

Fuzzy-Neural Networks for Modeling and Intelligent Control

Antonio Moran, Ph.D.

amoran@ieee.org

The Brain

Behaves as a System with Inputs and Outputs

Car Driving

Car Driving A Control Problem

Artificial Neural Network Model

A Natural Neural Network

Multilayer Neural Network Model

Neural Networks

$$y = \Phi(x)$$

Function Estimation

$$y = ax + b$$

$$y = ax^2 + bx + c$$

Function Estimation

$$J = 0.5 (y_1 - \overline{y}_1)^2 + 0.5 (y_2 - \overline{y}_2)^2 + \cdots + 0.5 (y_N - \overline{y}_N)^2$$

Problem: Find a and b that minimize J

Training of Neural Network

Data			
X ₁	X ₂	<u>y</u> 1	y ₂
*	*	*	*
*	*	*	*
*	*	*	*

Cost function to be minimized:

$$J = 0.5 (y_{(1)} - \overline{y}_{(1)})^{T} (y_{(1)} - \overline{y}_{(1)}) + \cdots + 0.5 (y_{(N)} - \overline{y}_{(N)})^{T} (y_{(N)} - \overline{y}_{(N)})$$
$$y_{(k)} = [y_{1(k)} \ y_{2(k)}]^{T}$$

Problem: Find v_{ii} and w_{ik} that minimize J

Neural network for recognizing 10 faces

Neural Network for Face Recognition

Input: Face

Output: Code for each face

Reducing the size of images - Pixeling

Full Color 2808 x 2425

Gray Scale
1826 x 1529
The face occupies the most of the image

Monocromatic
40 x 30
1200 pixels

Neural Network for Face Recognition

Image Preprocessing - Pixeling

1213x1013

2644x2106

2854x2370

2446x2016

2507x2190

40x30

40x30

40x30

40x30

40x30

Network Input


```
0000000000000000000
000000001100000000
  0100000000110000
  0000000000000000
```

The matrix should be transformed into vector

Network Input: Converting 40x30 matrix into 1200x1 vector

```
000000001100000000
000000011110000000
00000011111110000000
0000101111111001000
00001000000000110000
0000000000000000000
                40x30
```

1200x1

Face Recognition Network Output

A code assigned to each of the ten faces (Orthogonal codes)

Neural Network for Face Recognition

To generate input-output training data, several faces of a person could be considered but all of them with the same output code

Neural Network for Face Recognition

Training: Five faces of the same person

Validation after training: Different faces of each person

Validación de la Red Neuronal

Cara de entrenamiento

0

Cara de validación

0.1

0.1

0.9

0.1

0.3

0.1

0.2

0.1

0.3

0.1

Detection of Cardiac Anomalies

Normal

Anomaly 1

Anomaly 2

Anomaly 3

Training of Neural Network

600 samples in a period

600 Inputs

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

4 Outputs

Validation with Noisy Signals

Dynamic Neural Networks

Modeling of Dynamical Systems

Static System

$$x_k = \Phi(u_k)$$

Dynamic System

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{x}_k, \mathbf{u}_k)$$

Output becomes input in the next step

Input u

Desired Ouput \overline{x}

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{x}_k, \mathbf{u}_k)$$

Desired Ouput
$$\overline{x} = \left| \frac{\overline{x}_1}{\overline{x}_2} \right|$$

Cost Function to be Minimized

$$J = 0.5 (x_1 - \overline{x}_1)^2 + 0.5 (x_2 - \overline{x}_2)^2 + \cdots + 0.5 (x_N - \overline{x}_N)^2$$

$$J = 0.5 \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^2$$

$$\overline{x}_k \rightarrow \text{Estado (Salida) de la red}$$

$$\overline{x}_k \rightarrow \text{Salida deseada (data)}$$

If x is a vector
$$x = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$$

Cost Function to be Minimized

$$J = 0.5 \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T (x_k - \overline{x}_k)$$

Cost Function to be Minimized

$$J = 0.5 (x_1 - \overline{x}_1)^2 + 0.5 (x_2 - \overline{x}_2)^2 + \cdots + 0.5 (x_N - \overline{x}_N)^2$$

$$\mathbf{v}_{ij} = \mathbf{v}_{ij} - \eta \frac{\overline{\partial J}}{\overline{\partial \mathbf{v}_{ij}}}$$

$$\mathbf{w}_{jk} = \mathbf{w}_{jk} - \eta \frac{\overline{\partial J}}{\overline{\partial \mathbf{w}_{jk}}}$$
Total partial derivatives

Cost Function to be Minimized $J = 0.5 \sum_{k=1}^{\infty} (x_k - \overline{x}_k)^T (x_k - x_k)$

$$\frac{\overline{\partial J}}{\overline{\partial v}} = \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T \frac{\overline{\partial x}_k}{\overline{\partial v}}$$

$$\frac{\overline{\partial J}}{\overline{\partial w}} = \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T \frac{\overline{\partial x}_k}{\overline{\partial w}}$$

Total partial derivative of x_k

k=N

Unfolding the Network Along Time

Training of Dynamical Neural Networks

$$v_{ij} = v_{ij} - \eta \frac{\overline{\partial J}}{\overline{\partial v_{ij}}} - \frac{1}{\sqrt{2}}$$

$$w_{jk} = w_{jk} - \eta \frac{\overline{\partial J}}{\overline{\partial w_{jk}}}$$
Total partial derivatives

$$z = 3y + 2x$$

$$y = 4x + 5r$$

$$r = 2x + 6s$$

Simple Derivative

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} = 2$$

Total Derivative

$$\frac{\overline{\partial z}}{\overline{\partial x}} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \frac{\partial r}{\partial x}$$

Training of Dynamical Neural Networks

Computation of Total Partial Derivatives

Back Propagation Through Time BPTT
 Paul Werbos, 1972

Dynamic Back Propagation DBP
 Kumpati Narendra, 1989

Dynamic Back Propagation

$$\frac{\overline{\partial x}_1}{\overline{\partial v}} = \frac{\partial x_1}{\partial v}$$

$$\frac{\overline{\partial x}_2}{\overline{\partial v}} = \frac{\partial x_2}{\partial v} + \frac{\partial x_2}{\partial x_1} \frac{\overline{\partial x}_1}{\overline{\partial v}}$$

$$\frac{\overline{\partial x_3}}{\overline{\partial y}} = \frac{\partial x_3}{\partial y} + \frac{\partial x_3}{\partial x_0} \frac{\overline{\partial x_2}}{\overline{\partial y}}$$

Dynamic Back Propagation

$$\frac{\overline{\partial x_{k+1}}}{\partial v} = \frac{\partial x_{k+1}}{\partial v} + \frac{\partial x_{k+1}}{\partial x_{k}} \frac{\overline{\partial x_{k}}}{\overline{\partial v}}$$

Recursive expression for computation of total partial derivatives

Modeling of Nonlinear Dynamic System One Input and Two Outputs Network Training

Input Signal u

Training SignalModel Output

Output Signal x1

Output Signal x2

Modeling of Nonlinear Dynamic System Validation: Input-Output Signals

Input Signal u

Training SignalModel Output

Output Signal x1

Output Signal x2

Modeling of Nonlinear Dynamic System

Matlab Simulation

Dynamical system with 1 input and 3 outputs

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \end{bmatrix}$$

Nonlinear system

$$x_k = Ax_k + Bu_k + Gx_ku_k$$

Dynamic Neural Networks

Control of Dynamical Systems

Car Driving A Control Problem

Control of Dynamical Sytems

Stabilization

Tracking

Control of Dynamical SytemsStabilization

Controller

$$u_k = \Omega(x_k)$$

System

$$\mathbf{x}_{k+1} = \mathbf{\Phi}(\mathbf{x}_k, \mathbf{u}_k)$$

Represented by:

Neural Network

State Equation

If x is a vector
$$x = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$$

Cost Function to be Minimized

$$J = 0.5 \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T (x_k - x_k)$$

Cost Function to be Minimized

$$J = 0.5 (x_1 - \overline{x}_1)^2 + 0.5 (x_2 - \overline{x}_2)^2 + \cdots + 0.5 (x_N - \overline{x}_N)^2$$

$$J = 0.5 \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^2$$

$$\overline{x}_k \rightarrow \text{Estado (Salida)}$$

$$\overline{x}_k \rightarrow \text{Salida deseada}$$

Cost Function to be Minimized

$$J = 0.5 (x_1 - \overline{x}_1)^2 + 0.5 (x_2 - \overline{x}_2)^2 + \cdots + 0.5 (x_N - \overline{x}_N)^2$$

$$v_{ij} = v_{ij} - \eta \frac{\overline{\partial J}}{\overline{\partial v_{ij}}}$$

$$w_{jk} = w_{jk} - \eta \frac{\overline{\partial J}}{\overline{\partial w_{ik}}}$$
Total partial derivatives

Cost Function to be Minimized $J = 0.5 \sum_{k=1}^{\infty} (x_k - \overline{x}_k)^T (x_k - x_k)$

$$\frac{\partial \overline{J}}{\partial \overline{v}} = \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T \frac{\partial \overline{x}_k}{\partial \overline{v}}$$

$$\frac{\partial \overline{J}}{\partial \overline{w}} = \sum_{k=1}^{k=N} (x_k - \overline{x}_k)^T \frac{\partial \overline{x}_k}{\partial \overline{w}}$$

Total partial derivative of x_k

Dynamic Back Propagation

$$\frac{\overline{\partial x}_{k+1}}{\overline{\partial v}} = \frac{\partial x_{k+1}}{\partial u_k} \frac{\partial u_k}{\partial v} + \left(\frac{\partial x_{k+1}}{\partial x_k} + \frac{\partial x_{k+1}}{\partial u_k} \frac{\partial u_k}{\partial x_k} \right) \frac{\overline{\partial x}_k}{\overline{\partial v}}$$

Recursive expression for computation of total partial derivatives

Dynamic Back Propagation

Positioning of Mobile Robots

Mobile Robot Following a Road

Control Problem

Robot Model

$$x(k+1) = x(k) + v\Delta t \cos(\phi(k))$$

$$y(k+1) = y(k) + v\Delta t \operatorname{sen}(\phi(k))$$

$$\phi(\mathbf{k}+1) = \phi(\mathbf{k}) - v\Delta t / L \tan(\delta(\mathbf{k}))$$

- Backward motion
- Constant speed
- No slipping No skidding

Positioning of Mobile Robot Control Structure

Positioning of Mobile Robot Control Structure

Given problem characteristics, coordinate y is not used for control

Dynamic Back Propagation

Robot Model

$$x(k+1) = x(k) + v\Delta t \cos(\phi(k))$$

$$\phi(k+1) = \phi(k) - v\Delta t / L \tan(\delta(k))$$

$$\mathbf{x_k} = \begin{vmatrix} x(k) \\ \phi(k) \end{vmatrix}$$
 $\mathbf{u_k} = \tan(\delta(k))$

$$\frac{\overline{\partial x}_{k+1}}{\overline{\partial v}} = \frac{\partial x_{k+1}}{\partial u_k} \frac{\partial u_k}{\partial v} + \left(\frac{\partial x_{k+1}}{\partial x_k} + \frac{\partial x_{k+1}}{\partial u_k} \frac{\partial u_k}{\partial x_k}\right) \frac{\overline{\partial x}_k}{\overline{\partial v}}$$

$$\frac{\partial x_{k+1}}{\partial x_k} = \frac{\partial x_{k+1}}{\partial x_k} \frac{\partial x_{k+1}}{\partial x_k} \frac{\partial x_{k+1}}{\partial x_k} \frac{\partial x_{k+1}}{\partial x_k} \frac{\partial x_{k+1}}{\partial x_k}$$

$$\frac{\partial \mathbf{x}_{k+1}}{\partial \mathbf{x}_{k}} = \begin{bmatrix} 1 & -v\Delta t \sin(\phi(k)) \\ 0 & 1 \end{bmatrix}$$

Computed with the system model
$$\frac{\partial x_{k+1}}{\partial u_k} = \begin{bmatrix} 0 \\ x_k + 1 \end{bmatrix}$$

Incremental Learning

Train the neural network for positions close to x*=0 (four positions)

$$x = -2$$
 -2 2 2 $\phi = -\pi/2$ $\pi/2$ $\pi/2$

Train the neural network for far away positions

$$x = -4$$
 -4 4 4 $\phi = -\pi/2$ $\pi/2$ $-\pi/2$ $\pi/2$ $\pi/2$

Trajectories of Mobile Robot to Achieve a Final Desired Position

Trajectories of Mobile Robot to Achieve a Final Desired Position

Trajectories of Mobile Robot to Follow a Road

Fuzzy Neural Network

Integrates:

Knowledge → **IF** -THEN Rules (Fuzzy)

Data — Training (Neural Network)

Experimental Mobile Robot

Incremental Learning

- Train the neural network for controlling a car $\theta_{12} = 0$
 - Close to the desired position
 - Away from the desired position

- Train the neural network for controlling a truck-trailer $\theta_{12} \neq 0$
 - Small values of θ_{12}
 - Higher values of $\theta_{12} < \pi/2$

$$\dot{x} = v \cos \theta_{12} \cos \theta_{2}$$

$$\dot{y} = v \cos \theta_{12} \sin \theta_{2}$$

$$\dot{\theta}_{1} = -\frac{v}{L_{1}} \tan \delta$$

$$\dot{\theta}_{2} = -\frac{v}{L_{2}} \sin \theta_{12}$$

Achieving a Goal Position

Following a Straight Line

Following a Curved Path

Following a Sinusoidal Path

Thank you for your attention!

Antonio Moran, Ph.D.

amoran@ieee.org