# **BUAN 6320**

## **Database Foundations for Business Analytics**

# **Assignment 2**

## **Problem 1**

Create the following table in your database with the following schema:

Table: ActorDirector

```
+-----+
| Column Name | Type |
+------+
| actor_id | int |
| director_id | int |
| timestamp | int |
```

timestamp is the primary key column for this table.

Add the following data to your tables:

### Input:

ActorDirector table:

| actor_id                                           | director_id                          | +<br>  timestamp |
|----------------------------------------------------|--------------------------------------|------------------|
| 1<br>  1<br>  1<br>  1<br>  1<br>  1<br>  2<br>  2 | 1<br>  1<br>  1<br>  2<br>  2<br>  1 | 0                |
| +                                                  | +                                    | ++               |

Write a SQL query for a report that provides the pairs (actor\_id, director\_id) where the actor has cooperated with the director at least three times.

Return the result table in any order.

The results should be:

### Output:

| +        | +       | + |
|----------|---------|---|
| actor_id | _       |   |
| +        |         | + |
| 1        | 1       |   |
| +        | <b></b> | + |

## Problem 2

Assuming you have a table in your database called 'Enrollment with the following schema:

Table: Enrollment



(student, class) is the primary key column for this table. Each row of this table indicates the name of a student and the class in which they are enrolled.

The table contains the following data:

## Input:

| Enrollment | table:               |
|------------|----------------------|
| student    | ++<br>  class  <br>+ |
| A          | Math                 |
| B          | English              |
| C          | Math                 |
| D          | Biology              |
| E          | Math                 |
| F          | Computer             |
| G          | Math                 |
| H          | Math                 |
| I          | Math                 |
| +          | ++                   |

Write an SQL query to report all the classes that have at least five students.

Return the result table in any order.

The result should be:

### Output:

+----+ | class | +----+ | Math | +----+

# Problem 3

Create the following table in your database with the following schema:

Table: Orders

order\_number is the primary key for this table. This table contains information about the order ID and the customer ID.

## Add the following data to your tables:

#### Input:

Orders table:

| +            | ++              |
|--------------|-----------------|
| order_number | customer_number |
| +            | ++              |
| 1            | 1               |
| 2            | 2               |
| 3            | 3               |
| 4            | I 3             |
| +            | ++              |

Write an SQL query to find the customer\_number for the customer who has placed the largest number of orders.

The results should be:

#### Output:



## Problem 4

Create the following tables in your database with the following schema:

### Table: Sales

| ++                                             | +                                       |
|------------------------------------------------|-----------------------------------------|
| Column Name                                    | Type                                    |
| sale_id   product_id   year   quantity   price | int  <br>int  <br>int  <br>int  <br>int |
| ++                                             | +                                       |

(sale\_id, year) is the primary key of this table.

product\_id is a foreign key to Product table.

Each row of this table shows a sale on the product product\_id in a certain year.

Note that the price is per unit.

#### Table: Product

| İ | Column Name  | İ | Type    | İ |
|---|--------------|---|---------|---|
|   | product_id   |   | int     |   |
|   | product_name |   | varchar |   |

product id is the primary key of this table.

Each row of this table indicates the product name of each product.

## Add the following data to your tables:

#### Input:

Sales table:

| + | +          | <b> </b>                     | <u> </u> | ++                           |
|---|------------|------------------------------|----------|------------------------------|
| _ | product_id | <del>-</del>                 | = =      | =                            |
| 1 | 100        | 2008  <br>  2009  <br>  2011 | 10<br>12 | 5000  <br>  5000  <br>  9000 |

Product table:

| +- |            | +- |                         | + |
|----|------------|----|-------------------------|---|
|    | product_id |    | <pre>product_name</pre> |   |
| +- |            | +- |                         | + |
|    | 100        |    | Nokia                   |   |
|    | 200        |    | Apple                   |   |
|    | 300        |    | Samsung                 |   |
| +- |            | +- |                         | + |

Write an SQL query that reports the product\_name, year, and price for each sale\_id in the Sales table.

Return the result table in any order.

The results should be:

## Output:

| + |              | +-    |      | -+-         |       | -+  |
|---|--------------|-------|------|-------------|-------|-----|
| 1 | product_name |       | year |             | price |     |
| + |              | +-    |      | -+-         |       | -+  |
|   | Nokia        |       | 2008 |             | 5000  |     |
|   | Nokia        |       | 2009 |             | 5000  |     |
|   | Apple        |       | 2011 |             | 9000  |     |
| + |              | . + . |      | <b>-</b> +- |       | - + |