WIGGLYHEDRA

A. BAPAT (The Australian National University)
V. PILAUD (Universitat de Barcelona)

arxiv:2407.11632

DMG Seminar Berlin — October 9, 2024

TRIANGULATIONS & ASSOCIAHEDRA

ASSOCIAHEDRON

Associahedron = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n+3)-gon, ordered by reverse inclusion

THREE FAMILIES OF REALIZATIONS

SECONDARY POLYTOPE

Gelfand–Kapranov–Zelevinsky ('94) Billera–Filliman–Sturmfels ('90)

LODAY'S ASSOCIAHEDRON

Hohlweg-Lange ('07)
Hohlweg-Lange-Thomas ('12)
Hohlweg-Pilaud-Stella ('18)
Pilaud-Santos-Ziegler ('24)

CHAP.-FOM.-ZEL.'S ASSOCIAHEDRON

Chapoton–Fomin–Zelevinsky ('02) Ceballos–Santos–Ziegler ('11)

THREE FAMILIES OF REALIZATIONS

SECONDARY POLYTOPE

Gelfand-Kapranov-Zelevinsky ('94) Billera-Filliman-Sturmfels ('90)

LODAY'S **ASSOCIAHEDRON**

Hohlweg-Lange ('07)

Hohlweg-Lange-Thomas ('12)

Hohlweg-Pilaud-Stella ('18)

Pilaud-Santos-Ziegler ('24)

Hopf algebra

Cluster algebras

CHAP.-FOM.-ZEL.'S **ASSOCIAHEDRON**

Chapoton-Fomin-Zelevinsky ('02) Ceballos-Santos-Ziegler ('11)

LODAY'S ASSOCIAHEDRON

Loday's associahedron $= \operatorname{conv} \{L(T) \mid T \text{ triangulation of the } (n+3)\text{-gon}\}$ $= \mathbb{H} \cap \bigcap_{\substack{\delta \text{ diagonal of the } (n+3)\text{-gon}}} \mathbf{H}^{\geq}(\delta)$

$$L(T) = \left(\ell(T,j) \cdot r(T,j)\right)_{j \in [n+1]}$$

$$\mathbf{H}^{\geq}(\delta) = \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \sum_{j \in B(\delta)} x_j \ge {|B(\delta)| + 1 \choose 2} \right\}$$

HOHLWEG & LANGE'S ASSOCIAHEDRA

Can also replace Loday's (n+3)-gon by others...

... to obtain different realizations of the associahedron

Hohlweg-Lange ('07)

HOHLWEG & LANGE'S ASSOCIAHEDRA

$$HL(T)_j = \begin{cases} \ell(T,j) \cdot r(T,j) & \text{if } j \text{ down} \\ n+2-\ell(T,j) \cdot r(T,j) & \text{if } j \text{ up} \end{cases}$$

$$\mathbf{H}^{\geq}(\delta) = \left\{ \mathbf{x} \mid \sum_{j \in B(\delta)} x_j \ge {|B(\delta)| + 1 \choose 2} \right\}$$

Hohlweg-Lange ('07)

triangulations

crossing-free

pseudotriangulations

crossing-free pointed

Pocchiola-Vegter ('96) Rote-Santos-Streinu ('08)

multitriangulations

(k+1)-crossing-free

Capoyleas—Pach ('92) Jonsson ('05)

triangulations

crossing-free

pseudotriangulations

crossing-free pointed

Pocchiola-Vegter ('96) Rote-Santos-Streinu ('08)

multitriangulations

(k+1)-crossing-free

Capoyleas-Pach ('92) Jonsson ('05)

triangulations

crossing-free

triangles

pseudotriangulations

crossing-free pointed

Pocchiola-Vegter ('96) Rote-Santos-Streinu ('08)

pseudotriangles

multitriangulations

(k+1)-crossing-free

Capoyleas-Pach ('92) Jonsson ('05)

k-stars

P.-Santos ('09)

flip = exchange an internal edge with the common bisector of the two adjacent cells

triangulations

pseudotriangulations

multitriangulations

associahedron

pseudotriangulation polytope

multiassociahedron

Rote-Santos-Streinu ('03)

DUALITY

P.-Pocchiola ('12)

DUALITY

P.-Pocchiola ('12)

DUALITY

P.-Pocchiola ('12)

WIGGLY COMPLEX

 $\underline{\text{wiggly dissection}} = \mathbf{set} \ \text{of pairwise} \ \underline{\text{non-crossing}} \ \text{and} \ \underline{\text{pointed}} \ \text{wiggly arcs on} \ n+2 \ \text{points}$

wiggly complex $WC_n = \text{simplicial complex of wiggly dissections}$

WIGGLY COMPLEX

wiggly dissection = set of pairwise non-crossing and pointed wiggly arcs on n+2 points

wiggly complex $WC_n = \text{simplicial complex of wiggly dissections}$

$$f(WC_1) = (1, 2)$$

$$f(WC_2) = (1, 9, 21, 14)$$

$$f(WC_3) = (1, 24, 154, 396, 440, 176)$$

$$f(WC_4) = (1, 55, 729, 4002, 10930, 15684, 11312, 3232)$$

$$f(WC_5) = (1, 118, 2868, 28110, 140782, 400374, 673274, 662668, 352728, 78384)$$

$$h(WC_1) = (1, 1)$$

$$h(WC_2) = (1, 6, 6, 1)$$

$$h(WC_3) = (1, 19, 68, 68, 19, 1)$$

$$h(WC_4) = (1, 48, 420, 1147, 1147, 420, 48, 1)$$

$$h(WC_5) = (1, 109, 1960, 11254, 25868, 25868, 11254, 1960, 109, 1)$$

WIGGLY PSEUDOTRIANGULATIONS

c cell in a wiggly dissection with boundary ∂_c $\underline{ \text{degree} } \ \delta_c = 1/2 \, \# \text{arcs on } \partial_c + 2 \, \# \text{connected components of } \partial_c - 1$ $\text{pseudotriangle} = \text{cell of degree } 3 \qquad \text{pseudoquadrangle} = \text{cell of degree } 4$

PROP. The inclusion maximal wiggly pseudodissections are the pseudotriangulations, and contain 2n-1 internal arcs and n cells.

Bapat-P. (24+)

n	1	2	3	4	5	6	7	8	
$\overline{wp_n}$	2	14	176	3232	78384	2366248	85534176	3602770400	

WIGGLY FLIP GRAPH

PROP. Any wiggly pseudoquadrangle has exactly two wiggly diagonals, and they either cross or are non pointed.

Bapat-P. (24+)

WIGGLY FLIP GRAPH

PROP. Any wiggly pseudoquadrangle has exactly two wiggly diagonals, and they either cross or are non pointed.

Bapat-P. (24+)

wiggly flip graph WFG_n = a vertex for each wiggly pseudotriangulation an edge between T and T' if $T \setminus \{\alpha\} = T' \setminus \{\alpha'\}$

WIGGLY FLIP GRAPH

PROP. The wiggly flip graph WFG_n is (2n-1)-regular and connected.

WIGGLY PERMUTATIONS

wiggly permutation = permutation of 2n avoiding

• $(2j-1)\cdots i\cdots (2j)$ for $j\in [n]$ and i<2j-1,

• $(2j)\cdots k\cdots (2j-1)$ for $j\in [n]$ and k>2j.

PROP. The wiggly permutations induce a sublattice WL_n of the weak order on \mathfrak{S}_{2n} .

Bapat-P. (24⁺)

PROP. The cover graph of the lattice WL_n is (2n-1)-regular and connected.

WIGGLY PSEUDOTRIANGULATIONS WIGGLY PERMUTATIONS

PROP. The wiggly pseudotriangulations and wiggly permutations are in bijection.

Bapat-P. (24⁺)

permutation of 2n avoiding $(2j-1)\cdots i\cdots (2j)$ for $j\in [n]$ and i<2j-1 $(2j)\cdots k\cdots (2j-1)$ for $j\in [n]$ and k>2j

WIGGLY PSEUDOTRIANGULATIONS WIGGLY PERMUTATIONS

PROP. This bijection induces a directed graph isomorphism between

- the wiggly increasing flip graph on wiggly pseudotriangulations,
- the Hasse diagram of the wiggly lattice on wiggly permutations.

WIGGLY FAN

G- AND C-VECTORS

c-vector of $\alpha \in T = \text{you don't want to know...}$

PROP. For any wiggly pseudotriangulation T, the g-vectors $\{g(\alpha) \mid \alpha \in T^{\circ}\}$ and the c-vectors $\{c(\alpha,T) \mid \alpha \in T^{\circ}\}$ form dual bases. Bapat-P. (24⁺)

WIGGLY FAN

THM. The cones $\langle \boldsymbol{g}(\alpha) \mid \alpha \in D \rangle$ for all wiggly dissections D form a complete simplicial fan WF_n (in $\sum_{i=1}^{2n} x_i = 0$).

Main observation:

incompatibility degree $\delta(\alpha, \alpha') =$

- 0 if α and α' are pointed and non-crossing,
- 1 is α and α' are not pointed,
- ullet the number of crossings of α and α' if they are crossing.

$$\kappa(\alpha) = \underline{\text{incompatibility number}} \text{ of } \alpha = \sum_{\alpha'} \delta(\alpha, \alpha').$$

Main observation:

Hence, κ satisfies all wall-crossing inequalities of the wiggly fan...

THM. The wiggly fan WF_n is the normal fan of a simplicial (2n-1)-dimensional polytope, called the wigglyhedron W_n , and defined equivalently as

- ullet intersection of the halfspaces $\left\{oldsymbol{x}\in\mathbb{R}^{2n}\;\middle|\;\langle\,oldsymbol{g}(lpha)\;\middle|\;oldsymbol{x}\;
 angle\!\leq\!\kappa(lpha)
 ight\}$ for all wiggly arcs lpha,
- ullet convex hull of $m{p}(T) \coloneqq \sum_{lpha \in T} \kappa(lpha) \, m{c}(lpha, T)$ for all wiggly pseudotriangulations T.

THM. The wigglyhedron W_n is a simple (2n-1)-dimensional polytope such that

- ullet the wiggly complex WC_n is the boundary complex of the polar of W_n ,
- the Hasse diagram of the wiggly lattice is a linear orientation of the graph of W_n .

THM. For $\delta = \delta_1 \dots \delta_n \in \{+, -\}^n$, there are lattice isomorphisms between

- $\underline{\delta}$ -triangulations = triangulation of the δ -gon, whose vertex at abscissa i has ordinate positive if $\delta_j = +$ and negative if $\delta_j = -$
- $\underline{\delta}$ -permutations = permutation of [n] avoiding for i < j < k $\cdots j \cdots ki \cdots$ if $\delta_j = +$ and $\cdots ik \cdots j \cdots$ if $\delta_j = -$
- $\underline{\delta}$ -wiggly pseudotriangulations = wiggly pseudotriangulation containing the arcs $(0,j,[1,j[,\varnothing) \text{ for } \delta_j=+ \text{ and } (0,j,\varnothing,[1,j[) \text{ for } \delta_j=- \text{ and } (0,j,\varnothing,[1,j[] \text{ for$

THM. For $\delta = \delta_1 \dots \delta_n \in \{+, -\}^n$, there are lattice isomorphisms between

- \bullet δ -triangulations
- ullet δ -permutations
- \bullet δ -wiggly pseudotriangulations
- ullet δ -wiggly permutations

THM. For $\delta = \delta_1 \dots \delta_n \in \{+, -\}^n$, there are lattice isomorphisms between

- \bullet δ -triangulations
- ullet δ -permutations
- \bullet δ -wiggly pseudotriangulations
- ullet δ -wiggly permutations

THM. For $\delta = \delta_1 \dots \delta_n \in \{+, -\}^n$, there are lattice isomorphisms between

- \bullet δ -triangulations
- \bullet δ -permutations
- \bullet δ -wiggly pseudotriangulations
- \bullet δ -wiggly permutations

Bapat-P. (24⁺)

PROP. The δ -associahedron \mathbb{A} sso $_{\delta}$ is normally equivalent to the face of the wigglyhedron \mathbb{W}_n corresponding to the wiggly pseudodissection formed by the δ -wiggly arcs.

SOME OPEN PROBLEMS

OPEN PROBLEM 1: GRAPH PROPERTIES OF WIGGLYHEDRON

Q1a. Is the wiggly flip graph Hamiltonian?

[NB: wiggly permutations do not form a zigzag language]

Q1b. What is the diameter of the wiggly flip graph?

OPEN PROBLEM 2: WIGGLY PSEUDOTRIANGULATIONS AND DUALITY

Q2. Is there a dual interpretation of wiggly pseudotriangulations?

OPEN PROBLEM 3: WIGGLY PSEUDOTRIANGULATIONS OF POINT SETS

 $m{P}$ arbitrary point set in the plane wiggly complex $\mathrm{WC}_{m{P}}=$ simplicial complex of non-crossing and pointed wiggly edges

Q3a. Is WC_P the boundary complex of a simplicial polytope?

[NB: aligned points \Rightarrow wigglyhedron general position \Rightarrow Rote-Santos-Streinu]

Q3b. Is the graph of WC_P Hamiltonian?

THANK YOU