Deep Learning

Reinventing Social Media: Deep Learning, Predictive Marketing, And Image Recognition Will Change Everything

Scientists See Promise in Deep-Learning Programs

IS "DEEP LEARNING" A REVOLUTION IN ARTIFICIAL INTELLIGENCE?

BY GARY MARCUS

Deep Learning - The Biggest Data Science Breakthrough of the Decade

Deep Learning

Why do you want to know about deep learning?

Motivation

- It works!
- State of the art in machine learning
- Google, Facebook, Twitter, Microsoft are all using it.

- It is fun!
- Need to know what you are doing to do it well.

Google Trends

Google Trends

https://www.google.com/trends/explore#q=deep%20learning%2C%20%2Fm%2F0hc2f&cmpt=q&tz=Etc%2FGMT%2B5

Scene recognition

MIT Scene Recognition Demo This demo identifies if the image is an indoor or an outdoor place, and suggests the five most likely place categories representing the image, using Places-CNN (see project page). It is made for pictures of environments, places, views on a scene and a space (as opposed to picture of an object). You also could upload image using mobile phone. Upload .jpg or jpeg image only. Upload: Choose File No file chosen or URL: http:// Run or Click One:

Google Brain - 2012

What it learned

http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-evidence-of-machine-learning.html?pagewanted=all

Google DeepMind

deep_mind.mp4

What is different?

- We have seen ML methods:
 - SVM, decision trees, boosting, random forest

- We needed to hand design the input
- ML algorithm learns the decision boundary

Feature Design

input image patch

Learned Feature Hierarchy

[Honglak Lee]

Scaling with Data Size

Deep Learning Techniques

- Artifical neural network
 - Introduced in the 60s

- Convolutional neural network
 - Introduced in the 80s

- Recurrent neural network
 - Introduced in the 80s

What Changed since the 80s?

- MLPs and CNNs have been around since the 80s and earlier
- Why did people even bother with SVMs, boosting and co?
- And why do we still care about those methods?

Brain or Rocket

Brain_or_Rocket_Ng.mp4

What Changed -Computational Power

What Changed – Data Size

I don't Have a Cluster at Home

Deep Learning

What is deep learning?

Perceptron

Perceptron

$$s(b + w^T x)$$

Separating Hyperplane

- x: data point
- y: label $\in \{-1, +1\}$
- w: weight vector
- b: bias

$$w^T x + b = 0$$

Side Note: Step vs Sigmoid Activation

$$s(x) = \frac{1}{1 + e^{-cx}}$$

The XOR Problem

The XOR Problem

Perceptron

Multi-Perceptron

Xor Problem

Xor Problem

$$Wa = [+, -]$$

 $Wb = [+, +]$
 $Wc = [-, -]$
 $Wd = [+, -]$

Multi-Layer Perceptron

output layer

hidden layer

input layer

$$s(b^{(1)} + W^{(1)}x)$$

Multi-Layer Perceptron

$$f(x) = G(b^{(2)} + W^{(2)} \left(s \left(b^{(1)} + W^{(1)} x \right) \right))$$

G: logistic function, softmax for multiclass

Autoencoder

- This is what Google used for their Google brain
- Basically just a MLP
- Output size is equal to input size

 Popular for pre-training a network on unlabeled data

Autoencoder

Deep Autoencoder

- Reconstruct image from learned low dimensional code
- Weights are tied
- Learned features are often useful for classification
- Can add noise to input image to prevent overfitting

From MLP to CNN

- So far no notion of neighborhood
- Invariant to permutation of input
- A lot of data is structured:
 - Images
 - Speech
 - **—** ...

 Convolutional neural networks preserve neighborhood

FULLY CONNECTED NEURAL NET

http://www.amoigmanurkar.com/ciassity51LusingCiviv.ntml

CONVOLUTIONAL NET

http://www.amolgmahurkar.com/classifySTLusingCNN.html

Convolution

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,0	1 _{×1}
0	0	1,0	1,	0,0
0	1	1,	0,0	0,1

4	3	4
2	4	3
2	3	4

Image

Convolved Feature

Convolutional Network

CNN Advantages

- neighborhood preserved
- translation invariant
- tied weights

DNNs are hard to train

- backpropagation gradient descent
- many local minima
- prone to overfitting
- many parameters to tune
- SLOW

Stochastic Gradient Decent

Development

- Computers got faster!
- Data got bigger.
- Initialization got better.

2006 Breakthrough

- Ability to train deep architectures by using layer-wise unsupervised learning, whereas previous purely supervised attempts had failed
- Unsupervised feature learners:
 - RBMs
 - Auto-encoder variants
 - Sparse coding variants

Unsupervised Pretraining

http://jmlr.org/papers/volume11/erhan10a/erhan10a.pdf

Pretraining: Stacked Denoising Auto-encoder

Stacking Auto-Encoders

from: Bengio ICML 2009

Dropout

- Helps with overfitting
- Typically used with random initialization
- Training is slower than without dropout

Deep Learning for Sequences

- MLPs and CNNs have fixed input size
- How would you handle sequences?

- Example: Complete a sentence
 - **–** ...
 - are ...
 - How are …

Training a recurrent net to predict the next character

- Ilya Sutskever used 5 million strings of 100 characters each, taken from Wikipedia. For each string he starts predicting at the 11th character.
- It takes a month on a GPU board to get a really good model. It needs very big mini-batches.
- Ilya's best model is about equal to the state of the art for character prediction, but works in a very different way from the best other models.
 - It can balance quotes and brackets over long distances.

Slide from G. Hinton

Meaning of Life

meaning_of_life.mp4

Completing a sentence using the neural network

The meaning of life is the tradition of the ancient human reproduction: it is less favorable to the good boy for when to remove her bigger.

Recurrent Neural Network

Recurrent Neural Network

Intriguing properties of neural networks

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, Rob Fergus

International Conference on Learning Representations (2014)

http://www.datascienceassn.org/sites/default/files/Intriguing%20Properties%20of%20Neural%20Networks_0.pdf

Libraries

- Theano
- Torch
- Caffe

- TensorFlow
- •

Theano

- Full disclosure: My favorite
- Python
- Transparent GPU integration
- Symbolical Graphs
- Auto-gradient
- Low level in a good way!
- If you want high-level on top:
 - Pylearn2
 - Keras, Lasagne, Blocks

— ...

theano

Torch

- Lua (and no Python interface)
- Very fast convolutions
- Used by Google Deep Mind, Facebook AI, IBM
- Layer instead of graph based

Caffe

- C++ based
- Higher abstraction than Theano or Torch
- Good for training standard models
- Model zoo for pre-trained models

Tensorflow

- Symbolic graph and auto-gradient
- Python interface
- Visualization tools
- Some performance issues regarding speed and memory

Tips and Tricks

Number of Layers / Size of Layers

 If data is unlimited larger and deeper should be better

Larger networks can overfit more easily

Take computational cost into account

Learning Rate

- One of the most important parameters
- If network diverges most probably learning rate is too large
- Smaller works better
- Can slowly decay over time
- Can have one learning rate per layer

Momentum

- Helps to escape local minima
- Crucial to achieve high performance

$$v_{t+1} = \mu v_t - \varepsilon \nabla f(\theta_t)$$

$$\theta_{t+1} = \theta_t + v_{t+1}$$

More about Momentum:

http://www.jmlr.org/proceedings/papers/v28/sutskever13.pdf

Convergence

- Monitor validation error
- Stop when it doesn't improve within n iterations

 If learning rate decays you might want to adjust number of iterations

Initialization of W

- Need randomization to break symmetry
- Bad initializations are untrainable
- Most heuristics depend on the number of input (and output) units
- Sometimes W is rescaled during training
 - Weight decay (L2 regularization)
 - Normalization

Data Augmentation

- Exploit invariances of the data
- Rotation, translation
- Nonlinear transformation

Type \$	Classifier \$
Neural network	6-layer NN 784-2500-2000-1500-1000-500-10 (on GPU), with elastic distortions
Convolutional neural network	Committee of 35 conv. net, 1-20-P-40-P-150-10, with elastic distortions

Preprocessing +	Error rate (%) \$
None	0.35 ^[17]
Width normalizations	0.23 ^[8]

Data Normalization

We have seen std and mean normalization

- Whitening
 - Neighbored pixels often are redundant
 - Remove correlation between features

More about preprocessing: http://deeplearning.stanford.edu/wiki/index.php/Data_Preprocessing

Non-Linear Activation Function

- Sigmoid
 - Traditional choice
- Tanh
 - Symmetric around the origin
 - Better gradient propagation than Sigmoid
- Rectified Linear
 - $\max(x,0)$
 - State of the art
 - Good gradient propagation
 - Can "die"

L1 and L2 Regularization

- Most pictures of nice filters involve some regularization
- L2 regularization corresponds to weight decay
- L2 and early stopping have similar effects
- L1 leads to sparsity
- Might not be needed anymore (more data, dropout)

Monitoring Training

- Monitor training and validation performance
- Can monitor hidden units
- Good: Uncorrelated and high variance

Further Resources

- More about theory:
 - Yoshua Bengio's book:http://www.iro.umontreal.ca/~bengioy/dlbook/
 - Deep learning reading list: http://deeplearning.net/reading-list/

- More about Theano:
 - http://deeplearning.net/software/theano/
 - http://deeplearning.net/tutorial/