

Séquençage MinION – Protocole ARTIC NetWork

Mode Opératoire Version n° 1 du 02/01/2020

rsion n° 1 du 02/01/2020 Codification

 Emetteur : instance, direction, groupe travail
 Validation : direction, instance...

 Destinataire : unités, fonctions concernées...

Table des matières

	Obje	et et champ d'application
2	Cont	tenu du document2
	Z.1 IV	Natériel et réactifs
	2.1.1	Reverse Transcription2
	2.1.2	PCR2
	2.1.3	End-prep2
	2.1.4	
	2.1.5	
	2.2	Etape 1 : Extraction ARN
	2.3	Etape 2 : Reverse transcription
	2.4	Etape 3 : PCR, purification sur billes et dosage
	2.5	Etape 4 : End prep5
	2.6	Etape 5 : Ligation des barecodes, purification et dosage
	2.7	Etape 6 : Ligation des adaptateurs purification et dosage
	2.8	Etape 7 : Connexion du MinIT, et chargement de la FlowCell

1 Objet et champ d'application

Ce MO décrit les différentes étapes du protocole ARTIC pour le séquençage du SARS-CoV 2 sur MinION de Nanopore.

Il s'applique à l'ensemble du personnel susceptible de faire du séquençage Nanopore.

2 Contenu du document

2.1 Matériel et réactifs

Ethanol absolu Thermocycler
Eau nuclease-free Agitateur / vortex

Billes Agencourt AMPure XP Centrifugeuses tubes/barrettes

Barrettes + bouchons Portoirs magnétiques tubes

Tubes 1,5mL LoBind Séquenceur MinION Nanopore + MinIT

Pipettes + cônes Kit Qubit dsDNA HS assay kit Extracteur eMag + tubes de lyse Kit Qubit dsDNA BR assay kit

2.1.1 Reverse Transcription

Nom du réactif	Fournisseur	Référence	T°C de stockage
Random primer mix (60µM)	NEB	S1330	-20°C
dNTP solution (10mM)	NEB	N0447	-20°C
Kit SuperScript IV reverse trancriptase	ThermoFisher Scientifc	18090010	-20°C
RNaseOUT (40U/μL)	Life technologies	10777019	-20°C

2.1.2 PCR

Nom du réactif	Fournisseur	Référence	T°C de stockage
Covid-19 primers (100µM)	-	-	-20°C
Kit Q5 Hot Start High Fidelity	NEB	M0493	-20°C

2.1.3 End-prep

Nom du réactif	Fournisseur	Référence	T°C de stockage
Kit NEBNext Ultra II End repair/dA-tailing Module	NEB	E7546	-20°C

2.1.4 Ligation des barcodes

Nom du réactif	Fournisseur	Référence	T°C de stockage
Kit NEBNext Ultra II Ligation Module	NEB	E7595	-20°C
Native Barcoding Expansion 1 – 12 (+AMII)	Nanopore	EXP-NBD104	-20°C
Native Barcoding Expansion 13 – 24 (+AMII)	Nanopore	EXP-NBD114	-20°C
Short Fragment Buffer (SFB)	Nanopore	EXP-SFB001	-20°C

2.1.5 Librairies

Nom du réactif	Fournisseur	Référence	T°C de stockage
Kit NEBNext Quick Ligation Module	NEB	E6056	-20°C
Ligation Sequencing Kit contents	Nanopore	SQK-LSK109	-20°C
FlowCell Priming Kit contents	Nanopore	EXP-FLP002	-20°C
FlowCell	Nanopore	FLO-MIN106D	+4°C

2.2 Etape 1: Extraction ARN

- 1 Décongeler les échantillons primaires
- 2 Transférer 200µL d'échantillons dans un tube de lyse eMag contenant 2mL de tampon de lyse
- 3 Procéder à l'extraction sur l'automate
- 4 Elution dans 50μL

2.3 Etape 2 : Reverse transcription

Kit : SuperScript IV reverse transcriptase

Input:

Ct (RT-qPCR)	Dilution
18-35	-
15-18	1/10
12-15	1/100

1 Sur glace, mélanger dans des tubes de 0,2mL (ou barrettes) :

Réactifs	Volume (µL)
ARN	11
Random primer mix (60µM)	1
dNTPs (10mM)	1
Total	13

- 2 Incuber 5 minutes à 65°C (programme ARTIC-RT-1)
- 3 Placer immédiatement dans la glace et laisser minimum 1 minute

4 Préparer le mix suivant :

Réactifs	Volume (µL)
SuperScript IV Buffer (5X)	4
DTT (100mM)	1
RNaseOUT RNase Inhibitor	1
SuperScript IV Reverse Transcriptase	1
Total	7

- 5 Ajouter 7µL de mix dans chaque tube
- 6 Incuber sur thermocycler (programme ARTIC-RT-2)

Temps	Température
10 minutes	23°C
20 minutes	55°C
15 minutes	80°C
œ	4°C

2.4 Etape 3 : PCR, purification sur billes et dosage

Kit: Q5 Hot Start High Fidelity - NEB

- 1 Diluer à 10μM les pools de primer à 100μM
- 2 Préparer le mix suivant :

Réactifs	Volume (µL)
Eau nuclease-free	13,05
Q5 Reaction Buffer (5X)	5
dNTPs (10mM)	0,5
Q5 Hot Start High Fidelity polymerase	0,25
Primer pool A ou B (10μM)	3,7
cDNA	2,5
Total	25

- 3 Mélanger par aspiration refoulement
- 4 Placer dans un thermocycler et lancer le programme ARTIC-PCR :

Temps	Température	Cycles
30 secondes	98°C	
15 secondes	98°C	X 35
5 minutes	65°C	X 33
Hold	4°C	

- 5 Pooler les produits de PCR pool A et pool B dans un nouveau tubes 1,5mL.
- 6 Sortir les billes 30 minutes avant utilisation
- 7 Resuspendre les billes AMPure XP

- 8 Ajouter 50µL (0.5X) de billes au produit de PCR
- 9 Incuber 10 minutes à température ambiante et sous agitation
- 10 Centrifuger brièvement puis mettre sur un portoir magnétique pendant 5 minutes jusqu'à ce que le surnageant soit clair
- 11 Retirer le surnageant délicatement
- 12 Laver les billes avec 200µL d'éthanol 80%, tourner le tube de 180° pour déplacer les billes
- 13 Retirer l'éthanol délicatement
- 14 Répéter le lavage
- 15 Centrifuger et retirer l'intégralité de l'éthanol
- 16 Replacer sur le portoir magnétique et laisser sécher 30 secondes. Ne pas laisser craquer le culot
- 17 Resuspendre les billes dans 16µL d'eau nuclease free
- 18 Incuber 2 minutes à température ambiante
- 19 Placer sur le portoir magnétique
- 20 Transférer 15µL d'éluât dans un nouveau tube 1,5mL
- 21 Quantifier 1µL avec le kit Qubit BR

STOPPING POINT

Conservation à -20°C

2.5 Etape 4 : End prep

Kit: NEBNext Ultra II End Repair / dA-tailing Module

Input : 50ng d'ADNc / échantillon

- 1 Dilution des ADNc pour obtenir 50ng
- 2 Sur glace, préparer le mix suivant :

Volume (µL)
X
12,5 - x
1,75
0,75
15

- 3 Mélanger par aspiration refoulement
- 4 Incuber 5 minutes à température ambiante (20°C) puis 5 minutes à 65°C (programme ARTIC End-prep)

2.6 Etape 5: Ligation des barecodes, purification et dosage

Kit: NEBNext Ultra II Ligation Module

Kit: Native Barecoding expansion 1-12 et 13-24

HCL HOSPICES CIVILS DE LYON	Séquençage MinION –	Protocole ARTIC NetWork	
	Mode Opératoire	Version n° 1 du 02/01/2020	Codification

Short Fragment Buffer (SFB)

Décongeler les barecodes et le SFB sur glace

1 Préparer le mix suivant

Réactifs	Volume (μL)
Eau nuclease free	5,5
End-prepped DNA	1,5
Native Barcode	2,5
NEBNext Ultra II Ligation master mix	10
NEBNext Ligation Enhancer	0,5
Total	20

- 2 Mélanger par aspiration refoulement
- 3 Incuber 20 minutes à température ambiante (20°C) puis 10 minutes à 65°C (programme ARTIC BarcodeLigation)
- 4 Pooler tous les ADN barcodés dans un nouveau tube 1,5mL
- 5 Ajouter 0.4X de billes AMPure XP
- 6 Incuber 10 minutes à température ambiante et sous agitation
- 7 Centrifuger brièvement et placer sur un portoir magnétique
- 8 Laver avec 700µL de SFB, resuspendre les billes délicatement par aspiration refoulement
- 9 Placer sur portoir magnétique puis retirer le surnageant lorsqu'il est clair
- 10 Répéter le lavage
- 11 Laver avec 100µL d'éthanol 80% sans resuspendre le culot
- 12 Retirer l'éthanol
- 13 Laisser sécher 30 secondes
- 14 Reprendre les billes avec 36µL d'eau nuclease free
- 15 Incuber 2 minutes à température ambiante
- 16 Transférer 35µL d'éluât dans un nouveau tube 1,5mL
- 17 Quantifier 1µL avec le kit Qubit HS

2.7 Etape 6: Ligation des adaptateurs purification et dosage

Kit: NEBNext Quick ligation module

Adapter mix II (AMII)

Elution buffer (EB)

Short Fragment Buffer (SFB)

Input: 30-50ng d'ADN barcodés

1 Préparer le mix suivant :

Réactifs	Volume (µL)
ADN barcodés	x (30-50ng)
Eau nuclease free	30 – x
Adapter Mix II (AMII)	5
NEBNext Quick Ligation Reaction Buffer (5X)	10
Quick T4 DNA ligase	5
Total	50

- 2 Incuber 20 minutes à température ambiante (programme ARTIC AdapterLigation)
- 3 Ajouter 0.4X de billes AMPure XP (20µL)
- 4 Incuber 10 minutes à température ambiante et sous agitation
- 5 Centrifuger brièvement et placer sur un portoir magnétique
- 6 Laver avec 125µL de SFB, resuspendre les billes délicatement par aspiration refoulement
- 7 Placer sur portoir magnétique puis retirer le surnageant lorsqu'il est clair
- 8 Répéter le lavage
- 9 Centrifuger brièvement le tube puis retirer l'intégralité du SFB
- 10 Reprendre les billes avec 16µL EB
- 11 Replacer sur le portoir magnétique
- 12 Transférer 15µL d'éluât dans un nouveau tube 1,5mL
- 13 Quantifier 1µL avec le kit Qubit HS

STOPPING POINT

Conservation à 4°C jusqu'au séquençage Conservation longue durée -80°C

2.8 Etape 7 : Connexion du MinIT et chargement de la FlowCell

Kit: FlowCell priming Loading Beads (LB) Sequencing Buffer (SQB)

Input: 15ng

- 1 Brancher le MinIT sur le secteur et l'allumer
- 2 Raccorder le MinION au MinIT
- 3 Sur l'ordinateur, se connecter en WiFi au MinIT

a. nom réseau : MT-111186

b. mot de passe: WarmButterflyWings98

4 Ouvrir le dossier \\mt-111186

5 Ouvrir MinKNOW

Attention : le lien ne fonctionne pas sous internet explorer – le copier puis l'ouvrir dans Chrome

- 6 Insérer la FlowCell dans le MinION
- 7 Lorsque la FlowCell apparait à l'écran, cocher « Available » puis cliquer sur « Check FlowCells ». Le contrôle prend guelques minutes
- 8 Préparer le priming mix en ajoutant 30µL de FLT dans un tube neuf de FB
- 9 Une fois le contrôle de la FlowCell terminé, ouvrir le Priming Port en le pivotant (Figure 2)
- 10 Avec une P1000 réglée sur 200µL, insérer le cône dans le priming port puis faire tourner la molette jusqu'à 230µL, un liquide jaune doit remonter dans le cône, le jeter
- 11 Prélever 800µL de priming mix et l'insérer lentement et délicatement dans le priming port

Attention : ne pas insérer de bulles dans la FlowCell

- 12 Attendre 5 minutes
- 13 Préparer la librairie :

Réactifs	Volume (µL)
Sequencing Buffer (SQB)	37,5
Loading Beads (LB)	25,5
DNA library (15ng)	12
Total	75

Attention : bien resuspendre le LB, les billes sédimentent très rapidement

- 14 Ouvrir délicatement le SpotON (Figure 1)
- 15 Insérer 200µL de priming mix dans le priming port

Attention : ne pas insérer de priming mix dans le SpotON

16 Remettre en suspension les billes présentes dans la librairie puis ajouter goutte à goutte 75µL de librairie sur le SpotON

Il est possible de voir les billes se répartir sur la membrane

- 17 Refermer délicatement le SpotOn puis le priming port
- 18 Sur MinKNOW, cliquer sur « New Experiment »:
 - a. Sélectionner le kit SQK LSK109
 - b. BaseCalling ON
 - c. Sélectionner Fast BaseCalling
 - d. Barcoding OFF
 - e. La durée du séquençage peut être modifiée
- 19 Valider

Both ports are shown in a closed position

Figure 1 - Description de la FlowCell - Source : Nanopore

Figure 2 : Ouverture du priming port - Source : Nanopore

Auteurs: Prénom (minuscule) + NOM (MAJUSCULE) et /ou Nom du groupe de travail

Contacts: (facultatif) Prénom (minuscule) + NOM (MAJUSCULE) + Fonction

Date de 1ère version :

Mots clés : (obligatoire pour la GED)