Department of Computer Science and Engineering

FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW

Dr. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

CLASSICAL PROBLEMS OF SYNCHRONIZATION

(The Dining-Philosophers Problem)

The Dining-Philosophers Problem 1/2

- Consider five philosophers who spend their lives thinking and eating.
- The philosophers share a circular table surrounded by five chairs, each belonging to one philosopher.
- In the center of the table is a bowl of rice, and the table is laid with five single chopsticks.

The Dining-Philosophers Problem_{2/2}

• When a philosopher *thinks*, she does not interact with her colleagues.

- From time to time, a philosopher gets hungry and tries to pick up the two chopsticks that are *closest* to her (the chopsticks that are between her and, her left and right neighbors).
- A philosopher may pick up only one chopstick at a time. Obviously, she cannot pick up a chopstick that is already in the hand of a neighbor.
- When a hungry philosopher has both her chopsticks at the same time, she eats without releasing the chopsticks. When she is finished eating, she puts down both chopsticks and starts thinking again.

Solution_{1/3}

- One solution is to represent each chopstick with a semaphore.
- A philosopher tries to grab a chopstick by executing a wait()
 operation on that semaphore.
- She releases her chopsticks by executing the signal() operation on the appropriate semaphores.

Solution_{2/3}

The structure of philosopher i.

```
semaphore chopstick[5];
do {
    wait(chopstick[i]);
    wait(chopstick[(i+1) % 5]);
      eat for awhile */
    signal(chopstick[i]);
    signal(chopstick[(i+1) % 5]);
       think for awhile */
     while (true);
```


- Each philosopher picks up first the fork on the left and then the fork on the right.
- After the philosopher is finished eating, the two forks are replaced on the table.

Solution_{3/3}

- This solution, alas, leads to deadlock:
 - If all of the philosophers are hungry at the *same time*, they all sit down, they all pick up the fork on their left, and they all reach out for the other fork, which is not there.
 - > In this undignified position, all philosophers *starve*.

Homework

• Possible *remedies* to the deadlock problem.

Sleeping Barber Problem

References

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- 3. D M Dhamdhere, "Operating Systems: A Concept based Approach", 2nd Edition, TMH.

