Universidade de Évora

ANÁLISE MATEMÁTICA I

2^a Frequência

21/12/12

Justifique cuidadosamente todos os passos que efectuar na resolução das questões. Em cada folha de teste indique os grupos e alíneas que resolveu. Resolva cada um dos grupos em folhas de teste separadas.

Ι

1. Encontre α , $\beta \in \mathbb{R}$ de modo a que a função:

$$f(x) := \begin{cases} \beta + (1-x)^{-\frac{1}{2x}}, & x < 0; \\ \alpha, & x = 0; \\ \frac{x}{x^3 + \sqrt{x}}, & x > 0. \end{cases}$$

seja contínua em x = 0.

2. Recorde que

$$ch x = \frac{e^x + e^{-x}}{2};$$
 $sh x = \frac{e^x - e^{-x}}{2}.$

- a) Calcule ch(0), $sh(\log 5) e sh(-\log 5)$.
- b) Esboce o gráfico da função chx.
- c) Mostre que a equação:

$$\frac{x}{2} + 2 - \sin x = 0$$

tem uma **única** solução em \mathbb{R} .

Sugestão: use a diferenciabilidade para demonstrar a unicidade de solução.

3. Caracterize os extremos locais da função:

$$f(x) = \frac{x^4}{2} + \frac{x^3}{3} - \frac{x^2}{2}.$$

II

4. Indique a expressão geral das primitivas da função:

a)
$$f(x) = e^{2x} \operatorname{sen}(3x);$$
 b) $g(x) = \frac{3}{5+x^2}.$

5. Calcule os seguintes integrais:

a)
$$\int_0^{\frac{\pi}{4}} \cos^2(3x) \ dx$$
; b) $\int_0^{62} \frac{\sqrt[6]{x+2}}{\sqrt{x+2} + \sqrt[3]{x+2}} \ dx$; c) $\int_2^3 \frac{1}{x^3+x} \ dx$.

6. Calcular

$$\lim_{x \to 0} \frac{\int_{x^2}^{x^3} \operatorname{sen}(t) \ dt}{x}.$$

III

7. Seja f uma função contínua em \mathbb{R} e

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \to g(x) = \begin{cases} \frac{1}{x} \int_{0}^{x} f(t)dt, & x \neq 0, \\ f(0), & x = 0. \end{cases}$$

- a) Verifique que g é contínua em \mathbb{R} .
- b) Mostre que se f é constante então g também é constante em \mathbb{R} .
- 8. Calcule a área da região plana situada na região $x \ge 1$ e limitada pelas curvas $y=\frac{\log x}{x^2}$ e $y=\frac{1}{x^2}$.