Algoritmos e Estrutura de Dados II Algoritmos de Ordenação

prof. Frederico Santos de Oliveira

Universidade Federal de Mato Grosso Instituto de Engenharia

Roteiro

- Objetivos
- 2 Referências bibliográficas
- Introdução
- 4 Bubblesort
- Selectionsort
- 6 Insertionsort
- Exercício
- 8 Conclusão

Objetivos

Esta aula tem como objetivos:

- Apresentar os conceitos básicos sobre ordenação;
- Explicitar os métodos mais simples de ordenação por comparação;
- 3 Exemplificar a execução dos algoritmos.

Referências bibliográficas

- OLIVEIRA, S. L. G. Algoritmos e seus fundamentos. 1. ed. Lavras: Editora UFLA, 2011.
- PIVA, D. et al. *Estrutura de Dados e Técnicas de Programação*. São Paulo: Elsevier, 2014. ISBN 9788535274387.
- SEDGEWICK, R.; WAYNE, K. *Algorithms, 4th Edition.* Boston: Addison-Wesley, 2011. I-XII, 1-955 p. ISBN 978-0-321-57351-3.
- ☑ ZIVIANI, N. *Projeto de Algoritmos: com implementações em Pascal e C.* São Paulo: Cengage Learning, 2011. ISBN 9788522110506.

Introdução

Ordenar

Segundo Ziviani (2011), ordenar é o processo de rearranjar um conjunto de objetos em uma ordem ascendente ou descendente.

- A ordenação visa facilitar a recuperação posterior de itens do conjunto ordenado;
- As técnicas de ordenação permitem apresentar um amplo de algoritmos distintos para resolver uma mesma tarefa.

Introdução

Segundo Sedgewick e Wayne (2011), existem três razões práticas para estudar os algoritmos de ordenação:

- Analisar os algoritmos de ordenação é uma introdução completa as técnicas de comparação de desempenho de algoritmos;
- Técnicas semelhantes são eficazes no tratamento de outros problemas;
- Muitas vezes usamos algoritmos de ordenação como ponto de partida para resolver outros problemas.

Introdução

Segundo Sedgewick e Wayne (2011), existem três razões práticas para estudar os algoritmos de ordenação:

- Analisar os algoritmos de ordenação é uma introdução completa as técnicas de comparação de desempenho de algoritmos;
- Técnicas semelhantes são eficazes no tratamento de outros problemas;
- Muitas vezes usamos algoritmos de ordenação como ponto de partida para resolver outros problemas.

Mais importante do que esses motivos práticos é que os algoritmos são elegantes, clássicos, e eficazes.

Notação

- Os métodos trabalham sobre os registros de um arquivo;
- Cada registro possui uma chave para controlar a ordenação;
- Podem existir outros componentes em um registro;
- Exemplo de estrutura, em C:

Algoritmo 1: TAD Registro

- A chave é usada como critério para ordenação.
- O ponteiro dados aponta para a informação indexada pela chave.

- Qualquer tipo de chave, sobre o qual exista uma regra de ordenação bem definida, pode ser utilizada;
 - As ordens mais usadas são a numérica e a lexicográfica.
- Um método de ordenação é <u>estável</u> se a ordem relativa dos itens com chaves iguais não se altera durante a ordenação.
 - Alguns dos métodos mais eficientes não são estáveis;
 - A estabilidade pode ser forçada quando o método é não-estável.

Os métodos de ordenação podem ser classificados como:

- Ordenação interna: o arquivo a ser ordenado cabe todo na memória principal;
 - Qualquer registro pode ser imediatamente acessado.
- Ordenação externa: o arquivo a ser ordenado não cabe todo na memória principal;
 - Registros são acessados sequencialmente ou em blocos.

- A maioria dos métodos de ordenação é baseada em comparações de chaves;
- Existem métodos que utilizam o princípio da distribuição;
- Exemplo: ordenar um baralho com 52 cartas, pelo valor e pelo naipe seguindo as seguintes instruções:
 - Separe as cartas em 13 montes (valores das cartas);
 - Colete os montes na ordem desejada;
 - Distribua cada monte em 4 montes (naipes das cartas);
 - Colete os montes na ordem desejada.
- Qual é o custo desse algoritmo?

Critérios de análise

- Dado que *n* é a quantidade de registros em um arquivo, as medidas de complexidade relevantes são:
 - número de comparações C(n) entre chaves;
 - número de movimentações M(n) de registros dos arquivo.
- O uso da memória é um requisito primordial na ordenação interna:
 - os métodos de ordenação in situ são os preferidos;
 - também existem aqueles que utilizam listas encadeadas;
 - e os métodos que fazem cópias dos itens a serem ordenados.

Ordenação interna por comparação

Métodos simples:

- adequados para pequenos arquivos;
- requerem $O(n^2)$ comparações;
- produzem programas pequenos.

Métodos eficientes:

- adequados para arquivos maiores;
- requerem $O(n \log n)$ comparações;
- usam menos comparações;
- as comparações são mais complexas nos detalhes.

O que estudaremos?

Na disciplina:

Estudaremos os algoritmos de **ordenação interna** que utilizam o príncipio de **comparação** e **por contagem**.

Nesta aula:

- Bubblesort
- Selectionsort
- Insertionsort

O melhor algoritmo

Atenção

- Não existe um método de ordenação considerado superior a todos os outros.
- É necessário analisar o problema e, com base nas características dos dados, decidir qual método melhor se aplica à ele.

Bubblesort

Bubblesort

- Os elementos vão "borbulhando" a cada iteração do método até a posição correta para ordenação da lista;
- Como os elementos s\u00e3o trocados (borbulhados) frequentemente, h\u00e1 um alto custo com troca de elementos.

Exemplo

Pseudo-código Bubblesort

Algoritmo 2: Bubblesort

```
Entrada: Vetor V[0..n-1], tamanho n
Saída: Vetor V ordenado

1 início

2 | para (i \leftarrow 1 \ at\'e \ n-1) faça

3 | para (j \leftarrow 0 \ at\'e \ n-i-1) faça

4 | se (V[j] > V[j+1]) então

5 | Trocar V[j] \leftrightarrow V[j+1]
```

Bubblesort

```
Algoritmo 3: Bubblesort

Entrada: Vetor V[0..n-1], tamanho n
Saída: Vetor V ordenado

início

para (i \leftarrow 1 \ at\'e \ n-1) faça

para (j \leftarrow 0 \ at\'e \ n-i-1) faça

se (V[j] > V[j+1]) então

Trocar V[j] \leftrightarrow V[j+1]
```

Nº execuções

Bubblesort

Algoritmo 4: Bubblesort

Entrada: Vetor V[0..n-1], tamanho n

Saída: Vetor V ordenado

1 início

para $(i \leftarrow 1 \ at\'e \ n-1)$ faça para $(j \leftarrow 0 \ at\'e \ n-i-1)$ faça $\begin{array}{c|c} \textbf{4} & & \\ \textbf{5} & & \\ \end{array} \begin{array}{c|c} \textbf{se} & \textit{(V[j]} > \textit{V[j+1])} \textbf{ então} \\ & & \\ \hline \textbf{Trocar} & \textit{V[j]} \leftrightarrow \textit{V[j+1]} \\ \end{array}$

Nº execuções

$$L2 = n$$

$$L3 = n + (n - 1) + ... + 1$$

$$= \frac{(1 + n)(n)}{2} = \frac{n^2 + n}{2}$$

$$L4 = (n - 1) + (n - 2) + ... + 0$$

$$= \frac{(0 + n - 1)n}{2} = \frac{n^2 - n}{2}$$

$$L5 = \frac{n^2 - n}{2}$$

Bubblesort

Tabela: Custo Bubblesort

Linha	Melhor	Pior	Médio	
2	n	n	n	
3	$\frac{n^2+n}{2}$	$\frac{n^2+n}{2}$	$\frac{n^2+n}{2}$	
4	$\frac{n^2-n}{2}$	$\frac{n^2-n}{2}$	$\frac{n^2-n}{2}$	
5	0	$\frac{n^2-n}{2}$	$\frac{n^2-n}{4}$	

- Melhor caso: $T(n) = n + \frac{n^2 + n}{2} + \frac{n^2 n}{2} + 0 = n^2 + n$
- Pior caso: $T(n) = n + \frac{n^2 + n}{2} + 2\frac{n^2 n}{2} = \frac{3n^2}{2} + 2$
- Caso médio: $T(n) = n + \frac{n^2 + n}{2} + \frac{n^2 n}{2} + \frac{n^2 n}{4} = \frac{5n^2}{4} \frac{3n}{4}$

Bubblesort

- Número de Comparações C(n) é definido pela linha 4.
 - Possui custo $C(n) = \frac{n^2 n}{2}$ em qualquer situação.
 - Portanto, o número de comparações é $C(n) = \Theta(n^2)$.
- Número de Movimentos M(n) é definido pela linha 5.
 - No melhor caso, não realiza trocas.
 - No pior caso, realiza $\frac{n^2-n}{2}$ trocas, ou seja, é $O(n^2)$ em relação ao $n^{\underline{o}}$ de movimentos.
 - No caso médio, realiza $\frac{n^2-n}{4}$ trocas.

Vantagens

- Algoritmo simples;
- Algoritmo estável

Desvantagens

 O fato do arquivo já estar ordenado não ajuda a reduzir o número de comparações (o custo continua quadrático), porém o número de movimentações cai para zero.

Selectionsort

Selectionsort

- A cada iteração, seleciona o menor elemento da lista e troque-o com o item na posição correta;
- É realizada uma troca a cada iteração.

Pseudo-código Selectionsort

Algoritmo 5: Selectionsort

```
Entrada: Vetor V[0..n-1], tamanho n
  Saída: Vetor V ordenado
1 início
      para i \leftarrow 0 até n-2 faca
          min \leftarrow i
          para j \leftarrow i + 1 até n - 1 faça
              se V[j] < V[min] então
                   min \leftarrow i
          trocar V[min] \leftrightarrow V[i]
```

Adaptado de Oliveira (2011, p. 73).

4

6

Selectionsort

```
Algoritmo 6: Selectionsort
  Entrada: Vetor V[0..n-1], tamanho n
  Saída: Vetor V ordenado
1 início
2
      para i \leftarrow 0 até n-2 faça
          min \leftarrow i
          para j \leftarrow i + 1 até n - 1 faça
4
              se V[j] < V[min] então
                  min \leftarrow i
          trocar V[min] \leftrightarrow V[i]
```

Nº execuções

Selectionsort

Algoritmo 7: Selectionsort

Entrada: Vetor V[0..n-1], tamanho n **Saída:** Vetor V ordenado

1 início

 $\lfloor min \leftarrow j \rfloor$

trocar
$$V[min] \leftrightarrow V[i]$$

Nº execuções

L2 = n
L3 = n-1
L4 = n+(n-1)+...+1
=
$$\frac{(1+n)n}{2} = \frac{n^2+n}{2}$$

L5 = $\frac{n^2-n}{2}$

Selectionsort

Tabela: Custo Selectionsort

Linha	Melhor	Pior	Médio		
2	n	n	n		
3	n -1	n - 1	n -1		
4	$\frac{n^2+n}{2}$	$\frac{n^2+n}{2}$	$\frac{n^2+n}{2}$		
5	$\frac{n^2-n}{2}$	$\frac{n^2-n}{2}$	$\frac{n^2-n}{2}$		
6	0	$\frac{n^2-n}{2}$	$\frac{n^2-n}{4}$		
7	n-1	n-1	n-1		

- Melhor caso: $T(n) = n + 2(n-1) + n^2 = n^2 + 3n 2$
- Pior caso: $T(n) = n + 2(n-1) + \frac{n^2+n}{2} + (n^2-n) = \frac{3n^2}{2} + \frac{5n}{2} 2$
- Caso médio: $T(n) = n + 2(n-1) + \frac{n^2+n}{2} + \frac{n^2-n}{2} + \frac{n^2-n}{4} = \frac{5n^2}{4} + \frac{11n}{4} 2$

Selectionsort

- Número de Comparações C(n) é definido pela linha 5.
 - Possui custo $C(n) = \frac{n^2 n}{2}$ em qualquer situação.
 - Portanto, o número de comparações é $C(n) = \Theta(n^2)$.
- Número de Movimentos M(n) é definido pela linha 7.
 - Em qualquer situação, realiza n-1 trocas.

Vantagens

- Custo linear no tamanho da entrada para o número de movimentos de registros;
- É o algoritmo a ser utilizado para arquivos com registros muito grandes (que possuem alto custo de movimentação);
- É muito interessante para arquivos pequenos.

Desvantagens

- O fato do arquivo já estar ordenado não ajuda em nada, pois o custo continua quadrático;
- O algoritmo não é estável.

Insertionsort

Insertionsort

- Algoritmo utilizado pelos jogadores de cartas:
 - Inicia-se com a mão esquerda vazia e as cartas viradas com a face para baixo na mesa;
 - Em seguida, remove-se uma carta de cada vez na mesa, inserindo-a na posição correta na mão esquerda;
 - Para encontrar a posição correta de uma carta, compare-a sequencialmente a cada uma das cartas que já estão na mão.

Pseudo-código Insertionsort

Algoritmo 8: Insertionsort

```
Entrada: Vetor V[0..n-1], tamanho n
  Saída: Vetor V ordenado
1 início
      para (i \leftarrow 1 \ at\'{e} \ n-1) faça
          chave \leftarrow V[i]
          i \leftarrow i - 1
          enquanto (j \ge 0 \ AND \ V[j] > chave) faça
               V[j+1] \leftarrow V[i]
            j \leftarrow j-1
           V[j+1] \leftarrow chave
```

Adaptado de Oliveira (2011).

Insertionsort

```
Algoritmo 9: Insertionsort
 Entrada: Vetor V[0..n-1], tamanho n
 Saída: Vetor V ordenado
1 início
     para (i \leftarrow 1 \ até \ n-1) faça
        chave \leftarrow V[i]
        i \leftarrow i - 1
         enquanto (j \ge 0 \ AND \ V[j] > chave)
          faça
         V[i+1] \leftarrow chave
```

Nº execuções

Insertionsort

Algoritmo 10: Insertionsort

```
Entrada: Vetor V[0..n-1], tamanho n Saída: Vetor V ordenado
```

1 início

para
$$(i \leftarrow 1 \ at\'en \ n-1)$$
 faça $chave \leftarrow V[i]$ $j \leftarrow i-1$ enquanto $(j \ge 0 \ AND \ V[j] > chave)$ faça $V[j+1] \leftarrow V[j]$ $j \leftarrow j-1$ $V[j+1] \leftarrow chave$

$N^{\underline{o}}$ execuções

$$L2 = n$$

$$L3 e L4 = n-1$$

$$L5 = 2+3+...+n$$

$$= \frac{(2+n)(n-1)}{2}$$

$$= \frac{n^2+n-2}{2}$$

$$L6 e L7 = 1+2+...+(n-1)$$

$$= \frac{(1+n-1)(n-1)}{2}$$

$$= \frac{n^2-n}{2}$$

$$L8 = n-1$$

Insertionsort

Tabela: Custo Insertionsort

Linha	Melhor	Pior	Médio
2	n	n	n
3 e 4	2(n-1)	2(n-1)	2(n-1)
5	n	$\frac{n^2 + n - 2}{2}$	$\frac{n^2+3n-2}{4}$
6 e 7	0	$2\frac{n^2-n}{2}$	$2\frac{n^2-n}{4}$
8	n-1	n-1	n-1

- Melhor caso: T(n) = n + 3(n-1) + n = 5n 3
- Pior caso: $T(n) = n + 3(n-1) + \frac{n^2+n-2}{2} + 2\frac{n^2-n}{2} = \frac{3n^2}{2} + \frac{7n}{2} 4$
- Caso médio: $T(n) = n + 3(n-1) + \frac{n^2 + 3n 2}{4} + \frac{n^2 n}{2} = \frac{3n^2}{4} + \frac{17n}{4} \frac{7}{2}$

Insertionsort

- Número de Comparações C(n) é definido pela linha 5.
 - No melhor caso, C(n) = n, ou seja, é $\Omega(n)$.
 - No pior caso, $C(n) = \frac{n^2 + n 2}{2}$, ou seja, é $O(n^2)$. No caso médio, $C(n) = \frac{n^2 + 3n 2}{4}$.
- Número de Movimentos M(n) é definido pelas linhas 6 e 8.
 - No melhor caso, a linha 6 é executada nenhuma vez, mas a linha 8 n-1 vezes.
 - No pior caso, a linha 6 é executada $\frac{n^2-n}{2}$ e a linha 8 n-1, o que dá um total de $\frac{n^2}{2}+\frac{n}{2}-1$ trocas.
 - No caso médio, a linha 6 é executada $\frac{n^2-n}{4}$, o que dá $\frac{n^2}{4}+\frac{3n}{4}-1$ trocas.

Insertionsort

Características

Vantagens e desvantagens

- O número mínimo de comparações e movimentos ocorre quando os itens estão originalmente em ordem;
- O número máximo ocorre quando os itens estão originalmente na ordem reversa;
- É o método a ser utilizado quando o arquivo está "quase ordenado";
- É um bom método quando se deseja adicionar uns poucos itens a um arquivo ordenado, pois o custo é linear;
- O algoritmo de ordenação por inserção é estável.

Exercício

Tarefa

- Dada a sequência de números em ordem decrescente:
 6 5 4 3 2 1:
- Ordene em ordem crescente utilizando os três algoritmos estudados em sala (BubbleSort, SelectionSort e InsertionSort), apresentando a sequência dos números a cada passo.

Conclusão

Objetivos alcançados

- Nesta aula, tivemos o primeiro contato com algoritmos de ordenação;
- Foram vistos os algoritmos BubbleSort, SelectionSort e InsertionSort;

Qual o melhor?

- Cada algoritmo possui suas características particulares;
- Não existe um método de ordenação considerado universalmente superior a todos os outros;
- É necessário analisar o problema e, com base nas características dos dados, decidir qual método melhor se aplica à ele.

Conclusão

Quadro comparativo dos métodos de ordenação:

Algoritmo	Comparações		Movimentações		Espaço	Estável	In situ	
	Melhor	Médio	Pior	Melhor	Médio	Pior	Lspaço	Lstavei
Bubble	$O(n^2)$		O(n)	$O(n^2)$		0(1)	Sim	Sim
Selection	$O(n^2)$		O(n)		0(1)	Não*	Sim	
Insertion	$O(n)$ $O(n^2)$		O(n)	O(n	²)	0(1)	Sim	Sim

^{*} Existem versões estáveis.

Conclusão

Ordenação

- A tarefa de ordenação é muito importante, ela é uma necessidade básica para a solução de muitos problemas.
- Piva et al. (2014) sugere alguns materiais para reforçarem o aprendizagem:
 - Simulador didático de testes de algoritmos de ordenação
 - Vídeo demonstrando os métodos de ordenação

Próxima aula

Estudar os algoritmos considerados eficientes.

Dúvidas

