National University of Computer and Emerging Sciences, Lahore Campus

Course:	Numerical Computing	Course Code:	CS325
Program:	BSCS	Semester:	Fall2020
Duration:	90 minutes	Total Marks:	60
Paper Date:	October 15; 2020	Weight	20%
Section:	All	Page(s):	1
Exam:	Sessional - I	Roll No:	

Instruction/Notes: Attempt All Questions.

Following is the data from the steam table. Q1. (a)

Points (10)

Temperature (C)	140	150	160	170	180
Pressure	3.685	4.854	6.302	8.076	10.225

Using suitable interpolation/extrapolation scheme for equally spaced data to find the pressure of the steam for a temperature of 138°C.

Note: (i) Use all the given data points. (ii) Throughout the computations truncate values after three decimal places.

Hint: For selection of suitable scheme keep target temperature in mind.

- Apply Lagrange formula inversely to obtain the root of the equation f(x) = 0, given that (b) Points (10) f(30) = -30, f(34) = -13
- The current I(x) in a circuit is given by the table below: Q2.

Points (20)

x	1.0	1.1	1.2	1.3
I(x)	8.2277	7.2428	5.9908	4.5260

Derive formula for numerical differentiation (1st order) based on Gauss forward interpolation formula. Also evaluate I(1.25) using the obtained formula.

$$y_p = y_0 + p \, \Delta y_0 + \frac{p \, (p-1)}{2!} \Delta^2 y_{-1} + \frac{p \, (p-1)(p+1)}{3!} \Delta^3 y_{-1} + \frac{p \, (p-1)(p+1) \, (p-2)}{4!} \Delta^4 y_{-2} + \dots$$

Approximate the integral $\int_{-2}^{2} xe^{x} dx$, using Composite Simpson's rule with h = 2, 1. Q3. Then use Romberg Integration based on Simpson rule to find $O(h^6)$ approximation. Moreover, solve the integral analytically (exactly) and compare the obtained results. Analyze the results and conclude you answer in two lines. Points (20) Note: Throughout the problem values should be taken at least 6 decimals places.