Introduction to Algorithms 6.046J/18.401J/SMA5503

Lecture 9

Based on slides by Prof. Charles E. Leiserson

Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

"a" not "the"

functional notation, but not a function

Brute-force LCS algorithm

Check every subsequence of x[1 ...m] to see if it is also a subsequence of y[1 ...m].

Analysis

- Checking = O(n) time per subsequence.
- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).

```
Worst-case running time = O(n2^m)
= exponential time.
```


Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

Strategy: Consider *prefixes* of *x* and *y*.

- Define c[i,j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

Recursive formulation

Theorem.

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

Proof. Case x[i] = y[j]:

Let z[1 ... k] = LCS(x[1 ... i], y[1 ... j]), where c[i, j] = k. Then, z[k] = x[i], or else z could be extended. Thus, z[1 ... k-1] is CS of x[1 ... i-1] and y[1 ... j-1].

Proof (continued)

Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1])1]). Suppose w is a longer CS of x[1 ... i-1]and y[1...j-1], that is, |w| > k-1. Then, *cut* and paste: $w \parallel z[k]$ (w concatenated with z[k]) is a common subsequence of x[1 ... i] and y[1 ... i]|z| with |w||z| |z| |z| |z| |z| |z| Contradiction, proving the claim.

Thus, c[i-1, j-1] = k-1, which implies that c[i, j]= c[i-1, j-1] + 1.

Other cases are similar.

Dynamic-programming hallmark #1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

$$\begin{aligned} \operatorname{LCS}(x, y, i, j) \\ & \text{if } x[i] = y[j] \\ & \text{then } c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1) + 1 \\ & \text{else } c[i, j] \leftarrow \max \left\{ \operatorname{LCS}(x, y, i-1, j), \\ & \operatorname{LCS}(x, y, i, j-1) \right\} \end{aligned}$$

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

Height = $m + n \Rightarrow$ work potentially by by by each subproblems already solved!

Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
 \begin{aligned} & \operatorname{LCS}(x,y,i,j) \\ & \operatorname{if} c[i,j] = \operatorname{NIL} \\ & \operatorname{then} \operatorname{if} x[i] = y[j] \\ & \operatorname{then} c[i,j] \leftarrow \operatorname{LCS}(x,y,i-1,j-1) + 1 \\ & \operatorname{else} c[i,j] \leftarrow \max \left\{ \operatorname{LCS}(x,y,i-1,j), \\ & \operatorname{LCS}(x,y,i,j-1) \right\} \end{aligned}
```

Time = $\Theta(mn)$ = constant work per table entry. Space = $\Theta(mn)$.

Dynamic-programming algorithm

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

		A	В	C	В	D	A	В
	0	0	0	0	0	0	0	0
В	0	0	1	1	1,	1	1	1
D	0	0	1	1	1	2	2	2
C	0	0	1	2	2	2	2	2
A	0	1,	1	2	2	2	3	3
В	0	1	2	2	3	3	3	4
A	0	1	2	2	3	3	4	4

Dynamic-programming algorithm

B

B

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.

Space = $\Theta(mn)$.

Exercise:

 $O(\min\{m, n\}).$

		A	В	C	В	D	A	B
	0	0	0	0	0	0	0	0
	0	0	1	1	1.	1	1	1
)	0	0	1,	1	1	2	2	2
	0	0	1	2	2	2.	2	2
_	0	1,	1	2	2	2	3	3
	0	1	2	2	3	3	3	4
	0	1	2	2	3	3	4	4