Grundbegriffe der Informatik Aufgabenblatt 2

Matr.nr.:							
Nachname:							
Vorname:							
Tutorium:	Nr.				N	ame	e des Tutors:
Ausgabe:	4. November 2015						
Abgabe:	13. N	13. November 2015, 12:30 Uhr					
	im G	BI-Bri	efka	ster	ı im	Un	tergeschoss
	von (Gebäu	de 5	50.34	1		
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet							
abgegeben werden.							
Vom Tutor auszufüllen: erreichte Punkte							
	ikie						
Blatt 2:					/ 1	7	(Physik: 14)
Blätter 1 – 2:					/ 30	0	(Physik: 27)

Mit [nicht Physik] gekennzeichnete Aufgaben werden von Studenten der Physik bitte nicht bearbeitet.

Aufgabe 2.1 (3 Punkte)

[nicht Physik]

Es sei Var_{AL} eine Menge von Aussagevariablen und es sei For_{AL} die Menge aller aussagenlogischen Formeln über Var_{AL} . Beweisen Sie, dass für alle $G, H \in For_{AL}$ die aussagenlogische Formel

$$(G \rightarrow H) \rightarrow (\neg H \rightarrow \neg G)$$

eine Tautologie ist.

Aufgabe 2.2 (2 Punkte)

Es sei A ein Alphabet, und für jede formale Sprache $L\subseteq A^*$ und jede formale Sprache $S\subseteq A^*$ sei

$$L \cdot S = \{u \cdot v \mid u \in L \text{ und } v \in S\}.$$

Es seien ferner L_1 , L_2 und L_3 drei formale Sprachen über A. Beweisen Sie, dass gilt:

$$L_1 \cdot (L_2 \cdot L_3) \subseteq (L_1 \cdot L_2) \cdot L_3$$
.

Aufgabe 2.3 (1+1+1+1+1+1=6) Punkte)

Es sei A ein Alphabet.

- a) Geben Sie eine injektive Abbildung $f: A^* \to A^*$ an, die nicht surjektiv ist.
- b) Geben Sie eine surjektive Abbildung $g: A^* \to A^*$ an, die nicht injektiv ist.
- c) Geben Sie eine bijektive Abbildung $h \colon A^* \to A^*$ an, die nicht die identische Abbildung $A^* \to A^*$, $w \mapsto w$, ist.
- d) Geben Sie eine Abbildung $\varphi \colon A^* \to A^*$ so an, dass für jedes $w \in A^*$ gilt:

$$|\varphi(w)| = 2^{|w|} \cdot |w|^{|w|}.$$

e) Geben Sie eine Abbildung $\psi \colon 2^{A^*} \to 2^{A^*}$ so an, dass für jedes $L \in 2^{A^*}$ gilt:

$$\{|w| \mid w \in \psi(L)\} = \{3 \cdot |w| \mid w \in L\}.$$

f) Geben Sie eine Abbildung $\xi\colon 2^{A^*}\to 2^{A^*}$ so an, dass für jedes $L\in 2^{A^*}$ und für jedes $w\in A^*$ gilt:

 $w \in L$ genau dann, wenn $w \notin \xi(L)$.

Aufgabe 2.4 (1.5 + 1.5 + 3 = 6) Punkte)

Sind X und Y zwei Mengen und $f: X \to Y$ eine bijektive Abbildung, so ist die Relation

$$R_f = \{ (f(x), x) \mid x \in X \}$$

eine bijektive Abbildung von Y nach X, die wir mit f^{-1} bezeichnen, Umkehrab-bildung von <math>f oder $Inverse \ von \ f$ nennen, und für die für jedes $x \in X$ und jedes $y \in Y$ gilt:

$$f^{-1}(f(x)) = x$$
 und $f(f^{-1}(y)) = y$.

Es sei A das Alphabet {a,b,c}, es sei γ die bijektive Abbildung

$$\gamma \colon \mathbb{Z}_3 \to A$$
, $0 \mapsto a$, $1 \mapsto b$, $2 \mapsto c$,

und es sei ⊙ die binäre Operation

wobei für jede nicht-negative ganze Zahl z der Ausdruck z mod 3 den Rest der ganzzahligen Division von z mit 3 bezeichne und bei Bedarf Zeichen in A als Wörter der Länge 1 in A^1 aufzufassen sind.

- a) Berechnen Sie die Wörter baac ⊙ aaaa, baac ⊙ bbbbbb und baac ⊙ cc.
- b) Es sei

$$\delta \colon A \to A$$
, $\mathbf{a} \mapsto \mathbf{a}$, $\mathbf{b} \mapsto \mathbf{c}$, $\mathbf{c} \mapsto \mathbf{b}$.

Geben Sie für jedes $u \in A^*$ ein $v \in A^*$ so an, dass $u \odot v = a^{|u|}$ gilt.

c) Beweisen Sie durch vollständige Induktion, dass für jedes $n \in \mathbb{N}_0$ gilt:

Für jedes
$$w \in A^n : w \odot a^n = w$$
.