

K-NEAREST NEIGHBORS (K-NN)

- Supervised learning
- Can be used for regression and classification algorithms
- Instance-based learning (lazy learning)
- Based on the assumption that like instances are the closest distance to one another
- Uses voting mechanism: k-nearest instances vote to classify an unknown instance

Farm Animal

Wild Animal

Could Kill You

Farm Animal

Wild Animal

Could Kill You

Farm Animal

Wild Animal

Could Kill You

Farm Animal

Wild Animal

Could Kill You

PREPROCESSING: INTERPOLATION AND NAN HANDLING

- Mean interpolate any unknown numeric values (optional)
- Mode interpolate any unknown categorical values (optional)
- Remove any completely unique columns (e.g., names, IDs...)
- Convert all categories to numeric values
 - Make need to consider the values of being part of category
 - E.g.: extremely rare category could be given a weight stronger than 1

PREPROCESSING: NORMALIZATION

Normalization of data is REQUIRED

Why?

A(1, 0.01)

- Distance is evaluated by the relative difference between points
- Points with greater unit values will be more heavily weighted

HYPERPARAMETERS: DISTANCE

Туре	Description	Dim.	Equation	
Manhattan	City block distance	1	$d(A,B) = \sum_{i=1}^{n} p_i - q_i $	
Euclidean	Pythagorean shortest distance	2	$d(A,B) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$	
Minkowski	General form of Manhattan and Euclidean	L	$d(A,B) = \sqrt[L]{\sum_{i=1}^{n} (p_i - q_i)^L}$	

HYPERPARAMETERS: K

K: number of nearest neighbors involved in classification

■ Overfitted: too small K

Underfitted: too large K

UNDERFIT

HYPERPARAMETERS: ALGORITHMS

- Change the how distance is calculated (to save time)
- Also tuned with 'leaf_size'

Name	Description	Time Complexity	Dataset Size	Dataset Sparsity	Accuracy
'brute'	Compute all distances	$O(DN^2)$ - cubic	Small	Sparse	Highest Accuracy
'kd_tree'	Approximate distances with KD tree	0(DN) - quadratic	Large	Dense	High Accuracy
'ball_tree'	Approximate distances with ball tree	O(D log N) - nlog(n)	Very Large	Dense	Decent Accuracy

BENEFITS

- Intuitive and human friendly
- Allows user to chose the hyperparameters
- Memory-based
- Both classification and regression
- Ease after establishing hyperparameters
- Non-parametric

TRADE-OFFS AND LIMITATIONS

- Non-parametric
- **Slow** to implement
- Dimensionality
- Requireshomogenousfeatures
- Sensitive to outliers

