I.	Válaszoljon röviden a következő kérdésre: Mi a különbség a rekurzív illetve	0.5 p
TT	nem-rekurzív becslők között?	
II.	Adottak a következő mért adatok, ahol (u _k - bemenet és y _k - kimenet):	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10
		-4
	$y_k = 0$ 0 1 2.1 6.8 8.9 9.1 10.5 14.1 13.2	15.2
	és adott a következő diszkrét parametrikus modell	
	$y[k+2] + a_1 \cdot y[k-2] = b_1 \cdot u[k-2] - b_2 \cdot u[k-4] + e[k+2].$	
	Határozza meg a rendszer paramétereit, ha az e[k]egy fehér zaj szekvencia.	
a.	LSE "on-line" módszerrel (minimum 2 lépés). Megj. a kezdeti paraméter vektor	1.5 p+
	csak "3" –as értékeket tartalmaz, a kezdeti szórás mátrix pedig a $10 \cdot I$ (ahol az I	0.5 p
	a megfelelő dimenziójú egységmátrix). A számítások pedig a k=7 lépéstől	
	kezdődjenek. [Az első lépés helyes felírása és kiszámítása 1,5 pont, a második	
	lépés helyes felírása 0,5 pont]	
b.	LSE "off-line" módszerrel (fontos a mátrixok helyes felírása).	1 p
c.	Hogyan határozná meg az n_a , n_b és n_k értékeket, illetve a kezdeti θ_0 és P_0	1 p
	értékeket (az adott diszkrét modell esetében), ha a becsléshez az <i>arx</i> illetve <i>rarx</i>	(5 x)
	Matlab függvények lesznek használva.	0.2p)
III.	Adott a mellékelt áramkör, ahol a mért mennyiségek adottak: bemenet $u_k=u_i(t_k)$ és	
	kimenet $y_k = i_{C2}(t_k)$, ahol a $k = 1, 2,, 20$.	
	a. Ha az áramkör bemenetére (uk) egy nagyon rövid ideig tartó 4 V	0.50
	feszültségű impulzus jel volt alkalmazva, magyarázza meg hogyan	0.5p
	határozná meg a rendszer súlyfüggvényét a mért értékek felhasználásával?	
	b. Határozza meg a rendszer analitikus modelljét (differenciál egyenletet),	0.5p
	majd írja fel a rendszer folytonos átviteli függvényét.	r
	c. A b pontnál meghatározott folytonos átviteli függvényt mintavételezze a	
	"Backward" módszerrel (T _s =1 sec) és határozza meg a rendszer diszkrét	1 p
	differencia egyenletét. Felhasználva a mért értékeket és a kapott diszkrét	
	modellt írja le hogyan becsülnék meg a rendszer paramétereit (R, L, C ₁ ,	
	C ₂) LSE "on-line" módszerrel	
	_•	
	<u>L</u> i(t)	
		= 2 p
	u _i (t)	1
	<u> </u>	
	<u> </u>	
IV	Felhasználva a II feladatnál adott u _k és y _k diszkrét jelszekvenciákat, számolja ki a	1 p
1 4	következő korrelációs függvényeket a megjelölt időpontokban!	1 P
	no remezo nomeneo raggioni ener a megjeron raoponionoan.	
	$\phi_{\mathrm{uu}}[0], \phi_{\mathrm{uu}}[-1], \phi_{\mathrm{uu}}[1], \phi_{\mathrm{vu}}[0]$	
	- Գսոլ∨յ, Գսոլ -յ, Գսոլ-յ, Գյոլ∨յ	
	Megj. Mind a négy esetre fontos a számítások helyes felírása és nem a végleges	
	kiszámított érték!	
L		l

Tétel ...1...

V. Adottak a következő grafikus ábrázolások, melyek három különböző rendszer kimenetén mért idő függvények. Mindhárom rendszer bemenete $u(t) = -2 \cdot \mathbf{1}(t+6)$. Határozza meg a három különböző rendszer átviteli függvényeit és azok paramétereit grafikus módszerrel!

A.

B.

C.

György Katalin, adjunktus