Problem 1-5

January 28, 2023

1 Week 04: Multi-class Classification

1.1 Introduction

In this exercise, we will implement logistic regression based multiclass classification to recognize handwritten digits.

```
[]: # used for manipulating directory paths
     import os
     # Scientific and vector computation for python
     import numpy as np
     # Plotting library
     from matplotlib import pyplot as plt
     # Optimization module in scipy
     from scipy import optimize
     # Module to load MATLAB .mat datafile format (Input and output module of scipy)
     from scipy.io import loadmat
     # Python Imaging Library (PIL)
     from PIL import Image
     #functool will be needed for plotting the losses
     from functools import partial
     #To read the fashion mnist dataset
     import pandas as pd
     #Setting some parameters of pyplot
     plt.rcParams['figure.figsize'] = (10.0, 7.0)
     plt.rcParams["font.size"] = 16
     plt.rcParams["font.family"] = "Serif"
     plt.rcParams["grid.linestyle"] = "--"
```

```
[]: DATA_DIR = 'data'
SAVE_DIR = "plots"
```

2 MNIST Digits

2.1 Multi-class Classification

For this exercise, logistic regression will be used to recognize handwritten digits (from 0 to 9).

2.1.1 Dataset

The data set is given in mnist-digit.mat that contains 5000 training examples of handwritten digits. Use the function loadmat within the scipy.io module to load the data.

There are 5000 training examples in mnist-digit.mat, where each training example is a 20 pixel by 20 pixel grayscale image of the digit. Each pixel is represented by a floating point number indicating the grayscale intensity at that location. The 20 by 20 grid of pixels is "unrolled" into a 400-dimensional vector. Each of these training examples becomes a single row in our data matrix X. This gives us a 5000 by 400 matrix X where every row is a training example for a handwritten digit image.

$$X = \begin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \vdots \\ -(x^{(m)})^T - \end{bmatrix}$$

The second part of the training set is a 5000-dimensional vector y that contains labels for the training set.

```
[]: # Load data
data = loadmat(os.path.join(DATA_DIR, 'mnist-digit.mat'))
X, y = data['X'], data['y'].ravel()

# 10 labels, from 1 to 10 (note that you have to map "0" to label "10")
y[y == 10] = 0

# m = Number of examples
m = y.size
```

2.1.2 MATLAB Data

2.1.3 Definition of useful functions that are going to be used thoughout the code

```
[]: def displayData(X, y, file_name="0101.png"):
        Displays the data from X. Plots images with corresponding labels in y.
        Parameters
         _____
        X : array \ like
             An array of shape (m, n) where m is the number of examples, and n is the
             number of features for each example.
        y : array_like
             An array of shape (m, ) that contains labels for X. Each value in y
         Instructions
         _____
        Display in a grid of 10 by 10 the first 100 images from X. It is recommended
         that you pass just 100 images to this function.
        plt.figure(figsize=(12, 12))
        for i in range(100):
            plt.subplot(10, 10, i + 1)
            plt.imshow(X[i, :].reshape(20, 20).T, cmap="binary")
            plt.title(int(y[i]))
            plt.axis("off")
        plt.tight_layout()
        plt.savefig(os.path.join(SAVE_DIR, file_name))
     def sigmoid(z):
         n n n
        Calculates the sigmoid of z.
        return 1.0 / (1.0 + np.exp(-z))
```

2.1.4 Visualize the data

To visualize the data that you imported, randomly selects 100 rows from X and passes those rows to the displayData function.

```
[]: # Randomly select data points to display
rand_indices = np.random.choice(m, 100, replace=False)
X_sample = X[rand_indices, :]
y_sample = y[rand_indices]
```

d = displayData(X_sample, y_sample

6	3	9	8	ô	0	2	3	4	9
6	7	6	7	1	⁷	6	6	2	5 5
7	4 4	8	5 5	7	2	9	2	1	⁷
3 3	5	0	6	4	7	²	⁷	G	1
6	2	8	6	8	2	³	2	1	4
0	5 5	1	2	3 3	4	1	⁵	8	1
7	4	2	4	6	5	2	4	4	8
2									
2	6	1	2	³	6	3 3	1	2	8 8
		1 7 7	2 2 1		6 9 9		1 1 7		8 7 7

Vectorizing the cost function

Begin by writing a vectorized version of the cost function. Recall that in (unregularized) logistic regression, the cost function is

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log \left(h_w \left(x^{(i)} \right) \right) - \left(1 - y^{(i)} \right) \log \left(1 - h_w \left(x^{(i)} \right) \right) \right]$$

To compute each element in the summation, we have to compute $h_w(x^{(i)})$ for every example i, where $h_w(x^{(i)})=g(w^Tx^{(i)})$ and $g(z)=\frac{1}{1+e^{-z}}$ is the sigmoid function. It turns out that we can

compute this quickly for all our examples by using matrix multiplication. Let us define X and w as

$$X = \begin{bmatrix} -\left(x^{(1)}\right)^T - \\ -\left(x^{(2)}\right)^T - \\ \vdots \\ -\left(x^{(m)}\right)^T - \end{bmatrix} \quad \text{and} \quad w = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{bmatrix}$$

Then, by computing the matrix product Xw, we have:

$$Xw = \begin{bmatrix} -\left(x^{(1)}\right)^T w - \\ -\left(x^{(2)}\right)^T w - \\ \vdots \\ -\left(x^{(m)}\right)^T w - \end{bmatrix} = \begin{bmatrix} -w^T x^{(1)} - \\ -w^T x^{(2)} - \\ \vdots \\ -w^T x^{(m)} - \end{bmatrix}$$

Vectorizing the gradient Recall that the gradient of the (unregularized) logistic regression cost is a vector where the j^{th} element is defined as

$$\frac{\partial J}{\partial w_{j}} = \frac{1}{m} \sum_{i=1}^{m} \left(\left(h_{w}\left(x^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} \right)$$

To vectorize this operation over the dataset, we start by writing out all the partial derivatives explicitly for all w_i ,

$$\begin{bmatrix} \frac{\partial J}{\partial w_0} \\ \frac{\partial J}{\partial w_1} \\ \frac{\partial J}{\partial w_2} \\ \vdots \\ \frac{\partial J}{\partial w_n} \end{bmatrix} = \frac{1}{m} \begin{bmatrix} \sum_{i=1}^m \left(\left(h_w \left(x^{(i)} \right) - y^{(i)} \right) x_0^{(i)} \right) \\ \sum_{i=1}^m \left(\left(h_w \left(x^{(i)} \right) - y^{(i)} \right) x_1^{(i)} \right) \\ \sum_{i=1}^m \left(\left(h_w \left(x^{(i)} \right) - y^{(i)} \right) x_2^{(i)} \right) \\ \vdots \\ \sum_{i=1}^m \left(\left(h_w \left(x^{(i)} \right) - y^{(i)} \right) x_n^{(i)} \right) \end{bmatrix}$$

$$= \frac{1}{m} \sum_{i=1}^m \left(\left(h_w \left(x^{(i)} \right) - y^{(i)} \right) x^{(i)} \right)$$

$$= \frac{1}{m} X^T \left(h_w (x) - y \right)$$

where

$$h_w(x) - y = \begin{bmatrix} h_w\left(x^{(1)}\right) - y^{(1)} \\ h_w\left(x^{(2)}\right) - y^{(2)} \\ \vdots \\ h_w\left(x^{(m)}\right) - y^{(m)} \end{bmatrix}$$

Note that $x^{(i)}$ is a vector, while $h_w\left(x^{(i)}\right)-y^{(i)}$ is a scalar (single number). To understand the last step of the derivation, let $\beta_i=(h_w\left(x^{(m)}\right)-y^{(m)})$ and observe that:

$$\sum_i \beta_i x^{(i)} = \begin{bmatrix} \begin{vmatrix} & & & & \\ x^{(1)} & x^{(2)} & \cdots & x^{(m)} \\ & & & \end{vmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{bmatrix} = x^T \beta$$

where the values $\beta_i = (h_w(x^{(i)} - y^{(i)}))$.

Now the job is to define a new function (lrCostFunction) which will take the data (vectors X and y) and parameter (Lambda) as input and return the cost as a scalar.

Regularized logistic regression Now add regularization to the cost function. For regularized logistic regression, the cost function is defined as

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log \left(h_w \left(x^{(i)} \right) \right) - \left(1 - y^{(i)} \right) \log \left(1 - h_w \left(x^{(i)} \right) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

Note that w_0 should not be regularized as it is used as bias term. Correspondingly, the partial derivative of regularized logistic regression cost for w_i is defined as

$$\frac{\partial J(w)}{\partial w_0} = \frac{1}{m} \sum_{i=1}^m \left(h_w \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)} \qquad \qquad \text{for } j = 0$$

$$\frac{\partial J(w)}{\partial w_j} = \left(\frac{1}{m}\sum_{i=1}^m \left(h_w\left(x^{(i)}\right) - y^{(i)}\right)x_j^{(i)}\right) + \frac{\lambda}{m}w_j \quad \text{for } j \geq 1$$

```
[]: #adding the bias term
m, n = X.shape
X = np.concatenate([np.ones((m, 1)), X], axis=1)
```

Let's create a train test split:

```
[]: np.random.seed(42)
    ratio = 0.7
    ids = np.arange(X.shape[0])
    np.random.shuffle(ids)
    train_ids = ids[:int(ratio * X.shape[0])]
    test_ids = ids[int(ratio * X.shape[0]):]
    X_train, y_train = X[train_ids], y[train_ids]
    X_test, y_test = X[test_ids], y[test_ids]

assert len(X_train) + len(X_test) == len(X)
    assert len(X_train)>len(X_test)
```

```
[]: def lrCostFunction(w, X, y, lambda_):
    m = y.size
    J = 0
```

```
grad = np.zeros(w.shape)

h = sigmoid(np.dot(X,w))

J = (1/m)*np.sum(-y*np.log(h + 1e-10)-(1-y)*np.log(1-h + 1e-11)) + (lambda_/(2*m))*np.sum(w[1:]**2)

grad = (1/m)*np.dot(X.T,(h-y)) + (lambda_/m)*w

# As we don't want to regularize the bias term
grad[0] = (1/m)*np.dot(X.T,(h-y))[0]

return J , grad
```

```
[]: w_initial = np.zeros(X.shape[1])
lambda_ = 0.1
J, grad = lrCostFunction(w_initial, X, y, lambda_)
assert J.shape == ()
assert grad.shape == (401,)
```

Multi-class Classification MNIST Digits

In this part of the exercise, you will implement multi-class classification by training multiple regularized logistic regression classifiers, one for each of the K classes in our dataset.

Code for the function oneVsAll below, to train one classifier for each class. In particular, the code should return all the classifier parameters in a matrix $w \in \mathbb{R}^{K \times (N+1)}$, where each row of w corresponds to the learned logistic regression parameters for one class. One can do this with a "for"-loop from 0 to K-1, training each classifier independently.

The obvious approach is to use a one-versus-the-rest approach (also called one-vs-all), in which we train C binary classifiers, fc(x), where the data from class c is treated as positive, and the data from all the other classes is treated as negative.

```
def callback_history(w, label, histories, X, y):
    global cur_epoch
    print(f"Epoch: {cur_epoch:3d} | Label: {label:1d}", end="\r", flush=True)
    y_temp = (y == label).astype(int)
    J, _= lrCostFunction(w, X, y_temp, lambda_)
    if label not in histories:
        histories[label] = []
    histories[label].append(J)
    cur_epoch += 1
```

```
[]: cur_epoch = 1
def oneVsAll(X, y, num_labels, lambda_, method="CG"):
    global cur_epoch
    m, n = X.shape
```

```
all_w = np.zeros((num_labels, n))
histories = {}
for c in np.arange(num_labels):
    initial_w = all_w[c,:]
    y_temp = (y == c).astype(int)
    callback = partial(callback_history, label=c, histories=histories, X =_u

X, y = y)
    res = optimize.minimize(lrCostFunction, initial_w, (X, y_temp,_u
lambda_), jac=True, method=method, options={'maxiter': 500},_u
callback=callback, tol=1e-6)
    all_w[c,:] = res.x
    cur_epoch = 1

return all_w, histories
```

After complting the code for oneVsAll, the following cell shall use the code to train a multi-class classifier.

```
[]: lambda_ = 0.1 all_w_digits, history_digits = oneVsAll(X_train, y_train, 10, lambda_, method = ∪ → "CG")
```

Epoch: 331 | Label: 9

Let's see how many iteration had it taken for the algorith to converge for the particular label.

```
[]: for k, v in history_digits.items():
    print(f"Number of iterations for CG method for number {k} is {len(v)}")
```

```
Number of iterations for CG method for number 0 is 155 Number of iterations for CG method for number 1 is 142 Number of iterations for CG method for number 2 is 283 Number of iterations for CG method for number 3 is 299 Number of iterations for CG method for number 4 is 294 Number of iterations for CG method for number 5 is 341 Number of iterations for CG method for number 6 is 183 Number of iterations for CG method for number 7 is 214 Number of iterations for CG method for number 8 is 385 Number of iterations for CG method for number 9 is 331
```

Let's also see some of the weights learned:

```
[]: print("Shape of the weight", all_w_digits.shape) all_w_digits[0, :10]
```

```
Shape of the weight (10, 401)
```

```
[]: array([-7.27770273e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -6.29885183e-05, 7.10886952e-04, 6.58787690e-03, 1.68796199e-03,
```

```
-1.77194582e-04, -1.28622460e-04])
```

Multi-class Prediction

After training one-vs-all classifier, one can now use it to predict the digit contained in a given image. For each input, one should compute the "probability" that it belongs to each class using the trained logistic regression classifiers. The one-vs-all prediction function will pick the class for which the corresponding logistic regression classifier outputs the highest probability and return the class label (0, 1, ..., K-1) as the prediction for the input example.

```
[]: def predictOneVsAll(all_w, X):

    m = X.shape[0]
    num_labels = all_w.shape[0]

    preds = sigmoid(np.dot(X,all_w.T))
    predict = np.argmax(preds, axis=1)

    return predict
```

Now, call predictOneVsAll function using the learned value of w. One should see the training set accuracy in percentage which shows that the algorithm classifies p% of the examples in the training set correctly.

```
[]: y_train_pred = predictOneVsAll(all_w_digits, X_train)
accuracy_train_digits = np.mean(y_train_pred == y_train) * 100
print(f'Training Set Accuracy: {accuracy_train_digits:.2f}%')
```

Training Set Accuracy: 97.34%

```
[]: y_pred_test = predictOneVsAll(all_w_digits, X_test)
accuracy_test_digits = np.mean(y_pred_test == y_test) * 100
print(f'Testing Set Accuracy: {accuracy_test_digits:.2f}%')
```

Testing Set Accuracy: 90.40%

2.2 Plotting Loss

Finally, let's plot the loss for different labels:


```
[]: np.random.seed(101)
     m, n = X_train.shape
     rand_indices = np.random.choice(m, 100, replace=False)
     X_sample = X_train[rand_indices, 1:]
     y_sample = y_train_pred[rand_indices]
     y_true_sample = y_train[rand_indices]
[]: plt.figure(figsize=(12, 12))
     for i in range(100):
         plt.subplot(10, 10, i + 1)
         plt.imshow(X_sample[i,].reshape(20, 20).T, cmap="binary")
         true_label = y_true_sample[i]
         pred_label = y_sample[i]
         if true_label != pred_label:
             plt.title(f"{true_label} ({pred_label})", color="red")
         else:
             plt.title(f"{true_label} ({pred_label})", color="green")
         plt.axis("off")
     plt.tight_layout()
     plt.savefig(os.path.join(SAVE_DIR, "0501.png"))
```

8 (8) 8	1 (1)	% (8)	5 (6) 5	1 (1)	4 (4)	5 (5)	0 (0)	4 (4) 4	1 (1)
7 (7) 7	6 (6)	2 (2)	7 (7) 7	1 (1)	5 (5)	3 (3) 3	^{2 (2)}	8 (8) 8	6 (6)
3 (3)	6 (6)	9 (9) 9	9 (9) ()	1 (1)	1 (1)	3 (3) 3	(E) 8 S	5 (5)	6 (6) 6
1 (1)	3 (3) 3	3 (3) 3	4 (4)	9 (9) 9	7 (7) 7	0 (0)	5 (5) 5	3 (3) 3	4 (4) 4
4 (4) 4	5 (5) 6	1 (1)	6 (6) 6	6 (6) 6	1 (1)	2 (2) 2	5 (5) 5	0 (0)	8 (8) 8
3 (3)	2 (2)	7 (7)	7 (7) 7	4 (4)	3 (3) 3	7 (7)	8 (8)	1 (1)	1 (1)
0 (0)	3 (3) 3	3 (3) 3	4 (4)	2 (2)	9 (9)	9 (9) 9	8 (8) 8	8 (8)	3 (3) 3
^{7 (7)} 7	9 (9) 4	3 (3) 3	1 (1)	4 (4) 4	8 (8) 8	8 (8)	5 (5) 5	O (0)	6 (6)
4 (4)	4 (4)	8 (8) 8	2 (2) 2	8 (4) V	6 (6)	6 (6)	4 (4)	3 (3) 3	3 (3) 3
6 (6) 6	Q (0)	4 (4) 4	1 (1)	9 (9) 9	3 (3) 3	^{2 (2)}	8 (4)	4 (4)	3 (3) 3

3 MNIST Fashion

Here, we'll fit the same model on the Fashion MNIST dataset.

3.1 Loading the data

Since the test dataset just has 30 images, we'll just load the tranin dataset and make a train-test split.

```
[]: train = pd.read_csv(os.path.join(DATA_DIR, 'fashion-mnist_train.csv'))
```

```
[]: y = train["label"].values
X = train.drop("label", axis=1).values

[]: #adding the bias term
m, n = X.shape
X = np.concatenate([np.ones((m, 1)), X], axis=1)

[]: np.random.seed(42)
ratio = 0.7
ids = np.arange(X.shape[0])
```

```
[]: np.random.seed(42)
ratio = 0.7
ids = np.arange(X.shape[0])
np.random.shuffle(ids)
train_ids = ids[:int(ratio * X.shape[0])]
test_ids = ids[int(ratio * X.shape[0]):]
X_train, y_train = X[train_ids], y[train_ids]
X_test, y_test = X[test_ids], y[test_ids]

assert len(X_train) + len(X_test) == len(X)
assert len(X_train)>len(X_test)
```

3.2 Normalizing the data

We can use the formula

$$X_{norm} = \frac{X - min(X)}{max(X) - min(X)}$$

to normalize the data. However, a lot of values (pixels) in the image are 0 which are also the minimum values. This will cause problem with normalization. So, we'll normalize with the maximum value, which makes more sense in this situation.

```
[]: X_train = X_train/255.0
X_test = X_test/255.0
```

3.3 Fitting the model

```
def callback_history(w, label, histories, X, y):
    global cur_epoch
    print(f"Epoch: {cur_epoch:3d} | Label: {label:1d}", end="\r", flush=True)
    y_temp = (y == label).astype(int)
    J, _= lrCostFunction(w, X, y_temp, lambda_)
    if label not in histories:
        histories[label] = []
    histories[label].append(J)
    cur_epoch += 1
```

```
[]: cur_epoch = 1
def oneVsAll(X, y, num_labels, lambda_, method="CG"):
```

```
global cur_epoch
m, n = X.shape

all_w = np.zeros((num_labels, n))
histories = {}
for c in np.arange(num_labels):
    initial_w = all_w[c,:]
    y_temp = (y == c).astype(int)
    callback = partial(callback_history, label=c, histories=histories, X == c, y = y)
    res = optimize.minimize(lrCostFunction, initial_w, (X, y_temp,= clambda_), jac=True, method=method, options={'maxiter': 300},= callback=callback, tol=1e-6)
    all_w[c,:] = res.x
    cur_epoch = 1

return all_w, histories
```

Epoch: 300 | Label: 9

Let's see how many iteration had it taken for the algorith to converge for the particular label.

```
[]: for k, v in history_fashion.items(): print(f"Number of iterations for CG method for label {k} is {len(v)}")
```

```
Number of iterations for CG method for label 0 is 300 Number of iterations for CG method for label 1 is 300 Number of iterations for CG method for label 2 is 300 Number of iterations for CG method for label 3 is 300 Number of iterations for CG method for label 4 is 300 Number of iterations for CG method for label 5 is 300 Number of iterations for CG method for label 5 is 300 Number of iterations for CG method for label 6 is 300 Number of iterations for CG method for label 7 is 300 Number of iterations for CG method for label 8 is 300 Number of iterations for CG method for label 9 is 300
```

Let's also see some of the weights learned:

```
[]: print("Shape of the weight", all_w_fashion.shape) all_w_fashion[0, :10]
```

Shape of the weight (10, 785)

```
[]: array([-2.92572919e-01, -2.13439414e-05, 3.36538628e-03, -3.78033848e-02, -6.78746828e-02, -3.52905000e-01, -7.50741506e-01, -1.27801519e+00, -1.21028762e+00, -2.42418328e-01])
```

```
[]: y_train_pred = predictOneVsAll(all_w_fashion, X_train)
accuracy_train_fashion = np.mean(y_train_pred == y_train) * 100
print(f'Training Set Accuracy: {accuracy_train_fashion:.2f}%')
```

Training Set Accuracy: 94.16%

```
[]: y_pred_test = predictOneVsAll(all_w_fashion, X_test)
accuracy_test_fashion = np.mean(y_pred_test == y_test) * 100
print(f'Testing Set Accuracy: {accuracy_test_fashion:.2f}%')
```

Testing Set Accuracy: 82.03%

3.4 Plots

Let's also see the loss for different labels:

Loss with Iteration for Different Labels


```
[]: np.random.seed(101)
     m, n = X_train.shape
     rand_indices = np.random.choice(m, 100, replace=False)
     X_sample = X_train[rand_indices, 1:]
     y_sample = y_train_pred[rand_indices]
     y_true_sample = y_train[rand_indices]
[]: plt.figure(figsize=(12, 12))
     for i in range(100):
         plt.subplot(10, 10, i + 1)
         plt.imshow(X_sample[i,].reshape(28, 28), cmap="binary")
         true_label = y_true_sample[i]
         pred_label = y_sample[i]
         if true_label != pred_label:
             plt.title(f"{true_label} ({pred_label})", color="red")
         else:
             plt.title(f"{true_label} ({pred_label})", color="green")
         plt.axis("off")
     plt.tight_layout()
```

plt.savefig(os.path.join(SAVE_DIR, "0502.png"))

