CNN Experiments on CINIC-10

PAULINA KULCZYK, JAN POGŁÓD

- Single Convolution CNNs: A simple architecture with one convolutional layer, intended to quickly test baseline accuracy and overfitting tendencies.
- Double Convolution CNNs: An extended version with two convolutional layers, aimed at capturing more complex spatial features while maintaining computational simplicity.

Table 1: Single Convolution CNNs Architecture

Layer Type	Parameters	Output Shape				
Input	15	(32, 32, 3)				
Conv2D	32 filters (3x3), ReLU	(32, 32, 32)				
MaxPooling2D	(2, 2) pool size	(16, 16, 64)				
Flatten	-	$(16\cdot 16\cdot 32)$				
Dense	128 neurons, ReLU	(128)				
Dense	10 neurons, softmax	(10)				

Table 2: Double Convolution CNNs Architecture

Layer	Parameters	Output Shape				
Input	-:	(32, 32, 3)				
Conv2D	32 filters (3×3) , ReLU, same	(32, 32, 32)				
MaxPooling2D	(2, 2) pool size	(16, 16, 32)				
Conv2D	64 filters (3×3) , ReLU, same	(16, 16, 64)				
MaxPooling2D	(2, 2) pool size	(8, 8, 64)				
Flatten	-	(4096)				
Dense	128 neurons, ReLU	(128)				
Dense	10 neurons, softmax	(10)				

BASIC ARCHITECTURES

TRAINING PROCESS

SMALL DATASETS (2000 AND 9000 IMAGES)

FULL DATASET

BASIC ARCHITECTURES

Table 3: Deep CNNs Architecture

Layer Type	Parameters	Output Shape			
Input	-	(32, 32, 3)			
Conv2D	32 filters (3x3), ReLU	(32, 32, 32)			
BatchNormalization	-	(32, 32, 32)			
MaxPooling2D	(2, 2) pool size	(16, 16, 32)			
Dropout	0.25 rate	(16, 16, 32)			
Conv2D	64 filters (3x3), ReLU	(16, 16, 64)			
BatchNormalization	-	(16, 16, 64)			
MaxPooling2D	(2, 2) pool size	(8, 8, 64)			
Dropout	0.25 rate	(8, 8, 64)			
Conv2D	128 filters (3x3), ReLU	(8, 8, 128)			
BatchNormalization	-	(8, 8, 128)			
MaxPooling2D	(2, 2) pool size	(4, 4, 128)			
Dropout	0.25 rate	(4, 4, 128)			
Flatten	-	$(4\cdot 4\cdot 128)$			
Dense	512 neurons, ReLU	(512)			
BatchNormalization	-	(512)			
Dropout	0.5 rate	(512)			
Dense	256 neurons, ReLU	(256)			
BatchNormalization	-	(256)			
Dropout	0.5 rate	(256)			
Dense	10 neurons, softmax	(10)			

DEEP CNN WITH REGULARIZATION AND DROPOUT

90K TRAIN / 90K VALID / 90K TEST

144K TRAIN / 36K VALID / 90K

90K TRAIN / 90K VALID / 90K TEST

144K TRAIN / 36K VALID / 90K TEST

TEST DATA RESULTS

Table 4: Classification Report for Deep CNNs on dataset (90k/90k/90k)

Class	Precision	Recall	F1-Score	Sample size
Airplane	0.86	0.71	0.78	9000
Automobile	0.74	0.78	0.76	9000
Bird	0.67	0.58	0.62	9000
Cat	0.49	0.57	0.53	9000
Deer	0.63	0.58	0.61	9000
Dog	0.54	0.51	0.52	9000
Frog	0.61	0.89	0.72	9000
Horse	0.80	0.70	0.75	9000
Ship	0.72	0.81	0.77	9000
Truck	0.82	0.64	0.72	9000
Accuracy	-	-	0.68	90000

Table 5: Classification Report for Deep CNNs on dataset (144k/36k/90k)

Class	Precision	Recall	F1-Score	Sample size
Airplane	0.72	0.84	0.78	9000
Automobile	0.78	0.77	0.77	9000
Bird	0.63	0.69	0.66	9000
Cat	0.63	0.47	0.54	9000
Deer	0.63	0.63	0.63	9000
Dog	0.64	0.45	0.53	9000
Frog	0.70	0.86	0.77	9000
Horse	0.74	0.79	0.76	9000
Ship	0.78	0.79	0.78	9000
Truck	0.74	0.76	0.75	9000
Accuracy	-	-	0.70	90000

DEEP CNN WITH REGULARIZATION AND DROPOUT

Figure 7: Weight distribution for deep CNN for each convolutional layer

DEEP CNN WITH REGULARIZATION AND DROPOUT AS A WELL TRAINED MODEL

Figure 8: Poorly trained model with double convolution layer

Figure 9: Well trained model with deep CNN architecture

Figure 10: Comparison of weight distribution over all layers

4 COPIES OF EACH IMAGE:

- RANDOM ANGLE 0° 20°
- FLIP 50% CHANCE
- SEPIA 50% CHANCE
- SOBEL 30% CHANCE
- W&B 25% CHANCE
- CROP 20% CHANCE
- STRECH 20% CHANCE
- GAUSSIAN NOISE NONE

EVENTUALLY THE TRAINING
SET CONTAINED 450K IMAGES

DATA AUGMENTATION - FINAL AUGMENTED DATASET

VISUAL GEOMETRY GROUP (VGG)

RESNET34

ADVANCED ARCHITECTURES

Class	VGG	ResNet34	GoogLeNet	ResNet18	Deep CNN
	Prec / Rec / F1	Prec / Rec / F1	Prec / Rec / F1	Prec / Rec / F1	Prec / Rec / F1
airplane automobile bird cat deer dog frog horse ship truck	0.85 / 0.83 / 0.84	0.82 / 0.82 / 0.82	0.89 / 0.82 / 0.85	0.87 / 0.85 / 0.86	0.88 / 0.68 / 0.77
	0.81 / 0.80 / 0.81	0.79 / 0.78 / 0.78	0.81 / 0.80 / 0.80	0.81 / 0.81 / 0.81	0.79 / 0.77 / 0.78
	0.75 / 0.73 / 0.74	0.71 / 0.70 / 0.70	0.73 / 0.75 / 0.74	0.74 / 0.76 / 0.75	0.60 / 0.70 / 0.65
	0.68 / 0.63 / 0.65	0.60 / 0.63 / 0.61	0.74 / 0.55 / 0.63	0.64 / 0.68 / 0.66	0.50 / 0.65 / 0.56
	0.60 / 0.80 / 0.68	0.64 / 0.67 / 0.66	0.68 / 0.73 / 0.70	0.72 / 0.72 / 0.72	0.63 / 0.59 / 0.61
	0.67 / 0.54 / 0.60	0.62 / 0.53 / 0.57	0.62 / 0.64 / 0.63	0.66 / 0.59 / 0.63	0.60 / 0.41 / 0.49
	0.83 / 0.87 / 0.85	0.80 / 0.83 / 0.81	0.79 / 0.88 / 0.83	0.84 / 0.84 / 0.84	0.70 / 0.88 / 0.78
	0.85 / 0.78 / 0.81	0.78 / 0.79 / 0.78	0.76 / 0.83 / 0.80	0.82 / 0.82 / 0.82	0.79 / 0.73 / 0.76
	0.79 / 0.86 / 0.82	0.78 / 0.82 / 0.80	0.81 / 0.85 / 0.83	0.83 / 0.85 / 0.84	0.71 / 0.83 / 0.77
	0.80 / 0.75 / 0.78	0.77 / 0.77 / 0.77	0.81 / 0.76 / 0.78	0.80 / 0.79 / 0.79	0.83 / 0.67 / 0.74
Accuracy	0.76	0.73	0.76	0.77	0.69

CAT VS DOG

AIRPLANE VS SHIP

ENSEMBLE

\mathbf{Metric}	Value
Accuracy	77.53%
Loss	0.6516

Table 7: Performance metrics of the ensemble model on the test dataset.

${f Metric}$	Value
Accuracy	78.42%
Loss	0.6401

Table 7: Performance metrics of the ensemble model with added "Automobile&truck" model on the test dataset.

ENSEMBLE

VISUAL GEOMETRY GROUP (VGG) - 75.79% TEST

RESNET18 - 77.23% TEST

ENSEMBLE. - 78.42%

	/							1000					
	Confusion Matrix												
ai	irplane -	7862	102	217	30	47	19	22	83	511	107		- 8000
auto	mobile -	137	7926	24	38	20	39	30	47	240	499		- 7000
	bird -	315	19	6642	329	476	297	622	115	164	21		- 6000
	cat -	79	42	400	5746	576	1180	652	175	94	56		- 5000
True	deer -	122	26	424	424	6394	503	291	646	128	42		- 4000
Ė	dog -	93	76	405	881	950	5551	239	636	111	58		4000
	frog -	39	10	356	266	67	113	8050	33	60	6		- 3000
	horse -	98	34	112	177	560	311	35	7496	81	96		- 2000
	ship -	409	185	180	57	81	63	52	59	7721	193		- 1000
	truck -	239	976	39	40	70	33	33	95	286	7189		
		airplane -	automobile -	- pird -	cat -	Predi	- bop cted	frog -	horse -	- divs	truck -		

FINAL RESULTS

