# What does the spectrum of a graph tell?

Chih-wen Weng

Department of Applied Mathematics, National Yang Ming Chiao Tung University

Algebraic Graph Theory (2024 Fall)



## **Outline**

Regularity

② Bipartite graphs

Matrix-tree Theorem



# Regularity



### **Theorem**

Let  $\Gamma$  be a simple graph with eigenvalues  $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ . Then the following are equivalent.

- (i)  $\Gamma$  is regular with valency  $\lambda_1$ .
- (ii)  $\sum_{i=1}^{n} \lambda_i^2 = n\lambda_1$ .

#### Proof.

Note that  $A_{xx}^2 = \deg(x)$  for  $x \in V\Gamma$ .

- (i)  $\Rightarrow$  (ii) This follows from  $\sum_{i=1}^{n} \lambda_i^2 = \operatorname{tr} A^2 = \sum_{x \in V\Gamma} A_{xx}^2 = n\lambda_1$ .
- (ii)  $\Rightarrow$  (i) The average degree  $\overline{k} = \frac{\mathrm{tr} A^2}{n} = \frac{1}{n} \sum_{i=1}^n \lambda_i^2 = \lambda_1$ . Hence  $\Gamma$  is

regular with valency  $\lambda_1$ .



# **Bipartite graphs**



## **Bipartite matrix**

 A square matrix M is bipartite if after permuting the rows and columns M has the following block form.

$$M = \left(\begin{array}{cc} \mathbf{0} & M_{21} \\ M_{12} & \mathbf{0} \end{array}\right),$$

where the 0's are zero submatrices of suitable sizes.

• A graph is bipartite if its adjacency matrix is bipartite.

#### Lemma

Let M be a bipartite matrix and  $\lambda \in \mathbb{C}$ . Then  $\lambda$  is an eigenvalue of M iff  $-\lambda$  is an eigenvalue of M. Moreover  $\lambda$  and  $-\lambda$  has the same geometry multiplicity.

#### Proof.

Observe in block form product

$$\left(\begin{array}{cc} \mathbf{0} & M_{21} \\ M_{12} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \lambda \left(\begin{array}{c} x \\ y \end{array}\right)$$

iff

$$\left(\begin{array}{cc} \mathbf{0} & M_{21} \\ M_{12} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} -x \\ y \end{array}\right) = -\lambda \left(\begin{array}{c} -x \\ y \end{array}\right).$$



#### Lemma

Let M be a bipartite matrix. Then  $M^2$  is reducible.

#### Proof.

This follows from in block form product

$$M^2 = \begin{pmatrix} \mathbf{0} & M_{21} \\ M_{12} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{0} & M_{21} \\ M_{12} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} M_{21}M_{12} & 0 \\ 0 & M_{12}M_{21} \end{pmatrix}.$$



## **Proposition**

If a matrix M is irreducible,  $M^2$  is reducible and  $M \ge 0$ , then M is bipartite.

This is Homework 2.



#### **Theorem**

Let  $\Gamma$  be a connected undirected graph with eigenvalues  $\lambda_1 \geq \ldots \geq \lambda_n$ . Then  $\Gamma$  is bipartite if and only if  $\lambda_n = -\lambda_1$ .

#### Proof.

- $(\Rightarrow)$  This follows from the symmetric property of spectrum.
- ( $\Leftarrow$ ) Suppose  $\lambda_n = -\lambda_1$ . Then  $\lambda_1^2$  is a maximal eigenvalue of  $A^2$  with multiplicity at least 2. By Perron Frobenius Theorem,  $A^2$  is reducible. Hence A is bipartite by previous proposition.



### Remark

•

•

•

• If  $\Gamma$  is bipartite, then  $SP(L(\Gamma)) = SP(Q(\Gamma))$ .

$$SP(Q(K_{1,3}) = SP \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = (4,1,1,0).$$

$$SP(Q(K_1 + K_3)) = SP \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix} = (4, 1, 1, 0).$$

$$SP(L(K_1 + K_3)) = SP \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{pmatrix} = (3, 3, 0, 0).$$



#### **Exercise**

Let  $\Gamma$  be a graph. Then  $\Gamma$  is bipartite if and only if

$$SP(L(\Gamma)) = SP(Q(\Gamma)).$$

Hint. Check the possible diagonal matrix E with unit lengths of diagonal entries and  $Q = ELE^{-1}$ .



## **Matrix-Tree Theorem**



#### Tree

- A cycle in a graph is a closed walk without repeated vertices except that the first vertex and the last vertex are the same.
- A tree is a connected graph without cycles.
- **3** A **spanning tree** of an undirected graph  $\Gamma$  is a subgraph of  $\Gamma$  which is a tree and contains all vertices of  $\Gamma$ .



 $K_3$  has three spanning trees.



### **Deletion and contraction**

Let  $\Gamma$  be an undirected graphs with possible multi-edges and without loops. Let e be an edge in  $\Gamma$ . Then  $\Gamma \setminus e$  is the graph obtained by deleting the edge e from  $\Gamma$ , and  $\Gamma/e$  is the graph obtained from  $\Gamma$  by identifying the two ends of e to a vertex, deleting e and all multi-edges of e to remain loopless.



## Number of spanning trees

Let  $\tau(\Gamma)$  denote the number of spanning trees on  $\Gamma$ . Then

$$\tau(\Gamma) = \tau(\Gamma - e) + \tau(\Gamma/e)$$

for any edge e in G.

#### Proof.

 $au(\Gamma-e)$  counts the number of spanning trees on G that do not contain e, and  $au(\Gamma/e)$  counts the number of spanning trees that contain e.



## Multi-linear property of determinant

From linear algebra

$$\det \left( \begin{array}{cc} u+v & B \end{array} \right) = \det \left( \begin{array}{cc} u & B \end{array} \right) + \det \left( \begin{array}{cc} v & B \end{array} \right),$$

where u, v are column vectors, and B has size  $n \times (n-1)$ .

## **Example**

$$\det \begin{pmatrix} 8 & 7 \\ 6 & 5 \end{pmatrix} = \det \begin{pmatrix} 5 & 7 \\ 6 & 5 \end{pmatrix} + \det \begin{pmatrix} 3 & 7 \\ 0 & 5 \end{pmatrix} = -2.$$



#### **Matrix** notation

Let M be an  $n \times n$  matrix and  $i \in [n]$ . Let M(i|i) be the principal submatrix of M obtained by deleting the row and column indexed by i.



#### Lemma

### Let e be an edge in G with one end i. Then

$$\det\left(L(\Gamma)(i|i)\right) = \det\left(L(\Gamma - e)(i|i)\right) + \det\left(L(\Gamma/e)(i|i)\right).$$

#### Proof.

Suppose e=12, i=1, and  $d_1,d_2,\ldots$  are the degrees. Then

$$\det (L(\Gamma)(1|1)) = \det \begin{pmatrix} d_2 & * \\ * & d_3 \end{pmatrix}$$

$$= \det \begin{pmatrix} d_2 - 1 & * \\ * & d_3 \end{pmatrix} + \det \begin{pmatrix} 1 & * \\ 0 & d_3 \end{pmatrix}$$

$$= \det(L(\Gamma - e)(1|1)) + \det(L(\Gamma/e)(1|1))$$



# Theorem (Matrix-Tree Theorem)

$$\tau(\Gamma) = \det\left(L(\Gamma)(u|u)\right)$$

for any  $u \in VG$ .

#### Proof.

Since  $\tau(G)$  and  $\det L(G)(u|u)$  satisfy the same pattern of recurrence relation, we only need to check the initial conditions,  $c \geq 2$  copies of  $K_1$  and  $K_2$ . This follows from

$$\tau(cK_1) = 0 = \det(L(cK_1)(u|u)),$$
  
$$\tau(K_2) = 1 = \det(L(K_2)(u|u))$$

for any vertex u.



# Theorem (Cayley, 1889)

$$\tau(K_n)=n^{n-2}.$$

#### Proof.

Note that  $L(K_n)(1|1)=nI_{n-1}-J_{n-1}$ , where  $I_{n-1}$  and  $J_{n-1}$  are  $(n-1)\times(n-1)$  identity matrix and all ones matrix respectively. Note that  $J_{n-1}$  has eigenvalues n-1 and 0 with multiplicities 1 and n-2 respectively. Hence  $L(K_n)(1|1)$  has eigenvalues 1 and n with multiplicities 1 and n-2 respectively. This

$$\tau(K_n) = \det(L(K_n)(1|1)) = 1 \cdot n \cdot n \cdot n \cdot n = n^{n-2}.$$

A. Cayley, A theorem on trees, Quart. J. Pure Appl. Math. 23 (1889) 376-378.