Analisi I

Gianmarco Davini e Alessandro Alongi Gattone Appunti di Analisi I

Anno Accademico 2025/2026

Indice

1	\mathbf{Insi}	emi	4
	1.1	Introd	uzione
		1.1.1	Rappresentazione degli insiemi
		1.1.2	Sottoinsiemi
		1.1.3	Insieme vuoto
		1.1.4	Rappresentazione per proprietà caratteristica
	1.2	Quant	ificatori
	1.3	Opera	zioni tra insiemi
		1.3.1	Proprietà delle operazioni tra insiemi
		1.3.2	Il prodotto cartesiano
	1.4	Relazio	oni e ordinamenti
		1.4.1	Relazione
		1.4.2	Massimo e minimo
		1.4.3	Maggiorante e Minorante
		1.4.4	Estremo Superiore ed Estremo Inferiore
		1.4.5	Insiemi completi
	1.5	Insiem	i numerici
		1.5.1	Proprietà dei numeri Naturali
		1.5.2	Insiemi separati e contigui
		1.5.3	Cardinalità
		1.5.4	Rappresentazione geometrica di \mathbb{R}
	1.6	Princip	pio di induzione
		1.6.1	Media aritmetica e media geometrica
		1.6.2	Coefficiente binomiale
		1.6.3	Binomio di Newton
2	Fun	zioni	27
	2.1	Funzio	ni astratte
		2.1.1	Restrizione
		2.1.2	Funzioni composte
		2.1.3	Funzioni suriettive
		2.1.4	Funzioni iniettive
		2.1.5	Funzioni biettive
		2.1.6	Identità
	2.2	Funzio	oni Numeriche
		2.2.1	Proprietà delle funzioni numeriche

INDICE 2

		2.2.2 Funzioni Pari e Dispari	
		2.2.3 Funzioni Limitate	
		2.2.4 Massimo e Minimo	
		2.2.5 Funzioni Monotone	
	2.3	Funzioni Elementari	
		2.3.1 Funzioni lineari (o affini)	
		2.3.2 Funzione valore assoluto	
		2.3.3 Funzione potenza (con esponente in \mathbb{N})	
		2.3.4 Funzione radice n -esima	
		2.3.5 Funzione esponenziale	
		2.3.6 Funzione Logaritmica	
	2.4	Funzioni Trigonometriche Elementari	
		2.4.1 Funzioni Seno e Coseno	
		2.4.2 Funzione Tangente	
		2.4.3 Funzioni Trigonometriche Inverse	
		2.4.4 Funzioni Iperboliche	
		2.4.5 Trasformazioni del Grafico di Funzioni	
3	Nur	meri Complessi 52	
	3.1	Il campo dei numeri complessi	
	3.2	Forma algebrica	
		3.2.1 Operazioni	
	3.3	Piano complesso	
		3.3.1 Modulo	
	3.4	Forma trigonometrica	
	3.5	Potenze	
	3.6	Formula di De Moivre	
	3.7	Forma esponenziale	
	3.8	Radice n-esima	
4	Suc	cessioni Numeriche 60	
_	4.1	Limiti di successioni	
		4.1.1 Esempi di Limiti di successioni	
		4.1.2 Successioni Convergenti o Infinitesime	
		4.1.3 Successioni Divergenti	
		4.1.4 Successioni regolari o irregolari	
	4.2	Definizione di Intorno	
	4.3	Teorema di Unicità del Limite	
	4.4	Proprietà delle successioni numeriche	
	4.5	Successioni Monotone	
	4.0		
	16	1	
	4.6		
		4.6.2 Proprietà (Limiti Finiti)	
		4.6.3 Algebra dei limiti in \mathbb{R}	
		4.6.4 Forme indeterminate	
		4.6.5 Esempi finali	

INDICE 3

	4.6.6 Quoziente (in \mathbb{R})	75
	4.6.7 Nuova forma indeterminata	77
	$4.6.8 Esponenziale \dots $	77
	4.6.9	78
	$4.6.10 \ \ Nuove\ F.I.\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	78
4.7	Teorema del confronto (Teorema dei carabinieri) $\ \ . \ \ . \ \ . \ \ .$	79
4.8	Continuità di Seno e Coseno	80
4.9	Limiti Notevoli Derivati	81
	4.9.1 Esempi	83

Capitolo 1

Insiemi

1.1 Introduzione

Definizione 1.1.1: Insieme

La definizione di insieme risale a Cantor (1845-1918): Un **insieme** è una collezione di oggetti determinati e distinti, detti **elementi** dell'insieme.

Dobbiamo sempre essere in grado di determinare l'appartenenza di un elemento all'insieme. Gli insiemi si indicano con lettere maiuscole mentre gli elementi di un insieme si indicano con lettere minuscole.

Esempio.

$$C = \{1,1,1,2,2,3,3\} \leftarrow \text{Non è un insieme}$$

$$C = \{1,2,3\} \leftarrow \text{Gli elementi di un insieme sono distinti}$$

L'appartenenza e la non appartenenza di un elemento ad un insieme si indicano in questo modo:

 $a \in A \leftarrow$ l'elemento a appartiene all'insieme A

 $a \notin A \leftarrow$ l'elemento a NON appartiene all'insieme A

1.1.1 Rappresentazione degli insiemi

Esistono 3 modi diversi per rappresentare un insieme:

- 1. **Per elencazione:** $C = \{1, 2, 3\}$
- 2. Tramite proprietà caratteristica: $C = \{x \mid x \text{ è un numero primo}\}$
- 3. Tramite diagramma di Eulero-Venn

1.1.2 Sottoinsiemi

Dati due insiemi C ed E, se tutti gli elementi di E sono contenuti anche in C, si dice che E è un sottoinsieme di C. Esistono due tipi di sottoinsiemi:

- Sottoinsiemi propri: si indicano con il simbolo \subset . Se E è contenuto in C ma E è diverso da C, allora E è un sottoinsieme proprio di C: $E \subset C$
- Sottoinsiemi impropri: si indicano con il simbolo \subseteq . Se E è contenuto in C e E contiene esattamente gli stessi elementi di C, allora E è un sottoinsieme improprio di C: $E \subseteq C$
- Per indicare che un insieme non è contenuto in un altro insieme si utilizza il simbolo $\not\subset$

1.1.3 Insieme vuoto

L'insieme vuoto si indica con il simbolo \emptyset ed è, per definizione, contenuto in tutti gli insiemi.

1.1.4 Rappresentazione per proprietà caratteristica

Definizione 1.1.2: Proprietà

Una **proprietà** è un'espressione a cui deve essere sempre possibile attribuire un valore di verità (vero o falso). Si indicano con le lettere greche per non confonderle con gli elementi degli insiemi.

Esempi di proprietà

"Gli n appartenenti ad \mathbb{N} tale che n è un numero pari" \leftarrow Ovvero tale che n renda vera la proprietà α (essere un numero pari):

$$A = \{ n \in \mathbb{N} \mid \alpha \}$$

Possiamo definire questo insieme senza ricorrere ad α utilizzando la simbologia matematica:

$$A = \{2n : n \in \mathbb{N}\}$$

Riconoscimento di sottoinsiemi tramite proprietà

Come riconoscere se un insieme è sottoinsieme di un altro se entrambi sono definiti per proprietà?

- β = essere multiplo di 4
- $\alpha = \text{essere multiplo di 2}$
- $\gamma = \text{essere pari}$

Definiti gli insiemi:

•
$$A = \{n \in \mathbb{N} \mid \beta\}$$

- $B = \{n \in \mathbb{N} \mid \alpha\}$
- $C = \{n \in \mathbb{N} \mid \gamma\}$

Possiamo dire che la proprietà β implica α e si scrive in questo modo:

$$\beta \Rightarrow \alpha$$

(Se è vera β è vera anche α) Questo significa che $A\subset B$, poiché ogni multiplo di 4 è anche multiplo di 2.

1.2 Quantificatori

Definizione 1.2.1: Quantificatori

I **quantificatori** trasformano gli enunciati aperti in proposizioni che possono assumere il valore di vero o falso.

Esistono due tipi di quantificatori:

• Quantificatore esistenziale:

- Si indica con il simbolo \exists
- Indica l'esistenza di almeno un elemento dell'insieme che gode di una particolare proprietà
- Il simbolo ∃! indica l'esistenza di uno ed un solo elemento dell'insieme che gode di una particolare proprietà

• Quantificatore universale:

- Si indica con il simbolo \forall
- Indica che tutti gli elementi di un insieme godono della medesima proprietà

Riprendiamo le proprietà descritte in precedenza:

- $\beta = \text{essere multiplo di 4}$
- $\alpha = \text{essere multiplo di } 2$
- $\gamma = \text{essere pari}$

Definiti gli insiemi:

$$A = \{ n \in \mathbb{N} \mid \alpha \}$$

$$B = \{n \in \mathbb{N} \mid \beta\}$$

Possiamo dire che:

- $\exists n \in A : n \in B \leftarrow$ Esiste almeno un numero multiplo di due che è anche multiplo di 4
- $\forall n \in B \Rightarrow n \in A \leftarrow$ Ogni multiplo di 4 è anche multiplo di 2
- $\nexists n \in B : n \notin A \leftarrow$ Non esiste multiplo di 4 che non sia anche multiplo di 2

1.3 Operazioni tra insiemi

Sia M un insieme universo e definiamo gli insiemi $A, B \subseteq M$. Possiamo definire le seguenti operazioni sugli insiemi:

Unione

Si indica con $A \cup B = \{x \in M \mid x \in A \lor x \in B\}.$

Intersezione

Si indica con $A \cap B = \{x \in M \mid x \in A \land x \in B\}$. Se $A \cap B = \emptyset$ allora $A \in B$ sono **disgiunti** (non hanno elementi in comune).

Complemento (Differenza)

Si indica con $A \setminus B = \{x \in A \mid x \notin B\}.$

Complementare

Si indica con $\overline{A} = M \setminus A = \{x \in M \mid x \notin A\}.$

1.3.1 Proprietà delle operazioni tra insiemi

Commutatività di Unione e Intersezione

- $A \cup B = B \cup A$
- $A \cap B = B \cap A$

Associatività di Unione e Intersezione

- $(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$
- $(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$

Distributività

• Dell'unione rispetto all'intersezione:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• Dell'intersezione rispetto all'unione:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

1.3.2 Il prodotto cartesiano

Un insieme è un aggregato caotico di elementi. Non c'è rilevanza sull'ordine degli elementi. Per introdurre l'ordine dobbiamo ricorrere al prodotto cartesiano.

Definizione 1.3.1: Coppia Ordinata

Siano $A, B \neq \emptyset$, si chiama **coppia ordinata** di prima componente $a \in A$ e seconda componente $b \in B$ il seguente oggetto: $(a, b) \neq (b, a)$.

Definizione 1.3.2: Prodotto Cartesiano

Si definisce **prodotto cartesiano** di $A \times B$ l'insieme di tutte le possibili coppie $A \times B = \{(a,b) \mid a \in A, b \in B\}.$

Esempio.

Poniamo $A = \{a, b\} \in B = \{c, d\}$:

 $A \times B = \{(a,c), (a,d), (b,c), (b,d)\} \leftarrow$ Tutte le coppie con prima componente in A $B \times A = \{(c,a), (c,b), (d,a), (d,b)\} \leftarrow$ Tutte le coppie con prima componente in B

Ne consegue che il prodotto cartesiano non è commutativo, difatti $A \times B \neq B \times A$. Il prodotto cartesiano $A \times A$ si indica con A^2 .

1.4 Relazioni e ordinamenti

1.4.1 Relazione

Definizione 1.4.1: Relazione

Siano $A, B \neq \emptyset$. Si chiama **relazione** e si indica con \mathcal{R} una proprietà definita sul prodotto cartesiano $A \times B$. Per una coppia di elementi (a, b) posso stabilire se \mathcal{R} assume valore vero o falso. Ci sarà quindi un sottoinsieme di $A \times B$ contenente le coppie che soddisfano la relazione.

Per dire che una coppia (a,b) verifica la relazione \mathcal{R} , scriveremo $a\mathcal{R}b$ (a è in relazione con b). La relazione \mathcal{R} su A^2 si dice **binaria**. Una relazione binaria è quindi definita su un unico insieme A. Formalmente: $\mathcal{R} \subseteq A \times A$.

Sulle relazioni binarie è possibile definire alcune proprietà.

Proprietà delle Relazioni Binarie

Sia $A \neq \emptyset$ e \mathcal{R} una relazione binaria su A^2 (cioè $A \times A$). Allora valgono le seguenti definizioni:

• \mathcal{R} si dice **riflessiva** se e solo se $\forall x \in A, x\mathcal{R}x$. **Esempio:**

Sull'insieme $A=\{1,2,3\}$, la relazione " \leq " è riflessiva perché $1\leq 1,\,2\leq 2,\,3\leq 3$.

• \mathcal{R} si dice simmetrica se e solo se $\forall x, y \in A, x\mathcal{R}y \implies y\mathcal{R}x$. Esempio:

Sull'insieme \mathbb{Z} dei numeri interi, la relazione "è congruo modulo 2 a" (ovvero " $x \equiv y \pmod{2}$ ") è simmetrica: se $3 \equiv 5 \pmod{2}$, allora $5 \equiv 3 \pmod{2}$.

• \mathcal{R} si dice **transitiva** se e solo se $\forall x, y, z \in A$, $x\mathcal{R}y \in y\mathcal{R}z \implies x\mathcal{R}z$. **Esempio:**

Sull'insieme dei numeri, la relazione "
 " è transitiva: se 1 \leq 2 e 2 \leq 3, allora 1 \leq 3.

• \mathcal{R} si dice antisimmetrica se e solo se $\forall x, y \in A, x\mathcal{R}y \in y\mathcal{R}x \implies x = y$. Esempio:

La relazione " \leq " sui numeri naturali è antisimmetrica: se $x \leq y$ e $y \leq x$, allora necessariamente x=y.

Definizione 1.4.2: Relazione d'Ordine

Una relazione \mathcal{R} su A^2 si dice **relazione d'ordine** se è:

- Riflessiva
- Transitiva
- Antisimmetrica

In questo caso si indica con il simbolo \leq .

Definizione 1.4.3: Relazione di Equivalenza

Una relazione \mathcal{R} su A^2 si dice **relazione di equivalenza** se è:

- Riflessiva
- Transitiva
- Simmetrica

Si indica con il simbolo \sim .

1.4.2 Massimo e minimo

Sia M un insieme non vuoto $(M \neq \emptyset)$ su cui sia definita la relazione \leq . Sia $A \subseteq M$, $A \neq \emptyset$. $\underline{m} \in A$ si dice MINIMO di A se $\underline{m} \leq a \forall a \in A$. Analogamente, $\overline{m} \in A$ si dice MASSIMO di A se $a \leq \overline{m}$, $\forall a \in A$.

Non è detto che esistano (\exists) , ma se esistono, sono unici. Si denotano come segue:

$$\min A \in A \quad e \quad \max A \in A$$

Dimostrazione. Procediamo per assurdo, supponendo che il minimo \underline{m} (che esiste per ipotesi) **non sia unico**:

- 1. Sia $\underline{a} \in A$ un altro candidato minimo
- 2. Per definizione di minimo: $\underline{a} \leq a, \forall a \in A$
- 3. In particulare: $\underline{a} \leq \underline{m}$
- 4. Ma essendo \underline{m} minimo: $\underline{m} \leq \underline{a}$

5. Essendo la relazione \leq antisimmetrica, segue che $\underline{a} = \underline{m} \rightarrow$ Dimostrata l'unicità del minimo

Dimostrazione dell'unicità del massimo

Procediamo per assurdo, supponendo che il massimo \overline{m} (che esiste per ipotesi) **non sia** unico:

- 1. Sia $\overline{a} \in A$ un altro candidato massimo
- 2. Per definizione di massimo: $a \leq \overline{a}, \forall a \in A$
- 3. In particulare: $\overline{m} \leq \overline{a}$
- 4. Ma essendo \overline{m} massimo: $\overline{a} \leq \overline{m}$
- 5. Essendo la relazione \leq antisimmetrica, segue che $\overline{a} = \overline{m} \rightarrow$ Dimostrata l'unicità del massimo

1.4.3 Maggiorante e Minorante

Sia M un insieme ordinato dove è definita la relazione d'ordine \leq , sia $A \subseteq M$, $A \neq \emptyset$: $\underline{x} \in M$ si dice **minorante** di a se $\underline{x} \leq a \forall a \in A$, esempio:

• Nell'intervallo]-1,2] il minorante è -1, mentre 2 è il massimo

Analogamente, $\overline{x} \in M$ si dice **maggiorante** di a se $a \leq \overline{x} \forall a \in A$

Osservazione: Maggiorante e minorante, se esistono, non è detto che siano unici.

Definizione 1.4.4: Insieme Limitato

 $A \subseteq M$ si dice:

- Inferiormente limitato se ammette minoranti.
- Superiormente limitato se ammette maggioranti.
- Limitato se è sia inferiormente che superiormente limitato.

1.4.4 Estremo Superiore ed Estremo Inferiore

Definizione 1.4.5: Estremo Inferiore e Superiore

Sia $A \subseteq M$, $A \neq \emptyset$, con A inferiormente limitato (cioè esiste almeno un minorante). Se l'insieme dei minoranti ammette massimo, esso si chiama inf A (estremo inferiore di A). Analogamente, se A è superiormente limitato e l'insieme dei maggioranti ammette minimo, esso si chiama sup A (estremo superiore di A).

Se esistono $\min A$ e $\max A$, allora si ha:

 $\min A = \inf A$ e $\max A = \sup A$

Questo implica:

- Se $\max A$ esiste, allora $\sup A = \max A$ e A è superiormente limitato.
- Se min A esiste, allora inf $A = \min A$ e A è inferiormente limitato.

1.4.5 Insiemi completi

Definizione 1.4.6: Insieme Completo

Sia M un insieme ordinato. M si dice **completo** se ogni suo sottoinsieme non vuoto e superiormente limitato ammette sup. In maniera equivalente, M è completo se ogni sottoinsieme non vuoto e inferiormente limitato ammette inf.

1.5 Insiemi numerici

Per introdurre gli insiemi numerici si possono seguire due approcci:

- partire da \mathbb{N} e costruire progressivamente $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$;
- partire da \mathbb{R} come corpo ordinato completo e definire a posteriori $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ come suoi sottoinsiemi.

Partendo da N

Si postula l'esistenza dell'insieme $\mathbb N$ dei numeri naturali, su cui sono definite due operazioni fondamentali: l'addizione e la moltiplicazione.

Definizione 1.5.1: Operazione

Si chiama operazione una funzione

$$\sigma: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \qquad (n, m) \mapsto n \sigma m.$$

Le operazioni di base che assumiamo in \mathbb{N} sono

$$(\mathbb{N}, +, \cdot).$$

La sottrazione e la divisione non sono sempre definite in \mathbb{N} ; per introdurle occorre ampliare l'insieme.

- Estendendo N si ottiene l'insieme degli interi:

$$\mathbb{Z} = \mathbb{N}_0 \cup (-\mathbb{N}),$$

in cui sono ben definite le operazioni + e -. - Per permettere la divisione si introduce l'insieme dei razionali:

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid m \in \mathbb{Z}, \ n \in \mathbb{Z} \setminus \{0\} \right\}.$$

Tuttavia \mathbb{Q} non è ancora sufficiente: ad esempio $\sqrt{2} \notin \mathbb{Q}$.

Proposizione 1.5.2

Non esiste alcun $c \in \mathbb{Q}$ tale che $c^2 = 2$.

Dimostrazione. Supponiamo per assurdo che $c = \frac{p}{q}$ con $p, q \in \mathbb{N}$ primi tra loro e $c^2 = 2$. Allora $p^2 = 2q^2$, quindi p^2 è pari $\implies p$ è pari. Scriviamo p = 2k:

$$p^2 = 4k^2 = 2q^2 \implies q^2 = 2k^2,$$

quindi anche q è pari. Ma se p e q sono entrambi pari, non possono essere primi tra loro. Contraddizione.

Segue che $\sqrt{2} \notin \mathbb{Q}$, e quindi è necessario introdurre l'insieme dei numeri reali \mathbb{R} .

Costruzione dei numeri reali

Si postula l'esistenza di un insieme $\mathbb R$ che soddisfa una lista di assiomi. Gli assiomi si dividono in tre categorie:

- A) assiomi relativi alle operazioni $(+,\cdot)$;
- B) assiomi relativi all'ordinamento;
- C) assioma di completezza.

Un insieme con queste proprietà è detto *corpo ordinato completo* e, a meno di isomorfismo, è unico: lo identifichiamo con \mathbb{R} .

Assiomi relativi alle operazioni

In \mathbb{R} sono definite due operazioni:

- Somma $+: (a,b) \in \mathbb{R}^2 \mapsto a+b \in \mathbb{R}$
- Prodotto $\cdot: (a,b) \in \mathbb{R}^2 \mapsto a \cdot b \in \mathbb{R}$

Queste operazioni verificano le seguenti proprietà:

al Proprietà commutativa

$$a+b=b+a \quad \forall a,b \in \mathbb{R}$$

$$a \cdot b = b \cdot a \quad \forall a, b \in \mathbb{R}$$

a2 Proprietà associativa

$$a + (b+c) = (a+b) + c \quad \forall a, b, c \in \mathbb{R}$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c \quad \forall a, b, c \in \mathbb{R}$$

a3 Proprietà distributiva

$$a \cdot (b+c) = a \cdot b + a \cdot c \quad \forall a, b, c \in \mathbb{R}$$

a4 Esistenza degli elementi neutri

$$\exists 0 \in \mathbb{R} \text{ tale che } a + 0 = a \quad \forall a \in \mathbb{R}$$

$$\exists 1 \in \mathbb{R} \text{ tale che } a \cdot 1 = a \quad \forall a \in \mathbb{R}$$

a5 Esistenza degli opposti e degli inversi

$$\forall a \in \mathbb{R}, \ \exists (-a) \in \mathbb{R} \ \text{tale che} \ a + (-a) = 0$$

$$\forall a \in \mathbb{R} \setminus \{0\}, \ \exists a^{-1} \in \mathbb{R} \ \text{tale che } a \cdot a^{-1} = 1$$

Al momento, la struttura $(\mathbb{R}, +, \cdot)$ forma un campo.

Osservazione. Alcune conseguenze degli assiomi relativi alle operazioni: possiamo definire due nuove operazioni come derivate da + e \cdot :

- Sottrazione $a b := a + (-b) \quad \forall a, b \in \mathbb{R}$
- Divisione $a:b:=a\cdot b^{-1} \quad \forall a\in\mathbb{R},\ b\in\mathbb{R}\setminus\{0\}$

Proposizione 1.5.3

Per ogni $a \in \mathbb{R}$ vale

$$a \cdot 0 = 0$$
.

Dimostrazione. Sia $x \in \mathbb{R}$. Per la proprietà dell'elemento neutro additivo (a4) abbiamo

$$x \cdot 0 = x \cdot (0+0).$$

Per la distributività (a3):

$$x \cdot (0+0) = x \cdot 0 + x \cdot 0.$$

Sottraiamo $x \cdot 0$ da entrambi i membri (per l'esistenza dell'opposto, a5):

$$x \cdot 0 = x \cdot 0 + x \cdot 0 \implies 0 = x \cdot 0.$$

Quindi $a \cdot 0 = 0$ per ogni $a \in \mathbb{R}$.

Assiomi relativi all'ordinamento

Si assume che in $\mathbb R$ esista una relazione d'ordine \leq , cioè una relazione d'ordine riflessiva, antisimmetrica, transitiva e totale. In altre parole, per ogni $a,b\in\mathbb R$ vale $a\leq b$ oppure $b\leq a$.

Questa relazione è definita su \mathbb{R} e verifica i seguenti assiomi:

b1 Compatibilità rispetto alla somma:

$$\forall a, b, c \in \mathbb{R}, \ a \le b \implies a + c \le b + c.$$

b2 Compatibilità rispetto al prodotto:

$$\forall a, b \in \mathbb{R}, \ \forall c \in \mathbb{R}, \ a \leq b \land 0 \leq c \implies a \cdot c \leq b \cdot c.$$

L'oggetto $(\mathbb{R}, +, \cdot, \leq)$ prende il nome di *campo ordinato*.

Altre importanti conseguenze

Le altre due conseguenze fondamentali legate al fatto che abbiamo una relazione d'ordine totale sono le seguenti proprietà:

Proposizione 1.5.4

Caratterizzazione di sup e inf

- 1. Sia $A \subseteq \mathbb{R}$ con $A \neq \emptyset$. Allora $C \in \mathbb{R}$ è il supremo di A ($C = \sup A$) se e solo se valgono le seguenti proprietà:
 - (a) $\forall a \in A, a \leq C$
 - (b) $\forall \epsilon > 0, \exists a_{\epsilon} \in A \mid C \epsilon < a_{\epsilon}$
- 2. Sia $A\subseteq\mathbb{R}$ con $A\neq\emptyset$. Allora $c\in\mathbb{R}$ è l'infimo di A ($c=\inf A$) se e solo se valgono le seguenti proprietà:
 - (a) $\forall a \in A, c \leq a$
 - (b) $\forall \epsilon > 0, \ \exists a_{\epsilon} \in A \mid a_{\epsilon} < c + \epsilon$

Dimostrazione. Dobbiamo dimostrare la doppia implicazione. Per definizione di sup (??) la 1 è ovvia (dato che sup è il minimo dei maggioranti).

Dimostrazione \Longrightarrow :

Per dimostrare la 2, prendiamo $\epsilon > 0$ arbitrario e consideriamo $C - \epsilon \in \mathbb{R}$. È chiaro che $C - \epsilon < C$, dato che la relazione d'ordine è totale.

Poiché C è il minimo dei maggioranti, $C - \epsilon$ non può essere un maggiorante di A. Dunque $\exists a_{\epsilon} \in A$ tale che $C - \epsilon < a_{\epsilon} \leq C$. Attenzione però: questo non significa che a_{ϵ} sia un maggiorante, ma solo che "si avvicina" a C dal basso.

Dimostrazione \iff :

Dimostriamo che se $C \in \mathbb{R}$ verifica la 1 e la 2, allora C è il sup di A, cioè:

- 1. C è un maggiorante di A,
- $2.\ C$ è il minimo dei maggioranti.

Come prima, la 1 è ovvia. Dimostriamo la 2 per assurdo.

Supponiamo che esista C' < C che sia un maggiorante di A. Allora $C' = C - \epsilon$ con $\epsilon > 0$. Ma per la condizione 2 sappiamo che $\exists a_{\epsilon} \in A$ tale che $C - \epsilon < a_{\epsilon}$, cioè $C' < a_{\epsilon}$. Questo contraddice il fatto che C' sia un maggiorante di A.

Quindi C è il minimo dei maggioranti, cio
è $C = \sup A$.

Dimostrazione. Dobbiamo dimostrare l'analogo per l'inf. Per definizione di inf la 1 è ovvia (dato che inf è il massimo dei minoranti).

Dimostrazione \Longrightarrow :

Sia $C = \inf A$. Per mostrare la 2 prendiamo $\epsilon > 0$ arbitrario e consideriamo $C + \epsilon \in \mathbb{R}$. È chiaro che $C < C + \epsilon$.

Poiché C è il massimo dei minoranti, $C + \epsilon$ non può essere un minorante di A. Dunque $\exists a_{\epsilon} \in A$ tale che $C \leq a_{\epsilon} < C + \epsilon$. Attenzione: questo non significa che a_{ϵ} sia un minorante, ma solo che "si avvicina" a C dall'alto.

Dimostrazione \iff :

Dimostriamo che se $C \in \mathbb{R}$ verifica la 1 e la 2, allora C è l'inf di A, cioè:

- 1. C è un minorante di A,
- 2. C è il massimo dei minoranti.

La 1 è ovvia. Dimostriamo la 2 per assurdo. Supponiamo che esista C' > C che sia un minorante di A. Allora $C' = C + \epsilon$ con $\epsilon > 0$. Ma per la condizione 2 sappiamo che $\exists a_{\epsilon} \in A$ tale che $a_{\epsilon} < C + \epsilon = C'$, con $a_{\epsilon} \ge C$. Quindi $a_{\epsilon} \not \ge C'$, contraddicendo il fatto che C' fosse un minorante.

Quindi C è il massimo dei minoranti, cioè $C = \inf A$.

Assioma di completezza

Per \mathbb{R} vale il seguente assioma:

Fatto 1.5.5

 \mathbb{R} è un insieme completo: ogni $A \subseteq \mathbb{R}$ superiormente limitato ammette estremo superiore \iff ogni $A \subseteq \mathbb{R}$ inferiormente limitato ammette estremo inferiore (??).

Denotiamo con $(\mathbb{R}, +, \cdot, \leq, \text{Assioma di completezza})$ il campo dei numeri reali.

Costruiamo i sottoinsiemi numerici:

• N: insieme dei numeri naturali, il più piccolo sottoinsieme di ℝ che contiene l'unità e il successivo di ogni suo elemento:

$$\forall n \in \mathbb{N}, \quad n+1 \in \mathbb{N}.$$

- $\mathbb{N}_0 = \mathbb{N} \cup \{0\}.$
- $\mathbb{Z} = \mathbb{N}_0 \cup (-\mathbb{N})$.
- $\mathbb{Q} = \left\{ \frac{n}{m} \mid n \in \mathbb{Z}, \ m \in \mathbb{Z} \setminus \{0\} \right\}.$

Si ha la catena di inclusioni:

$$\mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subseteq \mathbb{R}$$
.

Proposizione 1.5.6

L'insieme $\mathbb Q$ non è completo; ne consegue che $\mathbb Q \subset \mathbb R$ (inclusione propria), ovvero $\mathbb R \setminus \mathbb Q \neq \emptyset$.

Dimostrazione. Questa è una dimostrazione costruttiva, ovvero ci darà altre informazioni oltre a verificare la tesi. Per dimostrare che $\mathbb Q$ non soddisfa l'assioma di completezza, basta costruire un controesempio:

Voglio costruire un insieme superiormente limitato dove il sup è uguale a $\sqrt{2}$

Consideriamo l'insieme

$$A = \{ r \in \mathbb{Q} \mid r > 0, \ r^2 \le 2 \}.$$

A è limitato superiormente, sia visto come sottoinsieme di $\mathbb Q$ che di $\mathbb R$.

In \mathbb{R} , per l'assioma di completezza, esiste $c = \sup A$. È facile vedere che $c = \sqrt{2}$. Poiché $\sqrt{2} \notin \mathbb{Q}$, concludiamo già che sup $A \notin \mathbb{Q}$.

Ora analizziamo i maggioranti di A in \mathbb{Q} :

$$B = \{ p \in \mathbb{Q} \mid p > 0, \ p^2 > 2 \}.$$

B è l'insieme dei maggioranti razionali di A. Dimostriamo che B non ha minimo.

Dato un qualsiasi $p \in B$, costruiamo

$$q = p - \frac{p^2 - 2}{p + 2}.$$

Ovvero un elemento più piccolo di p.

Allora:

- q < p;
- $q \in \mathbb{Q}$ (perché è ottenuto da operazioni razionali su p);
- $q^2 2 = \frac{2(p^2 2)}{(p+2)^2} > 0 \implies q^2 > 2.$

Quindi $q \in B$ ed è più piccolo di p. Dunque B non ammette minimo.

Conclusione: l'insieme $A \subseteq \mathbb{Q}$ è superiormente limitato ma non ha sup in \mathbb{Q} . Quindi \mathbb{Q} non è completo, mentre in \mathbb{R} lo stesso insieme ha estremo superiore $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

1.5.1 Proprietà dei numeri Naturali

Proposizione 1.5.7

 \mathbb{N} non è superiormente limitato.

Dimostrazione. Supponiamo per assurdo che \mathbb{N} sia superiormente limitato. Allora, essendo $\mathbb{N} \subseteq \mathbb{R}$, per l'assioma di completezza esiste $c = \sup \mathbb{N}$.

Per le proprietà del sup, preso $\varepsilon = 1$, esiste $S \in \mathbb{N}$ tale che

$$c - 1 < S \le c$$
.

Ma allora $S+1 \in \mathbb{N}$ e vale S+1 > c, in contraddizione con il fatto che c sia un maggiorante.

Dunque $\mathbb N$ non è superiormente limitato.

Corollario 1.5.8

Poiché $\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}$, anche $\mathbb{Z},\,\mathbb{Q}$ e \mathbb{R} non sono superiormente limitati.

Se $A \subseteq \mathbb{R}$ non è superiormente limitato, poniamo sup $A = +\infty$. Analogamente, se A non è inferiormente limitato, poniamo inf $A = -\infty$.

L'insieme $\mathbb{R} \cup \{+\infty, -\infty\}$ si chiama reale esteso.

Proposizione 1.5.9

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$. Allora

 $\sup A = +\infty \iff \forall k > 0, \ \exists a_k \in A \text{ tale che } a_k > k.$

Proposizione 1.5.10

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$. Allora

 $\inf A = -\infty \iff \forall k > 0, \ \exists a_k \in A \text{ tale che } a_k < -k.$

1.5.2 Insiemi separati e contigui

Per completare il discorso su inf e sup, introduciamo due definizioni fondamentali.

Definizione 1.5.11: Insiemi separati

Siano $A, B \subseteq \mathbb{R}, A, B \neq \emptyset$. Diremo che A e B sono **separati** se

$$\forall a \in A, \forall b \in B \implies a \leq b.$$

Definizione 1.5.12: Insiemi contigui

Diremo che A e B sono **contigui** se sono separati e, in più, per ogni $\varepsilon > 0$ esistono $a_{\varepsilon} \in A, b_{\varepsilon} \in B$ tali che

$$b_{\varepsilon} - a_{\varepsilon} < \varepsilon$$
.

Esempio con i seguenti intervalli:

-]1, 2[
-]2,3[

• [3,4[

Gli intervalli]1, 2[e]3, 4[sono separati, mentre]2, 3[è contiguo sia a]1, 2[che a]3, 4[.

Possiamo quindi dire che due insiemi sono contigui quando il sup del primo coincide con l'inf del secondo.

Teorema 1.5.13: Elemento di separazione

Siano $A, B \subseteq \mathbb{R}$, $A, B \neq \emptyset$. Allora $A \in B$ sono contigui \iff sup $A = \inf B = c$. Tale c si dice **elemento di separazione**.

$Dimostrazione. \implies$:

Se A e B sono contigui, allora sono anche separati. Quindi A è superiormente limitato da ogni $b \in B$ e B è inferiormente limitato da ogni $a \in A$. Per completezza di $\mathbb R$ esistono sup A = c e inf B = c'. Per definizione di contiguità: per ogni $\varepsilon > 0$ esistono $a_{\varepsilon} \in A$, $b_{\varepsilon} \in B$ con $b_{\varepsilon} - a_{\varepsilon} < \varepsilon$. Ma allora $0 \le c' - c \le b_{\varepsilon} - a_{\varepsilon} < \varepsilon$. Poiché ε è arbitrario, segue c = c'.

⇐= :

Viceversa, se sup $A = \inf B = c$, allora per ogni $\varepsilon > 0$:

$$\exists a_{\varepsilon} \in A : c - \frac{\varepsilon}{2} < a_{\varepsilon} \leq c, \quad \exists b_{\varepsilon} \in B : c \leq b_{\varepsilon} < c + \frac{\varepsilon}{2}.$$

Dunque

$$0 \le b_{\varepsilon} - a_{\varepsilon} < \varepsilon$$
.

Quindi A e B sono contigui.

1.5.3 Cardinalità

Definizione 1.5.14: Equipotenza

Due insiemi A e B si dicono **equipotenti** se esiste una biiezione $f: A \to B$ (cioè f è iniettiva e suriettiva).

Definizione 1.5.15: Insieme finito

Un insieme $A \subseteq \mathbb{R}$ si dice **finito** se esiste $n \in \mathbb{N}$ tale che A è equipotente all'insieme $\{1, 2, \ldots, n\}$. In tal caso n si dice **cardinalità** di A.

Definizione 1.5.16: Insieme infinito e numerabile

Un insieme A si dice **infinito** se è equipotente ad una sua parte propria. Ad esempio, \mathbb{N} è infinito: infatti è equipotente all'insieme $2\mathbb{N} = \{2n : n \in \mathbb{N}\}$ tramite la funzione f(n) = 2n.

La cardinalità di N si chiama numerabile.

L'insieme \mathbb{R} non è numerabile. Più precisamente, l'intervallo $[0,1] \subseteq \mathbb{R}$ non è numerabile (dimostrazione di Cantor). La cardinalità di \mathbb{R} si dice **potenza del continuo**.

Proposizione 1.5.17

Per ogni x>0 e $y\in\mathbb{R}$ esiste $n\in\mathbb{N}$ tale che nx>y. Equivalentemente, per ogni y>0 esiste $n\in\mathbb{N}$ con 1/n< y.

Definizione 1.5.18: Densità di $\mathbb Q$ in $\mathbb R$

Dati $a, b \in \mathbb{R}$ con a < b, esiste $r \in \mathbb{Q}$ tale che a < r < b.

L'insieme \mathbb{N} non ha la proprietà di densità: ad esempio tra 1 e 2 non ci sono infiniti naturali, mentre tra due reali ci sono sempre infiniti razionali.

Dimostrazione.

1.5.4 Rappresentazione geometrica di \mathbb{R}

In \mathbb{R} ci sono sottoinsiemi particolarmente importanti chiamati **intervalli**. Essi rappresentano insiemi di numeri compresi tra due estremi, eventualmente inclusi o esclusi.

Intervalli limitati

- $]a, b[= \{x \in \mathbb{R} \mid a < x < b\} \text{ (aperto)}$
- $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ (chiuso)
- $|a,b| = \{x \in \mathbb{R} \mid a < x \le b\}$ (semiaperto a sinistra)
- $[a, b] = \{x \in \mathbb{R} \mid a \le x < b\}$ (semiaperto a destra)

Intervalli illimitati

- $]a, +\infty[=\{x \in \mathbb{R} \mid x > a\}$ (aperto a sinistra, illimitato a destra)
- $[a, +\infty[=\{x \in \mathbb{R} \mid x \geq a\}$ (chiuso a sinistra, illimitato a destra)
- $]-\infty, b[=\{x \in \mathbb{R} \mid x < b\}$ (illimitato a sinistra, aperto a destra)
- $]-\infty,b]=\{x\in\mathbb{R}\mid x\leq b\}$ (illimitato a sinistra, chiuso a destra)
-] $-\infty, +\infty$ [= \mathbb{R} (illimitato su entrambi i lati)

1.6 Principio di induzione

Se volessi dimostrare:

- formule su n!,
- proprietà su x^n ,
- monotonia: $0 < x_1 < x_2 \implies x_1^n < x_2^n$,

è complicato dimostrare una proposizione per infiniti casi. Abbiamo bisogno del principio di induzione per dimostrare affermazioni che dipendono dagli indici naturali.

Ci sono due variazioni, vedremo la versione classica.

Sia $I \subseteq \mathbb{N}$ che verifica le seguenti proprietà:

- 1. $1 \in I$ (base di induzione);
- 2. se $n \in I \implies n+1 \in I$, allora $I = \mathbb{N}$ (principio di induzione).

Proposizione 1.6.1

Progressione aritmetica

Per ogni $n\in\mathbb{N}$ si ha

$$1+2+3+\cdots+n=\frac{n(n+1)}{2},$$

cioè

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

Proposizione 1.6.2

Potenza n-esima

Per ogni $n \in \mathbb{N}$ e $x \in \mathbb{R}$ si definisce x^n come:

- $x^1 = x$,
- $x^n = x \cdot x^{n-1} \text{ per } n > 1.$

Proposizione 1.6.3

Progressione geometrica

Per ogni $x\in\mathbb{R},\,x\neq1,$ si ha

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x},$$

cioè

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}.$$

Dimostrazione. Vogliamo dimostrare che per ogni $n \in \mathbb{N}$ e $x \in \mathbb{R}$ con $x \neq 1$ si ha

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}.$$

Base di induzione: per n=0 vale

$$1 = \frac{1 - x^{0+1}}{1 - x} = \frac{1 - x}{1 - x} = 1.$$

Quindi la formula è verificata per n=0.

Passo induttivo: supponiamo che la formula sia vera per un certo $n \geq 0$, cioè

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}.$$

Dimostriamo che vale anche per n+1:

$$1 + x + x^{2} + \dots + x^{n} + x^{n+1} = \left(\frac{1 - x^{n+1}}{1 - x}\right) + x^{n+1}.$$

Portando tutto allo stesso denominatore:

$$\frac{1-x^{n+1}}{1-x} + x^{n+1} = \frac{1-x^{n+1}}{1-x} + \frac{x^{n+1}(1-x)}{1-x}.$$

Sviluppiamo il numeratore:

$$=\frac{1-x^{\,n+1}+x^{\,n+1}-x^{\,n+2}}{1-x}=\frac{1-x^{\,n+2}}{1-x}.$$

Dunque la formula vale anche per n+1.

Per il principio di induzione, la formula è vera per ogni $n \in \mathbb{N}$.

Proposizione 1.6.4

Siano $x, y \in \mathbb{R}$ con 0 < x < y. Allora

$$x^n < y^n$$
 per ogni $n \in \mathbb{N}, n \ge 1$.

Cioè, la funzione $f(t) = t^n$ è strettamente crescente per t > 0.

 $\textbf{\textit{Dimostrazione.}}$ Dimostriamo l'implicazione \implies . Supponiamo 0 < x < y .

Base di induzione: per n = 1 si ha direttamente x < y, che è vero per ipotesi.

Passo induttivo: supponiamo $x^{n-1} < y^{n-1}$ e dimostriamo $x^n < y^n$. Si ha:

$$x^n = x \cdot x^{n-1} < x \cdot y^{n-1} < y \cdot y^{n-1} = y^n$$

perché 0 < x < y e $x^{n-1} < y^{n-1}$. Per la transitività, $x^n < y^n$.

Dimostriamo ora l'implicazione \iff . Supponiamo $x^n < y^n$ con x > 0, y > 0. Per assurdo, se non fosse x < y, dovremmo avere $y \le x$. Ma se y < x allora, dal passo precedente, $y^n < x^n$, in contraddizione con l'ipotesi. Quindi necessariamente x < y.

Proposizione 1.6.5

Sia $n \in \mathbb{N}$, $n \ge 2$, e sia $a \in \mathbb{N}$, a > 0. Allora esiste ed è unico $x \in \mathbb{R}^+$ tale che

$$x^n = a$$
.

Questo x si chiama radice n-esima di <math>a e si indica con

$$x = \sqrt[n]{a}$$
.

1.6.1 Media aritmetica e media geometrica

Siano $x_1, x_2, \ldots, x_n \in \mathbb{R}$ con $x_i \ge 0$ per $i = 1, \ldots, n$.

• Si definisce media aritmetica:

$$A = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

• Si definisce media geometrica:

$$G = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n} = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}.$$

Proposizione 1.6.6

Siano $x_1, x_2, \ldots, x_n \geq 0$. Si ha

$$G \le A$$

dove

$$G = \sqrt[n]{\prod_{i=1}^{n} x_i}, \qquad A = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Inoltre, l'uguaglianza G = A vale se e solo se $x_1 = x_2 = \cdots = x_n$.

Dimostrazione. Dimostrazione della disuguaglianza tra media geometrica e media aritmetica.

Siano $x_1, x_2, \ldots, x_n \ge 0$. Vogliamo dimostrare che

$$G = \sqrt[n]{x_1 \cdot \dots \cdot x_n} \le A = \frac{x_1 + \dots + x_n}{n},$$

con uguaglianza se e solo se $x_1 = \cdots = x_n$.

Passo 0: caso $x_i = 0$.

Se esiste qualche $x_i=0$, allora $G=0\leq A$, e la disuguaglianza è immediata. Quindi possiamo supporre $x_i>0$ per ogni $i=1,\ldots,n$.

Passo 1: normalizzazione.

Normalizziamo la media:

$$\frac{x_1 + \dots + x_n}{n} = 1.$$

Se la media originale $A \neq 1$, dividiamo tutti i x_i per A. La disuguaglianza generale si riduce quindi al caso normalizzato.

Passo 2: base n=2.

Vogliamo dimostrare

$$\sqrt{x_1 x_2} \le \frac{x_1 + x_2}{2} = 1.$$

Poiché $\frac{x_1+x_2}{2}=1$, possiamo esprimere x_2 in funzione di x_1 :

$$x_2 = 2 - x_1.$$

Allora la disuguaglianza diventa:

$$x_1x_2 = x_1(2 - x_1) \le 1.$$

Lasciando 1 a destra e sviluppando la parentesi:

$$x_1(2-x_1) \le 1 \iff 2x_1 - x_1^2 \le 1.$$

Spostiamo tutto a sinistra:

$$-x_1^2 + 2x_1 - 1 \le 0 \quad \Longleftrightarrow \quad x_1^2 - 2x_1 + 1 \ge 0.$$

Infine:

$$(x_1-1)^2 > 0.$$

Chiaramente vero per ogni x_1 , con uguaglianza solo se $x_1 = x_2 = 1$.

Passo 3: passo induttivo.

Ipotesi induttiva: la disuguaglianza vale per ogni insieme di n numeri positivi x_1, \ldots, x_n con media

$$\frac{x_1 + \dots + x_n}{n} = 1.$$

 $\mathit{Tesi:}$ la disuguaglianza vale per n+1numeri positivi x_1,\ldots,x_{n+1} con media

$$\frac{x_1 + \dots + x_{n+1}}{n+1} = 1.$$

Se tutti i numeri sono uguali, la disuguaglianza è ovvia. Altrimenti, introduciamo:

$$x_1 = 1 - a$$
, $0 \le a < 1$, $x_2 = 1 + b$, $b > 0$.

Gli altri termini x_3, \ldots, x_{n+1} sono scelti in modo da soddisfare la media, così che la somma totale sia

$$x_1 + x_2 + x_3 + \dots + x_{n+1} = n+1.$$

Sviluppo della disuguaglianza per i primi due termini.

Consideriamo la media geometrica dei primi due termini:

$$\sqrt{x_1 x_2} = \sqrt{(1-a)(1+b)}.$$

La media aritmetica normalizzata dei due termini è:

$$\frac{x_1 + x_2}{2} = \frac{(1-a) + (1+b)}{2} = 1 + \frac{b-a}{2}.$$

Quindi la disuguaglianza diventa:

$$(1-a)(1+b) \le 1-a+b.$$

Sviluppando il prodotto a sinistra:

$$1 - a + b - ab \le 1 - a + b$$
.

Sottraendo 1 - a + b da entrambi i membri:

$$-ab \le 0 \iff ab \ge 0.$$

Condizione di uguaglianza.

Inoltre, vale

$$G = A \iff x_1 = x_2 = \dots = x_n.$$

Infatti:

- Se ab > 0, allora (1-a)(1+b) < 1-a+b, quindi la media geometrica è strettamente minore della media aritmetica.
- L'unico caso in cui ab=0 corrisponde a a=0 e b=0, cioè

$$x_1 = x_2 = 1.$$

Applicando lo stesso ragionamento a tutti i termini nel passo induttivo, otteniamo che **tutti** i x_i devono essere uguali per avere uguaglianza tra media geometrica e media aritmetica.

Conclusione finale.

Abbiamo quindi dimostrato che per ogni insieme di numeri positivi x_1, \ldots, x_n :

$$\sqrt[n]{x_1 \cdot \dots \cdot x_n} \le \frac{x_1 + \dots + x_n}{n},$$

con uguaglianza se e solo se

$$x_1 = x_2 = \dots = x_n.$$

1.6.2 Coefficiente binomiale

Siano $n \in \mathbb{N}_0$ e $k \in \{0, 1, ..., n\}$. Il **coefficiente binomiale** si indica con

$$\binom{n}{k}$$

ed è definito come

$$\binom{n}{k} = \frac{n!}{k! \, (n-k)!}.$$

Proprietà:

$$\bullet \ \binom{n}{0} = \frac{n!}{0!n!} = 1$$

$$\bullet \ \binom{n}{n} = \frac{n!}{n!0!} = 1$$

Questa definizione è alla base dello sviluppo binomiale e delle formule combinatorie.

1.6.3 Binomio di Newton

Siano $n \in \mathbb{N}$ e $a, b \in \mathbb{R}$. Allora vale la formula del **binomio di Newton**:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Dimostrazione. Dimostrazione per induzione del binomio di Newton.

Vogliamo dimostrare che per ogni $n \in \mathbb{N}$ e $a, b \in \mathbb{R}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Base dell'induzione: per n = 1:

$$(a+b)^1 = a+b = {1 \choose 0}a^1b^0 + {1 \choose 1}a^0b^1.$$

Quindi la formula è vera per n = 1.

Passo induttivo: supponiamo che la formula valga per un certo $n \ge 1$ (ipotesi induttiva):

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Vogliamo dimostrare che vale per n+1 (tesi):

$$(a+b)^{n+1} = \sum_{k=0}^{n+1} {n+1 \choose k} a^{n+1-k} b^k.$$

Sviluppiamo:

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Moltiplichiamo (a + b) all'interno della sommatoria:

$$(a+b)^{n+1} = \underbrace{\sum_{k=0}^{n} \binom{n}{k} a^{n+1-k} b^{k}}_{\text{moltiplicando per } a} + \underbrace{\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k+1}}_{\text{moltiplicando per } b}.$$

Per chiarezza, riscriviamo le due sommatorie isolando i termini estremi:

$$\sum_{k=0}^{n} \binom{n}{k} a^{n+1-k} b^k = \binom{n}{0} a^{n+1} + \sum_{k=1}^{n} \binom{n}{k} a^{n+1-k} b^k,$$

$$\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k+1} = \sum_{k=0}^{n-1} \binom{n}{k} a^{n-k} b^{k+1} + \binom{n}{n} b^{n+1}.$$

Facciamo il **cambio di indice** nella seconda sommatoria: j = k + 1, quindi k = j - 1. Allora:

$$\sum_{k=0}^{n-1} \binom{n}{k} a^{n-k} b^{k+1} = \sum_{j=1}^{n} \binom{n}{j-1} a^{n+1-j} b^{j}.$$

Ora possiamo combinare le due somme centrali (da k=1 a n) usando la relazione dei coefficienti binomiali:

$$\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}.$$

Così otteniamo:

$$(a+b)^{n+1} = \underbrace{\binom{n+1}{0}a^{n+1}}_{\text{termine iniziale}} + \sum_{k=1}^{n} \binom{n+1}{k}a^{n+1-k}b^k + \underbrace{\binom{n+1}{n+1}b^{n+1}}_{\text{termine finale}}.$$

Infine, incorporando i termini estremi nella sommatoria completa, otteniamo la forma della tesi:

$$(a+b)^{n+1} = \sum_{k=0}^{n+1} {n+1 \choose k} a^{n+1-k} b^k.$$

Conclusione: per il principio di induzione matematica, la formula del binomio di Newton vale per ogni $n \in \mathbb{N}$.

Capitolo 2

Funzioni

2.1 Funzioni astratte

Definizione 2.1.1: Funzione

Siano $A, B \neq \emptyset$. Si chiama funzione $f: A \rightarrow B$ una legge che associa ad ogni elemento di A uno ed un solo elemento di B. Si può anche scrivere:

$$f: x \in A \mapsto y = f(x) \in B$$

dove y è l'**immagine** di x mediante f.

- A si dice **dominio** di f (insieme di esistenza)
- B si dice **codominio** di f
- L'insieme

$$f(A) = \{ y \in B \mid \exists x \in A : y = f(x) \}$$

si chiama immagine di A

• Sia $y \in B$, con $f^{-1}(y)$ indichiamo il seguente insieme:

$$f^{-1}(y) = \{ x \in A \mid f(x) = y \}$$

Questo insieme può avere, a seconda dei casi, nessuno (\$\empty\$), uno o più elementi.

• L'insieme

$$G(f) = \{ (x, f(x)) \mid x \in A \}$$

si chiama **grafico** di f

2.1.1 Restrizione

Definizione 2.1.2: Restrizione

Sia $f:A\to B$ con $A,B\neq\emptyset$. Sia $E\subseteq A,E\neq\emptyset$. La funzione

$$g: E \to B$$
, $g(x) = f(x)$ per ogni $x \in E$

si chiama **restrizione di** f su E e si indica con $f|_E$.

2.1.2 Funzioni composte

Siano $A, B, C \neq \emptyset$ e siano $f: A \rightarrow B$ e $g: B \rightarrow C$. Allora si definisce la **funzione** composta $g \circ f: A \rightarrow C$ mediante

$$(g \circ f)(x) = g(f(x)), \quad \forall x \in A$$

dove $(g \circ f)(x)$ è l'immagine di x tramite la composizione di f e g.

Esempio.

$$f(x) = x + 1, \quad f: \mathbb{R} \to \mathbb{R} g(x) = x^3, \quad g: \mathbb{R} \to \mathbb{R}$$

Allora:

$$(g \circ f)(x) = g(f(x)) = (x+1)^3, \quad x \in \mathbb{R}(f \circ g)(x) = f(g(x)) = x^3 + 1, \quad x \in \mathbb{R}$$

Questi esempi mostrano chiaramente che la composizione non è commutativa.

2.1.3 Funzioni suriettive

Una funzione $f: A \to B$ si dice **suriettiva** se l'immagine coincide con il codominio, cioè:

$$\forall b \in B, \ \exists a \in A \mid f(a) = b$$

In una funzione suriettiva la controimmagine di ogni elemento del codominio **non può essere vuota**.

2.1.4 Funzioni iniettive

Una funzione $f:A\to B$ si dice **iniettiva** se elementi distinti del dominio hanno immagini distinte, cioè:

$$\forall x_1, x_2 \in A, \ f(x_1) = f(x_2) \implies x_1 = x_2$$

oppure equivalentemente:

$$x_1, x_2 \in A, \ x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

In una funzione iniettiva la controimmagine di ogni elemento del codominio può avere al massimo un elemento.

2.1.5 Funzioni biettive

Una funzione $f: A \to B$ si dice **biettiva** se è sia iniettiva che suriettiva.

- Esiste quindi una corrispondenza biunivoca tra gli elementi del dominio e del codominio.
- La controimmagine di ogni elemento del codominio possiede **esattamente un ele**mento.
- In simboli:

$$f(A) = B, \quad x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

2.1.6 Identità

Definizione 2.1.3: Funzione Identità

Sia $A \neq \emptyset$. La **funzione identità** su A, indicata con i_A , è definita da:

$$i_A: x \in A \mapsto x \in A$$

Se la funzione è biettiva si definisce la funzione inversa

$$f^{-1}: B \to A, \quad y \in B \mapsto x = f^{-1}(y)$$

Avendo $f:A\to B$ e $f^{-1}:B\to A$ possiamo comporle per ottenere le funzioni identità di A e identità di B (i_A e i_B):

- $f \circ f^{-1} : y \in B \mapsto y \in B = i_B$
- $f^{-1} \circ f : x \in A \mapsto x \in A = i_A$

Una funzione biettiva è anche **invertibile**, cioè esiste $f^{-1}: B \to A$ tale che:

$$f^{-1}(f(x)) = x, \quad \forall x \in A$$

L'esistenza della funzione inversa è ciò che ci permette di risolvere le disequazioni, prendiamo ad esempio la disequazione $x^2 \le 8$:

- La funzione potenza $f(x) = x^2$ non è invertibile su tutto \mathbb{R} , ma diventa invertibile se ristretta al dominio \mathbb{R}_0^+ (numeri reali non negativi). La sua inversa è la funzione radice quadrata $f^{-1}(y) = \sqrt{y}$, definita per $y \geq 0$.
- Utilizzando la funzione inversa, possiamo risolvere la disequazione $x^2 \leq 8$ applicando la radice quadrata a entrambi i membri. Tuttavia, dobbiamo considerare che x^2 è definita per tutti gli $x \in \mathbb{R}$, quindi dobbiamo separare i casi in base al segno di x:
 - Se $x \ge 0$, allora $x = \sqrt{x^2} \le \sqrt{8} = 2\sqrt{2}$.
 - Se $x \le 0$, allora $x = -\sqrt{x^2} \ge -\sqrt{8} = -2\sqrt{2}$.
- Combinando i due casi, otteniamo la soluzione finale:

$$-2\sqrt{2} \le x \le 2\sqrt{2}.$$

Questo significa che tutti i valori di x compresi tra $-2\sqrt{2}$ e $2\sqrt{2}$ soddisfano la disequazione $x^2 \leq 8$.

2.2 Funzioni Numeriche

2.2.1 Proprietà delle funzioni numeriche

Grafico della Funzione

Definizione 2.2.1: Grafico

Sia $f:A\subseteq\mathbb{R}\to\mathbb{R},$ con $A\neq\emptyset.$ Si chiama grafico di f l'insieme

$$G(f) = \{(x, f(x)) \mid x \in A\} \subseteq \mathbb{R}^2.$$

Nel piano cartesiano non esiste una relazione d'ordine. Ad ogni funzione corrisponde un grafico.

Figura 2.1: Grafico della funzione

Dal grafico di una funzione possiamo ricavare informazioni come il dominio e il codominio anche senza conoscere la legge precisa:

$$A = [1, 6], \quad f(A) = B = [1, 5].$$

Dal grafico possiamo capire anche se la funzione è iniettiva.

Funzione Inversa

Una funzione è invertibile se e solo se, fissato un valore y, esiste una sola x tale che f(x) = y. Se la funzione è invertibile, il grafico della sua inversa è

$$G(f^{-1}) = \{(y, f^{-1}(y)) \mid y \in f(A)\}.$$

Figura 2.2: Grafico della funzione inversa

2.2.2 Funzioni Pari e Dispari

Definizione 2.2.2: Proprietà di simmetria

Sia $f: \mathbb{R} \to \mathbb{R}$. La funzione f si dice pari se

$$f(-x) = f(x), \quad \forall x \in \mathbb{R},$$

cioè se ha simmetria rispetto all'asse y.

La funzione f si dice dispari se

$$f(-x) = -f(x), \quad \forall x \in \mathbb{R}.$$

La funzione f si dice periodica di periodo $t \in \mathbb{R}$ se

$$f(x) = f(x+t), \quad \forall x \in \mathbb{R}.$$

2.2.3 Funzioni Limitate

Definizione 2.2.3: Funzione superiormente limitata

Sia $f: A \subseteq \mathbb{R} \to \mathbb{R}$ con $A \neq \emptyset$. La funzione f si dice superiormente limitata se f(A) è superiormente limitata, cioè se

$$\exists K \in \mathbb{R} \text{ tale che } f(x) \leq K, \quad \forall x \in A.$$

Definizione 2.2.4: Funzione inferiormente limitata

La funzione f si dice inferiormente limitata se f(A) è inferiormente limitata, cioè se

$$\exists c \in \mathbb{R} \text{ tale che } c \leq f(x), \quad \forall x \in A.$$

Figura 2.3: Esempio di funzione pari

Figura 2.4: Esempio di funzione dispari

Definizione 2.2.5: Funzione limitata

La funzione f si dice limitata se è sia inferiormente che superiormente limitata, cioè se

$$\exists c, K \in \mathbb{R} \text{ tali che } c \leq f(x) \leq K, \quad \forall x \in A.$$

Definizione 2.2.6: Estremo superiore

Si definisce estremo superiore di f(A) e si indica con sup f(A).

Definizione 2.2.7: Estremo inferiore

Si definisce estremo inferiore di f(A) e si indica con inf f(A).

Figura 2.5: Esempio di funzione periodica

2.2.4 Massimo e Minimo

Definizione 2.2.8: Massimo

Sia $f:A\subseteq\mathbb{R}\to\mathbb{R}$ con $A\neq\emptyset$. Se f(A) ha un massimo M, diremo che f ha un massimo e scriveremo

$$M = \max f(A)$$
.

Essendo $M \in f(A)$, esiste $x_M \in A$ tale che $f(x_M) = M$, che si chiama punto di massimo. Il punto di massimo non è necessariamente unico.

Figura 2.6: Esempio di funzione con due punti di massimo

Definizione 2.2.9: Minimo

Se f(A) ha un minimo m, diremo che f ha un minimo e i punti $x_m \in A$ tali che $f(x_m) = m$ si chiamano punti di minimo.

2.2.5 Funzioni Monotone

Definizione 2.2.10: Monotona crescente

Sia $f:A\subseteq\mathbb{R}\to\mathbb{R}$ con $A\neq\emptyset$. La funzione f si dice monotona crescente se

$$x_1 < x_2, \ x_1, x_2 \in A \implies f(x_1) \le f(x_2),$$

e $strettamente \ monotona \ crescente$ se

$$x_1 < x_2 \implies f(x_1) < f(x_2).$$

Figura 2.7: Esempio di funzioni crescenti

Definizione 2.2.11: Monotona decrescente

La funzione f si dice $monotona\ decrescente$ se

$$x_1 < x_2 \implies f(x_1) \ge f(x_2),$$

e strettamente monotona decrescente se

$$x_1 < x_2 \implies f(x_1) > f(x_2).$$

Inoltre valgono le seguenti proprietà:

- Una funzione strettamente monotona è iniettiva.
- Se f è invertibile e monotona, anche f^{-1} è monotona della stessa tipologia.

Figura 2.8: Esempio di funzioni decrescenti

2.3 Funzioni Elementari

2.3.1 Funzioni lineari (o affini)

Sia

$$f(x) = ax + b, \quad a, b \in \mathbb{R}, \quad a \neq 0.$$

Figura 2.9: Grafico della funzione lineare

Proprietà della funzione lineare:

- Se a > 0, la funzione è crescente.
- Se a < 0, la funzione è decrescente.
- Se f(x) = x o f(x) = -x, la funzione coincide con una bisettrice.

2.3.2 Funzione valore assoluto

Sia

$$|x| = \begin{cases} x, & \text{se } x \ge 0, \\ -x, & \text{se } x < 0, \end{cases} \quad x \in \mathbb{R}, \quad |x| : \mathbb{R} \to [0, +\infty).$$

Figura 2.10: Grafico della funzione valore assoluto

Proprietà della funzione valore assoluto:

- 1. $|x| \ge 0$ per ogni $x \in \mathbb{R}$.
- 2. $|x| = 0 \iff x = 0$.
- 3. |-x| = |x|, quindi la funzione è pari.
- 4. $|x_1 \cdot x_2| = |x_1| \cdot |x_2|$.
- 5. $|x| \le a \iff -a \le x \le a$.
- 6. $|x| \ge a \iff x \le -a \circ x \ge a$.
- 7. Per ogni $x_1, x_2 \in \mathbb{R}$ vale la disuguaglianza triangolare:

$$|x_1 + x_2| \le |x_1| + |x_2|$$
.

Dimostrazione:

$$-|x_1| \le x_1 \le |x_1|, \quad -|x_2| \le x_2 \le |x_2|$$

$$\implies -(|x_1| + |x_2|) \le x_1 + x_2 \le |x_1| + |x_2|$$

$$\implies |x_1 + x_2| \le |x_1| + |x_2|.$$

2.3.3 Funzione potenza (con esponente in \mathbb{N})

Sia

$$f: x \in \mathbb{R} \mapsto x^n$$

Allora:

- $f(x) \in [0, +\infty)$ per n pari
- $f(x) \in \mathbb{R}$ per n dispari

La funzione è quindi:

$$f(x) = x^n$$

${\bf Caso}\,\,n\,\,{\bf pari}$

Figura 2.11: Grafico della funzione potenza per n pari

- La funzione è pari
- $x^n \ge 0 \quad \forall x \in \mathbb{R}, e \ x^n = 0 \iff x = 0$
- Non è globalmente monotona:
 - $-\ x^n$ è strettamente crescente per $x\geq 0$
 - $-\ x^n$ è strettamente decrescente per $x \leq 0$
- $\bullet \sup_{x \in \mathbb{R}} x^n = +\infty$
- $\inf_{x \in \mathbb{R}} x^n = \min_{x \in \mathbb{R}} x^n = 0$

Caso n dispari

Figura 2.12: Grafico della funzione per n dispari

- La funzione è dispari
- La funzione è strettamente monotona crescente (quindi è iniettiva \implies invertibile)
- $\inf_{x \in \mathbb{R}} x^n = -\infty$
- $\sup_{x \in \mathbb{R}} x^n = +\infty$

Proprietà comuni

Proprietà valide per entrambi i casi:

- $x^{n_1} \cdot x^{n_2} = x^{n_1 + n_2} \quad \forall x \in \mathbb{R}, \forall n_1, n_2 \in \mathbb{N}$
- $\frac{x^{n_1}}{x^{n_2}} = x^{n_1 n_2}$ se $x \neq 0$ e $n_1 \geq n_2$
- $(x^{n_1})^{n_2} = x^{n_1 \cdot n_2} \quad \forall x \in \mathbb{R}, \forall n_1, n_2 \in \mathbb{N}$
- $(x \cdot y)^n = x^n \cdot y^n \quad \forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}$
- $|x^n| = |x|^n \quad \forall x \in \mathbb{R}, \forall n \in \mathbb{N}$

Funzione potenza con esponente negativo

Definizione 2.3.1: Potenza inversa

Si definisce x^{-n} (con $x \neq 0$) come $x^{-n} := \frac{1}{x^n}$ Poniamo $x^0 = 1$ se $x \neq 0$. A questo punto abbiamo definito la funzione x^n con $n \in \mathbb{Z}$.

La funzione potenza con n negativo è definita in:

- $\mathbb{R} \setminus \{0\}$ per *n* dispari
- $(0, +\infty)$ per n pari

Grafico della funzione $f(x) = x^n$ con n negativo pari:

Figura 2.13: Grafico della funzione per n negativo pari

Grafico della funzione $f(x) = x^n$ con n negativo dispari:

Figura 2.14: Grafico della funzione per n negativo dispari

Funzione potenza con esponente reale

La funzione potenza con esponente reale è definita come:

$$x^{\alpha}:]0, +\infty[\longrightarrow]0, +\infty[, \quad \alpha \in \mathbb{R}$$

e può essere espressa come:

$$x^{\alpha} = e^{\alpha \ln x}$$

A seconda del valore di $\alpha,$ la funzione presenta diversi comportamenti:

• Se $\alpha > 1$, la funzione è **strettamente crescente** e **convessa**.

- Se $0 < \alpha < 1$, la funzione è **strettamente crescente** e **concava**.
- Se $\alpha < 0$, la funzione è strettamente decrescente.

Figura 2.15: Grafico della funzione x^{α} per diversi valori di α : -1, 0.5, e 2.

Nel caso di α positivo e frazionario (ad esempio $\alpha = \frac{1}{2}$), il dominio può essere esteso anche a x = 0, ossia $[0, +\infty[$.

2.3.4 Funzione radice n-esima

Con esponente dispari

La funzione potenza con esponente dispari è dotata di inversa: la radice n-esima.

$$\sqrt[n]{x}: \mathbb{R} \mapsto \mathbb{R}$$
 inversa di x^n

Figura 2.16: Grafico della funzione radice n-esima con n dispari

Proprietà:

- È strettamente crescente
- È dispari
- $\bullet \quad \sqrt[n]{x^n} = x \quad \forall x \in \mathbb{R}$
- $(\sqrt[n]{x})^n = x \quad \forall x \in \mathbb{R}$

Con esponente pari

La funzione potenza con esponente pari non è globalmente invertibile. Non la possiamo invertire in tutto \mathbb{R} ; ci serve ridurre il dominio alla parte della funzione strettamente monotona crescente:

$$x^n|_{[0,+\infty[}:[0,+\infty[\mapsto [0,+\infty[$$

Figura 2.17: Grafico della restrizione della funzione potenza con n pari

La funzione inversa della restrizione è la radice n-esima:

$$\sqrt[n]{x}: [0, +\infty[\mapsto [0, +\infty[$$

Figura 2.18: Grafico della funzione radice n-esima con n pari

Come cambiano le relazioni tra la funzione potenza e la sua inversa:

- $\sqrt[n]{x^n} = |x| \quad \forall x \in \mathbb{R}$
- $(\sqrt[n]{x})^n = x \quad \forall x \ge 0$

Proprietà comuni

Proprietà valide per entrambi i casi:

- $\sqrt[n]{x} \cdot \sqrt[n]{y} = \sqrt[n]{x \cdot y}$ (con $x, y \ge 0$ per n pari)
- $x < y \implies \sqrt[n]{x} < \sqrt[n]{y}$ (con $x, y \ge 0$ per n pari)
- $\sqrt[n]{\sqrt[m]{x}} = \sqrt[n \cdot m]{x}$ (con $x \ge 0$ per n o m pari)
- $\sqrt[n]{x^m} = x^{m/n} \text{ con } x \ge 0, m, n > 0$

2.3.5 Funzione esponenziale

Sia

$$a > 0, \quad a \neq 1, \quad a \in \mathbb{R}$$

la base di una funzione esponenziale del tipo

$$f(x) = a^x$$
 con $x \in \mathbb{R}, f(x) \in (0, +\infty)$

Per a > 1 si ha $a^b > 0 \quad \forall b \in \mathbb{R}$

Per
$$0 < a < 1$$
 si ha $a^b = \left(\frac{1}{a}\right)^b \quad \forall b \in \mathbb{R}$

Figura 2.19: Grafico della funzione esponenziale per a>1 e 0< a<1

Proprietà della funzione esponenziale:

- Se a > 1, la funzione è strettamente crescente.
- Se 0 < a < 1, la funzione è strettamente decrescente.
- $a^x > 0 \quad \forall x \in \mathbb{R}$.
- $a^0 = 1$.
- $\bullet \ a^x \cdot a^y = a^{x+y}.$
- $\bullet \ (a^x)^y = a^{x \cdot y}.$

2.3.6 Funzione Logaritmica

La funzione logaritmica è l'inversa della funzione esponenziale a^x con a>0 e $a\neq 1$:

$$\log_a(x):]0,+\infty[\mapsto \mathbb{R}$$

a prende il nome di $base \ del \ logaritmo, <math>x$ prende il nome di $argomento \ del \ logaritmo.$

Figura 2.20: Grafico della funzione logaritmica per a > 1 e 0 < a < 1

Relazioni di passaggio tra funzione esponenziale e logaritmica:

$$\begin{cases} a^{\log_a(x)} = x \\ \log_a(a^x) = x \quad \forall x \in \mathbb{R} \end{cases}$$

Proprietà dei logaritmi:

- $\log_a(x \cdot y) = \log_a(x) + \log_a(y)$
- $\log_a \left(\frac{x}{y}\right) = \log_a(x) \log_a(y)$
- $\log_a(x^{\alpha}) = \alpha \cdot \log_a(x)$
- $\log_a(x) = \frac{\log_b(x)}{\log_b(a)} \quad \forall b > 0, \ b \neq 1$

2.4 Funzioni Trigonometriche Elementari

Le funzioni trigonometriche sono funzioni di un angolo. Per definirle rigorosamente, si introduce il **radiante** come unità di misura e si utilizza la **circonferenza goniometrica**, ovvero una circonferenza di raggio unitario centrata nell'origine degli assi.

Figura 2.21: Circonferenza goniometrica con angoli notevoli.

Dato un angolo α in radianti, si identifica un punto $P(x_p, y_p)$ sulla circonferenza. Dato che gli angoli in radianti sono adimensionali, posso ore definire fuzioni reali: le funzioni seno e coseno sono definite come le coordinate di questo punto.

2.4.1 Funzioni Seno e Coseno

Definizione 2.4.1: Seno e Coseno

Dato un punto $P(x_p,y_p)$ sulla circonferenza goniometrica associato a un angolo α , si definisce:

- Coseno: $cos(\alpha) = x_p$ (ascissa di P)
- Seno: $\sin(\alpha) = y_p$ (ordinata di P)

Figura 2.22: Grafici delle funzioni $y = \sin(x)$ (blu) e $y = \cos(x)$ (arancione).

Proprietà di Seno e Coseno

- **Dominio e Codominio:** Entrambe hanno dominio \mathbb{R} e codominio [-1,1]. Sono quindi funzioni **limitate**.
- **Periodicità:** Sono periodiche di periodo $T=2\pi$.

$$\sin(x+2k\pi) = \sin(x), \quad \cos(x+2k\pi) = \cos(x), \quad \forall k \in \mathbb{Z}$$

- Simmetrie: Il coseno è una funzione pari $(\cos(-x) = \cos(x))$, mentre il seno è dispari $(\sin(-x) = -\sin(x))$.
- Relazione Fondamentale: Dal Teorema di Pitagora sulla circonferenza goniometrica si ottiene:

$$\sin^2(x) + \cos^2(x) = 1$$

Formule

• Addizione e sottrazione:

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

• Duplicazione:

$$\sin(2\alpha) = 2\sin\alpha\cos\alpha$$

$$cos(2\alpha) = cos^2 \alpha - sin^2 \alpha$$
 oppure $2 cos^2 \alpha - 1$ oppure $1 - 2 sin^2 \alpha$

• Bisezione:

$$\sin^2\left(\frac{\alpha}{2}\right) = \frac{1 - \cos\alpha}{2}$$

$$\cos^2\left(\frac{\alpha}{2}\right) = \frac{1 + \cos\alpha}{2}$$

2.4.2 Funzione Tangente

Definizione 2.4.2: Tangente

La funzione tangente è definita come il rapporto tra seno e coseno:

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

Il suo dominio esclude i punti in cui il coseno è nullo: $D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$.

Figura 2.23: Grafico della funzione tangente con i suoi asintoti verticali.

Proprietà della Tangente

• Periodicità: È periodica con periodo $T=\pi$.

• Simmetrie: È una funzione dispari $(\tan(-x) = -\tan(x))$.

2.4.3 Funzioni Trigonometriche Inverse

Per definire le funzioni inverse, è necessario restringere il dominio delle funzioni di partenza per renderle biettive.

Arcoseno e Arcocoseno

• Arcoseno (arcsin): È l'inversa della funzione seno ristretta a $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\arcsin: [-1,1] \to \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

• Arcocoseno (arccos): È l'inversa della funzione coseno ristretta a $[0, \pi]$.

$$\arccos: [-1,1] \to [0,\pi]$$

Figura 2.24: Grafici delle funzioni $y = \arcsin(x)$ (blu) e $y = \arccos(x)$ (arancione).

Arcotangente

È l'inversa della funzione tangente ristretta a $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$.

$$\arctan: \mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

Figura 2.25: Grafico della funzione arcotangente con i suoi asintoti orizzontali.

2.4.4 Funzioni Iperboliche

Definiamo il Seno Iperbolico $(\sinh x)$ e il Coseno Iperbolico $(\cosh x)$:

• Seno Iperbolico (sinh x) (Dispari):

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

Dominio: $\mathbb{R} \to \mathbb{R}$.

• Coseno Iperbolico $(\cosh x)$ (Pari):

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

Dominio: $\mathbb{R} \to [1, +\infty[$.

Le funzioni iperboliche sono connesse all'iperbole $x^2 - y^2 = 1$. L'inversa del seno iperbolico è sett sinh $x : \mathbb{R} \to \mathbb{R}$. L'inversa del coseno iperbolico è sett cosh $x : [1, +\infty[\to [0, +\infty[$.

Usiamo la stessa notazione delle funzioni trigonometriche perché sinh e cosh sono rispettivamente l'ascissa e l'ordinata di un punto P che si sta muovendo su un ramo di iperbole.

2.4.5 Trasformazioni del Grafico di Funzioni

Le trasformazioni includono traslazioni verticali $(f(x) \pm K)$, traslazioni orizzontali $(f(x \pm K))$, dilatazioni/contrazioni, e ribaltamenti.

• Traslazione verticale: $f_1(x) = f(x) \pm K$.

• Traslazione orizzontale: $f_2(x) = f(x \pm K)$.

• Dilatazione/Contrazione: $f_3(x) = Kf(x)$ o f(Kx).

3. Dilatazione/Contrazione

• Ribaltamento rispetto all'asse x: $f_4(x) = -f(x)$.

• Ribaltamento rispetto all'asse y: $f_5(x) = f(-x)$ (simmetria di specie).

• Valore assoluto esterno: $f_6(x) = |f(x)|$.

• Valore assoluto interno: $f_7(x) = f(|x|)$.

Capitolo 3

Numeri Complessi

L'equazione

$$x^2 + 1 = 0$$

non ha soluzioni in \mathbb{R} . Dobbiamo quindi ampliare l'insieme \mathbb{R} per fare in modo che le equazioni algebriche di questo tipo ammettano soluzioni.

3.1 Il campo dei numeri complessi

Chiamiamo \mathbb{C} l'insieme formato dalle coppie ordinate di numeri reali appartenenti al prodotto $\mathbb{R} \times \mathbb{R}$. Definiamo su questo insieme due operazioni binarie interne (rispettivamente somma e prodotto):

- **Somma:** (a,b) + (c,d) = (a+c,b+d)
- **Prodotto:** $(a,b) \cdot (c,d) = (ac bd, ad + bc)$

La struttura $(\mathbb{C}, +, \cdot)$ soddisfa tutti gli assiomi di campo e prende il nome di campo complesso:

- 1. $\forall \alpha, \beta, \gamma \in \mathbb{C}$ valgono le proprietà commutativa, associativa e distributiva.
- 2. (0,0) costituisce l'elemento neutro rispetto alla somma (zero), mentre (1,0) è l'elemento neutro rispetto al prodotto (unità).
- 3. L'opposto della coppia (a,b) è la coppia (-a,-b). Per ogni $(a,b) \neq (0,0)$, il reciproco (o inverso) è la coppia:

$$(a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

Indichiamo con R il sottoinsieme di \mathbb{C} formato dalle coppie (a,0), con $a \in \mathbb{R}$. L'applicazione

$$\phi: R \to \mathbb{R}$$

definita da $\phi((a,0)) = a$ è un isomorfismo tra il campo $(R,+,\cdot)$ e il campo $(\mathbb{R},+,\cdot)$.

R è quindi un sottocampo di $\mathbb C$ isomorfo a $\mathbb R$. Per convenzione, si identifica $\mathbb R$ con questo sottocampo e si scrive $\mathbb R \subset \mathbb C$.

Consideriamo adesso il numero complesso (0,1) che viene denotato con il simboli i (unità immaginaria). Notiamo che:

$$i^2 = (0,1) \cdot (0,1) = (-1,0) = -1$$

Questa risulta essere proprio una soluzione dell'equazione $x^2 + 1 = 0$.

3.2 Forma algebrica

I numeri complessi possono essere espressi in forma algebrica. Osserviamo ad esempio che:

$$(0,b) = (b,0) \cdot (0,1) = b \cdot i \quad \forall b \in \mathbb{R}$$

Quindi un qualsiasi numero complesso (a,b) può essere espresso nella forma $a+b\cdot i$:

$$(a,b) = (a,0) + (0,b) = (a,0) + ((b,0) \cdot (0,1)) = a + b \cdot i$$

La forma algebrica è molto comoda perché ci permette di operare sui numeri complessi con le comuni regole del calcolo letterale.

Dato un numero complesso $\alpha = a + bi$, valgono le seguenti definizioni:

- $a = \text{Re}(\alpha)$ prende il nome di parte reale.
- $b = \text{Im}(\alpha)$ prende il nome di parte immaginaria.
- $\overline{\alpha} = a bi$ prende il nome di *coniugato* di α .

Esempio.

$$\frac{3-2i}{5+i} \cdot \frac{\overline{z}}{\overline{z}} = \frac{(3-2i)(5-i)}{(5+i)(5-i)} = \frac{(3-2i)(5-i)}{26}$$

• Per ottenere la parte reale di un numero complesso α :

$$\operatorname{Re}(\alpha) = \frac{\alpha + \overline{\alpha}}{2}$$

• Per ottenere la parte immaginaria di un numero complesso α :

$$\operatorname{Im}(\alpha) = \frac{\alpha - \overline{\alpha}}{2i}$$

• Ne deriva che α è un numero reale se e solo se coincide con il suo coniugato:

$$\alpha = \overline{\alpha} \iff \alpha \in \mathbb{R} \text{ (ovvero, } b = 0)$$

3.2.1 Operazioni

Dati due numeri complessi $z_1 = x_1 + y_1 i$ e $z_2 = x_2 + y_2 i$:

• Somma:

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i$$

• Prodotto:

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1)i$$

• Per effettuare la divisione di due numeri complessi dobbiamo effettuare un processo simile alla razionalizzazione delle radici. Moltiplichiamo numeratore e denominatore per il complesso coniugato del denominatore:

$$\frac{z_1}{z_2} = \frac{z_1}{z_2} \cdot \frac{\overline{z_2}}{\overline{z_2}} = \frac{z_1 \, \overline{z_2}}{|z_2|^2}$$

dove il coniugato di $z_2 = x_2 + y_2 i$ è $\overline{z_2} = x_2 - y_2 i$, e $|z_2|^2 = x_2^2 + y_2^2$.

3.3 Piano complesso

Così come \mathbb{R} può essere identificato come l'insieme dei punti di una retta, il campo complesso può essere identificato come l'insieme dei punti di un piano che prende il nome di $piano\ di\ Gauss$, dove:

- L'asse delle ordinate prende il nome di asse immaginario
- L'asse delle ascisse prende il nome di asse reale

3.3.1 Modulo

Geometricamente nel piano di Gauss la lunghezza del segmento che congiunge un punto del piano identificato da un numero complesso z = x + yi con l'origine si indica con |z|:

$$\sqrt{(x^2 + y^2)} = |z|$$

Esempio.

$$z_1 = 2i$$
 $z_2 = 3 - i$
 $|z_1 - z_2| = |2i - 3 + i| = |-3 + 3i| = 3\sqrt{2}$

3.4 Forma trigonometrica

Definizione 3.4.1: Forma trigonometrica

$$x = \rho \cos \theta, \quad y = \rho \sin \theta$$

 $\tan \theta = \frac{y}{x}$
ALLORA $z = \rho [\cos \theta + i \sin \theta]$

La forma trigonometrica (o in coordinate polari) di un numero complesso ci permette di identificare un qualsiasi $z \in \mathbb{C}$ mediante due valori detti modulo e argomento.

Abbiamo già visto che il modulo di un numero complesso rappresenta la distanza del punto P identificato dalla coppia (x, y) dall'origine.

L'argomento di un numero complesso (necessariamente diverso da 0) è il numero reale θ che esprime la misura, in radianti, dell'angolo che il semiasse positivo delle ascisse forma con la semiretta OP. Si indica con:

$$arg(z) = \{\theta + 2k\pi, k \in \mathbb{Z}\}\$$

Definizione 3.4.2: Argomento principale

 θ non è univocamente determinato. Si chiama **argomento principale** $\theta \in]-\pi,\pi]$, che diventa univocamente determinato.

Abbiamo così un cambio in **coordinate polari**, $\rho \in \theta$.

Come si può notare dalla figura, siamo in grado di individuare qualsiasi numero complesso z=x+yi conoscendo la misura del segmento \overline{OP} (modulo di z, che indicheremo con ρ) e l'ampiezza dell'angolo θ che \overline{OP} forma con l'asse delle ascisse (argomento di z).

Dai teoremi sui triangoli rettangoli risulta che:

- $x = \rho \cdot \cos(\theta)$
- $y = \rho \cdot \sin(\theta)$

Se ρ e θ sono rispettivamente il modulo e l'argomento, otteniamo la seguente forma trigonometrica del numero complesso:

$$z = \rho \cos(\theta) + \rho \sin(\theta)i = \rho(\cos(\theta) + i\sin(\theta))$$

Per convertire un numero complesso dalla forma algebrica alla forma trigonometrica basta ricordare che:

- $\bullet \ \rho = \sqrt{x^2 + y^2}$
- L'argomento θ si calcola nel seguente modo:

$$\theta = \begin{cases} \arctan\left(\frac{y}{x}\right), & \text{se } x > 0\\ \arctan\left(\frac{y}{x}\right) + \pi, & \text{se } x < 0\\ \frac{\pi}{2}, & \text{se } x = 0 \text{ e } y > 0\\ \frac{3\pi}{2}, & \text{se } x = 0 \text{ e } y < 0 \end{cases}$$

3.5 Potenze

Rappresentare i numeri complessi in forma trigonometrica risulta particolarmente utile quando dobbiamo calcolare potenze o prodotti tra numeri complessi.

Per comprendere come avviene l'elevamento a potenza, consideriamo innanzitutto il prodotto tra due numeri complessi espressi in forma trigonometrica. Siano

$$z_1 = \rho_1(\cos(\theta_1) + i\sin(\theta_1))$$
 e $z_2 = \rho_2(\cos(\theta_2) + i\sin(\theta_2))$.

Allora:

$$z_1 \cdot z_2 = \rho_1 \rho_2 [\cos(\theta_1) \cos(\theta_2) - \sin(\theta_1) \sin(\theta_2) + i(\sin(\theta_1) \cos(\theta_2) + \cos(\theta_1) \sin(\theta_2))].$$

Applicando le formule goniometriche di somma per seno e coseno, otteniamo:

$$z_1 \cdot z_2 = \rho_1 \rho_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)].$$

3.6 Formula di De Moivre

Proposizione 3.6.1

Per ogni numero complesso $z=\rho(\cos(\theta)+i\sin(\theta))$ e per ogni intero n, vale la seguente relazione:

$$z^{n} = \rho^{n} [\cos(n\theta) + i\sin(n\theta)]$$

che prende il nome di formula di De Moivre.

Esempio.

$$(-1+i)^{5} \quad (-1+i) = z$$

$$\rho = \sqrt{2}$$

$$Arg(z) = \frac{3}{4}\pi$$

$$z = \sqrt{2}[\cos\frac{3}{4}\pi + i\sin\frac{3}{4}\pi]$$

$$z^{5} = \sqrt{2}[\cos\frac{15}{4}\pi + i\sin\frac{15}{4}\pi] = 4\sqrt{2}[\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i] = 4(1-i)$$

3.7 Forma esponenziale

Definizione 3.7.1: Formula di Eulero

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Non conosciamo ancora il significato di questa funzione, lo vedremo in *Metodi Matematici per la Fisica (Analisi 3)*.

Un numero complesso espresso in forma trigonomerica è rappresentabile anche in forma esponenziale facendo uso della formula di Eulero:

$$z = \rho(\cos(\theta) + i\sin(\theta)) = \rho e^{i\theta}$$

Il coniguato si indica con $\rho e^{-i\theta}$. Inoltre $e^{-1\pi} + 1 = 0$.

3.8 Radice n-esima

Definizione 3.8.1: Definizione

Sia $n \in \mathbb{N}$ e $z \in \mathbb{C}$. Si chiama **radice n-esima di** z ogni numero complesso w tale che:

$$w^n = z$$

Scriviamo

$$z = \rho(\cos\theta + i\sin\theta),$$

e cerchiamo w tale che

$$w^n = r(\cos\phi + i\sin\phi)$$

Applicando la formula di de Moivre, le radici si possono scrivere come:

$$w_k = r(\cos\phi_k + i\sin\phi_k), \quad k = 0, 1, \dots, n - 1$$

dove ϕ_k è definito dal sistema:

$$w^{n} = z \iff \begin{cases} r = \sqrt[n]{\rho} \\ \phi_{k} = \frac{\theta + 2k\pi}{n}, \quad k = [0, 1, 2, \dots, n - 1] \end{cases}$$

Esempio.

$$z^4 = 1 \Rightarrow z = \sqrt[4]{1}$$

Dobbiamo calcolare le radici quarte di 1:

$$1 = 1 \cdot e^{i0} \text{ con } \rho = 1 \text{ e } \theta = 0.$$

$$|w_k| = \sqrt[4]{1} = 1$$

 $\phi_k = \frac{\theta + 2k\pi}{4} = \frac{k\pi}{2}, \quad k = 0, 1, 2, 3$

k	ϕ_k (angolo)	w_k (radice)
0	0	$w_0 = \cos 0 + i \sin 0 = 1$
1	$\frac{\pi}{2}$	$w_1 = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i$
2	π	$w_2 = \cos \pi + i \sin \pi = -1$
3	$\frac{3\pi}{2}$	$w_3 = \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} = -i$

Le radici, quando le troviamo, risultano tutte **sulla circonferenza**.

Capitolo 4

Successioni Numeriche

Definizione 4.0.1: Definizione Successione Numerica

Si chiama successione numerica una funzione con dominio in $\mathbb N$

$$f: n \in \mathbb{N} \to f(n) \in \mathbb{R}$$

Si utilizza la seguente notazione: $f(n) = a_n \to \text{Termine generale della successione.}$ Una successione si indica o con il suo termine generale a_n oppure $\{a_n\}_{n\in\mathbb{N}}$.

Esempio.

1:
$$a_n = \frac{1}{n}$$

$$a_n = \frac{1}{n}$$
 allora $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}$

Esempio.

2:
$$a_n = (-1)^n$$

$$a_n = (-1)^n \to -1, 1, -1, 1, \dots$$

Esempio.

$$a_n = n$$

$$a_n = n \to 1, 2, 3, \dots$$

Esempio.

$$4: \quad a_n = \frac{(-1)^n}{n}$$

$$a_n = \frac{(-1)^n}{n} = -1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}$$

Esempio.

5:
$$a_n = -n^2$$

$$a_n = -n^2 = -1, -4, -9, -16$$

Esempio.

6:
$$a_n = \arctan n$$

Esempio.

7:
$$a_n = 2^n$$

$$a_n = 2^n = 1, 2, 4, 8, 16, 32, 64, \dots$$

Esempio.

8: Formula per il perimetro di un poligono inscritto

$$P_n = n \cdot l$$

$$\alpha = \frac{2\pi}{n}$$

$$l = 2R \sin \frac{\pi}{n}$$

$$a_n = P_n = 2nR \sin \frac{\pi}{n}$$

4.1 Limiti di successioni

Figura 4.1: Rappresentazione grafica del limite di una successione.

Definizione 4.1.1: Limite di una successione numerica (Convergenza)

Assegnata una successione di termine generale a_n , diremo che a_n tende ad $l \in \mathbb{R}$ o che a_n converge ad $l \in \mathbb{R}$ se:

$$\forall \epsilon > 0 \exists \nu > 0 : l - \epsilon < a_n < l + \epsilon \ \forall n > \nu$$

equivale a dire che:

$$\forall \epsilon > 0 \exists \nu > 0 : |a_n - l| < \epsilon \ \forall n > \nu$$

e scriveremo:

$$\lim_{n \to \infty} a_n = l$$

(Posso omettere $+\infty$ nel limite). (IN PAROLE POVERE):

- $\bullet \ \epsilon$ è la larghezza dell'imbuto
- ν è la soglia
- $l \epsilon < a_n < l + \epsilon$ è il filtro

Appunto scollegato: (a volte con ν) x > 0, $x \in \mathbb{R}$ [x] = parte intera (funzione floor())

4.1.1 Esempi di Limiti di successioni

Esempio.

1 — Limite della successione $a_n = \frac{1}{n}$

Figura 4.2: Successione $a_n = 1/n$.

Proposizione 4.1.2

$$\lim_{n\to\infty}\frac{1}{n}=0$$

Dimostrazione. Devo dimostrare che:

$$\forall \epsilon > 0 \; \exists \nu > 0 \; \text{tale che} \; l - \epsilon < a_n < l + \epsilon \quad \forall n > \nu$$

Nel nostro caso l=0 e $a_n=\frac{1}{n},$ quindi la condizione diventa:

$$\boxed{-\epsilon < \frac{1}{n} < \epsilon}$$

Poiché $\frac{1}{n} > 0$ per ogni n, la disuguaglianza di sinistra è sempre vera.

Rimane quindi da imporre:

$$\frac{1}{n} < \epsilon$$

da cui segue:

$$n > \frac{1}{\epsilon}$$

Poniamo quindi:

$$\nu = \frac{1}{\epsilon}$$

Allora, per ogni $n>\nu,$ risulta verificata la disuguaglianza

$$-\epsilon < \frac{1}{n} < \epsilon$$

per ogni $\epsilon > 0$.

Quindi:

$$\lim_{n} \frac{1}{n} = 0$$

4.1.2 Successioni Convergenti o Infinitesime

Definizione 4.1.3: Definizione

Se a_n tende ad $l \in \mathbb{R}$ scriviamo anche che: $a_n \to l \in \mathbb{R}$

- Se $a_n \to l \in \mathbb{R}$ diremo che la successione è Convergente.
- Se l = 0 diremo che è **Infinitesima**.

(Non completa tutti i casi):

Esempio.

3:
$$a_n = n$$

Figura 4.3: Successione $a_n = n$.

4.1.3 Successioni Divergenti

Definizione 4.1.4: Definizione divergenza a ∞

Assegnata una succesione a_n diremo che a_n diverge **POSITIVAMENTE** oppure che diverge o tende a $+\infty$ se:

$$\forall M > 0 \; \exists \nu > 0 : a_n > M \quad \forall n > \nu$$

e scriveremo che:

$$\lim_{n \to \infty} a_n = +\infty \quad \text{oppure che} \quad a_n \to +\infty$$

Diremo che a_n diverge **NEGATIVAMENTE** oppure che diverge o tende a $-\infty$ se:

$$| \forall M > 0 \; \exists \nu > 0 : a_n < -M \quad \forall n > \nu |$$

e scriveremo che:

$$\lim_{n\to\infty} a_n = -\infty \quad \text{ oppure che } \quad a_n \to -\infty$$

4.1.4 Successioni regolari o irregolari

Esempio.

2 - Successione oscillante $a_n = (-1)^n$

Figura 4.4: Successione oscillante $a_n = (-1)^n$.

Immaginate, per assurdo, che la successione

$$a_n = (-1)^n$$

ammetta un limite. Allora il limite dovrebbe essere contemporaneamente 1 (per i termini pari) e -1 (per i termini dispari), il che è impossibile. Quindi:

- La successione non è convergente.
- Non diverge a $+\infty$ né a $-\infty$.
- Questa successione è detta irregolare o oscillante.

Definizione 4.1.5: Definizione (successione irregolare / oscillante)

Sia a_n una successione numerica:

- Se a_n ammette il limite, è convergente o regolare.
- Se a_n non ammette limite (né finito né infinito), è irregolare o oscillante.

4.2 Definizione di Intorno

Definizione 4.2.1: Intorno

Sia $l \in \mathbb{R}$. Si chiama **intorno di** l qualsiasi intervallo aperto di \mathbb{R} contenente l. **Esempio:** l'intervallo aperto $]1, \frac{5}{2}[$ è un intorno di 2.

Un **intorno di** $+\infty$ è, per definizione, una semiretta dx aperta: **Esempio:** $]2, +\infty[$. Analogamente, un **intorno di** $-\infty$ è una semiretta sx aperta: **Esempio:** $]-\infty, 2[$. Gli intorni si possono indicare anche come $I(l), I(+\infty), I(-\infty)$.

Proposizione 4.2.2

Sia a_n una successione numerica. Allora:

$$\lim_{n \to \infty} a_n = l \in \overline{\mathbb{R}} \quad \Longleftrightarrow \quad \forall I(l) \ \exists \nu \in \mathbb{N} : a_n \in I(l) \quad \forall n > \nu.$$

Dimostrazione. La dimostrazione segue direttamente dalla definizione di limite ed è quindi ovvia.

4.3 Teorema di Unicità del Limite

Teorema 4.3.1: Teorema di Unicità del Limite

Ogni successione regolare ammette UNO e UN SOLO limite.

Dimostrazione. Si procede per assurdo:

Supponiamo che:

- $a_n \to l_1 \in \overline{\mathbb{R}}$
- $a_n \to l_2 \in \overline{\mathbb{R}}$

con $l_1 \neq l_2$. Essendo $\mathbb R$ un campo ordinato, supponiamo senza perdita di generalità che $l_1 < l_2$.

Figura 4.5: Intervalli disgiunti per la dimostrazione per assurdo.

Poiché $l_1 < l_2$, esiste $a \in \mathbb{R}$ tale che $l_1 < a < l_2$. Consideriamo gli intorni disgiunti:

$$I(l_1) =]-\infty, a[, I(l_2) =]a, +\infty[$$

L'intersezione tra questi due intorni è ovviamente vuota:

$$I(l_1) \cap I(l_2) = \emptyset$$

Per ipotesi, $a_n \to l_1$, allora per questo intorno $I(l_1)$:

$$\exists \nu_1 \in \mathbb{N} : a_n \in I(l_1) \quad \forall n > \nu_1$$

Analogamente, $a_n \to l_2$ allora per questo intorno $I(l_2)$:

$$\exists \nu_2 \in \mathbb{N} : a_n \in I(l_2) \quad \forall n > \nu_2$$

Poniamo:

$$\nu = \max(\nu_1, \nu_2)$$

Allora $\forall n > \nu$, dovremmo avere:

$$a_n \in I(l_1) \cap I(l_2)$$

Ma $I(l_1) \cap I(l_2) = \emptyset$, ASSURDO. Quindi la nostra ipotesi iniziale era falsa e il limite, se esiste, è **unico**.

4.4 Proprietà delle successioni numeriche

Definizione 4.4.1: Successione Limitata

Sia assegnata una successione a_n diremo che è:

• superiormente limitata se:

$$\exists B \in \mathbb{R} : a_n \leq B \quad \forall n \in \mathbb{N}$$

• inferiormente limitata se:

$$\exists A \in \mathbb{R} : A \leq a_n \quad \forall n \in \mathbb{N}$$

• limitata se lo è sia inferiormente che superiormente.

In quest'ultimo caso:

$$A \le a_n \le B$$
 oppure $|a_n| \le M \quad \forall n \in \mathbb{N}$

Osservazione.

Osservazione: Una successione Limitata non per forza converge!!

Esempio.

$$(-1)^n$$

 $(-1)^n$ è limitata ma oscillante.

Proposizione 4.4.2

Proposizione 1 (Convergenza \Longrightarrow Limitatezza)

Sia a_n una successione **convergente**, allora a_n è **limitata**.

$$(a_n \text{ convergente} \implies a_n \text{ limitata}) \not\implies (a_n \text{ limitata} \implies a_n \text{ convergente})$$

Dimostrazione. Poichè $a_n \to l \in \mathbb{R}$ per ipotesi, allora $\forall \epsilon > 0 \exists \nu > 0$ tale che:

$$\boxed{l - \epsilon < a_n < l + \epsilon \qquad \forall n > \nu}$$

Sia $\epsilon = 1 \implies \exists \nu > 0$:

$$l-1 < a_n < l+1 \quad \forall n > \nu$$

Ma a noi serve $\forall n \in \mathbb{N}$. Allora:

$$E = \{a_1, a_2, a_3, \dots, a_{|\nu|}, l-1, l+1\}$$

Sia $A = \min E$ e $B = \max E$. Allora:

$$A \le a_n \le B \quad \forall n \in \mathbb{N}$$

Proposizione 4.4.3

Proposizione 2 (Divergenza positiva)

Se $a_n \to +\infty$, allora la successione a_n è inferiormente limitata.

Dimostrazione. Per hp $a_n \to +\infty$ quindi:

$$\forall M > 0 \; \exists \nu > 0 : a_n > M \; \forall n > \nu$$

Considero:

$$E = \{a_1, a_2, a_3, \dots, a_{|\nu|}, M\}$$

Sia $A = \min E$. Allora per costruzione:

$$a_n \ge A \ \forall n \in \mathbb{N}$$

Ovvero è inferiormente limitata.

Proposizione 4.4.4

Proposizione 3 (Divergenza negativa)

Se $a_n \to -\infty$, allora la successione a_n è superiormente limitata.

La dimostrazione è lasciata come esercizio.

4.5 Successioni Monotone

Definizione 4.5.1: Definizione — Successioni Monotone

Diremo che una successione a_n è:

- crescente (\nearrow) se $a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$.
- strettamente crescente (\nearrow_S) se $a_n < a_{n+1} \quad \forall n \in \mathbb{N}$.
- decrescente (\searrow) se $a_n \ge a_{n+1} \quad \forall n \in \mathbb{N}$.
- strettamente decrescente (\searrow_S) se $a_n > a_{n+1} \quad \forall n \in \mathbb{N}$.

Esempio.

- \bullet $\frac{1}{n}$ \searrow_S
- n ≥S
- $\frac{(-1)^n}{n}$ NON è MONOTONA
- $2^n \nearrow_S$
- a^n \searrow_S se 0 < a < 1 \nearrow_S se a > 1

Proposizione 4.5.2

Teorema di Regolarità delle Successioni Monotone

Se a_n è una successione **monotona**, allora a_n è **regolare** (ammette limite finito o infinito).

Definizione 4.5.3: Limite di Successioni Monotone

Sia a_n una successione monotona. Allora:

$$\lim_{n \to \infty} a_n = \begin{cases} \sup_n a_n & \text{se } a_n \text{ è crescente } (\nearrow) \\ \inf_n a_n & \text{se } a_n \text{ è decrescente } (\searrow) \end{cases}$$

Esempio.

1. $a_n = \arctan n$

 $a_n \nearrow$, quindi

$$\lim_{n} \arctan n = \sup a_n = \frac{\pi}{2}$$

2. $a_n = \frac{1}{n}$

 $a_n \searrow$, quindi

$$\lim_{n} \frac{1}{n} = \inf a_n = 0$$

3. $a_n = 2^n$

 $a_n \nearrow$, quindi

$$\lim_{n} 2^{n} = \sup a_{n} = +\infty$$

Osservazione.

Osservazione sulla Dimostrazione: La dimostrazione si basa sulle proprietà di sup e inf e sull'assioma di completezza di \mathbb{R} .

Dimostrazione. Per ipotesi $a_n \leq a_{n+1} \forall n$ e dobbiamo dimostrare che detto $l = \sup_n a_n$ allora $\lim_{n \to \infty} a_n = l$.

DUE CASI:

1. Caso 1 $(l < +\infty)$: Dobbiamo dimostrare che:

$$\forall \epsilon > 0 \exists \nu : l - \epsilon < a_n < l + \epsilon \quad \forall n > \nu$$

Sia ϵ fissato. Per la proprietà dell'estremo superiore, si ha che $\exists \nu \in \mathbb{N}$ tale che $l-\epsilon < a_{\nu}$. Poiché a_n è crescente, per ogni $n > \nu$ si ha $a_n \geq a_{\nu}$. Inoltre, l è l'estremo superiore, quindi $a_n \leq l$. Quindi, per $\forall n > \nu$:

$$l - \epsilon < a_{\nu} \le a_n \le l < l + \epsilon$$
 (tesi)

2. Caso 2 ($l = +\infty$): Dobbiamo dimostrare che:

Usiamo la proprietà del sup $a_n = +\infty$: $\forall M > 0 \exists \nu \in \mathbb{N}$ tale che $a_{\nu} > M$. Poiché a_n è crescente, $\forall n > \nu$ si ha $a_n \geq a_{\nu} > M$, da cui la tesi.

La dimostrazione per $a_n \searrow$ è analoga.

Osservazione.

Osservazione sulla Convergenza: a_n è monotona + limitata $\implies a_n$ convergente

4.5.1 Proprietà definitivamente vera

Definizione 4.5.4: Definizione Proprietà Definitivamente Vera

Una proprietà che dipende da $n \in \mathbb{N}$ si dice **DEFINITIVAMENTE** vera se vale da un certo indice n in poi.

Osservazione.

Osservazione sulla Regolarità: Nel Teorema di Regolarità, posso scrivere: "Se a_n è una successione definitivamente **monotona**, allora a_n è **regolare**."

Proposizione 4.5.5

Proposizione (Valore Assoluto)

Se a_n è una successione **convergente** e $a_n \to l$, allora vale:

$$|a_n| \to |l|$$
.

Dimostrazione. Si usa la disuguaglianza triangolare inversa: $|a - b| \ge ||a| - |b||$.

$$||a_n| - |l|| < |a_n - l| < \epsilon \quad \forall n > \nu$$

Proposizione 4.5.6

Proposizione (Infinitesima)

Si ha che:

$$a_n \to 0 \quad \iff \quad |a_n| \to 0.$$

4.6 Algebra dei Limiti

4.6.1 Limiti Fondamentali

$$\lim_{n \to +\infty} n^{\alpha} = \begin{cases} +\infty & \alpha > 0\\ 1 & \alpha = 0\\ 0 & \alpha < 0 \end{cases}$$

$$\lim_{n \to +\infty} a^n = \begin{cases} +\infty & a > 1\\ 1 & a = 1\\ 0 & 0 < a < 1 \end{cases}$$

$$\lim_{n \to +\infty} \log_a n = \begin{cases} +\infty & a > 1 \\ -\infty & 0 < a < 1 \end{cases}$$

Vogliamo sostituire a_n ad n per generalizzare.

4.6.2 Proprietà (Limiti Finiti)

Siano a_n e b_n due successioni **convergenti** tali che:

$$a_n \to a \in \mathbb{R}, \quad b_n \to b \in \mathbb{R}$$

Allora valgono le seguenti proprietà:

1. Somma e differenza

$$\lim_{n \to +\infty} (a_n \pm b_n) = a \pm b$$

Dimostrazione: si utilizza la disuguaglianza triangolare.

Dimostrazione.

$$\begin{split} &|(a_n+b_n)-(a+b)| = |(a_n-a)+(b_n-b)| \\ &|(a_n-a)+(b_n-b)| \leq |a_n-a|+|b_n-b| \\ &\text{Per ipotesi: } |a_n-a| < \frac{\epsilon}{2} \; \forall n > \nu_1, \quad |b_n-b| < \frac{\epsilon}{2} \; \forall n > \nu_2 \\ &\text{Sia } \nu = \max \nu_1, \nu_2, \; \text{Allora } \forall n > \nu \\ &|(a_n+b_n)-(a+b)| \leq |a_n-a|+|b_n-b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \\ &\text{QUINDI:} \\ &\forall \epsilon > 0, \; \exists \nu : |(a_n+b_n)-(a+b)| < \epsilon \forall n > \nu \end{split}$$

2. Prodotto

$$\lim_{n \to +\infty} (a_n \cdot b_n) = a \cdot b$$

3. Rapporto

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \frac{a}{b}$$

a patto che $b_n \neq 0$ e $b \neq 0$.

4. Potenza

$$\lim_{n \to +\infty} (a_n)^{b_n} = a^b$$

con $a_n > 0$ (e quindi a > 0).

Tuttavia, questa non è una condizione necessaria: in alcuni casi il limite può esistere anche se $a \le 0$.

Esempi

Esempio.

$$\lim_{n \to +\infty} \frac{n}{n+1} = \lim_{n \to +\infty} \frac{n+1-1}{n+1} = \frac{n+1}{n+1} - \frac{1}{n+1} = \lim_{n \to +\infty} 1 - \lim_{n \to +\infty} \frac{1}{n+1} = 1 - 0 = 1$$

Esempio.

$$\lim_{n\to +\infty}\frac{(-1)^n+\sqrt{n}}{n}=\lim_{n\to +\infty}\frac{(-1)^n}{n}+\lim_{n\to +\infty}\frac{\sqrt{n}}{n}=0+0=0$$

Esempio.

$$\lim_{n \to +\infty} \frac{n^2 + 3n - 1}{2n - 3} = \lim_{n \to +\infty} \frac{n^2 \left(1 + \frac{3}{n} - \frac{1}{n^2}\right)}{n \left(2 - \frac{3}{n}\right)} = \lim_{n \to +\infty} \frac{n \left(1 + \frac{3}{n} - \frac{1}{n^2}\right)}{2 - \frac{3}{n}} = +\infty$$

4.6.3 Algebra dei limiti in $\overline{\mathbb{R}}$

Somma e differenza

Siano a_n e b_n due successioni tali che:

$$a_n \to a \in \overline{\mathbb{R}}, \quad b_n \to b \in \overline{\mathbb{R}}$$

Allora:

$$\lim_{n \to +\infty} (a_n \pm b_n) = a \pm b \text{ (Fatta eccezione del caso } \infty - \infty)$$

e dove si sottintende che:

$$\begin{split} &+\infty\pm b=+\infty\\ &-\infty\pm b=-\infty\\ &+\infty++\infty=+\infty\\ &-\infty-\infty=-\infty \end{split}$$

Esempi Esempio.

$$\lim_{n\to\infty} 2^n + n = +\infty$$
 order

oppure

$$\lim_{n\to\infty} 2^n + \frac{1}{n} = +\infty$$

Esempio.

$$a_n = n^2 e b_n = n$$

$$\lim_{n \to \infty} n^2 - n = n^2 (1 - \frac{1}{n}) = \lim_{n \to \infty} n^2 \cdot \lim_{n \to \infty} (1 - 0) = +\infty$$

$$a_n = n + 1 e b_n = n$$

$$\lim_{n \to \infty} a_n - b_n = 1$$

Prodotto

Siano a_n e b_n due successioni tali che:

$$a_n \to a \in \overline{\mathbb{R}}, \quad b_n \to b \in \overline{\mathbb{R}}$$

Allora:

$$\lim_{n \to \infty} a_n b_n = ab$$

Fatta eccezione il caso $+\infty \cdot 0$ dove si sottintende $\pm \infty \cdot a = \infty$ con la regola dei segni e $\pm \infty \cdot \pm \infty = \infty$ (con la regola dei segni).

Proposizione 4.6.1

Se a_n è limitata inferiormente e $b_n \to +\infty$ Allora

$$\lim_{n \to \infty} a_n b_n = +\infty$$

Esempio
$$a_n = n \to +\infty \text{ e } b_n = \frac{(-1)^n}{n} \to 0$$

$$a_n b_n = (-1)^n = \text{Indeterminata}$$

Proposizione 4.6.2

Sia a_n limitata e b_n infinitesima. Allora

$$\lim_{n \to \infty} a_n b_n = 0$$

 $\boldsymbol{Dimostrazione.}$ Sia a_n limitata. Ciò implica che:

$$\exists M > 0 : |a_n| \le M \quad \forall n \in \mathbb{N}$$

Sia inoltre $b_n \to 0$, cioè:

$$\forall \varepsilon_0 > 0 \; \exists \nu > 0 \; : \; |b_n| < \varepsilon_0 \quad \forall n > \nu$$

Vogliamo mostrare che $a_n b_n \to 0$, ovvero:

$$\forall \varepsilon > 0 \; \exists \nu_1 > 0 \; : \; |a_n b_n| < \varepsilon \quad \forall n > \nu_1$$

Sia $\varepsilon > 0$. Scegliamo $\varepsilon_0 = \frac{\varepsilon}{M}$. Dalla definizione di $b_n \to 0$, esiste ν tale che $|b_n| < \varepsilon_0$ per $n > \nu$. Scegliendo $\nu_1 = \nu$, abbiamo:

$$|a_n b_n| = |a_n| \cdot |b_n| < M \cdot \varepsilon_0 = M \cdot \left(\frac{\varepsilon}{M}\right) = \varepsilon \quad \forall n > \nu_1$$

Quindi $a_n b_n \to 0$.

4.6.4 Forme indeterminate

- $\bullet \infty \infty$
- $\infty \cdot 0$

4.6.5 Esempi finali

Esempio.

$$\lim_{n \to \infty} \frac{n^2 + \sqrt{n} - 2(-1)^n + \arctan(n)}{n^3 - 1 + n^2 \cos(n) - n \sin(n)} = 0$$

Esempio.

$$\lim_{n \to \infty} \frac{n^2 - 3\sqrt{n} + (-1)^n - 2n^2 \arctan(n)}{\sqrt{n} - 3n + n^2} = 1 - \pi$$

Esempio.

$$\lim_{n \to \infty} \left(\arctan(-n) + \frac{3\sqrt{n}\sin(n)}{\sqrt[3]{n^2 + 1}} + \frac{\pi n + (-1)^n}{n+1} \right) =$$

$$= \lim_{n \to \infty} \arctan(-n) + \lim_{n \to \infty} \frac{3\sqrt{n}\sin(n)}{\sqrt[3]{n^2 + 1}} + \lim_{n \to \infty} \frac{\pi n + (-1)^n}{n+1} =$$

$$= -\frac{\pi}{2} + 0 + \pi = \frac{\pi}{2}$$

4.6.6 Quoziente (in $\overline{\mathbb{R}}$)

Proposizione 4.6.3

Sia
$$b_n \to \pm \infty$$
 allora $\left[\frac{1}{b_n} \to 0 \right]$

Dimostrazione. Supponiamo che $b_n \to +\infty \implies$

$$\forall M > 0 \; \exists \nu > 0 : \boxed{b_n > M \; \forall n > \nu}$$

Per dimostrare la proposizione devo dimostrare che:

$$\forall \epsilon > 0 \; \exists \nu' > 0 : \frac{1}{|b_n|} < \epsilon \; \forall n > \nu'$$

Scegliendo $M=1/\epsilon$, dall'ipotesi $\exists \nu$ tale che $\forall n>\nu$

$$b_n > M = \frac{1}{\epsilon}$$

Essendo b_n e ϵ positivi (definitivamente),

$$0 < \frac{1}{b_n} < \epsilon$$

Quindi $\left|\frac{1}{b_n}\right| < \epsilon$ scegliendo $\nu' = \nu$. Quindi $\frac{1}{\infty} = 0$ (IMPORTANTE!!!)

Proposizione 4.6.4

Sia $b_n \to 0$

Dimostrazione. Se $b_n \to 0 \implies \forall \epsilon > 0 \; \exists \nu > 0 : |b_n| < \epsilon \quad \forall n > \nu$

$$\forall M > 0 \; \exists \nu' > 0 : \begin{cases} \frac{1}{b_n} > M \forall n > \nu' & \left(\frac{1}{b_n} \to +\infty\right) \\ \frac{1}{b_n} < -M \forall n > \nu' & \left(\frac{1}{b_n} \to -\infty\right) \end{cases}$$

Non posso dire qual è il caso.

Proposizione 4.6.5

Sia $b_n \to 0$ e definitivamente **positiva** $\Longrightarrow \frac{1}{b_n} \to +\infty$ Sia $b_n \to 0$ e definitivamente **negativa** $\Longrightarrow \frac{1}{b_n} \to -\infty$ Se $b_n \to 0$ e definitivamente positiva:

$$\exists \nu_1 : b_n > 0 \ \forall n > \nu_1$$

In sintesi:

$$b_n \to 0^+$$

Osservazione.

Convenzioni sul Quoziente

$$\frac{1}{\infty} = 0$$

$$\frac{1}{0^+} = +\infty$$

$$\frac{1}{0^-} = -\infty$$

Proposizione 4.6.6

Siano $a_n \to a \in \overline{\mathbb{R}}, b_n \to b \in \overline{\mathbb{R}}$ Allora:

$$\frac{a_n}{b_n} = \frac{a}{b}$$

secondo le convenzioni adottate ad eccezzione dei casi $\frac{\infty}{\infty}$

4.6.7 Nuova forma indeterminata

Da $0 \cdot \infty$:

- \bullet $\frac{\infty}{\infty}$
- $\frac{0}{0}$

4.6.8 Esponenziale

Proposizione 4.6.7

Sia a > 1 e sia $a_n \to l \in \overline{\mathbb{R}}$ Allora:

$$\lim_{n \to +\infty} a^{a_n} = \begin{cases} a^l & l \in \mathbb{R} \\ +\infty & l = +\infty \\ 0 & l = -\infty \end{cases}$$

Osservazione.

Convenzioni su Esponenziali e Logaritmi

Caso a > 1:

$$a^{+\infty} = +\infty$$
 $a^{-\infty} = 0$
 $\log_a(+\infty) = +\infty$ $\log_a(0^+) = -\infty$

Caso 0 < a < 1:

$$a^{+\infty} = 0 \qquad a^{-\infty} = +\infty$$

$$\log_a(+\infty) = -\infty \qquad \log_a(0^+) = +\infty$$

4.6.9 Forma generale degli esponenziali

$$a_n^{b_n} = e^{b_n \log a_n} \quad \text{se } a_n > 0$$

Proposizione 4.6.8

$$a_n{}^{b_n} \to \begin{cases} a^b \text{ se } a \in]0, +\infty[\text{ e } b \in \mathbb{R} \\ \uparrow \text{TRANNE F.I.} : (e^{b \log a} \text{ con } b \log a = 0 \cdot \infty) \end{cases}$$

4.6.10 Nuove F.I.

• ∞^0

Esempio.

$$e^{\log a_n} = e^{0 \cdot \infty} = a_n^{b_n} = +\infty^0$$

Proposizione 4.6.9

Se $a_n>0$ e a>0 allora $a_n^{b_n}\to a^b$ con le convenzioni adottate tranne:

$$\infty^0$$
 1^∞ 0^0

Osservazione.

Riepilogo: Algebra Estesa dei Limiti $(\overline{\mathbb{R}})$

Rapporti

$$\frac{1}{\infty} = 0$$

$$\frac{1}{0^+} = +\infty$$

$$\frac{1}{0^-} = -\infty$$

Esponenziali Caso a > 1:

$$a^{+\infty} = +\infty$$
$$a^{-\infty} = 0$$

Caso 0 < a < 1:

$$a^{+\infty} = 0$$
$$a^{-\infty} = +\infty$$

Logaritmi Caso a > 1:

$$\log_a(+\infty) = +\infty$$

Caso 0 < a < 1:

$$\log_a(+\infty) = -\infty$$

4.7 Teorema del confronto (Teorema dei carabinieri)

Teorema 4.7.1: Teorema del confronto (Teorema dei carabinieri)

Valgono le seguenti affermazioni:

1. Siano a_n, b_n, c_n tali che

$$a_n \ge b_n \ge c_n \quad \forall n \in \mathbb{N}$$

se
$$a_n \to l \in \mathbb{R}$$
 e $c_n \to l \in \mathbb{R} \implies b_n \to l$

- 2. Se $a_n \leq b_n \quad \forall n \in \mathbb{N} \text{ e } a_n \to +\infty \text{ allora } b_n \to +\infty$
- 3. Se $a_n \leq b_n \quad \forall n \in \mathbb{N} \text{ e } b_n \to -\infty \text{ allora } a_n \to -\infty$

Esempio.

Posso calcolare:

$$\lim_{n} n! = +\infty$$

perchè n! > n

Dimostrazione. (1) Hp:

- $a_n \to l \in \mathbb{R}$
- $c_n \to l \in \mathbb{R}$
- $a_n \le b_n \le c_n$

Per hp:

$$\begin{split} a_n \to l \in \mathbb{R} &\implies \forall \epsilon > 0 \exists \nu_1 > 0 : l - \epsilon < a_n < l + \epsilon \forall n > \nu_1 \\ c_n \to l \in \mathbb{R} &\implies \forall \epsilon > 0 \exists \nu_2 > 0 : l - \epsilon < c_n < l + \epsilon \forall n > \nu_2 \\ \forall n > \nu_1 \ l - \epsilon < a_n \leq b_n \leq c_n < l + \epsilon \ \forall n > \nu_2 \implies \\ l - \epsilon < b_n < l + \epsilon \ \forall n > \nu = \max\{\nu_1, \nu_2\} \end{split}$$

Dimostrazione. (2) Per hp: $a_n \to +\infty$

$$\forall M > 0 \exists \nu_1 > 0 : a_n > M \ \forall n > \nu_1$$

Th: $b_n \to +\infty$ ovvero:

$$\forall M > 0 \exists \nu > 0 : b_n > M \ \forall n > \nu$$

Per hp: $b_n \ge a_n > M$

$$\forall n \in \mathbb{N}$$

 $\forall n > \nu_1$

 $\forall n > \nu_2$

Quindi $\forall n > \nu = \max\{\nu_1, \nu_2\}$

4.8 Continuità di Seno e Coseno

Proposizione 4.8.1

Sia $a_n \to a \in \mathbb{R}$ allora:

- $\sin a_n \to \sin a$
- $\cos a_n \to \cos a$

In particolare se $a_n \to 0$ si ha:

$$\lim_{n \to \infty} \sin a_n = 0$$

$$\lim_{n \to \infty} \cos a_n = 1$$

Dimostrazione. (Continuità del Seno in 0)

Sia $a_n \to 0$. Th:

$$\lim_{n \to \infty} \sin a_n = 0$$

Ricordiamo le disuguaglianze notevoli:

Se
$$0 < x < \frac{\pi}{2}$$
: $0 < \sin x < x$

Se
$$-\frac{\pi}{2} < x < 0$$
: $x < \sin x < 0$

Prendendo il valore assoluto in entrambi i casi:

Poiché $a_n \to 0$, a_n è definitivamente in $]-\frac{\pi}{2}, \frac{\pi}{2}[$. Allora possiamo applicare la disuguaglianza e vale definitivamente: $0 \le |\sin a_n| \le |a_n|$

Dato che (per ipotesi) $\lim_{n\to\infty} |a_n| = 0$ e $\lim_{n\to\infty} 0 = 0$, per il Teorema del Confronto (Carabinieri) anche la successione centrale converge a 0:

$$\lim_{n \to \infty} |\sin a_n| = 0$$

Questo implica $\lim_{n\to\infty} \sin a_n = 0$.

Dimostrazione. (Continuità del Seno in $a \in \mathbb{R}$)

Vogliamo dimostrare che se $a_n \to a$, allora:

$$\lim_{n \to \infty} \sin a_n = \sin a$$

Definiamo una nuova successione $b_n=a_n-a$. Poiché $a_n\to a,$ allora $b_n\to 0.$

Riscriviamo $a_n = b_n + a$ e usiamo la formula di addizione del seno:

$$\sin a_n = \sin(b_n + a) = \sin(b_n)\cos(a) + \cos(b_n)\sin(a)$$

Calcoliamo il limite di entrambi i membri (notando che $\sin a$ e $\cos a$ sono costanti):

$$\lim_{n \to \infty} \sin a_n = \lim_{n \to \infty} (\sin(b_n)\cos(a) + \cos(b_n)\sin(a))$$

Per l'algebra dei limiti:

$$\lim_{n \to \infty} \sin a_n = \left(\lim_{n \to \infty} \sin(b_n)\right) \cdot \cos(a) + \left(\lim_{n \to \infty} \cos(b_n)\right) \cdot \sin(a)$$

Poiché $b_n \to 0$, usiamo i risultati già dimostrati per la continuità in 0:

- 1. $\lim_{n\to\infty}\sin(b_n)=0$
- 2. $\lim_{n\to\infty}\cos(b_n)=1$

Sostituendo questi limiti, otteniamo:

$$\lim_{n \to \infty} \sin a_n = (0) \cdot \cos(a) + (1) \cdot \sin(a) = \sin a$$

(Nota: La dimostrazione per $\cos a_n \to \cos a$ è analoga, usando la formula di addizione del coseno).

4.9 Limiti Notevoli Derivati

1) Sia a > 0 allora:

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$

Dimostrazione: Se a=1 è ovvio. Sia a>1 consideriamo $a_1=a$ e $a_2=1=a_3=\cdots=a_n$

$$G \leq A \implies \sqrt[n]{a} < \frac{a+n-1}{n} \text{Quindi}$$

$$1 < \sqrt[n]{a} < \frac{a+n-1}{n}$$

Se
$$0 < a < 1$$
:

$$\sqrt[n]{a} = \left(\frac{1}{\sqrt[n]{a}}\right)^{-1} = \left(\sqrt[n]{\frac{1}{a}}\right)^{-1} \to 1 > \left(\sqrt[n]{\frac{1}{a}}\right)^{-1} > \frac{n}{a+n-1}$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

Dimostrazione:

$$G \le A$$

$$a_1 = n \quad a_2 = 1 = a_3 = \dots = a_n$$

$$G = \sqrt[n]{n} < \frac{n+n-1}{n} \to \text{NO}$$

$$a_1 = \sqrt{n} = a_2 \quad a_3 = \dots = a_n = 1$$

$$G = \sqrt[n]{n} < \frac{2\sqrt{n} + n - 2}{n} = A$$

3)

$$\lim_{n \to \infty} \sqrt[n]{n^b} = 1$$

Perchè ($\sqrt[n]{n})^b$ e se $\sqrt[n]{n}=1$ Allora ($\sqrt[n]{n})^b=1^b=1$

4) Se $a_n \to 0$ allora:

$$\lim_{n \to \infty} \frac{\sin a_n}{a_n} = 1$$

Dimostrazione. Sia x un angolo:

$$\boxed{ 0 < x < \frac{\pi}{2} }$$

$$\sin x < x < \tan x = \frac{\sin x}{\cos x}$$

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x} \Longrightarrow \boxed{\cos x < \frac{\sin x}{x} < 1 }$$

$$\implies \text{è pari quindi } |x| < \frac{\pi}{2}$$

Allora
$$\cos a_n < \frac{\sin a_n}{a_n} < 1$$

Calcolando il limite, sia a dx che a sx è 1.

5) Se $a_n \to 0$ allora

$$\lim_{n \to \infty} \frac{\tan a_n}{a_n} = 1$$

Dimostrazione.

$$\lim_{n \to \infty} \frac{\sin a_n}{\cos a_n} \cdot \frac{1}{a_n} = \lim_{n \to \infty} \frac{\sin a_n}{a_n} \cdot \frac{1}{\cos a_n} = 1 \cdot 1 = 1$$

6) Se $a_n \to 0$ allora

$$\lim_{n \to \infty} \frac{1 - \cos a_n}{a_n} = 0$$

Dimostrazione. (Usa dimostrazione del 7)

$$\lim_{n \to \infty} \frac{1 - \cos a_n}{a_n} \cdot \frac{a_n}{a_n} = \lim_{n \to \infty} \frac{1 - \cos a_n}{{a_n}^2} \cdot a_n = \frac{1}{2} \cdot 0 = 0$$

7) Se $a_n \to 0$ allora

$$\lim_{n \to \infty} \frac{1 - \cos a_n}{{a_n}^2} = \frac{1}{2}$$

Dimostrazione.

$$\lim_{n \to \infty} \frac{1 - \cos a_n}{a_n^2} \cdot \frac{1 + \cos a_n}{1 + \cos a_n} = \lim_{n \to \infty} \frac{1 - \cos^2 a_n}{a_n^2 (1 + \cos a_n)} = \lim_{n \to \infty} \frac{\sin^2 a_n}{a_n^2 (1 + \cos a_n)}$$
$$= \lim_{n \to \infty} \left(\frac{\sin a_n}{a_n}\right)^2 \cdot \frac{1}{1 + \cos a_n} = 1^2 \cdot \frac{1}{1 + 1} = \frac{1}{2}$$

4.9.1 Esempi

Esempio.

Se
$$a_n \to \frac{\pi}{2}^-$$
 allora:
$$\lim_{n \to \infty} \tan a_n = \frac{\sin a_n}{\cos a_n} = \frac{1}{0^+} = +\infty$$

Esempio.

Se
$$a_n \to \frac{\pi}{2}$$
 allora:

$$\lim_{n \to \infty} \tan a_n = \mathbb{A}$$

Esempio.

$$\lim_{n \to \infty} \frac{2n + -1^n + n^2 \sin\left(\frac{1}{n}\right) - \sqrt{n}}{\sqrt{n} \arctan n - n + \sqrt{n} \sin n + n \tan\left(\frac{1}{n}\right)}$$

$$= \lim_{n \to \infty} \frac{n\left(2 + \frac{-1^n}{n} + n \sin\left(\frac{1}{n}\right) - \frac{1}{\sqrt{n}}\right)}{n\left(\frac{\arctan n}{\sqrt{n}} - 1 + \frac{\sin n}{\sqrt{n}} + \tan\left(\frac{1}{n}\right)\right)}$$

$$= \frac{2 + 0 + 1 - 0}{0 - 1 + 0 + 0} = -3$$

Esempio.

$$\begin{split} &\lim_{n \to \infty} \frac{\log(n+1) - \log(n^3 - 2) - \sqrt[n]{n+1}}{\log n - 2\log(n^2 - 1) + (-1)^n} \\ &= \lim_{n \to \infty} \frac{\log\left(n\left(1 + \frac{1}{n}\right)\right) - \log\left(n^3\left(1 - \frac{2}{n^3}\right)\right) - \sqrt[n]{n+1}}{\log n - 2\log\left(n^2\left(1 - \frac{1}{n^2}\right)\right) + (-1)^n} \\ &= \lim_{n \to \infty} \frac{\left[\log n + \log\left(1 + \frac{1}{n}\right)\right] - \left[3\log n + \log\left(1 - \frac{2}{n^3}\right)\right] - \sqrt[n]{n+1}}{\log n - 2\left[2\log n + \log\left(1 - \frac{1}{n^2}\right)\right] + (-1)^n} \\ &= \lim_{n \to \infty} \frac{-2\log n + \log\left(1 + \frac{1}{n}\right) - \log\left(1 - \frac{2}{n^3}\right) - \sqrt[n]{n+1}}{-3\log n - 2\log\left(1 - \frac{1}{n^2}\right) + (-1)^n} \\ &= \frac{-2}{-3} = \frac{2}{3} \end{split}$$

Esempio.

Grazie al Teorema del confronto possiamo dimostrare l'esempio 8 delle successioni numeriche

$$\lim_{n \to \infty} P_n = 2Rn \sin \frac{\pi}{n} = \lim_{n \to \infty} 2Rn \frac{\sin \frac{\pi}{n}}{\frac{\pi}{n}} \frac{\pi}{n} = \lim_{n \to \infty} 2R\pi \frac{\sin \frac{\pi}{n}}{\frac{\pi}{n}} = 2R\pi \cdot 1 = 2R\pi$$