OTIMIZAÇÃO DE REDES NEURAIS ARTIFICIAIS

Prof. Valmir Macário Filho

DC - UFRPE

OVERFITTING

Acontece quando o modelo está "super adaptado" aos dados.
Para de melhorar na avaliação do conjunto de teste.

COMO EVITAR OVERFITTING

- Existem algumas técnicas para evitar o overfitting
 - Aumentar o conjunto de treinamento
 - Utilizar conjunto de validação
 - Técnicas de regularização
 - Dropout
 - Mudança na função de ativação

CONJUNTO DE VALIDAÇÃO

- Usar conjunto de validação:
 - Calculamos a precisão da classificação nos dados de validação no final de cada época.
 - Quando a precisão da classificação nos dados de validação estiver saturada, paramos de treinar.

• Essa estratégia é chamada de parada antecipada (*Early-Stopping*). JUST RIGHT UNDERFITTING **OVERFITTING OVERFITTING EPOCH 1** EPOCH 20 **EPOCH 100 EPOCH 600** Training Error: BIG Training Error: TINY

REGULARIZAÇÃO

• Qual a melhor solução?

Predição: z=f(net), onde

$$net = w_1x_1 + w_2x_2 + b$$

• Solução $1: x_1 + x_2$

Predição usando sigmóide: f(1+1)=0.88 f(-1-1)=0.12

• Solução 2: $10x_1 + 10x_2$

Predição usando sigmóide: f(10+10)=0.99999999999 f(-10-10)=0.0000000021

REGULARIZAÇÃO

- A ideia da Regularização é adicionar um termo extra à função de custo, um termo chamado termo de regularização.
- Intuitivamente, o efeito da regularização é fazer com que a rede prefira aprender pesos pequenos, e penaliza os demais os tornando iguais
- Pesos grandes só serão permitidos se melhorarem consideravelmente a primeira parte da função de custo.
- Dito de outra forma, a regularização pode ser vista como uma forma de se comprometer entre encontrar pequenos pesos e minimizar a função de custo original.

REGULARIZAÇÃO

Sigmóides geradas a partir de cada um dos modelos:

- O primeiro modelo é aplicado sob valores pequenos, então produzem um ângulo melhor para a função do gradiente descendente
- O segundo modelo produz respostas melhores, porém é mais ajustados aos dados, pode produzir overfitting

REGULARIZAÇÃO L1

Custo da entropia cruzada com regularização L1

$$\mathcal{J}(w) = -\frac{1}{M} \sum_{j=1}^{M} y^{j} \ln \left(h_{w}(x^{j}) \right) + \left(1 - y^{j} \right) \ln \left(1 - h_{w}(x^{j}) \right) + \frac{\lambda}{2M} \sum_{w} |w|$$

Custo quadrático com regularização L1

$$\mathcal{J}(w) = -\frac{1}{2M} \sum_{j=1}^{M} (y^{j} - h_{w}(x^{j}))^{2} + \frac{\lambda}{2M} \sum_{w} |w|$$

• Quando λ é pequeno, é minimizado a função de custo original, mas quando λ é grande, preferimos pesos pequenos.

REGULARIZAÇÃO L2

Custo da entropia cruzada com regularização L2

$$\mathcal{J}(w) = -\frac{1}{M} \sum_{j=1}^{M} y^{j} \ln \left(h_{w}(x^{j}) \right) + \left(1 - y^{j} \right) \ln \left(1 - h_{w}(x^{j}) \right) + \frac{\lambda}{2M} \sum_{w} w^{2}$$

Custo quadrático com regularização L2

$$\mathcal{J}(w) = -\frac{1}{2M} \sum_{j=1}^{M} (y^{j} - h_{w}(x^{j}))^{2} + \frac{\lambda}{2M} \sum_{w} w^{2}$$

• Quando λ é pequeno, preferimos minimizar a função de custo original, mas quando λ é grande, preferimos pesos pequenos.

REGULARIZAÇÃO L1 VS L2

•
$$\mathcal{J}(w) = -\frac{1}{2}\sum(y_j - z_j)^2 + Penalidade$$

- Derivada em relação ao peso $\frac{\partial \mathcal{J}(w)}{\partial w_{ji}}$
- Atualização dos pesos com L1

Atualização dos pesos com L2

•
$$\Delta w_{ji}(t) = \eta [x_i * (z_j - y_j)z_j(1 - z_j)] + \lambda w_{ji}$$

REGULARIZAÇÃO L1 VS L2

Ll

- Esparsidade (1,0,0,1,0)
- Transforma valores pequenos em zeros
- Pode-se reduzir o número de pesos
- Bom para seleção de características

L2

- Esparsidade: (0.5,0.3,-0.2,0.4,0.1)
- Tenta manter os pesos pequenos
- Normalmente produz resultados melhores em modelos de treinamento.
- Mais usado

DROPOUT

- No processo de treinamento, muitas vezes temos áreas da rede neural que possui mais peso que outras áreas.
- Também existem áreas que não são muito utilizadas e não são treinadas.
- Seria útil então avaliar estruturas de redes neurais artificiais diferentes
- O dropout é uma técnica utilizada para "desligar" alguns neurônios durante o treinamento.
- É equivalente a treinar redes neurais diferentes.
- O procedimento de remoção de nós é como calcular a média dos efeitos de um grande número de redes diferentes

DROPOUT

• É dada uma probabilidade para cada nó ser desligado no treinamento em cada época (foward+backpropagation).

 Nesse exemplo, os nós em vermelho são deligados

DISSIPAÇÃO DO GRADIENTE

- A curva se achata nas laterais
- Se calcular a derivadas, tanto na esquerda quanto na direita, as derivadas serão valores muito pequenos ou quase zero.
- Não é bom, pois a derivada indica a direção a seguir

DISSIPAÇÃO DO GRADIENTE

- Correção do erro através da derivada da regra da cadeia da função sigmóide
- O resultado é o produto de números pequenos, então esse número pode ser muito pequeno. (ver exemplo da aula anterior)
- Isso pode levar a atualizações muito pequenas nos pesos, na medida que a arquitetura da rede neural cresce

SOLUÇÃO PARA DISSIPIÇÃO DO GRADIENTE

Trocar a função de ativação

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

HISTÓRICO DAS FUNÇÕES DE ATIVAÇÃO

Name	Formula	Year
none	y = x	-
sigmoid	$y = \frac{1}{1 + e^{-x}}$	1986
tanh	$y = \frac{e^{2x} - 1}{e^{2x} + 1}$	1986
ReLU	y = max(x, 0)	2010
(centered) SoftPlus	$y = \ln\left(e^x + 1\right) - \ln 2$	2011
LReLU	$y = max(x, \alpha x), \alpha \approx 0.01$	2011
maxout	$y = \max(W_1x + b_1, W_2x + b_2)$	2013
APL	$y = \max(x,0) + \sum_{s=1}^{S} a_i^s \max(0, -x + b_i^s)$	2014
VLReLU	$y = max(x, \alpha x), \alpha \in 0.1, 0.5$	2014
RReLU	$y = max(x, \alpha x), \alpha = random(0.1, 0.5)$	2015
PReLU	$y = max(x, \alpha x), \alpha$ is learnable	2015
ELU	$y = x$, if $x \ge 0$, else $\alpha(e^x - 1)$	2015

ATUALIZAÇÃO DOS PESOS

- Cada passo em direção ao mínimo é chamado de época
- Cada época do treinamento representa uma apresentação de todos os dados de treinamento

ATUALIZAÇÃO LOCAL

- A atualização dos pesos é realizada após a apresentação de cada amostra do treinamento de forma aleatória ou estocástica.
- Uma época representa a apresentação de todas amostras do treinamento
- Como as amostras são apresentadas aleatoriamente, o uso da atualização padrão por padrão torna a busca no espaço de conexões estocástica por natureza, reduzindo a possibilidade do algoritmo ficar preso em um mínimo local.

ATUALIZAÇÃO EM LOTES (BATCH)

- No treinamento em lotes, os dados são divididos em partes igualmente distribuídas (lotes).
- Cada atualização é realizada quando um lote é processado
- A utilização do método em lote fornece uma estimativa mais precisa do vetor gradiente.
- É usualmente mais utilizada que a atualização local
- A escolha do tamanho do lote é um parâmetro que afetará a velocidade do treinamento
- É usual escolher um múltiplo de 2: 64, 128, 256 e 512

REINICIO ALEATÓRIO

- Reiniciar o treinamento utilizando pesos escolhidos aleatoriamente
- Aumenta as chances de encontrar o mínimo global ou um bom mínimo local
- Uma abordagem comum de inicialização dos pesos é utilizar:
 - Distribuição gaussiana com média 0 e desvio padrão 1
 - Multiplicar o valore gerado por $\sqrt{\frac{2}{n_i}}$, onde n_i é o número nós de entrada na camada considerada.

MOMENTO

- O momento acumula pesos anteriores para estabilizar a convergência da rede
- Ajuda a desviar de mínimos locais
- Pode acelerar treinamento em regiões muito planas da superfície de erro

MOMENTO

$$v_t = \beta v_{t-1} + \eta \frac{\partial \mathcal{J}(w)}{\partial w_{ii}}$$

$$\bullet \ w_{ji}(t) = w_{ji}(t-1) - v_t$$

onde $(0 < \beta < 1)$ é a constante de momento

- Normalmente, β é ajustada entre 0,5 e 0,9
- Exemplo com $\beta = 0.9$ e 3 parcelas:

•
$$v_1 = \frac{\partial \mathcal{J}(w)}{\partial w_1}$$

•
$$v_2 = 0.9 * \frac{\partial \mathcal{J}(w)}{\partial w_2} + \frac{\partial \mathcal{J}(w)}{\partial w_1}$$

•
$$v_3 = 0.9 * \left(0.9 * \frac{\partial \mathcal{J}(w)}{\partial w_1} + \frac{\partial \mathcal{J}(w)}{\partial w_2}\right) + \frac{\partial \mathcal{J}(w)}{\partial w_3} = 0.81 * \frac{\partial \mathcal{J}(w)}{\partial w_1} + 0.9 * \frac{\partial \mathcal{J}(w)}{\partial w_2} + \frac{\partial \mathcal{J}(w)}{\partial w_3}$$

ROOT MEAN SQUARE PROPOGATION (RMSPROP)

- RMSProp foi proposto por Geoffrey Hilton em uma de suas aulas
- Assim como o momento, tenta diminuir oscilações na convergência da Rede Neural.
- RMSprop propõe uma taxa de aprendizado pra cada atualização de peso.

ROOT MEAN SQUARE PROPOGATION (RMSPROP)

•
$$g_{t,i} = \frac{\partial \mathcal{J}(w_t)}{\partial w_{ti}}$$

•
$$v_t = \rho v_{t-1} + (1 - \rho) * g_t^2$$

•
$$w_{ji}(t) = w_{ji}(t-1) - \frac{\eta}{\sqrt{v_t + \varepsilon}} * g_t$$

- $\frac{\partial \mathcal{J}(w_t)}{\partial w_{ti}}$ derivada em relação ao peso i no tempo t
- ρ é um parâmetro com valor sugerido é 0.9
- ε é utilizado pra evitar que tenha divisão por zero e o valor é muito baixo.

ADAPTIVE MOMENT ESTIMATION (ADAM)

- É outro método que calcula os pesos de forma adaptativa
- ${\color{red}\bullet}$ Guarda além dos valores dos pesos passados, o decaimento exponencial da média de gradientes passados m_t
- $m_t = \beta_1 m_{t-1} + (1 \beta_1) * g_t$
- $v_t = \beta_2 v_{t-1} + (1 \beta_2) * g_t^2$
- m_t e v_t são estimativas do primeiro momento (a média) e do segundo momento (a variância não centralizada) dos gradientes
- β_1 e β_2 são valores próximos de 1

ADAPTIVE MOMENT ESTIMATION (ADAM)

 Para evitar tendência de ter valores próximos de zero nos primeiros momentos, são calculadas estimativas de primeiro e segundo momento corrigidas por viés

$$\bullet \widehat{m_t} = \frac{m_t}{1 - \beta_1}$$

$$\widehat{v}_t = \frac{v_t}{1 - \beta_2}$$

•
$$w_{ji}(t) = w_{ji}(t-1) - \frac{\eta}{\sqrt{\widehat{v_t} + \varepsilon}} * \widehat{m_t}$$

• Os autores propõe valores 0.9 para β_1 , 0.999 para β_2 e 10^{-8} para ε

REFERÊNCIAS

 Ruder S. An overview of gradient descent optimization algorithms. arXiv, 2017.

 http://ruder.io/optimizing-gradientdescent/index.html#rmsprop

