

MS303-1980

Centimeter

Inches

1 2 3 4 5

Thomas A Edison Papers

A SELECTIVE MICROFILM EDITION

PART II
(1879-1886)

Thomas E. Jeffrey
Microfilm Editor and Associate Director

Paul B. Israel
Assistant Editor

Mary Ann Hellriegel
David W. Hutchings
Editorial Associates

Douglas G. Tarr
Robert A. Rosenberg

Leonard DeGraaf
Joseph P. Sullivan
Alan Stein
Karen Kozak
Student Assistants

John Deasey
Barbara B. Tomblin
Jacquelyn Miller
Maria Antonakakis

Keith A. Nier
Assistant Editor

Reese V. Jenkins
Director and Editor

Sponsors
Rutgers, The State University of New Jersey
National Park Service, Edison National Historic Site
New Jersey Historical Commission
Smithsonian Institution

University Publications of America
Frederick, Maryland
1987

Thomas A. Edison Papers
at
Rutgers, The State University
endorsed by
National Historical Publications and Records Commission
18 June 1981

Copyright © 1987 by Rutgers, The State University

All rights reserved. No part of this publication including any portion of the guide and index or of the microfilm may be reproduced, stored in a retrieval system, or transmitted in any form by any means—graphic, electronic, mechanical, or chemical, including photocopying, recording or taping, or information storage and retrieval systems—without written permission of Rutgers, The State University, New Brunswick, New Jersey.

The original documents in this edition are from the archive at the Edison National Historic Site at West Orange, New Jersey.

THOMAS A. EDISON PAPERS

Reese V. Jenkins
Director and Editor

Thomas E. Jeffrey
Associate Director and Microfilm Editor

Assistant Editors
Paul B. Israel
Robert A. Rosenberg
Keith A. Nier
Andrew Butrica

Assistant to the Director
Helen Endick

Student Assistants
Leonard DeGraaf
Alan Stein
Jacquelyn Miller

Research Associates
Douglas G. Tarr
Mary Ann Hellriegel
David W. Hutchings

Secretary
Grace Kurkowski

Joseph P. Sullivan
Karen Kozak
Granville Miller

BOARD OF SPONSORS

Rutgers, The State University of New Jersey	National Park Service, Edison National Historic Site
Edward J. Bloustein	Roy W. Weaver
T. Alexander Pond	Edward J. Pershey
Tilden G. Edelstein	Smithsonian Institution
John Gillis	Bernard Finn
New Jersey Historical Commission	Arthur P. Molella
Bernard Bush	
Howard L. Green	

EDITORIAL ADVISORY BOARD

James Brittain, Georgia Institute of Technology
Alfred D. Chandler, Jr., Harvard University
Neil Harris, University of Chicago
Thomas Parke Hughes, University of Pennsylvania
Arthur Link, Princeton University
Nathan Reingold, Smithsonian Institution
Robert E. Schofield, Iowa State University

CORPORATE ASSOCIATES

William C. Hittinger (chairman), RCA Corporation
Edward J. Bloustein, Rutgers, The State University of N.J.
Cees Bruyns, North American Philips Corporation
Paul J. Christansen, Charles Edison Fund
Philip F. Dietz, Westinghouse Electric Corporation
Roland W. Schmitt, General Electric Corporation
Harold W. Sonn, Public Service Electric and Gas Company
Morris Tanenbaum, AT&T

FINANCIAL CONTRIBUTORS

PRIVATE FOUNDATIONS

Alfred P. Sloan Foundation
Charles Edison Fund
The Hyde and Watson Foundation
Geraldine R. Dodge Foundation

PUBLIC FOUNDATIONS

National Science Foundation
National Endowment for the Humanities

PRIVATE CORPORATIONS AND INDIVIDUALS

Alabama Power Company
Amerada Hess Corporation
AT&T
Atlantic Electric
Association of Edison Illuminating Companies
Battelle Memorial Institute Foundation
The Boston Edison Foundation
Cabot Corporation Foundation
Carolina Power and Light Company
Consolidated Edison Company of New York, Inc.
Consumers Power Company
Corning Glass Works Foundation
Duke Power Company
Exxon Corporation
Florida Power & Light Company
General Electric Foundation
Gould Inc. Foundation
Gulf States Utilities Company
Idaho Power Company
International Brotherhood of Electrical Workers
Iowa Power and Light Company

Mr. and Mrs. Stanley H. Katz
Matsushita Electric Industrial Co., Ltd.
McGraw-Edison Company
Middle South Services, Inc.
Minnesota Power
New Jersey Bell Telephone Company
New York State Electric & Gas Corporation
North American Philips Corporation
Philadelphia Electric Company
Philips International B.V.
Public Service Electric and Gas Company
RCA Corporation
Robert Bosch GmbH
San Diego Gas & Electric
Savannah Electric and Power Company
Schering Plough Foundation
Texas Utilities Company
Thomson-Brandt
Transamerica Delaval Inc.
Westinghouse Educational Foundation
Wisconsin Public Service Corporation

START

39

A Note on the Sources

**The pages which have been
filmed are the best copies
available. Every technical
effort possible has been
made to ensure legibility.**

**PUBLICATION AND MICROFILM
COPYING RESTRICTIONS**

**Reel duplication of the whole or of
any part of this film is prohibited.
In lieu of transcripts, however,
enlarged photocopies of selected
items contained on these reels
may be made in order to facilitate
research.**

THOMAS A. EDISON PAPERS
A SELECTIVE MICROFILM EDITION
PART II
(1879-1886)

REEL 39

NOTEBOOK SERIES (NBK-17)

Menlo Park Notebooks, #149 - #184

Menlo Park Notebook #149 [N-80-10-15.2]

This notebook covers the period October 1880. It is a continuation of Menlo Park Notebook #148. The entries are by Edison, Francis Upton, and Francis Jehl. The book contains notes and drawings by Edison regarding tests made of lamps 70-98 from Lot 2. Included also are statistical results by Upton and Jehl along with summaries by Edison and Upton of results from all the lamps in Lot 2. The label on the front cover is marked "Lamps No 2," "No 70-98," "Oct 1880," and "F Jehl." The book contains 284 numbered pages.

Blank pages not filmed: 144-181, 192-257, 260-275, 278-283.

Index.

LIBRARY OF THE
BOARD OF PATENT CONTROL,

120 BROADWAY, NEW YORK.

From Library
GENERAL ELECTRIC
44 Broad St. N.Y.

May 1, 1896

70

Elect 208 - 210 136 Volts.

R 31400 157.0hm
200 + 201
C 48. 5220

172 - 172

Elect 31400 + 1200
200

R 16

2

3

76 mospot

No blue or clamps

84
440
146

$$\begin{array}{r} 314 \\ 44 \\ \hline 358 \\ 179 \end{array}$$

$$\begin{array}{r} 1644 \\ 1644 \\ 6464 \\ \hline 7471 \\ 7223 \end{array}$$

Elmt

71

5

$$R \quad \frac{31400 + 4400}{200} = 1790\text{ohm}$$

C

$$48 + 9/5270$$

E

$$185 - 185$$

R

$$31400 +$$

$$\frac{31400 + 640000}{2000}$$

C

$$116$$

71

No blue or clamps

Arc spring Res burned
flat burned off at

tit Carbon intact,

8
1523
1523
6464
8297
78.07

Ent

R

C

Ent

R

C

72
9

212-214

142 Volts

25150 + 4400
200 148 ohms

+111

48 6840

179-179

25150 + 5700
200

16

10

72-

not
cracked

No blue or clamps

globe blackened badly

low

Res ok -
no arc

11

very slightly
bright

12

1673
1673
6464
7399
7209

Eut

73

13

220-222

147 Voids

31400 + 4900

200

, 8200m

48

+ 71

5260

Eut

189-190

R

31400 + 6600

200

C

16

73
day
Slightly
bright

Blue on Clamps

1673
1673
6464
7570
7380

E.M.F

R

C

E.M.F

R

C

220 - 220 147 Volts -

31400 + 3600 175 Ohms
200

44

+ 71

5470
Below in glass

180 - 180

31400 + 5400
200

16

The sprung burned resistance
but Carbon intact 7 ohm Res
Core in Marti puts in a 13
ohm Coil - to see what result
It is very blue in globe - No blue
on clamp - Howell says -
globe very black - Lamp goes off -
I notice black on clamp towards
Postini - arc sprung again but
Carbon ok we put in another
Res Coil - Burned here are sprung
Res burned

20

1206
1206
6464
8153
7029

5040

75

21

E.M.F

R

C

198-199 132 Voles-

$$\frac{25150 + 5500}{200} 15-30 mm$$

48

+24/

E.M.F

R

C

170-170

$$\frac{25150 + 7150}{200}$$

16

75° =

little unequal

Blue on clumps

bad in clump - probably
 honeycombed ~~tree~~^{negativeside} of
 first bird & Hamtsuk
 off tree then went for
 4 or 5 mins & then
 and again & bushed
 short at clump

24

1703

1703

6464

7447

$$\underline{7317}$$

25

76

Σ.M.F.

222-222

148 Vols-

R

$$\frac{31400 + 4500}{200}$$
1800 hours
+ 6 ✓

C

45

53.90

Σ.M.F.

190-194

R

$$\frac{31400 + 4500}{200}$$

C

16

little unequal -

it burned the sick off of its
resistance but otherwise OK.

~~Busted~~ stopped

Resistor burned - and
fluffy stuff in globe

Blue on clamp
Put D on again & its burning
down

1461
1461
6464
7986
7372

E.M.T.

R

C

211-20.9 140 Volts

31400 + 450 1590 hours

+ 20%

5450

180-180

31400 + 2100
200

C

16

77

little bright

very bright

bright

was honey combed body
with gaps between faces fibres

Arc Spring Res Coil
burned - it was not
blue but it had a split
in Clamp ^{regarding} Custom intact,
platinum leading wire burned
at end of tip
Not blue at clamp

32

7644.
1644
6464
7670
7422

78

33

E.m.f 219-220 146 Volts
R $\frac{31400 + 2800}{200} = 171 \text{ ohms}$
C 48 + 81
5530

E.m.f

185-188

R

 $\frac{31400 + 4500}{200}$

C.

16

Very blue in globe & notice that it nearly touches side of globe = bursted 5 mins after - Resistance burned arc spring - both plasma leading wires burned off at tips = Carbon intact = Howell says no blue at clamps = (blackening must be nearly all if not all plasma)

152.3

15.23

44.64

70.95

7105

79

E.M.F.

R

C

48

E.M.F.

R

C

212-215 142 Vols

31400 + 3450
200
1740 hours

+ 131

5730

182 - 183

31400 + 5200

200

16

79

pea shoot out
lot Mercury
glass

Blue wh clamp = arc
Spring Res Carboured
(busted three) - must been
splitted clamp as its the

80

| pea shooted
| down
| negative side

40

1399
1399
6464
7932
7194

80

41

E.M.F.

209-205 138 Volts

R

31400 + 600 161 hours

200

+ 171

C

6240

E.M.F.

172-175

R

31400 + 2700

200

C

No split in clamps
bursted here, - but carbon at
clamp badly honeycombed
Burned to Res Coil
are sprung clamp
towards Posn qnt red
hot =

Not blue at clamp

44

$$\begin{array}{r} 218 \\ 222 \\ \hline 440 \\ 147 \\ \hline \end{array}$$

314

47

$$\begin{array}{r} 361 \\ 131 \\ \hline \end{array}$$

$$\begin{array}{r} 1673 \\ 1673 \\ 6464 \\ 7423 \\ \hline 7233 \end{array}$$

E.M.F

R

C

E.M.F

R

C

81

45

$$218 - 222 = 147 \text{ balance}$$

$$\frac{31400 + 4700}{200} = 181 \text{ balance}$$

48

+ 71

5-290

$$185 - 185$$

$$\frac{31400 + 6500}{200}$$

16

81

No Spots, not blue at C

burned its Res coil of
7 ohms, but Lamp OK

Matten puts in 13 ohms
notice fuzzy lamp black
from copper on glass
& on carbon on side

(towards Positive)

Heated Arc = 9

While it was bad
Contact on clamp ^{negative} arc

Sjorring

Clamp block towards
Positive

W. think it was
honeycombing

~~8~~ 1367
1367
6464
7825
7023

M.F. 207 - 205 137 hours

R 31400 + 1600 165 hours
200
+ 191

C 48 5040

E.M.F. 170 - 172

R 31400 + 3400
200

C 16.

Slightly
Unequal
Not blue at C

Fracture block
Streak parallel $\frac{1}{4}$
Carbon containing
to Positive on glass
+ without streak
parallel to
Negative

Res OK - No line -
Fits not split

1139
1139
6464
8113
6855

195
125
(390)
120

E.M.F. 195-195 130 hours

R 31400 + 200 158 hours
+ 281

C 48 4850

E.M.F. 168-168

R 31400 + 2000
200

C 16

8³ - Very
Slightly unequal
Not blue at Clamp

No Resin but
arc & glass all
busted

193
195
196
129

$$\begin{array}{r}
 25150 \\
 5200 \\
 \hline
 30350 \\
 156.7
 \end{array}$$

1106
1106
6464
8041
6717

.M.F

193 - 195 = 129 Volts

$$\frac{25150 + 5200}{200} = 1570mV$$

R

$$\begin{array}{r}
 48 \\
 + 29 \\
 \hline
 4700
 \end{array}$$

E.M.F

167-165

R

$$\frac{25150 + 7000}{200}$$

C

16

84

little

Nat blue at clamp

Res burned

are sprung

brushed hair Neg side

globe blackened

Neg clamp honeycombed

220
222
442
144

1673
1673
6464
7167
6976

M.F

220-222 147 holes

R

31400 + 7000 192 hours

C

48 ~~+ 81~~
4980

M.F

190 - 189

R

31400 + 8700

C

16

little' lots mercury in
globe:

Not blue at clamp

but think it broke mechanically
black on clamp toward Positive.

This lamp burned its Resistor
but seems to be ok notwithstanding.

Martin puts in a Res Coil
of 6 ohm in place of 6
shins. Arc sprung & burn
off platinum wires at tip

Carbon OK = not blue in

Clamps so says Howell

235
235
1570.
156

M. F.

R.

C

46 Too high resistance

No Res Cork in the
Damp air sprung
Exploded inside glass
but broke all pieces
blue w. clamp

1903
1903
6964
7471
7741

E.M. # 235 - 230 15-1-Volts

R $\frac{31400 + 4300}{200}$ 179 hours

C 48

5940

O

M.7 195 - 195

R $\frac{31400 + 6000}{200}$

C

16

Carton intact - glass bursted
arc sprung - This lamp had no
resistance coil. No glue in
clamps

~~Not~~

72

1673
1673
6464
7520
733 0

88

73

220 - 220 147 Vols

31400 + 4000 177 Vols
200

48 + 71
5410

186 - 187

-31400 + 6000
200

16

74

88 - no spots.

Blunt clamps

natsplit
Clamps

Reo ok
no inc.

75

1139
1139
641641
8326
7068

Mf 195-195 130 Voles

R 25150 + 4100 147 Rhinos

C 48 ~~26~~
200 5090

Mf 166-166

R 25150 + 5900
200

C 16

89-

Every very slight

Not blue at clamp

Honeycombed at clamp
negative side!

Red burned are

Spring

not split clamp

1961
1961
6464
7496
6882

M.F.

210 - 210

140 Volts

R

251.50 + 9500

178 hours

200

C

48

+171

4880

E.M.F.

180 - 18 1/2

31400 + 4800

200

C

16

90 nospots

Not blue at clamp

Resturned arc sprays

1553
1553
6464
7173
7343

9.1

215-215

143 blocks

31400 + 2000

167 hours

2000

C 48 5-4-20

+121

186-187

31400 + 3900

C 16 2000

91

Not cracked at tip

Nat blue at clamp

Res off no arc

glare blocked -

I guess the carbon merely screens
the carbon vapor according to
which side burns nothing out

92

~~202000~~~~251150 + 52000~~~~400~~~~1852100~~~~200000 + 65000~~~~200000~~Too high
resistance

92 - very low
no spots

Spots getting bad in this -
after full time Spots grow
beautiful big must burst soon

Busted

~~flat~~

Pointing
in

Big blue in
Clamp towards
position-

mercury
glare

No Res Cool in This

Carrying towards Position
(it's not crooked)

92

1564
1584
6964
8182
7814

93

215 - 218 144 Vols

25150 + 5200 152 Jms

48

6040

+101

185 - 185

25150 + 6800

200

16

93 Granite
Unequal

Glass broken - arid Resistance
coil burned - Carbon intact.
no glue in 93 at clamps

88

2943	1673
2942	1672
6464	6464
7799	7799
<hr/>	
153	7609

94	
220 - 220	147 Vols
<hr/>	
31400 + 1700	166 hours
<hr/>	2
C 48	5760
	6110
+ 71	
<hr/>	
183 - 184	
<hr/>	
31400 + 3600	200
<hr/>	200
16	

94.-

bent on one
 not on the
 one that hangs up

honey combed
 negative

Right here is a black spot due
 probably to a little piece of
 that fuzzy Carbon. A
 blue halo surrounds it
 towards negative
 Brushed = Red burned - arc
 Sprung = flat waves burned
 off at its Carbon intact
 Blue at clamp

100

1584

1584

6464

7773

5405

101

95

215-217

144 Vols

31400 + 1000

167000

C 46

5500

+101

185-187

31400 - 3500

95°
Slightly
Busted here

Didnt burn Resistant

No blue on clamp No

black

honeycombed at clamp

lets not cracked

1399
1399
6464
7959
7221

96

S.M.F 208-205 1381115

R 25150 - 6800 1600mns
200

C 48 5270 +/71

180 - 180

25150 - 8200

200

96. - no spots

5 feet

but not inside
Cohes bonds

(shop slip says
Clamp spleen)

Black on Clamp towards Pos
Howell says not blue -

Res off no are

Globe blackened

~~Hart~~

lets not crack

1761
1761
6464
7399
7385

97

225-225 150 Kms

31400 + 4900 182 Kms

200*

48

+ 4V

5480

189-188

31400 + 6900

200

99

Arc Spring = only 1 turn on
Res coil, burned Res Coil -
both platinum leading wires
burned off at fits

Not blue at C

103.8
1038
6464
8839

\$079

98

190-190

122 Vols

140 others

$$\frac{25150 + 2900}{200}$$

+ 291

48

5100

169-169

$$\frac{25150 + 4000}{200}$$

200

Not blueat C

Res burned area

Spring plowwise

burned off on positive fit

Carbon probably
burned mechanically

Note -

The first 3 lamps that bursted tonight had no resistance
Coils = perhaps Resistance on all heated, increased. Their resistance
hence the ones that had no res must have been higher -

The lamps tested tonight were a very nice lot, only 1 or two that are noticeably low & perhaps Res for these was wrong - Apparently there is no oxidation by leakage as I do not notice any noticeable increase in spots =

over

118

119

Must look out for cracks in
tite - after test over -

120

121

6 good
 1 low
 fair
 16 good
 17 low
 18 low
 19 good
 20 little low
 21 very good
 22 good
 23 little low
 24 good
 25 good
 26 good
 27 good
 28 good
 29 good
 30 good
 31 good
 32 good
 33 good
 34 good
 35 fair
 36 little low
 37 very good
 38 good
 39 very little low
 40 very good
 41 very low
 42 low
 43 good
 44 good
 45 good
 46 good
 47 good
 48 good
 49 good
 50 good
 51 good
 52 good
 53 good
 54 good
 55 good
 56 good
 57 good
 58 good
 59 good
 60 good
 61 good
 62 fair
 63 good
 64 low
 65 good
 66 good
 67 good
 68 good
 69 good
 70 good
 71 good
 72 good
 73 good
 74 good
 75 good
 76 good
 77 good
 78 good
 79 good
 80 good
 81 good
 82 good
 83 good
 84 fair
 85 low
 86 low
 87 low
 88 low
 89 low
 90 fair
 91 low
 92 low
 93 low
 94 low
 95 low
 96 low
 97 low
 98 low
 99 low
 100 low

1 fair
 2 fair
 4 fair
 6 good
 8 fair
 12 little low
 13 fair
 15 fair
 16 low
 18 good
 19 good
 20 little low
 21 little low
 22 low
 23 good
 24 good
 25 good
 26 good
 27 good
 28 good
 29 good
 30 good
 32 fair
 33 good
 34 good
 35 fair
 36 little low
 37 very good
 38 good
 39 very little low
 40 very good
 41 very low
 42 low
 43 good
 44 good
 45 good
 46 good
 47 good
 48 good
 49 good
 50 good
 51 good

53	very good	82	good
54	extra good	83	low
55	good	84	fair
56	good	85	good
57	good	86	fair
58	good	87	fair
59	good	88	fair
60	fair	89	fair
61	fair	90	fair
62	fair	91	good
63	fair	92	low
64	fair	93	-
65	fair	94	-
66	good	95	-
67	good	96	-
68	good		
69	good		
70	good		
71	good		
72	fair		
73	fair		
74	fair		
75	fair		
76	fair		

Lumps that became
bright

Lot 2

37
43
51
53
57
69

98	43	29	Badly Spotted no 84
40	51	22	
42	53	13	
53	57	36	
57	67		These # 4 came in order named
69	69		
84	83		
98	84		
37	87		
40	98		
42	18		

Blue at the clampss?
Lot 2

13

18

22

29

42

83

87

98 Filled with very blue
fluorescence.

Burst + burst - the re-
istance up

✓ 83 Burst - arc at clamps
no outside resistance in

13

18 Blue at clamps

22

29

42

67

87

Oct 15 - carbon not broken
✓ 36 Burst - arc below the
clamp. Fused platinum wire
is O.K.

✓ 87 Burst, arc at clamps

✓ No 40 Broke - arc at clamp 133
resistance burnt off negative
Oct 16-
No 2 lot-

✓ Oct 16 Res OK"
No 1 - carbon broke at
7.35 A.m Oct 16/1913

✓ ~~No 90~~ ^{8.13} Lot-1 at 8.10 A.m Oct 16 Res OK Carbon broken here.

✓ No 67 lot-2 Oct 16 positive
8.13 A.m
arc, Clamp fused,
Resistance burnt $\frac{890}{903}$

✓ No 29 lot-2 8.22 A.m Oct 16 negative
Res O.K. $\frac{92}{912}$
 broken here

- ✓ Jno 37 - lot 2 829 A.M. 135
- Oct 16.
-
- negative $\frac{890}{29} \frac{919}{}$
-
- ✓ Jno 42 - 8,35 A.M. Oct 16
- Lot 2
- but ^{may} broken here. $\frac{890}{35} \frac{925}{}$
-
- ✓ Oct 16
- Jno 43 9.50 A.M. $\frac{890}{50} \frac{940}{}$
- Lot 2
- carbon broken position
Res O.K.

✓ 53 lot-2.

Carbon broken

Res. O.K.

9.20 A.M Oct-16

$\frac{950}{20}$
 $\frac{970}{}$

✓ No 22 lot- $\frac{1070}{1130}$ 2 Oct-16,

Carbon broke at 11.40 A.M

Res. O.K.

--- negative this was very
badly spotted blur at clamp
+ a few minutes before it went
Mr Edison revised it.

✓ No 69 Lot 2

11.52 a.m. Oct-16-

Carbon broken

negative -

Res O.K.

1130
52
1182

No 47 lot L

11.30 P.M Oct-16-

Carbon broken --- positive

Res burnt -

✓ No 18 Lot - 2

2.30 P.M. Oct 16

carbon broken ^{partly}

No resistance

1190
30
1220

1310
5
1315

13. Lot 2.

4.05. P.M. Oct. 16.

(A lamp on which Edison was experimenting was short circuited, the "recoil" broke #13.)

All in a leap.

No resistance.

✓ 51 Burated at 4.45¹⁴³
Oct 16 1880
positive - [U-shaped diagram]
1310
45
1355

No 40 Broke Monday morning
Oct 18- when the engine started

Negative ---
Side 1 [U-shaped diagram]

186

187

188

189

190

191

258

259

276

277

48

$$\frac{52}{100}$$

310

310

~~$$\frac{620}{620}$$~~

216

~~620~~

$$\frac{1}{432}$$

1293

$$\frac{13362}{13362}$$

$$216) \overline{125} (\underline{58}$$

$$\frac{1080}{1080}$$

$$\begin{array}{r} 1700 \\ 1728 \end{array} \quad 290$$

26

76

13

16

7

10

16

$$\begin{array}{r} 104 \\ 7 \end{array} \quad 14$$

$$\underline{34}$$

$$\underline{28}$$

$$A - T = \frac{5}{2}$$

$$T - A = \frac{11}{2}$$

Menlo Park Notebook #150 [N-82-12-21]

This notebook covers the period December 1882-May 1885. The entries are by John Ott, E. D. Kellogg, and H. de C. Hamilton. There is also one entry by Edison on carbon filament experiments. The name of Martin Force appears as a witness. Included are notes by Ott on experiments with carbon filaments, clamps, vacuum pumps, and electric meters. There are also notes by Kellogg and Hamilton on insulation experiments and notes by Hamilton on condensers, storage batteries, chemically treated wrapping paper, and bleaching by electricity. The label on the front cover is marked "Sept 4 80." The book contains 264 numbered pages. The last few pages have been torn out of the book.

Blank pages not filmed: 182-183, 190-264.

LIBRARY OF THE
BOARD OF PATENT CONTROL,

120 BROADWAY, NEW YORK.

From L. Clegg
GENERAL ELECTRIC
44 Broadway N.Y.

May 1, 1896

Dec 21 1882 T.A.B.

Tips of Carbon filaments (Carbon)

Lampblack + Syrup don't hold on
filament. ~~hard~~ Carbon

Lampblack + Rosin good
Carbon holds well - not as
well as Lamp Black and J. F. Ott
for M.R.T.

Lampblack Syrup + Anthracene
don't stick to Carbon
at all - porous Carbon
J. F. Ott

Lampblack + Pitch - porous
no good -

J. F. Ott

4

Dec 21. 1882 5

Lamp black and Tar
quite good adheres to
filament. J. F. Otto,
M. M. F. Mfg.

Dec 21. 1882

Lamp Black: Gum copal
Tuff Paper & Burnt Gypsum

Nothing left

T. G.

Pitch and Tar

Very good

Lamp Black & Antiacorn

Nothing left T. G.
J. F. Otto
M. M. F.

Plumbago & Pitch

Nothing left

XPG

M-N.F.

Plumbago & Syrup

Nothing left

Plumbago & burnt sugar

No good

Plumbago Syrup & Anticemic

fair T.A.G.

Plumbago & anticemic

No good
Plumbago & Syrup

etc good

T.W.V J. F. O.H.
M-N.F.

Dec 28, 1882

Carbonized ~~Mellita~~
fiber twisted found
it worked well carbonized
hard glossy black.

J. F. Ott

M. N. T.

Tae

Thimbago. Tar & Pitch
fair

Tae

M. N. T.

Jan 6 1883

Carbonized Bamboo
fiber in Linseed oil brought
up to temperature of 600 deg
tar, worked well.

Also Mellita fiber

J. F. Ott

M. N. T.

Tae

Jan 15, 1883

Made clamping device to
clamp fiber so as to solder
it to copper wire of inside
part of lamp without heating
Carbon above the thick part
Soldered one with silver
" one with tin

Also soldered with the
current using the wires
as conductors then breaking
them forming an arc fusing
the metals together also
using two carbon pencils
forming an arc. ^{now} found
that one pencil works well

J. C. F. Ott
Jan 15, 1883

Jan 16. 1883

Plated ends of fiber
then tinned them, then
tinned end of Copper wire,
then soldered them together
with soldering iron

J. F. Otto

M. M. F.

J. W.
F.

Jan 11. 1883

Twisted Manila Fiber
put in moulds and sent to
Lamp Factory Newark to be
Carbonized. —

J. F. Otto
M. M. F.
TAE

Jan 11. 1883

Made up a mould of
Carbons and laid side by
side with the fiber a
thin filament of lead
about twice the diameter
of the Manila twisted
fiber. When the fiber
Carbonized the molten
lead combined with the

as oxygen given off by the fiber or other substance in the mould therefore the fiber will be saved
also tried Zinc

" " - Copper
" " - Iron
" " Tin foil

John F. Ott
M. M. T.
T. R.

Jan 16, 1883

Loked Carbon moulds
in Linseed Oil, boiled them
then put in fibers and
Carbonized.

J. F. Ott
M. M. T.
T. R.

Jan. 18, 1883.

Made up a lot of fibers
laid out straight with one
fiber twisted around them
also three fibers braided
together, also six fibers as
three some braided tight some
loose

J. F. Ott
M. M. T.
T. R.

Jan 18, 1883

Made a device for holding carbon and inside parts while admitting them to the flame for soldering and soldered them with different grades of silver solder.

J. F. Otto

T.A.G.

M.N.F.

Jan 24, 1883

Sent 54 Manilla twisted fiber to Lamp factory to Carbonize they were twisted some Two Three Four Five and Six then doubled and twisted again

J. F. Otto
T.A.G.

Also braided some M.N.F.
Also laid four and five fibers straight and twisted one fiber around in one direction and one in the other T.A.G. M.N.F.

19

Jan 26, 1883

Sent another lot
to Lamp factory they
Carbonized well

J. F. H.
J. C. G.

M. N. F.

Lamp Exp

Feb 3, 1883

Had glass blower
make the following device
per order of T. A. Edison.

J. F. Ott.
W. H. F.

Lamp End

Feb 5, 1883

Plated Carbon filament
on both ends, then drawn
small glass tubes slipped them
over the plated part also
the inside parts then fused
them together

J. F. D. H.
M. H. T.

Lamp End

Feb 10 1883

Twisted Manila
fiber tied them over a form,
then immersed lower part
in concentrated sugar before
carbonizing them

J. F. Ott

Feb

M A T

Feb 12, 1883

Finished machine to
twist very fine wire around
end of fiber and inside parts
so as to make a perfect contact
between inside wire and of
fiber

J. F. Ott

Feb

M A T

Lamp Body

Feb 12, 1883

Twisted
fibers, put in moulds, and
sent to lamp factory for
Carbonizing

J. F. O.H.
Tale
M.W.F.

Feb 12, 1883

Taken a solution of
Bartacina mixed by Mr Edison
immersed end of fiber so as to
enlarge the end where contact
is made to Copper wire.

Also immersed tissue
paper then wound the end

J. F. O.H.
Tale
M.W.F.

28

Lamp Cork

29

Feb 13, 1883

Made small device
for twisting end of Copper wire
on inside parts of taper
spiral forming a cup shape
to hold fiber until plated
together

J. F. O.H.
T.A.G.
M.N.J.

Feb 19, 1883.

Coated ends of fibers with
Bassorin marked Order No 2.
T.A.G.

Feb 20, 1883

Coated ends of fibers with
Bassorin marked Order No 4.

T.A.G.
M.N.J.

Lamp Body

Feb 20. 1883

J. F. Otto

Sent Lin brushes,
with Iron wire to Mr Andrews
to be tested on Dynamo for
Carrying capacity, Heat, and Spark

T.W.

M.I.G.

Feb 20. 1883

Lamp Marked Order No. 2
A. Copper wire twisted in spiral
shape then reamed out and fiber
pressed in.

T.W.

Feb 20. 1883

Order No. 6. South
American fiber twisted 8 strands

T.W.

M.I.G.

Lamp End

Feb 20, 1883

Order No. 7. fiber with enlarged
ends with Barronin dissolved in
equal parts Water and ammonia

J. A. G.

M. M. F.

Order No 5. ends
immersed in sugar before carbonizing

J. A. G.

M. M. F.

the entire length of fiber
saturated with solution marked

Order No 2

J. A. G.

M. M. F.

J. F. 0.00

Lant Est Order No 2

Tragacanth water & ammonia
on end of fibers

TAG
M.M.F.
J.F.O.H.

Order 3

Tragacanth & ammonia strong
on end of fibers J.F.O.H.

Order No 4

Bassorin M.M.F.

Tragacanth treated with
water until swelled up
then found off, some
water used until all the

soluble stuff gone away
then treated with alcohol
acutated with Hydrochloric
acid then pressed to squeeze
it out & then dissolved by
heat in strong ammonia

See Bassorin 1x of

These fibers were only
treated at ends to unite
all fibers as one J. F. Oth

M.M.F.

J.W.K.

Lamp End Order No 9

The entire length of fiber
treated with solution marked
Order No 2 T 4 G

M.M.F.

J.F.Oth

Order No 10

The entire length of
fiber treated with
solution marked Bassorin

Order No 4 T 4 G

M.M.F.

J.F.Oth

Lamp oil

Feb 20. 1883 39

Order No 11
J. F. Otto

The entire length
saturates with solution
marked No 3 Ammonia
strong Talg
M. M. T.

Order No 12

Two fibers double
straight coated with solution
marked Order No 2

Talg
M. M. T.
J. F. Otto

Lamp Est.

Order No 13

Two fibers straight T&F
coated with Order No 3

T&F for
Order 14 March
3. 1883

Fiber coated with bassorin,
eight in number, drawn through
draw plate put on foot of
bistol board ^{M.N.F. & J.O.B.}

^{M.N.F.}
Order 15 T&F
_{M.N.F.}

Twisted fibers with foot or
ends made of card board and
fastened with bassorin

J.O.B. March 3.
M.N.F. Feb 1883

Lamp East

March 5, 1883

J. F. Otto

Saturated Gum Tragacanth
in water until soft put in a
syringe and forced out in
streams and left dry. Then
cut groove in with saw and
slipped fiber in with some
moistened Gum, put in moulds
and sent to Lamp factory
for carbonizing

T. E. M. W.

March 6. 1883

Made carbon clamp by
winding the wire on a flat ~~iron~~
mandril then placing a flat
wedge alongside the carbon

March 6, 1883

Made Meter after the
following principle

J. F. C.

J. F. C.
M. M. T.

Notes Engr

March 6. 1883

Made safety plug in
following manner, the object being
that part of the current flowing
through the solution carrying some of H₂O

Lamp Body

March. 6. 1883

Made lamp with
two spirals and one carbon

March 8, 1882

Made lamp with
Aluminum clamps and
leading wires

W
M M F

March 8, 1882

Lamp made after
the following principle

March 9, 1883
J. F. B.

Made lamps 2 with
one platinum plate one side of
clamp, and 2 with plate on
each clamp

54

Lamp Body

March 9, 1883
J. F. Ott

Edison } Edison Exhibit I
n Thomas }

55

March 9, 1883

Made lamp with
soft iron plate between carbon
loops

Lamp Base
Edison Edison Electric
Thomas } March 10, 1883
2nd J F O H T 100 L
W W D

Carbon X
Aluminum X
Zinc X
Tin X
Lead X
Magnesium X
Platinum X
Copper X
Silver
Iron & Bronze
Babbitt
Nickel X
Gold X
Silver for
Anodized

Lamp Cap

March 12, 1883.

Made an experiment
by sealing in a lamp bulb an
iron tube connected to one pole
piece of platinum wire to other
pole but not in connection with
each other

J.W. J. F. Otto
M. H. T.

61
March 12, 1883

J. F. Ott

Made two lamps with
piece platinum blown in side
of bulb

Clamps to clamp
Carbon in Lamp

March 16, 1883

Hammered platinum wire,
then drawn through snare plated,
leaving small hole in end to put
fiber in, fastened fiber with lamp
black and coal tar, then coated
the entire wire with lamp black &
tar, baked, until gasses evaporated,
Then immersed carbon in water,
gently blowing flame on clamps,
and soaked ~~on~~ fully carbonizing
the compound

J. P. W. J. F. D.

Blank Exp

March 19, 1883

J. F. Ott

Mixed sugar and lamp black, carbonized found it to blister

Mixed lamp black and Karocene, crumbled off

Mixed lamp black and Linseed oil, crumbled off

Tar and Graphite sticks quite well, difficult to apply

J. F. Ott
March 19, 1883

66

Carbonizing

67

March 20, 1883

Picayune
MS 11 F

Carbazing

March 20 1883

M. M. F.
J. T. Ott.

March 21, 1883

Made device for
clamping carbons and plating
hydro carbon on lower ones by
immersing in oil, and passing
current through

March 26, 1883 J. F. O. T.
J. M. H. T.

Made two lamps
with gold leaf between loops

March 27, 1883

Altered clamping device
to following principle

1 having clamping device laying
flat so that carbon can easily
be handled,

2 second the springs being
made of wire instead of sheet so
as to make a larger number of

74

75

April 2. 1883⁷⁷

78

79

3. 1883

April

J. T. Ott
M. M. T.

Made and tested miter

April 3, 1873

Drawn Manilla fibers
through Gum Tragacanth
tied over a form left dry
cots of different grasses that
were hollow split one side and
sprung over fiber and fastened
with Gum Tragacanth

J. F. O.
M. M. T.

April 4, 1883

84

April 11, 1883 85

2.5.04

M. M. F

April 12, 1885 87

Made small clamps by
flattening plat iron then drawing
through draw plate small enough
to take fiber without fraying
then slipping sleeve over the spring
clamp together and being large
enough to generate heat if prevent
temperature raising to red heat

J. C. G.
M. H. G.

April 12, 1883
J. F. Oss
M. M. P.

Tested this model, and
it give quite fair result

For making Carbon fiber by Hydrocarb
deposits

Date

May 14. 1883

J. F. Ott
M. M. F.

Notes

May 17, 1885

J. F. Otto
W. H. G.

94

95

May 17, 1883

J. F. Ott

M. W. F.

Fan

Dash pat
for Notes

96

97

June 4, 1883

J. F. Otto
M. W. F.Main

June 14, 1883

M. A. F.

Had Birymann snake rolls

To make clamp to hold bamboo
Carbons known as Village plant
Carbons and also sleeve to
slide over them the wire
was rolled W shape, and sleeve
round

○ sleeve

○ Clamp

○ Carbon

J. F. O.

July 9, 1883

M. N. T.

Found that a solution
of Permanganate Potass
made a very clear mark on
paper while the Permanganato
Potass fades, and the mark
remains permanent.

Good for rapid telegraph

J. F. C. H.

102

103

Meter

july 24. 1883
J. F. O

104

Meter

Aug 3. 1883
J. F. O

105

106

Meto

Aug 3. 1883

107

J. F. C.

Aug. 6, 1883
J. F. O.
M. H. T.

Made clamps by rolling round copper and Platinum wire flat and sealing them to Platina wire on inside parts of clamp then making flat sleeve to enter, different widths to take carbon with foot or without.

Sizes of wire used on page
No. 111.

New York Aug 6 1883 111
 J. F. Otto M. W. F.

Sizes of copper wire used for making
new clampool (large size) or platinum

.016 wire will make clamp
 .003 Thick
 .051 wide
 .080 will make sleeve for clamp
 .010 Thick
 .180 wide
.150 Length to cut clamp sleeve

1 Die .072
 1 Punch .072
 1 " .05-2
 1 Core { .05-2 wide
.012 Thick

Small Size

.012 wire will make clamp
 .003 Thick
 .030 wide

Same size wire used for sleeve
 except that they are cut shorter
.096 Length to cut sleeve

1 Die .05-2
 1 Punch .05-2
 1 " .031
 1 Core { .031 wide
.012 Thick

Aug 21. 1883

Bought tissue paper to
make Carbon filaments of,
by pasting a number of sheets
together and cutting out the required
sizes bending them then carbonizing
them

J. F. Ott

E D Kellogg Aug 25. 1803 115

Mixed different oils with different
Compounds to make insulation
Compound

Hemlock Gum & Rosin very brittle

Tar & Burgundy Pitch very fair

Rosin & Chalk no good very
Brittle

Hemlock gum & chalk no
good very brittle

Tar & Starch very fair
quite hard

Tar & Chalk too soft did
not put enough chalk

Tar & Rosin got too much

Tar in made it too soft

Rosin & Linseed Oil made it
with too little oil at first then
got too much in could be
made very good I think

Hemlock Gum & Linseed Oil
would be very good without
much oil put in too much

Hamilton, Aug 25 - 1885 117

Gum Camphor & Raw Linseed Oil - good
 " Fusel Oil & Resin - good
 " + Oil Cade - too brittle
 " + Cottonseed Oil - gunnery
 " + Castor Oil - too soft but "f"
 " + Paraffine Oil - fair
 " Resin & Chalk - brittle.
 " Flowers & Castor Oil - fair

Burg Pitch & Linseed Oil - too soft
 " + Cottonseed Oil - too soft
 " + Castor Oil - too soft.
 " Linseed Oil & Chalk - too thin
 " + Paraffine Oil - fair

118

Resin + Linseed Oil Brittle
good but too soft with more oil

119

Resin + Paraffine Oil soft
Put in too much Oil

Tar + Hemlock gum good but
somewhat brittle could better it
by adding a little oil

Cameron Aug. 2)" 1880. 121

- Gum Myrrh + Castor Oil - won't mix
" " + Linseed " - " "
" Zanzibar + Castor Oil - won't mix well.
" Copal + Castor Oil - very good.
" " + Linseed " - too brittle
" " + Cotton seed Oil - too "
" " + Olive Oil - brittle.

- Gum Sandarach + Castor Oil - very good.
" " + Linseed Oil - brittle N.G.
" " + Cotton seed " - " N.G.
Gum Ambrox Castor Oil - won't mix well.
" " + Linseed Oil - " "

- Gum Benzoin Castor Oil - fair but brittle
Gum Zanzibar + Castor Oil - too soft.
Gum Copal + Castor Oil - good.

" "

Evergreen Aug 27 1883 123

Resin Tar + Linseed oil good
but soft

Resin, Hemlock gum + Cottonseed Oil
good but somewhat brittle

Resin + Cottonseed Oil good but
little bit too soft

Hemlock gum + Cottonseed oil
very soft

Hemlock gum + Castor oil
very soft

Hemlock gum Castor Oil + Gum Myrrh
very soft, gum myrrh did
not mix with other things

Hemlock gum + Paraffine oil
good but brittle
with more oil, too soft

Hemlock gum, a lit Cade
very brittle add more oil

Red Lead Resin + Linseed Oil
Very Brittle

with more oil still brittle

Hamilton, Aug 28" 1880 125

Gum Damar & Castor Oil - fair. this time.
" " → Paraffine Oil - too much gum.

Burg Pitch & Castor Oil - fair
" " → Paraffine Oil - too brittle
" " → Cotton seed Oil - Gummy

Gum Zanzibar & Castor Oil - won't mix well.
" " Castor Oil & Sulphur - no good.
" " Cotton seed Oil - won't mix
" " Linseed Oil - gum won't dissolve.
" " → Oil Cade - won't mix well.

Burg Pitch & Petroleum wax - too brittle
Zanzibar, Tar, Sulphur & Castor Oil - N. G.
Gum Damar & Petroleum wax - too brittle

Aug 27 1883 127

Red Lead + Tar. very good

Red Lead, Resin + Castor Oil -
very brittle tried 2 all brittle

Red lead Resin + Paraffine Oil -
tried 2 grades all brittle

Chalk Resin + Paraffine Oil -
very good

Chalk Resin + Castor Oil -
very good 80% w/w

Hemlock gum + Olive Oil -
good but soft

Resin + Olive Oil - Brittle

Gum Ammoniac + Castor Oil
no good gum dont mix with
oil

Gum Olibanum Rd. lead + Linseed Oil
no good gum dont mix with
oils.

Hamilton Aug. 29th 1883. 129

- Gum Zanzibar & Oil Myrrane - N.G.
 Berg Pitch & Oil Myrrane - fair but too stiff
 Benzoin, Oil Myrrane, & Petroleum wax, &
 Fire Clay - will not mix well.
 Asphaltum & Petroleum wax - fair a little stiff
 " Petroleum wax & Clay - too thin.
 Hemlock Gum & Oil Myrrane - good
 Aloë Capensis will not dissolve in Oils.
 Balsam Tolu & Castor Oil -
 " Sassafras Oil - brittle. N.G.
 " Linseed Oil, Clay & Tar - brittle
 " & Petroleum wax - too brittle
 " Petroleum wax & Tar - "
 " & Tar - rather good.

Hamilton Aug 30 1883 131

Gum Gaiac & Anilin Oil - N.G.

" Camphor & " " - pretty good

" " & Oil of Tar - fair, little brittle

Burg Pitch & Oil of Tar - a little brittle

" & Anilin Oil - " "

Catgut & Castor Oil, won't mix at all.

Read Lead & Petroleum wax - too soft;

Fine Clay & Oil of Tar - N.G.

Balsam Tolu & Oil of Tar - fair, a little soft.

Resin, Chalk, & Oil of Tar - too brittle.

Balsam Tolu & Anilin Oil - not
tough enough.

Aug 29 1883 Ed Kellogg

Resin - liquid oil fair to soft.
Asphaltum + " " very good

" + Oil Hybrid good
" + Castor Oil front mix
" + Olive Oil fair to soft
" + Paraffin Oil very good.
" + Cottonseed Oil fair

Rosin

Ed Kellogg

Aug 30 1883 135

Asphaltum + Amilic Oil fair
 " + Oil Tar good
 Resin + Amilic Oil brittle
 Resin + Oil Tar good.
 " + " Myrbane good
 " " Petroleum wax too sticky
 Andine Oil " Benlock gum good

ED Kellogg

- Gum Camphor + Amine Oil dont mix
 " " Amine Oil + Resin good
 Gum Arabic + Oil Myrbane dont mix
 Gum Camphor Oil Myrbane + Resin too soft
 " " Palm Oil good but little soft
 " Paraffine Oil + Resin very good
 " Linseed " " " very fair
 " Oil Tar + wood tar good
 Tar + Oil Myrbane good
 " " Sulphur fair
 " " Amine Oil good
 " " Palm " H. G. dont mix

E D Kellogg

Hamilton Sept 3rd 1883 139

- Gum Thus & Castor Oil - not tough enough
 " " Sulfuric " - " "
 " " & Cotton seed Oil - too gummy.
 " " & Paraffine Oil - " "
 " " & Aniline Oil - too brittle
 " " & Oil Myrrane - " "
 " " & Oil of Law - too brittle
 " " & Petroleum wax - too soft.
 " " & Palm Oil - brittle.
 " " & Copal Varnish - too brittle.
 " Copal Varnish & Sulphur - brittle
 " " Oil of Nutmeg - too thin
 " " Oil of Nutmeg & Sulphur - brittle
 " " & Law - a little too soft.
 " " Law & Sulphur - " "
-

E. M. Willoughby Sept 4 1883 141

Gum Euphorium & Oil Myrrhe - don't mix

" " Aniline Oil - " "

Resin & Palm Oil - very good

" " Copal Varnish - rather brittle

" " Oil Nutmeg - rather too brittle

Hemlockgum & Palm Oil - good but too soft

" " " Oil Nutmeg - good averaging

" " " Copal - Varnish very good

" " " Oil Tar - good but not tough

" " " " " Myrrhe - good averaging

Asphaltum & Copal Varnish - good

" " " Oil Nutmeg - good averaging

" " " Palm Oil - good " "

Hamilton Sept 4. 1883. 143

- Pin Camph & Copal Varnish - a little soft.
" " + Salicy Oils - too sticky.
" " + Oil of Juniper - too brittle.
" Sandarach + Copal Varnish - a little soft.
" Benzoin + " " - won't mix.
Berg Pith + " " - brittle.
Balsam Lolew + " " - brittle
-

Sept 5 1883

- Gum Acacifolia & Oil Mybane - dont mix
 Asphaltum & Petroleum Tar - not tough enough
 Hemlock gum & " " - too soft
 Asphaltum & Ameline Oil - not tough enough
 Aloes Succotrine & Ameline Oil - Brittle
 " " Al Mybane - dont mix
 " " Castor Oil dont mix
 " " Palm Oil dont mix
 " " Oil Tar dont mix
 " Linseed Oil dont mix
 Ed Kellogg

Camilloth. Sept. 5th 1883. 147

- Balsam Oil + Palm Oil - very brittle
 " " Paraffin Oil - " "
 " " Cotton seed Oil - " "
 " " Oil Mybane - not tough.
 " " Oil Nutmeg - too brittle

Burg. Pitch + Palm Oil - " sticky
 " " Oil of Nutmeg - too brittle

- Gum Sandarach + Aniline Oil - brittle
 " " Oil Mybane -
 " " Oil of Nutmeg - too brittle
 " " Palm Oil - won't mix well
 " Senegal + Aniline Oil - no good
 " " Castor Oil - " "

Catgut + Anilins Oil - not tough

Hamilton. Sept. 6: 1883

149

Gum Thus + Linseed Oil, mixed with gutta Percha dissolved in Carbon bisulphide.— very sticky.

Gutta Percha & Gum Thus dissolved together in Coal Tar.— good, and very tough.

Gutta Percha + Gum Thus dissolved together in Coal Tar + Sulphur — quite brittle.

Gum Thus Linseed Oil + Litharge.— very brittle.

Burg Pitch, Linseed Oil + Litharge — very brittle.

Gum Dammar + Gutta Percha dissolved together in Coal Tar — a little brittle, not tough.

Gum Dammar dissolved in Castor Oil + then mixed with Glue dissolved in Acetic Acid — very soft and sticky.

J. M.

Sept 6 1883

~~Edtallot~~

Acetic Acid Sol of Glue and
Oil Myrbane don't mix
but Glue gets tough as it
gets cold.

Acetic Acid Sol. of Glue
Anilin oil & Hemlock gum
mix but don't get hard
Tar Starch & Gutta Percha
does not get tough
Tar Gutta Percha Asphaltum
Petroleum wax & Oil Myrbane
gets hard but not tough

E. D. Kellogg Sept 7 1883 153

Acetic Acid Sol. Glue mixed
with Asphaltum - no good not
tough

Acetic Acid Sol. Glue & hemlock
gum & Amiline Oil - too soft

Acetic Acid Sol Glue + Asphaltum
+ Cotton Seed Oil - dont mix
well not tough

Tar Asphaltum Henlock gum
+ Copal gum - not tough

Tar Asphaltum gum Copal &
Sulphur - not tough

Tar Asphaltum + Gutta Percha
U.G. not tough.

Hamilton. Sept 7th 1888. 155

Linseed Oil boiled now until quite
thick & then mixed with Gum Gums. —
— too brittle —

Linseed Oil boiled til quite thick, then
mixed with Gum Gums, together with
Gum dissolved in Acetic Acid. — very soft.

Linseed Oil, Asphaltum & Calcined Mag-
nesia mixed together — very tough.

Asphaltum & Litharge dissolved together in
Linseed Oil. — too soft not tough.

Gum Gums & Copal dissolved together in Lar.
quite tough but a little too soft. —

Gum Gums & Copal dissolved together in Lar &
mixed with Sulphur — very brittle.

Gum Gums & Gum Camphor dissolved together
in Lar. — too brittle

V m

156

Sept 8 1883

157

Asphaltum Gum Copal +
Cotton seed Oil - tough but
not elastic enough

Asphaltum Oxydized Tar, Ammonium
Oil + Gum Copal - tough but
not elastic enough.

Ditto with flour. Kneaded
in. brittle but tough.

ED Kellogg

Hamilton, Sept. 8, 1880. 159

Gum thus dissolved in Linseed Oil
boiled down until quite thick —
too brittle and not tough.

Gum Copal dissolved in Oxidized Tar +
Ameline Oil. — pliable but not tough

Gum Thus + Gum Copal dissolved to-
gether, in Tar + Ameline Oil — brittle.

Gum Copal dissolved in tar & then
put under pressure — crumbles up.

" "

Hamilton, Sept 10th 1886. 161

Gum Thros & Gum Sandach dissolved together
in Candle Tar - very brittle.

Gum Thros & Sandach dissolved together in Can-
dle Tar and Linseed Oil. - too soft.

ditto, ditto, ditto, + Sulphur - too brittle.

Sandach dissolved in Candle Tar and Co-
stor Oil - too soft and very sticky.

Gum Thros & Sandach mixed with Caster
Oil - brittle.

ditto, ditto, ditto, + Refined Asphaltum -
too soft and sticky.

Hemlock Gum & Thros with Candle Tar and
Caster Oil - too soft and sticky.

ditto, ditto, ditto + Coloured Magnesia -
too soft and a little sticky.

Bastard won't mix with Oil.

11

Esquifff, Sept 10 1883

163

- Resin + Candle Tar - Brittle
 " " " + Ameline Oil - Brittle
 Candle Tar + Red Lead - Tough but
 not elastic.
 Candle Tar + Asphaltum - Tough but
 not elastic.
 Candle Tar + Truquie Comp. - Brittle
 Candle Tar Asphaltum + Cotton-
 seed Oil - not tough nor
 elastic enough
 Candle Tar Asphaltum Cotton seed
 Oil + Sulphur - Brittle
 Candle Tar Asphaltum + Hemlock
 gum - Tough but Brittle.
 Candle Tar Asphaltum Hemlock gum
 + Sulphur - Brittle
 Candle Tar Resin + Asphaltum -
 not tough nor elastic enough
 Candle Tar Resin Asphaltum +
 Sulphur - very Brittle
 Candle Tar Resin + Hemlock gum
 - H.g. too soft
 Candle Tar Resin Hemlock
 gum + Sulphur - Brittle
 E.D.K.

Hamilton Sept. 11, 1881

Gum Sandarach + Oil Juniper Wood - brittle
 " " + Balsam Peru - not tough
 " " + Oil White Pine - brittle
 " " + Oil Orange - too "
 " " + " Anise - too sticky.
 " " + " Hymised - too brittle.
 " " + " Lemon grass - "
 " " + " Citronella - not elastic
 " " + " Quicks - too brittle.
 " " + " Tansy - " "
 " " + " Lenfor - " "

Gum Thio + Copal dissolved together in Candle
Sav - too brittle.

Gum Thio + Copal dissolved together in Candle
Sav + Castor Oil - tough but not very elastic

Gum Thio + Copal dissolved in Castor Oil. -
rather elastic but too sticky.

Gum Thio + Copal dissolved in Castor Oil +
Copal varnish - a little too sticky.
but quite elastic. - Mr. M.

Ed. Kellogg Sept. 11, 1883.

Gums thin & Copal & Oil Cubbs -
little too Brittle

167

Gums thin & Copal & Cotton and
Oil - Rather Brittle

Bitto + Sulfur - Brittle

Resin Gum Copal & Myrran Oil - Brittle

Bitto + Sulfur - Very Brittle

Candle Tar Gum Copal & Resin - H.G.

Bitto + Sulfur Brittle

Candle Tar & Refined Asphaltum
- tough but not elastic

Bitto with Gum Copal - Brittle

Coyote Tar, Gum Thins &
Asphaltum - Brittle

Bitto & Copal Gum - Very Brittle

11

Hamilton, Sept. 12th 1883. 169

Gum Thoro + Copal dissolved together in
Asphaltum + Cottonseed Oil. - not elastic.
ditto ditto ditto + Turpentine - sticky.

Gum Thoro + Copal dissolved in Cottonseed Oil
mixed with small portion of Gutta Percha
dissolved in Turpentine. - tough but not elastic
ditto, ditto, ditto, + Sulphur - brittle.

Asphaltum, Resin + Copal gum dissolved
together in Cottonseed + Linseed Oil. - not
elastic enough.

Gum Thoro + Copal dissolved in Coal Tar +
Cottonseed Oil. - tough but not very elastic.
ditto, ditto, ditto + Copal varnish. - brittle.

Gum Thoro + Copal dissolved in Coal Tar.
quite elastic & not very sticky.

Ed Kelly Sept 12 1883 171

Resin Thus Candle Tar
Opal & Aniline Oil - good
but too sticky

Gum Thus & Opal Resin &
Aniline Oil - good but too sticky

Ditto & Sulphur - Brittle

Gum Opal & Resin in Aniline
Oil - elastic but sticky

Ditto Ditto & Sulphur - very Brittle
Asphaltum & Gum Opals in
Aniline Oil - H. G. not tough
or elastic.

Ditto with little Thus - elastic
but sticky

11

© D Kellogg Sept 13 1883

173

Asphaltum Copal gum
Thus in Cottonseed Oil ^{Very} No Good

Resin Copalum Thus in Amelin
Oil - Very Elastic but sticky

do do do do with Sulphur - Too Brittle

Resin Gums Copal & Thus in Myrbane
Oil - Elastic & Tough but sticky

do do do do Sulphur - Tough &
elastic but too sticky

Resin Copal & Thus in Oil Tar -
Brittle

do do do in Cotton seed Oil - not
tough or elastic

do do do do Sulphur - Brittle
Resin Copal & Thus in Paraffine Oil
- No Good

Resin & Thus in Oil Myrbane Brittle
do do do do sand Asphaltum &
Copal - Fair elastic but sticky

Bamiller, Sept 10th 1883. 175

Gum Thus + Copal mixed in Coal Tar + Castor Oil.
not very sticky & quite elastic.

Gum Thus, Copal, Coal Tar + Linseed Oil - rather
elastic but too sticky.

Gum Thus + Copal mixed in Coal Tar + Linseed Oil
- elastic but sticky.

Gum Thus + Copal mixed in Coal Tar + Oil Myrrane
- elastic but a little sticky.

Gum Thus + Copal mixed in Varnish Oil + Coal Tar.
- elastic but still a little sticky.

Gum Thus + Copal mixed in Coal Tar + Oil Cade.
- elastic but yet a little sticky.

Gum Thus + Copal mixed in Coal Tar + Paraffine Oil.
- elastic and a little sticky.

Gum Thus, Copal, Hemlock Gum + Tar - elastic
and sticky.

Gum Thus, Copal, Hemlock Gum + Tar + Castor Oil
- elastic & sticky.

Gum Thus, Resin + Copal mixed in Coal Tar +
Castor Oil - too brittle.

Bamillow. Sept 14th 1883 177

Gum Thus + Copal dissolved in Coal Tar and
Oregano Oil. — elastic but sticky.
ditto, ditto, ditto, + Sulphur. — brittle.

Gum Thus + Copal dissolved in Coal Tar &
Al Spruce — elastic but a little sticky.
ditto, ditto, ditto, + Sulphur — brittle.

Gum Thus + Copal dissolved in Coal Tar +
Oil Succini — very elastic but sticky.
ditto, ditto, ditto, + Sulphur — brittle.

Gum. Thus + Copal dissolved in Coal Tar &
Crude Oil. — elastic but quite sticky.
ditto, ditto, ditto, + Sulphur. — brittle

Sizes of stock for making
Clamps for 100. C.P. lamps

$\frac{9}{1000}$ thick $\frac{72}{1000}$ wide.

A. de L. Hamilton March 18, 181

Bleaching by Electricity.

Soaked material in salt water + passed it over two brass rollers, put on the dynamo current with resistance in circuit. Found that chlorine combined with the brass, leaving a green deposit on the muslin.

A. de L. H.

March 15, 185.

Now try carbon rollers, chlorine given off no deposit, but it doesn't seem to bleach, only to dry the muslin.

A. D. Hamilton April 20, 1851

Condenser Experiment.

Dipped thin sheets tissue paper in boiled linseed oil & then
hanging up to dry, to use for insulation.

H. de Hamilton.

May 4th 1885.

Caramel wrapping Paper.

Dipped tissue paper in solution
of Linseed oil + Turpentine $1+1/2$, also
Linseed + Benzine, Thinner + Kerosene,

May 5th 1885.

Colored the solutions with different
aniline colors, dragons blood + gamboge;
perfumed it with oil vanilla, oil Clove,
Sassafras, White Thyme + lemongrass.

[ITEM FOUND IN BOOK]

[ITEM FOUND IN BOOK]

6480

9894

16,304

Menlo Park Notebook #151 [N-80-06-01] (NOT FILMED)

This notebook was kept in 1880 by William Carman to record fibers received from John Segredor, who traveled in the South and Latin America to procure fibers for filament experiments. (See D-80-020, Document File Series.) The cover is labeled "From Segredor" and "John R Segr." The book contains 284 numbered pages. Approximately 10 percent of the pages have been used.

Menlo Park Notebook #152 [N-80-01-13]

This notebook covers the period November 1880-January 1881. Most of the entries are by Francis Jehl. A few entries appear to be by Francis Upton. Included are notes and calculations relating to tests of A-lamps. There is also a note and drawing by Edison regarding a method for preventing the carrying of carbon by electricity. At the end of the book is a list of the number of sons and daughters of Edison and others. The label on the front cover is marked "Reg Lamp A" and "Francis Jehl." The label also indicates that this notebook is, in part, a "continuation of Book No 138 at p 39." The book contains 284 numbered pages.

Blank pages not filmed: 22-29, 130-269, 272-277.

LIBRARY OF THE
BOARD OF PATENT CONTROL,

120 BROADWAY, NEW YORK.

From Library
GENERAL ELECTRIC,
14 Broadway St., N.Y.
May 1, 1896

Reg no 1

1

One hour high vac spark gone
Previous 491. how. ~~182~~ 182

S. Put up at 5.30 now 20 / 550

J.M.

Basel at about 3,200 how. 21
1880

2

Reg 2
when

3

48 Candles for hour after spirit
went Res 170

Bart Plat clamps 5 hours Carbon
gation Extra high heat.

Put up at 2.30 Nov 19, 1880.
P.M.

Reg no 3
where

Bake 5 hours Ray Vee Process
1 hour no spark. 191.

Put off at 5.30 Nov 20 1892

Brake at Nov 28-00 am 1892

Carson near the start

Req no 4

Bast 5 hours Reg V Process

1 hour no spark 184.

Dips w/o at 5.30 nov 28 1950

Reg. No 5

48 Candles for 1 hour after
Spark 2 191 left. Best plat
clamp 5 hour carbonation extra
high heat.

Put on at 2:30 nov 28 1980
finished at Nov 28 10am / 1980

carbon on the clamp

Reg No 6
~~number~~

Burst 5 hour Reg process
1 hr no spark 202
10X1X Burst 2¹⁷.
32 508

Put ext at 5,30 Nov 20/1950

Reg No 9 1880

13

after hour spark gone 217
cold. originally 455 ohms

Put off at 5.30 Nov 20 1880

Req no 8 1500

Put on at half past seven
10 3.3 ✓ nov ~~20~~ 22

119.2 ohms

4000 ft.

No 3

D Up to Dec. 6 6 PM. 164 hours
Buried at 3 $\frac{1}{2}$ P.M. D. 196 hours
8/16/60

246728
 241821
 2141872
60418260
 3058174

Reg No 10 ¹⁷
 Present Reg Boat,
 Page 77 book D

115 R } 7.30 now ~~22~~
 152 L }
 4010 ft (cs) }
 115 R }
 152 L }
 4010 ft (cs) }

861956'5
 1.3
 20456'6

901660'5
 468256'6
 01

$$01 - 2 - 00 + 0 = 2 - 0$$

$$01 - (2 - 01) + 0 = 2 - 0$$

$$2 - 0 \quad 2 = .658256'4$$

$$2 + 0 \quad 3 = .952652'2$$

Reg No 9

127.2 R 7.30 now ²² ~~22~~
109. V. burst at the
4160 ft lbs. claim ~~for~~ 5 months
 after putting out

$$IMR = \frac{E^2}{R}$$

$$R = \frac{E^2}{IMR} = \frac{E^2}{23000} = 9.47$$

(Reg 11)

21

vacum

Banana: very high ~~heat~~
 1 hour at high mean
 pressure. 9.47 per horse power
 spark source

put on at 14.30 Nov 23 1880
 at 16 C under

finished this Reg 11 but it is
 not in

put up at 1 Nov 24 at 48

put up at 8 PM to 40 C under
 Nov 23 1880

Nov 28 1880 TAE.

32

33

Nov 28 1880 A.M.

3-5-3 Started very

^{18°} high globe entirely
^{30°} filled with blue

^{Nov 11} very blue at clamps,
+ with magnet

3-5-6 reversed

3-5-9

4-2 "

4-5 "

4-8 "

One of the clamps
red blue very much
less and none to be
brought to the clamps
by magnet. When
current reversed the

heat left one clamp
for the other.

4-11 reversed

4-11-10 " "

Intermittent
At varying intervals

Blue gone and the
carbon in both clamps
heated alike

4-15 busted

Went right above the
clamp

38

300 a

39

305

151

308

170

40

310^a 150.

41

$$\begin{array}{r} 25127 \\ -400 \\ \hline 2) 39127 \\ 195 \end{array}$$

311

180

225527
127.

315 157

317 162

42

320.

43

324

162

44

330-^a/62

45

337

158

338

177

339

160

341

158

342

160

343

158

344

168

345

165

346

167

347

158

348

157

349

155

351

158

352

155

353

150

354

154

355

156

356

160

357

157

358

158

359

170

361	156
362	165
363	.
363	160
364	150
365	168
366	156
367	159 overline
368	168
369	159

371	158
372	163
373	164
374	158
375	161
376	353
377	165
378	158
379	163

880^a 200

381	168
382	160
383	150
384	152
385	155
386	158
387	155
388	148
389	159

391	154
392	no vacuum
393	163
394	155
395	158
396	165
397	167 ^{avg}
398	162
399	164

401 154

402 155

403 161

404 155

405 162

406 159

407 154

407 ~~158~~

408 153

409 163

411 163
412 156
413 176

414 170
415 160

416 168

417 167

418 153

419 157

62

420^a

63

425

163

433	154
434	156
435	151
436	162
374	165
438	189
439	165

441	166
-----	-----

442	156
-----	-----

443	165
-----	-----

444	158
-----	-----

445	156
-----	-----

446	165
-----	-----

447	162
-----	-----

448	153
-----	-----

449	157
-----	-----

451 162

452 162

453 158

455 159

454 175

456 162

457 161

458 150

459 158

461 163

462 162

463 165

464 161

465 162

466 190

467 160

468 160

469 162

471 165

472 165

473 154

474 155

475 no vacuum

476 157

477 158

478 155

479 164

	480 ^a	168	75
481	155		
482	156		
483	155		
484	165		
485	165		
486	155		
487	160		
488	170		
489	165		

490^a

190

491	160
492	161
493	158
494	152
495	159
496	154
497	153
498	154
499	170

500

501

502

503

504

505

506

507

508

509

510

511

157

158

159

15~~8~~

160

163

156

165

159

154

145

160

80

511

20 B

81

160

31 78
32 84 ✓
33 86 ✓.
34 84

35 88
36 79
37 82
38 81
39 82

30^B
Went up in phone room

41 85 ✓
42 88
43 80
44 82

45 82
46 88
47 81
48 80
49 86 ✓

57 80

52 81

53 80

54 86 ✓

55 85 ✓

56 88

58 82

88

60^B

89

90

70^B

91

92

520 A

93

522 - 160

523 - 169

527 - 160

532 153

533 153

535 162

536 163

96

540 A

97

98

550A

99

559 182.

100

560 A. 164 101

562
563

166
165

567

167

569

-163

570 A 170

5

572 168

573 166 -

574 164

575 163

576 160

577 168

579 165

580 A

163

Went up in Phon. Room

581

155

583

167

586

143

587

163

589

168

106

590

107

593 162

595 163.

108

600 A

109

110

blo A

111

112

b20A

113

114

b30A

115

116

b 40 A.

117

118

650A

119

120

11/30/80 | Def 155 at 16C
 Best 285)

11/30/80 150 at 16

Best 375

Best 289 155 at 16

Best 266 152 at 16

Best 848 148 at 16

Best 375 153. at 16

Best 300 166 at 16

Lamp Jan 18/88 121
 Lamp from Upton to be run
 down again. for meals
 98.5 m.v.
 102.6 v

2nd 104.6 volts 101. m.v.

5 101.25 - volts 94.5 z.v

1 97.87 92 m.v.
 8 97.87 93.5 m.v.
 N. 102.60 m.v.

1/2 lamp. Jan 13 1880 123
Jahr

- No 1 163 47.93 0
 2 164 117.93 volts
 3 165 47.98 volts
 4 166. 52.65 volts

124

5/1/67

50.62 volts

6. 168

57.3 volts

7. 16948.608. 170

52.65 volts

 9. 171

56.7 volts

125

10 172

57.30 volts

11 173

50.60000

12 174

47.25 volts

13 180

50.60 volts

 14 179

51.30 volts

126 No 15 178

53.32 volts

16 177

53.32 volts

17 176

47.25 volts

18 175

47.93 volts

52.65 volts

23 185

49.27 volts

22 184
47.93 volts

21 183.
47.93 volts

20 182.
54. volts

19 181
57.97 volts

29 187.
49.95 volts

28 189
47.98 volts

127

27. 189.

47.93 volts

26 190

574.00

25 191

52.65 volts

270

271

278

J	7		<u>1000</u>
38	1	105	<u>105</u>
1	2		<u>895</u>
2	3		
3	4		<u>1000</u>
22	23	94	<u>94</u>
			<u>906</u>
			<u>1000</u>
			<u>323</u>
			<u>320</u>
			<u>680</u>
			<u>320680</u>

$$\frac{680}{320} \quad 0187$$

$$680 \times 0.147 = 3$$

279

895:105:X::0187

~~906 is 94 :: K~~

906 : 94 : 1 : 0787

600 : 320 : IX : 2887

<p>895 .0187</p> <p>6265</p> <p>7160</p> <p>895</p> <hr/> <p>105 / 67365 / 1593</p> <p>105.</p> <hr/> <p>623</p> <p>525</p> <p>986</p> <p>945</p> <hr/> <p>415</p> <p>315</p> <hr/> <p>100</p> <p>105</p>	<p>906 .0187</p> <p>6342</p> <p>7248</p> <p>906</p> <hr/> <p>94 / 169422 / 1802</p> <p>94</p> <hr/> <p>754</p> <p>752</p> <hr/> <p>222</p> <p>188</p> <hr/> <p>34</p> <hr/> <p>94</p>
---	---

3320/12/16/3941
25
1.87
54760
680
316
2880
2360
2240
120
320
1594
1897
1197
1802
1393
1405

280

test - of Case oil Lamp
at 48 Candles ~~to~~
to show that - we can
test - a coal oil Lamp
at 48 Candles

281

282

283

	Daughters	Sons
Gen. Palmer	2	2
W.H. Painter	2	2
Dr Wm A. Bell	2	2
Chas Batchelor	2	2
S. Bergman	2	2
Ett. Johnson	2	2
T. A. Edson	1	22
R.R. Upton	1	2
H. Riff	2	2

Bug 427. 9.6 octot
Wall 8.38

	Boys	Girls
T. A. Edson	2	1
Chas Batchelor	0	2
F.R. Upton	0	1
W.H. Moses	1	2
J.L. Griffin	1	1
Mr Kousen.	0	0
Mr. Dean	1	0
Ett. Johnson	0	2
Mc Kenzie	18	9+4

22) 158 (45
10

Menlo Park Notebook #153 [N-80-09-11]

This notebook covers the period September 1880–February 1881. Most of the entries are by Edward H. Johnson and John Ott. There are also a few entries by Edison and Charles Batchelor. Most of the material relates to experiments by Johnson, aided by Ott, to develop fixtures for use by consumers of the electric light. Included are notes, drawings, and instructions regarding the design of chandeliers, sockets, and interior wiring. There are also notes and drawings by Ott relating to experiments on an electric meter; drawings by Edison of the electric railroad; and drawings and notes by Batchelor on copperplating carbons in order to clamp them to lead-in wires. The cover is labeled "J. F. Ott. Meter" and "Socket." The book contains 282 numbered pages.

Blank pages not filmed: 134-139, 198-274, 277-278, 281.

Missing page numbers: 35-36, 275-276, 279-280.

~~Chandlers~~

~~300 - 300 - 300~~

Mangat

Tack on
edge

Put in groove
body cast

HUB
wheel
with
pin + lip piece
Wire to kink
+ bind

Eugene Phillips

1 ft handle - even, kind wire
ever made or intend break
Sept 11/80

3

~~done~~

Bergman
and Cambria
Hot Ammunition

4

5

~~Block is made
with 2 holes & 2
Knots~~

~~2 holes to tie to
gas Pipe~~

~~use Rubber Rings to prevent
this block from moving with
wires taut — or spiral springs~~

If 2 wires are twisted
together - Rubber bands
will hold them without
block

Cover wires with
strip brass without stretching
former wire spring stretched
over wires - will keep
straight. Where wires
are thin and flexible

thin brass - thinner
Special methods thin.

Q or thin

Rock - Finches

Vulcanite tubing N.H.

the mark with heat
of burning

Wants

Spiral Springs for wire forming

See Mitchell & Vance man
about shaping machines
for ornamental work

and

8

To keep Duct + moisture
off Circulation at top
of Chassis. Slip a
Rubber Coat over Block
overlapping its edges
+ fitting firmly around
the Pipe.

To make - John Ott - 9
Insulating Block
3. Lamp Sockets - Change
Mind some Brass wire
Spirals,

10

adopted -

3 Tacks in line - for a
Wire fastening - thus

no

11

Wall BracketsSpecial Wall Cap for Connections

Bend the Bracket Pipe with
Spirally wound Wire to give
flexibility.

~~For double fastening make
use spiral wire & wind the
Conductor Spring.~~

12

13

Hail lights

To raise & lower -

use spirally wound wire

& Wind Conductors in it

Spirally

16

Sockets

17

18

19

20

Edison N.Y.
says

wire

wire

b

1111

G

NY.

21

22

ask Edim if Metal
Can be covered
with thin Vulcanite

If so cover the cock
of Lamp Socket

23

16 wires of
 $3\frac{1}{4}^{\prime \prime}$
0.19 diameter

24

F

25

26

27

28

29

brush
set in
1/2 inch
Elbow
Hole for
Gas pipe

Top view

flat - curved

round -
flat

Under view

Connections

Make large socket with
Wood Screw - flat thread

more curve at top -

3/8in Tit on Glass for cork

Mines

$25/1000$ wire copper

$75/1000$ insulation

$\frac{1}{3}2$ in Lead Sept 20/80

m

~~3 inches long -
2 inches wide + 1 inch high
 $\frac{1}{4}$ inch groove
 $\frac{1}{2}$ inch deep~~

~~3 inches long 2 inch
Groove $\frac{1}{4}$ inch
depth $\frac{3}{4}$ inch high
wide~~

~~Shingle lead~~

42

43

46

47

48

49

50

51

~~2 1/2~~
~~2 5/8~~

13

54

55

56

57

- 58

59

go ahead on
Shade Holder.

14
9/16

govt. 1926

90

一
15

三

~~510~~

70

71

72

73

74

75

Q

T

H

78

79

80

81

14 17

0.045
0.010
0.010
0.010
0.010
0.010

14 17

Acme 10 thread
Nylon 66

Alumina 95% 93

Wire Spring Plaster
With Glue Water
& Colloidal Oats

Stamps. & Co. 1 year
do not pay their
Court Recd. do
Wines - &c. I am to
get by Cheque or Cash

50
H.

Give this ~~switch~~
switch handle
to the children

Make like this
Holes round enough
for the wire to go
and out

Get the back of
these marked
With pencil

D.H.

Make this

90

12 Nov 1960 Tch.

91

T	O	T	O	T	O
---	---	---	---	---	---

J	C	S	C
---	---	---	---

Dixie ~

Please solder
these two cords
together neatly
so as to make
one long cord.
Keep them straight.

E.H.J.

The short spring
won't do - The ends
of the springs must
be exactly on top
of the cylinder -

The copper strips
must be split
in the centre
thus

E.H.Jones
over

When you finish
this job go on
with the Lamp
Sockets G.H.

$$\begin{array}{r} 14 \\ - 9 \\ \hline 56 \end{array}$$

4 12

52

18

$$\begin{array}{r} 2 \\ - 90 \\ \hline 10 \end{array}$$

$$\begin{array}{r} 12 \\ - 5 \\ \hline 7 \end{array}$$

$$\begin{array}{r}
 195 \quad 45.8 \quad 75 \\
 \underline{12} \quad \underline{35} \quad \underline{14} \\
 390 \quad 280 \quad 42 \\
 \underline{42} \quad \underline{40} \\
 195 \quad 362 \quad 118.5) 232.3 \\
 \underline{234.0} \\
 37 \\
 163.80 \quad 8.9 \\
 40.20 \quad 0 \\
 12) 865.80 = 721.5 \quad 4) 118.5 \\
 25 \\
 2.27 / 721.5 - 320 \\
 \underline{6.81} \\
 2.8 \quad 415 \quad 29.6 \\
 \underline{18} \quad \underline{1880} \quad 1.8 \\
 4.970 \quad 19.5 \quad 47.8 \\
 \underline{3.62} \quad \underline{3} \\
 5.332 \quad 58.5) 118.5) 865.80 \\
 \underline{40.0} \quad \underline{58.5} \quad \underline{82.95} \\
 18) 721.5 \quad 19.5 \quad 3.586 \\
 \underline{16} \quad \underline{3.630} \\
 54 \quad 44 \quad 038 \quad 170) 721.5 \\
 \underline{6} \quad \underline{6} \quad \underline{8} \quad \underline{7} \\
 3.24 \quad 264 \quad 296 \quad 68.0 \\
 \underline{8} \quad \underline{8} \quad \underline{8} \\
 344 \quad 376 \quad 415
 \end{array}$$

86 single 6.1 No 20 wire = 6.1 thin 97

$$\begin{array}{r}
 118.5 / 721.5 \\
 \underline{44.0} \\
 70.50
 \end{array}$$

$$\begin{array}{r}
 5.2 \\
 \underline{6} \\
 31.2 \\
 \underline{5} \\
 \underline{5} \\
 \underline{5}
 \end{array}$$

$$\begin{array}{r}
 52 \\
 \underline{20.5} \\
 \underline{7.5} \\
 \underline{10.40} \\
 \underline{14.56} \\
 12) 115.00) 120.8 \\
 3.1 \\
 \underline{24} \\
 \underline{70} \\
 \underline{60} \\
 \underline{100} \\
 \underline{96} \\
 \underline{4}
 \end{array}$$

$$\begin{array}{r}
 6.336 \\
 \underline{12} \\
 \underline{72} \\
 \underline{3} \\
 \underline{3.5}
 \end{array}$$

$$\begin{array}{r}
 31.2 \\
 \underline{55} \\
 22.96 \\
 \underline{22} \\
 \underline{22.96} \\
 \underline{22} \\
 \underline{12} \\
 = 800 \\
 \underline{896} \\
 \underline{4}
 \end{array}$$

Copperplating pictures
for
plating carbons to the cores
of the inside parts

Dec 29th 1880 99

Sketches

Hard rubber

This revolves on the upright.

Thumbscrew for
fastening rod after
raising or lowering
into liquid -

$14\frac{1}{2} \times 2 + \frac{3}{10}$
 $14\frac{1}{2} +$
 $14\frac{5}{8} \times 2$
 $2\frac{9}{16} \times 6$
 $2\frac{1}{4} \times 6$
 $2\frac{1}{2} \times 6$
 $2\frac{1}{2} \times 6$
 $5\frac{1}{2}$
 $3\frac{1}{2}$
 $1\frac{1}{2}$
 $1\frac{1}{2}$
 $1\frac{1}{2}$
 $1\frac{1}{2}$
~~Base width 220~~
~~94.0~~
~~47.0~~
~~12 / 14 12.0~~

20

Cost of Resistance box
as made by Bergman

German Silver wire

Base	20	.35
Wood for spools		.20
Iron screws (Wood)	.30	.15
Brass wood screws	.84	.40
6 brass screws for bridge		.12
Maching Spool		1.50
6 copper washers		.44
Glass	2 lb at .28	.46
Rubber for plugs	.6 plug	.10
Drilling 47 holes		.10
Breaming $\frac{3}{4}$ holes		.10
finishing		1.00
Sawing		.15
Making plugs 6		.30
Assembling		1.50

Gave Bergman Contract for \$50
100 at \$4 each

102

103

104

105

method of clamping carbons
previous to plating them and
the wires together

Charlestown
Jan 3rd 1888

John

Please cut enough
off the lead wire
in the old "new"
socket to prevent
it short circuiting

J.H.C.

110

111

112

113

Jan 20 1951
John F. Otto

114

115

Janv 20. 1881

John Fitts

Jan. 26. 1988

120.

121

122

123

126

127

128

129

Jan 27, 1881
John S. 000

140

141

142

143

144

145

27
170

148

149

John Please
Fix this one
to turn like
the other and
mark the top
cap.

EHD

152

153

J. S. Elson

Feb 12, 1881

John A. Pitt

1st Edison Jan. 20/15 155

Feb 12. 1881

5th Edition

John. F. BB.

Feb 12, 1881.

two air tight chambers, the current being passed through
causing the air to expand acting on diaphragm that acts on valves
shunting the current in the circuit or vice versa

N. S. Edison John F. Ott.

Feb 12, 1881

C. L. Elton 163
Feb 12. 1881.
John F. Lath.

A spiral of wire enclosed in a tight chamber and offering sufficient resistance to heat within the current flowing, and expanding the air thickness diaphragm which acts on lever.

John Ott

Please have the new wooden
sockets which will probably come
Monday - all fixed, like this one -
no cock wanted - use the thin German
silver - & give plenty of surface coated
- instead of great exposure - round
the contact pieces
putting ~~the~~ the
fasten it in with
inside - make spring
of this one - solder
to Binding Post
3 Pairs from
wire connection
& make both
B Posts alike - EHD

J. S. Elwin 169
Meeteer Jan 12, 1881

J. S. Elwin

Speed regulator the fan so arranged
as to open as the speed increases offering
more resistance

J. A. Elton
Feb 12, 1881
J. F. H.

Speed regulated as the speed increases
the governor opens and moves I lever and
throws ~~out~~ resistance.

H. G. Edison 173
Jan 15. 1881.
J. F. M.

electromagnetic solution
pencil and spring scale
indicating the deposit when
one plate begins to hang
they are to be revised when
the inspector inspects the
motor

174

175

silver nitrate solution
salt and beam scales
only to weigh when
the inspector inspects
the heaters

J. A. Edison 177
Jan. 16, 1881.
J. F. D.

John S. Edmon
Sep 1880

shaft and switch which can be operated
by hand or foot.

Mates No 3

On	Time	Wt	Time
9 20.	1867	11.00	
8 11.15.	1820.	12.15.	

$6\frac{5}{8}$
 $8\frac{1}{8}$

$\underline{14\frac{6}{8}}$

$2\frac{5}{8}$
 $5\frac{7}{8}$

$\underline{8\frac{5}{8}}$

$2\frac{3}{8}$

$4\frac{7}{8}$
 9

$\underline{16\frac{7}{8}}$

1184

antidrome

b 18 315

Monteith & Gold

185

186

187

8

$$\begin{array}{r}
 312 \\
 84 \\
 \hline
 2184 \\
 2496 \\
 \hline
 12 \quad 266.99 \\
 24. \\
 \hline
 22 \\
 24 \\
 \hline
 24 \\
 24 \\
 \hline
 4.28
 \end{array}$$

7 3/8

$$\begin{array}{r}
 312 \\
 84 \\
 \hline
 228
 \end{array}$$

$$\begin{array}{r}
 7 3/8 \\
 12 \\
 84 \\
 3 \\
 \hline
 87
 \end{array}$$

192

193

194

195

196

197

Pour réduire son poids on
ajoute $\alpha, k \div$ par 0.254

Pour réduire son poids on
ajoute $\alpha, k \div$ par 0.

On ajoute au moins le
double du nombre donné de places

$$\begin{array}{r}
 1600 \quad 4 \\
 20 \quad 150 \\
 \hline
 152.4 \\
 \hline
 152.4 \\
 \hline
 600
 \end{array}$$

20.000016254
= 32.1810

2.54

4

Menlo Park Notebook #157 [N-80-12-24.2]

This notebook covers the period December 1880. The entries are by Francis Jehl and Francis Upton and consist of notes and drawings relating to lamp tests. The label on the front cover is marked "Lamps" and "Francis Jehl." The book contains 284 numbered pages.

Blank pages not filmed: 24-25, 94-105, 108-177, 182-284.

LIBRARY OF THE
BOARD OF PATENT CONTROL,

120 BROADWAY, NEW YORK.

From Library
GENERAL ELECTRIC.
120 Broadway, N.Y.

May 1, 1896

No 5-21-a

1

185-

R 18840

4304

48

(370
123 5/26
1231.40
115.7 4304

2.0899

2.0899

1.6464

1.9375

3.7670

\$810

1.5185

1.845

6812

4357

668

272 candles

per K.P.

2

34

68.

21.6 / 129 : 68:

$$\begin{array}{r}
 68 \\
 \hline
 1032 \\
 774 \\
 \hline
 21.6 \overline{) 877} \quad 2.0 \quad (402 \\
 872 \\
 \hline
 520 \\
 \\
 201
 \end{array}$$

378^a

3

182

R 18840
4150

C 48

122990

184.9

(364
121 Vaffs

0838

0838

6464

9391

7531

5185

5660

7654

6812

4466

5.82

280 candles
per K.P.

4
126.6

8773
1106
1237
135
13
1316

+ 2 Ohms

5
516^a

190
18840
7760

(48) (26590
132.9)

5

1380
126.6 Volts

1026

1025

6030

8748

7264

5330

5185

7921

6200

6812

4733

297

~~185~~

.9090

1106

.0670

.0865

122-

116.7

~~*~~ + 5.3 Ohms

519^a

185-

18840
4500

C 46

(23.3460)(3701233

116.7

.0910

0410

6489

9380

7614

5185

7571

6812

4383

5770

672

274 couples

per H. P.

~~9330~~

9330

02.0.0

~~953~~

1106

~~996~~

00636

115.5

104.7

+ 10.8 Ohm

513^a175^a1350

116.6

18840

2100

20940

104.7

0670

0670

6464

9800

759451857594

6812

9.403

2761

5744

5.74

candles
per H.P.

$$\begin{array}{r}
 9208 \\
 +0364 \\
 \hline
 1106 \\
 \hline
 0678 \quad 117 \\
 \quad \quad \quad \underline{1087} \\
 + \quad \quad \quad 8.3
 \end{array}$$

524 A

180 = 0

~~(360)~~
 120

15840

~~2900~~
~~(21740)~~
 108.7

0792

0702

6464

9636

5870

7684

5185

5.63

7501

6812
270 Candles
 for H.P.

4313

12

52. A Retested Dec 27

$$\begin{array}{r}
 8950 \\
 0966 \\
 1106 \\
 \hline
 0022
 \end{array}$$

126.6

+2

520 A Dec 24 13

48 C.

191

$$\begin{array}{r}
 1382 \\
 \hline
 1273
 \end{array}$$

$$\begin{array}{r}
 18840 \\
 6150 \\
 \hline
 24990 \\
 124.9
 \end{array}$$

5

$$\begin{array}{r}
 1050 \\
 608 \\
 \hline
 9034
 \end{array}$$

7598

6785

2402

6812

48199

269 candles per H.P.

8893
1045
6106
8044 127

523 A

194

(388)
129

18840

6600
25440
127.2

1106

1106

6464

1955

7631

2369

5185

6812

4380

991

273

9308
0671
1106
1082

1283
11617
11.8

514 ✓

176

1352
1173

18840
4500
(23340)
116.7

303

0695
0695
600d
9329

7185
2817
1997
4814

$$\begin{array}{r}
 9066 \\
 0835 \\
 1106 \\
 \hline
 1007 \quad 126 \\
 \hline
 121.2 \\
 \hline
 + \quad 318 \\
 \hline
 \end{array}$$

186
48 candles

$$\begin{array}{r}
 372 \\
 \hline
 124
 \end{array}$$

18840

$$\begin{array}{r}
 5400 \\
 \hline
 24240
 \end{array}$$

121.2

0934

0934

6464

9165

7477

2503

1797

4500

282

9151
0519
1106
0776

119.5
112.7
6.8

18.2.5

188.40
37.00
226.40

112.7

136.5
121.6

9151

9849
0849
6464
9481
7643

2357
1997
4354

272 candles
per H.P.

9045
 0632
1106
 0783 119.6
115.7
 + 4

522 ✓
48 candles
187 1374
1246

18840
4300
23140

$$\begin{array}{r} \underline{374} \\ 1246 \end{array}$$

0955
0955
6464

$$\begin{array}{r}
 9368 \\
 -7742 \\
 \hline
 2257 \\
 -1997 \\
 \hline
 11254
 \end{array}$$

266 candles
per H.P.

9090
0942
1146
0538

183
104, 2
~~278~~
378

427 1

185

373

123,

18840
283-0
216 40
108.20

ج

63

703

154

2058
1977
455

254 candles
for K.R.

~~2.2565~~
 Group 200 8.6990
 Group 100 9.9666
0.9221

836 = deflection for 1 Volt

7143

9221

1922 59.2

1922

6464

2873

5181

33000 5188
3802
8981

8987

candles per A.P.

B 5-9

93.5

~~2550~~

Retested

20 cells 90.5
94
163.5

23.8

26.0

5.48

62.29

4050

10329

57.5 Ohms

72.61	
92.21	
<u>80.30</u>	63.5-
80.30	
64.64	197.0
23.88	76.12
<u>49.12</u>	<u>83.88</u>
50.88	<u>797.0</u>
<u>89.87</u>	61.2
<u>40.75</u>	<u>57.7</u>
	+ 3.5

256 candlees per H.P.

20 cells 90.5 L
94 R

265	261
271	<u>265</u>
536	526
6279	534
52000	<u>1062</u>
<u>711579</u>	531
57.7	

7657
9221
 8436
 8436
 6464
2000
5336
 4664
8987
3651

69.7 Vals
 1564
 62.4 80.00
8388
 + 0 7952
232 candle
 per K.P.

66 P

24C

285
295
583

6279
 6350
12629
 63.1

7235	
9221	
<u>8014</u>	63.3
8014	
6464	19.86
<u>2774</u>	72.26
5266	<u>83.88</u>
9734	76.00
<u>8987</u>	<u>5.76</u>
3721	<u>52.8</u>
	+ 4.8

236 candles per H.P.

65-B
24C
261
258
529
16279
4300
10579
52.8

X

7597
9221

8376 68.8 Vd 15
8376

6464

9884

5100

4900

8987

3887

+ 0

245 candles
per K.P.

60 B

24 C

285

290

575

6299

6700

12979

64.8 Ohms

X

748292216704

8261 68.5

6703

8261

6464

6464

2069

2069

1939

3055

+0

4945

8987

3952

248 candleper

N.Y.

6303241C278282

560

62796150(12429)

6214

7419	
9221	
<u>8198</u>	66
8198	
6464	
<u>1979</u>	+ 2
<u>4839</u>	
5161	
<u>8987</u>	
4148	

260 Candles per A.P.

64 B
24 Candles
278
274
552
~~6279~~
6279
6420
12699
63.4

7613

9221

6734673

8292 67.5

8292

6464

1938

+ 105

4986501489874001351 - candles per H. P.

61 B

4 C

280

284564

6279

653012809

64.

44

7528

9221

8307

8307

64A4

21255203

4797

8987

3784

239 candles per k.p.

67.7

+ 1.2

57 B

24 candles

285

281566

62.79

60.0012.279

61.2

45

46

$$\begin{array}{r}
 75.36 \\
 9221 \\
 \hline
 8315 \\
 8315 \\
 \hline
 6964 \\
 1798 \\
 \hline
 4892 \\
 \hline
 5128 \\
 8987 \\
 \hline
 4095
 \end{array}$$

67.8 ~~40.1~~

256 candles per hr P

35.83

24 candles

$$\begin{array}{r}
 282 \\
 285 \\
 \hline
 567
 \end{array}$$

$$\begin{array}{r}
 6279 \\
 6950 \\
 \hline
 12229 \\
 \hline
 661
 \end{array}$$

47

X

7076

9221

7855

7855

6464

3002

5176

4924

89872463911

61

24 candles

258

252

510

6279

3750

10029

50.1

50

7597
9221
8376
5376
6464
1978
5194

68.8

239

3793

46 B

51

~~24 candles~~

285
290
575

6279
6706
(12979)
64.9

52

7482

9221

8261

8261

6464

22115197

67

+ 2

4803

8987~3790 239

44 B

24 Candles

277

283

560

6279

575012629
601

53

54

7267	
9221	
<u>8046</u>	63.8
8046	
6464	63.7
<u>2299</u>	<u>58.9</u>
4855	4.8

8987
3842 242 candles
 per N.P.

58 B

55

24 Candles

$$\begin{array}{r} 26.8 \\ 26.5 \\ \hline 53.3 \end{array}$$

6279
55.00
11779
 58.9

17574

9221

8353

8353

6464

2000

5170

4830

89.87

3817

68.4

+ .5

241

24 candles

244

286

572

6279

6350

12629

63.14

$$\begin{array}{r}
 7284 \\
 9221 \\
 \hline
 8063
 \end{array}$$

8163

6454

2644

5234

4766

8987

3753

64
+ \$1.3

237 Candles
per H.P.

24 candles

$$\begin{array}{r}
 265 \\
 270 \\
 \hline
 535
 \end{array}$$

6279

4600

$$\begin{array}{r}
 \hline
 10879 \\
 54.4
 \end{array}$$

7308
9221
 8087
8087
 1464
 2549
5187

4913
8787
3700

64.4

234 candles
 for H. R.

36 B

24 Candles

273
265
538

6279
 4850
11129
 55.6

~~XX~~

5705

9221

6484

6484

6484

4237366963317226

3557

44.5 Volts

57185

20.41

7226

226 Candles per H.P.

16 candles

184

186372

6279

12707549

37.7

58.4

37.7

+ 30.70 hours

3515

5763

8388

7666

6064
9221
~~6933~~
 6833
 6464
3605
3535
 6465
7226
3691

234 candles
 mkt.p.

16 candles

200
204
904

6279
2450
6729
 43.6

62.4
43.6
 + 18.8

5798
 9221
6579
 6577
 6464
3936
3554 2226

6446
 7226
3672

233 candles
 per K.P.

16 candles

188
192
380

3423
 6064
 8388

6279
1800
8079
 40.89

7875
 613
40.3
 + 21 Ohms

$$\begin{array}{r}
 5966 \\
 9221 \\
 \hline
 6745 \\
 6745 \\
 6464 \\
 \hline
 3915 \\
 \hline
 3869
 \end{array}$$

$$\begin{array}{r}
 6131 \\
 7226 \\
 \hline
 3357
 \end{array}$$

216 candles
per H.P.

6 candles

$$\begin{array}{r}
 195 \\
 200 \\
 \hline
 395
 \end{array}$$

$$\begin{array}{r}
 6279 \\
 1850 \\
 \hline
 18129
 \end{array}$$

40.6

$$\begin{array}{r}
 3255 \\
 6085 \\
 \hline
 8388 \\
 \hline
 7728
 \end{array}$$

$$\begin{array}{r}
 59.3 \\
 40.6 \\
 \hline
 + .87
 \end{array}$$

70

$$\begin{array}{r}
 6232 \\
 9221 \\
 \hline
 7011 \\
 7011 \\
 6464 \\
 \hline
 3316 \\
 \hline
 3802
 \end{array}$$

240 candles per H. P.

25° C

71

16 Candles

$$\begin{array}{r}
 208 \\
 212 \\
 \hline
 420
 \end{array}$$

$$305^{\circ}0$$

$$\begin{array}{r}
 6279 \\
 \hline
 9329
 \end{array}$$

$$46.6$$

$$\begin{array}{r}
 2989 \\
 6684 \\
 8388 \\
 \hline
 7981
 \end{array}$$

$$\begin{array}{r}
 62.8 \\
 46.6 \\
 \hline
 16.2
 \end{array}$$

+

$$\begin{array}{r}
 5729 \\
 9221 \\
 \hline
 6508 \\
 6508 \\
 6464 \\
 \hline
 4045 \\
 \hline
 23525
 \end{array}$$

225

16 Candles

$$\begin{array}{r}
 185 \\
 189 \\
 \hline
 374
 \end{array}$$

$$\begin{array}{r}
 16.00 \\
 62.79 \\
 \hline
 78.79
 \end{array}
 + \quad \begin{array}{r}
 60.7 \\
 39.4 \\
 \hline
 21.3
 \end{array}$$

39.4

5763
9221
 6842
 6542
 6464
 4157
3699
234

16 candles

<u>185</u>	345.8
<u>192</u>	58.43
<u>377</u>	<u>83.88</u>
<u>6279</u>	<u>7689.</u>
<u>1400</u>	58.7
<u>7679</u>	<u>38.4</u>
38.4	+ 20.3

5694
9221
 6473
 6473
 6464
4145
3555
 6445
7226
232 3671

~~24~~ 24 d 77

16 sandles

183	3527
<u>186</u>	5855
<u>371</u>	8388
	<u>7774</u>
1420	59.8
<u>6279</u>	<u>38.5</u>
<u>2</u> <u>769.9</u>	<u>21.3</u>
38.5	

6075
9221

6856

6834

6464

3152

3324

6676

7226

245 3902

48.5

16 Candles

200

205

405

3146

6848

8388

6279

3400

9679

48.39

8382

68.9

48.3

20.6

+ 20.6

1848 2.2742
1.3345
.9397

87.

.7738
.9397
8341
8341
6464
2821
5967
4033
8987
3020

68.2 Volts

200 Candles per H.P.

Has been very high for short
 20 cells 93.5 true

94.5
188.0

24 C

247	1659
<u>247</u>	<u>7179</u>
<u>5974</u>	<u>8388</u>
	7226
6279	05 Ohm
<u>4170</u>	
<u>10449</u>	
52.24	

7284
 9397
7887 61.5
 7887
 6464
2499
4737 2970
 5263
8987
 4280 266

B 36 Retited 83

24 C

~~265.5~~
 262
263
535
 6279
4930
11249
56.25
 26.85 Ohm

2.7589
9397
8192 66
8192
.6464
1857
4705

5295
8987
4282 268

7634
9397
8237 66.6 1763
8237 7993
65.2 8388
63.1 8144
+ 2

B46 Retested

85

24 Candles

287
574
6279
6750
(13029)
85.14

1808
8143
8388
8339
68.2
65.
+ 3.2 dm

Brought up very high and
 retested

<u>289</u>	<u>290</u>
<u>290</u>	<u>580</u>
<u>6279</u>	
<u>6356</u>	
<u>12629</u>	
<u>63.1</u>	

7482
9397

8085
8085

6464
1778

4412

5588
8987

4575

64.3 Volt

1915	
8222	
8388	
71.2	85.25
66.4	
<u>286</u>	<u>4.8</u>

B 35 Retestd

24 candles

280
560

6279
7000

13279

66.4

7582	
9397	
8185	65.8
8485	
6464	
1886	
4720	<u>2960</u>
5280	
8987	
4267	<u>267</u>

B 60. Retested

24 candles

1815	
288	
<u>285</u>	
573	
6670	67.9
6279	<u>65.8</u>
12949	
64163	+ 2.1

7152

9397

7755

7755

59.6

B81 Retested

24 Candles

260

259

519

2245

7002

8388

7635

6279

3770

10049

58.

50.24

+ 8.24

3024

6990
9397
7593

7593

57.5 7.2kW

6464

2807

4457

5543

62.9

52.4

+ 10.5 Ohms

240B

7193

8388

77.88

59 B Retested

24 candles

250

250

500

6279

4300

10.579

52.4

L

507: 493 : IX: 0187

50187

3544

4056

507.

$$493) \underline{9.480.9} \quad (019$$

493

$$\begin{array}{r} 45 \\ 3944 \end{array}$$

606

2

180

181

Menlo Park Notebook #158 [N-81-03-22]

This notebook is undated with the exception of one entry for March 22, 1881. All of the entries are by Francis Upton. Edison's name or initials appear on many of the entries. The book contains notes, calculations, and a few drawings relating to conductors for the Pearl Street district. The label on the front cover is marked "Conductors." The book contains 284 numbered pages.

Blank pages not filmed: 184-277, 280-281.

I propose as a system to carry around each square a wire of uniform size, so that only 2.5 Volts shall be lost in the wire. Also to connect in the interior each distributing point with the other points so that there will be a fall of 2.5 Volts along the distributing wires.

The increase of weight to making the cable of uniform size is 1.165 times as much as when it is decreasing.

$$\log 1.165 = \frac{0.685}{19} \\ .0664$$

$$\sqrt{\frac{6.3933}{6.4597}}$$

2

Block 1

3

3.1314
.0664
3.1978

15-70

3.0503
.6664
3.11.67

13.00

JMK

Block 2

488
489
20
137
2 | 1132
566

6.4597
2.7528
2.7528
1.5185
3483.8

33

3.040

JW

Block 3

574
510
20
137
11181
596

6.4597
2.7709
2.7709
1.4771
30
3.4786
3081

KAE

Block 4

1020

87

20

1127
563

3.4

6.4597

2.7505

2.7505

1.5315

3.4922

3110

JAG

Block 5

FAC

$$\begin{array}{r}
 20 \\
 10 \\
 8 \\
 51 \\
 \hline
 162
 \end{array}
 \quad
 \begin{array}{r}
 3.2 \text{ lbs} \\
 20 \\
 \hline
 51 \\
 1030 \\
 \hline
 1470
 \end{array}$$

A.B. 10 lamps to 64.0

$$\begin{array}{r}
 232 \quad 3617 \\
 64 \quad 18062 \\
 \hline
 31679
 \end{array}
 \quad 1470$$

2 Volts fall around block

$$\begin{array}{r}
 160 \text{ lamps} \\
 51 \\
 \hline
 1236
 \end{array}$$

$$\begin{array}{r}
 3.0920 \\
 -0.664 \\
 \hline
 3.1584
 \end{array}
 \quad 1440$$

$$\begin{array}{r}
 904 \quad 2.9562 \\
 .664 \\
 \hline
 3.0226
 \end{array}
 \quad 1.050$$

$$\begin{array}{r}
 80 \quad 6.4567 \\
 \text{say } 200 \quad 2.4771 \\
 .2.4771 \\
 .0.9031 \\
 \hline
 2.1140
 \end{array}
 \quad 130 \\
 \quad 4090$$

Block 6

$$\begin{array}{r}
 3.1313 \\
 .0664 \\
 \hline
 3.1977
 \end{array}$$

1570

689

$$\begin{array}{r}
 2.5229 \\
 .0664 \\
 \hline
 2.5893
 \end{array}
 \quad 388$$

$ \begin{array}{r} 10 \\ 64 \\ 20 \\ 328 \\ 44 \\ \hline 466 \end{array} $	$ \begin{array}{r} 6.4567 \\ 2.3674 \\ 2.3674 \\ 1.0792 \\ \hline 2.2707 \end{array} $	$ \begin{array}{r} 186 \\ \hline 2144 \end{array} $
233		

Block 8

529

~~120~~
117

$$\begin{array}{r} 3.1191 \\ - .0664 \\ \hline 3.1855 \end{array}$$

409

1535

120
~~Q~~

3.0

$$\begin{array}{r} 6.4597 \\ - 2.0792 \\ - 2.0792 \\ \hline 0.4711 \\ \hline 1.0952 \end{array}$$

12

16

Block 9

148
20
341
10
80
549

64567
27396
2.7396
1.2041
1380
3.1400
16
5176

3796

17

Block 9

KAG

150	2.81	1.7497
60	20	<u>1.4065</u>
45	<u>5620</u>	<u>3.1562</u>
25.5	25.5	
150 feet		

376	64597	1430
10	2.7435	
20	2.7435	
148	2.1 r.3222	
<u>554</u>	<u>3.2689</u>	2220
	51850	
	370	
	2220	

185	6.4597	148
40	2.3711	
10	2.3711	
<u>235</u>	<u>9.09542</u>	
117	<u>21861</u>	<u>3796</u>

18

Block 10.

19

3.1278

.0664

3.1942

1560

Kar

Block 11

3.1074

.0664

3.1788

15.00

.204

17.00

7A9

Block 12

30

19.

140

20

500

20

108

13

1850425.

6.4597

2.6284

22 2.6284

1.3424

3.0589

200

1140

1340

Tak

Block 13

1000	6.4597
40	2.8209
40	2.8209
130	<u>24 1.3802</u>
115	
(1325)	3.4817
662	

[3020]

Led entirely from one

side

140	30
140	136
91	20
41	50
40	20
	115
	166

TAE

26 Block 13

920 feet

 $\frac{396}{792}$ feet

1840

792

~~46~~
~~160~~
~~100~~

105.8

20.

105.8
180105.8
105.8
1163.820
20
2201163
220
943

w = weight of wire

a = cross section in 0.0001

l = length out =

r = resistance

W = wt. of a wire ~~tens~~ feet long
the cross section of wh. is
 0.0001 sq.in.R = Resistance of wire ~~tens~~
feet long with cross section
of 0.0001 sq.in.

$$W = l a W$$

$$a = \frac{w}{l} W$$

2000 feet out wire weighs
500 lbs. and has a cross section
of $.0324$ sq.in.

Cross section of 0.0324 0.0001

$$\begin{array}{r} 500 \\ \times 0.0324 \\ \hline 1885 \\ 2.5105 \\ \hline 303010 \end{array}$$

in 2000 feet

$$\log W = 6.8875$$

$$\log \log W = 3.1125$$

27

28

$$\begin{array}{r}
 4941 \\
 3203 \\
 \hline
 8144
 \end{array}$$

Around Block

1512
3915
2940
<u>8367</u>

Block I

29

$$\begin{array}{r}
 604 \\
 20 \\
 20 \\
 \hline
 644 \text{ feet}
 \end{array}$$

$$\begin{array}{r}
 2.8089 \\
 2.8089 \\
 27 \quad 1.4314 \\
 \hline
 6.0492 \\
 6.3933 \\
 \hline
 3.4427 \quad 2777 \\
 0.6664 \\
 \hline
 3.5091 \quad 3203
 \end{array}$$

$$\begin{array}{r}
 3.5091 \\
 7.1910 \\
 3.1125 \\
 \hline
 0.6127
 \end{array}$$

TAE

6510

3.2773
7.2306
3.1125
3.6204

.4170

2.7305
7.3696
3.1125
3.12126

.1630

1.6575
7.7520
3.1125
2.4223

.0290

Block 2

2.7694
2.7694
1.2788

6.2923

3.2109
.0664

3.2773

387
10

30
427

137

10

30

177

385

30

20

142

10

588

2.6304
2.6304

6.3933

2.6641
.6664

2.7305

2.2486

2.2480

0.6021

63933

1.4914

.6664

5578

31 36

2112 2463

TAE

Decreasing
Straight

Block 3

514 2.77

510 2-7782

137 30 1.4771
20 6.3932

1201

600

3.426 9

0664

3.493

7.2218

3:11-25

3.8275

2670 3110

TAE

• 672

Block 4

1020
80
20
35

1155

577

34

6.3933

3.4472

.0664

3.5136%

7.238%

3.11125

3.8649

2.7612

2.7612

1.5315

2800

3260

TAE

• 732

$$\begin{array}{r} 4.4780 \\ - 2.5611 \\ \hline 1.9169 \end{array}$$

- 82

$$C = \begin{array}{r} 20 \\ 264 \\ 26 \\ 20 \\ \hline 364 \\ | \\ 182 \\ 62 \\ \hline 100 \end{array}$$

Answers

Block 5

$$x = \frac{(b-a)(f+a)^{\frac{1}{2}}}{6ec} + \frac{c}{2}$$

$$a = 472$$

$$b = 762$$

$$C = 1022$$

$$\begin{array}{r} 30 \\ 1052 \\ \hline 526 \end{array}$$

$$\begin{array}{r} 10.52 \\ 554 \\ \hline 498 \end{array}$$

$$\begin{array}{r} 30 \\ 10 \\ 400 \\ 20 \\ \hline 460 \end{array}$$

$$\begin{array}{r} 762 \\ 472 \\ \hline 290 \end{array} \quad \begin{array}{r} 472 \\ 762 \\ \hline 1234 \end{array}$$

$$\begin{array}{r} 3.0912 \\ 2.4624 \\ 8.9254 \\ \hline \end{array}$$

$$\begin{array}{r} 4.4780 \\ 3.0220 \\ \hline 1.4566 \end{array}$$

TAE

$$\begin{array}{r} 526 \\ 28 \\ \hline 554 \\ 498 \end{array}$$

Decreasing
time age

$$\begin{array}{r} 1.4560 \\ .0664 \\ \hline 1.3896 \end{array}$$

245

2.9862
7.3098
3.1125
3.4085 .256

3.1632
7.2583
3.1125
3.5260 .386

2.1910
7.5719
3.1125
2.4754 .075

Block 5

.90 2.6902
10 2.6902
1.00 1.1461
2.0 6.3933
3.0 2.9198
490 ,0664

831 969

1052 2.7497
490 2.7497
562 1.2041
1. 6.3933
3.0968
,0664
3.1632

1250 1450

(264) 1.9823
66 364 1.9823
30 96 0.3979
96 268 6.3933
28 .7558
7.5 10

266 2.4281
2.4281
0.8751
6.3933 133. 155
2.1244 2289. 2584
2.0668
2.1910

TAE

3.2689
7.2565
3.1125
3.6379 .433

2.1197
7.3591
3.1125
2.7913 .069

2.7489
7.3325
3.1125
3.1939 .156

Blocks 6 & 7

267	2.7435	
53	2.7435	
214	0.3222	
20	6.3933	
198		
25	3.2025	1590
64	.0664	1850
10		
33	3.2689	
554	2.4409	
328	2.4409	
82	0.7782	
240	6.3932	
30	2.0533	113
276	.0664	131
30	2.1197	
162	2.6675	
25	2.6675	
190	2.9542	
58	6.3933	
465	2.6825	481
	.0664	561
	2.7489	<u>2184</u> <u>2542</u>

TAE

$$\begin{array}{r}
 3.2699 \\
 7.2343 \\
 3.1125 \\
 \hline
 3.6167 \quad .414
 \end{array}$$

$$\begin{array}{r}
 1.3664 \\
 7.7852 \\
 3.1125 \\
 \hline
 2.1641 \quad .0145
 \end{array}$$

Block 8

$$\begin{array}{r}
 529 \\
 34 \\
 20 \\
 \hline
 583
 \end{array}
 \quad
 \begin{array}{r}
 2.7657 \\
 2.7657 \\
 1.2788 \\
 \hline
 6.3933
 \end{array}
 \quad
 \begin{array}{r}
 1600 \quad 1860
 \end{array}$$

$$\begin{array}{r}
 110 \\
 54 \\
 164
 \end{array}
 \quad
 \begin{array}{r}
 3.2699 \\
 2.2148 \\
 2.2148 \\
 0.4771
 \end{array}$$

TAE

$$\begin{array}{r}
 6.3933 \\
 \hline
 1.3000 \\
 ,0664 \\
 \hline
 1.3664
 \end{array}
 \quad
 \begin{array}{r}
 20 \quad 22 \\
 1620 \quad 1882
 \end{array}$$

$$\begin{array}{r}
 2.8746 \\
 7.3809 \\
 3.1125 \\
 \hline
 3.3680
 \end{array}$$

233

$$\begin{array}{r}
 3.4865 \\
 7.1568 \\
 3.1125 \\
 \hline
 3.7578
 \end{array}$$

572

$$\begin{array}{r}
 376 \\
 10 \\
 30 \\
 \hline
 416
 \end{array}$$

2.6191

2.6191

1.1761

6.3933

2.8076

.0664

2.8740

642 748

$$\begin{array}{r}
 296 \\
 10 \\
 20 \\
 841 \\
 80 \\
 \hline
 697
 \end{array}$$

2.8432

2.8432

1.3424

6.3933

3.4221

.0664

3.4885

2640 3080

3282 3825

TAE

3.3762
7.2226
3.1125
3.7113

514

Block 10

20	2.7774
30	2.7774
<u>1499</u>	
549	1.3617
55	6.3933
<u>599</u>	
3.3098	2040 2380
.0664	
3.3762	
7.6383	
<u>1.0145</u>	TAE

10.3 lb per lamp in distributing
main

14.3
24 lb per lamp

\$7.38 - maintenance per lamp
110 hours

\$3.64 for 200 other lamps

36400 for 1000 lamps

2112
2287
1722
6121

2.6071

7.4634

3.1125

3.1230

$$\begin{array}{r} 1.2069 \\ -0.6648 \\ \hline 1.3732 \end{array}$$

7.8152

3.1125

2.3009

$$\begin{array}{r} 3.0138 \\ -0.6539 \\ \hline 2.6802 \end{array}$$

7.2628

3.1125

3.4565

2.6829

7.3990

3.1125

3.1944

All round
2830
1090
2745
6665

.132

.0200

.1

.285

.106

$$\begin{array}{r} 20 \\ 193 \\ 20 \\ 162 \\ \hline 395 \end{array}$$

$$\begin{array}{r} 2.5966 \\ 2.5966 \\ 9) 0.9542 \\ 6.3933 \\ \hline 2.5407 \\ 0664 \end{array}$$

$$\begin{array}{r} (492 \\ 123 \\ 20 \\ 70 \\ \hline 153 \end{array}$$

$$\begin{array}{r} 2.1847 \\ 2.1847 \\ 0.5941 \\ 6.3933 \\ \hline 1.3068 \end{array}$$

$$\begin{array}{r} 487 \\ 162 \\ 325 \\ 20 \\ 188 \\ 13 \\ \hline 546 \end{array}$$

$$\begin{array}{r} 2.7372 \\ 2.7372 \\ 1.1461 \\ 6.3933 \\ \hline 3.0138 \end{array}$$

$$\begin{array}{r} 492 \\ 123 \\ 369 \\ 36 \\ \hline 399 \end{array}$$

$$\begin{array}{r} 2.6010 \\ 2.6010 \\ 1.0212 \\ 6.3933 \\ \hline 2.6165 \\ 0664 \\ \hline 2.6829 \end{array}$$

347 405

TAE -

20.2 25

1030 1200

413 482

1810 2112

3.3394
7.1878
3.1125
3.6397

436

Block n 4/13

500	2.8122
24	2.8122
115	1.2553
10	<u>6.3933</u>
<u>649</u>	1875 2180
	3.2730
	.6664
	<u>3.3394</u>

JAE

3.0333
 7.2924
3.1125
3.4382 .274

456 2.6590
 7.9031.
3.1125
3.6746 .472

500
10 2.7076
 2.7076
 1.0792
6.3933
 for base to
 give 2 values
 $+20\%$
 individual
2.8877 ~~772~~
 1.0792
2.9669 926 1080.
.0664
3.0333
125
125 feet 109.00
20 20
3.80
120
7.60
3.6
4.56.0
 249 2.3962 92 110
2.3962 1474 1646
0.7782
6.3933
1.9639

TAE

Block 14

100 2.2095
 162 2.2095
 162 .3010
 .3010
6.3933
1.5143

TDE

32 40

100 2.2553
 2.2553
 13010
 .3010
6.3933
1.5059

32 40
10 1074 90

$$\begin{array}{r} 268 \\ 20 \\ \hline 298 \end{array}$$

$$x = \frac{(b-a)(b+a)}{6ec} + \frac{c}{2}$$

$$\begin{array}{r} 762 \\ 298 \\ \hline 464 \end{array} \quad \begin{array}{r} 2.6665 \\ 3.0253 \\ 89254 \\ \hline 4.617^2 \end{array}$$

$$\begin{array}{r} 2(298) \\ 149 \\ \hline \end{array}$$

$$\begin{array}{r} 2.4742 \\ 2.4742 \\ \hline 2.1430 \end{array}$$

139

Feed all

$$\begin{array}{r} 243 \\ 16 \\ 20 \\ 16 \\ \hline 283 \end{array}$$

$$\begin{array}{r} 2.4742 \\ 2.4742 \\ \hline \end{array}$$

#.

$$6.3933$$

$$\begin{array}{r} 2.3417 \\ 2.00 \\ \hline 2.25 \end{array}$$

$$2.4518$$

$$2.4518$$

$$1.$$

$$6.3933$$

~~$$6.3933$$~~

$$\begin{array}{r} 2.2979 \\ 198 \\ \hline 396 \end{array} \quad \begin{array}{r} 2.25 \\ 396 \end{array}$$

58

Block 16

59

200 225

TAE

$$\begin{array}{r} 268 \\ -10 \\ \hline 278 \end{array}$$

$$\begin{array}{r} 2.4440 \\ 0.4440 \\ .7782 \\ 5.8732 \\ \hline 9.0595 \end{array} \quad \begin{array}{r} 230 \\ 10.4 \\ \hline 354 \end{array} \quad \begin{array}{r} 270 \\ 150 \\ \hline 420 \end{array}$$

Block. 17

$$\frac{\frac{15}{220}}{220} x = \frac{(b-a)(b+a)}{6E.C.} F + \frac{C}{2}$$

$$\begin{array}{r} b = 831 \\ a = \frac{220}{611} \end{array} \quad \begin{array}{r} 831 \\ \frac{220}{1051} \end{array}$$

TAE

3.0216

2.7860

8.9254

4.7330

2.8287

1.9043

337

80.2

417

337

33

396

2.5977

2.5977

7782

63933

23669

0664

2.4335

230 270

TAE

Block 18

One side

Same as Block 17 1230 270

True 150 150

TAE

Block 19:

1.0
2.0
2.0
9.5
10

597
198

2.2967
2.2967
0.9502 AE
6.3923

1.9409 87.3 00

Block 20

40

298

40

378

189

2.2765

2.2765

0.9031

6.3933

70.

90

40

192

20

320

20

191

40

123

111

2.6138

2.6138

1.14616.3933

2.7670

588

681

0.6364.8334

658

771

Block 22

370

35

35

20

450

230

2.3617

2.3617

1.0792

6.3932

2.1959 157 180

AE

Block 23

Same as Block 17

230 - 270

275

36

211

2.4924

2.4928

1.

6.5933

2.3789

240 & 280

470 5-0

THE

74

$$\begin{array}{r} 220 \\ 370 \\ 59 \\ 213 \\ \hline 164 \end{array}$$

$$\begin{array}{r} 286 \\ 50 \\ 20 \\ 56 \\ \hline 412 \end{array}$$

$$\begin{array}{r} 2.6149 \\ 2.6149 \\ 1.0419 \\ 6.3733 \\ \hline 2.6645 \end{array}$$

$$\begin{array}{r} 462 \\ 550 \\ \hline 0664 \end{array}$$

$$7307$$

80

$$\begin{array}{r} 6.9031 \\ 1.9031 \\ 6.4771 \\ 6.3930 \\ \hline 5766 \end{array}$$

10 12

Estimated

$$\begin{array}{r} 50 60 \\ 10 12 \\ \hline 532.634 \end{array}$$

Block 24

75

$$x = \frac{(b-a)(b+a)}{680} + \frac{c}{2}$$

$$\begin{array}{r} b=1646 \\ a=264 \\ \hline b-a=682 \end{array} \quad \begin{array}{r} 1046 \\ 364 \\ \hline 682 \end{array} \quad \begin{array}{r} 1046 \\ 364 \\ \hline 682 \end{array}$$

$$682 \times a = 1410$$

$$\begin{array}{r} 3.1492 \\ 2.8338 \\ 8.9254 \\ \hline 4.9104 \end{array}$$

TAE

266

50

26

25

10

15

361

796

2.7642

21462

298

140

138

215

158

57

16

67

38	35
32	48
28.5	98
35.0	98
	<u>62933.</u>
42.8	378
35.0	98
78	260
33	
32	
45	
	2.5378
	2.5378
	1.0969
	6.34313
26	
	2.5658 366 429
	<u>0.664</u>
	<u>2.6322</u>
36	
36.2	
20	
25	
72.6	
	2.6294
	2.6294
	1.0792
	6.2930
	2.7313 538 624
	<u>0.664</u>
	<u>2.7977 916 1069</u>

Over

$$a = 634 \quad X = \frac{(a-a)(b+a) f}{68c} - \frac{1046}{1680}$$

$$b = 1046 \quad \frac{1046}{634}$$

$$\frac{412}{412}$$

3.2253

2.6149

8.9254

4.8656

2.6866

TAE

36	15	15-1
32	16	243
378	33	<u>394</u>
16	32	<u>65</u>
33	285	
32	428	
285	.20	
428	282	329
.20	282	
282	35	
	1115	4.8656
	557	3.0472
	66	66
	623	1.9184

712 feet

~~2630~~
~~3679~~ lbs

63 lbs.

$$\begin{array}{r}
 2630 \quad 3.4200 \\
 63 \quad 11.7993 \\
 \hline
 1.6207
 \end{array}$$

41.8 1.6207

$$\begin{array}{r}
 .0057 \quad 3.7559 \\
 \hline
 7.3866 \\
 \cancel{13} \quad 13010 \\
 \hline
 .238 \quad 1.6776
 \end{array}$$

.476

916 1069

$$\begin{array}{r}
 428 \\
 64 \\
 \hline
 392 \\
 20 \\
 285 \\
 22 \\
 33 \\
 10 \\
 \hline
 712 \quad 180
 \end{array}
 \begin{array}{l}
 2.8525 \\
 2.8525 \\
 1.2553 \\
 6.3933 \\
 3.3536 \\
 -056 \\
 \hline
 3.9200 \\
 2.2553 \\
 \hline
 1.1647
 \end{array}
 \begin{array}{r}
 2260 \quad 2630 \\
 3176 \quad 36.99
 \end{array}$$

TAE

(14.5 lbs. per cu. ft.)

7.25 cu. m. above dump

$$\begin{array}{r}
 3.4200 \\
 7.1474 \\
 3.1125 \\
 \hline
 3.6799
 \end{array}$$

.478

Block 26

$$\begin{array}{r} a = 220 \\ b = 364 \\ \hline 584 \end{array}$$

$$\begin{array}{r} 364 \\ 220 \\ \hline 144 \end{array}$$

$$\begin{array}{r} 2.1584 \\ 2.7664 \\ 8.9254 \\ \hline 3.8502 \\ 2.7427 \\ \hline 1.1675 \end{array}$$

10
193
Φ20
320
10

553
276
12
288
203
.85

10
193
20
50
303

2.4814
2.4814
0.8129
6.13933

28.1690 147 170

TAE

Ober

Block 26

147 170

$$\begin{array}{r}
 320 \\
 -60 \\
 \hline
 240 \\
 -10 \\
 \hline
 250 \\
 6.3933 \\
 \hline
 1.8423
 \end{array}
 \quad
 \begin{array}{r}
 2,3979 \\
 2.3979 \\
 0.6532 \\
 \hline
 6.3933
 \end{array}
 \quad
 \text{TAE}$$

$$\begin{array}{r}
 214 \\
 2.3314 \\
 2.3314 \\
 0.6021 \\
 6.3933 \\
 \hline
 1.6582
 \end{array}
 \quad
 \begin{array}{r}
 70 80 \\
 \hline
 217 250
 \end{array}
 \quad
 \begin{array}{r}
 45.5 5.5 \\
 \hline
 \end{array}$$

307 2.4871 *one away with*

$$\begin{array}{r}
 2.4871 \\
 1.1461 \\
 6.3933 \\
 \hline
 2.5136 \\
 .0664 \\
 \hline
 5.88 685
 \end{array}
 \quad
 \begin{array}{r}
 326 380 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 \Sigma 5800
 \end{array}$$

Block 27

$$\begin{array}{r} 218 \\ 37 \\ \hline 2.4065 \\ 2.4065 \\ \hline 0.6990 \\ 6.3933 \\ \hline 1.9053 \end{array}$$

20 25
80 95
100 120

TAE

Block 28

43	2.7490
864	2.7490
10.	14150
195	6.3933
10	<u>3.3063</u>
1122	2020 2260
561	.0664
	3727 TAE

Click 29.

13

-20

10

179

20

138

20

87

20

168

10

52

376

33

109

2.6117

2.6117

1.1903

6.3933

2.8070

.0664

2.8734

641 747

TAE

200	2.3617
10	2.3617
20	.9031
230	6.3933
	<hr/>
	2.0198
	103
	125
20	
213	2.5623
20	
113	2.5623
265	1.1137
	6.3933
	<hr/>
	2.6318
	428
	491
	<hr/>
	2.6982
112	
113	2.0864
122	2.0864
	0.6990
	6.3933
	<hr/>
	1.2651
	.18
	25
	<hr/>
	5.59
	661

Block 30

$$x = \frac{(b-a)(b+a)T}{6Ec} + \frac{c}{2}$$

$$a = 479 \quad 752$$

$$b = \frac{752}{1231} \quad \frac{479}{273}$$

$$\begin{array}{r} 29 \\ 174 \\ 20 \\ 225 \\ 25 \\ 213 \\ 29 \\ \hline 650 \end{array}$$

TAE

$$3.0899$$

$$2.4362$$

$$8.9254$$

$$4.4515$$

$$2.4683$$

$$1.9832$$

$$90.2$$

$$\begin{array}{r} 249 \\ 10 \\ 20 \\ 20 \\ \hline 294 \end{array}$$

$$\begin{array}{r} 4.4515 \\ 2.8129 \\ \hline 1.6386 \end{array}$$

$$\begin{array}{r} 568 \\ 962 \\ \hline 568 \end{array}$$

$$43.5$$

124

10

10

10

246

26

84

5.64

2.7024

2.7024

1.0.792

64840

6.3933

2.8773

.0664

2.9437

232

35

32

299

2.4757

2.4157

.9031

6.3933

22478

0664:

2.31.42

20 25

YAE

754 876

177 207

951 1100

Block 32.

$$\begin{array}{r} 2.9706 \\ - 06641 \\ \hline 3.0370 \end{array}$$

935 1090

TAF

~~(287)~~
57 2.4116
230
10
12
258
57 1.6977
30
18
85
135
10
745
18
97
20
270
10
415
2.5324
,0664
2.5988

2.4116
 2.4116
 0.6812
 6.3932
 79 85
 2 3
 1.6977
 1.6294
 1.6294
 1.60792
 6.2933
3.313
 2.1614
 2.1614
 2.3779
 6.3932
 1.1140
 2.6180
 2.6180
 0.9021
 6.3933
341 397
435 500

Block 33

$$\lambda = \frac{(b-a)(b+a)}{682} + \frac{c}{2}$$

$$a = \underline{\underline{320}} \quad \frac{537}{220}$$

$$b = \underline{\underline{537}} \quad \underline{\underline{317}}$$

TAE

$$2.8791$$

$$2.5011$$

$$8.9254$$

$$287$$

$$10$$

$$18$$

$$1.5224$$

$$\underline{\underline{4.3056}}$$

$$\underline{\underline{1.8832}}$$

$$76.4$$

$$(333)$$

$$166$$

$$76.4$$

$$2424$$

$\frac{27}{28}$	2.4278
$\frac{2.9}{274}$	2.4378
	0.6021
	<u>6.3933</u>
	<u>1.8710</u>
	74 90
2.7	
2.8	2.5717
1.93	2.5717
2.0	0.6990
1.05	6.3933
<u>373</u>	<u>2.2357</u>
	0.660
	<u>3.021</u>
1.05	2.0607
1.0	2.0607
1.15	
	<u>6.3933</u>
	<u>.8157</u>
	<u>2.525</u>
	29.75

Block 34

$$x = \underline{(A-a)(b+a)}$$

$$\begin{array}{r} a = 537 \\ b = 1051 \\ \hline 1588 \end{array}$$

TAE

$$\begin{array}{r} 3. 2010 \\ 2. 7110 \\ 2.8 \\ 8. 9254 \\ 1.93 \\ 2.0 \\ 4.8374 \\ 2.11 \\ 10 \\ 2.6896 \\ \hline 2.1476 \end{array}$$

$$\begin{array}{r} 4.89 \\ 2.44 \\ 1.40 \\ \hline 1.04 \end{array}$$

140

Block 35

167	2.0899
10	2.0899
10	0.6021
30	6.3933
30	1.1752
247	
123	

15 20

TAE

10	2.0749
10	2.6749
30	1.3010
30	6.3933
210	3.0441
20	.6664
186	
20	
330	
946	3.1105
473	

1100 1290
1115

102

479
21
213
32
<u>753</u>

Block 36

103

598	2.6031
16	2.6031
156	1.2553
<u>410</u>	6.3933
<u>774</u>	<u>2.8548</u>
387	.0664
14	
<u>401</u>	<u>2.9212</u>

715 834

TAE

Blocks 37 & 38

10
135
24
59
228

2.3579
2.2579
0.8451
6.3933

1.9542
.0664
2.0266

90 105

TAE

Block 39

200

20

25

2 3010

2 3010

0.4771

6.3933

~~11.47.24~~

30 35
58 60

TAE

108

Block 40

109

196
20
177
10

100

120

JAXEDISON

Block 41

10
215
20
15-8
~~40~~
3

73 90

TAEDISON

412

413

Block 42

60 75

TAEEDISON

792 2.6590
396 2.6590
50. 1.1761
50. 6.3933
456 2.6874 771 899
2.664
9538
30 40

801 939

Block 44

468
50
538

2,7308
2,7308
1,3424
6,3933
3,1973
.0664
2637

1570 1830

TR

118

Block 45

119

20

25

$$\begin{array}{r} 140 \\ 160 \\ \hline 170 \\ 195 \end{array}$$

195

Block 46

$$\begin{array}{r}
 30 \\
 10 \\
 227 \\
 20 \\
 \hline
 401
 \end{array}
 \begin{array}{r}
 2.6031 \\
 2.6031 \\
 0.9542 \\
 6.3933 \\
 \hline
 2.5537 \\
 ,0664 \\
 \hline
 2.6201
 \end{array}$$

357 . 417

$$\begin{array}{r}
 40 \\
 ,60 \\
 \hline
 397
 \end{array}
 \begin{array}{r}
 457
 \end{array}$$

TIC

122

Block 47

123

192

220

TAE

Block 48

$$\begin{array}{r}
 409 \\
 30 \\
 \hline
 429
 \end{array}
 \quad
 \begin{array}{r}
 2.6425 \\
 2.6425 \\
 \hline
 1.2304 \\
 6.3933 \\
 \hline
 2.8087 \\
 0.664 \\
 \hline
 8751
 \end{array}
 \quad
 644.75^{\text{d}}$$

215.

$$\begin{array}{r}
 2.3324 \\
 2.3324 \\
 \hline
 6021 \\
 6.3933 \\
 \hline
 1.6502
 \end{array}
 \quad
 \begin{array}{r}
 45 \\
 60 \\
 \hline
 689 810
 \end{array}$$

TAE

Block 49

418
30
418

2.6513
2.6513

1.3010

8.3933

2.9969

.0664

3.0633

993 1150

TAE

128

Block 50

129

200 / ± 40

TAE

Block 51.

490 2.7482
30 2.7482
40 1.1451
50
6.3933
3.0368
3.0664
3.1032

1100 260

TDE

$$\begin{array}{r}
 6029 \\
 2112 \\
 \hline
 330) 8151 \quad 3.9112 \\
 \hline
 2.5185 \\
 \hline
 1.3927
 \end{array}$$

 24.7 lb cu. per 100 Ohm length

84.

52,300	4.7185	61,000
	0669	<u>52,300</u>
61,000 lbs	<u>4.7849</u>	8,700

61.000
88983
149983. To supply
 dynes

2777	36 -	55-9
2112		951
2670		935
2800		425
2289		<u>2525</u>
2184	35 -	1115
67		716
1620		90
3282	J748 -	50
2040		100
1810	40	73
10912	14.75	60
13	14.74	801
	74	570
15 -	398	160
	200	397
	354	192
	150	689
	873	993
20	659	200
	240	<u>1100</u>
	157	14711
	470	<u>37564</u>
	532	<u>52275</u>
	3176	
	588	
	100	
	2620	
	641	
	<u>37564</u>	

TAE

134

Station at corner No. 1
to have the conductors brought
a shorter route.

21 Stations now for distribution

44 + 44 144

16 separate lines

$$\begin{array}{r}
 220 \\
 15 \\
 370 \\
 58 \\
 215 \\
 10 \\
 \hline
 689
 \end{array}
 \qquad
 \begin{array}{r}
 220 \\
 10 \\
 370 \\
 58 \\
 215 \\
 10 \\
 \hline
 683
 \end{array}$$

91 1013 feet

135

$$\begin{array}{r}
 396 \\
 100 \\
 10 \\
 162 \\
 10 \\
 20 \\
 130 \\
 35 \\
 140 \\
 10 \\
 \hline
 1013
 \end{array}
 \qquad
 \begin{array}{r}
 3429 \\
 4191 \\
 1587 \\
 1397 \\
 \hline
 10604
 \end{array}
 \qquad
 \begin{array}{r}
 4971 \\
 6039 \\
 2287 \\
 2013 \\
 \hline
 15115
 \end{array}$$

$$\begin{array}{r}
 160 \\
 \hline
 853
 \end{array}
 \qquad
 \begin{array}{r}
 15116 \\
 10604 \\
 \hline
 4512
 \end{array}
 \qquad
 \begin{array}{r}
 \text{No lines} \\
 30 \\
 \hline
 81354.66 \text{ Fwd}
 \end{array}$$

$$\begin{array}{r}
 4191 \\
 2970 \\
 \hline
 1221
 \end{array}
 \qquad
 \begin{array}{r}
 45-12 \\
 1221 \\
 \hline
 5733
 \end{array}$$

~~1729~~

(By making new stations)

$$\begin{array}{r}
 30 \\
 \hline
 36630 \\
 1354 \\
 \hline
 271030
 \end{array}$$

1 P.E.

Lamps

50

200 hours each lamp
for fifty cts

$$\frac{200}{8} = 22.2 \text{ hours}$$

for a H.P.

$$22.2) 500 (2.2 \text{ hrs.}$$

$$\underline{44.4}$$

$$\underline{\underline{560}}$$

$$\frac{200}{8} = 2.5$$

$$2.5) 500 (\text{retention}$$

50 cts Lamps 137
50 cts cost per
3.00 at 9 per H.P.

50 cts ~~for~~ cost

7 per H.P. 12 candles each

600 hours TAE

~~200 hours at 9 per~~

7 per H.P. 16 candles each
300 hours

Lamps 85 cts each

$$\frac{500}{85} = 5.88$$

$$\frac{600}{85} = 7.06$$

$$\underline{\underline{3000}}$$

For lamps $\frac{3.00}{11\frac{2}{3}} = 3.00$ cts per M

Lamps

50 cts for 111.

at 8 per H.P.

50 cts for 200 hours
for one horse.

50 cts for 200 hours
~~hours~~ for one
horse power.

50 cts for 25 horse
power for one
horse

2 cts. for 1 horse
power for one
horse

Lamps

2 cts.

7/400
57.1

$$\frac{2}{7} \times 200 = 57.1 \text{ cts for 111.}$$

11.86

Total at H = 66.76 cts

7/400
44.4

$$\frac{2}{9} \times 200 = 44.4 \text{ cts for 111.}$$

Lamp Cost $\frac{11.66}{2}$ TAE
 $\frac{23.33}{2}$ cts

44.4

23.3

67.7 cts

Lamps
1000 feet

60 lbs per cu ft

12 cu ft

$$\frac{25}{60} \\ \frac{60}{1.50} \text{ per ft}$$

$$\frac{16}{8} \quad \text{TAE}$$

$\frac{1}{84}$ candles incandescent

~~7 per H.P.~~ 20 abs. per 1000 candles

$\frac{2}{7}$ per lamp per hour

$$\frac{7}{7} \times \frac{50}{12} \text{ per } 1000 \text{ candles}$$

$\frac{17}{64}$

$$21) \frac{500}{42} (23.8$$

$$\frac{80}{68}$$

$$\frac{68}{170}$$

142

Lamps
last 6000 hours
costing 35cts

143

$\frac{6000}{7200}$ candles for 35cts

$$\begin{array}{r} 3.5 \quad 1.5441 \\ 7.2 \quad 0.8573 \\ \hline 6.868 \end{array}$$

4.8 cts

TAE

$$\begin{array}{r} 23.8 \\ 4.8 \\ \hline 28.6 \end{array} \text{ Total cost}$$

144 candles mean. 300 Hours ~~Lamps~~¹⁴⁵
9 per H.P. of 16 candles

$$\frac{2}{9} \times \frac{\frac{12.5}{100}}{x} = 13.9 \text{cts}$$

$$\begin{array}{r} 9 \cancel{12.5} \\ \hline 13.9 \end{array} \quad \begin{array}{r} 16 \\ 9 \\ \hline 144 \end{array}$$

14.45; 17.60 ; ; 15.79

1. 1959
1. 2455
~~8.8416~~

1. 2830

TAE

4.8

9.6

19.20

Total cost 12.9
9.6

22.5 ct

10/12
9 of 12

$$\begin{array}{r}
 863 \\
 44 \\
 290 \\
 10 \\
 \hline
 1221
 \end{array}
 \qquad
 \begin{array}{r}
 831 \\
 44 \\
 112 \\
 40 \\
 \hline
 180 \\
 10 \\
 \hline
 1217
 \end{array}$$

Station at corner of 147
Block 24 can be made
883 feet from central

station

Lumps

$$\begin{array}{r}
 90 \\
 145 \\
 65 \\
 110 \\
 \hline
 405
 \end{array}
 \qquad
 \begin{array}{r}
 1240 \\
 1960 \\
 912 \\
 1575 \\
 \hline
 5687
 \end{array}$$

$$\begin{array}{r}
 96.5 \\
 40.5 \\
 \hline
 4825
 \end{array}
 \qquad
 \begin{array}{r}
 TAE \\
 3908 \\
 \hline
 1789
 \end{array}$$

$$\begin{array}{r}
 3860 \\
 \hline
 2908.25
 \end{array}
 \qquad
 \begin{array}{r}
 17.79 \\
 \text{lbs cu}
 \end{array}$$

From page 135

$$\begin{array}{r}
 5773 \\
 1779 \\
 \hline
 7552
 \end{array}$$

$$\begin{array}{r}
 149.983 \\
 7.552 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 142.431 \\
 128.506 \\
 \hline
 \end{array}$$

~~13.925~~ the more than
other system

148

Length of distributing wire
in system where it is run
separately from all other
wires.

149

35.457 feet

TAE

150

Reckord

151

*3223 lots of 26
24*

TAE

Data from which the 153
preceding calculations are made

The lamps are ^{the} assumed to have
a resistance of 100 Ohms.

30 lamps placed 60' apart
on a line 1800 feet long, so
that there would be a resis-
tance of 10 Ohms to each lamp
if the conductor were made
up of separate strands. Both
conducting wires together weigh 440.7
pounds, and if at the machine
there is 100 Volts tension be-
tween the lines there will be
87.6 Volts at the lamps
1800 feet from the machine
or a drop of 12.4 Volts.

a

The fall in E.M.F. will 155
 inversely proportional to the amount
 of copper in the conductor.
 There will be the same
 proportional fall for
 10 Camps as for 30 if
 there is $\frac{1}{3}$ the amount of
 copper in the conductor.

$$\text{i.e. } \frac{490.7}{3} = \underline{\underline{1469 \text{ lbs TAE}}}$$

The amount of Copper required
 varies as the square of
 the distance that the
 Camps are apart, and
 as the ~~distance~~ square
 of the distance of the
 furthest removed camp.

Let a = distance to extreme lamp. 157

b = number of lamps $\div 10$

c = amount of copper in conductor

x = Fall E.M.F. on conductor
a foot long with b lamps
on it, weighing c
pounds.

$$1800^2 \cdot a^2 :: 146.9 : d \quad \text{TA}$$

$$d = \frac{146.9 a^2}{1800^2}$$

d = amount Copper that will
give 12.4 Volts fall
on a conductor
a foot long with 10 lamps

$$12.4 : X :: \frac{c}{b} : d$$

$$X = \frac{12.4 d b}{c} = \frac{12.4 \times 146.9 a^2 b}{1800^2 c}$$

If instead of 100 Volts 159
to start with there are
110 Volts at the machine
then the fall in E. M. F.
will be $\frac{1}{10}$ greater
 $12.4 + 1.24 = 13.64$ Volts

$$\text{Then } X = \frac{13.64 \times 146.9 a^2 b}{1800^2 C}$$

X 119

Let $x = 2.5$ volts it is 161
 required to find the value
 of C for the lamps at a feet
 from machines.

$$X = \frac{13.64 \times 146.9 \times a^2 b}{1800^2 C}$$

$$C = \frac{13.64 \times 146.9 \times a^2 b}{1800^2 X}$$

$$\frac{13.64 \times 146.9}{1800^2} = .000618$$

$$\begin{array}{r} 1.1347 \\ 2.1676 \\ 6.7447 \\ 6.7447 \\ \hline 2.5 \end{array} C = \frac{.000618 a^2 b}{2.5}$$

$$\begin{array}{r} 6.7911 \\ 0.3979 \\ \hline 6.3932 \end{array} C = 0.002473 a^2 b n$$

$$C = \frac{.000618 a^2 b}{2.5}$$

$$C = .000247 a^2 b$$

$$\log .000247 = 6.3932$$

TAC

$$\begin{array}{r} 100 \\ - 5.24 \\ \hline 94.76 \end{array}$$

I worked this out
in another book and
am quite sure that
it is right

March 22 1881 EPH

Conductor of the same size 165
for the whole length with
ten lamps on it 180 feet
apart the total resistance
of the conductor being 1 ohm
If at the machine there
are 100 Volts at the end
of the conductor there will
be 94.76 Volts as a fall
of 5.24 Volts. If at the
machine there is 110 Volts
there will be a fall of
5.764 Volts on the line
and take 405 lbs of Cu
in the line 1800 feet long.

Since the fall is inversely proportional to the amount of copper used in the mains, to compare with the conductor in which there was a fall of 13.64 Volts, there will be n pounds of copper in the uniform sized conductors to give the same fall.

$$5.764 : 13.64 :: n : 405$$

$$n = \frac{405 \times 5.764}{13.64} = 171.2$$

$$\begin{array}{r} 2.6075 \\ 0.7607 \\ 8.86572 \\ \hline 2.2334 \end{array} \quad \begin{array}{l} \log n = 2.3334 \\ \log 1469 = 2.1670 \\ \hline 0.1664 \end{array}$$

(page 155)

That is it require 1.165 times as much copper for a straight

conductor as it does for 169
a decreasing conductor to
give the same fall
of E.M.F.

TAE

To find the best point¹⁷¹
to run the wires to in
feed a distributing wire
from both ends

The

$$\text{Let } A = a$$

$$AB = b$$

$$Cx = x$$

$$CB = c$$

$$Bx = c - x$$

If there are n lamps along
the conductor BC

$$\frac{x}{c} n \text{ will be fed from } C$$

$$\frac{c-x}{c} n \text{ will be fed from } B$$

Data for F

10 lamps at 10 feet require
0.125 lbs of Cu.
at 1 foot 1 lamp

$$\frac{0.125}{1000} = 0.000125$$

datum for E

16 lamps on 1800 feet require
146.9 lbs of Cu

$$146.9 \quad 2.1670$$

$$\text{Cmpf } 10 \cdot \quad 9 \cdot$$

$$\text{Cmpf } 1800 \quad 6.7447$$

$$\text{Cmpf } 1800 \quad 6.7447$$

$$4.6564 \sim 10$$

$$1.1347$$

$$9.6021 \sim -10$$

$$5.3932$$

$$.6664$$

$$5.4596$$

Let F = The weight of ¹⁷³
copper required in
the main line to
feed a lamp at a
distance of one foot.

Let E = The weight of copper
required in the dis-
tributing wires to feed
one lamp at a dis-
tance of one foot
from distributing point.

$$F = .0000125 \log F = 5.0969$$

Decreasing conductor

$$E = .00002473 \log E = 5.3932$$

Uniform sized conductor

$$E = .00002882 \log E = 5.4596$$

The values of ϵ can be obtained easily by substituting in the last equation on page 161.

$$a = 1$$

$$b = \frac{1}{10}$$

To supply X n lamps through α

C requires

$$\frac{X}{C} n^2 \epsilon \text{ lbs. in main}$$

$$\frac{X}{C} n X^2 \epsilon \text{ lbs. in distributing}$$

To supply $\frac{C-X}{C} n$ lamps from B requires

$$\frac{C-X}{C} n b^2 \epsilon \text{ lbs. in main}$$

$$\frac{C-X}{C} n (a-x)^2 \epsilon \text{ lbs. in distributing}$$

The problem is to make 177
the sum of these weights
a minimum

$$\frac{x}{c} n a^2 f + \frac{x}{c} n x^2 \varepsilon \\ + \frac{c-x}{c} n b^2 f + \frac{c-x}{c} n (c-x)^2 \varepsilon = \text{min}$$

Differentiated making equal
to zero multiplying ~~both~~ by c
and dividing by n we
have

$$a^2 f + 3x^2 \varepsilon - b^2 f - 3(c-x)^2 \varepsilon = 0$$

$$3x^2 \varepsilon - 3c^2 \varepsilon + 6cx \varepsilon - 3x^2 \varepsilon \\ = b^2 f - a^2 f$$

$$6cx \varepsilon = b^2 f - a^2 f + 3c^2 \varepsilon$$

$$x = \frac{(b-a)(b+a)f}{6\varepsilon} + \frac{c}{2}$$

To find the most profitable¹⁷⁹
place to feed a distributing
system

AB a uniform wire on
which there is a fall of
ten Volts. BC an uniform
or decreasing wire on which
there is a fall of 2.5 Volts

Let AC = a

AB = x

BC = a - x

Let γ = values on ~~page~~¹⁷³

& E =

$$x^2 f + (a-x)^2 \varepsilon = \text{min}$$

$$x^2 f + a^2 \varepsilon - 2ax\varepsilon + x^2 \varepsilon = \text{---}$$

$$\frac{1}{2} x^2 + a^2 \varepsilon - 2a\varepsilon x + \varepsilon x^2 = \text{min}$$

$$2fx - 2a\varepsilon + 2\varepsilon x = 0$$

$$(2f + 2\varepsilon)x = 2a\varepsilon$$

T69

$$x = \frac{2\varepsilon}{f + \varepsilon}$$

$$\begin{array}{r} \frac{\varepsilon}{f + \varepsilon} \\ \hline 247 & 0.3927 \\ 3.72 & 0.5705 \\ \hline 8222 & \end{array} \quad \begin{array}{r} .0000125 \\ 0006247 \\ \hline 100003.72 \end{array}$$

66.4% for decreasing

$\frac{125}{288}$
413

182

$$\frac{18}{12}$$

$$\frac{12}{6}$$

$$\begin{array}{r}
 35 \\
 35 \\
 \hline
 175 \\
 105 \\
 \hline
 7225
 \end{array}$$

48

2

2 Ohms

$$\begin{array}{r}
 42 \\
 42 \\
 \hline
 84 \\
 168 \\
 \hline
 1764
 \end{array}$$

$$\frac{176}{122} X^2$$

$$\frac{61}{176}$$

183

T

278 W. Water = 0, 869 ~~gram~~
20° = time
49,8° = temperature

$$\frac{0,869 \times 49,8}{20}$$

<u>0.869</u>	
<u>4.918</u>	
<u>6.552</u>	
<u>2.821</u>	
<u>3.426</u>	
<u>4.029</u>	<u>6.2</u>
<u>4.1</u>	
<u>2,163.8</u>	<u>4.76</u>
<u>0.0032</u>	<u>245</u>
<u>4.322.6</u>	<u>228.0</u>
<u>4.322.6</u>	<u>333.2</u>
<u>4.74</u>	<u>333.2</u>
<u>4.74</u>	<u>2689.00</u>
<u>225</u>	<u>2689</u>
	<u>15 pounds</u>
<u>2.000</u>	<u>2689</u>
<u>3.201</u>	<u>2689</u>
	<u>2689</u>

396

~~358,1~~

279

$$\begin{array}{r} 19 \\ \underline{2} \\ 12 \overline{) 38''} \\ \underline{36} \\ 16 \end{array}$$

$$\begin{array}{r} 150 \\ \underline{2} \\ 300 \end{array}$$

$$\begin{array}{r} 3' . 166 \\ \underline{15020} \end{array}$$

$$\begin{array}{r} 158300 \\ \underline{3166} \\ \underline{475900} \end{array}$$

4/475 feet

119

feet to make Ohm

$$\begin{array}{r} 175 \\ \underline{6} \\ 1050 \\ \underline{4} \\ 4200) 475.0 \quad (11.3 \\ \underline{4200} \\ 550 \\ \underline{420} \\ 130 \end{array}$$

113 Ohms

284

168

169

Menlo Park Notebook #160 [N-80-06-16.2]

This notebook was probably used on September 23 and September 24, 1880 to record tests made by Edison, Francis Upton, Francis Jehl, and Sigmund Bergmann of gas jets at Bergmann's factory. (See Charles P. Mott's entries of those dates in Menlo Park Notebook #117.) Included also are references to books on gas lighting and a clipping relating to gas light tests made by the New York Department of Public Works. The label on the front cover is marked "Gas." The book contains 282 numbered pages. The last page has been torn out of the book.

Blank pages not filmed: 24-195, 198-235, 238-239, 242-253, 260-273.

WEDNESDAY, JUNE 16, 1880.

Official Report of Examinations of Gas for
two Weeks ending June 5, 1880, made
at the Photometrical Room of the Depart-
ment of Public Works.

Corrected Illuminating Power.

May 1880.	Time of Day at which Test were made.	Corrected Illuminating Power.					
		New York Gas Light Co.	Manhattan Gas Light Co.	Mutual Gas Light Co.	Metropolitan Gas Light Co.	Hudson Gas Light Co.	Municipal Gas Light Co.
	24 Between	25.65	26.18	26.75	22.50	18.90	20.27
	25 9.30 A.M.	24.26	20.26	27.08	22.56	19.29	28.24
	26 and	27.01	20.33	25.00	21.83	19.22	28.28
	27 1 P.M.	23.41	20.42	25.98	22.01	19.00	28.02
	28	24.16	20.14	26.96	21.04	18.00	29.08
	29	24.53	20.48	26.32	21.63	18.15	29.16
	Average	24.05	20.22	26.23	21.88	18.77	28.82
June 1880.	1	23.31	20.44	25.96	21.24	18.45	29.12
	2	19.65	20.36	25.62	21.12	17.90	29.18
	3	20.38	19.62	25.05	21.73	17.62	28.72
	4	21.84	19.95	25.27	21.65	18.51	28.55
	5	24.88	19.84	24.54	22.82	17.90	28.49
	Average	21.89	20.03	25.22	21.71	18.05	28.60

* Five foot lava tip with check.

† Brin's slit union, No. 7.

E. G. Love, Gas Examiner.

Goodwin Meter Co 142 Chambers.
Photometers, Pressure Gauges, etc

American Meter Co 512 W 22nd

Kings Treatise on Coal gas \$10.
AM Callender & Co 42 Pine

Ack Price Ann Gaudy Jr from
Commencement to date, 32 Vols —

WEDNESDAY, JUNE 16, 1880.

Official Report of Examinations of Gas for
two Weeks ending June 5, 1880, made
at the Photometrical Room of the Depart-
ment of Public Works.

Corrected Illuminating Power.

May	Time of Day at which	Light On	Light Co.				

LIBRARY OF THE

BOARD OF PATENT CONTROL,

120 BROADWAY, NEW YORK.

From Library
GENERAL ELECTRIC,
44 Broad St., N.Y.

May 1, 1890.

	24.88	19.84	24.04	22.82	17.90	25.49	20.01	20.55
Average	21.59	20.08	25.29	21.71	18.05	28.50		

* Five foot lava tip with check.

+ Bray's allusion, No. 7.

E.G. Love, Gas Examiner.

Time for examination, one of the examinations of the

Goodwin Meter Co 142 Chambers
Photometers, Pressure Gauges, etc.

American Meter Co 512 W. 22nd St.

Gas @ Water Co Directly by Hartings
London - Orders recd. almost from journal

Cathels. Gas consumers Manual
Mr. Purst Room 18. 19. Gas Park journal
AM. Callender 76

Tordoff's System Gas Bookmarks
f 5 = See if we havnt got it

Kings Treatise on Coal gas 30.
AM Callender 76 42 Purst

Ask Price Am. Gas Jnl from
Commencement to date, 32 Vols -

We are prepared to furnish to GAS MANAGERS and others interested in the topics treated of, the following Books, at prices named:

GAS MANUFACTURE, by WILLIAM RICHARDSON, 4 to 16. 512.

THE GAS ANALYST'S MANUAL, by P. W. HARTLEY, \$1.25.

ANALYSIS, TECHNICAL VALUATION, PURIFICATION and USE OF COAL GAS, by Rev. W. H. BOWDISH, M.A., with Engravings. 8vo \$4.00.

NEWBREIGINS HAND BOOK, by THOMAS NEWBREIGINS, C.R. \$1.75

GAS CONSUMERS' HAND BOOK, by WM. RICHARDSON, C.E. 12mo. Sewed. 50 Cents.

GAS CONSUMERS' MANUAL, by E. S. CATHLEA, C.E. 10 Cents.

PRACTICAL TREATISE ON HEAT, by THOMAS BOX. Second edition. 50.

AIR AS FUEL, OR PETROLEUM AND OTHER MINERAL OILS UTILIZED BY CARBURATING AIR, by GEORGE D. BROWN, Member Institute Civil Engineers. 8vo. Cloth. \$1.50.

The above will be forwarded by Express, upon receipt of price.

We will take especial pains in securing and forwarding any other Works that may be desired, upon receipt of order. All remittances must be made by Check, Draft, or Post Office Money Order.

A. H. CALLENDAR & CO.,
Room 15, No. 47, Pine Street, N. Y.

4

	$18/10$	15	$730 \frac{1}{2}$ lumen per 1 foot
5 on.	$16\ 9$		732.45 sec
6	$15\ \frac{7}{8}$		10 Red 5 feet.
7	$15\ \frac{1}{2}$		
8	15		
9			
10			
11			
12			
14	$— 14/10$		
15			
16			
17			
18			
19.			
20	$— 13/10$		
21			
22			
23			
24	$— 12/10$		
25			
26			
27			
28			
29			
30	$— 11/10$		

At Bergman's, 4th story 50 feet.
pressure measured with a pressure
U shaped bought at Goodwin's was
 $19/10$ this = ?

Upon turned off slightly at meter
gauge $14/10$ very noticeable diminution
in size of jet and light, latter very
considerable = 5 lights were on
we noticed that all jets were set
vibrating about 300 per min. -
could hear no sounds. -

Bergman put on gradually light
by light (5 on) up to 30. when 5 were
on the pressure was $18/10$ - when 12
extra added $15\frac{1}{2}/10$ 14 on $14/10$
20 added $13/10$ - 24 added $12/10$
30 added $11/10$ this made no
change in first jet except to reduce
its size and amount of light

36 Lights on Upton acado 7
Gas Gas Meter =

7 30 1/2 p.m.	Meter acado 1 foot.
7 32. 45 sec,	Rendo 6 feet
7 34 . 55 -	" 11 " feet.
7 37 . 5	" 16 "
7 39 . 20	21 "
7 41 . 30	26 "
7 43 . 45 -	31 .

~~25 feet 11 minutes.~~ in 36
burners, - or 3 1/8 per burner per
hour on reading photometrically
we find that the average jet with
all on in 36, gave 7 1/2 candle.
size of jet.

This was not
streaky from
high pressure
but apparently at
the best point for
greatest light,

this size.

PM -

8.29. 30 - Meter reads $\frac{1}{2}$ foot. ⁹
 our
 8.34. 6-Prays special " 1 "
 8.43. Lava tip " 2 "
 8.59. 43 " 4
 - First test 16 candles -
 2 15@16.

9.199.30 $6\frac{1}{2}$ Pressure ~~was~~ at meter at 838.

20/10 - ditto 917-

Size flame

3 high - 3 broad

15@16

7 feet per hole

Frances sends a wire to
pass over Edges flame

100°
 6 100°
 100°
 66 55°
 72 6
 21 2½
 21 5½
 8½ 7½
 63°

Pressure at 932 - 20/10 13
 1010 same
 1040 14/22

Measurement with Brays
Slit Union No 1 -

9.40. Meter reads $\frac{1}{2}$
9.52 30 " 2

23 Cand Peo - 1st test

10.01.	3.
10.10	4.+

21 @ 22 2nd test, candles

10.26. 6.

23 @ 24 3rd test

10.40 - 7½

just 7 feet

Berry Slab Union 1017

actual size by
wic.

21 @ 23 Cands
7 feet hor

513

1 - $\frac{1}{2}$
 1 - $\frac{1}{2}$
 6
 6
 19
 19
 13
 2
 1 - 26
 4
 19
 52
 1 mm $\frac{1}{2}$
 3 $\frac{1}{3}$
 14
 2
 4
 26
 56
 12
 3
 4
 16
 9
 2
 3 $\frac{1}{2}$

17
 Bergman's ~~burner~~ 2 hold turner
 burner been working
 4 months - Same one that gave 4 candles
 when 36 liquid in + $11\frac{1}{10}$ pressure
 now have $19\frac{1}{10}$ pressure - @ $17\frac{1}{10}$
 1048.
 zero

~~7@8 Candles -~~

1055 $\frac{1}{2}$ foot
1101

8@9 Candles - pressure $17\frac{1}{10}$ ^{2nd test}

1107 $1\frac{1}{2}$

~~7@8 Candles~~

1126

8@9 candles with open 3 candles
(pressure $16\frac{3}{4}\frac{1}{10}$)

1139. pressure $16\frac{1}{10}$. 4 feet
1148. pressure $16\frac{1}{10}$. $4\frac{6}{10}$ feet

1X

5

12.

110

6

Brays Union Slit no 7.

Made it 15 candles,

Pressure - 15/10.

1210	Reads - 3/4 foot
1218	1 1/2
1223.	2
1229	2 1/2
1235	3.
1240	3 1/2

2nd test 22 candles, candle height

1252 4 1/2

3rd test 15 candles.

109 am -

6 feet

27/8.

 $\sqrt{44}$ 3 $\frac{1}{4}$. $\sqrt{16}$
 $\sqrt{25}$

27

1/2

5³⁰

23.

28.

7/4

7/4

4.

13.

Suggo London Argand. Stand and
up as high as I could go without breaking
reaches nearly to top
am

1.39 - 30 Reads 1/2

1st test 18 @ 19. Cand Pos

145.

1

149 $\frac{1}{2}$ 1 $\frac{1}{2}$

6 feet per hour

We now put it down to what
the public would use it.

measures 14 Candles

1.55. 30 -

zero

202

1/2

208.30.

1

72

11111

23

5
4
16
17
18
19
20

210 AM Pressure 75/10

~~lighted 36 jets and standard
Aug A gas fell to~~

Bergman's new Lava tip burner.
just bought

231	30	Beads	$\frac{1}{2}$	3
237	15		1	
		12 @ 13 Candles	$1\frac{1}{2}$	
242	15		2	
247	45		$2\frac{1}{2}$	
254	30			

With Opal glass - 2 candles
without 12 @ 13.

probably 4 candles as it
throws some distance

196

197

236

$$S = \sqrt{}$$

$$S = \left(v + \frac{1}{2}ft\right)t$$

237

240

241

254

255

21

256

4 $\frac{1}{2}$

45

16

257

258

259

274

$$\begin{array}{r} 1000 \\ 33 \\ \hline 967 \end{array}$$

$$967 : 33 \therefore x = 0187$$

$$\begin{array}{r} .0187 \\ .0967 \\ \hline 1309 \end{array}$$

$$\begin{array}{r} 118329 \\ 33) 180829 (057 \\ \underline{16} \\ 25 \\ \underline{24} \end{array}$$

$$\frac{967}{33} = \frac{x}{.0187}$$

$$967 \times .0187 = 334$$

275

$$\begin{array}{r} 1000 \\ 357 \\ \hline 643 \end{array}$$

$$643 : 357 \therefore x = 0187$$

$$\begin{array}{r} .0187 \\ .643 \\ \hline 561 \end{array}$$

$$\begin{array}{r} 11748 \\ 357) 1207141 (03 \\ \underline{1089} \\ 168 \\ \underline{147} \\ 21 \end{array}$$

276

277

278

279

280

281

282

6
400, 100
150.0000
100, 000

4

15 40

5

Menlo Park Notebook #161 [N-81-10-18] (NOT FILMED)

This notebook covers the period October 1881-January 1882. It contains what appears to be an inventory of fibers used for the production of carbon filament lamps at the lamp factory. There are also records of other supplies used for the production of lamps. The label on the front cover is marked "Alex Welsh." The book contains 284 numbered pages. Approximately 15 percent of the pages have been used.

Menlo Park Notebook #165 [N-81-00-01]

This notebook is undated but was probably used in 1880. The entries are by Francis Upton and William J. Hammer. Included are notes, calculations, and tables relating to conductors needed for the Pearl Street central station. There are also a few drawings of electric power distribution systems. The label on the front cover is marked "Hammer," "Upton," and "Line Figureing for Station." The book contains 284 numbered pages.

Blank pages not filmed: 234-283.

LIBRARY OF THE
BOARD OF PATENT CONTROL,

120 BROADWAY, NEW YORK.

From Library
GENERAL ELECTRIC

44 Broadway, N.Y.

May 1, 1896

Square No. 1 Block 1
2/270 Lights
135

2/1199
599 600 feet

.0049 11.2
135 135
.245 56⁰
.147 38.6
.49 112
--- 1512.0
.6615

10-30 T 10/270
27 Lights

.0124 1437
.27 27
--- 1015
.858 290
.248
.393.8 3915 weight
cross section

1320 10/270
27 Lights 3610⁺
.0106 108.9
.27 27
--- 7629
.742 2178
.212
.2862 2940.3 weight
C.A.

2-
1092
546.

2 1333 Lights
166.5

.0044 <u>166.5</u>	911 <u>166.5</u>
220	4555
264	5466
264 44	911
<u>732.60</u>	<u>1516.815</u>

1141
670

2 1300 Lights
150

.0045 <u>150</u>	9.8 <u>150</u>
02250 45	490.0
<u>6750</u>	<u>98</u>
	<u>1470.0</u>

3

1841+

10/333
33.3

.0198 <u>33.3</u>	112.2 <u>33.3</u>
324	3366
324	3366
324	3366
<u>.35964</u>	<u>9736.26</u>

1170+

10/300
130 Lights

.0094 <u>30</u>	85.6 <u>30</u>
<u>.2820</u>	<u>25.6</u>

1204.2-

10/333
33.3

.0097 <u>33.3</u>	90. <u>33.3</u>
<u>291</u>	<u>2997.0</u>
291	
<u>223</u>	<u>01</u>

1030-

10/300
30 Lights

.0083 <u>30</u>	66. <u>30</u>
<u>2490</u>	<u>1980</u>

44
1190
545

21340
170

.0044
770
3080 63.770
++
.7480 911
7548.70 66.

1000+

101340
34 lights

.0051
34
2754
250.0
1875
212.50

1920

101340
34

.0074
34
29.6
222
0.2318
1587
1798.6

1265
633

1400
200 lights
Squares 5

.0052
200
110400 1218
200
256.00

860+

1013400
40 lights

.0069
40
2760 46.2
40
1848.6

990-

1013400
40

.0080
40
0320 61.5
40
2460.0

6

1987
493 feet

.125.	.125.
<u>.0041</u>	<u>7.81</u>
<u>125</u>	
<u>500</u>	<u>125</u>
<u>3712.50</u>	<u>875</u>
	<u>7.76.25</u> etc

2/250 Lights
125

2/894
447 feet

.0036	Alagin	6.050.30
80		.80
0.2880.30	Alagin	484.000

2/160 lights
80
Square 8

1000+ 10/1250 Lights
25

.0035	68.9
<u>35</u>	<u>25</u>
<u>130</u>	<u>94.75</u>
<u>2125</u>	<u>13.75</u>
	<u>142.25</u>

1870- 10/1250
25

.0070	47.3
<u>23</u>	<u>23</u>
<u>1750</u>	<u>23.6.5</u>
	<u>946</u>
	<u>11.82.5</u>

740+ 10/160
16

.0030	34.2
<u>16</u>	<u>16</u>
.0960	<u>20.5.2</u>
	<u>342</u>
	<u>3472</u>

690- 10/160
16

.0056	29.7
<u>16</u>	<u>16</u>
<u>10896</u>	<u>1782</u>
	<u>297</u>
	<u>475.2</u>

8
2/1/27
519.5

2/220 Lights
110

.0042
110
0420

8.45
110
929.50

1500+ 10/220
22

0121
22
272
242
2662

140.6
22
2812
2812
3093.2

1210- 10/220
22

.0098
22
196
2156

91.5
22
18.80
18.80
2013.0

2/1/288
619

20050
230
1500
100
1.1500

120
230
27 60.0

1250.+ 10/460
46

0101
46
46 46

97.6
46
58.56
38.04
4389.6

1410- 10/460
46

.0114
46
684
456
32 44

124.2
46
74.52
4968
4713.2

10

2/230
113-Lights

2/10/59

529.5

$$\begin{array}{r}
 .0642 \\
 113 \\
 \hline
 210 \\
 42 \\
 \hline
 4830
 \end{array}
 \begin{array}{r}
 8.45 \\
 115 \\
 4225 \\
 845 \\
 \hline
 971.75
 \end{array}$$

1450+

10/230
23-

$$\begin{array}{r}
 .012 \\
 23 \\
 354 \\
 236 \\
 \hline
 127.14
 \end{array}
 \begin{array}{r}
 133.2 \\
 23 \\
 399.6 \\
 266.4 \\
 \hline
 206.9.6
 \end{array}$$

1520-

10/230
23

$$\begin{array}{r}
 .013 \\
 23 \\
 39.3 \\
 262 \\
 \hline
 3018
 \end{array}
 \begin{array}{r}
 164 \\
 123 \\
 49.2 \\
 328 \\
 \hline
 3772
 \end{array}$$

2/1400

700

2/370
185-Lights-

11

$$\begin{array}{r}
 10057 \\
 185 \\
 \hline
 0285 \\
 456 \\
 57 \\
 \hline
 10545
 \end{array}
 \begin{array}{r}
 15.3 \\
 185 \\
 765 \\
 1224 \\
 153 \\
 \hline
 2830.5
 \end{array}$$

1190+

10/370
37

$$\begin{array}{r}
 .0096 \\
 37 \\
 3552 \\
 \hline
 6188
 \end{array}
 \begin{array}{r}
 88.4 \\
 37 \\
 2652 \\
 \hline
 3270.8
 \end{array}$$

1090-

10/370
Lights
37

$$\begin{array}{r}
 .0088 \\
 37 \\
 646 \\
 254 \\
 \hline
 9156
 \end{array}
 \begin{array}{r}
 74.2 \\
 37 \\
 5194 \\
 2226 \\
 \hline
 2745.4
 \end{array}$$

12

27360 lights
160

2/12/2641

.0052	12.8
160	160
<u>4160</u>	<u>10240</u>
52	128
<u>9360</u>	<u>23040.0</u>

9.64 10.36
6679. 36

36	36
<u>2844</u>	<u>2166.</u>

5.80

.0071	10.36
36	36
<u>2556</u>	<u>48.4</u>
36	36
<u>2907</u>	<u>1452</u>
<u>1452</u>	<u>174.24</u>

13

21820 lights
160

2/12/3641.5

320	
961	
.0052	12.8
160	160
<u>8120</u>	<u>9680.</u>
52	128
<u>8320</u>	<u>1048.0</u>

8404 10122
32 32

.0068	44
32	32
<u>2176</u>	<u>1438.</u>

420.2 10120
32 32

.0084	11.0
32	32
<u>1088</u>	<u>352.0</u>

14

2 15-0 lights
252 145-2
226.
$$\begin{array}{r} .0018 \\ -25 \\ \hline 90 \\ 36 \\ \hline 0450 \end{array}$$

$$\begin{array}{r} 8.025 \\ -25 \\ \hline 13 \\ 13 \\ \hline 050 \\ \hline 75.625 \end{array}$$

620+

10 150
25
$$\begin{array}{r} 1.00 \\ -5 \\ \hline 0250 \end{array}$$

$$\begin{array}{r} 24.0 \\ -5 \\ \hline 12.0 \end{array}$$

620-

10 150
30
$$\begin{array}{r} .0051 \\ -5 \\ \hline 0255 \end{array}$$

$$\begin{array}{r} 24.8 \\ -5 \\ \hline 12.4 \end{array}$$
2 1520 lights
1602 924
462
$$\begin{array}{r} .0037 \\ -160 \\ \hline 02220 \\ 37 \\ \hline 5920 \\ \hline 1057.920 \end{array}$$

490+

10 1820
32
$$\begin{array}{r} .0039 \\ -32 \\ \hline 78 \\ 117 \\ \hline 124.6 \end{array}$$

280-

10 1820
32
$$\begin{array}{r} .0018 \\ -32 \\ \hline 0576 \end{array}$$

$$\begin{array}{r} 3.906 \\ -32 \\ \hline 6412 \\ 9918 \\ \hline 1057.92 \end{array}$$

15

16

2/110 Lights
53-

2/1760
880

$$\begin{array}{r}
 .0031 \\
 55 \\
 \hline
 155 \\
 155 \\
 \hline
 1705 \\
 \end{array}
 \begin{array}{r}
 4.512 \\
 55 \\
 \hline
 22560 \\
 22560 \\
 \hline
 2.48.160
 \end{array}$$

$$\begin{array}{r}
 500+ \\
 \hline
 .0040 \\
 11 \\
 \hline
 .0440
 \end{array}
 \begin{array}{r}
 10/110 \\
 11 \\
 \hline
 11 \\
 \hline
 172.6
 \end{array}$$

$$\begin{array}{r}
 276- \\
 .0022 \\
 11 \\
 \hline
 .0232
 \end{array}
 \begin{array}{r}
 10/110 \\
 11 \\
 \hline
 4.55 \\
 11 \\
 \hline
 60.05-
 \end{array}$$

17

2/1280 Lights
140.

2/1247
623.5-

$$\begin{array}{r}
 .00540 \\
 \hline
 7000
 \end{array}
 \begin{array}{r}
 12.0 \\
 140 \\
 \hline
 16800.0
 \end{array}$$

$$\begin{array}{r}
 650+ \\
 \hline
 .0032 \\
 28 \\
 \hline
 .1456
 \end{array}
 \begin{array}{r}
 10/1280 \\
 28 \\
 \hline
 26.4 \\
 28 \\
 \hline
 528 \\
 \hline
 739.2
 \end{array}$$

$$\begin{array}{r}
 430- \\
 .0035 \\
 28 \\
 \hline
 .0900
 \end{array}
 \begin{array}{r}
 10/1280 \\
 28 \\
 \hline
 5.46 \\
 \end{array}
 \begin{array}{r}
 1655 \\
 28 \\
 \hline
 9240 \\
 2310 \\
 \hline
 323.40
 \end{array}$$

18

2180 lights
40

21788

.394

.0031
40
1240

4.512
40
180.480

500+

.0005
45
185.25
320

920-

.074
8
529

X .059.2

42.92

21210 lights
105

19

21867

433.5

.0086
105
0180
36
3780

6.050
105
30250
6050
635.250

960+

10/210
21
.0078
16.98
57.6
57.6
115.2
1209.6

1070-

10/210
21
.0086
21
86
172
18.0.6

71.1
21

71.1

74.52

1493.1

20

2 1220 lights
1102/1041
520.5
$$\begin{array}{r} .0042 \\ 110 \\ \hline 4620 \end{array}$$

$$\begin{array}{r} 8.45 \\ 110 \\ \hline 929.50 \end{array}$$

1120+

$$\begin{array}{r} 1120+ \\ 1020 \\ -20 \\ \hline 1000 \end{array}$$

$$\begin{array}{r} 76.4 \\ 26 \\ \hline 56.8 \end{array}$$

$$\begin{array}{r} 156.8 \\ 156.8 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 178.0 \\ 178.0 \\ \hline 172.48 \end{array}$$

1220-

$$\begin{array}{r} 1220- \\ 1020 \\ -22 \\ \hline 1008 \end{array}$$

$$\begin{array}{r} 2156 \\ 2156 \\ \hline 1892 \end{array}$$

$$\begin{array}{r} 94.6 \\ 26 \\ \hline 78.2 \end{array}$$

$$\begin{array}{r} 189.2 \\ 189.2 \\ \hline 181.2 \end{array}$$

21

2 1260 Lights
7302/1030
515
$$\begin{array}{r} .0042 \\ 130 \\ \hline 42 \end{array}$$

$$\begin{array}{r} 8.45 \\ 130 \\ \hline 25.35 \end{array}$$

$$\begin{array}{r} 845 \\ 5460 \\ \hline 1098.50 \end{array}$$
280+ 10/260
26
$$\begin{array}{r} .0023 \\ 26 \\ \hline 0098 \end{array}$$

$$\begin{array}{r} 5.25 \\ 26 \\ \hline 31.50 \end{array}$$

$$\begin{array}{r} 1050 \\ \hline 136.50 \end{array}$$
300- 10/260
26
$$\begin{array}{r} .0024 \\ 26 \\ \hline 0724 \end{array}$$

$$\begin{array}{r} 5.6 \\ 26 \\ \hline 143.6 \end{array}$$

2/140 lights

70

2/951
475.5
$$\begin{array}{r} .0039 \\ - 70 \\ \hline 27.30 \end{array}$$

$$\begin{array}{r} 7.2 \\ - 70 \\ \hline 50.40 \end{array}$$

Simpler Drawing

16/1

14 lights

10/140

111

2/260 lights

130

2/1175
587.5.
$$\begin{array}{r} .0047 \\ - 130 \\ \hline 1410 \end{array}$$

$$\begin{array}{r} 10.5 \\ - 130 \\ \hline 315.0 \end{array}$$

$$\begin{array}{r} 47 \\ - 105 \\ \hline 6110 \end{array}$$

$$\begin{array}{r} 1365.0 \end{array}$$

180+

11200

-3

$$\begin{array}{r} .0014 \\ - 26 \\ \hline 28 \end{array}$$

$$\begin{array}{r} 2.5 \\ - 26 \\ \hline 1215.0 \end{array}$$

$$\begin{array}{r} 405.0 \\ - 4265.0 \end{array}$$

$$\begin{array}{r} 0.864 \end{array}$$

560-

10/260

-26

$$\begin{array}{r} .0043 \\ - 26 \\ \hline 1170 \end{array}$$

$$\begin{array}{r} 19.6 \\ - 26 \\ \hline 372 \end{array}$$

$$\begin{array}{r} 509.6 \end{array}$$

*21200 lights
150*

1/1129
5645-

.0045	9.8
150	<u>150</u>
<u>.6750</u>	<u>147.00</u>

147.00
30 lights

.0050	2.00
30	3.0
<u>1.80</u>	<u>3.0</u>

870
101.300
30 lights

<u>101.300</u>	<u>30 lights</u>
----------------	------------------

17.3	3.0
<u>141.90</u>	

2745.0
2.25-

2/1415
706.5-

.0057	15.3
225	<u>225</u>
<u>285</u>	<u>76.5</u>
114	306
<u>114</u>	<u>306</u>
<u>1282.5</u>	<u>3442.5-</u>

230.4
245.0
45 lights

.0075	5.4
45	45
<u>37.5</u>	<u>24.30.</u>
3.00	"
<u>33.75</u>	"

12410.
12450
45 lights

.0100	9.61
45	45
<u>415.00</u>	<u>480.5</u>
	384.4
	<u>43.24.5</u>

2/290 lights.
145

2/1054
527

.0042
145

210

168

42

.6090 1225.25

8.45
145

4225

8380

845-

200+ 10/290
29

250

27

0964

33500

335

71500

810-

10/290

29

21

29

577

31

190

0587

275.5

2/210 lights
103

2/880
440

.0086
105

205

41

4305

6050 6.050
105

~~7812~~ 103 30250
103 6050

397660 635250

~~1812~~ 20.260

520+ 10/210.
21

.0042
21

.0882

107

21

107

337

354.9

690- 10/210
21

.0056
21

1176

29.7

21

594

623.7

28

$$\frac{2}{1260} \text{ Lights}$$
2/1039519.5-

$$\begin{array}{r}
 8.45 \\
 \hline
 130 \\
 1084.2 \\
 \hline
 130 \\
 253.50 \\
 \hline
 845 \\
 \hline
 1260 \\
 \hline
 112 \\
 \hline
 5460
 \end{array}$$

30.426

$$\begin{array}{r}
 43.05 \\
 \hline
 76 \\
 17.2 \\
 \hline
 25.3 \\
 30 \\
 \hline
 8 \\
 \hline
 111.9,30
 \end{array}$$

152.0-10/26026

$$\begin{array}{r}
 65.5 \\
 \hline
 26 \\
 049.5 \\
 \hline
 391.2 \\
 1304 \\
 \hline
 1695.0
 \end{array}$$

$$\frac{2/15-5}{77.5} \text{ Lights.}$$
2/712356

$$\begin{array}{r}
 .0029 \\
 \hline
 77.5 \\
 14.5 \\
 \hline
 20.3 \\
 203 \\
 \hline
 2.2475 \\
 \hline
 405 \\
 \hline
 77.5 \\
 2025 \\
 \hline
 2835 \\
 \hline
 2835 \\
 \hline
 313.875
 \end{array}$$

1050-15.5-

$$\begin{array}{r}
 37.9 \\
 \hline
 15.5 \\
 42.5 \\
 4.5 \\
 8.5 \\
 \hline
 181.75 \\
 \hline
 15.5 \\
 27.5 \\
 27.5 \\
 27.5 \\
 27.5 \\
 \hline
 181.75
 \end{array}$$

850-15.5-

$$\begin{array}{r}
 45.4 \\
 \hline
 15.5 \\
 35.5 \\
 35.5 \\
 71 \\
 \hline
 110.05 \\
 \hline
 45.4 \\
 27.2 \\
 27.2 \\
 27.2 \\
 27.2 \\
 \hline
 75.0.23
 \end{array}$$

29

30

2/320 lights -
160

2/896

448

$$\begin{array}{r}
 .0036 \\
 160 \\
 \hline
 .5760
 \end{array}
 \qquad
 \begin{array}{r}
 6.05 \\
 160 \\
 \hline
 96.800
 \end{array}$$

2160 80 lights

3

$$\begin{array}{r} 2 \longdiv{690} \\ 343 \end{array}$$

345

$$\begin{array}{r} .0028 \\ \hline 2240 \end{array} \qquad \begin{array}{r} 3.612 \\ \hline 80 \\ \hline 288.960 \end{array}$$

5-80+ 10/16/65
 16

$$\begin{array}{r}
 10947 \\
 -16 \\
 \hline
 978 \\
 -97 \\
 \hline
 2
 \end{array}
 \qquad
 \begin{array}{r}
 210 \\
 -16 \\
 \hline
 125 \\
 -10 \\
 \hline
 25 \\
 -25 \\
 \hline
 0
 \end{array}$$

500 - 101160
10

$$\begin{array}{r}
 10040 \\
 - 16 \\
 \hline
 10640 \\
 - 16 \\
 \hline
 186 \\
 - 156 \\
 \hline
 2496
 \end{array}$$

2/160
80 lights.

2/923

461.5

.0037	6.612
<u>80</u>	<u>80</u>
.2960	528.960

A104

.0036	13.8
<u>16</u>	<u>16</u>
.1666	1.666
	22.000

A111

.0037	12.1
<u>16</u>	<u>16</u>
.1620	1.620
	17.200

2/150
75 lights.

2/849

424.5

.0034	5.512
<u>75</u>	<u>75</u>
.2550	275.60
	3858.4
	<u>418.400</u>

B604

2/150

.0029	12.000
<u>15</u>	<u>15</u>
.1735	1.735
	40.5
	81
	<u>12.15</u>

610-

15.000

.0049	23.2
<u>15</u>	<u>15</u>
.0735	11.60
	2.32
	<u>348.0</u>

2/830
415

2/150
75-lights.

.0034
75
12550

57.512
75
275.60
385.84
418.400

710-110/130

93.7
15
108.55

21.65
15
65.75
15
7.05

920-15-lights

117.1
15
86.6
15
111.0

52.9
15
26.75
52.9
79.95

2/240
120-lights.

11033
516.5

.0042
120
5040

8.45
120
1014.00

960+

3/240
24-lights.

.0078
24
31.2
13.6
117.2

57.1
24
30.4
11.52
138.24

1280-24-lights.

.0103
24
4.12
2.06
247.2

18.24
4.42
7.96
3.04
245.76

36

2/734
867

2/180
90 lights

.0029, 4.03-
 $\frac{90}{90}$
 $\underline{2610} \quad 364.50$

1100+
10/90
9 lights

.0818-
 $\frac{1}{1}$
 $\underline{19} \quad 19$
 $\underline{74.3} \quad 74.3$

10/90
9 lights

10
 $\frac{27.2}{7.84}$
 $\underline{1411.2}$

37

1461
230.5

2/190
45 lights

.0019
 $\frac{45}{45}$
 $\underline{109.55} \quad 81.000$

1100+
10/90
9 lights

.0089
 $\frac{9}{9}$
 $\underline{68.01} \quad 68.04$

10/90

.0084
 $\frac{9}{9}$
 $\underline{075.6}$

10/90
9 lights

67.6
 $\frac{9}{9}$
 $\underline{608.4}$

38

2/160
802/617
308.5

$$\begin{array}{r} .0024 \\ \hline 80 \\ \hline 1920 \\ \hline 224,960 \end{array}$$

1020+ 16.160 9 rights

+ + +

.0031 853 651
100 100 100

.129.0 38.0 29.0
37.5 37.5 37.5

- 101.0.6 1.41.6

1020- 16. 9 rights

100 100 100

.11.3.6 29.04 25.6
98.4 98.4 98.4

- 77.4.4

2/90
452/519
259.5

$$\begin{array}{r} .0021 \\ \hline 45 \\ \hline 0945 \\ \hline 10560 \\ \hline 5448 \\ \hline 95040 \end{array}$$

820+ 10/90 9 rights

+ + +

.0033 42. 9
100 100 100

.0034 42. 9
100 100 100

640.- 9 rights

.0052 25.6
9. 9
- 0468 23.9.8

39

40

2/765-
3,82,5

2/90 lights
45-

.0031	4.512
45	45-
<u>.1995-</u>	
225.60	
18048.	
<u>203,040</u>	

191
7.5 lights
32.5
0.522
591.6

191 lights

18.9
2
139.6
- 139.6
--- 9
173.1

41

2/780
390

2/150 Lights.
75.

.0031	4.512
75-	75
<u>2325-</u>	
225.60	
31584	
<u>338,400</u>	

191
7.5 lights
32.5
0.522
591.6

191 lights

18.9
15
0960

585.

2/710
355-

2120 60 Lights

.0029	4.050
60	60
1740	243.000

067

10120

272

- 14 -

卷之三

11

- 7 -

22

2/921
460.5

2) 180 flights

$$\begin{array}{r} .0037 \\ \times 90 \\ \hline .3330 \end{array} \qquad \begin{array}{r} 6.612 \\ \times 90 \\ \hline 595.080 \end{array}$$

1130 ft	14.	To 9.11
.0097	72	
.15	72	
.728	5276	
.71	72	
1638	1724.6	

1430. 18 Sept.

$$\begin{array}{r}
 01137 \\
 -0920 \\
 115 \\
 \hline
 2070
 \end{array}
 \qquad
 \begin{array}{r}
 127.3 \\
 18 \\
 \hline
 13187 \\
 1273 \\
 \hline
 2291.4
 \end{array}$$

44

2/864.
432.

2/220
110 Lights

.0036	6.050
110	110
3960	665.500

13364

1124	10.6
1125	2.0
1126	2.0
1127	2.9
1128	2.0
1129	1.2

13365

1125	112.2
1126	3.2
1127	3.2
1128	3.2
1129	3.2

2468.04

2/592
296

.0024	2.812
45	45
16.80	140.60
	112.48
	26.540

13364

13364	10/90
1106	9 lights
11254	103.9
	10.01

1260-

.0102	99.2
9	9
10915	19.25

2/90 Lights
45

45

46

2/727
363.5-

2/120
60 Lights

.0029	4.050
60	60
<u>.1740</u>	<u>243.000</u>

12/116.4 12/120
12 Lights.

.0161	7.61
12	12
<u>.12.00</u>	<u>112.82</u>

112.0- 12 Lights.

.0161	7.61
12	12
<u>.12.00</u>	<u>112.82</u>

2/595-
297.5-

2/80
40 Lights. 47

.0024	2.812
40	40
<u>.0960</u>	<u>112.480</u>

10/116.4 12/80
12 Lights.

.0084	6.76
8	8
<u>.0756</u>	<u>540.8</u>
<u>.0672</u>	

990- 12 Lights.

.0080	6.15
8	8
<u>.0640</u>	<u>492.0</u>

2/230
125-Lights

2/876

438

.0036	6.050
125	125
180	30250
72	12100
36	6050
<u>4500</u>	<u>756.250</u>

1150+

210	7.165.
7.0	
2.0	
2.67	3.5
1.31	
1.758.5	

020-

237	
.0074	529
2.2	2.2
2.2	2.2
1.658	1.658
1.216.7	1.216.7

2/200
100-Lights

2/797
398.5-

.0032	5.
100	100
<u>3200</u>	<u>500.</u>

794

10/200
20-Lights

3264	
1250	125
786	

1043

20-Lights

.0074	67.6
20	20
1680	1352.0

2/872
436

2/150
73-

$$\begin{array}{r} .0036 \\ 75 \\ \hline 2700 \\ 30250 \\ 42350 \\ \hline 433750 \end{array}$$

1180+

17732
15.50 pds.

.0095
10

$$\begin{array}{r} 87 \\ 1423 \\ \hline 1305 \end{array}$$

1370-

15 26.75.

.0111
10

$$\begin{array}{r} 117.3 \\ 15 \\ \hline 586.5 \\ 1193 \\ \hline 1759.5 \end{array}$$

2/911
450.5-

2/140
70

$$\begin{array}{r} .0037 \\ 70 \\ \hline 2590 \\ 462840 \end{array}$$

1440+

11140
14 26.75.

.0116
17

$$\begin{array}{r} 129.6 \\ 46.4 \\ 116 \\ \hline 1624 \\ 1296 \\ \hline 1814.4 \end{array}$$

1690-

14 26.75.

.0137
14

$$\begin{array}{r} 176.5 \\ 548 \\ 137 \\ \hline 4918 \\ 7170 \\ 1780 \\ \hline 2499.0 \end{array}$$

W. m. 1000 ft. + 1000 ft.
W. m. 1000 ft. + 1000 ft.

Two : 220 min.

2

Page No.	Date	Time	Location	Event	Details	Notes
28	26/01/39	10:39	5/46/0	10/95/5	8:30.	17/4/2 11/9/3
29	1/5/39	7:12	2/47/5	3/1/82/1	10:50.	10/20. 21/3/2 16/9/2
30	8/2/39	8:16	5/7/61	9/6. 18/	8:60.	1/31/5 10/6/9/3
31	1/6/39	6:96	2/24	2/87/60	5:50.	12/20/8 14/7/4 4 6:40. 1/6/6/4 8/19/2
32	1/6/39	9:23	1/29/6	5/28/56	4:70.	1/7/52 3/26. 5/20. 0/6/40 24/9/6
33	1/5/39	8:49	1/25/30	4/13/40	8:60.	1/6/0/8 2/2/08 4/4/0. 0/5/6/0 1/3/6
34	1/5/39	8:26	2/25/2	4/13/40	7:0.	1/0/4/35 1/2/1/5 6/10. 0/7/35 3/4/8.
35	2/4/39	10:22	5/0/4/0	1/0/14	1/0/8/5/5	4/7/25 9/20. 1/1/0/9/35.
36	1/8/39	7:34	2/26/10	3/26/45	1:21/0.	1/9/0/8 1/8/2/2 1/2/80. 2/4/7/2 2/4/7/4
37	9/0	4:61	0/9/5/	5/1.	1/0/0.	1/8/3/2 1/2/0. 1/6/20 1/4/1/2
38	1/6/39	6:17	1/9/2/0	2/24/9/	1:0/2/0.	1/2/9/6 1/0/4/6 8/5/0 1/1/3/6 7/7/4
39	9/0	5:19	0/9/4/5	9/5/0/4	8:20.	0/6/6/ 3/7/8. 6/4/0 0/4/8/ 2/3/0/4
40/2	2/1/39	10:16	4/3/2/5	10/0/6	4/3/8/6	0/2/3/5/5 9/9/0. 1/0/3/3/3/3

Total no of Lamps - 11018.

Length of Distributing Wires - 75.

Cross Section of " " - 63.

Weight of " " - 29.12275.
Length of " " - 48950.005
Cross Section of " main wires - 45880.

Weight of " main wires - 8,18609
Length of " " main wires - 73287.21

Length of " " main wires - 47024.2
Cross Section of " main wires - 7.66976.
Weight of " main wires - 66368.342

$$\frac{23}{24}$$

 47

1092

386

73 261978

366

20

1498

$$\frac{28}{41} \quad \frac{13}{41}$$

33.5

12

49 35

28 28

77 63

1141

399

1540

Bath formerly 140

$$\begin{array}{r} 1199 \\ 599 \\ \hline 1798 \end{array}$$

$$\begin{array}{r} 2 \\ 6615 \\ \hline 3307 \end{array}$$
D
29m

2' Wines

1798 feet

47 Wines

410 feet

44 wines

208 feet

20 wines

20 feet

23 wines

20

28

1498

41

202

77

157

63

157

35.

203

49

15

35-

15

1. ~~Sept. Cass勒ton No. Wires 67
wooden 200 dm~~

1798.

2.

3.

$$\begin{array}{r} 214 \\ 194 \\ 220 \\ 17.6 \\ \hline 152.4 \end{array}$$

112

$$\begin{array}{r} .5 \\ .2 \\ .5 \end{array}$$

$$\overline{26.25}$$

$$\begin{array}{r} 124 \\ 124 \\ \hline 136.4 \text{ Volts} \end{array}$$

$$\begin{array}{r} 2.625 \\ 6.62 \\ 180 \\ \hline 20.60 \end{array}$$

$$\begin{array}{r} 5 \\ \overline{12.4} \\ 2 \\ 3 \\ \hline 1 \end{array}$$

$$\begin{array}{r} 5 \\ \overline{12.4} \\ 2 \\ 4 \\ 8 \\ \hline 14.88 \end{array}$$

For 120 Volts to start
with $\frac{1}{5}$ more Volts fall

$$\begin{array}{r} 5 \\ \overline{12.4} \\ 2 \\ 4 \\ 8 \\ \hline 14.88 \text{ Volts} \end{array}$$

30 Lamps at equal distances
along a conductor each having
10 Ohms in the conductor
will have a fall of E.M.F.
from 100 to 87.6 Volts
The conductor will weigh
 $\frac{124.56}{100^3} = 14407$
440.7 lbs.

10 Lamps will have the
same fall and conductor
will weigh $\frac{4407}{3} = 146.9$ lbs.

See page 77.

1386

198

10

208.

1320

205

1112.

To square No. 1

2/370

185

22.5

29

235

471.5

10

264

62

87

26

920.5

10

137

34.7

139

39.31267.5 feet

6855

1512

27) 8867 (30 lbs per lamp
810
67

1267 feet

150

270 lamps

200 lbs for 10

27
200
5400 lbs Cu

3915

2940

6855 in number of

5400

1455

1512 in distribution

2967

lbs

1483

6.1336
~~2.7589~~
~~2.7589~~
 18 1.2553
 $\underline{2.9067}$
 8.7 lbs.
 $\underline{(1614)}$
 538 lbs

188
~~386~~
~~574~~ fat
 $\frac{1}{2} 12.4 \text{ Volts}$
 $\frac{2}{3} 14 \text{ Volts full}$
 $\frac{3}{2} 1.9$
 $\frac{4}{5} 1483, 610.6 :: 14 ::$
 $\frac{5}{6} 40.7 \text{ for 10 lamps}$
 $\frac{6}{7} 20.5$
 $\frac{7}{8} 40.7$
 $\frac{8}{9} 610.5 \text{ for 10 lamps}$

$$\begin{array}{r}
 188 \\
 386 \\
 \hline
 574
 \end{array}
 \begin{array}{r}
 2.7589 \\
 \hline
 5.5178
 \end{array}
 \begin{array}{r}
 3.2553 \\
 \hline
 6.5106 \\
 5.5178 \\
 \hline
 .9928
 \end{array}$$

9.83 440.7 lbs Cu

$$\begin{array}{r}
 1800^2 ; \frac{a^2}{574} :: 440.7 ; X \\
 \text{compt } 1800^2 \quad 3.4894 \\
 \text{long } 440.7 \quad 2.6442 \\
 \text{log } a^2 \quad 5.5172 \quad 6.1336 \\
 \hline
 1,6508 \quad 44.7 \quad 165
 \end{array}$$

Square 1

14.88	1.1726
146.9	2.1670
comp 1800	6.7447
1800	6.7447
	5.6564
	6.8290 - 70
a^2	2.7589
b	2.7589
c	1.4314
comp c	6.5280
	3.062

2 Volts

$$\begin{aligned}a &= 574 \\b &= 120 + 150 = 270 \\c &= 2967\end{aligned}$$

$$\begin{array}{r} 1.1726 \\ 1.13456 \\ \hline .0378 \end{array}$$

$$\begin{array}{r} 6.8290 \\ 10378 \\ \hline 6.7912 \end{array}$$

From page 71

Let a = distance ^{fall that} lamp is away
 b = no lamps $\div 10$
 c = amount of copper at hand

X = fall E. M. F.
 d = amount to 10 lamps by Table
 10 others to lamps

$$1800^2; a^2 :: 146.9; d$$

$$\frac{14.88}{6d} = X$$

$$\frac{14.88 \cdot 6d}{c} = X \quad d = \frac{146.9a^2}{1800^2}$$

$$\frac{14.88(146.9b-a^2)}{1800^2 c} = X$$

13.64 Volts in place 14.88
 to represent fall from 110 Volts

Square 2

$$\begin{array}{r}
 a \quad 29.3 \\
 10 \\
 385 \\
 20 \\
 143 \\
 \hline
 5973
 \end{array}$$

C 190 lamps on one side

1267 feet

$$\begin{array}{r}
 19 \\
 200 \\
 \hline
 3800 \text{ lbs Cw.}
 \end{array}$$

$$\begin{array}{r}
 140 \\
 200 \\
 \hline
 280.00 \\
 360.0 \\
 \hline
 660.0
 \end{array}$$

$$\begin{array}{r}
 3736 \\
 2997 \\
 \hline
 6733
 \end{array}$$

$$\begin{array}{r}
 133 \\
 1517 \\
 \hline
 1640
 \end{array}$$

Square 2

$$\begin{array}{r}
 D \quad 1517 \\
 + \quad 3736 \\
 - \quad 2997 \\
 333 \sqrt{8256} \text{ (25) } 66 \text{ Cw to lamp} \\
 \hline
 666 \\
 1598 \\
 \hline
 133
 \end{array}$$

$$\begin{array}{r}
 6.8290 \\
 486 \quad 2.6866 \\
 587 \quad 2.7686 \\
 587 \quad 2.7686 \\
 19 \quad 1.2788 \\
 1640 \quad 6.7852 \\
 \hline
 .4362 \\
 190 \quad 7.7212 \\
 330.2 \quad 51.85 \\
 \hline
 6699
 \end{array}$$

486	6.8290
2.6866	
2.7686	
1.2788	
6.7852	
.4362	
7.7212	
51.85	
6699	

4.66 Volts

1470
2568
1980
6018 *the*

3av lamps:

105.
30
3150

6018
3150
4868 *the fourth*

10
137
20
394

82 From page 76 to 77

$$13.64 \quad \begin{array}{r} 1.1348 \\ 5.6564 \\ \hline 6.7912 \end{array}$$

In 14

$$a = 486$$

$$c = 806$$

$$\begin{array}{r} 2.6866 \\ 2.6866 \\ 1.1461 \\ \hline 7.0894 \end{array}$$

$$0.3999$$

Square \approx

$$2.49+$$

$$\begin{array}{r} 0.7370 \\ 2.1670 \\ 6.7447 \\ 6.7447 \\ \hline 6.3934 \end{array}$$

$$5.456$$

$$\begin{array}{r} 5.6564 \\ -7369 \\ \hline 6.3933 \end{array}$$

$$\begin{array}{r} 1. \\ .0002473 \end{array}$$

2.5 Volts can be lost 83
in wires leading from main distributing

$$13.64$$

$$2.5$$

$$5.456$$

From page 77

Let y = amount in required
time fall of 2.5 Volts
no. lamps = b
Lamp a feet away.

$$1800^2 : a^2 ; 146.9 : b$$

$$5.456d^b = y$$

$$\frac{5.456 \times 146.9 a^2 b}{1800^2} = y$$

$$.0002473 a^2 b = y$$

Square 1

$$\begin{array}{r} 10 \\ 386 \\ 20 \\ 188 \end{array}$$

$$\checkmark \quad \frac{604}{\text{feet}} = a$$

$$b = 15$$

$$6.3933 - 10$$

$$2.7810$$

$$2.7810$$

$$\begin{array}{r} 111761 \\ \hline 34314 \end{array}$$

1350 lbs

$$\begin{array}{r} 10 \\ 195 \end{array}$$

$$\begin{array}{r} 20 \\ 390 \end{array}$$

$$\begin{array}{r} 615 \\ \hline 15 \end{array}$$

$$b = 12$$

$$\begin{array}{r} 15 \\ \hline 15 \end{array}$$

$$6.3933$$

$$2.7889$$

$$2.7889$$

$$1.0792$$

$$\begin{array}{r} 3.0563 \\ \hline 1120 \end{array}$$

$$\begin{array}{r} 1120 \\ \hline 24.70 \end{array}$$

Square 2 AF 87

10	
385	(143)
20	<u>71.5</u>
71	
<hr/>	
486	6.3933
14	2.6866
	2.6866
	<u>1.1461</u>
	<hr/>
	2.9186

818

10	
387	6.3933
20	2.6893
72	2.6893
<hr/>	
489	1.1761
15	<hr/>
	2.9486
	88.7
	<hr/>
	1705

Square 3

10
394
20
90
514
140

6.3933
2.7110
2.7110
2.1461
2.9614

916

10
390
20
90
510 120
100792

6.3933

2.7076

2.7076

1.07922.8873

773

1689.6

3'0
395

20
190

20
405

1020

510

14

6.3933

2.7076

2.7076

1.1461

2.9546

901.

17

1.8085

1.2304

3.0389

10.90

1991

$$\begin{array}{r}
 384 \\
 20 \\
 176 \\
 20 \\
 400 \\
 10. \\
 \hline
 1022 \\
 511
 \end{array}$$

6.3933
 2.7084
 2.7084 ~~1.8101~~
 1.2041
 3.0842 1030

$$\begin{array}{r}
 1.8101 \\
 14, 1464 \\
 \hline
 2.9582 \\
 \hline
 904 \\
 \hline
 1934
 \end{array}$$

Block 6

10
493
20
523

20. 6.3933
2.7185
2.7185
1.3010

198
267
465.
5
470
30
1350

Block 6 V.T.

10
162
25
190
387

9 6.3933
2.5877
2.5877
0.9542
2.5229

333
1683

Block 8

10

380

20-

119

~~10~~

✓ 529

19

6.3933

2.7235

2.7235

1.2788

3.1191

1310

Block 9

Both sides

10		
376		6.3933
20	150	
296	120	2.7292
20	100	2.7292
341	370	37. 1.5682
10		
	<u>1073</u>	
	<u>✓ 536</u>	

3 4199. 2620

100

Block 10

101

Both sides

10	
338	6.3933
20	
148	2.7396
20	
300	155 2.7396
20	
193	2.3
10.	<u>1.2553</u>

3.1278 1340

1099
1 549

20

193

20

487

20

188

10

21938

✓ 469

4.0

15.0

4.0

23.0

6.3983

2.6712

2.6712

1.3617

3.1074 1280

Block 12

20	6.3933
494	2.4200
10	2.4200
<u>1524</u>	<u>28</u>
	14472
<u>530</u>	2.6805
<u>(1054)</u>	
<u>1527</u>	
263	

399

140	6.3933
20	1.9542
20	1.9542
<u>(180)</u>	<u>4</u>
90	0.6021
	903.8
	81
	480

106

Block 13

107

2/399

Sup Block

199

81

$$\begin{array}{rcl} 498 & 6.3933 \\ 200 & 2.4983 \\ \hline 298 & 2.4983 \\ 17 & 7.210.8573 \\ \hline 315 & 2.2472 \\ & \hline & 175 \\ & 455 \end{array}$$

108

Block 14

109

30

10

70

120

180

162

1472

236

6.3933

2.3729

2.3729

5. 9.69 9.0

8.83 8.1

89 1/4

Block 15

$$\begin{array}{r}
 29.4 \\
 243 \\
 14.2 \\
 \hline
 1286.6 \\
 \hline
 143.3
 \end{array}$$

6.3933

2.1593

2.1593

11.7119

64.5

$$\begin{array}{r}
 14.1 \\
 264 \\
 29 \\
 \hline
 307 \\
 \hline
 153
 \end{array}$$

6.3933

2.1847

2.1847

1
1.7827

61.

60 lamp.
200 feet

6.3933

2.3010

2.3010

0.71821.7735

20

$$\begin{array}{r}
 134 \\
 30 \\
 20 \\
 \hline
 1794 \\
 \hline
 97
 \end{array}$$

4

6.3933

1.9828

1.9828

0.6021

0.9690

60

9

20 4.5

112

Block 16

113

15	6.3933
242	2.1553
30	2.1553
4	.6021
<u>287</u>	<u>1.3560</u>
143	

20

10
10
<u>40</u>

114

Block 17

115

30
335-
30
197

6.3933
2.2945-
2.2946-
11
1.9823

3.0 lbs

96

both sides

30
268
20
363
10

6.3933
2.5378
2.5378
12.10792
2.5481

353
479 lbs

Block 18

30
10
250
20
120
438

6.3933
2.6415
2.6415
708451
2.5214

332

20
352

40
262
20
95
40
1457

228

180
30
30
20
260
130

6.3933
2.3579
2.3579
9 0.95472
20633

115

6.3933
2.7139
2.1.139
4. - 6021
1.2232

20

70
203

120

Square 20

121

00	
1902	6,3933
20	2,5809
320	2,5809
20	
191	1,1161
10	
<u>1763</u>	<u>142.6712</u>
381	469

9
Square 21

10
234
20
142

6 .46

10 20
224 40
20 35
135

247

20

142

663

6.3933

2.8235

2.8235

1.1303

3,1706

1408 1/4

Square 22

370
20
1390
190—
6.3933
2.2900
2.2900
1.0792
2.0525

30

115—
145

126

Square 2310⁸

370

20

275

20

335

10

1040

520

6.3933

2.7160

2.7160

21 + 3222

3.1475

127

1410

128

34
320
349
401

Square 24

129

24	6.3933
10	2.7716
286	2.7716
20	
215	30 1 4771
20	
370	X 3.4136
20	
218	
<u>1183</u>	
591	25.90

130

Block 25

10 6.39 33
282 2.71 77
2.0 2.71 77
428 301.477
20
285 3.3058
10 45
522

131

2020

132

Block 26

10

320

20

204

20

297

10

1881

441

6.3933

2.6444

2.6444

1.3802

24 3.6623

1150

133

134

Block 27

10
198
20
218
20
202
10

678
33.9

6.3933

2.5302

2.5302

15 - 1.1761

2.6298

135

426

136

*Block 28*10
285

20

188

20

331

10

$$\begin{array}{r} 1864 \\ -432 \\ \hline \end{array}$$

6.3933

2.6355

2.6355

1.3222

21.

2.9865

137

970

138

Block 29

16
17.9
.20
.139
.20
18.7
.10

13 6.3933
2.4502
2.4502
1.1139
2.4176

564
282

139

277

140

Block 30

30
21.3
10
1253
125

6.3933
2.0969
2.0969
8.0.9031
1.490.2

141

Block 31

10
232
20
88
20
246
20
84
20

740

370

6.3933
2.5682
2.5682
1.2041
2.7338

542

Block 32

249	6.3933
20	2.6866
240	2.6866
20	
227	16 1.2041.
20	2.9706
176	
20	
	<u>972</u>
	486

935.

146

Block 33

147

10	6.3933
287	2.5587
20	2.5387
97	<u>1.079 1/2</u>
620	
270	2.5899
28	
<u>724</u>	
362	

390

148

Block 34

10 6.3933
193 2.6385
20 2.6385
219 14 111461
20 2.8164
167
20
211
10
470
435

149

6556.

Block 35

10
310
20
186
20
330
10
886
443

6.3933
2.6464
2.6464
20 1.3010
2.9871 971.

152

Block 36

153

10 6.3933
188 2.4757
20 2.4757
158 131.1139
20 2.4586
10
1598
299

287

154

Block 37

155

108

156

Block 38

157

100

158

B lock 39

159

ques 30

160

Block 40

10 6.3933
177 2.6053
20 2.6053
196 6. 0-7782
403 2.3821

161

241

Block 41

10
215
30
159
10
413
205

6.3933
2.3118
2.3118
7 0.8451
1,8620

73

164

Block 42

10 6.3933
194 2.2714
20 2.2718
141
10 690.9542
375
187 11.8907

165

80

60

Block ~~44~~ 44

32.

6.3933

10

2.6702

194

2.6702

20

214

2.6702

20

22

1.3424

196

3.0761

1200

20

220

10

936

468

Block 43

10	6.3933
310	2.6464
20	2.6464
186	
20	
330	
10	
<u>886</u>	<u>2.9871</u>
443	Block 35

(971)

10	<u>2.5966</u>
296	
20	2.5977
103	2.5977
20	
296	1.1761
10	
<u>172</u>	<u>6.3983</u>
	<u>2.7648</u>
	<u>.0668</u>
<u>376</u>	<u>.8312</u>
	582 - 678

170

Block 45

42	6.3933
222	2.2253
20	2.2253
52	5 0.6990
<u>1336</u>	1-5429
<u>168</u>	4 0.6021
	2.1450

171

20

140
160

Block 46

52
227
20
114
413

6.3933
2.6160
2.6160
9 09142
2.5795

50

380
430

174

Block 47

$$\begin{array}{r} 52 \\ 230 \\ 20 \\ 43 \\ \hline 313 \end{array} \quad \begin{array}{r} 6.3933 \\ 2.4983 \\ 2.4983 \\ 0.8451 \\ \hline 2.2350 \end{array}$$

175

20

$$\begin{array}{r} 172 \\ 192 \\ \hline \end{array}$$

Block 48.

10
240
20
179

409

6.3933
2.6117
2.6119
19 1.27818

2.8955 785

10	6.3933
244	2.6212
20	2.6212
115	
20	20 1' 301 0
250	2.9367
20	
148	
10	
<u>(837)</u>	
418.	

864

180

Block 50

181

100

40
160
20
286
20
140
28
285
10
1981
490

6.3933
2.6902
2.6902
14 1 1461
2.9198 831

40.890
81.306
122196

167.000
122196

64.8.04 for equalizing

40890 416116
115 0.0629
4.674.5

47.200 with straight wire
Maine 81-306
128.506 lbs between the

167.000
128.506
58.506

2470
1701
1689
1991
1934
1683
1310
2620
1340
1280
480
455
69
204
40
479
352
205
469
1408
145
1410
23534
19366
40890
6
17366

2590
2020
1150
426
970
277
116
542
935
390
655
971
287
100
100
30
241
73
60
1200
971
160
436
192
785
864
100
831

1. 134.9	
2. 167.1	
9. 239.2	
2. 541.5	347.7

405	2.5075	53
347.7	2.5412	45
<hr/>		18
1.165	.0663	

Amount Cu to be multiplied by 1.165 to give amount with straight wires

1000 feet out
2000 in total ~~gives~~ takes
125 lbs of Cu to
make one Ohm

10 lamps at equal distance
along this will ~~take~~
have a fall of 5.24 Volts in
100 or 5.764 Volts in 110

1800 feet out will
take 405 lbs. of Cu.

10 lamps along decreasing con-
ductor will take
146.9 lbs and have 13.69 lbs
fall

5.764 : 13.64 :: 146.9 ; 347.7
347.7 lbs to have a fall of 5.764 lbs
from 10 lamps along decreasing
conductor 1800 feet long.

7.1 lb both wire

3.55 cash wire

1674

.937

1602

.914

1347

1694

0.5502

2.7354

1.8148

65 wires

8228 feet 5.8500

58.500 4.7672

8228 3.9151.

7.1 lb per foot 8521

No 10 wire

lb 94.6 1.9759

feet 1740 3.2405

2.7354

.0544 lbs per foot

Length of equalizing
mains

21255

142

10

35

234

26

249

20

115

546

1347

108

974

2498

249

462

1162

536

602

10

157

32

546

1347

155

47

167

41

195

42

378

49

298

46

222

53

16 94

To find limit of
greatest economy to run
wires to

$$\begin{aligned} & A \\ & |a = \text{distance one station} \\ & b = BC \end{aligned}$$

Lamp at C takes
 c^2 lbs of coal

Lamp at b takes b^2

Let $x = BX$ where lamp
is placed

then

$$\cancel{(a+x)^2 - c^2}$$

$a^2 + 4x^2 -$ Coal it takes
supplied from A

$(a+x)^2 + 4(b-x)^2$ Coal at takes
supplied from C

$$\begin{aligned} a^2 + b^2 &= 6^2 + 4(b-x)^2 \\ &\quad \left(b^2 + 4b^2 - 8bx + 4x^2 \right) \\ 8bx &= b^2 - a^2 + 4b^2 \\ x &= \frac{b^2 - a^2 + 4b^2}{8b} \end{aligned}$$

$$\begin{aligned} a+b &= 12.67 \\ a &= 9.20 \\ b &= 3.47 \quad 2.5403 \\ &\quad \frac{2}{2} \end{aligned}$$

$$\begin{array}{r} 7.9638 \\ \times 5.9276 \\ \hline 47122000 \\ 3988 \\ 347 \\ \hline 27876 \\ 85 \text{ feet} \end{array}$$

$$\begin{array}{r} 5.9276 \\ \times 12.67 \\ \hline 600000 \\ 236000 \\ 2788 \\ 53729 \\ 3452 \\ \hline 1.9277 \end{array}$$

193

$$\begin{aligned} a^2 + 4x^2 + b^2 + 4(b-x)^2 &= \text{minimum} \\ \text{be } a & \text{ minimum} \\ 8x + 8b + 8x = 0 & \quad (2b+x)^2 \\ 16x = 8b & \quad \cancel{x} \quad \cancel{4} \quad \cancel{4} \\ x = \frac{1}{2}b & \end{aligned}$$

$$a^2 + 5x^2 + b^2 + 5(b-x)^2$$

$$10x^2 - 10b + 10x = 0$$

$$x = \frac{1}{2}b$$

$$a^2 + 4x^2 =$$

$$AB = a$$

$$AC = c$$

$$BC = b$$

~~Max~~

$$a^2 + 4x^2 = c^2 + 4(6-x)^2$$

$$a^2 + 4x^2 = a^2 + 4b^2 - 8bx + \cancel{x}^2$$

$$8bx = \frac{c^2 + 4b^2 - a^2}{8}$$

$$x = \frac{c^2 + 4b^2 - a^2}{8b}$$

$$c = 1267 \quad c^2 = 1604000$$

$$a = 920 \quad a^2 = 846000$$

$$b = 347 \quad b^2 = 122000$$

$$\begin{array}{r}
 3.1628 \\
 \times \quad 10 \\
 \hline
 6.2056
 \end{array}
 \qquad
 \begin{array}{r}
 1607000 \\
 488000 \\
 \hline
 2095000
 \end{array}
 \qquad
 \begin{array}{r}
 896 \\
 \hline
 1.249000
 \end{array}$$

$$\begin{array}{r}
 6.0966 \\
 3.4435 \\
 \hline
 2.6531
 \end{array}$$

$$x = 450$$

897

$$AB = a = 3$$

$$BC = b = 5$$

$$AC = c = x$$

$$a^2 + 4x^2 = c^2 + 4(b-x^2)$$

$$a^2 + 4x^2 = c^2 + 4b^2 - 8bx + 4x^2$$

$$8bx = c^2 + 4b^2 - a^2$$

$$x = \frac{c^2 + 4b^2 - a^2}{8b}$$

$$\frac{25 + 36 - 9}{24} = \frac{52}{24}$$

$$\begin{array}{r} 1.7559 \\ 1.3802 \\ \hline 3757 \end{array}$$

2.3

$$a = 9$$

$$b = 3$$

$$c = 12$$

$$144$$

$$36$$

$$180$$

$$81$$

$$99$$

$$24$$

$$x = \frac{99}{24} = 4 \frac{1}{8}$$

$$a = 8$$

$$b = 3$$

$$c = 11$$

$$121$$

$$36$$

$$157$$

$$64$$

$$93$$

$$24$$

11

If the cable runs between
two points there will be
a fall of E.M.F due
to the line being

3/4

$$\begin{array}{r} 137 \\ 20 \\ \hline 157 \\ 70 \\ \hline 157 \\ 1299 \\ \hline 1344.7 \end{array}$$

520 lamps

$$\begin{array}{r} 1314.7 \\ 166.1 \\ \hline \end{array}$$

7.9

1/4 Volts fall

$$\begin{array}{r} 25 \\ 125 \\ \hline 375 \end{array}$$

Volts fall

$$\begin{array}{r} 157 \\ 2 \\ \hline 314 \end{array}$$

$$\begin{array}{r} 052 \\ 3.2 \\ \hline 104 \\ 156 \\ \hline 166.1 \end{array}$$

$$\begin{array}{r} 3.1185 \\ 2.2204 \\ \hline .8981 \end{array}$$

$$\begin{array}{r} 264 \\ 16 \\ \hline 10 \\ 284 \\ 2 \\ \hline 568 \end{array}$$

$$\begin{array}{r} 284 \\ 7.1 \\ \hline 284 \\ 198.8 \\ \hline 201.64 \end{array} \quad \begin{array}{r} 130 \\ 30 \\ 100 \\ 40 \\ 10 \\ 100 \\ \hline 410 \end{array}$$

9.8

$$\begin{array}{r} 410 \\ 9.8 \\ 41 \\ 98 \\ \hline 398 \\ 401.8 \end{array}$$

2 Volts fall
4.5 Volts

204

$$\begin{array}{r} 765 \\ 1267 \end{array} \quad \begin{array}{r} 18 \\ 49 \end{array}$$

$$\begin{array}{r} 49 \\ 7 \\ \hline 343 \end{array} \quad \begin{array}{r} 18 \\ 78 \\ \hline 1268 \end{array}$$

Problem.

205

$$\begin{array}{r} 13 \\ 193 \\ 20 \\ 487 \\ 20 \\ 188 \\ 13 \\ \hline 934 \end{array}$$

1207

$$\begin{array}{r} 1000 \\ 221 \\ \hline 779 \end{array}$$

What is the non-decimal point of division?

say x feet from
the 752 division
then $1000 - x$ from

1207

752

say 100 lamps

$\frac{x}{10}$ lamps supplied from
 $\frac{75^2}{2}$
 $\frac{15^2}{4}$

70.8 lbs

$\frac{(100-x)}{10}$ lamps from $\frac{120^2}{7}$
 $\frac{24^2}{14}$ 182.

$\frac{x}{10} \times 0.5$ Cu in main
to 75²

$(\frac{100-x}{10}) \frac{1}{10}$ 182 Cu in main
to 120⁷

$0.0002473 \times \frac{x}{10}$ = Cu in distributing
from 75²

$0.0002473 (\frac{1000-x}{10}) \times \frac{x}{10}$ = Cu in dis-
tributing from 120⁷

$$\begin{aligned} 70.5 &= 0.0002473 \times \frac{x}{10} \\ 182 &= 0.0002473 \times \frac{(1000-x)}{10} \end{aligned}$$

$$0.0002473 = 10 \varepsilon$$

$$\varepsilon = 0.00002473$$

$$\begin{aligned}
 & \frac{x}{100} 70.5 + \left(\frac{10 - k}{100} \right) 182 \\
 & + \frac{.0000002473 x^3}{100} + \frac{.0002473 (100-x)^2}{10} \\
 & = \text{min} \\
 & .705x + 1820 - 1.82x \\
 & 1000000 - 20000x + x^2 \\
 & 1000000 - 20000x + 100x^2 \\
 & \quad \xrightarrow{+} 100000x + 200x^2 - \frac{x^3}{10} \\
 & 1000000 - 300000x + 300x^2 - \frac{x^3}{10} \\
 & 24736 - 74.900000x + 0.7419x^2 - 0.00002473 \\
 & 24736 - 74.19x + 0.07419x^2 - 0.00002473 \\
 & \quad \cdot 0.0002473 \\
 & \quad \frac{300000}{74.190000} \\
 & \quad \cdot 07419 \\
 & \quad \frac{74.19}{1.82} \\
 & \quad \frac{7.419}{1.82} \\
 & \quad \frac{9.239}{705} \\
 & \quad \frac{1.82}{705} \\
 & \quad \frac{8.534}{75305}
 \end{aligned}$$

209

$$1) -75.305x + .07419x^2 = \text{min}$$

$$\frac{-75.305}{148.38} x + \frac{.07419}{148.38} x^2 = \text{min}$$

$$148.38x = 75.305$$

$$\begin{array}{r} 1.8768 \\ \times 1712 \\ \hline 2.7056 \end{array}$$

$$\begin{array}{r} 62 \\ 100002473 \\ -100014838 \\ \hline .0014838 \end{array}$$

$$.0014838x = 75.305$$

$$.0014838x = 75.305$$

$$(1000-x)^3$$

$$1000000000 - 3000000x + 3000x^2 - x^3$$

$$\begin{array}{r} 1000000000 \\ -3000000x \\ \hline 0000000000 \end{array}$$

$$\begin{array}{r} 0000002473 \\ 10000000000 \\ \hline 0000002473 \\ 247300000000 \\ \hline 007419000 \end{array}$$

$$\text{Jug } x = 3.00$$

$$10.00 - x = 7.00$$

3.0

7.0

$$\begin{array}{r}
 6.3933 \\
 2.4771 \\
 2.4771 \\
 \hline
 1.4771 \quad 211 \\
 \hline
 1.8346 \quad 68.3 \\
 \hline
 279.3
 \end{array}$$

$$\begin{array}{r}
 70.5 \\
 3 \\
 \hline
 28.15 \text{ lbs.}
 \end{array}$$

$$\begin{array}{r}
 6.3933 \\
 2.8451 \\
 2.8451 \\
 0.8451 \\
 \hline
 2.9286
 \end{array}
 \begin{array}{r}
 1274 \\
 848 \\
 \hline
 2122
 \end{array}
 \begin{array}{r}
 2122 \\
 279.3 \\
 \hline
 24013
 \end{array}$$

$$\begin{array}{r}
 x = 7.00 \\
 10.00 - x = 3.00 \\
 7.0 \\
 3.0
 \end{array}$$

$$\begin{array}{r}
 211 \\
 648 \\
 \hline
 1159
 \end{array}
 \begin{array}{r}
 1159 \\
 1342 \\
 \hline
 2591
 \end{array}$$

$$\begin{array}{r}
 1274 \\
 68.3 \\
 \hline
 1342.3
 \end{array}$$

$$AC = a$$

$$AB = b$$

$$CX = x$$

$$CB = c$$

$$DX = c - x$$

n lamps

Lamps $\frac{x}{c} n$ towards C

$\frac{c-x}{c} n$ toward B

Let $I =$ Constant in mains

$E =$ constant in distributing

$I =$ Page 217

$E =$

$$\frac{x}{c} n a^2 f = \text{wt. main AC}^{215}$$

$$\frac{x}{c} n x^2 \Sigma = \text{wt. distrib CX}$$

$$\frac{c-x}{c} n b^2 f = \text{wt. main AB}$$

$$\frac{c-x}{c} n (a-x)^2 \Sigma = \text{wt. distribution BX}$$

$$\frac{x}{c} n a^2 f + \frac{x}{c} n x^2 \Sigma + \frac{c-x}{c} n b^2 f + \frac{c-x}{c} n (a-x)^2 \Sigma$$

$$= \frac{n a^2 f}{c} x + \frac{n \varepsilon^3}{c} x + \left(\frac{n b^2 f}{c} - \frac{n \varepsilon^3}{c} \right) x$$

$$+ \frac{c^2 - 2cx + x^2}{c} (c-x) n \Sigma$$

$$c^3 - 2c^2x + cx^2$$

$$- c^2x + 2cx^2 - x^3$$

$$c^3 - 3\varepsilon^2 x + 3cx^2 - x^3$$

$$+ \left(n \varepsilon c^2 \right) \frac{3cn \varepsilon x + 3n \varepsilon x^2 - n \varepsilon^3}{c} x^3$$

$$\frac{f}{6\varepsilon} = \frac{5.0969}{4.6067} - \frac{9.2218}{8.9254} \quad \text{decreasing}$$

$$\frac{f}{6\varepsilon} \rightarrow \frac{5.0969 - 10}{4.6403} - \frac{9.2218 - 10}{8.9859 - 10} \quad \text{Same sign}$$

$$\begin{array}{r} 8.9254 \\ 8.8590 \\ \hline .0664 \end{array}$$

$$\begin{aligned} \log f &= 5.0969 \\ \log \varepsilon &= 5.3933 \quad \text{decreasing} \\ &= 5.4597 \quad \text{same sign} \end{aligned}$$

$$() + \left(\frac{na^2}{c} - \frac{nb^2}{c} - 3cn\varepsilon \right) k^{217}$$

$$+ 3n\varepsilon x^2 = \text{min}$$

$$f_{\text{re}} \varepsilon x = \frac{n b^2}{c} + 3cn\varepsilon - \frac{na^2}{c}$$

$$x = \frac{b^2}{6c\varepsilon} + \frac{c}{2} - \frac{a^2}{6\varepsilon c}$$

$$x = \frac{(b^2 - a^2)}{6\varepsilon c} + \frac{c}{2}$$

$$= \frac{(b-a)(b+a)}{6\varepsilon c} + \frac{c}{2}$$

1 lamp
200 feet main 1.25 10 Volts
1 lamp max. $f = .0000125$ for 1 lamp

Decreasing $\varepsilon = .00002473$ $\frac{1}{2.5 \text{ Volts}}$
Uniform size $= .00002882$

$$\begin{array}{r}
 5.9486 \\
 8.9254 \\
 \hline
 4.8740 \\
 C = 98400 \quad 2 \\
 \hline
 1.8740 \quad 74.8
 \end{array}$$

$$C - X = 574.6 \text{ feet}$$

$$\begin{array}{r}
 4.8740 \\
 C = 9842.9930 \\
 \hline
 1.8810
 \end{array}$$

$$\begin{array}{r}
 76 \\
 2 \overline{) 984} \\
 \quad 492 \\
 \quad \quad 76 \\
 \quad \quad \quad 568 \\
 C - X = \hline
 \end{array}$$

$$\begin{array}{r}
 a = 794 \\
 b = 1207 \\
 c = 1000 \\
 2.6561 \\
 3.2925 \\
 \hline
 5.9486 \\
 5.0969 \\
 \hline
 1.0455 \\
 9.1715 \\
 \hline
 1.8740
 \end{array}
 \quad
 \begin{array}{r}
 1207 \\
 754 \\
 \hline
 453
 \end{array}
 \quad
 \begin{array}{r}
 1207 \\
 754 \\
 \hline
 1961
 \end{array}$$

$$X = -74.8 + 500$$

$$C - X = 1000 + 74.8 - 500$$

$$C - X = 74.8$$

220

$$\begin{array}{r} 20 \\ 193 \\ \hline 233 \end{array}$$

$$\begin{array}{r} 984 \\ 233 \\ \hline 751 \\ 568 \\ \hline 183 \end{array}$$

221

$$\begin{array}{r} 492 \\ 10 \\ 13 \\ 13 \\ \hline 538 \end{array}$$

$$\begin{array}{r} 4.8740 \\ 538 \quad 27308 \\ \hline 21432 \end{array}$$

$$\begin{array}{r} 1538 \\ \hline 269 \end{array}$$

$$\begin{array}{r} 140 \\ 269 \\ \hline 409 \end{array}$$

A

B

C

$$\cancel{A} \cancel{B} = a$$

$$\cancel{B} \cancel{c} = t$$

$$\cancel{A} \cancel{C} = a - t$$

$$x^2 f + (a-x)^2 \epsilon = \text{min}$$

$$x^2 f + a^2 \epsilon - 2ax \epsilon + x^2 \epsilon = \text{min}$$

$$2ax = 2(f+\epsilon)x$$

$$x = \frac{\cancel{x}\epsilon}{f+\epsilon} = \frac{a\epsilon}{f+\epsilon}$$

~~$$247.3$$~~

$$\begin{array}{r} 247 \\ 372 \end{array}$$

$$\begin{array}{r} 125 \\ 247 \\ \hline 372 \end{array}$$

$$\begin{array}{r} 2.3927 \\ 2.5705 \\ \hline 8222 \end{array}$$

66.4.

$\frac{2}{3}$ decreasing con-
ductor

831	452
44	10
44	120
180	35
10	134
1065	10
	762

Same size

$$\begin{array}{r} 288 \\ 125 \\ \hline 413 \end{array}$$

$$\begin{array}{r} 288 \quad 2.4594 \\ 413 \quad 2.6160 \\ \hline .8434 \end{array}$$

69.7% of
distance out is the place
to put the distribution box

In Block 1

1207	185
30	22
30	235
10	30
386	472
20	20
148	452
644	34
2	335
2	10
2288	831

$$\begin{array}{r}
 4.5289 \\
 2.5866 \\
 \hline
 1.9423
 \end{array}$$

$$\begin{array}{r}
 87 \\
 193 \\
 \hline
 280
 \end{array}$$

$$\begin{array}{r}
 324 \\
 28 \\
 \hline
 20
 \end{array}$$

$$\begin{array}{r}
 386 \\
 193 \\
 \hline
 \end{array}$$

a = 831

b = 472

C = 24

68

25

193

20

267

$$\begin{array}{r}
 20 \\
 190 \quad 615 \\
 25 \quad 544 \\
 \hline
 162 \quad 71
 \end{array}$$

$$\begin{array}{r}
 30 \\
 10.20 \quad 70
 \end{array}$$

$$\begin{array}{r}
 1020 \\
 570
 \end{array}$$

Same sign

2.5551

3.1148

8.8590

$$\begin{array}{r}
 4.5289 \\
 3.0086 \\
 \hline
 1.5203
 \end{array}$$

$$\begin{array}{r}
 831 \\
 472 \\
 \hline
 1303
 \end{array}$$

$$\begin{array}{r}
 831 \\
 472 \\
 \hline
 359
 \end{array}$$

$$\begin{array}{r}
 33.2 \\
 570 \\
 \hline
 644
 \end{array}$$

228

1000

$$2.25) \overline{1000} (4.400$$

900

100.0

150.

5.

$$\begin{array}{r} 150. \\ 26 \\ \hline 12 \\ 3.0 \\ \hline 9.000 \\ 9.00 \\ \hline 0.00 \\ 3.9.000 \end{array}$$

$$26) \overline{44.00} (170$$

26

180

0

$$15) \overline{170} (11$$

15

20

~~26 (15 quid) (575~~

~~130~~

$$\begin{array}{r} 200 \\ 188 \\ \hline 1.20 \end{array}$$

.5 / 575 feet

100

5.

$$\begin{array}{r} 500 \\ 9 \\ \hline 45.00 \\ 34 \\ \hline 45.00 \\ 26 \\ \hline 3.00 \\ 27.00 \\ 27.00 \\ -9.0 \\ \hline 17.00 \end{array}$$

229

230

231
30. along wall
20.
33. 20. 22 -

231

19 Privilege of buildings on Hall St. S. E.

56	57	58	59	60	61	62	63
56	57	58	59	60	61	62	63
56	57	58	59	60	61	62	63
56	57	58	59	60	61	62	63
56	57	58	59	60	61	62	63

Menlo Park Notebook #167 [N-80-09-03]

This notebook covers the period August-September 1880. It was used by various members of the laboratory staff to record notes and drawings relating to tests of lamps, carbons, and vacuums. The label on the front cover is marked "Book for lamps Sep 3, 1880." The book contains 284 numbered pages.

Blank pages not filmed: 26-27, 52-91, 104-109, 116-125, 128-231, 238-239, 242-259, 262-281.

X E-172 N-80-09-03

7 8 9
6 10
5 11
4 12
3 13
2
1

6/15/1

6/1
2/8
3/1

CNO
Temp.

Remarks

1

Large Bamboo Aug 14 1880.
the carbon had a few spot-
check to the clamp on the
positive side and Ripe with
free current by T A E

Large Bamboo

2

Regular

3

Regular

4

2

Cvo
Type

Remarks

3

Large Bamboo

5

Large Bamboo

6

Regular

7

Large Bamboo Broke Big
falling on the
Floor-

8

No Date	Remarks
9	Large Bamboo
10	Kegular CVOZ
11	Large Bamboo
12	Large Bamboo

C.V.O
Temp

Remarks

Regular C.V.O. 2

13

Regular C.V.O. 2

14

Regular C.V.O. 8

15

Large Bamboo

16

CrO₃
Temp.

Remarks

17

Regular CrO₃ Carbon Was
Split in Clamp

18

Regular CrO₃

19

Regular

20

~~Regular~~

Ovo
Jump

Remarks

Regular Ovo 2

21

Regular Ovo 3

22

Regular Ovo 2

23

Regular

24

CVO
Jamp

Remarks

25

Regular CVO 2

26

Regular CVO 2

27

Regular no 3

28

Regular no 3

2000-01-24

C/N
Date

Remarks

29

Regular C/N 2

30

Regular C/N 4

31

Regular C/N 4

32

Regular C/N 4

No	Remarks
Temp.	
93	Regular Cvo 5-
94	Regular Cvo 4
95	Regular -Cvo 4
96	Regular -Cvo 8

Ovo
Day

Remarks

87

Regular evoh

88

Regular evoh

89

Regular no 5-

90

Regular No 4

No
Tamp

Remarks

Regular no 3

41

42

43

44

Cvö
Temp

Remarks

45-

46

47

48

Oro
Yam.

Remarks

49

50

51

52

Hegel Tested Sep 10, 1880

good

|||||

Bad

||||

Hill Tested sep 18 1880 31

Good	BAD SPOTS ALL OVER	SINGLE Bx D. SPOTS	BRIGHT ORANGE SIDE	SMOKE IN. HANDLING	SPLIT FIBER	SPIT CHAMP	BAD. SPOTS IN MIDDLE
XXXX XXXX XXXX XXXX XXXX	XXXX XXXX XXXX				/	/	/

RECEIVE FROM FLAMER

56. 7 left on the jump

HCl Tested Sep 20

GOOD	BAD SPOTS ALL OVER	SINGLE BAD SPOTS	BRIGHT on one side	break in handling	In scratches	In scratches	Bad spots on middle
XX	XX	XX	XXX	1		1	
XX	XX						
XX							

Received from Flames -
3#. 3 Left on Pump

Hole Tested		Sep 21 1985		
Good	BAD SPOTS ALL OVER	SINGLE BAD SPOTS	BIG SPOTS 90° E SWING BREAKING IN SPLIT FIBER IN SPLIT CLAMP	BAD SPOTS IN MIDDLE CARBON

QAB
27092
MATERIAL
CARBON

Hill Seed also

wood	Bad spots all over.	Big ones little	hole in handling	split in fibers
------	------------------------	--------------------	---------------------	--------------------

Split in
Clamp

Bad spots
in middle
of carbon

~~all~~ | ~~bad~~ | ~~good~~

~~all~~ | ~~good~~ | ~~all~~

Kite Tested safe

Good { Bad spots } flight - on
all ones { one side } Broke in
handling

Split in } split in } Bad spots
Fiber - Clamps { in middle
of the carbons

Hill Tested sep 1880⁴¹

soil | Bad spots | single | Bright-on
all over | Bad spot one side

Brake in | split in | split in | Ball spots
handling | tiles. | clamp | in middle
of carbon

420381

no white
dark purple with
dark purple with

dark purple with

dark purple with

dark purple with

Hill Petree Sept 1880⁴³

good { bad spots { single } bright
all over - { Ball spots } on one side

Knife in | carbon { split by ball caps
handling } fiber. | Clamp | in middle
of carbon

44
5881

Nov 9 1880

Wards (2 in. tube) 200
Tube contraction 90 - tube 130

Nov 9 1880

47

Carbon tube - Started 2-20
this pump has got the mill full
Tube contraction 90 - tube 130
the spark began to show
in 3 minutes
5 minutes $\frac{1}{2}$

10 minutes spark $\frac{1}{2}$ in along the tube
12 -- the spark has all along
one wire
13 -- the sparks were
on both wires
stopped the pump after it
had run 15 minutes the spark
had almost left the gauge

~~try three different ways
of keeping up Tires~~

first - ~~Wong~~ brings the
Carbon up to a
inescapable Red Ring to
25°C and then
for a few moments at 25°
and then to 16 and return
for one hour

Second way - the
Coverset on with one
hand each shows less
and yet return for about
one hour without stopping
until you get a good
vacuum

~~I wait for lamp
have two hundred ohms Rx
for this lamp one turns
set up high Vacuum
and tough the shield
for instant cycling
do not let them turn
any air is coming out
of the carbon~~

Dec 16 - 1880 93

Try three Tamps and
see if they test different
from one another -

~~C No 2 uns~~
Put a Tamp on the
pump and have 705.8
hundred shiner Kgs
and bring to an invisible
Red once bring up
to 25 candles for a few
moments and then to
16 once bring for
one hour at 16 Candles

Dec 16 - CN 2 Jam

Put on the pump case
have one hundred seven
~~Kes~~ get a high Vacuum
and then put the
cover on and don't
take it off until
you get a high Vacuum

Lamp No 2 Dec 15 - 97
Put the lamp on glass
and get a high Vacuum
and then touch the
Dowels for instant only
Don't let it burn until
15 minutes before it is
ready to come off an then
let burn for 15 minutes before
liven off here above
fire hundred amperes
Don't put the direct
current on when dry air
is blowing out of the
carbons -

Dec 19 - 1880

The Taster from T.A.E
on heating the Lamp is
When you get a good
Vacuum heat with all your
Resistance in an ironable Red
Keep the current on until
you can't see any air a
coming out then put in
one Plug and let the air
all go a going then second
and third Plug the same
as first then use your
Resistance Board until
you set your Lamp up to
16 Candles Let Burn until
all the air is gone and
then set your Lamp Burn
for 80 minutes at 16 Candles

100

Mar 12 1880

101

Dec 27 1880
Pump 30X130 it Breaks

the face tube when used in
short time

110

112

121
122
123No off
Pump.STARTED
SEALED
OFF

113

Remarks

~~105 800 Broke on the connection~~

114

0864

0864

6964

9883

7778

5990

0792

0792

6464

9957

8005 6320

Nov
Land
etc.

Remarks

127

Oct 4 Carbon Testers

40x145 did not set a
Vacuum quick enough ~~to~~
stiffen the bag another

Tester - 50 - 120

Started 10 - 45 -
the fall tube was to
small for the contractions
and didn't take out
any air -

Tester - 5-0 X 130

Started 11 + 30

did not work the
contraction was to harsh
for the fall tube

Tester 50x145-

Started at 2:30

Runs to much mercury
and could not
get a vacuum O.G.

30x145- Started 2:40

Started 2:55-

50x115- started 2:35-
no since the full tube
was too small and
did not take the air
out fast enough

Testis - 80-130
 the spark was half
 off very slow and
the wires were 15 minutes apart
to try it the second time
 started the second time
 at 605 the Ark jerked and
 did not get a spark.

Started again at 606
 and broke the pump.

Sat Nov 19 1880 ²⁴¹

Heated the mercury to
150 degrees and then
started the pump at 108
the spark left in 14 minutes

Started the pump
With lamp on at 126

260

oct-4

Carbon Tutes-

40 by 145

14 by 92

16 x 118

16 x 106

261

90 X 130

OCT. 13 Teted Carbons

OCT. 14. 1880
Parature of faults
in Torring
Carbons

三

Menlo Park Notebook #168 [N-80-12-13]

This notebook covers the period December 1880-January 1881. The entries are by John W. Lawson and consist of notes and a few drawings relating to experiments on plating and chemically treating carbons. Sixteen loose pages found in this notebook were torn from another notebook and identified as "experiments tried." They appear to have been copied from a "Bk 2" and relate to the experiments recorded in Menlo Park Notebook #168. The book contains 283 numbered pages and has been used in both directions.

Blank pages not filmed: I, 20-270.

Filming order: pp. 2-19; pp. 283-271 [in reverse page-number order].

~~Sept.~~ 13 —

3

Experiment of plating ~~the~~
the clamping points of carbon
loops with copper - Gave
satisfactory results - Order
to plate all the loops in the
same manner.

5

~~Sept. 18~~

Experiment of plating with
silver - Result feeding
good, deposit clean and
homogeneous.

" " " tried iron, using the double
sulphate of iron & ammonia -
Bright, clean deposit.

Dec 29/80

7

Find I have been working
with polarized batteries in
plating the carbons for
the Klumper - Plating
Ag & Cu.

~~After boiling in solution and
drying in oven, they are to be
taken to Neal who will test
them in reg. way - after
passing through furnace
their resistance is to be tested
and if lowered to any
extent let them be boiled
again in the Pt Chl and again
treated by Neal -~~

1/4 ft — Platinized carbons
placed the carbon loops in boiling
Platinum chloride after they
have been in solution 15 minutes.
They are to be taken out and
~~washed well in water for~~
~~the remainder to be dried at a~~
temperature of 75°C. — Then
placed in furnace and treated
in reg. way — Get Larson

Platinized loops

Resistance of loops before being treated with platinum chlorides measured over 1000 ohms. After treatment the loops measured respectively 1000, 590 and 350 Ohms.

1/7/81

J.W.L.

9

- A carbon - 2 lamps of each
T.A.³ experiments
- No. 1 - 1 milligramme naphthalic
crystals, put in globe
- No. 3 - Piece of phosphorus, dried
and size of birdshot put in globe
- No. 4 - Piece of sodium size of
birdshot put in globe
- No. 5 - 3 milligrammes crystals
trichloride carbon placed in globe
- No. 6 - Platinized wires and clamps
coated heavily with shellac
- No. 7 - 3 milligrammes Benzoic
acid placed in globe

1/1/81 -

Experiment No. 2

5 milligrams naphthalic crystals dissolved in 1/2 thumbfull gasoline - The inner surface of the lump was then washed with this solution, the globe being heated before being washed. The lump exhausted in regular way -

No. 8^a The lump before being placed on pump was washed inside with strong sulphuric acid -

No. 8^b A piece of charcoal $\frac{1}{2}$ in square was coated in melted naphthalic crystals. Then placed in lump - Lump exhausted in regular way

12

1. A piece of charcoal $\frac{1}{16}$ in.
square was heated until redhot
and at red heat was plunged into
the surface of mercury, removed
and suspended in bottle containing
strong ammonia but not in contact
with the liquid after remaining in bottle 5
minutes. It was placed in lamp-hump exhaust in
reg-way) incised

2. Soaked 2 loops
2 hours in an alcoholic solution
of shellac about as thick as
that used for lacquering
They were then allowed to
dry and dry 1/2 hours; given
to Neal who placed it under
and subjected to some treatment
as "oleg"

No-9 A piece of charcoal $\frac{1}{16}$ in.¹³
square was heated until redhot
and at red heat was plunged into
the surface of mercury, removed
and suspended in bottle con-
taining strong ammonia but
not in contact with the liquid
after remaining in bottle 5
minutes. It was placed in
lamp-hump exhaust in
reg-way)

1/3/81 - No. 12 - Soaked 2 loops
2 hours in an alcoholic solution
of shellac about as thick as
that used for lacquering
They were then allowed to
dry and dry 1/2 hours; given
to Neal who placed it under
and subjected to some treatment
as "oleg"

After the treatment, they
were 215 ohms and were strong
enough to work. The 2nd
one was measured before it
was treated and was 221 ohms.
After treatment, they
measured 214 ohms. The 3rd
one was measured before it
was treated and was 223 ohms.
After treatment, they
measured 221 ohms.

No. 1 ^{115 ohms} The resistance ¹⁵
of the loops before treatment
with shellac measured:-
No. 1 - 215 ^{ohms} No. 2 - 221 ^{ohms}
After treatment, they
measured:-
No. 1 - 214 ^{ohms} No. 2 - 223 ^{ohms}
The carbons must go back
as before treatment with shellac
varnish.

16

17

18

19

For Ag bath.

12. Ag converted into ~~AgCl~~
 $\text{Ag}(\text{CN})_2$

2 or KC₈ dissolved in ~~KClO₃~~
125° CaK_2O

2
8⁺
6
8
9
6

When carbon is cold
the deposit (principal part)
is black

(One of the Jacks covered
with iridescent deposit
the other remaining bright
Films on glass disappearing)

No. 6 - shellac 1st/81

When raised to high in
incandescence - the character-
istic blue made its appear-
ance at the clamp - a de-
posit being formed on the
inner surface of the globe
in the ^{inner} vicinity of the clamp
(iridescent) -

No. 8^c - When fuel brought
up to high incandescence no
change from reg - appeared but
after remaining so a few
minutes an iridescent
deposit made its appear-
ance on the inner surface
of the globe very faint

No. 8^a - ~~Black~~ brownish
deposit on
clamps.

No. 5 - ~~beginning stronger
on glass tanks, indescent
deposit on immediate vicinity
of clamps~~

No. 8^a - A few minutes
after being raised to high
incandescence a dark iron
gray deposit forms on the
clamps.

No. 2 - ~~Painted - paint
turns brown
when open~~

Experiments on clamps -
Binding the platinum wire
to the clamp by electro -
deposits of silver
After exhausting

and bringing to high incan-
descence. There was found
to be an eye of the clamping
ends of the carbon just above
the clamp a fluffy substance
not a deposit but apparently
produced from the decomposition
of some substance in the carbon.
Probably the carbon absorbed
a quantity of salt having
remained in the solution
so long a time.

No. 2 - Blue smoke lamp
laid aside which blue
appears to blackened -

No. 8^a Both broken at
curve of carbon - the
carbon being split into
8 shards

gwt -

1/2/51 - ~~11:00 AM~~ 1:45 P.M.

No. 9 - Brought up to high
incandescence - one clamp
immediately coated with an
iridescent film 1:50 P.M.

By raising still higher
the film on clamp disappears
and characteristic blue makes
its appearance at clamp -
which ~~filament~~ was
coated with film

1/2/81 - 3 PM -

Portion of developing stem
coated with yellowish
film. Perhaps substance
which was on lamp -

8^b Mercury got into globe
and of course the conditions
of experiment were altered
so try this again -

[ITEM FOUND IN BOOK]

Experiments tried.

2

(1)

1/4/81-

3

Bk. 2: 14³Platinized Carbon
(high resistance loops)

Place the carbon loops in
a ^{aqueous} boiling solution of platinum
chloride, in which they are to
remain 15 minutes, the solution
being kept at the boiling point
all the time - They are then
to be taken out and dried at a
temperature of 75° C. Then place
in lamp and treated in regular
way - or, after boiling in solution
and drying in oven, they are to be
taken to Neal who will subject
them to some treatment that he
does the regulars; after this boil
again in platinum chloride and
again heat in furnace; if, after
each platinization the

4
resistance of the carbons
is lowered, continue the
treatment until the resis-
tance is as low as the regu-
[Bk. 2: Pg. 381]

"1/1/81-

A carbons - 2 lamps of
each -

(2) No. 1 - 1 milligramme
naphthaline crystals put in
globe - ~~then~~ treated in
regular way -

(3) No. 3 - Piece of phosphor
dried and size of bird shot
put in globe - Treat in
size way -

(4) No. 4 - Piece of sodium,
dried, size of bird shot put
in globe - Treat in "reg" way

(5) No. 5 - 3 milligrammes
cystals trichloride carbon
placed in globe - Treat in
reg. way [Bk. 2: Pg. 5

(6) No. 6 - Platina wires are
clumps to be coated heavily
with shellac - Treat in "reg" way
[Bk. 2: Pg. 3]

(7) No. 7 - 3 milligrammes
benzoic acid placed in globe
Treat in "reg" way -

(8) 1/1/81 - No. 2 -

5 milligrammes naphthaline
crystals dissolved in $\frac{1}{2}$ thumbful
ful gasoline - The inner
surface of the globe to be
washed with this solution,
the globe being heated before
washed - Treat in "reg" way

[Bk. 2: Pg. 588]

(9) ⁶ No 8^a. The lamp before being placed on stand to be washed inside with strong sulphuric acid - Treat in "ref" way [Bk. 2: Pg. 4]

(10) No 8^b A piece of charcoal $\frac{3}{16}$ in. square to be soaked in naphthaline crystals then placed in lamp - Treat in "ref" way - [Bk. 2: Pg. 4]

(11) No 9. A piece of charcoal $\frac{3}{16}$ in. square to be heated until redhot in flame of spirit lamp then plunged under the surface of mercury, removed and suspended in bottle containing strong aqua ammonia

but not in contact with the liquid, after remaining in bottle 5 minutes it is to be placed in lamp - Treat in "ref" way [Bk. 2: Pg. 6]

(12) $\frac{1}{13}$ / 81 - No 12

Soak two (2) carbonized logs 2 hours in an alcoholic solution of shellac about as thick as that used for lacquering - They are then allowed to drip and dry $1\frac{1}{2}$ hours; given to Neal to place in furnace and subject to same treatment as reg [Bk. 2: Pg. 7]

8
1/13/81-

- (13) Experiments on lamps
Binding the platinum
wires to the carbons by means
of electro deposits — [Bk.2:147]

1/15/81-

- (14) No. 10 —
Clean the globe inside with
wood naphtha (pyrolytic point)
and then exhaust — [Bk.2:147]

(15) No. 11 —

- Place in the lamp
10 milligrams of gum kongo

(16) No. 106 —

- 3 regular lamps with tubes
Fill with phosphorus
oxydide, tube No. 1,
acid, carbonates " " 2,
with sulphur " " 3.
Manipulate the
carbons in refrigeratory — Don't
heat 1, 2 or 3
-

9

1/16/81-

- (17) Prepared a solution to try
to deposit platinum by electro
means — A solution of
platinum dichloride was pre-
cipitated with ammonium
chloride and the precipitate
well washed with alcoholic
water, then a small quantity
of water added to it, and a
few pieces of caustic potash
thrown in, this was then
added to a strong solution
of potassium cyanide at a
temperature of 100 C. The whole
was then boiled until all
immovable fumes had
stopped being given off from
the solution — [Bk.2:148]

10

(18)- To the solution of (17).
was added some pieces of
solid platinum bichloride and
then heated until the precip
formed had disappeared—
Bk. 2: pg 9

(20) New style clamps - 11/8/81-
Clamping by electro-deposition

Placed in solution 13 P.M. 11/8/81
Taken out " 10 P.M. 11/8/81

Plated with copper-
In circuit of 1 Daniell's cell-

11/8/81

(20)

#2nd Placed in solution 11:30 A.M. 11/8/81
Taken out " 9: A.M. 11/9/81
With copper
1 Daniell's

#3. B⁵ (3)- Placed in solution 8 P.M. 11/8/81-
Taken out " 1:30 P.M. 11/9/81-
With copper
1 Daniell's

#4. Stand (1) Placed in solution 8 A.M. 11/8/81-
Taken out " 9: A.M. 11/8/81-
With copper
1 Daniell's

5. B⁵ (7)- Placed in solution 2 P.M. 11/8/81-
Taken out " 2 P.M. 11/9/81-
With silver
1 Daniell's

6. B⁵ (4) Placed in solution 5 P.M. 11/8/81-
Taken out " 5 P.M. 11/9/81-
With copper
1 Daniell's through 30 hours

12 (20)

#7. Spiral (1)

Placed in solution 5 A.M. 1/19/81.
Taken out " 9 A.M. 1/19/81-

With copper

1 Dens. 20 Ohms-

#9. Spiral (1)

Placed in solution 3 P.M. 1/19/81.
Taken out " 9 A.M. 1/19/81-

With copper

1 Dens. 20 Ohms.

#10. B² (4).Placed in solution 9 P.M. 1/18/81.
Taken out " 11 A.M. 1/19/81-

With copper

1 Dens. 30 Ohms.

#8. B² (6):Placed in solution 2 P.M. 1/18/81.
Taken out " 11:30 A.M. 1/19/81-

With silver

1 Dens. 20 Ohms.

#11. Spiral (1)

1/20/81

Placed in solution 10 A.M. 1/19/81.
Taken out " 2 P.M. 1/20/81-

With copper

1 Dens. 20 Ohms.

(20)

13

1/20/81-

#12. B² (5)-Placed in solution 3:30 P.M. 1/19/81.
Taken out " 4 " 1/20/81-

With silver

1 Dens. 20 Ohms-

#13. B² (4)Placed in solution 5:30 P.M. 1/19/81.
Taken out " 4:30 " 1/20/81-

With copper

1 Dens. 30 Ohms.

#14. Spiral (1)-

Placed in solution 8 P.M. 1/19/81.
Taken out " 10 A.M. 1/20/81-

Replaced in " " "

Taken out " 10 P.M. "

With copper

1 Dens. 30 Ohms.

Ph. 2, p. 10-

#15. 2 Spirals-

1/22/81-

Placed in solution 3:30 P.M. 1/20/81.
Taken out " 2:30 " 1/22/81-

1 Dens. 20 Ohms. With copper

14 (20)

#16 - 1 spiral

Placed in solution 9 P.M. 1/20/81
 Taken out " 2:30 " 1/22/81
 With copper
 1 Dens. 20 hours

#17 - 2 B's

Placed in solution 10 P.M. 1/20/81
 Taken out " 1. " 1/22/81
 With silver
 1 Dens. 30 hours

#18 - 1 spiral

Placed in solution 4:30 P.M. 1/24/81
 Taken out " 8:30 A.M. 1/25/81
 With copper
 1 Dens. 20 hours

19. 4 A's

Placed in solution 2: P.M. 1/25/81
 Taken out " 8: A.M. 1/26/81
 Cu
 1 Dens. 30 hours

(20)

#20. 4 A's

Placed in solution 3: P.M. 1/26/81
 Taken out " 8: A.M. 1/27/81
 Cu
 1 Dens. 20 hours

1/27/81. 15

21. 1 spiral

Placed in solution 9: M. 1/27/81
 Taken out " 4:30 P.M. 1/29/81
 Cu
 1 Dens. 20 hours

(21)

Order

Make two lamps, regular,
 etc., but carbon coated with
 aluminum pyroxine etc.

- ✓ No. 108 - Coat the carbon
with aluminum
- ✓ No. 110 - With Magnesia
- ✓ No. 111 - Strontia

16

- ✓ No. 112 - With Silica -
" 113 " Geronia
✓ " 114 " Cerium oxide

These oxides were taken and
~~a small~~ thick paste in
ether made with each,
then the entire carbon was
coated with this paste by
means of a camel's hairbrush

11.1.1900

Menlo Park Notebook #171 [N-80-10-12]

There are no dated entries in this notebook with the exception of one entry for October 12, 1880. The entries are by Francis Upton and Francis Jehl and consist of rough notes and calculations relating to lamp tests from Lots 1 and 2. There is also a table of lamps in Lot 2. The label on the front cover is marked "Lot 2 of 100" and "Oct 1880 F R Upton." The book contains 284 numbered pages. Approximately half the pages have been used.

LIBRARY OF THE
BOARD OF PATENT CONTROL,

120 BROADWAY, NEW YORK.

From L. Brany
120 Broad St. N.Y.
May 1, 1896

No. 1 taken off 3-37 to
measure 36 candles

put back at 3-50 minutes
$$\frac{37}{-13}$$

-13

6-50 A.M. 203 minute

$$\begin{array}{r} 153 \\ 50 \\ \hline 203 \\ 13 \\ \hline 190 \end{array}$$

2

Taken off

$$\begin{array}{r} 8000 \\ 65.75 \\ \hline 142.5 \end{array}$$

-15

$$\begin{array}{r} 1535 \\ 2 \\ \hline 3070 \end{array}$$

1:8178
~~3.6356~~
~~201412~~
~~1:7126~~
 1.3070
~~1.3226~~
~~200~~

21.4
~~2~~ cm.
 42.8

Went 10-19 A.M.

$$\begin{array}{r} 388 \\ 19 \\ \hline 407 \\ 15 \\ \hline 392 \end{array}$$

10-19-20 Went

3

$$\begin{array}{r} 20 \\ 60 \\ 33 \\ \hline 113 \end{array}$$

minutes

$$\begin{array}{r} 93 \\ 20 \\ \hline 113 \end{array}$$

3-43 a.m. W. cut
16 minutes

11-48 AM 448
 $\frac{48}{496}$

6

2-40 CM

40

$$\begin{array}{r} 568 \\ \hline 608 \end{array}$$

5-28 CM

$$\begin{array}{r} 93 \\ 28 \\ \hline 121 \end{array}$$

7

8

AM 8-52

$$\begin{array}{r} 273 \\ - 52 \\ \hline 325 \end{array}$$

B-15 ^{Am} ~~enement~~

$$\begin{array}{r} 60 \\ - 33 \\ \hline 15 \end{array}$$

9

$$\begin{array}{r} 93 \\ - 15 \\ \hline 108 \end{array}$$

10

A.M. 4-12 went

42

$$\frac{3}{45 \text{ minutes}}$$
$$\begin{array}{r} 33 \\ 12 \\ \hline 45 \end{array}$$

4-37 A.M.

$$\begin{array}{r} 37 \\ 33 \\ \hline 70 \end{array}$$

11

7-47 a.m.

$$\begin{array}{r} 213 \\ -47 \\ \hline 260 \end{array}$$

The following marked
on invisible front cover
^{mentat}

84 — 5.40 P.M.

57 — 5.43 "

36 — 5.43 "

98 — 5.48 globe very blue.

83 — 5.50 in glass

87 — 5.55

40 — 7.12

14

4-57 AM \$0

$$\frac{68}{69}$$
$$\begin{array}{r} 57 \\ 33 \\ \hline 90 \end{array}$$

4-52

PM

$$\begin{array}{r} 688 \\ 52 \\ \hline 740 \end{array}$$

15

16

June 1-15 P.M.

15
508
523

17

6-18 AM
153
171

15

18

9-35 AM

$$\begin{array}{r} 333 \\ 35 \\ \hline 368 \end{array}$$

19

20

1-15 P.M. 504
15
527

21

6-50 A.M.
203 minutes

9-40 AM. ~~285~~

33
40
373

24

4-20 A.M.

$$\begin{array}{r} 33 \\ 20 \\ \hline 53 \end{array}$$

June

9-45

25

$$\begin{array}{r} 333 \\ 45 \\ \hline 378 \end{array}$$

26

5-45 AM.

$$\begin{array}{r} 45 \\ - 93 \\ \hline 138 \end{array}$$

27

5-45 AM.

$$\begin{array}{r} 45 \\ - 93 \\ \hline 138 \end{array}$$

28

9-28 A.M. ⁸³³
28
361

29

30

11-25 AM ~ 448
25
973

31

11-26 Went

26
93
119

60
21
17

6-56 A.M.

203 minutes

153
50
207

8-1 A.M.

273
21
294

B-30 AM $\frac{240}{3}$ $\frac{218}{243}$

B-1 AM

$\frac{180}{33}$
 $\frac{213}{1}$
214

38

6-16 A.M.

$$\begin{array}{r} 153 \\ 16 \\ \hline 169 \end{array}$$

8-08 a.m.

$$\begin{array}{r} 240 \\ 33 \\ \hline 273 \\ 8 \\ \hline 281 \end{array}$$

39

40

2-26 P.M. 568
 $\frac{26}{594}$

41

44

6-27 A.M.
153
27
180

45

6-24 A.M.
24
153
177

46

4-47

47
33
86

47

48

Went at 4-23

33
23
56

49

Went at 3-33 AM

6 minutes

50

11—S.M.

448

51

Went at 4-8 A.M.

$$\frac{38}{41} \text{ minute}$$

$$\frac{35}{41}$$

Lamp 53 taken at 9-45
and found to be 48 candles
at 10-5 it was brought
to 68" on bar impossible

$$\begin{array}{r} 68 & 34 & 17 \\ 12 & 6 & 3 \\ \hline 136 & 62 & \end{array} \quad \begin{array}{r} 34 \\ 84 \\ \hline 136 \end{array}$$

$$\begin{array}{r} 17 \\ 17 \\ \hline 119 \\ 9 \sqrt{289} \\ \hline 32 \\ 2 \end{array}$$

Kept in Photometric room *yes*

6 M. 6-9 went

$$\begin{array}{r}
 93 \\
 \frac{60}{152} \\
 \hline
 9 \\
 \hline
 162 \text{ minutes}
 \end{array}$$

5-33 taken down stairs to test

5-43 brought -16

66" 875

3-5 5 P.M.

$$\begin{array}{r}
 628 \\
 \frac{55}{10} \\
 \hline
 45 \\
 \hline
 673
 \end{array}$$

56

base
5-38 AM.

$\frac{93}{38}$
 $\frac{34}{131}$ minutes

$\frac{93}{34}$
 $\frac{34}{131}$

57

58

6-41 A.M 93
 $\frac{41}{134}$

59

5-3 ♀ A.M
 $\frac{93}{37}$
130

60

A.M 4-35 Went

$$\begin{array}{r} 35 \\ 33 \\ \hline 68 \end{array}$$

5-43 A.M

$$\begin{array}{r} 33 \\ 93 \\ \hline 126 \end{array}$$

61

at 9-17 took down to
test

9-30 brought back -13

3-15 P.M.

$$\begin{array}{r}
 15 \\
 13 \\
 \hline
 2 \\
 \hline
 624 \\
 \hline
 630 \text{ minutes}
 \end{array}$$

1-22 P.M 508
 $\frac{2}{5}$
 $\underline{535}$

64

9-35 AM

$$\begin{array}{r} 333 \\ 35 - \\ \hline 368 \end{array}$$

65

5-41 AM

$$\begin{array}{r} 41 \\ 93 - \\ \hline 234 \end{array}$$

66

6 ~~AFM~~

60
93
15 2

67

~~AFM~~

~~AFM~~

~~AFM~~

~~AFM~~

6-23 A.M.

153

23
176

70

7-25 A.M.

$$\begin{array}{r} 180 \\ 32 \\ \hline 25 \\ \hline 238 \end{array}$$

71

21 $\frac{3}{4}$
25
 $\cancel{23}$
 $\underline{4}$

72

9-7 AM

$$\begin{array}{r} 337 \\ - 7 \\ \hline 340 \end{array}$$

73

8-4 AM

$$\begin{array}{r} 240 \\ - 33 \\ \hline 273 \\ - 4 \\ \hline 277 \end{array}$$

South

$$\begin{array}{r} 62 \\ 320 \\ \hline 382 \\ -104 \\ \hline 278 \end{array}$$

did not go

5-30 A.M. Went

$$\begin{array}{r} 93 \\ 30 \\ \hline 123 \end{array}$$
Burnt suitcase at 158 and
relit itself

P.M 2-4 Went

$$\begin{array}{r} 568 \\ 4 \\ \hline 572 \end{array}$$

76

6-5.0 AM

$$\begin{array}{r} 15-7 \\ -5-0 \\ \hline 20-3 \end{array}$$

start at 6 again

77

3-47 a.m Went

20 minutes

78

4-32 A.M.

$$\frac{60}{65}$$

$$\frac{33}{32} \frac{5}{6}$$

5-5-1

A.M.

93

57

$$\frac{144}{\square}$$

79

80

Went 4-47 Am

33

47
80

4-45 went

45
33
78

81

8-22 a.m.

~~27³
22
29~~

4-30 taken to measure

15 candles by photometer

4-40 replaced

84

p.m 4-30 taken to measure

H-48 returned

19 candles

85

AM 4-40 went

$$\begin{array}{r} 40 \\ 33 \\ \hline 73 \end{array}$$

86

5-45 Went

93
45
138

87

AM 3-57 Broke

30 minutes

88

10-21

$$\begin{array}{r} 273 \\ \underline{-21} \\ 252 \end{array}$$

$$\begin{array}{r} 383 \\ -21 \\ \hline 404 \end{array}$$

~~10-21~~

10-55

$$\begin{array}{r} 383 \\ -55 \\ \hline 488 \end{array}$$

$$\begin{array}{r} 383 \\ -55 \\ \hline 438 \end{array}$$

89

90

P.M.

5-35

$$\begin{array}{r}
 688 \\
 -35 \\
 \hline
 723 \\
 -60 \\
 \hline
 783
 \end{array}$$

91

Taken off 4-5

put back 4-20

—15

Very high
80 candles

10-8. Went

$$\begin{array}{r}
 38\frac{3}{5} \\
 -368 \\
 \hline
 6
 \end{array}$$

376

92

5-5 A.M.

93
5
96

93

4-1 A.M.

34 minutes

94

6-22 AM 15-3
 $\frac{22}{175}$

5-27 went
AM

93
 $\frac{26}{119}$

95

96

6-28 Am. 153
28
181

60
60
33
133

V 4-16 hoke

97

30
16
3
49

98

508 at 1 P.M.
 $\frac{300}{808}$ at 6 P.M.

8

12 Oct 80

99

Started at 2-5 a.m.
Light red

at 2-42 About 16 candles

The belts were loose and
slipped.

At 3 A.M. started

at 48 candles

3-02 stopped

At 3-10 A.M. began again

" 3-11 " stopped

" 3-30 " started 3 minutes

stopped 5 minutes to change machines

stopped 12-10

100

Lamko - 46 ✓ 808 minutes
 - 70 ✓

- 84 ✓ 813

- 57 ✓ 816

- 36 ✓ 816

- 98 ✓ 821

- 83 ✓ 823

57 828

40 845

- 67 903

- 29 913

- 37 919

- 42 925

48 940

- 53 970

- 22 1130

- 69 1182

- 18 1220

- 13 1315

- 51 ✓ 1355

101

18 Nov (1 - 19
 $\frac{1}{16}$
 $\frac{1}{140}$

808 minutes

585 Starke

600 stopped $\frac{25}{833}$

7-5 ^{a.m.} Starke $\frac{60}{890}$

$\frac{950}{1070}$

$\frac{1070}{120}$

2 P.M. $\frac{1190}{120}$

4 P.M. $\frac{1310}{1310}$

5 P.M. 1370

102

202

202

404

134

25150

4500

29650

148.25

135; 161; 148;

$$\begin{array}{r}
 2068 \\
 1703 \\
 8697 \\
 \hline
 2468 \quad 177 \\
 \quad \quad 148 \\
 \quad \quad 29
 \end{array}$$

135; 156; 148

$$\begin{array}{r}
 1931 \\
 1703 \\
 8697 \\
 \hline
 2331
 \end{array}$$

$$\begin{array}{r}
 171 \\
 148 \\
 \hline
 23
 \end{array}$$

5450

$$\begin{array}{r}
 1303 \\
 1303 \\
 6464 \\
 8297 \\
 \hline
 7367
 \end{array}$$

Test of the ~~lamps~~¹⁰³
 That ~~were~~ ^{was} on the table
 and turning some
 time.

Transfalt

W53 Nat no 2

Clif

R

C

Ew

R

C

202-202

$$\begin{array}{r}
 25150 + 4500 \\
 \hline
 2000
 \end{array}$$

135 Volts

148 Ohms

48

170 m0

$$\begin{array}{r}
 25150 + 6200 \\
 \hline
 2000
 \end{array}$$

16

108

$$\begin{array}{r} 215 \\ 215 \\ \hline 430 \\ 143 \end{array} \quad \begin{array}{r} 314 \\ 15 \\ \hline 329 \\ 164 \end{array}$$

$$\begin{array}{r} 1931 \\ 2148 \\ 8447 \\ \hline 2526 \end{array} \quad \begin{array}{r} 179 \\ 164 \\ \hline +13 \end{array}$$

$$\begin{array}{r} 1553 \\ 1553 \\ 8069 \\ 6464 \\ \hline 7639 \end{array}$$

5800 ft

57 no 2

107

Cut 215 - 215 143 Volts

$$\frac{31400 + 1500}{2000} \quad 164 \text{ Ohms}$$

R 48

Cut 185 - 185

$$\frac{31400 + 2900}{2000}$$

R 16

78

110

$$\begin{array}{r} 1406 \\ -135 \\ \hline 141 \end{array}$$

$$\begin{array}{r} 314 \\ -7 \\ \hline 321 \\ -160 \\ \hline 141 \end{array}$$

~~148~~
~~156~~

148; X

135; 156; 148; X

$$x = \frac{148 \times 156}{135} = \frac{148 \times \cancel{156}}{\cancel{135}}$$

$$\frac{x}{156} = \frac{148}{135}$$

$$\begin{array}{r} 186 \\ -161 \\ \hline +25 \end{array}$$

$$\begin{array}{r} 1303 \\ 1303 \\ 6464 \\ \hline 7932 \\ -6602 \\ \hline 4580 \end{array}$$

No 84 No 2

111

203-203

135 Volts

$$\frac{31400 + 700}{200}$$

16, Ohms

R

C

48

189-189

Emf

$$\frac{31400 + 2000 + 500}{200}$$

R

C

16

112

(434

144.6

EWT

R

C

No 46 no 2

113

217-217

144.6

I went up about
~~two~~ two minutes
afterwards.
broke at the Clamps

116

$$\begin{array}{r}
 (410 \\
 133 \\
 \hline
 25-15 \\
 42 \\
 \hline
 2935 \\
 146.7
 \end{array}$$

$$\begin{array}{r}
 1931 \\
 1673 \\
 876.0 \\
 \hline
 2364 \\
 + 172 \\
 147 \\
 \hline
 25
 \end{array}$$

$$\begin{array}{r}
 8240 \\
 1240 \\
 8326 \\
 6464 \\
 \hline
 7270
 \end{array}
 \quad 5330$$

117

L051 no2 733 Volts

$$\begin{array}{r}
 Eluf \quad 205-205 \\
 R \quad 25150 + 4200 \\
 \hline
 200
 \end{array}
 \quad 147 Ohms$$

C 48

Cluf 175-175

$$\begin{array}{r}
 R \quad 25150 + 5700 \\
 \hline
 200
 \end{array}$$

C 16

120

470
156

1931
2945
8069
2945

1931
1931
7655
6464
7381

376.5
7
383.5
196.7

197

5470

to 18

62

121

E/W

R

C

out

R

C

235-235

156 Yds

$$\frac{37650 + 700}{200}$$

197 Yds

Blue at the Camp

208 - 208

$$\frac{37650 + 3000}{200}$$
Blue at the Camp

124

$$\begin{array}{r} 400 \\ - 137 \\ \hline 263 \end{array}$$

$$\begin{array}{r} 2515 \\ - 59 \\ \hline 2005 \\ - 155.2 \\ \hline 155.2 \end{array}$$

$$\begin{array}{r} 1931 \\ 1903 \\ 8761 \\ 2595 \\ + 181 \\ \hline 155 \\ + 26 \\ \hline \end{array}$$

$$\begin{array}{r} 1239 \\ 1239 \\ 8097 \\ 6464 \\ \hline 7039 \end{array}$$

5050

No 40 Lat 1 125

Eut	200-200	133 Volts
R	<u>25150 + 5900</u>	155.2 Ohms
C	48	505-0

Eut	170-170	.
-----	---------	---

R	<u>25150 + 7700</u>	.
C	16	.

128

1430
143

374
43
1357
178

1931
2504
8447
2882

194
178
16

1553
1553
7496
6464
7066 5090

No. 1 Lat 1 129

Cut 215 - 215 143 Sils

$$\begin{array}{r} 31400 + 4800 \\ \hline 200 \end{array} \quad 1780 \text{ ftms}$$

R

C

48

Cut 190 - 190

$$\begin{array}{r} 31400 + 5900 \\ \hline 200 \end{array}$$

R

C

16

132

1484
161

37650

1600

39250

196

2068

2068

6464

7077

7677

5850

(93)

13-

Lat 2

133

Elt+

R

C

Elt

R

C

13-

Lat 2

242-242

161 blocks

37650 + 1600

200

1960 km.

5850 ft. h.

48

Blow at the camp.

215-218

37650 + 3300

200

18

136

~~(440)~~
 146

~~25150~~
~~5000~~
28150
 140.7

2 164.4

2 164.4

1 646.4

7.95-18

3.9276

8450 ft. lbs

X

1931

1482

8356

1769

15-0

140.

+ 10

No 22 220-220 147 1/2

137

EWT 220-220 147 1/2

R 2515-0 + 2000
200

C 48 Blue at the clamp

EWT 192-192

R 25150 + 4800
200

C 16

140

$$\begin{array}{r} 25150 \\ -2300 \\ \hline 22850 \\ +137 \\ \hline 137 \end{array}$$

$$\begin{array}{r} 205 \\ -2 \\ \hline 410 \\ +137 \text{ Volts} \end{array}$$

~~1931~~
~~1367~~

$$\begin{array}{r} 15^{\circ}6 \\ -137 \\ \hline +19 \end{array}$$

$$\begin{array}{r} 1367 \\ 6464 \\ \hline 7831 \end{array}$$

6660

140

No 67

141

SWT

205-205

25150 + 2300

200

R

C

CWT

175-175

25150 + 4200

R

C

16

¹³⁷
137 Volts

137 Ohms

144

146

$$\begin{array}{r} 314 \\ 18 \\ \hline 332 \\ 166 \end{array}$$

$$\begin{array}{r} 1931 \\ 2201 \\ \hline 8539 \\ 2671 \\ \hline 185 \\ 166 \\ \hline +19 \end{array}$$

1461

1461

6464

7799

$$\overline{9185}$$

5220

Cust

R

C

Cust

R

C

47 Lot 1

145

210 - 210

140 Yds

31400 + 1800

1660 Ohms

48

179 - 179

31400 + 2800
200

16

148

$$\begin{array}{r} 197 \\ 197 \\ \hline 394 \\ 131 \end{array}$$

$$\begin{array}{r} 25150 \\ 2700 \\ \hline 27850 \\ 139.25 \end{array}$$

$$\begin{array}{r} 1931 \\ 1434 \\ 8827 \\ \hline 2192 \end{array}$$

$$\begin{array}{r} 165 \\ 139 \\ \hline + 26 \end{array}$$

$$\begin{array}{r} 1173 \\ 1173 \\ 8566 \\ 6464 \\ \hline 7376 \end{array}$$

5460

Ewt

Q

@

Ewt

Q

@

No 69

no 2

149

197 - 197

131 Volts

$$\begin{array}{r} 25150 + 2700 \\ \hline 2000 \end{array}$$

139.25

48

162 - 162

$$\begin{array}{r} 4400 + 25150 \\ \hline 2000 \end{array}$$

16

152

$$\begin{array}{r} 220 \\ 221 \\ \hline 441 \\ 147 \end{array}$$

$$\begin{array}{r} 314 \\ 52 \\ \hline 366 \\ 183 \end{array}$$

$$\begin{array}{r} 1931 \\ 2625 \\ 8356 \\ \hline 2912 \end{array}$$

$$\begin{array}{r} 195 \\ 183 \\ \hline +12 \end{array}$$

$$\begin{array}{r} 1644 \\ 1644 \\ 7375 \\ 6464 \\ \hline 7127 \end{array} \quad 5160$$

No 29

lot 2 153

EM17

220-221

147 Vult

$$\begin{array}{r} 31400 + 5200 \\ \hline 200 \end{array}$$

183 Ohms

R

C

48 Blue at the cleanup

EM17

193-193

R

$$\begin{array}{r} 31400 + 7400 \\ \hline 200 \end{array}$$

C

16

156

$$\begin{array}{r} 223 \\ (446 \\ \hline 149 \end{array}$$

$$\begin{array}{r} 314 \\ -34 \\ \hline 348 \\ 174 \end{array}$$

1931

2405

8268

2604

$$\begin{array}{r} 182 \\ -174 \\ \hline 8 \end{array}$$

1732

1732

7594

6464

$$\begin{array}{r} \hline 7522 \end{array}$$

5650

76 ~~12~~ 88 ¹⁵⁷ et1

EM17 223-223 149 Vals

$$\begin{array}{r} 31400 + 3400 \\ \hline 200 \end{array} \quad 174 Ohms$$

R

48

Blue at the Camps

EM17

195-197

$$\begin{array}{r} 31400 5700 \\ \hline 200 \end{array}$$

R

C

16

160

No To

lot 2

161

Cut

R

C

Cut

R

C

162

235
232
467
156

1931
2355

1931
1931
6464
7645
9971 6260

2 (258.0
12-
314
30
349
172

No 83 lot 2 163

Env

Back open on the side
235-232 156 rolls

R

$$31400 + 30000$$

$$\frac{2000}{17200}$$

C

48
Blue at the Clamp.

Env

198-198

R

$$56000 + 31400$$

$$\frac{2000}{ }$$

C

16

166

$$\begin{array}{r}
 2515 \\
 23 \\
 \hline
 2745 \\
 137.2
 \end{array}$$

1931

1367

8570

~~1868~~

1430

1430

8633

6964

~~7957~~

$$\begin{array}{r}
 153 \\
 137 \\
 \hline
 +16
 \end{array}$$

6240

98

167

Eut

209 - 209

139 Volts

R

25150 + 2300

200

137 Ohms

C

48

Eut

182 - 182

R

4900 + 25150

200

C

18

170

$$\begin{array}{r} \underline{450} \\ 150 \\ \hline 314 \\ 15 \\ \hline 329 \\ 164 \end{array}$$

$$\begin{array}{r} 1931 \\ 2148 \quad 171 \\ 8239 \quad 164 \\ \hline 2318 \quad +7 \\ 1761 \\ 1761 \\ 7852 \\ 6464 \\ \hline 7838 \quad 6070 \end{array}$$

No. 42 Lot 2

171

Aut 225 - 226
150 lbs

$$\begin{array}{r} 31400 + 1500 \\ \hline 2000 \end{array}$$

1640 lbs

C 48 Blue at the clamp

Aut 196 - 195

$$\begin{array}{r} 31400 + 3400 \\ \hline 2000 \end{array}$$

C 16

174

$$\begin{array}{r} 72.6 \\ - 2 \\ \hline 155.2 \end{array}$$

$$\begin{array}{r} 314 \\ - 2 \\ \hline 316 \\ - 2 \\ \hline 158 \end{array}$$

1931

+ 1

1903

1903

6464

8013

8283

6730

Qut

R

C

No 36 part 2

175

218-218

155 V/V

$$\begin{array}{r} 31400 + 200 \\ - 200 \\ \hline 31400 \end{array}$$

1580 hours

48

Qut

R

C

185-185

$$\begin{array}{r} 2000 + 31400 \\ - 200 \\ \hline 31400 \end{array}$$

16

178

$$\begin{array}{r} 427 \\ 142 \\ \hline 319 \\ 159 \end{array}$$

$$\begin{array}{r} 1931 \\ 2014 \\ 6477 \\ \hline 2422 \end{array} \quad \begin{array}{r} 175 \\ 159 \\ \hline 16 \end{array}$$

$$\begin{array}{r} 1523 \\ 1523 \\ 7986 \\ 6464 \\ \hline 7496 \end{array} \quad 5620$$

43

Bal 2

179

Elmt	212 - 45	142 Volts
R	$\frac{31400 + 500}{200}$	159 Ohms.

C 48

Elmt	180 - 180	
R	$\frac{31400 + 2000}{200}$	

C 16

182

$$\begin{array}{r} 1428 \\ 143 \\ \hline 314 \\ 319 \\ \hline 759 \end{array}$$

1931

2014

$$\begin{array}{r} 8447 \\ 2392 \\ \hline 173 \\ 159 \\ \hline + 14 \end{array}$$

1553

1553

7986

6464

$$\begin{array}{r} 7506 \\ 5630 \end{array}$$

No 40 Lot 2 183

EW7 214 - 214 143 Volts

$$\begin{array}{r} 31400 + 500 \\ \hline 200 \\ 159 Ohms \end{array}$$

R C 48

EW7 185 - 185

$$\begin{array}{r} 31400 + 2500 \\ \hline 200 \\ 16 \end{array}$$

(P)

$$\begin{array}{r} 440 \\ - 147 \\ \hline 314 \end{array}$$

$$\begin{array}{r} 314 \\ - 15 \\ \hline 329 \\ - 164 \\ \hline \end{array}$$

1931

2148

83272466

1673

1673

7852

64647662

174

+18

5840

No 37 lot 2 187

Eut. ~~240~~ - 220 - 220

$$\begin{array}{r} 31400 + 1500 \\ \hline 2000 \quad 164 \end{array}$$

C 48

Eut. 157 - 157

$$\begin{array}{r} 31400 + 3200 \\ \hline 2000 \end{array}$$

C 16

190

$$\begin{array}{r}
 251.5 \\
 + 37 \\
 \hline
 288.5 \\
 + 144.2 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 1931 \\
 1584 \\
 8539 \\
 \hline
 2054
 \end{array}
 \quad
 \begin{array}{r}
 161 \\
 144 \\
 \hline
 + 17
 \end{array}$$

$$\begin{array}{r}
 1461 \\
 1461 \\
 8416 \\
 6464 \\
 \hline
 7862
 \end{array}
 \quad
 \begin{array}{r}
 6030
 \end{array}$$

191

	No 91	Bott
Euf	210 210	140 Volts
R	<u>25150 + 3700</u> 200	144.2 Ohms
C	48	
Euf	178-176	
R	<u>25150 + 300</u> 200	
C	16	

Blackened globes 7 a.m. latitude
193

37

40

43

51

53

67 very slightly

69 slight

91 brighter Parry

196

81400
 55700
 20937100
 314
 456
 21770
 182. 385
 123
 18.
 31200
 66. 192
 193
 31360
 120. 142
 182
 31364
 1213 385
 128
 178 1213
 177 183
 180 31355
 180 118 31368
 360 122
 9 31358
 119 172
 31400
 45600
 20935960 (178)
 20x9
 159
 140
 196
 180
 16
 16

197

Lot No 2		16 Candle		
No	Chns	Volts	No	
1-	183-	127-	18-	179 - 123
2-	163-	118-	19	174 - 124
3-	192-	128-	20-	165 - 117
4-	168-	123-	21-	179 - 144
5-	157-	115-	22-	148 - 116
6-	174-	121-	23-	163 - 182
7-	172	120-	24-	172 - 130
8-	171-	119-	25-	150 - 118
9-	181-	120-	26-	190 - 134
10-	185	124	27-	176 - 124
11-	185	127	28-	176 - 118
12-	159	116	29-	163 - 123
13	168	120	30-	194 - 137
14	177	136	31-	163 - 120
15	168	113	32-	172 - 117
16	152	109	33-	191 - 129
17	194	180	34-	181 - 118
		36-	35-	190 - 126
		2949	2060	(310) 243800

Average Ohms 200.6
172.

Average Volts 190.3

119.

Ohms 6 179.95 119
 67 X Y carrier
 2934 129 7 count
 3106 625
 2698 603
 2812 22
 2949
 3126

66 115.85 174 356.0 172

66 XX 7 X Average
 498 8.5 176.7
 462 469
 265 160 count
 264 134
 1905 1784 200.6
 2300 2060
 66 8049
 122 Volts

See Page 201

Continuation of Lot - 2
 No. Ohms Volts No. Ohms Volts

37	178	116	53	162	113
38	244	140	54	187	123
39	167	117	55	172	115
40	168	113	56	184	120
41	153	115	57	187	121
42	154	112	58	177	120
43	173	119	59	179	117
44	163	120	60	178	123
45	162	111	61	182	127
46	166	119	62	165	113
47	206	124	63	194	132
48	181	118	64	too high not recorded	
49	very high not good		65	188	128
50	199	118	66	179	118
51	162	114	67	145	107
52	202	128	68	186	124
	269.8	178.4	69	281.2	190.5
			camp	366	0

200

201

Av. Volls - 122

Av. Ohns - 174

for 66 days

of lot 2

204

Env 7

R

Env
R

1

109

93

17

Env 7

Q

Env
R

205

118 98 18

118 117 12

119 109 10

119 102 9

206

Emf

R.

Digital
R

207

121	108	8
121	122	9
125	114	5
121	112	8
120	112	9
120	116	9
122	107	6
121	117	9
121	104	7
126	123	4
128	117	2
128	135	2

12

$$133) 2111 \quad (1.6 \\ \underline{133} \qquad \qquad \qquad 981$$

$$133) 2111 \quad (1.6 \\ \underline{133} \qquad \qquad \qquad 825 \\ \qquad \qquad \qquad 380$$

22

10/125
68

15
16

80 ————— (2)

126,9
124

$$13) 2111$$

Menlo Park Notebook #172 [N-80-11-15]

This notebook covers the period October-December 1880. The entries are by Francis Upton. There is also one entry by Edison near the end of the book. The book contains notes, calculations, and a few drawings relating to lamp tests and to the wiring of the lamp factory. There are also notes and calculations regarding central stations, including estimates of costs and horsepower to be sold. In addition, there are notes, calculations, and a few drawings of isolated plants for the Vanderbilt home and for a building on 5th Avenue (probably the Edison Electric Light Company headquarters). The label on the front cover is marked "Upton" and "Calculations." The book contains 290 numbered pages.

Blank pages not filmed: 276-283, 286-287.

Jos Barr
C/o Wm Posters Sons
1271 Pearl St
N.Y.

LIBRARY OF THE
BOARD OF PATENT CONTROL,

120 BROADWAY, NEW YORK.

From Library
GENERAL ELECTRIC
44 Broadway, N.Y.

May 1, 1896

1
Searham The carbon
in the clamp is estimated
as being $\frac{3}{16}$ " long
 $.102$ " wide
 $.008$ " thick

for the two clamps this
gives a cubical contents
of 0.0003 cu in

If this absorbs 7.3
it ~~weight~~ bulk in air
cu in
0.00225

2

2352

3.3677

7.8861

3.3677

8.3536

8.3536

9.60742.1139

(3.8352)

1.9176

82.7 Volts

3

The globe of a lamp
holds 155 C.C.

.0611559309.955

00225,) 9,45-500 (4202
900
455
450
500

12 Oct 3:30 A.M.

~~#~~ Black down clump

- 23
24
25
26
27
28
30
10 down 3
22
34
45
49
63
97
14 Black
15
20

~~Let~~ Let $m = \text{resistance of 1 inch}$
~~0.001 X 0.001~~ square

$R = \text{Resistance of a body}$
 $a \times b = \text{cross section}$

$l = \text{length}$

$$R = \frac{l}{ab} m, m = \frac{ab R}{l}$$

Surface = S

$$S = 2(a+b)l$$

Problem to find the dimensions of a carbon which shall have the same surface and $\frac{1}{k}$ times the resistance.

$$R' \text{ Same candle power} \\ R = \mu R$$

$$S' = S$$

$$R' = \frac{L'}{a'f'} m = \mu R$$

$$S' = 2(a+f')L' = 2(a+b)L = S$$

~~Known~~
Known
 $L = g$ assumed
 $a' + f' =$ unknown

~~Unknown~~
~~Surface~~
~~Concave~~
~~Convex~~
~~Distance~~
~~Height~~

$$a'f' = \frac{gm}{\mu R}$$

$$f' = \frac{gm}{a'\mu R}$$

$$S' = 2\left(a' + \frac{gm}{a'\mu R}\right)g$$

$$\dot{a}' \rho R S' = 2 \dot{a}'^2 \rho R g + 2 g^2 m \quad 11$$

$s = s'$

$$2 \dot{a}'^2 \rho R g - \dot{a}' \rho R S = - 2 g^2 m$$

$$\dot{a}'^2 = \frac{\dot{a}' \rho R S}{2 \rho R g} = - \frac{2 g^2 m}{2 \rho R g}$$

$$\dot{a}'^2 - \frac{\dot{a}' S}{2 g} = - \frac{g m}{\rho R}$$

$$\dot{a}'^2 - (\) + \frac{S^2}{16 g^2} = \frac{S^2}{16 g^2} - \frac{g m}{\rho R}$$

$$\dot{a}' - \frac{S}{2 g} = \pm \sqrt{\frac{S^2}{16 g^2} - \frac{g m}{\rho R}}$$

$$\dot{a}' = \frac{S}{4 g} + \sqrt{\frac{S^2}{16 g^2} - \frac{g m}{\rho R}}$$

$$b' = \frac{g m}{\dot{a}' \rho R}$$

$$\text{If } \frac{gm}{pR} > \frac{s^2}{16g^2}$$

the result is impossible.

$$\text{But if } \frac{gm}{pR} = \frac{s^2}{16g^2} \text{ or } < \frac{s^2}{16g^2}$$

the problem can be solved

$p = \frac{13}{16} =$	$\frac{1.1139}{1.2431}$
$= .812$	9.9098

$$m = 3966 = 4000$$

$$R = 175$$

$$S = 300$$

$$g = 4$$

$$p = \frac{130}{175} = \frac{2.1139}{2.2431} = \underline{.6769}$$

$$= .753 = \underline{\frac{3}{4}}$$

$$a = \frac{s}{4g} + \sqrt{\frac{s^2}{16g^2} - \frac{g}{\rho R}}$$

$$= \frac{300}{16} + \sqrt{\frac{90000}{256} - \frac{16000}{13025}}$$

$$\begin{array}{r} 16 \\ 96 \\ \hline 256 \end{array}$$

$$\begin{array}{r} 41175 \\ 43.75 \\ \hline 131.25 \end{array}$$

$$\begin{array}{r} 175 \\ 1875 \\ \hline \end{array}$$

~~$$\begin{array}{r} 4.9542 \\ 2.198 \\ \hline 27611 \end{array}$$~~

~~$$\begin{array}{r} 4.241 \\ 2.1179 \\ \hline 2.0862 \end{array}$$~~

~~$$\begin{array}{r} 122 \\ 45 \\ \hline 165 \end{array}$$~~

~~$$\begin{array}{r} 216580 \\ 13290 \\ \hline \end{array}$$~~

~~$$\begin{array}{r} 185 \\ 46 \\ \hline 4055 \end{array}$$~~

$$\begin{array}{r} 352 \\ 122 \\ \hline 230 \end{array}$$

15.1

$$\begin{array}{r} 4.9542 \\ 2.4082 \\ \hline 2.5460 \end{array}$$

$$\begin{array}{r} 13617 \\ 11808 \\ \hline \end{array}$$

$$\begin{array}{r} 18.75 \\ 15 \\ \hline 33.75 \end{array}$$

175

131

 $\frac{3}{4}$ resistance $\frac{4}{5} = \frac{1}{2}$ length

$$f' = \frac{gm}{a' pR}$$

$$gm = 16000$$

$$pR = 130$$

$$a' = 15.1$$

$$\frac{gm}{pR} = 12.2$$

$$2.0864$$

$$\frac{1.1790}{.9074}$$

$$\begin{array}{r}
 8.06 \\
 -33.75 \\
 \hline
 41.81 \\
 -2 \\
 \hline
 83.66 \\
 -4 \\
 \hline
 33.454
 \end{array}$$

$$\begin{array}{r}
 17 \\
 8 \\
 -25 \\
 \hline
 2 \\
 -50 \\
 \hline
 6 \\
 \hline
 300
 \end{array}$$

$$\begin{array}{r} 2.4771 \\ -1.3802 \\ \hline 1.0969 \end{array}$$

$$\begin{array}{r} 36 \\ 16 \\ \hline 216 \\ -36 \\ \hline 576 \end{array}$$

$$\begin{array}{r} 156 \\ -126 \\ \hline 20 \end{array}$$

113010

$$\begin{array}{r} 6505 \\ -6505 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 441 \\ 447 \end{array}$$

$$\begin{array}{r} 12.5 \\ 4.47 \\ \hline 8.03 \end{array}$$

$$\begin{array}{r} 4.9542 \\ -2.7604 \\ \hline 2.1938 \end{array}$$

156

$$\begin{array}{r} 4.3764 \\ -2.2430 \\ \hline 2.1334 \end{array}$$

$$g = 6$$

$$m = 3966$$

$$R = 175$$

$$S = 300$$

$$\rho = 1$$

$$a = \frac{S}{4g} \pm \sqrt{\frac{S^2}{16g^2} - \frac{gm}{\rho R}}$$

$$= \frac{300}{24} \pm \sqrt{\frac{90000}{16 \times 36} - \frac{23796}{175}}$$

$$= 8.03$$

$$16.97$$

$$\begin{array}{r} 3966 \\ -6 \\ \hline 23796 \end{array}$$

561-91

$$\begin{array}{r} 12730 \\ \underline{-2} \\ 2.5460 \end{array}$$

$$\begin{array}{r} 3966 \\ \underline{-4} \\ 15864 \end{array}$$

$$\begin{array}{r} 4.2004 \\ 2.1129 \\ \hline 2.0865 \end{array}$$

$$\begin{array}{r} 351.8 \\ \underline{-122} \\ 229.8 \end{array}$$

$$\begin{array}{r} 1.3616. \\ \underline{1.1808} \\ 18.75 \end{array}$$

$$\begin{array}{r} 18.75 \\ \underline{-15.15} \\ 3.60 \end{array}$$

$$\begin{array}{r} 18.75 \\ \underline{-15.15} \\ 33.90 \end{array}$$

$$b' = \frac{gm}{a' \rho R}$$

$$\begin{array}{r} 4.2004 \\ 8.4698 \\ 7.8861 \\ \hline .5563 \end{array}$$

$$3.6$$

$$a' = \frac{55'}{4g} + \sqrt{\frac{s^2}{16g^2} - \frac{gm}{\rho R}}$$

$$\rho R = R' = 130$$

$$m = 3966$$

$$s = 300$$

$$g = 4$$

$$\rho = \frac{130}{175}$$

$$a' = 18.75 \pm \sqrt{351.8 - 122}$$

$$\begin{array}{r} 33.9 \\ \underline{-33.6} \\ 3.75 \\ \underline{-3.75} \\ 75.6 \\ \underline{-75.6} \\ 300.0 \end{array}$$

$$\begin{array}{r} 1.0969 \\ \hline 2 \\ 2.1838 \end{array}$$

$$\begin{array}{r} 152 \\ 122 \\ \hline 30 \end{array}$$

$$\begin{array}{r} 1.4771 \\ 17385 \end{array}$$

$$\begin{array}{r} 5.47 \\ 12.5 \\ \hline 17.97 \end{array}$$

$$\begin{array}{r} 12.5 \\ 5.47 \\ \hline 7.03 \end{array}$$

To change the surface

$$S' = 200$$

$$a' = \frac{200}{16} \pm \sqrt{\left(\frac{200}{16}\right)^2 - \frac{q_m}{\rho r}}$$

$$d' = 12.5 \pm \sqrt{152 - 122}$$

$$0.007 \times 0.008 \times 6''$$

$$\rho r = R'$$

$$\begin{array}{r} .8751 \\ \hline 1.7502 \end{array}$$

10"

 $S' = 300$

$$g = 10$$

$$m = 3966$$

$$pr = R' = 300$$

$$a' = \frac{s'}{4g} \pm \sqrt{\left(\frac{s'}{4g}\right)^2 - \frac{gm}{prR}}$$

$$\frac{300}{40} = 7.5$$

$$\begin{array}{r}
 17 \\
 8 \\
 \hline
 13.6
 \end{array}
 \quad
 \begin{array}{r}
 2.1335 \\
 2.1614 \\
 6.2218 \\
 \hline
 51.67
 \end{array}$$

$$3.286$$

$$S = 2(a+b)l$$

$$\begin{array}{r}
 17 \\
 8 \\
 25 \\
 \hline
 50
 \end{array}
 \quad
 \begin{array}{r}
 6000 \\
 \hline
 300\,000
 \end{array}$$

Lamp No. 67 of lot 2²⁷
 giving 16 candles and
 with a resistance of 145 ohms.
 This lamp was made of
 the best lumber that has
 yet been found. Mr. B.
 said that it was at-
 absolutely without pitch.
 All linear measure-
 ments in 0.001

$$l = 6000$$

$$a = 17$$

$$b = 8$$

$$S = 300\,000$$

$$R = 145$$

$$m = \frac{abR}{l} = 3.286$$

$$\begin{array}{r} 4.0969 \\ \times 2 \\ \hline 2.1938 \end{array}$$

15.6

$$\begin{array}{r} 4.1189 \\ \times 2.1614 \\ \hline 1.9575 \end{array}$$

15.6

$$\begin{array}{r} 90.7 \\ - 65.3 \\ \hline \end{array}$$

$$\begin{array}{r} 11.8149 \\ - .9074 \\ \hline 8.08 \end{array}$$

$$\begin{array}{r} 12.5 \\ 8.08 \\ \hline 4.42 \\ 20.58 \end{array}$$

$$a' = \frac{s'}{4e'} \pm \sqrt{\left(\frac{s'}{4e'}\right)^2 - \frac{l'm}{R'}}$$

$$s' = 200000$$

$$l' = 4000$$

$$m = 3.286$$

$$R' = 145$$

$$\begin{array}{r} 3.286 \\ 4000 \\ \hline 13 154 \dots \end{array}$$

$$\frac{100}{\cancel{200000}} = 12.5$$

$$a' = 20.58$$

$$b' = \frac{4.42}{25.00}$$

$$\begin{array}{r} 50.0 \\ - 4 \\ \hline 2 \end{array} \quad O.K.$$

$$\begin{array}{r}
 4.1189 \\
 2.1461 \\
 \hline
 1.9728 \\
 & \underline{9.79} \\
 & 93.9 \\
 \hline
 11.7931 & 62.1 \\
 & \underline{8965}
 \end{array}$$

$$\begin{array}{r}
 4.1189 \\
 2.1303 \\
 \hline
 1.9886 \\
 & \underline{20.38} \\
 & 12.5 \\
 & \underline{7.88} \\
 & 4.62 \\
 \hline
 1.7679 \\
 & \underline{8839} \\
 & 5.86 \\
 & \underline{97.4} \\
 & 7.65 \\
 & 4.85 \\
 & 20.13 \\
 4.1189 \\
 2.1139 \\
 \hline
 2.0650 \\
 & \underline{156} \\
 & \underline{1004} \\
 & 3.5 \\
 \hline
 1.7404 \\
 & \underline{8702} \\
 & 12.5 \\
 & \underline{7.42} \\
 & 5.08 \\
 & 19.92
 \end{array}$$

Same values as on page 29
except $R' = -140$

$$\begin{array}{l}
 a' = 20.38 \\
 b' = 4.62
 \end{array}$$

$$\begin{array}{l}
 R' = 135 \\
 a' = 20.15 \\
 b' = 4.85
 \end{array}$$

$$\begin{array}{l}
 R = 130 \\
 b' = 5.08 \\
 a' = 19.92
 \end{array}$$

$$\begin{array}{r}
 4.1189 \\
 2.0969 \\
 \hline
 2.0220
 \end{array}
 \quad
 \begin{array}{r}
 156 \\
 105 \\
 \hline
 57
 \end{array}$$

$$\begin{array}{r}
 2.67076 \\
 8538 \\
 \hline
 4.1189
 \end{array}
 \quad
 \begin{array}{r}
 12.5 \\
 7.14 \\
 \hline
 5.36
 \end{array}$$

$$\begin{array}{r}
 2.0792 \\
 2.0397 \\
 \hline
 1.16721
 \end{array}
 \quad
 \begin{array}{r}
 19.64 \\
 109 \\
 \hline
 47
 \end{array}
 \quad
 \begin{array}{r}
 12.5 \\
 682 \\
 \hline
 5.64
 \end{array}$$

$$\begin{array}{r}
 .6360
 \end{array}
 \quad
 \begin{array}{r}
 19.36
 \end{array}$$

$$\begin{array}{r}
 4.1189 \\
 2.0914 \\
 \hline
 2.0795
 \end{array}
 \quad
 \begin{array}{r}
 156 \\
 119.6 \\
 \hline
 36.4
 \end{array}$$

$$\begin{array}{r}
 1.5611 \\
 1.7805 \\
 \hline
 6.47
 \end{array}
 \quad
 \begin{array}{r}
 12.5 \\
 60.3 \\
 \hline
 18.53
 \end{array}$$

 $R = 125$

$$\begin{array}{l}
 a' = 19.64 \\
 b' = 5.36
 \end{array}$$

 $R = 120$

$$\begin{array}{l}
 a' = 19.36 \\
 b' = 5.64
 \end{array}$$

 $R = 115$ $R = 110$

$$\begin{array}{l}
 a' = 18.53 \\
 b' = 6.47
 \end{array}$$

34

$$\begin{array}{r}
 156 \\
 131.5 \\
 \hline
 24.5 \\
 \\
 12.5 \\
 4.95 \\
 \hline
 7.55 \\
 \\
 \hline
 418.89 \\
 195.42 \\
 \hline
 21647.12.5 \\
 \\
 3.16 \\
 \hline
 9.34 \\
 \\
 15.66
 \end{array}$$

$$\frac{g_m}{l_p R} = \frac{\delta^2}{16g^2} \quad \frac{l_m}{R'} = \frac{s^2}{16l^2}$$

$$\begin{array}{r}
 \frac{16l^3m}{s^2} = R' \\
 \\
 3.0103 \\
 0.5166 \\
 \hline
 2.4937 \\
 9 \\
 \hline
 11.4937
 \end{array}
 \quad
 \begin{array}{r}
 4.000 \\
 4.000 \\
 \hline
 4.000 \\
 + \\
 \hline
 64.109
 \end{array}
 \quad
 \begin{array}{r}
 5.3090 \\
 16.6020 \\
 \hline
 10.6026 \\
 \hline
 12.5269 \\
 10.6026 \\
 \hline
 1.9249
 \end{array}
 \quad
 \begin{array}{r}
 16 \\
 16 \\
 \hline
 384 \\
 64 \\
 \hline
 1024
 \end{array}$$

35

$$\begin{array}{l}
 R = 100 \\
 a' = 7.45 \\
 l' = 7.55
 \end{array}$$

$$\begin{array}{l}
 R = 90 \\
 a' = 15.66 \\
 l' = 9.34
 \end{array}$$

$$\begin{array}{l}
 R = 84.1 \\
 a' = 12.5 \\
 l' = 12.5
 \end{array}$$

$$\begin{array}{r}
 2.3010 \\
 1.2583 \\
 \hline
 1.0457 \\
 \hline
 2 \\
 \hline
 21191.4
 \end{array}$$

123.5

$$\begin{array}{r}
 0.5766 \\
 3.6532 \\
 \hline
 4.1698
 \end{array}$$

147.80

$$\begin{array}{r}
 2.1614 \\
 \hline
 2.0084
 \end{array}$$

$$\begin{array}{r}
 -123.5 \\
 \hline
 102 \\
 \hline
 21.5
 \end{array}$$

$$\begin{array}{r}
 1.3324 \\
 \hline
 .6662
 \end{array}$$

$$\begin{array}{r}
 11.1 \\
 4.64 \\
 \hline
 15.74 \\
 6.46
 \end{array}$$

$$\begin{array}{r}
 4.1698 \\
 2.1761 \\
 \hline
 1.9937
 \end{array}$$

$$\begin{array}{r}
 123.5 \\
 98.6 \\
 \hline
 24.9
 \end{array}$$

$$\begin{array}{r}
 13962 \\
 \hline
 .6981
 \end{array}$$

$$\begin{array}{r}
 11.1 \\
 4.94 \\
 \hline
 6.11 \\
 16.69
 \end{array}$$

$$L = 4500$$

$$S = 200000$$

$$m = 3.286$$

$$R' =$$

$$a' = \frac{s'}{4l'} \pm \sqrt{\left(\frac{s'}{4l'}\right)^2 - \frac{l'm}{R'}}$$

$$\frac{200000}{18000} \quad 11.1 \pm \sqrt{123.5 - \frac{147.80}{18000}}$$

$$R' = 145$$

$$a' = 15.74$$

$$f' = 6.46$$

$$R' = 150$$

$$a' = 16.09$$

$$f' = 6.11$$

38

$$\begin{array}{r}
 4.1698 \\
 2.214+ \\
 \hline
 1.9657
 \end{array}
 \qquad
 \begin{array}{r}
 123.5 \\
 92.4 \\
 \hline
 3.1.1
 \end{array}$$

$$\begin{array}{r}
 (1.4928 \\
 17464 \\
 \hline
 11.1 \\
 5.58 \\
 \hline
 5.52 \\
 16.68
 \end{array}$$

$$\begin{array}{r}
 4.1698 \\
 2.2304 \\
 \hline
 1.9394
 \end{array}
 \qquad
 \begin{array}{r}
 123.5 \\
 87 \\
 \hline
 36.5
 \end{array}$$

$$\begin{array}{r}
 11.5623 \\
 7811 \\
 \hline
 6.04 \\
 5.06
 \end{array}$$

$$17.14$$

$$\begin{array}{r}
 4.1696 \\
 2.2553 \\
 \hline
 19145
 \end{array}
 \qquad
 \begin{array}{r}
 123.5 \\
 82.2 \\
 \hline
 41.3
 \end{array}$$

$$\begin{array}{r}
 11.1 \\
 6.43 \\
 \hline
 4.67 \\
 17.53
 \end{array}$$

39

$$R = 160$$

$$a' = 16.68$$

$$b' = 5.52$$

$$R = 170$$

$$a' = 17.14$$

$$b' = 5.06$$

$$R = 180$$

$$a' = 4.67$$

$$b' = 17.53$$

40

$$\begin{array}{r}
 4.1698 \\
 2.1461 \\
 \hline
 2.0237
 \end{array}
 \qquad
 \begin{array}{r}
 123.5 \\
 105.5 \\
 \hline
 18
 \end{array}
 \qquad
 \begin{array}{r}
 1.2553 \\
 \hline
 6276
 \end{array}$$

$$\begin{array}{r}
 14.24 \\
 \hline
 6.76
 \end{array}
 \qquad
 \begin{array}{r}
 1534 \\
 \hline
 123.5
 \end{array}$$

$$\begin{array}{r}
 4.1698 \\
 2.1303 \\
 \hline
 2.0395
 \end{array}
 \qquad
 \begin{array}{r}
 109.5 \\
 \hline
 14.0
 \end{array}$$

$$\begin{array}{r}
 14.461 \\
 \hline
 5730
 \end{array}
 \qquad
 \begin{array}{r}
 11.1 \\
 3.74 \\
 \hline
 7.36
 \end{array}$$

$$\begin{array}{r}
 \hline
 14.84
 \end{array}$$

$$\begin{array}{r}
 4.1698 \\
 2.1139 \\
 \hline
 2.0569
 \end{array}
 \qquad
 \begin{array}{r}
 123.5 \\
 11.36 \\
 \hline
 9.9
 \end{array}$$

$$\begin{array}{r}
 1.9956 \\
 \hline
 4978
 \end{array}
 \qquad
 \begin{array}{r}
 11.1 \\
 3.15 \\
 \hline
 7.95
 \end{array}$$

$$\begin{array}{r}
 \hline
 14.25
 \end{array}$$

41

$$\begin{aligned}
 140 &= R \\
 a' &= 14.84 \\
 b' &= 7.36
 \end{aligned}$$

$$R = 135 \text{ Ohms}$$

$$\begin{aligned}
 a' &= 14.84 \\
 b' &= 7.36
 \end{aligned}$$

$$R = 130 \text{ Ohms}$$

$$\begin{aligned}
 a &= 14.25 \\
 b' &= 7.95
 \end{aligned}$$

42

$$\begin{array}{r} 4.1698 \\ - 2.0969 \\ \hline 2.0729 \end{array}$$

$$\begin{array}{r} 12.35 \\ - 11.83 \\ \hline 5.2 \end{array}$$

$$\begin{array}{r} (.7160 \\ - 3580 \\ \hline 11.1 \\ - 2.28 \\ \hline 8.88 \\ - 13.38 \end{array}$$

$$\begin{array}{r} 4.1698 \\ - 2.0792 \\ \hline 2.0906 \end{array} \quad 123.3$$

~~$$R' = \frac{16 \ell^3 m}{s^2}$$~~

$$\begin{array}{r} 3.6532 \\ - 3 \\ \hline 16.9596 \\ - 1.2041 \\ \hline 0.5166 \\ - 4.6998 \\ \hline 4.6990 \\ \hline 22.0783 \end{array}$$

$$R = 125$$

$$a' = 13.38$$

$$b' = 8.88$$

$$R = 120$$

$$a' =$$

$$b' =$$

$$R = 119.7 \text{ Jhns}$$

$$a' = 11.1$$

$$b' = 11.1$$

43

44

$$L = 10000$$

$$S = 200000 \quad m = 3.286$$

$$R = 250$$

$$a' = \frac{S}{4L} \pm \sqrt{\left(\frac{S}{4L}\right)^2 - \frac{l^2 m}{R}}$$

$$\frac{200000}{40000} = 5 \pm \sqrt{25} -$$

$$a+b$$

$$at$$

$$e_1 e_2 e_3$$

$$a+b/a+b/R$$

$$R = a+b(R/a+b)$$

$$S = at$$

$$a/b/a/b/S$$

$$ab$$

45

45

46

 $\frac{17}{8}$ 12144 : 136 :: X : 165

2.1684

2.2175

7.8665

2.2424

1749

 $\frac{17}{8}$ 136145

2.1335

2.1614

4.2949

19700 2.1584

2.1365

 $a+b : a'b' :: s : s'$

$$s' = \frac{(a+b')s}{a+b} \quad L = \text{constant}$$

 $a+b : a'b' :: R : R'$

$$R = \frac{ab}{a'b'}$$

$$R = 6000 = L$$

$$s = 300$$

$$a+b = 25$$

$$a = 17$$

$$b = 8$$

$$R = 145$$

$$\begin{array}{r} a = 16 \\ b = 9 \\ \hline 144 \end{array} \quad R = 137$$

48

$$\begin{array}{r} 4.2949 \\ 2.1761 \\ \hline 2.1188 \end{array}$$

$$\begin{array}{r} 4.2949 \\ 1875 \\ \hline 1074 \end{array}$$

$$\begin{array}{r} 2949 \\ 1931 \\ \hline 1018 \end{array}$$

$$\begin{array}{r} 2949 \\ 1004 \\ \hline 1945 \end{array}$$

$$\begin{array}{r} 2949 \\ 0569 \\ \hline 2380 \end{array}$$

$$\begin{array}{r} 12.5 \\ 12.5 \\ \hline 2949 \\ 1938 \\ \hline 1011 \end{array}$$

$$\begin{array}{r} a' = 15 \\ b' = 10 \\ \hline 150 \end{array}$$

$$\begin{array}{r} a = 14 \\ b = 11 \\ \hline 14 \\ 154 \end{array}$$

131 Ohms

$$\begin{array}{r} 13 \\ 12 \\ \hline 26 \\ 13 \\ \hline 156 \end{array}$$

128 Ohms

127 Ohms

126.3 Ohms

$$\begin{array}{r} 18 \\ 7 \\ \hline 126 \end{array}$$

157

$$\begin{array}{r} 19 \\ 6 \\ \hline 114 \end{array}$$

173

$$\begin{array}{r} 20 \\ 5 \\ \hline 100 \end{array}$$

197

49

$$\begin{array}{r} 1.0174 \\ -2 \\ \hline 2.8348 \end{array}$$

2949
0348
2601

$$\begin{array}{r} 2949 \\ 0269 \\ -2680 \\ 2949 \\ 0111 \\ \hline 2838 \end{array}$$

$$\begin{array}{r} 2949 \\ 9859 \\ \hline 3090 \end{array}$$

$$\begin{array}{r} 2949 \\ 9494 \\ \hline 3455 \end{array}$$

$$\begin{array}{r} 2949 \\ 8984 \\ \hline 3965 \end{array}$$

6" carbon $\rho = 6000$ 51
250 surface $S = 25 \text{ mm}^2$

~~30m; 250; 12.5: X~~

$$\begin{array}{r} 6 \\ 6162.5 \\ -10.416+ \\ \hline 10.416 \\ \hline 20833 \end{array}$$

$$\begin{array}{r} 11.83 \\ 9. \\ \hline 106.47 \end{array}$$

182 Ohms

185.4

$$\begin{array}{r} 12.83 \\ 8. \\ \hline 102.64 \end{array}$$

192.1

$$\begin{array}{r} 13.83 \\ 7. \\ \hline 96.81 \end{array}$$

~~203.8~~

$$\begin{array}{r} 14.83 \\ 6. \\ \hline 88.98 \end{array}$$

227.5

$$\begin{array}{r} 15.83 \\ 5. \\ \hline 79.15 \end{array}$$

249.2

$$\begin{array}{r} 9202 \\ - 8404 \\ \hline 1.8404 \\ \hline 2949 \\ 8203 \\ \hline 4646 \end{array}$$

$$\begin{array}{r} 2949 \\ 8061 \\ \hline 4888 \end{array}$$

$$\begin{array}{r} 2949 \\ 7654 \\ \hline 5290 \end{array}$$

6" carbon
200. Surface

$$300.200 : 12.5 : X$$

$$\sqrt[3]{257}$$

$$X = 8.33$$

$$\begin{array}{r} a = 8.333 \\ f = 8.333 \end{array} : 284.7$$

$$\begin{array}{r} 9.666 \\ 6 \\ \hline 67.666 \end{array}$$

$$291.5$$

$$\begin{array}{r} 10.666 \\ 6 \\ \hline 63.999 \end{array}$$

$$308.1$$

$$\begin{array}{r} 11.666 \\ 5 \\ \hline 58.330 \end{array}$$

$$338.$$

$$l = 6000 \\ s = 200000$$

$$\begin{array}{r} 15 \\ 15 \\ \hline 75 \\ 15 \\ \hline 225 \\ Q = \frac{l}{ab} \text{ m} \end{array}$$

$$\begin{array}{r} 3.6990 \\ 7.1031 \\ 0.5166 \\ \hline 17.3187 \end{array}$$

~~26~~

$$\begin{array}{r} 7.6478 \\ 1.8634 \\ \hline 73 \end{array}$$

$$\begin{array}{r} 2.3522 \\ 4.2156 \\ 2.3502 \\ \hline 86.54 \end{array}$$

$$\begin{array}{r} 2156 \\ 3444 \\ \hline 8712 \end{array}$$

$$\begin{array}{r} 2156 \\ 3345 \\ \hline 8811 \end{array}$$

5" carbon $l = 5000$

55

$$\therefore S = 300000$$

$$5000 \sqrt{300000}$$

$$\begin{array}{r} 160 \\ 75 \\ \hline \end{array}$$

$$S = 2(a+b)l$$

$$a = b$$

$$4a^2 = \frac{S}{2}$$

$$a = \frac{S}{4l} = 15$$

$$a = 15$$

$$b = 15$$

73 ohms

$$\begin{array}{r} 16 \\ 14 \\ \hline 64 \\ 16 \\ \hline 224 \end{array}$$

73.3

$$\begin{array}{r} 17 \\ 13 \\ \hline 51 \\ 17 \\ \hline 221 \end{array}$$

74.3

$$\begin{array}{r} 18 \\ 12 \\ \hline 36 \\ 18 \\ \hline 216 \end{array}$$

76.

56

$$\begin{array}{r} 2156 \\ 3201 \\ \hline 8955 \end{array}$$

$$\begin{array}{r} 2156 \\ 3410 \\ \hline 9146 \end{array}$$

$$\begin{array}{r} 2156 \\ 2765 \\ \hline \end{array}$$

$$\begin{array}{r} 9391 \\ \hline \end{array}$$

$$\begin{array}{r} 2156 \\ 2455 \\ \hline 9701 \end{array}$$

$$\begin{array}{r} 2156 \\ 2068 \\ \hline 9068 \end{array}$$

$$\begin{array}{r} 2156 \\ 1584 \\ \hline 0572 \end{array}$$

$$\begin{array}{r} 2156 \\ 0969 \\ \hline 1187 \end{array}$$

19

11

19

$$\hline 209 \end{array}$$

$$\begin{array}{r} 200 \\ 10 \\ \hline 200 \end{array}$$

$$\begin{array}{r} 21 \\ 9 \\ \hline 189 \end{array}$$

$$\begin{array}{r} 22 \\ 8 \\ \hline 176 \end{array}$$

$$\begin{array}{r} 23 \\ 7 \\ \hline 20 \end{array}$$

$$161$$

$$\begin{array}{r} 24 \\ 6 \\ \hline 144 \end{array}$$

$$\begin{array}{r} 25 \\ 5 \\ \hline 125 \end{array}$$

78.6

82.5

86.9

~~1175~~

93.3

102

114.1

131 Ohms

57

Length ~~5.00~~ $l = 5000$ m
 Surface = $250 \pm S = 250000$ m²

$$S = 2(a+b)l$$

$$R = \frac{l}{ab} \text{ m}$$

$$a = 6$$

$$S = 4a l \quad a = \frac{S}{4l}$$

$$\frac{250000}{20000} = 12.5$$

60

2.0414

2.0414

1.6464

7.7930

5:7292

3.5222

3328

1.0792

2.4430

277

33000

4.5-185

2.4430

2.0755

119

3.2 : 8
3.25 :: 1508
3.25 3.2
 85
 675
 516
Lamp 153 Ohms at 16 candle⁶¹110 Volts on line.
12 candles

154.5 Ohms

105.5 Volt

105.5; 110 :: 154.5

2.1889

2.0414

7.9767

2.2070

161. Ohms

154.5

6.5 Ohms

3000 800

)3200

123

266

5.7292
~~7.7637~~ 2355
 3.4929 (310
 4.5185 388
~~2.5888~~
 1.9297 8 (85 candle per 100
 5.7292 10.
~~2.2926~~
 3.4366 4(2730
 4.5185 682
~~2.9455~~
 1.8730 27
~~2.9455~~
~~4.5185~~ 4
~~4.5185~~
~~2.8338~~
 1.6847 (48.8
 12.2

8 candle
 156.7 Ohms
 100 Volts
 100 : 110 :: 156.7
~~156.7~~
~~172.37~~
~~156.7~~
 15.6 Ohms

 4 candle
 161 Ohms
~~151.3~~ Volts
 90.3 : 110 :: 161
~~161~~
~~177.10~~
 19.6
~~161~~
 35 Ohms

 4.2483
~~1.9557~~
 2.2926

166 Ohms

82.6 ; 110 ; ; 166

$$\begin{array}{r} 166 \\ \hline 18260 \end{array}$$

4.2615

1.9170

2.3445

221

166

55

Ohms

5.7292

2.3445

3.3847

12435

4.5185

3.0856

1.4329

1217

(27)

1/3.5

66

Lamp 6" X 0.012 X 0.012⁶⁷
16 candles 110 Volts

.115
3.4

361

T. 0607
0.4969

T. 5576

Central Station.

(1)

71

Estimate for 10000 lamps fed from a central station each giving 16 candles

It is found that 8 of these may be obtained of from one horse power indicated

Say that a gas burner giving 16 candles consumes 5 feet of gas an hour for comparison

200 hours for 1000 feet or 10000 lamps will consume 50000 feet an hour
Call 1 ft in electricity an equivalent of a 10000

72

feet of gas an M (1)

50 M an hour

250 M a day

360 days in year in the
district chosen

$$\begin{array}{r}
 310 \\
 250 \\
 \hline
 15500 \\
 62 \\
 \hline
 77500
 \end{array}$$

Miles gas a year

Old estimate

\$159,300 invested

5.2022

4.8893

3129

\$2.05 investment per M

73

at 8' per H.P. 10000 (1) 75
 Lamps will take 125-14 H.P.
 It is estimated that
 1200 H.P. will be able to supply
 this amount.

~~This can be placed in~~
 one building 25'X100'.

The iron structure is
 estimated in Book 100 p. 50
 120,000 lbs of iron
 .05

\$ 60 000.00	86.00s
Foundation	2.500
Fire proof floors	2 000
	<u>18,500</u>

Boilers 600 H.P. (1) ??

Babcock and Wilcox est-
imate, see letter.

600 H.P. boiler in place

with economizer \$12,875

800

Stack 375

Steam pump 300

Piping 650

Engine with counter shaft 165

Piping 400

ash elevator 800

Coal bunker

600 H.P. \$ 163615

1200 H. P. Boilers	(1) 79
Complete Rides	\$ 24,500
Stacks	1600
SteamPumps	750
Blowers	600
DYNAMOS for Blowing	1000
Piping	330
Ash Elevator	400
Coal bunker	1000
	<hr/>
	\$ 30180

Engines Dynamos (1) 81

Mr. K. estimates cost at

\$ 4800
10
48000

Extra Electrical apparatus

\$ 2000

$\frac{1}{16}$ of H₂O in one Gall.
= 16 Cu ft

795.9 6.25 Gallons
 Cu ft

$\frac{6.25}{100}$ lbs in Cu. ft.
 $\frac{62.5}{100}$
 $\frac{6250}{100}$ lbs. for 7.5 chs

877.9
3.795.9
 $\frac{3.795.9}{3.082.0} \cdot 0012$
0012 at per. lbs

$\frac{30}{0.0360}$ t. per hour per H.O.

Total

(1)

83

Building	8,500
Boilers	30,180
Engines Dynamos	48,000
Extra Electrical	<u>2,000</u>
	<u>88,680</u>
	<u>2000</u>

Condensers

175 Ohm lamp	\$27.00
	<u>27.00</u>

Pipes

	\$0.07
	<u>0.07</u>
	88.680
	<u>88.680</u>

Meters

	\$3.000
	<u>3.000</u>
	150.680
	<u>150.680</u>
	2000
	<u>2000</u>
	152,680

84

$$\begin{array}{r} 48000 \\ - .03 \\ \hline 1440.00 \end{array}$$

$$\begin{array}{r} 365 \\ 205 \\ \hline 1825 \\ 730 \\ \hline 7482.5 \end{array}$$

46000
- .03
1440.00
365
205
1825
730
7482.5

85

$$\begin{array}{r} 57000 \\ - .03 \\ \hline 172800 \end{array}$$

(1) 85

Depreciation

Boilers 10% \$ 30.8

Building 2% 1.70

Engines Dynamos 3% 1440

Exts Electrical 1% 40

Meters 5 25.0

Conductors

2% on whole 57000
- .02
114000

6058.

365
- #1825

Labor
1 Engineer, chief 5.00
1 Engineer 3.00
1 Wiper @ 1.50 1.50
1 half fireman @ 2.25 2.25
1 fireman @ 1.75 1.75
2 laborers @ 1.50 3.00
1 Regulators @ 2.25 2.25
1 Regulator @ 1.75 1.75
dayly 20.50

5.62

Year 7.482

(1) '87

Data

\$200 per H.P. per year
~~delivered~~

Present machine ^{out} \$350.
good for 70 lamps

Conductors copper

27,000

Pipes
Insulation

25,000

5,000

\$ 57,000.

The labor account is taken thus a chief engineer who will be on duty from 12 M to 12 midnight an assistant who will be on duty from 12 mid-night to 12 M. A wiper who will be on duty from 7 a.m. to 7 P.M.

One fireman @ \$2.25 who will be on duty from 12 M to 12 midnight

One fireman @ \$1.75 who will be on duty from 12 midnight to 7 12 M.

One laborer from 7 A.M.

to 7 P.M another
from 12 M to 12 midnight.
One regulator @ \$2.25 from
12 M to 12 midnight one
@ \$1.75 from 12 midnight
to 12 M.

Thus the chief engineer will
be on duty during the
most important part of
the day, and the wiper will
be under each of the engines.

The lead fireman will
also be on duty ^{and have} between
5 & 6 P.M two laborers.
This system will offer
a good chance for promotion.

$$\begin{array}{r} 365 \\ 365 \\ \hline 3915. \end{array}$$

$$22.40) 18000 (8.03$$

$$\underline{17920}$$

8000

$$\begin{array}{r} 8.03 \\ 28 \\ \hline 6424 \\ 1606 \\ \hline 22.484 \end{array}$$

$$\begin{array}{r} 22.5 \\ 365 \\ \hline 1125 \end{array}$$

$$1350$$

$$\begin{array}{r} 675 \\ \hline 6212.5 \end{array}$$

Daily

Executive expenses

Year \$ 4000

Coal

\$ 2.80 per ton delivered

3 lbs per H.P. per hour

1200

3

 $\frac{3600}{3}$ lbs per hour $\frac{5}{18.000}$ lbs per day

8003 tons per day

\$ 22.50 daily

\$ 8212.5 year

$$\begin{array}{r} 150000 \\ - 10000 \\ \hline 300000 \end{array}$$

Lamps

$$\begin{array}{r} 30000 \text{ yearly} \\ - 35 \\ \hline 29650 \\ - 30000 \\ \hline 105000 \end{array}$$

Oil, waste, waters ~~Latex~~
as $\frac{1}{3}$ coal

Yearly \$ 2737

Rent insurance Taxes \$ 7000

Summary

Depreciation	\$ 6058
Labor	7,482
Executive	4,000
Coal	8,212
Oil-waste &c	2737
Rent &c	7000
Lamps	\$ 35489
	10,500
	<u>45,989</u>

$$152.7 \longdiv{1593} \quad \begin{array}{r} 104 \\ 346 \\ \hline 6600 \\ 1693 \end{array}$$

y

$$9125 \longdiv{45740} \quad \begin{array}{r} 50 \\ 45625 \\ \hline 00115 \end{array}$$

y

Cost 50cts per M

$$\begin{array}{r} 136875 \\ 68437 \\ \hline 205312 \end{array}$$

$$\begin{array}{r} 91250 \\ 2125 \\ \hline 45625 \\ 1825 \\ \hline 2053125 \end{array}$$

If 10000 lights can be
sold for 5 francs daily
it is equivalent
to 250,000 cu. ft. of
gas.

$$\begin{array}{r} 365 \\ 250 \\ \hline 18250 \\ 0730 \\ \hline 91250 \\ 1.50 \\ \hline 4562500 \\ 9125 \\ \hline \end{array}$$

Annually

Receipts 136875.00

Expenses 45989

~~190.886~~ to pay
for patent rights and
interest

$$\begin{array}{r}
 - 152.7 \\
) 908.45 (59 \\
 \underline{763.5} \\
 \hline
 144.90 \\
 \underline{137.43} \\
 \hline
 747.0
 \end{array}$$

$$\begin{array}{r}
 301.3 \\
) 9088 \\
 \underline{9039} \\
 \hline
 49
 \end{array}$$

(30%)

(1) ⁹⁹
 96 company capitalized
 at twice the cost of
 plant \$ 150,600
 $\frac{2}{391,360}$

The receipts will pay
 a dividend of 30 per cent.

60% on investment

72) 72

Plan for estimate under ⁽²⁾ 101
worst conditions and giving
all margin.

6 per H. P.

2½ hours a day

Machine for 72 lights
to cost ~~to~~ \$1500

Belts &c 100
Building double $\frac{1}{2}$ as ^{again as}

much ^{as}
2½ hours per lamp
Conductors \$80,000

Coal \$5.00 per ton

1200 H. P.

7200 lights

Investment

(?)

Structure	<u>10500</u> <u>5250</u> <u>15750</u>	##	15,750
Boilers			30,180
Engines			24,000
Dynamos 100			50,000
Belts &c			10 000
Conductors			60 000
Extra Elec			2 000
Meters			5 000
			<u>216,930</u>

12750
—
255.00

Worst
Depreciation

Structure	2%	\$	355
Boilers	10		3018
Engines	3		724
Dynamos	3		1500
Belts	5		500
Conductors	2		1600
Extra Elec	2		40
Meters	5		250
		\$	7943

(2) 105

Labor		\$	7482
Executive			4000
Trial			8796
Oil waste &c			2932
Rent & Lamps			10000
			10500
		\$	51653

106 (2)

Five hours used

all items expense same except Coal gas & water
& lamps

51653
8796
<u>2932</u>
463381
Camps 10.500
<u>73881</u>

Receipts

49.275
<u>2</u>
98550
<u>73881</u>

24669 profit

(2) 107

Coal

9. taken as three hours
daily to supply 2 $\frac{1}{2}$ hours

1200 H.P.
9 lbs per H.P. per day

2240) 10800 (4.82 tons
8960

18400
<u>17920</u>
4800

4.82
<u>5</u>

2410
<u>365</u>

1205

1446

723

\$8796.50 yearly

108

~~2089) 54.7.0 (2-6
41.8
129.2
5.47~~

~~2089) 17.1.0. 0 8.2
1.2
48.80.~~

~~8.2 % on investment
at 11% for 11~~

~~2090) 5.3.5 (24
8.6
19.5.5.6~~

~~0.8.9) 85.5.0. (10
8.3.5.6
19.4.0~~

(2) 109

~~Receipts of wage
9 1/2 hours
2 hours~~

136.875	136.875
86.8437	51.702
5.303	85.572

~~\$ 170.34 = 40% of time
hours~~

~~218 16.9 on investment~~

~~6.6% on investment
watering 12~~

~~at \$ 7.25 to compare with
gasoline~~

68.437
57.218
10.265.5
57.130.3
54.85.2

~~24% on investment~~

110 (25 Receipts

7200 lamps
215 hours

360000

144

180 gns per hour for lamp

9,000 00 used daily

365

90

32850

1.50

16425.66

32850

49,275.00

At \$2.25 the present price of gas in N.Y.

49.275

24637

73712

51303

* 226.09 or 18% on capital.

See page 106 for five hours use
same lamps

7200 lamps (11
288
120

2 -
160000
365
90000
3 -
165222
219 hours per lamp

Cost 51653

Rec'd M.M. Receipt 49,275.
Less \$ 2378

With present plant (31) 111

6 per H.P. indicated

1200 House power

7200 lamps

3 per year

Coal \$ 2.80 per ton at station

Building 1/2 again as much

Conductions \$ 57.00

Five hours use a day

Investment

Structure	15,750
Boilers	30,180
Engines	24,000
Dynamos	35,000
Conductors	5,700
Extra Elec Meters	2,000
	5,000
	<u>\$168,930</u>

7200
3
<hr/>
216.00
.35
<hr/>
1080.00
6480.00
<hr/>
7560.00

Depreciation

(3) 115

Structure	2% W 10 ⁵ #	315
Bodlers	100%	3018
Engines	3	720
Dynamos	3	1050
Conductors	2	1040
Extra Elec.	2	40
Meters		250
		6638
Labor	p. 85	7482
Coal	p 93	8212
Oil	9c	2737
Rent & Taxes		10,000
Executive		4,000
		39,064
Lamps		7560
		\$ 46624

Receipts

$$\begin{array}{r} \text{page } 110 \$49.275 \\ \hline 98.550 \\ 46.624 \\ \hline \$51.926. \end{array}$$

$$\begin{array}{r} 168.9) 51.92 (30 \\ \hline 506.7 \\ \hline 1250 \end{array}$$

\$1.50 per M

30% on investment

75) 10000 134
~~75~~
 250
~~225~~
 250

1500 H.P.

10000 Lamps

6.6 per H.P.

34 Machines 7.5 lamps @ \$350

134 Belts ~~2000~~ @ ~~\$50~~

Average use five hours

Lamps costing 35cts.

(B) 119

$ \begin{array}{r} 1324 \\ -75 \\ \hline 6490 \end{array} $	$ \begin{array}{r} 134 \\ -850 \\ \hline 670.0 \end{array} $
$ \begin{array}{r} 928 \\ \hline 9900 \end{array} $	$ \begin{array}{r} 802 \\ \hline 46,900 \end{array} $
$ \begin{array}{r} 10050 \\ \hline \end{array} $	

1324.00
66.00

Investment

(B)

Structure	15,750.00
Boilers	37,725.00
Pl.	37725
Engines	24000
Belts	6000
DYNAMOS	30000
Electrical Apparatus	6700.
Conductors	3000.
Meters	57000.
	5000.
	203075.

469.00
1.53
<hr/>
1407.00

3.65
150
<hr/>
182.50
365
<hr/>
547.50
7482.
<hr/>
8929.50

(8212
2053
<hr/>
10265

Expense
(B)

Depreciation

Structure 2%
260
105
<hr/>
315

Boilers and accessories
3%
3772

Engines 3%
900

Belts 10%
670

DYNAMOS 3%
1407

Testing apparatus 2%
60

Conductors 2%
1140

Meters 5%
250
<hr/>

\$ 8,544.

Labor
8029

Executive
4000

Coal
1026.5

Oil &c
3422

Rent Insurance
100.00

Lamps
105.00
<hr/>

54730

$$202,1) \begin{array}{r} 150,60 \\ 14942 \\ \hline 9730 \end{array} 74$$

$$\begin{array}{r} 202,075 \\ 101,037 \\ \hline 303112 \end{array} \begin{array}{r} 74 \\ 24 \\ \hline 50 \end{array}$$

$$202,1) \begin{array}{r} 82,15 \\ 80,76 \\ \hline 139,00 \end{array} 40,6$$

$$\begin{array}{r} 11,4 \\ 41 \\ \hline 14 \\ 27 \end{array}$$

202

Income

(B)

125

#225

$$\begin{array}{r} 205,312 \\ 54,730 \\ \hline \$150,582 \end{array}$$

74% on investment of 202,075

Investment increased 50% for
patent rights # 303112

50% on investment

$$\begin{array}{r} \$1.50 Income # 136,875 \\ 54,730 \\ \hline \$82145 \end{array}$$

41% on investment

27% on investment increased
50% by 302,962

Power

1 Horse power at 8 jumps
 per H.P. furnishes 40 feet
 per hour or takes 25 hours
 to make 1000 cu. feet

6cts an hour per H.P.
 at \$1.50 per M. th. is 6cts per
 hour per H.P.

100 H.P. 10 hours daily

128

$$\begin{array}{r}
 112.05^5 \\
 100160 \\
 +342 \\
 \hline
 3463
 \end{array}$$

7°

27

$$\begin{array}{r}
 8212.5^0 \\
 2737.50 \\
 \hline
 10950.00
 \end{array}$$

$$\underline{876.0}$$

$$\begin{array}{r}
 205,212 \\
 41,062 \\
 \hline
 164,250
 \end{array}$$

$$\begin{array}{r}
 152,77 \\
 164,250 \\
 -54,750 \\
 \hline
 109,500
 \end{array}$$

$$\begin{array}{r}
 18212 \\
 1642 \\
 \hline
 6570
 \end{array}$$

$$\begin{array}{r}
 10,500 \\
 2100 \\
 \hline
 8400
 \end{array}$$

$$\begin{array}{r}
 152,680 \\
)122,510 \\
 122,144 \\
 \hline
 3660
 \end{array}$$

$$\begin{array}{r}
 152,77 \\
)67.76 \\
 63.08 \\
 \hline
 4640
 \end{array}$$

$$\begin{array}{r}
 60 \\
 266 \\
 \hline
 534
 \end{array}$$

$$\begin{array}{r}
 65695 \\
 21905
 \end{array}$$

$$\begin{array}{r}
 87600 \\
 21900 \\
 \hline
 109500
 \end{array}$$

$$\begin{array}{r}
 109500 \\
 \hline
 \end{array}$$

Estimate A modified to (C)
four hours a day

129

Same plant \$152,680

~~See~~

Same expense
Same depreciation etc., ex. rep't. overhead,
oil, etc. $\frac{1}{5}$ less

$$\begin{array}{r}
 35530.50 \\
 2190 \\
 \hline
 33340.50
 \end{array}$$

Ramps $\frac{1}{5}$ less

Income $\frac{1}{5}$ less

$$\begin{array}{r}
 164,250 \\
 41,740 \\
 \hline
 122,510
 \end{array}$$

8% on Capital

53% on watered stock

$$\begin{array}{r}
 109500 \\
 41,740 \\
 \hline
 67,760
 \end{array}$$

43%

29% on watered

$$\begin{array}{r} 7) 1200 \\ \hline 8400 \end{array}$$

$$\begin{array}{r} 7) 1200 \\ \hline 1200 \\ 1200 \\ \hline 0 \end{array}$$

8400 lamps

$$\begin{array}{r} 365 \\ 4 \\ \hline 1460 \\ 8400 \\ \hline 5840.00 \\ 1168 \\ \hline 12264.00 \\ 30660 \\ .35 \\ \hline 153300 \\ 91980 \\ \hline 1073100 \end{array}$$

$$\begin{array}{r} 8400 \\ 1250 \\ \hline 8750 \end{array}$$

Estimate A modified (D) 131
four hours a day

7 per H.P.
lamps last 400 hours

Same plant as (A) \$ 152,680

Same coal depreciation as (C) 33,340.5
10,731
Lamps $\frac{44,071.5}{}$

Est-A, mod, to (B)

400
Keep Page 14 / 15

84000 lumber
64 framing
33,600
33,600
168000
2000
1000
1000
10920

20 feet

365
168
2920
2190
365
61320
1150
306600
61320
91,985.00

lumber
84000
33600
168000

68,320
225
306600
22640
22640
806000
137970.00

\$1.50
91,980
44,071
47,909

152,680) 47,909 (31% on investment
45804
21060

20% on watered plant

1. 65,429.00

152,680.00

$$\begin{array}{r}
 1200 \text{ H.P.} \\
 \hline
 3 \\
 3600 \text{ hours} \\
 \hline
 4 \\
 14400 \text{ day} \\
 \\
 224 \times) \quad 5256 \text{ work} \quad 2300 \text{ tons} \\
 \hline
 4480 \\
 \hline
 776 \\
 692 \\
 \hline
 1040 \\
 896 \\
 \hline
 1440
 \end{array}$$

2300
 3.5
 11680
 7068
 \$8476.00

Coal

$$\begin{array}{r}
 12737 \\
 912 \\
 \hline
 1,825 \\
 8176 \\
 \hline
 10,001 \\
 8765 \\
 \hline
 1,241
 \end{array}$$

$$\begin{array}{r}
 8190.00 \\
 1825 \\
 100 \\
 \hline
 3.8
 \end{array}$$

$$\begin{array}{r}
 2340 \\
 3150
 \end{array}$$

$$\begin{array}{r}
 11700 \\
 7020
 \end{array}$$

$$\begin{array}{r}
 8190.00 \\
 \hline
 \end{array}$$

Coal

Same as D 7hr H.P.
 4 hours

Except coal \$3.50 per ton

Conductors \$75,000 400 hours life

Depreciation on conductor 3%

$$\begin{array}{r}
 75000 \\
 57000 \\
 \hline
 18000
 \end{array}$$

Investment \$ 170,680.

Depreciation 3% on $\frac{75000}{3}$

$$\begin{array}{r}
 225000 \\
 1140
 \end{array}$$

More than D \$ 11.10.00

124.1.

\$33340.5

$\frac{35691.5}{10731}$

$$\begin{array}{r}
 46422.5
 \end{array}$$

$$\begin{array}{r}
 16569.50 \\
 164237 \\
 \hline
 8217.87
 \end{array}$$

(E)

~~365 days~~
4 hours

$$\begin{array}{r} 1460 \text{ hour} \\ - 8400 \\ \hline 584000 \end{array}$$

$$\begin{array}{r} 1168 \\ \hline 12264 \end{array}$$

$$\begin{array}{r} 61320 \\ 2.25 \\ \hline 306600 \end{array}$$

$$\begin{array}{r} 12264 \\ 12264 \\ \hline 13797000 \end{array}$$

$$\begin{array}{r} 11207 \\ - 8400 \\ \hline 2807 \end{array}$$

(E)

Income same as (D)

$$\begin{array}{r} 91.880 \\ 46.422 \\ \hline 45.458 \end{array}$$

$$170.7) 45.46 (26.5 \% \text{ on } \$170.680$$

$$\begin{array}{r} 341.4 \\ \hline 11320 \\ 10447 \\ \hline 8780 \end{array}$$

18% on watered stock
 \$85,340. for Patent Right

365
%

lamps 7/2 ton

10731

$$\begin{array}{r} 1522 \\ - 1533 \\ \hline 9209 \end{array}$$

9198

$$\begin{array}{r} 1200 \\ 6 \\ \hline 7200 \end{array}$$

$$\begin{array}{r} 365 \\ 4 \\ \hline 1460 \end{array}$$

2 hours
lamps

$$\begin{array}{r} 2.9 \\ 1.02 \\ \hline 2.0 \end{array}$$

$$400) \overline{10312,000}$$

$$\begin{array}{r} 26280 \\ 35 \\ \hline \end{array}$$

$$\begin{array}{r} 1314.00 \\ 788.40 \\ \hline 919.80 \end{array}$$

(8) (7) 139

Present system 1200 H.P.

6 for H.P.

400 hours life

\$75.000 in conductors
on which 3% depreciation

4 hours average use

\$3.50 per ton for coal

Investment 202.075

Conductors add \$ 18000
220075

Expense except lamps same in (E)

\$ 35.691.5

Lamps 9209
\$ 44900.5

\$ 2.25 per M

78757

39378

118,135

44900

220) 73,235. (33.3% on investment

66

77

66

63

22.2% on watered stock

1
7/61,320

52,560.00 cu ft

2.25 per M

118,260.00

41,269.00 Expenses

76,991.00 Net Income

Receipts 1/ less than (20)

78840

39420

118260

(91,980)

13140

78849

44900

33857

220) 33,8 (15.4% on investment

220

1180

1100

800

\$ 220.075

\$ 110.000 for Patent Right

10.2% on watered investment

202075/76,991.00

38%

200 H.P. in Power sold
daily 10 hours 143

2000 H.P. one hour

Book 1 Hand Powers 34
each may be counted as bringing
10 cts. per day Mr Kinney says

1 H.P. 6 cts. one hour

$\frac{10}{60}$ hrs.
cts.

* Count each as $\frac{1}{4}$ H.P.

8.75 H.P.

33

2.50

5

3

14

7.5

9

4

9

5

70 83

H.P. to rent

70
7 Horse

77 Horse power in Book
1 under 5 horse each.

Book 2
12 sewing machines

$\frac{1}{16}$ H.P.

= 2 H.P.

.16

~~1.00~~

.75

.50

.50

.25

$\frac{6.00}{11.16}$ H.P.

77

11.

12

74

$$\overline{174} \text{ H.P. in favor looks}$$

Book 3

32 Hoists each $\frac{1}{5}$ H.P.

6.4 H.P.

1.5

1

2

$$\overline{10.9} + P$$

1

$$\overline{11.9}$$

Book 3

77 Hand powers

14 H.P.

60 Estimated Counted

$$\overline{74} \text{ H.P.}$$

) 152,680.00 / 852,382.5 /

300 H.P. at least for
ten hours.

600 H.P. for 5 hours.

1200 H.P. for 2 1/2 hours
all the plant 2 1/2 hours

87,600.
1,50.

4380000
87600
891,980.00

Est (II⁰)

Page 131

~~Since the life of 1 camp is 400 hours which at 8 hours per day's use is equivalent to 80 days duration.~~

~~And, since 5 cu ft per hour is the equivalent of 1 light or 25 cu ft per day.~~

~~Then the life of 1 camp would be equivalent to 2000 cu ft of gas and with 43,800 camps would represent an equivalent of 87,600,000 cu ft of gas.~~

	H.P.
365 a	1200
5th	8 per HP
1825	
9600	
10950000	9600
6425	400
19520000	17520000
	43800
	<i>Camps used per year</i>

$$\begin{array}{r} 33000 \\ - 4312 \\ \hline 29688 \\ - 12 \\ \hline 29676 \end{array}$$

$$\begin{array}{r} 4.5185 \\ 3 \\ \hline 6277 \end{array}$$

$$\begin{array}{r} 7.65 \\ - 22 \\ \hline 1.3424 \end{array}$$

$$\begin{array}{r} 1.8838 \\ 1.3424 \\ \hline 2.2266 \end{array}$$

168 candles per 12 ft.

$$\begin{array}{r} 33000 \\ - 3535 \\ \hline 29465 \end{array}$$

$$\begin{array}{r} 4.5185 \\ 3.5484 \\ \hline 9701 \end{array}$$

$$\begin{array}{r} 9.3 \\ - 1 \\ \hline 8 \end{array}$$

$$\begin{array}{r} 1.6792 \\ 20993 \end{array}$$

112 candles

Calculation for

House wire

16 candles 128.4

15 127.2

1.2 Volts

for a candle

1% of resistance in
conductors

150 Ohm lamp.

1.5 Ohms

50 feet 1.5 Ohms

$$\begin{array}{r} 24.8 \\ -12.4 \\ \hline 37.2 \end{array}$$

$$\begin{array}{r} 256; 340;: 37.2: & 1.5705 \\ & 34.0 \\ & \hline 8 & 2.5375 \\ & 7.59146 \\ 49.4 \text{ feet} & 1.6938 \end{array}$$

Copper wire
Wire 1 ft. long 0.001 diameter
having a cross section of one
circular mill.

9.718 Ohms

97; 100 9.718 Ohms 10.2 Ohms

$$R = \frac{l^{\#} X 10^{-2}}{\text{cross section}}$$

$$\text{cross section} = \frac{l X 10^{-2}}{R}$$

$$\begin{array}{l} l=25 \quad R=1.5 \\ l=50 \quad 10 \\ \hline \text{cross section} = \frac{50 \times 10^{-2}}{1.5} = 340 \end{array}$$

$$l=100 \quad \frac{l}{2}=50 \quad 8$$

$$\text{cross section} = \underline{\underline{680}}$$

$$\begin{array}{l} l=150 \quad \frac{l}{2}=75 \\ \text{cross section} = A = 10.20 \end{array}$$

Wire 1 ft long 0".001
in diameter

12 X 0".001

1000 feet of wire
0".010 in diameter weighs
0.3026 lbs.

0".001 in diameter weighs

.003126

1 foot weighs

300000	3026	lbs	6	48.8
340			2	53.5
25	fut		1	39.79
			2	410.2

0.257 lbs

2 wires

0.514

$$l = 200 \quad \frac{l}{2} = 100$$

$$a = 1360$$

$$l = 250 \quad \frac{l}{2} = 125$$

$$a = 1700$$

$$l = 300 \quad \frac{l}{2} = 150$$

$$a = 2040$$

$$l = 350 \quad \frac{l}{2} = 175$$

$$a = 2380$$

$$l = 400 \quad \frac{l}{2} = 200$$

$$a = 2720$$

$$l = 450 \quad \frac{l}{2} = 225$$

$$a = 3060$$

$$l = 500 \quad \frac{l}{2} = 250$$

$$a = 3480$$

25

100

$$\begin{array}{r}
 2.0 \\
 3400 \\
 3364 \\
 \hline
 10.1
 \end{array}
 \begin{array}{r}
 3.5315 \\
 3.5268 \\
 \hline
 .0047
 \end{array}$$

$$\begin{array}{r}
 3364 \\
 3026 \\
 \hline
 1.0076
 \end{array}
 \begin{array}{r}
 3.5268 \\
 1.4808 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 .0257 \\
 4 \\
 \hline
 .1028
 \end{array}
 \quad
 \begin{array}{r}
 .0257 \\
 9 \\
 \hline
 .2313
 \end{array}$$

$$\begin{array}{r}
 .0257 \\
 16 \\
 \hline
 .1642
 \end{array}
 \quad
 \begin{array}{r}
 .0257 \\
 25 \\
 \hline
 1285
 \end{array}
 \quad
 \begin{array}{r}
 .0257 \\
 36 \\
 \hline
 1542
 \end{array}
 \\[1ex]
 \begin{array}{r}
 257 \\
 \hline
 4212
 \end{array}
 \quad
 \begin{array}{r}
 514 \\
 \hline
 6425
 \end{array}
 \quad
 \begin{array}{r}
 771 \\
 \hline
 9252
 \end{array}$$

$$\begin{array}{r}
 .0257 \\
 49 \\
 \hline
 .16902
 \end{array}
 \quad
 \begin{array}{r}
 .0257 \\
 64 \\
 \hline
 .1004
 \end{array}
 \quad
 \begin{array}{r}
 4102 \\
 8062 \\
 \hline
 1.2164
 \end{array}$$

$$\begin{array}{r}
 .0257 \\
 4102 \\
 9542 \\
 \hline
 3186
 \end{array}
 \quad
 \begin{array}{r}
 4102 \\
 0410 \\
 0414 \\
 \hline
 4930
 \end{array}
 \\[1ex]
 \begin{array}{r}
 4102 \\
 0792 \\
 \hline
 5686
 \end{array}
 \quad
 \begin{array}{r}
 1129 \\
 1139 \\
 \hline
 6386
 \end{array}
 \quad
 \begin{array}{r}
 4102 \\
 1461 \\
 1461 \\
 \hline
 7024
 \end{array}$$

See page 165

line to factory

2 Ohms

$$\begin{array}{r}
 0106) 1.0000 \\
 \underline{500} \\
 500 \\
 \underline{200} \\
 1636 \\
 \underline{1636} \\
 640 \\
 \underline{636}
 \end{array}$$

(56% loss to ohm)

1A3.2 U.S. to 2 Ohms

1T3.2 U.S. 2 Ohms

1A3.2 U.S. 2 Ohms

~~1A3.2 U.S.~~
~~1T3.2 U.S.~~
87 banks

2

	600	1500
	<u>6000</u>	150.
181		
		181
		16
		<u>1.0816</u>
		<u>1.0816</u>
		2896
120)	150 (1.25	
	<u>120</u>	
	300	
	<u>240</u>	
	600	
		300
		<u>22</u>
		660
	1.25	
	<u>1.25</u>	
		20
	1.25) 2000 (16	
	<u>125</u>	
	750	
	<u>750</u>	
	2000	
	<u>1800</u>	
	4000	
	<u>22</u>	
	8800	

2 ohms 6

1 Ohm No 10 wire
weighs 90.6 lbs

.0106) 1.0000 (90.6
954
600

181 lbs in 2 ohms

1200 lamps per day
2 hours on pumps
5 lamps per pump

240 lamps at 20 candles

6 per H.P.

1000 H.P.

120 lamp at a time

2.0 H.P.

8.9
12
8.9
50
1539
2.5575
2.7144
0.514 O.K.
OK
OK
OK
OK

340 mils 1/4 long
pt. S. Cu = 8.9

.000340	4.5315
3.14	0.4969
Compo 4	9.3979
12	1.0792
8.9	0.9494
50	<u>1.6990</u>
	1539
03612	2.5575
03612	
	2.7144
	0.514 O.K.

1000. feet No 10 wire
weighs 54. lbs.

~~250~~ 54

250

4 wires in & out
for 54 lbs.

~~\$ 16.20~~

24 wires

16.20

6

~~\$ 9.6.20~~

E 100 light

$$\begin{array}{r} 450 \\ \times 4 \\ \hline 5800 \end{array}$$

$$\begin{array}{r} 17956 \\ \times 580000 \\ \hline 54 \\ \hline 580000 \end{array} \quad (30 \text{ wires})$$

18

39 light

158 feet

F

$$\begin{array}{r} 2100 \\ \times 4 \\ \hline 8400 \\ \times 68 \\ \hline 564000 \end{array}$$

$$\begin{array}{r} 179 \\ \times 50400 \\ \hline 307200 \end{array} \quad (10 \text{ wires})$$

E 60 Lamps

$$\begin{array}{r}
 1400 \\
 4 \\
 \hline
 5600 \\
 60 \\
 \hline
 18 \quad | \quad 336000
 \end{array}
 \qquad
 \begin{array}{l}
 20 \text{ No } 10 \text{ wires} \\
 \hline \hline
 \end{array}$$

B 32

$$\begin{array}{r}
 1000 \\
 4 \\
 \hline
 4000 \\
 32 \\
 \hline
 128000
 \end{array}$$

D

172

189 Ohms

.5 $\frac{1}{2}$ mg

1 $\frac{1}{2}$

173

1 $\frac{1}{2}$ feet

757

15 15
20 15

50 feet high

10 lamps

99

174

500
100

17) 50000 (3 wires
6 wires
9 wires

175

152,680.00 / 852,288.50 / 5
 76,400.00 / 5
 87,382.5.

Hamilton

1 Dining Room

$$\begin{array}{r}
 3.5 \\
 + 8. \\
 \hline
 28.0 \\
 + 16 \\
 \hline
 44 \text{ feet}
 \end{array}$$

Say 30

$$\begin{array}{r}
 25 \\
 + 6.80 \\
 \hline
 136.0 \\
 + 25 \\
 \hline
 161.0 \\
 - 10 wine \\
 \hline
 151.0 \\
 - 6 wine \\
 \hline
 145.0 \\
 - 27.20 \\
 \hline
 117.80 \\
 + 34.00 \\
 \hline
 151.80
 \end{array}$$

178

see page 2#2 for calcu.

1 ft
160 feet No. 16 wire in entropy
200

16,620 mills in IA

3rd Story Line A 179

J. G. 10 lamps

In Hall 6, Rooms 2

Distance from basement

20
15
15
45 feet

To Hall lamps

Average 56 feet
101 feet to hall

$$\begin{array}{r}
 \underline{1367} \\
 1360 \\
 \underline{-2720} \\
 \hline
 16620
 \end{array}$$

200 feet no. 22 wire
2720 mills in A

$$\begin{array}{r} 16620 \\ 2720 \\ \hline 19,340 \end{array}$$

40 feet No. 18 wire down

line A 3rd floor

4 lamps in rooms

25 feet average

asbestos line

$$\begin{array}{r} 340 \\ 2 \\ \hline 680 \\ 4 \\ \hline 2720 \end{array}$$

line A 2nd story

26 lamps

20 in hall

6 in chamber

56 feet

30
86 feet in hall

182

see page 213

~~Entry~~

200

~~100~~ feet No. 6 wire
40,800

100 feet No. 17 wire

9000 mills through at

A line 2nd story

75 feet

1020 mills 183
2 1/2 pounds
$$\begin{array}{r} 2040 \\ -20 \\ \hline 20800 \end{array}$$
 20800 Pds

6 in Chambers

25 feet 3 line

average 25
30
 $\overline{55 \text{ feet}}$

$$\begin{array}{r} 750 \\ -2 \\ \hline 1500 \\ -6 \\ \hline 9000 \end{array}$$

3000 mills

see page 215

~~450~~ feet No. 6 wire

40,800 mills

100 feet No. 10 wire

23,200 mills

46 400
page 216

A line 1st floor

185

60 lamps

Nov 1860
2nd

Hall 20 lights

56 feet out
20 from basement

76 10 20
 2

20 40
20
70 800

Drawing room

40 lights 2 lines

30
25
55

680
2
12 60
20
23 200
2

A

30 feet No. 10

30 feet 4 No. 10 wires

40 feet 8 No. 10 wires

9 in BasementFront & back Porches wires187
Nov 1880
S.R.C.of line
2nd 6 3
$$\begin{array}{r} 16.620 \\ - 2.720 \\ \hline 19.340 \end{array}$$

mills

40 800

9 000

1st 6 2nd

69.190

40.800

46.400

$$17.958) \overline{156.340(8)}$$

100 feet No. 16 wire

8000 mills

30 feet No. 14 down

50 feet No. 18 wire

75 feet No. 15 wire

6000
5000
10000 mills down
30 feet No. 11

B line

Nov 1888
3rd floor 4 lamps 25c

$$\begin{array}{r} 25 \\ 45 \\ \hline 70 \end{array}$$

$$\begin{array}{r} 100 \\ 200 \\ \hline 300 \end{array}$$

8000

Two circuits 40000

2nd floor 5 lamps
among 25

$$\begin{array}{r} 30 \\ 55 \\ \hline 85 \end{array}$$

$$\begin{array}{r} 700 \\ 1400 \\ \hline 2100 \\ 2800 \\ 42 \\ \hline 6000 \end{array}$$

¹⁷⁵
100 feet No. 12 wire

$$\begin{array}{r} 27200 \\ 14000 \\ \hline 41200 \end{array}$$

down
40 feet No = 6

Beline
1st floor H.R.C.
Nov 16 80
20 lamps.

$$\begin{array}{r} 30 \text{ feet} \\ 20 \\ \hline 50 \end{array}$$

$$\begin{array}{r} 680 \\ 2 \\ \hline 1360 \\ 100 \\ \hline 13600 \\ 13600 \\ \hline 27200 \end{array}$$

C line

Same as TB

TRU

Nov 11 1968

D same as B

50 feet No. 19

~~800~~ 40

3000 down
30 feet No. 17

~~75 feet No. 22~~

60 feet No. 19

30 feet

No. 14

$$\begin{array}{r} 4080 \\ 3200 \\ \hline 7280 \end{array}$$

ft.
bd.

~~Oct 19~~

E Line

3rd floor

$$\begin{array}{r} 20 \\ 45 \\ \hline 65 \end{array}$$

$$\begin{array}{r} 800 \\ 2 \\ \hline 1600 \end{array}$$

2nd

50 feet

$$\begin{array}{r} 680 \\ 2 \\ \hline 1360 \\ 3 \\ \hline 4080 \end{array}$$

100 feet 2 No 10
 $\underline{50}$ 100 feet No 6

40 feet 60000
 7280
 $18 \frac{1}{4} \overline{) 75280} (4$

4 No 10 wires

E First floor

50 lights $\frac{1860}{50}$

20 feet to ceiling

28 feet

50 feet 600

$\frac{680}{2}$

$\frac{1360}{25}$

on side

$\frac{6800}{2720}$

$\frac{3400}{2}$

sides

$\frac{68000}{2}$ miles down

150 feet No. 16 wire

30 feet No. 12 wire

11424 mills

100 feet No. 13

19040 mills down

F 3rd floor
8 lamps

25 feet

45
70

Dec, 22, 1890

952
2

1904

~~Blankss~~

3804

3 circuits

11424

2nd floor 32 lights
Padron

100m circuit

25 feet

30
75

952
2

1904

5

9520

2

19040

50 feet No 20

1360

180
75 feet 2 no: 10
or no. 6

32646

1360

19.040

11.424

$$18 \overline{) 64470(}$$

4 No 10 wires
30 feet

72 in bedroom

~~30 feet~~

25 feet

$$\begin{array}{r} 340 \\ - 2 \\ \hline 680 \\ - 2 \\ \hline 1360 \end{array}$$

Nov. 29 1880,

20 in conservatory

$$\begin{array}{r} 82 \\ - 30 \\ \hline 62 \end{array}$$

$$\begin{array}{r} 816 \\ - 2 \\ \hline 1632 \\ - 20 \\ \hline 32640 \end{array}$$

202

100,000.00

203

J
Jan. 22 1863

~~C~~
100 lamps from top of
building ~~for~~ 30

$$\begin{array}{r} 20 \\ 10 \\ \hline 30 \end{array}$$

2176
18) 217.6 00 (12 No. 10 wires
18
37.

back to street

distributing
102 feet in 665'

204

	6.4808
108,800	5.0374
40	1.6021
2	3010
26.3 lbs	<u>1.4213</u>

	6.4808
60,928	4.7860
	1.8451
30. lbs	<u>3010</u>
	1.4129

	6.4808
	4.7267
	1.8451
	<u>3010</u>
	1.3536
22.5 lbs	53.317

Basement

205

A 100 lamps 40 feet

$$\begin{array}{r} 544 \\ \hline 2 \\ \hline 1088 \\ \hline 100 \\ \hline 108,800 \end{array}$$
 Nov. 22, 1980

B 32 lamps 70 feet

$$\begin{array}{r} 952 \\ \hline 2 \\ \hline 1904 \\ \hline 32 \\ \hline 3808 \\ \hline 5912 \\ \hline 60,928 \text{ mills} \end{array}$$

C 28 lamps 70 feet

$$\begin{array}{r} 952 \\ \hline 2 \\ \hline 1904 \\ \hline 28 \\ \hline 15232 \\ \hline 3808 \\ \hline 53,312 \end{array}$$

206

	6.4808
82824	4.9180
104	2.0170
	6.3010
	<u>1.7168</u>
52.1 lbs	

	6.4808
165648	5.2201
104	2.0170
2	0.3010
	<u>2.0189</u>
104 lbs	

D

104 feet 29 lamps
 1428 Nov 22 1958
 $\frac{2}{2856}$
 $\frac{29}{25704}$
~~5712~~
 82,824 mills

E

58 lamps
 104 feet
 2856
 $\frac{58}{22848}$
 $\frac{14280}{165648}$

207

208

.60000 3026 6.4808
 217600 5.3385
 156 2.1987
 $\underline{2.0180}$
 3010
 208 lbs $\underline{2.3190}$

~~Total Wt~~

6.4808
 474,368 5.4760
 2.0414
 $\underline{3010}$
 200 lbs $\underline{2.2992}$

F 59 lamps

158 feet Nov 22 1868

2176
 $\underline{2}$
 4352
 59
 $\underline{39168}$
 21760
 $\underline{256768}$

G 217,600 mills ^{100 lamps}
 $\underline{110 \text{ feet}}$

217.600
 $\underline{256.768}$
 474,368

209

210

1,163 .0657
 .0328
 108 diameter

Weight in basement 211
 Mar 22 1882

26.3
 30
 22.5
 52.1
 104.
 208.
200.

642.9 lbs. of Cu. in
 Basement

3 474.368
 217.600
 16.5 648
 82.824
 53.312
 60.928
108.800
 1) 163.480

212

from page 178
Line 1A

6.4808

4.2200

1.9542

2.6560

16620.

4.5 lbs

$$\begin{array}{r} 4 \\ \hline 180 \text{ lbs} \end{array}$$
16,620

8,215

4,107

Put 16.620 r

$$\begin{array}{r} 4 \\ \hline 66480 \end{array}$$
mills to top of
200 feet

Then No. 16 wire in entry

.056

.06

from page 182

213

6.4808

4.6107

1.8451.9366

70

8.64 lbs

$$\begin{array}{r} 4/40800 \\ \hline 10.200 \end{array}$$

200 feet No. 12 wire

$$\begin{array}{r} 40,800 \\ \hline 4 \\ \hline 163200 \end{array}$$

$$\begin{array}{r} 8.64 \\ \hline 4 \\ \hline 34.56 \end{array}$$

lbs

214

$$\begin{array}{r} 40800 \\ -10200 \\ \hline \end{array}$$

200 feed No. 12

6.4808

4.6107

160 = 1

6936

$$\begin{array}{r} 4.94 \\ .4 \\ \hline 19.76 \end{array}$$

$$\begin{array}{r} 40800 \\ -163200 \\ \hline \end{array}$$

215

Vanderbilts house
New 2

216

from page 184
Line A

11.600

6.480~~06~~4.666⁵ 464⁰⁰1.6021 4.0

.7494

5.61
2
11.2246.400
2
92.800

Line A. summary

Hall 3rd200 feet ~~No. 15~~ = 0.065 "Chamber 3rd200 feet ~~No. 22~~ = 0.03 "Hall 2nd200 feet ~~No. 12~~ = 0.100 "Chamber 2nd

200 feet 0.050 "

Hall 1st

200 feet 0.100 "

100 feet 0.100 "

To run to lamps in fixtures

100 lamps 6 feet each

$$600 \times 2 = 1200 \text{ feet } 0.030$$

217

Vanderbilt house
Floor 2nd

218

Line A

Attn. I propose to find in our type
50000 mills of Cu.

In the other as much as possible

66.480
2720

16.3 200

16.3 200

92.800

484.400

6.48046

5.6996

7.9542

2.1340

.3610

1.4350

136 Ms.

~~1112~~

12000
13
36.00
\$360

219

Vanderbilts
house
Nov. 22

220

Line B Total

Chamber 3rd floor

100 feet 0".065

Chamber 2nd floor

50 feet 0".065

100 feet 0".050

Parker

175 feet 0".1 60 feet ~~0".15~~ 0".2

40 feet 0".15 0".2

32 lamps

~~100~~

Lines C & D same as B

462460

Line E Total

221

50 feet 0".05

60 feet 0".05

Dinner room

125 feet 0".2

30 feet 0".065

30 feet 0".1

4 no 10 wires 40 feet

75280 milles

Vanderbilts
house
Nov 22

Fhines Vanderhill house 223
Nov 22

150 feet 0° 0' 6.5"

100 feet 0° 1' 3.6 0.1

50 feet 0° 0' 3" 70 1'. 2

100 feet 0° 2'

g

100 .065"

March 12, 1879.

Book 1 Page 121

The discharge from a magnet
was measured

A click could
be heard when
the current was
taken off.

a double click
could be heard

A duplex point was
used to break the main circuit
and the discharge thrown
to the sounder Results when no
armature was on the mag-
net the discharge was

stronger, sharper and 227
of shorter duration than when
the armature was on

Book 1 Page 137

Tests of the power that could
be turned

Batchelor 10,963 ft. lbs
20 seconds

Francis 16,146 ft. lbs

10 seconds 15,225

Martin 14,100 ft. lbs

20 seconds

Geo. Carmen
14,106 ft. lbs

20 seconds

Albert Swanson

17,191
15,750

Kooser 1575⁰
14.445

If an armature has 10 lbs.
of Cu on it and a resistance
of 1 ohm with 100 convolutions

If 10. Ohms	316 Canno
.5 "	223 "
4 "	200 "
.2 "	141 "
.1 "	100 "
.05 "	71 "
.025 "	59.7 "
.013 "	50 "
.0065 "	33 "
.00325 "	25 "
.001625 "	20 "

Book 6 page 40

The combustion of a cu. ft. of common gas will heat 65 gallons of H_2O 1° Fahr.

Haswell

1 Gall = 8.32 lbs.

$$\begin{array}{r}
 8.32 \\
 65 \\
 \hline
 4160 \\
 4992 \\
 \hline
 540.80 \\
 5 \\
 \hline
 2764.00 \\
 772 \\
 \hline
 \end{array}$$

$$\begin{array}{r}
 33000 \\
 60 \\
 \hline
 1,980,000 \\
 1,980,000) 2,087,488 (1.07
 \end{array}$$

2,087.488 ft. lbs

1 gas burner burning 5 cu. ft an hour gives off a little more heat than is required to run a horse power for an hour.

Estimate for rewinding - Dec 6th
233
The small cash iron
motor which gave 32.6 Volts

at 1640 revolutions per minute
from six turns in a
diamond

It can be run with
safety 2500 r.p.m.

1640 : 2500 :: 32.6 :

$$\begin{array}{r} 2500 \\ \hline 1640 \\ 1630 \\ \hline 652 \\ 1640) 815 \text{ ~~0000~~} \\ \hline 656 \\ \hline 1590 \end{array}$$

(7-9)

49 Volts

Ray 50

The most that will ever be needed for any lamp will be 235
150 Volts and this can be obtained at
2500 - p.m.

3 X 6 turns in each layer

18 turns

.045

.010

56

Dec 24

Armature 37 slots

 $\Phi \cdot 5''$ diameter

$$\begin{array}{r} 3.14 \\ \hline 74 \end{array} \overbrace{\begin{array}{r} 15.70 \\ -14.8 \\ \hline 90 \end{array}}^{.21} \quad \begin{array}{r} 3.7 \\ \hline 2 \end{array} \quad \begin{array}{r} 7 \\ \hline 4 \end{array}$$

.21 for space

$$\begin{array}{r} 118 \\ \hline 60 \end{array} \quad \begin{array}{r} 5 \\ \hline 3 \end{array}$$

To be wound with .021 per

$$\frac{1}{4} \cdot 4 \times \frac{20}{6} = \frac{40}{6} = \frac{13.3}{.64} = \frac{13.3}{13.3} = \frac{79.8}{9.113}$$

9.1 Ohms

Magnet 6" iron

$$\begin{array}{r}
 \text{wire} \\
 .049 \\
 .011 \\
 \hline
 .060 \\
 \hline
 .36
 \end{array}$$

$$\begin{array}{r}
 30 \\
 70 \\
 \hline
 21.00
 \end{array}$$

$$\begin{array}{r}
 40 \\
 60 \\
 \hline
 240
 \end{array}
 \text{ minute}$$

$$\begin{array}{r}
 46 \\
 70 \\
 \hline
 3020
 \end{array}
 \text{ feet}$$

$$\begin{array}{r}
 14.6) 70 (5 \\
 \hline
 5 \text{ lbs. of wire}
 \end{array}$$

Dec 6 1880 SKL 211

Arrangement for
testing samples at factory

$$C = \frac{E}{R+r}$$

E = Constant

$$C = \frac{E}{R+r}$$

$$R+r = \frac{E}{C}$$

$C = 1$ Water

The machine can only run the lamp is to attend for if it has its field to run, the current to the field will interfere with that to the lamp.

Let E_a = current to lamp
 C_m = in magnet

$$\begin{aligned} & E_a \text{ drop in machine} \\ & = E_a = (C_e + C_m) R_a \end{aligned}$$

$$C_e R_e = E_a = \varepsilon - \varepsilon_a$$

$$C_m R_m = \varepsilon_m = \varepsilon - \varepsilon_a$$

$$C_e R_e = C_m R_m$$

The magnets from the 247
machines must be fed
from main line to factory.

For a standard light

Candles standard are
the best but very expensive.
A paraffin oil lamp would
also be very good.

I think a kerosene oil lamp
using rather a light oil
with brass wicks for
siphon the same as
student lamp so as to
keep a constant height of
oil. A student lamp would
do.

This could be standardized 249

to candles at intervals.

so as to give eight candles
on any given number

There will be a double
switch so as to put the
machine either on a
resistance or on the
lamp which is to be tested

The machine will be run
at 2000 r.p.m. and the
connection made through the
Electro dynamometer ~~so as to give~~
over-tension deflection and
the deflection read. Then
magnet is adjusted until

the deflection is brought²⁵¹
to a standard amount
which will have been
calculated to follow from
having ~~220 Volts~~ 140 Volts
on the line

252

1st floor
5th Ave

253

13

二

13

If
and floor
2
for room underneath
5 lights

256

3rd floor

3				3	3
3		3	3	3	3
3		3	3	3	3
3	3			3	3

257

6889 mills in No 14 wire ²⁵⁹

1 line omitting all lights
to the hall

Third floor 9 lights

3 lights 16 feet

$$\frac{204}{6\frac{1}{2}} \text{ mills} \times 3 = 1836$$

3 light 16 feet ~~8~~

$$6\frac{1}{2} \text{ mills} \times 3 = 1836$$

3 lights 8 feet

$$\text{Down } 153 \text{ mills} \times 3 = 459$$

— 9 lights 35 feet through
pipes

$$\frac{476}{9}$$

$$\frac{4284}{3} \text{ 2 No 14 wire}$$

$$\underline{12852} \quad 1 \text{ No } 12 \text{ wire}$$

A line second story

18 lights 20 feet

$$\begin{array}{r}
 272 \\
 20 \\
 \hline
 5440 \\
 3 \\
 \hline
 16320
 \end{array}$$

1 No 10 wire for
second story

A line 1st story

12 light 50 feet

$$\begin{array}{r}
 680 \\
 1360 \\
 680 \\
 \hline
 8160
 \end{array}$$

OK

9 lights 35 feet ++

$$\begin{array}{r} 476 \\ 9 \end{array}$$

12 lights $\begin{array}{r} 4284 \\ 11424 \\ \hline 15708 \end{array}$

Down

No. 10 wire

B line 3rd Floor
floor 24 feet 6 lights

$$\begin{array}{r} 340 \\ 6 \end{array}$$

$$\begin{array}{r} 2140 \\ 3 \end{array}$$

$$\begin{array}{r} 6420 \\ 6 \end{array}$$
 No 14 wire

Down ~~35~~ feet 6 lights
35 feet

12 lights

$\frac{3}{2}$ the cu

$$\begin{array}{r} 476 \\ 12 \end{array}$$

$$\begin{array}{r} 952 \\ 476 \end{array}$$

$$\begin{array}{r} 476 \\ 571 \end{array}$$

$$\begin{array}{r} 571 \\ 285 \end{array}$$

$$\begin{array}{r} 285 \\ 856 \end{array}$$

$$\begin{array}{r} 856 \\ 285 \end{array}$$

Porterhouse

$$\begin{array}{r} 856 \\ 285 \end{array}$$

$$\begin{array}{r} 285 \\ 11424 \end{array}$$

No. 10 wire

B line 2nd floor

12 lights

Down

20 feet

272

12

544

272

3264

No. 14 wire

B line 1st floor

O. K
carry wires to Basement

C line same as B

down No. 12 wire

2nd floor
21 lights 20 feet

$$\begin{array}{r} 272 \\ 20 \\ \hline 5440 \\ 3 \\ \hline 16320 \end{array}$$

No 10 wire

1st O.K.

D line

Third floor

10 lights

35 feet

$$\begin{array}{r} 4765 \\ -3 \\ \hline 13295 \end{array}$$

Dawn

No. 11

12 lights Second story

20 feet

$$\begin{array}{r} 272 \\ -12 \\ \hline 544 \end{array}$$

$$\begin{array}{r} 272 \\ -3264 \\ \hline 3 \end{array}$$

$$\begin{array}{r} 9792 \\ -3 \\ \hline 9792 \end{array}$$

No. 12 wire

1 set O.K.

E. line

15 lights 3rd Floor
35 feet

476

15238⁰

474

714⁰

3

2142⁰

Down

No. 10 wire

40 lights

2nd Floor

20 feet

272⁰

40

1088⁰

3

3264⁰

2 No. 10 wires

1st O. R

1st Floor ~~50~~ 50 lights
 2nd Floor - 20 "
 3rd Floor - 20 "

Line A =
 From 3rd down 3rd down 1 No. 12 wire
 clear through 9 lights
 From 2nd down 1 No. 10 wire
18 lights • ~~50~~ wires
 Line B • ~~4~~ wires

From 3rd down 1 No. 10 —
 clear to basement 17 lights
 From 2nd down 1 No. 14 —
12 lights

Line C
 From 3rd down 1 No. 10 —
17 lights
 — 2 cm — 1 No. 10 —
21 lights

Line D
 From 3rd down No. 12 —
 2nd " 10 lights No. 12 —
 " " 12 lights

Line E
 From 3rd down No. 10 —
 2nd " 15 lights 2 No. 10 —
40 lights

274

275

284

285

$$\begin{array}{r} 120 \\ 3 \\ \hline 360 \\ 60 \\ \hline 420 \\ 5 \\ \hline 2100 \end{array}$$

$$\begin{array}{r}
 75 \\
 17 \\
 \hline
 92
 \end{array}
 \begin{array}{r}
 11 \\
 \hline
 33
 \end{array}
 \begin{array}{r}
 100 \\
 398, (36) \\
 \hline
 68 \\
 66 \\
 \hline
 150
 \end{array}$$

$\frac{1}{2} 100$ per ton
 $\frac{1}{4}$ annual loss ~

4800. Engine	2	22000	(1833)
1833 - Wires		12	
2500 Piping	100		
Piping	96		
2100 Boilers			
550 Feedwater pump	40		
300 piping	36		
800 flooring structure		40	
400 Blown Bunker			
250 Station apparatus			
250 Stock & setting			

13783.

3 5000.

120

12

24

0

~~1 ft 6~~ 120

1448

1520

1

960 lights

\$160 per hp - 120

480 hours

2400

15000.

Meters 100- 500

Investment 13783.

960 lights-

ton coal per hour

5 hours

and

#8 per 5 hours

Engine 3

Oil water 0.50

8 Lamps

Dep

Rent

Taxes etc.

1850

2.80

1.50

1.50

25

2455

1200

12.50

Dep 4 p.c. or
\$20 per year or 150 per month

1340

320

365-

5 h

1825 hil.

860 v.

17,520.00 0

43,800

HP

 120⁰₀

9600

61320 car 81-9 gas

1.50

~~3066000~~

61320

~~91,980.00~~

91980.

46802

45,178

190,680.

~~45,178 00 20 76
341360
110,4200
1024082~~
~~76
20
520~~
~~76 / 1255 (14
76
76~~
~~365-
304
61 55
76
456
76
1212.~~
~~960
5760
960
15,365
76,800~~
~~76
3800~~

45,178,00

Menlo Park Notebook #174 [N-80-11-09]

This notebook covers the period October-November 1880. Most of the entries are by Francis Jehl. There are also a few entries by Francis Upton. The book contains notes and calculations relating to lamp tests. A few of the entries concern tests of meters. The label on the front cover is marked "Lamps C" and "Francis Jehl." There is an index on the inside front cover. The book contains 282 numbered pages.

Blank pages not filmed: 234-235, 264-265.

Index.

Calculations - 2-5, 7, 9, 11, 13, 15, 17, 19,
 20, 21, 23, 25, 27, 29, 31, 33,
 35, 37, 39, 41, 43, 45, 47,
 49, 51, 53, 55, 57, 59, 61, 63,
 65, 67, 69, 71, 73, 75, 77, 79,
 81, 83, 85, 87, 89, 94, 93, 95,
 97, 99, 101, 103, 105, 107-129,
 132, 134, 136, 138, 142-145,
 168, 198, 200-209, 236, 238,
 240, 269, 276, 277, 279,
 280, 281, 282, 283,

Candles - 100, 101-131, 133, 135, 137, 139,
 144, 149, 151, 153, 155, 157, 159,
 161, 163, 165, 167, 169, 171, 173,
 175, 177, 179, 181, 183, 185, 187,
 189, 191, 193, 195, 197, 209, 213,
 215, 217, 219, 221, 223, 225,
 227, 229, 231, 233, 235,
 241, 243, 245, 247, 249,
 251, 253, 255, 257, 259,
 261, 263, 265, 267, 271, 273,
 275, 277, 278.

Diagrams - 1

Testing - 184, 194, 199, 239

Res one arm of bridge
 To. 3 ohms

$$\begin{array}{r} 12600 \\ 1400 \\ \hline 14000 \end{array}$$

$$= 500.$$

$$= 1000 \text{ ohms.}$$

2 Final Supt. good vacum.
Ent 182 7/8/3 fl 3683

$$R \frac{314 \times 0 + 4500}{200} = 179 R$$

C 16 not test

at rest w/ another test

R 193

Pt 3529

$$2515 - 0$$

$$\begin{array}{r} 2515 - 0 \\ - 550 \\ \hline 20 \end{array}$$

13095 0 (15%)

P.

No 1 e. $\frac{3}{8}$ spark 3

Ent 167-167 1110

$$R \frac{25150 + 5800}{200} 154 R$$

C 16 Pt Clamp 3544 Pts

$$\frac{167}{167}$$

$$3(334) 154) 5458.20 (3544$$

11.1

$$\begin{array}{r} 838 \\ - 170 \\ \hline 668 \end{array}$$

682
- 660

4

The following on inside
of front cover.

$$R^{\circ} = \frac{4}{5} \quad \frac{4}{5} = 10^{\circ}\text{C}$$

$$\frac{4}{5}$$

$$\frac{20}{5}^{\circ}\text{C}$$

$$x^{\circ}\text{C} = \frac{4}{5} R$$

$$20 R = x^{\circ}\text{C}$$

$$20 : x : \frac{4}{5} : 5$$

(@)

Eut

Q

@

2 e

5

$$218 \quad 218 \quad 1450$$

$$37650 + 6800$$

$$2000$$

$$2220$$

16

Fe

4195 Hg

$$\frac{37650}{6800}$$

$$\underline{20} \frac{14445}{6800} \Rightarrow (222R)$$

$$\frac{218}{2} \quad 45$$

$$\underline{3(436)} \quad 222 \quad 93 \quad 1450 \quad 1450$$

$$145$$

$$\begin{array}{r} 212 \\ -222 \\ \hline 212 \\ -145 \\ \hline 670 \\ -680 \\ \hline 100 \\ -100 \\ \hline 0 \end{array}$$

10

3^e

Eur.	190 - 190	126 v
R	<u>37650</u> 2000	188 R
C	16	<i>Fe</i> 3070 3730

$$\begin{array}{r} 19 \\ \times 2 \\ \hline 380 \\ 126 \\ \hline 165 \end{array}$$

(-8) 70 3310 3740

~~100~~
~~100~~

ELW7

189-189

126 v

R

37650 + 200
200 189 R

C

16

3721
Fe

$$\begin{array}{r}
 189 \\
 2 \\
 \hline
 3) \overline{378} \\
 126 \\
 \hline
 20) \overline{378} \\
 20 \\
 \hline
 179 \\
 100 \\
 \hline
 195
 \end{array}
 \quad
 \begin{array}{r}
 37650 \\
 300 \\
 \hline
 37950 \\
 20 \\
 \hline
 179 \\
 100 \\
 \hline
 195
 \end{array}
 (189)$$

189-170-331-0 (3721)

$$\begin{array}{r}
 186 \\
 13 \\
 \hline
 40 \\
 378 \\
 \hline
 20
 \end{array}$$

Out

188 188 122 u

R

$$\frac{37650 + 300}{200} \quad 189 R$$

Q

16

Fe 34.84%

$$\begin{array}{r} 188 \\ \hline 31376 - 20 \\ 122 \end{array} \quad \begin{array}{r} 37650 \\ \hline 200 \end{array} \quad (189)$$

$$\begin{array}{r} 179 \\ \hline 160 \\ \hline 185 \end{array}$$

$$189) \underline{\underline{359360}} \quad (34.84)$$

$$\begin{array}{r} 928 \\ \hline 756 \\ \hline 1516 \\ \hline 1640 \end{array} \quad 7$$

Eur

$$192 - 192 = 128 \text{ } \textcircled{5}$$

10

$$37650 + 420 = 2096$$

4

16

2e

$$\begin{array}{r} 192 \\ \times 3 \\ \hline 384 \end{array} \quad \begin{array}{r} 37650 \\ \times 20 \\ \hline 750 \end{array}$$

209) ~~78~~¹⁰ 58.40 (3473)

$$\begin{array}{r} 989 \\ \times 36 \\ \hline 1581 \\ + 2970 \\ \hline 3531 \end{array}$$

14

7c

Mut 192-192 1280
~~37650 + 3200~~
2000

R 3552/16
 C 16

192 37650
3200
~~384 20) 40850~~
128 204

204) 725810 (3552
612

1138
1020
1180
1020 6.00

15

Eut

R

C

Fe

191 — 191 127 v

$$\begin{array}{r} 37650 + 3700 \\ \hline 200 \end{array}$$

16 Fe 346 x 4 lb

$$\begin{array}{r} 191 \\ 21382 \\ \hline 12720) 41354 (206 \\ \underline{40} \\ 135 \end{array}$$

$$206) 14582 (3462$$

$$\begin{array}{r} 965 \\ 524 \\ \hline \end{array}$$

$$\begin{array}{r} 1412 \\ 1280 \\ \hline \end{array}$$

$$\begin{array}{r} 1762 \\ 0 \\ \hline \end{array}$$

EWT

184 - 184 123 R

R

3760.0 + 2000.0
2000

(1)

16

$$\begin{array}{r} 184 \\ \underline{- 368} \\ 123 \end{array}$$

$$\begin{array}{r} 37650 \\ - 2000 \\ \hline 39650 \end{array}$$

(198)

$$\begin{array}{r} 196 \\ - 180 \\ \hline 165 \\ - 160 \\ \hline 5 \end{array}$$

$$\begin{array}{r} 198) 670210 \\ 594) \\ \hline 762 \\ - 594 \\ \hline 681 \\ - 584 \\ \hline 9784 \\ - 883 \\ \hline 911 \end{array}$$

198
- 1584
7

9e

3384 + 66

Elut 203 - 203 1350

R

$$\begin{array}{r} 31400 + 500 \\ \hline 31900 \end{array}$$

C

16

Ge 507766
e

This one has a
short.

$$\begin{array}{r} 31400 \\ \hline 2131900 \\ 159 \\ \hline 135 \end{array}$$

$$159) \overline{507340} (5077$$

$$\begin{array}{r} 159 \\ \hline 272 \\ 1237 \\ \hline 1240 \end{array}$$

Elet

R

C

19⁰
31380
123

190 - 190 1230

37650
20020) 37650 (185
16
176
1619⁰
31380
123
620

188) 67020 (3564

1062
940
1221
93011^e *h*

12 91

ENIT

R

C

$$\begin{array}{r} 193 - 193 \quad 129^{\text{v}} \\ 37650 + 1800 \quad 195^{\text{R}} \\ \hline 200 \end{array}$$

$$16 \quad 3750 \text{ A } 66$$

of carbon in the carbon

$$\begin{array}{r} 193 \\ 386 \\ \hline 128 \end{array} \quad \begin{array}{r} 2 \quad 37650 \\ 20 \quad 1800 \\ \hline 38650 \end{array} \quad (195)$$

$$\begin{array}{r} 196 \\ 186 \\ \hline 115 \end{array}$$

$$195) \overline{7372} \quad (3780$$

$$\begin{array}{r} 1527 \\ 1365 \\ \hline 162 \end{array}$$

$$\begin{array}{r} 1570 \\ 1560 \\ \hline 05 \end{array}$$

13 hi

Aut

$$173 - 173 = 1150$$

R

$$\frac{31400 + 500}{200} = 159 R$$

@

16

36-1466

Again the globe

$$\begin{array}{r} 173 \\ \underline{-} 346 \\ 115 \end{array} \qquad \begin{array}{r} 31400 \\ \underline{+} 500 \\ \hline 2131900 \\ \underline{-} 159 \\ 213031 \end{array}$$

$$\begin{array}{r} 159) 5770 \\ 477 \\ \hline 108 \\ 954 \\ \hline 134 \\ 132 \\ \hline 250 \end{array} \quad (3681)$$

14°C Chi

Eut

$$173 - 173 = 115 \text{ v}$$

153 R

$$\underline{31400 + 4700}$$

200

3779 416

R

C

16

$$\begin{array}{r} 173 \\ 3146 \\ \hline 115 \end{array}$$

$$\begin{array}{r} 31400 \\ 4700 \\ \hline 2736100 \\ 155 \end{array}$$

$$155) \underline{\underline{3779}} \quad (3779$$

$$\begin{array}{r} 1208 \\ 1085 \\ \hline \end{array}$$

$$\begin{array}{r} 1237 \\ 1085 \\ \hline \end{array}$$

$$\begin{array}{r} 1520 \\ 1375 \\ \hline \end{array}$$

Poorly Clamped
Out 207 26/1 1380

R

$$\underline{37650 + 4500} \quad 210 R$$

200

C

4017 4 35

16

$$\begin{array}{r}
 207 \\
 3) 414 \\
 138 \\
 \hline
 46 \\
 20) 42 \\
 40 \\
 \hline
 20 \\
 \hline
 20 \\
 \hline
 0
 \end{array}
 \quad
 \begin{array}{r}
 37650 \\
 4500 \\
 \hline
 210
 \end{array}
 \quad
 (210)$$

$$\begin{array}{r}
 210) 843650 \\
 84 \\
 \hline
 365 \\
 365 \\
 \hline
 0
 \end{array}
 \quad
 (4017)$$

16 Ni

$$\text{But } 198 - 198 = 132.0$$

$$\begin{array}{r} 37680 + 650 \\ \hline 200 \end{array} \quad 220R$$

(2)

16

$$\begin{array}{r} 198 - 198 \\ \hline 200 \\ 132 \end{array} \quad 20 \begin{array}{r} 37680 \\ 6500 \\ \hline 44150 \end{array} (2) \\ \hline 416$$

$$220 \begin{array}{r} 772020 \\ 660 \\ \hline 1120 \end{array} (3.509) \\ \hline 220$$

19° Hi

$$\text{EM7} \quad 195 - 195 = 130 \text{ V}$$

$$\text{R} \quad \frac{37650}{200} = 188 \text{ R}$$

(C)

16

$$392 \times 1.6$$

$$\begin{array}{r} 195 \\ 20) \underline{37650} \quad (188 \\ 3 \quad \underline{390} \\ \underline{130} \quad \underline{176} \\ \underline{165} \end{array}$$

$$\begin{array}{r} 188) 764630 \quad 3928 \\ \underline{564} \\ 1848 \\ \underline{1792} \\ 547 \\ \underline{376} \\ 1710 \end{array}$$

223) 12350.0 (3514)

~~117.5
37650
200~~

870

18 E hi

87

F.U.H 200 - 200 133.0

R. 37650 + 7000 = 223
200

3514/66

C

16
Blue at the Lamps
and Hg. in the
Globe

$$\begin{array}{r}
 3/400 \\
 133 \\
 \hline
 37650 \\
 7000 \\
 \hline
 20)44650(223 \\
 40 \\
 \hline
 65 \\
 60
 \end{array}$$

19^e mi

$$\text{EMT } 190 - 190 = 127 \text{ v}$$

R $\frac{37650 + 700}{200} 191 R$

R 16 37650 falls

$$\begin{array}{r} 190 \\ \hline 31 \overline{) 380} \end{array} \quad \begin{array}{r} 37650 \\ \hline 38350 \end{array} (191$$

$$\begin{array}{r} 191) 714520 \\ \underline{-573} \\ 1415 \\ \underline{-1337} \\ 782 \\ \underline{-784} \\ 18 \end{array} \quad (374)$$

20c Ni

6/17

$$187 - 187 = 124^{\text{v}}$$

183 R

$$\underline{31400 + 5300}$$

200

C

16

3722-200

$$\begin{array}{r} 187 \\ \underline{- 187} \\ 0 \\ \hline 31400 \\ - 5300 \\ \hline 26700 \\ \hline 124 \\ \hline 183 \end{array}$$

$$183) \underline{6711670} (3722$$

$$\begin{array}{r} 5497 \\ \hline 1321 \\ \hline 1288 \end{array}$$

$$\begin{array}{r} 406 \\ 366 \\ \hline 400 \end{array}$$

21st hi

Ent 195-195 1300

$$\begin{array}{r} R \\ 37650 + 700 \\ \hline 200 \end{array}$$

C

16

3772500

$$\begin{array}{r} 195 \\ 37650 \\ \hline 31390 \end{array} \quad \begin{array}{r} 750 \\ 20) 38350 \\ \hline 20 \end{array} \quad \begin{array}{r} (11 \\ 183 \\ \hline 35 \end{array}$$

$$191) \overline{748670} \quad \begin{array}{r} 3949 \\ 573 \end{array}$$

$$\begin{array}{r} 1756 \\ 1719 \\ \hline 1380 \\ 1380 \\ \hline 1790 \end{array}$$

44

		82c	45
E	mt	185 185	1235
R		<u>31400 + 4000</u>	177R
C	16		3786 p/b
		<u>185</u>	31400
		<u>31370</u>	<u>4000</u>
		<u>123</u>	<u>2135400</u>
			177
		177) 573319	(3786
		<u>53</u>	
		1239	1392
			<u>1239</u>
			1496
			<u>1650</u>
			88

23 e. N.E.

Elmt 194 - 194 129⁰
199 R

R 37650 + 2200
200 3704416

C 16 37650
20) 39850 (199
194
3) 388 195
129 185

199) 737200 (3704
597
1402
1393

900
95

4

24° N'

Ext 178-178 117°
 184 N
~~31400 + 5600~~
~~2000~~ 3294 fms
 16. $\frac{178}{3356}$ $\frac{31400}{2156900}$
~~117~~ 184

(184) $\frac{606420}{5524} (2294)$

$$\begin{array}{r}
 120 \\
 -72 \\
 \hline
 48 \\
 -72 \\
 \hline
 16 \\
 -14 \\
 \hline
 2 \\
 \end{array}$$

$$\begin{array}{r}
 574 \\
 368 \\
 \hline
 1762 \\
 -16 \\
 \hline
 60 \\
 \end{array}$$

$$\begin{array}{r}
 860 \\
 -736 \\
 \hline
 124 \\
 \end{array}$$

25° N

Euf 180 - 180

120 V.
188 D

R $\frac{37650 + 100}{200}$ 3393 4760

C 16 $\frac{180}{31360} \quad 20) \underline{37650} \quad (3393$
 $\underline{120}$ $\underline{\underline{157}}$
 $\underline{\underline{173}}$

188) $\underline{\underline{637920}} \quad (3393$
 $\underline{\underline{564}}$
 $\underline{\underline{739}}$
 $\underline{\underline{564}}$
 $\underline{\underline{1752}}$
 $\underline{\underline{1692}}$
 $\underline{\underline{600}}$

26 cm

cut
R
e

very high resistance

29° N

Ent

195-195 130 5
200 R

R

37650 + 2000
200

e

16

3243 fl
37650
195 20 19750 200
3 390
130

200) 74837.0 (3243

$$\begin{array}{r}
 48 \\
 -39 \\
 \hline
 19 \\
 -18 \\
 \hline
 1 \\
 -1 \\
 \hline
 0
 \end{array}$$
 67

28° W

Exit

R

C

$$\begin{array}{r} 198-198 \\ \hline 133.5 \\ 213 R \end{array}$$

$$\underline{37650 + 8000}$$

200

3624/400

16

Bad spot at Clamp

$$\begin{array}{r} 198 \quad 27650 \\ \hline 396 \\ 132 \quad 20) 42650(213 \\ \quad \quad \quad 26 \\ \quad \quad \quad \underline{24} \\ \quad \quad \quad 6 \end{array}$$

$$\begin{array}{r} 213) 772030 \\ \hline 639 \\ \quad \quad \quad 1330 \\ \quad \quad \quad 12780 \\ \quad \quad \quad \underline{520} \\ \quad \quad \quad 426 \\ \hline 970 \end{array}$$

29° hi

Eut

183 - 183 122 U
 189 R

Q

$$\begin{array}{r} 37650 + 200 \\ \hline 37850 \end{array}$$
$$\begin{array}{r} 200 \\ 37650 \\ \hline 37650 \end{array}$$

⑥

$$\begin{array}{r} 16 \\ 183 \\ \hline 1366 \\ \hline 122 \\ 48 \end{array}$$
189
1834

189) 659360 (3488

$$\begin{array}{r} 923 \\ 156 \\ \hline 1676 \\ 154 \\ \hline 1640 \end{array}$$

Boe Hi.

Eut

$$185 - 185 = 1235$$

171 R

R

$$\begin{array}{r} 31400 + 2800 \\ \hline 200 \end{array}$$

3919 fello

C

$$\begin{array}{r} 16 \frac{185}{2} \\ \hline 31370 \\ 123 \end{array}$$

$$\begin{array}{r} 31400 \\ 2800 \\ \hline 34200 \end{array}$$

171

$$\begin{array}{r} 171 \\ 39 \\ \hline 39 \end{array}$$

$$171) \overline{6\ 3\ 2\ 1\ 9} \quad (3919$$

$$\begin{array}{r} 10 \\ -9 \\ \hline 1 \end{array}$$

$$\begin{array}{r} 3\ 3\ 1 \\ 1\ 7\ 1 \\ \hline 1\ 6\ 0\ 0 \\ 1\ 6\ 3\ 9 \end{array}$$

31^e hi. final set

out 178 - 178 119 U
178 R

31400 + 3200

200

3632 f Us

C 16

178 31400
2 3200

3356 2134600
11 173

173) 627332 (3632
8 519
88 1083
1038
00553
319
440

Eluff 184 - 185 1285
173 R

R. 31400 + 3300

~~200~~

C. 16 3874 lbs

Hg in the globe

~~124~~
~~185~~ 8453
3869 3603

~~123~~ 21831

173) 6702¹⁷³ 3874
519 X 40.7

~~173~~ 1502
211 1384

~~1281~~
~~1281~~
792

33^e file 67

Cent

195-198 1295
228 R

Q

37650 + 8000
200

C

16 3233 file

195 37650
193 800031388 20) 45650 (2233
129 56

228 7372 x 80 (3233

$$\begin{array}{r}
 532 \\
 456 \\
 \hline
 760 \\
 684 \\
 \hline
 760
 \end{array}$$

84^c

Fe

69

Oct 22

Cuy

Q

C

$$179 - 179 = 145$$

$$\begin{array}{r} 07650 \\ \hline 200 \end{array}$$

3337 falls.

16

$$179 - 20) 87.950$$

$$\begin{array}{r} 3358 \\ \hline 119 \end{array}$$

$$188) 6273.30 \quad (3337$$

$$\begin{array}{r} 564 \\ \hline 633 \\ 564 \\ \hline 693 \\ 564 \\ \hline 1298 \end{array}$$

35^c Fe

Exit 189-190 126 m
20xR

$$\underline{37650 + 4000}$$

$$\begin{array}{r} 200 \\ 16 \end{array} \quad 3381 \text{ flts}$$

$$\begin{array}{r}
 189 \\
 -190 \\
 \hline
 379 \\
 -200 \\
 \hline
 126 \\
 -200 \\
 \hline
 200) 703310 (3341 \\
 \underline{624} \\
 793 \\
 -624 \\
 \hline
 1691 \\
 -1664 \\
 \hline
 270
 \end{array}$$

36° Fe

EM7

185 - 185

1235

37650 + 1000

200

3472466

16

185 37650
1000347200 38650 (193)
123 100186
100193) 6702160 (3472
579440193
455
4912
788
442
1401
185
500

37c Fe

EN7 184 184 123 5
154 0

Q 31400 + 5500
200

① 16 31400
184 5500
26969.00
31368 184
123

184) 6702xx0 (3642
1104
1182
1104
781
436
450

38

76

77

Entf.

R

C

190 - 190 124⁰
194 R31400 + 8500

200

3590 fels

16

190
31400
12431400
850023990199) 764520 199
1175199
9951791 1502
1791 1110

39e Fe

Out 185 - 155

123 14 R

31400 + 8500

200 3367 fts

R

C

16

185

3/370

123

199)

31400
8500

213900.0

197

(3367

679210

597

732

597

1954

1570

1570

40° C

Exit 173 - 195 116^F
158 R

R 31400 + 200
200

C 16

173 31400
195 200

31348 313600

116 158

158) 59640 Q (3772

1221

1106

1150

1106

440

JHL
JHL

JHL

JHL

41^c Fe

6.94+

179 - 179

119.5

174 R

314.00 + 34.00

2.00

360.6 fills

16

314.00
34.00

179

2)348.00

358

174

119

174) 62733.9 (360.6

522

1055

1044

1130

08

42 ~~50~~^c Fe

C.M.F

190 - 190 127.5
170.0

31400 + 4200

R

C.O

200

16

4014 ft lbs

$$\begin{array}{r} 190 \\ 31400 \\ \hline 42000 \\ 1276 \\ 118 \end{array}$$

$$\begin{array}{r} 178) 764520 (4014 \\ \underline{76} \\ 252 \\ \underline{252} \\ 0 \end{array}$$

43° He

Eut

200 - 200

133.5

210

R

37650 + 4500

200

3731 *falls*

C

16

3765031450
133210)783620 (3731
630 × × *15361470
662
630
320

EWT

$$200 - 200 \quad \begin{smallmatrix} 365 \\ 212 \end{smallmatrix}$$

R

$$37650 + 4900$$

$$200 \quad 3696 \text{ flbs}$$

C

$$\begin{array}{r} 16 \\ \hline 3) 400 \\ \hline 120 \\ \hline 16 \\ \hline 16 \\ \hline 0 \end{array} \quad \begin{array}{r} 37650 \\ 4900 \\ \hline 204250 \\ 204250 \\ \hline 0 \end{array}$$

$$212) 783620 \quad (3696$$

$$\begin{array}{r} 1476 \\ 1476 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 2042 \\ 1908 \\ \hline 1340 \end{array}$$

45° Nife

Amt 180 - 180 120.0
184 R

314.00 + 55.00

200 346.6 fl. b.

R

C

314.00
55.00
200.00

184
184

3) 360

184) 637.920 (346.6

552
736

1282
1104
1280

8/14

175 - 175 = 117 5

R

31400 + 8000

200

3766 ~~466~~

C

16

175

31400
11631400
8000232200161) 606420, (3766161
11271234
1127
1066
106046^c Ac

ELUT 200 - 200

133 U
212 R

$$\begin{array}{r} 37650 + 4800 \\ \hline 200 \\ 3696400 \end{array}$$

16

$$\begin{array}{r} 31400 \\ \hline 133 \\ \hline 37650 \\ 4800 \\ \hline 200 \\ 34500 \\ 24 \\ \hline 26 \\ 4 \end{array}$$

20) 34500 C2

$$\begin{array}{r} 96 \\ 60 \\ \hline 24 \end{array}$$

48c

Eut

$$180 - 184 = 121$$

$$\underline{31400 + 3500}$$

200

3727/16

R

C

16

$$\begin{array}{r} 180 \\ 3864 \\ \hline 3864 \end{array}$$

$$174) \underline{6456} \times 0 \quad (3728$$

$$\begin{array}{r} 1266 \\ 1218 \\ \hline \end{array}$$

$$\begin{array}{r} 480 \\ 348 \\ \hline 1320 \\ 88 \end{array}$$

EMT

Q

C

16

Carbon Los a 600

Lot 1
400
400
400400
400
400223) 795450 (3567
664 X
1264
$$\begin{array}{r}
 1495 \\
 -1338 \\
 \hline
 1569
 \end{array}$$

202 - 202 134V

2,000

37650 + 7000

200 3567466

Ent

181-181

1815

1472

P

31400 + 2700

2100 441246

31400

147

C

16

314000

147

$$\begin{array}{r} 147 \\ \underline{-147}) 648600 \\ 00 \\ \hline 07 \end{array}$$

$$147(\underline{\underline{648600}} (4412$$

$$\begin{array}{r} 606 \\ -548 \\ \hline 58 \end{array}$$

$$\begin{array}{r} 180 \\ -147 \\ \hline 330 \\ -294 \\ \hline \end{array}$$

	Volts	Ohms	lb
✓ 111	154	354.4	
2 145	222	41.95	
3 126	188	37.30	
4 126	189	37.21	
5 122	189	34.88	
6 128	209	34.73	
7 128	204	35.52	
8 127	206	37.61	
9 123	128	33.84	
✓ 135	159	50.77	
1 123	188	35.64	✓
2 129	195	37.80	
3 115	159	36.81	
4 115	155	377.9	
✓ 138	210	401.7	
✓ 132	220	350.9	
✓ 130	188	392.5	

Valhs

38-127
 49-123
 46-116
 41-119
 42-127
 43-133
 44-133
 45-120
 46-117
 47-133
 48 121
 49 134
 50 121

4123	223	3514
4127	191	3740
4124	183	3722
4130	191	3919
4123	177	3786
4129	199	3704
4117	184	3294
4120	188	3393
4120	200	3243
4122	189	3488
4123	171	3919
4119	176	3632
4122	173	3674
4129	228	3233
4119	188	3337
4126	208	3381
4123	193	3473
4123	184	3642

2 cell

$$\begin{array}{r} \cancel{101.5} \\ -20 \cancel{1.16} \\ \hline X 419 \end{array} \quad \begin{array}{r} 2.0064 \\ 9.9666 \\ 8.6990 \\ \hline .6710 \end{array}$$

4.7

$$\begin{array}{r} 9.3290 \\ 2.6222 \\ \hline 1.9512 \\ 1.9512 \\ 1.6464 \\ \hline 7.6830 \\ 3.2318 \end{array}$$

Test of lamp No 37 ¹⁰⁷

Batteries 50.5 L
 $\sqrt{ }$ $\frac{51}{101.5}$ R

1 Candle

$$\begin{array}{l} 209 \text{ L } 89.4 \text{ Volts} \\ \cancel{210} \text{ R} \\ 419 \end{array}$$

$$\begin{array}{r} 37650 \\ 3900 \\ \hline 1415.50 \\ 207.75 \text{ Ohms} \end{array} \quad 1706. H. H.$$

~~9.32.90~~
~~2.65~~
1.9637
~~1.9637~~
~~1.6444~~
7.6920
3.3058

96.2

202.2

2 candles

225 L

227 R

225 L

226

37650

3000

(406.50)

203.75 Ohms

$$\frac{225}{226.5} = \frac{4515}{96.3}$$

202.2 ft. lbs

$$\begin{array}{r}
 9.3290 \\
 2.6875 \\
 \hline
 2.0165 \\
 2.0165 \\
 1.6464 \\
 \hline
 7010 \\
 \hline
 3804
 \end{array}$$

3 candles

242 L

$$\begin{array}{r}
 245 \\
 \hline
 48.7
 \end{array}$$

$3\frac{1}{3}$ candles

103.75 lbs

37650

2250

39900

199

Batteries 5-1.5 R

$$\begin{array}{r}
 50 \\
 \hline
 1.616
 \end{array}$$

199 Ohms

240,4 lb

9.3290
2.6976
2.6
 2.023.6
 2.02.36
 1.646.4
 7.705.1
3.3987

Batteries Lamp adjusted

49.5L 10.1.5
52 R
240 R from 3 candle
 105.5 Vals
 4 candles

245 L good
 248 R
247 L
 4 9/5

37656
 1000
 2505 flets.

39450
 197.25 Jhun

~~9.3290~~
~~2.7110~~
2.6400
2.0400
1.6464
7.7062
3.4326

5 candles

257 L
256

~~109.5~~

258 R
514

37650

1700

2707.5

39350
196.75

Phns

116

9.329 0
2.7259
2.0549
 2.0549
 1.64.64
 7.71.22
3.4684

11313

117

7 candles

265 L
257 R
532

113.3 Volts

37650
 1150
38800
 194. Ohms

2945 ft lbs

9.3290
2.7443
2.0733
2.0733
1.6464
7.7173
3.5103

9 candles

275 L

275 R

272 L

8 1/2 candle

276 L for 9 candles

37650

sand.

279 R
276
3555

118.5

276

279

37650

700

38350

194.7

3239 ft lbs.

$$\begin{array}{r}
 120 \\
 6 \\
 \\
 3 \\
 .300 \\
 \hline
 100.83 \\
 \end{array}
 \quad
 \begin{array}{r}
 12 \\
 .8 \\
 \hline
 .025 \\
 2 \\
 \hline
 0.050 \\
 \end{array}
 \quad
 \begin{array}{r}
 17 \\
 .800 \\
 \hline
 .025 \\
 2 \\
 \hline
 0.050 \\
 \end{array}
 \quad
 \boxed{0.050}$$

✓ 100.83 - 1.30 = 0

$$\begin{array}{r}
 249 \\
 684 \\
 \hline
 7089 \\
 \hline
 300 \\
 \hline
 021.26.740
 \end{array}$$

$$\begin{array}{r}
 212 \\
 800 \\
 \hline
 169.600 \\
 \hline
 64.6
 \end{array}$$

9.2

$$\begin{array}{r}
 \$329.0 \\
 .7559 \\
 \hline
 .0849 \\
 .0849 \\
 6464 \\
 7207 \\
 \hline
 5369
 \end{array}$$

11 candles

285

285 R

285 L

121.50 + 65

37650

400

38050

3735

344 = fl. lbs.

3290
 7716
10 06
 10 06
 64 64
72 58
5734

10/ candles

294 L
297 R
591

126.1 Volts

31420
6200
1376 00
 188.

3743 ft. lbs

3290
~~7810~~
1100
 1100
 6464
~~7274~~
5940

16 1/4 candles

296 - 297 $15\frac{3}{4} \div 7$
 15 candles

300 L
 302 - 306 $\begin{array}{r} 300 \\ 304 \\ \hline 604 \end{array}$
 31400
 6050
37450
 187.25

128.7 Volts
 3926 Ft. lbs

$$\begin{array}{r}
 3290 \\
 7860 \\
 \hline
 1150 \\
 1150 \\
 \hline
 6464 \\
 7312 \\
 \hline
 6076
 \end{array}$$

18.5° candles

$$\begin{array}{r}
 306 R \\
 305 S \\
 \hline
 6 " \\
 31.400 \\
 5.760 \\
 \hline
 3715.5 \\
 \hline
 185.75
 \end{array}
 \quad
 \begin{array}{r}
 130.5 \\
 4051
 \end{array}$$

3290
7983
1273
1273
6464
7364
6374

4340 ft. Ch.

22 middles

315 L

316 R

310 L

31400

5300

367 00

183.5

316
312.5
629.5

134.1 Salts

4340 ft. Ch.

27 candles

323 L

332 R 30 candles

31400

50000

To 4600

27 candle

33 candles

325 L

31 candles

325 L

330 R

325-330 L

3290
~~6996~~
 0282
 6258
 6464
~~7089~~
4129

5 candles

2498
~~252R~~
 501

106.8 Yards

31400
~~7700~~
139100
 195.5

2588 ft. lbs

3290
7404
 .0694
 .0694
 6464
7212
5064

9 candles

272 L
 277-276
 275 L

31400
 6600
38000
 190

3209

136

3290
7582
0872
6872
6464
7258
3466

137

12 1/4 candles

284L

284F
289R

284
289
573

122.5 Volts

31400
6200
(37600
188

3520

138.

$$\begin{array}{r}
 3290 \\
 6160 \\
 \hline
 9450 \\
 9450 \\
 6464 \\
 6440 \\
 \hline
 2264
 \end{array}$$

1 candle

$$\begin{array}{r}
 205 L \\
 \hline
 2 \\
 413
 \end{array}$$

$$\begin{array}{r}
 31400 \\
 10000 \\
 \hline
 41400 \\
 \hline
 207.00
 \end{array}$$

$$\begin{array}{r}
 Bath \\
 485 L \\
 51.5 \\
 \hline
 1810
 \end{array}$$

86.2 folks

1661

139

Corrected
Candles Ohio
Volts

	curve	141
1	207.5 ✓	89.4 ✓
2	4.25 203.25 ✓	96.3 ✓ 6.9
3	3.65 199.6 ✓	103 ✓ 6.7
3	2.1 197.6 ✓	106 ✓ 3
4	1.5 197.6 ✓	108.9 ✓ 2.9
5	1.5 196.1 ✓	111.6 ✓ 2.7
6	1.3 194.8 ✓	111.6 ✓ 2.4
7	1.1 193.7 ✓	114.7 ✓ 2.2
8	1.1 192.7 ✓	116.2 ✓ 2.0
9	1.1 191.7 ✓	118.2 ✓ 1.7
10	1.4 191.0 ✓	119.9 ✓ 1.55 3.1
11	1.4 189.6 ✓	123 ✓ 1.5
12	1.6 188.2 ✓	126 ✓ 1.2
14	1.6 187 ✓	126.4 ✓ .8
16	1.6 185.9 ✓	130.3 ✓ .8
18	1.6 184.7 ✓	132.1 ✓ .8
20	1.4 183.8 ✓	133.8 ✓
22	1.4 183.8 ✓	

142

89.4 9513
 9513
 6464.
6830
 2320

1701

1

9836
 9836
 6464
6920
 3056

2021

2

6128
 6128
 6464
6998
 3718

2356

3

106

0253
 0253
 6464
7048
 3925
 4011

2619
 25164

108.9 0370
 0370
 6464
7075
 196.1 4279.

143
5
 2678.

111.6 0469
 0469
 6464
7104
 194.8 4506 2823

6

114 0569
 0569
 6464
7129
 193.7 4731 2972

7

144

116.2

0653

8

0653

6464

7152

4921

3105

118.2

0726

9

0726

6464

7175

5091

3230

119.9

0751

10

0751

6464

7196

5156

3274

0788

0788

6464

7190

5230

3334

123

0899

0899

6464

1896

72715483

3535

145

126

1004

1004

6464

7253

188.2

5725

3738

14

128.4

1086

1086

6464

7282

187

5918

3907

16

146

$$\begin{array}{r}
 180.3 \\
 1149 \\
 1149 \\
 6464 \\
 7307 \\
 \hline
 6069
 \end{array}
 \quad
 \begin{array}{r}
 18 \\
 = \\
 4045
 \end{array}$$

132.1

$$\begin{array}{r}
 1209 \\
 1209 \\
 6464 \\
 7336 \\
 \hline
 6218
 \end{array}
 \quad
 \begin{array}{r}
 20 \\
 = \\
 4186
 \end{array}$$

184.7

$$\begin{array}{r}
 1265 \\
 1265 \\
 6464 \\
 7357 \\
 \hline
 6347
 \end{array}
 \quad
 \begin{array}{r}
 22 \\
 = \\
 4312
 \end{array}$$

133.8

51 C

147

$$\begin{array}{r}
 210 - 210 \\
 37650 + 1400 \\
 \hline
 200
 \end{array}
 \quad
 \begin{array}{r}
 195
 \end{array}$$

10

$$\begin{array}{r}
 37650 \\
 1400 \\
 \hline
 20)39250(195
 \end{array}$$

$$\begin{array}{r} 250 \\ \hline 3 | 500 \\ 166 \end{array}$$

2
22

227-227

07650 + 1400

$$\begin{array}{r} \\ - \\ 200 \end{array} \quad 195$$

$$\begin{array}{r} 227 \\ 151 \\ \hline 1464 \end{array}$$

Volts

16

Blue at the Chart

$$\begin{array}{r} 37650 \\ 1400 \\ \hline 22 \end{array} \quad 195$$

$$\begin{array}{r} 190 \\ 150 \\ \hline 10 \end{array}$$

150

52°

151

Note with lamp (unbed
marked 2-0 3)

180 - 180

120 Vals

$$\begin{array}{r} 25150 + 5300 \\ \hline 2000 \\ 152 \end{array}$$

16

$$\begin{array}{r} 25150 \\ 5300 \\ \hline \end{array}$$

$$\begin{array}{r} 20) 30450 (152 \\ 20 \\ \hline 45 \\ 40 \\ \hline 50 \\ 50 \\ \hline 0 \end{array}$$

198

215-215-

 $\frac{420}{143}$ Volts

37650 + 208

208

→ →

2080

37650

4000

~~2080~~ 37650 (208)

40

154

55 C

155

Note with ^{long}
tashed needle 103

190 - 190

$\frac{190}{190}$
 $\frac{190}{190}$
123

$\frac{3400 +}{2400}$ 157

16

56c

157

$$235 - 335 = \frac{470}{153} \text{ Vds}$$

$$\begin{array}{r} 37650 + 7500 \\ \hline 225 \end{array}$$

16

$$\begin{array}{r} 37650 \\ 7500 \\ \hline 20) 45150 (225 \\ \underline{40} \\ 515 \\ \underline{50} \\ 115 \end{array}$$

✓

57e

$$207 - 207$$

$$\frac{494}{134} \text{ Volts}$$

$$\underline{37650+}$$

$$20\text{--}0$$

185

Blue at the clay

$$\underline{\begin{matrix} 209 & 37650 \\ 23 & \end{matrix}} \quad (185)$$

$$\begin{array}{r} 17.6 \\ 16.8 \\ \hline 1.65 \end{array}$$

✓

58c

note (check no 3)

198-198

~~1396
132 vols~~

31400 + 2000

167

200

16

Bluebird Chelone

~~31400
2000~~~~2133400~~

167

59c

198 - 198

 $\frac{396}{132}$ Vols

$$\begin{array}{r} 31400 + 7000 \\ \hline 200 \\ 192 \end{array}$$

16

$$\begin{array}{r} 31400 \\ 7000 \\ \hline 2 | 38400 \\ 192 \end{array}$$

60°^c

Wile (No 3 Mexican)

 $\frac{610}{133 \text{ Volts}}$ 31400 + 3000 172

200

$$\begin{array}{r} 31400 \\ 3000 \\ \hline 21344 \end{array}$$
~~44~~
172

61°

Mule (No 3 tickle)

217
218

217-218

435
145

37650 + 2000 198

2000

16

Blue at the
Camp.
$$\begin{array}{r} 37650 \\ 2000 \\ \hline 39650 \end{array}$$
✓

(198)

$$\begin{array}{r} 196 \\ 185 \\ \hline 110 \end{array}$$

134,154,195

$$\begin{array}{r} 2900 \\ 1875 \\ 8729 \\ \hline 3504 \end{array}$$

+ 22.4 ohms

62c

202-200

(404)
134,154,195

$$\begin{array}{r} 37650 + 1500 \\ \hline 195 \end{array}$$

200

16

$$\begin{array}{r} 37650 \\ 1500 \\ \hline 239150 \\ 195 \end{array}$$

$$\begin{array}{r} 20) 39150 \\ 190 \\ \hline 115 \end{array}$$

✓

63 e.

~~205-205~~~~410
136 Vals~~~~31400 + 3500~~

174

~~200~~

16

~~31400
350~~~~2/349 0 0~~

174

205

2

31410

136

✓

136:154:174

2405

1875

8665

2945

197

174

+230

Other

64 @

222-222

37650 + 7000 146

200

223

16 37444
146

2 2

37650
7000

2944650 (2-3)

46
0

65 @

200 - 200 133

$$\begin{array}{r} 37.650 + 2500 \\ \hline 200 \end{array}$$

16

$$\begin{array}{r} 3400 \\ \hline 133 \end{array}$$

$$\begin{array}{r} 37650 \\ 2500 \\ \hline 30150 \end{array}$$

$$133/154 :: 200$$

$$\begin{array}{r} 3010 \\ 1873 \\ 6761 \\ \hline 3646 \end{array} + \begin{array}{r} 231 1/2 \\ 200 \\ \hline 31 1/2 \text{ thru} \end{array}$$

176

66^e

177

190 - 190 126

31400 + 50000

200 121

16

31400
50000

364
121

1400
1200
126

125

67^c

$$215 - 215 = 143$$

$$\begin{array}{r} 37650 + 7000 \\ \hline 223 \end{array}$$

~~200~~

$$\begin{array}{r} 215 \\ \hline 60 \quad 37430 \\ \hline 143 \end{array}$$

$$\begin{array}{r} 37650 \\ 7000 \\ \hline \end{array}$$

$$\begin{array}{r} 20) 44650 (223 \\ \quad 40 \\ \hline \quad 46 \\ \quad 40 \\ \hline \quad 6 \end{array}$$

180

68e

190 - 190 12631400 + 5300 123

200

16

0 1400
5300336900

123

181

190-190 126 5

$$\begin{array}{r} 31400+ \\ \hline 200 \end{array} \quad 157R$$

16

$$\begin{array}{r} 192 \\ 3 | 380 \\ \hline 126 \end{array} \quad \begin{array}{r} 2014 \\ - 157 \\ \hline \end{array}$$

184

Tested the Elect
of the light mice
for Mr Bachman.
Cent 140

Nov. 9/1880

185

70 C

184, 184

$$\begin{array}{r} 25150 + 5700 \\ \hline 200 \end{array}$$

$$\begin{array}{r} 184 \\ \hline 1368 \\ \hline 123 \end{array}$$

16

$$\begin{array}{r} 25150 \\ 5700 \\ \hline 20850 \\ \hline 15425 \end{array}$$

123; 154%; 154.25!

$$\begin{array}{r} 2.1875 \\ 2.1875 \\ 7.9100 \\ \hline 2851 \end{array}$$

$$\begin{array}{r} 192.7 \\ 150 \\ \hline 38 \end{array}$$

+ 38 ohms

71^c

metke no 2

213 - 215

31400 + 6700

200

16

72 e

Marker no 1

204 - 200

314.00 + 53.00

200

$$\begin{array}{r} 314.00 \\ - 53.00 \\ \hline 261.00 \end{array}$$

1.34115911.184.5

$$\begin{array}{r} 202 \\ - 200 \\ \hline 2.00 \end{array}$$

4.62

134.00

189.4

265.9

879.9

334.2

215

184.5

+ 30.5 Ohms

190

Stop here to test Dr

Nickles meter.

Lading wires .133 ohms

With meter .2.85

2.85
33

2.52 ohms.

This was when
I was in series.

191

781c

~~I think permanent-~~

228-228

228
228
456
152

37650 + 1500

2000

37650
1500
39150
195.75

152:154!! 195.75:

2916
1875
8182
2973

198
195.75

+ 2025

2 1/4 Ohms

75c

Nukie 402

$$\begin{array}{r} 195 \\ - 195 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 195 \\ - 195 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 1390 \\ - 130 \\ \hline 90 \end{array}$$
31400 + 3700

200

16

31400

3700

$$\begin{array}{r} 35100 \\ - 17515 \\ \hline 17585 \end{array}$$

19

190 : 154 : 175.5 :

$$\begin{array}{r} 2450 \\ - 1375 \\ \hline 8861 \end{array}$$

3166

$$\begin{array}{r} 201 \\ - 1753 \\ \hline 258 \end{array}$$

+ .255 Ohms

194

76

195

(Nucle no 2)

$$\begin{array}{r} 37650 + 4000 \\ \hline 200 \end{array}$$

16

$$\begin{array}{r} 37650 \\ 4000 \\ \hline 20 \end{array} \text{ J4P.8510 (208)}$$

77c

nickel A 02

210 - 210

37650 + 4500

200

16

$$\begin{array}{r}
 37650 \\
 4500 \\
 \hline
 42150 \\
 21075
 \end{array}$$

14.0 ; 15.4 : 210 3/4

$$\begin{array}{r}
 3237 \\
 1875 \\
 8539 \\
 \hline
 3651
 \end{array}$$

$$\begin{array}{r}
 232 \\
 210^{3/4} \\
 \hline
 + 21^{1/4} \text{ Ohms}
 \end{array}$$

198

238 2c
3476
158.
~~225~~
~~225~~

199

Nov. 9

Camp put them at this day
at 8:30 in the night.

74c lasted 10.9 o'clock

5c^e

65c Nov. 12

8c^e~~2c~~

200

10.10.32

Nov 9 '1

Meter Check at

9.53.

$$(10.3.32) \quad \begin{array}{r} 102721 \\ -10157 \\ \hline 1214 \end{array}$$

10.

$$\begin{array}{r} 10332 \\ -10157 \\ \hline 25 \\ 9 \end{array}$$

8

$$\begin{array}{r} 101567 \\ -10332 \\ \hline 1135 \end{array}$$

10.53

$$\begin{array}{r} 1053 \\ 1053 \\ -1063 \\ \hline 953 \\ \hline 1032 \end{array}$$

six

201

$$\begin{array}{r} 101567 \\ -10332 \\ \hline \end{array}$$

11.35 five lanes 5.

$$\begin{array}{r} 10157 \\ 102721 \\ \hline 1214 \end{array} \quad \left. \begin{array}{l} \\ \end{array} \right\} \text{Right}$$

$$\begin{array}{r} 103921 \\ 102721 \\ \hline 120 \end{array} \quad \left. \begin{array}{l} \\ \end{array} \right\} \text{Left}$$

$$\begin{array}{r} 50 \\ 32 \\ 311 \\ \hline \end{array}$$

12.0

$$\begin{array}{r} 103921 \\ -1214 \\ \hline 8135 \end{array}$$

$$\begin{array}{r} 105120 \\ 103921 \\ \hline 8159 \end{array} \quad \begin{array}{r} 68 \\ 50 \\ \hline 59 \end{array} \quad \begin{array}{r} 5220 \\ 6320 \\ \hline \end{array}$$

Right

$$\begin{array}{r} 11.15 \ 26 \\ - 11.59 \\ \hline \end{array}$$

$$\begin{array}{r} 26 \ 85 \\ - 27 \quad 25 \\ \hline \end{array}$$

$$\begin{array}{r} 62 \\ - 20 \\ \hline + 2 \end{array}$$

$$\begin{array}{r} 11.27 \ 25 \\ - 11.25 \\ \hline 39.29 \quad \begin{array}{l} 63 \\ - 51 \\ \hline 2 \end{array} \end{array}$$

$$\begin{array}{r} 3 \ 22 \\ - 11.59 \\ \hline 14.83 \quad \begin{array}{l} 75 \\ - 59 \\ \hline 26 \end{array} \end{array}$$

$$\begin{array}{r} 15.21 \\ \hline \end{array}$$

$$\left. \begin{array}{r} 10.15 \ 7 \\ 10.27 \ 21 \\ \hline 12.14 \end{array} \right\} \text{Right}$$

$$\left. \begin{array}{r} 10.39 \ 21 \\ 10.27 \ 21 \\ \hline 12 \end{array} \right\} \text{left}$$

$$\left. \begin{array}{r} 10.51 \ 20 \\ 10.39 \ 21 \\ \hline 11.59 \end{array} \right\} \text{Right}$$

$$\left. \begin{array}{r} 11.3 \ 22 \\ 10.51 \ 20 \\ \hline 12.42 \end{array} \right\} \text{left}$$

$$\left. \begin{array}{r} 11.15 \ 26 \\ 11.3 \ 22 \\ \hline 12.4 \end{array} \right\} \text{Right}$$

$$\left. \begin{array}{r} 11.27 \ 25 \\ 11.15 \ 26 \\ \hline 11.59 \end{array} \right\} \text{Left}$$

$$\begin{array}{r}
 11.89\ 33 \\
 11.59 \\
 \hline
 50\ 9\frac{1}{2} \\
 58\ 32
 \end{array}$$

$$\begin{array}{r}
 50 \\
 39 \\
 \hline
 11
 \end{array}
 \quad
 \begin{array}{r}
 20 \\
 62 \\
 \hline
 52 \\
 33 \\
 \hline
 49
 \end{array}$$

Right

$$\left. \begin{array}{r}
 11.39\ 33 \\
 11.27.25 \\
 12.8 \\
 11.51.22 \\
 11.39.33 \\
 11.49
 \end{array} \right\} \quad 205$$

Left

2.17609
 2.17609
 1.64640
7.162343
3.62201

4170 ft MSL

376.87 x \$0.800

225 — 225

376.87
10000

247687

238

16

225

225

450 Volts

150 Volts

$$\begin{array}{r}
 126 \\
 126 \\
 \hline
 756 \\
 252 \\
 \hline
 126 \\
 \hline
 15876 \\
 443 \\
 \hline
 47628 \\
 63504 \\
 \hline
 63504 \\
 \hline
 703306.6
 \end{array}$$

$$\begin{array}{r}
 182) 703306 (3860 \\
 \underline{5468} \\
 1593 \\
 1466 \\
 \hline
 1170
 \end{array}$$

~~79c~~

$$\begin{array}{r}
 190 - 190 \\
 31406 + 3800 \\
 \hline
 200
 \end{array}$$

16

$$\begin{array}{r}
 1.90 \\
 1.70 \\
 \hline
 3.60 \\
 1.26 \cdot \text{Volts} \\
 3.1406 \\
 5000 \\
 \hline
 36436 \\
 1.82 \text{ Ohms}
 \end{array}$$

210

γ_0^e

211

190 - 190

31406 + 4300

≈ 0.01

16. 178 $m\mu$

81 @

197 - 197

$$\begin{array}{r} 37687 + 4500 \\ \hline \end{array}$$

200

16

213 376800

214

82 e

215

203-205

37687+2700

16. - 28.0.10

216

83c

192 - 192

37687 + 750.0

16

175-01.00

217

218

84^e

219

210 - 210

37687 + 5600

16 223 0000

220

85^c

221

191 191

37684

16

188 chms

222

86c

223

202 - 202

37687 + 30000

16

203 chns

224

87°

225

192 - 192

3140.6 + 480.0

16

179.8ms

226

88e

227

195 - 195

37687 + 3000

16

2030m

228

89

229

185 - 185

31406 + 37000

16

175 - 160

230

90e

231

195 - 196

376.87 + 2000

16

198.2m

232

233

207-207

37640
 2406
~~282~~ 140 000
208
 36840 46407
 2840 6032
~~282~~ 139686 5862
 298.27) 52342
 34680 261
 3603
~~282~~ 38287
 291
 35687
 4686
~~282~~ 140387
 201
 5608
 3807
 5680
~~28~~ 140.95
70

15 slf. 1.1- 237
 13 " 2nd
 120 load to p.t. 150
 current broke on. 0nd
 0 slf.
 110 slf.
 122 slf.
 126 Nsf.
 123 Nsf.
 122 Nsf.
 0 Nsf.
 162 weight to 750 Nsf.
 160
 168
 170
 160
 164
 0 slf.
 150 Nsf.
 0 "
 105 "

$$\begin{array}{r}
 400 \quad 139 \\
 \underline{-162} \quad \underline{\underline{2}} \\
 3132\frac{1}{4} \quad 322\frac{3}{2} \quad 278 \\
 \underline{1087360} \quad \underline{\underline{2}} \quad \underline{92\frac{1}{3}} \\
 1440 \quad 4 \quad 214 \quad 120 \\
 \underline{\underline{2}} \quad \underline{\underline{3}} \quad \underline{\underline{2}} \\
 2860 \quad 406420 \quad 7005 \\
 \underline{\underline{61892139}} \\
 17260 \quad \cancel{7072} \\
 \underline{\underline{3}} \quad \underline{\underline{3}} \\
 31376 \\
 \underline{\underline{57840}} \quad 129 \\
 \underline{\underline{148}} \\
 103660 \\
 \underline{\underline{110321296}} \\
 4062.987 \\
 3041.987 \\
 31294.2 \cancel{8} / 111961 \\
 -98 \\
 \underline{\underline{5548}} \\
 142 \quad 130 \\
 \underline{\underline{31284}} \quad \underline{\underline{31260}} \\
 9.4 \frac{2}{3} \rightarrow 86\frac{2}{3} \\
 86
 \end{array}$$

Second 2 hours

142 left. 20 mins
 139 right. 22 "
 142 " "
 130 " "
 0 right.

3780
 4760
 3268
 4832
~~2000~~ 17970 ~~2000~~ 17540
 39 ~~57~~
~~3700~~
72680
3226 22216
~~2000~~ 727 ~~2000~~ 7006
368 ~~3042~~
~~1760~~ ~~2000~~ 1726
3246290
~~2000~~ 150926
 25472 4680
 47880 ~~3242~~
~~21000~~ 17140
~~2000~~ 15830 ~~12140~~
~~25472~~ 6613
 3604

204204,
37687 + 2500

16

242

92^c
mikell no ²⁴³

200 198

37687 + 40-000

16

244

93 e
Middle West 245

215-215

37657 + 1000000

16

246

94°
middle w/ 247

~~180 - 180~~ 182 - 182

31400 + 40000

16

248

95°
W.W.W. 249

200 - 200
37687 + 1500

16.

250

96^c

251

202-202

37687 + 4400

16

252

97C

253

200 - 200.

37687-6000

16

254

98^c

255

Borneo. This with
very large specimens.

256

257

~~101~~

180 - 180

31406 + 2500

16

258

259

~~106~~
~~106~~

175 - 175

31406 + 4000

16

260

102 e

261

187 - 187

376.80 + 170.0

16

262

$$\frac{956}{1000}$$

44

44 : 956 : 1 : 1

$$(4) \frac{956}{956} = 1$$

$$\frac{7.6}{3.22}$$

(2.1)

100^e

263

175 - 175

31406

16

266

109C

267

194-194

37 687 + 3000

106

268

X

269

195 - 198

37687 + 1700

16

270

99c

271

217-217

37687 + 9 ~~000~~

444

16

272

103C

273

220 - 279
37687 + 1000

16

274

104°

275

to high R

$$\frac{(BC + CE)(AB + EA)}{BC + CE + AB + EA} = \frac{BC \cdot AB, CE + BC \cdot AB, EA}{BC \cdot EA, BC + CE, EA, AB}$$

$$+ CE, EA, BC + CE, EA, AB$$

$$\frac{BC \cdot CE + AB, CE + BC \cdot EA + AB, EA}{BC \cdot CE + AB, CE + BC \cdot EA + AB, EA}$$

$AB, BC + AB, CE$

$+ BC, EA + CE, EA =$

$$BC = a, CE = b, AB = c, EA = d,$$

$$\frac{(a+b)(c+d)}{a+b+c+d} = \frac{ac}{a+c} + \frac{bd}{b+d}.$$

$$\frac{(a+b)(c+d)}{a+b+c+d} = \frac{ac(b+d) + bd(a+c)}{(a+c)(b+d)}$$

$$(a+b)(c+d)(a+c)(b+d) = ac(c+d)^2 + bd(a+c)(b+d)$$

$$+ ac(a+c)(b+d) + bd(a+c)^2$$

$$2abc^2d = ac^2 + b^2d^2,$$

too high R

$$\frac{a+b}{c+d}$$

$$\frac{ac + bd}{a+c + b+d}$$

$$\frac{a^2c + abc + a^2d + abd + ac^2 + bcd + ad^2 + bdc}{b+d}$$

278

abe abe

cela

$$bc^2 = \underline{bc}$$

$$\lambda = \underline{(Be + Ce)(ab + ea)}$$

$$\underline{Be + Ce + ab + ea}$$

$$BC.AB(CE+EA) + CE.EA(BC+AB)$$

$$\underline{AB.BC + AB.CE + EA.BC + EA.CE} = \\ BC + CE + AB + EA$$

$$\frac{AB(BC+CE) + EA(BC+CE)}{(BC+CE)+(AB+EA)} = \frac{BC.AB + CE.EA}{BC+AB} = \frac{CE.EA}{CE+EA}$$

$$(BC+CE)(AB+EA)$$

205

279

$$\begin{array}{r} 205 \quad 205 \\ 37650 + 1000 \\ \hline \end{array}$$

16

280

$$\begin{array}{r}
 \text{Be} + \text{ce} \\
 \text{ab} + \text{ea} \\
 \hline
 \text{abc} + \text{abee} \\
 \text{beea} + \text{e}^2\text{a} \\
 \hline
 \text{ab}^2\text{c} + 2\text{abee} + \text{e}^2\text{a} \\
 \hline
 \text{Be} + \text{Ce} + \text{ab} + \text{ea}
 \end{array}$$

281

$$\begin{array}{r}
 4 \quad \frac{32}{5} \\
 \hline
 160
 \end{array}$$

$$\begin{array}{r}
 57 \\
 - 160 \\
 \hline
 4
 \end{array}$$

$$\begin{array}{r}
 45 \\
 - 405 \\
 \hline
 160
 \end{array}$$

$$\begin{array}{r}
 555 \\
 - 113 \\
 \hline
 \end{array}$$

$$\begin{array}{c}
 \text{ce} \\
 \text{ca} \\
 \hline
 \text{abe} \\
 \text{be} \\
 \hline
 \text{ab}^2\text{e} \\
 \hline
 \text{be} + \text{ab} \quad \text{ce}^2\text{a} \\
 \end{array}
 \qquad
 \begin{array}{c}
 \text{ee} \\
 \text{ea} \\
 \hline
 \text{ee} \\
 \text{ea} \\
 \hline
 \text{ce}^2\text{a}
 \end{array}$$

$$\begin{array}{c}
 \text{ab}^2\text{e} \\
 \hline
 \text{be} + \text{ab} \quad \text{ce}^2\text{a} \\
 \end{array}$$

$$\begin{array}{c}
 \text{abe} \\
 \text{cta} \\
 \hline
 \text{ee} \\
 \text{ea} \\
 \hline
 \text{e+a}
 \end{array}$$

675

C
O
N
A
C
H
B
S
P
E
L
B
S
G

70 ✓
76 no 2
72 ✓
74 ✓
75 ✓
77 ✓
82 ✓
65 ✓
63

Menlo Park Notebook #176 [N-80-00-07]

This is the third of three notebooks that contain the results of a search, conducted by Otto Moses during the summer of 1880, for literature relating to the electric light. (See also Menlo Park Notebooks #127 and #128.) The citations are listed in alphabetical order by author. There are two sets of listings, beginning on pages 2 and 88. The book contains 284 numbered pages.

Blank pages not filmed: 98-284.

LIBRARY OF THE
BOARD OF PATENT CONTROL,

120 BROADWAY, NEW YORK.

*From Library
GENERAL ELECTRIC
44 Broad St. N.Y.*

May 1, 1896

Pritchell, J. J., 47.

Provenzale, P. F. S., 2.

Q

Ducket, E. J., 3

—, 7.

Duct, —

—, 6.

Loop. On the action of thin threads in the focus
Clamp of a lens.

Baumgartner Zeitschr. II, 1833.. 154-159

Insu. On the influence of heat on the electric con-
duction. ductivity of wires.

Torbellini, Annali, IV, 1853.. 74-78

Fibre. On the direction of the fibre in the interior
of the spiral vessels of plants.

London, Philos. Journ. 1843.

" On the nature of vessels possessing long
itudinal as well as spiral fibres found
in certain plants.

Microsc. Soc. Trans. I, 1844.. 157-159

A Light. Note relative to the action of electro-
magnets on the voltaic arc.

Comptes Rend. XXXIV, 1852.. 805-807

" On some facts relative to the current
and to the electric light.

do., XXXV, 1852.. 949-952

Quet, - 16.

Ducellet, L.A.J., 53.

Querval, Jules

Quintal, G., 2.

Quintus-Jacius, G. von, 2.

Electro- Note on a phenomenon of polarity in the
lysis decomposition of gas by the electric spark,
and on the products obtained in decompos-
ing alcohol by the electric spark or heat.
Comptes Rend., XLVI, 1858..903-905

Photo. On a photometer proposed by M. de
Metz illaistre for measuring the splendor
of stars.

Bibl. Univ., LII, 1833..212-216

Dyna. Means of suppressing residual mag-
-netism. &c.

An. Telegraph., II, 1859..409-413

On the distribution of an electric
current in metal plates.

Pogg. An. XC VII, 1856..382-386

Loop O, The changes of temperature which
Clamps a galvanic current produces by its
passage through the contact surfaces
of two heterogeneous metals.

de., LXXXIX, 1853..377-382

Quintus-Icilius, G. von., 14

Raymond, G. M., 6.

Reade, J. B., 3.

— 19.

Reden, L. von., 2.

Loose On the numerical value of the constants
in the formula for the electro-dynamic
heating of metallic wires.
Jug. Ann. Cl., 1857.. 69-105.

Pro. Letter on the photometer of all. Nicod.
tometer *Bibl. Univ. II, 1816.. 240-242.*

Fibre On the chemical composition of vegeta-
ble membrane and fibre.
Phil. Mag. XI, 1837.. 421-428.

Moulds. The process of charring vegetable tis-
sue as applied to the examination of
the stomata in the epidermis of garden
shrubar.

Microsc. Soc. Trans. I, 1844.. 40-43.

Dyna. On the employment of electro-mag-
netism as a motive power.

*Dingler Polyt. Journ. LVIII, 1840..
332-337.*

Reiset, J., & E. Miller

Russek, S., 19

Reithinger, E., 9.

Reynard, E., 4.

Renaux, J.

Reithinger, E., 2.

Memoir on chemical phenomena due to contact.

Comptes Rend. XVI., 1843. 1190-1194.

Fibre The tissue of flax, hemp, maguey & cotton
Wien. Denkschr. IV., 1852. 127-178

On tones in the closed galvanic circuit
Wien. Sitz. Ber. XLV., 1867a. 2.) 1862.
1253.482.

Fibre Note on the bamboos of Ceylon &c.
Bamboo. Paris, Soc. Académ. Bull. III., 1857. 253-255

On a new system of silk spinning
in which a hydrocarbon gas is sub-
stituted for steam
Lyon Soc. Agric. Annal IV. 1841. 93-104

Note. On the sources of light.
metry Wien, Schrift. Ver. Naturw. Kents.
II., 1861-62. 47-68

Reynaud, L.

Rhuland, —

Ricke, A., 3.

Riddle, J. L., 9.

Rieker, H.

Ries, Peter. 4 + 5, 7 + 9.

E. & A. Illuminating lighthouses with the
light electric light.

In Tel. VI, 1863. 369-384.

Cala. Memoir on the absorption of atmospher-
ical air by bodies.

Journ. de Phys. LXXXIV, 1817. 88-99

Electro Researches on the action of the electric
current on chlorine, bromine, iodine
in presence of water.

Comptes Rend. XLVI, 1858. 348-352

Meter Fish rod balance &c.

Silliman Journ. XXVI, 1858. 71

Vacu. On the production of cyanogen from
air. the nitrogen of the air.

Göttingen. Nachrichten 1851. 177-178

Meter On the heat in circuit of galvanic
battery.

Ann. de Chem. LXIX, 1838. 113-150

Ries, Peter, 23

—, 53

—, 76.

Riley, E., 8

Ritchie, W^m, 26.

*Light On the heating to incandescence
and melting of metal wires by elec-
tricity.*

Pog. Am. LXXV., 1845.. 481-536.

*G. Light On the passage of electric currents
through attenuated air.*

do., XCVI., 1855.. 177-194.

Phil. Mag. X., 1855.. 313-328.)

*Light On the dependence of electric currents
clamps. on the form of their closing.*

do. CXVII., 1862.. 457-436.

*On the action of steam water on a boiler.
Engineer Soc. Trans. 1862.. 45-5)*

*Dyna. On the power of an electro magnet to retain
met. its magnetism after the battery has been re-
moved.*

Phil. Mag. III., 1833.. 122-125

Ritchie, Wm., 44

Rittenhouse, David, 17.

Roberts, M. J., 4. + 11.

Robinson, J. R., 27.

—, 50

*Eighth experimental research on the conducting
power of wires for electricity and on the heat
developed in metallic and liquid conductors.*

Roy. Soc. Proc. III., 1837.. 482.

Wood On the expansion of wood by heat.

Tellur Phil. Mag. X, 1801., 343-345.

Meter Description of a new voltmeter

Sturgeon Am. Elect. IV, 1837. 40.. 401-402

" *On the influence which finely divided plati-
num exerts on the electrodes of a voltmeter.*

Brit. Ass. Rep. 1846. (pt. 2) 46-47.

*Spectro On the spectra of electric light, as modi-
fied by the nature of the electrodes and
the media of discharge.*

Phil. Trans. 1862.. 939-986.

*Light On the relation between the temperature
of metallic conductors and their resistance
to electric currents.*

Irish Acad. Trans.

Rodgers, R. E., 2.

Rodgers, Wm 13.

Rollmann, W., 12

Rose, Heinrich, 150

Roussel, Martial, 4

Roux, F. P.

Vacuum On a new process for obtaining pure carbonic
Silliman Journ. 1, 1846. 428

G. Light On the phenomena of electrical vacuum
tubes.

Brit. Ass. Rep. 1860. pt. 2, 37-31.

The Faraday instrument set in motion
by the galvanic current.

Pig. Am. CV, 1858. 620-622.

Loop. On the contents of silica in the equisetum.
Fibre et av.

do, LXXVI, 1849. 359-361.

Aero. Notice on the direction of aerostato
statics Amiens, Mem. Acad. Sci. 1848-50
141-152.

Dyna Studies on magneto electric machines.
1105. Bibl. Univers. Archives XXXIII. 1856..
198-213.

Roxburgh, Wm., 10.

Rumford, Benjamin (Count), 27

Ruprecht, F. J.

—, 8

Ruschenburger, W. S. W.

Fibre On the culture, properties and comparative strength of hemp, and other vegetable fibres the growth of the East Indies.

Nicholson Journ. XI, 1805.. 32-47.

Shades Observation on the dispersion of light in lamps by means of screens of ground glass, silk stuffs, &c.

Paris Mem. de l'Institut. 1807-(Sem. 1)
223-248.

Fibre Monograph on the Bambusaceae
Bamboo. St Petersburg, Mem. Acad Sci. V. 1840
(pt. 2), q1-1607 (Bot.)

" Chuppe-tall; a new wild bamboo cane from the Russian Empire.
do., VIII, 1850.. col. 121-126.

Fibre List of the plants of Chile

Silliman Journ. XXIII, 1833.. 78-96,
250-272.

Rutter, J. C. V., 2.

Gabino, Robert

Sadler, J. H.

Sage, B. G., 33

Sainte Edme, E., & A. Terreil

Sainte Claire Deville, 54

Photo. On the intensity of different kinds of lights.
Meter Dingler Polyt. Journ. LXXX., 1834, 181-186

Merc. Some remarks on a paper of Dr A. Matheny Sisson and Co Wright on the influence of traces of foreign metals on the electric conducting power of Mercury.
Phil. Mag. XXIII., 1862, 1457-1460

Fibres Notes on Indian fibres.

Brit. Ass. Rep. 1858 (Pt. 2), 195-197

Dyna. Means of giving copper the color grain
and hardness of steel.

Tilloch, Phil. Mag. XX., 1805, 159-160.

Cata. Observations on the condensation of
lysis gases by porous bodies, and on their ab-
sorption by liquids.

Comptes Rend. LXI, 1860, 371-372

" On the influence which the walls of
certain vessels exercise on the composition

Sainte-Claire Deville, H., 54

Savio, Carl, 3.

—, 9.

Sauvage, N. J., 9

Saweljoff, Alexander, 6

—, 8

of the gases which traverse them.

Comptes Rend., LII, 1861, 524-527.

Wood. On the crystalline deposits which occur in the barks of dicotyledonous woods, and on their anatomical distribution.

Berlin, Monatsber. 1857, 252-272.

" Some remarks on the structure of wood.

Botan. Zeitung, XVIII, 1860, 193-198,
201, 204, 209-217.

Loos. Observation on the decomposition of the phosphates of potash, soda and lime, by carbon at a very high temperature.

Brugnatelli, Giornale I, 1808, 198-200.

Meter. Investigations on the galvanic resistance of liquids in some special cases.

Pogg. Ann. IV, Ergänz., 1854, 456-457.

" On galvanic conductivity of liquids.

Erman Archiv. Russ., XX, 1856, 58-136

Gaxton, Joseph.

Scarpullini, Caterina., b

Schafhäutl, C. E., 12.

—, 52

—, 53

Schinz, C.

Diss. Description of a working super magnet for ames. producing electrical currents.

Franklin Inst. Journ. XIII, 1834. 155-156.

On the magnetic and diamagnetic state
of gases.

Roma, Comsp. Scient. II, 1853. 153-154.

Photo. Description of a new universal photometer.
metry Civ. Eng. Inst. Proc. 1841. 101-103

Photo. Description of a universal vibration
metry Photometer.

München, Abhandl. VII, 1855. 465-495

" On Photometry; and of an instrument
for measuring the intensity of sound.
do., VII, 1855. 499-525.

Furnace Gas furnace with self regulator, for
metallurgical and other operations
where an intense heat is required.

Dingler Polyt. Journ. CLXII, 1856. 261-279

Schleiden, M. J., 6

Schlossberger, J., 51.

Schneider, F. C., 6.

Schönburgk, R. H. Sir, 22

Schönbein, G. F., 38

Fibre Some remarks on vegetable fibre &c. (see 7.)
Pog. Ann. ~~Exxxtt~~, XLIII., 1838.. 391-398

* On a solvent for ligneous fibre.
Journ. de Pharm. XXXIV., 1858.. 393-394

Vacuum Remarks on the production of purgated
Trommsdorff, Journ. d. Pharm. XII.,
1804.. 63-72.

Mercury On the chemical and electrolytical
relations of Quicksilver.
Wien. Sitzungsber. XL, 1860.. 239-269.

Fibre Some account of the 'curata' a grass of
Bamboo the tribe of Bambusaceæ of the culms
of which the Indians of Guiana pre-
pare their 'curbacans' or blowpipes.
Linn. Soc. Trans. XVIII., 1811.. 557-562.

Claypoles Observations on the electric polarization
meter. of solid and liquid conductors.
Pog. Ann. XLVI., 1839.. 109-129.

Schönbein, C. F. 162

—, 166.

—, 188

—, 191

—, 230

Vacuum On the influence of the noble metals on the chemical activity of oxygen.

Erdman Journ. Prakt. Chem. LIV.,
1851.. 65-73.

- Letter to Mr. Faraday on the joint influence exerted by light and the oxidability of certain substances upon common oxygen:

Phil. Mag. II., 1851.. 22-26

" On the influence of Quicksilver on mercury the chemical activity of Oxygen.

Basel, Bericht X., 1852.. 36-39

Vacuum On the relation of Oxygen to Electricity, Magnetism and Light.

do., X., 1852.. 42-50

- On the influence of heat on the chemical activity of Oxygen.

Basel, Verhandl. I., 1857.. 355-367.

Schönbein, C. F., 245

—, 246

Schwabe, H., 94

Schweigger, J. S. C., 105

Scorsby, (Rev^r), William, 3.

Data On the mutual catalysis of a series of
lysis oxides, peroxides, and oxy-acids &c.
Troy. Am. CV., 1858.. 268-289

Vacuum On the influence of platinum on
chemically combined oxygen.
do, CV., 1858.. 258-265

Fire On flexible plants.

Arithmet. Verhandl. Nat. Hist. Ver.
XX, 1861.. 20, 25-26.

[On magnetism in its acoustic relations.
Halle, Akad. Nat. Gesell. III, 1855.
145-163.]

Wood Experiments of the effect of the pressure
loop. of the sea at great depths, in augment-
ing the specific gravity of different
kinds of wood.

Edinb. Phil. Journ. I, 1819.. 363-369

Scoreby, Rev. Wm & J. P. Joule

Scott, Robert

Segelcke, Thomas

Séguin, ainc'

Séguin, Armand, 3

Séguin, J. M., 8

Dyno On the mechanical powers of electro-magnetism
mot. steam and horses.

Phil. Mag. XXVIII, 1846, 448-455

Fibre Remarks on the growth of *Bambusa arun.*
Bambudinacea in the large conservatory at Chats-
worth.

Ann. Nat. Hist. IV, 1849, 120-121.

Fibre Notes on the current methods for determining
the cellular matter, or woody fiber in vegeta-
ble food stuffs.

Brit. Ass. Rep. 1859 (pt. 2), 79-82.

[On the spirit of invention

Mosino Cosm. XXII, 1863, 664-664 3

Vacuum On the combustion of hydrogen in closed
vessels.

An. de l'Académie IX, 1879, 30-50

" Note on the decomposition of several gales
by the electric spark; when in presence of an

Seguin, J. M., 8.

—, 11

Selmi, Francesco, 10

Serrell, E. W., 1

—, 2

Serrin, — 1 + 2.

L'azotin inert gas.

Nancy, Acad. Scienses, 1861.
350-355.

" Of the electric spark in composite gases.
Morgue, Cosmos, XX, 1862. 477. 478

Electro. On the solubility of iodine in carbonic liquors.
Lycée L'Institut, XII, 1844. 412.

[On magnetizing locomotive wheels by
curved helices, and experimental results.
Amer. Acad. Proc. ETR, 1859. 215-216.]

Description of a magnetic apparatus for
adding adhesive force to the driving wheels
of locomotives.

Frankl. Inst. Journ. XXXVIII, 1857.
289-292. 3

7. Light Automatic regulator of the electric light.
Comptes Rend. L, 1860.. 903. 905

Sertürner, F. W. C.

Sgarzi, G., 13.

Sharpay, Wm.

Sibson, A.

Siebold, Ph. Franz von, 4.

Cata. On animal coal.

-lysis. Thommsd. Journ. d. Pharm. XX, 1811.
110-111

Fibre Observations on the inner structure of
the fibre of flax and cotton.

Bologna, Nov. Comment. IX.. 1849.
255. 282.

Mercury On a peculiar motion excited in fluids by
the surfaces of certain animals.

Oken, Ind., XXV, 1831.. 434-437

Furnace Description of a simple gas combustion
furnace.

Chem. News. I, 1860.. 62-64

Fibre Synopsis of the economic plants of the
Japanese empire.

Batav. Genootsch. Verhand. XII, 1830.
* 1-73.

Siemens, Werner, 7.

Silliman, Benj., 26

—, 142.

—, 61

Silliman, B. (Jr.) + C. H. Porter

Dyna. On a new construction for magneto-electric
mot. machines.

Peg. Am. Cl., 1857.. 271. 274

Globes Fluoric acid of Gay-Lussac, and its ap-
plication to the etching of glass.

Silliman Journ VI, 1823.. 354-356

Aero. Aerostation; some remarks upon it.
statico do, XII, 1827.. 325-330

Dyne. Notice of the electro-magnetic machines
invent of Mr. Thomas Davenport.

do, XXXII, 1837.. 1-8 (App.).

Photo. Notice of a Photometer and of some ex-
periments therewith upon the comparative
power of several artificial means of il-
lumination.

do, XXIII, 1857.. 315-318

Singer, G. J., 14

—, 12

Smith, A., Jr.

Smee, A., 8

Lochting, E., 16.

Solly, E.

Observations on the igniting or wire melting power of the voltaic battery, as proportioned to the number of plates employed &c.

Nicholson, Journ. XXIX, 1811.. 29-33

The electric column considered as a main-taining power, or first move for mechanical purposes.

Tillocke Phil. Mag. XLV, 1815.. 359-363

Electricity in machinery.

Silliman Journal XXXIX, 1840.. 134-136

On the cause of the reduction of metals from solutions of their salts by the voltaic circuit.

Roy. Soc. Proc. IV, 1843.. 447-448

A simple regulator for an electric light.

Pogg. Ann. CIX, 1860.. 182-184.

On the conducting power of iodine, bromine, and chlorine for electricity.

Phil. Mag. VIII, 1836.. 130-131

Solly, E., 5

Soret, J. L., 7

—, 13

Spencer, Thomas.

Stadelier, G., 128

Meteu On the precipitation of copper by voltaic electricity.

Phil. Mag. XVI. 1840.. 309-315

" On the decomposition of the salts of copper by the pile and the law of electro-chemical equivalents

Annales Chem. XLII., 1854. 257-277

Dyna. 3rd Memoir on the heat disengaged by the
work current in the portion of the circuit which
Meteu exercises an external action and on the
relations between the value of external
work and the intensity of the current.

Comptes Rend. XLV., 1857.. 301, 304, 380-382

" Notices of experiments on the deposition
of metals by voltaic action.

Brit. Ass. Rep. 1839.. (Pt. 2) 38-39.

On vessels for keeping fluoric acid.

Liebig Ann. LXXXVIII., 1853.. 137-138

Starr, J. W.

Stas, J. S., 3

—, 7

Steinberg, Carl, 2.

Steinheil, C. A. von, 7.

—, 14

Dynamat. voltaic regulator.

Walker, Elect. Mag. II, 1846. 301-302

On the action of hydrogen on some
chlorinated matters.

Bruxelles, Acad. Sci. Bull. VIII,
1841, 162-164.

Researches on the veritable atomic weight
of carbon. (see in carbon.)

do., X VI., 1849. (pt. 1) p. 34

4. Discovery of iodine compounds in
solutions by the galvanic battery.

Erd. Journ. Prakt. Chem. XXV., 1842.
379-391

Steinheil's Photometer

Pog. An. XXXIV., 1835. 644-657

On a new spring balance.

Münchener Göttinger Anzeiger. VIII.,
1839. 817-820.

Steinheil, C. A. von, 19.

Stelzhammer, J. C.

Stenhouse, John, 21.

Stevenson, Helen, 3.

Stevenson, W. F., 2

On a photometer for measuring the strength
of the light of the stars. (see 42.)

Munch. Gelehr. Anz. XV, 1842. 9-11

On Degen's flying machine at Vienna
Ges. An. XXX. 1805. 1-2; XXXI, 1809.
192-203.

On some of the substances which reduce
oxide of silver and precipitate it upon glass
in the form of a metallic mirror.

Silliman Journ. XLIX., 1845. 398-399

Notice of experiments regarding the credibility
of lights in rapid motion, made with a
view to the improvement of lighthouses,
and of some peculiarities in the impression
made by them on the eye.

Edinb. New Phil. Journ. XXXII, 1842.
270-278

On the peculiar cooling effects of hydrogen
and its compounds in voltaic ignition.
Roy. Soc. Proc. V. 1849. 707

Stodart, James, 4

Stöhrer, Emil., 1

—, 2.

—, 3.

—, 4.

Precipitation of platinum as a covering or
disease to polished steel and also to brass.

Nicholson Journ. XI, 1805.. 282-284

Dynamo Some remarks on the construction of mag.
neto electric machines, and description of
compound magneto-electric machines.

Proc. Am. LXI, 1844.. 417-430

Dynamo Some experiments to employ in rotary mo-
tion that force which the electric spiral
exercise on a magnet contained in it.

do., LXIX., 1846.. 81-92

4 Contributions to the perfection of the mag.
neto-electric rotary apparatus. &c.

do., LXXVII., 1849.. 467-485

4 On the employment of magneto-elec-
tric machines and constant piles in
electrotelegraphy.

do., LXXVII., 1849.. 485-493

Storer, F. H., 6

Strait, H.

Stripe, G. H.

Studnicka, F. J.

Sturgeon, Wm., 2

Shades Experiments on the loss of light by glass shades
Silliman Journ. XXX., 1860. 420-424.

Aero. On aerial navigation.

nautis Silliman Journ. XXV., 1834. 15-26

Dyna. Description of a new electro-magnetic coil
-mos. machine.

Sturgeon, Am. Elect. VII., 1841. 211-212

On the identity of light and heat rays
of equal refrangibility.

Wien Sitz. Ber. XLIV., 1861. (No. 2, 289-296)

Dynamat. An experimental enquiry into the
relative value of electro-magnetic
machines and the voltaic battery as
an instrument of research.

Roy. Soc. Proc. III., 1836. 442-443

An experimental investigation of
the influence of electric currents on
soft iron, as regards the thickness

Sturgeon, Wm 33

Sullivan, W. H. 2.

Tait, Peter G. 3.

Tate, Thomas & W Fairbairn

of metal requisite for the full display of magnetic action; and how far thin pieces of iron are available for practical purposes.

Sturgeon, Dr. Elect. I. 1836-37,
470-487.

On currents of electricity produced by the vibration of wires and metallic rods.

Phil. Mag., XXVIII, 1845, 261-264

* On the action of the electrical discharge on oxygen and other gases. (see 1. & 2)

Roy. Soc. Proc. X., 1889-90, 427-428

On the resistance of glass globes and cylinders to collapse from external pressure, and on the tensile and compressive strength of various kinds of glass.

Phil Trans. 1859.. 213-247

Tatum, John, 2

—, 1.

Taylor, C. B., 2

Thomas, James

Thompson, Sir, Wm., 54

On the increase of temperature produced by the galvanic action.

Nicholson, Journ. XVII., 1807.. 149-157.

Account of a fact, not hitherto observed, that the galvanic power heats water while decomposing it in part.

do., XVI., 1807.. 81-82.

Particulars regarding the fibrous properties of the Jester plant (*Asclepias tenacissima*, Roxburg), with a comparison of strength of its rope with other India Agric. Soc. Journ. III., 1844 221-228.

Transmission of galvanic light through metals of different conducting powers.

Silliman Journ. XXIV., 1838.. 205-206

On the sources of heat generated by the galvanic battery.

Brit. Ass. Rep. (Pt. 2), 16-17.

Thompson, Sir, 10^m, 96

—, 100

—, 121

Tilley, T. G., 3

Tomlinson, Charles, 23

Tongue.—

Com.—On the electric conductivity of conductors, and copper of various kinds Perfect. Roy. Soc. Proc. VIII, 1856-57, 550-555.

Loop. On the mechanical action of radiant heat or light.

Edinb. Roy. Soc. Proc. III, 1857-108-114

Meter. On instruments and methods for observing atmospheric electricity.

Glasgow Phil. Soc. Proc., IV, 1860, 274-280

Loop. On a peculiar condition of zinc produced by a long continued high temperature.

Brit. Ass. Rep. 1844 (pt. 2), 35

Mercury. On the spheroidal condition of liquids at ordinary temperatures.

Phil. Mag. XXVI, 1863, 437-441.

Wood. Desiccation of woods.

Toulouse Mem. Acad. IV, 1839, 7-10.

Trail, J. S.

Tremery, J. L. 3

Trevelyan, Arthur 1 + 2 + 3

Treviranis, L. G., 7

Truchsess, von.

Pump Description of an exhausting machine
mercury on the principle of the Torricillian vacuum
Nicholson Journ. XXI, 1808.. 63-66

Carry - Examination of electric phenomena which
do not accord with the theory of two fluids
Gilbert Am. XXXIII, 1806.. 136-436

Loose - Notice concerning certain vibrations of heat.
Edinb. Journ. Sci. VI, 1832.. 141-143

Mercury On the filling of barometer tubes with
Quicksilver, cleansing of quicksilver,
and an apparatus which serves for boiling
it out.

Dingler, Polytech. Journ. CXXXII, 1854
187-198.

On the texture of vegetable fibres
Deutsch. Naturf. Versamml. Bo-
richt 1840.. 132-133.

Tyndall, John, 8.

—, 16.

—, 48

—, 49

—, 55

Ure, Andrew, 36

On the influence of material aggregation on the manifestations of force.

Roy. Inst. Proc. I, 1851-54.. 254-259

loop On molecular influences. Transmission of heat through organic structures.
Phil. Trans. 1853., 217-232.

Vacuum On the influence of magnetic force on the electric discharge (see 58,
Roy. Inst. Proc. III, 1858-62.. 169-171.)

On the action of gases and vapors on radiant heat.
do, 1858-62.. 295-298

loop On vibrations produced by an electric current.

Phil. Mag. VII, 1859.. 417-419

Photo. On photometry, or a mode of measurement using diffuse daylight comparatively at any time, and place.

Brit. Ass. Rep. 1839(1st. 2) 7-8.

Varley, S.

Vergues, M., Andri Poey

Viard, —

—, 2

Violette, —, 3

Vitry, M., 2.

On the irregularity of rate of lime pieces,
occasional by the influence of magnetism.

Tellur. Phil. Ullag. I, 1795.. 16-21

Mercure On the application of electrochemistry to
the extraction of metals introduced and
remaining in the organism.

Bibl. Univ. Archivæ, XXX. VIII., 1855.. 205

Clamps On the electrochemical role of oxygen.

André Céleste XXXIV, 1852.. 129-155.
XLII, 1854.. 523.

Sorop. On the heat developed by electricity in
its passage through wires.
do., XLIII, 1855.. 304.. 314

Mercury Memoir on distillation of mercury by
superheated steam.

Comptes Rend. XXXI, 1850.. 546.. 547.

On photometry applied to public illumination
Toulouse, Min. Acad. VI, 1850.. 255.. 261,

Vogel, H. A. von, 12.

—, 13.

Vogt, Carl. & A. Matthiessen

Voit, Carl., 2.

Vosselman de Heer, P. O. C., 5

—, 8

Mercury memoir on the action of different elastic fluids on mercury.

Journ de Phys. LXXV, 1817.. 45-55

- Experiments on the action of different gases on quicksilver, without raising their temperature.

Schweigger, Journ. IV, 1812. 393-409

- On the influence of traces of foreign metals on the electric conductivity of quicksilver &c.

Pogg. Ann. CXVI, 1862.. 369-392.

On the introduction of quicksilver and its compounds into the body.

Leipzig, Ann. CIV, 1857.. 341-367.

Dynamo or electro-magnetism as a motive power.

Pogg. Ann. XLVII, 1839.. 76-100

On the thermo-electricity of quicksilver.

do., XLIX, 1840.. 114-122.

Vosselman de. Mar., P. O. 6, 9

Wagenmann, 6, 4

Wahren, — 3

Walker, Chas. V, 26

—, 34

Walker, (Prof.) Robert

Loops Some observations on the resistance which
electric currents experience in passing
from solid conductors into liquid.

Bibl. Musicae Antiquae, I, 1841. 539-554.

Vacuum On the distillation of phlogism, and
paraffin oil in vacuo.

Dingler Poly. Journ. CXXXIX, 1856. 143-148

Mercury Observations on the state of mercury
and mercurial ointment and other
preparations made by triturating
mercury with different substances:

Bull. de Pharm. II, 1810. 193-206

Meter Notice of Mr. Bain's Voltaic Governor.

Walker, Elect. Mag. I, 1845. 112-116.

Loops On platinized graphite batteries.

Roy. Soc. Proc. IX, 1857. 59. 628-633

Clamp. On the magnetic condition of oxygen.
Vacuum. Astronol. Soc. Proc. II, 1843. 52-285-287

Wallace, Alfred R., 18

Waller, Augustus

Waltinshofen, A. von, 3

—, 4

Ward, W^m S., 6.

Warington, Robt., 22

Bambu On the Bamboo and Durian of Borneo.
J. Bot. Soc. Journ. Bot. VIII, 1856.. 225-230

Mercury On the colored films formed by iodine,
bromine and chlorine upon various
metals.

Phil. Mag. XXI, 1842.. 426-437

Pump. Notice on John Kravogel's quick-
silver air pump.

Pop. An. CXVII, 1862.. 606-616

Dyna. On residual magnetism in iron.
—mod. do, CXIV, 1863.. 650-653

Loop On some phenomena and motions
of metals under the influence of mag-
netic force.

Roy. Soc. Proc., V, 1849.. 855-856

Shades Method of silvering glass.

Phil. Mag. XXV, 1844.. 546

Wartmann, Elie, 3

—, 37

—, 38

—, 42.

—, 58 + 60 + 65

On the relations which unite light to
electricity when one of the two fluids pro-
duces a chemical action.

Archives de l'Electricité II, 1842.
596-600.

Mercure On the relations of electricity with bodies
Pumpkin the spherical state &c.

Lausanne, Bull. Soc. Philad., XII, 1846,
48, 341-353.

[Does induction affect the acoustic
qualities or properties of elastic bodies.
do., 1846-48, II, 353-359]

Dynamos On a new case of electromagnetic ro-
tation.

Majocchi An. Phys. Chem. XXVII,
1847.. 54-56.

Description of an apparatus destined
to establish immediate correspondence
between any two stations on the same line.
Bibl. Usines. Archives XXIII, 1853. 5-24]

Wartmann, Elie, 61

—, 62.

—, 59

—, 63

Wartmann, L. F.

Watkins, F. 2.

A light On electric lighting.

Bibl. Univers. Archivias. XXXIV, 1857. 333-334.

Loop. On the effect of pressure on electric conductivity in metallic wires.

Roy. Soc. Proc. IX, 1857-59. 615-616.

" Researches on the conductivity of minerals
for insulate electricity.

Phil. Mag. V. 1853.. 12-16

Governor Description of a voltaic compensator
for maintaining a constant intensity
in any rule.

Bibl. Univers. Archivias. I, 1858. 26-32.

[Notice of a process by means of which
iron can be pierced in a few seconds.

Bibl. Univers. Archivias. XXXIII, 1858.
228-232.] in editio nova. Bibl. 1859. 477

Dyna. On the magnetic powers of soft iron.
1858.

Phil. Trans. XXXIII. 1853. 333-342

Watkins, Francis, 3.

—, 4.

Watt, Charles

Weber, —

Weber, Wm E., 39

Dynamos On magneto-electric induction.
Phil. Mag. VIII, 1835. 107-113

" On electro-magnetic motive machines.
Phil. Mag., XII, 1838. 190-196.

On a direct combination of oxygen
with atmospheric air, forming the bin-
oxide of azote, or nitrous gas, by the trans-
mission of these gases through a porcelain
tube heated to a bright redness.

Chemist, I, 1840, - 14.

Dyna. On magnetic friction and its possi-
ble mod. employment on railroads.

Dirigier Polytech. Journ. LXXXVI, 1842,
22-28.

Meter measurement of strong galvanic currents
of small resistance by absolute measure.

Pogg. Ann. LV, 1842. 151-158

Weber, Wilhelm Ed., 45

—, 46 & 51.

Whittemore, Wildman, 2

Wiedemann, G, 6

Wild, H.C., 1 & 4 & 11

—, 8

Dyna. Measure of the utility of magneto-electric
mot. machines.

Pog. Ann., LXI., 1844. 431-448
also LV.

Electro dynamic measurements.

do., LXXIII., 1848. 193-240

Weber On the construction and use of an instrument
for determining the value of inter-
mittent or alternating electric currents
for purposes of practical telegraphy.
Brit. Ass. Rep. (pt. 2) 1856. 19-21.

" On the streaming of liquids from the
loop position to the negative pole of a closed
carrying galvanic circuit. / see 7 & 9 & 12
Berlin. Bericht, 1852. 151-156.

Photo. On a new photometer &c.

metry. Pog. Ann. XCIX., 1856. 235-274

A few Experiments on an explanation of a
clampl.unipolar heating in the galvanic arc.

do., CXI., 1860. 624-630

Wida, R.,

Wilkins, J.

Williams, —

Williams, Octavian.

Willigen, W. Sell. vander, 2.

Photo. New Photometre and Polarimetry.
Schweizer Gesell. Verhandl. XLVI, 1862.
107-108

Fibre Note on the comparative strength of jute, flax, hemp, & Crotalaria tenuifolia, & other fibres
India. Journ. Agr. Soc., VIII, 1854.. 182

" On New Zealand hemp.
do, 1, 1842.. 369-384

Vacuum-mercurial safety valves.
Mercury Cornwall. Polytechn. Soc. Trans., 1840..
54-55.

On light and heat appearances in a
strong galvanic battery; formation of the
arc light between metal and liquid, &
evolution of light at an electrode immersed
in the liquid.

Pog. An. XCIII, 1854.. 285-296

Wilson, George, 41.

—, & J. C. Brown

Wilson, N.

Wilson, Wm.

Winkles, Aug. 14

Winter, Richard, 3.

Glass. Mr. Napier's new process of etching glass
gloves in relief by hydrofluoric acid.

Brit. Ass. Rep. 1859 (pt. 2) 88-89

[Account of a repetition of several of D. T.
Brown's processes for the conversion of
Carbon into Silicon.

Edinb. Roy. Soc. Trans. XX, 1844, 547, 560.]

Fibre. On the useful vegetable products, espe-
cially the fibres of Jamaica.

Hooker, Journ. Bot. VIII, 1855, 335-340.

[Experiments on the electricity of metallic
filings sifted through metal.

Nicholson Journ. XI, 1805, 110-111.]

Carbon. On electrolysis of milled iron.

Dingler Polytechnik. Forum. CLXXXII
1862. 188-190.

[A method of finding the specific gravity
of light from analogy &c.

Nicholson, Journ. XIX, 1808, 143-146.]

Witting. Ernst. 3.

Wollaston, 10th '76, 53

Woods, J. 9

Woodward, C. 2.

Wright, Thomas. 4

Mercuric quicksilver compound with lime
water and gum resinous? (gummo-ochreum)
Remarkable appearance by different pro-
portions of mixture and number of mixing
heat bodies.

Troximeloff's h. Journ. d. Pharm.
IV, 1870, 250-254

Photo. On a method of comparing the light of the
midday sun with that of the fixed stars.

Phil. Trans. XXIX 1829, 17-28.

Catalysis. Remarks on St. Clare Daville's Theory of
loop. dissociation.

Phil. Mag. XXI, 1861, 202-205

Meteors. On the transmission of electricity through
tubes of water. (See 1.)

Thomson. In Phil. VIII, 1824, 48-50.

Dynamo. Description of a new electro magnetical
mos. machine. (See 5, 6, + 9)

Sturgeon Am. Elect. V, 1840, 32-33

Wucherer. G. F. 2

Wurzer, Ferdinand, 52

X. Y. Z.

Young, D., Thomas, 47.

Zabriskie, John B.

Zahlbrückner, J. B.

Mercury Description of a large quicksilver air pump
pump now in the Karlsruhe physical cabinet.

Kastner, Arthur. V, 1825. 329-332

Aero. Who originated the first idea of an aero-
nautic static machine?

Martinig, Ges. Naturw. Schriften, II,
1831. 205-211.

Mercury Remarks on atmospheric dust.

Silliman, Journ. II, 1820. 134-136

1. Remarks on the depression of mercury
in glass tubes. (Signed S. B. L.)
Quart. Journ. Sci. XI, 1821. 53-55

Dyna. Description of the model of a new electro-
magnetic engine. (See. 344)

Silliman, Journ. XXXII, 1837. 315-317

Fibre On the plant that yields the fibre from
which Chinese 'Grasscloth' is made.

Niedervist. Gewerb. Verhandl. XIII,
1847. 258-261.

Zimmerer, F. v. H. Buff.

Zantedeschi, Fr. ces.^o 112

Zeller, C. U.

Zig, J. B., 5

Zöllner, Friedrich

3.

Dyna. On the magnetising of iron rods by the
mag. galvanic current.

Sitzg. An. LXXV, 1850, 53-94

Vacuum. On the magnetic condition of oxygen, and
the diamagnetic of hydrogen nitrogen &
carbonic acid gas.

Venezia. Atte., II, 1857. 205-207

Mercury. Some experiments on the action of galvanization
on living animals. (See Z. v. Aulenstein.)
Lehren, Journ. VI, 1808. 306-321.

Glaes. Simplification of glass stopcocks.
Pumps. Ironmodorff. Journ. d. Pharm.
XIV, 1808. 64-68.

Photo. Photometric observations.
metry Log. An. C, 1851. 381-394; CXIX, 1860.
244-275.

Dyna. On a new principle in construction of
mos of electro-magnetic motors.
do, C1, 1857. 139-143.

Anonymous, 1228

Additions (see page 572, 763)

Babo., C. H. L. von, 22

Böttger, R., 79

—, 174

Borel, —

Böttger, Rudolph., 83

Aero. On aerial navigation

nautics Tilloch; Phil. Mag. XLIX., 1817. 197-199.

Vacuum On the production of ozone.

Deutsch. Naturf. Versammel. Bericht,
XXXIV., 1858. 168-169.

Mercury On the production of a pure iron amalgam
pump. Frankfur. Jahrest. Phys. Ver. etc.
1856-57. 29-31.

Meter On platinizing metals by the electric
current.

do., 1854-55. 27-28.

On the pernicious influence of fire-
gilding on the organism.

Neuchâtel, Bull. 1, 1844-46. 135-141,
143-147.

Vacuum who first observed the peculiar odor
of electrolysis which lead to the discovery
of the active state of oxygen?

Frank. Jahrest. Phys. 1856-57. 32-34.

Botte, G. & A. Avogadro.

Brown, J. A., 35

C. L. O.,

Casa, L. della,

Case, Calvert, F. & J. R. Johnson

Meteorillemoir on the relations between the conducting power of liquids for electric currents and the chemical decompositions which they undergo.
Ann de Chémie LXXXI, 1839, 5-20

Glass On electrical dust figures observed on plate vacuum glass.

Phil. Mag. I, 1857, 43-164.

Vacuum On the scale of the barometer and the construction of an air pump for procuring a perfect vacuum.

Nicholson, Journ. XXIX, 1811, 105-111.

Light On the stratification of the electric light.
Bolognia Mem. Acad. Sc. III, 1863, 301-329

Mercury Conductability of mercury amalgams
Phil. Trans. 1859, 831-836

On Faraday's quicksilver atmosphere.
Mag. für Pharm. III, 1823, 31-35

Hellwig. (Major),

Henley, Wm.

Higgins, Wm.

Inglis, James

Jacobi, M. H., 49

Kessler, S., 8.

Experiments with voltaic piles composed of
Zinc and Wood charcoal.

Gilbert, Am. XI, 1802.. 396, 399.]

Cyna. A description of an electro-magnetic
motor machine.

Lond. & Elect. Soc. Proc. 1837-40.. 183.

Meter. Remarks on the originality of Dr Faraday's
Villa-electrometer.

do., 1837-40.. 135-136.

Conducting power of iodine for electricity.
Phil. Mag. IX, 1836, 450-452.

Dynamo. On the application of electro-magnetism
as a motive power in navigation, and
on electric magnetic currents.

Phil. Mag. XXI, 1839.. 161-165.

Glass. Hydrofluoric acid engraving by the
Gobelin reserve-style.

Report. Chemie. Appl. V. 1863.. 226-229

Kohlmann, - 7.

Koopp, Hoermann, &c.

Korenzlin, -

Lauri, Lauro

Majocchi, G. d., 32

[Testing crystalline plates and organic substances in galvanised light (sic)]

Halle, Jahrb. Nat. Wiss. Ver. IV, 1837. 13-14.]

Dyna. Considerations on the difference existing
now between the elastic force of steam and
electro-magnetic force, and its application
to motors.

Il Comento III, 1845. 225-234

A. Light On the influence of magnetism on the
voltaiic arc.

Halle, Jahrb. Nat. Wiss. Ver. II,
1849-50. 3-4.

Vacuum On the electrical relations of hydrogen..

Majocchi, An. Fis. Chim. IX. 1843. 282.
284

Illions, J. B. van, 83

Möllinger O, 4

Mousson, Albert, 37.

Perigo, Ant., 27

Thompson, Lewis, 5

Mercurial Oxidation of quicksilver.

Scherer, Journ. Chemie, II, 1799, 742, 743

Production of a galvanic ^{deposit} on
cotton cloth

Schweizer. Gesell. Verhandl. 1846, 140-144

Loops On the movements which present them,
carrying selves in a galvanic circuit at the
places where the conductors touch each
other very lightly.

Lausanne, Compt. Rend. Soc.
Suisse, XLV, 1861, 34-40

On the electricity developed by mercury
by filtration.

Majocchi, An.

Globes. On the exhalation of bicarbonate of am-
monia by the lungs.

Phil. Mag. XXX, 1847, 124-125

Menlo Park Notebook #177 [N-79-03-00]

This undated notebook was used by Francis Upton to record references to generators found in Menlo Park Notebooks #1-#13 and #15. It probably dates from 1880 or 1881. The label on the front cover is marked "Note Books" and "Index Machines." The book contains 282 numbered pages.

Blank pages not filmed: 42-282.

LIBRARY OF THE
BOARD OF PATENT CONTROL,

120 BROADWAY, NEW YORK.

From Library
120 Broadway, N.Y.
May 1, 1891

- Book 1 page 25
Tuning fork machine good
drawing Dec. 15, 1878.
- Page 27 plan connections
magnets
- P. 29 same
- 31 Drawing tuning
fork machine
- 32 Length vibrations
tuning fork
- 35 Train of gears to
run dynamos dated Dec. 17, 1878
sizes given and machine partly
drawn
- 37 from machine

Various forms Dec. 26, 1878;

45-52

Faradic testing machine
to discuss laws page 53

p. 54

90-97 various diagrams
of currents from magnets

page ~~102~~¹⁰³ 107 figures on
glass.

p. 111 diagram

113 Wheatstones bridge of
magnetics

March 12

Book 1, page 121 - 125

The discharge from
a magnet measured
by means of sound.

Armature on the magnet
tried and then removed
and the discharge was
found to be stronger
shorter.

page 131 Figure of arma-
ture

Book 1 page 137-153 67

Tests of man power

Book 1 p. 219 - 223

Figures as to dimension
magnets

also p. 232 law concerning
economy

Page 245 Table of resist-
ance armatures

10 ohms	316 turns
5 "	223 "
4 "	200 "
2 "	141 "
1 "	100.
7c	9c

page 246 "picture" long magnet

248-249 figures relating

to resistance
dated Dec 2d 1879

Book 1 page 254 - 257

9

Plans of connections for
testing wire when hot

No date ^{page 9-11}
Book 2 Switch for Wallace
machines Dec 10, 1870.

Book 2 p 13 Tuning fork
dynams Dec. 10

Book 2 p 15 Tuning fork
dynams plan of steam cylinder
and magnets Dec. 10

p. 16 direction Dec. 11

p. 19 Gramme machine
commutator current plan.
Dec. 20

page 21 When the internal
resistance of magnet equals
external heat effect. Edison

Book 2 page 23-25

Gramme machine diagram

p. 27 Gramme with rotating magnets

p. 28 Ring and magnets etc.

Tating to Page 72 various dia -
grams of magnets and
line of force undated

On page 75 date of exo in
bringing up spirals by battery

Feb. 8, 1879

Gramme machine used on
spirals page 85 resistance
in line with spiral which
measured cold .73 ohm
and had in line with it

etc about 4 ohms

Book 2 pp. 90-91

Ends narrative Edison's first

magneto

^{Book 2 p. 149}

Date Mac Laughlin return
from the Chaudiere river

June 6, 1879,

Picture of machine im-
mediately following this
Two binding posts at the
base

Book 3 from p. 73-81 undated

Diagrams of magnets

Date near this March '79

Book 3 p. 143 - 150 ~~comes~~
Date Jan 12 - 15, 1880

Commutator drawing by
Mr. K

To page 177 a number
of undated drawings of
magnets and machines

Book 4 p. 33 Nodale 15

drawing resistance coil

Book 4 p. ~~39~~ 41-45 no date
counter shaft for running Gramme
at various speeds

Immediately after date.

Jan 22 1879

Book 4 Page 77 - 105

Feb. 15, 1879.
Edison's magnets electric ma-
chine Account of exs to get
current speaks of putting
a battery and the Gramme
machine on the magnets
and obtaining an arc.

Refers to

Book 7 sp. 169-175

9 . " 181

28 " 1-81

Book 4 p-117 Feb. 18, 1879. 17

Diagram machines

On page 123 is the wonder where disks are revolved in the opposite directions so as to take in all the lines of force

To page 145 various diagrams undated of machines and magnets. after these Page 147 Feb. 19, 1879 account of Exs on magnets. Where the current of the Gramme was put on the Edison and the Edison on the Gramme to see if the machine turned harder.

Book 4
Page 155 date Feb. 19, 1879 19

Battery put on Gramme
and the ring run. Three iron
wires heated four feet
long.

Gramme on Edison

Page 159 Feb. 20 1879

Suggestion as to opening one
side of Gramme to run
Jablockhoff.

Page 182-185 no date

Directions for making
foxes for resistance

Immediately after date

March 10, 1879.

Book 4 page 280, 282
no date

Diagram connection

Book 5 Nothing

Book 6 p 12 Estimates No date
Estimates concerning the power
required to drive the Wallace
machine

Book 6 p 21 - 39 No date

Various estimates as to Gramme
efficiency and diagrams
of magnets and coils

Book 6, page 47-51 No date

Estimate capacity Gramme

Notes of various experiments

No dates, followed by date

of Jan 30, 1879 where
the gramme was used to

bring up wires, followed

by date of Jan 30 1879

Book 6 no dates to
a large number of calculations
as to distribution, cost, and
diagrams of great importance

23

Book 7, page 9. Dec. 13, 1878.

Attempt at non commutator

Book 7 page ²³ Dec 17 1878
Title.

Do Meriter form of dynamo
machine showing a powerful
magnet.

page 25-27 Dec. 17, 1878
various forms of

page 31 Dec. 17, 1878 D.E.
Small Gramme for telephones

page 33-60 Dec 17, 1878
Various forms of dynamos
and especially the early
drawings of Edison's first

Book 7, page 61

Dynamo machine Dec. 29, 1878 25
Full drawing of & Edison's
first machine.

Sketches follow this by
Batch

page 62-138
Drafter dates Jan 1 to Jan 7

are various sketches of
the loops of the Gramme
and the Siemens machines
showing how they are related
and and a number of
attempts to commutate the
currents from a series

Page 139 Jan. 7 1879

Drawing for resistance
box.

Page 147 Jan. 7, 1879;
149

Book 7

The iron lamp
is shown on page 151.

Date Jan. 9. 1879 S. H. E.

From page 169 - 213 Jan 9 Feb 15
a large number of devices
for commutating currents
and the ~~devices~~ for di-
agrams of connections for
the Edison dynamos.

Book 8 Faradie machines

Page 13 Dec 20. No. 1.

Test machine for driving machine

Pages 80 to 138. A large num-
ber of tests of the Gramme
machine showing the relation
between the strength of current
and the E.M.F from the
armature.

Book 8
Page 138-175 May 10, 1879²⁹

Tests of the Edison machine

Page 176 Speaks of the magnets being quantitized and the coils connected by threes. This was for the Jeannette

Date soon after of June 9, 1879
Under date of June 10, 1879

is mention New machine Gramme on magnets and after that follows some tests showing relation between current on field and E.M.F from armature

June 11, New Machine on its own field
Rest of book Test from June

to June 13 showing
relation of field to
the E. M. F. of the armature

Book ~~5-13~~⁹ Dec 15 1878.
page 5-13 7.A.E.
Dynamo Mac

Book 9. page 25-29 Dec. 16 1879.
Dynamo machines

Book 9. p. 49-75 no date
machines

page 77 Wheatstone bridge
for magnets

page 77-109 no date
magnets devices

Then date Jan. 14, 1879

145-155 no date
magnets devices

Book 9 page 175

Feb. 16, 1879

Gramme ring electrician

page 187-211 diagram
of connections Feb. 15, 1879
for commutating

Book 10 from pp 96-end
full of drawings for testing
the theory of magnetism
and also sketches for
Edison's first magneto.

Dec. 16, '78 to Jan. 1, '79

Book II

- p. 13 Non commutator no date
 15 Lines of force " "
 19 Non commutator Dec. 28, 1878.
 26-29 - no date
 31 Faraday's magnet no date
 37 Magneto machine no date
 details
 82-83 Split ring Gramme
 Feb. 20, 1879.
 83 Winding Siemens Feb. 29, 1879.
 84-85 Non commutator Feb. 20, 1879.
 86 Remark "Move the commutators
 and make the Gramme give
 off any current that may be
 required for it." Feb. 20, 1879.
 87-89 Non commutator
 95-100 Edison's Dynamen Feb. 17, 1879
 101-110 Non commutator Feb. 1879.
 110-127 -

Rest of book no date and
 only attempts at non com-
 mutator at intervals

p. 3 attempt Non comm no date
 5-9 Exs. on friction using a
 magnet to take off the
 weight. See 20, 1878.

11 Gramme machine balanced
 with battery. no date

13-69 Non commutators. No dates.

2 86-87 Final brought to me
 June 10 1879

No dates

Estimates of lamps
 attempts non commutator

Book 13

- p.8 Non commutator Jan. 1, 1879.
 19 Magnet in ring Jan. 1, 1879.
 25 Notes on making Edisons
 generator c. B. Jan. 1, 1879.
 26-5-9 Details Edisons magnets
 Jan. 3. to Jan. 9, 1879.
 71-93 " Jan. 6.

p. 47 test large ring machine

March 9, 1879

89 Mr. Edison starts 6
experiments with small
dynamo. March 5, 1879.

Menlo Park Notebook #179 [N-80-00-02]

This undated notebook was used by Francis Upton to record notes and calculations about the lamps needed for the steamship City of Rome. It probably dates from 1880. The book contains 284 numbered pages. Only one page has been used.

LIBRARY OF THE
BOARD OF PATENT CONTROL,

120 BROADWAY, NEW YORK.

From Library
44 Broad St., N.Y.
May 1, 1896

AB

City of Rome ^(Steamship)

1

Hand lanterns or lights
on lower deck

16 candles

59 lights on 16 candle pun

30 in on upper deck

16 in promenade

10 5
25 Engine room

130 8 candles

74 on upper of eight

64 in saloon

137 lower deck

275 lights of 8 candles

20 in passage ways

295 8 candles

130

425 lights in all

56 HP engine

Menlo Park Notebook #184 [N-80-06-16.1]

This is one of six notebooks that were probably begun on January 10, 1881. It is a draft of a proposed book by Edison to promote his system of electric light and power distribution as a replacement for gas lighting. (See also Menlo Park Notebooks #187-#191.) The label on the front cover is marked "Prospectus Book." The spine is stamped "Edison's Prospectus Book." The book contains 284 numbered pages.

Blank pages not filmed: 18-19, 32-39, 58-145, 148-163, 166-175, 178-187, 190-197, 200-201, 204-213, 216-219, 222-225, 228-235, 238-249, 252-267, 270-273, 276-281.

Electricity vs gas Gas general illuminants

The gas interest of the world's early history adverse opinion of scientific men, its gradual rise to be one largest industry in the world, to illustrate, its magnitude as compared other industries gross receipts

<input type="checkbox"/>					
Cotton Refg.	(2)	Brooklyn	Brooklyn	Brooklyn	Brooklyn

Best dividends to investors

Money invested in the U.S. Eng.
The Continental, & Gas - favorite
investment

Defects as Domestic illuminant - but
superiorly over other combustion methods
Danger = great cost piping house - leakage
Suffocation (get statistics) defects burns
rapid deterioration. Optics of eye effect
unquestionably constant illumination

Object E to effect exact imitation
of all done by gas so as to replace
lighting by gas by lighting

by Electricity

to improve the illumination to such an extent as to meet all the requirements of Natural Artificial & Commercial conditions

A general system of distribution only possible ^{To meet requirements of economic illumination} by Electricity
distribution analogous to distribution of gas and water -
The accomplishment a perfection of a general system its readiness for introduction only awaiting business men of Energy & Capital

as isolated illumination in Mills etc. extends the
limits of gas distribution of cities, especially illumination
for advertising, other purposes &c &c & furnish a market
for carburetting plants, and so on, we may even think
of some public works shall have the construction of the roads,
the creation of a new industry
opening a wide field for
profitable investment of Capital.

Its only effect on gas interests
being to gradually cause the
present gas interest to be over the
manufacture of illuminating
gas & go into the manufacture &
distribution of heating gas.

The advantages of heating
gas - its cheapness, the market
that could & would be created
the effect being to not only
not effect the enormous increase

in view of gas to actually
increase the ~~value~~ capacity
of earning.

Table showing amount sold
in M^s yearly in principal city
world. What its sold for
the money received per M^s sold
Costs in halde Cost distributed

List gas Cov in U.S. small type
Capital etc.

Difficultly getting any reliable
statistics.

Give statistics of every kind
as obtained in our district

In connection with these statements
mention premium use kerosene
Give its cost as against gas.

Capability of replacing
gas illumination by electric
illumination in every part
of general description up the
System

give Estimate both cost of
plant - operating expenses in
large cities = diff. smaller
cities - also where Water comes
alone - also where Water comes
part time with Steam plant less
necessarily -

Depreciation of Electric plant
VS gas plant -

In this Connection obtain
gas depreciation from their own
reports & ours from use
of Boiler engines.

Give all tests at Menlo Park

Map -

Indicator tests - by Engineers

Coal tests

Photometric tests - different Capital &

Life of Lamp tests, ~~etc~~

Dynamical Efficiency test = Clark - Utton, Young & Rowland
also Young & Bolt with Polar

Externals examined & reported

upon by several good Engineers

Another Review of the
whole thing as worked upon
upon pure science principle
by Rowland - Young
Trowbridge

also Rowland on the
possibilities & probabilities of
cheaper production by better
manufacture higher incandescence
without decrease life of lamps

~~100~~

~~100~~

Cheaper makes small expense
in fuel allowing poor to use it
1. jet will pay - as one jet
of 16 Candles can be subdivided
without loss of economy into
2 of 8 or 4 of 4 Candles
It is especially desirable
for the poor

The transmission of power
 The P.R at Manila take the shape
 The lots - The general
 distribution of power + light.
 How that doesn't matter if
 Elec is used. for light or
 power - It pecuniary advantage
 Its subdivision into small
 power with economy - The
 small induction of N.Y.
th
 present way getting small
 power cost + inconveniences
 Extra Rents

Availability of Electric Motors
 measuring aggregated work
 on motor = useable night or
 day - ~~so possibility~~
~~gas engine possibility~~
 maximum of small steam
 motors = first cost gas motor,
 then complication -
 Domestic Motor Manifolds

Cuts & description of these

The graphs derived from the
 table of power independent
 of light gear table

lessened cost of flight
when power sold
give table when various
amounts of flight + power
sold:

Storage unnecessary - instead
water works - Ocean steam
probabilis with 12 Engs
+ border \$0.00 —

Statistics of power in our
district -

Generally poorest districts
for light best for power; thus
waking up whole city - the
Effect of this on industry.

Effect of distribution sales small
powers will be to create
immense amount of small
industries.

Previous inventions failed -
necessary for commercial
success a accomplishment by E.
E great effort not to make a large light
or a blinding light, but a small one
having the mildness of gas
Speak of arc lighting ~~not present~~
~~used mostly with incandescent~~

entirely distinct field of large
areas, ~~but~~ ^{the} ~~Human Eye~~
~~meant for that~~
~~Light, Eyes, & Exhalation~~

E. L. Co. Held the system by
broad patents - giving dates
application patents. - Patents
allowed. 7 claims -
unassassable by any prior
publication. 7 claims 2d

far allowed - Openus as
to validity in Court of the
patients = openus well known
men - (negative Evidence -
Preece, Morton others)

Sp - b. of Neuchâtel
Contemplated for manufacture
lamps - The Capability to
increase output, it being
new industry necessarily
quality of Caness impure
~~but~~ ~~so ab.~~ a diminished
price, each tendency to
allow of the sale of
Minerion more cheaply to per-

Notes.

Curve field magnet 3 signs on
Same plot - also iron + copper
induction + factor - also energy line -
10 pc unit!

Curve Energy (10) ft lbs (Candle power +)
Exit of A BC + other lamps obtained
Candle by candle exponentially - Up to
Curve now made with bad Pump -
also this Curve with different
incondensers

Ditto Motors -

Laws Motor transfer
power on general distribution
System - also in isolated
Case

Graphic representation consumption
gas going to Dec - also a
curve showing Decrease daily
Consumption each month of year
one card showing 1 day in
June 1 in January

Table fall EMF
formula -

Laws relating to ft lbs unit
meandurance?

Curve life lamp at different
EMF - also different
meandurance

Curve Rise Productivity in Cu

Saturation meter =

All other tables for meter

Table weight (Copp) requires diff^t
distance 100 ohm lamp 16
candles

Increased consumption as you go
outwardly from station - Show
map then make Copp table
Showing increased resistance
in Copper as you extend area
illumination

Show graphically by circles
Illumination by 1 light of 10 gas
jets + 10 of 1 q no jet. the gain

Loss by subdission gas (13)
smaller amount gas don't give
proportionali illumination

Represent loss fits the in Dynes
stamps from 1 to 1 to 30 t.s.
Giving graphic curve shows
~~more energy its cost~~
extra investment to obtain
the economy: 10 p.c. reduced.

Represent relative costs different
Illustrated by block or ~~parallel~~
lines one dollar will buy

Table Costs Motor

Table 6 both Curves showing
increased economy by larger
Engines higher power
starting $\frac{1}{4}$ hp Eng.
Ditto EMotor.

Table relative gas used for
for
in figures

Table cost lighting stove \$0
Kerosene lamps - labor included
Chimney-Candle power
ditto & Comparison gas
also minimum required
Separation

Comparative
Size of Conductors ~~in~~ in Gauge
Supply same areas in City

$\frac{E_h}{E_g}$ (q_m) - Relative Cost.

$$\frac{O_{g_m}}{E_h}$$

Yearly depreciation

$$\frac{O}{q_m}$$

Value if disposed & sold in market.

$$\frac{E_h L_i}{E_h} O_{g_m}$$

Relative size in house
 $\frac{E_h}{E_h} O_{g_m}$ - Cost.

Curve actual drop C and E form obtained by experiment .14 machine.

25 lamps on the 1 on. also gradually from 25 down - same if ~~100~~ / machine has reduced 1/2 keeping EMF same -

Photometers approachable curve of decreased sensitivity of eye to increasing illumination

In speaking of Ill by E. Coal Trade journal of June 16 1880, says that the application of gas to Heating Cooking etc would still return handsome dividends to the shareholder even if ~~most~~ ^{wholly} illumination by gas was suspended by Electricity

As unpleasant is the effects of the products of the Combustion of gas that the "new Madison Square Theatre Every gas jet is ventilated by special tubes to carry away the products of combustion

Opposite to Basmeri -
"Steel by grams - page 54 -

164

Candle power Paris gas 12 Cand tho-
Vide Haywood's report on Halibut.
Viaduct, Amherst G.L. April ~~1879~~

165

176

ann qul qash - May 16/79

McComicks report.

177

gas act (English) of 1875 limits
 Sulphur Compound to 30 grams
 per 100 cf ammonia 5 grams
 Actual results last few months
 of Lecture, Sulphur 28, ammonia
 0.47. Capland Lecture in
 B'gul b'g lighting April 29 1879

198

Cost working gas engine, attendance
Cost plant etc among gas & oil
Sept 16 1960

199

April 29 1879 Jnl of qual Bulid
Lecture by C. Copland, M Inst CE
Late Supt Engg Brodah & Gaskell & Co of Hull.
stated. Total amount in works left
over £300,000,000.

See Quotation from Engineering
in Coal Trade and Mech 79-

Precious Lecture before
United Scavenger Institute - See
Electraum 714 22/79 - try
get original - government probably got it.

Lutins Clark - Electrician
March 15 1879-

Precious Materialized assay in E2
Phil May 1879 - paper
29 =

W. H. M.

1 cent 3 mills per 1000 feet
was expense of management
of London Co 1879 -

See goodwines statement & exhibits
Economy Coal vs G.W. Crooksey
Ann Judg Quesd - Apr 2 1880
in proceedings qas'ason-

The state inspector of gas state Mass.
finds upon investigation that the
the average error of all the meters
about which complaints were made
was $64/100$ of 1 per cent against
the consumers. get Ann gas light
Jnl March 6 1880. Contains
Herrmann's full report.

250

Water gas

251

gas in press room Quebec Chronicle exploded
loss \$1000. Feb 1880

Chicago Insurance Patrol for 2 month ending
Dec 31 found 217 buildings with
unsafe gas brackets -

Deaths ^{several account} safe in -
ann g & jnl Nov 16, 1880.

274

Municipality Report Paris Coast
Gabolentz Light - Engineering
January 31 1879

275

Analysis of the Metropolitan
Gas Cos' accounts by
Mr Field for 1879.

Complete set Amer gas lighting
" " British
" " French.

Fontaine's Book -

Haywoods Report on result lighting
Holborn Viaduct,

Also report Costs on Thames Embankment

~~Social lives of the Engineers~~
= Brush article in Van Nostrand

Poor's Manual of Railroads -

Life of Stevenson by Sam'l
Emilie.

of Francis, History English
Railways ordered to have

Transactions of the British Assoc
of gas Managers full set if
possible.

Price Gas deficit 176

**PUBLICATION AND MICROFILM
COPYING RESTRICTIONS**

**Reel duplication of the whole or of
any part of this film is prohibited.
In lieu of transcripts, however,
enlarged photocopies of selected
items contained on these reels
may be made in order to facilitate
research.**

A Note on the Sources

**The pages which have been
filmed are the best copies
available. Every technical
effort possible has been
made to ensure legibility.**

39

END

FINANCIAL CONTRIBUTORS

PRIVATE FOUNDATIONS

Alfred P. Sloan Foundation
Charles Edison Fund
The Hyde and Watson Foundation
Geraldine R. Dodge Foundation

PUBLIC FOUNDATIONS

National Science Foundation
National Endowment for the Humanities

PRIVATE CORPORATIONS AND INDIVIDUALS

Alabama Power Company
Amerada Hess Corporation
AT&T
Atlantic Electric
Association of Edison Illuminating Companies
Battelle Memorial Institute Foundation
The Boston Edison Foundation
Cabot Corporation Foundation
Carolina Power and Light Company
Consolidated Edison Company of New York, Inc.
Consumers Power Company
Corning Glass Works Foundation
Duke Power Company
Exxon Corporation
Florida Power & Light Company
General Electric Foundation
Gould Inc. Foundation
Gulf States Utilities Company
Idaho Power Company
International Brotherhood of Electrical Workers
Iowa Power and Light Company

Mr. and Mrs. Stanley H. Katz
Matsushita Electric Industrial Co., Ltd.
McGrav-Eddison Company
Middle South Services, Inc.
Minnesota Power
New Jersey Bell Telephone Company
New York State Electric & Gas Corporation
North American Philips Corporation
Philadelphia Electric Company
Philips International B.V.
Public Service Electric and Gas Company
RCA Corporation
Robert Bosch GmbH
San Diego Gas & Electric
Savannah Electric and Power Company
Schering Plough Foundation
Texas Utilities Company
Thomson-Brandt
Transamerica Delaval Inc.
Westinghouse Educational Foundation
Wisconsin Public Service Corporation

BOARD OF SPONSORS

Rutgers, The State University of New Jersey	National Park Service, Edison National Historic Site
Edward J. Bloustein	Roy W. Weaver
T. Alexander Pond	Edward J. Pershey
Tilden G. Edelstein	Smithsonian Institution
John Gillis	Bernard Finn
New Jersey Historical Commission	Arthur P. Molella
Bernard Bush	
Howard L. Green	

EDITORIAL ADVISORY BOARD

James Brittain, Georgia Institute of Technology
Alfred D. Chandler, Jr., Harvard University
Neil Harris, University of Chicago
Thomas Park Hughes, University of Pennsylvania
Arthur Link, Princeton University
Nathan Reingold, Smithsonian Institution
Robert E. Schofield, Iowa State University

CORPORATE ASSOCIATES

William C. Hittinger (chairman), RCA Corporation
Edward J. Bloustein, Rutgers, The State University of N.J.
Cees Bruynzeel, North American Philips Corporation
Paul J. Christiansen, Charles Edison Fund
Philip F. Dietz, Westinghouse Electric Corporation
Roland W. Schmitt, General Electric Corporation
Harold W. Sonn, Public Service Electric and Gas Company
Morris Tanenbaum, AT&T

THOMAS A. EDISON PAPERS

Reese V. Jenkins
Director and Editor

Thomas E. Jeffrey
Associate Director and Microfilm Editor

Assistant Editors

Paul B. Israel
Robert A. Rosenberg
Keith A. Nier
Andrew Butrica

Research Associates

Douglas G. Tarr
Mary Ann Hellriegel
David W. Hutchings

Assistant to the Director
Helen Endick

Secretary
Grace Kurkowski

Student Assistants

Leonard DeGraaf
Alan Stein
Jacquelyn Miller

Joseph P. Sullivan
Karen Kozak
Granville Miller

Thomas A. Edison Papers
at
Rutgers, The State University
endorsed by
National Historical Publications and Records Commission
18 June 1981

Copyright © 1987 by Rutgers, The State University

All rights reserved. No part of this publication including any portion of the guide and index or of the microfilm may be reproduced, stored in a retrieval system, or transmitted in any form by any means—graphic, electronic, mechanical, or chemical, including photocopying, recording or taping, or information storage and retrieval systems—without written permission of Rutgers, The State University, New Brunswick, New Jersey.

The original documents in this edition are from the archive at the Edison National Historic Site at West Orange, New Jersey.

Thomas A Edison Papers

A SELECTIVE MICROFILM EDITION

PART II
(1879-1886)

Thomas E. Jeffrey
Microfilm Editor and Associate Director

Paul B. Israel
Assistant Editor

Mary Ann Hellriegel
David W. Hutchlings
Editorial Associates

Douglas G. Tarr
Robert A. Rosenberg

Leonard DeGraaf
Joseph P. Sullivan
Alan Stein
Karen Kozak
Student Assistants

John Deasey
Barbara B. Tomblin
Jacquelyn Miller
Maria Antonakakis

Keith A. Nier
Assistant Editor

Reese V. Jenkins
Director and Editor

Sponsors

Rutgers, The State University of New Jersey
National Park Service, Edison National Historic Site
New Jersey Historical Commission
Smithsonian Institution

University Publications of America
Frederick, Maryland
1987

Edison signature used with permission of McGraw-Edison Company.

MS303-1980

Centimeter

Inches

