Astro Notes

Pierson Lipschultz

September 8, 2025

1 Class overview

Office hours tues and thurs 11-12 astro 237 ta office hours wed 3:30:530 astro 2367 hw due wed hw posted week before

- solar system
- steller evo
- compact objects
- galaxy quasi darkmatter
- cosmic web
- big bang

course goals

- apply pys to universe
- understand foundations of modern astro, astrophys, and cosmology $\,$
- conceptual understanding of the uni based on physical principles

2 Early Astronomy

2.0.1 Greek

- Aristotle
 - earth is spherical
 - partial lunar eclipses
 - some stars visible from southern locations but not northern and vice versa

- had ideas regarding perfect geo influenced by Pythagoras and Plato
- Aristarchus (310-230 BC):
 - unpreceded heliocentric framework
 - trig distances earth-moon-sun system
 - angular diameters $\theta_{sun} \approx \theta_{moon}$: $\frac{A}{C} = \frac{D_{moon}}{D_{moon}}$
 - diameters from lunar eclipses $D_{moon} < D_{earth}$
- Eratoshs (176-195 BC):
 - Determined radius of spherical earth R_E
 - Sun at zenith at noon on summer solstice at Aswan
 - But further north in Alexandria, Egypt, the sun is south of the zenith by angle α
- Hipparchus (190-120 BC):
 - Discover precession of the equinoxes from examination of star catalogs over centuries
 - established the magnitude system
- Copernicus (1473-1543):
 - heliocentric
 - earth rotates
 - still assumed uniform circular celestial motion
 - inferior planets: orbit smaller than earths
 - superior planets: orbits larger than earths

2.1 Emergence of modern Astro

Inferior planets

- B/C = $\sin \theta_E$
- B=C Sin θ_E
- C is AU
- Early astronomers didnt know C, so they could only infer rations of B/C. Ie. Orbital radii measured in AU

Superior Planets

- Measure time between opposition and eastern quadrature
- want angle θ between opp and east quad

- $\theta = (\omega_E \omega_p)$ and $C/B = cos\theta$
- measure τ and synodic period, calculate sidereal period and ω_p ; know ω_E and infer C/B

Galilean Revolution

- Galileo Galilei (1564 -1642)
- - improved and used a basic refracting telescoping
- def publication of early results 1610 "starry messenger"
- Moon is cratered; not a perfect Sphere
 - milkyway is made out of stars
 - Jupiter has moons (or as he thought, stars)
 - measured phases of Venus

Phases of Venus

- direct confrontation with Ptolemaic geocentric models
- in Ptolemaic models you only see crescent phases

Tycho Brahe (1546-1601)

- Denmark, later Prague
- Given island by king Fredrick (and staff)
- made a accurate and vast database of celestial motion
- had a lead nose?
- Threw giant ragers
- supernova named after him

Johannes Kepler (1571–1630, Prague)

- 'Inherited' (maybe stole) Brahe's data
- also has a SN
- Kepler fit a new empirical model of heliocentric orbits, abandoning perfect circles
 - "It was as if I awoke from sleep and saw a new light" (Kepler, New astronomy)

Kepler's Laws

First law

- The planets travel on elliptical orbits with the sun at one focus
- Semimajor axis, half the major axis
- eccentricity: how elliptical (stretched) an orbit is distance between foci divided by major axis.

second law

- A line drawn from the sun to a planet sweeps out equal areas in equal time intervals'
- perihelion: orbital point closet to the sun
- aphelion: furthest orbital point from the sun

third law

Def: The square of the sidereal orbital periods of the planets are prop to the cubes of the Semimajor axis of their orbits

$$p^2 = Ka^3$$

$$\begin{split} P &= \text{planets sidereal period} \\ a &= \text{length of semimajor axis} \\ K &= \text{constant} \end{split}$$

Consequences of heliocentric model

- retrograde motion of outer planets
- positions of outer and inner planets wrt sun
- annual parallax
- aberration of starlight
- Coriolis effect

Parallax

- annual parallax: change in the apparent position when seen from two diff locations due to earth revolving around the sun. First measured by Bessel in 1838

Aberration of starlight

- deflection of apparent stellar positions in the direction of the observers motion
- analog: running throw rain and getting wet in the front and not in the back
- detected (Picard, 1680); explained (Bradley, 1729)

- telescope is moving along orbital vector around the sun; translation along orbit cannot exceed transit time of light through telescope

Coriolis effect: evidence of earth rotation

- coriolis acceleration is perp to the direction of motion

$$\vec{a_{cor}} = s\vec{v} \times \vec{\omega}$$

- can be deduced from a pendulum
- and in hurricanes!

Orbital Mechanics I 3

3.1 Newtonian mechanics

Parametric vectors

Displacement $\vec{r}(t) = x(t)\hat{i}y(t)\hat{j} + z(t)\hat{k}$ distance: $r(t) = |\vec{r}(t)| = \sqrt{\vec{r} \cdot \vec{r}}$

3.2 Newtons laws

First law

- Isaac newton(1642-1727)
- an objects' velocity remains constant unless a net outside force acts upon
- $\vec{v}(t) = \vec{v_0} = const$

second law

- $\vec{F} = m\vec{a}(t)$
- $\vec{F} = \frac{d\vec{p}(t)}{dt}$
- $d\vec{v}/dt = \vec{f}/m$
- force changes velocity
- used a lot in computational math

third law

- forces come in pairs, equal in magnitude, and opposite in direction

Newtonian gravity

- a force, grav, exsits between any two objects having mass m and M, prop to the product of their masses mM and inversely proportinal to the square of the separtation distance r of their centers
- for coordinates centered on M:
- $ec{F}=-Grac{Mm}{|ec{r}|^2}\hat{r}$

Displacement vector and polar coordinates 3.3

- cartesian coordinates are often written a (x,y,z) in a coordinate system centered on mass M
- Axis orientations are chosen so that the planet orbits in the x-y plane
- Displacement $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$

velocity vector and polar coordinates

- unit vectors in polar coordinates vary with $\theta(t)$

$$\frac{d\hat{r}(t)}{dt} = \frac{d\hat{r}(t)}{d\theta} \frac{d\theta(t)}{dt} = \frac{d\theta(t)}{dt} \hat{\theta}(t)$$

$$\vec{v}(t) = v_r \hat{r} + v_t \hat{\theta}$$

- two velocity components in polar coords
- Kepler laws: angular momentum

keplers 2nd law = consv, angular momentum

-
$$d\vec{L}/dt = 0$$

$$\vec{L} = \vec{R} \times \vec{p} = \vec{r} \times m\vec{v} = const$$

$$\Rightarrow |\vec{v}| = L = mrv_1$$

3.6 Keplers Laws

3.6.1 Keplers First Law

$$- \frac{d\vec{v}}{dt} = -\frac{GM}{r_2}\hat{r}$$

_

$$\frac{L}{GMm}\frac{d\vec{v}}{dt} = \frac{d\hat{\theta}}{dt}$$

-

$$\frac{L}{GMm}\vec{v} = \hat{\theta} + e\hat{j}$$

- take dot product of both sides with unit vector $\hat{\theta}, using$

-
$$\hat{j} \cdot \hat{\theta} = \cos \theta$$

_

4 Glossary

Synodic period

- time elapsed between success conjunctions or oppositions
- this is the period we observe from earth, which is moving

Sidereal Period

- elapsed time of full orbit relative to the fixed stars (inertial ref frame)
- This is the one we will want to put in keplers laws