

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PC

(51) Classification internationale des brevets 6:

! (11) Numéro de publication internationale:

WO 95/0743

G01S 13/93, 13/87

A1:

(43) Date de publication internationale:

16 mars 1995 (16.03.9.

(21) Numéro de la demande internationale: PCT/FR94/01043 | (81) Etats désignés: US. brevet européen (AT. BE. CH. DE. DI

(22) Date de dépôt international:

6 septembre 1994 (06.09.94)

1

(30) Données relatives à la priorité:

93/10777

10 septembre 1993 (10.09.93) FR

Publiée

Avec rapport de recherche internationale.

ES. FR. GB. GR. IE. IT, LU. MC. NL. PT. SE).

(71) Déposant (pour tous les Etats désignés sauf US): FRAM-ATOME [FR/FR]; Tour Fiat, 1, place de la Coupole, F-92400 Courbevoie (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): MERCIER, Omer [FR/FR]; 4, rue Antonin-Poncet, F-69470 Genas (FR). TROUBLE, Michel [FR/FR]; 18, rue des Gaillons, F-92210 Saint-Cloud (FR).

(74) Mandataire: BLOCH & ASSOCIES; 2, square de l'Avenuedu-Bois, F-75116 Paris (FR). 9.9

(54) Title: METHOD AND DEVICE FOR DETECTING AND LOCATING OBSTACLES IN A VEHICLE ENVIRONMENT

(54) Titre: PROCEDE ET DISPOSITIF POUR LA DETECTION ET LA LOCALISATION D'OBSTACLES DANS L'ENVIRONNEMENT D'UN VEHICULE

(57) Abstract

The invention relates to a method for detecting and locating obstacles in a vehicle environment. To this effect, it comprises the steps of emitting signals in the direction of said environment from a plurality of radars (2) on the vehicle, deducing from the echo signals received the probability of occupancy, by an obstacle, of a set of elementary cells (9) of said environment, and combining the probabilities relative to each of said cells.

(57) Abrégé

L'invention concerne un procédé de détection et de localisation d'obstacles dans l'environnement d'un véhicule. A cet effet, il comprend les étapes consistant à émettre des signaux en direction dudit environnement à partir d'une pluralité de radars (2) disposés sur le véhicule, à déduire des signaux reçus en écho les probabilités d'occupation par un obstacle d'un ensemble de cellules élémentaires (9) dudit environnement, et à fusionner les probabilités relatives à chacune desdites cellules.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	GB	Royaume-Uni	MR	Mauritanie
ΑÜ	Australie	GE	Géorgie	MW	Malawi
BB	Barbade	GN	Guinée	NE	Niger
BE	Belgique	GR	Grèce	NL	Pays-Bas
BF	Burkina Faso	HU	Hongrie	NO	Norvège
BG	Bulgariz	Œ	Iriande	NZ	Nouvelle-Zélande
BJ	Bénin	IT	Italie	PL	Pologne
BR	Brésil	JР	Japon	PT	Portugal
BY	Bélarus	KE	Kenya	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République centrafricaine	KP	République populaire démocratique	SD	Soudan
CG	Congo		de Corée	SE	Suède
CH	Suisse	KR	République de Corée	SI	Slovénie
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovaquie
CM	Cameroun	LI	Liechtenstein	SN	Sénégai
CN	Chine	LK	Sri Lanka	TD	Tcbad
CS	Tehécoslovaquie	LU	Lixenbourg	TG	Togo
CZ.	République tchèque	LV	Lettonie	TJ	Tadjikistan
DE	Allemagne	MC	Мопасо	TT	Trinité-et-Tobago
DK	Danemark	MD	République de Moldova	ÜA	Ukraine
ES	Espagne	MG	Madagascar	US	Etata-Uma d'Amérique
FI	Finlande	ML	Maii	UZ	Ouzh@cistan
FR	Prance	MIN	Mongolie	VN	Vict Nam
GA	Gabon				

Procédé et dispositif pour la détection et la localisation d'obstacles dans l'environnement d'un véhicule

La présente invention concerne un procédé et un dispositif pour la détection et la localisation d'obstacles situés dans l'environnement d'un véhicule arrêté ou en mouvement.

5

10

15

20

Une fonction importante de la robotique mobile concerne la détection des objets ou obstacles situés au devant ou sur le côté du véhicule porteur, dans la mesure où ceux-ci peuvent entraver son mouvement et doivent être contournés, ou nécessitent son arrêt complet par souci de sécurité ou, au contraire, sont suffisamment distants ou dans une direction telle que le véhicule peut continuer son chemin sans écart.

Un aspect secondaire de cette détection consiste à exploiter une connaissance a priori du positionnement (absolu) de l'objet détecté par rapport à une carte ou un site plus vaste, pour qu'en détectant cet objet et en mesurant ses coordonnées (site et distance) on puisse en retirer une information sur la position absolue du véhicule lui-même.

Un moyen commode pour détecter des objets situés dans la périphérie d'un véhicule et permettant d'en mesurer les coordonnées consiste à utiliser des capteurs à ultra-sons.

Selon cette technologie bien éprouvée, une onde acoustique est émise périodiquement et, se trouvant réfléchie par les objets constituant des obstacles à sa propagation, revient vers le capteur après un temps de retard, lequel dépend directement de la distance de l'objet ainsi détecté.

Pour assurer la détection périphérique d'un véhicule, il convient de disposer un nombre suffisant de tels capteurs sur son pourtour en fonction de l'angle d'ouverture du capteur élémentaire. Ce nombre est d'autant plus élevé que les capteurs auront un lobe de détection étroit.

L'utilisation de ces capteurs fournit une information de distance par rapport à un obstacle, mais l'information d'orientation angulaire est d'autant moins bonne

. 2

que les capteurs sont à lobe large. En effet, dans la mesure où un capteur voit un obstacle donné non pas en un point de l'espace mais de manière ambigûe en tous points situés à égale distance, si l'on associe plusieurs capteurs pour assurer la couverture du périmètre du véhicule, l'indétermination de la position angulaire des obstacles détectés peut être excessivement grande.

A contrario, une détection plus fine exige un nombre supérieur de capteurs élémentaires, à lobes plus étroits, ce qui accroît le coût global de la détection.

Un autre inconvénient de l'utilisation de capteurs à ultra-sons est leur très grande sensibilité aux perturbations acoustiques extérieures, aux anomalies de réflexion sur certains obstacles, ainsi que la sensibilité au vent des ondes sonores, l'écho pouvant même être soufflé et ne jamais revenir à sa source.

La présente invention vise à pallier ces inconvénients.

A cet effet, l'invention a tout d'abord pour objet un procédé de détection et de localisation des obstacles situés dans l'environnement d'un véhicule, caractérisé par le fait qu'il comprend les étapes consistant à émettre des signaux en direction dudit environnement à partir d'une pluralité de radars disposés sur le véhicule, à déduire des signaux reçus en écho les probabilités d'occupation par un obstacle d'un ensemble de cellules élémentaires dudit environnement, et à fusionner les probabilités relatives à chacune desdites cellules.

25

30

35

20

5

10

Des algorithmes de fusion d'informations sont déjà connus dans la technique. Toutefois le fait de fusionner des probabilités d'occupation de cellules élémentaires, ces probabilités étant elles-mêmes obtenues à partir de signaux radar, peut donner, avec la technique selon l'invention, des résultats tout à fait surprenants par leur précision, permettant même la cartographie des obstacles détectés et rendant donc possible leur évitement ainsi que la localisation du véhicule lui-même, du fait de la grande qualité de la modélisation de l'environnement ainsi effectuée.

Par ailleurs, contrairement aux capteurs à ultra-sons, les radars peuvent être utilisés en extérieur et par tout temps.

. 3

Enfin on a pu constater que l'invention permet même d'utiliser des radars de performance individuelle relativement médiocre sans altérer les résultats de la modélisation globale.

5

Dans un mode de réalisation de l'invention, la fusion est effectuée sur les valeurs des probabilités fournies par une pluralité de radars, et notamment deux radars.

10

Dans ce cas, la fusion est effectuée de manière spatiale de manière à associer des données retournées simultanément par un sous-ensemble de radars ayant détecté un même obstacle sous des angles différents.

15

Dans un autre mode de réalisation, la fusion est effectuée sur la valeur de la probabilité fournie par un radar et la valeur de la probabilité antérieurement connue pour la même cellule.

20

La fusion est dans ce cas effectuée de manière temporelle, le même obstacle étant vu successivement par un même capteur qui aura avancé en même temps que le véhicule. Dans ce cas, l'opération de fusion est appliquée à la valeur déjà affectée à la cellule.

25

On peut déduire des signaux reçus en écho une information de distance et une information angulaire sur les obstacles et déterminer lesdites probabilités d'occupation à partir de ces informations.

De préférence on prévoit une étape de seuillage des résultats de la fusion de manière à obtenir une carte dépouillée des artefacts divers pouvant provenir de réflexion spéculaires ou multiples, des ondes radars émises.

30

Selon un mode de réalisation particulière de l'invention, le signal émis par les radars est modulé en fréquence, le signal reçu en écho est mélangé à une fraction du signal émis pour, après élimination de la fréquence porteuse, former un signal de battement, et les impulsions de battement sont comptées pendant un intervalle prédéterminé pour fournir la distance d'un obstacle.

_ 4

En variante, cette distance peut être fournie par transformation de Fourrier.

Avantageusement, l'émission de chaque radar dure un temps limité et la logique de répétition peut même être codée en vue de l'identification de la source.

L'invention a également pour objet un dispositif pour la modélisation de l'environnement d'un véhicule, caractérisée par le fait qu'il comprend une pluralité de radars montés sur le véhicule et une unité de traitement agencée pour fusionner les données fournies par les radars.

Grâce à l'opération de fusion, on peut sans inconvénient choisir des radars à lobe large, donc de performance moyenne et de coût peu élevé.

On observera que les radars de ce type, notamment les radars Doppler courants, sont généralement utilisés en mesure de vitesse alors qu'ici, c'est la distance qui est mesurée à titre principal, la mesure de vitesse n'étant éventuellement utilisée qu'à titre accessoire. De surcroît, alors que les radars utilisés en vue de mesures de distances sont généralement des radars fonctionnant en impulsions, on utilise ici de préférence des radars à émission continue et fonctionnant en modulation de fréquence.

On décrira maintenant à titre d'exemple non limitatif un mode de réalisation particulier de l'invention, en référence aux dessins schématiques annexés dans lesquels :

- la figure 1 est une vue schématique de dessus d'un véhicule muni des moyens de l'invention,
- la figure 2 est un diagramme fonctionnel de ces moyens,
 - la figure 3 illustre les signaux émis par les radars,
 - la figure 4 représente la modélisation de l'environnement du véhicule,

25

5

5

10

15

20

25

30

- la figure 5 illustre la fonction de répartition des probabilités d'occupation d'une cellule par un obstacle en fonction de la distance au foyer d'une antenne et
- la figure 6 illustre la fonction de répartition des probabilités d'occupation de cette cellule en fonction de l'écart angulaire entre sa direction et l'axe de l'antenne.

La figure 1 représente un véhicule automatique muni d'une plate-forme 1 sur laquelle sont montés une pluralité de radars 2, par exemple une vingtaine. Les radars 2 sont ici des radars à lobe large, c'est-à-dire d'angle d'ouverture 20 typiquement compris entre 15° et et 120°. On rappelle qu'un angle 20 important est recherché pour obtenir une bonne couverture périphérique autour du véhicule avec un nombre de capteurs aussi réduit que possible.

Les radars 2 sont ici des radars FMCW à modulation de fréquence et à émission continue ou par fenêtre temporelle.

Les radars 2 sont placés à la périphérie du véhicule de manière à obtenir une vision aussi complète que désirée de son environnement. La finesse de la couverture de détection et de la modélisation en général, dépend directement du nombre de radars utilisés dont les lobes individuels peuvent se rejoindre arbitrairement comme cela est repésenté vers l'avant (flèche 3) et le côté du véhicule.

On voit sur la figure 2 trois des antennes radars 2a, 2b et 2c. Chacune de ces antennes est reliée par l'intermédiaire d'un circuit d'inteface 4a, 4b, 4c respectivement, à une unité 5 susceptible d'élaborer les signaux de déclenchement Sa, Sb et Sc respectivement des radars. En variante, les signaux de déclenchement peuvent être communs à tous les radars.

Les signaux Sa, Sb, Sc sont modulés en fréquence comme représenté à la figure 3. Une fréquence porteuse Fp est modulée par une onde en dent de scie de fréquence Δf . Cette génération de fréquence peut être assurée au niveau de l'unité 5 par une diode oscillatrice GUNN.

5

10

15

20

25

30

Optionnellement, pour chaque signal Sa, Sb, Sc, l'émission modulée dure un temps limité D. On facilite ainsi la différenciation des signaux reçus ainsi que l'extraction des informations recherchées. Par ailleurs, en codant la logique de répétition des émissions, c'est-à-dire la durée T sur la figure 3, par exemple selon un modèle pseudo-aléatoire, il est possible de personnaliser chacune des émissions. On peut ainsi en particulier faire évoluer plusieurs véhicules dans le même environnement.

Le signal reçu en retour par chaque antenne 2a, 2b, 2c est traité dans une unité de traitement analogique 6a, 6b, 6c respectivement.

Le signal reçu est déphasé par rapport au signal émis. Par mélange dans l'unité 6 correspondante avec une fraction du signal émis, après élimination de la fréquence porteuse, un signal de battement à une fréquence type de l'ordre de 1 kHz est obtenu.

Le signal est tout d'abord filtré pour éliminer les hautes fréquences, correspondant aux obstacles les plus éloignés. On ne retient ainsi que le signal rétrodiffusé par le premier obstacle rencontré, qui est ensuite traité par transformée de Fourrier.

Par ailleurs, la comparaison de la fréquence de l'onde porteuse rétrodiffusée et de celle de l'onde porteuse du signal émis donne la fréquence Doppler F_d qui est proportionnelle à la vitesse de rapprochement ou d'éloignement du véhicule de l'obstacle détecté, selon la relation :

$$v = 1/2 \lambda F_d$$

où $\lambda = c/F$ (vitesse de propagation/fréquence d'émission)

L'information de vitesse n'est pas nécessaire à la mise en oeuvre de l'invention. Sa disponibilité constitue néanmoins un avantage dans les applications.

Les informations de distance et vitesse numérisées sont fournies par les unités de traitement analogiques 6a, 6b, 6c au processeur numérique 7.

7

Le processeur 7 est constitué pour l'essentiel d'une unité de calcul susceptible d'accéder à une mémoire 8.

A chaque élément de la mémoire 8 est associée une cellule élémentaire 9 de l'environnement du véhicule. Le contenu de chacun de ses éléments de mémoire représente la probabilité pour qu'une cellule particulière, repérée par son site φ et sa distance d par rapport au véhicule, renferme un obstacle.

La figure 4 représente 2 radars 11 et 12 ayant chacun détecté un obstacle, le premier à la distance d_1 et le second à la distance d_2 . Par convention, on décide que la probabilité d'occupation d'une cellule par un obstacle est comprise entre -1 (la cellule est certainement non occupée) et +1 (la cellule est certainement occupée), la probabilité p = 0 correspondant à l'incertitude.

15

20

25

10

Connaissant la position du foyer de chaque antenne ainsi que son axe de visée, on affecte à chaque cellule une probabilité d'occupation fonction de la distance à laquelle un obstacle a été détecté, de la distance de cette cellule au foyer de l'antenne et de l'écart angulaire entre l'axe de visée de l'antenne et la direction de la cellule. A titre d'exemple, la figure 5 représente la fonction de répartition des probabilités d'occupation d'une cellule en fonction de sa distance au foyer de l'antenne du radar 11, et la figure 6 la fonction de répartition des probabilités en fonction de l'écart angulaire α entre l'axe de cette antenne et la direction considérée. La probabilité maximale est bien entendu rencontrée pour la distance d₁ et dans la direction de visé de l'antenne.

30

Les différentes zones de probabilités sont portées sur les figures 4 à 6. La zone B de probabilité positive sur la figure 5 correspond à deux bandes annulaires de part et d'autre du cercle de rayon d₁. On vérifie par ailleurs sur la figure 5 que seul le premier obstacle rencontré est pris en compte puisqu'audelà d'une certaine distance (zone D) fonction de d₁ aucune information n'est apportée par la mesure. De même sur la figure 6, aucune information n'est apportée par la mesure en dehors du lobe d'émission (zone A).

. 3

Les niveaux possibles de quantification entre les valeurs -1 et +1 dépendent des performances du matériel de calcul utilisé, la performance globale de la représentation de l'environnement étant d'autant meilleure que ces niveaux sont plus nombreux.

5

Lorsque l'on a de cette manière affecté à une cellule donnée, par la mesure effectuée à l'aide du radar 11, une probabilité p1 d'occupation de cette cellule par un obstacle et, par la mesure effectuée à l'aide du radar 12, une probabilité p2, on met en oeuvre l'algorithme de fusion suivant :

10

- si
$$p1 > 0$$
 et $p2 > 0$.

$$F(p1, p2) = p1 + p2 - p1.p2$$

 $-\sin p1 < 0 \text{ et } p2 > 0$

$$F(p1,p2) = p1 + p2 + p1.p2$$

 $- \sin p1 < 0 \text{ et } p2 < 0$

20

$$p1 + p2$$

$$F(p1,p2) = \underline{\qquad}$$

$$1 - Min (p1,p2)$$

25

Cet algorithme peut être mis en oeuvre de la façon décrite ci-dessus, c'est-à-dire spacialement, en fusionnant les informations de probabilité provenant de deux radars, ou encore de manière temporelle, en utilisant l'information de probabilité provenant d'un seul radar et en la fusionnant avec la probabilité déjà présente pour la cellule considérée dans la mémoire 8.

30

Les probabilités d'occupation de l'espace s'expriment continument entre -1 (cellule certainement vide) et +1 (cellule certainement occupée). On réalise ensuite un seuillage des résultats de la fusion brute de manière à obtenir une carte de l'environnement du véhicule sur laquelle sont portés les obstacles.

15

On peut d'ailleurs améliorer la représentation de cette carte en lui faisant subir une opération morphologique de type "fermeture" (dilatation - érosion), connue dans le domaine du traitement d'image.

- La carte ainsi obtenue fournit ainsi une information précise sur l'environnement du véhicule et permet :
 - son évolution avec évitement éventuel d'obstacles ;
- sa relocalisation par comparaison entre les emplacements mesurés des obstacles et une connaissance a priori de ces obstacles.

On peut par ailleurs envisager d'autres systèmes émetteurs-récepteurs de signaux que le radar, par exemple de télémètres laser ou infrarouge ou des sonars.

1/4

FIG.1

2/4

INTERNATIONAL SEARCH REPORT

Inter and Application No

PCT/FR 94/01043

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 G01S13/93 G01S13 G01S13/93 G01S13/87 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 G01S Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ' Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO, A, 89 06808 (PAOLETTI PAOLO) 27 July Υ 1,3,4,8, 1989 6,7 see the whole document Y IECON 91, INTERNATIONAL CONFERENCE ON 1,3,4,8, INDUSTRIAL ELECTRONICS, vol.2, 28 October 1991, KOBE, JAPAN pages 1133 - 1137, XP313420 PUENTE ET AL. 'Analysis of Data Fusion Methods in Certainty Grids Application to Collision Danger Monitoring' 2 Á see page 1133 X Further documents are listed in the continuation of box C. X Patent family members are listed in annex. * Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-'O' document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 2 8. 11. 94 16 November 1994 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NI. 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Zaccà, F Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Inter aal Application No PCT/FR 94/01043

		PCT/FR 94	/01043
	GUAUON DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		
integory *	Chaum of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	ARTIFICIAL INTELLIGENCE IN REAL-TIME CONTROL. PROCEEDINGSOF THE IFAC WORKSHOP, 19 September 1989, SHENYANG, CHINA pages 19 - 24 C.J. HARRIS 'distributed estimation, inferencing and multi-sensor data fusion for real time supervisory control'		
		-	
	•		
	. •		
			·

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter inal Application No.
PCT/FR 94/01043

Palent document cited in search report	Publication date	Patent memb		Publication date	
WO-A-8906808	27-07-89	AU-A- EP-A- JP-T- US-A-	2946989 0396611 3502363 5045856	11-08-89 14-11-90 30-05-91 03-09-91	

RAPPORT DE RECHERCHE INTERNATIONALE

Dcm. Internationale No PCT/FR 94/01043

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 G01\$13/93 G01\$13/9 G01S13/87

Scion la classification internationale des brevets (CIB) ou à la fois seton la classification naumale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultee (système de classification suivi des symboles de classement) CIB 6 G01S

Documentation consultee autre que la documentation minimale dans la mesure ou ces documents relevent des domaines sur lesquels à porte la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est realisable, termes de recherche uulisės)

C. DOCUM	MENTS CONSIDERES COMME PERTINENTS	
Categorie *	Identification des documents ettès, avec, le cas échéant, l'indication des passages pertinents	no, des revendications visces
Υ	WO,A,89 06808 (PAOLETTI PAOLO) 27 Juillet 1989	1,3,4,8,
A	voir le document en entier	6,7
Y	IECON 91, INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, vol.2, 28 Octobre 1991, KOBE, JAPAN pages 1133 - 1137, XP313420 PUENTE ET AL. 'Analysis of Data Fusion Methods in Certainty Grids Application to Collision Danger Monitoring' voir page 1133	1,3,4,8,
	-/ ·	

Voir la suite du cadre C pour la fin de la liste des documents X

Les documents de familles de hrevets sont indiqués en annexe X

- Catégories speciales de documents cités:
- "A" document définissant l'état général de la technique, non considere comme paruculierement pertinent
- "E" document antèneur, mais publié à la date de dépôt international ou après cette date
- document pouvant jeter un doute sur une revendication de prionité du cité pour déterminer la date de publicauon d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- document public avant la date de dépôt international, mais postèrieurement à la date de priorité revendiquée
- T' document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique perunent, mais cité pour comprendre le principe ou la théone consutuant la base de l'invention
- "X" document particulièrement pertunent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

Date d'expédition du present rapport de recherche internationale

- "Y" document particulièrement perunent l'invention revendiquée ne peut être considérée comme impliquant une activité inventive forsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant evidente pour une personne du metter
- "&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale à été effectivement achevee

2 8. **11. 94**

16 Novembre 1994

1

Fonctionnaire autorise

Nom et adresse postale de l'administration chargée de la recherche internationale

Zaccà, F

Office Europeen des Brevets, P.B. 5818 Patentiaan 2 NI. - 2280 11V Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo ni, Fax (+ 31-70) 340-3016

Formulaire PCT/ISA/210 (deuxième feuille) (juillet 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

(suite) D	OCUMENTS CONSIDERES COMM	E PERTINENTS	PCT/FR 9		
alègone *		ec, le cas echeant. I indication des passages pertiner	าเร	no. des revendications visces	
<u> </u>	The state of the s				
	ARTIFICIAL INTELLIGENCE IN REAL-TIME CONTROL. PROCEEDINGSOF THE IFAC WORKSHOP, 19 Septembre 1989, SHENYANG, CHINA pages 19 - 24 C.J. HARRIS 'distributed estimation, inferencing and multi-sensor data fusion for real time supervisory control'				
	, .				
1					
				}	
İ					
1		• .			
		•			
1					
	•				
		•			
		·	;		
1					
1					
1					
l					
			:		

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relaufs aux membres de familles de brevets

Dem Internationale No PCT/FR 94/01043

Document brevet cité au rapport de recherche	Date de publication	Membre famille de		Date de publication
WO-A-8906808	27-07-89	AU-A- EP-A- JP-T- US-A-	2946989 0396611 3502363 5045856	11-08-89 14-11-90 30-05-91 03-09-91

		÷ 11		•
·				
	•			
				•
				•
	•			
				•
•				•
		• .		
		·		
			•	
•				
-				