Deligne–Lusztig theory and the local Langlands correspondence

Masao Oi (National Taiwan Univ.) j. w. with Charlotte Chan (Univ. of Michigan)

> January 15, 2025 2025 TMS Annual Meeting

What is the local Langlands correspondence?

- Langlands correspondence (conj.) predicts a natural connection between automorphic representations and Galois representations.
- Local Langlands correspondence (conj.) is the local version of the Langlands correspondece.
- F: a local field of characteristic 0 (i.e., a finite extension of \mathbb{Q}_p or \mathbb{R}).
- W_F : the Weil group of F.
- G: a reductive group over F.
- \hat{G} : the Langlands dual group of G over \mathbb{C} ($\frown W_F$).

G	GL_n	U_n	SO_{2n+1}	Sp_{2n}	SO_{2n}
\hat{G}	GL_n	GL_n	Sp_{2n}	SO_{2n+1}	SO_{2n}

- \blacksquare $\Pi(G)$: the set of irreducible admissible representations of G(F).
- ullet $\Phi(G)$: the set of L-parameters of G $(W_F imes \mathrm{SL}_2(\mathbb{C}) o \hat{G} imes W_F)$.

Local Langlands correspondence (rough form)

Local Langlands correspondence (conjectural/rough form)

There exists a "natural" map from $LLC_G: \Pi(G) \to \Phi(G)$.

- The meaning of "natural" is not clear in general.
 - (\rightsquigarrow It is not known even how to characterize $LLC_G!$)
- Known for $F = \mathbb{R}, \mathbb{C}$ due to Langlands ('89).
 - (\rightsquigarrow We focus on a p-adic F in the following.)
- \blacksquare \exists various results for specific G:
 - $G = GL_n$: Harris–Taylor ('01), Hennairt ('00).
 - $G = \operatorname{Sp}_{2n}, \operatorname{SO}_n$: Arthur ('13).
 - $G = U_n$: Mok ('15).
 - **...**
- But \exists still many things to study even in these cases.

Want: an explicit description (construction) of LLC_G .

Regular supercuspidal representations

Another approach to LLC: Instead of specifying a group G, restrict ourselves to some specific class of representations.

- $\Pi_{sc}(G)$: the set of supercuspidal representations of G(F).
- Kaletha ('19) introduced a subclass $\Pi_{\text{reg}}(G)$ of $\Pi_{\text{tame}}(G)$ (called "regular supercuspidal representations") and parametrized $\Pi_{\text{reg}}(G)$ via "regular pairs" (S, θ) .
 - $lue{S}$: a tamely ramified elliptic maximal torus of G over F.
 - $m{ heta}: S(F)
 ightarrow \mathbb{C}^{ imes}$: a character satisfying a certain "regularity" condition.

$$\Pi(G)\supset\Pi_{\mathrm{sc}}(G)\supset\Pi_{\mathrm{reg}}(G)\stackrel{1:1}{\longleftrightarrow}\{(S,\theta)\mid \text{regular pairs}\}$$

$$\pi_{(S,\theta)}\longleftrightarrow(S,\theta)$$

LLC for regular supercuspidal representations

- Then Kaletha constructed "LLC $_G$ " on $\Pi_{reg}(G)$:
 - Apply the LLC for S ($\stackrel{.}{=}$ local class field theory) to θ to get the L-parameter $\phi_{\theta} \colon W_F \to \hat{S} \rtimes W_F$.
 - Apply the "Langlands–Shlestad construction" to get an embedding $\hat{S} \rtimes W_F \hookrightarrow \hat{G} \rtimes W_F$.
 - By composing them, get an L-parameter of G (say ϕ): $\phi \colon W_F \xrightarrow{\phi_{\theta}} \hat{S} \rtimes W_F \hookrightarrow \hat{G} \rtimes W_F$
 - Define $\phi := LLC_G(\pi_{(S,\theta)})$.

Theorem (O.-Tokimoto, 2021)

Kaletha's LLC = Harris–Taylor and Henniart's LLC for $\Pi_{reg}(GL_n)$.

Theorem (O., 2023)

Kaletha's LLC = Arthur's LLC for "toral" regular supercuspidal representatations of Sp_{2n} or SO_n when $p\gg 0$.

→ provides one answer to the problem of explicit LLC!

Deligne-Lusztig theory

Questions

- 1. The parametrization $(S,\theta) \leftrightarrow \pi_{(S,\theta)}$ is constructive (based on Yu's theory ('01)). Is there a more conceptual way to understand it?
- 2. Is it possible to establish such a parametrization outside $\Pi_{reg}(G)$?

We may seek a hint in **Deligne–Lusztig theory**.

- Deligne–Lusztig ('76) constructed all irreducible representations of $\mathbb{G}(\mathbb{F}_q)$ for any reductive group \mathbb{G} over \mathbb{F}_q .
 - Take any \mathbb{F}_q -rational maximal torus \mathbb{S} of \mathbb{G} .
 - Introduce a variety $X_{\mathbb{S}}^{\mathbb{G}} \curvearrowright \mathbb{G}(\mathbb{F}_q) \times \mathbb{S}(\mathbb{F}_q)$ ("Deligne–Lusztig variety").
 - $\blacksquare \text{ Take its ℓ-adic cohomology } H^i_c(X^{\mathbb{G}}_{\mathbb{S}}, \overline{\mathbb{Q}}_{\ell}) \text{ (repn of } \mathbb{G}(\mathbb{F}_q) \times \mathbb{S}(\mathbb{F}_q) \text{)}.$
 - Take any character $\theta \colon \mathbb{S}(\mathbb{F}_q) \to \mathbb{C}^{\times} (\cong \overline{\mathbb{Q}}_{\ell}^{\times})$.
 - lacksquare Cut & take the alternating sum: $R^{\mathbb{G}}_{\mathbb{S}}(\theta):=\sum_{i}(-1)^{i}H^{i}_{c}(X^{\mathbb{G}}_{\mathbb{S}},\overline{\mathbb{Q}}_{\ell})[\theta].$
- Input/output look similar to $(S, \theta) \leftrightarrow \pi_{(S, \theta)}!$

p-adic version of Deligne-Lusztig theory

- Chan-Ivanov ('21) established a p-adic version of the story of Deligne-Lusztig theory.
- To any pair (S, θ) of
 - \blacksquare any unramified F-rational maximal torus S of G,
 - \blacksquare any character $\theta \colon S(F) \to \mathbb{C}^{\times}$,

they associated a virtual representation $\pi^{\mathrm{CI}}_{(S,\theta)}$ of G(F).

Both Kaletha–Yu & Chan–Ivanov associate a repn of G(F) to (S,θ) . But,

- \blacksquare Kaletha–Yu: S must be tame and elliptic; θ must be regular.
- \blacksquare Chan–Ivanov: S must be unramified, but can be non-elliptic; θ can be any.
 - Q. Relation between those on the "intersection" of their domains?

Comparison result

Theorem (Chan-O., '21, '24)

Suppose that S is an unramified elliptic maximal torus of G and $\theta \colon S(F) \to \mathbb{C}^{\times}$ is a regular character. Then $\pi_{(S,\theta)} \cong \pi_{(S,\theta)}^{\mathrm{CI}}$ under some assumptions on q (the order of the residue field of F).

Idea of proof.

- ∃ explicit character formulas:
 - $\pi_{(S,\theta)} \colon \text{Adler-DeBacker ('09), DeBacker-Spice ('18), Spice ('18, '21).}$ $\pi_{(S,\theta)}^{\text{CI}} \colon \text{Chan-Ivanov ('21).}$
- Both are too complicated to be compared in general, but are drastically simplified on "very regular" semisimple elements.
- If $q \gg 0$, we have enough many very regular semisimple elements so that the coincidence of the characters only on such elements implies the coincidence of representations.

Future direction

Q. Is there a unified parametrization $(S,\theta) \leftrightarrow \pi_{(S,\theta)}$ which works on the "union" of the domains of Kaletha–Yu and Chan–Ivanov?

$$\{ \text{tame } S, \text{ any } \theta \} \\ \{ \text{ur } S, \text{ any } \theta \} \\ \\ \\ \\ \{ \text{ur ell } S, \text{ reg } \theta \} \\ \\$$