Two-Step Quantization for Low-bit Neural Networks

2018-10-15

Overview

- CVPR 2018
- Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang, Yang Liu, and Jian Cheng

- Two-Step量化:
 - 1 使用全精度weight量化activation,类似HWGQ但做了稀疏化
 - 2 抛弃之前全精度weight, 量化transformation function (Low-bit)
 - 3 两步中间做了OTWA初始化
 - 4 使用Asymmetric Transformation Function Learning

$$\begin{array}{ll} \underset{\{W_l\}}{\text{minimize}} & \mathcal{L}(Z_L,y) \\ \text{subject to} & \hat{W}_l = Q_w(W_l) \\ & Z_l = \hat{W}_l \hat{A}_{l-1} \\ & A_l = \psi(Z_l) \\ & \hat{A}_l = Q_a(A_l), \text{ for } l=1,2,\cdots L \end{array} \tag{2}$$

For the first step, all weights are full-precision values and we use the proposed sparse quantization method to quantize all activations into low-bit format. After the first step, only the leaned codes Al are kept while the learned weights are discarded, hence the name of code learning.

For the second step, we will learn the **transformation function** from Ai−1 to Ai, with low-bit constraints.

3.1. Sparse Quantization for Code Learning

Two-Step: 对重要的参数求解,其余参数稀疏化为0,量化函数变为:

优化方程变为:

$$Q_{\epsilon}^{*}(x) = \underset{Q_{\epsilon}}{\operatorname{argmin}} E_{x \sim \mathcal{N}(0,1), x > \epsilon} [(Q_{\epsilon}(x) - x)^{2}] \quad (6)$$

参数的稀疏化在batch normalization之后,使用给定的θ让分布满足:

$$\Phi(\epsilon) = P(x <= \epsilon) = \theta \tag{7}$$

where $\Phi(x)$ is the cumulative distribution function of standard normal distribution.

3.2. The Transformation Function Learning

non-linear least square regression problem 分解成多个子问题

$$\underset{\alpha, \hat{w}}{\text{minimize}} \quad \parallel y - Q_{\epsilon}(\alpha X^T \hat{w}) \parallel_2^2 \tag{9}$$

为求解子问题引入辅助变量z和惩罚系数λ(常量, 趋近无穷时结果收敛于子问题的结果)将原函数松弛

$$\underset{\alpha, \hat{w}, z}{\text{minimize}} \quad \parallel y - Q_{\epsilon}(z) \parallel_{2}^{2} + \lambda \parallel z - \alpha X^{T} \hat{w} \parallel_{2}^{2} \quad (10)$$

Solving a and w with z fixed.

Solving α **and** \hat{w} **with** z **fixed.** When z is fixed, the optimization problem of \square becomes to

$$\underset{\alpha, \hat{w}}{\text{minimize}} \quad J(\alpha, \hat{w}) = \parallel z - \alpha X^T \hat{w} \parallel_2^2$$
 (11)

By expanding Eq. , we have

$$J(\alpha, \hat{w}) = z^T z - 2\alpha z^T X^T \hat{w} + \alpha^2 \hat{w}^T X X^T \hat{w}$$
 (12)

By setting $\partial J/\partial \alpha = 0$, the optimal value of α is given by

$$\alpha^* = \frac{z^T X^T \hat{w}}{\hat{w}^T X X^T \hat{w}} \tag{13}$$

Substituting α^* in equation \square , we can get

$$\hat{w}^* = \underset{\hat{w}}{\operatorname{argmax}} \frac{(z^T X^T \hat{w})^2}{\hat{w}^T X X^T \hat{w}} \tag{14}$$

将z视为常量,则10变为11

11展开变成一二次函数

求J对于a的极小值点(求导)

带入a*,得到w*并使得右侧函数最大化,在这里n-bit量化需要遍历2^mn个可行解,文章用了近似求解代替,只需要查找m2^n个点(在这里n很小)

Solving z with a and w fixed.

minimize
$$(y_i - Q_{\epsilon}(z_i))^2 + \lambda(z_i - v_i)^2$$
 (15)

w, a视为常量(上一轮已解出), **one-dimensional problems** , 10变为15

松弛QX:
$$\tilde{Q}_{\epsilon}(x) = \left\{ \begin{array}{ll} M & x > M, \\ x & 0 < x \leq M, \\ 0 & x \leq 0 \end{array} \right.$$
 (16)

---- ----, ----- ----

$$z_i^{(0)} = min(0, v_i) \tag{17}$$

$$z_i^{(1)} = min(M, max(0, \frac{\lambda v_i + y_i}{1 + \lambda})$$
 (18)

$$z_i^{(2)} = max(M, v_i)$$
 (19)

按照Qx分三段讨论得出z

Initialization of α and $\hat{}$ w using Optimal Ternary Weights Approximation (OTWA).

在code learning之后用0 1 -1对weight和alpha进行2-bit初始化

所以在这里保留绝对值最大的top r个weight进行sign 得到w

$$\hat{w}_j = \begin{cases} sign(w_j) & abs(w_j) \text{ in top } r \text{ of } abs(w) \\ 0 & \text{others} \end{cases}$$
 (22)

$$\alpha^* = \frac{w^T \hat{w}}{\hat{w}^T \hat{w}}$$

$$\hat{w}^* = \underset{\hat{w}}{\operatorname{argmax}} \frac{(w^T \hat{w})^2}{\hat{w}^T \hat{w}}$$
(21)

在这里可以确定a,w在22确定(这里是让w尽可能少但尽可能大)

Initialization of a and wusing Optimal Ternary Weights Approximation (OTWA).

```
Algorithm 1 OTWA weight approximation
Input: weight matrix W \in \mathbb{R}^{k \times m}
Output: \hat{W} \in \{+1, 0, -1\}^{k \times m}
Output: k floating point scaling factors \{\alpha_i\}_{i=1}^k
 1: J(r) \leftarrow 0, for r = 1, \dots, m
 2: for i = 1, \dots, k do
 3: v \leftarrow abs(w_i)
       sort v in decreasing order
 5: for r = 1, \dots, m do
       s \leftarrow \sum_{j=1}^{r} v(j)
           J(r) \leftarrow s^2/r
       end for
     r^* \leftarrow \operatorname{argmax}_r J(r)
        get \hat{w}_{i}^{*} according to equation 22
        get \alpha_i^* according to equation \square
12: end for
```

Asymmetric Transformation Function Learning.

$$\underset{\Lambda,\hat{W}}{\text{minimize}} \quad \| Y - Q_{\epsilon}(\Lambda \hat{W} \tilde{X}) \|_F^2 \tag{23}$$

为了消除因为各层之间独立量化造成的误差的累积,文章将transformation function learning里面的X换成了quantized network中上一层的activation

4. Experiments On ImageNet

Table 1. The optimal thresholds and step values given different sparse ratios for 2-bit sparse quantization.

θ	50%	56.25%	62.5%	68.75%	75%
ϵ	0.00	0.16	0.32	0.49	0.68
Δ	0.5388	0.5914	0.6487	0.7139	0.7889

56.25%-75%

Table 2. Two-bit activation quantization comparison. Our sparse quantization method, denoted by SQ, is conducted under different sparsity.

Model	Sparsity (%)	Top-1 (%)	Top-5 (%)
AlexNet	50.00	58.5	81.5
HWGQ [2]	50.00	55.8	78.7
SQ-1	56.25	58.2	80.7
SQ-2	62.50	59.0	81.3
SQ-3	68.75	58.9	80.8
SQ-4	75.00	57.9	79.8

4.2. Sparse Quantization Results

Table 3. The accuracy of our two-bit activation and ternary weight quantization models before and after fine-tuning. Results are reported under different activation sparsity.

Model	Before	Fine-tune	After Fine-tune	
Wiodei	Top-1	Top-5	Top-1	Top-5
TFL-SQ-1	52.7	76.6	-	-
TFL-SQ-2	55.1	78.4	58.0	80.5
TFL-SQ-3	54.7	78.1	-	-
TFL-SQ-4	54.3	77.4	56.7	79.0

4.3. Transformation Function Learning Results

Figure 1. Top-1 accuracy after each layer is quantized for different transformation function learing settings. The results are conducted based on the SQ-2 AlexNet mode without fune-tuning.

- OTWA: Weight ternarization using OTWA;
- **TFL-rand**: Asymmetric transformation function learning initialized by random ternary variables;
- TFL-sym: Symmetric transformation function learning, initialized by OTWA;
- **TFL-asym**: Asymmetric transformation function learning, initialized by OTWA;

4.4. Comparison with the stateoftheart

Table 4. Comparison with the state-of-the-art low-bit quantization methods on AlexNet. The accuracy gap to the full-precision model is also reported.

Model	Top-1	Top-5	Top-1 gap	Top-5 gap
AlexNet[2]	58.5	81.5	0	0
XNOR[24]	44.2	69.2	-12.4	-12.3
BNN[B0]	46.6	71.1	-11.9	-10.4
DOREFA[88]	47.7	-	-8.2	-
HWGQ[2]	52.7	76.3	-5.8	-5.2
TSQ (ours)	58.0	80.5	-0.5	-1.0

Table 5. Comparison between our quantized VGG-16 model and the full-precison counterparts.

Model	Top-1	Top-5	Top-1 gap	Top-5 gap
VGG-16 [29]	71.1	89.9	0	0
VGG-16-BN	69.6	89.6	-1.5	-0.3
TSQ (ours)	69.1	89.2	-2.0	-0.7

4.5. Results on CIFAR10

Table 6. Comparison with the state-of-the-art low-bit quantization methods on CIFAR-10. The bit-width for activations and weights are given.

Activation	Weights	Method	error (%)
Full	Full	VGG-Small	6.82
Full	Binary	BinaryConnect [6]	8.27
Full	Ternary	TWN [23]	7.44
Binary	Binary	BNN [14]	10.15
2-bit	Binary	HWGQ [2]	7.49
2-bit	Ternary	TSQ (ours)	6.51