

CSCI 2200 FOUNDATIONS OF COMPUTER SCIENCE

David Goldschmidt goldsd3@rpi.edu Fall 2022

UNDIRECTED GRAPHS

For given graph Q = (V, E), what are V and E?

Set $V = \{ A, B, C, D, E, F, G, H, I \}$

Set E contains all undirected edges...

 $E = \{ (A,B), (A,E), (B,C), (B,E), (C,F), (D,G), (D,H) (E,F), (F,I), (G,H) \}$

Therefore, |V| = 9 and |E| = 10

We disallow self-loops, e.g., edges (A,A) and (B,B), and multi-graphs with multiple edges between two vertices

Define degree $\partial_{\mathbf{q}}$ as the number of edges that are incident on (or adjacent to) some vertex \mathbf{q}

PATHS, SIMPLE PATHS, AND CYCLES

A path is a sequence of vertices with a designated start and end vertex for which we have an edge between each pair of consecutive vertices...

A simple path does not repeat vertices

e.g., AEFCB is a simple path of length 4 since we traverse 4 edges

e.g., AEFCBE is a path of length 5

e.g., DHGD is a cycle since we start and end on the same vertex — and we do not traverse any edge more than once

CONNECTIVITY AND ISOMORPHISM

Vertices u and v are connected iff there is a path from vertex u to vertex v

A graph is connected iff every pair of vertices is connected

Two graphs are isomorphic iff both graphs have the same paths...

(INDUCED) SUBGRAPHS

Define subgraph H = (V', E') of graph G = (V, E)...

...with $V' \subseteq V$ and $E' \subseteq E$ such that all edges of E' are guaranteed to have endpoints in V'

Define induced subgraph H' such that all edges of set E that connect vertices of V' are in set E'

What is the induced subgraph shown in red...?

$$V' = \{ E, F, G, I, J, K \}$$
 and $E' = \{ (E,I), (E,J), (G,K), (I,J) \}$

What is a subgraph of G that is disjoint from H...?

DEGREE SEQUENCE — GRAPH PATTERNS

For each graph pattern, what is |V| and |E|...?

- Complete graph or n-clique
- $K_{n,\ell}$ Complete bipartite graph with n left and ℓ right vertices
- Line or path with n vertices
- Cycle with n vertices
- S_{n+1} Star with a central vertex connected to n peripheral vertices, i.e., $K_{1,n}$
- Wheel a cycle of *n* vertices with a central vertex

- Complete, K_5
- [4, 4, 4, 4, 4]

Cycle, C_5

[2, 2, 2, 2, 2]

- [3, 3, 2, 2, 2]

Bipartite, $K_{3,2}$

Star, S_6

- - Wheel, W_6

Line, L_5

[2, 2, 2, 1, 1]

[5, 1, 1, 1, 1, 1] [5, 3, 3, 3, 3, 3]

DEGREE SEQUENCE — GRAPH PATTERNS

For each graph pattern, what is |V| and |E|...?

- Complete graph or *n*-clique
- $K_{n,\ell}$ Complete bipartite graph with n left and ℓ right vertices
- ^LComplete graph K_n

$$|V| = n$$

$$|E| = (n-1) + (n-2) + ... + 1$$

$$|C| = (n-1) + (n-2) + ... + 1$$

$$|C| = (n-1) + (n-2) + ... + 1$$

- Complete, K_5

[4, 4, 4, 4, 4]

- Bipartite, $K_{3,2}$
- [3, 3, 2, 2, 2]
- [2, 2, 2, 1, 1]

Line, L_5

Complete Bipartite graph K_{n,l}

- [5, 1, 1, 1, 1, 1]
- [5, 3, 3, 3, 3, 3]

REPRESENTING A GRAPH

How would these representation schemes change for a directed graph?

For computing on graphs, we need convenient and efficient graph representations

Adjacency List

 $v_1: v_2, v_3$

 v_2 : v_1, v_3, v_4, v_5

 v_3 : v_1, v_2, v_4

 v_4 : v_2, v_3, v_5

 v_5 : v_2, v_4

 $v_6: v_7 \ v_7: v_6$

graph G v_1 v_2 v_4 v_5 v_6 v_7

Adjacency Matrix

 v_1 v_3 $v_4 v_5 v_6$ v_7 0 0 0 v_3 0 v_4 v_5 0 1 v_6 0

DEGREE SEQUENCE — HANDSHAKING THEOREM

Can you draw two different graphs with $\partial = [3, 3, 3, 2, 1, 1]$?

We cannot construct such a graph because when we add an edge, it has two endpoint vertices and therefore increases the sum of degrees by two...

Theorem. Handshaking Theorem

Prove this theorem using induction...

For any graph the sum of vertex-degrees equals twice the number of edges, $\sum_{i=1}^{n} \delta_i = 2|E|$.

DEGREE SEQUENCE — HANDSHAKING THEOREM

Theorem. Handshaking Theorem

For any graph the sum of vertex-degrees equals twice the number of edges, $\sum_{i=1}^{n} \delta_i = 2|E|$.

Proof. We prove that any graph with $m \ge 0$ edges has $\sum_{j=1}^{n} \partial_{j} = 2m$ by induction on m.

- 1. [Base case] For m=0, every $\partial_i=0$, so Σ_i $\partial_i=0=2m$.
- 2. [Induction step] Assume the claim holds for every graph with m edges. We must prove that the claim holds for arbitrary graph G with m+1 edges.

DEGREE SEQUENCE — HANDSHAKING THEOREM

Theorem. Handshaking Theorem

For any graph the sum of vertex-degrees equals twice the number of edges, $\sum_{i=1}^{n} \delta_i = 2|E|$.

Proof. We prove that any graph with $m \ge 0$ edges has $\sum_{j=1}^{n} \partial_{j} = 2m$ by induction on m.

- 1. [Base case] For m=0, every $\partial_i=0$, so Σ_i $\partial_i=0=2m$.
- 2. [Induction step] Assume the claim holds for every graph with m edges.

We must prove that the claim holds for arbitrary graph G with m + 1 edges.

Graph G has m + 1 edges, including arbitrary edge $e = (v_1, v_2)$.

Removing e gives us G' with m edges. Assume remaining vertices are $v_3, v_4, ..., v_n$.

Let ∂_i and ∂_i' be vertex degrees for G and G'—then $\partial_i = \partial_i'$ for $i \geq 3$.

Theorem. Handshaking Theorem

For any graph the sum of vertex-degrees equals twice the number of edges, $\sum_{i=1}^{n} \delta_i = 2|E|$.

Proof. We prove that any graph with $m \ge 0$ edges has $\sum_{j=1}^{n} \partial_{j} = 2m$ by induction on m.

- 1. [Base case] For m=0, every $\partial_i=0$, so Σ_i $\partial_j=0=2m$.
- 2. [Induction step] Assume the claim holds for every graph with m edges.

We must prove that the claim holds for arbitrary graph G with m + 1 edges.

Graph G has m + 1 edges, including arbitrary edge $e = (v_1, v_2)$.

Removing e gives us G' with m edges. Assume remaining vertices are $v_3, v_4, ..., v_n$.

Let ∂_i and ∂_i' be vertex degrees for G and G'—then $\partial_i = \partial_i'$ for $i \geq 3$.

From our induction hypothesis, G' has $\Sigma_i \partial_i' = 2m$.

Rewrite this as $2m = \sum_{i} \partial_{i}' = \partial_{1}' + \partial_{2}' + \sum_{j=3}^{n} \partial_{j}' = \partial_{1}' + \partial_{2}' + \sum_{j=3}^{n} \partial_{j}$ (see above).

Since $\partial_1{}'=\partial_1-1$ and $\partial_2{}'=\partial_2-1$, we have $2m=\sum_{j=1}^n\,\partial_j-2$.

Adding 2 to both sides gives us $2(m+1) = \sum_{j=1}^{n} \partial_{j}$ — as was to be shown.

ROOTED BINARY TREE

Write a recursive definition that generates RBTs of arbitrary height...

A rooted binary tree (RBT) is a graph with $|V| \ge 0$ vertices and the following properties:

- 1. One vertex is identified as the root of the tree (indicated in red)
- 2. There is exactly one path from the root to any other vertex in the tree (Here, a path is defined as a sequence of edge traversals...)
- 3. Each vertex has at most two children!

ROOTED BINARY TREE

Recursive definition of Rooted Binary Tree (RBT).

- 1. The empty tree ε is an RBT (no root).
- 2. If T_1 and T_2 are disjoint RBTs with roots r_1 and r_2 , then linking r_1 and r_2 to a new root r produces a new RBT with root r.

[basis]

[constructor]

$$\varepsilon \xrightarrow{T_1 = \varepsilon} T_2 = \varepsilon \xrightarrow{T_1 = \varepsilon} T_2 = \varepsilon \xrightarrow{T_1 = \varepsilon} T_2 = \varepsilon$$

ROOTED BINARY TREE

Recursive definition of Rooted Binary Tree (RBT).

- 1. The empty tree ϵ is an RBT (no root).
- 2. If T_1 and T_2 are disjoint RBTs with roots r_1 and r_2 , then linking r_1 and r_2 to a new root r produces a new RBT with root r.

$$\varepsilon \xrightarrow{T_1 = \varepsilon} \qquad T_1 = \varepsilon \qquad T_1 = \varepsilon \qquad T_2 = \varepsilon \qquad T_3 = \varepsilon \qquad T_4 = \varepsilon \qquad T_5 = \varepsilon \qquad T_5 = \varepsilon \qquad T_6 = \varepsilon \qquad T_7 = \varepsilon \qquad T_8 = \varepsilon \qquad T_8 = \varepsilon \qquad T_8 = \varepsilon \qquad T_9 = \varepsilon \qquad$$

RBTs of height 0, 1, and 2

Can you prove that an RBT with $n \ge 1$ vertices must have n - 1 edges...?

STRUCTURAL INDUCTION

Our claim is P(T): if T is an RBT with $n \ge 1$ vertices, then T has n - 1 edges.

Recursive definition of Rooted Binary Tree (RBT).

- 1. The empty tree ϵ is an RBT (no root).
- 2. If T_1 and T_2 are disjoint RBTs with roots r_1 and r_2 , then linking r_1 and r_2 to a new root r produces a new RBT with root r.

Proof. We use structural induction to prove claim P(T).

- 1. [Base case] For $P(\varepsilon)$, the claim is **T** since ε is not an RBT with $n \ge 1...$
- 2. [Induction step] We must prove that the constructor preserves P. For our constructor, let parent T_1 have v_1 vertices and e_1 edges, and let parent T_2 have v_2 vertices and e_2 edges. Assume $P(T_1) \wedge P(T_2)$ is \mathbf{T} (i.e., our induction hypothesis). Let the constructed RBT T_{new} have v_{new} vertices and e_{new} edges. We must show $e_{new} = v_{new} 1$.
 - Case 1. $T_1 = T_2 = \varepsilon$. Here, tree T_{new} has $v_{new} = 1$, $e_{new} = 0$, and $e_{new} = v_{new} 1$.
 - Case 2. $T_1 = \varepsilon$; $T_2 \neq \varepsilon$. Here, $v_{new} = v_2 + 1$ and $e_{new} = e_2 + 1$. Applying the induction hypothesis for e_2 , we have $e_{new} = e_2 + 1 = (v_2 1) + 1 = v_2 = v_{new} 1$.

Our claim is P(T): if T is an RBT with $n \ge 1$ vertices, then T has n - 1 edges.

Proof. We use structural induction to prove claim P(T).

- 1. [Base case] For $P(\varepsilon)$, the claim is **T** since ε is not an RBT with $n \ge 1...$
- 2. [Induction step] We must prove that the constructor preserves P. For our constructor, let parent T_1 have v_1 vertices and e_1 edges, and let parent T_2 have v_2 vertices and e_2 edges. Assume $P(T_1) \wedge P(T_2)$ is \mathbf{T} (i.e., our induction hypothesis). Let the constructed RBT T_{new} have v_{new} vertices and e_{new} edges. We must show $e_{new} = v_{new} 1$.
 - Case 1. $T_1 = T_2 = \varepsilon$. Here, tree T_{new} has $v_{new} = 1$, $e_{new} = 0$, and $e_{new} = v_{new} 1$.

Case 2. $T_1 = \varepsilon$; $T_2 \neq \varepsilon$. Here, $v_{new} = v_2 + 1$ and $e_{new} = e_2 + 1$. Applying the induction hypothesis, we have $e_{new} = e_2 + 1 = (v_2 - 1) + 1 = v_2 = v_{new} - 1$.

- Case 3. $T_1 \neq \epsilon$; $T_2 = \epsilon$. Here, $v_{new} = v_1 + 1$ and $e_{new} = e_1 + 1$. Applying the induction hypothesis, we have $e_{new} = e_1 + 1 = (v_1 1) + 1 = v_1 = v_{new} 1$.
- Case 4. $T_1 \neq \epsilon$; $T_2 \neq \epsilon$. Here, $v_{new} = v_1 + v_2 + 1$ and $e_{new} = e_1 + e_2 + 2$. Applying the induction hypothesis, we have $e_{new} = e_1 + e_2 + 2 = (v_1 1) + (v_2 1) + 2$. Thus, $e_{new} = v_1 + v_2 = v_{new} 1$.
- 3. By structural induction, P(T) is **T** for all $T \in RBT$.

here, the

constructor

preserves

P(*T*), i.e.,

isomorphic trees

Prove that an n-vertex graph with more than n-1 edges must have a cycle...

TREES

Removing both the *binary* and *rooted* constraints of RBTs, we define a *tree* as a graph with the following properties:

- 1. The graph is connected...
 - ...meaning there is exactly one path from any vertex to any other vertex
- 2. There are no cycles the graph is acyclic

How many trees can we construct from n = 7 vertices...?

Prove that an *n*-vertex graph with more than n-1 edges must have a cycle...

SPANNING TREES

How many spanning trees can we construct for the connected graph on the left...?

A graph is connected if every pair of vertices is connected...

...and two vertices v_1 and v_2 are connected if there is a path between v_1 and v_2

Given graph G = (V, E), a spanning tree is a subgraph H = (V, E') such that H is connected and acyclic

If E = E', then G is a tree — and if G and H are weighted graphs, we are often interested in finding a minimum spanning tree...

Prove that an *n*-vertex graph with more than n-1 edges must have a cycle...

SPANNING TREES AND COMPONENTS

A component (or connected component) is a graph or induced subgraph in which every vertex is connected to every other vertex...

In a connected component, there is a path from any vertex to any other vertex

How are components and spanning trees related?

For each component in a graph, we can construct one or more spanning trees...

How many spanning trees are there in each component of the given graph...?

Prove that an n-vertex graph with more than n-1 edges must have a cycle...

SPANNING TREES AND COMPONENTS

To construct spanning tree T = (V, E) for G, we start with arbitrary vertex $v_1 - V = \{v_1\}$

As long as there is an untraversed edge e that leads to vertex $v_j \not\in V$, we add e to E and also add v_i to V

e.g.,
$$V = \{ A, B, E, J, I \}$$

 $E = \{ (A,B), (A,E), (E,J), (I,J) \}$

In general, this construction produces a component of G using only |V| - 1 edges...

What happens if we add one more edge to this spanning tree...?

Prove that an n-vertex graph with more than n-1 edges must have a cycle...

SPANNING TREES AND COMPONENTS

To construct spanning tree T = (V, E) for G, we start with arbitrary vertex $v_1 - V = \{v_1\}$

As long as there is an untraversed edge e that leads to vertex $v_i \notin V$, we add e to E and also add v_i to V

e.g.,
$$V = \{ A, B, E, J, I \}$$

$$E = \{ (A,B), (A,E), (E,J), (I,J) \}$$

In general, this construction produces a component of G using only |V| - 1 edges...

What happens if we add one more edge to this panning tree...?

Prove that an n-vertex graph with more than n-1 edges must have a cycle...

SPANNING TREES AND COMPONENTS

To construct spanning tree T = (V, E) for G, we start with arbitrary vertex $v_1 - V = \{v_1\}$

As long as there is an untraversed edge e that leads to vertex $v_i \not\in V$, we add e to E and also add v_i to V

e.g.,
$$V = \{ A, B, E, J, I \}$$

 $E = \{ (A,B), (A,E), (E,J), (I,J) \}$

In general, this construction produces a component of G using only |V| - 1 edges...

Apply this same technique with starting vertex C...

Prove that an n-vertex graph with more than n-1 edges must have a cycle...

SPANNING TREES AND COMPONENTS

Use strong induction to write a formal proof to the above claim that an n-vertex graph with more than n-1 edges must have a cycle

For the induction step, take any graph with n vertices and n + k edges ($k \ge 0$), remove an edge e, then consider two cases...

Case 1. If the graph remains connected, show that adding e back to the graph will create a cycle

Case 2. If the graph becomes disconnected, show that there must be a cycle — and adding e back certainly will not remove that cycle!

B C D

E F G H

See Exercise 11.6...

WHAT NEXT...?

Exam 2 is on Wednesday, November 9 — email me if you have extra-time accommodations and we have yet to schedule a make-up for this exam!

Problem Set 6 will be posted later today...

...and due in your recitations next week on Wednesday, November 9

Earning late days has still not been tallied, so still assume you have earned them even though you do not yet see them in Submitty...

Practice! Tinker! Practice! Tinker! Practice! Tinker! Practice! Tinker! Practice!