2.3.1 The divide-and-conquer approach

Many useful algorithms are *recursive* in structure: to solve a given problem, they call themselves recursively one or more times to deal with closely related subproblems. These algorithms typically follow a *divide-and-conquer* approach: they break the problem into several subproblems that are similar to the original problem but smaller in size, solve the subproblems recursively, and then combine these solutions to create a solution to the original problem.

The divide-and-conquer paradigm involves three steps at each level of the recursion:

Divide the problem into a number of subproblems that are smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original problem.

The *merge sort* algorithm closely follows the divide-and-conquer paradigm. Intuitively, it operates as follows.

Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 elements each.

Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted answer.

The recursion "bottoms out" when the sequence to be sorted has length 1, in which case there is no work to be done, since every sequence of length 1 is already in sorted order.

The key operation of the merge sort algorithm is the merging of two sorted sequences in the "combine" step. We merge by calling an auxiliary procedure MERGE(A, p, q, r), where A is an array and p, q, and r are indices into the array such that $p \le q < r$. The procedure assumes that the subarrays A[p..q] and A[q+1..r] are in sorted order. It **merges** them to form a single sorted subarray that replaces the current subarray A[p..r].

Our MERGE procedure takes time $\Theta(n)$, where n = r - p + 1 is the total number of elements being merged, and it works as follows. Returning to our cardplaying motif, suppose we have two piles of cards face up on a table. Each pile is sorted, with the smallest cards on top. We wish to merge the two piles into a single sorted output pile, which is to be face down on the table. Our basic step consists of choosing the smaller of the two cards on top of the face-up piles, removing it from its pile (which exposes a new top card), and placing this card face down onto

the output pile. We repeat this step until one input pile is empty, at which time we just take the remaining input pile and place it face down onto the output pile. Computationally, each basic step takes constant time, since we are comparing just the two top cards. Since we perform at most n basic steps, merging takes $\Theta(n)$ time.

The following pseudocode implements the above idea, but with an additional twist that avoids having to check whether either pile is empty in each basic step. We place on the bottom of each pile a *sentinel* card, which contains a special value that we use to simplify our code. Here, we use ∞ as the sentinel value, so that whenever a card with ∞ is exposed, it cannot be the smaller card unless both piles have their sentinel cards exposed. But once that happens, all the nonsentinel cards have already been placed onto the output pile. Since we know in advance that exactly r - p + 1 cards will be placed onto the output pile, we can stop once we have performed that many basic steps.

```
MERGE(A, p, q, r) end
 1 \quad n_1 = q - p + 1
 2 \quad n_2 = r - q
 3 let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
    for i = 1 to n_1
L[i] = A[p+i-1]
for j = 1 to n_2
R[j] = A[q+j]
 5
 6
 7
    L[n_1+1]=\infty
 9
    R[n_2+1]=\infty
10
    i = 1
11
     j = 1
    for k = p to r
12
         if L[i] \leq R[j]
13
              A[k] = L[i]
14
              i = i + 1
15
16
         else A[k] = R[j]
17
              j = j + 1
```

In detail, the MERGE procedure works as follows. Line 1 computes the length n_1 of the subarray A[p..q], and line 2 computes the length n_2 of the subarray A[q+1..r]. We create arrays L and R ("left" and "right"), of lengths $n_1 + 1$ and $n_2 + 1$, respectively, in line 3; the extra position in each array will hold the sentinel. The for loop of lines 4-5 copies the subarray A[p..q] into $L[1..n_1]$, and the for loop of lines 6-7 copies the subarray A[q+1..r] into $R[1..n_2]$. Lines 8-9 put the sentinels at the ends of the arrays L and R. Lines 10-17, illus-

Figure 2.3 The operation of lines 10-17 in the call MERGE(A, 9, 12, 16), when the subarray A[9..16] contains the sequence (2, 4, 5, 7, 1, 2, 3, 6). After copying and inserting sentinels, the array L contains $(2, 4, 5, 7, \infty)$, and the array R contains $(1, 2, 3, 6, \infty)$. Lightly shaded positions in R contain their final values, and lightly shaded positions in R contain values that have yet to be copied back into R. Taken together, the lightly shaded positions always comprise the values originally in R[9..16], along with the two sentinels. Heavily shaded positions in R contain values that will be copied over, and heavily shaded positions in R contain values that have already been copied back into R. (a)—(h) The arrays R, R, and R, and their respective indices R, R, and R prior to each iteration of the loop of lines R.

trated in Figure 2.3, perform the r - p + 1 basic steps by maintaining the following loop invariant:

At the start of each iteration of the **for** loop of lines 12–17, the subarray A[p..k-1] contains the k-p smallest elements of $L[1..n_1+1]$ and $R[1..n_2+1]$, in sorted order. Moreover, L[i] and R[j] are the smallest elements of their arrays that have not been copied back into A.

We must show that this loop invariant holds prior to the first iteration of the **for** loop of lines 12–17, that each iteration of the loop maintains the invariant, and that the invariant provides a useful property to show correctness when the loop terminates.

Initialization: Prior to the first iteration of the loop, we have k = p, so that the subarray A[p..k-1] is empty. This empty subarray contains the k-p=0 smallest elements of L and R, and since i=j=1, both L[i] and R[j] are the smallest elements of their arrays that have not been copied back into A.

Figure 2.3, continued (i) The arrays and indices at termination. At this point, the subarray in A[9..16] is sorted, and the two sentinels in L and R are the only two elements in these arrays that have not been copied into A.

Maintenance: To see that each iteration maintains the loop invariant, let us first suppose that $L[i] \leq R[j]$. Then L[i] is the smallest element not yet copied back into A. Because A[p...k-1] contains the k-p smallest elements, after line 14 copies L[i] into A[k], the subarray A[p...k] will contain the k-p+1 smallest elements. Incrementing k (in the **for** loop update) and i (in line 15) reestablishes the loop invariant for the next iteration. If instead L[i] > R[j], then lines 16–17 perform the appropriate action to maintain the loop invariant.

Termination: At termination, k = r + 1. By the loop invariant, the subarray A[p..k-1], which is A[p..r], contains the k-p=r-p+1 smallest elements of $L[1..n_1+1]$ and $R[1..n_2+1]$, in sorted order. The arrays L and R together contain $n_1 + n_2 + 2 = r - p + 3$ elements. All but the two largest have been copied back into A, and these two largest elements are the sentinels.

To see that the MERGE procedure runs in $\Theta(n)$ time, where n = r - p + 1, observe that each of lines 1-3 and 8-11 takes constant time, the **for** loops of lines 4-7 take $\Theta(n_1 + n_2) = \Theta(n)$ time,⁷ and there are n iterations of the **for** loop of lines 12-17, each of which takes constant time.

We can now use the MERGE procedure as a subroutine in the merge sort algorithm. The procedure MERGE-SORT(A, p, r) sorts the elements in the subarray A[p..r]. If $p \ge r$, the subarray has at most one element and is therefore already sorted. Otherwise, the divide step simply computes an index q that partitions A[p..r] into two subarrays: A[p..q], containing $\lfloor n/2 \rfloor$ elements, and A[q+1..r], containing $\lfloor n/2 \rfloor$ elements.⁸

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

To sort the entire sequence $A = \langle A[1], A[2], \ldots, A[n] \rangle$, we make the initial call MERGE-SORT (A, 1, A.length), where once again A.length = n. Figure 2.4 illustrates the operation of the procedure bottom-up when n is a power of 2. The algorithm consists of merging pairs of 1-item sequences to form sorted sequences of length 2, merging pairs of sequences of length 2 to form sorted sequences of length 4, and so on, until two sequences of length n/2 are merged to form the final sorted sequence of length n.

2.3.2 Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call to itself, we can often describe its running time by a *recurrence equation* or *recurrence*, which describes the overall running time on a problem of size n in terms of the running time on smaller inputs. We can then use mathematical tools to solve the recurrence and provide bounds on the performance of the algorithm.

⁷We shall see in Chapter 3 how to formally interpret equations containing Θ -notation.

⁸The expression $\lceil x \rceil$ denotes the least integer greater than or equal to x, and $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x. These notations are defined in Chapter 3. The easiest way to verify that setting q to $\lfloor (p+r)/2 \rfloor$ yields subarrays A[p..q] and A[q+1..r] of sizes $\lceil n/2 \rceil$ and $\lceil n/2 \rceil$, respectively, is to examine the four cases that arise depending on whether each of p and r is odd or even.