LAB Experiment 1 FILTERS

S.V.Harshith EE19BTECH11018

Sebtember 17,2020

1 Aim

Design the lowpass ,highpass ,bandpass filters with the given cutoff frequencies $f_{cH} = 30Hz$ and $f_{cL} = 25,000Hz$, using resistors and capacitors and examine them using NGspice

2 Procedure

2.1 Low pass filter

- \rightarrow Given cutoff frequency , ${\rm f}_{cH}=30Hz$
- \rightarrow Choosing the resistance as $5k\Omega$ and finding the capacitance by the formula

$$f_{cH} = \frac{1}{2\pi RC} = 30Hz$$

- \rightarrow We get the value of C as 1061nF
- \rightarrow Write a NG spice script using these values for the low pass filter and plot the output gain in dB

2.2 High pass filter

- \rightarrow Given cutoff frequency , $\mathbf{f}_{cL}=25,000Hz$
- \rightarrow Choosing the resistance as $5k\Omega$ and finding the capacitance by the formula

$$f_{cL} = \frac{1}{2\pi RC} = 25,000Hz$$

- \rightarrow We get the value of C as 1.273nF
- \rightarrow Write a NG spice script using these values for the high pass filter and plot the output gain in dB

2.3 band pass filter

- \rightarrow Given cutoff frequencies , $f_{cL}=25{,}000{\rm Hz}$ and $f_{cH}=30{\rm Hz}$
- \rightarrow Choosing the resistances as $R_1 = R_2 = 1k\Omega$ and finding the capacitances by the formulae

$$f_{cL} = \frac{1}{2\pi R_1 C_1} = 25,000 Hz$$
 and $f_{cH} = \frac{1}{2\pi R_2 C_2} = 30 Hz$

- \rightarrow We get the values as $C_1=6.366 \mathrm{nF}$ and $C_2=5305 \mathrm{nF}$
- \rightarrow Write a NG spice script using these values for the band pass filter and plot the output gain in dB

3 Results

3.1 Low pass Filter

We can see in the below figure that all the frequencies greater than $f_{cH}=30Hz$ are not allowed to pass

3.2 High pass Filter

We can see in the below figure that all the frequencies lower than $f_{cL}=25,000Hz$ are not allowed to pass

3.3 Band pass Filter

Theoretically, a band pass filter only allows the frequencies between the given cutoff frquencies to pass.

But according to the given data, $f_{cH} = 30Hz$ and $f_{cL} = 25,000Hz$, since $f_{cH} < f_{cL}$ the gain is not zero but close to -64dB.

So this is not a band pass filter

4 Understanding

We know that the Voltage gain in dB is given by the formula

$$Gain = 20log\left(\frac{V_o}{V_{in}}\right)$$

For low pass filter, all the frequencies below the cutoff frequency have $V_o = V_{in}$, Hence the gain is zero.

As the frequency increases, the V_o tends to zero and the gain decreases to $-\infty$ and they are not allowed to pass

We can also see that at cutoff frequency the gain is -3dB.

Similarly we can analyze for the other filters.

5 Conclusion

- Low pass filter only allows the frequencies below the cutoff frequency
- High pass filter only allows the frequencies above the cutoff frequency
- \bullet Band pass filter only allows the frequencies between the cutoff frequencies

Since these are not ideal filters the frequencies are gradually not allowed, so the plot is not a perfect rectangle.