Probability Question

Answer - 1

Let's consider: A is an unbiased die B is the biased die

Sample Space:

A/B	2	3	4	5
1	3	4	5	6
2	4	5	6	7
3	5	6	7	8
4	6	7	8	9
5	7	8	9	10
6	8	9	10	11

Probability for sum 2-12

Sum	Frequency	Probability
2	0	0
3	1	0.04166667
4	2	0.08333333
5	3	0.125
6	4	0.16666667
7	4	0.16666667
8	4	0.16666667
9	3	0.125
10	2	0.08333333
11	1	0.04166667
12	0	0

Since die B is biased, and it won't roll 1 or 6, therefore, the sum can never be 2 or 12.

Answer – 2

Probability of winning on first try: P(7) + P(11) = 0.1667 + 0.041667 = 0.20833333

Probability of losing on first try: P(2) + P(3) + P(12) = 0.04166667

Answer - 3

Now that we have reached to the second roll, we need to figure out the probability of winning given, we have landed sum X with a probability of p. The probability of reaching second roll is

$$P(2^{nd} \text{ roll}) = 1 - [P(\text{winning first roll}) + P(\text{losing first roll})] = 0.76$$

In this case, we will continue to roll the die until we get X(when we will win) or 7(we will lose).

Hence, we want to determine the probability of getting X before 7. This is the same as saying if we will land X or 7.

Given the conditional probability formula:

$$P(A | B) = P(A \text{ and } B)/P(B)$$

Let A be the event that sum of die is X and B be the event that the sum of the die is either X or 7.

Since
$$P(A \text{ and } B) = P(A) = p \text{ and } P(B) = p + P(7)$$

$$P(A) = p$$
$$P(B) = p + 4/24$$

P (Roll an X | Roll X or 7) =
$$p/(p+1/6)$$

Hence, the probability of winning when first roll is X of probability p is:

$$P(X) * P (Roll \text{ an } X \mid Roll X \text{ or } 7) = p *(p/(p+1/6))$$

Answer – 4

As they have return on the dollar, that means amount invested is \$1. Return: Value of Winning * Probability of Winning + Value of Losing * Probability of Losing

Value of Winning: \$1 Value of Losing: -\$1

Probability of Winning:

- 1. You can win on the first try. That has a 20.83% chance (Question 2a).
- 2. You can take 2 turns to win:
 - 2b: You roll a 4 twice, chances of that happening are $8.33\%^2 = 0.00694444 = 0.694444\%$
 - 2c: You roll a 5 twice, chances of that happening are $12.5\%\%^2 = 0.015625 = 1.5625\%$
 - 2d: You roll a 6 twice, chances of that happening are $16.67\%^2 = 0.02777778 = 2.777778\%$
 - 2e: You roll a 8 twice, chances of that happening are $16.67\%^2 = 0.02777778 = 2.777778\%$
 - 2f: You roll a 9 twice, chances of that happening are $12.5\%\%^2 = 0.015625 = 1.5625\%$
- 2g: You roll a 10 twice, chances of that happening are $8.33\%^2 = 0.00694444 = 0.694444\%$

Total chances of winning = Probability of winning in first try + Probability of taking 2 turns = 20.83% + 10.066% = 30.89%

Probability of Losing:

- 1. You can lose on the first try. 4.16% chance
- 2. You can take 2 turns to lose: If we know that Probability of winning in the 2nd turn is 10.243055%, then probability of losing = 100% 10.243055% = 89.93%

Hence total chance of losing = 4.16+89.93 = 94.093% Hence return is: 1*30.89% - 1*93.916945% = -0.632

That means on an average you'll lose \$0.632 for every dollar spent in this game.