Static Complementary CMOS: Complex Gates

□ Pull-up network (PUN) and pull-down network (PDN)

PUN and PDN are dual logic networks

Threshold Drops

Construction of PDN

NMOS devices in series implement a NAND

function

NMOS devices in parallel implement a NOR function

Dual PUN and PDN

- PUN and PDN are dual networks
 - DeMorgan's theorems

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$
 [!(A + B) = !A • !B or !(A | B) = !A & !B]

$$A \cdot B = A + B$$
 [!(A \cdot B) = !A + !B or !(A \cdot B) = !A | !B]

- a parallel connection of transistors in the PUN corresponds to a series connection of the PDN
- A "complementary gate" is naturally inverting (NAND, NOR, AOI, OAI)
- Number of transistors for an N-input logic gate is 2N

CMOS NAND

Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

CMOS NOR

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

Complex CMOS Gate

Standard Cell Layout Methodology

What logic function is this?

Contacts, vias and wells are not shown!

OAI21 Logic Graph

Consistent Euler Path

- An uninterrupted diffusion strip is possible only if there exists an Euler path in the logic graph
 - Euler path: a path through all nodes in the graph such that each edge is visited once and only once.
- For a single poly strip for every input signal, the Euler paths in the PUN and PDN must be consistent (the same)

Two Stick Layouts of !(C • (A + B))

crossover requiring vias

uninterrupted diffusion strip

VLSI Design, Fall 2021 Amr Wassal 238

OAI22 Logic Graph

OAI22 Layout

XNOR/XOR Implementation

- □ How many transistors in each?
- □ Can you create the stick transistor layout for the lower left circuit?

Static CMOS Full Adder Circuit

$$C_{out} = C_{in} & (A | B) | (A & B)$$

Sum = $!C_{out} & (A | B | C_{in}) | (A & B & C_{in})$

VLSI Design, Fall 2021

NMOS Transistors in Series/Parallel

- Primary inputs drive both gate and source/drain terminals
- NMOS switch closes when the gate input is high

 Remember - NMOS transistors pass a strong 0 but a weak 1

PMOS Transistors in Series/Parallel

- Primary inputs drive both gate and source/drain terminals
- PMOS switch closes when the gate input is low

 Remember - PMOS transistors pass a strong 1 but a weak 0

Pass Transistor (PT) Logic

- □ Gate is static a low-impedance path exists to both supply rails under all circumstances
- □ N transistors instead of 2N
- □ No static power consumption
- □ Ratioless
- □ Bidirectional (versus undirectional)

VTC of PT AND Gate

 Pure PT logic is not regenerative - the signal gradually degrades after passing through a number of PTs (can fix with static CMOS inverter insertion)

VLSI Design, Fall 2021

Remember Voltage-Current Relation: Linear Mode

For long-channel devices (L > 0.25 micron)

• When $V_{DS} \le V_{GS} - V_{T}$

$$I_D = k'_n W/L [(V_{GS} - V_T)V_{DS} - V_{DS}^2/2]$$

where

 $k'_n = \mu_n C_{ox} = \mu_n \varepsilon_{ox}/t_{ox} = is$ the process transconductance parameter (μ_n is the carrier mobility (m²/Vsec))

 $k_n = k'_n$ W/L is the gain factor of the device

For small V_{DS} , there is a linear dependence between V_{DS} and I_{D} , hence the name resistive or linear region

VLSI Design, Fall 2021

Differential PT Logic (CPL)

VLSI Design, Fall 2021

Amr Wassal

CPL Properties

- Differential so complementary data inputs and outputs are always available (so don't need extra inverters)
- Still static, since the output defining nodes are always tied to V_{DD} or GND through a low resistance path
- Design is modular; all gates use the same topology, only the inputs are permuted.
- Simple XOR makes it attractive for structures like adders
- Fast (assuming number of transistors in series is small)
- Additional routing overhead for complementary signals
- Still have static power dissipation problems

CPL Full Adder

VLSI Design, Fall 2021

Amr Wassal

NMOS Only PT Driving an Inverter

- V_x does not pull up to V_{DD} , but $V_{DD} V_{Tn}$
- Threshold voltage drop causes static power consumption (M₂ may be weakly conducting forming a path from V_{DD} to GND)
- Notice V_{Tn} increases for pass transistor due to body effect (V_{SB})

Voltage Swing of PT Driving an Inverter

- Body effect large V_{SB} at x when pulling high (B is tied to GND and S charged up close to V_{DD})
- So the voltage drop is even worse

$$V_x = V_{DD} - (V_{Tn0} + \gamma(\sqrt{(|2\phi_f| + V_x)}) - \sqrt{|2\phi_f|}))$$

VLSI Design, Fall 2021

Cascaded NMOS Only PTs

Swing on
$$y = V_{DD} - V_{Tn1} - V_{Tn2}$$

Swing on
$$y = V_{DD} - V_{Tn1}$$

- Pass transistor gates should never be cascaded as on the left
- Logic on the right suffers from static power dissipation and reduced noise margins

Solution 1: Level Restorer

- Full swing on x (due to Level Restorer) so no static power consumption by inverter
- No static backward current path through Level Restorer and PT since Restorer is only active when A is high
- For correct operation M_r must be sized correctly (ratioed)

VLSI Design, Fall 2021

Transient Level Restorer Circuit Response

 Restorer has speed and power impacts: increases the cap at x, slowing down the gate; increases t_r (but decreases t_f)

VLSI Design, Fall 2021

Amr Wassal

Solution 2: Multiple V_T Transistors

 Technology solution: Use (near) zero V_T devices for the NMOS PTs to eliminate *most* of the threshold drop (body effect still in force preventing full swing to V_{DD})

Impacts static power consumption due to subthreshold currents flowing through the PTs (even if V_{GS} is below V_T)

VLSI Design, Fall 2021 Amr Wassal 256

Solution 3: Transmission Gates (TGs)

Most widely used solution $\overline{C} = GND$ $\overline{C} = GND$ $A = V_{DD}$ A = GND $C = V^{DD}$ $C = V^{DD}$

 Full swing bidirectional switch controlled by the gate signal C, A = B if C = 1