```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
import warnings
warnings.filterwarnings('ignore')
df = pd.read_csv('/content/Mall_Customers.csv')
df.head()
\overline{2}
                                                                                 \blacksquare
         CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
      0
                       Male
                              19
                                                   15
                                                                                  ılı.
                                                                            81
                       Male
                              21
                                                   15
      2
                                                                             6
                  3 Female
                              20
                                                   16
      3
                  4 Female
                               23
                                                   16
                                                                            77
                  5 Female
                              31
                                                   17
                                                                            40
      4
                                       View recommended plots
 Next steps:
              Generate code with df
                                                                      New interactive sheet
```

Univariate Analysis

df.describe()

CustomerID Age Annual Income (k\$) Spending Score (1-100)

,		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	
	count	200.000000	200.000000	200.000000	200.000000	ılı
	mean	100.500000	38.850000	60.560000	50.200000	
	std	57.879185	13.969007	26.264721	25.823522	
	min	1.000000	18.000000	15.000000	1.000000	
	25%	50.750000	28.750000	41.500000	34.750000	
	50%	100.500000	36.000000	61.500000	50.000000	
	75%	150.250000	49.000000	78.000000	73.000000	
	max	200.000000	70.000000	137.000000	99.000000	
	4					

```
sns.distplot(df['Annual Income (k$)'])
```


df.columns

```
columns = ['Age','Annual Income (k$)','Spending Score (1-100)']
for i in columns:
  plt.figure()
  sns.displot(df[i])
```


<Figure size 640x480 with 0 Axes>


```
sns.kdeplot(x='Annual Income (k$)', hue='Gender', data=df, shade=True)
```

```
<Axes: xlabel='Annual Income (k$)', ylabel='Density'>
        0.008
                                                                     Gender
                                                                   ____ Male
        0.007
                                                                       Female
        0.006
        0.005
     Density
P00.0
        0.003
        0.002
        0.001
        0.000
                                              75
             -25
                              25
                                      50
                                                     100
                                                             125
                                                                     150
                                                                             175
                                      Annual Income (k$)
```

```
columns = ['Age','Annual Income (k$)','Spending Score (1-100)']
for i in columns:
  plt.figure()
  # Use displot for automatic hue handling
  sns.displot(data=df, x=i, hue='Gender', kind='kde', fill=True)
  # Alternatively, specify x and hue for kdeplot
  # sns.kdeplot(data=df, x=i, hue='Gender', shade=True)
```



```
columns = ['Age','Annual Income (k$)','Spending Score (1-100)']
for i in columns:
  plt.figure()
  sns.boxplot(data=df,x='Gender',y=df[i])
```


df['Gender'].value_counts(normalize=True)

_		_	
-	<u>.</u>	_	
-	7	Y	
		_	

proportion

Female 0.56

Male 0.44

dtyna: float64

Bivariate Analysis

sns.scatterplot(data=df,x='Annual Income (k\$)',y='Spending Score (1-100)')

sns.pairplot(df,hue='Gender')

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')

Clustering - Univariate , Bivariate , Multivariate

```
clustering1 = KMeans(n_clusters=6) # For example, 5 clusters

# Reshape the 'Annual Income (k$)' column into a 2D array

X = df[['Annual Income (k$)']] # Use double brackets to create a DataFrame
# or
# X = df['Annual Income (k$)'].values.reshape(-1, 1) # Reshape using NumPy

# Fit the KMeans model to the data
clustering1.fit(X)
```



```
\overline{\mathbf{T}}
               count
      cluster
         0
                  54
         3
                  50
                  38
                  36
         2
                  16
         5
                   6
     dtvne: int64
clustering1.inertia_
    5496.533937621832
intrtia_scores = []
for i in range(1,11):
  clustering1 = KMeans(n_clusters=i)
  clustering1.fit(X)
  intrtia_scores.append(clustering1.inertia_)
intrtia_scores

→ [137277.2800000002,
      48660.88888888887,
      25341.285871863212,
      14656.333089668611,
      8534.41515455305,
      5081.484660267269,
      4151.620028011211,
      2836.339987789987,
      2296.2830808080807,
      2177.154004329006]
plt.plot(range(1,11),intrtia_scores)
```


df.groupby(['cluster'])[['Age', 'Annual Income (k\$)', 'Spending Score (1-100)']].mean() $\overline{\mathbf{T}}$ \blacksquare Age Annual Income (k\$) Spending Score (1-100) cluster th 0 36.018519 78.370370 49.555556 34.944444 23.22222 49.44444 2 37.812500 100.875000 52.875000

50.060000

50.973684

49.666667

Bivariate Clustering

3

41.520000

43.815789

36.833333

```
clustering2 = KMeans()
clustering2.fit(df[['Annual Income (k$)','Spending Score (1-100)']])
clustering2.labels_
```

60.440000

43.210526

127.666667

 $\overline{\mathbf{T}}$

```
df['Spending_cluster'] = clustering2.labels_
df.head()
```

•	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	cluster	Spending_cluster	\blacksquare
0	1	Male	19	15	39	1	4	ılı
1	2	Male	21	15	81	1	3	
2	3	Female	20	16	6	1	4	
3	4	Female	23	16	77	1	3	
4	5	Female	31	17	40	1	4	

Next steps: Generate code with df

View recommended plots

New interactive sheet

```
intertia_scores2 =[]
for i in range(1,11):
    clustering2 = KMeans(n_clusters=i)
    clustering2.fit(df[['Annual Income (k$)','Spending Score (1-100)']])
    # Append the inertia score to the list
    intertia_scores2.append(clustering2.inertia_)
plt.plot(range(1,11),intertia_scores2)
```

[<matplotlib.lines.Line2D at 0x7d4ce2f58580>]


```
# Corrected function name: 'scatter' instead of 'scatterplt'
plt.scatter(df['Annual Income (k$)'], df['Spending Score (1-100)'])
sns.scatterplot(data=df, x='Annual Income (k$)', y='Spending Score (1-100)', hue='Spending_cluster')
```

<Axes: xlabel='Annual Income (k\$)', ylabel='Spending Score (1-100)'>

centers = pd.DataFrame(clustering2.cluster_centers_)


```
# Create a new column 'Spending and Income Cluster' based on 'Spending_cluster'
# Assuming 'Spending_cluster' is a relevant column for your analysis
df['Spending and Income Cluster'] = df['Spending_cluster']
# Now, you can create the crosstab
pd.crosstab(df['Spending and Income Cluster'], df['Gender'], normalize='index')
```

