Introduction to circulatory system

Dr Philip Hung

Outline

- components of cardiovascular systems
- systemic circulation
- pulmonary circulation
- blood vessels
- blood pressure & blood flow
- pulse pressure

What cardiovascular system can do for us?

- to transport **nutrients** & O_2 (by red blood cells)
- to transport waste such as
 - urea to kidney
 - carbon dioxide to lung for disposal
- to control body temperature
- to transport hormone to target organs/tissues.
- to deliver white blood cells & antibodies
- to deliver clotting factors & platelets

Components of cardiovascular system

heart

functions as a p _ _ _ to
 systemic & pulmonary circulations.

arteries

- carry blood away from heart
- carry oxygenated blood except
 pulmonary arteries & umbilical
 artery

veins

- carry blood back to heart
- carry deoxygenated blood except
 pulmonary veins & umbilical
 vein

Components of cardiovascular system

- micro-circulation
 - in every organs
 - composed of arterioles, capillaries & venules
 - region of material exchange (nutrients, oxygen, wastes)

Note: What is the use of lymphatic system? Will be discussed in later chapters...

The heart: structure

- four chambers:
 - two atria:
 - right atrium receives from superior vena cava & inferior vena cava
 - left atrium receives from pulmonary veins

Superior Vena Cava

- two ventricles:
 - \triangleright right ventricle \rightarrow pulmonary arteries \rightarrow lung
 - \triangleright left ventricle \rightarrow aorta \rightarrow systemic circulation \rightarrow organs

Superior vena cava, inferior vena cava

superior...
receives <u>venous</u> blood from
organs above diaphragm

inferior...
 receives <u>venous</u> blood from organs <u>below</u> diaphragm

Additional info: blood filling into ventricles

Why not mention contraction of atria?

Can atrial contraction pump the blood to ventricles?

- Yes....but only 20% of blood
- blood is mainly filled into ventricles by
 - v _ _ _ _ because:
 - ➤ atria are fully filled with blood,
 atria pressure > ventricular pressure, blood → ventricles
 - > (at the same time,) ventricles relax that creates suctional force to draw atrial blood

The heart: structure

• Two pairs of heart valves:

atrioventricular valves close
 to prevent blood backflow during
 ventricular contraction

semilunar valves close to
 prevent blood backflow during
 ventricular relaxation

Additional info: heart sounds

- two heart sounds in each heartbeat:
 - closure of atrioventricular valves followed by
 - closure of semilunar valves

Pulmonary VS systemic circulations

- pulmonary circulation
 - lower blood pressure (SP/DP: 24/10) &
 - lower resistance
 - > pulmonary vessels are shorter & wider
 - opposite oxygenation
 - > pulmonary arterial blood: deoxygenated while
 - pulmonary venous blood: _____
 - vasodilation & vasoconstriction mainly depending on
 blood oxygenation rather than hormones such as adrenaline
 - higher / lower / same blood flow ?

Additional info: more about pulmonary & systemic

Blood circulation

- no matter pulmonary or systemic circulation
 - blood is supplied to every
 organ in parallel, to make sure
 - ➤ same arterial composition (O₂, CO₂, pH, glucose...)
 - > similar arterial pressure

Blood vessels: three main types

- arteries
 - muscular for high blood pressure
 - control blood flow to various organs by vasoconstriction or vasodilation
- capillaries
 - material exchange
- veins
 - less muscular but
 - relatively more elastic fibers
 - > much more distensible (~20X) than arteries
 - ❖ act as reservoir to store ~70% of circulating blood

^{*}Size relationships are not proportional. Smaller vessels are draw relatively larger so detail can be seen. See column 2 for actual dimensions.

Blood pressure and blood flow

Pulse pressure

Normal value:

- systolic: ~120mmHg;
- diastolic: ~80mmHg
- pulse pressure: ~40mmHg (30 50mmHg)

Implications of cardiovascular conditions:

diastolic

Pulse pressure: physiological change during exercise

Pulse pressure: pathological change

Wide: \geq 60 mmHg

• increase in systolic pressure and/or decrease in diastolic pressure

Narrow: ≤ 25 mmHg

decrease in systolic pressure and/or increase in diastolic pressure

Does blood flow increase/decrease in narrowed pulse pressure?

Does blood flow increase/decrease in widened pulse pressure?

Aortic regurgitation

• aortic valve cannot close properly during ventricular relaxation Blood flow: \Im/\Im ?

Pulse pressure: wide / narrow? SP? DP?

Aortic stenosis

• aortic valve cannot open properly during ventricular contraction

Blood flow: $1/\sqrt{?}$?

Pulse pressure: wide / narrow?

