Ⅲ. 빅데이터 모델링

01. 분석 모형 설계

1.1 분석 절차 수립

<u>-</u>	KeyWord
분석 모형 선정	분석모형, 통계기반, 기술통계, 상관분석, 회귀분석, 분산분석, 주성분분석, 판별분석, 데이터마이닝, 분류, 예측, 군집화, 연관규칙, 머신러닝, 지도학습, 비지도학습
분석 모형 정의	파라미터, 하이퍼파라미터
분석 모형 구축 절차	모델링, 비즈니스영향도평가

1) 분석 모형 선정

- 분석 목적 부합 & 데이터 변수 고려 -> 분석 모형 선정
- 모형(모델): 객체/시스템/개념에 대한 구조나 작업을 보여주기 위한 패턴/계획/설명
- 탐색적 데이터 분석(EDA): 현상에서 패턴 발견
- 통계적 추론: 현상에서 결론 도출
- 기계학습: 현상을 예측
- 빅데이터 분석 모형

통계 기반	데이터마이닝 기반	머신러닝 기반
기술통계 상관분석 회귀분석 분산분석 주성분분석 판별분석	<분류> 통계적기법 - 로지스틱회귀, 판별분석 트리기반기법 - CART알고리즘 최적화기법 - 서포트벡터머신 기계학습 - 역전파알고리즘 《예측> 회귀분석 의사결정나무 시계열분석 인공신경망 군집화 - 계층적/비계층적 연관규칙 모델 (장바구니분석)	<지도학습> 로지스틱회귀 인공신경망 의사결정나무 서포트벡터머신 랜덤포레스트 감성분석 <비지도학습> 군집화 차원축소기법 연관관계분석 인공신경망 (자기조직화지도)

(1) 통계기반 분석 모형 선정

- 기술통계 / 상관분석 / 회귀분석 / 분산분석 / 주성분분석 / 판별분석
- 통계분석
 - 불확실한 상황에서 객관적인 의사결정을 수행하기 위해 데이터를 수집, 처리, 분류, 분석, 해석하는 일련의 체계
- 기술통계(Descriptive Statistics)
 - 분석 초기에 데이터를 확률/통계적으로 정리/요약하는 기초적인 통계
 - 통계적 수치: 평균/분산/표준편차/왜도/첨도/빈도 등
 - ㅇ 그래프 활용: 막대그래프 / 파이그래프 등
- 상관분석(Correlation Analysis)
 - o 2개 이상의 변수간 상호연관성의 정도를 측정
 - ㅇ 단순 상관분석: 2개 변수 사이의 연관관계
 - ㅇ 다중 상관분석: 3개 이상의 변수 사이의 연관관계
 - 변수간 상관분석: 수치적 / 명목적 / 순서적 데이터 변수간 분석
- 회귀분석(Regression Analysis)
 - 1개 이상의 독립변수가 종속변수에 미치는 영향을 추정
 - ㅇ 단순 회귀: 독립변수 1개 / 직선관계
 - 다중 회귀: 독립변수 2개 이상 / 선형관계
 - 다항 회귀: (독립변수 1개/ 2차함수 이상) or (독립변수 2개/ 1차함수 이상)
 - ㅇ 곡선 회귀: 독립변수 1개 / 곡선관계
 - 로지스틱 회귀: 종속변수 범주형 (단순/다중/다항)
 - 비선형 회귀: 선형관계X
- 분산분석(ANOVA)
 - ㅇ 2개 이상의 집단간 비교(분산 비교)
 - o 일원 분산분석: 독립변수 1개 / 종속변수 1개
 - 이 이원 분산분석: 독립변수 2개 / 종속변수 1개
 - ㅇ 다변량 분석분석: 종속변수 2개 이상
- 주성분분석(PCA)
 - ㅇ 주성분 변수를 원래 변수들의 선형결합으로 추출하는 통계기법
 - ㅇ 일부 주성분에 의해 원래 변수의 변동이 충분히 설명되는지
- 판별분석(Discriminant Analysis)
 - ㅇ 집단을 구별할 수 있는 판별규칙/함수 -> 새로운 개체가 어떤 집단인지 탐색

(2) 데이터마이닝 기반 분석 모형 선정

- 분류 / 예측 / 군집화 / 연관규칙
- 데이터마이닝(Data Mining)
 - 대용량 데이터로부터- 데이터 내의 패턴/관계/규칙 등을 탐색하고 통계적인 기법으로 모델화하여 유용한 정보/지식을 추출
- 기술(Description)
 - ㅇ 사람/상품에 대한 이해를 높이기 위해 데이터가 가진 특징을 나타내고 설명에 대한 답을 제공

• 데이터 마이닝 기반 분석 모형

분류 모델	예측 모델	군 <mark>집화 모델</mark>	연관규칙 모델
로지스틱 회귀분석/ 판별분석 트리기반방법 (CART 알고리즘) 최적화기법 (서포트벡터머신) 기계학습 (역전파 알고리즘)	회귀분석 의사결정나무 시계열분석 인공신경망	응집/ 분할분 석법 K-평균군집화	장바구니분석

• 분류모델(Classification Model)

- 로지스틱 회귀분석 / 판별분석 / 트리기반(CART) / 서포트벡터머신 / 기계학습(인공신경망)
- 분류: 범주/그룹을 예측하는 것(범주형 or 이산형 변수)
- 트리기반: 의사결정규칙에 따라서, 집단을 몇 개의 소집단으로 분류
- CART 알고리즘: 독립변수 이분화 반복 -> 이진트리 형태 형성 -> 분류 & 예측
- 기계학습: 경험적인 데이터로부터 스스로 성능을 향상 -> 인간의 학습과 같은 능력을 컴퓨터에서 실현하고자 함
- 역전파 알고리즘(Backpropagation): 출력값이 원하는 출력과 다를 때, 가중치 갱신으로 오차 최소
 화를 위한 반복 수행 -> 오차를 출력계층에서 입력계층으로 역방향으로 반영

로지스틱 회귀분석 (LR)	서포트 벡터 머신 (SVM)	기계학습 (인공신경망)
- 종속변수: 서열형/ 범주형/ 명목형 - 분석 대상이 어느 집단으로 분류되는가!	- 최적화 기법/ 이진선형 분류방법 - 데이터와 거리가 가장 먼 초평면 선택 - 초평면(Hyperplane): 데이터 분리! - 서포트벡터: 초평면에 가장 가까운 점	- 기대 출력값과 실제 출력값의 비교 → 오차 - 신경망의 은닉계층에서 가중치 조정 - <mark>가중치 갱신 반복</mark> → 신경망 구조 안정화
0.5	X ₂ • • • • * * * * * * * * * * * * * * * *	Hidden

• 예측모델(Prediction Model)

- ㅇ 과거 데이터로부터 특성 분석 -> 새로운(다른) 데이터의 결과값을 예측
- 회귀분석 / 의사결정나무 / 시계열분석 / 인공신경망
- 회귀분석(Regression): 2개의 연속형 변수 사이의 모형 생성 -> 적합도 측정
- 의사결정나무(Decision Tree): 의사결정규칙을 트리구조로 도표화
 - 용도: 분류 및 예측 모형 & 변수모형 분석 전 이상값 검색

- 시계열 분석(Time Series Analysis): 시계열로 관측되는 자료 분석 -> 미래 예측
- 인공신경망(ANN): 뉴런이 전기신호를 전달하는 모습을 모방한 예측모델
- 군집화모델(Clustering Model)
 - 계층적(응집/분할), 비계층적(K-Means)
 - 계층적방법: 군집 수 지정X -> 단계적 군집결과 산출
 - 응집분석법(객체를 합침), 분할분석법(전체에서 분리)
 - 비 계층정방법: 군집 수 지정O -> 객체를 한 군집으로 배정
 - K-평균 군집화: K개 군집의 중심좌표를 업데이트
- 연관규칙 모델(Association Rule Model)
 - 데이터에 숨어있으면서, 동시에 발생하는 사건/항목 간 규칙을 수치화
 - ㅇ 연관규칙 분석 = 연관규칙 학습 = 연관성 분석 = 장바구니 분석
 - ㅇ 장바구니 분석: 상품 배열/카탈로그/교차판매 등에 적용
 - ㅇ 항목들 간의 (조건-결과) 식으로 표현되는 유용한 패턴을 발견

(3) 머신러닝 기반 분석 모형 선정

- 분석기법: 목적변수(반응변수) 존재 여부 등에 따라서 지도학습/비지도학습/강화학습/준지도학습
- 머신러닝 기반 분석 모형(지도학습/비지도학습)

지도학습	비지도학습
로지스틱 회귀	
인공신경망 분석	군집화
의사결정나무	차원축소 기법
서포트벡터머신(SVM)	연관관계 분석
랜덤 포레스트	자율학습 인공신경망(자기조직화지도)
감성분석	

- 지도학습(Supervised Learning)
 - 정답 레이블(Lable)이 포함된 데이터
 - ㅇ 목적
 - 설명변수와 목적변수 간 관계성 표현
 - 인식/분류/진단/예측 등의 문제해결
 - 랜덤 포레스트(Random Forest)
 - 의사결정나무의 분산이 크다는 단점 보안 -> 약한 학습기들을 선형 결합
 - 감성분석(Sentiment Analysis)
 - 어떤 주제에 대한 주관적인 인상/감정/태도/의견들을 텍스트로부터 추출
- 비지도학습(Unsupervised Learning)
 - ㅇ 정답 레이블이 없는 데이터
 - ㅇ 목적

- 이 예측보다, 현상 설명/특징 도출/패턴 도출 문제
- ㅇ 사전정보가 없는 상태에서, 유용한 정보와 패턴을 탐색적으로 발견하고자 함
- 자기 조직화 지도(SOM)
 - 비지도 학습기반 클러스터링 기법
 - 차원축소와 군집화 동시 수행 -> 고차원 데이터를 저차원으로 변환

(4) 변수에 따른 분석기법 선정

- 변수의 개수에 따른 분석기법
 - ㅇ 단일변수/이변수/다변수 분석
 - ㅇ 단일변수 분석: 변수 1개 -> 기술통계 확인
 - 연속형: 히스토그램, 박스플롯
 - 범주형: 막대그래프
 - ㅇ 다변수 분석: 변수 3개 이상의 관계 -> 시각화/분석
 - 범주형 1개 이상 포함: 변수를 범주별로 쪼갬
 - 연속형 3개 이상 포함: 연속형을 범주형으로 변환
 - 이 이변수 분석: 변수 2개 관계 -> 분석

	연속형 × 연속형	범주형 × 범주형	범주형 × 연속형
분석방법	상관 분석 (상관관계 여부)	카이제곱 분석 (독립성 여부)	2개: T-test 3개: ANOVA (집단별 평균차이)
그래프	산점도 (+추세선)	(100% 기준) 누적 막대그래프	누적 막대그래프 범주별 히스토그램

- 데이터 유형에 따른 분석기법
 - 독립변수 & 종속변수 주어진 경우: 주어진 독립변수에 대한 종속변수 값을 예측/ 분류하는 분석 모델 개발

	연속형 × 연속형	범주형 × 범주형	범주형 × 연속형
분석방법	상관 분석 (상관관계 여부)	카이제곱 분석 (독립성 여부)	2개: T-test 3개: ANOVA (집단별 평균차이)
그래프	산점도 (+추세선)	(100% 기준) 누적 막대그래프	누적 막대그래프 범주별 히스토그램

(5) 분석기법 선정시 고려사항

• 목적 / 데이터 해석가능 여부 / 단일 or 앙상블 선택

(6) 분석모형 활용사례

- 연관규칙 학습(장바구니 분석)
 - 콜라를 구매하는 소비자가 사이다를 더 많이 구매하는가?
 - 피자를 주문한 고객은 어떤 음료를 많이 주문하는가?
- 분류 분석
 - ㅇ 문서 분류 / 조직 그룹핑
 - 온라인 수강생들을 특성에 따라 분류
- 유전자 알고리즘: 점진적 진화 -> 최적화
 - ㅇ 응급 처치 프로세스를 어떻게 배치하는 것이 가장 효율적인가?
- 기계 학습: 알려진 특성을 훈련 / 학습 / 예측
 - 회원의 기존 시청기록을 바탕으로, 어떤 영상을 가장 보고싶어 할지 예측
- 회귀 분석: 변수간 인과관계
 - 차주의 나이가 차량 유형에 어떤 영향을 미치는가?
- 감성 분석: 특정 주제에 대해 말한/서술한 사람의 감정을 분석
 - 새로운 제품/서비스에 대한 소비자들의 평가는 어떠한가?
- 소셜 네트워크 분석(SNA)
 - 특정인과 다른사람의 관계가 몇 촌인가?
 - ㅇ 영향력 있는 사람은 누구인가?
 - 고객들 간 관계망의 구성은 어떠한가?

2) 분석 모형 정의

(1) 분석 모형 정의

- 분석 모형을 선정하고 모형에 적합한 변수를 선택하여 모형의 사양(Specification)을 작성
- 파라미터(Parameter): 모델 내부 / 학습된 값
- 하이퍼 파라미터(Hyper-parameter): 모델 외부 / 결정하는 값

파라미터	하이퍼 파라미터	
- 모델 내부에서 확인 가능한 변수 - 모델이 예측 수행 시 요구하는 값들 - 측정되거나, 데이터로부터 학습함 - 수작업으로 측정되지 않음 - 파라미터가 모델의 성능을 결정한다!	- 모델 외적인 요소 - 사용자/연구자가 직접 설정/결정하는 값 - 파라미터 값 측정을 위해, 알고리즘 구현과정에서 사용 - 경험에 의해 결정 가능한 값 - 모델의 성능 등을 위해 조절하는 값	
인공신경망 - 가중치 SVM - Support Vector 회귀분석 - 결정계수	신경망 학습 - 학습률 의사결정나무 - 나무의 깊이 KNN - K의 개수	

(2) 분석 모형 정의 고려사항

- 과소적합 / 과대적합 / 모형선택오류 / 변수누락 / 부적합변수생성 / 동시편향
- 모델 너무 간단 -> 과소적합(Under-fitting): 학습이 부족하여 실제 성능이 떨어짐
- 모델 너무 복잡 -> 과대적합(Over-fitting): 지나친 차수 증가로 실제 데이터에서 성능 떨어짐
- 부적합 모형 현상
 - ㅇ 모형 선택 오류: 적합하지 않은 모형
 - 변수 누락: 모델 생성 시 관계있는 변수를 누락
 - 부적합 변수 생성: 관련 없는 변수를 포함 -> 편향X, 과대적합O
 - ㅇ 동시 편향: 종속변수가 연립방정식의 일부인 경우

(3) 분석 모형 정의 사례

 X = 독립변수

 Y = S속변수

 b₀, b₁는 파라미터, 계수(Coefficient)

 - b₀ = 절편(Intercept)/ 상수값

 - b₁ = X의 기울기(Slope)

 e = 오차항(Error Term)/ 실제 관측한 Y값과 예측한 Y값의 차이

 오차를 최소화하는 계수를 이용하여 모델을 피팅한다~

 - lm(): R에서 선형회귀모형을 적용할 때 사용하는 함수

3) 분석 모형 구축 절차

• 분석 모형 구축 절차: 요건 정의 -> 모델링 -> 검증 및 테스트 -> 적용

(1) 요건 정의

- 분석과제 정의 단계에서 도출된 내용을 구체화
- 분석요건 도출 / 수행방안 설계 / 요건 확정
- 분석요건 도출
 - ㅇ 상세하게 도출 / 분석 / 명세화 -> 적합성 검토
 - 업무 배경 / 주요이슈 / 기대효과 / 제약사항을 사전에 정의
- 수행방안 설계
 - 간단한 탐색적 분석 -> 가설 수립 -> 분석 가능성 검토/우선순위 부여
 - 설계 산출물: 분석계획서, WBS(Work Breakdown Structure)
- 요건 확정: 이해관계자와 기획안 공유/확정

(2) 모델링

- 상세 분석기법을 적용하여 모델 개발
- 모델링 마트 설계 및 구축/탐색적 분석 및 유의변수 도출/모델링/성능평가
- 모델링 마트 설계 및 구축
 - ㅇ 분석대상 데이터 구조화 및 적재 -> 모델 마트 구축
 - ㅇ 분석대상 데이터는 전처리를 통해 변수가 식별된 상태
- 탐색적 분석 및 유의변수 도출
 - ㅇ 변수값 분포와 구간 차이 파악 -> 유의미한 변수 파악
 - ㅇ 정보 부족하면 신속하게 추가변수 개발

• 모델링

- o 적합한 기법 선택 or 여러 기법 결합하여 적용
- 통계적 모델링이 아님 -> 지나친 통계적 가설과 유의성 적용X
- 경우에 따라서 시뮬레이션 + 최적화기법 결합
 - 시뮬레이션: 입력값이 확률분포일 경우 -> 처리량과 대기시간 등의 지표로 평가
 - 최적화: 입력값이 상숫값일 경우 -> 목적 함수 값으로 평가
- 모델링 성능평가
 - 데이터마이닝에서 성능 판단은 정확도/정밀도/재현율/향상도
 - 모형별 학습용 데이터 집합 구축 -> 분석 모형 조정 -> 모형에 검증용 데이터 적용 -> 결과 비교분 석(성능평가)
 - 정확도(Accuracy): 실제 분류 범주를 정확하게 예측한 비율(True를 True라고 예측 + False를 False라고 예측)
 - 정밀도(Precision): True로 예측한 것들 중 실제 True인 비율
 - 재현율(Recall): 실제 True인 것들 중 True로 예측한 비율
 - 향상도(Lift): (항목집합 X가 주어지지 않았을 때의 항목집합 Y의 확률) 대비 (항목집합 X가 주어졌을 때 항목집합 Y의 확률 증가 비율)

(3) 검증 및 테스트

- 데이터 분리 -> 자체 검증 -> 실제 테스트 결과 도출
- 운영 상황에서 실제 테스트 / 비즈니스 영향도 평가
- 분석용 데이터를 학습용 + 테스트용으로 분리 -> 분석용 데이터로 자체 검증 -> 신규 데이터 적용하여 실제 테스트 결과 도출
- 모든 모델링에서 반드시 검증 및 테스트를 거침
- 운영상황에서 실제 테스트: 업무 프로세스에 가상 적용 -> 테스트 결과 모형에 반영 -> 반복
- 비즈니스 영향도 평가: 투자 대비 효과 정량화 기법으로 비즈니스 영향도를 평가함
 - 투자 비용 대비 재무 효과(ROI, Return On Investment)가 200~300% 이상임을 증명
 - 모델링 성과: 재현율 증가 or 향상도 개선
 - 투자 대비 효과 정량화 기법: 총소유비용(TCO)/투자대비효과(ROI)/순현재가치(NPV)/내부수익률 (IRR)/투자회수기간(PP) 등

(4) 적용

- 분석결과를 업무 프로세스에 완전히 통합 및 운영 (일, 주, 월 단위)
- 운영 시스템에 적용 및 자동화/ 주기적 리모델링
- 운영 시스템에 적용 및 자동화
 - 실제 운영환경에 적용 -> 자동 모니터링 및 조기경보 시스템
 - 모델 성과 기록: 실시간 or 배치 스케줄러 실행
 - ㅇ 자동으로 모니터링하고, 이상 시에만 확인하는 프로세스 수립

- o (ex) R Studio Shiny
- 주기적 리모델링: 분기/반기/연 단위로 정기적 재평가 -> 모형 재조정 (재학습 or 변수추가)

1.2 분석 환경 구축

KeyWord R, Python, 학습용데이터, 검증용데이터, 평가용 데이터

1) 분석 도구 선정

(1) R 통계프로그램

- S 언어 기반의 오픈소스 프로그래밍 언어
- 기능: 사용자 제작 패키지 직접 추가 가능 (15,000여개) / 강력한 시각화 기능
- 도구: CRAN에서 패키지와 테스트데이터 다운로드 가능 / R Studio
- 환경: 다양한 OS 지원 / 인터프리터 언어 / 처리 속도 빠른 편

(2) Python

- C언어 기반의 오픈소스 프로그래밍 언어
- 문법: 들여쓰기로 블록 구분
- 기능: 시각화 라이브러리 다양함 / R에 비하면 적은 편
- 도구: 대표 IDE 없음
- 환경: 다양한 OS 지원 / PYPI로 사용자 제작 패키지 설치 가능

2) 데이터 분할

(1) 데이터 분할

• 학습용 / 검증용 / 평가용 데이터로 분할

- 데이터 분할 이유: 과대적합을 예방하여, 2종 오류(잘못된 귀무가설 채택)를 방지
- 학습용 데이터(Training Data): 알고리즘 학습을 위한 데이터
- 검증용 데이터(Validation Data): 학습된 모델의 정확도를 계산하기 위한 데이터
- 평가용 데이터(Test Data): 학습된 모델의 성능을 평가하기 위한 실제 데이터

ㅇ 한 번도 사용하지 않은 데이터로 모형 평가 -> 이 결과가 모형 평가지표

• 데이터 분할

- 학습용 + 검증용: 학습과정에서 사용 -> 60~80%
- 평가용: 평가과정에서만 사용 -> 20~40%
- 검증용 데이터: 학습과정 중간에 검증 실시 / 모형 튜닝에 사용
 - 데이터가 충분하지 않다면 검증용은 생략 (학습용+평가용)