PERCOBAAN 11

KURVA TRANSFER KARAKTERISTIK JFET

11.1 Tujuan:

Membuat kurva tranfer karakteristik JFET pada layar oscilloscope. Kurva ini memperlihatkan variasi arus drain (I_D) sebagai fungsi tegangan gate-source (V_{GS}). Dari kurva ini dapat diestimasikan nilai dari parameter-parameter JFET, meliputi I_{DSS} (nilai arus drain, dimana gate dan source kondisi short, atau V_{GS} = 0), V_{GS} (off) (tegangan cut-off dari gate-source) dan g_{m0} (transkonduktansi forward).

11.2 Dasar Teori:

FET adalah suatu semiconductor device seperti halnya bipolar transistor. Perbedaan utamanya adalah arus yang melalui device di-kontrol oleh tegangan. Sedangkan pada bipolar transistor, arus arus yang melalui device di-kontrol oleh arus.

Gambar 11.1: Skematis simbol dari JFET

11.2.1 V_{GS} mengontrol I_D

Apabila kita hubungkan tegangan bias dari gate ke source dengan polaritas seperti diperlihatkan pada gambar 11.2 (a), $V_{GG} = 1$ Volt, maka akan menghasilkan tegangan gate-source $V_{GS} = -1$ Volt. Sedangkan pada drain kita berikan tegangan supply (V_{DD}) yang dapat diatur besarnya (variabel). Dengan mengatur V_{DD} mulai dari nol sampai dengan nilai tertentu, maka akan dihasilkan kurva karakteristik drain, seperti diperlihatkan pada gambar 11.2 (b).

(a) JFET dibias pada nilai $V_{GS} = -1$ Volt

Gambar 11.2 : Pinch-off terjadi pada nilai V_{DS} terendah saat arus drain mulai konstan

Sebaliknya jika tegangan bias dari gate ke source ($V_{\rm GG}$) dapat diatur besarnya (variabel), sedangkan tegangan supply ($V_{\rm DD}$) yang konstan besarnya, maka magnitudo arus drain ($I_{\rm D}$) akan berkurang dengan pertambahan magnitudo dari $V_{\rm GS}$. Sehingga besarnya arus drain ($I_{\rm D}$) dikontrol oleh besarnya tegangan gate-source ($V_{\rm GS}$), sebagaimana diilustrasikan pada gambar 11.3.

Gambar 11.3: V_{GS} mengontrol I_D

11.2.2 Karakteristik Transfer dari JFET

Telah kita ketahui bersama bahwa range nilai dari $V_{\rm GS}$, yaitu mulai dari nol sampai dengan $V_{\rm GS}$ (off) mengkontrol besarnya arus drain ($I_{\rm D}$). Untuk n-channel JFET, $V_{\rm GS}$ (off) bernilai negatip. Sehingga hubungan antara dua besaran tersebut ($V_{\rm GS}$ dan $I_{\rm D}$) menjadi penting. Gambar 11.4 memperlihatkan hubungan antara dua besaran tersebut secara grafis, yang sering disebut dengan kurva transfer karakteristik dari JFET.

Gambar 11.4: Kurva transfer karakteristik dari JFET (n-channel)

Dari gambar kurva karakteristik transfer dari JFET, terlihat bahwa nilai terendah dari sumbu V_{GS} (bottom end dari kurva) adalah sama dengan V_{GS} (off), dan nilai tertinggi dari sumbu I_D (top end dari kurva) adalah sama dengan I_{DSS} . Sehingga batas titik operasi dari JFET adalah :

$$I_D = 0$$
 ketika $V_{GS} = V_{GS (off)}$ dan $I_D = I_{DSS}$ ketika $V_{GS} = 0$

Kurva karakteristik tranfer dapat dikembangkan dari kurva karakteristik drain dengan cara mem-plot nilai I_D untuk nilai $V_{\rm GS}$ tertentu dari kurva karakteristik drain pada daerah pinch-off, sebagaimana diperlihatkan pada gambar 11.5.

Gambar 11.5 : Pengembangan kurva transfer karakteristik dari kurva karakteristik drain

Bentuk kurva karakteristik tranfer adalah mendekati bentuk parabolik, sehingga dapat didekati dengan persamaan sebagai berikut :

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS(off)}} \right)^2$$

Dengan persamaan diatas, I_D dapat ditentukan untuk sembarang nilai V_{GS} , jika $V_{GS (off)}$ dan I_{DSS} diketahui.

11.2.3 Transkonduktansi Forward dari JFET

Konduktansi transfer forward (transkonduktansi), g_m adalah perubahan arus drain (ΔI_D) untuk suatu perubahan tegangan gate-source (ΔV_{GS}) dengan tegangan drain-source (ΔV_{DS}) konstan.

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$
 (Siemens)

Nilai g_m yang lebih besar terletak dekat dengan puncak kurva (dekat dengan $V_{GS} = 0$) daripada yang dekat dengan kurva bawah (dekat dengan $V_{GS (off)}$), sebagaimana diilustrasikan pada gambar 11.6.

Gambar 11.6: Variasi nilai g_m yang bergantung pada titik bias (V_{GS})

Apabila diberikan nilai g_{m0} , maka dapat dihitung suatu nilai aproksimasi untuk g_m pada sembarang titik pada kurva transfer karakteristik dengan menggunakan persamaan berikut :

$$g_m = g_{m0} \left(1 - \frac{V_{GS}}{V_{GS(off)}} \right)$$

Jika tidak, maka nilai g_{m0} dapat dihitung dengan menggunakan nilai I_{DSS} dan $V_{GS (off)}$, sebagai berikut :

$$g_{m0} = \frac{2 I_{DSS}}{\left| V_{GS(off)} \right|}$$

11.3 Peralatan yang digunakan :

- 1) Modul praktikum, breadboard dan komponennya
- 2) DC power supply
- 3) Signal generator
- 4) Oscilloscope

11.4 Rangkaian Percobaan:

Gambar 11.7: Rangkaian penyearah setengah gelombang (HW)

11.5 Prosedur Percobaan dan Tugas:

- Rangkaikan seperti pada gambar 11.7 yang bersesuaian dengan modul praktikum atau dengan menggunakan breadboard.
- Pada percobaan ini, oscilloscope di set-up fungsinya sebagai X-Y plotter, yaitu :

Vertikal (atau Y) input sensitivity: 0.2 V/division, dc coupling Horisontal (atau X) input sensitivity: 1 V/division, dc coupling

- 3) Setelah oscilloscope siap bekerja, gerakkan trace dot ke sudut kanan atas dari layar oscilloscope, sehingga titik pusat (titik nol) berada di ujung atas sebelah kanan dari skala div. Kemudian pasanglah dc power supply dan signal generator ke rangkaian percobaan.
- 4) Aturlah frekuensi dari signal generator 500 Hz dan dengan level sinyal yang cukup untuk menghasilkan display seperti pada gambar 11.8. Horisontal input mengukur nilai tegangan sesaat gate-source (V_{GS}), sedangkan vertikal input mengukur drop tegangan pada hambatan 100 Ω . Dengan menggunakan hukum Ohm, maka nilai arus drain sesaat (I_{DSS}) dari display oscilloscope adalah sebagai berikut :

$$Vertikal\ sensitivity = \frac{0.2\ V\ /\ division}{100\ \Omega} = 2\ mA\ /\ division$$

Gambar 11.8: Kurva transfer karakteristik dari display oscilloscope

5) Dengan menggunakan gambar 11.9 sebagai pemandu untuk mengestimasi nilai I_{DSS} dan $V_{GS (off)}$ dari display oscilloscope, kemudian catatlah pada tabel 11.1.

Gambar 11.9: Kurva transfer karakteristik

6) Dari nilai I_{DSS} dan V_{GS} (off) yang didapat dari display oscilloscope, hitunglah transkonduktansi forward (g_{m0}) pada tegangan gate-source sama dengan nol ($V_{GS} = 0$), dan catatlah pada tabel 11.1

Tabel 11.1: Data kurva transfer karakteristik JFET

I _{DSS}	mA
V _{GS (off)}	V
g _{m0}	μ\$