GGGGCTTCGGCGCCAGCGCCAGCGCTAGTCGGTCTGGTAAGGATTTACAAAAGGTGCAGGTATG AGCAGGTCTGAAGACTAACATTTTGTGAAGTTGTAAAACAGAAAACCTGTTAGAA<mark>ATG</mark>TGGTGGT TTCAGCAAGGCCTCAGTTTCCTTCCTTCAGCCCTTGTAATTTGGACATCTGCTGCTTTCATATTT TCATACATTACTGCAGTAACACTCCACCATATAGACCCGGCTTTACCTTATATCAGTGACACTGG TACAGTAGCTCCAGAAAAATGCTTATTTGGGGCAATGCTAAATATTGCGGCAGTTTTATGCATTG CTACCATTTATGTTCGTTATAAGCAAGTTCATGCTCTGAGTCCTGAAGAGAACGTTATCATCAAA  $\tt TTAAACAAGGCTGGCCTTGTACTTGGAATACTGAGTTGTTTAGGACTTTCTATTGTGGCAAACTT$ CCAGAAAACAACCCTTTTTGCTGCACATGTAAGTGGAGCTGTGCTTACCTTTGGTATGGGCTCAT TATATATGTTTGTTCAGACCATCCTTTCCTACCAAATGCAGCCCAAAATCCATGGCAAACAAGTC TTCTGGATCAGACTGTTGTTGGTTATCTGGTGTGGAGTAAGTGCACTTAGCATGCTGACTTGCTC ATCAGTTTTGCACAGTGGCAATTTTGGGACTGATTTAGAACAGAAACTCCATTGGAACCCCGAGG ACAAAGGTTATGTGCTTCACATGATCACTACTGCAGCAGAATGGTCTATGTCATTTTCCTTCTTT **GGTTTTTTCCTGACTTACATTCGTGATTTTCAGAAAATTTCTTTACGGGTGGAAGCCAATTTACA** GAGATATT**TGA**TGAAAGGATAAAATATTTCTGTAATGATTATGATTCTCAGGGATTGGGGAAAGG TTCACAGAAGTTGCTTATTCTTCTGAAATTTTCAACCACTTAATCAAGGCTGACAGTAACACT GATGAATGCTGATAATCAGGAAACATGAAAGAAGCCATTTGATAGATTATTCTAAAGGATATCAT CAAGAAGACTATTAAAAACACCTATGCCTATACTTTTTTTATCTCAGAAAATAAAGTCAAAAGACT ATG

<subunit 1 of 1, 266 aa, 1 stop
<mw: 29766, pi: 8.39, NX(S/T): 0

MWWFQQGLSFLPSALVIWTSAAFIFSYITAVTLHHIDPALPYISDTGTVAPEKCLFGAMLNIAAV
LCIATIYVRYKQVHALSPEENVIIKLNKAGLVLGILSCLGLSIVANFQKTTLFAAHVSGAVLTFG
MGSLYMFVQTILSYQMQPKIHGKQVFWIRLLLVIWCGVSALSMLTCSSVLHSGNFGTDLEQKLHW
NPEDKGYVLHMITTAAEWSMSFSFFGFFLTYIRDFQKISLRVEANLHGLTLYDTAPCPINNERTR
LLSRDI</pre>

### Important features:

Type II transmembrane domain:

amino acids 13-33

Other Transmembrane domains:

amino acids 54-73, 94-113, 160-180, 122-141

N-myristoylation sites.

amino acids 57-63, 95-101, 99-105, 124-130, 183-189

GTGTGAGGGGGCCTGTGGCCCCAGCGTGCTGTGGCCTCGGGGAGTGGGAAGTGGAGGCAGGAGCCTTC  $\tt CTTACACTTCGCC{\color{blue} ATG} AGTTTCCTCATCGACTCCAGCATCATGATTACCTCCCAGATACTATTTTTTG$ GATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTATGAGATACGTCAGTATGTTGTACAG GTGATCTTCTCCGTGACGTTTGCATTTTCTTGCACCATGTTTGAGCTCATCATCTTTGAAATCTTAGG AGTATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGG TTTTCATGGTGCCTTTTTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGA CTGCTTTTTCCTGTCTCTTATGGCTGACCTTTATGTATTTCTTCTGGAAACTAGGAGATCCCTTTCC CATTCTCAGCCCAAAACATGGGATCTTATCCATAGAACAGCTCATCAGCCGGGTTGGTGATTGGAG TGACTCTCATGGCTCTTCTTCTGGATTTGGTGCTGTCAACTGCCCATACACTTACATGTCTTACTTC CTCAGGAATGTGACTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAAACCATGGATATGAT CATAAGCAAAAAGAAAGGATGGCAATGGCACGGAGAACAATGTTCCAGAAGGGGGAAGTGCATAACA AACCATCAGGTTTCTGGGGAATGATAAAAAGTGTTACCACTTCAGCATCAGGAAGTGAAAATCTTACT ATATGCTACCAAGGAGAAATAGAATACTCCAAAACCTTCAAGGGGAAATATTTTAATTTTCTTGGTT ACTTTTTCTCTATTTACTGTGTTTGGAAAATTTTCATGGCTACCATCAATATTGTTTTTGATCGAGTT GGGAAAACGGATCCTGTCACAAGAGGCATTGAGATCACTGTGAATTATCTGGGAATCCAATTTGATGT TGCTGATCACTCTTACCAAGTTCTTTTATGCCATCTCTAGCAGTAAGTCCTCCAATGTCATTGTCCTG CTATTAGCACAGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGCTGATCCGAATGAGTATGCCTTT AGAATACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTTTG ATGTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAACAGGCACCA GAGAAGCAAATGGCACCT**TGA**ACTTAAGCCTACTACAGACTGTTAGAGGCCAGTGGTTTCAAAATTTA ATTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATACTATGACCATGAGTAGCATCAGCCAG AACATGAGAGGGAGAACTAACTCAAGACAATACTCAGCAGAGAGCATCCCGTGTGGATATGAGGCTGG TGTAGAGGCGGAGAGGCCAAGAAACTAAAGGTGAAAAATACACTGGAACTCTGGGGCCAAGACATGT CTATGGTAGCTGAGCCAAACACGTAGGATTTCCGTTTTAAGGTTCACATGGAAAAGGTTATAGCTTTG ACTCTAGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEILGV
LNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFFWKLGDP
FPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDILALERRLLQ
TMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQQEVDALEELSRQ
LFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVFDRVGKTDPVTRGIEI
TVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISSSKSSNVIVLLLAQIMGMY
FVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSALSSILFLYLAHKQAPEKQMAP

### Important features:

### Signal peptide:

amino acids 1-23

#### Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

### N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

### Eukaryotic cobalamin-binding proteins

amino acids 151-160

AGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAGTGGCCATCTGAGGT GTTTCCCTGGCTCTGAAGGGGTAGGCACGATGCCCAGGTGCTTCAGCCTGGTGTTGCTTCTCACT GTCATGCAGAATTATGGGGATCACCCTTGTGAGCAAAAAGGCGAACCAGCAGCTGAATTTCACAG AAGCTAAGGAGGCCTGTAGGCTGCTGGGACTAAGTTTGGCCGGCAAGGACCAAGTTGAAACAGCC TTGAAAGCTAGCTTTGAAACTTGCAGCTATGGCTGGGTTGGAGATGGATTCGTGGTCATCTCTAG GCCGACAGTTTGCAGCCTATTGTTACAACTCATCTGATACTTGGACTAACTCGTGCATTCCAGAA CAGTGACAGTACCTACTCGGTGGCATCCCCTTACTCTACAATACCTGCCCCTACTACTACTCCTC CTGCTCCAGCTTCCACTTCTATTCCACGGAGAAAAAATTGATTTGTGTCACAGAAGTTTTTATG GAAACTAGCACCATGTCTACAGAAACTGAACCATTTGTTGAAAATAAAGCAGCATTCAAGAATGA CAGCAGAAGGAAATGATCGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCCTAA TGAGGAATCAAAGAAAACTGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGC GATGCCTGGAAGCTGAAGTT**TAG**ATGAGACAGAAATGAGGAGACACCTGAGGCTGGTTTCTTT CATGCTCCTTACCCTGCCCCAGCTGGGGAAATCAAAAGGGCCCAAAGAACCAAAGAAGAAGAAGTCCA CCCTTGGTTCCTAACTGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAAT TTCTAGCCTGGCTATGTCCTAATAATATCCCACTGGGAGAAAGGAGTTTTGCAAAGTGCAAGGAC CTAAAACATCTCATCAGTATCCAGTGGTAAAAAGGCCTCCTGGCTGTCTGAGGCTAGGTGGGTTG AAAGCCAAGGAGTCACTGAGACCAAGGCTTTCTCTACTGATTCCGCAGCTCAGACCCTTTCTTCA GCTCTGAAAGAGAAACACGTATCCCACCTGACATGTCCTTCTGAGCCCGGTAAGAGCAAAAGAAT GGCAGAAAAGTTTAGCCCCTGAAAGCCATGGAGATTCTCATAACTTGAGACCTAATCTCTGTAAA GCTAAAATAAAGAAATAGAACAAGGCTGAGGATACGACAGTACACTGTCAGCAGGGACTGTAAAC CTTACTTTTTCTGGTCTCTACCACTGCTGATATTTTCTCTAGGAAATATACTTTTACAAGTAACA AAAATAAAACTCTTATAAATTTCTATTTTTATCTGAGTTACAGAAATGATTACTAAGGAAGATT AAGTGCTGTGCAAGGTATTACACTCTGTAATTGAATATTATTCCTCAAAAAATTGCACATAGTAG AACGCTATCTGGGAAGCTATTTTTTTCAGTTTTGATATTTCTAGCTTATCTACTTCCAAACTAAT TTTTATTTTTGCTGAGACTAATCTTATTCATTTTCTCTAATATGGCAACCATTATAACCTTAATT TATTATTAACATACCTAAGAAGTACATTGTTACCTCTATATACCAAAGCACATTTTAAAAGTGCC ATTAACAAATGTATCACTAGCCCTCCTTTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATT TGTGACAAAAATTAAAGCATTTAGAAAACTT

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACRLLG LSLAGKDQVETALKASFETCSYGWVGDGFVVISRISPNPKCGKNGVGVLIWKVPVSRQFAAYCYN SSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPPAPASTSIPR RKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTALLVLALLFFGAAAGLGFCYVK RYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSPSKTTVRCLEAEV

### Signal sequence:

amino acids 1-16

### Transmembrane domain:

amino acids 235-254

#### N-glycosylation site.

amino acids 53-57, 130-134, 289-293

#### Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

### Tyrosine kinase phosphorylation site.

amino acids 79-88

### N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

CGCCGCGCTCCCGCACCCGCGCCCCACCGCGCCGCTCCCGCATCTGCACCCGCAGCCCGGC GGCCTCCCGGCGGAGCGAGCAGATCCAGTCCGGCCCGCAGCGCAACTCGGTCCAGTCGGGGCGG CGGCGGTCCCCACGGCCCCGCGCCCGCTCCGACGGCGACCTCGGCTCCAGTCAAGCCCGGCCCG GCTCTCAGCTACCCGCAGGAGGAGGCCACCCTCAATGAGATGTTCCGCGAGGTTGAGGAACTGAT GGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGAGGCAGAAGAAGCTGCTGCTA AAGCATCAGAAGTGAACCTGGCAAACTTACCTCCCAGCTATCACAATGAGACCAACACAGAC ACGAAGGTTGGAAATAATACCATCCATGTGCACCGAGAAATTCACAAGATAACCAACAACCAGAC TGGACAAATGGTCTTTTCAGAGACAGTTATCACATCTGTGGGAGACGAAGAAGGCCAGAAGGACCC ACGAGTGCATCATCGACGAGGACTGTGGGCCCAGCATGTACTGCCAGTTTGCCAGCTTCCAGTAC GCTGTGTGTCTGGGGTCACTGCACCAAAATGGCCACCAGGGGCAGCAATGGGACCATCTGTGACA ACCAGAGGGACTGCCAGCCGGGGCTGTGCTGTGCCTTCCAGAGAGGCCTGCTGTTCCCTGTGTGC ACACCCCTGCCCGTGGAGGCGAGCTTTGCCATGACCCCGCCAGCCGGCTTCTGGACCTCATCAC CTGGGAGCTAGAGCCTGATGGAGCCTTGGACCGATGCCCTTGTGCCAGTGGCCTCCTCTGCCAGC CCCACAGCCACAGCCTGGTGTATGTGTGCAAGCCGACCTTCGTGGGGAGCCGTGACCAAGATGGG GAGATCCTGCTGCCCAGAGAGGTCCCCGATGAGTATGAAGTTGGCAGCTTCATGGAGGAGGTGCG CCAGGAGCTGGAGGACCTGGAGAGGAGCCTGACTGAAGAGATGGCGCTGGGGGAGCCTGCGGCTG  $\tt CCGCCGCTGCACTGCTGGGAGGGGAAGAGATT{\color{red}{TAG}} ATCTGGACCAGGCTGTGGGTAGATGTGCAA{\color{red}{CAG}} AGATGTGCAA{\color{red}{CAG}} AGATGTGC$ TAGAAATAGCTAATTTATTTCCCCAGGTGTGTGCTTTAGGCGTGGGCTGACCAGGCTTCTTCCTA CATCTTCTCCCAGTAAGTTTCCCCTCTGGCTTGACAGCATGAGGTGTTGTGCATTTGTTCAGCT GGAGCAGTTTGCCACCCCTGTCCAGATTATTGGCTGCTTTGCCTCTACCAGTTGGCAGACAGCCG TTTGTTCTACATGGCTTTGATAATTGTTTGAGGGGAGGAGATGGAAACAATGTGGAGTCTCCCTC TGATTGGTTTTGGGGAAATGTGGAGAAGAGTGCCCTGCTTTGCAAACATCAACCTGGCAAAAATG CAACAAATGAATTTTCCACGCAGTTCTTTCCATGGGCATAGGTAAGCTGTGCCTTCAGCTGTTGC AGATGAAATGTTCTGTTCACCCTGCATTACATGTGTTTATTCATCCAGCAGTGTTGCTCAGCTCC TACCTCTGTGCCAGGGCAGCATTTTCATATCCAAGATCAATTCCCTCTCTCAGCACAGCCTGGGG AGGGGGTCATTGTTCTCCTCGTCCATCAGGGATCTCAGAGGCTCAGAGACTGCAAGCTGCTTGCC CAAGTCACACAGCTAGTGAAGACCAGAGCAGTTTCATCTGGTTGTGACTCTAAGCTCAGTGCTCT TTTTCTTGAGGCATGCACATCTGGAATTAAGGTCAAACTAATTCTCACATCCCTCTAAAAGTAAA CTACTGTTAGGAACAGCAGTGTTCTCACAGTGTGGGGCAGCCGTCCTTCTAATGAAGACAATGAT ATTGACACTGTCCCTCTTTGGCAGTTGCATTAGTAACTTTGAAAGGTATATGACTGAGCGTAGCA TACAGGTTAACCTGCAGAAACAGTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTTGC AAAATCACTTAGCAGCAACTGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGC TGTGTGAAACATGGTTGTAATATGCGACTGCGAACACTGAACTCTACGCCACTCCACAAATGATG CATGATTGTATAAGCATGCTTTCTTTGAGTTTTAAATTATGTATAAACATAAGTTGCATTTAGAA 

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQHKL RSAVEEMEAEEAAAKASSEVNLANLPPSYHNETNTDTKVGNNTIHVHREIHKITNNQTGQMVFSE TVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRDSECCGDQLCVWGHC TKMATRGSNGTICDNQRDCQPGLCCAFQRGLLFPVCTPLPVEGELCHDPASRLLDLITWELEPDG ALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEVGSFMEEVRQELEDLE RSLTEEMALGEPAAAAAALLGGEEI

#### Signal sequence:

amino acids 1-19

### N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

### Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316, 327-331

### N-myristoylation site.

amino acids 202-208, 217-223

### Amidation site.

amino acids 140-144

GGCCCACCTTGTGAACTCCTCGTGCCCAGGGCTGATGTGCGTCTTCCAGGGCTACTCATCCAAAG GCCTAATCCAACGTTCTGTCTTCAATCTGCAAATCTATGGGGTCCTGGGGCTCTTCTGGACCCTT AACTGGGTACTGGCCCTGGGCCAATGCGTCCTCGCTGGAGCCTTTGCCTCCTTCTACTGGGCCTT CCACAAGCCCCAGGACATCCCTACCTTCCCCTTAATCTCTGCCTTCATCCGCACACTCCGTTACC ACACTGGGTCATTTGGAGCCCTCATCCTGACCCTTGTGCAGATAGCCCGGGTCATCTTG GAGTATATTGACCACAAGCTCAGAGGAGTGCAGAACCCTGTAGCCCGCTGCATCATGTGCTGTTT CAAGTGCTGCCTCTGGTGTCTGGAAAAATTTATCAAGTTCCTAAACCGCAATGCATACATCATGA TCGCCATCTACGGGAAGAATTTCTGTGTCTCAGCCAAAAATGCGTTCATGCTACTCATGCGAAAC ATTGTCAGGGTGGTCCTGGACAAAGTCACAGACCTGCTGCTGTTCTTTGGGAAGCTGCTGGT GGTCGGAGGCGTGGGGGTCCTGTCCTTCTTTTTTTCTCCGGTCGCATCCCGGGGCTGGGTAAAG ACTTTAAGAGCCCCCACCTCAACTATTACTGGCTGCCCATCATGACCTCCATCCTGGGGGCCTAT GGAAGACCTGGAGCGGAACAACGGCTCCCTGGACCGGCCCTACTACATGTCCAAGAGCCTTCTAA CCCTGATCCAGGACTGCACCCCACCCCCACCGTCCAGCCATCCAACCTCACTTCGCCTTACAGGT TTGAGAGGCTGAGGCGGGCGGATCACCTGAGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTG AAACCTCCGTCTCTATTAAAAATACAAAAATTAGCCGAGAGTGGTGGCATGCACCTGTCATCCCA GCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGCCGA AAGATTTTATTAAAGATATTTTGTTAACTC

RTRGRTRGGCEKVPINTSCNPTAHLVNSSCPGLMCVFQGYSSKGLIQRSVFNLQIYGVLGLFWTL
NWVLALGQCVLAGAFASFYWAFHKPQDIPTFPLISAFIRTLRYHTGSLAFGALILTLVQIARVIL
EYIDHKLRGVQNPVARCIMCCFKCCLWCLEKFIKFLNRNAYIMIAIYGKNFCVSAKNAFMLLMRN
IVRVVVLDKVTDLLLFFGKLLVVGGVGVLSFFFFSGRIPGLGKDFKSPHLNYYWLPIMTSILGAY
VIASGFFSVFGMCVDTLFLCFLEDLERNNGSLDRPYYMSKSLLKILGKKNEAPPDNKKRKK

### Important features:

Transmembrane domains:

amino acids 57-80 (type II), 110-126, 215-231, 254-274

N-glycosylation sites.

amino acids 16-20, 27-31, 289-293

Hypothetical YBR002c family proteins.

amino acids 276-288

Ammonium transporters proteins.

amino acids 204-231

N-myristoylation sites.

amino acids 60-66, 78-84

Amidation site.

amino acids 306-310

TCCCTGCTCAGCTGCGCGTCCTGCCGCTCTGCCCCCTGCATCCTGTGCAGCTGCTGCCCCGC CAGCCGCAACTCCACCGTGAGCCGCCTCATCTTCACGTTCTTCCTCTTCCTGGGGGTGCTGGTGTCCA TCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTCTACAAGCTGCCCTGGGTGTGTGAGGAGGGGGCC GGGATCCCCACCGTCCTGCAGGGCCACATCGACTGTGGCTCCCTGCTTGGCTACCGCGCTGTCTACCG CATGTGCTTCGCCACGGCGGCCTTCTTCTTCTTCTTTTTCACCCTGCTCATGCTCTGCGTGAGCAGCA GCCGGGACCCCGGGCTGCCATCCAGAATGGGTTTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTC ACCGTGGGTGCCTTCTACATCCCTGACGGCTCCTTCACCAACATCTGGTTCTACTTCGGCGTCGTGGG CTCCTTCCTCTCATCCACCAGCTGGTGCTCCTCATCGACTTTGCGCACTCCTGGAACCAGCGGT GGCTGGGCAAGGCCGAGGAGTGCGATTCCCGTGCCTGGTACGCAGGCCTCTTCTTCTTCACTCTCCTC TTCTACTTGCTGTCGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCTGCCA CGAGGGCAAGGTCTTCATCAGCCTCAACCTCACCTTCTGTGTCTGCGTGTCCATCGCTGCTGTCCTGC CCAAGGTCCAGGACGCCCAGCCCAACTCGGGTCTGCTGCAGGCCTCGGTCATCACCCTCTACACCATG TTTGTCACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCAACCCCCATTTGCCAACCCAGCT GGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAGACCCAGTGGTGGGATGCCCCGAGCATTG TGGGCCTCATCATCTTCCTCCTGTGCACCCTCTTCATCAGTCTGCGCTCCTCAGACCACCGGCAGGTG AACAGCCTGATGCAGACCGAGGAGTGCCCACCTATGCTAGACGCCACACAGCAGCAGCAGCAGCAGGT GGCAGCCTGTGAGGGCCGGGCCTTTGACAACGAGCAGGACGGCGTCACCTACAGCTACTCCTTCTTCC ACTTCTGCCTGGTGCTGGCCTCACTGCACGTCATGATGACGCTCACCAACTGGTACAAGCCCGGTGAG ACCCGGAAGATGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCT CCTCTACCTGTGGACCCTGGTAGCCCCACTCCTCCTGCGCAACCGCGACTTCAGCTGAGGCAGCCTCA CCCACACCAATCAGCCAGGCTGAGCCCCCACCCCTGCCCCAGGTCCAGGACCTGCCCCTGAGCCGGGC ACCCACACGGTGGAGCTGCCTCTTCCCTTCCCTCCTGTTGCCCATACTCAGCATCTCGGATGAA AGGGCTCCCTTGTCCTCAGGCTCCACGGGAGCGGGGCTGCTGGAGAGAGCGGGGAACTCCCACCACAG TGGGGCATCCGGCACTGAAGCCCTGGTGTTCCTGGTCACGTCCCCCAGGGGACCCTGCCCCCTTCCTG 

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVESQL
YKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFFTLLMLCVSSSRDPRAAIQ
NGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSWNQRWLGKAE
ECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFCVCVSIAAVLPKV
QDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVAGPEGYETQWWDAPSI
VGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVAACEGRAFDNEQDGVTYSY
SFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICASWAGLLLYLWTLVAPLLLRNRD
FS

### Signal sequence:

amino acids 1-20

### Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

CGGGCCAGCCTGGGGCGGCCAGGAACCACCCGTTAAGGTGTCTTCTCTTTAGGGATGGTGA GGTTGGAAAAAGACTCCTGTAACCCTCCTCCAGGATGAACCACCTGCCAGAAGACATGGAGAACG CTCTCACCGGGAGCCAGAGCTCCCATGCTTCTCTGCGCAATATCCATTCCATCAACCCCACACAA CTCATGGCCAGGATTGAGTCCTATGAAGGAAGGGAAAAGGAAAGGCATATCTGATGTCAGGAGGAC TTTCTGTTTGTCACCTTTGACCTCTTATTCGTAACATTACTGTGGATAATAGAGTTAAATG TGAATGGAGGCATTGAGAACACATTAGAGAAGGAGGTGATGCAGTATGACTACTATTCTTCATAT TTTGATATTTCTTCTGGCAGTTTTTCGATTTAAAGTGTTAATACTTGCATATGCTGTGCAG ACTGCGCCATTGGTGGGCAATAGCGTTGACAACGGCAGTGACCAGTGCCTTTTTACTAGCAAAAG CTTGCCTGGATTGAGACGTGGTTCCTGGATTTCAAAGTGTTACCTCAAGAAGCAGAAGAAGAAAAA CAGACTCCTGATAGTTCAGGATGCTTCAGAGAGGGCAGCACTTATACCTGGTGGTCTTTCTGATG GTCAGTTTTATTCCCCTCCTGAATCCGAAGCAGGATCTGAAGAAGCTGAAGAAAAACAGGACAGT GAGAAACCACTTTTAGAACTATGAGTACTACTTTTGTTAAATGTGAAAAACCCTCACAGAAAGTC ATCGAGGCAAAAAGAGGCAGCAGTGGAGTCTCCCTGTCGACAGTAAAGTTGAAATGGTGACGTC CATATCCATGCACATTTAGTTGCCTGCCTGTGGCTGGTAAGGTAATGTCATGATTCATCCTCTCT TCAGTGAGACTGAGCCTGATGTGTTAACAAATAGGTGAAGAAAGTCTTGTGCTGTATTCCTAATC AAAAGACTTAATATTGAAGTAACACTTTTTTAGTAAGCAAGATACCTTTTTATTTCAATTCAC AGAATGGAATTTTTTTGTTTCATGTCTCAGATTTATTTTGTATTTCTTTTTTAACACTCTACATT TCCCTTGTTTTTTAACTCATGCACATGTGCTCTTTGTACAGTTTTAAAAAGTGTAATAAAATCTG ACATGTCAATGTGGCTAGTTTTATTTTTCTTGTTTTGCATTATGTGTATGGCCTGAAGTGTTGGA CTTGCAAAAGGGGAAGAAAGGAATTGCGAATACATGTAAAATGTCACCAGACATTTGTATTATTT TTATCATGAAATCATGTTTTTCTCTGATTGTTCTGAAATGTTCTAAATACTCTTATTTTGAATGC ACAAAATGACTTAAACCATTCATATCATGTTTCCTTTGCGTTCAGCCAATTTCAATTAAAATGAA CTAAATTAAAAA

MNHLPEDMENALTGSQSSHASLRNIHSINPTQLMARIESYEGREKKGISDVRRTFCLFVTFDLLF VTLLWIIELNVNGGIENTLEKEVMQYDYYSSYFDIFLLAVFRFKVLILAYAVCRLRHWWAIALTT AVTSAFLLAKVILSKLFSQGAFGYVLPIISFILAWIETWFLDFKVLPQEAEEENRLLIVQDASER AALIPGGLSDGQFYSPPESEAGSEEAEEKQDSEKPLLEL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domains:

amino acids 54-72, 100-118, 130-144, 146-166

N-myristoylation sites.

amino acids 14-20, 78-84, 79-85, 202-208, 217-223

ACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCTCGGGCCCGACCCGCCAGGAAAGACTGAGG CCGCGGCCTGCCCGGCCCGGCTCCCTGCGCCGCCGCCTCCCGGGACAGAAGATGTGCTCCAG GGTCCCTCTGCTGCCGCTGCTCCTGCTACTGGCCCTGGGGCCTGGGGTGCAGGGCTGCCCAT CCGGCTGCCAGTGCAGCCACAGACAGTCTTCTGCACTGCCCGCCAGGGGACCACGGTGCCC CGAGACGTGCCACCCGACACGGTGGGGCTGTACGTCTTTGAGAACGGCATCACCATGCTCGACGC AGGCAGCTTTGCCGGCCTGCCGGGCCTGCAGCTCCTGGACCTGTCACAGAACCAGATCGCCAGCC TGCCCAGCGGGTCTTCCAGCCACTCGCCAACCTCAGCAACCTGGACCTGACGGCCAACAGGCTG CATGAAATCACCAATGAGACCTTCCGTGGCCTGCGGCGCCTCGAGCGCCTCTACCTGGGCAAGAA CCGCATCCGCCACATCCAGCCTGGTGCCTTCGACACGCTCGACCGCCTCCTGGAGCTCAAGCTGC AGGACAACGAGCTGCGGGCACTGCCCCCGCTGCCCCGCCTGCTGCTGCTGGACCTCAGC CACAACAGCCTCCTGGCCCTGGAGCCCGGCATCCTGGACACTGCCAACGTGGAGGCGCTGCGGCT GGCTGGTCTGGGGCTGCAGCAGCTGGACGAGGGGCTCTTCAGCCGCTTGCGCAACCTCCACGACC TGGATGTGTCCGACAACCAGCTGGAGCGAGTGCCACCTGTGATCCGAGGCCTCCGGGGCCTGACG TCTTCCCCCGCCTGCGGCTGCTGGCAGCTGCCGCAACCCCTTCAACTGCGTGTGCCCCCTGAGC TGGTTTGGCCCCTGGGTGCGCGAGAGCCACGTCACACTGGCCAGCCCTGAGGAGACGCGCTGCCA CTTCCCGCCCAAGAACGCTGGCCGGCTGCTCCTGGAGCTTGACTACGCCGACTTTGGCTGCCCAG CCACCACCACCACAGCCACAGCCACCACGAGGCCCGTGGTGCGGGAGCCCACAGCCTTGTCT CACTGCCCCACCGACTGTAGGGCCTGTCCCCCAGCCCCAGGACTGCCCACCGTCCACCTGCCTCA ATGGGGGCACATGCCACCTGGGGACACGGCACCACCTGGCGTGCTTGTGCCCCGAAGGCTTCACG GGCCTGTACTGTGAGAGCCAGATGGGGCAGGGGACACGGCCCAGCCCTACACCAGTCACGCCGAG GCCACCACGGTCCCTGACCCTGGGCATCGAGCCGGTGAGCCCCACCTCCCTGCGCGTGGGGCTGC AGCGCTACCTCCAGGGGAGCTCCGTGCAGCTCAGGAGCCTCCGTCTCACCTATCGCAACCTATCG GCGAGGAGGCCTGCGGGGAGGCCCATACACCCCCAGCCGTCCACTCCAACCACGCCCCAGTCACC GAGAGACAGGCCAGCTGGGGCCGGGCTCTCAGCCAGTGAGATGGCCAGCCCCCTCCTGCTGCC ACACCACGTAAGTTCTCAGTCCCAACCTCGGGGATGTGTGCAGACAGGGCTGTGTGACCACAGCT GGGCCCTGTTCCCTCTGGACCTCGGTCTCCTCATCTGTGAGATGCTGTGGCCCAGCTGACGAGCC CTAACGTCCCCAGAACCGAGTGCCTATGAGGACAGTGTCCGCCCTGCCCTCCGCAACGTGCAGTC CCTGGGCACGGGGCCCTGCCATGTGCTGGTAACGCATGCCTGGGTCCTGCTGGGCTCTCCCAC TCCAGGCGGACCCTGGGGGCCAGTGAAGGAAGCTCCCGGAAAGAGCAGAGGGAGAGCGGGTAGGC GGCTGTGTGACTCTAGTCTTGGCCCCAGGAAGCGAAGGAACAAAAGAAACTGGAAAGGAAGATGC TTTAGGAACATGTTTTGCTTTTTTAAAATATATATTTTATAAGAGATCCTTTCCCATTTATTCT GGGAAGATGTTTTTCAAACTCAGAGACAAGGACTTTGGTTTTTGTAAGACAAACGATGATATGAA GGCCTTTTGTAAGAAAAAATAAAAGATGAAGTGTGAAA

App\_ID=10063579 Page 167 of 320

MCSRVPLLLPLLLLALGPGVQGCPSGCQCSQPQTVFCTARQGTTVPRDVPPDTVGLYVFENGIT
MLDAGSFAGLPGLQLLDLSQNQIASLPSGVFQPLANLSNLDLTANRLHEITNETFRGLRRLERLY
LGKNRIRHIQPGAFDTLDRLLELKLQDNELRALPPLRLPRLLLLDLSHNSLLALEPGILDTANVE
ALRLAGLGLQQLDEGLFSRLRNLHDLDVSDNQLERVPPVIRGLRGLTRLRLAGNTRIAQLRPEDL
AGLAALQELDVSNLSLQALPGDLSGLFPRLRLLAAARNPFNCVCPLSWFGPWVRESHVTLASPEE
TRCHFPPKNAGRLLLELDYADFGCPATTTTATVPTTRPVVREPTALSSSLAPTWLSPTAPATEAP
SPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHLACLCPEGFTGLYCESQMGQGTRPSPTP
VTPRPPRSLTLGIEPVSPTSLRVGLQRYLQGSSVQLRSLRLTYRNLSGPDKRLVTLRLPASLAEY
TVTQLRPNATYSVCVMPLGPGRVPEGEEACGEAHTPPAVHSNHAPVTQAREGNLPLLIAPALAAV
LLAALAAVGAAYCVRRGRAMAAAAQDKGQVGPGAGPLELEGVKVPLEPGPKATEGGGEALPSGSE
CEVPLMGFPGPGLQSPLHAKPYI

#### Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 579-599

EGF-like domain cysteine pattern signature.

amino acids 430-442

Leucine zipper pattern.

amino acids 197-219, 269-291

N-glycosylation sites.

amino acids 101-105, 117-121, 273-277, 500-504, 528-532

Tyrosine kinase phosphorylation sites.

amino acids 124-131, 337-345

N-myristoylation sites.

amino acids 23-29, 27-33, 70-76, 142-148, 187-193, 348-354, 594-600, 640-646

GCAGCGGCGAGGCGGTGGTGGCTGAGTCCGTGGTGGCAGAGGCGAAGGCGACAGCTCATGCG GGTCCGGATAGGGCTGACGCTGCTGTGTGCGGTGCTGAGCTTGGCCTCGGCGTCCTCGG ATGAAGAAGGCAGCCAGGATGAATCCTTAGATTCCAAGACTACTTTGACATCAGATGAGTCAGTA AAGGACCATACTACTGCAGGCAGAGTAGTTGCTGGTCAAATATTTCTTGATTCAGAAGAATCTGA ATTAGAATCCTCTATTCAAGAAGAGGAAGACAGCCTCAAGAGCCAAGAGGGGGAAAGTGTCACAG CGGAAACCAGCTTTGACCGCCATTGAAGGCACAGCACATGGGGAGCCCTGCCACTTCCCTTTTCT CTACAACCTATGACTACAAAGCAGATGAAAAGTGGGGCTTTTGTGAAACTGAAGAAGAGGCTGCT AAGAGACGCAGATGCAGGAAGCAGAAATGATGTATCAAACTGGAATGAAAATCCTTAATGGAAG CCAAAGCCCTGGAGAGAGTGTCATATGCTCTTTTATTTGGTGATTACTTGCCACAGAATATCCAG GCAGCGAGAGAGATGTTTGAGAAGCTGACTGAGGAAGGCTCTCCCAAGGGACAGACTGCTCTTGG CTTTCTGTATGCCTCTGGACTTGGTGTTAATTCAAGTCAGGCAAAGGCTCTTGTATATTATACAT TTGGAGCTCTTGGGGGCAATCTAATAGCCCACATGGTTTTGGTAAGTAGACTT**TAG**TGGAAGGCT AATAATATTAACATCAGAAGAATTTGTGGTTTATAGCGGCCACAACTTTTTCAGCTTTCATGATC AACACATGGAATCTACATGTAAATGAAAGTTGGTGGAGTCCACAATTTTTCTTTAAAATGATTAG TTTGGCTGATTGCCCCTAAAAAGAGAGATCTGATAAATGGCTCTTTTTAAATTTTCTCTGAGTTG GAATTGTCAGAATCATTTTTTACATTAGATTATCATAATTTTTAAAAATTTTTCTTTAGTTTTTCA AAATTTTGTAAATGGTGGCTATAGAAAAACAACATGAAATATTATACAATATTTTGCAACAATGC  $\verb|CCTAAGAATTGTTAAAATTCATGGAGTTATTTGTGCAGAATGACTCCAGAGAGCTCTACTTTCTG|$ TTTTTTACTTTTCATGATTGGCTGTCTTCCCATTTATTCTGGTCATTTATTGCTAGTGACACTGT GCCTGCTTCCAGTAGTCTCATTTTCCCTATTTTGCTAATTTGTTACTTTTCTTTGCTAATTTGG 

MRVRIGLTLLLCAVLLSLASASSDEEGSQDESLDSKTTLTSDESVKDHTTAGRVVAGQIFLDSEESEL ESSIQEEEDSLKSQEGESVTEDISFLESPNPENKDYEEPKKVRKPALTAIEGTAHGEPCHFPFLFLDK EYDECTSDGREDGRLWCATTYDYKADEKWGFCETEEEAAKRRQMQEAEMMYQTGMKILNGSNKKSQKR EAYRYLQKAASMNHTKALERVSYALLFGDYLPQNIQAAREMFEKLTEEGSPKGQTALGFLYASGLGVN SSOAKALVYYTFGALGGNLIAHMVLVSRL

### Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 195-199, 217-221, 272-276

Tyrosine kinase phosphorylation site.

amino acids 220-228

N-myristoylation sites.

amino acids 120-126, 253-259, 268-274, 270-274, 285-291, 289-295

Glycosaminoglycan attachment site.

amino acids 267-271

Microbodies C-terminal targeting signal.

amino acids 299-303

Type II fibronectin collagen-binding domain protein.

amino acids 127-169

Fructose-bisphosphate aldolase class-II protein.

amino acids 101-119

AATTCAGATTTTAAGCCCATTCTGCAGTGGAATTTCATGAACTAGCAAGAGGACACCATCTTCTT GTATTATACAAGAAAGGAGTGTACCTATCACACACAGGGGGAAAA**ATG**CTCTTTTGGGTGCTAGG CCTCCTAATCCTCTGTGGTTTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAGACATCACTG ATAAGTACATTTTTATCACTGGATGTGACTCGGGCTTTGGAAACTTGGCAGCCAGAACTTTTGAT AAAAAGGGATTTCATGTAATCGCTGCCTGTCTGACTGAATCAGGATCAACAGCTTTAAAGGCAGA CCCAGTGGGTGAAGAACCAAGTTGGGGAGAAAGGTCTCTGGGGTCTGATCAATAATGCTGGTGTT CCCGGCGTGCTGGCTCCCACTGACTGGCTGACACTAGAGGACTACAGAGAACCTATTGAAGTGAA CCTGTTTGGACTCATCAGTGTGACACTAAATATGCTTCCTTTGGTCAAGAAAGCTCAAGGGAGAG TATGCAGTGGAAGGTTTCAATGACAGCTTAAGACGGGACATGAAAGCTTTTGGTGTGCACGTCTC TCGCCATTTGGGAGCAGCTGTCTCCAGACATCAAACAACAATATGGAGAAGGTTACATTGAAAAA AGTCTAGACAAACTGAAAGGCAATAAATCCTATGTGAACATGGACCTCTCTCCGGTGGTAGAGTG CATGGACCACGCTCTAACAAGTCTCTTCCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAAA TTTTCTGGATACCTCTGTCTCACATGCCAGCAGCTTTGCAAGACTTTTTATTGTTGAAACAGAAA  ${\tt GCAGAGCTGGCTAATCCCAAGGCAGTG} \underline{{\tt TGA}} {\tt CTCAGCTAACCACAAATGTCTCCTCCAGGCTATGA}$ AATTGGCCGATTCAAGAACACATCTCCTTTTCAACCCCATTCCTTATCTGCTCCAACCTGGACT CATTTAGATCGTGCTTATTTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGGTATCCCAGGGT CCCTGCTCAAGTTTTCTTTGAAAAGGAGGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCT GTATTTAGGCTTTGCCTGCTTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCCATTCAAAATGA  ${\tt TCTTTACCGTGGCCTGCCCCATGCTTATGGTCCCCAGCATTTACAGTAACTTGTGAATGTTAAGT}$ AAAAAAAAAAA

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLTESG STALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDWLTLEDY REPIEVNLFGLISVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGFNDSLRRDMK AFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEGYIEKSLDKLKGNKSYVNMD LSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQKAELANPKAV

### Important features of the protein:

Signal peptide:

amino acids 1-17

#### Transmembrane domain:

amino acids 136-152

### N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

### Glycosaminoglycan attachment site.

amino acids 39-42

### N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

CACTCGCTTTCCAGCACCTCAACACGGACTCGGACACGGAAGGTTTTCTTCTTGGGGAAGTAAAA GGTGAAGCCAAGAACAGCATTACTGATTCCCAAATGGATGTTGAAGTTGTTTATACAATTGA CATTCAGAAATATTCCATGCTATCAGCTTTTTAGCTTTTATAATTCTTCAGGCGAAGTAAATG AGCAAGCACTGAAGAAAATATTATCAAATGTCAAAAAGAATGTGGTAGGTTGGTACAAATTCCGT CGTCATTCAGATCAGATCATGACGTTTAGAGAGAGGCTGCTTCACAAAAACTTGCAGGAGCATTT TTCAAACCAAGACCTTGTTTTTCTGCTATTAACACCAAGTATAATAACAGAAAGCTGCTCTACTC ATCGACTGGAACATTCCTTATATAAACCTCAAAAAGGACTTTTTCACAGGGTACCTTTAGTGGTT GCCAATCTGGGCATGTCTGAACAACTGGGTTATAAAACTGTATCAGGTTCCTGTATGTCCACTGG TTTTAGCCGAGCAGTACAAACACACAGCTCTAAATTTTTTTGAAGAAGATGGATCCTTAAAGGAGG TACATAAGATAAATGAAATGTATGCTTCATTACAAGAGGAATTAAAGAGTATATGCAAAAAAGTG GAAGACAGTGAACAAGCAGTAGATAAACTAGTAAAGGATGTAAACAGATTAAAACGAGAAATTGA GAAAAGGAGAGGACACAGATTCAGGCAGCAAGAGAGAACATCCAAAAAGACCCTCAGGAGA ATGTCTTTAAAAAATAGACATGTTTCTAAAAGTAGCTGTAACTACAACCACCATCTCGATGTAGT AGACAATCTGACCTTAATGGTAGAACACCTGACATTCCTGAAGCTAGTCCAGCTAGTACACCAC AAATCATTAAGCATAAAGCCTTAGACTTAGATGACAGATGGCAATTCAAGAGATCTCGGTTGTTA GATACACAAGACAAACGATCTAAAGCAAATACTGGTAGTAGTAACCAAGATAAAGCATCCAAAAT GAGCAGCCCAGAAACAGATGAAGAAATTGAAAAGATGAAGGGTTTTGGTGAATATTCACGGTCTC ATTTCTATTGTTTTACTATGTTGAGCTACTTGCAGTAAGTTCATTTGTTTTTACTATGTTCACC TGTTTGCAGTAATACACAGATAACTCTTAGTGCATTTACTTCACAAAGTACTTTTTCAAACATCA GATGCTTTATTTCCAAACCTTTTTTTCACCTTTCACTAAGTTGTTGAGGGGAAGGCTTACACAG ACACATTCTTTAGAATTGGAAAAGTGAGACCAGGCACAGTGGCTCACACCTGTAATCCCAGCACT TAGGGAAGACAAGTCAGGAGGATTGATTGAAGCTAGGAGTTAGAGACCAGCCTGGGCAACGTATT GAGACCATGTCTATTAAAAAATAAAATGGAAAAGCAAGAATAGCCTTATTTTCAAAATATGGAAA GAAATTTATATGAAAATTTATCTGAGTCATTAAAATTCTCCTTAAGTGATACTTTTTTAGAAGTA CATTATGCTAGAGTTGCCAGATAAAATGCTGGATATCATGCAATAAATTTGCAAAACATCATCT 

MEGESTSAVLSGFVLGALAFQHLNTDSDTEGFLLGEVKGEAKNSITDSQMDDVEVVYTIDIQKYI
PCYQLFSFYNSSGEVNEQALKKILSNVKKNVVGWYKFRRHSDQIMTFRERLLHKNLQEHFSNQDL
VFLLLTPSIITESCSTHRLEHSLYKPQKGLFHRVPLVVANLGMSEQLGYKTVSGSCMSTGFSRAV
QTHSSKFFEEDGSLKEVHKINEMYASLQEELKSICKKVEDSEQAVDKLVKDVNRLKREIEKRRGA
QIQAAREKNIQKDPQENIFLCQALRTFFPNSEFLHSCVMSLKNRHVSKSSCNYNHHLDVVDNLTL
MVEHTDIPEASPASTPQIIKHKALDLDDRWQFKRSRLLDTQDKRSKANTGSSNQDKASKMSSPET
DEEIEKMKGFGEYSRSPTF

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation sites.

amino acids 75-79, 322-326

N-myristoylation site.

amino acids 184-154

Growth factor and cytokines receptors family.

amino acids 134-150

GCGTCCCCGCCTCGCCGGCCAGTCAGCTTGCCGGGTTCGCTGCCCCGCGAAACCCCGAGGTCACCAGCCCGCGCCTCT  ${\tt TCCAGCTCCACTCGCTAGTCCCCGACTCCGCCAGCCCTCGGCCGCTGCCGTAGCGCCGCTTCCCGTCCGGTCCCAAA}$  ${\tt AGCGCCGCGCTGCTGCCGAGCTCAAGTCGAAAAGTTGCTCGGAAGTGCGACGTCTTTACGTGTCCAAAGGCTTC}$ CAAGAGATGGAGGAGAAGTACAGCCTGCAAAGTAAAGATGATTTCAAAAGTGTGGTCAGCGAACAGTGCAATCATTTG CAAGCTGTCTTTGCTTCACGTTACAAGAAGTTTGATGAATTCTTCAAAGAACTACTTGAAAATGCAGAGAAATCCCTG AAACGTTACTACGTGGTGGGAAATGTGAACCTGGAAGAATGCTAAATGACTTCTGGGCTCGCCTCCTGGAGCGGATG TTCCGCCTGGTGAACTCCCAGTACCACTTTACAGATGAGTATCTGGAATGTGTGAGCAAGTATACGGAGCAGCTGAAG CCCTTCGGAGATGTCCCTCGCAAATTGAAGCTCCAGGTTACTCGTGCTTTTGTAGCAGCCCGTACTTTCGCTCAAGGC TTAGCGGTTGCGGGAGATGTCGTGAGCAAGGTCTCCGTGGTAAACCCCACAGCCCAGTGTACCCATGCCCTGTTGAAG ATGATCTACTGCCCCCCTGCCGGGGTCTCGTGACTGTGAAGCCATGTTACAACTACTGCTCAAACATCATGAGAGGC GAGGGTCCTTTCAACATTGAATCGGTCATGGATCCCATCGATGTGAAGATTTCTGATGCTATTATGAACATGCAGGAT AATAGTGTTCAAGTGTCTCAGAAGGTTTTCCAGGGATGTGGACCCCCCAAGCCCCTCCCAGCTGGACGAATTTCTCGT TCCATCTCTGAAAGTGCCTTCAGTGCTCGCTTCAGACCACACCACGCAGGAACGCCCAACCACCAGCAGCTGGCACT AGTTTGGACCGACTGGTTACTGATGTCAAGGAGAAACTGAAACAGGCCAAGAAATTCTGGTCCTCCCTTCCGAGCAAC GTTTGCAACGATGAGGATGGCTGCAGGAAACGGCAATGAGGATGACTGTTGGAATGGGAAAGGCAAAAGCAGGTAC CTGTTTGCAGTGACAGGAAATGGATTAGCCAACCAGGGCAACCAGAGGTCCAGGTTGACACCAGCAAACCAGAC ATACTGATCCTTCGTCAAATCATGGCTCTTCGAGTGATGACCAGCAAGATGAAGAATGCATACAATGGGAACGACGTG GACTTCTTTGATATCAGTGATGAAAGTAGTGGAAGGAAGTGGAAGTGGCTGTGAGTATCAGCAGTGCCCTTCAGAG AAAAAGTGTTCATCAAAAAGTTAAAAGGCACCAGTTATCACTTTTCTACCATCCTAGTGACTTTGCTTTTTAAATGAA  ${\tt AGGAAAAGGGACTGTGCATTGAGTTGGTTCCTGCTCCCCAAACCATGTTAAACGTGGCTAACAGTGTAGGTACAGAA}$ TCTGAAATATTAAAAAGCCTGTACAGAAGCAGGTTTTATTATCATGTTATCTTATTAAAAGAAAAAGCCCAAAAAGC

MARFGLPALLCTLAVLSAALLAAELKSKSCSEVRRLYVSKGFNKNDAPLHEINGDHLKICPQGST
CCSQEMEEKYSLQSKDDFKSVVSEQCNHLQAVFASRYKKFDEFFKELLENAEKSLNDMFVKTYGH
LYMQNSELFKDLFVELKRYYVVGNVNLEEMLNDFWARLLERMFRLVNSQYHFTDEYLECVSKYTE
QLKPFGDVPRKLKLQVTRAFVAARTFAQGLAVAGDVVSKVSVVNPTAQCTHALLKMIYCSHCRGL
VTVKPCYNYCSNIMRGCLANQGDLDFEWNNFIDAMLMVAERLEGPFNIESVMDPIDVKISDAIMN
MQDNSVQVSQKVFQGCGPPKPLPAGRISRSISESAFSARFRPHHPEERPTTAAGTSLDRLVTDVK
EKLKQAKKFWSSLPSNVCNDERMAAGNGNEDDCWNGKGKSRYLFAVTGNGLANQGNNPEVQVDTS
KPDILILRQIMALRVMTSKMKNAYNGNDVDFFDISDESSGEGSGCEYQQCPSEFDYNATDHAG
KSANEKADSAGVRPGAQAYLLTVFCILFLVMQREWR

### Important features:

#### Signal peptide:

amino acids 1-22

### ATP/GTP-binding site motif A (P-loop).

amino acids 515-524

### N-glycosylation site.

amino acids 514-518

#### Glycosaminoglycan attachment sites.

amino acids 494-498, 498-502

### N-myristoylation sites.

amino acids 63-69, 224-230, 276-282, 438-444, 497-503, 531-537

### Glypicans proteins.

amino acids 54-75, 105-157, 238-280, 309-346, 423-460, 468-506

 ${\tt MKVLISSLLLLIPLMLMSMVSSSLNPGVARGHRDRGQASRRWLQEGGQECECKDWFLRAPRRKFM} \\ {\tt TVSGLPKKQCPCDHFKGNVKKTRHQRHHRKPNKHSRACQQFLKQCQLRSFALPL} \\$ 

Important features:
Signal peptide:
amino acids 1-22

N-myristoylation sites. amino acids 27-33, 46-52

GGACGCCAGCGCCTGCAGAGGCTGAGCAGGGAAAAAGCCAGTGCCCCAGCGGAAGCACAGCTCAG AGCTGGTCTGCCATGGACATCCTGGTCCCACTCCTGCAGCTGCTGCTGCTTCTTACCCTGCC CCTGCACCTCATGGCTCTGGGCTGCTGGCAGCCCCTGTGCAAAAGCTACTTCCCCTACCTGA TGGCCGTGCTGACTCCCAAGAGCAACCGCAAGATGGAGGCAAGAAACGGGAGCTCTTCAGCCAG ATAAAGGGCTTACAGGAGCCTCCGGGAAAGTGGCCCTACTGGAGCTGGGCTGCGGAACCGGAGC CAACTTTCAGTTCTACCCACCGGGCTGCAGGGTCACCTGCCTAGACCCAAATCCCCACTTTGAGA AGTTCCTGACAAAGAGCATGGCTGAGAACAGGCACCTCCAATATGAGCGGTTTGTGGTGGCTCCT GGAGAGGACATGAGACAGCTGGCTGATGGCTCCATGGATGTGGTGGTCTGCACTCTGGTGCTGTG CTCTGTGCAGAGCCCAAGGAAGGTCCTGCAGGAGGTCCGGAGAGTACTGAGACCGGGAGGTGTGC TCTTTTTCTGGGAGCATGTGGCAGAACCATATGGAAGCTGGGCCTTCATGTGGCAGCAAGTTTTC GAGCCCACCTGGAAACACATTGGGGATGGCTGCCTCACCAGAGAGCCTGGAAGGATCTTGA GGCCCCACATCATGGGAAAGGCTGTCAAACAATCTTTCCCAAGGCTCCAAGGCACTCATTTGCTCC <u>G</u>CAGAATGAGAGAGACATTCATGTACCACCTACTAGTCCCTCTCCCCAACCTCTGCCAGGGC AATCTCTAACTTCAATCCCGCCTTCGACAGTGAAAAAGCTCTACTTCTACGCTGACCCAGGGAGG  ${\tt AAACACTAGGACCCTGTTGTATCCTCAACTGCAAGTTTCTGGACTAGTCTCCCAACGTTTGCCTC}$  ${\tt CCAATGTTGTCCCTTTCCTTCGTTCCCATGGTAAAGCTCCTCTCGCTTTCCTCCTGAGGCTACAC}$ CCATGCGTCTCTAGGAACTGGTCACAAAAGTCATGGTGCCTGCATCCCTGCCAAGCCCCCCTGAC CCTCTCTCCCCACTACCACCTTCTTCCTGAGCTGGGGGCACCAGGGAGAATCAGAGATGCTGGGG ACCACG

MDILVPLLQLLVLLTLPHHMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQIKGL TGASGKVALLELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAPGEDM RQLADGSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAEPYGSWAFMWQQVFEPTW KHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKWLPVGPHIMGKAVKQSFPSSKALICSFPSL QLEQATHQPIYLPLRGT

Important features:

Signal peptide:

amino acids 1-23

Leucine zipper pattern.

amino acids 10-32

N-myristoylation sites.

amino acids 64-70, 78-84, 80-86, 91-97, 201-207

 ${\tt MLLLTLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCSQAQPRG} \\ {\tt EGEKVGDG}$ 

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

GTTTGAATTCCTTCAACTATACCCACAGTCCAAAAGCAGACTCACTGTGTCCCAGGCTACCAGTT CCTCCAAGCAAGTCATTTCCCTTATTTAACCGATGTGTCCCTCAAACACCTGAGTGCTACTCCCT ATTTGCATCTGTTTTGATAAATGATGTTGACACCCTCCACCGAATTCTAAGTGGAATCATGTCGG GAAGAGATACAATCCTTGGCCTGTGTATCCTCGCATTAGCCTTGTCTTTGGCCATGATGTTTACC TTCAGATTCATCACCACCCTTCTGGTTCACATTTTCATTTCATTTGGTTATTTTGGGATTGTTGTT TGTCTGCGGTGTTTTATGGTGGCTGTATTATGACTATACCAACGACCTCAGCATAGAATTGGACA CAGAAAGGGAAAATATGAAGTGCGTGCTGGGGTTTGCTATCGTATCCACAGGCATCACGGCAGTG CTGCTCGTCTTGATTTTTGTTCTCAGAAAGAGAATAAAATTGACAGTTGAGCTTTTCCAAATCAC AAATAAAGCCATCAGCAGTGCTCCCTTCCTGCTGTTCCAGCCACTGTGGACATTTGCCATCCTCA TTTTCTTCTGGGTCCTCTGGGTGGCTGTGCTGCTGAGCCTGGGAACTGCAGGAGCTGCCCAGGTT ATGGAAGGCGGCCAAGTGGAATATAAGCCCCTTTCGGGCATTCGGTACATGTGGTCGTACCATTT AATTGGCCTCATCTGGACTAGTGAATTCATCCTTGCGTGCCAGCAAATGACTATAGCTGGGGCAG TGGTTACTTGTTATTTCAACAGAAGTAAAAATGATCCTCCTGATCATCCCATCCTTTCGTCTCTC TCCATTCTTCTTCTACCATCAAGGAACCGTTGTGAAAGGGTCATTTTTAATCTCTGTGGTGAG GATTCCGAGAATCATTGTCATGTACATGCAAAACGCACTGAAAGAACAGCAGCATGGTGCATTGT CCAGGTACCTGTTCCGATGCTGCTGCTGTTTCTGGTGTCTTGACAAATACCTGCTCCATCTC AACCAGAATGCATATACTACAACTGCTATTAATGGGACAGATTTCTGTACATCAGCAAAAGATGC ATTCAAAATCTTGTCCAAGAACTCAAGTCACTTTACATCTATTAACTGCTTTGGAGACTTCATAA TTTTTCTAGGAAAGGTGTTAGTGGTGTTTTCACTGTTTTTTGGAGGACTCATGGCTTTTAACTAC TGGAAACAAATGATGGATCGTCAGAAAAGCCCTACTTTATGGATCAAGAATTTCTGAGTTTCGTA AAAAGGAGCAACAAATTAAACAATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGAATGAGGA GGGAACAGAACTCCAGGCCATTGTGAGATAGCATTTAGGTATCTGTACCTGGAAAACATT TCCTTCTAAGAGCCATTTACAGAATAGAAGATGAGACCACTAGAGAAAAGTTAGTGAATTTTTTT TTAAAAGACCTAATAAACCCTATTCTTCCTCAAAA

MSGRDTILGLCILALALSLAMMFTFRFITTLLVHIFISLVILGLLFVCGVLWWLYYDYTNDLSIE LDTERENMKCVLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPFLLFQPLWTFA ILIFFWVLWVAVLLSLGTAGAAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFILACQQMTIA GAVVTCYFNRSKNDPPDHPILSSLSILFFYHQGTVVKGSFLISVVRIPRIIVMYMQNALKEQQHG ALSRYLFRCCYCCFWCLDKYLLHLNQNAYTTTAINGTDFCTSAKDAFKILSKNSSHFTSINCFGD FIIFLGKVLVVCFTVFGGLMAFNYNRAFQVWAVPLLLVAFFAYLVAHSFLSVFETVLDALFLCFA VDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNARAQQDKHSLRNEEGTELQAIVR

### Important features:

#### Signal peptide:

amino acids 1-20

#### Putative transmembrane domains:

amino acids 35-54, 75-97, 126-146, 185-204, 333-350, 352-371

### N-glycosylation sites.

amino acids 204-208, 295-299, 313-317

### N-myristoylation sites.

amino acids 147-153, 178-184, 196-202, 296-275, 342-348

GTTCGATTAGCTCCTCTGAGAAGAAGAGAAAAGGTTCTTGGACCTCTCCCTGTTTCCTTAGA GAAAATTTTTTGAAAAAAAATTGCCTTCTTCAAACAAGGGTGTCATTCTGATATTTATGAGGAC TGTTGTTCTCACTATGAAGGCATCTGTTATTGAAATGTTCCTTGTTTTTGCTGGTGACTGGAGTAC ATTCAAACAAAGAAACGGCAAAGAAGATTAAAAGGCCCAAGTTCACTGTGCCTCAGATCAACTGC GATGTCAAAGCCGGAAAGATCATCGATCCTGAGTTCATTGTGAAATGTCCAGCAGGATGCCAAGA TACACAGTGGTGTGCTTGATAATTCAGGAGGGAAAATACTTGTTCGGAAGGTTGCTGGACAGTCT GGTTACAAAGGGAGTTATTCCAACGGTGTCCAATCGTTATCCCTACCACGATGGAGAGAATCCTT TATCGTCTTAGAAAGTAAACCCAAAAAGGGTGTAACCTACCCATCAGCTCTTACATACTCATCAT CGAAAAGTCCAGCTGCCCAAGCAGGTGAGACCACAAAAGCCTATCAGAGGCCACCTATTCCAGGG ACAACTGCACAGCCGGTCACTCTGATGCAGCTTCTGGCTGTCACTGTAGCTGTGGCCACCCCCAC CACCTTGCCAAGGCCATCCCCTTCTGCTGCTTCTACCACCAGCATCCCCAGACCACAATCAGTGG GCCACAGGAGCCAGGAGATGGATCTCTGGTCCACTGCCACCTACACAAGCAGCCAAAACAGGCCC AGAGCTGATCCAGGTATCCAAAGGCAAGATCCTTCAGGAGCTGCCTTCCAGAAACCTGTTGGAGC GGATGTCAGCCTGGGACTTGTTCCAAAAGAAGAATTGAGCACAGTCTTTGGAGCCAGTATCCC TGGGAGATCCAAACTGCAAAATTGACTTGTCGTTTTTAATTGATGGGAGCACCAGCATTGGCAAA CGGCGATTCCGAATCCAGAAGCAGCTCCTGGCTGATGTTGCCCAAGCTCTTGACATTGGCCCTGC CGGTCCACTGATGGGTGTTGTCCAGTATGGAGACACCCTGCTACTCACTTTAACCTCAAGACAC ACACGAATTCTCGAGATCTGAAGACAGCCATAGAGAAAATTACTCAGAGAGGAGGACTTTCTAAT GTAGGTCGGCCATCTCCTTTGTGACCAAGAACTTCTTTTCCAAAGCCAATGGAAACAGAAGCGG GGCTCCCAATGTGGTGGTGGTGGTGGATGGCTGGCCCACGGACAAGTGGAGGAGGCTTCAA GACTTGCGAGAGTCAGGAATCAACATTTTCTTCATCACCATTGAAGGTGCTGCTGAAAATGAG AAGCAGTATGTGGTGGAGCCCAACTTTGCAAACAAGGCCGTGTGCAGAACAAACGGCTTCTACTC GCTCCACGTGCAGAGCTGGTTTGGCCTCCACAAGACCCTGCAGCCTCTGGTGAAGCGGGTCTGCG GGCTCCAGCAGTGTGGGGACGGGCAACTTCCGCACCGTCCTCCAGTTTGTGACCAACCTCACCAA AGAGTTTGAGATTTCCGACACGGACACGCGCATCGGGGCCGTGCAGTACACCTACGAACAGCGGC TGGAGTTTGGGTTCGACAAGTACAGCAGCAGCCTGACATCCTCAACGCCATCAAGAGGGTGGGC TACTGGAGTGGTGGCACCAGCACGGGGGCTGCCATCAACTTCGCCCTGGAGCAGCTCTTCAAGAA GTCCAAGCCCAACAAGAGGAAGTTAATGATCCTCATCACCGACGGAGGTCCTACGACGACGTCC GGATCCCAGCCATGGCCGCCATCTGAAGGGAGTGATCACCTATGCGATAGGCGTTGCCTGGGCT GCCCAAGAGGAGCTAGAAGTCATTGCCACTCACCCCGCCAGAGACCACTCCTTCTTTGTGGACGA GTTTGACAACCTCCATCAGTATGTCCCCAGGATCATCCAGAACATTTGTACAGAGTTCAACTCAC  ${\tt AGCCTCGGAAC}{\tt TGA}{\tt ATTCAGAGCAGGCAGGAGCACCAGCAAGTGCTGCTTTACTAACTGACGTGTT$ GGACCACCCCACCGCTTAATGGGGCACGCACGGTGCATCAAGTCTTGGGCAGGGCATGGAGAAAC AAATGTCTTGTTATTATTCTTTGCCATCATGCTTTTTCATATTCCAAAACTTGGAGTTACAAAGA TGATCACAAACGTATAGAATGAGCCAAAAGGCTACATCATGTTGAGGGTGCTGGAGATTTTACAT TTTGACAATTGTTTTCAAAATAAATGTTCGGAATACAGTGCAGCCCTTACGACAGGCTTACGTAG AGCTTTTGTGAGATTTTTAAGTTGTTATTTCTGATTTGAACTCTGTAACCCTCAGCAAGTTTCAT 

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKCPAG
CQDPKYHVYGTDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSLSLPRWR
ESFIVLESKPKKGVTYPSALTYSSSKSPAAQAGETTKAYQRPPIPGTTAQPVTLMQLLAVTVAVA
TPTTLPRPSPSAASTTSIPRPQSVGHRSQEMDLWSTATYTSSQNRPRADPGIQRQDPSGAAFQKP
VGADVSLGLVPKEELSTQSLEPVSLGDPNCKIDLSFLIDGSTSIGKRFRIQKQLLADVAQALDI
GPAGPLMGVVQYGDNPATHFNLKTHTNSRDLKTAIEKITQRGGLSNVGRAISFVTKNFFSKANGN
RSGAPNVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAENEKQYVVEPNFANKAVCRTNG
FYSLHVQSWFGLHKTLQPLVKRVCDTDRLACSKTCLNSADIGFVIDGSSSVGTGNFRTVLQFVTN
LTKEFEISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDILNAIKRVGYWSGGTSTGAAINFALEQL
FKKSKPNKRKLMILITDGRSYDDVRIPAMAAHLKGVITYAIGVAWAAQEELEVIATHPARDHSFF
VDEFDNLHQYVPRIIONICTEFNSQPRN

#### Important features:

Signal peptide:

amino acids 1-26

### Transmembrane domain:

amino acids 181-200

### N-glycosylation sites.

amino acids 390-394, 520-524

#### N-myristoylation sites.

amino acids 23-29, 93-99, 115-121, 262-268, 367-373, 389-395, 431-437, 466-472, 509-515, 570-576, 571-577, 575-581, 627-633

### Amidation site.

amino acids 304-308

CCGAGCACAGGAGATTGCCTGCGTTTAGGAGGTGGCTGCGTTGTGGGAAAAGCTATCAAGGAAGAAATTGC ACAGAAAACAACAAAAACTTAAGCTTTAATTTCATCTGGAATTCCACAGTTTTCTTAGCTCCCTGGACCC GGTTGACCTGTTGGCTCTTCCCGCTGGCTGCTCTATCACGTGGTGCTCTCCGACTACTCACCCGAGTGTA  ${\tt AAGAACCTTCGGCTGCTTCTGAGCTGCTGTGG} \underline{{\tt ATG}} \\ {\tt GCCTCGGCTCTCTGGACTGTCCTTCCGAGTA}$ GGATGTCACTGAGATCCCTCAAATGGAGCCTCCTGCTGCTGTCACTCCTGAGTTTCTTTGTGATGTGGTAC CTCAGCCTTCCCCACTACAATGTGATAGAACGCGTGAACTGGATGTACTTCTATGAGTATGAGCCGATTTA CAGACAAGACTTCACACTTCGAGAGCATTCAAACTGCTCTCATCAAAATCCATTTCTGGTCATTC TGGTGGGGATATGAGGTTCTTACATTTTTCTTATTAGGCCAAGAGGCTGAAAAGGAAGACAAAATGTTGGC ATTGTCCTTAGAGGATGAACACCTTCTTTATGGTGACATAATCCGACAGATTTTTTAGACACATATAATA ACCTGACCTTGAAAACCATTATGGCATTCAGGTGGGTAACTGAGTTTTGCCCCAATGCCAAGTACGTAATG AAGACAGACATGATGTTTTCATCAATACTGGCAATTTAGTGAAGTATCTTTTAAACCTAAACCACTCAGA GAAGTTTTTCACAGGTTATCCTCTAATTGATAATTATTCCTATAGAGGATTTTACCAAAAAACCCATATTT CTTACCAGGAGTATCCTTCAAGGTGTTCCCTCCATACTGCAGTGGGTTGGGTTATATAATGTCCAGAGAT TTGGTGCCAAGGATCTATGAAATGATGGGTCACGTAAAACCCATCAAGTTTGAAGATGTTTATGTCGGGAT ATTTGGATGTCTGTCAACTGAGACGTGTGATTGCAGCCCATGGCTTTTCTTCCAAGGAGATCATCACTTTT TGGCAGGTCATGCTAAGGAACACCACATGCCATTAT<u>TAA</u>CTTCACATTCTACAAAAAGCCTAGAAGGACAG GATACCTTGTGGAAAGTGTTAAATAAAGTAGGTACTGTGGAAAATTCATGGGGAGGTCAGTGTGCTGGCTT ACACTGAACTGAAACTCATGAAAAACCCAGACTGGAGACTGGAGGGTTACACTTGTGATTTATTAGTCAGG CCCTTCAAAGATGATATGTGGAGGAATTAAATATAAAGGAATTGGAGGTTTTTGCTAAAGAAATTAATAGG ACCAAACAATTTGGACATGTCATTCTGTAGACTAGAATTTCTTAAAAGGGTGTTACTGAGTTATAAGCTCA CTAGGCTGTAAAAACAAAGTTTGTGTAGAGTTTTATTGTGTAACAATGTAGTCACTTGAAGGTTTTGTGTA TATCTTATGTGGATTACCAATTTAAAAATATATGTAGTTCTGTGTCAAAAAACTTCTTCACTGAAGTTATA  $\tt CTGAACAAAATTTTACCTGTTTTTGGTCATTTATAAAGTACTTCAAGATGTTGCAGTATTTCACAGTTATT$ ATTATTTAAAATTACTTCAACTTTGTGTTTTTTAAATGTTTTGACGATTTCAATACAAGATAAAAAGGATAG TGAATCATTCTTTACATGCAAACATTTTCCAGTTACTTAACTGATCAGTTTATTATTGATACATCACTCCA TTAATGTAAAGTCATAGGTCATTATTGCATATCAGTAATCTCTTGGACTTTGTTAAATATTTTACTGTGGT AATATAGAGAAGAATTAAAGCAAGAAAATCTGAAAA

MASALWTVLPSRMSLRSLKWSLLLLSLLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQDFHF
TLREHSNCSHQNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEKEDKMLA
LSLEDEHLLYGDIIRQDFLDTYNNLTLKTIMAFRWVTEFCPNAKYVMKTDTDVFINTGNLVKYLL
NLNHSEKFFTGYPLIDNYSYRGFYQKTHISYQEYPFKVFPPYCSGLGYIMSRDLVPRIYEMMGHV
KPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVCQLRRVIAAHGFSSKEIITFWQVMLR
NTTCHY

### Important features:

Type II transmembrane domain:

amino acids 20-39

N-glycosylation sites.

amino acids 72-76, 154-158, 198-202, 212-216, 326-330

Glycosaminoglycan attachment site.

amino acids 239-243

Ly-6 / u-PAR domain proteins.

amino acids 23-37

N-myristoylation site.

amino acids 271-277

AATATGATCAGATTGAGTGCGTCTGCCCCGGAAAGAGGGAAGTCGTGGGTTATACCATCCCTTGCTGCAGGAATGAGGAGAA ACCTTGGATGACTTCTATGTGAAGGGGTTCTACTGTGCAGAGTGCCGAGCAGGCTGGTACGGAGGAGACTGCATGCGATGTG GCCAGGTTCTGCGAGCCCCAAAGGGTCAGATTTTGTTGGAAAGCTATCCCCTAAATGCTCACTGTGAATGGACCATTCATGC GTTCGTGATGGAGACAACCGCGATGGCCAGATCATCAAGCGTGTCTGTGGCAACGAGCGGCCAGCTCCTATCCAGAGCATAG GATCCTCACTCCACGTCCTCTCCACTCCGATGGCTCCAAGAATTTTGACGGTTTCCATGCCATTTATGAGGAGATCACAGC TCTTAGTGGCAATGAGAAAGACTTGCCAGCAGAATGGAGAGTGGTCAGGGAAACAGCCCATCTGCATAAAAGCCTGCCGA GAACCAAAGATTTCAGACCTGGTGAGAAGGAGAGGTTCTTCCGATGCAGGTTCAGTCAAGGGAGACACCATTACACCAGCTAT ATACCAACATCTGCATACCCAGCTCCAGTATGAGTGCATCTCACCCTTCTACCGCCGCCTGGGCAGCAGCAGGAGGACATGT GTGGTTCCTAGTCTGCAGCGGTGCCCTGGTGAATGAGCGCACTGTGGTGGTGGCTGCCCACTGTGTTACTGACCTGGGGAAG GTCACCATGATCAAGACAGCAGACCTGAAAGTTGTTTTGGGGAAATTCTACCGGGATGATGACCGGGATGAGAAGACCATCC AGAGCCTACAGATTTCTGCTATCATTCTGCATCCCAACTATGACCCCATCCTGCTTGATGCTGACATCGCCATCCTGAAGCT TCCCACATCACTGTGGCTGGAATGTCCTGGCAGACGTGAGGAGCCCTGGCTTCAAGAACGACACTGCCCTCTGGGG CTGTGCCAGCTGGGAACCCACTGCCCCTTCTGATATCTGCACTGCAGAGACAGGAGGCATCGCGGCTGTGTCCTTCCCGGGA CGAGCATCTCCTGAGCCACGCTGGCATCTGATGGGACTGGTCAGCTGGAGCTATGATAAAACATGCAGCCACAGGCTCTCCA TGTTTCTGTATATCCGTCTGTACGTGTGTCATTGCGTGAAGCAGTGTGGCCTGAAGTGTGATTTGGCCTGTGAACTTGGCT  $\tt CTCCACTGACCTGGTGGTCTTCCCCAACTTTCAGTTATACGAATGCCATCAGCTTGACCAGGGAAGATCTGGGCTTCATGAGATCTGAGCTTCATGAGATCTGACCAGGGAAGATCTGGGCTTCATGAGATCTGACCAGGGAAGATCTGGGCTTCATGAGATCTGAGCTTCATGAGATCTGACCAGGGAAGATCTGAGCTTCATGAGATCTGAGCTTCATGAGATCTGACCAGGGAAGATCTGGGCTTCATGAGATCTGAGCTTCATGAGATCTGACCAGGGAAGATCTGAGCTATCAGATCTGACCAGGGAAGATCTGAGCTATCAGAGATCTGAGCTATCAGATCTGAGCTATCAGATCTGACCAGGGAAGATCTGAGCTATCAGATCTGAGCTAGAGATCTGAGCTAGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCAGATCTGAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGATCAGAT$ GCCCCTTTTGAGGCTCTCAAGTTCTAGAGAGCTGCCTGTGGGACAGCCCAGGGCAGCAGCAGCTGGGATGTGCTCCTT 

MELGCWTQLGLTFLQLLLISSLPREYTVINEACPGAEWNIMCRECCEYDQIECVCPGKREVVGYT
IPCCRNEENECDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWYGGDCMRCGQ
VLRAPKGQILLESYPLNAHCEWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRDGDNRDGQII
KRVCGNERPAPIQSIGSSLHVLFHSDGSKNFDGFHAIYEEITACSSSPCFHDGTCVLDKAGSYKC
ACLAGYTGQRCENLLEERNCSDPGGPVNGYQKITGGPGLINGRHAKIGTVVSFFCNNSYVLSGNE
KRTCQQNGEWSGKQPICIKACREPKISDLVRRRVLPMQVQSRETPLHQLYSAAFSKQKLQSAPTK
KPALPFGDLPMGYQHLHTQLQYECISPFYRRLGSSRRTCLRTGKWSGRAPSCIPICGKIENITAP
KTQGLRWPWQAAIYRRTSGVHDGSLHKGAWFLVCSGALVNERTVVVAAHCVTDLGKVTMIKTADL
KVVLGKFYRDDDRDEKTIQSLQISAIILHPNYDPILLDADIAILKLLDKARISTRVQPICLAASR
DLSTSFQESHITVAGWNVLADVRSPGFKNDTLRSGVVSVVDSLLCEEQHEDHGIPVSVTDNMFCA
SWEPTAPSDICTAETGGIAAVSFPGRASPEPRWHLMGLVSWSYDKTCSHRLSTAFTKVLPFKDWI
ERNMK

Important features of the protein:

Signal peptide:

amino acids 1-23

EGF-like domain cysteine pattern signature.

amino acids 260-272

N-glycosylation sites.

amino acids 96-100, 279-283, 316-320, 451-455, 614-618

N-myristoylation sites.

amino acids 35-41, 97-103, 256-262, 284-290, 298-304, 308-314, 474-480, 491-497, 638-644, 666-672

Amidation site.

amino acids 56-60

Serine proteases, trypsin family.

amino acids 489-506

CUB domain proteins profile.

amino acids 150-167

GGTTCCTACATCCTCTCATCTGAGAATCAGAGAGCATAATCTTCTTACGGGCCCGTGATTTATTAACGTGGCTTAATC TGGTCTTGCCTTGGCTCAGTCCTGCTAACTACATTGACAATGTGGGCAACCTGCACTTCCTGTATTCAGAACTCTGTA AAGGTGCCTCCCACTACGGCCTGACCAAAGATAGGAAGAGGCGCTCACAAGATGGCTGTCCAGACGGCTGTGCGAGCC GGACAAAGAGCGGGAGTGCAGTTGCCAACCATGCCGACCAGGGCAGGGAAAATTCTGAAAACACCACTGCCCCTGAAG TCTTTCCAAGGTTGTACCACCTGATTCCAGATGGTGAAATTACCAGCATCAAGATCAATCGAGTAGATCCCAGTGAAA GCCTCTCTATTAGGCTGGTGGGAGGTAGCGAAACCCCACTGGTCCATATCATTATCCAACACATTTATCGTGATGGG TGATCGCCAGAGACGGCCGGCTACTGCCAGGAGACATCATTCTAAAGGTCAACGGGATGGACATCAGCAATGTCCCTC ACAACTACGCTGTGCGTCTCCTGCGGCAGCCCTGCCAGGTGCTGTGGCTGACTGTGATGCGTGAACAGAAGTTCCGCA GCAGGAACAATGGACAGGCCCGGATGCCTACAGACCCCGAGATGACAGCTTTCATGTGATTCTCAACAAAAGTAGCC GTGTGGCATATCGACATGGTCAGCTTGAGGAGAATGACCGTGTGTTAGCCATCAATGGACATGATCTTCGATATGGCA GCCCAGAAAGTGCGGCTCATCTGATTCAGGCCAGTGAAAGACGTGTTCACCTCGTCGTGTCCCGCCAGGTTCGGCAGC GGAGCCCTGACATCTTTCAGGAAGCCGGCTGGAACAGCAATGGCAGCTGGTCCCCAGGGCCAGGGGAGAGGAGCAACA TCATAAGCAGAGATGGAAGAATAAAAACAGGTGACATTTTGTTGAATGTGGATGGGGTCGAACTGACAGAGGTCAGCC GGAGTGAGCCAGTGCCATTATTGAAAAGAACATCATCCTCGATAGTACTCAAAGCTTTGGAAGTCAAAGAGTATGAGC GGGTCATGTGGCTGGAATTACCACGGTGCTTGTATAACTGTAAAGATATTGTATTACGAAGAAACACAGCTGGAAGTC TGGGCTTCTGCATTGTAGGAGGTTATGAAGAATACAATGGAAACAACCTTTTTTCATCAAATCCATTGTTGAAGGAA CACCAGCATACAATGATGGAAGAATTAGATGTGGTGATATTCTTCTTGCTGTCAATGGTAGAAGTACATCAGGAATGA TACATGCTTGCCAGGACTGCTGAAAGAACTTAAAGGAAGAATTACTCTAACTATTGTTTCTTGGCCTGGCACTT TTTTATAGAATCAATGATGGGTCAGAGGAAAACAGAAAAATCACAAATAGGCTAAGAAGTTGAAACACTATATTTATC TTGTCAGTTTTTATATTTAAAGAAAGAATACATTGTAAAAAATGTCAGGAAAAGTATGATCATCTAATGAAAGCCAGTT  ${\tt CAAGCTGATTTAAAATTTAAAATTTGGTATATGCTGAAGTCTGCCAAGGGTACATTATGGCCATTTTTAAATTTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCATTTTTAAATTTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCATTTTTAAATTTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCATTTTTAAATTTACAGCTAAAGTCTGCCAAGGGTACATTATTGGCCATTTTTAAATTTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCATTTTTAAATTTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCATTTTTAAATTTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCATTTTTAAATTTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCATTTTTAAATTTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCAATTATTAAATTTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCAATTATTAAATTTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCAATTATTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCAATTATTACAGCTAAGTCTGCCAAGGGTACATTATTGGCCAATTATTACAGCTAAGTCTGCCAAGGGTACATTATTACAGCTAAGTCTGCCAAGGGTACATTATTACAGTCTAAGTCTGCCAAGGGTACATTATTACAGTCTAAGTCTGCCAAGGGTACATTATTACAGTCTAAGTCTGCCAAGGGTACATTATTTACAGTCTAAGTCTGCCAAGGGTACATTATTACAGGCTAAGTCTGCCAAGGGTACATTATTACAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTCTAAGTTATAAGTTTAAATTTAAATTTAAGTCTAAGTTAAGTCTAAGTCTAAGTTAAGTCTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTAAGTA$ 

MKALLLVLPWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDGCASLTATAPS
PEVSAAATISLMTDEPGLDNPAYVSSAEDGQPAISPVDSGRSNRTRARPFERSTIRSRSFKKINR
ALSVLRRTKSGSAVANHADQGRENSENTTAPEVFPRLYHLIPDGEITSIKINRVDPSESLSIRLV
GGSETPLVHIIIQHIYRDGVIARDGRLLPGDIILKVNGMDISNVPHNYAVRLLRQPCQVLWLTVM
REQKFRSRNNGQAPDAYRPRDDSFHVILNKSSPEEQLGIKLVRKVDEPGVFIFNVLDGGVAYRHG
QLEENDRVLAINGHDLRYGSPESAAHLIQASERRVHLVVSRQVRQRSPDIFQEAGWNSNGSWSPG
PGERSNTPKPLHPTITCHEKVVNIQKDPGESLGMTVAGGASHREWDLPIYVISVEPGGVISRDGR
IKTGDILLNVDGVELTEVSRSEAVALLKRTSSSIVLKALEVKEYEPQEDCSSPAALDSNHNMAPP
SDWSPSWVMWLELPRCLYNCKDIVLRRNTAGSLGFCIVGGYEEYNGNKPFFIKSIVEGTPAYNDG
RIRCGDILLAVNGRSTSGMIHACLARLLKELKGRITLTIVSWPGTFL

### Important features:

### Signal peptide:

amino acids 1-15

#### N-glycosylation sites.

amino acids 108-112, 157-161, 289-293, 384-388

### Tyrosine kinase phosphorylation sites.

amino acids 433-441, 492-500

### N-myristoylation sites.

amino acids 51-57, 141-147, 233-239, 344-350, 423-429, 447-453, 467-473, 603-609

ACCAGGCATTGTATCTTCAGTTGTCATCAAGTTCGCAATCAGATTGGAAAAGCTCAACTTGAAGCTTT  $\tt CTTGCCTGCAGTGAAGCAGAGAGATAGATATTATTCACGTAATAAAAAACA \textbf{TG} GGCTTCAACCTGACT$ CACCAGTAACTACTTCGTGGGTGCCATTCAAGAGATTCCTAAAGCAAAGGAGTTCATGGCTAATTTCC ATAAGACCCTCATTTTGGGGAAGGGAAAAACTCTGACTAATGAAGCATCCACGAAGAAGGTAGAACTT GACAACTGTCCTTCTGTGTCTCCTTACCTCAGAGGCCAGAGCTCATTTTCAAACCAGATCTCAC TTTGGAAGAGGTACAGGCAGAAAATCCCAAAGTGTCCAGAGGCCGGTATCGCCCTCAGGAATGTAAAG CTTTACAGAGGGTCGCCATCCTCGTTCCCCACCGGAACAGAGAAACACCTGATGTACCTGCTGGAA CATCTGCATCCCTTCCTGCAGAGGCAGCTGGATTATGGCATCTACGTCATCCACCAGGCTGAAGG TAAAAAGTTTAATCGAGCCAAACTCTTGAATGTGGGCTATCTAGAAGCCCTCAAGGAAGAAAATTGGG ACTGCTTTATATTCCACGATGTGGACCTGGTACCCGAGAATGACTTTAACCTTTACAAGTGTGAGGAG CATCCCAAGCATCTGGTGGTTGGCAGGAACAGCACTGGGTACAGGTTACGTTACAGTGGATATTTTGG GGGTGTTACTGCCCTAAGCAGAGCAGTTTTTCAAGGTGAATGGATTCTCTAACAACTACTGGGGAT GGGGAGGCGAAGACGATGACCTCAGACTCAGGGTTGAGCTCCAAAGAATGAAAATTTCCCGGCCCCTG CCTGAAGTGGGTAAATATACAATGGTCTTCCACACTÄGAGACAAAGGCAATGAGGTGAACGCAGAACG GATGAAGCTCTTACACCAAGTGTCACGAGTCTGGAGAACAGATGGGTTGAGTAGTTGTTCTTATAAAT TAGTATCTGTGGAACACAATCCTTTATATATCAACATCACAGTGGATTTCTGGTTTGGTGCATGACCC ATAGTAGCACACATTAAGAACCTGTTACAGCTCATTGTTGAGCTGAATTTTTCCTTTTTTGTATTTTCT TAGCAGAGCTCCTGGTGATGTAGAGTATAAAACAGTTGTAACAAGACAGCTTTCTTAGTCATTTTGAT CATGAGGGTTAAATATTGTAATATGGATACTTGAAGGACTTTATATAAAAGGATGACTCAAAGGATAA AAAAGGCCACAGGAAATAAGACTGCTGAATGTCTGAGAGAACCAGAGTTGTTCTCGTCCAAGGTAGAA AGGTACGAAGATACAATACTGTTATTCATTTATCCTGTACAATCATCTGTGAAGTGGTGGTGTCAGGT GAGAAGGCGTCCACAAAAGAGGGGAGAAAAGGCGACGAATCAGGACACAGTGAACTTGGGAATGAAGA GGTAGCAGGAGGGTGGAGTGTCGGCTGCAAAGGCAGCAGTAGCTGAGCTGGTTGCAGGTGCTGATAGC CTTCAGGGGAGGACCTGCCCAGGTATGCCTTCCAGTGATGCCCACCAGAGAATACATTCTCTATTAGT TTTTAAAGAGTTTTTGTAAAATGATTTTGTACAAGTAGGATATGAATTAGCAGTTTACAAGTTTACAT ATTAACTAATAATAATGTCTATCAAATACCTCTGTAGTAAAATGTGAAAAAGCAAAA

MGFNLTFHLSYKFRLLLLTLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLILGKGKTLTN EASTKKVELDNCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRVAILVPH RNREKHLMYLLEHLHPFLQRQQLDYGIYVIHQAEGKKFNRAKLLNVGYLEALKEENWDCFIFHDV DLVPENDFNLYKCEEHPKHLVVGRNSTGYRLRYSGYFGGVTALSREQFFKVNGFSNNYWGWGGED DDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAERMKLLHQVSRVWRTDGLSSCSYKLV SVEHNPLYINITVDFWFGA

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 4-8, 220-224, 335-339

Xylose isomerase proteins.

amino acids 191-202

 ${\tt MALSSQIWAACLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRDTHFPICIFCCGCCHRSKCGMCCKT}$ 

Important features:

Signal peptide:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 58-59

N-myristoylation site.

amino acids 44-50

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 1-12

 $\tt GTGGCTTCATTTCAGTGGCTGACTTCCAGAGAGCAAT \underline{ATG}GCTGGTTCCCCAACATGCCTCACCC$ TCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTGGTCGGT TCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGACTCTATTGTCTG GACCTTCAACACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCATAGTGACCCAAA ATCGTAATAGGGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAG AAGAATGACTCAGGGATCTACTATGTGGGGATATACAGCTCATCACTCCAGCAGCCCTCCACCCA GGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAGTCACCATGGGTCTGCAGAGCA ATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGGAAGAGGATGTGATT TATACCTGGAAGGCCCTGGGGCAAGCAGCCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTC CTGGAGATGGGGAGAAGTGATATGACCTTCATCTGCGTTGCCAGGAACCCTGTCAGCAGAAACT TCTCAAGCCCCATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCCTCCATG GTCCTCCTGTGTCTCCTGTTGGTGCCCCTCCTGCTCAGTCTCTTTGTACTGGGGCTATTTCTTTG AAACTCCTAACATATGCCCCCATTCTGGAGAGAACACAGAGTACGACACAATCCCTCACACTAAT AGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAAAGAT GGAAAATCCCCACTCACTGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAGAATGTTA TCTAGACAGCAGTGCACTCCCCTAAGTCTCTGCTCA

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVTIQP
EGGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHVYEHLSK
PKVTMGLQSNKNGTCVTNLTCCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGESDMTFIC
VARNPVSRNFSSPILARKLCEGAADDPDSSMVLLCLLLVPLLLSLFVLGLFLWFLKRERQEEYIE
EKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIPKKMENPHSLLTMPDT
PRLFAYENVI

### Important features:

Signal peptide:

amino acids 1-22

#### Transmembrane domain:

amino acids 224-250

#### Leucine zipper pattern.

amino acids 229-251

### N-glycosylation sites.

amino acids 98-102, 142-146, 148-152, 172-176, 176-180, 204-208, 291-295

MTCCEGWTSCNGFSLLVLLLLGVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMAIPA TTMSLTARKRACCNNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNANCEFSL KNISDIHPESFNLQWFFNDSCAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRLIHFSVFLGL LLVGILEVLFGLSQIVIGFLGCLCGVSKRRSQIV

### Important features:

#### Transmembrane domains:

amino acids 10-31 (type II), 50-72, 87-110, 191-213

### N-glycosylation sites.

amino acids 80-84, 132-136, 148-152, 163-167

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 223-227

### N-myristoylation sites.

amino acids 22-28, 54-60, 83-89, 97-103, 216-222

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 207-218

TNFR/NGFR family cysteine-rich region protein. amino acids 4-12

ATCCGTTCTCTGCGCTGCCAGCTCAGGTGAGCCCTCGCCAAGGTGACCTCGCAGGACACTGGTGA
AGGAGCAGTGAGGAACCTGCAGAGTCACACAGTTGCTGACCAATTGAGCTGTGAGCCTGGAGCAG
ATCCGTGGGCTGCAGACCCCCGCCCCAGTGCCTCTCCCCCTGCAGCCCTGCCCCTCGAACTGTGA
CATGGAGAGAGTGACCCTGGCCCTTCTCCTACTGGCAGGCCTGACTGCCTTGGAAGCCAATGACC
CATTTGCCAATAAAGACGATCCCTTCTACTATGACTGGAAAAACCTGCAGCTGAGCGGACTGATC
TGCGGAGGGCTCCTGGCCATTGCTGGGATCGCGGCAGTTCTGAGTGGCAAATGCAAATACAAGAG
CAGCCAGAAGCAGCACAGTCCTGTACCTGAGAAGGCCATCCCACTCATCACTCCAGGCTCTGCCA
CTACTTGCTGAGCACAGGACTGGCCTCCAGGGATGGCCTGAAGCCTAACACTGGCCCCCAGCACC
TCCTCCCCTGGGAGGCCTTATCCTCAAGGAAGGACTTCTCTCCAAGGGCAGGCTGTTAGGCCCCT
TTCTGATCAGGAGGCTTCTTTATGAATTAAACTCGCCCCCACCCCCCTCA

 ${\tt MERVILALLLAGLIALEANDPFANKDDPFYYDWKNLQLSGLICGGLLAIAGIAAVLSGKCKYKS} \\ {\tt SQKQHSPVPEKAIPLITPGSATTC}$ 

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 36-59

N-myristoylation sites.

amino acids 41-47, 45-51, 84-90

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7.

amino acids 54-67

AGGACAGGGAGTCGGAAGGAGGAGGACAGAGGGGGCACAGAGAGCCAGAGCCAGAGCGCAAGG AGGAGACCCTGGTGGGAGGAGACACTCTGGAGAGAGAGGGGGGCTGGGCAGAGATGAAGTTCCAG GGGCCCCTGGCCTGCCTGCTGGCCCTCTGCCTGGGCAGTGGGGAGGCTGGCCCCCTGCAGAG CGGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTTGGACATGGCCTGGAGACGCCCTGA GCGAAGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGGCAGCTGGCTCTAAAGTCAGTGAG AGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATGCTCTGGGAAACACTGGGCACGAGA TTGGCAGACAGGCAGAAGATGTCATTCGACACGGAGCAGATGCTGTCCGCGGCTCCTGGCAGGGG GTGCCTGGCCACAGTGGTGCTTGGGAAACTTCTGGAGGCCATGGCATCTTTGGCTCTCAAGGTGG CCTTGGAGGCCAGGGCCAGGGCAATCCTGGAGGTCTGGGGACTCCGTGGGTCCACGGATACCCCG GAAACTCAGCAGCAGCTTTGGAATGAATCCTCAGGGAGCTCCCTGGGGTCAAGGAGGCAATGGA GGGCCACCAAACTTTGGGACCAACACTCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCAGTGAG AGCCAGCAACCAGAATGAAGGGTGCACGAATCCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCA ACTCTGGGGGAGGCAGCGGCTCACAGTCGGGCAGCAGTGGCAGCAATGGTGACAACAAC TGGCGGCAGCAGTGGTGGCAGCAGTGGCAACAGTGGTGGCAGCAGAGGTGACAGCGGCAGTGAGT CCTCCTGGGGATCCAGCACCGGCTCCTCCTCCGGCAACCACGGTGGGAGCGGCGGAGGAAATGGA CATAAACCCGGGTGTGAAAAGCCAGGGAATGAAGCCCGCGGGAGCGGGGAATCTGGGATTCAGGG CTTCAGAGGACAGGGAGTTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTG GAGGCTCTGGAGACAATTATCGGGGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGTT GGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCTGGAA GAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGAAGCTCTC GCATCCCGTGACCTCCAGACAAGGAGCCCACCAGATTGGATGGGAGCCCCCACACTCCCTCTTAA AACACCACCTCTCATCACTAATCTCAGCCCTTGCCCTTGAAATAAACCTTAGCTGCCCCACAAA 

MKFQGPLACLLLALCLGSGEAGPLQSGEESTGTNIGEALGHGLGDALSEGVGKAIGKEAGGAAGSKVS
EALGQGTREAVGTGVRQVPGFGAADALGNRVGEAAHALGNTGHEIGRQAEDVIRHGADAVRGSWQGVP
GHSGAWETSGGHGIFGSQGGLGGQGQGNPGGLGTPWVHGYPGNSAGSFGMNPQGAPWGQGGNGGPPNF
GTNTQGAVAQPGYGSVRASNQNEGCTNPPPSGSGGGSSNSGGGSGSGSGSGSGSGSNGDNNNGSSSGGS
SSGSSSGSSSGGSSGGSSGGSSGNSGGSRGDSGSESSWGSSTGSSSGNHGGSGGGNGHKPGCEKPGNE
ARGSGESGIQGFRGQGVSSNMREISKEGNRLLGGSGDNYRGQGSSWGSGGGDAVGGVNTVNSETSPGM
FNFDTFWKNFKSKLGFINWDAINKDQRSSRIP

### Signal peptide:

amino acids 1-21

#### N-glycosylation site.

amino acids 265-269

### Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

#### Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

### N-myristoylation site.

```
amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80,
90-96, 96-102, 130-136, 140-146, 149-155, 159-165, 163-169, 178-184, 190-196, 194-200,
                                                           152-158,
                                                           199-205,
                                                                        218-224,
236-242, 238-244, 239-245,
                                                            246-252,
                                    240-246, 245-251,
                                                                        249-252,
253-259, 256-262, 266-272,
                                    270-276,
                                                271-277,
                                                            275-281,
283-289, 284-290, 287-293,
                                    288-294,
                                                291-297,
                                                            292-298,
                                                                        295-301,
298-304, 305-311, 311-317, 325-331, 343-349, 354-360, 387-393, 389-395, 395-401
                                    315-321,
                                                319-325,
                                                            322-328,
                                                                        323-329,
                                    356-362,
                                                374-380,
                                                            381-387,
```

#### Cell attachment sequence.

amino acids 301-304

GGAGAAGAGGTTGTGGGGACAAGCTGCTCCCGACAGAAGGATGTCGCTGCTGAGCCTGCCCTGG  $\tt CTGGGCCTCAGACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGGTTGTGGGCTCCTGGCT$ ACTCGCCCGCATCCTGGCTTGGACCTATGCCTTCTATAACAACTGCCGCCGGCTCCAGTGTTTCC CACAGCCCCAAAACGGAACTGGTTTTGGGGTCACCTGGGCCTGATCACTCCTACAGAGGAGGGC TTGAAGGACTCGACCAGATGTCGGCCACCTATTCCCAGGGCTTTACGGTATGGCTGGGTCCCAT CATCCCCTTCATCGTTTTATGCCACCCTGACACCATCCGGTCTATCACCAATGCCTCAGCTGCCA GAAGTCCTATATAACGATCTTCAACAAGAGTGCAAACATCATGCTTGACAAGTGGCAGCACCTGG CCTCAGAGGGCAGCAGTCGTCTGGACATGTTTGAGCACATCAGCCTCATGACCTTGGACAGTCTA CAGAAATGCATCTTCAGCTTTGACAGCCATTGTCAGGAGAGGCCCAGTGAATATATTGCCACCAT  $\tt CTTGGAGCTCAGTGCCCTTGTAGAGAAAAGAAGCCAGCATATCCTCCAGCACATGGACTTTCTGT$ ATTACCTCTCCCATGACGGCGCGCTTCCACAGGGCCTGCCGCCTGGTGCATGACTTCACAGAC GCTGTCATCCGGGAGCGCGTCGCACCCTCCCCACTCAGGGTATTGATGATTTTTTCAAAGACAA AGCCAAGTCCAAGACTTTGGATTTCATTGATGTGCTTCTGCTGAGCAAGGATGAAGATGGGAAGG CATTGTCAGATGAGGATATAAGAGCAGAGGCTGACACCTTCATGTTTGGAGGCCATGACACCACG GCCAGTGGCCTCTCCTGGGTCCTGTACAACCTTGCGAGGCACCCAGAATACCAGGAGCGCTGCCG ACAGGAGGTGCAAGAGCTTCTGAAGGACCGCGATCCTAAAGAGATTGAATGGGACGACCTGGCCC AGCTGCCCTTCCTGACCATGTGCGTGAAGGAGAGCCTGAGGTTACATCCCCCAGCTCCCTTCATC TCCCGATGCTGCACCCAGGACATTGTTCTCCCAGATGGCCGAGTCATCCCCAAAGGCATTACCTG CCTCATCGATATTATAGGGGTCCATCACAACCCAACTGTGTGGCCGGATCCTGAGGTCTACGACC GGGCCCAGGAACTGCATCGGGCAGGCGTTCGCCATGGCGGAGATGAAAGTGGTCCTGGCGTTGAT GCTGCTGCACTTCCGGTTCCTGCCAGACCACTGAGCCCCGCAGGAAGCTGGAATTGATCATGC GCGCCGAGGGCGGCTTTGGCTGCGGTGGAGCCCCTGAATGTAGGCTTGCAG**TGA**CTTTCTGAC CCATCCACCTGTTTTTTTGCAGATTGTCATGAATAAAACGGTGCTGTCAAA

MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLARILAWTYAFYNNCRRLQCFPQPPKRNWFWGHLG
LITPTEEGLKDSTQMSATYSQGFTVWLGPIIPFIVLCHPDTIRSITNASAAIAPKDNLFIRFLKP
WLGEGILLSGGDKWSRHRRMLTPAFHFNILKSYITIFNKSANIMLDKWQHLASEGSSRLDMFEHI
SLMTLDSLQKCIFSFDSHCQERPSEYIATILELSALVEKRSQHILQHMDFLYYLSHDGRRFHRAC
RLVHDFTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFIDVLLLSKDEDGKALSDEDIRAEADTF
MFGGHDTTASGLSWVLYNLARHPEYQERCRQEVQELLKDRDPKEIEWDDLAQLPFLTMCVKESLR
LHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPTVWPDPEVYDPFRFDPENSKGRSP
LAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHTEPRRKLELIMRAEGGLWLRVEPLN
VGLQ

### Important features:

Transmembrane domains:

amino acids 13-32 (type II), 77-102

Cytochrome P450 cysteine heme-iron ligand signature. amino acids 461-471

N-glycosylation sites.

amino acids 112-116, 168-172

 ${\tt MGPVKQLKRMFEPTRLIATIMVLLCFALTLCSAFWWHNKGLALIFCILQSLALTWYSLSFIPFAR} \\ {\tt DAVKKCFAVCLA}$ 

Important features:
Signal peptide:

amino acids 1-33

Type II fibronectin collagen-binding domain protein.

amino acids 30-72

TACGTGCCGGTCATCGGGGAAGCCCAGACCGAGTTCCAGTACTTTGAGTCGAAGGGGCTCCCTGCCGAGCTGAAGTCC ATTTTCAAGCTCAGTGTCTTCATCCCCTCCCAGGAATTCTCCACCTACCGCCAGTGGAAGCAGAAAATTGTACAAGCT GGAGATAAGGACCTTGATGGGCAGCTAGACTTTGAAGAATTTGTCCATTATCTCCAAGATCATGAGAAGAAGCTGAGG CTGGTGTTTAAGATTTTGGACAAAAAGATGATGGACGCATTGACGCGGGAGATCATGCAGTCCCTGCGGGGACTTG GGAGTCAAGATATCTGAACAGCAGGCAGAAAAAATTCTCAAGAGCATGGATAAAAACGGCACGATGACCATCGACTGG AACGAGTGGAGAGACTACCACCTCCTCCACCCCGTGGAAAACATCCCCGAGATCATCCTCTACTGGAAGCATTCCACG ATCTTTGATGTGGGTGAGAATCTAACGGTCCCGGATGAGTTCACAGTGGAGGAGGGCAGACGGGGATGTGGTGGAGA CACCTGGTGGCAGGAGGTGGGGCAGGGGCCGTATCCAGAACCTGCACGGCCCCCTGGACAGGCTCAAGGTGCTCATG CAGGTCCATGCCTCCGCAGCAACACATGGGCATCGTTGGTGGCTTCACTCAGATGATTCGAGAAGGAGGGGCCAGG ATCAAGCGCCTTGTTGGTAGTGACCAGGAGACTCTGAGGATTCACGAGAGGCCTTGTGGCAGGGTCCTTGGCAGGGGCC ATCGCCCAGAGCATCTACCCAATGGAGGTCCTGAAGACCCGGATGGCGCAGGAGACAGGCCAGTACTCAGGA ATGCTGGACTGCGCCAGGAGGATCCTGGCCAGAGAGGGGGGTGGCCGCCTTCTACAAAGGCTATGTCCCCAACATGCTG GGCATCATCCCCTATGCCGGCATCGACCTTGCAGTCTACGAGACGCTCAAGAATGCCTGGCTGCAGCACTATGCAGTG AACAGCGCGGACCCCGGCGTGTTTGTGCTCCTGGCCTGTGGCACCATGTCCAGTACCTGTGGCCAGCTGGCCAGCTAC CCCCTGGCCCTAGTCAGGACCCGGATGCAGGCGCAAGCCTCTATTGAGGGGCGCTCCGGAGGTGACCATGAGCAGCCTC GCTGTGAGCATCAGCTACGTGGTCTACGAGAACCTGAAGATCACCCTGGGCGTGCAGTCGCGG<u>TGA</u>CGGGGGGGAGGGC  ${\tt CGCCCGGCAGTGGACTCGCTGATCCTGGGCCGCAGCCTGGGGTGTGCAGCCATCTCATTCTGTGAATGTGCCAACACT}$ CCTCTTGCTGCCTGCCTGTCTGAGGTAAGGTGGGAGGAGGGCTACAGCCCACATCCCACCCCCTCGTCCAATCCC ATAATCCATGATGAAAGGTGAGGTCACGTGGCCTCCCAGGCCTGACTTCCCAACCTACAGCATTGACGCCAACTTGGC TGTGAAGGAAGGAAGGATCTGGCCTTGTGGTCACTGGCATCTGAGCCCTGCTGATGGCTGGGGCTCTCGGGCATG CTTGGGAGTGCAGGGGGCTCGGCTGGCCTGGCCTGCACAGAAGGCAAGTGCTGGGGCTCATGGTGCTCTGAGCT GGCCTGGACCCTGTCAGGATGGGCCCCACCTCAGAACCAAACTCACTGTCCCCACTGTGGCATGAGGGCAGTGGAGCA ACTGTTGGGAAAAGGGTTTTGTCCAGAAGGACAAGCCGGACAAATGAGCGACTTCTGTGCTTCCAGAGGAAGACGAGG GAGCAGGAGCTTGGCTGACTGCTCAGAGTCTGTTCTGACGCCCTGGGGGTTCCTGTCCAACCCCAGCAGGGGGCGCAGC AACTATTTTTATAGATTTGTTTAATTAATAGCTTGTCATTTTCAAGTTCATTTTTTTATTCATATTTATGTTCATGGTT GATTGTACCTTCCCAAGCCCGCCCAGTGGGATGGGAGGAGGAGGAGGAGGGGGGCCTTGGGCCGCTGCAGTCACATCT GTCCAGAGAAATTCCTTTTGGGACTGGAGGCAGAAAAGCGGCCAGAAGGCAGCCCTGGCTCCTTTCCTTTGGCAG AACCTTGAAGGTGGAATCCAGTTATTTCCTGCGCTGCGAGGGTTTCTTTATTTCACTCTTTTTCTGAATGTCAAGGCAG CTTCTGCTGCCCTTGCTTAACAATGCCGGCCAACTGGCGACCTCACGGTTGCACTTCCATTCCACCAGAATGACCTGA TGAGGAAATCTTCAATAGGATGCAAAGATCAATGCAAAAATTGTTATATATGAACATATAACTGGAGTCGTCAAAAAG CAAATTAAGAAAGAATTGGACGTTAGAAGTTGTCATTTAAAGCAGCCTTCTAATAAAGTTGTTTCAAAGCTGAAAAAA 

MLCLCLYVPVIGEAQTEFQYFESKGLPAELKSIFKLSVFIPSQEFSTYRQWKQKIVQAGDKDLDG
QLDFEEFVHYLQDHEKKLRLVFKILDKKNDGRIDAQEIMQSLRDLGVKISEQQAEKILKSMDKNG
TMTIDWNEWRDYHLLHPVENIPEIILYWKHSTIFDVGENLTVPDEFTVEERQTGMWWRHLVAGGG
AGAVSRTCTAPLDRLKVLMQVHASRSNNMGIVGGFTQMIREGGARSLWRGNGINVLKIAPESAIK
FMAYEQIKRLVGSDQETLRIHERLVAGSLAGAIAQSSIYPMEVLKTRMALRKTGQYSGMLDCARR
ILAREGVAAFYKGYVPNMLGIIPYAGIDLAVYETLKNAWLQHYAVNSADPGVFVLLACGTMSSTC
GQLASYPLALVRTRMQAQASIEGAPEVTMSSLFKHILRTEGAFGLYRGLAPNFMKVIPAVSISYV
VYENLKITLGVQSR

#### Important features:

Signal peptide:

amino acids 1-16

#### Putative transmembrane domains:

amino acids 284-304, 339-360, 376-394

### Mitochondrial energy transfer proteins signature.

amino acids 206-215, 300-309

### N-glycosylation sites.

amino acids 129-133, 169-173

#### Elongation Factor-hand calcium-binding protein.

amino acids 54-73, 85-104, 121-140

GGAAGGCAGCCGCCACTCAGCCAGTACCCAGATACGCTGGGAACCTTCCCCAGCCATGGC CACTCATCATTGGCTTTGGTATTTCAGGGAGACACTCCATCACAGTCACTACTGTCGCCTCAGCT GGGAACATTGGGGAGGATGGAATCCTGAGCTGCACTTTTGAACCTGACATCAAACTTTCTGATAT CGTGATACAATGGCTGAAGGAAGGTGTTTTAGGCTTGGTCCATGAGTTCAAAGAAGGCAAAGATG AGCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTTTGCTGATCAAGTGATAGTT GGCAATGCCTCTTTGCGGCTGAAAAACGTGCAACTCACAGATGCTGGCACCTACAAATGTTATAT CATCACTTCTAAAGGCAAGGGGAATGCTAACCTTGAGTATAAAACTGGAGCCTTCAGCATGCCGG AAGTGAATGTGGACTATAATGCCAGCTCAGAGACCTTGCGGTGTGAGGCTCCCCGATGGTTCCCC CAGCCCACAGTGGTCTGGGCATCCCAAGTTGACCAGGGAGCCAACTTCTCGGAAGTCTCCAATAC CAGCTTTGAGCTGAACTCTGAGAATGTGACCATGAAGGTTGTGTCTGTGCTCTACAATGTTACGA TCAACAACACATACTCCTGTATGATTGAAAATGACATTGCCAAAGCAACAGGGGATATCAAAGTG ACAGAATCGGAGATCAAAAGGCGGAGTCACCTACAGCTGCTAAACTCAAAGGCTTCTCTGTGTGT CTCTTCTTTCTTTGCCATCAGCTGGGCACTTCTGCCTCTCAGCCCTTACCTGATGCTAAAATAAT GTGCCTTGGCCACAAAAAAGCATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTTCAC CACCAGATATGACCTAGTTTTATATTTCTGGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTG AGCAAACAAGAGCAAGAAACAAAAAGAAGCCAAAAGCAGAAGGCTCCAATATGAACAAGATAAAT CTATCTTCAAAGACATATTAGAAGTTGGGAAAATAATTCATGTGAACTAGACAAGTGTGTTAAGA CACCTGGGGAGTGAGAGGACAGGATAGTGCATGTTCTTTGTCTCTGAATTTTTAGTTATATGTGC TGTAATGTTGCTCTGAGGAAGCCCCTGGAAAGTCTATCCCAACATATCCACATCTTATATTCCAC AAATTAAGCTGTAGTATGTACCCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAGGGGCG GCTGCATTTTAGTAATGGGTCAAATGATTCACTTTTTATGATGCTTCCAAAGGTGCCTTGGCTTC TCTTCCCAACTGACAAATGCCAAAGTTGAGAAAAATGATCATAATTTTAGCATAAACAGAGCAGT 

MASLGQILFWSIISIIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDIKLS
DIVIQWLKEGVLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTDAGTYKC
YIITSKGKGNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFPQPTVVWASQVDQGANFSEVS
NTSFELNSENVTMKVVSVLYNVTINNTYSCMIENDIAKATGDIKVTESEIKRRSHLQLLNSKASL
CVSSFFAISWALLPLSPYLMLK

### Important features:

Signal peptide:

amino acids 1-28

#### Transmembrane domain:

amino acids 258-281

### N-glycosylation sites.

amino acids 112-116, 160-164, 190-194, 196-200, 205-209, 216-220, 220-224

### N-myristoylation sites.

amino acids 52-58, 126-132, 188-194

 $\tt TGACGTCAGAATCACC{\textbf{ATG}}GCCAGCTATCCTTACCGGCAGGGCTGCCCAGGAGCTGCAGGACAAG$ CACCAGGAGCCCCTCCGGGTAGCTACTACCCTGGACCCCCCAATAGTGGAGGGCAGTATGGTAGT GGGCTACCCCTGGTGGTGGTTATGGGGGTCCTGCCCCTGGAGGGCCTTATGGACCACCAGCTGG TGGAGGGCCCTATGGACACCCCAATCCTGGGATGTTCCCCTCTGGAACTCCAGGAGGACCATATG GCGGTGCAGCTCCCGGGGGCCCCTATGGTCAGCCACCTCCAAGTTCCTACGGTGCCCAGCAGCCT GGGCTTTATGGACAGGGTGGCGCCCCTCCCAATGTGGATCCTGAGGCCTACTCCTGGTTCCAGTC GGTGGACTCAGATCACAGTGGCTATATCTCCATGAAGGAGCTAAAGCAGGCCCTGGTCAACTGCA ATTGGTCTTCATTCAATGATGAGACCTGCCTCATGATGATAAACATGTTTGACAAGACCAAGTCA GGCCGCATCGATGTCTACGGCTTCTCAGCCCTGTGGAAATTCATCCAGCAGTGGAAGAACCTCTT CCAGCAGTATGACCGGGACCGCTCGGGCTCCATTAGCTACACAGAGCTGCAGCAAGCTCTGTCCC AAATGGGCTACAACCTGAGCCCCCAGTTCACCCAGCTTCTGGTCTCCCGCTACTGCCCACGCTCT GCCAATCCTGCCATGCAGCTTGACCGCTTCATCCAGGTGTGCACCCAGCTGCAGGTGCTGACAGA GGCCTTCCGGGAGAAGGACACAGCTGTACAAGGCAACATCCGGCTCAGCTTCGAGGACTTCGTCA  $\verb|CCATGACAGCTTCTCGGATGCTATGACCCAACCATCTGTGGAGAGTGGAGTGCACCAGGGACCTT| \\$ TCCTGGCTTCTTAGAGTGAGAGAAGTATGTGGACATCTCTTCTTTTCCTGTCCCTCTAGAAGAAC ATTCTCCCTTGCTTGATGCAACACTGTTCCAAAAGAGGGTGGAGAGTCCTGCATCATAGCCACCA AATAGTGAGGACCGGGGCTGAGGCCACACAGATAGGGGCCTGATGGAGGAGAGGATAGAAGTTGA ATGTCCTGATGGCCATGAGCAGTTGAGTGGCACAGCCTGGCACCAGGAGCAGGTCCTTGTAATGG AGTTAGTGTCCAGCTGAGCTCCACCCTGATGCCAGTGGTGAGTGTTCATCGGCCTGTTACC GTTAGTACCTGTGTTCCCTCACCAGGCCATCCTGTCAAACGAGCCCATTTTCTCCAAAGTGGAAT CTGACCAAGCATGAGAGAGATCTGTCTATGGGACCAGTGGCTTGGATTCTGCCACACCCATAAAT CCTTGTGTTTAACTTCTAGCTGCCTGGGGCTGGCCCTGCTCAGACAATCTGCTCCCTGGGCAT ATTTGGGGCCAAAAGTCCAGTGAAATTGTAAGCTTCAATAAAAGGATGAAACTCTGA

Important features of the protein:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 147-150

Casein kinase II phosphorylation sites.

amino acids 135-138, 150-153, 202-205, 271-274

N-myristoylation sites.

amino acids 9-14, 15-20, 19-24, 33-38, 34-39, 39-44, 43-48, 61-66, 70-75, 78-83, 83-88, 87-92, 110-115

 ${\tt CAGGATGCAGGGCCGCGTGGCAGGGAGCTGCGCTCCTCTGGGCCTGCTCCTGGTCTTCATC}$ TCCCAGGCCTCTTTGCCCGGAGCATCGGTGTTGTGGAGGAGAAAGTTTCCCAAAACTTCGGGACC AACTTGCCTCAGCTCGGACAACCTTCCTCCACTGGCCCCTCTAACTCTGAACATCCGCAGCCCGC TCTGGACCCTAGGTCTAATGACTTGGCAAGGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATG GATTCCTGGCCCCCTGAGGATCCTTGGCAGATGATGGCTGCTGCGGCTGAGGACCGCCTGGGGGA AGCGCTGCCTGAAGAACTCTCTTACCTCTCCAGTGCTGCGGCCCTCGCTCCGGGCAGTGGCCCTT TGCCTGGGGAGTCTTCTCCCGATGCCACAGGCCTCTCACCTGAGGCTTCACTCCTCCACCAGGAC TCGGAGTCCAGACGACTGCCCCGTTCTAATTCACTGGGAGCCGGGGGAAAAATCCTTTCCCAACG CCCTCCTGGTCTCTCATCCACAGGGTTCTGCCTGATCACCCCTGGGGTACCCTGAATCCCAGTG TGTCCTGGGGAGGTGGAGGCCCTGGGACTGGTTGGGGAACGAGGCCCATGCCACACCCTGAGGGA ATCTGGGGTATCAATAATCAACCCCCAGGTACCAGCTGGGGAAATATTAATCGGTATCCAGGAGG CAGCTGGGGAAATATTAATCGGTATCCAGGAGGCAGCTGGGGGAATATTAATCGGTATCCAGGAG GCAGCTGGGGGAATATTCATCTATACCCAGGTATCAATAACCCATTTCCTCCTGGAGTTCTCCGC CCTCCTGGCTCTTCTTGGAACATCCCAGCTGGCTTCCCTAATCCTCCAAGCCCTAGGTTGCAGTG TGTGGGCTCAATCCAGGCCCTGTTAACATGTTTCCAGCACTATCCCCACTTTTCAGTGCCTCCC 

MQGRVAGSCAPLGLLLVCLHLPGLFARSIGVVEEKVSQNFGTNLPQLGQPSSTGPSNSEHPQPAL
DPRSNDLARVPLKLSVPPSDGFPPAGGSAVQRWPPSWGLPAMDSWPPEDPWQMMAAAAEDRLGEA
LPEELSYLSSAAALAPGSGPLPGESSPDATGLSPEASLLHQDSESRRLPRSNSLGAGGKILSQRP
PWSLIHRVLPDHPWGTLNPSVSWGGGPGTGWGTRPMPHPEGIWGINNQPPGTSWGNINRYPGGS
WGNINRYPGGSWGNINRYPGGSWGNIHLYPGINNPFPPGVLRPPGSSWNIPAGFPNPPSPRLQWG

Important features of the protein:

Signal peptide:

amino acids 1-26

Casein kinase II phosphorylation sites.

amino acids 56-59, 155-158

N-myristoylation sites.

amino acids 48-53, 220-225, 221-226, 224-229, 247-252, 258-263, 259-264, 269-274, 270-275, 280-285, 281-286, 305-310

AAGGAGAGGCCACCGGGACTTCAGTGTCTCCTCCATCCCAGGAGCGCAGTGGCCACTATGGGGTC
TGGGCTGCCCCTTGTCCTCCTCTTGACCCTCCTTGGCAGCTCACATGGAACAGGGCCGGGTATGA
CTTTGCAACTGAAGCTGAAGGAGTCTTTTCTGACAAATTCCTCCTATGAGTCCAGCTTCCTGGAA
TTGCTTGAAAAGCTCTGCCTCCTCCATCTCCCTTCAGGGACCAGCGTCACCCTCCACCATGC
AAGATCTCAACACCATGTTGTCTGCAACACATGACAGCCATTGAAGCCTGTGTCCTTCTTGGCCC
GGGCTTTTGGGCCGGGGATGCAGGAGGCAGGCCCCGACCCTGTCTTTCAGCAGGCCCCCACCCTC
CTGAGTGGCAATAAATAAAATTCGGTATGCTG

 ${\tt MGSGLPLVLLLTLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTSVTL}\\ {\tt HHARSQHHVVCNT}$ 

Important features:
Signal peptide:
amino acids 1-19

N-glycosylation site. amino acids 37-41

N-myristoylation sites.
amino acids 15-21, 19-25, 60-66

 ${\tt MANPGLGLLLALGLPFLLARWGRAWGQIQTTSANENSTVLPSSTSSSSDGNLRPEAITAIIVVFS} \\ {\tt LLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQFSHAAEARAPQDSKETVQGCLPI}$ 

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 56-80

N-glycosylation site.

amino acids 36-40

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 86-90

Tyrosine kinase phosphorylation site.

amino acids 86-94

N-myristoylation sites.

amino acids 7-13, 26-32

 ${\tt TCAAATACTTCCTTCATTAAGCTGAATAATAATGGCTTTGAAGATATTGTCATTGTTATAGATCCTAGTGTGCCAGAA}$ GATGAAAAAATAATTGAACAAATAGAGGATATGGTGACTACAGCTTCTACGTACCTGTTTGAAGCCACAGAAAAAAGA AACCATAAACATGCTGATGTTATAGTTGCACCACCTACACTCCCAGGTAGAGATGAACCATACACCAAGCAGTTCACA GAATGTGGAGAGAAAGGCGAATACATTCACTTCACCCCTGACCTTCTACTTGGAAAAAAACAAAATGAATATGGACCA  ${\tt CCAGGCAAACTGTTTGTCCATGAGTGGGGCTCACCTCCGGTGGGGAGTGTTTGATGAGTACAATGAAGATCAGCCTTTC}$ TACCGTGCTAAGTCAAAAAAAATCGAAGCAACAAGGTGTTCCGCAGGTATCTCTGGTAGAAATAGAGTTTATAAGTGT  ${\tt CAAGGAGCCAGCTGTCTTAGTAGAGCATGCAGAATTGATTCTACAACAAAACTGTATGGAAAAGATTGTCAATTCTTT}$ CCTGATAAAGTACAAACAGAAAAAGCATCCATAATGTTTATGCAAAGTATTGATTCTGTTGTTGAATTTTTGTAACGAA AAAACCCATAATCAAGAAGCTCCAAGCCTACAAAACATAAAGTGCAATTTTAGAAGTACATGGGAGGTGATTAGCAAT TCTGAGGATTTTAAAAACACCATACCCATGGTGACACCACCTCCTCCACCTGTCTTCTCATTGCTGAAGATCAGTCAA AATAAGCTAATCCAAATAAAAAGCAGTGATGAAAGAAACACACTCATGGCAGGATTACCTACATATCCTCTGGGAGGA ACTTCCATCTGCTCTGGAATTAAATATGCATTTCAGGTGATTGGAGAGCTACATTCCCAACTCGATGGATCCGAAGTA  $\tt CTGCTGATGATGGGGAGGATAACACTGCAAGTTCTTGTATTGATGAAGTGAAACAAAGTGGGGCCATTGTTCAT$ TTTATTGCTTTGGGAAGAGCTGCTGATGAAGCAGTAATAGAGATGAGCAAGATAACAGGAGGAAGTCATTTTTATGTTTCCCTTCAGCTCGAAAGTAAGGGATTAACACTGAATAGTAATGCCTGGATGAACGACACTGTCATAATTGATAGTACA GTGGGAAAGGACACGTTCTTTCTCATCACATGGAACAGTCTGCCTCCCAGTATTTCTCTCTGGGATCCCAGTGGAACA ATAATGGAAAATTTCACAGTGGATGCAACTTCCAAAATGGCCTATCTCAGTATTCCAGGAACTGCAAAGGTGGGCACT TGGGCATACAATCTTCAAGCCAAAGCGAACCCAGAAACATTAACTATTACAGTAACTTCTCGAGCAGCAAATTCTTCT GTGCCTCCAATCACAGTGAATGCTAAAATGAATAAGGACGTAAACAGTTTCCCCAGCCCAATGATTGTTTACGCAGAA ATTCTACAAGGATATGTACCTGTTCTTGGAGCCAATGTGACTGCTTTCATTGAATCACAGAATGGACATACAGAAGTT ACAGAAAATGGCAGATATAGCTTAAAAGTTCGGGCTCATGGAGGAGCAAACACTGCCAGGCTAAAATTACGGCCTCCA CTGAATAGAGCCGCGTACATACCAGGCTGGGTAGTGAACGGGGAAATTGAAGCAAACCCGCCAAGACCTGAAATTGAT GAGGATACTCAGACCACCTTGGAGGATTTCAGCCGAACAGCATCCGGAGGTGCATTTGTGGTATCACAAGTCCCAAGC  $\tt CTTCCCTTGCCTGACCAATACCCACCAAGTCAAATCACAGACCTTGATGCCACAGTTCATGAGGATAAGATTATTCTT$ ACATGGACAGCACCAGGAGATAATTTTGATGTTGGAAAAGTTCAACGTTATATCATAAGAATAAGTGCAAGTATTCTT GATCTAAGAGACAGTTTTGATGATGCTCTTCAAGTAAATACTACTGATCTGTCACCAAAGGAGGCCAACTCCAAGGAA AGCAATTTGACATCAAAAGTATCCAACATTGCACAAGTAACTTTGTTTATCCCTCAAGCAAATCCTGATGACATTGAT  ${\tt CCTACACCTACTCCTACTCCTACTCCTGATAAAAGTCATAATTCTGGAGTTAATATTTCTACGCTGGTATTG}$  ${\tt TCTGTGATTGGGTCTGTTGTAATTGTTAACTTTATTTTAAGTACCACCATT} \underline{{\tt TGA}}{\tt ACCTTAACGAAGAAAAAATCTTC}$ ATCCTTTTTCATACTGATACCTGGTTGTATATTATTTGATGCAACAGTTTTCTGAAATGATATTTCAAATTGCATCAA 

MGLFRGFVFLLVLCLLHQSNTSFIKLNNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTTASTYLFE
ATEKRFFFKNVSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTECGEKGEY
IHFTPDLLLGKKQNEYGPPGKLFVHEWAHLRWGVFDEYNEDQPFYRAKSKKIEATRCSAGISGRN
RVYKCQGGSCLSRACRIDSTTKLYGKDCQFFPDKVQTEKASIMFMQSIDSVVEFCNEKTHNQEAP
SLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPPVFSLLKISQRIVCLVLDKSGSMGGKDRLNR
MNQAAKHFLLQTVENGSWVGMVHFDSTATIVNKLIQIKSSDERNTLMAGLPTYPLGGTSICSGIK
YAFQVIGELHSQLDGSEVLLLTDGEDNTASSCIDEVKQSGAIVHFIALGRAADEAVIEMSKITGG
SHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGLTLNSNAWMNDTVIIDSTVGKDTFFL
ITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPGTAKVGTWAYNLQAKANPETLTITVTSR
AANSSVPPITVNAKMNKDVNSFPSPMIVYAEILQGYVPVLGANVTAFIESQNGHTEVLELLDNGA
GADSFKNDGVYSRYFTAYTENGRYSLKVRAHGGANTARLKLRPPLNRAAYIPGWVVNGEIEANPP
RPEIDEDTQTTLEDFSRTASGGAFVVSQVPSLPLPDQYPPSQITDLDATVHEDKIILTWTAPGDN
FDVGKVQRYIIRISASILDLRDSFDDALQVNTTDLSPKEANSKESFAFKPENISEENATHIFIAI
KSIDKSNLTSKVSNIAQVTLFIPQANPDDIDPTPTPTPTPTPDKSHNSGVNISTLVLSVIGSVVI
VNFILSTTI

### Signal peptide:

amino acids 1-21

#### Putative transmembrane domains:

amino acids 284-300, 617-633

#### Leucine zipper pattern.

amino acids 469-491, 476-498

### N-glycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592, 628-632, 811-815, 832-836, 837-841, 852-856, 896-900

CTCCTTAGGTGGAAACCCTGGGAGTAGAGTACTGACAGCAAAGACCGGGAAAGACCATACGTCCCCGGGCAGGGGTGA GAGGAGCAATGATGTAGCCACCTCCTAACCTTCCCTTCTTGAACCCCCAGTTATGCCAGGATTTACTAGAGAGTGTCA ACTCAACCAGCAAGCGGCTCCTTCGGCTTAACTTGTGGTTGGAGGAGAACCTTTGTGGGGCTGCGTTCTCTTAGCA AGTAGAGAAGCTGCTCTGTGTGGTGGTTAACTCCAAGAGGCAGAACTCGTTCTAGAAGGAAATGGATGCAAGCAGCTC CGGGGGCCCCAAACGCATGCTTCCTGTGGTCTAGCCCAGGGAAGCCCTTCCGTGGGGGCCCCGGCTTTGAGGGATGCC ACCGGTTCTGGACGCATGGCTGATTCCTGAATGATGATGGTTCGCCGGGGGCTGCTTGCGTGGATTTCCCGGGTGGTG GTTTTGCTGGTGCTCTCTGTGCTATCTCTGTCCTGTACATGTTGGCCTGCACCCCAAAAGGTGACGAGGAGCAG CGCAACTACGTGAGCAGCCTGAAGCGGCAGATCGCACAGCTCAAGGAGGAGCTGCAGGAGAGGAGTGAGCAGCTCAGG AATGGGCAGTACCAAGCCAGCGATGCTGCTGGCCTGGGTCTGGACAGGAGCCCCCCAGAGAAAACCCAGGCCGACCTC CTGGCCTTCCTGCACTCGCAGGTGGACAAGGCAGAGGTGAATGCTGGCGTCAAGCTGGCCACAGAGTATGCAGCAGTG AGGAAGGACAAGCGGGATGAGTTGGTGGAAGCCATTGAATCAGCCTTGGAGACCCTGAACAATCCTGCAGAGAACAGC CCCAATCACCGTCCTTACACGGCCTCTGATTCATAGAAGGGATCTACCGAACAGAAAGGGACAAAGGGACATTGTAT GAGCTCACCTTCAAAGGGGACCACAAACACGAATTCAAACGGCTCATCTTATTTCGACCATTCAGCCCCATCATGAAA GTGAAAAATGAAAAGCTCAACATGGCCAACACGCTTATCAATGTTATCGTGCCTCTAGCAAAAAGGGTGGACAAGTTC AAAGAAGAAATAAATGAAGTCAAAGGAATACTTGAAAAACACTTCCAAAGCTGCCAACTTCAGGAACTTTACCTTCATC TTTTCTGTGATGTGGACATCTACTTCACATCTGAATTCCTCAATACGTGTAGGCTGAATACACAGCCAGGGAAGAAG CAGCAGCTGGTCATAAAGAAGGAAACTGGATTTTGGAGAGACTTTGGATTTGGGATGACGTGTCAGTATCGGTCAGAC TTCATCAATATAGGTGGGTTTGATCTGGACATCAAAGGCTGGGGCGGAGAGATGTGCACCTTTATCGCAAGTATCTC CACAGCAACCTCATAGTGGTACGGACGCCTGTGCGAGGACTCTTCCACCTCTGGCATGAGAAGCGCTGCATGGACGAG CTGACCCCGAGCAGTACAAGATGTGCATGCAGTCCAAGGCCATGAACGAGGCATCCCACGGCCAGCTGGGCATGCTG GAAGGATTGTGGGAGACACTTTTTCTTTCCTTTTGCAATTACTGAAAGTGGCTGCAACAGAGAAAAGACTTCCATAAA GGACGACAAAAGAATTGGACTGATGGGTCAGAGATGAGAAAGCCTCCGATTTCTCTCTGTTGGGCTTTTTACAACAGA AATCAAAATCTCCGCTTTGCCTGCAAAAGTAACCCAGTTGCACCCTGTGAAGTGTCTGACAAAGGCAGAATGCTTGTG AGATTATAAGCCTAATGGTGTGGAGGTTTTGATGGTGTTTACAATACACTGAGACCTGTTGTTTTGTGTGCTCATTGA AGTGAGTACATTAAGTAAAATAAAATGGACCAGAAAAGAAAAGAAACCATAAATATCGTGTCATATTTTCCCCAAGAT TTTTTTCCCTTGTGAGTTATAGTCTGCTTATTTAATTACCACTTTGCAAGCCTTACAAGAGAGCACAAGTTGGCCTAC ATTTTTATATTTTTTAAGAAGATACTTTGAGATGCATTATGAGAACTTTCAGTTCAAAGCATCAAATTGATGCCATAT AATACAGACGTACAGATACTTTCTCTGAAGAGTATTTTCGAAGAGGAGCAACTGAACACTGGAGGAAAAGAAATGAC ACTTTCTGCTTTACAGAAAAGGAAACTCATTCAGACTGGTGATATCGTGATGTACCTAAAAGTCAGAAACCACATTTT GAAAGATCAATCCATCTGCCAGAATCTAGTGGGATGGAAGTTTTTGCTACATGTTATCCACCCCAGGCCAGGTGGAAG TAACTGAATTATTTTTAAATTAAGCAGTTCTACTCAATCACCAAGATGCTTCTGAAAATTGCATTTTATTACCATTT ATGCATGAGCTAATTATCTCTTTGAGTCCTTGCTTCTGTTTGCTCACAGTAAACTCATTGTTTAAAAGCTTCAAGAAC CCATGAATGGAAGGTGGTATTGCACAGCTAATAAAATATGATTTGTGGATATGAA

MMWRRGLLAWISRVVVLLVLLCCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQEWE EQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFLHSQVDK AEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIESALETLNNPA ENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKHEFKRLILFRPFSPIMKVKNEKLNMAN TLINVIVPLAKRVDKFRQFMQNFREMCIEQDGRVHLTVVYFGKEEINEVKGILENTSKAANFRNF TFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCRLNTQPGKKVFYPVLFSQY NPGIIYGHHDAVPPLEQQLVIKKETGFWRDFGFGMTCQYRSDFINIGGFDLDIKGWGGEDVHLYR KYLHSNLIVVRTPVRGLFHLWHEKRCMDELTPEQYKMCMQSKAMNEASHGQLGMLVFRHEIEAHL RKQKQKTSSKKT

### Important features:

Signal peptide:

amino acids 1-27

#### N-glycosylation sites.

amino acids 315-319, 324-328

### N-myristoylation sites.

amino acids 96-102, 136-142, 212-218, 311-317, 339-345, 393-399

### Amidation site.

amino acids 377-381

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGGCAGCAAGAGATTTGTCCTGGGGATCCA GAAACCCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGACAGCAAGA CCTCCCTCTCTCTCTCTCTCTAGTCCTCTAGTCCTCAAATTCCCAGTCCCCTGCACCCCTTC CTGGGACACT**ATG**TTGTTCTCCGCCCTCCTGCAGGTGATTTGGATCCTGGCTGCAGATGGGG GTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCAGCCTCTTACCCTGAGTGT TGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGCCTTTGGACCTGCACAACAATGGCC ACACAGTGCAACTCTCTCTGCCCTCTACCCTGTATCTGGGTGGACTTCCCCGAAAATATGTAGCT GCCCAGCTCCACCTGCACTGGGGTCAGAAAGGATCCCCAGGGGGGGTCAGAACACCAGATCAACAG TGAAGCCACATTTGCAGAGCTCCACATTGTACATTATGACTCTGATTCCTATGACAGCTTGAGTG AATATAGCTTATGAACACATTCTGAGTCACTTGCATGAAGTCAGGCATAAAGATCAGAAGACCTC AGTGCCTCCCTTCAACCTAAGAGAGCTGCTCCCCAAACAGCTGGGGCAGTACTTCCGCTACAATG GCTCGCTCACAACTCCCCCTTGCTACCAGAGTGTGCTCTGGACAGTTTTTTATAGAAGGTCCCAG ATTTCAATGGAACAGCTGGAAAAGCTTCAGGGGACATTGTTCTCCACAGAAGAGGGGCCCTCTAA GCTTCTGGTACAGAACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGTCTTTGCTTCTTCA TGTCTCTGCCTTCTCCTGGCTGTTTATTTCATTGCTAGAAAGATTCGGAAGAAGAGGCTGGAAAA CCGAAAGAGTGTGGTCTTCACCTCAGCACAAGCCACGACTGAGGCA<u>TAA</u>ATTCCTTCTCAGATAC CATGGATGTGGATGACTTCCCTTCATGCCTATCAGGAAGCCTCTAAAATGGGGTGTAGGATCTGG CCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGAGGAAT GGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTAGGAGGAA ATGAGGAAATCGCTGTTGTTAATGCAGAGANCAAACTCTGTTTAGTTGCAGGGGAAGTTTGGG ATATACCCCAAAGTCCTCTACCCCCTCACTTTTATGGCCCTTTCCCTAGATATACTGCGGGATCT CTCCTTAGGATAAAGAGTTGCTGTTGAAGTTGTATATTTTTGATCAATATATTTTGGAAATTAAAG TTTCTGACTTT

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLPALQ
PHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQINSEAT
FAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRHKDQKTSVPP
FNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTVFYRRSQISMEQLEKLQGTLFSTEEEPSKLLV
QNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYFIARKIRKKRLENRKS
VVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

TGCCGCTGCCGCTGCTGCTGTTGCTCCTGGCGGCGCCTTGGGGACGGCAGTTCCCTGTGTC TCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGA**ATG**TCCTACA ATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGTCCTGACAGCTCC AGAGAAGTGGAAGAAATCCAGAAGACCTTCCTGTTTCCATGCAACAAATATACTCCAATCTGA ACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGTACACGTGGAGTCCTTCGTCCC CAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTGCCCATATCTATTACCGTGTTTCTTTT TCTGTGATGGGCTATTCCATCTACCGATATATCCACGTTGGCAAAGAGAAAACACCCAGCAAATTT GATTTTGATTTATGGAAATGAATTTGACAAAAGATTCTTTGTGCCTGCTGAAAAAATCGTGATTA ACTTTATCACCCTCAATATCTCGGATGATTCTAAAATTTCTCATCAGGATATGAGTTTACTGGGA AAAAGCAGTGATGTATCCAGCCTTAATGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGA GGAAGAGGAGGTGAAACATTTAGGGTATGCTTCGCATTTGATGGAAATTTTTTTGTGACTCTGAAG AAAACACGGAAGGTACTTCTCTCACCCAGCAAGAGTCCCTCAGCAGAACAATACCCCCGGATAAA ACAGTCATTGAATATGAATATGATGTCAGAACCACTGACATTTGTGCGGGGCCTGAAGAGCAGGA TCTTGGGCCCGCAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCCTGGCG CAGGAGCACACAGACTCGGAGGAGGGCCGGAGGAAGACCCATCGACGACCCTGGTCGACTGGGA TCCCCAAACTGGCAGGCTGTGTATTCCTTCGCTGTCCAGCCTCGACCAGGATTCAGAGGGCTGCG CCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTCATGGAGGAATGGGGGTTATA TGTGCAGATGGAAAACTGATGCCAACACTTCCTTTTGCCTTTTGTTTCCTGTGCAAACAAGTGAG TCACCCCTTTGATCCCAGCCATAAAGTACCTGGGATGAAAGAAGTTTTTTCCAGTTTGTCAGTGT GGTCTCTTAACAATGATGGTGGGCCTCTGGAGTCCAGGGGCTGGCCGGTTGTTCTATGCAGAGAA 

MSYNGLHQRVFKELKLLTLCSISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQIY
SNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQCARTLK
DQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFDKRFFVPAEK
IVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKHLGYASHLMEIFC
DSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSLQEEVSTQGTLLESQA
ALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWDPQTGRLCIPSLSSFDQDS
EGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQMEN

### Important features:

Signal peptide:

amino acids 1-28

#### Transmembrane domain:

amino acids 140-163

### N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGCATCCTGCACTTGCTGCCCTCTGACAC  $\tt CTGGGAAGATGGCCGGCCCGTGGACCTTCACCCTTCTCTGTGGTTTGCTGGCAGCCACCTTGATC$ CAAGCCACCCTCAGTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTGAC ACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGCCATGC GGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACCGTCCTGAAGCACATC ATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAAGCCCTCGGCCAATGACCA GGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCAACACGCCCCTGGTCAAGACCA TCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATCCGCATGGACACCAGTGCAAGTGGC  $\tt CCCACCGGCTGGTCCTCAGTGACTGTGCCACCAGCCATGGGAGCCTGCGCATCCAACTGCTGTA$ TAAGCTCTCCTTGCTGAACGCCTTAGCTAAGCAGGTCATGAACCTCCTAGTGCCATCCCTGC CTCCTGCAGCTGGTGAAGGTGCCCATTTCCCTCAGCATTGACCGTCTGGAGTTTGACCTTCTGTA TCCTGCCATCAAGGGTGACACCATTCAGCTCTACCTGGGGGCCAAGTTGTTGGACTCACAGGGAA AGGTGACCAAGTGGTTCAATAACTCTGCAGCTTCCCTGACAATGCCCACCCTGGACAACATCCCG TTCAGCCTCATCGTGAGTCAGGACGTGGTGAAAGCTGCAGTGGCTGCTGTGCTCTCCAGAAGA ATTCATGGTCCTGTGGACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGC TGATCAATGAAAAGGCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGAC ACTCCCGAGTTTTTTATAGACCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTT TCCCTCCAGTGAAGCCCTCCGCCCTTTGTTCACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGT TTTACACCAAAGGTGACCAACTTATACTCAACTTGAATAACATCAGCTCTGATCGGATCCAGCTG ATGAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCCA CTCCATCCTGCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGTGAAGG  ${\tt CCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCCAGCCTCC}$ TTGTGGAAACCCAGCTCTCCTGTCTCCCAGTGAAGACTTGGATGGCAGCCATCAGGGAAGGCTGG CCTGTGAAAAA

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREK
PAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVE
FHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMNLLVPSLPNL
VKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVT
KWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPESAHRLKSSIGLIN
EKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEASSEAQFYT
KGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSILLPNQNGKLRSGVPVSLVKALG
FEAAESSLTKDALVLTPASLWKPSSPVSO

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

GAGAGAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGTTTAGAGGTGTTCAAGGAGCAAGAGC TTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCCATGCCTCT CTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTGGGCACACTGGTTGCCAT GCTGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAGCAGTTGGCTTCT ACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGATGGTGACATCCAGTGCAAT CTCCTCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCACAGTCTTCTGCCAGGAATCCC GAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTTCATCCTTGGAGGCCTCCTGGGATTC ATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGACTTCTACTCACCACTGGTGCCTGACAG CATGAAATTTGAGATTGGAGAGGCTCTTTACTTGGGCATTATTTCTTCCCTGTTCTCCCTGATAG CTGGAATCATCCTCTGCTTTTCCTGCTCATCCCAGAGAAATCGCTCCAACTACTACGATGCCTAC CAAGCCCAACCTCTTGCCACAAGGAGCTCTCCAAGGCCTGGTCAACCTCCCAAAGTCAAGAGTGA GGTCTGTGAAAAACAGTGGACAGCACCCCGAGGGCCACAGGTGAGGGACACTACCACTGGATCGT GTCAGAAGGTGCTGCTGAGGATAGACTGACTTTGGCCATTGGATTGAGCAAAGGCAGAAATGGGG GCTAGTGTAACAGCATGCAGGTTGAATTGCCAAGGATGCTCGCCATGCCAGCCTTTCTGTTTTCC TCACCTTGCTGCTCCCCTACCCTAAGTCCCCAACCCTCAACTTGAAACCCCATTCCCTTAAGCCA GGACTCAGAGGATCCCTTTGCCCTCTGGTTTACCTGGGACTCCATCCCCAAACCCACTAATCACA GCTGGGGATGGGAAGCAGTGGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTC CCTCCAAAGAAACTGATTGGCCCTGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCCA GACTAATTTGTGCATGAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAGGATG CAGGATGGGAGGACAGGAAGGCAGCCTGGGACATTTAAAAAAATA

MASLGLQLVGYILGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGITQCD
IYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVFFILGGL
LGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCSSQRNRSNYY
DAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

CCCGCGTTCTCTTCCACCTTTCTCTTCTCCCACCTTAGACCTCCCTTCCTGCCCTCCTTTCCT GCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGGGGTCTGTGG  $\tt CCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACTTGGAGCCACAAGGCCTGATGT$ ACTGCCTGCGCTGTACCTGCTCAGAGGGCGCCCATGTGAGTTGTTACCGCCTCCACTGTCCGCCT GTCCACTGCCCCAGCCTGTGACGGAGCCACAGCAATGCTGTCCCAAGTGTGTGGAACCTCACAC TCCCTCTGGACTCCGGGCCCCACAAAGTCCTGCCAGCACAACGGGACCATGTACCAACACGGAG AGATCTTCAGTGCCCATGAGCTGTTCCCCTCCCGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGC ACAGAGGCCAGATCTACTGCGGCCTCACAACCTGCCCCGAACCAGGCTGCCCAGCACCCCTCCC ACTGCCAGACTCCTGCCAAGCCTGCAAAGATGAGGCAAGTGAGCAATCGGATGAAGAGGACA GTGTGCAGTCGCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGAGAAAG AGAGGCCCGGGCACCCAGCCCCACTGGCCTCAGCGCCCCTCTGAGCTTCATCCCTCGCCACTT CAGACCCAAGGGAGCAGCACCACTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCCT GTGTGCATGCCGGGAAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGC CCCTTGCCCTGCATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCC CACCGAGTACCCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGG ACAAAGCAGACCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCCGGGTC CTCGTCCACACATCGGTATCCCCAAGCCCAGACAACCTGCGTCGCTTTGCCCTGGAACACGAGGC CTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAGAGAG GTGAAGTACCTGGCCCAAGGCCACACAGCCAGAATCTTCCACTTGACTCAGATCAAGAAAGTCAG GAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCACGAAGGTCACT GGAACGTCTTCCTAGCCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGACAAAGTGACCAAG 

App\_ID=10063579 Page 233 of 320

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCTCSE
GAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIFSAHELF
PSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEEDSVQSLHGVR
HPQDPCSSDAGRKRGPGTPAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKHKKACVHGGKTYS
HGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKCCKICPEDKADPGHSE
ISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLVKDEETEAQRGEVPGPRPH
SQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPGAEGHGQSRQSDQDITKT

### Signal peptide:

amino acids 1-25

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGCAGAGCCTCTCC  ${\tt TCCGTTTCCATGCCGTGAGGTCCATTCACAGAACACATCCATGCTCTCATGCTCAGTTTGGTTCTGAGTC}$ TCCTCAAGCTGGGATCAGGCAGTGGCAGGTGTTTGGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGAG GACGCAGCATTCTCCTGTTTCCTGTCTCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGG CCAGTTCTCTAGCGTGGTCCACCTCTACAGGGACGGGAAGGACCAGCCATTTATGCAGATGCCACAGTATC AAGGCAGGACAAAACTGGTGAAGGATTCTATTGCGGAGGGGGCGCATCTCTCTGAGGCTGGAAAACATTACT GTGTTGGATGCTGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCATCTGGGAGCT ACAGGTGTCAGCACTGGGCTCAGTTCCTCTCATTTCCATCACGGGATATGTTGATAGAGACATCCAGCTAC TCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTGGAAAGGTCCACAAGGACAGGATTTGTCC ACAGACTCCAGGACAAACAGAGACATGCATGCCTGTTTGATGTGGAGATCTCTCTGACCGTCCAAGAGAA CGCCGGGAGCATATCCTGTTCCATGCGGCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAG GAGATACCTTTTTCGAGCCTATATCGTGGCACCTGGCTACCAAAGTACTGGGAATACTCTGCTGTGGCCTA TTTTTTGGCATTGTTGGACTGAAGATTTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACTGGACTG GAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAG AGACGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGGTG CCTCACTCTGAGAAGAGTTTTACAAGGAAGAGTGTGGTGGCTTCTCAGAGTTTCCAAGCAGGGAAACATTA AGGAGTACGTGACTTTGTCTCCCGATCATGGGTACTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTC ACATTAAATCCCCGTTTTATCAGCGTCTTCCCCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTA AAGGCTTATTGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCCATAGTCATCTGC CCAGTCACCCAGGAATCAGAGAAAGAGGCCTCTTGGCAAAGGGCCTCTGCAATCCCAGAGACAAGCAACAG TCTTCTTTAGGGATATTAAGGTCTCTCCCAGATCCAAAGTCCCGCAGCAGCCGGCCAAGGTGGCTTCCA CTGACATTACATTTAGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAG AACCGTCAGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATAATGCTTAG ATCTTATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTAAAAAAA

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSSVVH
LYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQKAIWELQ
VSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSRTNRDMHGLFDVEISL
TVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLFFGIVGLKIFFSK
FQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRF
TRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLSPDHGYWVLRLNGEHLYFT
LNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTCRFEGLLRPYIEYPSYNEQNGT
PIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLPRGEM

### Signal peptide:

amino acids 1-17

### Transmembrane domain:

amino acids 239-255

AACAGACGTTCCCTCGCGGCCCTGGCACCTCTAACCCCAGAC ATG CTGCTGCTGCTGCCCCTGCTCTGGGGGAGGGGGGGGAGGACAGACAGTAAACTGCTGACGATGCAGAGTTCCGTGA CGGTGCAGGAAGGCCTGTGTCCATGTGCCCTGCTCCTTCTCCTACCCCTCGCATGGCTGGATT TACCCTGGCCCAGTAGTTCATGGCTACTGGTTCCGGGAAGGGGCCAATACAGACCAGGATGCTCC AGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACCGATTCCACCTCCTTG GGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGAAGAAGTGATGCGGGGAGA TACTTCTTTCGTATGGAGAAAGGAAGTATAAAATGGAATTATAAACATCACCGGCTCTCTGTGAA TGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAGGCACCCTGGAGTCCGGCTGCCCCC AGAATCTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAGGGGACACCCCCTATGATCTCCTGGATA GGGACCTCCGTGTCCCCCCTGGACCCCTCCACCACCCCCTCCTCGGTGCTCACCCTCATCCCACA GCCCCAGGACCATGGCACCAGCCTCACCTGTCAGGTGACCTTCCCTGGGGCCAGCGTGACCACGA ACAAGACCGTCCATCTCAACGTGTCCTACCCGCCTCAGAACTTGACCATGACTGTCTTCCAAGGA GACGGCACAGTATCCACAGTCTTGGGAAATGGCTCATCTCTGTCACTCCCAGAGGGCCAGTCTCT GCGCCTGGTCTGTGCAGTTGATGCAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGA GAGGCCTGACCCTGTGCCCCTCACAGCCCTCAAACCCGGGGGTGCTGGAGCTGCCTTGGGTGCAC  $\tt CTGAGGGATGCAGCTGAATTCACCTGCAGAGCTCAGAACCCTCTCGGCTCTCAGCAGGTCTACCT$ GAACGTCTCCCTGCAGAGCAAAGCCACATCAGGAGTGACTCAGGGGGGTGGTCGGGGGGAGCTGGAG CCACAGCCCTGGTCTTCCTGTCCTTCTGCGTCATCTTCGTTGTAGTGAGGTCCTGCAGGAAGAAA TCGGCAAGGCCAGCAGCGGCGTGGGAGATACGGGCATAGAGGATGCAAACGCTGTCAGGGGTTC AGCCTCTCAGGGGCCCCTGACTGAACCTTGGGCAGAAGACAGTCCCCCAGACCAGCCTCCCCCAG CTTCTGCCCGCTCCTCAGTGGGGGAAGGAGGATCCCGTATGCATCCCTCAGCTTCCAGATGGTG AAGCCTTGGGACTCGCGGGGACAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCCACAG ATCAGAAACTGCAGAGACTCACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGAGAAGTCA GAGGCTGATTCTTGTAGAATTAACAGCCCTCAACGTGATGAGCTATGATAACACTATGAATTATG TGCAGAGTGAAAAGCACACAGGCTTTAGAGTCAAAGTATCTCAAACCTGAATCCACACTGTGCCC TCCCTTTTATTTTTTTAACTAAAAGACAGACAAATTCCTA

MLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWFREG
ANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKGSIKWNY
KHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVSPLDPSTTRS
SVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMTVFQGDGTVSTVLGNGSSL
SLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWVHLRDAAEFTCRAQNP
LGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRSCRKKSARPAAGVGDTGIE
DANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYASLSFQMVKPWDSRGQEATDTE
YSEIKIHR

### Signal peptide:

amino acids 1-15

### Transmembrane domain:

amino acids 351-370

CCAAGGAAAGTGCAGCTGAGACTCAGACAAGATTACAATGAACCAACTCAGCTTCCTGCTGTTTC TCTTCGTCTCCATCTCTGCCCAGAAGCTGCAAGGAAATCAAAGACGAATGTCCTAGTGCATTTGA TGGCCTGTATTTTCTCCGCACTGAGAATGGTGTTATCTACCAGACCTTCTGTGACATGACCTCTG GGGGTGGCGGCTGGACCCTGGTGGCCAGCGTGCATGAGAATGACATGCGTGGGAAGTGCACGGTG GGCGATCGCTGGTCCAGTCAGCAGGGCAGCAAAGCAGACTACCCAGAGGGGGACGGCAACTGGGC CAACTACAACACCTTTGGATCTGCAGAGGGGGCCACGAGCGATGACTACAAGAACCCTGGCTACT ACGACATCCAGGCCAAGGACCTGGGCATCTGGCACGTGCCCAATAAGTCCCCCATGCAGCACTGG AGAAACAGCTCCCTGCTGAGGTACCGCACGGACACTGGCTTCCTCCAGACACTGGGACATAATCT GTTTGGCATCTACCAGAAATATCCAGTGAAATATGGAGAAGGAAAGTGTTGGACTGACAACGGCC CGGTGATCCCTGTGGTCTATGATTTTGGCGACGCCCAGAAAACAGCATCTTATTACTCACCCTAT GGCCAGCGGGATTCACTGCGGGATTTGTTCAGTTCAGGGTATTTAATAACGAGAGCAGCCAA CGCCTTGTGTGCTGGAATGAGGGTCACCGGATGTAACACTGAGCATCACTGCATTGGTGGAGGAG GATACTTTCCAGAGGCCAGTCCCCAGCAGTGTGGAGATTTTTCTGGTTTTGATTGGAGTGGATAT GGAACTCATGTTGGTTACAGCAGCCGTGAGATAACTGAGGCAGCTGTGCTTCTATTCTATCG TTGAGAGTTTTGTGGGAGGGAACCCAGACCTCTCCCCAACCATGAGATCCCAAGGATGGAGAA CAACTTACCCAGTAGCTAGAATGTTAATGGCAGAAGAGAAAACAATAAATCATATTGACTCAAGA AAAAA

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTENGVI
YQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANYNTFGSAEAAT
SDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLGHNLFGIYQKYPVKYG
EGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVQFRVFNNERAANALCAGMRVTGCN
TEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSSREITEAAVLLFYR

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation site.

amino acids 163-167

Glycosaminoglycan attachment sites.

amino acids 74-78, 289-293

N-myristoylation sites.

amino acids 76-82, 115-121, 124-130, 253-259, 292-298

 $\label{thm:mark} MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLGLFA\\ VELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVTEMALFV\\ TVFGLKKKPF$ 

### Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

CTGGGACCCCGAAAAGAGAGGGGAGAGCGAGGGGAGGAGGAAGATGCAACTGAC TCGCTGCTTCGTGTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGGATGATG GTCCTCCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGGGCCAGCCCCGGCCCCGGGTGCCT CGGAAGCGGGCCACATCTCACCTAAGTCCCGCCCCATGGCCAATTCCACTCTCCTAGGGCTGCT GGCCCGCCTGGGGAGGCTTGGGGCATTCTTGGGCAGCCCCCAACCGCCCGAACCACAGCCCCC CACCCTCAGCCAAGGTGAAGAAAATCTTTGGCTGGGGCGACTTCTACTCCAACATCAAGACGGTG GCCCTGAACCTGCTCACAGGGAAGATTGTGGACCATGGCAATGGGACCTTCAGCGTCCACTT CCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCCTCGTGCCCCCCAGTAAAGCTGTAG AGTTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAGGCCTCCAAAATCTTCAACTGCCGGATG GAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTCGCTTTGCACCCACGACCCAGCCAAGATCTG CTCCCGAGACCACGCTCAGAGCTCAGCCACCTGGAGCTGCTCCCAGCCCTTCAAAGTCGTCTGTG TCTACATCGCCTTCTACAGCACGGACTATCGGCTGGTCCAGAAGGTGTGCCCAGATTACAACTAC  ${\tt CATAGTGATACCCCTACTACCCATCTGGGTGACCCGGGGCAGGCCACAGAGGCCAGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGCCAGGGCCAGGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCA$ TGGAAGGACAGGCCTGCCCATGCAGGAGACCATCTGGACACCGGGCAGGGAAGGGGTTGGGCCTC AGGCAGGGAGGGGGTGGAGACGAGGAGATGCCAAGTGGGGCCAGGGCCAAGTCTCAAGTGGCAG AGAAAGGGTCCCAAGTGCTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGG AGGAGGAGTGGGCTCTCTGTGCAGCCTCACAGGGCTTTGCCACGGAGCCACAGAGAGATGCTGGG TCCCCGAGGCCTGTGGGCAGGCCGATCAGTGTGGCCCCAGATCAAGTCATGGGAGGAAGCTAAGC GCCTGTCAACTTAGGATGGATGGCTGAGAGGGCTTCCTAGGAGCCAGTCAGCAGGGTGGGGTGGG GCCAGAGGAGCTCTCCAGCCCTGCCTAGTGGGCGCCCTGAGCCCCTTGTCGTGTGCTGAGCATGG CATGAGGCTGAAGTGGCAACCCTGGGGTCTTTGATGTCTTGACAGATTGACCATCTGTCTCCAGC CAGGCCACCCTTTCCAAAATTCCCTCTTCTGCCAGTACTCCCCCTGTACCACCCATTGCTGATG GCACACCCATCCTTAAGCTAAGACAGGACGATTGTGGTCCTCCCACACTAAGGCCACAGCCCATC CGCGTGCTGTGTCCCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAGCATCCATGTCCCG GAGAGGGGTCCCTCAACAGTCAGCCTCACCTGTCAGACCGGGGTTCTCCCGGATCTGGATGGCGC CGCCCTCTCAGCAGCGGGCACGGGTGGGGCGGGGCCGGGGCCGCAGAGCATGTGCTGGATCTGTTC TGTGTGTCTGTCGGGTGGGGGGGGGGGGGGGAGTCTTGTGAAACCGCTGATTGCTGACTTT TGTGTGAAGAATCGTGTTCTTGGAGCAGGAAATAAAGCTTGCCCCGGGGCA

MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMANSTL LGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVDHGNGTF SVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGRRTSLCTHDP AKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCPDYNYHSDTPYYPSG

Important features of the protein:
Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase amino acids 61-71

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDNKDG
PTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGFGIMSGV
FSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKWGILLIVLLT
HLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKNFLLYNQRSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

AATTTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTTGCCTCGTG  ${\tt GACCCAAAGGTAGCAATCTGAAAC \underline{\textbf{ATG}} \textbf{AGGAGTACGATTCTACTGTTTTGTCTTCTAGGATCAAC}$ GAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTTCCTTCTTTAAGTCTGATACCATTAACA CAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGGAATGACACCTGGTAC CCAGACCCACCCATTGACCCTGGGAGGGTTGAATGTACAACAGCAACTGCACCCACATGTGTTAC CAATTTTTGTCACACACTTGGAGCCCAGGGCACTATCCTAAGCTCAGAGGAATTGCCACAAATC TAATCCAGATGTCCAGGATGGAAGCCTTCCAGCAGGAGGAGCAGGTGTAAATCCTGCCACCCAGG GAACCCCAGCAGGCCGCCTCCCAACTCCCAGTGGCACAGATGACGACTTTGCAGTGACCACCCCT GCAGGCATCCAAAGGAGCACACATGCCATCGAGGAAGCCACCACAGAATCAGCAAATGGAATTCA **GTAA**GCTGTTTCAAATTTTTTCAACTAAGCTGCCTCGAATTTGGTGATACATGTGAATCTTTATC TACCTGAAAATATTCTTGAAATTTCAGAAAATATGTTCTATGTAGAGAATCCCAACTTTTAAAAA CAATAATTCAATGGATAAATCTGTCTTTGAAATATAACATTATGCTGCCTGGATGATATGCATAT 

 $\label{thm:color} MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSLSLIPLTQM\\ LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE\\ LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG\\ TDDDFAVTTPAGIQRSTHAIEEATTESANGIQ$ 

### Signal peptide:

amino acids 1-16

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGCTCT CTTCTTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGGCGCTGGAGGGCCTGTCCTGACCATG GTCCCTGCCTGGCTGTGGCTGCTTTGTGTCTCCGTCCCCCAGGCTCTCCCCAAGGCCCAGCCTGC AGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAATTTCCCTTTATACCTGACCAAGTTGC CGCTGCCCGTGAGGGGGCTGAAGGCCAGATCGTGCTGTCAGGGACTCAGGCAAGGCAACTGAG GGCCCATTTGCTATGGATCCAGATTCTGGCTTCCTGCTGGTGACCAGGGCCCTGGACCGAGAGGA GCAGGCAGAGTACCAGGTCACCCTGGAGATGCAGGATGGACATGTCTTGTGGGGTCCAC AGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTGCCCCATTTCTCTCAAGCCATCTAC GGATGAGCCAGGCACACTCGGATCTTCGATTCCACATCCTGAGCCAGGCTCCAGCCCAGC CTTCCCCAGACATGTTCCAGCTGGAGCCTCGGCTGGGGGCTCTGGCCCTCAGCCCCAAGGGGAGC ACCAGCCTTGACCACGCCCTGGAGAGGACCTACCAGCTGTTGGTACAGGTCAAGGACATGGGTGA CCAGGCCTCAGGCCACCAGGCCACTGCCACCGTGGAAGTCTCCATCATAGAGAGCACCTGGGTGT CCCTAGAGCCTATCCACCTGGCAGAGAATCTCAAAGTCCTATACCCGCACCACATGGCCCAGGTA CACTGGAGTGGGGGTGATGTGCACTATCACCTGGAGAGCCATCCCCGGGACCCTTTGAAGTGAA TGCAGAGGGAAACCTCTACGTGACCAGAGAGCTGGACAGAGAAGCCCAGGCTGAGTACCTGCTCC AGGTGCGGGCTCAGAATTCCCATGGCGAGGACTATGCGGCCCCTCTGGAGCTGCACGTGCTGGTG ATGGATGAGAATGACAACGTGCCTATCTGCCCTCCCCGTGACCCCACAGTCAGCATCCCTGAGCT CAGTCCACCAGGTACTGAAGTGACTAGACTGTCAGCAGAGGATGCCAGATGCCCCGGCTCCCCCA ATTCCCACGTTGTGTATCAGCTCCTGAGCCCTGAGCCTGAGGATGGGGTAGAGGGGAGAGCCTTC CAGGTGGACCCCACTTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACAT CCTGCTTCTGGTGCTGGCCATGGACCTGGCAGGCGCAGAGGGTGGCTTCAGCAGCACGTGTGAAG TCGAAGTCGCAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGATTGGGCCT ATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCCATGCTAACAGCCATTGATGCTGA CCTCGAGCCCGCCTTCCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACAGAAGGGACTTTTG GCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAAGAACCTCAGTTATGAG GCAGCTCCAAGTCATGAGGTGGTGGTGGTGGTGCAGAGTGTGGCGAAGCTGGTGGGGCCAGGCCC AGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGAGAGTGATGCCACCCCCAAGTTGG ACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTGCCCCAGCCGGCTCTTTCCTGCTGACCATC CTGCATTGAGAAATTCTCCGGGGAGGTGCACACCGCCCAGTCCCTGCAGGGCGCCCCAGCCTGGGG ACACCTACACGGTGCTTGTGGAGGCCCAGGATACAGCCCTGACTCTTGCCCCTGTGCCCTCCCAA TACCTCTGCACACCCCGCCAAGACCATGGCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCT GGCCAGTGGGCACGGTCCCTACAGCTTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTGGC GCCTCCAGACTCTCAATGGTTCCCATGCCTACCTCACCTTGGCCCTGCATTGGGTGGAGCCACGT GAACACATAATCCCCGTGGTGGTCAGCCACAATGCCCAGATGTGGCAGCTCCTGGTTCGAGTGAT CGTGTGTCGCTGCAACGTGGAGGGGCAGTGCATGCGCAAGGTGGGCCGCATGAAGGGCATGCCCA CGAAGCTGTCGGCAGTGGGCATCCTTGTAGGCACCCTGGTAGCAATAGGAATCTTCCTCATCCTC ATTTTCACCCACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGCAGACAGCGTGCCCCT TCCCCTGGGAGAGAGCCCAGCACCCAAGATCCAGCAGGGGACAGGACAGAGTAGAAGCCCCTCCA TCTGCCCTGGGGTGGAGGCACCATCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAACTT TATGGACTGCCCATGGGAGTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCAGAGAA 

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSGKAT
EGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVPHFSQAI
YRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRLGALALSPKG
STSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAENLKVLYPHHMAQ
VHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQNSHGEDYAAPLELHVL
VMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSHVVYQLLSPEPEDGVEGRA
FQVDPTSGSVTLGVLPLRAGQNILLLVLAMDLAGAEGGFSSTCEVEVAVTDINDHAPEFITSQIG
PISLPEDVEPGTLVAMLTAIDADLEPAFRLMDFAIERGDTEGTFGLDWEPDSGHVRLRLCKNLSY
EAAPSHEVVVVVQSVAKLVGPGPGPGATATVTVLVERVMPPPKLDQESYEASVPISAPAGSFLLT
IQPSDPISRTLRFSLVNDSEGWLCIEKFSGEVHTAQSLQGAQPGDTYTVLVEAQDTALTLAPVPS
QYLCTPRQDHGLIVSGPSKDPDLASGHGPYSFTLGPNPTVQRDWRLQTLNGSHAYLTLALHWVEP
REHIIPVVVSHNAQMWQLLVRVIVCRCNVEGQCMRKVGRMKGMPTKLSAVGILVGTLVAIGIFLI
LIFTHWTMSRKKDPDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGCCTG AGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCCACGCTCCTGGAAGCACCAGCCTTTA TCTCTTCACCTTCAAGTCCCCTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAGTCTTGGTAC ATCTAGGACCCAGGCATCTTGCTTTCCAGCCACAAAGAGACAGATGAAGATGCAGAAAGGAAATG TTCTCCTTATGTTTGGTCTACTATTGCATTTAGAAGCTGCAACAAATTCCAATGAGACTAGCACC TCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACCCAACTCTGGGTCCAG TGTGACCTCCAGTGGGGTCAGCACACCATCTCAGGGTCCAGCGTGACCTCCAATGGGGTCA GCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGGATCAGCACCACCCAACTCTGAG TTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGG GGCCAGCACCACCCACTCTGAGTCCAGCACCCCTCCAGTGGGGCCAGCACAGTCACCAACT CTGGGTCCAGTGTGACCTCCAGTGGAGCCAGCACTGCCACCAACTCTGAGTCCAGCACAGTGTCC AGTAGGGCCAGCACTGCCACCAACTCTGAGTCTAGCACACTCTCCAGTGGGGCCAGCACAGCCAC CAACTCTGACTCCAGCACAACCTCCAGTGGGGCTAGCACAGCCACCAACTCTGAGTCCAGCACAA GCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCACAGCCCAACTCTGAGTCCAG AACGACCTCCAATGGGGCTGGCACAGCCACCCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCCA GCACAGCCACCAACTCTGACTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAG TCCAGCACGACCTCCAGTGGGGCCAGCACACCCAACTCTGAGTCCAGCACGACCTCCAGTGG GGCTAGCACGCCACCAACTCTGACTCCAGCACAACCTCCAGTGGGGCCGGCACAGCCACCAACT CTGAGTCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCTCC AGTGGGGCCAACACACCCAACTCTGAGTCCAGTACGACCTCCAGTGGGGCCAACACACCAC CAACTCTGAGTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCAACTCTGAGTCCAGCACAA CCTCCAGTGGGGTCAGCACACCCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCTAGCACA GCCACCAACTCTGACTCCAGCACAACCTCCAGTGAGGCCAGCACACCCAACTCTGAGTCTAG CACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACAACCTCCAGTGGGGCCA ACACAGCCACCAACTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGGAACAGCAGCTCTGACTGGA GCCGTGGGAAATCTTCCTCATCACCCTGGTCTCGGTTGTGGCGCCCGTGGGGCTCTTTGCTGGGC TCTTCTTCTGTGTGAGAAACAGCCTGTCCCTGAGAAACACCTTTAACACAGCTGTCTACCACCCT CATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAGGGAATCATGGAGCCCCCCACAGGCCCAG GTGGAGTCCTAACTGGTTCTGGAGGAGACCAGTATCATCGATAGCCATGGAGATGAGCGGGAGGA AATCTTGAAGAAGGTATTCCTCACCTTTCTTGCCTTTACCAGACACTGGAAAGAGAATACTATAT TGCTCATTTAGCTAAGAAATAAATACATCTCATCTAACACACGCCAAAGAGAAGCTGTGCTTG CCCCGGGGTGGGTATCTAGCTCTGAGATGAACTCAGTTATAGGAGAAAACCTCCATGCTGGACTC AAAAAAAAAAAAAAAAAAAAAAAAAAAA

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATISGS
SVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSESSTPSS
GASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSSTTSSGASTA
TNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTTSNGAGTATNSES
STTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSSGASTATNSDSSTTSS
GAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGANTATNSESSTVSSGASTA
TNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEASTATNSESSTVSSGISTVTNSES
STTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAVSEAKPGGSLVPWEIFLITLVSVVA
AVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGPGPGGNHGAPHRPRWSPNWFWRRPVSSI
AMEMSGRNSGP

### Signal peptide:

amino acids 1-20

#### Transmembrane domain:

amino acids 510-532

GGCCGGACGCCTCCGCGTTACGGGATGAATTAACGGCGGGTTCCGCACGGAGGTTGTGACCCCTA GGAGGCTGGAACTATCAGGCTGAAAAACAGAGTGGGTACTCTCTTCTGGGAAGCTGGCAACAAAT GGATGATGTGATATATGCATTCCAGGGGAAGGGAAATTGTGGTGCTTCTGAACCCATGGTCAATT AACGAGGCAGTTTCTAGCTACTGCACGTACTTCATAAAGCAGGACTCTAAAAGCTTTGGAATCAT GGTGTCATGGAAAGGGATTTACTTTATACTGACTCTGTTTTGGGGAAGCTTTTTTGGAAGCATTT TCATGCTGAGTCCCTTTTTACCTTTGATGTTTGTAAACCCATCTTGGTATCGCTGGATCAACAAC CGCCTTGTGGCAACATGGCTCACCCTACCTGTGGCATTATTGGAGACCATGTTTGGTGTAAAAGT GATTATAACTGGGGATGCATTTGTTCCTGGAGAAAGAAGTGTCATTATCATGAACCATCGGACAA GAATGGACTGGATGTTCCTGTGGAATTGCCTGATGCGATATAGCTACCTCAGATTGGAGAAAATT ATATTCACGAACCACTTCAACTCCTCATATTCCCAGAAGGGACTGATCTCACAGAAAACAGCAAG TCTCGAAGTAATGCATTTGCTGAAAAAAATGGACTTCAGAAATATGAATATGTTTTACATCCAAG AACTACAGGCTTTACTTTTGTGGTAGACCGTCTAAGAGAAGGTAAGAACCTTGATGCTGTCCATG ATATCACTGTGGCGTATCCTCACAACATTCCTCAATCAGAGAAGCACCTCCTCCAAGGAGACTTT CCCAGGGAAATCCACTTCACGTCCACCGGTATCCAATAGACACCCTCCCCACATCCAAGGAGGA CCTTCAACTCTGGTGCCACAAACGGTGGGAAGAGAAGAAGAGAGGCTGCGTTCCTTCTATCAAG GGGAGAAGAATTTTTATTTTACCGGACAGAGTGTCATTCCACCTTGCAAGTCTGAACTCAGGGTC CTTGTGGTCAAATTGCTCTCTATACTGTATTGGACCCTGTTCAGCCCTGCAATGTGCCTACTCAT ATATTTGTACAGTCTTGTTAAGTGGTATTTTATAATCACCATTGTAATCTTTGTGCTGCAAGAGA GAATATTTGGTGGACTGGAGATCATAGAACTTGCATGTTACCGACTTTTACACAAACAGCCACAT TTAAATTCAAAGAAAATGAGTAAGATTATAAGGTTTGCCATGTGAAAACCTAGAGCATATTTTG GAAATGTTCTAAACCTTTCTAAGCTCAGATGCATTTTTTGCATGACTATGTCGAATATTTCTTACT GCCATCATTATTTGTTAAAGATATTTTGCACTTAATTTTGTGGGAAAAATATTGCTACAATTTTT TTTAATCTCTGAATGTAATTTCGATACTGTGTACATAGCAGGGAGTGATCGGGGTGAAATAACTT GGGCCAGAATATTATTAAACAATCATCAGGCTTTTAAA

MHSRGREIVVLLNPWSINEAVSSYCTYFIKQDSKSFGIMVSWKGIYFILTLFWGSFFGSIFMLSP
FLPLMFVNPSWYRWINNRLVATWLTLPVALLETMFGVKVIITGDAFVPGERSVIIMNHRTRMDWM
FLWNCLMRYSYLRLEKICLKASLKGVPGFGWAMQAAAYIFIHRKWKDDKSHFEDMIDYFCDIHEP
LQLLIFPEGTDLTENSKSRSNAFAEKNGLQKYEYVLHPRTTGFTFVVDRLREGKNLDAVHDITVA
YPHNIPQSEKHLLQGDFPREIHFHVHRYPIDTLPTSKEDLQLWCHKRWEEKEERLRSFYQGEKNF
YFTGQSVIPPCKSELRVLVVKLLSILYWTLFSPAMCLLIYLYSLVKWYFIITIVIFVLQERIFGG
LEIIELACYRLLHKQPHLNSKKNE

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domains:

amino acids 44-63, 90-108, 354-377

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTGACC TCCAAATCATCCACCCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACAGGAATA CACTGGACCGGGCAAGTTTGTCCAGGCCTTGGTGGGGGGAGGACGCCGTGTTCTCCTGCTCCCTCT TTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAGTTCCATGCTGTGGTC CACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACAGTATCGAGGGAGAACTGA GTTTGTGAAGGACTCCATTGCAGGGGGGCGTGTCTCTCTAAGGCTAAAAAACATCACTCCCTCGG ACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTACGATGAGGAGGCCACCTGGGAGCTG GTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCAGCCCACAGCCAAGTGGAAAGGTCCACAAGGAC AGGATTTGTCTTCAGACTCCAGAGCAAATGCAGATGGGTACAGCCTGTATGATGTGGAGATCTCC GGTGGAATCCAAGGTATTGATAGGAGAGACGTTTTTCCAGCCCTCACCTTGGCGCCTGGCTTCTA TTTTACTCGGGTTACTCTGTGGTGCCCTGTGTGGTGTTGTCATGGGGGATGATAATTGTTTCTTC AAATCCAAAGGGAAAATCCAGGCGGAACTGGACTGGAGAAGAAAGCACGGACAGGCAGAATTGAG AGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAGAGACGCTCACCCGAAGCTCTGCG TTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGA TTTACAAGGAAGAGTGTGGTGGCTTCTCAGGGTTTCCAAGCAGGGAACATTACTGGGAGGTGGA CGTGGGACAAAATGTAGGGTGGTATGTGGGAGTGTCGGGATGACGTAGACAGGGGGAAGAACA ATGTGACTTTGTCTCCCAACAATGGGTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTC ACATTCAATCCCCATTTTATCAGCCTCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCCT TGACATGTCAGTTTGAAGGCTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGAGGAAAAG GGGACTCCCATATTCATATGTCCAGTGTCCTGGGGATGAGACAGAGAAGACCCTGCTTAAAGGGC  $\tt CCGGAGCCTGCGCACAGAGAGTCACGCCCCCACTCTCTTTAGGGAGCTGAGGTTCTTCTGCCC$ TGAGCCCTGCAGCAGCGGCAGTCACAGCTTCCAGATGAGGGGGGATTGGCCTGACCCTGTGGGAG TCAGAAGCCATGGCTGCCCTGAAGTGGGGACGGAATAGACTCACATTAGGTTTAGTTTGTGAAAA CTCCATCCAGCTAAGCGATCTTGAACAAGTCACAACCTCCCAGGCTCCTCATTTGCTAGTCACGG ACAGTGATTCCTGCCTCACAGGTGAAGATTAAAGAGACAACGAATGTGAATCATGCTTGCAGGTT TGAGGGCACAGTGTTTGCTAATGATGTGTTTTTATATTATACATTTTCCCACCATAAACTCTGTT TGCTTATTCCACATTAATTTACTTTTCTCTATACCAAATCACCCATGGAATAGTTATTGAACACC TGCTTTGTGAGGCTCAAAGAATAAAGAGGAGGTAGGATTTTTCACTGATTCTATAAGCCCAGCAT CTCATTAACACAGACACAAAAATTCTAAATAAAATTTTAACAAATTAAACTAAACAATATATTTA AAGATGATATATAACTACTCAGTGTGGTTTGTCCCACAAATGCAGAGTTGGTTTAATATTTAAAT 

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHAVVH
LYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEEATWELR
VAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGYSLYDVEISI
IVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALCGVVMGMIIVFFK
SKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRF
TRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLSPNNGYWVLRLTTEHLYFT
FNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLTCQFEGLLRPYIQHAMYDEEKG
TPIFICPVSWG

### Signal peptide:

amino acids 1-17

### Transmembrane domains:

amino acids 131-150, 235-259

TTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTCCTGGCAGTGTGCATTGGA CTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACAATTACTATAGCACATTGTCATTTACAAC TGACAAACTATATGCTGAGTTTGGCAGAGAGGCTTCTAACAATTTTACAGAAATGAGCCAGAGACTTGAAT CAATGGTGAAAAATGCATTTTATAAATCTCCATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTC AGTCAACAGAAGCATGGAGTGTTGGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGA AACTGTAGATAAAATTGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTAG ACACGAAGAAGTAAAACTCTAGGTCAGAGTCTCAGGATCGTTGGTGGGACAGAAGTAGAAGAGGGTGAATG TTGTGAGTGCTCCTCTTTTACAACATATAAGAACCCTGCCAGATGGACTGCTTCCTTTGGAGTAACA ATAAAACCTTCGAAAATGAAACGGGGTCTCCGGAGAATAATTGTCCATGAAAAATACAAACACCCATCACA TGACTATGATATTTCTCTTGCAGAGCTTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTC TCCCTGATGCATCCTATGAGTTTCAACCAGGTGATGTGATGTTTTGTGACAGGATTTGGAGCACTGAAAAAT GATGGTTACAGTCAAAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACTTGCAATGAACC TCAAGCTTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTTAGAAGGAAAAACAGATGCAT GCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTAGAGATATCTGGTACCTTGCTGGAATAGTG AGCTGGGGAGATGAATGTGCGAAACCCAACAAGCCTGGTGTTTATACTAGAGTTACGGCCTTGCGGGACTG GGTGTGGAGGCCATTTTTAGAGATACAGAATTGGAGAAGACTTGCAAAACAGCTAGATTTGACTGATCTCA ATAAACTGTTTGCTTGATGCATGTATTTTCTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTGCCA GATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTTATGTACATAGAGAAATAGATAATACAATATTAC ATTACAGCCTGTATTCATTTGTCTCTAGAAGTTTTGTCAGAATTTTGACTTGTTGACATAAATTTGTAAT GCATATATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTCAGCTCCTCTCATTTCAGCAAATATCCATTT TCAAGGTGCAGAACAAGGAGTGAAAGAAAATATAAGAAGAAAAAATCCCCTACATTTTATTGGCACAGAA AAGTATTAGGTGTTTTTCTTAGTGGAATATTAGAAATGATCATATTCATTATGAAAGGTCAAGCAAAGACA ATATATCCTTATTTCCAAACAACTACTATGATAAATGTGAAGAAGATTCTGTTTTTTTGTGACCT TTACTGAGGATGTCAACATATAACAATAAAATATAAATCACCCA

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTDKLY
AEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICRFHSTED
PETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTLGQSLRIVGG
TEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFGVTIKPSKMKRGL
RRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDVMFVTGFGALKNDGYS
QNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGDSGGPLVSSDARDIWYLAG
IVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

### Transmembrane domain:

amino acids 21-40 (type II)

AGAGAAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCCCTG GCCGACGATCGCTGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGCTTCTCCCTT  $\texttt{ACGGGGCTCACA} \underline{\textbf{ATG}} \texttt{GCCAGAGAAGATTCCGTGAAGTGTCTGCGCTGCTCTACGCCCTCAA}$  ${\tt TCTGCTCTTTTGGTTAATGTCCATCAGTGTGTTGGCAGTTTCTGCTTGGATGAGGGACTACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAACCTAAC$ GTGGTTCATCCGGTCATGATTGCTGTTTGCTGTTTCCTTATCATTGTGGGGATGTTAGGATATTG TGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACTTTGGAAGTTTGCTTGTCATTTTCT GTGTAGAACTGGCTTGTGGCGTTTGGACATATGAACAGGAACTTATGGTTCCAGTACAATGGTCA GATATGGTCACTTTGAAAGCCAGGATGACAAATTATGGATTACCTAGATATCGGTGGCTTACTCA AAATGACAGAGATGGACTGGCCCCCAGATTCCTGCTGTGTTAGAGAATTCCCAGGATGTTCCAAA CAGGCCCACCAGGAAGATCTCAGTGACCTTTATCAAGAGGGTTGTGGGAAGAAAATGTATTCCTT TTTGAGAGGAACCAAACAACTGCAGGTGCTGAGGTTTCTGGGAATCTCCATTGGGGTGACACAAA TCCTGGCCATGATTCTCACCATTACTCTGCTCTGGGCTCTGTATTATGATAGAAGGGAGCCTGGG ACAGACCAAATGATGTCCTTGAAGAATGACAACTCTCAGCACCTGTCATGTCCCTCAGTAGAACT TTGAGATGGAGGAGTTA**TAA**AAAGAAATGTCACAGAAGAAAACCACAAACTTGTTTTATTGGACT TGTGAATTTTTGAGTACATACTATGTGTTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAA TAACACCTAAGCATATACTATTCTATGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTC ACCACCTGGACAATAATTGATGCCCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGCC TGTGTATGACTTTACTGAACACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTCCGCA TCCATGCAAACGAGTCACATATGGTGGGACTGGAGCCATAGTAAAGGTTGATTTACTTCTACCAA CTAGTATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATAACTTTTATTA CTCAGCGATCTATTCTTCTGATGCTAAATAAATTATATATCAGAAAACTTTCAATATTGGTGACT ACCTAAATGTGATTTTTGCTGGTTACTAAAATATTCTTACCACTTAAAAGAGCAAGCTAACACAT TGTCTTAAGCTGATCAGGGATTTTTTGTATATAAGTCTGTGTTAAATCTGTATAATTCAGTCGAT TTCAGTTCTGATAATGTTAAGAATAACCATTATGAAAAGGAAAATTTGTCCTGTATAGCATCATT ATTTTTAGCCTTTCCTGTTAATAAAGCTTTACTATTCTGTCCTGGGCTTATATTACACATATAAC TGTTATTTAAATACTTAACCACTAATTTTGAAAATTACCAGTGTGATACATAGGAATCATTATTC AGAATGTAGTCTGGTCTTTAGGAAGTATTAATAAGAAAATTTGCACATAACTTAGTTGATTCAGA AAGGACTTGTATGCTGTTTTTCTCCCAAATGAAGACTCTTTTTGACACTAAACACTTTTTAAAAA GCTTATCTTTGCCTTCTCCAAACAAGAAGCAATAGTCTCCAAGTCAATATAAATTCTACAGAAAA TAGTGTTCTTTTTCTCCAGAAAATGCTTGTGAGAATCATTAAAACATGTGACAATTTAGAGATT CTTTGTTTTATTTCACTGATTAATATACTGTGGCAAATTACACAGATTATTAAATTTTTTTACAA GAGTATAGTATATTTGAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTATTTTGTTTAT 

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPVVHP
VMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQWSDMVT
LKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREFPGCSKQAHQ
EDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWALYYDRREPGTDQM
MSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

### Signal peptide:

amino acids 1-33

### Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

 $\tt CCAAGGCCAGAGCTGTGGACACCTTATCCCACTCATCCTCATCCTCTTCCTCTGATAAAGCCCCTACCAGTGCT$  ${\tt CCAGTATTAAGAGGATTTTCCAGTGTTTCTGGCAGTTGGTCCAGAAGGATGCCTCCATTCCTGCTTCTCACCTGCTTCTCACCTGCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTGCTTCACCTTCACCTGCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCACCTTCA$ CCTGGAGGAACACTGACCACCAGTTGGATGAGTCTCAAGGTCCTCCTCTATGTGACAACCATGTGAATGGGGAG TGGTACCACTTCACGGGCATGGCGGGAGATGCCATGCCTACCTTCTGCATACCAGAAAACCACTGTGGAACCCA  ${\tt TCAATGGGAACTGTCTCTGGAACACCACGGTGGAAGTCAAGGCTTGCCCTGGAGGCTACTATGTGTATCGTCTCAATGGGAACACCACGGTGGAAGTCAAGGCTTGCCCTGGAGGCTACTATGTGTATCGTCTCAATGGGAACACCACGGTGGAAGTCAAGGCTTGCCCTGGAGGCTACTATGTGTATCGTCTCAATGGGAACACCACGGTGGAAGTCAAGGCTTGCCCTGGAGGCTACTATGTGTATCGTTATCGTTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATCGTTATGTGTATGTGTATCGTTATGTGTATCGTTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTGTATGTATGTGTATGTGTATGTATGTGTATGTATGTATGTGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATG$ CAGCTGCTCAGATACCAGCGAGTGCACATGCGCTCCAGGAACTGTGCTAGGCCCTGACAGGCAGACATGCTTTG ATGAAAATGAATGTGAGCAAAACAACGGTGGCTGCAGTGAGATCTGTGTGAACCTCAAAAACTCCTACCGCTGT GAGTGTGGGGTTGGCCGTGTGCTAAGAAGTGATGGCAAGACTTGTGAAGACGTTGAAGGATGCCACAATAACAA CTGAGGATAACCACACTTGCCAAGTCCCTGTGTTGTGCAAATCAAATGCCATTGAAGTGAACATCCCCAGGGAG  $\tt CTGGTTGGTGGCCTGGAGCTCTTCCTGACCAACACCTCCTGCCGAGGAGTGTCCAACGGCACCCATGTCAACAT$ CAGGTCTACCCAAGCAGACCCCGGGGAGCAGCGGGGACTTCATCATCCGAACCAGCAAGCTGCTGATCCCGGTG  ${\tt ACCTGCGAGTTTCCACGCCTGTACACCATTTCTGAAGGATACGTTCCCAACCTTCGAAACTCCCCACTGGAAAT}$ CATGAGCCGAAATCATGGGATCTTCCCATTCACTCTGGAGATCTTCAAGGACAATGAGTTTGAAGAGCCTTACC GGGAAGCTCTGCCCACCCTCAAGCTTCGTGACTCCCTCTACTTTGGCATTGAGCCCGTGGTGCACGTGAGCGGC TTGGAAAGCTTGGTGGAGAGCTGCTTTGCCACCCCCACCTCCAAGATCGACGAGGTCCTGAAATACTACCTCAT TCCCTGTCTTCAAGTTTGTGGGCAAAGACCACAAGGAAGTGTTTCTGCACTGCCGGGTTCTTGTCTGTGGAGTG  $\tt CGGTCTACAGGGCCAGACGCTAACAGGCGGCCCGATCCGCATCGACTGGGAGGAC{\color{blue}{\textbf{TAG}}} TTCGTAGCCATACCTC$ GAGTCCCTGCATTGGACGCTCTTTTGGAGCTTCTCCCCCCACCGCCCTCTAAGAACATCTGCCAACAGC  ${\tt CAGGTCACAGCACTGCTGAACAATGTGGCCTGGGTGGGGTTTCATCTTTCTAGGGTTGAAAACTAAACTGTCCA}$  $\tt CCCAGAAAGACACTCACCCCATTTCCCTCATTTCTTTCCTACACTTAAATACCTCGTGTATGGTGCAATCAGAC$ CACAAAATCAGAAGCTGGGTATAATATTTCAAGTTACAAACCCTAGAAAAATTAAACAGTTACTGAAATTATGA CTTAAATACCCAATGACTCCTTAAATATGTAAATTATAGTTATACCTTGAAATTTCAATTCAAATGCAGACTAA TTATAGGGAATTTGGAAGTGTATCAATAAAACAGTATATAATTTT

MPPFLLLTCLFITGTSVSPVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYHFTGMAGDAMP
TFCIPENHCGTHAPVWLNGSHPLEGDGIVQRQACASFNGNCCLWNTTVEVKACPGGYYVYRLTKPSVCFHV
YCGHFYDICDEDCHGSCSDTSECTCAPGTVLGPDRQTCFDENECEQNNGGCSEICVNLKNSYRCECGVGRV
LRSDGKTCEDVEGCHNNNGGCSHSCLGSEKGYQCECPRGLVLSEDNHTCQVPVLCKSNAIEVNIPRELVGG
LELFLTNTSCRGVSNGTHVNILFSLKTCGTVVDVVNDKIVASNLVTGLPKQTPGSSGDFIIRTSKLLIPVT
CEFPRLYTISEGYVPNLRNSPLEIMSRNHGIFPFTLEIFKDNEFEEPYREALPTLKLRDSLYFGIEPVVHV
SGLESLVESCFATPTSKIDEVLKYYLIRDGCVSDDSVKQYTSRDHLAKHFQVPVFKFVGKDHKEVFLHCRV
LVCGVLDERSRCAQGCHRRMRRGAGGEDSAGLQGQTLTGGPIRIDWED

#### Important features of the protein:

#### Signal peptide:

amino acids 1-16

### N-glycosylation sites.

amino acids 89-93, 116-120, 259-263, 291-295, 299-303

#### Tyrosine kinase phosphorylation sites.

amino acids 411-418, 443-451

### N-myristoylation sites.

amino acids 226-232, 233-239, 240-246, 252-258, 296-302, 300-306, 522-528, 531-537

### Aspartic acid and asparagine hydroxylation site.

amino acids 197-209

### ZP domain proteins.

amino acids 431-457

#### Calcium-binding EGF-like proteins.

amino acids 191-212, 232-253

 ${\tt GAGAGGCAGCAGCTTGCTCAGCGGACAAGGATGCTGGGCGTGAGGGACCAAGGCCTGCCCTGCACTCGG}$ TACAGGATCCTGACAGTGATCAACCTCTGAACAGCCTCGATGTCAAACCCCTGCGCAAACCCCGTATCCCC ATGGAGACCTTCAGAAAGGTGGGGATCCCCATCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGT GGTTGTCCTCATCAAGGTGATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGA GGAAGCAGCTGTGTGACGGAGAGCTGGACTGTCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTTC CCCGAAGGGCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGGACTCGGCCAC AGGGAACTGGTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAGACAGCCTGTAGGCAGATGG GCTACAGCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGATGTTGTTGAAATCACAGAAAACAGCCAG GAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTCTCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTG TGGGAAGACCCTGAAGACCCCCGTGTGGTGGGTGGGAGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGG GCCCACTGCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGCAG CTTCCCATCCTGGCTGTGGCCAAGATCATCATTGAATTCAACCCCATGTACCCCAAAGACAATGACA GATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGATGGGGCTTTACGAAGCAGAATGGAGGGAA GATGTCTGACATACTGCTGCAGGCGTCAGTCCAGGTCATTGACAGCACACGGTGCAATGCAGACGATGCGT ACCAGGGGGAAGTCACCGAGAAGATGATGTGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTGCCAGGGT GACAGTGGTGGCCCCTGATGTACCAATCTGACCAGTGGCATGTGGTGGCATCGTTAGCTGGGGCTATGG CTGCGGGGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATGTCT GGGGATCCCCCAAAGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCCCTCTGCCCACAGCCTCAGCAT TTCTTGGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGACCCTCGCAGCCCAGAGGCCCCAGAGGAAGTCA GCAGCCCTAGCTCGGCCACACTTGGTGCTCCCAGCATCCCAGGGAGAGACACAGCCCACTGAACAAGGTCT  ${\tt CAGGGGTATTGCTAAGCCAAGAAGGAACTTTCCCACACTACTGAATGGAAGCAGGCTGTCTTGTAAAAGCC}$ CAGATCACTGTGGGCTGGAGAGGAGAGGAAAGGGTCTGCGCCAGCCCTGTCCGTCTTCACCCATCCCCAA GCCTACTAGAGCAAGAAACCAGTTGTAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTTACCT AAAA

App\_ID=10063579 Page 263 of 320

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYFLCG
QPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWFSACFDN
FTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSLHCLACGKSL
KTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDVFNWKVRAGSDKL
GSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFDEELTPATPLWIIGWG
FTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPEGGVDTCQGDSGGPLMYQS
DQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

### Transmembrane domain:

amino acids 32-53 (typeII)

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGATTA TAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCACAGGAGT TGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGTCACTGTGGCTCT GGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCACACCGTCCCCTCGAAG  $\tt CCGGGGACAGCCTCACCTTGCTGGCCTCTCGCTGGAGCAGTGCCCTCACCAACTGTCTCACGTCT$ GGAGGCACTGACTCGGGCAGTGCAGGTAGCTGAGCCTCTTGGTAGCTGCGGCTTTCAAGGTGGGC CTTGCCCTGGCCGTAGAAGGGATTGACAAGCCCGAAGATTTCATAGGCGATGGCTCCCACTGCCC AGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGGCCAGGACGGCCGTGGACACCTGCTCA GAAGCAGTGGGTGAGACATCACGCTGCCCGCCCATCTAACCTTTTCATGTCCTGCACATCACCTG CAGAAGGGGTCTGCTTAGACCACCTGGTTTATGTGACAGGACTTGCATTCTCCTGGAACATGAGG GAACGCCGGAGGAAAGCAAAGTGGCAGGGAAGGAACTTGTGCCAAATTATGGGTCAGAAAAGATG GAGGTGTTGGGTTATCACAAGGCATCGAGTCTCCTGCATTCAGTGGACATGTGGGGGAAGGGCTG CCGATGGCGCATGACACACTCGGGACTCACCTCTGGGGCCATCAGACAGCCGTTTCCGCCCCGAT CCACGTACCAGCTGCTGAAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCCAAAA TCTGCGATCACCAGCCAGGGGCAGCCGTCTGGGAAGGAGCAAAGTGACCATTTCTCCTCCC CTCCTTCCCTCTGAGAGGCCCTCCTATGTCCCTACTAAAGCCACCAGCAAGACATAGCTGACAGG GGCTAATGGCTCAGTGTTGGCCCAGGAGGTCAGCAAGGCCTGAGAGCTGATCAGAAGGGCCTGCT GTGCGAACACGGAAATGCCTCCAGTAAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGTGG CTCAATTTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGTT CAAATGATCTCCAAGGGCCCTTATACCCCAGGAGACTTTGATTTGAATTTGAAACCCCAAATCCA AACCTAAGAACCAGGTGCATTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATGCCAACAT TTTGGGAGGCCGAGGCGGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGG  ${\tt CCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAACCTGGGAGGTGAAGGAGGCTGAGACA}$ TGGTTATTTGTAA

App\_ID=10063579 Page 265 of 320

 ${\tt MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTASPC} \\ {\tt WPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRD} \\$ 

Signal peptide:

amino acids 1-15

AGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCCAAGAAA ATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTGGTATCCTGGCCCTAACTCTAATTGTCCT GTTTTGGGGGAGCAACCTTCTGGCCGGAGGTACCCAAAAAAGCCTATGACATGGAGCACACTT TCTACAGCAATGGAGAGAAGAAGAATTTACATGGAAATTGATCCTGTGACCAGAACTGAAATA TTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTTTAAAAACGGATACACTGG CATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGATTAAAGTGATTCCTGAATTTT ATTTGGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGATTTTCTTAAAAATTCCAAAATTCTGGA GATTTGTGATAACGTGACCATGTATTGGATCAATCCCACTCTAATATCAGTTTCTGAGTTACAAG ACTTTGAGGAGGAGGAGAAGATCTTCACTTTCCTGCCAACGAAAAAAAGGGATTGAACAAAAT AGAACTTCCAATAAATGACTATACTGAAAATGGAATAGAATTTGATCCCATGCTGGATGAGAGAG GTTATTGTTGTATTTACTGCCGTCGAGGCAACCGCTATTGCCGCCGCGTCTGTGAACCTTTACTA GGCTACTACCCATATCCATACTGCTACCAAGGAGGACGAGTCATCTGTCGTGTCATCATGCCTTG TAACTGGTGGGTGGCCCGCATGCTGGGGAGGGTCTAATAGGAGGTTTGAGCTCAAATGCTTAAAC TGCTGGCAACATATAATAAATGCATGCTATTCAATGAATTTCTGCCTATGAGGCATCTGGCCCCT GGTAGCCAGCTCTCCAGAATTACTTGTAGGTAATTCCTCTCTTCATGTTCTAATAAACTTCTACA ТТАТСАССАААААААААААААААААА

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAYDME
HTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKTQIKVIP
EFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWINPTLISVSE
LQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDYTENGIEFDPMLD
ERGYCCIYCRRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWVARMLGRV

### Important features of the protein:

### Signal peptide:

amino acids 1-40

#### Transmembrane domain:

amino acids 25-47 (type II)

### N-glycosylation sites.

amino acids 94-97, 180-183

### Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

### N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

### Microbodies C-terminal targeting signal.

amino acids 315-317

### Cytochrome c family heme-binding site signature.

amino acids 9-14

GAGCTCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCGCAGGCGGCA  $\tt GGGCGGCCAGGATC \\ \underline{\textbf{ATG}} \\ \texttt{TCCACCACCACATGCCAAGTGGTGGCGTTCCTCCTGTCCATCCTGGGGCT}$ GGCCGGCTGCATCGCGGCCACCGGATGGACATGTGGAGCACCCAGGACCTGTACGACAACCCCGTCACCT  $\verb|cgtgttcagtaggaggttgggaggaggttcagggttcagggttcagggttcagggttcagggccc|\\$ GGGTGCCATTGGCCTCCTGGTATCCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTG CCAAAGCCAACATGACACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTGTGCAATTGCTGGAGTG TCTGTGTTTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCGGCATGGGTGG GATGGTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTGGGCTGGGTCGCTGGAGGCC TCACACTAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGGCCTGGCACCAGAAGAAACCAACTACAAA GCCGTTTCTTATCATGCCTCAGGCCACAGTGTTGCCTACAAGCCTGGAGGCTTCAAGGCCAGCACTGGCTT TGGGTCCAACACCAAAAACAAGAAGATATACGATGGAGGTGCCCGCACAGAGGACGAGGTACAATCTTATC CTTCCAAGCACGACTATGTG**TAA**TGCTCTAAGACCTCTCAGCACGGGCGGAAGAAACTCCCGGAGAGCTCA CCCAAAAAACAAGGAGATCCCATCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGCCT CGATTTCATCTTTGGAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCCACCATAAAACA GCTGAGTTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTATTTCTTTTTTAAATATAACT TTCCTCCTAGTCAATAAACCCATTGATGATCTATTTCCCAGCTTATCCCCAAGAAAACTTTTGAAAGGAAA GAGTAGACCCAAAGATGTTATTTTCTGCTGTTTGAATTTTGTCTCCCCACCCCCAACTTGGCTAGTAATAA ACACTTACTGAAGAAGAAGCAATAAGAGAAAGATATTTGTAATCTCTCCAGCCCATGATCTCGGTTTTCTT ACACTGTGATCTTAAAAGTTACCAAACCAAAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTGCTG TTGACATCTTCTTATTACAGCAACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAGTCCTCTTTCTGT AATAAATAATGTTTTAGTAAAATGATACACTATCTCTGTGAAATAGCCTCACCCCTACATGTGGATAGAAG GAAATGAAAAATAATTGCTTTGACATTGTCTATATGGTACTTTGTAAAGTCATGCTTAAGTACAAATTCC TCGAGACTAGCCTGGCCAACATGGAGAAGCCCTGTCTCTACAAAATACAGAGAGAAAAAATCAGCCAGTCA TGGTGGCATACACCTGTAGTCCCAGCATTCCGGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGGGAGGT AATAAAAATAATAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAAACTAATTCTTTAA

MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTECRP
YFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIMFIVSGL
CAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTLIGGVMMCIA
CRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTEDEVQSYPSKHDY
V

### Signal peptide:

amino acids 1-23

### Transmembrane domains:

amino acids 81-100, 121-141, 173-194

GGAAAAACTGTTCTCTTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCGGAGTCC AGCTGGCTAAAACTCATCCCAGAGGATAATGGCAACCCATGCCTTAGAAATCGCTGGGCTGTTTCTTG GTGGTGTTGGAATGGTGGCACAGTGGCTGTCACTGTCATGCCTCAGTGGAGAGTGTCGGCCTTCATT CATCAGGATGCAGAAAATCTATGATTCCCTGCTGGCTCTTTCTCCGGACCTACAGGCAGCCAGAG GACTGATGTGTGCTGCTTCCGTGATGTCCTTCTTGGCTTTCATGATGGCCATCCTTGGCATGAAATGC ACCAGGTGCACGGGGGACAATGAGAAGGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTTCAT CATCACGGCATGGTGGTCCTCATCCCTGTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATA ACTCAATAGTGAATGTTGCCCAAAAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCA CAGATACTCGATACCTTCCCATCGCACAACCCAAAAAAGTTATCACACCGGAAAGAAGTCACCGAGCG TCTACTCCAGAAGTCAGTATGTGTAGTTGTGTATGTTTTTTTAACTTTACTATAAAGCCATGCAAATG ACAAAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTACTGTTCTTAACTGCCT AATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAAGCTATTTCAGCAGAATGAGATA TTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAATTTGTTTTCTAAGGTGGTTCAAGCATCTA CTCTTTTTATCATTTACTTCAAAATGACATTGCTAAAGACTGCATTATTTTACTACTGTAATTTCTCC ACGACATAGCATTATGTACATAGATGAGTGTAACATTTATATCTCACATAGAGACATGCTTATATGGT ATCATGGATAGGGTTGAAGAAGGTTACTATTAATTGTTTAAAAACAGCTTAGGGATTAATGTCCTCCA TTTATAATGAAGATTAAAATGAAGGCTTTAATCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATAT CTTGTGTATTAAATTAACATTTTTAAAACGCAGATATTTTGTCAAGGGGGCTTTGCATTCAAACTGCTT TTCCAGGGCTATACTCAGAAGAAAGATAAAAGTGTGATCTAAGAAAAAGTGATGGTTTTAGGAAAGTG TGTCTTGGTTTCATTTGCTTACCAAAAAAACAACAACAAAAAAAGTTGTCCTTTGAGAACTTCACCT CCATTTCTGTTTAGTTTACTAAAATCTGTAAATACTGTATTTTTCTGTTTATTCCAAATTTGATGAA TATACATTTATATTAATAAATTGTACATTTTTCTAATT

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRMQCK IYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGIIFIITG MVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVFCCNEKSSSY RYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

### Signal peptide:

amino acids 1-17

### Transmembrane domains:

amino acids 82-101, 118-145, 164-188

GGAGAGGCGCGCGGGTGAAAGGCGCATTGATGCAGCCTGCGGCGGCCTCGGAGCGCGGCGGAG CCAGACGCTGACCACGTTCCTCCTCCGGTCTCCTCCGCCTCCAGCTCCGCGCTGCCCGGCAGCC GGGAGCCATGCGACCCCAGGGCCCCGCCGCCTCCCCGCAGCGGCTCCGCGGCCTCCTGCTGCTCC TGCTGCTGCAGCTGCCCGCCGTCGAGCGCCTCTGAGATCCCCAAGGGGAAGCAAAAGGCGCAG CTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGGGCCAGCAGGAGTGCC TGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTGGGATCCCAGGTCGGGATG GATTCAAAGGAGAAAAGGGGGAATGTCTGAGGGAAAGCTTTGAGGAGTCCTGGACACCCAACTAC AAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCTTGGGAAAATTGCGGAGTGTACATT TACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGTTCAGTGGCTCACTTCGGCTAAAATGCA GAAATGCATGCTGTCAGCGTTGGTATTCACATTCAATGGAGCTGAATGTTCAGGACCTCTTCCC ATTGAAGCTATAATTTATTTGGACCAAGGAAGCCCTGAAATGAATTCAACAATTAATATTCATCG CACTTCTTCTGTGGAAGGACTTTGTGAAGGAATTGGTGCTGGATTAGTGGATGTTGCTATCTGGG ATTATTGAAGAACTACCAAAA**TAA**ATGCTTTAATTTTCATTTGCTACCTCTTTTTTTATTATGCC  $\tt CTAAATATGTTTACAGACCAAAGTGTGATTTCACACTGTTTTTAAATCTAGCATTATTCATTTTG$ CTTCAATCAAAAGTGGTTTCAATATTTTTTTTTTAGTTGGTTAGAATACTTTCTTCATAGTCACATT CTCTCAACCTATAATTTGGAATATTGTTGTGGTCTTTTGTTTTTCTCTTAGTATAGCATTTTTA TAAATAAAAATTATTTCCAACA

MRPQGPAASPQRLRGLLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGVPGR DGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTK MRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMNSTINIHRTS SVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

### Signal peptide:

amino acids 1-30

### Transmembrane domain:

amino acids 195-217

GCTGAGCGTGTGCGCGGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCTGAA CTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAGCCCCAA ACCGCCCCTCCCCACCCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATATCCATGAAGATCC TGTTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCTCCCAAGGGGTCCAATTTT TCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTGACAGGGGCTGTCATGCAACTG GCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAACAATACAAAGGATGGTTTCAATG TAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTTATAGCCCCCACTGTCTTACTGACAATG CTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTGTAGGTGTGAAGGCAAAATGGTATATTGTGA ATCTCAGAAATTACAGGAGATACCCTCAAGTATATCTGCTGGTTGCTTAGGTTTGTCCCTTCGCT ATAACAGCCTTCAAAAACTTAAGTATAATCAATTTAAAGGGCTCAACCAGCTCACCTGGCTATAC CTTGACCATAACCATATCAGCAATATTGACGAAAATGCTTTTAATGGAATACGCAGACTCAAAGA GCTGATTCTTAGTTCCAATAGAATCTCCTATTTTCTTAACAATACCTTCAGACCTGTGACAAATT TACGGAACTTGGATCTGTCCTATAATCAGCTGCATTCTCTGGGATCTGAACAGTTTCGGGGCTTG  $\tt CGGAAGCTGCTGAGTTTACATTTACGGTCTAACTCCCTGAGAACCATCCCTGTGCGAATATTCCA$ AGACTGCCGCAACCTGGAACTTTTGGACCTGGGATATAACCGGATCCGAAGTTTAGCCAGGAATG CTGGCCCTTTTTCCAAGGTTGGTCAGCCTTCAGAACCTTTACTTGCAGTGGAATAAATCAGTGT CATAGGACAGACCATGTCCTGGACCTGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGA TCGAAGCTTTCAGTGGACCCAGTGTTTTCCAGTGTGTCCCGAATCTGCAGCGCCTCAACCTGGAT  ${\tt TCCAACAAGCTCACATTTATTGGTCAAGAGATTTTTGGATTCTTGGATATCCCTCAATGACATCAG}$ TCTTGCTGGGAATATATGGGAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTGAAAAGTT TTAAAGGTCTAAGGGAGAATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGGAGTAAATGTG ATCGATGCAGTGAAGAACTACAGCATCTGTGGCAAAAGTACTACAGAGGGTTTGATCTGGCCAG GGCTCTCCCAAAGCCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCATGAGAGCAAACCCCCTT TGCCCCGACGGTGGGAGCCACAGAGCCCGGCCCAGAGACCGATGCTGACGCCGAGCACATCTCT TTCCATAAAATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCGTGCTCGTCATCCTGCTGGTTAT CTACGTGTCATGGAAGCGGTACCCTGCGAGCATGAAGCAGCTGCAGCAGCGCTCCCTCATGCGAA GGCACAGGAAAAGAAAAGACAGTCCCTAAAGCAAATGACTCCCAGCACCCAGGAATTTTATGTA GATTATAAACCCACCAACACGGAGACCAGCGAGATGCTGCTGAATGGGACGGGACCCTGCACCTA TAACAAATCGGGCTCCAGGGAGTGTGAGGTA**TGA**ACCATTGTGATAAAAAGAGCTCTTAAAAGCT TTCCCTCTCCCTCTCACTTTGGTGGCAAGATCCTTCCTTGTCCGTTTTAGTGCATTCATAATACT GAACTCCGGTTTAATATAATACCTATTGTATAAGACCCTTTACTGATTCCATTAATGTCGCATTT GTTTTAAGATAAAACTTCTTTCATAGGTAAAAAAAAAA

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAGCLG
LSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYFLNNTFR
PVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELLDLGYNRIRS
LARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLYLQWNKISVIGQTMSWTWSSLQRLDL
SGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLAGNIWECSRNICSLVN
WLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLARALPKPTFKPKLPRPKHE
SKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVILLVIYVSWKRYPASMKQLQQR
SLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLNGTGPCTYNKSGSRECEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

 $\texttt{CCGTTATCGTCTTGCGCTACTGCTGA} \underline{\textbf{ATG}} \\ \texttt{TCCGTCCCGGAGGAGGAGGAGGGCTTTTGCCGCTG} \\$ ACCCAGAGATGGCCCCGAGCGAGCAAATTCCTACTGTCCGGCTGCCGGCTACCGTGGCCGAGCT AGCAACCTTTCCCCTGGATCTCACAAAAACTCGACTCCAAATGCAAGGAGAAGCAGCTCTTGCTC GGTTGGGAGACGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCGCACAGCCCTAGGGATC ATTGAAGAGGAAGGCTTTCTAAAGCTTTGGCAAGGAGTGACACCCGCCATTTACAGACACGTAGT GTATTCTGGAGGTCGAATGGTCACATATGAACATCTCCGAGAGGTTGTGTTTTGGCAAAAGTGAAG ATGAGCATTATCCCCTTTGGAAATCAGTCATTGGAGGGATGATGGCTGTTTATTGGCCAGTTT AAAACCATTGCGATTTCGTGGTGTACATCATGCATTTGCAAAAATCTTAGCTGAAGGAGGAATAC GAGGGCTTTGGGCAGGCTGGGTACCCAATATACAAAGAGCAGCACTGGTGAATATGGGAGATTTA ACCACTTATGATACAGTGAAACACTACTTGGTATTGAATACACCACTTGAGGACAATATCATGAC TCACGGTTTATCAAGTTTATGTTCTGGACTGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCA  ${\tt ACTGACTGCTTGATTCAGGCTGTTCAAGGTGAAGGATTCATGAGTCTATATAAAGGCTTTTTACC}$ TGAGTGGAGTCAGTCCATTTTAA

MSVPEEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGARES
APYRGMVRTALGIIEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEHYPLWKS
VIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGIRGLWAGWVP
NIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCSGLVASILGTPADVIKSRIMNQP
RDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLTYEKIREMSGVSPF

### Transmembrane domains:

amino acids 25-38, 130-147, 233-248

CGCGGATCGGACCCAAGCAGGTCGGCGGCGGCGGCAGGAGAGCGGCCGGGCGTCAGCTCCTCGAC  $\verb|CCCCGTGTCGGGCTAGTCCAGCGAGGCGGACGGGCGGGGGGGCCCATGGCCAGGCCCGGCATGG|$ AGCGGTGGCGCGACCGGCTGGCGCTGGTGACGGGGGCCTCGGGGGGCCATCGGCGCGCCGTGGCC CGGGCCCTGGTCCAGCAGGGACTGAAGGTGGTGGGCTGCGCCCGCACTGTGGGCAACATCGAGGA GCTGGCTGCTGAATGTAAGAGTGCAGGCTACCCCGGGACTTTGATCCCCTACAGATGTGACCTAT CAAATGAAGAGGACATCCTCTCCATGTTCTCAGCTATCCGTTCTCAGCACAGCGGTGTAGACATC TGCATCAACAATGCTGGCTTGGCCCGGCCTGACACCCTCTCTCAGGCAGCACCAGTGGTTGGAA GGACATGTTCAATGTGAACGTGCTGGCCCTCAGCATCTGCACACGGGAAGCCTACCAGTCCATGA AGGAGCGGAATGTGGACGATGGCACATCATTAACATCAATAGCATGTCTGGCCACCGAGTGTTA CCCCTGTCTGTGACCCACTTCTATAGTGCCACCAAGTATGCCGTCACTGCGCTGACAGAGGGACT GAGGCAAGAGCTTCGGGAGGCCCAGACCCACATCCGAGCCACGTGCATCTCTCCAGGTGTGGTGG AGACACAATTCGCCTTCAAACTCCACGACAAGGACCCTGAGAAGGCAGCTGCCACCTATGAGCAA ATGAAGTGTCTCAAACCCGAGGATGTGGCCGAGGCTGTTATCTACGTCCTCAGCACCCCCGCACA CATCCAGATTGGAGACATCCAGATGAGGCCCACGGAGCAGGTGACCTAGTGACTGTGGGAGCTCC TCCTTCCCTCCCACCCTTCATGGCTTGCCTCCTGCCTCTGGATTTTAGGTGTTGATTTCTGGAT TCATCTTGTCAAATTGCTTCAGTTGTAAATGTGAAAAATGGGCTGGGGAAAGGAGGTGGTGTCCC TAATTGTTTTACTTGTTAACTTGTTCTTGTGCCCCTGGGCACTTGGCCTTTGTCTGCTCTCAGTG TCTTCCCTTTGACATGGGAAAGGAGTTGTGGCCAAAATCCCCATCTTCTTGCACCTCAACGTCTG TGGCTCAGGGCTGGGGTGGCAGAGGGAGGCCTTCACCTTATATCTGTGTTGTTATCCAGGGCTCC AGCCCAGTCTTGGCTTCTTGTCCCCTCCTGGGGTCATCCCTCCACTCTGACTCTGACTATGGCAG CAGAACACCAGGGCCTGGCCCAGTGGATTTCATGGTGATCATTAAAAAAAGAAAAATCGCAACCAA AAAAAAAAA

 $\label{thm:colsing} MARPGMERWRDRLALVTGASGGIGAAVARALVQQGLKVVGCARTVGNIEELAAECKSAGYPGTLI\\ PYRCDLSNEEDILSMFSAIRSQHSGVDICINNAGLARPDTLLSGSTSGWKDMFNVNVLALSICTR\\ EAYQSMKERNVDDGHIININSMSGHRVLPLSVTHFYSATKYAVTALTEGLRQELREAQTHIRATC\\ ISPGVVETQFAFKLHDKDPEKAAATYEQMKCLKPEDVAEAVIYVLSTPAHIQIGDIQMRPTEQVT\\ OUR STREET ST$ 

### Important features of the protein:

Signal peptide:

amino acids 1-17

### N-myristoylation sites.

amino acids 18-24, 21-27, 22-28, 24-30, 40-46, 90-96, 109-115, 199-205

### Short-chain alcohol dehyrogenase.

amino acids 30-42, 104-114

 ${\tt AACTTCTAC} {\tt ATG} {\tt GGCCTCCTGCTGCTGGTGGTCTTCCTCAGCCTCCTGCCGGTGGCCTACACCAT}$ CATGTCCCTCCCACCCTCCTTTGACTGCGGGCCGTTCAGGTGCAGAGTCTCAGTTGCCCGGGAGC ACCTCCCTCCCGAGGCAGTCTGCTCAGAGGGCCTCGGCCCAGAATTCCAGTTCTGGTTTCATGC CAGCCTGTAAAAGGCCATGGAACTTTGGGTGAATCACCGATGCCATTTAAGAGGGTTTTCTGCCA GGATGGAAATGTTAGGTCGTTCTGTGTCTGCGCTGTTCATTTCAGTAGCCACCAGCCACCTGTGG TTAATTTTTAACTGATAGTTGTACATATTTGGGGGTACATGTGATATTTGGATACATGTATACAA TTAGACAGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGGTGCCATCTCAGCTTACTGCAAC CTCTGCCTGCCAGGTTCAAGCGATTCTCATGCCTCCACCTCCCAAGTAGCTGGGACTACAGGCAT GCACCACAATGCCCAACTAATTTTTGTATTTTTAGTAGAGACGGGGTTTTGCCATGTTGCCCAGG GGCGTGAGCCACCGTGCCTGGCCTAAACATTTATCTTTTCTTTGTGTTGGGAACTTTGAAATTAT ACAATGAATTATTGTTAACTGTCATCTCCCTGCTGTGCTATGGAACACTGGGACTTCTTCCCTCT ATCTAACTGTATATTTGTACCAGTTAACCAACCGTACTTCATCCCCACTCCTCTATCCTTCCC AACCTCTGATCACCTCATTCTACCTCTACCTCCATGAGATCCACTTTTTTAGCTCCCACATGTG AGTAAGAAAATGCAATATTTGTCTTTCTGTGCCTGGCTTATTTCACTTAACATAATGACTTCCTG TTCCATCCATGTTGCTGCAAATGACAGGATTTCGTTCTTAATTTCAATTAAAATAACCACACATG **GCAAAAA** 

 ${\tt MGLLLLVLFLSLLPVAYTIMSLPPSFDCGPFRCRVSVAREHLPSRGSLLRGPRPRIPVLVSCQPV} \\ {\tt KGHGTLGESPMPFKRVFCQDGNVRSFCVCAVHFSSHQPPVAVECLK}$ 

Important features of the protein:
Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 86-92

Zinc carboxypeptidases, zinc-binding region 2 signature.

amino acids 68-79

ATCTTCCTCATCGGGACTAAAATTGGGCTGTTCCTTCAAGTAGCACCTCTATCAGTTATGGCTAAATCCTG TCCATCTGTGTGTCGCTGCGATGCGGGTTTCATTTACTGTAATGATCGCTTTCTGACATCCATTCCAACAG TTGAAAAACTTGCTGAAAGTAGAAAGAATATACCTATACCACAACAGTTTAGATGAATTTCCTACCAACCT CCCAAAGTATGTAAAAGAGTTACATTTGCAAGAAAATAACATAAGGACTATCACTTATGATTCACTTTTCAA AAATTCCCTATCTGGAAGAATTACATTTAGATGACAACTCTGTCTCTGCAGTTAGCATAGAAGAGGGAGCA TTCCGAGACACTATCTCCGACTGCTTTTCCTGTCCCGTAATCACCTTAGCACAATTCCCTGGGGTTT GCCCAGGACT AT AGAAGAACTACGCTTGGATGAT AATCGCATATCCACTATTTCATCACCATCTCTTCAAG GTCTCACTAGTCTAAAACGCCTGGTTCTAGATGGAAACCTGTTGAACAATCATGGTTTAGGTGACAAAGTT TTCTTCAACCTAGTTAATTTGACAGAGCTGTCCCTGGTGCGGAATTCCCTGACTGCTGCACCAGTAAACCT TCCAGGCACA AACCTGAGGA AGCTTTATCTTCAAGATA ACCACATCA ATCGGCTGCCCCCAA ATGCTTTTT CTTATCTAAGGCAGCTCTATCGACTGGATATGTCCAATAATAACCTAAGTAATTTACCTCAGGGTATCTTT GATGATTTGGACAATATAACACAACTGATTCTTCGCAACAATCCCTGGTATTGCGGGTGCAAGATGAAATG AGGTTCGTGGGATGGCTATTAAGGATCTCAATGCAGAACTGTTTGATTGTAAGGACAGTGGGATTGTAAGC ACCATTCAGATAACCACTGCAATACCCAACACAGTGTATCCTGCCCAAGGACAGTGGCCAGCTCCAGTGAC CAAACAGCCAGATATTAAGAACCCCAAGCTCACTAAGGATCAACAAACCACAGGGAGTCCCTCAAGAAAAA CAATTACAATTACTGTGAAGTCTGTCACCTCTGATACCATTCATATCTCTTGGAAACTTGCTCTACCTATG ACTGCTTTGAGACTCAGCTGGCTTAAACTGGGCCATAGCCCGGCATTTGGATCTATAACAGAAACAATTGT AACAGGGGAACGCAGTGAGTACTTGGTCACAGCCCTGGAGCCTGATTCACCCTATAAAGTATGCATGGTTC CCATGGAAACCAGCAACCTCTACCTATTTGATGAAACTCCTGTTTGTATTGAGACTGAAACTGCACCCCTT TTTGGCTGCCATCATTGGTGGGGCTGTGGCCCTGGTTACCATTGCCCTTCTTGCTTTAGTGTGTTGGTATG TTCATAGGAATGGATCGCTCTTCTCAAGGAACTGTGCATATAGCAAAGGGAGGAGAAGAAAGGATGACTAT GCAGAAGCTGGCACTAAGAAGGACAACTCTATCCTGGAAATCAGGGAAACTTCTTTTCAGATGTTACCAAT GT

MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRCDAGFIYCNDRFLTSIPTGIPEDATTLYL QNNQINNAGIPSDLKNLLKVERIYLYHNSLDEFPTNLPKYVKELHLQENNIRTITYDSLSKIPYL EELHLDDNSVSAVSIEEGAFRDSNYLRLLFLSRNHLSTIPWGLPRTIEELRLDDNRISTISSPSL QGLTSLKRLVLDGNLLNNHGLGDKVFFNLVNLTELSLVRNSLTAAPVNLPGTNLRKLYLQDNHIN RVPPNAFSYLRQLYRLDMSNNNLSNLPQGIFDDLDNITQLILRNNPWYCGCKMKWVRDWLQSLPV KVNVRGLMCQAPEKVRGMAIKDLNAELFDCKDSGIVSTIQITTAIPNTVYPAQGQWPAPVTKQPD IKNPKLTKDQQTTGSPSRKTITITVKSVTSDTIHISWKLALPMTALRLSWLKLGHSPAFGSITET IVTGERSEYLVTALEPDSPYKVCMVPMETSNLYLFDETPVCIETETAPLRMYNPTTTLNREQEKE PYKNPNLPLAAIIGGAVALVTIALLALVCWYVHRNGSLFSRNCAYSKGRRRKDDYAEAGTKKDNS ILEIRETSFOMLPISNEPISKEEFVIHTIFPPNGMNLYKNNHSESSSNRSYRDSGIPDSDHSHS

### Important features of the protein:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 531-552

N-glycosylation sites.

amino acids 226-229, 282-285, 296-299, 555-558, 626-629, 633-636

Tyrosine kinase phosphorylation site.

amino acids 515-522

N-myristoylation sites.

amino acids 12-17, 172-177, 208-213, 359-364, 534-539, 556-561, 640-645

Amidation site.

amino acids 567-570

Leucine zipper pattern.

amino acids 159-180

Phospholipase A2 aspartic acid active site.

amino acids 34-44

CCGTCATCCCCTGCAGCCACCCTTCCCAGAGTCCTTTGCCCAGGCCACCCCAGGCTTCTTGGCA GCCCTGCCGGGCCACTTGTCTTCATGTCTGCCAGGGGGAGGTGGGAAGGAGGTGGGAGGAGGGCG TGCAGAGGCAGTCTGGGCTTGGCCAGAGCTCAGGGTGCTGAGCGTGTGACCAGCAGTGAGCAGAG GCCGGCCATGGCCAGCCTGGGGCTGCTGCTCCTGCTCTTACTGACAGCACTGCCACCGCTGTGGT CCTCCTCACTGCCTGGGCTGGACACTGCTGAAAGTAAAGCCACCATTGCAGACCTGATCCTGTCT GCGCTGGAGAGCCACCGTCTTCCTAGAACAGAGGCTGCCTGAAATCAACCTGGATGGCATGGT GGGGGTCCGAGTGCTGGAAGAGCAGCTAAAAAGTGTCCGGGAGAAGTGGGCCCAGGAGCCCCTGC TGCAGCCGCTGAGCCTGCGCGTGGGGGATGCTGGGGGGAGAGCTGGAGGCTGCCATCCAGAGATCC CTCCACTACCTCAAGCTGAGTGATCCCAAGTACCTAAGAGAGTTCCAGCTGACCCTCCAGCCCGG GTTTTGGAAGCTCCCACATGCCTGGATCCACACTGATGCCTCCTTGGTGTACCCCACGTTCGGGC CCCAGGACTCATTCTCAGAGGAGAGAGTGACGTGTGCCTGGTGCAGCTGCTGGGAACCGGGACG GACAGCAGCGAGCCCTGCGGCCTCTCAGACCTCTGCAGGAGCCTCATGACCAAGCCCGGCTGCTC AGGCTACTGCCTGTCCCACCAACTGCTCTTCTTCCTCTGGGCCAGAATGAGGGGATGCACACAGG GACCACTCCAACAGAGCCAGGACTATATCAACCTCTTCTGCGCCAACATGATGGACTTGAACCGC AGAGCTGAGGCCATCGGATACGCCTACCCTGCGGACATCTTCATGGAAAACATCATGTTCTG TGGAATGGGCGCTTCTCCGACTTCTACAAGCTCCGGTGGCTGGAGGCCATTCTCAGCTGGCAGA AACAGCAGGAAGGATGCTTCGGGGAGCCTGATGCTGAAGATGAAGAATTATCTAAAGCTATTCAA TATCAGCAGCATTTTTCGAGGAGAGTGAAGAGGCGAGAAAAACAATTTCCAGATTCTCGCTCTGT TGCTCAGGCTGGAGTACAGTGGCGCAATCTCGGCTCACTGCAACCTTTGCCTCCTGGGTTCAAGC AATTCTCTTGCCTCATCCTCCCGAGTAGCTGGGACTACAGGAGCGTGCCACCATACCTGGCTAAT TTTTATATTTTTTTAGTAGAGACAGGGTTTCATCATGTTGCTCATGCTGGTCTCGAACTCCTGAT CTCAAGAGATCCGCCCACCTCAGGCTCCCAAAGTGTGGGATTA**TAG**GTGTGAGCCACCGTGTCTG GCTGAAAAGCACTTTCAAAGAGACTGTGTTGAATAAAGGGCCAAGGTTCTTGCCACCCAGCACTC ATGGGGGCTCTCTCCCCTAGATGGCTGCTCCTCCCACAACACAGCCACAGCAGTGGCAGCCCTGG GTGGCTTCCTATACATCCTGGCAGAATACCCCCCAGCAAACAGAGAGCCACCCATCCACACCG CCACCACCAAGCAGCCGCTGAGACGGACGGTTCCATGCCAGCTGCCTGGAGGAGGAACAGACCCC TTTAGTCCTCATCCCTTAGATCCTGGAGGGCACGGATCACATCCTGGGAAGAAGGCATCTGGAGG ATAAGCAAAGCCACCCCGACACCCAATCTTGGAAGCCCTGAGTAGGCAGGGCCAGGGTAGGTGGG 

MSARGRWEGGGRRACRGSLGLARAQGAERVTSSEQRPAMASLGLLLLLLLTALPPLWSSSLPGLD
TAESKATIADLILSALERATVFLEQRLPEINLDGMVGVRVLEEQLKSVREKWAQEPLLQPLSLRV
GMLGEKLEAAIQRSLHYLKLSDPKYLREFQLTLQPGFWKLPHAWIHTDASLVYPTFGPQDSFSEE
RSDVCLVQLLGTGTDSSEPCGLSDLCRSLMTKPGCSGYCLSHQLLFFLWARMRGCTQGPLQQSQD
YINLFCANMMDLNRRAEAIGYAYPTRDIFMENIMFCGMGGFSDFYKLRWLEAILSWQKQQEGCFG
EPDAEDEELSKAIQYQQHFSRRVKRREKQFPDSRSVAQAGVQWRNLGSLQPLPPGFKQFSCLILP
SSWDYRSVPPYLANFYIFLVETGFHHVAHAGLELLISRDPPTSGSQSVGL

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 39-56

Tyrosine kinase phosphorylation sites.

amino acids 149-156, 274-282

N-myristoylation sites.

amino acids 10-16, 20-26, 63-69, 208-214

Amidation site.

amino acids 10-14

Glycoprotein hormones beta chain signature 1.

amino acids 230-237

MAAALWGFFPVLLLLLLSGDVQSSEVPGAAAEGSGGSGVGIGDRFKIEGRAVVPGVKPQDWISAA RVLVDGEEHVGFLKTDGSFVVHDIPSGSYVVEVVSPAYRFDPVRVDITSKGKMRARYVNYIKTSE VVRLPYPLQMKSSGPPSYFIKRESWGWTDFLMNPMVMMVLPLLIFVLLPKVVNTSDPDMRREME QSMNMLNSNHELPDVSEFMTRLFSSKSSGKSSSGSSKTGKSGAGKRR

### Important features of the protein:

Signal sequence:

amino acids 1-23

#### Transmembrane domain:

amino acids 161-182

### N-glycosylation site.

amino acids 184-187

### Glycosaminoglycan attachment sites.

amino acids 37-40, 236-239

### cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 151-154

### N-myristoylation sites.

amino acids 33-38, 36-41, 38-44, 229-234

### Amidation site.

amino acids 238-241

#### ATP/GTP-binding site motif A (P-loop).

amino acids 229-236

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGGGGA CCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTAT**ATG**CGTCAATTCCCCAAAACAA GTTTTGACATTTCCCCTGAAATGTCATTCTCTATCTATTCACTGCAAGTGCCTGCTGTTCCAGGC CTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGCCACGACCTGTGC CACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCACGGGAGGCTTGGCAGT TTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCCTCTAGTCTTGCCTTCAGC CTTCTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGGACTGAAGACACTCAATTTGGG AAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATGGATTTTCTGAGATACGGGGCAGTG TGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTAAGGAGGACTGAGTCTTTGCAAGACACA AAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTTGCTAAGACTCTATCTGGACAGGGTATTTAA AAACTACCAGACCCTGACCATTATACTCTCCGGAAGATCAGCAGCCTCGCCAATTCCTTTCTTA CCATCAAGAAGGACCTCCGGCTCTCTCATGCCCACATGACATGCCATTGTGGGGAGGAAGCAATG AAGAAATACAGCCAGATTCTGAGTCACTTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTGAAGGC  $\tt TTTGGGGGAACTAGACATTCTTCTGCAATGGATGGAGGAGACAGAA{\color{red}{\textbf{TAG}}} GAGGAAAGTGATGCTG$ CTGCTAAGAATATTCGAGGTCAAGAGCTCCAGTCTTCAATACCTGCAGAGGAGGAGGCATGACCCCAA CTTCCTTGCATGATTGTCTTTATGCATCCCCAATCTTAATTGAGACCATACTTGTATAAGATTTT ATGTATTTATTTTTTTACTTGGACATGAAACTTTAAAAAAATTCACAGATTATATTTATAACCTG CTAGGGGGGTTATTCATTTGTATTCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGAT ATTTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATTGCAC ATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCCATAATTGTGTATCTTCCAG AAAAAAAAAA

App\_ID=10063579 Page 289 of 320

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRPEIF SSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNLQEIRNG FSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTPDHYTLRKIS SLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALGELDILLQWMEET E

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

TAGCGTGTCCACGATGCGGCTGGGCTCCGGGACTTTCGCTACCTGTTGCGTAGCGATCGAGGTGC CACGGAGCGGAGCCCCAGCGCCCGAACCCTCGGCTGGAGCCAGTTCTAACTGGACCACGCTGCC ACCACCTCTCTCAGTAAAGTTGTTATTGTTCTGATAGATGCCTTGAGAGATGATTTTGTGTTTG GGTCAAAGGGTGTGAAATTTATGCCCTACACAACTTACCTTGTGGAAAAAGGAGCATCTCACAGT TTTGTGGCTGAAGCAAAGCCACCTACAGTTACTATGCCTCGAATCAAGGCATTGATGACGGGGAG CCTTCCTGGCTTTGTCGACGTCATCAGGAACCTCAATTCTCCTGCACTGCTGGAAGACAGTGTGA TAAGACAAGCAAAAGCAGCTGGAAAAAGAATAGTCTTTTATGGAGATGAAACCTGGGTTAAATTA TTCCCAAAGCATTTTGTGGAATATGATGGAACAACCTCATTTTTCGTGTCAGATTACACAGAGGT GGATAATAATGTCACGAGGCATTTGGATAAAGTATTAAAAAGAGGAGATTGGGACATATTAATCC TCCACTACCTGGGGCTGGACCACATTGGCCACATTTCAGGGCCCCAACAGCCCCCTGATTGGGCAG GACGCCTTTACCCAATTTGCTGGTTCTTTGTGGTGACCATGGCATGTCTGAAACAGGAAGTCACG GGGCCTCCTCCACCGAGGAGGTGAATACACCTCTGATTTTAATCAGTTCTGCGTTTGAAAGGAAA CCCGGTGATATCCGACATCCAAAGCACGTCCAATAGACGGATGTGGCTGCGACACTGGCGATAGC CAATGAGAGAGCAGTTGAGATTTTTACATTTGAATACAGTGCAGCTTAGTAAACTGTTGCAAGAG AATGTGCCGTCATATGAAAAAGATCCTGGGTTTGAGCAGTTTAAAATGTCAGAAAGATTGCATGG GAACTGGATCAGACTGTACTTGGAGGAAAAGCATTCAGAAGTCCTATTCAACCTGGGCTCCAAGG TTCTCAGGCAGTACCTGGATGCTCTGAAGACGCTGAGCTTGTCCCTGAGTGCACAAGTGGCCCAG TTCTCACCCTGCTCCTGCTCAGCGTCCCACAGGCACTGCACAGAAAGGCTGAGCTGGAAGTCCCA CTGTCATCTCCTGGGTTTTCTCTGCTCTTTTATTTGGTGATCCTGGTTCTTTCGGCCGTTCACGT GCCTTTCGTTTACCAGACTCTGGTTGAACACCTGGTGTGTCCCAAGTGCTGGCAGTGCCCTGGAC AGGGGCCTCAGGGAAGGACGTGGAGCAGCCTTATCCCAGGCCTCTGGGTGTCCCGACACAGGTG TTCACATCTGTGCTGTCAGGTCAGATGCCTCAGTTCTTGGAAAGCTAGGTTCCTGCGACTGTTAC CAAGGTGATTGTAAAGAGCTGGCGGTCACAGAGGAACAAGCCCCCCAGCTGAGGGGGGTGTGTGAA TCGGACAGCCTCCCAGCAGAGGTGTGGGAGCTGCAGCTGAGGGAAGAAGACAATCGGCCTGGA CACTCAGGAGGGTCAAAAGGAGACTTGGTCGCACCACTCATCCTGCCACCCCCAGAATGCATCCT GCCTCATCAGGTCCAGATTTCTTTCCAAGGCGGACGTTTTCTGTTGGAATTCTTAGTCCTTGGCC TCGGACACCTTCATTCGTTAGCTGGGGAGTGGTGGTGAGGCAGTGAAGAAGAGGCGGATGGTCAC ACTCAGATCCACAGAGCCCAGGATCAAGGGACCCACTGCAGTGGCAGCAGGACTGTTGGGCCCCC ACCCCAACCCTGCACAGCCCTCATCCCCTCTTGGCTTGAGCCGTCAGAGGCCCTGTGCTGAGTGT CTGACCGAGACACTCACAGCTTTGTCATCAGGGCACAGGCTTCCTCGGAGCCAGGATGATCTGTG CTGCACAGTATGTAGTTACCAAAAGAATAAACGGCAATAATTGAGAAAAAAA

MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEHGAEPPAPEPSAGASSNWTTLPPPLF SKVVIVLIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIKALMTGSLPGF VDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGTTSFFVSDYTEVDNNV TRHLDKVLKRGDWDILILHYLGLDHIGHISGPNSPLIGQKLSEMDSVLMKIHTSLQSKERETPLP NLLVLCGDHGMSETGSHGASSTEEVNTPLILISSAFERKPGDIRHPKHVQ

### Important features of the protein:

#### Signal peptide:

amino acids 1-34

#### Transmembrane domain:

amino acids 58-76

### N-glycosylation sites.

amino acids 56-60, 194-198

### N-myristoylation sites.

amino acids 6-12, 52-58, 100-106, 125-131, 233-239, 270-276, 275-281, 278-284

### Amidation site.

amino acids 154-158

### Cell attachment sequence.

amino acids 205-208

GGCACGAGGCAAGCCTTCCAGGTTATCGTGACGCACCTTGAAAGTCTGAGAGCTACTGCCCTACA
GAAAGTTACTAGTGCCCTAAAGCTGGCGCTGGCACTGATGTTACTGCTGCTGTTTGGAGTACAACT
TCCCTATAGAAAACAACTGCCAGCACCTTAAGACCACCTTCAGAGTGAAGAACTTAAAC
CCGAAGAAATTCAGCATTCATGACCAGGATCACAAAGTACTGGTCCTGGACTCTGGGAATCTCAT
AGCAGTTCCAGATAAAAACTACATACGCCCAGAGATCTTCTTTGCATTAGCCTCATCCTTGAGCT
CAGCCTCTGCGGAGAAAGGAAGTCCGATTCTCCTGGGGGTCTCTAAAGGGGAGTTTTGTCTCTAC
TGTGACAAGGATAAAAGGACAAAGTCATCCATCCCTTCAGCTGAAGAAGGAGAAACTGATGAAGCT
GGCTGCCCAAAAGGAATCAGCACGCCGGCCCTTCATCTTTTATAGGGCTCAGGTGGGCTCCTGGA
ACATGCTGGAGTCGGCGGCTCACCCCGGATGGTTCATCTGCACCTCCTGCAATTGTAATGAGCCT
GTTGGGGTGACAGATAAATTTGAGAACAGGAAACACATTGAATTTTCATTTCAACCAGTTTGCAA
AGCTGAAATGAGCCCCAGTGAGGTCAGCGATTAAGAACTGCCCCATTGAACGCCTTCCTCGCTA
ATTTGAACTAATTGTATAAAAAACACCAAACCTGCCCCACT

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 33-36

N-myristoylation site. amino acids 50-55, 87-92

Interleukin-1
amino acids 37-182

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 117-121, 139-143

N-myristoylation site.

amino acids 9-15

 $\tt CTGTGCAGCTCCAGAGGCACACTCCAGAGAGAGCCAAGGTTCTGACGCG{\color{red} ATG} AGGAAG \\$  ${\tt CACCTGAGCTGGTGGTGGCCACTGTCTGCATGCTGCTCTTCAGCCACCTCTCTGCGGTCCA}$ GACGAGGGCATCAAGCACAGAATCAAGTGGAACCGGAAGGCCCTGCCCAGCACTGCCCAGATCA GACTTCGGAGCCGAGGGCAACAGGTACTACGAGGCCAACTACTGGCAGTTCCCCGATGGCATCCA CTACAACGGCTGCTCTGAGGCTAATGTGACCAAGGAGGCATTTGTCACCGGCTGCATCAATGCCA CCCAGGCGGCGAACCAGGGGGAGTTCCAGAAGCCAGACAACAAGCTCCACCAGCAGGTGCTCTGG  ${\tt TCGGGTCACCATGCACCAGCCAGTGCTCCTCTGCCTTCTGGCTTTGATCTGGCTCATGGTGAAAT}$ **AAGCTTGCCAGGAGGCTGGCAGTACAGAGCGCAGCAGCAAATCCTGGCAAGTGACCCAGCT** CTTCTCCCCCAAACCCACGCGTGTTCTGAAGGTGCCCAGGAGCGGCGATGCACTCGCACTGCAAA TGCCGCTCCCACGTATGCGCCCTGGTATGTGCCTGCGTTCTGATAGATGGGGGACTGTGGCTTCT CCGTCACTCCATTCTCAGCCCCTAGCAGAGCGTCTGGCACACTAGATTAGTAGTAAATGCTTGAT GAGAAGAACACATCAGGCACTGCCCACCTGCTTCACAGTACTTCCCAACAACTCTTAGAGGTAG GTGTATTCCCGTTTTACAGATAAGGAAACTGAGGCCCAGAGAGCTGAAGTACTGCACCCAGCATC ACCAGCTAGAAAGTGGCAGAGCCAGGATTCAACCCTGGCTTGTCTAACCCCAGGTTTTCTGCTCT GTCCAATTCCAGAGCTGTCTGGTGATCACTTTATGTCTCACAGGGACCCACATCCAAACATGTAT 

 $\label{thm:local_point} $$\operatorname{MRKHLSWWWLATVCMLLFSHLSAVQTRGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRK$$$ $$\operatorname{LDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNKLHQQVLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLALIWLMVK$$$ 

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 157-171

N-glycosylation sites.

amino acids 98-102, 110-114

Tyrosine kinase phosphorylation site.

amino acids 76-83

N-myristoylation sites.

amino acids 71-77, 88-94, 93-99, 107-113, 154-160

Amidation site.

amino acids 62-66

 $\label{thm:cotocca} \textbf{GCCTTGGCCTCCAAAGGGCTGGGATTATAGGCGTGACCACCATGTCTGGTCCAGAGTCTCATTT} \\ \textbf{CCTGATGATTTATAGACTCAAAGAAAACTCATGTTCAGAAGCTCTCTTCTTCTTCTTGGCCTCCTCT} \\ \textbf{CTGTCTTCTTTCCCTCTTTCTTATTTTAATTAGTAGCATCTACTCAGAGTCATGCAAGCTGG} \\ \textbf{AAATCTTTCATTTTGCTTGTCAGTGGGGTAGGTCACTGAGTCTTAGTTTTTATTTTTTTGAAATTT} \\ \textbf{CAACTTTCAGATTCAGGGGGTACATGTGAAGGTTTGTTTTATGAGTATATTGCATGAGTTTTGGGGT} \\ \textbf{TTTGGGGGT} \\ \\ \textbf{TTTGGGGGT} \\ \end{aligned}$ 

MFRSSLLFWPPLCLLSLFLLILISSIYSESCKLEIFHFACQWGRSLSLSFYFLKFQLSDSGGTCE GLFYEYIA

Important features of the protein:
Signal peptide:

amino acids 1-25

N-myristoylation site.

amino acids 62-68

GTCTCCGCGTCACAGGAACTTCAGCACCCACAGGGCGGACAGCGCTCCCCTCTACCTGGAGACTTGAC TCCCGCGCGCCCAACCCTGCTTATCCCTTGACCGTCGAGTGTCAGAGATCCTGCAGCCGCCCAGTCC ACAAAAGCTACAGCTCCAGGAGCCCAGCGCCGGGCTGTGACCCAAGCCGAGCGTGGAAGAATGGGGTT CCTCGGGACCGGCACTTGGATTCTGGTGTTAGTGCTCCCGATTCAAGCTTTCCCCAAACCTGGAGGAA GCAGAAGAAGACAAGATTAAAAAAACATATCCTCCAGAAAACAAGCCAGGTCAGAGCAACTATTCTTT TAAGAAGCTCCCCACTTGATAATAAGTTGAATGTGGAAGATGTTGATTCAACCAAGAATCGAAAACTG ATCGATGATTATGACTCTACTAAGAGTGGATTGGATCATAAATTTCAAGATGATCCAGATGGTCTTCA TCAACTAGACGGGACTCCTTTAACCGCTGAAGACATTGTCCATAAAATCGCTGCCAGGATTTATGAAG AAAATGACAGAGCCGTGTTTGACAAGATTGTTTCTAAACTACTTAATCTCGGCCTTATCACAGAAAGC CAAGCACATACACTGGAAGATGAAGTAGCAGAGGTTTTACAAAAATTAATCTCAAAGGAAGCCAACAA TTATGAGGAGGATCCCAATAAGCCCACAAGCTGGACTGAGAATCAGGCTGGAAAAATACCAGAGAAAG TGACTCCAATGGCAGCAATTCAAGATGGTCTTGCTAAGGGAGAAAACGATGAAACAGTATCTAACACA TTAACCTTGACAAATGGCTTGGAAAGGAGAACTAAAACCTACAGTGAAGACAACTTTGAGGAACTCCA CACTGATTACTATCATGAAAACACTGATTGACTTTGTGAAGATGATGGTGAAATATGGAACAATATCT CCAGAAGAAGGTGTTTCCTACCTTGAAAACTTGGATGAAATGATTGCTCTTCAGACCAAAAACAAGCT AGAAAAAATGCTACTGACAATATAAGCAAGCTTTTCCCAGCACCATCAGAGAAGAGTCATGAAGAAA CAGACAGTACCAAGGAAGCAGCTAAGATGGAAAAGGAATATGGAAGCTTGAAGGATTCCACAAAA GATGATAACTCCAACCCAGGAGGAAAGACAGATGAACCCAAAGGAAAAACAGAAGCCTATTTGGAAGC CATCAGAAAAATATTGAATGGTTGAAGAAAACATGACAAAAAGGGAAATAAAGAAGATTATGACCTTT CAAAGATGAGAGACTTCATCAATAAACAAGCTGATGCTTATGTGGAGAAAGGCATCCTTGACAAGGAA GAAGCCGAGGCCATCAAGCGCATTTATAGCAGCCTG**TAA**AAATGGCAAAAGATCCAGGAGTCTTTCAA CTGTTTCAGAAAACATAATATAGCTTAAAACACTTCTAATTCTGTGATTAAAATTTTTTGACCCAAGG GTTATTAGAAAGTGCTGAATTTACAGTAGTTAAACCTTTTACAAGTGGTTAAAACATAGCTTTCTTCCC 

MGFLGTGTWILVLVLPIQAFPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTYPPENKPG
QSNYSFVDNLNLLKAITEKEKIEKERQSIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTKSGLDHK
FQDDPDGLHQLDGTPLTAEDIVHKIAARIYEENDRAVFDKIVSKLLNLGLITESQAHTLEDEVAE
VLQKLISKEANNYEEDPNKPTSWTENQAGKIPEKVTPMAAIQDGLAKGENDETVSNTLTLTNGLE
RRTKTYSEDNFEELQYFPNFYALLKSIDSEKEAKEKETLITIMKTLIDFVKMMVKYGTISPEEGV
SYLENLDEMIALQTKNKLEKNATDNISKLFPAPSEKSHEETDSTKEEAAKMEKEYGSLKDSTKDD
NSNPGGKTDEPKGKTEAYLEAIRKNIEWLKKHDKKGNKEDYDLSKMRDFINKQADAYVEKGILDK
EEAEAIKRIYSSL

### N-glycosylation sites:

amino acids 68-71, 346-349, 350-353

### Casein kinase II phosphorylation site:

amino acids 70-73, 82-85, 97-100, 125-128, 147-150, 188-191, 217-220, 265-268, 289-292, 305-308, 320-323, 326-329, 362-365, 368-341, 369-372, 382-385, 386-389, 387-390

## N-myristoylation sites:

amino acids 143-148, 239-244

CGGCTCGAGGCTCCCGCCAGGAGAAAGGAACATTCTGAGGGGAGTCTACACCCTGTGGAGCTCAA GATGGTCCTGAGTGGGGCGCTGTGCTTCCGAATGAAGGACTCGGCATTGAAGGTGCTTTATCTGC ATAATAACCAGCTTCTAGCTGGAGGGCTGCATGCAGGGAAGGTCATTAAAGGTGAAGAGATCAGC GTGGTCCCCAATCGGTGGCTGGATGCCAGCCTGTCCCCCGTCATCCTGGGTGTCCAGGGTGGAAG CCAGTGCCTGTCATGTGGGGTGGGGCAGGAGCCGACTCTAACACTAGAGCCAGTGAACATCATGG AGCTCTATCTTGGTGCCAAGGAATCCAAGAGCTTCACCTTCTACCGGCGGGACATGGGGCTCACC TCCAGCTTCGAGTCGCCTGCCTACCCGGGCTGGTTCCTGTGCACGGTGCCTGAAGCCGATCAGCC TGTCAGACTCACCCAGCTTCCCGAGAATGGTGGCTGGAATGCCCCCATCACAGACTTCTACTTCC AGCAGTGTGACTAGGGCAACGTGCCCCCCAGAACTCCCTGGGCAGAGCCAGCTCGGGTGAGGGGT GAGTGGAGGAGCCCATGGCGGACAATCACTCTCTCTGCTCTCAGGACCCCCACGTCTGACTTAG TGGGCACCTGACCACTTTGTCTTCTGGTTCCCAGTTTGGATAAATTCTGAGATTTGGAGCTCAGT CCACGGTCCTCCCCCACTGGATGGTGCTACTGCTGTGGAACCTTGTAAAAACCATGTGGGGTAAA TAATGGTAACTGACAAGTGTTACCCTGAGCCCCGCAGGCCAACCCATCCCCAGTTGAGCCTTATA GAGTCAGGGATCTATGGCCCTTGGCCCAGCCCCACCCCTTCCCTTTAATCCTGCCACTGTCATA TGCTACCTTTCCTATCTCTCCCTCATCATCTTGTTGTGGGCATGAGGAGGTGGTGATGTCAGAA GAAATGGCTCGAGCTCAGAAGATAAAAGATAAGTAGGGTATGCTGATCCTCTTTTAAAAACCCAA GATACAATCAAAATCCCAGATGCTGGTCTCTATTCCCATGAAAAAGTGCTCATGACATATTGAGA TCTTTATAGAAAAAGTCTGGAAGAGTTTACTTCAATTGTAGCAATGTCAGGGTGGTGGCAGTAT AGGTGATTTTTCTTTTAATTCTGTTAATTTATCTGTATTTCCTAATTTTTCTACAATGAAGATGA ATTCCTTGTATAAAAATAAGAAAAGAAATTAATCTTGAGGTAAGCAGAGCAGACATCATCTCTGA TTGTCCTCAGCCTCCACTTCCCCAGAGTAAATTCAAATTGAATCGAGCTCTGCTGCTCTGGTTGG TTGTAGTAGTGATCAGGAAACAGATCTCAGCAAAGCCACTGAGGAGGAGGCTGTGCTGAGTTTGT GTGGCTGGAATCTCTGGGTAAGGAACTTAAAGAACAAAAATCATCTGGTAATTCTTTCCTAGAAG GATCACAGCCCCTGGGATTCCAAGGCATTGGATCCAGTCTCTAAGAAGGCTGCTGTACTGGTTGA ATTGTGTCCCCCTCAAATTCACATCCTTCTTGGAATCTCAGTCTGTGAGTTTATTTGGAGATAAG GTCTCTGCAGATGTAGTTAGTTAAGACAAGGTCATGCTGGATGAAGGTAGACCTAAATTCAATAT GACTGGTTTCCTTGTATGAAAAGGAGAGACACAGAGACAGAGAGACGCGGGGAAGACTATGTA AAGATGAAGGCAGAGATCGGAGTTTTGCAGCCACAAGCTAAGAAACACCAAGGATTGTGGCAACC ATCAGAAGCTTGGAAGAGGCAAAGAAGAATTCTTCCCTAGAGGCTTTAGAGGGATAACGGCTCTG CTGAAACCTTAATCTCAGACTTCCAGCCTCCTGAACGAAGAAGAATAAATTTCGGCTGTTTTAA GCCACCAAGGATAATTGGTTACAGCAGCTCTAGGAAACTAATACAGCTGCTAAAATGATCCCTGT CTCCTCGTGTTTACATTCTGTGTGTCCCCTCCCACAATGTACCAAAGTTGTCTTTGTGACCAA TAGAATATGCCAGAAGTGATGCCACTTCCAAGATTAGGTTATAAAAGACACTGCAGCTTC AAGCTAGCTGCCATGCTATGAGCAGGCCTATAAAGAGACTTACGTGGTAAAAAATGAAGTCTCCT 

 ${\tt MVLSGALCFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEEISVVPNRWLDASLSPVILGVQGGS}$   ${\tt QCLSCGVGQEPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWFLCTVPEADQP}$   ${\tt VRLTQLPENGGWNAPITDFYFQQCD}$ 

### N-myristoylation sites.

amino acids 29-34, 30-35, 60-65, 63-68, 73-78, 91-96, 106-111

### Interleukin-1 signature.

amino acids 111-131

### Interleukin-1 proteins.

amino acids 8-29, 83-120, 95-134, 64-103

CTTCAGAACAGGTTCTCCTTCCCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA**ATG**GCCGC CCTGCAGAAATCTGTGAGCTCTTTCCTTATGGGGACCCTGGCCACCAGCTGCCTCCTTCTCTGG CCCTCTTGGTACAGGGAGGAGCAGCTGCGCCCATCAGCTCCCACTGCAGGCTTGACAAGTCCAAC TTCCAGCAGCCCTATATCACCAACCGCACCTTCATGCTGGCTAAGGAGGCTAGCTTGGCTGATAA ATCTGATGAAGCAGGTGCTGAACTTCACCCTTGAAGAAGTGCTGTTCCCTCAATCTGATAGGTTC CAGCCTTATATGCAGGAGGTGGTGCCCTTCCTGGCCAGGCTCAGCAACAGGCTAAGCACATGTCA TATTGAAGGTGATGACCTGCATATCCAGAGGAATGTGCAAAAGCTGAAGGACACAGTGAAAAAGC TTGGAGAGAGTGGAGAGATCAAAGCAATTGGAGAACTGGATTTGCTGTTTATGTCTCTGAGAAAT GCCTGCATT**TGA**CCAGAGCAAAGCTGAAAAATGAATAACTAACCCCCTTTCCCTGCTAGAAATAA CAATTAGATGCCCCAAAGCGATTTTTTTTAACCAAAAGGAAGATGGGAAGCCAAACTCCATCATG ATGGGTGGATTCCAAATGAACCCCTGCGTTAGTTACAAAGGAAACCAATGCCACTTTTGTTTATA AGACCAGAAGGTAGACTTTCTAAGCATAGATATTTATTGATAACATTTCATTGTAACTGGTGTTC TATACACAGAAAACAATTTATTTTTTAAATAATTGTCTTTTTCCATAAAAAAGATTACTTTCCAT AGAAACATCATTCGATATTGCTACTTGAGTGTAAGGCTAATATTGATATTTATGACAATAATTAT AGAGCTATAACATGTTTATTTGACCTCAATAAACACTTGGATATCCC

App ID=10063579 Page 305 of 320

 $\label{thm:construction} $$ \text{MAALQKSVSSFLMGTLATSCLLLLALLVQGGAAAPISSHCRLDKSNFQQPYITNRTFMLAKEASL}$$ ADNNTDVRLIGEKLFHGVSMSERCYLMKQVLNFTLEEVLFPQSDRFQPYMQEVVPFLARLSNRLS$$ $$ \text{TCHIEGDDLHIQRNVQKLKDTVKKLGESGEIKAIGELDLLFMSLRNACI}$$ 

Important features of the protein:

Signal peptide:

amino acids 1-33

N-glycosylation sites.

amino acids 54-58, 68-72, 97-101

N-myristoylation sites.

amino acids 14-20, 82-88

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 10-21

GGCTTGCTGAAAATAAAATCAGGACTCCTAACCTGCTCCAGTCAGCCTGCTTCCACGAGGCCTGT CAGTCAGTGCCCGACTTGTGACTGAGTGTGCAGTGCCCAGCATGTACCAGGTCAGTGCAGAGGGC  $\tt TGCCAGGTTTGGGGGCCGAGTGGAGTGAGAAACTGGGATCCCAGGGGGAGGGTGCAG{\color{red} AT}$ GAGGGAGCGACCCAGATTAGGTGAGGACAGTTCTCTCATTAGCCTTTTCCTACAGGTGGTTGCAT TCTTGGCAATGGTCATGGGAACCCACACCTACAGCCACTGGCCCAGCTGCTGCCCCAGCAAAGGG CAGGACACCTCTGAGGAGCTGCTGAGGTGGAGCACTGTGCCTGTGCCTCCCCTAGAGCCTGCTAG GCCCAACCGCCACCCAGAGTCCTGTAGGGCCAGTGAAGATGGACCCCTCAACAGCAGGGCCATCT CCCCTGGAGATATGAGTTGGACAGAGACTTGAACCGGCTCCCCCAGGACCTGTACCACGCCCGT TGCCTGTGCCCGCACTGCGTCAGCCTACAGACAGGCTCCCACATGGACCCCCGGGGCAACTCGGA GCTGCTCTACCACAACCAGACTGTCTTCTACAGGCGGCCATGCCATGGCGAGAAGGGCACCCACA  $\tt GTGATGGGCTAGCCGGACCTGCTGGAGGCTGGTCCCTTTTTGGGAAACCTGGAGCCAGGTGTACA$ ACCACTTGCCATGAAGGGCCAGGATGCCCAGATGCTTGGCCCCTGTGAAGTGCTGTCTGGAGCAG CAGGATCCCGGGACAGGATGGGGGGCTTTGGGGAAAACCTGCACTTCTGCACATTTTGAAAAGAG  ${\tt CAGCTGCTGCTTAGGGCCGCGGAAGCTGTTCTCTCATCTCTCAGGAAAGGTTTTCAAA}$ GTTCTGCCCATTCTGGAGGCCACCACTCCTGTCTCTTCTCTTTTTCCCATCCCTGCTACCCTG GCCCAGCACAGGCACTTTCTAGATATTTCCCCCTTGCTGGAGAAGAAGAGCCCCTGGTTTTATT TGTTTGTTTACTCATCACTCAGTGAGCATCTACTTTGGGTGCATTCTAGTGTAGTTACTAGTCTT CTTTATTTAAAAATGAAAAA

MRERPRLGEDSSLISLFLQVVAFLAMVMGTHTYSHWPSCCPSKGQDTSEELLRWSTVPVPPLEPA RPNRHPESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNS ELLYHNQTVFYRRPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG

Important features of the protein:

Signal peptide:

amino acids 1-32

N-glycosylation site.

amino acids 136-140

Tyrosine kinase phosphorylation site.

amino acids 127-135

N-myristoylation sites.

amino acids 44-50, 150-156

 $\tt CCGGCGATGTCGCTGCTGCTAAGCCTGGCCGCGCTGTGCAGGAGCGCCGTACCCCGAGAGCC$ GACCGTTCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAATCC CCGGAGACTTGAGGGACCTCCGAGTAGAACCTGTTACAACTAGTGTTGCAACAGGGGACTATTCA ATTTTGATGAATGTAAGCTGGGTACTCCGGGCAGATGCCAGCATCCGCTTGTTGAAGGCCACCAA GATTTGTGTGACGGCAAAAGCAACTTCCAGTCCTACAGCTGTGAGGTGCAATTACACAGAGG CCTTCCAGACTCAGACCAGACCCTCTGGTGGTAAATGGACATTTTCCTACATCGGCTTCCCTGTA CCCTTCCATGTCTGTGAATTTCACCTCACCAGGCTGCCTAGACCACATAATGAAATATAAAAAAA AGTGTGTCAAGGCCGGAAGCCTGTGGGATCCGAACATCACTGCTTGTAAGAAGAATGAGGAGACA GTAGAAGTGAACTTCACAACCACTCCCCTGGGAAACAGATACATGGCTCTTATCCAACACAGCAC TATCATCGGGTTTTCTCAGGTGTTTGAGCCACACCAGAAGAACAACGCGAGCTTCAGTGGTGA TTCCAGTGACTGGGGATAGTGAAGGTGCTACGGTGCAGCTGACTCCATATTTTCCTACTTGTGGC AGCGACTGCATCCGACATAAAGGAACAGTTGTGCTCTGCCCACAAACAGGCGTCCCTTTCCCTCT GGATAACAACAAAAGCAAGCCGGGAGGCTGGCTGCCTCTCCTCCTGCTGTCTCTGCTGGTGGCCA CATGGGTGCTGGTGGCAGGGATCTATCTAATGTGGAGGCACGAAAGGATCAAGAAGACTTCCTTT TCTACCACCACACTACTGCCCCCCATTAAGGTTCTTGTGGTTTACCCATCTGAAATATGTTTCCA TCACACAATTTGTTACTTCACTGAATTTCTTCAAAACCATTGCAGAAGTGAGGTCATCCTTGAAA AGTGGCAGAAAAAGAAATAGCAGAGATGGGTCCAGTGCAGTGCCACTCAAAAGAAGACCA GCAGACAAGTCGTCTTCCTTCTTTCCAATGACGTCAACAGTGTGTGCGATGGTACCTGTGGCAA GAGCGAGGCCAGTCAGAACTCTCAAGACCTCTTCCCCCTTGCCTTTAACCTTTTCTGCA GTGATCTAAGAAGCCAGATTCATCTGCACAAATACGTGGTGGTCTACTTTAGAGAGATTGATACA AAAGACGATTACAATGCTCTCAGTGTCTGCCCCAAGTACCACCTCATGAAGGATGCCACTGCTTT CTGTGCAGAACTTCTCCATGTCAAGCAGCAGGTGTCAGCAGGAAAAAGATCACAAGCCTGCCACG ATGGCTGCTGCTCCTTGTAG

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYSILMNVSWV LRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIP NANMNEDGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKKNEETVEVNFTTTPLGNRYMALIQH STIIGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNK SKPGGWLPLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTTLLPPIKVLVVYPSEICFHHTICYFTEFL QNHCRSEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLA FNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHD GCCSL

### Important features of the protein:

### Signal peptide:

amino acids 1-14

#### Transmembrane domain:

amino acids 290-309

#### N-glycosylation sites.

amino acids 67 - 71, 103 - 107, 156 - 160, 183 - 187, 197 - 201 and 283 - 287

#### cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 228 - 232 and 319 - 323

## Casein kinase II phosphorylation sites.

amino acids 178 - 182, 402 - 406, 414 - 418 and 453 - 457

### N-myristoylation site.

amino acids 116-122

#### Amidation site.

amino acids 488-452

MTVKTLHGPAMVKYLLLSILGLAFLSEAAARKIPKVGHTFFQKPESCPPVPGGSMKLDIGIINEN QRVSMSRNIESRSTSPWNYTVTWDPNRYPSEVVQAQCRNLGCINAQGKEDISMNSVPIQQETLVV RRKHQGCSVSFQLEKVLVTVGCTCVTPVIHHVQ

Signal sequence:

amino acids 1-30

N-glycosylation site.

amino acids 83-87

N-myristoylation sites.

amino acids 106-111, 136-141

ACACTGGCCAAACAAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGTCAGGACTCCCAGG ACAGAGAGTGCACAAACTACCCAGCACAGCCCCCTCCGCCCCTCTGGAGGCTGAAGAGGGATTC AGGGCCTCAGGCCTGGGTGCCACCTGGCACCTAGAAGATGCCTGTGCCCTGGTTCTTGCTGTCCT AGAAGGAGACCGACTGTGACCTCTGTCTGCGTGTGGCTGTCCACTTGGCCGTGCATGGGCACTGG GAAGAGCCTGAAGATGAGGAAAAGTTTGGAGGAGCAGCTGACTCAGGGGTGGAGGAGCCTAGGAA TGCCTCTCCAGGCCCAAGTCGTGCTCTCCTTCCAGGCCTACCCTACTGCCCGCTGCGTCCTGC TGGAGGTGCAAGTGCCTGCTGCCCTTGTGCAGTTTTGGTCAGTCTGTGGGCTCTGTGGTATATGAC TGCTTCGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGGTCCTATACTCAGCCCAGGTACGAGAA ACGTGCATCTGGATGTCTCTGAGGAGCAGCACTTCGGCCTCTCCCTGTACTGGAATCAG GTCCAGGGCCCCCAAAACCCCGGTGGCACAAAAACCTGACTGGACCGCAGATCATTACCTTGAA CCACACAGACCTGGTTCCCTGCTCTGTATTCAGGTGTGGCCTCTGGAACCTGACTCCGTTAGGA CGAACATCTGCCCCTTCAGGGAGGACCCCCGCGCACACCAGAACCTCTGGCAAGCCGCCCGACTG CGACTGCTGACCCTGCAGAGCTGCTGCTGGACGCACCGTGCTCGCTGCCCGCAGAAGCGGCACT GTGCTGGCGGGTCCGGGTGGGGACCCCTGCCAGCCACTGGTCCCACCGCTTTCCTGGGAGAACG TCACTGTGGACAAGGTTCTCGAGTTCCCATTGCTGAAAGGCCACCCTAACCTCTGTGTTCAGGTG AACAGCTCGGAGAAGCTGCAGCTGCAGGAGTGCTTGTGGGCTGACTCCCTGGGGCCTCTCAAAGA CGATGTGCTACTGTTGGAGACACGAGGCCCCCAGGACAACAGATCCCTCTGTGCCTTGGAACCCA CAAGACCTGCAGTCAGGCCAGTGTCTGCAGCTATGGGACGATGACTTGGGAGCGCTATGGGCCTG CTGCGCTTTCCCTCATCCTCCTTCTCAAAAAGGATCACGCGAAAGGGTGGCTGAGGCTCTTGAAA CAGGACGTCCGCTCGGGGGCCGCCAGGGGCCGCGCGCTCTGCTCCTCTACTCAGCCGATGA CTCGGGTTTCGAGCGCCTGGTGGGCCCCTGGCGTCGGCCCTGTGCCAGCTGCCGCTGCGCGTGG CCGTAGACCTGTGGAGCCGTCGTGAACTGAGCGCGCAGGGGCCCGTGGCTTGGTTTCACGCGCAG GTGCAGCGAGTGGCTACAGGATGGGGTGTCCGGGCCCGGGGCGCACGCCCGCACGACGCCTTCC GCGCCTCGCTCAGCTGCCTGCCCGACTTCTTGCAGGGCCGGGCGCCCCGGCAGCTACGTGGGG GCCTGCTTCGACAGGCTGCTCCACCCGGACGCCGTACCCGCCCTTTTCCGCACCGTGCCCGTCTT CACACTGCCCTCCCAACTGCCAGACTTCCTGGGGGCCCTGCAGCAGCCTCGCGCCCCGCGTTCCG CGGGACT**TAA**ATAAAGGCAGACGCTGTTTTTCTAAAAAAA

MPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLWDSDILCLPGDIVPAPGPVLAPTHLQTELV LRCQKETDCDLCLRVAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVVLSFQAYPTARCVLLEV QVPAALVQFGQSVGSVVYDCFEAALGSEVRIWSYTQPRYEKELNHTQQLPALPWLNVSADGDNVHLVLNVS EEQHFGLSLYWNQVQGPPKPRWHKNLTGPQIITLNHTDLVPCLCIQVWPLEPDSVRTNICPFREDPRAHQN LWQAARLRLLTLQSWLLDAPCSLPAEAALCWRAPGGDPCQPLVPPLSWENVTVDKVLEFPLLKGHPNLCVQ VNSSEKLQLQECLWADSLGPLKDDVLLLETRGPQDNRSLCALEPSGCTSLPSKASTRAARLGEYLLQDLQS GQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLILLLKKDHAKGWLRLLKQDVRSGAAARG RAALLLYSADDSGFERLVGALASALCQLPLRVAVDLWSRRELSAQGPVAWFHAQRRQTLQEGGVVVLLFSP GAVALCSEWLQDGVSGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTVPVFT LPSQLPDFLGALQQPRAPRSGRLQERAEQVSRALQPALDSYFHPPGTPAPGRGVGPGAGPGAGDGT

#### Signal sequence:

amino acids 1-20

#### Transmembrane domain.

amino acids 453-475

### N-glycosylation sites.

amino acids 118-121, 186-189, 198-201, 211-214, 238-241, 248-251, 334-337, 357-360, 391-394

### Glycosaminoglycan attachment site.

amino acids 583-586

#### cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 552-555

### N-myristoylation sites.

amino acids 107-112, 152-157, 319-324, 438-443, 516-521, 612-617, 692-697, 696-701, 700-705

App ID=10063579

GCTCACGCCCCTGAGGACCCCTCGGATCTGCTCCAGCACGTGAAATTCCAGTCCAGCAACTTTGA AAACATCCTGACGTGGGACAGCGGGCCAGAGGGCACCCCAGACACGGTCTACAGCATCGAGTATA AGACGTACGGAGAGAGGGACTGGGTGGCAAAGAAGGGCTGTCAGCGGATCACCCGGAAGTCCTGC AACCTGACGGTGGAGACGGGCAACCTCACGGAGCTCTACTATGCCAGGGTCACCGCT GTCAGTGCGGGAGGCCGGTCAGCCACCAAGATGACTGACAGGTTCAGCTCTCTGCAGCACCACTAC CCTCAAGCCACCTGATGTGACCTGTATCTCCAAAGTGAGATCGATTCAGATGATTGTTCATCCTA CCCCCACGCCAATCCGTGCAGGCGATGGCCACCGGCTAACCCTGGAAGACATCTTCCATGACCTG TTCTACCACTTAGAGCTCCAGGTCAACCGCACCTACCAAATGCACCTTGGAGGGAAGCAGAGAA ATATGAGTTCTTCGGCCTGACCCCTGACACAGAGTTCCTTGGCACCATCATGATTTGCGTTCCCA CCTGGGCCAAGGAGTGCCCCCTACATGTGCCGAGTGAAGACACTGCCAGACCGGACATGGACC TACTCCTTCTCCGGAGCCTTCCTGTTCTCCATGGGCTTCCTCGTCGCAGTACTCTGCTACCTGAG CTACAGATATGTCACCAAGCCGCCTGCACCTCCCAACTCCCTGAACGTCCAGCGAGTCCTGACTT TCCAGCCGCTGCGCTTCATCCAGGAGCACGTCCTGATCCCTGTCTTTGACCTCAGCGGCCCCAGC AGTCTGGCCCAGCCTGTCCAGTACTCCCAGATCAGGGTGTCTGGACCCAGGGAGCCCGCAGGAGC TCCACAGCGGCATAGCCTGTCCGAGATCACCTACTTAGGGCAGCCAGACATCTCCATCCTCCAGC CCTCCAACGTGCCACCTCCCCAGATCCTCTCCCCACTGTCCTATGCCCCAAACGCTGCCCCTGAG GTCGGGCCCCCATCCTATGCACCTCAGGTGACCCCCGAAGCTCAATTCCCATTCTACGCCCCACA GGCCATCTCTAAGGTCCAGCCTTCCTCCTATGCCCCTCAAGCCACTCCGGACAGCTGGCCTCCCT CCTATGGGGTATGCATGGAAGGTTCTGGCAAAGACTCCCCCACTGGGACACTTTCTAGTCCTAAA CACCTTAGGCCTAAAGGTCAGCTTCAGAAAGAGCCACCAGCTGGAAGCTGCATGTTAGGTGGCCT TTCTCTGCAGGAGGTGACCTCCTTGGCTATGGAGGAATCCCAAGAAGCAAAATCATTGCACCAGC CCCTGGGGATTTGCACAGACAGAACATCTGACCCAAATGTGCTACACAGTGGGGAGGAAGGGACA CCACAGTACCTAAAGGGCCAGCTCCCCCTCCTCTCCTCAGTCCAGATCGAGGGCCACCCCATGTC CCTCCCTTTGCAACCTCCTTCCGGTCCATGTTCCCCCTCGGACCAAGGTCCAAGTCCCTGGGGCC TGCTGGAGTCCCTTGTGTGTCCCAAGGATGAAGCCAAGAGCCCAGCCCCTGAGACCTCAGACCTG GAGCAGCCCACAGAACTGGATTCTCTTTTCAGAGGCCTGGCCCTGACTGTGCAGTGGGAGTCC**TG** AGGGGAATGGGAAAGGCTTGGTGCTTCCTCCCTGTCCCTACCCAGTGTCACATCCTTGGCTGTCA ATCCCATGCCTGCCCATGCCACACACTCTGCGATCTGGCCTCAGACGGGTGCCCTTGAGAGAAGC AGAGGGAGTGGCATGCAGGGCCCCTGCCATGGGTGCGCTCCTCACCGGAACAAAGCAGCATGATA AGGACTGCAGCGGGGGGGCTCTGGGGAGCAGCTTGTGTAGACAAGCGCGTGCTCGCTGAGCCCTG CAAGGCAGAATGACAGTGCAAGGAGAAATGCAGGGAAACTCCCGAGGTCCAGAGCCCCACCTC CTAACACCATGGATTCAAAGTGCTCAGGGAATTTGCCTCTCCTTGCCCCATTCCTGGCCAGTTTC ACAATCTAGCTCGACAGAGCATGAGGCCCCTGCCTCTTCTGTCATTGTTCAAAGGTGGGAAGAGA GCCTGGAAAAGAACCAGGCCTGGAAAAGAACCAGAAGGAGGCTGGGCAGAACCAGAACAACCTGC TTCCCAGCCAGGGCAACTGCCTGACGTTGCACGATTTCAGCTTCATTCCTCTGATAGAACAAAGC ATCCTGAGAATGGGGTTTGAAAGGAAGGTGAGGGCTGTGGCCCCTGGACGGGTACAATAACACAC TGTACTGATGTCACAACTTTGCAAGCTCTGCCTTGGGTTCAGCCCATCTGGGCTCAAATTCCAGC CTCACCACTCACAAGCTGTGTGACTTCAAACAAATGAAATCAGTGCCCAGAACCTCGGTTTCCTC ATCTGTAATGTGGGGATCATAACACCTACCTCATGGAGTTGTGGTGAAGATGAAATGAAGTCATG TCTTTAAAGTGCTTAATAGTGCCTGGTACATGGGCAGTGCCCAATAAACGGTAGCTATTTAAAAA AAAAAAA

MRTLLTILTVGSLAAHAPEDPSDLLQHVKFQSSNFENILTWDSGPEGTPDTVYSIEYKTYGERDW VAKKGCQRITRKSCNLTVETGNLTELYYARVTAVSAGGRSATKMTDRFSSLQHTTLKPPDVTCIS KVRSIQMIVHPTPTPIRAGDGHRLTLEDIFHDLFYHLELQVNRTYQMHLGGKQREYEFFGLTPDT EFLGTIMICVPTWAKESAPYMCRVKTLPDRTWTYSFSGAFLFSMGFLVAVLCYLSYRYVTKPPAP PNSLNVQRVLTFQPLRFIQEHVLIPVFDLSGPSSLAQPVQYSQIRVSGPREPAGAPQRHSLSEIT YLGQPDISILQPSNVPPPQILSPLSYAPNAAPEVGPPSYAPQVTPEAQFPFYAPQAISKVQPSSY APQATPDSWPPSYGVCMEGSGKDSPTGTLSSPKHLRPKGQLQKEPPAGSCMLGGLSLQEVTSLAM EESQEAKSLHQPLGICTDRTSDPNVLHSGEEGTPQYLKGQLPLLSSVQIEGHPMSLPLQPPSGPC SPSDQGPSPWGLLESLVCPKDEAKSPAPETSDLEQPTELDSLFRGLALTVQWES

#### Signal sequence.

amino acids 1-17

#### Transmembrane domain.

amino acids 233-250

### N-glycosylation sites.

amino acids 80-83, 87-90, 172-175

### N-myristoylation sites.

amino acids 11-16, 47-52, 102-107, 531-536, 565-570

 $\tt TGGCCTACTGGAAAAAAAAAAAAAAAAAAAAAAGTCACCCGGGCCCGCGGTGGCCACAAC \textbf{ATG} GGCCTACTGGCCACAAC \textbf{ATG} GGCCACAAC \textbf{ATG} GGCCTACTGGCCACAAC \textbf{ATG} GGCCCACAAC \textbf{ATG} GGCCACAAC \textbf{ATG} GGCCCACAAC \textbf{ATG} GGCCCACAAC \textbf{ATG} GGCCCACAAC \textbf{ATG$  ${\tt TCGGATCTCAGCCACGGACGGCGTTTCTCGGACCTCAAAGTGTGCGGGGACGAAGAGTGCAGCAT}$ GTTAATGTACCGTGGGAAAGCTCTTGAAGACTTCACGGGCCCTGATTGTCGTTTTTGTGAATTTTA AAAAAGGTGACGATGTATATGTCTACTACAAACTGGCAGGGGGATCCCTTGAACTTTGGGCTGGA AGTGTTGAACACAGTTTTGGATATTTTCCAAAAGATTTGATCAAGGTACTTCATAAATACACGGA AGAAGAGCTACATATTCCAGCAGATGAGACAGACTTTGTCTGCTTTGAAGGAGGAGAAGATGATT TTAATAGTTATAATGTAGAAGAGCTTTTAGGATCTTTGGAACTGGAGGACTCTGTACCTGAAGAG TCGAAGAAGCTGAAGAAGTTTCTCAGCACAGAGAGAAATCTCCTGAGGAGTCTCGGGGGCGTGA  ${\tt ACTTGACCCTGTGCCTGAGCCCGAGGCATTCAGAGCTGATTCAGAGGATGGAGAGGTGCTTTCT}$ CAGAGAGCACCGAGGGGCTGCAGGGACAGCCCTCAGCTCAGGAGAGCCACCCTCACACCAGCGGT CCTGCGGCTAACGCTCAGGGAGTGCAGTCTTCGTTGGACACTTTTGAAGAAATTCTGCACGATAA ATTGAAAGTGCCGGGAAGCGAAAGCAGAACTGGCAATAGTTCTCCTGCCTCGGTGGAGCGGAGA AGACAGATGCTTACAAAGTCCTGAAAACAGAAATGAGTCAGAGAGGAAGTGGACAGTGCGTTATT AAAAAAAAAAAAAAAAAA

MAAAPGLLFWLFVLGALWWVPGQSDLSHGRRFSDLKVCGDEECSMLMYRGKALEDFTGPDCRFVN FKKGDDVYVYYKLAGGSLELWAGSVEHSFGYFPKDLIKVLHKYTEEELHIPADETDFVCFEGGRD DFNSYNVEELLGSLELEDSVPEESKKAEEVSQHREKSPEESRGRELDPVPEPEAFRADSEDGEGA FSESTEGLQGQPSAQESHPHTSGPAANAQGVQSSLDTFEEILHDKLKVPGSESRTGNSSPASVER EKTDAYKVLKTEMSQRGSGQCVIHYSKGFRWHQNLSLFYKDCF

Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 294-298

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34

Tyrosine kinase phosphorylation site.

amino acids 67-76

N-myristoylation sites.

amino acids 205-211, 225-231, 277-283

Amidation site.

amino acids 28-32

CCAGGACCAGGGCGCACCGGCTCAGCCTCTCACTTGTCAGAGGCCGGGGAAGAAGCAAAGCGC AACGGTGTGGTCCAAGCCGGGGCTTCTGCTTCGCCTCTAGGACATACACGGGACCCCCTAACTTC AGTCCCCCAAACGCGCACCCTCGAAGTCTTGAACTCCAGCCCCGCACATCCACGCGCGCACACG CGCGGCAGGCGGCAGGTCCCGGCCGAAGGCGATGCGCCAGGGGGTCGGGCAGCTGGGCTCGGGC GGCGGGAGTAGGGCCCGGCAGGGAGGCAGGGAGGCTGCATATTCAGAGTCGCGGGCTGCGCCCTG  ${\tt GGCAGAGGCCGCCTCGCTCCACGCAACACCTGCTGCCACCGCGCCGCG} \underline{{\tt ATG}} {\tt AGCCGCGTGG}$ GGCCAAAAGGTGTGTTTTGCTGACTTCAAGCATCCCTGCTACAAAATGGCCTACTTCCATGAACT GCCTTGAGAATGAAGCAGAACAGAAGTTAATAGAGAGCATGTTGCAAAACCTGACAAAACCCGGG ACAGGGATTTCTGATGGTGATTTCTGGATAGGGCTTTGGAGGAATGGAGATGGGCAAACATCTGG TGCCTGCCCAGATCTCTACCAGTGGTCTGATGGAAGCAATTCCCAGTACCGAAACTGGTACACAG CTTGGGGGTCCCTACCTTTACCAGTGGAATGATGACAGGTGTAACATGAAGCACAATTATATTTG CAAGTATGAACCAGAGATTAATCCAACAGCCCCTGTAGAAAAGCCTTATCTTACAAATCAACCAG GAGACACCCATCAGAATGTGGTTGTTACTGAAGCAGGTATAATTCCCAATCTAATTTATGTTGTT ATACCAACAATACCCCTGCTCTTACTGATACTGGTTGCTTTTTGGAACCTGTTGTTTCCAGATGCT GCATAAAAGTAAAGGAAGAACAAAAACTAGTCCAAACCAGTCTACACTGTGGATTTCAAAGAGTA  ${\tt CCAGAAAAGAAGTGGCATGGAAGTA}{\tt TAA}{\tt TAACTCATTGACTTGGTTCCAGAATTTTGTAATTCT}$  $\overline{\text{GGATCTGTATAAGGAATGGCATCAGAACAATAGCTTGGAATGGCTTGAAATCACAAAGGATCTGC}}$ AAGATGAACTGTAAGCTCCCCTTGAGGCAAATATTAAAGTAATTTTATATGTCTATTATTTCA TTTAAAGAATATGCTGTGCTAATAATGGAGTGAGACATGCTTATTTTGCTAAAGGATGCACCCAA ACTTCAAACTTCAAGCAAATGAAATGGACAATGCAGATAAAGTTGTTATCAACACGTCGGGAGTA TGTGTGTTAGAAGCAATTCCTTTTATTTCTTTCACCTTTCATAAGTTGTTATCTAGTCAATGTAA TGTATATTGTATTGAAATTTACAGTGTGCAAAAGTATTTTACCTTTGCATAAGTGTTTGATAAAA ATGAACTGTTCTAATATTTATTTTTATGGCATCTCATTTTTCAATACATGCTCTTTTGATTAAAG AAACTTATTACTGTTGTCAACTGAATTCACACACACACAAATATAGTACCATAGAAAAAGTTTGT TTTCTCGAAATAATTCATCTTTCAGCTTCTCTGCTTTTGGTCAATGTCTAGGAAATCTCTTCAGA AATAAGAAGCTATTTCATTAAGTGTGATATAAACCTCCTCAAACATTTTACTTAGAGGCAAGGAT TGTCTAATTTCAATTGTGCAAGACATGTGCCTTATAATTATTTTTAGCTTAAAATTAAACAGATT TTGTAATATGTAACTTTGTTAATAGGTGCATAAACACTAATGCAGTCAATTTGAACAAAAGAAG TGACATACACAATATAAATCATATGTCTTCACACGTTGCCTATATAATGAGAAGCAGCTCTCTGA GGGTTCTGAAATCAATGTGGTCCCTCTTTGCCCACTAAACAAAGATGGTTGTTCGGGGTTTGGG ATTGACACTGGAGGCAGATAGTTGCAAAGTTAGTCTAAGGTTTCCCTAGCTGTATTTAGCCTCTG ACTATATTAGTATACAAAGAGGTCATGTGGTTGAGACCAGGTGAATAGTCACTATCAGTGTGGAG ACAAGCACACACACACATTTTAGGAAGGAAAGGAACTACGAAATCGTGTGAAAATGGGTTGG AACCCATCAGTGATCGCATATTCATTGATGAGGGTTTGCTTGAGATAGAAAATGGTGGCTCCTTT CTGTCTTATCTCCTAGTTTCTTCAATGCTTACGCCTTGTTCTTCTCAAGAGAAAGTTGTAACTCT 

App\_ID=10063579 Page 319 of 320

MSRVVSLLLGAALLCGHGAFCRRVVSGQKVCFADFKHPCYKMAYFHELSSRVSFQEARLACESE GGVLLSLENEAEQKLIESMLQNLTKPGTGISDGDFWIGLWRNGDGQTSGACPDLYQWSDGSNSQ YRNWYTDEPSCGSEKCVVMYHQPTANPGLGGPYLYQWNDDRCNMKHNYICKYEPEINPTAPVEK PYLTNQPGDTHQNVVVTEAGIIPNLIYVVIPTIPLLLLILVAFGTCCFQMLHKSKGRTKTSPNQ STLWISKSTRKESGMEV

## Important features of the protein:

Signal peptide:

amino acids 1-21

#### Transmembrane domain:

amino acids 214-235

## N-glycosylation sites.

amino acids 86-89, 255-258

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 266-269

## N-myristoylation sites.

amino acids 27-32, 66-71, 91-96, 93-98, 102-107, 109-114, 140-145, 212-217