

ANALYSIS CHAPTER 3: SEQUENCES & SERIES

Learning Objectives:

By the end of this chapter, students should be able to:

- understand that an infinite sequence and series may converge or diverge, and find:
 - the limit of the sequence,
 - the sum to infinity when the series is convergent.
- Prove/explain properties of sequences and series involving:
 - convergence and divergence,
 - recurrence formula.

§1 Recap

A <u>sequence</u> is a set of numbers $u_1, u_2, u_3, ..., u_n, ...$ (in short, we may denote them using a capital letter like U, or $\{u_n\}_{n\in\mathbb{N}}$, or simply $\{u_n\}$) arranged in some definite order.

A sequence can also be called a *progression*. A sequence is **finite** if it terminates; otherwise it is an **infinite sequence**.

A series is formed when the terms of a sequence are added,

e.g.
$$u_1 + u_2 + ... + u_n = \sum_{i=1}^n u_i$$
 for a finite series, and $\sum_{i=1}^\infty u_i$ for an infinite series.

An arithmetic progression (AP) is a sequence in which each term differs from the preceding term by a constant called the **common difference**.

In general, the first term of an AP is denoted by a and the common difference by d.

A **geometric progression** (GP) is a sequence in which each term other than the first is obtained from the preceding one by multiplying by a non-zero constant, called the **common ratio**, r.

Example 1

The sum of the first n terms $u_1, u_2, u_3, ..., u_n$ of a sequence U is denoted by S_n .

- (i) It is given that $S_n kS_{n-1} = c$, for all values of n greater than or equal to 1, where k and c are constants and S_0 is defined to be zero. Write down the corresponding equation with n replaced by n-1, and hence show that U is a geometric progression with common ratio k.
- (ii) It is given instead that $\frac{S_n}{n} \frac{S_{n-1}}{n-1} = \frac{d}{2}$, for all values of n greater than 1, where d is a constant. Show that U is an arithmetic progression with common difference d.

[Solution]

(i)
$$S_{n} - kS_{n-1} = c$$

$$S_{n-1} - kS_{n-2} = c$$

$$S_{n} - kS_{n-1} = S_{n-1} - kS_{n-2}$$

$$S_{n} - S_{n-1} = kS_{n-1} - kS_{n-2} = k \left(S_{n-1} - S_{n-2} \right)$$

$$u_{n} = ku_{n-1}$$

$$\frac{u_{n}}{u_{n-1}} = k$$

Thus U is a geometric progression with common ratio k.

(ii)
$$\frac{S_n}{n} - \frac{S_{n-1}}{n-1} = \frac{d}{2}$$

$$(n-1)S_n - nS_{n-1} = \frac{d}{2}(n)(n-1)$$

$$nu_n - S_n = \frac{d}{2}(n)(n-1)$$

$$u_n = \frac{S_n}{n} + \frac{d}{2}(n-1)$$

$$u_n - u_{n-1} = \frac{S_n}{n} + \frac{d}{2}(n-1) - \frac{S_{n-1}}{n-1} + \frac{d}{2}(n-2)$$

$$= \frac{S_n}{n} - \frac{S_{n-1}}{n-1} + \frac{d}{2}$$

$$= \frac{d}{2} + \frac{d}{2} = d$$

Thus, U is an arithmetic progression with common difference d.

Example 2

The function g is defined by the series

$$g(x) = a_0 + \binom{n}{1} a_1 x + \binom{n}{2} a_2 x^2 + \dots + a_n x^n$$
, for $x \in \mathbb{R}$,

where a_i (i = 0, 1, 2, ..., n) are constants with $a_n \neq 0$, and n is an integer such that $n \geq 2$.

- (i) If $a_0, a_1, ..., a_n$ are in geometric progression with a non-zero common ratio r, show that the equation g(x) = 0 has exactly one real root, and express it in terms of r.
- (ii) Write down a simplified expression for g(x) in the case when $a_i = 1$ (i = 0, 1, ..., n), and verify that, in the case $a_i = i$ (i = 0, 1, ..., n),

$$g(x) = nx(1+x)^{n-1}$$
.

- (iii) If a_0 , a_1 , ..., a_n are in arithmetic progression with non-zero common difference d, deduce from part (ii) that the equation g(x) = 0 has exactly two real roots, one of which is independent of the constants a_0 , a_1 , ..., a_n , and the other of which can be expressed in terms of a_0 and a_n only.
- (iv) Show that the function g has an inverse in only one of the two cases (i) and (iii), and then only for certain values of n, which should be specified. Give a formula for $g^{-1}(x)$ in the relevant case.

[Solution]

(i) Given $a_i = a_0 r^i$,

$$g(x) = a_0 + \binom{n}{1} a_0 rx + \binom{n}{2} a_0 r^2 x^2 + \dots + a_0 r^n x^n.$$

Setting g(x) = 0:

$$0 = a_0 + \binom{n}{1} a_0 rx + \binom{n}{2} a_0 r^2 x^2 + \dots + a_0 r^n x^n$$

$$0 = 1 + \binom{n}{1} rx + \binom{n}{2} r^2 x^2 + \dots + r^n x^n$$

$$0 = (1 + rx)^n$$

i.e. exactly one real root at $x = -\frac{1}{r}$.

(ii) Case where
$$a_i = 1$$
 ($i = 0, 1, ..., n$):

$$g(x) = 1 + {n \choose 1}x + {n \choose 2}x^2 + \dots + x^n = (1+x)^n$$

Case where $a_i = i \ (i = 0, 1, ..., n)$:

$$g(x) = 0 + \binom{n}{1}x + 2\binom{n}{2}x^2 + 3\binom{n}{3}x^3 + \dots + nx^n$$

$$= nx + 2 \cdot \frac{n}{2}\binom{n-1}{1}x^2 + 3 \cdot \frac{n}{3}\binom{n-1}{2}x^3 + \dots + nx^n$$

$$= nx \left[1 + \binom{n-1}{1}x + \binom{n-1}{2}x^2 + \dots + x^{n-1}\right]$$

$$= nx(1+x)^{n-1} \quad \text{(verified)}$$

Alternatively,

$$(1+x)^{n} = 1 + \binom{n}{1}x + \binom{n}{2}x^{2} + \dots + x^{n}$$

$$n(1+x)^{n-1} = \frac{d}{dx}((1+x)^{n}) = \binom{n}{1} + 2\binom{n}{2}x + 3\binom{n}{3}x^{2} + \dots + nx^{n-1}$$

$$nx(1+x)^{n-1} = \binom{n}{1}x + 2\binom{n}{2}x^{2} + 3\binom{n}{3}x^{3} + \dots + nx^{n} = g(x) \quad \text{(verified)}$$

(iii) Given
$$a_i = a_0 + (i)d$$
,

$$g(x) = a_0 + \binom{n}{1}(a_0 + d)x + \binom{n}{2}(a_0 + 2d)x^2 + \dots + (a_0 + nd)x^n$$

$$= \left[a_0 + \binom{n}{1}a_0x + \dots + a_0x^n\right] + \left[\binom{n}{1}dx + \binom{n}{2}2dx^2 + \dots + ndx^n\right]$$

$$= a_0(1+x)^n + dnx(1+x)^{n-1}$$

$$= (1+x)^{n-1}\left[a_0(1+x) + dnx\right]$$

$$= (1+x)^{n-1}\left[a_0 + (a_0 + dn)x\right]$$

Thus
$$g(x) = 0 \iff x = -1$$
, or $x = -\frac{a_0}{a_0 + dn} = -\frac{a_0}{a_n}$.

(iv) It is shown that in case (iii), there are two real roots,
i.e. the line y = 0 cuts the graph at 2 points,
i.e. the function is not one-one and hence the inverse does not exist.

In case (i), $g(x) = (1+rx)^n$ satisfies the *horizontal line test* on \mathbb{R} , if and only if $n = 2k+1, k \in \mathbb{Z}^+$ (odd numbers ≥ 3)

Hence the inverse exists *if and only if n* is odd.

Let
$$y = (1 + rx)^n$$
. Then $x = \frac{1}{r} \left(y^{\frac{1}{n}} - 1 \right)$. Thus $g^{-1}(x) = \frac{1}{r} \left(x^{\frac{1}{n}} - 1 \right)$.

§1.1 Limiting Behavior of Sequences & Series

Let U be an infinite sequence $u_1, u_2, ..., u_n, ...$

U is said to be **convergent** if u_n approaches some limit ℓ . This limit ℓ is called the **limit of** the sequence.

A sequence U converges to ℓ means:

- a) As *n* tends to ∞ , u_n tends to ℓ , u_{n+1} tends to ℓ ; or
- b) As $n \to \infty$, $u_n \to \ell$, $u_{n+1} \to \ell$; or
- c) $\lim_{n\to\infty} u_n = \lim_{n\to\infty} u_{n+1} = \ell$.

A sequence that fails to converge to a <u>finite</u> number ℓ is <u>divergent</u> (or sequence diverges).

Example 3

Determine if the following sequence converges or diverges. Try deducing from the GC first.

(a)
$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$$

(b)
$$u_n = \frac{4n^2 - 3n + 2}{7n^2 + 6n - 5}, n = 1, 2, 3, \dots$$

(c)
$$u_n = \frac{\ln n}{n}, \ n = 1, 2, 3, \dots$$

(d)
$$\left\{\frac{n!}{2^n}\right\}_{n\in\mathbb{N}}$$
.

[Solution]

(a)
$$u_n = \frac{n}{n+1} = 1 - \frac{1}{n+1} \to 1 \text{ as } n \to \infty.$$

(b) Method 1:

$$u_n = \frac{4n^2 - 3n + 2}{7n^2 + 6n - 5} = \frac{\left(4 - \frac{3}{n} + \frac{2}{n^2}\right)}{\left(7 + \frac{6}{n} - \frac{5}{n^2}\right)} \to \frac{4}{7} \text{ as } n \to \infty.$$

Method 2:

Consider
$$f(x) = \frac{4x^2 - 3x + 2}{7x^2 + 6x - 5}$$
.

From Graphing Techniques 1, we can show (using long division) that f(x) has the horizontal asymptote $y = \frac{4}{7}$.

Thus the
$$u_n \to \frac{4}{7}$$
 as $n \to \infty$.

(c)
$$0 < \frac{\ln n}{n} = \frac{y}{e^y} \le \frac{y}{y^2} = \frac{1}{y} \text{ for } n = e^y \ge e$$

Taking limits throughout and apply Squeeze Theorem,

$$0 \le \lim_{n \to \infty} \frac{\ln n}{n} \le \lim_{y \to \infty} \frac{1}{y} = 0$$

$$\therefore \lim_{n\to\infty} \frac{\ln n}{n} = 0$$

(d)
$$u_n = \frac{n!}{2^n} = \frac{1 \cdot 2 \cdot 3 \cdots n}{2 \cdot 2 \cdot 2 \cdot 2 \cdots 2} = \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{4}{2} \cdots \frac{n}{2} > \frac{n}{2} \text{ for } n > 4,$$
Let $v_n = \frac{n}{2}$,
$$\text{clearly } v_n \to \infty \text{ as } n \to \infty,$$

since $u_n > v_n$, $u_n \to \infty$ as $n \to \infty$

i.e. the sequence diverges.

From the infinite sequence U (i.e. $u_1, u_2, ..., u_n, ...$), we can form the infinite sequence of partial sums $\{S_n\}$ as follows:

$$S_{1} = u_{1}$$

$$S_{2} = u_{1} + u_{2}$$

$$S_{3} = u_{1} + u_{2} + u_{3}$$

$$\vdots$$

$$S_{n} = \sum_{i=1}^{n} u_{i}$$

The series $\sum_{i=1}^{\infty} u_i = u_1 + u_2 + u_3 + \dots$ is said to be **convergent** if the sum to infinity S_{∞} exists and is **unique** and **finite**. In other words, $\sum_{i=1}^{\infty} u_i$ is convergent if the sequence $S_1, S_2, \dots, S_n, \dots$ is convergent, i.e. S_n approaches some limit ℓ .

§1.2 Some guidelines to determine the convergence of series

1) Divergence Theorem

If $u_n \to 0$ as $n \to \infty$, then $\sum_{i=1}^{\infty} u_i$ diverges (proof left to student, should be easy by considering $u_n \to k \neq 0$ and then consider the partial sum).

Do note that the inverse is not true, since $\sum_{i=1}^{\infty} \frac{1}{i}$ diverges but $\frac{1}{i} \to 0$ as $i \to \infty$.

2) Sequence with bounded partial sums

Suppose $u_i \ge 0$ for all i. Then, $\sum_{i=1}^{\infty} u_i$ converges if and only if its sequence of partial sums is bounded.

[Proof]

Suppose $u_i \ge 0$ for all i. If $S_n = \sum_{i=1}^n u_i < M$ for some positive integer M, then $S_\infty = \lim_{n \to \infty} S_n \le M$.

Is it still true without the condition of $u_i \ge 0$? Hint: consider $\sum_{i=1}^{n} (-1)^n$.

3) Comparison Tests

Suppose $u_i \ge 0$ and $v_i \ge 0$ for all i, and that there is a positive integer m for which $u_k \le v_k$ for all integers $k \ge m$. Then

- If $\sum_{i=1}^{\infty} v_i$ converges, so does $\sum_{i=1}^{\infty} u_i$.
- If $\sum_{i=1}^{\infty} u_i$ diverges, so does $\sum_{i=1}^{\infty} v_i$.

4) Absolute Convergence

If
$$\sum_{i=1}^{\infty} |u_i|$$
 converges, then $\sum_{i=1}^{\infty} u_i$ converges.

[Proof]

$$0 \le u_i + |u_i| \le 2 |u_i|$$
 for all i .

Using the previous guideline, since $\sum_{i=1}^{\infty} 2 |u_i| = 2 \sum_{i=1}^{\infty} |u_i|$ converges,

so does
$$\sum_{i=1}^{\infty} (u_i + |u_i|).$$

We see that $\sum_{i=1}^{\infty} u_i = \sum_{i=1}^{\infty} (u_i + |u_i|) - \sum_{i=1}^{\infty} |u_i|$, which is finite, thus convergent.

Example 4

Determine the convergence of the following series: $\frac{1}{3} + \frac{2}{5} + \frac{3}{7} + \frac{4}{9} + \dots$

[Solution]

Denote the n^{th} term of the series by u_n .

$$u_n = \frac{n}{2n+1} = \frac{1}{2} - \frac{1}{2(2n-1)} \to \frac{1}{2} \text{ as } n \to \infty.$$

Since $u_n \to 0$ as $n \to \infty$, the series diverges.

Alternatively,

$$u_n = \frac{n}{2n+1} \ge \frac{n}{2n+n} = \frac{1}{3}.$$

Since $u_n \to 0$ as $n \to \infty$, the series diverges.

Example 5

Use the S_{∞} formula of a geometric series to prove that the series

$$\frac{1}{2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \frac{1}{4 \cdot 2^4} + \dots$$

is bounded by a constant k. Hence, deduce whether the series converges or diverges.

[Solution]

Denote the n^{th} term of the series by u_n .

Observe that

$$u_n = \frac{1}{n2^n} \le \frac{1}{2^n}$$
 for all n

Therefore,

$$\sum_{n=1}^{\infty} \frac{1}{n2^n} \le \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\text{ geometric series with } a = \frac{1}{2} \text{ and } r = \frac{1}{2} \right)$$

$$= 1$$

Hence, the series converges.

Example 6

Determine the convergence of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$.

[Solution]

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \dots$$

$$= 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \frac{1}{9} + \dots$$

$$> 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right) + \dots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$$

Since the infinite sum of $\frac{1}{2}$ diverges, so does the harmonic series.

Note: The fact that $\frac{1}{n} \to 0$ as $n \to \infty$ doesn't give us any information about the convergence of $\sum_{n=1}^{\infty} \frac{1}{n}$. However, for a series $\sum_{n=1}^{\infty} u_n$, if we know that $u_n \to 0$, we know for sure that the series $\sum_{n=1}^{\infty} u_n$ diverges.

Example 7

Determine the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{\ln n}$.

[Solution]

$$v_n = \frac{1}{\ln n} > \frac{1}{n} = u_n$$
 for every $n \ge 2$. (note that both $\frac{1}{\ln n}$ and $\frac{1}{n}$ are positive for all $n \ge 2$)

Since $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges (harmonic series without the first term),

the given series $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ diverges.

§2 Recurrence Relation

A <u>recurrence relation</u> is one which shows how the $(n+1)^{th}$ term, u_{n+1} , is related to the previous term, such as the n^{th} term, u_n .

Start with a given term (usually the first term u_1), and use it to calculate the next term u_2 . The second term u_2 is then used to find the third term u_3 and so on.

To define a sequence using a recurrence relation, we need to have the initial conditions, i.e. the values of the first term u_1 (or the first few terms u_1 , u_2 ,...) of the sequence.

Example 8 (Self Read)

The sequence u_1, u_2, u_3, \dots is defined by

$$u_1 = 1$$
 and $u_r = 2u_{r-1} + 1$ for $r = 2, 3, \dots$

Show by induction that $u_n = 2^n - 1$.

The sequence v_1, v_2, v_3, \dots is defined by

$$v_1 = u_1, \ v_2 = u_2$$
 and $v_r = 2v_{r-2} + 3 \text{ for } r = 3, 4, \dots$

Show by induction that

$$v_n = \begin{cases} 3(2^{\frac{1}{2}n} - 1) & \text{if } n \text{ is even,} \\ 2^{\frac{1}{2}(n+3)} - 3 & \text{if } n \text{ is odd.} \end{cases}$$

[Solution]

Let P(n) be the proposition $u_n = 2^n - 1$.

When n = 1, RHS = $2^1 - 1 = 1 = u_1 = LHS$, $\therefore P(1)$ is true.

Assume P(k) is true for some $k \in \mathbb{Z}^+$,

i.e.
$$u_k = 2^k - 1$$
.

Consider P(k+1):

$$u_{k+1} = 2u_k + 1 = 2(2^k - 1) + 1 = 2^{k+1} - 1$$
.

 \therefore P(k) is true \Rightarrow P(k+1) is true.

Since P(1) is true and P(k) is true \Rightarrow P(k+1) is true, hence by mathematical induction, P(n) is true for every $n \in \mathbb{Z}^+$.

Let Q(n) be the proposition $v_n = \begin{cases} 3(2^{\frac{1}{2}n} - 1) & \text{if } n \text{ is even,} \\ 2^{\frac{1}{2}(n+3)} - 3 & \text{if } n \text{ is odd.} \end{cases}$

When
$$n = 1$$
, $v_1 = 2^{\frac{1}{2}(1+3)} - 3 = 1 = u_1$.

When
$$n = 2$$
, $v_2 = 3(2^{\frac{1}{2}(2)} - 1) = 3 = 2^2 - 1 = u_2$.

 \therefore Q(1), Q(2) are true.

Assume Q(k) is true for some $k \ge 3$,

i.e.
$$v_k = \begin{cases} 3(2^{\frac{1}{2}k} - 1) & \text{if } k \text{ is even,} \\ 2^{\frac{1}{2}(k+3)} - 3 & \text{if } k \text{ is odd.} \end{cases}$$

Consider Q(k+2):

$$v_{k+2} = 2v_k + 3$$

$$= \begin{cases} 2[3(2^{\frac{1}{2^k}} - 1)] + 3 & \text{if } k \text{ is even,} \\ 2[2^{\frac{1}{2^{(k+3)}}} - 3] + 3 & \text{if } k \text{ is odd} \end{cases}$$

$$= \begin{cases} 3 \cdot 2^{\frac{1}{2^{(k+3)}}} - 6 + 3 & \text{if } k \text{ is even,} \\ 2^{\frac{1}{2^{(k+3)+1}}} - 6 + 3 & \text{if } k \text{ is odd} \end{cases}$$

$$= \begin{cases} 3(2^{\frac{1}{2^{(k+2)}}} - 1) & \text{if } k \text{ is even,} \\ 2^{\frac{1}{2^{(k+2)+3}}} - 3 & \text{if } k \text{ is odd.} \end{cases}$$

 \therefore Q(k) is true \Rightarrow Q(k+2) is true.

Since Q(1) & Q(2) is true and Q(k) is true \Rightarrow Q(k+2) is true, hence by mathematical induction,

$$v_n = \begin{cases} 3(2^{\frac{1}{2}n} - 1) & \text{if } n \text{ is even,} \\ 2^{\frac{1}{2}(n+3)} - 3 & \text{if } n \text{ is odd} \end{cases}$$
 for all $n \in \mathbb{Z}^+$.

§3 References

• Calculus by James Stewart (chapter 12)

• http://www.stewartcalculus.com/media/10_inside_chapters.php?subaction=showfull&id=1090822719&archive=&start_from=&ucat=2&show_cat=2