public-schools

April 28, 2018

The two models that I have chosen for this projects are: 1) Linear Regression 2) Knn Neighbor Classifier The dataset I used is a dataset on public schools in the US. It contains Average SAT math score, % Economically Disadvantaged Students, Class Size, etc for its columns.

I use the linear regression model to predict the Average SAT math score from the % Economically Disadvantaged students in the school. I found that schools which have 10% more of economically disadvantaged students, will on average have a 27.8 lower average SAT math score compared to other schools

```
In [2]: import pandas as pd
        import numpy as np
        import matplotlib
        %matplotlib inline
        import matplotlib.pyplot as plt
        plt.style.use('fivethirtyeight')
        import warnings
        warnings.simplefilter('ignore', FutureWarning)
        from matplotlib import patches
        from ipywidgets import interact, interactive, fixed
        import ipywidgets as widgets
        from sklearn.linear_model import LinearRegression
In [3]: data = pd.read_csv("MA_Public_Schools_2017.csv")
        data1 = pd.read_csv("MA_Public_Schools_datadict.csv")
        data.describe(include='all')
        list(data)
Out[3]: ['School Code',
         'School Name',
         'School Type',
         'Function',
         'Contact Name',
         'Address 1',
         'Address 2',
         'Town',
         'State',
         'Zip',
         'Phone',
         'Fax',
```

```
'Grade',
'District Name',
'District Code',
'PK_Enrollment',
'K Enrollment',
'1_Enrollment',
'2 Enrollment',
'3_Enrollment',
'4_Enrollment',
'5_Enrollment',
'6_Enrollment',
'7_Enrollment',
'8_Enrollment',
'9_Enrollment',
'10_Enrollment',
'11_Enrollment',
'12_Enrollment',
'SP_Enrollment',
'TOTAL_Enrollment',
'First Language Not English',
'% First Language Not English',
'English Language Learner',
'% English Language Learner',
'Students With Disabilities',
'% Students With Disabilities',
'High Needs',
'% High Needs',
'Economically Disadvantaged',
'% Economically Disadvantaged',
'% African American',
'% Asian',
'% Hispanic',
'% White',
'% Native American',
'% Native Hawaiian, Pacific Islander',
'% Multi-Race, Non-Hispanic',
'% Males',
'% Females',
'Total # of Classes',
'Average Class Size',
'Number of Students',
'Salary Totals',
'Average Salary',
'FTE Count',
'In-District Expenditures',
'Total In-district FTEs',
'Average In-District Expenditures per Pupil',
'Total Expenditures',
```

```
'Total Pupil FTEs',
'Average Expenditures per Pupil',
'# in Cohort',
'% Graduated',
'% Still in School',
'% Non-Grad Completers',
'% GED',
'% Dropped Out',
'% Permanently Excluded',
'High School Graduates (#)',
'Attending Coll./Univ. (#)',
'% Attending College',
'% Private Two-Year',
'% Private Four-Year',
'% Public Two-Year',
'% Public Four-Year',
'% MA Community College',
'% MA State University',
'% UMass',
'AP Test Takers',
'AP_Tests Taken',
'AP_One Test',
'AP_Two Tests',
'AP_Three Tests',
'AP_Four Tests',
'AP_Five or More Tests',
'AP_Score=1',
'AP_Score=2',
'AP_Score=3',
'AP_Score=4',
'AP_Score=5',
'% AP_Score 1-2',
'% AP_Score 3-5',
'SAT_Tests Taken',
'Average SAT_Reading',
'Average SAT_Writing',
'Average SAT_Math',
'MCAS_3rdGrade_Math_P+A #',
'% MCAS_3rdGrade_Math_P+A',
'MCAS_3rdGrade_Math_A #',
'% MCAS_3rdGrade_Math_A',
'MCAS_3rdGrade_Math_P #',
'% MCAS_3rdGrade_Math_P',
'MCAS_3rdGrade_Math_NI #',
'% MCAS_3rdGrade_Math_NI',
'MCAS_3rdGrade_Math_W/F #',
'% MCAS_3rdGrade_Math_W/F',
'MCAS_3rdGrade_Math_Stud. Incl. #',
```

```
'MCAS_3rdGrade_Math_CPI',
'MCAS_3rdGrade_Math_SGP',
'MCAS_3rdGrade_Math_Incl. in SGP(#)',
'MCAS_4thGrade_Math_P+A #',
'% MCAS 4thGrade Math P+A',
'MCAS_4thGrade_Math_A #',
'% MCAS 4thGrade Math A',
'MCAS_4thGrade_Math_P #',
'% MCAS_4thGrade_Math_P',
'MCAS_4thGrade_Math_NI #',
'% MCAS_4thGrade_Math_NI',
'MCAS_4thGrade_Math_W/F #',
'% MCAS_4thGrade_Math_W/F',
'MCAS_4thGrade_Math_Stud. Incl. #',
'MCAS_4thGrade_Math_CPI',
'MCAS_4thGrade_Math_SGP',
'MCAS_4thGrade_Math_Incl. in SGP(#)',
'MCAS_5thGrade_Math_P+A #',
'% MCAS_5thGrade_Math_P+A',
'MCAS 5thGrade Math A #',
'% MCAS 5thGrade Math A',
'MCAS_5thGrade_Math_P #',
'% MCAS_5thGrade_Math_P',
'MCAS_5thGrade_Math_NI #',
'% MCAS_5thGrade_Math_NI',
'MCAS_5thGrade_Math_W/F #',
'% MCAS_5thGrade_Math_W/F',
'MCAS_5thGrade_Math_Stud. Incl. #',
'MCAS_5thGrade_Math_CPI',
'MCAS_5thGrade_Math_SGP',
'MCAS_5thGrade_Math_Incl. in SGP(#)',
'MCAS_6thGrade_Math_P+A #',
'% MCAS_6thGrade_Math_P+A',
'MCAS_6thGrade_Math_A #',
'% MCAS 6thGrade Math A',
'MCAS_6thGrade_Math_P #',
'% MCAS 6thGrade Math P',
'MCAS_6thGrade_Math_NI #',
'% MCAS_6thGrade_Math_NI',
'MCAS_6thGrade_Math_W/F #',
'% MCAS_6thGrade_Math_W/F',
'MCAS_6thGrade_Math_Stud. Incl. #',
'MCAS_6thGrade_Math_CPI',
'MCAS_6thGrade_Math_SGP',
'MCAS_6thGrade_Math_Incl. in SGP(#)',
'MCAS_7thGrade_Math_P+A #',
'% MCAS_7thGrade_Math_P+A',
'MCAS_7thGrade_Math_A #',
```

```
'% MCAS_7thGrade_Math_A',
'MCAS_7thGrade_Math_P #',
'% MCAS_7thGrade_Math_P',
'MCAS_7thGrade_Math_NI #',
'% MCAS 7thGrade Math NI',
'MCAS_7thGrade_Math_W/F #',
'% MCAS 7thGrade Math W/F',
'MCAS_7thGrade_Math_Stud. Incl. #',
'MCAS 7thGrade Math CPI',
'MCAS_7thGrade_Math_SGP',
'MCAS_7thGrade_Math_Incl. in SGP(#)',
'MCAS_8thGrade_Math_P+A #',
'% MCAS_8thGrade_Math_P+A',
'MCAS_8thGrade_Math_A #',
'% MCAS_8thGrade_Math_A',
'MCAS_8thGrade_Math_P #',
'% MCAS_8thGrade_Math_P',
'MCAS_8thGrade_Math_NI #',
'% MCAS_8thGrade_Math_NI',
'MCAS 8thGrade Math W/F #',
'% MCAS_8thGrade_Math_W/F',
'MCAS_8thGrade_Math_Stud. Incl. #',
'MCAS_8thGrade_Math_CPI',
'MCAS_8thGrade_Math_SGP',
'MCAS_8thGrade_Math_Incl. in SGP(#)',
'MCAS_10thGrade_Math_P+A #',
'% MCAS_10thGrade_Math_P+A',
'MCAS_10thGrade_Math_A #',
'% MCAS_10thGrade_Math_A',
'MCAS_10thGrade_Math_P #',
'% MCAS_10thGrade_Math_P',
'MCAS_10thGrade_Math_NI #',
'% MCAS_10thGrade_Math_NI',
'MCAS_10thGrade_Math_W/F #',
'% MCAS 10thGrade Math W/F',
'MCAS_10thGrade_Math_Stud. Incl. #',
'MCAS 10thGrade Math CPI',
'MCAS_10thGrade_Math_SGP',
'MCAS_10thGrade_Math_Incl. in SGP(#)',
'MCAS_3rdGrade_English_P+A #',
'% MCAS_3rdGrade_English_P+A',
'MCAS_3rdGrade_English_A #',
'% MCAS_3rdGrade_English_A',
'MCAS_3rdGrade_English_P #',
'% MCAS_3rdGrade_English_P',
'MCAS_3rdGrade_English_NI #',
'% MCAS_3rdGrade_English_NI'
'MCAS_3rdGrade_English_W/F #',
```

```
'% MCAS_3rdGrade_English_W/F',
'MCAS_3rdGrade_English_Stud. Incl. #',
'MCAS_3rdGrade_English_CPI',
'MCAS_3rdGrade_English_SGP',
'MCAS_3rdGrade_English_Incl. in SGP(#)',
'MCAS_4thGrade_English_P+A #',
'% MCAS 4thGrade English P+A',
'MCAS_4thGrade_English_A #',
'% MCAS_4thGrade_English_A',
'MCAS_4thGrade_English_P #',
'% MCAS_4thGrade_English_P',
'MCAS_4thGrade_English_NI #',
'% MCAS_4thGrade_English_NI',
'MCAS_4thGrade_English_W/F #',
'% MCAS_4thGrade_English_W/F',
'MCAS_4thGrade_English_Stud. Incl. #',
'MCAS_4thGrade_English_CPI',
'MCAS_4thGrade_English_SGP',
'MCAS_4thGrade_English_Incl. in SGP(#)',
'MCAS 5thGrade English P+A #',
'% MCAS_5thGrade_English_P+A',
'MCAS 5thGrade English A #',
'% MCAS_5thGrade_English_A',
'MCAS_5thGrade_English_P #',
'% MCAS_5thGrade_English_P',
'MCAS_5thGrade_English_NI #',
'% MCAS_5thGrade_English_NI',
'MCAS_5thGrade_English_W/F #',
'% MCAS_5thGrade_English_W/F',
'MCAS_5thGrade_English_Stud. Incl. #',
'MCAS_5thGrade_English_CPI',
'MCAS_5thGrade_English_SGP',
'MCAS_5thGrade_English_Incl. in SGP(#)',
'MCAS_6thGrade_English_P+A #',
'% MCAS 6thGrade English P+A',
'MCAS_6thGrade_English_A #',
'% MCAS 6thGrade English A',
'MCAS_6thGrade_English_P #',
'% MCAS_6thGrade_English_P',
'MCAS_6thGrade_English_NI #',
'% MCAS_6thGrade_English_NI',
'MCAS_6thGrade_English_W/F #',
'% MCAS_6thGrade_English_W/F',
'MCAS_6thGrade_English_Stud. Incl. #',
'MCAS_6thGrade_English_CPI',
'MCAS_6thGrade_English_SGP',
'MCAS_6thGrade_English_Incl. in SGP(#)',
'MCAS_7thGrade_English_P+A #',
```

```
'% MCAS_7thGrade_English_P+A',
'MCAS_7thGrade_English_A #',
'% MCAS_7thGrade_English_A',
'MCAS_7thGrade_English_P #',
'% MCAS 7thGrade English P',
'MCAS_7thGrade_English_NI #',
'% MCAS 7thGrade English NI',
'MCAS 7thGrade English W/F #',
'% MCAS_7thGrade_English_W/F',
'MCAS_7thGrade_English_Stud. Incl. #',
'MCAS_7thGrade_English_CPI',
'MCAS_7thGrade_English_SGP',
'MCAS_7thGrade_English_Incl. in SGP(#)',
'MCAS_8thGrade_English_P+A #',
'% MCAS_8thGrade_English_P+A',
'MCAS_8thGrade_English_A #',
'% MCAS_8thGrade_English_A',
'MCAS_8thGrade_English_P #',
'% MCAS_8thGrade_English_P',
'MCAS 8thGrade English NI #',
'% MCAS 8thGrade English NI',
'MCAS 8thGrade English W/F #',
'% MCAS_8thGrade_English_W/F',
'MCAS_8thGrade_English_Stud. Incl. #',
'MCAS_8thGrade_English_CPI',
'MCAS_8thGrade_English_SGP',
'MCAS_8thGrade_English_Incl. in SGP(#)',
'MCAS_10thGrade_English_P+A #',
'% MCAS_10thGrade_English_P+A',
'MCAS_10thGrade_English_A #',
'% MCAS_10thGrade_English_A',
'MCAS_10thGrade_English_P #',
'% MCAS_10thGrade_English_P'
'MCAS_10thGrade_English_NI #',
'% MCAS 10thGrade English NI',
'MCAS 10thGrade English W/F #',
'% MCAS 10thGrade English W/F',
'MCAS_10thGrade_English_Stud. Incl. #',
'MCAS_10thGrade_English_CPI',
'MCAS_10thGrade_English_SGP',
'MCAS_10thGrade_English_Incl. in SGP(#)',
'Accountability and Assistance Level',
'Accountability and Assistance Description',
'School Accountability Percentile (1-99)',
'Progress and Performance Index (PPI) - All Students',
'Progress and Performance Index (PPI) - High Needs Students',
'District_Accountability and Assistance Level',
'District_Accountability and Assistance Description',
```

```
'District_Progress and Performance Index (PPI) - All Students',
          'District_Progress and Performance Index (PPI) - High Needs Students']
In [4]: table = data.loc[:, ["12_Enrollment", "Average Class Size", "% Attending College", '% F.
In [5]: df_12enrollment = table["12_Enrollment"]>0
        table2 = table[df_12enrollment]
        students_enrolled_12grade = table2
        students_enrolled_12grade
Out[5]:
               12_Enrollment Average Class Size % Attending College \
        0
                                               15.8
        8
                                               16.8
                                                                      81.6
                          315
        16
                          163
                                               16.7
                                                                      72.6
        17
                                               7.6
                                                                       NaN
                           11
        23
                          462
                                               14.7
                                                                      89.3
        33
                          295
                                               14.3
                                                                      85.0
                                               14.6
                                                                      87.7
        43
                          187
        49
                           14
                                               7.6
                                                                      21.9
                          392
                                               18.1
                                                                      74.3
        50
        60
                          157
                                               17.3
                                                                      79.1
        64
                           45
                                               13.3
                                                                      87.8
        66
                          334
                                               15.3
                                                                      75.5
        74
                          206
                                               12.3
                                                                      91.5
        78
                          167
                                               14.0
                                                                      89.9
                                                                      70.1
        84
                          141
                                               18.3
        86
                            3
                                               8.6
                                                                       NaN
        89
                          290
                                               19.2
                                                                      86.2
        99
                          332
                                               18.9
                                                                      76.6
        106
                          280
                                               17.7
                                                                      76.3
        115
                           57
                                               16.8
                                                                      81.4
        119
                           88
                                               18.1
                                                                      32.6
        120
                                               14.6
                                                                      77.8
                           96
        121
                           91
                                               31.1
                                                                      NaN
        122
                          121
                                               16.5
                                                                      81.7
        123
                           68
                                               15.3
                                                                      75.5
        124
                          379
                                               25.8
                                                                      94.1
        125
                          268
                                               17.9
                                                                      92.0
        127
                          192
                                               17.8
                                                                      66.2
        128
                            9
                                               27.0
                                                                       NaN
                                               15.2
        131
                          195
                                                                      65.5
         . . .
                          . . .
                                               . . .
                                                                       . . .
        1688
                          282
                                               15.3
                                                                      70.2
        1695
                          245
                                               14.4
                                                                      85.5
        1706
                          303
                                               17.3
                                                                      77.1
                                               14.0
        1707
                          102
                                                                      46.7
                                               19.7
        1717
                          398
                                                                      91.0
```

1721

186

12.9

82.0

1726	86	NaN	NaN		
1732	254	15.8	87.9		
1745	436	16.6	62.7		
1753	297	20.9	76.4		
1755	338	13.8	68.8		
1763	230	14.5	86.9		
1767	5	12.0	NaN		
1768	67	15.2	68.2		
1778	278	17.0	87.5		
1781	125	18.3	80.9		
1792	320	16.4	76.3		
1796	211	15.3	68.3		
1802	75	17.6	59.3		
1805	329	13.5	75.2		
1822	311	14.8	54.4		
1826	293	16.0	60.6		
1831	45	19.3	72.4		
1838	358	16.2	67.2		
1845	40	13.5	NaN		
1851	30	25.2	NaN		
1854	70	14.9	NaN		
1855	12	20.3	NaN		
1856	12	18.8	NaN		
1858	117	25.7	NaN		
	% First Language Not English	% Students		High Needs	\
0	5.3	% Students	9.7	130.0	\
8	5.3 4.6	% Students	9.7 14.1	130.0 391.0	\
8 16	5.3 4.6 2.9	% Students	9.7 14.1 17.0	130.0 391.0 154.0	\
8 16 17	5.3 4.6 2.9 0.0	% Students	9.7 14.1 17.0 51.6	130.0 391.0 154.0 26.0	\
8 16 17 23	5.3 4.6 2.9 0.0 9.5	% Students	9.7 14.1 17.0 51.6 16.1	130.0 391.0 154.0 26.0 377.0	\
8 16 17 23 33	5.3 4.6 2.9 0.0 9.5 12.4	% Students	9.7 14.1 17.0 51.6 16.1 11.1	130.0 391.0 154.0 26.0 377.0 267.0	\
8 16 17 23 33 43	5.3 4.6 2.9 0.0 9.5 12.4 11.3	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2	130.0 391.0 154.0 26.0 377.0 267.0 170.0	\
8 16 17 23 33 43	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5	130.0 391.0 154.0 26.0 377.0 267.0 170.0	\
8 16 17 23 33 43 49 50	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0	\
8 16 17 23 33 43 49 50	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0	\
8 16 17 23 33 43 49 50 60 64	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6 16.3	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0 111.0	\
8 16 17 23 33 43 49 50 60 64 66	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7 7.2	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6 16.3 12.2	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0 111.0 680.0	`
8 16 17 23 33 43 49 50 60 64 66 74	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7 7.2	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6 16.3 12.2 16.0	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0 111.0 680.0 202.0	\
8 16 17 23 33 43 49 50 60 64 66 74 78	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7 7.2 10.9 9.6 2.4	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6 16.3 12.2 16.0	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0 111.0 680.0 202.0 157.0	\
8 16 17 23 33 43 49 50 60 64 66 74 78 84	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7 7.2 10.9 9.6 2.4 3.0	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6 16.3 12.2 16.0 12.0	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0 111.0 680.0 202.0 157.0 234.0	\
8 16 17 23 33 43 49 50 60 64 66 74 78 84 86	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7 7.2 10.9 9.6 2.4 3.0 0.0	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6 16.3 12.2 16.0 12.0 19.4 73.5	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0 111.0 680.0 202.0 157.0 234.0 29.0	`
8 16 17 23 33 43 49 50 60 64 66 74 78 84 86 89	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7 7.2 10.9 9.6 2.4 3.0 0.0 16.5	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6 16.3 12.2 16.0 12.0 19.4 73.5 5.7	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0 111.0 680.0 202.0 157.0 234.0 29.0 181.0	`
8 16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7 7.2 10.9 9.6 2.4 3.0 0.0 16.5 4.1	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6 16.3 12.2 16.0 12.0 19.4 73.5 5.7	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0 111.0 680.0 202.0 157.0 234.0 29.0 181.0 452.0	`
8 16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99 106	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7 7.2 10.9 9.6 2.4 3.0 0.0 16.5 4.1 6.8	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6 16.3 12.2 16.0 12.0 19.4 73.5 5.7 17.7	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0 111.0 680.0 202.0 157.0 234.0 29.0 181.0 452.0 367.0	
8 16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99 106 115	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7 7.2 10.9 9.6 2.4 3.0 0.0 16.5 4.1 6.8 48.0	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6 16.3 12.2 16.0 12.0 19.4 73.5 5.7 17.7 14.9 22.0	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0 111.0 680.0 202.0 157.0 234.0 29.0 181.0 452.0 367.0 163.0	\
8 16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99 106	5.3 4.6 2.9 0.0 9.5 12.4 11.3 12.7 10.2 5.7 7.2 10.9 9.6 2.4 3.0 0.0 16.5 4.1 6.8	% Students	9.7 14.1 17.0 51.6 16.1 11.1 13.2 9.5 14.2 9.6 16.3 12.2 16.0 12.0 19.4 73.5 5.7 17.7	130.0 391.0 154.0 26.0 377.0 267.0 170.0 34.0 593.0 189.0 111.0 680.0 202.0 157.0 234.0 29.0 181.0 452.0 367.0	\

121	39.4			17.6		149.0
122	61.0			22.0		386.0
123	100.0			4.2		376.0
124	32.7			2.1		499.0
125	41.6			2.9		622.0
127	59.3			23.8		699.0
128	55.2			100.0		29.0
131	61.9			25.3		795.0
1688	28.8			18.9		595.0
1695	18.3			10.7		211.0
1706	5.4			15.1		444.0
1707	7.6			28.3		290.0
1717	10.1			9.8		224.0
1721	13.2			17.0		177.0
1726	3.1			15.3		178.0
1732	3.4			18.1		212.0
1745	8.0			15.4		693.0
1753	1.4			13.1		304.0
1755	3.4			25.4		624.0
1763	2.4			13.0		173.0
1767	0.0			35.7		21.0
1768	3.5			21.5		138.0
1778				18.0		
	11.8					305.0
1781	14.2			18.1		229.0
1792	17.6			14.3		470.0
1796	44.0			25.8		718.0
1802	78.0			11.7		444.0
1805	47.9			16.5		916.0
1822	57.7			25.4		1064.0
1826	57.3			23.8		1078.0
1831	68.5			11.0		174.0
1838	40.6			12.6		792.0
1845	29.9			24.2		203.0
1851	1.0			18.1		368.0
1854	37.5			17.7		256.0
1855	16.1			31.1		172.0
1856	51.2			11.5		172.0
1858	6.2			20.4		558.0
	% Economically Disadvantaged	% Asian	% Hispanic	% White	\	
0	21.5	1.5	9.1	85.8		
8	22.7	2.2	5.8	88.8		
16	14.6	1.2	4.2	90.7		
17	74.2	0.0	6.5	87.1		
23	6.3	14.5	5.0	76.3		
33	10.3	10.7	5.7	75.6		
43	10.3	9.0	9.4	77.2		

49	46.0	1.6	11.1	76.2
50	25.6	4.1	12.5	73.6
60	15.2	4.3	6.4	84.0
64	23.8	5.6	4.7	48.3
66	25.5	2.8	11.5	72.2
74	7.8	11.4	6.4	68.7
78	13.5	2.0	4.1	90.3
84	15.6	3.1	5.3	88.4
86	44.1	0.0	11.8	85.3
89	6.5	16.8	3.5	69.9
99	23.8	2.7	10.8	81.2
106	15.2	6.4	4.6	84.3
115	61.4	5.8	39.9	7.2
119	51.3	2.0	37.1	5.1
120	43.6	4.5	39.4	12.5
121	66.3	1.0	39.4	14.5
122	56.0	4.8	51.2	5.8
123	60.3	3.4	45.5	1.9
124	15.7	29.0	12.1	46.9
125	31.7	21.9	22.6	29.3
127	61.0	3.1	45.7	5.4
128	75.9	13.8	17.2	13.8
131	62.9	17.0	43.5	5.2
• • • •	• • •			
1688	38.5	6.8	14.4	73.2
1695	7.6	21.2	4.5	70.1
1706	26.6	3.2	11.1	80.6
1707	34.4	1.9	6.3	88.0
1717	3.6	20.5	1.1	74.1
1721	5.8	17.0	4.8	67.1
1726	20.5	1.7	3.3	91.0
1732	4.1	7.0	1.9	86.5
1745				
	24.7	4.8	6.8	81.3
1753	17.5	1.3	2.5	91.8
1755	29.1	1.1	18.3	76.0
1763	8.1	5.2	3.0	87.5
1767	60.7	0.0	0.0	92.9
1768	37.0	3.1	8.0	84.1
1778	5.6	16.4	4.1	74.1
1781	26.6	1.7	11.8	81.4
1792	22.0	6.4	11.9	73.8
1796	54.7	5.9	38.2	32.2
1802	65.0	9.8	72.4	7.0
1805	43.9	7.8	31.7	40.6
1822	63.6	8.3	47.9	21.0
1826	58.6	12.7	43.7	23.9
1831	57.1	19.7	53.5	11.8
1838	43.8	6.6	36.8	37.1

1845 1851 1854 1855 1856 1858	53 47 69 81 28 36	.8 .5 .3	1.8 2.2 0.0 0.5 11.5 3.3	22.8 16.8 87.5 69.4 21.1 12.2	3.2 64.3 7.0 3.1 29.8 70.5
1858 0 8 16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99 106 115 119 120 121 122 123 124 125 127 128 131 1688 1695			3.3 an, Pacific		
1706 1707 1717 1721 1726 1732 1745				0.2 0.2 0.0 0.0 0.0 0.0	

1753	• • •				0.2		
1755	• • •				0.0		
1763	• • •				0.1		
1767					0.0		
1768					0.0		
1778					0.0		
1781					0.0		
1792					0.2		
1796					0.0		
1802					0.0		
1805					0.0		
1822					0.0		
1826					0.0		
1831					0.0		
1838					0.0		
1845					0.0		
1851					0.3		
1854					0.3		
1855					0.0		
1856	•••				0.0		
1858	• • •				0.2		
1000	•••				0.2		
	% Multi-Race,	Non-Hispanic	% Males	% Females	Number of	Students	\
0	70 Haror Haco,	0.9	45.6	54.4	Number of	451.0	`
U		0.0	10.0	01.1		101.0	
8		1 9	52 0	48 0		1242 0	
8 16		1.9	52.0 53.5	48.0 46.5		1242.0	
16		2.5	53.5	46.5		621.0	
16 17		2.5 6.5	53.5 64.5	46.5 35.5		621.0 33.0	
16 17 23		2.5 6.5 2.2	53.5 64.5 48.9	46.5 35.5 51.1		621.0 33.0 1799.0	
16 17 23 33		2.5 6.5 2.2 3.7	53.5 64.5 48.9 49.1	46.5 35.5 51.1 50.9		621.0 33.0 1799.0 1255.0	
16 17 23 33 43		2.5 6.5 2.2 3.7 2.2	53.5 64.5 48.9 49.1 48.8	46.5 35.5 51.1 50.9 51.2		621.0 33.0 1799.0 1255.0 746.0	
16 17 23 33 43 49		2.5 6.5 2.2 3.7 2.2 7.9	53.5 64.5 48.9 49.1 48.8 54.0	46.5 35.5 51.1 50.9 51.2 46.0		621.0 33.0 1799.0 1255.0 746.0 72.0	
16 17 23 33 43 49 50		2.5 6.5 2.2 3.7 2.2 7.9 3.8	53.5 64.5 48.9 49.1 48.8 54.0	46.5 35.5 51.1 50.9 51.2 46.0 45.8		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0	
16 17 23 33 43 49 50		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0	
16 17 23 33 43 49 50 60 64		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0	
16 17 23 33 43 49 50 60 64 66		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0	
16 17 23 33 43 49 50 60 64 66 74		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0	
16 17 23 33 43 49 50 60 64 66 74 78		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6 50.3	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3 49.4		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0 707.0	
16 17 23 33 43 49 50 60 64 66 74 78 84		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2 1.4	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6 50.3 54.5	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3 49.4 49.7		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0 707.0 748.0	
16 17 23 33 43 49 50 60 64 66 74 78 84 86		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2 1.4 1.2 2.9	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6 50.3 54.5 64.7	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3 49.4 49.7 45.5 32.4		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0 707.0 748.0 40.0	
16 17 23 33 43 49 50 60 64 66 74 78 84 86 89		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2 1.4 1.2 2.9 5.2	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6 50.3 54.5 64.7 46.9	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3 49.4 49.7 45.5 32.4 53.1		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0 707.0 748.0 40.0 1249.0	
16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2 1.4 1.2 2.9 5.2	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6 50.3 54.5 64.7 46.9 49.8	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3 49.4 49.7 45.5 32.4 53.1 50.2		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0 707.0 748.0 40.0 1249.0 1285.0	
16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99 106		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2 1.4 1.2 2.9 5.2 2.2	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6 50.3 54.5 64.7 46.9 49.8 49.9	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3 49.4 49.7 45.5 32.4 53.1 50.2 50.1		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0 707.0 748.0 40.0 1249.0 1285.0 1388.0	
16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99 106 115		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2 1.4 1.2 2.9 5.2 2.2 2.0 3.1	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6 50.3 54.5 64.7 46.9 49.8 49.9 49.3	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3 49.4 49.7 45.5 32.4 53.1 50.2 50.1		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0 707.0 748.0 40.0 1249.0 1285.0 1388.0 239.0	
16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99 106 115 119		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2 1.4 1.2 2.9 5.2 2.2 2.0 3.1	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6 50.3 54.5 64.7 46.9 49.8 49.9 49.3 49.3	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3 49.4 49.7 45.5 32.4 53.1 50.2 50.1		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0 707.0 748.0 40.0 1249.0 1285.0 1388.0 239.0 245.0	
16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99 106 115 119 120		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2 1.4 1.2 2.9 5.2 2.2 2.0 3.1	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6 50.3 54.5 64.7 46.9 49.8 49.9 49.3 48.7 36.2	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3 49.4 49.7 45.5 32.4 53.1 50.2 50.1 50.7 51.3 63.8		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0 707.0 748.0 40.0 1249.0 1285.0 1388.0 239.0 245.0 433.0	
16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99 106 115 119 120 121		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2 1.4 1.2 2.9 5.2 2.2 2.0 3.1 1.0	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6 50.3 54.5 64.7 46.9 49.8 49.9 49.3 48.7 36.2 51.8	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3 49.4 49.7 45.5 32.4 53.1 50.2 50.1 50.7 51.3 63.8 48.2		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0 707.0 748.0 40.0 1249.0 1285.0 1388.0 239.0 245.0 433.0 259.0	
16 17 23 33 43 49 50 60 64 66 74 78 84 86 89 99 106 115 119 120		2.5 6.5 2.2 3.7 2.2 7.9 3.8 2.8 3.4 3.7 5.2 1.4 1.2 2.9 5.2 2.2 2.0 3.1	53.5 64.5 48.9 49.1 48.8 54.0 54.2 48.1 48.3 48.7 50.6 50.3 54.5 64.7 46.9 49.8 49.9 49.3 48.7 36.2	46.5 35.5 51.1 50.9 51.2 46.0 45.8 51.9 51.4 51.3 49.4 49.7 45.5 32.4 53.1 50.2 50.1 50.7 51.3 63.8		621.0 33.0 1799.0 1255.0 746.0 72.0 1724.0 776.0 320.0 1837.0 893.0 707.0 748.0 40.0 1249.0 1285.0 1388.0 239.0 245.0 433.0	

124		3.8	45.1	54.9	2429.0
125		2.9	41.9	58.1	1690.0
127		1.0	60.3	39.7	958.0
128		0.0	62.1	37.9	27.0
131		1.1	60.1	39.9	952.0
1688		1.9	52.3	47.7	1235.0
1695		2.3	49.3	50.7	1048.0
1706		1.9	45.3	54.7	1261.0
1707		1.3	63.9	36.1	502.0
1717		3.6	51.0	49.0	1680.0
1721		4.5	50.6	49.4	726.0
1726		2.8	55.7	44.3	NaN
1732		1.6	47.4	52.6	977.0
1745		2.7	52.0	48.0	2012.0
1753		2.1	48.5	51.5	1196.0
1755		2.8	54.6	45.4	1327.0
1763		1.7	49.4	50.6	876.0
1767		7.1	64.3	35.7	28.0
1768		2.4	53.6	46.4	325.0
1778		3.9	50.3	49.7	1223.0
1781		2.6	49.8	50.2	737.0
1792		1.6	49.1	50.8	1338.0
1796		4.5	51.8	48.2	990.0
1802		1.7	50.4	49.6	492.0
1805		3.5	54.5	45.5	1428.0
1822		3.1	52.1	47.9	1241.0
1826		2.5	52.9	47.1	1268.0
1831		3.1	55.1	44.9	250.0
1838		3.0	42.6	57.4	1348.0
1845		1.1	42.3	57.7	228.0
1851		4.9	44.8	55.2	637.0
1854		0.0	44.8	55.2	312.0
1855		4.7	51.3	48.7	179.0
1856		1.2	45.0	55.0	267.0
1858		7.1	43.4	56.6	1014.0
1000	Average In-District E				1014.0
0			1205	0.39	
8			1354	6.48	
16			1300	1.25	
17			1300	1.25	
23			1470		
33			1231		
43			1286		
49			1251		
50					
50			1251	1.15	

13185.35

64	14046.54
66	14952.35
74	15697.93
78	12262.88
84	12852.89
86	12852.89
89	11689.27
99	12220.91
106	14737.99
115	19224.89
119	19224.89
120	19224.89
121	19224.89
122	19224.89
123	19224.89
124	19224.89
125	19224.89
127	19224.89
128	19224.89
131	19224.89
1688	12440.45
1695	13568.55
1706	13466.39
1707	13466.39
1717	12435.21
1721	21826.20
1726	12707.37
1732	15349.89
1745	12778.32
1753	11153.06
1755	18295.68
1763	14116.94
1767	13711.13
1768	13711.13
1778	12109.26
1781	12112.16
1792	14451.77
1796	13588.16
1802	13588.16
1805	13588.16
1822	13588.16
1826	13588.16
1831	13588.16
1838	13588.16
1845	NaN
1851	NaN
1854	NaN

1855 1856 1858				1	NaN NaN NaN	
	Average	Expenditures	per Pupil	Average	SAT_Reading	\
0			13270.84		520.0	
8			14363.21		496.0	
16			13771.87		531.0	
17			13771.87		NaN	
23			15601.70		566.0	
33			13382.77		581.0	
43			13607.92		549.0	
49			12980.40		NaN	
50			12980.40		494.0	
60			13580.88		488.0	
64			14284.49		467.0	
66			15012.81		505.0	
74			17839.45		566.0	
78			12591.99		544.0	
84			13220.48		515.0	
86			13220.48		NaN	
89			13028.52		587.0	
99			13188.37		517.0	
106			15434.97		521.0	
115			19246.36		377.0	
119			19246.36		NaN	
120			19246.36		437.0	
121			19246.36		NaN	
122			19246.36		396.0	
123			19246.36		313.0	
124			19246.36		629.0	
125			19246.36		526.0	
127			19246.36		357.0	
128			19246.36		NaN	
131			19246.36		346.0	
1688			13372.42		487.0	
1695			14745.64		583.0	
1706			13622.87		527.0	
1707			13622.87		452.0	
1717			13117.80		594.0	
1721			22768.35		604.0	
1726			13589.85		NaN	
1732			15853.36		557.0	
1745			13675.12		503.0	
1753			11703.17		499.0	
1755			18273.29		468.0	
1763			15501.99		514.0	
					- · · · ·	

1767	13855.25	NaN
1768	13855.25	471.0
1778	12800.52	587.0
1781	12547.75	481.0
1792	15158.26	495.0
1796	13901.25	452.0
1802	13901.25	354.0
1805	13901.25	468.0
1822	13901.25	400.0
1826	13901.25	440.0
1831	13901.25	435.0
1838	13901.25	432.0
1845	NaN	NaN
1851	NaN	532.0
1854	NaN	413.0
1855	NaN	NaN
1856	NaN	NaN
1858	NaN	514.0

	Average SAT_Writing	Average SAT_Math
0	498.0	516.0
8	475.0	514.0
16	518.0	534.0
17	NaN	NaN
23	562.0	581.0
33	576.0	592.0
43	530.0	576.0
49	NaN	NaN
50	490.0	504.0
60	477.0	505.0
64	451.0	481.0
66	489.0	513.0
74	550.0	572.0
78	531.0	544.0
84	480.0	518.0
86	NaN	NaN
89	584.0	610.0
99	511.0	523.0
106	516.0	540.0
115	395.0	407.0
119	NaN	NaN
120	427.0	435.0
121	NaN	NaN
122	390.0	431.0
123	305.0	347.0
124	614.0	647.0
125	527.0	557.0
127	352.0	392.0

```
1688
                             479.0
                                                508.0
        1695
                             577.0
                                                608.0
        1706
                             503.0
                                                526.0
        1707
                             399.0
                                                458.0
        1717
                             580.0
                                                612.0
        1721
                             603.0
                                                627.0
        1726
                               NaN
                                                   NaN
        1732
                             548.0
                                                578.0
        1745
                             491.0
                                                510.0
        1753
                             499.0
                                                518.0
        1755
                             435.0
                                                468.0
        1763
                             508.0
                                                527.0
        1767
                               NaN
                                                   NaN
        1768
                             449.0
                                                463.0
        1778
                             586.0
                                                617.0
        1781
                             469.0
                                                494.0
        1792
                             481.0
                                                516.0
                                                457.0
        1796
                             446.0
        1802
                             360.0
                                                371.0
        1805
                             453.0
                                                484.0
        1822
                             384.0
                                                409.0
                                                473.0
        1826
                             432.0
                             428.0
                                                471.0
        1831
                             422.0
        1838
                                                437.0
        1845
                               NaN
                                                   NaN
        1851
                             505.0
                                                515.0
        1854
                             410.0
                                                410.0
        1855
                               NaN
                                                   NaN
        1856
                               NaN
                                                   NaN
        1858
                             491.0
                                                472.0
        [394 rows x 21 columns]
In [21]: poor = data.loc[:, ["12_Enrollment","% Economically Disadvantaged",'Average SAT_Math'
         newpoor = poor["12_Enrollment"]>0
         newpoor1 = poor[newpoor]
         newpoor1.replace(to_replace = [np.inf, -np.inf], value = np.nan)
         newpoor1 = newpoor1.dropna(axis = 0, how ='any')
         newpoor1
         #np.all(np.isfinite(newpoor1))
         #np.any(np.isnan(newpoor1))
Out [21]:
                12_Enrollment % Economically Disadvantaged Average SAT_Math \
         0
                           92
                                                         21.5
                                                                           516.0
         8
                          315
                                                         22.7
                                                                           514.0
```

NaN

. . .

433.0

128

131

. . .

NaN

. . .

349.0

16	163	14.6	534.0
23	462	6.3	581.0
33	295	10.3	592.0
43	187	10.3	576.0
50	392	25.6	504.0
60	157	15.2	505.0
64	45	23.8	481.0
66	334	25.5	513.0
74	206	7.8	572.0
78	167	13.5	544.0
84	141	15.6	518.0
89	290	6.5	610.0
99	332	23.8	523.0
106	280	15.2	540.0
115	57	61.4	407.0
120	96	43.6	435.0
122	121	56.0	431.0
123	68	60.3	347.0
124	379	15.7	647.0
125	268	31.7	557.0
127	192	61.0	392.0
131	195	62.9	433.0
134	63	66.8	374.0
142	29	72.7	405.0
145	30	54.7	352.0
148	354	46.0	415.0
153	110	64.6	405.0
154	81	48.3	437.0
• • •	• • •	• • •	
1659	191	3.6	619.0
1661	88	40.9	491.0
1672	355	6.5	614.0
1675	61	17.0	525.0
1679	99	14.1	508.0
1688	282	38.5	508.0
1695	245	7.6	608.0
1706	303	26.6	526.0
1707	102	34.4	458.0
1717	398	3.6	612.0
1721	186	5.8	627.0
1732	254	4.1	578.0
1745	436	24.7	510.0
1753 1755	297	17.5	518.0
1755 1763	338	29.1	468.0
1763 1768	230	8.1	527.0
1768 1778	67 278	37.0	463.0
1778 1781	278	5.6	617.0
1781	125	26.6	494.0

1792	320	22.0	516.0
1796	211	54.7	457.0
1802	75	65.0	371.0
1805	329	43.9	484.0
1822	311	63.6	409.0
1826	293	58.6	473.0
1831	45	57.1	471.0
1838	358	43.8	437.0
1851	30	47.8	515.0
1854	70	69.5	410.0
1858	117	36.1	472.0

	Augraga	Class	Size
0	Average	Class	15.8
8			16.8
16			16.7
23			14.7
33			14.3
43			14.6
50			18.1
60			17.3
64			13.3
66			15.3
74			12.3
78			14.0
84			18.3
89			19.2
99			18.9
106			17.7
115			16.8
120			14.6
122			16.5
123			15.3
124			25.8
125			17.9
127			17.8
131			15.2
134			16.6
142			10.7
145			17.1
148			17.7
153			17.0
154			21.9
 1659			 14.9
1661			15.7
1672			16.2
1675			14.4
10.0			

```
1679
                      17.3
1688
                      15.3
1695
                      14.4
                      17.3
1706
1707
                      14.0
1717
                      19.7
1721
                      12.9
1732
                      15.8
1745
                      16.6
1753
                      20.9
                      13.8
1755
1763
                      14.5
                      15.2
1768
                      17.0
1778
1781
                      18.3
1792
                      16.4
1796
                      15.3
1802
                      17.6
1805
                      13.5
1822
                      14.8
1826
                      16.0
                      19.3
1831
1838
                      16.2
1851
                      25.2
1854
                      14.9
                      25.7
1858
```

[328 rows x 4 columns]

df_12enrollment.describe()

```
In [7]: table2.plot.scatter("Average Class Size", 'Average SAT_Math', s=None, c=None)
    table2.plot.scatter( "% Attending College",'Average SAT_Math', s=None, c=None)
    table2.plot.scatter( '% First Language Not English','Average SAT_Math', s=None, c=None
    table2.plot.scatter( '% Students With Disabilities','Average SAT_Math', s=None, c=None)
    table2.plot.scatter( "High Needs",'Average SAT_Math', s=None, c=None)
    table2.plot.scatter("% Economically Disadvantaged",'Average SAT_Math', s=None, c=None)
    table2.plot.scatter("% Asian" ,'Average SAT_Math', s=None, c=None)
    table2.plot.scatter("% Hispanic" ,'Average SAT_Math', s=None, c=None)
    table2.plot.scatter("% White",'Average SAT_Math', s=None, c=None)
    table2.plot.scatter("% Native American" ,'Average SAT_Math', s=None, c=None)
    table2.plot.scatter("% Native Hawaiian, Pacific Islander" ,'Average SAT_Math', s=None,
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x127c7510>

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x126a4350>

In [9]: table2.plot.scatter("% Hispanic", "% Economically Disadvantaged")

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x13c07d10>


```
In [10]: table2.replace(to_replace = [np.inf, -np.inf], value = np.nan)
         table2 = table2.dropna(axis = 0, how ='any')
         table2
         np.all(np.isfinite(newpoor1))
         np.any(np.isnan(newpoor1))
Out[10]: False
In [15]: x = newpoor1['% Economically Disadvantaged'].values[:np.newaxis]
         y = newpoor1['Average SAT_Math']
         # Reshaping
         x, y = x.reshape(-1,1), y.reshape(-1, 1)
         # Linear Regression Object
         lin_regression = LinearRegression()
         # Fitting linear model to the data
         lin_regression.fit(x,y)
         # Get slope of fitted line
         m = lin_regression.coef_
         # Get y-Intercept of the Line
```

```
b = lin_regression.intercept_

# Get Predictions for original x values
# you can also get predictions for new data
predictions = lin_regression.predict(x)

print (b)
print (m)
[581.28105413]
[[-2.779787]]
```

After doing multiple scatterplots using dependent variable y as % economically disadvantaged and testing different x variables such as class size, % students who graduated from the high school who attend college, % First Language not English, High Needs, % Students who are Economically Disadvantaged, % students who are Asian, % students who are Hispanic, % students who are Native American, % Native Hawaian, Pacific Islander, % Multirace, Non Hispanic, % Males as well as other variables, I found that the variable which highly correlates with Average SAT math score is % of students who are economically disadvantaged in the school. Thus, I decided to run linear regression with average SAT Math score as my dependent variable and % economically disadvantaged as my x variable.

After running linear regression, I found that the regression equation is Average_SAT_math = -2.78*(% Economically Disadvantaged) + 581

So, for instance, if the percentage of students in a particular high school who is economically disadvantaged is 10%, then the average SAT math score for a student in that high school is 27.8 points lower than a student who did not study in the school.


```
In [176]: #draw a scatterplot
          def scatter(table, xcol, ycol, marker_color='blue'):
              #Cleaning missing and invalid data in table
              table.replace(to_replace = [np.inf, -np.inf], value = np.nan)
              table = table.dropna(axis = 0, how ='any')
              #Assigning axes
              x = table[xcol].values[:np.newaxis]
              y = table[ycol]
              # Reshaping
              x, y = x.reshape(-1,1), y.reshape(-1, 1)
              plt.scatter(x, y, color = marker_color)
          #Regress on a scatterplot with xcol and ycol (column names - str) from table
          def scatter_and_regress(table, xcol, ycol, marker_color='blue'):
              #Cleaning missing and invalid data in table
              table.replace(to_replace = [np.inf, -np.inf], value = np.nan)
              table = table.dropna(axis = 0, how ='any')
```

```
x = table[xcol].values[:np.newaxis]
              y = table[ycol]
              # Reshaping
              x, y = x.reshape(-1,1), y.reshape(-1, 1)
              # Linear Regression Object
              lin_regression = LinearRegression()
              # Fitting linear model to the data
              lin_regression.fit(x,y)
              # Get slope of fitted line
              m = lin_regression.coef_
              # Get y-Intercept of the Line
              b = lin_regression.intercept_
              \# Get Predictions for original x values
              predictions = lin_regression.predict(x)
              plt.scatter(x, y, color = marker_color)
              plt.plot(x, predictions, color='black',linewidth=3)
              plt.xlabel(xcol)
              plt.ylabel(ycol)
              plt.show()
In [181]: KNN = students_enrolled_12grade.loc[:, ['% Economically Disadvantaged','% Students W
          KNN.head(3)
          #reshuffle rows and divide into 2 sets - training and testing sets
Out[181]:
              % Economically Disadvantaged % Students With Disabilities High Needs \
          0
                                      21.5
                                                                      9.7
                                                                                130.0
          8
                                      22.7
                                                                     14.1
                                                                                391.0
          16
                                      14.6
                                                                     17.0
                                                                                154.0
              % Attending College
          0
                             75.8
          8
                             81.6
          16
                             72.6
In [195]: def cutoff_and_above(df, column, cutoff_value):
              """For each row, return True if the value in the column is equal to and above th
              classified = (df[column]>=cutoff_value)
              #Showing number of True (equal and above) and False values
```

#Assigning axes

```
print(classified.value_counts())
              return classified
          def color_code(bool_array):
              """Return a color-coded array: 'Blue' for True values; 'Red' for False"""
              color = bool_array.apply(lambda row: 'Blue' if row else 'Red')
              return color
          def scatter_and_colorcode(table, xcol, ycol, color_col):
              """Draw a scatterplot w.r.t. Color column in table"""
              color = table[color]
              scatter(table, xcol, ycol, color)
          def distance_two_features(df, x_feature, y_feature):
              x1-x2 y1-y2
              """Compute the distance between x_feature and y_feature"""
              x = df[x_feature]
              y = df[y_feature]
              return np.sqrt(- rotem(x_feature))**2 + (row0.item(y_feature)-row1.item(y_feature)
In [207]: #Divide schools into 2 classes using 70% Attending College as boundary
          classified = cutoff_and_above(KNN, '% Attending College', 70)
          KNN['Class'] = classified
          KNN['Color'] = color_code(classified)
          KNN.head(3)
True
         248
False
         146
Name: % Attending College, dtype: int64
Out [207]:
              \% Economically Disadvantaged \% Students With Disabilities High Needs \land
          0
                                      21.5
                                                                      9.7
                                                                                130.0
          8
                                      22.7
                                                                     14.1
                                                                                391.0
          16
                                      14.6
                                                                     17.0
                                                                                154.0
              % Attending College Class Color
          0
                             75.8
                                    True Blue
                                    True Blue
          8
                             81.6
          16
                             72.6
                                    True Blue
In [209]: scatter_and_colorcode(KNN, '% Students With Disabilities','% Economically Disadvanta
          plt.xlim(0,50)
Out[209]: (0, 50)
```


In [215]: scatter_and_colorcode(KNN, '% Economically Disadvantaged','% Students With Disabilit
 plt.xlim(0,70)
 plt.ylim(0,40)

Out[215]: (0, 40)

Out[211]: (0, 80)

Out[212]: (0, 1000)

The second model that I use is K nearest neighbors. I wish to predict % of students attending college from a particular high school based on the the percentage of students who are economically disadvantaged and are disabled in a particular school. After building the model and running the code, I printed a list of my predictions. In the first row, the actual percentage of people attending college is 85.5% while the predicted percentage of people attending college is 81.44%

```
In [43]: KNN = students_enrolled_12grade.loc[:, ['% Economically Disadvantaged','% Students Wi
         #Cleaning missing and invalid data in table
         KNN.replace(to_replace = [np.inf, -np.inf], value = np.nan)
         KNN = table.dropna(axis = 0, how ='any')
         #Sourcecode: https://www.dataquest.io/blog/k-nearest-neighbors-in-python/
         import random
         import math
         from numpy.random import permutation
         # Randomly shuffle the index of KNN.
         random_indices = permutation(KNN.index)
         # Divide the data into half for training and testing set
         test_cutoff = math.floor(len(KNN)/2)
         # Generate the test set by taking the first 1/2 of the randomly shuffled indices.
         test = KNN.loc[random_indices[1:test_cutoff]]
         # Generate the train set with the rest of the data.
         train = KNN.loc[random_indices[test_cutoff:]]
         # The columns that we will be making predictions with.
```

```
# The column that we want to predict.
         y_column = ['% Attending College']
         from sklearn.neighbors import KNeighborsRegressor
         # Create the knn model.
         # Look at the five closest neighbors.
         knn = KNeighborsRegressor(n_neighbors=5)
         # Fit the model on the training data.
         knn.fit(train[x_columns], train[y_column])
         # Make point predictions on the test set using the fit model.
         predictions = knn.predict(test[x_columns])
         # Get the actual values for the test set.
         actual = test[y_column]
         Actual_vs_Predictions = {'Actual': actual, 'Predicted': predictions}
         print(Actual_vs_Predictions)
         # Compute the mean squared error of our predictions.
         mse = (((predictions - actual) ** 2).sum()) / len(predictions)
         print(mse)
{'Actual':
                 % Attending College
687
                     85.5
                     72.2
538
                     80.4
1193
                     71.9
1451
                     76.7
758
1554
                     72.5
                     89.7
668
1621
                     87.5
957
                     75.6
                     71.8
1353
833
                     84.2
                     70.3
1661
516
                     82.8
1654
                     85.6
972
                     94.5
1278
                     62.8
                     67.2
1838
819
                     75.3
                     85.8
290
380
                     79.3
                     58.3
1644
                     77.2
346
1260
                     70.1
148
                     56.3
807
                     81.2
```

x_columns = ['% Economically Disadvantaged','% Students With Disabilities']

```
866
                      77.9
879
                      80.0
                      65.5
131
993
                      84.5
                      90.0
406
. . .
                       . . .
1458
                      81.4
                      57.6
1185
1031
                      57.7
330
                      71.0
1826
                      60.6
499
                      51.5
1044
                      53.8
                      84.6
1381
635
                      71.4
                      89.9
78
219
                      57.0
1560
                      50.0
517
                      79.3
1592
                      83.0
412
                      77.4
1822
                      54.4
33
                      85.0
1035
                      79.3
742
                      46.7
1675
                      92.3
1145
                      89.5
1745
                      62.7
                      75.0
188
656
                      56.3
                      80.9
280
374
                      80.6
                      71.3
558
1367
                      69.6
1045
                      84.9
960
                      90.8
[145 rows x 1 columns], 'Predicted': array([[81.44],
       [78.3],
       [82.8],
       [70.62],
       [70.1],
       [76.68],
       [90.46],
       [81.74],
       [77.1],
       [76.9],
       [89.12],
```

- [73.14],
- [88.14],
- [70.08],
- [90.08],
- [71.48],
- [70.24], [76.48],
- [87.34],
- [78.18],
- [72.4],
- [64.24],
- [58.7],
- [71.82],
- [73.92],
- [70.04],
- [79.28],
- [73.5],
- [83.],
- [81.72],
- [76.68],
- [72.08],
- [86.06],
- [88.76],
- [76.5],
- [72.4],
- [79.28],
- [66.66], [67.46],
- [66.66],
- [76.92],
- [69.66],
- [78.36],
- [67.94],
- [87.58],
- [73.4],
- [61.5],
- [88.32],
- [84.76],
- [74.74],
- [67.94],
- [81.56],
- [88.32],
- [63.46],
- [59.98],
- [87.68],
- [87.06],
- [63.46],
- [87.82],

- [83.56],
- [62.16],
- [61.74],
- [75.52],
- [65.52],
- [78.78],
- [87.06],
- [89.82],
- [77.2],
- [72.98],
- [72.4],
- [87.8],
- [78.54],
- [85.94],
- [86.8],
- [70.38],
- [83.24],
- [88.94],
- [83.24],
- [81.96],
- [76.72],
- [87.6],
- [87.64],
- [84.64],
- [88.94],
- [87.68],
- [76.74],
- [65.02],
- [86.08],
- [88.94],
- [71.06],
- [65.02],[77.46],
- [88.],
- [79.28],
- [81.44],
- [79.82],
- [78.54],
- [86.06],
- [61.32],
- [83.24],
- [88.86],
- [75.02],
- [78.18],
- [71.64],
- [89.62],
- [89.62],
- [83.26],

```
[68.54],
       [74.02],
       [77.3],
       [83.54],
       [73.24],
       [89.5],
       [74.8],
       [66.26],
       [83.56],
       [79.2],
       [54.78],
       [74.36],
       [70.74],
       [59.12],
       [81.56],
       [76.72],
       [67.],
       [84.64],
       [70.14],
       [74.42],
       [86.88],
       [86.16],
       [76.48],
       [73.5],
       [87.64],
       [60.96],
       [53.28],
       [78.3],
       [87.64],
       [77.08],
       [54.92],
       [76.06],
       [83.54],
       [79.82],
       [61.24],
       [64.68],
       [74.88],
       [89.44]])}
% Attending College
                        76.10944
dtype: float64
```

white-wine-quality

April 28, 2018

Predicting White Wine Quality

For this notebook we are going to work with the White Wine Quality dataset (https://archive.ics.uci.edu/ml/datasets/wine+quality).

We can first load the dataset into a pandas dataframe and plot the features we are going to use to predict the final quality to see what we are working with.

```
In [1]: import pandas as pd
        import matplotlib.pyplot as plt
        %matplotlib inline

        import warnings
        warnings.filterwarnings('ignore')

In [2]: # Load wine dataset into pandas dataframe
        df = pd.read_csv("white-wine-quality.csv", sep=";")
        X = df.drop("quality", 1)
        y = df["quality"]

#ăPlot features histograms
        df.hist(figsize = [15, 15]);
```


We can also check the quality outcome distribution:

For some of the quality classes we don't have enough datapoints so for the purpose of this project we are going to classify a wine in two categories: "good", when its quality is greater than 5, or "bad" when its quality is less than or equal to 5. Let's transform the outcome vector to a binary vector representing this classification.

k-Nearest Neighbors Model

As out first try to predict the quality of a white wine, we are going to train a k-Nearest Neighbors Model.

```
In [5]: from sklearn.model_selection import train_test_split
        from sklearn.metrics import classification_report
        from sklearn.neighbors import KNeighborsClassifier
        #ăSplit the data into test and train sets
       X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=
        # Instantiate KNeighborsClassifier
       model = KNeighborsClassifier(n_neighbors = 5)
        model = model.fit(X_train, y_train)
       print("k-Nearest Neighbors accuracy for test set: %f" % model.score(X_test, y_test))
        y_true, y_pred = y_test, model.predict(X_test)
        print(classification_report(y_true, y_pred))
k-Nearest Neighbors accuracy for test set: 0.714286
             precision
                         recall f1-score
                                             support
      False
                  0.56
                            0.51
                                      0.53
                                                 312
                  0.78
                                      0.79
       True
                            0.81
                                                 668
                                                 980
avg / total
                  0.71
                            0.71
                                      0.71
```

We obtained an accuracy score of 0.714286. But if we look at the ranges of values for the histograms presented at the beginning of this notebook, we can identify some differences between some of them of almost 100 times. For example, the "chlorides" feature ranges from 0 to 0.3, while the "total sulfure dioxide" ranges from 0 to 400. To normalize the ranges of values we are going to apply **data scaling**, and see if it improves the accuracy of our model.

```
In [6]: from sklearn.preprocessing import scale

# Apply data scaling to features values
X = scale(X)

#aSplit the data into test and train sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=
#aTrain new model with scaled training data
model = model.fit(X_train, y_train)

print("Scaled k-Nearest Neighbors accuracy for test set: %f" % model.score(X_test, y_try_true, y_pred = y_test, model.predict(X_test)
print(classification_report(y_true, y_pred))

Scaled k-Nearest Neighbors accuracy for test set: 0.777551
```

support

recall f1-score

precision

False	0.67	0.59	0.63	312
True	0.82	0.86	0.84	668
avg / total	0.77	0.78	0.77	980

We improved the accuracy to 0.777551. The data scaling process helped normalizing the ranges of values of the features.

Logistic Regression Model

Secondly, we can train a **Logistic Regression** model to see how it predicts the wine quality.

In [7]: from sklearn.linear_model import LogisticRegression

```
\# We need to reset the contents of X and y to its original values
        #ăLoad wine dataset into pandas dataframe
        df = pd.read_csv("white-wine-quality.csv", sep=";")
        X = df.drop("quality", 1)
        y = df["quality"]
        #ăSplit the data into test and train sets
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=
        # Instantiate Logistic Regression Model
        model = LogisticRegression()
        #ăTrain model with training data
        model = model.fit(X_train, y_train)
        print("Logistic Regression accuracy for test set: %f" % model.score(X_test, y_test))
        y_true, y_pred = y_test, model.predict(X_test)
        print(classification_report(y_true, y_pred))
Logistic Regression accuracy for test set: 0.522449
             precision
                         recall f1-score
                                             support
          3
                  0.00
                            0.00
                                      0.00
                                                    6
          4
                  0.00
                            0.00
                                      0.00
                                                   26
          5
                  0.56
                            0.54
                                      0.55
                                                  280
          6
                  0.51
                            0.78
                                      0.62
                                                  452
          7
                  0.43
                            0.05
                                      0.09
                                                  178
          8
                  0.00
                            0.00
                                      0.00
                                                   36
                  0.00
                            0.00
                                      0.00
                                                  980
avg / total
                  0.47
                            0.52
                                      0.46
```

We obtained an accuracy score of 0.525510. Let's see what happen now if we scale our data as we did before for the kNN model.

```
In [8]: # Apply data scaling to features values
       X = scale(X)
        #ăSplit the data into test and train sets
       X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=
        #ăTrain new model with scaled training data
       model = model.fit(X_train, y_train)
       print("Scaled Logistic Regression score for test set: %f" % model.score(X_test, y_test
       y_true, y_pred = y_test, model.predict(X_test)
       print(classification_report(y_true, y_pred))
Scaled Logistic Regression score for test set: 0.530612
            precision
                          recall f1-score
                                             support
          3
                  0.00
                            0.00
                                      0.00
                                                   6
          4
                  1.00
                            0.04
                                      0.07
                                                  26
          5
                  0.56
                            0.54
                                      0.55
                                                 280
                                                 452
          6
                  0.52
                            0.78
                                      0.63
          7
                  0.46
                            0.09
                                      0.15
                                                 178
          8
                  0.00
                            0.00
                                      0.00
                                                  36
          9
                  0.00
                            0.00
                                      0.00
                                                   2
                                                 980
avg / total
                  0.51
                            0.53
                                      0.47
```

We got a similar accuracy score. It only improved to 0.530612.

As a conclusion we can state that the k-Nearest Neighbors Model performs much better than the Logistic Regression Model.

abalone

April 28, 2018

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib
        %matplotlib inline
        import matplotlib.pyplot as plt
        plt.style.use('fivethirtyeight')
        import warnings
        warnings.simplefilter('ignore', FutureWarning)
        from matplotlib import patches
        from ipywidgets import interact, interactive, fixed
        import ipywidgets as widgets
        from sklearn.linear_model import LinearRegression
In [2]: data = pd.read_csv("abalone.csv")
        data.describe(include='all')
        list(data)
Out[2]: ['sex',
         'length',
         'diameter',
         'height',
         'whole weight',
         'shucked weight',
         'viscera weight',
         'shell weight',
         'rings']
In [3]: table = data.loc[:, ['sex',
         'length',
         'diameter',
         'height',
         'whole weight',
         'shucked weight',
         'viscera weight',
         'shell weight',
         'rings']]
        table
```

0 M 0.455 0.365 0.995 0.5140 0.2245 1 M 0.455 0.365 0.095 0.5140 0.2245 1 M 0.350 0.266 0.090 0.2255 0.0995 2 F 0.530 0.420 0.135 0.6770 0.2565 3 M 0.440 0.365 0.125 0.5160 0.2155 4 I 0.330 0.255 0.080 0.2050 0.0895 5 I 0.425 0.300 0.095 0.3515 0.1410 6 F 0.530 0.415 0.150 0.7775 0.2370 7 F 0.545 0.425 0.125 0.7680 0.2940 8 M 0.475 0.370 0.125 0.5095 0.2165 9 F 0.550 0.440 0.150 0.8945 0.3145 10 F 0.555 0.380 0.140 0.6065 0.1940 11 M 0.430 0.350 0.110 0.4060 0.1675 12 M 0.490 0.380 0.135 0.5415 0.2175 13 F 0.535 0.405 0.145 0.6845 0.2725 14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2580 17 F 0.440 0.340 0.006 17 F 0.440 0.340 0.305 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2580 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.280 0.085 0.2905 0.0950 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.280 0.085 0.2905 0.0950 17 D.355 0.280 0.085 0.2905 0.0950 17 D.355 0.280 0.085 0.2905 0.0950 17 D.355 0.280 0.085 0.255 0.0970 22 F 0.565 0.440 0.155 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0950 22 F 0.565 0.440 0.155 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0950 22 F 0.565 0.440 0.155 0.3810 0.1705 22 F 0.565 0.440 0.155 0.380 0.255 0.0950 22 F 0.565 0.440 0.155 0.3810 0.1705 23 F 0.565 0.440 0.155 0.3810 0.1705 24 F 0.565 0.440 0.155 0.3810 0.1705 25 F 0.560 0.445 0.165 1.1615 0.5130 0.275 0.180 0.925 0.3825 24 F 0.565 0.440 0.165 1.1615 0.5130 0.3850 0.295 0.3945 0.4275 23 F 0.560 0.445 0.165 1.1615 0.5130 0.3950 0.445 0.165 1.1615 0.5130 0.3950 0.445 0.185 0.9955 0.3945 0.4275 0.180 0.9955 0.3845 0.3955 0.3940 0.995 0.2455 0.0900 0.445 0.140 0.9255 0.3805 0.3940 0.995 0.445 0.140 0.9255 0.3805 0.3940 0.995 0.445 0.140 0.9310 0.3560 0.3950 0.445 0.140 0.9310 0.3560 0.3950 0.445 0.140 0.9310 0.3560 0.3950 0.445 0.140 0.9315 0.3930 0.2150 0.3950 0.445 0.140 0.9315 0.3930 0.2150 0.9955 0.3940 0.9955 0.3940 0.9955 0.3940 0.9955 0.3940 0.9955 0.3940 0.9955 0.3940 0.9955 0.3940 0.9955 0.3930 0.2150 0.9955 0.3930 0.2150 0.9955 0.3930 0.2150 0.9955 0.3930 0.2150 0.9955 0.3950	Out[3]:	sex	length	diameter	height	whole weight	shucked weight	\
1 M 0.350 0.265 0.090 0.2255 0.0995 2 F 0.530 0.420 0.135 0.6770 0.2565 3 M 0.440 0.365 0.125 0.5160 0.2155 4 I 0.330 0.255 0.080 0.2050 0.0895 5 I 0.425 0.300 0.995 0.3515 0.1410 6 F 0.530 0.415 0.150 0.7775 0.2370 7 F 0.545 0.425 0.125 0.7680 0.2940 8 M 0.475 0.370 0.125 0.5095 0.2165 9 F 0.550 0.440 0.150 0.8945 0.3145 10 F 0.555 0.380 0.140 0.6065 0.1940 11 M 0.430 0.350 0.110 0.4060 0.1675 12 M 0.490 0.380 0.145 <td< td=""><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td>`</td></td<>			_		_		_	`
2 F 0.530 0.420 0.135 0.6770 0.2565 3 M 0.440 0.365 0.125 0.5160 0.2155 4 I 0.330 0.255 0.080 0.2050 0.0895 5 I 0.425 0.300 0.095 0.3515 0.1410 6 F 0.530 0.415 0.150 0.7776 0.2370 7 F 0.545 0.425 0.125 0.7680 0.2940 8 M 0.475 0.370 0.125 0.5095 0.2165 9 F 0.550 0.440 0.150 0.8945 0.3145 10 F 0.525 0.380 0.140 0.6065 0.1940 11 M 0.430 0.380 0.135 0.5415 0.2175 12 M 0.490 0.380 0.135 0.5415 0.2175 13 F 0.470 0.355 0.100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
3 M 0.440 0.365 0.125 0.5160 0.2155 4 I 0.330 0.255 0.080 0.2050 0.0895 5 I 0.425 0.300 0.995 0.3515 0.1410 6 F 0.530 0.415 0.150 0.7775 0.2370 7 F 0.545 0.426 0.125 0.7680 0.2940 8 M 0.475 0.370 0.125 0.5095 0.2165 9 F 0.550 0.440 0.150 0.8945 0.3145 10 F 0.525 0.380 0.140 0.6065 0.1940 11 M 0.430 0.350 0.110 0.4060 0.1675 12 M 0.490 0.380 0.135 0.5415 0.2165 13 F 0.535 0.405 0.145 0.6845 0.2255 14 F 0.470 0.355 0.100 <								
4 I 0.330 0.255 0.080 0.2050 0.0895 5 I 0.425 0.300 0.095 0.3815 0.1410 6 F 0.530 0.415 0.150 0.7775 0.2370 7 F 0.545 0.425 0.125 0.5095 0.2165 9 F 0.550 0.440 0.150 0.8945 0.3145 10 F 0.525 0.380 0.140 0.6065 0.1940 11 M 0.430 0.350 0.110 0.4060 0.1675 12 M 0.490 0.380 0.135 0.5415 0.2175 13 F 0.535 0.405 0.145 0.6845 0.2725 14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2580 16 I 0.355 0.280 0.085								
5 I 0.425 0.300 0.095 0.3515 0.1410 6 F 0.530 0.415 0.150 0.77680 0.2940 7 F 0.545 0.425 0.125 0.5095 0.2165 9 F 0.550 0.440 0.150 0.8945 0.3145 10 F 0.525 0.380 0.140 0.6065 0.1940 11 M 0.430 0.350 0.110 0.4060 0.1675 12 M 0.490 0.380 0.135 0.5415 0.2175 13 F 0.535 0.405 0.145 0.6845 0.2725 14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2280 16 I 0.355 0.280 0.085 0.2905 0.0950 17 F 0.440 0.340 0.100								
6 F 0.530 0.415 0.150 0.7775 0.2370 7 F 0.545 0.425 0.125 0.7680 0.2940 8 M 0.475 0.370 0.125 0.5095 0.2165 9 F 0.550 0.440 0.150 0.8945 0.3145 10 F 0.525 0.380 0.140 0.6665 0.1940 11 M 0.430 0.350 0.110 0.4060 0.1675 12 M 0.490 0.380 0.135 0.5415 0.2175 13 F 0.535 0.405 0.148 0.6845 0.22725 14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2280 16 I 0.355 0.280 0.085 0.2905 0.0950 17 F 0.440 0.340 0.100								
7 F 0.545 0.425 0.125 0.5095 0.246 8 M 0.475 0.370 0.125 0.5095 0.2165 9 F 0.550 0.440 0.150 0.8945 0.3145 10 F 0.525 0.380 0.140 0.6065 0.1940 11 M 0.430 0.350 0.110 0.4060 0.1675 12 M 0.490 0.380 0.135 0.5415 0.2175 13 F 0.535 0.405 0.145 0.6845 0.2275 14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2280 16 I 0.555 0.280 0.085 0.2905 0.9950 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.295 0.080								
8 M 0.475 0.370 0.125 0.5095 0.2165 9 F 0.550 0.440 0.150 0.8945 0.3145 10 F 0.525 0.380 0.140 0.6065 0.1940 11 M 0.430 0.350 0.110 0.4060 0.1675 12 M 0.490 0.380 0.135 0.5415 0.2175 13 F 0.535 0.405 0.145 0.6845 0.2725 14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2580 16 I 0.355 0.280 0.085 0.2905 0.0950 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.220 0.00 0.2555 0.0970 19 M 0.450 0.320 0.100								
9 F 0.550 0.440 0.150 0.8945 0.3145 10 F 0.525 0.380 0.140 0.6065 0.1940 11 M 0.430 0.350 0.110 0.4060 0.1675 12 M 0.490 0.380 0.135 0.5415 0.2175 13 F 0.535 0.405 0.145 0.6845 0.2725 14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2580 16 I 0.355 0.280 0.085 0.2906 0.0956 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.295 0.080 0.2555 0.0970 19 M 0.450 0.320 0.100 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0970 19 M 0.450 0.320 0.100 0.2255 0.0800 22 F 0.566 0.440 0.155 0.9395 0.4275 23 F 0.550 0.415 0.135 0.7635 0.3180 24 F 0.615 0.480 0.165 1.1615 0.6130 25 F 0.560 0.440 0.140 0.9285 0.3945 27 M 0.590 0.445 0.185 0.9955 0.3945 28 M 0.605 0.475 0.180 0.9365 0.3945 29 M 0.575 0.425 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3945 29 M 0.575 0.425 0.140 0.8635 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3930 10.170 0.330 0.230 0.195 1.6645 0.7270 4148 M 0.770 0.605 0.175 2.0505 0.8005 4150 I 0.330 0.230 0.095 0.1240 0.0630 4150 I 0.330 0.230 0.095 0.1240 0.0630 4150 I 0.330 0.230 0.090 0.1240 0.0630 4151 I 0.330 0.230 0.090 0.1240 0.0630 4152 I 0.370 0.280 0.095 0.175 2.0505 0.8005 4151 I 0.330 0.230 0.090 0.1240 0.0630 4150 I 0.330 0.230 0.090 0.1240 0.0630 4150 I 0.330 0.230 0.090 0.1240 0.0630 4150 I 0.330 0.230 0.090 0.1240 0.0630 4151 I 0.330 0.250 0.075 0.1695 0.0835 4152 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.430 0.355 0.110 0.4895 0.2115 4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.440 0.350 0.110 0.4895 0.2110 4159 F 0.560 0.440 0.130 0.135 0.0805 0.1575 4156 I 0.480 0.355 0.110 0.4895 0.2010 4159 F 0.560 0.440 0.135 0.0805 0.3930 0.2110								
10 F 0.525 0.380 0.140 0.6065 0.1940 11 M 0.430 0.350 0.110 0.4060 0.1675 12 M 0.490 0.380 0.135 0.5415 0.2175 13 F 0.535 0.405 0.145 0.6845 0.2725 14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2580 16 I 0.355 0.280 0.085 0.2905 0.0950 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.295 0.080 0.2555 0.0970 19 M 0.450 0.320 0.100 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0955 21 I 0.380 0.275 0.100								
11 M 0.430 0.350 0.110 0.4060 0.1675 12 M 0.490 0.380 0.135 0.5415 0.2175 13 F 0.535 0.405 0.145 0.6845 0.2725 14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2580 16 I 0.355 0.220 0.085 0.2905 0.0950 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.2295 0.080 0.2555 0.0970 19 M 0.450 0.320 0.100 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0955 21 I 0.380 0.275 0.100 0.2255 0.0800 22 F 0.566 0.440 0.155 0.9395 0.4275 23 F 0.560 0.445 0.135								
12 M 0.490 0.380 0.135 0.5415 0.2175 13 F 0.535 0.405 0.145 0.6845 0.2725 14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2580 16 I 0.355 0.280 0.085 0.2905 0.0950 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.295 0.080 0.2555 0.0970 19 M 0.450 0.320 0.100 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0995 21 I 0.380 0.275 0.100 0.2255 0.0800 22 F 0.566 0.440 0.155 0.9395 0.4275 23 F 0.560 0.440 0.155								
13 F 0.535 0.405 0.145 0.6845 0.2725 14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2580 16 I 0.355 0.280 0.085 0.2905 0.0950 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.295 0.080 0.2555 0.0970 19 M 0.450 0.320 0.100 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0955 21 I 0.380 0.275 0.100 0.2355 0.0955 21 I 0.380 0.275 0.100 0.2255 0.0800 22 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.550 0.415 0.135								
14 F 0.470 0.355 0.100 0.4755 0.1675 15 M 0.500 0.400 0.130 0.6645 0.2580 16 I 0.355 0.280 0.085 0.2905 0.0950 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.295 0.080 0.2555 0.0970 19 M 0.450 0.320 0.100 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0955 21 I 0.380 0.275 0.100 0.2255 0.0800 22 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.615 0.480 0.165 1.1615 0.5130 24 F 0.615 0.480 0.165								
15 M 0.500 0.400 0.130 0.6645 0.2580 16 I 0.355 0.280 0.085 0.2905 0.0950 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.295 0.080 0.2555 0.0970 19 M 0.450 0.320 0.100 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0995 21 I 0.380 0.275 0.100 0.2255 0.0800 22 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.550 0.415 0.135 0.7635 0.3180 24 F 0.615 0.440 0.165 1.1615 0.5130 25 F 0.560 0.440 0.140 0.9285 0.3825 26 F 0.580 0.445 0.180								
16 I 0.355 0.280 0.085 0.2905 0.0950 17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.295 0.080 0.2555 0.0970 19 M 0.450 0.320 0.100 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0955 21 I 0.380 0.275 0.100 0.2255 0.0800 22 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.550 0.415 0.135 0.7635 0.3180 24 F 0.615 0.480 0.165 1.1615 0.5130 25 F 0.560 0.440 0.140 0.9285 0.3825 26 F 0.580 0.445 0.140								
17 F 0.440 0.340 0.100 0.4510 0.1880 18 M 0.365 0.295 0.080 0.2555 0.0970 19 M 0.450 0.320 0.100 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0955 21 I 0.380 0.275 0.100 0.2255 0.0800 22 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.550 0.415 0.135 0.7635 0.3180 24 F 0.615 0.480 0.165 1.1615 0.5130 25 F 0.560 0.440 0.140 0.9285 0.3825 26 F 0.580 0.450 0.185 0.9955 0.3945 27 M 0.590 0.445 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140<								
18 M 0.365 0.295 0.080 0.2555 0.0970 19 M 0.450 0.320 0.100 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0955 21 I 0.380 0.275 0.100 0.2255 0.0800 22 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.550 0.415 0.135 0.7635 0.3180 24 F 0.615 0.480 0.165 1.1615 0.5130 25 F 0.560 0.440 0.140 0.9285 0.3825 26 F 0.580 0.450 0.185 0.9955 0.3945 27 M 0.590 0.445 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140								
19 M 0.450 0.320 0.100 0.3810 0.1705 20 M 0.355 0.280 0.095 0.2455 0.0955 21 I 0.380 0.275 0.100 0.2255 0.0800 22 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.550 0.415 0.135 0.7635 0.3180 24 F 0.615 0.480 0.165 1.1615 0.5130 25 F 0.560 0.440 0.140 0.9285 0.3825 26 F 0.580 0.450 0.185 0.9955 0.3945 27 M 0.590 0.445 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3930 4147 M 0.695 0.550 0.195 1.6645								
20 M 0.355 0.280 0.095 0.2455 0.0905 21 I 0.380 0.275 0.100 0.2255 0.0800 22 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.550 0.415 0.135 0.7635 0.3180 24 F 0.615 0.480 0.165 1.1615 0.5130 25 F 0.560 0.440 0.140 0.9285 0.3825 26 F 0.580 0.450 0.185 0.9955 0.3945 27 M 0.590 0.445 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3930 4147 M 0.695 0.550 0.195 <								
21 I 0.380 0.275 0.100 0.2255 0.0800 22 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.550 0.415 0.135 0.7635 0.3180 24 F 0.615 0.480 0.165 1.1615 0.5130 25 F 0.560 0.440 0.140 0.9285 0.3825 26 F 0.580 0.450 0.185 0.9955 0.3945 27 M 0.590 0.445 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3930 4147 M 0.695 0.550 0.195								
22 F 0.565 0.440 0.155 0.9395 0.4275 23 F 0.550 0.415 0.135 0.7635 0.3180 24 F 0.615 0.480 0.165 1.1615 0.5130 25 F 0.560 0.440 0.140 0.9285 0.3825 26 F 0.580 0.450 0.185 0.9955 0.3945 27 M 0.590 0.445 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3930 4147 M 0.695 0.550 0.195 1.6645 0.7270 4148 M 0.770 0.605 0.175 2.0505 0.8005 4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.250 0.075 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
23 F 0.550 0.415 0.135 0.7635 0.3180 24 F 0.615 0.480 0.165 1.1615 0.5130 25 F 0.560 0.440 0.140 0.9285 0.3825 26 F 0.580 0.450 0.185 0.9955 0.3945 27 M 0.590 0.445 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3930 4147 M 0.695 0.550 0.195 1.6645 0.7270 4148 M 0.770 0.605 0.175 2.0505 0.8005 4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.230 0.080								
24 F 0.615 0.480 0.165 1.1615 0.5130 25 F 0.560 0.440 0.140 0.9285 0.3825 26 F 0.580 0.450 0.185 0.9955 0.3945 27 M 0.590 0.445 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3930 4147 M 0.695 0.550 0.195 1.6645 0.7270 4148 M 0.770 0.605 0.175 2.0505 0.8005 4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.230 0.080 0.1400 0.0565 4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.9								
25 F 0.560 0.440 0.140 0.9285 0.3825 26 F 0.580 0.450 0.185 0.9955 0.3945 27 M 0.590 0.445 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3930 4147 M 0.695 0.550 0.195 1.6645 0.7270 4148 M 0.770 0.605 0.175 2.0505 0.8005 4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.230 0.080 0.1400 0.0565 4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.090								
26 F 0.580 0.450 0.185 0.9955 0.3945 27 M 0.590 0.445 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3930 4147 M 0.695 0.550 0.195 1.6645 0.7270 4148 M 0.770 0.605 0.175 2.0505 0.8005 4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.230 0.080 0.1400 0.0565 4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.090 0.2180 0.0995 4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
27 M 0.590 0.445 0.140 0.9310 0.3560 28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3930 4147 M 0.695 0.550 0.195 1.6645 0.7270 4148 M 0.770 0.605 0.175 2.0505 0.8005 4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.230 0.080 0.1400 0.0565 4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.090 0.2180 0.0995 4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110								
28 M 0.605 0.475 0.180 0.9365 0.3940 29 M 0.575 0.425 0.140 0.8635 0.3930 4147 M 0.695 0.550 0.195 1.6645 0.7270 4148 M 0.770 0.605 0.175 2.0505 0.8005 4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.230 0.080 0.1400 0.0565 4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.090 0.2180 0.0995 4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.370 0.110								
29 M 0.575 0.425 0.140 0.8635 0.3930 4147 M 0.695 0.550 0.195 1.6645 0.7270 4148 M 0.770 0.605 0.175 2.0505 0.8005 4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.230 0.080 0.1400 0.0565 4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.090 0.2180 0.0995 4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.370 0.110 0.4895 0.2185 4157 M 0.475 0.360								
4147 M 0.695 0.550 0.195 1.6645 0.7270 4148 M 0.770 0.605 0.175 2.0505 0.8005 4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.230 0.080 0.1400 0.0565 4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.090 0.2180 0.0995 4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0								
4147 M 0.695 0.550 0.195 1.6645 0.7270 4148 M 0.770 0.605 0.175 2.0505 0.8005 4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.230 0.080 0.1400 0.0565 4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.090 0.2180 0.0995 4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.370 0.110 0.4895 0.2185 4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0	29	М	0.575	0.425	0.140	0.8635	0.3930	
4148 M 0.770 0.605 0.175 2.0505 0.8005 4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.230 0.080 0.1400 0.0565 4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.090 0.2180 0.0995 4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.370 0.110 0.4895 0.2185 4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0								
4149 I 0.280 0.215 0.070 0.1240 0.0630 4150 I 0.330 0.230 0.080 0.1400 0.0565 4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.090 0.2180 0.0995 4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.370 0.110 0.4895 0.2185 4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0.475 0.165 1.0530 0.4255								
4150 I 0.330 0.230 0.080 0.1400 0.0565 4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.090 0.2180 0.0995 4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.370 0.110 0.4895 0.2185 4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0.475 0.165 1.0530 0.4580 4161 F 0.585 0.455 0.170 0.9945 0.4255								
4151 I 0.350 0.250 0.075 0.1695 0.0835 4152 I 0.370 0.280 0.090 0.2180 0.0995 4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.370 0.110 0.4895 0.2185 4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0.475 0.165 1.0530 0.4580 4161 F 0.585 0.455 0.170 0.9945 0.4255								
4152 I 0.370 0.280 0.090 0.2180 0.0995 4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.370 0.110 0.4895 0.2185 4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0.475 0.165 1.0530 0.4580 4161 F 0.585 0.455 0.170 0.9945 0.4255								
4153 I 0.430 0.315 0.115 0.3840 0.1885 4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.370 0.110 0.4895 0.2185 4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0.475 0.165 1.0530 0.4580 4161 F 0.585 0.455 0.170 0.9945 0.4255								
4154 I 0.435 0.330 0.095 0.3930 0.2190 4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.370 0.110 0.4895 0.2185 4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0.475 0.165 1.0530 0.4580 4161 F 0.585 0.455 0.170 0.9945 0.4255								
4155 I 0.440 0.350 0.110 0.3805 0.1575 4156 M 0.475 0.370 0.110 0.4895 0.2185 4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0.475 0.165 1.0530 0.4580 4161 F 0.585 0.455 0.170 0.9945 0.4255								
4156 M 0.475 0.370 0.110 0.4895 0.2185 4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0.475 0.165 1.0530 0.4580 4161 F 0.585 0.455 0.170 0.9945 0.4255								
4157 M 0.475 0.360 0.140 0.5135 0.2410 4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0.475 0.165 1.0530 0.4580 4161 F 0.585 0.455 0.170 0.9945 0.4255								
4158 I 0.480 0.355 0.110 0.4495 0.2010 4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0.475 0.165 1.0530 0.4580 4161 F 0.585 0.455 0.170 0.9945 0.4255								
4159 F 0.560 0.440 0.135 0.8025 0.3500 4160 F 0.585 0.475 0.165 1.0530 0.4580 4161 F 0.585 0.455 0.170 0.9945 0.4255								
4160 F 0.585 0.475 0.165 1.0530 0.4580 4161 F 0.585 0.455 0.170 0.9945 0.4255								
4161 F 0.585 0.455 0.170 0.9945 0.4255								
4162 M 0.385 0.255 0.100 0.3175 0.1370								
	4162	. M	0.385	0.255	0.100	0.3175	0.1370	

4163	I	0.390	0.310	0.085	0.34	1 40	0.1810
4164	I	0.390	0.290	0.100	0.28	345	0.1255
4165	I	0.405	0.300	0.085	0.30	35	0.1500
4166	I	0.475	0.365	0.115	0.49	90	0.2320
4167	М	0.500	0.380	0.125	0.57	770	0.2690
4168	F	0.515	0.400	0.125	0.61	.50	0.2865
4169	M	0.520	0.385	0.165	0.79	910	0.3750
4170	M	0.550	0.430	0.130	0.83	395	0.3155
4171	M	0.560	0.430	0.155	0.86	375	0.4000
4172	F	0.565	0.450	0.165	0.88	370	0.3700
4173	М	0.590	0.440	0.135	0.96	60	0.4390
4174	М	0.600	0.475	0.205	1.17	' 60	0.5255
4175	F	0.625	0.485	0.150	1.09	945	0.5310
4176	M	0.710	0.555	0.195	1.94	l85	0.9455
	visc	era weight	shell	weight	rings		
0		0.1010		0.1500	15		
1		0.0485		0.0700	7		
2		0.1415		0.2100	9		
_		0 4440			4.0		

	viscera weight	shell weight	rings
0	0.1010	0.1500	15
1	0.0485	0.0700	7
2	0.1415	0.2100	9
3	0.1140	0.1550	10
4	0.0395	0.0550	7
5	0.0775	0.1200	8
6	0.1415	0.3300	20
7	0.1495	0.2600	16
8	0.1125	0.1650	9
9	0.1510	0.3200	19
10	0.1475	0.2100	14
11	0.0810	0.1350	10
12	0.0950	0.1900	11
13	0.1710	0.2050	10
14	0.0805	0.1850	10
15	0.1330	0.2400	12
16	0.0395	0.1150	7
17	0.0870	0.1300	10
18	0.0430	0.1000	7
19	0.0750	0.1150	9
20	0.0620	0.0750	11
21	0.0490	0.0850	10
22	0.2140	0.2700	12
23	0.2100	0.2000	9
24	0.3010	0.3050	10
25	0.1880	0.3000	11
26	0.2720	0.2850	11
27	0.2340	0.2800	12
28	0.2190	0.2950	15
29	0.2270	0.2000	11
4447	0.200	0.4450	
4147	0.3600	0.4450	11

4148	0.5260	0.3550	11
4149	0.0215	0.0300	6
4150	0.0365	0.0460	7
4151	0.0355	0.0410	6
4152	0.0545	0.0615	7
4153	0.0715	0.1100	8
4154	0.0750	0.0885	6
4155	0.0895	0.1150	6
4156	0.1070	0.1460	8
4157	0.1045	0.1550	8
4158	0.0890	0.1400	8
4159	0.1615	0.2590	9
4160	0.2170	0.3000	11
4161	0.2630	0.2845	11
4162	0.0680	0.0920	8
4163	0.0695	0.0790	7
4164	0.0635	0.0810	7
4165	0.0505	0.0880	7
4166	0.0885	0.1560	10
4167	0.1265	0.1535	9
4168	0.1230	0.1765	8
4169	0.1800	0.1815	10
4170	0.1955	0.2405	10
4171	0.1720	0.2290	8
4172	0.2390	0.2490	11
4173	0.2145	0.2605	10
4174	0.2875	0.3080	9
4175	0.2610	0.2960	10
4176	0.3765	0.4950	12

[4177 rows x 9 columns]

```
In [4]: df_male = table['sex'] == 'M'
     tableM = table[df_male]
     tableM
```

Out[4]:	sex	length	diameter	height	whole weight	shucked weight	\
0	M	0.455	0.365	0.095	0.5140	0.2245	
1	M	0.350	0.265	0.090	0.2255	0.0995	
3	M	0.440	0.365	0.125	0.5160	0.2155	
8	M	0.475	0.370	0.125	0.5095	0.2165	
11	M	0.430	0.350	0.110	0.4060	0.1675	
12	M	0.490	0.380	0.135	0.5415	0.2175	
15	M	0.500	0.400	0.130	0.6645	0.2580	
18	M	0.365	0.295	0.080	0.2555	0.0970	
19	M	0.450	0.320	0.100	0.3810	0.1705	
20	M	0.355	0.280	0.095	0.2455	0.0955	
27	М	0.590	0.445	0.140	0.9310	0.3560	

28	М	0.605	0.475	0.180	0.9365	0.3940
29	M	0.575	0.425	0.140	0.8635	0.3930
30	M	0.580	0.470	0.165	0.9975	0.3935
32	М	0.665	0.525	0.165	1.3380	0.5515
35	М	0.465	0.355	0.105	0.4795	0.2270
39						
	M	0.355	0.290	0.090	0.3275	0.1340
46	M	0.470	0.370	0.120	0.5795	0.2930
51	M	0.400	0.320	0.095	0.3030	0.1335
52	M	0.485	0.360	0.130	0.5415	0.2595
54	М	0.405	0.310	0.100	0.3850	0.1730
56	М	0.445	0.350	0.120	0.4425	0.1920
57	M	0.470	0.385	0.135	0.5895	0.2765
60	M	0.450	0.345	0.105	0.4115	0.1800
61	M	0.505	0.405	0.110	0.6250	0.3050
63	М	0.425	0.325	0.095	0.3785	0.1705
64	М	0.520	0.400	0.120	0.5800	0.2340
65	M	0.475	0.355	0.120	0.4800	0.2340
70	M	0.555	0.425	0.130	0.7665	0.2640
73	M	0.570	0.480	0.175	1.1850	0.4740
4099	M	0.670	0.525	0.180	1.4915	0.7280
4102	M	0.680	0.545	0.185	1.6720	0.7075
4103	М	0.700	0.545	0.215	1.9125	0.8825
4109	М	0.480	0.365	0.130	0.5305	0.2405
4110	М	0.510	0.410	0.155	1.2825	0.5690
4116	М	0.625	0.480	0.160	1.2415	0.6575
4118	M	0.650	0.525	0.185	1.3455	0.5860
4120	М	0.350	0.265	0.090	0.1970	0.0730
4126	М	0.550	0.420	0.145	0.7385	0.3210
4128	М	0.555	0.435	0.145	0.9205	0.4040
4130	M		0.450			
		0.580		0.140	0.8240	0.3465
4133	M	0.585	0.450	0.150	0.9970	0.4055
4137	M	0.630	0.505	0.155	1.1050	0.4920
4138	М	0.630	0.490	0.155	1.2290	0.5350
4142	M	0.655	0.525	0.180	1.4020	0.6240
4144	М	0.670	0.535	0.190	1.6690	0.7465
4145	М	0.670	0.525	0.200	1.7405	0.6205
4146	М	0.695	0.530	0.210	1.5100	0.6640
4147	M	0.695	0.550	0.195	1.6645	0.7270
4148	M	0.770	0.605	0.175	2.0505	0.8005
4156	М	0.475	0.370	0.110	0.4895	0.2185
4157	М	0.475	0.360	0.140	0.5135	0.2410
4162	M	0.385	0.355	0.140		0.1370
					0.3175	
4167	M	0.500	0.380	0.125	0.5770	0.2690
4169	M	0.520	0.385	0.165	0.7910	0.3750
4170	M	0.550	0.430	0.130	0.8395	0.3155
4171	M	0.560	0.430	0.155	0.8675	0.4000
4173	M	0.590	0.440	0.135	0.9660	0.4390

4174	м О.	600	0.475	0.205		1.1760	0.5255
4176	М О.	710	0.555	0.195		1.9485	0.9455
	viscera	weight	shell	weight	rings		
0		0.1010		0.1500	15		
1		0.0485		0.0700	7		
3		0.1140		0.1550	10		
8		0.1125		0.1650	9		
11		0.0810		0.1350	10		
12		0.0950		0.1900	11		
15		0.1330		0.2400	12		
18		0.0430		0.1000	7		
19		0.0750		0.1150	9		
20		0.0620		0.0750	11		
27		0.2340		0.2800	12		
28		0.2190		0.2950	15		
29		0.2270		0.2000	11		
30		0.2420		0.3300	10		
32		0.3575		0.3500	18		
35		0.1240		0.1250	8		
39		0.0860		0.0900	9		
46		0.2270		0.1400	9		
51		0.0600		0.1000	7		
52		0.0960		0.1600	10		
54		0.0915		0.1100	7		
56		0.0955		0.1350	8		
57		0.1200		0.1700	8		
60		0.1125		0.1350	7		
61		0.1600		0.1750	9		
63		0.0800		0.1000	7		
64		0.1315		0.1850	8		
65		0.1015		0.1350	8		
70		0.1680		0.2750	13		
73		0.2610		0.3800	11		
				• • •			
4099		0.3430		0.3810	9		
4102		0.3640		0.4800	11		
4103		0.4385		0.5060	10		
4109		0.1270		0.1390	8		
4110		0.2910		0.3795	9		
4116		0.2625		0.2785	9		
4118		0.2780		0.3865	9		
4120		0.0365		0.0770	7		
4126		0.1485		0.2520	11		
4128		0.2275		0.2550	8		
4130		0.1765		0.2630	10		
4133		0.2830		0.2510	11		
4137		0.2260		0.3250	11		

4138	0.2900	0.3350	11
4142	0.2935	0.3650	13
4144	0.2935	0.5080	11
4145	0.2970	0.6570	11
4146	0.4095	0.3850	10
4147	0.3600	0.4450	11
4148	0.5260	0.3550	11
4156	0.1070	0.1460	8
4157	0.1045	0.1550	8
4162	0.0680	0.0920	8
4167	0.1265	0.1535	9
4169	0.1800	0.1815	10
4170	0.1955	0.2405	10
4171	0.1720	0.2290	8
4173	0.2145	0.2605	10
4174	0.2875	0.3080	9
4176	0.3765	0.4950	12

[1528 rows x 9 columns]

Out[5]:	sex	length	diameter	height	whole weight	shucked weight	\
2	F	0.530	0.420	0.135	0.6770	0.2565	
6	F	0.530	0.415	0.150	0.7775	0.2370	
7	F	0.545	0.425	0.125	0.7680	0.2940	
9	F	0.550	0.440	0.150	0.8945	0.3145	
10	F	0.525	0.380	0.140	0.6065	0.1940	
13	F	0.535	0.405	0.145	0.6845	0.2725	
14	F	0.470	0.355	0.100	0.4755	0.1675	
17	F	0.440	0.340	0.100	0.4510	0.1880	
22	F	0.565	0.440	0.155	0.9395	0.4275	
23	F	0.550	0.415	0.135	0.7635	0.3180	
24	F	0.615	0.480	0.165	1.1615	0.5130	
25	F	0.560	0.440	0.140	0.9285	0.3825	
26	F	0.580	0.450	0.185	0.9955	0.3945	
31	F	0.680	0.560	0.165	1.6390	0.6055	
33	F	0.680	0.550	0.175	1.7980	0.8150	
34	F	0.705	0.550	0.200	1.7095	0.6330	
36	F	0.540	0.475	0.155	1.2170	0.5305	
37	F	0.450	0.355	0.105	0.5225	0.2370	
38	F	0.575	0.445	0.135	0.8830	0.3810	
40	F	0.450	0.335	0.105	0.4250	0.1865	
41	F	0.550	0.425	0.135	0.8515	0.3620	
47	F	0.460	0.375	0.120	0.4605	0.1775	
49	F	0.525	0.425	0.160	0.8355	0.3545	

EO	E	0.470	0.360	0 100	0 4771	0.0105
53	F	0.470	0.360	0.120	0.477	
55	F	0.500	0.400	0.140	0.661	
59	F	0.505	0.400	0.125	0.5830	
62	F	0.530	0.410	0.130	0.696	
66	F	0.565	0.440	0.160	0.915	
67	F	0.595	0.495	0.185	1.285	
68	F	0.475	0.390	0.120	0.530	0.2135
	• •					
4058	F	0.695	0.560	0.185	1.771	
4063	F	0.630	0.515	0.160	1.336	
4064	F	0.640	0.490	0.180	1.360	
4084	F	0.575	0.480	0.170	1.1000	
4092	F	0.625	0.490	0.190	1.701	0.7465
4095	F	0.635	0.485	0.155	1.073	0.4670
4096	F	0.635	0.500	0.175	1.4770	0.6840
4098	F	0.650	0.495	0.160	1.310	0.5770
4100	F	0.675	0.520	0.175	1.494	0.7365
4101	F	0.675	0.510	0.150	1.196	0.4750
4104	F	0.710	0.545	0.175	1.907	0.8725
4105	F	0.715	0.565	0.180	1.790	0.8440
4106	F	0.720	0.590	0.205	1.749	0.7755
4112	F	0.560	0.420	0.180	1.664	0.7755
4114	F	0.570	0.450	0.150	0.964	0.5310
4115	F	0.605	0.465	0.155	1.1000	0.5470
4117	F	0.640	0.505	0.175	1.318	0.6185
4134	F	0.595	0.455	0.140	0.9140	
4135	F	0.600	0.500	0.170	1.130	
4136	F	0.615	0.495	0.155	1.080	
4139	F	0.635	0.495	0.175	1.235	
4140	F	0.645	0.535	0.190	1.239	
4141	F	0.650	0.505	0.165	1.357	
4143	F	0.655	0.500	0.220	1.359	
4159	F	0.560	0.440	0.135	0.802	
4160	F	0.585	0.475	0.165	1.053	
4161	F	0.585	0.455	0.170	0.994	
4168	F	0.515	0.400	0.125	0.615	
4172	F	0.565	0.450	0.165	0.887	
4175	F	0.625	0.485	0.150	1.094	
1170	•	0.020	0.100	0.100	1.0540	0.0010
	visc	era weight	shell	weight	rings	
2		0.1415		0.2100	9	
6		0.1415		0.3300	20	
7		0.1495		0.2600	16	
9		0.1510		0.3200	19	
10		0.1475		0.2100	14	
13		0.1473		0.2100	10	
14		0.1710		0.2030	10	
17		0.0803		0.1300	10	
Τ1		0.0670		0.1300	10	

22	0.2140	0.2700	12
23	0.2100	0.2000	9
24	0.3010	0.3050	10
25	0.1880	0.3000	11
26	0.2720	0.2850	11
31	0.2805	0.4600	15
33	0.3925	0.4550	19
34	0.4115	0.4900	13
36	0.3075	0.3400	16
37	0.1165	0.1450	8
38	0.2035	0.2600	11
40	0.0910	0.1150	9
41	0.1960	0.2700	14
47	0.1100	0.1500	7
49	0.2135	0.2450	9
53	0.1055	0.1500	10
55	0.1755	0.2200	8
59	0.1300	0.1750	7
62	0.1935	0.2000	10
66	0.1935	0.3200	12
67	0.1933	0.4850	13
68	0.2240	0.1700	10
4058	0.3310	0.4370	10
		0.3500	
4063	0.3205		11
4064	0.3470	0.3050	9
4084	0.2485	0.3100	10
4092	0.4105	0.3855	11
4095	0.1975	0.3500	11
4096	0.3005	0.3900	12
4098	0.3315	0.3550	9
4100	0.3055	0.3700	9
4101	0.3040	0.3860	11
4104	0.4565	0.4750	11
4105	0.3535	0.5385	9
4106	0.4225	0.4800	11
4112	0.3500	0.4525	9
4114	0.1890	0.2090	9
4115	0.2665	0.2585	10
4117	0.3020	0.3315	9
4134	0.2225	0.2710	9
4135	0.2670	0.3350	11
4136	0.1900	0.3200	9
4139	0.3085	0.3470	10
4140	0.2385	0.4240	10
4141	0.2810	0.4300	11
4143	0.3255	0.4050	13
4159	0.1615	0.2590	9

4160	0.2170	0.3000	11
4161	0.2630	0.2845	11
4168	0.1230	0.1765	8
4172	0.2390	0.2490	11
4175	0.2610	0.2960	10

[1307 rows x 9 columns]

In [6]: df_infant = table['sex'] == 'I'
 tableI = table[df_infant]
 tableI

Out[6]:	sex	length	diameter	height	whole weight		\
4	I	0.330	0.255	0.080	0.2050	0.0895	
5	I	0.425	0.300	0.095	0.3515	0.1410	
16	I	0.355	0.280	0.085	0.2905	0.0950	
21	I	0.380	0.275	0.100	0.2255	0.0800	
42	I	0.240	0.175	0.045	0.0700	0.0315	
43	I	0.205	0.150	0.055	0.0420	0.0255	
44	I	0.210	0.150	0.050	0.0420	0.0175	
45	I	0.390	0.295	0.095	0.2030	0.0875	
48	I	0.325	0.245	0.070	0.1610	0.0755	
50	I	0.520	0.410	0.120	0.5950	0.2385	
58	I	0.245	0.190	0.060	0.0860	0.0420	
69	I	0.310	0.235	0.070	0.1510	0.0630	
100	I	0.360	0.265	0.095	0.2315	0.1050	
112	? I	0.435	0.320	0.080	0.3325	0.1485	
121	I	0.385	0.295	0.085	0.2535	0.1030	
124	ı I	0.360	0.280	0.080	0.1755	0.0810	
125	I	0.270	0.195	0.060	0.0730	0.0285	
126	; I	0.375	0.275	0.090	0.2380	0.1075	
127	I	0.385	0.290	0.085	0.2505	0.1120	
133	3 I	0.350	0.260	0.095	0.2110	0.0860	
134	ı I	0.265	0.200	0.065	0.0975	0.0400	
147	I	0.280	0.205	0.080	0.1270	0.0520	
148	3 I	0.175	0.130	0.055	0.0315	0.0105	
149	I	0.170	0.130	0.095	0.0300	0.0130	
174	ı I	0.235	0.160	0.040	0.0480	0.0185	
175	I	0.360	0.260	0.090	0.1785	0.0645	
176	I	0.315	0.210	0.060	0.1250	0.0600	
177	I	0.315	0.245	0.085	0.1435	0.0530	
178		0.225	0.160	0.045	0.0465	0.0250	
193	3 I	0.355	0.275	0.085	0.2200	0.0920	
407		0.550	0.435	0.125	0.7410	0.3480	
408		0.555	0.430	0.125	0.7005	0.3395	
408		0.565	0.465	0.150	1.1815	0.5810	
408	37 I	0.595	0.475	0.155	0.9840	0.4865	

4107	I	0.420	0.305	0.100	0.3415	0.1645
4108	I	0.480	0.350	0.100	0.5190	0.2365
4111	I	0.515	0.400	0.140	0.7165	0.3495
4113	I	0.560	0.420	0.140	0.8370	0.4140
4119	I	0.300	0.215	0.050	0.1185	0.0480
4121	I	0.455	0.350	0.130	0.4725	0.2150
4122	I	0.460	0.365	0.110	0.4495	0.1755
4123	I	0.490	0.375	0.115	0.5570	0.2275
4124	I	0.500	0.385	0.120	0.5160	0.1970
4125	I	0.540	0.415	0.135	0.7090	0.3195
4127	I	0.550	0.445	0.110	0.7935	0.3780
4129	I	0.570	0.425	0.140	0.7655	0.3310
4131	I	0.580	0.425	0.145	0.8300	0.3790
4132	I	0.585	0.470	0.170	0.9850	0.3695
4149	I	0.280	0.215	0.070	0.1240	0.0630
4150	I	0.330	0.230	0.080	0.1400	0.0565
4151	I	0.350	0.250	0.075	0.1695	0.0835
4152	I	0.370	0.280	0.090	0.2180	0.0995
4153	I	0.430	0.315	0.115	0.3840	0.1885
4154	I	0.435	0.330	0.095	0.3930	0.2190
4155	I	0.440	0.350	0.110	0.3805	0.1575
4158	I	0.480	0.355	0.110	0.4495	0.2010
4163	I	0.390	0.310	0.085	0.3440	0.1810
4164	I	0.390	0.290	0.100	0.2845	0.1255
4165	I	0.405	0.300	0.085	0.3035	0.1500
4166	I	0.475	0.365	0.115	0.4990	0.2320
	wie	rara waidh	t shall	weight	rings	

	viscera	weight	shell	weight	rings
4		0.0395		0.0550	7
5		0.0775		0.1200	8
16		0.0395		0.1150	7
21		0.0490		0.0850	10
42		0.0235		0.0200	5
43		0.0150		0.0120	5
44		0.0125		0.0150	4
45		0.0450		0.0750	7
48		0.0255		0.0450	6
50		0.1110		0.1900	8
58		0.0140		0.0250	4
69		0.0405		0.0450	6
100		0.0460		0.0750	7
112		0.0635		0.1050	9
121		0.0575		0.0850	7
124		0.0505		0.0700	6
125		0.0235		0.0300	5
126		0.0545		0.0700	6
127		0.0610		0.0800	8
133		0.0560		0.0680	7

134	0.0205	0.0280	7
147	0.0390	0.0420	9
148	0.0065	0.0125	5
149	0.0080	0.0100	4
174	0.0180	0.0150	5
175	0.0370	0.0750	7
176	0.0375	0.0350	5
177	0.0475	0.0500	8
178	0.0150	0.0150	4
193	0.0600	0.1500	8
 4077	0.1585	0.2060	9
4080	0.1355	0.2095	8
4082	0.2215	0.3095	9
4087	0.1840	0.2755	10
4107	0.0775	0.0860	7
4108	0.1275	0.1260	7
4111	0.1595	0.1785	8
4113	0.2140	0.2000	8
4119	0.0225	0.0420	4
4121	0.0745	0.1500	9
4122	0.1020	0.1500	8
4123	0.1335	0.1765	8
4124	0.1305	0.1650	8
4125	0.1740	0.1850	9
4127	0.1420	0.2600	10
4129	0.1400	0.2400	10
4131	0.1605	0.2575	11
4132	0.2395	0.3150	10
4149	0.0215	0.0300	6
4150	0.0365	0.0460	7
4151	0.0355	0.0410	6
4152	0.0545	0.0615	7
4153	0.0715	0.1100	8
4154	0.0750	0.0885	6
4155	0.0895	0.1150	6
4158	0.0890	0.1400	8
4163	0.0695	0.0790	7
4164	0.0635	0.0810	7
4165	0.0505	0.0880	7
4166	0.0885	0.1560	10

[1342 rows x 9 columns]

```
tableM.plot.scatter('viscera weight', 'rings', s=None, c=None)
tableM.plot.scatter('shell weight', 'rings', s=None, c=None)
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x111b34400>


```
tableF.plot.scatter('height', 'rings', s=None, c=None)
tableF.plot.scatter('whole weight', 'rings', s=None, c=None)
tableF.plot.scatter('viscera weight', 'rings', s=None, c=None)
tableF.plot.scatter('shell weight', 'rings', s=None, c=None)
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x1120dff98>


```
tableI.plot.scatter('height', 'rings', s=None, c=None)
tableI.plot.scatter('whole weight', 'rings', s=None, c=None)
tableI.plot.scatter('viscera weight', 'rings', s=None, c=None)
tableI.plot.scatter('shell weight', 'rings', s=None, c=None)
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x11260add8>

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1129d18d0>

In [11]: tableM.replace(to_replace = [np.inf, -np.inf], value = np.nan)
 tableM = tableM.dropna(axis = 0, how = 'any')

tableM
#np.all(np.isfinite(newpoor1))
#np.any(np.isnan(newpoor1))

0+ [447		a	1	dia	h o = =1- ±	••h o]	abualtad
Out[11]:	0	sex M	1ength 0.455	0.365	neight 0.095	whole weight 0.5140	shucked weight \ 0.2245
	1	M M	0.455	0.365	0.095	0.5140	0.2245
	3		0.350				0.0995
	3 8	M M	0.440	0.365 0.370	0.125	0.5160 0.5095	
					0.125		0.2165
	11	M	0.430	0.350	0.110	0.4060	0.1675
	12	M	0.490	0.380	0.135	0.5415	0.2175
	15	M	0.500	0.400	0.130	0.6645	0.2580
	18	M	0.365	0.295	0.080	0.2555	0.0970
	19	M	0.450	0.320	0.100	0.3810	0.1705
	20	M	0.355	0.280	0.095	0.2455	0.0955
	27	M	0.590	0.445	0.140	0.9310	0.3560
	28	M	0.605	0.475	0.180	0.9365	0.3940
	29	M	0.575	0.425	0.140	0.8635	0.3930
	30	M	0.580	0.470	0.165	0.9975	0.3935
	32	M	0.665	0.525	0.165	1.3380	0.5515
	35	M	0.465	0.355	0.105	0.4795	0.2270
	39	M	0.355	0.290	0.090	0.3275	0.1340
	46	M	0.470	0.370	0.120	0.5795	0.2930
	51	M	0.400	0.320	0.095	0.3030	0.1335
	52	M	0.485	0.360	0.130	0.5415	0.2595
	54	M	0.405	0.310	0.100	0.3850	0.1730
	56	М	0.445	0.350	0.120	0.4425	0.1920
	57	M	0.470	0.385	0.135	0.5895	0.2765
	60	M	0.450	0.345	0.105	0.4115	0.1800
	61	M	0.505	0.405	0.110	0.6250	0.3050
	63	M	0.425	0.325	0.095	0.3785	0.1705
	64	M	0.520	0.400	0.120	0.5800	0.2340
	65 70	M	0.475	0.355	0.120	0.4800	0.2340
	70	M	0.555	0.425	0.130	0.7665	0.2640
	73	M	0.570	0.480	0.175	1.1850	0.4740
	4000					4 4045	
	4099		0.670	0.525	0.180	1.4915	0.7280
	4102		0.680	0.545	0.185	1.6720	0.7075
	4103		0.700	0.545	0.215	1.9125	0.8825
	4109		0.480	0.365	0.130	0.5305	0.2405
	4110		0.510	0.410	0.155	1.2825	0.5690
	4116		0.625	0.480	0.160	1.2415	0.6575
	4118		0.650	0.525	0.185	1.3455	0.5860
	4120		0.350	0.265	0.090	0.1970	0.0730
	4126		0.550	0.420	0.145	0.7385	0.3210
	4128		0.555	0.435	0.145	0.9205	0.4040
	4130		0.580	0.450	0.140	0.8240	0.3465
	4133	M	0.585	0.450	0.150	0.9970	0.4055

4137	M	0.630	0.505	0.155		1.1050	0.4920
4138	М	0.630	0.490	0.155		1.2290	0.5350
4142	М	0.655	0.525	0.180		1.4020	0.6240
4144	М	0.670	0.535	0.190		1.6690	0.7465
4145	M	0.670	0.525	0.200		1.7405	0.6205
4146	M	0.695	0.530	0.210		1.5100	0.6640
4147	M	0.695	0.550	0.195		1.6645	0.7270
4148	М	0.770	0.605	0.175		2.0505	0.8005
4156	М	0.475	0.370	0.110		0.4895	0.2185
4157	М	0.475	0.360	0.140		0.5135	0.2410
4162	М	0.385	0.255	0.100		0.3175	0.1370
4167	М	0.500	0.380	0.125		0.5770	0.2690
4169	М	0.520	0.385	0.165		0.7910	0.3750
4170	М	0.550	0.430	0.130		0.8395	0.3155
4171	М	0.560	0.430	0.155		0.8675	0.4000
4173	М	0.590	0.440	0.135		0.9660	0.4390
4174	М	0.600	0.475	0.205		1.1760	0.5255
4176	М	0.710	0.555	0.195		1.9485	0.9455
	visc	era weight	shell	weight	rings		
0		0.1010		0.1500	15		
1		0.0485		0.0700	7		

_	viscera	•	shell	_	_
0		0.1010		0.1500	15
1		0.0485		0.0700	7
3		0.1140		0.1550	10
8		0.1125		0.1650	9
11		0.0810		0.1350	10
12		0.0950		0.1900	11
15		0.1330		0.2400	12
18		0.0430		0.1000	7
19		0.0750		0.1150	9
20		0.0620		0.0750	11
27		0.2340		0.2800	12
28		0.2190		0.2950	15
29		0.2270		0.2000	11
30		0.2420		0.3300	10
32		0.3575		0.3500	18
35		0.1240		0.1250	8
39		0.0860		0.0900	9
46		0.2270		0.1400	9
51		0.0600		0.1000	7
52		0.0960		0.1600	10
54		0.0915		0.1100	7
56		0.0955		0.1350	8
57		0.1200		0.1700	8
60		0.1125		0.1350	7
61		0.1600		0.1750	9
63		0.0800		0.1000	7
64		0.1315		0.1850	8
65		0.1015		0.1350	8

```
70
                        0.1680
                                        0.2750
                                                   13
         73
                        0.2610
                                        0.3800
                                                   11
         . . .
                                           . . .
         4099
                        0.3430
                                       0.3810
                                                    9
         4102
                        0.3640
                                       0.4800
                                                   11
         4103
                        0.4385
                                        0.5060
                                                   10
         4109
                        0.1270
                                        0.1390
                                                    8
         4110
                        0.2910
                                        0.3795
                                                    9
         4116
                        0.2625
                                       0.2785
                                                    9
         4118
                                                    9
                        0.2780
                                       0.3865
                                                    7
         4120
                        0.0365
                                       0.0770
         4126
                        0.1485
                                       0.2520
                                                   11
                                                    8
         4128
                        0.2275
                                        0.2550
         4130
                                                   10
                        0.1765
                                        0.2630
         4133
                        0.2830
                                        0.2510
                                                   11
         4137
                        0.2260
                                       0.3250
                                                   11
         4138
                        0.2900
                                       0.3350
                                                   11
         4142
                        0.2935
                                       0.3650
                                                   13
         4144
                        0.2935
                                       0.5080
                                                   11
         4145
                        0.2970
                                       0.6570
                                                   11
         4146
                        0.4095
                                        0.3850
                                                   10
         4147
                                                   11
                        0.3600
                                        0.4450
         4148
                        0.5260
                                       0.3550
                                                   11
         4156
                        0.1070
                                                    8
                                       0.1460
         4157
                        0.1045
                                       0.1550
                                                    8
                                                    8
         4162
                        0.0680
                                       0.0920
         4167
                                                    9
                        0.1265
                                       0.1535
         4169
                        0.1800
                                       0.1815
                                                   10
         4170
                                                   10
                        0.1955
                                        0.2405
         4171
                        0.1720
                                        0.2290
                                                    8
         4173
                        0.2145
                                       0.2605
                                                   10
         4174
                        0.2875
                                       0.3080
                                                    9
         4176
                        0.3765
                                       0.4950
                                                   12
         [1528 rows x 9 columns]
In [12]: x = tableM['shell weight'].values[:np.newaxis]
         y = tableM['rings']
         # Reshaping
         x, y = x.reshape(-1,1), y.reshape(-1, 1)
         # Linear Regression Object
         lin_regression = LinearRegression()
         # Fitting linear model to the data
```

lin_regression.fit(x,y)

```
# Get slope of fitted line
        m = lin_regression.coef_
         # Get y-Intercept of the Line
        b = lin_regression.intercept_
         # Get Predictions for original x values
         # you can also get predictions for new data
        predictions = lin_regression.predict(x)
        print (b)
        print (m)
[7.37262799]
[[11.81997505]]
  warnings.warn(mesg, RuntimeWarning)
```

/Users/javier/Envs/data-x/lib/python3.6/site-packages/scipy/linalg/basic.py:1226: RuntimeWarni:

```
In [13]: print("""I ran a few multiple different scatterplots. I was really curious to see how
         I found that the variables that correlated the highest with rings were length and dia
        After running linear regression, I found that regression equation to be rings = 11.82
```

I ran a few multiple different scatterplots. I was really curious to see how the rings of an a I found that the variables that correlated the highest with rings were length and diameter. Th After running linear regression, I found that regression equation to be rings = 11.82*(shell w

```
In [14]: plt.scatter(x, y, color='black')
         a =plt.plot(x, predictions, color='blue',linewidth=3)
         plt.xlabel('shell weight')
         plt.ylabel('rings')
         plt.show()
```



```
In [15]: #draw a scatterplot
         def scatter(table, xcol, ycol, marker_color='blue'):
             #Cleaning missing and invalid data in table
             table.replace(to_replace = [np.inf, -np.inf], value = np.nan)
             table = table.dropna(axis = 0, how ='any')
             #Assigning axes
            x = table[xcol].values[:np.newaxis]
             y = table[ycol]
             # Reshaping
             x, y = x.reshape(-1,1), y.reshape(-1, 1)
            plt.scatter(x, y, color = marker_color)
         #Regress on a scatterplot with xcol and ycol (column names - str) from table
         def scatter_and_regress(table, xcol, ycol, marker_color='blue'):
             #Cleaning missing and invalid data in table
             table.replace(to_replace = [np.inf, -np.inf], value = np.nan)
             table = table.dropna(axis = 0, how ='any')
             #Assigning axes
```

```
x = table[xcol].values[:np.newaxis]
             y = table[ycol]
             # Reshaping
             x, y = x.reshape(-1,1), y.reshape(-1, 1)
             # Linear Regression Object
             lin_regression = LinearRegression()
             # Fitting linear model to the data
             lin_regression.fit(x,y)
             # Get slope of fitted line
             m = lin_regression.coef_
             # Get y-Intercept of the Line
             b = lin_regression.intercept_
             # Get Predictions for original x values
             predictions = lin_regression.predict(x)
             plt.scatter(x, y, color = marker_color)
             plt.plot(x, predictions, color='black',linewidth=3)
             plt.xlabel(xcol)
             plt.ylabel(ycol)
             plt.show()
In [16]: KNN = table.loc[:, ['sex', 'rings', 'whole weight', 'shell weight', 'viscera weight']
         KNN.head(3)
         #reshuffle rows and divide into 2 sets - training and testing sets
Out[16]:
          sex rings whole weight shell weight viscera weight
            M
                   15
                             0.5140
                                             0.15
                                                           0.1010
                    7
                             0.2255
                                             0.07
                                                           0.0485
         1
            Μ
         2
            F
                    9
                             0.6770
                                             0.21
                                                           0.1415
In [17]: def cutoff_and_above(df, column, cutoff_value):
             """For each row, return True if the value in the column is equal to and above the
             classified = (df[column]>=cutoff_value)
             #Showing number of True (equal and above) and False values
             print(classified.value_counts())
             return classified
         def color_code(bool_array):
             """Return a color-coded array: 'Blue' for True values; 'Red' for False"""
```

```
color = bool_array.apply(lambda row: 'Blue' if row == 'M' else 'Red' if row == 'F
             return color
         def scatter_and_colorcode(table, xcol, ycol, color_col):
             """Draw a scatterplot w.r.t. Color column in table"""
             color = table[color_col]
             scatter(table, xcol, ycol, color)
         def distance_two_features(df, x_feature, y_feature):
             x1-x2, y1-y2
             """Compute the distance between x_feature and y_feature"""
             x = df[x_feature]
             y = df[y_feature]
             return np.sqrt(- rotem(x_feature))**2 + (row0.item(y_feature)-row1.item(y_feature)
In [18]: KNN['Color'] = color_code(table['sex'])
         KNN.head(3)
Out[18]:
           sex rings whole weight shell weight viscera weight Color
                             0.5140
                                             0.15
                                                            0.1010 Blue
                   15
                    7
                             0.2255
                                             0.07
                                                            0.0485 Blue
         1
             Μ
         2
             F
                    9
                             0.6770
                                             0.21
                                                           0.1415
                                                                    Red
In [19]: scatter_and_colorcode(KNN, 'rings','whole weight', 'Color')
        plt.xlim(0,30)
```


Out[20]: (0, 30)

Out[21]: (0, 30)

Out[22]: (0, 1.1)

Out[23]: (0, 0.8)

Out[24]: (0, 30)

In [25]: print('The second model that I use is K nearest neighbors. I wanted to see how viscers. The second model that I use is K nearest neighbors. I wanted to see how viscera weight specific

```
In [26]: KNN = tableF.loc[:, ['rings', 'viscera weight']]
         #Cleaning missing and invalid data in table
         KNN.replace(to_replace = [np.inf, -np.inf], value = np.nan)
         KNN = table.dropna(axis = 0, how ='any')
         #Sourcecode: https://www.dataquest.io/blog/k-nearest-neighbors-in-python/
         import random
         import math
         from numpy.random import permutation
         # Randomly shuffle the index of KNN.
         random_indices = permutation(KNN.index)
         # Divide the data into half for training and testing set
         test_cutoff = math.floor(len(KNN)/2)
         # Generate the test set by taking the first 1/2 of the randomly shuffled indices.
         test = KNN.loc[random_indices[1:test_cutoff]]
         # Generate the train set with the rest of the data.
         train = KNN.loc[random_indices[test_cutoff:]]
         # The columns that we will be making predictions with.
         x_columns = ['viscera weight']
         # The column that we want to predict.
```

```
y_column = ['rings']
         from sklearn.neighbors import KNeighborsRegressor
         # Create the knn model.
         # Look at the five closest neighbors.
         knn = KNeighborsRegressor(n_neighbors=5)
         # Fit the model on the training data.
         knn.fit(train[x_columns], train[y_column])
         # Make point predictions on the test set using the fit model.
         predictions = knn.predict(test[x_columns])
         # Get the actual values for the test set.
         actual = test[y_column]
         Actual_vs Predictions = {'Actual': actual, 'Predicted': predictions}
         print(Actual_vs_Predictions)
         # Compute the mean squared error of our predictions.
         mse = (((predictions - actual) ** 2).sum()) / len(predictions)
         print(mse)
{'Actual':
                 rings
2535
         11
821
          6
1008
         10
1729
         11
3833
         11
4167
          9
3739
          9
1755
          7
1915
         11
3304
         16
304
         10
          7
926
2025
         10
155
         10
2521
          9
361
         12
67
         13
3591
          9
         10
1816
4056
         11
2140
         10
3256
         12
2246
         10
170
         14
2812
          5
839
          9
2317
         13
```

```
806
          6
4084
         10
1695
          8
. . .
        . . .
405
         12
2556
          6
15
         12
478
         21
475
         17
2600
         10
856
          9
2799
         10
292
         15
2240
         12
2561
          6
          9
1900
          9
2286
          9
1601
3136
         11
2247
          9
2936
         11
2379
         10
3618
         11
693
          9
3313
         11
573
         17
3892
         13
2400
         13
1907
          9
3813
          8
         12
3891
1598
          9
          8
2644
3763
         11
[2087 rows x 1 columns], 'Predicted': array([[10.6],
       [7.8],
       [ 9.4],
       ...,
       [7.6],
       [10.],
       [10.8]])}
         8.399655
rings
dtype: float64
```