Done By: Mohammed Aedil

Roll No: IIT 2018 179

01)

FIGURE:

-> First lets consider Camera 1:

$$2^{c}\omega_{\bar{p}} = \begin{bmatrix} 2^{k_{1}}z_{p} = -2^{k_{1}}x_{p} \\ 2^{c}\omega_{\bar{p}} = \begin{bmatrix} 2^{k_{1}}z_{p} = -2^{k_{1}}x_{p} \\ 2^{k_{1}}z_{p} = -2^{k_{1}}y_{p} \end{bmatrix} \Rightarrow k_{1}y_{p} = -k_{1}z_{p}$$

Camera Coerdinate =
$$\begin{bmatrix} -k' & Z_P \\ -k' & Z_P \end{bmatrix}$$
, $\begin{bmatrix} k' & Z_P \\ -k' & Z_P \end{bmatrix}$ (Axis is aligned)

→ Now lets consider Camera 2:

Coord.

$$= > \begin{bmatrix} 1 * ^{C} \omega_{\bar{p}} \\ 1 * ^{C} \omega_{\bar{p}} \end{bmatrix} = \begin{bmatrix} -2 & ^{K_{2}} \chi_{\bar{p}} \\ -2 & ^{K_{2}} \chi_{\bar{p}} \end{bmatrix}$$

$$C_{\omega_{\bar{p}}} = \begin{bmatrix} -2 & ^{K_{2}} \chi_{\bar{p}} \\ & & \\ & & \\ & & \\ &$$

As
$$|Cw_p = \frac{\kappa_2}{Z_p}|$$
 we get:

$$C_{\omega_{\bar{p}}} = \begin{bmatrix} k_2 \\ Z_p = -2 \end{bmatrix} = -2 \times 2 \times p$$

$$C_{\omega_{\bar{p}}} = \begin{bmatrix} k_2 \\ Z_p = -2 \end{bmatrix} = -2 \times 2 \times p$$

$$\begin{array}{c} x \times p = \left(-\frac{1}{2}\right) \times z_{p} \\ = > \times_{2} \times y_{p} = \left(-\frac{1}{2}\right) \times z_{p} \end{array}$$

Camera Coerdinate =
$$[(-1/2)^{\kappa_2} Z_P, (-1/2)^{\kappa_2} Z_P, \chi^2 Z_P]$$

$$-Z_{p} = (\frac{1}{2})Z_{p} + 3$$

$$-Z_{p} = (\frac{1}{2})Z_{p} + 3$$

$$(-\frac{1}{2})Z_{p} - 3 = 0$$

$$Z_{p} = \frac{3}{(-\frac{1}{2})} = (-6) \longrightarrow Z_{-coord} \text{ of World CS.}$$

Figure:

- B Epipolar Axis: The line connecting the two projection centers, 0'80" denoted in the figure as B'.
- Epipolar Line: The line joining the epipole on an Image plane to the projection of the real world point'x', on the Image plane. Denoted by the blue lines'.

•	Epipole: The projection of the opposite projection center on the
	initial image plane.
	from the figure:
	e' is the projection of G'' on E' .
	$\not\sim$ e" is the projection of o' on e'' .
	Greometrically:
	e' = (0' o'') \(\mathcal{E}'\)
	e" = (0' o") (E"
⊗	Epipolas Plane: This is the plane formed by connecting the projection
	centers and the point in the real world 'x'. Denoted
	by E' in the figure. (E = 0'0"x)
<u> </u>	
	Fundamental Matrix: It is used to encapsulate the intrinsic geometry
	that epipolar geometry follows. The fundamental
	matrix 'F' is a 3x3 matrix of rank 2.
	From the above figure,
	$P''(x) \cdot F \cdot P'(x) = 0$
$\widehat{\wp}$	Printing Matrix: 11/1000 as weets of a 2D to 2D as weets
<u> </u>	Projection Matrix: When converting from 3D to 2D 08 via-versa
	we make use of a transformation matrix, we
	call this meetsix the Projection Matrix.
	The also used in finding formula.
	Hs also used in finding Epipoles.
	e' = P' X "
	e' = P' X _{0"}

8	Calibrated Camera: A camera is said to be calibrated if the
	parameters of the camera are estimated and Set.
₩	Uncalibrated Camera: In contrary, if the parameters are not yet
	estimated, then its uncalibrated.
45	Intrinsic Parameters: In sample terms, all the parameters that have
	to do with the Image to Comera planes
	are called Intrinsic.
	They include focal length, optical cunter etc. During the Intrinsic parameter calibration there
	is loss of information, due to 3D to 2D conversion.
®	Extrinsic Parameters: In simple terms, those parameters that are affected
	in the world to Camera planes are called
	Extoinsic.
	Rotation and translation are good examples
	of these personneters. There is generally no loss
	ef data due to them being transformations
	€000 3D.