Semestrální práce: Operace s vektory Oleksii Arzhenkov

Prosinec 18, 2023

Specifikace požadavků

Zadání semestrální práce

Tato semestrální práce se zaměřuje na implementaci operací s vektory. Cílem je vytvořit program, který umožní provádění následujících operací:

- Určení ortogonality vektorů: Program bude schopen zjistit, zda je zadaný systém vektorů ortogonální.
- Normalizace vektorů: V případě ortogonálního systému provede program normalizaci vektorů.

Vstupy a výstupy

Vstupy:

- Počet vektorů n, které budou zadány uživatelem.
- Hodnoty jednotlivých vektorů ve formě reálných čísel.

Očekávané výstupy:

- Informace o ortogonalitě zadaného systému vektorů.
- Normalizované vektory v případě, že systém vektorů je ortogonální.

Předpoklady

Program předpokládá správný vstup od uživatele, tj. zadávání počtu vektorů a jejich hodnot jako reálných čísel. V případě zadání neplatného vstupu (např. nečíselné hodnoty) může program vyvolat chybu.

Návrh řešení

Postup algoritmů

Pro účely operací s vektory budou následující algoritmy implementovány:

1. Určení ortogonality vektorů

1) Porovnání skalárního součinu:

- Iterativní porovnání skalárního součinu všech vektorů v zadaném systému.
- Pokud je skalární součin nenulový, vektory nejsou ortogonální.

2) Kontrola nulového skalárního součinu sám se sebou:

 Pokud je skalární součin vektoru sám se sebou nulový, není vektor ortogonální.

2. Normalizace vektorů

1) Výpočet normy vektoru:

Vypočítá se norma každého vektoru pomocí vzorce |u| = sqrt(u_1^2 + u_2^2 + ... + u_n^2).

2) Normalizace vektorů:

 Každý vektor v zadaném systému se normalizuje vydělením jednotlivých složek vektoru jeho normou.

Implementační postup

Struktura programu

• Program bude obsahovat třídy a metody pro jednotlivé operace s vektory.

Ošetření vstupů

- Vstupy od uživatele budou kontrolovány na platnost.
- Program bude reagovat na neplatné vstupy a vyžádá si opětovný vstup od uživatele.

Protokol z testování - Akceptační testy

Číslo testu	Typ testu, popis vstupů	Očekávaný výsledek	Skutečný výsledek	Prošel (ano/ne)
1	Běžná hodnota: 3 vektory [1, 2, 3], [4, 5, 6], [7, 8, 9]	Systém není ortogonální	Systém není ortogonální	Ano
2	Běžná hodnota: 2 vektory [1, 0], [0, 1]	Systém je ortogonální	Systém je ortogonální	Ano
3	Limitní stav: 5 vektorů [0, 0, 0, 0, 0], [1, 1, 1, 1, 1],	Systém není ortogonální	Systém není ortogonální	Ano
4	Nevalidní vstup: 2 vektory [1, 0], [4, 'a']	Začatek znovu	Začatek znovu	Ano
5	Limitní stav: 1 vektor [0]	Systém není ortogonální	Systém není ortogonální	Ano

```
run:
Pocet vektoru: 2
Zadej vektory
Pocet vektoru: 3
1 0
Zadej vektory
1 2 3
5ystem je ortogonalni
Normalizovany system
7 8 9
System neni ortogonalni
2) 0 1
```

```
Pocet vektoru: 5

Zadej vektory

0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3

Nespravny vstup. Zadej vektor znovu.
4 4 4 4 4

System neni ortogonalni

4)

System neni ortogonalni

System neni ortogonalni
```

```
Pocet vektoru: 1
Zadej vektory
0
System neni ortogonalni
```