

MATERIAL DESIGN

QUANTUM ESPRESSO STRUCTURE

HANDS-ON #1

Hands-on #1 Total energy & Relaxation for Silicon

- Basic self consistent calculation (scf)
- Convergence of total energy & plane waves cut-off (ecut)
- Convergence of total energy & BZ sampling (k-point)
- Lattice constant (vc-relax)

Kohn-Sham equations

INPUT

Model:

unit cell lattice vectors basis

Physical approx:

xc-approximation GGA, LDA, ...

Numerical approx:

energy cut-off k-points grid SCF procedure **RUN**

OUTPUT

Physical quantities:

charge density total energy KS wavefunctions KS energies

Solve Kohn-Sham equations

Kohn-Sham equations

$$\left[-\frac{1}{2} \nabla^2 + V_{ion}(r) + V_H[n(r)] + V_{XC}[n(r)] \right] \psi_i(r) = \varepsilon_i \psi_i(r)$$

$$\frac{1}{H[n(r)]}$$

Self-consistent field (SCF) method:


```
&CONTROL
 calculation='scf',
 restart_mode='from_scratch',
 prefix='si'.
 pseudo_dir='../pseudo/',
 outdir='../tmp/',
&SYSTEM
 ibrav=2,
 celldm(1)=10.2625,
 nat=2,
 ntyp=1,
 ecutwfc=60.0.
 ecutrho=720.0,
&ELECTRONS
mixing_beta=0.7,
 conv_thr=1d-8,
ATOMIC_SPECIES
 Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
si 0.00 0.00 0.00
si 0.25 0.25 0.25
K_POINTS automatic
4 4 4 1 1 1
```



```
&CONTROL
 calculation='scf',
 restart_mode='from_scratch',
 prefix='si',
 pseudo_dir='../pseudo/',
 outdir='../tmp/',
&SYSTEM
 ibrav=2,
 celldm(1)=10.2625,
 nat=2,
 ntyp=1,
 ecutwfc=60.0.
 ecutrho=720.0,
&ELECTRONS
mixing_beta=0.7,
 conv_thr=1d-8,
ATOMIC_SPECIES
 Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
si 0.00 0.00 0.00
si 0.25 0.25 0.25
K_POINTS automatic
4 4 4 1 1 1
```


Periodic boundary conditions

Crystal structure: Bravais lattice + Atomic basis

Bravais lattice: (shape of unit cell & how it repeats). Specified by primitive lattice vectors a₁, a₂, a₃

 $R = n_1a_1 + n_2a_2 + n_3a_3$, where n_1 , n_2 , n_3 are integers.

Atomic basis: how many atoms are in the unit cell, and how they are arranged.

Periodic boundary conditions

4 Lattice types

Bravais	Parameters	Simple (P)	Volume	Base	Face
lattice			centered (I)	centered (C)	centered (F
Triclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} \neq \alpha_{23} \neq \alpha_{31}$			•	
Monoclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{23} = \alpha_{31} = 90^{\circ}$ $\alpha_{12} \neq 90^{\circ}$				
Orthorhombic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				V
Tetragonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Trigonal	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} < 120^{\circ}$,	
Cubic	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
	$a_1 = a_2 \neq a_3$ $\alpha_{12} = 120^{\circ}$	a, a		77	
Hexagonal	$\alpha_{23} = \alpha_{31} = 90^{\circ}$	a			

7 Crystal classes

```
&CONTROL
 calculation='scf',
 restart_mode='from_scratch',
 prefix='si',
 pseudo_dir='../pseudo/',
 outdir='../tmp/',
&SYSTEM
 ibrav=2,
 celldm(1)=10.2625,
 nat=2,
 ntyp=1,
 ecutwfc=60.0.
 ecutrho=720.0,
&ELECTRONS
 mixing_beta=0.7,
 conv_thr=1d-8,
ATOMIC_SPECIES
 Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
si 0.00 0.00 0.00
si 0.25 0.25 0.25
K_POINTS automatic
4 4 4 1 1 1
```

```
ibrav = 1 (SC)
ibrav = 2 (FCC)
ibrav = 4 (Hexagonal)
simple cubic:
v1 = a(1,0,0)
v2 = a(0,1,0)
v3 = a(0,0,1)
face centered cubic:
v1 = (a/2)(-1,0,1)
v2 = (a/2)(0,1,1)
v3 = (a/2)(-1,1,0)
```

```
&CONTROL
 calculation='scf',
 restart_mode='from_scratch',
 prefix='si',
 pseudo_dir='../pseudo/',
 outdir='../tmp/',
&SYSTEM
 ibrav=2,
 celldm(1)=10.2625,
 nat=2,
 ntyp=1,
 ecutwfc=60.0.
 ecutrho=720.0,
&ELECTRONS
 mixing_beta=0.7,
 conv_thr=1d-8,
ATOMIC_SPECIES
 Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
si 0.00 0.00 0.00
si 0.25 0.25 0.25
K_POINTS automatic
4 4 4 1 1 1
```

FCC structure

face centered cubic:

```
v1 = (a/2)(-1,0,1)

v2 = (a/2)(0,1,1)

v3 = (a/2)(-1,1,0)
```

```
&CONTROL
 calculation='scf',
 restart_mode='from_scratch',
 prefix='si',
 pseudo_dir='../pseudo/',
 outdir='../tmp/',
&SYSTEM
 ibrav=2,
 celldm(1)=10.2625, <
 nat=2,
 ntyp=1,
 ecutwfc=60.0,
 ecutrho=720.0,
&ELECTRONS
 mixing_beta=0.7,
 conv_thr=1d-8,
ATOMIC_SPECIES
 Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
si 0.00 0.00 0.00
si 0.25 0.25 0.25
K_POINTS automatic
4 4 4 1 1 1
```

unit bohr

```
face centered cubic:

v1 = (a/2)(-1,0,1)

v2 = (a/2)(0,1,1)

v3 = (a/2)(-1,1,0)
```

а

1 bohr = 0.529177 Å

```
&CONTROL
 calculation='scf',
 restart_mode='from_scratch',
 prefix='si',
 pseudo_dir='../pseudo/',
 outdir='../tmp/',
&SYSTEM
 ibrav=2.
 celldm(1)=10.2625,
 nat=2,
 ntyp=1,
 ecutwfc=60.0,
 ecutrho=720.0,
&ELECTRONS
 mixing_beta=0.7,
 conv_thr=1d-8,
ATOMIC_SPECIES
 Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat) ←
si 0.00 0.00 0.00
si 0.25 0.25 0.25
K_POINTS automatic
4 4 4 1 1 1
```

FCC structure

atomic positions are in cartesian coordinates, in units of the lattice parameter.

```
&CONTROL
 calculation='scf',
 restart_mode='from_scratch',
 prefix='si',
 pseudo_dir='../pseudo/',
 outdir='../tmp/',
&SYSTEM
 ibrav=2.
 celldm(1)=10.2625,
 nat=2,
 ntyp=1,
 ecutwfc=60.0,
 ecutrho=720.0,
&ELECTRONS
 mixing_beta=0.7,
 conv_thr=1d-8,
ATOMIC_SPECIES
 Si 28.0855 Si.pbe-rrkj.UPF
ATOMIC_POSITIONS (alat)
si 0.00 0.00 0.00
   0.25 0.25 0.25
K_POINTS automatic
4 4 4 1 1 1
```

FCC structure

Silicon

Mass of Si

How to check the structure

XCrySDen: http://www.xcrysden.org

