REALISIERUNG VON DDS MIT B-BÄUMEN

VIELWEGE-SUCHBÄUME

- Idee: Konstruktion einer Baumstruktur mit der Eigenschaft
- 1 Knoten des Baums entspricht 1 (bzw. mehrere) Seite des Plattenspeichers
- ightarrow Verfolgen eines Pointers zu einem Teilbaum entspricht einem Plattenzugriff

Vielwege-Suchbäume zur Verbesserung der Speicherplatzausnutzung

→ höherer Verzweigungsgrad bewirkt Reduktion der Baumhöhe und damit weniger Plattenzugriffe

VIELWEGE-SUCHBÄUME (FORTS.)

- Definition
- → Der leere Baum ist ein Vielweg-Suchbaum mit Schlüsselmenge Ø.
- ► Seien T₀, T₁, ..., T_s Vielwege-Suchbäume mit

Schlüsselmengen KeySet(T₀), KeySet(T₁), ..., KeySet(T_s) und

sei $\langle k_1, a_1 \rangle$, $\langle k_2, a_2 \rangle$, ..., $\langle k_s, a_s \rangle$ eine Folge von Elementen,

für deren Schlüssel gilt: $k_1 < k_2 < ... < k_s$.

Dann ergibt die Folge (T_0) , k_1 , a_1 , (T_1) , k_2 , a_2 , (T_2) , k_3 , a_3 , ..., k_s , a_s , (T_s)

einen Vielwege-Suchbaum, falls

••• $\forall x \in KeySet(T_0): x < k_1$

••• $\forall x \in KeySet(T_i): k_i < x < k_{i+1}$, für i = 1, 2, ..., s

••• $\forall x \in KeySet(T_s): k_s < x$

Seine Schlüsselmenge ist $\{k_1, k_2, ..., k_s\} \cup \bigcup$ KeySet (T_i)

B-Bäume (Forts.)

B-BÄUME

Originalliteratur zu B-Bäumen

R. Bayer, E. McCreight (1972). Organization and Maintenance of Large Ordered Indexes. Acta Informatica 1(3), 173 - 189.

Definition

Ein B-Baum der Ordnung mist ein Vielwege-Suchbaum mit den Eigenschaften:

Jeder Knoten enthält höchstens 2m Schlüssel.

Jeder Knoten außer der Wurzel enthält mindestens m Schlüssel.

■ Die Wurzel enthält mindestens einen Schlüssel.

→ Jeder innere Knoten mit j Schlüsseln hat genau j+1 Kinder (d.h. es gibt keine leeren Teilbäume).

Alle Blätter haben dieselbe Tiefe.

B-Bäume (Forts.)

