Eagle: Making multiple-locus association mapping on a genome-wide scale routine

Andrew W. George 1, Arunas Verbyla 1, Joshua Bowden 2, and Some other authors 1

¹Data61, CSIRO, Australia. ²IM &T, CSIRO, Australia.

June 27, 2018

Table 1: A summary of the features possessed by the Eagle package and the comparison implementations.

Computer Software for Association Mapping Multiple-locus Single-lo LMM-Lasso MLMM r2VIM FaST-LMM Features Eagle bigRR glmnet Purpose built¹ X Well documented² X X X Simultaneous Х X fitting of SNPs Additional fixed effects³ Data larger than RAM⁴ X Х X Х Threshold free⁵ Х Х X X X Informative error checking X X Х

Table 2: The median run times (in minutes) of Eagle and the other association mapping programs across the six simulation scenarios.

		Simulation Scenarios					
Method	Name	$150 \times 5K$	$1500 \times 50 K$	$350 \times 400 K$	$2000 \times 500 K$	$4000 \times 1.5M$	10000 x 1
Multiple	Eagle	0.08	1.62	2.71	13.65	127.63	699.5
	MLMM	0.15	2.91	19.04	143.01	870.84	ļ
	glmnet	0.11	3.95	14.06	74.03		
	r2VIM	0.09	3.66	5.51	50.59	380.52	ļ
	$_{ m bigRR}$	1.01	113.35	54.99	1030.61		ļ
	LMM-Lasso	0.57	52.08	92.20	1031.85		
Single	GEMMA	0.02	5.02	6.17	84.83	723.33	4071.6
	$FaST-LMM^{few}$	0.01	0.80	7.07	20.16	193.90	346.1
	${ m FaST\text{-}LMM}^{all}$	0.03	2.96	7.90	41.27		ļ

¹ Computer software specifically designed for the analysis of data from GWAS.

 $^{^2}$ More than just a readme file or comments in an example file. Those programs with ticks had detailed user manuals.

 $^{^3}$ Ability to accommodate additional fixed effects in the model such as age, sex, and population structure effects.

⁴ Able to deal with data larger than the memory capacity of the computer.

⁵ Results reported as the set of SNP closest to the genes influencing a trait. No need to construct thresholds to determine significance of the findings.

⁶ All the programs terminated on errors. However, not all the programs informed the user of the cause and how to fix the errors.

Figure 1: Memory usage (in gigabytes) of Eagle and the other association mapping programs across the six simulation scenarios. The maximum amount of memory on the computer is 128 gigabytes. The x-axis is on the log scale. GEMMA, a single-locus implementation, had the lowest memory usage. Of the multiple-locus implementations, Eagle had the lowest memory usage. Also, it was the only multiple-locus implementation able to produce results for data under scenario $10000 \times 1.5 \text{M}$. This is due to its ability to handle data larger than the available memory of a computer. FaST-LMM was run where all the SNP data are used to estimate the relationship matrix (FaST-LMM all) and where genotype data from every five-hundredth SNP are used to estimate the relationship matrix (FaST-LMM few)

.

