

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Europäisches Patentamt
European Patent Office
Office européen des brevets

100
0 212 903 B1

⑪ Publication number:

⑫

EUROPEAN PATENT SPECIFICATION

⑯ Date of publication of patent specification: 30.12.92 ⑮ Int. Cl.⁵: C07K 5/06, C07K 5/02,
C07K 1/00, C07D 307/62,
A61K 37/62, C07C 271/22,
C07C 269/06, C07D 307/33

⑰ Application number: 86305995.2

⑯ Date of filing: 04.08.86

⑨ Polypeptide derivatives containing 5-amino-2,5-disubstituted-4-hydroxypentanoic acid residues.

⑩ Priority: 09.08.85 US 764168
30.04.86 US 858324

⑩ Date of publication of application:
04.03.87 Bulletin 87/10

⑯ Publication of the grant of the patent:
30.12.92 Bulletin 92/53

⑭ Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

⑯ References cited:
EP-A- 0 045 665
EP-A- 0 081 783
EP-A- 0 155 809
EP-A- 0 173 481
WO-A-84/03044

⑬ Proprietor: PFIZER INC.
235 East 42nd Street
New York, N.Y. 10017(US)

⑭ Inventor: Bindra, Jasjit Singh
81, Eastwood Road
Groton Connecticut(US)
Inventor: Rosati, Robert Louis
Box 66A, Deans Mill Road
Stonington Connecticut(US)
Inventor: Kleinman, Edward Fox
544A Shennecossett Road
Groton Connecticut(US)

⑭ Representative: Moore, James William, Dr.
Pfizer Limited Ramsgate Road
Sandwich Kent CT13 9NJ(GB)

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B54
B55
B56
B57
B58
B59
B60
B61
B62
B63
B64
B65
B66
B67
B68
B69
B70
B71
B72
B73
B74
B75
B76
B77
B78
B79
B80
B81
B82
B83
B84
B85
B86
B87
B88
B89
B90
B91
B92
B93
B94
B95
B96
B97
B98
B99
B100
B101
B102
B103
B104
B105
B106
B107
B108
B109
B110
B111
B112
B113
B114
B115
B116
B117
B118
B119
B120
B121
B122
B123
B124
B125
B126
B127
B128
B129
B130
B131
B132
B133
B134
B135
B136
B137
B138
B139
B140
B141
B142
B143
B144
B145
B146
B147
B148
B149
B150
B151
B152
B153
B154
B155
B156
B157
B158
B159
B160
B161
B162
B163
B164
B165
B166
B167
B168
B169
B170
B171
B172
B173
B174
B175
B176
B177
B178
B179
B180
B181
B182
B183
B184
B185
B186
B187
B188
B189
B190
B191
B192
B193
B194
B195
B196
B197
B198
B199
B200
B201
B202
B203
B204
B205
B206
B207
B208
B209
B210
B211
B212
B213
B214
B215
B216
B217
B218
B219
B220
B221
B222
B223
B224
B225
B226
B227
B228
B229
B230
B231
B232
B233
B234
B235
B236
B237
B238
B239
B240
B241
B242
B243
B244
B245
B246
B247
B248
B249
B250
B251
B252
B253
B254
B255
B256
B257
B258
B259
B260
B261
B262
B263
B264
B265
B266
B267
B268
B269
B270
B271
B272
B273
B274
B275
B276
B277
B278
B279
B280
B281
B282
B283
B284
B285
B286
B287
B288
B289
B290
B291
B292
B293
B294
B295
B296
B297
B298
B299
B300
B301
B302
B303
B304
B305
B306
B307
B308
B309
B310
B311
B312
B313
B314
B315
B316
B317
B318
B319
B320
B321
B322
B323
B324
B325
B326
B327
B328
B329
B330
B331
B332
B333
B334
B335
B336
B337
B338
B339
B340
B341
B342
B343
B344
B345
B346
B347
B348
B349
B350
B351
B352
B353
B354
B355
B356
B357
B358
B359
B360
B361
B362
B363
B364
B365
B366
B367
B368
B369
B370
B371
B372
B373
B374
B375
B376
B377
B378
B379
B380
B381
B382
B383
B384
B385
B386
B387
B388
B389
B390
B391
B392
B393
B394
B395
B396
B397
B398
B399
B400
B401
B402
B403
B404
B405
B406
B407
B408
B409
B410
B411
B412
B413
B414
B415
B416
B417
B418
B419
B420
B421
B422
B423
B424
B425
B426
B427
B428
B429
B430
B431
B432
B433
B434
B435
B436
B437
B438
B439
B440
B441
B442
B443
B444
B445
B446
B447
B448
B449
B450
B451
B452
B453
B454
B455
B456
B457
B458
B459
B460
B461
B462
B463
B464
B465
B466
B467
B468
B469
B470
B471
B472
B473
B474
B475
B476
B477
B478
B479
B480
B481
B482
B483
B484
B485
B486
B487
B488
B489
B490
B491
B492
B493
B494
B495
B496
B497
B498
B499
B500
B501
B502
B503
B504
B505
B506
B507
B508
B509
B510
B511
B512
B513
B514
B515
B516
B517
B518
B519
B520
B521
B522
B523
B524
B525
B526
B527
B528
B529
B530
B531
B532
B533
B534
B535
B536
B537
B538
B539
B540
B541
B542
B543
B544
B545
B546
B547
B548
B549
B550
B551
B552
B553
B554
B555
B556
B557
B558
B559
B560
B561
B562
B563
B564
B565
B566
B567
B568
B569
B570
B571
B572
B573
B574
B575
B576
B577
B578
B579
B580
B581
B582
B583
B584
B585
B586
B587
B588
B589
B590
B591
B592
B593
B594
B595
B596
B597
B598
B599
B600
B601
B602
B603
B604
B605
B606
B607
B608
B609
B610
B611
B612
B613
B614
B615
B616
B617
B618
B619
B620
B621
B622
B623
B624
B625
B626
B627
B628
B629
B630
B631
B632
B633
B634
B635
B636
B637
B638
B639
B640
B641
B642
B643
B644
B645
B646
B647
B648
B649
B650
B651
B652
B653
B654
B655
B656
B657
B658
B659
B660
B661
B662
B663
B664
B665
B666
B667
B668
B669
B670
B671
B672
B673
B674
B675
B676
B677
B678
B679
B680
B681
B682
B683
B684
B685
B686
B687
B688
B689
B690
B691
B692
B693
B694
B695
B696
B697
B698
B699
B700
B701
B702
B703
B704
B705
B706
B707
B708
B709
B710
B711
B712
B713
B714
B715
B716
B717
B718
B719
B720
B721
B722
B723
B724
B725
B726
B727
B728
B729
B730
B731
B732
B733
B734
B735
B736
B737
B738
B739
B740
B741
B742
B743
B744
B745
B746
B747
B748
B749
B750
B751
B752
B753
B754
B755
B756
B757
B758
B759
B760
B761
B762
B763
B764
B765
B766
B767
B768
B769
B770
B771
B772
B773
B774
B775
B776
B777
B778
B779
B780
B781
B782
B783
B784
B785
B786
B787
B788
B789
B790
B791
B792
B793
B794
B795
B796
B797
B798
B799
B800
B801
B802
B803
B804
B805
B806
B807
B808
B809
B810
B811
B812
B813
B814
B815
B816
B817
B818
B819
B820
B821
B822
B823
B824
B825
B826
B827
B828
B829
B830
B831
B832
B833
B834
B835
B836
B837
B838
B839
B840
B841
B842
B843
B844
B845
B846
B847
B848
B849
B850
B851
B852
B853
B854
B855
B856
B857
B858
B859
B860
B861
B862
B863
B864
B865
B866
B867
B868
B869
B870
B871
B872
B873
B874
B875
B876
B877
B878
B879
B880
B881
B882
B883
B884
B885
B886
B887
B888
B889
B890
B891
B892
B893
B894
B895
B896
B897
B898
B899
B900
B901
B902
B903
B904
B905
B906
B907
B908
B909
B910
B911
B912
B913
B914
B915
B916
B917
B918
B919
B920
B921
B922
B923
B924
B925
B926
B927
B928
B929
B930
B931
B932
B933
B934
B935
B936
B937
B938
B939
B940
B941
B942
B943
B944
B945
B946
B947
B948
B949
B950
B951
B952
B953
B954
B955
B956
B957
B958
B959
B960
B961
B962
B963
B964
B965
B966
B967
B968
B969
B970
B971
B972
B973
B974
B975
B976
B977
B978
B979
B980
B981
B982
B983
B984
B985
B986
B987
B988
B989
B990
B991
B992
B993
B994
B995
B996
B997
B998
B999
B1000

PEPTIDES, STRUCTURE AND FUNCTION,
Proc. of the 9th Am. Peptide Symp., Toronto,
June 1985, pages 4615-4625; Pierce Chem.
Co., Rockford, US, B.E. EVANS et al.: "A
stereocontrolled synthesis of hydrox-
ethylene dipeptide isosteres using novel,
chiral aminoalkyl epoxides; new renin inhibi-
tor analogs"

J.MED. CHEM., vol. 26, 1983, pages 1457-1462;
Am. Chem. Soc., US R.L. JOHNSON et al.:
"Inhibition of renin by angiotensinogen pep-
tide fragments containing the hydroxy ami-
no acid residue
5-amino-3-hydroxy-7-methyloctanoic acid"

J.ORG. CHEM., vol. 45, 1980, pages 28-29;
Am. Soc., US, M.M. MIDLAND et al.:
"Synthesis of alkyl 4-hydroxy-2-alkynoates"

ANGEW. CHEM., Int. Ed. Engl., vol 23, no. 2,
1984, pages 143-145; Verlag Chemie GmbH,
Weinheim, DE, H-J. GAIS: "Stereoselective
synthesis of (E)-4-hydroxy-2-alkenoic acid
esters from aldehydes and the d3-building
block ethyl lithiopropionate"

Description

The present invention is concerned with intermediates useful for making peptide derivatives containing 5-amino-2,5-disubstituted-4-hydroxypentanoic acid residues, which are useful for inhibiting the angiotensinogen-cleaving action of the enzyme renin.

The proteolytic enzyme renin, which has a molecular weight of about 40,000, is produced in and secreted into the blood by the kidney. It is known to be active *in vivo* in cleaving the naturally-occurring plasma glycoprotein angiotensinogen. In the case of human angiotensinogen, cleavage is at the bond between the leucine (10th) and valine (11th) amino acid residues at the N-terminal end of the angioten-

The circulating N-terminal decapeptide (angiotensin I) formed by the above cleaving action of renin is subsequently broken down by the body to an octapeptide known as angiotensin II. Angiotensin II is known to be a potent pressor substance, i.e. a substance that is capable of inducing a significant increase in blood pressure, and is believed to act by causing the constriction of blood vessels and the release of the sodium-retaining hormone aldosterone from the adrenal gland. Thus, the renin-angiotensinogen system has been implicated as a causative factor in certain forms of hypertension.

25 One means of alleviating the adverse effects of the functioning of the renin-angiotensinogen system is
the administration of a substance capable of inhibiting the angiotensinogen-cleaving action of renin. A
number of such substances are known, including antirenin antibodies, pepstatin and naturally-occurring
phospholipid compounds. European Patent Application No. 77,028 discloses a series of renin-inhibiting
polypeptide compounds having a non-terminal statine (Sta; 4-amino-3-hydroxy-6-methylheptanoic acid) or
30 statine derivative. Including Sta, the vast majority of compounds exemplified contain 6 or more aminoacid
residues. Exemplary of the few shortest chains there disclosed are:

Acetyl-Phe-His-Sta-Leu-Phe-NH₂, and

t-Butyloxycarbonyl-Phe-His-Sta-Leu-Phe-NH₂. There are invariably at least two amino acid residues each side of statine. The di- or polypeptidyl-statyl group is invariably attached to a lipophilic amino acid, most often leucine. (See also U.S. Patents 4,470,971 and 4,478,826).

European Patent Application No. 45,665 and U.S. Patent 4,424,207 disclose a series of renin-inhibiting polypeptide derivatives of the formula:

where A is for example t-butoxycarbonyl, B is His or other basic aminoacyl group, D is Val, Ile or other lipophilic aminoacyl residue, E is Tyr, Phe, His or other aromatic aminoacyl residue, R^a and R^b are each isopropyl, isobutyl, benzyl or other lipophilic amino-acid type sidechain, and Y^c is a terminal acid, ester or amide type group. Including the central 5-aminopentanoic acid residues, these compounds are invariably heptapeptides, i.e., N-tetrapeptidyl-5-aminopentanoyl-lipophilic aminoacyl-aromatic amino-acid derivatives.

The article "Pept. Struct. Funct.", Proc. 9th Am. Pept. Symp. 4615-4625 (1985) describes a stereocontrolled 6-step synthesis of hydroxyethylene dipeptide isosteres from chiral aminoalkyl epoxides. J. Org. Chem. 45 28-29 (1980) and J. Med. Chem. 26 1457-1462 (1983) describe the addition of organic lithium compounds to aldehydes to produce racemic mixtures of alcohols.

55 Certain compounds possess exceptional value as renin-inhibiting agents. These compounds are peptide derivatives of the formula:

10 or a pharmaceutically acceptable salt thereof, wherein
n and m are each 1 or 0, the sum of n and m being at least 1;
W is

wherein R⁵ is phenyl, 1-naphthyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-imidazolyl, propyl or isopropyl; W¹ is

w^2 is

where R⁶ is -NH₂,

55 or -CH₂NH₂;
when n is 1, R is hydrogen, an amino-protecting acyl moiety having a molecular weight of less than 500, prolyl, pyroglytamyl, or prolyl or pyroglutamyl protected on nitrogen with said amino-protecting acyl

moiety; and when n is 0, R is phenoxyacetyl or 2-benzyl-3-phenylpropionyl (dibenzylacetyl);

R¹ and R² are each independently hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkenyl, phenyl, naphthyl, (C₄-C₇)-cycloalkyl, (C₄-C₇)cycloalkenyl, (C₇-C₉)phenylalkyl, (C₁₁-C₁₃)naphthylalkyl, (C₅-C₁₀)(cycloalkyl)-alkyl, (C₅-C₁₀)(cycloalkenyl)alkyl, or one of said groups mono- or disubstituted on the aromatic ring with the same or

5 different groups selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, fluoro or chloro; and

(a) R³ and R⁴ are taken separately, and are each independently hydrogen, (C₁-C₆)alkyl, phenyl, naphthyl, (C₄-C₇)cycloalkyl, adamantyl, (C₇-C₉)phenylalkyl, (C₁₁-C₁₃)naphthylalkyl, (C₅-C₁₀)(cycloalkyl)-alkyl or adamantyl; or R³ is hydrogen and R⁴ is

10

15 p and q are each independently zero or an integer from 1 to 6;

r is 0 or 1;

Q is -CH₂-, -CH=CH-, -O-, -NH-, -CHOH- or -CO-;

Y is methyl, phenyl, -COOR⁹, -CONR⁹R¹⁰, -CONHCOOCH₂C₆H₅, NH₂, -NHCOCH₂C₆H₅,

20

30 and R⁷, R⁸, R⁹ and R¹⁰ are each independently hydrogen, (C₁-C₆)alkyl, phenyl, (C₄-C₇)cycloalkyl, (C₇-C₉)phenylalkyl, (C₅-C₁₀)(cycloalkyl)alkyl, or adamantyl;

or

(b) R³ and R⁴ are taken together with the nitrogen to which they are attached to form a pyrrole, indoline, isoindoline, piperidine, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydroisoquinoline, perhydroazepine, or morpholine ring system.

The above-mentioned peptides may be made using intermediate compounds of the formula:

45

wherein

R¹ and R² are as defined above;

W³ is

50

where R¹⁴ is -NHCO₂CH₂CH₂C₆H₅,

or $-\text{CH}_2\text{NHCO}_2\text{C}_6\text{H}_5$;

R¹¹ is hydrogen or t-butoxycarbonyl; and

10 (a) R¹² and R¹³ are taken separately and are each independently hydrogen, (C₁-C₆)alkyl, phenyl, naphthyl, (C₄-C₇)cycloalkyl, adamantyl, (C₇-C₉)phenylalkyl, (C₁₁-C₁₃)naphthylalkyl or (C₅-C₁₀)-(cycloalkyl)alkyl, or R¹² is hydrogen and R¹³ is

p, q, r and Q are as defined above;

20 Y¹ is methyl, phenyl, -COOR¹⁸, -CONR⁹R¹⁰, -CONHCOOCH₂C₆H₅, -NHCOC₆H₅.

³⁰ R⁷, R⁸, R⁹ and R¹⁰ are each independently as defined above; and R¹⁸ is an independent value of R⁷ other than hydrogen; or

35 (b) R^{12} and R^{13} are taken together with the nitrogen to which they are attached to form a pyrrole, indoline, isoindoline, piperidine, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydroisoquinoline, perhydroazepine, or morpholine ring system; and
an intermediate compound of the formula

The present invention relates to the following compounds (III) and (IV) which are useful for making the above-mentioned intermediates;

wherein R¹ is as defined above but is other than hydrogen.

The invention also relates to a stereo-selective process for making the compound of formula (III) which comprises reacting an aldehyde of formula:

35 with LiC≡CCOOR¹⁵, where R¹⁵ is (C₁-C₃)alkyl in a reaction-inert solvent at -50°C to -80°C to form a compound of formula:

This compound may be hydrogenated to yield a compound of formula (III) which may then be cyclised to yield a compound of formula (IV).

The invention also relates to a stereoselective process for the preparation of a compound of formula:

wherein R¹ is defined above and R² is (C₁-C₆)(2-alkenyl), (C₄-C₇)(cyclo-2-alkenyl), benzyl or naphthyl or one of these groups mono- or di-substituted on an aromatic with the same or different substituents which are (C₁-C₃)alkyl, (C₁-C₃)alkoxy, fluoro or chloro; which comprises reacting a lactone of formula (IV) above with substantially one molar equivalent of an organic halide of formula R²X where X is Cl, Br or I in the presence of a strong base of low nucleophilicity. R² is preferably an activating allyl or benzyl type group. X is preferably Br.

The above-mentioned reactions are illustrated as follows.

The starting protected L-amino acid is obtained commercially or by standard methods well known in the art, including, when desired, reduction of an aromatic ring, e.g. that of N-(t-butoxycarbonyl)phenylalanine methyl ester as exemplified below. The lower alkyl ester, preferably the methyl ester as shown is readily reduced to the aldehyde, for example, with diisobutylaluminium hydride in toluene at -50 to -80 °C. The aldehyde in turn is reacted with LiC=CCOOR¹⁵ (usually R¹⁵ is ethyl formed in situ from ethyl propiolate), again at -50 to -80 °C., in a reaction inert solvent such as tetrahydrofuran. A pair of diastereoisomers are generally formed at this stage, with the desired diastereoisomer (C) greatly predominating. The lesser, undesired isomer is preferably removed following hydrogenation of the triple bond (carried out under standard hydrogenation conditions, e.g., over a palladium catalyst, preferably Pd in BaSO₄, under relatively mild conditions; and formation of the lactone (e.g. by reacting in toluene in the presence of acetic acid).

The desired lactone epimer, having the 4S stereo-chemistry shown in formula (E) and (F), is then condensed with a halide, R^2X ($X = Cl, Br$ or I ; preferably $X = Br$) in the presence of a substantial excess, e.g., 2 to 2.5 molar equivalents of a strong base of low nucleophilicity, such as $LiN[CH(CH_3)_2]$ or preferably, lithium hexamethyldisilazide. Preferably the halide is an allylic or benzylic type halide (e.g., 2-methyl-2-propenyl bromide, benzyl bromide) with the double bond or aromatic ring subsequently hydrogenated if the saturated group R^2 is desired, e.g.,

Once again, the desired diastereoisomer, having trans (2R) stereochemistry as shown, predominates. It is separated by chromatography (before or after any required hydrogenation to produce the desired group R²). Alternatively, hydrogenation, particularly when R² at the stage of condensation is a benzyl group, can be deferred until latter in the overall synthesis of the desired compound. The preferred catalysts for hydrogenation of a simple olefin comprise Pd or Rh, while for reduction of phenyl to cyclohexyl, Rh is preferred.

All structural designations of stereochemistry shown herein represent absolute stereochemistry. The present invention is illustrated by the following examples. However, it should be understood that the invention is not limited to the details of these examples. All temperatures are in °C. and are ambient unless otherwise specified. All stripping of solvents was in vacuo. All standard solutions are in water unless otherwise specified. THF stands for tetrahydrofuran.

EXAMPLE 1

S-3-Cyclohexyl-2-(t-butoxycarbonylamino)propionaldehyde

Methyl S-3-cyclohexyl-2-(t-butoxycarbonylamino)propionate (51.2 g., 0.179 mol) was dissolved in 728 ml. of dry toluene and cooled to -78°. Diisobutylaluminium hydride (449 ml. of 1M in toluene, 0.449 mol) 40 was added dropwise over 1 hour, maintaining -70°C to -78°C. Methanol (13 ml.) was added at -70°, followed by 608 ml. of half-saturated sodium potassium tartrate, and the mixture warmed to ambient temperature. Ether (300 ml.) was added and the organic layer was separated and washed with 1 l. saturated sodium potassium tartrate. The original aqueous layer was extracted with 600 ml. fresh ether and backwashed with 600 ml. fresh saturated sodium potassium tartrate. The organic layers were combined, 45 dried over MgSO₄ and stripped to yield title product as a gum, contaminated with toluene on the basis of ¹H-nmr, 45.6 g; tlc Rf 0.45 (1:3 ethyl acetate:hexane); ¹H-nmr (CDCl₃) delta: 0.9 to 2.3 (m), which includes t-butyl singlet at 1.4, 3.0-4.8 (m), 4.9-5.2 (d), 9.6 (s).

EXAMPLE 2

Ethyl 4RS, 5S-6-Cyclohexyl-5-(t-butoxycarbonylamino)-4-hydroxy-2-hexynoate

Dry freshly distilled THF (117 mol) and diisopropylamine (22.0 ml., 15.8 g., 0.156 mol) were charged to a flame dried reaction flask under N₂ and the resulting solution cooled to -30° and butyllithium (76.9 ml. of 55 1.6M in hexane, 0.123 mol) added over 5 minutes. The solution was then cooled to -78° and ethyl propiolate (12.5 ml., 12.1 g., 0.123 mol) added dropwise over 20 minutes, maintaining the temperature -65° to -78°. After 30 minutes at -78°, title product of the preceding Example (19.52 g., 0.0866 mol) in 35 ml. THF was added over 20 minutes, again maintaining -65° to -78°. After 2 hours, 200 ml. of 5:1 THF:acetic

acid was added to the reaction mixture, and it was allowed to warm to ambient temperature and diluted with a half volume of ether and an equal volume of 10% citric acid.

The organic layer was separated, washed sequentially with 2 x 200 ml. fresh 10% citric acid, 200 ml. of brine and 2 x 200 ml. saturated NaHCO₃, dried over MgSO₄ and stripped to a dark red oil, 38.2 g. The latter was chromatographed on a 10 cm x 42 cm column of silica gel with tlc monitoring, eluting with 5 l. of 1:9 ethyl acetate:hexane. After 1500 ml. to develop the column, 500 ml. fractions were collected. Fractions 29-37 were combined and stripped to yield title product as an oil, 15.3 g.; tlc Rf 0.44 (3:7 ethyl acetate:hexane); ¹H-nmr (CDCl₃) delta: 1.0-2.0 (m, 25H) including singlet for the t-butyl group at 1.5, 3.8-5 (m, 6H).

10

EXAMPLE 34S,5S-6-Cyclohexyl-5-(t-butoxycarbonylamino)-gamma-hexanolactone

15 Title product of the preceding Example (18.28 g.) and 5% Pd/BaSO₄ (10.97 g.) were combined with 150 ml. ethyl acetate and hydrogenated for 2 hours under 4 atmospheres pressure of hydrogen. The catalyst was recovered by filtration and the filtrate stripped to yield intermediate ethyl 4R,5S-6-cyclohexyl-4-hydroxy-5-(t-butoxycarbonylamino)hexanoate, 19 g. The latter was taken up in 250 ml. of 2.5% acetic acid in toluene, refluxed 2.5 to 3 hours, stripped and the residue chromatographed on a 10 cm. x 30 cm. column of 20 silica gel, monitoring by tlc, eluting with 4 l. of 9:11 ether:hexane, 8 l. of 1:1 ether:hexane, 2 l. of 11:9 ether:hexane and finally 3 l. of 3:2 ether:hexane, collecting 28 x 400 ml. fractions, 6 x 150 ml. fractions and finally 11 x 400 ml. fractions. Fractions 17-24 were combined and co-stripped with ether to yield the predominant and desired, less polar, 4S,5S-title product as an oil, 9.13 g.; tlc Rf 0.5 (7:3 ether hexane). The more polar, 4R,5S-epimer of title product was isolated by stripping combined fractions 28-45 and crystallized by trituration with hexane, 1.77 g.; mp 101.5-103.5°.

EXAMPLE 4

30 2R,4S,5S- and 2S,4S,5S-6-Cyclohexyl-5-(t-butoxycarbonylamino)-2-(2-methyl-2-propenyl)-gamma-hexanolactone

Dry freshly distilled THF (30 ml.) and diisopropylamine (3.51 ml., 2.52 g., 0.0249 mol) were charged to a flame dried reaction flask under N₂, the resulting solution was cooled to -50°, butyllithium (13.9 ml. of 1.6M in hexane, 0.0222 mol) was added and the mixture further cooled to -78°. Title product of the preceding Example (2.77 g., 0.0089 mol) in 15 ml. THF was added dropwise over 10 minutes and the enolate allowed to form over a further 20 minutes at -78°, at which time 3-bromo-2-methyl-1-propene in 5ml. THF was added over 10 minutes, and the mixture stirred an additional 1 hour at -78°, quenched with 5 ml. saturated NH₄Cl, warmed to room temperature, diluted with a half volume of ether, washed 2 x 50 ml. 10% citric acid, 2 x 50 ml. saturated NaHCO₃ and 1 x 25 ml. brine, dried over MgSO₄ and stripped to an oil, 3.06 g., a mixture of the title epimers. The latter were separated by chromatography on 7 cm x 20 cm silica gel; monitoring by tlc; eluting sequentially with 2 l. of 1:9 ether:hexane, 4 l. of 3:17 ether:hexane, 2 l. of 1:4 ether:hexane, 2 l. of 1:3 ether:hexane, 2 l. of 7:13 ether:hexane and 2 l. of 1:1 ether:hexane; and collecting 125 ml. fractions. The less polar title product, having *trans* (2R) stereochemistry, was collected in fractions 30-48, combined and stripped to yield same as an oil, 1.17 g.; tlc Rf 0.45, (2:3 ether:hexane); ¹H-nmr (CDCl₃) delta 1.4 (s, 9H), 1.8 (s, 3H), 0.3-3.0 (m, 18H), 3.6-4.0 (m, 1H), 4.69 (s, 1H), 4.1-4.8 (m, 2H). Fractions 55-76 gave the more polar title product, also as an oil, 0.358 g., having *cis* (2S) stereochemistry; tlc Rf 0.36 (2:3 ether:hexane); ¹H-nmr identical to that of the less polar epimer.

EXAMPLE 5

50 2R,4S,5S- and 2S,4S,5S-6-Cyclohexyl-5-(t-butoxycarbonylamino)-2-(2-methylpropyl)-gamma-hexanolactone

The less polar title product of the preceding Example (1.17 g.) and 10% Pd/C (0.351 g.) were combined in 20 ml. ethyl acetate and hydrogenated at 4 atmospheres pressure for 2.5 hours, the catalyst recovered by filtration and the filtrate stripped to yield less polar title product (likewise having *trans*, i.e. 2R stereochemistry) as an oil which crystallized on standing, 1.20 g.; mp 88-93°; tlc Rf 0.65 (1:1 ether:hexane), Rf 0.73 (2:1 ethyl acetate:hexane). The other isomer, having *cis* (2S) stereochemistry, was obtained in like manner; tlc Rf 0.59 (1:1 ether:hexane). In subsequent Examples, which employ the present less polar

epimer of Rf 0.65 (1:1 ether:hexane). 2R stereochemistry is specified.

EXAMPLE 6

5 2R,4S,5S-6-Cyclohexyl-5-(t-butoxycarbonylamino)-2-benzyl-gamma-hexanolactone

Under N₂, dry di(isopropyl)amine (2.48 ml., 0.0177 mol; distilled from CaH₂) in dry THF (7.4 ml., distilled from K) was cooled to 0°. Butyllithium (11.0 ml. of 1.62M in hexane, 0.0177 mol) was added dropwise over 5 minutes. After stirring 15 minutes at 0°, the mixture was cooled to -78° and the less polar 10 4S,5S-title product of Example 3 (2.30 g., 0.0074 mol) in 3.7 ml. dry THF added over 5 minutes. After stirring 30 minutes more at -78°, benzyl bromide (0.923 ml., 0.0078 mol) in 3.7 ml. dry THF was added dropwise over 5 minutes. After 1 hour at -78°, the reaction was quenched by the addition of 10 ml. saturated NH₄Cl, warmed to room temperature, diluted with 25 ml. ether and the layers separated. The 15 organic layer was washed 2 x 15 ml. saturated NaHCO₃, dried (MgSO₄) and stripped to an oil (3.29 g.). The oil was chromatographed on 150 g. silica gel eluting with 2.5 liters 1:9 ethyl acetate:hexane and monitoring by tlc. Clean product fractions were combined and stripped to yield purified title product as a white oily solid, 1.46 g.; tlc Rf 0.60 (1:1 ethyl acetate:hexane). More polar starting material (0.91 g. of yellow oil about 70% pure, tlc Rf 0.4 in the same system) was also recovered from the column.

20 EXAMPLE 7

S-4-Methyl-2-(t-butoxycarbonylamino)pentanal

By the method of Example 1, N-(t-butoxycarbonyl)leucine methyl ester (28.0 g., 0.114 mol) was 25 converted to present title product, 21.7 g. (88%), as a pale yellow oil; tlc Rf 0.36 (2:3 ethyl acetate:hexane); ¹H-nmr (CDCl₃) delta (90 MHz) 0.97 (d, J = 6, 6H), 1.1-1.8 (m, 3H), 1.4 (s, 9H), 3.3-5.0 (m, 2H), 9.53 (s, 1H).

EXAMPLE 8

30 Ethyl 4RS, 5S-7-Methyl-5-(t-butoxycarbonylamino)-4-hydroxy-2-octynoate

By the method of Example 2, except to use gradient elution with 3:17 to 1:4 ethyl acetate:hexane on chromatography, the product of the preceding Example (0.4 g., 0.048 mol) was converted to present title 35 product, 5.45 g., tlc Rf 0.40 (3:7 ethyl acetate:hexane); ir (CHCl₃) 3438, 3340, 2233, 1711 cm⁻¹; ¹H-nmr (CDCl₃) delta (300 MHz) 0.97 (t, J = 7, 6H), 1.34 (t, J = 6, 3H), 1.48 (s, 9H), 1.48 (m, 2H), 1.70(m, 1H), 3.3-3.4 (m, 1H), 3.81-3.96 (m, 1H), 4.28 (q, J = 7, 2H), 4.45-4.58 (m, 1H), 4.68-4.78 (m, 1H).

Anal. Calcd. for C ₁₆ H ₂₇ NO ₅ :			
40	C, 61.32; Found: C, 61.38;	H, 8.68; H, 8.58;	N, 4.47 N, 4.42.

45 EXAMPLE 9

4S,5S-7-Methyl-5-(t-butoxycarbonylamino)-gamma-octanolactone

By the methods of Example 3, except to use gradient eluting with 2:3 to 1:0 ethyl acetate:hexane on 50 chromatography, the product of the preceding Example was converted to the desired less polar (4S,5S)-lactone product, crystallized by trituration with hexane, 3.10 g. (78%); m.p. 76-77°; ir (CHCl₃) 3439, 1775, 1711 cm⁻¹; ¹H-nmr (CDCl₃) delta (300 MHz) 0.92 (d, J = 6, 6H), 1.44 (s, 9H), 1.28-1.81 (m, 3H), 2.06-2.32 (m, 2H), 2.48-2.58 (m, 2H), 3.79-3.92 (broad s, 1H), 4.42-4.58 (m, 2H).

Anal. Calcd. for C ₁₄ H ₂₅ NO ₄ :			
Found:	C, 61.97; C, 62.15;	H, 9.29; H, 9.26;	N, 5.16 N, 5.12.

5

The more polar (4R,5S)lactone was also isolated in the chromatography in much lower yield and crystallized by hexane trituration, 0.68 g., m.p. 113.5-116°C.

10 EXAMPLE 10

2R,4S,5S-7-Methyl-5-(t-butoxycarbonylamino)-2-(2-methyl-2-propenyl)-gamma-octanolactoneMethod A

15 By the method of Example 4, the title product of the preceding Example (the less polar 4S,5S-epimer; 0.51 g., 0.0019 mol) was converted to present title product, in major portion, together with its more polar, 2S,4S,5S-epimer. The crude products (0.60 g.) were separated by chromatography on a 4.5 x 20 cm. column of silica gel, eluting with 1 l. each of 1:9, 3:17, 1:5, 1:4, 3:7 and 1:1 ether:hexane, collecting 23 ml. fractions. Fractions 51-85 gave purified title product, 0.21 g.; m.p. 128-132°;

20 [alpha]_D³⁰ -23.7° (c = 0.529, CH₃OH)

More polar 2S,4S,5S-epimer was isolated from fractions 89-120, 105 mg.; ¹H-nmr (CDCl₃) includes delta 4.8 (2s, 2H, vinyl protons) and 1.75 (s, 3H, vinyl methyl); a portion of this epimer was crystallized by slow evaporation from CH₂Cl₂:hexane, providing needle crystals, m.p. 99-101°.

25 Method B

To a suspension of lithium hexamethyldisilazide at -78°C., prepared by the dropwise addition of 5.1 ml. (8.11 mmol) a 1.6M solution of n-butyllithium in hexane to 1.79 ml. (1.39 g., 8.49 mmol) of hexamethyldisilazane in 3.5 ml. of THF at 0°C., was added dropwise a solution of 1.00 g. (3.69 mmol) of 4S,5S-lactone of the preceding Example in 3 ml. of THF. At the end of the addition the mixture became clear and it was allowed to stir an additional 15 minutes at -78°C. A solution of 0.548 g. (4.06 mmol) of freshly distilled methylbromide in 2ml. of THF was then added dropwise over 5 minutes, and the mixture was allowed to slowly warm to -40°C. over 2 hours before being quenched with 2ml. of saturated NH₄Cl. After warming to room temperature the reaction mixture was partitioned between 30 ml. of ether and 30 ml. of 10% citric acid. The organic layer was separated and washed with 10% citric acid (3 x 30 ml.) and saturated NaHCO₃, dried (MgSO₄), and evaporated to 1.11 g. of crude mixture of cis(2S) and trans(2R). These lactones were separated on 88 g. of silica gel with an ether-hexane (1:9 to 3:7) eluant. The fractions containing the less polar trans (2S)lactone [tlc Rf 0.55 (1:1 ether:hexane)] were combined and evaporated to 0.613 g. (51%) of a white solid, m.p. 132-135°C. Minor impurities (as indicated by tlc) were removed by trituration in hexane to afford 0.562 g. (47%) of analytically pure title 2R,4S,5S-lactone, m.p. 133-135°C. Crystals suitable for X-ray analysis were prepared by slow evaporation from hexanemethylene chloride. ¹H-nmr (CDCl₃) delta (250 MHz) 0.90 (J, J=6, 3H), 0.92 (d, J=6, 3H), 1.42 (s, 9H), 1.70 (s, 3H), 1.92-2.15 (m, 2H), 2.26-2.39 (m, 1H), 2.57 (dd, J=15 and 3, 1H), 2.72-2.88 (m, 1H), 3.77-3.90 (m, 1H), 4.34 (d, J=9, 1H), 4.33-4.51 (m, 1H), 4.70 (s, 1H), 4.81 (s, 1H); ¹³C-nmr (75 MHz) delta 21.8, 23.0, 24.7, 28.3, 30.0, 37.9, 39.5, 41.8, 51.7, 79.8, 80.7, 112.8, 141.9, 156.0, 179.3; IR (CHCl₃) 3439, 1768, 1712, 1654 cm⁻¹; [alpha]_D -25.0° (C = 0.5, CH₃OH). Anal. Calcd. for C₁₈H₃₁NO₄: C, 66.43; H, 9.60; N, 4.30. Found: C, 66.47; H, 9.59; N, 4.27. Single crystal X-ray analysis proved that the structure and stereochemical assignment of this compound was correct.

50 The fractions containing the more polar cis(2S) lactone (tlc Rf 0.44 1:11 ether:hexane) were combined and evaporated to 39 mg (3%) of a white solid, mp 96-98°C.; ¹H-nmr (CDCl₃) delta (250 MHz) 0.92 (d, J=6, 6H), 1.43 (s, 9H), 1.72 (s, 3H), 2.02-2.14 (m, 1H), 2.23-2.36 (m, 1H), 2.60-2.87 (m, 2H), 3.74-3.89 (m, 1H), 4.35-4.47 (m, 2H), 4.69 (s, 1H), 4.78 (s, 1H); ¹³C-nmr (75 MHz) delta 21.9, 22.0, 23.0, 24.8, 28.3, 30.7, 38.8, 38.9, 42.3, 50.1, 79.6, 80.4, 112.6, 142.0, 155.9, 178.7; IR (CHCl₃) 3443, 1774, 1714, 1656 cm⁻¹; [alpha]_D -0.6° (C = 0.5, CH₃OH). Anal. Calcd. for C₁₈H₃₁NO₄: C, 66.43; H, 9.60; N, 4.30. Found: C, 66.94; H, 9.45; N, 4.27.

EXAMPLE 11

2R,4S,5S-7-Methyl-5-(t-butoxycarbonylamino)-2-(2-methylpropyl)-gamma-octanolactone

An ethyl acetate (10 ml) solution of 438 mg. (1.35 mmol) of the title lactone of the preceding Example containing 44 mg. of 10% Pd/C was hydrogenated on a Parr Shaker apparatus at 50 psi (345KPa) for 2 hours. After filtration of the catalyst and evaporation of the solvent, 437 mg. (99%) of present title product was obtained as a white solid, mp 130-131 °C. ^1H -nmr (CDCl_3) delta (300 MHz) 0.84-0.97 (m, 12H), 1.41 (s, 9H), 1.86-1.96 (m, 1H), 2.30-2.42 (m, 1H), 2.56-2.68 (m, 1H), 3.76-3.89 (m, 1H), 4.35 (d, J = 8, 1H), 4.45 (broad t, 1H); ^{13}C -nmr (75 Hz) delta 21.3, 21.8, 22.9, 23.0, 24.8, 26.1, 28.3, 31.0, 37.7, 40.5, 41.9, 51.7, 79.8, 80.5, 156.0, 180.3; IR (CHCl_3) 3439, 1769, 1713, cm^{-1} ; [alpha] $_D$ -32.1 ° (C = 1.0, CH_3OH). Anal. Calcd. for $\text{C}_{18}\text{H}_{33}\text{NO}_4$: C, 66.02; H, 10.16; N, 4.28. Found: C, 66.07; H, 10.03; N, 4.05.

EXAMPLE 122R,4S,5S-6-Cyclohexyl-5-(t-butoxycarbonylamino)-2-(p-chlorobenzyl)-gamma-hexanolactone

By the method of Example 6, the less polar 4S,5S-product of Example 3 (2.5 g., 0.008 mol) and 4-chlorobenzyl bromide (1.81 g., 0.0088 mol) were converted to present chromatographed title product as a colorless gum, 1.91 g.; tlc Rf 0.6 (3:1 hexane:ethyl acetate) 0.7 (2:1 hexane:ethyl acetate with 1% acetic acid).

EXAMPLE 132R,4S,5S-6-Cyclohexyl-5-(t-butoxycarbonylamino)-2-(p-methylbenzyl)-gamma-hexanolactone

Using 5:1 hexane:ethyl acetate as eluant on chromatography, the method of Example 6 was used to convert the 4S,5S product of Example 3 (1.5 g., 0.0048 mol) and alpha-bromo-p-xylene (0.98 g., 0.0053 mol) to present title product as a white gum, 0.985 g.; tlc Rf 0.55 (2:1 hexane:ethyl acetate), 0.75 (1:1 hexane:ethyl acetate).

EXAMPLE 142R,4S,5S-6-Cyclohexyl-5-(t-butoxycarbonylamino)-2-(p-methoxybenzyl)-gamma-hexanolactone

By the method of Example 13, the 4S,5S-product of Example 3 (3.79 g., 0.0118 mol) and p-methoxybenzylbromide (2.61 g., 0.130 mol) were converted to chromatographed title product, as a white gum, 1.06 g.; tlc Rf 0.4 (3:1 hexane:ethyl acetate).

EXAMPLE 152R,4S,5S-6-Cyclohexyl-5-(t-butoxycarbonylamino)-2-(3,4-dichlorobenzyl)-gamma-hexanolactone

By the method of Example 6, using 3:1 hexane:ethyl acetate as eluant on chromatography, the 4S,5S-product of Example 3 (2.0 g., 0.0064 mol) and 3,5-dichlorobenzyl bromide (1.68 g., 0.007 mol) were converted to title product as a clear gum, 1.36 g.; tlc Rf 0.22 (3:1 hexane:ethyl acetate), 0.9 (1:2 hexane:ethyl acetate with 1% acetic acid).

EXAMPLE 162R,4S,5S-6-Cyclohexyl-5-(t-butoxycarbonylamino)-2-(o-chlorobenzyl)-gammahexanolactone

By the method of Example 6, using 6:1 hexane:ethyl acetate as eluant on chromatography, the 4S,5S-product of Example 3 (2.0 g., 0.0064 mol) and o-chlorobenzyl chloride (1.44 g., 0.007 mol) were converted to title product as a clear gum, 1.51 g.; tlc Rf 0.75 (3:1 hexane:ethyl acetate), 0.65 (2:1 hexane:ethyl acetate with 1% acetic acid).

EXAMPLE 172R,4S,5S-6-Cyclohexyl-5-(t-butoxycarbonylamino)-2-(m-chlorobenzyl)-gamma-hexanolactone

By the method of the preceding Example, 4S,5S-product of Example 3 (2.0 g., 0.0064 mol) and m-chlorobenzyl chloride (0.92 ml., 1.44 g., 0.007 mol) were converted to chromatographed title product as a colorless gum, 2.11 g.; tlc Rf 0.4 (3:1 hexane:ethyl acetate), 0.75 (2:1 hexane:ethyl acetate with 1% acetic acid).

5

Claims**Claims for the following Contracting States : BE, CH, DE, FR, GB, IT, LI, LU, NL, SE**

1. A stereoselective process which comprises reacting an aldehyde of the formula

10

15

20 wherein R¹ is (C₁-C₆)alkyl, (C₁-C₆)alkenyl, phenyl, naphthyl, (C₄-C₇)cycloalkyl, (C₄-C₇)cycloalkenyl, (C₇-C₉)phenylalkyl, (C₁₁-C₁₃)naphthylalkyl, (C₅-C₁₀)(cycloalkyl)alkyl, or one of said groups mono- or disubstituted on the aromatic ring with the same or different groups selected from (C₁-C₃)alkyl, (C₁-C₃)-alkoxy, fluoro or chloro,
with LiC≡CCOOR¹⁵,

25 wherein R¹⁵ is (C₁-C₃)alkyl,
in a reaction inert solvent at -50° to -80° C. to predominantly form a compound of the formula

30

35

40

45

50

and (b) cyclization of the compound of the formula (D) to form a compound of the formula

55

10

3. A compound of the formula

25

OR

35

wherein R¹⁵ is (C₁-C₃)alkyl; and

R¹ is (C₁-C₆)alkyl, (C₁-C₆)alkenyl, phenyl, naphthyl, (C₄-C₇)cycloalkyl, (C₄-C₇)cycloalkenyl, (C₇-C₉)-phenylalkyl, (C₁₁-C₁₃)naphthylalkyl, (C₅-C₁₀)-(cycloalkyl)alkyl, or one of said groups mono or disubstituted on the aromatic ring with the same or different groups selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, fluoro or chloro.

40

4. A stereoselective process for the preparation of a compound of the formula

55

wherein R¹ is (C₁-C₆)alkyl, (C₁-C₆)alkenyl, phenyl, naphthyl, (C₄-C₇)cycloalkyl, (C₄-C₇)cycloalkenyl, (C₇-C₉)phenylalkyl, (C₁₁-C₁₃)naphthylalkyl, (C₅-C₁₀)(cycloalkyl)alkyl, or one of said groups mono or disubstituted on an aromatic ring with the same or different substituents which are (C₁-C₃)alkyl, (C₁-C₃)alkoxy, fluoro or chloro; and R² is (C₁-C₆)(2-alkenyl), (C₄-C₇)(cyclo-2-alkenyl), benzyl; or naphthyl-methyl or one of said groups mono- or disubstituted on an aromatic with the same or different substituents which are (C₁-C₃)alkyl, (C₁-C₃)alkoxy, fluoro or chloro;

which comprises reacting a lactone of the formula

with substantially one molar equivalent of an organic halide of the formula

15 R^2X

wherein X is chloro, bromo or iodo; in the presence of a substantial excess of a strong base of low nucleophilicity.

20 **Claims for the following Contracting State : AT**

1. A stereoselective process which comprises reacting an aldehyde of the formula

wherein R^1 is (C_1-C_6) alkyl, (C_1-C_6) alkenyl, phenyl, naphthyl, (C_4-C_7) cycloalkyl, (C_4-C_7) cycloalkenyl, (C_7-C_9) phenylalkyl, $(C_{11}-C_{13})$ naphthylalkyl, (C_5-C_{10}) cycloalkylalkyl, or one of said groups mono- or disubstituted on the aromatic ring with the same or different groups selected from (C_1-C_3) alkyl, (C_1-C_3) -alkoxy, fluoro or chloro, with $LiC\equiv CCOOR^{15}$, wherein R^{15} is (C_1-C_3) alkyl, in a reaction inert solvent at -50° to -80° C. to predominantly form a compound of the formula

50 2. A process of claim 1 which further comprises the steps of:
 (a) hydrogenation of the compound of the formula (C) to form a compound of the formula

10 and (b) cyclization of the compound of the formula (D) to form a compound of the formula

20

3. A stereoselective process for the preparation of a compound of the formula

25

35 wherein R¹ is (C₁-C₆)alkyl, (C₁-C₆)alkenyl, phenyl, naphthyl, (C₄-C₇)cycloalkyl, (C₄-C₇)cycloalkenyl, (C₇-C₉)phenylalkyl, (C₁₁-C₁₃)naphthylalkyl, (C₅-C₁₀)(cycloalkyl)alkyl, or one of said groups mono or disubstituted on the aromatic ring with the same or different substituents which are (C₁-C₃)alkyl, (C₁-C₃)alkoxy, fluoro or chloro; and R² is (C₁-C₆)(2-alkenyl), (C₄-C₇)(cyclo-2-alkenyl), benzyl; or naphthyl-methyl or one of said groups mono- or disubstituted on an aromatic with the same or different substituents which are (C₁-C₃)alkyl, (C₁-C₃)alkoxy, fluoro or chloro;

40 which comprises reacting a lactone of the formula

with substantially one molar equivalent of an organic halid of the formula

55 R²X

wherein X is chloro, bromo or iodo; in the presence of a substantial excess of a strong base of low nucleophilicity.

Patentansprüche**Patentansprüche für folgende Vertagsstaaten : BE, CH, DE, FR, GB, IT, LI, LU, NL, SE**

1. Stereoselektives Verfahren, das umfaßt die Umsetzung eines Aldehyds der Formel

5

10

worin R¹ (C₁-C₆)Alkyl, (C₁-C₆)Alkenyl, Phenyl, Naphthyl, (C₄-C₇)Cycloalkyl, (C₄-C₇)Cycloalkenyl, (C₇-C₉)Phenylalkyl, (C₁₁-C₁₃)Naphthylalkyl, (C₅-C₁₀)(Cycloalkyl)alkyl oder eine dieser Gruppen bedeutet, die am aromatischen Ring mit den gleichen oder unterschiedlichen Gruppen, ausgewählt aus (C₁-C₃)-Alkyl, (C₁-C₃)Alkoxy, Fluor oder Chlor, mono- oder disubstituiert sein kann,
mit LiC≡CCOOR¹⁵,
worin R¹⁵ (C₁-C₃)Alkyl ist,
20 in einem reaktionsinternen Lösungsmittel bei -50 bis -80 °C zur vorherrschenden Bildung einer Verbindung der Formel

25

30

2. Verfahren nach Anspruch 1, das ferner die Schritte umfaßt:

(a) Hydrierung der Verbindung der Formel (C) zur Bildung einer Verbindung der Formel

35

40

45

und (b) Cyclisation der Verbindung der Formel (D) zur Bildung einer Verbindung der Formel

50

55

3. Verbindung der Formel

oder

worin R¹⁵ (C₁-C₃)Alkyl ist und

20 R¹ (C₁-C₆)Alkyl, (C₁-C₆)Alkenyl, Phenyl, Naphthyl, (C₄-C₇)Cycloalkyl, (C₄-C₇)Cycloalkenyl, (C₇-C₉)-Phenylalkyl, (C₁-C₁₃)Naphthylalkyl, (C₅-C₁₀)(Cycloalkyl)alkyl oder eine dieser Gruppen bedeutet, die am aromatischen Ring mit den gleichen oder unterschiedlichen Gruppen, ausgewählt aus (C₁-C₃)Alkyl, (C₁-C₃)Alkoxy, Fluor oder Chlor, mono- oder disubstituiert sein kann.

25 4. Stereoselektives Verfahren zur Herstellung einer Verbindung der Formel

35 worin R¹ (C₁-C₆)Alkyl, (C₁-C₆)Alkenyl, Phenyl, Naphthyl, (C₄-C₇)Cycloalkyl, (C₄-C₇)Cycloalkenyl, (C₇-C₉)Phenylalkyl, (C₁₁-C₁₃)Naphthylalkyl, (C₅-C₁₀)(Cycloalkyl)alkyl oder eine dieser Gruppen bedeutet, die am aromatischen Ring mit den gleichen oder unterschiedlichen Gruppen, ausgewählt aus (C₁-C₃)Alkyl, (C₁-C₃)Alkoxy, Fluor oder Chlor, mono- oder disubstituiert sein kann, und R² (C₁-C₆)(2-Alkenyl), (C₄-C₇)(Cyclo-2-alkenyl),Benzyl oder Naphthylmethyl oder eine dieser Gruppen bedeutet, die an einem aromatischen Ring mit den gleichen oder unterschiedlichen Substituenten, die (C₁-C₃)Alkyl, (C₁-C₃)Alkoxy, Fluor oder Chlor sind, mono- oder disubstituiert sein kann,
40 das umfaßt die Umsetzung eines Lactons der Formel

ss mit im wesentlichen einem Mol-Äquivalent eines organischen Halogenids der Formel

R²X.

worin X Chlor, Brom oder Jod ist, in Gegenwart eines erheblichen Überschusses einer starken Base geringer Nukleophilität.

Patentansprüche für folgenden Vertragsstaat : AT

5

1. Stereoselektives Verfahren, das umfaßt die Umsetzung eines Aldehyds der Formel

10

15

worin R¹ (C₁-C₆)Alkyl, (C₁-C₆)Alkenyl, Phenyl, Naphthyl, (C₄-C₇)Cycloalkyl, (C₄-C₇)Cycloalkenyl, (C₇-C₉)Phenylalkyl, (C₁₁-C₁₃)Naphthylalkyl, (C₅-C₁₀)(Cycloalkyl)alkyl oder eine dieser Gruppen bedeutet, die am aromatischen Ring mit den gleichen oder unterschiedlichen Gruppen, ausgewählt aus (C₁-C₃)-Alkyl, (C₁-C₃)Alkoxy, Fluor oder Chlor, mono- oder disubstituiert sein kann,

20

mit LiC≡CCOOR¹⁵,

worin R¹⁵ (C₁-C₃)Alkyl ist,

in einem reaktionsinerten Lösungsmittel bei -50 bis -80 °C zur vorherrschenden Bildung einer Verbindung der Formel

25

30

35

2. Verfahren nach Anspruch 1, das ferner die Schritte umfaßt:

(a) Hydrierung der Verbindung der Formel (C) zur Bildung einer Verbindung der Formel

40

45

und (b) Cyclisation der Verbindung der Formel (D) zur Bildung einer Verbindung der Formel

50

55

3. Stereoselektives Verfahren zur Herstellung einer Verbindung der Formel

worin R^1 (C_1 - C_6)Alkyl, (C_1 - C_6)Alkenyl, Phényl, Naphthyl, (C_4 - C_7)Cycloalkyl, (C_4 - C_7)Cycloalkenyl, (C_7 - C_9)Phenylalkyl, (C_{11} - C_{13})Naphthylalkyl, (C_5 - C_{10})(Cycloalkyl)alkyl oder eine dieser Gruppen bedeutet, die am aromatischen Ring mit den gleichen oder unterschiedlichen Gruppen, die (C_1 - C_3)Alkyl, (C_1 - C_3)-Alkoxy, Fluor oder Chlor sind, mono- oder disubstituiert sein kann, und R^2 (C_1 - C_6)(2-Alkenyl), (C_4 - C_7)-(Cyclo-2-alkenyl), Benzyl oder Naphthylmethyl oder eine dieser Gruppen bedeutet, die an einem aromatischen Ring mit den gleichen oder unterschiedlichen Substituenten, die (C_1 - C_3)Alkyl, (C_1 - C_3)-Alkoxy, Fluor oder Chlor sind, mono- oder disubstituiert sein kann, das umfaßt die Umsetzung eines Lactons der Formel

20

30 mit im wesentlichen einem Mol-Äquivalent eines organischen Halogenids der Formel

R^2X ,

35 worin X Chlor, Brom oder Jod ist, in Gegenwart eines erheblichen Überschusses einer starken Base geringer Nukleophilität.

Revendications

Revendications pour les Etats contractants suivants : BE, CH, DE, FR, GB, IT, LI, LU, NL, SE

40 1. Procédé stéréosélectif qui consiste à faire réagir un aldéhyde de formule

50 dans laquelle R^1 est un groupe alkyle en C_1 à C_6 , alcényle en C_1 à C_6 , phényle, naphtyle, cycloalkyle en C_4 à C_7 , cycloalcényle en C_4 à C_7 , phénylalkyle en C_7 à C_9 , naphtylalkyle en C_{11} à C_{13} , ($cycloalkyl$)alkyle en C_5 à C_{10} ou bien l'un desdits groupes monosubstitués ou disubstitués sur le noyau aromatique avec les mêmes groupes ou des groupes différents choisis entre des groupes alkyle en C_1 à C_3 , alkoxy en C_1 à C_3 , fluoro ou chloro,

avec $\text{LiC}\equiv\text{CCOOR}^{15}$,

où R^{15} est un groupe alkyle en C_1 à C_3 ,

dans un solvant inerte vis-à-vis de la réaction entre -50 et -80 °C pour former principalement un

composé de formule

2. Procédé suivant la revendication 1, qui comprend en outre les étapes :

(a) d'hydrogénéation du composé de formule (C) pour former un composé de formule :

et (b) de cyclisation du composé de formule (D) pour former un composé de formule :

35 3. Composé de formule

ou

dans laquelle R¹⁵ est un groupe alkyle en C₁ à C₃ ; et

R¹ est un groupe alkyle en C₁ à C₆, alcényle en C₁ à C₆, phényle, naphtyle, cycloalkyle en C₄ à C₇, cycloalcényle en C₄ à C₇, phénylalkyle en C₇ à C₉, naphtylalkyle en C₁₁ à C₁₃, (cycloalkyl)alkyle en C₅ à C₁₀ ou l'un desdits groupes monosubstitués ou disubstitués sur le noyau aromatique avec les mêmes groupes ou des groupes différents choisis entre des groupes alkyle en C₁ à C₃, alkoxy en C₁ à C₃, fluoro ou chloro.

4. Procédé stéréosélectif de production d'un composé de formule

10

15

20

25

dans laquelle R¹ est un groupe alkyle en C₁ à C₆, alcényle en C₁ à C₆, phényle, naphtyle, cycloalkyle en C₄ à C₇, cycloalcényle en C₄ à C₇, phénylalkyle en C₇ à C₉, naphtylalkyle en C₁₁ à C₁₃, (cycloalkyl)alkyle en C₅ à C₁₀ ou bien l'un desdits groupes monosubstitués ou disubstitués sur le noyau aromatique avec les mêmes substituants ou des substituants différents qui sont des groupes alkyle en C₁ à C₃, alkoxy en C₁ à C₃, fluoro ou chloro ; et R² est un groupe 2-alcényle en C₁ à C₆, cyclo-2-alcényle en C₄ à C₇, benzyle ; ou un groupe naphtylméthyle ou bien l'un desdits groupes monosubstitués ou disubstitués sur un noyau aromatique avec les mêmes substituants ou des substituants différents qui sont des groupes alkyle en C₁ à C₃, alkoxy en C₁ à C₃, fluoro ou chloro ; qui consiste à faire réagir une lactone de formule

30

35

40

R²X

45

dans laquelle X est un radical chlоро, bromо ou iodo ; en présence d'un excès important d'une base forte faiblement nucléophile.

45

Revendications pour l'Etat contractant suivant : AT

1. Procédé stéréosélectif qui consiste à faire réagir un aldéhyde de formule

50

55

dans laquelle R¹ est un groupe alkyle en C₁ à C₆, alcényle en C₁ à C₆, phényle, naphtyle, cycloalkyle en C₄ à C₇, cycloalcényle en C₄ à C₇, phénylalkyle en C₇ à C₉, naphtylalkyle en C₁₁ à C₁₃, (cycloalkyl)alkyle en C₅ à C₁₀, ou bien l'un desdits groupes monosubstitués ou disubstitués sur le noyau aromatique avec les mêmes groupes ou des groupes différents choisis entre des groupes alkyle en C₁ à C₃, alkoxy en C₁ à C₃, fluoro ou chloro.

5 avec LiC≡CCOOR¹⁵.

où R¹⁵ est un groupe alkyle en C₁ à C₃,

dans un solvant inerte vis-à-vis de la réaction entre -50 et -80 °C pour former principalement un composé de formule

10

15

20

2. Procédé suivant la revendication 1, qui comprend en outre les étapes :

(a) d'hydrogénéation du composé de formule (C) pour former un composé de formule :

25

30

et (b) de cyclisation du composé de formule (D) pour former un composé de formule :

35

40

45

50

55

dans laquelle R¹ est un groupe alkyle en C₁ à C₆, alcényle en C₁ à C₆, phényle, naphtyle, cycloalkyle en C₄ à C₇, cycloalcényle en C₄ à C₇, phénylalkyle en C₇ à C₉, naphtylalkyle en C₁₁ à C₁₃, (cycloalkyl)alkyle en C₅ à C₁₀, ou bien l'un desdits groupes monosubstitués ou disubstitués sur le noyau aromatique avec les mêmes substituants ou des substituants différents qui sont des groupes

alkyle en C₁ à C₃, alkoxy en C₁ à C₃, fluoro ou chloro ; et R² est un groupe 2-alcényle en C₁ à C₆, cyclo-2-alcényle en C₄ à C₇, benzyle ; ou un groupe naphtylméthyle ou bien l'un desdits groupes monosubstitués ou disubstitués sur un noyau aromatique avec les mêmes substituants ou des substituants différents qui sont des groupes alkyle en C₁ à C₃, alkoxy en C₁ à C₃, fluoro ou chloro ;

qui consiste à faire réagir une lactone de formule

avec principalement un équivalent molaire d'un halogénure organique de formule

B²X

20

dans laquelle X est un radical chloro, bromo ou iodo : en présence d'un excès important d'une base forte faiblement nucléophile.

25

30

35

40

45

50

55