The work required to bring to charges from infinite distance to distance r is given by:¹

$$\Delta H_{coulomb} = k \frac{q_1 q_2}{\varepsilon r}$$

 q_1 and q_2 are the charges on atoms one and two (numbers like -2, 0, +1); k is a constant that gives units $(1,389 \text{ Å} \cdot kJ \cdot mol^{-1})$; ε is the "dielectric constant" that describes how well the environment damps electric fields. For biomolecules, ε is a "fudge factor" that weakens coulomb interactions. Reasonable values are given below.

environment	ε
vacuum	1
protein interior	≈ 4
protein surface	≈ 20
water	78.5
insulator	∞

Task

- Load 1STN.pdb in pymol
- Zoom in on residue 121 (this should be a histidine).
- The histidine sidechain is forming an ion pair with another residue. What residue is this? What is the distance (in Å) between the polar atoms on histidine and its partner?
- Estimate how much this interaction stabilizes the folded state of the protein.
- Is this a lot or a little?

¹Note that we continue to pretend that enthalpy and internal energy are equivalent. The thermodynamics police made me put this disclaimer here.

The entropy of a state is given by:

$$S = Rln(N)$$

where R is the gas constant and N is the number of configurations (microstates, as we've constructed things). The change in entropy between two states is:

$$\Delta S_{A \to B} = R ln \left(\frac{N_B}{N_A} \right)$$

Task

- Load ala.pdb in pymol
- Use the "Wizard \rightarrow Mutagenesis" tool and click on the alanine.
- Mutate it to your assigned amino acid.
- Estimate the entropy to immobilize the amino acid in a folded protein.
- What assumptions did you make in this estimate? Are they justified?