

8-Bit, High Speed, Multiplying D/A Converter (Universal Digital Logic Interface)

DAC08

FEATURES

Fast Settling Output Current: 85 ns
Full-Scale Current Prematched to ±1 LSB
Direct Interface to TTL, CMOS, ECL, HTL, PMOS
Nonlinearity to 0.1% Maximum Over
Temperature Range
High Output Impedance and Compliance:

-10 V to +18 V Complementary Current Outputs

Wide Range Multiplying Capability: 1 MHz Bandwidth

Low FS Current Drift: ±10 ppm/°C

Wide Power Supply Range: ±4.5 V to ±18 V Low Power Consumption: 33 mW @ ±5 V

Low Cost

Available in Die Form

GENERAL DESCRIPTION

The DAC08 series of 8-bit monolithic digital-to-analog converters provide very high-speed performance coupled with low cost and outstanding applications flexibility.

Advanced circuit design achieves 85 ns settling times with very low "glitch" energy and at low power consumption. Monotonic multiplying performance is attained over a wide 20 to 1 reference current range. Matching to within 1 LSB between refer-

ence and full-scale currents eliminates the need for full-scale trimming in most applications. Direct interface to all popular logic families with full noise immunity is provided by the high swing, adjustable threshold logic input.

High voltage compliance complementary current outputs are provided, increasing versatility and enabling differential operation to effectively double the peak-to-peak output swing. In many applications, the outputs can be directly converted to voltage without the need for an external op amp.

All DAC08 series models guarantee full 8-bit monotonicity, and nonlinearities as tight as $\pm 0.1\%$ over the entire operating temperature range are available. Device performance is essentially unchanged over the $\pm 4.5~V$ to $\pm 18~V$ power supply range, with 33 mW power consumption attainable at $\pm 5~V$ supplies.

The compact size and low power consumption make the DAC08 attractive for portable and military/aerospace applications; devices processed to MIL-STD-883, Level B are available.

DAC08 applications include 8-bit, 1 μs A/D converters, servo motor and pen drivers, waveform generators, audio encoders and attenuators, analog meter drivers, programmable power supplies, CRT display drivers, high-speed modems and other applications where low cost, high speed and complete input/output versatility are required.

FUNCTIONAL BLOCK DIAGRAM

DACO8-SPECIFICATIONS

 $\textbf{ELECTRICAL CHARACTERISTICS} \text{ (@ $V_S = \pm 15$ V, $I_{REF} = 2.0$ mA, -55°C} \leq T_A \leq +125^{\circ}$C for DAC08/08A, 0°C} \leq T_A \leq +70^{\circ}$C for D$

 $\underline{\text{DAC08C, E \& H unless otherwise noted. Output characteristics refer to both I}_{\text{OUT}} \text{ and } \overline{I_{\text{OUT}}}.)$

		·	D	AC08A/	H		DAC08E			DAC08C		
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Resolution Monotonicity Nonlinearity Settling Time	NL t _S	To ± 1/2 LSB, All Bits Switched ON	8 8	85	±0.1 135	8 8	85	±0.19 150	8 8	85	±0.39 150	Bits Bits % FS ns
Propagation Delay Each Bit All Bits Switched Full-Scale Tempco ¹ Output Voltage	t _{PLH} t _{PHL} TCI _{FS}	or OFF, $T_A = 25^{\circ}C^1$ $T_A = 25^{\circ}C^1$ DAC08E		35 35 ±10	60 60 ±50		35 35 ±10	60 60 ±80 ±50		35 35 ±10	60 60 ±80	ns ns ppm/°C
Compliance (True Compliance)	V_{OC}	Full-Scale Current Change <1/2 LSB, $R_{OUT} > 20 \text{ M}\Omega$ typ	-10		+18	-10		+18	-10		+18	V
Full Range Current	$ m I_{FR4}$	$\begin{aligned} &V_{REF} = 10.000 \ V \\ &R14, \ R15 = 5.000 \ k\Omega \\ &T_A = +25^{\circ}C \end{aligned}$	1.984	1.992	2.000	1.94	1.99	2.04	1.94	1.99	2.04	mA
Full Range Symmetry Zero-Scale Current Output Current Range	$egin{array}{l} I_{FRS} \ I_{ZS} \ I_{OR1} \ I_{OR2} \end{array}$	$\begin{split} I_{FR4} - I_{FR2} \\ R14, \ R15 &= 5.000 \ k\Omega \\ V_{REF} &= +15.0 \ V, \\ V- &= -10 \ V \end{split}$	2.1	±0.5 0.1	±4 1	2.1	±1 0.2	±8 2	2.1	±2 0.2	±16 4	μΑ μΑ mA
Output Current Noise		$V_{REF} = +25.0 \text{ V},$ $V_{-} = -12 \text{ V}$	4.2	25		4.2	25		4.2	25		mA
Logic Input Levels Logic "0" Logic Input "1" Logic Input Current	$egin{array}{c} V_{IL} \ V_{IL} \end{array}$	$I_{REF} = 2 \text{ mA}$ $V_{LC} = 0 \text{ V}$ $V_{LC} = 0 \text{ V}$	2	25	0.8	2	25	0.8	2	25	0.8	nA V V
Logic "0" Logic Input "1" Logic Input Swing Logic Threshold Range Reference Bias Current	$I_{IL} \\ I_{IH} \\ V_{IS} \\ V_{THR} \\ I_{15}$	$\begin{aligned} &V_{IN} = -10 \text{ V to } +0.8 \text{ V} \\ &V_{IN} = 2.0 \text{ V to } 18 \text{ V} \\ &V_{-} = -15 \text{ V} \\ &V_{S} = \pm 15 \text{ V}^{1} \end{aligned}$	-10 -10	-2 0.002 -1	-10 10 +18 +13.5 -3	-10 -10	-2 0.002	-10 10 +18 +13.5 -3	-10 -10	-2 0.002	-10 10 +18 +13.5 -3	μΑ μΑ V V μΑ
Reference Input Slew Rate	dI/dt	$R_{EQ} = 200 \Omega$ $R_{L} = 100 \Omega$	4	8		4	8	-3	4	8	-3	mA/μs
Power Supply Sensitivity	PSSI _{FS+} PSSI _{FS-}	$\begin{array}{l} C_C = 0 \ pF \qquad \text{See Fast Pt} \\ V+= \ 4.5 \ V \ \text{to} \ 18 \ V \\ V-= -4.5 \ V \ \text{to} \ -18 \ V \\ I_{REF} = 1.0 \ mA \end{array}$	usea Kei	± 0.0003			±0.0003 ±0.002	±0.01 ±0.01		±0.0003 ±0.002		$\%\Delta I_O/\%\Delta V + \%\Delta I_O/\%\Delta V -$
Power Supply Current	I+ I- I+ I- I+ I-	$V_S = \pm 5 \; V, \; I_{REF} = 1.0 \; mA$ $V_S = +5 \; V, \; -15 \; V,$ $I_{REF} = 2.0 \; mA$ $V_S = \pm 15 \; V, \; I_{REF} =$ $2.0 \; mA$		2.3 -4.3 2.4 -6.4 2.5 -6.5	3.8 -5.8 3.8 -7.8 3.8 -7.8		2.3 -4.3 2.4 -6.4 2.5 -6.5	3.8 -5.8 3.8 -7.8 3.8 -7.8		2.3 -4.3 2.4 -6.4 2.5 -6.5	3.8 -5.8 3.8 -7.8 3.8 -7.8	mA mA mA mA mA
Power Dissipation	P_d	$\begin{array}{l} \pm 5 \text{ V, I}_{REF} = 1.0 \text{ mA} \\ + 5 \text{ V, } -15 \text{ V, I}_{REF} = \\ 2.0 \text{ mA} \\ \pm 15 \text{ V, I}_{REF} = 2.0 \text{ mA} \end{array}$		33 108 135	48 136 174		33 103 135	48 136 174		33 108 135	48 136 174	mW mW mW

NOTES

Specifications subject to change without notice.

-2- REV. A

¹Guaranteed by design.

TYPICAL ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15 \text{ V}$, and $I_{REF} = 2.0 \text{ mA}$, unless otherwise noted. Output

characteristics apply to both I_{OUT} and $\overline{I_{OUT}}$.)

Parameter	Symbol	Conditions	All Grades Typical	Units
Reference Input Slew Rate Propagation Delay Settling Time	$ ext{dI/dt} \ ext{t}_{ ext{PLH}}, ext{t}_{ ext{PHL}} \ ext{t}_{ ext{S}}$	$T_A = 25$ °C, Any Bit To +1/2 LSB, All Bits	8 35	mA/μs ns
Ü		Switched ON or OFF, $T_A = 25^{\circ}C$	85	ns

NOTES

For DAC08NT & GT 25°C characteristics, see DAC08N & G characteristics respectively. Specifications subject to change without notice

ABSOLUTE MAXIMUM RATINGS1

I BOOLETE MEMINICHI MITTIVAD
Operating Temperature
DAC08AQ, Q55°C to +125°C
DAC08HQ, EQ, CQ, HP, EP, CP, CS 0°C to +70°C
Junction Temperature (T_J)65°C to +150°C
Storage Temperature Q Package65°C to +150°C
Storage Temperature P Package65°C to +125°C
Lead Temperature (Soldering, 60 sec) 300°C
V+ Supply to V- Supply
Logic Inputs
V_{LC} V - to V +
Analog Current Outputs (at $V_{S^-} = 15 \text{ V}) \dots 4.25 \text{ mA}$
Reference Input $(V_{14} \text{ to } V_{15})$ V - to V +
Reference Input Differential Voltage
$(V_{14} \text{ to } V_{15})$ $\pm 18 \text{ V}$
Reference Input Current (I ₁₄) 5.0 mA

Package Type	θ_{JA}^2	θ_{JC}	Units
16-Pin Hermetic DIP (Q)	100	16	°C/W
16-Pin Plastic DIP (P)	82	39	°C/W
20-Contact LCC (RC)	76	36	°C/W
16-Pin SO (S)	111	35	°C/W

NOTES

ORDERING GUIDE¹

	16-Pi	Operating Temperature		
NL	Hermetic	Plastic	LCC	Range
0.1%	DAC08AQ ² DAC08HQ	DAC08HP		MIL COM
0.19%	DAC08Q ² DAC08EQ	DAC08EP	DAC08RC/883	MIL COM
0.39%	DAC08CQ	DAC08CP DAC08CS ³		COM COM

NOTES

PIN CONNECTIONS

16-Pin Dual-In-Line Package (Q Suffix)

16-Lead SO (S Suffix)

DAC08RC/883 20-Lead LCC (RC Suffix)

 $^{^{\}rm I}{\rm Absolute}$ maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

 $^{^2\}theta_{JA}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for cerdip, P-DIP, and LCC packages; θ_{JA} is specified for device soldered to printed circuit board for SO package.

¹Burn-in is available on commercial and industrial temperature range parts in cerdip, plastic DIP, and TO-can packages.

²For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.

³For availability and burn-in information on SO and PLCC packages, contact your local sales office.

DAC08

Parameter	Symbol	Conditions	DAC08NT Limit	DAC08N Limit	DAC08GT Limit	DAC08G Limit	DAC08GR Limit	Units
Resolution			8	8	8	8	8	Bits min
Monotonicity			8	8	8	8	8	Bits min
Nonlinearity	NL		± 0.1	±0.1	±0.19	±0.19	±0.39	% FS max
Output Voltage	V_{OC}	Full-Scale Current	+18	+18	+18	+18	+18	V max
Compliance		Change < 1/2 LSB	-10	-10	-10	-10	-10	V min
Full-Scale Current	I _{FS4} or	$V_{REF} = 10.000 \text{ V}$	2.04	2.04	2.04	2.04	2.04	mA max
	I_{FS2}	$R_{14}, R_{15} = 5.000 \text{ k}\Omega$	1.94	1.94	1.94	1.94	1.94	mA min
Full-Scale Symmetry	I_{FSS}		±8	±8	±8	±8	±16	μA max
Zero-Scale Current	I_{ZS}		2	2	4	4	4	μA max
Output Current Range	I_{FS1}	V - = -10 V,						
		$V_{REF} = +15 \text{ V}$ V - = -12 V,	2.1	2.1	2.1	2.1	2.1	mA min
	I_{FS2}	$V_{REF} = +25 \text{ V}$ $R_{14}, R_{15} = 5.000 \text{ k}\Omega$	4.2	4.2	4.2	4.2	4.2	mA min
Logic Input "0"	V_{IL}	14,13	0.8	0.8	0.8	0.8	0.8	V max
Logic Input "1"	V_{IH}		2	2	2	2	2	V min
Logic Input Current	***	$V_{IC} = 0 V$						
Logic "0"	I_{IL}	$V_{IN} = -10 \text{ V to } +0.8 \text{ V}$	±10	±10	±10	±10	±10	μA max
Logic "1"	I_{IH}	$V_{IN} = 2.0 \text{ V to } 18 \text{ V}$	±10	±10	±10	±10	±10	μA max
Logic Input Swing	V_{IS}	V- = -15 V	+18	+18	+18	+18	+18	V max
0 1 0			-10	-10	-10	-10	-10	V min
Reference Bias Current	I_{15}		-3	-3	-3	-3	-3	μA max
Power Supply	$PSSI_{FS+}$	V+ = 4.5 V to 18 V	0.01	0.01	0.01	0.01	0.01	% FS/% V max
Sensitivity	$PSSI_{FS-}$	V = -4.5 V to -18 V						
D G 1 G .	т	$I_{REF} = 1.0 \text{ mA}$	0.0	0.0		0.0		
Power Supply Current	I+	$V_S = \pm 15 \text{ V}$	3.8	3.8	3.8	3.8	3.8	mA max
Danier Diagraphica	n	$I_{REF} \le 2.0 \text{ mA}$	-7.8 174	-7.8	-7.8	-7.8	-7.8	μA max
Power Dissipation	P_{d}	$V_S = \pm 15 \text{ V}$ $I_{REF} \le 2.0 \text{ mA}$	174	174	174	174	174	mW max

NOTE

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

DICE CHARACTERISTICS

(+125°C Tested Dice Available)

4– REV. A

DAC08

Figure 1. Pulsed Reference Operation

Figure 2. Burn-in Circuit

Figure 3. Fast Pulsed Reference Operation

Figure 4. True and Complimentary Output Operation

Figure 5. LSB Switching

Figure 6. Full-Scale Settling Time

REV. A _5_

DAC08–Typical Performance Characteristics

Figure 7. Full-Scale Current vs. Reference Current

Figure 8. LSB Propagation Delay vs. I_{FS}

Figure 9. Reference Input Frequency Response

Figure 10. Reference Amp Common-Mode Range

Figure 11. Logic Input Current vs. Input Voltage

Figure 12. V_{TH} – V_{LC} vs. Temperature

Figure 13. Output Current vs. Output Voltage (Output Voltage Compliance)

Figure 14. Output Voltage Compliance vs. Temperature

Figure 15. Bit Transfer Characteristics

-6- REV. A

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

N-16

Q-16

SO-16

E-20

