带电量平衡功能的电池保护用IC

S-8209A系列

S-8209A系列是内置高精度电压检测电路和延迟电路的、用于保护锂离子/锂聚合物可充电电池的IC。由于配置了通信功能和2种电量平衡功能,因此也可用来构成多节串联电池的保护电路。

■ 特点

(1) 高精度电压检测电路

● 过充电检测电压 3.9 V ~ 4.4 V (进阶单位为5 mV) 精度 ± 25 mV $3.8 \text{ V} \sim 4.4 \text{ V}^{*1}$ • 过充电解除电压 精度 ±50 mV 3.9 V ~ 4.4 V (进阶单位为5 mV)^{*2} • 电量平衡检测电压 精度 ± 25 mV $3.8 \text{ V} \sim 4.4 \text{ V}^{*3}$ • 电量平衡解除电压 精度 ±50 mV • 过放电检测电压 2.0 V ~ 3.0 V (进阶单位为10 mV) 精度±50 mV $2.0 \text{ V} \sim 3.4 \text{ V}^{*4}$ • 过放电解除电压 精度 ±100 mV

- (2) 可通过外接电容在输出端子上设定延迟时间
- (3) 可在CTLC、CTLD端子上控制充电、放电和电量平衡
- (4) 配置充电 / 放电的2种电量平衡功能

(5) 宽工作温度范围 -40°C ~ +85°C
 (6) 低消耗电流 7.0 μA 最大值

(7) 小型封装 SNT-8A, 8-Pin TSSOP

(8) 无铅产品

- *1. 过充电解除电压 = 过充电检测电压一过充电滞后电压 (过充电滞后电压可在0 V或者0.1 V ~ 0.4 V的范围内,以50 mV为进阶单位来进行选择)
- *2. 过充电检测电压>电量平衡检测电压

(一直将过充电检测电压设定为高于电量平衡检测电压)

- *3. 电量平衡解除电压 = 电量平衡检测电压 电量平衡滞后电压 (电量平衡滞后电压可在0 V或者0.1 V ~ 0.4 V范围内,以50 mV为进阶单位来进行选择)
- *4. 过放电解除电压 = 过放电检测电压+过放电滞后电压 (过放电滞后电压可在0 V或者0.1 V ~ 0.7 V范围内,以100 mV为进阶单位来进行选择)

■ 用途

- 锂离子可充电电池组
- 锂聚合物可充电电池组

■ 封装

封装名		图面	i 号码	
封衣 石	封装图面	と	带卷图面	¦ 焊盘图面
SNT-8A	PH008-A	PH008-A	PH008-A	PH008-A
8-Pin TSSOP	FT008-A	FT008-E	FT008-E	<u> </u>

■ 框图

备注 图中所指示的二极管为寄生二极管。

图1

■ 产品型号的构成

1. 产品名

*1. 请参阅卷带图。

2. 产品名目录

(1) SNT-8A

表1

产品名/项目	过充电 检测电压 ^{*1}	过充电 解除电压	电量平衡 检测电压 ^{*1}	电量平衡 解除电压	过放电 检测电压	过放电 解除电压
	(V _{CU})	(V _{CL})	(V _{BU})	(V _{BL})	(V_{DL})	(V_{DU})
S-8209AAA-I8T1G	4.100 V	4.000 V	4.050 V	4.000 V	2.50 V	2.70 V

备注 如果需要除上述检测电压值以外的产品时,请向本公司营业部咨询。

(2) 8-Pin TSSOP

表2

产品名 / 项目	过充电 检测电压 ^{*1}	过充电 解除电压	电量平衡 检测电压 ^{*1}	电量平衡 解除电压	过放电 检测电压	过放电 解除电压
	(V _{CU})	(V _{CL})	(V _{BU})	(V _{BL})	(V_{DL})	(V_{DU})
S-8209AAA-T8T1G	4.100 V	4.000 V	4.050 V	4.000 V	2.50 V	2.70 V

备注 如果需要除上述检测电压值以外的产品时,请向本公司营业部咨询。

■ 引脚排列图

表3

引脚号	符号	描述
1	CTLC	充电用控制端子
2	CTLD	放电用控制端子
3	VDD	正电源输入端子、 电池的正电压连接端子
4	CDT	过充电检测延迟、过放电检测延迟用的 电容连接端子
5	VSS	负电源输入端子、 电池的负电压连接端子
6	DO	放电控制用輸出端子 (Nch开路漏极输出)
7	СО	充电控制用輸出端子 (Nch开路漏极输出)
8	СВ	电量平衡控制用輸出端子 (CMOS输出)

备注 有关产品的形状,请参阅"外形尺寸图"。

图3

表4

引脚号	符号	描述
1	CTLC	充电用控制端子
2	CTLD	放电用控制端子
3	VDD	正电源输入端子、 电池的正电压连接端子
4	CDT	过充电检测延迟、过放电检测延迟用的 电容连接端子
5	VSS	负电源输入端子、 电池的负电压连接端子
6	DO	放电控制用輸出端子 (Nch开路漏极输出)
7	со	充电控制用輸出端子 (Nch开路漏极输出)
8	СВ	电量平衡控制用輸出端子 (CMOS输出)

备注 有关产品的形状,请参阅"外形尺寸图"。

■ 绝对最大额定值

表5

(除特殊注明以外: Ta = 25°C)

项目		记号	适用端子	绝对最大额定值	单位
VDD-VSS间输入电压		V_{DS}	VDD	V _{SS} -0.3 ~ V _{SS} +12	V
CB输出端子电压		V _{CB}	СВ	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
CDT端子电压		V_{CDT}	CDT	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
DO输出端子电压		V_{DO}	DO	$V_{SS} - 0.3 \sim V_{SS} + 24$	V
CO输出端子电压		V _{co}	CO	$V_{SS} - 0.3 \sim V_{SS} + 24$	V
CTLC输入端子电压		V_{CTLC}	CTLC	V_{DD} - 24 ~ V_{DD} + 0.3	V
CTLD输入端子电压		V _{CTLD}	CTLD	V_{DD} -24 ~ V_{DD} +0.3	V
容许功耗	SNT-8A	Pn	_	450 ^{*1}	mW
8-Pin TSSOP		PD		700 ^{*1}	mW
工作环境温度		T _{opr}	_	-40 ~ +85	°C
保存温度		T _{stg}	_	−55 ~ +125	°C

*1. 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm×76.2 mm×t1.6 mm(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

图4 封装容许功耗 (基板安装时)

■ 电气特性

表6

(除特殊注明以外: Ta = 25°C)

项目	记号	条件	最小值	典型值	最大值	单位	测定 电路
过充电检测电压	V _{CU}	3.90 V ~ 4.40 V,可调整	V _{CU} -0.025	V _{CU}	V _{CU} +0.025	V	1
过充电解除电压	V _{CL}	3.80 V ~ 4.40 V,可调整	V _{CL} -0.05	V_{CL}	V _{CL} +0.05	V	1
电量平衡检测电压	V _{BU}	3.90 V ~ 4.40 V,可调整	V _{BU} −0.025	V_{BU}	V _{BU} +0.025	V	1
电量平衡解除电压	V _{BL}	3.80 V ~ 4.40 V,可调整	V _{BL} -0.05	V_{BL}	V _{BL} +0.05	V	1
过放电检测电压	V _{DL}	2.00 V ~ 3.00 V,可调整	V _{DL} -0.05	V_{DL}	V _{DL} +0.05	V	1
过放电解除电压	V _{DU}	2.00 V ~ 3.40 V,可调整	V _{DU} -0.10	V_{DU}	V _{DU} +0.10	V	1
CDT端子电阻 ^{*1}	R _{CDT}	$V_{DS} = 3.5 \text{ V}, V_{CDT} = 0 \text{ V}$	4.76	8.31	10.9	МΩ	2
CDT端子检测电压*1	V _{CDET}	V _{DS} = 3.5 V	V _{DS} ×0.65	V _{DS} ×0.70	V _{DS} ×0.75	V	3
VDD-VSS间工作电压	V_{DSOP}	CO, DO, CB 输出电压固定	1.5	_	8.0	V	_
CTLC端子H电压	V _{CTLCH}	V _{DS} = 3.5 V	V _{DS} ×0.55	_	V _{DS} ×0.90	V	4
CTLD端子H电压	V _{CTLDH}	V _{DS} = 3.5 V	V _{DS} ×0.55	_	V _{DS} ×0.90	V	4
CTLC端子L电压	V _{CTLCL}	V _{DS} = 3.5 V	V _{DS} ×0.10	_	V _{DS} ×0.45	V	4
CTLD端子L电压	V _{CTLDL}	V _{DS} = 3.5 V	V _{DS} ×0.10	_	V _{DS} ×0.45	V	4
工作时消耗电流*2	I _{OPE}	V _{DS} = 3.5 V		3.5	7.0	μΑ	5
CTLC端子源极电流 ^{*2}	Істьсн	$V_{DS} = 3.5 \text{ V}, V_{CTLC} = 0 \text{ V}$	320	400	480	nA	6
CTLD端子源极电流 ^{*2}	I _{CTLDH}	$V_{DS} = 3.5 \text{ V}, V_{CTLD} = 0 \text{ V}$	320	400	480	nA	6
CB端子源极电流	Ісвн	V _{CB} = 4.0 V, V _{DS} = 4.5 V	30	_	_	μΑ	7
CB端子吸收电流	I _{CBL}	$V_{CB} = 0.5 \text{ V}, V_{DS} = 3.5 \text{ V}$	30	_	_	μΑ	7
CO端子吸收电流	I _{COL}	$V_{CO} = 0.5 \text{ V}, V_{DS} = 3.5 \text{ V}$	30	_	_	μΑ	7
DO端子吸收电流	I _{DOL}	$V_{DO} = 0.5 \text{ V}, V_{DS} = 3.5 \text{ V}$	30	_	_	μΑ	7

^{*1.} S-8209A系列可在输出端子上设定延迟时间。延迟时间可利用IC内部的CDT端子电阻(R_{CDT})和CDT端子的外接电容 (C_{CDT}),按照如下公式计算求出。

```
t_{D}[s] = -\ln (1 - V_{CDET} / V_{DS}) \times C_{CDT}[\mu F] \times R_{CDT}[M\Omega]
= -\ln (1 - 0.7(典型值)) \times C_{CDT}[\mu F] \times 8.31 \,M\Omega (典型值)
= 10.0 \,M\Omega (典型值) \times C_{CDT}[\mu F]
```

CDT端子电容 C_{CDT} = 0.01 μ F时,输出端子延迟时间 t_D 可使用上述公式计算求出。

 $t_D[s] = 10.0 M\Omega$ (典型值) $\times 0.01 \mu F = 0.1 s$ (典型值)

在IC外部将CTLC、CTLD端子下拉到 V_{SS} 电位的状态下接通电源后,请在指定的测定电路中测定 R_{CDT} 以及CDT端子检测电压(V_{CDET})。

*2. 在IC外部将CTLC、CTLD端子下拉到V_{SS}电位使用时,流入VDD端子的电流(I_{DD})可按照如下公式计算求出。

$$I_{DD} = I_{OPE} + I_{CTLCH} + I_{CTLDH}$$

■ 测定电路

图11 测定电路7

■ 工作说明

图12表示S-8209A的状态迁移图。

图12 状态迁移图

1. 通常状态

S-8209A系列的VDD-VSS间电压(V_{DS})比过放电检测电压(V_{DL})高,且低于过充电检测电压(V_{CU}),当CTLC输入端子电压(V_{CTLC}) 低于CTLC端子H电压(V_{CTLCH})、CTLD输入端子电压(V_{CTLD})低于CTLD端子H电压(V_{CTLDH})的情况下,CO端子和DO端子均变为 V_{SS} 电位。这称为通常状态。

2. 过充电状态

在V_{DS} ≥ V_{CU}或V_{CTLC} ≥ V_{CTLCH}的情况下,S-8209A系列的CO端子变为高阻抗。这称为过充电状态。

在V_{DS}≤过充电解除电压(V_{CL}),且V_{CTLC}≤CTLC端子L电压(V_{CTLCL})的情况下,S-8209A系列会解除过充电状态而恢复为通常状态。

3. 过放电状态

在V_{DS}≤V_{DL}或V_{CTLD}≥V_{CTLDH}的情况下,S-8209A系列的DO端子变为高阻抗。这称为过放电状态。

在V_{DS}≥过放电解除电压(V_{DU}),且V_{CTLD}≤CTLD端子L电压(V_{CTLDL})的情况下,S-8209A系列会解除过放电状态而恢复为通常状态。

4. 电量平衡功能

在 V_{DS} ≥电量平衡检测电压(V_{BU})的情况下,S-8209A系列将CB端子的电压设为 V_{DD} 电位。这称为充电电量平衡功能。在 V_{DS} ≤电量平衡解除电压(V_{BL})的情况下,S-8209A系列将CB端子的电压设为 V_{SS} 电位。

接着,在V_{DS}>V_{DL}、且V_{CTLD}>V_{CTLDH}的情况下,S-8209A系列将CB端子的电压设为V_{DD}电位。这称为放电电量平衡功能。

在再次 $V_{CTLD} \leqslant V_{CTLDL}$ 或 $V_{DS} \leqslant V_{DL}$ 的情况下,S-8209A系列将CB端子的电压设为 V_{SS} 电位。

5. 关于延迟电路

S-8209A系列可设置从检测到V_{DS}的变化和V_{CTLC}、V_{CTLD}的变化后到CO端子、DO端子、CB端子的输出发生变化为止的延迟时间。延迟时间由IC内部的CDT端子电阻(R_{CDT})和CDT端子的外接电容(C_{CDT})而决定。

例如,进行过充电状态的检测时,在 V_{DS} 超过 V_{CU} 或 $V_{CTLC} \geqslant V_{CTLCH}$ 的情况下,可通过 R_{CDT} 开始向 C_{CDT} 充电。当CDT-VSS间电压(V_{CDT})达到CDT端子检测电压(V_{CDET})时,S-8209A系列的CO端子变为高阻抗。输出端子的延迟时间 t_D 可按照如下公式计算求出。

 $t_D[s]$ = 10.0 M Ω (典型值) \times C_{CDT} [μ F]

延迟时间结束后,CCDT的电荷开始放电。

并且,DO端子、CB端子的各输出端子也可设定为相同长短的延迟时间。

■ 使用S-8209A系列的多节串联电池保护电路示例

使用S-8209A系列的多节串联电池保护电路示例,如**图13**所示。 关于使用S-8209A构成多个串联连接电池的保护电路的工作说明,请参阅应用手册"S-8209A系列的使用示例"。

注意1. 上述参数有可能不经预告而作更改。

2. 上述连接示例以及参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。

■ 注意事项

- 请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格,或因进口国等原因,使包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据(典型数据)

1. 消耗电流

(1) I_{OPE}—Ta

(2) $I_{OPE} - V_{DS}$

2. 过充电检测/解除电压、电量平衡检测/解除电压、过放电检测/解除电压

(1) V_{CU}—Ta

(2) V_{CL}—Ta

(3) V_{BU}—Ta

(4) V_{BL}—Ta

(5) V_{DU}—Ta

(6) V_{DL} —Ta

3. CO端子/DO端子/CB端子电流

(1) $I_{COL} - V_{CO} (V_{DS} = 3.5 \text{ V})$

(2) $I_{DOL} - V_{DO} (V_{DS} = 3.5 \text{ V})$

(3) $I_{CBH} - V_{CB} (V_{DS} = 4.5 \text{ V})$

(4) $I_{CBL} - V_{CB} (V_{DS} = 3.5 \text{ V})$

4. CTLC端子 / CTLD端子电流

(1) I_{CTLCH} —Ta ($V_{DS} = 3.5 \text{ V}$)

(2) I_{CTLDH} —Ta ($V_{DS} = 3.5 V$)

5. CDT端子电阻 / CDT端子检测电压

(1) R_{CDT}-Ta

(2) V_{CDET} / V_{DS}-Ta

No. PH008-A-P-SD-2.0

TITLE	SNT-8A-A-PKG Dimensions		
No.	PH008-A-P-SD-2.0		
SCALE			
UNIT	mm		
S	Seiko Instruments Inc.		

No. PH008-A-C-SD-1.0

TITLE	SNT-8A-A-Carrier Tape		
No.	PH008-A-C-SD-1.0		
SCALE			
UNIT	mm		
S	Seiko Instruments Inc.		

No. PH008-A-R-SD-1.0

TITLE	SNT-8	8A-A-Re	el
No.	PH008-	A-R-SD-1	1.0
SCALE		QTY.	5,000
UNIT	mm		
Seiko Instruments Inc.			

Caution Making the wire pattern under the package is possible. However, note that the package may be upraised due to the thickness made by the silk screen printing and of a solder resist on the pattern because this package does not have the standoff.

注意 パッケージ下への配線パターン形成は可能ですが、本パッケージはスタンドオフが無いので、パターン上のレジスト厚み、シルク印刷の厚みによってパッケージが持ち上がることがありますのでご配慮ください。

No. PH008-A-L-SD-3.0

TITLE	SNT-8A-A-Land Recommendation		
No.	PH008-A-L-SD-3.0		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

No. FT008-A-P-SD-1.1

TITLE	TSSOP8-A-PKG Dimensions		
No.	FT008-A-P-SD-1.1		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

No. FT008-E-C-SD-1.0

TITLE	TSSOP8-E-Carrier Tape			
No.	FT008-E-C-SD-1.0			
SCALE				
UNIT	mm			
	<u> </u>			
Seiko Instruments Inc.				

No. FT008-E-R-SD-1.0

TITLE	TSSOP8-E-Reel				
No.	FT008-E-R-SD-1.0				
SCALE			QTY.	3,000	
UNIT	mm				
Seiko Instruments Inc.					

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料所记载产品,如属国外汇兑及外国贸易法中规定的限制货物(或劳务)时,基于该法律,需得到日本国政府之出口 许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。