INTERPOLAR CON NEWTON Y LAGRANGE POBLACIÓN DE BOLIVIA

a) Datos estadísticos presentados por el INE:

OLIVIA: POBLACIÓN ESTIMADA Y PROYECTADA POR DEPARTAMENTO, SEGÚN AÑOS CALENDARIO, 2012-2025										
AÑO	BOLIVIA	CHUQUISACA	LA PAZ	СОСНАВАМВА	ORURO	POTOSÍ	TARIJA	SANTA CRUZ	BENI	PANDO
2012	10.356.978	596.825	2.767.504	1.816.452	502.048	846.017	503.886	2.779.271	430.812	114.163
2013	10.521.247	602.574	2.796.021	1.846.085	507.698	851.668	513.923	2.845.628	438.679	118.971
2014	10.685.994	608.477	2.824.587	1.875.874	513.212	857.562	523.910	2.911.845	446.693	123.834
2015	10.851.103	614.524	2.853.147	1.905.811	518.639	863.776	533.840	2.977.758	454.878	128.730
2016	11.016.438	620.733	2.881.717	1.935.873	523.934	870.285	543.689	3.043.354	463.183	133.670
2017	11.181.861	627.098	2.910.267	1.966.018	529.115	877.120	553.471	3.108.498	471.641	138.633
2018	11.347.241	633.612	2.938.746	1.996.220	534.174	884.273	563.182	3.173.151	480.270	143.613
2019	11.512.468	640.264	2.967.180	2.026.460	539.089	891.761	572.823	3.237.223	489.056	148.612
2020	11.677.406	647.089	2.995.530	2.056.710	543.880	899.575	582.376	3.300.603	498.004	153.639
2021	11.841.955	654.035	3.023.791	2.086.930	548.537	907.686	591.828	3.363.377	507.095	158.676
2022	12.006.031	661.119	3.051.947	2.117.112	553.088	916.087	601.214	3.425.399	516.338	163.727
2023	12.169.501	668.321	3.079.980	2.147.205	557.542	924.775	610.537	3.486.624	525.741	168.776
2024	12.332.252	675.643	3.107.890	2.177.186	561.885	933.715	619.784	3.547.045	535.271	173.833
2025	12.494.181	683.060	3.135.635	2.207.021	566.122	942.877	628.956	3.606.680	544.940	178.890

Puente: Ministerio de Educación, Ministerio de Salud y Deportes, Instituto Nacional de Estadística. Estimaciones y proyecciones de población, Revisión 2020

encuestas de demografía y salud.

debidamente explicitados en respectivas

Metodologías. De esta manera se recomienda el uso de la revisión de proyección de población más reciente.

b) Cálculos

año(A)	población(P)
2017	11181861
2018	11347241
2019	11512468
2020	11677406
2021	11841955
2022	12006031
2023	12169501
2024	

LAGRANGE

1.- Proyectemos la cantidad de población que tendrá Bolivia para el año 2024, usando "Interpolación" por el **método de Lagrange**:

	Х	У
#	año(A)	población(P)
0	2017	11181861
1	2018	11347241
2	2019	11512468
3	2020	11677406
4	2021	11841955
5	2022	12006031
6	2023	12169501
xk=	2024	yk=?

p(x) = L06(x)y0 + L16(x)y1 + L26(x)y2 + L36(x)y3 + L46(x)y4 + L56(x)y5 + L66(x)y6 L06(x) = ((x-x1)(x-x2)(x-x3)(x-x4)(x-x5)(x-x6)) / ((x0-x1)(x0-x2)(x0-x3)(x0-x4)(x0-x5)(x0-x6)) L16(x) = ((x-x0)(x-x2)(x-x3)(x-x4)(x-x5)(x-x6)) / ((x1-x0)(x1-x2)(x1-x3)(x1-x4)(x1-x5)(x1-x6)) L26(x) = ((x-x0)(x-x1)(x-x3)(x-x4)(x-x5)(x-x6)) / ((x2-x0)(x2-x1)(x2-x3)(x2-x4)(x2-x5)(x2-x6)) L36(x) = ((x-x0)(x-x1)(x-x2)(x-x4)(x-x5)(x-x6)) / ((x3-x0)(x3-x1)(x3-x2)(x3-x4)(x3-x5)(x3-x6)) L46(x) = ((x-x0)(x-x1)(x-x2)(x-x3)(x-x5)(x-x6)) / ((x4-x0)(x4-x1)(x4-x2)(x4-x3)(x4-x5)(x4-x6)) 35

L56(x) = ((x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x-x6))/((x5-x0)(x5-x1)(x5-x2)(x5-x3)(x5-x4)(x5-x6)) -21 L66(x) = ((x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x-x5))/((x6-x0)(x6-x1)(x6-x2)(x6-x3)(x6-x4)(x6-x5)) -21

Para el error, tomamos en cuenta el valor de una calculadora online:

f(x)= p(x)=	12333056 12332073
E(x)=	983
Er%(x)=	0,007970449

La calculadora nos presenta un dato mucho mayor al que presenta el INE, por el cual obtenemos un error muy alto.

También podemos tomar en cuenta el dato estadístico que nos presenta el INE:

	INE
Año	Población
2024	12.332.252

f(x)= 12332252
p(x)= 12332073
$$E(x)=$$
 179

Er%(x)= 0,001451479

El método de Lagrange nos presenta un dato cercano al que presenta el INE, por el cual obtenemos un error menor que la calculadora online de Lagrange.

Entonces: Para el año 2024, Bolivia tendrá una población de: 12.332.073

Al analizar un rango más pequeño, observamos que nos acercamos más al objetivo estadístico que nos presenta el INE:

	х	У
#	año(A)	población(P)
0	2019	11512468
1	2020	11677406
2	2021	11841955
3	2022	12006031
4	2023	12169501
xk=	2024	yk=?

p(x)=L04(x)y0+L14(x)y1+L24(x)y2+L34(x)y3+L44(x)y4	12332183
L04(x) = ((x-x1)(x-x2)(x-x3)(x-x4))/((x0-x1)(x0-x2)(x0-x3)(x0-x4)	1
L14(x)=((x-x0)(x-x2)(x-x3)(x-x4))/((x1-x0)(x1-x2)(x1-x3)(x1-x4)	-5
L24(x)=((x-x0)(x-x1)(x-x3)(x-x4))/((x2-x0)(x2-x1)(x2-x3)(x2-x4)	10
L34(x)=((x-x0)(x-x1)(x-x2)(x-x4))/((x3-x0)(x3-x1)(x3-x2)(x3-x4)	-10
L44(x)=((x-x0)(x-x1)(x-x2)(x-x3))/((x4-x0)(x4-x1)(x4-x2)(x4-x3)	5

Para el error tomamos en cuenta el dato estadístico que nos presenta el INE:

	INE
Año	Población
2024	12.332.252

f(x)= 12332252 p(x)= 12332183 E(x)= 69 Er%(x)= 0,000559509

El método de Lagrange con menos datos nos presenta un dato más cercano al que presenta el INE, por el cual obtenemos un error menor que calcularlo con más datos.

Entonces: Para el año 2024, Bolivia tendrá una población de: 12.332.183

NEWTON

2.- Proyectemos la cantidad de población que tendrá Bolivia para el año 2024, usando "Interpolación" por el método de Newton:

	х	У						
#	año(A)	población(P)	1er nivel	2do nivel	3er nivel	4to nivel	5to nivel	6to nnivel
0	2017	11181861	165380	-76,5	-22,6666667	1,5	-0,166666667	-0,0625
1	2018	11347241	165227	-144,5	-16,6666667	0,66666667	-0,541666667	
2	2019	11512468	164938	-194,5	-14	-2,04166667		
3	2020	11677406	164549	-236,5	-22,1666667			
4	2021	11841955	164076	-303				
5	2022	12006031	163470		-			
6	2023	12169501		-				

p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + f[x0,x1,x2,x3](x-x0)(x-x1)(x-x2) + f[x0,x1,x2,x3,x4](x-x0)(x-x1)(x-x2)(x-x3) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x-x4)(x-x2)(x-x3)(x-x4

p(2024)= 12332073

0.4375

Entonces: Para el año 2024, Bolivia tendrá una población de: 12.332.073

CONCLUSIÓN DE 1) Y 2):

2025

Aplicando Lagrange y Newton, vemos que usando todos los datos propuestos (7 datos) para el cálculo de la proyección poblacional para el año 2024 nos da un mismo resultado, sin poder comparar qué dato es mejor o se asemeja más al que nos da el INE. Por ende, ambos métodos, resultaron útiles para el cálculo poblacional, aunque; también pudimos comprobar que, al usar menores datos, en el método de Lagrange el cálculo resultó acercarse más al del INE, lo que podríamos pensar que sucedería de la misma manera aplicando el método de Newton.

E=

ı	NE
Año	Población
2024	12.332.252

3.- Usando Newton, proyectemos la cantidad de población que tendrá Bolivia el año 2025, usando como 8vo dato el que obtuvimos con el mismo método para el año 2024, y comparándolo con el que nos propone el INE:

Año	Población
2025	12494181

	Х	У							
#	año(A)	población(P)	1er nivel	2do nivel	3er nivel	4to nivel	5to nivel	6to nnivel	7mo nivel
0	2017	11181861	165380	-76,5	-22,6666667	1,5	-0,166666667	-0,0625	9,91271E-18
1	2018	11347241	165227	-144,5	-16,6666667	0,66666667	-0,541666667	-0,0625	
2	2019	11512468	164938	-194,5	-14	-2,04166667	-0,916666667		
3	2020	11677406	164549	-236,5	-22,1666667	-6,625			
4	2021	11841955	164076	-303	-48,6666667				
5	2022	12006031	163470	-449					
6	2023	12169501	162572						
7	2024	12332073							

p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + f[x0,x1,x2,x3](x-x0)(x-x1)(x-x2) + f[x0,x1,x2,x3,x4](x-x0)(x-x1)(x-x2)(x-x3) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4) + f[x0,x1,x2,x3,x4,x5](x-x0)(x-x1)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x2)(x-x3)(x-x4)(x-x4)(x-x3)(x-x4)(x-x

p(2025)= 12493141

E= 0,4375

c) Conclusiones

Como Newton es un buen método para proyecciones intermedias, observamos que nos ayudó de igual manera para proyecciones futuras, errando con una cantidad significativa en cálculos más serios; pero mínima para conocer datos poblacionales futuros o de otros tipos, acercándose a datos estadísticos más reales propuestos por entidades expertas en el tema. Por lo tanto, Newton y Lagrange son métodos interpolares que resultan útiles para proyecciones futuras.

Año	INE	NEWTON	LAGRANGE
2024	12.332.252	12.332.073	12.332.073
2025	12.494.181	12.493.141	