DTS203TC Design and Analysis of Algorithms

Lecture 20: NP-Completeness

Dr. Qi Chen
School of AI and Advanced Computing

Learning Outcome

- Computational Complexity Theory
- The classes P and NP
- Polynomial-time reduction
- NP Hard and NP Completeness
- NP completeness problems
 - Hamiltonian circuit
 - SAT (satisfiability)
 - 0/1 knapsack
 - 3-Coloring
 - K-Clique
 - Vertex cover

Growth rate n^2 $\log n$ $n n^2 n^3 ... n^k ...$ log n constant logarithmic polynomial exponential

Computational Complexity

- Polynomial Time
 - Linear Search O(n)
 - Binary Search O(logn)
 - Insertion Sort O(n²)
 - MergeSort O(nlogn)
 - **...**

- Exponential Time
 - $O(2^n)$
 - Hamiltonian circuit -O(2ⁿ)
 - Traveling Salesman
 Problem O(2ⁿ)
 - Circuit-SAT O(2ⁿ)
 - ...

Hard Computational Problems

- An algorithm is efficient if its running time is bounded by a <u>polynomial</u> of its input size.
- Some computational problems seems <u>hard</u> to solve.
 - Despite numerous attempts we do not know any efficient algorithms for these problems
- We are also far away from proving these problems are indeed hard to solve
- In more formal language, we don't know whether NP = P or NP ≠ P. This is an important and fundamental question in theoretical computer science!

Hard Computational Problems

Circuit-SAT

Hamiltonian circuit problem 0/1 Knapsack problem

P = NP?

https://www.claymath.org/millennium/p-vs-np/

- Named as one of the seven "Millennium Problems" by the Clay Institute
- > can earn you \$1 million for its solution (and a place in mathematical and computer science history).
- > Check https://www.claymath.org/millenniumproblems/ to read more about this (select the "P vs NP" link).

Examples

- We have seen two examples of these difficult problems where no efficient (polynomial) algorithm is known
 - 0/1 Knapsack problem
 - Hamiltonian circuit problem
 - One more: Circuit-SAT
- All we know is to exhaust all possible solutions to find the best one

0-1 Knapsack Problem

Input: Given n items with integer weights w_1 , w_2 , ..., w_n and integer values v_1 , v_2 , ..., v_n , and a knapsack with capacity W.

Problem (optimization version): Find a subset of items whose total weight does not exceed W and that maximizes the total value.

15 Kg

Hamiltonian Circuit

Input: A connected graph G

Question: Does G have a Hamiltonian circuit?
i.e., does G have a circuit that passes through every vertex exactly once, except for the starting and ending vertex?

Boolean Circuit

A Boolean Circuit is a directed graph where each vertex, called a *logic gate* corresponds to a simple Boolean function, one of AND, OR, or NOT.

Incoming edges: inputs for its Boolean function

Outgoing edges: outputs

2-input AND gate

2-input OR gate

NOT gate truth table

Input -	\gg	Output
---------	-------	--------

Α	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

Input	Output
0	1
1	0

Boolean Circuit - Example

Circuit-SAT

Input: a Boolean Circuit with a single output vertex

Question: is there an assignment of values to the inputs so that the output value is 1?

SAT means satisfiability

Circuit-SAT

2-input AND gate

2-input OR gate

Input_A
Output
Input_B
Output
Output
Output
Output

Decision/Optimisation problems

- A <u>decision</u> problem is a computational problem for which the output is either <u>yes</u> or <u>no</u>.
- In an <u>optimisation</u> problem, we try to <u>maximise</u> or <u>minimise</u> some value.
- An optimisation problem can be turned into a decision problem
 if we add a parameter k; and then ask whether the optimal
 value in the optimisation problem is at most or at least k.
- Note that if a decision problem is hard, then its related optimisation version must also be hard.

Example - MST

Optimisation problem: Given a graph G with integer weights on its edges. What is the weight of a minimum spanning tree (MST) in G?

Decision problem: Given a graph G with integer weights on its edges, and an integer k. Does G have a MST of weight at most k?

Example – Knapsack problem

- Input: Given n items with integer weights w_1 , w_2 , ..., w_n and integer values v_1 , v_2 , ..., v_n , a knapsack with capacity W
- Optimisation problem: Find a subset of items whose total weight does not exceed W and that maximises the total value.
- Decision problem: Is there a subset of items whose total weight does not exceed W and whose total value is at least k?

Exercise

State the decision version of the following problems

 Given a weighted graph G and a source vertex a, find the shortest paths from a to every other vertex

• Given a weighted graph G, a source vertex a and a value k, is there shortest path from a to a vertex v such that each path is of weight at most k?

Can All Decision Problems Be Solved By Algorithms?

- The Answer is No.
- The problems can not be solved by algorithms is called undecidable problems.
- One such a problem is Halting Problem (AlanTuring 1936)
 - "Given a computer program and an input to it, determine whether the program will halt on that input or continue working indefinitely on it."

Solving/Verifying a problem

- Solving a problem is different from verifying a problem
 - solving: we are given an input, and then we have to FIND the solution
 - verifying: in addition to the input, we are given a "certificate" and we verify whether the certificate is indeed a solution

 We may not know how to solve a problem efficiently, but we may know how to verify whether a candidate is actually a solution

Example - Hamiltonian circuit problem

- Suppose through some (unspecified) means (like good guessing), we find a candidate for a Hamiltonian circuit, i.e. a list of vertices and edges that might be a Hamiltonian circuit in the input graph G.
- It is easy to check if this is indeed a Hamiltonian circuit.
 Check
 - that all the proposed edges exist in G,
 - that we indeed have a cycle, and
 - that we hit every vertex in G once.
- If the candidate solution is indeed a Hamiltonian circuit, then it is a <u>certificate</u> verifying that the answer to the decision problem is "Yes"

Example – 0/1 Knapsack Problem

- Consider an instance of the 0/1 Knapsack problem (decision version)
- Suppose someone proposes a subset of items, it is easy to check
 - if those items have total weight at most W and
 - if the total value is at least k
- If both conditions are true, then the subset of items is a <u>certificate</u> for the decision problem
 - i.e., it verifies that the answer to the 0/1 knapsack decision problem is "Yes"

Example – Circuit-SAT

- Consider a Boolean Circuit
- Suppose someone proposes an assignment of truth values to the input, it is easy to check
 - if the input values lead to a final value of 1 in the output
 - this is done by checking every logic gate
- If the input truth values give a final value of 1, these values form a <u>certificate</u> for the decision problem

Complexity Classes P and NP

The complexity class P is the set of all decision problems that can be solved in worst-case polynomial time.

The complexity class NP is the set of all decision problems that can be verified in polynomial time.

P stands for polynomial, and NP stands for non-deterministic polynomial.

The Class P

MST problem is in P

- Given a weighted graph G and a value k, does there exists a MST with weight at most k?
- run Kruskal's algorithm (polynomial time) and if the MST found has weight at most k, then the answer is "Yes"

Single-source-shortest-paths problem is in P

- Given a weighted graph G, a source vertex s, and a value k, does there exist shortest paths from s to every other vertex whose path length is at most k?
- run Dijkstra's algorithm (polynomial time) and if the paths found have lengths at most k, then answer is "Yes"

The Class NP

Hamiltonian circuit problem is in NP

 we can check in polynomial time if a proposed circuit is a Hamiltonian circuit

0/1 Knapsack problem is in NP

 we can check in polynomial time if a proposed subset of items whose weight is at most W and whose value is at least k

Circuit-SAT is in NP

 we can check in polynomial time if proposed values lead to a final output value of 1

P = NP?

■ Note that $P \subseteq NP$

The (million dollar) question is that mathematicians and computer scientists do not know whether P = NP or P ≠ NP

- However, there is a common belief that P is different from NP
 - i.e., there is some problem in NP that is not in P

Polynomial-time reduction

Given any two decision problems A and B, we say that

- 1) A is polynomial time reducible to B, or
- 2) there is a polynomial time reduction from A to B

if given any input α of A, we can construct in polynomial time an input β of B such that α is yes if and only if β is yes.

We use the notation $A \leq_{p} B$

Intuitively, this means that problem \underline{B} is at least as difficult as problem \underline{A}

NP-hardness / NP-completeness

A problem M is said to be NP-hard if every other problem in NP is polynomial time reducible to M

 intuitively, this means that M is at least as difficult as all problems in NP

M is further said to be NP-complete if

- 1. M is in NP, and
- 2. M is NP-hard

NP-complete problems are some of the hardest problems in NP

NP-Complete Problem

- The Cook-Levin Theorem states that Circuit-SAT is NPcomplete (a "first" NP-complete problem)
 - if there exists a deterministic polynomial-time algorithm for solving Circuit-SAT, then P = NP.
- Using polynomial time reducibility we can show existence of other NP-complete problems
- A useful result to prove NP-completeness:
- Lemma
- If L1 ≤_P L2 and L2 ≤_P L3, then L1 ≤_P L3

Any thing in NP \leq_{P} SAT

Other NP-Complete Problems

We have seen these NP-Complete Problems

- Hamiltonian Circuit Problem
- 0/1 Knapsack Problem
- Circuit-SAT

Others

- CNF-SAT and 3-SAT (conjunctive normal form satisfiability problem)
- 3-Coloring
- K-Clique
- Vertex Cover

Conjunctive normal form (CNF)

a Boolean formula is in CNF if it is formed as a collection of <u>clauses</u> combined using the operator <u>AND</u> (∧) and each clause is formed by <u>literals</u> (variables or their negations) combined using the operator <u>OR</u> (∨)

= example: $(x1 \lor x2 \lor \overline{x4} \lor x5) \land (\overline{x2} \lor x1 \lor x4)$

CNF-SAT and 3-SAT

CNF-SAT

- Input: a Boolean formula in CNF
- Question: Is there an assignment of Boolean values to its variables so that the formula evaluates to <u>true</u>? (i.e., the formula is satisfiable)

3-**SAT**

 Input: a Boolean formula in CNF in which each clause has exactly <u>3</u> literals

CNF-SAT and 3-SAT are NP-complete

3 Coloring

• Given an undirected graph. Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

K-Clique

- A clique is a subgraph of a graph such that all the vertices in this subgraph are connected with each.
- k-Clique: a clique of size k exists in the given graph?

Vertex Cover

Given a graph G = (V,E)

A <u>vertex cover</u> is a subset $C \subseteq V$ such that for every edge (v,w) in E, $v \in C$ or $w \in C$

Vertex Cover

- The optimisation problem is to find as small a vertex cover as possible
- Vertex Cover is the decision problem that takes a graph G and an integer k and asks whether there is a vertex cover for G containing at most k vertices

Vertex Cover is NP-complete

How to prove Vertex Cover is NP-Complete?

■ 1. Proof that vertex cover is in NP

2. Proof that vertex cover is NP Hard

Vertex Cover is in NP

- If any problem is in NP, then given a 'certificate' (a solution) to the problem and an instance of the problem (a graph G=(V,E) and a positive integer k), we should be able to verify the certificate in polynomial time.
- The certificate for the vertex cover problem is a subset B of V.

```
Verify(G,k,B)
count = 0
for each vertex v in B
  remove all edges adjacent to v from set E
  count = count + 1
  if count <= k and E is empty
    return True
return False</pre>
```


K-Clique is NP Complete.

Xi.an Jiaotong-Liverpool Universit 西次を1を消えれ

- To Prove Vertex Cover is NP Hard, we use a reduction from k-Clique.
- Consider the graph G' which consists of all edges not in G, but in the complete graph using all vertices in G.

The problem of finding whether a clique of size k exists in the graph G is the same as the problem of find whether a vertex cover of size |V|-k in G'.

- Assume that there is a clique of size k in G.
- For any edge (u, v) in G', at least one of u or v must be in the set B (which is V-A). |B| = |V|-k
- Thus, all edges in G' are covered by vertices in the set B.

- Assume that there is a vertex cover B of size |V|-k in G'.
- For all edge (u, v) that both u and v are not in set B are in G.
- Thus, these edges constitute a clique of size k.

Vertex Cover is in NP ✓ Vertex Cover is NP-Hard ✓ Vertex Cover is NP-complete ✓

So, We can say that there is a clique of size k in graph G if and only if there is a vertex cover of size |V| - k in G', and any instance of the clique problem can be reduced to an instance of the vertex cover problem.

Optional Exercises

- Prove Clique is NP Completeness
- Prove HAM-CYCLE is NP Completeness

Learning Outcome

- Computational Complexity Theory
- The classes P and NP
- Polynomial-time reduction
- NP Hard and NP Completeness
- NP completeness problems
 - Hamiltonian cycle
 - SAT
 - 0/1 knapsack
 - 3-Coloring
 - K-Clique
 - Vertex cover

