

Master « Atiam » - Module ETS

Estimation de fréquences fondamentales multiples

Gaël RICHARD

TELECOM ParisTech

Département Traitement des signaux et des images Janvier 2012

Merci à Roland Badeau pour un certain nombre de transparents

Détection de fréquence(s) fondamentale(s)

Contenu

Introduction

- Sons quasi-périodiques
- Modèle de son quasi-périodique
- **■** Méthodes temporelles
- Méthodes spectrales
- Extension à la détection de fréquences fondamentales multiples

Un son quasi-périodique

Son de piano (C3)

Modèle de signal

$$x(n) = \sum_{k=1}^{H} 2A_k \cos(2\pi k f_0 n + \phi_k) + w(n)$$

- $f_0 = \frac{1}{T_0}$ est la fréquence fondamentale réduite
- H est le nombre d'harmoniques du signal
- Les amplitudes {A_k} sont des réels > 0
- Les phases $\{\phi_k\}$ sont des v.a. indépendantes de loi uniforme sur $[0, 2\pi]$
- w est un bruit blanc centré de variance σ^2 , indépendant des phases $\{\phi_{\mathbf{k}}\}$
- x(n) est un processeur SSL centré d'autocovariance

$$r_x(m) = \sum_{k=1}^{H} [2A_k^2 \cos(2\pi k f_0 m)] + \sigma^2 \delta[m]$$

| 接

Méthodes temporelles

■ Autocovariance biaisée $\frac{1}{N}\sum_{n=0}^{N-1-m}x[n]\,x[n+m]\,\,\mathrm{si}\,\,m\geq 0$

$$\mathbf{E}(\hat{r}_x[m]) = \frac{N - |m|}{N} \, r_x[m] \qquad |\hat{r}_x[m]| \le \hat{r}_x[0]$$

Méthodes temporelles

Autocovariance non biaisée

$$\tilde{r}_x[m] = \frac{1}{N-m} \sum_{n=0}^{N-1-m} x[n] x[n+m] \text{ si } m \ge 0$$

$$\mathbf{E}(\tilde{r}_x[m]) = r_x[m] \qquad \operatorname{Var}(\tilde{r}_x[m]) = (\frac{N}{N-m})^2 \operatorname{Var}(\hat{r}_x[m])$$

$$|\tilde{r}_x[m]| \nleq \tilde{r}_x[0]$$

188

Méthodes temporelles

■ Autocorrélation
$$\bar{r}_x[m] = \frac{\sum_{n=0}^{N-1-m} x[n] x[n+m]}{\sqrt{\sum_{n=0}^{N-1-m} x[n]^2} \sqrt{\sum_{n=0}^{N-1-m} x[n+m]^2}} \text{ si } m \ge 0$$

$$|\bar{r}_x[m]| \le \bar{r}_x[0] = 1$$

 $|\bar{r}_x[m]| = 1$ ssi les vecteurs sont colinaires

Average square difference function (ASDF)

$$ASDF[m] = \frac{1}{N-m} \sum_{n=0}^{N-1-m} (x[n] - x[n+m])^2$$

ASDF[m] = 0 ssi x est de période $T_0 = m$

Average square difference function (ASDF)

 La période T₀ peut être estimée en recherchant le minimum de l'écart quadratique entre les signaux x[n] et x[n+m] :

$$\mathbf{E}[ASDF[m]] = 2(r_x[0] - r_x[m])$$

Average magnitude difference function (AMDF)

$$AMDF[m] = \frac{1}{N-m} \sum_{n=0}^{N-1-m} |x[n] - x[n+m]|$$

AMDF[m] = 0 ssi x est de période $T_0 = m$

Un algorithme temporel performant: Yin

(merci à V. Emiya pour quelques transparents)

- H. Kawahara A. de Cheveigné, YIN, a fundamental frequency estimator for speech and music,, JASA, 111(4), 2002
- Point de départ: Méthode de l'Autocorrélation (ACF)
- Améliorations successives:
 - Utilisation de l'ASDF
 - Normalisation
 - Seuillage
 - Interpolation

•	Minimisation	locale en	temps

Version	Gross error (%)		
Step 1	10.0		
Step 2	1.95		
Step 3	1.69		
Step 4	0.78		
Step 5	0.77		
Step 6	0.50		

YIN (2)

ASDF utilisée:

$$d_n[m] = \sum_{k=0}^{N-1} (x_n[k] - x_n[k+m])^2$$

■ Liens avec l'Autocorrélation

$$d_n[m] = r_n(0) + r_{n+m}(0) - 2r_n(m)$$

■ Gain net car l'ASDF est beaucoup moins sensible aux variations des amplitudes relatives que l'ACF (qui est sensible, par exemple, à l'accentuation des partiels d'ordre pair)

YIN (3)

■ Normalisation par la « moyenne cumulée »

$$d'_n(m) = \begin{cases} 1 & \text{si } m = 0 \\ \frac{d_n(m)}{\frac{1}{m} \sum_{k=1}^m d_n(k)} & \text{sinon} \end{cases}$$

■ Gain net car permet d'éviter les erreurs pour les F0 élevées (suppression du lobe en 0)

YIN (4)

■ Seuillage absolu

- La plus petite période inférieure au seuil est choisie
- Si aucune période n'est inférieure au seuil, alors le minimum global est choisi

YIN (4)

Interpolation parabolique autour du minimum

- ⇒ Réalisée sur d_n(m) (i.e avant normalisation)
- ⇒ Gain en précision sur la valeur de F0

YIN (5)

Minimisation locale en temps

- Période estimée: $T_n = argmin_n(d'_n(m))$
- Minimisation autour du temps $\mathsf{T}_{\mathsf{ heta}} : argmin_{\theta}(d'_{ heta}(T_{ heta}))$ avec

$$t - T_{max} < \theta < t + T_{max}, \qquad T_{max} = 25ms$$
$$0.8T_n < T_{\theta} < 1.2T_n$$

Gain en cas de fluctuations sur certains signaux; correspond à un effet de lissage (rappel l'effet du filtre médian ou programmation dynamique).

YIN: Evaluation

• Sur quatre bases de données de parole, annotées automatiquement (par YIN, à partir du laryngographe) puis vérifiées et triées à la main

	Gross error (%)						
Method	DB1	DB2	DB3	DB4	Average	(low/high)	
pda	10.3	19.0	17.3	27.0	16.8	(14.2/2.6)	
fxac	13.3	16.8	17.1	16.3	15.2	(14.2/1.0)	
fxcep	4.6	15.8	5.4	6.8	6.0	(5.0/1.0)	
ac	2.7	9.2	3.0	10.3	5.1	(4.1/1.0)	
cc	3.4	6.8	2.9	7.5	4.5	(3.4/1.1)	
shs	7.8	12.8	8.2	10.2	8.7	(8.6/0.18)	
acf	0.45	1.9	7.1	11.7	5.0	(0.23/4.8)	
nacf	0.43	1.7	6.7	11.4	4.8	(0.16/4.7)	
additive	2.4	3.6	3.9	3.4	3.1	(2.5/0.55)	
TEMPO	1.0	3.2	8.7	2.6	3.4	(0.53/2.9)	
YIN	0.30	1.4	2.0	1.3	1.03	(0.37/0.66	

1687

Approche par le maximum de vraisemblance

- Modèle de signal: x(n) = a(n) + w(n)
 - a est un signal déterministe de période T₀
 - w est un bruit blanc gaussien de variance σ^2
- Vraisemblance des observations

$$p(x|T_0, a, \sigma^2)) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} e^{-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x(n) - a(n))^2}$$

Log-vraisemblance

$$L(T_0, a, \sigma^2) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x(n) - a(n))^2$$

• Méthode: maximiser successivement L par rapport à a, puis σ^2 et enfin T_0

光星器

Approche par le maximum de vraisemblance

• On peut montrer que la maximisation de L par rapport à $F_0 = \frac{m}{N}$ revient à maximiser la somme spectrale

$$S(e^{j 2\pi \frac{m}{N}}) = \sum_{k=1}^{H} \hat{R}_x(e^{j 2\pi k \frac{m}{N}})$$

一般是

Produit spectral

 Par similitude avec la somme spectrale on peut définir le produit spectral (souvent plus robuste)

$$P(e^{j \, 2\pi \, \frac{m}{N}}) = \prod_{k=1}^{H} \hat{R}_x(e^{j \, 2\pi k \frac{m}{N}})$$

- Objectif: extraire l'ensemble des notes d'un enregistrement polyphonique
- Problème important lorsque les notes sont en rapport harmonique (ce qui est souvent le cas en musique...!!)
- Nécessité de traiter le caractère non parfaitement harmonique des notes jouées par un instrument.

Approche par estimation/soustraction conjointe

DMDF (Double Magnitude Difference Function)

$$DMDF\left(k_{1},\ k_{2}\right) = \frac{1}{N-k_{1}-k_{2}}\sum_{n=0}^{N-k_{1}-k_{2}-1}\left|d\left[n\right]-d\left[n+k_{1}\right]-d\left[n+k_{2}\right]+d\left[n+k_{1}+k_{2}\right]\right|$$

✓ **Son de piano** addition de deux notes:

$$T1=0.0076s$$

Approche par corrélation bi-dimensionnelle

$$\overline{r}(k_1, k_2) = \frac{\sum_{n=0}^{N-k_1-k_2-1} d[n] (d[n+k_1] + d[n+k_2] - d[n+k_1+k_2])}{\left(\sum_{n=0}^{N-k_1-k_2-1} d[n]^2\right)^{1/2} \left(\sum_{n=0}^{N-k_1-k_2-1} (d[n+k_1] + d[n+k_2] - d[n+k_1+k_2])^2\right)^{1/2}}$$

Mesure la « ressemblance » entre

•d(n) et

 $\bullet d(n+k1) + d(n+k2)-d(n+k1+k2)$

們需察官

Une approche par banc de filtres

■ R. Meddis and M. Hewitt, "Virtual pitch and phase sensitivity of a computer model of the auditory periphery—I: Pitch identification," *J. Acoust. Soc. Am.*, vol. 89, pp. 2866–2882, June 1991.

Une approche plus simple inspirée de la précédente

■ T. Tolonen and M. Karjalainen, "A computationally efficient multipitch analysis model," *IEEE Trans. On Speech and Audio Processing*, vol. 8, no. 6, pp. 708–716, 2000.

一般實際

Enhanced Summary ACF

■ Plusieurs étapes:

- Redressement demi-onde
 - On ne conserve que les valeurs positives
- Ralentie 2 (ou plus) fois puis déduite du SACF redressé
 - Permet de supprimer les pics doubles

選擇

Détection de fréquences fondamentales multiples

■ Approche par soustraction itérative (Klapuri, 2003)

Principe de lissage spectral

$$a_h = min(a_h, m_h)$$

où m_h est la moyenne sur une fenêtre d'un octave autour du partiel

■ Résultats: Comparaison aux performances humaines

- Registre bas (I): 33 à 130 Hz
- Registre médium (m): 130 à 520 Hz
- Registre haut: 520 à 2100 Hz
- 200 stimuli sonores (20 catégories)
- Sons polyphoniques générés par ordinateur à partir d'échantillons de Piano Steinway provenant du Master samples collection, Mc Gill University
- Personnes ayant participé aux tests:
 - ⇒ Tous sont musiciens
 - dont 2 ont I 'oreille absolue (musiciens quasiprofessionnels

Une approche récente utilisant un modèle perceptuel

■ Anssi P. Klapuri "Multipitch Analysis of Polyphonic Music and Speech Signals Using an Auditory Model", IEEE Trans. On ASLP, Feb. 2008

Banc de filtres perceptuels

■ Une approximation d'un banc de filtres Gammatone

20

60

40

Time (ms)

10

Time (ms)

15

Effet de la compression et redressement

■ Résultat sur une bande centrée at 2.7 kHz

Autres approches

- Approches bayesiennes
- Méthodes haute-résolution
- Factorisation en Matrices non-négatives (NMF) ou Analyse en composantes latentes (PLCA – équivalent probabiliste de la NMF)

Factorisation en Matrices Non-négatives

■ Utilisation de méthodes de décomposition non supervisées (par exemple par factorisation en matrices non-négatives : NMF)

■ Principe de la NMF :

搬

Factorisation en Matrices Non-négatives

Utilisation en estimation multi-pitch:

- Nécessité d'introduire des a priori (approche probabiliste) ou des contraintes (approche déterministe)
- Exemple de contraintes (d'après Vincent & al, 2010):

- NMF classique:
$$Y_{ft} = \sum_{i=1}^{I} A_{it} S_{if}$$

- NMF avec templates dépendants du pitch: $Y_{ft} = \sum_{p_{high}}^{p_{high}} \sum_{p_{jt}}^{J_p} A_{pjt} S_{pjf}$
- ...et avec contraintes sur les templates $S_{pjf} = \sum_{i=1}^{K_p} E_{pjk} N_{pkf}$
- Exemples d'enveloppes locales

Utilisation d'une représentation à Q constant

Signal Processing, oct. 2011

Utilisation d'une représentation à Q constant

- **■** En pratique:
 - Solution peu satisfaisante
- Solution souvent retenue: Utiliser des tailles de fenêtres différentes pour chaque nouveau bin fréquentiel k'

J. Brown and M. Puckette, An efficient algorithm for the calculation of a constant Q transform, JASA, 92(5):2698–2701, 1992.

J. Prado, Une inversion simple de la transformée à Q constant, technical report, 2011,

www.tsi.telecom-paristech.fr/aao/en/2011/06/06/inversible-cgt/

報酬

Utilisation en estimation multipitch

Sur une transformée à Q constant:

- Une différence de pitch correspond à une translation sur l'axe des fréquences
- Vers des modèles "Shift invariant PLCA (v. smaragdis2008 et Fuentes & al. 2011)

STFT

Time STFT (logarithmic frequency scale)

Time CQT

Time

Quelques références en estimation de Fréquence(s) fondamentale(s)

■ Estimation de la fréquence fondamentale

- M. Schroeder, "Period Histogram and Product Spectrum: New Methods for Fundamental-Frequency Measurement" The Journal
 of the Acoustical Society of America -- April 1968 -- Volume 43, Issue 4, pp. 829-834
- Alain de Cheveigné, YIN, a fundamental frequency estimator for speech and music, Hideki Kawahara, JASA, 111(4), 2002
- Geoffroy Peeters, Music pitch representation by periodicity measures based on combined temporal and spectral representations, ICASSP 2006

Estimation de fréquences fondamentales multiples

- B. Fuentes, R. Badeau, and G. Richard, "Adaptive harmonic time-frequency decomposition of audio using shift-invariant PLCA," in Proc. of ICASSP, Prague, Czech Republic, May 2011, pp. 401–404.
- P. Smaragdis, B. Raj, and M.V. Shashanka, "Sparse and shift-invariant feature extraction from non-negative data," in Proc. of ICASSP, Las Vegas, Nevada, USA, April 2008, pp. 2069–2072.
- E. Vincent, N. Bertin, and R. Badeau, "Adaptive harmonic spectral decomposition for multiple pitch estimation," IEEE Transactions on Audio Speech and Language Processing, vol. 18, no. 3, pp. 528–537, Mar. 2010.
- T. Tolonen and M. Karjalainen, "A computationally efficient multipitch analysis model," *IEEE Trans. On Speech and Audio Processing*, vol. 8, no. 6, pp. 708–716, 2000.
- Anssi P. Klapuri, Multiple Fundamental Frequency Estimation Based on Harmonicity and Spectral Smoothness, IEEE Trans. On Speech and Sig. Proc., 11(6), 2003
- C. Yeh, A. Röbel, and X.Rodet, "Multiple fundamental frequency estimation of polyphonic music signals", IEEE ICASSP, pp. 225-228 (Vol. III), Philadelphia, Pennsylvvania, USA, 2005.
- Hirokazu Kameoka, Takuya Nishimoto, and Shigeki Sagayama, "A Multipitch Analyzer Based on Harmonic Temporal Structured Clustering", IEEE Trans. On ASLP, March. 2007
- V. Emiya, R. Badeau, B. David, "MULTIPITCH ESTIMATION OF QUASI-HARMONIC SOUNDS IN COLORED NOISE", Proc. Of DAFX, Sept. 2007.
- V. Emiya, "Transcription automatique de la musique de piano », thèse de doctorat, Telecom ParisTech, 2008.
- Anssi P. Klapuri, A perceptually motivated multiple-f0 estimation method, WASPAA 2005
- Anssi P. Klapuri "Multipitch Analysis of Polyphonic Music and Speech Signals Using an Auditory Model", IEEE Trans. On ASLP, Feb. 2008

