8. Häufungswerte und Teilfolgen

Erinnerung: $a_n \to a \iff \forall \varepsilon > 0$ gilt: $a_n \in U_{\varepsilon}(a)$ ffa $n \in \mathbb{N}$.

Definition (Häufungwerte)

 (a_n) sei eine Folge und $\alpha \in \mathbb{R}$. α heißt ein **Häufungswert** (HW) von (a_n) : $\iff \forall \varepsilon > 0$ gilt: $a_n \in U_{\varepsilon}(\alpha)$ für unendlich viele $n \in \mathbb{N}$. $\mathcal{H}(a_n) := \{\alpha \in \mathbb{R} : \alpha \text{ ist ein Häufungswert von } (a_n)\}$.

Beispiele:

- (1) $a_n = (-1)^n$. $a_{2n} = 1$, $a_{2n-1} = -1$. Sei $\varepsilon > 0$: $a_{2n} \in U_{\varepsilon}(1) \ \forall n \in \mathbb{N} \Rightarrow a_n \in U_{\varepsilon}(1)$ für unendlich viele $n \in \mathbb{N} \Rightarrow 1 \in \mathscr{H}(a_n)$. Analog: $a_n \in U_{\varepsilon}(-1)$ für unendlich viele $n \in \mathbb{N} \Rightarrow -1 \in \mathscr{H}(a_n)$. Sei $\alpha \in \mathbb{R}$ und $1 \neq \alpha \neq -1$. Wähle $\varepsilon > 0$ so, dass $1, -1 \notin U_{\varepsilon}(\alpha) \Rightarrow a_n \notin U_{\varepsilon}(\alpha) \ \forall n \in \mathbb{N} \Rightarrow \alpha \notin \mathscr{H}(a_n)$. Fazit: $\mathscr{H}(a_n) = \{1; -1\}$.
- (2) $a_n = n$. Sei $\alpha \in \mathbb{R}$ und $\varepsilon > 0$. $\exists n_0 \in \mathbb{N} : n_0 > \alpha + \varepsilon \Rightarrow n > \alpha + \varepsilon \ \forall n \geq n_0 \Rightarrow a_n \notin U_{\varepsilon}(\alpha) \ \forall n \geq n_0 \Rightarrow a_n \in U_{\varepsilon}(\alpha)$ für höchstens endlich viele $n \in \mathbb{N}$. $\Rightarrow \alpha \notin \mathscr{H}(a_n)$. Fazit: $\mathscr{H}(a_n) = \emptyset$.
- (3) \mathbb{Q} ist abzählbar. Also: $\mathbb{Q} = \{a_1, a_2, \ldots\}$.

Behauptung: $\mathcal{H}(a_n) = \mathbb{R}$.

Beweis: Sei $\alpha \in \mathbb{R}$ und $\varepsilon > 0$. $\alpha_n := \alpha + \frac{\varepsilon}{n+1}$ $(n \in \mathbb{N}), \alpha_n \in U_{\varepsilon}(\alpha) \ \forall n \in \mathbb{N}$.

 $2.4 \Rightarrow \exists r \in \mathbb{Q} : \alpha_2 < r < \alpha_1 \text{ (dann: } r \in U_{\varepsilon}(\alpha)); \exists n_1 \in \mathbb{N} : r = a_{n_1}.$

Also: $a_{n_1} \in U_{\varepsilon}(\alpha)$. $2.4 \Rightarrow \exists n_2 \in \mathbb{N} : \alpha_3 < a_{n_2} < \alpha_2$. Dann: $n_2 \neq n_1$. $2.4 \Rightarrow \exists n_3 \in \mathbb{N} : \alpha_4 < a_{n_r} < \alpha_3$ und $n_3 \neq n_2, n_3 \neq n_1$. Etc.

Wir erhalten so eine Folge von Indices $(n_1, n_2, n_3, ...)$ in \mathbb{N} mit $a_{n_k} \in U_{\varepsilon}(\alpha)$ und $n_k \neq n_j$ für $k \neq j$.

 $\Rightarrow a_n \in U_{\varepsilon}(\alpha)$ für unendlich viele $n \in \mathbb{N} \Rightarrow \alpha \in \mathcal{H}(a_n)$.

Definition (Teilfolge)

Sei (a_n) eine Folge in \mathbb{R} und (n_1, n_2, \ldots) sei eine Folge in \mathbb{N} mit: $n_1 < n_2 < n_3 < \ldots$ Dann heißt $(a_{n_k}) = (a_{n_1}, a_{n_2}, \ldots)$ eine **Teilfolge** (TF) von (a_n) .

Beispiele:

- (1) $n_k = 2k : (a_2, a_4, a_6, \cdots)$ ist eine Teilfolge von (a_n) .
- (2) $n_k = 2k 1 : (a_1, a_3, a_5, \cdots)$ ist eine Teilfolge von (a_n) .
- (3) $n_k = k^2 : (a_1, a_4, a_9, \cdots)$ ist eine Teilfolge von (a_n) .
- (4) $(a_1, a_3, a_2, a_4, a_5, a_7, \cdots)$ ist keine Teilfolge.

Satz 8.1 (Sätze zu Teilfolgen)

(1) Sei (a_n) eine Folge und $\alpha \in \mathbb{R}$. Dann: $\alpha \in \mathcal{H}(a_n) \iff$ Es existiert eine TF (a_{n_k}) von (a_n) mit: $a_{n_k} \to \alpha \ (k \to \infty)$

- (2) Ist $\alpha \in \mathbb{R}$, so existert eine Folge (r_k) in \mathbb{Q} : $r_k \to \alpha \ (k \to \infty)$
- (3) Ist (a_n) konvergent und $a := \lim a_n \implies \mathscr{H}(a_n) = \{a\}$. Ist (a_{n_k}) eine Teilfolge von (a_n) , so ist (a_{n_k}) konvergent und $a_{n_k} \to a$ $(k \to \infty)$

Beweis

- (1) \Longrightarrow ": Sei $\alpha \in \mathcal{H}(a_n)$. Zu $\varepsilon = 1$ existiert $n_1 \in \mathbb{N}$: $a_{n_1} \in U_1(\alpha)$. Zu $\varepsilon = \frac{1}{2}$ existiert $n_2 \in \mathbb{N}$: $a_{n_2} \in U_{\frac{1}{2}}(\alpha)$ und $n_2 > n_1$ Zu $\varepsilon = \frac{1}{3}$ existiert $n_2 \in \mathbb{N}$: $a_{n_3} \in U_{\frac{1}{3}}(\alpha)$ und $n_3 > n_2$. etc Wir erhalten so eine Teilfolge von (a_{n_k}) von (a_n) mit $a_{n_k} \in U_{\frac{1}{k}}(\alpha) \ \forall k \in \mathbb{N}$, also: $|a_{n_k} \alpha| < \frac{1}{k} \ \forall k \in \mathbb{N} \implies a_{n_k} \to \alpha \ (k \to \infty)$. \Longrightarrow $a_{n_k} \to \alpha \ (k \to \infty)$. Sei $\varepsilon > 0 \implies \exists k_0 \in \mathbb{N}$: $a_{n_k} \in U_{\varepsilon}(\alpha) \ \forall k > k_0 \implies a_n \in U_{\varepsilon}(\alpha) \ \text{für unendlich viele} \ n \in \mathbb{N} \implies \alpha \in \mathcal{H}(a_n)$
- (2) Sei $\mathbb{Q} = \{a_1, a_2, \ldots\}$. Bekannt: $H(a_n) = \mathbb{R}$. Also: $\alpha \in \mathscr{H}(a_n) \stackrel{(1)}{\Longrightarrow}$ Behauptung.
- (3) Klar: $a \in \mathcal{H}(a_n)$ Sei (a_{n_k}) eine Teilfolge von (a_n) und $\varepsilon > 0$. $a = \lim a_n \implies a_n \in U_{\varepsilon}(a)$ ffa $n \in \mathbb{N} \implies a_{n_k} \in U_{\varepsilon}(a)$ ffa $k \in \mathbb{N} \implies a_{n_k} \to a$ $(k \to \infty)$. Aus (1) folgt noch $H(a_n) = a$.

Hilfssatz (Monotone Teilfolge)

Sei (a_n) eine Folge. Dann enthält (a_n) eine monotone Teilfolge.

Beweis

 $m \in \mathbb{N}$ heißt niedrig (für (a_n)) : $\iff a_n \ge a_m \ \forall n \ge m$.

Fall 1: Es existieren unendlich viele niedrige Indices n_1, n_2, n_3, \ldots etwa: $n_1 < n_2 < n_3 < \ldots$ (s. 2.3!). Sei $k \in \mathbb{N}$: n_k ist niedrig. $n_{k+1} > n_k \implies a_{n_{k+1}} \ge a_{n_k} \implies$ die Teilfolge (a_{n_k}) ist monoton wachsend.

Fall 2: Es gibt höchstens endlich viele niedrige Indices $\implies \exists m \in \mathbb{N}: m, m+1, m+2, \dots$ sind alle nicht niedrig $\implies n_3 > n_2 : a_{n_3} < a_{n_2}$ etc. Wir erhalten so eine mononte Teilfolge (a_{n_k}) .

Satz 8.2 (Satz von Bolzano-Weierstraß)

 (a_n) sei eine beschränkte Folge. Dann $H(a_n) \neq \emptyset$.

Beweis

 $\exists c > 0 : |a_n| \le c \ \forall n \in \mathbb{N}$. Hilfssatz \Longrightarrow (a_n) enthält eine monotone Teilfolge (a_{n_k}) . $|a_{n_k}| \le c \ \forall k \in \mathbb{N}$. (a_{n_k}) ist aber schränkt. 6.3 \Longrightarrow (a_{n_k}) ist konvergent. $\alpha := \lim_{k \to \infty} a_{n_k}$. 8.1(1) $\Longrightarrow \alpha \in \mathscr{H}(a_n)$.