MATHEMATICAL ABBREVIATIONS

XIAOXIANG ZHOU

Contents

1.	Introduction	1
2.	Jargons	1
3.	Mathematicians	2
4.	Subjects related	4
5.	Geometrical objects	5
6.	Other math stuffs	5
7.	Other non-math stuffs	6
8.	Universities	6

1. Introduction

This is a document for mathematical abbreviations. See wiki for a more completed description. See also the mathematical jargons.

2. Jargons

c.f.	compare (as a reference)
WLOG	without loss of generality

 ${\it Date} \hbox{: April 30, 2024.}$

3. Mathematicians

AA	Arzelà–Ascoli
AB	Auslander–Buchweitz
AF	Andreotti–Frankel
AG	Auslander-Gorenstein
AK	Ariki–Koike
AK	Ax-Katz
AL	Atkin-Lehner
ALW	Ax-Lindemann-Weierstrass
AO	André-Oort
AR	Auslander–Reiten
AS	Artin-Schreier
AS	Atiyah–Singer
AS	Ax-Schanuel
AW	Alexander-Whitney
BB	Baily-Borel
BB	Barr-Beck
BB	Beauville-Bogomolov
BB	Beilinson-Bernstein
BBDG	Beilinson-Bernstein-Deligne-Gabber
BC	Banach-Colmez
BCH	Baker-Campbell-Hausdorff
BD	Breen-Deligne
BGG	Bernstein-Gelfand-Gelfand
BK	Bloch-Kato
BKK	Bernstein-Kushnirenko-Khovanskii
BL	Bernstein-Lunts
BL	Bombieri–Lang
BL	Borel-Lebesgue
BM	Blakers-Massey
BM	Borel-Moore
BM	Brauer-Manin
BMK	Riesz-Markov-Kakutani
BMS	Bhatt-Morrow-Scholze
BN	Browder-Novikov
BP	Brieskorn–Grothendieck
BP	Brieskorn-Pham
BQ	Bloch-Quillen
BS	Banach-Steinhaus
BS	Banach-Stone
BS	Borel-Serre
BS	Bott-Samelson

DC.	D Ct 1
BS	Brumer–Stark
BT	Banach-Tarski
BT	Barsotti-Tate
BT	Bruhat-Tits
BU	Borsuk-Ulam
BW	Bolzano-Weierstrass
BWB	Borel-Weil-Bott
CG	Clebsch–Gordan
CJ	Chen-Jiang
CKN	Caffarelli–Kohn–Nirenberg
CM	Castelnuovo–Mumford
CM	Codazzi-Mainardi
CP	Cauchy-Pompeiu
CR	Cauchy-Riemann
CS	Cappell-Shaneson
CS	Cartan-Serre
CS	Cauchy-Schwarz
CS	Clausen-Scholze
CS	Cotlar-Stein
CV	Calderon-Vaillancourt
CW	Chevalley-Warning
CY	Calabi–Yau
DB	Deligne–Beilinson
DK	Dold-Kan
DL	Deligne-Lusztig
DM	Deligne–Mumford
DM	Dieudonné-Manin
DP	De Concini-Procesi
DP	Dold-Puppe
DS	Deligne–Serre
DT	Dold-Thom
DT	Donaldson-Thomas
DW	De Rham-Weil
DW	Dowling-Wilson
EH	Eckmann-Hilton
EK	Enriques–Kodaira
EL	Euler-Lagrange
EM	Eilenberg-MacLane
ES	Eichler-Shimura
ES	Eilenberg-Steenrod
ES	Eisenbud–Shamash
	Libotioud phantaph

EW Eilenberg-V	Watts
EZ Eilenberg-Z	
FD Fourier–De	
FF Fargues-Fo	
FJ Fulton-Joh	
FK Feynman-F	
FL Fontaine-L	
FM Fontaine-M	
FM Fourier-Me	ellin
FM Fourier-Mu	
FM Freyd-Mito	ehell
FS Fargues-Sc	
FS Fourier-Sat	
FS Frobenius	Schur
FT Farrell-Tat	e
FT Feit-Thom	pson
FU Fréchet-Ur	
	Vinterberger
GC Gauss-Cod	azzi
GGP Gan-Gross	-Prasad
GL Green-Laza	arsfeld
GM Gauss-Mar	nin
GM Goresky-M	acPherson
GM Grothendie	ck-Messing
GP Gross-Pras	ad
GP Gross-Pras	ad
GS Garcia-San	karan
GS Golod-Shat	farevich
GS Gram-Schr	midt
GV Gopakumai	r-Vafa
GV Gromov-W	Titten
GW Grunwald-	Wang
GZ Gross-Zagi	er
HB Hahn-Bana	ach
HB Heine-Bore	el
HJ Hamilton-J	Jacobi
HL Hardy-Litt	lewood
HLS Hardy-Litt	lewood–Sobolev
HM Hasse-Minl	kowski
HN Harder–Na:	rasimhan
HR Hodge-Rie	mann

	I
HT	Hodge-Tate
HW	Hasse-Weil
HZ	Hirzebruch–Zagier
JH	Jordan–Hölder
JM	Jacobson-Morozov
KA	Krull–Akizuki
KAM	Kolmogorov-Arnold-Moser
KH	Kobayashi–Hitchin
KL	Kazhdan–Lusztig
KL	Kubota-Leopoldt
KM	Kac-Moody
KN	Kulkarni–Nomizu
KR	Kudla-Rapoport
KS	Kashiwara-Schapira
KS	Kelvin–Stokes
KS	Kirby–Siebenmann
KS	Kodaira-Spencer
KS	Krull–Schmidt
KT	Kinoshita-Terasaka
KW	Kronecker–Weber
LH	Leray-Hirsch
LK	Langlands-Kottwitz
LM	Levi-Malcev
LM	Lê-Milnor
LO	Littlewood-Offord
LR	Langlands-Rapoport
LT	Langlands-Tunnell
LT	Lubin-Tate
LV	Lawrence-Venkatesh
LW	Lindemann-Weierstrass
LZ	Liu-Zheng
LZ	Lu-Zheng
MA	Monge-Ampère
ML	Mordell-Lang
MM	Manin-Mumford
MN	Milnor-Novikov
MP	Moore-Postnikov
MS	Merkurjev-Suslin
MS	Myers-Steenrod
MT	Mumford-Tate
MV	Mayer-Vietoris
	<u> </u>

NN	Newlander-Nirenberg
NP	Newton-Puiseux
NS	Navier-Stokes
NS	Nielsen-Schreier
NS	Nikolov-Segal
NU	Neukirch-Uchida
NU	Neukirch-Uchida
PH	Poincaré–Hopf
PL	Phragmén–Lindelöf
PL	Poincare-Lefschetz
PT	Pontryagin-Thom
PV	Poincaré-Verdier
PW	Peter-Weyl
PW	Pila-Wilkie
RH	Riemann-Hurwitz
RHW	Rota-Heron-Welsh
RM	Riesz-Markov
RMK	Riesz-Markov-Kakutani
RS	Rankin–Selberg
RS	Riemann–Stieltjes
RT	Reshetikhin-Turaev
RT	Riesz-Thorin
RZ	Rapoport-Zink
SB	Severi-Brauer
SN	Skolem-Noether
SS	Schneider-Stuhler

SS	Sobolev-Slobodeckij
SS	Stanley-Stembridge
ST	Serre-Tate
SW	Schur-Weyl
SW	Shareshian-Wachs
SW	Siegel-Weil
SW	Spanier-Whitehead
SW	Stiefel-Whitney
SZ	Schur–Zassenhaus
SČ	Stone-Čech
TM	Thom-Mather
TN	Tate-Nakayama
TS	Thom-Sebastiani
TT	Tomita-Takesaki
TW	Taylor-Wiles
VB	Vietoris-Begle
VC	Vapnik-Chervonenkis
WD	Weil-Deligne
WW	Wigner-Weyl
YM	Yang-Mills
ZP	Zilber–Pink
ZR	Zariski–Riemann
PB	Pierce-Birkhoff

Remark 3.1. Białynicki-Birula, Mittag-Leffler, and Levi-Civita are individuals, while Birch and Swinnerton-Dyer is not a trio.

Kollár, Shepherd-Barron, and Alexeev is not a quartet.

4. Subjects related

AG	analytic geometry
AG	algebraic geometry
AG	arithmetic geometry
CFT	continuous Fourier transform
CFT	class field theory
CFT	conformal field theory
DDG	discrete differential geometry
DG	differential geometry
DG	differential graded
DGS	differential graded sheaf

GMT	geometrical measure theory
LA	linear algebra
RT	representation theory

LLC	local langlands correspondence
GLC	global langlands correspondence
MMP	minimal model program
HoTT	homotopy type theory

5. Geometrical objects

MF modular form TVS topological vector space LCTVS locally convex topological vector spaces LF limit of Fréchet spaces IC intersection complex	EC	elliptic curve
LCTVS locally convex topological vector spaces LF limit of Fréchet spaces	MF	modular form
LF limit of Fréchet spaces	TVS	topological vector space
	LCTVS	locally convex topological vector spaces
IC intersection complex	LF	limit of Fréchet spaces
r .	IC	intersection complex
mHs mixed Hodge structure	mHs	mixed Hodge structure
wps weighted projective space	wps	weighted projective space

6. Other math stuffs

\overline{SC}	Schanuel Conjecture
sc	supercuspidal
sc	superconformal
sc	semicontinuity
sc	simply connected
SS	supersingular
ss	semisimple
ss	semistable
SS	semistandard
FT	Fourier transform
HT	Hilbert transform
psh	plurisubharmonic
spsh	strictly plurisubharmonic

pscv	pseudoconvex
spcv	strictly pseudoconvex
CS	classical symbol
CS	computer science
CM	complex multiplication
Bl	block
Bl	blow up
SYT	standard Young diagram
ES	Euler system
PD	Poincaré duality
PL	piecewise linear
SNC	single normal crossing
CC	characteristic cycles
CC	cluster character
LMD	local Morse data
NMD	normal Morse data
MC	middle convolution
LSA	local stratified acyclicity
SMT	stratified Morse theory
CIT	conjecture on intersections with tori
eMZVs	elliptic multiple zeta values
GAFT	General Adjoint Functor Theorem
SAFT	Special Adjoint Functor Theorem

7. Other non-math stuffs

CSG	Constructive	solid	geometry
-----	--------------	------------------------	----------

8. Universities

$_{ m HU}$	Humboldt-Universität zu Berlin
TU	Technische Universität Berlin
FU	Freie Universität Berlin
BMS	Berlin Mathematical School

Berlin:

RTG	Research Training Groups
IMPRS	International Max Planck Research Schools
WIAS	Weierstrass Institute for Applied Analysis and Stochastics

Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany $Email\ address$: email:xx352229@mail.ustc.edu.cn