Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir Ionic Equilibrium

DPP: 5

- Q1 In a mixture of a weak acid and its salt, the ratio of concentration of acid to salt is increased tenfold. The pH of the solution;
 - (A) Decreases by one
 - (B) Increases by one-tenth
 - (C) Increases by one
 - (D) Increases ten-fold
- Q2 How many moles of HCOONa must be added to 1 L of 0.1MHCOOH to prepare a buffer solution with a pH of 3.4? (Given: K_a for $HCOOH = 2 \times 10^{-4}$)
 - (A) 0.01
- (B) 0.05

(C) 0.1

- (D) 0.2
- **Q3** To 1.0 L solution containing 0.1 mol each of NH_3 and NH_4Cl , 0.05 molHCl is added. The change in pOH will be (p K_b for NH $_3=4.74$)
 - (A) 0.30
- (B) 0.30
- (C) 0.48
- (D) 0.48
- Q4 The pH of blood is maintained by the balance between H_2CO_3 and $NaHCO_3$ If the amount of CO_2 in the blood is increased, how will it effect the pH of blood?
 - (A) pH will remain same
 - (B) pH will be 7
 - (C) pH will increase
 - (D) pH will decrease
- **Q5** The pH of buffer of $NH_4OH + NH_4Cl$ type is given by

- (A) $pH = pK_b$
- (B) $\mathrm{pH} = 1/2\mathrm{pK_b} 1/2\log[$ salt]/[base]
- (C) $pH = 14 pK_b \log[salt]/[base]$
- (D) $pH = pOH pKK_b + [salt]/[base]$
- Q6 Addition of sodium acetate solution to acetic acid causes the following change
 - (A) pH increases
 - (B) pH decreases
 - (C) pH remains unchanged
 - (D) pH becomes 7
- Q7 In a buffer solution of a weak acid and its salt, if the ratio of concentration of salt to acid is raised 10 times then pH of the solution will
 - (A) Increase ten times
 - (B) Decrease by one unit
 - (C) Decrease ten times
 - (D) Increase by one unit
- **Q8** For preparing a buffer solution of pH 6 by mixing sodium acetate and acetic acid, the ratio of the concentration of salt and acid should be $(K_a = 10^{-5})$
 - (A) 1:10
- (B) 10:1
- (C) 100:1
- (D) 1:100
- **Q9** Which of the following pairs constitutes a buffer?
 - (A) HNO_2 and NaNO_2
 - (B) NaOH and NaCl
 - (C) HNO_3 and NH_4NO_3
 - (D) HCl and KCl

- **Q10** 0.1 mole of CH_3NH_2 ($K_b=5\times10^{-4}$) is mixed with 0.08 mole of HCl and the solution diluted to one litre. The H^+ ion concentration in the solution will be
 - (A) 1.6×10^{-11}
 - (B) $8 imes 10^{-11}$
 - (C) $5 imes 10^{-5}$
 - (D) $8 imes 10^{-2}$
- **Q11** Two buffer solutions, A and B, each made with acetic acid and sodium acetate differ in their pH by one unit, A has salt: acid = x : y, B has salt: acid = y : x If x > y, then the value of x : y is
 - (A) 10,000
- (B) 3.17
- (C) 6.61
- (D) 2.10
- Q12 Which of the following mixtures is/are buffer?
 - (A) $10ml~0.~1M~NH_4Cl + 10ml~0.~08M$ NaOH
 - (B) $20~ml~0.~22M~CH_3COOH + 30ml~0 \ .~18M~NaOH$
 - (C) $25ml~0.~22M~H_2SO_4 + 25ml~0.~15M$ NaOH
 - (D) $15ml~0.~12M~CH_3NH_2 + 10ml~0.~12M$ HCl

Answer Ke	y
------------------	---

Q1	(A)	Q7	(D)
Q2	(B)	Q8	(B)
Q3	(C)	Q7 Q8 Q9 Q10 Q11 Q12	(A)
Q4	(A)	Q10	(B)
Q5	(C)	Q11	(B)
Q6	(A)	Q12	(D)

Master NCERT with PW Books APP