Ejercicios MPI

Programación Paralela y Distribuida

Curso: 2016/2017

$\mathbf{\acute{I}ndice}$

1.	Normas para la realización de los ejercicios	2
2.	Partes a entregar	2
3.	Actividades a realizar	2
	3.1. ACTIVIDAD 1	2
	3.2. ACTIVIDAD 2. EJERCICIO 1	
	3.3. ACTIVIDAD 3	2
	3.4. ACTIVIDAD 4. EJERCICIO 2	3
	3.5. ACTIVIDAD 5	3
	3.6. ACTIVIDAD 6. EJERCICIO 3	Ş
	3.7. ACTIVIDAD 7. EJERCICIO 4.	3
4.	Evaluación	4
5.	FECHA LIMITE DE ENTREGA	4

Guía de Prácticas Curso 2016/2017

Este documento indica los requisitos para los ejercicios de OpenMP.

1. Normas para la realización de los ejercicios

- Realización individual.
- Los trabajos deberán ser entregados obligatoriamente antes de la fecha de entrega fijada en la actividad habilitada en el campus virtual.
- Materiales disponibles: Descargar los recursos para los ejercicios en el campus virtual.
- Estos ejercicios no son evaluables, pero es OBLIGATORIO entregar los ejercicios para poder evaluar la práctica de MPI.

2. Partes a entregar

- 1. Fichero 1: código fuente de los ejercicios 1, 2, 3, 4, cuyos ficheros deben llamarse ejercicioMPI_1, ejercicioMPI_2, ejercicioMPI_3, ejercicioMPI_4, respectivamente. Se comprimirán los 4 en un archivo comprimido .zip cuyo nombre será EjerciciosMPI_NombreApellido1 seguido del nombre y primer apellido del alumno).
- 2. Fichero 2: fichero PDF llamado EjerciciosMPI_NombreApellido1.pdf comentando las actividades y los ejercicios y mostrando capturas de pantalla de los programas.

3. Actividades a realizar

3.1. ACTIVIDAD 1

Estudiar y ejecutar el ejercicio de ejemplo Hola (código 3.5) y Hola con Send/Receive (código 3.6).

3.2. ACTIVIDAD 2. EJERCICIO 1.

Escribir un programa en C con MPI con 4 procesos, donde el maestro diga a los demás "Hola amigos, soy vuestro maestro" y después los demás al maestro "Hola maestro, soy el esclavo x", donde x es el número de identificación del proceso. Se imprime el mensaje en el procesador en el que llega.

3.3. ACTIVIDAD 3

Estudiar y ejecutar el ejercicio de ejemplo del cálculo de Pi y cálculo del área de un rectángulo (código 3.7) ¿Qué hacen estos programas?

Guía de Prácticas Curso 2016/2017

3.4. ACTIVIDAD 4. EJERCICIO 2.

Escribir un programa en C con MPI que realice el producto escalar de dos vectores de 10 elementos con 4 procesos. Supondremos que todos tienen inicialmente en memoria los vectores completos y se reparten las filas de manera homogénea entre todos los procesos. La suma de los resultados parciales de cada procesador se llevará a cabo en el procesador 0 de forma secuencial. Inicialmente también se habrá calculado el producto de forma secuencial (sin MPI), dentro del mismo fichero. Se debe mostrar por pantalla:

- El resultado secuencial
- Qué proceso ejecuta qué iteración
- El resultado paralelo

3.5. ACTIVIDAD 5

Estudiar y ejecutar el ejercicio de ejemplo del cálculo de Pi y cálculo del área de un rectángulo con funciones colectivas (código 3.8)

3.6. ACTIVIDAD 6. EJERCICIO 3.

Modificar el ejercicio 3.2 de modo que la suma de todos los elementos del vector resultado se realizará con la función colectiva MPI_Reduce. Inicialmente también se habrá calculado el producto de forma secuencial (sin MPI), dentro del mismo fichero. Se debe mostrar por pantalla:

- El resultado secuencial
- Qué proceso ejecuta qué iteración
- El resultado paralelo

3.7. ACTIVIDAD 7. EJERCICIO 4.

Escribir un programa en C con MPI con 4 procesos que realice el producto de una matriz [8][8] por un vector de 8 elementos. Sólo el proceso maestro tendrá los valores de la matriz y el vector. El vector se distribuirá por Broadcast al resto de procesos. La matriz se distribuirá a partes iguales mediante Scatter al resto de procesos. Los resultados locales de cada proceso se recolectarán a través de Gather. Inicialmente también se habrá calculado el producto de forma secuencial (sin MPI), dentro del mismo fichero. Se debe mostrar por pantalla:

- El resultado secuencial
- Qué proceso ejecuta qué iteración
- El resultado paralelo

Guía de Prácticas Curso 2016/2017

4. Evaluación

■ La entrega de las actividades se considerará correcta si los ejercicios funcionan correctamente y la explicación es adecuada.

5. FECHA LIMITE DE ENTREGA

La dispuesta en el campus virtual.