Remark 1. Notation: K(-) is the connective K-theory spectrum, and $\mathbb{K}(-)$ is the non-connective K-theory spectrum.

Theorem 1. There's a LES of K-groups

$$\cdots \longrightarrow K_{n+1}(\mathbb{Q}) \longrightarrow \bigoplus_{p} K_n(\mathbb{F}_p) \longrightarrow K_n(\mathbb{Z}) \longrightarrow K_n(\mathbb{Q}) \longrightarrow \cdots$$

Thanks to hard work about K theory of fields, gives lots of information about $K_*(\mathbb{Z})$.

This theorem is (non-trivially) a special case of:

Theorem 2. (Quillen) Given $B \subset A$ a Serre subcategory of a small abelian category, then we have a cofiber sequence of spectra

$$K(B) \to K(A) \to K(A/B)$$
.

Note that in particular, $K_0(A) woheadrightarrow K_0(A/B) woheadrightarrow 0$.

Remark 2. This is a premier computational tool. However, not all K-groups are equivalent to K-groups of some abelian category. Notably, K_* of a singular scheme, K_* of a ring spectrum, etc.

Remark 3. If $A \to B \to C$ is an exact sequence in Cat_{∞}^{perf} , it's not true in general that

$$K_0(B) \to K_0(C) \to 0$$

is exact. This is the first obstruction to a localization sequence.

Question 1. Is there an easy counterexample? I think possibly a singular cubic will work.

Fix: Negative K-theory.

Theorem 3. If $A \to B \to C$ is an exact sequence in Cat_{∞}^{ex} , then

$$\mathbb{K}(A) \to \mathbb{K}(B) \to \mathbb{K}(C)$$

is a cofiber sequence.

Construction 1. Idea: Want to find a C' s.t. $K(C') \cong *$ and a map $C \to C'$. Expect exact sequence

$$K_0(C') \longrightarrow K_0(C'/C) \longrightarrow K_{-1}(C) \longrightarrow K_{-1}(C')$$

but since $K_*(C') = 0$, just define $K_{-1}(C) = K_0(C'/C)$. Should be functorial: $C' = \mathcal{F}(C)$. Let $\Sigma C = cofib(C \to F(C))$, then $K_{-n}(C) = K_0(\Sigma^{(n)}C)$.

Definition 4. Say C is flasque if there are exact functors $F_1, F_2: C \to C$ and equivalence

$$id \oplus F_1 \cong F_2$$
,

and $(F_1)_* = (F_2)_* : K_*(C) \to K_*(C)$.

Then $id + (F_1)_* : K_*(C) \to K_*(C) \implies K_*(C) = 0.$

Example 5. 1. $Ind_{\kappa}(C)$, $\kappa > \omega$.

- 2. $F = (x \mapsto \bigoplus_{\mathbb{N}} x)$. Then $id \oplus F \cong F$, the Eilenberg-swindle, so $Ind_{\kappa}(\mathcal{C})$ is κ -acyclic.
- 3. A ring R is flasque if there's an R-bimodule M which is f.g. projective as a right R-mod, and there's a bimodule isomorphism $R \oplus M \cong M$. Then $Mod_R, Proj_R$ are flasque.
- 4. S any ring, $C(R) \subseteq End_S(S^{\infty})$ row-finite column-finite infinite matrices (the cone ring). This is flasque.

5. The suspension ring $\Sigma S = C(S)/M(S)$, where M(S) denotes the ring of finite matrices. Then $K_{-n}(S) = K_0(\Sigma^{(n)}S)$.

Remark 6. This construction works just fine for connective ring spectrum.

Construction 2. Model for K-theory of connective rings:

Can define

$$GL_n(R) \longrightarrow M_n(R)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$GL_n(\pi_0 R) \longrightarrow M_n(\pi_0 R)$$

Fact: $K_0(R) \cong K_0(\pi_0 R)$. Here the K-theory of a ring spectrum is the K-theory of the category of compact projective R-mods. Define $K_*(R) := \pi_*[K_0(\pi_0 R) \times BGL(R)^+]$.

Have a map $K_*(R) \to K_*(\pi_0(R))$. Compare the "ring suspensions":

have $\pi_0(\Sigma_{ring}R) = \Sigma_{ring}\pi_0R$, so

$$\begin{array}{ccc} K_{-1}(R) & \longrightarrow & K_0(\Sigma_{ring}R) \\ \downarrow & & \downarrow \\ K_{-1}(\pi_0R) & \longrightarrow & K_0(\pi_0\Sigma_{ring}R) \end{array}$$

Upshot: $K_{-n}(R) = K_{-n}(\pi_0 R)$ for R connective.

Definition 7. $C \in Cat_{\infty}^{ex}$. Define $\mathcal{F}_k(C) = Ind_{\kappa}(C)$, $\Sigma_{\kappa}C = \mathcal{F}_{\kappa}(C)/C$, $K_{-n}(C) = K_0(\Sigma_{\kappa}^{(n)}C)$, $\mathbb{K}(C) = \operatorname{colim}_n \Omega^n K(\Sigma_{\kappa}^{(n)}C)$. This definition doesn't make any multiplicative properties apparent.

What is known:

- 1. K_{-n} (noetherian regular ring/scheme) = 0
- 2. K_{-1} (henselian ring) = 0 (hard-Drinfeld)
- 3. Weibel's conjecture: X: noetherian scheme of dimension = d. Then $K_{-n}(X)$ are zero if n > d. This is a theorem now (d = 1, Bass), (d = 2, Weibel), (X variety over field of char 0, Haesemeyer-Cortinas-Schlicting-Weibel), (X/F char(F) > 0 assuming res of singularites, Geisser-Hesselholt/Krishna), (whole thing, Kerz-Strunk-Tamme Nov '16).
- 4. Schlicting's conjecture: $K_{-n}(A) = 0$ if A (small) abelian. Still open in general. True if A is noetherian. Also true for n = 1 for any small abelian category.
- 5. If $E \in Cat_{\infty}^{ex}$ has a bounded t-structure, $K_{-1}(E) = 0$. If ... with E^{heart} noetherian, $K_{-n}(E) = 0$ for all n > 1.

Idea of $K_{-1}(A) = 0$.

$$D^{b}(A) \longrightarrow D^{-}(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^{+}A \longrightarrow D(A)$$

induces pushout square on K-theory. D^+A and D^-A are idempotent complete and K-theory acyclic. $K_*(A) = K_*(D^b(A)), K_0(D(A)) = K_{-1}(A).$