CLAIM AMENDMENTS

This listing of claims will replace all prior versions, and listings, of claims in the application.

1	1. (previously presented) A method of assigning resources for a computer
2	system design comprising:
3	receiving desired levels of performance parameters for a
4	computer system design from a user via a user interface to a computer
5	system, the design including assignments of system resources to
6	applications;
7	modifying the design in response to said desired levels
8	including modifying the assignments of the system resources;
9	predicting levels of performance parameters for the modified
10	design; and
11	displaying for the user an indication of the predicted levels of
12	performance parameters for the modified design via the user interface
	•
1	2. (original) The method according to claim 1, wherein the computer system
2	design comprises a design for a data storage system.
1	3. (previously presented) The method according to claim 1, further
2	comprising reducing one or more of the performance parameters from said
3	desired levels of performance parameters.
1	4. (previously presented) The method according to claim 3, wherein said
2	reducing is based on at least one utility function representing utility as a
3	function of one or more of the performance parameters.
1	5. (previously presented) The method according to claim 4, further
2	comprising:
3	receiving the at least one utility function via the user interface
4	to the computer system; and

3	storing the at least one utility function in a memory device of
6	the computer system.
1	6. (original) The method according to claim 1, wherein the desired levels of
2	performance parameters are specified by the user through a graphical user
3	interface.
1	7. (original) The method according to claim 1, wherein the desired levels of
2	performance parameters are specified by the user through a graphical user
3	interface by the user manipulating heights of bar graphs shown on a display o
4	the computer system.
1	8. (previously presented) The method according to claim 7, wherein each bar
2	graph indicates the corresponding desired level of the performance parameter.
1	9. (previously presented) The method according to claim 8, wherein each bar
2	graph also indicates the corresponding predicted level of the performance
3	parameter.
1	10. (previously presented) A method of assigning resources for a computer
2	system design comprising:
3	receiving desired levels of performance parameters for a
4	computer system design from a user via a user interface to a computer
5	system;
6	developing the design including assignments of system
7	resources to applications;
8	predicting levels of performance parameters for the design;
9	comparing the predicted levels of performance parameters to
10	the desired levels of performance parameters;
11	modifying the design including modifying the assignments of
12	the system resources when the predicted levels are lower than the
13	desired levels, said modifying being performed by the computer
14	system; and

13	displaying for the user results of the modifying via the user
16	interface.
1	11. (original) The method according to claim 10, wherein the computer
2	system design comprises a design for a data storage system.
1	12. (original) The method according to claim 10, wherein said developing
2	comprises assigning system resources to applications to be served by the
3	design.
1	13. (original) The method according to claim 12, said assigning being
2	performed by a design tool operating on the computer system.
1	14. (previously presented) The method according to claim 10, further
2	comprising reducing one or more of the performance parameters from said
3	desired levels of performance parameters.
1	15. (previously presented) The method according to claim 14, wherein said
2	reducing is based on at least one utility function representing utility as a
3	function of one or more of the performance parameters.
1	16. (previously presented) The method according to claim 15, further
2	comprising receiving the at least one utility function via the user interface to
3	the computer system.
1	17. (original) The method according to claim 10, wherein the user interface is
2	a graphical user interface.
1	18. (original) The method according to claim 17, wherein the desired levels
2	of performance parameters are specified by the user through the graphical user
3	interface by the user manipulating heights of bar graphs shown on a display of
4	the computer system.

1 19. (previously presented) The method according to claim 18, wherein each 2 bar graph indicates the desired level of the corresponding performance 3 parameter. 1 20. (previously presented) The method according to claim 19, wherein each 2 bar graph also indicates the predicted level of the corresponding performance 3 parameter. 1 21. (original) The method according to claim 10, further comprising 2 repeating said steps of predicting and comparing after said modifying. 1 22. (original) The method according to claim 21, wherein when the predicted 2 levels are lower than the desired levels after said modifying, then notifying the 3 user. 1 23. (previously presented) An apparatus for assigning resources for a 2 computer system design, comprising a computer system programmed to 3 operate in a first program loop in which a user specifies desired levels of 4 performance parameters of the design via a user interface and a second 5 program loop in which: performance parameter levels are predicted for the 6 design; the predicted performance parameters are compared to the desired 7 levels of performance parameters; the design is modified, including modifying 8 assignments of system resources to applications, in response to the comparison 9 and results of the modifying are displayed for the user via the user interface. 1 24. (original) The apparatus according to claim 23, wherein the computer 2 system design comprises a design for a data storage system. 1 25. (cancelled) 1 26. (previously presented) The apparatus according to claim 23, wherein one 2 or more of the performance parameters is reduced from said desired levels of 3 performance parameters based on at least one utility function representing utility as a function of one or more of the performance parameters. 4

1	27. (previously presented) The apparatus according to claim 26, wherein the
2	at least one utility function is specified by the user.
1	28. (original) The apparatus according to claim 23, wherein the desired levels
2	of performance parameters are specified by the user through a graphical user
3	interface.
1	29. (original) The apparatus according to claim 28, wherein the desired levels
2	
	of performance parameters are specified by the user through the graphical user
3	interface by the user manipulating heights of bar graphs shown on a display of
4	the computer system.
1	30. (previously presented) The apparatus according to claim 29, wherein each
2	bar graph indicates the desired level of the corresponding performance
3	parameter.
1	31. (previously presented) The apparatus according to claim 30, wherein each
2	bar graph also indicates the predicted level of the corresponding performance
3	parameter.