Теория категорий Категории предпучков

Валерий Исаев

07 сентября 2015 г.

План лекции

Нот-функторы

Лемма Йонеды

Категории предпучков

Примеры

Категория графов

Категория глобулярных множеств

Определение

ightharpoonup Пусть A — объект некоторой категории ${f C}$. Тогда существуют функторы

$$Hom_{\mathbf{C}}(A,-):\mathbf{C}\to\mathbf{Set}$$

$$Hom_{\mathbf{C}}(-,A):\mathbf{C}^{op}\to\mathbf{Set}$$

- На объектах они действуют следующим образом: $Hom_{\mathbf{C}}(A,-)(B) = Hom_{\mathbf{C}}(A,B)$ и $Hom_{\mathbf{C}}(-,A)(B) = Hom_{\mathbf{C}}(B,A).$
- На морфизмах они действуют следующим образом: $Hom_{\mathbf{C}}(A,-)(f)=g\mapsto f\circ g$ in $Hom_{\mathbf{C}}(-,A)(f)=g\mapsto g\circ f$.
- Эти функторы называются (ковариантным и контравариантным) Нот-функторами.

Определение (ко)пределов через Нот-функторы

- Существует определение (ко)пределов через Hom-функторы и (ко)пределы в **Set**.
- ▶ Если $D: J \rightarrow \mathbf{C}$ диаграмма и L объект \mathbf{C} , то пусть $Conus_D(L) = lim_{i \in J} Hom_{\mathbf{C}}(L, D(j))$ – множество конусов диаграммы D с вершиной L.
- ightharpoonup Если C конус диаграммы D, то существует естественное преобразование α_X : $Hom_{\mathbb{C}}(X,L) \to Conus_D(X)$, определяемое как $\alpha_X(f)_i = C_i \circ f$.
- lacktriangle Конус C является пределом тогда и только тогда, когда lphaестественный изоморфизм.
- ightharpoonup Отсюда следует, что Hom(X, -) сохраняет пределы.

Пример

- ▶ Например, пусть J дискретная категория на $\{1,2\}$, $D(j)=A_j$.
- ▶ Тогда L вместе с функиями $\pi_j: L \to A_j$ является произведением A_1 и A_2 тогда и только тогда, когда функции $Hom(X,L) \to Hom(X,A_1) \times Hom(X,A_2)$, порождаемые композицией с проекциями являются биекциями для любого X.
- ▶ Аналогичные утверждения верны и для $Hom(-,X): \mathbf{C}^{op} \to \mathbf{Set}.$ Например, он сохраняет пределы.
- ▶ Действительно, $Hom_{\mathbf{C}}(A \coprod B, X) \to Hom_{\mathbf{C}}(A, X) \times Hom_{\mathbf{C}}(B, X)$ является биекцией.

Приложение

- ▶ Докажем, что правый сопряженный функтор $G: \mathbf{D} \to \mathbf{C}$ сохраняет пределы.
- ▶ Пусть F левый сопряженный к $G,\ D:J o {f D}$ диаграмма в ${f D}$ и L ее предел. Тогда

$$Hom(X, G(L)) \simeq$$
 $Hom(F(X), L) \simeq$
 $lim_{j \in J} Hom(F(X), D(j)) \simeq$
 $lim_{i \in J} Hom(X, GD(j)).$

План лекции

Нот-функторы

Лемма Йонеды

Категории предпучков

Примеры
Категория графов
Категория глобулярных множеств

Лемма Йонеды

Lemma

Пусть а – объект категории **C** и $F: \mathbf{C}^{op} \to \mathbf{Set}$ – некоторый функтор. Тогда существует биекция $Hom_{\mathbf{Set}} \mathbf{c}^{op} (Hom_{\mathbf{C}}(-,a),F) \simeq F(a)$ естественная по a.

Доказательство.

Если $\alpha: Hom_{\mathbf{C}}(-,a) \to F$, то определим $T(\alpha) = \alpha_a(id_a) \in F(a)$. Если $x \in F(a)$, то определим $S(x): Hom_{\mathbf{C}}(-,a) \to F$ как $S(x)_b(f) = F(f)(x)$. Естественность S(x) следует из того факта, что F сохраняет композиции.

Лемма Йонеды

Доказательство.

Нужно проверить, что T и S взаимообратны. Пусть $x \in F(a)$, тогда $T(S(x)) = S(x)_a(id_a) = F(id_a)(x) = x$. Пусть $\alpha: Hom_{\mathbf{C}}(-,a) \to F$. Тогда $S(T(\alpha))_b(f) = F(f)(T(\alpha)) = F(f)(\alpha_a(id_a)) = \alpha_b(f)$. Последнее равенство следует из естественности α .

Осталось проверить естественность по a. Ее достаточно проверить для S. Если $g: a \to c$ и $x \in F(c)$, то нужно проверить, что $S_c(F(g)(x))_b(f) = S_a(x)_b(g \circ f)$. Это следует непосредственно из определения S.

Вложение Йонеды

lacktriangle Для любой категории f C функтор ${\it Hom}_{f C}(-,-):{f C} o{f Set}^{{f C}^{op}}$ является полным и строгим.

Категории предпучков

- Действительно, в лемме Йонеды достаточно взять в качестве F функтор $Hom_{\mathbf{C}}(-,b)$.
- Этот функтор называется вложением Йонеды и обозначается $\mathbf{y}: \mathbf{C} \to \mathbf{Set}^{\mathbf{C}^{op}}$.
- ightharpoonup Для того, чтобы проверить, что объекты a и b категории ${f C}$ изоморфны, достаточно проверить, что $\mathbf{y}a \simeq \mathbf{y}b$.
- ightharpoonup Если f:a o b, то f является изоморфизмом тогда и только тогда, когда для любого c композиция с f задает биекцию на множествах $Hom_{\mathbb{C}}(c,a)$ и $Hom_{\mathbb{C}}(c,b)$.

Пример

- В качестве примера использования этого факта покажем, что в декартово замкнутой категории верно $a^{b \coprod c} \simeq a^b \times a^c$.
- Действительно,

$$Hom(x, a^{b \coprod c}) \simeq Hom(b \coprod c, a^x) \simeq Hom(b, a^x) \times Hom(c, a^x) \simeq Hom(x, a^b) \times Hom(x, a^c) \simeq Hom(x, a^b \times a^c).$$

Ко- лемма Йонеды

- Интуитивно, ко- лемма Йонеды говорит, что произвольный функтор $P: \mathbf{C}^{op} \to \mathbf{Set}$ является копределом функторов вида **у**а.
- \triangleright Объекты категории J_P это пары (a, x), где a объект \mathbf{C} , $x \in P(a)$.
- lacktriangle Морфизмы между (a,x) и (b,y) это морфизмы f:a o bкатегории **C**, такие, что P(f)(y) = x.
- ightharpoons Диаграмма $D_P:J_P o {f Set}^{{f C}^{op}}$ каждому (a,x) сопоставляет ya.
- ▶ Ко- лемма Йонеды утверждает, что Р является копределом D_P .

Ко- лемма Йонеды

Доказательство.

По лемме Йонеды достаточно проверить, что $Hom(P,-)\simeq Hom(colim\ D_P,-)$. У нас есть следующая последовательность биекций.

$$Hom(colim_{(a,x)\in J}(\mathbf{y}a), R) \simeq$$

 $lim_{(a,x)\in J}Hom(\mathbf{y}a, R) \simeq$
 $lim_{(a,x)\in J}R_a.$

Ко- лемма Йонеды

Доказательство.

Нужно проверить, что $Hom(P,R)\simeq lim_{(a,x)\in J}R_a$, и эта биекция естественна по R.

Но элементы множества Hom(P,R) – это естественные преобразования, то есть функции, которые каждому $a \in Ob(\mathbf{C})$ и $x \in P_a$ сопоставляют элемент R_a и удовлетворяют условию естественности.

С другой стороны, множество $\lim_{(a,x)\in J}R_a$ состоит из таких же функций α , удовлетворяющих условию, что для любого $f:a\to b$ если P(f)(y)=x, то $\alpha(a,x)=R(f)(\alpha(b,y))$. Это условие в точности условие естественности α .

Естественность по R проверяется напрямую.

План лекции

Нот-функторы

Лемма Йонеды

Категории предпучков

Примеры
Категория графов
Категория глобулярных множеств

Примеры

- ▶ Предпучок на малой категории **C** это функтор $\mathbf{C}^{op} \to \mathbf{Set}$. Категория предпучков это категория функторов $\mathbf{Set}^{\mathbf{C}^{op}}$.
- ▶ Если P предпучок на \mathbf{C} и a объект \mathbf{C} , то мы будем писать P_a вместо P(a).
- Категория графов это категория предпучков.
- Категория последовательностей множеств

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \dots$$

является категорией предпучков.

• Категория действий группы G — категория предпучков на G.

Свойства категорий предпучков

- ▶ Категории предпучков полные и кополные.
- Действительно, в категориях функторов пределы и копределы считаются поточечно.
- Категории предпучков декартовы замкнуты.
- ▶ Действительно, пусть P, R предпучки на \mathbf{C} . Если R^P существует, то для любого $a \in \mathbf{C}$ должно быть верно

$$(R^P)_a \simeq Hom(\mathbf{y}_a, R^P) \simeq Hom(\mathbf{y}_a \times P, R)$$

ightharpoonup Мы можем использовать это свойство как определение R^P .

Доказательство

Мы уже видели, что свойство экспоненты верно для представимых функторов. Осталось проверить для произвольных:

$$Hom(X, R^P) \simeq$$
 $Hom(colim_a(\mathbf{y}a), R^P) \simeq$
 $lim_a(Hom(\mathbf{y}a, R^P)) \simeq$
 $lim_a(Hom(\mathbf{y}a \times P, R)) \simeq$
 $Hom(colim_a(\mathbf{y}a \times P), R) \simeq$
 $Hom(colim_a(\mathbf{y}a) \times P, R) \simeq$
 $Hom(X \times P, R)$

Генераторы категории

- Коллекция S объектов категории ${\bf C}$ называется ее r енератором, если для любой пары морфизмов $f,g:A\to B$ верно, что если $f\circ s=g\circ s$ для любого морфизма s с доменом в S, то f=g.
- Другими словами, чтобы проверить равенство двух стрелок, достаточно проверить их равенство на объектах из S.
- **Е**сли S является генератором категории C и $x \in S$, то морфизмы вида $x \to a$ называют *обобщенными* элементами объекта a.

Примеры генераторов

- ▶ В **Set** генератором является множество, состоящее из одного одноэлементного множества.
- Обощенные элементы для этого генератора это просто элементы множества.
- ► Коллекция объектов вида **у**а является генератором для категории предпучков.

План лекции

Нот-функторы

Лемма Йонеды

Категории предпучков

Примеры

Категория графов Категория глобулярных множеств Категория графов

Категория графов Graph

- ▶ В этом разделе мы просто разберем подробно пример категории графов.
- ▶ Граф G состоит из множества вершин G_V , множества ребер G_E и пары функций $d,c:G_E\to G_V$, сопостовляющих каждому ребру его начало и конец.
- Таким образом, категория графов Graph это категория предпучков на категории C, состоящей из двух объектов V и E и двух не тождественных морфизмов.

$$V \xrightarrow{d} E$$

Лемма Йонеды для **Graph**

- ▶ Вложение Йонеды говорит, что категория С вкладывается в категорию графов.
- ightharpoonup yV это граф, состоящий из одной вершины.
- уЕ это граф, состоящий из одного ребра.
- yd и ус функции, отображающие единственную вершину графа уV в левый или правый конец единственного ребра графа уЕ.
- lacktriangle Лемма Йонеды говорит, что $\mathit{Hom}_{\mathsf{Graph}}(\mathbf{y}\,V,G)\simeq G_V.$
- ▶ Действительно, морфизмы из графа yV в G это в точности вершины графа G.
- lacktriangle Лемма Йонеды говорит, что $\mathit{Hom}_{\mathsf{Graph}}(\mathbf{y} E, G) \simeq \mathit{G}_E.$
- ightharpoonup Действительно, морфизмы из графа **у**E в G это в точности ребра графа G.

Категория графов

Ko- лемма Йонеды для **Graph**

- О копределах можно думать геометрически.
- ▶ Например, если G_1 подграф графов G_2 и G_3 , то пушаут $G_2 \coprod_{G_1} G_3$ это граф, "склеенный" из G_2 и G_3 вдоль G_1 .
- Таким, образом ко- лемма Йонеды говорит, что любой предпучок можно "склеить" из представимых предпучков.
- ▶ В случае с графами это означает, что любой граф можно склеить из графов yV и yE.
- Действительно, любой граф можно склеить из вершин и ребер, которые в нем содержатся.

Примеры

Категория графов

Генераторы в категории графов

- \blacktriangleright Коллекция графов $\{yV, yE\}$ является генератором категории Graph.
- Действительно, чтобы проверить, что морфизмы графов f,g:G o H равны, достаточно проверить, что они совпадают на вершинах и на ребрах.
- Другими словами, достаточно проверить, что они совпадают на морфизмах из $\mathbf{y}V$ и $\mathbf{y}E$.
- Обобщенный элемент для этого генератора это либо вершина графа (обобщенный элемент вида yV), либо его ребро (обощенный элемент вида yE).

Категория глобулярных множеств

Категория глобулярных множеств **Glob**

 Глобулярное множество – это предпучок на следующей категории:

$$0 \xrightarrow{s_0} 1 \xrightarrow{s_1} 2 \xrightarrow{s_2} \dots$$

где
$$s_{i+1} \circ s_i = t_{i+1} \circ s_i$$
 и $s_{i+1} \circ t_i = t_{i+1} \circ t_i$.

▶ Другими словами, объекты этой категории — натуральные числа, $Hom(n,n)=\{id_n\}$, $Hom(n,k)=\varnothing$ если n>k, и Hom(n,k) состоит из двух элементов, если n< k.

Лемма Йонеды для **Glob**

- ▶ О глобулярных множествах вида уп можно думать как о *п*-мерных шарах.
- ▶ y0 точки, y1 отрезки, y2 диски, y3 3-мерные шары, и т.д.
- ▶ **у**s_n вкладывает *п*-мерный шар в верхнюю половну границы (n+1)-мерного шара.
- $ightharpoonup yt_n$ вкладывает n-мерный шар в нижнюю половну границы (n+1)-мерного шара.
- ightharpoonup Таким образом, **y**s_n и **y**t_n пересекаются по (n-1)-мерным шарам.
- ightharpoons Лемма Йонеды говорит, что если X лобулярное множество, то Hom(yn, X) изоморфно множеству X_n его *п*-мерных шаров.
- Ко- лемма Йонеды говорит, что любое глобулярное множество склеено из шаров.

