

$\begin{array}{c} Simulado \longrightarrow 2^{\underline{o}} \ Intensivo \ para \ a \ OBA \\ Quest\~{o}es \end{array}$

Material elaborado por Gabriel Lucena e Iago Mendes

Questões de Astronomia

1. Questão (1 ponto)

Some a pontuação de cada item verdadeiro:

- 1. Um observador do hemisfério norte e um observador do hemisfério sul observam a mesma fase da Lua, mas com a imagem invertida
 - 2. O lado oculto da Lua nunca recebe energia do Sol
 - 4. Nós sempre observamos exatamente o mesmo lado da Lua
 - 8. A Lua Quarto-Minguante nasce ao meio-dia
 - 16. A Lua Quarto-Crescente se põe à meia noite

()	10
()	17
()	18
()	20

2. Questão (1 ponto)

Qual dos seguintes anos \tilde{NAO} é um ano bissexto?

()	1956
()	2000
()	2280

) 2300

3. Questão (1 ponto)

Substitua os nomes dos respectivos astrônomos na ordem correta:

- 1. O modelo geocêntrico que a Terra se encontra no centro do sistema solar foi proposto por **nome 1**.
 - 2. **nome 2** determinou o raio da Terra com medições na cidade de Alexandria e Syene.
 - 3. nome 3 propôs o modelo heliocêntrico que o Sol está no centro do sistema solar.
- 4. **nome 4** desenvolveu um catálogo de observações astronômicas mais preciso da época, apesar de apoiar o modelo geocêntrico.
- () Tycho Brahe Erastóstenes Copérnico Ptolomeu
- () Erastóstenes Ptolomeu Copérnico Tycho Brahe
- () Copérnico Ptolomeu Erastóstenes Tycho Brahe
- () Ptolomeu Erastóstenes Copérnico Tycho Brahe

4. Questão (1 ponto)

Some a pontuação para cada um dos itens verdadeiros:

- 1. A estrela mais brilhante do céu noturno está visível
- 2. A Grande Nebulosa de Orion está no campo de visão da foto
- 4. A imagem está completamente no hemisfério sul
- 8. As estrelas Beteulgeuse e Rigel fazem parte da constelação do Órion
- 16. A estrela Sírius sempre foi a estrela mais brilhante do céu noturno.

- () 11
- () 18
- () 20

5. Questão (1 ponto)

A seguir temos algumas relações, some a pontuação de cada uma das relações verdadeiros:

- 1. A Terra rotaciona do Oeste para o Leste \rightarrow Sol nasce no Leste e se põe no Oeste.
- 2. O Sol está no ponto de Áries \rightarrow O Sol está saindo do hemisfério sul e entrando no hemisfério norte.
 - 4. A órbita lunar possui é uma elipse \rightarrow Efeito de libração longitudinal
 - 8. A órbita lunar é inclinada em relação à eclíptica \rightarrow Efeito de libração latitudinal
 - 16. O movimento de precessão \rightarrow A estrela polar de cada hemisfério nunca mudam
- () 11
- () 15
- () 20
- () 31

6. Questão (1 ponto)

O Sol tem, aproximadamente, o mesmo tamanho angular da Lua. Sabendo que a distância da Terra ao Sol é 388 vezes maior que a distância da Terra à Lua e o raio da Lua vale $1740 \ km$, qual o tamanho do diâmetro do Sol?

- () 675120 km
- $() 337560 \ km$
- () 1350240 km
- $() 4050720 \ km$

7. Questão (1 ponto)

Um satélite geoestacionário é um satélite que possui período orbital igual ao período de rotação da Terra. Calcule a **altura aproximada** da órbita geoestacionária em relação à superfície da Terra. Utilize a terceira lei de Kepler e os seguintes dados:

$$M_{Terra} = 6 \cdot 10^{24} \ kg$$

 $G = 6.67 \cdot 10^{-11} \ Nm^2/kg^2$
 $R_{Terra} = 6371 \ km$

- $() 48680 \ km$
- $() 42300 \ km$
- $() 35900 \ km$
- $() 29500 \ km$

Questões de Astronáutica

8. Questão (1 ponto) [OBA 2008 Adaptada]

Uma empresa privada dos EUA está desenvolvendo um avião espacial (SpaceShipTwo) no qual turistas viajarão ao espaço em um vôo suborbital de 15 a 20 minutos. Durante a fase do vôo fora da atmosfera da Terra os turistas conseguirão ver a Terra da mesma forma que os astronautas a vêem em seus vôos orbitais e da Estação Espacial Internacional. Conforme mostrado na imagem ao lado, obtida do espaço, é possível ver claramente a curvatura da Terra (Aparentemente a Terra não é plana!). Analisando a imagem e usando a geometria e trigonometria que você aprendeu na escola é possível estimar a altitude da qual ela foi tirada. Neste caso, o comprimento estimado para o campo de visão horizontal é de 1.200 km.

- a) Com o uso da trigonometria podemos determinar outras informações a partir da imagem. Sabendo-se que o ângulo de visão da câmara fotográfica é de 45 graus na horizontal, determine a distância **d** do astronauta que tirou a foto até o horizonte da Terra.
- b) A distância d de um ponto qualquer acima da superfície da Terra até o horizonte é dada por $d = \sqrt{2Rh + h^2}$, onde R é o raio da Terra e h a altura onde foi feita a imagem. Determine a altura h da órbita de onde foi feita a imagem acima. Use a distância d obtida no item anterior. Utilize a calculadora para qualquer cálculo.
- () a. $1500 \ km \ e$ b. $300 \ km$
- () a. $1200 \ km$ e b. $174 \ km$
- () a. $1500 \ km$ e b. $174 \ km$
- () a. $1200 \ km$ e b. $300 \ km$

9. Questão (1 ponto) [OBA 2016 Adaptada]

De uma maneira simplificada um satélite de sensoriamento remoto pode ser entendido como uma "máquina fotográfica" que, do espaço, obtém imagens da Terra. A partir dessas imagens é possível monitorar e medir vários fenômenos que ocorrem na superfície terrestre, incluindo queimadas e desmatamento. É importante ressaltar, contudo, que a identificação das queimadas é feita a partir da captação da energia emitida pelo material orgânico em chamas, que ocorre, principalmente na faixa de comprimento de ondas entre $3.7 \mu m$ e $4.1 \mu m$ (1 μm = 10-6 m) do espectro eletromagnético, conhecida como termalmédia. Sabe-se que quanto maior a temperatura da chama, maior é a emissão de energia. O desmatamento, por sua vez, é identificado a partir da radiação solar refletida em uma faixa de comprimento de onda entre 0,4 µm e 3,0 µm. Ao se analisar a radiação solar refletida pelos tipos de superfície nos diversos comprimentos de onda da radiação solar observa-se que a água (rios, lagos e mares) reflete menos energia solar quando comparada ao solo sem cobertura vegetal e ao solo com cobertura vegetal. Além disso, o solo exposto e a vegetação refletem diferentemente em todos os comprimentos de onda, o que permite sua diferenciação. Por se tratarem de fenômenos físicos distintos (emissão e reflexão) o satélite precisa possuir mais de uma câmera imageadora para monitorar o desmatamento e as queimadas. De modo similar a uma máquina fotográfica digital, as imagens obtidas pelos sensores de um satélite são transformadas em píxeis. Cada imagem é composta de milhões de píxeis. O pixel é o menor elemento da imagem, ao qual é possível atribuir uma tonalidade, cujo valor numérico varia entre zero e 255. Um pixel com valor zero significa que ele recebeu quase nenhuma radiação proveniente da superfície terrestre, sendo então representado pela cor preta. No outro extremo o valor 255 corresponde à cor branca e indica que o sensor recebeu a máxima quantidade de radiação da superfície terrestre. Entre zero e 255 há 254 tons de cinza do mais claro ao mais escuro. O normal é uma imagem com píxeis de diversas tonalidades de cinza, da mais clara (tendendo ao branco) à mais escura (tendendo ao negro).

A partir dessas informações, some a pontuação em cada uma das seguintes sentenças:

- 1. A partir de variações de tonalidade de cinza obtidas nas imagens dos satélites, os cientistas identificam regiões de queimadas e de desmatamento
 - 2. A presença de nuvens não atrapalha a detecção de queimadas e de desmatamento.
- 4. Uma área queimada, depois do fogo extinto, irá refletir mais radiação solar do que antes, quando havia cobertura vegetal, e por isso, será representada por "píxeis" claros
- 8. Quanto maior a temperatura da área sendo queimada, mais claros serão os píxeis que representam a imagem dessa área.
- 16. Muitos píxeis de uma imagem de uma câmera satelital, destinada ao monitoramento de queimadas, apresentam valores numéricos próximos de 255. Isso significa a detecção de uma queimada.

()	4
()	9
()	17
()	25

10. Questão (1 ponto) [OBA 2018 Adaptada]

Com o desenvolvimento da astronáutica está cada vez mais fácil colocarmos telescópios em órbita. Contudo, alguns, como o SOHO_(Solar and Heliospheric Observatory = Ob-

servatório Solar e Heliosférico), precisam girar ao redor do Sol no mesmo período que a Terra e ficar entre o Sol e a Terra, pois precisa observar o Sol 24h/dia. Mas pela terceira lei de Kepler , ou seja, quanto menor a distância ao Sol, menor será o período e viceversa. Logo, não seria possível colocar o SOHO e outros satélites para girarem ao redor do Sol, com o mesmo período da Terra estando num lugar diferente da Terra. Mas o italiano JosephLouis de Lagrange, em 1772, descobriu que há cinco pontos, chamados pontos Lagrangianos, num sistema Terra-Sol, ou Terra-Lua, ou Solplaneta, que são "especiais". O ponto L1 fica na linha Terra-Sol, entre Terra e Sol e um observatório ali colocado move-se com o mesmo período da Terra, tal com faz o SOHO, o qual nunca é eclipsado pela Lua e recebe sempre a mesma irradiação do Sol. Veja a figura ao lado. O ponto L2 fica depois do cone de sombra (umbra) da Terra, será o local de posicionamento do Telescópio Espacial James Webb e terá período de translação igual ao da Terra. Os pontos L4 e L5 ficam sobre a órbita da Terra e são localizados por um triângulo equilátero com aresta igual à

- a) Considere que M1 seja a massa do Sol, M2 a massa da Terra, R a distância Terra-Sol e r a distância da Terra aos pontos Lagrangianos L1 e L2 (são simétricos em relação a M2). Pode-se demonstrar que r é dado por: $r = \sqrt[3]{\frac{M_1}{3M_2}}R = 1.4784 \cdot 10^8 \ km$. Sabendo que a distância média à Lua é de 384000 km, calcule quantas vezes r está mais distante que a órbita da Lua.
- b) Conforme explicado, a vantagem dos pontos L1, L2 e L3 é que mesmo estando à diferentes distâncias da Terra ao Sol, ainda assim, satélites ali colocados teriam o mesmo período de translação da Terra ao redor do Sol, isto é, 365,25 dias. Qual seria o período de translação de satélites colocados nos pontos Lagrangianos L4 e L5?
- () a) 200 b) Metade do período da Terra

distância Terra-Sol.

() a) 385 b) Metade do período da Terra

)) a	200	b)	Ο	mesmo	período	da	Terra
---	-----	-----	----	---	-------	---------	----	-------

11. Questão (1 pont	to)	
	deslocamento no céu, e	Marte", em que o planeta Marte subita- e quando acompanhado por vários dias
11.1. Pergunta (1 ponto	o)	
Quais planetas, além de Ma observá-los em uma noite de	· -	smo fenômeno de modo que possamos
() Mercúrio	() Júpiter	() Urano
() Vênus	() Saturno	() Netuno
12. Questão (1 pont	to) [USAAAO 20	21 adaptada]
,	, – –	élio pela última vez em 3 de julho de al de ≈ 4.400 anos e sua excentricidade
12.1. Pergunta (1 ponto	o)	
Qual é a distância do periél	lio do cometa NEOWIS	SE, em UA ?
$(\ \)\ 0,0123\ UA$		
$(\)\ 0,212\ UA$		
() $2,69\ UA$		
$(\)\ 26,8\ UA$		
13. Questão (1 pont	to)	
<u> -</u>	- ,	gnitude aparente na banda V é de 1,25. om a mesma temperatura da inicial.
Dado: $\log(2) \approx 0.3$		
13.1. Pergunta (1 ponto	o)	
Qual a nova magnitude apa	arente na banda V do s	istema?
$(\)\ 1,25$		
() 2.5		

) 1,0

) 2,0

14. Questão (1 ponto) [USAAAO 2020 adaptada]

Em abril de 2020, o *Event Horizon Telescope* divulgou a primeira imagem do buraco negro supermassivo da galáxia M87. O buraco negro tem um diâmetro de aproximadamente 270 UA e está localizado a uma distância de 16,4 Mpc.

14.1. Pergunta (1 ponto)

No comprimento de onda observado de 1,3 mm, qual é a linha de base mínima aproximada, ou diâmetro efetivo, necessária para a imagem do buraco negro?

- () $2 \cdot 10^3 \ km$
- () $2 \cdot 10^4 \ km$
- () $2 \cdot 10^5 \ km$
- () $2 \cdot 10^6 \ km$
- () $2 \cdot 10^7 \ km$

15. Questão (1 ponto) [Seletiva OBA Presencial 2016-17 adaptada]

A paralaxe heliocêntrica de Canopus, segundo os dados do satélite Hipparcos, vale 10,42 milisegundos de arco (mas).

Dado: magnitude aparente de Canopus = -0,72

15.1. Pergunta (0,5 ponto)

Utilize essa informação e o módulo da distância para calcular a magnitude absoluta de Canopus.

- () M = -5,63
- () M = -0.72
- () M = -1,44
- () M = -2,82

15.2. Pergunta (0,5 ponto)

Aproximadamente, quantas vezes ela é mais luminosa do que o Sol? Dado: magnitude absoluta do Sol = +4,80

- () ≈ 15 mil vezes
- () ≈ 30 mil vezes
- () ≈ 5 mil vezes
- () ≈ 50 mil vezes

