Исследование операций 2025 г.

специальность «Прикладная математика», 3 курс.

Лабораторная работа №3.

Задание 1

Найти оптимальное решение задачи о транспортировке контейнеров из трёх пунктов отправления в пять пунктов доставки. Исходные данные приведены в таблице при дополнительных условиях:

- из A_1 в B_2 и из A_2 в B_5 перевозки не осуществляются;
- \bullet из A_2 в B_1 будет завезено 60 единиц груза.

Пункты отправления	B_1	B_2	B_3	B_4	B_5	Запасы (конт.)
A_1	1	2	3	1	4	180
A_2	6	3	4	5	2	220
A_3	8	2	1	9	3	100
Потребности	120	80	160	90	50	500

Таблица 1: Исходные данные для задачи №1

Как изменится минимальная стоимость перевозок, если из A_2 в B_1 будет завозиться N контейнеров с грузом? Постройте график зависимости минимальной стоимости от N.

Задание 2

Найти решение транспортной задачи, исходные данные которой приведены в таблице при дополнительных условиях:

- \bullet из A_1 в B_2 должно быть перевезено не менее 50 ящиков груза;
- ullet из A_3 в B_5 не менее 60 ящиков;
- ullet из A_2 в B_4 не более 40 ящиков.

Пункты отправления	B_1	B_2	B_3	B_4	B_5	Запасы (ящики)
A_1	5	3	2	4	8	160
A_2	7	6	5	3	1	90
A_3	8	9	4	5	2	140
Потребности	90	60	80	70	90	390

Таблица 2: Исходные данные для задачи №2

Как изменится минимальная стоимость перевозок, если тариф на перевозку одного ящика груза из A_3 в B_5 будет равен N? Величина тарифа является целым числом из диапазона $1 \le N \le 10$. Постройте график зависимости минимальной стоимости от N.

Задание 3

Найти решение транспортной задачи, исходные данные которой определяются таблицей:

Пункты отправления	B_1	B_2	B_3	B_4	B_5	Запасы (груз)
A_1	5	8	7	2	1	220
A_2	6	3	5	4	6	140
A_3	7	4	2	3	2	160
Потребности	80	140	90	130	80	520

Таблица 3: Исходные данные для задачи №3

Матрица ограничений:

$$D = \begin{bmatrix} \infty & \infty & 60 & \infty & \infty \\ \infty & 70 & \infty & 70 & \infty \\ \infty & \infty & \infty & \infty & \infty \end{bmatrix}$$

Числа в матрице D определяют максимальное количество груза, которое можно перевезти из данного пункта отправления в соответствующий пункт назначения. Символ ∞ означает, что на перевозки из данного пункта отправления в соответствующий пункт назначения нет ограничений.

Как изменится минимальная стоимость перевозок, если элемент $D_{1,5}$ положить равным N? Постройте график зависимости минимальной стоимости от величины N при изменении этого параметра в диапазоне $70 \le N \le 90$.

Задание 4

Найти решение транспортной задачи, исходные данные которой определяются таблицей:

Пункты отправления	B_1	B_2	B_3	B_4	B_5	Запасы (груза)
A_1	1	2	3	1	4	180
A_2	6	3	4	5	2	220
A_3	8	2	1	9	3	100
Потребности	120	80	160	90	50	500

Таблица 4: Исходные данные для задачи №4

Матрица ограничений:

$$D = \begin{bmatrix} \infty & 70 & 40 & 60 & \infty \\ \infty & \infty & 80 & \infty & \infty \\ \infty & \infty & 40 & \infty & \infty \end{bmatrix}$$

Числа в матрице D определяют предельное количество груза, которое можно перевезти из данного пункта отправления в соответствующий пункт назначения. Символ ∞ означает, что на перевозки из данного пункта отправления в соответствующий пункт назначения нет ограничений.

Как изменится минимальная стоимость перевозок, если все элементы $D_{i,j}$, которые равны ∞ , положить равными N? Постройте график зависимости минимальной стоимости от N, где 70 < N < 90.

Задание 5

На трёх складах оптовой базы хранится мука в количествах, равных соответственно $140,\,360$ и 180 тонн. Эту муку необходимо завезти в 5 магазинов, каждый из которых должен получить соответственно $90,\,120,\,230,\,180$ и 60 тонн.

С первого склада муку не представляется возможным перевозить во 2-й и 5-й магазины, а из второго склада в 3-й магазин должно быть завезено 100 тонн муки. Зная тарифы на перевозку 1 тонны муки с каждого из складов в соответствующие магазины, которые определяются матрицей:

$$C = \begin{bmatrix} 7 & \times & 8 & 2 & \times \\ 4 & 3 & 1 & 5 & 6 \\ 5 & 2 & 3 & 2 & 8 \end{bmatrix}$$

Составьте такой план перевозок, который обеспечивает минимальную общую стоимость. Как изменится минимальная стоимость после того, как перевозчик увеличил тариф $C_{2,3}$ до величины N? Постройте график зависимости минимальной стоимости от N, где $1 \le N \le 9$. При каком значении N стоимость перевозок превысит исходную минимальную стоимость на 20%? Выведите ответ с точностью 0,01.

Задание 6

На трёх железнодорожных станциях A_1 , A_2 и A_3 скопилось 120, 110 и 130 незагруженных вагонов. Эти вагоны необходимо перегнать на железнодорожные станции B_1 , B_2 , B_3 , B_4 и B_5 . На каждой из этих станций потребность в вагонах соответственно равна 80, 60, 70, 100 и 50.

Учитывая, что с железнодорожной станции A_2 не представляется возможным перегнать вагоны на станции B_2 и B_4 , и зная, что тарифы перегонки одного вагона определяются матрицей:

$$C = \begin{bmatrix} 2 & 4 & 1 & 6 & 7 \\ 3 & 3 & 5 & 4 & 2 \\ 8 & 9 & 6 & 3 & 4 \end{bmatrix}$$

Составьте такой план перегонки вагонов, чтобы общая стоимость была минимальной. Определите, как изменится минимальная стоимость в чрезвычайных обстоятельствах, если изза отключения энергосетей вагоны со станции A_1 на станции B_1 и B_3 пришлось бы перегонять с помощью паровозов. При этом тариф на перегонку одного вагона оказался бы равен N. Постройте график зависимости минимальной стоимости от N. Определите N^* , такое, что при $N > N^*$ оптимальная стоимость перегонки вагонов перестанет зависеть от N.

Задание 7

Автобусный парк города в очередной раз оказался на грани банкротства. Для его спасения и последующей оптимизации при городской мерии была создана комиссия, которая длительное время мониторила один из оживлённых городских автобусных маршрутов. Комиссия выяснила, что для полного удовлетворения спроса на автоперевозки в i-ый от полуночи час ($i = 1, 2, \ldots, 24$) на маршруте должно находиться не менее b_i автобусов.

Специфика работы автобусного парка такова, что автобусы могут выходить на маршрут только в начале каждого часа. После этого автобус непрерывно занимается перевозками пассажиров в течение 6 часов. Расчёты местных экономистов показали, что превышение числа автобусов на маршруте в течение i-го часа по сравнению с минимально необходимой величиной b_i приводит к дополнительным издержкам в размере c_i на один машино-час.

Составьте оптимальный график выхода автобусов на маршрут, который, с одной стороны, позволил бы полностью удовлетворить спрос в автоперевозках, а с другой стороны – минимизировал бы издержки для автопарка. Предполагается, что оптимизованный график работы будет использоваться длительное время, поэтому, например, в полночь на маршруте будут находиться автобусы, выехавшие из автопарка в 8 часов вечера накануне.

Определите величину издержек для автопарка, считая, что c_i выражены в тыс. рублей. Постройте график суточной зависимости величины c_i . Изобразите на отдельном рисунке зависимость минимального числа автобусов на маршруте и их фактическое количество в течение одних суток.