Paper Name:

AlphaGo - Mastering the game of Go with deep neural networks and tree search

Paper Goal:

A game player for Go

Techniques:

- → Summary:
 - ♦ Search Algorithm: Monte Carlo simulation with value and policy networks
 - ◆ Evaluation function: value networks
 - ◆ Select move: policy networks
- → Training strategy
 - Supervised learning
 - Predict human expert next move
 - Efficient learning update and high-quality gradient
 - ◆ Reinforcement learning
 - Optimize outcome (winning rate) of self-play game
 - Adjust policy
- → First stage:
 - ◆ Goal: predict expert moves
 - ◆ Model: a random rollout policy + supervised learning policy
 - Optimization: maximize the likelihood of a selected human move in state s
 - ◆ Training approach: SGD
- → Second stage
 - ◆ Goal: maximizing the winning rate
 - ◆ Model: RL policy network
 - ◆ Training approach: policy gradient reinforcement learning
 - ◆ Initialize weight to SL network
- → Final stage
 - ◆ Goal: predict outcome from a position
 - ◆ Model: value network
 - ◆ Optimization: minimize MSE state-outcome pair
 - ◆ Training approach: regression with SGD
- → Search
 - ◆ Monte Carlo search tree
 - ◆ A leaf node is evaluated by
 - Value network
 - The outcome of a random rollout played out until the terminal

Results:

- → 99.8% winning rate against other Go programs
- → Defeat the human European Go champion by 5 games to 0