Agrégation interne de Mathématiques

(et CAERPA)

Session 2009

Deuxième épreuve écrite

NOTATIONS ET PRÉLIMINAIRES –

- On désigne par R le corps des nombres réels et par C le corps des nombres complexes.
- Si f est une fonction dérivable sur un intervalle de \mathbf{R} , on note indifféremment f' ou $\mathrm{D}(f)$ ou simplement $\mathrm{D}f$ sa fonction dérivée. De même, pour n entier naturel supérieur ou égal à 1, on note $\mathrm{D}^n f$ sa fonction dérivée $n^{\mathrm{ème}}$. On convient de poser $\mathrm{D}^0 f = f$.
- On désigne par \mathcal{L}^{∞} l'espace vectoriel des fonctions continues sur \mathbf{R} , à valeurs complexes et bornées sur \mathbf{R} . Pour $f \in \mathcal{L}^{\infty}$, on pose $||f||_{\infty} = \sup_{x \in \mathbf{R}} |f(x)|$.
- On désigne par \mathcal{L}^1 l'espace vectoriel des fonctions f continues sur \mathbf{R} , à valeurs complexes et intégrables sur \mathbf{R} . Pour toute fonction f de \mathcal{L}^1 , on écrira indifféremment $\int_{\mathbf{R}} f(x) \, \mathrm{d}x$ ou $\int_{\mathbf{R}} f$ pour désigner $\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x$. On définit une norme sur cet espace en posant $||f||_1 = \int_{-\infty}^{+\infty} |f(x)| \, \mathrm{d}x$.
- On dit qu'une fonction f est de classe C^1 si elle dérivable en tout point de \mathbf{R} et si sa dérivée f' est une fonction continue.
- Les espaces vectoriels S et S' sont définis au début des parties III et IV de cet énoncé.

Les candidats sont invités à énoncer précisément les théorèmes d'intégration qu'ils comptent appliquer. Ils pourront éventuellement utiliser le résultat suivant qui sera admis :

Soit une fonction u continue sur \mathbb{R}^2 et telle que :

- 1. Pour tout $x \in \mathbf{R}$, la fonction $y \mapsto u(x,y)$ est intégrable sur \mathbf{R} , et
- 2. la fonction $x \mapsto \int_{\mathbf{R}} |u(x,y)| \, \mathrm{d}y$ est continue et intégrable sur \mathbf{R} , et
- 3. la fonction $x \mapsto \int_{\mathbf{R}} u(x,y) \, dy$ est continue sur \mathbf{R} , et
- **4.** pour tout $y \in \mathbf{R}$, la fonction $x \mapsto u(x,y)$ est intégrable sur \mathbf{R} , et
- **5.** la fonction $y \mapsto \int_{\mathbf{R}} |u(x,y)| dx$ est continue sur \mathbf{R} , et
- **6.** la fonction $y \mapsto \int_{\mathbf{R}} u(x,y) dx$ est continue sur \mathbf{R} .

Alors u est intégrable sur \mathbb{R}^2 ; de plus, la fonction $y \mapsto \int_{\mathbb{R}} u(x,y) dx$ est intégrable sur \mathbb{R} et on a

$$\iint_{\mathbf{R}^2} u = \int_{\mathbf{R}} \left(\int_{\mathbf{R}} u(x, y) \, \mathrm{d}y \right) \mathrm{d}x \ = \ \int_{\mathbf{R}} \left(\int_{\mathbf{R}} u(x, y) \, \mathrm{d}x \right) \mathrm{d}y \,.$$

Les quatre parties s'enchainent logiquement. Chaque question peut être traitée en admettant les résultats établis dans les questions antérieures.

Partie I : Transformation de Fourier -

- 1. Soit f une fonction appartenant à \mathcal{L}^1 .
 - (a) Démontrer que, pour tout ξ appartenant à \mathbf{R} , la fonction $x \mapsto f(x) \mathrm{e}^{-2\mathrm{i}\pi x \xi}$ est intégrable sur \mathbf{R} .
 - (b) On définit alors une nouvelle fonction, notée \hat{f} , en posant pour tout $\xi \in \mathbf{R}$:

$$\widehat{f}(\xi) = \int_{-\infty}^{+\infty} f(x) e^{-2i\pi x\xi} dx$$

Démontrer que la fonction \hat{f} est continue, bornée et que l'on a $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$.

La fonction \hat{f} est appelée transformée de Fourier de la fonction f et est notée indifféremment \hat{f} ou $\mathcal{F}f$. On pourra ainsi considérer \mathcal{F} comme une application de \mathcal{L}^1 dans \mathcal{L}^{∞} .

- 2. Soient a un nombre réel strictement positif et φ la fonction définie sur \mathbf{R} par $\varphi(x) = e^{-a|x|}$. Vérifier que la fonction φ appartient à \mathcal{L}^1 et calculer sa transformée de Fourier.
- 3. Soient f et g deux fonctions appartenant à \mathcal{L}^1 . Démontrer que l'on a $\int_{\mathbf{R}} f \widehat{g} = \int_{\mathbf{R}} \widehat{f} g$.
- **4.** Soit f une fonction appartenant à \mathcal{L}^1 et telle la fonction $t \mapsto t \times f(t)$, notée xf, appartienne à \mathcal{L}^1 . Démontrer que \widehat{f} est de classe \mathcal{C}^1 sur \mathbf{R} et que $\mathrm{D}(\mathcal{F}f) = \mathcal{F}(-2\mathrm{i}\pi xf)$.
- 5. Soit f une fonction dérivable sur **R** et telle que f et Df appartiennent à \mathcal{L}^1 .
 - (a) Démontrer que f admet des limites nulles au voisinage de $+\infty$ et de $-\infty$.
 - (b) En déduire que pour tout ξ appartenant à **R** on a $\mathcal{F}(\mathrm{D}f)(\xi) = (2\mathrm{i}\pi\xi)\mathcal{F}f(\xi)$.
- 6. Calcul de la transformée de Fourier d'une gaussienne.

On considère la fonction γ définie sur **R** par $\gamma(x) = e^{-\pi x^2}$.

- (a) Justifier le fait que γ est intégrable sur ${\bf R}.$ On admettra que $\int_{{\bf R}} \gamma = 1$.
- (b) Pour tout ξ appartenant à \mathbf{R} , on note $\Omega(\xi) = \int_{\mathbf{R}} e^{-\pi(x+\mathrm{i}\xi)^2} \,\mathrm{d}x$. Démontrer que la fonction Ω est constante. *Indication*: On pourra dériver la fonction Ω , ou bien intégrer suivant un chemin convenable dans le plan complexe.
- (c) En déduire que $\mathcal{F}\gamma = \gamma$.
- (d) Soit a un nombre réel strictement positif. Soit la fonction γ^a définie par $\gamma^a(x) = \gamma(ax)$; exprimer la transformée de Fourier de γ^a en fonction de $\gamma^{\frac{1}{a}}$.

Partie II : Convolution –

1. On considère deux fonctions f et g continues sur ${\bf R}$ et à valeurs complexes. Démontrer que si f et g vérifient l'hypothèse

(H1) f appartient à \mathcal{L}^{∞} et q appartient à \mathcal{L}^1

alors la fonction $y \mapsto f(x-y)g(y)$ est intégrable sur **R**.

Démontrer que ce résultat est encore vrai si f et g vérifient l'hypothèse

(H2) f appartient à \mathcal{L}^1 et g appartient à \mathcal{L}^{∞} .

Lorsque l'une au moins des deux hypothèses précédentes est vérifiée, on définit la fonction f*g par $f*g(x)=\int_{\mathbf{R}}f(x-y)g(y)\,\mathrm{d}y$ pour tout nombre x réel.

Cette fonction s'appelle le produit de convolution de f et de g.

2. Démontrer, sous l'hypothèse (H1), que f * g = g * f. Dans toute la suite, l'expression f * g sera utilisée en supposant que l'une des deux fonctions appartient à \mathcal{L}^1 et l'autre à \mathcal{L}^{∞} (hypothèses (H1) ou (H2)).

Démontrer, sous l'hypothèse (H1), que f * g appartient à \mathcal{L}^{∞} et que $||f * g||_{\infty} \leq ||f||_{\infty} ||g||_{1}$.

3. On suppose dans cette question que f et g vérifient l'hypothèse (H1) et que, de plus, f est dérivable sur \mathbf{R} et que $\mathrm{D}f$ appartient à \mathcal{L}^{∞} .

Démontrer que f * g est de classe C^1 sur \mathbf{R} et que D(f * g) = Df * g.

- **4.** On suppose que f et g appartiennent à \mathcal{L}^1 et que l'une au moins des deux fonctions appartient à \mathcal{L}^{∞} .
 - (a) Démontrer que f * g est dans \mathcal{L}^1 et que $\int_{\mathbf{R}} f * g = \int_{\mathbf{R}} f \times \int_{\mathbf{R}} g$.
 - **(b)** Montrer que $\mathcal{F}(f * g) = \mathcal{F}f \times \mathcal{F}g$.
- 5. Soit θ une fonction appartenant à \mathcal{L}^1 et telle que $\int_{\mathbf{R}} \theta(x) dx = 1$.

Pour tout nombre $\varepsilon \in]0,1[$ on définit la fonction θ_{ε} par la formule $\theta_{\varepsilon}(x) = \frac{1}{\varepsilon}\theta(\frac{x}{\varepsilon})$, x étant un nombre réel quelconque.

Soit J un segment de \mathbf{R} .

Soit f une fonction appartenant à \mathcal{L}^{∞} , on veut démontrer que $f * \theta_{\varepsilon}$ converge vers f uniformément sur J quand ε tend vers zéro, c'est-à-dire que

$$\lim_{\varepsilon \to 0} \Bigl(\sup_{x \in J} |f * \theta_{\varepsilon}(x) - f(x)| \Bigr) = 0.$$

(a) Soit un nombre $\delta > 0$. Démontrer qu'il existe un nombre réel A > 0 tel que

$$\int_{-\infty}^{-A} |\theta(x)| \, \mathrm{d}x + \int_{A}^{\infty} |\theta(x)| \, \mathrm{d}x < \delta .$$

- (b) Démontrer, pour tout x réel fixé, que $|f*\theta_{\varepsilon}(x)-f(x)|\leqslant \int_{\mathbf{R}}|f(x-\varepsilon y)-f(x)||\theta(y)|\,\mathrm{d}y$.
- (c) En déduire que

$$\sup_{x \in J} |f * \theta_{\varepsilon}(x) - f(x)| \leq 2\delta ||f||_{\infty} + \int_{-A}^{A} |\theta(y)| \sup_{x \in J} |f(x - \varepsilon y) - f(x)| \, \mathrm{d}y.$$

(d) Conclure en utilisant la continuité de f sur un compact convenablement choisi.

6. Théorème d'inversion de Fourier.

- (a) Soit $x \in \mathbf{R}$ (x fixé). Soit $\varepsilon > 0$, et soit Φ_{ε} la fonction définie par $\Phi_{\varepsilon}(\xi) = \mathrm{e}^{2\mathrm{i}\pi x\xi \pi\varepsilon^2\xi^2}$ pour tout ξ appartenant à \mathbf{R} . Vérifier que cette fonction appartient à \mathcal{L}^1 et exprimer sa transformée de Fourier à l'aide de la fonction γ_{ε} définie par $\gamma_{\varepsilon}(y) = \frac{1}{\varepsilon}\gamma(\frac{y}{\varepsilon})$ (la fonction γ a été définie en I.6).
- (b) Soit une fonction f de l'espace \mathcal{L}^1 ; on note $\mathcal{G}(f)$ la fonction définie par $\mathcal{G}(f)(\xi) = \mathcal{F}f(-\xi)$ pour tout ξ appartenant à \mathbf{R} ; on peut ainsi considérer \mathcal{G} comme une application de \mathcal{L}^1 dans \mathcal{L}^{∞} .

On suppose que f est aussi dans \mathcal{L}^{∞} et que $\mathcal{F}f$ est intégrable sur \mathbf{R} .

Démontrer alors que $f = \mathcal{G}(\widehat{f})$.

Indication : on pourra écrire $\int_{\mathbf{R}} \Phi_{\varepsilon}(\xi) \widehat{f}(\xi) d\xi = \int_{\mathbf{R}} \widehat{\Phi_{\varepsilon}}(y) f(y) dy$, puis faire tendre ε vers zéro, et utiliser la question II.5.

Dans la suite la transformation \mathcal{G} sera parfois notée \mathcal{F}^{-1} .

- Partie III : Espace \mathcal{S} -

On dit qu'une fonction f de variable réelle et à valeurs complexes est à décroissance rapide si f est de classe \mathcal{C}^{∞} et que pour chaque couple d'entiers naturels (α, β) la fonction $x \mapsto x^{\alpha} D^{\beta} f(x)$ est bornée sur \mathbf{R} (on rappelle que D^{β} désigne l'opérateur de dérivation d'ordre bêta).

Pour simplifier les choses, on notera $x^{\alpha}D^{\beta}f$ la fonction $x \mapsto x^{\alpha}D^{\beta}f(x)$.

Enfin, on note S l'espace vectoriel des fonctions à décroissance rapide.

- 1. (a) Démontrer que pour toute fonction $f \in \mathcal{S}$ et pour tous entiers naturels m, α, β , la fonction $x \mapsto (1 + |x|^m)x^{\alpha}(D^{\beta}f)(x)$ est bornée sur \mathbf{R} .
 - (b) En déduire que la fonction $x^{\alpha}D^{\beta}f$ appartient à \mathcal{L}^1 (en particulier, on a $\mathcal{S}\subset\mathcal{L}^1$).
 - (c) Vérifier que le produit de deux fonctions de S est aussi dans S.

2. Topologie de S.

Pour tout entier $n \in \mathbb{N}$ et toute fonction $f \in \mathcal{S}$ on pose

$$p_n(f) = \max_{\substack{0 \le \alpha \le n \\ 0 \le \beta \le n}} \left(\sup_{x \in \mathbf{R}} |x|^{\alpha} |D^{\beta} f(x)| \right).$$

- (a) Soient f et g deux fonctions de S. Démontrer l'inégalité $p_n(f+g) \leq p_n(f) + p_n(g)$.
- (b) On définit une fonction, notée σ , qui à $x \ge 0$ associe $\sigma(x) = \frac{x}{1+x}$. Démontrer que σ est croissante, bornée et vérifie $\sigma(x+y) \le \sigma(x) + \sigma(y)$ pour tous x, y positifs.
- (c) Étant données deux fonctions f, g de \mathcal{S} on pose $d(f,g) = \sum_{n=0}^{\infty} \frac{1}{2^n} \sigma \left(p_n(f-g) \right)$. Démontrer que d est une distance sur \mathcal{S} et que cette distance est invariante par translation. L'espace \mathcal{S} sera désormais muni de la topologie définie par cette distance.
- (d) Démontrer qu'une suite $(f_i)_{i\in\mathbb{N}}$ de fonctions de \mathcal{S} converge vers 0 (la fonction nulle) pour la topologie définie par la distance d (ce qu'on pourra noter $f_i \xrightarrow{\mathcal{S}} 0$) si, et seulement si, pour chaque couple $(\alpha, \beta) \in \mathbb{N}^2$ on a

$$\lim_{i \to \infty} \left(\sup_{x \in \mathbf{R}} |x|^{\alpha} |(\mathbf{D}^{\beta} f_i)(x)| \right) = 0.$$

En déduire que l'application $\mathcal{I}: \begin{cases} f & \mapsto f \\ \mathcal{S} & \to \mathcal{L}^1 \end{cases}$ est continue.

- **3.** Soient f et g deux fonctions de S. Démontrer que f*g est de classe C^{∞} , puis que f*g appartient à S.
- 4. Transformation de Fourier dans \mathcal{S} .
 - (a) Soit un élément f de S et un entier α . Démontrer que $D^{\alpha}(\mathcal{F}f) = \mathcal{F}g$, où la fonction g est définie par $g(x) = (-2i\pi x)^{\alpha} f(x)$ pour tout x appartenant à \mathbf{R} (ce qu'on peut aussi écrire à l'aide de la notation introduite en I.4 : $g = (-2i\pi)^{\alpha} x^{\alpha} f$).
 - (b) Démontrer, pour tout nombre réel ξ , la formule :

$$\mathcal{F}(D^{\alpha}f)(\xi) = (2i\pi\xi)^{\alpha}\mathcal{F}f(\xi) .$$

(c) En déduire que si f appartient à S, alors \widehat{f} appartient aussi à S.

(d) Démontrer que l'application $f \mapsto \widehat{f}$ est continue de \mathcal{S} dans \mathcal{S} (toujours au sens de la topologie définie par d).

Par abus de langage, on notera encore \mathcal{F} cette application.

5. Inversion de Fourier dans \mathcal{S} .

Démontrer que la transformation de Fourier \mathcal{F} établit une bijection de \mathcal{S} sur lui-même, admettant pour bijection réciproque la restriction de \mathcal{G} à \mathcal{S} .

Par abus de langage, on notera encore, dans ce nouveau contexte, $\mathcal{G} = \mathcal{F}^{-1}$.

- Partie IV : Espace S' -

On note \mathcal{S}' le dual topologique de \mathcal{S} , c'est-à-dire l'ensemble des applications linéaires continues de \mathcal{S} dans \mathbf{C} (\mathcal{S} étant muni de la distance d définie au III.2.c).

1. Quelques exemples.

- (a) Soit δ la forme linéaire définie par $\delta(f) = f(0)$ pour $f \in \mathcal{S}$. Démontrer que δ appartient à \mathcal{S}' .
- (b) Soit u une fonction continue par morceaux, intégrable sur \mathbf{R} ou bornée. Démontrer, dans chacun de ces deux cas, que l'intégrale $\int_{\mathbf{R}} uf$ a un sens; en déduire qu'on définit bien un élément de \mathcal{S}' , noté T_u , en posant $T_u(f) = \int_{\mathbf{R}} uf$ pour f appartenant à \mathcal{S} . On utilisera cette notation T_u dans toute la suite du problème.

2. Construction d'opérateurs sur S'.

Pour construire d'autres éléments de \mathcal{S}' on procède de la manière suivante. On se donne tout d'abord une application linéaire continue de \mathcal{S} dans \mathcal{S} , notée L. On suppose qu'il existe une application linéaire continue L' de \mathcal{S} dans \mathcal{S} telle que pour toutes fonctions f et g de \mathcal{S} on ait $\int_{\mathbf{R}} L(f) g = \int_{\mathbf{R}} f L'(g)$. On admettra que, dans ces conditions, l'application L' est unique. Enfin, pour tout élément T de \mathcal{S}' on pose $\underline{L}(T) = T \circ L'$.

Justifier le fait que \underline{L} est une application linéaire de \mathcal{S}' dans lui-même.

3. Dérivation dans S'.

- (a) On choisit d'abord L = D (opérateur de dérivation). Vérifier que la question IV.2 s'applique bien à cet opérateur et expliciter L'.
- (b) Donner alors l'expression de $\underline{D}(T)(f)$ pour $T \in \mathcal{S}'$ et $f \in \mathcal{S}$.
- (c) On choisit à présent $L = D^{\alpha}$, pour $\alpha \in \mathbb{N}$, $\alpha \geq 2$. Expliciter L' et $\underline{L}(T)(f)$ pour $T \in \mathcal{S}'$ et $f \in \mathcal{S}$.
- (d) Soit Y la fonction définie sur **R** par Y(x) = 1 pour $x \ge 0$ et Y(x) = 0 pour x < 0. Démontrer que $\underline{D}(T_Y) = \delta$ (avec les notations δ et T_Y introduites en IV.1).

4. Multiplication par des fonctions dans S'.

On dit qu'une fonction P de classe C^{∞} est à croissance lente si pour tout entier $\beta \geqslant 0$ il existe un entier $\alpha \geqslant 0$ et deux nombres réels M et N tels que $|D^{\beta}P(x)| \leqslant (M+N|x|^{\alpha})$ pour tout x réel.

Soit L l'opérateur défini sur S par : $L(f)(x) = P(x) \times f(x)$ (avec $f \in S$, $x \in \mathbf{R}$).

Démontrer que L satisfait aux hypothèses de la question IV.2, et préciser l'expression de L' et de $\underline{L}(T)(f)$ pour $T \in \mathcal{S}'$ et $f \in \mathcal{S}$.

L'élément $\underline{L}(T)$ de \mathcal{S}' sera noté $P \times T$ dans la suite.

5. Transformation de Fourier dans S'.

- (a) Démontrer que l'application L définie, pour $f \in \mathcal{S}$, par $L(f) = \widehat{f}$ (soit $L = \mathcal{F}$) vérifie les hypothèses de la question IV.2; donner l'expression de $\underline{L}(T)(f)$ pour $T \in \mathcal{S}'$ et $f \in \mathcal{S}$. L'élément $\underline{L}(T)$ de \mathcal{S}' sera noté dans la suite \widehat{T} ou indifféremment $\underline{\mathcal{F}}(T)$.
- (b) Donner une définition analogue pour l'application $\underline{\mathcal{G}}$ (voir question II.6), et démontrer que \mathcal{G} réalise une bijection de \mathcal{S}' sur lui-même, dont la réciproque est $\underline{\mathcal{F}}$ (voir la question III.5).
- (c) On se donne une fonction $u \in \mathcal{L}^1$. Démontrer que l'on a $\underline{\mathcal{F}}(T_u) = T_{\mathcal{F}(u)}$.
- (d) Démontrer que $\underline{\mathcal{F}}(\delta) = T_1$, où 1 désigne la fonction constante égale à 1 sur \mathbf{R} , puis que $\underline{\mathcal{G}}(\delta) = T_1$.
- **6.** Soit un entier $\alpha \ge 0$. On définit deux fonctions P et Q par $P(x) = (-2i\pi x)^{\alpha}$ et $Q(x) = (2i\pi x)^{\alpha}$ pour tout x réel. Soit T appartenant à S'; démontrer les relations

$$\underline{\mathbf{D}}^{\alpha}(\underline{\mathcal{F}}(T)) = \underline{\mathcal{F}}(P \times T) \text{ et } \underline{\mathcal{F}}(\underline{\mathbf{D}}^{\alpha}(T)) = Q \times \underline{\mathcal{F}}(T) .$$

7. Équation différentielle $-D^2U + U = \delta$.

Chercher, au moyen de la transformation de Fourier et des résultats de la question I.2, quelles sont les solutions $U \in \mathcal{S}'$ de l'équation différentielle $-\underline{\mathbf{D}}^2 U + U = \delta$.

