Multiple-response agents: Fast, feasible, approximate primal recovery for dual optimization methods

Tetiana Parshakova, Yicheng Bai

Garrett van Ryzin, Stephen Boyd

Amazon SCOT, *Stanford

Distributed convex optimization

minimize
$$f(x) = \sum_{i=1}^{K} f(x_i)$$

subject to $\sum_{i=1}^{K} A_i x_i \le b$

- $f: \mathbf{R}^{n_i} \to \mathbf{R} \cup \{\infty\}$ is closed, convex, and proper
- $A = (A_1, \ldots, A_k) \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$ given
- conjugate subgradient oracle

$$x_i(y_i) \in \underset{z_i \in \mathbf{dom} \ f_i}{\operatorname{argmin}} \left(f_i(z_i) - y_i^T z_i \right)$$

Dual subgradients

• dual function for $\lambda \geq 0$

$$g(\lambda) = -f^*(-A^T\lambda) - \lambda^T b$$

• subgradient of -g at $\lambda \ge 0$

$$-Ax(y)+b\in\partial(-g)(\lambda)$$

KKT conditions

$$x = x(y), \quad y = -A^{T}\lambda \tag{1}$$

$$Ax \le b \tag{2}$$

$$\lambda \circ (Ax - b) = 0 \tag{3}$$

(4)

$$\lambda \geq 0$$

Optimality condition residuals

$$r_p = \mathbf{1}^T (Ax - b)_+, \qquad r_c = \lambda^T |Ax - b|$$

Multiple-response oracles

agents query approximate conjugate subgradient oracle w.r.t. current prices $y \in \mathbb{R}^n$ and return $x^{apx}(y)$

$$-f^*(y) \le f(x^{\mathsf{apx}}(y)) - y^\mathsf{T} x^{\mathsf{apx}}(y) \approx -f^*(y)$$

value suboptimality oracle

$$-f^*(y) \le f(x^{\vee}(y)) - y^{\top}x^{\vee}(y) \le -f^*(y) + \epsilon_{\nu}|f^*(y)|$$

price perturbation oracle

$$f(x^{p}(y)) - (y + \delta)^{T} x^{p}(y) = -f^{*}(y + \delta)$$

Primal recovery using MRA

1: approximate oracle queries

each agent *i* returns a list of N_i ϵ -suboptimal primal points $Z_i = \{z_{i_1}, \ldots, z_{i_{N_i}}\}$, associated with local price vector $y_i = -A_i^T \lambda$

2: primal recovery of $\bar{x} = (\bar{x}_1, \dots, \bar{x}_K)$

minimize
$$r_p + r_c$$

subject to $r_p = \mathbf{1}^T (A\bar{x} - b)_+, \quad r_c = \lambda^T |A\bar{x} - b|$
 $\bar{x}_i = Z_i u_i, \quad i = 1, \dots, K$
 $\mathbf{1}^T u_i = 1, \quad i = 1, \dots, K$
 $u_i \ge 0, \quad i = 1, \dots, K$

Numerical results

Contribution

- new primal recovery approach to generate fast, near-optimal, near-feasible primal solution
- in practice MRA converges to a reasonable approximate solution in just a few tens of iterations
- due to parallel calls, MRA increases the total computation budget but not the wall clock time of the underlying dual algorithm
- hyperparameter tuning for trading speed and solution quality github.com/cvxgrp/mra_precovery