Timing Attack on RSA Signature Scheme

F. De Santis

desantis@tum.de

Sichere Implementierung kryptographischer Verfahren WS 2015-2016 Lehrstuhl für Sicherheit in der Informationstechnik Technische Universität München

11.11.2015

Outline

Timing Analysis

Timing Attack on RSA Signature Generation

Task Description

Framework

Submitting Results

Timing Analysis

Timing Analysis

- The implementation of cryptographic algorithms often leads to non-constant execution times
 - **⇒** conditional instructions
 - ⇒ cache mechanisms
 - compiler level optimizations
 - ₩ ...
- These timing variations can be exploited by the means of statistical analysis to recover the secret key processed within the device

Timing Attack on RSA Signature Generation

RSA Signature Scheme

Key Generation

- Given two primes p, q compute n = pq and $\Phi(n) = (p-1)(q-1)$.
- Public key $k_{pub} = (n, e)$ s.t. $e \stackrel{\$}{\leftarrow} [1, \Phi(n)]$ and $gcd(e, \Phi(n)) = 1$
- Private key $k_{pr} = (n, d)$ s.t. $ed = 1 \mod \Phi(n)$

Signature Generation and Verification

Signing Entity $\mathcal A$		Verifying Entity ${\cal B}$		
$y = \operatorname{sig}_{k_{pr}}^{\mathcal{A}}(x) = x^d \mod n$	$\stackrel{send(x,y)}{\longrightarrow}$,		
	accept or reject	$\operatorname{ver}_{k_{pub}}^{\mathcal{B}}(x,y) = \begin{cases} \operatorname{acc} \\ \operatorname{rej} \end{cases}$	cept if ject if	$y^e \mod n = x$ $y^e \mod n \neq x$

Montgomery Multiplication

Algorithm 1 Montgomery Multiplication

```
Input: a, b \in \mathbb{Z}, n \in \mathbb{Z}^+, z = 2^k
Output: abz^{-1} \mod n
 1: n' \leftarrow (-n)^{-1} \mod z
                                                                                                  (precomputation)
 2: C ← ab
                                                                                            (integer multiplication)
                                                                              (truncation to k bits being z = 2^k)
 3: d \leftarrow cn' \mod z
                                                                             (integer multiplication and addition)
 4: e \leftarrow c + nd
 5: f ← e/z
                                                                              (right shift by k bits being z = 2^k)
 6: if f > n then
 7. f \leftarrow f - n
                                                                                                 (Extra-Reduction)
 a end if
 9 return f
```

- The Extra-Reduction (ER) step leaks information about the inputs
- If the inputs depend on the secret key, a timing attack can be mounted to recover the secret information

Left-to-Right Square-and-Multiply

Algorithm 2 Left-to-Right Square-and-Multiply with Montgomery Multiplication

```
Input: y, n, d = (d_{k-1}, d_{k-2}, \dots, k_1, k_0)_2
Output: x = y^d \mod n
 1. Z ← 2k
                                                                                            (precomputation)
 2: z^2 \leftarrow zz \pmod{n}
                                                                                            (precomputation)
 3: n' \leftarrow (-n)^{-1} \pmod{z}
                                                                                            (precomputation)
 4: y' \leftarrow MM(y, z^2)
                                                               (→ conversion to the Montgomery domain)
 5: X' \leftarrow Z
                                                               (→ conversion to the Montgomery domain)
 6: for i = k - 1 downto 0 do
                                                         (scan through the key bits di from MSB to LSB)
 7: X' \leftarrow MM(X', X')
                                                                                   (do the squaring always)
    if d_i = 1 then
                                                                                      (if the key bit d; is set)
           x' \leftarrow MM(x', v')
                                                                          (do the conditional multiplication)
       end if
11: end for
12: x \leftarrow MM(x', 1)
                                                                (← conversion back to the integer domain)
13: return x
```


Timing Attack: Overture

- The execution times $t_0, ..., t_{N-1}$ of N signature generations on uniformly chosen inputs $x_0, ..., x_{N-1}$ are measured
- Let x be an arbitrary integer of size k and $D_{i-1} = (d_{k-1}, \ldots, d_{k-i})_2$
- Let er be the function $(x, D_{i-1}) \mapsto \{0, 1\}$ which returns 1 if the ER step is performed on the LSB of D_{i-1} during the modular exponentiation of x or 0 otherwise:

$$\operatorname{er}(x, D_{i-1}) = \begin{cases} 1 & \text{if the reduction for } d_{k-i} \text{ is performed} \\ 0 & \text{otherwise} \end{cases}$$

Timing Attack: Procedure

Let assume $D_{i-1} = (d_{k-1}, \dots, d_{k-i})_2$ is known, then:

1. Make an hypothesis $\kappa \in \{0, 1\}$ on the key bit d_{k-i-1} :

$$D_i^{\kappa}=(d_{k-1},\ldots,d_{k-i},\kappa)_2$$

2. Classify timings t_0, \ldots, t_{N-1} into two sets \mathcal{T}_0^{κ} and \mathcal{T}_1^{κ} :

$$\mathcal{T}_0^{\kappa} = \{t_j : \operatorname{er}(x_j, D_i^{\kappa}) = 0\} \text{ and } \mathcal{T}_1^{\kappa} = \{t_j : \operatorname{er}(x_j, D_i^{\kappa}) = 1\}$$

3. The abs difference of means is used to verify the key hypothesis

$$|\tau_0^\kappa - \tau_1^\kappa|$$

where
$$\tau_0^{\kappa} = \frac{1}{|\mathcal{T}_0^{\kappa}|} \sum_j t_j$$
 with $t_j \in \mathcal{T}_0^{\kappa}$ and $\tau_1^{\kappa} = \frac{1}{|\mathcal{T}_1^{\kappa}|} \sum_j t_j$ with $t_j \in \mathcal{T}_1^{\kappa}$

4. The key hypothesis κ which lead to the largest value is chosen

Timing Attack: Procedure

• Alternatively, the sample Pearson's correlation coefficient r^{κ} can be used in place of 2 – 3:

$$r^{\kappa} = \frac{\sum_{j=0}^{N-1} (t_j - \frac{1}{N} \sum_{j=0}^{N-1} t_j) (e_j^{\kappa} - \frac{1}{N} \sum_{j=0}^{N-1} e_j^{\kappa})}{\sqrt{\sum_{j=0}^{N-1} (t_j - \frac{1}{N} \sum_{j=0}^{N-1} t_j)^2 \sum_{j=0}^{N-1} (e_j^{\kappa} - \frac{1}{N} \sum_{j=0}^{N-1} e_j^{\kappa})^2}},$$

$$e_i e_i^{\kappa} = e_i^{\kappa} (x_i, D_i^{\kappa}).$$

where $e_j^{\kappa} = er(x_j, D_i^{\kappa})$.

 The last key bit must always be guessed, no look-ahead is possible for the last bit

Task Description

Task Description

- Implement the timing attack on RSA signature generation in Python 2.x
 - ▶ Left-to-right Exponentiation Algorithm
 - → Montgomery Multiplication
 - ➡ Non-CRT Format
 - **►** Integers size is 64-bit
 - **⇒** Sample Pearson's correlation coefficient
- Run the timing attack against given timings and recover the secret exponent

Framework

Framework

- IDE: Ninja (Windows, Linux, MacOS)
 - → http://ninja-ide.org/downloads/
- Skeleton files
 - project.nja is the project file for Ninja IDE
 - main.py has **NOT** to be modified
 - student.py must be modified to implement the timing attack in the perform_timing_attack function
- Timings at https://tueisec-sica.sec.ei.tum.de/rsa/
 - Secret exponent d different for each student
- A testing pair (message, signature) is provided to verify the correctness of the recovered secret exponent

Submitting Results

Handing in Results

Hand in @ https://tueisec-sica.sec.ei.tum.de/handin/

- student.py
- key.txt
 - It is automatically generated by \$ python main.py
 - Submit key.txt without further modifications
- Multiple submissions are possible
 - Only the last submission is considered (files are overwritten)
- Deadline for submission fixed in 3 weeks
 - **→** 02.12.15 23:59:59 CET

Final Remarks

- The assignment is passed if the key.txt is correct and the student.py works correctly on freshly generated new timings
- Reuse the information from previous computations to reduce the execution time of the timing attack and get rid of the noise

Stairway to Heaven

- 1. Download the framework
- 2. Download the timings
- 3. Implement the timing attack in Python
- 4. Run the timing attack on given timings
- 5. Submit the source code and the secret key **before 02.12.15** 23:59:59 CET