Engineering 378 HW #1

SFSU	Fall	2016	

Farnam Adellahani

Problems 1.9, 1.13 (ignore part c), 1.17	Engr 378 Homework #1	Farnam Adelkhani
(1.9) Show how you can co	nstruct a T flip-flop using a J-l	V flip flop
Truth table CIK J K OM+1 O X X ON MANORU 1 0 0 ON MANORU 1 0 1 O 1 1 O I 1 I Quantity Autoggle		as practice. Exaletran Table J-K Flip Flop O O X O I I X I O X I I X O
Excitation table T-PIP-PIP Qn Qn+1 T O O O I I I O I I O O K-Map Som of prodocts expressing A for J Qn O I	7 input Qu Qu+1	(S a T flip flop using J-V stip flop.
O O X JET O	X O K=1	CIK X Qn -

Show how to construct a JK flip-flop using a flip-flop and gates.

△ Conversion table of D-flip flop to Jk flip-flop

Excitation Toble for a D Applied					
Qu	QutI	D			
0 0	٥	0			
	0	0			
! !	[1			

			, ,	
2-K	J-Kinputs		ipots	D tip-flap input
J	L_	Qu	Qu+l	D
0	D	٥	0	0
0	0	(l	
0	l	0	٥	6
0	l	l	0	0
Ţ	0	0	1	
T t	0	1	(
1	1	0		
			0	0

Conversion table of J-K Hip-Hop to D Flip-Flop

Dinput	Ootp	wts	3-K +/P-1	top in pot
[G	Qn	Quti	2,	<u>"</u> "
0	D	٥	0	Х
0	١	0	X	1
\ \ \	0	1	1	X
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	D	X	O

△ Construct a D flip-flop using J-R flip flops

13. Derive a Mealy state graph and table with a minimum number of states(6 states).

X	S	7
0000	000	0
0001	0011	0
0010	0100	6
0011	0101	0
0100	0110	٥
0101	0111	O
0110	(000)	0
0111	1001	0
0001	(010)	0
1001	1011	0
1010	1100	٥
1011	101	0
1100	1110	0
101	1111	0
1110	0000	1
[[(1000	1

- 1.13 A sequential circuit has one input (X) and two outputs (S and V). X represents a 4-bit binary number N, which is input least significant bit first. S represents a 4-bit binary number equal to N + 2, which is output least significant bit first. At the time the fourth input occurs, V = 1 if N + 2 is too large to be represented by 4 bits; otherwise, V = 0. The value of S should be the proper value, not a don't care, in both cases. The circuit always resets after the fourth bit of X has been received.
 - (a) Derive a Mealy state graph and table with a minimum number of states (six states).
 - (h) Try to choose a good state assignment. Realize the circuit using D flip-flops and NAND gates. Repeat using NOR gates. (Work this part by hand.)

PS	N S X=0 X=1		5 V X=0 X=1	
50	51	SI	00	10
51	52	S 3	10	00
S 2	54	54	00	10
S 3	54	১5	10	DO
54	SO	50	0	10
55	20	50	11	01

D

17. Derive the state transition table and the flip-flop input equations of a counter that counts from 1 to 6 (and back to one and continues).

