STK1110 Høsten 2021

Hypotesetesting om en populasjonsandel

Tilsvarer Avsnitt 9.3

Ingrid Hobæk Haff Matematisk institutt Universitetet i Oslo

Hypotesetesting om en populasjonsandel p

- Anta at vi har et utvalg X_1, \ldots, X_n fra en stor populasjon, der en andel p har en viss egenskap, med $X_i = 1$ hvis individ/element i har egenskapen og $X_i = 0$ ellers.
- Videre antar vi at $X_1, \ldots, X_n \stackrel{uif}{\sim} Bernoulli(p)$.
- Da er $Y = \sum_{i=1}^n X_i \sim Bin(n, p)$.
- Vi er interessert i hypoteser av typen
 - $H_0: p \le p_0 \text{ mot } H_a: p > p_0$
 - $H_0: p \ge p_0 \mod H_a: p < p_0$
 - $H_0: p = p_0 \text{ mot } H_a: p \neq p_0.$

Store utvalg

- Anta først at utvalgsstørrelsen n er stor.
- Vi vet at $\hat{p} = \frac{Y}{n}$ er forventningsrett for p og at $V(\hat{p}) = \frac{p(1-p)}{n}$.
- Hvis $np_0 \ge 10$ og $n(1-p_0) \ge 10$, så er

$$Z=rac{\hat{
ho}-
ho_0}{\sqrt{
ho_0(1-
ho_0)/n}}\stackrel{tiln.}{\sim} N(0,1)$$

når $p=p_0$.

• En test med tilnærmet signifikansnivå α for å teste $H_0: p \leq p_0$ mot $H_a: p > p_0$ forkaster da H_0 dersom

$$Z=\frac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}}\geq z_\alpha.$$

Store utvalg (forts.)

Styrkefunksjonen er da

$$\gamma(p) = \mathsf{P}(\mathsf{Forkaste} H_0|p) pprox 1 - \Phi\left(rac{p_0 - p + z_lpha \sqrt{p_0(1-p_0)/n}}{\sqrt{p(1-p)/n}}
ight).$$

- Vi ønsker å finne n slik at sannsynligheten for feil av type II blir høyst β når $p = p_1 > p_0$.
- Med

P(Feil av type II
$$|p=p_1)=1-\gamma(p_1)$$

$$pprox \Phi\left(\frac{p_0-p+z_{lpha}\sqrt{p_0(1-p_0)/n}}{\sqrt{p(1-p)/n}}\right)\leq \beta$$

får vi

$$n \geq \left(\frac{z_{\alpha}\sqrt{p_0(1-p_0)} + z_{\beta}\sqrt{p_1(1-p_1)}}{p_1-p_0}\right)^2.$$

Store utvalg (forts.)

- For tester av typen $H_0: p \ge p_0$ mot $H_a: p < p_0$ forkaster en H_0 ved signifikansnivå tilnærmet α dersom $Z \le -z_{\alpha}$.
- Styrkefunksjonen er da

$$\gamma(p)pprox \Phi\left(rac{p_0-p-z_lpha\sqrt{p_0(1-p_0)/n}}{\sqrt{p(1-p)/n}}
ight).$$

• Den n som gir sannsynlighet for feil av type II høyst lik β når $p=p_1< p_0$ er da som på forrige foil.

Store utvalg (forts.)

- For tester av typen $H_0: p=p_0$ mot $H_a: p\neq p_0$ forkaster en H_0 ved signifikansnivå tilnærmet α dersom $Z\leq -z_{\alpha/2}$ eller $Z\geq z_{\alpha/2}.$
- Styrkefunksjonen er da

$$egin{split} \gamma(p) pprox & \Phi\left(rac{p_0-p+z_{lpha/2}\sqrt{p_0(1-p_0)/n}}{\sqrt{p(1-p)/n}}
ight) \ & -\Phi\left(rac{p_0-p-z_{lpha/2}\sqrt{p_0(1-p_0)/n}}{\sqrt{p(1-p)/n}}
ight). \end{split}$$

• Den n som gir sannsynlighet for feil av type II høyst lik β når $p=p_1< p_0$ er da tilnærmet

$$n \geq \left(rac{z_{lpha/2} \sqrt{p_0(1-p_0)} + z_eta \sqrt{p_1(1-p_1)}}{p_1 - p_0}
ight)^2.$$

Eksempel

Forsøk med salve.

Små utvalg

- Dersom n ikke er stor nok til at vi kan bruke tilnærmingen med normalfordeling, kan vi i stedet bruke den binomiske fordelingen direkte.
- Anta at vi vil teste $H_0: p \leq p_0 \mod H_a: p > p_0$.
- En forkaster da H_0 for $Y \ge k$ for en passende k.
- Da har vi

$$P(\text{Feil av type I}) \le 1 - B(k - 1; n, p_0),$$

der $B(\cdot; n, p_0)$ er fordelingsfunksjonen til den binomiske fordelingen med parametere (n, p_0) .

Små utvalg (forst.)

- Det er sjelden mulig å finne en k slik at sannsynligheten for feil av type I blir akkurat lik signifikansnivået.
- I stedet velger en det minste heltallet k slik at

$$1-B(k-1;n,p_0)\leq \alpha.$$

- For $p_1 < p_0$ får vi sannsynlighet for feil av type II lik $\beta(p_1) = B(k-1; n, p_1)$.
- Tester av typen H₀: p ≥ p₀ mot H_a: p < p₀ finner en på samme måte.
- En forkaster da H₀ ved signifikansnivå α når Y ≤ k, der k er det største heltallet slik at

P(Feil av type I)
$$\leq B(k; n, p_0) \leq \alpha$$
.

Små utvalg (forst.)

• For tester av typen $H_0: p = p_0$ mot $H_a: p \neq p_0$ forkaster en H_0 ved signifikansnivå α når $Y \leq k_1$ eller $Y \geq k_2$, med $k_1 < k_2$, der de utgjør det minste forkastningsområdet slik at

$$\mathsf{P}(\mathsf{Feil} \ \mathsf{av} \ \mathsf{type} \ \mathsf{I}) \leq B(\mathit{k}_1; \mathit{n}, \mathit{p}_0) + 1 - B(\mathit{k}_2 - 1; \mathit{n}, \mathit{p}_0) \leq \alpha.$$

dvs. slik at

$$B(k_2-1; n, p_0) - B(k_1-1; n, p_0) \ge 1-\alpha.$$

