Facit til eksamen i Diskret Matematik

Mandag den 15. august 2011, kl. 9.00–13.00.

Opgave 1

Hvis x > 1 så er $x^2 > x$ og $x^2 > 1$ og dermed er

$$|f(x)| = |3x^2 + 4x + 2| = 3x^2 + 4x + 2 < 3x^2 + 4x^2 + 2x^2 = 9x^2 = 9|x^2|.$$

Så med K = 1 og C = 9 er $|f(x)| < C|x^2|$ for alle x > K.

Opgave 2

p	\overline{q}	r	$p \rightarrow q$	$\neg q$	$\neg q \wedge r$	$(p \to q) \lor (\neg q \land r)$
Τ	Τ	Τ	Т	F	F	Τ
T	\mathbf{T}	F	Т	F	${ m F}$	T
T	\mathbf{F}	Τ	F	T	${ m T}$	m T
T	F	F	F	Τ	\mathbf{F}	F
F	\mathbf{T}	Τ	Т	F	${ m F}$	m T
F	\mathbf{T}	F	Т	F	${ m F}$	T
F	F	Τ	Т	Т	${ m T}$	m T
F	F	F	Т	Т	F	Т

Opgave 3

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| = 5 + 6 + 7 - 2 - 3 - 4 + 2 = 11.$$

Opgave 4

1.
$$88 = 1 \cdot 51 + 37$$

 $37 = 88 - 51$
 $51 = 1 \cdot 37 + 14$
 $14 = 51 - 37 = 51 - (88 - 51) = 2 \cdot 51 - 88$
 $37 = 2 \cdot 14 = 9$
 $9 = 37 - 2 \cdot 14 = (88 - 51) - 2(2 \cdot 51 - 88) = 3 \cdot 88 - 5 \cdot 51$
 $14 = 1 \cdot 9 + 5$
 $5 = 14 - 9 = (2 \cdot 51 - 88) - (3 \cdot 88 - 5 \cdot 51) = 7 \cdot 51 - 4 \cdot 88$
 $9 = 1 \cdot 5 + 4$
 $4 = 9 - 5 = (3 \cdot 88 - 5 \cdot 51) - (7 \cdot 51 - 4 \cdot 88) = 7 \cdot 88 - 12 \cdot 51$
 $5 = 1 \cdot 4 + 1$
 $1 = 5 - 4 = (7 \cdot 51 - 4 \cdot 88) - (7 \cdot 88 - 12 \cdot 51) = 19 \cdot 51 - 11 \cdot 88$
Altså $\gcd(51, 88) = 1 = 19 \cdot 51 - 11 \cdot 88$.

2. 51 har invers 19 modulo 88.

Opgave 5

- 1. $5^{11} \mod 11 = 5$ ifølge Fermats lille sætning (Theorem 3.7.5).
- 2. $4 \cdot 5^{11} + 3 \equiv 4 \cdot 5 + 3 \equiv 23 \equiv 1 \pmod{11}$. Altså $4 \cdot 5^{11} + 3 \pmod{11} = 1$.

Opgave 6

En talfølge a_0, a_1, a_2, \ldots er defineret rekursivt ved

- $a_0 = 2$
- $a_n = 2a_{n-1} 1$, for $n \ge 1$.
- 1. $a_1 = 2a_0 1 = 2 \cdot 2 1 = 3$ $a_2 = 2a_1 - 1 = 2 \cdot 3 - 1 = 5$.
- 2. Vis at $a_n = 2^n + 1$ for alle $n \ge 0$.

Bevis ved induktion.

Basisskridt, n = 0: $a_0 = 2 = 2^0 + 1$. Sandt.

Induktionsskridt: Lad $k \ge 0$ og antag $a_k = 2^k + 1$.

Så er

$$a_{k+1} = 2a_k - 1 = 2(2^k + 1) - 1 = 2 \cdot 2^k + 1 = 2^{k+1} + 1.$$

Påstanden er altså også sand for n = k + 1.

Dermed er den sand for alle $n \geq 0$

Opgave 7

v		a	b	c	d	e	f	g	h	i	z
L(v)		0	∞								
	vælg u = a	0	1							6	100
	valg u = b		1	2			7				
	valg u = c			2	3				4		
	vælg u = d				3	9					12
	vælg u = h							8	4	5	
	vælg u = i					6				5	
	vælg u = e					6					
	vælg u = f						7				
	vælg u = g							8			11
	vælg $u = z$										11

Grafens punkter i rækkefølge bestemt voksende afstand fra ${\bf a}$ er den rækkefolge som punkterne tilføjes til S. Altså:

Opgave 8

Hvis Kruskals algoritme benyttes tilføjes kanterne f.eks. i denne rækkefølge:

$$\{a,b\},\{b,c\},\{c,d\},\{e,i\},\{h,i\},\{c,h\},\{f,g\},\{g,z\},\{g,h\}.$$

Hvis Prims algoritme benyttes (med start i a) tilføjes kanter f.eks. i denne rækkefølge:

$${a,b}, {b,c}, {c,d}, {c,h}, {h,i}, {e,i}, {g,h}, {f,g}, {g,z}.$$

(Der er andre løsninger.)

Opgave 9

Vi bemærker at når vi første gang kommer til while-løkken er x=1,y=0,i=1 og udsagnet er sandt.

1. Antag at udsagnet er sandt før et gennemløb af while-løkken. Altså

$$i \in \mathbb{N} \land i \leq n \land x = i \land y = i - 1.$$

Desuden antages det at i < n, altså $i \le n - 1$ da $i \in \mathbb{N}$.

Variablenes værdier efter gennemløbet betegnes $i_{\rm nv}, x_{\rm nv}, y_{\rm nv}$.

Vi får:

$$x_{\text{ny}} = z = 2x - y = 2i - (i - 1) = i + 1$$

 $y_{\rm ny} = x = i$

$$i_{\rm nv} = i + 1$$

Dermed er $x_{ny} = i_{ny}$ og $y_{ny} = i_{ny} - 1$. Desuden er $i_{ny} \in \mathbb{N}$ og $i_{ny} = i + 1 \le n$ da $i \le n - 1$.

Udsagnet er altså sandt efter gennemløbet af while-løkken. Dette viser at udsagnet er en invariant.

2. Når algoritmen standser er invarianten sand, men i < n er falsk. Dermed er i = n og x = i = n.