

Unit 11 时序电路分析

张英涛

计算机科学与技术学院

哈尔滨工业大学

时序电路分析的一般方法

- ① 确定系统变量(输入变量、输出变量 、状态变量)
- ② 列输入方程(驱动方程,控制函数)
- ③ 列输出方程(输出函数)
- ④ 列次态方程(状态方程)
- ⑤ 列状态转换表
- ⑥ 画状态图、时序图(波形图)

- 1. XX二进制计数器
- 2. 非二进制计数器
- 3.8421BCD码加法计数器

 $Y_2^{n+1} = X \oplus Y_1 \oplus Y_2$

$$J_1 = K_1 = 1$$

$$J_2 = K_2 = X \oplus Y_1$$

2. 输出方程:

$$Z = \overline{XCP}_{2}\overline{Y}_{1} \cdot \overline{XCP}_{2}Y_{1}$$

 $= XCP\overline{Y}_{2}\overline{Y}_{1} + \overline{X}CPY_{2}Y_{1}$

4. 状态转换表:

		_		
CP	$X Y_2 Y_1$	$\mathbf{Y_2}^{n+1}$	$\mathbf{Y_1}^{n+1}$	Z
1	0 0 0	0	1	0
2	0 0 1	1	0	0
3	0 1 0	1	1	0
4	0 1 1	0	0	1
5	1 0 0	1	1	1
6	1 0 1	0	0	0
7	1 1 0	0	1	0
8	1 1 1	1	0	0

CP	XY ₂ Y ₁	Y_2^{n+1}	$\mathbf{Y_1}^{\mathrm{n+1}}$	Z
1	0 0 0	0	1	0
2	0 0 1	1	0	0
3	0 1 0	1	1	0
4	0 1 1	0	0	1
5	1 0 0	1	1	1
6	1 0 1	0	0	0
7	1 1 0	0	1	0
8	1 1 1	1	0	0

States	$\mathbf{Y_2}^{\mathbf{n+1}} \mathbf{Y_1}^{\mathbf{n+1}} / \mathbf{Z}$					
$Y_2 Y_1$	X=0	X=1				
0 0	0 1 / 0	1 1 /1				
0 1	1 0 / 0	0 0 / 0				
1 0	1 1 / 0	0 1 / 0				
1 1	0 0 /1	1 0 / 0				

5. 状态图

可逆计数器

- X=0: CP , Mode-4 up counter $00 \rightarrow 01 \rightarrow 10 \rightarrow 11$ 仅在 $11 \rightarrow 00$ 时,Z=1
- X=1: CP, Mode-4 down counter (700) (700

6. 波形图

1. XX二进制计数器

- 2. 非二进制计数器
- 3.8421BCD码加法计数器

1. 输入方程

$$D_4 = Y_3$$

$$D_3 = Y_2$$

$$D_2 = Y_1$$

$$\mathbf{D}_1 = \mathbf{Y}_3 \, \overline{\mathbf{Y}}_1 \, \, \overline{\mathbf{Y}}_4$$

$$=\mathbf{Y}_{1}\overline{\mathbf{Y}_{4}}+\overline{\mathbf{Y}_{3}}\overline{\mathbf{Y}_{4}}$$

2. 次态方程

$$Y_4^{n+1} = Y_3$$

$$Y_3^{n+1} = Y_2$$

$$Y_2^{n+1} = Y_1$$

$$Y_1^{n+1} = Y_1 \overline{Y}_4 + \overline{Y}_3 \overline{Y}_4$$

Moore

$$Y_4^{n+1} = Y_3$$
 $Y_3^{n+1} = Y_2$
 $Y_2^{n+1} = Y_1$
 $Y_1^{n+1} = Y_1 \overline{Y}_4 + \overline{Y}_3 \overline{Y}_4$

CP

 $\mathbf{Y}_4 \, \mathbf{Y}_3 \, \mathbf{Y}_2 \, \mathbf{Y}_1$

0 0 0 0

	_		-	•	•	_	
	2	0 0 0 1	0	0	1	1	
	3	0 0 1 0	0	1	0	1	
	4	0 0 1 1	0	1	1	1	
	5	0 1 0 0	1	0	0	0	
	6	0 1 0 1	1	0	1	1	
	7	0 1 1 0	1	0	0	0	
	8	0 1 1 1	1	1	1	0	
	9	1 0 0 0	0	0	0	0	
	10	1 0 0 1	0	0	1	0	
	11	1 0 1 0	0	1	0	0	
	12	1 0 1 1	0	1	1	0	
	13	1 1 0 0	1	0	0	0	
	14	1 1 0 1	1	0	1	0	
	15	1 1 1 0	1	1	0	0	
	16	1 1 1 1	1	1	1	0	
> 0111 → 1111 → 1110 → 11 ₀₀							
1	1 ← 0010 ←1001						

 $\mathbf{Y_4}^{\mathbf{n+1}}$

 Y_3^{n+1}

 $\mathbf{Y_2}^{\mathbf{n+1}}$

 $Y_1^{\ n+1}$

$$0110 \leftarrow 1011 \leftarrow 0101 \leftarrow 0010 \leftarrow 1001$$

- 1. XX二进制计数器
- 2. 非二进制计数器

3. 8421BCD码加法计数器

 $J_1 = K_1 = 1 \text{ CP}_1, \text{ CP}_2 = \text{CP}_4 = Y_1(1), \text{ CP}_3 = Y_2(1)$

例3

$$egin{aligned} 1. & \hat{\mathbf{m}} \hat{\mathbf{\lambda}}$$
方程 $\mathbf{J}_4 = \mathbf{Y}_3 \mathbf{Y}_2 \ \mathbf{K}_4 = 1 \ \mathbf{J}_3 = \mathbf{K}_3 = 1 \ \mathbf{J}_2 = \overline{\mathbf{Y}_4} \ \mathbf{K}_2 = 1 \end{aligned}$

2.
$$Y_4^{n+1} = J_4 \, \overline{Y}_4 + \overline{K}_4 \, Y_4 = \overline{Y}_4 Y_3 Y_2$$
 Y_1 \\ \times \, \ti

		$\mathbf{Y}_4 \mathbf{Y}_3 \mathbf{Y}_2 \mathbf{Y}_1$	Y_4^{n+1}	Y_3^{n+1}	Y_2^{n+1}	Y_1^{n+1}	CP ₄ CP ₃ CP ₂ CP ₁
	1	0 0 0 0	0	0	0	1	Ţ
	2	0 0 0 1	0	0	1	0	Ţ ŢŢ
3.	3	0 0 1 0	0	0	1	1	Ţ
状态	4	0 0 1 1	0	1	0	0	
态 转	5	0 1 0 0	0	1	0	1	Ţ
和化	6	0 1 0 1	0	1	1	0	\downarrow
表	7	0 1 1 0	1	1	1	1	Ţ
10	8	0 1 1 1	1	0	0	0	
	9	1 0 0 0	0	0	0	1	Ţ
	10	1 0 0 1	0	0	0	0	

	$\mathbf{Y}_4 \mathbf{Y}_3 \mathbf{Y}_2 \mathbf{Y}_1$	$\mathbf{Y_4}^{n+1}$	Y_3^{n+1}	$\mathbf{Y_2}^{n+1}$	$\mathbf{Y_1}^{n+1}$	CP ₄ CP ₃ CP ₂ CP ₁
11	1 0 1 0	1	0	1	1	$\overline{\downarrow}$
12	1011	0	1	0	0	
13	1 1 0 0	1	1	0	1	Ţ
14	1 1 0 1	0	1	0	0	
15	1 1 1 0	1	1	1	1	Ţ
16	1111	0	0	0	0	

- 1. 可逆计数器
- 2. 非二进制计数器
- 3.8421BCD码加法计数器