Sheet 2 Solutions

Toni Abi Aoun, So Murata

Exercise 2.1

2.1.i

For a smooth function $u \in C^{\infty}(\mathbb{R}^n)$ which also belongs to $H^k(\mathbb{R}^n)$, we derive

$$\widehat{D^{\alpha}u} = (iy)^{\alpha}\widehat{u}.$$

Since $D^{\alpha}u \in L^2(\mathbb{R}^n)$, we derive the right hand side $(iy)^{\alpha}\hat{u}$ is also in $L^2(\mathbb{R}^n)$ for each α . by choosing $\alpha = (k, 0, \dots, 0), (0, k, \dots, 0), \dots, (0, 0, \dots, k)$, we derive

$$\int_{\mathbb{R}^n} |y|^{2k} |\hat{u}|^2 dy \le ||D^k u||_{L^2(\mathbb{R}^n)}^2.$$

Since Fourier transform is an isometry we derive and there are other norms of derivatives added,

$$\int_{\mathbb{R}^n} 1 + |y|^{2k} |\hat{u}|^2 dx \le ||u||_{H^k}^2.$$

We have for a, b > 0 and s > 0, $(a + b)^s \le 2^s (a^s + b^s)$. We conclude that $||(1 + |y|^k)\hat{u}||^2 \le ||u||_{H^k}^2$ thus $(1 + |y|^k)\hat{u}$ is in $L^2(\mathbb{R}^n)$.

On the other hand $(1+|y|^k)\hat{u} \in L^2(\mathbb{R}^n)$ then for $|\alpha| \leq k$, we have

$$\|(iy)^{\alpha}\hat{u}\|_{L^{2}} \le \int_{\mathbb{R}^{n}} \|y\|^{2|\alpha|} |\hat{u}|^{2} dy \le C \|(1+|y|^{k})^{2} \hat{u}\|_{L^{2}(\mathbb{R}^{n})}. \tag{1}$$

Let us denote $u_{\alpha} = \frac{1}{2\pi} \int_{\mathbb{R}^n} ((iy)^{\alpha} \hat{u}) e^{iyx} dy$ be the image of the inverse fourier transform of $((iy)^{\alpha} \hat{u})$. Then

$$\int_{\mathbb{R}^n} (D^\alpha \varphi) \overline{u} dx = \int_{\mathbb{R}^n} \widehat{D^\alpha \varphi} \widehat{u} dx = \int_{\mathbb{R}^n} (iy)^\alpha \widehat{\varphi} \widehat{u} dx = (-1)^{|\alpha|} \int_{\mathbb{R}^n} \varphi u_\alpha dx.$$

By Equation 1, u_{α} is in L^2 , therefore this is a weak derivative of u and u is in H^k .

Exercise 2.2

$$Lu = -\sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2}.$$

We let $B_0[u, v] = -\sum_{i=1}^n \partial_{x_i} u \partial_{x_i} v$.

0.1 Exercise 2.2.i

With Poincare inequality, we see that

$$||u||_{H_0^1(\mathbb{R})^n} \le C||Du||_{H_0^1(\mathbb{R})^n} \Rightarrow \frac{1}{C^2}||u||_{H_0^1(\mathbb{R})^n}^2 \le ||Du||_{H_0^1(\mathbb{R})^n}^2 = B_0[u, u].$$

also

$$|B_0[u,v]| \le ||u||_{H_0^1(\mathbb{R})^n} ||v||_{H_0^1(\mathbb{R})^n}$$

follows from Cauchy-Schwarz inequality. Thus $\gamma=0$ for the existence of weak solutions by Lax-Milgram. We derived from c>0 that the equation stated in the sheet has a solution in $H_0^1(\mathbb{R}^n)$ thus in $H^1(\mathbb{R}^n)$.

2.2.ii

By taking the fourier transform of the equation we get

$$\sum_{i=1}^{n} y_i^2 \hat{u} + c\hat{u} = \hat{f}.$$

Since $u \in L^2(\mathbb{R}^2)$ so (1-c)u is in $L^2(\mathbb{R}^n)$. We conclude that $(1+|y|^2)\hat{u}$ is in $L^2(\mathbb{R}^n)$. Therefore, u is in $H^2(\mathbb{R}^n)$.

2.2.iii

Suppose the statement is true for k-1.

By assumption we have that $(1+|y|^k)\hat{f}\in L^2(\mathbb{R}^n)$. This means that

$$(1+|y|^k)(c+|y|^2)\hat{u} \in L^2(\mathbb{R}^n).$$

By the induction hypothesis, $|y|^k \hat{u}$, $|y|^2 \hat{u}$ are both in $L^2(\mathbb{R}^n)$. Thus we conclude that $(1+|y|^{k+2})\hat{u}$ is in $L^2(\mathbb{R}^n)$, which completes the claim.

Exercise 2.3

Let $\Omega \subset \mathbb{R}^n$ be a bounded open domain with smooth boundary. We denote the dual space of $H_0^1(\Omega)$ by $H^{-1}(\Omega)$. Recall that the standard norm on $H^{-1}(\Omega)$ is given by

$$\|f\|_{H^{-1}} := \sup \left\{ \langle f, u \rangle : u \in H^1_0(\Omega), \|u\|_{H^1_0} \le 1 \right\}.$$

(i) Show that $L^2(\Omega)$ is continuously embedded in $H^{-1}(\Omega)$ by means of the following identification: for any $v \in L^2(\Omega)$ we can define the functional $\hat{v}: H^1_0(\Omega) \to \mathbb{R}$ via

$$\hat{v}: u \mapsto \int_{\Omega} uv dx.$$

Proof. For any $v \in L^2(\Omega)$, it is clear that \hat{v} is well defined (using Cauchy-Schwarz) and linear. To prove that $\hat{v} \in H^{-1}(\Omega)$ is remains to prove that it is bounded. For this, take $u \in H_0^1(\Omega)$ then

$$|\hat{v}(u)| = \left| \int_{\Omega} uv dx \right| \le ||v||_{L^2} ||u||_{L^2} \le ||v||_{L^2} ||u||_{H_0^1}.$$

This proves that \hat{v} is a bounded linear operator (therefore continuous) with operator norm

$$\|\hat{v}\| \le \|v\|_{L^2}.$$

(ii) Let $F \in H^{-1}(\Omega)$. Show that there are $f_0, f_1, \ldots, f_n \in L^2(\Omega)$ such that

$$\langle F, u \rangle = \int_{\Omega} \left(f_0 u + \sum_{i=1}^n f_i \frac{\partial u}{\partial x_i} \right) dx$$
 (2)

for all $u \in H_0^1(\Omega)$.

Proof. We know that $H^1(\Omega)$ is a Hilbert space with inner product

$$(u,v) = \int_{\Omega} uv + Du \cdot Dv dx \quad \forall u,v \in H^1(\Omega).$$

By definition, $H_0^1(\Omega)$ is the closure of $C_c^{\infty}(\Omega)$ in $H^1(\Omega)$, in particular it is closed. This implies that $H_0^1(\Omega)$ equipped with the same scalar product is also a Hilbert space. Given $F \in H^{-1}(\Omega)$ a continuous linear functional on $H_0^1(\Omega)$, we can apply Riesz's representation theorem to obtain $f \in H_0^1(\Omega)$ such that

$$\langle F, u \rangle = (f, u) \quad \forall u \in H_0^1(\Omega).$$

Set $f_0 = f$ and $f_i = \partial_{x_i} f$ for i = 1, ..., n then $f_0, f_1, ..., f_n \in L^2(\Omega)$ and we have

$$\langle F, u \rangle = (f, u) = \int_{\Omega} fu + Df \cdot Du dx = \int_{\Omega} f_0 u + \sum_{i=1}^n f_i \frac{\partial u}{\partial x_i} dx \quad \forall u \in H_0^1(\Omega).$$

(iii) Show that for $F \in H^{-1}(\Omega)$

 $||F||_{H^{-1}} = \inf \left\{ \left(\sum_{i=0}^{n} \int_{\Omega} |f_i(x)|^2 dx \right)^{\frac{1}{2}} : f_0, f_1, \dots, f_n \in L^2(\Omega) \text{ satisfy } (2) \right\}$

Proof. If $f_0, f_1, \ldots, f_n \in L^2(\Omega)$ satisfy (2) then for any $u \in H_0^1(\Omega)$ with $||u||_{L^2} \leq 1$, we have

$$\begin{aligned} |\langle F, u \rangle| &= \left| \int_{\Omega} f_0 u + \sum_{i=1}^n f_i \frac{\partial u}{\partial x_i} dx \right| \\ &= \int_{\Omega} \left| f_0 u + \sum_{i=1}^n f_i \frac{\partial u}{\partial x_i} \right| dx \\ &\leq \int_{\Omega} \left(f_0^2 + \sum_{i=1}^n f_i^2 \right)^{\frac{1}{2}} \left(u^2 + \sum_{i=1}^n \left| \frac{\partial u}{\partial x_i} \right|^2 \right)^{\frac{1}{2}} dx \\ &\leq \left(\int_{\Omega} f_0^2 + \sum_{i=1}^n f_i^2 dx \right)^{\frac{1}{2}} \left(\int_{\Omega} u^2 + \sum_{i=1}^n \left| \frac{\partial u}{\partial x_i} \right|^2 dx \right)^{\frac{1}{2}} \\ &= \left(\sum_{i=1}^n \int_{\Omega} |f_i(x)|^2 dx \right)^{\frac{1}{2}} \|u\|_{H_0^1} \\ &\leq \left(\sum_{i=0}^n |f_i(x)|^2 dx \right)^{\frac{1}{2}}. \end{aligned}$$

This gives the following bound for the norm of F

$$||F||_{H^{-1}} \le m.$$

where m denotes the infimum in the statement.

To get the converse inequality, let f_0, f_1, \ldots, f_n be given by Riesz's representation theorem as in the previous question, then by taking u = f, we get

$$|\langle F, u \rangle| = |(f, f)| = ||f||_{H_0^1} ||u||_{H_0^1}.$$

In the case F = 0, by the uniqueness in Riesz's representation theorem, we would have f = 0. If not, we can renormalize so that $f/\|f\|_{H_0^1}$ is of norm 1 from which we deduce

$$||F||_{H^{-1}} \geq m.$$

(iv) Let n = 1, $\Omega = (-1,1)$. Show that the Delta-distribution δ_0 lies in $H^{-1}(\Omega)$ and find a representation as in (2). Recall that

$$\langle \delta_0, u \rangle = u(0).$$

Proof. Clearly, this operator is linear and for any $u \in H_0^1(\Omega)$, we have

$$|u(0)| = \left| \int_{-1}^{0} u'(x) dx \right| \le \left(\int_{-1}^{0} |u'(x)|^{2} dx \right)^{\frac{1}{2}} \le ||u||_{H_{0}^{1}}$$

which proves that $\delta_0 \in H^{-1}(\Omega)$.

To obtain a representation as in (2), notice that

$$u(0) = \int_{-1}^{0} u'(x)dx = \int_{-1}^{1} f_0(x)u(x) + f_1(x)u'(x)dx$$

where $f_0 = 0$ and $f_1 = 1_{(0,1)}$. Since $f_0, f_1 \in L^2(\Omega)$, this gives us the desired representation.

Exercise 2.4

Consider the half space $\mathbb{H}^n = \{x \in \mathbb{R}^n : x_n > 0\}$ and let $p \in [1, \infty)$.

(i) Show that for some constant C > 0 we have

$$\int_{\mathbb{R}^{n-1}} |u(x_1, \dots, x_{n-1}, 0)|^p dx_1 \dots dx_{n-1} \le C ||u||_{W^{1,p}(\mathbb{H}^n)}^p$$

for all $u \in W^{1,p}(\mathbb{H}^n) \cap C^1(\overline{\mathbb{H}^n})$.

Proof. Using

$$u(x_1, \dots, x_{n-1}, 0) = -\int_0^\infty \partial_{x_n} \left(e^{-x_n} u(x_1, \dots, x_{n-1}, x_n) \right) dx_n$$

= $-\int_0^\infty e^{-x_n} \partial_{x_n} u(x_1, \dots, x_n) - e^{-x_n} u(x_1, \dots, x_n) dx_n.$

Using Jensen's inequality for the probability measure $e^{-x_n}dx_n$ on $(0,\infty)$, we get

$$|u(x_1, \dots, x_{n-1}, 0)|^p = \left| \int_0^\infty (\partial_{x_n} u(x_1, \dots, x_n) - u(x_1, \dots, x_n)) e^{-x_n} dx_n \right|^p$$

$$\leq \int_0^\infty |\partial_{x_n} u(x_1, \dots, x_n) - u(x_1, \dots, x_n)|^p e^{-x_n} dx_n$$

$$\leq \int_0^\infty 2^{p-1} (|u(x_1, \dots, x_n)|^p + |\partial_{x_n} u(x_1, \dots, x_n)|^p) dx_n,$$

where we used $e^{-x} \le 1$ for x > 0 and $(a+b)^p \le 2^{p-1}(a^p + b^p)$ for $a, b \ge 0$ by convexity of $x \mapsto x^p$ on $(0, \infty)$.

From this we get

$$\int_{\mathbb{R}^{n-1}} |u(x_1, \dots, x_{n-1}, 0)|^p dx_1 \dots dx_{n-1} \leq 2^{p-1} \int_{\mathbb{R}^{n-1}} \int_0^\infty |u(x_1, \dots, x_n)|^p + |\partial_{x_n} u(x_1, \dots, x_n)|^p dx_n dx_1 \dots dx_{n-1} \\
= 2^{p-1} \int_{\mathbb{H}^n} |u(x_1, \dots, x_n)|^p + |\partial_{x_n} u(x_1, \dots, x_n)|^p dx_1 \dots dx_n \\
= 2^{p-1} ||u||_{W^{1,p}(\mathbb{H}^n)}^p$$

(ii) Show that there is a linear bounded map

$$T: W^{1,p}(\mathbb{H}^n) \to L^p(\partial \mathbb{H}^n)$$

such that $Tu = u|_{\partial \mathbb{H}^n}$ for $u \in C(\overline{\mathbb{H}^n}) \cap W^{1,p}(\mathbb{H}^n)$.

Proof. For every $u \in W^{1,p}(\mathbb{H}^n) \cap C^1(\overline{\mathbb{H}^n})$, define $Tu = u|_{\partial \mathbb{H}^n}$. This map is clearly linear, and by the previous question, it is bounded as a map $W^{1,p}(\mathbb{H}^n) \cap C^1(\overline{\mathbb{H}^n}) \to L^p(\partial \mathbb{H}^n)$ for the $W^{1,p}(\mathbb{H}^n)$ norm. Since $W^{1,p}(\mathbb{H}^n) \cap C^1(\overline{\mathbb{H}^n})$ is dense in $W^{1,p}(\mathbb{H}^n)$, the linear operator T extends uniquely to a bounded linear operator $W^{1,p}(\mathbb{H}^n) \to L^p(\partial \mathbb{H}^n)$. To prove that $Tu = u|_{\partial \mathbb{H}^n}$ for all $u \in W^{1,p}(\mathbb{H}^n) \cap C(\overline{\mathbb{H}^n})$, note that for any $u \in W^{1,p}(\mathbb{H}^n) \cap C(\overline{\mathbb{H}^n})$, we can always find a sequence $(u_k) \subset W^{1,p}(\mathbb{H}^n) \cap C^1(\overline{\mathbb{H}^n})$ such that $u_k \to u$ in $W^{1,p}(\mathbb{H}^n)$ and $u_k \to u$ pointwise (by taking convolution with good kernels for example). In particular we have $\lim u_k|_{\partial \mathbb{H}^n} = u|_{\partial \mathbb{H}^n}$ pointwise and in $L^p(\partial \mathbb{H}^n)$, so we get

$$Tu = \lim_{k \to \infty} Tu_k = \lim_{k \to \infty} u_k |_{\partial \mathbb{H}^n} = u|_{\partial \mathbb{H}^n}.$$