

Rec'd PCT/PTO 19 DEC 2005

10/539686

SEQUENCE LISTING*

<110> Slamon, Dennis J.

Anderson, Lee A.

Ginther, Charles L.

The Regents of the University of California

<120> Amplified and Overexpressed Gene in Colorectal Cancers

<130> 023070-129910US

<140> US 10/539,868

<141> 2005-06-16

<150> US 10/346,367

<151> 2003-01-15

<150> WO PCT/US04/01153

<151> 2004-01-15

<160> 28

<170> PatentIn Ver. 2.1

<210> 1

<211> 1605

<212> DNA

<213> Homo sapiens

<220>

<223> 26#77 protein

<400> 1

ctttgggggt ttgctgctgg ctctgactcc cgtcctgcga tgggttgcga cgggggaaca 60
atccccaaaga ggcataact ggtgaagggg ccgaagaagg ttgagaaggt cgacaaaagat 120
gtgtatttag tggcccaatg gaactattgt actctaagt c aggaaatatt aagacgacca 180
atagttgcct gtgaacttgg cagactttat aacaaagatg ccgtcattga atttctcttg 240
gacaaatctg cagaaaaggc tcttggaaag gcagcatctc acattaaaag cattaagaat 300
gtgacagagc tgaagcttgc tgataatcct gcctggaaag gggataaagg aaacactaaa 360
ggtgacaagc acgatgaccc ccagcggcg cgttcatct gccccgttgc gggcctggag 420
atgaacggcc gacacaggtt ctgcttcctt cggtgctgcg gctgtgttt ttctgagcga 480
gccttggaaag agataaaaagc ggaagttgc cacacgtgtg gggctgcctt ccaggaggat 540
gatgtcatcg tgctcaatgg caccaaggag gatgtggacg tgctgaagac aaggatggag 600
gagagaagggc tgagagcga gctggaaaag aaaacaaaaga aacccaaggc agcagagtct 660
gtttcaaaac cagatgtcag tgaagaagcc ccagggccat caaaaagttaa gacagggaaag 720
cctgaagagg ccagccttga ttctagagag aaaaaaacc aacttggctcc caaaaagcaca 780
gcaatgaatg agagctcttc tggaaaagct gggaaagcctc cgtgtggagc cacaagagg 840
tccatcgctg acagtgaaga atcggagcc tacaagtccc tctttaccac tcacagctcc 900
gccaaggcgt ccaaggagga gtctgcccac tgggtcaccc acacgtccctt ctgcttctga 960
agcccgcaact gccaccgctc ctgccccaga aggttgtta gtttccacgt aggcaggctg 1020
ctttgtgcct ctgagtgcgc tgctgtgtt tctctctata gttctgcgtc ataaagctgt 1080
cctggccagc cttcaagctg gtgtggccac tcttgatgtg aggcgtgtcg gttccagggg 1140
ggacatggga ggggctgcac agtggcccg a ggtcatgttt gtttccaccc gcaggtgcatt 1200
tttgtccctt ccatggccag gaagccctgt gggctgcact tttttagtgcctt gcagtagcaa 1260
gagactccag agtccctcacc ggtgcagagt tggcacatat taattaacta aaattctaat 1320
gatcttgcta ccagcaataa atcaagttagg ccaagtgaaa ctgggcttta aaaaggatgg 1380
atttcaaata cactgtgccc actagaagct tcgaaggccc tcgtccctct gctacagccc 1440
tgggaggagc caggatcctt gttggtctag ctaataactg ttaggggagt gtgcccacatc 1500
tcatcatttc gaagatagca gagtcatagt tggcaccggc gtgattgggt tcaaaaataa 1560
agctggtctg cctcttctca aaaaaaaaaa aaagaaaaaaaaaaaa 1605

<210> 2
<211> 306
<212> PRT
<213> Homo sapiens

<220>
<223> 26#77 protein

<400> 2
Met Gly Cys Asp Gly Gly Thr Ile Pro Lys Arg His Glu Leu Val Lys
1 5 10 15

Gly Pro Lys Lys Val Glu Lys Val Asp Lys Asp Ala Glu Leu Val Ala
20 25 30

Gln Trp Asn Tyr Cys Thr Leu Ser Gln Glu Ile Leu Arg Arg Pro Ile
35 40 45

Val Ala Cys Glu Leu Gly Arg Leu Tyr Asn Lys Asp Ala Val Ile Glu
50 55 60

Phe Leu Leu Asp Lys Ser Ala Glu Lys Ala Leu Gly Lys Ala Ala Ser
65 70 75 80

His Ile Lys Ser Ile Lys Asn Val Thr Glu Leu Lys Leu Ser Asp Asn
85 90 95

Pro Ala Trp Glu Gly Asp Lys Gly Asn Thr Lys Gly Asp Lys His Asp
100 105 110

Asp Leu Gln Arg Ala Arg Phe Ile Cys Pro Val Val Gly Leu Glu Met
115 120 125

Asn Gly Arg His Arg Phe Cys Phe Leu Arg Cys Cys Gly Cys Val Phe
130 135 140

Ser Glu Arg Ala Leu Lys Glu Ile Lys Ala Glu Val Cys His Thr Cys
145 150 155 160

Gly Ala Ala Phe Gln Glu Asp Asp Val Ile Val Leu Asn Gly Thr Lys
165 170 175

Glu Asp Val Asp Val Leu Lys Thr Arg Met Glu Glu Arg Arg Leu Arg
180 185 190

Ala Lys Leu Glu Lys Lys Thr Lys Lys Pro Lys Ala Ala Glu Ser Val
195 200 205

Ser Lys Pro Asp Val Ser Glu Glu Ala Pro Gly Pro Ser Lys Val Lys
210 215 220

Thr Gly Lys Pro Glu Glu Ala Ser Leu Asp Ser Arg Glu Lys Lys Thr
225 230 235 240

Asn Leu Ala Pro Lys Ser Thr Ala Met Asn Glu Ser Ser Ser Gly Lys
245 250 255

Ala Gly Lys Pro Pro Cys Gly Ala Thr Lys Arg Ser Ile Ala Asp Ser
260 265 270

Glu Glu Ser Glu Ala Tyr Lys Ser Leu Phe Thr Thr His Ser Ser Ala
275 280 285

Lys Arg Ser Lys Glu Glu Ser Ala His Trp Val Thr His Thr Ser Tyr
290 295 300

Cys Phe
305

<210> 3

<211> 2211

<212> DNA

<213> Homo sapiens

<220>

<223> copine 1 (CPNE 1, CPN1) protein

<400> 3

ggcgaaggct ttgttagagtt cagaaaatgag gctgactata aggctgctct gtgtcgcat 60
aaacagtaca tggcaatcg ctatttccaa gttcatccaa ttactaagaa aggtatgcta 120
gaaaaagatag atatgattcg aaaaagactg cagaacttca gctatgacca gagggaaatg 180
atactaaatc cagagggggta tgtcaactct gccaaagtct gtgcacat aacaaatatt 240
ccattcagca ttacaaaagat ggatgttctt cagttcttag aaggaatccc agtggatgaa 300
aatgctgtac atgttcttgt tgataacaat gggcaaggc taggacaggc attggttcag 360
tttaaaaatg aagatgatgc acatggccca ctgcgtgacc ttggttcagc tgcatttc 420
ctgtgaccat ctcattgaca aggacatcg ctcaggctct gaccactct gcgtccttt 480
acaggatgtg ggagggggca gctgggctga gcttggccgg actgaacggg tgcggaaactg 540
ctcaagccct gagttctcca agactctaca gcttgagttc cgcttgaga cagtccagaa 600
gctacgctt ggaatctatg acatagacaa caagacgcca gagctgaggg atgatgactt 660
cctaggggt gctgagtgtt ccctaggaca gattgtgtcc agccaggtac tgactctccc 720
cttgatgctg aagcctggaa aacctgctgg gcgggggacc atcacgctc cagtcagga 780
attaaaggac aatcgtagtg taaccatgaa ggttagaggcc agaaaacctag ataagaagga 840
cttcctggga aaatcagatc catttctgaa gttctccgc cagggtgatg ggaaatggca 900
cctgggtgac agatctgagg tcataagaa caacctgaaac cctacatgaa agcgttctc 960
agtccccgtt cagcatttct gtgggggaa ccccagcaca cccatccagg tgcaatgctc 1020
cgattatgac agtgcacgggt cacatgatct catcggtacc ttccacacca gcttggccca 1080
gctgcaggca gtcccccgtg agtttgaatg catccacccct gagaagcgc agaaaaagaa 1140
aagctacaag aactctggaa ctatccgtt caagatttgc cgggtagaaa cagagtactc 1200
ctttctggac tatgtgatgg gaggctgtca gatcaacttc actgtggcg tggacttcac 1260
tggctccaaat ggagaccctt cctcacatgaa ctccttacac tacctgagtc caacaggggt 1320
caatgagtac ctgatggcac tggggaggtt gggcagcgtg gttcaggact atgactcaga 1380
caagctgttc cctgcatttgc gatttgggc ccagggtccc cctgactggc aggtctcgca 1440
tgaatttgc ttgaatttca accccagtaa cccctactgt gcaggcatcc agggcattgt 1500
ggatgcctac cgccaaagccc tgccccaaat tcgccttat ggcctacca actttgcacc 1560
catcatcaac catgtggca gtttgcagc ccaggctgca catcaggga ctgcctcgca 1620
atacttcatttgc tggatgttgc tgactgtatgg tgctgtgacg gatgtgaaag ccacacgtga 1680
ggctgtgggt cgtgcctcga acctgcccatt gtcagtgtac attgtgggtt tgggtgggtc 1740
tgacttttag gccatggagc agctggacgc tgatgggttgc cccctgcata cacgttctgg 1800
gcaggctgtt gccccggaca ttgtgcagtt tggatgttgc cggcgggtcc agaatgcccc 1860
tcggggaggca ttggcacaga ccgtgcgtcgc agaagtgcgc acacaactgg tctcataatt 1920
cagggcccaag ggttggggcc cgcgtcaagcc acttccaccc tcagccaagg atcctgcaca 1980
ggcccccccaag gccttaggtt ccttggaggtc tggatgttgc cctcaatcct gtgtcccaga 2040
ggtcctctg ggccacaacc caacccttctt cactcttcgtc agtgcgttgc ctttgcattt 2100
tttgataatttgc ttatacttgc ttctgcattt gtcgttgc atcccacattt tgctcctgac 2160
aaccctcattt caataaaagac cagtgaagac caaaaaaaaaaaa aaaaaaaaaaaa a 2211

```

<210> 4
<211> 537
<212> PRT
<213> Homo sapiens

<220>
<223> copine 1 (CPNE 1, CPN1) protein

<400> 4
Met Ala His Cys Val Thr Leu Val Gln Leu Ser Ile Ser Cys Asp His
 1           5           10          15

Leu Ile Asp Lys Asp Ile Gly Ser Lys Ser Asp Pro Leu Cys Val Leu
 20          25          30

Leu Gln Asp Val Gly Gly Ser Trp Ala Glu Leu Gly Arg Thr Glu
 35          40          45

Arg Val Arg Asn Cys Ser Ser Pro Glu Phe Ser Lys Thr Leu Gln Leu
 50          55          60

Glu Tyr Arg Phe Glu Thr Val Gln Lys Leu Arg Phe Gly Ile Tyr Asp
 65          70          75          80

Ile Asp Asn Lys Thr Pro Glu Leu Arg Asp Asp Asp Phe Leu Gly Gly
 85          90          95

Ala Glu Cys Ser Leu Gly Gln Ile Val Ser Ser Gln Val Leu Thr Leu
100         105         110

Pro Leu Met Leu Lys Pro Gly Lys Pro Ala Gly Arg Gly Thr Ile Thr
115         120         125

Val Ser Ala Gln Glu Leu Lys Asp Asn Arg Val Val Thr Met Glu Val
130         135         140

Glu Ala Arg Asn Leu Asp Lys Lys Asp Phe Leu Gly Lys Ser Asp Pro
145         150         155         160

Phe Leu Glu Phe Phe Arg Gln Gly Asp Gly Lys Trp His Leu Val Tyr
165         170         175

Arg Ser Glu Val Ile Lys Asn Asn Leu Asn Pro Thr Trp Lys Arg Phe
180         185         190

Ser Val Pro Val Gln His Phe Cys Gly Gly Asn Pro Ser Thr Pro Ile
195         200         205

Gln Val Gln Cys Ser Asp Tyr Asp Ser Asp Gly Ser His Asp Leu Ile
210         215         220

Gly Thr Phe His Thr Ser Leu Ala Gln Leu Gln Ala Val Pro Ala Glu
225         230         235         240

Phe Glu Cys Ile His Pro Glu Lys Gln Gln Lys Lys Lys Ser Tyr Lys
245         250         255

Asn Ser Gly Thr Ile Arg Val Lys Ile Cys Arg Val Glu Thr Glu Tyr
260         265         270

```

Ser Phe Leu Asp Tyr Val Met Gly Gly Cys Gln Ile Asn Phe Thr Val
 275 280 285
 Gly Val Asp Phe Thr Gly Ser Asn Gly Asp Pro Ser Ser Pro Asp Ser
 290 295 300
 Leu His Tyr Leu Ser Pro Thr Gly Val Asn Glu Tyr Leu Met Ala Leu
 305 310 315 320
 Trp Ser Val Gly Ser Val Val Gln Asp Tyr Asp Ser Asp Lys Leu Phe
 325 330 335
 Pro Ala Phe Gly Phe Gly Ala Gln Val Pro Pro Asp Trp Gln Val Ser
 340 345 350
 His Glu Phe Ala Leu Asn Phe Asn Pro Ser Asn Pro Tyr Cys Ala Gly
 355 360 365
 Ile Gln Gly Ile Val Asp Ala Tyr Arg Gln Ala Leu Pro Gln Val Arg
 370 375 380
 Leu Tyr Gly Pro Thr Asn Phe Ala Pro Ile Ile Asn His Val Ala Arg
 385 390 395 400
 Phe Ala Ala Gln Ala Ala His Gln Gly Thr Ala Ser Gln Tyr Phe Met
 405 410 415
 Leu Leu Leu Leu Thr Asp Gly Ala Val Thr Asp Val Glu Ala Thr Arg
 420 425 430
 Glu Ala Val Val Arg Ala Ser Asn Leu Pro Met Ser Val Ile Ile Val
 435 440 445
 Gly Val Gly Gly Ala Asp Phe Glu Ala Met Glu Gln Leu Asp Ala Asp
 450 455 460
 Gly Gly Pro Leu His Thr Arg Ser Gly Gln Ala Ala Ala Arg Asp Ile
 465 470 475 480
 Val Gln Phe Val Pro Tyr Arg Arg Phe Gln Asn Ala Pro Arg Glu Ala
 485 490 495
 Leu Ala Gln Thr Val Leu Ala Glu Val Pro Thr Gln Leu Val Ser Tyr
 500 505 510
 Phe Arg Ala Gln Gly Trp Ala Pro Leu Lys Pro Leu Pro Pro Ser Ala
 515 520 525
 Lys Asp Pro Ala Gln Ala Pro Gln Ala
 530 535

<210> 5
 <211> 1114
 <212> DNA
 <213> Homo sapiens

 <220>
 <223> integrin B4 binding protein (ITGB4BP)

<400> 5
 aacggaaacc ttttaggga gtccaaggta cagtcgcgc gtcggagct tgtaactgg 60
 tacttggcct catggcggtc cgagcttcgt tcgagaacaa ctgtgagatc ggctgcttt 120
 ccaagctcac caacacccatc tgtctggtag cgatcgagg ctcagagaac ttctacagt 180
 tgttcgaggcg cgagctctcc gataccatcc ccgtggtgca cgcgtctatc gccggctgcc 240
 gcatcatcg ggcgcattgtgt gtggggaca ggcacggctc cctggtaacc aacaatacca 300
 cccgaccaggaa gctgcaacac attcgcaaca gcctcccaga cacagtgcag attaggcggg 360
 tggaggagcg gctctcagcc ttgggcaatg tcaccacctg caatgactac gtggccttgg 420
 tccaccaggaa cttggacagg gagacagaag aaattctggc agatgtgctc aaggtggaag 480
 ttttcagaca gacagtggcc gaccagggtc tagtaggaag ctactgtgc ttcagcaatc 540
 agggaggggct ggtgcattccc aagacttcaa ttgaagacca ggatgagctg tcctctcttc 600
 ttcaagtccc ccttgtggcg gggactgtga accgaggcag tgaggtgatt gctgctggg 660
 tggtggtgaa tgactgggtgc gccttctgtg gcctggacac aaccaggcaca gagctgtcag 720
 tggtggtgagag tggcttcagg ctgaatgaag cccagcctag caccatgcc accagcatgc 780
 gggattccct cattgacagc ctcacccgt tcaccccca agttgttcca tgggctcctg 840
 gctctggact gtggccaacc ttctccacat tccggccaaat ctgtaccggta tgctggcagg 900
 gaggtggcag agagctcaact gggactgagg ggctgggcac ccaaccctt tccacctgtg 960
 ctatcgccct ggatctatca ttactgcaaa aacctgctct gttgtgctgg ctggcaggcc 1020
 ctgtggctgc tggctgaggg ttctgctgtc ctgtgccacc ccattaaagt gcagttccct 1080
 ccggaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaa 1114

<210> 6
 <211> 245
 <212> PRT
 <213> Homo sapiens

<220>
 <223> integrin B4 binding protein (ITGB4BP)

<400> 6
 Met Ala Val Arg Ala Ser Phe Glu Asn Asn Cys Glu Ile Gly Cys Phe
 1 5 . 10 15

Ala Lys Leu Thr Asn Thr Tyr Cys Leu Val Ala Ile Gly Gly Ser Glu
 20 25 30

Asn Phe Tyr Ser Val Phe Glu Gly Glu Leu Ser Asp Thr Ile Pro Val
 35 40 45

Val His Ala Ser Ile Ala Gly Cys Arg Ile Ile Gly Arg Met Cys Val
 50 55 60

Gly Asn Arg His Gly Leu Leu Val Pro Asn Asn Thr Thr Asp Gln Glu
 65 70 75 80

Leu Gln His Ile Arg Asn Ser Leu Pro Asp Thr Val Gln Ile Arg Arg
 85 90 95

Val Glu Glu Arg Leu Ser Ala Leu Gly Asn Val Thr Thr Cys Asn Asp
 100 105 110

Tyr Val Ala Leu Val His Pro Asp Leu Asp Arg Glu Thr Glu Glu Ile
 115 120 125

Leu Ala Asp Val Leu Lys Val Glu Val Phe Arg Gln Thr Val Ala Asp
 130 135 140

Gln Val Leu Val Gly Ser Tyr Cys Val Phe Ser Asn Gln Gly Gly Leu
 145 150 155 160

Val	His	Pro	Lys	Thr	Ser	Ile	Glu	Asp	Gln	Asp	Glu	Leu	Ser	Ser	Leu
				165					170					175	
Leu	Gln	Val	Pro	Leu	Val	Ala	Gly	Thr	Val	Asn	Arg	Gly	Ser	Glu	Val
				180				185				190			
Ile	Ala	Ala	Gly	Met	Val	Val	Asn	Asp	Trp	Cys	Ala	Phe	Cys	Gly	Leu
				195			200				205				
Asp	Thr	Thr	Ser	Thr	Glu	Leu	Ser	Val	Val	Glu	Ser	Val	Phe	Lys	Leu
				210			215			220					
Asn	Glu	Ala	Gln	Pro	Ser	Thr	Ile	Ala	Thr	Ser	Met	Arg	Asp	Ser	Leu
				225			230			235			240		
Ile	Asp	Ser	Leu	Thr											
				245											

<210> 7
<211> 1650
<212> DNA
<213> Homo sapiens

<220>
<223> RNA export protein (RAE1) homolog

<400> 7

```
gcggtagtca gggcagttc taccgcaggc ttaaggaggc ttccggctcc tgggatttct 60
gtcccgctc ctggccctcg tccttcgccc cagacggat tcgcaaactc ctcagaccct 120
tctgctcccg gccggccgtt tccggccgggg cgagacccccc aggttcaaaaa tgagcctgtt 180
tggaaacaacc tcagggttttgg gaaccagtg gaccagcatg tttggcagtg caactacaga 240
caatcacaat cccatgaagg atattgaagt aacatcatct cctgatgata gcattggttg 300
tctgtctttt agcccaccaa ccttgcgggg gaactttctt attgcaggat catgggctaa 360
tgatgttcgc tgctgggaag ttcaagacag tggacagacc attccaaaag cccagcagat 420
gcacactggg cctgtgctt atgtctgtt gatgtcgtt gggagcaaag tgtttacggc 480
atcgtgttat aaaactgcca aaatgtggg cctcagcagt aaccaagcga tacagatcgc 540
acagcatgat gctcctgtt aaaccatcca ttgatcaaa gctccaaact acagctgtgt 600
gatgactggg agctgggata agactttaaa gtttgggat actcgatcgt caaatcctat 660
gatggttttt caactccctg aaaggtgtt ctgtgctgac gtgatatacc ccatggctgt 720
ggtggcaact gcagagaggg gcctgatgtt ctatcagcta gagaatcaac cttctgaatt 780
caggaggata gaatctccac taaaacatca gcatcgggtt gtggctattt ttaaagacaa 840
acagaacaag cctactgggtt ttggccctggg aagatcgtt gggagagttt ctattcacta 900
tatcaacccc ccgaaccccc ccaaagataa cttcaccttt aaatgtcattc gatctaattgg 960
aaccaacact tcagctcctc aggacattt tgcggtaat ggaatcgtt tccatcctgt 1020
tcatggcacc cttgcaactg tggatctga tggtagattt agcttctggg acaaagatgc 1080
cagaacaaaa ctaaaaaactt cggAACAGTT agatcgttcc atctcgtt gctgtttcaa 1140
tcacaatggg aacatatttgc catacgctt cagctacgtt tggtaaagg gacatgtt 1200
ttataatccc cagaaaaaaa attacatttt cctcgtaat gcagccgaag agctaaagcc 1260
caggaataag aagttagtggc tggagactt ggctcagcca gagttgttcc tctccactt 1320
gcctcatctc tgtacgattt tgggtcccg ccttgcgggg ttgtcagcca tggacatgg 1380
tttcaacccc tggagaaaaac gatgtcatttgc ttcagcgtt gagagcccg gctgtccgg 1440
cgacttgcgg tctctccattt ccactgcctt tggcaggtt tttctgttac taaggggggtt 1500
gagggttattt tagacgttag attgcggca ccggcaggga ttttgcagcg cttcagtgtt 1560
cgtgttagag aatattggaa aagcgtctgtt gagccccgtt ctgtatatttttgc taataaaagtc 1620
tttgcagat tggaaaaaaa aaaaaaaaaaa 1650
```

<210> 8
 <211> 368
 <212> PRT
 <213> Homo sapiens

<220>
 <223> RNA export protein (RAE1) homolog

<400> 8
 Met Ser Leu Phe Gly Thr Thr Ser Gly Phe Gly Thr Ser Gly Thr Ser
 1 5 10 15

Met Phe Gly Ser Ala Thr Thr Asp Asn His Asn Pro Met Lys Asp Ile
 20 25 30

Glu Val Thr Ser Ser Pro Asp Asp Ser Ile Gly Cys Leu Ser Phe Ser
 35 40 45

Pro Pro Thr Leu Pro Gly Asn Phe Leu Ile Ala Gly Ser Trp Ala Asn
 50 55 60

Asp Val Arg Cys Trp Glu Val Gln Asp Ser Gly Gln Thr Ile Pro Lys
 65 70 75 80

Ala Gln Gln Met His Thr Gly Pro Val Leu Asp Val Cys Trp Ser Asp
 85 90 95

Asp Gly Ser Lys Val Phe Thr Ala Ser Cys Asp Lys Thr Ala Lys Met
 100 105 110

Trp Asp Leu Ser Ser Asn Gln Ala Ile Gln Ile Ala Gln His Asp Ala
 115 120 125

Pro Val Lys Thr Ile His Trp Ile Lys Ala Pro Asn Tyr Ser Cys Val
 130 135 140

Met Thr Gly Ser Trp Asp Lys Thr Leu Lys Phe Trp Asp Thr Arg Ser
 145 150 155 160

Ser Asn Pro Met Met Val Leu Gln Leu Pro Glu Arg Cys Tyr Cys Ala
 165 170 175

Asp Val Ile Tyr Pro Met Ala Val Val Ala Thr Ala Glu Arg Gly Leu
 180 185 190

Ile Val Tyr Gln Leu Glu Asn Gln Pro Ser Glu Phe Arg Arg Ile Glu
 195 200 205

Ser Pro Leu Lys His Gln His Arg Cys Val Ala Ile Phe Lys Asp Lys
 210 215 220

Gln Asn Lys Pro Thr Gly Phe Ala Leu Gly Ser Ile Glu Gly Arg Val
 225 230 235 240

Ala Ile His Tyr Ile Asn Pro Pro Asn Pro Ala Lys Asp Asn Phe Thr
 245 250 255

Phe Lys Cys His Arg Ser Asn Gly Thr Asn Thr Ser Ala Pro Gln Asp
 260 265 270

Ile	Tyr	Ala	Val	Asn	Gly	Ile	Ala	Phe	His	Pro	Val	His	Gly	Thr	Leu
275						280						285			
Ala	Thr	Val	Gly	Ser	Asp	Gly	Arg	Phe	Ser	Phe	Trp	Asp	Lys	Asp	Ala
290						295					300				
Arg	Thr	Lys	Leu	Lys	Thr	Ser	Glu	Gln	Leu	Asp	Gln	Pro	Ile	Ser	Ala
305					310				315				320		
Cys	Cys	Phe	Asn	His	Asn	Gly	Asn	Ile	Phe	Ala	Tyr	Ala	Ser	Ser	Tyr
325						330				335					
Asp	Trp	Ser	Lys	Gly	His	Glu	Phe	Tyr	Asn	Pro	Gln	Lys	Lys	Asn	Tyr
340						345					350				
Ile	Phe	Leu	Arg	Asn	Ala	Ala	Glu	Glu	Leu	Lys	Pro	Arg	Asn	Lys	Lys
355					360					365					

<210> 9
 <211> 1878
 <212> DNA
 <213> Homo sapiens

<220>
 <223> bone morphogenetic protein 7 (BMP7)

<400> 9
 gggcgcagcg gggccgtct gcagcaagtg accgacggcc gggacggccg cctgccccct 60
 ctgccacctg gggcggtcg ggcgggagc ccggagcccg ggtagcgcgt agagccggcg 120
 cgatgcacgt gcgctcaactg cgagctgcgg cgccgcacag ctctggcg ctctgggcac 180
 ccctgttccct gctgcgctcc gcccctggccg acttcagcct ggacaacgag gtgcactcga 240
 gcttcatcca cccggcgcctc cgcagccagg agccggcgaaa gatgcagcgc gagatcctct 300
 ccattttggg cttggcccac cgcacccgc cgcacccatca gggcaagcac aactcggcac 360
 ccatgttcat gctggacctg tacaacgcca tggcggtgga ggagggcgcc gggcccgccg 420
 gccagggctt ctcctacccc tacaaggccg tcttcagtag ccagggcccc cctctggcca 480
 gcttgcaaga tagccatttc ctcaccgacg ccgacatggg catgagcttc gtcaacctcg 540
 tggAACATGA caaggaattc ttccaccac gctaccacca tcgagagttc cgggttgatc 600
 tttccaagat cccagaaggg gaagctgtca cggcagccga attccggatc tacaaggact 660
 acatccggga acgcttcgac aatgagacgt tccggatcag cgtttatcag gtgctccagg 720
 agcaacttggg cagggaaatcg gatctctcc tgctcgcacag ccgtaccctc tgggcctcgg 780
 aggagggctg gctgggttt gacatcacag ccaccagcaa ccactgggtg gtcaatccgc 840
 ggcacaacct gggcctgcag ctctcggtt agacgctgga tggcagagc atcaacccca 900
 agttggcgaa cctgatttggg cggcacgggc cccagaacaa gcagcccttc atggtggctt 960
 ttttcaaggc cacggagggtc cacttccgca gcatccggtc cacggggagc aaacagcgc 1020
 gccagaaccg ctccaagacg cccaaagaacc aggaagccct gcgatggcc aacgtggcag 1080
 agaacagcag cagcgaccag aggcaggcct gtaagaagca cgagctgtat gtcagcttcc 1140
 gagaccttggg ctggcaggac tggatcatcg cgcctgaagg ctacgccc tactactgt 1200
 agggggagtg tgccttcct ctgaacttcc acatgaacgc caccacacc gccatcgtgc 1260
 agacgctggt ccacttcatc aacccggaaa cgggtcccaa gcccgtctgt gcccacgc 1320
 agctcaatgc catctccgtc ctctacttcg atgacagctc caacgtcatc ctgaagaaaat 1380
 acagaaacat ggtggtccgg gcctgtgct gccactagct cctccgagaa ttcagaccct 1440
 ttggggccaa gttttctgg atcctccatt gctcgccctt gccaaggacc agcagaccaa 1500
 ctgccttttgc tgagacccat cccacttccat ccccaacttt aaagggtgtga gaggattagg 1560
 aaacatgagc agcatatggc ttttgcattt gtttgcattt gcaagatcca atgaacaaga 1620
 tcctacaaggc tgtgcaggca aaacccatcg gaaaaaaa acaacgcata aagaaaaatg 1680
 gcccggccag gtcattggct gggaaatgtcc agccatgcac ggactcggtt ccagaggtaa 1740
 ttatgagcgc ctaccagccca ggccacccag ccgtgggagg aagggggcgt ggcaaggggt 1800
 gggcacattt gtttgcattt gaaaggaaaa ttgaccggaa agttccgtta ataaatgtca 1860
 caataaaacg aatgaatg 1878

<210> 10
 <211> 431
 <212> PRT
 <213> Homo sapiens

<220>
 <223> bone morphogenetic protein 7 (BMP7)

<400> 10
 Met His Val Arg Ser Leu Arg Ala Ala Ala Pro His Ser Phe Val Ala
 1 5 10 15

Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser
 20 25 30

Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser
 35 40 45

Gln Glu Arg Arg Glu Met Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu
 50 55 60

Pro His Arg Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro
 65 70 75 80

Met Phe Met Leu Asp Leu Tyr Asn Ala Met Ala Val Glu Glu Gly Gly
 85 90 95

Gly Pro Gly Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser
 100 105 110

Thr Gln Gly Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr
 115 120 125

Asp Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu His Asp Lys
 130 135 140

Glu Phe Phe His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu
 145 150 155 160

Ser Lys Ile Pro Glu Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile
 165 170 175

Tyr Lys Asp Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Arg Ile
 180 185 190

Ser Val Tyr Gln Val Leu Gln Glu His Leu Gly Arg Glu Ser Asp Leu
 195 200 205

Phe Leu Leu Asp Ser Arg Thr Leu Trp Ala Ser Glu Glu Gly Trp Leu
 210 215 220

Val Phe Asp Ile Thr Ala Thr Ser Asn His Trp Val Val Asn Pro Arg
 225 230 235 240

His Asn Leu Gly Leu Gln Leu Ser Val Glu Thr Leu Asp Gly Gln Ser
 245 250 255

Ile Asn Pro Lys Leu Ala Gly Leu Ile Gly Arg His Gly Pro Gln Asn
 260 265 270

Lys Gln Pro Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Phe
 275 280 285
 Arg Ser Ile Arg Ser Thr Gly Ser Lys Gln Arg Ser Gln Asn Arg Ser
 290 295 300
 Lys Thr Pro Lys Asn Gln Glu Ala Leu Arg Met Ala Asn Val Ala Glu
 305 310 315 320
 Asn Ser Ser Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu Tyr
 325 330 335
 Val Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu
 340 345 350
 Gly Tyr Ala Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn
 355 360 365
 Ser Tyr Met Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His
 370 375 380
 Phe Ile Asn Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln
 385 390 395 400
 Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile
 405 410 415
 Leu Lys Lys Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His
 420 425 430

<210> 11
 <211> 1593
 <212> DNA
 <213> Homo sapiens

<220>
 <223> guanine nucleotide binding protein (G protein),
 alpha stimulating activity polypeptide 1 (GNAS)

<400> 11
 ccggccgcgc cgcagcccg ccgcgccccg cccgcgccgc cgccgcctat ggctgcctcg 60
 ggaacactaa gaccgaggac cagcgcacac aggagaaggc gcagcgttag gccaacaaaa 120
 agatcgagaa gcagctgcag aaggacaagc aggtctaccg ggccacgcac cgcctgctgc 180
 tgcgggtgc tggagaatct ggtaaaagca ccattgtgaa gcagatgagg atcctgcatg 240
 ttaatgggtt taatggagag ggccggcgaag aggacccgca ggctgcagg agcaacagcg 300
 atggtgagaa ggcaacccaa gtgcaggaca tcaaaaacaa cctgaaaagag gcgattgaaa 360
 ccattgtggc cgccatgagc aacctggtgc ccccggtgga gctggccaac cccgagaacc 420
 agttcagagt ggactacatc ctgagtgta tgaacgtgcc tgactttgac ttccctcccg 480
 aattcttatga gcatgccaag gctctgtggg aggatgaagg agtgcgtgcc tgctacgaac 540
 gctccaacga gtaccagctg attgactgtg cccagtactt cctggacaag atcgacgtga 600
 tcaaggcaggc tgactatgtg ccgagcgtac aggacctgtc tcgctgccgt gtcctgactt 660
 ctggaatctt tgagaccaag ttccaggtgg acaaagtcaa cttccacatg tttgacgtgg 720
 gtggccagcg cgatgaacgc cgcaagtggc tccagtgtt caacgatgtg actgccatca 780
 tcttcgtggt ggccagcgc agctacaaca tggcatccg ggaggacaac cagaccaacc 840
 gctctcggaa ggctctgaac ctcttcaaga gcatctggaa caacagatgg ctgcgcacca 900
 tctctgtgat cctgttcctc aacaaggcaag atctgctcgc tgagaaaagtc cttgctggg 960
 aatcgaagat tgaggactac ttcccagaat ttgctcgcta cactacttctt gaggatgcta 1020
 ctccccgagcc cggagaggac ccacgcgtga cccggggccaa gtacttcatt cgagatgagt 1080
 ttctgaggat cagcaactgcc agtggagatg ggcgtcaact ctgctaccct catttcacct 1140
 ggcgtgtgga cactgagaac atccgcccgtg tggtaaacgca ctggccgtgac atcattcagc 1200

gcatgcacct tcgtcagtag gagctgctct aagaaggaa cccccaatt taattaaagc 1260
 ctaagcaca attaattaaa agtgaacgt aattgtacaa gcagttatc acccaccata 1320
 gggcatgatt aacaaagcaa ctttcctt ccccgagtg attttgcgaa accccccttt 1380
 cccttcagct tgcttagatg ttccaaattt agaaagctta aggccgccta cagaaaaagg 1440
 aaaaaaggcc aacaaagtcc cctctactt tcaataaaaaa taaataaaac agcagcagca 1500
 aacaaataaa atgaaataaa agaaacaaat gaaataaaata ttgtgtgtg cagcattaaa 1560
 aaaaatcaaa ataaaaatca aatgtgagca aag 1593

<210> 12
 <211> 394
 <212> PRT
 <213> Homo sapiens

<220>
 <223> guanine nucleotide binding protein (G protein),
 alpha stimulating activity polypeptide 1 (GNAS)

<400> 12
 Met Gly Cys Leu Gly Asn Ser Lys Thr Glu Asp Gln Arg Asn Glu Glu
 1 5 10 15

Lys Ala Gln Arg Glu Ala Asn Lys Lys Ile Glu Lys Gln Leu Gln Lys
 20 25 30

Asp Lys Gln Val Tyr Arg Ala Thr His Arg Leu Leu Leu Leu Gly Ala
 35 40 45

Gly Glu Ser Gly Lys Ser Thr Ile Val Lys Gln Met Arg Ile Leu His
 50 55 60

Val Asn Gly Phe Asn Gly Glu Gly Glu Asp Pro Gln Ala Ala
 65 70 75 80

Arg Ser Asn Ser Asp Gly Glu Lys Ala Thr Lys Val Gln Asp Ile Lys
 85 90 95

Asn Asn Leu Lys Glu Ala Ile Glu Thr Ile Val Ala Ala Met Ser Asn
 100 105 110

Leu Val Pro Pro Val Glu Leu Ala Asn Pro Glu Asn Gln Phe Arg Val
 115 120 125

Asp Tyr Ile Leu Ser Val Met Asn Val Pro Asp Phe Asp Phe Pro Pro
 130 135 140

Glu Phe Tyr Glu His Ala Lys Ala Leu Trp Glu Asp Glu Gly Val Arg
 145 150 155 160

Ala Cys Tyr Glu Arg Ser Asn Glu Tyr Gln Leu Ile Asp Cys Ala Gln
 165 170 175

Tyr Phe Leu Asp Lys Ile Asp Val Ile Lys Gln Ala Asp Tyr Val Pro
 180 185 190

Ser Asp Gln Asp Leu Leu Arg Cys Arg Val Leu Thr Ser Gly Ile Phe
 195 200 205

Glu Thr Lys Phe Gln Val Asp Lys Val Asn Phe His Met Phe Asp Val
 210 215 220

Gly Gly Gln Arg Asp Glu Arg Arg Lys Trp Ile Gln Cys Phe Asn Asp
 225 230 235 240
 Val Thr Ala Ile Ile Phe Val Val Ala Ser Ser Ser Tyr Asn Met Val
 245 250 255
 Ile Arg Glu Asp Asn Gln Thr Asn Arg Leu Gln Glu Ala Leu Asn Leu
 260 265 270
 Phe Lys Ser Ile Trp Asn Asn Arg Trp Leu Arg Thr Ile Ser Val Ile
 275 280 285
 Leu Phe Leu Asn Lys Gln Asp Leu Leu Ala Glu Lys Val Leu Ala Gly
 290 295 300
 Lys Ser Lys Ile Glu Asp Tyr Phe Pro Glu Phe Ala Arg Tyr Thr Thr
 305 310 315 320
 Pro Glu Asp Ala Thr Pro Glu Pro Gly Glu Asp Pro Arg Val Thr Arg
 325 330 335
 Ala Lys Tyr Phe Ile Arg Asp Glu Phe Leu Arg Ile Ser Thr Ala Ser
 340 345 350
 Gly Asp Gly Arg His Tyr Cys Tyr Pro His Phe Thr Cys Ala Val Asp
 355 360 365
 Thr Glu Asn Ile Arg Arg Val Phe Asn Asp Cys Arg Asp Ile Ile Gln
 370 375 380
 Arg Met His Leu Arg Gln Tyr Glu Leu Leu
 385 390

<210> 13
 <211> 1439
 <212> DNA
 <213> Homo sapiens

<220>
 <223> eukaryotic translation initiation factor 2,
 subunit 2 beta (EIF2S2)

<400> 13
 ggggtgtcgt ttcctttcgc tgatgcaaga gcctagtgcg gtgggtggag aggtatcgcc 60
 agggggcagcgt ctgccgcccc ggcctggggc tgacccgtct gacttcccgt ccgtgccgag 120
 cccactcggc cccggccat gtctggggac gagatgattt ttgatcctac tatgagcaag 180
 aaaaaaaaaaa agaagaagaa gcctttatg ttagatgagg aaggggatac ccaaacagag 240
 gaaaaccggc cttcagaaac aaaagaagtg gagccagagc caactgagga caaggatttg 300
 gaagctgatg aagaggacac tagaaaaaaa gatgcttctg atgatctaga tgacttgaac 360
 ttcttttaatc aaaagaaaaaa gaagaaaaaa actaaaaaaa tatttgatat tgatgaagct 420
 gaagaagggtg taaaggatct taagattgaa agtcatgttc aagaaccaac tgaaccagag 480
 gatgaccttgc acattatgct tggcaataaa aagaagaaaa agaagaatgt taagttccca 540
 gatgaggatg aaataactaga gaaagatgaa gctctagaag atgaagacaa caaaaaagat 600
 gatggttatct cattcgttaa tcagacaggg cctgcttggg caggctcaga aagagactac 660
 acatacgagg agctgctgaa tcgagtttc aacatcatga gggaaaaagaa tccagatatg 720
 gttgctgggg agaaaaaggaa atttgtcatg aaacctccac aagtcgtccg agtaggaacc 780
 aaaaaaaaaactt cttttgtcaa ctttacagat atctgttaaac tattacatcg tcagccaaa 840
 catctccttg cattttgtt ggctgaattt ggtacaagtg gttctataga tggtaataac 900
 caacttgtaa tcaaaggaag attccaacag aaacagatag aaaatgtctt gagaagatat 960
 atcaaggaat atgtcacttg tcacacatgc cgatcacccgg acacaatcct gcagaaggac 1020

acacgactct attccttaca gtgcgaaact tgcattcta gatgttctgt tgccagtatc 1080
aaaaccggct tccaggctgt cacggcaag cgagcacagc tccgtgccaa agctaactaa 1140
tttgctaattc actgattttg caaagcttgt tgtggagatg tggctggaca ggtttgcatt 1200
cagagtggat ataccgttgtt attaaaaaca agataaaaaa gctgccaaga tttttggcga 1260
gtggttggtc tgaagtccctt gcaagacgt gatgctcaag ctgttgacat actcattgcc 1320
tacttaaca cctgtcagag aaacgtgata tgggttaagg aggtgtttt ttaaaatcgt 1380
tcatagactt ctgtaaaatg caagataaat taaagttatt ataacagtga ttctttcaa 1439

<210> 14
<211> 333
<212> PRT
<213> Homo sapiens

<220>
<223> eukaryotic translation initiation factor 2,
subunit 2 beta (EIF2S2)

<400> 14
Met Ser Gly Asp Glu Met Ile Phe Asp Pro Thr Met Ser Lys Lys Lys
1 5 10 15

Lys Lys Lys Lys Pro Phe Met Leu Asp Glu Glu Gly Asp Thr Gln
20 25 30

Thr Glu Glu Thr Gln Pro Ser Glu Thr Lys Glu Val Glu Pro Glu Pro
35 40 45

Thr Glu Asp Lys Asp Leu Glu Ala Asp Glu Glu Asp Thr Arg Lys Lys
50 55 60

Asp Ala Ser Asp Asp Leu Asp Asp Leu Asn Phe Phe Asn Gln Lys Lys
65 70 75 80

Lys Lys Lys Thr Lys Ile Phe Asp Ile Asp Glu Ala Glu Glu
85 90 95

Gly Val Lys Asp Leu Lys Ile Glu Ser Asp Val Gln Glu Pro Thr Glu
100 105 110

Pro Glu Asp Asp Leu Asp Ile Met Leu Gly Asn Lys Lys Lys Lys Lys
115 120 125

Lys Asn Val Lys Phe Pro Asp Glu Asp Glu Ile Leu Glu Lys Asp Glu
130 135 140

Ala Leu Glu Asp Glu Asp Asn Lys Lys Asp Asp Gly Ile Ser Phe Ser
145 150 155 160

Asn Gln Thr Gly Pro Ala Trp Ala Gly Ser Glu Arg Asp Tyr Thr Tyr
165 170 175

Glu Glu Leu Leu Asn Arg Val Phe Asn Ile Met Arg Glu Lys Asn Pro
180 185 190

Asp Met Val Ala Gly Glu Lys Arg Lys Phe Val Met Lys Pro Pro Gln
195 200 205

Val Val Arg Val Gly Thr Lys Lys Thr Ser Phe Val Asn Phe Thr Asp
210 215 220

Ile	Cys	Lys	Leu	Leu	His	Arg	Gln	Pro	Lys	His	Leu	Leu	Ala	Phe	Leu
225					230					235					240
Leu	Ala	Glu	Leu	Gly	Thr	Ser	Gly	Ser	Ile	Asp	Gly	Asn	Asn	Gln	Leu
					245				250						255
Val	Ile	Lys	Gly	Arg	Phe	Gln	Gln	Lys	Gln	Ile	Glu	Asn	Val	Leu	Arg
					260				265						270
Arg	Tyr	Ile	Lys	Glu	Tyr	Val	Thr	Cys	His	Thr	Cys	Arg	Ser	Pro	Asp
					275			280			285				
Thr	Ile	Leu	Gln	Lys	Asp	Thr	Arg	Leu	Tyr	Phe	Leu	Gln	Cys	Glu	Thr
					290			295			300				
Cys	His	Ser	Arg	Cys	Ser	Val	Ala	Ser	Ile	Lys	Thr	Gly	Phe	Gln	Ala
305					310				315						320
Val	Thr	Gly	Lys	Arg	Ala	Gln	Leu	Arg	Ala	Lys	Ala	Asn			
					325				330						

<210> 15
<211> 702
<212> DNA
<213> Homo sapiens

<220>
<223> dynein light chain A2 (DNCL2A)

<400> 15
cgcagaaagg cacaggactc gctaagtgtt cgctacgcgg ggctaccgga tcggtcggaa 60
atggcagagg tggaggagac actgaagcga ctgcagagcc agaaggaggt gcagggaaatc 120
atcgctgtga acacagaagg cattccatc aagagcacca tggacaaccc caccaccacc 180
cagtatgccca gcctcatgca cagcttcatc ctgaaggcac ggagcaccgt gcgtgacatc 240
gaccccccaga acgatctcac cttccttcga attcgctcca agaaaaatga aattatgggt 300
gcaccagata aagactattt cctgatttg attcagaatc caaccgaata agccactctc 360
ttggctccct gtgtcattcc ttaatttaat gccccccaag aatgttaatg tcaatcatgt 420
cagtggacta gcacatggca gtcgcttggaa acccaactcac accaatccag tgaccgtgtg 480
tgggctggcg gctcttctcc cccaccaacg gaacccctgt gtgcaccaac cttcccccaga 540
gctccggagc gccctctccct cacttccagg tttggagca agagcttgc ggaagccccgc 600
acccagcttc cttctgacct tcagttcaact ttgtcgccct tggagaaaagc tgttttctt 660
taactaaaaaa taaccaaaaat gcttaaaaaaa aaaaaaaaaaa aa 702

<210> 16
<211> 96
<212> PRT
<213> Homo sapiens

<220>
<223> dynein light chain A2 (DNCL2A)

<400> 16
Met Ala Glu Val Glu Glu Thr Leu Lys Arg Leu Gln Ser Gln Lys Gly
1 5 10 15
Val Gln Gly Ile Ile Val Val Asn Thr Glu Gly Ile Pro Ile Lys Ser
20 25 30

Thr Met Asp Asn Pro Thr Thr Thr Gln Tyr Ala Ser Leu Met His Ser
35 40 45

Phe Ile Leu Lys Ala Arg Ser Thr Val Arg Asp Ile Asp Pro Gln Asn
50 55 60

Asp Leu Thr Phe Leu Arg Ile Arg Ser Lys Lys Asn Glu Ile Met Val
65 70 75 80

Ala Pro Asp Lys Asp Tyr Phe Leu Ile Val Ile Gln Asn Pro Thr Glu
85 90 95

<210> 17

<211> 984

<212> DNA

<213> Homo sapiens

<220>

<223> proteasome subunit alpha-7 (PSMA7)

<400> 17

cggcgccgag ggtggggcgc gggcgttagtg gcgccggag tcgcgggtgc gcgcgggccc 60
tgagtgtcgctttttagagat tcgcggcgga aggagcccg ccgcggcccg cccgcattgag 120
ctacgaccgc gccatcaccgc tcttctcgcc cgacggccac ctcttccaag tggagtacgc 180
gcaggaggcc gtcaagaagg gctcgaccgc ggttgggttt cgaggaagag acattgttgt 240
tcttgggtgtt gagaagaagt cagtggccaa actgcaggat gaaagaacag tgccgaagat 300
ctgtgttttgc gatgacaacgc tctgcatggc ctttcggc ctcaccggcc atgcaaggat 360
agtcatcaac agggccccggg tggagtgccaa gagccaccgg ctgactgtgg aggaccgg 420
cactgtggag tacatcaccc gctacatcgc cagtctgaag cagcgtata cgccagagcaa 480
tggcgccagg ccgttggca tctctgcctt catcgtgggt ttgcactttt atggcactcc 540
taggctctat cagactgacc cctcgccac ataccatgcc tggaaaggcca atgccatagg 600
tcgggggtgcc aagtcaatgc gcgagttctt ggagaagaac tataactgacg aagccattga 660
aacagatgat ctgaccatca agctgggtat caaggcactc ctggaaagtgg ttcaagtcaagg 720
tggcaaaaac attgaacttg ctgtcatgag gcgagatcaa tccctcaaga ttttaatcc 780
tgaagaaattt gagaagtatg ttgctgaaat tgaaaaagaa aaagaagaaaa acgaaaagaa 840
gaaacaaaaaag aaagcatcat gatgaataaa atgtcttgc ttgttaattt taaattcata 900
tcaatcatgg atgagtctcg atgtgttaggc cttccattc catttattca cactgagtgt 960
cctacaataaa acttccgtat tttt 984

<210> 18

<211> 248

<212> PRT

<213> Homo sapiens

<220>

<223> proteasome subunit alpha-7 (PSMA7)

<400> 18

Met Ser Tyr Asp Arg Ala Ile Thr Val Phe Ser Pro Asp Gly His Leu
1 5 10 15

Phe Gln Val Glu Tyr Ala Gln Glu Ala Val Lys Lys Gly Ser Thr Ala
20 25 30

Val Gly Val Arg Gly Arg Asp Ile Val Val Leu Gly Val Glu Lys Lys
35 40 45

Ser Val Ala Lys Leu Gln Asp Glu Arg Thr Val Arg Lys Ile Cys Ala
50 55 60

Leu Asp Asp Asn Val Cys Met Ala Phe Ala Gly Leu Thr Ala Asp Ala
 65 70 75 80
 Arg Ile Val Ile Asn Arg Ala Arg Val Glu Cys Gln Ser His Arg Leu
 85 90 95
 Thr Val Glu Asp Pro Val Thr Val Glu Tyr Ile Thr Arg Tyr Ile Ala
 100 105 110
 Ser Leu Lys Gln Arg Tyr Thr Gln Ser Asn Gly Arg Arg Pro Phe Gly
 115 120 125
 Ile Ser Ala Leu Ile Val Gly Phe Asp Phe Asp Gly Thr Pro Arg Leu
 130 135 140
 Tyr Gln Thr Asp Pro Ser Gly Thr Tyr His Ala Trp Lys Ala Asn Ala
 145 150 155 160
 Ile Gly Arg Gly Ala Lys Ser Val Arg Glu Phe Leu Glu Lys Asn Tyr
 165 170 175
 Thr Asp Glu Ala Ile Glu Thr Asp Asp Leu Thr Ile Lys Leu Val Ile
 180 185 190
 Lys Ala Leu Leu Glu Val Val Gln Ser Gly Gly Lys Asn Ile Glu Leu
 195 200 205
 Ala Val Met Arg Arg Asp Gln Ser Leu Lys Ile Leu Asn Pro Glu Glu
 210 215 220
 Ile Glu Lys Tyr Val Ala Glu Ile Glu Lys Glu Lys Glu Asn Glu
 225 230 235 240
 Lys Lys Lys Gln Lys Lys Ala Ser
 245

<210> 19
 <211> 4713
 <212> DNA
 <213> Homo sapiens

<220>
 <223> activity dependent neuroprotective protein (ADNP)

<400> 19
 cggccgcggc gcgagccgga gtccgcccag ccggagcgcg acgaggcccc gggcgcgccc 60
 tccccgctgc cgccaccgcc gtgccgcgc catccgcccc cgccgcgcgc cgctgtccgg 120
 ccccccggca cgccggcccc gcgcgcgcct cgaggccgag tcaaggtgtg agatgcacaa 180
 tgcgaaacct aggccccagc ttttacacca ttagtcgcag gtttgtactt ttgtactga 240
 actgtatggt ggcctagtgg ttatgcctg tactaccatt ttgaggatct ggactccgtt 300
 tcctgccttg ctctttggac cacattgtca attcacacccg aaactatgtt ccaacttcct 360
 gtcacaatac ttggcagttt aaaaaaagcc cggaaaactg tgaaaaaaat acttagtgac 420
 attgggttgg aataactgtaa agaacatata gaagattta aacaatttg aacataatgac 480
 ttttatttga aaaacactac atgggagat ttaggactgt gggaccatc acttacgaaa 540
 aaccaggact atcggacaaa acctttctgc tgcagcgctt gtccatttc ctcaaaattc 600
 ttctctgcct acaaaaagtca tttccgcaat gtccatagtg aagactttga aaataggatt 660
 ctccttaatt gcccctactg taccttcaat gcagacaaaa agactttga aacacacatt 720
 aaaaatatttc atgctccgaa cgccagcgca ccaagtagca gcctcagcac tttcaaagat 780
 aaaaacaaaaa atgatggcct taaacctaag caggctgaca gtgtagagca agctgtttat 840
 tactgtaaaga agtgcactta ccgagatct ctttatgaaa tagtttagaa gcacattac 900

tagtttatac tttagttcaa caccatcatg gtggattcat ttataccatc taatatata 4620
cacactgttg tagtatgtat aattttgtga tctttatccc ccctttgtat tcattttaag 4680
catctaaata aattgctgta ttgtgcttaa tgt 4713

<210> 20
<211> 1102
<212> PRT
<213> Homo sapiens

<220>
<223> activity dependent neuroprotective protein (ADNP)

<400> 20
Met Phe Gln Leu Pro Val Asn Asn Leu Gly Ser Leu Arg Lys Ala Arg
1 5 10 15

Lys Thr Val Lys Lys Ile Leu Ser Asp Ile Gly Leu Glu Tyr Cys Lys
20 25 30

Glu His Ile Glu Asp Phe Lys Gln Phe Glu Pro Asn Asp Phe Tyr Leu
35 40 45

Lys Asn Thr Thr Trp Glu Asp Val Gly Leu Trp Asp Pro Ser Leu Thr
50 55 60

Lys Asn Gln Asp Tyr Arg Thr Lys Pro Phe Cys Cys Ser Ala Cys Pro
65 70 75 80

Phe Ser Ser Lys Phe Phe Ser Ala Tyr Lys Ser His Phe Arg Asn Val
85 90 95

His Ser Glu Asp Phe Glu Asn Arg Ile Leu Leu Asn Cys Pro Tyr Cys
100 105 110

Thr Phe Asn Ala Asp Lys Lys Thr Leu Glu Thr His Ile Lys Ile Phe
115 120 125

His Ala Pro Asn Ala Ser Ala Pro Ser Ser Ser Leu Ser Thr Phe Lys
130 135 140

Asp Lys Asn Lys Asn Asp Gly Leu Lys Pro Lys Gln Ala Asp Ser Val
145 150 155 160

Glu Gln Ala Val Tyr Tyr Cys Lys Cys Thr Tyr Arg Asp Pro Leu
165 170 175

Tyr Glu Ile Val Arg Lys His Ile Tyr Arg Glu His Phe Gln His Val
180 185 190

Ala Ala Pro Tyr Ile Ala Lys Ala Gly Glu Lys Ser Leu Asn Gly Ala
195 200 205

Val Pro Leu Gly Ser Asn Ala Arg Glu Glu Ser Ser Ile His Cys Lys
210 215 220

Arg Cys Leu Phe Met Pro Lys Ser Tyr Glu Ala Leu Val Gln His Val
225 230 235 240

Ile Glu Asp His Glu Arg Ile Gly Tyr Gln Val Thr Ala Met Ile Gly
245 250 255

His	Thr	Asn	Val	Val	Val	Pro	Arg	Ser	Lys	Pro	Leu	Met	Leu	Ile	Ala
			260			265						270			
Pro	Lys	Pro	Gln	Asp	Lys	Lys	Ser	Met	Gly	Leu	Pro	Pro	Arg	Ile	Gly
	275				280						285				
Ser	Leu	Ala	Ser	Gly	Asn	Val	Arg	Ser	Leu	Pro	Ser	Gln	Gln	Met	Val
	290				295						300				
Asn	Arg	Leu	Ser	Ile	Pro	Lys	Pro	Asn	Leu	Asn	Ser	Thr	Gly	Val	Asn
	305				310			315				320			
Met	Met	Ser	Ser	Val	His	Leu	Gln	Gln	Asn	Asn	Tyr	Gly	Val	Lys	Ser
				325				330				335			
Val	Gly	Gln	Gly	Tyr	Ser	Val	Gly	Gln	Ser	Met	Arg	Leu	Gly	Leu	Gly
		340				345						350			
Gly	Asn	Ala	Pro	Val	Ser	Ile	Pro	Gln	Gln	Ser	Gln	Ser	Val	Lys	Gln
		355				360					365				
Leu	Leu	Pro	Ser	Gly	Asn	Gly	Arg	Ser	Tyr	Gly	Leu	Gly	Ser	Glu	Gln
		370				375					380				
Arg	Ser	Gln	Ala	Pro	Ala	Arg	Tyr	Ser	Leu	Gln	Ser	Ala	Asn	Ala	Ser
		385				390				395			400		
Ser	Leu	Ser	Ser	Gly	Gln	Leu	Lys	Ser	Pro	Ser	Leu	Ser	Gln	Ser	Gln
			405				410					415			
Ala	Ser	Arg	Val	Leu	Gly	Gln	Ser	Ser	Ser	Lys	Pro	Ala	Ala	Ala	Ala
			420				425					430			
Thr	Gly	Pro	Pro	Pro	Gly	Asn	Thr	Ser	Ser	Thr	Gln	Lys	Trp	Lys	Ile
		435				440					445				
Cys	Thr	Ile	Cys	Asn	Glu	Leu	Phe	Pro	Glu	Asn	Val	Tyr	Ser	Val	His
		450				455					460				
Phe	Glu	Lys	Glu	His	Lys	Ala	Glu	Lys	Val	Pro	Ala	Val	Ala	Asn	Tyr
		465				470			475			480			
Ile	Met	Lys	Ile	His	Asn	Phe	Thr	Ser	Lys	Cys	Leu	Tyr	Cys	Asn	Arg
			485				490					495			
Tyr	Leu	Pro	Thr	Asp	Thr	Leu	Leu	Asn	His	Met	Leu	Ile	His	Gly	Leu
			500				505					510			
Ser	Cys	Pro	Tyr	Cys	Arg	Ser	Thr	Phe	Asn	Asp	Val	Glu	Lys	Met	Ala
			515				520					525			
Ala	His	Met	Arg	Met	Val	His	Ile	Asp	Glu	Glu	Met	Gly	Pro	Lys	Thr
			530				535				540				
Asp	Ser	Thr	Leu	Ser	Phe	Asp	Leu	Thr	Leu	Gln	Gln	Gly	Ser	His	Thr
			545				550				555			560	
Asn	Ile	His	Leu	Leu	Val	Thr	Thr	Tyr	Asn	Leu	Arg	Asp	Ala	Pro	Ala
				565				570				575			

Glu	Ser	Val	Ala	Tyr	His	Ala	Gln	Asn	Asn	Pro	Pro	Val	Pro	Pro	Lys
580							585						590		
Pro	Gln	Pro	Lys	Val	Gln	Glu	Lys	Ala	Asp	Ile	Pro	Val	Lys	Ser	Ser
595						600						605			
Pro	Gln	Ala	Ala	Val	Pro	Tyr	Lys	Lys	Asp	Val	Gly	Lys	Thr	Leu	Cys
610						615					620				
Pro	Leu	Cys	Phe	Ser	Ile	Leu	Lys	Gly	Pro	Ile	Ser	Asp	Ala	Leu	Ala
625						630			635			640			
His	His	Leu	Arg	Glu	Arg	His	Gln	Val	Ile	Gln	Thr	Val	His	Pro	Val
645							650					655			
Glu	Lys	Lys	Leu	Thr	Tyr	Lys	Cys	Ile	His	Cys	Leu	Gly	Val	Tyr	Thr
660							665					670			
Ser	Asn	Met	Thr	Ala	Ser	Thr	Ile	Thr	Leu	His	Leu	Val	His	Cys	Arg
675							680					685			
Gly	Val	Gly	Lys	Thr	Gln	Asn	Gly	Gln	Asp	Lys	Thr	Asn	Ala	Pro	Ser
690							695					700			
Arg	Leu	Asn	Gln	Ser	Pro	Ser	Leu	Ala	Pro	Val	Lys	Arg	Thr	Tyr	Glu
705							710				715				720
Gln	Met	Glu	Phe	Pro	Leu	Leu	Lys	Lys	Arg	Lys	Leu	Asp	Asp	Asp	Ser
							725				730				735
Asp	Ser	Pro	Ser	Phe	Phe	Glu	Glu	Lys	Pro	Glu	Glu	Pro	Val	Val	Leu
							740			745					750
Ala	Leu	Asp	Pro	Lys	Gly	His	Glu	Asp	Asp	Ser	Tyr	Glu	Ala	Arg	Lys
							755			760					765
Ser	Phe	Leu	Thr	Lys	Tyr	Phe	Asn	Lys	Gln	Pro	Tyr	Pro	Thr	Arg	Arg
							770			775					780
Glu	Ile	Glu	Lys	Leu	Ala	Ala	Ser	Leu	Trp	Leu	Trp	Lys	Ser	Asp	Ile
							785			790					800
Ala	Ser	His	Phe	Ser	Asn	Lys	Arg	Lys	Lys	Cys	Val	Arg	Asp	Cys	Glu
							805			810					815
Lys	Tyr	Lys	Pro	Gly	Val	Leu	Leu	Gly	Phe	Asn	Met	Lys	Glu	Leu	Asn
							820			825					830
Lys	Val	Lys	His	Glu	Met	Asp	Phe	Asp	Ala	Glu	Trp	Leu	Phe	Glu	Asn
							835			840					845
His	Asp	Glu	Lys	Asp	Ser	Arg	Val	Asn	Ala	Ser	Lys	Thr	Ala	Asp	Lys
							850			855					860
Lys	Leu	Asn	Leu	Gly	Lys	Glu	Asp	Asp	Ser	Ser	Ser	Asp	Ser	Phe	Glu
							865			870					880
Asn	Leu	Glu	Glu	Glu	Ser	Asn	Glu	Ser	Gly	Ser	Pro	Phe	Asp	Pro	Val
							885			890					895

Phe Glu Val Glu Pro Lys Ile Ser Asn Asp Asn Pro Glu Glu His Val
 900 905 910
 Leu Lys Val Ile Pro Glu Asp Ala Ser Glu Ser Glu Glu Lys Leu Asp
 915 920 925
 Gln Lys Glu Asp Gly Ser Lys Tyr Glu Thr Ile His Leu Thr Glu Glu
 930 935 940
 Pro Thr Lys Leu Met His Asn Ala Ser Asp Ser Glu Val Asp Gln Asp
 945 950 955 960
 Asp Val Val Glu Trp Lys Asp Gly Ala Ser Pro Ser Glu Ser Gly Pro
 965 970 975
 Gly Ser Gln Gln Val Ser Asp Phe Glu Asp Asn Thr Cys Glu Met Lys
 980 985 990
 Pro Gly Thr Trp Ser Asp Glu Ser Ser Gln Ser Glu Asp Ala Arg Ser
 995 1000 1005
 Ser Lys Pro Ala Ala Lys Lys Lys Ala Thr Met Gln Gly Asp Arg Glu
 1010 1015 1020
 Gln Leu Lys Trp Lys Asn Ser Ser Tyr Gly Lys Val Glu Gly Phe Trp
 1025 1030 1035 1040
 Ser Lys Asp Gln Ser Gln Trp Lys Asn Ala Ser Glu Asn Asp Glu Arg
 1045 1050 1055
 Leu Ser Asn Pro Gln Ile Glu Trp Gln Asn Ser Thr Ile Asp Ser Glu
 1060 1065 1070
 Asp Gly Glu Gln Phe Asp Asn Met Thr Asp Gly Val Ala Glu Pro Met
 1075 1080 1085
 His Gly Ser Leu Ala Gly Val Lys Leu Ser Ser Gln Gln Ala
 1090 1095 1100

<210> 21
 <211> 2427
 <212> DNA
 <213> Homo sapiens

 <220>
 <223> chromosome 20 open reading frame 129 (C20orf129)
 protein

<400> 21
 aaaaagcagc caatggaga gccgaggcg ggaggtgcgg ccaatggcgc gggcctgttt 60
 gattcaaagg ttgcctataa agcgggactg cacgccgtt tttgtccag ggctgtcag 120
 tccgagcgc gccatggctc tgctgtccga gggcctggac gaggtgccc cccgctgcct 180
 gtcgcccgtgc gggccgccc acccgaccga gctgttcagc gagtcacggc gcctggctct 240
 ggaggagctg gtggcggcg gccccgaagc cttcgcggcc ttccctgcac gcgagcgcct 300
 ggctcgtttc ctgaaccccc atgaggtgca cgccattctg cgcgcggcgg agaggccggg 360
 agaggagggc gcggcggcgg cggcggcggc cgaggactcg ttccggctct cgcacgactg 420
 ctcttcgggc acctacttcc ccgagcagtc ggacctggag ccaccgctgt tggagcttgg 480
 ctggcccgcc ttctaccagg ggcctaccg cggcgccacg cgtgtcgaga cgcacttcca 540
 gccccgccc gctggcgaag gtggcccta cggctgcaag gacgctctgc gccagcagct 600
 ccgctcggcg cgagaggta ttgcagtgtt catggacatc tcgacatctt 660

cagagacctg caagaatatac gcaggaaaca gggagttgct gtgtatatcc ttctggacca 720
 ggctcttc tctcaatttc tggatatgtt catggatctg aaagttcattt ctgaacaggaa 780
 aaagttaatg acagttcgga ctatcacagg aaatatctac tatgcaaggtt caggaactaa 840
 gattattggg aaggttcacg aaaagttcac gttgattgtt ggcattcccg tggcaacagg 900
 ctcctacagt tttacataga cggatggcaa attaaacagc agtaacttgg taattctgtc 960
 tggccaagtg gttgaacact ttgatcttgg gttccgaatc ctgtatgccc agtccaaggcc 1020
 catcagcccc aaactcctgt ctcacttcca gagcagcaac aagtttgc acctcaccaa 1080
 ccgaaaacca cagtcacagg agtcacccctt gggcaacctg ctgcggatgc ggctggctag 1140
 gctgtcaagt actcccagga aggccggaccc ggacccagag atgcccgcag agggcaaggc 1200
 agagcgcacg ccccatgact gtgagtcctc tacttgttagt gaggaagact acttcagcag 1260
 ccacagggac gagctccaga gcagaaaggc cattgacgct gccactaaa cagagccagg 1320
 agaggagatg ccagggctga gtgtgagtgaa ggtggaaaca caaaccagca tcaccacagc 1380
 atgtgcttgtt acccagactg cagtcatcac caggatagca agctctcaaa ccacgattt 1440
 gtccagatcg accactactc agactgacat ggatgagaac attctttt ctcgagggaa 1500
 tcaatctaca gaagggtcac cagtctcaaa aatgtctgtt tcgagatctt ccagtttggaa 1560
 gtcttcctcc tctgtgttcc cccaaggctc tggggcaago tccactgggtt ctcccgcttc 1620
 catcagaacc actgacttcc acaatcttgg ctatcccaag tacctggca cccccccac 1680
 ggaactgtac ttgagtgact cacttagaaa cttgaacaaa gagcggcaat tccacttgc 1740
 tggtatcagg tcccggtca accacatgct ggctatgctg tcaaggagaa cactctttac 1800
 tgaaaaccac cttggccctt attctggcaaa ttccagcaga gttaaatttgc ttgctgttag 1860
 agatgttagca ctttatctt cctatcagta actgctccgtt gttcagactc ctggtttctt 1920
 ccaggcttac agtggacate atcagctcc tgcctttaaaa aatatcttat gtccttaatt 1980
 gccttcctt tacctgactt tgcacccctt gttgtctttt aattcttttag gctgcataatt 2040
 attttacatg cttgttttgc tcatgtatataccaggattt gttttatgg tttaaacact 2100
 atggatacag gggtttggg tgcacaaattt taatagtcat gcactacata atgatgttt 2160
 ggtcaatgac agaccacgta tatgttgca gtcacataag attataatac tttattttt 2220
 ctataccctt tctgtgttta gataaaata ccattatgtt acagttgcctt acagtattca 2280
 gtgcagtaac atgatgtaca ggtttgttagc ctgttttgca tttttcttag gttgtatgt 2340
 cttctgtttt aaagggttga atcaccagca tttttgttagt caaaatccctt tttagaaaaaa 2400
 ataaaactac tttctgttta tctctttt 2427

```

<210> 22
<211> 291
<212> PRT
<213> Homo sapiens

<220>
<223> chromosome 20 open reading frame 129 (C20orf129)
      protein

<400> 22
Met Ala Arg Ala Cys Leu Ile Gln Arg Leu Pro Ile Lys Arg Asp Cys
   1           5               10            15

Thr Pro Val Phe Val Arg Gly Leu Ser Ser Pro Ser Ala Ala Met Ala
   20          25               30

Leu Leu Ser Glu Gly Leu Asp Glu Val Pro Ala Ala Cys Leu Ser Pro
   35          40               45

Cys Gly Pro Pro Asn Pro Thr Glu Leu Phe Ser Glu Ser Arg Arg Leu
   50          55               60

Ala Leu Glu Glu Leu Val Ala Gly Gly Pro Glu Ala Phe Ala Ala Phe
   65          70               75            80

Leu Arg Arg Glu Arg Leu Ala Arg Phe Leu Asn Pro Asp Glu Val His
   85          90               95
  
```

Ala Ile Leu Arg Ala Ala Glu Arg Pro Gly Glu Glu Gly Ala Ala Ala
 100 105 110
 Ala Ala Ala Ala Glu Asp Ser Phe Gly Ser Ser His Asp Cys Ser Ser
 115 120 125
 Gly Thr Tyr Phe Pro Glu Gln Ser Asp Leu Glu Pro Pro Leu Leu Glu
 130 135 140
 Leu Gly Trp Pro Ala Phe Tyr Gln Gly Ala Tyr Arg Gly Ala Thr Arg
 145 150 155 160
 Val Glu Thr His Phe Gln Pro Arg Gly Ala Gly Glu Gly Gly Pro Tyr
 165 170 175
 Gly Cys Lys Asp Ala Leu Arg Gln Gln Leu Arg Ser Ala Arg Glu Val
 180 185 190
 Ile Ala Val Val Met Asp Val Phe Thr Asp Ile Asp Ile Phe Arg Asp
 195 200 205
 Leu Gln Glu Ile Cys Arg Lys Gln Gly Val Ala Val Tyr Ile Leu Leu
 210 215 220
 Asp Gln Ala Leu Leu Ser Gln Phe Leu Asp Met Cys Met Asp Leu Lys
 225 230 235 240
 Val His Pro Glu Gln Glu Lys Leu Met Thr Val Arg Thr Ile Thr Gly
 245 250 255
 Asn Ile Tyr Tyr Ala Arg Ser Gly Thr Lys Ile Ile Gly Lys Val His
 260 265 270
 Glu Lys Phe Thr Leu Ile Asp Gly Ile Arg Val Ala Thr Gly Ser Tyr
 275 280 285
 Ser Phe Thr
 290

```
<210> 23
<211> 602
<212> DNA
<213> Homo sapiens

<220>
<223> chromosome 20 open reading frame 52 (C20orf52)
      protein

<400> 23
gacgcggggc cggaacgcga agaggggtggt ggagtcgggc taccactga ttttccttcc 60
cttacttccc ctgagccctt gggcccaactt cccagcctac cgcttccgtc cccgccccgac 120
tcttgggcca gcgcctgggc ccacactttc ctatcccccg cagatgccgg tggccgtggg 180
tccctacgga cagtcccagc caagctgctt cgaccgtgtc aaaatgggct tcgtgtatggg 240
ttgcgcgtg ggcattggcg  cggggcgctt cttcggcacc ttttcctgtc tcaggatccgg 300
aatgcggggt cgagagctga tgggcggcat tggaaaaacc atgatgcaga gtggccgcac 360
ctttggcaca ttcatggcca ttgggatggg catccgatgc taaccatggt tgccaactac 420
atctgtccct tcccatcaat cccagcccat gtactaataa aagaaaagtct ttgagtaaaa 480
aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 540
aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 600
aa
aa
```

```

<210> 24
<211> 79
<212> PRT
<213> Homo sapiens

<220>
<223> chromosome 20 open reading frame 52 (C20orf52)
protein

<400> 24
Met Pro Val Ala Val Gly Pro Tyr Gly Gln Ser Gln Pro Ser Cys Phe
1 5 10 15

Asp Arg Val Lys Met Gly Phe Val Met Gly Cys Ala Val Gly Met Ala
20 25 30

Ala Gly Ala Leu Phe Gly Thr Phe Ser Cys Leu Arg Ile Gly Met Arg
35 40 45

Gly Arg Glu Leu Met Gly Gly Ile Gly Lys Thr Met Met Gln Ser Gly
50 55 60

Gly Thr Phe Gly Thr Phe Met Ala Ile Gly Met Gly Ile Arg Cys
65 70 75

```

```

<210> 25
<211> 1685
<212> DNA
<213> Homo sapiens

<220>
<223> chromosome 20 open reading frame 20 (C20orf20)
protein

<400> 25
ctcccgccgg gggctccttg ctccggccgg ccgcggccat gggagaggcc gaggtggcg 60
gcggggcgcc cgcaaggcgac aaggggccgg gggaggcgcc caccagcccg gcggaggaga 120
cagtggtgtg gagccccgag gtggaggtgt gcctcttcca cgcctatgtc ggccacaagc 180
ccgtcggtgt gaaccgacac ttccacatga ttttatttcg ggacaagttc agccagaaca 240
tcggccggca ggtcccatcc aaggtcatct gggaccatct gagcaccatg tacgacatgc 300
aggcgctgca tgagtctgag attcttccat tcccaatcc agagaggaac ttctgtccttc 360
cagaagagat cattcaggag gtccgagaag gaaaagtgtat gatagaagag gagatgaaag 420
aggagatgaa ggaagacgtg gaccccccaca atggggctga cgtattttt tcatacttcag 480
ggagtttggg gaaagcatca gaaaaatcca gcaaagacaa agagaagaac tcctcagact 540
tggggtgcaa agaaggcgca gacaagcgga agcgcagccg ggtcaccgac aaagtccctga 600
ccgcaaacag caacccttcc agtcccagtg ctgccaagcg gcgcgcacg tagaccctca 660
gccctggtgg cggcagagaa gcggggcgagg cactgtggtc gctgaggggg ttggctgggt 720
ctgagtgcctt ccccccaggcc acagtgtatc catcccatgtg ccatgagccc acactgcccc 780
ccctcaggct ctcaggtgaa cgtggccgtc agcggggaaa cgtgtgtgc agttggacca 840
tgtgggaccc tggatggaccc gaaagaccag gatcggtcca gtcagatat tgagggctct 900
gaaggcctagt tctgtcttct ctggagcagc tggatggcttc cctgtggctgc ttggtgacat 960
ggattagcgc tacgtggct gcaagcatgg gatccaggc tacctagagg ggcacatgggc 1020
cagggaaaac ctcggattag caagcaataa aaacatgacc tcactttcc tcaaaggagc 1080
ccctggtctt ccctgtgtga ctcagtttt tccatctgtt tgtcccgctg caagcctt 1140
tctgcgtgtga ctgtgacatt ggaacgtggc cttctgtca cccctccgt gccacgcact 1200
gaaggccacc cccacccacc tggaaaacta agaactggat attttgcctc attcacttgt 1260
actgtaaaca tggatataat ttgggttgta tttactatt taatttttaa gaagcctatt 1320
ttactagtgt ttatataat gaaagactg cagaagttaa acctgtgttg tattttttct 1380
gagatgtttt gctttaaagag atacttttg ctcagtttt atatgccaga tacagagaat 1440
ttgttagcggt tattttgtt tggatctgtt acttgcaaaac agaccaaatg gatgagggc 1500

```

ggggaccgtg cagctgtcg ggatgagga ggcggccgcc ccagtgtga tggagatgcc 1560
actttcggt gactgcgaac attaaagcac aaaaaaaaaatc caaaaaaaaaaaaaaaa 1620
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 1680
aaaaaaaaa 1685

<210> 26
<211> 204
<212> PRT
<213> Homo sapiens

<220>
<223> chromosome 20 open reading frame 20 (C20orf20)
protein

<400> 26
Met Gly Glu Ala Glu Val Gly Gly Gly Ala Ala Gly Asp Lys Gly
1 5 10 15

Pro Gly Glu Ala Ala Thr Ser Pro Ala Glu Glu Thr Val Val Trp Ser
20 25 30

Pro Glu Val Glu Val Cys Leu Phe His Ala Met Leu Gly His Lys Pro
35 40 45

Val Gly Val Asn Arg His Phe His Met Ile Cys Ile Arg Asp Lys Phe
50 55 60

Ser Gln Asn Ile Gly Arg Gln Val Pro Ser Lys Val Ile Trp Asp His
65 70 75 80

Leu Ser Thr Met Tyr Asp Met Gln Ala Leu His Glu Ser Glu Ile Leu
85 90 95

Pro Phe Pro Asn Pro Glu Arg Asn Phe Val Leu Pro Glu Glu Ile Ile
100 105 110

Gln Glu Val Arg Glu Gly Lys Val Met Ile Glu Glu Glu Met Lys Glu
115 120 125

Glu Met Lys Glu Asp Val Asp Pro His Asn Gly Ala Asp Asp Val Phe
130 135 140

Ser Ser Ser Gly Ser Leu Gly Lys Ala Ser Glu Lys Ser Ser Lys Asp
145 150 155 160

Lys Glu Lys Asn Ser Ser Asp Leu Gly Cys Lys Glu Gly Ala Asp Lys
165 170 175

Arg Lys Arg Ser Arg Val Thr Asp Lys Val Leu Thr Ala Asn Ser Asn
180 185 190

Pro Ser Ser Pro Ser Ala Ala Lys Arg Arg Arg Thr
195 200

<210> 27
<211> 3149
<212> DNA
<213> Homo sapiens

<220>
<223> chromosome 20 open reading frame 188 (C20orf188)
protein

<400> 27

gacatggcgg cggcccggt agcggctggg tctggagccg gccgagggag acggtcggca 60
gccacagtgg cggcttgggg cgatggggc ggccggccgc ggcctggtaa cattctgctg 120
cagctgcggc agggccagct gaccggccgg ggcctggtcc gggcggtgca gttcaactgag 180
actttttga cggagaggga caaacaaatcc aagtggagtg gaattcctca gctgctcctc 240
aagctgcaca ccaccagcca cctccacagt gactttgtt agtgtcaaaa catcctcaag 300
gaaatttctc ctcttctctc catggaggt atggcatttt ttactgaaga gaggaaactt 360
acccaagaaa ccacttatcc aaatacttat atttttactt tggttgagg tggtgatctt 420
ctttagaaaa ttcttatgag gcctacgatc tctatccggg gacagaaaact gaaaataagt 480
gatgaaatgt ccaaggactg cttgagtttctt ctgtataata cctgtgtctg tacagaggga 540
gttacaaagc gtttggcaga aaagaatgac tttgtatct tcctgtttac attgtatgaca 600
agtaagaaga catttttaca aacagcaacc ctcattgaag atattttggg tgtaaaaaag 660
gaaatgatcc gactagatga agtccccat ctgagttcct tagtatccaa tttcgatcag 720
cagcagctcg ctaatttctg ccggattctg gctgtcacca tttcagagat ggatacaggg 780
aatgatgaca agcacacgct tcttgccaaa aatgctcaac agaagaagag cttgagttt 840
gggccttctg cagctgaaat caatcaagcg gcccttctca gcattcctgg ctttggtag 900
cggtttgca aactggcgac tcgaaagggt tcagagttcaa cgggcacagc cagttcctt 960
caggagttgg aagagtggta cacatggcta gacaatgttt tggtgctaga tgccctgatg 1020
cgagtggcca atgaggagtc agagcacaat caagcctcca ttgtgttccc tcctccaggg 1080
gcttctgagg agaatggcct gcctcacacg tcagccagaa cccagctgcc ccagtcaatg 1140
aagattatgc atgagatcat gtacaaactg gaagtgtctt atgtcctctg cgtgctgctg 1200
atggggcgctc agcgaaacca ggttacacaga atgattgcag agttcaagct gatccctgga 1260
cttaataatt tgtttgacaa actgatttttgg aggaagcatt cagcatctgc ctttgcctc 1320
catggtcaca accagaactg tgactgttagc ccggacatca ctttgaagat acagttttt 1380
aggcttcttc agagcttcag tgaccaccac gagaacaagt acttgttact caacaaccag 1440
gagctgaatg aactcagtgc catctcttc aaggccaaca tccctgaggt ggaagctgtc 1500
ctcaacaccc acaggagttt ggtgtgtat gggaaaggagg gcttattaac tcgtctgctg 1560
caggtcatga agaaggagcc agcagagtcg tcttcaggtt ttggcaagc tcgggctgtg 1620
gagagttcc tccgaggggac caccccttat gcagaccaga ttttctgtt gaagcgaggc 1680
ctcttgagc acatccctta ctgcatttg gacagcgtt gtaagtcaag ggatgtgctc 1740
cagagttact ttgacctcct gggggagctg atgaagttca acgtttagtgc attcaagaga 1800
ttcaataaaat atatcaacac cgatgcaaaat ttccaggtat tcctgaagca gatcaacagc 1860
tccctgttgg actccaacat gctggtgccg tttgttactc tttccctgga ccgatttgaa 1920
aaccaggtgg atatgaaagt tgccgagta ctgtctgaat gcccctgtc cgcctacata 1980
tcccaggtgc ccacgcagat gtccttcctc ttccgcctca tcaacatcat ccacgtgcag 2040
acgctgaccc aggagaacgt cagctgcctc aacaccagcc tggtgatcct gatgctggcc 2100
cgacggaaag agcggctgcc cctgttacctg cggctgtcgc agcggatgga gcacagcaag 2160
aagtaccccg gcttctgtc caacaacttc cacaacctgc tgcgcttctg gcagcagcac 2220
tacctgcaca aggacaagga cagcacctgc ctagagaaca gtcctgtcat cagttctca 2280
taactggaaagg agacagtgtc catcctgtt aaccggacc ggcagtcacc ctctgctctc 2340
gttagctaca ttgaggagcc ctacatgac atagacaggg acttcaactga ggagtgaccc 2400
tggggccaggc ctggggaggc tgctgggca gtgtgggtga gctgggtac gatgccacac 2460
gccctgcctt gttccctgtc ctccctgtc ctctctgcct gccccaggtc ttgggttaca 2520
ggcttgggtgg gagggaaagtc ctagaagccc ttgttcccccc tgggtctgag ggccttaggt 2580
catggagagc ctcagtttttccca ataatgagga cagggtacca tggccaccc ttccctcagaa 2640
ccctggggcc caggggccacc cagaggtaag aggacattt gcatggctc tttgttgc 2700
cctgcccgtt tcttggctgt cagtcagttc cagagtgggg aggaagatat gggtgacccc 2760
cacccttttttccca ctgtgagccca agcctccctt gtccctggcc tttggaccca ggcacaaaggct 2820
tctgagccct gggcagggggt ggtgggtacc agagaatgtc gccttcccc aaggctgcc 2880
ctctgcctca ttttccctgtt gtcctctgg ttctgtttgc tcattggctg ctgtgttcat 2940
ccaaagggggt tctccctgaa gtgaggggcc ttccctcctt tcccttgagg cacggggcag 3000
ctgtgcctgc ctcgcctctg cctgaggccg cgcctctgc ctgagcctgg acatggggcc 3060
cttccttggtgg tttccctgtt attaacagca aataaaccaa ttaaatggag actattaaat 3120
aacttttattt taaaaaaaaaaa aaaaaaaaaaa 3149

<210> 28
 <211> 797
 <212> PRT
 <213> Homo sapiens

<220>
 <223> chromosome 20 open reading frame 188 (C20orf188)
 protein

<400> 28
 Met Ala Ala Ala Pro Val Ala Ala Gly Ser Gly Ala Gly Arg Gly Arg
 1 5 10 15

Arg Ser Ala Ala Thr Val Ala Ala Trp Gly Gly Trp Gly Gly Arg Pro
 20 25 30

Arg Pro Gly Asn Ile Leu Leu Gln Leu Arg Gln Gly Gln Leu Thr Gly
 35 40 45

Arg Gly Leu Val Arg Ala Val Gln Phe Thr Glu Thr Phe Leu Thr Glu
 50 55 60

Arg Asp Lys Gln Ser Lys Trp Ser Gly Ile Pro Gln Leu Leu Leu Lys
 65 70 75 80

Leu His Thr Thr Ser His Leu His Ser Asp Phe Val Glu Cys Gln Asn
 85 90 95

Ile Leu Lys Glu Ile Ser Pro Leu Leu Ser Met Glu Ala Met Ala Phe
 100 105 110

Val Thr Glu Glu Arg Lys Leu Thr Gln Glu Thr Thr Tyr Pro Asn Thr
 115 120 125

Tyr Ile Phe Asp Leu Phe Gly Gly Val Asp Leu Leu Val Glu Ile Leu
 130 135 140

Met Arg Pro Thr Ile Ser Ile Arg Gly Gln Lys Leu Lys Ile Ser Asp
 145 150 155 160

Glu Met Ser Lys Asp Cys Leu Ser Ile Leu Tyr Asn Thr Cys Val Cys
 165 170 175

Thr Glu Gly Val Thr Lys Arg Leu Ala Glu Lys Asn Asp Phe Val Ile
 180 185 190

Phe Leu Phe Thr Leu Met Thr Ser Lys Lys Thr Phe Leu Gln Thr Ala
 195 200 205

Thr Leu Ile Glu Asp Ile Leu Gly Val Lys Lys Glu Met Ile Arg Leu
 210 215 220

Asp Glu Val Pro Asn Leu Ser Ser Leu Val Ser Asn Phe Asp Gln Gln
 225 230 235 240

Gln Leu Ala Asn Phe Cys Arg Ile Leu Ala Val Thr Ile Ser Glu Met
 245 250 255

Asp Thr Gly Asn Asp Asp Lys His Thr Leu Leu Ala Lys Asn Ala Gln
 260 265 270

Gln Lys Lys Ser Leu Ser Leu Gly Pro Ser Ala Ala Glu Ile Asn Gln
 275 280 285

 Ala Ala Leu Leu Ser Ile Pro Gly Phe Val Glu Arg Leu Cys Lys Leu
 290 295 300

 Ala Thr Arg Lys Val Ser Glu Ser Thr Gly Thr Ala Ser Phe Leu Gln
 305 310 315 320

 Glu Leu Glu Glu Trp Tyr Thr Trp Leu Asp Asn Ala Leu Val Leu Asp
 325 330 335

 Ala Leu Met Arg Val Ala Asn Glu Glu Ser Glu His Asn Gln Ala Ser
 340 345 350

 Ile Val Phe Pro Pro Pro Gly Ala Ser Glu Glu Asn Gly Leu Pro His
 355 360 365

 Thr Ser Ala Arg Thr Gln Leu Pro Gln Ser Met Lys Ile Met His Glu
 370 375 380

 Ile Met Tyr Lys Leu Glu Val Leu Tyr Val Leu Cys Val Leu Leu Met
 385 390 395 400

 Gly Arg Gln Arg Asn Gln Val His Arg Met Ile Ala Glu Phe Lys Leu
 405 410 415

 Ile Pro Gly Leu Asn Asn Leu Phe Asp Lys Leu Ile Trp Arg Lys His
 420 425 430

 Ser Ala Ser Ala Leu Val Leu His Gly His Asn Gln Asn Cys Asp Cys
 435 440 445

 Ser Pro Asp Ile Thr Leu Lys Ile Gln Phe Leu Arg Leu Leu Gln Ser
 450 455 460

 Phe Ser Asp His His Glu Asn Lys Tyr Leu Leu Leu Asn Asn Gln Glu
 465 470 475 480

 Leu Asn Glu Leu Ser Ala Ile Ser Leu Lys Ala Asn Ile Pro Glu Val
 485 490 495

 Glu Ala Val Leu Asn Thr Asp Arg Ser Leu Val Cys Asp Gly Lys Arg
 500 505 510

 Gly Leu Leu Thr Arg Leu Leu Gln Val Met Lys Lys Glu Pro Ala Glu
 515 520 525

 Ser Ser Phe Arg Phe Trp Gln Ala Arg Ala Val Glu Ser Phe Leu Arg
 530 535 540

 Gly Thr Thr Ser Tyr Ala Asp Gln Met Phe Leu Leu Lys Arg Gly Leu
 545 550 555 560

 Leu Glu His Ile Leu Tyr Cys Ile Val Asp Ser Glu Cys Lys Ser Arg
 565 570 575

 Asp Val Leu Gln Ser Tyr Phe Asp Leu Leu Gly Glu Leu Met Lys Phe
 580 585 590

Asn Val Asp Ala Phe Lys Arg Phe Asn Lys Tyr Ile Asn Thr Asp Ala
595 600 605

Lys Phe Gln Val Phe Leu Lys Gln Ile Asn Ser Ser Leu Val Asp Ser
610 615 620

Asn Met Leu Val Arg Cys Val Thr Leu Ser Leu Asp Arg Phe Glu Asn
625 630 635 640

Gln Val Asp Met Lys Val Ala Glu Val Leu Ser Glu Cys Arg Leu Leu
645 650 655

Ala Tyr Ile Ser Gln Val Pro Thr Gln Met Ser Phe Leu Phe Arg Leu
660 665 670

Ile Asn Ile Ile His Val Gln Thr Leu Thr Gln Glu Asn Val Ser Cys
675 680 685

Leu Asn Thr Ser Leu Val Ile Leu Met Leu Ala Arg Arg Lys Glu Arg
690 695 700

Leu Pro Leu Tyr Leu Arg Leu Leu Gln Arg Met Glu His Ser Lys Lys
705 710 715 720

Tyr Pro Gly Phe Leu Leu Asn Asn Phe His Asn Leu Leu Arg Phe Trp
725 730 735

Gln Gln His Tyr Leu His Lys Asp Lys Asp Ser Thr Cys Leu Glu Asn
740 745 750

Ser Ser Cys Ile Ser Phe Ser Tyr Trp Lys Glu Thr Val Ser Ile Leu
755 760 765

Leu Asn Pro Asp Arg Gln Ser Pro Ser Ala Leu Val Ser Tyr Ile Glu
770 775 780

Glu Pro Tyr Met Asp Ile Asp Arg Asp Phe Thr Glu Glu
785 790 795