

4

Ball Sound

Jakub Chudík

Task

When two hard steel balls, or similar, are brought gently into contact with each other, an unusual 'chirping' sound may be produced.

Investigate and explain the nature of the sound.

Different Balls

Coldistons of the content of the con

In our presentation

Nature of the sound

Examine the sound

Recreate the sound

Possible sources

Vibration of the balls

Impulsive translational acceleration

Vibrations for steel balls of 5cm diam.

Mada numbar	Notural fraguancy (kl 17)	
Mode number	Natural frequency (kHz)	Lowest frequency
1	51.8	is 51,8 kHz
2	68.3	13 31,0 KHZ
4	rations of the balls c	for our
do no	Ot contribute to aud	dible sound! kHz
7		
1	118.7	Limit of human ear
8	128.2	is 18-20 kHz
9	136.7	IS TO ZO KITZ
10	138.3	

K. Mehraby et al. "Impact noise radiated by collision of two spheres", Journal of Mechanical Science and Technology 25 (7) (2011)

Impulsive translational acceleration

One oscillating sphere

Two colliding spheres

K. Mehraby et al. "Impact noise radiated by collision of two spheres", Journal of Mechanical Science and Technology 25 (7) (2011)

Impulsive translational acceleration

One collision

Two colliding spheres

K. Mehraby et al. "Impact noise radiated by collision of two spheres", Journal of Mechanical Science and Technology 25 (7) (2011)

Nature of the sound

Examine the sound

Recreate the sound

Our apparatus

Sound analysis

Sound of individual collisions

Sound of individual collisions

- Decreasing amplitude
- Individual collisions are similar

Spectral analysis of our measured chirping Time

Spectrum of chirping sound (FFT)

Spectrum of chirping sound (FFT)

Time between collisions

Frequency of collisions in time

Spectrum of chirping sound (FFT)

Nature of the sound

Examine the sound

Recreate the sound

Ingredients for an artificial sound

Simplified model of collisions

Constant attractive force

Time between 2 collisions:
$$\Delta t = \frac{2mv}{F}$$
 m mass
 v speed after the last collision

Coefficient of restitution:

Impact speed change: $\Delta v = kv - v$

Simplified model of collisions

Impact speed decrease in time:

$$\frac{dv}{dt} \approx \frac{\Delta v}{\Delta t} = \frac{k-1}{2m}F = const$$

Suitable for fast chirping

- Speed before collisions: $v = v_0 \frac{(1-k)F}{2m}t$
- Time between collisions: $\Delta t = \frac{2mv_0}{F} (1-k)t$

Reality check

Reality check

Reality check

Notable conclusions

For 0 < t' < d the acoustic pressure is

Loudness of the sound

quiet $\frac{But \ not_{5+4lb^{3})\cos b}}{negligible}$

quiet

But not^{4b³ l - 8bl³) cos}

$$p \propto a_m \cos\theta \propto v^{1.2} \cos\theta \propto (v_0 - kt)^{1.2}$$

 $-\left[(8bl^3 - 4b^3l)\cos l \left[t' - d - \frac{1}{2l} \right] + (8bl^3 + 4b^3l)\sin l \left[t' - d - \frac{1}{2l} \right] \left[e^{-it} \right].$ (18)

Sound creation in Mathematica

```
v[T] = v0 - (1 - k) *F/2/m *T;
z[T] = 2 * m * v0 / F - (1 - k) * T;
h[v, r, cth] = 1.2 *a^3 *cth/2/r^2 *(k2 *(5 *v^2/4/k2/k1)^0.6)/m;
d[v] = 1.13 * 10^{(-4)} * v^{(-0.200)};
                                                 *Cos[b[v]*t] + 8*b[v]^2*1^2*Sin[b[v]*t]) -
                                                  *1*b[v]^3)*Cos[b[v]*t]+
                                                 )*Cos[1*t] - (8*b[v]*1^3+4*b[v]^3*1)Sin[1*t])*
                                                 Pi / 2 / 1) ] -
                                                 [-Pi/2/1)] * Exp[-1*t]) + h[v, r, cth] * Sin[b[v] * t];
                      0.0840
                                0.0842
            0.0838
                                          0.0844
                                                 +1^4) *
 -0.2
                                                 -d[v]) - (8*b[v]*1^3+4*b[v]^3*1)*Sin[1*(t-d[v])])*
                                                 -(4*b[v]^3*1+8*b[v]*1^3)*Sin[1*t]*Exp[-1*t]
 -0.4
                                                 [v] - Pi / 2 / 1) +
                                                 -d[v] - Pi/2/1)) * (Exp[-1*(t-d[v])] + Exp[-1*t]);
s[t, v, r, cth] = Piecewise[{x[t, v, r, cth], t \le d[v]}, {y[t, v, r, cth], t > d[v]}}];
t[T] = T - Floor[T, z[T]];
p[T] = s[t[T - dT], v[T - dT], r1, cth1] + s[t[T], v[T], r2, cth2];
chirping = Play[p[T], {T, 0, 1.17}, SampleRate \rightarrow 196000, PlayRange \rightarrow {-2, 2}]
Export["Chirping.wav", chirping]
```


Artificial

VS.

Real

Conclusion - Nature of sound

- Two options
 - Vibration of balls

Mode	
number	Natural frequency (kHz)
1	51.8
2	68.3
3	77
4	93.1
5	97
6	98.5
7	118.7
8	128.2
9	136.7
10	138.3

of our balls 113,5 kHz

Impulsive translational acceleration

Conclusion - Analysis and Recreation

Sound of single collision

K. Mehraby et al:

"Impact noise radiated by collision of two spheres"
Journal of Mechanical Science and Technology, 2011

- Finite elements method simulation
- "Perfect" agreement with experiment

L. L. Koss, R. J. Alfredson:

"Transient sound radiated by spheres undergoing an elastic collision"

Journal of Sound and Vibration, 1972

- Fully theoretical & analytical solution
- Underestimates the loudness for theta=90°
- Otherwise good correlation

Koss & Alfredson: Theory basis

Interaction of balls:

$$F = -kx^{\frac{3}{2}}$$

Acceleration approximation:

$$a \approx a_m \sin \frac{\pi}{d} t$$

Velocity potential for an oscillating sphere*:

$$\Phi(r,\theta,t) = \frac{a^3 v_1}{r^2} -$$

Velocity potential for colliding balls

Koss & Alfredson: results

Figure 10. Pressure-time trace comparison for 2-inch spheres; $V_0 = 0.3 \text{ m/s}$, r = 0.285 m, $\theta = 40^{\circ}$. \bullet , Equation (22); \Box , $\frac{1}{4}$ -inch microphone grazing orientation.

70

Different Balls

5000 Hz

Sound differs in frequency and duration

Sound analysis

Procedure of Fourier transform

Frequency of collisions in time

Period of collisions

If all collisions are the same only frequency of the collisions increases we can generate sound

Generating fake chirping sound

Take 1 collision

Paste 185 times with increasing frequency

And decreasing amplitude

Reality check

Measured

Generated

Single collision – our measurement vs theory

Spectral analysis

Our apparatus

Steel Balls:

Radius: 1.43 cm

Mass: 0.095 kg

Colliding on soft foam

Little energy losses due to damping

Single collision noise approximation

Chirping sound

REAL chirping sound

Subsequent
 Identical sounds

Second verification method

 We can generate chirping sound by pasting the same single-collision-waveform one after another

Now we know the motion of the balls

Why do we hear the chirping?

Spectrum of one collision

$$\mathcal{F}(g(t)) = G(f) = \int_{-\infty}^{\infty} g(t) e^{i2\pi f t} dt \qquad A(f) = |G(f)|$$

Spectrum of one moment of chirping

