HW1

计 37 张馨元 2023010872

4

(1)

$$\det(xI - A) = \begin{vmatrix} x - 5 & 6 & 6 \\ 1 & x - 4 & -2 \\ -3 & 6 & x + 4 \end{vmatrix} = (x - 1)(x - 2)^2$$
考虑多项式 $(A - I)(A - 2I)$:
$$\begin{bmatrix} 4 & -6 & -6 \\ -1 & 3 & 2 \\ 3 & -6 & -5 \end{bmatrix} \begin{bmatrix} 3 & -6 & -6 \\ -1 & 2 & 2 \\ 3 & -6 & -6 \end{bmatrix} = O$$
故其最小多项式为 $(A - I)(A - 2I)$

(2)

$$\det(xI - A) = \begin{vmatrix} x - 3 & -1 & 1 \\ -2 & x - 2 & 1 \\ -2 & -2 & x \end{vmatrix} = (x - 1)(x - 2)^2$$
 考虑多项式 $(A - I)(A - 2I)$:
$$\begin{bmatrix} 2 & 1 & -1 \\ 2 & 1 & -1 \\ 2 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 2 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & -1 \\ 2 & 0 & -1 \\ 4 & 0 & -2 \end{bmatrix} \neq O$$
故最小多项式为 $(A - I)(A - 2I)$

(3)

$$\det(xI - A) = \begin{vmatrix} x & 1 \\ -1 & x \end{vmatrix} = x^2 + 1$$
故最小多项式为 $A^2 + I$

(4)

考虑
$$A^{2}(A-2I) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -2 & -2 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} =$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 2 & -2 & -1 \\ -1 & -1 & 1 & 0 \end{bmatrix} \neq O$$

考虑
$$A(A-2I)^2 = \begin{bmatrix} -2 & -2 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & -3 & 0 & 0 \\ -2 & -2 & 0 & 1 \\ 1 & 1 & -1 & -2 \end{bmatrix} =$$

$$\begin{bmatrix} 4 & 4 & 0 & 0 \\ -4 & -4 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & -1 & 1 & 2 \end{bmatrix} \neq O$$

故最小多项式即是 $A^2(A-2I)^2$

(5)

$$\det(xI - A) = x^2(x+2)(x-2)$$
考虑

$$A(A+2I)(A-2I) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 1 & 0 \\ 0 & 3 & 0 & 1 \\ 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} = O$$

故最小多项式为 A(A+2I)(A-2I)

5

证明. 设最小多项式为 $m(\lambda)$

因为 $\mathscr{A}^k = O$

故 $m(\lambda)|\lambda^k$

故可设 $m(\lambda) = \lambda^l (l \le k)$

同时,由于特征多项式和最小多项式拥有相同的根,故可设 $\mathscr A$ 的特征多项式为 $\lambda^p(p\leq n)$

故 $l \le p \le n$

故
$$\mathscr{A}^n = m(\mathscr{A})\mathscr{A}^{n-l} = O$$

6

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

最小多项式为 λ^{n+1}

证明. 对于任何不超过 n 次的多项式,在 (n+1) 次求导后其值必然为 0 故 $\mathcal{D}^{n+1}=O$ 故可设最小多项式为 $\lambda^l(l\leq n+1)$ 考虑 \mathcal{D}^n 和多项式 x^n 则 $\mathcal{D}^n(x^n)=n!\neq 0$ 故 l>n 故最小多项式为 λ^{n+1}

易知 🖋 的方阵表示为
$$A=\begin{bmatrix}1&0\\0&0\end{bmatrix}$$
 故 $\det(xI-A)=x(x-1)$ 故最小多项式为 $\lambda(\lambda-1)$

证明.
$$T^2(B) = T(T(B)) = T(AB) = A(AB) = A^2B$$

归纳可得 $T^k(B) = A^k B(k \in \mathbb{N})$
则对于任一多项式函数 $f(x) = \sum_i a_i x^i$,有 $f(T)(B) = \sum_i a_i T^i(B) = \sum_i a_i A^i B = f(A)B$
故 $m(T)B = O \iff m(A) = O$
故 $T = A$ 的最小多项式相同

不一定相同
考虑
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

则
$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, BA = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

则 AB 的最小多项式为 λ^2 , 而 BA 的最小多项式为 λ

故 AB 和 BA 的最小多项式不一定相同

11

$$\det(xI - A) = \begin{vmatrix} x - 6 & 3 & 2 \\ -4 & x + 1 & 2 \\ -10 & 5 & x + 3 \end{vmatrix} = (x - 2)(x^2 + 1) = m(x)$$

$$\sharp \& A - 2I = \begin{bmatrix} 4 & -3 & -2 \\ 4 & -3 & -2 \\ 10 & -5 & -5 \end{bmatrix}$$

可求得
$$\operatorname{Ker}(A-2I)$$
 的一组基为 $\alpha_1=\begin{bmatrix}1\\0\\2\end{bmatrix}$

$$A\alpha_1 = \begin{bmatrix} 2\\0\\4 \end{bmatrix} = 2\alpha_1$$

$$A\alpha_1 = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix} = 2\alpha_1$$
则 \mathcal{A}_1 在基 α_1 下的方阵表示为 2
考虑 $A^2 + I = \begin{bmatrix} 5 & -5 & 0 \\ 0 & 0 & 0 \\ 10 & -10 & 0 \end{bmatrix}$

故
$$\operatorname{Ker}(A^2 + I)$$
 的一组基为 $\alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

$$A\alpha_2 = \begin{vmatrix} 3\\3\\5 \end{vmatrix} = 3\alpha_2 + 5\alpha_3$$

$$A\alpha_3 = \begin{bmatrix} -2\\ -2\\ -3 \end{bmatrix} = -2\alpha_2 - 3\alpha_3$$

$$A\alpha_3 = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix} = -2\alpha_2 - 3\alpha_3$$

故 \mathscr{A}_2 在基 α_2 和 α_3 下的方阵表示为 $\begin{bmatrix} 3 & -2 \\ 5 & -3 \end{bmatrix}$