Question 1

27

Show that the function $f:R-\{3\}
ightarrow R-\{1\}$ given by

$$f(x) = \frac{x-2}{x-3}$$
 is a bijection.

Question 2

If $f: R \to R$ be the function defined by $f(x) = 4x^3 + 7$, show

that f is a bijection.

Question 3

Show that the function $f: R - \{3\} \to R - \{2\}$ given by $f(x) = \frac{x-2}{x-3}$ is a bijection.

Question 4

Let
$$A = R - \{3\}$$
, $B = R - \{1\}$. Let $f : A \to B$ defined by $f(x) = \frac{x-2}{x-3}$. Show that f is bijective.

Question 5

Show that the function $f: R - \{3\} \to R - \{2\}$ given by $f(x) = \frac{x-2}{x-3}$ is a bijection.

Question 6

Show that the function $f:R-\{3\} o R-\{1\}$ given by $f(x)=rac{x-2}{x-3}$

is a bijection.