Dissolution de l'Azote (Henry, Haldane)

Principaux Modèles de Désaturation (Haldanien-Buhlm, VPM-RGBM, pas de calculs), Historique, Comparaisons, Applications GP

Pourquoi

Le plongeur respire de l'air à pression ambiante (1 à 7 bars)

Air:

oxygéné O_2 => consommé par l'organisme Azote N2 => gaz «neutre» s'accumule dans l'organisme

lors de la remonté une mauvaise élimination de l'azote peut engendrer un accident de décompression

Objectif

Comprendre

- plus finement le principe de la saturation et de la désaturation à l'azote
- Principes physique utilisé dans la modélisation de la saturation et désaturation et ayant permis de créer des Outils De Décompression (ODD)
- Les limites et condition d'utilisation et différences des ODD

• Pour

- Répondre aux question des plongeurs que vous encadrez
- Devenir acteur de votre profil de décompression pour plonger avec un maximum de sécurité

RAPPELS

Force / surface pascal -> bar (b)

Pour un gaz

la pression de l'air résulte de la force avec laquelle l'air appui sur la surface

Pour un même volume constant et à température constante

P=3b

Pression ≈ quantité

RAPPELS

Dans un mélange de gaz (air 20% O₂, 80% N₂)

Pression partiel d'un des composants (Pp) % du composant x Pression total

Air à la surface (1 b)

Air à 20 m (3 b)

$$Pp O2 = 20\% \times 3 = 0.6 b$$

$$Pp N2 = 80\% \times 3 = 2,4 b$$

Pression Partiel ≈ quantité du composant

RAPPELS

Comment se présente un gaz dans un liquide.

Sous forme dissoute

- le liquide et le gaz sont confondu
- le gaz est absorbé, il est invisible

Sous forme gazeuse

- le liquide et le gaz sont dissociés
- formation de bulles

Entre 2 milieux (gaz/liquide; liquide/liquide)

- le gaz passe du milieu le plus au moins concentré
- des hautes pressions aux basses pressions

représentation

En plongée

Pourquoi modéliser

1854 (travaux de POL & WATELLE)

Les ADD sont associés à une
baisse rapide de la pression
ambiante

1870 (travaux de P. BERT) Les ADD sont liés à l'azote

Le développement de la plongée professionnelle (armée, ...) puis de loisirs, nécessite de pouvoir éviter ces accidents (prévention):

1907: Modèle d'Haldane.

1908: premières tables de plongée.

modèles de désaturation dans le temps

Principe d'un modèle

Représentation « simplifiée » de la réalité :

- Hypothèses (simplificatrices) → théorie
- Limites d'utilisation (validité des hypothèses)
- Calibration
- Validation expérimentale ou par simulation

Modèle d'Haldane

- En 1907, Haldane élabore un modèle basé sur la <u>loi</u>
 de Henry.
- Le corps humain est assimilé à <u>cinq compartiments</u> distincts, caractérisés par des <u>temps de saturation</u> différents (<u>périodes</u>)
- C'est un modèle par <u>perfusion</u>

Hypothèses des échanges gazeux

Modélisation du corps humain

Hypothèses sur les des échanges gazeux

Loi de William Henri (1803)

« A <u>température constante</u> et à <u>l'équilibre, la</u> <u>quantité</u> de gaz dissoute dans un liquide est <u>proportionnelle à la pression partielle</u> qu'exerce ce gaz au-dessus du liquide. »

Gaz: air alvéolaire

Liquide: sang

Pression

 \approx

Quantité gaz dissous

HENRI

Quantité = K pression

La quantité dissoute dépend (K)

- de la température (T ≥ Q 7)
- nature du gaz dissous
- nature du liquide

Hypothèses sur les des échanges gazeux

Mesure de la quantité de gaz dissous: la tension (T)

= K pression

1/K Quantité

gaz dissous

Tension représente la pression d'un gaz dissous. Par analogie avec la pression d'un gaz <u>la tension</u> mesure donc la quantité de gaz dissous

> Par définition à l'équilibre Tension du gaz dissous = pression du gaz T=P (en bar)

Hypothèses sur les des échanges gazeux

La notion de GRADIENT (G)

l'écart entre la pression et la tension:

Gradient = Pression - Tension

G

=

P

_

T

Henry en Décharge massive en Décharge en **Equilibre** azote / Sur azote / Sur plongée /saturaion saturation saturation critique T >> P T > PT = PQ \(\mathcal{Y}\)+ **Q** ≽ ≈ Q **G**<0 **bulles** G=0 Décharge en G<<0 azote / Sur +++ saturation STOP Charge en T > Pazote / Sous Q \(\square\) G<0 saturation T < PQ 7 G>0 Charge en **Equilibre** azote / Sous /saturation

saturation

+++

T = P

≈ Q

G=0

++++

Hypothèses sur les des échanges gazeux

HENRY ce qu'il faut retenir

- Définit 4 états en fonction du gradient
 - > Saturation
 - > sous saturation
 - Sursaturation
 - > sursaturation critique
- <u>Calcul la quantité d'azote (Tension) dissous à</u> <u>saturation</u>

Cette quantité dépend de

- ➤ La nature du liquide
- > La nature du gaz
- > Température
- > De la pression (profondeur)

Hypothèses sur les des échanges gazeux

Un modèle par perfusion

Perfusion:

Alimentation d'un tissus en N2 par le sang Dépend du débit sanguin

Diffusion:

Passage du N2 d'un milieu à l'autre

Dépend du temps et de la surface de contact

Pour son modèle Haldane : diffusion instantanée

Echanges alvéolaires > ventilation Perfusion

L'apport en N2 de dépend que de l'irrigation du tissus en sang (taux de perfusion)

Modélisation du corps humain

Cinq compartiments

Haldane définie 5 compartiments

Chaque compartiment se caractérise par

- vitesse de saturation/désaturation (A taux de perfusion → Période)
- Condition de sécurité (Coefficient de Sursaturations Critique Sc)

3 états: Dissous (quantité ≈ tension)

- Gradient nul saturation
- Gradient > 0 sous saturation
- Gradient < 0 sous saturation

1 états avec bulles

Gradient < < 0 sous saturation

Quand P ≠ T
(Gradient ≠ 0)

au bout
d'un certain temps
P = T (G = 0)

<u>vitesse de</u> saturation/désaturation La période T est le temps pour que le gradient soit divisé par 2

vitesse de saturation /désaturation

vitesse de saturation /désaturation

- Pourquoi et objectif
- Rappel
- L'azote et le plongeur
- Dissolution de l'azote (Henry)
- Saturation/
- désaturation
- Modèle (principe)
- Haldane
- Limite
- Autre modèle

Taux
saturation
50
75
87,5
93,75
96,875
98,4375

Après 6 périodes : on considère une saturation totale

vitesse de saturation / désaturation

	Taux
Période	saturation
1	50
2	75
3	87,5
4	93,75
5	96,875
6	98,4375

Après 6 périodes : on considère une désaturation totale

vitesse de saturation / désaturation

Haldane utilise 5 compartiments de périodes :5, 10, 20, 40 et 75 min

Exemple: plongée à l'air de 40 min à 30 m:

Tension d'azote des compartiments: 5, 20, 40

Patm = 1b

Pabs= 4b

 $% N_2 = 80 %$

	Taux
Période	saturation
1	50
2	75
3	87,5
4	93,75
5	96,875
6	98,4375

Période 5	Période 20	Période 40	
I	Patm x 0,8 = 0,8		
Pabs x 0,8= 3,2			
2,4			
8	1		
100 %	75 %	50 %	
0,8+ 2,4	0,8+ 1,8	0,8+ 1,2	
=	=	=	
3,2 b	2,6 b	2 b	
	8 100 % 0,8+ 2,4 =	Patm x 0,8 = 0,8 Pabs x 0,8= 3,2 2,4 8 2 100 % 75 % 0,8+ 2,4 0,8+ 1,8 = =	

Pouvons nous remonter à la surface ?

vitesse de saturation /désaturation

plongée à l'air de 40 min :

% de saturation des compartiments: 5, 10, 20, 40, 75

A 30 m: Tension d'azote des

compartiments: 5, 10, 20, 40, 75

- Pourquoi et objectif
- Rappel
- L'azote et le plongeur
- Dissolution de l'azote (Henry)
- Saturation/
- désaturation
- Modèle (principe)
- Haldane
- Limite
- Autre modèle

Condition de retour à la surface

Haldane a définie 5 compartiments

Chaque compartiment se caractérise par

- vitesse de saturation/désaturation (taux de perfusion → Période)
- Condition de sécurité (Coefficient de Sursaturations Critique **Sc**)

$$Sc = \frac{Tension\ N2}{Pression\ Absolue}$$

$$Sc = \frac{TN2}{PAbs}$$

Tension N2 atteinte à la profondeur courante

- Pourquoi et objectif
- Rappel
- L'azote et le plongeur
- Dissolution de l'azote (Henry)
- Saturation/
- désaturation
- Modèle (principe)
- Haldane
- Limite
- Autre modèle

Coefficient de Sursaturations Critique Sc

$$Sc = \frac{Tension N2}{Pression Absolue}$$

$$Sc = \frac{TN2}{PAbs}$$

Coefficient de Sursaturations Critique Sc Permet de calculer la profondeur minimale à laquelle on peut remonter

$$PAbs minimale = \frac{T N2}{Sc}$$

A la surface PAbs = 1

Sc est donc la tension N2 maximale admissible en surface

- Pourquoi et objectif
- Rappel
- L'azote et le plongeur
- Dissolution de l'azote (Henry)
- Saturation/
- désaturation
- Modèle (principe)
- Haldane
- Limite
- Autre modèle

A quelle profondeur puis je remonter?

Pour Haldane Sc=2 pour tous les compartiments

Exemple: plongée à l'air de 40 min à 30 m:

compartiments:	Période 5	Période 20	Période 40
P N ₂ initiale	ı	Patm x 0,8 = 0,8	
T N ₂ finale max		Pabs x 0,8= 3,2	
Gradient		2,4	
Nb périodes	8	2	1
% saturation	100 %	75 %	50 %
T N ₂ finale	0,8+ 2,4	0,8+ 1,8	0,8+ 1,2
	=	=	=
	3,2 b	2,6 b	2 b
$Pabs = \frac{T N2}{Sc} PoU$	IVOAS nous	remonter à la s	urface ₽
Je peux remonter à	6 m	3 m	La surface

En résumé le modèle d'Haldane (1907)

- Basé sur la <u>loi de Henry.</u>
 - Saturation / sous saturation / sursaturation/ sursaturation critique
 - > Gradient
- cinq compartiments caractérisés par
 - une <u>périodes</u> (temps de saturation et de saturation règle du demi gradients)
- Coefficient de Sursaturations Critique $\mathbf{Sc} = \frac{T N2}{PAbs}$
 - Défini la pression absolue minimale admissible à la remontée
- C'est un modèle par perfusion
 - ➤ Apport N2 par le Flux sanguin

En résumé le modèle d'Haldane (1907) Ce qu'il faut retenir

HENRY

Haldane (1907)

Calcul la quantité d'azote (Tension) dissous à saturation

Cette quantité dépend de

- > La nature du liquide
- > La nature du gaz
- > Température
- > De la pression (profondeur)
- Définit 4 états en fonction du gradient
 - > Saturation
 - > sous saturation
 - > Sursaturation
 - > sursaturation critique

- ➤ Apport N2 par le Flux sanguin
- > (circulation et ventilation)
- cinq compartiments caractérisés par
 - > une <u>périodes</u> (temps de saturation et de saturation règle du demi gradients)
 - > Coefficient de Sursaturations

Critique **Sc** =
$$\frac{T N2}{PAbs}$$

✓ Défini **la pression** absolue **minimale** admissible **à la remontée**

HALDANE Un modèle à succès

Flexibilité:

Nb compartiments (6 à 16)

Périodes choisies (3min à 700min)

Sc ou M-values

Simplicité:

un seul paramètre, facile à mesurer = pression

Facilité de mise en œuvre :

Tables/ ordinateurs

base de 99% des ordinateurs sur le marché

TABLES ET ORDINATEURS DE PLONGEE

La table: Un calcul par plongée \rightarrow Profondeur Max TN2 est maximisé

Ordinateur: Réactualise le calcul durant toute la pongée \rightarrow Suit le profil de plongée TN2 moins important

Mais le calcul reste le même

- Pourquoi et objectif
- Rappel
- L'azote et le plongeur
- Dissolution de l'azote (Henry)
- Saturation/
- désaturation
- Modèle (principe)
- Haldane
- Limite
- Autre modèle

modèle d'Haldane => Table MN 90

• **12 compartiments** (+ 1 deco à l'oxigène)

• 1 Sc =
$$\frac{T N2}{PAbs}$$
 par compartiment

	C5	C7	C10	C15	C20	C30	C40	C50	C60	C80	C100	C120
Période	5	7	10	15	20	30	40	50	60	80	100	120
Sc	2,72	2,54	2,38	2,20	2,04	1,82	1,68	1,61	1,58	1,56	1,55	1,54

Compartiment long moins tolérant

Notion de compartiment directeur

A quelle profondeur puis je remonter?

C5 C40 C20 Période 5 20 40 Sc

2,04

1,68

2,72

Exemple: plongée à l'air de 40 min à 30 m:

compartiments:	Période 5	Période 20	Période 40
P N ₂ initiale		Patm	x 0,8 = 0,8
T N ₂ finale max		Pabs	x 0,8= 3,2
Gradient		2	,4
Nb périodes	8	2	1
% saturation	100 %	75 %	50 %
T N ₂ finale	0,8+ 2,4 = 3,2 b	0,8+ 1,8 = 2,6 b	0,8+ 1,2 = 2 b
Sc	2,72	2,04	1,68
$Pabs = \frac{T N2}{Sc}$	1,17	1,27	1,19
Je peux remonter à	1,7 m (6)*	3,7 m (3)*	1,9 m (0)*

COMPARTIMENT DIRECTEUR: C20

^{*}Sc= 2 (Haldane)

vitesse de saturation /désaturation

Exemple: plongée à l'air de 20 min à 40 m:

Tension d'azote des compartiments: 5, 20, 40

Patm = 1b, Pabs= 5b % N₂ = 80 %

	Iddx
Période	saturation
1	50
2	75
3	87,5
4	93,75
5	96,875
6	98,4375

Taux

compartiments:	Période 5	Période 20	Période 40
P N ₂ initiale	Patm	x 0,8 = 0,8	
T N ₂ finale max	Pab	s x 0,8= 4	
Gradient		3,2	
Nb périodes	4	1/2	
% saturation	93,75 %	50 %	Hors GP
T N ₂ finale	0,8+ 2,4 = 3,8 b	0,8+ 1,6 = 2,4 b	1,73 b
Sc	2,72	2,04	1,68
$Pabs = \frac{T N2}{Sc}$	1,4	1,18	1,03
Je peux remonter à	4 m	1,8 m	0,3 m

COMPARTIMENT DIRECTEUR: C 5

Evolution d'un compartiment en plongée: Le Graphe des pressions

TN2 = SC * Pabs

1 droite par compartiment

Sc pente de la droite

Evolution d'un compartiment en plongée:

Le Graphe des pressions

TN2 = SC * Pabs

Pour un compartiment

L'approche Buhlmann (1983)

Haldane:

- C'est un modèle par perfusion
- Le corps humain est assimilé de <u>8 à 16 compartiments</u> distincts, caractérisés par des <u>temps de saturation</u> différents (<u>périodes de 4 à 635 min</u>)

mais en mieux:

- Prend en compte <u>l'air alvéolaire</u> (Haldane air atmosphérique)
- A partir des travaux de Workmann (1960) utilise les <u>M value</u>

M value - Buhlmann

- Haldane
 - $Sc = \frac{Tension N2}{Pression Absolue}$
 - $PAbs\ minimale = \frac{T\ N2}{Sc}$

SC constant pour toute profondeur

- Buhlmann
 Il défini pour chaque compartiment et chaque profondeur la TN2 maximale tolérable
 - TN2max = APAmb + B

A=SC B=0 => Haldane = Buhlmann

Buhlmann plus conservateur, premier palier plus profond que Haldane MN90

Facteur de gradient:

(1998 Baker)

L'approche Buhlmann personnalisable

Permet de faire varier les M value vers plus de conservatisme

Modifie la réparations des paliers (temps profondeur) sur le profil de remonté

- 2 paramètre supplémentaires à régler
 - ➤ GF low permet de modifier la profondeur du premier palier
 - GF hight durée répartition des paliers

Augmentation du conservatisme: augmenter la sécurité

Les GF (Gradient Factor) permettent de s'éloigner de la zone de sursaturation critique selon Haldane/Buhlmann

- Diminue en fonction de la profondeur la TN2 maximale tolérable
- Le fait de même façon pour tous les compartiments

Gestion du conservatisme

« Gradient factor »

un moyen mais pas tout les ordinateurs le propose

Alors pour les autres

<u>Connaitre</u> les paramètres de conservatismes de <u>son ordinateur</u> (lire manuel avec attention):

- paramètre de condition physique
- consommation
- température
- **>**

Gestion du conservatisme

Mais surtout avoir les bons comportements

- Planifier et la respecter
- Surveiller et respecter la stabilisation/profondeur, les paliers ,les vitesses de remontées
- Limiter les plongées répetitives (journalières/séjour)
- Limiter les efforts
- Eviter les profils à risque (inversé, yoyo...)
- Adapter la plonger
 - ✓ En fonction du milieux (froid, courrant, visibilité....)
 - ✓ Des conditions des plongeurs (ages, surcharge pondéral, stress, condition physique,

S'hydrater (vous et les autres) surveiller sa condition physique

Se souvenir

Notre Comportement est le plus fort Facteur de Risque comparativement aux Moyens de deco actuels

• En résumé les modèle Haldanien (1907)

par perfusion Apport N2 par le Flux sanguin

CINQ COMPARTIMENTS air liquide

loi de Henry

Saturation
sous saturation
sursaturation
sursaturation critique (bulles)
Gradiant

Périodes

temps de saturation et de saturation règle du demi gradient

Coefficient de Sursaturations

Critique $Sc = \frac{T N2}{PAbs}$ ou M value

Défini la pression absolue

minimale admissible à la

remontée

- Circulation
- ventilation
- Température
- Nature des Tissus
- Nature du gaz

Profondeur/ Pression

Temps

Différence de pression (Gradient)

Planification /

Milieu

Individu

Forme

physique

Efforts

Temps/profil

fond

Vitesse/ Profil

de remonté

Stabilisation

Vérifications

En pratique pour le GP

- Équipement (lestage) ½
- Motivation/stress/aptitudes
- paramètres

Contrôle et Respect des consignes Surveillance pendant la plongée

- Stabilisation
- Vitesse
- Froid
- Essoufflement
- ·(yoyo)

Adaptation de la plongée aux

- Conditions
- Plongeurs
- Matériel (ODD)

Respect du profil de remonté

- paliers
- vitesse

Partir du constat :

- micro-bulles circulantes présentes systématiquement a la remontée
- Présence de micros bulles physiologiquement normal qui peuvent devenir pathologique

Objectif:

Suivre l'évolution des microbulles une fois formées (appelées aussi Noyaux gazeux)

1er hypothèse par Behnke (1942) puis Hills (1966), Spencer (1971),

- Yount (1980) → VPM, (validation sur de la gélatine)
- Wienke (1990) RGBM (validation différente protéine)

VPM: Définition

- Variable Permeability Model
- Modèle à Perméabilité Variable

La bulle est

délimitée par une « peau »

L'azote passe a travers cette peau Avec plus ou moins de facilité en fonction de la

- > Profondeur
- variation de pression
- quantité d'azote

Le volume de la bulle ne dépend plus que de la pression

C'est la perméabilité variable

En fonction du profil de plongée le

- Calcul de la taille des bulles
 - Calcul avec la quantité d'azote (Buhlmann) du volume total de bulles

Etablit le profil de remonté pour

- Limiter la taille des bulles
- Limiter le volume total

RGMB

Adaptation du modèle VPM

- Semble ajouter des phénomène de coalescence (regroupement de bulles) et de cavitation
- > Calcul la phase dissoute avec son propre model (Buhlmann modifié?)
- > model de perméabilité différent car (validé autrement)
- > Prise en compte de l'altitude, profils inverses, plongees
- > multiples

VPM modèle publié et libre d'accés RGBM modèle propriétaire (peu d'information)

VPM / RGMB

Profil de remonté:

- ➤ Paliers + profonds
- > Paliers + courts prés de la surface
- > Vitesse de remontée + lente

Pour des plongées de durée courte la déco est plus longue qu'avec les autres modèles.Le phénomène s'inverse dés que la durée des plongées devient significatif

Importance de la vitesse de descente et de la profondeur maxi atteinte...

Plus sensible

- > Au vitesse excessive de remonté
- ➤ Au yoyo

Adapté à la plongée profonde et multi-gaz

En résumé

Modélisation du corps humain en compartiments **HALDANE**

MN 90

BUHLMANN

APPROCHE BULLAIRE VPM/RGBM

AIR N2

5 boites Liquide **AIR N2**

12+1 boites Liquides

8 à 16 boites Liquides

AIR N2 N2 11 à 16 boites Liquides +

présence de bulles

Echanges gazeux

Henry /états saturations/ perfusion/gradient/ périodes

«Haldane» + Calcul taille et volume bulles

Apparition ADD

Pabs Minimale =TN2/2

Pabs Minimale =TN2/Sc

M value: TN2 = A Pabs Minimale + b

Taille des bulles Volume total de bulles

Paramètres influents

Natures des tissus/gaz /Température/ circulation/ ventilation

Temps/ Profondeur

Temps / Profil de plongée

Vitesse/ yoyo

Intervalle de surface et plongées répétitives

Désaturation en surface calculer sur les compartiment les plus longs (Etant moins tolérants ils deviennent directeur)

MN 90 compartiment 120 min → désaturation complète 12 h (6 x120)/60

Buhlmann compartiment 635 min → désaturation complète plus de 2,6 j

<u>Conséquence</u>

- ➤ Accumulation d'azote différentes au des cour plongées en fonction des ordinateur → profil de remonté différent (temps de palier)
- ➤ Présence d'azote en continue dans les tissus → diffusion possible entre les tissus (hors limite modèle à perfusion)

Attention

Séjour plongée Journée à plus de deux plongées par jours

Marge de sécurité Table Ordinateur

Désaturation en surface calculer sur les compartiment les plus longs (Etant moins tolérants ils deviennent directeur)

MN 90 compartiment 120 min → désaturation complète 12 h (6 x120)/60

Buhlmann compartiment 635 min → désaturation complète plus de 2,6 j

<u>Conséquence</u>

- ➤ Accumulation d'azote différentes au des cour plongées en fonction des ordinateur → profil de remonté différent (temps de palier)
- ➤ Présence d'azote en continue dans les tissus → diffusion possible entre les tissus (hors limite modèle à perfusion)

Attention

Séjour plongée Journée à plus de deux plongées par jours

MERCI POUR VOTRE ATTENTION

Dissolution de l'Azote

vitesse de saturation /désaturation

Exemple: plongée à l'air de 40 min à 30 m:

Tension d'azote des compartiments: 5, 20, 40

Patm = 1b Pabs = 4b $\% N_2 = 80 \%$

Nb périodes	TN ₂	T N ₂ Max	Gradient	Gradient/2	T N ₂ +T N ₂ finale 2	% Saturation
0	Patm x 0,8 = 0,8	Pabs x 0,8= 3,2	2,4	1,2		
1	0,8+1,2=2	3,2	1,2	0,6	(0,8+3,2)/2=2	(0+100)/2=50
2	2+0,6=2,6	3,2	0,6	0,30	(2+3,2)/2=2,6	(50+100)/2=75
3	2,6+0,3=2,9	3,2	0,30	0,15	(2,6+3,2)/2=2,9	(75+100)/2=87,5
4	2,9+0,15=3,05	3,2	0,15	0,08	(2,9+3,2)/2=3,05	(87,5+100)/2=93,75
5	3,05+0,08=3,13	3,2	0,08	0,04	(3,05+3,2)/2=3,13	(93,75+100)/2=96,88
6	3,13+0,04=3,17	3,2	0,04	0,02	(3,13+3,2)/2=3,17	(96,88+100)/2=98,44
7	3,17+0,02=3,19	3,2	0,02	0,01	(3,17+3,2)/2=3,19	(98,44+100)/2=99,22
8	3,19+0,01=3,20	3,2	0,01	0,00	(3,19+3,2)/2=3,20	(98,22+100)/2=99,61