Computabilità - 16 Settembre 2020

Soluzioni Formali

Esercizio 1

Problema: Siano A, B $\subseteq \mathbb{N}$. Definire la nozione di riducibilità A \leq _m B. Si consideri l'insieme S₄ = {4 * n | n $\in \mathbb{N}$ }, ovvero l'insieme dei multipli di 4. Dimostrare che A è ricorsivo sse A \leq _m S₄.

Soluzione:

Definizione di riduzione: Dati A, B $\subseteq \mathbb{N}$, diciamo che A è many-one riducibile a B (A \leq _m B) se esiste una funzione f: $\mathbb{N} \to \mathbb{N}$ totale e calcolabile tale che: $\forall x \in \mathbb{N}$: $x \in A \iff f(x) \in B$

Dimostrazione della biimplicazione:

Direzione (←): Se A ≤_m S₄, allora A è ricorsivo

```
Se A \leq_m S<sub>4</sub>, esiste f: \mathbb{N} \to \mathbb{N} totale calcolabile tale che: \forall x: x \in A \iff f(x) \in S_4
```

Osserviamo che S₄ è ricorsivo perché:

```
\chi_{S_4}(y) = sg(rm(4,y))
```

dove rm(4,y) è il resto della divisione di y per 4.

La funzione caratteristica di A può essere espressa come:

```
\chi_A(x) = \chi_{S_4}(f(x)) = sg(rm(4,f(x)))
```

Poiché f è calcolabile e χ_{S_4} è calcolabile, per composizione χ_A è calcolabile, quindi A è ricorsivo.

Direzione (⇒): Se A è ricorsivo, allora A ≤_m S₄

Sia A ricorsivo, quindi χ A è calcolabile.

Definiamo la funzione di riduzione f: $\mathbb{N} \to \mathbb{N}$:

```
f(x) = \{
0 se x \in A (0 = 4.0 \in S<sub>4</sub>)
1 se x \notin A (1 \notin S<sub>4</sub>)
}
```

Equivalentemente: $f(x) = \chi_{\bar{A}}(x) = sg(\chi_{A}(x))$

Poiché A è ricorsivo, χ _A è calcolabile, quindi f è calcolabile.

Verifica della riduzione:

```
• x \in A \Longrightarrow f(x) = 0 \in S_4
```

•
$$x \notin A \Longrightarrow f(x) = 1 \notin S_4$$

Quindi $\forall x: x \in A \iff f(x) \in S_4$, cioè $A \leq_m S_4$.

Conclusione: A è ricorsivo \iff A \leq _m S₄.

Esercizio 2

Problema: Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : \exists y \in W_x. \exists z \in E_x. x = y + z\}$, ovvero dire se $A \in \overline{A}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A contiene gli indici x tali che x può essere scritto come somma di un elemento del dominio di ϕ_x e un elemento del codominio di ϕ_x .

Ricorsività:

A non è ricorsivo. Dimostriamo K ≤_m A.

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

La funzione g è calcolabile. Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(x)}(w) = g(x,w)$.

Analisi della riduzione:

- Se $x \in K$, allora $W_{s(x)} = \{0,1,...,x\}$ e $E_{s(x)} = \{0,1,...,x\}$ Possiamo scrivere x = 0 + x dove $0 \in W_{s(x)}$ e $x \in E_{s(x)}$, quindi $s(x) \in A$
- Se x ∉ K, allora W_{s(x)} = E_{s(x)} = Ø Non esiste modo di scrivere x come somma di elementi da insiemi vuoti, quindi s(x) ∉ A

Pertanto K ≤_m A, e poiché K non è ricorsivo.

Enumerabilità ricorsiva di A:

A è r.e. Possiamo scrivere la funzione semicaratteristica:

```
sc_A(x) = 1(\mu t. \exists u, v \le t. [H(x, u, t) \land \exists w \le t. S(x, w, v, t) \land x = u + v])
```

dove:

- H(x,u,t) verifica che $\phi_x(u)$ converge in al più t passi
- S(x,w,v,t) verifica che $\phi_x(w) = v$ in al più t passi

Questa funzione è calcolabile: cerchiamo un tempo t entro il quale esistono $y \in W_x$ e $z \in E_x$ tali che x = y + z.

Enumerabilità ricorsiva di Ā:

```
\bar{A} = \{x \in \mathbb{N} : \forall y \in W_x. \ \forall z \in E_x. \ x \neq y + z\}
```

Ā non è r.e. Utilizziamo una riduzione da K.

Definiamo h: $\mathbb{N}^2 \to \mathbb{N}$:

```
h(x,w) = \{
2x \quad \text{se } x \notin K \land w = 0
\uparrow \quad \text{altrimenti}
```

Per il teorema smn, esiste t: $\mathbb{N} \to \mathbb{N}$ tale che $\phi_{t}(x)(w) = h(x,w)$.

- Se x \notin K, allora W_{t(x)} = {0} e E_{t(x)} = {2x} Per scrivere x come somma di elementi da questi insiemi: x = 0 + 2x richiederebbe x = 0 Se x > 0, allora $t(x) \in \bar{A}$
- Se $x \in K$, allora $W_{t(x)} = E_{t(x)} = \emptyset$, quindi $t(x) \in \bar{A}$

Questa costruzione presenta problemi. Un approccio più diretto:

Poiché A è r.e. ma non ricorsivo, se Ā fosse r.e., allora A sarebbe ricorsivo (contraddizione). Quindi Ā non è r.e.

Conclusione: A non è ricorsivo, A è r.e., Ā non è r.e. ■

Esercizio 3

Problema: Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : W_x \cup E_x = \mathbb{N}\}$, ovvero dire se $B \in \overline{B}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

B contiene gli indici x tali che l'unione del dominio e del codominio di ϕ_x copre tutti i numeri naturali.

Analisi della struttura:

B è un insieme saturo, poiché può essere espresso come B = $\{x \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : dom(f) \cup cod(f) = \mathbb{N}\}$.

Ricorsività:

Per il teorema di Rice, poiché B è saturo, dobbiamo verificare se B = \emptyset , \mathbb{N} o né l'uno né l'altro.

• B $\neq \emptyset$: La funzione identità id(x) = x ha dom(id) \cup cod(id) = $\mathbb{N} \cup \mathbb{N} = \mathbb{N}$, quindi un suo indice appartiene a B

B ≠ N: La funzione costante zero f(x) = 0 ha dom(f) = N e cod(f) = {0}, quindi dom(f) ∪ cod(f) = N ≠
 N. Errore nella logica: N ∪ {0} = N.

Riconsideriamo: la funzione sempre indefinita H ha dom(H) = $cod(H) = \emptyset$, quindi dom(H) $cod(H) = \emptyset$ $\neq \mathbb{N}$, dunque un indice di H non appartiene a B.

Per il teorema di Rice, B non è ricorsivo.

Enumerabilità ricorsiva di B:

B non è r.e. Utilizziamo il teorema di Rice-Shapiro.

Consideriamo la funzione identità id $\in \mathcal{B}$. Qualsiasi funzione finita $\theta \subseteq \operatorname{id}$ ha dom $(\theta) \cup \operatorname{cod}(\theta)$ finito $\neq \mathbb{N}$, quindi $\theta \notin \mathcal{B}$.

Per Rice-Shapiro, esiste $f \in \mathcal{B}$ tale che $\forall \theta \subseteq f$ finita, $\theta \notin \mathcal{B}$, quindi B non è r.e.

Enumerabilità ricorsiva di B:

 \bar{B} non è r.e. Consideriamo la funzione sempre indefinita $H \in \mathcal{B}$.

Definiamo $\theta(0) = 0$, ↑ altrimenti. Allora $\theta \subseteq id$ e $\theta \notin \mathcal{B}$ (perché θ può essere estesa alla funzione identità che appartiene a \mathcal{B}).

Ma questo ragionamento è scorretto per l'applicazione di Rice-Shapiro.

Approccio corretto:

Per dimostrare che B non è r.e., osserviamo che se sia B che B fossero r.e., allora B sarebbe ricorsivo, contraddicendo il teorema di Rice.

Poiché abbiamo dimostrato che B non è r.e., possiamo anche dimostrare direttamente che B non è r.e. utilizzando riduzioni appropriate.

Conclusione: B non è ricorsivo, B non è r.e., Ē non è r.e. ■