CORSO DI FONDAMENTI DI AUTOMATICA

- 1. Introduzione.
- 2. Sistemi e modelli.
- 3. Studio del comportamento ingresso-uscita dei sistemi.
- 4. Proprietà globali dei sistemi.
- 5. Sistemi con retroazione.
- 6. Il problema del controllo.
- 7. Tecniche di sintesi.

Laboratorio:

- a) Introduzione a MATLAB.
- b) Introduzione a SIMULINK.
- c) Processi fisici e loro modelli.
- d) Analisi della risposta di processi fisici.
- e) Controllo di processi fisici.

INTRODUZIONE

- Significato del termine *AUTOMATICA*: Teoria e tecnologia del controllo automatico. (Controllo: imporre un comportamento desiderato. Automatico: senza l'intervento dell'uomo.)
- Breve storia dell'Automazione:
 - '700-'800: Macchine a vapore con regolatore di velocità
 - 1801: Telai Jacquard a schede di cartone perforate
 - '900: Industria automobilistica e bellica
 - Ultimi 30 anni: avvento dell'elettronica e dei computer (tante applicazioni e maggiore flessibilità)
- Elementi fondamentali del problema di controllo:
 - Sistema, processo o impianto sotto controllo.
 - Modello matematico: sistemi dinamici.
 - Variabili indipendenti o di ingresso: variabili di controllo e variabili incerte.
 - Variabili dipendenti o di uscita: variabili controllate e variabili misurate.
 - Variabili di riferimento.

FORMULAZIONE DEL PROBLEMA DEL CONTROLLO

• Problema del controllo:

- Determinare il valore da attribuire alla variabile di controllo u in modo tale che l'andamento della variabile controllata y risulti sufficientemente prossimo a quello desiderato y^o , qualunque sia (entro certi limiti) il valore delle variabili indipendenti incerte q.
- Alcuni esempi schematici.
 - Controllo della temperatura di un forno.
 - Controllo del livello di un serbatoio.
 - Azionamento di un'antenna per telecomunicazione.
 - Controllo dell'assetto di un aeromobile.

CONTROLLORE AUTOMATICO

• Controllore: ad anello aperto/chiuso.

Schema di controllo ad anello aperto

Schema di controllo ad anello chiuso

COMPITI DEL PROGETTISTA

- 1. Studio del sistema sotto controllo e scelta dei sensori e degli attuatori.
- 2. Scelta del modello del sistema ottenuto.
- 3. Semplificazione del modello in modo da renderlo trattabile.
- 4. Analisi delle proprietà del modello selezionato.
- 5. Specificazione delle prestazioni desiderate.
- 6. Scelta del tipo di controllore.
- 7. Progetto di un controllore che soddisfi alle prestazioni desiderate.
- 8. Se non esiste, riprovare con specifiche meno restrittive.
- 9. Simulazione del comportamento del sistema controllato.
- 10. Ripetizione di tutti i passi precedenti, se necessario.
- 11. Scelta hardware e software per l'implementazione del controllore.
- 12. Sintonizzazione del controllore mediante prove in linea, se necessario.

SCHEMA DI CONTROLLO

- C + A: controllore + attuatore.
- \mathcal{P} : Processo sotto controllo.
- ullet \mathcal{T} : Trasduttore (sensore).

SISTEMA REALE --> MODELLO MATEMATICO

- Definizione di modello matematico.
- Accuratezza di un modello matematico: precisione ←→ semplicità.
- Modelli ottenuti dalle leggi della fisica, chimica, ...
- Modelli ottenuti attraverso dati sperimentali.
- Modelli per i controlli automatici.

CLASSIFICAZIONE MODELLI

- Modelli dinamici e non dinamici (statici).
- Modelli a parametri distribuiti / parametri concentrati.
- Modelli deterministici e stocastici.
- Modelli tempo-continuo, tempo-discreto, a dati campionati.
- Modelli lineari e non lineari.
- Modelli stazionari (tempo-invarianti) e non stazionari (tempo-varianti).
- Modelli causali e non causali.
- Modelli scalari (SISO) e multivariabili (MIMO).

ESEMPIO: SOSPENSIONI VEICOLO INDUSTRIALE

- Modello semplificato planare: dinamico, lineare, a parametri concentrati, stazionario.
- Raffinamenti: telaio flessibile → equazioni alle derivate parziali, modello tridimensionale (4 ruote + sospensioni sghembe), elementi non lineari (smorzatore).

ESEMPIO: CONTROLLO LIVELLO DI UN SERBATOIO

• Modello del serbatoio:

Principio di conservazione della massa

+

Teorema dell'energia di Bernoulli

• Modello della condotta:

Linea di ritardo

ESEMPIO: CONTROLLO LIVELLO DI UN SERBATOIO

• Modello del serbatoio:

$$\frac{d}{dt}h(t) = -\frac{A_u\sqrt{2g}}{S}\sqrt{h} + \frac{1}{S}q_i(t)$$

• Modello della condotta:

$$q_i(t) = q(t - T)$$

• Modello completo: (u(t) := q(t); y(t) := h(t))

$$\begin{cases} \frac{d}{dt}y(t) = -\frac{A_u\sqrt{2g}}{S}\sqrt{y} + \frac{1}{S}u(t-T) \\ y(0) = y_0 \end{cases}$$

ESEMPIO: PENDOLO INVERSO

• <u>Dinamica del moto:</u>

$$mL\ddot{\theta}(t) = mg\sin\theta(t) - m\ddot{s}(t)\cos\theta(t)$$

• Modello del pendolo inverso:

$$(u(t) := \ddot{s}(t); \ y(t) := \theta(t))$$

$$\begin{cases} \ddot{y}(t) = \frac{g}{L}\sin y(t) - \frac{1}{L}u(t)\cos y(t) \\ y(0) = y_0 \\ \dot{y}(0) = \dot{y}_0 \end{cases}$$