Esercizio 10. (punteggio $\frac{2.5}{30}$)

Siano $\theta \in \varphi$ due numeri reali. Scrivere la matrici $A \in B$ che rappresentano le rotazioni piane in senso antiorario di angolo $\theta \in \varphi$ rispettivamente. Trovare inoltre la matrice AB.

Risposta:

Esercizio 11. (punteggio $\frac{2.5}{30}$)

Scrivere la matrice che rappresenta la simmetria piana rispetto alla retta r di \mathbb{R}^2 passante per l'origine e che forma un angolo $\alpha=\frac{\pi}{3}$ con il semiasse positivo delle ascisse.

Risposta

Esercizio 12. (punteggio $\frac{2.5}{30}$)

Un sistema di due equazioni in tre incognite ammette sempre una soluzione. ${f V}$ ${f F}$

Giustificazione:

9/09/2005

Algebra lineare – Corso di laurea in Informatica

Nome: Cognome: Matricola:

N.B.1 La risposta ad ogni singolo esercizio deve essere riportata nello spazio sottostante l'esercizio stesso.

N.B.2 Gli esercizi senza giustificazione o risposta hanno valore nullo.

Esercizio 1. (punteggio $\frac{2.5}{30}$)

Se z_0 è una radice complessa del polinomio $p(z)=1+z+2z^2+z^3$. Allora anche \bar{z}_0 (il coniugato di z_0) è una radice complessa di p(z).

Ŧ

Giustificazione:

Esercizio 2. (punteggio $\frac{2.5}{30}$) Trovare le radici quarte di z=i. Risposta:

Esercizio 3. (punteggio $\frac{2.5}{30}$) $\overline{z \cdot w} = \overline{z} \cdot \overline{w}, \forall z, w \in \mathbb{C} \quad \mathbf{V} \qquad \mathbf{F}$ Giustificazione:

Esercizio 4. (punteggio $\frac{2.5}{30}$)

vettore v di \mathbb{R}^4 diverso dal vettore nullo ortogonale a $v_1 + v_2 - v_3$. Siano $v_1=(1,0,1,-2), v_2=(1,\pi,-1,5)$ e $v_3=(e,-2,0,-3)$ tre vettori di \mathbb{R}^4 . Trovare un

Risposta:

Esercizio 5. (punteggio $\frac{2.5}{30}$)

vettore nullo. Scrivere la formula per calcolare il coseno dell'angolo \hat{uv} tra due vettori ue v di \mathbb{R}^n diversi dal

Risposta:

Esercizio 6. (punteggio $\frac{2.5}{30}$)

 $P_1P_2 \in v = P_1P_3 \text{ di } \mathbb{R}^3, \text{ dove } P_1 = (1,0,1), \, P_2 = (2,1,2) \in P_3 = (2,1,1).$ Usare la formula dell'esercizio precedente per calcolare il coseno dell'angolo tra i vettori u=

Risposta:

Esercizio 7. (punteggio $\frac{2.5}{30}$)

Trovare i valori di
$$\lambda \in \mathbb{R}$$
 per i quali la matrice $A=\begin{pmatrix}1&1&1\\1&0&0\\1&1&\lambda\end{pmatrix}$ è invertibile.

Risposta:

Esercizio 8. (punteggio $\frac{2.5}{30}$)

indipendenti. I tre vettori $v_1 = (1,0,1,0), v_2 = (0,1,-1,0)$ e $v_3 = (0,-1,2,1)$ di \mathbb{R}^4 sono linearmente

VF

Giustificazione:

Esercizio 9. (punteggio $\frac{2.5}{30}$)

Trovare la dimensione del sottospazio di
$$\mathbb{R}^9$$
 generato dai seguenti vettori: $v_1=(1,2,-1,1,5,0,1,2,1)$ $v_2=(0,2,1,3,\sqrt{2},\pi,-3,e,1)$ $v_3=(0,1,1,1,1,1,1,1,1)$ $v_4=(0,1,\frac{1}{2},\frac{3}{2},\frac{\sqrt{2}}{2},\frac{\pi}{2},\frac{-3}{2},\frac{e}{2},\frac{1}{2})$