Lecture 11

CIS 341: COMPILERS

Announcements

- Homework 3: Compiling LLVMlite
- Goal:
 - Familiarize yourself with (a subset of) the LLVM IR
 - Implement a translation down to (inefficient) X86lite
- **Due:** Monday, Feb. 26th

it is officially too late to **START EARLY!!**

MIDTERM EXAM

- Thursday, March 1st in class
- Coverage: interpreters / program transformers / x86 / calling conventions / IRs / LLVM / Lexing / Parsing
- See examples on the web pages

Searching for derivations.

LL & LR PARSING

Zdancewic CIS 341: Compilers

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a token or ε)
 - A set of *nonterminals* (e.g., S and other syntactic variables)
 - A designated nonterminal called the start symbol
 - A set of productions: $LHS \mapsto RHS$
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

$$S \mapsto (S)S$$

 $S \mapsto \varepsilon$

$$S \mapsto \epsilon$$

How many terminals? How many nonterminals? Productions?

Consider finding left-most derivations

• Look at only one input symbol at a time.

$$S \mapsto E + S \mid E$$

 $E \mapsto \text{number} \mid (S)$

```
Partly-derived String
                                           Parsed/Unparsed Input
                          Look-ahead
                                           (1+2+(3+4))+5
   \mapsto \mathbf{E} + S
                                           (1+2+(3+4))+5
   \mapsto (S) + S
                                           (1+2+(3+4))+5
   \mapsto (E + S) + S
                                           (1+2+(3+4))+5
   \mapsto (1 + S) + S
                                           (1 + 2 + (3 + 4)) + 5
   \mapsto (1 + E + S) + S
                                           (1 + 2 + (3 + 4)) + 5
   \mapsto (1 + 2 + S) + S
                                           (1+2+(3+4))+5
   \mapsto (1 + 2 + \mathbf{E}) + \mathbf{S}
                                   (1+2+(3+4))+5
   \mapsto (1 + 2 + (S)) + S
                                        (1+2+(3+4))+5
   \mapsto (1 + 2 + (E + S)) + S
                                           (1+2+(3+4))+5
   \mapsto \dots
```

There is a problem

 We want to decide which production to apply based on the look-ahead symbol.

$$S \mapsto E + S \mid E$$

 $E \mapsto \text{number} \mid (S)$

• But, there is a choice:

$$(1) S \mapsto E \mapsto (S) \mapsto (E) \mapsto (1)$$

VS.

$$(1) + 2 \xrightarrow{S \mapsto E + S} \mapsto (S) + S \mapsto (E) + S \mapsto (1) + S \mapsto (1) + E$$

$$\mapsto (1) + 2$$

• Given the look-ahead symbol: '(' it isn't clear whether to pick $S \mapsto E$ or $S \mapsto E + S$ first.

LL(1) GRAMMARS

Zdancewic CIS 341: Compilers

Grammar is the problem

- Not all grammars can be parsed "top-down" with only a single lookahead symbol.
- *Top-down*: starting from the start symbol (root of the parse tree) and going down
- LL(1) means
 - <u>L</u>eft-to-right scanning
 - <u>L</u>eft-most derivation,
 - <u>1</u> lookahead symbol
- This language isn't "LL(1)"
- Is it LL(k) for some k?

$$S \mapsto E + S \mid E$$

 $E \mapsto \text{number} \mid (S)$

What can we do?

Making a grammar LL(1)

- *Problem:* We can't decide which S production to apply until we see the symbol after the first expression.
- Solution: "Left-factor" the grammar. There is a common S prefix for each choice, so add a new non-terminal S' at the decision point:

- Also need to eliminate left-recursion somehow. Why?
- Consider:

$$S \mapsto S + E \mid E$$

 $E \mapsto \text{number} \mid (S)$

LL(1) Parse of the input string

Look at only one input symbol at a time.

```
S \mapsto ES'

S' \mapsto \varepsilon

S' \mapsto + S

E \mapsto \text{number} \mid (S)
```

```
Partly-derived String
                          Look-ahead Parsed/Unparsed Input
                                            (1+2+(3+4))+5
   <u>S</u>
   \mapsto \mathbf{E} \mathsf{S}'
                                            (1+2+(3+4))+5
   \mapsto (S) S'
                                            (1+2+(3+4))+5
   \mapsto (E S') S'
                                            (1+2+(3+4))+5
   \mapsto (1 \ \underline{\mathbf{S'}}) \ \mathsf{S'}
                                            (1+2+(3+4))+5
                               +
   \mapsto (1 + S) S'
                                           (1+2+(3+4))+5
   \mapsto (1 + E S') S'
                                            (1+2+(3+4))+5
   \mapsto (1 + 2 S') S'
                                  (1+2+(3+4))+5
   \mapsto (1 + 2 + S) S'
                                           (1+2+(3+4))+5
   \mapsto (1 + 2 + E S') S'
                                        (1+2+(3+4))+5
   \mapsto (1 + 2 + (S)S') S'
                                            (1+2+(3+4))+5
```

Predictive Parsing

• Given an LL(1) grammar:

 For a given nonterminal, the lookahead symbol uniquely determines the production to apply.

- Top-down parsing = predictive parsing
- Driven by a predictive parsing table:
 nonterminal * input token → production

$$T \mapsto S\$$$

 $S \mapsto ES'$
 $S' \mapsto \varepsilon$
 $S' \mapsto + S$
 $E \mapsto \text{number} \mid (S)$

	number	+	()	\$ (EOF)
Т	→ S\$		⇒S\$		
S	$\mapsto E \; S'$		\mapsto E S'		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
E	→ num.		\mapsto (S)		

• Note: it is convenient to add a special *end-of-file* token \$ and a start symbol T (top-level) that requires \$.

How do we construct the parse table?

- Consider a given production: $A \rightarrow \gamma$
- Construct the set of all input tokens that may appear *first* in strings that can be derived from γ
 - Add the production $\rightarrow \gamma$ to the entry (A,token) for each such token.
- If γ can derive ϵ (the empty string), then we construct the set of all input tokens that may *follow* the nonterminal A in the grammar.
 - Add the production $\rightarrow \gamma$ to the entry (A, token) for each such token.

• Note: if there are two different productions for a given entry, the grammar is not LL(1)

Example

- First(T) = First(S)
- First(S) = First(E)
- $First(S') = \{ + \}$
- First(E) = { number, '(' }
- Follow(S') = Follow(S)
- Follow(S) = $\{ \$, ')' \} \cup Follow(S')$

 $T \mapsto S\$$ $S \mapsto ES'$ $S' \mapsto \varepsilon$ $S' \mapsto + S$ $E \mapsto \text{number} \mid (S)$

Note: we want the *least* solution to this system of set equations... a *fixpoint* computation. More on these later in the course.

	number	+	()	\$ (EOF)
Т	→ S\$		⇒S\$		
S	$\mapsto E \; S'$		\mapsto E S'		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
Е	→ num.		\mapsto (S)		

Converting the table to code

- Define n mutually recursive functions
 - one for each nonterminal A: parse_A
 - The type of parse_A is unit -> ast if A is not an auxiliary nonterminal
 - Parse functions for auxiliary nonterminals (e.g. S') take extra ast's as inputs, one for each nonterminal in the "factored" prefix.
- Each function "peeks" at the lookahead token and then follows the production rule in the corresponding entry.
 - Consume terminal tokens from the input stream
 - Call parse_X to create sub-tree for nonterminal X
 - If the rule ends in an auxiliary nonterminal, call it with appropriate ast's.
 (The auxiliary rule is responsible for creating the ast after looking at more input.)
 - Otherwise, this function builds the ast tree itself and returns it.

	number	+	()	\$ (EOF)
Т	→ S\$		⇒S\$		
S	$\mapsto E \; S'$		\mapsto E S'		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
E	→ num.		\mapsto (S)		

Hand-generated LL(1) code for the table above.

DEMO: PARSER.ML

LL(1) Summary

- Top-down parsing that finds the leftmost derivation.
- Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursivedescent parser
- Problems:
 - Grammar must be LL(1)
 - Can extend to LL(k) (it just makes the table bigger)
 - Grammar cannot be left recursive (parser functions will loop!)

Is there a better way?

LR GRAMMARS

Zdancewic CIS 341: Compilers

Bottom-up Parsing (LR Parsers)

- LR(k) parser:
 - <u>L</u>eft-to-right scanning
 - Rightmost derivation
 - k lookahead symbols
- LR grammars are more expressive than LL
 - Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 - Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
 - Work bottom up instead of top down
 - Construct right-most derivation of a program in the grammar
 - Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
 - Better error detection/recovery

Top-down vs. Bottom up

 Consider the leftrecursive grammar:

$$S \mapsto S + E \mid E$$

 $E \mapsto \text{number} \mid (S)$

- (1 + 2 + (3 + 4)) + 5
- What part of the tree must we know after scanning just (1 + 2
- In top-down, must be able to guess which productions to use...

Rightmost derivation

Progress of Bottom-up Parsing

Reductions

$$(1 + 2 + (3 + 4)) + 5 \longleftrightarrow$$
$$(\underline{\mathbf{E}} + 2 + (3 + 4)) + 5 \longleftrightarrow$$

$$(\underline{\mathbf{S}} + 2 + (3 + 4)) + 5 \longleftrightarrow$$

$$(S + \underline{\mathbf{E}} + (3+4)) + 5 \longleftrightarrow (1+2)$$

$$(\underline{\mathbf{S}} + (3+4)) + 5 \longleftrightarrow$$

$$(S + (\underline{\mathbf{E}} + 4)) + 5 \longleftrightarrow$$

$$(S + (\underline{S} + 4)) + 5 \leftarrow$$

$$(S + (S + \underline{\mathbf{E}})) + 5 \longleftrightarrow$$

$$(S + (\underline{S})) + 5 \leftarrow$$

$$(S + \mathbf{E}) + 5 \longleftrightarrow$$

$$(\underline{\mathbf{S}}) + 5 \longleftrightarrow$$

$$S + \underline{\mathbf{E}} \longleftarrow$$

Scanned

$$(1 + 2)$$

$$(1 + 2)$$

$$(1 + 2 + (3 + 1))$$

$$(1+2+(3+4))+5$$

$$(1+2+(3+4))+5$$

$$(1+2+(3+4))+5$$

$$(1+2+(3+4))+5$$

$$(1+2+(3+4))+5$$

$$(1+2+(3+4))$$
 + 5

$$(1+2+(3+4))$$

$$(1 + 2 + (3 + 4)) + 5$$

Input Remaining

$$(1+2+(3+4))+5$$

$$1 + 2 + (3 + 4)) + 5$$

$$+2+(3+4))+5$$

$$+(3+4))+5$$

$$+(3+4))+5$$

$$+4))+5$$

$$+4))+5$$

$$)) + 5$$

$$)) + 5$$

$$) + 5$$

$$) + 5$$

$$+5$$

$$S \mapsto S + E \mid E$$

 $E \mapsto \text{number} \mid (S)$

Shift/Reduce Parsing

 $S \mapsto S + E \mid E$

 $E \mapsto number \mid (S)$

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of shift and reduce operations:
- Shift: move look-ahead token to the stack
- Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ , push X)

Stack	Input	Action
	(1 + 2 + (3 + 4)) + 5	shift (
(1 + 2 + (3 + 4)) + 5	shift 1
(1	+2+(3+4))+5	reduce: $E \mapsto number$
(E	+2+(3+4))+5	reduce: $S \mapsto E$
(S	+2+(3+4))+5	shift +
(S +	2 + (3 + 4)) + 5	shift 2
(S + 2)	+(3+4))+5	reduce: $E \mapsto number$

Simple LR parsing with no look ahead.

LR(0) GRAMMARS

LR Parser States

- Goal: know what set of reductions are legal at any given point.
- Idea: Summarize all possible stack prefixes α as a finite parser state.
 - Parser state is computed by a DFA that reads the stack σ .
 - Accept states of the DFA correspond to unique reductions that apply.
- Example: LR(0) parsing
 - <u>L</u>eft-to-right scanning, <u>R</u>ight-most derivation, <u>zero</u> look-ahead tokens
 - Too weak to handle many language grammars (e.g. the "sum" grammar)
 - But, helpful for understanding how the shift-reduce parser works.

Example LR(0) Grammar: Tuples

• Example grammar for non-empty tuples and identifiers:

$$S \mapsto (L) \mid id$$

 $L \mapsto S \mid L, S$

- Example strings:
 - x
 - -(x,y)
 - ((((x))))
 - (x, (y, z), w)
 - -(x, (y, (z, w)))

Parse tree for: (x, (y, z), w)

Shift/Reduce Parsing

• Parser state:

 $S \mapsto (L) \mid id$ $L \mapsto S \mid L, S$

- Stack of terminals and nonterminals.
- Unconsumed input is a string of terminals
- Current derivation step is stack + input
- Parsing is a sequence of *shift* and *reduce* operations:
- Shift: move look-ahead token to the stack: e.g.

Stack	Input	Action
	(x, (y, z), w)	shift (
(x, (y, z), w)	shift x

• Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ , push X): e.g.

Stack	Input	Action
(x	, (y, z), w)	reduce S → id
(S	, (y, z), w)	reduce $L \mapsto S$

Example Run

Stack	Input
	(x, (y, z), w)
(x, (y, z), w)
(x	, (y, z), w)
(S	, (y, z), w)
(L	, (y, z), w)
(L,	(y, z), w)
(L, (y, z), w)
(L, (y	, z), w)
(L, (S	, z), w)
(L, (L	, z), w)
(L, (L,	z), w)
(L, (L, z), w)
(L, (L, S), w)
(L, (L), w)
(L, (L)	, w)
(L, S	, w)
CIS 34 (LCompilers	, w)

```
Action
shift (
shift x
reduce S \mapsto id
reduce L \mapsto S
shift,
shift (
shift y
reduce S \mapsto id
reduce L \mapsto S
shift,
shift z
reduce S \mapsto id
reduce L \mapsto L, S
shift)
reduce S \mapsto (L)
reduce L \mapsto L, S
shift,
```

$$S \mapsto (L) \mid id$$

 $L \mapsto S \mid L, S$

Action Selection Problem

- Given a stack σ and a look-ahead symbol b, should the parser:
 - Shift b onto the stack (new stack is σ b)
 - Reduce a production $X \mapsto \gamma$, assuming that $\sigma = \alpha \gamma$ (new stack is αX)?
- Sometimes the parser can reduce but shouldn't
 - For example, $X \mapsto \varepsilon$ can always be reduced
- Sometimes the stack can be reduced in different ways
- Main idea: decide what to do based on a *prefix* α of the stack plus the look-ahead symbol.
 - The prefix α is different for different possible reductions since in productions $X \mapsto \gamma$ and $Y \mapsto \beta$, γ and β might have different lengths.
- Main goal: know what set of reductions are legal at any point.
 - How do we keep track?

LR(0) States

- An LR(0) state is a set of items keeping track of progress on possible upcoming reductions.
- An LR(0) *item* is a production from the language with an extra separator "." somewhere in the right-hand-side

$$S \mapsto (L) \mid id$$

 $L \mapsto S \mid L, S$

- Example items: $S \mapsto .(L)$ or $S \mapsto (.L)$ or $L \mapsto S$.
- Intuition:
 - Stuff before the '.' is already on the stack (beginnings of possible γ 's to be reduced)
 - Stuff after the '.' is what might be seen next
 - The prefixes α are represented by the state itself

Constructing the DFA: Start state & Closure

- First step: Add a new production $S' \mapsto S$ \$ to the grammar
- Start state of the DFA = empty stack, so it contains the item:

$$S' \mapsto .S$$
\$

- Closure of a state:
 - Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the '.'
 - The added items have the '.' located at the beginning (no symbols for those items have been added to the stack yet)
 - Note that newly added items may cause yet more items to be added to the state... keep iterating until a fixed point is reached.
- Example: $CLOSURE(\{S' \mapsto .S\}\}) = \{S' \mapsto .S\}, S \mapsto .(L), S \mapsto .id\}$
- Resulting "closed state" contains the set of all possible productions that might be reduced next.

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

• First, we construct a state with the initial item $S' \mapsto .S$ \$

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Next, we take the closure of that state: $CLOSURE(\{S' \mapsto .S\}\}) = \{S' \mapsto .S\}, S \mapsto .(L), S \mapsto .id\}$
- In the set of items, the nonterminal S appears after the '.'
- So we add items for each S production in the grammar

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Next we add the transitions:
- First, we see what terminals and nonterminals can appear after the '.' in the source state.
 - Outgoing edges have those label.
- The target state (initially) includes all items from the source state that have the edge-label symbol after the '.', but we advance the '.' (to simulate shifting the item onto the stack)

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Finally, for each new state, we take the closure.
- Note that we have to perform two iterations to compute $CLOSURE(\{S \mapsto (.L)\})$
 - First iteration adds $L \mapsto .S$ and $L \mapsto .L$, S
 - Second iteration adds $S \mapsto .(L)$ and $S \mapsto .id$

CIS 341: Compilers

 $S' \mapsto S.\$$

Full DFA for the Example

Using the DFA

- Run the parser stack through the DFA.
- The resulting state tells us which productions might be reduced next.
 - If not in a reduce state, then shift the next symbol and transition according to DFA.
 - If in a reduce state, $X \mapsto \gamma$ with stack $\alpha \gamma$, pop γ and push X.
- Optimization: No need to re-run the DFA from beginning every step
 - Store the state with each symbol on the stack: e.g. $_1(_3(_3L_5)_6$
 - On a reduction $X \mapsto \gamma$, pop stack to reveal the state too: e.g. From stack $_1(_3(_3L_5)_6$ reduce $S \mapsto (L)$ to reach stack $_1(_3$
 - Next, push the reduction symbol: e.g. to reach stack ₁(₃S
 - Then take just one step in the DFA to find next state: ${}_{1}({}_{3}S_{7}$

Implementing the Parsing Table

Represent the DFA as a table of shape:

state * (terminals + nonterminals)

- Entries for the "action table" specify two kinds of actions:
 - Shift and goto state n
 - Reduce using reduction $X \mapsto \gamma$
 - First pop γ off the stack to reveal the state
 - Look up X in the "goto table" and goto that state

Example Parse Table

	()	id	,	\$	S	L
1	s3		s2			g4	
2	S⊷id	S⊷id	S⊷id	S⊷id	S⊷id		
3	s3		s2			g7	g5
4					DONE		
5		s6		s8			
6	$S \mapsto (L)$						
7	$L \mapsto S$						
8	s3		s2			g9	
9	$L \mapsto L,S$						

sx = shift and goto state x
gx = goto state x

Example

• Parse the token stream: (x, (y, z), w)\$

Stack	Stream	Action (according to table)
ϵ_1	(x, (y, z), w)\$	s3
$\varepsilon_1(_3$	x, (y, z), w)\$	s2
$\varepsilon_1({}_3\mathbf{x}_2$, (y, z), w)\$	Reduce: S⊷id
$\varepsilon_1({}_3S$, (y, z), w)\$	g7 (from state 3 follow S)
$\varepsilon_1({}_3S_7$	(y, z), w)\$	Reduce: L→S
$\varepsilon_1(_3L$	(y, z), w)\$	g5 (from state 3 follow L)
$\varepsilon_1(_3L_5$	(y, z), w)\$	s8
$\varepsilon_1({}_3L_{5'8}$	(y, z), w)\$	s3
$\varepsilon_1({}_3L_{5,8}({}_3$	y, z), w)\$	s2

LR(0) Limitations

- An LR(0) machine only works if states with reduce actions have a single reduce action.
 - In such states, the machine always reduces (ignoring lookahead)
- With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts:

OK shift/reduce reduce/reduce

$$S \mapsto (L).$$

$$S \mapsto (L).$$

 $L \mapsto .L, S$

$$S \mapsto L$$
, S .
 $S \mapsto S$.

 Such conflicts can often be resolved by using a look-ahead symbol: LR(1)

Examples

Consider the left associative and right associative "sum" grammars:

left right $S \mapsto S + E \mid E$ $E \mapsto \text{number} \mid (S)$ $S \mapsto E + S \mid E$ $E \mapsto \text{number} \mid (S)$

- One is LR(0) the other isn't... which is which and why?
- What kind of conflict do you get? Shift/reduce or Reduce/reduce?
- Ambiguities in associativity/precedence usually lead to shift/reduce conflicts.

LR(1) Parsing

- Algorithm is similar to LR(0) DFA construction:
 - LR(1) state = set of LR(1) items
 - An LR(1) item is an LR(0) item + a set of look-ahead symbols: A \mapsto $\alpha.\beta$, $\mathcal L$
- LR(1) closure is a little more complex:
- Form the set of items just as for LR(0) algorithm.
- Whenever a new item $C \mapsto .\gamma$ is added because $A \mapsto \beta.C\delta$, \mathcal{L} is already in the set, we need to compute its look-ahead set \mathcal{M} :
 - 1. The look-ahead set \mathcal{M} includes FIRST(δ) (the set of terminals that may start strings derived from δ)
 - 2. If δ can derive ϵ (it is nullable), then the look-ahead $\mathcal M$ also contains $\mathcal L$

Example Closure

$$S' \mapsto S\$$$

 $S \mapsto E + S \mid E$
 $E \mapsto \text{number} \mid (S)$

- Start item: $S' \mapsto .S$ \$, {}
- Since S is to the right of a '.', add:

$$S \mapsto .E + S$$
 , {\$} Note: {\$} is FIRST(\$)
 $S \mapsto .E$, {\$}

Need to keep closing, since E appears to the right of a '.' in '.E + S':

```
E\mapsto .number\ ,\ \ \{+\} Note: + added for reason 1 E\mapsto .(\ S\ ) , \ \{+\}
```

• Because E also appears to the right of '.' in '.E' we get:

```
E \mapsto .number, \{\$\} Note: \$ added for reason 2 E \mapsto .(S) , \{\$\}
```

All items are distinct, so we're done

Using the DFA

The behavior is determined if:

- There is no overlap among the look-ahead sets for each reduce item, and
- None of the look-ahead symbols appear to the right of a '.'

Fragment of the Action & Goto tables

LR variants

- LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
 - DFA + stack is a push-down automaton (recall 262)
- In practice, LR(1) tables are big.
 - Modern implementations (e.g. menhir) directly generate code
- LALR(1) = "Look-ahead LR"
 - Merge any two LR(1) states whose items are identical except for the look-

ahead sets:

- Such merging can lead to nondeterminism (e.g. reduce/reduce conflicts), but
- Results in a much smaller parse table and works well in practice
- This is the usual technology for automatic parser generators: yacc, ocamlyacc
- GLR = "Generalized LR" parsing
 - Efficiently compute the set of *all* parses for a given input
 - Later passes should disambiguate based on other context

Classification of Grammars

