MGMT6560 Final Project

ASHRAE - Great Energy Predictor III

How much energy will a building consume?

Yulan Yang RIN:661958741 • 12/9/2019

Overview

Objective:

Accurate estimates of energy-saving investment for different buildings.

Feature Selection

- Methods used
- Features selected list

Model applied

LightGBM

Improvement

- Dimension reduction
- Model improvement

Data Description - Size

Feature Engineering? Training Dataset: over 20 million rows

Model Selection?

♦ Test Dataset: over 40 million rows

Yulan Yang RIN:661958741 12/9/2019

Index	meter_reading
5750030	0
14697993	3.61092
6251104	1.54756
14648512	4.06937
8869829	1.57691
3926699	16.5983
6459463	5.65697
11317820	4.27625
8926706	0.156491
6563550	6.01425
12757986	5.75641
16719012	5.63962
19487268	0

Data Description -Original Features

- **Building_id** primary key
- **Meter** {0: electricity, 1: chilledwater, 2: steam, 3: hotwater}
- **Timestamp** time
- Meter_reading target value
- Site id location
- Primary _use banking, education, healthcare, entertainment, etc.
- Square_feet gross area
- Year_built
- Floor count
- Air_temparature degree celsius
- Cloud coverage portion
- **Dew_temperature** -degree celsius
- Precip_depth_1_hr
- Sea_level_pressure
- Wind_direction
- Wind_speed

Feature Engineering

- Hour categorical factor
- Month categorical factor
- Weekday binary factor

Index	pred_y
0	5.00778
1	6.50953
2	5.84678
3	5.50973
4	4.44758
5	4.94788
6	5.46912
7	3.54134
8	4.01248
9	4.77858

Results

- Dataset: 1% training data from original training dataset by random shuffling
 0.39
- RMSLE (Root Mean Squared Logarithmic Error.)

$$\epsilon = \sqrt{rac{1}{n}\sum_{i=1}^n (\log(p_i+1) - \log(a_i+1))^2}$$

Yulan Yang RIN:661958741 12/9/2019

Improvement - Feature Selection

- For the whole dataset
- Reduce dimensions
- ❖ Half half LightGBM

Yulan Yang RIN:661958741 12/9/2019

Novelty

- Model based Feature Selection method to reduce dimensions
- LightGBM model to avoid more feature engineering work such as one-hot.

```
train_data = lgb.Dataset(train_X, label=train_y,
categorical_feature=["building_id", "site_id", "meter", "month",
"hour"; "weekday","wind_direction", "year_built"])
```

Q&A