

STUDENT ID NO

--	--	--	--	--	--	--	--	--	--	--	--

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2015/2016

ECT1026 – FIELD THEORY
(All sections / groups)

8 OCTOBER 2015
2:30 p.m. – 4:30 p.m.
(2 Hours)

INSTRUCTIONS TO STUDENT

1. This question paper consists of eight (8) pages including this cover page with four (4) questions only.
2. Attempt all **FOUR (4)** questions. The distribution of the marks for each question is given.
3. Please write all your answers clearly in the answer booklet provided.

Question 1

a) Magnetic circuits can be analyzed (by analogy) using similar techniques as in electrical circuits. Write down the analogous electrical quantities of the following magnetic quantities:

- i) Magneto-motive force, \mathcal{F} . [1 mark]
- ii) Magnetic flux, Φ . [1 mark]
- iii) Reluctance, R . [1 mark]

b) Give three differences between electric and magnetic circuits. [3 marks]

c) Briefly explain the phenomenon of *eddy* current loss and the method to reduce it. [3 marks]

d) In the iron core shown in Figure Q1(d), the coil F_1 is supplying 1000 AT in the direction indicated. The relative permeability of iron may be taken as 2500. Neglect fringing effect and flux leakage.

- i) Draw the equivalent circuit of the iron core. [4 marks]
- ii) Calculate reluctance R_{base} , R_{be} and R_{bcde} . [5 marks]
- iii) Find the mmf of coil F_2 and its current direction to produce an air-gap flux Φ of 5 mWb in the direction shown. [7 marks]

Figure Q1(d) Magnetic circuit

Continued ...

Question 2

a) A vector in spherical coordinate system is given by $\vec{E} = \frac{25}{R^2} \vec{a}_R$. It is acting on the x-y plane ($z = 0$) as shown below:

Figure Q2(a) A square on the x-y plane ($z = 0$)

Points $A(0,0,0)$, $B(1,0,0)$, $C(1,1,0)$ and $D(0,1,0)$ form a square in anti-clockwise direction as shown in Figure Q2(a).

- i) Express the spherical vector, $R \vec{a}_R$ in Cartesian coordinate system involving x , y , z and their unit vectors. Then express \vec{a}_R in Cartesian system. [3 marks]
- ii) Find \vec{E} in Cartesian system at a point with Cartesian coordinates of $(1,2,3)$. [4 marks]
- iii) Express \vec{E} in Cartesian system for path A to B. [2 marks]
- iv) Express \vec{E} in Cartesian system for path B to C. [2 marks]
- v) Express \vec{E} in Cartesian system for path C to D. [1 mark]
- vi) The close path integral of \vec{E} around ABCD in anti-clockwise direction is given by $\oint \vec{E} \cdot d\vec{l}$. Find its value in Cartesian system. [2 marks]
- vii) When \vec{E} is electric field with units of V/m, elaborate on the result you obtained in part (vi) above. What is the name of this result in circuit theory? [3 marks]

b) A vector is given as $\vec{B} = (y^2 + 2z)\vec{a}_x + \left(\frac{\cos z}{x^2+y}\right)\vec{a}_y + \ln(x^2 + y)\vec{a}_z$.

- i) Find the \vec{a}_x component of the vector $\vec{\nabla} \times \vec{B}$. [4 marks]
- ii) Find the \vec{a}_y component of the vector $\vec{\nabla} \times \vec{B}$. [4 marks]

Continued ...

Question 3

a) A conductor is located from $-L/2$ to $L/2$ along the y-axis and it carries a current I . Point P is located at Cartesian coordinate system of $(x, 0, z)$.

- i) Sketch the conductor and point P . [3 marks]
- ii) Express the current element $d\vec{l}$ in Cartesian system. [2 marks]
- iii) Express distant vector from $d\vec{l}$ to P , \vec{R} , in Cartesian system. [2 marks]
- iv) Express the vector $d\vec{l} \times \vec{R}$ in Cartesian system. [2 marks]
- v) Find the magnetic flux density, \vec{B} at point P due to the conductor. [3 marks]

b) A magnetic material with a permeability of μ_1 is interfacing with air. When a magnetic field intensity vector, H_0 passes through this interface, the following is obtained:

Figure Q3(b) The magnetic field intensity is deflected across the boundary

Find the ratio of μ_1/μ_0 [6 marks]

c) A copper wire is made into a circle of radius r_o with N turns.

- i) Find the magnetic flux density, \vec{B} at the centre of the circle. [4 marks]
- ii) Find the magnetic energy density, ω_m at the centre of the circle. [3 marks]

Continued ...

Question 4

a) A positive point charge, $+q$, is located at (2,2) on the x - y plane. The x -axis is grounded at 0V. A is a point with Cartesian coordinates of (3,3).

- i) Use image method, sketch the two charges and the two distant vectors to point A . [3 marks]
- ii) \vec{r}_1 is the distant vector from (2,2) to (3,3). Find its unit vector. [2 marks]
- iii) \vec{r}_2 is the distant vector from (2,-2) to (3,3). Find its unit vector. [2 marks]
- iv) Find the total electric field at point A , \vec{E} . [4 marks]

b) A spherical capacitor is constructed using two spheres separated by a dielectric medium. The inner sphere has a radius of R_i while the outer sphere has a radius of R_o . The permittivity of the dielectric is ϵ .

Figure Q4(b) Spherical capacitor with 2 spheres

- i) Find the electric field in the dielectric medium, \vec{E} when a total of charge $+Q$ is deposited on the inner sphere. [4 marks]
- ii) Find the capacitance of this structure. [6 marks]

c) What is the meaning of 'statics' in electrostatics? [2 marks]

d) Express the two equations from the Maxwell's Equation related to electric charges under magnetostatics condition. [2 marks]

End of Paper

Appendix**Physical Constants, Vector and Coordinate Transformation Relations**

Elementary charge	e	$1.60 \times 10^{-19} \text{ C}$
Permittivity constant	ϵ_0	$8.85 \times 10^{-12} \text{ F/m}$
Permeability constant	μ_0	$1.26 \times 10^{-6} \text{ H/m}$

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Differential length	$\hat{x}dx + \hat{y}dy + \hat{z}dz$	$\hat{r}dr + \hat{\phi}rd\phi + \hat{z}dz$	$\hat{R}dR + \hat{\theta}Rd\theta + \hat{\phi}R\sin\theta d\phi$
Differential surface areas	$d\vec{s}_x = \hat{x}dydz$ $d\vec{s}_y = \hat{y}dxdz$ $d\vec{s}_z = \hat{z}dxdy$	$d\vec{s}_r = \hat{r}rd\phi dz$ $d\vec{s}_\phi = \hat{\phi}rdz$ $d\vec{s}_z = \hat{z}rdrd\phi$	$d\vec{s}_R = \hat{R}R^2 \sin\theta d\theta d\phi$ $d\vec{s}_\theta = \hat{\theta}R \sin\theta dR d\phi$ $d\vec{s}_\phi = \hat{\phi}RdRd\theta$
Differential volume	$dxdydz$	$rdrd\phi dz$	$R^2 \sin\theta dR d\theta d\phi$

Transformation	Coordinate Variables	Unit Vectors	Vector Components
1.	$r = \sqrt{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ $z = z$	$\hat{r} = \hat{x}\cos\phi + \hat{y}\sin\phi$ $\hat{\phi} = -\hat{x}\sin\phi + \hat{y}\cos\phi$ $\hat{z} = \hat{z}$	$A_r = A_x \cos\phi + A_y \sin\phi$ $A_\phi = -A_x \sin\phi + A_y \cos\phi$ $A_z = A_z$
2.	$x = r\cos\phi$ $y = r\sin\phi$ $z = z$	$\hat{x} = \hat{r}\cos\phi - \hat{\phi}\sin\phi$ $\hat{y} = \hat{r}\sin\phi + \hat{\phi}\cos\phi$ $\hat{z} = \hat{z}$	$A_x = A_r \cos\phi - A_\phi \sin\phi$ $A_y = A_r \sin\phi + A_\phi \cos\phi$ $A_z = A_z$
3.	$R = \sqrt{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}(\sqrt{x^2 + y^2}/z)$ $\phi = \tan^{-1}(y/x)$	$\hat{R} = \hat{x}\sin\theta\cos\phi + \hat{y}\sin\theta\sin\phi + \hat{z}\cos\theta$ $\hat{\theta} = \hat{x}\cos\theta\cos\phi + \hat{y}\cos\theta\sin\phi - \hat{z}\sin\theta$ $\hat{\phi} = -\hat{x}\sin\phi + \hat{y}\cos\phi$	$A_R = A_x \sin\theta\cos\phi + A_y \sin\theta\sin\phi + A_z \cos\theta$ $A_\theta = A_x \cos\theta\cos\phi + A_y \cos\theta\sin\phi - A_z \sin\theta$ $A_\phi = -A_x \sin\phi + A_y \cos\phi$
4.	$x = R\sin\theta\cos\phi$ $y = R\sin\theta\sin\phi$ $z = R\cos\theta$	$\hat{x} = \hat{R}\sin\theta\cos\phi + \hat{\theta}\cos\theta\cos\phi - \hat{\phi}\sin\phi$ $\hat{y} = \hat{R}\sin\theta\sin\phi + \hat{\theta}\cos\theta\sin\phi + \hat{\phi}\cos\phi$ $\hat{z} = \hat{R}\cos\theta - \hat{\theta}\sin\theta$	$A_x = A_R \sin\theta\cos\phi + A_\theta \cos\theta\cos\phi - A_\phi \sin\phi$ $A_y = A_R \sin\theta\sin\phi + A_\theta \cos\theta\sin\phi + A_\phi \cos\phi$ $A_z = A_R \cos\theta - A_\theta \sin\theta$
5.	$R = \sqrt{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{R} = \hat{r}\sin\theta + \hat{z}\cos\theta$ $\hat{\theta} = \hat{r}\cos\theta - \hat{z}\sin\theta$ $\hat{\phi} = \hat{\phi}$	$A_R = A_r \sin\theta + A_z \cos\theta$ $A_\theta = A_r \cos\theta - A_z \sin\theta$ $A_\phi = A_\phi$
6.	$r = R\sin\theta$ $\phi = \phi$ $z = R\cos\theta$	$\hat{r} = \hat{R}\sin\theta + \hat{\theta}\cos\theta$ $\hat{\phi} = \hat{\phi}$ $\hat{z} = \hat{R}\cos\theta - \hat{\theta}\sin\theta$	$A_r = A_R \sin\theta + A_\theta \cos\theta$ $A_\phi = A_\phi$ $A_z = A_R \cos\theta - A_\theta \sin\theta$

$$(\hat{x} = \vec{a}_x, \hat{R} = \vec{a}_R, \hat{\theta} = \vec{a}_\theta)$$

Gradient, Divergence, Curl and Laplacian Operators

Cartesian coordinate (x, y, z)

$$\nabla V = \hat{x} \frac{\partial V}{\partial x} + \hat{y} \frac{\partial V}{\partial y} + \hat{z} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \vec{A} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \hat{x} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{y} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{z} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

Cylindrical coordinate (r, φ, z)

$$\nabla V = \hat{r} \frac{\partial V}{\partial r} + \hat{\phi} \frac{1}{r} \frac{\partial V}{\partial \phi} + \hat{z} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \vec{A} = \frac{1}{r} \frac{\partial}{\partial r} (r A_r) + \frac{1}{r} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \vec{A} = \frac{1}{r} \begin{vmatrix} \hat{r} & \hat{\phi} r & \hat{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_r & r A_\phi & A_z \end{vmatrix} = \hat{r} \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z} \right) + \hat{\phi} \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) + \hat{z} \left[\frac{1}{r} \left(\frac{\partial}{\partial r} (r A_\phi) - \frac{\partial A_r}{\partial \phi} \right) \right]$$

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$$

Spherical coordinate (R, θ, φ)

$$\nabla V = \hat{R} \frac{\partial V}{\partial R} + \hat{\theta} \frac{1}{R} \frac{\partial V}{\partial \theta} + \hat{\phi} \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi}$$

$$\nabla \cdot \vec{A} = \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 A_R) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{R \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

$$\begin{aligned} \nabla \times \vec{A} &= \frac{1}{R^2 \sin \theta} \begin{vmatrix} \hat{R} & \hat{\theta} R & \hat{\phi} R \sin \theta \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_R & R A_\theta & (R \sin \theta) A_\phi \end{vmatrix} \\ &= \hat{R} \frac{1}{R \sin \theta} \left[\frac{\partial}{\partial \theta} (A_\phi \sin \theta) - \frac{\partial A_\theta}{\partial \phi} \right] + \hat{\theta} \frac{1}{R} \left[\frac{1}{\sin \theta} \frac{\partial A_R}{\partial \phi} - \frac{\partial}{\partial R} (R A_\phi) \right] + \hat{\phi} \frac{1}{R} \left[\frac{\partial}{\partial R} (R A_\theta) - \frac{\partial A_R}{\partial \theta} \right] \end{aligned}$$

$$\nabla^2 V = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$$

Table of Integrals

$$\int \sin^2 \theta d\theta = \frac{\theta}{2} - \frac{1}{4} \sin 2\theta + \text{constant}$$

$$\int \cos^2 \theta d\theta = \frac{\theta}{2} + \frac{1}{4} \sin 2\theta + \text{constant}$$

$$\int \sin \theta \cos^2 \theta d\theta = -\frac{1}{3} \cos^3 \theta + \text{constant}$$

$$\int \cos \theta \sin^4 \theta d\theta = \frac{1}{5} \sin^5 \theta + \text{constant}$$

$$\int \sin 2\theta d\theta = -\frac{1}{2} \cos 2\theta + \text{constant}$$

$$\int x \sqrt{a^2 - x^2} dx = -\frac{1}{3} (a^2 - x^2)^{3/2} + \text{constant}$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \tan^{-1} \left(\frac{x}{\sqrt{a^2 - x^2}} \right) + \text{constant}$$

$$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} + \text{constant}$$

$$\int \frac{dz}{(r^2 + z^2)^{3/2}} = \frac{z}{r^2 \sqrt{r^2 + z^2}} + \text{constant}$$

$$\int \frac{r dr}{(r^2 + z^2)^{3/2}} = \frac{-1}{\sqrt{r^2 + z^2}} + \text{constant}$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + \text{constant}$$

Table of formula

$$\text{Biot-Savart's Law: } d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{l} \times \vec{R}}{R^3} = \frac{\mu_0 I}{4\pi} \frac{d\vec{l} \times \vec{a}_R}{R^2}$$

$$\text{Ampere's Law: } \oint \vec{H} \cdot d\vec{l} = I_{\text{enclosed}} ; \text{ Magnetic energy density, } \omega_m = \frac{1}{2} \vec{H} \cdot \vec{B}$$

$$\text{Coulomb's Law: } d\vec{E} = \frac{dq}{4\pi\epsilon_0 R^2} \vec{a}_R ; \text{ Electric field: } \vec{E} = -\vec{\nabla}V$$

$$\text{Gauss's Law: } \oint \vec{E} \cdot d\vec{s} = Q_{\text{enclosed}}/\epsilon ; \text{ Electric energy density, } \omega_e = \frac{1}{2} \vec{D} \cdot \vec{E}$$

$$\text{Maxwell's Equations: } \vec{\nabla} \cdot \vec{D} = \rho_v ; \vec{\nabla} \cdot \vec{B} = 0 ; \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} ; \vec{\nabla} \times \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$$

$$\text{Lorentz's Equation: } \vec{F} = q\vec{E} + q\vec{u} \times \vec{B}$$

$$\text{Reluctance: } \mathcal{R} = \frac{L}{\mu A}$$

End of Appendix