DOMINIO

Il *dominio* di una funzione può anche essere chiamato *CAMPO di ESISTENZA* (così da essere indicato con la sigla C.E. a cui siamo abituati dagli anni precedenti).

È fondamentale studiare il dominio di una funzione per sapere per quali valori essa esiste (all'infuori del campo di esistenza la funzione perde infatti di significato).

DEFINIZIONE: Il dominio naturale (o campo di esistenza) di una funzione y = f(x) è l'insieme più ampio dei valori reali che si possono assegnare alla variabile indipendente x affinché esista il corrispondente valore reale y. Si indica con la lettera maiuscola \mathbf{D} (oppure con la sigla C.E.).

Spesso una funzione viene assegnata senza indicare il dominio e spetta a noi determinarlo. Vediamo quindi ora i domini delle principali funzioni di base che abbiamo incontrato fino ad ora.

DOMINI DELLE PRINCIPALI FUNZIONI DI BASE		
	ESPRESSIONE ANALITICA	DOMINIO
FUNZIONI ALGEBRICHE	FUNZIONI POLINOMIALI	
	$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$	$D\colon \mathbb{R}$
	FUNZIONI RAZIONALI FRATTE	
	$y = \frac{A(x)}{B(x)}$ $con \ A(x) \ e \ B(x) \ polinomi$	$D:B(x)\neq 0$
	FUNZIONI IRRAZIONALI	
	$y = \sqrt[n]{A(x)}$ $con A(x) polinomio$	$Se \ n \ pari \implies D: A(x) \ge 0$
		Se n dispari $\Rightarrow D: \mathbb{R}$
FUNZIONI TRASCENDENTI	FUNZIONI ESPONENZIALI	
	$y = a^{A(x)} a > 0, a \neq 1$ $con A(x) \ polinomio$	$D\colon \mathbb{R}$
	FUNZIONI LOGARITMICHE	
	$y = \log_a A(x) \ a > 0, a \neq 1$ $con \ A(x) \ polinomio$	D:A(x)>0
	FUNZIONI GONIOMETRICHE	
	$y = \sin x$	$D\colon \mathbb{R}$
	$y = \cos x$	<i>D</i> : ℝ
	$y = \tan x$	$D: \mathbb{R} - \left\{\frac{\pi}{2} + k\pi\right\}$
	$y = \cot x$	$D: \mathbb{R} - \{k\pi\}$