ആസിഡുകൾ, ബേസുകൾ, ലവണങ്ങൾ

ആസിഡുകളെയും ആൽക്കലികളെയുംകുറിച്ച് മുൻ ക്ലാസിൽ പഠിച്ചിട്ടുണ്ടല്ലോ? അവയെ തിരിച്ചറിയാൻ ഏതെല്ലാം മാർഗങ്ങൾ ഉപയോഗിക്കാം?

താഴെ പട്ടികയിൽ നൽകിയിരിക്കുന്ന പദാർഥങ്ങളുടെ സ്വഭാവം ലിറ്റ്മസ് പേപ്പർ ഉപയോഗിച്ച് കണ്ടെത്തുക.

പദാർഥം	ലിറ്റ്മസിന്റെ നിറം മാറ്റം	സ്വഭാവം
വിനാഗിരി		
ചുണ്ണാമ്പ് വെള്ളം		
സോപ്പ് ലായനി		
ഹൈഡ്രോക്ലോറിക് ആസിഡ്		

പട്ടിക 5.1

ആസിഡുകളെയും ആൽക്കലികളെയും തിരിച്ചറിഞ്ഞല്ലോ?

ഇനി മറ്റൊരു പ്രവർത്തനം ചെയ്ത് നോക്കാം. ചിത്രത്തിൽ കാണിച്ചിരി ക്കുന്നതുപോലെ ടെസ്റ്റ്ട്യൂബിൽ ഒരു ചെറിയ കഷണം സിങ്ക് എടുക്കുക. ഡ്രോപ്പർ ഉപയോഗിച്ച് 2mL നേർപ്പിച്ച ഹൈഡ്രോക്ലോറിക് ആസിഡ് ചേർക്കുക. ടെസ്റ്റ്ട്യൂബിന്റെ വായ്ഭാഗത്ത് കത്തുന്ന തീപ്പെട്ടിക്കൊള്ളി കാണിക്കുക. നിരീക്ഷണം രേഖപ്പെടുത്തുക.

എന്തായിരിക്കും കാരണം?

പ്രവർത്തനത്തിന്റെ രാസസമവാക്യം പൂർത്തിയാക്കൂ.

$$Zn + 2HCI \rightarrow ZnCI$$
, +

ആസിഡുകൾ പ്രവർത്തനശേഷി കൂടിയ ലോഹങ്ങളുമായി പ്രവർത്തിക്കുമ്പോൾ ഹൈഡ്രജൻ വാതകം ഉണ്ടാകുന്നു.

ആസിഡുകൾ കാർബണേറ്റുകളുമായി പ്രവർത്തിക്കുമ്പോൾ ഇതേ വാതകം തന്നെ ഉണ്ടാകുമോ? ഒരു പ്രവർത്തനം ചെയ്തുനോക്കാം.

ചിത്രം 5.2 ൽ കാണുന്നതുപോലെ ഒരു ബോയിലിംഗ് ട്യൂബിൽ അൽപ്പം

കാൽസ്യം കാർബണേറ്റ് (മാർബിൾ കഷണങ്ങൾ) എടു ക്കുക. തിസിൽ ഫണലിൽക്കൂടി അതിലേക്ക് നേർപ്പിച്ച ഹൈഡ്രോക്ലോറിക് ആസിഡ് ചേർക്കുക. പുറത്തു വരുന്ന വാതകത്തെ ടെസ്റ്റ്ട്യൂബിലെ തെളിഞ്ഞ ചുണ്ണാമ്പ് വെള്ള ത്തിലേക്ക് കടത്തിവിടൂ.

ചിത്രം 5.2

- ഡെലിവറി ട്യൂബിലൂടെ പുറത്തുവരുന്ന വാതകം ഏതാണ്?

 - ഈ വാതകം തെളിഞ്ഞ ചുണ്ണാമ്പ് വെള്ളത്തിലേക്ക് കടത്തിവിടുമ്പോഴുള്ള നിരീക്ഷണം എന്തായിരിക്കും?

ആസിഡുകൾ കാർബണേറ്റുകളുമായി പ്രവർത്തിക്കു മ്പോൾ കാർബൺ ഡൈഓക്സൈഡ് (CO₂) വാതകം സ്വതന്ത്രമാകുന്നു.

താഴെ നൽകിയിരിക്കുന്ന സവിശേഷതകളിൽനിന്നും ആസിഡുകൾക്ക് യോജിച്ചവ കണ്ടെത്തി ടിക് (\checkmark) ചെയ്യുക.

- 🛘 കാരരുചിയുണ്ട്.
- 🛘 നീല ലിറ്റ്മസിനെ ചുവപ്പാക്കുന്നു.

	ച കാർബണേറ്റുകളുമായി പ്രവർത്തിച്ച് കാർബൺ ഡൈഓക്സൈഡ് വാതകം ഉണ്ടാകുന്നു.				
	۰ ۰ میان				
	– പുളിരുചിയുണ്ട്.				
	ചുവന്ന ലിറ്റ്മസിനെ നീലയാക	റുന്നു.			
ആ	സിഡുകളിലെ പൊതുഘടം	3 0			
പരി	ചിതമായ ചില ആസിഡുകളു	ട പേരും രാസസൂത്രവും ചുവടെ			
പട്ടിം	കയിൽ നൽകിയിരിക്കുന്നു. പട്ടി	ക പൂർത്തിയാക്കുക.			
	ആസിഡിന്റെ പേര്	രാസസൂത്രം			
	ഹൈഡ്രോക്ലോറിക് ആസിഡ്	HCI			
	നൈട്രിക് ആസിഡ്				
	കാർബോണിക് ആസിഡ്				
	സൾഫ്യൂരിക് ആസിഡ്				
	പട്ടിക	5.2			
ആസിഡുകളിലെ പൊതുഗുണങ്ങൾക്ക് കാരണം അവയിലെ ഏതു ഘട കത്തിന്റെ സാന്നിധ്യമായിരിക്കും?					
ജല		നൈട്രിക് ആസിഡ് (HNO ₃) എന്നിവ ത ചാർജുള്ള അയോണുകളായി ിയിരിക്കുന്നു.			
HCl → H ⁺ + Cl ⁻					
$HNO_3 \rightarrow H^+ + NO_3^-$					
HCI ലായനിയിലെ അയോണുകൾ ഏവ?					
HNO ₃ ലായനിയിലെ അയോണുകൾ ഏവ?					
ഇവ	ഇവയിലെ പൊതുവായ അയോൺ ഏത്?				

ഹൈഡ്രജൻ $(H^{\scriptscriptstyle +})$ അയോണുകളാണ് ആസിഡുകളുടെ ഗുണങ്ങൾക്കടി

സ്ഥാനം. ആസിഡുകൾക്ക് ഒരു നിർവചനം രൂപീകരിക്കാമോ?

ജലീയ ലായനിയിൽ ഹൈഡ്രജൻ അയോണുകളുടെ (H⁺) ഗാഢത വർധിപ്പിക്കാൻ കഴിയുന്ന പദാർഥങ്ങളാണ് ആസിഡുകൾ.

 $\mathsf{H}^{\scriptscriptstyle +}$ അയോണുകൾക്ക് സ്ഥിരതയില്ലാത്തതിനാൽ ഇവ $\mathsf{H}_2\mathsf{O}$ തന്മാത്രകളു മായി കൂടിചേർന്ന് ഹൈഡ്രോണിയം അയോൺ $(\mathsf{H}_3\mathsf{O}^{\scriptscriptstyle +})$ ഉണ്ടാകുന്നു.

നാരങ്ങാനീര്, മോര്, പുളി, വിനാഗിരി തുടങ്ങിയവയിൽ ചില ആസിഡു കൾ അടങ്ങിയിരിക്കുന്നതായി നിങ്ങൾ പഠിച്ചിട്ടുണ്ടല്ലോ? അവ കണ്ടെത്തി എഴുതുക.

നിതൃജീവിതത്തിൽ ഉപയോഗിക്കുന്ന പുളിരുചിയുള്ള പ്രകൃതിദത്തവസ്തു ക്കളിൽ ഓർഗാനിക് ആസിഡുകൾ ചെറിയ അളവിൽ അടങ്ങിയിരിക്കു ന്നു.

എല്ലാ ആസിഡുകളും രുചിച്ചുനോക്കാവുന്നവയല്ല. മിനറൽ ആസിഡുക ളായ ഹൈഡ്രോക്ലോറിക് ആസിഡ്, സൾഫ്യൂരിക് ആസിഡ്, നൈട്രിക് ആസിഡ് എന്നിവ ശക്തിയേറിയവയാണ്.

ആസിഡുകളുടെ ബേസികത

HCI ന്റെ അയോണീകരണ സമവാക്യം നൽകിയിരിക്കുന്നു.

$$HCI \rightarrow H^{+} + CI^{-}$$

ഒരു HCI തന്മാത്ര അയോണീകരിക്കപ്പെടുമ്പോൾ സ്വതന്ത്രമാകുന്ന ഹൈഡ്രജൻ അയോണുകളുടെ എണ്ണം എത്ര?

ഒരു ആസിഡ് തന്മാത്രക്ക് പ്രദാനം ചെയ്യാൻ കഴിയുന്ന ഹൈഡ്ര ജൻ അയോണുകളുടെ എണ്ണമാണ് അതിന്റെ ബേസികത.

ബേസികത 1 ആണെങ്കിൽ അതിനെ ഏകബേസിക ആസിഡ് (mono basic acid) എന്ന് പറയുന്നു.

ന്റൈട്രിക് ആസിഡിന്റെ $(\mathrm{HNO_3})$ അയോണീകരണ സമവാക്യം എഴുതി ബേസികത കണ്ടെത്തുക.

സൾഫ്യൂരിക് ആസിഡിന്റെ $(\mathsf{H_2SO_4})$ അയോണീകരണ സമവാക്യം നൽകി യിരിക്കുന്നു.

 $H_2SO_4 \rightarrow H^+ + HSO_4^-$ (ബൈസൾഫേറ്റ് അയോൺ)

$$HSO_4^- \rightarrow H^+ + SO_4^{-2-}$$
 (സൾഫേറ്റ് അയോൺ)

 ${
m H_2SO_4}$ ന്റെ ഒരു തന്മാത്ര അയോണീകരിക്കപ്പെടുമ്പോൾ സ്വതന്ത്രമാക്ക പ്പെടുന്ന ഹൈഡ്രജൻ അയോണുകളുടെ എണ്ണം എത്ര? ബേസികത എത്ര യായിരിക്കും?

ഒരു ആസിഡിന്റെ ബേസികത 2 ആണെങ്കിൽ അതിനെ ദിബേ സിക ആസിഡ് (dibasic acid) എന്നു പറയുന്നു.

ഫോസ്ഫോറിക് ആസിഡിന്റെ (H_3PO_4) അയോണീകരണ സമവാക്യം പൂർത്തിയാക്കൂ.

$$\mathrm{H_{3}PO_{4}} \rightarrow$$
 + $\mathrm{PO_{4}^{3^{-}}}$ (ഫോസ്ഫേറ്റ് അയോൺ)

 H_3PO_4 ന്റെ ബേസികത എത്രയായിരിക്കും?

ഒരു ആസിഡിന്റെ ബേസികത 3 ആണെങ്കിൽ അതിനെ ത്രിബേ സിക ആസിഡ് (tribasic acid) എന്നു പറയുന്നു.

ചില ആസിഡുകളുടെ രാസവാകൃങ്ങൾ ബോക്സിൽ നൽകിയിരിക്കുന്നു. അവയിൽ നിന്ന് മോണോബേസിക്, ഡൈബേസിക് ആസിഡുകൾ തെരഞ്ഞെടുത്ത് തരംതിരിക്കുക.

$$\mathrm{H_{2}CO_{3}}$$
, $\mathrm{HNO_{3}}$, $\mathrm{H_{3}PO_{4}}$, $\mathrm{H_{2}SO_{3}}$, HCI , $\mathrm{H_{2}SO_{4}}$

സോഡാവാട്ടർ നിങ്ങൾക്ക് പരിചിതമാണല്ലോ. എങ്ങനെയാണ് സോഡാ വാട്ടർ ഉണ്ടാക്കുന്നത്? പ്രവർത്തനത്തിന്റെ സമവാക്യം താഴെ നൽകിയി രിക്കുന്നു.

$$H_{\gamma}O + CO_{\gamma} \rightarrow H_{\gamma}CO_{\gamma}$$
 (കാർബോണിക് ആസിഡ്)

ഇതുപോലെ സൾഫർ ഡൈഓക്സൈഡ് (SO₂) വാതകം ജലത്തിൽ ലയിച്ചുണ്ടാകുന്ന പ്രവർത്തനത്തിന്റെ രാസസമവാക്യം പൂർത്തിയാക്കൂ.

..... +
$$\rightarrow$$
 $\mathrm{H_2SO_3}$ (സൾഫ്യൂറസ് ആസിഡ്)

 CO_2 , SO_2 , NO_2 എന്നിവ അലോഹ ഓക്സൈഡുകളാണ്. പൊതുവെ അലോഹ ഓക്സൈഡുകൾ ജലവുമായി പ്രവർത്തിച്ച് ഉണ്ടാകുന്ന പദാർഥങ്ങൾ ആസിഡ് ഗുണം കാണിക്കുന്നു.

ഫാക്ടറികൾ, മോട്ടോർ വാഹനങ്ങൾ, താപവൈദ്യുത നിലയങ്ങൾ എന്നിവ അധികമുള്ള സ്ഥലങ്ങളിൽ വായുമലിനീകരണ സാധ്യത വളരെ കൂടുതലാണ്. അത്തരം മേഖലകളിൽ SO₂, NO₂ പോലുള്ള വാതകങ്ങൾ

ധാരാളമായി അന്നരീക്ഷവായുവിൽ എത്തിച്ചേരുന്നു. ഇത്തരം വാതക ങ്ങൾ മഴവെള്ളത്തിൽ ലയിച്ച് ആസിഡുകളായി ഭൂമിയിലെത്തുന്നു. ഇത് 'അമ്ലമഴ' (Acid rain) എന്ന് അറിയപ്പെടുന്നു. (ചിത്രം 5.3).

ചിത്രം 5.3

അമ്ലമഴ എന്തെല്ലാം പാരിസ്ഥിതിക പ്രശ്നങ്ങൾ ഉണ്ടാക്കാം? ചർച്ച ചെയ്യൂ.

- ഇലകളെ നശിപ്പിക്കുന്നതു കാരണം പ്രകാശസംശ്ലേഷണത്തിലൂടെ അന്നജം നിർമിക്കാനുള്ള കഴിവ് സസ്യങ്ങൾക്ക് ഇല്ലാതെയാകുന്നു.
- കഠിനമായ അമ്ലമഴ ഒരു ഭൂപ്രദേശത്തെ ഹരിതാഭമല്ലാതാക്കുന്നു.
- ജലത്തിന് അമ്ലഗുണം ഉണ്ടാകുന്നതിനാൽ മത്സ്യങ്ങളുടെയും പവിഴ പ്പുറ്റുകളുടെയും നാശത്തിനു കാരണമാകുന്നു.

അമ്ലമഴ ഉണ്ടാക്കുന്ന പാരിസ്ഥിതികപ്രശ്നങ്ങൾക്കെതിരെ എന്തെല്ലാം മുൻകരുതലുകൾ സ്വീകരിക്കാൻ കഴിയും? ചർച്ചചെയ്യൂ.

- ഫോസിൽ ഇന്ധനങ്ങളുടെ അമിതോപയോഗം കുറയ്ക്കുക.
- ഫോസിൽ ഇന്ധനങ്ങൾ ഉപയോഗിക്കുന്നതിനു മുമ്പ് അവയിലെ
 സൾഫർ സംയുക്തങ്ങൾ പരമാവധി നീക്കം ചെയ്യുക.

ആൽക്കലികൾ

ആൽക്കലികളുടെ പൊതുസ്വഭാവങ്ങൾ മുമ്പ് പഠിച്ചിട്ടുണ്ടല്ലോ? ലിസ്റ്റ് ചെയ്യൂ. ഒരു പ്രവർത്തനം ചെയ്ത് നോക്കാം. നന്നായി ഉരച്ച് വൃത്തിയാ ക്കിയ മഗ്നീഷ്യം റിബൺ കത്തിക്കുന്നു. നിരീക്ഷണം രേഖപ്പെടുത്തുക. ലഭിച്ച വെളുത്ത പൊടി എന്തായിരിക്കും?

ഈ ഉൽപ്പന്നം വാച്ച് ഗ്ലാസിൽ എടുത്ത് രണ്ടോ മൂന്നോ തുള്ളി ജലം

ചേർക്കുക. ലിറ്റ്മസ് പേപ്പർ ഉപയോഗിച്ച് സ്വഭാവം കണ്ടെത്തുക. ഈ പ്രവർത്തനത്തിന്റെ രാസസമവാക്യം ശ്രദ്ധിക്കു. $MgO + H_2O \rightarrow Mg(OH)_2$ മഗ്നീഷ്യം ഹൈഡ്രോക്സൈഡ് ഇനി മറ്റൊരു പ്രവർത്തനം ചെയ്തുനോക്കാം. ഒരു ബീക്കറിലെ ജലത്തിൽ അൽപ്പം നീറ്റുകക്ക (കാൽസ്യം ഓക്സൈഡ്) ചേർത്ത് ഇളക്കുക. ബീക്കറിൽനിന്നും അൽപ്പം തെളിഞ്ഞ ലായനി ഒരു ടെസ്റ്റ്യൂബിലെടുത്ത് അതിലേക്ക് ഒരു തുള്ളി ചുവന്ന ലിറ്റ്മസ് ലായനി ചേർക്കുക. എന്താണ് നിരീക്ഷിച്ചത്? _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ കാൽസ്യം ഓക്സൈഡ് ജലവുമായി പ്രവർത്തിച്ച് ഉണ്ടായ പദാർഥം എന്താണ്? പ്രവർത്തനത്തിന്റെ രാസസമവാക്യം പൂർത്തിയാക്കി കണ്ടെത്തു. $CaO + H_2O \rightarrow \dots$ ഈ പദാർഥത്തിന്റെ സ്വഭാവത്തെക്കുറിച്ച് ലിറ്റ്മസ് പരീക്ഷണത്തിൽ നിന്ന് എന്താണ് വൃക്തമാകുന്നത്? MgO, CaO ഇവ ലോഹഓക്സൈഡാണോ? അലോഹ ഓക്സൈ ഡാണോ?

ലോഹ ഓക്സൈഡുകൾ പൊതുവേ ബേസിക് സ്വഭാവം കാണിക്കു ന്നു. ജലത്തിൽ ലയിക്കുന്ന ബേസുകളാണ് ആൽക്കലികൾ.

ചുവടെ നൽകിയിരിക്കുന്ന ഓക്സൈഡുകളിൽ നിന്ന് ബേസിക സ്വഭാവ മുള്ളവയെ കണ്ടെത്തി എഴുതുക.

നിങ്ങൾക്ക് പരിചിതമായ ചില ആൽക്കലികളുടെ രാസനാമവും രാസ സൂത്രവും പട്ടികയിൽ നൽകിയിരിക്കുന്നു. പൂർത്തിയാക്കുക.

പട്ടികയിൽനിന്നും ആൽക്കലികളിൽ അടങ്ങിയിരിക്കുന്ന പൊതുഘട കത്തെ കണ്ടെത്താമോ?

ആൽക്കലികളുടെ രാസനാമം	രാസസൂത്രം
സോഡിയം ഹൈഡ്രോക്സൈഡ്	NaOH
കാൽസൃം ഹൈഡ്രോക്സൈഡ്	
അമോണിയം ഹൈഡ്രോക്സൈഡ്	NH ₄ OH
പൊട്ടാസൃം ഹൈഡ്രോക്സൈഡ്	

ബേസുകളും ആൽക്കലികളും

എല്ലാ ബേസുകളും ആൽക്കലികൾ അല്ല. ജലത്തിൽ ലയിക്കുന്ന ബേസുക ളാണ് ആൽക്കലികൾ

NaOH, KOH എന്നിവ ആൽക്കലികളാണ് എന്നാൽ $AI(OH)_3$, $Cu(OH)_2$ എന്നിവ ബേസുകളാണെങ്കിലും ജലത്തിൽ ലയി ക്കാത്തതിനാൽ അവയെ ആൽക്കലി കളായി കണക്കാക്കുകയില്ല.

ലോഹ ഓക്സൈഡുകൾ പൊതുവേ ബേസിക് സ്വഭാവം കാണിക്കുന്ന വയാണ്. എന്നാൽ ചുരുക്കം ചില ഓക്സൈഡുകൾക്ക് ആസിഡിന്റെയും, ബേസിന്റെയും സ്വഭാവമുണ്ട്. ഇവയെ ആംഫോറ്റെറിക് (amphoteric) ഓക്സൈ ഡുകൾ എന്നു വിളിക്കുന്നു.

ഉദാ: Al₂O₃, ZnO

ഇവയ്ക്ക് ആസിഡുകളുമായും ബേസു കളുമായും രാസപ്രവർത്തനത്തിൽ ഏർപ്പെടാൻ സാധിക്കും. സോഡിയം ഹൈഡ്രോക്സൈഡ് ജലത്തിൽ ലയിക്കു മ്പോൾ നടക്കുന്ന പ്രവർത്തനത്തിന്റെ രാസസമവാക്യം ശ്രദ്ധിക്കൂ.

NaOH \rightarrow Na $^+$ + OH $^-$ (ഹൈഡ്രോക്സൈഡ് അയോൺ) കാൽസ്യം ഹൈഡ്രോക്സൈഡിന്റെ അയോണീകരണ രാസസമവാക്യം എഴുതിയിരിക്കുന്നത് പൂർത്തിയാക്കൂ.

$$Ca(OH)_2 \rightarrowCa^{2+} +$$

ആൽക്കലികൾ ജലത്തിൽ ലയിക്കുമ്പോൾ സ്വതന്ത്രമാകുന്ന പൊതുവായ അയോൺ ഏതാണ്?

ജലീയ ലായനിയിൽ ഹൈഡ്രോക്സൈഡ് (OH-) അയോണുകളുടെ ഗാഢത വർധിപ്പിക്കാൻ കഴിയുന്ന പദാർഥങ്ങളാണ് ആൽക്കലികൾ.

ചില ആൽക്കലികൾ സാധാരണയായി അറിയപ്പെടുന്ന പേരുകളും അവയുടെ രാസനാമവും രാസസൂത്രവും പട്ടിക 5.4ൽ നൽകിയിരിക്കുന്നത് ശ്രദ്ധിക്കു.

സാധാരണ നാമം	രാസനാമം	രാസസൂത്രം
കാസ്റ്റിക് സോഡ	സോഡിയം ഹൈഡ്രോക്സൈഡ്	NaOH
മിൽക്ക് ഓഫ് ലൈം	കാൽസ്യം ഹൈഡ്രോക്സൈഡ്	Ca(OH) ₂
കാസ്റ്റിക് പൊട്ടാഷ്	പൊട്ടാസ്യം ഹൈഡ്രോക്സൈഡ്	КОН

പട്ടിക 5.4

അറീനിയസ് സിദ്ധാന്തം

സ്വാന്റേ അറീനിയസ് (1859-1927)

ചില ആസിഡുകളുടെയും ആൽക്കലികളുടെയും അയോണീകരണത്തെ സൂചിപ്പിക്കുന്ന രാസസമവാകൃങ്ങൾ ചുവടെ നൽകിയിരിക്കുന്നു. വിട്ടു പോയ ഭാഗങ്ങൾ പൂർത്തിയാക്കൂ.

$$\begin{array}{lll} \mathsf{HCI} & \to & \mathsf{H}^{\scriptscriptstyle +} + & \mathsf{CI}^{\scriptscriptstyle -} \\ \mathsf{KOH} & \to & \mathsf{K}^{\scriptscriptstyle +} + & \mathsf{OH}^{\scriptscriptstyle -} \\ \mathsf{H}_2 \mathsf{CO}_3 & \to & \dots \\ \end{array}$$

$$NH_4OH \rightarrow NH_4^+ + \dots$$

$$\mathsf{HNO}_3 \ \rightarrow \ \dots + \mathsf{NO}_3$$

ചിത്രം 5.4

1887ൽ സ്വീഡിഷ് ശാസ്ത്രജ്ഞനായ സ്വാന്റേ അറീനിയസ് (Svante Arrhenius) ആസിഡുകളെയും ബേസുകളെയും കുറിച്ചുള്ള ശാസ്ത്രീയമായ സിദ്ധാന്തം അവതരിപ്പിച്ചു. ഏതൊരു ആസിഡും ബേസും ജലത്തിൽ ലയിക്കുമ്പോൾ അവ അയോണുകളായി വിഭ ജിക്കപ്പെടുന്നുവെന്ന് അദ്ദേഹം പ്രസ്താവിച്ചു. ജലീയ ലായനിയിൽ H^+ അയോണുകൾ സ്വതന്ത്രമാക്കാൻ കഴിയുന്നവയാണ് ആസിഡു കളെന്നും OH^- അയോണുകൾ സ്വതന്ത്രമാക്കാൻ കഴിയുന്നവയാണ് ബേസുകളെന്നുമാണ് അദ്ദേഹത്തിന്റെ സിദ്ധാന്തം.

നിർവീരീകരണ പ്രവർത്തനം (Neutralisation reaction)

നേർപ്പിച്ച ഹൈഡ്രോക്ലോറിക് ആസിഡും നേർപ്പിച്ച സോഡിയം ഹൈഡ്രോക്സൈഡ് ലായനിയും ചേർത്താൽ എന്ത് സംഭവിക്കും? ഒരു പ്രവർത്തനം ചെയ്ത് നോക്കാം.

ഒരു ബ്യൂററ്റിൽ 50 mL നേർപ്പിച്ച ഹൈഡ്രോക്ലോറിക് ആസിഡ് (HCI) എടുക്കുക. പിപ്പറ്റ് ഉപയോഗിച്ച് ഒരു കോണിക്കൽ ഫ്ളാസ്കിൽ 20 mL നേർപ്പിച്ച സോഡിയം ഹൈഡ്രോക്സൈഡ് (NaOH) ലായനി എടുക്കുക. അതിലേക്ക് ഒന്നോ രണ്ടോ തുള്ളി ഫിനോഫ്തലീൻ ചേർക്കുക. ലായനിക്ക് എന്തു നിറമാണ് ലഭിച്ചത്?

കോണിക്കൽ ഫ്ളാസ്കിലേക്ക് നേർപ്പിച്ച HCI സാവധാനത്തിൽ വീഴ്ത്തുക. കോണിക്കൽ ഫ്ളാസ്കിലെ ലായനി ഇളക്കിക്കൊണ്ടിരിക്ക ണം. NaOH ലായനിയുടെ നിറത്തിനു സംഭവിക്കുന്ന മാറ്റം നിരീക്ഷി ക്കുക. നിറം മങ്ങുന്ന ഘട്ടത്തിലെത്തുമ്പോൾ HCI തുള്ളി തുള്ളിയായി ചേർത്ത് ഇളക്കുക. ഒരു തുള്ളി HCI ചേർക്കുമ്പോൾ നിറം പൂർണ്ണമായി നഷ്ടപ്പെടുന്ന സന്ദർഭത്തിൽ ആസിഡ് ചേർക്കുന്നത് നിർത്തുക. ഉപയോ ഗിച്ച HCIന്റെ അളവ് ബ്യൂററ്റിലെ ആസിഡിന്റെ നിരപ്പ് നോക്കി രേഖപ്പെടുത്തുക.

- ഫിനോഫ്തലീൻ ചേർത്തപ്പോൾ NaOH ലായനിയുടെ നിറം എന്താ യിരുന്നു.
- NaOH ലായനിയുടെ ഏത് സ്വഭാവത്തെയാണ് ഇത് സൂചിപ്പിക്കു ന്നത്?
 - -----
- HCI ചേർക്കുന്നതനുസരിച്ച് NaOH ലായനിയുടെ നിറം കുറഞ്ഞു വരുന്നതിൽനിന്ന് എന്താണു മനസ്സിലാക്കേണ്ടത്?
- നിറം പൂർണ്ണമായി നഷ്ടപ്പെടുന്ന സന്ദർഭത്തിൽ കോണിക്കൽ ഫ്ളാസ്കിൽ NaOH അവശേഷിക്കുമോ?

നിറം പൂർണമായും മാറിയ ലായനിയിലേക്ക് അൽപ്പം NaOH ലായനി ചേർക്കുക.

എന്താണു കാണുന്നത്? നിരീക്ഷണത്തിന്റെ കാരണമെന്ത്?

അതിലേക്ക് വീണ്ടും നേർപ്പിച്ച HCI തുള്ളി തുള്ളിയായി ചേർത്ത്

നിരീക്ഷണം എന്താണ്?

ഇളക്കുക

ആസിഡും ബേസും തമ്മിൽ പ്രവർത്തിച്ച് അവയുടെ ഗുണങ്ങൾ പര സ്പരം ഇല്ലാതെയാകുന്നു. ഇത്തരം രാസപ്രവർത്തനങ്ങൾ നിർവീരീ കരണപ്രവർത്തനങ്ങൾ (Neutralisation reaction) എന്നറിയപ്പെടുന്നു.

സോഡിയം ഹൈഡ്രോക്സൈഡും നേർപ്പിച്ച ഹൈഡ്രോക്ലോറിക് ആസിഡും തമ്മിലുള്ള നിർവീരീകരണപ്രവർത്തനത്തിന്റെ രാസസമ വാക്യം എഴുതിനോക്കൂ.

NaOH + HCl \rightarrow NaCl + H₂O

20 mL NaOH ലായനി നിർവീര്യമാക്കുന്നതിന് എത്ര അളവ് നേർപ്പിച്ച HCl ഉപയോഗിച്ചു? മുമ്പു നടത്തിയ പരീക്ഷണത്തിൽ ഇതു രേഖപ്പെടു ത്തിയിട്ടുണ്ടല്ലോ.

ആസിഡിന്റെ ഗാഢത വ്യത്യാസപ്പെടുത്തി പരീക്ഷണം ആവർത്തിക്കൂ. ഉപയോഗിച്ച HCl ന്റെ അളവിൽ വ്യത്യാസം വരുന്നുണ്ടോ?

നിർവീരീകരണപ്രവർത്തനത്തിന് കൂടുതൽ ഉദാഹരണങ്ങൾ കണ്ടെ ത്താമോ?

നിർവീരീകരണപ്രവർത്തനത്തിൽ ഗാഢത ഒരു പ്രധാന ഘടകമാണെന്ന് മനസിലായല്ലോ.

നമ്മുടെ ആമാശയത്തിൽ നടക്കുന്ന ദഹനപ്രവർത്തനത്തെ ഹൈഡ്രോ ക്ലോറിക് ആസിഡ് സഹായിക്കുന്നുവെന്ന് ബയോളജി ക്ലാസിൽ പഠിച്ചി ട്ടുണ്ട്.

ആമാശയത്തിൽ ആസിഡിന്റെ അളവ് അധികമായാലോ?

ഇത്തരം സാഹചര്യത്തിൽ നാം എന്താണ് ചെയ്യുന്നത്?

ആമാശയത്തിലെ അസിഡിറ്റി കുറയ്ക്കാനായി ഉപയോഗിക്കുന്ന ഔഷ

അന്റാസിഡ്

ആമാശയത്തിൽ ദഹനപ്രവർത്തനത്തെ സഹായിക്കുന്നത് ഹൈഡ്രോക്ലോറിക് ആസിഡാണ്. ആസിഡ് അംശം കൂടു ന്നതുകൊണ്ട് വയറെരിച്ചിൽ, പുളിച്ചുതി കട്ടൽ എന്നിവയുണ്ടാകാം. ഇത് കാല ക്രമേണ പെപ്റ്റിക് അൾസർ, കാൻസർ മുതലായവയ്ക്ക് കാരണമാകുന്നു. ആമാ ശയത്തിൽ അസിഡിറ്റി കുറയ്ക്കുന്നതിന് നൽകുന്ന ഔഷധങ്ങളാണ് അന്റാസിഡു കൾ (Antacids). കാൽസ്യം കാർബ ണേറ്റ്, അലുമിനിയം കാർബണേറ്റ്, അലൂ മിനിയം ഹൈഡ്രോക്സൈഡ്, സോഡി യം ബൈകാർബണേറ്റ്, മഗ്നീഷ്യം ഹൈഡ്രോക്സൈഡ് മുതലായ രാസപ ദാർഥങ്ങളാണ് അന്റാസിഡുകളിലെ ഘടകങ്ങൾ

ധങ്ങൾ **അന്റാസിഡുകൾ** (Antacids) എന്നറിയപ്പെടുന്നു. ഏത് സ്വഭാവമുള്ള പദാർഥങ്ങളായിരിക്കും അന്റാസിഡു കളിൽ ഉള്ളത്?

അന്റാസിഡുകളുടെ പ്രവർത്തനരീതി എന്തായിരിക്കും?

അസിഡിറ്റി കൂടുതലുള്ള കൃഷിയിടങ്ങളിൽ കുമ്മായ പ്പൊടി ചേർക്കുമ്പോഴും ഇതു തന്നെയല്ലേ സംഭവിക്കു ന്നത്?

മണ്ണിൽ അസിഡിറ്റി കൂടുതലുള്ള സന്ദർഭം പോലെ ത്തന്നെ ആൽക്കലി സ്വഭാവം കൂടുന്ന സന്ദർഭങ്ങളും ഉണ്ട്. ഇത്തരം സാഹചര്യങ്ങളിൽ ഏതു സ്വഭാവമുള്ള പദാർഥ മാകും ചേർക്കുന്നത്?

ആസിഡ്/ബേസ്

മണ്ണിന്റെ ഗുണം തിരിച്ചറിഞ്ഞാൽ മാത്രമല്ലേ ഇതു സാധ്യ മാവുകയുള്ളൂ?

ഇതിനായി മണ്ണു പരിശോധിക്കേണ്ടി വരില്ലേ? ആസിഡ്–ആൽക്കലി സ്വഭാവത്തിന്റെ തോത് എങ്ങനെ യാണ് പ്രസ്താവിക്കുന്നത്? നമുക്ക് നോക്കാം.

pH മൂല്യം

മൂന്ന് ടെസ്റ്റ്യൂബുകളിൽ തുല്യ അളവ് വീതം നേർപ്പിച്ച ഹൈഡ്രോക്ലോറിക് ആസിഡ്, സോഡിയം ഹൈഡ്രോ ക്സൈഡ് ലായനി, ശുദ്ധജലം (ഡിസ്റ്റിൽഡ് വാട്ടർ) എന്നിവ എടുക്കുന്നു. നീല ലിറ്റ്മസ് പേപ്പർ, ചുവന്ന ലിറ്റ്മസ് പേപ്പർ ഇവ ഉപയോഗിച്ച് പദാർഥത്തിന്റെ സ്വഭാവം കണ്ടെത്തുക. ശേഷം ഫിനോഫ്തലീൻ ലായ നിയുടെ രണ്ടോ മൂന്നോ തുള്ളി മൂന്ന് ടെസ്റ്റ്ട്യൂബുകളി

ലേക്കും ചേർത്ത് നിരീക്ഷണം രേഖപ്പെടുത്തി പദാർഥങ്ങളുടെ സ്വഭാവം കണ്ടെത്താമോ?

ശുദ്ധജലത്തിൽ നിറവ്യത്യാസം ഉണ്ടാകുന്നുണ്ടോ? ജലത്തിന്റെ എന്ത് പ്രത്യേകതയാണ് ഇത് വ്യക്തമാകുന്നത്?

നിർവീര്യലായകമായ ജലത്തിൽ വളരെ ചെറിയ തോതിലുള്ള അയോ ണീകരണം നടന്ന് തുല്യ അളവ് H⁺അയോണുകളും OH⁻ അയോണു കളും ഉണ്ടാകുന്നു.

ജലത്തിലേക്ക് അല്പം ആസിഡ് ചേർത്താൽ H⁺ അയോണിന്റെ അള വിൽ എന്ത് മാറ്റമുണ്ടാകും?

ആൽക്കലി ചേർത്താലോ?

പദാർഥങ്ങളുടെ ആസിഡ് /ബേസ് സ്വഭാവം കണ്ടുപിടിക്കുന്നതിന്റെ ശാസ്ത്രീയ മാർഗം pH മൂല്യം നിർണയിക്കലാണ്. ഡാനിഷ് ശാസ്ത്രജ്ഞ നായ സോറൻസൺ ആണ് pH സ്കെയിൽ ആവിഷ്കരിച്ചത്. ലായനി യിലെ H⁺അയോണിന്റെ ഗാഢത അടിസ്ഥാനമാക്കിയാണ് ഈ സ്കെയിൽ രൂപപ്പെടുത്തിയത്. ചുവടെ pH സ്കെയിൽ ചിത്രീകരിച്ചിരിക്കുന്നത് നിരീ ക്ഷിക്കു.

pH സ്കെയിൽ നിരീക്ഷിച്ച് താഴെ നൽകിയ ചോദൃങ്ങൾക്ക് ഉത്തരം കണ്ടെത്തുക.

നിർവീരുലായനിയുടെ pH മൂല്യം എത്ര?

pH മൂല്യം 7 ൽ കൂടിയ ലായനികൾ ഏത് സ്വഭാവം കാണിക്കുന്നു?

pH മൂല്യം 7 ൽ കുറവായ ലായനികൾ ഏത് സ്വഭാവം കാണിക്കുന്നു?

ജലീയ ലായനിയിലുള്ള H⁺ അയോണുകളുടെ ഗാഢത അടിസ്ഥാന മാക്കി പദാർഥത്തിന്റെ ആസിഡ്, ബേസ് സ്വഭാവങ്ങൾ പ്രസ്താവിക്കുന്ന രീതിയാണ് pH സ്കെയിൽ. pH സ്കെയിൽ പ്രകാരം നിർവീര്യ ലായ നിയുടെ pH മൂല്യം 7 ആണ്. ആസിഡുകളുടെ pH മൂല്യം 7ൽ കുറവും ബേസുകളുടേത് 7ൽ കൂടുതലും ആയിരിക്കും.

വൃതൃസ്ത ലായനികളുടെ pHമൂല്യം കണ്ടെത്തി താരതമ്യം ചെയ്യാൻ കഴിയും. ഇതിനായി pH പേപ്പർ, pH ലായനി, pH മീറ്റർ എന്നിവ ഉപയോ ഗിക്കാം.

pH കാണേണ്ട ലായനിയിൽ pH പേപ്പർ മുക്കിയെടുക്കുകയോ ഒരു തുള്ളി pH ലായനി ചേർക്കുകയോ ചെയ്യുക. ഇവയ്ക്കുണ്ടാകുന്ന നിറവ്യത്യാസം pH കളർചാർട്ടുമായി (ചിത്രം 5.5) താരതമ്യം ചെയ്ത് ലായനിയുടെ pH മൂല്യം കണ്ടുപിടിക്കാം.

IT@School Edubuntu വിലെ PhETസോഫ്റ്റ്വെയറിൽ നിന്നും pH Scale Application തുറന്ന് ആശയ വൃക്തത വരുത്തു.

നിറങ്ങളും pH മൂല്യങ്ങളും ചിത്രം 5.5

ചുവടെ തന്നിട്ടുള്ള പദാർഥങ്ങളുടെ pH മൂല്യം, pH പേപ്പർ ഉപയോഗിച്ച് കണ്ടെത്തി പട്ടിക പൂർത്തിയാക്കുക

പദാർഥത്തിന്റെ പേര്	പേപ്പറിന്റെ നിറം	pH മൂല്യം	ആസിഡ്/ബേസ്
വിനാഗിരി			
ചുണ്ണാമ്പുവെള്ളം			
നേർപ്പിച്ച ഹൈഡ്രോക്ലോറിക് ആസിഡ്			
器已。	നിറമാറ്റമില്ല	7	നിർവീര്യം
അലക്കുകാര ലായനി			
അമോണിയ ലായനി			
പൊട്ടാസൃം നൈട്രേറ്റ് ലായനി			
സോഡിയം ക്ലോറൈഡ് ലായനി	നിറമാറ്റമില്ല		നിർവീര്യം

പട്ടിക 5.5

ജലീയ ലായനികളുടെ pH നിർണയിക്കാൻ ഉപയോഗിക്കുന്ന ഒരു ഉപകരണ മാണ് pH മീറ്റർ. സാധാരണ pH മീറ്ററുകൾ രണ്ട് ഇലക്ട്രോഡുകൾക്കിടയി ലുള്ള വോൾട്ടേജ് അളന്ന ശേഷം അതിനെ തത്തുല്യമായ pH മൂല്യത്തിലേക്ക് മാറ്റുകയാണു ചെയ്യുന്നത്. ഈ ഉപകരണത്തിന്റെ ഏറ്റവും പ്രധാനപ്പെട്ട ഭാഗം ഒരു പ്രോബ് (Probe) ആണ്. ദണ്ഡ് ആകൃതിയിൽ ഗ്ലാസ് കൊണ്ട് നിർമിച്ച രൂപ ത്തിന്റെ അഗ്രഭാഗത്തു ഘടിപ്പിച്ച സെൻസറാണ് pH നിർണയം സാധ്യമാക്കുന്നത്. പ്രോബ് ലായനിയിൽ നിക്ഷേപിച്ചാണ് pH നിർണയിക്കുന്നത്.

ഭൂമിയുടെ ഉപരിതലത്തിൽ എല്ലാ യിടത്തുമുള്ള മണ്ണിന്റെ ഗുണം ഒരുപോലെയല്ല. മണ്ണിന്റെ ഗുണ വും കാർഷികവിളകളും തമ്മിൽ ബന്ധമുണ്ട്. ലോകത്തിന്റെ വിവിധ ഭാഗങ്ങളിലുള്ള കാർഷികവിളകളുടെ വൈവിധ്യത്തിന് ഇതാണ് കാരണം.

ഒരു പ്രദേശത്തെ കാലാവസ്ഥ,

ജലലഭ്യത, മണ്ണിന്റെ ഘടന എന്നിവയൊക്കെ കാർഷികവിളകളെ സ്വാധീനിക്കുന്ന ഘടകങ്ങളാണ്. പൊതുവേ 6.5 മുതൽ 7.2 വരെ pH മൂല്യമുള്ള മണ്ണാണ് അധിക വിളകൾക്കും യോജിച്ചത്. കാരറ്റ്, കാബേജ് തുടങ്ങിയ വിളകൾക്ക് അനുയോജ്യമായ pH 7 മുതൽ 8 വരെയാണ്. എന്നാൽ pH 5 നോട് അടുത്ത മണ്ണാണ് ഉരു ഉക്കിഴങ്ങ് പോലുള്ള വിളകൾക്ക് അഭികാമ്യം.

pH മൂല്യം കൂടുന്നതനുസരിച്ച് ആസിഡ് ഗുണ മാണോ ബേസിക ഗുണമാണോ കൂടുന്നത്? pH മൂല്യം കൂടുമ്പോൾ H⁺ അയോണുകളുടെ അളവ് കൂടുമോ കുറയുമോ?

കാർഷികവിളകൾക്ക് മണ്ണിന്റെ pH ഒരു പ്രധാ നപ്പെട്ട ഘടകമാണ്. ഒരു പ്രദേശത്തെ മണ്ണ് ഒരു പ്രത്യേക കാർഷിക വിളയ്ക്ക് യോജി ച്ചതാണോ എന്നു കണ്ടെത്തുന്നതു പ്രാധാന്യ മർഹിക്കുന്നു. ചില വിളകൾക്ക് ആസിഡ് സ്വഭാ വമുള്ള മണ്ണാണ് യോജിച്ചതെങ്കിൽ മറ്റു ചില തിന് ബേസിക ഗുണമുള്ള മണ്ണാണ് യോജി ക്കുന്നത്.

കൃഷിയിറക്കുന്ന ഘട്ടത്തിൽ മണ്ണിന്റെ pH മൂല്യം നിർണ്ണയിക്കേണ്ടതിന്റെ ആവശ്യകത ബോധ്യപ്പെട്ടല്ലോ.

ലവണങ്ങൾ (Salts)

നേർപ്പിച്ച ഹൈഡ്രോക്ലോറിക് ആസിഡും സോഡിയം ഹൈഡ്രോ ക്സൈഡ് ലായനിയും തമ്മിലുള്ള പ്രവർത്തനത്തിൽ ഉൽപ്പന്നങ്ങൾ എന്തെല്ലാമാണ്?

$$Na^{+}OH^{-} + H^{+}CI^{-} \rightarrow Na^{+}CI^{-} + H_{2}O$$

ആസിഡിന്റെ പൊതുഘടകവും ആൽക്കലിയുടെ പൊതുഘടകവും ചേരു മ്പോൾ ഉണ്ടാകുന്ന ഉൽപ്പന്നം ഏതാണ്?

സോഡിയം ഹൈഡ്രോക്സൈഡിലെ പോസിറ്റീവ് അയോൺ ഏതാണ്? ഹൈഡ്രോക്ലോറിക് ആസിഡിലെ നെഗറ്റീവ് അയോൺ ഏതാണ്? ഇവ ചേർന്നുണ്ടാകുന്ന സംയുക്തത്തിന്റെ രാസസൂത്രം എഴുതുക. ഈ പദാർഥം എന്താണ്?

HCl ഉം NaOH ഉം തമ്മിൽ പ്രവർത്തിച്ച് ഉണ്ടാകുന്ന സോഡിയം ക്ലോറെഡ് ഒരു ലവണമാണ്.

ആസിഡും ആൽക്കലിയും പൂർണമായും പ്രവർത്തിച്ച് ലവണവും ജലവും ഉണ്ടാകുന്ന പ്രവർത്തനമാണ് നിർവീരീകരണം (Neutralisation reaction).

ലവണങ്ങൾ പൊതുവെ അയോണിക സംയുക്തങ്ങളാണ്. നേർപ്പിച്ച സൾഫ്യൂരിക് ആസിഡും (H_2SO_4) മഗ്നീഷ്യം ഹൈഡ്രോക്സൈഡ് $[Mg(OH)_2]$ ലായനിയും തമ്മിലുള്ള പ്രവർത്തനത്തിന്റെ രാസസമവാക്യം പൂർത്തിയാക്കുക.

$$Mg(OH)_2 + H_2SO_4 \rightarrow \dots + 2H_2O$$

ഉണ്ടായ ഉൽപ്പന്നങ്ങൾ ഏതൊക്കെ?

താഴെ പട്ടികയിൽ നൽകിയിരിക്കുന്ന ലവണങ്ങൾ മനസ്സിലാക്കി അവ ലഭിക്കാൻ പ്രവർത്തിപ്പിക്കേണ്ട ആസിഡ്, ആൽക്കലി ഇവ കണ്ടെത്തുക.

ലവണം	രാസസൂത്രം	ആ സിഡ്	ആൽക്കലി
മഗ്നീഷ്യം ക്ലോറൈഡ്	MgCl ₂	HCI	Mg(OH) ₂
കാത്സ്യം സൾഫേറ്റ്	CaSO ₄		
അലുമിനിയം സൾഫേറ്റ്	$Al_2(SO_4)_3$		
സോഡിയം നൈട്രേറ്റ്	NaNO ₃		
പൊട്ടാസ്യം ഫോസ്ഫേറ്റ്	K ₃ PO ₄		

ലവണങ്ങൾ ഉരുകുകയോ ജലത്തിൽ ലയിക്കുകയോ ചെയ്യുമ്പോൾ പോസിറ്റീവ് അയോണായും നെഗറ്റീവ് അയോണായും വേർപിരിയുന്നു. ഏതാനും പോസിറ്റീവ് അയോണുകളുടെയും നെഗറ്റീവ് അയോണുകളുടെയും ഒപര്, പ്രതീകം എന്നിവ പട്ടിക 5.7ൽ നൽകിയിരിക്കുന്നു.

പോസിറ്റീവ് അയോണിന്റെ പേര്	പ്രതീകം	നെഗറ്റീവ് അയോണിന്റെ പേര്	പ്രതീകം
പൊട്ടാസ്യം അയോൺ	K ⁺	ഹൈഡ്രോക്സൈഡ് അയോൺ	OH-
സിങ്ക് അയോൺ	Zn ²⁺	കാർബണേറ്റ് അയോൺ	CO ₃ ²⁻
ഫെറസ് അയോൺ	Fe ²⁺	ബൈകാർബണേറ്റ് അയോൺ	HCO ₃ ⁻
ഫെറിക് അയോൺ	Fe ³⁺	നൈട്രേറ്റ് അയോൺ	NO ₃ ⁻
കുപ്രസ് അയോൺ	Cu⁺	സൾഫേറ്റ് അയോൺ	SO ₄ ²⁻
കുപ്രിക് അയോൺ	Cu ²⁺	ബൈസൾഫേറ്റ് അയോൺ	HSO ₄ -
അമോണിയം അയോൺ	NH ₄ ⁺	ഫോസ്ഫേറ്റ് അയോൺ	PO ₄ ³⁻
മാംഗനസ് അയോൺ	Mn ²⁺	ഡൈഹൈഡ്രജൻഫോസ്ഫേറ്റ് അയോൺ	H ₂ PO ₄ -

പട്ടിക 5.7

ചില ലവണങ്ങളുടെ പേരും അവയുടെ രാസസൂത്രവും പട്ടിക 5.8 ൽ നൽകിയിരിക്കുന്നു. കൂടുതൽ ലവണങ്ങളുടെ പേരുകൾ കൂട്ടിച്ചേർത്ത് അവയിലെ പോസിറ്റീവ് അയോൺ, നെഗറ്റീവ് അയോൺ എന്നിവ കണ്ടെത്തി പട്ടിക പൂർത്തിയാക്കുക.

ലവണത്തിന്റെ പേര്	രാസസൂത്രം	പോസിറ്റീവ് അയോൺ	നെഗറ്റീവ് അയോൺ
സോഡിയം ക്ലോറൈഡ്	NaCl	Na⁺	Cl ⁻
മഗ്നീഷ്യം സൾഫേറ്റ്	MgSO ₄	Mg ²⁺	SO ₄ ²⁻
കാൽസ്യം കാർബണേറ്റ്	CaCO ₃		

പട്ടിക 5.8

NaCl 'തന്മാത്ര'യിലെ പോസിറ്റീവ് അയോണുകളുടെ എണ്ണം എത്ര? NaCl 'തന്മാത്ര'യിലെ നെഗറ്റീവ് അയോണുകളുടെ എണ്ണം എത്ര? NaCl 'തന്മാത്ര'യിലെ പോസിറ്റീവ് അയോണുകളുടെയും നെഗറ്റീവ് അയോണുകളുടെയും ചാർജിന്റെ ആകെ തുക എത്രയായിരിക്കും? MgCl₂ 'തന്മാത്ര'യിലെ പോസിറ്റീവ് അയോണുകളുടെ എണ്ണം എത്ര?
MgCl₂ 'തന്മാത്ര'യിലെ നെഗറ്റീവ് അയോണുകളുടെ എണ്ണം എത്ര?
MgCl₂ 'തന്മാത്ര'യിലെ പോസിറ്റീവ് അയോണുകളുടെയും നെഗറ്റീവ് അയോണുകളുടെയും ചാർജിന്റെ ആകെ തുക എത്രയായിരിക്കും?

ലവണങ്ങൾ വൈദ്യുതപരമായി നിർവീര്യമാണ്. അവയിലെ പോസി റ്റീവ് അയോണുകളുടെയും നെഗറ്റീവ് അയോണുകളുടെയും

ചാർജുകളുടെ തുക പൂജ്യം ആയിരിക്കും.

ലവണങ്ങളുടെ രാസസൂത്രം എഴുതുന്ന വിധം

- രാസസൂത്രം എഴുതുമ്പോൾ ആദ്യം പോസിറ്റീവ് അയോണിന്റെ പ്രതീ കവും തുടർന്ന് നെഗറ്റീവ് അയോണിന്റെ പ്രതീകവും എഴുതുന്നു.
- ഓരോ അയോണിന്റെയും ചാർജ് സൂചിപ്പിക്കുന്ന സംഖ്യകൾ പര സ്പരം മാറ്റി പാദാങ്കമായി എഴുതുന്നു.
- പാദാങ്കങ്ങൾ ലഘൂകരിച്ച് ഏറ്റവും ചെറിയ പൂർണസംഖ്യ അംശബ ന്ധത്തിൽ എഴുതുന്നു

മഗ്നീഷ്യം അയോൺ $(\mathrm{Mg^{2+}})$ ഫോസ്ഫേറ്റ് അയോണുമായും $\left(\mathrm{PO_4^{3^-}}\right)$ കാർബണേറ്റ് അയോണുമായും $\left(\mathrm{CO_3^{2^-}}\right)$ സംയോജിച്ചുണ്ടാകുന്ന സംയുക്ത ങ്ങളുടെ രാസസൂത്രം എഴുതിയിരിക്കുന്ന ഘട്ടങ്ങൾ മനസിലാക്കൂ.

1.
$$Mg^{2+} PO_4^{3-}$$
 $Mg^{2+} CO_3^{2-}$ $Mg_2(CO_3)_2$ $Mg_{2/2}(CO_3)_{2/2}$ $MgCO_3$

ചില പോസിറ്റീവ് അയോണുകളും നെഗറ്റീവ് അയോണുകളും പട്ടിക യിൽ നൽകിയിരിക്കുന്നു. അവ ചേർന്നുണ്ടാകാൻ സാധ്യതയുള്ള പരമാ വധി ലവണങ്ങളുടെ പേരുകളും അവയുടെ രാസസൂത്രവും എഴുതുക.

പോസിറ്റീവ് അയോൺ	നെഗറ്റീവ് അയോൺ		
Ca ²⁺ (കാൽസ്യം അയോൺ)	CI ⁻ (ക്ലോറൈഡ് അയോൺ)		
NH ₄ (അമോണിയം അയോൺ)	SO ₄ ²- (സൾഫേറ്റ് അയോൺ)		
PO₄³⁻ (ഫോസ്ഫേറ്റ് അയോൺ			
പട്ടിക 5.9			

പട്ടിക 5.7 ലെ പ്രതീകങ്ങൾ ഉപയോഗിച്ച് കൂടുതൽ സംയുക്തങ്ങളുടെ രാസസൂത്രം കണ്ടെത്തുക.

ലവണങ്ങളുടെ ഉപയോഗങ്ങൾ

സസ്യങ്ങളുടെ വളർച്ചയ്ക്ക് അനേകം മൂലകങ്ങൾ ആവശ്യമുണ്ടെന്ന്

അറിയാമല്ലോ? ഈ മൂലകങ്ങൾ മണ്ണിലൂടെയായിരിക്കില്ലേ സസ്യങ്ങൾക്ക്
ലഭിക്കുന്നത്?
എല്ലാത്തരം മണ്ണിലും ഇത്തരം മൂലകങ്ങൾ ലഭ്യമാണോ?
ഈ മൂലകങ്ങളുടെ അഭാവം പരിഹരിക്കാൻ എന്തെല്ലാം മാർഗങ്ങൾ സ്വീക
രിക്കാം?
രാസവളമായി ഉപയോഗിക്കുന്ന ചില ലവണങ്ങൾ ചുവടെ നൽകിയിരി
ക്കുന്നു.

- ullet അമോണിയം സൾഫേറ്റ് $\left(\mathsf{NH_4} \right)_2 \mathsf{SO}_4$
- പൊട്ടാസൃം ക്ലോറൈഡ് KCI
- സോഡിയം നൈട്രേറ്റ് NaNO₃

നിതൃജീവിതത്തിൽ ഉപയോഗിക്കുന്ന അനേകം ലവണങ്ങളുണ്ട്. അവ യിൽ ചില ലവണങ്ങളും അവയുടെ രാസനാമവും പട്ടികപ്പെടുത്തിയി രിക്കുന്നത് (പട്ടിക 5.10) വിശകലനം ചെയ്തു പൂർത്തിയാക്കൂ.

ലവണത്തിന്റെ പേര്	രാസനാമം	രാസ സൂത്രം	ഉപയോഗം
കറിയുപ്പ്	സോഡിയം ക്ലോറൈഡ്	NaCl	ശീതമിശ്രിതനിർമാണം
ഇന്തുപ്പ്	പൊട്ടാസ്യം ക്ലോറൈഡ്	KCI	•
തുരിശ്	കോപ്പർ സൾഫേറ്റ്	CuSO ₄ .5H ₂ O	കുമിൾനാശിനി
അപ്പക്കാരം	സോഡിയം ബൈകാർബണേറ്റ്	NaHCO ₃	•
അലക്കുകാരം	സോഡിയം കാർബണേറ്റ്	Na ₂ CO ₃ .10H ₂ O	ഗ്ലാസ് നിർമാണം
ജിപ്സം	കാൽസ്യം സൾഫേറ്റ്	CaSO ₄ . 2H ₂ O	•

പട്ടിക 5.10

മുകളിൽ കൊടുത്തിട്ടുള്ള ലവണങ്ങളുടെ വിവിധ ഉപയോഗങ്ങൾ കണ്ടെത്തി പട്ടിക പൂർത്തിയാക്കുക. കൂടുതൽ ലവണങ്ങളുടെ പേരുകളും ഉപയോഗങ്ങളും കണ്ടെത്താൻ ശ്രമിക്കൂ.

വിലയിരുത്താം

1. ചുവടെ തന്നിരിക്കുന്ന അയോണീകരണ പ്രവർത്തനങ്ങളുടെ രാസ സമവാകൃങ്ങൾ പൂർത്തിയാക്കുക.

 $CaSO_4 \rightarrow + SO_4^{2-}$

2. അയോണുകളുടെ പ്രതീകങ്ങൾ ബോക്സിൽ നിന്നും കണ്ടെത്തി ഓരോന്നിന്റെയും പേരിന് നേരെ എഴുതുക.

$$SO_3^{2-}$$
, NO_3^- , HCO_3^- , OH^- , CO_3^{2-} , HSO_4^-

കാർബണേറ്റ് -

ബൈസൾഫേറ്റ് -

സൾഫൈറ്റ് -

നൈട്രേറ്റ് -

ഹൈഡ്രോക്സൈഡ് -

ബൈകാർബണേറ്റ് -

- 3. a) മഗ്നീഷ്യം ഹൈഡ്രോക്സൈഡും [Mg(OH)₂] നേർപ്പിച്ച ഹൈഡ്രോക്ലോറിക് ആസിഡും [HCI] തമ്മിൽ പ്രവർത്തിച്ചുണ്ടാ കുന്ന ലവണം ഏതാണ്?
 - b) പ്രവർത്തനത്തിന്റെ രാസസമവാക്യം എഴുതുക.
 - c) മഗ്നീഷ്യം സൾഫേറ്റ് ലവണം നിർമിക്കുന്നതിന് ആവശ്യമായ ആസിഡ് ഏതാണ്?