Equipo 79 - TEAM DSR

David Martínez Celis Sofía Sampogna Ricardo González

Problema

Para poder pronosticar la variación anual de la inflación general y subyacente, se tiene que generar un modelo de nowcasting que sea entrenado utilizando los datos desde enero del 2000 a diciembre de 2020. Los datos pronosticados serán esos desde enero del 2021 a agosto 2021. La eficiencia y precisión de los datos pronosticados serán definidos por su comparación a los datos reales conseguidos en el año 2021.

Fase 1 - Recolectar dataset

- Se recolectaron los datos de la variación quincenal del INPC desde la 1Q de Enero de 1988, hasta la 1Q de Agosto de 2021, de la página del INEGI.
- Para ordenar los datos, se decidió convertir las fechas a números enteros, empezando del 1 hasta 804, para poder utilizarlo con más facilidad dentro del programa
- También se decidió incluir en la base de datos diferentes cifras del INPP, los cuales se tomaron de igual manera del INEGI

Fase 2 - Diagrama de dispersión

Elaboración diagrama de dispersión para analizar la tendencia general de los datos y así comenzar a planear cuál sería el mejor approach

Fase 3 - Primer Modelo

Se hizo prueba con modelo lineal de regresión para observar la calificación de entrada de este


```
In [111]: r2 = r2_score(train_y, mymodel(train_x))
print(r2)
```

0.2654534979826165

Fase 4 - Limpieza de Datos

Observamos que nuestros datos contenían un alto número de "outliers" que afectaban el modelo de regresión, por lo que decidimos suavizarlos utilizando el método de "z score"

How to calculate Z score?

z = (data point - mean) / standard deviation

Data point Mean
$$z = \frac{(x - \mu)}{\sigma}$$
 Standard deviation

Fase 5 - Nuevo ajuste del modelo

Para conseguir un mejor resultado, decidimos utilizar Training Test para conseguir mejores predicciones de nuestros datos sin tomar en cuenta las anomalías presentadas.


```
[15]
    r2 = r2_score(train_y, mymodel(train_x))
    print(r2)

0.3303782192830963
```

Fase 6 - Prueba con otros modelos

Regresión Ridge

Ridge Regression

```
In [36]: train x = x1[:793]
         train y = y1[:793]
         test_x = x1[793:]
         test y = y1[793:]
         train x = train x.values.reshape(-1, 1)
         test x = \text{test } x.\text{values.reshape}(-1, 1)
         ridge = Ridge().fit(train x, train y)
         print("Training set score: {:.2f}".format(ridge.score(train x,train y)))
         print("Test set score: {:.2f}".format(ridge.score(test x,test y)))
         Training set score: 0.28
         Test set score: -2.88
In [37]: train x = x1[:793]
         train y = y1[:793]
         test x = x1[793:]
         test y = y1[793:]
         train x = train x.values.reshape(-1, 1)
         test_x = test_x.values.reshape(-1, 1)
         ridge10 = Ridge(alpha=10).fit(train x, train y)
         print("Training set score: {:.2f}".format(ridge10.score(train x,train y)))
         print("Test set score: {:.2f}".format(ridge10.score(test x,test y)))
         Training set score: 0.28
         Test set score: -2.88
```

Fase 6 - Prueba con otros modelos

Árbol de Decisión

Decision Tree

```
In [38]: #no se puede usar para pronosticos
    from sklearn.tree import DecisionTreeRegressor

    train_x = x1[:793]
    train_y = y1[:793]

    test_x = x1[793:]
    test_y = y1[793:]

    train_x = train_x.values.reshape(-1, 1)
    test_x = test_x.values.reshape(-1, 1)

    tree = DecisionTreeRegressor(random_state=0)
    tree.fit(train_x, train_y)
    print("Training set score: {:.2f}".format(tree.score(train_x,train_y)))
    print("Test set score: {:.2f}".format(tree.score(test_x,test_y)))
```

Training set score: 1.00 Test set score: -2.75

Fase 6 - Prueba con otros modelos

Random Forest

Random Forest

Test set score: -0.86

```
In [56]: from sklearn.ensemble import RandomForestRegressor

train_x = x1[:793]
train_y = y1[:793]

test_x = x1[793:]
test_y = y1[793:]

train_x = train_x.values.reshape(-1, 1)
test_x = test_x.values.reshape(-1, 1)

forest1 = RandomForestRegressor(random_state=0,n_estimators=1000)
forest1.fit(train_x, train_y)
print("Training set score: {:.2f}".format(forest1.score(train_x,train_y)))
print("Test set score: {:.2f}".format(forest1.score(test_x,test_y)))
Training set score: 0.94
```

Fase 7 - Pronósticos y Error

Fecha	Variacion	Pronóstico	EAM		
1	0	0.8500923	0.0004051	Promedio	0.383135068
2	1	0.8489728	7.19699E-05	n	804
3	1.55	0.8478532	0.000334598		
4	2.1	0.8467336	0.000597227		
5	2.2	0.8456141	0.000645414		
6	1.54	0.8444945	0.000331434		
7	2.07	0.843375	0.000584531		

791	0.34	-0.0343601	0.000178396	
792	0.19	-0.0354796	0.000107449	
793	0.51	-0.0365992	0.000260474	2021
794	0.5	-0.0377188	0.000256242	
795	0.23	-0.0388383	0.000128111	
796	0.31	-0.0399579	0.000166768	
797	0.53	-0.0410774	0.000272139	
798	0.28	-0.042197	0.000153539	
799	0.06	-0.0433166	4.92341E-05	
800	0.25	-0.0444361	0.000140309	
801	-0.01	-0.0455557	1.69436E-05	
802	0.17	-0.0466752	0.000103254	
803	0.34	-0.0477948	0.000184798	
804	0.2	-0.0489144	0.000118617	
805	0.37	-0.0500339	0.000200161	
806	0.24	-0.0511535	0.000138745	
807	-0.02	-0.052273	1.53793E-05	

Conclusión

Al final del día, utilizamos una variedad de métodos para conseguir nuestro resultado final. Nos dimos cuenta que para tener un mejor modelo, hay que aprender a identificar las anomalías en los datos para no tomarlas en cuenta, y que nuestro programa sea más eficiente. El promedio final del EAM es de 0.000146981.

Fuentes

www.inegi.org.mx

https://www.w3schools.com/python/python_ml_train_test.asp

https://medium.com/analytics-vidhya/how-to-remove-outliers-for-machine-learning-24620c4657e8

https://scikit-learn.org/stable/

https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_525