Chapter 18: Linear Programming

Exercise 18

- 1. Solution:
- a. Here, Max. z = 3x + 5y

Subject to the constraints

$$x + 2y \le 5$$

$$2x - 3y \le 7$$

$$x, y \ge 0$$

Let, r, s be any two non-negative slack variables. Then,

$$x + 2y + r = 5$$

$$2x - 3y + 5 = 7$$
 and

$$z = 3x + 5y$$

The reformulation of LP into standard form as

$$x + 2y + r + 0.s + 0.z = 5$$

$$2x - 3y + 0.r + s + 0.z = 7$$

$$-3x - 5y + 0.r + 0.s + z = 0$$

$$x, y, r, z \ge 0$$

b. Here, Max z = 10x + 15y

Subject to

$$x + 2y = \le 20$$

$$x + y \le 16$$

$$x, y \ge 0$$

Let, r, s be any two non-negative slack variables.

$$x + 2y + r = 20$$

$$x + y + s = 16$$

The reformulation of LP into standard form as;

$$x + 2y + r + 0.s + 0.z = 20$$

$$x + y + 0.r + s + 0.z = 16$$

$$-10x - 15y + 0.r + 0.5 + z = 0$$

$$x, y, r, s \ge 0$$

c. Here, Min.
$$z = x_1 + x_2$$

Subject to $2x_1 + x_2 \ge 4$

$$x_1 + 7x_2 \ge 7$$

$$x_1, x_2 \ge 0$$

Let, r, s be any two non-negative slack variables. Then,

$$2x_1 + x_2 + r = 4$$

$$x_1 + 7x_2 + s = 7$$

The reformulation of LP into standard form as:

$$2x_1 + x_2 + r + 0.s + 0.z = 4$$

$$x_1 + 7x_2 + 0.r + s + 0.z = 7$$

$$-x_1 - x_2 + 0.r + 0.s + z = 0$$

$$x_1, x_2, r, s \ge 0$$

d. Here, Min. z = 7x + 5y

Subject to
$$4x + 3y \le 12 \Rightarrow -4x - 3y \ge -12$$

$$x + 2y \le 6 \Rightarrow -x - 2y \ge -6$$

Let, r, s be any two non-negative slack variables.

$$-4x - 3y + r = -12$$

$$-x - 2y + s = -6$$

The reformulation of LP problem into standard forms

$$-4x - 3y + r + 0.s + 0.z = -12$$

$$-x - 2y + 0.r + s + 0.z = -6$$

$$-7x - 5y + 0.r + 0.s + z = 0$$

$$x, y, r, s \ge 0$$

2. Solution:

a. Here, given equations are x + y + z = 6

$$4x + 3y + z = 12$$

There are 3 variables and 2 equations so, there are two basic solution and one non-basic.

Solution:

Case – I: if
$$z = 0$$
, then,

$$x + y = 6 \dots (i)$$

$$4x + 3y = 12 \dots (ii)$$

Solving equation (i) and (ii)

$$\therefore$$
 y = $\frac{12}{5}$ (basic)

$$\therefore x = \frac{6}{5} \text{ (basic)}$$

$$\therefore$$
 z = 0 (non-basic)

Case – II: if
$$y = 0$$

$$x + z = 6 \dots (iii)$$

$$4x + z = 12 \dots (iv)$$

Solving (iii) and (iv0

$$\therefore$$
 y = 0 (non-basic)

Case-III: if
$$x = 0$$

$$y + z = 6 (v)$$

 $3y + Z = 12 \dots$ Solving (v) and (vi)

$$\therefore$$
 z = -6 (basic)

$$\therefore$$
 x = 0 (non basic)

b. Here,

Given equations are

$$x + 2y + z = 4$$

$$2x + y + 5z = 5$$

There are 3 variables in 2 equations among them 2 are basic and 1 is non-basic.

Case-I: if z = 0

$$x + 2y = 4 \dots (i)$$

$$2x + y = 5 \dots \dots (ii)$$

Solving equation (i) and equation (ii)

$$\therefore$$
 z = 0 (non-basic)

Case-II: if y = 0

$$x + z = 4 \dots (iii)$$

$$2x + 5z = 5 \dots (v)$$

Solving (iii) and (iv)

$$\therefore$$
 z = -1 (basic)

$$\therefore$$
 y = 0 (non-basic)

Case-III: if
$$x = 0$$

$$2y + z = 4 \dots (v)$$

$$y + 5z = 5 (vi)$$

314 Basic Mathematics Manual-XII

Solving (v) and (vi)

$$\therefore$$
 $z = \frac{2}{3}$ (basic)

$$\therefore y = \frac{5}{3} \text{ (basic)}$$

$$\therefore$$
 x = 0 (non-basic)

3. Solution:

a. Given equations are

$$x + 2y - z = 3$$

$$x - y + z = 5$$

There are 3 variables and 2 equations. So, among them 2 are basic and 1 is non-basic.

Case-I: if z = 0

$$x + 2y = 3 \dots (i)$$

$$x - y = 5 (ii)$$

Solving (i) and (ii)

$$\therefore$$
 $x = \frac{13}{3}$ (basic)

$$y = \frac{-2}{3}$$
 (basic)

$$\therefore$$
 z = 0 (non-basic)

Case-II: if y = 0

$$x - z = 3 (iii)$$

$$x + z = 5 \dots (iv)$$

Solving (ii) and (i)

Case-III: if x = 0

$$2y - z = 3 \dots (v)$$

$$-y + z = 5 \dots \dots (vi)$$

Solving (v) and (vi)

$$\therefore$$
 x = 0 (non-basic)

Since, the case II and III are non-negative, so they give basic feasible solution.

- .. The basic feasible solution are (4, 0, 1) and (0, 8, 13)
- b. Here, the given equations are

$$2x + 3y + z = 12$$

$$x + 2y - 3z = 5$$

There are 3 variables and 2 equations. Among them 2 are basic and 1 is non-basic.

Case-I: if z = 0

$$2x + 3y = 12 \dots (i)$$

$$x + 2y = 5 \dots (ii)$$

Solving (i) and (ii)

$$\therefore$$
 y = -2 (basic)

$$\therefore$$
 z = 0 (non-basic)

Case-II: if y = 0

$$2x + z = 12 \dots \dots (iii)$$

$$x - 3z = 5 (iv)$$

Solving (iii) and (iv)

$$\therefore$$
 $z = \frac{2}{7}$ (basic)

$$\therefore$$
 $x = \frac{41}{7}$ (basic)

$$\therefore$$
 y = 0 (non-basic)

Case III: If x = 0,

$$3y + z = 12 (v)$$

$$2y - 3z = 5 \dots (vi)$$

solving (v) and (vi), we get

$$y = \frac{41}{11}$$
 and $z = \frac{9}{11}$

Since, the cases II and III are non-negative, so the basic feasible solution are

$$\left(\frac{41}{7}, 0, \frac{3}{7}\right)$$
 and $\left(0, \frac{41}{11}, \frac{9}{11}\right)$

4. Solution:

a. Here, max.
$$z = 2x + 3y$$

Subject to
$$x + 2y \le 10$$

$$2x + y = \le 14$$

$$x,\;y\geq 0$$

Let, r, s be any two non-negative slack variables.

$$x + 2y + r = 10$$

$$2x + y + s = 14$$
 and

$$z = 2x + 3y$$

$$\Rightarrow$$
 x + 2y + r + 0.s + 0.z = 10

$$2x + y + 0.r + s + 0.z = 14$$

$$-2x - 3v + 0.r + 0.s + z = 0$$

The simplex tableau;

Basic variables	X	у	r	s	z	RHS
r	1	2	1	0	0	10
S	2	1	0	1	0	14
	-2	-3	0	0	1	0

The most negativity entry is -3 so, y column is pivot column. Then, $\frac{10}{2} = 5$, $\frac{14}{1} = 14$

Here, 5 < 14 so 2 is pivot element.

$$R_1 \rightarrow \frac{1}{2} R_1$$

Basic variables	Х	у	r	s	Z	RHS
y ×	1/2	1	1/2	0	0	5
	2	1	0	1	0	14
	-2	-3	0	0	1	0

 $R_2 \rightarrow R_1, R_3 \rightarrow 3R_1$

Basic variables	Х	у	r	s	Z	RHS
y s	1 2 3 2	1 0	1/2 -1/2	0	0	5 9
	$-\frac{1}{2}$	0	<u>3</u>	0	1	15

All the values in last row is not positive. So, it is not optimal solution.

Here, the most negativity entry is $\frac{-1}{2}$ so x column is pivot column. Then,

$$\frac{5}{\frac{1}{2}} = \frac{5 \times 2}{10}, \frac{9}{\frac{3}{2}} = \frac{9 \times 2}{3} = 6$$

Here, 6 < 10 so, $\frac{3}{2}$ is pivot element.

$$R_2 \rightarrow \frac{2}{3} R_2$$

Basic variables	Х	у	r	s	Z	RHS
y x	1/2 1	1 0	$\frac{1}{2}$ $\frac{-1}{3}$	0 2 3	0 0	5 6
	<u>-1</u>	0	<u>3</u>	0	1	15

$$R_1 \rightarrow R_1 \frac{-1}{2} R_2, R_3 \rightarrow \frac{1}{2} R_2 + R_3$$

Basic variables	x	у	r	s	z	RHS
y x	0 1	1 0	516 <u>1</u> 3	- <u>1</u> 3 2 3	0	2
	0	0	$\frac{4}{3}$	$\frac{1}{3}$	1	18

Here, all the elements in R_3 are positive so, it is optimal solution. The maximum value is 18 at x = 6 and y = 2.

b. Here, max. z = 9x + y

Subject to $2x + y \le 8$

$$4x + 3y \le 18$$

$$x, y \ge 0$$

Let, r, s be any two non-negative slack variables. Then,

$$2x + y = r = 8$$

$$4x + 3y + 5 = 18$$

$$z = 9x + y$$

$$\Rightarrow$$
 2x + y + r + 0.s + 0.z = 8

$$4x + 3y + 0.r + s + 0.z = 18$$

$$-9x - y + 0.r + 0.s + z = 0$$

The simplex tableau is

Basic variables	х	у	r	s	Z	RHS
r	2	1	\ 1	0	0	8
S	4	3	0	1	0	18
	-9	-1	0	0	1	0

The most negativity entry is –9 so, x column is pivot column. Then, $\frac{8}{2}$ = 4, $\frac{18}{4}$ = 4.5

Here, 2 is pivot element.

$$R_1 \rightarrow \frac{1}{2} R_1$$

Basic variables	Х	у	r	s	z	RHS
x s	1 4	2 3	1/2 0	0	0	4 18
	_9	– 1	0	0	1	0

$$R_2 \rightarrow R_2 - 4R_1$$

Basic variables	Х	у	r	S	Z	RHS
Х	1	<u>1</u>	<u>1</u>	0	0	4
S	0	2	2	1	0	2
		1	-2			

$R_3 \rightarrow R_3 + 9R_1$						
Basic variables	Х	у	r	S	Z	RHS
x s	1 0	1/2 1	1/2 -2	0 1	0 0	4 2
	0	7/2	<u>9</u> 2	0	1	36

Here, all the element in R₃ are positive so, it is optimal solution.

The maximum value is 36 at x = 4 is y = 0.

c. Here, max. $f = 6x_1 - 9x_2$

Subject to $2x_1 - 3x_2 \le 6$

$$x_1 + x_2 \le 20$$

$$x_1,\; x_2 \geq 0$$

Let, r, s be any two non-negative slack variables then,

$$2x_1 - 3x_2 + r = 6$$

$$x_1 + x_2 + s = 20$$
 and

$$f = 6x_1 - 9x_2$$

$$\Rightarrow$$
 2x₁ - 3x₂ + r + 0.s + 0.f = 6

$$x_1 + x_2 + 0.r + s + 0.f = 20$$

$$-6x_1 + 9x_2 + 0.r + 0.s + f = 0$$

The initial simplex tableau is;

Basic variables	Х	у	r	S	Z	RHS
r	2	-3	1	0	0	6
S	1	1	0	1	0	20
	-6	9	0	0	1	0

The most negativity entry is -6 so, x column is pivot column. Then, $\frac{6}{2} = 3$, $\frac{20}{1} = 20$.

Here, 3 < 20 so, 2 is pivot column.

$$R_1 \rightarrow \frac{1}{2} R_1$$

_						
Basic variables	х	у	r	s	z	RHS
x s	1	<u>-3</u> 1	1/2 0	0 1	0	3 20
	-6	9	0	0	1	0

Now, $R_2 \to R_2 - R_1$, $R_3 \to R_3 + 6R_1$

Basic variables	x	у	r	s	z	RHS			
x s	1 0	-3 2 5 2	1/2 -1/2	0	0	3 17			
	0	0	3	0	0	18			

Here, all the elements in last row are positive so, the maximum value is 18 at x = 3 and y = 0.

d. Here, max. $z = 7x_1 + 5x_2$

Subject to $x_1 + 2x_2 = 6$

$$4x_1 + 3x_2 \le 12$$

$$x_1, x_2 \ge 0$$

Let, r, s be any two non-negative slack variables. Then,

$$x_1 + 2x_2 + r = 6$$

$$4x_1 + 3x_2 + 5 = 12$$
 and

318 Basic Mathematics Manual-XII

$$z = 7x_1 + 5x_2$$

$$\Rightarrow x_1 + 2x_2 + r + 0.s + 0.z = 6$$

$$4x_1 + 3x_2 + 0.r + s + 0.z = 12$$

$$-7x_1 - 5x_2 + 0.r + 0.s + z = 0$$

The simplex tableau is;

Basic variables	X 1	X ₂	r	s	Z	RHS
r	1	2	1	0	0	6
S	4	3	0	1	0	12
	-7	– 5	0	0	1	0

The most negativity entry is –7 so, x₁ column is pivot column. Then,

$$\frac{6}{1} = 6, \frac{12}{4} = 3$$

Here, 3 < 6 so, 4 is pivot element.

$$R_2 \rightarrow \frac{1}{4} R_2$$

Basic variables	X ₁	X ₂	r	S	z	RHS
r x ₁	1 1	2 <u>3</u> 4	1 0	0 <u>1</u> 4	0	6
	- 7	- 5	0	0	1	0

$$R_1 \to R_1 - R_2, R_3 \to R_3 + 7R_2$$

Basic variables	X 1	X ₂	r	S	Z	RHS
r x ₁	0	5 4 3 4	1 0	-1 4 1 4	0	3
	0	1/4	0	$\frac{7}{4}$	1	21

Here, all the elements in last row are positive so, it is optimal solution.

The maximum value is 21 at $x_1 = 3$ and $x_2 = 0$.

5. Solution:

a. Here, mix.
$$W = 3x + 2y$$

Subject to $2x + y \ge 6$

$$x + y \ge 4$$

$$x,\;y\geq 0$$

The augmented matrix is A =

$$\begin{pmatrix}
2 & 1 & | & 6 \\
1 & 1 & | & 4 \\
\hline
3 & 2 & | & 0
\end{pmatrix}$$

Then, the augmented dual problem is

$$A^{\mathsf{T}} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 1 & 2 \end{pmatrix}$$

Hence, max. $z = 6x_1 + 4y_1$ s.t.

$$2x_1 + y_1 \le 3$$

$$x_1 + y_1 = \le 2$$

$$x_1, y_1 \ge 0$$

Let, x and y be two non-negative slack variables,

$$2x + y + x = 3$$

$$x_1 + y_1 + y = 2$$
 and

$$z = 6x_1 + 4y_1$$

$$\Rightarrow$$
 2x₁ + y₁ + x + 0.y + 0.z = 3

$$x_1 + y_1 + 0.x + y + 0.z = 2$$

$$-6x_1 - 4y_1 + 0.x + 0.y + z = 0$$

The simplex tableau is

Basic variables	X 1	X 2	r	s	z	RHS
Х	2	1	1	0	0	3
у	1	1	0	1	0	2
	-6	-4	0	0	1	0

The most negativity entry is -6 so, x₁ column is pivot column. Then,

$$\frac{3}{2} = 1.5 < \frac{2}{1} = 2$$

So, 2 is pivot element.

$$R_1 \to \frac{1}{2}\,R_1$$

Basic variables	Х	у	r	s	Z	RHS
X ₁	1	1	<u>1</u>	0	0	3
у	1	2	2	1	0	2
		1	0			2
	-6	-4	0	0	1	0

$$R_2 \to R_2 - R_1, R_3 \to R_3 + 6R_2$$

Basic variables	X 1	y ₁	r	s	Z	RHS
x ₁ y	1 0	1/2 1/2	1/2 -1/2	0	0	3 2 1 2
	0	-1	3	0	1	9

Here, all the elements in last raw are not positive so it is not optimal solution.

Here, the most negativity entry is −1 so, y₁ column is pivot column. Then,

$$\frac{3}{\frac{2}{1}} = 3 > \frac{1}{\frac{2}{1}} = 1$$

so, $\frac{1}{2}$ is pivot element.

$$R_2 \rightarrow 2R_2$$

Basic variables	X ₁	y ₁	r	s	Z	RHS
x ₁ y ₁	1 0	1/2 1	1/2 -1	0 2	0 0	3 2 1
	0	-1	3	0	1	9

$$R_1 \to R_1 - \frac{1}{2} \, R_2, \, R_3 \to R_3 + R_2$$

Basic variables	X	у	r	s	Z	RHS
x ₁	1	0	1	-1	0	1
y ₁	0	1	-1	2	0	1
	0	0	2	2	1	10

Here, all the elements in last row are positive so, it is optimal solution.

The maximum value is 10 at $x_1 = 1$ and $y_1 = 1$.

Hence, the corresponding min. W = 10 at x = 2 and y = 2

b. Here, min. W = 18x + 12y

Subject to $2x + y \ge 8$

$$6x + 6y \ge 36$$

$$\Rightarrow$$
 x + y \geq 6

$$x$$
, $y \ge 0$

The augmented matrix A =

$$\begin{pmatrix}
2 & 1 & 8 \\
1 & 1 & 6 \\
\hline
18 & 12 & 0
\end{pmatrix}$$

The augmented dual problem is

$$A^T =$$

$$\begin{pmatrix}
2 & 1 & 18 \\
1 & 1 & 12 \\
8 & 6 & 0
\end{pmatrix}$$

Hence, max $z = 8x_1 + 6y_1$, $2x_1 + y_1 \le 18$ s.t.

$$x_1 + y_1 \le 12$$

$$x_1, y_1 \geq 0$$

Let, x, y be any two non-negative slack variables then,

$$2x_1 + y_1 + x = 18$$

$$x_1 + y_1 + y = 12$$
 and

$$z = 8x_1 + 6y_1$$

$$\Rightarrow$$
 2x₁ + y₁ + x + 0.y + 0.z = 18

$$x_1 + y_1 + 0.x + y + 0.z = 12$$

$$-8x_1 - 6y_1 + 0.x + 0.y + z = 0$$

0/1 0/1 · 0// ·	J., 0					
Basic variables	X ₁	y ₁	X	у	Z	RHS
Х	2	1	1	0	0	18
у	1	1	0	1	0	12
	-8	-6	0	0	1	0

The most negatively entry is -8 so x_1 , column is pivot column. Then,

$$\frac{18}{2} = 9 < \frac{12}{1} = 12$$

Here, 2 is pivot element.

$$R_1 \rightarrow \frac{1}{2} R_1$$

Basic variables	X ₁	y ₁	Х	у	Z	RHS
х ₁ у	1	1/2 1	1/2 0	0	0 0	9 12
	-8	-6	0	0	1	0

 $R_2 \to R_2 - R_1, R_3 \to R_3 + 8R_1$

Basic variables	X ₁	y ₁	Х	у	Z	RHS
x ₁ y	1 0	$\frac{1}{2}$	1/2 -1/2	0	0 0	9
	0	-2	4	0	1	72

All the elements in last row are not positive. So, it is not optimal solution.

The most negative entry is -2 so y_1 column is pivot column. Then,

$$\frac{9}{\frac{1}{2}} = 18 > \frac{3}{\frac{1}{2}} = 6$$

Here, $\frac{1}{2}$ is pivot element.

 $R_2 \rightarrow 2R_2$

Basic variables	X ₁	y 1	Х	у	z	RHS
x ₁ y ₁	1 0	1/2 1	1/2 -1	0 2	0	9 6
	0	-2	4	0	1	72

$$R_1 \rightarrow R_1 - \frac{1}{2} R_2, R_3 \rightarrow R_3 + R_2$$

Basic variables	X ₁	y ₁	х	у	Z	RHS
X ₁	1	0	1	-1	0	6
y 1	0	1	-1	2	0	6
	0	0	2	4	1	84

Hence, the min. W = 84 at (2, 4)

c. Here, min. f = x + 4y

Subject to $x + 2y \ge 8$

 $3x + 2y \ge 12$

The augmented matrix is A =

The augmented dual problem is

1	3	1
2	2	4
8	12	0

Hence, max. $G = 8x_1 + 12y_1$, $x_1 + 3y_1 \le 1$

 $x_1 + y_1 \le 2$

 $x_1 y_1 \leq 0$

Let x, y are two non-negative slack variables then,

$$\Rightarrow x_1 + 3y_1 + x = 1$$

$$x_1 + y_1 + y = 2$$

$$-8x_1 - 12y_1 + G = 0$$

Then,

$$x_1 + 3y_1 + x + 0.y + 0.G = 1$$

$$x_1 + y_1 + 0.x + 0.y + G = 0$$

The simplex tableau is

Basic variables	X ₁	y ₁	х	у	G	RHS
Х	1	3	1	0	0	1
y	1	1	0	1	0	2
	-8	-12	0	0	1	0

The most negativity entry is -12 so, y₁ column is pivot column. Then,

$$\frac{1}{3} = 0.33 < \frac{2}{1} = 2$$

So, 3 is pivot element.

$$R_1 \rightarrow \frac{1}{3} R_1$$

Basic variables	X ₁	y ₁	Х	у	G	RHS
у ₁ У	1/3 1	1	1/3 0	0 1	0 0	1/3 2
	-8	-12	0	0	1	0

 $R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 + 12R_1$

Basic variables	X ₁	y ₁	х	у	G	RHS
y ₁ y	1 3 2 3	1 0	1/3 -1/3	0	0	1 3 5 3
	-4	0	4	0	1	4

All the elements in last row are not positive. So it is not optimal solution. The most negativity entry is -4 so, x_1 column is pivot column. Then,

$$\frac{\frac{1}{3}}{\frac{1}{3}} = 1 < \frac{\frac{5}{3}}{\frac{2}{3}} = 2.5$$

So $\frac{1}{3}$ is pivot element.

 $R_1 \rightarrow 3R_1$

Basic variables	X ₁	y 1	х	у	G	RHS
х ₁ У	1 2 3	3 0	1 -1 3	0 0	0 0	1 <u>5</u> 3
	-4	0	4	0	1	4

$$R_2 \rightarrow R_2 - \frac{2}{3} R_1, R_3 \rightarrow R_3 + 4R_1$$

Basic variables	X 1	y 1	X	у	G	RHS
x ₁ y	1 0	3 –2	1 -11 9	0	0	1 1 9
	0	12	8	0	1	8

The maximum value is 8 at $x_1 = 1$ and $y_1 = 0$.

Hence, the corresponding min. F = 8 at x = 8, and y = 0

d. Here, min. W = 14x + 20y

Subject to $7x + 6y \ge 20$

$$x + 2y \ge 4$$

$$x, y \ge 0$$

The augmented matrix is A =

7	6	20
1	2	4
14	20	0

The augmented dual problem is A^{T} =

·			
	7	1	14
	6	2	20
	20	1	Λ

Max $z = 20x_1 + 4y_1$, $7x_1 + y_1 \le 14$

$$6x_1 + 2y_1 \le 20$$

$$x, y \ge 0$$

Let, x, y be any two non-negative slack variables.

$$7x_1 + y_1 + x = 14$$

$$6x_1 + 2y_1 + 0.x + y + 0.w = 20$$

$$-20x_1 - 4y_1 + 0.x + 0.y + w = 0$$

The simplex tableau is

Basic variables	X 1	y 1	r	s	Z	RHS
Х	7	1	1	0	0	14
у	6	2	0	1	0	20

-20	-4	0	0	1	0

The most negativity entry is -20 so, x₁ column is pivot column. Then,

$$\frac{14}{7} = 2 < \frac{20}{6} = 3.3$$

$$R_1 \rightarrow \frac{1}{7} R_1$$

Basic variables	X ₁	y ₁	r	s	z	RHS
х ₁ У	1 6	1 7 2	1/7 0	0	0 0	2 20
	-20	-4	0	0	1	0

$$R_2 \rightarrow R_2 - 6R_1$$

Basic variables	X ₁	y ₁	r	S	Z	RHS
x ₁ y	1 0	1 7 8 7	1/7 -6/7	0	0	2 8
	-20	-4	0	0	1	0

$R_3 \rightarrow R_3 + 20R_1$

Basic variables	X ₁	y 1	Х	у	Z	RHS
x ₁ y	1 0	1 7 8 7	1/7 -6/7	0	0	2 8
	0	<u>-8</u> 7	<u>20</u> 7	0	1	40

All the elements in last row are not positive so, it is not optimal solution. The most negativity element is $\frac{-8}{7}$. So, y_1 column is pivot column. Then,

$$\frac{2}{\frac{1}{7}} = 14, \frac{8}{\frac{8}{7}} = 7$$

Here, $\frac{8}{7}$ is pivot element.

$$R_2 \to \frac{7}{8} \, R_2$$

Basic variables	X ₁	y ₁	r	S	Z	RHS
x ₁ y ₁	1 0	1 7 1	$\frac{1}{7}$ $\frac{-3}{4}$	0 <u>7</u> 8	0 0	2 7
	0	<u>-8</u> 7	<u>20</u> 7	0	1	40

$$R_1 \rightarrow R_1 - \frac{1}{7} R_2$$

Basic variables	X 1	y 1	r	s	z	RHS
x ₁ y ₁	1 0	0	1/4 -3/4	-1 8 7 8	0	1 7
	0	<u>-8</u> 7	<u>20</u> 7	0	1	40

324 Basic Mathematics Manual-XII

$$R_3 \rightarrow R_3 + \frac{8}{7} R_2$$

Basic variables	X ₁	y ₁	r	S	z	RHS
x ₁ y ₁	1 0	0	1/4 -3/4	-1 8 7 8	0 0	1 7
	0	0	2	1	1	48

All the elements in last row are positive so it is optimal solution.

The maximum value is 48 at $x_1 = 1$ and $y_1 = 7$.

Hence, the corresponding min. w = 48 at x = 2 and y = 1