Write your name here Surname	Other nar	mes								
Edexcel GCE	Centre Number	Candidate Number								
Chemistry Advanced Subsidiary Unit 3B: Chemistry Laboratory Skills I Alternative										
Monday 7 January 2013 - Time: 1 hour 15 minute	_	Paper Reference 6CH07/01								
Candidates may use a calcu	lator.	Total Marks								

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 1 2 1 6 A 0 1 1 6

Turn over ▶

BLANK PAGE

Answer ALL the questions. Write your answers in the spaces provided.

1 (a) A student carried out a series of tests on solid potassium iodide, Kl. Complete the table below.

(5)

	Test	Observation	Inference
(i)	Carry out a flame test on potassium iodide.	Colour of flame is	Cation is K+
(ii)	Dissolve potassium iodide in water. Add dilute nitric acid followed by aqueous silver nitrate.	Colour of precipitate formed is	Anion is I ⁻
(iii)	Test the precipitate formed in (ii) with concentrated ammonia solution.		Confirms iodide ions
(iv)	Dissolve potassium iodide in water. Add 10 drops of aqueous chlorine solution.	Colour of solution formed is	Formula of the coloured species is

(v)	A hydrocarbon solvent, which is less dense than water, was added to the solution
	formed in test (iv). What would you expect to see in the test tube after the
	solvent has been added, the contents of the test tube vigorously shaken and left
	to stand for a few minutes?

/	7	٦
ı	_	J

 •••••	 	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	 •	•••••	 •	•••••	•••••	•••••	• • • • • • •	•••••	 	•••••	•••••	• • • • • • •	•••••	 •••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •	 	 •••••	•••••	 •	 	•••••

(b)	In an experiment, iodide ions from potassium iodide react with iodate(V) ions and
	hydrogen ions from hydrochloric acid according to the ionic equation

$$IO_3^-(aq) + 5I^-(aq) + 6H^+(aq) \rightarrow 3I_2(aq) + 3H_2O(I)$$

The amount of iodine formed can be determined by titration with sodium thiosulfate solution of known concentration. The equation for this reaction is

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

30.0 cm³ of a solution of hydrochloric acid was added to an excess of potassium iodate(V) and potassium iodide solutions in a conical flask.

The iodine formed in the conical flask was titrated with sodium thiosulfate solution of concentration 0.100 mol dm⁻³. The mean titre was 45.00 cm³.

(i)	Name the	indicator	that is	used in	thiosulfate	/iodine	titrations
(1)	INGILIC CITC	marcator	tilatio	asca III	tillosaliate	, ioaiiic	utiation

(1)

(ii) Give the colour change at the end-point of the titration.

(1)

From _____ to ____

(iii) Calculate the number of moles of sodium thiosulfate in the mean titre.

(1)

(iv) Hence deduce the number of moles of iodine, I₂, which reacted with the number of moles of sodium thiosulfate calculated in (b)(iii).

(1)

(v)	How many moles of hydrogen ions, H+, are required to produce the number of
	moles of iodine stated in (b)(iv)?

$$IO_3^-(aq) + 5I^-(aq) + 6H^+(aq) \rightarrow 3I_2(aq) + 3H_2O(I)$$
 (1)

(vi) Use your answer to (b)(v) to calculate the concentration of the hydrochloric acid in mol dm^{-3} .

(1)

(c) Complete the half-equation showing the reduction of iodate(V) ions in acidic solution.

(1)

$${\rm IO_3^-}({\rm aq}) + 6{\rm H^+}({\rm aq}) +{\rm e^-} \rightarrow \frac{1}{2}{\rm I_2}({\rm aq}) + 3{\rm H_2O(I)}$$

(Total for Question 1 = 14 marks)

2 Consider the following reaction scheme.

The infrared spectrum of compound **S** is shown below.

Bond	Group	Wavenumber range / cm ⁻¹					
С—Н	alkane	2962 – 2853					
C 11	alkene	3095 – 3010					
О—Н	alcohol	3750 – 3200					
C=C	alkene	1669 – 1645					
	aldehyde	1740 –1720					
C=0	ketone	1720 – 1680					

(a) (i) Give the wavenumber range of the absorption in the infrared spectrum that shows that compound **S** is an alcohol.

(1)

(ii) Identify the type of organic compound formed in the reaction of **S** with phosphorus(V) chloride, PCI_5 .

(1)

(b) Compound **T** does not produce carbon dioxide when added to a solution of sodium carbonate.

From this information **alone**, what can you deduce about compound **T**?

(1)

(c) The infrared spectrum of liquid **T** is shown below.

(i) Give the wavenumber range of the absorption in the infrared spectrum that shows that compound **T** is formed from a **secondary** alcohol.

(1)

(ii) Identify the type of organic compound **T**.

(1)

(iii) Draw the skeletal formula for S .	(1)
(d) Liquid X gives a white precipitate, R , on warming with an aqueous ethanolic solution of silver nitrate.	
(i) Identify R by name or formula.	(1)
(ii) Describe what you would see if precipitate R was left in sunlight.	(1)
(iii) Suggest why an aqueous ethanolic solution of silver nitrate gives a better result in this test than would be obtained by aqueous silver nitrate.	(1)

(e)	If \mathbf{X} is heated with a concentrated ethanolic solution of potassiu is produced.	m hydroxide, a gas Q
	(i) Describe a test and its expected result to show that this gas	is an alkene.
Test		
Result	<u> </u>	
	(ii) Give the displayed formula of the alkene Q .	(1)
	(Total for Qu	uestion 2 = 12 marks)

3 Weak acids such as ethanoic acid cannot be titrated with weak bases such as ammonia using an indicator since there is never any distinct colour change.

An alternative technique is to use thermometric titration as follows.

- 1. 30.0 cm³ of dilute ethanoic acid is placed in a polystyrene cup and its temperature measured.
- 2. 5.00 cm³ of ammonia solution of concentration 1.05 mol dm⁻³ is then added to the acid, the mixture stirred and the temperature measured again.
- 3. Further 5.00 cm³ portions of ammonia are added, followed by measurement of the temperature, until a total of 35.0 cm³ has been added.

The results of this experiment are tabulated below.

Volume of NH ₃ (aq) added /cm ³	0.00	5.00	10.0	15.0	20.0	25.0	30.0	35.0
Temperature /°C	20.7	22.4	24.0	25.7	26.4	25.3	24.0	22.7

(a) (i) Plot these data on the axes below. Draw **two straight** lines through the points on your graph. Extrapolate the lines until they intersect, to enable you to determine the end-point volume.

(ii) Stat	e the volume of the ammonia solution at the end-point.	(2)
(iii) Exp	ain why the temperature rises until the end-point is reached.	(1)
	ain why the temperature falls when more ammonia solution is added r the end-point.	(2)
was rea temper	ilar experiment, 25.0 cm³ of ethanoic acid of concentration 2.00 mol dm⁻³ cted with 25.0 cm³ of 2.00 mol dm⁻³ aqueous ammonia. The initial ature was 20.6 °C and the temperature at the end-point was 29.8 °C.	
reac that	the expression below to calculate the heat energy evolved in this tion. (Assume that the density of the reaction mixture is 1.00 g cm ⁻³ and the specific heat capacity of the mixture is 4.18 J g ⁻¹ °C ⁻¹ .) rgy transferred = mass × specific heat capacity × temperature change	
	in joules	(2)

(ii)	Calculate the	number	of moles	of ethan	oic acid	used in	this	reaction
(11)	Carcalate tric	Hallibel	01 1110103	or ctriari	orc acra	asca III	CITIS	reaction

(1)

(iii) The reaction that occurs is

$$\mathsf{CH_{3}COOH(aq)} + \mathsf{NH_{3}(aq)} \to \mathsf{CH_{3}COONH_{4}(aq)}$$

Use your values from (b)(i) and (ii) to calculate the enthalpy change per mole for this reaction. Include a sign and units in your answer. Give your answer to **three** significant figures.

(3)

(Total for Question 3 = 13 marks)

4	The	e pr	ocedure below can be used to make 1-bromobutane.	
		1.	Place a mixture of water, sodium bromide and butan-1-ol in a round-bottomed flask.	
		2.	Slowly add a suitable volume of concentrated sulfuric acid to this mixture whilst it is also shaken and cooled.	
		3.	When this addition is complete, heat the mixture under reflux for about 45 minutes.	
		4.	Rearrange the apparatus for distillation and distil off the crude 1-bromobutane, collecting the distillate between 95 ° and 105 °C.	
		5.	Shake the 1-bromobutane first with water, then with dilute sodium carbonate solution.	
		6.	Separate the 1-bromobutane from the aqueous layer, add some anhydrous calcium chloride and leave the mixture to stand.	
		7.	Decant the 1-bromobutane from the calcium chloride.	
	(a)	(i)	Explain why sodium bromide and sulfuric acid are required in step 2 .	(1)
		(ii)	What would be the effect on this preparation if concentrated sulfuric acid was added in step 2 without water having been added in step 1 ? Justify your answer.	(2)
	(b)	Exp	plain why the acid must be added slowly and with cooling in step 2 .	(1)

distillation in step 4 .	oe used to carry out the
- -	(4)
d) Explain why the 1-bromobutane is shaken with sodiu step 5 .	m carbonate solution in
d) Explain why the 1-bromobutane is shaken with sodiu step 5.	m carbonate solution in
step 5.	(1)
step 5.	(1)
e) What is the purpose of the calcium chloride in step 6	(1)
e) What is the purpose of the calcium chloride in step 6	(1)
e) What is the purpose of the calcium chloride in step 6	(1) ? (1) after step 7.
e) What is the purpose of the calcium chloride in step 6 Suggest how you would obtain pure 1-bromobutane	(1) ? (1) after step 7.

ts	
len	
lem	
Ш	
of	
P	
þ	
Ta	
U	
Ö	
eriod	
ē	
Δ	
he	
드	

		V (M)			_		-80.1	Τ_	X045	ľ		
0 (8)	4.0 He helium 2	20.2 Ne neon	39.9 Ar argon 18	83.8 Kr	krypton 36	131.3	xenon 54	[222]	Rn radon 86	rted		
7	(17)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br	bromine 35	126.9	lodine 53	[210]	At astatine 85	oeen repo	175 Lu lutetium 71	[257] Lr lawrencium 103
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se	selenium 34	127.6	le tellurium 52	[209]	Po polonium 84	116 have l	173 Yb ytterbium 70	No nobelium 102
2	(15)	14.0 N nitrogen 7	31.0 P		arsenic 33	121.8	SD antimony 51	209.0	Bi bismuth 83	Elements with atomic numbers 112-116 have been reported but not fully authenticated	169 Tm thulium 69	[256] Md mendelevium 101
4	(14)	12.0 C carbon 6	28.1 Si silicon 14	72.6 Ge	germanium 32	118.7	Z 0 E: Z	207.2	Pb lead 82	atomic nu but not f	167 Er erbium 68	[253] Fm fermium 100
æ	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga	gallium 31	114.8	indium 49	204.4	Tl thallium 81	ents with	165 Ho holmium 67	Es einsteinium 99
			(12)	65.4 Zn	zinc 30	112.4	cadmium 48	200.6	Hg mercury 80		163 Dy dysprosium 66	Cf Es Californium einsteinium 98 99
			(11)	63.5 Cu	copper 29	107.9	Ag silver 47	197.0	Au gold 79	Rg roentgenium 111	159 Tb terbium 65	[245] Bk berketium 97
			(10)	58.7 Ni	nickel 28	106.4	palladium 46	195.1	Pt platinum 78	Ds damstadtium 110	Gd gadolinium 64	(247) Cm aurium 96
			(6)	S8.9	cobalt 27	102.9	rhodium 45	192.2	lr iridium 77	[268] Mt meitnerium 109	152 Eu europium 63	[243] Am americium 95
	1.0 H hydrogen		(8)	55.8 Fe	iron 26	101.1	Ku ruthenium 44	190.2	Os osmium 76	[277] Hs hassium 108	Sm samarium 62	[237] [242] [243]
			0	54.9 Mn	manganese 25	[98]	IC technetium 43	186.2	Re rhenium 75	[264] Bh bohrium 107	Pm promethium 61	Np neptunium 93
		mass bol umber	9	52.0 Cr	chromium manganese 24 25	95.9	MO IC KU molybdenum technetium ruthenium 42 43 44	183.8	W tungsten 74	Sg seaborgium 106	141 144 [147] Pr Nd Pm praseodymium neodymium promethium 59 60 61	238 U uranium 92
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	vanadium 23	92.9	ND niobium	180.9	Ta tantalum 73	[262] Db dubnium 105	141 Pr praseodymium 59	[231] Pa protactinium 91
		relati ato	<u>\$</u>	47.9 Ti	titanium 22	91.2	Lr zirconium 40	178.5	Hf hafnium 72	[261] Rf nutherfordium 104	Ce cerium 58	232 Th thorium 90
			(3)	45.0 Sc	scandium 21	88.9	Y yttrium 39	138.9	La* lanthanum 57	[227] Ac* actinium 89	۰ «۱	
2	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1 Ca	calcium 20	87.6	Strontium 38	137.3	Ba barium 56	[226] Ra radium 88	* Lanthanide series * Actinide series	
-	(1)	6.9 Li lithium 3	23.0 Na sodium 11	39.1 K	potassium 19	85.5	KD rubidium 37	132.9	Cs caesium 55	[223] Fr francium 87	* Lanth * Actini	
								_				