Report

在本项目中一共复刻了关于SM2的4种pitfall:

leaking k

- Compute d_A with $\sigma = (r, s)$ and k:
 - $s = ((1 + d_A)^{-1} \cdot (k r \cdot d_A)) \mod n$
 - $s(1+d_A) = (k-r \cdot d_A) \mod n$
 - $d_A = (s+r)^{-1} \cdot (k-s) \mod n$

reusing k

- Signing message M_1 with d_A
 - Randomly select $k \in [1, n-1]$, compute kG = (x, y)
 - $r_1 = (Hash(Z_A||M_1) + x) \mod n$
 - $s_1 = ((1 + d_A)^{-1} \cdot (k r_1 \cdot d_A)) \mod n$
- Signing message M₂ with d_A
 - Reuse the same k, kG = (x, y)
 - $r_2 = (Hash(Z_A||M_2) + x) \mod n$
 - $s_2 = ((1 + d_A)^{-1} \cdot (k r_2 \cdot d_A)) \mod n$
- Recovering d_A with 2 signatures (r₁, s₁), (r₂, s₂)
 - $s_1(1 + d_A) = (k r_1 \cdot d_A) \mod n$
 - $s_2(1 + d_A) = (k r_2 \cdot d_A) \mod n$
 - $d_A = \frac{s_2 s_1}{s_1 s_2 + r_1 r_2} \mod n$

reusing k by different users

- Alice signed message M_1 with d_A , $\sigma_A = (r_1, s_1)$
 - Randomly select k ∈ [1, n 1], compute kG =
 - $r_1 = (Hash(Z_A||M_1) + x) \mod n$
 - $s_1 = ((1 + d_A)^{-1} \cdot (k r_1 \cdot d_A)) \mod n$
- Bob signed message M₂ with d_B, σ_B = (r₂, s₂)
 - Reuse the same k, kG = (x, y)
 - $r_2 = (Hash(Z_B||M_2) + x) \mod n$
 - $s_2 = ((1 + d_B)^{-1} \cdot (k r_2 \cdot d_B)) \mod n$
- Alice can deduce Bob secret key

•
$$d_B = \frac{k-s_2}{s_2+r_2} \mod n$$

- · Bob can deduce Alice secret key
 - $d_A = \frac{k-s_1}{s_1+r_1} \mod n$

same d and k with ECDSA

- ECDSA signing with private key d
 - Randomly select k, R = kG = (x, y)
 - $e_1 = hash(m)$
 - $r_1 = x \mod n$, $s_1 = (e_1 + r_1 d)k^{-1} \mod n$
 - Signature (r₁, s₁)
- SM2 signing with private key d
 - Reuse the same k as ECDSA, (x, y) = kG
 - $e_2 = h(Z_A || m)$
 - r₂ = (e₂ + x) mod n
 - $s_2 = (1+d)^{-1} \cdot (k-r_2d) \mod n$
 - Signature (r₂, s₂)
- With the two sigs, private key d can be recovered:
 - $d \cdot r_1 = ks_1 e_1 \mod n$

 - $d \cdot (s_2 + r_2) = k s_2 \mod n$ $d = \frac{s_1 s_2 e_1}{(r_1 s_1 s_2 s_1 r_2)} \mod n$

在代码中我复现了这些pitfalls, 最终结果如下所示:

C:\Users\86180>set PYTHONIOENCODING=utf8 & C:\Users\86180\AppData\Local leaking k leads to leaking of d 验证成功 reusing k leads to leaking of d 验证成功 Alice got the leaking d of Bob 验证成功 Bob got the leaking d of Alice 验证成功 SM2 using same d and k with ECDSA leads to leaking of d 验证成功