1/16

Figure 1

CHIRCTITHITE CHEET /DITHE 261

#aff	150						
# non aff	150						
	pAi non aff	0	0,1	0,2	6,0	0,4	0,5
Δ pAi	0,05	8,7699E-05	0,06407752 0,14252002 0,19106311	0,14252002	0,19106311	0,21543442	0,22009395
∆ pAi	0,1	1,9149E-08	0,00060364 0,00467774 0,01023571	0,00467774	0,01023571	0,01382303	0,01382303
∆ pAi	0,15	3,0618E-12		1,3319E-06 3,8827E-05 0,0001478	0,0001478	0,0002343	0,00020218
∆ pAi	0,2	3,2153E-16	9,1413E-10 9,0305E-08	9,0305E-08	5,733E-07	9,6336E-07	5,733E-07
∆ pAi	0,25	2,0791E-20	2,2614E-13	2,2614E-13 6,2679E-11	5,873E-10	8,7113E-10	2,5396E-10
∆ pAi	6'0	7,8245E-25	2,152E-17	2,152E-17 1,3261E-14 1,5189E-13	1,5189E-13	1,5189E-13	1,3261E-14
∆ pAi	0,35	1,6192E-29	7,9823E-22	7,9823E-22 8,4152E-19 9,1669E-18	9,1669E-18	4,2713E-18	5,5844E-20
∆ pAi	0,4	1,7336E-34	1,1282E-26		1,524E-23 1,1488E-22	1,524E-23	1,1282E-26

p-VALUE DISTRIBUTION

#aff	200						
# non aff	200						
	pAi non aff	0	0,1	0,2	6,0	0,4	0,5
s pAi	90'0	5,9233E-06	1	0,03250945 0,09039173 0,13111935	0,13111935	0,15260313	0,15678006
۱ pAi	0,1	8,649E-11	7,4765E-05	7,4765E-05 0,00109084 0,00302686	0,00302686	0,00447365	0,00447365
۱ pAi	0,15	8,0215E-16	2,3653E-08	2,3653E-08 2,0257E-06 1,1771E-05	1,1771E-05	2,1573E-05	1,7772E-05
∆ pAi	0,2	4,1762E-21	1,5375E-12	1,5375E-12 6,7374E-10	7,764E-09	1,5417E-08	7,764E-09
۱ pAi	0,25	1,1282E-26	2,525E-17	2,525E-17 4,4025E-14 8,5532E-13	8,5532E-13	1,4423E-12	2,8149E-13
) pAi	6,0	1,4722E-32		1,1488E-22 5,8424E-19 1,4886E-17	1,4886E-17	1,4886E-17	5,8424E-19
ı pAi	96,0	8,6169E-39		1,4784E-28 1,5457E-24 3,6958E-23	3,6958E-23	1,3394E-23	4,197E-26
∆ pAi	0,4	2,0885E-45		5,2308E-35 7,6438E-31 1,1224E-29	1,1224E-29	7,6438E-31	5,2308E-35

affected individuals

non affected individuals pAi non aff # non aff

allele frequency in non affected individuals % Difference in allele frequency between affected and non-affected individuals ∆ pAi

Figure 3 (I)

# non aff	500						
	pAi non aff	0	0,1	0,2	0.3	0.4	0.5
∆ pAi	50'0	8,0004E-13	0,00072323	0,00072323 0,00741965	0,0169	0,02371865	0.02516449
∆ pAi	0,1	1,0695E-24	3,7948E-10	3,7948E-10 2,4176E-07 2,7579E-06	2,7579E-06	6,9679E-06	6.9679F-06
∆ pAi	0,15	3,813E-37	1,0719E-18	1,0719E-18 5,8344E-14 4,2622E-12	4,2622E-12	1,8601E-11	1.1611F-11
∆ pAi	0,2	2,9626E-50	5,0895E-29	1	1,6881E-22 6,9321E-20	3.7441E-19	6 9321E_20
∆ pAi	0,25	4,2697E-64	7,2043E-41	7,2043E-41 7,7528E-33	1.194E-29	4 3467F-29	7,643RE-31
∆ pAi	6,0	9,6976E-79	3,9328E-54	3,9328E-54 6,3017E-45 1,9429E-41	1.9429E-41	1 9429F-41	6 3017E 45
∆ pAi	0,35	2,911E-94	8,8513E-69	8,8513E-69 8,7879E-59 2,3478E-55	2,3478E-55	1.8839F-56	1 120RE-R2
∆ pAi	0,4	9,505E-111	7,7199E-85 1,8063E-74 1,4484E-71	1,8063E-74	1.4484E-71	1.8063F-74	7 7199E.85
		7					100-100

p-VALUE DISTRIBUTION

500

#aff

# non aff 850 PAi non aff	150			
pAi non aff 0,05 0,1 0,15 0,15 0,25 0,25 0,25 0,35				
0,05 0,15 0,25 0,25 0,35	0 0,1	0,2	0.3	2
0,15 0,15 0,25 0,3 0,35	2,1561E-20 0,00994614	0,00994614 0,04896055 0,08358651	0.10417	0 11025423
0,15 0,25 0,35 0,35	2,0126E-39 5,571E-07	5,571E-07 0,00010149 0,00058665		
0,25	1,1091E-58 2	8.462E-09 2.9851E-07		
0,25	3,2726E-78 2,1683E-21	1		
0,35	4,9576E-98	4,4952E-31 6,5226E-71 3,1015E-17	0	
0,35	3,749E-118	8 129E-29 6 9335E-24		
	1,383E-138 1,6797E-54	1		2,5057 E-22
1 pAi 0,4 2,435E-	2,435E-159 5,4915E-68	5,4915E-68 4,8846E-48 2,1003E-40		

allele frequency in non affected individuals % Difference in allele frequency between affected and non-affected individuals non affected individuals affected individuals pAi non aff # non aff #aff

Figure 3 (II)

Δ pAi

SUBSTITUTE SHEET (RULE 26)

p-VALUE DISTRIBUTION

The state of the s							
#aff	200						
# non aff	200						
	pAi non aff	0	0,1	0,2	0,3	0.4	0.5
Δ pAi	0,05	1,0628E-12	0,00789803		0,03942584 0,06867566	0,08621572	0.09083704
∆ pAi	0,1	3,4525E-24	4,4217E-07	5,6883E-05 0,00031976	0,00031976	0.0006363	0.00070881
∆ pAi	0,15	5,9036E-36	4,3025E-13		9,2134E-08	3,319E-07	3 5871F-07
∆ pAi	0,2	4,7325E-48	1,5566E-20		1,0346E-14 1.7218E-12	1.1512E-11	1 00471F-11
∆ pAi	0,25	1,6694E-60	3,5436E-29		2,2178E-18	1.1498E-17	1 3524F-17
∆ pAi	6,0	2,4613E-73	7,2498E-39	3,0748E-29 2,0601E-25	2,0601E-25	3.4525E-24	7 4807F-25
∆ pAi	96,0	1,4447E-86	1,6945E-49	3,9559E-38 1,4118E-33	1,4118E-33	2.662E-32	1 4118F-33
∆ pAi	0,4	3,214E-100	5,3051E-61	4,7325E-48 7,1282E-43	7,1282E-43	1,0691E-41	7.2652E-44

# aff	500						
# non aff	1000						
	pAi non aff	0	0,1	0,2	0,3	0.4	0.5
Δ pAi	30'0	6,4766E-24	5,7827E-05	0,00172627 0,00551541	0,00551541	0.00882876	0.00978249
∆ pAi	0,1	6,5309E-47	3,065E-14	1,0301E-09	1,0301E-09 4,3205E-08	1.8833F-07	2 2731E-07
ß pAi	0,15	1,1969E-70	2,0716E-27	3.7441E-19	3,7441E-19 4,6626E-16	6 9719F-15	6 9719E 15
Δ pAi	0,2	3,3252E-95	1,1636E-43	1,6614E-31	1,6614E-31 8,5632E-27	4 1421F-25	1 9885E-75
∆ pAi	0,25	1,227E-120	1,7683E-62	1,5329E-46	1.5329E-46 3.1722E-40	8 6765E-30	3 6071E 30
∆ pAi	6,0	5,303E-147	1,526E-83	4,2697E-64 2,5968E-56	2,5968E-56	3 9328F-54	2,007,1E-33
1 pAi	0,35	2,36E-174	1,184E-106	4,5658E-84	4,5658E-84 4,7426E-75	4.26245F-73	4 0958E-77
۱ pAi	0,4	9,446E-203	1,082E-131	2,137E-106 1,8014E-96	1,8014E-96	3.3252E-95	6 725F-102

non affected individuals affected individuals # non aff

pAi non aff Δ pAi

allele frequency in non affected individuals % Difference in allele frequency between affected and non-affected individuals

Figure 3 (III)

Figure 4

CHIDOTITHITE QUEET /DI II F 261

8/16

Figure 5

Figure 6

APO E REGION HAPLOTYPE FREQUENCY ANALYSIS

AD CASES (225)

AD CONTROLS (248)

	200							
Illarkers	33-366	99-344	99-359	99-355	haplotype	haplotype frequencies	odde-	Dynalis
2	1000			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Solombon	2000	ר אמותה
p value	3,01E-01 1,1	1,11E-01	6,63E-01	1,38E-01	cases	controls	rafio	
haplotype 1	ပ	ග			7070	0.200	200	
Composition		(•		101,0	0,000	70,1	3,U5E-U3 ***
ilapiotype z		' 5	⋖		0,203	0,165	1.29	1 24F-01 *
naplotype 3			o	Ø	0.375	0.306	1 36	** 00 1100 0
hanlotyne 4	ر		<			200) - 	
t odfoodby)		₹		0,264	0,209	1.36	5.95E-02 **
naplotype 5		ග		۷	0.115	0.071	1 70	4 RATIO **
haplotype 6	ن			<	1,70	5	2/-	ł
) 1			¥	0,15	0,129	1,19	3.59E-01 *
napiotype /	-		တ	ဖ	0.225	0 122	200	1 7RE OF *****
haplotype 8	I -	<	C	(300		2,00	- 1
2 2 4 6 1	•	(ס	כ	0.778	0.108	2 44	2 OKE OF *****

pvalue max

11/16

pvalue 2,05E-06 -sppo ratio 2,44 haplotype frequencies
cases controls
0,228 0,108 99-355/219 99~359/308 G 99-366/274 99-344/439 Haplotype 8

POPULATION: 225 CASES vs 248 CONTROLS

APO E REGION HAPLOTYPE SIMULATION

<u> </u>		
Cumulated %	_	○ [190-34,80-31]
Si		o [90-36'90-39]
100 simulations 4-marker haplotypes		[1E-05,4E-05]
s 4-marker		[5E-05,9E-05]
imulation	۲	[1E-04,4E-04]
100 s	. / . /	[\$6-96,\$6-38]
	2	[16-35,46-03]
	5	leE-03'∂E-03l
E		[1E-02,4E-02]
%.88 •	το	[5E-02,9E-02]
% 9	7	[16-94,10-31]
irequency	w [[66-01,98-01]
35 39 25 29	15 10 5	0

Figure 8

, (DOTIME INT. OF FEET ADEL)

Figure 9

13/16

PROSTATE CANCER ASSOCIATION STUDIES (FIRST SCREENING)

_			
NON AFFECTED	CONTROL S=76	> 65 years	PSA<4
PROSTATE CANCER	CASES = 112	35 sporadic cases	+ // familial cases
Population	Sample size	Population	Cital actel 1911CS

SURCTITUTE CHEET (RUILE 26)

Figure 11

14/16

PROSTATE CANCER ASSOCIATION STUDIES (ZOOM)

NON-AFFECTED	CONTROL S. U.S.	CON 170 (130)	A S. C.	Signal Si	PSA<4	
PROSTATE CANCER	CASES (281)		143 sporadic cases	+ 138 familial cases	Casas Isillilia Co.	
		charactoriotica	cilal actellatics	of populations		

			pvalue			9.00E_04 ***	C 000 or ++++	0,00E-00	1,00E-05 ****	9,00E-07 *****	2,00E-05 *****	2,00E-05 *****	4,00E-05 ****	2,00E-04 ****	1,00E-04 ***	3,00E-04 ****	6,00E-04 ***
		rolatina	ובומווגה	risk		4.42	8 8	2	6,78	10,06	5,17	4,78	2,33	2,17	2,32	2,01	2,05
	haplotype	freditencies	5115		controls	0,018	0.016	2	0,019	0,013	0,025	0,027	0,109	0,134	0,112	0,146	0,129
	hap	fredit	<u> </u>		cases	0,075	0.095		0,116	0,117	0,117	0,117	0,222	0,251	0,226	0,256	0,233
	99-135	ပ			2,00E-01	¥	∢										
	99-221	IJ.			7,00E-01	∢	∢	•	∢	۷	V	∢					
	99-213	L	,		9,00E-02	ပ	ပ	(ر	ပ	O	ပ	ပ		ပ		O
10 7	4-0/	Ŀ			6,00E-04	H	H	۲	- I	-	 -	 	⊢ ∤	- 1	⊢ !	ا ر	-
00 247	23-711	ււ	<pg1< td=""><td>1000</td><td>4,00E-02 4,00E-02</td><td>-</td><td>H</td><td>1-</td><td>- F</td><td>- 1</td><td>- 1</td><td>- }</td><td>- F</td><td>- F</td><td> F</td><td>-</td><td></td></pg1<>	1000	4,00E-02 4,00E-02	-	H	1-	- F	- 1	- 1	- }	- F	- F	F	-	
4.77			V	2000	2,00E-02	უ	ტ	C) (າ ເ	פ	(9 (9			
4-14		<u>.</u>		1 000 04	1	، د	ပ	ပ	ر	י							
4-26				2.00E-01 1 00F-01	- - -	۲ .	₹	⋖									
99-123	,	,		2.00E-01	ر	י											
markers	BACs	Monoc	genes	p value	haplotyne 8 >304kh<	hanlohyne 7 > 286kb/	harlefter 0 4001	riapiotype o <186kb>	haplotype 5 <171kb>	haplotype 4 <83kb>	naplotype 3.1 <54kb>	naplotype 3.2 <54kb>	naplotype 2.2 <39kb>	haplotype 2 <32kb>	aplotype 1.1 <17 kb>	aplotype 1.2 <15 kb>	

Figure 12

PROSTATE CANCER HAPLOTYPE FREQUENCY ANALYSIS

16/16

PROSTATE CANCER HAPLOTYPE SIMULATIONS (100 ITERATIONS)

markers							haplotype	frequencies	relative	pvalue
haplotype	4-14	4-77	99-217	4-67	99-213	99-221	cases	controls	risk	p.10.00
паріотуре	<u> </u>	G		T	G	Α	0,117	0,013	10,06	9,00E-07

pvalue max of haplotypes for 100 simulations

pvalue of haplotype CGTTGA for 100 simulations

Figure 13