An introduction to Stanley symmetric functions

郭龙

Center for Combinatorics, Nankai University

July 8, 2020

Motivation of Stanley: Count the number of reduced decompositions of a permutation.

For 1 ≤ i ≤ n − 1, let s_i = (i, i + 1) denote the adjacent (or, simple) transposition. They satisfy the braid relations:

$$s_i s_j = s_j s_i,$$
 for $|i-j| > 1;$ $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}.$

• Each permutation w of $\{1, 2, ..., n\}$ can be written as a product of these s_i .

Example:
$$321 = s_1 s_2 s_1 = s_2 s_1 s_2$$
.

- A product of minimum length is called a reduced expression.
 - **Fact 1:** Two given reduced repressions of w can be transformed to each other by applying braid relations.
 - **Fact 2:** A given reduced repression of w can be transformed to a given reduced expression by applying braid relations & $s_i^2 = 1$.
- Let R(w) denote the set of reduced words of w, namely,

$$R(w) = \{(a_1, \dots, a_p): s_{a_1} \cdots s_{a_p} \text{ is a reduced expression of } w\}.$$

For example,
$$R(321) = \{(1,2,1), (2,1,2)\}.$$

How to count #R(w)?

It was observed for some small values of n that

$$\#R(w_0 = n \cdots 21) = f^{(n-1,\dots,2,1)}.$$

Stanley defined a class of functions in terms of Quasisymmtric Functions:

$$F_w(x) = \sum_{a \in R(w)} \sum_{(a,i)} x_{i_1} \cdots x_{i_p},$$

where, for $a=(a_1,\ldots,a_p)$ and $i=(i_1,\ldots,i_p)$,

$$a_k < a_{k+1} \Rightarrow i_k < i_{k+1}.$$

Notice that

$$\#R(w) = [x_1 \cdots x_p]F_w(x).$$

 $F_w(x)$ is now known as the Stanley symmetric function.

Why is $F_w(x)$ symmetric?

One should check that $F_w(x) = s_i \cdot F_w(x)$. Find a bijection $(a,i) \mapsto (a',i')$ such that

$$\cdots x_i^s x_{i+1}^t \cdots \qquad \mapsto \qquad \cdots x_i^t x_{i+1}^s \cdots$$

(For Schur functions: **The Bender-Knuth involution**)

Stanley found such a bijection. Very technical!

Wishful Thinking as a Proof Technique

Use **Schubert polynomials** or **nil-Coxeter algebras** to investigate the symmetry property of F_w .

Schubert polynomials $\{\mathfrak{S}_w(x)\colon w\in S_n\}$ can be defined inductively in terms of "divided difference operator".

- (1) For $w_0 = n \cdots 21$, $\mathfrak{S}_{w_0}(x) = x_1^{n-1} x_2^{n-2} \cdots x_{n-1}$;
- (2) If $w \neq w_0$, there exists a position k such that $w_k < w_{k+1}$. Set

$$\mathfrak{S}_w(x) = \partial_k \mathfrak{S}_{ws_k}(x) = \frac{\mathfrak{S}_{ws_k}(x) - \mathfrak{S}_{ws_k}(x_1, \dots, x_{k+1}, x_k, \dots, x_{n-1})}{x_k - x_{k+1}}$$

(independent of the choice of k since $\partial_i \partial_{i+1} \partial_i = \partial_{i+1} \partial_i \partial_{i+1}$, and $\partial_i \partial_i = \partial_i \partial_i$ for |i-j| > 1)

Billey-Jockusch-Stanley formula:

$$\mathfrak{S}_w(x) = \sum_{a \in R(w)} \sum_{(a,i) \& i_k \leq a_k} x_{i_1} \cdots x_{i_p}.$$

对比:

$$F_w(x) = \sum_{a \in R(w)} \sum_{(a,i)} x_{i_1} \cdots x_{i_p}.$$

S. Billey, W. Jockusch and R. Stanley, Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2 (1993), 345–374.

Stanley symmetric functions are stable Schubert polynomials.

Let

$$1^m \otimes w = 1 \cdots m(w_1 + m) \cdots (w_n + m).$$

An obvious bijection between R(w) and $R(1^m \otimes w)$:

$$(a_1,\ldots,a_p) \mapsto (a_1+m,\ldots,a_p+m).$$

Therefore,

$$F_w(x) = \lim_{m \to \infty} \mathfrak{S}_{1^m \otimes w}(x).$$

Fact. If $w_i < w_{i+1}$, then $\mathfrak{S}_w(x)$ is symmetric in x_i and x_{i+1} .

Check

$$\partial_i \mathfrak{S}_w = \frac{\mathfrak{S}_w - s_i \cdot \mathfrak{S}_w}{x_i - x_{i+1}} = 0.$$

By definition,

$$\partial_i \mathfrak{S}_w = \partial_i (\partial_i \mathfrak{S}_{ws_i}),$$

which vanishes using the fact that $\partial_i^2(f) = 0$ for any polynomial f.

Recalling

$$F_w(x) = \lim_{m \to \infty} \mathfrak{S}_{1^m \otimes w}(x),$$

we see that $F_w(x) = s_i \cdot F_w(x)$ for any i.

Hecke algebra: a vector space V + multiplication \times

 $\mathcal{H}(S_n)$: $V = \operatorname{Span}_{\mathbb{C}}\{T_w \colon w \in S_n\}$. The multiplication is determined by

$$T_w T_{s_i} = T_{ws_i},$$
 if $w_i < w_{i+1};$ $T_w T_{s_i} = a_i T_w + b_i T_{ws_i},$ if $w_i > w_{i+1};$

When $a_i = b_i = 0$ for any i, $\mathcal{H}(S_n)$ is called a nil-Coxeter algebra, denoted \mathcal{N}_n .

Equivalently, \mathcal{N}_n is an algebra determined by generators T_1, T_2, \dots, T_{n-1} and relations

$$T_i^2 = 0;$$
 $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1};$
 $T_i T_j = T_j T_i, \quad \text{for } |i-j| > 1.$

Viewing T_i as T_{s_i} , the set $\{T_w : w \in S_n\}$ is a basis.

Idea of Fomin and Stanley:

Let

$$A(x) = (I + xT_{n-1})(I + xT_{n-2}) \cdots (I + xT_1),$$

where I is the identity element. Consider

$$F(x_{\infty}) = A(x_1) A(x_2) A(x_3) \cdots$$

$$= (I + x_1 T_{n-1}) (I + x_1 T_{n-2}) \cdots (I + x_1 T_1)$$

$$(I + x_2 T_{n-1}) (I + x_2 T_{n-2}) \cdots (I + x_2 T_1)$$
...

Expand $F(x_{\infty})$:

$$F(x_{\infty}) = \sum_{x \in C} \overline{F}_w(x) T_w.$$

It can be easily checked that

$$\overline{F}_w(x) = \sum_{a \in R(w)} \sum_{(a,i)} x_{i_1} \cdots x_{i_p},$$

where, for $a = (a_1, \ldots, a_p)$ and $i = (i_1, \ldots, i_p)$,

$$a_k < a_{k+1} \Rightarrow i_k < i_{k+1}.$$

Theorem (Fomin-Stanley, 1994)

For
$$w \in S_n$$
, $F_w(x) = \overline{F}_w(x)$

To show $F_w(x) = s_i \cdot F_w(x)$, it is equivalent to proving

$$A(x_i)A(x_{i+1}) = A(x_{i+1})A(x_i).$$

In fact, it can be readily verified from the definition that

$$A(x)A(y) = A(y)A(x).$$

For example, when n = 2,

$$A(x)A(y) = (I + xT_1)(1 + yT_1) = I + xT_1 + yT_1 = A(y)A(x).$$

Now we have seen that $F_w(x)$ is indeed a symmetric function. Hence $F_w(x)$ can be expanded in the basis of Schur functions:

$$F_w(x) = \sum_{\lambda} c_{w,\lambda} s_{\lambda}(x).$$

Stanley conjectured that $c_{w,\lambda}$ are nonnegative (in other words, $F_w(x)$ is **Schur-positive**). This conjecture was confirmed by Edelman and Greene by developing the **Coxeter-Knuth insertion algorithm**.

P. Edelman and C. Greene, Balanced tableaux, Adv. Math. 63 (1987), 42–99.

RSK vs Hecke

Both RSK and Hecke can be applied to a word $a = (a_1, a_2, \dots, a_n)$ to generate an insertion tableau.

The Hecke algorithm was introduced in order to expand a stable Grothendieck polynomial in the basis of stable Grothendieck polynomials indexed by Grassmannian permutations.

When a is a **reduced word**, the Hecke algorithm specializes to the Coxeter-Knuth algorithm.

A.S. Buch, A. Kresch, M. Shimozono, H. Tamvakis and A. Yong, Stable Grothendieck polynomials and *K*-theoretic factor sequences, Math. Ann. 340 (2008), 359–382.

RSK

Let $a=(a_1,a_2,\ldots,a_n)$ be a word of positive integers. We first use RSK to generate an insertion tableau $P_{\rm RSK}(a)$. Construct a sequence

$$(P_0 = \emptyset, P_1, P_2, \dots, P_n = P_{RSK}(a)),$$

where P_i is the tableau by inserting a_i into P_{i-1} .

Suppose that P_{i-1} has been constructed. Let us generate the first row of P_i as follows.

- Case 1. a_i is \geq each entry in the first row. In this case, put a_i at the end of the first row. The insertion process terminates.
- Case 2. a_i is < some entry in the first row. In this case, locate the leftmost one $> a_i$, say x. Replace x by a_i , and then insert x into the second row using the same procedure.

Example. For a = (1, 2, 1), the tableaux P_i are illustrated as follows.

$$P_1 = \boxed{1}$$
, $P_2 = \boxed{1}$, $P_3 = \boxed{1}$

Hecke

Let (a_1, a_2, \ldots, a_n) be a word of positive integers. We next use the Hecke algoritm to generate an insertion tableau $P_{\text{Hecke}}(a)$. Construct a sequence

$$(P_0'=\emptyset,P_1',P_2',\ldots,P_n'=P_{\mathrm{Hecke}}(a)),$$

where P_i is the tableau by inserting a_i into P_{i-1} .

Suppose that P_{i-1}' has been constructed. Let us generate the first row of P_i' as follows.

- Case 1. a_i is > each entry in the first row. In this case, put a_i at the end of the first row. The insertion process terminates.
- Case 2. a_i = the largest entry in the first row. The insertion process terminates.
- Case 3. a_i is < some entry in the first row. In this case, locate the leftmost one > a_i , say x. If the first row is strictly increasing by replacing x by a_i , then replace x by a_i . Otherwise, keep the first row unchanged. Insert x into the second row by the same procedure.

Example. For a = (1, 2, 1),

$$P_1' = 1$$
, $P_2' = 12$, $P_3' = 12$

对比:

 $P_{
m RSK}(a)$ is a **semistandard tableau**. That is, each row $P_{
m RSK}(a)$ is weakly increasing, and each column of $P_{
m RSK}(a)$ is strictly increasing.

 $P_{\mathrm{Hecke}}(a)$ is an **increasing tableau**. That is, both rows and columns of $P_{\mathrm{Hecke}}(a)$ are strictly increasing.

Theorem (Edelman-Greene, 1987)

The coefficient $c_{w,\lambda}$ equals the number of increasing tableaux of shape λ whose column reading words are reduced words of w.

Recently, Thomas Lam, Seung Jin Lee and Mark Shimozono found a new combinatorial explanation for $c_{w,\lambda}$ in terms of **bumpless pipedreams**.

T. Lam, S. Lee and M. Shimozono, Back stable Schubert calculus, arXiv:1806.11233v1, 63 pages.

- (1) pipes go north or east;
- (2) no two pipes overlap or cross more than once.
- (3) each box looks like one of the following six tiles:

Example. Some bumpless pipedreams for w = 2761453.

Theorem (Lam-Lee-Shimozono, 2018)

The coefficient $c_{w,\lambda}$ equals the number of **Edelman-Greene** bumpless pipedreams for w of shape λ (that is, bumpless pipedreams for w such that all the empty squares lie at the northwest corner, where they form a Young diagram λ).

Problem (Lam-Lee-Shimozono, 2018)

Find a shape-preserving bijection between reduced words tableaux and Edelman-Greene bumpless pipedreams.

Neil Fan, Peter Guo and Sophie Sun, Bumpless pipedreams, reduced word tableaux and Stanley symmetric functions, arXiv:1810.11916.

Set

$$u(n) := \max_{w \in S_n} \mathfrak{S}_w(1, 1, \dots, 1).$$

Stanley conjectured that the limit

$$\lim_{n\to\infty}\frac{1}{n^2}\log_2 u(n)$$

exists.

Richard P. Stanley, Some Schubert shenanigans, arXiv:1704.00851.

Macdonald's identity:

$$\mathfrak{S}_w(1,\ldots,1)=rac{1}{\ell!}\sum_{(a_1,\ldots,a_\ell)\in R(w)}a_1\cdots a_\ell,$$

where $\ell = \ell(w)$ is length of w:

$$\ell(w) = \#\{(i,j) \colon 1 \le i < j \le n, \ w_i > w_j\}.$$

Merzon and Smirnov conjectured that if $\mathfrak{S}_w(1,1,\ldots,1)$ attains the maximum value, then w is a **layered permutation**.

A layered permutation is of the following form:

$$(b_1,\ldots,1,b_2,\ldots,b_1+1,\ldots,b_k,\ldots,b_{k-1}+1),$$

where

$$1 \leq b_1 < b_2 < \cdots < b_k = n$$

G. Merzon and E. Smirnov, Determinantal identities for flagged Schur and Schubert polynomials, European J. Math. 2 (2016), 227-245.

Morales, Pak and Panova proved that if the Merzon-Smirnov conjecture is true, then

$$\lim_{n \to \infty} \frac{1}{n^2} \log_2 u(n) = \frac{\gamma}{\log 2} \approx 0.2932362762,$$

where $\gamma \approx 0.2032558981$.

A. Morales, I. Pak and G. Panova, Asymptotics of principal evaluations of Schubert polynomials for layered permutations, Proc. Amer. Math. Soc. 147 (2019), 1377–1389.

A most recent formula for $\mathfrak{S}_w(1,\ldots,1)$:

Theorem 1.5. Let $\sigma \in S_n$, and choose any 132-avoiding permutation π which is greater than σ in the right weak order (such a π always exists, since w_0 is 132-avoiding). Then

$$\mathfrak{S}_{\sigma}(1,\ldots,1) = \frac{1}{(\ell(\pi) - \ell(\sigma))!} \sum_{C:\sigma \to \pi} \operatorname{wt}^{\pi}(C),$$

where the sum is over all saturated chains from σ to π in the strong Bruhat order on $[e, \pi]_R$, and where wt^{π} is defined by $\boxed{1}$.

Thank you!