Graded Quiz • 50 min

Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100% To pass 80% or higher Go to next item

1/1 point

- 1. Which of the following is stored in the 'cache' during forward propagation for latter use in backward propagation?
 -) b[1]
 - $\bigcirc W^{[l]}$
 - (Z[l]

Expand

○ Correct

Yes. This value is useful in the calculation of $dW^{[l]}$ in the backward propagation.

1/1 point

The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.

The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.

Expand

✓ Correct

11	11		

True

False

Expand

✓ Correct Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}), z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},...)$ in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]} = g^{[l]}(z^{[l]}), z^{[l]} = W^{[l]}a^{[l-1]} + b^{[l]}, ...).$

5. Assume we store the values for $n^{[l]}$ in an array called layer_dims, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

- for i in range(1, len(layer_dims)/2): parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01
- for i in range(1, len(layer_dims)): parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01
- for i in range(1, len(layer_dims)/2):

 parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01

 parameter['b' + str(i)] = np.random.randn(layer_dims[i-1], 1) * 0.01
- for i in range(1, len(layer_dims)):

 parameter['W' + str(i)] = np.random.randn(layer_dims[i-1], layer_dims[i]) * 0.01

 parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01

Expand

What are all the values of $n^{[0]}$, $n^{[1]}$, $n^{[2]}$, $n^{[3]}$ and $n^{[4]}$?

What are all the values of $n^{[0]}, n^{[1]}, n^{[2]}, n^{[3]}$ and $n^{[4]}$?

Expand

Yes. The $n^{[l]}$ are the number of units in each layer, notice that $n^{[0]}=n_x.$

True/False: During backward propagation, you calculate $dA^{[l]}$ from $Z^{[l]}$.

- True
- False

○ Correct

Correct. During backward propagation we are interested in computing $dW^{[l]}$ and $db^{[l]}$. For that we use $g'^{L}, dZ^{[l]}, Z^{[l]}, \text{ and } W^{[l]}.$

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

True

False

∠ Expand

✓ Correct

Which of the following statements is true? (Check all that apply).

Correct
Great, you got all the right answers.

- $\bigcirc \ \ b^{[l]}$ has shape $(1,n^{[l]})$
 - $igcup_{b^{[l]}}$ has shape $(1,n^{[l-1]})$
- $b^{[l]}$ has shape $(n^{[l]}, 1)$
- $\bigcirc b^{[l]}$ has shape $(n^{[l+1]},1)$

Correct

True. $b^{[l]}$ is a column vector with the same number of rows as units in the respective layer.