ZILFIMIAN

KNN2/KNN (Q9L10)

63% (12/19)

- ✓ 1. KNN is
 - A data-driven method
 - (B) model-driven method
 - (c) I do not know
- ✓ 2. The dependent variable of the classification is
 - A categorical
 - B numeric
 - (c) I do not know
- ✓ 3. KNN can be used for regression
 - A Yes
 - B) No
 - C I do not know
- 4. In the case of KNN classification we use
 - (A) average of outcomes
 - B majority voting scheme
 - C I do not know
- ✓ 5. Which of these errors will increase constantly by increasing k?
 - A train error
 - B test error
 - (c) both
 - D I do not know
- X 6. This function can be used to perform KNN classificationin R
 - (A) knn()
 - B k_nn()
 - (c) knnreg()
 - knearneib()
 - (E) I do not know

	10. In the case of small k we have	
	A overfitting	
	B underfitting	
	c it depends on the situation	
	D I do not know	
×	11. Why do we need scaling in KNN?	
	(A) to avoid overfitting	
	B to avoid underfitting	
	(c) to have "equal" weights for variables	
	D I do not know	
~	 12. Let k = n, (n- number of observations), K-NN is same as a random guessing b everything will be classified as the most probable class (in total) c everything will be classified as the least probable class (in total) D I do not know 	
	Elena	Page 2 of 4

 \times 7. With the increase of k, the decision boundary will be

8. KNN algorithm is sensitive to outliers

A is a supervised learning algorithm.

B is an unsupervised learning algorithm.

(A) simplified

B more complex

D unchanged

True False

9. KNN

I do not know

I do not know

C I do not know

/	13.	This function can be used to perform K-NN regression in R
	A	knn.reg
	\bigcirc B	knnforreg
	(c)	regknn
		knnforregression
	E	I do not know
X	14.	Do you need to worry about scaling with one explanatory variable?
	(A)	No
	В	Yes
	\bigcirc	I do not know
×		n - the number of observation, the number of explanatory variables
		en n=k, m=1, the decision boundary for regression is
	A	a line
	B	a stepwise constant function
	\overline{C}	a stepwise quadratic function
		I do not know
X	16.	Which of these algorithms can be used to fill the missing values
	A	KNN for regression
	В	KNN for classification
	(c)	both
		I do not know
X	17. ?	Which one is better: KNN regression or Linear regression
	(A)	KNN outperform LR if the parametric form that has been selected is close to the true form of f
	(B)	LR outperform KNN if the parametric form that has been selected is close to the true form of f
		KNN will always outperform the LR
	(D)	I do not know

Elena Page 3 of 4

/	18.	Which one is the Disadvantage of KNN?
	A	required assumptions
	В	cannot be applied for regression
	C	difficult to perform
	D	the problem of high dimensional data
	E	I do not know
/	19.	The best k for train set equals to
	A	1
	B	2
	C	0
	D	I do not know
0	20.	What is the Parzen window

I do not know ((

Elena Page 4 of 4