VAMOS POR PARTES

Um algoritmo de ordenação de vetores executa diversas permutas em posições do vetor até que o mesmo esteja completamente ordenado. Geralmente, os algoritmos de ordenação são aplicados ao vetor inteiro. Mas e se o programador quiser ordenar apenas parte do vetor?

Faça um programa que leia um vetor de inteiros com tamanho N ($2 \le N \le 50$), leia em quantas partes M (1 < M < N) deve-se dividir o vetor, leia quais das partes P (tamanho: P>1) será ordenada (use ordem crescente). Todas as partes devem ter o mesmo tamanho

Entrada

A entrada contém: o tamanho N do vetor; o vetor; a quantidade de partes M; e qual a parte será ordenada.

Saída

Imprima o vetor completo resultante com ordenação da parte escolhida ou imprima "Impossivel!", caso não seja possível ordenar.

Exemplos*

Entrada	Saída
8 6 5 9 1 7 4 3 2 2 2	6 5 9 1 2 3 4 7
8 2 1 3 4 5 6 7 8 3 1	Impossivel!
9 3 5 6 15 12 2 10 7 8 3 2	3 5 6 2 12 15 10 7 8
2 3 1 2 1	Impossivel!

^{*} Existe apenas 1 espaço entre os números da entrada do vetor. Na tabela acima, existem 2 espaços, apenas para facilitar a visualização. Na saída também só deve conte 1 espaço. A parte em negrito na saída é para destacar o que foi ordenado