Portland State University Department of Physics

Assignments for Presentation

PH 624: Classical Mechanics Instructor: M.A.K.Khalil

Problem Set 1 (Chapters 1 and 2)

H. Goldstein, C.Poole and J.Safko, Classical Mechanics, (Addison Wesley, N.Y., 2002)

Numbers at the end indicate my estimate of difficulty: 1 = "not very difficult", 5 = "impossibly difficult".

Chapter 1:

Almutairi. 1.10 - Invariance of the Lagrangian under point transformations 1

Amin. 1.14 - Generalized coordinates 1

Barnum. 1.18 - Unraveling motion from a Lagrangian. To complete the

problem, solve the equations of motion and describe the solutions. 2

Comnes. 1-20 - Unraveling motion from a Lagrangian. Hint: After finding the

EoM factor it into the product of two pieces - one is (ma+dV/dx). 2

Cooper. 1-21 - Using Lagrange's equations. Classic case. Get 1st integrals of

both EoMs. 2

Crawford. 1-22 - Lagrangian for a double pendulum - A bit tedious. 2

Chapter 2

Fowler. 2-12 - Generalized mechanics - jerky mechanics - also tedious -3.

Hint: Follow the procedure in the book for the derivation of the Lagrange equations. You have to do the integration by parts several

times.

Grist. 2-13 - Rolling constraints - 2- Lagrange multipliers.

Hopkins. 2-x - Wedge and block by Lagrange multipliers - continuation of class

example -2. Two blocks of masses m and M are connected by a rope which is draped over a right angled wedge. There is no friction.

Determine the motion and the forces of constraints. -

Determine the motion and the forces of constraints.

Hudson. 2-16 - Motion from a Lagrangian, point transformations, conserved

quantities - 2

Illyas. 2-18 - Governor- constants of the motion - 3

Karmaker. 2-24 - Action integrals -3.