Homework 5

Problem 1. Which of the following statements about graph G and H are true?

- 1. G and H are isomorphic if and only if for every map $f: V(G) \to V(H)$ and for any two vertices $u, v \in V(G)$, we have $\{u, v\} \in E(G) \Leftrightarrow \{f(u), f(v)\} \in E(H)$.
- 2. G and H are isomorphic if and only if there exists a bijection $f: E(G) \rightarrow E(H)$.
- 3. If there exists a bijection $f: V(G) \to V(H)$ such that every vertex $u \in V(G)$ has the same degree as f(u), then G and H are isomorphic.
- 4. If G and H are isomorphic, then there exists a bijection $f: V(G) \to V(H)$ such that every vertex $u \in V(G)$ has the same degree as f(u).
- 5. If G and H are isomorphic, then there exists a bijection $f: E(G) \to E(H)$.
- 6. G and H are isomorphic if and only if there exists a map $f: V(G) \rightarrow V(H)$ such that for any two vertices $u, v \in V(G)$, we have $\{u, v\} \in E(G) \Leftrightarrow \{f(u), f(v)\} \in E(H)$.
- 7. Every graph on n vertices is isomorphic to some graph on the vertex set $\{1, 2, ..., n\}$.
- 8. Every graph on $n \ge 1$ vertices is isomorphic to infinitely many graphs.

Solution.
$$\underline{4,5,7,8}$$
.

Problem 2. Two simple graphs G = (V, E) and G' = (V', E'). A map $f : V \to V'$. Now if f satisfies:

- i) It is a bijective function;
- *ii)* $\{x,y\} \in E$ *if and only if* $\{f(x), f(y)\} \in E'$;

Then we say that graph G and G' are isomorphic to each other. We use $G \cong G'$ to stand for the isomorphism relation.

Consider the following questions:

- 1. $G = K_n$ (Recall: K_n is a clique with n vertices), $g: V \to V'$ is a function which only satisfies requirement ii). Prove that G' must contain a subgraph which is a clique with n-vertices.
- 2. $G = K_{n,m}$ (Recall: $K_{n,m}$ is the so-called complete bipartite graphs), g is the same as in question 1. What will be the simplest G' that is related to G under the new relation.

Solution.

1. Two different vertices in G must be mapped to different vertices in G'. For if $u, v \in V$ are mapped to the same vertex $\omega \in V'$, the edge $\{u, v\} \in E$ cannot be reflected in E', for G' is a simple graph.

2. G' can be just one edge with two incident vertices.

Problem 3. How many graphs on the vertex set $\{1, 2, ..., 2n\}$ are isomorphic to the graph consisting of n vertex-disjoint edges (i.e. with edge set $\{\{1,2\},\{3,4\},...,\{2n-1,2n\}\}$?

Solution.
$$\frac{(2n\cdot(2n-1))((2n-2)\cdot(2n-3))\cdots(2\cdot 1)}{2^n\cdot n!} = (2n-1)(2n-3)\cdots 5\cdot 3.$$

Problem 4. Construct an example of a sequence of length n in which each term is some of the numbers 1, 2, ..., n-1 and which has an even number of odd terms, and yet the sequence is not a graph score. Show why it is not a graph score.

Solution. E.g. (1, 1, 3, 3, 4). Use the *Score theorem* to prove that it cannot be a graph score.

Problem 5. Let G be a graph with 9 vertices, each of degree 5 or 6. Prove that it has at least 5 vertices of degree 6 or at least 6 vertices of degree 5.

Solution. x be the number of vertex in G with $deg_G(x) = 6$. Obviously $x \ge 5$ or $x \le 4$.

1. If $x \ge 5$ then the first part of the argument is true.

2. Otherwise $(x \le 4)$. As the other vertices in graph G are of degree 5, there are at least $9 - x \ge 5$ such vertices. According to the hand-shake lemma, there must be even number of odd-degree vertices. Thus there should be at least 6 vertices with degree 5.