NUS DATA SCIENCE COMPETITION 2018

Modeling Weather Radar

Outline

- Radar calibration and models
- Gradient descent
- Python demo
- Competition task

Thunderstorm cell

backscatter

Weather Radar Station

microwave pulse

Weather Radar Station

Time — Distance difference

Intensity ——— Rainfall rate

Backscattered signal quantized into 34 bins

Rainfall model

 Convert backscatter intensity to rainfall rate at a location point in the snapshot

• A simple model: $r(x, y) = A e^{B \cdot k(x, y)}$

x, y: location coordinates

r(x,y): rainfall rate at location (x,y)

k(x,y): bin number of radar signal at (x,y)

A, B: model parameters

Rainfall model

- Convert to weekly cumulative rainfall R_{radar}
- ullet Radar snapshots taken at a regular time interval Δt

$$R_{radar}(x,y) = \sum_{k} r(x,y)c_{k}(x,y) \Delta t$$

$$\begin{vmatrix} r(x,y) = A e^{B \cdot k(x,y)} \\ A e^{B \cdot k(x,y)} c_{k}(x,y) \Delta t \end{vmatrix}$$

 c_k : weekly bin counts

Rainfall model

 Calibrate rainfall model with rain gauge data

- Rain gauge
 - Rainfall measuring devices
 - Located at fixed facilities
 - Daily readings accumulated by week

Risk

 Error measure between rain gauge readings and rainfall deduced from radar

 $c_{k,i}$: bin counts of i^{th} week

Risk

$$L_{i} = \left(R_{radar,i} - R_{gauge,i}\right)^{2}$$

$$R = \frac{1}{T} \sum_{i} L_{i}$$

Risk minimization

- 1. Initialize A and B to some values (eg. some random number)
- 2. Calculate $R_{radar,w}$ for all weeks w in total time period T
- 3. Calculate the risk R and save it as R_0
- 4. Somehow adjust A and B so that the new risk $R_1 < R_0$. If this can't be done, stop. If yes, save R_1 as R_0 and repeat this step.

Risk minimization

- Possible outcomes
 - High final risk
 - Problem with model
 - Problem with learning algorithm (eg. local minima)
 - Low/zero final risk
 - Possible overfitting

Overfit

Overfit

Overfit

Split dataset into train (D) and test sets

Risk minimization: evaluate risk over the train set Report: use risk over test set as performance measure

Risk minimization

- 1. Initialize A and B to some values (eg. some random number)
- 2. Calculate $R_{radar,w}$ for all weeks w in total time period T
- 3. Calculate the risk R and save it as R_0
- 4. Somehow adjust A and B so that the new risk $R_1 < R_0$. If this can't be done, stop. If yes, save R_1 as R_0 and repeat this step.

Gradient descent

- Move in direction of steepest downward slope $\left(-\frac{\partial R}{\partial W}\right)$
- Weights = model parameters (ie. A and B)

$$W_{new} = W_{old} - \eta \frac{\partial R}{\partial W} \bigg|_{W_{old}}$$

Learning rate

Gradient descent

Gradient descent

$$w_1 = w_0 - \eta \frac{\partial R}{\partial W} \bigg|_{w_0} \qquad \delta W = -\eta \frac{\partial R}{\partial W}$$

$$\delta W = -\eta \, \frac{\partial R}{\partial W}$$

$$R_{i+1} = R(A + \delta A, B + \delta B)$$

$$\approx R(A, B) + \delta A \frac{\partial R}{\partial A} + \delta B \frac{\partial R}{\partial B}$$

$$= R(A, B) - \eta \left(\frac{\partial R}{\partial A}\right)^2 - \eta \left(\frac{\partial R}{\partial B}\right)^2$$

$$\geq R(A, B) = R_i$$

• Goal: find $\frac{\partial R}{\partial W}$

$$R = \frac{1}{T} \sum_{i} (R_{radar,i} - R_{gauge,i})^{2}$$

$$R_{radar}(x, y) = \sum_{k} A e^{B \cdot k(x, y)} c_{k}(x, y) \Delta t$$

$$R = R(L(a,b))$$

$$\frac{\partial R}{\partial W} = \frac{\partial R}{\partial L} \frac{\partial L}{\partial W}$$

$$= \frac{1}{T} \sum_{i} \frac{\partial L_{i}}{\partial W}$$

$$R = \frac{1}{T} \sum_{i} L_{i}$$

$$= \frac{1}{T} \sum_{i} \frac{\partial L_{i}}{\partial W}$$

$$R = \frac{1}{T} \sum_{i} L_{i}$$

$$= \frac{1}{T} \sum_{i} L_{i}$$

$$\frac{\partial R}{\partial W_1} = \frac{1}{T} \sum_{i} \frac{\partial L_i}{\partial W_1} \qquad \frac{\partial L_i(W_N, X_N)}{\partial W_1} = \frac{\partial L}{\partial X_N} \frac{\partial X_N}{\partial W_1} \qquad X_N(X_{N-1}, W_N)$$

$$= \frac{\partial L}{\partial X_N} \frac{\partial X_N}{\partial X_{N-1}} \frac{\partial X_{N-1}}{\partial W_1} \qquad X_{N-1}(X_{N-2}, W_{N-1})$$

$$\frac{\partial R}{\partial W_1} = \frac{1}{T} \sum_{i} \frac{\partial L_i}{\partial W_1} \qquad \frac{\partial L_i(W_N, X_N)}{\partial W_1} = \frac{\partial L}{\partial X_N} \frac{\partial X_N}{\partial W_1}$$
$$= \frac{\partial L}{\partial X_N} \frac{\partial X_N}{\partial X_{N-1}} \frac{\partial X_{N-1}}{\partial X_{N-2}} \frac{\partial X_{N-2}}{\partial W_1}$$

Input
$$\Longrightarrow s_1(W_1) \Longrightarrow s_2(W_2) \Longrightarrow \ldots \Longrightarrow s_N(W_N) \Longrightarrow X_N$$
Label $\Longrightarrow R$

$$\frac{\partial R}{\partial W_1} = \frac{1}{T} \sum_{i} \frac{\partial L_i}{\partial W_1} \qquad \frac{\partial L_i(W_N, X_N)}{\partial W_1} = \frac{\partial L}{\partial X_N} \frac{\partial X_N}{\partial W_1}$$
$$= \frac{\partial L}{\partial X_N} \frac{\partial X_N}{\partial X_{N-1}} \frac{\partial X_{N-1}}{\partial X_{N-2}} \dots \frac{\partial X_2}{\partial X_1} \frac{\partial X_1}{\partial W_1}$$

Input
$$\Longrightarrow s_1(W_1) \Longrightarrow s_2(W_2) \Longrightarrow \ldots \Longrightarrow s_N(W_N) \Longrightarrow L(a,b) \Longrightarrow R$$
Label

$$\frac{\partial R}{\partial W_1} = \frac{1}{T} \sum_i \frac{\partial L_i}{\partial W_1} \qquad \frac{\partial L_i(W_N, X_N)}{\partial W_1} = \frac{\partial L}{\partial X_N} \frac{\partial X_N}{\partial W_1} \qquad \delta_{N-1} \qquad \delta_i = \frac{\partial X_i}{\partial X_{i-1}}$$

$$\epsilon \qquad \qquad \frac{\partial L}{\partial X_N} \frac{\partial X_N}{\partial X_{N-2}} \frac{\partial X_N}{\partial X_{N-2}} \frac{\partial X_1}{\partial X_1} \frac{\partial X_1}{\partial W_1}$$

$$\delta_2$$
Input $\Rightarrow s_1(W_1) \Rightarrow s_2(W_2) \Rightarrow \ldots \Rightarrow s_N(W_N) \Rightarrow X_N$

$$X_1 \qquad X_2 \qquad X_{N-1} \qquad S_N(W_N) \Rightarrow R$$
Label

$$\frac{\partial R}{\partial W_1} = \frac{1}{T} \sum_{i} \frac{\partial L_i}{\partial W_1} \qquad \frac{\partial L_i(W_N, X_N)}{\partial W_1} = \epsilon \, \delta_N \, \delta_{N-1} \dots \delta_2 \frac{\partial X_1}{\partial W_1}$$

$$\delta_i = \frac{\partial L}{\partial X_N}$$

$$\delta_i = \frac{\partial X_i}{\partial X_{i-1}}$$

$$\epsilon = \frac{\partial L}{\partial X_N}$$
$$\delta_i = \frac{\partial X_i}{\partial X_{i-1}}$$

Input
$$\Rightarrow s_1(W_1) \Rightarrow s_2(W_2) \Rightarrow \dots \Rightarrow s_N(W_N) \Rightarrow X_N$$
Label

Backward propagation of "errors"

1 iteration = forward pass + backward pass

$$\frac{\partial R}{\partial W_j} = E_D \left[\epsilon_{j+1} \frac{\partial X_1}{\partial W_j} \right]$$

$$\epsilon_{j+1} = \epsilon \, \delta_N \, \delta_{N-1} \dots \delta_{j+1}$$

$$\delta_i = \frac{\partial X_i}{\partial X_{i-1}}$$

$$\epsilon = \frac{\partial L}{\partial X_N}$$

Quiz: find $\frac{\partial R}{\partial A}$ and $\frac{\partial R}{\partial B}$

$$R = \frac{1}{T} \sum_{i} (R_{radar,i} - R_{gauge,i})^{2}$$

$$R_{radar}(x, y) = \sum_{k} A e^{B \cdot k(x, y)} c_{k}(x, y) \Delta t$$

$$\frac{\partial R}{\partial W_j} = E_D \left[\epsilon_{j+1} \frac{\partial X_1}{\partial W_j} \right]$$

$$\epsilon_{j+1} = \epsilon \, \delta_N \, \delta_{N-1} \dots \delta_{j+1}$$

$$\delta_i = \frac{\partial X_i}{\partial X_{i-1}}$$

$$\epsilon = \frac{\partial L}{\partial X_N}$$

Python Demo

- Gradient descent
 - Quick and simple implementation
 - Two classes: Operation and Path
- Operation
 - Represents a node in the backpropagation network
 - Handles forward and backward passes within the operation
 - May contain a weight one only
- Path
 - Links all the operations together
 - Includes Euclidean loss
 - Passes operation outputs and errors between operations

Python Demo

Operation

Without weights:

Operation(forward, backward)

With weights:

```
Operation(forward, backward, learning_rate, [w_initial], [dx/dw])
```

Path

```
Path([operations], input, label)
```

Python Demo

Example: y=Ae^{Bx}

```
op1: y=Bx y'=B Y'=x
    op2: y=e^x y'=e^x
             y'=A Y'=x
    op3: y=Ax
op1 = Operation(lambda x,w: x*w, lambda x,w: w,
              0.01, [0.2], [lambda x,w: x])
op2 = Operation(lambda x: np.exp(x), lambda x : np.exp(x))
op3 = Operation(lambda x,w: x*w, lambda x,w: w,
              0.01, [2], [lambda x,w: x])
```

Example: y=Ae^{Bx}

op1: y=Bx y'=B Y'=x

Example: y=Ae^{Bx}

op1: y=Bx y'=B Y'=x

Example: y=Ae^{Bx}

```
op1: y=Bx y'=B Y'=x
    op2: y=e^x y'=e^x
             y'=A
                       Y'=x
    op3: y=Ax
op1 = Operation(lambda x,w: x*w, lambda x,w: w,
              0.01, [0.2], [lambda x,w: x])
op2 = Operation(lambda x: np.exp(x), lambda x : np.exp(x))
op3 = Operation(lambda x,w: x*w, lambda x,w: w,
              0.01, [2], [lambda x,w: x])
```

• Example: y=Ae^{Bx}

```
op1: y=Bx y'=B Y'= x
op2: y=e^x y'=e^x
op3: y=Ax y'=A Y'= x
```

p = Path([op1,op2,op3],in,label)

Weather radar

- High resolution
- 360 deg field around radar
- Difficult to calibrate
- Readings quantized into 34 bins (including 0-bin)

Rain gauge

- Spot measurements
- More accurate

Task: Use rain gauge measurements to improve radar calibration

- Rain gauge dataset
 - CSV format
 - Rows: weekly values
 - Columns: 50 weather measurement stations (numbered 0 to 49, stations are in SG)
 - Check for null values!

1	Α	В	C	D	E	F
1	Year	Week	0	1	2	3
2	2017	1	17.2	15.6	12.6	4.2
3	2017	2	0.2	2.4	2	26.8
4	2017	3	68.8	21.2	54.4	67.2
5	2017	4	64.4	106	81.2	70.6
6	2017	5	2.4	7.4	13.8	11.2
7	2017	6	6.4	79.8	47.4	30.4
8	2017	7	3	12.6	6.2	19.6
9	2017	8	26.4	27.2	14.4	29.6
10	2017	9	40.2	45.2	25.6	31.2
11	2017	10	10.2	22.7	22	36.2

- Radar dataset
 - CSV format
 - Each week has its own file: no file = data gap!
 - Rows: radar coordinate (480 x 480 grid)
 - Columns: counts by bin number (34 bins)

У	x	0	1	2	3	
0	0	1917	0	0	2	
0	1	1919	0	0	0	
0	2	1918	0	2	2	
0	3	1919	0	0	0	
0	4	1919	0	0	0	
0	5	1918	1	0	0	
0	6	1919	0	2	0	
0	7	1924	0	0	0	
0	8	1918	0	0	2	
0	9	1923	0	0	1	
0	10	1923	0	0	0	
0	11	1928	0	0	0	
0	12	1024	n	n	2	4

- Radar dataset
 - (0,0) coordinate is at 1.980 deg latitude, 103.338 deg longitude
 - Distance between grid points: 292m
 - Radar snapshot interval: 5 mins

У	X	0	1	2	3	
0	0	1917	0	0	2	
0	1	1919	0	0	0	
0	2	1918	0	2	2	
0	3	1919	0	0	0	
0	4	1919	0	0	0	
0	5	1918	1	0	0	
0	6	1919	0	2	0	
0	7	1924	0	0	0	
0	8	1918	0	0	2	
0	9	1923	0	0	1	
0	10	1923	0	0	0	
0	11	1928	0	0	0	
Λ	12	1024	n	n	2	45

Suggested starting model

$$r(x,y) = A e^{B \cdot k(x,y)}$$

x, y: location coordinates

r(x, y): rainfall rate at location (x, y)

k(x,y): bin number of radar signal at (x,y)

range of values – 0,1,...,33

A, B: model parameters

$$A = 0.079$$
, $B = 0.228$

- Required outcomes
 - 1. Determine the locations of the 50 weather stations in radar coordinates
 - 2. Improved radar model
 - Use suitable performance metrics
 - 3. Written report & slide deck
 - Explain and substantiate methodology
 - Describe model used and show improvement over 'simple' model
 - Attach code in appendix

There are no restrictions on the methods or tools used for this competition

47

Good Luck!