ЛАБОРАТОРНАЯ РАБОТА №14

ИЗМЕРЕНИЕ ЗАВИСИМОСТИ ВЯЗКОСТИ ЖИДКОСТИ ОТ ТЕМПЕРАТУРЫ

Поляков Даниил, 19.Б23-фз

Цель работы: используя вискозиметр Гепплера, определить зависимость коэффициента вязкости воды от температуры, определить энергию активации воды.

Оборудование

- вискозиметр Гепплера;
- термостат;
- набор шариков разного диаметра;
- секундомер;
- щётка;
- поршень;
- пинцет.

Расчётные формулы

• Градуировочная константа:

$$K = \frac{\eta_{\scriptscriptstyle \mathrm{3T}}}{(\rho_{\scriptscriptstyle \mathrm{II}} - \rho_{\scriptscriptstyle \mathrm{X}}) au_{\scriptscriptstyle \mathrm{3T}}}$$
 $\eta_{\scriptscriptstyle \mathrm{3T}}$ — эталонная вязкость жидкости; $\rho_{\scriptscriptstyle \mathrm{II}}$ — плотность шарика; $\rho_{\scriptscriptstyle \mathrm{X}}$ — плотность жидкости; $au_{\scriptscriptstyle \mathrm{3T}}$ — время преодоления шариком постоянного расстояния.

• Вязкость жидкости:

$$\eta = K \, (\rho_{\scriptscriptstyle \rm III} - \rho_{\scriptscriptstyle
m II}) au$$
 $K-$ градуировочная константа; $\rho_{\scriptscriptstyle
m III} -$ плотность шарика; $\rho_{\scriptscriptstyle
m III} -$ плотность жидкости; $\tau-$ время преодоления шариком постоянного расстояния.

• Зависимость вязкости жидкости от её температуры и энергии активации:

$$\eta = \eta_{\text{эт}} e^{\frac{W}{R} \left(\frac{1}{T} - \frac{1}{T_{\text{эт}}}\right)} \qquad \qquad \eta - \text{вязкость жидкости;} \\ \eta_{\text{эт}} - \text{эталонная вязкость жидкости;} \\ T - \text{температура жидкости;} \\ T_{\text{эт}} - \text{эталонная температура жидкости;} \\ W - \text{энергия активации жидкости;} \\ R = 8.31 \ \text{Дж} \cdot \text{моль}^{-1} \cdot \text{K}^{-1} - \text{универсальная газовая постоянная.}$$

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность прямых измерений:

$$\Delta_{\overline{x}} = \sqrt{t^2 \frac{\displaystyle\sum_{i=1}^n (x_i - \overline{x})^2}{n(n-1)} + (\Delta_{x, \text{сист}})^2} \qquad \begin{array}{c} n - \text{количество измерений;} \\ t - \text{коэффициент Стьюдента;} \\ \Delta_{x, \text{сист}} - \text{систематическая погрешность.} \end{array}$$

• Абсолютная погрешность косвенных измерений:

$$\begin{split} & \Delta_{f(x_{1}, x_{2}, \dots)} = \sqrt{\left(\frac{\partial f}{\partial x_{1}} \cdot \Delta_{x_{1}}\right)^{2} + \left(\frac{\partial f}{\partial x_{2}} \cdot \Delta_{x_{2}}\right)^{2} + \dots} \\ & \circ \quad \Delta_{K} = \left|\frac{\partial K}{\partial x_{1}} \cdot \Delta_{\tau_{sr}}\right| = \left|K \cdot \frac{\Delta_{\tau_{sr}}}{\tau_{sr}}\right| \\ & \circ \quad \Delta_{\eta} = \sqrt{\left(\frac{\partial \eta}{\partial K} \cdot \Delta_{K}\right)^{2} + \left(\frac{\partial \eta}{\partial \tau} \cdot \Delta_{\tau}\right)^{2}} = |\eta| \sqrt{\left(\frac{\Delta_{K}}{K}\right)^{2} + \left(\frac{\Delta_{\tau}}{\tau}\right)^{2}} \end{split}$$

Порядок измерений

- 1. Заполняем трубку вискозиметра водой и с помощью пинцета опускаем в неё стеклянный шарик. Вставляем в трубку заглушку и закрываем трубку крышкой. С помощью пузырькового уровня убеждаемся, что прибор установлен горизонтально. Проводить измерения начинаем с температуры 25 °C. Устанавливаем эту температуру на термостате.
- 2. После того, как температура термостата установилась, переворачиваем трубку. Шарик начинает движение. При пересечении шариком первой метки запускаем секундомер и останавливаем его по пересечении шариком второй метки. Повторяем измерения при этой же температуре ещё 2 раза.
- 3. Повторяем измерения, описанные в пункте 2, для остальных температур с шагом 5 °C, до 50 °C.

Результаты

<u>Примечание</u>: построение графиков и аппроксимация зависимости выполнены с помощью ПО MATLAB. Погрешности прямых измерений и коэффициента аппроксимации рассчитаны с доверительной вероятностью P = 95%.

Плотность материала шарика: $\rho_{\rm m}$ = 2.217 г/см³;

Градуировочная константа: $K = (8.4 \pm 0.5) \cdot 10^{-3} \text{ м} \Pi \text{a} \cdot \text{см}^3 \cdot \Gamma^{-1}$.

Градуировочная константа K рассчитана по времени, измеренному при температуре $T_{\text{эт}} = 25 \, ^{\circ}\text{C}$ и эталонным значениям вязкости и плотности воды для этой температуры (см. **Приложение**). Соответственно, (см. **Таблица 1**) вязкость при температуре $T = 25 \, ^{\circ}\text{C}$ соответствует эталонной.

1. Зависимость коэффициента вязкости воды от температуры

Таблица 1. Зависимость времени движения шарика и вязкости воды от температуры

T, °C	т, с	$\overline{ au}$, c	η, мПа·с
25.00	87.46 89.24 85.29	87 ± 5	0.8929
30.00	78.77 77.17 78.18	78 ± 2	0.80 ± 0.05
35.00	71.11 69.02 70.10	70 ± 3	0.72 ± 0.05
40.00	64.28 63.16 62.80	63 ± 2	0.65 ± 0.04
45.00	57.90 56.81 57.62	57.4 ± 1.4	0.59 ± 0.04
50.00	51.71 52.69 52.64	52.3 ± 1.4	0.54 ± 0.03

При расчёте погрешностей времени τ систематической погрешностью пренебрегалось.

Полученные значения вязкости воды совпадают с табличными в пределах погрешности.

Зависимость вязкости воды от температуры

2. Энергия активации воды

Для нахождения энергии активации воды линеаризуем зависимость $\eta(T)$:

$$\eta = \eta_{\text{\tiny 3T}} e^{\frac{W}{R} \left(\frac{1}{T} - \frac{1}{T_{\text{\tiny 3T}}} \right)} \iff \ln \left(\frac{\eta}{\eta_{\text{\tiny 3T}}} \right) = \frac{W}{R} \left(\frac{1}{T} - \frac{1}{T_{\text{\tiny 3T}}} \right) \iff y = Wx, \ x \equiv \frac{1}{R} \left(\frac{1}{T} - \frac{1}{T_{\text{\tiny 3T}}} \right), \ y \equiv \ln \left(\frac{\eta}{\eta_{\text{\tiny 3T}}} \right)$$

Отсюда найдём энергию активации как коэффициент аппроксимации y(x).

График 2. Линеаризованная зависимость вязкости воды от температуры

Получаем:

$$W = 16300 \pm 200$$
 Дж/моль

Выводы

Проведено исследование зависимости вязкости дистиллированной воды от температуры (**График 1**). При увеличении температуры воды её вязкость уменьшается. Полученные значения вязкости совпадают с табличными в пределах погрешности. Полученное значение энергии активации воды (**График 2**):

$$W = 16300 \pm 200$$
 Дж/моль

Приложение

Таблица 2. Вязкость и плотность воды при различных температурах

T, °C	η, мПа·с	ρ , Γ /CM 3
20	1.005	0.9982
25	0.8929	0.9974
30	0.8000	0.9956
35	0.7215	0.9940
40	0.6551	0.9922
45	0.5985	0.9902
50	0.5492	0.9880
55	0.5064	0.9857
60	0.4683	0.9832