AFFEINDIGES & REFERENCES 355			
Provision number	SI-metric stress in MPa	mks-metric stress in kgf/cm ²	U.S. Customary units stress in pounds per square inch (psi)
25.4.1.4	$\sqrt{f_c'} \le 8.3 \text{ MPa}$	$\sqrt{f_c'} \le 27 \mathrm{kgf/cm^2}$	$\sqrt{f_c'} \le 100 \mathrm{psi}$
25.4.2.3 (top left)	$\left(\frac{f_y \Psi_t \Psi_e \Psi_g}{2.1 \lambda \sqrt{f_c'}}\right) d_b$	$\left(\frac{f_y \Psi_t \Psi_e \Psi_g}{6.6 \lambda \sqrt{f_c'}}\right) d_b$	$\left(\frac{f_y \Psi_t \Psi_e \Psi_g}{25 \lambda \sqrt{f_c'}}\right) d_b$
25.4.2.3 (top right)	$\left(\frac{f_y \Psi_t \Psi_e \Psi_g}{1.7 \lambda \sqrt{f_c'}}\right) d_b$	$\left(\frac{f_y \Psi_t \Psi_e \Psi_g}{5.3 \lambda \sqrt{f_c'}}\right) d_b$	$\left(\frac{f_y \Psi_t \Psi_e \Psi_g}{20 \lambda \sqrt{f_c'}}\right) d_b$
25.4.2.3 (lower left)	$\left(\frac{f_y \Psi_t \Psi_e \Psi_g}{1.4 \lambda \sqrt{f_c'}}\right) d_b$	$\left(\frac{f_y \Psi_t \Psi_e \Psi_g}{4.4 \lambda \sqrt{f_c'}}\right) d_b$	$\left(\frac{3f_y \Psi_t \Psi_e \Psi_g}{50\lambda \sqrt{f_c'}}\right) d_b$
25.4.2.3 (lower right)	$\left(\frac{f_y \Psi_t \Psi_e \Psi_g}{1.1 \lambda \sqrt{f_c'}}\right) d_b$	$\left(\frac{f_y \Psi_t \Psi_e \Psi_g}{3.5 \lambda \sqrt{f_c'}}\right) d_b$	$\left(\frac{3f_y \Psi_t \Psi_e \Psi_g}{40\lambda \sqrt{f_c'}}\right) d_b$
25.4.2.4	$\ell_d = \frac{f_y}{1.1\lambda\sqrt{f_c'}} \frac{\Psi_t \Psi_e \Psi_s \Psi_g}{\left(\frac{c_b + K_{tr}}{d_b}\right)} d_b$	$\ell_d = \frac{f_y}{3.5\lambda \sqrt{f_c'}} \frac{\Psi_t \Psi_e \Psi_s \Psi_g}{\left(\frac{c_b + K_{tr}}{d_b}\right)} d_b$	$\ell_d = \frac{3f_y}{40\lambda\sqrt{f_c'}} \frac{\psi_t \psi_e \psi_s \psi_g}{\left(\frac{c_b + K_{tr}}{d_b}\right)} d_b$
25.4.3.1(a)	$\left(\frac{f_y \Psi_e \Psi_r \Psi_o \Psi_c}{23 \sqrt{f_c'}}\right) d_b^{1.5}$	$\left(\frac{f_y \Psi_e \Psi_r \Psi_o \Psi_c}{23 \sqrt{f_c'}}\right) d_b^{1.5}$	$\left(\frac{f_y \Psi_e \Psi_r \Psi_o \Psi_c}{55 \sqrt{f_c'}}\right) d_b^{1.5}$
25.4.4.2(a)	$\left(\frac{f_y \Psi_e \Psi_p \Psi_o \Psi_c}{31 \sqrt{f_c'}}\right) d_b^{1.5}$	$\left[\left(\frac{f_y \Psi_e \Psi_p \Psi_o \Psi_c}{32 \sqrt{f_c'}} \right) d_b^{1.5} \right]$	$\left(\frac{f_y \Psi_e \Psi_p \Psi_o \Psi_c}{75 \sqrt{f_c'}}\right) d_b^{1.5}$
25.4.4.3	$f_c'/105 + 0.6$	$\frac{f_c'}{1055} + 0.6$	$\frac{f_c'}{15,000} + 0.6$
25.4.6.3(a)	$\left(\frac{f_y - 240}{f_y}\right)$	$\left(\frac{f_y - 2460}{f_y}\right)$	$\left(\frac{f_y - 35,000}{f_y}\right)$
25.4.7.2(b)	$3.3 \left(\frac{f_y}{\lambda \sqrt{f_c'}} \right) \left(\frac{A_b}{s} \right)$	$\left(\frac{f_y}{\lambda\sqrt{f_c'}}\right)\left(\frac{A_b}{s}\right)$	$0.27 \left(\frac{f_y}{\lambda \sqrt{f_c'}} \right) \left(\frac{A_b}{s} \right)$
25.4.8.1(a)	$\left(\frac{f_{se}}{21}\right)d_b + \left(\frac{f_{ps} - f_{se}}{7}\right)d_b$	$\left(\frac{f_{se}}{210}\right)d_b + \left(\frac{f_{ps} - f_{se}}{70}\right)d_b$	$\left(\frac{f_{se}}{3000}\right)d_b + \left(\frac{f_{ps} - f_{se}}{1000}\right)d_b$
25.4.9.2(a)	$\left(\frac{0.24f_{_{y}}}{\lambda\sqrt{f_{c}^{\prime}}}\right)d_{b}$	$\left(\frac{0.075f_{_y}}{\lambda\sqrt{f_c'}}\right)d_b$	$\left(\frac{f_{y}}{50\lambda\sqrt{f_{c}'}}\right)d_{b}$
25.4.9.2(b)	$(0.043f_y)d_b$	$(0.0044f_y)d_b$	$(0.0003f_y)d_b$
25.5.5.1(a),	$0.071 f_y d_b$	$0.0073 f_y d_b$	$0.0005 f_y d_b$
(b) and (c)	$(0.13f_y - 24)d_b$	$(0.013f_y - 24)d_b$	$(0.0009f_y - 24)d_b$
25.7.1.3(b)	$0.17 \frac{d_b f_{yt}}{\lambda \sqrt{f_c'}}$	$0.053 \frac{d_b f_{yt}}{\lambda \sqrt{f_c'}}$	$0.014 \frac{d_b f_{yt}}{\lambda \sqrt{f_c'}}$
25.7.1.7	$A_b f_{yt} \le 40,000 \text{ N}$	$A_b f_{yt} \le 4000 \text{ kgf}$	$A_b f_{yt} \le 9000 \text{ lb}$