TD - ANALYSE 1 - RETARDATAIRES - CPI-1 - TC - EIL - 2024/2025

Exercice 1 Dans chacun des cas, exprimer l'expression de la somme en fontion de n.

1)
$$\sum_{i=1}^{n} \ln\left(1 + \frac{1}{i}\right)$$
, 2) $\sum_{p=1}^{n} (2\sqrt{p} - \sqrt{p-1} - \sqrt{p+1})$

Exercice 2 Pour tout entier $n \ge 2$, on pose $S_n = \sum_{k=2}^n \frac{1}{(k-1)k}$.

- 1) Trouver les réels a et b tels que $\frac{1}{(k-1)k} = \frac{a}{k-1} + \frac{b}{k}$.
- 2) En déduire l'expression de S_n en fonction de n.

Exercice 3 Pour tout entier $n \ge 2$, on pose : $V_n = \sum_{k=2}^n \frac{1}{k^2 + k - 2}$. Exprimer V_n en fonction de n (utiliser le procédé de l'exercice 2 pour S_n).

Exercice 4 Soit $(u_n)_{n\geq p}$ une suite arithmétique de raison r. A l'aide d'une somme télescopique, montrer que : $\forall n\geq p,\ u_n=u_p+(n-p)r$.

Exercice 5 Dans chaque cas, déterminer la limite de la suite de terme général u_n . 1. $u_n = \frac{\cos(e^n)}{n}$, 2. $u_n = \sqrt{n+2} - \sqrt{n}$, 3. $u_n = \left(1 - \frac{1}{n}\right)^n$, 4. $u_n = \frac{2^n - 1}{3^n + 3}$.

Exercice 6 Soit (u_n) la suite réelle définie par : $\begin{cases} S_n = \sum_{k=0}^n u_k = \frac{n^2 + n}{3} \\ u_0 = 0 \end{cases}$

- 1) Calculer u_1 , u_2 et u_3 .
- 2) Calculer u_n et u_{n+1} en fonction de n.
- 3) Montrer que (u_n) est une suite arithmétique.

Exercice 7 1) Soit $(U_n)_{n\geq 0}$ la suite définie par : $\left\{ \begin{array}{l} U_0=1 \\ U_{n+1}=U_n+2, \ \forall n\in \mathbb{N} \end{array} \right.$

- a) Que dire de la suite $(U_n)_{n\geq 0}$?
- b) Pour tout entier $n \geq 0$, exprimer U_n en fonction de n.

2) Soit la suite $(Z_n)_{n\geq 0}$ définie par : $\left\{ \begin{array}{l} Z_0 = 1 \\ Z_{n+1} = Z_n + U_n, \ \forall n \in \mathbb{N} \end{array} \right.$

- a) Calculer Z_1 , Z_2 et Z_3 .
- b) En raisonnant par récurrence sur l'entier $n\in\mathbb{N},$ montrer que : $\forall n\in\mathbb{N}$, $Z_n=1+n^2.$
- c) Etudier la monotonie de la suite $(Z_n)_{n\geq 0}$.

Exercice 8 Calculer: $S_1 = \sum_{k=2}^{12} k(1-2k)$, $S_2 = \sum_{k=1}^{3n} k^2$, $S_3 = \sum_{k=1}^{n} (-1)^k$.

Exercice 9 Dans chaque cas, déterminer la limite de la suite de terme général u_n .

$$u_n = \sum_{i=1}^{n+1} \frac{2^i}{3^i}$$
, $u_n = \sum_{k=1}^{n} (-1)^k \left(\frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k}}\right)$.

Exercice 10 1) Trouver les réels a et b tels que : $\frac{2k+1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$, où $k \ge 1$.

- 2) Pour tout entier $n \ge 1$, on pose $V_n = \sum_{k=1}^n \frac{(-1)^k (2k+1)}{k(k+1)}$.
 - a) Déterminer l'expression de V_n en fonction de n
 - b) Calculer $\lim_{n\to+\infty} V_n$.

$ext{TD3} - ext{ANALYSE} \ 1 - ext{CPI-GIM} - ext{L1} - ext{FONCTIONS} \ ext{REELLES} - ext{EIL} - 2024/2025$

Exercice 1 Dans chacun des cas, déterminer le domaine de définition de la fonction f.

$$f(x) = \frac{x+5}{x+|x|}, \ f(x) = \sqrt{1+\sqrt{x}} + \sqrt{x}, \ f(x) = \frac{\cos(2x)}{\sqrt{1-\cos(x)}}.$$

Exercice 2 On considère la fonction f définie sur \mathbb{R} par :

$$f(-x) + 3f(x) = 4x^3 + 2x$$

- 1) Montrer que f est impaire.
- 2) Montrer que $f(x) = 2x^3 + x$
- 3) Tracer la courbe représentative de f.

Exercice 3 Soit la fonction $f: \mathbb{R} \to \mathbb{R}$, impaire, périodique de période 2π , et définie par :

$$f(x) = \begin{cases} x & \text{si } x \in \left[0, \frac{\pi}{2}\right] \\ \pi - x & \text{si } x \in \left[\frac{\pi}{2}, \pi\right] \end{cases}$$

- 1) Représenter la courbe de f dans un repère orthonormé (rappel : $\pi \approx 3,14$).
- 2) f est-elle continue en $\frac{\pi}{2}$?
- 3) f est-elle dérivable en $\frac{\pi^2}{2}$?

Exercice 4 Calculer chacune des limites suivantes:

- $\begin{array}{ll} 1) \lim_{x \to +\infty} \frac{x \sqrt{x}}{\ln x + x}, & 2) \lim_{x \to 1^+} \ln x . \ln \ln(x), & 3) \lim_{x \to 0^+} x^x \\ 4) \lim_{x \to +\infty} \frac{x \cos(\mathrm{e}^x)}{x^3 + x}, & 5) \lim_{x \to +\infty} \mathrm{e}^{x \sin x}, & 16) \lim_{x \to 0} (1 + 3x)^{\frac{1}{x}} \\ 17) \lim_{x \to 0} \frac{\tan 2x}{\sin x}, & 8) \lim_{x \to \frac{\pi}{4}} \frac{\cos 2x}{\sin (x \frac{\pi}{4})}, & 9) \lim_{x \to 0} \frac{\mathrm{e}^{ax} \mathrm{e}^{bx}}{x}, \text{ où } a, b \in \mathbb{R}^*, \ a \neq b. \end{array}$

Exercice 5 Soit f définie sur \mathbb{R}^*_{\perp} par :

$$f(x) = \frac{\ln(x)}{1 + x^2}$$

On note (\mathcal{C}) sa courbe représentative dans un repère orthonormé.

- 1. Calculer les limites de f en 0 et en $+\infty$.
- 2. (a) Calculer f'(x). On pose $g(x) = 1 + x^2 2x^2 \ln(x)$.
 - (b) Etudier les variations de la fonction q
 - (c) Montrer que l'équation g(x) = 0 admet une unique solution m sur \mathbb{R}_+^* .
 - (d) Dressez le tableau de variation de f.
- 3. Représenter (\mathcal{C}) dans un repère orthonormé.

GROUPE EM GABON – UNIVERSITE Ecole d'Ingénieurs de Libreville (EIL)

Année 2024/2025

RATTRAPAGE ANALYSE 1 EIL-TC-1

Spécial retardataires

Enseignant: EYIMI MINTO'O EBANG Azariel

Dur'ee:1h30mn

Les Téléphones et les calculatrices graphiques sont interdits

Exercice 1 (sur 7 points)

1) Trouver les réels a et b tels que :

$$\frac{1}{k(k+2)} = \frac{a}{k} + \frac{b}{k+2}.$$

- 2) Pour tout entier $n \ge 1$, on pose : $S_n = \sum_{k=1}^n \frac{1}{k^2 + 2k}$.
 - a) Déterminer l'expression de S_n en fonction de n.
 - b) En déduire $\lim_{n\to+\infty} S_n$.

Exercice 2 (sur 8 points)

1) Trouver les réels a et b tels que :

$$\frac{1}{(k-1)(k+1)} = \frac{a}{k-1} + \frac{b}{k+1}.$$

- 2) Pour tout entier $n \ge 2$, on pose : $S_n = \sum_{k=2}^n \frac{1}{k^2 1}$.
 - a) Déterminer l'expression de S_n en fonction de n.
 - b) La suite $(S_n)_{n\geq 2}$ est-elle convergente (justifier votre réponse)?

Exercice 3 (sur 5 points)

Soit $(S_n)_{n\geq p}$ une suite réelle arithmétique de raison r. A l'aide d'une somme télescopique, montrer que :

$$\forall n \ge p, \quad S_n = S_p + (n-p)r.$$

Exercice 1 (7 points)

On rappelle que les fonctions

- La restriction g de la fonction cos à [0 , π] est une bijection de décroissante de bijection réciproque notée Arc cos
- $\ln :]0, +\infty[\rightarrow IR$ $x \mapsto \ln(x)$

est une bijection de bijection réciproque la fonction exp définie par $\exp(x) = e^x$

- h est la restriction de la fonction ln à $[1, e^{\pi}]$

On considère la fonction f définie par f = g o ln où o est la composée

- 1° Définir f . Calculer f(1) et $f(e^{\pi})$
- 2° a) Démontrer que f est bijective
 - b) Définir la bijection réciproque f⁻¹
 - c) Calculer f -1 (1) et f -1 (-1)

Exercice 2 (13 points)

On considère la matrice $\mathbf{M}_a = \begin{pmatrix} 1 & a^2 & a \\ a & 1 & a^2 \\ a^2 & a & 1 \end{pmatrix}$ Où a \in IR

- 1° Ecrire le plus simplement possible M_0^{2025} (M_0 exposant 2025)
- 2° a) Démontrer que le déterminant de ${
 m M_a}\,$ est égal à $(1-a^3)^2$
 - b) Pour quelles valeurs de a, Ma est -elle inversible
- 3° a) Démontrer que $\,M_{-1}\,\,$ est inversible
 - b) Déterminer son inverse M_{-1}^{-1}
- 4° En utilisant ce qui précèdent, calculer le déterminant la matrice carrée d'ordre 4 ci-dessous

$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 3 & 1 & 1 & -1 \\ -7 & -1 & 1 & 1 \\ 4 & 1 & -1 & 1 \end{pmatrix}$$

Prof: BAO.A

Exercice 1 (7 points)

On rappelle que les fonctions

- La restriction g de la fonction cos à [0 , π] est une bijection de décroissante de bijection réciproque notée Arc cos
- $\ln :]0, +\infty[\rightarrow IR$ $x \mapsto \ln(x)$

est une bijection de bijection réciproque la fonction exp définie par $exp(x) = e^x$

- h est la restriction de la fonction ln à $[1, e^{\pi}]$

On considère la fonction f définie par f = g o ln où o est la composée

- 1° Définir f . Calculer f(1) et f (e^{π})
- 2° a) Démontrer que f est bijective
 - b) Définir la bijection réciproque f^{-1}
 - c) Calculer f^{-1} (1) et f^{-1} (-1)

Exercice 2 (13 points)

On considère la matrice $\,M_a = \begin{pmatrix} 1 & a^2 & a \\ a & 1 & a^2 \\ a^2 & a & 1 \end{pmatrix}\,$ Où a \in IR

- 1° Ecrire le plus simplement possible M_0^{2025} (M_0 exposant 2025)
- 2° a) Démontrer que le déterminant de $M_a\,$ est égal à $(1-a^3)^2\,$
 - b) Pour quelles valeurs de a , Ma est -elle inversible
- 3° a) Démontrer que $\,M_{-1}\,\,$ est inversible
 - b) Déterminer son inverse M_{-1}^{-1}
- 4° En utilisant ce qui précèdent, calculer le déterminant la matrice carrée d'ordre 4 ci-dessous

$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 3 & 1 & 1 & -1 \\ -7 & -1 & 1 & 1 \\ 4 & 1 & -1 & 1 \end{pmatrix}$$

Rattrapage de Mathématiques 1 Analyse 1 EIL-GIM

Enseignant: EYIMI MINTO'O EBANG Azariel

Dur'ee:1h30mn

Les Téléphones et les calculatrices graphiques sont interdits

Exercice 1

On considère la fonction f définie par :

$$f(x+2) = \frac{1+f(x)}{1-f(x)}$$
.

1) Calculer f(x+4), f(x+6) et f(x+8).

2) En déduire que f est périodique en précisant la période.

Exercice 2

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$, impaire, périodique de période 2π , et définie par :

$$f(x) = \begin{cases} 2x & \text{si } x \in \left[0, \frac{\pi}{2}\right] \\ \pi & \text{si } x \in \left[\frac{\pi}{2}, \pi\right] \end{cases}$$

- 1) Représenter la courbe de f dans un repère orthonormé ($rappel: \pi \approx 3, 14$).
- 2) f est-elle continue en $\frac{\pi}{2}$?
- 3) f est-elle dérivable en $\frac{\pi}{2}$?

Exercice 3

Calculer chacune des limites suivantes :

1)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin x} - \infty$$

2)
$$\lim_{x \to 2} |x - 2| \sin(\frac{1}{x - 2})$$

3)
$$\lim_{x \to +\infty} \frac{x - \cos x}{2x + e^{\frac{1}{x}}}$$

EM - GABON EIL 1 EXAMEN de RATTRAPAGE ALGEBRE 1 07 1 2025 durée 2h

Exercice 1 (5 points)

Soit A, B et C trois propositions .R, Q, S, U et T les propositions ci-dessous

$$\mathsf{R} \mathrel{ <\!\!\!< } \overline{(\mathsf{A} \Longrightarrow \mathsf{C})} \mathrel{ \lor \!\!\!\!< } \overline{(\mathsf{B} \Longrightarrow \mathsf{C})} \mathrel{ >\!\!\!\!> }, \; \mathsf{Q} \mathrel{ <\!\!\!< } (\mathsf{A} \mathrel{ \lor } \mathsf{B}) \Longrightarrow \mathsf{C} \mathrel{ >\!\!\!>}, \; \mathsf{S} \mathrel{ <\!\!\!< } \mathsf{B} \Longrightarrow \overline{\mathsf{A}} \mathrel{ >\!\!\!> }, \; \mathsf{U} \mathrel{ <\!\!\!< } \mathsf{B} \Longrightarrow \mathsf{C} \mathrel{ >\!\!\!>} \; \mathsf{et} \; \mathsf{T} \mathrel{ <\!\!\!< } (\mathsf{A} \mathrel{ \land } \mathsf{B}) \Longrightarrow \mathsf{C} \mathrel{ >\!\!\!>}$$

- 1° En utilisant le tableau de vérité justifier que $\overline{A} \lor B$ équivaut $A \Rightarrow B$
- 2° Exprimer T en fonction de S et U
- 3° Démontrer sans utiliser le tableau de vérité que R et Q sont contraires

Exercice 2 (7 Points)

Le point (P) est muni d'un repère orthonormé $(0, \vec{l}, \vec{j})$. (P_1) désigne l'ensemble (P) privé des droites $(0, \vec{l})$ et $(0, \vec{l})$

On définit une relation \mathcal{Z} définie sur (P_1) par : $M\binom{x}{y} \mathcal{Z} M'\binom{x'}{y'} \Leftrightarrow x*y' = x'*y$

- 1° Les points $A\binom{-3}{4}$ et B $\binom{4.5}{-6}$ sont-ils en relation suivant $\mathcal R$? Justifier votre réponse
- 2° \not est- elle réflexive ? Symétrique ? Antisymétrique ? et Transitive dans (P_1) Justifier votre réponse
- 3° 2 est elle une relation d'
 - a) Equivalence ? Si oui, déterminer les classes d'équivalence
 - b) Ordre ? Si oui, l'ordre est- il total ou partiel

Justifier votre réponse

Exercice 3 (8 points)

Partie A

On considère les ensembles $A = \{a; b; 1\}$, $B = \{b; c; 1; 2\}$ et $C = \{a; 3\}$

Déterminer en extension

$$\begin{array}{l} \text{1° } C_{A\times B}^{(A/B)\times (B/A)} \text{ et } C_A^{A/B}\times C_B^{B/A} \\ \text{2° } C_{B\times C}^{(B/C)\times (C/B)} \text{ et } C_B^{B/C}\times C_C^{C/B} \end{array}$$

Partie B

Soit E et F deux ensembles quelconques non vides

Que peut-on dire de $C_{E\times F}^{(E/F)\times (F/E)}$ et $C_{E}^{E/F}\times C_{F}^{F/E}$ dans les cas ci-dessous

1° E et F sont disjoints ¶

2° E est inclus dans F