Scientific usage of the Pencil Code

Search results using http://adslabs.org

May 18, 2014

A search using http://adslabs.org indicates the papers where the PENCIL CODE is being quoted. In the following we quote the papers that are directly making use of the code either for their own scientific work of those authors, or for code comparison purposes. We include conference proceedings, which make about 15–20% of all papers. We classify the references by year and by topic, although the topics are often overlapping. The primary application of the Pencil Code lies in astrophysics, in which case we classify mostly by the field of research.

1 Papers by year

As of May 2014, the Pencil Code has been used for a total of 352 research papers.

- 15 times in 2014 (Losada et al., 2014; Rheinhardt et al., 2014; Mitra et al., 2014; Turner et al., 2014; Jabbari et al., 2014; Brandenburg and Stepanov, 2014; Chian et al., 2014; Brandenburg, 2014; Gibbons et al., 2014; Brandenburg et al., 2014; Park, 2014; Käpylä et al., 2014; Modestov et al., 2014; Cole et al., 2014; Rüdiger and Brandenburg, 2014),
- 51 times in 2013 (Lyra and Kuchner, 2013; Warnecke et al., 2013c; Barekat and Brandenburg, 2013; Bourdin et al., 2013b; Väisälä et al., 2013; Félix et al., 2013; Warnecke and Brandenburg, 2013; Park, 2013a; Singh and Jingade, 2013; Bourdin et al., 2013a; Getling, 2013; Park, 2013b; Devlen et al., 2013; Gent et al., 2013a; Brandenburg et al., 2013b; Pan and Padoan, 2013; Mitra et al., 2013; Kemel et al., 2013b; van Wettum et al., 2013; Bourdin et al., 2013b; Candelaresi and Brandenburg, 2013a; Kahniashvili et al., 2013; Lyra, 2013; Park, 2013a; Gent et al., 2013b; Bhat and Subramanian, 2013; Raettig et al., 2013; Del Sordo et al., 2013; Chamandy et al., 2013; Di Bernardo and Torkelsson, 2013; Jabbari et al., 2013; Dittrich et al., 2013; Bingert and Peter, 2013; Käpylä et al., 2013c; Warnecke et al., 2013b; Käpylä et al., 2013; Brandenburg and Rädler, 2013; Brandenburg et al., 2013b; Mantere et al., 2013; Kemel et al., 2013a; Losada et al., 2013; Kemel et al., 2013b; Käpylä

- et al., 2013a; Candelaresi and Brandenburg, 2013b; Svedin et al., 2013; Brandenburg et al., 2013a),
- 50 times in 2012 (Félix et al., 2012; Losada et al., 2012; Peter and Bingert, 2012; Lambrechts and Johansen, 2012; Kahniashvili et al., 2012; Tevzadze et al., 2012; Kemel et al., 2012a; Warnecke et al., 2012c; Gibbons et al., 2012; Latter and Papaloizou, 2012; Hubbard, 2012; Gaburov et al., 2012; Yang and Krumholz, 2012; Snellman et al., 2012b; Lyra and Mac Low, 2012; McNally et al., 2012a; Käpylä et al., 2012b; Bonanno et al., 2012; Haugen et al., 2012; Park and Blackman, 2012b; Warnecke et al., 2012b; Brandenburg and Guerrero, 2012; Mantere and Cole, 2012; Rogachevskii et al., 2012; Käpylä et al., 2012a; McNally et al., 2012b; Maron et al., 2012; Horn et al., 2012; Lyra and Kuchner, 2012; Brandenburg et al., 2012a; Yang et al., 2012; Kitchatinov and Brandenburg, 2012; Brandenburg and Petrosyan, 2012; Hubbard and Brandenburg, 2012; Guerrero et al., 2012; Rice et al., 2012; Kemel et al., 2012b; Park and Blackman, 2012a; Rheinhardt and Brandenburg, 2012; Peter et al., 2012; Brandenburg et al., 2012; Peter et al., 2012; Brandenburg et al., 2012; Snellman et al., 2012c, a; Warnecke et al., 2012a; Johansen et al., 2012),
- 60 times in 2011 (Gastine and Dintrans, 2011c; Rice et al., 2011; Käpylä et al., 2011a; Mantere et al., 2011; Kemel et al., 2011a; Rogachevskii et al., 2011; Käpylä et al., 2011c; Brandenburg, 2011c; Rädler et al., 2011; Tarjei Jensen et al., 2011; Brandenburg et al., 2011c; Oishi and Mac Low, 2011; Ruoskanen et al., 2011; Fromang et al., 2011; Chatterjee et al., 2011c; Hydle Rivedal et al., 2011; Guerrero and Käpylä, 2011; Chatterjee et al., 2011b; Warnecke and Brandenburg, 2011a; Kemel et al., 2011b; Bejarano et al., 2011; Zacharias et al., 2011a; Brandenburg, 2011a; Candelaresi and Brandenburg, 2011a; Cantiello et al., 2011a; Rempel et al., 2011; Flock et al., 2011; Käpylä et al., 2011b; Zacharias et al., 2011b; Kemel et al., 2011c; Del Sordo and Brandenburg, 2011a; Warnecke et al., 2011b; Gastine and Dintrans, 2011a; Bingert and Peter, 2011; Käpylä and Korpi, 2011; Johansen et al., 2011; Del Sordo and Brandenburg, 2011b; Gastine and Dintrans, 2011b; Rüdiger et al., 2011; Lyra and Klahr, 2011; Mitra et al., 2011; Brandenburg et al., 2011a; Candelaresi et al., 2011b; Babkovskaia et al., 2011; Hubbard and Brandenburg, 2011; Brandenburg, 2011b; Chatterjee et al., 2011a; Hubbard et al., 2011; Cantiello et al., 2011b; Brandenburg et al., 2011b; Warnecke et al., 2011a; Brandenburg and Nordlund, 2011; Guerrero et al., 2011; Warnecke and Brandenburg, 2011b; Candelaresi et al., 2011c; Candelaresi and Brandenburg, 2011b; Candelaresi et al., 2011a; Brandenburg, 2011d; Del Sordo and Brandenburg, 2011b; Chatterjee, 2011),
- 31 times in 2010 (Brandenburg and Del Sordo, 2010; Warnecke and Brandenburg, 2010; Hubbard and Brandenburg, 2010; Rheinhardt and Brandenburg, 2010; Haugen et al., 2010; Mitra et al., 2010c; Käpylä et al., 2010a; Madarassy and Brandenburg, 2010; Gastine and Dintrans, 2010; Käpylä et al., 2010b; Kahniashvili et al., 2010; Lyra et al., 2010; Johansen and Lacerda, 2010; Del Sordo et al., 2010; Fromang et al., 2010;

- Mitra et al., 2010a; Käpylä et al., 2010d; Baggaley et al., 2010; Korpi et al., 2010; Brandenburg et al., 2010b; Brandenburg and Dobler, 2010; Mitra et al., 2010b; Brandenburg, 2010b; Guerrero et al., 2010; Käpylä et al., 2010c; Brandenburg, 2010a; Brandenburg et al., 2010a; Chatterjee et al., 2010; Rädler and Brandenburg, 2010; Bingert et al., 2010),
- 37 times in 2009 (Yang et al., 2009; Baggaley et al., 2009; Rempel et al., 2009; Oishi and Mac Low, 2009; Johansen et al., 2009b; Snellman et al., 2009; Børve et al., 2009; Vermersch and Brandenburg, 2009; Heinemann and Papaloizou, 2009; Käpylä and Brandenburg, 2009; Johansen et al., 2009a; Käpylä et al., 2009b,a; Maron and Mac Low, 2009; Mitra et al., 2009b; Zacharias et al., 2009b; Piontek et al., 2009; Brandenburg, 2009a; Fromang et al., 2009; Lyra et al., 2009b; Mitra et al., 2009a; Käpylä et al., 2009c; Liljeström et al., 2009; Lyra et al., 2009a; Brandenburg, 2009e; Brandenburg et al., 2009a; Brandenburg, 2009d; Hubbard and Brandenburg, 2009; Brandenburg, 2009; Brandenburg, 2009; Brandenburg, 2009; Brandenburg, 2009; Brandenburg, 2009b,c; Zacharias et al., 2009a),
- 25 times in 2008 (Lyra et al., 2008a; Brandenburg et al., 2008b; Gastine and Dintrans, 2008b; Johansen and Levin, 2008; Gastine and Dintrans, 2008c; Workman and Armitage, 2008; Käpylä and Brandenburg, 2008; Johansen et al., 2008; Gastine and Dintrans, 2008a; Yousef et al., 2008; Babkovskaia et al., 2008; Scharmer et al., 2008; Maron et al., 2008; Brandenburg et al., 2008a; Lyra et al., 2008b; Ruszkowski et al., 2008; Gellert et al., 2008; Rädler and Brandenburg, 2008; Tilgner and Brandenburg, 2008; Sur et al., 2008; Brandenburg, 2008a; Käpylä et al., 2008; Brandenburg et al., 2008c; Brandenburg, 2008b; Youdin and Johansen, 2008),
- 16 times in 2007 (Brandenburg et al., 2007a; Käpylä and Brandenburg, 2007; Fromang et al., 2007; Fromang and Papaloizou, 2007; Oishi et al., 2007; Heinemann et al., 2007; Brandenburg and Käpylä, 2007; Schekochihin et al., 2007; Johansen et al., 2007b,a; Ruszkowski et al., 2007; Johansen and Youdin, 2007; Youdin and Johansen, 2007; Sur et al., 2007; Brandenburg et al., 2007b; Gustafsson et al., 2007),
- 18 times in 2006 (Ouyed et al., 2006; Hupfer et al., 2006; Fromang et al., 2006; de Val-Borro et al., 2006; Haugen and Brandenburg, 2006; Johansen et al., 2006c; Brandenburg, 2006c,b; Shukurov et al., 2006; Mee and Brandenburg, 2006; Snodin et al., 2006; Brandenburg and Dintrans, 2006; Gustafsson et al., 2006; Brandenburg, 2006a; Johansen et al., 2006a; Heinemann et al., 2006; Dobler et al., 2006; Johansen et al., 2006b),
- 24 times in 2005 (Johansen and Klahr, 2005; McMillan and Sarson, 2005; Brandenburg, 2005d; Brandenburg and Subramanian, 2005a; Ruediger, 2005; Schekochihin et al., 2005; Brandenburg, 2005c; Dorch, 2005; Johansen et al., 2005; Brandenburg and Subramanian, 2007; Brandenburg, 2007b,a; Brandenburg et al., 2005b; Brandenburg and Ruediger, 2005; Brandenburg and Subramanian, 2005b,c; Christensson et al.,

- 2005; Brandenburg and Käpylä, 2005; Brandenburg, 2005a; Brandenburg et al., 2005a; Brandenburg and Blackman, 2005; Brandenburg, 2005b),
- 19 times in 2004 (Nordlund, 2004; Brandenburg et al., 2004a; Brandenburg and Sandin, 2004; Haugen and Brandenburg, 2004b; Haugen et al., 2004c; Dorch, 2004b; Haugen and Brandenburg, 2004a; Haugen et al., 2004a; Yousef et al., 2004; Brandenburg et al., 2004c; Johansen et al., 2004; Maron et al., 2004; Brandenburg et al., 2004b,d; Pearson et al., 2004; Brandenburg and Matthaeus, 2004; Haugen et al., 2004b; Dorch, 2004a; Dobler and Getling, 2004),
- and 6 times in 2003 (Yousef et al., 2003; Yousef and Brandenburg, 2003; Haugen et al., 2003; Brandenburg, 2003; Brandenburg et al., 2003; Dobler et al., 2003).

2 Papers by topic

The Pencil Code has been used for the following research topics

1. Interstellar and intercluster medium as well as early Universe

- (a) Interstellar and intercluster medium (Gent et al., 2013a,b; Bykov et al., 2013; Yang and Krumholz, 2012; Mantere and Cole, 2012; Rogachevskii et al., 2012; Ruoskanen et al., 2011; Piontek et al., 2009; Ruszkowski et al., 2008, 2007; Brandenburg et al., 2007b; Gustafsson et al., 2007, 2006; Brandenburg et al., 2005a; Haugen et al., 2004b; Brandenburg et al., 2003).
- (b) Small-scale dynamos and reconnection (Bhat and Subramanian, 2013; Chamandy et al., 2013; Brandenburg, 2011c; Baggaley et al., 2009, 2010; Schekochihin et al., 2005, 2007; Haugen and Brandenburg, 2004b; Haugen et al., 2004c,a, 2003; Dobler et al., 2003).
- (c) Primordial magnetic fields and decaying turbulence (Brandenburg et al., 2014; Kahniashvili et al., 2012, 2013; Tevzadze et al., 2012; Candelaresi and Brandenburg, 2011a; Kahniashvili et al., 2010; Del Sordo et al., 2010; Christensson et al., 2005; Yousef et al., 2004).

2. Planet formation and inertial particles

(a) Planet formation (Gibbons et al., 2014; Turner et al., 2014; Lyra and Kuchner, 2013; Dittrich et al., 2013; Gibbons et al., 2012; Hubbard, 2012; Horn et al., 2012; Lyra and Kuchner, 2012; Yang et al., 2012; Lambrechts and Johansen, 2012; Johansen et al., 2012; Fromang et al., 2011; Johansen et al., 2011; Lyra and Klahr, 2011; Lyra et al., 2010; Johansen and Lacerda, 2010; Yang et al., 2009; Johansen et al., 2009b; Oishi and Mac Low, 2009; Børve et al., 2009; Lyra et al., 2009a,b, 2008a; Johansen et al., 2008; Lyra et al., 2007a,b; Johansen and

- Youdin, 2007; Youdin and Johansen, 2007; Johansen et al., 2006a,b,c; Johansen and Klahr, 2005; Johansen et al., 2004, 2005).
- (b) *Inertial particles* (Pan and Padoan, 2013; Mitra et al., 2013; Haugen et al., 2012; Hydle Rivedal et al., 2011; Haugen et al., 2010).

3. Accretion discs and shear flows

- (a) Accretion discs and shear flows (Väisälä et al., 2013; Lyra, 2013; Raettig et al., 2013; Di Bernardo and Torkelsson, 2013; Latter and Papaloizou, 2012; Gaburov et al., 2012; Lyra and Mac Low, 2012; Rice et al., 2012, 2011; Oishi and Mac Low, 2011; Flock et al., 2011; Käpylä and Korpi, 2011; Käpylä et al., 2010a; Fromang et al., 2010; Korpi et al., 2010; Johansen et al., 2009a; Heinemann and Papaloizou, 2009; Fromang et al., 2009; Johansen and Levin, 2008; Workman and Armitage, 2008; Fromang et al., 2007; Fromang and Papaloizou, 2007; Ouyed et al., 2006; Brandenburg, 2005d).
- (b) Shear flows (Modestov et al., 2014; Singh and Jingade, 2013; Vermersch and Brandenburg, 2009; Käpylä et al., 2009c; Yousef et al., 2008; Babkovskaia et al., 2008; Brandenburg et al., 2004a).

4. Solar physics

- (a) Coronal heating and coronal mass ejections (Bourdin et al., 2013b; Warnecke and Brandenburg, 2013; Bourdin et al., 2013a; van Wettum et al., 2013; Bourdin et al., 2013b; Bingert and Peter, 2013; Peter and Bingert, 2012; Warnecke et al., 2012b; Peter et al., 2012; Warnecke et al., 2012a; Warnecke and Brandenburg, 2011a; Zacharias et al., 2011a,b; Warnecke et al., 2011b; Bingert and Peter, 2011; Warnecke and Brandenburg, 2011b; Warnecke et al., 2011a; Warnecke and Brandenburg, 2010; Bingert et al., 2010; Zacharias et al., 2009b,a).
- (b) Helical dynamos, helical turbulence, and catastrophic quenching (Brandenburg and Stepanov, 2014; Chian et al., 2014; Brandenburg, 2014; Park, 2013a,b, 2014; Candelaresi and Brandenburg, 2013a; Park, 2013a; Del Sordo et al., 2013; Brandenburg, 2013; Rempel et al., 2013; Candelaresi and Brandenburg, 2013b, 2012; Brandenburg et al., 2012d; Rempel et al., 2012; Park and Blackman, 2012b; Brandenburg and Guerrero, 2012; Hubbard and Brandenburg, 2012; Park and Blackman, 2012a; Brandenburg, 2011a; Rempel et al., 2011; Mitra et al., 2011; Candelaresi et al., 2011b; Hubbard and Brandenburg, 2011; Brandenburg, 2011b; Chatterjee et al., 2011a; Hubbard et al., 2011; Candelaresi et al., 2011a; Brandenburg, 2011d; Guerrero et al., 2011; Hubbard and Brandenburg, 2010; Mitra et al., 2010a,b; Brandenburg, 2010b; Guerrero et al., 2010; Brandenburg, 2010a; Brandenburg et al., 2010a; Chatterjee et al., 2010; Rädler and Brandenburg, 2010; Rempel et al., 2009; Käpylä and Brandenburg, 2009; Brandenburg,

2009a,e; Brandenburg et al., 2009a; Brandenburg, 2009d,f; Sur and Brandenburg, 2009; Brandenburg, 2009b,c; Rädler and Brandenburg, 2008; Tilgner and Brandenburg, 2008; Brandenburg, 2008a; Brandenburg et al., 2008c; Brandenburg, 2008b; Brandenburg and Käpylä, 2007; Brandenburg and Subramanian, 2007; Brandenburg, 2007b,a, 2006c,b; Shukurov et al., 2006; Mee and Brandenburg, 2006; Snodin et al., 2006; Brandenburg and Dintrans, 2006; Brandenburg, 2006a; Brandenburg et al., 2005b; Brandenburg and Subramanian, 2005c,b; Brandenburg and Käpylä, 2005; Brandenburg, 2005a; Brandenburg and Blackman, 2005; Brandenburg and Subramanian, 2005b,c; Brandenburg et al., 2004d; Brandenburg and Matthaeus, 2004; Brandenburg and Sandin, 2004; Yousef and Brandenburg, 2003).

- (c) Strongly stratified MHD turbulence and NEMPI (Losada et al., 2014; Mitra et al., 2014; Jabbari et al., 2014; Brandenburg et al., 2013b; Warnecke et al., 2013c; Brandenburg et al., 2013b; Jabbari et al., 2013; Kemel et al., 2013b,a; Losada et al., 2013; Käpylä et al., 2013a; Kemel et al., 2013b; Losada et al., 2012; Kemel et al., 2012a; Käpylä et al., 2012a; Brandenburg et al., 2012a; Kemel et al., 2011b,c; Rüdiger et al., 2011; Brandenburg et al., 2010b).
- (d) Convection in Cartesian domains (Félix et al., 2013; Käpylä et al., 2013b; Getling, 2013; Félix et al., 2012; Svedin et al., 2013; Guerrero et al., 2012; Gastine and Dintrans, 2011c; Mantere et al., 2011; Käpylä et al., 2011c; Guerrero and Käpylä, 2011; Cantiello et al., 2011a,b; Gastine and Dintrans, 2008a,b,c, 2010, 2011a,b; Brandenburg et al., 2011b; Käpylä et al., 2008, 2009b, 2010b; Scharmer et al., 2008; Heinemann et al., 2006, 2007; Nordlund, 2004; Dobler and Getling, 2004).
- (e) Global convection and dynamo simulations (Cole et al., 2014; Käpylä et al., 2010d, 2011a,b, 2012b, 2013c, 2014; Mantere et al., 2013; Warnecke et al., 2012c, 2013a,b; Mitra et al., 2009b, 2010c; Brandenburg et al., 2007a; Dobler et al., 2006; McMillan and Sarson, 2005; Dorch, 2004a,b, 2005).

5. Miscellanea

(a) Turbulent transport and test-field method (Rheinhardt et al., 2014; Rüdiger and Brandenburg, 2014; Devlen et al., 2013; Brandenburg et al., 2004c, 2008a,b, 2009b, 2012b,c, 2013a; Brandenburg and Rädler, 2013; Snellman et al., 2009, 2012a,b,c; Kitchatinov and Brandenburg, 2012; Rheinhardt and Brandenburg, 2010, 2012; Rogachevskii et al., 2011; Rädler et al., 2011; Chatterjee, 2011; Brandenburg and Del Sordo, 2010; Madarassy and Brandenburg, 2010; Käpylä et al., 2010c; Hubbard and Brandenburg, 2009; Hubbard et al., 2009; Rädler and Brandenburg, 2009; Käpylä et al., 2009a; Mitra et al., 2009a; Liljeström et al., 2009; Sur et al., 2008; Käpylä and Brandenburg, 2007, 2008; Sur et al., 2007; Hupfer et al., 2006; Yousef et al., 2003).

- (b) Hydrodynamic and MHD instabilities and code comparison (Igor, 2013; Fromang, 2013; Martínez Pillet, 2013; Rein, 2012; Freytag et al., 2012; McNally et al., 2012a; Bonanno et al., 2012; Maron et al., 2012; McNally et al., 2012b; Del Sordo et al., 2012; Chatterjee et al., 2011b,c; Bejarano et al., 2011; Hanasz et al., 2010; Brandenburg and Dobler, 2010; Maron and Mac Low, 2009; Maron et al., 2008; Gellert et al., 2008; Fromang et al., 2006; de Val-Borro et al., 2006; Brandenburg and Ruediger, 2005; Ruediger, 2005; Maron et al., 2004; Brandenburg et al., 2004d; Brandenburg, 2003).
- (c) *Hydrodynamic turbulence* (Brandenburg and Petrosyan, 2012; Del Sordo and Brandenburg, 2011a,b; Brandenburg and Nordlund, 2011; Haugen and Brandenburg, 2004a, 2006; Brandenburg et al., 2004b; Pearson et al., 2004).
- (d) Turbulent combustion, front propagation, & radiation (Cavecchi et al., 2013; Barekat and Brandenburg, 2013; Tarjei Jensen et al., 2011; Brandenburg et al., 2011a; Babkovskaia et al., 2011).

References

- Babkovskaia, N., Brandenburg, A., and Poutanen, J. (2008). Boundary layer on the surface of a neutron star. *Month. Not. Roy. Astron. Soc.*, 386:1038–1044.
- Babkovskaia, N., Haugen, N. E. L., and Brandenburg, A. (2011). A high-order public domain code for direct numerical simulations of turbulent combustion. *Journal of Computational Physics*, 230:1–12.
- Baggaley, A. W., Barenghi, C. F., Shukurov, A., and Subramanian, K. (2009). Reconnecting flux-rope dynamo. *Phys. Rev. E*, 80(5):055301.
- Baggaley, A. W., Shukurov, A., Barenghi, C. F., and Subramanian, K. (2010). Fluctuation dynamo based on magnetic reconnections. *Astronomische Nachrichten*, 331:46.
- Barekat, A. and Brandenburg, A. (2013). Near-polytropic simulations with a radiative surface. ArXiv e-prints.
- Bejarano, C., Gómez, D. O., and Brandenburg, A. (2011). Shear-driven Instabilities in Hall-magnetohydrodynamic Plasmas. *Astrophys. J.*, 737:62.
- Bhat, P. and Subramanian, K. (2013). Fluctuation dynamos and their Faraday rotation signatures. *Month. Not. Roy. Astron. Soc.*, 429:2469–2481.
- Bingert, S. and Peter, H. (2011). Intermittent heating in the solar corona employing a 3D MHD model. *Astron. Astrophys.*, 530:A112.
- Bingert, S. and Peter, H. (2013). Nanoflare statistics in an active region 3D MHD coronal model. *Astron. Astrophys.*, 550:A30.

- Bingert, S., Zacharias, P., Peter, H., and Gudiksen, B. V. (2010). On the nature of coronal loops above the quiet sun network. *Advances in Space Research*, 45:310–313.
- Bonanno, A., Brandenburg, A., Del Sordo, F., and Mitra, D. (2012). Breakdown of chiral symmetry during saturation of the Tayler instability. *Phys. Rev. E*, 86(1):016313.
- Børve, S., Speith, R., and Trulsen, J. (2009). Numerical Dissipation in RSPH Simulations of Astrophysical Flows with Application to Protoplanetary Disks. *Astrophys. J.*, 701:1269–1282.
- Bourdin, P.-A., Bingert, S., and Peter, H. (2013a). 3D-MHD model of a solar active region corona (Bourdin+, 2013). *VizieR Online Data Catalog*, 355:59123.
- Bourdin, P.-A., Bingert, S., and Peter, H. (2013b). Observationally driven 3D magnetohydrodynamics model of the solar corona above an active region. *Astron. Astrophys.*, 555:A123.
- Brandenburg, A. (2003). Computational aspects of astrophysical MHD and turbulence, pages 269–344.
- Brandenburg, A. (2005a). Distributed versus tachocline dynamos. ArXiv Astrophysics e-prints.
- Brandenburg, A. (2005b). Importance of Magnetic Helicity in Dynamos. In Wielebinski, R. and Beck, R., editors, *Cosmic Magnetic Fields*, volume 664 of *Lecture Notes in Physics*, *Berlin Springer Verlag*, page 219.
- Brandenburg, A. (2005c). The Case for a Distributed Solar Dynamo Shaped by Near-Surface Shear. *Astrophys. J.*, 625:539–547.
- Brandenburg, A. (2005d). Turbulence and its parameterization in accretion discs. *Astronomische Nachrichten*, 326:787–797.
- Brandenburg, A. (2006a). Location of the Solar Dynamo and Near-Surface Shear. In Leibacher, J., Stein, R. F., and Uitenbroek, H., editors, Solar MHD Theory and Observations: A High Spatial Resolution Perspective, volume 354 of Astronomical Society of the Pacific Conference Series, page 121.
- Brandenburg, A. (2006b). Magnetic helicity in primordial and dynamo scenarios of galaxies. *Astronomische Nachrichten*, 327:461.
- Brandenburg, A. (2006c). Why coronal mass ejections are necessary for the dynamo. In *IAU Joint Discussion*, volume 8 of *IAU Joint Discussion*.
- Brandenburg, A. (2007a). Near-surface shear layer dynamics. In Kupka, F., Roxburgh, I., and Chan, K. L., editors, *IAU Symposium*, volume 239 of *IAU Symposium*, pages 457–466.

- Brandenburg, A. (2007b). Why coronal mass ejections are necessary for the dynamo. *Highlights of Astronomy*, 14:291–292.
- Brandenburg, A. (2008a). The dual role of shear in large-scale dynamos. *Astronomische Nachrichten*, 329:725.
- Brandenburg, A. (2008b). Turbulent protostellar discs. *Physica Scripta Volume T*, 130(1):014016.
- Brandenburg, A. (2009a). Advances in Theory and Simulations of Large-Scale Dynamos. *Space Sci. Ref.*, 144:87–104.
- Brandenburg, A. (2009b). Advances in Theory and Simulations of Large-Scale Dynamos, page 87.
- Brandenburg, A. (2009c). From Fibril to Diffuse Fields During Dynamo Saturation. In Dikpati, M., Arentoft, T., González Hernández, I., Lindsey, C., and Hill, F., editors, Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, volume 416 of Astronomical Society of the Pacific Conference Series, page 433.
- Brandenburg, A. (2009d). Large-scale Dynamos at Low Magnetic Prandtl Numbers. Astrophys. J., 697:1206–1213.
- Brandenburg, A. (2009e). Paradigm shifts in solar dynamo modeling. In Strassmeier, K. G., Kosovichev, A. G., and Beckman, J. E., editors, *IAU Symposium*, volume 259 of *IAU Symposium*, pages 159–166.
- Brandenburg, A. (2009f). The critical role of magnetic helicity in astrophysical large-scale dynamos. *Plasma Physics and Controlled Fusion*, 51(12):124043.
- Brandenburg, A. (2010a). Magnetic field evolution in simulations with Euler potentials. *Month. Not. Roy. Astron. Soc.*, 401:347–354.
- Brandenburg, A. (2010b). Surface appearance of dynamo-generated large-scale fields. In 38th COSPAR Scientific Assembly, volume 38 of COSPAR Meeting, page 2826.
- Brandenburg, A. (2011a). Chandrasekhar-Kendall functions in astrophysical dynamos. *Pramana*, 77:67–76.
- Brandenburg, A. (2011b). Dissipation in dynamos at low and high magnetic Prandtl numbers. *Astronomische Nachrichten*, 332:51.
- Brandenburg, A. (2011c). Nonlinear Small-scale Dynamos at Low Magnetic Prandtl Numbers. *Astrophys. J.*, 741:92.

- Brandenburg, A. (2011d). Simulations of astrophysical dynamos. In Bonanno, A., de Gouveia Dal Pino, E., and Kosovichev, A. G., editors, *IAU Symposium*, volume 274 of *IAU Symposium*, pages 402–409.
- Brandenburg, A. (2013). Non-linear and chaotic dynamo regimes. In Kosovichev, A. G., de Gouveia Dal Pino, E., and Yan, Y., editors, *IAU Symposium*, volume 294 of *IAU Symposium*, pages 387–398.
- Brandenburg, A. (2014). Magnetic Prandtl number dependence of kinetic to magnetic dissipation ratio. ArXiv e-prints.
- Brandenburg, A. and Blackman, E. G. (2005). Ejection of Bi-Helical Fields from the Sun. *Highlights of Astronomy*, 13:101.
- Brandenburg, A., Candelaresi, S., and Chatterjee, P. (2009a). Small-scale magnetic helicity losses from a mean-field dynamo. *Month. Not. Roy. Astron. Soc.*, 398:1414–1422.
- Brandenburg, A., Chatterjee, P., Del Sordo, F., Hubbard, A., Käpylä, P. J., and Rheinhardt, M. (2010a). Turbulent transport in hydromagnetic flows. *Physica Scripta Volume* T, 142(1):014028.
- Brandenburg, A. and Del Sordo, F. (2010). Turbulent diffusion and galactic magnetism. Highlights of Astronomy, 15:432–433.
- Brandenburg, A. and Dintrans, B. (2006). Nonaxisymmetric stability in the shearing sheet approximation. *Astron. Astrophys.*, 450:437–444.
- Brandenburg, A., Dintrans, B., and Haugen, N. E. L. (2004a). Shearing and embedding box simulations of the magnetorotational instability. In Rosner, R., Rüdiger, G., and Bonanno, A., editors, MHD Couette Flows: Experiments and Models, volume 733 of American Institute of Physics Conference Series, pages 122–136.
- Brandenburg, A. and Dobler, W. (2010). Pencil Code: Finite-difference Code for Compressible Hydrodynamic Flows. Astrophysics Source Code Library.
- Brandenburg, A., Gressel, O., Käpylä, P. J., Kleeorin, N., Mantere, M. J., and Rogachevskii, I. (2013a). New Scaling for the Alpha Effect in Slowly Rotating Turbulence. *Astrophys. J.*, 762:127.
- Brandenburg, A. and Guerrero, G. (2012). Cycles and cycle modulations. In Mandrini, C. H. and Webb, D. F., editors, *IAU Symposium*, volume 286 of *IAU Symposium*, pages 37–48.
- Brandenburg, A., Haugen, N., and Mee, A. (2005a). Nonhelical turbulent dynamos: shocks and shear. In Chyzy, K. T., Otmianowska-Mazur, K., Soida, M., and Dettmar, R.-J., editors, *The Magnetized Plasma in Galaxy Evolution*, pages 139–146.

- Brandenburg, A., Haugen, N. E. L., and Babkovskaia, N. (2011a). Turbulent front speed in the Fisher equation: Dependence on Damköhler number. *Phys. Rev. E*, 83(1):016304.
- Brandenburg, A., Haugen, N. E. L., and Dobler, W. (2003). MHD simulations of small and large scale dynamos. In Erdélyi, R., Petrovay, K., Roberts, B., and Aschwanden, M., editors, *Turbulence, Waves, and Instabilities in the Solar Plasma, ed. R. Erdélyi, K. Petrovay, B. Roberts, & M. Aschwanden*, Kluwer Acad. Publ., Dordrecht, pages 33–53.
- Brandenburg, A., Haugen, N. E. L., Käpylä, P. J., and Sandin, C. (2005b). The problem of small and large scale fields in the solar dynamo. *Astronomische Nachrichten*, 326:174–185.
- Brandenburg, A., Kahniashvili, T., and Tevzadze, A. G. (2014). Nonhelical inverse transfer of a decaying turbulent magnetic field. *ArXiv e-prints*.
- Brandenburg, A., Käpylä, P., and Mohammed, A. (2004b). Passive scalar diffusion as a damped wave. ArXiv Physics e-prints.
- Brandenburg, A. and Käpylä, P. J. (2005). Connection between active longitudes and magnetic helicity. ArXiv Astrophysics e-prints.
- Brandenburg, A. and Käpylä, P. J. (2007). Magnetic helicity effects in astrophysical and laboratory dynamos. *New Journal of Physics*, 9:305.
- Brandenburg, A., Käpylä, P. J., and Korpi, M. J. (2011b). From convective to stellar dynamos. In Brummell, N. H., Brun, A. S., Miesch, M. S., and Ponty, Y., editors, *IAU Symposium*, volume 271 of *IAU Symposium*, pages 279–287.
- Brandenburg, A., Käpylä, P. J., Mitra, D., Moss, D., and Tavakol, R. (2007a). The helicity constraint in spherical shell dynamos. *Astronomische Nachrichten*, 328:1118.
- Brandenburg, A., Käpylä, P. J., and Mohammed, A. (2004c). Non-Fickian diffusion and tau approximation from numerical turbulence. *Physics of Fluids*, 16:1020–1027.
- Brandenburg, A., Kemel, K., Kleeorin, N., Mitra, D., and Rogachevskii, I. (2011c). Detection of Negative Effective Magnetic Pressure Instability in Turbulence Simulations. *Astrophys. J. Lett.*, 740:L50.
- Brandenburg, A., Kemel, K., Kleeorin, N., and Rogachevskii, I. (2012a). The Negative Effective Magnetic Pressure in Stratified Forced Turbulence. *Astrophys. J.*, 749:179.
- Brandenburg, A., Kleeorin, N., and Rogachevskii, I. (2010b). Large-scale magnetic flux concentrations from turbulent stresses. *Astronomische Nachrichten*, 331:5.
- Brandenburg, A., Kleeorin, N., and Rogachevskii, I. (2013b). Self-assembly of Shallow Magnetic Spots through Strongly Stratified Turbulence. *Astrophys. J. Lett.*, 776:L23.

- Brandenburg, A., Korpi, M. J., and Mee, A. J. (2007b). Thermal Instability in Shearing and Periodic Turbulence. *Astrophys. J.*, 654:945–954.
- Brandenburg, A. and Matthaeus, W. H. (2004). Magnetic helicity evolution in a periodic domain with imposed field. *Phys. Rev. E*, 69(5):056407.
- Brandenburg, A. and Nordlund, Å. (2011). Astrophysical turbulence modeling. *Reports on Progress in Physics*, 74(4):046901.
- Brandenburg, A. and Petrosyan, A. (2012). Kinetic helicity decay in linearly forced turbulence. *Astronomische Nachrichten*, 333:195.
- Brandenburg, A. and Rädler, K.-H. (2013). Yoshizawa's cross-helicity effect and its quenching. Geophysical and Astrophysical Fluid Dynamics, 107:207–217.
- Brandenburg, A., Rädler, K.-H., and Kemel, K. (2012b). Mean-field transport in stratified and/or rotating turbulence. *Astron. Astrophys.*, 539:A35.
- Brandenburg, A., Rädler, K.-H., and Kemel, K. (2012c). Mean-field transport in stratified and/or rotating turbulence (Corrigendum). *Astron. Astrophys.*, 545:C1.
- Brandenburg, A., Rädler, K.-H., Rheinhardt, M., and Käpylä, P. J. (2008a). Magnetic Diffusivity Tensor and Dynamo Effects in Rotating and Shearing Turbulence. *Astrophys. J.*, 676:740–751.
- Brandenburg, A., Rädler, K.-H., Rheinhardt, M., and Subramanian, K. (2008b). Magnetic Quenching of α and Diffusivity Tensors in Helical Turbulence. *Astrophys. J. Lett.*, 687:L49–L52.
- Brandenburg, A., Rädler, K.-H., and Schrinner, M. (2008c). Scale dependence of alpha effect and turbulent diffusivity. *Astron. Astrophys.*, 482:739–746.
- Brandenburg, A. and Ruediger, G. (2005). The angular momentum transport by the strato-rotational instability in simulated Taylor-Couette flows. ArXiv Astrophysics e-prints.
- Brandenburg, A. and Sandin, C. (2004). Catastrophic alpha quenching alleviated by helicity flux and shear. *Astron. Astrophys.*, 427:13–21.
- Brandenburg, A., Sandin, C., and Käpylä, P. J. (2004d). Helical coronal ejections and their role in the solar cycle. In Stepanov, A. V., Benevolenskaya, E. E., and Kosovichev, A. G., editors, *Multi-Wavelength Investigations of Solar Activity*, volume 223 of *IAU Symposium*, pages 57–64.
- Brandenburg, A., Sokoloff, D., and Subramanian, K. (2012d). Current Status of Turbulent Dynamo Theory. From Large-Scale to Small-Scale Dynamos. *Space Sci. Ref.*, 169:123–157.

- Brandenburg, A. and Stepanov, R. (2014). Faraday Signature of Magnetic Helicity from Reduced Depolarization. *Astrophys. J.*, 786:91.
- Brandenburg, A. and Subramanian, K. (2005a). Astrophysical magnetic fields and non-linear dynamo theory. *Phys. Rep.*, 417:1–209.
- Brandenburg, A. and Subramanian, K. (2005b). Minimal tau approximation and simulations of the alpha effect. *Astron. Astrophys.*, 439:835–843.
- Brandenburg, A. and Subramanian, K. (2005c). Strong mean field dynamos require supercritical helicity fluxes. *Astronomische Nachrichten*, 326:400–408.
- Brandenburg, A. and Subramanian, K. (2007). Simulations of the anisotropic kinetic and magnetic alpha effects. *Astronomische Nachrichten*, 328:507.
- Brandenburg, A., Svedin, A., and Vasil, G. M. (2009b). Turbulent diffusion with rotation or magnetic fields. *Month. Not. Roy. Astron. Soc.*, 395:1599–1606.
- Bykov, A. M., Brandenburg, A., Malkov, M. A., and Osipov, S. M. (2013). Microphysics of Cosmic Ray Driven Plasma Instabilities. *Space Sci. Ref.*, 178:201–232.
- Candelaresi, S. and Brandenburg, A. (2011a). Decay of helical and nonhelical magnetic knots. *Phys. Rev. E*, 84(1):016406.
- Candelaresi, S. and Brandenburg, A. (2011b). Magnetic helicity fluxes in $\alpha\Omega$ dynamos. In Bonanno, A., de Gouveia Dal Pino, E., and Kosovichev, A. G., editors, IAU Symposium, volume 274 of IAU Symposium, pages 464–466.
- Candelaresi, S. and Brandenburg, A. (2012). Magnetic helicity fluxes and their effect on stellar dynamos. In Mandrini, C. H. and Webb, D. F., editors, *IAU Symposium*, volume 286 of *IAU Symposium*, pages 49–53.
- Candelaresi, S. and Brandenburg, A. (2013a). Kinetic helicity needed to drive large-scale dynamos. *Phys. Rev. E*, 87(4):043104.
- Candelaresi, S. and Brandenburg, A. (2013b). Topological constraints on magnetic field relaxation. In Kosovichev, A. G., de Gouveia Dal Pino, E., and Yan, Y., editors, *IAU Symposium*, volume 294 of *IAU Symposium*, pages 353–357.
- Candelaresi, S., Del Sordo, F., and Brandenburg, A. (2011a). Decay of trefoil and other magnetic knots. In Bonanno, A., de Gouveia Dal Pino, E., and Kosovichev, A. G., editors, *IAU Symposium*, volume 274 of *IAU Symposium*, pages 461–463.
- Candelaresi, S., Hubbard, A., Brandenburg, A., and Mitra, D. (2011b). Magnetic helicity transport in the advective gauge family. *Physics of Plasmas*, 18(1):012903.

- Candelaresi, S., Sordo, F. D., and Brandenburg, A. (2011c). Influence of Magnetic Helicity in MHD. In Brummell, N. H., Brun, A. S., Miesch, M. S., and Ponty, Y., editors, *IAU Symposium*, volume 271 of *IAU Symposium*, pages 369–370.
- Cantiello, M., Braithwaite, J., Brandenburg, A., Del Sordo, F., Käpylä, P., and Langer, N. (2011a). 3D MHD simulations of subsurface convection in OB stars. In Neiner, C., Wade, G., Meynet, G., and Peters, G., editors, IAU Symposium, volume 272 of IAU Symposium, pages 32–37.
- Cantiello, M., Braithwaite, J., Brandenburg, A., Del Sordo, F., Käpylä, P., and Langer, N. (2011b). Turbulence and magnetic spots at the surface of hot massive stars. In Prasad Choudhary, D. and Strassmeier, K. G., editors, *IAU Symposium*, volume 273 of *IAU Symposium*, pages 200–203.
- Cavecchi, Y., Watts, A. L., Braithwaite, J., and Levin, Y. (2013). Flame propagation on the surfaces of rapidly rotating neutron stars during Type I X-ray bursts. *Month. Not. Roy. Astron. Soc.*, 434:3526–3541.
- Chamandy, L., Subramanian, K., and Shukurov, A. (2013). Galactic spiral patterns and dynamo action I. A new twist on magnetic arms. *Month. Not. Roy. Astron. Soc.*, 428:3569–3589.
- Chatterjee, P. (2011). Alpha effect due to magnetic buoyancy instability of a horizontal magnetic layer. In Astronomical Society of India Conference Series, volume 2 of Astronomical Society of India Conference Series, pages 137–142.
- Chatterjee, P., Brandenburg, A., and Guerrero, G. (2010). Can catastrophic quenching be alleviated by separating shear and α effect? Geophysical and Astrophysical Fluid Dynamics, 104:591–599.
- Chatterjee, P., Guerrero, G., and Brandenburg, A. (2011a). Magnetic helicity fluxes in interface and flux transport dynamos. *Astron. Astrophys.*, 525:A5.
- Chatterjee, P., Mitra, D., Brandenburg, A., and Rheinhardt, M. (2011b). Spontaneous chiral symmetry breaking by hydromagnetic buoyancy. *Phys. Rev. E*, 84(2):025403.
- Chatterjee, P., Mitra, D., Rheinhardt, M., and Brandenburg, A. (2011c). Alpha effect due to buoyancy instability of a magnetic layer. *Astron. Astrophys.*, 534:A46.
- Chian, A. C.-L., Rempel, E. L., Aulanier, G., Schmieder, B., Shadden, S. C., Welsch, B. T., and Yeates, A. R. (2014). Detection of Coherent Structures in Photospheric Turbulent Flows. *Astrophys. J.*, 786:51.
- Christensson, M., Hindmarsh, M., and Brandenburg, A. (2005). Scaling laws in decaying helical hydromagnetic turbulence. *Astronomische Nachrichten*, 326:393–399.

- Cole, E., Käpylä, P. J., Mantere, M. J., and Brandenburg, A. (2014). An Azimuthal Dynamo Wave in Spherical Shell Convection. *Astrophys. J. Lett.*, 780:L22.
- de Val-Borro, M., Edgar, R. G., Artymowicz, P., Ciecielag, P., Cresswell, P., D'Angelo, G., Delgado-Donate, E. J., Dirksen, G., Fromang, S., Gawryszczak, A., Klahr, H., Kley, W., Lyra, W., Masset, F., Mellema, G., Nelson, R. P., Paardekooper, S.-J., Peplinski, A., Pierens, A., Plewa, T., Rice, K., Schäfer, C., and Speith, R. (2006). A comparative study of disc-planet interaction. *Month. Not. Roy. Astron. Soc.*, 370:529–558.
- Del Sordo, F., Bonanno, A., Brandenburg, A., and Mitra, D. (2012). Spontaneous chiral symmetry breaking in the Tayler instability. In Mandrini, C. H. and Webb, D. F., editors, *IAU Symposium*, volume 286 of *IAU Symposium*, pages 65–69.
- Del Sordo, F. and Brandenburg, A. (2011a). How can vorticity be produced in irrotationally forced flows? In Bonanno, A., de Gouveia Dal Pino, E., and Kosovichev, A. G., editors, *IAU Symposium*, volume 274 of *IAU Symposium*, pages 373–375.
- Del Sordo, F. and Brandenburg, A. (2011b). Vorticity production through rotation, shear, and baroclinicity. *Astron. Astrophys.*, 528:A145.
- Del Sordo, F., Candelaresi, S., and Brandenburg, A. (2010). Magnetic-field decay of three interlocked flux rings with zero linking number. *Phys. Rev. E*, 81(3):036401.
- Del Sordo, F., Guerrero, G., and Brandenburg, A. (2013). Turbulent dynamos with advective magnetic helicity flux. *Month. Not. Roy. Astron. Soc.*, 429:1686–1694.
- Devlen, E., Brandenburg, A., and Mitra, D. (2013). A mean field dynamo from negative eddy diffusivity. *Month. Not. Roy. Astron. Soc.*, 432:1651–1657.
- Di Bernardo, G. and Torkelsson, U. (2013). Wave modes from the magnetorotational instability in accretion discs. In Zhang, C. M., Belloni, T., Méndez, M., and Zhang, S. N., editors, *IAU Symposium*, volume 290 of *IAU Symposium*, pages 201–202.
- Dittrich, K., Klahr, H., and Johansen, A. (2013). Gravoturbulent Planetesimal Formation: The Positive Effect of Long-lived Zonal Flows. *Astrophys. J.*, 763:117.
- Dobler, W. and Getling, A. V. (2004). Compressible magnetoconvection as the local producer of solar-type magnetic structures. In Stepanov, A. V., Benevolenskaya, E. E., and Kosovichev, A. G., editors, *Multi-Wavelength Investigations of Solar Activity*, volume 223 of *IAU Symposium*, pages 239–240.
- Dobler, W., Haugen, N. E., Yousef, T. A., and Brandenburg, A. (2003). Bottleneck effect in three-dimensional turbulence simulations. *Phys. Rev. E*, 68(2):026304.
- Dobler, W., Stix, M., and Brandenburg, A. (2006). Magnetic Field Generation in Fully Convective Rotating Spheres. *Astrophys. J.*, 638:336–347.

- Dorch, S. B. F. (2004a). A Magnetic Betelgeuse? Numerical Simulations of Non-Linear Dynamo Action. In Dupree, A. K. and Benz, A. O., editors, *Stars as Suns : Activity*, *Evolution and Planets*, volume 219 of *IAU Symposium*, page 656.
- Dorch, S. B. F. (2004b). Magnetic activity in late-type giant stars: Numerical MHD simulations of non-linear dynamo action in Betelgeuse. *Astron. Astrophys.*, 423:1101–1107.
- Dorch, S. B. F. (2005). Dynamo action in late-type giants. In Favata, F., Hussain, G. A. J., and Battrick, B., editors, 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, volume 560 of ESA Special Publication, page 511.
- Félix, S., Audit, E., and Dintrans, B. (2012). Pulsations-convection combination in stars. In Boissier, S., de Laverny, P., Nardetto, N., Samadi, R., Valls-Gabaud, D., and Wozniak, H., editors, SF2A-2012: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, pages 329–332.
- Félix, S., Audit, E., and Dintrans, B. (2013). Towards 3D simulations of Cepheids stars. In Cambresy, L., Martins, F., Nuss, E., and Palacios, A., editors, SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, pages 223–226.
- Flock, M., Dzyurkevich, N., Klahr, H., Turner, N. J., and Henning, T. (2011). Turbulence and Steady Flows in Three-dimensional Global Stratified Magnetohydrodynamic Simulations of Accretion Disks. *Astrophys. J.*, 735:122.
- Freytag, B., Steffen, M., Ludwig, H.-G., Wedemeyer-Böhm, S., Schaffenberger, W., and Steiner, O. (2012). Simulations of stellar convection with CO5BOLD. *Journal of Computational Physics*, 231:919–959.
- Fromang, S. (2013). MRI-driven angular momentum transport in protoplanetary disks. In *EAS Publications Series*, volume 62 of *EAS Publications Series*, pages 95–142.
- Fromang, S., Hennebelle, P., and Teyssier, R. (2006). A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics. *Astron. Astrophys.*, 457:371–384.
- Fromang, S., Lyra, W., and Masset, F. (2011). Meridional circulation in turbulent protoplanetary disks. *Astron. Astrophys.*, 534:A107.
- Fromang, S. and Papaloizou, J. (2007). MHD simulations of the magnetorotational instability in a shearing box with zero net flux. I. The issue of convergence. *Astron. Astrophys.*, 476:1113–1122.
- Fromang, S., Papaloizou, J., Lesur, G., and Heinemann, T. (2007). MHD simulations of the magnetorotational instability in a shearing box with zero net flux. II. The effect of transport coefficients. *Astron. Astrophys.*, 476:1123–1132.

- Fromang, S., Papaloizou, J., Lesur, G., and Heinemann, T. (2009). Numerical Simulations of MHD Turbulence in Accretion Disks. In Pogorelov, N. V., Audit, E., Colella, P., and Zank, G. P., editors, *Numerical Modeling of Space Plasma Flows: ASTRONUM-2008*, volume 406 of *Astronomical Society of the Pacific Conference Series*, page 9.
- Fromang, S., Papaloizou, J., Lesur, G., and Heinemann, T. (2010). MHD turbulence in accretion disks: the importance of the magnetic Prandtl number. In Montmerle, T., Ehrenreich, D., and Lagrange, A.-M., editors, *EAS Publications Series*, volume 41 of *EAS Publications Series*, pages 167–170.
- Gaburov, E., Johansen, A., and Levin, Y. (2012). Magnetically Levitating Accretion Disks around Supermassive Black Holes. *Astrophys. J.*, 758:103.
- Gastine, T. and Dintrans, B. (2008a). Direct numerical simulations of the κ -mechanism. I. Radial modes in the purely radiative case. Astron. Astrophys., 484:29–42.
- Gastine, T. and Dintrans, B. (2008b). Direct numerical simulations of the κ -mechanism. II. Nonlinear saturation and the Hertzsprung progression. *Astron. Astrophys.*, 490:743–752.
- Gastine, T. and Dintrans, B. (2008c). DNS of the kappa-mechanism. ArXiv e-prints.
- Gastine, T. and Dintrans, B. (2010). Numerical simulations of the κ -mechanism with convection. Astrophys. Space Sci., 328:245–251.
- Gastine, T. and Dintrans, B. (2011a). A test of time-dependent theories of stellar convection. *Astron. Astrophys.*, 530:L7.
- Gastine, T. and Dintrans, B. (2011b). Convective quenching of stellar pulsations. *Astron. Astrophys.*, 528:A6.
- Gastine, T. and Dintrans, B. (2011c). Nonlinear simulations of the convection-pulsation coupling. In Alecian, G., Belkacem, K., Samadi, R., and Valls-Gabaud, D., editors, SF2A-2011: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, pages 215–219.
- Gellert, M., Rüdiger, G., and Elstner, D. (2008). Helicity generation and α -effect by Tayler instability with z-dependent differential rotation. *Astron. Astrophys.*, 479:L33–L36.
- Gent, F. A., Shukurov, A., Fletcher, A., Sarson, G. R., and Mantere, M. J. (2013a). The supernova-regulated ISM I. The multiphase structure. *Month. Not. Roy. Astron. Soc.*, 432:1396–1423.
- Gent, F. A., Shukurov, A., Sarson, G. R., Fletcher, A., and Mantere, M. J. (2013b). The supernova-regulated ISM II. The mean magnetic field. *Month. Not. Roy. Astron. Soc.*, 430:L40–L44.

- Getling, A. V. (2013). The flow helicity in quasi-ordered cellular convection. In Kosovichev, A. G., de Gouveia Dal Pino, E., and Yan, Y., editors, *IAU Symposium*, volume 294 of *IAU Symposium*, pages 359–360.
- Gibbons, P. G., Mamatsashvili, G. R., and Rice, W. K. M. (2014). Planetesimal formation in self-gravitating discs: the effects of particle self-gravity and back-reaction. *ArXiv* e-prints.
- Gibbons, P. G., Rice, W. K. M., and Mamatsashvili, G. R. (2012). Planetesimal formation in self-gravitating discs. *Month. Not. Roy. Astron. Soc.*, 426:1444–1454.
- Guerrero, G., Chatterjee, P., and Brandenburg, A. (2010). Shear-driven and diffusive helicity fluxes in $\alpha\Omega$ dynamos. *Month. Not. Roy. Astron. Soc.*, 409:1619–1630.
- Guerrero, G. and Käpylä, P. J. (2011). Dynamo action and magnetic buoyancy in convection simulations with vertical shear. *Astron. Astrophys.*, 533:A40.
- Guerrero, G., Rheinhardt, M., Brandenburg, A., and Dikpati, M. (2011). Theoretical comparison of plasma and magnetic feature tracking (MFT) flows: a perspective for assimilating meridional flow data in flux-transport models. *AGU Fall Meeting Abstracts*, page A3.
- Guerrero, G., Rheinhardt, M., Brandenburg, A., and Dikpati, M. (2012). Plasma flow versus magnetic feature-tracking speeds in the Sun. *Month. Not. Roy. Astron. Soc.*, 420:L1–L5.
- Gustafsson, M., Brandenburg, A., Lemaire, J. L., and Field, D. (2006). The nature of turbulence in OMC1 at the scale of star formation: observations and simulations. *Astron. Astrophys.*, 454:815–825.
- Gustafsson, M., Brandenburg, A., Lemaire, J.-L., and Field, D. (2007). Probing turbulence in OMC1 at the star forming scale: observations and simulations. In Elmegreen, B. G. and Palous, J., editors, *IAU Symposium*, volume 237 of *IAU Symposium*, pages 183–187.
- Hanasz, M., Kowalik, K., Wóltański, D., and Pawłaszek, R. (2010). The PIERNIK MHD code a multi-fluid, non-ideal extension of the relaxing-TVD scheme (I). In Gożdziewski, K., Niedzielski, A., and Schneider, J., editors, *EAS Publications Series*, volume 42 of *EAS Publications Series*, pages 275–280.
- Haugen, N. E., Brandenburg, A., and Dobler, W. (2004a). Simulations of nonhelical hydromagnetic turbulence. *Phys. Rev. E*, 70(1):016308.
- Haugen, N. E. L. and Brandenburg, A. (2004a). Inertial range scaling in numerical turbulence with hyperviscosity. *Phys. Rev. E*, 70(2):026405.

- Haugen, N. E. L. and Brandenburg, A. (2004b). Suppression of small scale dynamo action by an imposed magnetic field. *Phys. Rev. E*, 70(3):036408.
- Haugen, N. E. L. and Brandenburg, A. (2006). Hydrodynamic and hydromagnetic energy spectra from large eddy simulations. *Physics of Fluids*, 18(7):075106.
- Haugen, N. E. L., Brandenburg, A., and Dobler, W. (2003). Is Nonhelical Hydromagnetic Turbulence Peaked at Small Scales? *Astrophys. J. Lett.*, 597:L141–L144.
- Haugen, N. E. L., Brandenburg, A., and Dobler, W. (2004b). High-Resolution Simulations of Nonhelical MHD Turbulence. *Astrophys. Space Sci.*, 292:53–60.
- Haugen, N. E. L., Brandenburg, A., and Mee, A. J. (2004c). Mach number dependence of the onset of dynamo action. *Month. Not. Roy. Astron. Soc.*, 353:947–952.
- Haugen, N. E. L., Kleeorin, N., Rogachevskii, I., and Brandenburg, A. (2012). Detection of turbulent thermal diffusion of particles in numerical simulations. *Physics of Fluids*, 24(7):075106.
- Haugen, N. E. L., Kragset, S., Bugge, M., Warnecke, R., and Weghaus, M. (2010). Particle impaction efficiency and size distribution in a MSWI super heater tube bundle. ArXiv e-prints.
- Heinemann, T., Dobler, W., Nordlund, Å., and Brandenburg, A. (2006). Radiative transfer in decomposed domains. *Astron. Astrophys.*, 448:731–737.
- Heinemann, T., Nordlund, Å., Scharmer, G. B., and Spruit, H. C. (2007). MHD Simulations of Penumbra Fine Structure. *Astrophys. J.*, 669:1390–1394.
- Heinemann, T. and Papaloizou, J. C. B. (2009). The excitation of spiral density waves through turbulent fluctuations in accretion discs II. Numerical simulations with MRI-driven turbulence. *Month. Not. Roy. Astron. Soc.*, 397:64–74.
- Horn, B., Lyra, W., Mac Low, M.-M., and Sándor, Z. (2012). Orbital Migration of Interacting Low-mass Planets in Evolutionary Radiative Turbulent Models. *Astrophys. J.*, 750:34.
- Hubbard, A. (2012). Turbulence-induced collisional velocities and density enhancements: large inertial range results from shell models. *Month. Not. Roy. Astron. Soc.*, 426:784–795.
- Hubbard, A. and Brandenburg, A. (2009). Memory Effects in Turbulent Transport. Astrophys. J., 706:712–726.
- Hubbard, A. and Brandenburg, A. (2010). Magnetic helicity fluxes in an $\alpha 2$ dynamo embedded in a halo. Geophysical and Astrophysical Fluid Dynamics, 104:577–590.

- Hubbard, A. and Brandenburg, A. (2011). Magnetic Helicity Flux in the Presence of Shear. Astrophys. J., 727:11.
- Hubbard, A. and Brandenburg, A. (2012). Catastrophic Quenching in $\alpha\Omega$ Dynamos Revisited. Astrophys. J., 748:51.
- Hubbard, A., Del Sordo, F., Käpylä, P. J., and Brandenburg, A. (2009). The α effect with imposed and dynamo-generated magnetic fields. *Month. Not. Roy. Astron. Soc.*, 398:1891–1899.
- Hubbard, A., Rheinhardt, M., and Brandenburg, A. (2011). The fratricide of $\alpha\Omega$ dynamos by their α^2 siblings. *Astron. Astrophys.*, 535:A48.
- Hupfer, C., Käpylä, P. J., and Stix, M. (2006). Reynolds stresses and meridional circulation from rotating cylinder simulations. *Astron. Astrophys.*, 459:935–944.
- Hydle Rivedal, N., Granskogen Bjørnstad, A., and Haugen, N. E. L. (2011). The effect of turbulence on the particle impaction on a cylinder in a cross flow. *ArXiv e-prints*.
- Igor, K. (2013). A new GPU-accelerated hydrodynamical code for numerical simulation of interacting galaxies. ArXiv e-prints.
- Jabbari, S., Brandenburg, A., Kleeorin, N., Mitra, D., and Rogachevskii, I. (2013). Surface flux concentrations in a spherical α^2 dynamo. *Astron. Astrophys.*, 556:A106.
- Jabbari, S., Brandenburg, A., Losada, I. R., Kleeorin, N., and Rogachevskii, I. (2014). Magnetic flux concentrations from dynamo-generated fields. *ArXiv e-prints*.
- Johansen, A., Andersen, A. C., and Brandenburg, A. (2004). Simulations of dust-trapping vortices in protoplanetary discs. *Astron. Astrophys.*, 417:361–374.
- Johansen, A., Brauer, F., Dullemond, C., Klahr, H., and Henning, T. (2008). A coagulation-fragmentation model for the turbulent growth and destruction of preplanetesimals. *Astron. Astrophys.*, 486:597–611.
- Johansen, A., Henning, T., and Klahr, H. (2006a). Dust Sedimentation and Self-sustained Kelvin-Helmholtz Turbulence in Protoplanetary Disk Midplanes. *Astrophys. J.*, 643:1219–1232.
- Johansen, A. and Klahr, H. (2005). Dust Diffusion in Protoplanetary Disks by Magnetorotational Turbulence. *Astrophys. J.*, 634:1353–1371.
- Johansen, A., Klahr, H., and Henning, T. (2005). Gravoturbulent Formation of Planetesimals. In *Protostars and Planets V*, page 8004.
- Johansen, A., Klahr, H., and Henning, T. (2006b). Gravoturbulent Formation of Planetesimals. *Astrophys. J.*, 636:1121–1134.

- Johansen, A., Klahr, H., and Henning, T. (2011). High-resolution simulations of planetesimal formation in turbulent protoplanetary discs. *Astron. Astrophys.*, 529:A62.
- Johansen, A., Klahr, H., and Mee, A. J. (2006c). Turbulent diffusion in protoplanetary discs: the effect of an imposed magnetic field. *Month. Not. Roy. Astron. Soc.*, 370:L71–L75.
- Johansen, A. and Lacerda, P. (2010). Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment. *Month. Not. Roy. Astron. Soc.*, 404:475–485.
- Johansen, A. and Levin, Y. (2008). High accretion rates in magnetised Keplerian discs mediated by a Parker instability driven dynamo. *Astron. Astrophys.*, 490:501–514.
- Johansen, A., Oishi, J. S., Mac Low, M.-M., Klahr, H., Henning, T., and Youdin, A. (2007a). Rapid planetesimal formation in turbulent circumstellar disks. *Nature*, 448:1022–1025.
- Johansen, A., Oishi, J. S., Mac Low, M.-M., Klahr, H., Henning, T., and Youdin, A. (2007b). Supplementary Information for "Rapid planetesimal formation in turbulent circumstellar discs". *ArXiv e-prints*.
- Johansen, A. and Youdin, A. (2007). Protoplanetary Disk Turbulence Driven by the Streaming Instability: Nonlinear Saturation and Particle Concentration. *Astrophys. J.*, 662:627–641.
- Johansen, A., Youdin, A., and Klahr, H. (2009a). Zonal Flows and Long-lived Axisymmetric Pressure Bumps in Magnetorotational Turbulence. *Astrophys. J.*, 697:1269–1289.
- Johansen, A., Youdin, A., and Mac Low, M.-M. (2009b). Particle Clumping and Planetesimal Formation Depend Strongly on Metallicity. *Astrophys. J. Lett.*, 704:L75–L79.
- Johansen, A., Youdin, A. N., and Lithwick, Y. (2012). Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. *Astron. Astrophys.*, 537:A125.
- Kahniashvili, T., Brandenburg, A., Campanelli, L., Ratra, B., and Tevzadze, A. G. (2012). Evolution of inflation-generated magnetic field through phase transitions. *Phys. Rev.* D, 86(10):103005.
- Kahniashvili, T., Brandenburg, A., Tevzadze, A. G., and Ratra, B. (2010). Numerical simulations of the decay of primordial magnetic turbulence. *Phys. Rev. D*, 81(12):123002.
- Kahniashvili, T., Tevzadze, A. G., Brandenburg, A., and Neronov, A. (2013). Evolution of primordial magnetic fields from phase transitions. *Phys. Rev. D*, 87(8):083007.
- Käpylä, P. J. and Brandenburg, A. (2007). Turbulent viscosity and Λ -effect from numerical turbulence models. *Astronomische Nachrichten*, 328:1006–1008.

- Käpylä, P. J. and Brandenburg, A. (2008). Lambda effect from forced turbulence simulations. *Astron. Astrophys.*, 488:9–23.
- Käpylä, P. J. and Brandenburg, A. (2009). Turbulent Dynamos with Shear and Fractional Helicity. *Astrophys. J.*, 699:1059–1066.
- Käpylä, P. J., Brandenburg, A., Kleeorin, N., Mantere, M. J., and Rogachevskii, I. (2012a). Negative effective magnetic pressure in turbulent convection. *Month. Not. Roy. Astron. Soc.*, 422:2465–2473.
- Käpylä, P. J., Brandenburg, A., Kleeorin, N., Mantere, M. J., and Rogachevskii, I. (2013a). Flux concentrations in turbulent convection. In Kosovichev, A. G., de Gouveia Dal Pino, E., and Yan, Y., editors, *IAU Symposium*, volume 294 of *IAU Symposium*, pages 283–288.
- Käpylä, P. J., Brandenburg, A., Korpi, M. J., Snellman, J. E., and Narayan, R. (2010a). Angular Momentum Transport in Convectively Unstable Shear Flows. *Astrophys. J.*, 719:67–76.
- Käpylä, P. J. and Korpi, M. J. (2011). Magnetorotational instability driven dynamos at low magnetic Prandtl numbers. *Month. Not. Roy. Astron. Soc.*, 413:901–907.
- Käpylä, P. J., Korpi, M. J., and Brandenburg, A. (2008). Large-scale dynamos in turbulent convection with shear. *Astron. Astrophys.*, 491:353–362.
- Käpylä, P. J., Korpi, M. J., and Brandenburg, A. (2009a). Alpha effect and turbulent diffusion from convection. *Astron. Astrophys.*, 500:633–646.
- Käpylä, P. J., Korpi, M. J., and Brandenburg, A. (2009b). Large-scale Dynamos in Rigidly Rotating Turbulent Convection. *Astrophys. J.*, 697:1153–1163.
- Käpylä, P. J., Korpi, M. J., and Brandenburg, A. (2010b). Open and closed boundaries in large-scale convective dynamos. *Astron. Astrophys.*, 518:A22.
- Käpylä, P. J., Korpi, M. J., and Brandenburg, A. (2010c). The α effect in rotating convection with sinusoidal shear. *Month. Not. Roy. Astron. Soc.*, 402:1458–1466.
- Käpylä, P. J., Korpi, M. J., Brandenburg, A., Mitra, D., and Tavakol, R. (2010d). Convective dynamos in spherical wedge geometry. *Astronomische Nachrichten*, 331:73.
- Käpylä, P. J., Mantere, M. J., and Brandenburg, A. (2011a). Effects of stratification in spherical shell convection. *Astronomische Nachrichten*, 332:883.
- Käpylä, P. J., Mantere, M. J., and Brandenburg, A. (2012b). Cyclic Magnetic Activity due to Turbulent Convection in Spherical Wedge Geometry. *Astrophys. J. Lett.*, 755:L22.

- Käpylä, P. J., Mantere, M. J., and Brandenburg, A. (2013b). Oscillatory large-scale dynamos from Cartesian convection simulations. *Geophysical and Astrophysical Fluid Dynamics*, 107:244–257.
- Käpylä, P. J., Mantere, M. J., and Brandenburg, A. (2014). Confirmation of bistable stellar differential rotation profiles. *ArXiv e-prints*.
- Käpylä, P. J., Mantere, M. J., Cole, E., Warnecke, J., and Brandenburg, A. (2013c). Effects of Enhanced Stratification on Equatorward Dynamo Wave Propagation. *Astrophys. J.*, 778:41.
- Käpylä, P. J., Mantere, M. J., Guerrero, G., Brandenburg, A., and Chatterjee, P. (2011b). Reynolds stress and heat flux in spherical shell convection. *Astrophys.*, 531:A162.
- Käpylä, P. J., Mantere, M. J., and Hackman, T. (2011c). Starspots due to Large-scale Vortices in Rotating Turbulent Convection. *Astrophys. J.*, 742:34.
- Käpylä, P. J., Mitra, D., and Brandenburg, A. (2009c). Numerical study of large-scale vorticity generation in shear-flow turbulence. *Phys. Rev. E*, 79(1):016302.
- Kemel, K., Brandenburg, A., and Ji, H. (2011a). Model of driven and decaying magnetic turbulence in a cylinder. *Phys. Rev. E*, 84(5):056407.
- Kemel, K., Brandenburg, A., Kleeorin, N., Mitra, D., and Rogachevskii, I. (2012a). Spontaneous Formation of Magnetic Flux Concentrations in Stratified Turbulence. *Sol. Phys.*, 280:321–333.
- Kemel, K., Brandenburg, A., Kleeorin, N., Mitra, D., and Rogachevskii, I. (2013a). Active Region Formation through the Negative Effective Magnetic Pressure Instability. *Sol. Phys.*, 287:293–313.
- Kemel, K., Brandenburg, A., Kleeorin, N., and Rogachevskii, I. (2011b). The negative magnetic pressure effect in stratified turbulence. In Prasad Choudhary, D. and Strassmeier, K. G., editors, *IAU Symposium*, volume 273 of *IAU Symposium*, pages 83–88.
- Kemel, K., Brandenburg, A., Kleeorin, N., and Rogachevskii, I. (2011c). Turbulent magnetic pressure instability in stratified turbulence. In Bonanno, A., de Gouveia Dal Pino, E., and Kosovichev, A. G., editors, *IAU Symposium*, volume 274 of *IAU Symposium*, pages 473–475.
- Kemel, K., Brandenburg, A., Kleeorin, N., and Rogachevskii, I. (2012b). Properties of the negative effective magnetic pressure instability. *Astronomische Nachrichten*, 333:95.
- Kemel, K., Brandenburg, A., Kleeorin, N., and Rogachevskii, I. (2013b). Non-uniformity effects in the negative effective magnetic pressure instability. *Physica Scripta Volume* T, 155(1):014027.

- Kitchatinov, L. L. and Brandenburg, A. (2012). Transport of angular momentum and chemical species by anisotropic mixing in stellar radiative interiors. *Astronomische Nachrichten*, 333:230.
- Korpi, M. J., Käpylä, P. J., and Väisälä, M. S. (2010). Influence of Ohmic diffusion on the excitation and dynamics of MRI. *Astronomische Nachrichten*, 331:34.
- Lambrechts, M. and Johansen, A. (2012). Rapid growth of gas-giant cores by pebble accretion. *Astron. Astrophys.*, 544:A32.
- Latter, H. N. and Papaloizou, J. C. B. (2012). Hysteresis and thermal limit cycles in MRI simulations of accretion discs. *Month. Not. Roy. Astron. Soc.*, 426:1107–1120.
- Liljeström, A. J., Korpi, M. J., Käpylä, P. J., Brandenburg, A., and Lyra, W. (2009). Turbulent stresses as a function of shear rate in a local disk model. *Astronomische Nachrichten*, 330:92.
- Losada, I. R., Brandenburg, A., Kleeorin, N., Mitra, D., and Rogachevskii, I. (2012). Rotational effects on the negative magnetic pressure instability. *Astron. Astrophys.*, 548:A49.
- Losada, I. R., Brandenburg, A., Kleeorin, N., and Rogachevskii, I. (2013). Competition of rotation and stratification in flux concentrations. *Astron. Astrophys.*, 556:A83.
- Losada, I. R., Brandenburg, A., Kleeorin, N., and Rogachevskii, I. (2014). Magnetic flux concentrations in a polytropic atmosphere. *Astron. Astrophys.*, 564:A2.
- Lyra, W. (2013). Elliptic and magneto-elliptic instabilities. In European Physical Journal Web of Conferences, volume 46 of European Physical Journal Web of Conferences, page 4003.
- Lyra, W., Johansen, A., Klahr, H., and Piskunov, N. (2008a). Embryos grown in the dead zone. Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids. *Astron. Astrophys.*, 491:L41–L44.
- Lyra, W., Johansen, A., Klahr, H., and Piskunov, N. (2008b). Global magnetohydrodynamical models of turbulence in protoplanetary disks. I. A cylindrical potential on a Cartesian grid and transport of solids. *Astron. Astrophys.*, 479:883–901.
- Lyra, W., Johansen, A., Klahr, H., and Piskunov, N. (2009a). Standing on the shoulders of giants. Trojan Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. *Astron. Astrophys.*, 493:1125–1139.
- Lyra, W., Johansen, A., Zsom, A., Klahr, H., and Piskunov, N. (2009b). Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks. *Astron. Astrophys.*, 497:869–888.

- Lyra, W. and Klahr, H. (2011). The baroclinic instability in the context of layered accretion. Self-sustained vortices and their magnetic stability in local compressible unstratified models of protoplanetary disks. *Astron. Astrophys.*, 527:A138.
- Lyra, W. and Kuchner, M. (2013). Formation of sharp eccentric rings in debris disks with gas but without planets. *Nature*, 499:184–187.
- Lyra, W. and Kuchner, M. J. (2012). Sharp eccentric rings in planetless hydrodynamical models of debris disks. *ArXiv e-prints*.
- Lyra, W. and Mac Low, M.-M. (2012). Rossby Wave Instability at Dead Zone Boundaries in Three-dimensional Resistive Magnetohydrodynamical Global Models of Protoplanetary Disks. *Astrophys. J.*, 756:62.
- Lyra, W., Paardekooper, S.-J., and Mac Low, M.-M. (2010). Orbital Migration of Low-mass Planets in Evolutionary Radiative Models: Avoiding Catastrophic Infall. Astrophys. J. Lett., 715:L68–L73.
- Madarassy, E. J. M. and Brandenburg, A. (2010). Calibrating passive scalar transport in shear-flow turbulence. *Phys. Rev. E*, 82(1):016304.
- Mantere, M. J. and Cole, E. (2012). Dynamo Action in Thermally Unstable Interstellar Flows. *Astrophys. J.*, 753:32.
- Mantere, M. J., Käpylä, P. J., and Hackman, T. (2011). Dependence of the large-scale vortex instability on latitude, stratification, and domain size. *Astronomische Nachrichten*, 332:876.
- Mantere, M. J., Käpylä, P. J., and Pelt, J. (2013). Role of longitudinal activity complexes for solar and stellar dynamos. In Kosovichev, A. G., de Gouveia Dal Pino, E., and Yan, Y., editors, *IAU Symposium*, volume 294 of *IAU Symposium*, pages 175–186.
- Maron, J., Dennis, T., Howes, G., Brandenburg, A., Chandran, B., and Blackman, E. (2004). New Algorithms for Magnetohydrodynamics and Gravity that Emphasize Resolution and Speed. In AAS/Division of Dynamical Astronomy Meeting #35, volume 36 of Bulletin of the American Astronomical Society, page 854.
- Maron, J. and Mac Low, M.-M. (2009). Tuned Finite-Difference Diffusion Operators. *Astrophys. J. Supp.*, 182:468–473.
- Maron, J. L., Mac Low, M.-M., and Oishi, J. S. (2008). A Constrained-Transport Magnetohydrodynamics Algorithm with Near-Spectral Resolution. *Astrophys. J.*, 677:520–529.
- Maron, J. L., McNally, C. P., and Mac Low, M.-M. (2012). Phurbas: An Adaptive, Lagrangian, Meshless, Magnetohydrodynamics Code. I. Algorithm. *Astrophys. J. Supp.*, 200:6.

- Martínez Pillet, V. (2013). Solar Surface and Atmospheric Dynamics. The Photosphere. Space Sci. Ref., 178:141–162.
- McMillan, D. G. and Sarson, G. R. (2005). Dynamo simulations in a spherical shell of ideal gas using a high-order cartesian magnetohydrodynamics code. *Physics of the Earth and Planetary Interiors*, 153:124–135.
- McNally, C. P., Lyra, W., and Passy, J.-C. (2012a). A Well-posed Kelvin-Helmholtz Instability Test and Comparison. *Astrophys. J. Supp.*, 201:18.
- McNally, C. P., Maron, J. L., and Mac Low, M.-M. (2012b). Phurbas: An Adaptive, Lagrangian, Meshless, Magnetohydrodynamics Code. II. Implementation and Tests. *Astrophys. J. Supp.*, 200:7.
- Mee, A. J. and Brandenburg, A. (2006). Turbulence from localized random expansion waves. *Month. Not. Roy. Astron. Soc.*, 370:415–419.
- Mitra, D., Brandenburg, A., Kleeorin, N., and Rogachevskii, I. (2014). Intense bipolar structures from stratified helical dynamos. *ArXiv e-prints*.
- Mitra, D., Candelaresi, S., Chatterjee, P., Tavakol, R., and Brandenburg, A. (2010a). Equatorial magnetic helicity flux in simulations with different gauges. *Astronomische Nachrichten*, 331:130.
- Mitra, D., Käpylä, P. J., Tavakol, R., and Brandenburg, A. (2009a). Alpha effect and diffusivity in helical turbulence with shear. *Astron. Astrophys.*, 495:1–8.
- Mitra, D., Moss, D., Tavakol, R., and Brandenburg, A. (2011). Alleviating α quenching by solar wind and meridional flows. *Astron. Astrophys.*, 526:A138.
- Mitra, D., Tavakol, R., Brandenburg, A., and Käpylä, P. J. (2010b). Oscillatory migratory large-scale fields in mean-field and direct simulations. In Kosovichev, A. G., Andrei, A. H., and Rozelot, J.-P., editors, *IAU Symposium*, volume 264 of *IAU Symposium*, pages 197–201.
- Mitra, D., Tavakol, R., Brandenburg, A., and Moss, D. (2009b). Turbulent Dynamos in Spherical Shell Segments of Varying Geometrical Extent. *Astrophys. J.*, 697:923–933.
- Mitra, D., Tavakol, R., Käpylä, P. J., and Brandenburg, A. (2010c). Oscillatory Migrating Magnetic Fields in Helical Turbulence in Spherical Domains. *Astrophys. J. Lett.*, 719:L1–L4.
- Mitra, D., Wettlaufer, J. S., and Brandenburg, A. (2013). Can Planetesimals Form by Collisional Fusion? *Astrophys. J.*, 773:120.
- Modestov, M., Bychkov, V., Brodin, G., Marklund, M., and Brandenburg, A. (2014). Evolution of magnetic field generated by the Kelvin-Helmholtz instability. *ArXiv* e-prints.

- Nordlund, Å. (2004). Magnetohydrodynamics of the Solar Atmosphere. In Sakurai, T. and Sekii, T., editors, *The Solar-B Mission and the Forefront of Solar Physics*, volume 325 of Astronomical Society of the Pacific Conference Series, page 165.
- Oishi, J. S. and Mac Low, M.-M. (2009). On Hydrodynamic Motions in Dead Zones. *Astrophys. J.*, 704:1239–1250.
- Oishi, J. S. and Mac Low, M.-M. (2011). Magnetorotational Turbulence Transports Angular Momentum in Stratified Disks with Low Magnetic Prandtl Number but Magnetic Reynolds Number above a Critical Value. *Astrophys. J.*, 740:18.
- Oishi, J. S., Mac Low, M.-M., and Menou, K. (2007). Turbulent Torques on Protoplanets in a Dead Zone. *Astrophys. J.*, 670:805–819.
- Ouyed, R., Niebergal, B., Dobler, W., and Leahy, D. (2006). Three-Dimensional Simulations of the Reorganization of a Quark Star's Magnetic Field as Induced by the Meissner Effect. *Astrophys. J.*, 653:558–567.
- Pan, L. and Padoan, P. (2013). Turbulence-induced Relative Velocity of Dust Particles. I. Identical Particles. *Astrophys. J.*, 776:12.
- Park, K. (2013a). Influence of initial conditions on the large-scale dynamo growth rate. Month. Not. Roy. Astron. Soc., 434:2020–2031.
- Park, K. (2013b). Theory and Simulation of Magnetohydrodynamic Dynamos and Faraday Rotation for Plasmas of General Composition. PhD thesis, University of Rochester.
- Park, K. (2014). Influence of small scale magnetic energy and helicity on the growth of large scale magnetic field. *ArXiv e-prints*.
- Park, K. and Blackman, E. G. (2012a). Comparison between turbulent helical dynamo simulations and a non-linear three-scale theory. *Month. Not. Roy. Astron. Soc.*, 419:913–924.
- Park, K. and Blackman, E. G. (2012b). Simulations of a magnetic fluctuation driven large-scale dynamo and comparison with a two-scale model. *Month. Not. Roy. Astron. Soc.*, 423:2120–2131.
- Pearson, B. R., Yousef, T. A., Haugen, N. E. L., Brandenburg, A., and Krogstad, P.-Å. (2004). Delayed correlation between turbulent energy injection and dissipation. *Phys. Rev. E*, 70(5):056301.
- Peter, H. and Bingert, S. (2012). Constant cross section of loops in the solar corona. *Astron. Astrophys.*, 548:A1.
- Peter, H., Bingert, S., and Kamio, S. (2012). Catastrophic cooling and cessation of heating in the solar corona. *Astron. Astrophys.*, 537:A152.

- Piontek, R. A., Gressel, O., and Ziegler, U. (2009). Multiphase ISM simulations: comparing NIRVANA and ZEUS. *Astron. Astrophys.*, 499:633–641.
- Rädler, K.-H. and Brandenburg, A. (2008). α -effect dynamos with zero kinetic helicity. *Phys. Rev. E*, 77(2):026405.
- Rädler, K.-H. and Brandenburg, A. (2009). Mean-field effects in the Galloway-Proctor flow. *Month. Not. Roy. Astron. Soc.*, 393:113–125.
- Rädler, K.-H. and Brandenburg, A. (2010). Mean electromotive force proportional to mean flow in MHD turbulence. *Astronomische Nachrichten*, 331:14.
- Rädler, K.-H., Brandenburg, A., Del Sordo, F., and Rheinhardt, M. (2011). Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows. *Phys. Rev.* E, 84(4):046321.
- Raettig, N., Lyra, W., and Klahr, H. (2013). A Parameter Study for Baroclinic Vortex Amplification. *Astrophys. J.*, 765:115.
- Rein, H. (2012). A proposal for community driven and decentralized astronomical databases and the Open Exoplanet Catalogue. *ArXiv e-prints*.
- Rempel, E. L., C-L Chian, A., and Brandenburg, A. (2012). Lagrangian chaos in an ABC-forced nonlinear dynamo. *Phys. Scr.*, 86(1):018405.
- Rempel, E. L., Chian, A. C.-L., and Brandenburg, A. (2011). Lagrangian Coherent Structures in Nonlinear Dynamos. *Astrophys. J. Lett.*, 735:L9.
- Rempel, E. L., Chian, A. C.-L., Brandenburg, A., Muñoz, P. R., and Shadden, S. C. (2013). Coherent structures and the saturation of a nonlinear dynamo. *Journal of Fluid Mechanics*, 729:309–329.
- Rempel, E. L., Proctor, M. R. E., and Chian, A. C.-L. (2009). A novel type of intermittency in a non-linear dynamo in a compressible flow. *Month. Not. Roy. Astron. Soc.*, 400:509–517.
- Rheinhardt, M. and Brandenburg, A. (2010). Test-field method for mean-field coefficients with MHD background. *Astron. Astrophys.*, 520:A28.
- Rheinhardt, M. and Brandenburg, A. (2012). Modeling spatio-temporal nonlocality in mean-field dynamos. *Astronomische Nachrichten*, 333:71–77.
- Rheinhardt, M., Devlen, E., Rädler, K.-H., and Brandenburg, A. (2014). Mean-field dynamo action from delayed transport. *Month. Not. Roy. Astron. Soc.*, 441:116–126.
- Rice, W. K. M., Armitage, P. J., Mamatsashvili, G. R., Lodato, G., and Clarke, C. J. (2011). Stability of self-gravitating discs under irradiation. *Month. Not. Roy. Astron. Soc.*, 418:1356–1362.

- Rice, W. K. M., Forgan, D. H., and Armitage, P. J. (2012). Convergence of smoothed particle hydrodynamics simulations of self-gravitating accretion discs: sensitivity to the implementation of radiative cooling. *Month. Not. Roy. Astron. Soc.*, 420:1640–1647.
- Rogachevskii, I., Kleeorin, N., Brandenburg, A., and Eichler, D. (2012). Cosmic-Ray Current-driven Turbulence and Mean-field Dynamo Effect. *Astrophys. J.*, 753:6.
- Rogachevskii, I., Kleeorin, N., Käpylä, P. J., and Brandenburg, A. (2011). Pumping velocity in homogeneous helical turbulence with shear. *Phys. Rev. E*, 84(5):056314.
- Rüdiger, G. and Brandenburg, A. (2014). α effect in a turbulent liquid-metal plane Couette flow. *Phys. Rev. E*, 89(3):033009.
- Rüdiger, G., Kitchatinov, L. L., and Brandenburg, A. (2011). Cross Helicity and Turbulent Magnetic Diffusivity in the Solar Convection Zone. Sol. Phys., 269:3–12.
- Ruediger, G. (2005). Taylor-Couette flow: MRI, SHI and SRI. ArXiv Astrophysics e-prints.
- Ruoskanen, J., Harju, J., Juvela, M., Miettinen, O., Liljeström, A., Väisälä, M., Lunttila, T., and Kontinen, S. (2011). Mapping the prestellar core Ophiuchus D (L1696A) in ammonia. *Astron. Astrophys.*, 534:A122.
- Ruszkowski, M., Enßlin, T. A., Brüggen, M., Begelman, M. C., and Churazov, E. (2008). Cosmic ray confinement in fossil cluster bubbles. *Month. Not. Roy. Astron. Soc.*, 383:1359–1365.
- Ruszkowski, M., Enßlin, T. A., Brüggen, M., Heinz, S., and Pfrommer, C. (2007). Impact of tangled magnetic fields on fossil radio bubbles. *Month. Not. Roy. Astron. Soc.*, 378:662–672.
- Scharmer, G. B., Nordlund, Å., and Heinemann, T. (2008). Convection and the Origin of Evershed Flows in Sunspot Penumbrae. *Astrophys. J. Lett.*, 677:L149–L152.
- Schekochihin, A. A., Haugen, N. E. L., Brandenburg, A., Cowley, S. C., Maron, J. L., and McWilliams, J. C. (2005). The Onset of a Small-Scale Turbulent Dynamo at Low Magnetic Prandtl Numbers. *Astrophys. J. Lett.*, 625:L115–L118.
- Schekochihin, A. A., Iskakov, A. B., Cowley, S. C., McWilliams, J. C., Proctor, M. R. E., and Yousef, T. A. (2007). Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers. *New Journal of Physics*, 9:300.
- Shukurov, A., Sokoloff, D., Subramanian, K., and Brandenburg, A. (2006). Galactic dynamo and helicity losses through fountain flow. *Astron. Astrophys.*, 448:L33–L36.
- Singh, N. K. and Jingade, N. (2013). Numerical studies of dynamo action in a turbulent shear flow. *ArXiv e-prints*.

- Snellman, J. E., Brandenburg, A., Käpylä, P. J., and Mantere, M. J. (2012a). Verification of Reynolds stress parameterizations from simulations. *Astronomische Nachrichten*, 333:78.
- Snellman, J. E., Käpylä, P. J., Korpi, M. J., and Liljeström, A. J. (2009). Reynolds stresses from hydrodynamic turbulence with shear and rotation. *Astron. Astrophys.*, 505:955–968.
- Snellman, J. E., Käpylä, P. J., Mantere, M. J., Rheinhardt, M., and Dintrans, B. (2012b). Testing turbulent closure models with convection simulations. *ArXiv e-prints*.
- Snellman, J. E., Rheinhardt, M., Käpylä, P. J., Mantere, M. J., and Brandenburg, A. (2012c). Mean-field closure parameters for passive scalar turbulence. *Phys. Scr.*, 86(1):018406.
- Snodin, A. P., Brandenburg, A., Mee, A. J., and Shukurov, A. (2006). Simulating field-aligned diffusion of a cosmic ray gas. *Month. Not. Roy. Astron. Soc.*, 373:643–652.
- Sur, S. and Brandenburg, A. (2009). The role of the Yoshizawa effect in the Archontis dynamo. *Month. Not. Roy. Astron. Soc.*, 399:273–280.
- Sur, S., Brandenburg, A., and Subramanian, K. (2008). Kinematic α -effect in isotropic turbulence simulations. *Month. Not. Roy. Astron. Soc.*, 385:L15–L19.
- Sur, S., Subramanian, K., and Brandenburg, A. (2007). Kinetic and magnetic α -effects in non-linear dynamo theory. *Month. Not. Roy. Astron. Soc.*, 376:1238–1250.
- Svedin, A., Cuéllar, M. C., and Brandenburg, A. (2013). Data assimilation for stratified convection. *Month. Not. Roy. Astron. Soc.*, 433:2278–2285.
- Tarjei Jensen, J., Haugen, N. E. L., and Babkovskaia, N. (2011). Calculation of the Minimum Ignition Energy based on the ignition delay time. *ArXiv e-prints*.
- Tevzadze, A. G., Kisslinger, L., Brandenburg, A., and Kahniashvili, T. (2012). Magnetic Fields from QCD Phase Transitions. *Astrophys. J.*, 759:54.
- Tilgner, A. and Brandenburg, A. (2008). A growing dynamo from a saturated Roberts flow dynamo. *Month. Not. Roy. Astron. Soc.*, 391:1477–1481.
- Turner, N. J., Fromang, S., Gammie, C., Klahr, H., Lesur, G., Wardle, M., and Bai, X.-N. (2014). Transport and Accretion in Planet-Forming Disks. *ArXiv e-prints*.
- Väisälä, M. S., Brandenburg, A., Mitra, D., Käpylä, P. J., and Mantere, M. J. (2013). Quantifying the effect of turbulent magnetic diffusion on the growth rate of the magneto-rotational instability. *ArXiv e-prints*.
- van Wettum, T., Bingert, S., and Peter, H. (2013). Parameterisation of coronal heating: spatial distribution and observable consequences. *Astron. Astrophys.*, 554:A39.

- Vermersch, V. and Brandenburg, A. (2009). Shear-driven magnetic buoyancy oscillations. *Astronomische Nachrichten*, 330:797.
- Warnecke, J. and Brandenburg, A. (2010). Surface appearance of dynamo-generated large-scale fields. *Astron. Astrophys.*, 523:A19.
- Warnecke, J. and Brandenburg, A. (2011a). Dynamo generated field emergence through recurrent plasmoid ejections. In Prasad Choudhary, D. and Strassmeier, K. G., editors, *IAU Symposium*, volume 273 of *IAU Symposium*, pages 256–260.
- Warnecke, J. and Brandenburg, A. (2011b). Recurrent flux emergence from dynamogenerated fields. In Brummell, N. H., Brun, A. S., Miesch, M. S., and Ponty, Y., editors, *IAU Symposium*, volume 271 of *IAU Symposium*, pages 407–408.
- Warnecke, J. and Brandenburg, A. (2013). Coronal influence on dynamos. ArXiv e-prints.
- Warnecke, J., Brandenburg, A., and Mitra, D. (2011a). Dynamo-driven plasmoid ejections above a spherical surface. *Astron. Astrophys.*, 534:A11.
- Warnecke, J., Brandenburg, A., and Mitra, D. (2011b). Plasmoid ejections driven by dynamo action underneath a spherical surface. In Bonanno, A., de Gouveia Dal Pino, E., and Kosovichev, A. G., editors, *IAU Symposium*, volume 274 of *IAU Symposium*, pages 306–309.
- Warnecke, J., Brandenburg, A., Mitra, D. A., and) (2012a). Magnetic twist: a source and property of space weather. *Journal of Space Weather and Space Climate*, 2(26):A260000.
- Warnecke, J., Käpylä, P. J., Mantere, M. J., and Brandenburg, A. (2012b). Coronal ejections from convective spherical shell dynamos. In Mandrini, C. H. and Webb, D. F., editors, *IAU Symposium*, volume 286 of *IAU Symposium*, pages 154–158.
- Warnecke, J., Käpylä, P. J., Mantere, M. J., and Brandenburg, A. (2012c). Ejections of Magnetic Structures Above a Spherical Wedge Driven by a Convective Dynamo with Differential Rotation. *Sol. Phys.*, 280:299–319.
- Warnecke, J., Käpylä, P. J., Mantere, M. J., and Brandenburg, A. (2013a). Solar-like differential rotation and equatorward migration in a convective dynamo with a coronal envelope. In Kosovichev, A. G., de Gouveia Dal Pino, E., and Yan, Y., editors, *IAU Symposium*, volume 294 of *IAU Symposium*, pages 307–312.
- Warnecke, J., Käpylä, P. J., Mantere, M. J., and Brandenburg, A. (2013b). Spoke-like Differential Rotation in a Convective Dynamo with a Coronal Envelope. *Astrophys. J.*, 778:141.
- Warnecke, J., Losada, I. R., Brandenburg, A., Kleeorin, N., and Rogachevskii, I. (2013c). Bipolar Magnetic Structures Driven by Stratified Turbulence with a Coronal Envelope. *Astrophys. J. Lett.*, 777:L37.

- Workman, J. C. and Armitage, P. J. (2008). Interaction of the Magnetorotational Instability with Hydrodynamic Turbulence in Accretion Disks. *Astrophys. J.*, 685:406–417.
- Yang, C.-C. and Krumholz, M. (2012). Thermal-instability-driven Turbulent Mixing in Galactic Disks. I. Effective Mixing of Metals. *Astrophys. J.*, 758:48.
- Yang, C.-C., Mac Low, M.-M., and Menou, K. (2009). Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk: Ideal Unstratified Disks. Astrophys. J., 707:1233–1246.
- Yang, C.-C., Mac Low, M.-M., and Menou, K. (2012). Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk: Ideal Stratified Disks. *Astrophys. J.*, 748:79.
- Youdin, A. and Johansen, A. (2007). Protoplanetary Disk Turbulence Driven by the Streaming Instability: Linear Evolution and Numerical Methods. *Astrophys. J.*, 662:613–626.
- Youdin, A. N. and Johansen, A. (2008). Planetesimal Formation with Particle Feedback. In Fischer, D., Rasio, F. A., Thorsett, S. E., and Wolszczan, A., editors, *Extreme Solar Systems*, volume 398 of *Astronomical Society of the Pacific Conference Series*, page 219.
- Yousef, T. A. and Brandenburg, A. (2003). Relaxation of writhe and twist of a bi-helical magnetic field. *Astron. Astrophys.*, 407:7–12.
- Yousef, T. A., Brandenburg, A., and Rüdiger, G. (2003). Turbulent magnetic Prandtl number and magnetic diffusivity quenching from simulations. *Astron. Astrophys.*, 411:321–327.
- Yousef, T. A., Haugen, N. E. L., and Brandenburg, A. (2004). Self-similar scaling in decaying numerical turbulence. *Phys. Rev. E*, 69(5):056303.
- Yousef, T. A., Heinemann, T., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I., Iskakov, A. B., Cowley, S. C., and McWilliams, J. C. (2008). Generation of Magnetic Field by Combined Action of Turbulence and Shear. *Physical Review Letters*, 100(18):184501.
- Zacharias, P., Bingert, S., and Peter, H. (2009a). Doppler shifts in the transition region and corona. Mass cycle between the chromosphere and the corona. *Mem. Soc. Astr. Ital.*, 80:654.
- Zacharias, P., Bingert, S., and Peter, H. (2009b). Spectral analysis of 3D MHD models of coronal structures. *Advances in Space Research*, 43:1451–1456.
- Zacharias, P., Peter, H., and Bingert, S. (2011a). Ejection of cool plasma into the hot corona. *Astron. Astrophys.*, 532:A112.

