# Label-Efficient Steering Control with I-JEPA for Autonomous Driving

Venkat Kumar Laxmi Kanth Nemala vn2263

MS Computer Engineering NYU Tandon

Tejdeep Chippa tc4263 MS Computer Engineering

**NYU Tandon** 

Can you design a system for a downstream task of steering a self-driving car in CARLA simulator that is based on pre-training with I-JEPA and label-efficient fine-tuning?

# Breakdown - What we had to do

- Steering control is essential for safe autonomous driving
- Our Predict continuous steering angles from single front-view camera
- Use minimal labeled data for fine-tuning
- Use IJEPA an SSL based architecture to first pretrain a lot of images such that our method works even with minimal labeled data

# DATASET DISCUSSION

We initially attempted to use large-scale real-world datasets like Waymo and KITTI, aiming to extract steering angles from their metadata.

We adopted the CARLA Steering Dataset for Self-Driving Cars, a high-quality simulated dataset comprising 84,000 images paired with precise steering angle labels.

For our label-efficient fine-tuning, we used a curated subset of 10,000 samples, enabling targeted learning with minimal supervision.





# DATASET DISCUSSION

#### **Data Statistics:**

Total samples : 86491

Mean : 0.005479

Min value : -0.602661

Max value : 0.800000





# PREVIOUS METHODS

# Without IJEPA - Supervised Learning

We tried out the supervised learning method first to figure out how it was performing.

- A classic convolutional neural network
- An advantage over the pretrained methods by using ROI cropped images
- Direct regression of steering angle
- Used MAE to error along with steering value scaling
- Scaling helps in better learning

#### **Issues:**

- Model struggled to fit large steering spikes
- Predictions mostly biased toward zero (straight line driving)
- Doesn't work well even with low loss figures



# INTRODUCING I-JEPA

#### Core Idea

- Traditional SSL (e.g., MAE) reconstructs raw pixels sensitive to color, texture noise.
- I-JEPA instead predicts latent feature embeddings of masked regions from unmasked context.

#### **Training Flow**

- 1. Input: Full image » masked spatial blocks are hidden.
- 2. Context Encoder: Processes only visible patches to build a context representation.
- 3. Predictor: Takes context and predicts target embeddings for masked regions.
- 4. Target Encoder (Frozen): Computes true embeddings from full image for supervision.

#### **Loss Function**

- Regression loss (MSE) between predicted embeddings and true target embeddings.
- No pixel-level loss, no contrastive loss.

#### **Benefits**

- Semantic abstraction: Model learns what is in the missing region, not how it looks.
- Robustness: Better generalization across datasets, distortions, downstream tasks.
- Efficiency: Faster convergence compared to reconstruction or contrastive methods.

# IMPORTANT IDEAS IN IJEPA

# **Masked Latent Representation Prediction**

- Predicts representations of masked image regions instead of pixel-level details
- Learns semantics rather than low-level reconstruction

#### No Pixel Reconstruction or Contrastive Loss

- Avoids the pitfalls of MAE and contrastive frameworks
- Leads to stable training and better sample efficiency

#### **Efficient and Scalable Training**

- Learns abstract scene-level understanding early
- Requires fewer training steps to converge on downstream tasks

# Foundation for Multimodal Learning: ADL-JEPA

- Architecture naturally extends to audio, video, LiDAR, and text
- Key enabler for future multimodal perception in self-driving systems

# ADLJEPA - A CLEVER EXTENSION

I-JEPA assumes that all context patches are equally important. ADL-JEPA adds an attention mechanism that dynamically selects important context for prediction.

Has an Adaptive Layer (ADL) that:

- Learns to selectively weight different visible patches.
- Suppresses irrelevant patches (e.g., sky, background) and emphasizes important ones (e.g., road, car edges).

Particularly useful when context has a lot of noise or unrelated patches, like in driving scenarios.

The Adaptive Layer is a simple addition with no massive overhead.

# I-JEPA PRETRAINING ON STEERING DATA

#### **Architecture:**

- Backbone: Vision Transformer (vit\_base\_patch16\_224)
- Predictor head: 2-layer MLP with GELU activation
- No decoder or reconstruction; operates in latent space

# **Pretraining Configuration**

- Optimizer: AdamW
- Learning Rate: 1e-4
- Batch Size: 128
- Epochs: 100
- Patch Size: 16 × 16
- Masking Ratio: 50% patches masked
- Variance Loss Weight (λ<sub>e</sub>): 25.0
- EMA Decay Rate: 0.996
- Input Image Size: 224 x 224
- Model: Vision Transformer backbone + MLP predictor
- Loss Functions: Cosine similarity loss + Variance regularization



# I-JEPA PRETRAINING ON STEERING DATA

#### **Dataset:**

- pretraining performed on CARLA simulator steering dataset
- Resized all images to (224,224)

#### **Masking Strategy:**

- Patch-level random masking (50% of 16×16 patches masked per image)
- Encourages contextual prediction from surrounding visible patches

# Regularization Techniques: To Prevent Representation Collapse

- Block dropout (implicitly through patch masking)
- EMA (Exponential Moving Average) of network weights as stable target
- Cosine similarity loss on masked patches
- Variance loss to prevent representation collapse across features

The I-JEPA pretraining converged with a final cosine loss of ~0.0002, learning rich masked patch representations for downstream steering control.

### **Final Training Configuration**

- Input Size: 224 x 224
- Optimizer: AdamW
- Learning Rate: 1e-4
- Batch Size: 64
- Epochs: 20
- Loss Function: Combined MSE + cubic loss for better handling of large steering errors
- Encoder: I-JEPA backbone frozen (only regression head trained)
- Dataset: ~10,000 images
- Data Split: 50% turning (spike) samples + 50% straight-line samples

# Our experiments and learning

# First set of naive experiments -

Experiments with various percentages of dataset for label effecient finetuning

#### **Learnings:**

- Better to use a squared error function after scaling to emphasise more on the spikes that represent the actual turns.
- Data values of steering angles are very small in magnitude, hence using a scaling factor helps in having a better



# Our experiments and learning

# Second set experiments -

Worked on learnings from the first set of experiments with different data fragments from different towns, weathers etc that was available.

# **Findings and Learnings:**

- Dataset is skewed more towards straight line data and there is very less turn data available.
- Thus training on any random fragment of data will not help.
- Fragmented the data such that more learning is on turning data and some on straight line data



# Our experiments and learning

# **Final Set of Experiments**

Worked on different fractions of turn data and straight data. Ended up with 50% of both such that car stays in line and turns well.

- Worked on experiments of choosing data equally from all the available data ranges such that car could perform well on turns, straight lines and the intermediary junctures between those.
- This experiment made the performance on turns worse.

# **Final Setting:**

- 50% of each turn data and straight data in a dataset of ~10K images.
- The straight line images also include the intermediary junctures as well between the straight and turn as a part of them now.

# The curse of this setting:

• Since, the intermediary juncture data was not specifically taken care of that much the car turns and then proceeds to hit the curb because that intermediary stretch was not generalised well.

# **Demo Links:**

https://drive.google.com/file/d/1szZe35-

<u>DaQnRKZE5AUF8ADE9-T6qyRuL/view?usp=sharing</u>

https://drive.google.com/file/d/1KQ2Q6DdwY2mlRa

XluGG HoDVoWUJZdzW/view?usp=sharing

# DESIGN CHOICES THAT CHANGED THE GAME

#### **Loss Tweaks:**

- Switched from MAE to MSE to penalize large steering spikes more heavily.
- Experimented with combined MSE + cubic loss for sharper error handling.

# **Label Scaling:**

• Scaled steering labels ×100 to improve numerical stability during training.

# **Split Model Strategy:**

- Identified dataset imbalance: turning events (spikes) were rare.
- Created specialized models:
  - Only spikes (>7° steering)
  - Only straight lines (<7° steering)</li>
  - Final hybrid: 50% spike + 50% straight merge for balanced specialization.

#### **Other Trials:**

- Tested both MAE vs MSE loss functions.
- Tried classification for turn detection + regression for fine steering prediction.
- Explored multiple dataset splits (random frames, spikes-only, straight-only).

# Thank you!