Review Last Class

DMAM

For Pure Resistive Circuit, Pure Inductive Circuit and Pure Capacitive Circuit

Power Factor, Reactive Factor, Power or Active Power, Reactive Power, Apparent Power

Energy Dissipation by resistor and Energy Storage by inductor and capacitor

For Series [RL Series, RC Series, RLC Series] Circuit

Impedance calculation, Impedance Diagram

Supply voltage or current Calculation

Voltage Drop in Different elements Calculation

Instantaneous equation of current and different voltage drop

Phasor or Vector Diagram

Power Factor, Reactive Factor,

Power or Active Power, Reactive Power, Apparent Power

Instantaneous Power equation

Power Triangle

Voltage Divider Rule (VDR)

Kirchhoff's Voltage Law (KVL)

Chapter 15 Parallel Circuits

Parallel Configuration

$$Y_1 = \frac{1}{Z_1}; \quad Y_2 = \frac{1}{Z_2}; \dots \quad Y_N = \frac{1}{Z_N}$$

$$\frac{1}{Z_T} = \frac{1}{Z_1} + \frac{1}{Z_2} + \dots + \frac{1}{Z_N}$$
 (15.17)

The total admittance of a parallel configuration is the sum of the individual admittances:

$$Y_T = Y_1 + Y_2 + \dots + Y_N$$
 (15.16)

The **total impedance** of a parallel configuration can be calculated as follows:

$$\mathbf{Z}_T = \frac{1}{\mathbf{Y}_T}$$

$$\frac{1}{\mathbf{Z}_T} = \frac{1}{\mathbf{Z}_1} + \frac{1}{\mathbf{Z}_2} + \dots + \frac{1}{\mathbf{Z}_N} \quad (15.17)$$

$$Z_T = \frac{1}{\frac{1}{Z_1} + \frac{1}{Z_2} + \dots + \frac{1}{Z_N}}$$
 (15.18)

For **two impedance in parallel**:

$$Z_T = \frac{Z_1 Z_2}{Z_1 + Z_2}$$
 (15.19)

Current

$$I = \frac{E}{Z_T} = EY_T$$

$$I_1 = \frac{E}{Z_1} = EY_1$$

$$I_2 = \frac{E}{Z_2} = EY_2$$

$$I_N = \frac{E}{Z_N} = EY_N$$

If
$$Z_1 = Z_2 = = Z_N = Z_p$$

$$Y_1 = Y_2 = \dots = Y_N = Y_p$$

$$\mathbf{Y}_T = N \times \mathbf{Y}_p$$
 $\mathbf{Z}_T = \frac{\mathbf{Z}_p}{N}$

$$I_1 = I_2 = .. = I_N = \frac{I}{N}$$

Current Divider Rule (CDR)

The current flows through an admittance in a parallel circuit is equal to the value of that admittance (Y_x) times the total current (I) divided by the total admittance (Y_T) of the parallel configuration.

$$\boldsymbol{I}_{x} = \frac{\boldsymbol{Y}_{x}}{\boldsymbol{Y}_{T}} \boldsymbol{I} = \frac{\boldsymbol{Z}_{T}}{\boldsymbol{Z}_{x}} \boldsymbol{I}$$

$$I_1 = \frac{Z_2}{Z_1 + Z_2}I$$

$$I_2 = \frac{Z_1}{Z_1 + Z_2}I$$

Kirchhoff's Current Law (KCL)

(1) The algebraic sum of the currents entering and leaving a junction (or region) of a network is zero.

$$\sum \boldsymbol{I}_{entering} - \sum \boldsymbol{I}_{leaving} = 0$$

(2) The sum of the currents entering a junction (or region) of a network must equal the sum of the currents leaving the same junction (or region).

$$\sum I_{entering} = \sum I_{leaving}$$

1)
$$(I_2 + I_3 + I_5) - (I_1 + I_4) = 0$$

$$(2) \quad I_2 + I_3 + I_5 = I_1 + I_4$$

DMAM

Admittance

$$\mathbf{Z}_R = 5\Omega \angle 0^\circ = 5\Omega$$
 $\mathbf{Z}_L = 10\Omega \angle 90^\circ = j10\Omega$

$$Y_R = \frac{1}{Z_R} = \frac{1}{5\Omega \angle 0^\circ} = 0.2S \angle 0^\circ = 0.2 S$$

$$Y_L = \frac{1}{Z_L} = \frac{1}{10\Omega \angle 90^\circ} = 0.1S \angle -90^\circ = -j0.1 \text{ S}$$

$$Y_T = Y_R + Y_L = 0.2 \text{ S} - j0.1 \text{ S} = 0.224 \text{S} \angle -26.57^{\circ}$$

Admittance Diagram

Impedance

$$\mathbf{Z}_T = \frac{1}{\mathbf{Y}_T} = \frac{1}{0.224 \text{S} \angle - 26.57^{\circ}} = 4.46 \Omega \angle 26.57^{\circ} \cong 4 + j2\Omega$$

$$\mathbf{Z}_{T} = \frac{1}{\frac{1}{\mathbf{Z}_{R}} + \frac{1}{\mathbf{Z}_{L}}} = \frac{1}{\frac{1}{5\Omega} + \frac{1}{j10\Omega}} = 4 + j2\Omega = 4.47\Omega \angle 26.57$$

$$\mathbf{Z}_{T} = \frac{\mathbf{Z}_{R}\mathbf{Z}_{L}}{\mathbf{Z}_{R} + \mathbf{Z}_{L}} = \frac{(5\Omega)(j10\Omega)}{5\Omega + j10\Omega} = 4 + j2\Omega = 4.47\Omega\angle 26.57^{\circ}$$

DMAM

Current

$$I = \frac{E}{Z_T} = EY_T = \frac{50 \text{V} \angle 0^{\circ}}{4.47 \Omega \angle 26.57^{\circ}}$$
$$= 11.18 \text{A} \angle -26.57^{\circ}$$

$$I_R = \frac{E}{Z_R} = EY_R = \frac{50\text{V}\angle0^\circ}{5\Omega\angle0^\circ} = 10\text{A}\angle0^\circ$$

$$I_L = \frac{E}{Z_I} = EY_L = \frac{50 \text{V} \angle 0^{\circ}}{10\Omega \angle 90^{\circ}} = 5\text{A} \angle -90^{\circ}$$

KCL:

$$I_R + I_L = 10A\angle 0^{\circ} + 5A\angle - 90^{\circ} = 11.18A\angle - 26.57^{\circ} = I$$

Phasor Diagram

Practice Solution of Fig. 15.68 [Ch. 15], Problems 28 and 30

Power Factor and Reactive Factor

$$pf = (G/Y_T) = \cos \theta_z = \cos(26.57^{\circ}) =$$
0.894 lagging $rf = (B_L/Y_T) = \sin \theta_z = \sin(26.57^{\circ}) =$ **0.447**

Power [Total watts]

$$P_E = EI\cos\theta_z = 50 \times 11.18\cos(26.57^{\circ}) =$$
500.19 W
 $P_R = I_R^2 R = (E^2/R) = (50 \text{V})^2/5\Omega =$ **500 W**

Reactive Power [volt-ampere reactive]

$$Q_E = EI\sin\theta_z = 50 \times 11.18\sin(26.57^\circ) = 250.1 \text{ Var}$$

 $Q_L = I_L^2 X_L = (E^2/X_L) = (50 \text{V})^2/10\Omega = 250 \text{ Var}$

Apparent Power [volt-ampere]

$$S_E = EI = 50 \times 11.18 = 559.5 \text{ VA}$$

 $S_Z = I^2 Z = (E^2/Z) = (50 \text{V})^2 / 4.47 \Omega = 559.72 \text{ VA}$

Power Triangle

Instantaneous Equation

$$p(t) = 500(1 - \cos 2\omega t) + 250\sin 2\omega t \text{ W}$$

$$e(t) = (\sqrt{2} \times 50)\sin \omega t \text{ V}$$

$$i(t) = (\sqrt{2} \times 11.18)\sin(\omega t - 26.57^{\circ}) \text{ A}$$

$$i_R(t) = (\sqrt{2} \times 10) \sin \omega t \text{ A}$$

 $i_L(t) = (\sqrt{2} \times 5) \sin(\omega t - 90^\circ) \text{ A}$

Practice Solution of Fig. 15.68 [Ch. 15], Problems 28 and 30

Admittance

$$\mathbf{Z}_R = 10\Omega \angle 0^\circ = 10 \Omega$$

$$\mathbf{Z}_C = 5\Omega \angle -90^\circ = -j5 \Omega$$

$$Y_R = \frac{1}{Z_R} = \frac{1}{10\Omega \angle 0^\circ} = 0.1S \angle 0^\circ = 0.1S$$

$$Y_C = \frac{1}{Z_C} = \frac{1}{5\Omega \angle -90^\circ} = 0.2S \angle 90^\circ = j0.2 \text{ S} \quad Z_T = \frac{1}{Y_T} = \frac{1}{0.224S \angle 63.43^\circ}$$

$$Y_T = Y_R + Y_C = 0.1 \text{ S} + j0.2 \text{ S}$$

= 0.224S \angle 63.43°

Admittance Diagram

Impedance

$$\mathbf{Z}_{T} = \frac{1}{\mathbf{Y}_{T}} = \frac{1}{0.224 \text{S} \angle 63.43^{\circ}}$$

$$= 4.46\Omega \angle -63.43^{\circ}$$

$$\cong 2 - j4\Omega$$

11

$$Z_T = \frac{Z_R Z_C}{Z_R + Z_C}$$

$$= \frac{(10\Omega)(j5\Omega)}{10\Omega - j5\Omega}$$

$$= 2 - j4\Omega$$

$$= 4.472\Omega \angle -63.43^{\circ}$$

$$Z_{T} = \frac{1}{\frac{1}{Z_{R}} + \frac{1}{Z_{C}}}$$

$$= \frac{1}{\frac{1}{10\Omega} + \frac{1}{-j5\Omega}}$$

$$= 2 - j4\Omega$$

$$= 4.472\Omega \angle -63.43^{\circ}$$

Faculty of Engineering

Current

$$I = \frac{E}{Z_T} = EY_T = \frac{50 \text{V} \angle 0^{\circ}}{4.47 \Omega \angle -63.43^{\circ}}$$
$$= 11.18 \text{A} \angle 63.43^{\circ}$$

$$I_R = \frac{E}{Z_R} = EY_R = \frac{50 \text{V} \angle 0^\circ}{10\Omega \angle 0^\circ} = 5\text{A} \angle 0^\circ$$

$$I_C = \frac{E}{Z_C} = EY_C = \frac{50\text{V}\angle 0^\circ}{5\Omega\angle -90^\circ} = 10\text{A}\angle 90^\circ$$

KCL:

$$I_R + I_C = 5A\angle 0^{\circ} + 10A\angle 90^{\circ} = 11.18A\angle 63.43^{\circ} = I$$

Phasor Diagram

Practice Solution of Fig. 15.72 [Ch. 15], Problem 29

Power Factor and Reactive Factor

$$pf = (G/Y_T) = \cos \theta_z = \cos(-63.43^{\circ}) =$$
0.447 leading $rf = (B_L/Y_T) = \sin \theta_z = \sin(-63.43^{\circ}) =$ **0.894**

Power [Total watts]

$$P_E = EI\cos\theta_z = 50 \times 11.18\cos(-63.43^\circ) = 250.1 \text{ W}$$

 $P_R = I_R^2 R = (E^2/R) = (50 \text{V})^2 / 10\Omega = 250 \text{ W}$

Reactive Power [volt-ampere reactive]

$$Q_E = EI\sin\theta_z = 50 \times 11.18\sin(-63.43^\circ) = -$$
 500.19 Var
 $Q_C = -I_C^2 X_C = -(E^2/X_C) = -(50 \text{V})^2/5\Omega = -$ **500 Var**

Apparent Power [volt-ampere]

$$S_E = EI$$

= 50×11.18 VA
= **559.5 VA**
 $S_Z = I^2 Z = (E^2/Z)$
= (50V)²/4.47 Ω
= **559.72 VA**

Power Triangle

Instantaneous Equation

$$p(t) = 250(1 - \cos 2\omega t) - 500\sin 2\omega t \text{ W}$$

$$e(t) = (\sqrt{2} \times 50)\sin \omega t \text{ V}$$

$$i(t) = (\sqrt{2} \times 11.18)\sin(\omega t + 63.43^{\circ}) \text{ A}$$

$$i_{R}(t) = (\sqrt{2} \times 5)\sin \omega t \text{ A}$$

$$i_{C}(t) = (\sqrt{2} \times 10)\sin(\omega t + 90^{\circ}) \text{ A}$$

Practice Solution of Fig. 15.72 [Ch. 15], Problem 29

R-L-C Parallel Circuit Example 1

 $> 20 \Omega$

Admittance

$$\mathbf{Z}_R = 5\Omega \angle 0^\circ = 5 \Omega$$
 $\mathbf{Z}_L = 8\Omega \angle 90^\circ = j8 \Omega$ $\mathbf{Z}_C = 20\Omega \angle -90^\circ = -j20 \Omega$

$$Y_R = \frac{1}{Z_R} = \frac{1}{5\Omega \angle 0^\circ} = 0.2S \angle 0^\circ = 0.2 S$$

$$Y_L = \frac{1}{Z_L} = \frac{1}{8\Omega \angle 90^\circ} = 0.125 \text{S} \angle -90^\circ = -j0.125 \text{ S}$$

$$Y_C = \frac{1}{Z_C} = \frac{1}{20\Omega\angle -90^\circ} = 0.05S\angle 90^\circ = j0.05 \text{ S}$$

$$Y_T = Y_R + Y_L + Y_C = 0.2 \text{ S} - j0.125 \text{ S} + j0.05 \text{ S}$$

= 0.2 S - j0.075 S = 0.214S\angle - 20.56°

Admittance Diagram

Fig. Admittance diagram

Impedance

$$Z_{T} = \frac{1}{\frac{1}{Z_{R}} + \frac{1}{Z_{L}} + \frac{1}{Z_{C}}}$$

$$= \frac{1}{\frac{1}{5\Omega} + \frac{1}{j8\Omega} + \frac{1}{-j20\Omega}}$$

$$= 4.38 + j1.64\Omega$$

$$= 4.68\Omega \angle 20.56^{\circ}$$

Current

$$I = \frac{E}{Z_T} = EY_T = \frac{100 \text{V} \angle 0^{\circ}}{4.68 \Omega \angle 20.56^{\circ}} = 21.37 \text{A} \angle -20.56^{\circ}$$

$$I_R = \frac{E}{Z_R} = EY_R = \frac{100\text{V}\angle0^\circ}{5\Omega\angle0^\circ} = 20\text{A}\angle0^\circ$$

$$I_L = \frac{E}{Z_I} = EY_L = \frac{100 \text{V} \angle 0^{\circ}}{8\Omega \angle 90^{\circ}} = 12.5 \text{A} \angle -90^{\circ}$$

$$I_C = \frac{E}{Z_C} = EY_C = \frac{100\text{V}\angle 0^\circ}{20\Omega\angle -90^\circ} = 5\text{A}\angle 90^\circ$$

KCL:

 $I_R + I_L + I_C = 20A\angle 0^{\circ} + 12.5A\angle -90^{\circ} + 5A\angle 90^{\circ}$ = 21.37A\zero -20.56^{\circ} = I

Phasor Diagram $I_C \downarrow j \\ 5 A$

Practice Solution of Fig. 15.77 [Ch. 15], Problem 31 to 32

Power Factor and Reactive Factor

$$pf = (G/Y_T) = \cos \theta_z = \cos(20.56^{\circ}) =$$
0.936 lagging $rf = (B/Y_T) = \sin \theta_z = \sin(20.56^{\circ}) =$ **0.351**

Power [Total watts]

$$P_E = EI\cos\theta_z = 100 \times 21.37\cos(20.56^{\circ}) = 2000.23 \text{ W}$$

 $P_R = I_R^2 R = (E^2/R) = (100 \text{V})^2 / 5\Omega = 2000 \text{ W}$

Reactive Power [volt-ampere reactive]

$$Q_E = EI\sin\theta_z = 100 \times 21.37\sin(20.56^\circ) = 750.09 \text{ Var}$$

 $Q_L = I_L^2 X_L = (E^2/X_L) = (100 \text{V})^2/8\Omega = 1250 \text{ Var}$
 $Q_C = -I_C^2 X_C = -(E^2/X_C) = -(100 \text{V})^2/20\Omega = -500 \text{ Var}$
 $Q = Q_L + Q_C = 750 \text{ Var}$

Apparent Power [volt-ampere]

$$S_E = EI = 100 \times 21.37 = 2137 \text{ VA}$$

 $S_C = I^2Z = (E^2/Z) = (100 \text{V})^2/4.68\Omega = 2137.75 \text{ VA}$

Power Triangle

Fig. Admittance diagram

Practice Solution of Fig. 15.77 [Ch. 15], Problem 31 to 32

R-L-C Parallel Circuit Example 2

Admittance

$$\mathbf{Z}_R = 5\Omega \angle 0^\circ = 5 \Omega$$
 $\mathbf{Z}_L = 20\Omega \angle 90^\circ = j20 \Omega$

$$\mathbf{Z}_C = 8\Omega \angle -90^\circ = -j8 \Omega$$

$$Y_R = \frac{1}{Z_P} = \frac{1}{5\Omega \angle 0^\circ} = 0.2S \angle 0^\circ = 0.2S$$

$$Y_L = \frac{1}{Z_L} = \frac{1}{200 \angle 90^\circ} = 0.05 \text{S} \angle -90^\circ = -j0.05 \text{ S}$$

$$Y_C = \frac{1}{Z_C} = \frac{1}{8\Omega \angle -90^\circ} = 0.125 \text{S} \angle 90^\circ = j0.125 \text{ S}$$

$$Y_T = Y_R + Y_L + Y_C = 0.2 \text{ S} - j0.05 \text{ S} + j0.125 \text{ S}$$

= 0.2 S + j0.075 S = 0.214S \angle 20.56°

Admittance Diagram

Impedance

$$Z_{T} = \frac{1}{\frac{1}{Z_{R}} + \frac{1}{Z_{L}} + \frac{1}{Z_{C}}}$$

$$= \frac{1}{\frac{1}{5\Omega} + \frac{1}{-j8\Omega} + \frac{1}{j20\Omega}}$$

$$= 4.38 - j1.64\Omega$$

$$= 4.68\Omega \angle -20.56^{\circ}$$

Current

$$E = IZ_T = \frac{I}{Y_T} = \frac{10A\angle 20.56^{\circ}}{0.214S\angle -20.56^{\circ}} = 46.73V\angle 0^{\circ}$$

$$I_R = \frac{E}{Z_R} = EY_R = \frac{46.73 \text{V} \angle 0^\circ}{5\Omega \angle 0^\circ} = 9.35 \text{A} \angle 0^\circ$$

$$I_L = \frac{E}{Z_L} = EY_L = \frac{46.73 \text{V} \angle 0^{\circ}}{20\Omega \angle 90^{\circ}} = 2.34 \text{A} \angle -90^{\circ}$$

$$I_C = \frac{E}{Z_C} = EY_C = \frac{46.73 \text{V} \angle 0^{\circ}}{8\Omega \angle -90^{\circ}} = 5.84 \text{A} \angle 90^{\circ}$$

KCL:

$$I_R + I_L + I_C = 9.35 \text{A} \angle 0^\circ + 2.34 \text{A} \angle -90^\circ + 5.84 \text{A} \angle 90^\circ$$

= $10 \text{A} \angle 20.56^\circ = I$

Phasor Diagram

Power Factor and Reactive Factor

$$pf = (G/Y_T) = \cos \theta_z = \cos(-20.56^\circ) =$$
0.351 leading $rf = (B/Y_T) = \sin \theta_z = \sin(-20.56^\circ) =$ **-0.936**

Power [Total watts]

$$P_E = EI\cos\theta_z = 46.73 \times 10\cos(-20.56^{\circ}) = 437.39 \text{ W}$$

 $P_R = I_R^2 R = (E^2/R) = (46.73 \text{ V})^2/5\Omega = 437.11 \text{ W}$

Reactive Power [volt-ampere reactive]

$$Q_E = EI\sin\theta_z = 46.73 \times 21.37\sin(-20.56^\circ) = -$$
 164.02 Var $Q_L = I_L^2 X_L = (E^2/X_L) = (46.73 \text{ V})^2/20\Omega =$ **109.51 Var** $Q_C = -I_C^2 X_C = -(E^2/X_C) = -(46.73 \text{ V})^2/8\Omega = -$ **272.84 Var** $Q = Q_L + Q_C = -$ **163.33 Var**

Apparent Power [volt-ampere]

$$S_E = EI = 46.73 \times 10 = 467.3 \text{ VA}$$

 $S_Z = I^2 Z = (E^2/Z) = (46.73 \text{ V})^2 / 4.68 \Omega = 468 \text{ VA}$

Power Triangle

Fig. Phasor diagram

Practice Solution of Fig. 15.77 [Ch. 15], Problem 31 to 32

Problem: For the following network:

- (a) Find the conductance, susceptance and admittance for each branch.
- (b) Determine the total admittance, impedance and the source current I_s .
- (c) Using the current divider rule, determine the currents I_1 , I_2 , I_3 , I_4 , I_5 , and I_6 .
- (d) Determine the power consumption each resistor.
- (e) Determine the reactive power consumption each inductor.
- (f) Determine the reactive power supply by each capacitor.
- (g) Find the total number of watts, volt-amperes reactive, and volt-amperes, and the power factor.

Solution: Let,

$$Z_1 = 10 \Omega$$

$$Z_2 = j20 \Omega$$

$$Z_3 = -j25 \Omega$$

$$\mathbf{Z}_4 = 16 - j12 \Omega$$

$$\mathbf{Z}_5 = 15 + j20 \ \Omega$$

$$Z_6 = 8.66 + j10 - j5 \Omega$$

= $8.66 + j5 \Omega$

$$Y_1 = \frac{1}{Z_1} = \frac{1}{10 \Omega} = 0.1 \text{ S}$$

$$Y_2 = \frac{1}{Z_2} = \frac{1}{j20 \Omega} = -j0.05 S$$

$$Y_3 = \frac{1}{Z_3} = \frac{1}{-j25 \Omega} = j0.04 \text{ S}$$

$$Y_4 = \frac{1}{Z_4} = \frac{1}{16 - j12 \Omega} = 0.04 + j0.03 \text{ S}$$

$$Y_5 = \frac{1}{Z_5} = \frac{1}{15 + j20 \Omega} = 0.024 - j0.032 \text{ S}$$

$$I_S = \frac{E}{Z_T} = \frac{120 \text{V} \angle 0^{\circ}}{3.87 \Omega \angle 13.87^{\circ}}$$

$$Y_6 = \frac{1}{Z_6} = \frac{1}{8.66 + j5 \Omega} = 0.087 + j0.05 S$$

For	Conductance [S]	Susceptance [S]
\mathbf{Z}_1 or \mathbf{Y}_1	0.1	0
\mathbf{Z}_2 or \mathbf{Y}_2	0	0.05
\mathbf{Z}_3 or \mathbf{Y}_3	0	0.04
\mathbf{Z}_4 or \mathbf{Y}_4	0.04	0.03
\mathbf{Z}_5 or \mathbf{Y}_5	0.024	0.032
\mathbf{Z}_6 or \mathbf{Y}_6	0.087	0.05

$$Y_T = Y_1 + Y_2 + Y_3 + Y_4 + Y_5 + Y_6$$

= 0.251 - j0.062 S = 0.26S \(\angle -13.87^\circ\)

$$Z_T = \frac{1}{Y_T} = \frac{1}{0.26\text{S}\angle -13.87^\circ} = 3.87\text{S}\angle 13.87^\circ$$

$$I_S = \frac{E}{Z_T} = \frac{120 \text{ V} \angle 0^{\circ}}{3.87 \Omega \angle 13.87^{\circ}}$$

= 30.1 - j7.44 A = 31.01A\angle -13.87^{\circ}

$$Y_1 = 0.1 \, \text{S}$$

$$Y_1 = 0.1 \text{ S}$$
 $Y_2 = -j0.05 \text{ S}$ $Y_3 = j0.04 \text{ S}$

$$Y_3 = i0.04 \text{ S}$$

$$Y_T = 0.233 - j0.031 \,\mathrm{S} = 0.24 \,\mathrm{S} \angle -7.58^{\circ}$$

$$Y_4 = 0.04 + j0.03 \text{ S}$$
 $Y_5 = 0.006 - j0.001 \text{ S}$ $Y_6 = 0.087 + j0.05 \text{ S}$

$$Y_6 = 0.087 + j0.05 \text{ S}$$

$$I_S = 27.99 - j3.73 \text{ A} = 28.24 \text{A} \angle -7.58^{\circ}$$

(c) Using the current divider rule, determine the currents I_1 , I_2 , I_3 , I_4 , I_5 , and I_6 .

$$I_1 = \frac{Z_T}{Z_1}I_S = \frac{Y_1}{Y_T}I_S = \frac{0.1 \text{ S}}{0.251 - j0.062 \text{ S}}(30.1 - j7.44) = 12 \text{ A} = 12 \text{ A} \angle 0^\circ$$

$$I_2 = \frac{Z_T}{Z_2}I_S = \frac{Y_2}{Y_T}I_S = \frac{-j0.05 \text{ S}}{0.251 - j0.062 \text{ S}}(30.1 - j7.44) = -j6A = 6A\angle -90^{\circ}$$

$$I_3 = \frac{Z_T}{Z_3}I_s = \frac{Y_3}{Y_T}I_s = \frac{-j0.04 \text{ S}}{0.251 - j0.062 \text{ S}}(30.1 - j7.44) = j4.8 \text{ A} = 4.8 \text{ A} \angle 90^\circ$$

$$I_4 = \frac{Z_T}{Z_A}I_S = \frac{Y_4}{Y_T}I_S = \frac{0.04 + j0.03 \text{ S}}{0.251 - j0.062 \text{ S}}(30.1 - j7.44) = 4.8 + j3.6 \text{ A} = 6\text{A} \angle 36.81^{\circ}$$

$$I_5 = \frac{Z_T}{Z_5}I_S = \frac{Y_5}{Y_T}I_S = \frac{0.024 - j0.032 \text{ S}}{0.251 - j0.062 \text{ S}}(30.1 - j7.44) = 2.88 - j3.84 \text{ A} = 4.8 \text{A} \angle -53.13^{\circ}$$

$$I_6 = \frac{Z_T}{Z_6}I_S = \frac{Y_6}{Y_T}I_S = \frac{0.087 - j0.05 \text{ S}}{0.251 - j0.062 \text{ S}}(30.1 - j7.44) = 10.43 - j6 \text{ A} = 12 \text{A} \angle -30^{\circ}$$

(d) Determine the power consumption each resistor.

$$P_{R1} = I_1^2 R_1 = (12A)^2 \times 10\Omega = 1440 \text{ W}$$

 $P_{R4} = I_4^2 R_4 = (6A)^2 \times 16\Omega = 576 \text{ W}$
 $P_{R5} = I_5^2 R_5 = (4.8A)^2 \times 15\Omega = 345.6 \text{ W}$
 $P_{R6} = I_6^2 R_6 = (12A)^2 \times 8.66\Omega = 1253.28 \text{ W}$

(e) Determine the reactive power consumption each inductor.

$$Q_{L1} = I_2^2 X_{L1} = (6A)^2 \times 20\Omega = 720 \text{ Var}$$

 $Q_{L2} = I_5^2 X_{L2} = (4.8A)^2 \times 20\Omega = 460.8 \text{ Var}$
 $Q_{L3} = I_6^2 X_{L3} = (12A)^2 \times 10\Omega = 1440 \text{ Var}$

Determine the reactive power consumption each capacitor.

$$Q_{C1} = -I_3^2 X_{C1} = (4.8A)^2 \times 25\Omega = -576 \text{ Var}$$

 $Q_{C2} = I_4^2 X_{C2} = (6A)^2 \times 12\Omega = -432 \text{ Var}$
 $Q_{C3} = I_6^2 X_{C3} = (12A)^2 \times 5\Omega = -720 \text{ Var}$

(g) Find the total number of watts, volt-amperes reactive, and volt-amperes, and the power factor.

Total number of watts:

$$P_R = P_{R1} + P_{R2} + P_{R3} + P_{R4} = 3614.88 \text{ W}$$

$$P_E = EI \cos \theta = 120 \times 31.01 \times \cos(13.87^\circ) = 3612.54 \text{ W}$$

Total number of volt-amperes reactive:

$$Q_L = Q_{L1} + Q_{L2} + Q_{L3} = 2628.01 \text{ Var}$$

$$Q = Q_L + Q_C = 896.41 \text{ Var}$$

$$Q_C = Q_{C1} + Q_{C2} + Q_{C3} = -1731.6 \text{ Var}$$

$$Q_E = EI \sin \theta = 120 \times 31.01 \times \sin(13.87^\circ) = 892.68 \text{ Var}$$

Total number of volt-amperes:

$$S_Z = I^2 Z = (31.01A)^2 \times 3.87\Omega = 3721.2 \text{ VA}$$

$$S_E = EI = 120 \times 31.01 = 3721.47 \text{ VA}$$

Power factor:

$$pf = \cos \theta = \cos(13.87^{\circ}) = 0.97$$

Problem: For the following network: Find the total number of watts, volt-amperes reactive, and volt-amperes,

and the power factor.

Solution:

Load 3: Power factor lagging, so circuit is reactive power is positive.

$$\theta_{z3} = cos^{-1}[0.6] = 53.13^{\circ}$$

$$Q_3 = P tan \theta_{z3} = 800 \times ta \, n(53.13^{\circ}) = 1066.67 \, \text{VAR}$$

Load 4: Power factor leading, so circuit is reactive power is negative.

$$\theta_{z4} = -cos^{-1}[0.8] = -36.87^{\circ}$$

$$Q_4 = P tan \theta_{z4} = 600 \times tan(-36.87^{\circ}) = -450 \text{ VAR}$$

$$P_T = 1600 \text{ W} + 300 \text{ W} + 800 \text{ W} + 600 \text{ W} + 1200 \text{ W} = 4500 \text{ W}$$

$$Q_T = -1200 \text{ VAR} + 1066.67 \text{ VAR} - 450 \text{ VAR} + 1600 \text{ VAR} = 1016.67 \text{ VAR}$$

$$S_T = \sqrt{P_T^2 + Q_T^2} = 4613.41 \text{ VA}$$

$$pf = \frac{P_T}{S_T} = 0.975$$

Problem: For the following network: Determine the currents I_s , I_1 , I_2 , I_3 , I_4 , I_5 , and I_6 .

Solution: Here,
$$E = 100 \text{ V}$$
 and $\theta_e = 90^{\circ}$.

Load 1: Reactive power is negative, so circuit is capacitive and impedance angle is negative.

$$\theta_{z1} = tan^{-1} \left[\frac{Q}{P} \right] = tan^{-1} \left[\frac{-1200}{1600} \right] = -36.87^{\circ}$$

$$\theta_{i1} = \theta_e - \theta_{z1} = 90^{\circ} - (-36.87^{\circ}) = 126.87^{\circ}$$

$$I_1 = \frac{P}{E\cos\theta_{z1}} = \frac{1600}{100 \times \cos(-36.87^\circ)} = 20 \text{ A}$$

$$I_1 = 20 \text{A} \angle 126.87^\circ = -12 + j \ 16 \ \text{A}$$

Load 2: Reactive power is zero, so circuit is resistive and voltage and current are in phase.

$$\theta_{z2} = 0^{\circ}$$

$$\theta_{i2} = \theta_e - \theta_{z1} = 90^\circ - 0^\circ = 90^\circ$$

$$I_2 = \frac{P}{E\cos\theta_{z2}} = \frac{300}{100 \times \cos(0^\circ)} = 3 \text{ A}$$

$$I_2 = 3A \angle 90^\circ = j3 A$$

Load 3: Power factor lagging, so circuit is inductive and impedance angle is positive.

$$\theta_{z3} = cos^{-1}[0.6] = 53.13^{\circ}$$

$$\theta_{i3} = \theta_e - \theta_{z3} = 90^{\circ} - 53.13^{\circ} = 36.87^{\circ}$$

$$I_3 = \frac{P}{E\cos\theta_{z3}} = \frac{800}{100 \times 0.6} = 13.13 \text{ A}$$

$$I_3 = 13.13 \text{A} \angle 36.87^{\circ} = 10.66 + j \text{ 8 A}$$

Load 4: Power factor leading, so circuit is capacitive and impedance angle is negative.

$$\theta_{z4} = -cos^{-1}[0.8] = -36.87^{\circ}$$

$$\theta_{i4} = \theta_e - \theta_{z4} = 90^{\circ} - (-36.87^{\circ}) = 126.87^{\circ}$$

$$I_4 = \frac{P}{E\cos\theta_{z4}} = \frac{600}{100 \times 0.8} = 7.5 \text{ A}$$

$$I_4 = 7.5 \text{A} \angle 126.87^\circ = -4.5 + j 6 \text{ A}$$

Load 5: Reactive power is positive, so circuit is inductive and impedance angle is positive.

$$\theta_{z5} = tan^{-1} \left[\frac{Q}{P} \right] = tan^{-1} \left[\frac{1600}{1200} \right] = 53.13^{\circ}$$

$$\theta_{i5} = \theta_e - \theta_{z5} = 90^{\circ} - -53.13^{\circ} = 36.87^{\circ}$$

$$I_5 = \frac{P}{E\cos\theta_{z5}} = \frac{1200}{100 \times \cos(53.13^\circ)} = 20 \text{ A}$$

$$I_5 = 20 \text{A} \angle 36.87^\circ = 16 + j \ 12 \ \text{A}$$

$$I_S = I_1 + I_2 + I_3 + I_4 + I_5 = 10.16 + j45$$

= 46.13\(\angle 77.28^\circ\)

DMAM

Chapter 16 Series-Parallel Circuits

EXAMPLE 16.1: For the network in Fig. 16.1:

(a) Calculate Z_T .

(b) Determine I_s .

(c) Calculate V_R , V_C and V_L . (d) Find the I_C and I_L .

- (e) Compute the power delivered.
- (e) Find power factor (F_p) of the network.

Solution: (a) Let,
$$Z_1 = 1 \Omega = 1\Omega \angle 0^\circ$$
; $Z_2 = -j2 \Omega = 2\Omega \angle -90^\circ$; $Z_3 = j3 \Omega = 3\Omega \angle 90^\circ$;

Fig. 16.1(a) shows the redrawing circuit of Fig. 16.1.

$$\mathbf{Z}_4 = \frac{\mathbf{Z}_2 \mathbf{Z}_3}{\mathbf{Z}_2 + \mathbf{Z}_3} = \frac{(-j2)(j3)}{(-j2) + (j3)} = -j6 \ \Omega = 6\Omega \angle -90^{\circ}$$

Fig. 16.1(b) shows the redrawing circuit of Fig. 16.1(a).

$$Z_T = Z_1 + Z_4 = 1 - j6 \Omega$$

= 6.08\Omega - 80.54°

(b)
$$I_s = \frac{E}{Z_T} = \frac{120 \text{V} \angle 0^\circ}{6.08 \Omega \angle - 80.54^\circ}$$

= 19.74A\angle 80.54^\circ

(c) Referring to Fig. 16.1(b), we have.

$$V_R = I_S Z_1 = (19.74 \text{A} \angle 80.54^\circ)(1\Omega \angle 0^\circ) = 19.74 \text{V} \angle 80.54^\circ$$

 $V_C = V_L = I_S Z_4 = (19.74 \text{A} \angle 80.54^\circ)(6\Omega \angle -90^\circ) = 118.44 \text{V} \angle -9.46^\circ$

(d) Referring to Fig. 16.1(b), we have.

$$I_C = \frac{V_C}{Z_C} = \frac{118.44 \text{V} \angle - 9.46^{\circ}}{2\Omega \angle - 90^{\circ}} = 59.22 \text{A} \angle 80.54^{\circ}$$

$$I_L = \frac{V_L}{Z_L} = \frac{118.44 \text{V} \angle - 9.46^{\circ}}{3\Omega \angle 90^{\circ}} = 39.48 \text{A} \angle - 99.46^{\circ}$$

(e)
$$P_{del} = I_s^2 R = (19.74)^2 (1\Omega) = 389.67 \text{ W}$$

(f)
$$pf = F_p = cos\theta = cos(80.54^\circ) = 0.164$$
 Leading

EXAMPLE 16.3: For the network in Fig. 16.5:

- (a) Calculate the total impedance Z_T and the current I_s .
- (b) Calculate the voltage V_C using the voltage divider rule.
- (c) Calculate the currents I_1 and I_2 using the current divider rule.
- (d) Calculate the power consumption by R, the reactive power consumption by L and the reactive power supplied by C.
- (e) Calculate the apparent power, the power and the reactive power delivered by source.

Fig. 16.5: *Example 16.3*.

Solution: (a) Let,
$$Z_1 = 5 \Omega = 5\Omega \angle 0^\circ$$
; $Z_2 = -j12 \Omega = 12\Omega \angle -90^\circ$; $Z_3 = j8 \Omega = 8\Omega \angle 90^\circ$;

Fig. 16.5(a) shows the redrawing circuit of Fig. 16.5.

$$\begin{array}{c|c}
\hline
I_1 \\
\hline
Z_3
\end{array}$$

$$\begin{array}{c|c}
E \\
\hline
\end{array}$$

$$\begin{array}{c|c}
I_2 \\
\hline
Z_2
\end{array}$$

$$\begin{array}{c|c}
V_C \\
\hline
\end{array}$$
Fig. 16.5(a)

$$Z_4 = Z_1 + Z_2 = 5 - j12 \Omega = 13\Omega \angle -67.38^{\circ}$$

Fig. 16.5(b) shows the redrawing circuit of Fig. 16.5(a).

$$Z_T = \frac{Z_3 Z_4}{Z_3 + Z_4} = \frac{(j8)(5 - j3)}{(j8) + (5 - j3)}$$
$$= 7.8 + j14.24 \Omega$$
$$= 16.24 \Omega \angle 61.29^{\circ}$$

$$I_{s} = \frac{E}{Z_{T}} = \frac{20V \angle 20^{\circ}}{16.24\Omega \angle 61.29^{\circ}}$$

= 1.23A\angle 40.29^{\circ}

(b) Calculate the voltage V_C using the voltage divider rule. Referring to Fig. 16.5(a), we have.

$$V_{C} = \frac{Z_{2}E}{Z_{1} + Z_{2}} = \frac{(12\Omega\angle - 90^{\circ})(20V\angle 20^{\circ})}{5 - j12}$$

$$= 18.46V\angle - 2.62^{\circ}$$
Fig. 16.5(a)
$$E_{C} = \frac{Z_{2}E}{Z_{1} + Z_{2}} = \frac{(12\Omega\angle - 90^{\circ})(20V\angle 20^{\circ})}{5 - j12}$$

$$= \frac{18.46V\angle - 2.62^{\circ}}{Fig. 16.5(b)}$$

(c) Calculate the currents I_1 and I_2 using the current divider rule.

Referring to Fig. 16.5(b), we have.

$$I_1 = \frac{Z_4 I_s}{Z_3 + Z_4} = \frac{(5 - j12 \Omega)(1.23 \text{A} \angle 40.29^\circ)}{(j8) + (5 - j12)}$$
$$= 0.87 - j2.35 \text{ A} = 2.51 \text{A} \angle - 68.68^\circ$$

$$I_2 = \frac{Z_3 I_s}{Z_3 + Z_4} = \frac{(j8 \Omega)(1.23 \text{A} \angle 40.29^\circ)}{(j8) + (5 - j12)}$$
$$= 0.06 + j1.54 \text{ A} = 1.54 \text{A} \angle 87.77^\circ$$

(d) Calculate the power consumption by R, the reactive power consumption by L and the reactive power supplied by C.

$$P_{R} = I_{2}^{2}R = (1.54A)^{2} \times (5\Omega) = 11.86 \text{ W}$$

$$Q_{L} = I_{1}^{2}X_{L} = (2.51A)^{2} \times (8\Omega) = 50.4 \text{ VAR}$$

$$Q_{C} = -I_{2}^{2}X_{C} = -(1.54A)^{2} \times (12\Omega) = -28.46 \text{ VAR}$$

(e) Calculate the apparent power, the power and the reactive power delivered by source.

$$S = EI_S = (20V) \times (1.23A) = 24.6 \text{ VA}$$

$$P = EI_s cos\theta = EI_s cos\theta_z$$

= (20V) × (1.23A) cos(61.29°)
= 11.82 W

$$Q = EI_S \sin\theta = EI_S \sin\theta_Z$$

$$= (20V) \times (1.23A) \sin(61.29^\circ)$$

$$= 21.58 \text{ VAR}$$

EXAMPLE 16.6 For the network in Fig. 16.12:

- Determine the current **I**.
- b. Find the voltage **V**.

Solutions:

a. The rules for parallel current sources are the same for dc and ac networks. That is, the equivalent current source is their sum or difference (as phasors). Therefore,

$$I_T = 6 \text{ mA } \angle 20^\circ - 4 \text{ mA } \angle 0^\circ$$

= 5.638 mA + j 2.052 mA - 4 mA
= 1.638 mA + j 2.052 mA
= 2.626 mA \angle 51.402^\circ

Redrawing the network using block impedances results in the network in Fig. 16.13 where

$$\mathbf{Z}_1 = 2 \,\mathrm{k}\Omega \,\angle 0^\circ \parallel 6.8 \,\mathrm{k}\Omega \,\angle 0^\circ = 1.545 \,\mathrm{k}\Omega \,\angle 0^\circ$$

$$\mathbf{Z}_2 = 10 \text{ k}\Omega - j 20 \text{ k}\Omega = 22.361 \text{ k}\Omega \angle -63.435^{\circ}$$

Note that I and V are still defined in Fig. 16.13.

FIG. 16.12 Example 16.6.

FIG. 16.13 Network in Fig. 16.12 following the assignment of the subscripted impedances.

and

Calculate the currents *I*.

Current divider rule:

$$\mathbf{I} = \frac{\mathbf{Z}_{1}\mathbf{I}_{T}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}} = \frac{(1.545 \text{ k}\Omega \angle 0^{\circ})(2.626 \text{ mA} \angle 51.402^{\circ})}{1.545 \text{ k}\Omega + 10 \text{ k}\Omega - j 20 \text{ k}\Omega}$$

$$= \frac{4.057 \text{ A} \angle 51.402^{\circ}}{11.545 \times 10^{3} - j 20 \times 10^{3}} = \frac{4.057 \text{ A} \angle 51.402^{\circ}}{23.093 \times 10^{3} \angle -60.004^{\circ}}$$

$$= \mathbf{0.18 \text{ mA}} \angle \mathbf{111.41^{\circ}}$$

(b) Calculate the voltage V.

$$V = IZ_2$$

= (0.176 mA $\angle 111.406^{\circ}$)(22.36 k $\Omega \angle -63.435^{\circ}$)
= 3.94 V $\angle 47.97^{\circ}$

FIG. 16.13
Network in Fig. 16.12 following the assignment of

the subscripted impedances.