## Software engineering project

## Requirements:

- -The system should allow the user to register to the system using a username and password
- -The system should require the user to re-enter his username and password after 5-10 minutes of inactivity.
- -The pharmacist can't deny any entry he made to the medicines he has on the system.
- -The system should authenticate the users before accessing the system.
- -Sensitive information should be hidden and encrypted in the database.

## Use case:



## Misuse case:



| Misuse Case ID   | L.1                                             |
|------------------|-------------------------------------------------|
| Misuse case Name | screen scraping                                 |
| Description      | It's a malicious software that can capture      |
|                  | screenshots of the desktop application while    |
|                  | the user is entering their credentials to steal |
|                  | sensitive information                           |
| Preconditions    | The attacker must install the malware to the    |
|                  | application                                     |
| postconditions   | The attacker will have all the sensitive        |
|                  | information that the pharmacist enters          |
| Normal flow      | 1.The attacker finds a way to install the       |
|                  | malware to the system                           |
|                  | 2. the attacker attempts to login to the system |
|                  | using the screenshots and the information he    |
|                  | got                                             |
| Mitigation       | 1.The workers in the hospital should be aware   |
|                  | of any unnormal activity or suspicious people   |
|                  | 2. Login attempts should be logged              |
|                  | 3. A notification should be sent once a login   |
|                  | happens to make sure who is the individual      |
|                  | that logged in                                  |

| Misuse Case ID   | L.2                                              |
|------------------|--------------------------------------------------|
| Misuse case Name | Using brute force to break into the system and   |
|                  | use on of the pharmacist's accounts              |
| Description      | The attacker will impersonate one of the         |
|                  | pharmacists and use a brute forcing              |
|                  | techniques to get the username and password      |
| Preconditions    | The attacker has access to the application       |
| postconditions   | The attacker can impersonate one of the          |
|                  | pharmacists and login into the system            |
| Normal flow      | 1.The attacker installs the application on a     |
|                  | machine                                          |
|                  | 2. The attacker uses a brute force technique to  |
|                  | be able to login to the system using one of the  |
|                  | pharmacist's accounts                            |
| Mitigation       | 1.The system should have a lockout system        |
|                  | where if a certain amount of unsuccessful        |
|                  | logins occur the system will lock this account   |
|                  | 2.Using strong password policy where the         |
|                  | brute force attack will take a very long time to |
|                  | succeed                                          |
|                  | 3. Sending an email to the actual pharmacist if  |
|                  | a login happens to his account                   |
|                  | 4.Showing the date and time of the last login    |

| Misuse Case ID   | L.3                                             |
|------------------|-------------------------------------------------|
| Misuse case Name | KeyLogging                                      |
| Description      | Using a malicious software to monitor every     |
|                  | input entered by the users                      |
| Preconditions    | Access to the application                       |
| postconditions   | The attacker has all the information entered by |
|                  | the pharmacists                                 |
| Normal flow      | 1.Attacker installs the malware on the          |
|                  | application                                     |
|                  | 2.Attacker uses the information that he gathers |
|                  | to log in to the system                         |
| Mitigation       | 1.Using antivirus or antimalware software       |
|                  | 2.Being cautious with suspicious links or       |
|                  | downloads                                       |
|                  | 3.Using virtual keyboards while entering        |
|                  | sensitive information                           |
|                  | 4.Monitor system activity                       |

| Misuse Case ID   | L.4                                            |
|------------------|------------------------------------------------|
| Misuse case Name | Medicine Modification (DB access)              |
| Description      | After the attacker has access to one of the    |
|                  | accounts he has the privilege to change the    |
|                  | medicines available in the system              |
| Preconditions    | Attacker has to log in to the system           |
|                  | successfully                                   |
| postconditions   | Attacker can modify the database and change    |
|                  | the items as he wishes                         |
| Normal flow      | 1.Attacker uses one of the previous methods to |
|                  | enter the system                               |
|                  | 2.attacker has access to the database and can  |
|                  | change the amount of the items or the          |
|                  | availability of some of them                   |
| Mitigation       | 1.Implementing strong authentication and       |
|                  | authorization controls                         |
|                  | 2.Using encrypted database where the attacker  |
|                  | wont know the what the database has            |
|                  | 3.Monitor the database activity                |
|                  | 4.Secure backup and database recovery          |
|                  | 5.Secure storage of the credentials            |