RISC-V ARCHITECTURE FOR MOTION PLANNING ALGORITHMS IN AUTONOMOUS DRONE APPLICATIONS

A senior design project submitted in partial fulfillment of the requirements for the degree of Bachelor of Science at Harvard University

Anthony JW Kenny S.B. Candidate in Electrical Engineering

Faculty Advisor: Vijay Janapa Reddi

Harvard University School of Engineering and Applied Sciences Cambridge, MA

March 1st, 2020 Version: 4.1

Abstract

This thesis aims to design RISC-V computer architecture that supports the fast execution of motion planning algorithms for drone applications. First, the computation of sampling-based motion planning algorithms commonly used in autonomous drones (such as Rapidly-exploring Random Tree (RRT), Rapidly-exploring Random Tree Star (RRT*), Probabalistic Road Map (PRM)) will be profiled on an unmodified RISC-V processor. From this profiling, common bottlenecks and hotspots in execution will be identified. Based on these results, this project will extend the RISC-V Instruction Set Architecture (ISA) and design a modified processor to support the extensions.

Contents

Preface		
	Abstract	
	List of Acronyms	iii
	0	iv
	List of Tables	v
1	Introduction	1
2	Background Information	3
3	RRT	4
Bi	bliography	5
$\mathbf{A}_{\mathtt{J}}$	ppendices	6
\mathbf{A}	Appendix 1	7

List of Acronyms

ISA Instruction Set Architecture

PRM Probabalistic Road Map

RRT Rapidly-exploring Random Tree

 $\mathbf{RRT^*}$ Rapidly-exploring Random Tree Star

List of Figures

List of Tables

Chapter 1

Introduction

This is a pretend citation [1] and this is an incorrectly spelled words.

Now my chapter 1 is two pages

Chapter 2

Background Information

Chapter 3

\mathbf{RRT}

Bibliography

[1] S. Murray, W. Floyd-Jones, Y. Qi, D. Sorin, G. Konidaris, and D. Robotics, "Robot Motion Planning on a Chip," tech. rep.

Appendices

Appendix A

Appendix 1