10 Exkurs III: Modellierung

Inhalt

10.1	. Fläch	enbasierte Modelle	10-2
10.2	Volun	nenbasierte Modelle	10-6
	10.2.1	Operationen mit bestehenden Volumina	10-8
	10.2.2	Definition von Volumina	10-9
	10.2.3	Speicherung von Volumina	10-11
10.3 Prozedurale Modelle		10-15	
	10.3.1	Fraktale Modelle	10-16
	10.3.2	Objekterzeugung mit Grammatiken	10-19
	10.3.3	Partikelsysteme	10-24

Ziel: der jeweiligen Anwendung angepasste Repräsentation von Objekten

10 Exkurs III: Modellierung 10.1 Flächenbasierte Modelle 10-2

10.1 Flächenbasierte Modelle

Motivation: Wenn die Objekte nur dargestellt werden sollen, ist die Beschreibung durch ihre Oberfläche ausreichend.

Information über die Zusammengehörigkeit mehrerer Flächenstücke zum selben Körper werden nicht benötigt.

Beispiel 10.1: Für rekursives Raytracing wird der Würfel durch sechs Quadrate (jeweils mit Materialangabe für die **Außen- und Innenseite**) beschrieben.

Das vom Würfel belegte Volumen ist nur implizit definiert:

• Durchdringt der rückverfolgte Strahl bei P_1 eines der sechs Quadrate von außen nach innen, so wird angenommen, dass der Strahl bis zum nächsten Schnittpunkt P_2 innerhalb des Würfels verläuft.

10 Exkurs III: Modellierung 10.1 Flächenbasierte Modelle 10-3

- Objekte effizient speicher- und darstellbar
- ⊖ Die Oberfläche der Objekte muss (i. Allg. vom Anwender!) in "einfache" Teile (Patches) zerlegt werden:
 - Polygone
 - Quadriken (Kugeloberflächen, ...)
 - parametrisierte Flächen P = P(s, t)
 - Splineflächen $m{P} = m{P} \left(\underbrace{m{P}_i}_{ ext{Steuerpunkte Gewichte}}, \;\; \underline{\omega_i}_{ ext{Steuerpunkte Gewichte}} \right)$

Aufwand Flexibilität

- ⊖ Konsistenz muss explizit gesichert werden.
 - Der Rand des Körpers muss vollständig überdeckt sein.

10 Exkurs III: Modellierung 10.1 Flächenbasierte Modelle 10-4

- Die Patches müssen an den "Nahtstellen" zusammenpassen.

- Die "innen"/"außen"-Information muss konsistent sein.

10 Exkurs III: Modellierung 10.1 Flächenbasierte Modelle 10-5

Operationen mit Körpern sind nur eingeschränkt möglich:

"Bohre ein zylinderförmiges Loch durch den Würfel."

- ⇒ Oberfläche muss (explizit) wieder zerlegt werden
- Volumenabhängige Information (z. B. Gewicht eines Werkstücks) ist nur mit großem zusätzlichem Aufwand zu beschaffen.

10 Exkurs III: Modellierung 10.2 Volumenbasierte Modelle 10-6

10.2 Volumenbasierte Modelle

Motivation: Beim Entwurf von Maschinen usw. sind die Objekte die Körper selbst, nicht Teile ihrer Oberflächen.

⇒ Der vom Objekt ausgefüllte Raum sollte aus der Darstellung des Objekts im Raum hervorgehen.

Forderungen an das Modell:

Mächtigkeit: Die für die jeweilige Anwendung benötigten Objekte sollten (leicht) erzeugbar sein.

Eindeutigkeit: Jedes Objekt sollte eine eindeutige Darstellung besitzen.

(⇒ einfacher Test, ob zwei Objekte gleich sind)

Exaktheit: Die "üblichen" Objekte sollten ohne Approximation darstellbar sein.

(z. B. Kugel nicht durch Polyeder approximieren)

Intuitivität: Es sollte möglich sein,

- aus bereits konstruierten Objekten andere zusammenzusetzen,
- · Stücke aus Objekten "herauszuschneiden",
- usw.

10 Exkurs III: Modellierung 10.2 Volumenbasierte Modelle 10-7

Konsistenz: Es sollte unmöglich (oder zumindest sehr schwierig) sein, unsinnige Objekte (z.B. nicht geschlossene Körper) zu konstruieren.

Effizienz: Die Darstellung sollte möglichst einfache

- · Bilderzeugung,
- Gewinnung relevanter Information (z.B. ein CNC-Programm zum Fräsen des Werkstücks) erlauben.

Anwendungen:

- Entwurf von Werkstücken
- Medizin: Volumenmodell von Organen (gewonnen aus Computer-Tomografie-Daten)
 - → Volumen eines Tumors, günstiger Zugang für Operation, ...

10 Exkurs III: Modellierung 10.2 Volumenbasierte Modelle 10-8

10.2.1 Operationen mit bestehenden Volumina

gewünschte Operationen:

- Zusammensetzen von Objekten
 (≜ Vereinigung)
- "Abschneiden" von Teilen eines Objekts
 (≜ Durchschnitt, Mengendifferenz)

Problem: Diese Operationen liefern nicht immer ein Volumen:

Abhilfe: regularisierte Mengenoperationen:

$$A \operatorname{op}^* B := \overline{(A \operatorname{op} B)^\circ}$$

op: ∪, ∩, *∖*

 $(\cdots)^{\circ}$: Inneres

(···): Abschluss

10 Exkurs III: Modellierung 10.2 Volumenbasierte Modelle

10.2.2 Definition von Volumina

1. Transformiere gegebene Volumina (z. B. Würfel, Kugel) auf die gewünschte Form.

Die vorgegebenen Bausteine sind oft noch parametrisiert, z.B. "Rad mit n Speichen" (n kann bei jedem Aufruf unterschiedlich festgelegt werden).

2. Sweep: Bewege eine Fläche oder ein Volumen im Raum und erzeuge dadurch ein neues Volumen.

10 Exkurs III: Modellierung 10.2 Volumenbasierte Modelle 10-10

Bemerkungen 10.2:

- 1. Oft werden auch Bewegungen entlang von Raumkurven zugelassen sowie die Möglichkeit, die Fläche während der Bewegung zu ändern.
- 2. Mengenoperationen mit Sweeps ergeben i. Allg. nicht wieder Sweeps:

⇒ Sweeps können nicht immer in der Form

erzeugendes Element + Bewegung

gehandhabt werden.

- 3. Mit Sweeps können beispielsweise die von einem Fräskopf aus einem Werkstück geschnittenen "Bahnen" modelliert werden.
- 4. Bewegung einer Fläche liefert nicht immer ein Volumen!

10 Exkurs III: Modellierung 10.2 Volumenbasierte Modelle 10-11

10.2.3 Speicherung von Volumina

Randspeicherung

(Boundary representations, b-reps)

Das Modellierungssystem speichert Volumina in Form ihrer Oberflächen.

Nach Mengenoperationen o. ä. wird die Oberfläche des resultierenden Volumens **automatisch** in einfache Teile zerlegt.

- Die Oberflächen können direkt zur Bilderzeugung verwendet werden.
- relativ aufwändige Algorithmen zur Verwaltung der Oberflächen notwendig (Bestimmung von Schnittkurven, ...)
 - ⇒ Systeme oft auf Volumina mit polygonalen Oberflächen beschränkt

10 Exkurs III: Modellierung 10.2 Volumenbasierte Modelle 10-12

Volumenaufzählung

Zerlege den Raum in kleine Zellen und zähle die vom Objekt (teilweise) überdeckten Zellen auf:

- 1. Zellraster-Unterteilung:
 - Alle Zellen sind gleich groß.
 - mögliche Zustände jeder Zelle: "belegt"/"nicht belegt"

- Speicherung:
 - durch Aufzählen der belegten Zellen oder
 - als Bitfeld
 - ⇒ Mengenoperationen werden sehr einfach und effizient.

10 Exkurs III: Modellierung

2. Octrees:

· Hierarchie von Zellen.

ergibt bei Quadrantennummerierung

10 Exkurs III: Modellierung 10.2 Volumenbasierte Modelle 10-14

• Mengenoperationen einfach durchführbar (Durchlaufen der beiden Bäume)

Bemerkungen 10.3:

- 1. Volumenaufzählung benötigt i. Allg. viel mehr Speicherplatz als die Randspeicherung.
- 2. Die Objekte werden i. Allg. nur approximiert.
- 3. Ohne Vorsichtsmaßnahmen sind die Volumina nicht bewegungsinvariant:

(ähnlich bei Rotationen)

4. Vor der Bilderzeugung muss die **Oberfläche** des Körpers **approximiert** werden (die Wände der "Randzellen" ergäben ein "Lego"-Bild).

10 Exkurs III: Modellierung 10.3 Prozedurale Modelle 10-15

10.3 Prozedurale Modelle

Motivation: Enthält eine Szene sehr viele Details, z. B.

- "realistisches" (nicht-glattes) Terrain,
- · Bäume mit Blättern,
- · dreidimensionale Textur,
-

so ist es i. Allg. nicht mehr möglich oder sinnvoll, diese Information durch explizite Vorgabe aller entsprechenden Objekte einzubringen.

Ein Terrain kann beispieleweise durch ein "Dreiecksnetz" approximiert werden. typische Größenordnung:

 $\gg 10^6$ Dreiecke,

falls auch Bildvergrößerung möglich sein soll

Ansatz: Gib statt der Objekte eine Vorschrift an, mit der die Objekte "bei Bedarf" erzeugt werden können.

10 Exkurs III: Modellierung 10.3 Prozedurale Modelle 10-16

10.3.1 Fraktale Modelle

Beobachtung: Viele in der Natur vorkommenden Formen sind zu einem gewissen Grad **selbstähnlich**, d. h. Teile der Objekte sehen aus wie verkleinerte Kopien der Objekte selbst.

Beispiel: Gebirge

Je näher man kommt, desto kleinere (im Wesentlichen der ursprünglichen Form ähnelnde) Details werden sichtbar.

Ansatz: Starte mit einer groben Form und füge nach und nach immer kleinere Details (vom selben "Typ") hinzu.

10 Exkurs III: Modellierung 10.3 Prozedurale Modelle 10-17

Beispiel 10.4: Erzeugung eines Bergs:

Starte mit einem "beliebigen" Dreieck.

Zerlege das Dreieck an den Seitenmittelpunkten in vier kongruente Teile.

Verschiebe jeden der drei neuen Punkte um einen zufälligen Betrag in *y*-Richtung.

Wiederhole diese beiden Schritte rekursiv für jedes der entstandenen vier Dreiecke.

:

10 Exkurs III: Modellierung 10.3 Prozedurale Modelle 10-18

Bemerkungen 10.5:

1. Die Verschiebung Δy hängt von der Länge der gerade unterteilten Dreiecksseite ab:

$$\Delta y = \text{rnd} \cdot \underbrace{f(l)}_{\text{Zufallszahl}} \cdot \text{streng monoton steigend,}$$
 $\in [-1;1] \quad \text{z. B. } f(l) = l^{\alpha}, \alpha \in (0;1]$

- 2. Die Rekursionstiefe hängt vom Abstand zum Betrachter ab: je größer die Entfernung, desto weniger Details sind notwendig
 - (Abbruch z. B., wenn Dreiecke etwa Pixelgröße besitzen)
- 3. Die Dreiecke werden i. Allg. nicht explizit gespeichert, sondern bei Bedarf neu erzeugt (dabei wird jeweils nur ein Dreieck weiter unterteilt).
 - ⇒ Die Verschiebungen (d. h. die Zufallszahlen) müssen reproduzierbar sein!

10 Exkurs III: Modellierung 10.3 Prozedurale Modelle 10-19

10.3.2 Objekterzeugung mit Grammatiken

Beobachtung: Ein Zweig **z** mit einer Knospe **K** an der Spitze kann sich auf verschiedene Arten entwickeln:

- 1. Die Knospe kann absterben.
- 2. Die Knospe kann eine Blüte B erzeugen und dann absterben.
- 3. Die Knospe kann ein Blatt I erzeugen.
- 4. Die Knospe kann austreiben:
 - Neben der Knospe entstehen evtl. eine oder zwei weitere Knospen.
 - Die ursprüngliche Knospe wächst weiter zu einem Zweig.
 - An der Spitze dieses Zweigs ist wieder eine Knospe.

10 Exkurs III: Modellierung 10.3 Prozedurale Modelle 10-20

Abstraktion: Beschreibe diese Zustandsveränderungen durch eine (kontextfreie) "Grammatik".

Nichtterminale: K, B

Terminale: **z**, **l**, **(**, **)**, **[**, **]**

Produktionen: $\mathbf{K} \to \mathbf{K} \mid \varepsilon$ ($\varepsilon \triangleq$ "nichts")

$$\begin{split} \textbf{K} &\rightarrow \textbf{B} \\ \textbf{B} &\rightarrow \textbf{B} \mid \epsilon \\ \textbf{K} &\rightarrow \textbf{I} \end{split}$$

 $K \rightarrow zK \mid (K)zK \mid [K]zK \mid (K)[K]zK$

Startwort: **zK**

BildGen, packet: 10

10 Exkurs III: Modellierung 10.3 Prozedurale Modelle 10-21

Beispiel 10.6: Eine mögliche Ableitung:

10 Exkurs III: Modellierung 10.3 Prozedurale Modelle 10-22

Bemerkungen 10.7:

- 1. Beim Übergang von einer Generation zur nächsten wird auf jedes Nichtterminal im Wort irgendeine der passenden Produktionen angewandt.
- 2. Produktionen der Form $\mathbf{B} \to \mathbf{B}$ können entfallen, wenn nur das Endergebnis interessiert, seine zeitliche Entwicklung aber ohne Belang ist.
- 3. Man kann eine beliebige (i. Allg. kontextfreie) Grammatik und eine Interpretation vorgeben, z. B.:
- 4. Die Interpretation eines Symbols muss nicht positionsunabhängig sein, z. B.:

Zweige, die in späteren Generationen entstehen, kürzer machen

- 5. Auswahl der Produktionen mit vorgegebenen Wahrscheinlichkeiten (und ggf. nach zusätzlichen Regeln)
- 6. Die Objekte können vorab oder bei Bedarf erzeugt werden.

10 Exkurs III: Modellierung

Für das folgende Beispielbild wurde einige Erweiterungen vorgenommen:

- Übergang auf 3D
- damit Verzweigungen in verschiedene Raumrichtungen
- Auswahl zwischen mehreren Produktionsregeln durch Zufallszahlen, dabei Anpassung der Zufallssteuerung an Fortschritt des Wachstums
- Erweiterung der Grammatik: Speicherung von Winkeln und Zweiglängen innerhalb der Ableitungsstrings

BildGen, packet: 10

10.3 Prozedurale Modelle 10-24

10 Exkurs III: Modellierung

10.3.3 Partikelsysteme

Ziel: Modellierung von "Objekten", die nicht adäquat durch eine Oberfläche oder ein Volumen beschrieben werden können, etwa weil sich ihre Topologie im Laufe der Zeit stark ändert

Ein **Partikelsystem** ist eine Menge von Teilchen, das sich (durch Anwenden physikalischer Regeln auf die Teilchen) im Laufe der Zeit verändert. Die Teilchen können

- ihre Eigenschaften (z.B. Geschwindigkeit, Farbe) ändern,
- neue Teilchen erzeugen,
- selbst verschwinden.

Anwendung z. B. bei der Modellierung von

- Funkenflug bei Feuer, Explosionen, Feuerwerk,
- · Nebel,
- · Laub dichter Bäume.

10 Exkurs III: Modellierung 10.3 Prozedurale Modelle 10-25

Beispiel 10.8: loderndes Feuer

Richtung(Teilchen i, Zeitpunkt t+1) = Richtung (i,t) + Einfluss der Schwerkraft + Zufallsstörung

Farbe der Teilchen geht mit der Zeit von Weiß(glühend) (entstehen) über Rot nach Schwarz (verschwinden)

BildGen, packet: 10

10 Exkurs III: Modellierung 10.3 Prozedurale Modelle 10-26

Problem: Partikelsysteme umfassen oft mehrere Millionen von Teilchen.

⇒ Partikelsysteme können nicht problemlos in die "Standardverfahren" zur Bilderzeugung (z. B. rekursives Raytracing) eingebunden werden.

Ansatz: Bestimme direkt den Beitrag jedes Teilchens zum Bild.

hier: Verfolge jedes Teilchen auf einem kurzen Stück seiner Flugbahn und erhöhe die Intensität aller von dieser Strecke betroffenen Pixel.

Auswirkungen:

- Die Teilchen gehen nicht in die Verdeckungsanalyse der übrigen Objekte ein
 (d. h. durch andere Objekte verdeckte Teilchen müssen nach anderen Kriterien entfernt werden).
- Der Einfluss der Teilchen auf die übrigen Objekte (hier: Beleuchtung durch das Feuer) bleibt unberücksichtigt.

(Abhilfe hier: Bewegliche Lichtquelle variabler Intensität im Feuer positionieren)

10 Exkurs III: Modellierung 10.3 Prozedurale Modelle 10-27

Bemerkungen 10.9:

- 1. Für jede neue Anwendung der Partikelsysteme (Feuer, Nebel, ...) muss i. Allg. ein neuer Darstellungsalgorithmus (mit vielen heuristischen Ansätzen) entwickelt werden.
- 2. Trotz der vielen Heuristik oft überzeugende Effekte.