LE1: Plane stress elements elliptic membrane

LE1: Plane stress elements elliptic membrane

This problem provides evidence that Abaqus can reproduce the result from the benchmark defined by NAFEMS and cited as the reference solution.

This page discusses:

- Elements tested
- Problem description
- Reference solution
- Results and discussion
- Input files

Products Abaqus/Standard Abaqus/Explicit

Elements tested

CPS4I
CPS4R
CPS6
CPS6M
CPS8

CPS8R

CPS3

Problem description

Model:

Plane stress problem with shape defined by ABCD. Functions defining the curves BC and AD are given above.

Mesh:

A coarse and a fine mesh are tested for each element. In addition, a very fine mesh is tested for each element in the explicit dynamic analysis.

Material:

Linear elastic, Young's modulus = 210 GPa, Poisson's ratio = 0.3, density = 7800 kg/m^3 .

Boundary conditions:

ux=0 along edge AB, uy=0 along edge CD.

Loading:

Uniform outward pressure of 10 MPa at outer edge BC. In the explicit dynamic analysis the loading is applied such that a quasi-static solution is obtained.

Reference solution

This is a test recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test LE1 from NAFEMS publication TNSB, Rev. 3, "The Standard NAFEMS Benchmarks," October 1990.

Target solution: Tangential edge stress (σ yy) at D is 92.7 MPa.

Results and discussion

The results are shown in <u>Table 1</u> and <u>Table 2</u>. The values enclosed in parentheses are percentage differences with respect to the reference solution.

Table 1. Abaqus/Standard analysis.

Element	Coarse Mesh	Fine Mesh
CPS3	51.04 MPa (-45%)	71.26 MPa (-23%)
CPS4	66.73 MPa (-28%)	84.54 MPa (-9%)
CPS4I	58.82 MPa (-37%)	78.21 MPa (-16%)
CPS4R*	40.48 MPa (-56%)	56.18 MPa (-39%)
CPS6	89.10 MPa (-4%)	94.01 MPa (1%)
CPS6M	85.88 MPa (-7%)	93.71 MPa (1%)
CPS8	84.54 MPa (-9%)	92.81 MPa (0.12%)
CPS8R	85.80 MPa (-7%)	90.07 MPa (-3%)

^{*}A comparison of the results for reduced-integration and full-integration lower-order elements indicates that the full-integration elements perform significantly better for problems with stress concentrations of this type.

Table 2. Abaqus/Explicit analysis.

Element	Coarse Mesh	Fine Mesh	Very Fine Mesh
CPS3	51.2 MPa (-45%)	71.5 MPa (-23%)	85.7 MPa (-8%)
CPS4R	39.6 MPa (-57%)	55.7 MPa (-40%)	87.3 MPa (-6%)
CPS6M	86.12 MPa (-7%)	92.93 MPa (-0.2%)	_

Input files

Abaqus/Standard input files

Coarse mesh tests:

```
nle1xf3c.inp
```

CPS3 elements.

nle1xf4c.inp

CPS4 elements.

nle1xi4c.inp

CPS4I elements.

```
nle1xr4c.inp
    CPS4R elements.
nle1xf6c.inp
    CPS6 elements.
nle1xm6c.inp
    CPS6M elements.
nle1xf8c.inp
    CPS8 elements.
nle1xr8c.inp
    CPS8R elements.
Fine mesh tests:
nle1xf3f.inp
    CPS3 elements.
nle1xf4f.inp
    CPS4 elements.
nle1xi4f.inp
    CPS4I elements.
nle1xr4f.inp
    CPS4R elements.
\underline{nle1xf6f.inp}
    CPS6 elements.
nle1xm6f.inp
    CPS6M elements.
nle1xf8f.inp
    CPS8 elements.
nle1xr8f.inp
    CPS8R elements.
```

Abaqus/Explicit input files

```
Coarse mesh tests:
```

 $\underline{le1_cps3_c.inp}$

CPS3 elements.

le1 cps4r c.inp

CPS4R elements.

le1 cps6m c.inp

CPS6M elements.

Fine mesh tests:

 $\underline{le1_cps3_f.inp}$

CPS3 elements.

le1_cps4r_f.inp

CPS4R elements.

le1_cps6m_f.inp

CPS6M elements.

Very fine mesh tests:

le1 cps3 vf.inp

CPS3 elements.

le1 cps4r vf.inp

CPS4R elements.