Exercise 11.3

Q.1 Prove that the line segments joining the midpoint of the opposite side of a quadrilateral bisect each other.

Given

ABCD is quadrilaterals point ORSP are the mid point of the sides \overline{RP} and \overline{SO} are joined they meet at O.

$$\overline{OP} \cong \overline{OR} \quad \overline{OQ} \cong \overline{OS}$$

Construction

Join P,Q,R and S in order join C to A or A to C

Proof

Statements	Reasons
$SP \parallel AC \dots (i)$	In $\triangle ADC, S, P$ are mid point

$$m\overline{SP} = \frac{1}{2}m\overline{AC}...(ii)$$

$$\overline{AC} \parallel \overline{RQ}...(iii)$$

$$m\overline{RQ} = \frac{1}{2}\overline{AC}...(iv)$$

$$m\overline{SP} \parallel \overline{RQ}...(v)$$

and
$$\overline{RQ} = \overline{SP}...(vi)$$

Now \overline{RP} and \overline{QS} diagonals of parallelogram

PQRS intersect at O.

$$\therefore \ \overline{OP} \cong \overline{OR}$$

$$\overline{OS} \cong \overline{OQ}$$

t of AD, DC

In $\triangle ABC$, O,R are midpoint of \overline{BC} , \overline{AB}

From (ii) and (iv)

Diagonals of a parallelogram bisects each other.

Q.2 Prove that the line segments joining the midpoint of the opposite sides of a rectangle are the right bisectors of each other.

[Hint: Diagonals of a rectangle are congruent] Given

- (i) ABCD is a rectangle
- (ii) P,Q.R.S are the midpoints of \overline{AB} , \overline{CD} and \overline{DA}
- (iii) \overline{SQ} and RP cut each other at point O $\overline{OS} \cong \overline{OO}$ $\overline{OP} \simeq \overline{OR}$

Construction

Join P to Q and Q to R and R to S and S to P Join A to C and B to D

Proof

Statements	Reasons
Midpoint of \overline{BC} is Q	Given
Midpoint of \overline{AB} is P	Given
$\therefore \overline{AC} \parallel \overline{PQ}(i)$	
$\frac{1}{2}\overline{AC} = \overline{PQ}(ii)$	
Ιn ΔΑDC	
$\overline{AC} \parallel \overline{SR}$ (iii)	
$\frac{1}{2}\overline{AC} = \overline{SR}(iv)$	
$\overline{PQ} = \overline{SR}$	From equation (i) and (ii) each are parallel to
$\overline{SP} = \overline{RQ}$	\overline{AC} each are half of \overline{DB}
By joined B to D we can prove	
$\overline{RQ} \parallel \overline{SP}$	IC LO
$m\overline{SR} \parallel m\overline{PQ}$	Each of them = $\frac{1}{2}\overline{AC}$
	2 2
$m\overline{AC} \parallel m\overline{BD}$	
PQRS is a parallelogram all it sides are equal	
$\overline{OP} \cong \overline{OR}$	
$\overline{OS} \cong \overline{OQ}$	
$\Delta OQR \leftrightarrow \Delta OQP$	
$\overline{OR} \cong \overline{OP}$	Proved
$\overline{OQ} \cong \overline{OQ}$	Common
$\overline{RQ} \cong \overline{PQ}$	Adjacent
$\therefore \Delta OQR \cong \Delta OQP$	
∠ROQ ≅ ∠POQ(vii)	
$\angle ROQ + \angle POQ = 180(viii)$	Supplementary angle
$\angle ROQ = \angle POQ = 90^{\circ}$	From (vii) and (viii)
Thus $\overline{PR} \perp \overline{QS}$	

Q.3 Prove that line segment passing the midpoint of one side and parallel to other side of a triangle also bisects the third side.

Given

In $\triangle ABC$, R is the midpoint of \overline{AB} , $\overline{RQ} \parallel \overline{BC}$

$$\overline{RQ} \parallel \overline{BS}$$

To prove

$$\overline{AQ} = \overline{QC}$$

Construction

$$\overline{QS} \parallel \overline{AB}$$

Statements	Reasons
$\overline{RQ} \parallel \overline{BS}$	Given
$\overline{QS} \parallel \overline{BR}$	Construction
RBSQisa	
Parallelogram	مری
$\overline{QS} \cong \overline{BR}(i)$	Opposite side
$\overline{AR} \cong \overline{RB}(ii)$	Given
$\overline{QS} \cong \overline{AR}(iii)$	From (i) and (ii)
$\angle 1 \cong \angle B$ and	
$\angle 1 \cong \angle 2(iv)$	
$\Delta ARQ \leftrightarrow \Delta QSC$	
∠2 ≅ ∠1	From (iv)
$\angle 3 \cong \angle C$	
$\overline{AR} \cong SQ$	From (iii)
Hence, $\triangle ARQ \cong \triangle QSC$	$A.A.S \cong A.A.S$
$\overline{AQ} \cong \overline{QC}$	Corresponding sides

[WEBSITE: <u>WWW.FREEILM.COM</u>]

[EMAIL: FREEILM786@GMAIL.COM]

Theorem: 11.1.4

The median of triangle are concurrent and their point of concurrency is the point **Statement:** of trisection of each median.

Given $\triangle ABC$

To prove

The medians of the \triangle ABC are concurrent and the point of concurrency is the point of trisection of each median

Construction

Draw two medians \overline{BE} and \overline{CF} of the $\triangle ABC$ H which intersect each other at point G. Join A to G and produce it to the point H such that $AG \simeq GH$ Join H to the points B and C \overline{AH} Intersects \overline{BC} at the point D.

Proof	
Statements	Reasons
In Δ ACH,	
GE ∥ HC	G and E are mid-points of sides \overline{AH} and \overline{AC} respectively
Or <u>BE</u> <u>HC</u> (i)	G is point of \overline{BE} diagonals \overline{BC}
Similarly $\overline{CF} \parallel \overline{HB}$ (ii)	IS LO
∴BHCG is a parallelogram	From (i) and (ii)
And	
$m\overline{GD} = \frac{1}{2}m\overline{GH}(iii)$	Diagonals \overline{BC} and \overline{GH} of a parallelogram $BHCG$ intersect each other at point D .
$\overline{BD} = \overline{CD}$	
\overline{AD} is a median of ΔABC medians \overline{AD} , \overline{BE} and \overline{CF} pass through the point G	G is the interesting point of \overline{BE} , \overline{CF} and \overline{AD} pass through it.
Now $\overline{GH} \cong \overline{AG}$ (iv)	Construction
$m\overline{GD} = \frac{1}{2}m\overline{AG}$	From (iii) and (iv)
and G is the point of trisection of \overline{AD} (v)	
similarly it can be proved that G is also the	
point of trisection of \overline{CF} and \overline{BE}	

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[PAGE: 4 OF 4] [WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM]