∨ 이진분류 실습: 이직 예측

- 회사 인사팀에서는 여러분들에게 직원의 이직여부과 관련해서 분석을 요청하였습니다.
- 최근 이직율이 증가하는 것에 대해 우려를 갖고 있기에, 이직여부에 영향을 주는 요인에 대해 분석하여, 이직할 것으로 보이는 직원들에 대해 회사를 떠나지 않도록 인사 프로그램을 준비하려고 합니다.
- 어떤 직원이 이직할지 예측해 봅시다.

1.환경준비

∨ (1) 라이브러리 로딩

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.metrics import *
from sklearn.preprocessing import MinMaxScaler

from keras.models import Sequential

from keras.layers import Dense
from keras.backend import clear_session
from keras.optimizers import Adam

• 함수 만들기

24. 4. 12. 오후 2:52

```
# 학습곡선 함수

def dl_history_plot(history):
    plt.figure(figsize=(10,6))
    plt.plot(history['loss'], label='train_err', marker = '.')
    plt.plot(history['val_loss'], label='val_err', marker = '.')

plt.ylabel('Loss')
    plt.xlabel('Epoch')
    plt.legend()
    plt.grid()
    plt.show()
```

∨ (2) 데이터 로딩

data data
path = "https://raw.githubusercontent.com/DA4BAM/dataset/master/Attrition_train_validation.CSV"
data = pd.read_csv(path)
data['Attrition'] = np.where(data['Attrition']=='Yes', 1, 0)
data.head(10)

	Attrition	Age	BusinessTravel	Department	DistanceFromHome	Education	EducationField
0	0	33	Travel_Rarely	Research & Development	7	3	Medical
1	0	35	Travel_Frequently	Research & Development	18	2	Life Sciences
2	0	42	Travel_Rarely	Research & Development	6	3	Medical
3	0	46	Travel_Rarely	Sales	2	3	Marketing
4	0	39	Travel_Frequently	Sales	20	3	Life Sciences
5	1	22	Travel_Frequently	Research & Development	4	1	Technical Degree
6	0	24	Travel_Rarely	Research & Development	21	2	Technical Degree
7	0	34	Travel_Rarely	Research & Development	8	3	Medical
8	0	30	Travel_Rarely	Research & Development	20	3	Other
9	0	26	Travel_Rarely	Research & Development	6	3	Life Sciences

10 rows × 26 columns

변수명 내용		구분		
Attrition	이직여부, Yes = 1 , No = 0	Target		
Age	나이	숫자		
BusinessTravel	출장 빈도(범주)			
Department	현 부서			
DistanceFromHome	집-직장 거리(마일)	숫자		
Education	교육수준(범주)	1 Below College, 2 College, 3 Bachelor, 4 Master, 5 Doctor		
EducationField	전공			
EmployeeNumber	사번			
EnvironmentSatisfaction	근무환경에 대한 만족도(범주)	1 Low, 2 Good, 3 Excellent, 4 Outstanding		
Gender	성별			
JobInvolvement	직무 적극성(참여도)	1 Low, 2 Medium, 3 High, 4 Very High		
JobRole	직무			
JobSatisfaction	직무 만족도	1 Low, 2 Medium, 3 High, 4 Very High		
MaritalStatus	결혼상태	Single, Married, Divorced		
MonthlyIncome	월급	숫자		
NumCompaniesWorked	현재까지 근무한 회사 수	숫자		
OverTime	야근여부	범주		
PercentSalaryHike	전년대비 급여인상율(%)	숫자		
RelationshipSatisfaction	동료와의 관계 만족도	1 Low, 2 Medium, 3 High, 4 Very High		

24. 4. 12. 오후 2:52

변수 명	내용	구분
StockOptionLevel	스톡옵션 수준 0~3	범주
TotalWorkingYears	총 근무 연수	숫자
TrainingTimesLastYear	전년 교육훈련 횟수	숫자
WorkLifeBalance	워라밸. 일-삶 균형도	1 Bad, 2 Good, 3 Better, 4 Best
YearsAtCompany	현직장 근무 연수	숫자
YearsInCurrentRole	현직무 연수	숫자
YearsWithCurrManager	현 팀장과 근무한 연수	숫자

~ 2.데이터 전처리

∨ (1) 데이터 정리

```
target = 'Attrition'
# 불필요한 변수 제거
data.drop('EmployeeNumber', axis = 1, inplace = True)

x = data.drop(target, axis = 1)
y = data.loc[:, target]
```

∨ (2) 가변수화

- 범주형 데이터이면서 값이 0,1 로 되어 있는 것이 아니라면, 가변수화를 수행해야 합니다.
- 대상이 되는 변수에 대해서 가변수화를 수행해주세요.

	Age	DistanceFromHome	MonthlyIncome	NumCompaniesWorked	PercentSalaryHike	TotalWorkingYea
0	33	7	11691	0	11	
1	35	18	9362	2	11	
2	42	6	13348	9	13	
3	46	2	17048	8	23	
4	39	20	4127	2	18	
5 rc	ows ×	53 columns				

∨ (3) 데이터 분할

- train_test_split:
 - ∘ test_size: 0.# 비율로 분할, 1보다 큰 자연수 갯수로 분할
 - train_size로 지정도 가능.

x_train, x_val, y_train, y_val = train_test_split(x, y, test_size = 200, random_state = 2022)

∨ (4) 스케일링

24. 4. 12. 오후 2:52

```
scaler = MinMaxScaler()
x_train = scaler.fit_transform(x_train)
x_val = scaler.transform(x_val)

y_train.value_counts() / len(y_train)

Attrition
0     0.839048
1     0.160952
Name: count, dtype: float64
```

∨ 4.모델링

∨ (1) 모델1

• 다양한 구조의 모델 2개 이상을 설계하시오. (히든레이어, 노드 수 조절)

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 32)	1728
dense_1 (Dense)	(None, 16)	528
dense_2 (Dense)	(None, 8)	136
dense_3 (Dense)	(None, 4)	36
dense_4 (Dense)	(None, 1)	5
		=======================================

Total params: 2433 (9.50 KB) Trainable params: 2433 (9.50 KB) Non-trainable params: 0 (0.00 Byte)

```
Epoch 2/30
27/27 [========] - 0s 4ms/step - loss: 0.3524 - val_loss: 0.3334
Epoch 3/30
27/27 [=====
        Epoch 4/30
27/27 [=====
            ========= ] - 0s 6ms/step - loss: 0.3162 - val_loss: 0.3420
Epoch 5/30
27/27 [========] - 0s 5ms/step - loss: 0.2760 - val_loss: 0.3599
Epoch 6/30
27/27 [====
            =========] - 0s 5ms/step - loss: 0.2602 - val_loss: 0.3412
Epoch 7/30
27/27 [=======] - 0s 6ms/step - loss: 0.2440 - val_loss: 0.4014
Epoch 8/30
27/27 [=====
            Epoch 9/30
27/27 [============ ] - 0s 5ms/step - loss: 0.2046 - val_loss: 0.4545
Epoch 10/30
27/27 [=========== ] - 0s 5ms/step - loss: 0.1538 - val_loss: 0.5504
Epoch 11/30
27/27 [=======
```

```
בpocn באר ב
27/27 [====
                         =======] - 0s 6ms/step - loss: 0.1679 - val_loss: 0.6940
Epoch 14/30
27/27 [=====
                   Epoch 15/30
27/27 [=====
                      =======] - 0s 8ms/step - loss: 0.1079 - val_loss: 0.6840
Epoch 16/30
27/27 [====
                            ======] - 0s 8ms/step - loss: 0.0989 - val_loss: 0.8365
Epoch 17/30
                       =======] - Os 7ms/step - loss: 0.0765 - val_loss: 1.0911
27/27 [=====
Epoch 18/30
27/27 [=====
                            ======] - 0s 10ms/step - loss: 0.0873 - val_loss: 0.9144
Epoch 19/30
27/27 [====
                          =======] - 0s 9ms/step - loss: 0.0808 - val_loss: 0.8220
Epoch 20/30
27/27 [====
                                    - 0s 7ms/step - loss: 0.0882 - val_loss: 1.1594
Epoch 21/30
                          =======] - 0s 9ms/step - loss: 0.1307 - val_loss: 0.6077
27/27 [=====
Epoch 22/30
27/27 [=====
                    ========] - Os 9ms/step - loss: 0.0877 - val_loss: 0.8625
Epoch 23/30
27/27 [====
                                  =] - 0s 9ms/step - loss: 0.0430 - val_loss: 0.9751
Epoch 24/30
27/27 [=====
                       ========] - 0s 8ms/step - loss: 0.0249 - val_loss: 1.3077
Epoch 25/30
27/27 [=====
                                ===] - 0s 10ms/step - loss: 0.0171 - val_loss: 1.4137
Epoch 26/30
27/27 [=====
                           ======] - 0s 9ms/step - loss: 0.0095 - val_loss: 1.3636
Epoch 27/30
27/27 [====
                                 ==] - 0s 6ms/step - loss: 0.0055 - val_loss: 1.2933
Epoch 28/30
                                 ==] - 0s 5ms/step - loss: 0.0046 - val_loss: 1.5517
27/27 [====
Epoch 29/30
27/27 [=====
                      =======] - 0s 5ms/step - loss: 0.0011 - val_loss: 1.5455
Epoch 30/30
27/27 [====
                          =======] - 0s 5ms/step - loss: 5.0524e-04 - val_loss: 1.6535
```

```
pred = model1.predict(x_val)
pred = np.where(pred >= 0.55, 1, 0)
```

7/7 [=======] - 0s 3ms/step

dl_history_plot(hist)

과적합 또는 노드가 많아 그래프가 위와 같이 나온 것같음

```
print(confusion_matrix(y_val, pred))
print(classification_report(y_val, pred))
```

```
[[156 13]
[ 16 15]]
              precision
                          recall f1-score
           0
                   0.91
                             0.92
                                       0.91
                                                  169
           1
                   0.54
                             0.48
                                       0.51
                                                   31
   accuracy
                                       0.85
                                                  200
                   0.72
   macro avg
                             0.70
                                       0.71
                                                  200
weighted avg
                   0.85
                             0.85
                                       0.85
```

∨ (2) 모델2

• 다양한 구조를 설계하시오. (히든레이어, 노드 수 조절)

Model: "sequential"

Layer (type)	Output	Shape	Param #
dense (Dense)	(None,	16)	864
dense_1 (Dense)	(None,	8)	136
ueee_1 (50ee)	(,	-,	
dense_2 (Dense)	(None,	1)	9

Total params: 1009 (3.94 KB) Trainable params: 1009 (3.94 KB) Non-trainable params: 0 (0.00 Byte)

```
model2.compile(optimizer=Adam(0.1), loss='binary_crossentropy')
hist = model2.fit(x_train, y_train, epochs=8, validation_split=0.2).history
```

```
pred = model2.predict(x_val)
pred = np.where(pred >= 0.5, 1 , 0)
```

```
7/7 [======] - 0s 3ms/step
```

dl_history_plot(hist)

print(confusion_matrix(y_val, pred))
print(classification_report(y_val, pred))

				[[167 2] [19 12]]
support	f1-score	recall	precision	
169	0.94	0.99	0.90	0
31	0.53	0.39	0.86	1
200	0.90			accuracy
200	0.74	0.69	0.88	macro avg
200	0.88	0.90	0.89	weighted avg

노드 수에 따라 epochs, lr 값 잘 정하기