Seat	
No.	

[4757]-1044

S.E. (Electronics & E & TC) (First Semester)

EXAMINATION, 2015

NETWORK THEORY

(2012 Pattern)

Time: Two Hours

Maximum Marks: 50

N.B. :— (i) Neat diagrams must be drawn wherever necessary.

- (ii) Figures to the right indicate full marks.
- (iii) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- (iv) Assume suitable data, if necessary.
- 1. (a) Obtain Thevenin and Norton equivalent circuits for the network shown in fig. 1. [6]

Fig. 1

(b) For the graph and tree given in Fig. 2. find complete incidence matrix, tieset matrix and F-cutset matrix: [6]

Fig. 2

Or

2. (a) For the network shown in Fig. 3, determine the current I_2 using superposition theorem. [6]

Fig. 3

(b) For the given incidence matrix, draw oriented graph and determine number of possible trees. [6]

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 1 \end{bmatrix}$$

3. (a) Find the expression for $V_c(t)$ in the network shown in Fig. 4.

Fig. 4

(b) A series resonant circuit consists of $R = 10 \Omega$, L = 100 mH and C = 10 nF. Find resonant frequency ω_r , F_r , quality factor Q_r at resonant frequency, bandwidth. Also find current flowing through circuit at resonance if the applied voltage is 100 V. [6]

[4757]-1044 3 P.T.O.

4. (a) For the network shown in Fig. 5, obtain the expression for $i_{\rm L}(t)$. [6]

Fig. 5

- (b) A parallel resonant circuit has a coil of 100 μH with Q factorof 100 and is resonated at 1 MHz. Find: [6]
 - (i) Capacitance
 - (ii) Resistance of coil
 - (iii) Bandwidth
 - (iv) Impedance at parallel resonance
- 5. (a) A Pi-section constant K filter consists of series arm inductance of 20 mH and two shunt arm capacitors of 0.1 μ F each. Calculate cut-off frequency, attenuation at 1.5 kHz. Also find nominal impedance Z_{π} at f=0 and $f=f_c$. [7]

(b) For a T-section symmetrical network derive the expression for Z_{oc} , Z_{sc} and characteristic impedance Z_{o} . [6]

Or

- (a) For the system with 500 Ω resistance design T and Pi attenuators to have 100 dB attenuation. Also draw T and Pi attenuators showing the designed component values.
 - (b) Draw the T section and Pi section contant K Band pass filter circuits and write equations for components in series arm and shunt arm. [6]
- 7. (a) Explain different network functions for one port and two port networks. [7]
 - (b) Determine Z parameters for the network shown in Fig. 6. [6]

Fig. 6

8. (a) Determine the impedance function Z(s) for the network shown
Fig. 7. Also draw its pole zero plot. [7]

Fig. 7

(b) Determine Y parameters of the network shown in Fig. 8. [6]

Fig. 8