Al based Malware detection approach for KISA Data challenge 2018

Dec 1st, 2018

Hyunsoo Kim

aitch25@gmail.com

Assistant researcher at F1 Security

Index

- Overall Procedure
- Research works
 - Data analysis
- Feature selection
 - Unavailable features
 - Importance features
- Detection algorithms
 - Traditional approaches
 - How we improve it with feedback approach

Research works

- Data analysis
 - However, dataset has ambiguous forms...

- Feature selection
- Collecting features as many as possible.. (S: static // D: dynamic feats)
 - (S) Feature list: 86 feature set (extracted by pefile API)
 - ex) Size of code, Address of entry point, etc...
 - (S) 256-gram of binary file [2][3]
 - (S) TFIDF of strings (with readability checker) [4]
 - (S) TFIDF of imported DLL
 - (S) Image representation [2]
 - (D) Bi or Tri-gram of API Sequence (using Cuckoo and Virus total)

- Bi and Tri-gram for dynamic and 256-gram for static features [2][3]:
 - Binary n-gram?
 - One of the most effective and practical method for sequential data analysis
 - such as natural language processing (nlp), signal or sound processing, etc
 - Build "n length" tokens and count them all
 - Example of 3-gram:
 - for the data as follows: [apple, banana, orange, pear, mango]
 - we can obtain.. [apple, banana, orange], [banana, orange, pear], [orange, pear, mango]
 - it can apply for char-unit: [app, ppl, ple, leb, eba, ban, ana, nan, ana, ..., ngo]
 - Then, count that tokens
 - For the tokenized data [app, ppl, ple, leb, eba, ban, ana, nan, ana, ..., ngo],
 - n-gram table below would be obtained

арр	ppl	ple	leb	eba	ban	ana	nan	 ngo
1	1	1	1	1	1	2	1	 1

- Dimension reduction with Feature Hashing from 256-gram:
 - Data refined using 256-gram has more than 50,000 dimension...
 - Therefore, we apply Feature Hashing to that high dimensional vector
 - and obtained 1,000 ~ 10,000 dimensional vector

- Feature selection
- TFIDF of strings (with readability checker) [4]
 - Using printable characters between ascii code (33~125)
 - Readability checker?
 - Originally, it was applied to detection of malicious javascript files
 - Definition of readable words:

If it is > 70% alphabetical, has 20% < vowels < 60%, is less than 15 characters long, and does not contain > 2 repetitions of the same character in a row.

- ex)
 - Respectfulness (O)
 - Dictionary (O)
 - sdifad13202 (X)

- Feature selection
- TFIDF of imported DLL (using pefile)

- TFIDF of imported DLL :
 - TFIDF? Term Frequency Inverse Document Frequency
 - is a numerical statistic intended to reflect how important a word is to a document in a collection or corpus
 - That is, this method originally invented for text analysis
 - For it is very useful for many types of data, we also applied it for malware detection

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

tf_{x,y} = frequency of x in y
df_x = number of documents containing x
N = total number of documents

- Term Frequency Inverse Document Frequency
 - example)
 - Given 3 sentences, (from "https://nesoy.github.io/articles/2017-11/tf-idf")
 - I love dogs.
 - I hate dogs and knitting.
 - Knitting is my hobby and my passion.
 - make a frequency table as below

	l	love	dogs	hate	and	knitting	is	my	hobby	passion
Doc 1	1	1	1							
Doc 2	1		1	1	1	1				
Doc 3					1	1	1	2	1	1

Then, calculate the importance of each word

	I	love	dogs	hate	and	knitting	is	my	hobby	passion
Doc 1	0.18	0.48	0.18							
Doc 2	0.18		0.18	0.48	0.18	0.18				
Doc 3					0.18	0.18	0.48	0.95	0.48	0.48

- Feature selection methods
 - Removing features with low variance
 - Feature selection using "SelectFromModel"
 - (in scikit-learn)
 - We used "ExtraTreesClassifier()"
 - This method uses training algorithm itself to measure importance of features
 - Then, we could obtain 30~90 important features
 - Heuristically...
 - For this challenge, we excluded time-consuming features

$$Wn = \frac{R_n}{R_1 + R_2 + R_3}$$

Such that, W1 + W2 + W3 = 1

If results of RF, GB, XGB are 93, 95, 97 respectively, weights of RF is 93 / (93+95+97)

Give weight of 0.4

Give weight of 0.6

References:

- [1] Kumagai, Atsutoshi, and Tomoharu Iwata. "Learning Dynamics of Decision Boundaries without Additional Labeled Data." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018.
- [2] Ahmadi, Mansour, et al. "Novel feature extraction, selection and fusion for effective malware family classification." Proceedings of the sixth ACM conference on data and application security and privacy. ACM, 2016.
- [3] Raff, Edward, et al. "Malware detection by eating a whole exe." arXiv preprint arXiv:1710.09435 (2017).
- [4] Readability: Likarish, Peter, Eunjin Jung, and Insoon Jo. "Obfuscated malicious javascript detection using classification techniques." *Malicious and Unwanted Software (MALWARE), 2009 4th International Conference on.* IEEE, 2009.

Full-references:

- [1] Sejnowski, Terrence J. "Higher-order Boltzmann machines." AIP Conference Proceedings. Vol. 151. No. 1. AIP, 1986.
- [2] Hearst, Marti A., et al. "Support vector machines." IEEE Intelligent Systems and their applications 13.4 (1998): 18-28.
- [3] Friedman, Jerome H. "Greedy function approximation: a gradient boosting machine." Annals of statistics (2001): 1189-1232.
- [4] Rätsch, Gunnar, Takashi Onoda, and K-R. Müller. "Soft margins for AdaBoost." Machine learning 42.3 (2001): 287-320.
- [5] Liaw, Andy, and Matthew Wiener. "Classification and regression by randomForest." R news 2.3 (2002): 18-22.
- [6] John, George H., and Pat Langley. "Estimating continuous distributions in Bayesian classifiers." *Proceedings of the Eleventh conference on Uncertainty in artificial intelligence*. Morgan Kaufmann Publishers Inc., 1995.
- [7] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM, 2016.
- [8] Kumagai, Atsutoshi, and Tomoharu Iwata. "Learning Dynamics of Decision Boundaries without Additional Labeled Data." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018.
- [9] https://en.wikipedia.org/wiki/Power_law.
- [10] Joachims, Thorsten. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization. No. CMU-CS-96-118. Carnegie-mellon univ pittsburgh pa dept of computer science, 1996.
- [11] Lee, Daniel D., and H. Sebastian Seung. "Algorithms for non-negative matrix factorization." Advances in neural information processing systems. 2001.

Full-references:

- [12] Weinberger, Kilian, et al. "Feature hashing for large scale multitask learning." arXiv preprint arXiv:0902.2206 (2009).
- [13] Likarish, Peter, Eunjin Jung, and Insoon Jo. "Obfuscated malicious javascript detection using classification techniques." Malicious and Unwanted Software (MALWARE), 2009 4th International Conference on IEEE, 2009.
- [14] Ahmadi, Mansour, et al. "Novel feature extraction, selection and fusion for effective malware family classification." Proceedings of the sixth ACM conference on data and application security and privacy. ACM, 2016.
- [15] Karthikeyan, L., G. Jacob, and B. Manjunath. "Malware images: Visualization and automatic classification." Proceedings of the 8th International Symposium on Visualization for Cyber Security. 2011.
- [16] Bradski, Gary, and Adrian Kaehler. "OpenCV." Dr. Dobb's journal of software tools 3 (2000).
- [17] Raff, Edward, et al. "Malware detection by eating a whole exe." arXiv preprint arXiv:1710.09435 (2017).

Thank you