C12 - Function Notation

y = f(x) = y

f(x) = x + 2

y = x + 2

y(3) = 3 + 2

f(3) = ?

(3, y)

What is y when x is 3. Put 3 in for x.

f(x) = x + 2

Put whatever is inside the brackets in for x! So simple.

 $\frac{f(3) = 3 + 2}{f(3) = 5}$

(3,5)

f(x)=6

(x, 6)

What is x when y is 6. Put 6 in for f(x).

f(x) = x + 2 6 = x + 2 $-2 \qquad -2$

4 = xx = 4

(4,6)

f(x + 2) = ?

f(x) = x + 2

Put x + 2 in for f's x

 $\frac{f(x+2) = (x+2) + 2}{f(x+2) = x + 4}$

f(2x) = ?

f(x)=x+2

f(2x) = (2x) + 2

f(2x) = (2x) + 2

Put 2x in for f's x

C12 - 10.1 - Composite Function Notes

$$f(x) = x + 1$$

$$g(x)=2x$$

What is g(f(x))?

g(f(x)) =

g(x+1) =

2(x + 1) = 2x + 2

Put
$$f(x)$$
 into $g's x$.

What is f(g(x))?

$$f(g(x)) = f(2x) = (2x) + 1 = 2x + 1$$

Put g(x) into f's x.

$$f(x) = x + 1$$

$$g(x) = 2x$$

What is f(g(2))?

Substituting Numbers

$$g(x) = 2x$$

$$g(2) = 2(2)$$

$$g(2) = 4$$

$$\downarrow \qquad \qquad Find out what g(2) equals.$$

$$Then substitute into f(x)$$

$$f(x) = x + 1$$

$$f(4) = 4 + 1$$

$$f(4) = 5$$

Substituting Equations

$$f(g(x)) =$$
 $f(2x) = (2x) + 1$ Find out what $f(g(x))$ is.

Then substitute x value
 $f(2x) = (2x) + 1$ into equation.
 $f(2x) = (2x) + 1$ into equation.

$$f(g(2)) = 5$$

$$g(x)=x-1$$

f(g(2)) = 5

$$f(g(x)) = (x-1)^2$$

$$f(x) = ?$$

g(x) = ?

If g(x) = x - 1, What would f(x) need to be in order for $f(g(x)) = (x - 1)^2$

Ask yourself: What would f(x) need to be so when I substitute g(x) in for x we will get $(x-1)^2$

$$f(x) = x2$$

$$f(g(x)) =$$

$$f(x-1) = x2$$

$$= (x-1)2$$

$$g(x)$$
? $f(x) = ?$ Or $g(x) = (x - 1)^2$ $f(x) = x$

$$f(x) = x^{2}$$

$$f(g(x)) = x^{2} - 6x + 9$$

$$f(g(x)) = (x - 3)(x - 3)$$

$$f(g(x)) = (x - 3)^{2}$$

$$g(x) = x - 3$$

C12 - 10.2 - Composite Graphs Notes

y	=	2x

Х	f(x)
-2	-4
0	0
2	4

$$y = x$$

Х	g(x)	
-2	-2	
0	0	
2	2	

$$h(x) = f(x) + g(x)$$
$$= (2x) + (x)$$
$$h(x) = 3x$$

Don't forget to substitute with brackets incase you have to distribute a negative when subtracting.

Х	f(x)	g(x)	f(x)+g(x)
-2	-4	-2	-6
0	0	0	0
2	4	2	-6

Add y - values

$$m(x) = f(x)g(x)$$
$$= (2x)(x)$$
$$m(x) = 2x^{2}$$

Х	f(x)	g(x)	$f(x) \times g(x)$
-1	-2	-1	2
0	0	0	0
1	2	1	2

Multiply
y – values