Human Capital Production in a Spatial Economy:

A Quantitative Assessment of the Decentralized U.S. Education System

Sunham Kim

Purdue University

SOLE Annual Meeting May 2024

Motivation

- A nation's human capital = sum(human capital of sub-regions)
 shaped by education and labor mobility
- U.S. has a unique decentralized education system (Goldin and Katz 2008)
 - States set and finance education policies
- Interstate migration makes state education spills over into other states
 - Education policy of Oklahoma has GE effects

This paper

- How one state's efficiency of HC production propagates to the others?
- How these spillovers contribute to the national economy?

Propose and quantify a dynamic spatial-GE framework where

- ullet Migration o expected returns to human capital o HC choices
- HC choice \rightarrow migration propensity \rightarrow HC allocation over spaces
- + GE feedback to individual decisions

and evaluate

- the impact of a federal education grant on the state and national economies
- and an optimal strategy for its implementation

Model: Overview

- Dynamic spatial migration model with hetero. states (Artuc et al. 2010, Caliendo et al. 2019)
- Hetero. OLG household: human capital accumulation (Hsieh et al. 2019)
- Key margin: interplay of migration & human capital accumulation
- → Each bilateral link of migration embodies different amounts of HC
- ⇒ Quantifies how state education quality/policy propagates
 - * Computationally intensive; focus on U.S. states

Key Findings

- Quantification: "A House Divided Cannot Stand."
 - Skill production efficiency varies across states: P90/P10 = 1.23
 - High efficiency states export HC to low eff. ones
 - The U.S. GDP would decline by 7% (\$ 700 bill.), absent migration
 - ⇒ Strong complementarity between migration and the decentralized system
- Counterfactual: the federal role in education
 - A federal education grant to states (Race to the Top) increased the U.S GDP by 0.2%
 - The gain \$21.5 bill = 5x of the cost \$4.1 bill
 - The grant-winning states and neighbors benefits the most
 - Alternative grant allocation could increase the national GDP gain

Literature and Contribution

Human Capital Production in General Equilibrium

- Erosa et al. (2010), Manuelli & Seshadri (2014), Hsieh et al. (2019), Ferriere et al. (2021), Xiang & Yeaple (2023)
- + HC decision internalizes the possibility of future migration

Quantitative Spatial General Equilibrium Models

- Artuc et al. (2010), Caliendo et al. (2019), Bryan & Morten (2019), Eckert & Kleinberg (2021), Hsiao (2023)
- + Worker heterogeneity and endogenous skill acquisition dynamics

School Finance (Reform)

- Fernandez & Rogerson (1998), Gordon (2004), Coen-Pirani (2015), Biasi (2023), Handel & Hanushek (2023)
- + Spatial dynamics \rightarrow propagation of education policies; RTT cost-benefit analysis

Economic Impacts of Local Education Quality

• Card & Krueger (1992), Chetty et al. (2014), Jackson et al. (2016), Altonji and Mansfield (2018)

Model

Model Components

A collection of closed states that workers move across borders

- + State-specific: Amenity, TFP, skill production efficiency ("education quality")
 - Exogenous and time-invariant
- + Production: one sector, non-tradable final good
 - Inputs: two types of HC (college and non-college workers)
- + Finitely-lived Households = Education and Working stages
 - ullet Education Stage: Skill investment and degree choice \Rightarrow fixed thereafter (Hsieh et al. 2019)
 - Working Stage: Work and migrate, subject to moving cost (Artuc et al. 2010)
 - Parents pay for skill investment of children

Skill Production

- Individual skill = f(innate ability, acquired knowledge)
- Innate ability $\varepsilon \sim \mathcal{LN}(0, \sigma_{\varepsilon}^2)$
- Acquired knowledge $H = h^{k_B} \times e^{\eta}$
 - e: skill investment
 - h^{kB} : skill-production efficiency of state of birth k_B
 - $\eta \in (0, 1)$: returns to the investment
- \Rightarrow Individual worker's skill = $H\varepsilon$

Degree Choice

- State labor market is segmented by degree = {College, Non-college}
- College jobs pay higher wages
- College workers pay lower moving costs
- College is not free:
 - fixed utility cost χ
 - idiosyncratic utility cost $z\sim$ Logistic(0, σ_z^2)
- ⇒ High-skill individuals select into college

Human Capital, Worker Type, and Income

Human Capital = Skill & Degree

$$\downarrow$$

Worker type
$$\mathbf{s} \equiv (k_B, \varepsilon, e, o)$$

born in state k_B with ability ε , spent e on skill, and chose degree o

$$\downarrow \downarrow$$

Labor income
$$I^k(\mathbf{s}) = \underbrace{w_o^k}_{\text{Degree}} \underbrace{H(\mathbf{s})\varepsilon}_{\text{Skill}}$$
, given state

Child

Producer's Problem

$$\mathbf{Y}^{k} = \Theta^{k} \left[A_{c}^{k} (\mathbf{L}_{c}^{kD})^{\frac{\sigma-1}{\sigma}} + A_{n}^{k} (\mathbf{L}_{n}^{kD})^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$$
 (1)

- + L_c^{kD} and L_n^{kD} denote college and non-college HC demanded in state k
- + Θ^k denotes the state TFP
- + A_0^k denotes education-specific technological parameters, $A_c^k + A_n^k = 1$.

Aggregation Market Clearing Equilibrium

Decision Rules

- Skill Acquisition: individuals invest more / go to college if
 - draw a higher innate ability
 - born in a higher skill production efficiency state
 - have higher-income parents
 - can enjoy marginal returns to human capital via migration
- Migration: individuals are moving because of
 - high-paying jobs (for own consumption)
 - better skill production efficiency (for children)
 - idiosyncratic taste shocks

and more likely to move with higher HC (skill, degree)

Quantification: U.S. States

Quantification Procedure

- 1. Set the preference and production parameters externally personally
- 2. Estimate moving costs and the migration elasticity PPML est
 - Outside of the main calibration, using wages and cross-state migration flows
- 3. Calibrate the region fundamentals and human capital related parameters or contains
 - Key: state skill production efficiency h
 - Identification: per capita skill demand & market clearing

Calibration

- Setup
 - Calibrate the model to the 2000 U.S. economy
 - 47 U.S. States, excluding Alaska, Delaware, Wyoming, and D.C. (Hanushek et al. 2017)
- Key Data Data Overview Migration Data
 - Wages and migration flows by degree and states (Census, ACS, CPS)
 - State GDP (BEA), national % of college grads
- Fit and Validation
 - The model perfectly matches the target moments
 - Calibrated state fundamentals are consistent to the existing literature
 - Model-predicted migration rates are close to the observed ones

TFP and Migration Rates

h is correlated with public education spending

Human Capital Flow and State Gross Output

Current HC stock of state k = native stayers + (inflow - outflow)

Adjusted Net Inflow^{$$k$$} = $\frac{\text{inflow - outflow (eff. labor)}}{\text{k-born population (headcount)}}$

- ANI is an absolute measure: the magnitude of HC flows implied by migration flows
 - An indicator of state-level brain gain or drain
 - Likely to decrease in h, but Θ and a may compensate
- \Rightarrow *ANI* $\uparrow \Longrightarrow$ **Gross** output *Y* \uparrow

Human Capital Flow and State per capita Output

State per capita income = wage
$$\times$$
 [HCpc of native stayer + in-migrants]

weighted by emp share

Relative HC per capita^k = $\frac{\text{HCpc of in-migrants}}{\text{HCpc of native stayers}} - 1$

- RHCPC is a relative measure: headcounts / magnitudes are irrelevant
 - Value-added contribution of in-migrants to state output, compared to the native stayers
 - Decreasing in h

Results: Human Capital Flows (Non College)

- Oklahoma: Low $h, \Theta \rightarrow ANI \uparrow, RHCPC \uparrow \uparrow$
- Connecticut: High $h, \Theta \rightarrow ANI \uparrow$, RHCPC $\downarrow \downarrow$

"A House Divided": shutting down migration

- The U.S. output: drops by 6.9% (\$700 bill. in 2000)
- State-level responses are heterogeneous

A House Divided: HC Flows and Output per capita (Non College)

- High ANI, RHCPC ⇒ Higher gains in output per capita
- Net population inflow is not a good predictor

Policy Simulation

Policy: Race To the Top (RTT)

- U.S. DoE competitive grant to states, upon voluntary participation
- \$4.12 billion to 18 states + D.C. (2010-2011)
- The grant amount varies across states, from \$18 mil. (CO) to \$700 mil. (NY)

⇒ What is the impact of the grant on the states, and the national economy?

Simulation Procedure

- 1. Regress h on **public expenditure per pupil** and take the OLS coefficient \hat{b}
- 2. Convert the RTT funding amounts into per pupil scale, Δ^k
- 3. Obtain a counterfactual skill production efficiency $h_{Sim}^k = h^k + \hat{b}\Delta^k$

Simulation: Mimicking the RTT

	\$ Mill.	\$ per pupil	% growth	Δh
Arizona	25	28.5	0.38	0.001
Colorado	18	24.8	0.28	0.001
Florida	700	287.5	3.46	0.011
Georgia	400	276.8	2.97	0.011
Hawaii	75	406.8	4.58	0.015
Illinois	43	21.0	0.20	0.001
Kentucky	17	25.5	0.31	0.001
Louisiana	17	22.9	0.28	0.001
Maryland	250	293.1	2.63	0.011
Massachusetts	250	256.4	2.00	0.010
New Jersey	38	28.9	0.19	0.001
New York	700	242.9	1.68	0.009
North Carolina	400	309.2	3.62	0.012
Ohio	400	218.0	2.14	0.008
Pennsylvania	41	22.6	0.20	0.001
Rhode Island	75	476.7	3.80	0.018
Tennessee	500	550.0	7.18	0.021
Delaware	100	872.0	7.23	0.033
District of Columbia	75	1088.1	6.71	0.041

Results: per capita Output Changes (%)

- U.S. GDP: 0.22% ↑
- The Eastern U.S. mostly benefits from RTT

Simulation: Alternative Implementations

	States	\$ Per Pupil	Δh
Top 5	New Jersey, Nevada, Washington, New York, Connecticut	647.0	0.025

Bottom 5 Results

Results: per capita Output Changes (%), Subsidize the Top 5

- U.S. GDP: 0.27% ↑
- The 5 states: 0.8%-1.1% \uparrow , increasing in TFP Θ

Summary

- New dynamic spatial model to quantify human capital flows
 - Endogenizes human capital accumulation and migration jointly
 - Incorporates and quantifies GE spatial linkages
- Quantify the skill production efficiency and interstate HC flows
 - Skill production efficiency varies across states: P90/P10 = 1.23
 - Human capital mostly flows from high to low efficiency states
- Results suggests:
 - The U.S. GDP would decline by 7% (\$ 700 bill.), absent migration
 - Race to the Top increased the U.S GDP by 0.2% (\$21 bill.)
- Future study
 - Declining interstate migration → federalism in education?
 - Applicable to other large economies (e.g. EU) or international migration

Thank you!

sunham-kim@purdue.edu https://sunhamkim.github.io

Appendix

Households: Within-Period

Value of an adult worker **s** at age q working in state k

$$v^{q}(k;\mathbf{s}) = u(c) + a^{k} + \max_{k' \in \mathcal{K}} \left\{ u^{k'} - \tau^{k,k'} + \beta \mathbb{E} v^{q+1}(k';\mathbf{s}) \right\}$$

s.t. $c = l^{k}(\mathbf{s})/P^{k}$

Problem: choosing where to live tomorrow

- Utility function u(c): CRRA
- Regional amenity a^k
- Preference shock $u^k \sim^{iid} T1EV(-\gamma \nu, \nu)$
- Moving costs $\tau^{k,k'} \geq 0$ is in terms of utility

Type-I EV distribution delivers the expected value of a worker at age q in state k:

$$V^{q}(k;\mathbf{s}) = u\left(I^{k}(\mathbf{s})/P^{k}\right) + a^{k} + \nu \log\left[\sum_{k'} \exp\left(\beta V^{q+1}(k',\mathbf{s}) - \tau^{k,k'}\right)^{\frac{1}{\nu}}\right]$$

where $V^q(k,\mathbf{s}) \equiv \mathbb{E} v^q(k;\mathbf{s})$ (expectation taken over u).

The probability of moving from k to k' for worker s:

$$m^{q}(k, k'; \mathbf{s}) = \frac{\exp\left[\beta V^{q+1}(k'; \mathbf{s}) - \tau^{k, k'}\right]^{\frac{1}{\nu}}}{\sum_{k' \in \mathcal{K}} \exp\left[\beta V^{q+1}(k'; \mathbf{s}) - \tau^{k, k'}\right]^{\frac{1}{\nu}}}$$
(2)

Gradient: Geography and Education Gradient: Selection and Sorting

End-period value of a **child** at age q = 0 in state $k = k_P = k_B$: choose where to live tomorrow

$$V^{0+}(k_P, \varepsilon, \mathbf{e}; \mathbf{o}) = \nu \log \left[\sum_{k'} \exp \left(\beta V^1(k', \mathbf{s}) - \tau^{k_P, k'} \right)^{\frac{1}{\nu}} \right]$$

Beginning-period value of a child in k_p with (ε, e) : choose whether go to college

$$V^{0-}(\textit{k}_{\textit{P}}, \epsilon; e) = \max_{o \in \{c,n\}} \left\{ V^{0+}(\textit{k}_{\textit{P}}, \epsilon; e, \overset{\textbf{n}}{\text{n}}), V^{0+}(\textit{k}_{\textit{P}}, \epsilon; e, \overset{\textbf{c}}{\text{c}}) - z - \chi \right\}$$

- Children have no own consumption
- Parents finance skill investment e

Value of a parent at age $q = q_P$ in state k:

$$V^{q_{P}}(k, \boldsymbol{\varepsilon}'; \mathbf{s}) = \max_{c, e'} u(c) + a^{k} + \alpha V^{0-}(k, \boldsymbol{\varepsilon}'; \mathbf{e}') + \nu \log \left[\sum_{k'} \exp \left(\beta V^{q_{P}+1}(k', \mathbf{s}) - \tau^{k, k'} \right)^{\frac{1}{\nu}} \right]$$

$$s.t. \quad c + \mathbf{e}' = I^{k}(\mathbf{s}) / P^{k}$$

- α : the degree of altruism
- The c-e' decision before relocation o departs from ACM (2010), CDP (2019), etc.
- Investment decision **after** observing ε' , given parental income

Households: pre-parents and retirees

Dynastic framework with two stages: children (education) and adult (working)

Value of a worker at age $q = q_P - 1$ in state k who **becomes a parent tomorrow**

$$V^{q_P-1}(k;\mathbf{s}) = u(c) + \nu \log \left[\sum_{k'} \exp \left(\beta \mathbb{E}_{\epsilon'} V^{q_P}(k', \epsilon'; \mathbf{s}) - \tau^{k,k'} \right)^{\frac{1}{\nu}} \right]$$

• $V^{q_P}(\cdot)$ involves education quality h^k

Value of a **retiring worker** at age $q = q_R$

$$V^{q_R}(\mathbf{k};\mathbf{s}) = u(I^k(\mathbf{s})/P^k)$$

A simple hand-to-mouth problem without relocation decision

Migration Probs: Qualitative Predictions

• Migration cost (geography) Consider a parent-age individual in A with \mathbf{s} and her migration probability to B, $m^{q_P}(A, B; \mathbf{s})$. The first derivative of m^{q_P} is:

$$rac{\partial m^{q_P}(A,B;\mathbf{s})}{\partial au} = -rac{1}{
u} m^{q_P}(A,A;\mathbf{s}) m^{q_P}(A,B;\mathbf{s}) < 0$$

HC productivity (education motive)
 Take a pre-parental individual (A, s) and consider m⁰(A, B; s) again.

$$\frac{\partial m^{q_{P}-1}(A,B;\mathbf{s})}{\partial h_{c}^{B}} = \underbrace{m^{q_{P}-1}(A,A;\mathbf{s})m^{q_{P}-1}(A,B;\mathbf{s})}_{>0} \left[\frac{\beta}{\nu} \underbrace{\mathbb{E}_{\varepsilon'}V_{\varepsilon'}^{q_{P}}(B;\mathbf{s})}_{\geq 0} \right]$$

$$V_{h_c^B}^{q_P} = \alpha V_{h_c^B}^{0-} \geq 0$$

where the equality holds if a child will be specialized in n Back

Migration Probs: Qualitative Predictions

Selection: move from A to B

$$\frac{\partial m^{q_p}(A,B;\mathbf{s})}{\partial H} = \underbrace{m^{q_p}(A,A;\mathbf{s})m^{q_p}(A,B;\mathbf{s})}_{>0} \left[\frac{\beta}{\nu} \underbrace{\left(V_H^{q_R}(B;\mathbf{s}) - V_H^{q_R}(A;\mathbf{s})\right)}_{\text{(*), ambiguous}} \right]$$

- (*) > 0 with $\rho > 0$
- Sorting: move from A to B or C; same as above

$$\frac{\partial}{\partial H} \log \left[\frac{m^{q_R}(A, B; \mathbf{s})}{m^{q_R}(A, C; \mathbf{s})} \right] = \frac{\beta}{\nu} \left[\underbrace{V_H^{q_R}(B; \mathbf{s}) - V_H^{q_R}(C; \mathbf{s})}_{(*)} \right]$$

• HC gradient of geography (derivative w.r.t. H and τ): same logic applies

HC Aggregation

• For a measure $\mu^q(k; \mathbf{s})$, the state labor supply = agg. individual HC:

$$L_o^{kS}(q) = \int_{\mathbf{s}} (h_o^{k_B} e^{\eta}) \epsilon_o d\mu^q$$

$$L_o^{kS} = \sum_{q \ge 1} L_o^{kS}(q)$$

Law of motion: aggregate evolution of the labor force

$$\mu^{q+1}(k', \mathbf{s}) = \sum_{k} m^{q}(k, k'; \mathbf{s}) \mu^{q}(k, \mathbf{s}) \qquad 0 \le q \le q_R - 1$$

Steady state: gross migration flows are positive but net flows are zero

Market Clearing

State Labor Market Clearing

$$L_o^{kS} = L_o^{kD} \qquad \forall_{o,k}$$

State Goods Market Clearing

$$Y^k = C^k + E^k$$

where

$$C^k = \sum_q [\int_{\mathbf{s}} \mathbf{c}^q(\cdot) d\mu^q], \qquad E^k = \int_{\varepsilon'} \int_{\mathbf{s}} \mathbf{e}'(\cdot) d\mu^{q_P}$$

State Price Index

$$P^{k} = \frac{1}{\Theta^{k}} \left[(A_{c}^{k})^{\sigma} (w_{c}^{k})^{1-\sigma} + (A_{n}^{k})^{\sigma} (w_{n}^{k})^{1-\sigma} \right]^{\frac{1}{1-\sigma}}$$

Equilibrium

The analysis is focused on steady states.

Definition (Stationary Equilibrium)

Given the fundamentals Γ , a stationary equilibrium of the model consists of prices $\{w_o^k, P^k\}$, value functions and policy functions for workers $\{V^q(k;\mathbf{s})\}$, $c(k;\mathbf{s})$, $e'(k;\mathbf{s})$, $o(k,e,\varepsilon)$, $m^q(k;\mathbf{s})$, policies for firms $\{L_o^{kD}\}$, and a stationary measure $\mu^q(k;\mathbf{s})$ that solves the dynamic problem of individuals and the corresponding laws of motion for labor, sub-static subproblem for production, and market clearing conditions.

Unpacking Decision Rules: A Tale of Two Regions

Consider two regions Rural and Urban, where

- Identical skill production efficiency h
- College job pays more than non-college job in both
- **Urban** pays more than Rural for each type of job
- Rural college pays more than Urban non-college

Check the decision rules to see

Unpacking Decision Rules: Skill Investment

- Child ability ↑ ⇒ investment ↑ (given parental income)
- Migration averages returns to skill over spaces
- \Rightarrow Shifts the curves: Rural $\uparrow \uparrow$, Urban \downarrow

Unpacking Decision Rules: College Propensity

- Skill ↑ ⇒ Pr(College) ↑
- Migration → Value of College Degree ↑
 - Rural: access to higher w_c^U + lower moving cost
 - Urban: insure against w_n^R

Unpacking Decision Rules: Migration Propensity and Human Capital

- Selection: Skill ↑ ⇒ Pr(Migrate) ↑
- Sorting: Skill ↑ ⇒ Pr(Destination = Rural) ↓
- Lower moving cost (college) ⇒ Pr(Migrate|College) ↑↑

Human Capital Flow Accounting Framework: Formal Definitions

I formally propose the three measures as follows.

$$\begin{aligned} NI_o^k &= \sum_{s \neq k} L_o^k(s) - \sum_{d \neq k} L_o^d(k) \\ ANI_o^k &= (\widetilde{N}^k)^{-1} NI_o^k \\ RHCPC_o^k &= \frac{L_o^k(-k)/N_o^k(-k)}{L_o^k(k)/N_o^k(k)} - 1 \end{aligned}$$

- NI and ANI are absolute measures: the magnitude of migration flows (headcounts)
 matter
- RHCPC is a **relative** measure: it compares HC per capita, regardless of headcounts

Derivation: RHCPC

$$Y^k = \sum_o W_o^k \Big[\underbrace{L_o^k(k)}_{\text{k-born k-residents}} + \underbrace{L_o^k(-k)}_{\text{all migrants}} \Big]$$

$$Y^k = \sum_o W_o^k \underbrace{\frac{N_o^k}{N^k}}_{\text{Emp shares by degree}} \Big[\underbrace{\frac{N_o^k(k)}{N_o^k} \frac{L_o^k(k)}{N_o^k(k)}}_{\text{k-born k-residents}} + \underbrace{\frac{N_o^k(-k)}{N_o^k} \frac{L_o^k(-k)}{N_o^k(-k)}}_{\text{all migrants}} \Big]$$

where

$$\frac{N_o^k(-k)}{N_o^{-k}} \frac{L_o^k(-k)}{N_o^k(-k)} \equiv \sum_{s \neq k} \frac{N_o^k(s)}{N_o^k} \frac{L_o^k(s)}{N_o^k(s)}$$

The per capita income is decomposed into the per capita HC by degree and origin, weighted by emp shares by degree and within-degree origin composition. Comparing the HC per capita, we obtain:

$$RHCPC_{o}^{k} = \frac{L_{o}^{k}(-k)/N_{o}^{k}(-k)}{L_{o}^{k}(k)/N_{o}^{k}(k)} - 1$$

Quantification Step 1: Set Parameters Externally

- Production
 - CES elasticity of substitution $\sigma = 1.5$ (Cantore et al. 2017)
- Human capital
 - Elasticity of HC investment $\eta=0.103$ (Hsieh et al. 2019)
- Preference
 - CRRA utility, risk aversion ρ = 0.9 (Chetty 2006: [0.15, 2.2] median = 0.71, mean = 0.9)
 - Subjective discount factor $\beta = 0.9 \rightarrow \text{annual} = 0.98$
 - Altruism $\alpha = 0.5$ (Del Boca et al. 2019)
- + Time: period = 5 years, $q_R = 3$, $q_P = 2$.
 - Individuals live through 1+3 periods; relocate up to 3 times

Quantification Step 2: Two-Stage PPML Estimation

• Stage 1: Estimate $\tau_0^{k,k'}/\nu$, recasting the migration propensity (1)

$$\text{NumMigrants}_{t}^{k,k'}(o) = \exp \left[\underbrace{\underbrace{\text{origin}_{t}^{k} + \text{destin}_{t}^{k'}}_{\text{Fixed effects}} - \frac{\tau_{o}^{k,k'}}{\nu} \right] + \text{error}_{t}^{k,k'}(o)$$

• Stage 2: Estimate $1/\nu$, recasting the working adult's problem

$$\kappa_t^k(o) = \underbrace{\mathsf{time}_t(o) + \mathsf{region}^k(o)}_{\mathsf{Fixed\ effects}} + \frac{\beta}{\nu} u \Big[\frac{I_{t+1}^k(o)}{P_{t+1}^k} \Big] + \mathsf{error}_t^k(o)$$

• $\kappa_t^k(o)$: function of $\underset{t+1}{origin_t^k}$, $\underset{t}{destin_t^k}$, and population $_{t+1}^k$

PPML Results

Table: Moving Costs

	Mean	SD	Min	Max
Non-College	7.234	1.744	3.081	12.139
College	6.450	1.304	3.307	10.712

Table: Migration Elasticity

	(1)	(2)	(3)
	All	Non College	College
1 /ν	0.617***	0.546***	0.643***
	(0.142)	(0.188)	(0.141)
N	1880	940	940

Quantification Step 3: Calibration

Solve for region fundamentals $\{h^k, \Theta^k, a^k, A_o^k\}$, college cost parameters $\{\chi, \sigma_z\}$, and skill dispersion σ_ε such that match

- state-level moments:
 - output per capita y
 - wages by degree wo
 - population share N
- national moment:
 - share of college graduates
- clear all labor markets

Data

- Regional GDP (BEA)
 - Drop the capital portion assuming the Cobb-Douglas (capital share = 0.38)
 - Stata-level capital stock data is from El-Shagi and Yamarik (2019)
- Wages by degree and state: CPS-ASEC, ACS, and Decennial Census
- Interstate migration flows: CPS-ASEC, ACS, Decennial Census
- National % college graduates: ACS

Migration Data

Table: Three Samples of 5-year Migration Flows

	Simulated All-year Sample	Simulated 5-year Sample	Alternating Sample
Source	CPS-ASEC	CPS-ASEC	CPS-ASEC and Census
Simulation	Yes, fully	Yes, partially	No
Raw Data Frequency Availablity	Annual 1985-2010 (26 periods)	Demi-decennial 1985-2010 (6 periods)	Demi-decennial 1985-2000 (4 periods)

Migration Data: Simulated Samples

- Construct 5-year flows from 1-year flows for better data availability (Eckert and Kleinberg 2021)
- Accounting identity of migration flows

$$N_{t+1}^{k'} = \mathbf{M}_{t-1,t}^{kk'} N_t^k$$

Forward iteration of M yields a simulated 5-year transition matrix

$$N_t^{k'} = \mathbf{M}_{t-5,t}^{kk'} N_{t-5}^k pprox \Big[\prod_{d=1}^5 \mathbf{M}_{t,t-d}^{kk'}\Big] N_{t-5}^k$$

Calibration: Identifying the Key Parameters

All parameters are jointly identified. All things equal,

- Higher w and $y \Rightarrow$ higher Θ
- Higher $N \Rightarrow$ higher a
- $h \Rightarrow$ the per capita labor supply L/N
- $A_o \Rightarrow$ the relative labor demand L_c/L_n
- χ and $\sigma_z \Rightarrow$ the national share of college education

Model Validation: h and public spending

$$h^k = a + b$$
Expenditure $^k + e$ rror k

	Level		Log	
	(1)	(2)	(3)	(4)
	1990	2000	1990	2000
Expenditure Per Pupil	0.031***	0.038***	0.387***	0.378***
	(0.006)	(0.010)	(0.072)	(0.101)
R-squared	0.329	0.224	0.331	0.214

Robust standard errors in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

Model Validation: TFP and Migration Rates

• TFP: Compare the calibrated Θ and the estimates from Herkenhoff et al. (2018)

	1980	1990	2000	2014
Rank Corr.	0.280	0.703	0.743	0.580
	(0.060)	(0.000)	(0.000)	(0.000)

Spearman rank correlation coefficients. P-values in parentheses.

Migration Rates: Compare the model and the empirical rates

	Model	Data (CPS)
Mig. Rate (Non-College)	0.085	0.071
Mig. Rate (College)	0.135	0.122

A House Divided: Output per capita and HC Flows (College)

Results: Subsidize the Bottom 5

- U.S. GDP: 0.13% ↑
- The 5 states: 3.25%-3.8% ↑, increasing in TFP ⊕

