Ungleichungen von Kraft & McMillan Proseminar Informationstheorie

Phil Pützstück

November 7, 2018

Motivation

- Gesehen, dass eindeutig bzw. sofort dekodierbare Codes sehr nützlich sind.
- Wann bzw. unter welchen Bedingungen existieren diese?
- ▶ Insbesondere: Wortlängen und Größe des Code-Alphabets
- ▶ Vorgestellte Ungleichungen setzen diese Aspekte in Relation

Überblick

- ► Zusammenhang Codes und Bäume
- Ungleichung von Kraft
- Ungleichung von McMillan
- ► Intepretationen / Ausblick

Code als Baum: \mathcal{T}_r^h

Höhe $h \in \mathbb{N}$, Verzweigungsgrad $r \in \mathbb{N}$.

Code als Baum: \mathcal{T}_r^h

Höhe $h \in \mathbb{N}$, Verzweigungsgrad $r \in \mathbb{N}$.

▶ Für $v_w \in V(\mathcal{T}_r^h)$ gilt $height(v_w) = |w|$.

Code als Baum: \mathcal{T}_r^h

Höhe $h \in \mathbb{N}$, Verzweigungsgrad $r \in \mathbb{N}$.

- ▶ Für $v_w \in V(\mathcal{T}_r^h)$ gilt $height(v_w) = |w|$.
- ▶ Für $v_w, v_{w'} \in V(\mathcal{T}_r^h)$ gilt $v_w \leq v_{w'} \iff w \sqsubseteq w'$.

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1$$

Seien $q,r\in\mathbb{N},\ell\in\mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code $\mathcal C$ mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1$$

Annahmen:

Anzahl Code-Wörter q > 1

Seien $q,r\in\mathbb{N},\ell\in\mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code $\mathcal C$ mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1$$

Annahmen:

- ► Anzahl Code-Wörter *q* > 1
- ▶ Wortlängen $0 < \ell_1, \le \ell_2 \le \cdots \le \ell_q$ aufsteigend sortiert

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1$$

Annahmen:

- ► Anzahl Code-Wörter *q* > 1
- ▶ Wortlängen $0 < \ell_1, \le \ell_2 \le \cdots \le \ell_q$ aufsteigend sortiert
- ▶ Code-Alphabet von C ist [0, r-1]

Richtung " $\sum_{k=1}^q \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode.

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel $q=3, r=2, \ell=(1,2,3)$. Betrachte \mathcal{T}_2^3 :

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: $\mathcal C$ sofort dekodierbar $\iff \mathcal C$ Präfixcode. Am Beispiel $q=3, r=2, \ell=(1,2,3)$. Betrachte $\mathcal T_2^3$:

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel $q=3, r=2, \ell=(1,2,3)$. Betrachte \mathcal{T}_2^3 : $w_1=0$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel $q=3, r=2, \ell=(1,2,3)$. Betrachte \mathcal{T}_2^3 : $w_1=0$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel $q=3, r=2, \ell=(1,2,3)$. Betrachte $\mathcal{T}_2^3 \setminus v_0$: $w_1=0, w_2=11$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel $q=3, r=2, \ell=(1,2,3)$. Betrachte $\mathcal{T}_2^3 \setminus v_0$: $w_1=0, w_2=11$,

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: \mathcal{C} sofort dekodierbar $\iff \mathcal{C}$ Präfixcode. Am Beispiel $q=3, r=2, \ell=(1,2,3)$. Betrachte $(\mathcal{T}_2^3 \setminus v_0) \setminus v_{11}$: $w_1=0, \ w_2=11, \ w_3=101$

Richtung " $\sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \leq 1 \implies \mathcal{C}$ existiert".

Nach [JJ00]: $\mathcal C$ sofort dekodierbar $\iff \mathcal C$ Präfixcode. Am Beispiel $q=3, r=2, \ell=(1,2,3).$ $w_1=0, w_2=11, w_3=101$

- q = 3 Wörter über Alphabet $[0, r 1] = [0, 1] = \{0, 1\}.$
- ▶ Wortlängen $|w_1| = \ell_1, |w_2| = \ell_2, |w_3| = \ell_3$ eingehalten.
- Präfixcode $C = \{w_1, w_2, w_3\} = \{0, 11, 101\}$ konstruiert.

Sei also i=1. Wähle Knoten v_w der Höhe $\ell_1>0$ beliebig und setze $w_i=w_1:=w$.

 \mathcal{T}_r^h :

Sei also i=1. Wähle Knoten v_w der Höhe $\ell_1>0$ beliebig und setze $w_i=w_1:=w$.

Setze $h := \ell_q$ (max. Wortlänge) und $\mathcal{T}_0 := \mathcal{T}_r^h$, $\mathcal{T}_1 := \mathcal{T}_r^h \setminus v_{w_1}$.

 \mathcal{T}_r^h :

Sei also i=1. Wähle Knoten v_w der Höhe $\ell_1>0$ beliebig und setze $w_i=w_1:=w$.

Setze $h := \ell_q$ (max. Wortlänge) und $\mathcal{T}_0 := \mathcal{T}_r^h$, $\mathcal{T}_1 := \mathcal{T}_r^h \setminus v_{w_1}$.

 \mathcal{T}_1 noch $r^h - r^{h-\ell_1}$ Blätter.

Sei also i=1. Wähle Knoten v_w der Höhe $\ell_1>0$ beliebig und setze $w_i=w_1:=w$.

Setze $h := \ell_q$ (max. Wortlänge) und $\mathcal{T}_0 := \mathcal{T}_r^h$, $\mathcal{T}_1 := \mathcal{T}_r^h \setminus v_{w_1}$.

 \mathcal{T}_1 noch $r^h - r^{h-\ell_1}$ Blätter. Weiter gilt:

$$r^h - r^{h-\ell_1} = r^h \left(1 - \sum_{k=1}^{1} \frac{1}{r^{\ell_k}} \right)$$

Sei also i=1. Wähle Knoten v_w der Höhe $\ell_1>0$ beliebig und setze $w_i=w_1:=w$.

Setze $h := \ell_q$ (max. Wortlänge) und $\mathcal{T}_0 := \mathcal{T}_r^h$, $\mathcal{T}_1 := \mathcal{T}_r^h \setminus v_{w_1}$.

 \mathcal{T}_1 noch $r^h - r^{h-\ell_1}$ Blätter. Weiter gilt:

$$r^h - r^{h-\ell_1} = r^h \left(1 - \sum_{k=1}^1 \frac{1}{r^{\ell_k}} \right)$$

$$> r^h \left(1 - \sum_{k=1}^q \frac{1}{r^{\ell_k}} \right)$$

Sei also i=1. Wähle Knoten v_w der Höhe $\ell_1>0$ beliebig und setze $w_i=w_1:=w$.

Setze $h := \ell_q$ (max. Wortlänge) und $\mathcal{T}_0 := \mathcal{T}_r^h$, $\mathcal{T}_1 := \mathcal{T}_r^h \setminus v_{w_1}$.

 \mathcal{T}_1 noch $r^h - r^{h-\ell_1}$ Blätter. Weiter gilt:

$$r^{h} - r^{h-\ell_1} = r^{h} \left(1 - \sum_{k=1}^{1} \frac{1}{r^{\ell_k}} \right)$$

$$> r^h \left(1 - \sum_{k=1}^q \frac{1}{r^{\ell_k}}\right) \ge 0$$

Nun $i \in [1, q-1]$ sodass $\{w_j \mid j \in [1, i]\}$ ein Präfix-Code mit $|w_j| = \ell_j$ ist, und \mathcal{T}_i noch mindestens 1 Blatt v_x hat.

Nun $i \in [1, q-1]$ sodass $\{w_j \mid j \in [1, i]\}$ ein Präfix-Code mit $|w_j| = \ell_j$ ist, und \mathcal{T}_i noch mindestens 1 Blatt v_x hat.

- $ightharpoonup \mathcal{T}_i$ zusammenhängend
- $ightharpoonup \exists v_w \in V(\mathcal{T}_i) \text{ mit } height(v_w) = \ell_{i+1} \leq h$
- $\blacktriangleright \text{ Setze } w_{i+1} := w.$

Sei $j \in [1,i]$. Wir haben bereits alle Knoten $v_w \ge v_{w_j}$ im Schritt $\mathcal{T}_j := \mathcal{T}_{j-1} \setminus v_{w_j}$ gelöscht. Da wir $v_{w_{i+1}}$ aus \mathcal{T}_i gewählt haben, kann also **nicht** $v_{w_i} \le v_{w_{i+1}}$ gelten.

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. \mathcal{C} bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(\ell_j \leq \ell_{i+1}, \text{ also } w_{i+1} \not\sqsubseteq w_j)$.

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1,i]$. $\mathcal C$ bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(\ell_j \leq \ell_{i+1}$, also $w_{i+1} \not\sqsubseteq w_j)$.

Wenn i + 1 = q, so haben wir q Wörter gewählt und sind fertig.

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. $\mathcal C$ bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(\ell_j \leq \ell_{i+1}$, also $w_{i+1} \not\sqsubseteq w_j)$.

Wenn i + 1 = q, so haben wir q Wörter gewählt und sind fertig.

Falls hingegen i + 1 < q, so definiere $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$. Dann hat \mathcal{T}_{i+1} immernoch mindestens 1 Blatt, denn:

$$r^h - \sum_{k=1}^{l+1} r^{h-\ell_k}$$

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. $\mathcal C$ bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(\ell_j \leq \ell_{i+1}$, also $w_{i+1} \not\sqsubseteq w_j)$.

Wenn i + 1 = q, so haben wir q Wörter gewählt und sind fertig.

Falls hingegen i + 1 < q, so definiere $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$. Dann hat \mathcal{T}_{i+1} immernoch mindestens 1 Blatt, denn:

$$r^h - \sum_{k=1}^{l+1} r^{h-\ell_k} > r^h - \sum_{k=1}^{q} r^{h-\ell_k}$$

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. $\mathcal C$ bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(\ell_j \leq \ell_{i+1}$, also $w_{i+1} \not\sqsubseteq w_j)$.

Wenn i + 1 = q, so haben wir q Wörter gewählt und sind fertig.

Falls hingegen i + 1 < q, so definiere $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$. Dann hat \mathcal{T}_{i+1} immernoch mindestens 1 Blatt, denn:

$$r^{h} - \sum_{k=1}^{r+1} r^{h-\ell_k} > r^{h} - \sum_{k=1}^{q} r^{h-\ell_k} = r^{h} \left(1 - \sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \right)$$

Folglich haben wir auch $w_j \not\sqsubseteq w_{i+1}$ für $j \in [1, i]$. $\mathcal C$ bleibt also durch Wahl von w_{i+1} ein Präfix-Code $(\ell_j \leq \ell_{i+1}$, also $w_{i+1} \not\sqsubseteq w_j)$.

Wenn i + 1 = q, so haben wir q Wörter gewählt und sind fertig.

Falls hingegen i+1 < q, so definiere $\mathcal{T}_{i+1} := \mathcal{T}_i \setminus v_{w_{i+1}}$. Dann hat \mathcal{T}_{i+1} immernoch mindestens 1 Blatt, denn:

$$r^h - \sum_{k=1}^{i+1} r^{h-\ell_k} > r^h - \sum_{k=1}^{q} r^{h-\ell_k} = r^h \left(1 - \sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \right) \ge 0$$

Blätter.

Somit Präfixcode $\mathcal C$ nach dieser Methode konstruierbar. Dieser ist nach [JJ00] auch sofort dekodierbar.

Zeige: $\mathcal C$ sofort dekodierbar \Longrightarrow Ungleichung gilt für Parameter

Zeige: $\mathcal C$ sofort dekodierbar \Longrightarrow Ungleichung gilt für Parameter

$$L_i := \{ v \in V(\mathcal{T}_r^h) \mid v_{w_i} \le v \land height(v) = h \}$$

▶ Für
$$i,j \in [1,q] : i \neq j \implies L_i \cap L_j = \emptyset$$

$$r^h \ge \left| \bigcup_{i \in [1,q]} L \right|$$

$$r^h \ge \left| \bigcup_{i \in [1,q]} L_i \right| = \sum_{i=1}^q |L_i|$$

$$|r^h| \geq \left| \bigcup_{i \in [1,q]} L_i \right| = \sum_{i=1}^q |L_i| = \sum_{i=1}^q r^{h-\ell_i} = r^h \sum_{i=1}^q \frac{1}{r^{\ell_i}}$$

$$|r^h| \ge \left| \bigcup_{i \in [1, q]} L_i \right| = \sum_{i=1}^q |L_i| = \sum_{i=1}^q r^{h-\ell_i} = r^h \sum_{i=1}^q \frac{1}{r^{\ell_i}} \iff \sum_{i=1}^q \frac{1}{r^{\ell_i}} \le 1$$

Ungleichung von Kraft

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1$$

- Beweis konstruktiv
- Untere Schranke für Wortlänge, Alphabetgröße

Ungleichung von Kraft

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer sofort dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$\sum_{k=1}^{q} \frac{1}{r^{l_k}} \le 1$$

- Beweis konstruktiv
- Untere Schranke für Wortlänge, Alphabetgröße

- ▶ Bekannt: sofort dekodierbar ⇒ eindeutig dekodierbar
- Schwächere Kriterien?

Ungleichung von McMillan

Seien $q, r \in \mathbb{N}, \ell \in \mathbb{N}^q$. Dann existiert ein r-ärer eindeutig dekodierbarer Code \mathcal{C} mit Wortlängen ℓ genau dann, wenn

$$K := \sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1 \tag{1}$$

Ungleichung von McMillan

Seien $q,r\in\mathbb{N},\ell\in\mathbb{N}^q$. Dann existiert ein r-ärer eindeutig dekodierbarer Code $\mathcal C$ mit Wortlängen ℓ genau dann, wenn

$$K := \sum_{k=1}^{q} \frac{1}{r^{\ell_k}} \le 1 \tag{1}$$

Richtung " $(1) \Longrightarrow \mathcal{C}$ existiert" durch Kraft.

Ungleichung von McMillan: Beweisidee

- ightharpoonup Zu zeigen: $K = \sum_{k=1}^q \frac{1}{r^{\ell_k}} \le 1$
- ▶ Betrachte K^n abhängig von Wortlängen für beliebiges $n \in \mathbb{N}$.
- \triangleright Finde aus Form von K^n konstante obere Schranke
- ▶ Dann muss $K \le 1$, da sonst K^n für geeignetes n größer als jede Konstante

Zu zeigen: $K \leq 1$, wobei $K = \sum_{k=1}^q \frac{1}{r^{\ell_k}}$.

Zu zeigen:
$$K \leq 1$$
, wobei $K = \sum_{k=1}^q \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^n = \left(\sum_{k=1}^q \frac{1}{r^{\ell_k}}\right)^n$$

Zu zeigen: $K \le 1$, wobei $K = \sum_{i=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^n = \left(\sum_{k=1}^q \frac{1}{r^{\ell_k}}\right)^n = \sum_{i \in [1,q]^n} \prod_{k=1}^n \frac{1}{r^{\ell_{i_k}}}$$

Zu zeigen: $K \leq 1$, wobei $K = \sum_{i=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^{n} = \left(\sum_{k=1}^{q} \frac{1}{r^{\ell_{k}}}\right)^{n} = \sum_{i \in [1, q]^{n}} \prod_{k=1}^{n} \frac{1}{r^{\ell_{i_{k}}}} = \sum_{i \in [1, q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}}$$

Zu zeigen: $K \leq 1$, wobei $K = \sum_{r=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^{n} = \left(\sum_{k=1}^{q} \frac{1}{r^{\ell_{k}}}\right)^{n} = \sum_{i \in [1,q]^{n}} \prod_{k=1}^{n} \frac{1}{r^{\ell_{i_{k}}}} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}}$$

Kürzeste Wortlänge $m:=\min_{k\in[1,q]}\ell_k$, längste $M:=\max_{k\in[1,q]}\ell_k$.

Zu zeigen: $K \leq 1$, wobei $K = \sum_{i=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^{n} = \left(\sum_{k=1}^{q} \frac{1}{r^{\ell_{k}}}\right)^{n} = \sum_{i \in [1,q]^{n}} \prod_{k=1}^{n} \frac{1}{r^{\ell_{i_{k}}}} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}}$$

Kürzeste Wortlänge $m:=\min_{k\in[1,q]}\ell_k$, längste $M:=\max_{k\in[1,q]}\ell_k$.

Dann für jedes $i \in [1, q]^n$:

$$mn \leq \sum_{i=1}^{n} \ell_{i_k} \leq Mn$$

Zu zeigen: $K \le 1$, wobei $K = \sum_{r=1}^{q} \frac{1}{r^{\ell_k}}$.

Für $n \in \mathbb{N}$ ist:

$$K^{n} = \left(\sum_{k=1}^{q} \frac{1}{r^{\ell_{k}}}\right)^{n} = \sum_{i \in [1,q]^{n}} \prod_{k=1}^{n} \frac{1}{r^{\ell_{i_{k}}}} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}}$$

Kürzeste Wortlänge $m:=\min_{k\in[1,q]}\ell_k$, längste $M:=\max_{k\in[1,q]}\ell_k$.

Dann für jedes $i \in [1, q]^n$:

$$mn \leq \sum_{i=1}^{n} \ell_{i_k} \leq Mn$$

Wollen schreiben:

$$K^n = \sum_{i=mn}^{Mn} \mathbf{N}_j \cdot r^{-j}$$

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=mn}^{Nm} N_{j} \cdot r^{-j}$$

Ziel: Finde Abschätzung für Koeffizient $N_i \in \mathbb{N}_0$, sodass

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=mn}^{Nm} N_{j} \cdot r^{-j}$$

 $ightharpoonup N_j$ Anzahl Möglichkeiten: Summiere n Wortlängen zu j.

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=mn}^{Mn} N_{j} \cdot r^{-j}$$

- N_j Anzahl Möglichkeiten: Summiere n Wortlängen zu j.
- ▶ Äquivalent: Bilde Sequenz der Länge *j* aus *n* Codewörtern

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=mn}^{Mn} N_{j} \cdot r^{-j}$$

- N_j Anzahl Möglichkeiten: Summiere n Wortlängen zu j.
- ▶ Äquivalent: Bilde Sequenz der Länge j aus n Codewörtern
- $m{\mathcal{C}}$ eindeutig dekodierbar \Longrightarrow Jede Sequenz aus eindeutiger Auswahl $i \in [1,q]^n$

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=mn}^{Mn} N_{j} \cdot r^{-j}$$

- N_i Anzahl Möglichkeiten: Summiere n Wortlängen zu j.
- ▶ Äquivalent: Bilde Sequenz der Länge j aus n Codewörtern
- $m \mathcal C$ eindeutig dekodierbar \Longrightarrow Jede Sequenz aus eindeutiger Auswahl $i\in [1,q]^n$
- Maximal r^j Codewörter der Länge $j \implies N_j \le r^j$

Mit $N_i \leq r^j$ folgt:

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=nm}^{nM} N_{j} r^{-j} = \sum_{j=nm}^{nM} \frac{N_{j}}{r^{j}}$$

Mit $N_i \leq r^j$ folgt:

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=nm}^{nM} N_{j} r^{-j} = \sum_{j=nm}^{nM} \frac{N_{j}}{r^{j}}$$

$$\leq \sum^{mm} 1 = (M-m)n + 1$$

Mit $N_i \leq r^j$ folgt:

$$K^{n} = \sum_{i \in [1,q]^{n}} r^{-\sum_{k=1}^{n} \ell_{i_{k}}} = \sum_{j=nm}^{nM} N_{j} r^{-j} = \sum_{j=nm}^{nM} \frac{N_{j}}{r^{j}}$$

$$\leq \sum_{j=nm}^{mm} 1 = (M-m)n+1$$

$$\implies \frac{K^n}{n} \leq (M-m)+1$$

$$\frac{K^n}{n} \leq (M-m)+1$$

- ▶ Code C gegeben; q = |C|, Alphabetgröße r, Wortlängen ℓ fix.
- ▶ Damit auch m, M, K fix.

$$\frac{K^n}{n} \leq (M-m)+1$$

- ▶ Code C gegeben; q = |C|, Alphabetgröße r, Wortlängen ℓ fix.
- ▶ Damit auch *m*, *M*, *K* fix.
- ▶ $n \in \mathbb{N}$ beliebig; Ungleichung muss für alle $n \in \mathbb{N}$ gelten.

$$\frac{K^n}{n} \leq (M-m)+1$$

- ▶ Code C gegeben; q = |C|, Alphabetgröße r, Wortlängen ℓ fix.
- ▶ Damit auch m, M, K fix.
- ▶ $n \in \mathbb{N}$ beliebig; Ungleichung muss für alle $n \in \mathbb{N}$ gelten.
- Nach Analysis bekannt: nur möglich für $K \leq 1$.

$$\implies \sum_{i=1}^q \frac{1}{r^{\ell_i}} = K \le 1$$