Swapnil Meshram

(480) 919-5621 |sbmeshra@asu.edu |http://www.linkedin.com/in/swapnilmeshram98 |https://swapnilm30.github.io/portfolio.github.io/

Education

Master of Science, Robotics and Autonomous Systems (Electrical Engineering)

December 2024

Arizona State University, Tempe, Arizona

GPA: 3.71/4.00

Relevant Coursework: Introduction to Deep Neural Networks, Embedded Machine Learning, Realtime Digital Signal Processing, Power Electronics & Power Management, Connected and Automated Vehicles

Bachelor of Engineering, Electronics Engineering

May 2020

K. K. Wagh Institute of Engineering Education and Research, Nashik, India

CGPA: 6.48/10

Relevant Coursework: Electronic Devices & Circuits, Advanced Power Electronics, Embedded Processors, Electromagnetics & Wave Propagation, Automotive Electronics

Technical Skills

Hardware and Software Development Tools: Altium Designer, Autodesk Eagle, KiCAD, LTspice, Simulink, Ansys Maxwell, Google Colab, Anaconda, Jupyter Notebook, Visual Studio Code, Git

Programming Languages: Python, C, Embedded C, MATLAB

Libraries & Frameworks: NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn, PyTorch, TensorFlow, ROS1/ROS2

Work Experience

Miniaturized and Advanced Power Electronics Laboratory: Research Aide

February 2023 - September 2023

Arizona State University, Tempe, Arizona

- Developed Printed Circuit Boards for planar transformers with medium-voltage isolation ratings of 26 kV, 35 kV, and 48 kV.
- Engineered multi-layer PCB designs (2, 4, 6, 10, 12, 14 layers), optimizing for project specifications.
- Partnered with Ph.D. students to evaluate and optimize designs, ensuring alignment with project goals.
- Analyzed and resolved technical challenges in PCB design, contributing to successful project completions.

Aerospace Engineers Private Limited: Electrical & Electronics Engineer

June 2021 - December 2022

Autonomous & Undersea Systems Division, Tamil Nadu, India

- Spearheaded research and development for unmanned marine vehicles (AUVs, ROVs, ASVs), designing advanced electrical architectures for the Neerakshi AUV capable of operating at a depth of 300-meters, and achieving 15% cost reduction through optimized designs and efficient project management practices.
- Engineered embedded electronic systems from concept to prototype, covering hardware selection, schematic design, PCB layout, and system integration.
- Designed and optimized the Power Distribution and Sensor Suite for unmanned marine vehicles, increasing endurance by 10%, compacting wiring length by 30%, and improving overall system efficiency.
- Developed the Propulsion Power Drive for unmanned marine vehicles by optimizing the efficiency of multiple ESCs and minimizing thermal losses, increasing endurance by 5% and eliminating active cooling requirements.

Academic Projects

Deep Learning Approaches to Audio Classification

January 2024 - April 2024

Arizona State University, Tempe, Arizona

- Explored multiple neural network architectures (CNNs, LSTMs, ResNet18, SVMs, Transformers) for classifying musical instruments, with CNNs achieving the highest accuracy of 63.75% on spectrogram data.
- Focused on preprocessing steps like generating spectrograms and extracting MFCC features to ensure the models effectively captured the spatial and temporal characteristics of audio signals.

Comparative Analysis of SLAM Algorithms

January 2024 - April 2024

Arizona State University, Tempe, Arizona

- Compared Cartographer and GMapping SLAM algorithms using RPLIDAR, evaluating mapping accuracy with metrics like Mean Squared Error (MSE) and Mean Absolute Error (MAE).
- Validated the GMapping algorithm's superior performance in simpler environments, while the Cartographer algorithm excelled in more complex layouts with obstacles.

EdgeVision: User-Defined Object Counting Using Raspberry Pi

August 2023 - December 2023

Arizona State University, Tempe, Arizona

- Developed and deployed a real-time object detection and tracking system using the Faster R-CNN ResNet-50 model on Raspberry Pi 4, achieving 95.6% accuracy in bright conditions and 82.5% in low-light conditions.
- Developed modules like the LineSegmentCounter for user-defined object counting and CentroidTracker for reliable tracking, ensuring the system was optimized for resource-constrained embedded platforms.