Презентация к курсовому проекту от «МегаФон»

Задача: необходимо построить алгоритм, который для каждой пары пользователь-услуга определит вероятность подключения услуги

Данные. Метрика.

Данные

В качестве исходных данных доступна информация об отклике абонентов на предложение подключения одной из услуг. Каждому пользователю может быть сделано несколько предложений в разное время, каждое из которых он может или принять, или отклонить.

Отдельным набором данных будет являться нормализованный анонимизированный набор признаков, характеризующий профиль потребления абонента. Эти данные привязаны к определенному времени, поскольку профиль абонента может меняться с течением времени.

Данные train и test разбиты по периодам – на train доступно 6 месяцев, а на test отложен последующий месяц.

Итого, в качестве входных данных будут представлены:

data_train.csv: id, vas_id, buy_time, target

features.csv.zip: id, <feature_list>

И тестовый набор:

data_test.csv: id, vas id, buy time

target - целевая переменная, где 1 означает подключение услуги, 0 - абонент не подключил услугу соответственно **buy time** - время покупки, представлено в формате timestamp

id - идентификатор абонента

vas_id - подключаемая услуга

Метрика

Скоринг будет осуществляться функцией f1, невзвешенным образом, как например делает функция sklearn.metrics.f1_score(..., average='macro').

Информация о модели, ее параметрах, особенностях и основных результатах

1. Объединил данные data_....csv c features.csv по id путем поиска ближайшего времени событий двух таблиц

```
df = pd.merge_asof(data, df_f, on="buy_time", by="id", direction='nearest')
df_test = pd.merge_asof(data_test, df_f, on="buy_time", by="id", direction='nearest')
```

2. Добавил 2 дополнительные фичи:

diff — разница в днях между событиями двух таблиц data и features is_no_first — признак того, что это не первая запись о предложении услуги

3. Разбил данные на тренировочные и валидационные

train: июль – ноябрь 2018

test: декабрь 2018

- 4. В качестве модели использовал CatBoostClassifier
- 5. Сократил количество признаков до топ-22 для облегчения модели и тестового датасета с признаками

Информация о модели, ее параметрах, особенностях и основных результатах

Результаты на валидации

fl_score test: 0.6966461052577112

roc_auc_score test: 0.9290454703125743

	feature_importance	feature_names
0	49.657020	vas_id
1	30.915755	is_no_first
255	10.806501	diff
224	2.015439	222
203	0.418318	201
225	0.318537	223
250	0.280479	248
252	0.257411	250

Рекомендации к выбору значения threshold, в зависимости от бизнес-показателей

По итогу теста на данных за декабрь 2018 (в среднем по всем услугам)

Используемая формула для расчета предполагаемой прибыли

Profit = TP•SCR - (TP + FP)•PCC

Profit – Общая прибыль со всех пользователей, подключивших услугу по предложению

ТР – Количество успешных предложений (купили услугу)

FP – Количество не успешных предложений (не купили услугу)

SCR – Ожидаемый доход от услуги **в расчете на одного клиента**, сделавшего покупку

РСС – Затраты на **одно предложение** услуги клиенту (успешное или не успешное)

На примере значений SCR=5 и PCC=1

(расход на отправку одного предложения равен 1 у.е., а доход от одного пользователя при подключении услуги равен 5 у.е.)

На графике видно, как зависит величина общей прибыли от значения threshold. Оптимальным значением threshold в данном примере является 0.25, что дает прибыль 52774 у.е. при полноте в 94% от всех возможных положительных решений.

Рекомендации к выбору значения threshold, в зависимости от бизнес-показателей

По итогу теста на данных за декабрь 2018 (в среднем по всем услугам)

На примере значений SCR=5 и PCC=1

(расход на отправку одного предложения равен 1 у.е., доход от одного пользователя при подключении услуги равен 5 у.е.)

- \checkmark Treshold = 0.25
- ✓ Полнота верно предсказанных подключений 94%
- ✓ Profit = 52774 y.e.

- \checkmark Treshold = 0.5
- ✓ Полнота верно предсказанных подключений 41%
- ✓ Profit = 26775 y.e.

Описание файлов в папке проекта prediction. Применение модели.

По-умолчанию при запуске скрипта без параметров включается **интерактивный режим**, в котором можно указать ожидаемые значения дохода от услуги одному клиенту и расхода на доставку предложения одному клиенту. На основании этих данных модель выберет **оптимальный threshold для максимизации прибыли** и сделает итоговый прогноз по всему датасету.

Пример запуска интерактивного режима получения прогноза (меток класса) с автоматическим подбором значения threshold для максимизации прибыли

```
$ cd prediction
```

\$ python get_pred.py

Описание файлов в папке проекта prediction

Возможные параметры для получения прогноза вручную

- --file входной файл для прогноза (должен включать дополнительные фичи)
- --to выходной файл для сохранения результатов прогноза (csv)
- --threshold ручное выставление значения порога при определении класса (при активном значении автоподбор с максимизацией прибыли отключается)
- --pproba при значении 1 модель возвращает не итоговые классы, а вероятности (если указано --pproba 1, то параметр threshold игнорируется)

```
$ cd prediction
$ python get_pred.py --file data_test_feat.csv --to answers_test.csv --threshold 0.48
```

Пример запроса, для получения вероятностей вместо итоговых классов

```
$ cd prediction
```

\$ python get_pred.py --pproba 1

Возможные улучшения и доработки

- ✓ В данных обнаружена аномальная активность по покупкам всех услуг, приходящаяся на 19 ноября 2018 года. Стоит уточнить у «бизнеса», в чем может быть причина: возможно данные внослись не равномерно или было какое-то событие, акция... Поняв причины всплеска покупок, можно улучшить модель.
- ✓ Все расчеты производились в среднем по всем услугам. Для более точной оценки имеет смысл проработать прогноз каждой услуги отдельно. Возможно, разделить на 2 модели: 1) услуги 4, 6, 9 (как самые покупаемые); 2) все остальные.
- ✓ Добавить pipeline для автоматической предобработки исходных тестовых данных и добавления признаков из features.csv

Спасибо

zotov@adinweb.ru