

planetmath.org

Math for the people, by the people.

criteria for cyclic rings to be isomorphic

 ${\bf Canonical\ name} \quad {\bf Criteria For Cyclic Rings To Be Isomorphic}$

Date of creation 2013-03-22 16:02:39 Last modified on 2013-03-22 16:02:39 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 14

Author Wkbj79 (1863)

Entry type Theorem Classification msc 13A99 Classification msc 16U99 **Theorem.** Two cyclic rings are isomorphic if and only if they have the same order and the same behavior.

Proof. Let R be a cyclic ring with behavior k and r be a http://planetmath.org/Generatorgenera of the additive group of R with $r^2 = kr$. Also, let S be a cyclic ring.

If R and S have the same order and the same behavior, then let s be a generator of the additive group of S with $s^2 = ks$. Define $\varphi \colon R \to S$ by $\varphi(cr) = cs$ for every $c \in \mathbb{Z}$. This map is clearly well defined and surjective. Since R and S have the same order, φ is injective. Since, for every $a, b \in \mathbb{Z}$, $\varphi(ar) + \varphi(br) = as + bs = (a + b)s = \varphi((a + b)r) = \varphi(ar + br)$ and

$$\varphi(ar)\varphi(br) = (as)(bs)$$

$$= (ab)s^{2}$$

$$= (ab)(ks)$$

$$= (abk)s$$

$$= \varphi((abk)r)$$

$$= \varphi((ab)(kr))$$

$$= \varphi((ab)r^{2})$$

$$= \varphi((ar)(br)),$$

it follows that φ is an isomorphism.

Conversely, let $\psi \colon R \to S$ be an isomorphism. Then R and S must have the same order. If R is infinite, then S is infinite, and k is a nonnegative integer. If R is finite, then k http://planetmath.org/Divisibilitydivides |R|, which equals |S|. In either case, k is a candidate for the behavior of S. Since r is a generator of the additive group of R and ψ is an isomorphism, $\psi(r)$ is a generator of the additive group of S. Since $(\psi(r))^2 = \psi(r^2) = \psi(kr) = k\psi(r)$, it follows that S has behavior k.