

CHAPITRE 2: INTERPOLATION POLYNOMIALE ET APPROXIMATION

Méthode d'interpolation de Newton

Soient n+1 points de coordonnées $(x_i,y_i)_{0 \le i \le n}$ tels que $x_i \ne x_j$, $\forall i,j \in \{0,...,n\}$ tels que $i \ne j$.

• Il existe un unique polynôme d'interpolation de Newton $P_n \in \mathbb{R}_n[X]$ vérifiant $P_n(x_i) = y_i, \forall i \in \{0, \dots, n\}.$

- Il existe un unique polynôme d'interpolation de Newton $P_n \in \mathbb{R}_n[X]$ vérifiant $P_n(x_i) = y_i, \forall i \in \{0, \cdots, n\}.$
- Le polynôme P_n s'exprime comme suit:

- Il existe un unique polynôme d'interpolation de Newton $P_n \in \mathbb{R}_n[X]$ vérifiant $P_n(x_i) = y_i, \forall i \in \{0, \dots, n\}.$
- Le polynôme P_n s'exprime comme suit:

$$P_n(x) = \sum_{i=0}^n \beta_i \omega_i(x), \quad x \in \mathbb{R}$$

$$= \beta_0 \underbrace{1}_{\omega_0} + \beta_1 \underbrace{(x-x_0)}_{\omega_1} + \dots + \beta_n \underbrace{(x-x_0)(x-x_1)\dots(x-x_{n-1})}_{\omega_n}.$$

- Il existe un unique polynôme d'interpolation de Newton $P_n \in \mathbb{R}_n[X]$ vérifiant $P_n(x_i) = y_i, \forall i \in \{0, \dots, n\}.$
- Le polynôme P_n s'exprime comme suit:

$$P_n(x) = \sum_{i=0}^n \beta_i \omega_i(x), \quad x \in \mathbb{R}$$

$$= \beta_0 \underbrace{1}_{\omega_0} + \beta_1 \underbrace{(x-x_0)}_{\omega_1} + \dots + \beta_n \underbrace{(x-x_0)(x-x_1)\dots(x-x_{n-1})}_{\omega_n}.$$

$$\omega_i(x) = \prod_{j=0}^{i-1} (x - x_j), \ \forall i \in \{1, ..., n\} \quad \text{et} \quad \omega_0(x) = 1.$$

- La famille de polynômes de Newton $\{\omega_0, \omega_1, \cdots, \omega_n\}$ associés aux points (x_i, y_i) , $i \in \{0, \cdots, n\}$ est une base de l'espace vectoriel $\mathbb{R}_n[X]$.
- Les coefficients de Newton β_i ($i \in \{0, \dots, n\}$) peuvent être déterminés en utilisant la méthode des différences divisées, qui seront définies ci-dessous, comme suit:

$$\beta_i = [y_0, ..., y_i].$$

Détermination des coefficients de Newton

Différences divisées

On considère (n+1) points $(x_i, y_i)_{0 \le i \le n}$ tels que $x_i \ne x_j$, $\forall i, j \in \{0, ..., n\}$ tels que $i \ne j$.

Détermination des coefficients de Newton

Différences divisées

On considère (n+1) points $(x_i,y_i)_{0 \le i \le n}$ tels que $x_i \ne x_j$, $\forall i,j \in \{0,...,n\}$ tels que $i \ne j$.

① La différence divisée d'ordre 0 de x_i ($0 \le i \le n$) est donnée par

$$[y_i] = y_i.$$

Détermination des coefficients de Newton

Différences divisées

On considère (n+1) points $(x_i, y_i)_{0 \le i \le n}$ tels que $x_i \ne x_j$, $\forall i, j \in \{0, ..., n\}$ tels que $i \ne j$.

① La différence divisée d'ordre 0 de x_i ($0 \le i \le n$) est donnée par

$$[y_i] = y_i.$$

② La différence divisée d'ordre 1 de x_{i-1} et x_i ($0 < i \le n$) est donnée par

$$[y_{i-1}, y_i] = \frac{y_i - y_{i-1}}{x_i - x_{i-1}}$$
.

3 La différence divisée d'ordre n des n+1 points est définie par récurrence entre deux différences divisées d'ordre n comme suit :

$$[y_0, y_1, \cdots, y_n] = \frac{[y_1, \cdots, y_n] - [y_0, y_1, \cdots, y_{n-1}]}{x_n - x_0}$$

3 La différence divisée d'ordre n des n+1 points est définie par récurrence entre deux différences divisées d'ordre n comme suit :

$$[y_0, y_1, \cdots, y_n] = \frac{[y_1, \cdots, y_n] - [y_0, y_1, \cdots, y_{n-1}]}{x_n - x_0}$$

Par exemple, pour n=2, une différence divisée d'ordre 2 est donnée par

$$[y_0, y_1, y_2] = \frac{[y_1, y_2] - [y_0, y_1]}{x_2 - x_0}$$
$$= \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0}}{x_2 - x_0}$$

Remarque

$$P_n(x_k) = \sum_{i=0}^n \beta_i w_i(x_k) = \sum_{i=0}^k \beta_i w_i(x_k) + \underbrace{\sum_{i=k+1}^n \beta_i w_i(x_k)}_{=0}$$

$$\beta_0 =$$
?

$$P_n(x_0) = \sum_{i=0}^n \beta_i \omega_i(x_0) = \beta_0$$

$$P_n(x_0) = y_0 = [y_0]$$

$$\Rightarrow \beta_0 = [y_0] : \text{ une différence divisée d'ordre } 0.$$

Remarque

$$P_n(x_k) = \sum_{i=0}^{n} \beta_i w_i(x_k) = \sum_{i=0}^{k} \beta_i w_i(x_k) + \underbrace{\sum_{i=k+1}^{n} \beta_i w_i(x_k)}_{=0}$$

$$\beta_0 =$$

$$P_n(x_0) = \sum_{i=0}^n \beta_i \omega_i(x_0) = \beta_0$$

$$P_n(x_0) = y_0 = [y_0]$$

$$\Rightarrow \beta_0 = [y_0] : \text{ une différence divisée d'ordre } 0.$$

$$\beta_1 = 2$$

$$P_n(x_1) = \sum_{i=0}^n \beta_i \omega_i(x_1)$$

$$= \beta_0 + \beta_1(x_1 - x_0) = y_0 + \beta_1(x_1 - x_0)$$

$$P_n(x_1) = y_1$$

$$\Rightarrow y_0 + \beta_1(x_1 - x_0) = y_1.$$

 $\beta_1 = \frac{y_1 - y_0}{x_1 - x_0} = [y_0, y_1]$: une différence divisée d'ordre 1.

•
$$\beta_i \ (i \in \{0, \cdots, n\}) = ?$$

Par récurrence,

$$\beta_i=\frac{[y_1,...,y_i]-[y_0,....,y_{i-1}]}{x_i-x_0}=[y_0,...,y_i]$$
: une différence divisée d'ordre $i.$

			road chiphroath avec	I a
x_i	y_i	$f[x_{i-1}, x_i]$	$f[x_{i-2}, x_{i-1}, x_i]$	$f[x_{i-3}, x_{i-2}, x_{i-1}, x_i]$
x_0	y_0			
x_1	y_1			
x_2	y_2			
x_3	y_3			

x_i	y_i	$f[x_{i-1}, x_i]$	$f[x_{i-2}, x_{i-1}, x_i]$	$f[x_{i-3}, x_{i-2}, x_{i-1}, x_i]$
x_0	y_0			
x_1	y_1	$f[x_0, x_1] = \frac{y_1 - y_0}{x_1 - x_0}$		
x_2	y_2	$f[x_1, x_2] = \frac{y_2 - y_1}{x_2 - x_1}$		
x_3	y_3	$f[x_2, x_3] = \frac{y_3 - y_2}{x_3 - x_2}$		

			L	
x_i	y_i	$f[x_{i-1}, x_i]$	$f[x_{i-2}, x_{i-1}, x_i]$	$f[x_{i-3}, x_{i-2}, x_{i-1}, x_i]$
x_0	y_0			
x_1	y_1	$f[x_0, x_1] = \frac{y_1 - y_0}{x_1 - x_0}$		
x_2	y_2	$f[x_1, x_2] = \frac{y_2 - y_1}{x_2 - x_1}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	
x_3	y_3	$f[x_2, x_3] = \frac{y_3 - y_2}{x_3 - x_2}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	

				- F
x_i	y_i	$f[x_{i-1}, x_i]$	$f[x_{i-2}, x_{i-1}, x_i]$	$f[x_{i-3}, x_{i-2}, x_{i-1}, x_i]$
x_0	y_0			
x_1	y_1	$f[x_0, x_1] = \frac{y_1 - y_0}{x_1 - x_0}$		
x_2	y_2	$f[x_1, x_2] = \frac{y_2 - y_1}{x_2 - x_1}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	
x_3	y_3	$f[x_2, x_3] = \frac{y_3 - y_2}{x_3 - x_2}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$

Equipe AN Analyse numérique ESPRIT

Retrouver l'expression du polynôme d'interpolation de la fonction f définie dans l'exercice 1 dans la présentation de la méthode de Lagrange en utilisant la méthode de Newton.

x_i	$x_0 = -1$	$x_1 = 0$	$x_2 = 1$
$f(x_i)$	$f(x_0) = 2$	$f(x_1) = 1$	$f(x_2) = -1$

Retrouver l'expression du polynôme d'interpolation de la fonction f définie dans l'exercice 1 dans la présentation de la méthode de Lagrange en utilisant la méthode de Newton.

x_i	$x_0 = -1$	$x_1 = 0$	$x_2 = 1$
$f(x_i)$	$f(x_0) = 2$	$f(x_1) = 1$	$f(x_2) = -1$

Solution

En utilisant la méthode de Newton,

$$P_2(x) = \beta_0 + \beta_1(x - x_0) + \beta_2(x - x_0)(x - x_1),$$

Retrouver l'expression du polynôme d'interpolation de la fonction f définie dans l'exercice 1 dans la présentation de la méthode de Lagrange en utilisant la méthode de Newton.

x_i	$x_0 = -1$	$x_1 = 0$	$x_2 = 1$
$f(x_i)$	$f(x_0) = 2$	$f(x_1) = 1$	$f(x_2) = -1$

Solution

En utilisant la méthode de Newton,

$$P_2(x) = \beta_0 + \beta_1(x - x_0) + \beta_2(x - x_0)(x - x_1),$$

avec

$$\beta_0 = y_0 = 2,$$

Retrouver l'expression du polynôme d'interpolation de la fonction f définie dans l'exercice 1 dans la présentation de la méthode de Lagrange en utilisant la méthode de Newton.

x_i	$x_0 = -1$	$x_1 = 0$	$x_2 = 1$
$f(x_i)$	$f(x_0) = 2$	$f(x_1) = 1$	$f(x_2) = -1$

Solution

En utilisant la méthode de Newton,

$$P_2(x) = \beta_0 + \beta_1(x - x_0) + \beta_2(x - x_0)(x - x_1),$$

avec

$$\beta_0 = y_0 = 2,$$
 $\beta_1 = [y_0, y_1] = \frac{y_1 - y_0}{x_1 - x_0} = -1,$

Retrouver l'expression du polynôme d'interpolation de la fonction f définie dans l'exercice 1 dans la présentation de la méthode de Lagrange en utilisant la méthode de Newton.

x_i	$x_0 = -1$	$x_1 = 0$	$x_2 = 1$
$f(x_i)$	$f(x_0) = 2$	$f(x_1) = 1$	$f(x_2) = -1$

Solution

En utilisant la méthode de Newton,

$$P_2(x) = \beta_0 + \beta_1(x - x_0) + \beta_2(x - x_0)(x - x_1),$$

avec

$$\beta_0 = y_0 = 2,$$

$$\beta_1 = [y_0, y_1] = \frac{y_1 - y_0}{x_1 - x_0} = -1,$$

$$\beta_2 = [y_0, y_1, y_2] = \frac{[y_1, y_2] - [y_0, y_1]}{x_2 - x_0} = \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0}}{x_2 - x_0} = -\frac{1}{2}.$$

Retrouver l'expression du polynôme d'interpolation de la fonction f définie dans l'exercice 1 dans la présentation de la méthode de Lagrange en utilisant la méthode de Newton.

x_i	$x_0 = -1$	$x_1 = 0$	$x_2 = 1$
$f(x_i)$	$f(x_0) = 2$	$f(x_1) = 1$	$f(x_2) = -1$

Solution

En utilisant la méthode de Newton,

$$P_2(x) = \beta_0 + \beta_1(x - x_0) + \beta_2(x - x_0)(x - x_1),$$

$$\beta_0 = y_0 = 2,$$

$$\beta_1 = [y_0, y_1] = \frac{y_1 - y_0}{x_1 - x_0} = -1,$$

$$\beta_2 = [y_0, y_1, y_2] = \frac{[y_1, y_2] - [y_0, y_1]}{x_2 - x_0} = \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0}}{x_2 - x_0} = -\frac{1}{2}.$$

$$P_2(x) = 2 - (x - x_0) - \frac{1}{2}(x - x_0)(x - x_1)$$

Retrouver l'expression du polynôme d'interpolation de la fonction f définie dans l'exercice 1 dans la présentation de la méthode de Lagrange en utilisant la méthode de Newton.

x_i	$x_0 = -1$	$x_1 = 0$	$x_2 = 1$
$f(x_i)$	$f(x_0) = 2$	$f(x_1) = 1$	$f(x_2) = -1$

Solution

En utilisant la méthode de Newton,

$$P_2(x) = \beta_0 + \beta_1(x - x_0) + \beta_2(x - x_0)(x - x_1),$$

$$\beta_0 = y_0 = 2,$$

$$\beta_1 = [y_0, y_1] = \frac{y_1 - y_0}{x_1 - x_0} = -1,$$

$$\beta_2 = [y_0, y_1, y_2] = \frac{[y_1, y_2] - [y_0, y_1]}{x_2 - x_0} = \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0}}{x_2 - x_0} = -\frac{1}{2}.$$

$$D'où$$

$$P_2(x) = 2 - (x - x_0) - \frac{1}{2}$$

$$= -\frac{1}{2}x^2 - \frac{3}{2}x + 1.$$

$$P_2(x) = 2 - (x - x_0) - \frac{1}{2}(x - x_0)(x - x_1)$$
$$= -\frac{1}{2}x^2 - \frac{3}{2}x + 1.$$

Exercice (Asynchrone)

Répondre aux questions de l'exemple introductif en utilisant la méthode d'interpolation de Newton.

Avantage de la méthode de Newton

Un des avantages de la méthode de Newton pour l'interpolation des points $(x_i,y_i)_{0\leq i\leq n}$ tels que $x_i\neq x_j,\, \forall i,j\in\{0,...,n\}$ tels que $i\neq j$ est le suivant: Si on note par P_k le polynôme d'interplation tronqué (le polynôme de degré inférieur ou égal à $k,\, 0\leq k< n$ qui n'interpole que les points $(x_i,y_i)_{0\leq i\leq k}$) exprimé dans la base de polynômes de Newton $\{\omega_1,\cdots,\omega_k\}$, comme suit :

$$P_k(x) = \beta_0 \underbrace{1}_{\omega_0} + \beta_1 \underbrace{(x - x_0)}_{\omega_1} + \beta_2 \underbrace{(x - x_0)(x - x_1)}_{\omega_2} + \dots + \beta_k \underbrace{(x - x_0)(x - x_1)\dots(x - x_{k-1})}_{\omega_k},$$

alors P_{k+1} , le polynôme tronqué de degré inférieur ou égal à k+1 interpolant les points $(x_i, y_i)_{0 \le i \le k+1}$, sera exprimé en fonction de P_k comme suit :

$$P_{k+1}(x) = P_k(x) + \beta_{k+1} \underbrace{(x - x_0)(x - x_1)..(x - x_k)}_{\omega_{k+1}}.$$

Par conséquent, en considérant un polynôme P_n qui interpole les (n+1) points $(x_i,y_i)_{0\leq i\leq n}$, et en ajoutant un autre point (x_{n+1},y_{n+1}) , alors le polynôme P_{n+1} interpolant les n+2 points peut être déduit de P_n comme suit :

$$\mathbf{P}_{n+1}(x) = P_n(x) + \beta_{n+1} \underbrace{(x - x_0)(x - x_1)..(x - x_n)}_{\omega_{n+1}}.$$