PSALTer kinematic panel

Momentum	Norm	Frame	
k^{μ}	$k^2 == k_\mu k^\mu$	$n^{\mu} == \frac{k^{\mu}}{k}$	

Fundamental fields

Fields	Symmetries	SO(3)	Sources
$h_{\alpha\beta}$	StrongGenSet[{1,2},GenSet[(1,2)]]	$\frac{1}{3} \eta_{\alpha\beta} {}^{0^{+}}h^{\parallel} + {}^{2^{+}}h^{\parallel}{}_{\alpha\beta} + {}^{1}h^{\perp}{}_{\beta} \eta_{\alpha} + {}^{1}h^{\perp}{}_{\alpha} \eta_{\beta} - \frac{1}{3} {}^{0^{+}}h^{\parallel} \eta_{\alpha} \eta_{\beta} + {}^{0^{+}}h^{\perp} \eta_{\alpha} \eta_{\beta}$	${\cal T}_{lphaeta}$
$\overline{\mathcal{A}}_{lphaeta\chi}$	StrongGenSet[{},GenSet[]]	$\begin{bmatrix} \frac{4}{3} \ \stackrel{?}{\mathcal{A}}_{a} \parallel_{\beta\chi\alpha} + \frac{1}{2} \ \stackrel{?}{\mathcal{A}}_{s} \parallel_{\alpha\beta\chi} + \frac{1}{2} \ \stackrel{?}{\mathcal{A}}_{s} \parallel_{\alpha\chi\beta} + \frac{3}{3} \ \stackrel{?}{\mathcal{A}}_{s} \parallel_{\chi} & \eta_{\alpha\beta} - \frac{1}{6} \ \stackrel{?}{\mathcal{A}}_{s} \parallel_{\chi} & \eta_{\alpha\beta} + \frac{1}{15} \ \stackrel{?}{\mathcal{A}}_{s} \parallel_{\chi} & \eta_{\alpha\beta} - \frac{1}{2} \ \stackrel{?}{\mathcal{A}}_{s} \parallel_{\beta} & \eta_{\alpha\chi} - \frac{1}{6} \ \stackrel{?}{\mathcal{A}}_{s} \parallel_{\beta} & \eta_{\alpha\chi} + \frac{1}{15} \ \stackrel{?}{\mathcal{A}}_{s} \parallel_{\beta} & \eta_{\alpha\chi} + \frac{1}{3} \ \stackrel{?}{\mathcal{A}}_{s} \parallel_{\beta} & $	$W_{\alpha\beta\chi}$
		$\frac{1}{9} \circ \mathcal{A}_{S} \parallel \eta_{\alpha \chi} \parallel \eta_{\beta} - \frac{1}{9} \circ \mathcal{A}_{S} \pitchfork \eta_{\alpha \chi} \parallel \eta_{\beta} - \frac{1}{2} \parallel \mathcal{A}_{S} \parallel \chi \parallel \eta_{\alpha} \parallel \eta_{\beta} - \frac{1}{2} \parallel \mathcal{A}_{S} \parallel \chi \parallel \eta_{\alpha} \parallel \eta_{\beta} - \frac{1}{2} \parallel \mathcal{A}_{S} \parallel \chi \parallel \eta_{\alpha} \parallel \eta_{\beta} - \frac{1}{2} \parallel \mathcal{A}_{S} \parallel \chi \parallel \eta_{\alpha} \parallel \eta_{\beta} - \frac{1}{2} \parallel \mathcal{A}_{S} \parallel \chi \parallel \eta_{\alpha} \parallel \eta_{\beta} - \frac{1}{2} \parallel \mathcal{A}_{S} \parallel \chi \parallel \eta_{\alpha} \parallel \eta_{\beta} - \frac{1}{2} \parallel \mathcal{A}_{S} \parallel \eta_{\alpha} \parallel \eta_{\beta} - \frac{1}{2} \parallel \eta_{S} \parallel \eta_{S} + \frac{1}{2} \parallel \eta_{S} \parallel \eta_{$	
		$\frac{1}{2} ^{1+}\mathcal{A}_{S} ^{\perp} \alpha \beta} n_{\chi} + \frac{1}{3} ^{2+}\mathcal{A}_{S} ^{\parallel} \alpha \beta} n_{\chi} - \frac{1}{3} ^{2+}\mathcal{A}_{S} ^{\perp} \alpha \beta} n_{\chi} - \frac{1}{3} ^{0+}\mathcal{A}_{S} ^{\parallel} \eta_{\alpha \beta} n_{\chi} + \frac{1}{9} ^{0+}\mathcal{A}_{S} ^{\perp} \eta_{\alpha \beta} n_{\chi} + \frac{1}{2} ^{1+}\mathcal{A}_{S} ^{\parallel} \rho_{\alpha} n_{\chi} + \frac{1}{3} ^{1+}\mathcal{A}_{S} ^{\parallel} \rho_{\alpha} n_{\chi} + \frac{1}{3} ^{1+}\mathcal{A}_{S} ^{\parallel} \rho_{\alpha} n_{\chi} - \frac{1}{15} ^{1+}\mathcal{A}_{S} \rho_{\alpha} n_{\chi} - \frac{1}{15} \rho_{\alpha} n_{\chi} - \frac{1}{15} ^{1+}\mathcal{A}_{S} \rho_$	
		$\frac{1}{3} {}^{1}\mathcal{A}_{S}{}^{L}{$	

SO(3) irreps

SO(3)	Symmetries	Expansion	Sources
0^+h^\perp	StrongGenSet[{},GenSet[]]	$h_{\alpha\beta}$ n^{α} n^{β}	0+ T
0+ <i>h</i>	StrongGenSet[{},GenSet[]]	$h^{\alpha}_{\ \alpha} - h_{\alpha\beta} \ n^{\alpha} \ n^{\beta}$	0+71
$\frac{1}{h^{\perp}_{\alpha}}$	StrongGenSet[{},GenSet[]]	$h_{\alpha\beta} n^{\beta} - h_{\beta\chi} n_{\alpha} n^{\beta} n^{\chi}$	$^{1}\mathcal{T}^{\perp}{}_{lpha}$
$\frac{1}{2} h^{\parallel}_{\alpha\beta}$	StrongGenSet[{1,2},GenSet[(1,2)]]	$h_{\alpha\beta} - \frac{1}{3} \eta_{\alpha\beta} h_{\chi}^{\chi} + \frac{1}{3} h_{\chi}^{\chi} \eta_{\alpha} \eta_{\beta} - h_{\beta\chi} \eta_{\alpha} \eta^{\chi} - h_{\alpha\chi} \eta_{\beta} \eta^{\chi} + \frac{1}{3} \eta_{\alpha\beta} h_{\chi\delta} \eta^{\chi} \eta^{\delta} + \frac{2}{3} h_{\chi\delta} \eta_{\alpha} \eta_{\beta} \eta^{\chi} \eta^{\delta}$	$^{2^{+}}\mathcal{T}^{\parallel}{}_{lphaeta}$
⁰⁺ ℋ _a ∥	StrongGenSet[{}, GenSet[]] -	$\frac{1}{2} \mathcal{R}^{\alpha \beta}_{\ \ \alpha} n_{\beta} + \frac{1}{2} \mathcal{R}^{\alpha \beta}_{\ \ \alpha} n_{\beta}$	⁰⁺ <i>W</i> a [∥]
${}^{0^+}\mathcal{A}_{S}{}^{\mathtt{t}t}$	StrongGenSet[{},GenSet[]]	$\mathcal{A}^{lphaeta\chi}$ n_{lpha} n_{eta} n_{lpha} n_{χ}	⁰⁺ W _s ^{±t}
$0^+\mathcal{A}_{s}^{\parallel}$	StrongGenSet[{},GenSet[]]	$\mathcal{A}^{\alpha\beta}_{} n_{\alpha} + \mathcal{A}^{\alpha\beta}_{} n_{\beta} + \mathcal{A}^{\alpha\beta}_{} n_{\beta} - 3 \mathcal{A}^{\alpha\beta\chi} n_{\alpha} n_{\beta} n_{\chi}$	0+W _s
0 ⁺ ℋ _s ^{⊥h}	StrongGenSet[{},GenSet[]]	$\mathcal{R}^{lphaeta}_{\beta}$ n_{lpha} $-\frac{1}{2}$ $\mathcal{R}^{lpha}_{\beta}$ n_{eta} $-\frac{1}{2}$ $\mathcal{R}^{lphaeta}_{\alpha}$ n_{eta}	0+W _s ±h
⁰ A _a ∥	StrongGenSet[{},GenSet[]]	$\mathcal{A}^{lphaeta\chi}$ $\epsilon\eta_{lphaeta\chi\delta}$ n^{δ}	0⁻.Wa∥
$^{1^{+}}\mathcal{R}_{a}{}^{\parallel}{}_{\alpha\beta}$	StrongGenSet[{1,2},GenSet[-(1,2)]]	$\frac{1}{4} \mathcal{A}_{\alpha\beta}^{} n_{\chi} - \frac{1}{4} \mathcal{A}_{\alpha\beta}^{} n_{\chi} - \frac{1}{4} \mathcal{A}_{\beta\alpha}^{\alpha} n_{\chi} + \frac{1}{4} \mathcal{A}_{\beta\alpha}^{\alpha} n_{\chi} - \frac{1}{4} \mathcal{A}_{\beta}^{\alpha} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \mathcal{A}_{\beta}^{\alpha} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \mathcal{A}_{\alpha}^{\beta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \mathcal{A}_{\alpha}^{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha}^{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha$	$^{1^{+}}\mathcal{W}_{a}{}^{\parallel}{}_{lphaeta}$
$^{1^+}\mathcal{F}_{a^\perp lpha eta}$	StrongGenSet[{1,2},GenSet[-(1,2)]]	$\frac{1}{2} \mathcal{A}_{\alpha\beta}^{\chi} n_{\chi} - \frac{1}{2} \mathcal{A}_{\beta\alpha}^{\chi} n_{\chi} + \frac{1}{2} \mathcal{A}_{\beta}^{\chi\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \mathcal{A}_{\beta}^{\chi\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \mathcal{A}_{\alpha}^{\chi\delta} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \mathcal{A}_{\alpha}^{\chi\delta} n_{\beta} n_{\chi} n_{\delta}$	$^{1^+}\mathcal{W}_{a^\perp lpha eta}$
$^{1^+}\mathcal{F}_{S^{^{\perp}}lphaeta}$	StrongGenSet[{1,2}, GenSet[-(1,2)]] -	$\frac{1}{2} \mathcal{A}_{\alpha\beta}^{ \chi} n_{\chi} - \frac{1}{2} \mathcal{A}_{\alpha\beta}^{ \chi} n_{\chi} + \frac{1}{2} \mathcal{A}_{\beta\alpha}^{ \chi} n_{\chi} + \frac{1}{2} \mathcal{A}_{\beta}^{ \chi} n_{\chi} - \mathcal{A}_{\beta}^{ \chi\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \mathcal{A}_{\beta}^{ \chi\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \mathcal{A}_{\beta}^{ \chi\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \mathcal{A}_{\alpha}^{ \chi\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \mathcal{A}_{\alpha}^{ \chi\delta} n_{\gamma} n_{\gamma} n_{\delta} - \frac{1}{2} \mathcal{A}_{\alpha}^{ \chi\delta} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} - \frac{1}{2} \mathcal{A}_{\alpha}^{ \chi\delta} n_{\gamma} n_{\gamma}$	$^{1^+}\mathcal{W}_{s^-lphaeta}$
${}^1\mathcal{F}_{a}{}^{\parallel}{}_{\alpha}$	StrongGenSet[{}, GenSet[]] -	$\frac{1}{2} \mathcal{R}^{\beta}_{\ \alpha\beta} + \frac{1}{2} \mathcal{R}^{\beta}_{\ \beta\alpha} - \frac{1}{2} \mathcal{R}^{\beta\chi}_{\ \beta} n_{\alpha} n_{\chi} + \frac{1}{2} \mathcal{R}^{\beta\chi}_{\ \beta} n_{\alpha} n_{\chi} + \frac{1}{2} \mathcal{R}^{\beta\chi}_{\ \alpha} n_{\beta} n_{\chi} - \frac{1}{2} \mathcal{R}^{\beta\chi}_{\ \alpha} n_{\beta} n_{\chi} - \frac{1}{2} \mathcal{R}^{\beta\chi}_{\ \alpha} n_{\beta} n_{\chi} + \frac{1}{2} \mathcal{R}^{\gamma\chi}_{\ \alpha} n_{\gamma} + \frac{1}{2} \mathcal{R}^{\gamma\chi}_{\ \alpha} + \frac{1}{2} \mathcal{R}^{\gamma\chi}_{\ \alpha} n_{\gamma} + \frac{1}{2} \mathcal{R}^{\gamma\chi}_{\ \alpha} + \frac{1}{2} \mathcal{R}^{$	$^{1}\mathcal{W}_{a}{}^{\parallel}{}_{lpha}$
${}^1{\mathscr R}_{\mathsf a}{}^{\scriptscriptstyle \perp}{}_{lpha}$	StrongGenSet[{},GenSet[]]	$\frac{1}{2} \mathcal{A}^{\beta \chi}_{\ \alpha} n_{\beta} n_{\chi} - \frac{1}{2} \mathcal{A}^{\beta \chi}_{\ \alpha} n_{\beta} n_{\chi}$	$^{1}\mathcal{W}_{a^{\perp}\alpha}$
${}^1\mathcal{F}_{s}{}^{\scriptscriptstyle{\perp}t}{}_{\alpha}$	StrongGenSet[{},GenSet[]]	$\mathcal{A}_{\alpha}^{\ \beta\chi}\ n_{\beta}\ n_{\chi} + \mathcal{A}_{\ \alpha}^{\beta\chi}\ n_{\beta}\ n_{\chi} + \mathcal{A}^{\beta\chi}_{\ \alpha}\ n_{\beta}\ n_{\chi} - 3\ \mathcal{A}^{\beta\chi\delta}\ n_{\alpha}\ n_{\beta}\ n_{\chi}\ n_{\delta}$	$^{1}\mathcal{W}_{s}^{\perp t}{}_{\alpha}$
${}^{1}\mathcal{A}_{s}{}^{\parallelt}{}_{\alpha}$	StrongGenSet[{},GenSet[]]	$\mathcal{A}_{\alpha\beta}^{\ \beta} + \mathcal{A}_{\alpha\beta}^{\beta} + \mathcal{A}_{\beta\alpha}^{\beta} - \mathcal{A}_{\chi}^{\beta\chi} n_{\alpha} n_{\beta} - \mathcal{A}_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \mathcal{A}_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \mathcal{A}_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - \mathcal{A}_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - \mathcal{A}_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + 3 \mathcal{A}_{\alpha}^{\beta\chi\delta} n_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$^{1}\mathcal{W}_{s}^{\parallelt}{}_{\alpha}$
${}^1\mathcal{A}_{s}{}^{{\scriptscriptstyle\perp}h}{}_{\alpha}$	StrongGenSet[{},GenSet[]]	$\mathcal{A}_{\alpha}^{\ \beta\chi} \ n_{\beta} \ n_{\chi} - \frac{1}{2} \ \mathcal{A}^{\beta\chi}_{\ \alpha} \ n_{\beta} \ n_{\chi} - \frac{1}{2} \ \mathcal{A}^{\beta\chi}_{\ \alpha} \ n_{\beta} \ n_{\chi}$	$^{1}\mathcal{W}_{s}^{\perp h}{}_{\alpha}$
${}^{1}\mathcal{A}_{s}{}^{\parallelh}{}_{\alpha}$	StrongGenSet[{},GenSet[]]	$\mathcal{A}_{\alpha\beta}^{\ \beta} - \frac{1}{2} \mathcal{R}^{\beta}_{\ \alpha\beta} - \frac{1}{2} \mathcal{R}^{\beta}_{\ \beta\alpha} - \mathcal{R}^{\beta\chi}_{\ \alpha} n_{\alpha} n_{\beta} + \frac{1}{2} \mathcal{R}^{\beta\chi}_{\ \beta} n_{\alpha} n_{\chi} + \frac{1}{2} \mathcal{R}^{\beta\chi}_{\ \beta} n_{\alpha} n_{\chi} - \mathcal{R}_{\alpha}^{\ \beta\chi} n_{\beta} n_{\chi} + \frac{1}{2} \mathcal{R}^{\beta\chi}_{\ \alpha} n_{\beta} n_{\chi} + \frac{1}{2} \mathcal{R}^{\gamma\chi}_{\ \alpha} n_{\beta} n_{\chi} + \frac{1}{2} \mathcal{R}^{\gamma\chi}_{\ \alpha} n_{\beta} n_{\chi} + \frac{1}{2} $	$^{1}\mathcal{W}_{s}^{\parallelh}{}_{lpha}$
$^{2^{+}}\mathcal{F}_{a}{}^{\parallel}{}_{\alpha\beta}$	StrongGenSet[{1, 2}, GenSet[(1,2)]] -	$\frac{1}{4} \mathcal{A}_{\alpha\beta}^{ X} n_{\chi} + \frac{1}{4} \mathcal{A}_{\alpha\beta}^{ X} n_{\chi} - \frac{1}{4} \mathcal{A}_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{4} \mathcal{A}_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{6} \mathcal{A}_{\chi}^{ X} n_{\alpha\beta} n_{\delta} - \frac{1}{6} \mathcal{A}_{\chi}^{ X} n_{\beta} - \frac{1}{6} \mathcal{A}_{\chi}^{ X} n_$	2 ⁺ W _a _{αβ}
		$\frac{1}{6} \mathcal{A}_{\chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{6} \mathcal{A}_{\chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{4} \mathcal{A}_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \mathcal{A}_{\alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta}$	
$^{2^{+}}\mathcal{R}_{s}^{\parallel}_{\alpha\beta}$	StrongGenSet[{1,2},GenSet[(1,2)]]	$\frac{1}{2} \mathcal{A}_{\alpha\beta}^{} n_{\chi} + \frac{1}{2} \mathcal{A}_{\alpha\beta}^{} n_{\chi} + \frac{1}{2} \mathcal{A}_{\beta\alpha}^{\alpha} n_{\chi} - \frac{1}{3} \mathcal{A}_{\beta\alpha}^{\alpha} n_{\chi} + \frac{1}{3} \mathcal{A}_{\beta\alpha}^{\alpha} n_{\chi} - \frac{1}{3} \mathcal{A}_{\alpha\beta}^{\alpha} n_{\chi} - \frac{1}$	$^{2^{+}}W_{s}^{\parallel}{}_{\alpha\beta}$
		$\frac{1}{3} \mathcal{R}^{\chi\delta}_{ \ \ \chi}^{ \ \ n_{\alpha}} n_{\beta}^{ \ \ n_{\delta}^{ \ \ -}} \mathcal{A}^{\chi\delta}_{ \beta}^{ \ \ \delta} n_{\alpha}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}} \mathcal{A}^{\chi\delta}_{ \alpha}^{ \ \ n_{\beta}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}}} \mathcal{A}^{\chi\delta}_{ \ \ \alpha}^{ \ \ n_{\beta}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}}} \mathcal{A}^{\chi\delta\epsilon}_{ \ \ \alpha}^{ \ \ n_{\beta}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}}} \mathcal{A}^{\chi\delta\epsilon}_{ \ \ \alpha}^{ \ \ n_{\beta}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}}} \mathcal{A}^{\chi\delta\epsilon}_{ \ \ \alpha}^{ \ \ n_{\beta}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}}} \mathcal{A}^{\chi\delta\epsilon}_{ \ \ \alpha}^{ \ \ n_{\beta}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}}} \mathcal{A}^{\chi\delta\epsilon}_{ \ \ \alpha}^{ \ \ \alpha}_{\beta}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}}} \mathcal{A}^{\chi\delta\epsilon}_{ \ \ \alpha}^{ \ \ \alpha}_{\beta}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}}} \mathcal{A}^{\chi\delta\epsilon}_{ \ \ \alpha}^{ \ \ \alpha}_{\beta}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}}} \mathcal{A}^{\chi\delta\epsilon}_{ \ \ \alpha}^{ \ \ \alpha}_{\beta}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}}} \mathcal{A}^{\chi\delta\epsilon}_{ \ \ \alpha}^{ \ \ \alpha}_{\beta}^{ \ \ n_{\chi}^{ \ \ n_{\delta}^{ \ \ -}}} \mathcal{A}^{\chi\delta\epsilon}_{ \ \ \alpha}^{ \ \ \alpha}_{\beta}^{ \ \ n_{\chi}^{ \ \ \ \alpha}_{\beta}^{ \ \ \alpha}_{\alpha}^{ \ \ \alpha}_{\beta}^{ \ \ \alpha}_{\alpha}^{ \ \ \alpha}_{\beta}^{ \ \ \alpha}_{\alpha}^{ \ \ \ \ \alpha}_{\alpha}^{ \ \ \ \alpha}_{\beta}^{ \ \ \alpha}_{\alpha}^{ \ \ \ \alpha}_{\alpha}^{ \ \ \ \alpha}_{\alpha}^{ \ \$	
$^{2^{+}}\mathcal{F}_{S}{}^{\perp}{}_{lphaeta}$	StrongGenSet[{1, 2}, GenSet[(1,2)]] -	$ \begin{vmatrix} \frac{1}{4} \mathcal{A}_{\alpha\beta}^{ X} n_{\chi} - \frac{1}{4} \mathcal{A}_{\alpha\beta}^{ X} n_{\chi} - \frac{1}{4} \mathcal{A}_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{2} \mathcal{A}_{\alpha\beta}^{ X} n_{\chi} + \frac{1}{2} \mathcal{A}_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{2} \mathcal{A}_{\beta\alpha}^{ X} n_{\chi} - \frac{1}{3} \mathcal{A}_{\delta\alpha}^{ X\delta} n_{\alpha\beta}^{ X\delta} n_{\chi} + \frac{1}{3} \mathcal{A}_{\delta\alpha}^{ X\delta} n_{\alpha\beta}^{ X\delta} n_{\chi} + \frac{1}{6} \mathcal{A}_{\chi}^{ X\delta} n_{\alpha\beta}^{ X$	$^{2^+}\mathcal{W}_{s}{}^{\perp}{}_{\alpha\beta}$
		$\frac{1}{6} \mathcal{R}_{\ \chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} - \frac{1}{6} \mathcal{R}_{\ \chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{2} \mathcal{R}_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{R}_{\ \beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{R}_{\ \beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \mathcal{R}_{\alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{R}_{\ \alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{R}_{\$	
${}^2\mathcal{F}_{a}{}^{\parallel}{}_{\alpha\beta\chi}$	StrongGenSet[{1, 2}, GenSet[-(1,2)]] -	$\begin{bmatrix} \frac{1}{8} \mathcal{A}_{\alpha\beta\chi} + \frac{1}{8} \mathcal{A}_{\alpha\chi\beta} + \frac{1}{8} \mathcal{A}_{\beta\alpha\chi} - \frac{1}{8} \mathcal{A}_{\beta\chi\alpha} + \frac{1}{4} \mathcal{A}_{\chi\alpha\beta} - \frac{1}{4} \mathcal{A}_{\chi\beta\alpha} + \frac{3}{16} \mathcal{A}^{\delta}_{\beta} \eta_{\alpha\chi} - \frac{3}{16} \mathcal{A}^{\delta}_{\delta\beta} \eta_{\alpha\chi} - \frac{3}{16} \mathcal{A}^{\delta}_{\alpha} \eta_{\beta\chi} + \frac{3}{16} \mathcal{A}^{\delta}_{\alpha} \eta_{\beta\chi} - \frac{3}{16} \mathcal{A}^{\delta}_{\beta} \eta_{\alpha\chi} - \frac{3}{16} \mathcal{A}^{\delta}_{\beta} - \frac{3}{16} \mathcal{A}^{\delta}_{\beta$	$^{2}W_{a}^{\parallel}_{\alpha\beta\chi}$
		$\frac{3}{16} \mathcal{A}^{\delta}_{\delta\beta} n_{\alpha} n_{\chi} + \frac{3}{16} \mathcal{A}^{\delta}_{\alpha\delta} n_{\beta} n_{\chi} - \frac{3}{16} \mathcal{A}^{\delta}_{\delta\alpha} n_{\beta} n_{\chi} + \frac{1}{8} \mathcal{A}^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{8} \mathcal{A}^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} + \frac{1}{4} \mathcal{A}^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} - \frac{1}{4} \mathcal{A}^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} - \frac{1}{8} \mathcal{A}^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{8} \mathcal{A}^{\delta}_{\gamma\chi} n_{$	
		$\frac{1}{8} \mathcal{A}_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} + \frac{1}{8} \mathcal{A}_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} - \frac{1}{4} \mathcal{A}_{\chi\alpha}^{\delta} n_{\beta} n_{\delta} + \frac{1}{4} \mathcal{A}_{\chi\alpha}^{\delta} n_{\beta} n_{\delta} - \frac{1}{8} \mathcal{A}_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} + \frac{1}{8} \mathcal{A}_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} + \frac{1}{8} \mathcal{A}_{\alpha\beta}^{\delta} n_{\chi} n_{\delta} - \frac{1}{8} \mathcal{A}_{\alpha\beta}^{\delta} n_{\chi} n_{\delta} - \frac{1}{8} \mathcal{A}_{\beta\alpha}^{\delta} n_{\chi} n_{\delta} + \frac{1}{8} \mathcal{A}_{\alpha\zeta}^{\delta} n_{\zeta} n_{\zeta} + \frac{1}$	
		$ \frac{1}{8} \mathcal{A}_{\beta\alpha}^{\delta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha\beta}^{\delta} n_{\chi} n_{\delta} + \frac{1}{4} \mathcal{A}_{\beta\alpha}^{\delta} n_{\chi} n_{\delta} - \frac{3}{16} \mathcal{A}_{\delta}^{\delta\epsilon} n_{\beta\chi} n_{\alpha} n_{\epsilon} + \frac{3}{16} \mathcal{A}_{\delta}^{\delta\epsilon} n_{\beta\chi} n_{\alpha} n_{\epsilon} + \frac{3}{16} \mathcal{A}_{\delta}^{\delta\epsilon} n_{\alpha\chi} n_{\beta} n_{\epsilon} - \frac{3}{16} \mathcal{A}_{\delta}^{\delta\epsilon} n_{\alpha\chi} n_{\beta} n_{\epsilon} - \frac{3}{16} \mathcal{A}_{\delta}^{\delta\epsilon} n_{\alpha\chi} n_{\delta} n_{\epsilon} + \frac{3}{16} \mathcal{A}_{\delta}^{\delta\epsilon} n_{\alpha\chi} n_{\delta} n_{\delta} + \frac{3}{16} \mathcal{A}_{\delta}^{\delta\epsilon} n_{\delta} n_{\delta} n_{\delta} + \frac{3}{16} \mathcal{A}_{\delta}^{\delta\epsilon} n_{\delta} n_{\delta} n_{\delta} n_{\delta} + \frac{3}{16} \mathcal{A}_{\delta}^{\delta\epsilon} n_{\delta} n_$	
		$\frac{\frac{3}{16}\mathcal{A}^{\delta\epsilon}$	
$^{2}\mathcal{F}_{s}^{\parallel}_{\alpha\beta\chi}$	StrongGenSet[{1,2},GenSet[-(1,2)]]	$\frac{1}{3} \mathcal{A}_{\alpha\beta\chi} + \frac{1}{3} \mathcal{A}_{\alpha\chi\beta} - \frac{1}{3} \mathcal{A}_{\beta\alpha\chi} - \frac{1}{3} \mathcal{A}_{\beta\chi\alpha} + \frac{1}{3} \mathcal{A}_{\beta\delta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$^{2}W_{s}^{\parallel}_{\alpha\beta\chi}$
		$\begin{bmatrix} \frac{1}{6} \mathcal{A}^{\delta}_{\beta} & n_{\alpha} & n_{\chi} + \frac{1}{3} \mathcal{A}^{\delta}_{\delta} & n_{\beta} & n_{\chi} - \frac{1}{6} \mathcal{A}^{\delta}_{\alpha\delta} & n_{\beta} & n_{\chi} - \frac{1}{6} \mathcal{A}^{\delta}_{\alpha\delta} & n_{\beta} & n_{\chi} + \frac{1}{3} \mathcal{A}^{\delta}_{\beta\chi} & n_{\alpha} & n_{\delta} + \frac{1}{3} \mathcal{A}^{\delta}_{\beta\chi} & n_{\alpha} & n_{\delta} - \frac{1}{3} \mathcal{A}^{\delta}_{\beta\chi} & n_{\alpha} & n_{\delta} + \frac{1}{3} \mathcal{A}^{\delta\epsilon}_{\beta} & n_{\alpha} & n_{\delta} + \frac{1}{3} \mathcal{A}^{\delta\epsilon}_{\epsilon} & n_{\alpha} & n_{\delta} - \frac{1}{3} \mathcal{A}^{\delta\epsilon}_{\alpha} & n_{\alpha} & n_{\delta} - \frac{1}{3} \mathcal{A}^{\delta\epsilon$	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\begin{bmatrix} \frac{1}{6} \mathcal{A} & \delta & \eta_{\beta \chi} & \eta_{\alpha} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\beta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} & \eta_{\delta} & \eta_{\varepsilon} + \frac{1}{6} \mathcal{A} & \delta & \eta_{\alpha \chi} $	
$\frac{1}{3}\mathcal{F}_{s}^{\parallel}_{\alpha\beta\nu}$	StrongGenSet[{1, 2, 3}, GenSet[(1,2), (2,3)]]	$\frac{1}{6} \mathcal{A}_{\alpha\beta\gamma} + \frac{1}{6} \mathcal{A}_{\beta\alpha\gamma} + \frac{1}{6} \mathcal{A}_{\beta\alpha\gamma} + \frac{1}{6} \mathcal{A}_{\gamma\alpha\beta} + \frac{1}{6} \mathcal{A}_{\gamma\alpha\beta} + \frac{1}{6} \mathcal{A}_{\gamma\alpha\beta} - \frac{1}{15} \mathcal{A}_{\gamma\delta} + \frac{1}{6} \mathcal{A}_{\gamma\alpha\beta} - \frac{1}{15} \mathcal{A}_{\delta\gamma} + \frac{1}{6} \mathcal{A}_{\alpha\beta\gamma} + \frac{1}{6} \mathcal{A}_{\alpha\gamma} - \frac{1}{15} \mathcal{A}_{\alpha\delta} + \frac{1}{6} \mathcal{A}_{\gamma\alpha\beta} - \frac{1}{15} \mathcal{A}_{\alpha\beta} + \frac{1}{6} \mathcal{A}_{\gamma\alpha\beta} + \frac{1}{6} $	³ W _s [∥] _{αβχ}
ισις αβχ		$\begin{bmatrix} 6 & 3 & \alpha \beta \lambda & 6 & 3 & \alpha \lambda \lambda \lambda & 6 & 3 & \alpha \lambda \lambda \lambda & 6 & 3 & \alpha \lambda \lambda \lambda \lambda & 6 & 3 & \alpha \lambda \lambda$	ι γγ ς αβχ
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\begin{bmatrix} \frac{1}{6} \mathcal{A}_{\alpha \beta} & n_{\beta} & n_{\delta} - \frac{1}{6}$	
		$ \frac{1}{6} \mathcal{A}_{\beta \alpha}^{\delta} n_{\chi} n_{\delta} - \frac{1}{6} \mathcal{A}_{\alpha \beta}^{\delta} n_{\chi} n_{\delta} - \frac{1}{6} \mathcal{A}_{\beta \alpha}^{\delta} n_{\chi} n_{\delta} + \frac{1}{15} \mathcal{A}_{\beta \alpha}^{\delta \epsilon} n_{\alpha \beta} n_{\chi} n_{\delta} - \frac{1}{5} \mathcal{A}_{\epsilon}^{\delta \epsilon} n_{\alpha \beta} n_{\chi} n_{\delta} + \frac{1}{15} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\alpha \beta} n_{\chi} n_{\delta} + \frac{1}{15} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\alpha \beta} n_{\chi} n_{\delta} + \frac{1}{15} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\alpha \beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{1}{15} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\alpha \beta} n_{\chi} n_{\delta} + \frac{1}{15} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\alpha \beta} n_{\gamma} n_{\gamma} n_{\delta} + \frac{1}{15} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\gamma} n_{\gamma}$	
		$\frac{1}{15} \mathcal{A}^{\delta\epsilon}_{\delta} \eta_{\alpha\chi} n_{\beta} n_{\epsilon} + \frac{1}{15} \mathcal{A}^{\delta\epsilon}_{\delta} \eta_{\alpha\beta} n_{\chi} n_{\epsilon} + \frac{1}{15} \mathcal{A}^{\delta\epsilon}_{\delta} \eta_{\alpha\beta} n_{\chi} n_{\epsilon} - \frac{1}{5} \mathcal{A}^{\delta\epsilon}_{\delta} n_{\alpha} n_{\beta} n_{\chi} n_{\epsilon} - \frac{1}{5} \mathcal{A}^{\delta\epsilon}_{\delta} n_{\alpha} n_{\beta} n_{\chi} n_{\epsilon} + \frac{1}{15} \mathcal{A}^{\delta\epsilon}_{\delta} \eta_{\alpha\beta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} + \frac{1}{15} \mathcal{A}^{\delta\epsilon}_{\delta} \eta_{\alpha\beta} n_{\delta} n_{\delta$	
		$\frac{1}{15} \mathcal{A}^{\delta\epsilon}_{ \chi} \eta_{\alpha\beta} n_{\delta} n_{\epsilon} + \frac{1}{15} \mathcal{A}^{\delta\epsilon}_{\beta} \eta_{\alpha\chi} n_{\delta} n_{\epsilon} + \frac{1}{15} \mathcal{A}^{\delta\epsilon}_{ \beta} \eta_{\alpha\chi} n_{\delta} n_{\epsilon} + \frac{1}{15} \mathcal{A}^{\delta\epsilon}_{ \beta} \eta_{\alpha\chi} n_{\delta} n_{\epsilon} + \frac{1}{15} \mathcal{A}^{\delta\epsilon}_{ \alpha} \eta_{\beta\chi} n_{\delta} n_{\epsilon} + \frac{1}{15} \mathcal{A}^{\delta\epsilon}_{ \alpha} \eta_{\delta\chi} n_{\delta} n_{\epsilon} + \frac{1}{15} \mathcal{A}^{\delta\epsilon}_{ \alpha} \eta_{\delta\chi} n_{\delta\chi} n_{\chi} n_{\chi} $	
		$\frac{4}{15}\mathcal{A}_{\chi}^{\ \delta\epsilon}n_{\alpha}n_{\beta}n_{\delta}n_{\epsilon} + \frac{4}{15}\mathcal{A}_{\ \chi}^{\delta\epsilon}n_{\alpha}n_{\beta}n_{\delta}n_{\epsilon} + \frac{4}{15}\mathcal{A}_{\ \chi}^{\delta\epsilon}n_{\alpha}n_{\beta}n_{\delta}n_{\epsilon} + \frac{4}{15}\mathcal{A}_{\beta}^{\ \delta\epsilon}n_{\alpha}n_{\chi}n_{\delta}n_{\epsilon} + \frac{4}{15}\mathcal{A}_{\beta}^{\delta\epsilon}n_{\alpha}n_{\chi}n_{\delta}n_{\epsilon} + \frac{4}{$	
		$ \frac{4}{15} \mathcal{A}^{\delta \epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \mathcal{A}^{\delta \epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{1}{5} \mathcal{A}^{\delta \epsilon \phi} n_{\beta \chi} n_{\alpha} n_{\delta} n_{\epsilon} n_{\phi} - \frac{1}{5} \mathcal{A}^{\delta \epsilon \phi} n_{\alpha \chi} n_{\beta} n_{\delta} n_{\epsilon} n_{\phi} - \frac{1}{5} \mathcal{A}^{\delta \epsilon \phi} n_{\alpha \beta} n_{\chi} n_{\delta} n_{\epsilon} n_{\phi} - \frac{2}{5} \mathcal{A}^{\delta \epsilon \phi} n_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} n_{\phi} $	