

AFHC.425644.038 P3

КОНТРОЛЛЕР ОХРАННОЙ СИГНАЛИЗАЦИИ

МИРАЖ-GSM-S4

РУКОВОДСТВО
ПО ЭКСПЛУАТАЦИИ

ОГЛАВЛЕНИЕ

1	Опи	сание и работа контроллера	4
	1.2 1.3	Назначение контроллера Технические характеристики Комплект поставки Устройство и работа контроллера	5 5
		1.4.1 Функциональная схема контроллера 1.4.2 Функциональные возможности ПОО 1.4.3 Поддерживаемые методы передачи данных и их особенности 1.4.4 Типы событий и алгоритмы оповещения 1.4.5 Временные характеристики оповещения 1.4.6 Надежность доставки информации 1.4.7 Функциональные возможности ППК 1.4.8 Функциональные возможности МУП 1.4.9 Функциональные возможности управления и настройки	6 7 8 8 8
		МаркировкаУпаковка	
2	Эксі	плуатационные ограничения	9
3	Под	готовка контроллера к использованию	11
	3.1 3.2 3.3 3.4	Подключение GSM-антенны и установка SIM-карт в контроллер	11 11 12 12
4	Hac	тройка контроллера в программе Конфигуратор Профессионал	13
	4.2 4.3	Установка программного обеспечения впервые	14 15 ал и
		4.4.1 Подключение по каналу USB	
	4.5	Конфигурация ПОО	19
		4.5.1 Вкладка Оповещение 4.5.2 Вкладка Дополнительно 4.5.3 Вкладка Журнал событий 4.5.4 Вкладка Задачи 4.5.5 Вкладка Монитор	21 22 23
	4.6	Конфигурация разделов	25
		4.6.1 Вкладка Параметры 4.6.2 Принципы использования логических разделов контроллера 4.6.3 Вкладка База электронных ключей	27
	4.7	Конфигурация ППК	30
		4.7.1 Вкладка Шлейфы 4.7.2 Вкладка Датчики 4.7.3 Вкладка Источники питания 4.7.4 Вкладка Выходы управления 4.7.5 Вкладка Дополнительно 4.7.6 Вкладка Монитор	31 34 34 35
		Группа управления	
	4.9	Функции, доступные в контекстном меню контроллера	37

		4.9.1 Запись и чтение конфигурации 4.9.2 Сохранение и загрузка шаблонов настроек 4.9.3 Рестарт контроллера 4.9.4 Запись встроенного ПО 4.9.5 Сброс конфигурации и пароля на связь 4.9.6 Изменение текущего времени на контроллере 4.9.7 Заполнение свойств контроллера	38 39 39 39 39
	4.10	Обновление программы Конфигуратор Профессионал	40
5	Испо	ользование контроллера	40
	5.2 5.3 5.4	Рекомендации по монтажу контроллера Инициализация контроллера Внешний вид Индикация Постановка контроллера на охрану	40 40 40
		5.5.1 Стандартная постановка на охрану 5.5.2 Постановка на охрану с квитированием на лампу Режим 5.5.3 Постановка на охрану при неисправном ШС	42
	5.7 5.8	Работа контроллера в режиме <i>На охране</i> Контроль ШС Контроль радиоустройств Livi Снятие контроллера с охраны	42 43
		5.9.1 Стандартное снятие с охраны 5.9.2 Снятие с охраны под принуждением	
	5.10	Работа контроллера в режиме Снят с охраны	44
6	Техн	ническое обслуживание и текущий ремонт контроллера	44
	6.2	Техническое обслуживание	45
7	Тран	нспортирование и хранение	45
		Транспортирование	
8	Утил	пизация	46
Пр	коли	кение А — Вид контроллера со снятой крышкой	47
		кение Б — Схема внешних подключений	
Пр	коли	кение В — Типы ШС	49
Пр	копи	кение Г — Атрибуты ШС и радиоустройств Livi	50
Пр	копи	кение Д — Тактики и атрибуты выходов управления	51
Пр	копи	кение Е — Схема индикации	54
Пр	копи	кение Ж — Расчет времени автономной работы	58
Пр	копи	кение И — «Горячие» клавиши в программе	59
Пр	копи	кение К — Возможные неисправности и способы их устранения	59
Пр	коли	кение Л – Термины и сокращения	60
Пр	коли	кение М – Контакты службы технической поддержки	61

Настоящее руководство по эксплуатации (РЭ) содержит сведения о конструкции, принципе функционирования и технических характеристиках контроллера Мираж-GSM-S4 (далее - контроллер). РЭ содержит описание функциональных блоков контроллеров и их функциональных возможностей, а также указания, необходимые для правильной и безопасной эксплуатации контроллера: использования по назначению и технического обслуживания.

К настройке, эксплуатации и обслуживанию контроллера допускаются лица, изучившие настоящее руководство по эксплуатации и обладающие базовыми знаниями в области систем охранно-пожарной сигнализации и средств вычислительной техники.

L ОПИСАНИЕ И РАБОТА КОНТРОЛЛЕРА

1.1 НАЗНАЧЕНИЕ КОНТРОЛЛЕРА

Контроллер предназначен для централизованной охраны небольших объектов (квартиры, гаражи, дачи, небольшие офисные здания). Контроллер является функционально и конструктивно законченным изделием, он включает в себя устройство оконечное объектовое, прибор приемно-контрольный и модуль управления питанием. Передача извещений осуществляется на сервер STEMAX. В качестве встроенного GSM/GPRS-модема используется модем Quectel M66, поддерживающий стандарты сотовой связи поколения 2,5G.

Основные функциональные возможности контроллера:

- общее количество проводных шлейфа сигнализации (ШС) четыре;
- подключение охранных и технологических ШС с гибкой настройкой тактик контроля;
- подключение пожарных ШС с ограниченной функциональностью (без специализированных тактик контроля, извещатели только типа сухой контакт);
- пораздельная постановка на охрану: до четырех собственных логических разделов (отдельных объектов мониторинга), по которым могут быт произвольно распределены ШС контроллера и подключенные к нему радиоустройства;
- возможность назначения главных и подчиненных разделов (при постановке на охрану или снятии с охраны главного раздела режим охраны подчиненного раздела автоматически изменяется соответствующим образом);
- передача извещений по беспроводным сетям связи стандарта GSM/GPRS 900/1800 с использованием различных методов передачи данных: TCP/IP, SMS (в зашифрованном виде);
- использование для передачи информации шифрованного закрытого протокола MSRV;
- методы локального и дистанционного конфигурирования, управления и диагностики;
- три выхода управления типа открытый коллектор (ОК);
- широкие возможности управления устройствами светозвукового оповещения и исполнительными устройствами: пять предзаданных автоматических тактик (*Режим охраны, Сирена, Неисправность, Технологическая, Блокировка охраны*), возможность создания различных пользовательских автоматических тактик с гибким выбором условий и режима активации устройств, возможность ручного дистанционного управления устройствами;
- управление режимом охраны с помощью считывателей электронных ключей, бесконтактных считывателей и пультов управления, кодовых панелей, скрытых выключателей, кнопки;
- поддержка до 100 электронных ключей, в том числе ключей с шифрованием (типа DS1990A/DS1961S) и RFID-меток;
- контроль вскрытия корпуса с помощью тампера.

Дополнительные функциональные возможности контроллера за счет подключения интерфейсных устройств, **приобретаемых отдельно**:

- подключение до 64 радиоустройств Livi производства НПП «Стелс» с помощью дополнительного модуля <u>STEMAX UN Livi</u>;
- управление режимом охраны с помощью биометрических считывателей, клавиатур и бесконтактных считывателей, передающих сигнал по интерфейсу Wiegand 26 за счет преобразователя <u>STEMAX WTM010</u>.

Питание осуществляется от сети переменного тока напряжением ~ 230 В. В качестве резервного источника питания может быть использована аккумуляторная батарея (АКБ) емкостью 2,3 А·ч (приобретается отдельно).

1.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Технические характеристики контроллера представлены в таблице 1.1.

Таблица 1.1 — Технические характеристики контроллера

Таблица 1.1 — Технические характеристики контроллера		
Параметр	Значение	
Характеристики ПОО		
Количество беспроводных сетей связи стандарта GSM/GPRS 900/1800	2	
Поколение GSM-связи	2,5G	
Время доставки извещений (TCP/IP)	от 0,5 до 1 с	
Минимальный период тестирования канала связи	10 c	
Характеристики ППК		
Максимальное количество электронных ключей или кодов постановки/снятия	100	
Типы ШС	охранные, технологические	
Количество собственных ШС	4	
Количество собственных логических разделов	4	
Напряжение в ШС	4 B	
Номинальное сопротивление оконечного резистора ШС	5,6 кОм	
Максимальный ток для питания одного активного извещателя по ШС	2 mA	
Сопротивление проводов ШС	не более 150 Ом	
Сопротивление изоляции между проводами ШС	не менее 50 кОм	
Количество выходов управления типа <i>ОК</i>	3	
Максимальный ток нагрузки выходов управления типа <i>ОК</i>	0,5 A	
Максимальный ток нагрузки	500 мА	
Количество слотов расширения	1 (для модуля STEMAX UN Livi)	
Прочие характеристики		
Электропитание основное	~ 100264 B	
Электропитание резервное (от АКБ)	12 В, не менее 2,3 А·ч	
Диапазон рабочих температур	от −40 до +55 °C	
Габаритные размеры корпуса	240 х 168 х 48 мм	
Материал корпуса	ABS-пластик	
Цвет корпуса	белый	
Степень защиты корпуса	IP30	

1.3 КОМПЛЕКТ ПОСТАВКИ

Комплект поставки контроллера представлен в таблице 1.2.

Таблица 1.2 — Комплект поставки контроллера

Наименование	Обозначение	Количество
Контроллер Мираж-GSM-S4	АГНС.425644.038 ТУ	1

Таблица 1.2 — Комплект поставки контроллера

Наименование	Обозначение	Количество
Паспорт	АГНС.425644.038 ПС	1
Резистор CF-0.25 (5,6 кОм)		4
Электронный ключ DS1990A		2
Индивидуальная тара		1

1.4 УСТРОЙСТВО И РАБОТА КОНТРОЛЛЕРА

1.4.1 ФУНКЦИОНАЛЬНАЯ СХЕМА КОНТРОЛЛЕРА

Контроллер состоит из трех функциональных блоков:

- прибор объектовый оконечный (ПОО);
- прибор приемно-контрольный (ППК);
- модуль управления питанием (МУП).

Микроконтроллер выступает в качестве связующего и управляющего звена.

Функциональная схема контроллера представлена на иллюстрации (см. рисунок 1.1).

Рисунок 1.1 — Функциональная схема контроллера

1.4.2 ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ ПОО

- Поддержка двух беспроводных сетей связи стандарта GSM/GPRS 900/1800 (поколение сотовой связи 2,5G).
- Непрерывный контроль доступности каналов связи.
- Многоуровневая защита от несанкционированного удаленного доступа.
- Собственный протокол передачи данных MSRV, обеспечивающий двухстороннее динамическое шифрование, максимальную надежность и управляемость онлайн-каналов связи.
- Прием и передача GSM-сигнала с помощью внутренней планарной GSM-антенны или внешней GSM-антенны, подключаемой к разъему SMA.
- Автоматическое переключение с внешней GSM-антенны на внутреннюю при неисправности внешней.

1.4.3 ПОДДЕРЖИВАЕМЫЕ МЕТОДЫ ПЕРЕДАЧИ ДАННЫХ И ИХ ОСОБЕННОСТИ

Все методы передачи данных делятся на онлайн- и офлайн-методы. Онлайн-методы отличаются постоянным поддержанием соединения (регулярным тестированием связи с помощью тестовых пакетов данных).

Онлайн-метод **GPRS**: передача данных в сеть Интернет по протоколу TCP/IP через беспроводную сеть GSM («мобильный Интернет»).

Офлайн-метод **SMS**: передача данных в формате SMS через беспроводную сеть GSM.

Отдельно следует отметить метод **VOICE**, который представляет собой голосовые звонки с GSMмодема контроллера на GSM-модем сервера STEMAX. Этот метод используется для подтверждения активности передающего оборудования (контроля подавления) в ситуации, когда онлайн-методы (и, соответственно, тестирование активности по ним) недоступны.

Канал передачи данных GPRS являются квитируемыми: в случае получения данных на стороне контроллеру отправляется подтверждение получения. Канал SMS неквитируемым, то есть обратная связь о получении данных, отправленных по этому каналу, отсутствует.

Подробные сведения об особенностях различных каналов связи, использовании селективного контроля каналов и контроля над возможным подавлением объектового оборудования см. в Руководстве администратора ПО STEMAX, которое доступно для скачивания на веб-сайте НПП «Стелс».

1.4.4 ТИПЫ СОБЫТИЙ И АЛГОРИТМЫ ОПОВЕЩЕНИЯ

Все события, фиксируемые контроллером, делятся на системные и тревожные.

К тревожным событиям относятся:

- тревога;
- пожар;
- постановка/снятие под принуждением;
- возможное подавление каналов связи объектового оборудования.

К системным событиям — все остальные.

Для оповещения по системным и тревожным событиям используются два различных алгоритма, разработанные исходя из приоритетов. При оповещении о системных событиях приоритет гарантированная доставка информации с минимальными финансовыми затратами (см. рисунок 1.2). При оповещении о тревожных событиях приоритет — гарантированная доставка информации за минимальное возможное время (см. рисунок 1.3). На рисунках представлен порядок перехода к следующему каналу связи в случае неполучения квитанции о доставке (при использовании двух сетей GSM-связи).

Примечания

- 1 Так как канал SMS не является квитируемым, то переход к следующему шагу после отправки SMS-сообщения происходит независимо от его доставки. При оповещении о системных событиях SMS-сообщение отправляется только по резервной сети.
- 2 Реализация алгоритма в каждом конкретном случае зависит от того, какие каналы связи используются.

Рисунок 1.3 — Алгоритм оповещения о тревожных событиях

Если в ходе всего цикла извещение не было доставлено (контроллер не получил квитанцию о доставке), то цикл начинает выполняться с начала через 120 секунд. Интервал между последующими попытками увеличивается (каждый раз продлевается на 120 секунд) в целях экономии денежных средств. При достижении интервала 32 минуты цикл продолжает выполняться с этим интервалом до тех пор, когда будет получена квитанция о доставке.

Контроллер выполняет переключение на резервную GSM-сеть с периодичностью один раз в месяц во избежание блокировки SIM-карты резервной GSM-сети. (После установки соединения с сервером по резервной сети и передачи тестового пакета контроллер возвращается на основную сеть).

1.4.5 ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ ОПОВЕЩЕНИЯ

В таблице 1.3 указаны типовые временные значения, характерные для функционирования сетей сотовой связи в штатном режиме. Однако необходимо учитывать, что время установки коммутируемого соединения (первый этап) зависит от текущей загруженности сети связи и приемного оборудования. Перегрузка сотовых сетей увеличивает время доставки событий.

Таблица 1.3 — Временные характеристики оповещения

Метод оповещения	Время оповещения
TCP/IP	Время обмена информацией между контроллером и сервером составляет от 0,5 до 1 секунды. Если ТСР/ІР-соединение отсутствовало, то для установки соединения с сервером необходимо от 10 до 15 секунд.
SMS	Время отправки одного сообщения: от 1,5 до 2 секунд. Время доставки сообщения на сервер: от 7 до 10 секунд. Размер сообщения ограничен.

1.4.6 НАДЕЖНОСТЬ ДОСТАВКИ ИНФОРМАЦИИ

Надежность доставки информации обеспечивается применением перечисленных ниже технологий.

- Использование двух сетей сотовой связи, различных методов оповещения.
- Уникальные алгоритмы управления каналами связи, оптимизированные для задач охраннопожарного мониторинга.
- Собственный протокол передачи данных с шифрованием MSRV.
- Собственный стек протоколов TCP/IP.
- Интенсивное тестирование работоспособности оборудования и доступности каналов связи во всех режимах работы для своевременного выявления неисправностей и случаев создания радиопомех злоумышленниками (подавления оборудования).

1.4.7 ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ ППК

- Четыре собственных ШС для приема извещений от ручных и автоматических охранных и технологических извещателей, а также приборов приемно-контрольных через выходы реле.
- Четыре собственных логических раздела для пораздельной постановки на охрану и снятия с охраны собственных ШС и подключенных радиоустройств.
- Широкие возможности конфигурирования ШС: назначение типов, атрибутов и других параметров.
- Управление исполнительными устройствами и средствами автоматики с помощью трех выходов типа *ОК* на основе различных тактик, выбираемых пользователем.
- Постановка / снятие с помощью считывателей электронных ключей Touch Memory (в том числе ключей с шифрованием типа DS 1961S), бесконтактных считывателей и брелоков, Proximity-карт (в том числе карт с шифрованием типа ISO14443A-4), скрытых выключателей, кодовых панелей и кнопок.
- Широкие возможности управления устройствами светозвукового оповещения и исполнительными устройствами: пять предзаданных автоматических тактик (*Режим охраны, Блокировка охраны, Сирена, Неисправность, Технологическая*), возможность создания различных пользовательских автоматических тактик с гибким выбором условий и режима активации устройств, возможность ручного дистанционного управления устройствами.
- Защита внешних подключений от статического электричества.
- Контроль вскрытия корпуса с помощью тампера.

Возможности за счет дополнительных устройств, приобретаемых отдельно:

- подключение до 64 радиоустройств Livi производства НПП «Стелс» с помощью дополнительного модуля <u>STEMAX UN Livi</u>;
- управление режимом охраны с помощью биометрических считывателей, клавиатур и бесконтактных считывателей, передающих сигнал по интерфейсу Wiegand 26 за счет преобразователя <u>STEMAX WTM010</u>.

1.4.8 ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ МУП

- Основной источник питания: сеть переменного тока напряжением (230^{+23}_{-35}) В, частотой (50 ± 1) Гц.
- Резервный источник питания: АКБ 12 В, 2,3 А·ч (приобретается отдельно).
- Контроль состояния источников питания.
- Автоматическое переключение питания с основного источника на резервный (АКБ) и в обратном направлении без выдачи ложных сигналов на выходы управления и по каналам передачи извещений.
- Автоматический заряд АКБ.
- Защита АКБ от переполюсовки.
- Защита АКБ от глубокого разряда.
- Автоматическая защита от превышения нагрузки.
- Автоматическая защита блока питания от перегрева.

1.4.9 ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ УПРАВЛЕНИЯ И НАСТРОЙКИ

- Локальное конфигурирование через USB-интерфейс и удаленное конфигурирование с помощью метода передачи данных GPRS.
- Исполнение команд (Перевзять, Снять с охраны, Сброс пожарных тревог и неисправностей, Обновить), подаваемых с сервера STEMAX.
- Локальная и дистанционная замена встроенного программного обеспечения контроллера.
- Сохранение информации в журнале событий.

1.5 МАРКИРОВКА

Маркировка на упаковке контроллера:

- модель;
- серийный номер;
- дата выпуска;
- знак соответствия стандартам.

Маркировка на плате контроллера:

- модель;
- ревизия платы;
- дата производства;
- серийный номер;
- обозначения индикаторов.

1.6 УПАКОВКА

Контроллер поставляется в индивидуальной таре из картона, предназначенной для предохранения от повреждений при транспортировке.

Дополнительно контроллер упакован в полиэтиленовый пакет для предохранения от воздействия повышенной влажности при транспортировке и хранении. В тару укладывается комплект поставки.

2 ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ

ПРЕДУПРЕЖДЕНИЕ

Во избежание поражения электрическим током или возгорания запрещается эксплуатировать контроллер в следующих условиях:

- вне помещений;
- при повышенной влажности и возможности попадания жидкости внутрь корпуса;
- в агрессивных средах, вызывающих коррозию;
- при наличии токопроводящей пыли.

Перед работами по монтажу и демонтажу контроллера необходимо отключить основной и резервный источники питания.

Условия эксплуатации контроллера и подаваемое напряжение должны соответствовать значениям, приведенным в таблице технических характеристик (см. 1.2).

Резервный источник питания (АКБ) не должен быть подвергнут чрезмерному нагреву от солнечного света, огня и т.п.

Подключение и отключение модулей контроллера, а также техническое обслуживание контроллера разрешается выполнять только после его полного обесточивания (отключения питания от сети 230 В и от АКБ).

ВНИМАНИЕ

При выборе места монтажа контроллера руководствуйтесь следующими критериями:

- ограниченный доступ посторонних лиц;
- устойчивое взаимодействие с GSM-сетями и (при их наличии) радиоустройствами.

После транспортировки при отрицательной температуре контроллер перед включением необходимо выдержать без упаковки в нормальных условиях не менее 2 часов.

Запрещается устанавливать SIM-карты в держатели контроллера при включенном питании.

Перед установкой SIM-карт в держатели следует указать в параметрах контроллера корректный PIN-код или отключить запрос PIN-кода.

Перед подключением контроллера к ПК по интерфейсу USB необходимо установить на ПК USBдрайвер для оборудования производства НПП «Стелс».

При эксплуатации контроллера следует регулярно проверять наличие и расход финансовых средств на оплату услуг операторов сотовой связи. Это позволит избежать ошибок в настройке и эффективно использовать возможности контроллера при минимальных финансовых затратах. Следует запретить или ограничить кредитную систему баланса на используемых SIM-картах.

К эксплуатации контроллера допускаются лица, изучившие настоящее руководство по эксплуатации и обладающие базовыми знаниями в области систем охранно-пожарной сигнализации и средств вычислительной техники. Напряжение, подаваемое на контроллер, должно находиться в пределах значений, указанных в <u>1.2</u>. Эксплуатация контроллера должна производиться при температуре внешней среды, не превышающей значений, указанных в 1.2.

В условиях отрицательных температур АКБ сохраняют работоспособность, но значительно теряют емкость. На иллюстрации (см. рисунок 2.1) приведены графики зависимости емкости различных типов батарей от температуры.

Рисунок 2.1 — Зависимость емкости АКБ от температуры

При проектировании системы следует учитывать возможности источника питания контроллера. Если суммарный ток потребления внешних устройств (извещателей, исполнительных устройств) превышает 500 мА, необходимо использовать дополнительный источник питания. При этом рекомендуется соединить общий провод контроллера с общим проводом дополнительного источника питания для выравнивания потенциалов.

3 ПОДГОТОВКА КОНТРОЛЛЕРА К ИСПОЛЬЗОВАНИЮ

3.1 ПОДКЛЮЧЕНИЕ GSM-АНТЕННЫ И УСТАНОВКА SIM-КАРТ В КОНТРОЛЛЕР

ВНИМАНИЕ

Подключайте GSM-антенну и устанавливайте SIM-карты в держатели только при полностью отключенном электропитании контроллера.

Для основной и резервной GSM-сетей передачи извещений контроллера необходимо приобрести и установить в контроллер две SIM-карты разных операторов сотовой связи:

- выберите оптимальные тарифные планы с учетом используемых методов передачи данных (GPRS/SMS/VOICE);
- запретите или ограничьте кредитную систему платежей;
- отключите платные услуги.

Примечание — Если на SIM-картах отключен запрос PIN-кода или задан PIN-код 9999, установите SIM-карты в держатели сразу после отключения питания контроллера. Если на SIM-картах задан другой PIN-код, то необходимо предварительно указать его в программе *Конфигуратор Профессионал* (см. $\underline{4.5.2}$) и записать конфигурацию в контроллер, после чего отключить контроллер и установить SIM-карты. В противном случае SIM-карты могут быть заблокированы при попытке регистрации в сети с неверным PIN-кодом.

К контроллеру может быть подключена любая выносная антенна с SMA-разъемом (см. рисунок 3.1).

Рисунок 3.1 — SMA-разъем для подключения GSM-антенны

При установке внешней GSM-антенны убедитесь, что ее провод полностью размотан. Устанавливайте GSM-антенну в месте наилучшего приема сигнала сотовой связи.

3.2 ПОДКЛЮЧЕНИЕ ШС

Контроллер имеет четыре входа для подключения ШС охранной сигнализации, которые обеспечивают прием извещений от перечисленных ниже типов аналоговых извещателей, а также выходных реле ППК.

- Охранные: любые пассивные и активные извещатели типа сухой контакт.
- Тревожная кнопка: проводная кнопка тревожной сигнализации.
- Пожарные: поддерживаются только пожарные извещатели типа сухой контакт.
- Технологические, Датчик затопления, Датчик утечки газа: любые пассивные и активные извещатели типа сухой контакт соответствующего назначения, а также выходные реле ППК.

При подключении ШС с нормально разомкнутыми извещателями необходимо включить резистор 5,6 кОм в цепь параллельно. При подключении ШС с нормально замкнутыми извещателями необходимо включить резистор 5,6 кОм в цепь последовательно.

Для цифровых ШС (ШС с назначенным типом $\mathit{Технологический}$) подключение резистора не требуется. Они контролируются по состоянию замкнут / разомкнут. Нормальное состояние и состояние сработки могут быть выбраны с помощью функции $\mathit{Инверсия}$. Без инверсии: норма — замкнут, с инверсией: норма — разомкнут.

В условиях повышенных помех ШС рекомендуется монтировать экранированным проводом, при этом экран подключается к винту заземления внешнего источника питания.

Дополнительные сведения о типах ШС и принципах их контроля приведены в приложении Б (стр. 48).

Примечание — Если ШС не используется, то для него следует установить тип Отключен (см. 4.7.1).

3.3 ПОДКЛЮЧЕНИЕ УСТРОЙСТВ УПРАВЛЕНИЯ РЕЖИМОМ ОХРАНЫ

Для управления режимом охраны могут быть приобретены и подключены к контроллеру следующие устройства:

- кодовая панель *Мираж-КД-03* или *Мираж-КД-04*;
- считыватель электронных ключей, например, считыватель <u>STEMAX TM</u> (для переключения режима охраны с помощью электронных ключей Touch Memory);
- проводной считыватель <u>STEMAX RFID</u> (для переключения режима охраны с помощью RFIDметок);
- беспроводной пульт управления охраной <u>Livi RFID</u> (для переключения режима охраны с помощью RFID-меток, Livi RFID подключается через модуль STEMAX UN Livi);
- беспроводные пульты управления <u>Livi Key Fob</u> (подключаются модуль STEMAX UN Livi);
- скрытый выключатель;
- кнопка.

Порядок подключения к контроллеру клавиатуры *Мираж-КД* описан в руководстве по ее эксплуатации, доступном для скачивания <u>на сайте НПП «Стелс»</u>.

Примечание — Длина линии связи между кодовой панелью или считывателем электронных ключей и контроллером при прокладке монтажным проводом (например, КСПВ) и при отсутствии электромагнитных помех может достигать 50 м. На расстоянии свыше 50 м необходимо применять экранированную витую пару.

Порядок подключения к контроллеру считывателя электронных ключей *STEMAX TM* описан в руководстве по его эксплуатации, доступном для скачивания <u>на сайте НПП «Стелс»</u>.

Порядок подключения к контроллеру **проводного** бесконтактного считывателя *STEMAX RFID* описан в руководстве по его эксплуатации, доступном для скачивания <u>на сайте НПП «Стелс»</u>.

Подключение к контроллеру пультов управления Livi RFID и/или Livi Key Fob возможно только через модуль STEMAX UN Livi. Подключение выполняется по радиоканалу, как описано в <u>4.7.2</u>.

Схема подключения скрытого выключателя или кнопки приведена на иллюстрации (см. рисунок 3.2).

Рисунок 3.2 — Схема подключения скрытого выключателя

Примечание — Если вы используете деление контроллера на разделы, то скрытый выключатель или кнопка будут управлять охраной только первого раздела. Для включения и выключения охраны нескольких разделов с помощью скрытого выключателя или кнопки настройте подчиненность разделов (см. 4.6.2).

3.4 ПОДКЛЮЧЕНИЕ УСТРОЙСТВ СВЕТОВОГО И ЗВУКОВОГО ОПОВЕЩЕНИЯ

В качестве устройства светового и звукового оповещения рекомендуется использовать сирену $\underline{\text{Livi}}$ $\underline{\text{Siren}}$ или комбинированный оповещатель наружного исполнения типа MAЯK-12K (или аналогичный оповещатель). При подключении проводных звуковых и световых оповещателей их минусовой контакт необходимо подключить к выходу управления типа OK (которому назначена необходимая тактика), а плюсовой контакт к выходу +12 В контроллера.

В качестве внешнего индикатора (лампы Pежим), подключаемого к клеммам REG и -12 В, рекомендуется использовать светодиод типа АЛ307КМ или аналогичный. Ограничительный резистор установлен в контроллере.

3.5 ПОДКЛЮЧЕНИЕ МОДУЛЯ РАСШИРЕНИЯ К КОНТРОЛЛЕРУ

Убедитесь, что контроллер обесточен.

Для подключения вставьте разъем модуля в соответствующий слот на плате контроллера (см. приложение A на стр. <u>44</u>). После подачи электропитания на контроллер модуль STEMAX UN Livi будет добавлен в конфигурацию контроллера автоматически.

4 НАСТРОЙКА КОНТРОЛЛЕРА В ПРОГРАММЕ КОНФИГУРАТОР ПРОФЕССИОНАЛ

В качестве иллюстраций приведены снимки экрана из программы Конфигуратор Профессионал версии 4.20, запущенной под управлением ОС Windows 7 Pro. Интерфейс программы, установленной на вашем ПК, может иметь незначительные отличия из-за используемой версии программы и особенностей работы ОС.

4.1 УСТАНОВКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ВПЕРВЫЕ

Для конфигурирования контроллера и мониторинга его состояния используется программа Конфигуратор Профессионал, предназначенная для персональных компьютеров под управлением ОС Windows. При первой установке программы на персональный компьютер необходимо также установить следующие компоненты:

- USB-драйвер (необходим для корректного подключения устройств производства НПП «Стелс» к ПК по интерфейсу USB);
- пакет библиотек .NET Framework версии 3.5 sp 1 (необходим для корректной работы программы *Конфигуратор Профессионал*).

Внимание! Работа с контроллером поддерживается в программе *Конфигуратор Профессионал* версии 4.19 и выше. Приступая к работе с контроллером, убедитесь в том, что вы используете актуальную версию программы.

Установка всех компонентов выполняется с помощью установочного файла программы *Конфигуратор Профессионал* посредством выполнения следующих действий:

- 1. Загрузите с веб-страницы http://nppstels.ru/support/konf/ установочный пакет программы Конфигуратор Профессионал: установочный файл поставляется в виде архива Konfigurator_pro_setup_(X).rar (где X — номер версии).
- 2. После загрузки извлеките установочный файл из архива.
- 3. Запустите установочный файл Konfigurator_pro_setup_(X).exe (где X номер версии).

Примечание — В некоторых версиях ОС Windows для обеспечения корректной установки рекомендуется запускать установочные файлы от имени администратора системы. Для этого щелкните по установочному файлу правой кнопкой мыши и в появившемся меню выберите Запустить от имени администратора.

Рисунок 4.1 — Окно Компоненты устанавливаемой программы

5. В следующем окне укажите папку установки и нажмите кнопку Установить (см. рисунок 4.2).

Рисунок 4.2 — Окно Выбор папки установки

После установки программа может быть запущена следующими способами:

- с помощью ярлыка, созданного на рабочем столе ОС Windows;
- из меню Пуск ОС Windows (Пуск \rightarrow Программы \rightarrow Стелс \rightarrow Конфигуратор Про);

В дальнейшем программа будет создавать в папке, в которой находится ее исполняемый файл, другие файлы и подпапки, необходимые для работы, сохранения данных и настроек.

4.2 ПОДГОТОВКА КОНТРОЛЛЕРА К КОНФИГУРИРОВАНИЮ

Для подготовки контроллера к конфигурированию выполните следующие действия:

1) Подайте на контроллер электропитание от сети 230 В или от АКБ 12 В (см. схему подключений в приложении А на стр. 44). АКБ приобретается отдельно.

ВНИМАНИЕ

При подключении основного питания от сети 230 В к контроллеру должно быть обеспечено отключающее устройство, чтобы изолировать контроллер от сети на время его технического обслуживания. Примеры отключающих устройств: сетевая вилка, приборный соединитель, всеполюсный сетевой выключатель, всеполюсный автоматический выключатель.

2) Подключите контроллер к ПК с запущенной программой *Конфигуратор Профессионал* с помощью USB-кабеля.

Автоматически откроется окно *Найдено новое подключение*, в котором отобразится тип и серийный номер подключенного контроллера. В этом окне может быть загружен шаблон настроек контроллера (при наличии созданных ранее шаблонов).

Регистрация контроллера в программе *Конфигуратор Профессионал* **может быть выполнена вручную**:

• щелкните правой кнопкой мыши по свободному месту в области дерева устройств программы Конфигуратор Профессионал (см. <u>4.3</u>) и в появившемся меню выберите Добавить устройство (см. рисунок 4.3);

Рисунок 4.3 — Регистрация контроллера вручную

- в открывшемся окне Новое устройство (см. рисунок 4.4):
 - о в раскрывающемся списке *Тип устройства* выберите *Мираж-GSM-S4*;
 - о в поле *Серийный номер* введите серийный номер устройства, после чего нажмите кнопку *ОК*

Рисунок 4.4 — Окно Новое устройство

4.3 ИНТЕРФЕЙС ПРОГРАММЫ КОНФИГУРАТОР ПРОФЕССИОНАЛ

Интерфейс основного окна программы представлен на иллюстрации (см. рисунок 4.5).

Рисунок 4.5 — Структура основного окна программы (А — дерево устройств, Б — область параметров, В — область подсказок)

В **дереве устройств** (область A) отображаются добавленные устройства, группы их параметров, версия установленного на них встроенного ПО и состояние их подключения.

Устройства, подключенные к ПК с запущенной программой, обозначаются в дереве значком , неподключенные устройства — значком . Подключение может осуществляться по различным каналам связи (USB, GPRS), см. $\underline{4.4}$.

Дерево устройств имеет многоуровневую структуру:

 группа параметров разделов устройства (параметры, связанные с постановкой на охрану и снятием с охраны контроллера);

— группа параметров ППК контроллера (параметры ШС и/или радиоустройств, интеграции и т. д.);

— группа управления (средства для дистанционного управления выходами типа *OK* и исполнительными устройствами Livi). Группа управления отображается, если хотя бы одному выходу типа *OK* или исполнительному устройству назначена тактика *Удаленное управление*.

Когда в дереве устройств выбрана какая-либо группа параметров, в **области параметров** (область Б) отображаются вкладки с соответствующими параметрами. (Для того чтобы выбрать группу, щелкните левой кнопкой мыши по соответствующей строке в дереве устройств, в результате чего это строка будет выделена синим, см. рисунок 4.6).

Рисунок 4.6 — Выбор группы параметров ППК контроллера

Если в дереве отображается большое количество устройств, то для удобства их группы параметров может быть свернута щелчком левой кнопкой мыши по значку ▶. Для того чтобы развернуть группы, щелкните левой кнопкой мыши по значку ▶ (см. рисунок 4.7).

Рисунок 4.7 — Дерево устройств, частично свернуто

В **области подсказок** (область В) выводится справочная информация об отображаемых параметрах.

Примечание — Область подсказок может быть скрыта. Для этого в меню *Настройки* выберите для параметра *Скрывать поле комментариев* значение *Да*.

В верхней части основного окна программы находятся **меню**, кнопки (**панель инструментов**) и **поле для поиска** по серийному номеру или имени устройства (см. рисунок 4.8). Подробные сведения о выполнении поиска см. в руководстве пользователя программы *Конфигуратор Профессионал*, доступном для скачивания на веб-сайте НПП «Стелс».

Рисунок 4.8 — Меню, поле поиска и панель инструментов

Сведения о доступных в программе «горячих» клавишах и сочетаниях клавиш см. в *Приложении И* (на стр. $\underline{59}$).

4.4 СПОСОБЫ УСТАНОВКИ СОЕДИНЕНИЯ МЕЖДУ ПРОГРАММОЙ КОНФИГУРАТОР ПРОФЕССИОНАЛ И КОНТРОЛЛЕРОМ

Для записи в контроллер параметров конфигурации, выбранных в программе *Конфигуратор Профессионал*, а также записи новых версий встроенного ПО, использования функций мониторинга и удаленного управления, необходимо установить соединение между контроллером и программой *Конфигуратор Профессионал* одним из следующих методов USB или GPRS.

USB-интерфейс используется для установки локального соединения между контроллером и ПК. При необходимости дистанционного соединения используется канал GPRS.

Для того чтобы выбрать метод соединения, в окне *Настройки* выберите необходимый вариант в раскрывающемся списке *Используемый канал подключения* (см. рисунок 4.9) **или** нажмите соответствующую кнопку в основном окне программы (см. рисунок 4.10). В окне *Настройки* также может быть выбрано количество попыток подключения (в соответствующем раскрывающемся списке).

Рисунок 4.9 — Окно Настройки

Рисунок 4.10 — Кнопки для выбора способа подключения USB и GPRS

4.4.1 ПОДКЛЮЧЕНИЕ ПО КАНАЛУ USB

Для установки локального подключения к контроллеру выполните описанные ниже действия.

- 1) Подключите контроллер к ПК с запущенной программой *Конфигуратор Профессионал* с помощью USB-кабеля (см. схему подключений в *Приложении А* на стр. 44).
- 2) В окне *Настройки* выберите в раскрывающемся списке *Используемый канал подключения* вариант *Соединение через USB-кабель* **или** нажмите кнопку в основном окне программы.

Если локальное соединение установлено, то значок контроллера в дереве устройств изменится на

Примечание — Первичное конфигурирование контроллера выполняется только при наличии локального соединения между контроллером и ПК с запущенной программой *Конфигуратор Профессионал*.

4.4.2 ПОДКЛЮЧЕНИЕ ПО КАНАЛУ GPRS

Дистанционное взаимодействие программы с контроллером по каналу GPRS осуществляется посредством сервера STEMAX. Сервер служит связующим звеном, с которым непосредственно взаимодействуют программа и контроллер.

Примечание — Для установки соединения между программой и устройством по каналу GPRS необходимо, чтобы предварительно в контроллер по каналу USB были записаны параметры подключения к серверу STEMAX. Для записи параметров подключения выполните действия, описанные в 4.5.1.1. На сервере STEMAX должна быть создана карточка объектового устройства для данного контроллера и связанные карточки одного или нескольких объектов (карточки объектового устройства и объектов создаются в программе STEMAX Администратор, как описано в *Руководстве администратора ПО STEMAX*, которое доступно для скачивания на веб-сайте НПП «Стелс»).

Для установки соединения по каналу GPRS выполните описанные ниже шаги.

Шаг 1: установите подключение к серверу STEMAX. Для этого в меню *Файл* выберите *Подключиться к серверу ПЦН* **или** нажмите кнопку $\boxed{\omega}$. В окне авторизации (см. рисунок 4.11) введите данные в соответствии с таблицей 4.1 и нажмите кнопку *ОК*.

Таблица 4.1 — Параметры подключения к серверу *STEMAX*

Параметр	Значение
Адрес сервера	 — localhost, если программа Конфигуратор Профессионал запускается на серверном компьютере (на ПК, где запущена программа Сервер STEMAX). — локальный IP-адрес серверного компьютера, если программа Конфигуратор Профессионал будет подключаться к серверу по локальной сети. — внешний статический IP-адрес серверного компьютера, если программа Конфигуратор Профессионал будет подключаться к серверу из внешних сетей.
Порт сервера	TCP/IP-порт, используемый для подключения программных модулей к серверу STEMAX (по умолчанию 5000)
Имя пользователя	Имя учетной записи пользователя с правами суперпользователя или администратора на сервере STEMAX
Пароль	Пароль учетной записи пользователя с правами суперпользователя или администратора на сервере STEMAX
Модуль связи	Файл в формате .dll (компонент приложения) с именем MS_ServerClientLib_X.dll (где X — номер версии ПО STEMAX), который создается в папке установки ПО станции мониторинга. Подключение программы к серверу осуществляется через модуль связи. Файл модуля связи для актуальной версии ПО STEMAX создается автоматически в папке программы Конфигуратор Профессионал после ее установки. Если необходимо подключиться к другой версии ПО станции мониторинга, то нужно скопировать файл соответствующего модуля связи в папку программы или указать его местонахождение в поле Модуль связи.

Рисунок 4.11 — Подключение к серверу STEMAX

Примечание — Для того чтобы сохранить параметры подключения, нажмите кнопку $\stackrel{1}{\longleftarrow}$, в открывшемся окне введите имя этого профиля подключения и нажмите кнопку OK (см. рисунок 4.12). Для того чтобы удалить сохраненный профиль подключения, выберите его в списке и нажмите кнопку $\stackrel{1}{\longrightarrow}$.

Рисунок 4.12 — Окно Введите имя соединения

Шаг 2: нажмите кнопку в основном окне программы **или** в окне *Настройки* в раскрывающемся списке *Используемый канал подключения* выберите *Соединение через TCP/IP сервера*.

Примечание — Если на сервере STEMAX в карточке объекта настроена работа индикаторов состояния каналов связи с объектовым устройством (настройки индикатора $GPRS\ 1$ задаются на вкладке Дополнительные параметры, как описано в *Руководстве администратора ПО STEMAX*, которое доступно для скачивания на веб-сайте НПП «Стелс»), то состояние связи между сервером

STEMAX и контроллером отображается с помощью индикаторов в дереве устройств программы *Конфигуратор Профессионал*: — подключение установлено, — подключение отсутствует.

4.5 КОНФИГУРАЦИЯ ПОО

Для того чтобы перейти к настройке группы параметров ПОО в составе системы передачи извещений (СПИ), щелкните левой кнопкой мыши по соответствующей строке в дереве контроллеров (см. рисунок 4.13). В результате в области параметров появятся вкладки Оповещение, Дополнительно, Журнал событий, Задачи, Монитор.

Рисунок 4.13 — Переход к группе параметров ПОО

Настройка параметров ПОО выполняется на вкладках Оповещение и Дополнительно.

Вкладка Журнал событий предназначена для настройки параметров ведения журнала событий контроллера и операций с ним.

Вкладка Задачи предназначена для выполнения таких задач, как чтение и запись конфигурации контроллера, чтение версии и обновление встроенного ПО, очистка рабочих и сервисных записей.

Вкладка *Монитор* предназначена для мониторинга состояния устройства в режиме реального времени.

4.5.1 ВКЛАДКА ОПОВЕЩЕНИЕ

На вкладке Оповещение задаются описанные ниже параметры методов передачи извещений. Для того чтобы задействовать метод передачи извещений, установите соответствующий флажок в левой части вкладки. Для того чтобы настроить метод передачи извещений, выделите его строку, в результате чего в правой части вкладки будут отображены относящиеся к нему параметры.

4.5.1.1 ПАРАМЕТРЫ КАНАЛА TCP/IP - GPRS

Для того чтобы инициировать передачу извещений по сети Интернет на сервер STEMAX, установите флажок TCP/IP – GPRS в левой части вкладки и заполните параметры подключения к серверу, описанные ниже (см. рисунок 4.14).

Подключение 1 и *Подключение 2*: параметры основного и резервного подключения к серверу STEMAX по сети Интернет.

Примечание — Основное и резервное подключение могут быть реализованы как подключения к разным серверным компьютерам (основному и резервному серверу STEMAX) **или** как подключение к одному серверному компьютеру, на котором организованы две точки доступа к сети Интернет.

- Имя домена / ІР адрес:
 - статический локальный IP-адрес сервера (при подключении по локальной сети)
 - o DNS-адрес или внешний статический IP-адрес сервера STEMAX (при подключении из внешней сети).
- Порт (начало диапазона): номер первого из диапазона TCP/IP-портов, используемых для подключения объектового оборудования к серверу.
- Порт (окончание диапазона): номер последнего из диапазона TCP/IP-портов, используемых для подключения.

Примечание — Резервирование TCP/IP-портов существенно повышает надежность доставки извещений. Оптимальным решением является открытие на серверном компьютере станции мониторинга от 2 до 4 TCP/IP-портов для обмена данными с объектовым оборудованием. Для каждого из этих TCP/IP-портов необходимо создать в программе *Администратор* отдельное приемно-передающее устройство (подробнее описано в *Руководстве администратора ПО STEMAX*, которое доступно для скачивания на веб-сайте НПП «Стелс»).

Рисунок 4.14 — Параметры канала TCP/IP - GPRS

Основная сеть и Резервная сеть: параметры подключения к услуге GPRS («мобильный интернет») на SIM-картах основной и резервной GSM-сети контроллера.

- Оператор: раскрывающийся список, который позволяет автоматически указать параметры доступа к услуге «мобильный Интернет» (логин, пароль, адрес точки доступа) для основных операторов сотовой связи. Если используются услуги другого оператора, эти параметры необходимо указать вручную.
- Логин: логин доступа к услуге «мобильный Интернет».
- Пароль: пароль доступа к услуге «мобильный Интернет».
- Точка доступа: URL-адрес точки доступа к услуге «мобильный Интернет».

Блок параметров *Контроль соединения* предназначен для настройки параметров контроля активности соединения.

- Период, сек: период отправки тестовых TCP/IP-пакетов.
- Контроль подавления: включение/отключение функции контроля возможного подавления объектового оборудования.

Функция контроля подавления предназначена для быстрого обнаружения потери сигнала от объектового оборудования по всем каналам связи. Если функция включена, то если тестовые TCP/IP-пакеты перестанут доставляться по основной GSM-сети, то контроллер совершит тестовый звонок по каналу VOICE. Если этот звонок по каналу VOICE не поступил на сервер, то будет сформировано событие Возможное подавление.

Примечание — Событие *Возможное подавление* не будет формироваться, если в программе *Администратор* в карточке объекта не заполнен параметр *Формировать 'Возможное подавление' через, с* (вкладка *Дополнительные параметры*).

• Возврат на основную сеть: период возврата на основную GSM-сеть (основную SIM-карту контроллера) после работы на резервной GSM-сети (для алгоритма отправки тестовых TCP/IP-пакетов). Если тестовые TCP/IP-пакеты перестали доставляться по основной GSM-сети, то контроллер отправит тестовый TCP/IP-пакет по резервной GSM-сети и продолжит

тестирование по ней. Попытка возврата на основную GSM-сеть будет выполнена через указанное здесь время (например, через 2 часа).

4.5.1.2 ПАРАМЕТРЫ КАНАЛА SMS

Рисунок 4.15 — Параметры канала SMS

Основная сеть → *Телефон 1:* телефонный номер GSM-модема сервера STEMAX, предназначенного для приема данных с основной SIM-карты контроллера.

 $Pезервная \ ceть o Tелефон 1:$ телефонный номер GSM-модема сервера STEMAX, предназначенного для приема данных с резервной SIM-карты контроллера.

4.5.1.3 ПАРАМЕТРЫ КАНАЛА VOICE

Рисунок 4.16 — Параметры канала VOICE

Основная сеть \to Телефон 1, Телефон 2: телефонные номера тестовых GSM-модемов, на которые контроллер будет выполнять звонки с основной SIM-карты. Если будет использоваться только один GSM-модем, укажите его телефонный номер в поле Телефон 1.

Резервная сеть → *Телефон 1, Телефон 2:* аналогичная настройка для резервной SIM-карты (используется в случае недоступности основной GSM-сети).

Tectupo Bahue o Пepuo Д, мин: пepuo д тectoвых звонков (при использовании канала VOICE для контроля доступности офлайн-соединения).

4.5.2 ВКЛАДКА ДОПОЛНИТЕЛЬНО

На вкладке Дополнительно (см. рисунок 4.17) задаются описанные ниже параметры.

Антенна → Тип:

- о Внутренняя использование только встроенной антенны;
- о *Внешняя* использование внешней антенны с автоматическим переходом при ее неисправности на встроенную.

Основная сеть \rightarrow PIN-код: PIN-код основной SIM-карты контроллера.

Резервная сеть \rightarrow PIN-код: PIN-код резервной SIM-карты контроллера.

Примечание — Если на SIM-картах не используется PIN-код, оставьте поле пустым. PIN-код SIM-карты может быть изменен с помощью сотового телефона.

Рисунок 4.17 — Вкладка Дополнительно

4.5.3 ВКЛАДКА ЖУРНАЛ СОБЫТИЙ

Вкладка *Журнал событий* (см. рисунок 4.18) предназначена для отображения журнала событий, который хранится в флеш-памяти контроллера.

Рисунок 4.18 — Вкладка Журнал событий

Все записи журнала делятся на рабочие и сервисные. **Рабочие** записи представляют собой фиксируемые контроллером события. **Сервисные** записи содержат информацию о работе контроллера. По умолчанию ведутся только рабочие записи. Для того чтобы **включить ведение сервисных записей**, нажмите кнопку *Настройка сервисных записей*, в результате чего откроется окно с детальными параметрами их ведения (см. рисунок 4.19).

Рисунок 4.19 — Окно Настройка сервисных записей журнала

В левом верхнем углу окна находится раскрывающийся список, предназначенный для выбора конфигурации ведения сервисных записей. Первоначально доступны две конфигурации: *Вкл.* и *Выкл.* (их параметры отображаются в окне при их выборе).

Пользователь может создать собственную конфигурацию. Для этого необходимо выполнить следующие действия:

- 1. Нажмите кнопку 🖃.
- 2. В открывшемся окне Введите имя конфигурации укажите имя и нажмите кнопку ОК.
- 3. В окне *Настройка сервисных записей журнала* выберите необходимые значения в столбце *Уровень* и нажмите кнопку *ОК*.
- 4. В открывшемся окне с запросом подтверждения нажмите кнопку *Да*, чтобы записать конфигурацию в устройство (для осуществления записи между устройством и программой должно быть установлено соединение одним из возможных способов, см. <u>4.3</u>).

Для того чтобы **удалить конфигурацию**, выберите ее в раскрывающемся списке и нажмите кнопку \Box . В открывшемся окне с запросом подтверждения нажмите кнопку $\mathcal{L}a$.

Для того чтобы **отобразить** имеющиеся записи, нажмите кнопку *Прочитать*. В открывшемся окне выберите тип (*Рабочие записи* / *Сервисные записи*) и количество отображаемых записей и нажмите *ОК*.

Для того чтобы **экспортировать** отображенные записи в ТХТ-файл, нажмите кнопку *Экспортировать в файл*.

Для того чтобы **очистить** журнал, нажмите кнопку *Очистить*. В открывшемся окне выберите тип записей (*Рабочие записи* / *Сервисные записи*), которые необходимо удалить, и нажмите кнопку *ОК*.

Рисунок 4.20 — Вкладка *Задачи*

Вкладка *Задачи* (см. рисунок 4.20) предназначена для выбора и исполнения задач (обновление встроенного ПО, удаление записей из журнала событий, запись и чтение конфигурации, определение версии встроенного ПО).

В блоке Список задач выбираются флажками типы задач, которые необходимо выполнить. Для того чтобы запустить выполнение задач, нажмите кнопку (Начать выполнение задач) в верхней части основного окна программы (на панели инструментов). Последовательность выполнения задач соответствует их последовательности в списке сверху вниз. Если выбрано несколько устройств и несколько задач, то сначала все задачи будут выполнены для первого устройства, затем для второго и т. д.

Устройства, для которых необходимо выполнить выбранные задачи, выбираются в дереве устройств. Для того чтобы установить или снять выделение сразу несколько устройств, нажмите и удерживайте клавишу Ctrl или Shift и щелкните по соответствующим строкам в дереве устройств левой кнопкой мыши. Нажатие кнопки *Применить настройки ко всем выбранным устройствам* добавляет все выбранные задачи в очередь для всех выделенных устройств.

В блоке Состояние отображаются результат и дата/время выполнения задач.

В поле *Настройки* указывается путь к файлу встроенного ПО (.sbin) для задачи *Обновление ПО*.

Кнопка , появляющаяся вместо кнопки в ходе выполнения задач, позволяет приостановить выполнение задач и продолжить его с этапа приостановки позже.

4.5.5 ВКЛАДКА МОНИТОР

На вкладке *Монитор* (см. рисунок 4.21) отображается текущее состояние устройства. Информация автоматически обновляется в режиме реального времени (при наличии соединения между программой *Конфигуратор Профессионал* и устройством).

Рисунок 4.21 — Вкладка Монитор

В таблицах *Состояние шлейфов* и *Состояние источников питания* в столбце *Зона* отображается значение параметра в текущий момент времени (независимо от времени контроля), а в столбце *Состояние* — значение, фиксируемое по времени контроля.

Например, если АКБ отсутствует, но время контроля после включения питания контроллера еще не прошло, то в столбце *Зона* будет отображаться *Нет*, а в столбце *Состояние* — *Есть*.

При использовании контроллера вместе с модулем STEMAX UN Livi на вкладке *Монитор* появляется таблица *Состояние радиодатчиков*.

Расшифровку сокращений в столбце Параметры для радиоустройств см. в 4.7.2.3.

Дополнительно на вкладке *Монитор* может быть отображен график уровня сигнала радиоустройств. Для этого откройте окно *Настройки* и в раскрывающемся списке *График уровня сигнала радиодатчиков* выберите значение *Да* (см. рисунок 4.22).

Рисунок 4.22 — Включение функции отображения графика уровня сигнала радиоустройств

4.6 КОНФИГУРАЦИЯ РАЗДЕЛОВ

Группа параметров разделов содержит параметры, связанные с постановкой на охрану и снятием с охраны контроллера. Раздел — группа ШС / радиоустройств, для постановки на охрану и снятия с охраны которых используется отдельный электронный ключ / код. Раздел может быть рассмотрен как отдельный охраняемый объект.

Максимальное количество собственных разделов контроллера — четыре. Распределение ШС контроллера по его собственным разделам выполняется в группе параметров ППК на вкладке *Шлейфы*.

Радиоустройства, подключенные к контроллеру с помощью дополнительного модуля STEMAX UN Livi, могут быть распределены по собственным разделам контроллера (в группе параметров ППК на вкладке *Датчики*).

Примечание — Нумерация разделов контроллера начинается с 1.

Для того чтобы перейти к настройке группы параметров разделов, щелкните левой кнопкой мыши по соответствующей строке в дереве контроллеров (см. рисунок 4.23). В результате в области параметров появятся вкладки *Параметры* и *База электронных ключей*.

Рисунок 4.23 — Переход к группе параметров разделов

4.6.1 ВКЛАДКА ПАРАМЕТРЫ

На вкладке *Конфигурация раздела* задаются описанные ниже параметры разделов и управления режимом охраны контроллера (см. рисунок 4.24).

Рисунок 4.24 — Вкладка Параметры

- Способ управления постановкой: способ постановки раздела на охрану / снятия с охраны.
 - *Электронный ключ:* электронный ключ Touch Memory или пульт управления охраной Livi RFID, предназначенный для использования электронных ключей и карт стандартов ISO 15693 или ISO 14443A.
 - о Скрытый выключатель: переключатель с двумя положениями (на охране / снят с охраны).
 - о *Клавиатура Мираж-КД:* кодовая панель *Мираж-КД-03* или *Мираж-КД-04*, предназначенная для введения цифровых кодов.
 - о *Кнопка:* кнопка, одно нажатие которой ставит объект на охрану, а следующее снимает и т. д.
 - о STEMAX TM: считыватель электронных ключей Touch Memory STEMAX TM.
 - STEMAX RFID: проводной бесконтактный считыватель STEMAX RFID, предназначенный для использования электронных ключей и карт стандартов ISO 15693 или ISO 14443A.

Примечание — Если вы используете деление контроллера на собственные логические разделы, то при выборе способа постановки *Скрытый выключатель* или *Кнопка* обратите внимание, что выключатель или кнопка будут управлять охраной **только первого собственного раздела** контроллера. Для управления охраной всего объекта используйте функцию назначения главных и подчиненных разделов: назначьте первый раздел — главным, а остальные разделы — подчиненными. Подробнее о назначении главных и подчиненных разделов описано в <u>4.6.2.</u>

• *Секрет электронных ключей:* поле для записи «секрета» электронных ключей. Введя «секрет», нажмите кнопку *Запись*.

Примечание — «Секрет» электронного ключа — комбинация цифр (максимум 16), которая записывается в контроллер и в электронные ключи типа DS1961S (а также типа ISO 14443A с помощью считывателя STEMAX RFID или пульта управления охраной Livi RFID) и служит дополнительным средством аутентификации. Порядок записи «секрета» электронных ключей описан в руководствах по эксплуатации устройств <u>Livi RFID</u>, <u>STEMAX RFID</u> и <u>STEMAX TM</u>, доступных для скачивания на сайте НПП «Стелс».

- *Квитирование на лампу «Режим» (Да / Нет):* если эта функция активирована, то после постановки контроллера на охрану индикатор *Режим* будет мигать до получения от сервера STEMAX квитанции о доставке соответствующего извещения.
- Звуковое оповещение при постановке / снятии (Да / Нет): включение и отключение звукового оповещения о постановке и снятии (для выхода типа *ОК* с назначенной тактикой *Сирена*).
- Сервисный код клавиатуры: комбинация из четырех цифр, которую необходимо набрать перед вводом сервисных кодов с клавиатуры Мираж-КД.

• Инверсия скрытого выключателя (Да / Нет): если эта функция активирована, замыкание цепи скрытого выключателя приводит к снятию контроллера с охраны, а размыкание — к постановке на охрану. Если функция не активирована, то скрытый выключатель работает в прямом режиме (замыкание цепи приводит к постановке, размыкание — к снятию).

В нижней части вкладки задаются **параметры отдельных разделов**. Это поле организовано в виде таблицы с описанными ниже столбцами.

- Раздел: номер раздела.
- *Подчиненный раздел:* выбор разделов, постановка / снятие которых будет осуществляться при постановке / снятии этого раздела (флажки *Ставить* и *Снять* выбор соответствующих действий).

Примечание — Если раздел является подчиненным, то ему нельзя подчинить другие разделы. Дополнительные сведения см. в 4.6.2.

- Постановка по шлейфу (Не контролировать функция отключена; 1, 2, 3, 4 и далее постановка по соответствующему ШС/радиоустройству): если эта функция активирована, то, когда идет отсчет времени задержки на постановку, контроллер автоматически становится на охрану при переходе указанного ШС/радиоустройства из состояния Тревога в состояние Норма (например, при закрытии двери, оборудованной магнитоконтактным извещателем).
- *Попыток постановки:* количество попыток, после которого контроллер ставится на охрану независимо от состояния ШС (то есть даже в том случае, если некоторые ШС находятся в состоянии *Неисправность*).
- Задержка на постановку, сек: время, проходящее с момента применения средства для постановки объекта на охрану, в течение которого при срабатывании извещателей проходной зоны не формируется тревога (задержка на выход). Параметр предназначен для случаев, когда постановка на охрану выполняется с помощью устройства управления режимом охраны, установленного внутри объекта, а затем пользователь покидает объект. Параметр действует для ШС с атрибутом Задержка (см. 4.7.1 и Приложение Г на стр. 50).
- Задержка на снятие, сек: проходящее с момента срабатывания извещателей проходной зоны, в течение которого не формируется тревога (задержка на вход). Параметр предназначен для случаев, когда снятие с охраны выполняется с помощью устройства управления режимом охраны, установленного внутри объекта, после того как пользователь вошел на объект. Параметр действует для ШС с атрибутом Задержка (см. 4.7.1 и Приложение Г на стр. 50).
- *Автовзятие, сек:* время, проходящее с момента физического возвращения ШС в нормальное состояние после срабатывания, по завершении которого фиксируется его возвращение из состояния *Тревога* в состояние *Норма* (и, таким образом, становится возможным формирование нового извещения о срабатывании этого ШС). Параметр действует для ШС с атрибутом *Автовзятие* (см. <u>4.7.1</u> и *Приложение* Г на стр. <u>50</u>).

4.6.2 ПРИНЦИПЫ ИСПОЛЬЗОВАНИЯ ЛОГИЧЕСКИХ РАЗДЕЛОВ КОНТРОЛЛЕРА

В контроллере реализована пораздельная постановка на охрану: возможно организовать до четрых собственных логических разделов, по которым могут быть произвольно распределены подключенные ШС и радиоустройства. Каждый раздел является отдельным объектом мониторинга на сервере STEMAX.

При стандартной настройке управление режимом охраны каждого раздела осуществляется независимо. Функция назначения главных и подчиненных разделов позволяет организовать автоматическое изменение режима охраны некоторых разделов (подчиненных) в соответствии с изменением режима охраны других разделов (главных). При постановке на охрану или снятии с охраны главного раздела режим охраны подчиненного раздела будет автоматически изменяться соответствующим образом.

Примеры

1 В офисном здании есть общее помещение (холл или коридор), через которое проходят все сотрудники расположенных в нем трех организаций. Из этого помещения они входят в свои офисы. Удобно использовать следующую схему настройки разделов: каждый из офисов (разделы 1..3) назначается главным разделом, а общее помещение (раздел 4) назначается подчиненным разделом. Подчиненный раздел будет ставиться на охрану только после того, как на охрану поставлены все главные разделы. В конце рабочего дня сотрудники, уходя, будут ставить свои офисы на охрану; когда последний уходящий сотрудник поставит на охрану свой офис,

подчиненный раздел также встанет на охрану. На следующее утро, когда первый пришедший сотрудник снимет с охраны свой офис, подчиненный раздел автоматически снимется с охраны.

Настройка, соответствующая этому примеру, показана на иллюстрации (см. рисунок 4.25).

Рисунок 4.25 — Пример 1

2 Первый раздел назначается главным, а все остальные — подчиненными ему на постановку. В таком случае при постановке на охрану главного раздела все подчиненные разделы будет автоматически синхронно ставиться на охрану. При снятии с охраны главного раздела все подчиненные разделы будет автоматически синхронно сниматься с охраны. Настройка, соответствующая этому примеру, показана на иллюстрации (см. рисунок 4.26).

Рисунок 4.26 — Пример 2

4.6.3 ВКЛАДКА БАЗА ЭЛЕКТРОННЫХ КЛЮЧЕЙ

На вкладке *База электронных ключей* (см. рисунок 4.27) находится база электронных ключей и кодов, используемых для постановки и снятия. База организована в виде таблицы с описанными ниже столбцами.

Рисунок 4.27 — Вкладка *База электронных ключей*

• Ключ: порядковый номер кода или ключа (от 1 до 100).

Примечание — Для регистрации кода или электронного ключа необходимо, чтобы соответствующий способ постановки/снятия (*Электронный ключ, Клавиатура Мираж-КД, STEMAX TM, STEMAX RFID*) был предварительно выбран на вкладке *Параметры* в раскрывающемся списке *Способ управления постановкой/снятием*. В противном случае ввод не будет принят и появится сообщение об ошибке (см. рисунок 4.28).

Рисунок 4.28 — Сообщение об ошибке

- Номер ключа/код: цифровой код или код электронного ключа.
- Владелец: имя или описание владельца кода или ключа.

Примечание — Текст, введенный в поле *Владелец*, не передается на сервер STEMAX в составе извещения.

• *Раздел:* раздел, для постановки на охрану и снятия с охраны которого будет использоваться ключ.

Для того чтобы создать базу, укажите имена пользователей в столбце *Владелец* и соответствующие цифровые коды или коды электронных ключей в столбце *Номер ключа/код*.

Для того чтобы автоматически внести код электронного ключа в базу, выполните следующие действия:

- установите курсор мыши в необходимую ячейку столбца Номер ключа/код;
- 2) нажмите кнопку Прочитать электронный ключ;
- 3) поднесите электронный ключ к считывателю.

Для того чтобы сохранить базу в памяти контроллера, выполните запись конфигурации. Для того чтобы экспортировать базу в ТХТ-файл, нажмите кнопку *Сохранить*. Для того чтобы импортировать базу из ТХТ-файла, нажмите кнопку *Загрузить*. Для того чтобы удалить все введенные данные, нажмите кнопку *Очистить*.

4.7 КОНФИГУРАЦИЯ ППК

К группе параметров ППК относятся параметры ШС, выходов управления, контроля источников питания, тампера и др. Для того чтобы перейти к группе параметров ППК, щелкните левой кнопкой мыши по соответствующей строке в дереве контроллеров (см. рисунок 4.29). В результате в области параметров появятся вкладки *Шлейфы, Датчики, Источники питания, Выходы управления, Дополнительно* и *Монитор*.

Рисунок 4.29 — Переход к группе параметров ППК

4.7.1 ВКЛАДКА ШЛЕЙФЫ

На вкладке *Шлейфы* задаются параметры проводных ШС, подключенных к контроллеру. Контроллер поддерживает подключение до четырех проводных ШС.

ШС могут быть назначены типы *Охранный*, *Пожарный*, *Тревожная кнопка*, *Технологический*, *Датчик затопления*, *Датчик утечки газа*, *Отключен* (см. рисунок 4.30). Сведения о типах ШС см. в *Приложении В* (на стр. $\underline{49}$).

Рисунок 4.30 — Вкладка Шлейфы

Примечание — Пожарные ШС, подключаемые к контроллеру, имеют ограниченную функциональность: отсутствует возможность назначения атрибутов (специализированных тактик контроля), поддерживаются только извещатели типа *сухой контакт*. При срабатывании пожарного ШС формируется событие *Пожар*.

В верхней части вкладки *Шлейфы* задаются параметр *Начальный номер* — номер первого из собственных ШС контроллера (остальные ШС нумеруются последовательно в соответствии с начальным номером).

Основная часть вкладки организована в виде таблицы со следующими столбцами:

- №: номер ШС.
- Тип шлейфа: тип ШС (описание типов ШС см. в Приложении В на стр. 49).
- *Атрибуты:* параметры использования ШС (описание атрибутов см. в *Приложении* Γ на стр. 50).

Для того чтобы установить атрибут ШС, щелкните по соответствующему значку левой кнопкой мыши. Для того чтобы снять атрибут — щелкните по значку еще раз. Для того чтобы установить или снять атрибут сразу для всех ШС, нажмите и удерживайте клавишу Ctrl или Shift и щелкните по соответствующему значку левой кнопкой мыши.

Примечание — Невозможно одновременно назначить ШС атрибуты *Расписание охраны* и *Автовзятие* или *Круглосуточный*.

• Раздел: выбор раздела, в который войдет ШС.

4.7.2 ВКЛАДКА ДАТЧИКИ

На вкладке *Датчики* выполняются регистрация и настройка радиоустройств Livi. Для их подключения к контроллеру необходим дополнительный модуль STEMAX UN Livi, приобретаемый отдельно.

С помощью модуля к контроллеру могут быть подключены 64 радиоустройства Livi. Максимальное количество исполнительных устройств (реле Livi Relay, розеток Livi Socket и сирен Livi Siren), подключаемых к базовому контроллеру, составляет 16 шт. Датчики протечки воды Livi LS, датчики разбития стекла Livi GS и пульты управления Livi Key Fob являются двухканальными, поэтому занимают место двух радиоустройств при подключении к контроллеру (уменьшая максимальное количество подключаемых к контроллеру радиоустройств).

4.7.2.1 НАСТРОЙКА ОБЩИХ ПАРАМЕТРОВ РАБОТЫ РАДИОУСТРОЙСТВ LIVI

В верхней части вкладки *Датчики* (Рисунок 4.31) задаются основные параметры работы радиоустройств Livi.

Рисунок 4.31 — Вкладка *Датчики* (основные параметры работы радиоустройств)

- Оповещение о потере активности (Да = всегда включено / Heт = всегда отключено / Ha охране = включено в режиме Ha охране): формирование оповещений о потере связи с отдельными радиоустройствами.
- ... через ... периодов тестов: если функция Оповещение о потере активности включена, то при отсутствии данных от радиоустройства в течение указанного здесь времени будет формироваться соответствующее извещение.

Примечание — Период тестов радиоустройства — периодичность, с которой радиоустройство отправляет контроллеру данные о своем состоянии; задается для каждого радиоустройства отдельно (см. ниже).

• Индикаторы Уровень шума на частоте 1 и на частоте 2 показывают уровень радиопомех на рабочих частотах, которые могут снижать качество связи контроллера с радиоустройствами. Наилучший (наименьший) уровень шума отображается одной зеленой полоской, наихудший (наибольший) — пятью красными полосками.

4.7.2.2 РЕГИСТРАЦИЯ РАДИОУСТРОЙСТВА LIVI

Для регистрации (связывания с контроллером) радиоустройства Livi выполните следующие действия:

- 1. На вкладке Датчики нажмите кнопку 🖭 (см. рисунок 4.31).
- 2. В открывшемся окне укажите номер радиоустройства из числа еще не занятых в нумерации ШС и радиоустройств (в указанном в заголовке окна диапазоне) и нажмите кнопку *ОК* (см. рисунок 4.32).

Рисунок 4.32 — Ввод номера радиоустройства

3. После нажатия кнопки OK начнется поиск радиоустройства контроллером (см. рисунок 4.33). Для того чтобы устройство было найдено контроллером, его следует перевести в режим связывания (выполнить «сброс»).

Примечание — Для того чтобы перевести в режим связывания большинство новых радиоустройств Livi, просто выдерните защитную пленку, выходящую из батарейного отсека. Подробные сведения о переводе радиоустройств в режим связывания приведены в документации к ним.

Рисунок 4.33 — Поиск радиоустройства

4. В следующем окне (см. рисунок 4.34) будет отображен список устройств, доступных для связывания в радиусе действия радиоканала. Если подключаемого устройства нет в списке, то его следует повторно перевести в режим связывания (любое устройство серии Livi находится в режиме связывания ровно 60 секунд).

Рисунок 4.34 — Поиск радиоустройства

- 5. Выберите в списке подключаемые устройства, отметьте их флагами и убедитесь, что их названия и серийные номера совпадают с данными на корпусах.
- 6. Нажмите на кнопку ОК, чтобы зарегистрировать устройства и записать их в конфигурацию контроллера.

После регистрации радиоустройство будет отображено на вкладке Датчики (см. рисунок 4.35).

Рисунок 4.35 — Отображение зарегистрированных радиоустройств Livi

4.7.2.3 НАСТРОЙКА ПАРАМЕТРОВ РАБОТЫ ОТДЕЛЬНЫХ РАДИОУСТРОЙСТВ LIVI

Параметры и данные о состоянии зарегистрированных радиоустройств представлены в виде таблицы со следующими столбцами (см. рисунок 4.35):

- №: номер радиоустройства.
- *Тип устройства:* наименование модели радиоустройства, версия встроенного ПО («прошивки») и серийный номер (определяется автоматически при регистрации устройства).

• *Атрибуты:* параметры использования радиоустройства, зависящие от его типа (описание атрибутов см. в *Приложении Г* на стр. <u>50</u>). Для исполнительных устройств (реле Livi Relay, розеток Livi Socket и сирен Livi Siren) необходимо назначить выход управления исполнительным устройством (выберите любой **свободный** выход из выпадающего списка). Подробнее о выходах управления описано в <u>4.7.4</u>.

Для того чтобы установить атрибут, щелкните по соответствующему значку левой кнопкой мыши. Для того чтобы снять атрибут — щелкните по значку еще раз. Для того чтобы установить или снять атрибут сразу для всех устройств, нажмите и удерживайте клавишу Ctrl или Shift и щелкните по соответствующему значку левой кнопкой мыши.

- *Период тестов:* периодичность, с которой радиоустройство отправляет контроллеру данные о своем состоянии.
- Раздел: выбор раздела, в который войдет радиоустройство.
- Состояние: отображение состояния радиоустройства (норма / сработка / нет связи).
- *Режим:* отображение режима охраны.
- Уровень: отображение уровня радиосигнала.
- Параметры: зафиксированные неисправности выделяются черным цветом:
 - *Тр* тревога;
 - Об разряд основной батареи / неисправность основного источника питания;
 - о Рб разряд резервной батареи / неисправность резервного источника питания;
 - Н1 неисправность 1 (функциональная неисправность радиоустройства);
 - Н2 неисправность 2 (запыление пожарного радиоизвещателя);
 - о *Сб* саботаж (вскрытие корпуса радиоустройства).

4.7.2.4 УДАЛЕНИЕ РАДИОУСТРОЙСТВА LIVI

При необходимости удалить радиоустройство выделите его и нажмите кнопку . В открывшемся окне подтверждения *Вопрос* нажмите кнопку *Да*.

Существует два варианта удаления радиоустройства: стандартное и принудительное удаление. При стандартном удалении необходимо подождать, пока радиоустройство отправит контроллеру тестовый пакет (в соответствии с периодом тестов) и получит от него данные об удалении. Если связь не была установлена, то откроется окно с уведомлением о том, что удаление не удалось (см. рисунок 4.36).

Рисунок 4.36 — Окно Удаление датчика

При нажатии кнопки удаление будет выполнена повторная попытка стандартного удаления.

Принудительное удаление позволяет удалить радиоустройство из конфигурации, не дожидаясь поступления от него тестового пакета или при отсутствии связи с ним. Для его выполнения нажмите кнопку Принудительное удаление.

4.7.3 ВКЛАДКА ИСТОЧНИКИ ПИТАНИЯ

На вкладке *Источники питания* (см. рисунок 4.37) задаются описанные ниже параметры контроля источников электропитания.

Рисунок 4.37 — Вкладка Источники питания

- Контроль наличия основного питания (220 B) (Да / Нет): если эта функция активирована, то при отсутствии основного питания в течение 3 минут формируется событие 220 В авария. При восстановлении основного питания на время более 3 минут формируется событие 220 В норма.
- Контроль наличия резервного питания (АКБ) (Да / Нет): если эта функция активирована, то при отсутствии АКБ или ее разряде, фиксируемым в течение 3 минут, формируется событие АКБ авария. При восстановлении резервного питания на время более 3 минут формируется сообщение АКБ норма. (Разрядом АКБ считается падение напряжения на ее клеммах ниже 11,5 В.)

4.7.4 ВКЛАДКА ВЫХОДЫ УПРАВЛЕНИЯ

На вкладке *Выходы управления* (см. рисунок 4.38) задаются параметры выходов управления типа *ОК* и параметры работы исполнительных радиоустройств Livi. Вкладка организована в виде таблицы с описанными ниже столбцами.

Рисунок 4.38 — Вкладка Выходы управления

- Выход:
 - о для выходов R, D, L обозначение выхода на клемме внешних подключений контроллера;
 - о для выходов E1 E16 обозначение выхода, выбранного для управления исполнительным устройством на вкладке *Датчики* (см. <u>4.7.2.3</u>).
- *Тактика:* выбор общей тактики использования выхода. От этого выбора зависит набор дополнительных настроек условий и характера активации выхода (см. *Приложение* \mathcal{L} на стр. 51).

Примечание — Каждому из выходов можно назначить любую из тактик. Если одному или нескольким выходам назначена тактика *Удаленное управление* (то есть возможность ручного дистанционного управления), то в дереве устройств появляется строка *Группа управления*, при выделении которой в области параметров отображаются параметры и элементы управления (см. 4.8).

• *Режим работы:* настройка характера активации выхода. Доступна детальная настройка режима работы выхода (см. ниже).

- о Постоянный: постоянная подача напряжения на активированный выход.
- о Импульсный: импульсная подача напряжения на активированный выход.
- Инверсия: если этот флажок не установлен, то выход деактивирован при значении «счетчика тревог» = 0 и активируется при значении «счетчика тревог» ≥ 1. Если флажок установлен, то выход активирован при значении «счетчика тревог» = 0 и деактивируется при значении «счетчика тревог» ≥ 1. Дополнительные сведения о «счетчике тревог» см. в приложении Д (на стр. 51).
- *Перезапуск*: если флажок установлен, то тактика использования выхода будет перезапускаться при каждом событии активации.
- *Непрерывно*: если флажок установлен, то выполнение тактики использования выхода не будет прерываться при любом событии деактивации.
- *Атрибуты:* выбор условий активации для тактик *Сирена* и *Технологическая* (см. приложение Д на стр. 51). Могут быть выбраны все атрибуты или произвольная их комбинация.
- Раздел: выбор разделов, на состояние которых будет реагировать выход.

Доступна детальная настройка режима работы выхода. Для того чтобы настроить режим работы выхода, нажмите кнопку , которая появляется в правой части столбца *Режим работы* при выборе тактик *Сирена*, *Неисправность*, *Технологическая*, *Пользовательская*, *Удаленное управление*.

Рисунок 4.39 — Окно Настройка режима работы выхода

В результате откроется окно *Настройка режима работы выхода x* (см. рисунок 4.39), где x — имя выхода. В данном окне задаются параметры *задержка* (задержка между формированием события и активацией выхода) и *время работы* (время, на которое будет активирован выход).

Для выходов с назначенным режимом работы *Импульсный также задаются параметры вкл.* (время подачи напряжения на выход; время можно выбрать из списка или при выборе значения *Пользоват.* задать вручную в поле слева в миллисекундах) и *выкл.* (время без подачи напряжения на выход; время можно выбрать из списка или при выборе значения *Пользоват.* задать вручную в поле слева в миллисекундах).

Вверху окна приведен пример графика работы, поясняющий принципы настройки.

4.7.5 ВКЛАДКА ДОПОЛНИТЕЛЬНО

На вкладке Дополнительно (см. рисунок 4.40) задаются описанные ниже параметры.

- *Контроль тампера* (*Да / Нет*): если выбрано значение *Да*, то при изменении состояния датчика вскрытия корпуса контроллера (тампера) будут формироваться события *Тампер норма* (корпус закрыт) и *Тампер авария* (корпус открыт).
- Формировать событие «Задержанная тревога» (Да / Нет): если выбрано значение Да, то при использовании алгоритма задержки на вход в момент срабатывания ШС будет формироваться событие Задержанная тревога.

Рисунок 4.40 — Вкладка Дополнительно

4.7.6 ВКЛАДКА МОНИТОР

Вкладка *Монитор* конфигурации ППК контроллера аналогична вкладке *Монитор* группы параметров ПОО (см. <u>4.5.5</u>) за исключением того, что здесь не отображается состояние сетей передачи извещений.

4.8 ГРУППА УПРАВЛЕНИЯ

На этой вкладке находятся элементы, предназначенные для ручного дистанционного управления выходами типа *ОК* и радиоустройствами Livi, которым назначена тактика *Удаленное управление*.

Группа управления становится доступна, если в группе параметров ППК на вкладке *Выходы управления* для одного или более выходов назначена тактика *Удаленное управление* (см. <u>4.7.4</u>).

Для того чтобы отобразить элементы управления, выделите строку *Группа управления* в дереве устройств, щелкнув по ней левой кнопкой мыши (см. рисунок 4.41). В результате будет отображена вкладка *Параметры* (см. рисунок 4.42), которая организована в виде таблицы с описанными ниже столбцами.

Рисунок 4.41 — Переход к группе управления

Рисунок 4.42 — Параметры и элементы дистанционного управления

- Устройство: устройство, которому принадлежит выход, и раздел, к которому он относится.
- Выход: обозначение выхода на клемме внешних подключений устройства.
- Индекс: глобальный индекс (номер) выхода управления. Должен соответствовать указанному в программном обеспечении станции мониторинга.

Примечание — По умолчанию индексы присваиваются в порядке возрастания. В раскрывающемся списке отображаются только незанятые индексы. Для того чтобы освободить индекс, уже занятый для одного из выходов, выберите для этого выхода значение *Не задан* или любой другой свободный индекс.

• Управление выходом: при нажатии кнопок *Вкл.* и *Выкл.* подключенное к выходу устройство включится и отключится (соответственно). При нажатии кнопки *Импульс* устройство включится на 1 секунду.

4.9 ФУНКЦИИ, ДОСТУПНЫЕ В КОНТЕКСТНОМ МЕНЮ КОНТРОЛЛЕРА

Для того чтобы отобразить контекстное меню контроллера (см. рисунок 4.43), щелкните правой кнопкой мыши по его строке в дереве устройств.

Набор функций, отображаемый в меню, зависит от типа устройства и от того, по строке какой группы параметров (ПОО / разделов / ППК) был выполнен щелчок правой кнопкой мыши. Для каждой группы параметров отображается соответствующий набор функций. Ниже рассматривается набор функций, отображаемый при щелчке правой кнопкой мыши по строке группы параметров ПОО (кроме функций добавления устройств, которые рассмотрены выше в соответствующих разделах).

Рисунок 4.43 — Контекстное меню контроллера

4.9.1 ЗАПИСЬ И ЧТЕНИЕ КОНФИГУРАЦИИ

- Записать конфигурацию: запись в контроллер параметров, указанных в программе.
- Прочитать конфигурацию: загрузка в программу параметров, установленных в контроллере.
- Выполнить команду: открытие окна Выполнить команду (см. рисунок 4.44), с помощью которого могут быть записаны или считаны отдельные группы параметров (актуально при медленной скорости передачи данных или тарификации по объему передачи данных).

Примечание — Для исполнения команды установите в окне соответствующий флажок и нажмите кнопку *ОК*. Для выбора «одним щелчком» всех команд на запись или чтение нажмите и удерживайте клавишу Shift или Ctrl и установите любой из флажков этого типа. Для того чтобы убрать все флажки, нажмите кнопку *Отменить все*.

- Записать конфигурацию интерфейса: запись в контроллер параметров интерфейса RS-485 (не применимо для контроллера Мираж-GSM-S4).
- Записать группу управления: запись в контроллер параметров выходов управления, указанных в программе.

Рисунок 4.44 — Окно Выполнить команду (а — конфигурация СПИ, б — конфигурация ППК)

4.9.2 СОХРАНЕНИЕ И ЗАГРУЗКА ШАБЛОНОВ НАСТРОЕК

• *Сохранить шаблон настроек:* открытие окна *Сохранить шаблон СПИ* (см. рисунок 4.45), с помощью которого может быть сохранена конфигурация ПОО контроллера в качестве шаблона.

Примечания

- 1 Для того чтобы сохранить шаблон настроек раздела или ППК, щелкните правой кнопкой мыши по соответствующей строке в дереве устройств и в появившемся меню выберите *Сохранить шаблон настроек*.
- 2 Для того чтобы ввести имя шаблона, нажмите кнопку **№**, введите имя в открывшемся окне и нажмите кнопку *ОК*. Для того чтобы удалить один из сохраненных шаблонов, выберите его в списке и нажмите кнопку **№**.

Рисунок 4.45 — Сохранение шаблона

• Загрузить шаблон настроек: открытие окна Загрузить шаблон СПИ (см. рисунок 4.46), с помощью которого может быть сконфигурирован контроллер по предварительно созданному шаблону. Для того чтобы применить шаблон, выберите его в списке и нажмите кнопку ОК. Для того чтобы удалить один из сохраненных шаблонов, выберите его в списке и нажмите кнопку ...

Примечание — Для того чтобы загрузить шаблон настроек раздела или ППК, щелкните правой кнопкой мыши по соответствующей строке в дереве устройств и в появившемся меню выберите *Загрузить шаблон настроек*.

Рисунок 4.46 — Окно *Загрузить шаблон СПИ*

4.9.3 РЕСТАРТ КОНТРОЛЛЕРА

• *Перезагрузить устройство:* рестарт (перезапуск) контроллера. (Для выполнения команды необходимо установить подключение к контроллеру по каналу GPRS или USB, см. <u>4.4</u>).

4.9.4 ЗАПИСЬ ВСТРОЕННОГО ПО

• Записать ПО: запись в контроллер встроенного программного обеспечения (см. 6.2).

4.9.5 СБРОС КОНФИГУРАЦИИ И ПАРО<u>ЛЯ НА СВЯЗЬ</u>

- *Сбросить конфигурацию:* удаление пользовательских параметров контроллера и восстановление заводских настроек.
- Сбросить пароль на связь: восстановление пароля на связь (см. 4.9.7), используемого по умолчанию (11111). При выполнении этой команды также сбрасывается конфигурация контроллера.

Примечание — Функция *Сбросить пароль на связь* будет выполнена только при USB-подключении к контроллеру.

4.9.6 ИЗМЕНЕНИЕ ТЕКУЩЕГО ВРЕМЕНИ НА КОНТРОЛЛЕРЕ

• *Установить время:* синхронизация текущего времени контроллера с ПК, к которому он подключен (для выполнения команды необходимо подключение ПК к контроллеру по каналу USB, см. 4.4.1).

Внимание! При наличии онлайн соединения между контроллером и сервером STEMAX синхронизация текущего времени между сервером и прибором выполняется автоматически.

4.9.7 ЗАПОЛНЕНИЕ СВОЙСТВ КОНТРОЛЛЕРА

При выборе в контекстном меню контроллера пункта *Свойства* будет открыто окно, в котором могут быть заданы имя объекта, пароль на связь и альтернативный серийный номер (см. рисунок 4.47). Задав необходимые параметры, нажмите кнопку *ОК*.

- Имя объекта: информация, которая может использоваться для идентификации объекта.
- Номер телефона дозвона по DATA-каналу (не применимо для контроллера Мираж-GSM-S4).
- *Пароль на связь:* пароль, необходимый для подключения к контроллеру. Для того чтобы установить подключение, необходимо предварительно указать действующий пароль в окне *Свойства* и нажать кнопку *ОК*. При наличии подключения может быть указан новый пароль. Нажмите кнопку *Записать* для его записи в контроллер.

Примечание — Не рекомендуется изменять пароль на связь при первоначальном ознакомлении с контроллером.

• *Альтернативный номер:* назначение контроллеру нового серийного номера. Для того чтобы назначить номер, введите его в поле и нажмите кнопку *Записать*. Для того чтобы восстановить исходный серийный номер, нажмите кнопку *Восстановить*.

Рисунок 4.47 — Окно Свойства

4.10 ОБНОВЛЕНИЕ ПРОГРАММЫ КОНФИГУРАТОР ПРОФЕССИОНАЛ

Для того чтобы выполнить обновление, загрузите со страницы http://nppstels.ru/support/konf/ новую версию программы и установите ее.

Установка выполняется так же, как описано в предыдущем разделе, но при обновлении могуть быть не установлены USB-драйвер и пакет библиотек .NET Framework (так как они уже были установлены ранее).

Для того чтобы при обновлении сохранить конфигурацию устройств, созданную в ранее использовавшейся версии программы, перенесите подпапки **devices** (информация об устройствах) и **templates** (сохраненные шаблоны) из папки прежней версии в папку с новой версией программы. Для этого перед установкой скопируйте эти подпапки в любую другую папку, а после установки скопируйте их в папку с новой версией программы.

5 ИСПОЛЬЗОВАНИЕ КОНТРОЛЛЕРА

5.1 РЕКОМЕНДАЦИИ ПО МОНТАЖУ КОНТРОЛЛЕРА

При выборе места монтажа контроллера рекомендуется руководствоваться следующими критериями:

- ограниченный доступ посторонних лиц;
- максимально возможное расстояние от входных дверей и окон;
- устойчивый прием GSM-сигнала.

5.2 ИНИЦИАЛИЗАЦИЯ КОНТРОЛЛЕРА

При включении питания или после рестарта контроллер переходит в режим функционального контроля: выполняется проверка основных функциональных блоков и сетей сотовой связи, автоматическая корректировка алгоритма оповещения в зависимости от доступности каналов связи. По завершении функционального контроля контроллер переходит в основной рабочий режим в том состоянии (на охране или снят с охраны), в котором он находился в момент отключения питания или рестарта.

5.3 ВНЕШНИЙ ВИД

Корпус контроллера (см. рисунок 5.1) выполнен из пластика, состоит из основания и крышки. Габаритные размеры составляют $240 \times 168 \times 50$ мм. Крышка крепится к основанию с помощью защелок и дополнительно фиксируется винтом на торцевой части (снизу). В корпусе предусмотрен отсек под АКБ, выполнены технологические отверстия для вывода кабелей. Предусмотрена возможность крепления корпуса к стене с помощью самонарезающих винтов. Степень защиты корпуса IP30.

Рисунок 5.1 — Корпус контроллера (вид сверху)

5.4 ИНДИКАЦИЯ

В таблице 5.1 представлены краткие сведения о назначении светодиодных индикаторов, расположенных на плате контроллера (см. приложение A на стр. $\underline{44}$ и приложение Б на стр. $\underline{48}$). Индикаторы не выводятся на корпус контроллера.

Различные функции индикации выполняются с помощью устройств управления режимом охраны, подключаемых к контроллеру (Livi RFID, STEMAX TM, Мираж-КД-03; сведения о поддерживаемых функциях индикации см. в руководствах по эксплуатации этих приборов).

Для индикации также могут использоваться устройства, подключаемые к выходам типа *ОК*, которым могут быть назначены различные тактики.

Таблица 5.1 — Индикаторы на плате контроллера

Индикатор	Значение
	Наличие электропитания
	не горит — питание отсутствует
POWER	горит зеленым — питание от основного источника (сети 230 В), АКБ подключена
(Питание)	мигает зеленым — питание от основного источника (сети 230 В), АКБ не подключена
	горит желтым — питание от резервного источника (АКБ), АКБ в норме
	мигает желтым — питание от резервного источника (АКБ), АКБ разряжена
MODE	Режим работы контроллера (по первому разделу)
	горит зеленым — режим «Снят с охраны»
(Режим)	горит красным — режим «На охране»
LINK	Доступность сети сотовой связи
(Связь)	отображается для GSM-сети, активной в текущий момент*
SHL1, SHL2, SHL3, SHL4	Состояние ШС*

^{*} Подробные сведения о системе индикации см. в приложении Е (на стр. 54).

Помимо основного назначения, индикаторы ШС используются для отображения уровня сигнала сети сотовой связи. Уровень сигнала доступных сетей сотовой связи отображается в течение 4 секунд при включении питания или рестарте контроллера. Также уровень сигнала текущей сети контроллера может быть отображен, если дважды нажать на датчик вскрытия корпуса (тампер). Для выхода из режима отображения уровня сигнала необходимо повторно дважды нажать на тампер.

Уровень сигнала отображается миганием индикаторов ШС (отображается для GSM-сети, активной в текущий момент):

- 1 индикатор плохой уровень;
- 2 индикатора слабый уровень;
- 3 индикатора хороший уровень;
- 4 индикатора отличный уровень.

5.5 ПОСТАНОВКА КОНТРОЛЛЕРА НА ОХРАНУ

5.5.1 СТАНДАРТНАЯ ПОСТАНОВКА НА ОХРАНУ

Постановка контроллера на охрану может выполняться с помощью:

- кодовой панели Мираж-КД-03, Мираж-КД-04;
- электронных ключей Touch Memory и соответствующего считывателя;
- электронных ключей Touch Memory и считывателя с индикацией состояния ШС STEMAX TM;
- RFID-меток и проводного бесконтактного считывателя STEMAX RFID;
- RFID-меток и беспроводных пультов управления охраной Livi RFID;
- беспроводных пультов управления Livi Key Fob;
- Proximity-карт и соответствующего считывателя (например, Matrix II, Matrix IV);
- биометрического считывателя*;
- скрытого выключателя или кнопки.

^{*} Устройства, передающие сигнал по интерфейсу *Wiegand 26*, подключаются с помощью преобразователя *STEMAX WTM010*, приобретаемого отдельно.

Примечание — Если вы используете деление контроллера на собственные логические разделы, то при выборе способа постановки обратите внимание, что скрытый выключатель или кнопка будут управлять охраной **только первого собственного раздела** контроллера. Для управления охраной всего объекта используйте функцию назначения главных и подчиненных разделов: назначьте первый раздел — главным, а остальные разделы — подчиненными. Подробнее о назначении главных и подчиненных разделов описано в <u>4.6.2</u>.

5.5.2 ПОСТАНОВКА НА ОХРАНУ С КВИТИРОВАНИЕМ НА ЛАМПУ *РЕЖИМ*

При постановке контроллера на охрану с использованием функции *Квитирование на лампу Режим* индикатор *Режим* быстро мигает до получения квитанции от сервера станции мониторинга о доставке соответствующего извещения. После получения квитанции индикатор горит непрерывно.

Примечание — В качестве индикатора Peжим выступает светодиодный индикатор MODE на плате контроллера и/или устройство, подключенное к выходу типа OK с назначенной тактикой Лампа «Peжим».

Сведения о включении функции *Квитирование на лампу «Режим»* приведены в <u>4.6.1</u>.

5.5.3 ПОСТАНОВКА НА ОХРАНУ ПРИ НЕИСПРАВНОМ ШС

При неисправности одного или нескольких ШС контроллер на охрану не ставится. Необходимо определить и устранить причину неисправности и затем повторить процедуру постановки на охрану.

Если оперативно устранить повреждение ШС не удается, может быть выполнена постановка контроллера на охрану с исключением неисправного ШС. Постановка с исключением неисправного ШС выполняется автоматчики после заданного числа попыток включения охраны (по умолчанию 3 попытки, сведения об изменении этого параметра приведены в 4.6.1).

При этом выполняется тревожное оповещение о неисправности ШС в соответствии с установленным алгоритмом, а исправные ШС продолжают контролироваться.

5.6 РАБОТА КОНТРОЛЛЕРА В РЕЖИМЕ НА ОХРАНЕ

В режиме *На охране* осуществляется непрерывный контроль состояния проводных ШС и радиоустройств. Тревожные события отображаются красным миганием индикатора *Режим*. Сброс тревожного состояния контроллера выполняется при снятии его с охраны или при получении команды *Перевзять* с сервера станции мониторинга.

ШС с атрибутом *Автовзятие* автоматически возвращаются в состояние *Норма* при фиксации на них нормального сопротивления в течение указанного времени (по умолчанию четыре минуты). Сведения о настройке времени автовзятия приведены в <u>4.6.1</u>.

5.7 КОНТРОЛЬ ШС

Контроллер осуществляет постоянный контроль сопротивления ШС. Номинальное сопротивление охранного ШС в состоянии *Норма* составляет 5,6 кОм. Любое изменение величины сопротивления, вызванное срабатыванием извещателей или механическим повреждением ШС, превышающее заданные пределы (см. таблица 5.2), приводит к формированию извещения.

При срабатывании охранного ШС без атрибута *Круглосуточный* формируется тревожное событие *Тревога*, если раздел находится в режиме *На охране*. Если срабатывание ШС произошло, когда раздел находится в режиме *Снят с охраны*, то ШС считается находящимся в состоянии *Неисправность*.

Если охранному ШС назначен атрибут *Круглосуточный*, то событие *Тревога* формируется при его срабатывании всегда (независимо от режима охраны раздела).

Пример — К контроллеру подключен ШС с нормально разомкнутыми охранными извещателями и включенным в цепь параллельно резистором 5,6 кОм. В нормальном состоянии сопротивление ШС равно 5,6 кОм. При срабатывании извещатель замыкается, и сопротивление ШС падает ниже 3,6 кОм (происходит короткое замыкание ШС). Раздел, в который входит ШС, находится в режиме *На охране*. В результате контроллер формирует событие *Тревога*.

Таблица 5.2 — Пороговые значения сопротивлений ШС

Извещение	Сопротивление охранного ШС, Ом					
Норма	4700—6400					
Тревога (короткое замыкание)	< 3600					
Тревога (обрыв)	> 8200					

Контроллер фиксирует выход сопротивления ШС за пороговые значения длительностью более 300 мс и не фиксирует выход длительностью менее 250 мс. Охранные ШС с установленным атрибутом 65 мс (*Быстрый шлейф*) срабатывают при длительности изменения сопротивления более 70 мс и не срабатывают при длительности менее 50 мс.

При срабатывании ШС формируется извещение, которое передается на станцию мониторинга и сохраняется в запоминающем устройстве контроллера. При наличии соответствующего оборудования и настроек включается звуковой оповещатель (сирена) и начинает мигать световой оповещатель (лампа).

Если сопротивление ШС вышло за пределы состояния *Норма* по причине неисправности, когда контроллер снят с охраны, то при его постановке на охрану формируется событие *Невзятие*.

ШС типа *Технологический* контролируются как цифровые (по состоянию замкнут / разомкнут, подключение резистора не требуется; дополнительные сведения приведены в приложении В на стр. 49). При срабатывании формируется событие *Тревога технол. ШС*.

ШС типа *Датчик затопления* и *Датчик утечки газа* контролируются аналогично охранным. При срабатывании формируется событие *Утечка воды* или *Утечка газа* соответственно.

Пожарные ШС, подключаемые к контроллеру, имеют ограниченную функциональность (отсутствует возможность назначения атрибутов — специализированных тактик контроля; поддерживаются только извещатели типа *сухой контакт*). Контролируются аналогично охранным. При срабатывании формируется событие *Пожар*.

Контроль ШС типа *Пожарный, Технологический, Утечка воды, Утечка газа* осуществляется круглосуточно независимо от режима охраны контроллера.

Примечание — Если ШС не используется, то для него следует установить тип Отключен (см. 4.7.1).

5.8 КОНТРОЛЬ РАДИОУСТРОЙСТВ LIVI

Состояние радиоустройств, подключенных к контроллеру, определяется по пакетам данных, отправляемым ими контроллеру (тестовым пакетам). Инициатором соединения является радиоустройство. При отсутствии событий (в неизменном состоянии) радиоустройства Livi отправляют тестовые пакеты с определенной периодичностью (период тестов), выбранной пользователем (см. 4.7.2.3). При формировании любого события (*Тревога, Движение, Вскрытие корпуса, Восстановление* и т. д.) радиоустройства Livi немедленно передают извещение об этом контроллеру. Если контроллер перестает получать тестовые пакеты от радиоустройства, он формирует событие *Потеря* этого радиоустройства (если функция *Оповещение о потере активности* включена в верхней части вкладки *Датчики* – см. 4.7.2.1).

5.9 СНЯТИЕ КОНТРОЛЛЕРА С ОХРАНЫ

5.9.1 СТАНДАРТНОЕ СНЯТИЕ С ОХРАНЫ

Снятие контроллера с охраны выполняется с помощью тех же устройств, с помощью которых была выполнена постановка на охрану (см. 5.5.1).

При снятии контроллера с охраны зарегистрированным электронным ключом или кодом на сервер STEMAX доставляется извещение *Режим: снят с охраны*. При попытке снятия с охраны незарегистрированным электронным ключом или кодом контроллер с охраны не снимается, а на сервер STEMAX доставляется соответствующее извещение, например: *Запрещенный электронный ключ, номер: FB00000F47713401*.

Примечание — Если в настройках разделов контроллера для параметра *Способ управления постановкой* выбрано значение *Электронный ключ*, то цифровые коды преобразуются в контроллере в коды в формате электронных ключей.

5.9.2 СНЯТИЕ С ОХРАНЫ ПОД ПРИНУЖДЕНИЕМ

Функция снятия с охраны под принуждением позволяет снять контроллер с охраны в штатном режиме и в то же время отправить на сервер STEMAX тревожное событие *Снятие с охраны под принуждением*. Диспетчер среагирует на тревожное событие и отправит группу быстрого реагирования на объект.

Функцию снятия с охраны под принуждением поддерживают следующие устройства:

- кодовые панели Мираж-КД-03 и Мираж-КД-04;
- считыватели электронных ключей Touch Memory;
- считыватели электронных ключей Touch Memory с индикацией состояния ШС STEMAX TM;
- считыватели RFID-меток STEMAX RFID;
- пульты управления охраной Livi RFID;
- пульты управления Livi Key Fob.

При использовании считывателей электронных ключей или RFID-меток каждому собственнику или сотруднику объекта выдается два электронных ключа — основной и тревожный. Для тревожного ключа администратор ПО STEMAX должен установить флажок **Формировать событие «Снятие под принуждением»** в карточке объекта на вкладке *Персонал*. Подробнее описано в *Руководстве администратора ПО STEMAX*, которое доступно для скачивания на веб-сайте НПП «Стелс».

Если для снятия с охраны используется кодовая панель, то тревожными являются коды, отличающиеся от обычного кода на единицу (например: если код постановки/снятия — 7777, то тревожные коды — 7776 и 7778). В случае если последняя цифра 9, например 6739, то код под принуждением будет только 6738. В случае если последняя цифра 0, например 5870, то код под принуждением будет 5871.

Если для снятия с охраны используются радиоустройства Livi (Livi RFID или Livi Key Fob), то функция снятия с охраны под принуждением может быть активирована с помощью длительного нажатия кнопки выключения охраны раздела.

5.10 РАБОТА КОНТРОЛЛЕРА В РЕЖИМЕ СНЯТ С ОХРАНЫ

В режиме *Снят с охраны* осуществляется контроль состояния ШС типа *Пожарный*, *Тревожная кнопка*, *Технологический*, *Датчик затопления*, *Датчик утечки газа*, а также ШС типа *Охранный* с атрибутом *Круглосуточный*. При их срабатывании выполняется локальное оповещение (с помощью световых и звуковых оповещателей) и дистанционное оповещение (передача сообщения на сервер станции мониторинга), аналогичные оповещению в режиме *На охране*.

6 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И ТЕКУЩИЙ РЕМОНТ КОНТРОЛЛЕРА

6.1 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При эксплуатации контроллера необходимо выполнять его периодический осмотр и техническое обслуживание. Периодичность осмотра зависит от условий эксплуатации, но осмотр должен быты выполнен не реже одного раза в год.

Периодический осмотр контроллера проводится со следующими целями:

- проверка условий эксплуатации;
- проверка на отсутствие внешних повреждений контроллера;
- проверка на отсутствие обрывов или повреждения изоляции соединительных кабелей;
- проверка надежности заземляющих соединений.

Техническое обслуживание необходимо выполнять при появлении ложных срабатываний, плохом качестве сигнала, длительной доставке извещений и т. д.

В ходе технического обслуживания выполните следующие операции:

- Полностью обесточьте контроллер:
 - о проверьте клеммы, разъемы, проводные соединения на предмет окисления контактов;
 - о удалите пыль с поверхности платы контроллера и блока питания;
 - выполните чистку контактов SIM-карт спиртовым составом;
 - о проверьте изоляцию соединительных проводов на отсутствие обрывов или повреждения;
 - о проверьте извещатели для исключения ложных срабатываний.
- Подайте на контроллер электропитание от сети 230 В или от аккумуляторной батареи 12 В:

- о проверьте звуковое и световое оповещение при срабатывании ШС;
- о проверьте срабатывание ШС на уровне ППК;
- о проверьте доставку извещений по различным сетям и каналам связи.

6.2 ОБНОВЛЕНИЕ ВСТРОЕННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Рекомендуется регулярно проверять наличие на <u>сайте НПП «Стелс»</u> новых версий встроенного программного обеспечения приборов и выполнять обновление.

Для записи новой версии встроенного ПО в контроллер между контроллером и программой *Конфигуратор Профессионал* должно быть установлено соединение одним из методов, описанных в <u>4.4</u> (локально через USB-интерфейс или дистанционно по каналу GPRS).

ВНИМАНИЕ

При обновлении встроенного ПО контроллера с версии 1.0 до версии 1.1 будет выполнен сброс конфигурации контроллера к заводским параметрам.

Для сохранения настроек работы контроллера обновление ПО с версии 1.0 до версии 1.1 следует выполнить через USB-интерфейс, предварительно прочитав конфигурацию контроллера в программе Конфигуратор Профессионал (горячая клавиша F5) для её сохранения.

Для того чтобы обновить встроенное ПО контроллера, выполните описанные ниже действия.

- 1. Щелкните правой кнопкой мыши по строке контроллера в дереве устройств и в появившемся меню выберите *Записать ПО* (см. рисунок 4.43).
- 2. В открывшемся окне *Запись ПО* (см. рисунок 6.1) укажите путь к файлу новой версии встроенного ПО контроллера на вашем ПК (файл имеет расширение **.sbin**) и нажмите кнопку *Старт*.

Рисунок 6.1 — Окно Запись ΠO

В поле ϕ айл отображаются свойства указанного файла (версия встроенного ПО и модель устройства, для которой оно предназначено).

Ход записи встроенного ПО в контроллер графически отображается в нижней части окна. В поле *Статус* отображается номер пакета, передаваемого в текущий момент. По завершении записи нажмите кнопку *Закрыть*.

После обновления ПО **с версии 1.0 до версии 1.1**, перезагрузки контроллера и возобновления связи с программой Конфигуратор Профессионал через USB-интерфейс, следует записать ранее прочитанную конфигурацию настроек в контроллер (горячая клавиша F2). Конфигурация настроек будет восстановлена, и контроллер вновь выйдет на связь с сервером STEMAX.

6.3 ТЕКУШИЙ РЕМОНТ

Гарантийное обслуживание и ремонт контроллера должны осуществляться специалистами предприятия-изготовителя.

7 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

7.1 ТРАНСПОРТИРОВАНИЕ

Контроллеры, упакованные в соответствии с <u>1.6</u>, могут транспортироваться всеми видами транспорта в крытых транспортных средствах в соответствии с правилами перевозок, действующих на транспорте данного вида, кроме негерметизированных отсеков самолетов.

При транспортировании должна быть установлена защита транспортной тары от атмосферных осадков. Расстановка и крепление груза в транспортных средствах должны обеспечивать

устойчивое положение груза при транспортировании. В пределах города контроллеры допускается транспортировать без упаковки, но с обязательной защитой от атмосферных осадков и ударов при транспортировании.

7.2 ХРАНЕНИЕ

Контроллеры в транспортной таре следует хранить в складских помещениях при температуре воздуха от минус 25 до плюс 70 °С и относительной влажности воздуха не более 85 %.

Наличие в воздухе паров кислот, щелочей и прочих агрессивных примесей не допускается.

8 УТИЛИЗАЦИЯ

Утилизация всех частей прибора должна осуществляться согласно действующему законодательству.

При утилизации необходимо учесть, что прибор, за исключением аккумуляторной батареи, относится к 4 классу опасности отходов. Аккумуляторная батарея прибора относится ко 2 классу опасности отходов.

Содержание драгоценных материалов: не требует учёта при хранении, списании и утилизации.

ПРИЛОЖЕНИЕ А — ВИД КОНТРОЛЛЕРА СО СНЯТОЙ КРЫШКОЙ

Рисунок А.1 — Вид контроллера со снятой крышкой

- 1. Клеммы для подключения АКБ.
- 2. Клеммная колодка (см. приложение Б на стр. 48).
- 3. Маркировка (тип контроллера, ревизия платы, дата производства, серийный номер).
- 4. SMA-разъем для подключения внешней GSM-антенны.
- 5. Встроенная планарная GSM-антенна.
- 6. Держатели SIM-карт (SIM1 снизу, SIM2 сверху).
- 7. Датчик вскрытия корпуса (тампер).
- 8. Разъем mini-USB.
- 9. Кнопка рестарта Reset.
- 10. Индикаторы POWER, MODE, LINK, SHL1 SHL4.
- 11. Слот для модуля STEMAX UN Livi (модуль приобретается отдельно).
- 12. Разъем для подключения блока питания и АКБ.
- 13. Клеммы для подключения кабеля питания от сети 230 В, предохранитель.
- 14. .Импульсный блок питания.

ПРИЛОЖЕНИЕ Б — СХЕМА ВНЕШНИХ ПОДКЛЮЧЕНИЙ

Рисунок $\bar{\mathsf{b}}.1$ — Схема внешних подключений контроллера

ПРИЛОЖЕНИЕ В — ТИПЫ ШС

Таблица В.1 — Типы ШС

Тип ШС	Описание
Охранный	ШС, при срабатывании которого формируется событие <i>Тревога</i> . К ШС могут подключаться любые охранные извещатели с выходами типа <i>сухой контакт</i> . В ШС также включается резистор номиналом 5,6 кОм — параллельно или последовательно в зависимости от характера срабатывания извещателей (размыкание или замыкание извещателей при срабатывании). ШС контролируется по сопротивлению: 5,6 кОм — состояние <i>Норма</i> , короткое замыкание или обрыв — состояние <i>Тревога</i> (см. таблица 5.2). Напряжение питания охранных ШС составляет 4 В.
Пожарный	Пожарные ШС, подключаемые к контроллеру, имеют ограниченную функциональность (отсутствует возможность назначения атрибутов — специализированных тактик контроля; поддерживаются только извещатели типа сухой контакт). Пожарные ШС контролируются аналогично охранным. Контроль пожарных ШС выполняется круглосуточно (независимо от режима охраны контроллера). При срабатывании пожарного ШС формируется событие Пожар.
Тревожная кнопка	ШС, предназначенный для подключения кнопки тревожной сигнализации. Контролируется независимо от режима охраны контроллера. При срабатывании формируется событие <i>Тревога, тревожная кнопка</i> .
Технологический	ШС, предназначенный для подключения датчиков технологической сигнализации. Контролируется по состоянию замкнут / разомкнут (цифровой ШС). Контролируется круглосуточно (независимо от режима охраны контроллера). При срабатывании формируется событие <i>Тревога технологического ШС</i> . Это событие НЕ относится к категории тревожных событий. Условие срабатывания выбирается с помощью атрибута <i>Инверсия</i> (см. приложение Г на стр. 50).
Датчик затопления	ШС, предназначенный для подключения датчиков затопления. Контролируется независимо от режима охраны контроллера. При срабатывании формируется событие <i>Тревога, утечка воды</i> .
Датчик утечки газа	ШС, предназначенный для подключения датчиков утечки газа. Контролируется независимо от режима охраны контроллера. При срабатывании формируется событие <i>Тревога, утечка газа</i> .
Отключен	Для входов ШС, к которым не подключены извещатели.

ПРИЛОЖЕНИЕ Г — АТРИБУТЫ ШС И РАДИОУСТРОЙСТВ LIVI

Таблица Г.1 — Атрибуты ШС и радиоустройств Livi

Таблица Г.1 — Атрибуть Атрибут	Значок	Описание				
Быстрый шлейф	R	Сокращение времени срабатывания ШС с 300 мс до 65 мс.				
		Функция задержки на вход. Предназначена для случаев, когда снятие с охраны выполняется с помощью устройства, находящегося внутри помещения (после того как пользователь вошел в помещение).				
Задержка		При срабатывании ШС, не имеющих задержки на вход, тревога формируется сразу. При срабатывании ШС с атрибутом задержки на вход тревога формируется по истечении времени задержки (если за это время объект не был снят с охраны).				
		Время задержки задается в группе параметров разделов в поле <i>Задержка на снятие, сек.</i> (см. <u>4.6.1</u>)				
Автовзятие	C.	Автоматический сброс тревожного состояния и постановка ШС на охрану после его нахождения в состоянии <i>Норма</i> в течение времени, указанного в параметрах раздела (см. <u>4.6.1</u>).				
		Может применяться при использовании технологических датчиков.				
	<u> </u>	ШС всегда остается на охране независимо от режима охраны объекта.				
Круглосуточный	24:00	Может применяться для кнопок тревожной сигнализации и при использовании технологических датчиков.				
		Формирование тревожных сообщений без включения сирены.				
Тихая тревога		Может применяться для кнопок тревожной сигнализации и при использовании технологических датчиков.				
		Входы ШС с назначенным типом <i>Технологический</i> используются как цифровые входы, то есть контролируются по двум состояниям: замкнут / разомкнут.				
Инверсия	Q	При использовании входа по умолчанию (без инверсии) он является нормально замкнутым (замкнут = норма, разомкнут = сработка). При установке атрибута <i>Инверсия</i> вход становится нормально разомкнутым (разомкнут = норма, замкнут = сработка).				
Защита от домашних животных	in a	Атрибут предназначен для настройки работы датчика движения Livi MS и датчика движения типа «штора» Livi MSW. Если данный атрибут выбран, то датчик не будет реагировать на перемещения по полу домашних животных весом до 20 кг. Если данный атрибут выключен, то чувствительность датчика будет повышена.				
Включение охраны без ключа	*	Атрибут предназначен для настройки работы пульта управления охраной Livi RFID. Если данный атрибут выбран, то включение охраны раздела, назначенного для пульта Livi RFID, будет выполняться кнопкой «Включить охрану раздела» без подтверждения RFID-меткой				
Охрана периметра	2 🔻	Атрибут предназначен для настройки работы пульта управления охраной Livi RFID. Данный атрибут позволяет задать раздел периметра, режим охраны которого будет управляться кнопками «Включить/отключить охрану периметра» на пульте Livi RFID.				

ПРИЛОЖЕНИЕ Д — ТАКТИКИ И АТРИБУТЫ ВЫХОДОВ УПРАВЛЕНИЯ

Таблица Д.1 — Тактики использования выходов типа $\it OK$ и выходов управления радиоустройствами Livi

Имя	Описание
Сирена	Тактика для устройств светозвукового оповещения о событиях. Выбор этой тактики позволяет выбирать соответствующие условия активации выхода в столбце <i>Атрибуты</i> (см. таблицу Д.2) и характер активации выхода в столбце <i>Режим работы</i> .
Режим охраны	Тактика для устройств индикации режима охраны.
Неисправность	Тактика для устройств индикации неисправности ШС. Выбор этой тактики позволяет выбирать характер активации выхода в столбце <i>Режим работы</i> .
Технологическая	Тактика для устройств, которые необходимо активировать при срабатывании ШС технологической сигнализации различных типов. Выбор этой тактики позволяет выбирать соответствующие условия активации выхода в столбце <i>Атрибуты</i> (см. таблицу Д.3) и характер активации выхода в столбце <i>Режим работы</i> .
Блокировка охраны	Тактика для устройств оповещения о наличии задолженности по договору с охранным предприятием: выход активируется, если постановка контроллера на охрану заблокирована со стороны сервера STEMAX.
Пользовательская	Тактика, позволяющая детально настроить условия и характер активации выхода. Выбор этой тактики позволяет выбирать события, на которые будет реагировать выход и способ работы «счетчика тревог» для каждого из событий (в окне <i>Настройка пользовательской тактики для выхода</i>), а также характер активации выхода (в столбце <i>Режим работы</i>). Подробнее настройка тактики <i>Пользовательская</i> описана ниже.
Удаленное управление	Тактика, позволяющая осуществлять ручное удаленное управление выходом с помощью кнопок на вкладке <i>Группа управления</i> (см. 4.8), из карточки объекта на сервере STEMAX и из мобильного приложения STEMAX.
Отключен	Выход всегда отключен.

Таблица Д.2 — Атрибуты выходов управления для тактики Сирена

Атрибут	Значок	Описание
Звуковое оповещение задержки на выход	○ €	Реакция выхода во время задержки на постановку (задержки на выход)
Звуковое оповещение задержки на вход	<u></u>	Реакция выхода во время задержки на снятие (задержки на вход)
Тревоги	F	Выход реагирует на тревоги.
Пожар		Выход реагирует на состояние ШС и радиоустройств типа Пожарный.
Подавление	*	Выход реагирует на обнаружение подавления сигнала сотовой связи.
Потеря датчика	*	Выход реагирует на обнаружение потери связи с радиоустройством, которое находится на охране. Если радиоустройство снято с охраны, то выход не будет реагировать на потерю связи с ним.

Таблица Д.3 — Атрибуты выходов управления для тактики Технологическая

Атрибут	Значок	Описание
Технологическая реакция	Ö	Выход реагирует на состояние ШС и радиоустройств типа Технологический.
Затопление		Выход реагирует на состояние ШС и радиоустройств типа <i>Утечка воды</i> .
Утечка газа	2	Выход реагирует на состояние ШС и радиоустройств типа <i>Утечка газа</i> .

Для настройки **тактики** *Пользовательская* следует выполнить следующие действия:

1) Нажмите кнопку , которая появляется в правой части столбца *Тактика* при выборе тактики *Пользовательская*.

Рисунок Д.1 — Вкладка Выходы управления

2) В результате откроется окно *Настройка пользовательской тактики для выхода x* (где x — имя выхода), в котором следует выбирать события, на которые будет реагировать выход и способ работы «счетчика тревог» для каждого из событий.

Рисунок Д.2 — Настройка пользовательской тактики для выхода

Окно *Настройка пользовательской тактики для выхода* организовано в виде таблицы с перечисленными ниже столбцами.

- События: события, которые могут являться условием активации/деактивации выхода.
- *Активировать:* если флажок установлен, то при возникновении события значение «счетчика тревог» для выхода будет увеличено на 1 (и выход будет активирован).
- *Деактивировать:* если флажок установлен, то при возникновении события значение «счетчика тревог» для выхода будет уменьшено на 1 (выход будет деактивирован, если значение «счетчика тревог» достигнет 0).
- Деактивировать безусловно: если флажок установлен, то при возникновении события «счетчику тревог» для выхода будет присвоено значение 0 независимо от его предыдущего значения (и выход будет деактивирован).

Примечание — Выходы, которым назначена инверсия, активированы при значении «счетчика тревог» = 0 и деактивированы при значении «счетчика тревог» ≥ 1 (см. выше).

Пример — В качестве события активации для выхода выбрано событие *Тревога*, в качестве события деактивации — событие *Восстановление после тревоги*, в качестве события безусловной деактивации — событие *Взятие под охрану*. В одном из назначенных выходу разделов сработало три ШС типа *Охранный*, в результате чего сформировалось три события *Тревога*. «Счетчику тревог» выхода присваивается значение 3, в результате чего (при отсутствии инверсии) выход активируется. Для деактивации выхода требуется, чтобы сформировалось три события *Восстановление после тревоги* (в силу чего значение «счетчика тревог» будет последовательно опущено до 0) либо чтобы сформировалось одно событие *Взятие под охрану* (в силу чего значение «счетчика тревог» будет сразу сброшено до 0).

Раскрывающийся список *Шаблон настроек* в верхней части окна *Настройка пользовательской тактики для выхода* позволяет выбрать один из заводских шаблонов или сохраненный пользовательский шаблон.

Рисунок Д.3 — Выбор шаблона настроек

Существуют следующие заводские шаблоны:

- *Не настроена:* нет выбранных событий. Пользователю предоставляется возможность самостоятельно выбрать события.
- Технологическая: выбраны события срабатывания и восстановления ШС типа Технологический.
- Сирена:
 - в качестве событий активации выбраны все тревоги,
 - о в качестве событий деактивации восстановления после тревог.
- Неисправность:
 - о в качестве событий активации выбраны неисправности и невзятия ШС,
 - о в качестве событий деактивации восстановления после неисправностей,
 - о в качестве событий безусловной деактивации снятие с охраны и постановка на охрану.
- Пожар ПЦН:
 - о в качестве события активации выбрано Пожар 2,
 - в качестве события деактивации Норма после Пожар 2,
 - о в качестве событий безусловной деактивации Считан зарегистрированный электронный ключ, Снятие с охраны, Взятие под охрану, Постановка после Перевзять.
- Неисправность ПЦН:
 - о в качестве событий активации выбраны Неисправность ШС (короткое замыкание), Неисправность ШС (обрыв), Невзятие ШС, Неисправность линии управления (короткое замыкание), Неисправность линии управления (обрыв),
 - о в качестве событий деактивации Восстановление после неисправности и Линия управления в норме,

о в качестве событий безусловной деактивации — Снятие с охраны, Взятие под охрану, Постановка после Перевзять.

Тревога:

- в качестве событий активации выбраны Тревога; Тревога, короткое замыкание; Тревога, обрыв; Тревога, тревожная кнопка; Тревога, утечка воды; Тревога, утечка газа; Датчик, потеря связи;
- в качестве событий деактивации Восстановление после тревоги; Восстановление, тревожная кнопка; Восстановление, утечка воды; Восстановление, утечка газа; Датчик, восстановление связи;
- о в качестве событий безусловной деактивации Считан зарегистрированный электронный ключ; Снятие с охраны; Взятие под охрану.

Для того чтобы сохранить созданную конфигурацию в качестве пользовательского шаблона, нажмите кнопку $\stackrel{\frown}{}$, в открывшемся окне *Введите имя шаблона* введите имя шаблона и нажмите кнопку *ОК*.

Для того чтобы удалить шаблон, выберите его в раскрывающемся списке и нажмите кнопку (удаление возможно только для пользовательских шаблонов).

ПРИЛОЖЕНИЕ Е — СХЕМА ИНДИКАЦИИ

В таблице Е.1 представлены подробные сведения о схеме индикации, осуществляемой с помощью индикаторов, расположенных на плате контроллера.

Таблица Е.1 — Индикаторы на плате контроллера

Обозна- чение	Название	Режимы	Индика	іция	
		Контроллер обесточен	Индикат	ор не горит	
		Питание от сети	Горит зе	еленый	
POWER	Состояние электропитания	Питание от сети, АКБ не подключен	Мигает	Зеленый (0,5 с /0,5 с)	
(Питание)	контроллера	Питание от АКБ	Горит ж	елтый	
		Питание от АКБ, напряжение на клеммах АКБ ниже 11,5 В (АКБ разряжен)	Мигает	Желтый (0,5 с /0,5 с)	
		Контроллер снят с охраны	Горит зе	еленый	
	Режим охраны контроллера (по первому разделу)	Контроллер снят с охраны, некоторые ШС неисправны	Мигает	2 раза мигает зеленый (0,25 c /0,25 c), затем индикатор не горит 3 с, затем цикл повторяется	
MODE		Постановка объекта на охрану или снятие объекта с охраны	Мигает	Зеленый (0,05 c / 0,05 c) в течение 0,5 c	
(Режим)		Постановка объекта на охрану с задержкой	Мигает	зеленый (0,5 с / 0,5 с) в течение времени задержки	
		Контроллер на охране	Горит красный		
		Задержанная тревога (снятие объекта с охраны с задержкой)	Мигает	красный (0,5 с / 0,5 с) в течение времени задержки	

Таблица Е.1 — Индикаторы на плате контроллера

Обозна- чение	Индикаторы на плате контр Название	Режимы	Индика	іция
		Тревожное событие по ШС (контроллер на охране)	Мигает	2 раза мигает красный (0,25 с /0,25 с), затем непрерывно не горит 3 с, затем цикл повторяется
		Модем готов к работе и зарегистрирован в сети	Мигает	красный (1 с / 1 с)
LINK (Связь)	Состояние модулей связи контроллера	Идет исходящий/входящий вызов	Мигает	красный (0,5 с / 0,5 с)
		PIN-код введен, ожидается регистрация в сети GSM	Мигает	2 раза мигает красный (0,25 c /0,25 c), затем непрерывно горит 3 с, затем цикл повторяется
		Норма	Индикат	ор не горит
SHL1, SHL2, SHL3, SHL4	Состояние ШС	Неисправность охранного ШС	Горит красный	
		Неисправность технологического ШС	Индикатор не горит	
		Тревога ШС, который контролируется независимо от режима охраны контроллера	Мигает	красный (0,25 c / 0,25 c)

Помимо основного назначения, индикаторы ШС используются для отображения уровня сигнала сети сотовой связи. Уровень сигнала доступных сетей сотовой связи отображается в течение 4 секунд при включении питания или рестарте контроллера. Также уровень сигнала текущей сети контроллера может быть отображен с помощью двойного нажатия на датчик вскрытия корпуса (тампер). Для выхода из режима отображения уровня сигнала необходимо повторно дважды нажать на тампер.

Уровень сигнала отображается миганием индикаторов ШС (отображается для GSM-сети, активной в текущий момент):

- 1 индикатор плохой уровень;
- 2 индикатора слабый уровень;
- 3 индикатора хороший уровень;
- 4 индикатора отличный уровень.

При настройке по умолчанию состояние индикатора MODE (Peжим) дублируется на выходе REG и на выходе L (лампа Peжим). Световое и звуковое оповещения осуществляется с помощью устройств, подключаемых к выходам типа OK: выход выход R (Ring) — сирена, выход D (Defect) — лампа Pexum.

Примечание — Вышеуказанное соотношение выходов с устройствами является настройкой по умолчанию. Пользователь может назначить любому из выходов различные тактики работы (см. <u>4.7.4</u>).

Для любого выхода управления может быть назначена стратегия *Пожар*. Выход управления с назначенной стратегией *Пожар* автоматически включится только при появлении события *Пожар*. Эта стратегия может применяться для управления устройствами оповещения и автоматики в случае возникновения пожара. Пожарные извещения имеют наивысший приоритет, поэтому при одновременном срабатывании охранных и пожарных ШС устройства светового и звукового оповещения отображают состояние сработавших пожарных ШС.

Пример схемы индикации для различных типов ШС с помощью внешних устройств представлена в таблице Е.2.

Таблица Е.2 — Пример схемы для устройств, подключенных к выходам типа ОК

Режим охраны	Состояние ШС	Выход R (тактика <i>Сирена</i>)	Выход D (тактика <i>Неисправ-</i> <i>ность</i>)	Выход L (тактика <i>Режим</i> <i>охраны</i>)		
Постановка	Норма	Один короткий сигнал	Выкл.	Мигает 5 раз в течение 0,5 секунды		
на охрану	Неисправность	Выкл.	Вкл.	Мигает 5 раз в течение 0,5 секунды		
Постановка на охрану с задержкой	Норма	Один короткий сигнал	Выкл.	Мигает 5 раз в течение 0,5 секунды, затем мигает один раз в секунду в течение времени задержки		
	Норма	Выкл.	Выкл.	Вкл.		
На охране	Тревога	Непрерывный сигнал с заданной продолжи- тельностью	Выкл.	2 раза мигает течение 0,5 секунды, затем непрерывно горит 3 с, затем цикл повторяется		

Таблица Е.2 — Пример схемы для устройств, подключенных к выходам типа ОК

Режим охраны	Состояние ШС	выход R (тактика <i>Сирена</i>)	Выход D (тактика <i>Неисправ-</i> <i>ность</i>)	Выход L (тактика <i>Режим</i> <i>охраны</i>)
	Неисправность ШС	Выкл.	Вкл.	2 раза мигает течение 0,5 секунды, затем непрерывно горит 3 с, затем цикл повторяется
	Задержанная тревога (снятие объекта с охраны с задержкой)	Выкл. на время задержки	Выкл.	Мигает 5 раз в течение 0,5 секунды, затем мигает один раз в секунду в течение времени задержки
Снятие с охраны	Норма	Два коротких сигнала	Выкл.	Мигает 5 раз в течение 0,5 секунды
Снят с	Норма	Выкл.	Выкл.	Выкл.
охраны	Неисправность	Выкл.	Выкл.	Выкл.
Независимо от режима	Тревога ШС, который контролируется независимо от режима охраны контроллера	Непрерывный сигнал с заданной продолжительностью	Выкл.	2 раза мигает течение 0,5 секунды, затем непрерывно горит 3 с, затем цикл повторяется

ПРИЛОЖЕНИЕ Ж — РАСЧЕТ ВРЕМЕНИ АВТОНОМНОЙ РАБОТЫ

Важным параметром систем охранной сигнализации является время, которое система может продолжать работать при отсутствии электропитания от сети 230 В (получая электропитание от АКБ). Это время зависит от потребляемого системой тока.

Базовое значение тока, потребляемого контроллером, составляет 90 мА.

При активации методов оповещения, когда осуществляется передача событий и тестовых пакетов, среднее значение тока, потребляемого контроллером, возрастает. Величина прибавки зависит от используемого метода. Увеличение среднего тока потребления при передаче данных методами SMS и VOICE несущественно, и в расчетах им допускается пренебречь. Наибольшее потребление тока характерно для метода GPRS в режиме передачи тестовых пакетов, поэтому при расчете потребляемого контроллером тока далее будет использоваться именно это значение. Оно зависит от периода передачи тестовых пакетов. В таблице Ж.1 приведены значения тока, дополнительно потребляемого контроллером в ходе передаче тестовых пакетов по каналу GPRS, при различных периодах передачи тестовых пакетов.

Таблица Ж.1 — Дополнительное потребление тока при передаче тестовых пакетов TCP/IP GPRS ($I_{\rm I}$)

Период передачи тестовых пакетов, с		20	30	40	50	60	120	180
Дополнительное потребление тока, мА	45	23	15	11	9	8	4	4

При работе с модулем расширения STEMAX UN Livi необходимо учитывать значение потребляемого им тока 20 мА.

По приведенным данным величина потребляемого контроллером тока (I) рассчитывается следующим образом:

$$I = \left(I_{0} + I_{II} + I_{M} + I_{H}\right)$$
 мА, где:

- I_0 базовый ток, потребляемый контроллером, когда канал GPRS не активен, мА;
- $I_{\text{П}}$ величина изменения потребляемого контроллером тока при использовании метода передачи данных GPRS (см. таблицу Ж.1), мА;
- I_M ток, потребляемый модулем расширения;
- I_H ток, потребляемый нагрузкой выходов управления (до 500 мА).

Исходя из найденного значения потребления тока, время работы контроллера в автономном режиме вычисляется по следующей формуле:

$$T = 1000 \cdot W / I$$
 [ч], где:

- *W* емкость АКБ, А·ч;
- *I* ток, потребляемый контроллером, мА.

Примеры

- **1** Емкость АКБ W = 2,3 А·ч. При работе в дежурном режиме с передачей данных методом GPRS с периодом тестовых пакетов 30 секунд величина потребляемого контроллером тока составит I = 90 + 15 = 105 мА. Следовательно, время автономной работы T = 1000*2,3/105 = 21,9 часа.
- **2** Если подключен модуль STEMAX UN Livi, при тех же параметрах ток потребления контроллера равен I = 90 + 15 + 20 = 125 мА. Следовательно, время автономной работы T = 1000*2,3/125 = 18,4 часа.
- **3** При тревоге, помимо передачи тревожных извещений, требуется включение различного рода устройств (световые и звуковые оповещатели, исполнительные устройства), токопотребление которых, если они получают питание от выходов контроллера, также следует учитывать. При максимальном токе нагрузке $I_H = 500$ мА, подключении модуля STEMAX UN Livi и использовании метода GPRS с периодом тестовых пакетов 30 с ток потребления контроллера будет составлять I = 90 + 15 + 20 + 500 = 625 мА. Время автономной работы при этом составит T = 1000*2,3/625 = 3,7 часа.

Внимание! При расчете времени автономной работы необходимо учитывать также изменение емкости АКБ в зависимости от температуры окружающей среды (см. 2).

ПРИЛОЖЕНИЕ И — «ГОРЯЧИЕ» КЛАВИШИ В ПРОГРАММЕ

Таблица И.1 — «Горячие» клавиши и сочетания клавиш в программе $\mathit{Конфигуратор}$ Профессионал

Клавиша / сочетание клавиш	Название команды	Описание команды
F2	Записать конфигурацию	Запись параметров, указанных в программе, в устройство , выбранное в дереве устройств.
F5	Прочитать конфигурацию	Загрузка в программу параметров, содержащихся в устройстве, выбранном в дереве устройств.
F6	Загрузить шаблон настроек	Применение для устройства, выбранного в дереве устройств, ранее созданного шаблона настроек . По нажатию клавиши F6 параметры будут отображены в программе. Для того чтобы записать их в устройство, нажмите клавишу F2.
Ctrl + N	Добавить устройство	Добавление в программу контроллера вручную (см. руководство пользователя программы <i>Конфигуратор Профессионал</i> , доступное для скачивания на веб-сайте НПП «Стелс»).
Del	Удалить устройство	Удаление устройства из программы.
Ctrl + F	Поиск по имени / номеру объекта	См. руководство пользователя программы <i>Конфигуратор Профессионал</i> , <u>доступное для скачивания</u> на веб-сайте НПП «Стелс».
Ctrl + K	Поиск ключа / кода	См. руководство пользователя программы <i>Конфигуратор Профессионал</i> , <u>доступное для скачивания</u> на веб-сайте НПП «Стелс».

ПРИЛОЖЕНИЕ К — ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Таблица К.1 — Возможные неисправности, их причины и способы устранения

Неисправность	Возможные причины неисправности и способы их устранения
Контроллер не функционирует при электропитании от сети 230 В.	Неисправен предохранитель в клеммной колодке подключения к сети 230 В. Установите новый предохранитель следующего типа: вставка плавкая ВПБ6-7, 2 А / 250 В.
Не горит индикатор Power (<i>Питание</i>), контроллер не функционирует.	Неисправность АКБ / блока питания / кабеля питания от сети 230 В / внешнего источника питания. 1) Зарядите АКБ. 2) Проверьте целостность кабеля питания. 3) Проверьте вилку кабеля питания.
Контроллер не регистрируется в GSM- сети.	 Указан неверный PIN-код SIM-карты. Укажите в программе Конфигуратор верный PIN-код SIM-карты. Контроллер находится вне зоны покрытия оператора связи. Переместите контроллер в зону уверенного приема.
Нет дистанционного доступа к контроллеру в режиме передачи данных	 Неверно введен пароль на связь. Введите верный пароль. На SIM-карте не активирована услуга передачи данных. Активируйте услугу передачи данных.
Не отображается состояние контроллера <i>Подключен</i> .	Проверьте подключение USB-кабеля и перезапустите программу <i>Конфигуратор Профессионал</i> .

ПРИЛОЖЕНИЕ Л – ТЕРМИНЫ И СОКРАЩЕНИЯ

В настоящем РЭ применены следующие термины:

Встроенное программное обеспечение — программное обеспечение, записываемое в энергонезависимое запоминающее устройство контроллера (микропрограмма, «прошивка»).

Проходная зона — часть помещения, в которой возможно срабатывание извещателей при входе в помещение и выходе из него (до снятия контроллера с охраны и после его постановки на охрану при использовании функций задержки на вход и на выход соответственно).

Квитирование — подтверждение доставки информации.

Раздел — группа подключенных к контроллеру ШС и/или радиоустройств, для постановки на охрану и снятия с охраны которых используется отдельный электронный ключ или код.

Рестарт — перезапуск контроллера.

Скрытый выключатель — физический переключатель, используемый для постановки контроллера на охрану и снятия с охраны.

Тампер — датчик вскрытия корпуса контроллера.

ШС — электрическая цепь, соединяющая выходные цепи извещателей с приемно-контрольным прибором, предназначенная для передачи на прибор приемно-контрольный извещений и для подачи на извещатели электропитания.

Touch Memory — система электронных ключей и считывателей, использующаяся для авторизации в охранном оборудовании.

RFID (англ. Radio Frequency IDentification, радиочастотная идентификация) — система авторизации, в которой используются беспроводные считыватели.

В настоящем РЭ применены следующие сокращения:

АКБ — аккумуляторная батарея.

ИП – извещатель пожарный;

ИПД – извещатель пожарный дымовой;

КЗ – короткое замыкание;

МУП — модуль управления питанием.

ПК — персональный компьютер.

ПО – программное обеспечение;

ПОО – прибор объектовый оконечный;

ППК — прибор приемно-контрольный.

ПЦН — пульт централизованного наблюдения.

РЭ – руководство по эксплуатации;

СПИ — система передачи извещений.

ТУ – технические условия;

ШС — ШС.

ПРИЛОЖЕНИЕ М – КОНТАКТЫ СЛУЖБЫ ТЕХНИЧЕСКОЙ ПОДДЕРЖКИ

Если вы не нашли ответ на свой вопрос в данном РЭ, то задайте его специалистам службы технической поддержки НПП Стелс.

e-mail:

support@nppstels.ru

телефоны:

+7 (3822) 488-508, 488-507,

+7-923-414-0144.

График работы службы технической поддержки:

по будням с 8:00 до 20:00 по Томску (МСК + 4 часа)