Prediction with SEM: CERQ example on item level

true

November 08, 2021

Intro

I made an R-function for the SEM based prediction rule and in this note I will analyze the CERQ data with this rule. In this data set we have 4 items for each of 9 scales that measure emotion regulation. As a response variable we have the SCL score (actually we have item scores also) measured at a later time point. At the first timepoint we also have a SCL score. For more detail see https://scholarlypublications.universiteitleiden.nl/access/item%3A2871874/view

Data set

```
source('~/surfdrive/Predictive-Psychometrics/paper/SEM-Predictive Validity/versie2/Rcode/predict
load("~/surfdrive/Shared/pred_val_shared/Project_2/p2_application/CERQ Project/CERQdepr_12.Rdata
load("~/surfdrive/Shared/pred_val_shared/Project_2/p2_application/CERQ Project/wideCERQ_T1_T2_T3
# merge
CERQdepr_12 = merge(CERQdepr_12, wideCERQ_T1[ , c(1, 18)])
\# depression scale at T = 1
SCLt1 = CERQdepr_12[, 76]
# response variable: scale score at T = 2
SCLt2 = CERQdepr_12[, 72]
#response variable: item scores at T = 2
SCLi = CERQdepr_12[, c(56:71)]
colnames(SCLi) = paste("d", c(1:16), sep = "")
# item data
CERQi = CERQdepr_12[, c(2:5, 8:11, 14:17, 20:23, 26:29, 32:35, 38:41, 44:47, 50:53)]
colnames(CERQi) = c("sb1",
                   "sb2",
                   "sb3",
                   "sb4",
                   "ac1",
                   "ac2",
                   "ac3",
```

```
"ac4",
                    "ru1",
                    "ru2",
                    "ru3",
                    "ru4",
                    "rf1",
                    "rf2",
                    "rf3",
                    "rf4",
                    "rp1",
                    "rp2",
                    "rp3",
                    "rp4",
                    "ra1",
                    "ra2",
                    "ra3",
                    "ra4",
                    "pp1",
                    "pp2",
                    "pp3",
                    "pp4",
                    "ca1",
                    "ca2",
                    "ca3",
                    "ca4",
                    "bo1",
                    "bo2",
                    "bo3",
                    "bo4"
                    )
# scale data
CERQt = CERQdepr_12[, c(6, 12, 18, 24, 30, 36, 42, 48, 54)]
colnames(CERQt) = c("sb",
                     "ac",
                     "ru",
                     "rf",
                     "rp",
                     "ra",
                     "pp",
                     "ca",
                     "bo"
)
# data set with item scores
```

Analysis Depression Scale

```
mydat1 = cbind(CERQi, SCLt2)
mydat1 = mydat1[complete.cases(mydat1), ]
model1 <- '
  # latent variable definitions
 sb = "sb1 + sb2 + sb3 + sb4
  ac = ac1 + ac2 + ac3 + ac4
 ru =~ ru1 + ru2 + ru3 + ru4
 rf = rf1 + rf2 + rf3 + rf4
  rp = rp1 + rp2 + rp3 + rp4
 ra =~ ra1 + ra2 + ra3 + ra4
 pp = pp1 + pp2 + pp3 + pp4
  ca = ca1 + ca2 + ca3 + ca4
  bo = bo1 + bo2 + bo3 + bo4
 # regressions
  SCLt2 ~ sb + ac + ru + rf + rp + ra + pp + ca + bo
fit.sem <- sem(model1, data = mydat1, std.lv = TRUE, meanstructure = TRUE, warn = FALSE)
summary(fit.sem)
mydat2 = cbind(CERQt, SCLi)
mydat2 = mydat2[complete.cases(mydat2), ]
```

Analysis Depression Items

With the following code I define the SEM model. As methods of comparison I use a linear regression on the item scores estimated by various forms of elastic net (including lasso and ridge) as well as ordinary least squares. Also we use a linear regression on the scale scores, which is equivalent to a SEM model with an equality constraint on the factor loadings.

```
mydat3 = cbind(CERQi, SCLi)
mydat3 = mydat3[complete.cases(mydat3), ]
x = as.matrix(mydat3[, 1:36]);
y = as.matrix(mydat3[, 37:52])
model <- '
  # latent variable definitions
  sb = "sb1 + sb2 + sb3 + sb4
  ac = ac1 + ac2 + ac3 + ac4
  ru = ru1 + ru2 + ru3 + ru4
  rf = rf1 + rf2 + rf3 + rf4
  rp = rp1 + rp2 + rp3 + rp4
  ra = ra1 + ra2 + ra3 + ra4
  pp = pp1 + pp2 + pp3 + pp4
  ca = ca1 + ca2 + ca3 + ca4
  bo = bo1 + bo2 + bo3 + bo4
  scl = d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d10 + d11 + d12 + d13 + d14 + d15 + d16
  # regressions
  scl ~ sb + ac + ru + rf + rp + ra + pp + ca + bo
xnames = colnames(CERQi)
ynames = colnames(SCLi)
```

Let us fit this model to the data and inspect the results:

```
fit <- sem(model, data = mydat3, std.lv = TRUE, meanstructure = TRUE, warn = FALSE)
summary(fit)</pre>
```

```
## lavaan 0.6-9 ended normally after 70 iterations
##
##
     Estimator
                                                          ML
##
     Optimization method
                                                      NLMINB
     Number of model parameters
                                                         201
##
##
##
     Number of observations
                                                         240
##
## Model Test User Model:
##
##
     Test statistic
                                                    2250.529
##
     Degrees of freedom
                                                        1229
```

```
##
     P-value (Chi-square)
                                                         0.000
##
## Parameter Estimates:
##
##
     Standard errors
                                                      Standard
                                                     Expected
##
     Information
##
     Information saturated (h1) model
                                                   Structured
##
## Latent Variables:
##
                        Estimate
                                   Std.Err z-value P(>|z|)
##
     sb =~
##
                           0.390
                                     0.049
                                               7.933
                                                         0.000
       sb1
                                     0.075
                                               9.392
                                                         0.000
##
       sb2
                           0.708
       sb3
                                     0.066
                                                         0.000
##
                           0.752
                                              11.318
##
       sb4
                           0.670
                                     0.058
                                              11.464
                                                         0.000
##
     ac =~
##
       ac1
                           0.836
                                     0.071
                                              11.856
                                                         0.000
##
       ac2
                           0.860
                                     0.071
                                              12.056
                                                         0.000
##
       ac3
                           0.470
                                     0.074
                                               6.377
                                                         0.000
##
                           0.920
                                     0.067
                                              13.833
                                                         0.000
       ac4
##
     ru =~
                                     0.062
                                                         0.000
##
       ru1
                           0.755
                                              12.097
##
       ru2
                           0.780
                                     0.058
                                              13.325
                                                         0.000
##
       ru3
                           0.977
                                     0.073
                                              13.408
                                                         0.000
##
       ru4
                           0.864
                                     0.063
                                              13.791
                                                         0.000
##
     rf =~
##
                                     0.063
                                                         0.000
       rf1
                           0.858
                                              13.528
                                                         0.000
##
       rf2
                           0.834
                                     0.054
                                              15.524
       rf3
                           0.773
                                     0.049
                                              15.657
                                                         0.000
##
##
       rf4
                           0.725
                                     0.064
                                              11.348
                                                         0.000
##
     rp =~
##
       rp1
                           0.872
                                     0.065
                                              13.329
                                                         0.000
##
       rp2
                           0.943
                                     0.057
                                              16.664
                                                         0.000
##
       rp3
                           0.955
                                     0.063
                                              15.105
                                                         0.000
                                              15.307
##
       rp4
                           0.976
                                     0.064
                                                         0.000
##
     ra =~
##
                           0.945
                                     0.067
                                              14.082
                                                         0.000
       ra1
##
       ra2
                           0.865
                                     0.077
                                              11.160
                                                         0.000
##
                           0.959
                                     0.065
                                              14.855
                                                         0.000
       ra3
                                     0.063
##
       ra4
                           0.970
                                              15.301
                                                         0.000
##
     pp =~
##
                                     0.070
                                              11.922
                                                         0.000
                           0.831
       pp1
##
                           0.760
                                     0.071
                                              10.716
                                                         0.000
       pp2
                                     0.064
##
       pp3
                           0.951
                                              14.826
                                                         0.000
##
       pp4
                           0.953
                                     0.064
                                              14.965
                                                         0.000
##
     ca =~
##
       ca1
                           0.214
                                     0.051
                                               4.236
                                                         0.000
##
       ca2
                           0.532
                                     0.039
                                              13.655
                                                         0.000
```

##	ca3	0.463	0.049	9.455	0.000
##	ca4	0.688	0.053	12.910	0.000
##	bo =~				
##	bo1	0.428	0.041	10.535	0.000
##	bo2	0.632	0.043	14.801	0.000
##	bo3	0.568	0.055	10.289	0.000
##	bo4	0.662	0.050	13.254	0.000
##	scl =~				
##	d1	0.606	0.046	13.095	0.000
##	d2	0.548	0.056	9.855	0.000
##	d3	0.530	0.043	12.350	0.000
##	d4	0.254	0.040	6.280	0.000
##	d5	0.229	0.030	7.712	0.000
##	d6	0.510	0.040	12.599	0.000
##	d7	0.590	0.042	13.981	0.000
##	d8	0.550	0.042		0.000
##	d9	0.647			0.000
##	d10	0.718	0.052		0.000
##	d10	0.433	0.034		0.000
##	d12	0.433	0.034		0.000
##	d12 d13	0.625	0.041	15.254	0.000
##	d14	0.358	0.040	9.029	0.000
##	d15	0.533			0.000
##	d16	0.450	0.049	9.177	0.000
##					
##	Regressions:			_	- (
## ##	-	Estimate	Std.Err	z-value	P(> z)
## ## ##	scl ~				
## ## ## ##	-	0.348	0.128	2.720	0.007
## ## ## ##	scl ~	0.348 -0.051	0.128 0.126	2.720 -0.399	0.007 0.690
## ## ## ## ##	scl ~ sb ac ru	0.348 -0.051 0.050	0.128 0.126 0.170	2.720 -0.399 0.296	0.007 0.690 0.767
## ## ## ## ## ##	scl ~ sb ac	0.348 -0.051 0.050 0.066	0.128 0.126 0.170 0.106	2.720 -0.399 0.296 0.626	0.007 0.690 0.767 0.531
## ## ## ## ##	scl ~ sb ac ru	0.348 -0.051 0.050	0.128 0.126 0.170	2.720 -0.399 0.296 0.626 0.143	0.007 0.690 0.767
## ## ## ## ## ##	scl ~ sb ac ru rf	0.348 -0.051 0.050 0.066	0.128 0.126 0.170 0.106	2.720 -0.399 0.296 0.626	0.007 0.690 0.767 0.531
## ## ## ## ## ##	scl ~ sb ac ru rf rp	0.348 -0.051 0.050 0.066 0.034	0.128 0.126 0.170 0.106 0.236	2.720 -0.399 0.296 0.626 0.143	0.007 0.690 0.767 0.531 0.886
## ## ## ## ## ##	scl ~ sb ac ru rf rp ra	0.348 -0.051 0.050 0.066 0.034 -0.316	0.128 0.126 0.170 0.106 0.236 0.279	2.720 -0.399 0.296 0.626 0.143 -1.136	0.007 0.690 0.767 0.531 0.886 0.256
## ## ## ## ## ## ##	scl ~ sb ac ru rf rp ra pp	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010	0.128 0.126 0.170 0.106 0.236 0.279 0.184	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053	0.007 0.690 0.767 0.531 0.886 0.256 0.958
## ## ## ## ## ## ##	scl ~ sb ac ru rf rp ra pp ca	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010 0.619	0.128 0.126 0.170 0.106 0.236 0.279 0.184 0.213	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053 2.912	0.007 0.690 0.767 0.531 0.886 0.256 0.958 0.004
## ## ## ## ## ## ##	scl ~ sb ac ru rf rp ra pp ca	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010 0.619	0.128 0.126 0.170 0.106 0.236 0.279 0.184 0.213	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053 2.912	0.007 0.690 0.767 0.531 0.886 0.256 0.958 0.004
## ## ## ## ## ## ## ##	scl ~ sb ac ru rf rp ra pp ca bo	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010 0.619	0.128 0.126 0.170 0.106 0.236 0.279 0.184 0.213	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053 2.912 -0.298	0.007 0.690 0.767 0.531 0.886 0.256 0.958 0.004
## ## ## ## ## ## ## ##	scl ~ sb ac ru rf rp ra pp ca bo	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010 0.619 -0.041	0.128 0.126 0.170 0.106 0.236 0.279 0.184 0.213 0.136	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053 2.912 -0.298	0.007 0.690 0.767 0.531 0.886 0.256 0.958 0.004 0.765
## ## ## ## ## ## ## ## ## ## ## ## ##	scl ~ sb ac ru rf rp ra pp ca bo Covariances:	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010 0.619 -0.041	0.128 0.126 0.170 0.106 0.236 0.279 0.184 0.213 0.136	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053 2.912 -0.298	0.007 0.690 0.767 0.531 0.886 0.256 0.958 0.004 0.765
######################################	scl ~ sb ac ru rf rp ra pp ca bo Covariances:	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010 0.619 -0.041 Estimate 0.467	0.128 0.126 0.170 0.106 0.236 0.279 0.184 0.213 0.136 Std.Err	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053 2.912 -0.298 z-value 6.775	0.007 0.690 0.767 0.531 0.886 0.256 0.958 0.004 0.765 P(> z)
## ## ## ## ## ## ## ## ## ## ## ## ##	scl ~ sb ac ru rf rp ra pp ca bo Covariances: sb ~~ ac ru	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010 0.619 -0.041 Estimate 0.467 0.425	0.128 0.126 0.170 0.106 0.236 0.279 0.184 0.213 0.136 Std.Err 0.069 0.069	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053 2.912 -0.298 z-value 6.775 6.132	0.007 0.690 0.767 0.531 0.886 0.256 0.958 0.004 0.765 P(> z) 0.000 0.000
####################	scl ~ sb ac ru rf rp ra pp ca bo Covariances: sb ~~ ac ru rf	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010 0.619 -0.041 Estimate 0.467 0.425 0.153	0.128 0.126 0.170 0.106 0.236 0.279 0.184 0.213 0.136 Std.Err 0.069 0.069 0.077	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053 2.912 -0.298 z-value 6.775 6.132 1.975	0.007 0.690 0.767 0.531 0.886 0.256 0.958 0.004 0.765 P(> z) 0.000 0.000 0.048
######################################	scl ~ sb ac ru rf rp ra pp ca bo Covariances: sb ~~ ac ru rf rp	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010 0.619 -0.041 Estimate 0.467 0.425 0.153 0.466	0.128 0.126 0.170 0.106 0.236 0.279 0.184 0.213 0.136 Std.Err 0.069 0.069 0.077 0.065	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053 2.912 -0.298 z-value 6.775 6.132 1.975 7.194	0.007 0.690 0.767 0.531 0.886 0.256 0.958 0.004 0.765 P(> z) 0.000 0.000 0.048 0.000
#####################	scl ~ sb ac ru rf rp ra pp ca bo Covariances: sb ~~ ac ru rf rp ra	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010 0.619 -0.041 Estimate 0.467 0.425 0.153 0.466 0.455	0.128 0.126 0.170 0.106 0.236 0.279 0.184 0.213 0.136 Std.Err 0.069 0.069 0.077 0.065 0.067	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053 2.912 -0.298 z-value 6.775 6.132 1.975 7.194 6.821	0.007 0.690 0.767 0.531 0.886 0.256 0.958 0.004 0.765 P(> z) 0.000 0.000 0.048 0.000 0.000
######################################	scl ~ sb ac ru rf rp ra pp ca bo Covariances: sb ~~ ac ru rf rp	0.348 -0.051 0.050 0.066 0.034 -0.316 0.010 0.619 -0.041 Estimate 0.467 0.425 0.153 0.466	0.128 0.126 0.170 0.106 0.236 0.279 0.184 0.213 0.136 Std.Err 0.069 0.069 0.077 0.065	2.720 -0.399 0.296 0.626 0.143 -1.136 0.053 2.912 -0.298 z-value 6.775 6.132 1.975 7.194	0.007 0.690 0.767 0.531 0.886 0.256 0.958 0.004 0.765 P(> z) 0.000 0.000 0.048 0.000

##	bo	0.101	0.080	1.257	0.209
##	ac ~~				
##	ru	0.471	0.064	7.367	0.000
##	rf	0.356	0.068	5.216	0.000
##	rp	0.493	0.060	8.169	0.000
##	ra	0.492	0.062	7.968	0.000
##	pp	0.513	0.061	8.426	0.000
##	ca	0.355	0.073	4.873	0.000
##	bo	0.256	0.074	3.463	0.001
##	ru ~~				
##	rf	0.109	0.074	1.474	0.141
##	rp	0.652	0.047	13.832	0.000
##	ra	0.418	0.064	6.499	0.000
##	pp	0.142	0.074	1.912	0.056
##	ca	0.531	0.062	8.638	0.000
##	bo	0.327	0.070	4.688	0.000
##	rf ~~				
##	rp	0.324	0.066	4.916	0.000
##	ra	0.416	0.063	6.619	0.000
##	pp	0.564	0.054	10.414	0.000
##	ca	0.022	0.077	0.289	0.772
##	bo	0.063	0.075	0.847	0.397
##	rp ~~				
##	ra	0.811	0.032	25.460	0.000
##	pp	0.430	0.062	6.948	0.000
##	ca	0.105	0.076	1.382	0.167
##	bo	0.114	0.073	1.558	0.119
##	ra ~~				
##	pp	0.685	0.045	15.076	0.000
##	ca	-0.145	0.077	-1.884	0.060
##	bo	-0.070	0.075	-0.932	0.351
##	pp ~~				
##	ca	-0.070	0.078	-0.893	0.372
##	bo	0.060	0.076	0.791	0.429
##	ca ~~				
##	bo	0.664	0.052	12.693	0.000
##					
##	Intercepts:				
##		Estimate	Std.Err	z-value	P(> z)
##	.sb1	1.733	0.047	36.636	0.000
##	.sb2	2.304	0.074	30.972	0.000
##	.sb3	2.304	0.068	33.984	0.000
##	.sb4	1.746	0.060	29.229	0.000
##	.ac1	2.658	0.075	35.445	0.000
##	.ac2	2.967	0.076	38.974	0.000
##	.ac3	2.446	0.071	34.512	0.000
##	.ac4	2.742	0.073	37.373	0.000
##	.ru1	2.492	0.068	36.530	0.000

##	.ru2	2.417	0.066	36.805	0.000
##	.ru3	2.646	0.082	32.283	0.000
##	.ru4	2.733	0.071	38.460	0.000
##	.rf1	2.500	0.072	34.757	0.000
##	.rf2	2.325	0.064	36.583	0.000
##	.rf3	2.183	0.059	37.245	0.000
##	.rf4	2.858	0.069	41.354	0.000
##	.rp1	3.487	0.075	46.647	0.000
##	.rp2	3.279	0.070	47.007	0.000
##	.rp3	3.000	0.075	39.877	0.000
##	.rp4	3.075	0.076	40.342	0.000
##	.ra1	3.138	0.078	40.338	0.000
##	.ra2	3.129	0.084	37.135	0.000
##	.ra3	2.888	0.076	37.921	0.000
##	.ra4	3.125	0.075	41.396	0.000
##	.pp1	2.596	0.076	34.099	0.000
##	.pp2	2.862	0.076	37.906	0.000
##	.pp3	2.783	0.075	37.300	0.000
##	.pp4	3.125	0.074	42.041	0.000
##	.ca1	1.433	0.048	30.063	0.000
##	.ca2	1.367	0.043	31.601	0.000
##	.ca3	1.350	0.050	26.944	0.000
##	.ca4	1.775	0.058	30.440	0.000
##	.bo1	1.408	0.042	33.146	0.000
##	.bo2	1.479	0.049	30.453	0.000
##	.bo3	1.771	0.057	30.801	0.000
##	.bo4	1.554	0.055	28.172	0.000
##	.d1	1.762	0.065	27.222	0.000
##	.d2	2.150	0.075	28.818	0.000
##	.d3	1.454	0.059	24.465	0.000
##	.d4	1.158	0.052	22.118	0.000
##	.d5	1.254	0.039	32.179	0.000
##	.d6	1.413	0.056	25.117	0.000
##	.d7	1.529	0.060	25.583	0.000
##	.d8	1.571	0.059	26.739	0.000
##	.d9	1.504	0.060	25.152	0.000
##	.d10	2.083	0.074	28.292	0.000
##	.d11	1.333	0.047	28.138	0.000
##	.d12	1.512	0.059	25.670	0.000
##	.d13	1.467	0.059	24.783	0.000
##	.d14	1.471	0.053	27.925	0.000
##	.d15	1.375	0.056	24.580	0.000
##	.d16	1.613	0.065	24.726	0.000
##	sb	0.000			
##	ac	0.000			
##	ru	0.000			
##	rf	0.000			
##	rp	0.000			

		0.000			
##	ra	0.000			
##	pp	0.000			
##	ca	0.000			
##	bo	0.000			
##	.scl	0.000			
##					
	Variances:				
##		Estimate	Std.Err	z-value	P(> z)
##	.sb1	0.385	0.039	9.822	0.000
##	.sb2	0.827	0.090	9.202	0.000
##	.sb3	0.537	0.068	7.861	0.000
##	.sb4	0.408	0.053	7.724	0.000
##	.ac1	0.651	0.076	8.558	0.000
##	.ac2	0.651	0.077	8.416	0.000
##	.ac3	0.985	0.094	10.475	0.000
##	.ac4	0.445	0.066	6.718	0.000
##	.ru1	0.547	0.059	9.280	0.000
##	.ru2	0.427	0.049	8.655	0.000
##	.ru3	0.657	0.076	8.604	0.000
##	.ru4	0.465	0.056	8.352	0.000
##	.rf1	0.505	0.057	8.856	0.000
##	.rf2	0.274	0.038	7.213	0.000
##	.rf3	0.226	0.032	7.065	0.000
##	.rf4	0.621	0.064	9.758	0.000
##	.rp1	0.582	0.060	9.643	0.000
##	.rp2	0.279	0.036	7.699	0.000
##	.rp3	0.446	0.050	8.880	0.000
##	.rp4	0.442	0.050	8.762	0.000
##	.ra1	0.559	0.061	9.145	0.000
##	.ra2	0.957	0.095	10.086	0.000
##	.ra3	0.471	0.054	8.728	0.000
##	.ra4	0.427	0.051	8.430	0.000
##	.pp1	0.701	0.074	9.475	0.000
##	.pp2	0.791	0.080	9.866	0.000
##	.pp3	0.432	0.056	7.743	0.000
##	.pp4	0.417	0.055	7.613	0.000
##	.ca1	0.500	0.046	10.777	0.000
##	.ca2	0.166	0.022	7.424	0.000
##	.ca3	0.388	0.039	9.863	0.000
##	.ca4	0.343	0.042	8.139	0.000
##	.bo1	0.250	0.026	9.554	0.000
##	.bo2	0.167	0.027	6.295	0.000
##	.bo3	0.471	0.049	9.644	0.000
##	.bo4	0.292	0.037	7.953	0.000
##	.d1	0.399	0.039	10.282	0.000
##	.d2	0.839	0.078	10.693	0.000
##	.d3	0.383	0.037	10.419	0.000
##	. d4	0.551	0.051	10.869	0.000

```
0.000
##
      .d5
                           0.278
                                     0.026
                                              10.817
##
      .d6
                           0.329
                                     0.032
                                              10.378
                                                         0.000
      .d7
                                                         0.000
##
                           0.282
                                     0.028
                                              10.055
##
      .d8
                           0.327
                                     0.032
                                              10.279
                                                         0.000
##
      .d9
                           0.165
                                     0.018
                                               9.100
                                                         0.000
##
      .d10
                           0.448
                                     0.044
                                              10.114
                                                         0.000
##
      .d11
                           0.229
                                     0.022
                                              10.359
                                                         0.000
      .d12
##
                           0.250
                                     0.025
                                               9.922
                                                         0.000
##
      .d13
                           0.195
                                     0.021
                                               9.489
                                                         0.000
##
      .d14
                                     0.042
                                                         0.000
                           0.454
                                              10.749
##
      .d15
                           0.281
                                     0.028
                                              10.217
                                                         0.000
##
      .d16
                           0.686
                                     0.064
                                              10.740
                                                         0.000
##
                           1.000
       sb
##
                           1.000
       ac
##
       ru
                           1.000
##
       rf
                           1.000
##
                           1.000
       rp
##
                           1.000
       ra
##
                           1.000
       pp
##
                           1.000
       ca
##
       bo
                           1.000
##
                           1.000
       .scl
```

Repeated Cross Validation

```
set.seed(1234)
repeats = 100
PE = data.frame(repetition = rep(1:repeats, each = 14),
                model = rep(1:14, repeats),
                pe = rep(0, 14 * repeats),
                pe1 = rep(0, 14 * repeats),
                pe2 = rep(0, 14 * repeats),
                pe3 = rep(0, 14 * repeats),
                pe4 = rep(0, 14 * repeats),
                pe5 = rep(0, 14 * repeats),
                pe6 = rep(0, 14 * repeats),
                pe7 = rep(0, 14 * repeats),
                pe8 = rep(0, 14 * repeats),
                pe9 = rep(0, 14 * repeats),
                pe10 = rep(0, 14 * repeats),
                pe11 = rep(0, 14 * repeats),
                pe12 = rep(0, 14 * repeats),
                pe13 = rep(0, 14 * repeats),
                pe14 = rep(0, 14 * repeats),
                pe15 = rep(0, 14 * repeats),
                pe16 = rep(0, 14 * repeats))
```

```
folds = rep(1:10, length.out = 240)
for (r in 1:repeats){
  yhat1 = yhat2 = yhat3 = yhat4 = yhat5 = yhat6 = yhat7 = yhat8 = yhat9 = yhat10 = yhat11 = yhat
 folds = sample(folds)
 for(k in 1:10){
    idx = which(folds == k)
    # sem model
    fit.sem <- sem(model, data = mydat3[-idx, ], std.lv = TRUE, meanstructure = TRUE, warn = FAL
    yhat1[idx, ] = predicty.lavaan(fit.sem, newdata = mydat3[idx, ], xnames = xnames, ynames = y
    # linear regession scale scores
    fit.lms = lm(cbind(d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, d16) ~
    yhat2[idx,] = predict(fit.lms, newdata = mydat2[idx, ])
    # elastic net on items
    cv.out = cv.glmnet(x[-idx, ],y[-idx,], family = "mgaussian", alpha = 1.0)
    out = glmnet(x[-idx, ],y[-idx,], family = "mgaussian", alpha = 1.0)
    yhat3[idx, ] = predict(out, newx = x[idx, ], s = cv.out$lambda.1se)
    cv.out = cv.glmnet(x[-idx, ],y[-idx,], family = "mgaussian", alpha = 0.9)
    out = glmnet(x[-idx, ],y[-idx,], family = "mgaussian", alpha = 0.9)
    yhat4[idx, ] = predict(out, newx = x[idx, ], s = cv.out$lambda.1se)
    cv.out = cv.glmnet(x[-idx, ],y[-idx,], family = "mgaussian", alpha = 0.8)
    out = glmnet(x[-idx, ],y[-idx,], family = "mgaussian", alpha = 0.8)
    yhat5[idx, ] = predict(out, newx = x[idx, ], s = cv.out$lambda.1se)
    cv.out = cv.glmnet(x[-idx, ],y[-idx,], family = "mgaussian", alpha = 0.7)
    out = glmnet(x[-idx, ],y[-idx,], family = "mgaussian", alpha = 0.7)
    yhat6[idx, ] = predict(out, newx = x[idx, ], s = cv.out$lambda.1se)
    cv.out = cv.glmnet(x[-idx, ],y[-idx,], family = "mgaussian", alpha = 0.6)
    out = glmnet(x[-idx, ],y[-idx,], family = "mgaussian", alpha = 0.6)
    yhat7[idx, ] = predict(out, newx = x[idx, ], s = cv.out$lambda.1se)
    cv.out = cv.glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.5)
    out = glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.5)
    yhat8[idx, ] = predict(out, newx = x[idx, ], s = cv.out$lambda.1se)
    cv.out = cv.glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.4)
    out = glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.4)
    yhat9[idx, ] = predict(out, newx = x[idx, ], s = cv.out$lambda.1se)
    cv.out = cv.glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.3)
    out = glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.3)
    yhat10[idx, ] = predict(out, newx = x[idx, ], s = cv.out$lambda.1se)
```

```
cv.out = cv.glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.2)
    out = glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.2)
    yhat11[idx, ] = predict(out, newx = x[idx, ], s = cv.out$lambda.1se)
    cv.out = cv.glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.1)
    out = glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.1)
    yhat12[idx, ] = predict(out, newx = x[idx, ], s = cv.out$lambda.1se)
    cv.out = cv.glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.0)
    out = glmnet(x[-idx, ],y[-idx, ], family = "mgaussian", alpha = 0.0)
    yhat13[idx, ] = predict(out, newx = x[idx, ], s = cv.out$lambda.1se)
    out = lm(cbind(d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, d16) ~ ., d
    yhat14[idx, ] = predict(out, newdata = mydat3[idx, ])
}# end folds
pe1 = sqrt(mean((y - yhat1)^2))
pe2 = sqrt(mean((y - yhat2)^2))
pe3 = sqrt(mean((y - yhat3)^2))
pe4 = sqrt(mean((y - yhat4)^2))
pe5 = sqrt(mean((y - yhat5)^2))
pe6 = sqrt(mean((y - yhat6)^2))
pe7 = sqrt(mean((y - yhat7)^2))
pe8 = sqrt(mean((y - yhat8)^2))
pe9 = sqrt(mean((y - yhat9)^2))
pe10 = sqrt(mean((y - yhat10)^2))
pe11 = sqrt(mean((y - yhat11)^2))
pe12 = sqrt(mean((y - yhat12)^2))
pe13 = sqrt(mean((y - yhat13)^2))
pe14 = sqrt(mean((y - yhat14)^2))
PEspe[((r-1)*14 + 1): (r*14)] = c(pe1, pe2, pe3, pe4, pe5, pe6, pe7, pe8, pe9, pe10, pe11, pe1
for(j in 1:16){
    pe1 = sqrt(mean((y[, j] - yhat1[,j])^2))
    pe2 = sqrt(mean((y[, j] - yhat2[,j])^2))
    pe3 = sqrt(mean((y[, j] - yhat3[,j])^2))
    pe4 = sqrt(mean((y[, j] - yhat4[,j])^2))
    pe5 = sqrt(mean((y[, j] - yhat5[,j])^2))
    pe6 = sqrt(mean((y[, j] - yhat6[,j])^2))
    pe7 = sqrt(mean((y[, j] - yhat7[,j])^2))
    pe8 = sqrt(mean((y[, j] - yhat8[,j])^2))
    pe9 = sqrt(mean((y[, j] - yhat9[,j])^2))
    pe10 = sqrt(mean((y[, j] - yhat10[,j])^2))
    pe11 = sqrt(mean((y[, j] - yhat11[,j])^2))
```

```
pe12 = sqrt(mean((y[, j] - yhat12[,j])^2))
               pe13 = sqrt(mean((y[, j] - yhat13[,j])^2))
                pe14 = sqrt(mean((y[, j] - yhat14[,j])^2))
               PE[((r-1)*14 + 1): (r*14), (j+3)] = c(pe1, pe2, pe3, pe4, pe5, pe6, pe7, pe8, pe9, pe10, pe10,
       }
} # end repetitions
save(PE, file = "xvalcerqitem.Rdata")
pe = cbind(PE[PE$model == 1, 3],
                                            PE[PE\$model == 2, 3],
                                            PE[PE$model == 3, 3],
                                            PE[PE\$model == 4, 3],
                                            PE[PE$model == 5, 3],
                                            PE[PE$model == 6, 3],
                                            PE[PE\$model == 7, 3],
                                            PE[PE\$model == 8, 3],
                                            PE[PE\$model == 9, 3],
                                            PE[PE\$model == 10, 3],
                                            PE[PE\$model == 11, 3],
                                            PE[PE\$model == 12, 3],
                                            PE[PE\$model == 13, 3],
                                            PE[PE\$model == 14, 3])
table(apply(pe, 1, which.min))
##
##
                    1
## 100
```

Overall prediction error

```
library(ggplot2)
PE$model = as.factor(PE$model)

p <- ggplot(PE, aes(x=model, y=pe, fill=factor(model)))
    p <- p + geom_boxplot(aes(group = factor(model))) +
        geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
        xlab("Approach") + ylab("RMSEp") + theme(legend.position="none") +
        scale_fill_grey(start=.3,end=.7)</pre>
```


 ${\tt ggsave('\tilde{\ }''s urfdrive/Predictive-Psychometrics/paper/SEM-Predictive\ Validity/versie2/Figures/cerqictive-Psychometrics/paper/SEM-Predictive-Psychometrics/paper/SEM-Psychometrics/paper/SEM-Psychometrics/paper-Psyc$

Saving 6.5×4.5 in image

Prediction error per item

```
#load("~/surfdrive/Predictive-Psychometrics/paper/SEM-Predictive Validity/versie2/Rcode/xvalcerg
rpe = range(PE[, 4:19])

p <- ggplot(PE, aes(x=model, y=pe1, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 1") + ylim(rpe[1], rpe[2]) + theme(legen scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe2, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 2") + ylim(rpe[1], rpe[2])+ theme(legend scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe3, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 3") + ylim(rpe[1], rpe[2])+ theme(legend scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe4, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,.3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 4") + ylim(rpe[1], rpe[2])+ theme(legend scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe5, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,.3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 5") + ylim(rpe[1], rpe[2])+ theme(legend scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe6, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 2") + ylim(rpe[1], rpe[2])+ theme(legend scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe2, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 6") + ylim(rpe[1], rpe[2])+ theme(legend scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe7, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 7") + ylim(rpe[1], rpe[2])+ theme(legend scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe8, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 8") + ylim(rpe[1], rpe[2])+ theme(legend scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
1.2-
0.8-
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Approach
```

```
p <- ggplot(PE, aes(x=model, y=pe9, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 9") + ylim(rpe[1], rpe[2])+ theme(legend scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe10, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,.3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 10") + ylim(rpe[1], rpe[2])+ theme(legen scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
1.2-

CdSWW

0.8-

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Approach
```

```
p <- ggplot(PE, aes(x=model, y=pe11, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 11") + ylim(rpe[1], rpe[2])+ theme(legen scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe12, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 12") + ylim(rpe[1], rpe[2])+ theme(legen scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe13, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 13") + ylim(rpe[1], rpe[2])+ theme(legen scale_fill_grey(start=.3,end=.7)
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe14, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
   geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
   xlab("Approach") + ylab("RMSEp") + labs(title = "Item 14") + ylim(rpe[1], rpe[2])+ theme(legen scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe15, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
   geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,.3)) +
   xlab("Approach") + ylab("RMSEp") + labs(title = "Item 15") + ylim(rpe[1], rpe[2])+ theme(legen scale_fill_grey(start=.3,end=.7))
p</pre>
```



```
p <- ggplot(PE, aes(x=model, y=pe16, fill=factor(model)))
p <- p + geom_boxplot(aes(group = factor(model))) +
    geom_jitter(width = 0.05, height = 0, colour = rgb(0,0,0,0,3)) +
    xlab("Approach") + ylab("RMSEp") + labs(title = "Item 16") + ylim(rpe[1], rpe[2])+ theme(legen scale_fill_grey(start=.3,end=.7))
p</pre>
```

