Co-processador da Transformada para o Codificador de Vídeo AV1

Apresentação Final

Miguel Inocêncio 18/12/2019

Universidade de Aveiro Instituto de Telecomunicações

Conteúdos

Introdução

Sistemas de Codificação de Vídeo

Transformadas em Codificação de Vídeo

Arquiteturas Desenvolvidas

Software

Hardware

Conclusões e Trabalho Futuro

Introdução

Consumo de Vídeo

Figura 1: Previsões da Cisco para evolução de tráfico IP

Necessidade de Compressão de Vídeo

Figura 2: Exemplo de dados em vídeo HD

Codificação de Vídeo

Remoção de informação de sequência de imagens, mantendo a capacidade de reprodução

Evolução da Codificação de Vídeo

Sistemas de Codificação de Vídeo

Redundâncias

Espaciais

Temporais

Código

Modelo Básico do Codificador

Figura 3: Modelo Básico de codificador

Performance do AV1

Figura 4: Poupanças de Bitrate relativas ao H.264

Performance do AV1

Tabela 1: Tempos de Codificação

Codec	Tempo de Codificação (s) 2018 2019		
AV1	226 080	736	
H.265		289	
VP9		226	
H.264		18	

Transformadas em Codificação de Vídeo

Interpretação com Imagens Base

Figura 5: Exemplo de decomposição de bloco em imagens base

Transformadas em Codificação de Vídeo

Discrete Cosine Transform (DCT)
Identity (IDTX)

Asymmetric Discrete Sine Transform (ADST)

Flip - Asymmetric Discrete Sine Transform (Flip-ADST)

Transformada no AV1

Figura 6: Sequência de operações da Transformada no libaom

Transformadas Inteiras

Figura 7: DCT

Figura 8: ADST

Opções de Codificação

Figura 9: Kernel Utilizado

Figura 10: Tamanho de Vetor

Figura 11: Kernel Simétrico

Figura 12: Número de Bits Utilizados nas Aproximações do Cosseno

Nº de bits dos Cossenos vs Distorção - Teste

Nº de bits dos Cossenos vs Distorção - Resultados

Figura 13: Comparação Distorção com Número de Bits usados no Cosseno

Arquiteturas Desenvolvidas

Software

Redução do Número de Bits

$$C = (\alpha \cdot A + \beta \cdot B) >> 8$$

$$M_{original} = 728 \, B$$
 $M_{8bits} = 64 \, B pprox 0.2 \cdot M_{original}$

$$\Delta_{10} = \frac{1-0}{2^{10}} \approx 0.98 \cdot 10^{-3}$$

$$\Delta_{8} = \frac{1-0}{2^{8}} \approx 3.9 \cdot 10^{-3}$$

$$\Downarrow$$

$$MSE_{8} = 16 \cdot MSE_{10}$$

Otimização do libaom

Figura 14: Comparação da distorção

Otimização do libaom

Figura 15: Tempo de Codificação

Arquiteturas Desenvolvidas

Hardware

Princípios de desenvolvimento

Princípios de desenvolvimento

Princípios de desenvolvimento

Primeira arquitetura - Resultados

Tabela 2: Resultados de utilização lógica da primeira arquitetura em família Artix 7

DCT Size	Utilization		
DCT Size	Slice LUTs	Slice Registers	
4	1125	636	
8	2428	2087	
16	7103	5702	
32 19148		14257	
64	64 45996 34146		
Wrapper	75805	58370	

Primeira arquitetura - Resultados

Tabela 3: Frequência de operação necessária para codificação em tempo real a 30 imagens por segundo

Resolution	Frequency (MHz)	
$\textbf{1280} \times \textbf{720}$	83	
$\textbf{1920} \times \textbf{1080}$	187	
$\textbf{3840} \times \textbf{2160}$	746	
$\textbf{7680} \times \textbf{4320}$	2986	

Segunda arquitetura - Resultados

Tabela 4: Resultados de utilização lógica da segunda arquitetura em família Artix 7

Block	Utilization		
Віоск	Slice LUTs	Slice Registers	
DCT4	1077	507	
DCT8_P1	709	257	
DCT8_P2	1064	717	
DCT16_P1	1285	513	
DCT16_P2	3860	2150	
DCT32_P1	3064	1025	
DCT32_P2	9090	5624	
DCT64_P1	6123	2049	
DCT64_P2	22344	14000	
Wrapper	50039	32352	

Implementação Nexys 4

Implementação Nexys 4 - Resultados

$$f_{Max} = 101.9 MHz$$
$$P = 50 mW$$

Tabela 5: Frame rate máximo obtido na implementação com Nexys 4

Block Size	Resolution				
	$\textbf{1280} \times \textbf{720}$	$\textbf{1920} \times \textbf{1080}$	$\textbf{3840} \times \textbf{2160}$	7680 × 4320	
4 × 4	37	16	4	1	
8 imes 8	44	20	5	1	
$\textbf{16}\times\textbf{16}$	63	28	7	2	
$\textbf{32} \times \textbf{32}$	98	44	11	3	
64 × 64	161	71	18	4	

Conclusões e Trabalho Futuro

Conclusões e Trabalho Futuro

- ✓ Otimização do Software de referência
- ✓ Construção de arquiteturas em hardware para o kernel da DCT

- → Integração dos restantes kernels
- → Teste com *libaom* em FPGA
- → Síntese para ASIC

Obrigado!

Discussão

Co-processador da Transformada para o Codificador de Vídeo AV1

Miguel Oliveira Inocêncio

Armando Pinho
Presidente de Mesa

Pedro Assunção

Arguente Principal

António Navarro Orientador