Wayne State University- Department of Economics ECO 7100 Econometrics I (Winter 2018)

Instructor: Vitor Kamada

Class: MW, 12:30- 2:10pm at 2072 FAB
Office: 2139 Faculty Administration Building
E-mail: econometrics.methods@gmail.com

Cel: 678 644 5511

Office hours: MW, 2:10 – 3:30 pm, and by appointment.

1) Course Description

This course is an eclectic combination of Statistical and Econometric Methods frequently used in applied work. Bayesian Methods and Machine Learning Algorithms are used to enhance the traditional Econometrics tools. One goal of this course is to provide a solid foundation to ECO 7110 Econometrics II, where I teach mainly causal inference methods, such as: Instrumental Variables, Regression Discontinuity, Difference-in-Difference, Fixed Effects, etc. Therefore, we start this course with Randomized Experiments, the "gold standard", and finish with Matching Estimators, as observational data is the reality of economic studies. In the middle, we cover the old standard methods for forecasting and causal inference, such as Ordinary Least Squares (OLS) and Logistic Regression. If Econometrics is the "Queen" of causal inference; Machine Learning is the "King" of prediction. Recently, cutting-edge research and causal inference methods in Economics are incorporating prediction techniques, for example the use of Support Vector Machines (SVM) to estimate a classical demand equation. However, most of "new" techniques of Statistical Learning have a long history in Bayesian Econometrics and Nonparametric Econometrics, such as Bootstrap, Regression Splines, and Kernel Regression. As this course covers several methods and estimators, the emphasis will be on intuition, implementation, and interpretation of results. Mathematical derivation can be checked anytime in the textbooks, and optimization problems are outsourced to computers.

2) Learning Outcome

The main goal of this course is to exposure the student to a variety of methods and estimators from different branches of Statistics and Econometrics. The expected result after the treatment is that the students can creatively combine these different methods to solve real world problems and write the empirical part of their dissertation.

3) Textbook

Cameron, C. A., Trivedi, P. K. (2005). **Microeconometrics: Methods and Applications**. New York: Cambridge University Press.

Hansen, B. R. (2017). **Econometrics**. Available for free in the Author website: https://www.ssc.wisc.edu/~bhansen/econometrics/

Hastie, T., Tibshirani, R., Friedman, J. (2017). **The Elements of Statistical Learning**. Springer, 2ed. Available for free in the Author website: https://web.stanford.edu/~hastie/ElemStatLearn/

Heiss, F. (2016). **Using R for Introductory Econometrics**. CreateSpace. Available for free in the Author website: http://www.urfie.net/

James, G., Witten, D., Hastie, T., Tibshirani, R. (2017). **An Introduction to Statistical Learning with Applications in R**. Springer. Available for free in the Author website: http://www-bcf.usc.edu/~gareth/ISL/

Oehlert, G. A. (2010). **First Course in Design and Analysis of Experiments**. Available at http://users.stat.umn.edu/~gary/Book.html, under a Creative Commons license.

4) Course Schedule

Date	Topics			
Week 1	1) Law of Large Numbers (LLN), Convergence in Probability and Distribution			
Jan 8	Hansen (2017): Ch 6.1 to 6.7			
	Cameron and Trivedi (2005): Appendix A.1 to A.4			
Week 1	2) Central Limit Theorem (CLT), Stochastic Order of Magnitude, and Delta Method			
Jan 10	Hansen (2017): Ch 6.8 to 6.13			
	Cameron and Trivedi (2005): Appendix A.5 to A.8			
Week 2	Holiday - University Closed			
Jan 15				
Week 2	3) Experiment: Randomization and Design			
Jan 17	Oehlert (2010): Ch 1 and Ch 2			
Week 3	4) Analysis of Variance (ANOVA): Completely Randomized Designs			
Jan 22	Oehlert (2010): Ch 3			
	Athey, S., Imbens, G. W. (2017). The Econometrics of Randomized Experiments.			
	Handbook of Economic Field Experiments, Vol 1, 73-140.			
Week 3	5) Conditional Expectation and Projection			
Jan 24	Hansen (2017): Ch 2			
Week 4	6) Algebra of Ordinary Least Squares (OLS)			
Jan 29	Hansen (2017): Ch 3			
	Hastie et al. (2017): 3.2			

Week 4	7) OLS: Gauss-Markov Theorem			
Jan 31	Hansen (2017): Ch 4.1 to 4.7			
	Cameron and Trivedi (2005): Ch 4.4			
Week 5	8) Generalized Least Squares (GLS)			
Feb 5	Hansen (2017): Ch 4.8 to 4:19			
	Cameron and Trivedi (2005): Ch 4.5			
Week 5	9) K-Nearest Neighbors and Kernel Density Estimation			
Feb 7	Hastie et al. (2017): Ch 2.3, 6.6, 13.3			
	James et al. (2017): Ch 4.6.5 to 4.6.6			
	Hansen (2017): Ch 22			
	Cameron and Trivedi (2005): Ch 9.1 to 9.3			
Week 6	10) Kernel Regression			
Feb 12	Hastie et al. (2017): Ch 6.1 to 6.5			
	Hansen (2017): Ch 15			
	Cameron and Trivedi (2005): Ch 9.5 to 9.9			
Week 6	11) Maximum Likelihood Estimator (MLE)			
Feb 14	Hansen (2017): Ch 5			
	Cameron and Trivedi (2005): Ch 5			
Week 7	12) Logistic and Probit Regression			
Feb 19	Hastie et al. (2017): Ch 4.4			
	Cameron and Trivedi (2005): Ch 14			
Week 7	13) Bayes' Theorem for Classification: Linear Discriminant Analysis			
Feb 21	Hastie et al. (2017): Ch 2.4, and Ch 4.3			
	James et al. (2017): Ch 4.4, and Ch 4.6.3 to 4.6.4			
Week 8	14) Bayesian Approach for Model Assessment and Selection			
Feb 26	Hastie et al. (2017): Ch 7.1 to 7.9			
	Cameron and Trivedi (2005): Ch 13			
Week 8	15) Cross-Validation			
Feb 28	Hastie et al. (2017): Ch 7.10			
	James et al. (2017): Ch 5.1, 5.3.1 to 5.3.3			
Week 9	16) Bootstrap and Bayesian Inference			
Mar 5	Hastie et al. (2017): Ch 7.11, and Ch 8.1 to 8.4			
	James et al. (2017): Ch 5.2, and 5.3.4			
	Hansen (2017): Ch 14			
	Cameron and Trivedi (2005): Ch 11			
Week 9	17) Bayesian Methods: Subset Selection, Ridge Regression, and Least Absolute			
Mar 7	Shrinkage and Selection Operator (LASSO)			
	Hastie et al. (2017): Ch 3.3 to 3.4			
	James et al. (2017): Ch 6.1 to 6.2, and 6.5 to 6.6			
Week 10	Holiday - No Classes			
Mar 12				
Week 10	Holiday - No Classes			
Mar 14				
Week 11	18) Principal Components Analysis			
Mar 19	Hastie et al. (2017): Ch 14.5			
	James et al. (2017): Ch 10.2, and 10.4			
L	1			

_				
Week 11	19) Principal Components Regression, and Partial Least Squares			
Mar 21	Hastie et al. (2017): Ch 3.5			
	James et al. (2017): Ch 6.3, and 6.7			
Week 12	20) K-Means Clustering, and Hierarchical Clustering			
Mar 26	Hastie et al. (2017): Ch 13.2, and 14.3			
	James et al. (2017): Ch 10.3, 10.5 to 10.6			
Week 12	21) Polynomial Regression, Regression Splines, Local Regression			
Mar 28	, , , , , , , , , , , , , , , , , , , ,			
	James et al. (2017): Ch 7.1 to 7.6, and 7.8.1 to 7.8.2			
	Hansen (2017): Ch 16			
Week 13	22) Generalized Additive Models and Regression Trees			
Apr 2	Hastie et al. (2017): Ch 9			
	James et al. (2017): Ch 7.7, 7.8.3, 8.1, and 8.3.1 to 8.3.2			
Week 13	23) Boosting and Additive Trees			
Apr 4	Hastie et al. (2017): Ch 10			
	James et al. (2017): Ch 8.2.3, and 8.3.4			
Week 14	24) Random Forests			
Apr 9	Hastie et al. (2017): Ch 15			
	James et al. (2017): Ch 8.2.1 to 8.2.2, and 8.3.3			
Week 14	25) Support Vector Machines (SVM)			
Apr 11	Hastie et al. (2017): Ch 12			
	James et al. (2017): Ch 9			
Week 15	26) Matching Estimator			
Apr 16	Caliendo, M., Kopeinig, S. (2008). Some Practical Guidance for the Implementation of			
	Propensity Score Matching . <i>Journal of Economic Surveys</i> 22(1): 31–72.			
	Cameron and Trivedi (2005): Ch 25.1 to 25.4, and 25.8			
Week 15	27) Propensity Score Matching			
Apr 18	Imbens, G. W. (2015). Matching Methods in Practice: Three Examples. Journal of Human			
	Resources 50(2): 373-419.			
Week 16	28) Review: Paper Presentation			
Apr 23	Bajari, P., Nekipelov, D., Ryan, S. P., Yang, M. (2015). Machine Learning Methods for			
	Demand Estimation. American Economic Review 105(5): 481–485.			
	Bajari, P., Nekipelov, D., Ryan, S. P., Yang, M. (2015). Demand Estimation with Machine			
	Learning and Model Combination. NBER Working Paper No. 20955.			
	Sala-i-Martin, X. (1997). I Just Ran Two Million Regressions. American Economic Review			
	87(2): 178-183			
	Ley, E., Steel, M. F. J. (2009). On the Effect of Prior Assumptions in Bayesian Model			
	Averaging with Applications to Growth Regression. Journal of Applied Econometrics			
	24(4): 651-674			
Week 16	Final: Paper Presentation			
Apr 25	2:10 – 3:30 pm			
•	<u> </u>			

5) Grading

5.1) Your final grade will be assessed as follows:

Assignment	Weight	Date
Surveys	1%	Monday, Feb 5 (at 4:00 pm)
Homework	44%	Check on Canvas
Lab	45%	Check on Canvas
Final	10%	Wednesday, Apr 25
Total	100%	

Grading Scale

94+ = A	74+ = C
90+ = A-	70+ = C-
87+ = B+	67+ = D+
84+ = B	64+ = D
80+ = B-	61+ = D-
77+ = C+	Below 61 = F

5.2) Instructions for Surveys, Homework, Lab, and Final

Guidelines and detail instructions about **Surveys, Homework, Lab, and Final** are available on Canvas.

5.3) Makeup Policy for any Assignment

If you miss any Assignment, I will provide a makeup activity in the case of an excused and unavoidable absence. Then it is YOUR RESPONSIBILITY to provide satisfactory written documentation of an excused and unavoidable absence as soon as possible. For example, if you are ill — the accompanying doctor's note must say that you cannot (or could not) do the Homework or Lab. If the doctor's note does not state this clearly, your score will be zero.

6. Course Expectations

6.1) Prerequisite

Official prerequisite stipulated by Department of Economics for this course is: ECO 6100 Introduction to Econometrics, and ECO 7020 Fundamentals of Economic Analysis I.

6.2) Clarifying Expectations

To succeed in this course, you'll need to invest a good amount of time and energy doing exercises outside the class time. If at any time you feel you're investing the required time and energy but aren't learning the material or improving your skills, contact me and I'll do my best to help you and to suggest additional resources and options. If you have questions or concerns that you believe can be handled via e-mail, feel free to contact me that way. If I cannot adequately respond to your question via e-mail, I'll ask you to come to my regular office hours or make an appointment.

6.3) Academic Integrity

Wayne State University aims to cultivate a community based on trust, academic integrity, and honor. Students are expected to act according to the highest ethical standards. For information on Student Code of Conduct, please see https://doso.wayne.edu/conduct/codeofconduct.pdf. Students who commit or assist in committing dishonest acts are subject to sanctions described in the Student Code of Conduct.

6.4) Special Accommodations

If you have a documented disability that requires accommodations, you will need to register with Student Disability Services (SDS) for coordination of your academic accommodations. The Student Disability Services (SDS) office is located at 1600 David Adamany Undergraduate Library in the Student Academic Success Services department. SDS telephone number is 313-577-1851 or 313-577-3365 (TDD only). Once you have your accommodations in place, I will be glad to meet with you privately during my office hours to discuss your special needs. Student Disability Services' mission is to assist the university in creating an accessible community where students with disabilities have an equal opportunity to fully participate in their educational experience at Wayne State University.