$O(\Lambda_{QCD})$: The low mass bump

Soft drop grooming parametrically separates non-perturbative, resummation, and fixed-order sensitive regions.

Question:

Can we use this for tuning NP at the LHC?

ATLAS measurement: Phys. Rev. Lett. 121 (2018) 092001

CMS measurement: JHEP 11 (2018) 113

For analytic work on the NP region, see <u>A. Pathak et al.</u>

O(10+ GeV): VBF

Case study: can q/g tagging help disentangle VBF from ggH? At high m_{jj}, jets from ggH are also quark-like - biggest gains expected at lower mass.

Non-trivial gains seem possible!

...for the **proceedings**: signal versus background, modeling, etc.

O(100 GeV): g → bb

g → bb provides a unique opportunity to directly probe the (polarized) gluon fragmentation function

state-ofthe-art seemed strange what does data say?

O(100 GeV): g → bb

Low-stats indication: Vincia + ME corrections w/ helicity shower show same trend as data - prediction confirmed!

Joyeux anniversaire gluons!

$O(\Lambda_{QCD})$: The low mass bump

Important interplay between α_S and NP region: with (re)tuning, potentially (first?) observable at LHC for NP studies a la p227 in LH2015 proceedings.

O(10 GeV): Jet Pull

O(10 GeV): Jet Pull

