Exercise 36. Consider the ring homomorphism $k[x_1, x_2] \to k[x]$, $x_1 \mapsto x^2$, $x_2 \mapsto x^3$. It is clear that this homomorphism factors through $\phi : A \to k[x]$. Moreover, ϕ is injective — just note that any element of A can be uniquely written as $p(x_1) + x_2q(x_1)$ where p and q are polynommials and this maps to $p(x^2) + x^3q(x^2)$, so all the monomials in the first summand are of even degree, in the second summand of odd degree, and we get zero iff p = q = 0.

We see that A is isomorphic to the subring $k[x^2, x^3]$ of k[x]. These rings clearly have the same field of fractions k(x), and the element $x \in k(x)$ is integral over A, so the integral closure coincides with k[x].

Let us consider the open subsets $U=D_{x^2}\subset \operatorname{Spec}(k[x^2,x^3])$ and $U'=D_x\subset \operatorname{Spec}(k[x])$. The localization of $k[x^2,x^3]$ at powers of x^2 clearly coincides with the localization of k[x] at powers of x, so we see that the mentioned open subsets are isomorphic. The complement of U' is the point x=0, and the complement of U is $V(x^2)$ which is also a point $-k[x^2,x^3]/(x^2)=k\oplus k\cdot x^3\simeq k[\varepsilon]/(\varepsilon^2)$. These two points are identified by ϕ . So we see that ϕ induces a bijection of spectra (actually, a homeomorphism).

Exercise 37. Let's take an element $x = a + b\sqrt{n}$ with $a, b \in \mathbb{Q}$. The minimal polynomial of x over \mathbb{Q} is $p(X) = X^2 - 2aX + a^2 - nb^2$. If x is integral over \mathbb{Z} , the polynomial which gives the integral dependence q(X) has to be divisible by p(X) (in the polynomial ring $\mathbb{Q}[X]$), so q(X) = p(X)r(X). Since both p and q are monic and $q \in \mathbb{Z}[X]$, by Gauss lemma we must have $p \in \mathbb{Z}[X]$. Conclusion: x is integral over \mathbb{Z} iff $2a \in \mathbb{Z}$ and $a^2 - nb^2 \in \mathbb{Z}$.

First consider the case when $a \in \mathbb{Z}$. Then we must have $nb^2 \in \mathbb{Z}$ and since n was square-free we see that $b \in \mathbb{Z}$. We conclude that the subring $\mathbb{Z}[\sqrt{n}]$ is always contained in the integral closure.

Next let $a=\frac{a'}{2}$ with a' odd. It is enough to consider $a=\frac{1}{2}$ because we can add to x elements from $\mathbb{Z}[\sqrt{n}]$. Let $b=\frac{p}{q}$ with p and q coprime, then $1-4n\frac{p^2}{q^2}\in 4\mathbb{Z}$ and we see that q must be equal to 2. Then $np^2=1 \pmod 4$ and this is impossible if $n=2,3 \pmod 4$, and will always be the case for odd p when $n=1 \pmod 4$. This proves what was claimed.

Exercise 38. Note that we just consider the normalization of a nodal cubic curve $\operatorname{Spec}(A_0)$ where $A_0 := k[x_1, x_2]/(x_2^2 - x_1^2(x_1 + 1))$, and the normalization is given by $A_0 \to k[x]$, $x_1 \mapsto x^2 - 1$, $x_2 \mapsto x(x^2 - 1)$. Then we take the product of everything with the affine line $\operatorname{Spec}(k[y])$, so that $A = A_0 \otimes k[y]$, etc. The resulting map is the normalization of a singular surface.

Consider the prime ideals $I_1 = (x - 1, y)$ and $I_2 = (y - (x + 1))$. The first one is the ideal of a point and this point maps to the point P given by $x_1 = x_2 = y = 0$. Note that there is another point which maps to P — it is given by the ideal $I'_1 = (x + 1, y)$. The ideal I_2 defines a line and is contained in I'_1 but not in I_1 . The image I_2 of the line given by I_2 passes through I_2 . The preimage of I_2 is unique — this is because the normalization map identifies only one pair of lines: I_2 and I_2 and I_3 and the line defined by I_3 is not one of those.

Now we take \mathfrak{p} to be the ideal of L and \mathfrak{p}' to be the ideal of P, so that $\mathfrak{p} \subset \mathfrak{p}'$. We have lifted \mathfrak{p}' to I_1 , but we can not lift \mathfrak{p} so that the lift is contained in I_1 , because \mathfrak{p} has unique lift I_2 , which is not contained in I_1 .

Addendum: why I_2 is the unique ideal which lifts the preimage of I_2 in A. Let's consider the localized rings A_{x_1} and $k[x,y]_{x^2-1}$. Both localizations are non-zero and by the universal property of the localization we get a map $A_{x_1} \to k[x,y]_{x^2-1}$ (note that x_1 is sent exactly into x^2-1). I claim that these two rings are isomorphic. To see this consider a map in the opposite direction: $k[x,y]_{x^2-1} \to A_{x_1}$ given by $x \mapsto \frac{x_2}{x_1}$. Note that this is well-defined, because $x^2-1\mapsto \frac{x_2^2}{x_1^2}-1=x_1$ (recall the definition of A), and x_1 is invertible in A_{x_1} . It is clear that the two maps are inverse to each other.

Next note, that the ideal I_2 extends to a non-trivial ideal in the localization $k[x,y]_{x^2-1}$. This is clear, because $(x^2-1)^n$ does not belong to I_2 for any n, so the multiplicative system does not intersect I_2 . If we had a second ideal I'_2 which has the same preimage as I_2 in A, then I_2 and I'_2 would have the same extension to $k[x,y]_{x^2-1}$, since this ring is isomorphic to A_{x_1} . But this is possible only if $I_2 = I'_2$: recall, that for any ring R, a multiplicative set S in it and a prime ideal $\mathfrak p$ which does not meet S, we have $S^{-1}\mathfrak p\cap R=\mathfrak p$. So $I'_2=(I'_2\cdot k[x,y]_{x^2-1})\cap k[x,y]=(I_2\cdot k[x,y]_{x^2-1})\cap k[x,y]=I_2$.

Exercise 39. Straightforward from the definition.

- **Exercise 40.** i) All the ideals are of the form (m) and the radical of such an ideal is $(p_1 \cdot \ldots \cdot p_k)$ where p_i are distinct prime factors of m. We know from the previous exercise that the radical of a primary ideal must be prime, so there is only one prime factor and $m = p^n$.
 - ii) It is easy to see that the radical of \mathfrak{q} is (x,y) which is maximal, so A/\mathfrak{q} has unique prime ideal, hence all zero-divisors in A/\mathfrak{q} are nilpotent. If $\mathfrak{q} = \mathfrak{p}^n$ then \mathfrak{p} is the radical of \mathfrak{q} , which is (x,y), but \mathfrak{q} is not $(x,y)^n$.
 - iii) Consider the elements \bar{x} and \bar{y} . Their product is in \mathfrak{p}^2 , \bar{x} is not in \mathfrak{p}^2 , and no power of \bar{y} is in \mathfrak{p}^2 .

Exercise 41. Straightforward.