## 1-Sound and waveforms

Inteligencia artificial avanzada para la ciencia de datos I Modulo 5 NLP 1





Al discipline focused in processing methods and the cognitive understanding of humans lenguaje...

ML: Machine Learning

DL: Deep Learning

NLP: Natural Language Processing

NLU : Natural Language Understanding

NLG: Natural Language Generation

SP: Signal Processing

**TP: Text Processing** 





# Audio Signals Processing

Sound (usually human voices) representations processed for understanding of lenguaje.

#### What is sound?

- Is the result of vibrations (very convenient human ear may detect it)
- Vibration causes air molecules to vibrate
- Air molecules modify pressure and creates waves





#### **Mechanical Wave**

#### **Space**

Any oscillation traveling through space (needs a medium to travel)



#### Energy

Waves are indeed an energy manifestation, deforms the space

#### Sound Wave

#### Mechanical

Sound is a mechanical wave, usually medium is air





#### Periodic

Sound waves with periodic (pattern) behaviour, easier to represent with a function



#### **Aperiodic**

Waves without a pattern in its shape, hard to represent with functions.



## Audio information inside Sound waves

#### **Amplitude**

How "high" is the perturbation in the air pressure.

The higher the amplitude of the wave, the louder we will hear it.





## Audio information inside Sound waves



#### High / Low

In terms of sound, higher frequencies represents "higher" sounds



#### Frequency

The time the air pressure takes from peak to peak.

Each time the wave reaches a peak its called a period.

The time it takes to complete a period per second its measured by Hertz



## Audio information inside Sound waves



#### Pitch

Some frequencies might sound "similar" but "Higher".

This means both sound waves have the same "pitch".



In terms of music, this is called an octave.



A4 to A5 is a octave, Look how A5 has 2 times the A4 frequency

#### Pitch chart

In fact, the perception of sound works in a logarithmic Manner.

Tho sound waves sound similar if they differ by a power of 2



#### Quick exercise

1) Download the app



2) Analyze your voice frequency

#### Range of Some Common Sounds



### Thanks!





CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon and infographics & images by Freepik