

9

# Water bombs

Mário Lipovský



## Task

Some students are ineffective in water balloon fights as the balloons they throw rebound without bursting.

Investigate the **motion**, **deformation**, and **rebound** of a balloon filled with fluid.

Under what circumstances does the balloon **burst**?



#### Content

- Motion and deformation
  - Two types
- Rebound
  - Angle of rebound
- Burst
  - Energies in balloon
    - Elastic
    - Kinetic
    - Potential
- Summary



# How it looks





## How it looks





$$E_k = 0$$

$$E_p = mgh$$

$$E_e = A$$





$$E_{k} = mgh$$

$$E_{p} = 0$$

$$E_{e} = A$$

$$E_{a}=A$$





$$E_{k} = mgh - \Delta E$$

$$E_{p} = 0$$

$$E_{e} \approx A + \Delta E$$

Water flows to the sides





$$E_k = 0$$

$$E_p = 0$$

$$E_e \approx A + mgh$$

Maximal radius of balloon Water stopped by rubber

Some energy lost - water flows





$$\begin{split} E_k &= \Delta E \\ E_p &= 0 \\ E_e &\approx A + mgh - \Delta E \end{split}$$

Rubber is contracting













$$E_k = 0$$

$$E_p < mgh$$

$$E_e = A$$



Energy losses
Water convection
Heat





The view is from the bottom of the aquarium



























"Investigate the motion, deformation and





## Rebound





# Jumping balloon





# Jumping balloon





# Jumping balloon



"Investigate the **motion**, **deformation**, and the **rebound** of a ballown filled with Wuid. Under what wircumstances does the balloon





## **Apparatus**



Balloon with mass **M** 

Changing height **h** from **h=0cm**Find the **smallest h**, when it bursts

h

Do it with **many** balloons



## Height, which causes burst





# Potential energy needed to





# Elastic energy of balloon

# Can be calculated from **pressure change** during inflation



$$E_e = \int p(\mathbf{V}) dV$$



#### Pressure measurement





## Elastic energy of balloon





# More measurements of elastic energy





## Elastic energy of balloon with

#### water





# Total energy given to balloon

#### Potential energy of fall



#### **Elastic energy**



$$E_{total} = E_p + E_e$$



# Total energy needed to burst

(Potential + Elastic)





## Compressing





## **Apparatus**





## Compressed balloon





### Force vs. depth of compression





## Force vs. depth of compression





# Work done by apparatus $W = \int_{0}^{\max h} F(h) dx$ for many balloon volumes



More than 1000 measure-points



### Total energy needed for burst

(Work + Elastic)





## Big balloon



Almost maximal tension

Elastic energy is almost maxima



#### Small balloon



Tension at the bottom remains the same



#### Total energy needed for burst





## Energy needed to burst trough fall & through compression





## Falling balloon

In graph

$$E = E_p + E_e$$

There are losses
Water convection
Heat

Let's assume that **constant ratio** of energy is preserved

$$E = mgh + E_e$$

$$E = k mgh + E_e$$



## Energy needed to burst trough fall & through compression





## Energy needed to burst trough fall & through compression





#### What we have





We can derive approximately the **velocity** of throw needed to burst a balloon



### Approximate velocity needed for





## Summary





## **Summary** - Burst









## **Summary** - Burst









Mass of balloon [g]



## Thank you for your attention!





### **APPENDICES**



## Energy needed to burst trough fall & through compression





#### Rubber stretch at rebound





#### Rubber stretch at rebound





## Adding air





## Other liquid





## Elastic energy of the balloon

• Stretching a piece of rubber, surface tension  $dW = 2a\sigma da = \sigma dS$ 



• In terms of pressure inside:

$$p = \frac{2\pi r\sigma}{\pi r^2} \qquad \sigma = \frac{rp}{2}$$





• Spherical shape:  $S=4\pi r^2$   $dS=8\pi r dr$   $V=\frac{4}{3}\pi r^3 \ dV=4\pi r^2 dr$ 

$$dW = \frac{pr}{2}dS = p4\pi r^2 dr = pdV$$

• Elastic energy =  $\int pdV$