

Analysis and visualization of complex networks in Pajek

14th Summer School 'Methods and tools for social network analysis'

Daria Maltseva, Ph.D.

About me

- Head of the International Laboratory for Applied Network Research
- Leading Research Fellow, Visiting Lecturer
- Ph.D. | Candidate of Sciences in Sociology
- Degree in Sociology, Russian State University for the Humanities
- Young Faculty Support Program (Group of Young Academic Professionals), Category "New Researchers" (2018-2019)
- Grant of the Russian Scientific Foundation "Collaboration patterns in the Russian sociological community: the structure of scientific schools and their growth potential" 2021-2023
- Have a 2.5-year-old son

E-mail: dmaltseva@hse.ru

14th Summer School

About me

3

Expertise

Сетевой подход как феномен социологической теории

Іальцева Д. В.

Кандидат социологических наук, зам. заведующего, Международная лаборатория прикладного сетевого анализа НИУ «Высшая школа экономики», Москва, Россия d_malceva@mail.ru

ID статьи на сайте журнала: 7135

Рубрика: Методология и методы социологических исследовани

Ссылка при цитировании

Мальцееа Д. В. Сетевой подход как феномен социологической теории // Социологические исследования. 2018. № 4. С. 3-14. DOI: 10.7868/S0132162518040013

Текст статьи.

Аннотация

Представлен сравнительный анализ трех награвлений сетевого подхода в социологии – анализа социальных сетей, реляционной социологии и акторно-сетевой теорим. Основаниями для анализа выступают время и контекст появления, основные теоретические положения, методология и методы эмпирических исследований. Делаются выводы о сходстве (до определенной степени) направлений реляционной социология и акторно-сетевой теории и их отличия от анализа социальных сетей. Каждое из направлений автономно и занимает определенное место в структуре социологического знамия. Делается вывод о некорректности представления «сетевого подхода» как единого теоретического блока, объединения его направлений под унифицирующими названиями «сетевая парадияма» и др. Подчерннуто, что это собирательное название для разных теорий и подходов, оперирующих понятием сети в разных смыслах.

Springer Link

🔒 версия для печати

Published: 19 April 2022

Collaboration between authors in the field of social network analysis

Daria Maltseva 2 & Vladimir Batagelj

Scientometrics (2022) | Cite this article

267 Accesses | 2 Altmetric | Metrics

Abstract

This paper presents a study of authors writing articles in the field of SNA and groups the means of bibliographic network analysis. The dataset consists of works from the Web of Science database obtained by searching for "social network*", works highly cited in the f works published in the flagship SNA journals, and written by the most prolific authors (70,000+ publications and 93,000+ authors), up to and including 2018. Using a two-monetwork linking publications with authors, we constructed and analysed different types of

Springer Link

Published: 30 August 2019

Social network analysis as a field of invasions: bibliographic approach to study SNA development

Daria Maltseva [™] & Vladimir Batagelj

Scientometrics 121, 1085–1128 (2019) | Cite this article 994 Accesses | 10 Citations | 1 Altmetric | Metrics

Abstract

In this paper, the results of a study on the development of social network analysis (SNA) and its evolution over time, using the analysis of bibliographic networks are presented. The dataset consists of articles from the Web of Science Clarivate Analytics database obtained by

Published: 25 January 2020

Towards a systematic description of the field using keywords analysis: main topics in social networks

Daria Maltseva 2 & Vladimir Batageli

Scientometrics 123, 357–382 (2020) | Cite this article 806 Accesses | 8 Citations | 1 Altmetric | Metrics

Abstract

This paper presents the results of the analysis of keywords used in Social Network Analysis (SNA) articles included in the WoS database and main SNA journals, from 1970 to 2018.

Published: 25 February 2021

Journals publishing social network analysis

Daria Maltseva 2 & Vladimir Batageli

 Scientometrics
 126, 3593–3620 (2021)
 Cite this article

 585 Accesses
 3 Citations
 1 Altmetric
 Metrics

Abstract

This paper presents the analysis of journals publishing articles on social network analysis (SNA). The dataset consists of articles from the Web of Science database obtained by searching for "social network*", works intensively cited, written by the most prominent

Pajek

- Pajek is a program, for Windows, for analysis and visualization of large networks having some thousands or even millions of vertices. The latest version of Pajek is freely available, for noncommercial use.
- Link: http://mrvar.fdv.uni-lj.si/pajek/
- Creators: Andrej Mrvar and Vladimir Batagelj

14th Summer School

Pajek

5

Pajek

Pajek materials:

https://github.com/Daria-Maltseva/pajek/wiki

Summer school ANR-Lab 2022

https://github.com/Daria-Maltseva/pajek/wiki/14ss2023

Daria Maltseva edited this page 2 minutes ago · 25 revisions

Welcome to the Pajek wiki!

Here I share some features of network analysis with Pajek - program for the analysis and visualization of very large networks.

General information

Get started

Creation of networks

Network analysis with Pajek

Visualization with Pajek

Workshops and seminars:

Workshop Tomsk 2019

Worskshop HSE 2021

Seminar HSE 2021

Seminar Minor HSE 2022/2023

Seminars Bachelors HSE 2023

Workshop MASNA - June, 29, 2023

Semiars video

Summer schools

Summer school bibliometrics 2019

Summer school CSR 2022

Summer school ANR-Lab 2022

Workshop plan

- 1. Overview of Pajek main capabilities observing:
- Basic operations in Pajek:
 - Creation of networks
 - Calculation of the basic metrics for individual nodes and whole networks
 - Networks visualization
- Advanced operations in Pajek:
 - Two-mode networks and multiplication
 - Acyclic networks
 - Temporal networks
 - Blockmodeling
- 2. Using Pajek in practice: Studying SNA development with bibliometric network analysis

Network definition

The **network** is based on two sets - a set of **nodes** (vertices) representing the selected units of analysis and a set of **lines** (links) representing the connections between the units of analysis, which together form a **graph**.

The line can be directed (arc) or undirected (edge).

Nodes and lines can contain additional data - characteristics / **attributes** (name, type, value) - that can be measured or calculated.

Network = Graph + Data

Visualization by: Vladimir Batagelj

Different types of networks

Network data

Directed vs. Undirected links

One vs. several types of links

One vs. several types of nodes

Single static vs. dynamic (panel) monitoring

Unique links (genealogical)

Network types

Networks with directional / non-directional / mixed links

Multiple relations (multiplex) - networks with several types of links

2-mode - bimodal networks

Multilevel - networks with several types of links and nodes

Temporal, dynamic networks

Specialized networks (p-graphs, Petri net)

Different types of networks

Network data

Directed vs. Undirected links

One vs. several types of links

One vs. several types of nodes

Single static vs. dynamic (panel) monitoring

Unique links (genealogical)

Network types

Networks with directional / non-directional / mixed links

Multiple relations (multiplex) - networks with several types of links

2-mode - bimodal networks

Multilevel - networks with several types of links and nodes

Temporal, dynamic networks

Specialized networks (p-graphs, Petri net)

1. Overview of Pajek main capabilities:

- Basic operations in Pajek:
 - Creation of networks
 - Calculation of the basic metrics for individual nodes and whole networks
 - Networks visualization

Network data format: set of nodes and links


```
V = \{a, b, c, d, e, f, g, h, i, j, k, l\}
A = \{(a,b), (a,d), (a,f), (b,a), \}
          (b, f), (c, b), (c, c), (c, g)_1,
           (c,g)_2,(e,c),(e,f),(e,h),
           (f,k),(h,d),(h,l),(j,h),
          (I, e), (I, g), (I, h)
\mathcal{E} = \{(b:e), (c:d), (e:g), (f:h)\}
\mathcal{G} = (\mathcal{V}, \mathcal{A}, \mathcal{E})
\mathcal{L} = \mathcal{A} \cup \mathcal{E}
```

*Vertices 1 "a"	12 0.1020 0.3226	
2 "b" 3 "c" 4 "d" 5 "e" 6 "f"	0.2860 0.0876	
3 "c"	0.5322 0.2304	
4 "d"	0.3259 0.3917	
5 "e"	0.5543 0.4770	
6 "f"	0.1552 0.6406	
7 "g"	0.8293 0.3249	
8 "h"	0.4479 0.6866	
9 "i"	0.8204 0.8203	
10 "j"	0.4789 0.9055	
11 "k" 12 "l"	0.1175 0.9032	
	0.7095 0.6475	
*Arcs 1 2		
2 1		
1 4		
2 1 1 4 1 6 2 3 3 3 3 7 7 7 3 5 5 8		
2 6		
3 2		
3 3		
3 7		
3 7		
5 3		
5 6		
5 8		
6 11		
8 4		
10 8		
12 5		
12 7		
8 12		
12 8		
*Edges		
2 5 3 4 5 7		
3 4	Link weight can b)
5 7	(third column)	
6 8	(tillia coluitili)	

be added

Network data format: links of nodes with "neighbors"

$$N_A(a) = \{b, d, f\}$$

 $N_A(b) = \{a, f\}$
 $N_A(c) = \{b, c, g, g\}$
 $N_A(e) = \{c, f, h\}$
 $N_A(f) = \{k\}$
 $N_A(h) = \{d, l\}$
 $N_A(j) = \{h\}$
 $N_A(l) = \{e, g, h\}$
 $N_E(e) = \{b, g\}$
 $N_E(c) = \{d\}$
 $N_E(f) = \{h\}$

Network data format: adjacency matrix

	а	b	C	d	e	f	g	h	i	j	k	1
а	0	1	0	1	0	1	0	0	0	0	_	0
b	1	0	0	0	1	1	0	0	0	0	0	0
C	0	1	1	1	0	0	2	0	0	0	0	0
d	0	0	1	0	0	0	0	0	0	0	0	0
e	0	1	1	0		1	1	1	0	0	0	0
f	0	0	0	0	0	0	0	1	0	0	1	0
g	0	0	0	0	1	0	0	0	0	0	0	0
h	0	0	0	1	0	1	0	0	0	0	0	1
i	0	0	0	0	0	0	0	0	0	0	0	0
j	0	0	0	0	0	0	0	1	0	0	0	0
k	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	1	0	0	0	0

Difficulty with distinguishing between displaying two reciprocal links (a, b) and non-directional links (b, e)

*Ve	ert	iic	ces	3	12	2					
	1 '	'a'	•		0.	.10)2()	0.	. 32	226
2		'b'			0.	. 28	360)	0.	.08	376
- 3	3 '	'c'	•		0.	. 53	322	2			304
	4 '	'd'	•		0.	. 32	259	9	0.	. 39	917
	5 '	'e'	•		0.	. 55	543	3	0.	. 47	770
('f'				. 15					106
	7 '	' g'	•		0.	. 82	293	3	0.	. 32	249
	3 '	'h'	•		0.	. 44	179	9			366
	9 '	'i'	•		0.	. 82	204	1			203
1() '	'j'	•			. 47)55
13		'k'				. 11					32
12		'1'			0.	.70	95	5	0.	. 64	175
*Ma											
0	1	0		0	1	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	0	0	0
0	1	1	1	0	0	2	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	1	1	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	1	0	0	1	0
0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	1	1	0	0	0	0

Network data format: adjacency matrix

Binary matrix - no connection weight, only the presence / absence of the link itself

Friendship

	Jim	Jill	Jen	Joe
Jim	ı	1	0	1
Jill	1	ı	1	0
Jen	0	1	ı	1
Joe	1	0	1	-

Proximity

	Jim	Jill	Jen	Joe
Jim	ı	3	တ	2
Jill	3	-	1	15
Jen	9	1	ı	3
Joe	2	15	3	-

Jen Jim Jim Joe

Weighted matrix - presence of link weight

Additional information

Network Research

- **clu** clustering: partition of nodes – nominal or ordinal data about nodes (node belongs to the cluster/group)
- **vec** vector: numeric data about nodes (the property has value on node);
- **per** permutation: ordering of nodes (node is at the certain position)

When collecting the network data consider to provide as much properties as possible.

Wolfe Monkey Data

inter.net	inter.net	sex.clu	age.vec	rank.per
*Vertices 20 1 "m01" 2 "m02" 3 "m03" 4 "m04" 5 "m05" 6 "f06" 7 "f07" 8 "f08" 9 "f09" 10 "f10" 11 "f11" 12 "f12" 13 "f13" 14 "f14" 15 "f15" 16 "f16" 17 "f17" 18 "f18" 19 "f19" 20 "f20" *Edges 1 2 2 1 3 10 1 4 4	1 6 5 1 7 9 1 8 7 1 9 4 1 10 3 1 11 3 1 12 7 1 13 3 1 14 2 1 15 5 1 16 1 1 17 4 1 18 1 2 3 5 2 4 1 2 5 3 2 6 1 2 7 4 2 8 2 2 9 6 2 10 2 2 11 5 2 12 4 2 13 3 2 14 2	*vertices 20 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	*vertices 20 15 10 10 10 8 7 15 5 11 8 9 16 10 14 5 7 11 7 5 15 4	*vertices 20 1 2 3 4 5 10 11 6 12 9 7 8 18 19 20 13 14 15 16 17

0 is not allowed as node number

14th Summer School

Pajek

16

Link to the workshop materials:

https://github.com/Daria-Maltseva/pajek/wiki/14ss2023

1. Overview of Pajek main capabilities observing:

- Advanced operations in Pajek:
 - Two-mode networks and multiplication
 - Acyclic networks
 - Temporal networks
 - Blockmodeling

1. Overview of Pajek main capabilities observing:

- Advanced operations in Pajek:
 - Two-mode networks and multiplication
 - Acyclic networks
 - Temporal networks
 - Blockmodeling

Network data format: other network types

Two-mode network:

It is necessary to distinguish between nodes belonging to mode 1 and mode 2:

```
*Vertices 5 2
```

1 "Author 1"

2 "Author 2"

3 "Book1"

4 "Book2"

5 "Article"

*Edges

1 2

1 5

2 4

2 5

Network data format: other network types

Temporal network:

2 approaches:

- Set of networks for each time period
- Fixing the existence of a node or connection in a certain period:

```
*Vertices 3
1 "a" [5-10,12-14]
2 "b" [1-3,7]
3 "e" [4-*]
*Edges
1 2 1 [7]
1 3 1 [6-8]
```

Network (input) file formats should provide a means to express different types of networks. All important data for analysis should be recorded. Christakis, N. A., & Fowler, J. H. (2007). <u>The spread of obesity in a large social network over 32 years</u>. New England journal of medicine, 357(4), 370-379. <u>Видео</u>

1. Overview of Pajek main capabilities observing:

- Advanced operations in Pajek:
 - Two-mode networks and multiplication
 - Acyclic networks
 - Temporal networks
 - Blockmodeling

Bibliometric network analysis

Bibliometrics is the application of mathematical and statistical methods to the study of books, periodicals, and other publications.

Types of bibliometric network analysis

Based on citation:

- Citation
- Co-citation
- Bibliographic coupling between works, journals, authors, teams of different levels

Based on co-authorship:

- Co-authorship
- Collaboration (normalized data)

Based on co-presence of other units of analysis:

Keyword co-occurence

To create most networks, the **network multiplication** procedure is used:

$$c_{i,j} = \sum_{k \in N_A(i) \cap N_B^-(j)} a_{i,k} \cdot b_{k,j}$$

If all weights in networks \mathcal{N}_A and \mathcal{N}_B are equal to 1 the value of $c_{i,j}$ counts the number of ways we can go from $i \in \mathcal{I}$ to $j \in \mathcal{J}$ passing through \mathcal{K} .

2. Using Pajek in practice:

Studying SNA development with bibliometric network analysis

Studying the current state of the SNA field

Linton Freeman – the following periods in SNA development:

- mid 19th century 1920s –
 Prehistory
- 1930–1940s "Birth and Death"
- 1940-1960s "Dark Ages"
- 1970s "Growing up"
- 1990s the institutionalization of SNA
- 2000s the "invasion" of physicists, Network Science

Freeman, L. (2004). <u>The development of social network analysis</u>. A Study in the Sociology of Science, 1(687), 159-167

Watts, D. J. (2004). The "new" science of networks. Annual review of sociology, 243-270.

2010s: New "invasions" into SNA

- by behavioral biologists

Data:

- 70,792 records obtained for the query "social network*" in WoS
- 1, 297, 133 of works (hits and cited only)
- 93, 011 authors
- 32, 409 keywords
- 8, 943 journals

Analysis of one-mode and two-mode derived networks

Maltseva D., Batagelj V. Social network analysis as a field of invasions: bibliographic approach to study SNA development, Scientometrics, 2019. Vol. 121. No. 2. P. 1085-1128.

Main path analysis of network of citations between works *Cite*

Social sciences

NEWMAN M{1999}60:7332 VALENTE_T{1996}18:69 FREEMAN_L{1991}13:141 STEPHENS_K{1989}11:1 MIZRUCHI M{1984}6:193 MARIOLIS_P{1982}27:571 MCPHERSO_J{1982}3:225 BURT_R{1980}45:821 BURT_R{1980}6:79 BURT_R{1979}6:211 BURT R{1978}7:189 BURT_R{1977}56:551 BURT_R{1977}56:106 ALBA_R{1976}5:77 WHITE_H{1976}81:730 BREIGER_R{1975}12:328 GRANOVET_M{1973}78:1360 HOLLAND_P{1970}76:492 CARTWRIG_D{1956}63:277 HEIDER_F{1946}21:107 HEIDER_F{1944}51:358

Network science (physicists)

LUSSEAU_D{2008}75:1809 NEWMAN M{2006}74:036104 BOCCALET_S{2006}424:175 CLAUSET_A{2004}70:066111 NEWMAN_M{2004}38:321 NEWMAN_M{2004}69:026113 NEWMAN_M{2003}45:167 NEWMAN M{2003}67:026126 NEWMAN_M{2002}66:016128 ALBERT_R{2002}74:47 NEWMAN_M{2001}64:025102 STROGATZ_S{2001}410:268 NEWMAN_M{2000}101:819 MOORE_C{2000}62:7059 NEWMAN_M{1999}60:7332 VALENTE_T{1996}18:69

Behavioral biology

MONTIGLI P{2018}8:1451 FISHER_D{2017}30:2088 SILK M{2017}132:137 FISHER_D{2017}86:202 CROFT_D{2016}12:52 SPIEGEL_O{2016}7:971 LEU_S{2016}111:23 FARINE_D{2015}84:1144 FARINE_D{2015}2:150057 FARINE_D{2015}28:547 FARINE_D{2015}104:E1 SILK_M{2014}156:701 FARINE_D{2014}89:141 APLIN L{2013}16:1365 FARINE_D{2012}84:1271 CROFT_D{2011}26:502 SUEUR_C{2011}73:703 =SUEUR_C{2011}73:703 LEHMANN_J{2011}73:775 BRENT_L{2011}73:720 VOELKL_B{2010}64:1449 KASPER_C{2009}50:343 RAMOS-FE_G{2009}63:999 =LUSSEAU_D{2009}63:1067 LUSSEAU_D{2008}75:1809 NEWMAN_M{2006}74:036104

Figure 6: SPC net: Main path by fragments – sociology, physics, biology (2nd and 3rd parts starts with two works from the previous group)

Number of publications for hits and cited only works per year

Fig. 2 CiteN: Distribution of hits (left) and terminal works (right) by years

Maltseva D., Batagelį V. Social network analysis as a field of invasions: bibliographic approach to study SNA development // Scientometrics. 2019. Vol. 121. No. 2. P. 1085-1128.

Top-25 most cited papers

Table 2 CiteN: The most cited works—indegree					
i	Freq	id			
1	5348	WASSERMA_S(1994):			
2	4471	GRANOVET_M(1973)78:1360			
3	2906	*WATTS_D(1998)393:440			
4	2614	*BARABÁSI_A(1999)286:509			
5	2561	FREEMAN_L(1979)1:215			
6	2447	BOYD_D(2007)13:210			
7	2429	MCPHERSO_M(2001)27:415			
8	2330	BURT_R(1992):			
9	1886	COLEMAN_J(1988)94:95			
10	1572	*NEWMAN_M(2003)45:167			
11	1520	*GIRVAN_M(2002)99:7821			
12	1510	PUTNAM_R(2000):			
13	1285	*ALBERT_R(2002)74:47			
14	1240	GRANOVET_M(1985)91:481			
15	1192	SCOTT_J(2000):			
16	1171	EVERETT_M(2002):			
17	1166	*NEWMAN_M(2004)69:026113			
18	1093	COLEMAN_J(1990):			
19	1058	STEINFIE_C(2007)12:1143			
20	1034	*FORTUNAT_S(2010)486:75			
21	999	BORGATTI_S(2002):			
22	945	CHRISTAK_N(2007)357:370			
23	867	FREEMAN_L(1977)40:35			
24	854	HANNEMAN_R(2005):			
25	800	LIN_N(2001):			

(Sub)network of citations between journals

Fig. 11 Citations among journals-main island

Maltseva D., Batagelj V. Journals Publishing Social Network Analysis // Scientometrics. 2021. Vol. 126. No. 4. P. 3593-3620.

(Sub)network of bibliographic coupling between journals

Fig. 12 Cj network: journals

Maltseva D., Batagelj V. Authors in the Field of Social Network Analysis: Citation and Bibliographic Coupling. Scientometrics (under review)

(Sub)network of bibliographic coupling between authors

Network science (physicists)

Social sciences

Social sciences

Maltseva D., Batagelj V. Authors in the Field of Social Network Analysis: Citation and Bibliographic Coupling. Scientometrics (under review)

Figure 12: Jaccard network ACoj: General islands

The current state of the SNA field: some conclusions

Is the field still growing?

Starting from its institutionalization in the 1980–90s, SNA has grown significantly, both in terms of the number of publications and the number of disciplines involved in the research using the SNA approach. The number of publications shows exponential growth, and on average it doubles every 3 years.

What are the disciplines involved?

The analysis confirmed the previous studies on SNA development using citation network analysis. Up to the middle of 1990s the most "important" works belong to social sciences, and starting from the 2000s the field experienced the "invasion of the physicists" leading to the establishment of Network science. To our surprise, from the 2010s both groups experience the "invasion" of scientists from a completely different field—animal SNA. This does not mean that either social scientists or physicists are no longer presented in the field—it means that the new group is more active both in the number of publications and citations of each other.

What are the most important and influential works?

Despite the "invasions", the most cited works still belong to the social scientists—with Wasserman, Faust, and Granovetter on the top. Other highly cited works are from social scientists, physicists, and computer scientists. The works of physicists are cited by the newly established group of the animal SNA.

Studying Pajek at MASNA

Vladimir Batagelj

- Introduction to Network Analysis
- Advanced Network analysis methods

The structure of the curriculum of the Master's programme "Applied Statistics with Network Analysis", 2023/2024

	1 module	2 module	3 module	4 module
	Introduction to Statistics Programming in R and Python	Probability Theory Introduction to Network Analysis	— Data Mining	
	Contemporary Data Analysis: Met Interdisciplinary Research	nodology and Methods of	— Contemporary Decision Sciences:	an Integrated Perspective
ear		Applied Linear Models		
1⁴ year			Machine Learning Exploratory Data Analysis	Advanced Network Analysis Methods Categorical Data Analysis Multivariate Data Analysis
			Nonparametric Theory and Data A	nalysis
	Term Paper Research Seminars "Computational	I Social and Network Sciences" or "Appl	ication of Network Theory to Business A	analytics and Social Networks"
		Methods of Statistical Consulting		
	Stuctural Equation Modeling			
2 nd year	Unstructured Data Analysis Time Series Social Network Analysis with R		Multilevel Models Bayesian Data Analysis Stochastic Models	
2 nd	Statistical Methods of Social Network Analysis			•
	Research Seminar "Working with I Project Seminar and working with			
			Work Experience Internship	Graduation Master Thesis

Key Compulsory Courses Electives Practical Work (Compulsory)