

RA:

Nome:

UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Exatas e Tecnologia Departamento de Computação

LÓGICA DIGITAL (1001351): Latches & Flip-flops

	S Q	S					
	$-$ R \bar{o}	R					
		Q					
a)		Q'					
	S Q	S					
	Clk R Q	R					
		Clk					
b)		Q					
	т. о	Т					
	T Q	Clk					
c)	Q	Q					
,	—J <u>Q</u> —	J					
	\rightarrow	K					
	— к ā —	Clk					

d)

UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Exatas e Tecnologia Departamento de Computação

2. Para cada um dos códigos a seguir, forneça o circuito resultante (observe que $= \neq <=$):

```
e) module foo2 (a, b, c, clk, x, y);
a) module foo1 (a, b, c, clk, x, y);
                                                input a, b, c, clk;
    input a, b, c, clk;
    output reg x, y;
                                                output reg x, y;
    always @(posedge clk)
                                                always @(negedge clk)
                                           4
    begin
                                                begin
                                           5
      x \le a \mid b;
                                                  x = a \mid b;
       y <= x ~& c;
                                                  y = x ^{\sim} c;
    end
  endmodule
                                              endmodule
```

```
b) module bar1 (a, b, c, clk, x, y, w); d) module bar2 (a, b, c, clk, x, y, w);
     input a, b, c, clk;
                                                input a, b, c, clk;
     output reg x, y, w;
                                                output reg x, y, w;
     always @(negedge clk)
                                                always @(posedge clk)
                                           4
     begin
                                                begin
                                                  x = a \hat{c};
       x \le a \mid b;
                                                  y = ^b;
       y <= x ~& c;
       w \le a \mid y;
                                                  w = x \mid y;
     end
                                                end
  endmodule
                                              endmodule
```