Approximation Schemes and the KNAPSACK Problem

Given: \blacksquare A set $S = \{a_1, \ldots, a_n\}$ of objects.

Given: \blacksquare A set $S = \{a_1, \ldots, a_n\}$ of objects.

For every object a_i a size size $(a_i) \in \mathbb{N}^+$

Given: \blacksquare A set $S = \{a_1, \ldots, a_n\}$ of objects.

- For every object a_i a size size $(a_i) \in \mathbb{N}^+$
- For every object a_i a profit profit $(a_i) \in \mathbb{N}^+$

Given:

- A set $S = \{a_1, \dots, a_n\}$ of objects.
- For every object a_i a size size $(a_i) \in \mathbb{N}^+$
- For every object a_i a profit profit $(a_i) \in \mathbb{N}^+$
- A knapsack capacity $B \in \mathbb{N}^+$

Given: \blacksquare A set $S = \{a_1, \ldots, a_n\}$ of objects.

For every object a_i a size size $(a_i) \in \mathbb{N}^+$

■ For every object a_i a profit profit $(a_i) \in \mathbb{N}^+$

A knapsack capacity $B \in \mathbb{N}^+$

Task: Find a subset of objects whose total size is at most *B* and whose total profit is maximum.

Given: A set $S = \{a_1, \dots, a_n\}$ of objects.

For every object a_i a size size $(a_i) \in \mathbb{N}^+$

■ For every object a_i a profit profit $(a_i) \in \mathbb{N}^+$

A knapsack capacity $B \in \mathbb{N}^+$

Task: Find a subset of objects whose total size is at most *B* and whose total profit is maximum.

Which subset is optimal in the example?

Given: A set $S = \{a_1, \dots, a_n\}$ of objects.

For every object a_i a size size $(a_i) \in \mathbb{N}^+$

■ For every object a_i a profit profit $(a_i) \in \mathbb{N}^+$

A knapsack capacity $B \in \mathbb{N}^+$

Task: Find a subset of objects whose total size is at most *B* and whose total profit is maximum.

Which subset is optimal in the example?

Given: \blacksquare A set $S = \{a_1, \ldots, a_n\}$ of objects.

For every object a_i a size size $(a_i) \in \mathbb{N}^+$

■ For every object a_i a profit profit $(a_i) \in \mathbb{N}^+$

A knapsack capacity $B \in \mathbb{N}^+$

Task: Find a subset of objects whose total size is at most *B* and whose total profit is maximum.

NP-hard

Given: A set $S = \{a_1, \dots, a_n\}$ of objects.

For every object a_i a size size $(a_i) \in \mathbb{N}^+$

■ For every object a_i a profit profit $(a_i) \in \mathbb{N}^+$

A knapsack capacity $B \in \mathbb{N}^+$

Task: Find a subset of objects whose total size is at most *B* and whose total profit is maximum.

Natural greedy approach:

pick elements by decreasing profit/size

Given: A set $S = \{a_1, \dots, a_n\}$ of objects.

For every object a_i a size size $(a_i) \in \mathbb{N}^+$

■ For every object a_i a profit profit $(a_i) \in \mathbb{N}^+$

A knapsack capacity $B \in \mathbb{N}^+$

Task: Find a subset of objects whose total size is at most *B* and whose total profit is maximum.

Natural greedy approach:

pick elements by decreasing profit/size

How well does this do?

Given: A set $S = \{a_1, \dots, a_n\}$ of objects.

For every object a_i a size size $(a_i) \in \mathbb{N}^+$

■ For every object a_i a profit profit $(a_i) \in \mathbb{N}^+$

A knapsack capacity $B \in \mathbb{N}^+$

Task: Find a subset of objects whose total size is at

most *B* and whose total profit is maximum.

Natural greedy approach:

pick elements by decreasing profit/size

How well does this do?

arbitrarily bad!

but picking the max of this and the first element not picked gives a 2-approximation

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).

|I|: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in binary.

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).

|I|: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in binary.

$$(5 = 101_b \Rightarrow |I| = 3 + ...)$$

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).

|I|: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in binary. $(5 = 101_{\rm b} \Rightarrow |I| = 3 + \dots)$

 $|I|_{\mathbf{u}}$: The size of an instance $I \in D_{\mathbf{\Pi}}$, where all numbers in I are encoded in unary.

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).

|I|: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in binary. $(5 = 101_{\rm b} \Rightarrow |I| = 3 + \dots)$

 $|I|_{\mathbf{u}}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in unary. $(5 = 111111_{\mathbf{u}} \Rightarrow |I|_{\mathbf{u}} = 5 + \dots)$

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).

|I|: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in binary. $(5 = 101_{
m b} \Rightarrow |I| = 3 + \dots)$

 $|I|_{\mathbf{u}}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in unary. $(5 = 111111_{\mathbf{u}} \Rightarrow |I|_{\mathbf{u}} = 5 + \dots)$

The running time of a polynomial(-time) algorithm for Π is polynomial in |I|.

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).

|I|: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in binary. $(5 = 101_{
m b} \Rightarrow |I| = 3 + \dots)$

 $|I|_{\mathbf{u}}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in unary. $(5 = 111111_{\mathbf{u}} \Rightarrow |I|_{\mathbf{u}} = 5 + \dots)$

The running time of a polynomial(-time) algorithm for Π is polynomial in |I|.

The running time of a pseudo-polynomial algorithm is polynomial in $|I|_{\rm u}$.

Let Π be an optimization problem whose instances can be represented by objects (such as sets, elements, edges, nodes) and numbers (such as costs, weights, profits).

|I|: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in binary. $(5 \hat{=} 101_{
m b} \Rightarrow |I| = 3 + \dots)$

 $|I|_{\mathbf{u}}$: The size of an instance $I \in D_{\Pi}$, where all numbers in I are encoded in unary. $(5 = 111111_{\mathbf{u}} \Rightarrow |I|_{\mathbf{u}} = 5 + \dots)$

The running time of a polynomial(-time) algorithm for Π is polynomial in |I|.

The running time of a pseudo-polynomial algorithm is polynomial in $|I|_{\rm u}$.

The running time of a pseudo-polynomial algorithm may not be polynomial in |I|.

An optimization problem is called strongly NP-hard if it remains NP-hard under unary encoding.

An optimization problem is called strongly NP-hard if it remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is NP-hard under binary encoding (but may have a pseudo-polynomial algorithm).

An optimization problem is called strongly NP-hard if it remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is NP-hard under binary encoding (but may have a pseudo-polynomial algorithm).

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

An optimization problem is called strongly NP-hard if it remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is NP-hard under binary encoding (but may have a pseudo-polynomial algorithm).

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

Examples:

any NP-hard problem without numeric input, such as SAT, Hamilton circuit, ... 3-partition, bin packing, ...

Let $P := \max_i \operatorname{profit}(a_i)$

Let $P := \max_i \operatorname{profit}(a_i)$

Let $P := \max_i \operatorname{profit}(a_i) \implies \leq \operatorname{OPT} \leq$

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$,


```
Let P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP
```

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p


```
Let P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP
```

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties.

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties.

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

 a_{i-1} a_{i-1} a_{i-1} a_{i-1} a_{i-1} a_{i} a_{i} a_{i}

If all A[i, p] are known, then we can compute

OPT =

Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$

For every i = 1, ..., n and every $p \in \{1, ..., nP\}$, let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist.

Let A[i, p] be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists).

If all A[i, p] are known, then we can compute

$$OPT = \max\{ p \mid A[n, p] \leq B \}.$$

A[1, p] can be computed for all $p \in \{0, ..., nP\}$. Note: A[1, 0] = 0.

A[1, p] can be computed for all $p \in \{0, ..., nP\}$. Note: A[1, 0] = 0. Set $A[i, p] := \infty$ for p < 0 (for convenience).

A[1,p] can be computed for all $p \in \{0,\ldots,nP\}$. Note: A[1,0]=0. Set $A[i,p]:=\infty$ for p<0 (for convenience). A[i+1,p]=

A[1,p] can be computed for all $p \in \{0,\ldots,nP\}$. Note: A[1,0]=0. Set $A[i,p]:=\infty$ for p<0 (for convenience). $A[i+1,p]=\min\{$

A[1,p] can be computed for all $p \in \{0,\ldots,nP\}$. Note: A[1,0]=0. Set $A[i,p]:=\infty$ for p<0 (for convenience). $A[i+1,p]=\min\{A[i,p],$

A[1,p] can be computed for all $p \in \{0,\ldots,nP\}$. Note: A[1,0]=0. Set $A[i,p]:=\infty$ for p<0 (for convenience). $A[i+1,p]=\min\{A[i,p],\ \text{size}(a_{i+1})+\}$

A[1,p] can be computed for all $p \in \{0,\ldots,nP\}$. Note: A[1,0]=0. Set $A[i,p]:=\infty$ for p<0 (for convenience). $A[i+1,p]=\min\{A[i,p],\ \text{size}(a_{i+1})+A[i,p-\text{profit}(a_{i+1})]\}$

A[1,p] can be computed for all $p \in \{0,\ldots,nP\}$. Note: A[1,0]=0. Set $A[i,p]:=\infty$ for p<0 (for convenience). $A[i+1,p]=\min\{A[i,p],\ \text{size}(a_{i+1})+A[i,p-\text{profit}(a_{i+1})]\}$

 \Rightarrow All values A[i, p] can be computed in total time O(?).

A[1,p] can be computed for all $p \in \{0,\ldots,nP\}$. Note: A[1,0]=0. Set $A[i,p]:=\infty$ for p<0 (for convenience). $A[i+1,p]=\min\{A[i,p],\ \text{size}(a_{i+1})+A[i,p-\text{profit}(a_{i+1})]\}$

 \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.

A[1, p] can be computed for all $p \in \{0, ..., nP\}$. Note: A[1, 0] = 0.

Set $A[i, p] := \infty$ for p < 0 (for convenience).

$$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

- \Rightarrow All values A[i, p] can be computed in total time $O(n^2 P)$.
- \Rightarrow OPT can be computed in $O(n^2P)$ total time.

A[1, p] can be computed for all $p \in \{0, ..., nP\}$. Note: A[1, 0] = 0. Set $A[i, p] := \infty$ for p < 0 (for convenience).

$$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

- \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.
- \Rightarrow OPT can be computed in $O(n^2P)$ total time.

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.

A[1, p] can be computed for all $p \in \{0, ..., nP\}$. Note: A[1, 0] = 0.

Set $A[i, p] := \infty$ for p < 0 (for convenience).

$$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

- \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.
- \Rightarrow OPT can be computed in $O(n^2P)$ total time.

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Corollary. KNAPSACK is weakly NP-hard.

A[1, p] can be computed for all $p \in \{0, ..., nP\}$. Note: A[1, 0] = 0.

Set $A[i, p] := \infty$ for p < 0 (for convenience).

$$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$

- \Rightarrow All values A[i, p] can be computed in total time $O(n^2P)$.
- \Rightarrow OPT can be computed in $O(n^2P)$ total time.

Exercise: Execute algorithm on example

Solution to exercise

i p	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	∞	∞	∞	12	∞													
2	0	∞	1	∞	12	∞	13	∞											
3	0	∞	1	∞	2	∞	13	∞	14	∞	• • •								
4	0	∞	1	∞	2	∞	4	∞	14	∞	(16)	∞							
5	0	∞	1	∞	2	∞	4	∞	14	∞	4	∞	5	∞	6	∞	8	∞	(18)

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Theorem. KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$.

Observe. The running time $O(n^2P)$ is polynomial in n if P is polynomial in n.

Let Π be an optimization problem.

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

■ $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$ if Π is a minimization problem,

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem,

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in |I| for every fixed $\varepsilon > 0$.

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in |I| for every fixed $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in |I| for every fixed $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\varepsilon}) \sim$
- $O(n^3/\varepsilon^2) \sim$
- $O(2^{1/\epsilon}n^4) \sim$

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in |I| for every fixed $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\varepsilon}) \rightsquigarrow PTAS$
- $O(n^3/\varepsilon^2) \sim$
- $O(2^{1/\epsilon}n^4) \sim$

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in |I| for every fixed $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\epsilon}) \sim PTAS$
- $O(n^3/\varepsilon^2) \sim \text{FPTAS}$
- $O(2^{1/\varepsilon}n^4) \rightsquigarrow$

Let Π be an optimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme** (PTAS) for Π if it outputs, for every input (I, ε) with $I \in D_{\Pi}$ and $\varepsilon > 0$, a solution $s \in S_{\Pi}(I)$ such that

- $\operatorname{obj}_{\Pi}(I,s) \leq (1+\varepsilon) \cdot \operatorname{OPT}$ if Π is a minimization problem,
- $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if Π is a maximization problem,

and the runtime of \mathcal{A} is polynomial in |I| for every fixed $\varepsilon > 0$.

 \mathcal{A} is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$.

- $O(n^{1/\epsilon}) \sim PTAS$
- $O(n^3/\varepsilon^2) \sim \text{FPTAS}$
- $O(2^{1/\epsilon}n^4) \sim PTAS$

FPTAS for KNAPSACK

KnapsackScaling (*I*, *ɛ*)

KnapsackScaling (I, ε) $K = \varepsilon P/n$

```
KnapsackScaling (I, \varepsilon)
K = \varepsilon P/n \qquad // \text{ scaling factor}
```

```
KnapsackScaling (I, \varepsilon)
K = \varepsilon P/n \qquad // \text{ scaling factor}
\text{profit}'(a_i) =
```

```
KnapsackScaling (I, \varepsilon)
K = \varepsilon P/n \qquad // \text{ scaling factor}
\text{profit}'(a_i) = \left[ \text{profit}(a_i)/K \right]
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

\operatorname{profit}'(a_i) = \lfloor \operatorname{profit}(a_i)/K \rfloor

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot).
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

\operatorname{profit}'(a_i) = \lfloor \operatorname{profit}(a_i)/K \rfloor

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot).

\operatorname{return} S'
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

\operatorname{profit}'(a_i) = \lfloor \operatorname{profit}(a_i)/K \rfloor

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot).

\operatorname{return} S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

\operatorname{profit}'(a_i) = \lfloor \operatorname{profit}(a_i)/K \rfloor

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot).

\operatorname{return} S'
```

```
Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.
```

Proof. Let $OPT = \{o_1, \ldots, o_\ell\}$.

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

\operatorname{profit}'(a_i) = [\operatorname{profit}(a_i)/K]

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot).

\operatorname{return} S'

Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \leq K \cdot \operatorname{profit}'(o_i) \leq
```

Obs. 1. For $i = 1, ..., \ell$,

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

\operatorname{profit}'(a_i) = [\operatorname{profit}(a_i)/K]

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot).

\operatorname{return} S'

Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.
```

 $\leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)$

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n  // scaling factor

\operatorname{profit}'(a_i) = \lfloor \operatorname{profit}(a_i)/K \rfloor

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot).

\operatorname{return} S'
```

```
Proof. Let OPT = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, profit(o_i) - K \le K \cdot \operatorname{profit}'(o_i) \le \operatorname{profit}(o_i)
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n  // scaling factor

\operatorname{profit}'(a_i) = \lfloor \operatorname{profit}(a_i)/K \rfloor

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot).

\operatorname{return} S'

Let \operatorname{OPT} = \{o_1, \dots, o_k\}
```

```
Proof. Let OPT = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, profit(o_i) - K \le K \cdot profit'(o_i) \le profit(o_i)

\Rightarrow K \cdot \sum_i profit'(o_i) \ge
```

 $\Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq$

```
KnapsackScaling (I, \varepsilon)
   K = \varepsilon P/n // scaling factor
   \operatorname{profit}'(a_i) = |\operatorname{profit}(a_i)/K|
   Compute optimal solution S' for I w.r.t. profit'(\cdot).
   return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
Proof. Let OPT = \{o_1, ..., o_{\ell}\}.
  Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

\operatorname{profit}'(a_i) = [\operatorname{profit}(a_i)/K]

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot).

\operatorname{return} S'

Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.
```

```
Coor. Let OPT = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, profit(o_i) - K \le K \cdot profit'(o_i) \le profit(o_i)

\Rightarrow K \cdot \sum_i profit'(o_i) \ge OPT - \ell K \ge OPT - nK =
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n // scaling factor

\operatorname{profit}'(a_i) = \lfloor \operatorname{profit}(a_i)/K \rfloor

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot).

\operatorname{return} S'

Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.
```

Obs. 1. For $i = 1, ..., \ell$, profit $(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)$

 $\Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.$

```
KnapsackScaling (I, \varepsilon)
    K = \varepsilon P/n // scaling factor
    \operatorname{profit}'(a_i) = |\operatorname{profit}(a_i)/K|
    Compute optimal solution S' for I w.r.t. profit'(\cdot).
    return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
Proof. Let OPT = \{o_1, ..., o_{\ell}\}.
  Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
               \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
                                                           \geq K \cdot \sum_{i} \operatorname{profit}'(o_{i})
  Obs. 2.
```

```
KnapsackScaling (I, \varepsilon)
    K = \varepsilon P/n // scaling factor
    \operatorname{profit}'(a_i) = |\operatorname{profit}(a_i)/K|
    Compute optimal solution S' for I w.r.t. profit'(\cdot).
    return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
Proof. Let OPT = \{o_1, ..., o_{\ell}\}.
  Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
               \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
                                  \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_{i} \operatorname{profit}'(o_{i})
  Obs. 2.
```

```
KnapsackScaling (I, \varepsilon)
    K = \varepsilon P/n // scaling factor
    \operatorname{profit}'(a_i) = |\operatorname{profit}(a_i)/K|
    Compute optimal solution S' for I w.r.t. profit'(\cdot).
    return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
Proof. Let OPT = \{o_1, ..., o_{\ell}\}.
  Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
              \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
  Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i})
```

```
KnapsackScaling (I, \varepsilon)

K = \varepsilon P/n  // scaling factor

\operatorname{profit}'(a_i) = [\operatorname{profit}(a_i)/K]

Compute optimal solution S' for I w.r.t. \operatorname{profit}'(\cdot).

\operatorname{return} S'

Lemma. \operatorname{profit}(S') \geq (1 - \varepsilon) \cdot \operatorname{OPT}.

Proof. Let \operatorname{OPT} = \{o_1, \dots, o_\ell\}.
```

```
Proof. Let OPT = \{o_1, \dots, o_\ell\}.

Obs. 1. For i = 1, \dots, \ell, \operatorname{profit}(o_i) - K \leq K \cdot \operatorname{profit}'(o_i) \leq \operatorname{profit}(o_i)

\Rightarrow K \cdot \sum_i \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \epsilon P.

Obs. 2. \operatorname{profit}(S') \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_i \operatorname{profit}'(o_i)

\Rightarrow \operatorname{profit}(S') \geq
```

```
KnapsackScaling (I, \varepsilon)
    K = \varepsilon P/n // scaling factor
    \operatorname{profit}'(a_i) = |\operatorname{profit}(a_i)/K|
    Compute optimal solution S' for I w.r.t. profit'(\cdot).
    return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
Proof. Let OPT = \{o_1, ..., o_{\ell}\}.
  Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
               \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
  Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i})
               \Rightarrow \operatorname{profit}(S') \geq \operatorname{OPT} - \varepsilon P \geq
```

```
KnapsackScaling (I, \varepsilon)
    K = \varepsilon P/n // scaling factor
    \operatorname{profit}'(a_i) = |\operatorname{profit}(a_i)/K|
     Compute optimal solution S' for I w.r.t. profit'(\cdot).
     return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
Proof. Let OPT = \{o_1, ..., o_{\ell}\}.
  Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
                \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
   Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i})
                \Rightarrow \operatorname{profit}(S') \geq \operatorname{OPT} - \varepsilon P \geq \operatorname{OPT} - \varepsilon \operatorname{OPT} =
```

```
KnapsackScaling (I, \varepsilon)
    K = \varepsilon P/n // scaling factor
     \operatorname{profit}'(a_i) = |\operatorname{profit}(a_i)/K|
     Compute optimal solution S' for I w.r.t. profit'(\cdot).
     return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
            Let OPT = \{o_1, ..., o_{\ell}\}.
Proof.
   Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
                \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
   Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i})
                \Rightarrow \operatorname{profit}(S') \geq \operatorname{OPT} - \varepsilon P \geq \operatorname{OPT} - \varepsilon \operatorname{OPT} = (1 - \varepsilon) \cdot \operatorname{OPT}
```

```
KnapsackScaling (I, \varepsilon)
    K = \varepsilon P/n // scaling factor
    \operatorname{profit}'(a_i) = |\operatorname{profit}(a_i)/K|
    Compute optimal solution S' for I w.r.t. profit'(\cdot).
     return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
            Let OPT = \{o_1, ..., o_{\ell}\}.
Proof.
  Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
               \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
  Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i})
                \Rightarrow \operatorname{profit}(S') \ge \operatorname{OPT} - \varepsilon P \ge \operatorname{OPT} - \varepsilon \operatorname{OPT} = (1 - \varepsilon) \cdot \operatorname{OPT}
                     KnapsackScaling is an FPTAS for KNAPSACK with
```

Theorem. KnapsackScaling is an FPTAS for KNAPSACK with running time $O(n^3/oldsymbol{arepsilon})$

```
KnapsackScaling (I, \varepsilon)
    K = \varepsilon P/n // scaling factor
    \operatorname{profit}'(a_i) = |\operatorname{profit}(a_i)/K|
     Compute optimal solution S' for I w.r.t. profit'(\cdot).
     return S'
Lemma. profit(S') \geq (1 - \varepsilon) \cdot OPT.
            Let OPT = \{o_1, ..., o_{\ell}\}.
Proof.
   Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i)
                \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P.
   Obs. 2. profit(S') \geq K \cdot \text{profit}'(S') \geq K \cdot \sum_{i} \text{profit}'(o_{i})
                 \Rightarrow \operatorname{profit}(S') \ge \operatorname{OPT} - \varepsilon P \ge \operatorname{OPT} - \varepsilon \operatorname{OPT} = (1 - \varepsilon) \cdot \operatorname{OPT}
```

Theorem. KnapsackScaling is an FPTAS for KNAPSACK with running time $O(n^3/\epsilon) = O\left(n^2 \cdot \frac{P}{\epsilon P/n}\right)$.

FPTAS vs strong NP-hardness

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π .

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assuming there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set *ε* =

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assuming there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time). Set $\epsilon = 1/p(|I|_{\rm u})$.

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Set
$$\varepsilon = 1/p(|I|_{\mathrm{u}})$$
.
 $\Rightarrow ALG \le (1 + \varepsilon)OPT <$

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for \mathbb{D}

Proof.

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.
 $\Rightarrow ALG \le (1 + \varepsilon)OPT <$

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT \cdot

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.
 $\Rightarrow ALG \le (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_{\mathbf{u}}) =$

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.
 $\Rightarrow ALG \le (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_{\mathbf{u}}) =$

Theorem.

Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_{u}) =$ OPT + 1.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_{u}) =$ OPT + 1.

$$\Rightarrow$$
 ALG = OPT.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assuming there is an FPTAS for Π (in $q(|I|, 1/\varepsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_{u}) =$ OPT + 1.

$$\Rightarrow$$
 ALG = OPT.

Running time:

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

```
Assuming there is an FPTAS for \Pi (in q(|I|, 1/\epsilon) time).
```

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_{u}) =$ OPT + 1.

$$\Rightarrow$$
 ALG = OPT.

Running time: $q(|I|, p(|I|_{u}))$

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

Assuming there is an FPTAS for Π (in $q(|I|, 1/\epsilon)$ time).

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_{u}) =$ OPT + 1.

$$\Rightarrow$$
 ALG = OPT.

Running time: $q(|I|, p(|I|_u))$, so

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Proof.

```
Assuming there is an FPTAS for \Pi (in q(|I|, 1/\epsilon) time).
```

Set
$$\varepsilon = 1/p(|I|_{\mathbf{u}})$$
.

$$\Rightarrow$$
 ALG $\leq (1 + \varepsilon)$ OPT $<$ OPT + $\varepsilon p(|I|_{u}) =$ OPT + 1.

$$\Rightarrow$$
 ALG = OPT.

Running time: $q(|I|, p(|I|_u))$, so $poly(|I|_u)$.

FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP.

Theorem. Let p be a polynomial and let Π be an NP-hard minimization problem with integral objective function and $\mathrm{OPT}(I) < p(|I|_{\mathrm{u}})$ for all instances I of Π . If Π has an FPTAS, then there is a pseudo-polynomial algorithm for Π .

Corollary. Let Π be an NP-hard optimization problem that fulfills the restrictions above. If Π is strongly NP-hard, then there is no FPTAS for Π (unless P=NP).