Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks

Dawit Anelay

d.anelay1@studenti.unipi.it

Introduction to the problem

300 hours of video are uploaded to YouTube every minute!

- CNN For Image Processing problem . It's has been a powerful approach model.
 - For Learning Spatio-Temporal Representation? For Video Processing,? E.g For Human Action detection?.
- □ A Rewarded Study Approche Performing 3D Convolutions (Encourage Performance on Sport-1M dataset 85.2%).
 - Model: C3D,ResNet-152.
- □ **Problem Computational Cost** and **Memory Demand**. (Model C3D--321MB with 11-layer, ResNet-152--235MB with 152-layer).
 - Model Size has Quadratic Growth Compare to 2D CNN AND Very Difficult to Train Because they are very deep.
- □ **Proposed Idea** Why not recycle off-the-shelf 2D networks for a 3D CNN.
- □ Solution De-Couple 3D CNN = 2D CNN (Spatio-Domain) + 1D CNN (Temporal -Domain).
- A New Architecture Named **P3DResNet** with a new designed Block model that simulate 3D CNN in an **Economic** and **efficient** way.

P3D Blocks and P3D ResNet

- Design issue while decoupling 3D CNN.
- 1 The first issue is about whether the modules of 2D filters on spatial dimension (S) and 1D filters on temporal domain (T) should directly or indirectly influence each other.
- Directly cascaded manner Indirectly-parallel fashion.
- (2) The second issue is whether the two kinds of filters should both directly influence the final output.
- (1) P3D-A:The two kinds of filters can directly influence each other in the same path and only the temporal 1D filters are directly connected to the final output,
 - $(I + T \cdot S) \cdot x t := x t + T (S (x t)) = x t+1$.

Figure 2. Three designs of Pseudo-3D blocks.

- (2) P3D-B: There is no direct influence between S and T, both of them are directly accumulated into the final output
 - $(I + S + T) \cdot xt := xt + S(xt) + T(xt) = xt+1$.
- (3) P3D-C:A compromise between P3D-A and P3D-B, by simultaneously building the direct influences among S, T and the final output.
 - $(I + S + T) \cdot xt := xt + S(xt) + T(xt) = xt+1$.

Bottleneck architectures.

- Three P3D ResNet variants, i.e., P3D-AResNet, P3D-B ResNet and P3D-C ResNet by replacing all the Residual Units in a 50-layer ResNet (ResNet-50) with one certain kind of P3D block, respectively.
- A complete version of P3D ResNet is proposed by mixing all the three P3D blocks from the viewpoint of structural diversity. Residual Units with a chain of

Figure 4. P3D ResNet by interleaving P3D-A, P3D-B and P3D-C.

P3D blocks in the order P3D-A→P3D-B→P3D-C.

- No explicit reason stated why this type of order.
- The speed of the model is very fast and could reach 9 clips per second.

Figure 3. Bottleneck building blocks of Residual Unit and our Pseudo-3D.

Method	Model size	Speed	Accuracy
ResNet-50	92MB	15.0 frame/s	80.8%
P3D-A ResNet	98MB	9.0 clip/s	83.7%
P3D-B ResNet	98MB	8.8 clip/s	82.8%
P3D-C ResNet	98MB	8.6 clip/s	83.0%
P3D ResNet	98MB	8.8 clip/s	84.2%

Table 1. Comparisons of ResNet-50 and different Pseudo-3DResNet variants in terms of model size, speed, and accuracy on <u>UCF101</u>. The speed is reported on one NVidia K40 GPU.

Spatio-Temporal Representation Learning-Result

- The learning conducted on Sports-1M dataset(1.13 million videos annotated with 487 Sports labels).
- P3D ResNet leads to a performance boost against ResNet-152 (2D CNN) and C3D (3D CNN)by 1.8% and 5.3% in terms of top-1 video-level accuracy, respectively.

☐ Video Representation Evaluation on three different
tasks and five popular datasets

1 action recognition - UCF101 and ActivityNet dataset

2 action similarity - does a pair of videos present the same action?"-ASLAN

3 scene recognition on Dynamic Scene and YUPENN sets.

• In all task the model Leads to a performance boost

Method	Pre-train Data	Clip Length	Clip hit@1	Video hit@1	Video hit@5
Deep Video (Single Frame) [10]	ImageNet1K	1	41.1%	59.3%	77.7%
Deep Video (Slow Fusion) [10]	ImageNet1K	10	41.9%	60.9%	80.2%
Convolutional Pooling [37]	ImageNet1K	120	70.8%	72.3%	90.8%
C3D [31]	_	16	44.9%	60.0%	84.4%
C3D[31]	1380K	16	46.1%	61.1%	85.2%
ResNet-152 [7]	ImageNet1K	1	46.5%	64.6%	86.4%
P3D ResNet (ours)	ImageNet1K	16	47.9%	66.4%	87.4%

Table 2. Comparisons in terms of pre-train data, clip length, Top-1 clip-level accuracy and Top-1&5

video-level accuracy on Sports-1M.

Method	Model	Accuracy	AUC
STIP [13]	linear	60.9%	65.3%
MIP [12]	metric	65.5%	71.9%
IDT+FV [19]	metric	68.7%	75.4%
C3D [31]	linear	78.3%	86.5%
ResNet-152 [7]	linear	70.4%	77.4%
P3D ResNet	linear	80.8%	87.9%

Table 5. Action similarity labeling performances on ASLAN benchmark. STIP.STIP: Space-Time Interest Points; MIP: Motion Interchange Patterns; FV: Fisher Vector.

Table 6. The accuracy performance of scene recognition on Dy-

namic Scene and YUPENN sets.

Method	Dynamic Scene	YUPENN	
[3]	43.1%	80.7%	
[5]	77.7%	96.2%	
C3D [31]	87.7%	98.1%	
ResNet-152 [7]	93.6%	99.2%	
P3D ResNet	94.6%	99.5%	

Conclusion

- **Strong points**
- 1 P3D ResNet is an effect way for For Learning Spatio-Temporal Representation .
- 2 Performance improvements are clearly observed when comparing to other feature learning techniques.
- weaknesses
- 1) The speed of the model is consider only with a small video frame size (16 frame -long).
- **■** Futurework
- 1) Attention mechanism
- (2) Extend P3D ResNet learning to other types of inputs, e.g., optical flow or audio.