

Методы и технологии машинного обучения

Лекция 2: Параметрические классификаторы для бинарной Y

Светлана Андреевна Суязова (Аксюк) sa_aksyuk@guu.ru

осенний семестр 2021 / 2022 учебного года

План лекции

- Логистическая
- Линейный дискриминантный анализ
- Порог отсечения классов и ROC-кривая
- Квадратичный дискриминантный анализ
- Методы создания повторных выборок

ru-xkcd.livejournal.com/75022.html

Почему не обычная регрессия?

Y – категориальная переменная, например, вид ириса:

Вопросы:

- 1. Расстояние между категориями?
- 2. Порядок категорий?

Y – категория; 1, 2, 3 – метки

Почему не обычная регрессия?

Y – категория; 1, 2, ... – *метки*

Две категории – логистическая регрессия

- Y бинарный (0 отсутствие признака; 1 наличие признака). Y интерпретируется как принадлежность одному из классов; нужно задать порог отсечения.
- Y оценка вероятности (частость), $Y \in [0,1]$. Y интерпретируется как вероятность принадлежности одному из классов.

Более двух категорий – нерегрессионные модели.

Сгенерированные данные по 10000 держателям кредитных карт Default

default	student	balance	income
No	No	729.5265	44361.63
No	Yes	817.1804	12106.13
No	No	1073.5492	31767.14
No	No	529.2506	35704.49
No	No	785.6559	38463.50

Задача: предсказать default по balance.

Зависимая переменная модели – условная вероятность:

$$Y = P(\text{default} = \text{Yes}|\text{balance})$$

$$P(X) = f(\hat{\beta}_0 + \hat{\beta}_1 \cdot X)$$

Логистическая функция возвращает для любого X значение из интервала от 0 до 1:

$$P(X) = rac{e^{\hateta_0 + \hateta_1 \cdot X}}{1 + e^{\hateta_0 + \hateta_1 \cdot X}}$$

Обычная линейная регрессия

Логистическая регрессия

$$P(X) = rac{e^{\hateta_0 + \hateta_1 \cdot X}}{1 + e^{\hateta_0 + \hateta_1 \cdot X}} \Leftrightarrow rac{P(X)}{1 - P(X)} = e^{\hateta_0 + \hateta_1 \cdot X}$$

$$rac{P(X)}{1-P(X)}\in (0,\infty)$$
 – риск события:

Например: если P(X)=0.8, это означает, что 8 из 10 человек станут неплательщиками с риском:

$$\frac{P(X)}{1 - P(X)} = \frac{0.8}{1 - 0.8} = 4$$

$$\ln\!\left(rac{P(X)}{1-P(X)}
ight) = \ln\!\left(e^{\hat{eta}_0+\hat{eta}_1\cdot X}
ight) \Leftrightarrow \ln\!\left(rac{P(X)}{1-P(X)}
ight) = \hat{eta}_0+\hat{eta}_1\cdot X$$

$$\ln\!\left(rac{P(X)}{1\!-\!P(X)}
ight)$$
 – логарифм риска, или *логит*.

- ullet коэффициент \hat{eta}_1 не отражает изменение P(X), вызванное увеличением X на 1;
- ullet скорость изменения P(X) с изменением X на 1 зависит от текущего значения X;
- направление связи интерпретируется как в линейной регрессии: если $\hat{\beta}_1 > 0$, $X \uparrow \uparrow P(X)$; если $\hat{\beta}_1 < 0$, $X \uparrow \downarrow P(X)$.

Логистическая регрессия: оценка параметров

Принцип метода максимального правдоподобия: подобрать \hat{eta}_0 , \hat{eta}_1 так, чтобы вероятность дефолта $\hat{p}(x_i)$ для каждого держателя карты максимально близко соответствовала его наблюдаемому статусу.

Функция правдоподобия:

$$\ell(eta_0,eta_1)=\prod_{i:y_i=1}p(x_i)\prod_{i':y_{i'}=0}\left(1-p(x_{i'})
ight)
ightarrow \max$$

МНК в линейной регрессии – частный случай ММП.

Ha примере данных Default

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-10.6513	0.36	-29.49	0.0000
balance	0.0055	0.00	24.95	0.0000

Информационный коэффициент Акаике: AIC=1600.45

$$\ln\!\left(rac{P(X)}{1-P(X)}
ight) = -10.6513 + 0.0055 \cdot ext{balance}$$

Прогнозы

Вероятность дефолта для
$$\mathrm{balance} = 1000$$
: $\hat{p}(1000) = \frac{e^{-10.6513+0.0055\cdot 1000}}{1+e^{-10.6513+0.0055\cdot 1000}} pprox 0.006$

Вероятность дефолта для
$$\mathrm{balance} = 2000$$
: $\hat{p}(2000) = \frac{e^{-10.6513+0.0055\cdot 2000}}{1+e^{-10.6513+0.0055\cdot 2000}} pprox 0.586$

Положительный баланс на кредитной карте – долг

Качественная объясняющая переменная: studentYes

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-3.5041	0.07	-49.55	0.0000
studentYes	0.4049	0.12	3.52	0.0004

Информационный коэффициент Акаике: AIC=2912.68

$$\ln\!\left(rac{P(X)}{1-P(X)}
ight) = -3.5041 + 0.4049 \cdot \mathrm{studentYes}$$

$$\hat{P}(ext{default} = ext{Yes}| ext{student} = ext{No}) = rac{e^{-3.5041 + 0.4049 \cdot 0}}{1 + e^{-3.5041 + 0.4049 \cdot 0}} pprox 0.029$$

$$\hat{P}(ext{default} = ext{Yes} | ext{student} = ext{Yes}) = rac{e^{-3.5041 + 0.4049 \cdot 1}}{1 + e^{-3.5041 + 0.4049 \cdot 1}} pprox 0.043$$

Множественная логистическая регрессия

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-10.8690	0.49	-22.08	0.0000
studentYes	-0.6468	0.24	-2.74	0.0062
balance	0.0057	0.00	24.74	0.0000
income	0.0000	0.00	0.37	0.7115

Информационный коэффициент Акаике: AIC=1579.54

$$\ln\!\left(rac{P(X)}{1-P(X)}
ight) = -10.869 - extbf{0.6468} \cdot ext{studentYes} + 0.0057 \cdot ext{balance} + 0 \cdot ext{income}$$

Взаимодействие объясняющих переменных приводит к изменению знака коэффициента при факторе student.

Без незначимой переменной income

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-10.7495	0.37	-29.12	0.0000
balance	0.0057	0.00	24.75	0.0000
studentYes	-0.7149	0.15	-4.85	0.0000

Информационный коэффициент Акаике: AIC=1577.68

$$\hat{p}(1500,1) = rac{e^{-10.7495 + 0.0057 \cdot 1500 - 0.7149 \cdot 1}}{1 + e^{-10.7495 + 0.0057 \cdot 1500 - 0.7149 \cdot 1}} pprox 0.054$$

$$\hat{p}(1500,0) = rac{e^{-10.7495 + 0.0057 \cdot 1500 - 0.7149 \cdot 0}}{1 + e^{-10.7495 + 0.0057 \cdot 1500 - 0.7149 \cdot 0}} pprox 0.105$$

Смешивание эффектов предикторов

План лекции

- Логистическая регрессия
- Линейный дискриминантный анализ
- Порог отсечения классов и ROC-кривая
- Квадратичный дискриминантный анализ
- Методы создания повторных выборок

Дискриминантный анализ

В логистической регрессии моделируем условное распределение отклика Y с учётом предикторов X.

В дискриминантном анализе – распределение предикторов X отдельно для каждого класса, затем применяем теорему Байеса для получения условной вероятности P(Y=k|X=x).

Почему дискриминантный анализ, а не логит?

- 1. Когда классы хорошо разделены, оценки логистической регрессии нестабильны.
- 2. При малом n и нормально распределённых X дискриминантный анализ более устойчив.
- 3. Дискриминантный анализ применим в задачах, где у Y больше двух классов.

Теорема Байеса для классификации

Отнести наблюдение x к одному из K классов.

 π_k – априорная вероятность принадлежности наблюдения к классу k

f(X) = P(X = x | Y = k) – функция плотности вероятности X для наблюдения из класса k

Найти апостериорную вероятность принадлежности наблюдения x к классу k (исходя из значения предиктора):

$$P(Y = k | X = x) = rac{\pi_k \cdot f_k(x)}{\sum_{l=1}^K \pi_l \cdot f_l(x)} \quad (1)$$

Дискриминантная функция по одному признаку

LDA: $f_k(x)$ подчиняются нормальным законам с одинаковой дисперсией σ^2 :

$$f_k(x) = rac{1}{\sqrt{2\pi}\sigma} \expigg(-rac{1}{2\sigma^2(x-\mu_k)^2}igg), \quad (2)$$

где μ_k – это математическое ожидание класса k. Из подстановки (2) в (1) выводится правило для отнесения наблюдения x к классу k:

$$\delta_k(x) = x \cdot rac{\mu_k}{\sigma^2} - rac{\mu_k^2}{2\sigma^2} + \log(\pi_k) o \max_k 2$$

Дискриминантная функция по одному признаку

Если k=2 и $\pi_1=\pi_2$, решающая граница:

$$x=rac{\mu_1^2-\mu_2^2}{2(\mu_1-\mu_2)}=rac{\mu_1+\mu_2}{2}$$

Пусть
$$\mu_1 = 2$$
, $\mu_2 = 6$:

$$x=\frac{2+6}{2}=4$$

Дискриминантная функция по одному признаку

Оценки по выборке:

$$\hat{\mu}_k = rac{1}{n_k} \sum_{i: y_i = k} x_i$$

$$\hat{\mu}_1=2.15$$
 , $\hat{\mu}_2=6.03$

$$x = \frac{2.15 + 6.03}{2} = 4.09$$

Другие оценки по выборке

Априорные вероятности классов: $\hat{\pi_k} = rac{n_k}{n}$

Дисперсия:
$$\hat{\sigma}^2 = rac{1}{n-K} \sum_{k=1}^K \sum_{i:y_i=k} (x_i - \hat{\mu}_k)^2$$

Дискриминантная функция линейна по x:

$$\hat{\delta}_k(x) = x \cdot rac{\hat{\mu}_k}{\hat{\sigma}^2} - rac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k) o \max_k x_k$$

Дискриминантная функция по двум и более признакам

Функция плотности вероятности для классов – многомерный нормальный закон с ковариационной матрицей объясняющих переменных Σ , общей для всех классов.

$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - rac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k o \max_k$$

План лекции

- Логистическая регрессия
- Линейный дискриминантный анализ
- Порог отсечения классов и ROCкривая
- Квадратичный дискриминантный анализ
- Методы создания повторных выборок

Данные Default: default = Yes против default = No

```
LDA, default зависит от balance и
student
## Prior probabilities of groups:
##
      No
           Yes
## 0.968 0.032
## Group means:
##
       balance
                  income
## No 806.240 33633.89
## Yes 1738.497 32919.88
## Coefficients of linear discriminants:
##
               LD1
## balance 0.00223
## income 0.00001
```


Данные Default: default = Yes против default = No

	No	Yes
No	8208	17
Yes	216	59

Наличие признака: неплательщик (default = Yes).

Чувствительность: $TPR=\frac{59}{216+59}=0.215$ – доля истинных неплательщиков, обнаруженных классификатором.

Специфичность: $SPC=rac{8208}{8208+17}=0.998$ – доля правильно идентифицированных клиентов, уплативших долг.

Ошибка:
$$1-Acc=1-rac{8208+59)}{(8208+17+216+59)}=0.027$$

Ошибка нулевого классификатора (default = Yes) равна 0.033 и немногим больше ошибки LDA

Пример на данных Default В текущей модели неплательщик – клиент, для которого вероятность дефолта превышает 0.5.

Чтобы повысить чувствительность модели, снизим порог отсечения, например: $P(\operatorname{default} = \operatorname{Yes}|X = x) > 0.2$. Тогда:

	No	Yes
No	8034	191
Yes	122	153

Чувствительность:
$$TPR=rac{153}{122+153}=0.556.$$
 Специфичность: $SPC=rac{8034}{8034+191}=0.977.$

ROC-кривая

ROC – "радиочастотная характеристика приёмника" (receiver operating characteristic) – исторически сложившийся термин.

Кривая отражает зависимость чувствительности (TPR) от специфичности (1-SPC) в зависимости от порога отсечения вероятности (p).

AUC (area under the curve) – площадь под кривой, или общее качество классификатора.

Если AUC=0.5 для бинарного классификатора, то это простое случайное угадывание, ROC-кривая – биссектриса первой четверти.

План лекции

- Логистическая регрессия
- Линейный дискриминантный анализ
- Порог отсечения классов и ROC-кривая
- Квадратичный дискриминантный анализ
- Методы создания повторных выборок

Квадратичный дискриминантный анализ (QDA)

Допущения:

- наблюдения в каждом классе распределены по нормальному закону: $X \sim N(\mu_k, \Sigma_k)$;
- ullet ковариационные матрицы для классов отличаются: $\Sigma_i
 eq \Sigma_j \ orall i
 eq j, \ i,j=1,\ldots,k.$

Дискриминирующая функция:

$$egin{aligned} \delta_k(x) &= -rac{1}{2}(x-\mu_k)^T \mathbf{\Sigma}_k^{-1}(x-\mu_k) - rac{1}{2} \mathrm{log}|\mathbf{\Sigma}_k| + \ &+ \mathrm{log}\pi_k
ightarrow \mathrm{max}_k \end{aligned}$$

LDA unu QDA?

LDA оценивает единую Σ , число параметров для оценки: p(p+1)/2.

LDA оценивает свою Σ_k для каждого класса, число параметров для оценки: Kp(p+1)/2.

- LDA требует меньше вычислений.
- Гибкость QDA выше.
- Дисперсия LDA меньше, чем QDA.
- Если в действительности ковариационные матрицы классов разные, у LDA выше смещение.

Зелёная линия – граница по QDA, чёрный пунктир – LDA, Фиолетовый пунктир – байесовский классификатор (эталон)

Слева: $\Sigma_1=\Sigma_2$. Справа: $\Sigma_1
eq \Sigma_2$.

Сценарий 1:

В каждом классе наблюдения распределены по нормальному закону; разные средние; классы независимы друг от друга.

p=2, 100 случайных выборок, кроссвалидация.

На графике – разброс частот ошибок для разных методов

Сценарий 4:

Предикторы распределены по нормальному закону с разными корреляционными матрицами для каждого класса.

p=2, 100 случайных выборок, кроссвалидация.

На графике -- разброс частот ошибок для разных методов

План лекции

- Логистическая регрессия
- Линейный дискриминантный анализ
- Порог отсечения классов и ROC-кривая
- Квадратичный дискриминантный анализ
- Методы создания повторных выборок

Ключевые ugeu

- Цель любой модели подстроиться под данные, поэтому оценка точности на обучающей выборке слишком оптимистична
- Более правдоподобная оценка точности должна проводиться на независимом от обучающей выборки наборе данных тестовой выборке

Проблемы:

- Как оценить оценки точность и гибкость *при построении модели*?
- Как оценить качество модели, если подходящей тестовой выборки вообще нет?

Метод проверочной выборки

Преимущество: прост в использовании

Недостатки:

- MSE на проверочной выборке может оказаться очень вариабельной
- На небольших выборках MSE на проверочной выборке оказывается переоцененной

Пример на данных Auto {ISLR}

Связь mpg и horsepower нелинейна. Сравнить модели методом проверочной выборки:

1.
$$\operatorname{mpg} = \alpha_0 + \alpha_1 \cdot \operatorname{horsepower}$$
2. $\operatorname{mpg} = \alpha_0 + \alpha_1 \cdot \operatorname{horsepower} + \alpha_2 \cdot \operatorname{horsepower}^2$

Пример на данных Auto {ISLR}

Слева: однократное разбиение на обучающую и проверочную выборки Справа: метод проверочной выборки применён 10 раз

Алгоритм перекрёстной проверки

- 1. Берём обучающую выборку. i=1.
- 2. Разбиваем на две части: обучающую- i и тестовую- i
- 3. Строим модель на обучающей- i
- 4. Оцениваем точность на тестовой- i
- 5. i + 1.
- 6. Повторяем 2...5 (много) раз.
- 7. Усредняем оценки точности на тестовых- i выборках.

Как действовать на шаге 2?

Случайные бесповторные подвыборки

Повторение метода проверочной выборки n раз, со всеми недостатками.

Перекрёстная проверка по отдельным наблюдениям (LOOCV*)

$$ext{CV}_{(n)} = rac{1}{n} \sum_{i=1}^n MSE_i$$

*leave-one-out cross validation

- Метод пытается преодолеть недостатки метода проверочной выборки.
- Ресурсоёмкий: модель нужно прогнать n раз.
- Для линейной и полиномиальной регрессии *с параметрами, оцененными по МНК*, можно использовать экономную модификацию:

$$ext{CV}_{(n)} = rac{1}{n} \sum_{i=1}^n \left(rac{y_i - \hat{y}_i}{1 - h_i}
ight)^2.$$

где \hat{y}_i – модельное значение отклика, $h_i \in [\frac{1}{n},1]$ – показатель разбалансировки (Leverage) для i-го наблюдения.

k-кратная перекрёстная проверка*

$$ext{CV}_{(k)} = rac{1}{k} \sum_{i=1}^k MSE_i$$

*k-fold validation

- LOOCV обладает более высокой дисперсией, чем k-fold, из-за взаимной корреляции оценок MSE при LOOCV
- Смещение у k-fold выше, чем у LOOCV, и ниже, чем у метода проверочной выборки
- ullet Установлено, что k=5 и k=10 дают разумный компромисс между смещением и дисперсией
- Ресурсоёмкость у k-fold средняя

Пример на данных Auto {ISLR}

Слева: кривая ошибок LOOCV Справа: 10-кратная перекрёстная проверка повторена 9 раз, каждый раз новое разбиение

О чём важно помнить

- оценку точности сильно искажают нетипичные наблюдения
- важно обеспечить репрезентативность данных в блоках скользящего контроля
- если в данных присутствует фактор времени, нужно следить за тем, чтобы признаки, доступные в будущем, не использовались для предсказания прошлого
- чем выше число блоков, тем точнее оценка ошибки и тем затратнее скользящий контроль

Источники

- 1. *Джеймс Г., Уиттон Д., Хасти Т., Тибширани Р.* Введение в статистическое обучение с примерами на языке R. Пер. с англ. С.Э. Мастицкого М.: ДМК Пресс, **2016** 450 с.
- 2. Данные Default, Auto из пакета ISLR.
- 3. *Shireen Elhabian*, *Aly A. Farag* A Tutorial on Data Reduction. Linear Discriminant Analysis (LDA). URL: http://www.sci.utah.edu/~shireen/pdfs/tutorials/Elhabian_LDA09.pdf
- 4. *W.N. Venables*, *B.D. Ripley* Modern Applied Statistics with S. **2002**. URL: https://www.researchgate.net/publication/224817420_Modern_Applied_Statistics_With_S
- 5. Jeffrey Leek. Материалы курса «Practical Machine Learning» Университета Джонса Хопкинса на портале coursera.org, доступные в репозитории: github.com/jtleek/modules/tree/master/08_PredictionAndMachineLearning
- 6. *Хенрик Бринк, Джозеф Ричардс, Марк Феверолф* Машинное обучение. Спб.: Питер, **2018**. -- 336 с.