An Embarrassment of Pandas

Kade Killary

August 9, 2019

Contents

DataFrames	3
Options - documentation	3
Useful read_csv() options - documentation	3
Read csv from URL or S3 - s3fs	3
Read an Excel file - documentation	3
Read multiple files at once - glob	4
Recursively grab all files in a directory	4
Read in data from SQLite3	4
Read in data from Postgres - bigquery, snowflake	4
Normalizing nested JSON - documentation	E
Column headers	5
Filtering DataFrame - using pd.Series.isin()	E
Filtering DataFrame - using pd.Series.str.contains()	E
Filtering DataFrame & more - using df.query() - documentation	Ę
Joining - documentation	6
Select columns based on data type	6
Reverse column order	6
Correlation matrix	6
Descriptive statistics	6
Styling numeric columns - documentation	7
Add highlighting for max and min values	7
Conditional formatting for one column	7
Series	7
Value counts as percentages	7
Replacing errant characters	7
Replacing false conditions - documentation	7
Missing Values	7
Percent nulls by column	7
Dropping columns - documentation	7
Dropping duplicate rows - documentation	7
Dropping columns based on NaN threshold - documentation	7
Replacing using fillna() - documentation	8
Replace values across entire DataFrame	8
Replace numeric values containing a letter with NaN	8
Drop rows where any value is $0 \dots $	8
Drop rows where all values are $0 \dots \dots$	8
Method Chaining	c
Chaining multiple operations	c
Pipelines for data processing	8
r permes for data processing	Č
Aggregation	ç

Use as_index = False to avoid setting index	9
By date offset - documentation	9
Measure by dimension - documentation	9
Pivot table - documentation	
Named aggregations - Pandas >= 0.25 - documentation	
New Columns	10
Using df.eval()	10
Based on one condition - using np.where()	11
Based on multiple conditions - using np.where()	11
Based on multiple conditions - using np.select()	11
Based on manual mapping - using pd.Series.map()	11
Automatically generate mappings from dimension	
Splitting a string column	
Using list comprehensions	
Using regular expressions	
Widening a column - documentation	
Wideling a column documentation	12
Feature Engineering	12
Instead of split-apply-combine, transform()	12
Extracting various date components - documentation	
Time between two dates	
Weekend column	
Get prior date	
Days since prior date	
Percent change since prior date	
Percentile rank for measure	
Occurrences of word in row	
Distinct list aggregation	
User-item matrix	
Binning	
Dummy variables	
Sort and take first value by dimension	
MinMax normalization	
Z-score normalization	
Log transformation	
Boxcox transformation	
Reciprocal transformation	14
Square root transformation	
Winsorization	14
Mean encoding	14
Z-scores for outliers	15
Interquartile range (IQR)	15
Geocoder - github	15
Geopy - github	15
RFM - Recency, Frequency and Monetary	15
Haversine	16
Manhattan	17
Random	17
Union two categorical columns - documentation	
Testing - documentation	
Checking data types - documentation	
Infer column dtype, useful to remap column dtypes documentation	17

DataFrames

Options - documentation

```
# More columns
pd.set_option("display.max_columns", 500)
# More rows
pd.set_option("display.max_rows", 500)
# Floating point precision
pd.set_option("display.precision", 3)
# Increase column width
pd.set_option("max_colwidth", 50)
# Change default plotting backend - Pandas >= 0.25
# https://github.com/PatrikHlobil/Pandas-Bokeh
pd.set_option("plotting.backend", 'pandas_bokeh')
Useful read_csv() options - documentation
pd.read_csv(
    "data.csv.gz",
    delimiter = "^",
    # line numbers to skip (i.e. headers in an excel report)
    skiprows = 2,
    # used to denote the start and end of a quoted item
    quotechar = "|",
    # return a subset of columns
    usecols = ["return_date", "company", "sales"],
    # data type for data or columns
    dtype = { "sales": np.float64 },
    # additional strings to recognize as NA/NaN
    na_values = [".", "?"],
    # convert to datetime, instead of object
    parse_dates = ["return_date"],
    # for on-the-fly decompression of on-disk data
    # options - gzip, bz2, zip, xz
    compression = "gzip",
    # encoding to use for reading
    encoding = "latin1",
    # read in a subset of data
    nrows = 100
)
Read csv from URL or S3 - s3fs
pd.read_csv("https://bit.ly/2KyxTFn")
# Requires s3fs library
```

Read an Excel file - documentation

pd.read_csv("s3://pandas-test/tips.csv")

```
pd.read excel("numbers.xlsx", sheet name="Sheet1")
# Multiple sheets with varying parameters
with pd.ExcelFile("numbers.xlsx") as xlsx:
    df1 = pd.read_excel(xlsx, "Sheet1", na_values=["?"])
    df2 = pd.read_excel(xlsx, "Sheet2", na_values=[".", "Missing"])
Read multiple files at once - glob
import glob
# ignore_index = True to avoid duplicate index values
df = pd.concat([pd.read_csv(f) for f in glob.glob("*.csv")], ignore_index = True)
# More options
df = pd.concat([pd.read_csv(f, encoding = "latin1") for f in glob.glob("*.csv")])
Recursively grab all files in a directory
import os
import glob
files = [os.path.join(root, file)
        for root, dir, files in os.walk("./directory")
        for file in glob.glob("*.csv")]
Read in data from SQLite3
import sqlite3
conn = sqlite3.connect("flights.db")
df = pd.read_sql_query("select * from airlines", conn)
conn.close()
Read in data from Postgres - bigguery, snowflake
from sqlalchemy import create_engine
# Port 5439 for Redshift
engine = create_engine("postgresql://user@localhost:5432/mydb")
df = pd.read_sql_query("select * from airlines", engine)
# Get results in chunks
for chunk in pd.read_sql_query("select * from airlines", engine, chunksize=5):
    print(chunk)
# Writing back
df.to_sql(
    "table"
    schema="schema"
    # fail, replace or append
    if_exists="append",
    # write back in chunks
    chunksize = 10000
)
```

```
Normalizing nested JSON - documentation
```

```
from pandas.io.json import json_normalize
json_normalize(data, "counties", ["state", "shortname", ["info", "governor"]])
# How deep to normalize - Pandas >= 0.25
json normalize(data, max level=1)
Column headers
# Lower all values
df.columns = [x.lower() for x in df.columns]
# Strip out punctuation, replace spaces and lower
df.columns = df.columns.str.replace("[^\w\s]", "").str.replace(" ", "_").str.lower()
# Condense multiindex columns
df.columns = ["_".join(col).lower() for col in df.columns]
# Double transpose to remove bottom row for multiindex columns
df.T.reset_index(1, drop=True).T
Filtering DataFrame - using pd.Series.isin()
df[df["dimension"].isin(["A", "B", "C"])]
# not in
df[~df["dimension"].isin(["A", "B", "C"])]
Filtering DataFrame - using pd.Series.str.contains()
df[df["dimension"].str.contains("word")]
# not in
df[~df["dimension"].str.contains("word")]
Filtering DataFrame & more - using df.query() - documentation
df.query("salary > 100000")
df.query("name == 'john'")
df.query("name == 'john' | name == 'jack'")
df.query("name == 'john' and salary > 100000")
df.query("name.str.contains('a')")
# Grab top 1% of earners
df.query("salary > salary.quantile(.99)")
# Make more than the mean
df.query("salary > salary.mean()")
```

```
# Subset by top 3 most frequent products purchased
df.query("item in item.value counts().nlargest(3).index")
# Query for null values
df.query("column.isnull()")
# Query for non-nulls
df.query("column.notnull()")
# 0 - allows you to refer to variables in the environment
names = ["john", "fred", "jack"]
df.query("name in @names")
# Reference columns with spaces using backticks - Pandas >= 0.25
df.query("`Total Salary` > 100000")
Joining - documentation
# Inner join
pd.merge(df1, df2, on = "key")
# Left join on different key names
pd.merge(
    df1,
    df2,
    right_on = ["right_key"],
   left_on = ["left_key"],
    how = "left"
)
Select columns based on data type
df.select_dtypes(include = "number")
df.select_dtypes(exclude = "object")
Reverse column order
df.loc[:, ::-1]
Correlation matrix
df.corr()
# With another DataFrame
df.corrwith(df_2)
Descriptive statistics
df.describe(include=[np.number]).T
dims = df.describe(include=[pd.Categorical]).T
# Add percent frequency for top dimension
dims["frequency"] = dims["freq"].div(dims["count"])
```

```
Styling numeric columns - documentation
```

```
styling_options = {
    "sales": "${0:,.0f}",
    "percent_of_sales": "{:.2%f}"
}
df.style.format(styling_options)
```

Add highlighting for max and min values

```
df.style.highlight_max(color = "lightgreen").highlight_min(color = "red")
```

Conditional formatting for one column

```
df.style.background(subset = ["measure"], cmap = "viridis")
```

Series

Value counts as percentages

```
# See NaNs as well
df["meaure"].value_counts(normalize = True, dropna = False)
```

Replacing errant characters

```
df["sales"].str.replace("$", "")
```

Replacing false conditions - documentation

```
df["steps_walked"].where(df["steps_walked"] > 0, 0)
```

Missing Values

Percent nulls by column

```
(df.isnull().sum() / df.isnull().count()).sort_values(ascending=False)
```

Dropping columns - documentation

```
df.drop(["column_a", "column_b"], axis = 1)
```

Dropping duplicate rows - documentation

```
df.drop_duplicates(subset=["order_date", "product"], keep="first")
```

Dropping columns based on NaN threshold - documentation

```
# Any column with 90% missing values will be dropped
df.dropna(thresh = len(df) * .9, axis = 1)
```

Replacing using fillna() - documentation

```
# Impute DataFrame with all zeroes
df.fillna(0)

# Impute column with all zeroes
df["measure"].fillna(0)

# Impute measure with mean of column
df["measure"].fillna(df["measure"].mean())

# Impute dimension with mode of column
df["dimension"].fillna(df["dimension"].mode())

# Impute by another dimension's mean
df["age"].fillna(df.groupby("sex")["age"].transform("mean"))
```

Replace values across entire DataFrame

```
df.replace(".", np.nan)
df.replace(0, np.nan)
```

Replace numeric values containing a letter with NaN

```
df["zipcode"].replace(".*[a-zA-Z].*", np.nan, regex=True)
```

Drop rows where any value is 0

```
df[(df != 0).all(1)]
```

Drop rows where all values are 0

```
df = df[(df.T != 0).any()]
```

Method Chaining

Chaining multiple operations

Pipelines for data processing

```
def fix_headers(df):
    df.columns = df.columns.str.replace("[^\w\s]", "").str.replace(" ", "_").str.lower()
    return df
```

```
def drop_columns_missing(df, percent):
    df = df.dropna(thresh = len(df) * percent, axis = 1)
    return df
def fill_missing(df, value):
    df = df.fillna(value)
    return df
def replace_and_convert(df, col, orig, new, dtype):
    df[col] = df[col].str.replace(orig, new).astype(dtype)
    return df
(df.pipe(fix_headers)
    .pipe(drop_columns_missing, percent=0.3)
    .pipe(fill_missing, value=0)
    .pipe(replace_and_convert, col="sales", orig="$", new="", dtype=float)
)
Recommended Read - Effective Pandas
Aggregation
Use as_index = False to avoid setting index
# this
df.groupby("dimension", as_index = False)["measure"].sum()
# versus this
df.groupby("dimension")["measure"].sum().reset_index()
By date offset - documentation
# H for hours
# D for days
# W for weeks
# WOM for week of month
# Q for quarter end
# A for year end
df.groupby(pd.Grouper(key = "date", freq = "M"))["measure"].agg(["sum", "mean"])
Measure by dimension - documentation
# count - number of non-null observations
# sum - sum of values
# mean - mean of values
# mad - mean absolute deviation
# median - arithmetic median of values
# min - minimum
# max - maxmimum
# mode - mode
# std - unbiased standard deviation
# first - first value
# last - last value
# nunique - unique values
```

df.groupby("dimension")["measure"].sum()

```
# Specific aggregations for columns
df.groupby("dimension").agg(
    {
        "sales": ["mean", "sum"],
        "sale_date": "first",
        "customer": "nunique"
    }
)
Pivot table - documentation
pd.pivot_table(
    df,
    values=["sales", "orders"],
    index=["customer_id"],
    aggfunc={
        "sales": ["sum", "mean"],
        "orders": "nunique"
    }
)
Named aggregations - Pandas >= 0.25 - documentation
# DataFrame - Version 1
df.groupby("country").agg(
    min_height = pd.NamedAgg(column = "height", aggfunc = "min"),
    max_height = pd.NamedAgg(column = "height", aggfunc = "max"),
    average_weight = pd.NamedAgg(column = "weight", aggfunc = np.mean)
)
# DataFrame - Version 2
df.groupby("country").agg(
   min_height=("height", "min"),
   max_heights=("height", "max"),
    average_weight=("weight", np.mean)
)
# Series
df.groupby("gender").height.agg(
   min_height="min",
    max_height="max"
)
New Columns
Using df.eval()
df["sales"] = df.eval("price * quantity")
# Assign to different DataFrame
pd.eval("sales = df.price * df.quantity", target=df_2)
# Multiline assignment
df.eval("""
aov = price / quantity
```

```
aov_gt_50 = (price / quantity) > 50
top_3_customers = customer_id in customer_id.value_counts().nlargest(3).index
bottom_3_customers = customer_id in customer_id.value_counts().nsmallest(3).index
Based on one condition - using np.where()
np.where(df["gender"] == "Male", 1, 0)
Based on multiple conditions - using np.where()
np.where(df["measure"] < 5, "Low", np.where(df["measure"] < 10, "Medium", "High"))
Based on multiple conditions - using np.select()
conditions = [
    df["country"].str.contains("spain"),
    df["country"].str.contains("italy"),
    df["country"].str.contains("chile"),
    df["country"].str.contains("brazil")
]
choices = ["europe", "europe", "south america", "south america"]
data["continent"] = np.select(conditions, choices, default = "other")
Based on manual mapping - using pd.Series.map()
values = {"Low": 1, "Medium": 2, "High": 3}
df["dimension"].map(values)
Automatically generate mappings from dimension
dimension_mappings = {v: k for k, v in enumerate(df["dimension"].unique())}
df["dimension"].map(dimension_mappings)
Splitting a string column
df["email"].str.split("0", expand = True)[0]
Using list comprehensions
df["domain"] = [x.split("0")[1] for x in df["email"]]
Using regular expressions
import re
pattern = "([A-Z0-9._%+-]+)@([A-Z0-9.-]+)"
```

```
# Inserting colum headers, applied after extract
pattern = "(?P < mail > [A-Z0-9. %+-]+)@(?P < domain > [A-Z0-9.-]+)"
# Generates two columns
email_components = df["email"].str.extract(pattern, flags=re.IGNORECASE)
Widening a column - documentation
df.pivot(index = "date", columns = "companies", values = "sales")
Feature Engineering
Instead of split-apply-combine, transform()
df["mean_company_salary"] = df.groupby("company")["salary"].transform("mean")
# versus this
mean_salary = df.groupby("company")["salary"]\
    .agg("mean")\
    .rename("mean_salary")\
    .reset_index()
df_new = df.merge(mean_salary)
Extracting various date components - documentation
df ["date"].dt.year
df ["date"].dt.quarter
df ["date"].dt.month
df["date"].dt.week
df ["date"].dt.day
df ["date"] .dt.weekday
df ["date"] .dt .weekday_name
df ["date"].dt.hour
Time between two dates
# Days between
df["first_date"].sub(df["second_date"]).div(np.timedelta64(1, "D"))
df["first_date"].sub(df["second_date"]).div(np.timedelta64(1, "M"))
# Equivalent to above
(df["first_date] - df["second_date"]) / np.timedelta64(1, "M")
Weekend column
```

df["is_weekend"] = np.where(df["date"].dt.dayofweek.isin([5, 6]), 1, 0)

```
Get prior date
df.sort_values(by=["customer_id, "order_date"])\
    .groupby("customer_id")["order_date"].shift(periods=1)
Days since prior date
df.sort_values(by = ["customer_id", "order_date"])\
    .groupby("customer_id")["order_date"]\
    .diff()\
    .div(np.timedelta64(1, "D"))
Percent change since prior date
df.sort_values(by = ["customer_id", "order_date"])\
    .groupby("customer_id")["order_date"]\
    .pct_change()
Percentile rank for measure
df["salary"].rank(pct=True)
Occurrences of word in row
import re
df["review"].str.count("great", flags=re.IGNORECASE)
Distinct list aggregation
df["unique_products"] = df.groupby("customer_id").agg({"products": "unique"})
# Transform each element -> row - Pandas >= 0.25
df["unique_products"].explode()
User-item matrix
df.groupby("customer_id")["products"].value_counts().unstack().fillna(0)
Binning
pd.qcut(data["measure"], q = 4, labels = False)
pd.cut(df["measure"], bins = 4, labels = False)
# Dimension
pd.cut(df["age"], bins = [0, 18, 25, 99], labels = ["child", "young adult", "adult"])
```

Dummy variables

```
# Use drop_first = True to avoid collinearity
pd.get_dummies(df, drop_first = True)
```

```
Sort and take first value by dimension
```

```
df.sort_values(by = "variable").groupby("dimension").first()
```

MinMax normalization

```
df["salary_minmax"] = (
    df["salary"] - df["salary"].min()) / (df["salary"].max() - df["salary"].min()
)
```

Z-score normalization

```
df["salary_zscore"] = (df["salary"] - df["salary"].mean()) / df["salary"].std()
```

Log transformation

```
# For positive data with no zeroes
np.log(df["sales"])

# For positive data with zeroes
np.log1p(df["sales"])

# Convert back - get predictions if target is log transformed
np.expm1(df["sales"])
```

Boxcox transformation

```
from scipy import stats
# Must be positive
stats.boxcox(df["sales"])[0]
```

Reciprocal transformation

```
df["age_reciprocal"] = 1.0 / df["age"]
```

Square root transformation

```
df["age_sqrt"] = np.sqrt(df["age"])
```

Winsorization

```
upper_limit = np.percentile(df["salary"].values, 99)
lower_limit = np.percentile(df["salary"].values, 1)

df["salary"].clip(lower = lower_limit, upper = upper_limit)
```

Mean encoding

```
df.groupby("dimension")["target"].transform("mean")
```

Z-scores for outliers

```
from scipy import stats
import numpy as np
z = np.abs(stats.zscores(df))
df = df[(z < 3).all(axis = 1)]
Interquartile range (IQR)
q1 = df["salary"].quantile(0.25)
q3 = df["salary"].quantile(0.75)
iqr = q3 - q1
df.query("(@q1 - 1.5 * @iqr) \le salary \le (@q3 + 1.5 * @iqr)")
Geocoder - github
Geopy - github
import geocoder
df["lat_long"] = df["ip"].apply(lambda x: geocoder.ip(x).latlng)
RFM - Recency, Frequency and Monetary
rfm = (
    df.groupby("customer_id")
    .agg(
            "order_date": lambda x: (x.max() - x.min()).days,
            "order id": "nunique",
            "price": "mean",
        }
    )
    .rename(
        columns={"order_date": "recency", "order_id": "frequency", "price": "monetary"}
    )
)
rfm_quantiles = rfm_quantile(q=[0.2, 0.4, 0.6, 0.8])
recency_conditions = [
    rfm.recency >= rfm_quantiles.recency.iloc[3],
    rfm.recency >= rfm_quantiles.recency.iloc[2],
    rfm.recency >= rfm_quantiles.recency.iloc[1],
    rfm.recency >= rfm_quantiles.recency.iloc[0],
    rfm.recency <= rfm_quantiles.recency.iloc[0],</pre>
٦
frequency_conditions = [
    rfm.frequency <= rfm_quantiles.frequency.iloc[0],</pre>
    rfm.frequency <= rfm_quantiles.frequency.iloc[1],</pre>
    rfm.frequency <= rfm_quantiles.frequency.iloc[2],</pre>
    rfm.frequency <= rfm_quantiles.frequency.iloc[3],</pre>
    rfm.frequency >= rfm_quantiles.frequency.iloc[3],
```

```
]
monetary_conditions = [
    rfm.monetary <= rfm_quantiles.monetary.iloc[0],</pre>
    rfm.monetary <= rfm_quantiles.monetary.iloc[1],
    rfm.monetary <= rfm_quantiles.monetary.iloc[2],</pre>
    rfm.monetary <= rfm quantiles.monetary.iloc[3],
    rfm.monetary >= rfm_quantiles.monetary.iloc[3],
ranks = [1, 2, 3, 4, 5]
rfm["r"] = np.select(recency_conditions, ranks, "other")
rfm["f"] = np.select(frequency_conditions, ranks, "other")
rfm["m"] = np.select(monetary_conditions, ranks, "other")
rfm["segment"] = rfm["r"].astype(str).add(rfm["f"].astype(str))
segment_map = {
    r"[1-2][1-2]": "hibernating",
    r"[1-2][3-4]": "at risk",
    r"[1-2]5": "cannot lose",
    r"3[1-2]": "about to sleep",
    r"33": "need attention",
    r"[3-4][4-5]": "loyal customers",
    r"41": "promising",
    r"51": "new customers",
    r"[4-5][2-3]": "potential loyalists",
    r"5[4-5]": "champions",
}
rfm["segment"] = rfm.segment.replace(segment_map, regex=True)
Haversine
import numpy as np
from numpy import pi, deg2rad, cos, sin, arcsin, sqrt
def haversine(s_lat, s_lng, e_lat, e_lng):
    determines the great-circle distance between two point
    on a sphere given their longitudes and latitudes
    11 11 11
    # approximate radius of earth in miles
    R = 3959.87433
    s_{lat} = s_{lat} * np.pi / 180.0
    s_lng = np.deg2rad(s_lng)
    e_lat = np.deg2rad(e_lat)
    e_lng = np.deg2rad(e_lng)
    d = (
        np.sin((e_lat - s_lat) / 2) ** 2
        + np.cos(s_lat) * np.cos(e_lat) * np.sin((e_lng - s_lng) / 2) ** 2
    )
```

```
return 2 * R * np.arcsin(np.sqrt(d))
df['distance'] = haversine(
    df["start_lat"].values,
    df["start_long"].values,
    df["end lat"].values,
    df["end_long"].values
)
Manhattan
def manhattan(s_lat, s_lng, e_lat, e_lng):
    sum of horizontal and vertical distance between
   two points
    11 11 11
    a = haversine(s_lat, s_lng, s_lat, e_lng)
   b = haversine(s_lat, s_lng, e_lat, s_lng)
    return a + b
Random
Union two categorical columns - documentation
from pandas.api.types import union_categoricals
food = pd.Categorical(["burger king", "wendys"])
food_2 = pd.Categorical(["burger king", "chipotle"])
union_categoricals([food, food_2])
Testing - documentation
from pandas.util.testing import assert_frame_equal
# Methods for Series and Index as well
assert_frame_equal(df_1, df_2)
Checking data types - documentation
from pandas.api.types import is_numeric_dtype
is_numeric_dtype("hello world")
# False
Infer column dtype, useful to remap column dtypes documentation
from pandas.api.types import infer_dtype
infer_dtype(["john", np.nan, "jack"], skipna=True)
# string
infer_dtype(["john", np.nan, "jack"], skipna=False)
# mixed
```