In [1]:

```
# nama : donny pratama
# kelas : 5P52
# nim : 20.240.0116
# petemuan 9
```

In [8]:

```
# import library
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay
```

In [11]:

```
columns = ["sepal-length", "sepal-width", "petal-length", "petal-width", "class"]
df = pd.read_csv("D:\iris.data.csv", names=columns)
```

In [12]:

```
df.describe()
```

Out[12]:

	sepal-length	sepal-width	petal-length	petal-width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [13]:

df.head()

Out[13]:

	sepal-length	sepal-width	petal-length	petal-width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

In [16]:

memvisualisasikan data
sns.pairplot(df, hue='class')

Out[16]:

<seaborn.axisgrid.PairGrid at 0x1b77cd4d130>

In [17]:

```
X = df.iloc[:, :-1].values
y = df.iloc[:, 4].values
```

In [19]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle = True, st
```

In [20]:

```
lb = LabelEncoder()
lb.fit(y_train)

y_train = lb.transform(y_train)
y_test = lb.transform(y_test)
```

In [21]:

```
# standarisasi
scaler = StandardScaler()
scaler.fit(X_train)

X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
```

In [27]:

In [28]:

```
classifier = KNeighborsClassifier(n_neighbors=4)
classifier.fit(X_train, y_train)
```

Out[28]:

KNeighborsClassifier(n_neighbors=4)

In [29]:

```
y_pred = classifier.predict(X_test)
print(classification_report(y_test, y_pred, target_names=lb.classes_))
```

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	10
Iris-versicolor	0.83	1.00	0.91	10
Iris-virginica	1.00	0.80	0.89	10
accuracy			0.93	30
macro avg	0.94	0.93	0.93	30
weighted avg	0.94	0.93	0.93	30

In [30]:

```
cm = confusion_matrix(y_test, y_pred)
ConfusionMatrixDisplay(cm, display_labels=lb.classes_).plot()
```

Out[30]:

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1b77ec61
820>

In []: