Section 9 Bivariate Distribution

TA: Yasi Zhang

April 17, 2022

1 Mean and Variance

1.1 Mean

X and Y are two random variables.

Since E is a linear operator,

$$E(aX + bY) = aEX + bEY$$

$$E(aX - bY) = aEX - bEY$$

$$E(ag(X) + bh(Y)) = aEg(X) + bEh(Y)$$

What about the nonlinear case?

If X and Y are independent, then

$$E(XY) = EXEY$$

$$E(g(X)h(Y)) = Eg(X)Eh(Y)$$

Proof:

$$E(XY) = \int_{x,y} xy f_{XY}(x,y) dx dy$$
$$= \int_{x,y} xy f_X(x) f_Y(y) dx dy$$
$$= \int_x x f_X(x) dx \int_y y f_Y(y) dy$$
$$= EXEY$$

The proof for E(g(X)h(Y)) = Eg(X)Eh(Y) is similar.

If X and Y are not independent, then

$$E(XY) \neq EXEY$$

$$E(g(X)h(Y)) \neq Eg(X)Eh(Y)$$

Remark 1 Think about how to use E(g(X)h(Y)) = Eg(X)Eh(Y) to find the mgf of binomial distribution using the mgf of Bernoulli distribution.

1.2 Variance

Var is not a linear operator.

But when X and Y are independent, we have

$$Var(X + Y) = Var(X) + Var(Y)$$

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y)$$

$$Var(X - Y) = Var(X) + Var(Y)$$

$$Var(aX - bY) = a^{2}Var(X) + b^{2}Var(Y)$$

Proof:

$$\begin{split} Var(X+Y) &= E(X+Y-E(X+Y))^2 \\ &= E((X-EX) + (Y-EY))^2 \\ &= E(X-EX)^2 + 2E[(X-EX)(Y-EY)] + E(Y-EY)^2 \\ &= VarX + 2E(X-EX)E(Y-EY) + VarY \\ &= VarX + VarY \end{split}$$

The proof for other conclusions is similar.

Remark 2 Think about why Var(X - Y) = Var(X) + Var(Y) when X and Y are independent?

Remark 3 Whether X and Y are independent or not, $VarXY \neq (VarX)(VarY)$

1. CDF: Joint Distribution Function:

$$F_{XY}(x,y) = P(X \le x, Y \le y)$$

= $P(X \le x \cap Y \le y)$

for any pair (x, y) in the xy-plane.

2. pmf/pdf

DRV: Let X and Y be two drv, then their **joint probability mass function (pmf)** is defined as

$$f_{XY}(x,y) = P(X = x \cap Y = y) = P(X = x, Y = y)$$

for any point (x, y) in the xy-plane.

- (i) $0 \le f_{XY}(x, y) \le 1$ for all (x, y).
- (ii) $\sum_{y} \sum_{x} f_{XY}(x, y) = 1$.

CRV: Two rv's X and Y are said to have a continuous joint distribution if there exists a nonnegative function $f_{XY}(x,y)$ such that for any subset A on the xy-plane,

$$P[(X,Y) \in A] = \int \int_{(x,y)\in A} f_{XY}(x,y) dx dy.$$

The function $f_{XY}(x,y)$ is called the **joint probability density function (pdf)**.

- (i) $f_{XY}(x,y) \ge 0$;
- (ii) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = 1.$

Examples:

1. If the joint probability distribution of X and Y is given by $f(x,y)=\frac{x+y}{42}$, for x=1,2,3,4; y=0,1,2

find
$$P(X \ge Y)$$
 and $P(X + Y > 4)$

2. If the joint probability distribution of X and Y is given by

$$f(x,y) = \begin{cases} 6x & 0 < x < 1, \ 0 < y < 1 - x \\ 0 & elsewhere \end{cases}$$

Find (a)
$$P(X + Y = 1)$$
;

(b)
$$P(X + Y < 1/2)$$

3. Marginal distributions

DRV: Suppose X and Y have a joint discrete distribution with joint pmf $f_{XY}(x,y)$, then the marginal pmf of X and Y are defined as

$$f_X(x) = P(X = x) = \sum_y f_{XY}(x, y)$$
, where $-\infty < x < \infty$, $f_Y(y) = P(Y = y) = \sum_x f_{XY}(x, y)$, where $-\infty < y < \infty$.

(i)
$$0 \le f_X(x) \le 1, \ 0 \le f_Y(y) \le 1$$
;

(ii)
$$\sum_{x} f_X(x) = 1$$
, $\sum_{y} f_Y(y) = 1$.

CRV: Suppose X and Y have a joint continuous distribution with joint pdf $f_{XY}(x,y)$, then the marginal pdf's of X and Y are defined as

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy, \text{ where } -\infty < x < \infty,$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx, \text{ where } -\infty < y < \infty.$$

(i)
$$f_X(x) \ge 0, f_Y(y) \ge 0;$$

(ii)
$$\int f_X(x)dx = 1$$
, $\int f_Y(y)dy = 1$.

Exampls:

1. Suppose that X and Y have the following joint probability distribution:

$$f(x,y) = \begin{cases} \frac{3x-y}{9} & 1 < x < 3, \ 1 < y < 2 \\ 0 & elsewhere \end{cases}$$

- (a) Find the marginal distribution of X.
- (b) Find the marginal distribution of Y.
- 2. We have a following bivariate pdf of X and Y:

$$f(x,y) = \left\{ \begin{array}{ll} 2, & 0 < x < y < 1 \\ 0, & elsewhere \end{array} \right.$$

- (a) Find the marginal distribution of X.
- (b) Find the marginal distribution of Y.

4. Conditional Distributions: Let X and Y have a joint discrete (continuous) distribution with joint probability function $f_{XY}(x,y)$ and marginal probability functions $f_X(x)$ and $f_Y(y)$. Then the conditional probability function of X given Y = y is defined as

$$\begin{split} &f_{X|Y}(x|y)\\ &= \left\{ \begin{array}{ll} f_{XY}(x,y)/f_Y(y), & f_Y(y) > 0\\ 0 & \text{otherwise.} \end{array} \right. \end{split}$$

5. Independence: Two r.v. X and Y are independent iff

$$F_{XY}(x,y) = F_X(x)F_Y(y)$$
 for all $(x,y) \in \mathbb{R}^2$.

where F_{XY}, F_X, F_Y are the joint and marginal cdf's.

Theorem1: Two discrete(continuous) rv (X,Y) are independent iff

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$
 for all (x,y) ,

where f_{Xy}, f_X, f_Y are the joint and marginal pmf(pdf)'s.

Theorem2: The two random variables X and Y are independent if and only if the joint pmf/pdf can be written as

$$f_{XY}(x,y) = g(x) \cdot h(y),$$

for all $-\infty < x < \infty$, and $-\infty < y < \infty$.

Theorem3: Suppose two rv X and Y are independent, then

$$f_{X|Y}(x|y) = f_X(x)$$
 for all x and y

and

$$f_{Y|X}(y|x) = f_Y(y)$$
 for all x and y .

Examples:

1. Suppose (X, Y) has a joint pdf

$$f_{XY}(x,y) = \begin{cases} c(x+y) & 0 < x < y < 1 \\ 0 & elsewhere \end{cases}$$

- (a) find the value of c;
- (b) find marginal density $f_{Y}(y)$ of Y;
- (c) check if X and Y are independent.

2. Suppose (X, Y) has a joint pdf

$$f_{XY}(x,y) = \begin{cases} 6x & 0 < x < 1, \ 0 < y < 1 - x \\ 0 & elsewhere \end{cases}$$

- (a) Find the conditional density function $f_{Y|X}(y|x)$;
- (b) Are X and Y independent? Give your reasoning.