23
	12.5																																		24
	12.6		•																																24
	12.7																																		24
	12.8	8	•					•			•		 •		•	 		•						•	 •				 						24
12	Sprii	næ	20	11																															25
	13.1																																		_
	13.1																																		$\frac{25}{25}$
	13.3		•		•	•	•	•	•		•	•	 •	•	•	 •	•	•	•	• •	•	•	 ٠	•	 •	•	•	•		•	•	٠	•		$\frac{25}{25}$
		•	•		•		•	•	•	• •	•	٠	 •	٠	•	 	٠	•	•		٠	•	 ٠	•	 •		•	•	 •	•	•	•	•		
	13.4																																		25
	13.5																																		25
	13.6																																		26
	13.7	7	•		•		•	٠	•		•	•	 •	•	•	 	•	•			•	•	 ٠	•	 ٠		•	•	 		•	٠	•	•	26
1/1	Fall	20	1/																																26
14	14.1																																		20 26
																																			$\frac{20}{26}$
	14.2																																		-
	14.3																																		26
	14.4																																		27
	14.5																																		27
	14.6																																		27
	14.7																																		27
	14.8	8														 													 						27

Contents 3

15	Spring	2	01	3																																	27
	15.1 1																																		 		27
	15.2 2																																		 		28
	15.3 3																																		 		28
	15.4 4																																		 		28
	15.5 5																																		 		28
	15.6 6																																		 		28
	15.7 7																																		 		28
	15.8 8																																		 		29
16	Fall 20	113	₹																																		29
10	16.1 1																																				29
	16.2 2																																				29
	16.3 3	•																																			29
	16.4 4																																				29
	16.5 5																																				30
	16.6 6																																				30
	16.7 7	-																																			30
17	Fall 20																																				30
	17.1 1			•		•																•								•							30
	$17.2 \ 2$																				 •	•					 •	•		•		•			 		31
	$17.3 \ 3$	•	•		•			•				•					•			•	 •	•				•	 •	•		•		•			 		31
	$17.4 \ 4$			-	•	-	-	•	-	-	-	-	-	-	•	•	•	-	•	-		-	-													-	31
	$17.5 \ 5$	•	•		•			•				•					•			•	 •	•				•	 •	•		•		•			 		31
	17.6 6	•	•		•			•				•					•			•	 •	•				•	 •	•		•		•			 		31
	17.7 7																																				31
	17.8 8	٠		•	•	•		•		•	•	•				•	•		•	•	 •		•				 •	•			•	•	•		 	•	32
18	Spring	2	01	1																																	32
	18.1 1																																		 		32
	18.2 2																																		 		32
	18.3 3																																		 		32
	18.4 4																																		 		32
	18.5 5																																				32
	18.6 6																																		 		33
	18.7 7																																		 		33
																					 •	•	•	•	•	-											

1 Spring 2020

1.1 1

- a. Show that any group of order 2020 is solvable.
- b. Give (without proof) a classification of all abelian groups of order 2020.
- c. Describe one nonabelian group of order 2020.

1.2 2

Let H be a normal subgroup of a finite group G where the order of H and the index of H in G are relatively prime. Prove that no other subgroup of G has the same order as H.

1.3 3

Let E be an extension field of F and $\alpha \in E$ be algebraic of odd degree over F.

- a. Show that $F(\alpha) = F(\alpha^2)$.
- b. Prove that α^{2020} is algebraic of odd degree over F.

1.4 4

Let $f(x) = x^4 - 2 \in \mathbb{Q}[x]$.

- a. Define what it means for a finite extension field E of a field F to be a Galois extension.
- b. Determine the Galois group $\operatorname{Gal}(E/\mathbb{Q})$ for the polynomial f(x), and justify your answer carefully.
- c. Exhibit a subfield K in (b) such that $\mathbb{Q} \leq K \leq E$ with K not a Galois extension over \mathbb{Q} . Explain.

1.5 5

Let R be a ring and $f: M \longrightarrow N$ and $g: N \longrightarrow M$ be R-module homomorphisms such that $g \circ f = \mathrm{id}_M$. Show that $N \cong \mathrm{im} \ f \oplus \ker g$.

1.6 6

Let R be a ring with unity.

- a. Give a definition for a free module over R.
- b. Define what it means for an R-module to be torsion free.
- c. Prove that if F is a free module, then any short exact sequence of R-modules of the following form splits:

$$0 \longrightarrow N \longrightarrow M \longrightarrow F \longrightarrow 0.$$

d. Let R be a PID. Show that any finitely generated R-module M can be expressed as a direct sum of a torsion module and a free module. You may assume that a finitely generated torsion module over a PID is free.

1.7 7

Let

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 6 & 1 \\ -16 & -16 & -2 \end{bmatrix} \in M_3(\mathbf{C}).$$

- a. Find the Jordan canonical form J of A.
- b. Find an invertible matrix P such that $P^{-1}AP = J$. You should not need to compute P^{-1} .
- c. Write down the minimal polynomial of A.

1.8 8

Let $T: V \longrightarrow V$ be a linear transformation where V is a finite-dimensional vector space over \mathbb{C} . Prove the Cayley-Hamilton theorem: if p(x) is the characteristic polynomial of T, then p(T) = 0. You may use canonical forms.

2 Spring 2019

2.1 1.

Let A be a square matrix over the complex numbers. Suppose that A is nonsingular and that A^{2019} is diagonalizable over \mathbb{C} .

Show that A is also diagonalizable over \mathbb{C} .

2.2 2.

Let $F = \mathbb{F}_p$, where p is a prime number.

- (a) Show that if $\pi(x) \in F[x]$ is irreducible of degree d, then $\pi(x)$ divides $x^{p^d} x$.
- (b) Show that if $\pi(x) \in F[x]$ is an irreducible polynomial that divides $x^{p^n} x$, then $\deg \pi(x)$ divides n.

2.3 3.

How many isomorphism classes are there of groups of order 45?

Describe a representative from each class.

2.4 4.

For a finite group G, let c(G) denote the number of conjugacy classes of G.

(a) Prove that if two elements of G are chosen uniformly at random, then the probability they commute is precisely

$$\frac{c(G)}{|G|}$$
.

- (b) State the class equation for a finite group.
- (c) Using the class equation (or otherwise) show that the probability in part (a) is at most

$$\frac{1}{2} + \frac{1}{2[G:Z(G)]}$$
.

Here, as usual, Z(G) denotes the center of G.

2.5 5.

Let R be an integral domain. Recall that if M is an R-module, the rank of M is defined to be the maximum number of R-linearly independent elements of M.

- (a) Prove that for any R-module M, the rank of Tor(M) is 0.
- (b) Prove that the rank of M is equal to the rank of M/Tor(M).
- (c) Suppose that M is a non-principal ideal of R.

Prove that M is torsion-free of rank 1 but not free.

2.6 6.

Let R be a commutative ring with 1.

Recall that $x \in R$ is nilpotent iff xn = 0 for some positive integer n.

- (a) Show that every proper ideal of R is contained within a maximal ideal.
- (b) Let J(R) denote the intersection of all maximal ideals of R.

Show that $x \in J(R) \iff 1 + rx$ is a unit for all $r \in R$.

(c) Suppose now that R is finite. Show that in this case J(R) consists precisely of the nilpotent elements in R.

2.7 7.

Let p be a prime number. Let A be a $p \times p$ matrix over a field F with 1 in all entries except 0 on the main diagonal.

Determine the Jordan canonical form (JCF) of A

- (a) When $F = \mathbb{Q}$,
- (b) When $F = \mathbb{F}_p$.

Hint: In both cases, all eigenvalues lie in the ground field. In each case find a matrix P such that $P^{-1}AP$ is in JCF.

2.8 8.

Let $\zeta = e^{2\pi i/8}$.

- (a) What is the degree of $\mathbb{Q}(\zeta)/\mathbb{Q}$?
- (b) How many quadratic subfields of $\mathbb{Q}(\zeta)$ are there?
- (c) What is the degree of $\mathbb{Q}(\zeta, \sqrt[4]{2})$ over \mathbb{Q} ?

3 Fall 2019

3.1 1

Let G be a finite group with n distinct conjugacy classes. Let $g_1 \cdots g_n$ be representatives of the conjugacy classes of G.

Prove that if $g_ig_j = g_jg_i$ for all i, j then G is abelian.

3.2 2

Let G be a group of order 105 and let P, Q, R be Sylow 3, 5, 7 subgroups respectively.

- (a) Prove that at least one of Q and R is normal in G.
- (b) Prove that G has a cyclic subgroup of order 35.
- (c) Prove that both Q and R are normal in G.
- (d) Prove that if P is normal in G then G is cyclic.

3.3 3

Let R be a ring with the property that for every $a \in R, a^2 = a$.

- (a) Prove that R has characteristic 2.
- (b) Prove that R is commutative.

3.4 4

Let F be a finite field with q elements.

Let n be a positive integer relatively prime to q and let ω be a primitive nth root of unity in an extension field of F.

Let $E = F[\omega]$ and let k = [E : F].

- (a) Prove that n divides $q^k 1$.
- (b) Let m be the order of q in $\mathbb{Z}/n\mathbb{Z}$. Prove that m divides k.
- (c) Prove that m = k.

3.5 5

Let R be a ring and M an R-module.

Recall that the set of torsion elements in M is defined by

$$\operatorname{Tor}(m) = \{ m \in M \mid \exists r \in R, \ r \neq 0, \ rm = 0 \}.$$

- (a) Prove that if R is an integral domain, then Tor(M) is a submodule of M.
- (b) Give an example where Tor(M) is not a submodule of M.
- (c) If R has zero-divisors, prove that every non-zero R-module has non-zero torsion elements.

3.6 6

Let R be a commutative ring with multiplicative identity. Assume Zorn's Lemma.

(a) Show that

$$N = \{ r \in R \mid r^n = 0 \text{ for some } n > 0 \}$$

is an ideal which is contained in any prime ideal.

- (b) Let r be an element of R not in N. Let S be the collection of all proper ideals of R not containing any positive power of r. Use Zorn's Lemma to prove that there is a prime ideal in S.
- (c) Suppose that R has exactly one prime ideal P. Prove that every element r of R is either nilpotent or a unit.

3.7 7

Let ζ_n denote a primitive nth root of $1 \in \mathbb{Q}$. You may assume the roots of the minimal polynomial $p_n(x)$ of ζ_n are exactly the primitive nth roots of 1.

Show that the field extension $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is Galois and prove its Galois group is $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

How many subfields are there of $\mathbb{Q}(\zeta_{20})$?

3.8 8

Let $\{e_1, \dots, e_n\}$ be a basis of a real vector space V and let

$$\Lambda := \left\{ \sum r_i e_i \mid r_i \in \mathbb{Z} \right\}$$

Let \cdot be a non-degenerate $(v \cdot w = 0 \text{ for all } w \in V \iff v = 0)$ symmetric bilinear form on V such that the Gram matrix $M = (e_i \cdot e_j)$ has integer entries.

Define the dual of Λ to be

$$\Lambda^{\vee} := \{ v \in V \mid v \cdot x \in \mathbb{Z} \text{ for all } x \in \Lambda \}.$$

- (a) Show that $\Lambda \subset \Lambda^{\vee}$.
- (b) Prove that $\det M \neq 0$ and that the rows of M^{-1} span Λ^{\vee} .
- (c) Prove that $\det M = |\Lambda^{\vee}/\Lambda|$.

4 2019 Course Exams

4.1 Midterm

- 1. Let G be a group of order p^2q for p,q prime. Show that G has a nontrivial normal subgroup.
- 2. Let G be a finite group and let P be a sylow p-subgroup for p prime. Show that N(N(P)) =N(P) where N is the normalizer in G.
- 3. Show that there exist no simple groups of order 148.
- 4. Let p be a prime. Show that $S_p = \langle \tau, \sigma \rangle$ where τ is a transposition and σ is a p-cycle.
- 5. Let G be a nonabelian group of order p^3 for p prime. Show that Z(G) = [G, G] 6. Compute the Galois group of $f(x) = x^3 3x 3 \in \mathbb{Q}[x]/\mathbb{Q}$.
- 7. Show that a field k of characteristic $p \neq 0$ is perfect \iff for every $x \in k$ there exists a $y \in k$ such that $y^p = x$.
- 8. Let k be a field of characteristic $p \neq 0$ and $f \in k[x]$ irreducible. Show that $f(x) = g(x^{p^d})$ where $g(x) \in k[x]$ is irreducible and separable. Concluded that every root of f has the same multiplicity p^d in the splitting field of f over k.
- 9. Let $n \geq 3$ and ζ_n be a primitive *n*th root of unity. Show that $[\mathbb{Q}(\zeta_n + \zeta_n^{-1}) : \mathbb{Q}] = \varphi(n)/2$ for φ the totient function.
- 10. Let L/K be a finite normal extension
 - Show that if L/K is cyclic and E/K is normal with L/E/K then L/E and E/K are cyclic.
 - Show that if L/K is cyclic then there exists exactly one extension E/K of degree n with L/E/K for each divisor n of [L:K].

4.2 Final

- 1. Let A be an abelian group, and show A is a \mathbb{Z} -module in a unique way.
- 2. Consider the \mathbb{Z} -submodule N of \mathbb{Z}^3 spanned by $f_1 = [-1, 0, 1], f_2 = [2, -3, 1], f_3 = [0, 3, 1], f_4 =$ [3, 1, 5]. Find a basis for N and describe \mathbb{Z}^3/N .
- 3. Let R = k[x] for k a field and let M be the R-module given by

$$M = \frac{k[x]}{(x-1)^3} \oplus \frac{k[x]}{(x^2+1)^2} \oplus \frac{k[x]}{(x-1)(x^2+1)^4} \oplus \frac{k[x]}{(x+2)(x^2+1)^2}.$$

Describe the elementary divisors and invariant factors of M.

- 4. Let I=(2,x) be an ideal in $R=\mathbb{Z}[x]$, and show that I is not a direct sum of nontrivial cyclic R-modules.
- 5. Let R be a PID.
- \bullet Classify irreducible R-modules up to isomorphism.
- Classify indecomposable R-modules up to isomorphism.
- 6. Let V be a finite-dimensional k-vector space and $T: V \longrightarrow V$ a non-invertible k-linear map. Show that there exists a k-linear map $S: V \longrightarrow V$ with $T \circ S = 0$ but $S \circ T \neq 0$.

- 7. Let $A \in M_n(\mathbb{C})$ with $A^2 = A$. Show that A is similar to a diagonal matrix, and exhibit an explicit diagonal matrix similar to A.
- 8. Exhibit the rational canonical form for
- $A \in M_6(\mathbb{Q})$ with minimal polynomial $(x-1)(x^2+1)^2$.
- $A \in M_{10}(\mathbb{Q})$ with minimal polynomial $(x^2+1)^2(x^3+1)$.
- 9. Exhibit the rational and Jordan canonical forms for the following matrix $A \in M_4(\mathbb{C})$:

$$A = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -2 & -2 & 0 & 1 \\ -2 & 0 & -1 & -2 \end{array}\right).$$

10. Show that the eigenvalues of a Hermitian matrix A are real and that $A = PDP^{-1}$ where P is an invertible matrix with orthogonal columns.

5 Spring 2018

5.1 1.

- (a) Use the Class Equation (equivalently, the conjugation action of a group on itself) to prove that any p-group (a group whose order is a positive power of a prime integer p) has a nontrivial center.
- (b) Prove that any group of order p^2 (where p is prime) is abelian.
- (c) Prove that any group of order $5^2 \cdot 7^2$ is abelian.
- (d) Write down exactly one representative in each isomorphism class of groups of order $5^2 \cdot 7^2$.

5.2 2.

Let $f(x) = x^4 - 4x^2 + 2 \in \mathbb{Q}[x]$.

- (a) Find the splitting field K of f, and compute $[K : \mathbb{Q}]$.
- (b) Find the Galois group G of f, both as an explicit group of automorphisms, and as a familiar abstract group to which it is isomorphic.
- (c) Exhibit explicitly the correspondence between subgroups of G and intermediate fields between \mathbb{Q} and k.

5.3 3.

Let K be a Galois extension of \mathbb{Q} with Galois group G, and let E_1, E_2 be intermediate fields of K which are the splitting fields of irreducible $f_i(x) \in \mathbb{Q}[x]$.

Let
$$E = E_1 E_2 \subset K$$
.

Let $H_i = \operatorname{Gal}(K/E_i)$ and $H = \operatorname{Gal}(K/E)$.

(a) Show that $H = H_1 \cap H_2$.

- (b) Show that H_1H_2 is a subgroup of G.
- (c) Show that

$$Gal(K/(E_1 \cap E_2)) = H_1H_2.$$

5.4 4.

Let

$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 1 & -3 \\ 1 & 2 & -4 \end{bmatrix} \in M_3(\mathbb{C})$$

- (a) Find the Jordan canonical form J of A.
- (b) Find an invertible matrix P such that $P^{-1}AP = J$.

You should not need to compute P^{-1} .

5.5 5.

Let

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{and} \quad N = \begin{pmatrix} x & u \\ -y & -v \end{pmatrix}$$

over a commutative ring R, where b and x are units of R. Prove that

$$MN = \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix} \implies MN = 0.$$

5.6 6.

Let

$$M = \{(w, x, y, z) \in \mathbb{Z}^4 \mid w + x + y + z \in 2\mathbb{Z}\},\$$

and

$$N = \{(w, x, y, z) \in \mathbb{Z}^4 \mid 4 \mid (w - x), 4 \mid (x - y), 4 \mid (y - z)\}.$$

(a) Show that N is a \mathbb{Z} -submodule of M.

(b) Find vectors $u_1, u_2, u_3, u_4 \in \mathbb{Z}^4$ and integers d_1, d_2, d_3, d_4 such that

$$\{u_1, u_2, u_3, u_4\}$$

is a free basis for M, and

$$\{d_1u_1, d_2u_2, d_3u_3, d_4u_4\}$$

is a free basis for N .

(c) Use the previous part to describe M/N as a direct sum of cyclic \mathbb{Z} -modules.

5.7 7.

Let R be a PID and M be an R-module. Let p be a prime element of R. The module M is called $\langle p \rangle$ -primary if for every $m \in M$ there exists k > 0 such that $p^k m = 0$.

- (a) Suppose M is $\langle p \rangle$ -primary. Show that if $m \in M$ and $t \in R$, $t \notin \langle p \rangle$, then there exists $a \in R$ such that atm = m.
- (b) A submodule S of M is said to be *pure* if $S \cap rM = rS$ for all $r \in R$. Show that if M is $\langle p \rangle$ -primary, then S is pure if and only if $S \cap p^k M = p^k S$ for all $k \geq 0$.

5.8 8.

Let R = C[0, 1] be the ring of continuous real-valued functions on the interval [0, 1]. Let I be an ideal of R.

- (a) Show that if $f \in I$, $a \in [0, 1]$ are such that $f(a) \neq 0$, then there exists $g \in I$ such that $g(x) \geq 0$ for all $x \in [0, 1]$, and g(x) > 0 for all x in some open neighborhood of a.
- (b) If $I \neq R$, show that the set $Z(I) = \{x \in [0,1] \mid f(x) = 0 \text{ for all } f \in I\}$ is nonempty.
- (c) Show that if I is maximal, then there exists $x_0 \in [0,1]$ such that $I = \{f \in R \mid f(x_0) = 0\}$.

6 Fall 2018

6.1 1.

Let G be a finite group whose order is divisible by a prime number p. Let P be a normal p-subgroup of G (so $|P| = p^c$ for some c).

- (a) Show that P is contained in every Sylow p-subgroup of G.
- (b) Let M be a maximal proper subgroup of G. Show that either $P \subseteq M$ or $|G/M| = p^b$ for some $b \le c$.

6.2 2.

(a) Suppose the group G acts on the set X. Show that the stabilizers of elements in the same orbit are conjugate.

(b) Let G be a finite group and let H be a proper subgroup. Show that the union of the conjugates of H is strictly smaller than G, i.e.

$$\bigcup_{g \in G} gHg^{-1} \subsetneq G$$

(c) Suppose G is a finite group acting transitively on a set S with at least 2 elements. Show that there is an element of G with no fixed points in S.

6.3 3.

Let $F \subset K \subset L$ be finite degree field extensions. For each of the following assertions, give a proof or a counterexample.

- (a) If L/F is Galois, then so is K/F.
- (b) If L/F is Galois, then so is L/K.
- (c) If K/F and L/K are both Galois, then so is L/F.

6.4 4.

Let V be a finite dimensional vector space over a field (the field is not necessarily algebraically closed).

Let $\varphi:V\longrightarrow V$ be a linear transformation. Prove that there exists a decomposition of V as $V=U\oplus W$, where U and W are φ -invariant subspaces of V, $\varphi|_U$ is nilpotent, and $\varphi|_W$ is nonsingular.

6.5 5.

Let A be an $n \times n$ matrix.

- (a) Suppose that v is a column vector such that the set $\{v, Av, ..., A^{n-1}v\}$ is linearly independent. Show that any matrix B that commutes with A is a polynomial in A.
- (b) Show that there exists a column vector v such that the set $\{v, Av, ..., A^{n-1}v\}$ is linearly independent \iff the characteristic polynomial of A equals the minimal polynomial of A.

6.6 6.

Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is maximal if there is no R-module P with $N \subsetneq P \subsetneq M$.

- (a) Show that an R-submodule N of M is maximal $\iff M/N$ is a simple R-module: i.e., M/N is nonzero and has no proper, nonzero R-submodules.
- (b) Let M be a \mathbb{Z} -module. Show that a \mathbb{Z} -submodule N of M is maximal $\iff \#M/N$ is a prime number.
- (c) Let M be the \mathbb{Z} -module of all roots of unity in \mathbb{C} under multiplication. Show that there is no maximal \mathbb{Z} -submodule of M.

6.7 7.

Let R be a commutative ring.

(a) Let $r \in R$. Show that the map

$$r \bullet : R \longrightarrow R$$

 $x \mapsto rx$.

is an R-module endomorphism of R.

- (b) We say that r is a **zero-divisor** if $r \bullet$ is not injective. Show that if r is a zero-divisor and $r \neq 0$, then the kernel and image of R each consist of zero-divisors.
- (c) Let $n \ge 2$ be an integer. Show: if R has exactly n zero-divisors, then $\#R \le n^2$.
- (d) Show that up to isomorphism there are exactly two commutative rings R with precisely 2 zero-divisors.

You may use without proof the following fact: every ring of order 4 is isomorphic to exactly one of the following:

$$\frac{\mathbb{Z}}{4\mathbb{Z}}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2+t+1)}, \quad \frac{\frac{\mathbb{Z}}{2\mathbb{Z}}[t]}{(t^2-t)}, \quad \frac{\mathbb{Z}}{(t^2)}.$$

7 Spring 2017

7.1 1

Let G be a finite group and $\pi: G \longrightarrow \operatorname{Sym}(G)$ the Cayley representation. (Recall that this means that for an element $x \in G$, $\pi(x)$ acts by left translation on G.)

Prove that $\pi(x)$ is an odd permutation \iff the order $|\pi(x)|$ of $\pi(x)$ is even and $|G|/|\pi(x)|$ is odd.

7.2 2

- a. How many isomorphism classes of abelian groups of order 56 are there? Give a representative for one of each class.
- b. Prove that if G is a group of order 56, then either the Sylow-2 subgroup or the Sylow-7 subgroup is normal.
- c. Give two non-isomorphic groups of order 56 where the Sylow-7 subgroup is normal and the Sylow-2 subgroup is *not* normal. Justify that these two groups are not isomorphic.

7.3 3

Let R be a commutative ring with 1. Suppose that M is a free R-module with a finite basis X.

- a. Let $I \subseteq R$ be a proper ideal. Prove that M/IM is a free R/I-module with basis X', where X' is the image of X under the canonical map $M \longrightarrow M/IM$.
- b. Prove that any two bases of M have the same number of elements. You may assume that the result is true when R is a field.

7.4 4

- a. Let R be an integral domain with quotient field F. Suppose that p(x), a(x), b(x) are monic polynomials in F[x] with p(x) = a(x)b(x) and with $p(x) \in R[x]$, a(x) not in R[x], and both a(x), b(x) not constant. Prove that R is not a UFD. (You may assume Gauss' lemma)
- b. Prove that $\mathbb{Z}[2\sqrt{2}]$ is not a UFD.

Hint: let $p(x) = x^2 - 2$.

7.5 5

Let R be an integral domain and let M be a nonzero torsion R-module.

- a. Prove that if M is finitely generated then the annihilator in R of M is nonzero.
- b. Give an example of a non-finitely generated torsion R-module whose annihilator is (0), and justify your answer.

7.6 6

Let A be an $n \times n$ matrix with all entries equal to 0 except for the n-1 entries just above the diagonal being equal to 2.

- a. What is the Jordan canonical form of A, viewed as a matrix in $M_n(\mathbb{C})$?
- b. Find a nonzero matrix $P \in M_n(\mathbb{C})$ such that $P^{-1}AP$ is in Jordan canonical form.

7.7 7

Let F be a field and let $f(x) \in F[x]$.

- a. Define what a splitting field of f(x) over F is.
- b. Let F now be a finite field with q elements. Let E/F be a finite extension of degree n > 0. Exhibit an explicit polynomial $g(x) \in F[x]$ such that E/F is a splitting field of g(x) over F. Fully justify your answer.
- c. Show that the extension E/F in (b) is a Galois extension.

7.8 8

a. Let K denote the splitting field of $x^5 - 2$ over \mathbb{Q} . Show that the Galois group of K/\mathbb{Q} is isomorphic to the group of invertible matrices

$$\left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right)$$
 where $a \in \mathbb{F}_5^{\times}$ and $b \in \mathbb{F}_5$.

b. Determine all intermediate fields between K and $\mathbb Q$ which are Galois over $\mathbb Q$.

8 Fall 2017

8.1 1.

Suppose the group G acts on the set A. Assume this action is faithful (recall that this means that the kernel of the homomorphism from G to $\operatorname{Sym}(A)$ which gives the action is trivial) and transitive (for all a, b in A, there exists g in G such that $g \cdot a = b$.)

(a) For $a \in A$, let G_a denote the stabilizer of a in G. Prove that for any $a \in A$,

$$\bigcap_{\sigma \in G} \sigma G_a \sigma^{-1} = \{1\}.$$

(b) Suppose that G is abelian. Prove that |G| = |A|. Deduce that every abelian transitive subgroup of S_n has order n.

8.2 2.

(a) Classify the abelian groups of order 36.

For the rest of the problem, assume that G is a non-abelian group of order 36.

You may assume that the only subgroup of order 12 in S_4 is A_4 and that A_4 has no subgroup of order 6.

- (b) Prove that if the 2-Sylow subgroup of G is normal, G has a normal subgroup N such that G/N is isomorphic to A_4 .
- (c) Show that if G has a normal subgroup N such that G/N is isomorphic to A_4 and a subgroup H isomorphic to A_4 it must be the direct product of N and H.
- (d) Show that the dihedral group of order 36 is a non-abelian group of order 36 whose Sylow-2 subgroup is not normal.

8.3 3.

Let F be a field. Let f(x) be an irreducible polynomial in F[x] of degree n and let g(x) be any polynomial in F[x]. Let p(x) be an irreducible factor (of degree m) of the polynomial f(g(x)).

Prove that n divides m. Use this to prove that if r is an integer which is not a perfect square, and n is a positive integer then every irreducible factor of $x^{2n} - r$ over $\mathbb{Q}[x]$ has even degree.

8.4 4.

- (a) Let f(x) be an irreducible polynomial of degree 4 in $\mathbb{Q}[x]$ whose splitting field K over \mathbb{Q} has Galois group $G = S_4$.
 - Let θ be a root of f(x). Prove that $\mathbb{Q}[\theta]$ is an extension of \mathbb{Q} of degree 4 and that there are no intermediate fields between \mathbb{Q} and $\mathbb{Q}[\theta]$.
- (b) Prove that if K is a Galois extension of \mathbb{Q} of degree 4, then there is an intermediate subfield between K and \mathbb{Q} .

8.5 5.

A ring R is called *simple* if its only two-sided ideals are 0 and R.

- (a) Suppose R is a commutative ring with 1. Prove R is simple if and only if R is a field.
- (b) Let k be a field. Show the ring $M_n(k)$, $n \times n$ matrices with entries in k, is a simple ring.

8.6 6.

For a ring R, let U(R) denote the multiplicative group of units in R. Recall that in an integral domain R, $r \in R$ is called *irreducible* if r is not a unit in R, and the only divisors of r have the form ru with u a unit in R.

We call a non-zero, non-unit $r \in R$ prime in R if $r \mid ab \implies r \mid a$ or $r \mid b$. Consider the ring $R = \{a + b\sqrt{-5} \mid a, b \in Z\}$.

- (a) Prove R is an integral domain.
- (b) Show $U(R) = \{\pm 1\}.$
- (c) Show $3, 2 + \sqrt{-5}$, and $2 \sqrt{-5}$ are irreducible in R.
- (d) Show 3 is not prime in R.
- (e) Conclude R is not a PID.

8.7 7.

Let F be a field and let V and W be vector spaces over F .

Make V and W into F[x]-modules via linear operators T on V and S on W by defining $X \cdot v = T(v)$ for all $v \in V$ and $X \cdot w = S(w)$ for all $w \in W$.

Denote the resulting F[x]-modules by V_T and W_S respectively.

- (a) Show that an F[x]-module homomorphism from V_T to W_S consists of an F-linear transformation $R: V \longrightarrow W$ such that RT = SR.
- (b) Show that $VT \cong WS$ as F[x]-modules \iff there is an F-linear isomorphism $P: V \longrightarrow W$ such that $T = P^{-1}SP$.
- (c) Recall that a module M is simple if $M \neq 0$ and any proper submodule of M must be zero. Suppose that V has dimension 2. Give an example of F, T with V_T simple.
- (d) Assume F is algebraically closed. Prove that if V has dimension 2, then any V_T is not simple.

9 Spring 2016

9.1 1

Let

$$A = \begin{pmatrix} -3 & 3 & -2 \\ -7 & 6 & -3 \\ 1 & -1 & 2 \end{pmatrix} \in M_3(\mathbf{C}).$$

- a. Find the Jordan canonical form J of A.
- b. Find an invertible matrix P such that $P^{-1}AP = J$. You do not need to compute P^{-1} .

9.2 2

Let $K = \mathbb{Q}[\sqrt{2} + \sqrt{5}].$

- a. Find $[K:\mathbb{Q}]$.
- b. Show that K/\mathbb{Q} is Galois, and find the Galois group G of K/\mathbb{Q} .
- c. Exhibit explicitly the correspondence between subgroups of G and intermediate fields between \mathbb{Q} and K.

9.3 3

- a. State the three Sylow theorems.
- b. Prove that any group of order 1225 is abelian.
- c. Write down exactly one representative in each isomorphism class of abelian groups of order 1225.

9.4 4

Let R be a ring with the following commutative diagram of R-modules, where each row represents a short exact sequence of R-modules:

Prove that if α and γ are isomorphisms then β is an isomorphism.

9.5 5

Let G be a finite group acting on a set X. For $x \in X$, let G_x be the stabilizer of x and $G \cdot x$ be the orbit of x.

a. Prove that there is a bijection between the left cosets G/G_x and $G \cdot x$.

b. Prove that the center of every finite p-group G is nontrivial by considering that action of G on X = G by conjugation.

9.6 6

Let K be a Galois extension of a field F with [K : F] = 2015. Prove that K is an extension by radicals of the field F.

9.7 7

Let $D = \mathbb{Q}[x]$ and let M be a $\mathbb{Q}[x]$ -module such that

$$M \cong \frac{\mathbb{Q}[x]}{(x-1)^3} \oplus \frac{\mathbb{Q}[x]}{(x^2+1)^3} \oplus \frac{\mathbb{Q}[x]}{(x-1)(x^2+1)^5} \oplus \frac{\mathbb{Q}[x]}{(x+2)(x^2+1)^2}.$$

Determine the elementary divisors and invariant factors of M.

9.8 8

Let R be a simple rng (a nonzero ring which is not assume to have a 1, whose only two-sided ideals are (0) and R) satisfying the following two conditions:

- i. R has no zero divisors, and
- ii. If $x \in R$ with $x \neq 0$ then $2x \neq 0$, where $2x \coloneqq x + x$.

Prove the following:

- a. For each $x \in R$ there is one and only one element $y \in R$ such that x = 2y.
- b. Suppose $x, y \in R$ such that $x \neq 0$ and 2(xy) = x, then yz = zy for all $z \in R$.

You can get partial credit for (b) by showing it in the case R has a 1.

10 Fall 2016

10.1 1

Let G be a finite group and $s, t \in G$ be two distinct elements of order 2. Show that subgroup of G generated by s and t is a dihedral group.

Recall that the dihedral groups of order 2m for $m \geq 2$ are of the form

$$D_{2m} = \left\langle \sigma, \tau \mid \sigma^m = 1 = \tau^2, \tau \sigma = \sigma^{-1} \tau \right\rangle.$$

10.2 2

Let A, B be two $n \times n$ matrices with the property that AB = BA. Suppose that A and B are diagonalizable. Prove that A and B are simultaneously diagonalizable.

10.3 3

How many groups are there up to isomorphism of order pq where p < q are prime integers?

10.4 4

Set $f(x) = x^3 - 5 \in \mathbb{Q}[x]$.

- a. Find the splitting field K of f(x) over \mathbb{Q} .
- b. Find the Galois group G of K over \mathbb{Q} .
- c. Exhibit explicitly the correspondence between subgroups of G and intermediate fields between \mathbb{Q} and K.

10.5 5

How many monic irreducible polynomials over \mathbb{F}_p of prime degree ℓ are there? Justify your answer.

10.6 6

Let R be a ring and $f: M \longrightarrow N$ and $g: N \longrightarrow M$ be R-module homomorphisms such that $g \circ f = \mathrm{id}_M$. Show that $N \cong \mathrm{im} \ f \oplus \ker g$.

10.7 7

- a. Define what it means for a group G to be solvable.
- b. Show that every group G of order 36 is solvable.

Hint: you can use that S_4 is solvable.

10.8 1

11 Spring 2015 ("Winter 2015")

11.1 1

For a prime p, let G be a finite p-group and let N be a normal subgroup of G of order p. Prove that N is contained in the center of G.

11.2 2

Let \mathbb{F} be a finite field.

- a. Give (with proof) the decomposition of the additive group $(\mathbb{F}, +)$ into a direct sum of cyclic groups.
- b. The *exponent* of a finite group is the least common multiple of the orders of its elements. Prove that a finite abelian group has an element of order equal to its exponent.

c. Prove that the multiplicative group $(\mathbb{F}^{\times}, \cdot)$ is cyclic.

11.3 3

Let F be a field and V a finite dimensional F-vector space, and let $A, B : V \longrightarrow V$ be commuting F-linear maps. Suppose there is a basis \mathcal{B}_1 with respect to which A is diagonalizable and a basis \mathcal{B}_2 with respect to which B is diagonalizable.

Prove that there is a basis \mathcal{B}_3 with respect to which A and B are both diagonalizable.

11.4 4

Let N be a positive integer, and let G be a finite group of order N.

a. Let $\operatorname{Sym} G$ be the set of all bijections from $G \longrightarrow G$ viewed as a group under composition. Note that $\operatorname{Sym} G \cong S_N$. Prove that the Cayley map

$$C: G \longrightarrow \operatorname{Sym} G$$
$$g \mapsto (x \mapsto gx)$$

is an injective homomorphism.

- b. Let $\Phi: \operatorname{Sym} G \longrightarrow S_N$ be an isomorphism. For $a \in G$ define $\varepsilon(a) \in \{\pm 1\}$ to be the sign of the permutation $\Phi(C(a))$. Suppose that a has order d. Prove that $\varepsilon(a) = -1 \iff d$ is even and N/d is odd.
- c. Suppose N > 2 and $n \equiv 2 \mod 4$. Prove that G is not simple.

Hint: use part (b).

11.5 5

Let
$$f(x) = x^4 - 5 \in \mathbb{Q}[x]$$
.

- a. Compute the Galois group of f over \mathbb{Q} .
- b. Compute the Galois group of f over $\mathbb{Q}(\sqrt{5})$.

11.6 6

Let F be a field and n a positive integer, and consider

$$A = \left[\begin{array}{ccc} 1 & \dots & 1 \\ & \ddots & \\ 1 & \dots & 1 \end{array} \right] \in M_n(F).$$

Show that A has a Jordan normal form over F and find it.

Hint: treat the cases $n \cdot 1 \neq 0$ in F and $n \cdot 1 = 0$ in F separately.

11.7 7

Let R be a commutative ring, and $S \subset R$ be a nonempty subset that does not contain 0 such that for all $x, y \in S$ we have $xy \in S$. Let \mathcal{I} be the set of all ideals $I \subseteq R$ such that $I \cap S = \emptyset$.

Show that for every ideal $I \in \mathcal{I}$, there is an ideal $J \in \mathcal{I}$ such that $I \subset J$ and J is not properly contained in any other ideal in \mathcal{I} .

Prove that every such ideal J is prime.

11.8 8

Let R be a PID and M a finitely generated R-module.

a. Prove that there are R-submodules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

such that for all $0 \le i \le n-1$, the module M_{i+1}/M_i is cyclic.

b. Is the integer n in part (a) uniquely determined by M? Prove your answer.

12 Fall 2015

12.1 1

Let G be a group containing a subgroup H not equal to G of finite index. Prove that G has a normal subgroup which is contained in every conjugate of H which is of finite index.

12.2 2

Let G be a finite group, H a p-subgroup, and P a sylow p-subgroup for p a prime. Let H act on the left cosets of P in G by left translation.

Prove that this is an orbit under this action of length 1.

Prove that xP is an orbit of length $1 \iff H$ is contained in xPx^{-1} .

12.3 3

Let R be a rng (a ring without 1) which contains an element u such that for all $y \in R$, there exists an $x \in R$ such that xu = y.

Prove that R contains a maximal left ideal.

Hint: imitate the proof (using Zorn's lemma) in the case where R does have a 1.

12.4 4

Let R be a PID and $(a_1) < (a_2) < \cdots$ be an ascending chain of ideals in R. Prove that for some n, we have $(a_j) = (a_n)$ for all $j \ge n$.

12.5 5

Let $u = \sqrt{2 + \sqrt{2}}, v = \sqrt{2 - \sqrt{2}}, \text{ and } E = \mathbb{Q}(u).$

- a. Find (with justification) the minimal polynomial f(x) of u over \mathbb{Q} .
- b. Show $v \in E$, and show that E is a splitting field of f(x) over \mathbb{Q} .
- c. Determine the Galois group of E over \mathbb{Q} and determine all of the intermediate fields F such that $\mathbb{Q} \subset F \subset E$.

12.6 6

a. Let G be a finite group. Show that there exists a field extension K/F with Gal(K/F) = G.

You may assume that for any natural number n there is a field extension with Galois group S_n .

- b. Let K be a Galois extension of F with |Gal(K/F)| = 12. Prove that there exists an intermediate field E of K/F with [E:F] = 3.
- c. With K/F as in (b), does an intermediate field L necessarily exist satisfying [L:F]=2? Give a proof or counterexample.

12.7 7

- a. Show that two 3×3 matrices over \mathbb{C} are similar \iff their characteristic polynomials are equal and their minimal polynomials are equal.
- b. Does the conclusion in (a) hold for 4×4 matrices? Justify your answer with a proof or counterexample.

12.8 8

Let V be a vector space over a field F and V^{\vee} its dual. A symmetric bilinear form (\cdot, \cdot) on V is a map $V \times V \longrightarrow F$ satisfying

$$(av_1 + bv_2, w) = a(v_1, w) + b(v_2, w)$$
 and $(v_1, v_2) = (v_2, v_1)$

for all $a, b \in F$ and $v_1, v_2 \in V$. The form is nondegenerate if the only element $w \in V$ satisfying (v, w) = 0 for all $v \in V$ is w = 0.

Suppose (\cdot, \cdot) is a nondegenerate symmetric bilinear form on V. If W is a subspace of V, define

$$W \perp := \{ v \in V \mid (v, w) = 0 \text{ for all } w \in W \}.$$

- a. Show that if X, Y are subspaces of V with $Y \subset X$, then $X \perp \subseteq Y \perp$.
- b. Define an injective linear map

$$\psi: Y \perp /X \perp \hookrightarrow (X/Y)^{\vee}$$

which is an isomorphism if V is finite dimensional.

13 Spring 2014

13.1 1

Let p, n be integers such that p is prime and p does not divide n. Find a real number k = k(p, n) such that for every integer $m \ge k$, every group of order $p^m n$ is not simple.

13.2 2

Let $G \subset S_9$ be a Sylow-3 subgroup of the symmetric group on 9 letters.

- a. Show that G contains a subgroup H isomorphic to $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ by exhibiting an appropriate set of cycles.
- b. Show that H is normal in G.
- c. Give generators and relations for G as an abstract group, such that all generators have order 3. Also exhibit elements of S_9 in cycle notation corresponding to these generators.
- d. Without appealing to the previous parts of the problem, show that G contains an element of order 9.

13.3 3

Let $F \subset C$ be a field extension with C algebraically closed.

- a. Prove that the intermediate field $C_{\text{alg}} \subset C$ consisting of elements algebraic over F is algebraically closed.
- b. Prove that if $F \longrightarrow E$ is an algebraic extension, there exists a homomorphism $E \longrightarrow C$ that is the identity on F.

13.4 4

Let $E \subset \mathbb{C}$ denote the splitting field over \mathbb{Q} of the polynomial $x^3 - 11$.

a. Prove that if n is a squarefree positive integer, then $\sqrt{n} \notin E$.

Hint: you can describe all quadratic extensions of \mathbb{Q} contained in E.

- b. Find the Galois group of $(x^3 11)(x^2 2)$ over \mathbb{Q} .
- c. Prove that the minimal polynomial of $11^{1/3} + 2^{1/2}$ over $\mathbb Q$ has degree 6.

13.5 5

Let R be a commutative ring and $a \in R$. Prove that a is not nilpotent \iff there exists a commutative ring S and a ring homomorphism $\varphi : R \longrightarrow S$ such that $\varphi(a)$ is a unit.

Note: by definition, a is nilpotent \iff there is a natural number n such that $a^n = 0$.

13.6 6

Let R be a commutative ring with identity and let n be a positive integer.

- a. Prove that every surjective R-linear endomorphism $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is injective.
- b. Show that an injective R-linear endomorphism of R^n need not be surjective.

13.7 7

Let $G = GL(3, \mathbb{Q}[x])$ be the group of invertible 3×3 matrices over $\mathbb{Q}[x]$. For each $f \in \mathbb{Q}[x]$, let S_f be the set of 3×3 matrices A over $\mathbb{Q}[x]$ such that $\det(A) = cf(x)$ for some nonzero constant $c \in \mathbb{Q}$.

a. Show that for $(P,Q) \in G \times G$ and $A \in S_f$, the formula

$$(P,Q) \cdot A := PAQ^{-1}$$

gives a well defined map $G \times G \times S_f \longrightarrow S_f$ and show that this map gives a group action of $G \times G$ on S_f .

b. For $f(x) = x^3(x^2 + 1)^2$, give one representative from each orbit of the group action in (a), and justify your assertion.

14 Fall 2014

14.1 1

Let $f \in \mathbb{Q}[x]$ be an irreducible polynomial and L a finite Galois extension of \mathbb{Q} . Let $f(x) = g_1(x)g_2(x)\cdots g_r(x)$ be a factorization of f into irreducibles in L[x].

- a. Prove that each of the factors $g_i(x)$ has the same degree.
- b. Give an example showing that if L is not Galois over \mathbb{Q} , the conclusion of part (a) need not hold.

14.2 2

Let G be a group of order 96.

- a. Show that G has either one or three 2-Sylow subgroups.
- b. Show that either G has a normal subgroup of order 32, or a normal subgroup of order 16.

14.3 3

Consider the polynomial $f(x) = x^4 - 7 \in \mathbb{Q}[x]$ and let E/\mathbb{Q} be the splitting field of f.

- a. What is the structure of the Galois group of E/\mathbb{Q} ?
- b. Give an explicit description of all of the intermediate subfields $\mathbb{Q} \subset K \subset E$ in the form $K = \mathbb{Q}(\alpha), \mathbb{Q}(\alpha, \beta), \cdots$ where α, β , etc are complex numbers. Describe the corresponding subgroups of the Galois group.

14.4 4

Let F be a field and T an $n \times n$ matrix with entries in F. Let I be the ideal consisting of all polynomials $f \in F[x]$ such that f(T) = 0.

Show that the following statements are equivalent about a polynomial $g \in I$:

- a. g is irreducible.
- b. If $k \in F[x]$ is nonzero and of degree strictly less than g, then k[T] is an invertible matrix.

14.5 5

Let T be a 5×5 complex matrix with characteristic polynomial $\chi(x) = (x-3)^5$ and minimal polynomial $m(x) = (x-3)^2$. Determine all possible Jordan forms of T.

14.6 6

Let G be a group and H, K < G be subgroups of finite index. Show that

$$[G:H\bigcap K] \le [G:H] \ [G:K].$$

14.7 7

Give a careful proof that $\mathbb{C}[x,y]$ is not a PID.

14.8 8

Let R be a nonzero commutative ring without unit such that R does not contain a proper maximal ideal. Prove that for all $x \in R$, the ideal xR is proper. You may assume the axiom of choice.

15 Spring 2013

15.1 1

Let R be a commutative ring.

- a. Define a maximal ideal and prove that R has a maximal ideal.
- b. Show than an element $r \in R$ is not invertible $\iff r$ is contained in a maximal ideal.
- c. Let M be an R-module, and recall that for $0 \neq \mu \in M$, the annihilator of μ is the set

$$\operatorname{Ann}(\mu) = \left\{ r \in R \mid r\mu = 0 \right\}.$$

Suppose that I is an ideal in R which is maximal with respect to the property that there exists an element $\mu \in M$ such that $I = \operatorname{Ann}(\mu)$ for some $\mu \in M$. In other words, $I = \operatorname{Ann}(\mu)$ but there does not exist $\nu \in M$ with $J = \operatorname{Ann}(\nu) \subsetneq R$ such that $I \subsetneq J$.

Prove that I is a prime ideal.

15.2 2

- a. Define a Euclidean domain.
- b. Define a unique factorization domain.
- c. Is a Euclidean domain an UFD? Give either a proof or a counterexample with justification.
- d. Is a UFD a Euclidean domain? Give either a proof or a counterexample with justification.

15.3 3

Let P be a finite p-group. Prove that every nontrivial normal subgroup of P intersects the center of P nontrivially.

15.4 4

Define a simple group. Prove that a group of order 56 can not be simple.

15.5 5

Let $T: V \longrightarrow V$ be a linear map from a 5-dimensional \mathbb{C} -vector space to itself and suppose f(T) = 0 where $f(x) = x^2 + 2x + 1$.

- a. Show that there does not exist any vector $v \in V$ such that Tv = v, but there does exist a vector $w \in V$ such that $T^2w = w$.
- b. Give all of the possible Jordan canonical forms of T.

15.6 6

Let V be a finite dimensional vector space over a field F and let $T: V \longrightarrow V$ be a linear operator with characteristic polynomial $f(x) \in F[x]$.

- a. Show that f(x) is irreducible in $F[x] \iff$ there are no proper nonzero subspace W < V with $T(W) \subseteq W$.
- b. If f(x) is irreducible in F[x] and the characteristic of F is 0, show that T is diagonalizable when we extend the field to its algebraic closure.

15.7 7

Let $f(x) = g(x)h(x) \in \mathbb{Q}[x]$ and $E, B, C/\mathbb{Q}$ be the splitting fields of f, g, h respectively.

- a. Prove that Gal(E/B) and Gal(E/C) are normal subgroups of $Gal(E/\mathbb{Q})$.
- b. Prove that $Gal(E/B) \cap Gal(E/C) = \{1\}.$
- c. If $B \cap C = \mathbb{Q}$, show that $Gal(E/B)Gal(E/C) = Gal(E/\mathbb{Q})$.
- d. Under the hypothesis of (c), show that $Gal(E/\mathbb{Q}) \cong Gal(E/B) \times Gal(E/C)$.
- e. Use (d) to describe $Gal(\mathbb{Q}[\alpha]/\mathbb{Q})$ where $\alpha = \sqrt{2} + \sqrt{3}$.

15.8 8

Let F be the field with 2 elements and K a splitting field of $f(x) = x^6 + x^3 + 1$ over F. You may assume that f is irreducible over F.

- a. Show that if r is a root of f in K, then $r^9 = 1$ but $r^3 \neq 1$.
- b. Find $\operatorname{Gal}(K/F)$ and express each intermediate field between F and K as $F(\beta)$ for an appropriate $\beta \in K$.

16 Fall 2013

16.1 1

Let p, q be distinct primes.

- a. Let $\bar{q} \in \mathbb{Z}_p$ be the class of $q \mod p$ and let k denote the order of \bar{q} as an element of \mathbb{Z}_p^{\times} . Prove that no group of order pq^k is simple.
- b. Let G be a group of order pq, and prove that G is not simple.

16.2 2

Let G be a group of order 30.

- a. Show that G has a subgroup of order 15.
- b. Show that every group of order 15 is cyclic.
- c. Show that G is isomorphic to some semidirect product $\mathbb{Z}_{15} \rtimes \mathbb{Z}_2$.
- d. Exhibit three nonisomorphic groups of order 30 and prove that they are not isomorphic. You are not required to use your answer to (c).

16.3 3

- a. Define *prime ideal*, give an example of a nontrivial ideal in the ring \mathbb{Z} that is not prime, and prove that it is not prime.
- b. Define $maximal\ ideal$, give an example of a nontrivial maximal ideal in \mathbb{Z} and prove that it is maximal.

16.4 4

Let R be a commutative ring with $1 \neq 0$. Recall that $x \in R$ is nilpotent iff $x^n = 0$ for some positive integer n.

- a. Show that the collection of nilpotent elements in R forms an ideal.
- b. Show that if x is nilpotent, then x is contained in every prime ideal of R.

c. Suppose $x \in R$ is not nilpotent and let $S = \{x^n \mid n \in \mathbb{N}\}$. There is at least on ideal of R disjoint from S, namely (0). By Zorn's lemma the set of ideals disjoint from S has a maximal element with respect to inclusion, say I. In other words, I is disjoint from S and if I is any ideal disjoint from S with $I \subseteq I \subseteq R$ then I and I is any ideal disjoint from I with I is any ideal disjoint from I in I in

Show that I is a prime ideal.

d. Deduce from (a) and (b) that the set of nilpotent elements of R is the intersection of all prime ideals of R.

16.5 5

Let L/K be a finite extension of fields.

- a. Define what it means for L/K to be separable.
- b. Show that if K is a finite field, then L/K is always separable.
- c. Give an example of a finite extension L/K that is not separable.

16.6 6

Let K be the splitting field of $x^4 - 2$ over \mathbb{Q} and set $G = \operatorname{Gal}(K/\mathbb{Q})$.

- a. Show that K/\mathbb{Q} contains both $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt[4]{2})$ and has degree 8 over $\mathbb{Q}/$
- b. Let $N = \operatorname{Gal}(K/\mathbb{Q}(i))$ and $H = \operatorname{Gal}(K/\mathbb{Q}(\sqrt[4]{2}))$. Show that N is normal in G and NH = G.

Hint: what field is fixed by NH?

c. Show that $Gal(K/\mathbb{Q})$ is generated by elements σ, τ , of orders 4 and 2 respectively, with $\tau \sigma \tau^{-1} = \sigma^{-1}$.

Equivalently, show it is the dihedral group of order 8.

d. How many distinct quartic subfields of K are there? Justify your answer.

16.7 7

Let $F = \mathbb{F}_2$ and let \overline{F} denote its algebraic closure.

- a. Show that \overline{F} is not a finite extension of F.
- b. Suppose that $\alpha \in \overline{F}$ satisfies $\alpha^{17} = 1$ and $\alpha \neq 1$. Show that $F(\alpha)/F$ has degree 8.

17 Fall 2012

17.1 1

Let G be a finite group and X a set on which G acts.

a. Let $x \in X$ and $G_x := \{g \in G \mid g \cdot x = x\}$. Show that G_x is a subgroup of G.

b. Let $x \in X$ and $G \cdot x := \{g \cdot x \mid g \in G\}$. Prove that there is a bijection between elements in $G \cdot x$ and the left cosets of G_x in G.

17.2 2

Let G be a group of order 30.

- a. Show that G contains normal subgroups of orders 3, 5, and 15.
- b. Give all possible presentations and relations for G.
- c. Determine how many groups of order 30 there are up to isomorphism.

17.3 3

Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 5. Assume that f has all be two roots in \mathbb{R} . Compute the Galois group of f(x) over \mathbb{Q} and justify your answer.

17.4 4

Let $f(x) \in \mathbb{Q}[x]$ be a polynomial and K be a splitting field of f over \mathbb{Q} . Assume that $[K : \mathbb{Q}] = 1225$ and show that f(x) is solvable by radicals.

17.5 5

Let U be an infinite-dimensional vector space over a field $k, f: U \longrightarrow U$ a linear map, and $\{u_1, \dots, u_m\} \subset U$ vectors such that U is generated by $\{u_1, \dots, u_m, f^d(u_1), \dots, f^d(u_m)\}$ for some $d \in \mathbb{N}$.

Prove that U can be written as a direct sum $U \cong V \oplus W$ such that

- 1. V has a basis consisting of some vector $v_1, \dots, v_n, f^d(v_1), \dots, f^d(v_n)$ for some $d \in \mathbb{N}$, and
- $2. \ W$ is finite-dimensional.

Moreover, prove that for any other decomposition $U \cong V' \oplus W'$, one has $W' \cong W$.

17.6 6

Let R be a ring and M an R-module. Recall that M is Noetherian iff any strictly increasing chain of submodule $M_1 \subsetneq M_2 \subsetneq \cdots$ is finite. Call a proper submodule $M' \subsetneq M$ intersection-decomposable if it can not be written as the intersection of two proper submodules $M' = M_1 \cap M_2$ with $M_i \subsetneq M$.

Prove that for every Noetherian module M, any proper submodule $N \subseteq M$ can be written as a finite intersection $N = N_1 \cap \cdots \cap N_k$ of intersection-indecomposable modules.

17.7 7

Let k be a field of characteristic zero and $A, B \in M_n(k)$ be two square $n \times n$ matrices over k such that AB - BA = A. Prove that det A = 0.

Moreover, when the characteristic of k is 2, find a counterexample to this statement.

17.8 8

Prove that any nondegenerate matrix $X \in M_n(\mathbb{R})$ can be written as X = UT where U is orthogonal and T is upper triangular.

18 Spring 2011

18.1 1

Suppose that $F \subset E$ are fields such that E/F is Galois and |Gal(E/F)| = 14.

- a. Show that there exists a unique intermediate field K with $F \subset K \subset E$ such that [K : F] = 2.
- b. Assume that there are at least two distinct intermediate subfields $F \subset L_1, L_2 \subset E$ with $[L_i : F] = 7$. Prove that Gal(E/F) is nonabelian.

18.2 2

Let G be a finite group and p a prime number such that there is a normal subgroup $H \subseteq G$ with $|H| = p^i > 1$.

- a. Show that H is a subgroup of any Sylow p-subgroup of G.
- b. Show that G contains a nonzero abelian normal subgroup of order divisible by p.

18.3 3

Let G be a group of order 70.

- a. Show that G is not simple.
- b. Exhibit 3 nonisomorphic groups of order 70 and prove that they are not isomorphic.

18.4 4

Let $f(x) = x^7 - 3 \in \mathbb{Q}[x]$ and E/\mathbb{Q} be a splitting field of f with $\alpha \in E$ a root of f.

- a. Show that E contains a primitive 7th root of unity.
- b. Show that $E \neq \mathbb{Q}(\alpha)$.

18.5 5

Let M be a finitely generated module over a PID R.

- a. M_t be the set of torsion elements of M, and show that M_t is a submodule of M.
- b. Show that M/M_t is torsion free.
- c. Prove that $M \cong M_t \oplus F$ where F is a free module.

18.6 6

Let k be a field and let the group $G = GL(m, k) \times GL(n, k)$ acts on the set of $m \times n$ matrices $M_{m,n}(k)$ as follows:

$$(A, B) \cdot X = AXB^{-1}$$

where $(A, B) \in G$ and $X \in M_{m,n}(k)$.

- a. State what it means for a group to act on a set. Prove that the above definition yields a group action.
- b. Exhibit with justification a subset S of $M_{m,n}(k)$ which contains precisely one element of each orbit under this action.

18.7 7

Consider the following matrix as a linear transformation from $V := \mathbb{C}^5$ to itself:

$$A = \left(\begin{array}{ccccc} -1 & 1 & 0 & 0 & 0 \\ -4 & 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{array}\right).$$

- a. Find the invariant factors of A.
- b. Express V in terms of a direct sum of indecomposable $\mathbb{C}[x]$ -modules.
- c. Find the Jordan canonical form of A.

18.8 8

Let V be a finite-dimensional vector space over a field k and $T:V\longrightarrow V$ a linear transformation.

- a. Provide a definition for the minimal polynomial in k[x] for T.
- b. Define the *characteristic polynomial* for T.
- c. Prove the Cayley-Hamilton theorem: the linear transformation T satisfies its characteristic polynomial.