Importing libraries and Beverage quality dataset

'Alcohol','Residual Sugar','Density']

df = pd.read_csv(r"C:/Users/Aadya/Downloads/Beverage_Quality.csv")

Using matplotlib backend: Qt5Agg

```
from numpy import arange
import numpy
from matplotlib import pyplot as plt
from scipy.stats import norm
import pandas as pd
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.linear_model import LinearRegression
from sklearn import model_selection

plt.rcParams['figure.figsize'] = [16, 7]

M columns=['Fixed Acidity','Volatile Acidity','Citric Acid','Chlorides','Free SO2','Total SO2','Sulphates','pH','Quality',
```

Data Exploration

```
df.columns = columns
  df.head()
```

9]:

	Fixed Acidity	Volatile Acidity	Citric Acid	Chlorides	Free SO2	Total SO2	Sulphates	pН	Quality	Alcohol	Residual Sugar	Density
0	7.4	0.70	0.00	0.076	11.0	34.0	0.56	3.51	5	9.4	1.9	0.9978
1	7.8	0.88	0.00	0.098	25.0	67.0	0.68	3.20	5	9.8	2.6	0.9968
2	7.8	0.76	0.04	0.092	15.0	54.0	0.65	3.26	5	9.8	2.3	0.9970
3	11.2	0.28	0.56	0.075	17.0	60.0	0.58	3.16	6	9.8	1.9	0.9980
4	7.4	0.70	0.00	0.076	11.0	34.0	0.56	3.51	5	9.4	1.9	0.9978

| #Information about the dataset df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
```

#	Column	Non-Null Count	Dtype
0	Fixed Acidity	1599 non-null	float64
1	Volatile Acidity	1599 non-null	float64
2	Citric Acid	1599 non-null	float64
3	Chlorides	1599 non-null	float64
4	Free SO2	1599 non-null	float64
5	Total SO2	1599 non-null	float64
6	Sulphates	1599 non-null	float64
7	рН	1599 non-null	float64
8	Quality	1599 non-null	int64
9	Alcohol	1599 non-null	float64
10	Residual Sugar	1599 non-null	float64
11	Density	1599 non-null	float64

dtypes: float64(11), int64(1) memory usage: 150.0 KB

$\#Data\ types\ of\ the\ dataset\ columns\ df.dtypes$

Fixed Acidity float64 Volatile Acidity float64 float64 Citric Acid Chlorides float64 Free SO2 float64 Total SO2 float64 Sulphates float64 float64 pН Quality int64 Alcohol float64 Residual Sugar float64 float64 Density dtype: object

#Memory used by each column in the dataset

df.memory_usage()

Index 128 Fixed Acidity 12792 Volatile Acidity 12792 Citric Acid 12792 Chlorides 12792 Free SO2 12792 Total SO2 12792 Sulphates 12792 pН 12792 Quality 12792 Alcohol 12792 Residual Sugar 12792 12792 Density dtype: int64

#Total memory used by the dataset

df.memory_usage().sum()

153632

#Boxplot
df['Fixed Acidity'].plot.box(figsize=(8, 15)); # Boxplot of a column

#Boxplot of all the columns with numerical data df.boxplot(figsize=(20,20))

<AxesSubplot:>


```
#Histogram
df['Citric Acid'].hist(bins=50, figsize=(15, 5));
```



```
ax = df['Fixed Acidity'].hist(bins=100, grid=False, color='green', figsize=(15, 5)) # grid turned off and color changed ax.set_xlabel('Fixed Acidity') ax.set_ylabel('Volatile Acidity') ax.set_xlim(4,16) #limiting display range to 0-6 for the x-axis ax.set_ylim(0,2); #limiting display range to 0-2 for the y-axis
```



```
#Barplot with Density as dependent variable
df_avg_density = df.groupby('Fixed Acidity')['Density'].mean()
df_avg_density[:].plot.bar(color='orange');
```


Fixed Acidity

Data Cleaning

1359

df.isnull().sum().sum()

▶ #Check if there are missing values in the dataset

#Statistics for all the dataset columns df.describe()

	Fixed Acidity	Volatile Acidity	Citric Acid	Chlorides	Free SO2	Total SO2	Sulphates	рН	Quality	Alcohol	Residual Sugar	
count	1359.000000	1359.000000	1359.000000	1359.000000	1359.000000	1359.000000	1359.000000	1359.000000	1359.000000	1359.000000	1359.000000	1
mean	8.310596	0.529478	0.272333	0.088124	15.893304	46.825975	0.658705	3.309787	5.623252	10.432315	2.523400	
std	1.736990	0.183031	0.195537	0.049377	10.447270	33.408946	0.170667	0.155036	0.823578	1.082065	1.352314	
min	4.600000	0.120000	0.000000	0.012000	1.000000	6.000000	0.330000	2.740000	3.000000	8.400000	0.900000	
25%	7.100000	0.390000	0.090000	0.070000	7.000000	22.000000	0.550000	3.210000	5.000000	9.500000	1.900000	
50%	7.900000	0.520000	0.260000	0.079000	14.000000	38.000000	0.620000	3.310000	6.000000	10.200000	2.200000	
75%	9.200000	0.640000	0.430000	0.091000	21.000000	63.000000	0.730000	3.400000	6.000000	11.100000	2.600000	
max	15.900000	1.580000	1.000000	0.611000	72.000000	289.000000	2.000000	4.010000	8.000000	14.900000	15.500000	

#Variance df.var()

Fixed Acidity	3.017134
Volatile Acidity	0.033500
Citric Acid	0.038235
Chlorides	0.002438
Free SO2	109.145456
Total SO2	1116.157653
Sulphates	0.029127
рН	0.024036
Quality	0.678281
Alcohol	1.170866
Residual Sugar	1.828752
Density	0.000003
dtype: float64	

#Skewness df.skew()

Fixed Acidity 0.941041 Volatile Acidity 0.729279 Citric Acid 0.312726 Chlorides 5.502487 Free SO2 1.226579 1.540368 Total SO2 Sulphates 2.406505 0.232032 рΗ Quality 0.192407 Alcohol 0.859841 Residual Sugar 4.548153 0.044778 Density dtype: float64

#Kurtosis

df.kurtosis()

Fixed Acidity 1.049673 Volatile Acidity 1.249243 Citric Acid -0.788921 Chlorides 38.624653 1.892691 Free SO2 Total SO2 4.042257 Sulphates 11.102282 0.879790 рΗ Quality 0.340256 0.159739 Alcohol Residual Sugar 29.364592 Density 0.830659 dtype: float64

Data Selection

 Column-wise f.corr()	correlation	in the d	ataset										
Fixed Acidity	1.000000	-0.255124	0.667437	0.085886	-0.140580	-0.103777	0.190269	-0.686685	0.119024	-0.061596	0.111025	0.670195	•
Volatile Acidity	-0.255124	1.000000	-0.551248	0.055154	-0.020945	0.071701	-0.256948	0.247111	-0.395214	-0.197812	-0.002449	0.023943	
Citric Acid	0.667437	-0.551248	1.000000	0.210195	-0.048004	0.047358	0.326062	-0.550310	0.228057	0.105108	0.143892	0.357962	
Chlorides	0.085886	0.055154	0.210195	1.000000	0.000749	0.045773	0.394557	-0.270893	-0.130988	-0.223824	0.026656	0.193592	ı
Free SO2	-0.140580	-0.020945	-0.048004	0.000749	1.000000	0.667246	0.054126	0.056631	-0.050463	-0.080125	0.160527	-0.018071	ı
Total SO2	-0.103777	0.071701	0.047358	0.045773	0.667246	1.000000	0.035291	-0.079257	-0.177855	-0.217829	0.201038	0.078141	ı
Sulphates	0.190269	-0.256948	0.326062	0.394557	0.054126	0.035291	1.000000	-0.214134	0.248835	0.091621	-0.011837	0.146036	ı
pН	-0.686685	0.247111	-0.550310	-0.270893	0.056631	-0.079257	-0.214134	1.000000	-0.055245	0.213418	-0.083143	-0.355617	ı
Quality	0.119024	-0.395214	0.228057	-0.130988	-0.050463	-0.177855	0.248835	-0.055245	1.000000	0.480343	0.013640	-0.184252	ı
Alcohol	-0.061596	-0.197812	0.105108	-0.223824	-0.080125	-0.217829	0.091621	0.213418	0.480343	1.000000	0.063281	-0.504995	ı
Residual Sugar	0.111025	-0.002449	0.143892	0.026656	0.160527	0.201038	-0.011837	-0.083143	0.013640	0.063281	1.000000	0.324522	
Density	0.670195	0.023943	0.357962	0.193592	-0.018071	0.078141	0.146036	-0.355617	-0.184252	-0.504995	0.324522	1.000000	*

#Import seaborn library import seaborn as sns

Pearson correlation

sns.heatmap(df.corr('pearson'),annot=True)

<AxesSubplot:>

Fixed Acidity -	1	-0.26	0.67	0.094	-0.15	-0.11	0.18	-0.68	0.12	-0.062	0.11	0.67
Volatile Acidity -	-0.26	1	-0.55	0.061	0.011	0.076	-0.26	0.23	-0.39	-0.2	0.0019	0.022
Citric Acid -	0.67	-0.55	1	0.2	-0.061	0.036		-0.54	0.23	0.11	0.14	0.36
Chlorides -	0.094	0.061	0.2	1	0.0056	0.047	0.37	-0.27	-0.13	-0.22	0.056	0.2
Free 502 -	-0.15	-0.011	-0.061	0.0056	1	0.67	0.052	0.07	-0.051	-0.069	0.19	-0.022
Total SO2 -	-0.11	0.076	0.036	0.047	0.67	1	0.043	-0.066	-0.19	-0.21	0.2	0.071
5ulphates -	0.18	-0.26	0.31	0.37	0.052	0.043	1	-0.2	0.25	0.094	0.0055	0.15
pH -	-0.68	0.23	-0.54	-0.27	0.07	-0.066	-0.2	1	-0.058	0.21	-0.086	0.34
Quality -	0.12	-0.39	0.23	-0.13	-0.051	-0.19	0.25	-0.058	1		0.014	-0.17
Alcohol -	-0.062	-0.2	0.11	-0.22	-0.069	-0.21	0.094	0.21		1	0.042	-0.5
Residual Sugar -	0.11	0.0019	0.14	0.056	0.19	0.2	0.0055	-0.086	0.014	0.042	1	0.36
Density -	0.67	0.022	0.36	0.2	-0.022	0.071	0.15	-0.34	-0.17	-0.5	0.36	1
	ed Acidity -	ile Acidity -	Sitric Acid -	Chlorides -	Free 502 -	Total 502 -	Sulphates -	Ŧ	Quality -	Alcohol -	ual Sugar -	Density -

All the three correlation methods namely Pearson, Spearman and Kendall give varying results.

Target column: Density

Pearson correlation results in:

Columns:

Citric Acid and Residual Sugar are similar Chlorides and Sulphates are similar

Since,

Residual Sugar is more correlated to Density compared to Citric Acid Sulphates is more correlated to Density compared to Chlorides

Thus, columns Citric Acid and Chlorides will be dropped to remove redundancy.

df=df.drop(['Citric Acid','Chlorides'],axis=1)

df.replace('', numpy.nan, inplace=True)

df.dropna(inplace=True)

26]:

	Fixed Acidity	Volatile Acidity	Free SO2	Total SO2	Sulphates	рΗ	Quality	Alcohol	Residual Sugar	Density
0	7.4	0.70	11.0	34.0	0.56	3.51	5	9.4	1.9	0.9978
1	7.8	0.88	25.0	67.0	0.68	3.20	5	9.8	2.6	0.9968
2	7.8	0.76	15.0	54.0	0.65	3.26	5	9.8	2.3	0.9970
3	11.2	0.28	17.0	60.0	0.58	3.16	6	9.8	1.9	0.9980
5	7.4	0.66	13.0	40.0	0.56	3.51	5	9.4	1.8	0.9978

Data Splitting and Model Building (Multiple Linear regression)

M = df.iloc[:, :-1]

```
y = df['Density']

M from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

M from sklearn.linear_model import LinearRegression

regressor = LinearRegression()

regressor.fit(X, y)

9]: LinearRegression()

M y_pred = regressor.predict(X_test)
```

print(y_pred)

```
[0.99640749 0.99785688 0.99708326 0.99539482 0.99612931 0.995194
0.99693205 0.99699212 0.99745241 0.99430827 0.99449966 0.99323472
0.99681841 0.99762721 0.99377624 0.99446739 0.99703345 0.99789105
1.00360707 0.99515538 0.9952441 0.99645341 0.99386123 0.99971813
0.99422765 1.00023135 0.9959406 0.99459511 0.99593451 0.99851908
0.99473729 0.99648162 0.99837395 0.99565292 0.9922853 0.99421875
0.99670407 0.99772534 0.99660006 0.99771934 0.99495205 0.99941717
0.99510624 0.99712425 0.99525415 0.99689882 0.99828792 0.99523136
0.99586954 0.99575379 0.9965849 0.99792298 1.00428919 0.99582539
0.99664799 0.99969216 0.99708493 0.99820925 0.996148 0.99343401
0.99749114 0.99632346 0.99663821 0.99789704 0.99963601 0.99666104
0.99459784 0.99562009 0.99480111 0.99460536 0.99692844 0.99979836
0.99809219 0.99627198 0.99704802 0.99822532 0.99671455 0.99800649
0.99470689 0.99266523 0.99804928 0.99635738 0.99508558 0.99578954
0.99510302 0.999549 0.99710988 1.00018898 0.99540078 0.99582883
0.99455876 0.99098862 0.99606226 0.99542813 0.99745843 0.9976648
0.99617895 0.99815673 0.99712086 0.99466019 0.99293655 0.99917448
0.99637922 0.99509361 1.00182092 0.99625012 0.99921633 0.99934813
0.99979403 0.99580573 0.99991449 0.99755893 0.99690107 0.99902839
0.99833173 0.99682315 0.99514039 0.99661044 0.99719153 0.99542585
0.99859561 0.99782631 0.99708716 0.99593546 0.99746571 0.99787647
0.99547383 0.9951078 0.99720052 0.99631605 0.9973698 0.99795241
0.99606462 0.99811306 0.99480199 0.99382957 0.99818819 0.99522122
0.99525686 0.99798227 0.9974018 0.99689847 1.00179894 0.99659585
0.99663465 0.99725311 0.99496596 0.99756373 0.9986689 0.99395131
0.99681282 0.99790575 0.99706939 0.99964701 0.99931397 0.99800097
0.99149985 0.99938661 0.99512582 0.99496219 0.99627816 0.99851102
0.99594665 0.99903405 0.99736444 0.99769083 0.99652224 0.99658628
0.99736231 0.99709652 0.99725698 0.99735359 0.99583705 0.99726851
0.99541789 0.99833479 0.99576897 0.99790523 0.99854828 0.99751013
0.99484604 0.9953428 0.99922858 0.99563559 0.99715141 0.99595074
0.99479104 0.99539834 0.99675423 0.9960853 0.99364291 0.9971918
0.995797 0.99537605 0.99660393 0.99698644 0.99467083 0.99742502
0.99892243 0.99690542 0.9959947 0.99622429 0.996841 0.99646689
0.99700943 0.99621766 0.99705581 0.99704641 0.99619398 0.99870503
0.99787223 1.00102815 0.99460995 0.9949689 1.00036938 0.99644242
0.99566
          0.99770419 0.9934913 0.99442809 0.99743532 0.99968851
0.99856396 0.9959146 0.99475071 0.99483642 0.99615518 0.99118962
0.99971855 0.9981558 0.9974608 0.99915894 0.9961147 0.9964988
0.99572676 0.9973213 0.99784747 1.00168698 0.99683371 0.99854839
0.99748425 0.99821544 0.99547791 0.99806656 0.99559497 0.99723412
0.99675343 0.99722784 0.99404113 0.99664855 1.00109986 0.99882043
0.9985345 0.99409147]
```

```
0.99684
1133
760
         0.99779
         0.99716
1173
1079
        0.99316
935
        0.99543
754
         0.99656
289
         1.00100
         0.99800
684
772
         0.99782
1272
         0.99385
Name: Density, Length: 272, dtype: float64
regressor.score(X_test, y_test)
0.8392217121633154
#Co-efficients of the Logistic regression equation
regressor.coef_
array([ 9.33624238e-04, 6.91164973e-04, -7.48772624e-06, 2.09753090e-06, 1.54531658e-03, 4.81418488e-03, -2.65303379e-05, -9.40764728e-04,
         4.10503352e-04])
#y-intercept of the Logistic regression equation
```

print(y_test)

regressor.intercept_ 0.9805806482257146

Model evaluation through k-fold cross validation and evaluation metrics

#K-fold cross-validation #Logistic Regression

8]: 0.8392217121633154

```
X = df.iloc[:,:-1]
y = df.iloc[:,:-1]
k = 5
kf = model_selection.KFold(n_splits=k, random_state=None)
model = LinearRegression()
result = cross_val_score(model , X, y, cv = kf)
print("Avg accuracy: {}".format(result.mean()))

Avg accuracy: 0.7519965612347168

##Root mean square error
import sklearn
sklearn.metrics.mean_squared_error(y_test,y_pred)

7]: 6.726161410167201e-07

###2 score
import sklearn
sklearn.metrics.r2_score(y_test,y_pred)
```

Spearman correlation

sns.heatmap(df.corr('spearman'),annot=True)

<AxesSubplot:>

Fixed Acidity -	1	-0.28	0.66	0.24	-0.16	-0.084	0.22	-0.71	0.11	-0.063	0.22	0.63
Volatile Acidity -	-0.28	1	-0.61	0.17	0.012	0.093	-0.32	0.25	-0.39	-0.23	0.031	0.032
Citric Acid -	0.66	-0.61	1	0.11	-0.06	0.021	0.34	-0.56	0.22	0.091	0.17	
Chlorides -	0.24	0.17	0.11	1	0.01	0.14	0.034	-0.23	-0.2	-0.3	0.22	
Free 502 -	-0.16	0.012	-0.06	0.01	1	0.79	0.041	0.091	-0.059	-0.099	0.078	-0.026
Total SO2 -	-0.084	0.093	0.021	0.14	0.79	1	-0.0083	-0.03	-0.2	-0.28	0.14	0.14
5ulphates -	0.22	-0.32	0.34	0.034	0.041	-0.0083	1	-0.1	0.38	0.21	0.03	0.16
рН -	-0.71	0.25	-0.56	-0.23	0.091	0.03	-0.1	1	-0.043	0.18	-0.092	-0.32
Quality -	0.11	-0.39	0.22	-0.2	-0.059	-0.2	0.38	-0.043	1		0.026	-0.18
Alcohol -	-0.063	-0.23	0.091	-0,3	-0.099	-0.28	0.21	0.18	0.49	1	0.11	-0.47
Residual Sugar -	0.22	0.031	0.17	0.22	0.078	0.14	0.03	-0.092	0.026	0.11	1	0.41
Density -	0.63	0.032	0.34		-0.026	0.14	0.16	-0.32	-0.18	-0.47	0.41	1
	ed Acidity -	ile Acidity -	Sitric Acid -	Chlorides -	Free 502 -	Total 502 -	Sulphates -	Ħ.	Quality -	Alcohol -	ual Sugar -	Density -

All the three correlation methods namely Pearson, Spearman and Kendall give varying results.

Target column: Density

Spearman correlation results in:

Columns:

Chlorides and Residual Sugar are similar Total SO2 and Sulphates are similar

Since, Residual Sugar is more correlated to Density compared to Chlorides Sulphates is more correlated to Density compared to Total SO2

Thus, columns Chlorides and Total SO2 will be dropped to remove redundancy.

M df=df.drop(['Chlorides','Total SO2'],axis=1)

df.replace('', numpy.nan, inplace=True)

df.dropna(inplace=True)

df.head()

01.

	Fixed Acidity	Volatile Acidity	Citric Acid	Free SO2	Sulphates	рΗ	Quality	Alcohol	Residual Sugar	Density
0	7.4	0.70	0.00	11.0	0.56	3.51	5	9.4	1.9	0.9978
1	7.8	0.88	0.00	25.0	0.68	3.20	5	9.8	2.6	0.9968
2	7.8	0.76	0.04	15.0	0.65	3.26	5	9.8	2.3	0.9970
3	11.2	0.28	0.56	17.0	0.58	3.16	6	9.8	1.9	0.9980
5	7.4	0.66	0.00	13.0	0.56	3.51	5	9.4	1.8	0.9978

Data Splitting and Model Building (Multiple Linear regression)

print(y_pred)

```
[0.99641235 0.99771424 0.99708552 0.99507838 0.99605905 0.99521188
0.99695708 0.99702597 0.99747365 0.99431458 0.99450555 0.99322787
0.99679304 0.9976465 0.99382576 0.99449355 0.99705424 0.99789065
1.00374857 0.99509661 0.99524284 0.99639808 0.99386617 0.9997066
0.9942679 1.00013511 0.99594241 0.99461485 0.99591618 0.99840809
0.99673519 0.99760788 0.99661742 0.99755979 0.99502285 0.9994279
0.99511761 0.99714569 0.9953156 0.99696282 0.99833023 0.99525282
0.99588651 0.99575115 0.99660022 0.99780053 1.00433185 0.99584864
0.99666516 0.99959372 0.99707077 0.99825498 0.99613112 0.99352637
0.99752508 0.9963029 0.99667853 0.99792644 0.99958575 0.99661786
0.99462063 0.99565943 0.99473309 0.99456179 0.99691436 0.99975875
0.99800438 0.99629402 0.99708326 0.99829789 0.99671322 0.99798456
0.99466909 0.99253419 0.99804141 0.99640068 0.9950955 0.99583849
0.9951192    0.99955604    0.99713475    1.00017949    0.99540457    0.99582806
0.99459548 0.99093224 0.99611701 0.99548155 0.99743585 0.99771486
0.99634119 0.99514754 1.00180767 0.99629169 0.99918716 0.99934481
0.99984419 0.99582763 0.99991188 0.99753935 0.99682846 0.99904088
0.99833761 0.9968467 0.99519513 0.9966319 0.99723398 0.9954188
0.99853973 0.99785595 0.99704325 0.99595258 0.99747564 0.99790455
0.99552961 0.99508546 0.99715792 0.99633493 0.9974051 0.99798007
0.99605416 0.9981362 0.99485498 0.99380895 0.99819151 0.99528467
0.99524336 0.99801965 0.99742529 0.99688674 1.00183541 0.99659777
0.99661135 0.99724929 0.99498
                                0.99759726 0.99869519 0.99392222
0.99680942 0.99786009 0.9970171 0.99961965 0.99934062 0.99800614
0.99140237 0.99936423 0.99514558 0.99498393 0.99629203 0.99850996
0.99732606 0.99714463 0.99636438 0.99592532 0.99714559 0.99427042
0.99594544 0.99905492 0.99732942 0.99769481 0.99654037 0.99661967
0.99737955 0.9969948 0.99728689 0.99735945 0.9958051 0.99721152
0.99507838 0.99824383 0.99583501 0.99779206 0.99855179 0.99734141
0.99487671 0.9953734 0.99922877 0.99567449 0.99717774 0.99595574
0.99481893 0.99545046 0.99673326 0.9961201 0.99362737 0.99717165
0.99584558 0.9953814 0.99662423 0.99706113 0.99469025 0.99735623
0.99895105 0.9969199 0.99601765 0.99626023 0.99684438 0.99647763
0.99701743 0.9962448 0.99701157 0.99705229 0.99620043 0.99871637
0.99779817 1.00101103 0.99460418 0.99496085 1.00039614 0.99647236
           0.99769237 0.99346898 0.99445351 0.99736843 0.99975078
0.9955972
0.99856763 0.99593527 0.99476987 0.99479839 0.99609137 0.99118894
0.99972328 0.99817038 0.99744093 0.9991811 0.99605519 0.99652116
0.99684707 0.99483439 0.99825231 0.99890373 0.9951237 0.99835944
0.99574311 0.99730916 0.99780249 1.00169162 0.99682037 0.99850708
0.99749047 0.99823358 0.99545007 0.99803237 0.99564849 0.99718571
0.99551223 0.99694067 0.99545902 0.99432574 0.99436096 0.99820026
0.99679308 0.99728158 0.99404541 0.99676714 1.00106936 0.99872497
0.99836034 0.99410029]
```

```
760
         0.99779
         0.99716
1173
1079
         0.99316
935
         0.99543
         0.99656
754
289
         1.00100
684
         0.99800
772
         0.99782
         0.99385
1272
Name: Density, Length: 272, dtype: float64
regressor.score(X_test, y_test)
0.8413634711146213
#Co-efficients of the Logistic regression equation
regressor.coef_
array([ 9.17653833e-04, 7.85180479e-04, 1.85308769e-04, -3.29203335e-06, 1.53263542e-03, 4.75313662e-03, -3.08249199e-05, -9.50242204e-04, 4.14085650e-04])
```

regressor.intercept_ 0.9809690544230507

#y-intercept of the Logistic regression equation

print(y_test)

0.99684

1133

```
y -> target variable i.e. Density
a -> y-intercept of Density
b0 -> co-efficient of Fixed Acidity
b1 -> co-efficient of Volatile Acidity
b2 -> co-efficient of Citric Acid
b3 -> co-efficient of Free SO2
b4 -> co-efficient of Sulphates
b5 -> co-efficient of pH
b6 -> co-efficient of Quality
b7 -> co-efficient of Alcohol
b8 -> co-efficient of Residual Sugar

General equation: y = a + b0x0 + b1x1 + ... + bnxn

Actual equation: Density = 0.98 + 0.17(Fixed Acidity) + 0.14(Volatile Acidity) + 0.03(Citric Acid) - 0.006(Free SO2) + 0.08(Sulphates) + 0.24(pH) - 0.02(Quality) - 0.17(Alcohol) + 0.07(Residual Sugar)
```

Multiple Linear regression equation using Pearson

Model evaluation through k-fold cross validation and evaluation metrics

#K-fold cross-validation #Logistic Regression

4]: 0.8413634711146213

```
X = df.iloc[:,:-1]
y = df.iloc[:,-1]
k = 5
kf = model_selection.KFold(n_splits=k, random_state=None)
model = LinearRegression()
result = cross_val_score(model , X, y, cv = kf)
print("Avg accuracy: {}".format(result.mean()))

Avg accuracy: 0.7526190991866091

#Root mean square error
import sklearn
sklearn.metrics.mean_squared_error(y_test,y_pred)

#83: 6.636560901280165e-07

##82 score
import sklearn
sklearn.metrics.r2_score(y_test,y_pred)
```

Kendall correlation

sns.heatmap(df.corr('kendall'),annot=True)
<AxesSubplot:>

All the three correlation methods namely Pearson, Spearman and Kendall give varying results.

Target column: Density

Spearman correlation results in:

Columns:

Chlorides and Citric Acid are similar Residual Sugar and Citric Acid are similar

Since,

Chlorides is more correlated to Density compared to Citric Acid Residual Sugar is more correlated to Density compared to Citric Acid

Thus, columns Chlorides and Total SO2 will be dropped to remove redundancy.

- M df=df.drop(['Citric Acid'],axis=1)
- df.replace('', numpy.nan, inplace=True)
- df.dropna(inplace=True)
- df.head()

.0].

	Fixed Acidity	Volatile Acidity	Chlorides	Free SO2	Total SO2	Sulphates	рΗ	Quality	Alcohol	Residual Sugar	Density
0	7.4	0.70	0.076	11.0	34.0	0.56	3.51	5	9.4	1.9	0.9978
1	7.8	0.88	0.098	25.0	67.0	0.68	3.20	5	9.8	2.6	0.9968
2	7.8	0.76	0.092	15.0	54.0	0.65	3.26	5	9.8	2.3	0.9970
3	11.2	0.28	0.075	17.0	60.0	0.58	3.16	6	9.8	1.9	0.9980
5	7.4	0.66	0.075	13.0	40.0	0.56	3.51	5	9.4	1.8	0.9978

Data Splitting and Model Building (Multiple Linear regression)

print(y pred)

```
[0.99641881 0.99783831 0.99710946 0.99539333 0.99612633 0.99514071
0.99696633 0.99693059 0.9974363 0.99430623 0.99452827 0.99323093
0.99682425 0.9975929 0.99371917 0.99446207 0.99690995 0.99780184
1,00372893 0,99512877 0,99522288 0,99648529 0,99385153 0,99962917
0.99429644 1.00026037 0.99593071 0.99459703 0.99587082 0.99852296
0.99476504 0.99645932 0.99836694 0.99569062 0.99230285 0.99418153
0.9966547 0.9976377 0.9965427 0.99738016 0.99496675 0.99947788
0.99505385 0.99704807 0.99532533 0.99693783 0.99832348 0.99527203
0.99588176 0.99579178 0.99663833 0.99789525 1.00417565 0.99576174
0.99671826 0.99975903 0.99708058 0.99821356 0.99617422 0.99339839
0.99748019 0.99627904 0.99656538 0.9979009 0.99969523 0.99664732
0.99457056 0.99558306 0.9947741 0.99477641 0.996942
0.99810048 0.9962019 0.99697584 0.99814082 0.99674287 0.99800499
0.99478638 0.99267271 0.99799313 0.99639011 0.99501187 0.9957357
0.99509539 0.99951169 0.99703373 1.00018688 0.99543532 0.99584553
0.99453578 0.99096125 0.99606316 0.9954024 0.99745739 0.99762138
0.99614044 0.99811581 0.99708983 0.99463245 0.99291815 0.9991374
0.99635355 0.99508212 1.00179311 0.9961983 0.99922763 0.99934556
0.99985347 0.99579963 0.99986151 0.99757961 0.99689351 0.99900495
0.99827752 0.99660504 0.99513862 0.99651417 0.99723145 0.99539154
0.99863333 0.99787641 0.99707577 0.99597813 0.99746312 0.9978509
0.99544586 0.99509646 0.99720654 0.99627363 0.99727344 0.99792936
0.99599941 0.99830583 0.99475572 0.99390502 0.99814273 0.99527933
0.99520258 0.99797624 0.99720649 0.99689825 1.00170836 0.99654804
0.99664019 0.99722105 0.99502864 0.9975619 0.99890512 0.99384744
0.99683127 0.99811971 0.99703394 0.9997296 0.99935193 0.99803122
0.99148024 0.99932927 0.99514705 0.99498988 0.99627844 0.99853014
0.99763313 0.99719524 0.99642448 0.99590647 0.99713768 0.99428361
0.99594901 0.99893899 0.99751312 0.99769788 0.9965227 0.99659598
0.99735886 0.99710652 0.99733303 0.9973305 0.99583986 0.99733397
0.99541931 0.99833939 0.9957313 0.99787645 0.998505
                                                   0.99719595
0.99480345 0.99532519 0.99922576 0.99562084 0.99710022 0.9959757
0.99581908 0.99538559 0.99654692 0.9974942 0.99470794 0.99746762
0.99888046 0.99690956 0.99593264 0.99613939 0.99681007 0.99641549
0.99701326 0.99611411 0.99704482 0.9971057 0.99620405 0.99870852
0.99779887 1.00087756 0.99456428 0.99501589 1.00031693 0.99642723
0.99566825 0.99774755 0.99344493 0.99441864 0.99741822 0.99964968
0.99852047 0.99587051 0.99470922 0.99484526 0.99616308 0.99121301
0.99972016 0.99817247 0.99742794 0.9991201 0.99611154 0.99650855
0.9957903 0.99733968 0.99781513 1.00165794 0.99683321 0.99857616
0.99749346 0.99821482 0.99548914 0.99802023 0.99555665 0.99726387
0.99538619 0.99681787 0.99532774 0.99436838 0.99434112 0.99812672
0.99855554 0.994118421
```

```
1133
          0.99684
          0.99779
760
1173
          0.99716
1079
         0.99316
         0.99543
935
754
          0.99656
289
         1.00100
684
          0.99800
          0.99782
772
1272
          0.99385
Name: Density, Length: 272, dtype: float64
regressor.score(X_test, y_test)
0.841340122483591
#Co-efficients of the Logistic regression equation
regressor.coef_
array([ 9.44052119e-04, 6.28191476e-04, 1.88002896e-03, -7.54213082e-06, 2.36173937e-06, 1.30295076e-03, 5.00615623e-03, -1.11454645e-05, -9.28591371e-04, 4.06644422e-04])
```

print(y_test)

#y-intercept of the Logistic regression equation

regressor.intercept_ 0.9796706388896447

Multiple Linear regression equation using Pearson

Model evaluation through k-fold cross validation and evaluation metrics

₩ #K-fold cross-validation #Logistic Regression

0]: 0.841340122483591

```
X = df.iloc[:,:-1]
y = df.iloc[:,:-1]
k = 5
kf = model_selection.KFold(n_splits=k, random_state=None)
model = LinearRegression()
result = cross_val_score(model , X, y, cv = kf)
print("Avg accuracy: {}".format(result.mean()))

Avg accuracy: 0.7515064948161496

| #Root mean square error
import sklearn
sklearn.metrics.mean_squared_error(y_test,y_pred)

| #c. score
import sklearn
sklearn.metrics.r2_score(y_test,y_pred)
```

Comparing the accuracy given by the three methods i.e. Pearson, Spearman and Kendall through Multiple Linear regression using sklearn:

Pearson: 0.8392217121633154 Spearman: 0.8413634711146213 Kendall: 0.841340122483591

Thus, Kendall correlation along with Logistic Regression model gives the most accurate results of the three on evaluation.

Comparing the average accuracy given by the three methods i.e. Pearson, Spearman and Kendall through K-fold cross validation:

Pearson: 0.7519965612347168 Spearman: 0.7526190991866091 Kendall: 0.7515064948161496

Thus, Spearman correlation along with Logistic Regression model gives the most accurate results of the three on evaluation.

Comparing the RMSE (Root Mean Squar Error) for the three methods i.e. Pearson, Spearman and Kendall:

Pearson: $6.726161410167201e-07 \sim 0.006$ Spearman: $6.636560901280165e-07 \sim 0.006$ Kendall: $6.637537691511789e-07 \sim 0.006$

Thus, Pearson correlation gives the least RMSE evaluation metric.

Comparing the R2 score for the three methods i.e. Pearson, Spearman and Kendall:

Pearson: 0.8392217121633154 Spearman: 0.8413634711146213 Kendall: 0.841340122483591

Thus, Kendall correlation gives the best R2 score evaluation metric.