System 4 Metwork Lab

Lab16
Paging

TA: Bo-Hua Xu

Professor: Hsung-Pin Chang

Operating System Lab

Address Translation Scheme

- Address generated by CPU is divided into:
 - Page number (p) used as an index into a page table which contains base address of each page in physical memory
 - Page offset (d) combined with base address to define the physical memory address that is sent to the memory unit

page number	page offset
р	d
m - n	n

Paging Hardware

Free-frame list

Paging Hardware Example Physical Physical Prame N

Logical	memory

offset	value
0 1	A B
0 1	C D
0 1	E F
0 1	G H

	Page No.	Frame No.
~	0	1
\rightarrow	1	7
\rightarrow	2	5
\rightarrow	3	4

Page table

Address **Used** 0 1:0 0:A1:1 1:B Used 3 Used 0:G 1:H 0:E 1:F 6 used 7:0 0:C 1:D

Offset:value

Free frame list

Physical memory

Page in & page out

- When we want to run a process, we need to page in(place the page into physical memory).
- When the physical memory has no free-frame to page in pages, we need to do "page out".
- Page out means that you swap out the pages which are not needed anymore in physical memory.

Page in & page out(cont.)

Example:

- Look at Fig.pf, the physicalMemory is out of free-frames.
- Now, a new process need to page in, what should we do?

Fig.pf

0	ee
1	sa
2	ZZ
3	ww
4	XZ
5	aa
6	gg
7	bb
8	сс

Physical memory

Page in & page out(cont.)

Solution:

We just page out the pages
which are not needed anymore
(use algorithm that likes LRU or
Others)

Then we have free-frames to page in.

Fig.pf

0	ee(page out)
1	sa
2	zz(page out)
3	ww
4	xz(page out)
5	aa
6	gg
7	bb(page out)
8	cc

Physical memory

Exercise(90%)

Write a simulate paging program

- There are 2 processes (see next page).
- Paging them into physical memory by using free-frame list and page table.
- Please show
 - logical memory list + page table (60%)
 - physical memory list + free frame list (30%)
- Non-contiguous memory allocation(use random)

Random

- #include <stdlib.h>
- #include <time.h>

- srand(time(NULL));
- a = (rand%5)+1
 - a will get values in range 1~5 ∘

Exercise(cont.)

A's Logical memory

0	ab
1	ef
2	cd

0	3
1	0
2	9

Page table A

B's Logical memory

0	rx
1	уу
2	ZZ

0	6
1	12
2	5

Page table B

Physical memory

0	ef
1	
2	
3	ab
4	
5	ZZ
6	rx
7	
8	
9	cd
10	
11	
12	уу
13	
14	
15	

Free frame list

13

11 10

14

15

Exercise(cont.)

```
oslab@oslab-VirtualBox:~/paging$ ./paging
process1's page_table is:
       frame
page
process1's logical memory is:
       data
page
       ГΧ
       уу
       ZZ
process0's page_table is:
      frame
page
process0's logical memory is:
       data
page
       ab
       ef
       cd
```

Exercise(cont.)

```
physical memory is:
      offset data
frame
                               12
                               12
                               13
                               13
                               14
                               14
                               15
                               free frame is:
                                            10 11 12 13 14 15
```

Reference

- Operating System Concepts Tenth Edition
 - Ch9 main memory
 - https://www.os-book.com/OS10/slide-dir/PPTX-dir/ch9.pptx