Quantitative approach to strain modelling using Python, Numpy and Matplotlib

Mgr. Ondrej Lexa, Ph.D.

Institute of Petrology and Structural Geology Faculty od Science Charles University. Prague lexa@natur.cuni.cz

2019

Outlines

- Concept of homogeneous deformation
- From finite to continuous deformation
- Superposition of deformations

Components of deformation

A change in the configuration of a continuum body results in a displacement from an **initial or undeformed configuration** to a current or **deformed configuration**. The displacement of a body has two components:

Rigid-body displacement

- Translation
- Rotation

Deformation or strain

- Distortion isochoric change in shape
- Dilation change in volume

implies the change in shape and/or size of the body from an initial or undeformed configuration

Kinematics of continuum body

The motion of a continuum body is a **continuous** time sequence of displacements. Thus, the material body will occupy **different configurations** at different times so that a particle occupies a series of points in space which describe a **pathline**. There is **continuity** during deformation or motion of a continuum body in the sense that:

- The material points forming a closed curve at any instant will always form a closed curve at any subsequent time.
- The material points forming a closed surface at any instant will always form a closed surface at any subsequent time and the matter within the closed surface will always remain within.

Kinematics: deformation and motion I.

It is convenient to identify a **reference configuration or initial condition** which all subsequent **deformed configurations** are referenced from. Often, the configuration at t=0 is considered the reference configuration.

The components x_i of the position vector \vec{x} of a particle, taken with respect to the reference configuration, are called the **material or reference coordinates**.

Kinematics of infinitesimal deformation I.

The displacement of first point is decribed as:

$$\vec{x} = \vec{X} + \vec{u}(\vec{X})$$

while displacement of second surrounding point is described as:

$$\vec{x} + d\vec{x} = \vec{X} + d\vec{X} + \vec{u}(\vec{X} + d\vec{X})$$

Substituting first equation into second we got:

$$\vec{X} + \vec{u}(\vec{X}) + d\vec{x} = \vec{X} + d\vec{X} + \vec{u}(\vec{X} + d\vec{X})$$

which simplifies to:

$$d\vec{x} = d\vec{X} + \vec{u}(\vec{X} + d\vec{X}) - \vec{u}(\vec{X})$$

Detour on Taylor's theorem

Taylor's theorem states that any function that is infinitely differentiable may be represented by a Taylor series expansion:

$$f(X + dX) = f(X) + \frac{f'(X)}{1!}dX + \frac{f''(X)}{2!}dX^2 + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(X)}{k!}dX^k$$

than

$$f(X + dX) - f(X) = \frac{f'(X)}{1!}dX + \frac{f''(X)}{2!}dX^2 + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(X)}{k!}dX^k$$

neglecting higher terms as $\left| d\vec{X} \right| \ll 1$ as dX^k is very small, it is:

$$f(X + dX) - f(X) = \frac{f'(X)}{1!}dX = (\nabla f)dX$$

where ∇f is gradient of vector field.

Kinematics of infinitesimal deformation II.

Using that for infinitesimal deformation equation

$$d\vec{x} = d\vec{X} + \vec{u}(\vec{X} + d\vec{X}) - \vec{u}(\vec{X})$$

it could be written in terms of gradient as:

$$d\vec{x} = d\vec{X} + (\nabla u)d\vec{X}$$

where ∇u is gradient of displacement field or **displacement gradient**.

Displacement gradient

The **displacement gradient** is the derivative of each component of the linear element displacement $d\vec{u}$ with respect to each component of the reference element $d\vec{X}$:

$$\nabla \boldsymbol{u} = u_{i,j} = \frac{\partial u_i}{\partial X_j} = \begin{bmatrix} \frac{\partial u_1}{\partial X_1} & \frac{\partial u_1}{\partial X_2} & \frac{\partial u_1}{\partial X_3} \\ \frac{\partial u_2}{\partial X_1} & \frac{\partial u_2}{\partial X_2} & \frac{\partial u_2}{\partial X_3} \\ \frac{\partial u_3}{\partial X_1} & \frac{\partial u_3}{\partial X_2} & \frac{\partial u_3}{\partial X_3} \end{bmatrix}$$

and characterise the local change of the displacement field at a material point with position vector \vec{X} . Knowing that:

$$d\vec{u} = d\vec{x} - d\vec{X}$$

it could be also written as:

$$d\vec{u} = (\nabla u)d\vec{X}$$

Deformation gradient

Recalling that $d\vec{u} = d\vec{x} - d\vec{X}$

$$(\nabla \boldsymbol{u}) = \frac{\partial u_i}{\partial X_j} = \frac{\partial (x_i - X_i)}{\partial X_j} = \frac{\partial x_i}{\partial X_j} - \frac{\partial X_i}{\partial X_j} = \mathbf{F} - \mathbf{I}$$

where ${f F}$ is so called **deformation gradient**, i.e the derivative of each component of the deformed linear element $d\vec x$ with respect to each component of the reference element $d\vec X$:

$$\mathbf{F} = x_{i,j} = \frac{\partial x_i}{\partial X_j} = \begin{bmatrix} \frac{\partial x_1}{\partial X_1} & \frac{\partial x_1}{\partial X_2} & \frac{\partial x_1}{\partial X_3} \\ \frac{\partial x_2}{\partial X_1} & \frac{\partial x_2}{\partial X_2} & \frac{\partial x_2}{\partial X_3} \\ \frac{\partial x_3}{\partial X_1} & \frac{\partial x_3}{\partial X_2} & \frac{\partial x_3}{\partial X_3} \end{bmatrix}$$

and characterizes the local deformation at a material point with position vector \vec{X} , assuming continuity. As

$$d\vec{u} = d\vec{x} - d\vec{X} = (\nabla u)d\vec{X} = (\mathbf{F} - \mathbf{I})d\vec{X} = \mathbf{F}d\vec{X} - d\vec{X}$$
$$d\vec{x} = \mathbf{F}d\vec{X}$$

Properties of deformation gradient

Deformation gradient \mathbf{F} contains all the required local information about the changes in length, volumes and angles due to the deformation as follows:

- When vector \vec{N} in the reference configuration is deformed into the vector \vec{n} , these vectors are related as: $\vec{n} = \mathbf{F}\vec{N}$
- The ratio between the local volume of the deformed configuration to the local volume in the reference configuration is equal to the determinant of the deformation gradient tensor: $J = \det \mathbf{F}$
- Two infinitesimal areas with da and dA being their magnitudes and \vec{n} and \vec{N} are unit vectors perpendicular to them, then the relationship is given by: $(da)\vec{n} = \det(\mathbf{F})(dA)\mathbf{F}^{-T}\vec{N}$
- ullet An isochoric deformation is a deformation preserving local volume, i.e., $\det {f F}=1$
- ullet A deformation is called homogeneous if ${f F}$ is constant at every point. Otherwise, the deformation is called non-homogeneous
- The physical restriction of possible deformation: $\det \mathbf{F} > 0$

Homogeneous deformation

A **homogeneous deformation** is one where the deformation gradient is uniform, i.e. independent of the coordinates, and the associated motion is termed **affine**. Every part of the material deforms as the whole does, and straight parallel lines in the reference configuration map to straight parallel lines in the deformed configuration.

$$x = aX + bY + t_X$$
$$y = cX + dY + t_Y$$

or in matrix form:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} + \begin{bmatrix} t_X \\ t_Y \end{bmatrix}$$

Properties of homogeneous deformation are not spatially dependent.

Deformation gradient

Without translation the homogeneous deformation (rotation and strain) could be described as:

$$x = aX + bY$$
$$y = cX + dY$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

or

$$\vec{x} = \mathbf{F}\vec{X}$$

where F is so called **deformation gradient**.

Note, that as we excluded translation, the origin of coordinates do not change during deformation:

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \mathbf{F} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Displacement gradient

Displacement of particle is vector between initial and final postion, i.e.

$$u = x - X = aX + bY - X = (a - 1)X + bY$$

$$v = y - Y = cX + dY - Y = cX + (d - 1)Y$$

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a - 1 & b \\ c & d - 1 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

$$\vec{u} = (\mathbf{F} - \mathbf{I})\vec{X} = \nabla u\vec{X}$$

or

$$u = (\mathbf{F} - \mathbf{I})X = \mathbf{V} \mathbf{u}X$$

where $\nabla \mathbf{u}$ is so called **displacement gradient**.

Examples of pure shear

$$\mathbf{F} = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}$$
$$\mathbf{\nabla u} = \begin{bmatrix} 1 & 0 \\ 0 & -0.5 \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} 0.8 & 0 \\ 0 & 2 \end{bmatrix}$$
$$\mathbf{\nabla u} = \begin{bmatrix} -0.2 & 0 \\ 0 & 1 \end{bmatrix}$$

Examples of simple shear

$$\mathbf{F} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{\nabla}\mathbf{u} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
$$\mathbf{\nabla}\mathbf{u} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Examples of general shear

$$\mathbf{F} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

$$\mathbf{\nabla u} = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} 1.732 & -0.25 \\ 1 & 0.433 \end{bmatrix}$$

$$7\mathbf{u} = \begin{bmatrix} 0.732 & -0.25 \\ 0.732 & -0.25 \end{bmatrix}$$

Time to think...

 ${\bf F}$ maps any undeformed vector into its deformed state. This vector can also be a position vector of a point. Therefore ${\bf F}$ also maps any point into its new position after deformation. Considering two successive deformations ${\bf F}_1$ and ${\bf F}_2$ write transformation equation....

Time to think...

 ${\bf F}$ maps any undeformed vector into its deformed state. This vector can also be a position vector of a point. Therefore ${\bf F}$ also maps any point into its new position after deformation. Considering two successive deformations ${\bf F_1}$ and ${\bf F_2}$ write transformation equation...

$$\vec{x}_1 = \mathbf{F_1} \cdot \vec{X}$$

$$\vec{x}_2 = \mathbf{F_2} \cdot \vec{x}_1$$

Substitute first equation to second gives:

$$\vec{x}_2 = \mathbf{F_2} \cdot \mathbf{F_1} \cdot \vec{X}$$

SO

$$\vec{x}_2 = \mathbf{F} \cdot \vec{X}$$

where

$$\mathbf{F} = \mathbf{F_2} \cdot \mathbf{F_1}$$

Polar Decomposition I.

In last example the object has clearly been stretched and rotated. But by how much? the following two-step process of deformation followed by rigid body rotation gets you there...

$$\mathbf{F} = \begin{bmatrix} 1.732 & -0.25 \\ 1 & 0.433 \end{bmatrix} = \begin{bmatrix} \cos(30^\circ) & -\sin(30^\circ) \\ \sin(30^\circ) & \cos(30^\circ) \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}$$

or

$$\mathbf{F} = \mathbf{R} \cdot \mathbf{U}$$

where ${\bf R}$ is the **rotation matrix**, and ${\bf U}$ is the **right stretch tensor** that is responsible for all the problems in life: stress, strain, fatigue, cracks, fracture, etc. Note that the process is read from right to left, not left to right. ${\bf U}$ is applied first, then ${\bf R}$.

This partitioning of the **deformation gradient** into the product of a **rotation matrix** and **stretch tensor** is known as a **polar decomposition**.

In order to rotate unit vector $\hat{\mathbf{u}} = (u_1, u_2)$ to vector $\hat{\mathbf{v}} = (v_1, v_2)$, we can write following equations for $\cos(\alpha)$, $\sin(\alpha)$, $\cos(\alpha + \beta)$ and $\sin(\alpha + \beta)$:

In order to rotate unit vector $\hat{\mathbf{u}} = (u_1, u_2)$ to vector $\hat{\mathbf{v}} = (v_1, v_2)$, we can write following equations for $\cos(\alpha)$, $\sin(\alpha)$, $\cos(\alpha + \beta)$ and $\sin(\alpha + \beta)$:

$$cos(\alpha) = u_1$$
, $sin(\alpha) = u_2$
 $cos(\alpha + \beta) = v_1$, $sin(\alpha + \beta) = v_2$

Substituting to the angle sum trigonometric identities:

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\sin(\alpha + \beta) = \cos\alpha\sin\beta + \sin\alpha\cos\beta$$

In order to rotate unit vector $\hat{\mathbf{u}} = (u_1, u_2)$ to vector $\hat{\mathbf{v}} = (v_1, v_2)$, we can write following equations for $\cos(\alpha)$, $\sin(\alpha)$, $\cos(\alpha + \beta)$ and $\sin(\alpha + \beta)$:

$$\cos(\alpha) = u_1$$
, $\sin(\alpha) = u_2$
 $\cos(\alpha + \beta) = v_1$, $\sin(\alpha + \beta) = v_2$

Substituting to the angle sum trigonometric identities:

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\sin(\alpha + \beta) = \cos\alpha\sin\beta + \sin\alpha\cos\beta$$

$$v_1 = u_1 \cos \beta - u_2 \sin \beta$$
$$v_2 = u_1 \sin \beta + u_2 \cos \beta$$

In order to rotate vector $\hat{\mathbf{u}}$ by angle β , we can use the **rotation matrix** \mathbf{R} :

$$v_1 = u_1 \cos \beta - u_2 \sin \beta$$

$$v_2 = u_1 \sin \beta + u_2 \cos \beta$$

or in matrix form

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

or

$$\mathbf{\hat{v}} = \mathbf{R} \cdot \mathbf{\hat{u}}$$

Polar Decomposition II.

The deformed and rotated state could equally-well be arrived at by rotating it first, and then deforming it second. In this case, the reference configuration, is first rotated by the same 30° angle to arrive at an intermediate configuration and then the intermediate configuration is deformed to arrive at the final, deformed state.

The deformation gradient can be written as:

$$\mathbf{F} = \begin{bmatrix} 1.732 & -0.25 \\ 1 & 0.433 \end{bmatrix} = \begin{bmatrix} 1.625 & 0.65 \\ 0.65 & 0.875 \end{bmatrix} \begin{bmatrix} \cos(30^\circ) & -\sin(30^\circ) \\ \sin(30^\circ) & \cos(30^\circ) \end{bmatrix}$$

or

$$\mathbf{F} = \mathbf{V} \cdot \mathbf{R}$$

where R is the same rotation matrix, and V is the left stretch tensor.

Polar Decomposition III.

It is relatively easy to develop a relationship between V and U. Since $F = V \cdot R$ and $F = R \cdot U$, then

$$\mathbf{V}\cdot\mathbf{R}=\mathbf{R}\cdot\mathbf{U}$$

and post-multiplying through by \mathbf{R}^T gives

$$\mathbf{V} \cdot \mathbf{R} \cdot \mathbf{R}^T = \mathbf{R} \cdot \mathbf{U} \cdot \mathbf{R}^T$$

But since $\mathbf{R} \cdot \mathbf{R}^T = \mathbf{I}$, this leaves

$$\mathbf{V} = \mathbf{R} \cdot \mathbf{U} \cdot \mathbf{R}^T$$

as the relationship between ${f V}$ and ${f U}$. Alternatively, solving for ${f U}$ gives

$$\mathbf{U} = \mathbf{R}^T \cdot \mathbf{V} \cdot \mathbf{R}$$

Singular value decomposition

In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix $\mathbf{F} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^*$. Thus the expression $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^*$ can be intuitively interpreted as a composition of three geometrical transformations: a **rotation or reflection**, a **scaling**, and another **rotation or reflection**.

Python exercise

Calculate orientation and axial ratio of strain ellipse for deformation gradient F using SVD.

```
>>> from pylab import *
\Rightarrow F = array([[1, 1], [0, 1]]) # deformation gradient
>>> # calculate singular value decomposition
>>> U. s. V = svd(F)
>>> # calculate axial ratio and orientation
>>> ar = s[0]/s[1]
>>> ori = degrees(arctan2(U[1, 0], U[0, 0]))
>>> print('Orientation:{:g} AR:{:g}'.format(ori, ar))
Orientation: 31.7175 AR: 2.61803
```

Detour on conic sections

In mathematics, a **conic section** is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the **hyperbola**, the **parabola**, and the **ellipse**. The circle is a special case of the ellipse sometimes called a fourth type of conic section. Conic sections are the sets of points whose coordinates satisfy a second-degree polynomial equation:

$$Q(x,y) = Ax^{2} + 2Bxy + Cy^{2} + Dx + Ey + F = 0$$

can be written in matrix notation as:

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} D & E \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + F = 0$$

The the first three terms $Ax^2 + 2Bxy + Cy^2$ is the quadratic form associated with the equation and defined by matrix of the quadratic form.

$$Ax^{2} + 2Bxy + Cy^{2} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^{T} \mathbf{A}_{\mathbf{Q}} x$$

Note that Q is an ellipse if and only if $\det \mathbf{A}_{\mathbf{Q}} > 0$.

Strain ellipse or ellipsoid

According to definition, the strain ellipse results from transformation of unit circle, which in matrix form is given by equation:

$$\begin{bmatrix} X & Y \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = X^T X = 1$$

The deformation gradient equation could be written in terms of deformed coordinates as:

$$X = \mathbf{F}^{-1}x$$

Substituting into equation of unit circle we obtain:

$$(\mathbf{F}^{-1}x)^T \cdot \mathbf{F}^{-1}x = x^T(\mathbf{F}^{-1})^T \cdot \mathbf{F}^{-1}x = x^T(\mathbf{F} \cdot \mathbf{F}^T)^{-1}x = x^T\mathbf{B}^{-1}x = 1$$

where matrix $\mathbf{B} = \mathbf{F} \cdot \mathbf{F}^T$ is called **Finger** or **Left Cauchy-Green** deformation tensor. It's inverse ${f B}^{-1}$ represents ellipse or ellipsoid and is commonly called ellipsoid tensor or Cauchy deformation tensor.

Reciprocal ellipse or ellipsoid

According to definition, the **reciprocal ellipse** is transformed to unit circle, which in matrix form is given by equation:

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^T x = 1$$

Substituting equation for deformation gradient $x = \mathbf{F}X$ into equation of unit circle in deformed coordinates we obtain:

$$(\mathbf{F}X)^T \cdot \mathbf{F}X = X^T \mathbf{F}^T \cdot \mathbf{F}X = X^T \mathbf{C}X = 1$$

where matrix $\mathbf{C} = \mathbf{F}^T \cdot \mathbf{F}$ is called **Green's** or **Right Cauchy-Green** deformation tensor.

Deformation tensors and polar decomposition

Plugging the polar decomposition into equations for above defined deformation tensors gives a rather surprising result. Using $\mathbf{F} = \mathbf{V} \cdot \mathbf{R}$:

$$\mathbf{B} = \mathbf{F} \cdot \mathbf{F}^T = (\mathbf{V} \cdot \mathbf{R}) \cdot (\mathbf{V} \cdot \mathbf{R})^T = \mathbf{V} \cdot \mathbf{R} \cdot \mathbf{R}^T \cdot \mathbf{V}^T = \mathbf{V} \cdot \mathbf{V}^T$$

Using $\mathbf{F} = \mathbf{R} \cdot \mathbf{U}$:

$$\mathbf{C} = \mathbf{F}^T \cdot \mathbf{F} = (\mathbf{R} \cdot \mathbf{U})^T \cdot (\mathbf{R} \cdot \mathbf{U}) = \mathbf{U}^T \cdot \mathbf{R}^T \cdot \mathbf{R} \cdot \mathbf{U} = \mathbf{U}^T \cdot \mathbf{U}$$

As \mathbf{U} and \mathbf{V} are both symmetric, so $\mathbf{U} = \mathbf{U}^T$ and $\mathbf{U}^T \cdot \mathbf{U} = \mathbf{U} \cdot \mathbf{U}$. Likewise $\mathbf{V} = \mathbf{V}^T$ and $\mathbf{V} \cdot \mathbf{V}^T = \mathbf{V} \cdot \mathbf{V}$. Finally, $\mathbf{U} \cdot \mathbf{U}$ is sometimes written as \mathbf{U}^2 and $\mathbf{V} \cdot \mathbf{V}$ is sometimes written as \mathbf{V}^2 . Therefore:

$$\mathbf{B} = \mathbf{V}^2$$
 and $\mathbf{C} = \mathbf{U}^2$

The surprising result here is that the rotation matrix, \mathbf{R} , has been eliminated from the problem in both cases.

Properties of strain and reciprocal deformation

The eigenvectors of ${\bf B}$ define orientation of principal axes of the **strain ellipse/ellipsoid** in deformed state. The eigenvalues are quadratic elongations along principal directions, i.e. the lengths of semi-axes of the strain ellipse or ellipsoid are the square roots of the corresponding eigenvalues.

The eigenvectors of C define orientation of principal axes of the **reciprocal ellipse/ellipsoid** in undeformed state. The eigenvalues are quadratic elongations along principal directions, i.e. the lengths of semi-axes of the reciprocal ellipse or ellipsoid are the square roots of the corresponding eigenvalues.

Actions of strain tensors

Consider two vectors in the reference configuration X_1 and X_2 which are mapped into the vectors x_1 and x_2 in the current configuration. Than for dot product:

$$x_1 \cdot x_2 = x_1^T x_2 = (\mathbf{F} X_1)^T \cdot \mathbf{F} X_2 = X_1^T \mathbf{F}^T \cdot \mathbf{F} X_2 = X_1^T \mathbf{C} X_2$$

Similarly for current configuration:

$$X_1 \cdot X_2 = X_1^T X_2 = (\mathbf{F}^{-1} x_1)^T \cdot \mathbf{F}^{-1} x_2 = x_1^T (\mathbf{F} \cdot \mathbf{F}^T)^{-1} x_2 = x_1^T \mathbf{B}^{-1} x_2$$

For dot product of vector with itself we can write:

$$x \cdot x = x^T x = (\mathbf{F}X)^T \cdot \mathbf{F}X = X^T \mathbf{F}^T \cdot \mathbf{F}X = X^T \mathbf{C}X$$

Similarly for current configuration:

$$X \cdot X = X^TX = (\mathbf{F}^{-1}x)^T \cdot \mathbf{F}^{-1}x = x^T(\mathbf{F} \cdot \mathbf{F}^T)^{-1}x = x^T\mathbf{B}^{-1}x$$

Quadratic elongation

Quadratic elongation λ (square of the stretch) is defined as the square of ratio of the length of a deformed line element to the length of the corresponding undeformed line element:

$$\lambda = S^2 = \frac{|x|^2}{|X|^2}$$

As dot product of vector with itself is $x \cdot x = x^T x = |x| |x| \cos(0) = |x|^2$, the above equation could be written as:

$$\lambda_X = \frac{X^T \mathbf{C} X}{|X|^2} = \hat{X}^T \mathbf{C} \hat{X}$$

Similarly for $X^TX = |X|^2$:

$$\lambda_x^{-1} = \frac{x^T \mathbf{B}^{-1} x}{|x|^2} = \hat{x}^T \mathbf{B}^{-1} \hat{x}$$

where $\hat{X} = \frac{X}{|X|}$ and $\hat{x} = \frac{x}{|x|}$ are unit vector in the directions of X and x.

Change of angle I.

The change in angle between any two vectors may also be given in terms of stretch. Let X_1 and X_2 be arbitrary vectors which become x_1 and x_2 , respectively, during a deformation. By the dot product,

$$x_1 \cdot x_2 = x_1^T x_2 = |x_1| |x_2| \cos(\theta)$$

we may compute the angle θ between x_1 and x_2 from its cosine

$$\cos(\theta) = \frac{x_1 \cdot x_2}{|x_1| |x_2|} = \frac{X_1^T \mathbf{C} X_2}{|x_1| |x_2|} = \frac{X_1^T \mathbf{C} X_2}{\sqrt{X_1^T \mathbf{C} X_1} \sqrt{X_2^T \mathbf{C} X_2}}$$

Dividing both the numerator and denominator by the $|X_1| |X_2|$ we got:

$$\cos(\theta) = \frac{\hat{X_1}^T \mathbf{C} \hat{X_2}}{S_{X_1} S_{X_2}}$$

where $\hat{X}_1 = \frac{X_1}{|X_1|}$, $\hat{X}_2 = \frac{X_2}{|X_2|}$ are unit vector in the directions of X_1 , X_2 .

Change of angle II.

Similarly for current configuration

$$X_1 \cdot X_2 = X_1^T X_2 = |X_1| |X_2| \cos(\phi)$$

we may compute the angle ϕ between X_1 and X_2 from its cosine

$$\cos(\phi) = \frac{X_1 \cdot X_2}{|X_1| |X_2|} = \frac{x_1^T \mathbf{B}^{-1} x_2}{|X_1| |X_2|} = \frac{x_1^T \mathbf{B}^{-1} x_2}{\sqrt{x_1^T \mathbf{B}^{-1} x_1} \sqrt{x_2^T \mathbf{B}^{-1} x_2}}$$

Dividing both the numerator and denominator by the $|x_1| |x_2|$ we got:

$$\cos(\phi) = \frac{\hat{x}_1^T \mathbf{B}^{-1} \hat{x}_2}{S_{x_1}^{-1} S_{x_2}^{-1}} = S_{x_1} S_{x_2} \hat{x}_1^T \mathbf{B}^{-1} \hat{x}_2$$

where $\hat{x_1} = \frac{x_1}{|x_1|}$, $\hat{x_2} = \frac{x_2}{|x_2|}$ are unit vector in the directions of x_1 , x_2 .

Lets try to visualize how unit circle deforms during homogeneous deformation:

```
# parametric definition of unit circle
theta = linspace(0, 2*pi, 300)
c = cos(theta), sin(theta)
s = [-1, 1, 1, -1, -1], [1, 1, -1, -1, 1]
plot(c[0], c[1], 'g', s[0], s[1], 'b', lw=2)
# Apply deformation gradient and plot ellipse
F = array([[2, 0], [0, 0.5]])
e = dot(F, c)
q = dot(F, s)
plot(e[0], e[1], 'r', a[0], a[1], 'm', lw=2)
axis('equal')
```


To visualize displacement field we have to calculate it for points on regular grid and plot it using command **quiver**.

```
# create rectangular grid
X = meshgrid(linspace(-2.2, 2.2, 15),
             linspace(-1.9, 1.9, 12))
# calculate displacements
J = F - eve(2)
u = tensordot(J, X, axes=1)
# plot
quiver(X[0], X[1], u[0], u[1],
       angles='xy', lw=0.5, headwidth=4)
plot(c[0], c[1], 'g', s[0], s[1], 'b',
     e[0], e[1], 'r', q[0], q[1], 'm', lw=2)
axis('equal')
```


Find orientation and axial ratio of strain ellipse for deformation gradient F.

```
>>> from pylab import *
>>> # deformation gradient
>>> F = array([[1, 1], [0, 1]])
>>> # calculate Left Cauchy-Green deformation tensor
>>> B = dot(F, F,T)
>>> s, U = eig(B)
>>> # calculate axial ratio and orientation
>>> ar = sqrt(s[0]/s[1])
>>> ori = degrees(arctan2(U[1, 0], U[0, 0]))
>>> print('Orientation:{:g} AR:{:g}'.format(ori, ar))
Orientation: 31.7175 AR: 2.61803
```

Superposed strain

Similarly, we can obtain ellipse or ellipsoid equation resulting from two superposed deformation. When first deformation $\mathbf{F_1}$ results in intermediate ellipse or ellipsoid $\mathbf{B_1}$, i.e.:

$$x^T \mathbf{B_1}^{-1} x = 1$$

then substituting equation for deformation $\mathbf{D_2}$ we obtain:

$$x^T \mathbf{F_2}^{-T} \mathbf{B_1}^{-1} \mathbf{F_2}^{-1} x = x^T \mathbf{B_{12}}^{-1} x \mathbf{1}$$

where $\mathbf{B_{12}}^{-1}$ is:

$$\begin{aligned} \mathbf{B_{12}}^{-1} &= \mathbf{F_2}^{-T} \mathbf{B_1}^{-1} \mathbf{F_2}^{-1} \\ &= \mathbf{F_2}^{-T} \mathbf{F_1}^{-T} \mathbf{F_1}^{-1} \mathbf{F_2}^{-1} \\ &= (\mathbf{F_2} \mathbf{F_1})^{-T} (\mathbf{F_2} \mathbf{F_1})^{-1} \\ &= \mathbf{F_{12}}^{-T} \mathbf{F_{12}}^{-1} \end{aligned}$$

where $F_{12}=F_2F_1$. Consequently B_{12} could be written as

$$\mathbf{B_{12}} = \mathbf{F_{12}}\mathbf{F_{12}}^T$$

Python exercise - our first library

Function to plot unit circle and strain ellipse from deformation gradient:

```
import numpy as np
import matplotlib.pyplot as plt
def def_ellipse(F):
    # Draw ellipse from deformation gradient
    theta = np.linspace(0, 2*np.pi, 180)
    c = np.cos(theta), np.sin(theta)
    e = np.dot(F, c)
   plt.plot(c[0], c[1], 'r', e[0], e[1], 'g')
   plt.axis('equal')
```

Function to visualize displacement field from displacement gradient:

```
def dis_field(J):
    # Visualize displacement gradient
    X = np.meshgrid(np.linspace(-3, 3, 21),
                    np.linspace(-2, 2, 17))
    u = u = tensordot(J, X, axes=1)
    plt.quiver(X[0], X[1], u[0], u[1], angles='xy')
```

Function to plot unit circle and strain ellipse from displacement gradient:

```
def dis_ellipse(J):
    # Draw ellipse from displacement gradient
F = np.asarray(J) + np.eye(J.ndim)
    def_ellipse(F)
```

Function to visualize displacement field from deformation gradient:

```
def def_field(F):
    # Visualize deformation gradient
    J = np.asarray(F) - np.eye(F.ndim)
    dis_field(J)
```

Script to simulate simultaneous simple and pure shear by mutual combination of incremental deformations:

```
n = 5 # number of increments
SS = np.array([[1, 1./n], [0, 1]]) # simple shear increment
PS = np.array([[2**(1./n), 0], [0, 0.5**(1/n)]]) # pure shear increment
# initial stage
F1 = F2 = np.array([[1,0],[0,1]])
# both orders of superpositions of increments
for i in range(n):
   F1 = np.dot(SS, np.dot(PS, F1))
   F2 = np.dot(PS, np.dot(SS, F2))
def_ellipse(F1)
def_ellipse(F2)
```


Script to simulate simultaneous simple and pure shear by mutual combination of incremental deformations:

```
n = 500 # number of increments
SS = np.array([[1, 1./n], [0, 1]]) # simple shear increment
PS = np.array([[2**(1./n), 0], [0, 0.5**(1/n)]]) # pure shear increment
# initial stage
F1 = F2 = np.array([[1,0],[0,1]])
# both orders of superposition
for i in range(n):
   F1 = np.dot(SS, np.dot(PS, F1))
   F2 = np.dot(PS, np.dot(SS, F2))
def_ellipse(F1)
def_ellipse(F2)
```


Volume change and area change I.

Consider an infinitesimal volume element (dX_1, dX_2, dX_3) in the reference configuration $(\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3)$ so the vectors representing the edges of the element are $d\mathbf{X}_1 = dX_1 \mathbf{E}_1$; $d\mathbf{X}_2 = dX_2 \mathbf{E}_2$; $d\mathbf{X}_3 = dX_3 \mathbf{E}_3$. The volume of the element is given by triple product of it's edges:

$$dV = d\mathbf{X}_1 \cdot (d\mathbf{X}_2 \times d\mathbf{X}_3) = dX_1 \ dX_2 \ dX_3 \ \mathbf{E}_1 \cdot (\mathbf{E}_2 \times \mathbf{E}_3) = dX_1 \ dX_2 \ dX_3$$

Upon deformation, these edges go to $(d\mathbf{X}_1, d\mathbf{X}_2, d\mathbf{X}_3)$ where:

$$d\mathbf{x}_{1} = \mathbf{F} \cdot d\mathbf{X}_{1} = \begin{bmatrix} \frac{\partial x_{i}}{\partial X_{j}} \end{bmatrix} \cdot d\mathbf{X}_{1} = dX_{1} \begin{bmatrix} \frac{\partial x_{i}}{\partial X_{j}} \end{bmatrix} \cdot \mathbf{E}_{1} = dX_{1} \begin{bmatrix} \frac{\partial x_{i}}{\partial X_{1}} \end{bmatrix}$$
$$d\mathbf{x}_{2} = \mathbf{F} \cdot d\mathbf{X}_{2} = \begin{bmatrix} \frac{\partial x_{i}}{\partial X_{j}} \end{bmatrix} \cdot d\mathbf{X}_{2} = dX_{2} \begin{bmatrix} \frac{\partial x_{i}}{\partial X_{j}} \end{bmatrix} \cdot \mathbf{E}_{2} = dX_{2} \begin{bmatrix} \frac{\partial x_{i}}{\partial X_{2}} \end{bmatrix}$$
$$d\mathbf{x}_{3} = \mathbf{F} \cdot d\mathbf{X}_{3} = \begin{bmatrix} \frac{\partial x_{i}}{\partial X_{j}} \end{bmatrix} \cdot d\mathbf{X}_{3} = dX_{3} \begin{bmatrix} \frac{\partial x_{i}}{\partial X_{j}} \end{bmatrix} \cdot \mathbf{E}_{3} = dX_{3} \begin{bmatrix} \frac{\partial x_{i}}{\partial X_{3}} \end{bmatrix}$$

Volume change and area change II.

The deformed volume is given by triple product of deformed edges:

$$dv = d\mathbf{x}_1 \cdot (d\mathbf{x}_2 \times d\mathbf{x}_3) = \left[\frac{\partial x_i}{\partial X_1}\right] \cdot \left(\left[\frac{\partial x_i}{\partial X_2}\right] \times \left[\frac{\partial x_i}{\partial X_3}\right]\right) dX_1 dX_2 dX_3$$

Knowing that scalar triple product can also be understood as the determinant of the 3×3 matrix also known as **Jacobian of the deformation gradient**:

$$\left[\frac{\partial x_i}{\partial X_1}\right] \cdot \left(\left[\frac{\partial x_i}{\partial X_2}\right] \times \left[\frac{\partial x_i}{\partial X_3}\right]\right) = \det\left(\left[\frac{\partial x_i}{\partial X_j}\right]\right) = \det\left(\mathbf{F}\right) = J$$

Therefore:

$$dv = \det\left(\mathbf{F}\right) \ dV = J \ dV$$

Area change - Nanson's formula

Nanson's formula is an important relation that can be used to go from areas in the current configuration to areas in the reference configuration and vice versa. Using area elements ($d\mathbf{A} = dA \ \mathbf{N}$; $d\mathbf{a} = da \ \mathbf{n}$) and above derived equation for volume change, we can write:

$$dv = J \ dV$$

$$d\mathbf{l} \cdot d\mathbf{a} = J \ d\mathbf{L} \cdot d\mathbf{A}$$

$$\mathbf{F} \cdot d\mathbf{L} \cdot d\mathbf{a} = J \ d\mathbf{L} \cdot d\mathbf{A}$$

$$d\mathbf{L} \cdot (\mathbf{F}^T \cdot d\mathbf{a}) = d\mathbf{L} \cdot J \ d\mathbf{A}$$

$$\mathbf{F}^T \cdot d\mathbf{a} = J \ d\mathbf{A}$$

$$d\mathbf{a} = J \ \mathbf{F}^{-T} \cdot d\mathbf{A}$$

$$da \ \mathbf{n} = \det(\mathbf{F}) \ dA \ \mathbf{F}^{-T} \cdot \mathbf{N}$$

where da is an area of a region in the current configuration, dA is the same area in the reference configuration, and $\mathbf n$ is the outward normal to the area element in the current configuration while $\mathbf N$ is the outward normal in the reference configuration.

Script to volume change and area changes in principal coordinate planes:

```
>>> F = array([[1, 0, 1], [0, 2, 0], [0, 0, 0.5]])
>>> print('Volume change: {:.0%}'.format(det(F) - 1))
Volume change: 0%
>>> dA1, dA2, dA3 = eye(3) # unit length basis vectors
>>> da = lambda n: norm(dot(det(F)*inv(F).T, n))
>>> tmpl = 'Area change within plane {}: {:.0%}'
>>> print(tmpl.format(dA1, da(dA1) - 1))
Area change within plane [1. 0. 0.]: 124%
>>> print(tmpl.format(dA2, da(dA2) - 1))
Area change within plane [0. 1. 0.]: -50%
>>> print(tmpl.format(dA3, da(dA3) - 1))
Area change within plane [0. 0. 1.]: 100%
```

Velocity gradient I.

Velocity gradients are absolutely essential to analyses involving path dependent materials and are useful to better understanding deformations. The **velocity gradient** is to velocities what the deformation gradient is to displacements. The **velocity gradient** is used as a measure of the rate at which a material is deforming. Consider two fixed neighbouring points, x and x+dx. The velocities of the material particles at these points at any given time instant are $\mathbf{v}(x)$ and $\mathbf{v}(x+dx)$, and

$$\mathbf{v}(x+dx) = \mathbf{v}(x) + \frac{\partial \mathbf{v}}{\partial x}dx$$

The relative velocity between the points is

$$d\mathbf{v} = \frac{\partial \mathbf{v}}{\partial x} dx = \mathbf{L} dx$$

where L is defined to be the **spatial velocity gradient**.

Velocity gradient II.

The **spatial velocity gradient** L is defined as:

$$\mathbf{L} = \frac{\partial v_i}{\partial x_j} = \begin{bmatrix} \frac{\partial v_1}{\partial x_1} & \frac{\partial v_1}{\partial x_2} & \frac{\partial v_1}{\partial x_3} \\ \frac{\partial v_2}{\partial x_1} & \frac{\partial v_2}{\partial x_2} & \frac{\partial v_2}{\partial x_3} \\ \frac{\partial v_3}{\partial x_1} & \frac{\partial v_3}{\partial x_2} & \frac{\partial v_3}{\partial x_3} \end{bmatrix}$$

Note that the derivative is with respect to the current coordinates, x, not the reference coordinates X.

Velocity gradient III.

Calculations that involve the time-dependent deformation of a body often require a time derivative of the deformation gradient to be calculated. The time derivative of ${\bf F}$ is:

$$\dot{\mathbf{F}} = \frac{\partial \mathbf{F}}{\partial t} = \frac{\partial}{\partial t} \frac{\partial \mathbf{x}}{\partial \mathbf{X}} = \frac{\partial}{\partial \mathbf{X}} \frac{\partial \mathbf{x}}{\partial t} = \frac{\partial}{\partial \mathbf{X}} \mathbf{v} = \frac{\partial \mathbf{v}}{\partial \mathbf{X}}$$

where v is the velocity in reference frame and the derivative on the right hand side represents a material velocity gradient. It is common to convert that into a spatial gradient applying the chain rule to the above result, i.e.,

$$\dot{\mathbf{F}} = rac{\partial oldsymbol{v}}{\partial oldsymbol{X}} = rac{\partial oldsymbol{v}}{\partial oldsymbol{x}} \cdot rac{\partial oldsymbol{x}}{\partial oldsymbol{X}} = \mathbf{L} \cdot \mathbf{F}$$

where L is the *spatial velocity gradient*. Post multiplying both sides by F^{-1} gives the equation for L in terms of F:

$$\mathbf{L} = \dot{\mathbf{F}} \cdot \mathbf{F}^{-1}$$

Velocity gradient IV.

If the **spatial velocity gradient** is constant, the above equation can be solved exactly using *matrix exponential*:

$$\mathbf{F} = e^{\mathbf{L}t}$$

where t is time. Similarly, the spatial velocity gradient could be calculated from deformation gradient using $matrix\ logarithm$:

$$\mathbf{L} = ln(\mathbf{F})$$

We can use these equation to calculate deformation gradient for any intermediate deformation. When deformation in time t=1 is defined by \mathbf{F} , than for any time t=[0,1]:

$$\mathbf{F}(t) = e^{\ln(\mathbf{F})t}$$

Decomposition of velocity gradient

The **spatial velocity gradient** can be decomposed into symmetric and antisymmetric parts as follows.

$$\mathbf{L} = rac{1}{2} \left(\mathbf{L} + \mathbf{L}^T
ight) + rac{1}{2} \left(\mathbf{L} - \mathbf{L}^T
ight) = \mathbf{D} + \mathbf{W}$$

The first symmetric term is called **rate of deformation tensor** (\mathbf{D}) , while second antisymmetric term is known as **spin tensor** (\mathbf{W}) .

$$\mathbf{D} = \begin{bmatrix} \dot{\varepsilon}_{xx} & \dot{\gamma}_{xy} & \dot{\gamma}_{xz} \\ \dot{\gamma}_{xy} & \dot{\varepsilon}_{yy} & \dot{\gamma}_{yz} \\ \dot{\gamma}_{xz} & \dot{\gamma}_{xz} & \dot{\varepsilon}_{zz} \end{bmatrix}$$

where 6 independent components are referred as **stretching and shearing strain rates**.

$$\mathbf{W} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

where $\boldsymbol{\omega} = (\omega_1, \omega_2, \omega_3) = \frac{d\phi}{dt}\boldsymbol{u}$ is the angular velocity vector defining rate of rotation $\frac{d\phi}{dt}$ about an axis \boldsymbol{u} .

Lets visualize symmetric and antisymmetric parts of L for simple shear:

```
import scipy.linalg as la
X = meshgrid(linspace(-2, 2, 15), linspace(-2, 2, 15))
F = array([[1, 1], [0, 1]])
L = la.logm(F)
D. W = (L + L.T)/2, (L - L.T)/2
f, (ax1, ax2) = plt.subplots(1,2,figsize=(10, 6))
u = tensordot(D, X, axes=1)
ax1.quiver(X[0], X[1], u[0], u[1], angles='xv')
ax1.set_aspect('equal', adjustable='box')
ax1.set_title('rate of deformation tensor')
u = tensordot(W, X, axes=1)
ax2.quiver(X[0], X[1], u[0], u[1], angles='xy')
ax2.set_aspect('equal', adjustable='box')
ax2.set_title('spin tensor')
```


Figure: Velocity field for symmetric and antisymmetric parts of L for simple shear with $\gamma = 1$.

Script to plot evolution of axial ratio of finite strain ellipse during progressive deformation:

```
gdot = 1e-14
vearsec = 365.25*24*3600
times = linspace(0, 5, 100)[1:]
ar = []
L = array([[0, gdot], [0, 0]])
for t in times:
    F = la.expm(L*t*1e6*vearsec)
    U. s. V = svd(F)
    ar.append(s.max()/s.min())
plot(times, ar)
xlabel('Time [Ma]')
vlabel('Axial ratio')
```


Figure: Axial ratio of finite strain ellipse during simple shear.

Simultaneous deformation

As velocity gradient represents vector field, the velocity gradient of simultaneous deformation could be described as addition of individual velocity gradients, i.e:

$$\mathbf{L} = \mathbf{L_1} + \mathbf{L_2}$$

and finite deformation could be calculated as:

$$\mathbf{F} = e^{\mathbf{L_1} + \mathbf{L_2}}$$

In case we know individual deformation gradients, the simultaneous deformation could be calculated as:

$$\mathbf{F} = e^{ln(\mathbf{F_1}) + ln(\mathbf{F_2})}$$

Calculate deformation gradient for simultaneous pure shear with $S_x=2$ and $S_y=0.5$ and simple shear with $\gamma = 1$:

```
>>> F1 = array([[2, 0], [0, 0.5]])
>>> F2 = array([[1, 1], [0, 1]])
>>> F = la.expm(la.logm(F1) + la.logm(F2))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'la' is not defined
>>> print(F)
[[1. 0. 1. ]
 [0. 2. 0.]
 [0. 0. 0.5]]
```

Script to plot evolution of axial ratio of finite strain ellipse during progressive simultaneous pure shear and simple shear:

```
edot = 1e-14
ar = []
L = array([[edot, gdot],[0, -edot]])
for t in times:
    F = la.expm(L*t*1e6*vearsec)
    U, s, V = svd(F)
    ar.append(s.max()/s.min())
plot(times, ar)
xlabel('Time [Ma]')
vlabel('Axial ratio')
```


Figure: Axial ratio of progressive simultaneous deformation.

Plot evolution of deformation intensity (D) and symmetry (K) within transpression zone defined by convergence angle $\alpha = 30^{\circ}$, $\dot{\gamma}_{xy} = 10^{-14} s - 1$, $\dot{e}_{yy} = -10^{-14} s - 1$ and $\dot{e}_{zz} = 10^{-14} s - 1$ during 5Ma years.

```
K, D = [], []
L = array([[0, gdot, 0],
           [0,-edot, 0],
           [0, 0, edot]])
for t in times:
    F = la.expm(L * t * 1e6*yearsec)
   U, s, V = svd(F)
   xy, yz = s[:-1]/s[1:] - 1
   K.append(xy/yz)
    D.append(sqrt(xy**2 + yz**2))
plot(times, D, times, K)
xlabel('Time [Ma]')
ylabel('D and K')
```


Figure: Intensity (D) and symmetry (K) during transpression.