

Vigor: Trusted Software Networking

Arseniy Zaostrovnykh^{†‡}, Solal Pirelli[‡], Luis Pedrosa[†], Katerina Argyraki[†], George Candea[‡]

Context:

- HW networking: reliable but rigid
- SW networking: flexible but flakey
 - Mirai botnet took over
 >1,000,000 network devices¹
 - Two software bugs took entire Google cloud down²

Problem:

Verification tools:

- Too much development overhead (e.g. theorem proving) OR
- No reasoning about semantics (e.g. symbolic execution)

We need a new approach that:

- Is easy to apply AND
- Supports powerful semantics

<u>Insight:</u>

- Network applications usually have clearly isolated, well-defined state
- Only some small stateful pieces of code are hard to automatically verify

We built a NAT box that is:

- Formally proven correct (= RFC3022), secure, memory safe, crash-free
- Fast: 2x higher throughput, 3x lower latency than Linux NAT