Семинар 2.

Лекции: Пересецкий А.А.

Семинары: Погорелова П.В.

Модель множественной регрессии.

Тестирование гипотез.

- 1. Рассмотрим нормальную классическую линейную модель множественной регрессии $y_i = \beta_1 + \beta_2 x_{i2} + ... + \beta_k x_{ik} + \varepsilon_i$ с неслучайными регрессорами. Дополнительно известно, что на самом деле $\beta_2 = ... = \beta_k = 0$.
 - (a) Найдите $\mathbb{E}(R^2)$.
 - (b) Найдите $\mathbb{E}(R_{adj.}^2)$.
 - (c) Покажите, что $nR^2 \sim \chi^2(k-1)$.
- 2. Ниже представлены результаты МНК-оценивания двух регрессий, часть из которых не сохранилась. Утерянные оценки коэффициентов регрессий заменены символами.

Модель 1:
$$\hat{y_i} = \hat{\beta}_1 + \hat{\beta}_2 x_i$$
 (2)
Модель 2: $\hat{y_i} = \hat{\alpha}_1 + \hat{\alpha}_2 x_i + \underset{(2)}{10} w_i, R^2 = 0.8$

Оценивание проводилось по 103 наблюдениям. В скобках под оценками коэффициентов указаны их стандартные ошибки. Восстановите значение оценки коэффициента $\hat{\beta}_2$ первой регрессии?

3. Рассмотрим модель $Y_i=\beta_1+\beta_2X_{i1}+\beta_3X_{i2}+\beta_4X_{i3}+\varepsilon_i$. При оценке модели по 24 наблюдениям оказалось, что $RSS=15, \sum (Y_i-\bar{Y}-X_{i2}+\bar{X}_2)^2=20$. На уровне значимости 1% протестируйте гипотезу

$$H_0: \begin{cases} \beta_2 + \beta_3 + \beta_4 = 1 \\ \beta_2 = 0 \\ \beta_3 = 1 \\ \beta_4 = 0 \end{cases}$$

4. Пусть x — стаж сотрудника (в годах), а y — ежемесячная заработная плата (в рублях). В результате оценивания регрессии вида

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$$

были получены следующие результаты:

Постройте 95%—ый доверительный интервал для значения цены $x=x_0$, при котором выручка максимальна.

Лекции: Пересецкий А.А. Семинары: Погорелова П.В.

Dependent Variable: Y Method: Least Squares - Sample: 1 50

Variable	Coefficient	Std. Error	t-Statistic	Deal
v al lable				Prob.
С	100.2079	1.967171	50.94010	0.0000
X	10.03677	0.903745	11.10576	0.0000
X2	-0.817382	0.084591	-9.662803	0.0000
R-squared	0.765563	Mean dependent var		123.4150
Adjusted R-squared	0.755587	S.D. dependent var		8.089480
S.E. of regression	3.999287	Akaike info criterion		5.668234
Sum squared resid	751.7320	Schwarz criterion		5.782955
Log likelihood	-138.7058	Hannan-Quinn criter.		5.711920
F-statistic	76.74024	Durbin-Watson stat		1.738403
Prob(F-statistic)	0.000000			

Coefficients covariance matrix

	С	X	X2
C.	3.869764	-1.598561	0.134292
X	-1.598561	0.816755	-0.074654
X2	0.134292	-0.074654	0.007156