Operating systems Real-Time Scheduler

Enrico Fraccaroli

enrico.fraccaroli@univr.it

Table of Contents

- 1. Real-Time Systems
 - 1.1. Definition
 - 1.2. Time consistency
- 2. Real-Time Policies
 - 2.1. Priority and Niceness
 - 2.2. Preemption
 - 2.3. Policies Behaviour
- 3. Implementation Steps in MentOs
- 4. Backup Slides
 - 4.1. Earliest Deadline First (EDF)
 - 4.2. Rate Monotonic (RM)

Real-Time Systems

Real-Time Systems

Definition

Definition

Definition (Real-Time Operating System)

A real-time operating system (RTOS) is a **time-bound** system which has well-defined, fixed **time constraints**.

We distinguish between:

- Soft RTOS: which can usually or generally meet a deadline;
- Hard RTOS: which can deterministically meet a deadline.

Furthermore, they are either:

- 1. **Event-driven**: system switches between tasks based on **priorities**;
- 2. **Time-sharing**: system switches tasks based on **clock interrupts**.

Operating systems Real-Time Scheduler 5 / 28

Real-Time Systems

Time consistency

Real-Time Operating Systems

Time consistency

In a RTOS, **consistency** over the amount of time it takes to **accept and complete** an application's task is of utmost importance. The variability of this time-span is called "*jitter*".

In hard RTOS, *jitter* is not acceptable, it destroys determinism.

In Linux there are three classes of processes (linux/include/linux/sched.h):

```
/// Scheduling Policies
#define SCHED_OTHER 0 ///< standard round-robin policy (time-sharing);
#define SCHED_FIFO 1 ///< a first-in, first-out policy (event-driven);
#define SCHED_RR 2 ///< a round-robin policy (event-driven).
```

Linux supports real-time scheduling **out of the box**.

- **P.S.**: That's true, but the only issue is that **latencies** may not satisfy the hard real-time requirements of critical applications.
- **P.P.S.**: If you look at the man page of sched_setscheduler system call, it will give you more details about these policies.

Operating systems Real-Time Scheduler 9 / 28

Priority and Niceness

Priority and Niceness (1/2)

Going back to what we saw with **MentOs**, each process has a sched_entity struct associated with it. Inside this struct we have the prio field, with values ranging from 0 to 139, explained as follows:

- 0 to 99 is the real-time "priority" range;
- 100 to 139 is the "niceness" range.

Both SCHED_FIFO and SCHED_RR have a prio ranging from 0 to 99. While SCHED_OTHER, has no actual "priority" value, but it has a "niceness" value ranging from 0 to 39 identified by a prio ranging from 100 to 139.

It may sound confusing, but to put it simple, we use the **same variable** to manage both **priority** and **niceness**, what changes is the **range**.

Priority and Niceness (2/2)

Numeric Priority	Relative Priority	Tasks Nature	Time Quantum
0	Highest		200 ms
•	•	Real-Time	-
•	•	Tasks	-
•			•
99			ē
100 [nice: 0]			
•	•	Other	-
•	•	Tasks	•
139 [nice: 39]	Lowest		20 <i>ms</i>

Time quantum: the maximum amount of contiguous CPU time it may use before yielding the CPU to another process of the same priority.

Preemption

Preemption (1/2)

All runnable processes have entries in the *scheduler database*. The *scheduler database* is an array of 140 lists, **one list for each priority level**.

The scheduler **orders** the processes on each priority level list by placing the process that should:

- run next, at the head of the list;
- wait the longest, at the tail of the list.

Preemptive Priority Scheduler

The scheduler updates the *scheduler database*, whenever an event occurs. If **a process** in the database now has a **higher priority** than that of the **running process**, the running process is **preempted** and placed back into the *scheduler database*. Then, the **highest priority process** is made the **running** process.

Let us go back at the priority lists...

When a process is placed into a priority list in the scheduler database, it is placed at the **tail** of the list **unless it has just been preempted**. If it has just been preempted, the processes scheduling policy determines whether it is inserted at the head (real-time scheduling policy) or the tail (timeshare scheduling policy).

Operating systems Real-Time Scheduler 15 / 28

Policies Behaviour

Behaviour SCHED_FIFO

A SCHED_FIFO process runs until either it is blocked by an I/O request, it is preempted by a higher priority process, or it calls sched_yield.

Behaviour SCHED_RR (1/2)

SCHED_RR is a simple enhancement of SCHED_FIFO, and the same rules of SCHED_FIFO are applied. However, each process is only allowed to run for a maximum time quantum.

We distinguish between two cases:

- If a SCHED_RR process has been running for a time period equal to or longer than the time quantum, it will be put at the tail of the list for its priority.
- A SCHED_RR process that has been preempted by a higher priority process and subsequently resumes execution as a running process will complete the unexpired portion of its round-robin time quantum.

Operating systems Real-Time Scheduler 18 / 28

Behaviour SCHED_RR (2/2)

19 / 28

Implementation Steps in MentOs

Implementation Steps

Before implementing the real algorithm we need to extend the data-structures of MentOs, to manage the whole mechanism.

First, you need to get accustomed with the <code>list_head</code> data structure. It is used to **manage arrays** inside the kernel. The following **guide** contains the section *Kernel doubly-linked list*, which explains how the <code>list_head</code> works: <code>https://mentos-team.github.io/MentOS/doc/fundamental_concepts.pdf</code>

These lists are required to build the 140 lists array of the scheduler.

Implementation Steps

Second, I would suggest checking what the struct sched_entity contains:

```
struct sched_entity {
  int prio; // priority
  time_t start_runtime; // start execution time
  time_t exec_start; // last context switch time
  time_t sum_exec_runtime; // overall execution time
  time_t vruntime; // weighted execution time
}
```

and how its fields are updated.

Implementation Steps

Third, I would suggest checking the content of mentos/inc/process/prio.h.

```
#define MAX_NICE +19
#define MIN_NICE -20
#define NICE_WIDTH (MAX_NICE - MIN_NICE + 1)

#define MAX_RT_PRIO 100
#define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
#define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)

#define NICE_TO_PRIO(nice) ((nice) + DEFAULT_PRIO)
#define PRIO_TO_NICE(prio) ((prio)-DEFAULT_PRIO)

#define USER_PRIO(p) ((p)-MAX_RT_PRIO)

static const int prio_to_weight[NICE_WIDTH];
```

and check the sys_vfork function to see how the new_process->se.prio is initialized.

Backup Slides

Backup Slides

Earliest Deadline First (EDF)

		Burst Time	Deadline	Period
	T1	3	7	20
	T2	2	4	5
	Т3	2	8	10
Tasks		8	10	

	T1 T2 T3	3 2 2			7 4 8			20 5 10	_				
† <i>Tasks</i> T3		8		10							18		20
T2 T2 4	5		9	10			14	15				19	20
T1 0 1 2 3 4	1 I 5 6	7 8	9	10	11	T T	3 14	15	16	17	18	19	20 Timę 20

	T1 T2 T3	3 2 2		7 4 8	20 5 10	_	
Tasks		8	10)		- ¹	8 20
T2 T2 4	5	•	9 10)	14 15		19 20
T1 T1 0 1 2 3 4	5 6	7 8	9 10	11 12	13 14 15	16 17 18	19 20

_		Barse Time	Beaume		
	T1	3	7	20	
	T2	2	4	5	
	Т3	2	8	10	
Tasks	T3	8	10		18 20
T2 T2 4	5	9	10	14 15	19 20
T1 T1 0 1 2 3 4	5 6	7 7 8 9 1		1 1 3 14 15 1	7ime 6 17 18 19 20

		Burst Time	Deadline	Period	
•	T1	3	7	20	
	T2	2	4	5	
	T3	2	8	10	
Tasks	T		10		18 20
T2 T2 4	5	T2 9	10	14 15	19 20
T1 T1		7			20 Time
0 1 2 3 4	5 6	7 8 9 1	0 11 12 13	3 14 15 1	6 17 18 19 20

		Duist Time	Deadillic	i criou			
	T1	3	7	20			
	T2	2	4	5			
	T3	2	8	10			
Tasks	T3	8	10			18	20
T2 T2 4	5	T2 9	T2	14 15			19 20
T1 T1 0 1 2 3 4	5 6	7 7 8 9 1	10 11 12 13	3 14 15 1	1 I 6 17	18 1	20 Time 9 20

_		surst Time	Deadine	Period		
	T1	3	7	20		
	T2	2	4	5		
	T3	2	8	10		
Tasks	T3		¹⁰ T3		18	20
T2 T2 4	5	T2 9	10 T2	14 15		19 20
T1 T1 0 1 2 3 4	5 6	7 8 9	10 11 12 13	14 15 1	6 17 18 1	20 Time 9 20

T1 3 7 20	
T2 2 4 5	
T3 2 8 10	
Tasks T3 8 10 T3 18 120	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
T1	

Backup Slides

Rate Monotonic (RM)

		Burst Time	Period		
-	T1	3	20		
	T2	2	5		
	Т3	2	10		
Tasks		10			20
T2 T2 5		10		15	20
<u>T1</u>			10 13 14	15 16 17 10	20 Time
0 1 2 3 4 5 6	1	8 9 10 11	12 13 14	15 16 17 18	19 20

	Duist Time	i eriou		
T1	3	20	-	
T2	2	5		
Т3	2	10		
	10		-	20
	10		15	20
1 1 6 7		12 13 14	1 1 1 1 15 16 17 18	7ime 19 20
	T2	T1 3 7 2 7 3 2 10 10 10 10 10 10 10 10 10 10 10 10 10	T2 2 5 T3 2 10	T1 3 20 T2 2 5 T3 2 10

Burst Time Period

		Burst Time	Period		
	T1	3	20		
	T2	2	5		
	T3	2	10		
Tasks		10		•	20
T2 T2 5				15	20
T1	7	8 9 10 11	12 13 14	15 16 17 18	19 20 Time

Ruret Time Daried

		Burst Time	Period		
-	T1	3	20		
	T2	2	5		
	Т3	2	10		
Tasks		10			20
T2 T2 T2	2	10		15	20
T1	7 8	3 9 10 11	12 13 14	15 16 17 18 1	20 Time 9 20

		Duist Time	i criou	_	
	T1	3	20		
	T2	2	5		
	Т3	2	10		
Tasks		10		•	20
T2 T2 T5	2			15	20
T1 T		T1	12 13 14	15 16 17 18	20 Time 19 20

Burst Time Period

		Durst Time	Period		
	T1	3	20		
	T2	2	5		
	Т3	2	10		
Tasks		10			20
T2 T2 T2	2	10 T2		15	20
T1		Γ1 	12 13 14	1 1 1 15 16 17	18 19 20

Ruret Time Daried

	L	ourst Time	i enou	_	
	T1	3	20		
	T2	2	5		
	T3	2	10		
Tasks		10	T3	=	20
T2 T2 5	2	10 T2		15	20
T1	71 7 8	9 10 11	12 13 14	15 16 17 18	20 Time 19 20

Burst Time Period

	Burst Time	Period
T1	3	20
T2	2	5
T3	2	10

