CS566 Fall, 2015

1. Create a subtraction table for \mathbb{Z}_7 , (x-y) mod 7, similar to slide 6.

Table is shown below, the row index represents x and the column index represents y.

_	0	1	2	3	4	5	6
0	0	6	5	4	3	2	1
1	1	0	6	5	4	3	2
2	2	1	0	6	5	4	3
3	3	2	1	0	6	5	4
4	4	3	2	1	0	6	5
5	5	4	3	2	1	0	6
6	6	5	4	3	2	1	0

2. Compute GCD(500,793) using method given in slide 10. Show your work.

Let a = 793 and b = 500, with Euler's GCD algorithm, we have the following recursive steps:

$$\begin{array}{l} iter\text{-}1:\ a=793,\ b=500,\ q=\lfloor 793/500\rfloor=1\\ iter\text{-}2:\ a=500,\ b=793\mod 500=293,\ q=\lfloor 500/293\rfloor=1\\ iter\text{-}3:\ a=293,\ b=500\mod 293=207,\ q=\lfloor 293/207\rfloor=1\\ iter\text{-}4:\ a=207,\ b=293\mod 207=86,\ q=\lfloor 207/86\rfloor=2\\ iter\text{-}5:\ a=86,\ b=207\mod 86=35,\ q=\lfloor 86/35\rfloor=2\\ iter\text{-}6:\ a=35,\ b=86\mod 35=16,\ q=\lfloor 35/16\rfloor=2\\ iter\text{-}7:\ a=16,\ b=35\mod 16=3,\ q=\lfloor 16/3\rfloor=5\\ iter\text{-}8:\ a=3,\ b=16\mod 3=1,\ q=\lfloor 3/1\rfloor=3\\ iter\text{-}9:\ a=1,\ b=3\mod 1=0,\ \text{return}\ (1,1,0) \end{array}$$

Now work backwards to reach to the final answer:

$$iter-9:\ a=1,\ b=3\ \ \mathrm{mod}\ 1=0,\ \mathrm{return}\ (1,1,0)$$

$$iter-8:\ a=3,\ b=16\ \ \mathrm{mod}\ 3=1,\ q=\lfloor 3/1\rfloor=3,$$

$$(d,k,l)=(1,1,0),\ d=1,l=0,k-lq=1,\ \mathrm{return}\ (1,0,1)$$

$$iter-7:\ a=16,\ b=35\ \ \mathrm{mod}\ 16=3,\ q=\lfloor 16/3\rfloor=5,$$

$$(d,k,l)=(1,0,1),\ d=1,l=1,k-lq=0-1*5=-5,\ \mathrm{return}\ (1,1,-5)$$

$$iter-6:\ a=35,\ b=86\ \ \mathrm{mod}\ 35=16,\ q=\lfloor 35/16\rfloor=2,$$

$$(d,k,l)=(1,1,-5),\ d=1,l=-5,k-lq=1-(-5)*2=11,\ \mathrm{return}\ (1,-5,11)$$

$$iter-5:\ a=86,\ b=207\ \ \mathrm{mod}\ 86=35,\ q=\lfloor 86/35\rfloor=2,$$

$$(d,k,l)=(1,-5,11),\ d=1,l=11,k-lq=(-5)-11*2=-27,\ \mathrm{return}\ (1,11,-27)$$

$$iter-4:\ a=207,\ b=293\ \ \mathrm{mod}\ 207=86,\ q=\lfloor 207/86\rfloor=2,$$

$$(d,k,l)=(1,11,-27),\ d=1,l=-27,k-lq=11-(-27)*2=65,\ \mathrm{return}\ (1,-27,65)$$

$$iter-3:\ a=293,\ b=500\ \ \mathrm{mod}\ 293=207,\ q=\lfloor 293/207\rfloor=1,$$

$$(d,k,l)=(1,-27,65),\ d=1,l=65,k-lq=-27-65*1=-92,\ \mathrm{return}\ (1,65,-92)$$

$$iter-2:\ a=500,\ b=793\ \ \mathrm{mod}\ 500=293,q=\lfloor 500/293\rfloor=1,$$

$$(d,k,l)=(1,65,-92),\ d=1,l=-92,k-lq=65-(-92)*1=157,\ \mathrm{return}\ (1,-92,157)$$

$$iter-1:\ a=793,\ b=500,\ q=\lfloor 793/500\rfloor=1$$

$$(d,k,l)=(1,-92,157),\ d=1,l=157,k-lq=-92-157*1=-249,\ \mathrm{return}\ (1,157,-249)$$

Therefore GCD(500, 793) = (1, -249, 157).

3. Compute GCD(720,999) using method given in slide 12. Show your work.

$$\begin{array}{c} 999 = 720*1 + 279 \\ 720 = 279*2 + 162 \\ 279 = 162*1 + 117 \\ 162 = 117*1 + 45 \\ 117 = 45*2 + 27 \\ 45 = 27*1 + 18 \\ 27 = 18*1 + \mathbf{9} \\ 18 = 9*2 + 0 \end{array}$$

Therefore, GCD(720, 999) = 9.

4. Compute i and j such that GCD(500,793) = i * 500 + j * 793. Show your work.

```
1: 793 = 500 * 1 + 293

2: 500 = 293 * 1 + 207

3: 293 = 207 * 1 + 86

4: 207 = 86 * 2 + 35

5: 86 = 35 * 2 + 16

6: 35 = 16 * 2 + 3

7: 16 = 3 * 5 + 1
```

So GCD(500, 793) = 1.

8: 3 = 1 * 3 + 0

Transform the equtions 1 to 7 as:

```
1: 793 - 500 * 1 = 293

2: 500 - 293 * 1 = 207

3: 293 - 207 * 1 = 86

4: 207 - 86 * 2 = 35

5: 86 - 35 * 2 = 16

6: 35 - 16 * 2 = 3

7: 16 - 3 * 5 = \underline{1}
```

Now work from 2 to 7:

793 * 2 + 500 * (-3) = 86

2:
$$500 - 293 * 1 = 207$$

substitute 293 with $(793 - 500 * 1)$:
 $500 - (793 - 500 * 1) * 1 = 207$
 $793 * -1 + 500 * 2 = 207$
3: $293 - 207 * 1 = 86$
substitute 207 with $(793 * -1 + 500 * 2)$, and 293 with $(793 - 500 * 1)$:

(793 - 500 * 1) - (793 * -1 + 500 * 2) * 1 = 86

(793 * -1 + 500 * 2) - (793 * 2 + 500 * (-3)) * 2 = 35

4:
$$207 - 86 * 2 = 35$$
 substitute 207 with $(793 * -1 + 500 * 2)$, and 86 with $(793 * 2 + 500 * (-3))$:

$$793 * -5 + 500 * 8 = 35$$

$$5: 86 - 35 * 2 = 16$$

substitute 86 with (793 * 2 + 500 * (-3)): and 35 with (793 * -5 + 500 * 8) (793 * 2 + 500 * (-3)) - (793 * -5 + 500 * 8) * 2 = 16 793 * 12 + 500 * -19 = 16

6: 35 - 16 * 2 = 3

substitute 35 with (793*-5+500*8) and 16 with (793*12+500*-19): (793*-5+500*8) - (793*12+500*-19) * 2=3 793*-29+500*46=3

7: 16 - 3 * 5 = 1

substitute 16 with (793*12+500*-19) and 3 with (793*-29+500*46): (793*12+500*-19) - $(793*-29+500*46)*5=\underline{\mathbf{1}}$ $793*157+500*(-249)=\underline{\mathbf{1}}$

Therefore GCD(500,793) = 1 = 500 * (-249) + 793 * 157, i = -249, j = 157.

- 5. Compute i and j such that GCD(720,999) = i * 720 + j * 999. Show your work.
 - 1. 999 = 720 * 1 + 279
 - 2.720 = 279 * 2 + 162
 - 3. 279 = 162 * 1 + 117
 - 4. 162 = 117 * 1 + 45
 - 5. 117 = 45 * 2 + 27
 - $6. \ 45 = 27 * 1 + 18$
 - 7. 27 = 18 * 1 + 9
 - 8. 18 = 9 * 2 + 0

So GCD(720, 999) = 9. Transform the equtions 1 to 7 as:

- 1. 999 720 * 1 = 279
- 2.720 279 * 2 = 162
- 3. 279 162 * 1 = 117
- 4. 162 117 * 1 = 45
- 5. 117 45 * 2 = 27
- $6. \ 45 27 * 1 = 18$
- 7. 27 18 * 1 = 9

Now work from 2 to 7:

2.720 - 279 * 2 = 162

Substitute 279 with (999 - 720 * 1):

$$720 - (999 - 720 * 1) * 2 = 162$$

720 * 3 - 999 * 2 = 162

3. 279 - 162 * 1 = 117

Substitute 279 with (999 - 720 * 1) and 162 with (720 * 3 - 999 * 2):

$$(999 - 720 * 1) - (720 * 3 - 999 * 2) * 1 = 117$$
 $720 * -4 + 999 * 3 = 117$

4. $162 - 117 * 1 = 45$
Substitute 162 with $(720 * 3 - 999 * 2)$ and 117 with $(720 * -4 + 999 * 3)$: $(720 * 3 - 999 * 2) - (720 * -4 + 999 * 3) * 1 = 45$
 $720 * 7 - 999 * 5 = 45$

5. $117 - 45 * 2 = 27$
Substitute 117 with $(720 * -4 + 999 * 3)$ and 45 with $(720 * 7 - 999 * 5)$: $(720 * -4 + 999 * 3) - (720 * 7 - 999 * 5) * 2 = 27$
 $720 * -18 + 999 * 13 = 27$

6. $45 - 27 * 1 = 18$
Substitute 45 with $(720 * 7 - 999 * 5)$ and 27 with $(720 * -18 + 999 * 13)$: $(720 * 7 - 999 * 5) - (720 * -18 + 999 * 13) * 1 = 18$
 $720 * 25 - 999 * 18 = 18$

7.
$$27$$
 - $18*1 = \underline{\mathbf{9}}$
Substitute 27 with $(720*-18+999*13)$ and 18 with $(720*25-999*18)$: $(720*-18+999*13)$ - $(720*25-999*18)*1 = \underline{\mathbf{9}}$
 $720*(-43)+999*31 = \underline{\mathbf{9}}$
Therefore $GCD(720,999) = 9 = 720*(-43)+999*31, $i = -43, j = 31$.$

6. Create a modular multiplication table for Z_{13} , xy mod 13 and highlight inverses. Inverses are highlighted as $\underline{\mathbf{1}}$.

×	0	1	2	3	$\mid 4 \mid$	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	1	3	5	7	9	11
3	0	3	6	9	12	2	5	8	11	1	4	7	10
4	0	4	8	12	3	7	11	2	6	10	1	5	9
5	0	5	10	2	7	12	4	9	1	6	11	3	8
6	0	6	12	5	11	4	10	3	9	2	8	1	7
7	0	7	1	8	2	9	3	10	4	11	5	12	6
8	0	8	3	11	6	1	9	4	12	7	2	10	5
9	0	9	5	1	10	6	2	11	7	3	12	8	4
10	0	10	7	4	1	11	8	5	2	12	9	6	3
11	0	11	9	7	5	3	1	12	10	8	6	4	2
12	0	12	11	10	9	8	7	6	5	4	3	2	1

7. Create a modular exponentiation table for Z_{11} , $x^y \mod 11$.

	у	у	У	у	У	у	У	у	у	у
exp	1	2	3	4	5	6	7	8	9	10
1^y	1	1	1	1	1	1	1	1	1	1
2^y	2	4	8	5	10	9	7	3	6	1
$\overline{3^y}$	3	9	5	4	1	3	9	5	4	1
4^y	4	5	9	3	1	4	5	9	3	1
5^y	5	3	4	9	1	5	3	4	9	1
6^y	6	3	7	9	10	5	8	4	2	1
7^y	7	5	2	3	10	4	6	9	8	1
8^y	8	9	6	4	10	3	2	5	7	1
9^y	9	4	3	5	1	9	4	3	5	1
$\overline{10^y}$	10	1	10	1	10	1	10	1	10	1

8. How would you compute $x^{98} \mod p$ using repeated squaring. Show your work. First, express x^{98} as:

$$x^{98} = x^{64+32+2} = x^{64} * x^{32} * x^2$$

Next, compute x^{64}, x^{32}, x^2 using repeated squaring:

$$x^{2} = x * x$$

$$x^{4} = x^{2} * x^{2}$$

$$x^{8} = x^{4} * x^{4}$$

$$x^{16} = x^{8} * x^{8}$$

$$x^{32} = x^{16} * x^{16}$$

$$x^{64} = x^{32} * x^{32}$$

Therefore, $x^{98} \mod p = x^{64} * x^{32} * x^2 \mod p$