

Sydney Girls High School 2013

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Extension 1 Mathematics

General Instructions

- Reading Time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11 14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I

Pages 3 - 6

10 Marks

- Attempt Questions 1 10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II

Pages 7 - 13

60 Marks

- Attempt Questions 11 14
- Answer on the blank paper provided
- Begin a new page for each question
- Allow about 1 hours and 45 minutes for this section

Name:	THIS IS A TRIAL PAPER ONLY
Teacher:	It does not necessarily reflect the format or the content of the 2013 HSC Examination Paper in this subject.

BLANK PAGE

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- (1) The acute angle between the straight lines $y = \sqrt{3}x + 2$ and y = 2 is:
- (A) 30°
- (B) 60°
- (C) 47°
- (D) 68°
- (2) The value of $\lim_{n\to\infty} \frac{5(10^n)+3}{2(10^n)+5}$ is:
- (A) $\frac{3}{5}$
- (B) 0
- (C) 1
- (D) $\frac{5}{2}$
- (3) The exact value of k given $\int_0^1 \frac{dx}{x^2 + 3} = k\pi$ is:
- (A) $\sqrt{3}$
- (B) $\frac{\sqrt{3}}{9}$
- (C) $\frac{\sqrt{3}}{18}$
- (D) $6\sqrt{3}$

- (4) Which of the following is the derivative of $x^2 \cos^{-1} 3x$?
- (A) $2x \sin^{-1} 3x$
- (B) $2x\cos^{-1}3x + x^2\sin^{-1}3x$
- (C) $2x\cos^{-1}3x \frac{x^2}{\sqrt{1-9x^2}}$
- (D) $2x\cos^{-1}3x \frac{3x^2}{\sqrt{1-9x^2}}$
- (5) The solution to $ln(x^3 + 19) = 3ln(x + 1)$ is:
- (A) x = -3 or x = 2
- (B) x = 3
- (C) x = -2
- (D) x = 2

(6) The exact value of $\int_0^{\frac{\pi}{4}} \cos^2 \frac{1}{2} x \, dx$ is:

- (A) $\frac{1+\pi}{\sqrt{2}}$
- (B) $\frac{2\sqrt{2} + \pi}{8}$
- $(C) \quad \frac{2\sqrt{2} + \pi}{4}$
- $(D) \quad \frac{\sqrt{2} + \pi}{8}$

(7) The domain of $y = \cos^{-1} \sqrt{\frac{1}{4} - x^2}$ is:

- $(A) \quad 0 \le x \le \frac{1}{2}$
- (B) $\frac{-1}{4} \le x \le \frac{1}{2}$
- (C) $\frac{-1}{2} \le x \le \frac{1}{2}$
- (D) $\frac{1}{4} \le x \le \frac{1}{2}$

- (8) A metal disc, 5 cm radius, expands when heated. If the radius is increasing at the rate of $0.01 \, cm \, / \sec$, the rate at which the area of one of the faces is increasing is given by:
 - (A) $\frac{\pi}{10} cm^2 / \sec$
 - (B) $\frac{\pi}{5}$ cm²/sec
 - (C) $\frac{2\pi}{5}$ cm²/sec
 - (D) $\frac{5\pi}{2}$ cm²/sec
- (9) Two roots of the equation $x^3 2x^2 + kx + 18 = 0$ are opposites. The value of k is:
 - (A) 9
 - (B) 9
 - (C) 6
 - (D) 6
- (10) A point moving with simple harmonic motion starts from a point 5cm from the centre of the motion with a speed of 1cm/s. The period is 8 seconds. The maximum acceleration is:
 - (A) $4.9 ms^{-2}$
 - (B) $5.2ms^{-2}$
 - (C) 24.4ms⁻²
 - (D) 25.6ms⁻²

Section II

60 marks

Attempt Questions 11 - 14

Allow about 1 hours and 45 minutes for this section

Answer on the blank paper provided. Begin a new page for each question Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (Begin a New Page)

(15 Marks)

(a) By making the substitution
$$u^2 = x + 1$$
, find $\int \frac{x+2}{\sqrt{x+1}} dx$

[2]

(b) Solve:
$$x+2 < \frac{4}{x-1}$$
 $(x \ne 1)$

[3]

(c) Find the general solution (in radian form) of the equation
$$\cos 2x = \cos x$$

[3]

(d)

i) Sketch the graph of the curve
$$y = 3 \sin^{-1}(x/2)$$
, clearly indicating the domain and range.

[1]

ii) Find the area enclosed between the curve
$$y = 3\sin^{-1}(x/2)$$
, the line $x = 1$ and the positive x axis.

[3]

(e) Consider the series
$$\tan x + \tan^3 x + \tan^5 x + \dots$$
, where $0 \le x \le \frac{\pi}{4}$

i) Explain why this series has a limiting sum

ii) Show that
$$S_{\infty} = \frac{1}{2} \tan 2x$$

[1]

[2]

(15 Marks)

(a) Use mathematical induction to show that $5^n + 2(11^n)$ is a multiple of 3 for all positive integers n.

[3]

(b) At time t minutes the number of individuals in each of population

A and B is given by $N_A = 15 + 20e^{-0.5t}$ and $N_B = 5 + 40e^{-0.5t}$ respectively.

i) Find the initial size of population A

[1]

ii) Find the initial rate of change of population B

[1]

iii) Find the time at which the two population sizes are equal.

[2]

- (c) A particle moves along the x axis according to the equation $x = 6 \sin 2t 2\sqrt{3} \cos 2t$.
 - i) Express x in the form $R \sin(2t \alpha)$ where R > 0 and $0 \le \alpha \le \pi/2$.

[2]

ii) Prove that the particle moves in simple harmonic motion.

[2]

iii) Find when the particle is 2m to the right of the origin. (correct to 2 decimal places)

[2]

(d) AB is a tangent to the circle. $AB \parallel EC$ and CD = AC.

- i) Copy the diagram on your answer sheet
- ii) Prove that $AC \parallel ED$

[2]

- (a) The function f(x) is given by $f(x) = \sqrt{x+6}$ for $x \ge -6$
 - i) Find the inverse function $f^{-1}(x)$ and find its domain. [2]
 - ii) On the same diagram, sketch the graphs of y = f(x) and $y = f^{-1}(x)$. Showing Clearly all the intercepts on the coordinates axes. [2]
 - iii) Show that the x coordinates of any points of intersection of the graphs of y = f(x) and $y = f^{-1}(x)$ satisfy the equation $x^2 x 6 = 0$. [1]
 - iv) Hence find the point of the intersection of the two graphs. [1]
- (b) A vertical flagpole CD of height h metres stands with its base C on horizontal ground. A is a point on the ground due west of C and B is a point on the ground 40 metres due south of A. From A and B the angles of elevation of the top D of the flagpole are 20° and 10° respectively.
 - i) Draw a diagram for the information given [1]
 - ii) Find the height of the flagpole to the nearest metre. [3]

Question 13 continues on the next page

(c) Two concentric circles with centre O have radii $2 \ cm$ and $4 \ cm$. The points P and Q lie on the larger Circle and $\angle POQ = x$, where $0 \le x \le \frac{\pi}{2}$

i) If the area $A cm^2$ of the shaded region is $\frac{1}{16}$ the area of the larger circle, show that x satisfies the equation $8 \sin x - 2x - \pi = 0$.

[1]

- ii) Show that this equation has a solution $x = \alpha$, where $0.5 \le \alpha \le 0.6$ [2]
- iii) Taking 0.6 as a first approximation for α , use one application of Newton's method to find a second approximation, giving the answer correct to 2 decimal places.

End of Question 13

Question 14 (Begin a New Page)

(15 Marks)

- (a) A particle moves in a straight line. At time t seconds its displacement is x metres from a fixed point O on the line, its acceleration is a ms^{-2} , and its velocity is v ms^{-1} , where v is given by $v = \frac{32}{x} \frac{x}{2}$. Initially the particle is at x = 2.
 - i) Find an expression for a in terms x. [2]
 - ii) Show that $t = \int \frac{2x}{64 x^2} dx$, and hence show that $x^2 = 64 60e^{-t}$. [3]
 - iii) Sketch the graph of x^2 against t and describe the limiting behaviour of the particle. [1]
 - (b) $P(2t,t^2)$ is a point on the parabola $x^2 = 4y$ with focus F. The point M divides the interval FP externally in the ratio 3:1. Show that as P moves on the parabola $x^2 = 4y$, then the locus of M is given by $x^2 = 6y + 3$. [3]

Question 14 continues on the next page

- (c) The diagram above shows two particles A and B projected from the origin. Particle A is projected with initial velocity V m/s at an angle α and Particle B is projected T seconds later with the same initial velocity V m/s but an angle of β . The particles collide at the point R.
 - i) You may assume that the equation of the path of A is given by

$$y = -\frac{gx^2}{2V^2}\sec^2\alpha + x\tan\alpha$$

Write down the equation of the path of B.

ii) Show that the x-coordinate of the collision point R is given by

$$x = \frac{2V^2 \cos \alpha \cos \beta}{g \sin(\alpha + \beta)}$$
 [2]

[1]

[1]

iii) You may assume that the horizontal displacement of A after t seconds is given by

$$x = Vt \cos \alpha$$

Write down the equation for the horizontal displacement of B.

iv) Show that, for the collision to take place, the value of T is given by

$$T = \frac{2V(\cos\beta - \cos\alpha)}{g\sin(\alpha + \beta)}$$
 [2]

End of paper

BLANK PAGE

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

Sydney Girls High School Mathematics Faculty

Multiple Choice Answer Sheet –Trial HSC 2013 Extension 1

	A	.=
Student Number:	MOSNER	<u>S</u>

Completely fill the response oval representing the most correct answer.

1.	$A \bigcirc$	В 🍩	cO	DO			
2.	A 🔿	ВО	co	D 🍩		•	
3.	A 🔿	ВО	C 🥏	D C			
4.	A 🔾	ВО	c 🔾	D 🍩			
5.	A O	ВО	c 🔾	D 🌑			
6.	A 🔾	В	co	DO			
7.	A 🔿	ВО	C 🍩	D			
8.	A 🗭	ВО	co	DO			
9.	A 📦	ВО	co	DO			
10	A 🔿	ВО	СO	DO	No	BACW	~

Section II

Question 11.

a)
$$u^2 = 5c + 1$$
 $u^2 = 5c + 1$
 $u = (5c + 1)^{1/2}$ $u^2 - 1 = 5c$

$$\frac{du}{dx} = \frac{1}{2} \left(x + 1 \right)^{-1/2} \qquad x + 2 = u^2 - 1 + 2$$

$$= u^2 + 1$$

$$= u^2 + 1$$

$$2dn = \frac{dx}{\sqrt{5c+1}}$$

$$\int \frac{3c+2}{\sqrt{3c+1}} dx = 2 \int (u^2+1) du$$

$$= 2 \left[\frac{u^3}{3} + u \right] + C$$

$$= 2 \left[\frac{(x+1)^{3/2}}{3} + (x+1)^{3/2} \right] + C$$

$$= 2 \sqrt{3c+1} \left[\frac{(x+1)^3}{3} + 1 \right] + C$$

$$(x-1)^{2}$$

b) $x+2 \le \frac{4}{(x-1)^{2}}$

$$(x-1)^2(x+2) < 4(x-1)$$

$$(x-1)^{2}(x+2)-4(x-1)<0$$

$$(x-1) \left[(x-1)(x+2)-4 \right] < 0$$

$$(x-1) \left[x^2-x+2x-2-4 \right] < 0$$

$$(x-1) \left[x^2+x-6 \right] < 0$$

(x-1)(x+3)(x-2)<0

$$2\cos^2x-1-\cos x=0$$

$$\cos x = -\frac{1}{2} \qquad x = \cos^{-1}(1)$$

$$x = \cos^{-1}\left(-\frac{1}{2}\right) \qquad \text{oc} = 0$$

$$\therefore x = 2n\pi \pm 2\pi \qquad x = 2n\pi$$

d) i)
$$y = 3 = m^{-1} \left(\frac{x}{2}\right)$$

Domain:
$$y = \sin^{-1} x - 1 \le x \le 1$$

Range!
$$y = \sin^{-1}x - \pi \leq \sin^{-1}x \leq \pi$$

$$y = 3 \sin^{-1} \frac{x}{2}$$

$$y = 3 \sin^{-1} \frac{3c}{2}$$
 $y = 3 \sin^{-1} \frac{3c}{2}$
 $y = 3 \sin^{-1} \frac{3c}{2}$
 $y = 3 \sin^{-1} \frac{3c}{2}$

$$\sin\left(\frac{y}{3}\right) = \frac{x}{3}$$

$$2\sin\left(\frac{y}{3}\right) = x$$

Shaded

$$= \left(1 \times \frac{\pi}{2}\right) - 2 \times 3 \left[-\cos \frac{4}{3}\right] \frac{\pi}{2}$$

$$= \frac{\pi}{2} - 6 \left[-\cos \frac{\pi}{6} - \cos 0 \right]$$

$$= \overline{1} - 6 \left[-\frac{\sqrt{3}}{2} + 1 \right]$$

$$=\frac{\pi}{3}+\frac{6\sqrt{3}}{2}-6$$

e) i)
$$\tan x + \tan^3 x + \tan^5 x + \dots$$
 $0 \le x \le \frac{\pi}{4}$

$$r = \tan^2 s$$

if
$$0 < x < \frac{\pi}{4}$$
 then

ii)
$$S = \frac{a}{1-r}$$

$$= \frac{\tan x}{1 - \tan^2 x}$$

$$=\frac{1}{2}\left(\frac{2+anx}{1-tan^2x}\right)$$

$$=$$
 $\frac{1}{2}$ $\tan 2x$

·		1 .	1	
		. :	Ì	
	Question 12	i		
) <u>a</u>	When n=1		(<u></u>	1) 12 -
	5' +2(11') = 27 which is a			
; }	multiple of3)	
	Assume true for n=1			Rsin
	$\frac{5^{k}+2(11^{k})}{3}=m\left(aninteger\right)$			
	3			
	5k + 2(118) - 3m - 3m - 2(114) = 5k			
	Prove true for n=k+lie			
	,; 5lett + 2(11 left)			اما زد
	= 5×5k +22×11k		,	
	= 5 (3m-2(11h) +22 >11h			
	= 1Jm -10 (11h) +22 > 11h			
	-15 m +12 (114)		,	
	=3 (5m + +(11")			(11) v
	which is a multiple of 3			<u>,</u>
)	Hence if true for n=k, true for n=k+1)	
	true for n=1, here true for n21		- /	
	·			
b)	1) initially to = 0			
	then NA = 15 + 201°	-	•	
:	= 35		_ ')	
	11) a No = -20x-0-5+		/	
<u>;</u>	at = 2000	L		Le
1	who tea			+4
ļī ,	$\frac{dN_n}{dt} = -20$		*	+h
		j ;		
	111) NA - Nn is 15 + 20e-0.7t . 5 + 40e-0.7t			
	10 = 200 -0.5*			
	-0.5t = log, (1) (2)	-		
	t = 2 loge (2)	<u> </u>		
<u> </u>	= 1.39 min			
		_		
Arrand V		-		

i	<i>y-</i>
_ 1_0	1 K = 162 + (253)
	= 548
	= 453
	Rsin (2t-d) - 453 sin 2k wsd - 453 ws 2x sind
	= 6 sin 2x - 253 cos 2x
	:. 453 cos d = 6 -253 sin d = -453
	$\cos \lambda = \frac{6}{1\sqrt{3}} \qquad \sin \lambda = \frac{1}{2} \qquad \boxed{5}$
	J= 4 V
	11) is 7 = 453 sin (2x-4)
<u> </u>	元= 855 cis (2大-星)
<u> </u>	i = -1653 sin (2x-2)
	=-16x which is in the torm is =-n
`	
1	(11) when $y = 2$
	+v3 sin (2t - 2)=2
	sin (2t - 4) = 1/3
	2x- = = sin - (2v2)
	$t = \sin^{-1}(i\sqrt{s}) + \sqrt{s}$
	= 0.40812
	= 0.41 seconds. (must be in
	radian)
<u> </u>	Let LDAC = R
	the LANC = 1- Base L'i Doise A ADC
17	then LCAB = LADC (Lin alt signert
<u> </u>	4 CAB = LACD Alt L's AB/I EC
	= 14
	Also LDEB = 2 (= L1, on chara DC
)	: ED AC (equal alt L')
,	2
· · · · · · · · · · · · · · · · · ·	there are wany variations on
	this proof

—)— c) i)	$\frac{1}{2} = \sqrt{(t-T) \cos B}$
$\frac{y = -9x^2}{-8} \frac{5ec^2 B}{2v^2} + x \tan B$	iv) yt cord = 2 V/cord cor B
$\frac{11) - 9x^2}{2\sqrt{2}} \sec^2\beta + x \tan\beta = \frac{9x^2}{2\sqrt{2}} \sec^2\alpha + x \tan\alpha$	9 ni(a+B)
$\frac{2\sqrt{2}}{2\sqrt{2}} \sec^2\beta + \frac{9x^2}{2\sqrt{2}} \sec^2\alpha = x + nd - x + nd$	$\frac{\sqrt{(t-1)} \cos P_{5} + \sqrt{\cos P_{5}}}{q \sin (dPB)}$
$\frac{9x^2}{2\sqrt{2}}\left(5ec^2\lambda - 5ec^2\beta\right) = 2e\left(\tan - \tan\beta\right)$	From: ()
$\frac{9x}{2\sqrt{2}}\left(1+\tan^2 d - 1 - \tan^2 \beta\right) + \tan d - \tan \beta$	Fran 2
gn (tand-tanB)(tand+tanB)= dand-tank	$\frac{1}{3} = \frac{1}{2} \times \frac{1}$
$\frac{gn}{2\sqrt{2}} + \frac{1}{4nd+4nB}$	T = 2V COFB 2V COFD 9 517 (04B) 9 517 (04B)
2 SIND SINB COST COSTB	= 2V (asB-cord) grin (dpB)
2 SINDEON B + SINBEON L) COST OF B	
$\frac{2\sqrt{2} \cos \alpha \cos \beta}{9 \sin (\alpha + \beta)}$	