Statistics for Data Science -1

Lecture 7.4: Conditional Probability: Independent events

Usha Mohan

Indian Institute of Technology Madras

Learning objectives

1. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.

Learning objectives

- 1. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.
- 2. Distinguish between independent and dependent events.

Learning objectives

- 1. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.
- 2. Distinguish between independent and dependent events.
- 3. Solve applications of probability.

Statistics for Data Science -1

Question: Will the conditional probability that E occurs given that F has occurred be generally equal to the (unconditional) probability of E?

- Question: Will the conditional probability that E occurs given that F has occurred be generally equal to the (unconditional) probability of E?
- ► That is, Will knowing that *F* has occurred generally change the chances of *E*'s occurrence?

- Question: Will the conditional probability that E occurs given that F has occurred be generally equal to the (unconditional) probability of E?
- ► That is, Will knowing that *F* has occurred generally change the chances of *E*'s occurrence?
- ▶ In the cases where P(E|F) is equal to P(E),

- Question: Will the conditional probability that E occurs given that F has occurred be generally equal to the (unconditional) probability of E?
- ► That is, Will knowing that *F* has occurred generally change the chances of *E*'s occurrence?
- ▶ In the cases where P(E|F) is equal to P(E), we say that E is independent of F.

- Question: Will the conditional probability that E occurs given that F has occurred be generally equal to the (unconditional) probability of E?
- ► That is, Will knowing that *F* has occurred generally change the chances of *E*'s occurrence?
- ▶ In the cases where P(E|F) is equal to P(E), we say that E is independent of F.
 - ▶ In other words, event *E* is independent of event *F* if knowing whether *F* occurs does not affect the probability of *E*.

Since

$$P(E \cap F) = P(F) \times P(E|F)$$

Since

$$P(E \cap F) = P(F) \times P(E|F)$$

we see that E is independent of F if

Since

$$P(E \cap F) = P(F) \times P(E|F)$$

we see that E is independent of F if

$$P(E \cap F) = P(F) \times P(E)$$

Since

$$P(E \cap F) = P(F) \times P(E|F)$$

we see that E is independent of F if

$$P(E \cap F) = P(F) \times P(E)$$

Definition

Two events E and F are independent if $P(E \cap F) = P(E) \times P(F)$.

Since

$$P(E \cap F) = P(F) \times P(E|F)$$

we see that E is independent of F if

$$P(E \cap F) = P(F) \times P(E)$$

Definition

Two events E and F are independent if $P(E \cap F) = P(E) \times P(F)$.

Definition

Two events that are not independent are said to be dependent.

► For any two events, E and F,

► For any two events, E and F, If E and F are independent events, then

► For any two events, E and F, If E and F are independent events, then

$$P(E \cap F) = P(E) \times P(F)$$

and conversely,

For any two events, E and F, If E and F are independent events, then

$$P(E \cap F) = P(E) \times P(F)$$

and conversely, if

$$P(E \cap F) = P(E) \times P(F)$$

then E and F are independent.

► For any two events, E and F, If E and F are independent events, then

$$P(E \cap F) = P(E) \times P(F)$$

and conversely, if

$$P(E \cap F) = P(E) \times P(F)$$

then E and F are independent.

In other words, two events are independent if and only if the probability that both occur equals the product of their individual probabilities.

For any two events, E and F, If E and F are independent events, then

$$P(E \cap F) = P(E) \times P(F)$$

and conversely, if

$$P(E \cap F) = P(E) \times P(F)$$

then E and F are independent.

- In other words, two events are independent if and only if the probability that both occur equals the product of their individual probabilities.
- ► The definition of independence for three or more events is more complicated than that for two events. We will discuss this later.

Section summary

- ► Independent events
- ▶ Multiplication rule for two independent events.