# Lecture 7

CB

Water quality

# Water quality

- To a great extent water quality determines the success or failure of a fish farming operation
- - cs Eat
  - **S** Breathe (Osmoregulation)
  - **S** Excrete





# Main water quality parameters

- **Reserve** Temperature
- ca pH
- Dissolved oxygen O₂
- Nitrogenous waste
- Suspended solids
- **™** Salinity



# Temperature



- - body temperature is determined by the water around them
- Affects fish metabolism, behaviour, activity, growth, reproduction
  - All fish have optimum range in which they like to live
- Rapid changes in water temperature can be lethal
- And the amount of dissolved oxygen in the water





# Temperature



- Know what the temperature is
  - Measure daily (3 x per day) with a good thermometer
  - Record daily temperatures and monitor over time
  - If you see a change in temperature take action
- ™ Be careful not to temperature shock your fish
  - If you are adding water to the system and it is warmer or colder than the system temperature, add the water slowly
  - When stocking or moving fish make sure to acclimate new fish It is better to put fish into water that is slightly cooler rather than warmer
- Managing Temperature can productivity
  - Heaters, heat exchangers and solar energy are ways to control and manage the temperature of your system.
  - This equipment is expensive
  - Must make up for increased cost with increased production.





# Nitrogenous wastes



- - By-product of protein metabolism
  - S Excreted via the gills
- $\bowtie NH_3 + H_2O \Leftrightarrow NH_4^+ + OH$







### Ammonia



- □ Unionised ammonia (NH<sub>3</sub>)
  - Very toxic to fish
  - C3 Damages dills
  - **Reduces** growth
  - OB Decreases disease resistance



- We therefore need to remove ammonia from aquaculture systems
  - ≪ Keep ammonia as low as possible < 3mg/1
    </p>
- ⊗ By nitrifying bacteria (Nitrosomonas)



### Ammonia removal (conversion)

CB

The bacteria grow on the surface of substrate in biofilter

$$NH_{3} \xrightarrow{1\frac{1}{2}O_{2}} NO_{2} \xrightarrow{1\frac{1}{2}O_{2}} NO_{3}$$
nitrosomonas







#### **Nitrite**

03

Reproduct of nitrification of ammonia

$$NH_{3} \xrightarrow{1\frac{1}{2}O_{2}} NO_{2} \xrightarrow{1\frac{1}{2}O_{2}} NO_{3}$$
nitrosomonas

- Righly toxic to fish
  - CS Damages gills
  - OB Decreases disease resistance of fish
  - Decreases growth



# Ammonia management



- Measure using a test kit
- ≈ 1 4 times a week
- Cook at fish behaviour
  - Swimming erratically
  - Check ammonia levels

#### Solution

- **Water exchange**
- Zeolite
- Add oxygen
- Clean biofilter





# High nitrite levels

#### 03

#### **Causes**

- **Overfeeding**
- Over stocking
- 3 Biofilter not working properly

#### **Solutions**

- Stop feeding
- **Water exchange**
- Add oxygen level in filter > 3 mg/L at out flow
- **Reduce** densities
- Add salt





#### **Nitrate**

03

$$NH_3 \xrightarrow[nitrosomonas]{1\frac{1}{2}O_2} NO_2 \xrightarrow[nitrobacter]{1\frac{1}{2}O_2} NO_3$$

- Produced by nitrifying bacteria in biofilter
- Only toxic at high concentrations



#### Nitrate



- Management considerations
  - Check at least 1 a week
  - Regular water exchanges
  - **3** Plants
    - Algae







# pH



- Measure of H⁺ ions in water
  - Os Degree of acidity (pH < 7) or alkalinity (pH < 7)
- ™ In fresh water normally varies between 5 9
- - 🗷 Effects respiration, causes stress
  - Functioning of biofilter
  - Toxicity of substances in water: ammonia



# What effects pH

Rhotosynthesis uses CO<sub>2</sub> pH

 $\bowtie$  Respiration releases  $CO_2 \mid pH$ 

Respiration pH

Photosynthesis

Respiration

 $C_6H_{12}O_6 + 6O_2 \rightarrow energy + 6CO_2 + 6H_2O$ 



Fig. 1. Daily pH cycle in a hypothetical production pond.

# What effects pH





Nitrification - 
$$NH_3$$
 (Ammonia) +  $O_2 \longrightarrow NO_2$  - (Nitrite) + 3 H<sup>+</sup> + 2 e<sup>-</sup> (First step of equation)  
 $NO_2$  (Nitrite) +  $H_2O \longrightarrow NO_3$  (Nitrate) + 2 H<sup>+</sup> + 2 e<sup>-</sup> (Second step of equation)

## pH effects on ammonia toxicity





# pH Management

- Changing pH
  Slowly
- **™** Use Calcium carbonate
  - Sea shells
  - When pH drops below 7 it dissolves the calcium carbonate
  - S Brings the pH to 7
  - Calcium carbonate stops dissolving



# Dissolved Oxygen

- - **G** Fish
  - **Bacteria** in biofilter
- - S Fish at surface and near inlet
  - Stop eating
  - High nitrite levels
- - **S** Reduced growth
  - Mon-functioning biofilter high ammonia and nitrite levels
  - **3** Death



## Plants and dissolved oxygen



- - $\bigcirc$  Photosynthesis  $\longrightarrow$  produce  $O_2$



- Night

1

dissolved oxygen

- - High dissolved oxygen in day
  - C3 Low dissolved just before dawn
  - S Fish die



# Dissolved Oxygen

- Need to add oxygen to biofilter and fish tanks

  Intensive aquaculture
- Aeration (compressed air)
- CR Trickle filters
- Read Paddle wheels
- Rure oxygen
- ≪ Keep dissolved oxygen > 5mg/l





### Carbon dioxide

#### C3

- Reproduced by respiration
  - **G** Fish
  - ு Bacteria in biological filter
- 础 High levels > 9 mg/l
  - Reduce respiration (breathing)
  - Cause stress (decrease health of fish)
  - Reduce efficiency of biological filter
  - **©** Cause death





### Carbon dioxide

C3

In aquaculture we keep levels as low as possible

CO<sub>2</sub> diffuses out of water – but not fast enough

**S** Trickle filters

**Aeration** 



### Organic matter and phosphorous



- About 50% of phosphorous and 40% of organic matter
  - Excreted in faeces

- Therefore it must be removed from aquaculture systems



# Removal of organic matter and phosphorous

03

Good removal of organic matter

**™** Sedimentation

Settlement pond – simple and works

Swirl separator

**Screens** 

Orum filters - expensive





# Salinity

- Amount of sodium ions in water
- Reach fish species has optimum range
- Reffects growth and health of fish
- Always check salinity of new water source





### Conclusion



- Aquaculture is not farming fish it is farming water.
- Good water = fast growing healthy fish
- Do not over feed fish
- Reep records and monitor regularly

