

IRF6633APbF IRF6633ATRPbF

DirectFET™ Power MOSFET ②

- RoHS Compliant ①
- Lead-Free (Qualified up to 260°C Reflow)
- Application Specific MOSFETs
- Ideal for CPU Core DC-DC Converters
- Low Conduction Losses and Switching Losses
- Low Profile (<0.7mm)
- Dual Sided Cooling Compatible ①
- Compatible with existing Surface Mount Techniques ①

Typical values (unless otherwise specified)

V _{DSS}	V _{GS} R _{DS(on)}		$V_{ m DSS}$			R	DS(on)		
20V ma	Х	±20V	max	4.1mΩ@ 10V		ax 4.1mΩ@ 10V 7.0mΩ		nΩ@ 4.5V	
$Q_{g tot}$		\mathbf{Q}_{gd}	Q	gs2	Q_{rr}	(Q _{oss}	$V_{gs(th)}$	
11nC	~ /	3.9nC	1.7	nC	33nC	8	3.5nC	1.8V	

Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) ①

			•					
SQ	SX	ST	MQ	MX	MT	MU		

Description

The IRF6633APbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

The IRF6633APbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6633APbF has been optimized for parameters that are critical in synchronous buck operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	20	V
V _{GS}	Gate-to-Source Voltage	±20	
D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V 3	16	
D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V 3	13	Α
_D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V @	69	
DM	Pulsed Drain Current ®	130	
= _{AS}	Single Pulse Avalanche Energy ®	65	mJ
AR	Avalanche Current ⑤	13	Α

Fig 1. Typical On-Resistance Vs. Gate Voltage

- ① Click on this section to link to the appropriate technical paper.② Click on this section to link to the DirectFET Website.
- 3 Surface mounted on 1 in. square Cu board, steady state.

Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage

- ⊕ T_C measured with thermocouple mounted to top (Drain) of part.
- S Repetitive rating; pulse width limited by max. junction temperature.
- © Starting T_J = 25°C, L = 0.77mH, R_G = 25 Ω , I_{AS} = 13A.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	20			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}\!/\!\Delta T_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient	l —	14		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	l —	4.1	5.6	mΩ	V _{GS} = 10V, I _D = 16A ⑦
			7.0	9.4		$V_{GS} = 4.5V, I_{D} = 13A$ ⑦
$V_{GS(th)}$	Gate Threshold Voltage	1.4	1.8	2.2	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient	l —	-5.0		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current	l —		1.0	μΑ	$V_{DS} = 16V, V_{GS} = 0V$
				150		$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nΑ	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage	l —		-100		$V_{GS} = -20V$
gfs	Forward Transconductance	31			S	$V_{DS} = 10V, I_{D} = 13A$
Q_g	Total Gate Charge		11	17		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		2.0			V _{DS} = 10V
Q_{gs2}	Post-Vth Gate-to-Source Charge	l —	1.7		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		3.9			I _D = 13A
Q_godr	Gate Charge Overdrive		3.4			See Fig. 15
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		5.6			
Q _{oss}	Output Charge	l —	8.5		nC	$V_{DS} = 10V, V_{GS} = 0V$
R_{G}	Gate Resistance		1.5		Ω	
t _{d(on)}	Turn-On Delay Time		6.9			$V_{DD} = 16V, V_{GS} = 4.5V$ ⑦
t _r	Rise Time	l —	13			I _D = 13A
t _{d(off)}	Turn-Off Delay Time		8.4		ns	R_G = 1.8 Ω
t _f	Fall Time		7.7			
C _{iss}	Input Capacitance		1410			$V_{GS} = 0V$
C _{oss}	Output Capacitance		680		рF	$V_{DS} = 10V$
C _{rss}	Reverse Transfer Capacitance		250			f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			69		MOSFET symbol
	@T _C =25°C (Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			130		integral reverse
	(Body Diode) S					p-n junction diode.
V_{SD}	Diode Forward Voltage		8.0	1.0	V	$T_J = 25^{\circ}C, I_S = 13A, V_{GS} = 0V$ ⑦
t _{rr}	Reverse Recovery Time		20	30	ns	$T_J = 25^{\circ}C, I_F = 13A$
Q_{rr}	Reverse Recovery Charge		33	50	nC	di/dt = 500A/µs ⑦

Notes:

⑤ Repetitive rating; pulse width limited by max. junction temperature.

Absolute Maximum Ratings

	Parameter	Max.	Units
P _D @T _A = 25°C	Power Dissipation ③	2.3	W
P _D @T _A = 70°C	Power Dissipation ③	1.5	
P _D @T _C = 25°C	Power Dissipation ④	42	
T _P	Peak Soldering Temperature	270	°C
T _J	Operating Junction and	-40 to + 150	
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③ ⑩		55	
$R_{\theta JA}$	Junction-to-Ambient ® ®	12.5		
$R_{\theta JA}$	Junction-to-Ambient 9 ®	20		°C/W
$R_{\theta JC}$	Junction-to-Case 4 10		3.0	
$R_{\theta J\text{-PCB}}$	Junction-to-PCB Mounted	1.0		
	Linear Derating Factor ③	0.	018	W/°C

t₁ , Rectangular Pulse Duration (sec) **Fig 3.** Maximum Effective Transient Thermal Impedance, Junction-to-Ambient \oplus

Notes:

- ® Used double sided cooling, mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- $^{\circledR}$ R $_{\theta}$ is measured at T $_{J}$ of approximately 90°C.

③ Surface mounted on 1 in. square Cu (still air).

 Mounted to a PCB with small clip heatsink (still air)

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 8. Typical Capacitance vs.Drain-to-Source Voltage

Fig 5. Typical Output Characteristics

Fig 7. Normalized On-Resistance vs. Temperature

Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage

Fig 10. Typical Source-Drain Diode Forward Voltage

Fig 12. Maximum Drain Current vs. Case Temperature

Fig11. Maximum Safe Operating Area

Fig 13. Typical Threshold Voltage vs. Junction Temperature

Fig 14. Maximum Avalanche Energy Vs. Drain Current

Fig 15a. Gate Charge Test Circuit

Fig 16a. Unclamped Inductive Test Circuit

Fig 17a. Switching Time Test Circuit

Fig 15b. Gate Charge Waveform

Fig 16b. Unclamped Inductive Waveforms

Fig 17b. Switching Time Waveforms

Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

DirectFET™ Substrate and PCB Layout, MU Outline (Medium Size Can, U-Designation).

Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations

Note: For the most current drawing please refer to IR website at http://www.irf.com/package www.irf.com

DirectFET™ Outline Dimension, MU Outline (Medium Size Can, U-Designation).

Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations

DirectFET™ Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6633ATRPbF). For 1000 parts on 7^n reel, order IRF6633ATR1PbF

REEL DIMENSIONS									
S	TANDARI	O OPTION		TR1 OPTION (QTY 1000)					
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMP	IMPERIAL	
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C	
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C	
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50	
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C	
Е	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C	
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53	
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C	
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C	

LOADED TAPE FEED DIRECTION

NOTE: CONTROLLING
DIMENSIONS IN MM

DIMENSIONS								
	MET	RIC	IMPERIAL					
CODE	MIN	MAX	MIN	MAX				
Α	7.90	8.10	0.311	0.319				
В	3.90	4.10	0.154	0.161				
С	11.90	12.30	0.469	0.484				
D	5.45	5.55	0.215	0.219				
E	5.10	5.30	0.201	0.209				
F	6.50	6.70	0.256	0.264				
G	1.50	N.C	0.059	N.C				
Н	1.50	1.60	0.059	0.063				

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.

