МАРШРУТИ ТА ОБХОДИ В ГРАФАХ

1. Маршрути в графі

<u>Означення.</u> Маршрутом M в графі G = (V, E) називається така послідовність вершин і ребер, які чергуються:

$$M: V_1, e_1, V_2, e_2, ..., e_{k-1}, V_k,$$

в який будь-які два сусідніх елементи інцидентні. В орієнтованому графі v_i - початок ребра e_i , v_{i+1} - кінець ребра e_i

<u>Зауваження.</u> Це означення ϵ загальним для псевдо-, мульти-, і орграфів. Для "звичайного" графа досить вказати тільки послідовність $v_1, v_2, ..., v_k$ його вершин або послідовність $e_1, e_2, ..., e_k$ його ребер.

Очевидно, маршрут M можна задавати послідовністю вершин, а також послідовністю ребер.

<u>Означення.</u> Вершина V_1 називається **початком маршруту**, вершина V_k називається **кінцем маршруту**. Вершини, інцидентні ребрам маршруту, крім початкової і кінцевої, називаються внутрішніми або проміжними.

Оскільки різні ребра маршруту можуть бути інцидентними одній і тій самій вершині, початок або кінець може одночасно виявитися і внутрішньою вершиною.

<u>Зауваження.</u> Вважається, що орієнтований маршрут орієнтований від початку до кінця.

Для будь-якого ребра, що належить маршруту M, будемо говорити, що маршрут M проходить через це ребро, аналогічно, для будь-якої вершини, що належить маршруту M, будемо говорити, що маршрут M проходить через цю вершину.

<u>Означення.</u> Маршрут $M: v_1, v_2, ..., v_k$, який має початок v_1 і кінець v_k , називається сполучним. Маршрут M називається замкненим, якщо його початок і кінець збігаються: $v_1 = v_k$. В противному випадку маршрут називається відкритим. Ділянкою маршруту M називається відрізок $e_i, e_{i+1}, ..., e_j$ маршруту M який є маршрутом.

<u>Означення.</u> Маршрут M називається **ланцюгом**, якщо всі його ребра різні. Маршрут M називається **простим ланцюгом**, якщо всі його вершини різні.

<u>Означення.</u> Замкнений ланцюг називається **циклом**. Замкнений простий ланцюг називається **простим циклом**. Граф без циклів називають **ациклічним**.

Для орграфів ланцюг називається шляхом, а цикл – контуром.

<u>Зауваження.</u> Фактично циклом вважається циклічно впорядкована послідовність вершин і ребер, у якій два сусідніх ребра мають загальну вершину.

<u>Означення.</u> Довжиною маршруту (ланцюга, простого ланцюга) називається число ребер у порядку їхнього проходження.

Маршрут, що складається з однієї вершини, має нульову довжину.

<u>Означення.</u> Мінімальна довжина простого ланцюга з початком v_i і кінцем v_j називається відстанню $d(v_i, v_j)$ між цими вершинами.

<u>Означення.</u> Діаметром графа G називається відстань між двома найбільш віддаленими одна від одної вершинами.

Приклад 1. Нехай
$$V = \{v_1, v_2, v_3, v_4\}$$
,

$$E = \{e_1 = (v_1, v_2), e_2 = (v_1, v_3), e_3 = (v_2, v_3), e_4 = (v_2, v_4), e_5 = (v_3, v_4)\}.$$

В графі виділимо наступні маршрути:

 v_1, v_2, v_4 — маршрут з вершини v_1 до вершини v_4 довжини 2 — простий ланцюг,

 v_1, v_3, v_2, v_4 — маршрут з вершини v_1 до вершини v_4 довжини 3 — простий ланцюг,

 v_1, v_3, v_2, v_4, v_3 – ланцюг довжини 4,

який не ϵ простим (всі ребра різні, але вершина v_3 зустрічається двічі),

 v_1, v_2, v_3 – простий ланцюг довжини 2,

 v_1, v_2, v_3, v_1 – простий цикл,

 v_1, v_2, v_4, v_2 — маршрут довжини 3, який не є ланцюгом, ні простим ланцюгом (ребро (v_1, v_4) і вершина v_2 зустрічаються двічі).

Відстань $d(v_1, v_4)$ між вершиною v_1 і вершиною v_4 дорівнює 2.

Приклад 2. Нехай
$$V = \{v_1, v_2, v_3, v_4\}$$
,

$$\vec{E} = \{e_1 = (v_1, v_2), e_2 = (v_3, v_1), e_3 = (v_3, v_4), e_4 = (v_2, v_3)\}.$$

В графі виділимо наступні маршрути:

 $v_{_{\! 1}}, v_{_{\! 2}}$ – простий шлях з вершини $v_{_{\! 1}}$ до вершини $v_{_{\! 2}}$ довжини 1,

 v_1, v_2, v_3 — простий шлях з вершини v_1 до вершини v_3 довжини 2. v_1, v_2, v_3, v_1 — простий контур довжини 3.

<u>Теорема</u> (про число маршрутів довжини k, які з'єднують будь-яку пару вершин графа). Нехай A = A(G) — матриця суміжності графа G = (V, E) і |V| = n. Тоді $(A^k)_{ij}$ є число маршрутів довжини k від v_i до v_j .

Доведення. Використаємо індукцію по k.

Для k=1 маршрут довжини 1 саме є ребром G, отже, результат теореми при k=1 випливає з означення матриці суміжності A .

Нехай результат теореми має місце для k-1. $(A)_{ij} = a_{ij}$, $(A^{k-1})_{ij} = L_{ij}$, тоді

$$\left(A^{k}\right)_{ij} = \left(A^{k-1} \cdot A\right)_{ij} = \sum_{s=1}^{n} L_{is} \cdot a_{sj},$$

де L_{is} — число маршрутів довжини k=1 від v_i до v_j , a_{sj} — число маршрутів довжини 1 від v_s до v_j . Отже, $L_{is} \cdot a_{sj}$ — число маршрутів довжини k від v_i до v_j , де v_s — передостання вершина маршруту.

Звідси випливає, що $\sum_{s=1}^n L_{is} \cdot a_{sj}$ є число маршрутів довжини k від v_i до v_j . \square

Наслідки з теореми:

<u>**Наслідок 1.**</u> Маршрут від вершини v_i до вершини v_j $(i \neq j)$ в графі G = (V, E) існує тоді і тільки тоді, коли (i, j)-й елемент матриці $A + A^2 + ... + A^{n-1}$ не дорівнює нулю.

 $\underline{\textit{Hаслідок 2.}}$ Маршрут від вершини v_i до вершини v_j в графі G = (V, E) існує тоді і тільки тоді, коли (i, j)-й елемент матриці $A + A^2 + ... + A^{n-1} + A^n$ не дорівнює нулю.

2. Обходи в графах

1) Ейлерові графи

<u>Означення.</u> **Цикл** називається **ейлеровим**, якщо кожне ребро графа бере участь у його утворенні один раз. Граф, що містить ейлерові цикли, називається **ейлеровим**.

Зауваження. Ейлерів цикл можна вважати слідом пера, що вичерчує цей граф, не відриваючись від паперу. Таким чином, ейлерові графи — це такі графи, які можна зобразити одним розчерком пера, причому процес зображення, починається і кінчається в одній і тієї ж точці.

Приклад 17 ейлерового циклу: шаблі (знак) Магомета.

При яких умовах граф містить цикл, який проходить через кожне його ребро, встановив Леонард Ейлер в 1736 році. Задача про існування ейлерового циклу виникла в т.зв. «Задачі про кенігсберзькі мости». Розташування мостів у м. Кенигсберзі в часи Эйлера мало вид:

У задачі потрібно пройти кожен міст по одному разу і повернутися у початкову частину міста. Побудуємо граф задачі, у якому кожної частині міста відповідає вершина, а кожному мосту — ребро, інцидентне вершинам, що відносяться до частин, які з'єднуються.

Обходу мостів відповідає послідовність ребер графа задачі, у якій два сусідніх ребра мають загальну вершину, тобто маршрут. Оскільки наприкінці обходу треба повернуться у початкову частину міста і на кожному мосту треба побувати по одному разі, цей маршрут є простим циклом, що містить усі ребра, тобто ейлеровим.

Постановка і розв'язання цієї задачі Л. Ейлером знаменувала початок розробки теорії графів.

<u>Теорема Ейлера</u>. Скінченний неорієнтований граф G є ейлеровим тоді й тільки тоді, коли ступені всіх його вершин парні.

Щоб знайти хоча б один ейлерів цикл в ейлеровому графі G, тобто занумерувати ребра графа числами 1, 2 ..., |E| так, щоб номер, привласнений ребру, вказував, яким за рахунком це ребро проходиться в ейлеровому циклі, можна скористатися наступним алгоритмом.

Алгоритм Флері

Крок 1. Починаючи з довільної вершини u, привласнити довільному ребру (u,v) номер 1. Потім викреслити ребро (u,v) і перейти у вершину v.

Крок k для будь-якого k > 1. Нехай w — вершина, в яку перейшли в результаті виконання попереднього кроку, і k — номер, привласнений деякому ребру на цьому кроці. Вибрати будь-яке ребро, інцидентне вершині w, привласнити вибраному ребру номер k+1 і викреслити його.

Повторювати крок k доти, поки не всі ребра викреслені.

2) Гамільтонові графи

<u>Означення.</u> Простий цикл називається гамільтоновим, якщо кожна вершина графа бере участь у його утворенні один раз. Граф, що містить гамільтонові цикли, називається гамільтоновим. Гамільтоновим називають і простий ланцюг, що містить кожну вершину графа.

В

Слово «гамільтоновий» в цих означеннях пов'язане з ім'ям відомого ірландського математика У. Гамільтона, яким в 1859 році запропонована наступна гра «Кругосвітня подорож». Кожній з 20 вершин додекаедра (див. малюнок) приписано назву одну з крупних міст миру. Потрібно, переходячи від одного міста до іншого по ребрах додекаедра відвідати кожне місто точно один раз і повернутися в початкове місто.

<u>Теорема Оре</u>. (O.Ope) Якщо для будь-якої пари u,v несуміжних вершин графа G виконується рівність $d(u)+d(v)\geq |V|$, то G – гамільтоновий граф.

Якщо в графі G порядку n зафіксувати одну вершину і обхід завжди починати з неї, то будь-якому гамільтоновому циклу очевидним чином буде выдповыдати перестановка елементів множини V. Тим самим знайти гамільтоновий цикл або переконатися у відсутності такого циклу можна шляхом перебору (n-1)! перестановок. Якщо граф G гамільтоновий, то виконати цей перебір в повному об'ємі доведеться тільки у разі крайньої невдачі — коли потрібна, тобто така, що відповідає гамільтонову циклу перестановка зустрінеться останньою в цьому процесі. Якщо ж G — негамільтоновий граф, то діючи так само, доведеться у будь-якому випадку перевірити все (n-1)! перестановок. На жаль, алгоритмів знаходження гамільтонового циклу не існує, тому на практиці застосовують різні алгорітми часткового перебору. Крім того, в загальному випадку, немає способу визначення гамільтоновості графа.

У багатьох прикладних задачах потрібно будувати гамільтоновий ланцюг, а не цикл. Граф, що містить такий ланцюг, називається *таки* панцюг, називається *таки* на панцюг, на пан