Practice Set-2 Electric Potential

1. An insulating sphere of radius a carries a charge density

$$\rho(\vec{r}) = \rho_0 (a^2 - r^2) \cos \theta; r < a$$

The leading order term for the electric field at a distance d, far away from the charge distribution, is proportional to

[GATE 2010]

A.
$$d^{-1}$$

R.
$$d^{-2}$$

C.
$$d^{-3}$$

D.
$$d^{-4}$$

Solution:

$$\begin{split} V(r) &= \left[\frac{1}{r} \int_{V} \rho d\tau + \frac{1}{r^{2}} \int \rho \cos\theta d\tau + \cdots\right] \\ \text{I}^{\text{st}} \text{ term, } \int \rho d\tau &= \int_{0}^{a} \int_{0}^{\pi} \int_{0}^{2\pi} \rho_{0} \left(a^{2} - r^{2}\right) \cos\theta \times r^{2} \sin\theta dr d\theta d\phi = 0 \\ \text{II}^{\text{nd}} \text{ term, } \int \rho \cos\theta d\tau &= \int_{0}^{a} \int_{0}^{\pi} \int_{0}^{2\pi} \rho_{0} \left(a^{2} - r^{2}\right) \cos^{2}\theta \times r^{2} \sin\theta dr d\theta d\phi \neq 0 \\ &\Rightarrow V\alpha \frac{1}{r^{2}} \Rightarrow E\alpha \frac{1}{r^{3}} \end{split}$$

So the correct answer is **Option** (C)

2. Two charges q and 2q are placed along the x-axis in front of a grounded, infinite conducting plane, as shown in the figure. They are located respectively at a distance of 0.5 m and 1.5 m from the plane. The force acting on the charge q is

[GATE 2011]

A.
$$\frac{1}{4\pi\epsilon_0} \frac{7q^2}{2}$$

B.
$$\frac{1}{4\pi c} 2q^2$$

C.
$$\frac{1}{4\pi\epsilon_0}q^2$$

D.
$$\frac{1}{4\pi\epsilon_0} \frac{q^2}{2}$$

Solution: Using method of Images we can draw equivalent figure as shown below:

$$F = \frac{q}{4\pi\varepsilon_0} \left[\frac{2q}{(1)^2} + \frac{q}{(1)^2} + \frac{2q}{(2)^2} \right]$$
$$= \frac{q}{4\pi\varepsilon_0} \times \frac{7q}{2}$$
$$= \frac{1}{4\pi\varepsilon_0} \frac{7q^2}{2}$$

So the correct answer is **Option** (A)

3. A spherical conductor of radius a is placed in a uniform electric field $\vec{E} = E_0 \hat{k}$. The potential at a point $P(r, \theta)$ for r > a, is given by

$$\Phi(r,\theta) = \text{constant } -E_0 r \cos \theta + \frac{E_0 a^3}{r^2} \cos \theta$$

where r is the distance of P from the centre O of the sphere and θ is the angle OP makes with the z -axis. The charge density on the sphere at $\theta = 30^{\circ}$ is

[GATE 2011]

A. $3\sqrt{3}\varepsilon_0 E_0/2$

B. $3\varepsilon_0 E_0/2$

C. $\sqrt{3}\varepsilon_0 E_0/2$

D. $\varepsilon_0 E_0/2$

Solution:

$$\sigma = -\varepsilon_0 \frac{\partial V}{\partial r} \Big|_{r=a}$$

$$= -\varepsilon_0 \left[-E_0 \cos \theta - \frac{2E_0 a^3}{r^3} \cos \theta \right]_{r=a}$$

$$\sigma = -\varepsilon_0 \left[-E_0 \cos \theta - 2E_0 \cos \theta \right] \Rightarrow \sigma$$

$$= +3E_0 \varepsilon_0 \cos \theta = +3E_0 \varepsilon_0 \cos 30^\circ$$

$$= \frac{3\sqrt{3}}{2} \varepsilon_0 E_0$$

So the correct answer is **Option** (A)

4. For a scalar function ϕ satisfying the Laplace equation, $\vec{\nabla}\phi$ has

[GATE 2013]

- A. Zero curl and non-zero divergence
- C. Zero curl and zero divergence
- B. Non-zero curl and zero divergence
- **D.** Non-zero curl and non-zero divergence

Solution:

$$\begin{split} \nabla^2 \phi &= 0 \Rightarrow \vec{\nabla} \cdot (\vec{\nabla} \phi) \\ &= 0 \text{ and } \Rightarrow \vec{\nabla} \times (\vec{\nabla} \phi) = 0 \end{split}$$

So the correct answer is **Option** (C)

5. A charge distribution has the charge density given by $\rho = Q\{\delta(x-x_0) - \delta(x+x_0)\}$. For this charge distribution the electric field at $(2x_0,0,0)$

[GATE 2013]

A.
$$\frac{2Q\hat{x}}{9\pi\varepsilon_0x_0^2}$$

B.
$$\frac{Q\hat{x}}{4\pi\varepsilon_0x_0^3}$$

C.
$$\frac{Q\hat{x}}{4\pi\varepsilon_0x_0^2}$$

D.
$$\frac{Q\hat{x}}{16\pi\varepsilon_0x_0^2}$$

Solution:

Potential
$$V(r) = \frac{1}{4\pi\varepsilon_0} \left[\int_{-a}^{a} \frac{\rho(x')}{x} dx' + \int_{-a}^{a} \frac{\rho(x')}{x^2} x' dx' + \int_{-a}^{a} \frac{\rho(x')}{x^3} x'^2 dx' + \dots \right]$$

First term, total charge

$$Q_{T} = \int \rho(x') dx' = Q \int_{-x_{0}}^{x_{0}} \delta(x' - x_{0}) dx' - Q \int_{-x_{0}}^{x_{0}} \delta(x' + x_{0}) dx'$$
$$= Q - Q = 0$$

Second term, dipole moment

$$p = \int x' \rho \left(x'\right) dx' = Q \int_{-x_0}^{x_0} x' \delta \left(x' - x_0\right) dx' - Q \int_{-x_0}^{x_0} x' \delta \left(x' + x_0\right) dx'$$

$$= Qx_0 - Q \times -x_0 = 2Qx_0$$

$$V = \frac{2Qx_0}{4\pi\varepsilon_0 x^2} \Rightarrow \vec{E} = -\frac{\partial V}{\partial x} \hat{x}$$

$$= \frac{4Qx_0}{4\pi\varepsilon_0 x^3} \hat{x} = \frac{4Qx_0}{4\pi\varepsilon_0 (2x_0)^3} \hat{x}$$

$$= \frac{Q}{8\pi\varepsilon_0 x_0^2} \hat{x}$$

6. A charge -q is distributed uniformly over a sphere, with a positive charge q at its center in (i). Also in (ii), a charge -q is distributed uniformly over an ellipsoid with a positive charge q at its center. With respect to the origin of the coordinate system, which one of the following statements is correct?

[GATE 2015]

A. The dipole moment is zero in both (i) and (ii)

- **B.** The dipole moment is non-zero in (i) but zero in (ii)
- C. The dipole moment is zero in (i) but non-zero in (ii)
- **D.** The dipole moment is non-zero in both (i) and (ii)

Solution:

$$\vec{p} = \sum q_i \vec{r}_i = 0$$
 in both cases.

So the correct answer is **Option** (A)

7. Identical charges q are placed at five vertices of a regular hexagon of side a. The magnitude of the electric field and the electrostatic potential at the centre of the hexagon are respectively

[GATE 2017]

B.
$$\frac{q}{4\pi\varepsilon_0 a^2}, \frac{q}{4\pi\varepsilon_0 a}$$

C.
$$\frac{q}{4\pi\varepsilon_0 a^2}, \frac{5q}{4\pi\varepsilon_0 a}$$

D.
$$\frac{\sqrt{5}q}{4\pi\varepsilon_0 a^2}, \frac{\sqrt{5}q}{4\pi\varepsilon_0 a}$$

8. Three charges (2C, -1C, -1C) are placed at the vertices of an equilateral triangle of side 1m as shown in the figure. The component of the electric dipole moment about the marked origin along the \hat{y} direction is——-Cm.

[GATE 2017]

Solution:

$$\vec{p} = -1(1\hat{x}) - 1(2\hat{x}) + 2(1.5\hat{x} + \sqrt{1 - 0.25}\hat{y})$$
 Along the \hat{y} direction $= 2 \times \sqrt{1 - 0.25} = 1.73$

