Chemistry-JEE-Mains-Formulas

October 20, 2025

ClassLesson		Concept	Formula / Key Point	Explanation
11	Some Basic Concepts of Chemistry	Mole concept	$\left[\; n = \frac{\text{mass}}{\text{molar mass}}, N = n \times N_A \; \right]$	$\begin{array}{l} {\rm n=number\ of\ moles,\ N=} \\ {\rm number\ of\ particles,\ } N_A = \\ {\rm Avogadro's\ number} \end{array}$
	© 11011110 01 j	Concentration	iqn Molarity: $M = \frac{\text{moles of solute}}{\text{volume of solution (L)}}$	Molarity measures moles per liter solution
		Percentage / fraction	[$\%$ by mass = $\frac{\text{mass of component}}{\text{mass of compound}} \times 100$	Percent mass of component in mixture
11	Structure of Atom	Atomic number & mass number	Atomic number = number of protons = number of electrons; Mass number = protons + neutrons	Basic atomic structure definitions
		Electron configu-ration	[Example: $1s^22s^22p^63s^23p^4$ for Sulphur]	Distribution of electrons in shells
11	Classification of Elements & Periodicity		Atomic radius ↓ across period, ↑ down group; Ionisation energy ↑ across period, ↓ down group	Trends in periodic table properties
	·	Valency / oxidation state	Main group elements: valency = group number or [\$8 - \$ group number]	Valency based on group in periodic table
11	Chemical Bonding & Molecular	Ionic bond	Electrostatic attraction between cation and anion; lattice energy \(\) with charge \(\) and radius \(\)	Ionic bond characteristics
	Structure	Covalent bond & hybridisation	[sp \rightarrow linear, sp ² \rightarrow trigonal planar, sp ³ \rightarrow tetrahedral]	Hybridisation shapes and bond angles

ClassLesson		Concept	Formula / Key Point	Explanation
11	States of Matter	Ideal Gas Law	[PV = nRT]	Relation between pressure, volume, moles and temperature
		Real Gas & van der Waals	$\left[\left(P + \frac{an^2}{V^2} \right) (V - nb) = nRT \right]$	Correction to ideal gas equation
11	Thermodyna		$[\Delta U = Q - W]$	Change in internal energy
	v	Law of Thermo- dynamics		equals heat added minus work done
		Enthalpy	$[H = U + PV, \Delta H = \Delta U + \Delta (PV)]$	Relation between enthalpy, internal energy and pressure-volume work
11	Equilibrium	Chemical Equilib- rium	$[\ K_c = \frac{[\text{products}]^p}{[\text{reactants}]^r}\]$	Equilibrium constant expression
		Ionic Equilib- rium / pH	$[pH = -\log[H^+]]$	pH definition
11	Redox Reactions	Oxidation & Reduction	Oxidation: increase in oxidation state; Reduction: decrease in oxidation state	Redox process definitions
		Balancing redox in acidic/alka media	Use half-reaction method	Method to balance redox equations
11	Hydrogen	Hydrides, isotopes	Example: Heavy water: D_2O	Isotopes and hydrides examples
		Water as	[Auto-ionisation:	Water self-ionization
11	DI I	solvent	$2H_2O \rightleftharpoons H_3O^+ + OH^-$	equilibrium
11	s-Block Elements & Their Com- pounds	Alkali & Alkaline Earth behaviour	[Reaction with water: $2M + 2H_2O \rightarrow 2MOH + H_2$]	Reaction producing hydroxides and hydrogen gas
		Oxides & hydrox-ides	[Basic oxides: MO for alkali metals]	Basic nature of metal oxides
11	p-Block Elements	Group proper- ties	Trends in acidic oxides, basic oxides	Acid-base nature trends in oxides
		Allotropy	Example: Oxygen: $\mathcal{O}_2,\mathcal{O}_3$	Different forms of an element

Clas	ssLesson	Concept	Formula / Key Point	Explanation
11	Organic Chemistry - Some Basic Principles & Tech-	Hydrocarbo	ρήs Alkanes: general formula $C_nH_{2n+2},$ Alkenes: C_nH_{2n}]	General formulas for hydrocarbons
	niques	Isomerism	Structural isomers, stereoisomers	Types of isomers
11	Hydrocarbo		Substitution, halogenation	Types of reactions in alkanes
		Alkyne & Alkene reactions	Addition, polymerisation	Reactions of unsaturated hydrocarbons
11	Environmen	nt#Pollution	Air pollution: primary vs	Types of pollutants
	Chemistry	concepts Green chemistry basics	secondary pollutants Example: use of catalytic converter	Application of green chemistry
12	Solid State	Crystal systems & lattices	[Number of atoms in unit cell: $SC = 1$, $BCC = 2$, $FCC = 4$]	Atoms per unit cell in different lattices
12	Solutions	Packing efficiency Colligative Proper-	[FCC/CCP: 74%] $ [\ \Delta T_f = K_f \cdot m \], \ [\ \Delta T_b = K_b \cdot m \] $	Maximum packing in close-packed lattices Freezing point depression and boiling point elevation
		ties Osmotic	$[\ \Pi = MRT\]$	Osmotic pressure relation
12	Electrochen	pressure ni	$ \begin{array}{l} [\;E_{\rm cell}^{\circ}=E_{\rm cathode}^{\circ}-E_{\rm anode}^{\circ}\;],[\;$	Cell potential and Gibbs free energy relation Mass deposited proportional to charge and equivalent weight
12	Chemical	Rate laws	[Rate = $k[A]^m[B]^n$]	Reaction rate expression
	Kinetics	First- order half-life	$[\;t_{1/2}=\tfrac{0.693}{k}\;]$	Half-life formula for first order reaction
12	Surface Chemistry		[Freundlich: $x/m = kP^{1/n}$] Tyndall effect, Brownian motion	Adsorption amount vs pressure relation Properties of colloidal systems

Clas	sLesson	Concept	Formula / Key Point	Explanation
12	General Principles & Processes of Isolation of Metals	Metallurgy	$[\ Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2\]$	Reduction of iron ore in blast furnace
		Refining of metals	Electrolytic refining: Anode \rightarrow impure metal, Cathode \rightarrow pure metal	Metal purification method
12	p-Block Elements	Group trends & com- pounds	$[\ 4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O\]$	Nitric acid production reaction
12	d- & f-Block	Allotropic forms Electronic configu-	Example: Phosphorus (white, red, black) [[Ar] $3d^{10}4s^2$ for Zn]	Different allotropes of phosphorus Electron configuration example
	Elements	ration Coordination compounds	ομ $[Co(NH_3)_6]^{3+}$]	Example coordination compound
12	Coordinatio Com- pounds	_	Optical and geometrical isomerism $ [\ \lambda = \frac{\text{magnetic moment}}{\mu_B} \] $	Types of isomerism in coordination complexes Magnetic moment calculation
12	Haloalkanes & Haloarenes	bonding Nucleophili substitu- tion	c[SN1: Rate [R-X]; SN2: Rate [R-X][Nu-]]	Mechanisms of nucleophilic substitution
12	Alcohols, Phenols & Ethers	reactions Acidity of phenol	[E2: Concerted elimination] [Resorcinol > phenol > o-cresol > p-cresol]	E2 reaction mechanism Relative acidity order
	Differs	Williamson ether synthesis	$ \begin{bmatrix} R-O^- + R'-X \rightarrow R-O-R' + X^- \\ \end{bmatrix} $	Ether synthesis reaction
12	Aldehydes, Ketones & Car- boxylic Acids		c[$C = O + H^- \rightarrow C - O^-$]	Nucleophile addition to carbonyl

ClassLesson		Concept	Formula / Key Point	Explanation
		Acid deriva- tives	$ [-COCl \rightarrow -COOR $ transformations]	Conversion of acid chlorides to esters
12	Amines	Basicity order in water	[Tertiary > secondary > primary > ammonia (aqueous)]	Basicity trend of amines
			[$ArN_2^+Cl^-$ formed from aromatic amine + NaNO ₂ + HCl at 0–5 °C	Formation of diazonium salts
12	Biomolecule & Polymers	esCarbohydra	ateApproximate formula: $C_n(H_2O)_n$]	Empirical formula for carbohydrates
		Proteins & amino acids	Zwitterions, isoelectric point	Molecular forms with both charges
		Polymers	[Polyethylene: $-[CH_2-CH_2]_n-$]	Repeating units of polymer chains
12	Chemistry in Everyday Life	Chemicals in medicine & industry	Examples: Antiseptics (Phenol), Preservatives ($\mathrm{Na_2SO_3}$)	Common chemicals used in daily life
		·	nExample: Biodegradable polymers	Environmentally friendly polymers