TSDT14 Signal Theory Lecture 11 Multi-Dimensional Processes – Primarily 2-D

Mikael Olofsson
Department of EE (ISY)
Div. of Communication Systems

Example: 2-D Filtering

Mr. Angry

Mrs.

Source: http://www.grand-illusions.com/opticalillusions/angry_and_calm/

Example: 2-D Filtering

Mr. Angry

? Mrs. Calm

Source: http://www.grand-illusions.com/opticalillusions/angry_and_calm/

TSDT14 Signal Theory - Lecture 11

2016-10-06

Multi-Dimensional Signals & Systems

Two-Dimensional Signals

$$x(a_1, a_2) = x_1(a_1) \cdot x_2(a_2)$$

 $x[n_1, n_2] = x_1[n_1] \cdot x_2[n_2]$

TSDT14 Signal Theory - Lecture 11

2016-10-06

 a_1

Two-Dimensional Stochastic Processes

Mean: $m_X(a_1, a_2) = E\{X(a_1, a_2)\}$

Auto-correlation: $r_X(a_1, a_2; a_1 + b_1, a_2 + b_2) = E\{X(a_1, a_2)X(a_1 + b_1, a_2 + b_2)\}$

Wide-sense stationarity:

Both $m_X(a_1, a_2)$ and $r_X(a_1, a_2; a_1 + b_1, a_2 + b_2)$ independent of (a_1, a_2) .

Simplified notation: m_X and $r_X(b_1,b_2)$

Classification of Systems

Linearity: Input $x_1(a_1, a_2)$ gives output $y_1(a_1, a_2)$.

Input $x_2(a_1, a_2)$ gives output $y_2(a_1, a_2)$.

Then input $a \cdot x_1(a_1, a_2) + b \cdot x_2(a_1, a_2)$

gives output $a \cdot y_1(a_1, a_2) + b \cdot y_2(a_1, a_2)$.

Space-invariance: Input $x(a_1, a_2)$ gives output $y(a_1, a_2)$.

Then input $x(a_1 - b_1, a_2 - b_2)$ gives output $y(a_1 - b_1, a_2 - b_2)$.

LSI: Both linear and space-invariant.

Similarily for space-discrete systems

TSDT14 Signal Theory - Lecture 11 2016-10-06 7

Two-Dimensional Convolution

For LSI systems, the output is given by a two-dimensional convolution of the input and the impulse response of the filter.

Definition:
$$(x \circledast h)(a_1, a_2) = \int_{-\infty - \infty}^{\infty} x(b_1, b_2) h(a_1 - b_1, a_2 - b_2) db_1 db_2$$

Separable signals:
$$(x \circledast h)(a_1, a_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1(b_1) x_2(b_2) h_1(a_1 - b_1) h_2(a_2 - b_2) db_1 db_2$$

$$= \int_{-\infty}^{\infty} x_1(b_1) h_1(a_1 - b_1) db_1 \int_{-\infty}^{\infty} x_2(b_2) h_2(a_2 - b_2) db_2$$

$$= (x_1 * h_1)(a_1) \cdot (x_2 * h_2)(a_2)$$

Space-discrete:
$$(x \circledast h)[n_1, n_2] = \sum_{k_1} \sum_{k_2} x[k_1, k_2] \cdot h[n_1 - k_1, n_2 - k_2]$$

Non-Separable Convolution 1(2)

LINKÖPINGS UNIVERSITET TSDT14 Signal Theory - Lecture 11

2016-10-06

Non-Separable Convolution 2(2)

LINKÖPINGS UNIVERSITET TSDT14 Signal Theory - Lecture 11

2016-10-06 1

10

Separable Convolution 1(3)

Separable Convolution 2(3)

LINKÖPINGS UNIVERSITET

U LINKÖPINGS UNIVERSITET

TSDT14 Signal Theory - Lecture 11

2016-10-06 12

2016-10-06

Separable Convolution 3(3)

2-D Space-Continuous Fourier Transform

Definition:
$$X(f_1, f_2) = \mathcal{F}\{x(a_1, a_2)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(a_1, a_2) e^{-j2\pi(f_1 a_1 + f_2 a_2)} da_1 da_2$$

Inverse:
$$x(a_1, a_2) = \mathcal{F}^{-1}\{X(f_1, f_2)\} = \int_{-\infty - \infty}^{\infty} X(f_1, f_2) e^{j2\pi(f_1 a_1 + f_2 a_2)} df_1 df_2$$

Properties:
$$\mathscr{F}\{x(a_1,a_2)\}=\mathscr{F}_1\{\mathscr{F}_2\{x(a_1,a_2)\}\}=\mathscr{F}_2\{\mathscr{F}_1\{x(a_1,a_2)\}\}$$

$$\mathcal{F}\{x_1(a_1)\cdot x_2(a_2)\} = \mathcal{F}_1\{x_1(a_1)\}\cdot \mathcal{F}_2\{x_2(a_2)\}$$

$$\mathcal{F}\{(x \otimes h)(a_1, a_2)\} = X(f_1, f_2) \cdot H(f_1, f_2)$$

$$\mathcal{F}\{x(a_1,a_2)\cdot h(a_1,a_2)\}=(X\circledast H)(f_1,f_2)$$

2-D Space-Discrete Fourier Transform

Definition: $X[\theta_1, \theta_2] = \mathcal{F}\{x[n_1, n_2]\} = \sum_{n_1} \sum_{n_2} x[n_1, n_2] e^{-j2\pi(\theta_1 n_1 + \theta_2 n_2)}$

Inverse: $x[a_1, a_2] = \mathcal{F}^{-1}\{X[\theta_1, \theta_2]\} = \int_0^1 \int_0^1 X[\theta_1, \theta_2] e^{j2\pi(\theta_1 n_1 + \theta_2 n_2)} d\theta_1 d\theta_2$

Properties: $X[\theta_1, \theta_2] = X[\theta_1 + m_1, \theta_2 + m_2]$ for integers m_1 and m_2

 $\mathcal{F}\{x[n_1,n_2]\} = \mathcal{F}_1\{\mathcal{F}_2\{x[n_1,n_2]\}\} = \mathcal{F}_2\{\mathcal{F}_1\{x[n_1,n_2]\}\}$

 $\mathcal{F}\{x_1[n_1] \cdot x_2[n_2]\} = \mathcal{F}\{x_1[n_1]\} \cdot \mathcal{F}\{x_2[n_2]\}$

 $\mathcal{F}\{(x\circledast h)\big[n_1,n_2\big]\} = X\big[\theta_1,\theta_2\big] \cdot H\big[\theta_1,\theta_2\big]$

 $\mathcal{F}\{x[n_1,n_2]\cdot h[n_1,n_2]\} = (X \circledast H)[\theta_1,\theta_2] \quad \text{(periodic conv)}$

TSDT14 Signal Theory - Lecture 11 2016-10-06 15

Power and Power Spectral Density

PSD: $R_X(f_1, f_2) = \mathcal{F}\{r_X(b_1, b_2)\} = \int_{-\infty - \infty}^{\infty} \int_{-\infty}^{\infty} r_X(b_1, b_2) e^{-j2\pi(f_1b_1 + f_2b_2)} db_1 db_2$

Power: $P_X = E\{X^2(a_1, a_2)\} = r_X(0,0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_X(f_1, f_2) df_1 df_2$

Output of LSI-system if input is WSS:

Output: $Y(a_1, a_2) = (X \circledast h)(a_1, a_2)$

Mean: $m_Y = m_X \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(a_1, a_2) da_1 da_2 = m_X \cdot H(0,0)$

ACF: $r_Y(b_1, b_2) = (h \circledast \tilde{h} \circledast r_X)(b_1, b_2)$ with $\tilde{h}(a_1, a_2) = h(-a_1, -a_2)$

PSD: $R_Y(f_1, f_2) = |H(f_1, f_2)|^2 R_X(f_1, f_2)$

Two-Dimensional Sampling

Deterministic (for rectangular grid):

Sampling: $y[n_1, n_2] = x(n_1A_1, n_2A_2)$

Sampling periods: A_1 and A_2

Spectrum: $Y[\theta_1, \theta_2] = \frac{1}{A_1 A_2} \sum_{k_1} \sum_{k_2} X\left(\frac{\theta_1 - k_1}{A_1}, \frac{\theta_2 - k_2}{A_2}\right)$

Probabilistic (for rectangular grid):

Sampling: $Y[n_1, n_2] = X(n_1A_1, n_2A_2)$

PSD: $R_{Y}[\theta_{1}, \theta_{2}] = \frac{1}{A_{1}A_{2}} \sum_{k_{1}} \sum_{k_{2}} R_{X} \left(\frac{\theta_{1} - k_{1}}{A_{1}}, \frac{\theta_{2} - k_{2}}{A_{2}} \right)$

TSDT14 Signal Theory - Lecture 11

2016-10-06

Two-Dimensional PAM

Deterministic (for rectangular grid):

PAM:
$$z(a_1, a_2) = \sum_{n_1} \sum_{n_2} y[n_1, n_2] p(a_1 - n_1 A_1, a_2 - n_2 A_2)$$

Spectrum:
$$Z(f_1, f_2) = P(f_1, f_2) \cdot Y[f_1A_1, f_2A_2]$$

Probabilistic (for rectangular grid):

PAM:
$$Z(a_1, a_2) = \sum_{n_1, n_2} \sum_{n_2} Y[n_1, n_2] p(a_1 - n_1 A_1 - \Psi_1, a_2 - n_2 A_2 - \Psi_2)$$

 Ψ_1 uniform on $[0, A_1)$ and Ψ_2 uniform on $[0, A_2)$

both independent of $Y[n_1, n_2]$ and of each other.

PSD:
$$R_Z(f_1, f_2) = \frac{1}{A_1 A_2} |P(f_1, f_2)|^2 R_Y[f_1 A_1, f_2 A_2]$$

Mikael Olofsson ISY/CommSys

www.liu.se

Rounding Up the Course

Stochastic processes: Stationarity, ergodicity, mean, ACF, PSD...

LTI filtering: Mean, ACF, PSD.

Cross-correlation and cross-spectrum. Joint stationarity.

Poisson processes.

Prediction.

Non-linearities: Squaring and such, saturation, quantization.

Modulation: AM, FM, PM, noise.

Estimation (only on laborations).

Linear mappings: Sampling, PAM, reconstruction.

Two-dimensional: Signals, systems,...

Written Examination

When: Friday 2015-10-30, 14.00-18.00. Sign up!

Allowed aids:

Olofsson: Tables and Formulas for Signal Theory

Henriksson/Lindman: Formelsamling i Signalteori

Pocket calculator with empty memory

A German 10 mark note of the fourth series (1991-2001)

What:

A three-part introductory task (simple, 2/3 must be OK).

Five problems – 5 points each, pass is 10 points.

TSDT14 Signal Theory - Lecture 11

2016-10-06

Written Examination – cont'd

A German 10 mark note of the fourth series (1991-2001)

Good Practices at Exams

Rules according to the exam cover:

- Only one task on the same piece of paper.
- Use only one side of the paper.
- Number the pages.
 (see common sense →)
- Do not use a red pen(cil). (that's my color)

Let me add:

- Hand in readable solutions.
- Do not hand in scriblings!

Common sense:

- 1. Solve the exam problems.
- 2. Sort the papers according to task numbering.
- 3. Number the pages <u>last!</u>
- 4. Now hand in your exam.

Do not do it in any other order!

Finally:

• Always provide solid arguments for steps taken in your solutions.

TSDT14 Signal Theory - Lecture 11 2016-10-06 23