- ¹ **Title:** Global patterns of forest autotrophic carbon fluxes
- 2 Running head:
- 3 Authors:
- 4 Rebecca Banbury Morgan^{1,2}
- ⁵ Valentine Herrmann¹
- 6 Norbert Kunert^{1,3}
- 7 Ben Bond-Lamberty⁴
- $_{8}$ Helene C. Muller-Landau 3
- $_{9}$ Kristina J. Anderson-Teixeira $^{1,3}*$
- 10 Author Affiliations:
- 1. Conservation Ecology Center; Smithsonian Conservation Biology Institute; National Zoological Park, Front Royal, VA, USA
- 2. Becky- current
- 3. Center for Tropical Forest Science-Forest Global Earth Observatory; Smithsonian Tropical Research Institute; Panama, Republic of Panama
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park Maryland
 20740 USA
- **Corresponding Author:
- 19 phone: 1-540-635-6546
- 20 fax:1-540-635-6506
- 21 email: teixeirak@si.edu
- 22 Keywords:
- ²³ Paper type: Primary Research Article

Abstract

[very rough start:] Carbon fixation, allocation, and metabolism by trees set the basis for energy and material flows in forest ecosystems and define their interactions with Earth's changing climate. Here, we drew upon # records from the Global Forest Carbon Database (ForC), representing all major forest types 27 and the nine most significant forest autotrophic carbon flux (FACF) variables, to comprehensively explore 28 how C cycling in mature, undisturbed forests varies with latitude and climate on a global scale. We show that, across all FACF variables analyzed, C cycling decreases linearly with latitude – a finding that confirms multiple previous studies but contradicts the idea that net primary productivity (NPP) of temperate forests 31 rivals that of tropical forests. The FACF variables generally increase in proportion to one another, with 32 few differences in allocation detectable at this global scale, but differed in that latitude explained a lower 33 proportion of variation among subsidiary fluxes (in particular, woody aboveground NPP and belowground NPP, BNPP). Climate explained a significant proportion (#-#%) of variation in all C fluxes analyzed (less for subsidiary fluxes), with temperature variables in general and mean annual temperature (MAT) in particular being the best predictors of FACF on this global scale. While other climate variables (e.q., XX)37 displayed significant correlation with FACF, none of them had significantly better explanatory power than MAT. The effects of temperature were modified by moisture availability, with reduced FACF under hot and dry conditions and sometimes under very high precipitation (especially for BNPP). FACF declined with 40 temperature seasonality, but growing season length doesn't improve upon MAT as a predictor. Within the growing season, the influence of climate on C cycling is smaller but still significant for a number of carbon 42 fluxes. These findings clarify the big picture of how FACF varies with latitude and climate on a global scale. 43 As we enter a period of accelerating climatic change, understanding of the fundamental climatic controls on FACF sets a foundation for understanding patterns of change.

46 Introduction

Carbon cycling in forests worldwide is central to sustaining an estimated #% of Earth's biodiversity (REF), while strongly influencing atmospheric CO₂ and climate (Bonan, 2008). Forests' autotrophic carbon fluxes (FACF)-that is, carbon fixation, allocation, and metabolism by trees and other primary producers-sets the energy ultimately available to heterotrophic organisms (including microbes), in turn influencing their abundance (REFS) and possibly diversity (Waide et al., 1999) (REFS). FACF influences all organic matter stocks in forest ecosystems and is linked to cycling of energy, water, and nutrients (REFS) (Piao et al., 2010). Critically, FACF also define forest interactions with Earth's changing climate. 53 Over 69 Gt of CO₂ cycle through Earth's forests each year (Badgley et al., 2019), and in recent decades their net C sequestration (~2.4 Gt C yr⁻¹) offset roughly 30% of anthropogenic fossil fuel emissions (Pan 55 et al., 2011). As atmospheric carbon dioxide levels continue to rise, driving climate change, forests will play a critical role in shaping the future of Earth's climate (Cavaleri et al. 2015; Rogelj et al. 2018). However, our ability to draw general macroscopic conclusions regarding global variation in FACF with respect to climate has been limited in that these analyses often mix forests that vary in stand age, disturbance history, and/or management status; do not always sufficiently parse related variables; and typically consider only one or a few variables at a time.

KAT, work on this: FACF vary with latitude, showing a general trend of decreasing flux with latitude (Beer et al., 2010; Jung et al., 2011). Studies agree that FACF are lowest in the boreal regions, and increase 63 into the temperate regions (Luyssaert et al., 2007; Huston and Wolverton, 2009; Beer et al., 2010; Jung et al., 2011). However, evidence is inconclusive on whether primary productivity continues to increase into the tropics, or whether it plateaus in temperate regions. Evidence for this is further complicated by the fact that different studies use different measures of productivity to explore these relationships. For example, modelling of global terrestrial ecosystem gross primary productivity (GPP) through upscaling and calibration of eddy flux measurements indicates that GPP peaks in tropical forests (Beer et al., 2010; Jung et al., 2011; Badgley et al., 2019)(Li & Xiao 2019). In contrast, some studies suggest that the highest values of net primary productivity (NPP) may be found in temperate forests (Luyssaert et al., 2007; Huston and Wolverton, 2009). 71 while others find NPP highest in the tropics and decreasing with latitude (Šímová and Storch, 2017). Other 72 studies have chosen to focus exclusively on above-ground net primary productivity (ANPP), finding evidence of a weak negative relationship between ANPP and latitude (Huston and Wolverton, 2009; Gillman et al., 74 2015). 75

Climate is a significant driver of FACF across broad spatial scales (Luyssaert et al., 2007; Cleveland et al., 2011) (Hursh et al. 2017). The majority of studies have focused on exploring the relationships of FACF to mean annual temperature (MAT) and mean annual precipitation (MAP), as the most commonly reported site-level climate variables. These variables have the advantage that they describe broad trends in temperature and water availability, and therefore capture a lot of global-scale variation in climate. There is strong evidence that both MAT and MAP show significant positive relationships with FACF (Chu et al., 2016). However, as with latitude, the shape of those relationships is not always clear, and, again, is complicated by the use of different measures of FACF across studies. Various measures of primary productivity {FACF?} saturate at high levels of MAP, though the saturation points identified vary from 1500mm (Luyssaert et al., 2007) up to 2445mm MAP (Schuur, 2003). Studies of the influence of MAT on productivity {FACF?} are less conclusive. Luyssaert et al. (2007) examined GPP and NPP and found that, while GPP increases linearly with MAT, NPP saturates at around 10°C MAT. In contrast, Larjavaara and Muller-Landau (2012), find that

increases in GPP saturate at approximately 25°C MAT, while Schuur (2003) shows that NPP increases linearly with temperature. **bbl:maybe remove following sentences** The influence of these climate variables on productivity is further complicated by the possibility of interactive effects occurring between them. Taylor et al. (2017) showed a positive interaction between MAT and MAP in shaping tropical forest productivity, such that high rainfall had a negative effect on productivity in cooler climates, compared to a positive effect in warmer climates. {It would be good to add some more citations on soil respiraiton. I'm sure BBL can help.}

FACF can be influenced by many other factors as well, which often act across a range of scales, and 95 may show interactive effects with each other (Cleveland et al., 2011). On a local scale, stand age (Litton et al., 2007; Gillman et al., 2015), biodiversity (Liang et al., 2016), management (Šímová and Storch, 2017); nutrient 97 availability (Aragão et al., 2009); and altitude (Girardin et al., 2010; Malhi et al., 2017) all impact FACF. On a global scale, we expect that FACF are most strongly influenced by broad climatic gradients. There is evidence that FACFs also respond to variables such as cloud cover (Taylor et al., 2017), solar radiation 100 (Fyllas et al., 2017), and potential evapotranspiration (Kerkhoff et al., 2005) in potentially significant ways. 101 Furthermore, MAT and MAP are very coarse measures of climate, and so fail to capture much variation 102 in climate on an intra-annual scale, including the effects of factors such as growing season length, number 103 of frost-free days, temperature seasonality, and dry season length. Some studies have suggested that the 104 apparently strong relationship between MAT and FACFs is actually a consequence of the correlation between 105 MAT and growing season length (Kerkhoff et al., 2005; Malhi, 2012; Michaletz et al., 2014, 2018). Kerkhoff et 106 al. (2005) and Michaletz et al. (2014) find that, within the growing season, there is no significant relationship 107 between primary productivity and MAT, suggesting that the effect of temperature is due to increased length 108 of growing season, rather than an inherent influence of temperature on FACF. 109

The recent development of a global forest carbon database synthesizing multiple variables and 110 including records of stand history (ForC; (Anderson-Teixeira et al., 2016, 2018)) opens up the 111 possibility for a standardized analysis of global scale variation in multiple FACF and the principle 112 climatic drivers of these patterns. In order to approach this broad topic, we simplify the major gaps in our 113 knowledge to five broad questions and corresponding hypotheses (Table 1). ** see issue #48** First, we ask 114 how forest autotrophic carbon fluxes (FACF) vary with latitude. We then test how these fluxes relate to 115 MAT and MAP, and additionally how they respond to other, less well-studied, climate variables. Finally, we 116 consider the relationship between FACF and seasonality, considering the role of seasonality in explaining 117 variation in carbon fluxes, and the influence of climate on FACF standardized by growing season length. We 118 use a comprehensive global database of forest carbon fluxes to address the above questions for nine carbon 119 fluxes, allowing for an in-depth exploration of the effect of climate on FACF globally.

Table 1: Summary of research questions, corresponding hypotheses, and results. Statistically signficant support for/rejection of hypotheses is indicated with 'yes'/'no', parentheses indicate partial overall support/rejection of hypotheses across all FACF, and '-' indicates no significant relationship.

		Forest autotrophic carbon fluxes (FACF)									
Questions and hypotheses (with related references)	Overall	GPP	NPP	ANPP	$ANPP_{woody.stem}$	$ANPP_{foliage}$	BNPP	$BNPP_{fine.root}$	R_{auto}	$R_{auto-root}$	Support
Q1. How do FACF vary with latitude?											
H1.1. FACF decrease linearly with latitude. 1,2,3	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	Fig. 2
Q2. How do FACF vary with MAT and MAP?											
H2.1. FACF increase linearly with MAT. 1,4	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	Figs. 4, S4, S5
${ m H2.2.}$ FACF increase with precipitation. ^{1,4}	(yes)	yes	yes	yes	-	yes	yes	yes	yes	yes	Figs. 4, S4, S5
H2.3. Temperature and precipitation interactively shape FACF. 5	(yes)	yes	yes	-	yes	-	yes	yes	yes	-	Fig. 3
Q3. How are FACF related to other climate variables?											
H3.1. FACF increase with PET.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	Figs. 4, S4, S5
H3.2. FACF increase with vapour pressure deficit.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	Figs. 4, S4, S5
H3.3. FACF increase with solar radiation.	(yes)	yes	yes	yes	yes	yes	yes	yes	yes	-	Figs. S4, S5
Q4. How does seasonality influence FACF?											
H4.1. FACF decrease with temperature seasonality.	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	Figs. 4, S6, S7
H4.2. FACF decrease with precipitation seasonality.	-	-	-	-	-	-	-	-	-	-	Figs. S6, S7
H4.3. FACF increase with growing season length. 6,7,8	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	Figs. 4, S6, S7
H4.4. Growing season length is a better predictor of FACF than MAT. 7,8	(no)	no	no	no	no	no	no	-	no	no	Table S4
Q5. When standardised by growing season length, how do FACF v	vary with	climat	te?								
H5.1. Growing season FACF increase with temperature. 8	(yes)	-	-	yes	-	yes	-	-	-	-	Figs. S8, S9
H5.2. Growing season FACF increase with PET.	(yes)	yes	yes	-	yes	-	yes	yes	-	-	Figs. S8, S9
${ m H5.3.}$ Growing season FACF increase with precipitation.	(yes)	-	-	yes	-	yes	-	-	-	-	Figs. S8, S9
H5.4. Growing season FACF increase with solar radiation.	(yes)	yes	yes	-	-	-	yes	yes	-	-	Figs. S8, S9

¹ Luyssaert et al. (2007) ² Gillman et al. (2015) ³ Simova and Storch (2017) ⁴ Schuur (2003) ⁵ Taylor et al. (2016) ⁶ Malhi (2012) ⁷ Michaletz et al. (2014) ⁸ Chu et al. (2016)

Materials and Methods

122 Forest carbon flux data

This analysis focused on nine FACF included in the open-access ForC database (Table 2) (Anderson-Teixeira et al., 2016, 2018). ForC contains records of field-based measurements of forest carbon stocks and annual fluxes, compiled from original publications and existing data compilations and databases. Associated data, such as stand age, measurement methodologies, and disturbance history, are also included. The database was significantly expanded since the publication of Anderson-Teixeira et al. (2018) through integration with the Global Soil Respiration Database (Bond-Lamberty and Thomson, 2010). Additional targeted literature searches were conducted to identify any further available data on the FACF analyzed here, with particular focus on mature forests in temperate and boreal regions, which were not included in the review of Anderson-Teixeira et al. (2016). We used ForC v3.0, archived on Zenodo with DOI 10.5281/zenodo.3403855. This version contained 29,730 records from 4,979 plots, representing 20 distinct ecozones across all forested biogeographic and climate zones.

This analysis focused on mature forests with no known history of signficant disturbance or management. There is evidence that stand age influences patterns of FACF and carbon allocation in forest ecosystems, and can confound relationships between latitude and primary productivity (DeLUCIA et al., 2007; Gillman et al., 2015). To reduce any biasing effects of stand age, we included only stands of known age \geq 100 years and those described by terms such as "mature", "intact", or "old-growth". Since management can alter observed patterns of FACF (Šímová and Storch, 2017), sites were excluded from analysis if they were managed, defined as plots that were planted, managed as plantations, irrigated, fertilised or including the term "managed" in their site description. Sites that had experienced significant disturbance within the past 100 years were also excluded. Disturbances that qualified sites for exclusion included major cutting or harvesting, burning, flooding, drought and storm events with site mortality >10% of trees. Grazed sites were retained.

Figure 1: Map showing all data used in the analysis, coded by variable. Variables are plotted individually in Fig. S1.

Climate data

For C contains geographic coordinates associated with each measurement record and, when available, mean

Table 2: Definitions and sample sizes of FACF variables used in analysis. All variables are in units of Mg C $\rm ha^{-1}~\rm yr^{-1}$.

				Sample size	
Variable	Definition	Components included	Methodologies	records	geographic areas*
GPP	Gross Primary Production	full ecosystem	flux partitioning of eddy-covariance; $NPP + R_{auto}$	243	49
NPP	Net Primary Production	stem, foliage, coarse root, fine root, optionally others (e.g., branch, reproductive, understory)	$ANPP + BNPP$ (majority); GPP - R_{auto}	161	56
ANPP	Above ground NPP	stem, foliage, optionally others (e.g., branch, reproductive, understory)	$ANPP_{woody-stem} + ANPP_{foliage}$ (+ others)	278	86
$ANPP_{woody.stem}$	Woody stem growth component of $ANPP$	woody stems down to DBH \leq 10cm (no branch turnover)	stem growth measurements scaled to biomass using allometries $$	264	96
$ANPP_{foliage}$	Foliage component of \ensuremath{ANPP}	foliage	litterfall collection (separated into components) $$	98	49
BNPP	Below ground NPP	coarse and fine roots	coarse roots estimated indirectly using allometries based on above ground stem increment measures ; fine roots as below $$	101	48
$BNPP_{fine.root}$	Fine root component of $BNPP$	fine roots	measurements combined one or more of the following: soil cores, minirhizotrons, turnover estimates, root ingrowth cores	88	41
R_{auto}	Autotrophic respiration	foliage, stem, and root	chamber measurements of foliage and stem gas exchange + $R_{auto-root}$ (as below)	22	13
$R_{auto-root}$	uto-root Root respiration (coarse and) fine roots		partitioning of total soil respiration (e.g., through root exclusion), scaling of root gas exchange; excluded alkali absoption and soda lime methods for measuring soil respiration	64	26

^{*} Geographic areas group geographically proximate sites, defined using a hierarchical cluster analysis on the distance matrix of the sites, and a cutoff of 25km

annual temperature (MAT) and mean annual precipitation (MAP) as reported in the primary literature (Anderson-Teixeira et al., 2018). Based on the geographic co-ordinates for each site, data on twelve climate variables—including MAT, MAP, temperature and precipitation seasonality, annual temperature range, solar radiation, cloud cover, annual frost and wet days, potential evapotranspiration (PET), aridity (MAP/PET), and vapor pressure deficit (VPD)—were extracted from five open-access climate datasets: WorldClim (Hijmans et al., 2005), WorldClim2 (Fick and Hijmans, 2017), the Climate Research Unit (CRU) time-series dataset v. 4.03 (Harris et al., 2014), the Global Aridity Index and Potential Evapotranspiration Climate Database (Trabucco and Zomer, 2019), and TerraClimate (Abatzoglou et al., 2018) (Table S1). From these data, we derived maximum VPD, defined as the VPD of the month with the largest deficit, and the number of water stress months, defined as the number of months annually where precipitation was lower than PET. Where site-level data was missing for MAT or MAP, we used values from the WorldClim dataset.

Length of the growing season was estimated to the nearest month, where growing season months were defined as months with mean minimum temperature > 0.5°C. We experimented with a definion of growing season months including a moisture index, defined as (MAT - PET)/PET, > -0.95 (Kerkhoff et al. 2005; see also Michaletz et al. 2014). However, we found that including a moisture index had **no** effect on the estimates of growing season length, and so chose to exclude it. (**Becky, was it really no effect? or minimal?**) Monthly data for PET, precipitation, and temperature from the CRU dataset v 4.03 (Harris et al., 2014), and solar radiation from WorldClim2 (Fick and Hijmans, 2017) were used to calculate mean monthly PET, precipitation, temperature and solar radiation during the growing season. Total growing season precipitation

and solar radiation were also calculated.

166 Analyses

The effects of latitude and climate on FACF were analysed using mixed effects models using the package 'lme4' 167 (Bates et al., 2015) in R v.3.5.1 (?). The basic model for all analyses included a fixed effect of latitude or climate and a random effect of plot nested within geographic area. Geographic areas-i.e., spatially clustered 169 sites—are defined within ForC using a hierarchical cluster analysis on the distance matrix of the sites and a 170 cutoff of 25km (Anderson-Teixeira et al., 2018). We experimented with inclusion of altitude as a fixed effect, but excluded it from the final models because it added very little explanatory power-that is, the difference in 172 AIC (Δ AIC) relative to models excluding altitude was generally small (often Δ AIC<2). Hypotheses were 173 accepted if the Δ AIC between a model including the fixed effect of interest and a corresponding null model 174 excluding that fixed effect exceeded 2.0. All R^2 values presented here are marginal R^2 values, and refer to 175 the proportion of variation explained by only the fixed effects, unless otherwise specified. Becky, are 176 there any instances of this? Specific analyses are as described below.

We first examined the relationship between latitude and FACF (Q1; Table 1). We tested models with latitude as a linear and term (corresponding null: model without latitude) and as a second-order polynomial term (corresponding null: model with latitude as a linear term). If the shape of the relationship **made biological** sense, and was a significant improvement on the linear relationship (Δ AIC >2), we accepted the polynomial as the best model. We also examined relationships among fluxes across latitude, testing whether sums of component fluxes matched the larger fluxes and whether C allocation varied with latitude, as specified below.

To test whether trends in component fluxes across latitude sum to match those of larger fluxes, regression lines for smaller component fluxes were summed to generate new estimates of larger fluxes, which were then compared against the latitudinal regression of the larger flux. Confidence intervals for the larger flux were calculated using the 'bootMer' function from the lme4 package (Bates et al., 2015). This analysis was applied to following sets of fluxes: (1) $GPP = NPP + R_{auto}$, (2) NPP = ANPP + BNPP, and (3) $ANPP = ANPP_{foliage} + ANPP_{woody.stem}$. In addition, we estimated total belowground C flux (TBCF, not analyzed due to limited data) as $TBCF = BNPP + R_{root}$.

Variation in allocation to component carbon fluxes along latitudinal gradients was explored for the following 191 pairings: $GPP: NPP, ANPP: BNPP, \text{ and } ANPP_{foliage}: ANPP_{woody.stem}; ANPP_{foliage}: NPP,$ 192 $ANPP_{woody.stem}: NPP, ANPP: NPP,$ and BNPP: NPP. For each set of paired fluxes, measurements 193 taken at the same site and plot, and in the same year, were paired together, and the ratio of each pair of 194 measurements calculated. The ratios were regressed against latitude and climate variables, using the linear 195 model specified above. Cook's distance analyses were carried out for each of the models, and indicated that 196 data from a few high-elevation sites were having a disproportionate influence on the regressions. To account 197 for this, models were re-run using only data from sites ≤ 1000 m. 198

We next examined the relationships of FACF to climate variables (Q2-Q4; Table 1). As with latitude, we tested both linear and polynomial fits for each climate variable. We tested relationships of each FACF (Table 2) against each climate variable (Table S1), but focus presentation—including focal hypotheses (Table 1)—on climate variables that explained >20% of variation in FACF. Becky, please make this more specific. I drafted this based on the results, but its not very clear.

To investigate the potential joint and interactive effects of climate variables on carbon fluxes, multivariate

models were also specified. We explored a large range of climate variable combinations and ultimately decided 205 to focus on MAT and MAP. We favored these over variables with similar explanatory power because they are the most commonly reported climate variables and are recorded in ForC. MAT was consistently among 207 the best individual predictors of FACF (Table S2), although it was occasionally out-performed by closely 208 correlated climate variables (Fig. S2). In combination with MAT as a primary climate variable, MAP was consistently among the best secondary climate variables. Specifically, compared again a model including 210 MAT x MAP, there were no other variables that, in interaction with MAT, improved AIC by >2.0 and R^2 by 211 >0.05. In examinging the joint and interactive effects of climate variables, an additive model including MAT and MAP as fixed effects was accepted when $\Delta AIC > 2$ relative to a null including only MAT as a fixed effect. 213 An interactive model including an MAT x MAP interaction was accepted when $\Delta AIC > 2$ relative to a null 214 including MAT and MAP as fixed effects. 215

To test whether and how FACF varied with climate when standardised by growing season length (Q5), we first standardized FACF by dividing by growing season length (as defined above). We then tested for correlations between growing season length-standardised FACF against growing season climate variables. For analyses on data within the growing season, only linear models were specified.

220 Results

In total, we analyzed 1228 records from nine FACF variables taken from forests that had experienced no major anthropogenic disturbances within the past 100 years. These records represented a total of 154 distinct geographic areas (Fig. 1, Table 2), across all forested biogeographic and climate zones.

224 How do FACF vary with latitude?

All major carbon fluxes decreased linearly with latitude (Fig. 2; Table S2). Latitude was a strong predictor for many of the carbon fluxes–particularly the larger fluxes (Table S2). Specifically, latitude explained 64% of variation in GPP (n = 254, p<0.0001), 50% in NPP (n = 114, p<0.0001) and 45% in ANPP (n = 259, p<0.0001). The FACF that were most poorly predicted by latitude were $BNPP_{root-fine}$ (R^2 =0.17) and $ANPP_{woody.stem}$ =0.18). For all FACF, the relationship with latitude was best predicted by the linear model (but see this issue).

Figure 2: Latitudinal trends in forest autotropic carbon flux. Lines of best fit are plotted according to the best model selected during analysis. All regressions are significant (p < 0.05). Each panel shows major C fluxes together with component fluxes. Also plotted are predicted trends in the major C fluxes based on the sum of component fluxes. 95% confidence intervals are plotted for the major flux for comparison with predicted trends. In (d), which shows three belowground fluxes, the major flux, total belowground carbon flux, is one for which we have no data

In general, smaller component fluxes summed approximately to larger fluxes across the latitudinal gradient (Fig. 2). That is, modelled estimates of GPP, generated from the sum of NPP and R_{auto} ; NPP, generated from the sum of ANPP and BNPP; and ANPP, generated from the sum of $ANPP_{foliage}$ and $ANPP_{woody-stem}$, fell completely within the confidence intervals of the regressions of field estimates of GPP, NPP, and ANPP, respectively.

We found little evidence that allocation between fluxes varied substantially with latitude or climate (Fig. S3). Of the 7 FACF ratios regressed against latitude and three climate variables (MAT, MAP, temperature seasonality), there were only four signficant relationships, all with $R^2 \leq 0.2$ (Fig. S3). Specifically, the proportion of NPP allocated to $ANPP_{foliage}$ increased weakly with MAT ($R^2 = 0.20$), and the proportion of NPP allocated aboveground (ANPP) decreased weakly with latitude ($R^2 = 0.11$) and temperature

seasonality ($R^2 = 0.17$), while increasing with MAT ($R^2 = 0.11$). There were no significant results from regressing ratios of carbon fluxes against latitude, or against any of the climate variables.

243 How do FACF relate to MAT and MAP?

All FACF increased linearly with MAT, and we found no support for a saturation point of FACF with MAT (all p<0.05; Figs. 3-4, S4-S5, Table S2). As with latitude, MAT tended to explain more variation in the larger FACF (GPP, NPP, ANPP, R_{auto}) and $ANPP_{foliage}$ (all $R^2 > 0.4$) than in subsidiary and belowground fluxes ($ANPP_{woody-stem}$, R_{root} , $BNPP_{root-fine}$; all $R^2 < 0.25$).

MAP was a significant (p<0.05) predictor of all FACF but $ANPP_{woody-stem}$ (Figs. 4a, S4-S5; Table S2). 248 However, it explained little variation: with the exception of R_{auto} , MAP explained at most 37% of variation 249 in FACF. For the majority of FACF, a polynomial model was the best fit. FACF generally increased with 250 precipitation, up until a saturation point at between 3000 and 4000mm annual precipitation, above which 251 they started to decrease (Figs. 4, S4-S5). The notable exception to this was GPP: the model indicated that 252 GPP continued to increase with precipitation up to measures of at least 5000mm annually (p<0.0001, R^2 253 0.33. Data above this point were not available, but the model trend indicated that the saturation point for 254 this model would be around 5000mm MAP. 255

There was a significant additive effect of MAT and MAP on GPP, ANPP and R_{auto} (Fig. 3, Table S3).

Accounting for MAT, MAP had a substantial positive effect on GPP and R_{auto} and a small negative effect on ANPP. There was a significant interactive effect between MAT and MAP for NPP and $ANPP_{woody-stem}$. For (Fig. 3, Table S3). The interaction was negative for NPP and positive for $ANPP_{woody-stem}$. For $ANPP_{foliage}$, BNPP, $BNPP_{root-fine}$, and $R_{auto-root}$, MAP did not have a significant effect when accounting for MAT (Fig. 3, Table S3). For the variables which showed a significant interactive or additive effect between MAT and MAP, no other climate variable, in combination with MAT, significantly improved on that model. {need to confirm this given changes in MAT MAP results (or you could just drop the sentence.)}

Mean Annual Temperature (degrees)

Figure 3: Interactive effects of mean annual temperature and mean annual precipitation on FACF. For visualization purposes, data points are grouped into bins of 0 - 1000, 1001 - 2000, 2001 - 3000, and >3000mm mean annual precipitation, and lines of best fit models are plotted for mean annual precipitation values of 500, 1500, 2500, and 3500mm. All regressions are significant (p < 0.05).

265 How do FACF relate to other climate variables?

Our results indicated that FACF were most strongly explained by temperature at the global scale, with temperature-related climate variables coming out as strong predictors of FACF. In addition to MAT, several of its correlates (Fig. S2) were consistently identified as strong univariate predictors of FACF: temperature seasonality, annual temperature range, annual frost days, PET, and length of growing season (Figs. 4, S4-S7). We found a significant relationship between C flux and potential evapotranspiration for all FACF. $ANPP_{foliage}$, $BNPP_{root-fine}$ and R_{root} increased linearly with PET; however, all other fluxes showed a polynomial relationship with PET (Fig. 4c, S4-5; Table S2). We found strong evidence for a saturation point or peak with PET: FACF tended to increase at values below 1000mm, before saturating between 1200 and 1700mm. There was also evidence that FACF begin to decrease at values above 1800mm PET.

- Vapour pressure deficit was a significant predictor of C flux for all FACF. $BNPP_{root-fine}$ showed a linear relationship with vapour pressure deficit ($R^2 = 0.07$, p<0.05), but all other fluxes showed a polynomial relationship (Figs. 4d, S4-5; Table S2). FACF initially increased with vapour pressure deficit, before saturating at around 0.8 kPa, after wich point they began to decrease.
- All fluxes, with the exception of R_{root} , showed a positive linear relationship with solar radiation (Figs. S4-S5, Table S2). Solar radiation explained a low proportion of variability in all FACF, explaining less than 20% of the variation in each flux, with the exception of R_{auto} ($R^2 = 0.26$, p<0.05).
- Annual wet days, cloud cover, and aridity were poor or non-significant explainers of variation in FACF, explaining less than 20% of the variation in each of the carbon fluxes (Figs. S4-S5; Table S2).

Figure 4: Plots of carbon fluxes against (a) mean annual temperature; (b) mean annual precipitation; (c) potential evapotranspiration, (d) vapour pressure deficit; (e) temperature seasonality; (f) length of growing season. For visualization purposes, data for each flux was rescaled with a mean of 0 and standard deviation of 1. Lines of best fit are plotted according to the best model selected during analysis (**see issue 47^{**}). All regressions are significant (p < 0.05).

284 What is the role of seasonality in explaining FACF?

Temperature seasonality was a significant predictor of FACF. GPP, NPP, ANPP, and R_{root} exhibited a polynomial relationship with seasonality (all p<0.05; Figs. 4e, S6-7; Table S2). $ANPP_{foliage}$, $ANPP_{woody-stem}$ and R_{auto} decreased linearly with temperature seasonality (all p<0.05; Figs. 4e, S6-S7; Table S2). Temperature seasonality was strongly correlated with annual temperature range, which was likewise a similarly strong predictor of FACF (Table S2).FACF were highest where temperature seasonality = 0, and at an annual temperature range of 15°C or lower.

In contrast, there was no significant effect of precipitation seasonality on FACF, and both maximum vapour pressure deficit, and water stress months were poor or non-significant explainers of variation in FACF (Figs. S6-S7; Table S2).

We found a significant relationship between length of growing season and FACF, with all fluxes showing a linear increase with length of growing season (Figs. 4e, S6-S7; Table S2). Length of growing season was a strong predictor of FACF, explaining 51% of variation in GPP, 39% of variation in NPP, and 34% of variation in ANPP, but it was a weaker predictor than MAT for all fluxes analysed (Table S4).

298 Within the growing season, how do FACF vary with climate?

When FACF were standardized by growing season length, correlations with growing season climate—including 299 temperature, precipitation, solar radiation, and PET-were generally weak (Figs. S8-S9). Speficifally, ANPP 300 increased with growing season temperature ($R^2 = 0.10$, p<0.001) and precipitation ($R^2 = 0.04$, p<0.05). 301 Similarly, $ANPP_{foliage}$ increased slightly with growing season temperature ($R^2 = 0.16$, p<0.01) and 302 precipitation ($R^2 = 0.09$, p<0.05). Growing season solar radiation had a positive influence on GPP ($R^2 =$ 303 0.21, p<0.001), NPP ($R^2 = 0.21$, p<0.001), BNPP ($R^2 = 0.16$, p<0.001) and BNPP_{fine.root} ($R^2 = 0.12$, p<0.01). Growing season PET had a positive influence on GPP ($R^2 = 0.15$, p<0.01), NPP ($R^2 = 0.18$) 305 p<0.01), $BNPP\ (R^2=0.23,\ p<0.0001),\ BNPP_{fine.root}\ (R^2=0.11,\ p<0.05),\ and\ ANPP_{woody-stem}\ (R^2=0.11,\ p<0.05))$ 306 0.06, p<0.05). {Becky, please verify/ edit the following: There were no other significant correlations between growing season length-standardized FACF (9 variables in Table 2) and growing season climate 308 (which variables?)}. 309

310 Discussion

Our analysis of a large global database (ForC) reveals how autotrophic carbon fluxes in mature forests 311 vary with latitude and climate on a global scale. We show that, across all nine FACF analyzed, C cycling 312 decreases linearly with latitude (H1.1; Fig. 2)-a finding that confirms multiple previous studies (REFS) but 313 contradicts the idea that productivity of temperate forests rivals that of tropical forests (H1.1.alt; REFS). 314 The FACF generally increase in proportion to one another (H1.2), with few differences in allocation detectable 315 at this global scale (Fig. S2) and with component fluxes summing appropriately to larger fluxes (Fig. 2), 316 indicating no major, systematic omissions or overestimations of flux components. However, climate explained 317 lower proportions of variability among subsidiary C fluxes (e.g., $ANPP_{woody}$, $BNPP_{fine.root}$, $R_{auto-root}$; Fig. 2; Table S2). Latitudianal variation in FACF is primarily attributable to temperature-related variables 319 (H3, H4), particularly MAT (Figs. 3-4). Water availability is also influential, but generally of secondary 320 importance across the range represented in our database (Figs. 3-4). Temperature seasonality and growing season length are closely correlated with MAT and are strong predictors of FACF (H4; Figs. 4e-f, S2, S6-S7). 322 though growing season length doesn't improve upon MAT as a predictor. Within the growing season, the

influence of climate on C cycling is smaller but still significant for a number of FACF (*H5*; Fig. S9; Table S4). These findings clarify the big picture of how FACF vary with latitude and climate on a global scale.

Past studies have differed in their conclusions regarding the relationship between FACF and latitude or its correlates (Table 1, H1; REFS)—quite possibly because of lack of standardization with respect to stand 327 age and disturbance history. Our findings indicate that, among mature, undisturbed stands, FACF are 328 unambiguously highest in the tropical regions, and the relationship is approximately linear (Fig. 2). This contrasts with suggestions that productivity of temperate forests is similar to that of tropical forests (REFS). 330 Temperate forests tend to be younger than tropical forests (REF), so analyses comparing across latitudinal 331 gradients without controlling for stand age risk confounding age with biome effects (Poulter et al. 2018-DOI:10.1594/PANGAEA.889943; Potapov et al. 2008. Mapping the World's Intact Forest Landscapes by 333 Remote Sensing. Ecology and Society 13 (2), 51.). In addition, because C allocation varies with stand age 334 (DeLUCIA et al., 2007) (See Nobby's comment in manuscript-draft_NK.pdf), age differences may introduce systematic biases into analyses of FACF across latitude or global climatic gradients. For example, 336 woody productivity tends to be higher in rapidly aggrading secondary stands than in old-growth forests, 337 where proportionally more C is allocated to respiration (** Nobby AFM paper: Understanding the controls 338 over forest carbon use efficiency on small spatial scales: Effects of forest disturbance and tree diversity**) 339 [*purpose for respiration/ other compenents (See Nobby's comment in manuscript-draft_NK.pdf)]. 340

We show that FACF are broadly consistent in their responses to climate drivers on the global scale (with 341 the exception of some differences in MAT-MAP interactions; Fig. 3), with no major trends in C allocation 342 among the variable pairs tested (Table 1, H1; Fig. 2; Some SI table). Although variation in allocation 343 has been observed along gradients of elevation (Moser et al., 2011) and water availability (Newman et al., 344 2006)—along with non-climatic axes of stand age (Litton et al., 2007), nutrient availability (Litton et al., 345 2007; Gill and Finzi, 2016), and forest structure (Taylor et al., 2019)-variation in relation to climate is not 346 apparent at the global scale within ForC, which contains the bulk of relevant data. Our conclusion, then, is 347 that hypothesized gradients in allocation along global climate gradients cannot currently be supported for 348 mature forests, although data quantity and standardization is currently insufficent to rule out the possibility 349 that such trends exist. 350

bbl: remove this sentence? Of particular interest and significance are the relationships amongst GPP, net primary productivity (NPP and its components, particularly $ANPP_{woody-stem}$), and respiration (R_{auto} and 352 components). There have been suggestions that tropical forests tend to have low carbon use efficiency (CUE= 353 $NPP/GPP = (GPP - R_{auto}/GPP)$, which are based on observations of low CUE in old-growth tropical forests relative to (mostly younger) extratropical forests (DeLUCIA et al., 2007; Malhi, 2012; Anderson-Teixeira et al., 355 2016), but our analysis suggests that these low values might more appropriately be attributed to the fact that 356 these forests are old than to their tropical climate. Indeed, CUE is known to decline with forest age (DeLUCIA et al., 2007; Collalti and Prentice, 2019), but appears to be roughly independent of GPP (Litton et al., 2007). 358 Among our sites with relevant data, there is indication that CUE or $ANPP_{woody-stem}/GPP$ increase with 359 latitude (some SI table). Additional measurements with careful methodological standardization across a consistent set of mature forest sites will be necessary to determine whether any climate-driven gradients in 361 allocation exist at the global scale. 362

One interesting observation was that climate tends to explain more variation in the major fluxes (GPP, NPP, R_{auto} - latitude $R^2 \geq 48\%$) than in subsidiary fluxes (latitude $R^2 < 27\%$ for $BNPP_{fine.root}$, $R_{auto-root}$, $ANPP_{woody-stem}$) (Fig. 2; some SI table?). There are two, non-exclusive, potential ex-

planations for this. First, it may be that methodological variation is larger relative to flux magnitude for some 366 of the subsidiary fluxes. Belowground fluxes in particular are difficult to quantify, and measurement methods for the belowground fluxes considered here may be measured through fundamentally different approaches 368 (e.g., minirhizotrons, ingrowth cores, or sequential coring for $BNPP_{root-fine}$; root exclusion, stable isotope 369 tracking, or gas exchange of excised roots for $R_{auto-root}$), and sampling depth is variable and often insufficient to capture the full soil profile. $ANPP_{woody-stem}$, which is also poorly explained by latitude or climate, is 371 more straightforward to measure but is subject to variability introduced by differences such as biomass 372 allometries applied and minimum plant size sampled (bbl: cite e.g. Huntzinger?). However, methodological 373 variation and uncertainty affect all of fluxes considered here-not necessarily any less than the aforementioned, 374 and some of the larger fluxes that vary more strongly with respect to climate (ANPP, NPP) are estimated 375 by summing uncertain component fluxes. Second, differences among variables in the proportion of variation explained by climate may be attributable to more dicrect climatic control over GPP than subsidiary fluxes. 377 That is, subsidiary fluxes may be shaped by climate both indirectly through its influence on GPP and 378 respiration and directly through any climatic influence on C allocation, as well as many other local- and 379 regional-scale factors (**REFS**). 380

The latitudinal gradient in FACF (Fig. 2) is driven primarily by temperature-related climate variables, and secondarily by moisture availability (Table 1, H2-H3; Figs. 3-4). Because many climate variables co-vary across the latitudinal gradient, because climatic drivers affect forest carbon flux on much shorter time scales than can be captured by annual climate summary variables, and because both climatic conditions and C flux vary intra- and inter-annually around the long-term means, it is not appropriate to attempt to identify any one mean annual climate variable as a mechanistic driver of FACF. However, it remains informative to consider these relationships. We find that temperature-related climate variables (MAT, temperature seasonality, ... LIST) explain the highest proportion of variability in FACF, and among these, MAT is generally the best predictor—perhaps because site-specific MAT is recorded for the majority of sites in ForC, whereas other variables are extracted from global gridded data products (Table S1?). The effects of temperature are modified by moisture availability, with reduced FACF under hot and dry conditions (*i.e.*, high PET, high deficit; Fig. 4c-d) and sometimes under very high precipitation (Figs. 3, 4b). Negative effects of very high precipitation on FACF have been observed previously (REFS) and are attributable to nutrient and light limitations (REFS). Thus, although temperature and water availability jointly and interactively drive global-scale patterns of FACF.

 $_{396}$ bbl: this seems really interesting and novel, consider expanding the following paragraph

381

382

383

384

385

387

388

390

391

393

395

FACF are negatively correlated with temperature seasonality (Table 1, H4; Fig. 4e), and is minimal during 397 cold- or dry- dormant seasons. To account for this, a number of analyses seeking to characterize global-scale 398 effects of climate on productivity have examined the relationship of C flux per month of the growing season with growing season climatic conditions (Table 1, H5; REFS). We found that the sort of simple metric 400 needed to define growing season at a global scale was uncertain for temperature and problematic for moisture 401 (WORK ON THIS). A temperature-defined growing season length had stong positive correlation with FACF (Fig. 4f), but explained less variation than MAT. Dividing FACFs by growing season length to yield 403 FACF per growing season month removed the majority of climate-related variation, supporting the idea that 404 the latitudinal gradient in FACF is attributable more to shorter growing seasons at high latitudes than to inherently lower rates of photosynthesis or respiration by high-latitude forests (\int Enquist et al. 2007 GCB- but 406 check). However, there remained a number of significant correlations with growing season climatic conditions, suggesting that climatic conditions remain influential within the growing season. We conclude that while correcting for growing season length takes analyses a step closer to mechanistic linkage of instantaneous C flux rates to environmental conditions, it remains very crude relative to the the timescales on which climate affects plant metabolism and does not advance statistical predictive power. Rather, mechanistic accounting for climatic effects on global FACF patterns requires models representing physiologically meaningful timescales (e.g., refs).

Our analysis clarifies how FACF vary with latitude and climate on a global scale, with some important 414 implications for how forest carbon cycling relates to climate and, by extension, how it is likely to respond to 415 climatic warming. We find no support for non-linear trends in mature forest C cycling with respect to latitude or MAT, and no distinct trends in C allocation across the global scale (Fig. 2). The implication is that 417 under warmer conditions with similar moisture availability—and within the temperature range to which forest 418 communities are adapated and acclimatized-higher temperatures result in a generalized acceleration of FACF, with no major shifts in C allocation among subsidiary fluxes. This is consistent with observations of continental-420 to global-scale increases in GPP (Li & Xiao 2019), ANPPwoodystem (Brienen et al., 2015), as well as some 421 C cycle components not considered here—tree mortality (Brienen et al., 2015; some McDowell Ref-KAT), 422 soil respiration (Bond Lamberty & Thompson 2010), heterotrophic soil respiration (Bond-Lamberty et al. 423 2018). Of course, other factors such as rising CO₂ are also at play, and such increases are not universal (e.g., 424 Rutishauser et al., 2019)... Of course, actual climatic changes will result in very different sets of conditions than represented across geographic gradients in climate, but our analysis clarifies how carbon cycles through 426 contemporary forest ecosystems. As we enter a period of accelerating climatic change, understanding of the 427 fundamental climatic controls on FACF sets a foundation for understanding patterns of change. [work on this 429

misc content for discussion

- the observed positive interaction between MAT and MAP for $ANPP_woody$ is consistent with the Taylor et al. (2017) analysis showing such an interaction for ANPP in tropical forests. Similar to their analysis, we find a cross-over point at ~20°C. However, we don't find such an interaction for ANPP, and we show a contrasting negative interaction for NPP. Some of this is may be stochastic/ driven by composition of the dataset, and the interactions we observe are not internally consistent.
- consistent with Hofhansl et al. 2015 (**verify**), we found a slight tendency for warmer sites to have higher aboveground allocation
- -results are consistent with Muller-Landau et al., in review

439 Acknowledgements

431

432

433

434

435

440 Scholarly Studies ForestGEO Compilation of the ForC database was originally funded by DOE

$\mathbf{References}$

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C. (2018). TerraClimate, a high resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data,
 5(1):170191.

- Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C., Herrmann, V., Tepley, A. J., Bond-Lamberty,
- B., and LeBauer, D. S. (2018). For C: a global database of forest carbon stocks and fluxes. *Ecology*,
- 99(6):1507–1507.
- Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C., and LeBauer, D. S. (2016). Carbon dynamics of
- mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Global Change
- Biology, 22(5):1690–1709.
- 451 Aragão, L. E. O. C., Malhi, Y., Metcalfe, D. B., Silva-Espejo, J. E., Jimenez, E., Navarrete, D., Almeida,
- 452 S., Costa, A. C. L., Salinas, N., Phillips, O. L., Anderson, L. O., Alvarez, C., Baker, T. R., Goncalvez,
- P. H., Huaman-Ovalle, J., Mamani, M., Meir, P., Monteagudo, A., Patino, S., Penuela, M. C., Prieto, A.,
- Quesada, C. A., Rozas-Davila, A., Rudas, A., Silva, J. A., and Vasquez, R. (2009). Above and belowground
- net primary productivity across Amazonian forests on contrasting soils. *Biogeosciences*, (6):2759–2778.
- Badgley, G., Anderegg, L. D. L., Berry, J. A., and Field, C. B. (2019). Terrestrial gross primary production:
 Using NIR v to scale from site to globe. Global Change Biology, 25(11):3731–3740.
- Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4.
 Journal of Statistical Software, 67(1).
- Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M. A.,
- Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert,
- S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I.,
- and Papale, D. (2010). Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation
- with Climate. Science, 329(5993):834–838.
- Bonan, G. B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests.

 Science, 320(5882):1444–1449.
- Bond-Lamberty, B. and Thomson, A. (2010). A global database of soil respiration data. *Biogeosciences*, 7(6):1915–1926.
- Chu, C., Bartlett, M., Wang, Y., He, F., Weiner, J., Chave, J., and Sack, L. (2016). Does climate directly
 influence NPP globally? Global Change Biology, 22(1):12–24.
- ⁴⁷¹ Cleveland, C. C., Townsend, A. R., Taylor, P., Alvarez-Clare, S., Bustamante, M. M. C., Chuyong, G.,
- Dobrowski, S. Z., Grierson, P., Harms, K. E., Houlton, B. Z., Marklein, A., Parton, W., Porder, S., Reed,
- S. C., Sierra, C. A., Silver, W. L., Tanner, E. V. J., and Wieder, W. R. (2011). Relationships among
- net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis: Nutrients,
- climate and tropical NPP. Ecology Letters, 14(9):939–947.
- Collalti, A. and Prentice, I. C. (2019). Is NPP proportional to GPP? Waring's hypothesis 20 years on. Tree
 Physiology, 39(8):1473–1483.
- Delucia, E. H., Drake, J. E., Thomas, R. B., and Gonzalez-Meler, M. (2007). Forest carbon use efficiency:
- is respiration a constant fraction of gross primary production? Global Change Biology, 13(6):1157–1167.
- 480 Fick, S. E. and Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for
- global land areas: NEW CLIMATE SURFACES FOR GLOBAL LAND AREAS. International Journal of
- Climatology, 37(12):4302-4315.

- Fyllas, N. M., Bentley, L. P., Shenkin, A., Asner, G. P., Atkin, O. K., Díaz, S., Enquist, B. J., Farfan-Rios,
- W., Gloor, E., Guerrieri, R., Huasco, W. H., Ishida, Y., Martin, R. E., Meir, P., Phillips, O., Salinas, N.,
- Silman, M., Weerasinghe, L. K., Zaragoza-Castells, J., and Malhi, Y. (2017). Solar radiation and functional
- traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecology Letters,
- 20(6):730-740.
- Gill, A. L. and Finzi, A. C. (2016). Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. *Ecology Letters*, 19(12):1419–1428.
- Gillman, L. N., Wright, S. D., Cusens, J., McBride, P. D., Malhi, Y., and Whittaker, R. J. (2015). Latitude,
- productivity and species richness: Latitude and productivity. Global Ecology and Biogeography, 24(1):107-
- 492 117.
- ⁴⁹³ Girardin, C. A. J., Malhi, Y., Aragão, L. E. O. C., Mamani, M., Huaraca Huasco, W., Durand, L., Feeley,
- 494 K. J., Rapp, J., Silva-Espejo, J. E., Silman, M., Salinas, N., and Whittaker, R. J. (2010). Net primary
- productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian
- 496 Andes: NET PRIMARY PRODUCTIVITY FROM ANDES TO AMAZON. Global Change Biology,
- 497 16(12):3176-3192.
- 498 Harris, I., Jones, P., Osborn, T., and Lister, D. (2014). Updated high-resolution grids of monthly climatic
- observations the CRU TS3.10 Dataset: UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY
- 500 CLIMATIC OBSERVATIONS. International Journal of Climatology, 34(3):623–642.
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005). Very high resolution
 - interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15):1965–1978.
- Huston, M. A. and Wolverton, S. (2009). The global distribution of net primary production: resolving the paradox. *Ecological Monographs*, 79(3):343–377.
- Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A.,
- Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law,
- B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari,
- F., and Williams, C. (2011). Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat,
- and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of
- Geophysical Research, 116:G00J07.
- Kerkhoff, A. J., Enquist, B. J., Elser, J. J., and Fagan, W. F. (2005). Plant allometry, stoichiometry and the
- temperature-dependence of primary productivity: Plant allometry, stoichiometry and productivity. Global
- Ecology and Biogeography, 14(6):585–598.
- 514 Larjavaara, M. and Muller-Landau, H. C. (2012). Temperature explains global variation in biomass among
- humid old-growth forests: Temperature and old-growth forest biomass. Global Ecology and Biogeography,
- 21(10):998-1006.
- Liang, J., Crowther, T. W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.-D., McGuire, A. D.,
- Bozzato, F., Pretzsch, H., de Miguel, S., Paquette, A., Herault, B., Scherer-Lorenzen, M., Barrett, C. B.,
- Glick, H. B., Hengeveld, G. M., Nabuurs, G.-J., Pfautsch, S., Viana, H., Vibrans, A. C., Ammer, C., Schall,
- P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J. V., Chen, H. Y. H., Lei, X., Schelhaas, M.-J.,

- Lu, H., Gianelle, D., Parfenova, E. I., Salas, C., Lee, E., Lee, B., Kim, H. S., Bruelheide, H., Coomes,
- D. A., Piotto, D., Sunderland, T., Schmid, B., Gourlet-Fleury, S., Sonke, B., Tavani, R., Zhu, J., Brandl,
- S., Vayreda, J., Kitahara, F., Searle, E. B., Neldner, V. J., Ngugi, M. R., Baraloto, C., Frizzera, L., Ba azy,
- R., Oleksyn, J., Zawi a-Nied wiecki, T., Bouriaud, O., Bussotti, F., Finer, L., Jaroszewicz, B., Jucker, T.,
- Valladares, F., Jagodzinski, A. M., Peri, P. L., Gonmadje, C., Marthy, W., OBrien, T., Martin, E. H.,
- Marshall, A. R., Rovero, F., Bitariho, R., Niklaus, P. A., Alvarez-Loayza, P., Chamuya, N., Valencia,
- R., Mortier, F., Wortel, V., Engone-Obiang, N. L., Ferreira, L. V., Odeke, D. E., Vasquez, R. M., Lewis,
- S. L., and Reich, P. B. (2016). Positive biodiversity-productivity relationship predominant in global forests.
- science, 354(6309):aaf8957-aaf8957.
- Litton, C. M., Raich, J. W., and Ryan, M. G. (2007). Carbon allocation in forest ecosystems. Global Change
 Biology, 13(10):2089–2109.
- Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S. L., Schulze, E. D.,
- Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D.,
- Bonnefond, J. M., Chambers, J., Ciais, P., Cook, B., Davis, K. J., Dolman, A. J., Gielen, B., Goulden, M.,
- Grace, J., Granier, A., Grelle, A., Griffis, T., Grünwald, T., Guidolotti, G., Hanson, P. J., Harding, R.,
- Hollinger, D. Y., Hutyra, L. R., Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B. E.,
- Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L.,
- Moncrieff, J., Moors, E., Munger, J. W., Nikinmaa, E., Ollinger, S. V., Pita, G., Rebmann, C., Roupsard,
- O., Saigusa, N., Sanz, M. J., Seufert, G., Sierra, C., Smith, M. L., Tang, J., Valentini, R., Vesala, T.,
- and Janssens, I. A. (2007). CO ₂ balance of boreal, temperate, and tropical forests derived from a global
- ⁵⁴¹ database. *Global Change Biology*, 13(12):2509–2537.
- Malhi, Y. (2012). The productivity, metabolism and carbon cycle of tropical forest vegetation: Carbon cycle of tropical forests. *Journal of Ecology*, 100(1):65–75.
- Malhi, Y., Girardin, C. A. J., Goldsmith, G. R., Doughty, C. E., Salinas, N., Metcalfe, D. B., Huaraca Huasco,
- W., Silva-Espejo, J. E., del Aguilla-Pasquell, J., Farfán Amézquita, F., Aragão, L. E. O. C., Guerrieri, R.,
- Ishida, F. Y., Bahar, N. H. A., Farfan-Rios, W., Phillips, O. L., Meir, P., and Silman, M. (2017). The
- variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget
- perspective. New Phytologist, 214(3):1019–1032.
- Michaletz, S. T., Cheng, D., Kerkhoff, A. J., and Enquist, B. J. (2014). Convergence of terrestrial plant production across global climate gradients. *Nature*, 512(7512):39–43.
- Michaletz, S. T., Kerkhoff, A. J., and Enquist, B. J. (2018). Drivers of terrestrial plant production across
 broad geographical gradients. Global Ecology and Biogeography, 27(2):166–174.
- Moser, G., Leuschner, C., Hertel, D., Graefe, S., Soethe, N., and Iost, S. (2011). Elevation effects on the carbon
- budget of tropical mountain forests (S Ecuador): the role of the belowground compartment: ELEVATION
- EFFECTS ON FOREST CARBON CYCLING. Global Change Biology, 17(6):2211–2226.
- Newman, G. S., Arthur, M. A., and Muller, R. N. (2006). Above- and Belowground Net Primary Production in a Temperate Mixed Deciduous Forest. *Ecosystems*, 9(3):317–329.
- Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A.,
- Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen,

- A., Sitch, S., and Hayes, D. (2011). A Large and Persistent Carbon Sink in the World's Forests. *Science*, 333(6045):988–993.
- Piao, S., Luyssaert, S., Ciais, P., Janssens, I. A., Chen, A., Cao, C., Fang, J., Friedlingstein, P., Luo, Y., and
 Wang, S. (2010). Forest annual carbon cost: a global-scale analysis of autotrophic respiration. *Ecology*,
 91(3):652-661.
- Schuur, E. A. G. (2003). PRODUCTIVITY AND GLOBAL CLIMATE REVISITED: THE SENSITIVITY
 OF TROPICAL FOREST GROWTH TO PRECIPITATION. Ecology, 84(5):1165–1170.
- Taylor, P. G., Cleveland, C. C., Soper, F., Wieder, W. R., Dobrowski, S. Z., Doughty, C. E., and Townsend,
 A. R. (2019). Greater stem growth, woody allocation, and aboveground biomass in Paleotropical forests
 than in Neotropical forests. *Ecology*, 100(3):e02589.
- Taylor, P. G., Cleveland, C. C., Wieder, W. R., Sullivan, B. W., Doughty, C. E., Dobrowski, S. Z., and
 Townsend, A. R. (2017). Temperature and rainfall interact to control carbon cycling in tropical forests.
 Ecology Letters, 20(6):779–788.
- Trabucco, A. and Zomer, R. J. (2019). Global Aridity Index and Potential Evapo-Transpiration (ET0)
 Climate Database v2. page 10.
- Waide, R. B., Willig, M. R., Steiner, C. F., Mittelbach, G., Gough, L., Dodson, S. I., Juday, G. P., and
 Parmenter, R. (1999). The Relationship Between Productivity and Species Richness. Annual Review of
 Ecology and Systematics, 30(1):257–300.
- 578 Šímová, I. and Storch, D. (2017). The enigma of terrestrial primary productivity: measurements, models, 579 scales and the diversity-productivity relationship. *Ecography*, 40(2):239–252.