$$f(x+h)g(x+h) - f(x)g(x) = f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) + f(x)g(x+h) + f(x)g(x+h) - g(x)g(x+h) - g(x+h) - g(x+h)g(x+h) - g(x+h)g(x+h) - g(x+h)g(x+h)g(x+h) - g(x+h)g(x+h)g(x+h)g(x+h) - g(x+h)$$

=
$$f'(x)g(x)+f(x)g'(x)$$
.

= (1+1) ×"

Application:
$$\frac{1}{4x} x^1 = 1 \cdot x^0$$
 $\frac{1}{4x} x^2 = (n \cdot 1) \times n$
 $\frac{1}{4x} x^2 = 2x^1$
 $\frac{1}{4x} x^3 = 3x^2$
 $\frac{1}{4x} x^3 = 3x^2$
 $\frac{1}{4x} x^4 = \frac{1}{4x} x^4 = \frac$

Invese rule:
$$\frac{d}{dx} = \frac{\int f'(x)}{\int f(x)^2}$$

Quotient rule
$$\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{f(x)^2}$$

Two more de vartues:

In fact: $\frac{d}{dx} \sin(\omega) = \cos(\omega)$ [Will justify next.] $\frac{d}{dx} - \cos(\omega) = \sin(\omega).$