Math 40 - Section — HW 10 - Similarity and Diagonalization Friday, February 26, 2016

4.4.10 Determine whether A is diagonalizable and, if so, find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

$$A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

4.4.12 Determine whether A is diagonalizable and, if so, find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 1 \\ 3 & 0 & 1 \end{bmatrix}$$

4.4.22 Use the method of Example 4.29 to compute the indicated power of the matrix.

$$\begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}^k$$

4.4.44 Let *A* be an invertible matrix. Prove that if *A* is diagonalizable, so is A^{-1} .

4.4.46 Let A and B be $n \times n$ matrices, each with n distinct eigenvalues. Prove that A and B have the same eigenvectors if and only if AB = BA.

4.4.48 Let *A* and *B* be similar matrices. Prove that geometric multiplicities of the eigenvalues of *A* and *B* are the same. [*Hint*: Show that, if $B = P^{-1}AP$, then every eigenvector of *B* is of the form $P^{-1}\mathbf{v}$ for some eigenvector \mathbf{v} of *A*.]