TOSHIBA MOS MEMORY PRODUCT

262,144 WORDS × 4 BIT DYNAMIC RAM SILICON GATE CMOS

DESCRIPTION

TC514256P/J/Z-85, TC514256P/J/Z-10 TC514256P/J/Z-12

The TC514256P/J/Z is the new generation dynamic RAM organized 262,144 words by 4 bit. The TC514256P/J/Z utilizes TOSHIBA's CMOS Silicon gate process technology as well as advanced circuit techniques to provide wide operating margins, both internally and to the system user. Multiplexed address inputs permit the TC514256P/J/Z to be packaged in a standard 20 pin plastic DIP and 26/20 pin plastic SOJ and 20/19 pin plastic ZIP. The package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment. System oriented features include single power supply of 5V±10% tolerance, direct interfacing capability with high performance logic families such as Schottky TTL.

FEATURES

- · 262,144 words by 4 bit organization
- · Fast access time and cycle time

		TC514256P/J/Z-85-10-1					
tRAC	RAS Access Time	85ns	100ns	120ns			
t _{AA}	Column Address Access Time	45ns	50ns	60ns			
tCAC	CAS Access Time	30ns	30 ns	35 ns			
tRC	Cycle Time	165ns	190ns	220ns			
^t PC	Fast Page Mode Cycle Time	50ns	55ns	70ns			

* Single power supply of 5V \pm 10% with a builtin V $_{RR}$ generator

PIN CONNECTION (TOP VIEW)

Plastic DIP	Plastic SOJ
L/01 01 20 V83 L/02 02 19 JL/04 WRITE 03 18 JL/03 RAS 04 17 JCAS N.C. 05 16 JGS A0 06 15 JAS A1 07 14 JA7 A2 08 13 JAS A3 09 12 JAS VOC 10 11 JA4	1/01 26 Vgg 1/02 25 1/04 WRITE G 24 1/02 RABE 4 25 0

PIN NAMES

A0 ~ A8	Address Inputs
RAS	Row Address Strobe
CAS	Column Address Strobe
WRITE	Read/Write Input
ŌĒ	Output Enable
I/O1 ~ I/O4	Data Input/Output
VCC	Power (+5V)
Vss	Ground
N.C.	No Connection

.

P1a	sti	c Z1
VSS VSS AO A2 VCC A5		CAS I/O4 I/O1 WRIT: A1 A3 A4 A6 A8

· Low Power

413mW MAX. Operating (TC514256P/J/Z-85) 358mW MAX. Operating (TC514256P/J/Z-10) 303mW MAX. Operating (TC514256P/J/Z-12) 5.5mW MAX. Standby

- Output unlatched at cycle end allows two-dimensional chip selection
- Read-Modify-Write, CAS before RAS refresh, RAS-only refresh, Hidden refresh, and Fast Page Mode capability
- · All inputs and outputs TTL compatible
- 512 refresh cycles/8ms
- Package Plastic DIP: TC514256P

Plastic SOJ: TC514256J Plastic ZIP: TC514256Z

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	RATING	UNITS	NOTES
Input Voltage	VIN	-1 ∿ 7	v	1
Output Voltage	VOUT	-1 ∿ 7 ✓	V	1
Power Supply Voltage	VCC	-1 ∿ 7	٧	1
Operating Temperature	TOPR	0 ∿ 70	°C	1
Storage Temperature	TSTG	-55 ∿ 150	°C	1
Soldering Temperature • Time	TSOLDER	260 • 10	°C • sec	1
Power Dissipation	PD	600	mW	1
Short Circuit Output Current	IOUT	50	mA	1

RECOMMENDED DC OPERATING CONDITIONS (Ta=0 ~ 70 °C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	NOTES
VCC	Supply Voltage	4.5	5.0	5.5	V	2
VIH	Input High Voltage	2.4	-	6.5	V	2
VIL	Input Low Voltage	-1.0	-	0.8	v	2

DC ELECTRICAL CHARACTERISTICS ($V_{CC}=5V\pm10\%$, Ta=0 $\sim70^{\circ}C$)

SYMBOL	PARAMETER		MIN.	MAX.	UNITS	NOTES
	OPERATING CURRENT	TC514256P/J/Z-85	-	75		
I _{CC} 1	Average Power Supply Operating Current	TC514256P/J/Z-10	_	65	mA	3,4
	(RAS, CAS, Address Cycling: tRC=tRC MIN.)	TC514256P/J/Z-12	-	55		
I _{CC} 2	STANDBY CURRENT Power Supply Standby Current (RAS=CAS=VIH)		-	2	m.A.	
	RAS ONLY REFRESH CURRENT	TC514256P/J/Z-85	-	75		
I _{CC} 3	Average Power Supply Current, RAS Only Mode	TC514256P/J/Z-10	-	65	mA	3
	(RAS Cycling, CAS=VIH: tRC=tRC MIN.)	TC514256P/J/Z-12	-	55		1
	ICC4 Average Power Supply Current, Fast Page Mode	TC514256P/J/Z-85	_	55		
I _{CC} 4		TC514256P/J/Z-10	_	45	mA	3,4
	(RAS=VIL, CAS, Address Cycling: tpc=pc MIN.)		-	35	1	į
I _{CC} 5	STANDBY CURRENT Power Supply Standby Current (RAS=CAS=VCC-0.2V)		_	1	mA	
	CAS BEFORE RAS REFRESH CURRENT	TC514256P/J/Z-85	-	75		
I _{CC} 6	Average Power Supply Current, CAS Before	TC514256P/J/Z-10	-	65	mA	3
	RAS Mode (RAS, CAS Cycling: t _{RC} = _{RC} MIN.)	TC514256P/J/Z-12	_	55	1	
I _I (L)	INPUT LEAKAGE CURRENT Input Leakage Current, any input (0V \leq V $_{IN}$ \leq 6.5V Other Pins Not Under Test=0V)	7, All	-10	10	μA	
I ₀ (L)	OUTPUT LEAKAGE CURRENT (DOUT is disabled, OV ≤ VOUT ≤ VCC)		-10	10	μА	
v _{OH}	OUTPUT LEVEL Output "H" Level VOLTAGE (IOUT=-5mA)		2.4	-	v	
v _{OL}	OUTPUT LEVEL Output "L" Level VOLTAGE (IOUT=4.2mA)		-	0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(V_{CC}=5V\pm10\%, Ta=0 \sim 70$ °C) (Notes 5, 6, 7)

	<u> </u>	TC514256P/J/Z TC514				TC514256P/J/Z			
SYMBOL	PARAMETER		-85		-10	-12		UNIT	NOTES
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
^t RC	Random Read or Write Cycle Time	165	_ _	190		220	-	ns	
t _{RMW}	Read-Modify-Write Cycle Time	225		255		295		ns	
tPC	Fast Page Mode Cycle Time	50	-	55	-	70	-	ns	
t _{PRMW}	Fast Page Mode Read-Modify-Write Cycle Time	110	_	115	-	140	-	ns	
tRAC	Access Time from RAS	<u> </u>	85	_	100		120	ns	8,13
^t CAC	Access Time from CAS		30	-	30	_	35	ns	8,13
t _{AA}	Access Tire from Column Address	-	45	-	50	_	60	ns	8,14
^t CPA	Access Time from CAS Precharge	-	45	-	50		65	ns	8,14
t _{CLZ}	CAS to output in Low-Z	5	-	5	-	5	-	ns	5
tOFF	Output Buffer Turn-off Delay	0	30	0	30	0	35	ns	9
tT	Transition Time (Rise and Fall)	3	50	3	50	3	- 50	ns	7
t _{RP}	RAS Precharge Time	70	-	80	-	90	_	ns	
tRAS	RAS Pulse Width	85	10,000	100	10,000	120	10,000	ns	
tRASP	RAS Pulse Width (Fast Page Mode)	85	100,000	100	100,000	120	100,000	ns	
tRSH	RAS Hold Time	30	-	30	-	35	-	ns	
tRSH	CAS Hold Time	85	-	100	_	120	-	ns	
^t CAS	CAS Pulse Width	30	10,000	30	10,000	35	10,000	ns	
tRCD	RAS to CAS Delay Time	25	55	25	70	25	85	ns	13
tRAD	RAS to Column Address Delay Time	20	40	20	50	20	60	ns	14
tCRP	CAS to RAS Precharge Time	10	-	10	-	10	-	ns	
^t CPN	CAS Precharge Time	15	-	15	-	20	-	ns	
^t CP	CAS Precharge Time (Fast Page Mode)	10	_	10	-	15	-	ns	
tASR	Row Address Set-Up Time	0	-	0	-	0	-	ns	
t _{RAH}	Row Address Hold Time	15	-	15	_	15	-	ns	
tASC	Column Address Set-Up Time	0	-	0	-	0	-	ns	
^t CAH	Column Address Hold Time	20	-	20		25	_	ns	
t _{AR}	Column Address Hold Time referenced to RAS	65	-	75	-	90	_	ns	
tRAL	Column Address to RAS Lead Time	45	-	50	-	60	-	ns	
tRCS	Read Command Set-Up Time	0	_	0	-	0	-	ns	10
tRCH	Read Command Hold Time	0	-	0	_	0	_	ns	10

SYMBOL	PARAMETER	TC51425		TC514256P/J/Z -10		TC514256P/J/Z -12		UNIT	NOTES
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		1
t _{RRH}	Read Command Hold Time referenced to RAS	0	_	0	_	0	-	ns	10
tWCH	Write Command Hold Time	20	-	20	-	25	_	ns	
t _{WCR}	Write Command Hold Time referenced to RAS	65	-	75	_	90	-	ns	
t _{WP}	Write Command Pulse Width	20	-	20	_	25		ns	
tRWL	Write Command to \overline{RAS} Lead Time	20	_	25	-	30	_	ns	
t _{CWL}	Write Command to $\overline{ ext{CAS}}$ Lead Time	20	_	25	-	30	_	ns	
t _{DS}	Data Set-Up Time	0	-	0	_	0	-	ns	11
t _{DH}	Data Hold Time	20	_	20	- 1	25	_	ns	11
t _{DHR}	Data Hold Time Referenced to RAS	65	_	75	_	90	-	ns	
tREF	Refresh Period	-	8	_	8	_	8	ms	
twcs	Write Command Set-Up Time	0	-	0	-	. 0	-	ns	12
tCWD	CAS to WRITE Delay Time	65	_	65	_	75	_	ns	12
tRWD	RAS to WRITE Delay Time	120	_	135	-	160	_	ns	12
t _{AWD}	Column Address to WRITE Delay Time	80	-	85	-	100	_	ns	12
^t CSR	CAS Set-Up Time (CAS before RAS Cycle)	10	-	10	-	10	-	ns	
^t CHR	CAS Hold Time (CAS before RAS cycle)	30	_	30	-	30	_	ns	
tRPC	RAS to CAS Precharge Time	0		0	_	0	_	ns	
t _{CPT}	CAS Precharge Time (CAS before RAS Counter Test Cycle)	50	-	50	-	60	-	ns	
tROH	RAS Hold Time Referenced to $\overline{\text{OE}}$	20	-	20	_	20	-	ns	
t _{OEA}	OE Access Time	-	25	-	25	-	30	ns	
tOED	OE to Data Delay	25	-	25	-	30	-	ns	
t _{OEZ}	Output buffer turn off Delay Time from $\overline{\text{OE}}$	0	25	0	25	0	30	ns	
tOEH	OE Command Hold Time	25	-	25	-	30	 -	ns	

CAPACITANCE ($v_{CC} = 5v\pm10\%$, f=1MHz, Ta=0 ~ 70 °C)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
CII	Input Capacitance (A0 - A8)	-	5	pF
CI2	Input Capacitance (RAS, CAS, WRITE, OE)	-	7	pF
c ₀	Output Capacitance (1/01 - 1/04)	-	7	pF

NOTES:

- Stresses greater than those listed under "Absolute Maximum Ratings" May cause permanent damage to the device.
- 2. All voltage are reference to VSS.
- 3. Iccl, Icc3, Icc4, Icc6 depend on cycle rate.
- 4. Iccl, Icc4 depend on output loading. Specified value are obtained with the output open.
- 5. An initial pause of 200 μ s is required after power-up followed by 8 $\overline{\text{RAS}}$ cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of 8 $\overline{\text{CAS}}$ Before $\overline{\text{RAS}}$ initialization cycles instead of 8 $\overline{\text{RAS}}$ cycles are required.
- 6. AC measurements assume t_T =5ns.
- 7. $V_{\rm IH}({\rm min.})$ and $V_{\rm IL}({\rm max.})$ are reference levels for measuring timing of input signals. Also, transition times are measured between $V_{\rm IH}$ and $V_{\rm TL}$.
- 8. Measurement with a load equivalent to 2 TTL loads and 100pF.
- 9. $t_{OFF}(max.)$ and $t_{OEZ}(max.)$ define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 10. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 11. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in early write cycles and to $\overline{\text{WRITE}}$ leading edge in read-modify-write cycles.
- 12. twcs, trwd, tcwd and tawd are not restrictive operating parameters. They are included the data sheet as electrical characteristics only. If twcs≥twcs(min.) the cycle is an early write cycle and data out pin will remain open circuit (high impedance) through the entire cycle; If trwd≥trwd(min.), tcwd≥tcwd(min.) and tawd≥tawd(min.), the cycle is a read-modify-write cycle and data out will contain data read from the selected cell: If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 13. Operation within the $t_{RCD}(max.)$ limit insures that $t_{RAC}(max.)$ can be met. $t_{RCD}(max.)$ is specified as a reference point only: If t_{RCD} is greater than the specified $t_{RCD}(max.)$ limit, then access time is controlled by t_{CAC} .
- 14. Operation within the $t_{RAD}(max.)$ limit insures that $t_{RAC}(max.)$ can be met. $t_{RAD}(max.)$ is specified as a reference point only: If t_{RAD} is greater than the specified $t_{RAD}(max.)$ limit, then access time is controlled by t_{AA} .

WRITE CYCLE (OE CONTROLLED WRITE)

FAST PAGE MODE READ CYCLE

FAST PAGE MODE WRITE CYCLE

FAST PAGE MODE READ-MODIFY-WRITE CYCLE

RAS ONLY REFRESH CYCLE

CAS BEFORE RAS REFRESH CYCLE

Note: WRITE, OE, AO ∿ A8:"H"or"L"

HIDDEN REFRESH CYCLE (READ)

:"H"or"L"

HIDDEN REFRESH CYCLE (WRITE)

OUTLINE DRAWINGS

• Plastic DIP

Unit in mm

Note: Each lead pitch is 2.54mm.

All leads are located within 0.25mm of their true longitudinal position with respect to No.1 and No.20 leads.

-All dimensions are in millimeters.

• Plastic SOJ

Note: Each lead pitch 1.27mm.

All dimensions are in millimeters.

• Plastic ZIP

Unit in mm

Note: Each lead pitch is 1.27mm.

All dimensions are in millimeters.

Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.