Importing libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Importing dataset

```
In [2]: data=pd.read_csv(r"C:\Users\user\Downloads\cities.csv")
    data
```

Out[2]:		id	name	state_id	state_code	state_name	country_id	country_code	country_name
	0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afghanistan
	1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afghanistan
	2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afghanistan
	3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afghanistan
	4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afghanistan
	•••								
	150449	131496	Redcliff	1957	MI	Midlands Province	247	ZW	Zimbabwe
	150450	131502	Shangani	1957	MI	Midlands Province	247	ZW	Zimbabwe
	150451	131503	Shurugwi	1957	MI	Midlands Province	247	ZW	Zimbabwe
	150452	131504	Shurugwi District	1957	MI	Midlands Province	247	ZW	Zimbabwe
	150453	131508	Zvishavane District	1957	MI	Midlands Province	247	ZW	Zimbabwe
	150454 rows × 11 columns								

info

```
In [3]: # to identify missing values
    data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150454 entries, 0 to 150453
Data columns (total 11 columns):
# Column Non-Null Count Dtype
```

```
150454 non-null
                                    int64
 0
    id
 1
                   150454 non-null
                                    object
    name
 2
    state id
                   150454 non-null
                                    int64
 3
    state_code
                   150129 non-null
                                    object
 4
     state_name
                   150454 non-null
                                    object
 5
     country_id
                   150454 non-null
                                    int64
     country code
                   150406 non-null
                                    object
 7
     country_name
                   150454 non-null
                                    object
 8
     latitude
                   150454 non-null
                                    float64
 9
     longitude
                   150454 non-null
                                    float64
 10 wikiDataId
                   147198 non-null object
dtypes: float64(2), int64(3), object(6)
memory usage: 12.6+ MB
```

describe

```
In [4]:
# to display summary of the dataset
data.describe()
```

Out[4]:		id	state_id	country_id	latitude	longitude
	count	150454.000000	150454.000000	150454.000000	150454.000000	150454.000000
	mean	76407.091689	2678.377677	140.658460	31.556175	2.369557
	std	44357.755335	1363.513591	70.666123	22.813220	68.012770
	min	1.000000	1.000000	1.000000	-75.000000	-179.121980
	25%	38160.250000	1451.000000	82.000000	19.000000	-58.468150
	50%	75975.500000	2174.000000	142.000000	40.684720	8.669980
	75%	115204.750000	3905.000000	207.000000	47.239220	27.750000
	max	153528.000000	5116.000000	247.000000	73.508190	179.466000

columns

```
In [5]:
        # to display headings of the dataset
        data.columns
       dtype='object')
In [6]:
        a=data.dropna(axis=1)
Out[6]:
                 id
                        name state id
                                     state_name country_id country_name
                                                                   latitude longitude
           0
                 52
                    Ashkāsham
                               3901
                                     Badakhshan
                                                         Afghanistan
                                                                   36.68333
                                                                           71.53333
                 68
                      Fayzabad
                                     Badakhshan
                                                         Afghanistan
                                                                   37.11664
                                                                           70.58002
                               3901
```

Badakhshan

Afghanistan

36.86477

70.83421

3901

Jurm

78

2

	id	name	state_id	state_name	country_id	country_name	latitude	longitude
3	84	Khandūd	3901	Badakhshan	1	Afghanistan	36.95127	72.31800
4	115	Rāghistān	3901	Badakhshan	1	Afghanistan	37.66079	70.67346
•••								
150449	131496	Redcliff	1957	Midlands Province	247	Zimbabwe	-19.03333	29.78333
150450	131502	Shangani	1957	Midlands Province	247	Zimbabwe	-19.78333	29.36667
150451	131503	Shurugwi	1957	Midlands Province	247	Zimbabwe	-19.67016	30.00589
150452	131504	Shurugwi District	1957	Midlands Province	247	Zimbabwe	-19.75000	30.16667
150453	131508	Zvishavane District	1957	Midlands Province	247	Zimbabwe	-20.30345	30.07514

150454 rows × 8 columns

To train the model-Model Building

Linear regression

63.976158623252175

```
In [12]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
             Co-efficient
Out[12]:
                0.001002
         id
In [13]:
           prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[13]: <matplotlib.collections.PathCollection at 0x1e60cbd11f0>
          220
          200
          180
          160
          140
          120
          100
           80
                        50
                                100
                                         150
                                                  200
                                                           250
In [14]:
          print(lr.score(x_test,y_test))
          0.4002211834789693
In [15]:
          lr.score(x_train,y_train)
         0.39602347546627725
Out[15]:
         Ridge regression
In [16]:
          from sklearn.linear_model import Ridge,Lasso
In [17]:
           rr=Ridge(alpha=10)
           rr.fit(x_train,y_train)
          rr.score(x_test,y_test)
         0.4002211834789692
Out[17]:
In [18]:
          rr.score(x_train,y_train)
```

7/31/23, 4:51 PM

Lasso regression

```
In [19]: la=Lasso(alpha=10)
la.fit(x_train,y_train)

Out[19]: 0.3960234754561025

In [20]: la.score(x_test,y_test)

Out[20]: 0.4002211608355648
```

Elastic net regression

```
In [21]:
          from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[21]: ElasticNet()
In [22]:
          print(en.coef_)
          [0.00100244]
In [23]:
          print(en.intercept_)
         63.976178067479765
In [24]:
          predict=en.predict(x_test)
In [25]:
          print(en.score(x_test,y_test))
         0.40022118234614756
In [26]:
          from sklearn import metrics
In [27]:
          print("Mean Absolute error:",metrics.mean_absolute_error(y_test,predict))
         Mean Absolute error: 43.914578294509376
In [28]:
          print("Mean Squared error:",metrics.mean_squared_error(y_test,predict))
         Mean Squared error: 2994.8423056261063
```

```
In [29]:
    print("Root squared error:",np.sqrt(metrics.mean_squared_error(y_test,predict)))
```

Root squared error: 54.725152403863675

Model saving

```
In [30]: import pickle
    filename="prediction"
    pickle.dump(lr,open(filename,'wb'))
    filename='prediction'
    model=pickle.load(open(filename,'rb'))

In [31]: real=[[10],[7]]
    result=model.predict(real)
    result

Out[31]: array([63.98618302, 63.9831757])

In []:
```