

第2章 极限与连续

研究函数的变化趋势,内容包括:

数列及其极限

函数极限

极限的运算和两个重要极限

连续函数

§ 2.1数列及其极限

定义1 称 $f:N_+\to\mathbb{R}$ 为一个数列,记为

$$\{a_n = f(n) \mid n \in \mathbb{N}_+\}, \quad \mathbf{g} \quad a_1, a_2, \dots, a_n, \dots$$

或 $\{a_n\}$, a_n 称为该数列的通项。

例 (1)
$$1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots$$
, 记为 $\left\{\frac{1}{n}\right\}$, $a_n = \frac{1}{n}$;

(2)
$$1,-1,1,\cdots,(-1)^{n-1},\cdots,$$
 记为 $\{(-1)^{n-1}\},\ a_n=(-1)^{n-1};$

(3) 数列
$$\left\{\frac{1}{2^n}\right\}$$
, $\mathbb{P}\left\{\frac{1}{2^n},\frac{1}{2^2},\frac{1}{2^3},\cdots,\frac{1}{2^n},\cdots,a_n=\frac{1}{2^n}\right\}$.

数列的图像表示

数列可以在数轴或坐标平面有图像表示,以 $\left\{\frac{1}{n}\right\}$ 为例。

有界性讨论

若 $\exists K, st. a_n \leq K, \forall n \in \mathbb{N}_+, 则称 \{a_n\}$ 有上界.

若 $\exists k, st. a_n \geq k, \forall n \in \mathbb{N}_+, 则称 \{a_n\}$ 有下界。

若 $\exists M > 0$, $st. |a_n| \leq M$, $\forall n \in \mathbb{N}_+$, 则称 $\{a_n\}$ 有界。

易证 $\{a_n\}$ 有界 \Leftrightarrow $\{a_n\}$ 上有界且下有界

若对 $\forall M > 0$, 总 $\exists n_0 \in \mathbb{N}_+, st. |a_{n_0}| > M$, 则称 $\{a_n\}$ 无界.

类似定义: 无上界, 无下界.

例 $\left\{\frac{1}{n}\right\}$ 有界, $\left\{n\right\}$ 无界.

单调性讨论

若
$$a_n \leq a_{n+1}, \forall n \in \mathbb{N}_+, \quad 则称 \{a_n\}$$
 递增,

若
$$a_n \ge a_{n+1}$$
, $\forall n \in \mathbb{N}_+$, 则称 $\{a_n\}$ 递减,

若
$$a_n < a_{n+1}, \forall n \in \mathbb{N}_+, 则称 \{a_n\}$$
严格递增,

若
$$a_n > a_{n+1}, \forall n \in \mathbb{N}_+, 则称 \{a_n\}$$
严格递减.

例
$$\left\{\frac{1}{2^n}\right\}$$
 严格递减, $\left\{\frac{2^n}{n!}\right\}$ 递减,

$$\left\{1+\frac{(-1)^{n-1}}{n}\right\}$$
 即 $2,\frac{1}{2},\frac{4}{3},\frac{3}{4},\cdots$, 无单调性.

数列极限

考察当 n 无限增大时,数列 $\{a_n\}$ 变化趋势.

对数列
$$\left\{2 + \frac{\left(-1\right)^n}{n}\right\}$$

$$|a_n - 2| = \left| 2 + \frac{(-1)^n}{n} - 2 \right| = \left| \frac{(-1)^n}{n} \right| = \frac{1}{n}$$

只要 n 充分大,它可以小于事先任给的正数。

对给定
$$\frac{1}{10^k}$$
, 只要 $n > 10^k$,就有 $|a_n - 2| = \frac{1}{n} < \frac{1}{10^k}$,

对任给
$$\varepsilon > 0$$
, 只要 $n > \frac{1}{\varepsilon}$, 就有 $|a_n - 2| = \frac{1}{n} < \varepsilon$.

 ε 表示小正数。

数列极限的定义

定义2 (ε —N定义) 设有数列 $\{a_n\}$, 常数 a,

若对任意 $\varepsilon > 0$,存在自然数 N,使得当自然数 n > N 时有 $\left| a_n - a \right| < \varepsilon$,

则称数列 $\{a_n\}$ 当 $n \to \infty$ 时的极限(值)为 a,

或称 $\{a_n\}$ 收敛于a, 并记

 $\lim_{n\to\infty}a_n=a,\quad \text{if} \qquad a_n\to a \ (n\to\infty).$

否则称 $\{a_n\}$ 是发散数列。

极限的几何意义

$$\lim_{n\to\infty} a_n = a$$
 的图像表示:

任给 $U(a;\varepsilon)$ 后,能聚 $\left\{a_{n}\right\}$ 中某项后所有点,而外面有有限个.

$$\left\{2 + \frac{(-1)^n}{n}\right\}$$
 能几乎都聚在 2 的任何事先邻域内.

 $\{(-1)^{n-1}\}$ 不能几乎聚在 1 处, 故 1 非其极限(值).

它也不能几乎聚在处,故也非其极限(值).

定义中的"存在自然数 N", 在实题中需由 $|a_n - a| < \varepsilon$ 解出.

例1 求数列 $\{1,1,1,\dots,1,\dots\}=\{a_n\}$ 的极限.

解: 这个数列的极限为 a=1.

验证 对任意 $\varepsilon > 0$,要使 $|a_n - a| = |1-1| = 0 < \varepsilon$,

只要取N=1,则当 n>N 时,有

$$|1-1|=0<\varepsilon$$
,

所以 $\lim_{n\to\infty} 1 = 1.$

同理可证 $\lim_{n\to\infty} C = C$.

HORMAL CHARGE THE PARTY OF THE

数列极限的例子

例2 证明
$$\lim_{n\to\infty}\frac{1}{n^2}=0.$$

证明 对任意 $\varepsilon > 0$, 要使

$$\left|\frac{1}{n^2} - 0\right| = \frac{1}{n^2} < \varepsilon$$

只要
$$n^2 > \frac{1}{\varepsilon}$$
, 即 $n > \sqrt{\frac{1}{\varepsilon}}$, 取 $N = \left[\sqrt{\frac{1}{\varepsilon}}\right]$

则当n > N 时,有

$$\left|\frac{1}{n^2} - 0\right| = \frac{1}{n^2} < \varepsilon,$$

所以
$$\lim_{n\to\infty}\frac{1}{n^2}=0.$$

同理可证
$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0$$

$$\alpha > 0$$
 是常数.

例3 证明
$$\lim_{n\to\infty}\frac{1}{2^n}=0.$$

证明 对任意
$$\varepsilon > 0$$
, 要使

$$\left|\frac{1}{2^n}-0\right|=\frac{1}{2^n}<\varepsilon,$$

只要
$$n\lg\frac{1}{2} < \lg \varepsilon$$
, 即 $n > -\frac{\lg \varepsilon}{\lg 2}$, 取 N

则当
$$n > N$$
 时,有

$$\left|\frac{1}{2^n}-0\right|<\varepsilon,$$

所以
$$\lim_{n\to\infty}\frac{1}{2^n}=0$$
.

同理可证
$$\lim_{n\to\infty}q^n=0$$
, $|q|<1$ 是常数.

$$|q|$$
<1 是常数.

例4 证明
$$\lim_{n\to\infty}\frac{n}{(n+1)^2}=0.$$
 证明 对任意 $\varepsilon>0$,要使 $\left|\frac{n}{(n+1)^2}-0\right|<\varepsilon$,

由于
$$\left| \frac{n}{(n+1)^2} - 0 \right| = \frac{n}{(n+1)^2} < \frac{1}{n}$$
, 只要 $\frac{1}{n} < \varepsilon$,

$$\left|\frac{n}{(n+1)^2}-0\right|<\varepsilon,$$

只要
$$\frac{1}{n} < \varepsilon$$
,

$$\mathbb{P} \quad n > \frac{1}{\varepsilon},$$

取
$$N = \left[\frac{1}{\varepsilon}\right]$$
, 则当 $n > N$ 时,有 $\left|\frac{n}{(n+1)^2} - 0\right| < \varepsilon$,

$$\left|\frac{n}{(n+1)^2}-0\right|<\varepsilon,$$

所以
$$\lim_{n\to\infty}\frac{n}{(n+1)^2}=0.$$

本题意: 无需最小 N.

例5 证明
$$\lim_{n\to\infty}\frac{n+\cos n}{n}=1.$$

证明 对任意
$$\varepsilon > 0$$
, 要使

由于
$$\left| \frac{n + \cos n}{n} - 1 \right| = \left| \frac{\cos n}{n} \right| \le \frac{1}{n}$$
, 只要 $\frac{1}{n} < \varepsilon$,

$$\left|\frac{n+\cos n}{n}-1\right|<\varepsilon,$$

只要
$$\frac{1}{n} < \varepsilon$$
,

取
$$N = \left[\frac{1}{\varepsilon}\right]$$
, 则当 $n > N$ 时,有 $\left|\frac{n + \cos n}{n} - 1\right| < \varepsilon$,

所以
$$\lim_{n\to\infty}\frac{n+\cos n}{n}=1.$$

HORMAT DIRECTIVE

无穷大量

数列 $\{n^2\}$ 无界发散. 但有趋势 趋向于无穷大.

定义3 (G—N定义) 设有数列 $\{a_n\}$,

若对任意 G>0, 存在自然数 N, 使得当自然数 n>N 时有 $\left|a_n\right|>G,$

则称数列 $\{a_n\}$ 是无穷大数列,也称 $\{a_n\}$ 为无穷大量.

记为

 $\lim_{n\to\infty}a_n=\infty,\quad \text{if}\quad a_n\to\infty\quad (n\to\infty).$

无穷大量

若定义中的 $|a_n| > G$ 换为 $a_n \ge G$ (或 $a_n \le -G$),

则称 $\{a_n\}$ 是正(负)无穷大数列,也称正(负)无穷大量。

记为

$$\lim_{n\to\infty} a_n = +\infty(-\infty), \ \ \text{id} \quad \ a_n \to +\infty(-\infty)(n\to\infty).$$

例 $\{2^n\}$ 是正无穷大量,

 $\{-n\}$ 是负无穷大量,

 $\left\{ \left(-1\right)^{n}2^{n}\right\}$ 是无穷大量.

3. 收敛数列的性质

定理1(唯一性) 若 $\{a_n\}$ 收敛, 则极限唯一.

证 反证法, 假设 $\{a_n\}$ 收敛于a,b (a>b), 取 $\varepsilon = \frac{a-b}{2} > 0$,

由 $\lim_{n\to\infty} a_n = a$, $\exists N_1 \in \mathbb{N}_+$, 当 $n > N_1$ 时,有

$$|a_n - a| < \varepsilon = \frac{a - b}{2}, \implies a_n > \frac{a + b}{2}(*),$$

又 $\lim_{n\to\infty} a_n = b$, $\exists N_2 \in \mathbb{N}_+$, 当 $n > N_2$ 时, 有

$$|a_n - b| < \varepsilon = \frac{a - b}{2}, \implies a_n < \frac{a + b}{2}(**),$$

令 $N = \max\{N_1, N_2\}$ 则当 n > N 时(*)与(**)矛盾. 得证.

MORMAZ URINERSITY

有界性

定理2(有界性) 若 $\{a_n\}$ 收敛, 则 $\{a_n\}$ 有界.

证 设 $\lim_{n\to\infty} a_n = a$, 取 $\varepsilon = 1$, 则 $\exists N \in \mathbb{N}_+$, 当 n > N 时,有

$$\left|a_n - a\right| < \varepsilon = 1,$$

$$|a_n| = |a_n - a + a| \le |a_n - a| + |a| < 1 + |a|,$$

 $\Rightarrow M = \max\{|a_1|, |a_2|, \dots, |a_N|, |a|+1\},$

则对任意n, $|a_n| \leq M$, 所以 $\{a_n\}$ 有界.

注: 有界是收敛的必要条件. 如 $\{(-1)^n\}$ 有界, 但发散.

推论 若 $\{a_n\}$ 无界,则 $\{a_n\}$ 发散。

不等式性质

定理3 设
$$\lim_{n\to\infty}a_n=a$$
, $\lim_{n\to\infty}b_n=b$, $a>b$,

则 $\exists N \in \mathbb{N}_+$, 当 n > N 时,有 $a_n > b_n$.

(严)大极限→(严)大数列

$$\mathbb{H} \quad \mathbb{R} \quad \varepsilon = \frac{a-b}{2} > 0,$$

由
$$\lim_{n\to\infty} a_n = a$$
, $\exists N_1 \in \mathbb{N}_+$, 当 $n > N_1$ 时,有

$$\left|a_n - a\right| < \varepsilon = \frac{a - b}{2}, \quad \Rightarrow a_n > \frac{a + b}{2}(*),$$

又
$$\lim_{n\to\infty} b_n = b$$
, $\exists N_2 \in \mathbb{N}_+$, 当 $n > N_2$ 时, 有

$$|b_n - b| < \varepsilon = \frac{a - b}{2}, \Rightarrow b_n < \frac{a + b}{2}(**),$$

令
$$N = \max\{N_1, N_2\}$$
 则当 $n > N$ 时,有 $a_n > \frac{a+b}{2} > b_n$.

保号性

推论1(保号性) 设
$$\lim_{n\to\infty} a_n = a$$
, $a>0$,

则
$$\exists N \in \mathbb{N}_+$$
, 当 $n > N$ 时,有 $a_n > \frac{a}{2} > 0$.

对于**a < 0**, 类似有
$$a_n < \frac{a}{2} < 0$$
.

推论**2** 设
$$\lim_{n\to\infty} a_n = a$$
, $\lim_{n\to\infty} b_n = b$,

且
$$\exists N \in \mathbb{N}_+$$
, 当 $n > N$ 时,有 $a_n \ge b_n$, 则 $a \ge b$.

这个结果对严格不等式不成立.

例
$$a_n = \{1 + \frac{1}{n}\}, b_n = \{1\}.$$

迫敛性与单调有界准则

定理4 (迫敛性) 设 $\{a_n\}$, $\{b_n\}$ 的极限都是 a, 若 $\{c_n\}$ 满足:

$$\exists N \in \mathbb{N}_+$$
, 当 $n > N$ 时,有 $a_n \le c_n \le b_n$,

则
$$\lim_{n\to\infty} c_n = a$$
.

定理5(单调有界准则) 单调有界数列必有极限,

当公理用.

NORMAL OF RELIEF

例6 求
$$\lim_{n\to\infty} \sqrt[n]{n}$$
.

解 记
$$a_n = \sqrt[n]{n} = 1 + h_n > 1$$
, $(n > 1)$

$$n = (1 + h_n)^n > \frac{n(n-1)}{2}h_n^2, \qquad 0 < h_n < \sqrt{\frac{2}{n-1}},$$

$$1 < 1 + h_n = \sqrt[n]{n} < 1 + \sqrt{\frac{2}{n-1}},$$

由
$$\lim_{n\to\infty} 1 = 1$$
, $\lim_{n\to\infty} (1+\sqrt{\frac{2}{n-1}}) = 1$, 迫敛性得 $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

同样可证
$$\lim_{n\to\infty} \sqrt[n]{C} = 1$$
.

极限举例 e

例7 求
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$
.

证 设
$$a_n = \left(1 + \frac{1}{n}\right)^n$$
, 二项式展开

$$a_{n} = 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^{2}} + \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^{3}} + \dots + \frac{n(n-1)(n-2)\cdots 3\cdot 2\cdot 1}{n!} \cdot \frac{1}{n^{n}}$$

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{n-1}{n}\right)$$

$$a_{n+1} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n-1}{n+1} \right)$$

$$+\frac{1}{(n+1)!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right)\cdots\left(1-\frac{n}{n+1}\right)$$

极限举例 e

第三项起, a_n 对应项 < a_{n+1} 对应项,且 a_{n+1} 多一项

因此 $a_n < a_{n+1}$,即(严格)递增。又

$$a_n < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} < 3$$

故 {a_n} 有界.

由"单调有界准则"知 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ 存在,记为 e.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = 2.71828182 \cdots$$

对数 $\log_{e} x$ 称为自然对数,记为 $\ln x$.

极限的四则运算

定理6(四则运算) 设 $\lim_{n\to\infty} a_n = a, \lim_{n\to\infty} b_n = b$, 则有

(1)
$$\lim_{n\to\infty}(a_n\pm b_n)=\lim_{n\to\infty}a_n\pm\lim_{n\to\infty}b_n=a\pm b;$$

(2)
$$\lim_{n\to\infty}(a_nb_n)=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n=ab;$$

(3)
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} = \frac{a}{b}, \quad (b\neq 0);$$

(4)
$$\lim_{n\to\infty} k \cdot a_n = k \cdot \lim_{n\to\infty} a_n = k \cdot a$$
, k 是常数.

(5)
$$\lim_{n\to\infty} (a_n)^k = \left(\lim_{n\to\infty} a_n\right)^k = a^k \qquad k \text{ 是正整数.}$$

例8 求
$$\lim_{n\to\infty}\left(\frac{1}{n^2}+\frac{2}{n}\right);$$

解 原式 =
$$\lim_{n\to\infty} \frac{1}{n^2} + \lim_{n\to\infty} \frac{2}{n} = 0 + 0 = 0.$$

例9 求
$$\lim_{n\to\infty} \frac{n^2 + 9n - 1}{3n^2 + 4}$$

解 原式 =
$$\lim_{n \to \infty} \frac{1 + \frac{9}{n} - \frac{1}{n^2}}{3 + \frac{4}{n^2}} = \frac{\lim_{n \to \infty} \left(1 + \frac{3}{n} - \frac{1}{n^2}\right)}{\lim_{n \to \infty} \left(3 + \frac{4}{n^2}\right)} = \frac{1}{3}$$

例10 求
$$\lim_{n\to\infty}\left(\frac{3n+1}{n}\frac{n+2}{n}\right)$$
;

解 原式 =
$$\lim_{n\to\infty} (3+\frac{1}{n}) \lim_{n\to\infty} (1+\frac{2}{n}) = 3.$$

例11 求
$$\lim_{n\to\infty} \frac{3^n + 2^n}{3^{n+1} + 2^{n+1}};$$

解 原式 =
$$\frac{1}{3} \lim_{n \to \infty} \frac{1 + (\frac{1}{3})}{1 + (\frac{2}{3})^{n+1}} = \frac{1}{3}.$$

例12 求
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right);$$

$$\frac{n}{\sqrt{n^2+n}} \le \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \le \frac{n}{\sqrt{n^2+1}}$$

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}}} = 1, \quad \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n^2}}} = 1,$$

由迫敛性得
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right) = 1.$$

例13 证明
$$\sqrt{2}$$
, $\sqrt{2+\sqrt{2}}$, ..., $\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}$, ... 收敛, 并求其极限.

证记
$$x_n = \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}$$
,则

(1) $\{x_n\}$ 单调递增,因为

$$x_{n+1} = \underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2 + \sqrt{2}}}}}_{n+1 \uparrow \text{R}} > \underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}_{n \uparrow \text{R}} = x_n,$$

(2) 数学归纳法证有界,

(i) 当
$$k=1$$
, 有 $x_1=\sqrt{2}<2$, 成立,

(ii) 假设 k=n 时, 成立 $x_n < 2$,

NORMAL CHARGE TO LEVEL TO LEVE

极限举例

则 当
$$k=n+1$$
 时,有 $x_{n+1}=\sqrt{2+x_n}<\sqrt{2+2}=2$, 故 $\{x_n\}$ 有界.

由"单调有界准则"知 $\{x_n\}$ 收敛,设 $\lim_{n\to\infty}x_n=a$,

$$x_{n+1} = \sqrt{2 + x_n}, \implies x_{n+1}^2 = 2 + x_n,$$

两边取极限, $a^2 = 2 + a$, 解为 a = -1, a = 2.

由
$$x_n > 0$$
 知 $\lim_{n \to \infty} x_n = 2$.