CLAIMS

4.

with the top electrode.

1 2

3

What is claimed is:

1	1.	A photovoltaic device, comprising:
2		a nanostructured template made from an n-type first charge transfer-material, the
3		nanostructured template having template elements between about 1 nm and about
4		500 nm in diameter with a template element density of between about 10 ¹²
5		elements /m ² and about 10 ¹⁶ elements /m ² ;
6		a second charge-transfer material conformally coating one or more walls of the
7		template elements leaving additional space, wherein the first charge-transfer
8		material is n-type and the second charge-transfer is p-type; and
9		a third material in the additional space, wherein the third material is a p-type or
10		conducting material that volumetrically interdigitates with the second charge-
11		transfer material,
12		wherein a lowest unoccupied molecular orbital (LUMO) or conduction band of
13		the first charge-transfer material differs from a LUMO or conduction band of the
14		second charge-transfer material by less than about 1 eV, wherein a light
15		absorbance of at least one charge transfer material is greater than about 103/cm at
16		the peak of the absorption spectrum.
1	2.	The device of claim 1 wherein the third charge-transfer material in the form of
2		one or more elongated structures that volumetrically interdigitate with the second
3		charge transfer material.
1	3.	The device of claim 2, further comprising a base electrode and a top electrode,
2		wherein the nanostructured template is disposed between the base electrode and
3		top electrode.

The device of claim 3, wherein the first charge-transfer material is in electrical

contact with the base electrode and the third charge-transfer material is in contact

- 1 5. The device of claim 3, further comprising one or more plugs of material at the tips
- of the elongated structures, wherein the plugs protect against undesired electrical
- 3 contact between the third charge-transfer material and the template and/or base
- 4 electrode.
- 1 6. The device of claim 3 wherein the third charge-transfer material is a transparent
- 2 conductive material.
- 1 7. The device of claim 3 wherein the third charge-transfer material includes an
- 2 organic semiconducting material.
- 1 8. The device of claim 7 wherein the third charge transfer material has a different
- 2 light absorption range and/or a different HOMO/LUMO level than the second
- 3 charge transfer material.
- 1 9. The device of claim 2 wherein one or more of the base electrode and top is a
- 2 transparent electrode.
- 1 10. The device of claim 1 wherein the first charge-transfer material is an inorganic
- 2 material and the second and third charge-transfer materials are organic materials.
- 1 11. The device of claim 1 wherein the first charge-transfer material is an electrically
- 2 semiconductive or conductive material.
- 1 12. The device of claim 1 wherein the second charge transfer material coats the
- template elements up to a level that is substantially even with an upper surface of
- 3 the template.
- 1 13. The device of claim 1 wherein the first, second, or third charge-transfer material
- 2 includes one or more materials from the group of titanium oxide, zinc oxide
- 3 (ZnO), copper oxide, copper sulfide, zirconium oxide, lanthanum oxide, niobium
- 4 oxide, tungsten oxide, tin oxide, indium tin oxide (ITO), strontium oxide,
- 5 calcium/titanium oxide, indium oxide, vanadium oxide, zirconium oxide,
- 6 molybdenum oxide, vanadium oxide, strontium oxide, sodium titanate, potassium

- niobate, silicon, tungsten oxide, cadmium selenide (CdSe), zinc selenide (ZnSe), cadmium suflide (CdS), cadmium telluride (CdTe), cadmium selenide (CdSe), cadmium telluride selenide (CdTeSe), CIS, CISe, CIGS (CuInGaSe₂), copperindium selenide, cadmium oxide, or blends or alloys of two or more of these
- 1 14. The device of claim 1 wherein the first charge-transfer material includes a transparent conductive oxide.

.11

materials.

- 1 15. The device of claim 15 wherein the first charge-transfer material includes titanium oxide or zinc oxide.
- 1 16. The device of claim 15, wherein the second charge-transfer material is a p-type semiconducting material.
- 1 17. The device of claim 1, further comprising an interfacial layer disposed between 2 the first and second charge-transfer materials.
- 1 18. The device of claim 17 wherein the interfacial layer includes one or more 2 materials chosen from the group of fullerenes, doped fullerenes, functionalized 3 fullerenes, C₆₀-COOH, doped functionalized fullerenes, azafullerenes, 4 polymerized fullerenes (doped or undoped), functionalized polymerized fullerenes 5 (doped or undoped), phenyl-C₆₁-butyric acid methyl ester (PCBM), carbon 6 nanotubes, dyes, ruthenium dyes, pigments, organic monomers, oligomers, and 7 polymers, tetra-hydro-thiophene precursor polymers and derivatives thereof, poly-8 phenylene-vinylene and derivatives thereof, conjugated polymers, and/or blends 9 of these materials.
- The device of claim 17 wherein the interfacial layer includes one or more chemicals that can covalently attach to the first charge-transfer material and change a surface energy and/or bonding trap-states and/or attach to dangling-bonds at an exposed surface of the first charge-transfer material and/or introduce a dipole layer that may increase the efficiency for charge extraction and/or reduce detrimental charge recombination.

- 1 20. The device of claim 17 wherein the interfacial layer includes C₆₀ or other fullerenes functionalized with a carboxylic acid moiety.
- 1 21. The device of claim 1 wherein the second charge-transfer material includes two or more complementary charge-transfer materials that are blended together.
- 1 22. The device of claim 1 wherein the second and third charge-transfer materials are both organic materials.
- 1 23. The device of claim 1 wherein the one or more of the second or third charge-2 transfer materials includes a material chosen from the group of thiophene-3 fluorine- or aryl-vinyl- based polymers, copolymers or blends, poly(phenylene) 4 and derivatives thereof, poly(phenylene vinylene) and derivatives thereof, poly(2methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene (MEH-PPV), poly(para-5 6 phenylene vinylene), (PPV), PPV copolymers, poly(thiophene) and derivatives 7 thereof, poly(3-octylthiophene-2,5,-diyl) regioregular, poly(3-octylthiophene-2,5,-8 diyl) regiorandom, poly (3-hexylthiophene) (P3HT), poly(3-hexylthiophene-2,5-9 diyl) regioregular, poly(3-hexylthiophene-2,5-diyl) regiorandom. 10 poly(thienylenevinylene) and derivatives thereof, poly(isothianaphthene) and 11 derivatives thereof, tetra-hydro-thiophene precursors and derivatives thereof. 12 poly-phenylene-vinylene and derivatives, organometallic polymers, polymers 13 containing perylene units, poly(squaraines) and their derivatives, discotic liquid 14 crystals polyfluorenes, polyfluorene copolymers, polyfluorene-based copolymers 15 and blends, polyfluorene-based copolymers co-polymerized and/or blended with 16 charge transporting compounds, polyfluorene-based copolymers co-polymerized 17 and/or blended with tri-phenyl-amines and/or derivatives, polyfluorene-based 18 copolymers co-polymerized and/or blended with light-absorbing compounds, 19 polyfluorene-based copolymers co-polymerized and/or blended with fused 20 thiophene rings and derivatives or hetero-atom ring compounds with or without 21 substituents, pigments, dyes, or fullerenes, and mixtures of these materials.

- 1 24. The device of claim 1, wherein one or more of the second and third charge-2 transfer material is a pigment, dye or small molecule chosen from the group of 3 organic pigments or dyes, azo-dyes having azo chromofores (-N=N-) linking 4 aromatic groups, phthalocyanines including metal-free phthalocyanine; (HPc), 5 Zinc phthalocyanine (ZnPc), Copper phthalocyanine (CuPc), perylenes, 6 naphthalocyanines, squaraines, merocyanines and their respective derivatives, 7 poly(silanes), poly(germinates), 2,9-Di(pent-3-yl)-anthra[2,1,9-def:6,5,10-8 d'e'f'|diisoquinoline-1,3,8,10-tetrone, and 2,9-Bis-(1-hexyl-hept-1-yl)-9 anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10-tetrone, pentacene and/or 10 pentacene precursors, and mixtures of two or more of these materials.
- 1 25. The device of claim 1 wherein one or more of the second or third charge-transfer 2 materials includes one or more materials chosen from the group of fullerenes. 3 doped fullerenes, functionalized fullerenes, doped functionalized fullerenes, 4 azafullerenes, polymerized fullerenes (doped or undoped), functionalized 5 polymerized fullerenes (doped or undoped), carbon nanotubes, dves, ruthenium 6 dyes, pigments, organic monomers, oligomers, and polymers, tetra-hydro-7 thiophene precursor polymers and derivatives thereof, poly-phenylene-vinylene 8 and derivatives thereof, conjugated polymers, and mixture of these materials.
- The device of claim 1 wherein the template elements are in the form of hollow tubes that protrude from the template with spaces between the sidewalls of the tubes.
- 1 27. The device of claim 1 wherein the third charge transfer material includes one or more transparent conducting materials.
- The device of claim 27 wherein the one or more transparent conducting materials include PEDOT, PEDOT doped with a dopant PEDOT doped with polystyrene sulfonic acid (PSS), doped 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (doped spiro-MeOTAD), doped spiro-MeOTAD, polyaniline

	doped with a dopant, and/or polyaniline doped with a dopant polystyrene sulfonic acid (PSS)).
29.	The device of claim 27 wherein the one or more transparent conducting materials
	conformally coat and interdigitate into the second charge transfer material.
30.	The device of claim 1 wherein the second and third charge-transfer materials are
	both inorganic materials.
31.	The device of claim 1 wherein the second and third charge transfer materials are
	the same material.
32.	A photovoltaic device, comprising:
	a base electrode;
	a top electrode;
	a nanostructured template disposed between the base electrode and top electrode,
	wherein the nanostructured template in made of an n-type material, the
	nanostructured template having template elements between about 1 nm and about
	500 nm in diameter with a template element density of between about 1012
	elements /m ² and about 10 ¹⁶ elements /m ² ;
	a p-type material coating on one or more walls of the template elements in a way
	that leaves additional space; and
	a charge-transfer material in the additional space, wherein the charge-transfer
	material volumetrically interdigitates with the p-type material.
33.	A method for making a photovoltaic device, comprising the steps of:
	forming a nanostructured template from a first charge-transfer material, the
	nanostructured template having template elements between about 1 nm and about
	500 nm in diameter with a template element density of between about 10 ¹²
	elements /m ² and about 10 ¹⁶ elements /m ² ;
	coating one or more walls of the template elements with a second charge-transfer
	material in a way that leaves additional space, wherein the second charge-transfer
	material has complementary charge-transfer properties with respect to the first
	30. 31. 32.

9		charge-transfer material; and
10		filling the additional space with a third charge-transfer material.
1	34.	The method of claim 33 wherein the first charge-transfer material includes
2		titanium oxide or zinc oxide.
1.	35.	The method of claim 33 wherein forming a nanostructured template includes
2		anodizing a layer of metal.
1	36.	The method of claim 33 further comprising disposing an interfacial layer between
2		the second and third charge transfer materials.
1	37.	The method of claim 33 wherein the third charge-transfer material includes one or
2		more elongated structures that interdigitate with the second charge transfer
3		material.
1	38.	The method of claim 37 further comprising capping one or more tips of the
2		elongated structures with a short-proofing material.
1	39.	The method of claim 33 wherein coating one or more walls of the template
2		elements with the second charge-transfer material includes depositing the second
3		charge transfer material on the walls of the nanostructured template.
1	40.	The method of claim 39 wherein depositing the second charge transfer material on
2		the walls of the nanostructured template includes the use of a technique selected
3		from the group of electrochemical deposition, electroless (chemical bath)
4		deposition, layer-by-layer deposition, evaporation, sputtering, plating, ion-plating,
5		molecular beam epitaxy, and sol-gel based deposition, spray pyrolysis, vapor-
6		phase deposition, solvent vapor deposition, atomic layer deposition, plasma-
7		enhanced atomic layer deposition, atomic vapor deposition, metal-organic vapor
8		phase deposition, metal-organic-vapor-phase epitaxy, chemical vapor deposition,
9		metal-organic chemical vapor deposition, plasma enhanced chemical vapor
10		deposition, self-assembly, electro-static self-assembly, melt-filling/coating

electro-deposition, electro-plating, ion-plating, or liquid phase deposition.

11

- 1 41. The method of claim 33 wherein filling the additional space with the third charge 2 transfer material includes depositing the third charge transfer material by a 3 technique selected from the group of electrochemical deposition, electroless 4 (chemical bath) deposition, layer-by-layer deposition, evaporation, sputtering, 5 plating, ion-plating, molecular beam epitaxy, and sol-gel based deposition, spray 6 pyrolysis, vapor-phase deposition, solvent vapor deposition, atomic layer 7 deposition, plasma-enhanced atomic layer deposition, atomic vapor deposition. 8 metal-organic vapor phase deposition, metal-organic-vapor-phase epitaxy, 9 chemical vapor deposition, metal-organic chemical vapor deposition, plasma 10 enhanced chemical vapor deposition, self-assembly, electro-static self-assembly, 11 melt-filling/coating electro-deposition, electro-plating, ion-plating, or liquid phase 12 deposition.
- 1 42. The method of claim 33 wherein the third charge transfer material includes one or more transparent conducting materials.
- The method of claim 42 wherein the one or more transparent conducting materials include PEDOT, PEDOT doped with a dopant PEDOT doped with polystyrene sulfonic acid (PSS), doped 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (doped *spiro-MeOTAD*), doped spiro-MeOTAD, polyaniline doped with a dopant, and/or polyaniline doped with polystyrene sulfonic acid (PSS)).
- 1 44. The method of claim 42 wherein the one or more transparent conducting materials 2 conformally coat and interdigitate into the second charge transfer material.
- The method of claim 44 wherein the one or more transparent conducting materials include PEDOT, PEDOT doped with a dopant PEDOT doped with polystyrene sulfonic acid (PSS), doped 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (doped spiro-MeOTAD), polyaniline doped with a dopant, and/or polyaniline doped with polystyrene sulfonic acid (PSS)).