

BERT & its family

Lecturer: Hiếu Trần

OUTLINE

- What is Contextualized Word Embedding?
- Types of Learning
- Pre-trained Language Models
- Downstream Tasks

What is Contextualized Word Embedding?

WORD EMBEDDING

- Word embeddings are the basis of deep learning for NLP
- Word embeddings (word2vec,
 GloVe) are often pre-trained on text
 corpus from co-occurrence statistics

WORD EMBEDDING: Examples

Visualizing Word2Vec using Tensorflow: https://projector.tensorflow.org/

WORD EMBEDDING: Limitations

- TF-IDF: based on the frequency of words and the rarity of the words, not leverage the context i.e. word co-occurrence
- Word2Vec: based on word co-occurrences in local context
- GloVe: based on word co-occurrences in global context

Limitation: Don't have context information!!!

- Combine all the different meanings of the word into one vector
 - Anh ta sử dụng kiếm rất điều luyện.
 - Kiếm ăn bây giờ khó lắm.

IMPROVEMENTS IN NLP

Word Embedding
Word2Vec, GloVe

Add context
information

Contextualized
Word Embedding
Cove

Cove

Add context
information

Contextualized
Word Embedding
Cove

Capture
meaning of
words better

Add context
information

Pretrained Language
Models
ELMo, BERT

CONTEXTUAL WORD VECTORS (CoVe)

CoVe:

- Learn word embedding by an encoder in seq-to-seq (biLSTM) machine translation model
- Use GloVe as an initial word embedding
- Need supervised data

EMBEDDINGS FROM LANGUAGE MODEL (ELMo)

ELMo:

- Predict a token based on the history
- Concatenation of right-to-left and left-to-right LSTMs

Types of Learning

TYPES OF LEARNING

- Multi-task learning is a general term for training on multiple tasks.
- Transfer learning is a type of multi-task learning where we only really care about one of the tasks.
- Pre-training is a type of transfer learning where on objective is used first.

WHAT IS MULTI-TASK LEARNING?

- Train representations to do well on multiple tasks at once.
- When to use multi-task?
 - When one of your tasks has many fewer data.
 - e.g., high-resource language → low-resource language
 - When your tasks are related.
 - e.g., predicting POS tagging and punctuation.

WHAT IS MULTI-TASK LEARNING?

- Train representations to do well on multiple tasks at once.
- When to use multi-task?
 - When one of your tasks has many fewer data.
 - e.g., high-resource language → low-resource language
 - When your tasks are related.
 - e.g., predicting POS tagging and punctuation.

WHEN USE MULTI-TASK LEARNING?

- When one of your tasks has many fewer data.
 - e.g., high-resource language → low-resource language
- When your tasks are related.
 - e.g., predicting POS tagging and punctuation.

WHAT IS PRE-TRAINING?

- First train on one task, then train on another.
- Widely used in word embeddings, contextualized word representations.

WHY NEED PRE-TRAINING?

- Pre-training: train on unlabeled data over different pre-training objectives
 - → Self-supervised pre-training
- Fine-tuning: tune parameters using labeled data from the downstream tasks

WHAT MAKE PRE-TRAINED MODELS?

Pre-training methods often refer to a combination of

- Model: The underlying neural network architecture
- Training Objective: What objective is used to pretrain
- Data: What data the authors chose to use to train the model

Transformer Architecture: Review

Pre-trained Language Models

BERT

- BERT Bidirectional Encoder Representations from Transformers
- Main idea: Propose two pre-training objectives for bidirectional encoders
 - MASKED LANGUAGE MODEL
 - NEXT SENTENCE PREDICTION
- Strengths:
 - Just fine-tune BERT model for downstream tasks to outperform many heavily-engineered tasks
 - BERT advances the state of the art for eleven NLP tasks
 - question answering, textual entailment, sentence similarity

INPUT REPRESENTATION

• WordPiece Tokenizer w/ [CLS] token, subword representation

Source: https://arxiv.org/pdf/1810.04805.pdf

MASKED LANGUAGE MODEL

 Idea: Predict the original word of a masked word based only on its context

Source: https://jalammar.github.io/illustrated-bert/

MASKING STRATEGY

- 15% of the words are masked at random
 - Tôi muốn đến [cửa hàng] để mua một [thùng] sữa
 - Tôi muốn đến [MASK] để mua một [MASK] sửa
- Too little masking? Too expensive to train
- Too much masking? Not enough context
- Problem with MASK tokens?
 - Mask token never seen at fine-tuning

MASKING STRATEGY

- Do not always replace the masked words with [MASK] token
- Example: "Chó trông rất đáng yêu"
 - 80% were replaced by the [MASK] token: "Chó trông rất đáng [MASK]"
 - 10% were replaced by a random token: "Chó trông rất đáng chuối".
 - 10% is unchanged: "Chó trông rất đáng yêu"

NEXT SENTENCE PREDICTION

- Many downstream tasks are based on understanding the relationship between two sentences
 - Question Answer (QA) and Natural Language Inference (NLI)
- LM does not directly capture that relationship
- 50% of training data is "consecutive"

Source: https://jalammar.github.io/illustrated-bert/

EVALUATION FOR BERT: GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

MODEL DETAILS

Data	Wikipedia (2.5B words) + BookCorpus (800M words)				
Batch Size	131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)				
Training Time	1M steps (~40 epochs)				
Optimizer	AdamW, 1e-4 learning rate, linear decay				
Architecture	Using Transformer Encoder stack				
	BERT-Base: 12-layer, 768-hidden, 12-head, 110M-params	BERT-Large: 24-layer, 1024-hidden, 16-head, 340M-params			

BERT VARIANTS

Compari son	BERT	RoBERTa	ELECTRA	DeBERTa
Data	16GB	160GB	16GB for small & base	160GB
Pre-trained Task	Masked Language Model Next Sentence Prediction	Masked Language Model Using Dynamic Masking	Replaced Token Detection	Replaced Token Detection w/ Efficient Embedding Sharing
Parameters	Base: 110M Large: 340M	Base: 125M Large: 355M	Small: 14M Base: 110M Large: 335M	Small: 44M Base: 98M Large: 304M
Tokenization	WordPiece	Byte-Pair Encoding (BPE)	WordPiece	Byte-Pair Encoding (BPE)
Training	Described in slide 20	Larger batchsize, longer sequences input, longer training time	Faster training	500K steps

ELECTRA

Efficiently Learning an Encoder that Classifies Token Replacements Accurately

→ Every output position is used

DeBERTaV3

- Disentangled Attention
- Replaced Token Detection with Efficient Embedding Sharing

LONG TEXT

- Longformer (Beltagy et al. 2020): combine (local) sliding window and global attention
- BigBird (Zaheer et al. 2021): use sparse (global) attention mechanism
- RoFormer (Su et al. 2021): use Rotary Position Embedding

COMPACT PRE-TRAINED MODELS

- DistilBERT: Train a model to match the distribution of BERT (Knowledge Distillation)
- TinyBERT: Same as above but uses <u>layer-wise</u> KD.
- MobileBERT: Same as above but uses <u>inverted-bottleneck and blockwise</u> KD.
- ALBERT: Smaller embeddings, and parameter sharing across all layers.

MORE TRAINING OBJECTIVES

- Whole Word Masking
- SpanBERT (Joshi et al., 2019) → Span Masking + Span Boundary Objective
- StructBERT (Wang et al., 2019) → Word-level Objective + Sentence-level Objective

Vietnamese BERT

Comparison	PhoBERT	viELECTRA	ViDeBERTa	
Data	20GB (Wiki+News)	60GB (Oscar+News)	138GB CC100	
Pre-trained Task	Masked Language Model	Replaced Token Detection	Replaced Token Detection W/ Efficient Embedding Sharing	
Parameters	Base Large	Base: 125M	Xsmall: 22M Base: 86M Large: 304M	
Tokenization	Word-level fastBPE	Word Piece*	Word-level BPE	
Training	256len/500K steps	100 epochs	500K steps	

Downstream Tasks

EVALUATION FOR BERT: GLUE

- General Language Understanding Evaluation (GLUE) benchmark: Standard split of data to train, validation, test, where labels for the test set is only held in the server.
 - o https://gluebenchmark.com/
- Sentence pair classification
 - o MNLI, Multi-Genre Natural Language Inference
 - o QQP, Quora Question Pairs
 - QNLI, Question Natural Language Inference
 - **STS-B**, The Semantic Textual Similarity Benchmark
 - o **MRPC**, Microsoft Research Paraphrase Corpus
 - **RTE**, Recognizing Textual Entailment
 - WNLI, Winograd NLI is a small natural language inference dataset
- Single sentence classification
 - o **SST-2**, The Stanford Sentiment Treebank
 - CoLA, The Corpus of Linguistic Acceptability

COMMON DOWNSTREAM TASKS

- Sentiment Analysis
- Named Entity Recognition
- Natural Language Inference
- Question Answering

SINGLE SENTENCE CLASSIFICATION

Sentiment Analysis

- Tôi thích đọc sách -> Positive
- Tôi ghét phim kinh dị -> Negative
- Input: [CLS] Tôi thích đọc sách [SEP] ->
 Positive/Negative?

Other applications: Aspect-based Sentiment Analysis, Spam Detection, etc.

SENTENCE-PAIR CLASSIFICATION

Natural Language Inference

- Sent 1: Tôi làm nhiều việc tốt
- Sent 2: Tôi được mọi người yêu quý
- Sent 1 -> Sent 2: Entailment
- Input: [CLS] Tôi làm nhiều việc tốt [SEP] Tôi
 được mọi người yêu quý [SEP] ->
 Entailment/Contradiction/Neutral?

Other applications: Semantic Similarity, Ranking, etc.

TOKEN CLASSIFICATION

- Named Entity Recognition (NER): detect entities such as PER, LOC, ORG
- Text: Mark Zuckerberg cho ra đời Facebook trong phòng ký túc xá của mình tại Đại học Harvard vào ngày 4 tháng 2 năm 2004.
- Input: [CLS] Text [SEP]
- Output: B-PER, I-PER, O, O,...

Other applications: POS Tagging, Punctuation Prediction, etc.

QUESTION ANSWERING

- Detect answer span in paragraph
- Question: Đâu là thủ đô của Việt Nam?
- Paragraph: Hà Nội là thủ đô của nước Cộng hoà Xã hội chủ nghĩa Việt Nam, cũng là kinh đô của...
- Input: [CLS] Question [SEP] Paragraph [SEP]
- Output: start=0, end=2
- Answer: Hà Nội

QUESTION ANSWERING

FEATURE EXTRACTION

Which layer should be used?

Source: https://jalammar.github.io/illustrated-bert/

FEATURE EXTRACTION

Depend on the task

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER Dev F1 Score First Layer Embedding 91.0 . . . Last Hidden Layer 94.9 Sum All 12 95.5 Layers Second-to-Last 95.6 Hidden Layer Sum Last Four 95.9 Hidden Help Concat Last 96.1 Four Hidden

Source: https://jalammar.github.io/illustrated-bert/

FINE-TUNING STRATEGY

VietAl

- Train the entire architecture
- Train some layers while freezing others
- Freeze all layers
- Freeze all train an adapter

Why doesn't freeze all BERT layers during fine-tuning tasks?

Reference: https://arxiv.org/abs/1902.00751

PROMPT TUNING

Instead of fine-tuning, hold the model fixed and tune a fixed-size vector representation.

WHAT WE LEARN TODAY

- The different between word embeddings: Word2Vec, GloVe, CoVe, ELMo
- Types of learning: multi-task, transfer learning, pretraining.
- The architecture of BERT and its variants
- Introduction of downstream tasks: NLI, QA, NER, etc

Thank you!