1 A binary child given a binary parent

Let X and Y be two binary variables. The log-conditional probability of the child-node X given its parent-node Y is expressed as follows:

$$\begin{split} \ln p(X|Y) &= I(X=0)I(Y=0) \ln p_{x|y} + I(X=1)I(Y=0) \ln p_{\bar{x}|y} \\ &+ I(X=0)I(Y=1) \ln p_{x|\bar{y}} + I(X=1)I(Y=1) \ln p_{\bar{x}|\bar{y}} \end{split}$$

This conditional probability can be expressed in different exponential forms as follows:

• First form:

$$\begin{split} & \ln p(X \mid Y) &= \theta^T s(X,Y) - A(\theta) \\ &= \begin{pmatrix} \ln p_{x\mid y} \\ \ln p_{\bar{x}\mid y} \\ \ln p_{x\mid \bar{y}} \\ \ln p_{\bar{x}\mid \bar{y}} \end{pmatrix}^T \begin{pmatrix} I(X=0)I(Y=0) \\ I(X=1)I(Y=0) \\ I(X=0)I(Y=1) \\ I(X=1)I(Y=1) \end{pmatrix} - 0 \\ &= \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix}^T \begin{pmatrix} I(X=0)I(Y=0) \\ I(X=1)I(Y=0) \\ I(X=0)I(Y=1) \\ I(X=1)I(Y=1) \end{pmatrix} - 0 \end{split}$$

• Second form:

$$\begin{split} \ln p(X \mid Y) &= \theta(Y)^T s(X) - A(Y) \\ &= \begin{pmatrix} I(Y=0) \ln p_{x|y} + I(Y=1) \ln p_{x|\bar{y}} \\ I(Y=0) \ln p_{\bar{x}|y} + I(Y=1) \ln p_{\bar{x}|\bar{y}} \end{pmatrix}^T \begin{pmatrix} I(X=0) \\ I(X=1) \end{pmatrix} - 0 \\ &= \begin{pmatrix} m_0^Y \cdot \theta_0 + m_1^Y \cdot \theta_2 \\ m_0^Y \cdot \theta_1 + m_1^Y \cdot \theta_3 \end{pmatrix}^T \begin{pmatrix} I(X=0) \\ I(X=1) \end{pmatrix} - 0 \end{split}$$

• Third form:

$$\begin{split} \ln p(X \mid Y) &= \theta(X)^T s(Y) - A(X) \\ &= \begin{pmatrix} I(X=0) \ln p_{x|y} + I(X=1) \ln p_{\bar{x}|y} \\ I(X=0) \ln p_{x|\bar{y}} + I(X=1) \ln p_{\bar{x}|\bar{y}} \end{pmatrix}^T \begin{pmatrix} I(Y=0) \\ I(Y=1) \end{pmatrix} - 0 \\ &= \begin{pmatrix} m_0^X \cdot \theta_0 + m_1^X \cdot \theta_1 \\ m_0^X \cdot \theta_2 + m_1^X \cdot \theta_3 \end{pmatrix}^T \begin{pmatrix} I(Y=0) \\ I(Y=1) \end{pmatrix} - 0 \end{split}$$

2 A multinomial child given a set of multinomial parents

Let X be a multinomial variable with k possible values such that $k \geq 2$, and let $\mathbf{Y} = \{Y_1, \ldots, Y_n\}$ denote the set of parents of X, such that all of them are multinomial. Each parent Y_i , $1 \geq i \geq n$, has r_i possible values or states such that $r_i \geq 2$. A parental configuration for the child-node X is then a set of n elements $\{Y_1 = y_1^v, \ldots, Y_i = y_i^v, \ldots, Y_n = y_n^v\}$ such that y_i^v denotes a potential value of variable Y_i such that $1 \leq v \leq r_i$. Let $q = r_1 \times \ldots \times r_n$ denote the total number of parental configurations, and let \mathbf{y}^l denote the l^{th} parental configuration such that $1 \leq l \leq q$.

The log-conditional probability of the child-node X given its parent-nodes \mathbf{Y} can be expressed as follows:

$$\ln p(X \mid \mathbf{Y}) = \sum_{j=1}^{k} \sum_{l=1}^{q} I(X = x^{j}) I(\mathbf{Y} = \mathbf{y}^{l}) \ln p_{x^{j} \mid \mathbf{y}^{l}}$$

Similarly the above log-conditional probability can be expressed in the following exponential forms:

• First form:

$$\ln p(X \mid \mathbf{Y}) = \theta^T s(X, \mathbf{Y}) - A(\theta)$$

$$= \begin{pmatrix} \ln p_{x^1 \mid \mathbf{y}^1} \\ \vdots \\ \ln p_{x^1 \mid \mathbf{y}^q} \\ \vdots \\ \ln p_{x^k \mid \mathbf{y}^1} \\ \vdots \\ \ln p_{x^k \mid \mathbf{y}^q} \end{pmatrix}^T \begin{pmatrix} I(X = x^1)I(\mathbf{Y} = \mathbf{y}^1) \\ \vdots \\ I(X = x^1)I(\mathbf{Y} = \mathbf{y}^q) \\ \vdots \\ I(X = x^k)I(\mathbf{Y} = \mathbf{y}^1) \\ \vdots \\ I(X = x^k)I(\mathbf{Y} = \mathbf{y}^q) \end{pmatrix} - 0$$

$$= \begin{pmatrix} \theta_{11} \\ \vdots \\ \theta_{1q} \\ \vdots \\ \theta_{k1} \\ \vdots \\ \theta_{kq} \end{pmatrix}^T \begin{pmatrix} I(X = x^1)I(\mathbf{Y} = \mathbf{y}^1) \\ \vdots \\ I(X = x^k)I(\mathbf{Y} = \mathbf{y}^q) \\ \vdots \\ I(X = x^k)I(\mathbf{Y} = \mathbf{y}^q) \end{pmatrix} - 0$$

• Second form:

$$\ln p(X \mid \mathbf{Y}) = \theta(\mathbf{Y})^T s(X) - A(\mathbf{Y})$$

$$= \begin{pmatrix} I(\mathbf{Y} = \mathbf{y}^1) \ln p_{x^1 \mid \mathbf{y}^1} + \dots + I(\mathbf{Y} = \mathbf{y}^q) \ln p_{x^1 \mid \mathbf{y}^q} \\ \vdots \\ I(\mathbf{Y} = \mathbf{y}^1) \ln p_{x^k \mid \mathbf{y}^1} + \dots + I(\mathbf{Y} = \mathbf{y}^q) \ln p_{x^k \mid \mathbf{y}^q} \end{pmatrix}^T \begin{pmatrix} I(X = x^1) \\ \vdots \\ I(X = x^k) \end{pmatrix} - 0$$

$$= \begin{pmatrix} \mathbf{m}_1^{\mathbf{Y}} \cdot \theta_{11} + m_q^{\mathbf{Y}} \cdot \theta_{1q} \\ \vdots \\ \mathbf{m}_1^{\mathbf{Y}} \cdot \theta_{k1} + m_q^{\mathbf{Y}} \cdot \theta_{kr} \end{pmatrix}^T \begin{pmatrix} I(X = x^1) \\ \vdots \\ I(X = x^k) \end{pmatrix} - 0$$

such that $\mathbf{m}_1^{\mathbf{Y}} = \prod_{i=1}^n I(Y_i = y_i^1) = \prod_{i=1}^n m_1^{Y_i}$ denotes the expected sufficient statistics for the first parental configuration, and $\mathbf{m}_q^{\mathbf{Y}} = \prod_{i=1}^n I(Y_i = y_i^{r_i}) = \prod_{i=1}^n m_{r_i}^{Y_i}$ denotes the expected sufficient statistics for the last parental configuration.

• Third form:

$$\ln p(X \mid \mathbf{Y}) = \theta(X)^T s(\mathbf{Y}) - A(X)$$

$$= \begin{pmatrix} I(X = x^1) \ln p_{x^1 \mid \mathbf{y}^1} + \dots + I(X = x^k) \ln p_{x^k \mid \mathbf{y}^1} \\ \vdots \\ I(X = x^1) \ln p_{x^1 \mid \mathbf{y}^q} + \dots + I(X = x^k) \ln p_{x^k \mid \mathbf{y}^q} \end{pmatrix}^T \begin{pmatrix} I(\mathbf{Y} = \mathbf{y}^1) \\ \vdots \\ I(\mathbf{Y} = \mathbf{y}^q) \end{pmatrix} - 0$$

$$= \begin{pmatrix} m_1^X \cdot \theta_{11} + \dots + m_k^X \cdot \theta_{k1} \\ \vdots \\ m_1^X \cdot \theta_{1q} + \dots + m_k^X \cdot \theta_{kq} \end{pmatrix}^T \begin{pmatrix} I(\mathbf{Y} = \mathbf{y}^1) \\ \vdots \\ I(\mathbf{Y} = \mathbf{y}^q) \end{pmatrix} - 0$$

$$\begin{aligned} & \ln p(X \mid \mathbf{Y}) &= & \theta(X, \mathbf{Y}')^T s(Y_i) - A(X) \quad \text{such that } \mathbf{Y}' = \mathbf{Y} \setminus Y_i \\ & = & \begin{pmatrix} m_1^X I(\mathbf{Y}' = \mathbf{y}'^1) \ln p_{x^1 \mid \mathbf{y}'^1} + \ldots + m_k^X I(\mathbf{Y}' = \mathbf{y}'^1) \ln p_{x^k \mid \mathbf{y}'^1} \\ & \vdots \\ m_1^X I(\mathbf{Y}' = \mathbf{y}'^{q'}) \ln p_{x^1 \mid \mathbf{y}'^{q'}} + \ldots + m_k^X I(\mathbf{Y}' = \mathbf{y}'^{q'}) \ln p_{x^k \mid \mathbf{y}'^{q'}} \end{pmatrix}^T \begin{pmatrix} I(Y_i = y_i^1) \\ \vdots \\ I(Y_i = y_i^{r_i}) \end{pmatrix} - 0 \\ & = & \begin{pmatrix} m_1^X \cdot \mathbf{m}_1^{\mathbf{Y}'} \cdot \theta'_{11} + \ldots + m_k^X \cdot \mathbf{m}_1^{\mathbf{Y}'} \cdot \theta'_{k1} \\ \vdots \\ m_1^X \cdot \mathbf{m}_{q'}^{\mathbf{Y}'} \cdot \theta'_{1q'} + \ldots + m_k^X \cdot \mathbf{m}_{q'}^{\mathbf{Y}'} \cdot \theta'_{kq'} \end{pmatrix}^T \begin{pmatrix} I(Y_i = y_i^1) \\ \vdots \\ I(Y_i = y_i^{r_i}) \end{pmatrix} - 0 \end{aligned}$$

where $\mathbf{m}_{1}^{\mathbf{Y}'} = I(\mathbf{Y}' = \mathbf{y}'^{1}) = I(Y_{1} = y_{1}^{1}) \cdot \dots I(Y_{i-1} = y_{i-1}^{1}) \cdot I(Y_{i+1} = y_{i+1}^{1}) \cdot \dots I(Y_{n} = y_{n}^{1})$ denotes the expected sufficient statistics for the first configuration of the parent set $\mathbf{Y}' = \mathbf{Y} \setminus Y_{i}$, and $\mathbf{m}_{q'}^{\mathbf{Y}'} = I(\mathbf{Y}' = \mathbf{y}'^{q'}) = I(Y_{1} = y_{1}^{q'}) \cdot \dots I(Y_{i-1} = y_{i-1}^{q'}) \cdot I(Y_{i+1} = y_{i+1}^{q'}) \cdot \dots I(Y_{n} = y_{n}^{q'})$ denotes the expected sufficient statistics for the last configuration of the parent set \mathbf{Y}' , with $q' = q/r_{i}$ denotes the total number of configurations of the parent set \mathbf{Y}' .

3 A normal child given a set of normal parents

Let X be a normal variable and $\mathbf{Y} = \{Y_1, \dots, Y_n\}$ denote the set of parents of X, such that all of them are normal.

The log-conditional probability of X given its parents \mathbf{Y} can be expressed as follows:

$$\ln p(X|Y_1,\ldots,Y_n) = \ln \left(\frac{1}{\sigma \sqrt{2(\beta_0 + \sum_{i=1}^{n} \beta_i Y_i)}} e^{-\frac{(y - (\beta_0 + \sum_{i=1}^{n} \beta_i Y_i))^2}{2\sigma^2}} \right)$$

Similarly the above log-conditional probability can be expressed in the following exponential forms:

• First form - Joint suff. stat. (Maxim. Likelihood):

$$\ln p(X \mid \mathbf{Y}) = \theta^T s(X, \mathbf{Y}) - A(\theta) + h(\mathbf{Y})$$

$$\begin{pmatrix} \frac{-1}{2\sigma^2} & = & \theta_{-1} \\ -\beta^2_1 & = & \theta_{1^2} \\ \vdots & & & \\ \frac{-\beta^2_1}{2\sigma^2} & = & \theta_{n^2} \\ \frac{\beta^0_2}{2\sigma^2} & = & \theta_0 \\ \frac{\beta^0_2}{\sigma^2} & = & \theta_0 \\ \frac{\beta^0_1}{\sigma^2} & = & \theta_1 \\ \vdots & & & \\ \frac{\beta^n}{\sigma^2} & = & \theta_1 \\ \vdots & & & \\ \frac{-\beta_0\beta_1}{\sigma^2} & = & \theta_{01} \\ \vdots & & & \\ \vdots & & & \\ \frac{-\beta_0\beta_n}{\sigma^2} & = & \theta_{0n} \\ \frac{-\beta_1\beta_2}{\sigma^2} & = & \theta_{12} \\ \vdots & & & \\ \vdots & & & \\ \vdots & & & \\ \frac{-\beta_1\beta_n}{\sigma^2} & = & \theta_{1n} \\ \vdots & & & \\ \vdots & & & \\ \frac{-\beta_1\beta_n}{\sigma^2} & = & \theta_{1n} \\ \vdots & & & \\ \vdots & & & \\ \frac{-\beta_{n-1}\beta_n}{\sigma^2} & = & \theta_{n-1n} \end{pmatrix}$$

$$\begin{pmatrix} X^2 & = & m_{X^2} \\ Y_1^2 & = & m_{X^2} \\ Y_2^2 & = & m_{Y_2} \\ \vdots & & & \\ XY_1 & = & m_{Y_1} \\ \vdots & & & \\ Y_1Y_2 & = & m_{Y_1Y_2} \\ \vdots & & & \\ Y_1Y_n & = & m_{Y_1Y_n} \\ \vdots & & & \\ Y_1Y_n & = & m_{Y_1Y_n} \\ \vdots & & & \\ Y_{n-1}Y_n & = & m_{Y_{n-1}Y_n} \end{pmatrix}$$

where $\mu_{X|Y} = \beta_0 + \sum_{i=1}^{n} \beta_i Y_i$

- From moment to natural parameters:

* FIRST STEP:

$$\mu_X = m_X$$
 $\mu_Y = m_Y$
 $\Sigma_{XX} = m_{X^2} - m_X^2$
 $\Sigma_{YY} = m_{Y^2} - m_Y^2$
 $\Sigma_{XY} = m_{XY} - m_X m_Y$
 $\Sigma_{YX} = m_{YX} - m_Y m_X$

* SECOND STEP:

$$\beta_{0} = \mu_{X} - \Sigma_{XY} \Sigma_{YY}^{-1} \mu_{X}$$

$$= m_{X} + \frac{m_{X} m_{Y}^{2} - m_{XY} m_{Y}}{m_{Y^{2}} - m_{Y}^{2}}$$

$$\beta = \Sigma_{XY} \Sigma_{YY}^{-1}$$

$$= \frac{m_{XY} - m_{X} m_{Y}}{m_{Y^{2}} - m_{Y}^{2}}$$

$$\sigma^{2} = \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{YX}$$

$$= m_{X^{2}} - m_{X}^{2} + \frac{m_{Y} m_{X} (m_{XY} + m_{YX} - m_{X} m_{Y}) - m_{XY} m_{YX}}{m_{Y^{2}} - m_{Y}^{2}}$$

• Second form:

$$\ln p(X \mid \mathbf{Y}) = \theta(\mathbf{Y})^T s(X) - A(\theta(\mathbf{Y})) + h(\mathbf{Y})$$

$$= \left(\frac{\mu_{X\mid Y}}{\frac{\sigma^2}{2\sigma^2}}\right)^T \binom{X}{X^2} - \left(\frac{\mu_{X\mid Y}^2}{2\sigma^2} + \ln \sigma\right) + \ln \frac{1}{\sqrt{2\mu_{X\mid Y}}}$$

$$= \left(\frac{\theta_0 + \sum_i^n \theta_i m^{Y_i}}{\theta_{-1}}\right)^T \binom{X}{X^2} - \left(\frac{\ln (2\theta_{-1})}{2} - \theta_{-1} \left(\theta_0 + \sum_i^n \theta_i m^{Y_i}\right)^2\right)$$

$$+ \ln \frac{1}{\sqrt{2(\theta_0 + \sum_i^n \theta_i m^{Y_i})}}$$

• Third form:

$$\ln p(X \mid \mathbf{Y}) = \theta(X)^T s(\mathbf{Y}) - A(\theta(X)) + h(\mathbf{Y})$$

$$= \begin{pmatrix} -\frac{\beta_1^2}{2\sigma^2} \\ -\frac{\beta_1^2}{2\sigma^2} \\ \frac{\beta_1(X-\beta_0)}{\sigma^2} \\ \frac{\beta_n(X-\beta_0)}{\sigma^2} \\ \frac{\beta_n(X-$$

Notations

The list below presents a summary of the used notations:

- X Child variable
- k Range of possible values of a multinomial variable X
- j Index over X values, i.e., $1 \ge j \ge k$
- Y One parent variable
- Y Set of parent variables
- n Number of parent variables
- i Index over parent variables, i.e., $1 \ge i \ge n$
- r_i Range of possible values of a multinomial variable Y_i
- q Total number of configurations of a multinomial parent set \mathbf{Y}
- l Index over the possible parental configuration values, i.e., $1 \ge l \ge q$
- \mathbf{y}^l The l^{th} configuration of a multinomial parent set \mathbf{Y}
- θ_{jl} Equal to $\ln p_{x^j|\mathbf{y}^l}$, denoting the log-conditional probability of X in its state j given the l^{th} parent configuration
- p Probability distribution
- m Expected sufficient statistics
- s Sufficient statistics