Sémantique d'un langage du premier ordre

Sémantique d'un langage du premier ordre

Pour pouvoir donner un *sens* (c'est-à-dire la valeur Vrai ou la valeur Faux) aux formules, il faut se donner une interprétation/valeur/définition aux symboles du langage, c'est à dire :

- variables (dans quel ensemble sont prises leurs valeurs)
- aux fonctions (quelle est la fonction)
- aux prédicats (quel est le prédicat)

Interprétation *I* d'un langage

- un ensemble **non vide** D, appelé **domaine**.
 - Exemple : D est l'ensemble des nombres réels
- pour chaque symbole de fonction f d'arité n, une fonction f_I , de $D^n \rightarrow D$
 - Exemple : f₁ est la fonction sinus
- Ces fonctions peuvent ne pas être partout définies.
 - Exemple : D est l'ensemble des nombres réels, et f₁ est la fonction x → 1/x
- Dans le cas particulier où la fonction est une constante, son interprétation est un élément du domaine D
 - Exemple : π

Interprétation I d'un langage

- pour chaque symbole de prédicat r d'arité n, un sousensemble r_I, de Dⁿ (l'ensemble des arguments qui rendent le prédicat vrai)
 - Exemple : r₁ est l'ensemble des nombres réels positifs
 - Exemple: r₁ est l'ensemble des couples de nombres réels (x,y) tels que x-y est positif (r est interprétée comme étant la relation ≥)
- Si l'un des arguments d'un prédicat n'est pas défini, la valeur du prédicat sur ces arguments est FAUX
 - Exemple : D est l'ensemble des nombres réels, f₁ est la fonction x → 1/x, zero est la constante 0, et r₁ est l'ensemble des nombres réels positifs, alors r₁ (f₁ (zero)) est FAUX
- Dans le cas particulier où le prédicat r est une proposition, son interprétation est VRAI ou FAUX

Les quantificateurs : ils ont le sens contenu dans leur nom !

- Étant donnée une interprétation I d'un langage, il reste à préciser le fonctionnement des quantificateurs ∀ ∃ pour donner un sens (une valeur Vrai/Faux) à toute formule clause
- $\forall x \phi(x)$: signifie que l'ensemble des valeurs x telles que $\phi(x)$ est le domaine D
- $\exists x \phi(x)$: signifie que l'ensemble des valeurs x telles que $\phi(x)$ n'est pas l'ensemble vide : $\exists x \phi(x)$ a la même valeur que $\neg (\forall x \neg \phi(x))$
- Donc : $\forall x \phi(x)$ a la même valeur que $\neg (\exists x \neg \phi(x))$

Modèle pour une formule close

 Un interprétation donne une valeur de vérité (VRAI ou FAUX) à toute formule close du langage

 Une interprétation est un modèle pour une formule close si la formule est vraie dans cette interprétation

Exemple

Le langage L dispose de

- Deux symboles de fonctions
 - a est une constante
 - s est une fonction d'arité un
- Deux symboles de prédicats
 - p d'arité un
 - q d'arité deux

$$F_1: (\forall x \ p(x)) \Longrightarrow (\exists y \ p(y))$$

- Quelque soit l'interprétation \boldsymbol{I} , on est dans l'un des 2 cas suivant :
 - p_1 est différent du domaine D, et donc $(\forall x \ p(x))$ est faux et donc F_1 est vraie
 - p_i est égal au domaine D, et donc $(\forall x \ p(x))$ est vraie et comme D est non vide, on peut prendre pour y n'importe quel objet de D pour lequel on a forcément p(y) et donc la formule est vraie.
- On dit que la formule est valide ou universellement valide

$$F_2$$
: $\forall x (p(x) \Longrightarrow q(a, x))$

Interprétation I₁:

- Le domaine est l'ensemble N des entiers naturels
- a est la constante 2
- p(x) : x est pair
- q(y,z): z est un multiple de y

Dans cette interprétation F₂ est vraie, on dit que I₁ est un **modèle** pour F₂

$$F_2$$
: $\forall x (p(x) \Longrightarrow q(a, x))$

Interprétation l₂:

- Le domaine est l'ensemble N des entiers naturels
- a est la constante 3
- p(x) : x est impair
- q(y,z): z est un multiple de y

Dans cette interprétation F₂ est fausse, on dit que I₁ n'est pas un modèle pour F₂

$$F_2$$
: $\forall x (p(x) \Longrightarrow q(a, x))$

La formule F₂ est *satisfiable* signifie que :

- il existe au moins un modèle pour F₂ autrement dit
- il existe au moins une interprétation dans laquelle F₂ est vraie.

La formule F2 n'est pas universellement valide, car il existe au moins une interprétation dans laquelle elle est fausse.

$$F_3$$
: $(\forall x \ p(x)) \land (\exists y \neg p(y))$

Cette formule est fausse : $\forall x p(x)$ a la même valeur que \neg ($\exists x \neg p(x)$)

Validité des formules closes

Exemple de formule	Véracité	On dit que la formule est
$F_1: (\forall x \ p(x)) \Longrightarrow (\exists y \ p(y))$	Vraie dans toutes les interprétations	Valide ou Universellement valide, $\operatorname{II-} F_1$
$F_2: \forall x (p(x) \Longrightarrow q(a, x))$	Il existe au moins une interprétation I qui la rend vraie	Satisfiable ou satisfaisable, $I \Vdash F_2$
$F_3: \big(\forall x \ p(x)\big) \land (\exists \ y \ \neg p(y))$	Fausse dans toutes les interprétations	Fausse