Exam 2(100 points)

1. (20 points) Let A be symmetric and a $p \times 1$ random vector $Y \sim N_p(0, \Sigma)$. Show that

$$Y^T A Y \sim \sum_{j=1}^r \lambda_j \chi_j^2(1)$$

where $\chi_1^2(1), \chi_2^2(1), \ldots, \chi_r^2(1)$ are the independent Chi-squared random variable with degrees of freedom, df =1, $\chi^2(1)$. Specify r and λ_i exactly.

- **2.** (30 points) Let $Y = X\beta + \epsilon$ and $\epsilon \sim N_n(0, \sigma^2 \Sigma)$ where X is an $n \times p$ full-rank matrix (p < n) and Σ is a known positive definite matrix.
- (a) (5 points) Find the best linear unbiased estimator(BLUE) $\hat{\beta}$ of β .
- (b) (5 points) Find $Cov(\hat{\beta})$ from (a).
- (c) (20 points) Let's partition X into $X=(X_1,X_2,X_3)$ where $X_1: n\times r, X_2: n\times q$ and $X_3: n\times (p-r-q)$. Let's partition β into $\beta^T=(\beta_1^T,\beta_2^T,\beta_3^T)$ where $\beta_1: r\times 1$, $\beta_2: q\times 1$ and $\beta_3: (p-r-q)\times 1$. Then the model can be rewritten as

$$Y = X\beta + \epsilon = X_1\beta_1 + X_2\beta_2 + X_3\beta_3 + \epsilon$$

Suppose that $C(X_2) \perp C(X_1, X_3)$ so that

$$\mathcal{C}(X) = \mathcal{C}(X_2) \oplus \mathcal{C}(X_1, X_3)$$

Develop a test for $H_0: \beta_1 = 0$ vs $H_a: \beta_1 \neq 0$.

- **3.** (10 points) Let $y_i = \beta x_i + \epsilon_i$, i = 1, 2, where $\epsilon_1 \sim N(0, \sigma^2)$ and $\epsilon_2 \sim N(0, 2\sigma^2)$, and ϵ_1 and ϵ_2 are statistically independent. If $x_1 = 1$ and $x_2 = -1$, then obtain the BLUE of β and find the variance of your estimator.
- **4.** (40 points) Suppose that $y \in \mathbf{R}^2$, $Var(y) = \sigma^2 I$ and $E(y_i) = \beta_1 \beta_2, i = 1, 2$
- (a) (10 points) Which of the following are estimable: $\beta_1, \beta_2, \beta_1 \beta_2, \beta_1 + \beta_2$?
- (b) (15 points) For the estimable functions, find the best linear unbiased estimators and their variances.
- (c) (15 points) Now consider the following mean structure:

$$E(y_1) = (1-c)\beta_1 - (1+c)\beta_2$$

$$E(y_2) = (1+c)\beta_1 - (1-c)\beta_2$$

where |c| is a small number. Repeat (a) and (b). What happens to the variances as $c \to 0$?