明細書

1

ジハロゲン化物、高分子化合物及びその製造方法 技術分野

[0001] 本発明は、ジハロゲン化物、高分子化合物、及びその製造方法に関し、特に、特定 構造を主鎖内に有するジハロゲン化物、高分子化合物、及び当該ジハロゲン化物を 出発原料として得る前記高分子化合物の製造方法に関する。

背景技術

[0002] 近年、芳香族系高分子化合物 は耐熱性、電気化学的活性、蛍光を有する材料として注目されており、例えば蛍光材料への応用展開が進められている。例えば、ポリアニリンやポリチオフェン等が、その電気化学的レドックス反応の応用により電池活物質機能があることが期待されている(A.G.MacDiarmid等 PCT Int.Appl. 82-US299) (「ポリマーバッテリー」山本、松永著、共立出版(1990))。

また、ポリパラフェニレン系高分子については高い耐熱性が期待され、(ポリパラフェニレンのベンゼン環の間をエチレン基で結合したポリ(9,10-ジヒドロフェナントレン-2,7-ジイルも合成されてきた(polym. Bull. 30巻,285頁(1993)。

非特許文献1:A.G.MacDiarmid等 PCT Int.Appl. 82-US299(「ポリマーバッテリー」 山本、松永著、共立出版(1990)

非特許文献2:polym. Bull. 30巻,285頁(1993)

発明の開示

発明が解決しようとする課題

- [0003] しかしながら、これまでに開発されてきた上記ポリ(9,10-ジヒドロフェナントレン-2,7 ージイル)は、溶媒に不溶であるため、成形性が限られる、等の制約が生じている。そこで、電気化学的に活性で、熱安定性を有し蛍光性を有し、かつ、溶解性の高いポリパラフェニレン系高分子材料の出現が望まれている。
- [0004] そこで、本発明の目的は、可溶化させるための適切な置換基を導入した機能性材料としての用途が期待できる新規なポリ(9,10-ジヒドロフェナントレン-2,7-ジイル)と、その製造方法を提供することにある。

課題を解決するための手段

[0005] かかる目的を達成するために、本発明者らは、ジハロゲン化物及び当該ジハロゲン 化物の脱ハロゲン化について鋭意研究した結果、本発明の高分子化合物及びその 製造方法を見出すに至った。

[0006] すなわち、本発明のジハロゲン化物は、下記式で示されることを特徴とする。 [化1]

$$R^3$$
 R^3
 R^3
 R^3
 R^3

(式中、 R^1 、 R^1 は、ハロゲンを示し、 R^2 、 R^2 は、アルキル基、又は置換基を有するシリル基を示し、 R^3 、 R^3 は、水素又はアルキル基を示す。 R^1 と R^1 、 R^2 、 R^2 、 R^3 、 R^3 は、各々、互いに異なってても同じでもよい。)

[0007] また、本発明のジハロゲン化物の好ましい実施態様において、置換基を有するシリル基が、 $Si(CH_3)$ 、 $Si(n-C_4)$ 、 $Si(t-C_4)$ 、 $Si(CH_3)$ 、 $Si(CH_3)$ 、 $Si(CH_3)$ 、 $Si(CH_3)$ なる群から選択される少なくとも1種であることを特徴とする。

また、本発明のジハロゲン化物の好ましい実施態様において、アルキル基が炭素数1-20の間のアルキル基であることを特徴とする。

[0008] また、本発明の高分子化合物は、下記式で示される構造を主鎖内に有することを 特徴とする。

[化2]

$$R^3$$
 R^3 R^3

(式中、 R^2 、 R^2 は、アルキル基、又は置換基を有するシリル基を示し、 R^3 、 R^3 は、水素又はアルキル基を示す。)

[0009] 本発明の高分子化合物の好ましい実施態様において、下記式で示されることを特 徴とする。

[化3]

(式中、 R^2 、 R^2 は、アルキル基、又は置換基を有するシリル基を示し、 R^3 、 R^3 は、水素 又はアルキル基を示す。 R^1 と R^1 、 R^2 、 R^2 、 R^3 、 R^3 は、各々、互いに異なってても同じでもよい。nは重合度を表し、5~1000である。)

- [0010] また、本発明の高分子化合物の好ましい実施態様において、さらに、請求項4に記載の式で示される構造及びそれ以外の構造からなる共重合体からなることを特徴とする。
- [0011] また、本発明の高分子化合物の好ましい実施態様において、前記共重合体が、下記式、

[0012] [化4]

$$\left(\begin{array}{c} R^{5} R^{5} \\ R^{4} O O R^{4} \end{array} \right)$$

 $(R^4, R^4$ 及び R^5, R^5 は、アルキル基を示す。 R^4 と R^4 、 R^5 と R^5 は、各々、互いに異なっても同じでもよい。)

[0013] [化5]

 $(R^6 \& R^{6'}$ は、置換基を有するシリル基。 R^7 、 $R^{7'}$ はアルキル基を示す。 $R^6 \& R^{6'}$ 、 $R^7 \& R^{7'}$ は、各々、互いに異なってても同じでもよい。)

[0014] [化6]

$$(S^{6}) \xrightarrow{OR^{6}} S^{1}$$

 $(R^6, R^{6'}$ は置換基を有するシリル基を示す。 R^6 と $R^{6'}$ は、各々、互いに異なってても同じでもよい。)

[0015] [化7]

$$\left(\begin{array}{c} R^7 & R^7 \\ \hline \\ R^6 & 0 \end{array} \right)$$

 $(R^6, R^{6'}$ は、置換基を有するシリル基。 $R^7, R^{7'}$ はアルキル基を示す。 R^6 と $R^{6'}, R^7$ と $R^{7'}$ は、各々、互いに異なってても同じでもよい。)

[0016] [化8]

 $(R^7, R^7, R^8, R^8, R^9, R^9)$ はいずれもアルキル基を示す。 $R^7 \& R^7, R^8 \& R^8, R^9 \& R^9$ は、各々、互いに異なってても同じでもよい。)からなる群から選択される少なくとも1種であることを特徴とする。

- [0017] 本発明の高分子化合物の製造方法は、前記本発明の高分子化合物を、前記ジハロゲン化物を脱ハロゲン化して重合することにより得ることを特徴とする。
- [0018] 本発明の高分子化合物の製造方法の好ましい実施態様において、脱ハロゲン化 重合が、パラジウムまたはニッケル化合物の存在下で行なわれることを特徴とする。 発明の効果
- [0019] 本発明のジハロゲン化物によれば、有用な共役高分子化合物を、電気化学的、工 学的機能材料として提供し得るという有利な効果を奏する。
- [0020] 本発明の高分子化合物及び高分子化合物の製造方法によれば、可溶性のために成形性を有し、熱安定性、蛍光性、電気化学的活性を有する新たなポリフェニレン系ポリマーを簡便に提供することができるという有利な効果を奏する。特に、アルキル基や置換基を有するシリル基を選択し、溶媒に溶解させた後にキャストする方法などによって薄膜を得ることができる。

図面の簡単な説明

[0021] [図1][化25]中の化合物6のNMRスペクトルを示す。 [図2][化17]中の化合物7のNMRスペクトルを示す。 [図3][化17]中の化合物8のNMRスペクトルを示す。 [図4][化17]中の化合物9のNMRスペクトルを示す。 [図5][化17]中の化合物10のNMRスペクトルを示す。 [図6][化17]中の化合物11のNMRスペクトルを示す。 [図7][化19]中の化合物15のNMRスペクトルを示す。 [図8][化19]中の化合物16のNMRスペクトルを示す。 発明を実施するための最良の形態

[0022] すなわち、本発明のジハロゲン化物は、下記式で示される。 [化9]

$$R^3$$
 R^3
 R^3
 R^3
 R^3

[0023] 式中、R¹、R¹は、CI、Br,I等から選択されるハロゲンを示し、合成の容易さと高い反応性という観点から、好ましくは、Brである。R¹、R¹として選択されるハロゲンは、左右で異なるものを用いても良いが、合成の容易さという観点から、同一であることが好ましい。R²、R²は、アルキル基、又は置換基を有するシリル基を示す。R³、R³は、アルキル基を示す。得られるポリマーの溶解性の向上という観点から、R²、R²、R³、R³は好ましくは、ある程度の分子鎖長さ(例えば、R³、R³が、炭素数1~20のアルキル基)をもつものが望ましいが、これに制限されるものではない。R²とR²、R³とR³は、各々、互いに異なってても同じでもよい。

[0024] また、本発明の高分子化合物は、下記式で示される構造を主鎖内に有する。

[0025] [化10]

$$R^3$$
 R^3

式中、R²、R²は、アルキル基、または置換基を有するシリル基(以下、置換シリル基ともいう)を示し、R³、R³は、水素、又はアルキル基を示す。R²とR²、R³とR³は、各々、互いに異なってても同じでもよい。すなわち、本発明の高分子化合物は、[化10]に示される構造を主鎖内に有するものであれば、その構造は特に制限されることはなく、[化10]の構成繰り返し単位のほか、耐熱性、蛍光性、電気化学的活性を阻害しない範囲内で、他の構成単位(例えば、ピリジン、フェナンスレン、チオフェンなどから誘導されるもの)を有するものであってもよいが、特に、式[化10]で示される構造からなる高分子化合物であることが好ましい。この場合、[化10]の構成繰り返し単位が同一のホモポリマーであってもよく、[化10]の構成繰り返し単位の異なる組合せのコポリマーであってもよいが、合成の容易さや特性上、ホモポリマーであることが好ましい。

[0026] 本発明の高分子化合物の分子量は、用途により特に限定されないが、重量平均分子量で、1000以上が好ましく、さらには3000~100000であることが好ましい。このような分子量を持つことで、成型しやすくなり、また成形品の強度が向上するという利点を有する。

[0027] 本発明の高分子化合物は、また、下記式で示される。

8

[0028] [化11]

$$\begin{array}{c|c}
0R^2 & 0R^2 \\
\hline
R^3 & R^3
\end{array}$$

式中、R²、R²は、アルキル基、又は置換シリル基を示し、R³、R³は、水素、又はアルキル基を示す。R²とR²、R³とR³は、各々、互いに異なってても同じでもよい。nは重合度を表し、5~1000である。また、本発明の高分子化合物は、クロロホルムなどの有機溶媒に溶解性を示すことから、高分子化合物の溶液をガラスなどの基板上に塗布することが容易になる。溶解性の向上という観点から、R²及びR²は、C1-C20程度のアルキル基を有するシリル基、R³及びR³はC1-C20程度のアルキル基を持つものが望ましいが、これに制限されるものではない。

[0029] また、本発明の高分子化合物の好ましい実施態様において、さらに、請求項3に記載の式で示される構造及びそれ以外の構造からなる共重合体からなる。このような共重合体は、特に限定されるものではないが、例えば、下記式、

[0030] [化12]

[0031] [化13]

$$\begin{array}{c|c}
& R^{7}0 \\
\hline
& R^{6}0 \\
\hline
& 0R^{6}
\end{array}$$

[0032] [化14]

[0033] [化15]

$$\bigcap_{\mathbf{R}^{6}} \bigcap_{\mathbf{0}^{6}} \bigcap_{\mathbf{R}^{6}}$$

[0034] [化16]

 $(R^4, R^{4'}$ 及び $R^5, R^{5'}$ は、アルキル基を示す。 $R^6, R^{6'}$ は、置換基を有するシリル基。 $R^7, R^8, R^8, R^9, R^{9'}$ はアルキル基を示す。 R^4 と $R^{4'}, R^5$ と $R^{5'}, R^6$ と $R^{6'}, R^7$ と $R^{7'}, R^8$ と $R^{8'}, R^9$ と $R^{9'}$ は、各々、互いに異なってても同じでもよい。)

からなる群から選択される少なくとも1種を挙げることができる。

[0035] 次に、本発明の高分子化合物の製造方法について説明する。本発明の高分子化合物の製造方法は、前記本発明の高分子化合物を、前記ジハロゲン化物を脱ハロ

ゲン化して重合することにより得ることができる。好ましい実施態様において、反応性が高いという観点から、脱ハロゲン化重合が、パラジウムまたはニッケル化合物の存在下で行なわれる。

本発明のホモポリマーに用いる金属または金属化合物 としては、多様なものが挙 [0036] げられる。まず、金属としては、還元性金属または有機ハロゲン化物のC-Cカップリ ング反応を起こす金属が望ましく、例えば、Li、Na、K等の1族金属、Mg、Ca等の2族金属、Ti、V、Cr、Fe、Co、Ni、Cu等の遷移金属、Zn等の12族金属、Al、Ga等 の13族金属、Sn等の14族金属が挙げられる。これらの金属は、必要に応じて、他の 金属または金属化合物からなる触媒を用いてもよい(Mgを用いる類似の重合にお いて、ニッケル化合物を触媒とする例が雑誌「高分子」第46巻、68頁(1997年)中 の式(1)に記載されている)。また、金属化合物 としては、特に制限はないが、還元 性金属化合物 または有機ハロゲン化物のC-Cカップリング反応を起こさせるものが 望ましく、例えばゼロ価ニッケル化合物、ゼロ価パラジウム化合物 などが挙げられる 。これらのゼロ価金属化合物 を用いる場合、こうしたゼロ価金属化合物 そのものを用 いてもよいし、また2価ニッケル化合物、2価パラジウム化合物等を加え反応系中に おいて亜鉛Znやヒドラジン等の還元剤を用いて発生させてもよい。ゼロ価ニッケル化 合物 を用いてC-C結合生成を伴う単独重合の形式としては、特願平6-42428号 に記載の重合形成を挙げることができる。また、パラジウム触媒を用いるカップリング 反応ではアセチレン類

R 1 0 C = C ---

と有機ハロゲン化物R¹⁵Xのカップリング反応や有機スズ又はホウ素化合物(例えば、R¹²SnR¹³、やR¹⁴Sn-B(OR¹⁵) ₃とR¹¹Xとのカップリング反応を用いることができる。

[0037] このようななかでも、高い反応性という観点から、パラジウム又はニッケル化合物 が 好ましい。ホモポリマーを得る場合には、ゼロ価ニッケル錯体(例えば、ビス(1, 5ーシ クロオクタジエン)ニッケル:Ni(cod)。)の使用が好ましい。

[0038] また、このような反応は、ジメチルホルムアミド(DMF)等の有機溶媒などを用いて、

20~120℃程度の温度で行えばよい。

- [0039] このようにして得られる高分子化合物 は、元素分析、赤外吸収スペクトル(IR)等によって同定することができる。また、分子量は、ゲルパーミエーションクロマトグラフ(GPC)法によって求めたものである。
- [0040] 本発明の高分子化合物 は、可溶性であり、耐熱性、電気化学的活性、蛍光性をも つ高分子材料としての用途が期待される。
- [0041] また、本発明の高分子化合物は、色の変化を伴う電気化学的還元反応を示すことから、エレクトロクロミック材料として使用することができる。また、酸化還元機能を利用した電池用活物質として使用することもできる。これらの具体的な適用方法や形態については、公知のものに準じる。

実施例

- [0042] ここで、本発明の一実施例を説明するが、本発明は、下記の実施例に限定して解 釈されるものではない。また、本発明の要旨を逸脱することなく、適宜変更することが 可能であることは言うまでもない。
- [0043] 実施例1(ジハロゲン化物の合成) 本発明のジハロゲン化物の反応スキームを以下に示す。

[0044] [化17]

COOH NaNO2 Br COOH CH3 R2COOC Br COOCH3

NANO2 CU(1) Br COOCH Br
$$K_3CO_3$$
 acetone K_3CO_3 Br K_3CO_3 Br

[0045] (A) 4,4'-Dibromo-2,2'-dicarboxy-1,1'-biphenyl(1)の合成

2-Amino-5-bromobenzoic acid(5.47 g, 25.3 mmol)にH₂O(20 mL)とhydrochrolic acid(9 mL)を加え0 ℃に冷却、さらにsodium nitrite(2.10 g, 30.4 mmol)を加え1時間 撹拌した。その後、copper(II) sulfate pentahydrate(12.6 g, 50.5 mmol)をH₂O(45 mL) に溶かし、30% ammonia solution(22 mL)を加えた溶液にhydroxyammonium chloride(3.76 g, 55.7 mmol)の6N-sodium hydroxide(9 mL)溶液を0 ℃で加え、撹拌した。その溶液に、diazo化した溶液をcopper溶液の液面より下から30分かけ滴下した。 さらに室温に戻し2時間撹拌、1時間加熱した。

塩酸で溶液を酸性にした後、吸引濾過、乾燥した。カラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製することで4,4'-Dibromo-2,2'-dicarboxy-1,1'-biphenyl(4.5 g, 11.3 mmol, 90%)を黄色粉末として得た。得られた粉末を、クロロホルムにより再結晶化させることで白色盤状結晶を得た。

(物性値)

¹H NMR (CD₃OD, 400 MHz) δ (ppm) = 8.10 (d, J = 1.95 Hz, 2H, H) 7.69 (dd, J = 1.95,8.30 Hz, 2H, H) 7.10 (d, J = 8.30 Hz 2H, H)

IR(KBr) 3099, 1708, 1585, 1417, 1298, 1281, 1248, 1096, 1003, 826 (cm⁻¹) ref) J. Am. Chem. Soc. 1992, 114, 6227.

上記物性値中、H,、H, H, は、ベンゼン環に結合している水素に帰属される。(以下の実施例の項において同様。)

(B) 4,4'-Dibromo-2,2'-bis(methoxycarbonyl)-1,1'-biphenyl(2)の合成 窒素雰囲気下、4,4'-Dibromo-2,2'-dicarboxy-1,1'-biphenyl(0.18 g, 0.46 mmol) にpotassium carbonate(0.84 g, 6.00 mmol), acetone(25 mL), iodomethane(170 μL, 2.73 mmol)を加え2時間還流した。

クロロホルムで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:クロロホルム=1:1)で精製することで黄色粉末である4,4'

-Dibromo-2,2'-bis(methoxycarbonyl)-1,1'-biphenyl(0.18 g, 0.42 mmol, 91%)を得た。得られた粉末を、クロロホルムーヘキサン混合溶媒により再結晶化させることで白色盤状結晶を得た。

(物性値)

¹H NMR (CDCI₃, 400 MHz) $\delta \text{ (ppm)} = 8.16 \text{ (d, J} = 1.95 \text{ Hz, 2H, H})$ 7.66 (dd, J = 1.95, 8.30 Hz, 2H, H)

IR(KBr) 1730, 1716, 1434, 1294, 1278, 1244, 1148, 1095, 971, 832 (cm⁻¹)

(C) 4,4'-Dibromo-2,2'-bis(hydroxymethyl)-1,1'-biphenyl(3)の合成

窒素雰囲気下、4,4'-Dibromo-2,2'-bis(methoxycarbonyl)-1,1'-biphenyl(3.24 g, 7.56 mmol)をdry ether(42 mL)に溶解させ、0 ℃で攪拌した。さらにlithium aluminium hydride(0.64 g, 16.9 mmol)を加え、6時間攪拌した。

酢酸エチルで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製することで白色粉末である4,4'

-Dibromo-2,2'-bis(hydroxymethyl)-1,1'-biphenyl(2.60 g, 6.98 mmol, 92%)を得た。 得られた粉末を、クロロホルムーヘキサン混合溶媒により再結晶化させることで白色針 状結晶を得た。

(物性値)

¹H NMR (DMSO, 400 MHz)

IR(KBr) 3454, 3320, 1656, 1611, 1567, 1542, 1222, 1161, 957, 822 (cm⁻¹)

(D) 4,4'-Dibromo-biphenyl-2,2'-dicarbaldehyde(4)の合成

窒素雰囲気下、-78 ℃でdry CH Cl (30 mL)にoxalyl dichloride(1.11 mL, 12.9 mmol), dimethyl sulfide(2.00 mL, 28.2 mmol)を加え1時間攪拌した。その後、4,4° ーDibromo-2,2°-bis(methoxycarbonyl)-1,1°-biphenyl(2.10 g, 5.64 mmol), triethyamine(7.86 mL, 56.4 mmol)を加え2時間攪拌した。

酢酸エチルで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:クロロホルム=2:1)で精製することで黄色粉末である4,4'

-Dibromo-biphenyl-2,2'-dicarbaldehyde(1.87 g, 5.08 mmol, 90%)を得た。得られた

粉末を、クロロホルムーへキサン混合溶媒により再結晶化させることで白色盤状結晶 を得た。

(物性値)

¹H NMR (CDCl₃, 400 MHz)

 δ (ppm) = 9.77 (s, 2H, -CHO)

8.17 (d, J = 2.44 Hz, 2H, H)

7.80 (dd, J = 2.44, 8.30 Hz, 2H, H₂)

7.21 (d, J = 8.30 Hz, 2H, H)

IR(KBr) 1693, 1682, 1583, 1457, 1389, 1179, 1086, 877, 833, 677 (cm⁻¹)

(E) 2,7-Dibromo-trans-9,10-dihydrophenanthrene-9,10-diol(5)の合成 窒素雰囲気下、-78 ℃で4,4'-Dibromo-biphenyl-2,2'-dicarbaldehyde(2.70 g, 7.33 mmol)をdry THF(60 mL)に溶解させた溶液に、titanium(IV) chloride(1.21 mL, 11.0 mmol)を滴下し、30分後、zinc(1.44 g, 22.0 mmol)を加え0 ℃に戻して3時間撹拌した。

酢酸エチルで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製することで白色粉末である

2,7-Dibromo-trans-9,10-dihydrophenanthrene-9,10-diol(2.17 g, 5.86 mmol, 80%)を 得た。得られた粉末を、クロロホルムーヘキサン混合溶媒により再結晶化させることで 白色針状結晶を得た。

(物性値)

¹H NMR (DMSO-d, 400 MHz)

δ (ppm) = 7.76 (d, J = 8.29 Hz, 2H, H)

7.71 (dd, J = 2.20, 8.29 Hz, 2H, H)

7.55 (d, J = 2.20 Hz, 2H, H)

5.88 (s, 2H, -benzylH)

4.47 (s, 2H, -OH)

IR(KBr) 3349, 1459, 1416, 1193, 1141, 1084, 1027, 805, 633, 446 (cm⁻¹) モノマーの同定を、元素分析、IR(KBr法)、¹HNMRにより行った。得られたジハロ

ゲン化物の物性値を以下に示す。

	С	Н	Br	О	
cal	45.44	2.72	43.19	8,65	
found	45,32	2.83	42.96	8.91	

[0046] <モノマーの同定>

[化17]中の化合物6

(F) 2,7-Dibromo-9,10-dihydro-9,10-dimethoxyphenanthrene(6)の合成

窒素雰囲気下、2,7-Dibromo-9,10-dihydrophenanthrene-9,10-diol(1.54 g, 4.15 mmol)をdry THF(20 mL)に溶解させた溶液に、sodium hydride(0.40 g, 16.7 mmol), iodomethane(1.5 mL, 23.8 mmol)を加え、室温で3時間撹拌した。

酢酸エチルで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:クロロホルム=3:1)で精製することで白色粉末である

2,7-Dibromo-9,10-dihydro-9,10-dimethoxyphenanthrene(1.49 g, 3.74mmol, 90%)を 得た。得られた粉末を、クロロホルムーへキサン混合溶媒により再結晶化させることで 白色盤状結晶を得た。

融点(mp) 150.5-151.5 ℃

¹H NMR (CDCl₂, 400MHz)

$$\delta$$
 (ppm) = 7.61 (d, J = 8.05 Hz, 2H, H)

7.55 (d, J = 1.95 Hz, 2H, H)

7.53 (dd, J = 1.95, 8.29 Hz, 2H, H)

4.32 (s, 2H, -benzylH)

3.43 (s, 6H, -CH₂)

IR(KBr) 2933, 2894, 2823, 1469, 1207, 1179, 1097, 1005, 881, 819 (cm⁻¹)

元素分析	C	Н	Br	О	
	calculate 48.27	3.54	40.14	8.04	
	found 48.08	3.63	40.20	8.19	

[0047] 上記化合物6のNMRスペクトルを図1に示す。

[0048] [化17]中の化合物7

(G)2,7-Dibromo-9,10-dihydro-9,10-bis(trimethylsilyloxy)phenanthrene(7)の合成 窒素雰囲気下、2,7-Dibromo-9,10-dihydrophenanthrene-9,10-diol(1.43 g, 3.86 mmol)をdry THF(5 mL)に溶解させた溶液に、chlorotrimethylsilane(1.5 mL, 11.8 mmol), triethylamine(5 mL, 35.9 mmol)を加え、還流下5時間撹拌した。

酢酸エチルで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:クロロホルム=1:1)で精製することで白色粉末である

2,7-Dibromo-9,10-dihydro-9,10-bis(trimethylsilyloxy)phenanthrene(1.60 g, 3.11 mmol, 81%)を得た。得られた粉末を、クロロホルムーヘキサン混合溶媒により再結晶化させることで白色盤状結晶を得た。

(物性値)

mp 144.0-145.0 ℃

¹H NMR (CDCl₂, 400 MHz)

$$\delta$$
 (ppm) = 7.67 (d, J = 0.49 Hz, 2H, H)

7.53-7.30 (dd,
$$J = 0.73$$
 Hz, 4H, H_b, H_a)

4.66 (s, 2H, -benzylH)

0.28 (s, 18H, $-CH_{3}$)

IR(KBr) 1253, 1190, 1158, 1096, 924, 908, 883, 867, 838, 808 (cm⁻¹)

	С	Н	Br
cal	46.70	5.09	31.07
found	46.48	4.75	31,65

[0049] 上記化合物7のNMRスペクトルを図2に示す。以下の記述においてNMRスペクトルは1H-NMRスペクトルを示し、また、HaーHcはベンゼン環に結合した水素に帰属される。

[0050] [化17]中の化合物8

(H)2,7-Dibromo-trans-9,10-dihydro-9,10-bis(tributylsilyloxy)phenanthrene(8)の合

成

窒素雰囲気下、2,7-Dibromo-trans-9,10-dihydrophenanthrene-9,10-diol(1.88 g, 5.08 mmol)をdry THF(30 mL)に溶解させた溶液に、chlorotributylsilane(3.0 mL, 11.2 mmol), 1,8-diazabicyclo[5.4.0.]-7-undecene(1.9 mL, 12.7 mmol)を加え、室温で5時間撹拌した。

酢酸エチルで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:クロロホルム=1:4)で精製することで白色オイルである

2,7-Dibromo-trans-9,10-dihydro-9,10-bis(tributylsilyloxy)phenanthrene(3.7 g, 4.83 mmol, 95%)を得た。

(物性値)

オイル

¹H NMR (CDCl_z, 400MHz)

 δ (ppm) = 7.54 (d, J = 8.05 Hz, 2H, H)

7.49 (dd, J = 2.20, 7.09 Hz, 2H, H)

7.46 (d, J = 2.30 Hz, 2H, H)

4.56 (s, 2H, -benzylH)

1.30-1.18 (m, 24H, $-CH_{2}CH_{2}-$)

0.85 (t, J = 6.83, 7.32 Hz, 18H, $-CH_2$)

0.60-0.56 (b, 12H, -SiCH₂-)

IR(KBr) 2956, 2923, 2871, 1464, 1195, 1082, 1005, 906, 886, 812 (cm⁻¹)

	С	H	Вт	
cal	59.51	8.15	20.84	
found	59.80	7.96	19.64	

[0051] 上記化合物8のNMRスペクトルを図3に示す。

[0052] [化17]中の化合物9

(I)2,7-Dibromo-trans-9,10-dihydro-9,10-bis(tert-butyldimetylsilyloxy)phenanthren e(9)の合成

窒素雰囲気下、2,7-Dibromo-trans-9,10-dihydrophenanthrene-9,10-diol(0.94 g, 2.54 mmol)をdry THF(15 mL)に溶解させた溶液に、tert-butyldimethylsilane(1.91 g, 12.7 mmol), 1,8-diazabicyclo[5.4.0.]-7-undecene(2.3 mL, 15.4 mmol)を加え、室温で14時間撹拌した。

酢酸エチルで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:クロロホルム=1:1)で精製することで白色粉末である

2,7-Dibromo-trans-9,10-dihydro-9,10-bis(tert-butyldimethylsilyloxy)phenanthrene(1.35 g, 2.26 mmol, 89%)を得た。得られた粉末を、クロロホルムーヘキサン混合溶媒により再結晶化させることで白色盤状結晶を得た。

(物性値)

mp 162.0−163.0 °C

¹H NMR (CDCl₃, 400MHz)

$$\delta$$
 (ppm) = 7.57-7.46 (m, 6H, H_a, H_b, H_c,)

4.57 (s, 2H, -benzyl-H)

0.85 (s, 18H, -C(CH₃)₃)

0.14,-0.06 (s, 12H, -Si(CH₂)₂)

IR(KBr) 2953, 2928, 1471, 1257, 1083, 910, 845, 837, 814, 775 (cm⁻¹)

	С	Н	Br	
cal	52.17	6.40	26.70	
found	52.21	6.37	27.00	

[0053] 上記化合物9のNMRスペクトルを図4に示す。

[0054] [化17]中の化合物10

(J)2,7-Dibromo-trans-9,10-dihydro-9,10-bis(dimethylphenylsilyloxy)phenanthrene(10)の合成

窒素雰囲気下、2,7-Dibromo-trans-9,10-dihydrophenanthrene-9,10-diol(0.70 g, 1.89 mmol)をdry THF(10 mL)に溶解させた溶液に、chlorodimethylphenylsilane(1 mL, 5.96 mmol), 1,8-diazabicyclo[5.4.0.]-7-undecene(1.7 mL, 11.4 mmol)を加え、室

温で3時間撹拌した。

酢酸エチルで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:クロロホルム=5:1)で精製することで白色固体である

2,7-Dibromo-trans-9,10-dihydro-9,10-bis(dimethylphenylsilyloxy)phenanthrene(0.7 9 g, 1.24 mmol, 65%)を得た。

(物性値)

mp 103.0−104.0 °C

¹H NMR (CDCl₃, 400MHz)

 δ (ppm) = 7.52-7.34 (m, 16H, H_a, H_b, H_c, -Ph) 4.61 (s, 2H, -benzylH) 0.35, 0.32 (s, 12H, -CH_s)

IR(KBr) 1254, 1117, 1053, 912, 866, 845, 826, 786, 736, 698 (cm⁻¹)

[0055] 上記化合物10のNMRスペクトルを図5に示す。

[0056] [化17]中の化合物11

(K)2,7-Dibromo-trans-9,10-dihydro-9,10-bis(dimethyloctadecylsilyloxy)phenanthre ne(11)の合成

窒素雰囲気下、2,7-Dibromo-trans-9,10-dihydrophenanthrene-9,10-diol(1.19 g, 3.22 mmol)をdry THF(20 mL)に溶解させた溶液に、

chlorodimethyloctadecylsilane(4.47 g, 12.9 mmol), 1,8-diazabicyclo[5.4.0.]

-7-undecene(2.4 mL, 16.0 mmol)を加え、5時間還流した。

酢酸エチルで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:クロロホルム=5:1)で精製することで白色固体である

2,7-Dibromo-trans-9,10-dihydro-9,10-bis(dimethyloctadecylsilyloxy)phenanthrene(1.81 g, 1.83 mmol, 57%)を得た。

(物性値)

mp 51.5-52.5 ℃

¹H NMR (CDCl₄, 400 MHz)

 δ (ppm) = 7.60, 7.47 (s, 6H, H_a, H_b, H_c)

4.57 (s, 2H, -benzylH)

1.24 (br, 64H, -CH₂-)

0.86 (t, 6H, -CH)

0.69 (t, 4H, -SiCH₂-)

0.18, 0.15 (s, 12H, -Si(CH₂)₂)

IR(KBr) 2955, 2917, 2850, 1471, 1253, 1192, 1158, 1098, 856, 809 (cm⁻¹)

	С	Н	Br
cal	65,43	9,56	16,12
found	65.44	9.38	16.28

[0057] 上記化合物11のNMRスペクトルを図6に示す。

「0058] 実施例2

次いで、上記のように得られたジハロゲン化物を出発原料として、ポリマーの合成を 試みた。ずなわち、置換基を有する9,10-ジヒドロフェナントレンのジハロゲン化物を 原料として、重縮合により本発明の高分子化合物の合成を試みた。

[0059] 簡略化した合成手順例を以下に示す。

[0060] [化18]

(A) ホモポリマー重合

ー例として18-SiBu の重合を示す。

窒素雰囲気下、bis(1,5-cyclooctadiene)nickel(0)(0.60 g, 2.18 mmol)にdry DMF(15.0 mL), bipyridine(0.34 g, 2.18 mmol), 1,5-cyclooctadiene(267 μ L, 2.18 mmol)を加え、さらに

2,7-Dibromo-trans-9,10-dihydro-9,10-bis(tributylsilyloxy)phenanthrene(0.75 g, 0.98 mmol)のdry DMF(5 mL)溶液を加え60 ℃で4 日間攪拌した。

臭化水素酸でquenchした後、メタノール、EDTA-4Na aqで2度再沈殿を行い、乾燥することで青色固体である高分子(0.58 g, 0.96 mmol, 96%)を得た。

[0061] 得られたポリマーの性質を下記表1に示す。

[0062] [表1]

run	R	溶媒	時間 day	收率 %	ポリマー	_数平均分= (Mn≠)	子量 分散度 (Mw/M
1	CH ₃	DMF	2d	98	17	1,100 ^b	1.2 ^b
2	S iB u ₃	DMF	4d	96	18	9,800	2.0
3	Si(CH ₃) ₂ C(CH ₃) ₃	Toluene / DMF 7:3	4d	95	19	3,500 ^b	1.1 ^b
4	Si(CH ₃) ₂ Ph	DMF	4 d	50	20	1,300 ^b	1.2 ^b
5	Si(CH ₃) ₂ (CH ₂) ₁₇ CH ₃	Toluene / DMF 7:3	4d	40	21	69,000	3.0

得られたポリマーの性質については以下の通りである。先ず溶解性については、表 1のrun2,5及び[化20]中の式22(段落番号[0070]については、クロロホルム、THF,ト ルエンに可溶であり、run1,3及び4については、クロロホルムに僅かに可溶である。

蛍光データについては、run2については、クロロホルム溶液中で λ_{EX} (励起波長)=379nm、 λ_{EM} (発光波長)=414nm、フィルムでは、 λ_{EX} (励起波長)=391nm、 λ_{EM} (発光波長)=431nmに発光を示した。

Run5は、クロロホルム溶液中で λ_{EX} (励起波長)=398nm、 λ_{EM} (発光波長)=427nm、フィルムでは、 λ_{EX} (励起波長)=398nm、 λ_{EM} (発光波長)=430nmに発光を示した。 [化20]の式22は、クロロホルム溶液中で λ_{EX} (励起波長)=385nm、 λ_{EM} (発光波長)=418nm、フィルムでは、 λ_{EX} (励起波長)=382nm、 λ_{EM} (発光波長)=432nmに発光を示した。

CVについては、rum2は酸化波を1.33Vに示した。rum5は酸化波を1.34Vに示した。

run6は酸化波を1.16Vに示した。CVとは、サイクリックボルタンメトリー (CV) におけるポリマーフィルムの酸化波を示す。また、電圧1.33V等の値は、 Ag^{\dagger}/Ag に対する値である。

耐熱性については、5%重量減少温度 (Td)を、run2は390℃、run5は360℃、[化20]の式22の化合物は400℃を示し、熱的安定性が高いことが分かった。

[0063] 実施例3

次に、別の態様における本発明のジハロゲン化物の反応スキームを以下に示す。

[0064] [化19]

[0065] (L) 2-Amino-5-bromoacetophenone(12)の合成

窒素雰囲気下、2-Aminoacetophenone(20.0 g, 148 mmol), potassium bromide(21.2 g, 178 mmol)にAcOH(60 mL)を加え0 ℃に冷却した後、sodium peroxoborate tetrahydrate(27.3 g, 178 mmol)を加え、2日間撹拌した。

クロロホルムで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:クロロホルム=1:1)で精製することで黄色粉末である

2-Amino-5-bromoacetophenone(27.4 g, 128 mmol, 86%)を得た。得られた粉末を、クロロホルムーヘキサン混合溶媒により再結晶化させることで黄色針状結晶を得た。 (物性値)

H NMR (CDCI₃, 400 MHz)

$$\delta$$
 (ppm) = 7.80 (d, J = 2.44 Hz, 1H, H)

7.32 (dd, J = 1.95, 8.79 Hz, 1H, H)

6.56 (d, J = 8.79 Hz, 1H, H)

6.29 (s, 2H, -NH)

2.56 (s, 3H, -OCH)

IR(KBr) 3314, 1469, 1394, 1186, 1089, 1036, 1004, 847, 816, 518 (cm⁻¹)

(M) 1-(2'-Acetyl-4,4'-dibromo-biphenyl-2-yl)etanone(13)の合成

2-Amino-5-bromoacetophenone(17.4 g, 81.0 mmol)にH₂O(28 mL)とhydrochloric acid(24 mL)を加え0 ℃に冷却、さらにsodium nitrite(6.71 g, 97.2 mmol)を加え1時間 撹拌した。その後、copper(II) sulfate pentahydrate(40.5 g, 162 mmol)をH₂O(140 mL)に溶かし、30% ammonia solution(70 mL)を加えた溶液にhydroxyammonium chloride(12.0 g, 178 mmol)の6N-sodium hydroxide(30 mL)溶液を0 ℃で加え、撹拌した。その溶液に、diazo化した溶液をcopper溶液の液面より下から30分かけ滴下した。さらに室温に戻し2時間撹拌した。その後、1時間加熱した。

塩酸で溶液を酸性にした後、クロロホルムで抽出、無水硫酸マグネシウムで乾燥、 濃縮した。カラムクロマトグラフィー(シリカ、ヘキサン:クロロホルム=1:1)で精製すること により、1-(2'-Acetyl-4,4'-dibromo-biphenyl-2-yl)etanone(16.0 g, 40.4 mmol, 99%) を黄色粉末として得た。得られた粉末を、クロロホルムーヘキサン混合溶媒により再結 晶化させることで白色盤状結晶を得た。

(物性値)

```
<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)
δ (ppm) = 7.86 (d, J = 2.44 Hz, 2H, H<sub>2</sub>)
7.62 (dd, J = 1.95, 8.00 Hz, 2H, H<sub>3</sub>)
7.01 (d, J = 8.00 Hz, 2H, H<sub>2</sub>)
2.33 (s, 6H, ¬OCH<sub>3</sub>)
(N)2,7¬Dibromo¬trans¬9,10¬dimethylphenanthrene¬9,10¬diol(14)の合成 窒素雰囲気下、¬78 ℃で1¬(2'¬Acetyl¬4.4')
```

-dibromo-biphenyl-2-yl)etanone(10.7 g, 27.0 mmol)をdry THF(150 mL)に溶解させた溶液に、titanium(IV) chloride(4.44 mL, 40.5 mmol))を滴下し、30分後、zinc(5.29 g, 80.9 mmol)を加え、0 ℃に戻して3時間撹拌した。

酢酸エチルで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製することで黄色固体である

2,7-Dibromo-trans-9,10-dimethylphenanthrene-9,10-diol(9.57 g, 24.0 mmol, 89%)を得た。

(物性値)

¹H NMR (CDCl₃, 400 MHz)
δ (ppm) = 7.85 (d, J = 1.95 Hz, 2H, H_a)
7.51 (d, J = 8.30 Hz, 2H, H_b)
7.46 (dd, J = 1.95, 8.30 Hz, 2H, H_b)
2.50 (s, 2H, -OH)

1.30 (s, 6H, -CH_s)

IR(KBr) 3447, 1463, 1365, 1178, 1096, 1056, 950, 930, 809, 685 (cm⁻¹) モノマーの同定を、元素分析、IR(KBr法)、「HNMRにより行った。 得られたジハロゲン化物の物性値を以下に示す。

[0066] [化19]中の化合物15

(O) 2,7-Dibromo-trans-9,10-dimethoxy-9,10-dimethylphenanthrene(15)の合成 窒素雰囲気下、2,7-Dibromo-trans-9,10-dimethylphenanthrene-9,10-diol(2.71 g, 6.81 mmol)をdry THF(20 mL)に溶解させた溶液に、potassium tert-butoxide(3.28 g, 29.2 mmol)を加え、室温で3時間撹拌した。その後、iodomethane(6.00 mL, 96.4 mmol)を加え還流下4日間攪拌した。

クロロホルム、チオ硫酸ナトリウムで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:クロロホルム=3:1)で精製することで白色粉末である2,7-Dibromo-trans-9,10-dimethoxy-9,10-dimethylphenanthrene(0.50 g, 1.17 mmol, 17%)を得た。得られた粉末を、クロロホルムーヘキサン混合溶媒により再結晶化させることで白色盤状結晶を得た。

(物性値)

mp 202.5-203.0 ℃

¹H NMR (DMSO-d, 400 MHz)

$$\delta$$
 (ppm) = 7.77 (d, J = 8.30 Hz, 2H, H)

7.66 (d, J = 2.20 Hz, 2H, H)

7.57 (dd, J = 1.95, 8.29 Hz, 2H, H)

3.29 (s, 6H, -OCH₃)

1.54 (s, 6H, -CH₂)

IR(KBr) 1476, 1461, 1250, 1206, 1118, 1078, 1037, 1004, 810, 795 (cm⁻¹)

	С	H	Br	0	
cal	50.73	4.26	37.50	7.51	
found	50.45	4.13	37.18	7.52	

[0067] 上記化合物15のNMRスペクトルを図7に示す。

[0068] [化19]中の化合物16

(P)2,7-Dibromo-trans-9,10-dimethyl-9,10-bis(trimethylsilyloxy)phenanthrene(16)の合成

窒素雰囲気下、2,7-Dibromo-trans-9,10-dimethylphenanthrene-9,10-diol(3.50 g, 8.79 mmol)をdry THF(30 mL)に溶解させた溶液に、chlorotrimethylsilane(4.46 mL, 35.1 mmol), 1,8-diazabicyclo[5.4.0.]-7-undecene(10 mL, 71.7 mmol)を加え、還流下7時間撹拌した。

酢酸エチルで抽出、無水硫酸マグネシウムで乾燥、濃縮した。カラムクロマトグラフィー(ヘキサン:クロロホルム=3:1)で精製することで白色粉末である

2,7-Dibromo-trans-9,10-dimethyl-9,10-bis(trimethylsilanyloxy)phenanthrene(3.93 g, 7.24 mmol, 82%)を得た。得られた粉末を、クロロホルムーヘキサン混合溶媒により再結晶化させることで白色盤状結晶を得た。

(物性値)

mp 140.0-141.0 ℃

¹H NMR (CDCl₃, 400MHz) δ (ppm) = 7.65 (d, J = 1.71 Hz, 2H, H_a) 7.40-7.46 (m, 4H, H_b, H_c) 1.34 (s, 6H, -CH₃) 0.33 (s, 18H, -(CH₂))

IR(KBr) 1264, 1252, 1219, 1155, 1114, 1070, 1019, 888, 861, 839 (cm⁻¹)

[0069] 上記化合物16のNMRスペクトルを図8に示す。

[0070] 実施例4

次いで、上記のように得られたジハロゲン化物を出発原料として、ポリマーの合成を 試みた。すなわち、置換基を有する9,10-ジヒドロフェナントレンのジハロゲン化物を 原料として、重縮合により本発明の高分子化合物の合成を試みた。

[0071] ホモポリマーの簡略化した合成手順を以下に示す。 [化20]

(操作)

窒素雰囲気下、bis(1,5-cyclooctadiene)nickel(0)(0.51 g, 1.84 mmol)にdry DMF(15.0 mL), bipyridine(0.30 g, 1.92 mmol), 1,5-cyclooctadiene(226 μ L, 1.84 mmol),

2,7-Dibromo-trans-9,10-dimethyl-9,10-bis(trimethylsilyloxy)phenanthrene(0.50 g, 0.92 mmol)を加え60 ℃で4日間攪拌した。

臭化水素酸でquenchした後、メタノール、EDTA-4Na aqで再沈殿、乾燥することで 黄色粉末である高分子22(0.33 g, 0.86 mmol, 94%)を得た。

同様に、化17、化20に示されたモノマーを用いて、共重合も行うことができる。

- (A) Sonogashira反応による共重合
 - 一例として27の合成を示す。

窒素雰囲気下、

- 2,7-Dibromo-trans-9,10-dihydoro-9,10-dimethoxyphenanthrene(0.39 g, 0.98 mmol) $\mbox{\em L}$ dry THF(25 mL), tetrakis(triphenylphosphine)palladium(0)(56.6 mg, 49.0 $\mbox{\em \mu}$ mol), copper(I) iodide(10.0 mg, 52.5 $\mbox{\em \mu}$ mol), triethylamine(10 mL, 71.7 mmol),
- 2,7-Diethynyl-9,9-dioctylfluorene(0.43 g, 0.98 mmol)の順に加え60 ℃で4日間攪拌した。

メタノール、EDTA-4Na aqで再沈殿、乾燥することで黄色粉末である高分子(0.65 g, 0.96 mmol, 98%)を得た。

- (B) Suzuki反応による共重合
 - 一例として31の合成を示す。

窒素雰囲気下、tetrakis(triphenylphosphine)palladium(0)(58.0 mg, 0.05 mmol)に窒素でバブリングしたtoluene(20 mL)を加え、さらに

- 9,9-dioctylfluorene-2,7-bis(trimetyleneborate)(0.56 g, 1.00 mmol),
- 2,7-Dibromo-trans-9,10-dimethoxyl-9,10-dimethylphenanthrene(0.43 g, 1.00 mmol),バブリングした2M-potassium carbonate(5.0 mL), methanol(5.0 mL)を加え80 ℃で4日間攪拌した。

メタノール、EDTA-4Na aqで2度再沈殿し、乾燥することで緑色粉末である高分子 (0.65 g, 1.00 mmol, 99%)を得た。

[0072] 上記(A)と(B)で得られたポリマーの性質を下記表2に示す。

[0073] [表2]

	時間 h	収率 %	ポリマー	数平均分子】 (Mn ^a)	t 分散度 (Mw/Mn≖)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		98 CH3, R5=	27 n – C8H17	7 00 0	3.0
R O		98 C4H9)3,	28 R ⁷ = n - C ₁₂	8500 2300 H ₂₅	2.4 1.1
R ⁶ O OR ⁶	4d R6=Si(n	96 C4H9) 3	29	3100	1.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4d 6=Si(n (97 C4H9) 3	30 , R ⁷ = n − ·	6600 CaH17	2.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		98 H ₁₇ , R ⁸ =	31 CH₃, R ⁹ =C	21000 CH ₃	2.4

a Determined by GPC (eluent: CHCl₃)

本発明で得られたホモポリマー及びコポリマーをクロロホルムなどの有機溶媒に溶解し、溶液をガラス、白金などの金属板上に塗布し、大気中で自然乾燥することによりポリマーの薄膜が得られた。得られた薄膜は、可視紫外、蛍光スペクトル測定及び電気化学測定に耐え得る強度を持つ。また、大気中に放置しても劣化は認められない。

一例としてホモポリマー(22)について述べる。

無蛍光ガラス(2cm×5cm)上にポリマーのクロロホルム溶液(およそ1.5×10⁻⁵M)を全面に塗布した後、大気中で自然乾燥させることにより、均一な薄膜が得られた。 製膜したポリマーの蛍光スペクトルを測定すると(励起波長382nm)、432及び454nmに発光極大が観測された。

[0074] 実施例5

次いで、実施例2及び4で得られた本発明の高分子化合物について紫外吸収スペクトル、及び発光スペクトルを測定した。その結果を表3及び表4に示す。 表3は、ホモポリマーの光学的性質を示す。

30

[0075] [表3]

(ホモポリマーの光学的性質)

run	ポリマー	吸光度 ポリマー 入 _{max} / nm		蛍光 λ _{max} (EM)/ nm · (λ _{max} (EX)/ nm)		量子収率 Φ(%)
		CHCl ₃ soln	, film	CHCl ₃ soln	ı. film	
1	17-CH3	351		419 (361)		89
2	18-SiBu ₃	378	392,415	414, 438 (379)	431, 456, 486 (391)	100
3	19-Si(CH ₃) ₂ C(CH ₃) ₃	382	384	415 (373)	434, 457, 486 (370)	82
4	20-Si(CH ₃) ₂ Ph	367		412, 434 (367)		86
5	21-Si(CH ₃) ₂ (CH ₂) ₁₇ CH ₃	i 410	393, 411	427, 454 (398)	430, 456 (398)	62
6	22-Si(CH ₃) ₃ -CH ₃	382	392	418, 440 (385)	432, 454 (382)	100

表4は、コポリマーの光学的性質を示す。

[0076] [表4]

(コポリマーの光学的性質)

run	ポリマー	吸光的 λ _{max} /	nm	蛍光 λ _{max} (EM) (λ _{max} (EX))/ nm	量子収率 Φ(%)
		CHCl ₃ soln.	film	CHCl ₃ soln.	film	
1	27-CH ₃ -FL-Acetyl	390, 408	397, 421	423, 447 (410)	480, 508 (436)	82
2	28-SiBu ₃ -Ph-Acetyl	333, 386	333, 387	441 (333, 397)	517 (398)	53
3	29-SiBu ₃ -Thiophene	405	404	464, 485 (412)	480, 505 (399)	89
4	30-SiBu ₃ -FL	377	382	416, 439 (378)	428, 453 (378)	89
5	31-CH ₃ -CH ₃ -FL	387	382	418, 443 (389)	428, 453 (371)	84

[0077] これらの結果、紫外可視吸収スペクトルから光の吸収位置が分かり、可視部の吸収 についての着色材、紫外光吸収材に利用できることが分かる。また、発光スペクトル(蛍光スペクトル)で発光が見られることから、蛍光塗料等に用いることができることがわ かる。

本発明の高分子化合物は、クロロホルムなどの有機溶媒に溶解性を示すことから、高分子化合物の溶液をガラスなどの基板上に塗布することが容易になる。

産業上の利用可能性

[0078] 本発明によれば、溶解性を有し、電気化学的に活性で、蛍光を有し、耐熱性等を 有する機能材料などを提供することができ、光学及び電気化学分野において幅広く 貢献し得る。

請求の範囲

[1] 下記式で示されるジハロゲン化物。 [化1]

$$R^3$$
 R^3
 R^3
 R^3
 R^3

(式中、 R^1 、 R^1 は、ハロゲンを示し、 R^2 、 R^2 は、アルキル基、又は置換基を有するシリル基を示し、 R^3 、 R^3 は、水素又はアルキル基を示す。)

- [2] 置換基を有するシリル基が、 $Si(CH)_{33}$ 、 $Si(n-CH)_{493}$ 、 $Si(t-CH)_{493}$ 、 $Si(CH)_{32}$ ($CH)_{32}$ ($CH)_{3$
- [3] アルキル基が炭素数1~20の間のアルキル基である請求項1又は2項に記載のジハルゲン化物。
- [4] 下記式で示される構造を主鎖内に有する高分子化合物。 [化2]

(式中、 R^2 、 R^2 は、アルキル基、又は置換基を有するシリル基を示し、 R^3 、 R^3 は、水素又はアルキル基を示す。)

[5] 下記式で示される請求項4記載の高分子化合物。

[化3]

(式中、 R^2 、 R^2 は、アルキル基、又は置換基を有するシリル基を示し、 R^3 、 R^3 は、水素又はアルキル基を示す。nは重合度を表し、5~1000である。)

- [6] さらに、請求項4に記載の式で示される構造及びそれ以外の構造からなる共重合体からなる請求項4記載の高分子化合物。
- [7] 前記共重合体が、下記式、

[化4]

$$\left(\begin{array}{c} R^{5} R^{5} \\ R^{4} O O R^{4} \end{array} \right)$$

(R⁴、R⁴ 及びR⁵、R⁵ は、アルキル基を示す。)

[化5]

 $(R^6, R^{6'}$ は、置換基を有するシリル基。 $R^7, R^{7'}$ はアルキル基を示す。) [化6]

(R⁶、R⁶は置換基を有するシリル基を示す。)[化7]

$$\bigcap_{R^60} \bigcap_{0R^{6'}} \bigcap_{R^{6'}} \bigcap_{0R^{6'}} \bigcap_{0R^{6$$

 $(R^6, R^{6}$ は、置換基を有するシリル基。 R^7, R^{7} はアルキル基を示す。) [化8]

(R⁷、R⁷、R⁸、R⁸、R⁹、R⁹はいずれもアルキル基を示す。)

からなる群から選択される少なくとも1種である請求項5記載の高分子化合物。

- [8] アルキル基が炭素数1~20の間のアルキル基である請求項4~7項のいずれか1 項に記載の高分子化合物。
- [9] 請求項4-8項のいずれか1項に記載の高分子化合物を、請求項1又は2項に記載のジハロゲン化物を脱ハロゲン化して重合することにより得ることを特徴とする高分子化合物の製造方法。
- [10] 脱ハロゲン化重合が、パラジウム化合物またはニッケル化合物の存在下で行なわれる請求項8記載の高分子化合物の製造方法。
- [11] 請求項4-8項のいずれか1項に記載の高分子化合物を用いて得られる薄膜。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/002272

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C08G61/00, C07C43/225, C07F7/1	8	
A configuration of the Configu		
According to International Patent Classification (IPC) or to both national cl	lassification and IPC	
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by class Int.Cl ⁷ C08G61/00-61/12, C07C43/225, C	ification symbols) 07F7/18	
	uyo Shinan Toroku Koho ku Jitsuyo Shinan Koho	1996-2005 1994-2005
CAS ONLINE	a base and, where practicable, search is	erins used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where appro	-	Relevant to claim No.
P,X WO 2005/030827 A1 (COVION ORGA P,A SEMICONDUCTORS GMBH.), 07 April, 2005 (07.04.05), Formula M5 & DE 10343606 A1	NIC	1-4,8,11 5-7,9,10
A JP 10-273523 A (JSR Corp.), 13 October, 1998 (13.10.98), Full text & WO 1998/33836 A1 & US 63 & EP 956312 A1	300465 Bl	1-11
Further documents are listed in the continuation of Box C.	See patent family annex.	
* Special categories of cited documents: 'A" document defining the general state of the art which is not considered to be of particular relevance 'E" earlier application or patent but published on or after the international filing date 'L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "E" and "E" are the international filing date but later than the priority date claimed	date and not in conflict with the application the principle or theory underlying the indocument of particular relevance; the cloopsidered novel or cannot be considered novel or cannot be considered novel or cannot be considered to favore an inventive structure of the cloopsidered to involve an inventive structure of the cloopsidered with one or more other such dueing obvious to a person skilled in the	tion but cited to understand vention aimed invention cannot be ered to involve an inventive aimed invention cannot be tep when the document is documents, such combination art
11 May, 2005 (11.05.05)	ite of mailing of the international searc 31 May, 2005 (31.05	h report . 05)
Name and mailing address of the ISA/ Japanese Patent Office Au	thorized officer	
Facsimile No. Tel	lephone No.	

国際調査報告

発明の属する分野の分類(国際特許分類(IPC)) Α. Int.Cl.7 C08G61/00, C07C43/225, C07F7/18

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ C08G61/00-61/12, C07C43/225, C07F7/18

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース (データベースの名称、調査に使用 した用語)

CAS ONLINE

l c. 関連すると認められる文献

O.		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Р, Х	WO 2005/030827 A1 (COVION ORGANIC SEMICONDUCTORS GMBH)	1-4, 8, 11
P, A	2005.04.07, 式M 5 & DE 10343606 A1	5-7, 9, 10
A	JP 10-273523 A (ジェイエスアール株式会社) 1998.10.13, 全文 & WO 1998/33836 A1 & US 6300465 B1 & EP 956312 A1	1-11

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

11.05.2005

国際調査報告の発送日

31. 5. 2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

2941 4 I

辰己 雅夫

電話番号 03-3581-1101 内線 3457