LAPORAN PROJECT BASED PEMBELAJARAN MESIN

Disusun untuk memenuhi tugas mata kuliah Pembelajaran Mesin

Oleh Kelompok:

1. Herjanto Janawisuta	1301200421 / IF 44 08
2. Alvin Tolopan Armando Sibuea	1301201580 / IF 44 08
3. M Ivan Irsanto	1301200467 / IF 44 0

FAKULTAS INFORMATIKA
TELKOM UNIVERSITY
2022

FORMULASI MASALAH

German Credit Risk

Risiko Kredit adalah kemungkinan risiko kerugian akibat kegagalan peminjam untuk membayar kembali pinjaman atau memenuhi kewajiban kontrak. Jika sebuah perusahaan menawarkan kredit kepada kliennya, maka ada risiko bahwa kliennya mungkin tidak membayar tagihan mereka.

Tipe German Credit Risk

Good Risk: Investasi yang diyakini akan menguntungkan. Istilah yang paling sering mengacu pada pinjaman yang diberikan kepada orang atau perusahaan yang layak kredit. Risiko yang baik dianggap sangat mungkin untuk dibayar kembali.

Bad Risk: Pinjaman yang tidak mungkin dilunasi karena sejarah kredit yang buruk, pendapatan yang tidak mencukupi, atau alasan lain. Risiko buruk meningkatkan risiko bagi pemberi pinjaman dan kemungkinan gagal bayar di pihak peminjam.

Objective

Berdasarkan atributnya, mengklasifikasikan seseorang sebagai risiko kredit baik atau buruk.

Deskripsi Dataset

Dataset berisi 1000 columns dengan 20 variabel independen (7 numerik, 13 kategori) dan 1 target variabel. Dalam kumpulan data ini, setiap entri mewakili orang yang mengambil kredit dari bank. Setiap orang diklasifikasikan sebagai risiko kredit baik atau buruk menurut kumpulan atribut.

EKSPLORASI DAN PRA-PEMROSESAN DATA

Import Library dan Pre-Processing

```
import numpy as np
import pandas as pd
import seaborn as sns
from scipy import stats
from math import floor,ceil
import statsmodels.api as sm
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from IPython.display import display, HTML
pd.set_option('display.max_columns', None)
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score, confusion_matrix,roc_curve
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import RandomForestClassifier
```

Import yang digunakan dalam analisis data German Credit adalah library yang biasa dibutuhkan untuk analisis pre-processing (numpy, pandas, seaborn, matplotlib, sklearn), serta digunakan RandomForestClassifier untuk membuat model bagging dalam proses analisis data. Juga ada beberapa library yang digunakan dalam training dataset (train_test_split, cross_val_value, accuracy score).

Highlight Cell dalam Columns Dataset

```
def style_specific_cell(x):
        color_thresh = 'background-color: lightpink'
       df_color = pd.DataFrame('', index=x.index, columns=x.columns)
       rows_number=len(x.index)
        column_number=len(x.columns)
        for r in range(0,rows_number):
            for c in range(0,column_number):
                   val=float(x.iloc[r, c])
                   if x.iloc[r, 0]=="Percentage":
                       if val<10:
                           df_color.iloc[r, c]=color_thresh
        return df_color
   def style_stats_specific_cell(x):
        color_thresh = 'background-color: lightpink'
        df_color = pd.DataFrame('', index=x.index, columns=x.columns)
        rows_number=len(x.index)
        for r in range(0,rows_number):
               val=(x.iloc[r, 1])
               if val>0.05:
                   df_color.iloc[r, 1]=color_thresh
        return df color
```

Program digunakan untuk mentinta (highlight) cell dalam dataset. Dataset yang di highlight adalah Percentage yang digunakan untuk mengetahui persentase credit risk pada beberapa atribut yang dipilih.

Re-Struktur Database berdasarkan Atribut

Jika dilihat dalam Attribute information.docx, terdapat beberapa nilai atribut yang diklasifikasi berdasarkan tipe atribut (seperti A71 = unemployment), untuk itu seluruh dataset perlu di struktur ulang berdasarkan nilai atribut dataset yang sesuai.

Program akan menstruktur ulang seperti berikut:

```
Other_debtors_guarantors={'A101':"none", 'A102':"co-applicant", 'A103':"guarantor"}

df["Other debtors / guarantors"]-df["Other debtors / guarantors"]-map(Other_debtors_guarantors)

Property={'A121':"real estate", 'A122':"savings agreement/life insurance", 'A123':"car or other", 'A124':"unknown / no property"}

df["Property"]-df["Property"].map(Property)

Other_installment_plans={'A143':"none", 'A142':"store", 'A141':"bank"}

df["Other installment plans"]-df["Other installment plans"].map(Other_installment_plans)

Housing={'A153':"for free", 'A152':"own", 'A151':"rent"}

df["Housing"]-df["Housing"].map(Housing)

Job={'A174':"management/ highly qualified employee", 'A173':"skilled employee / official", 'A172':"unskilled - resident", 'A171':"unemployed/ unskilled - non-resident"}

df["Job"]-df["Job"].map(Job)

Telephone={'A192':"yes", 'A191':"none"}

df["Telephone"].map(Telephone)

foreign_worker={'A201':"yes", 'A202':"non"}

df["foreign worker"]-df["foreign worker"].map(foreign_worker)

risk={1:"Good Risk", 2:"Bad Risk"}

df["Cost Matrix(Risk)"].df["Cost Matrix(Risk)"].map(risk)
```

Hasil Dataframe setelah Di Re-Struktur adalah:

df.s	ample(5)														
	Status of existing checking account	Duration in month		Purpose	Credit amount	Savings account/bonds	Present employment since	Installment rate in percentage of disposable income	Personal status and sex	Other debtors / guarantors	Present residence since	Property	Age in years	Other installment plans	Housing
186	0 <= <200 DM		all credits at this bank paid back duly	car (used)		<100 DM	>=7 years		female:divorced/separated/married	none		unknown / no property		bank	for free
184	0 <= <200 DM		critical account	car (new)	884	<100 DM	>=7 years		male:single	none		car or other		bank	own
189	0 <= <200 DM		no credits taken	furniture/equipment	3244	<100 DM	1<= < 4 years		female:divorced/separated/married	none		car or other		bank	own
510	<0 DM		existing credits paid back duly till now	car (new)		<100 DM	4<= <7 years		male:single	none		real estate		none	own
85	no checking account		critical account	business		<100 DM	1<= < 4 years		female:divorced/separated/married	guarantor		real estate		none	own

Info tipe dataset per attribut:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 21 columns):
                                                           Non-Null Count Dtype
# Column
0 Status of existing checking account
                                                            1000 non-null object
1 Duration in month
                                                            1000 non-null int64
2 Credit history
                                                            1000 non-null object
                                                           1000 non-null object
3 Purpose
4 Credit amount
                                                           1000 non-null int64
                                                            1000 non-null object
5 Savings account/bonds
6 Present employment since
                                                           1000 non-null object
7 Installment rate in percentage of disposable income
                                                           1000 non-null int64
8 Personal status and sex
                                                           1000 non-null object
9 Other debtors / guarantors
                                                            1000 non-null object
10 Present residence since
                                                            1000 non-null int64
11 Property
                                                           1000 non-null object
12 Age in years
                                                           1000 non-null int64
13 Other installment plans
                                                           1000 non-null object
14 Housing
                                                           1000 non-null object
15 Number of existing credits at this bank
                                                           1000 non-null int64
                                                           1000 non-null object
16 Job
17 Number of people being liable to provide maintenance for 1000 non-null
                                                                          int64
18 Telephone
                                                            1000 non-null object
19 foreign worker
                                                            1000 non-null
                                                                          object
20 Cost Matrix(Risk)
                                                            1000 non-null
                                                                          object
dtypes: int64(7), object(14)
memory usage: 164.2+ KB
```

Summary Persentase Setiap Kategori

Program akan memberi persentase pada setiap kategori pada tiap atribut. Program akan meng highlight seluruh persentase yang memiliki bad risk pada setiap kategori.

```
#menghapuskan (drop) columns yang merupakan numerical variable
column_names=df.columns.tolist()
column_names.remove("Credit amount") #numerical variable
column_names.remove("Age in years") #numerical variable
column_names.remove("Duration in month") #numerical variable

column_names_cat={}
for name in column_names:
    column_names_cat[name]=len(df[name].unique().tolist())

    marginal_report_cluster={}
for itr in range(0,np.asarray(list(column_names_cat.values())).max()+1):
    if [k for k,v in column_names_cat.items() if v == itr]:
        marginal_report_cluster[itr]=[k for k,v in column_names_cat.items() if v == itr]
```

```
#Memberikan dan meng-highlight persentase risk pada credit (dalam tabel) berserta
for key in marginal_report_cluster.keys():
    marginal_percentage_report=[]
    for name in sorted(marginal_report_cluster[key]):
        data=pd.crosstab(df[name],columns=["Percentage"]).apply(lambda r: (round((r/r.sum())*100,2)), axis=0).reset_index()
        data=columns=[name, "Percentage"]
        data=data.transpose().reset_index()
        [marginal_percentage_report.append(x) for x in data.values.tolist()]
        options=[]
    marginal_percentage_report=pd.DataFrame(marginal_percentage_report)
    [options.append("Category Option "+str(itr)) for itr in range(1,len(marginal_percentage_report.columns))]
    marginal_percentage_report.columns=["Attribute"]+options
    display(marginal_percentage_report.style.apply(style_specific_cell, axis=None))
```

Hasil:

	Attribute	Category Option 1	Category Option 2
0	Cost Matrix(Risk)	Bad Risk	Good Risk
1	Percentage	30.000000	70.000000
2	Number of people being liable to provide maintenance for	1.000000	2.000000
3	Percentage	84.500000	15.500000
4	Telephone	none	yes
5	Percentage	59.600000	40.400000
6	foreign worker	no	yes
7	Percentage	3.700000	96.300000

	Attribute	Category Option 1	Category Option 2	Category Option 3
0	Housing	for free	own	rent
1	Percentage	10.800000	71.300000	17.900000
2	Other debtors / guarantors	co-applicant	guarantor	none
3	Percentage	4.100000		90.700000
4	Other installment plans	bank	none	store
5	Percentage	13.900000	81.400000	4.700000

	Attribute	Category Option 1	Category Option 2	Category Option 3	Category Option 4
0	Installment rate in percentage of disposable income	1.000000	2.000000	3.000000	4.000000
1	Percentage	13.600000	23.100000	15.700000	47.600000
2	Job	management/ highly qualified employee	skilled employee / official	unemployed/ unskilled - non-resident	unskilled - resident
3	Percentage	14.800000	63.000000	2.200000	20.000000
4	Number of existing credits at this bank	1.000000	2.000000	3.000000	4.000000
5	Percentage	63.300000	33.300000		
6	Personal status and sex	female:divorced/separated/married	male:divorced/separated	male:married/widowed	male:single
7	Percentage	31.000000			54.800000
8	Present residence since	1.000000	2.000000	3.000000	4.000000
9	Percentage	13.000000	30.800000	14.900000	41.300000
10	Property	car or other	real estate	savings agreement/life insurance	unknown / no property
11	Percentage	33.200000	28.200000	23.200000	15.400000
12	Status of existing checking account	0 <= <200 DM	<0 DM	>= 200 DM	no checking account
13	Percentage	26.900000	27.400000		39.400000

	Attribute	Category Option 1	Category Option 2	Category Option 3	Category Option 4	Category Option 5
0	Credit history	all credits at this bank paid back duly	critical account	delay in paying off	existing credits paid back duly till now	no credits taken
1	Percentage	4.900000	29.300000	8.800000	53.000000	4.000000
2	Present employment since	1<= < 4 years	4<= <7 years	<1 years	>=7 years	unemployed
3	Percentage	33.900000	17.400000	17.200000	25.300000	6.200000
4	Savings account/bonds	100 <= <500 DM	500 <= < 1000 DM	<100 DM	>= 1000 DM	no savings account
5	Percentage	10.300000	6.300000	60.300000	4.800000	18.300000

	Attribute	Category Option 1	Category Option 2	Category Option 3	Category Option 4	Category Option 5	Category Option 6	Category Option 7	Category Option 8	Category Option 9	Category Option 10
0	Purpose	business	car (new)	car (used)	domestic appliances	education	furniture/equipment	others	radio/television	repairs	retraining
1	Percentage	9.700000	23.400000	10.300000	1.200000	5.000000	18.100000	1.200000	28.000000	2.200000	0.900000

Menggabungkan Atribut

```
df=pd.read_csv("german_data_credit_cat.csv")
number_of_credit={1:1,2:2,3:2,4:2}
df["Number of existing credits at this bank"]=df["Number of existing credits at this bank"].map(number_of_credit)

Status_of_existing_checking_account={'A14':"no checking account",'A11':"<0 DM", 'A12': ">0 DM", 'A13':">0 DM"}
df["Status of existing checking account"]=df["Status of existing checking account"].map(Status_of_existing_checking_account)
```

```
Credit history=["A34":"critical account/delay in paying off","A33":"critical account/delay in paying off","A33":"all credit / existing credits paid back duly till now","A31":"all credit / existing ff["Credit history"].map(credit history)
Purpose=["A48": "car (new)", "A41": "car (used)", "A42": "Home Related", "A43": "Home Related", "A45": "Home Related", "A45": "Home Related", "A45": "Home Related", "A46": "others", 'A47': 'others', 'A48': 'or df["Purpose"].map(Purpose)

Saving_account-("A65": "no savings account", "A61": "<180 DM", "A62": "<580 DM", "A63": ">580 DM", "A64": "A73': "<1 years", 'A74': "44</p>

Present_employment-("A75': ">>7 years", 'A74': "44
- 7 years", 'A73': "1
- 4 years", 'A72': "<1 years", 'A71': "<1 yea
```

```
Personal_status_and_sex={ 'A95':"female", 'A94':"male", 'A92':"male", 'A92':"female", 'A91':"male"}

df["Personal status and sex"]=df["Personal status and sex"].map(Personal_status_and_sex)

Other_debtors_guarantors={ 'A101':"none", 'A102':"co-applicant/guarantor", 'A103':"co-applicant/guarantor"}

df["Other debtors / guarantors"]=df["Other debtors / guarantors"].map(Other_debtors_guarantors)

Property={ 'A121':"real estate", 'A122':"savings agreement/life insurance", 'A123':"car or other", 'A124':"unknown / no property"}

df["Property"]=df["Property"].map(Property)

Other_installment_plans={ 'A143':"none", 'A142':"bank/store", 'A141':"bank/store"}

df["Other installment plans"]=df["Other installment plans"].map(Other_installment_plans)

Housing={ 'A153':"for free", 'A152':"own", 'A151':"rent"}

df["Housing"]=df["Housing"].map(Housing)

Job={ 'A174':"employed", 'A173':"employed", 'A172':"unemployed", 'A171':"unemployed"}

df["Job"]=df["Job"].map(Job)

Telephone={ 'A192':"yes", 'A191':"none"}

df["Telephone"]=df["Telephone"].map(Telephone)

foreign_worker={ 'A201':"yes", 'A202':"non"}

df["foreign worker=]-df["foreign worker"].map(foreign_worker)

risk={1:"Good Risk", 2:"Bad Risk"}

df["Cost Matrix(Risk)"]=df["Cost Matrix(Risk)"].map(risk)
```

Tampilan dataframe setelah digabung

		Status of existing checking account	Duration in month	Credit history	Purpose	Credit amount	Savings account/bonds	Present employment since	Installment rate in percentage of disposable income	Personal status and sex	Other debtors / guarantors	Present residence since	Property	Age in years	Other installment plans	Housing
		<0 DM		critical account/delay in paying off	Home Related	1169	no savings account	>=7 years		male	none		real estate		none	own
ı		>0 DM	48	all credit / existing credits paid back duly t	Home Related	5951	<100 DM	1<= < 4 years		female	none		real estate		none	own
	2	no checking account	12	critical account/delay in paying off	others	2096	<100 DM	4<= <7 years	2	male	none	3	real estate	49	none	own

Number of existing credits at this bank	Job	Number of people being liable to provide maintenance for	Telephone	foreign worker	Cost Matrix(Risk)
2	employed		yes	yes	Good Risk
1	employed	1	none	yes	Bad Risk
1	unemployed	2	none	yes	Good Risk

Dataframe akan dieksplorasi lagi seperti diatas untuk memperbagus hasil pre-processing.

Melihatkan Numerical Variable

Eksplorasi Data

Function Pembuatan Barplot

```
def visualize_distribution(attr):
    good_risk_df = df[df["Cost Matrix(Risk)"]=="Bodd Risk"]
    bad_risk_df = df[df["Cost Matrix(Risk)"]=="Bodd Risk"]
    fig, ax - plt.subplots(nrows-1, ncols-2, figsize-(15,5))
    attr_good_risk_df = good_risk_df[[attr, 'Cost Matrix(Risk)']].groupby(attr).count()
    attr_bod_risk_df = good_risk_df[[Cost Matrix(Risk)']].index.tolist(), attr_bod_risk_df [Cost Matrix(Risk)'].index.tolist(), attr_good_risk_df['Cost Matrix(Risk)'].tolist(), align='center', color="85975A4")
    ax[i].barh(attr_good_risk_df['Cost Matrix(Risk)'].index.tolist(), attr_bod_risk_df['Cost Matrix(Risk)'].tolist(), align='center', color="855060")
    ax[i].set_title('Good_Risk')
    ax[i].set_title('Good_Risk')
    ax[i].yasi.tick_right()
    num_para_change=["Present residence since", "Number of existing credits at this bank", "Installment rate in percentage of disposable income", "Number of people being liable to provide maintenai
if attr in num_para_change:
    for i, v in enumerate(attr_good_risk_dff'(Cost Matrix(Risk)'].tolist()):
        ax[i].text(v+2, i+1, str(v), color='black')
    for i, v in enumerate(attr_good_risk_dff'(Cost Matrix(Risk)'].tolist()):
        ax[i].text(v+2, i+1, str(v), color='black')
    for i, v in enumerate(attr_good_risk_dff'(Cost Matrix(Risk)'].tolist()):
        ax[i].text(v+2, i+1, str(v), color='black')
    for i, v in enumerate(attr_pood_risk_dff'(Cost Matrix(Risk)'].tolist()):
        ax[i].text(v+2, i+0.5, str(v), color='black')
    for i, v in enumerate(attr_pood_risk_dff'(Cost Matrix(Risk)'].tolist()):
        ax[i].text(v+2, i+0.5, str(v), color='black')
    for i, v in enumerate(attr_pood_risk_dff'(Cost Matrix(Risk)'].tolist()):
        ax[i].text(v+2, i+0.5, str(v), color='black')
    for i, v in enumerate(attr_pood_risk_dff'(Cost Matrix(Risk)'].tolist()):
        ax[i].text(v+2, i+0.5, str(v), color='black')
    for i, v in enumerate(attr_bod_risk_dff'(Cost Matrix(Risk)'].tolist()):
        ax[i].text(v+2, i+0.5, str(v), color='black')
    for i, v in en
```

Visualisasi Data

Status of existing checking account

Credit History

Purpose

Savings account/bonds

Present employment since

Installment rate in percentage of disposable income

Personal status and sex

Other deptors / guarantors

Present residence since

Property

Other installment plans

Housing

Number of existing credits at this bank

Number of people being liable to provide maintenance for

Foreign worker

Duration in year

Age category

Boxplot Cost Matrix berdasarkan Numerical Variable

Feature Selection

PEMODELAN

Untuk Pemodelan, kita akan menggunakan 12 attribute significant dengan 1 target variable untuk membuat model. Seluruh atribut tersebut akan digabung, Serta column risk akan diganti menjadi numeric.

```
attr_significant=["Status of existing checking account","Credit history","Purpose",\
"Savings account/bonds","Present employment since",\
"Personal status and sex","Property","Other installment plans","Housing","foreign worker",\
"Credit amount","Age in years","Duration in month"]
target_variable=["Cost Matrix(Risk)"]
df=df[attr_significant+target_variable]
```

```
[262] col_cat_names=["Status of existing checking account","Credit history","Purpose",\
    "Savings account/bonds","Present employment since",\
    "Personal status and sex","Property","Other installment plans","Housing","foreign worker"]
    for attr in col_cat_names:
        df = df.merge(pd.get_dummies(df[attr], prefix=attr), left_index=True, right_index=True)
        df.drop(attr,axis=1,inplace=True)

#mengubah target variable menjadi numeric
    risk={"Good Risk":1, "Bad Risk":0}
    df["Cost Matrix(Risk)"]=df["Cost Matrix(Risk)"].map(risk)
```

Pemodelan kita akan menggunakan test PCA serta test menggunakan Bagging. Kita akan memasukkan 16 components dan model akan di train (dengan training set di split, menggunakan test size sebesar 0.30 tanpa menggunakan random_state). Model akan menggunakan RandomForestClassifier untuk bekerja.

```
X = df.drop('Cost Matrix(Risk)', 1).values #independent variables
y = df["Cost Matrix(Risk)"].values #target variables

pca = PCA(n_components=16)
X = pca.fit_transform(X)
```

[266] model=RandomForestClassifier()

Dataset akan dikategorikan menjadi training set X dan Y, serta testing set X dan y.

```
[265] # Spliting dataset into train and test version
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30,random_state=0)
```

EVALUASI

Hasil menggunakan PCA akan menghasilkan akurasi data sebesar 76%

```
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print("Accuracy: ")
print(round(accuracy_score(y_test,y_pred)*100,2))

Accuracy:
76.0
```

Dengan menggunakan bagging classifier, akurasi data akan mengasilkan 0.7467% atau 74.67%

Kami juga menggunakan ROC curve untuk mengetahui hasil berdasarkan kurva. Dari hasil ROC dinyatakan bahwa ROC Curve bisa dievaluasi bahwa hasil nilai mendekati ke 0.7 (mendekati ke 1), yang artinya model yang dibuat memiliki >70% area dibawah kurva.

EKSPERIMEN

Untuk melakukan eksperimen, kita akan mengubah test_size menjadi 0.15 untuk mengetahui hasil akurasi data jika test size dikurangi.

```
[282] # Spliting dataset into train and test version
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.15,random_state=0)
```

Hasil

Dengan menggunakan PCA dengan Model RandomForestClassifier, akurasi data mencapai 77.33%

```
[284] model=RandomForestClassifier()

[285] model.fit(X_train, y_train)
        y_pred = model.predict(X_test)
        print("Accuracy: ")
        print(round(accuracy_score(y_test,y_pred)*100,2))
```

Accuracy: 77.33

Sedangkan menggunakan Bagging Classifier hasil data akan menghasilkan akurasi data sebesar 0.76% atau 76%

Ditambah dengan Menggunakan ROC Curve, disimpulkan bahwa Dari hasil eksperimen, bisa disimpulkan bahwa akurasi data semakin membaik jika test_size dikurangi.

KESIMPULAN

Berdasarkan Hasil dari Dataset German Credit, bisa disimpulkan bahwa hasil akurasi data bisa berubah berdasarkan test_size yang diisi dan jenis model algoritma yang digunakan. Dengan tiap perbedaan model terdapat perbedaan 0.7-1% dan perbedaan test_size terdapat perbedaan akurasi sebesar 0.6-1%

LAMPIRAN

Link Google Colab:

 $\frac{https://colab.research.google.com/drive/109B3dwasMg9k6bKS9v4_egcm9ipY-Ra1\#scrollTo=WzNIJlWsPKwW}{Ra1\#scrollTo=WzNIJlWsPKwW}$

Link Video Presentasi:

https://www.youtube.com/watch?v=ClqDZUCRxO0