

Requierements

Germán León

gleon@uniovi.es

Grado en Ciencia y en Ingeniería de Datos

A System is...

Exercise:

https://www.linkedin.com/posts/fernando-fandi%C3%B1o-oliver_congratulations-engineers-robots-activity-6981942303103832064-2JbJ?utm\source=share&utm\medium=member\desktop

Requirements definition is a means, not an end...

Dr. Dale Thomas (former ISS Systems Engineering and Integration Manager) described the approach as: "All too often, system engineering preoccupies itself with requirements definition for a product.

Requirements definition is a means, not an end. ... system engineering includes the development of a valid and cogent set of requirements and the verification of the as built design against those requirements.

Verification Process: (all hardware and software meet)

- 1. Clearly identify all requirements.
- 2. Define the requirement's closure strategy—verify the requirements are met via inspection, analysis, demonstration or test.
- 3. Execute the necessary verification activities
- 4. Develop verification reports/analysis
- 5. Document closure

RFLP (Requirement, Functional, Logical, Physical) general methodology

MBSE Deep Dive: RFLP Approach

4 perspectives of the RFLP approach:

- R: Requirements View
- F: Functional View
- L: Logical View
- P: Physical View

Different abstractions levels for system requirements

Requirements

Phase A

- 1. finalises the expression of the needs identified in Phase 0.
- 2. proposes **system solutions** (including identification of critical items and risks) to meet the customer needs.
- 3. supports the **Preliminary Requirement Review (PRR)** and ensures implementation of PRR actions.
- 4. finalises the validation of **the requirements against the expressed needs** together with the customer.

Description: Transforming the baseline stakeholder expectations into unique, quantitative, and measurable technical requirements expressed as "shall" statements that can be used for defining the design solution. This includes analyzing the scope of the technical problems to be solved, defining constraints affecting the designs, defining the performance requirements, validating the resulting technical requirement statements, defining the Weasures of Performance (MOPs).

Requirements need to be <u>written down, validated and accessible</u> to everyone on the team (document or database)

Types of Requirements

Functional Requirements vs Non-functional requirements (constraints)

Flowdown of Requirements

Requirements vs Solutions

Phase A: Requirement

Req ID	Requirement Text	Rationale	Parent Req	Child Req	Owner	Test
Rob-Mis-10	bla, bla		N/A			
Rob-Fun-20	The robot shall know its position outdoor	Linked to objetive X	N/A	Sys-Fun-30		Phase C: SS outdoor func. test / Phase D: System (rover) outdoor test

Phase B: trade-off

Possible solutions analysis

Others Requirements / driven design

	Pros	Cons
GNSS (GPS, Galileo)	Low cost. A lot of experience	Accuracy 0.5 m
4G/5G Cel ular Networks	High accurary	New development. Need SIM card

Rhase C: Design

Component Selection

Requirements Metadata

Item	Function
Requirement ID	Provides a unique numbering system for sorting and tracking.
Rationale	Provides additional information to help clarify the intent of the requirements at the time they were written. (See "Rationale" box below on what should be captured.)
Traced from	Captures the bidirectional traceability between parent requirements and lower level (derived) requirements and the relationships between requirements.
Owner	Person or group responsible for writing, managing, and/or approving changes to this requirement.
Verification method	Captures the method of verification (test, inspection, analysis, demonstration) and should be determined as the requirements are developed.
Verification lead	Person or group assigned responsibility for verifying the requirement.
Verification level	Specifies the level in the hierarchy at which the requirements will be verified (e.g., system, subsystem, element).

	Req ID	Requirement Text	Rationale	Parent Req	Child Req	Owner	Test
Ro	b-Mis-10	bla, bla		N/A			
							Phase C: SS outdoor func. test /
Ro	b-Fun-20	The robot shall know its position outdoor	Linked to objetive X	N/A	Sys-Fun-30	Localization Team	Phase D: System (rover) outdoor test

Requirements Families

SMART Requirements (tips)

Requirements need to be <u>written down, verified, validated and accessible</u> to everyone on the team (document or database)

Good requirements are:

- Short/Synthetic
- Definite/Unambiguous
- -Verifiable
- -Traceable
- -Formulated using terms that have been
- properly defined earlier
- -Prioriazable: must / desirable / nice to have

Good set of requirements is:

- Complete
- Coherent
- Structured
- Non-redundant

EARS quick reference sheet

Easy Approach to Requirements Syntax

Sentence types

Ubiquitous

- The <system name> shall <system response>
- The kitchen system shall have an input hatch.

Event-driven

- When <optional preconditions> <trigger>, the <system> shall <system response>
- When the chef inserts a potato to the input hatch, the kitchen system shall peel the potato.

State-driven

- While <in a state>, the <system> shall <system response>
- $\bullet \textit{While the kitchen system is in maintenance mode, the kitchen system shall \textit{reject all input.}}\\$

Unwanted behavior

- If <optional preconditions> <trigger>, then the <system> shall <system response>
- ullet If a spoon is inserted to the input hatch, then the kitchen system shall eject the spoon.

Optional

- Where <feature>, the <system> shall <system response>
- $\bullet \textit{Where the kitchen system has a food freshness sensor, the kitchen system shall detect rotten foodstuffs.}\\$

Some characteristics of a good requirement

- Avoid:
- "support", "but not limited to", "etc", "and/or"
- Unverificable requirements (minimize, maximize, rapid, user-friendly, easy, sufficient, adequate, quick ...)

Hands-on Requirements (your project)

Return to your group and put your heads together and begin to (TBD min)...

- Develop System Requirements

See More...

Get Started with Requirements Toolbox - MathWorks España