Problem Set 7a (Optional)

1. Let X_1, X_2, \dots, X_n be iid with pdf

$$f(x|\theta) = \theta x^{\theta-1}, \qquad 0 < x < 1, 0 < \theta < \infty$$

- (a) Find the MLE of θ . Show that the variance converges to zero as the sample size increases.
- (b) Find the methods of moments estimator of θ .
- 2. (Playing against a machine). Assume an individual receives w_t at time t = 1, 2, ... drawn from $U[\underline{\theta}, \overline{\theta}]$ where $\underline{\theta} > 0$. At each time the individual can either accept w_t or reject w_t . If she accepts then she receives w_t and the game ends. If she rejects then she does not receive w_t and she receives a new draw w_{t+1} from $U[\underline{\theta}, \overline{\theta}]$. What's the best strategy that the individual can follow (i.e. a plan of action for every t > 0)? What's the limit-in-probability payoff of such strategy?
- 3. In a study of household income distribution in SB the population of households is divided into two groups: households with a head older than 45 and households with head younger than or exactly 45. In fractions of these subpopulations in the full population of all households in SB are p and 1-p, respectively. In the two subpopulations random samples of size n_1 and n_2 are drawn. This is called a stratified random sample. The sample means are \overline{X}_{1n_1} and \overline{X}_{2n_2} , respectively. The (population) mean and variance of income in the two subpopulations is μ_1 , σ_1^2 and μ_2 , σ_2^2 , respectively.
 - (a) Show that the population mean of income in the full population μ is equal to $p\mu_1 + (1-p)\mu_2$.
 - (b) We estimate the mean income in the complete population by $\overline{X}_n = c\overline{X}_{1n_1} + d\overline{X}_{2n_2}$. Find (possibly unknown) values of c, d such that this estimator is an unbiased estimator of the population mean.
 - (c) For a second independent random sample size of m from the population (without stratification) we observe whether the head of the household is older than $(m_1 \text{ households})$ or younger than $(m_2 \text{ households})$ 45. Use this estimation to estimate p.
 - (d) Is the estimator of p ancillary for the population mean' How does this simplify the computation of the sampling distribution of the estimator of the population mean?
 - (e) Derive the variance of the estimator of the population mean.
 - (f) Minimize the variance with respect to the sample size in the two subsamples (treat the sample sizes as continuous variables) subject to the restriction that $n_1 + n_2 = n$ with n given. Can you use this result to optimize the sample design?
- 4. Find a minimal sufficient statistic for θ in the following cases.

(a)
$$f(x;\theta) = \frac{1}{\sqrt{2\pi}} e^{-(x-\theta)^2/2}, -\infty < x < \infty$$

(b)
$$f(x;\theta) = \frac{e^{-(x-\theta)}}{(1+e^{-(x-\theta)})^2}, -\infty < x < \infty$$