Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Группа <u>Р3110</u>	_К работе допущен
Студент Лебедев Вадим Антонович	_Работа выполнена
Преподаватель Коробков Максим Петро	вич Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.10

Изучение свободных затухающих электромагнитных колебаний

1. Цель работы.

Изучение характеристик свободных затухающих колебаний

- 2. Задачи, решаемые при выполнении работы.
 - 1. Произвести необходимые измерения и вычисления.
 - 2. Построить графики: зависимости логарифмического декремента от сопротивления магазина, добротности от сопротивления цепи, экспериментального значения периода от емкости и теоретического значения периода от емкости.
 - 3. Сформулировать выводы.
- 3. Объект исследования.

Электромагнитные колебания

- **4.** Метод экспериментального исследования. Прямые многократные измерения
- 5. Рабочие формулы и исходные данные.

$$L = 10 \text{ мгH} \pm 10\%;$$

$$C_1 = 0.022 \text{ MK}\Phi \pm 10\%$$
;

$$C_2 = 0.033 \text{ MK}\Phi \pm 10\%;$$

$$C_3 = 0.047 \text{ MK}\Phi \pm 10\%;$$

$$C_4 = 0.47 \text{ MK}\Phi \pm 10\%;$$

$$\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+n}} \tag{1}$$

$$R = R_0 + R_{\rm M} (2) \quad L = \frac{\pi^2 R^2 C}{\lambda^2} (3)$$

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$
 (4) $Q = \frac{2\pi}{1 - e^{-2\lambda}}$ (5)

$$R_{\rm kp} = 2 * \sqrt{\frac{L}{C}}$$
 (6) $Q = \frac{1}{R} * \sqrt{\frac{L}{C}}$ (7)

6. Измерительные приборы.

<i>№</i> n/n	Наименование	Тип прибора	Используемый диапазон	Погрешнось прибора
1	-	-	-	-

7. Схема установки. (перечень схем, которые составляют Приложение 1)

Буквой L обозначена катушка, использующаяся в качестве индуктивности, буквой C обозначен конденсатор, R_M — добавочное сопротивление, $\Gamma H1$ — генератор переменного напряжения, $O \coprod J2$ — канал осциллографа.

8. Результат прямых измерений и их обработки. *(таблицы)* См. табл. 1(первые 5 столбцов) и табл. 2(первый столбец).

9. Расчет результатов косвенных измерений. (таблицы, примеры расчетов)

R _M ,	Т, мс	2U _i , дел	2U _{i+n} , дел	n	λ	Q	R, Om	L, мГн
0	0,1	6,1	2,2	3	0,34	12,74	45	3,80
10	0,1	6	1,8	3	0,40	11,39	55	4,08
20	0,1	5,8	1,6	3	0,43	10,90	65	4,98
30	0,1	5,8	1,5	3	0,45	10,58	75	6,01
40	0,1	5,7	1	3	0,58	9,15	85	4,66
50	0,1	5,6	0,8	3	0,65	8,65	95	4,66
60	0,1	5,5	0,7	3	0,69	8,41	105	5,07
70	0,1	5,4	0,5	3	0,79	7,90	115	4,56
80	0,1	5,3	0,3	3	0,96	7,37	125	3,70
90	0,1	5,1	0,1	3	1,31	6,78	135	2,30
100	0,1	3,1	0,7	2	0,74	8,12	145	8,25

200	0,1	2,5	0,8	1	1,14	7,00	245	10,04
300	0,1	1,8	0,3	1	1,79	6,46	345	8,05
400	0,1	1,2	0,1	1	2,48	6,33	445	6,96

$$\lambda = \frac{1}{3} * \ln \left(\frac{6,1}{2,2} \right) = 0.34$$

$$Q = \frac{2*3,14}{1-e^{-2*0,34}} = 12,74$$

$$R = 45 + 0 = 45,6$$

$$L = \frac{3,14^2 * 55,6^2 * 0,022}{0,034^2} = 3,80$$

 R_0 – вычислялся по методу наименьших квадратов, как точка пересечения аппроксимирующей прямой с осью абсцисс:

$$b = \frac{\sum (x_i - \bar{x}) * (y_i - \bar{y})}{\sum (x_i - \bar{x})^2}; a = \bar{y} - b\bar{x}$$

$$R_0 = a \approx 45 \text{ OM}$$

Вычислим L_{cp} по полученным значениям индуктивности:

$$L_{cp} = 4,73$$

 $L = (10 \pm 1) \text{ мГн (данные, указанные на установке)}$

Таблица 2									
C,	Тэксп,	Ттеор,	Сигма Т,						
мкФ	мс	мс	%						
0,022	0,08	0,06	24,6						
0,033	0,1	0,08	27,1						
0,047	0,13	0,09	38,4						
0,47	0,42	0,30	38,1						

$$T_{\text{Teop}} = \frac{2 * 3,14}{\sqrt{\frac{1}{0,022 * 4,73} * \frac{45}{4 * 4,73^2}}} = 0,06$$
$$\delta T = \frac{0,08 - 0,06}{0,06 * 100} = 24,6$$

Вычислим период колебательного контура для сопротивлений магазина $R_{\rm M}=0$, 200, 400 Ом:

$$T_0 = 0.093$$

$$T_{200} = 0.095$$

$$T_{400} = 0.099$$

$$Q_{(\text{Teop})} = \frac{1}{45} * \sqrt{\frac{10}{0,022*10^3}} = 14,98$$

$$R_{(крит)} = 1250 \text{ Ом(эксп)}$$

$$R_{(KPUT)} = 1348,4 \text{ Om(Teop)}$$

10. Расчет погрешностей.

$$\sigma(L) = \sqrt{\frac{\sum (L_i - \bar{L})^2}{n(n-1)}} = 0,38 \text{ мГн}$$
 $\Delta L_{\rm cp} = t_{a,n} * \sigma(L) = 0,85 \text{ мГн}$

11. Графики (перечень графиков, которые составляют Приложение 2).

График зависимости добротности от сопротивления контура.

График зависимости экспериментального периода от емкости конденсатора.

График зависимости теоретического периода от емкости конденсатора.

- 12. Окончательные результаты.
 - 1. Среднее значение индуктивности катушки и его погрешность:

$$L_{cp} = 4,73 \pm 0,85 \text{ мГн}$$

2. Собственное сопротивление цепи:

$$R_0 = 45 \text{ Om}$$

3. Теоретическое и экспериментальное значение периода колебаний при $R=0,200,400~\mathrm{Om}$:

$$T_{0({\scriptscriptstyle 9}{\scriptscriptstyle KC\Pi})} = T_{200({\scriptscriptstyle 9}{\scriptscriptstyle KC\Pi})} = T_{400({\scriptscriptstyle 9}{\scriptscriptstyle KC\Pi})} = 0{,}09$$
 мс

 $T_{0(\text{Teop})} = 0.093 \text{ Mc}$

 $T_{200(\text{Teop})} = 0.095 \text{ Mc}$

 $T_{400(\text{Teop})} = 0.099 \text{ Mc}$

4. Теоретическая и экспериментальная добротность при $R_M = 0$:

$$Q_{0(3KC\Pi)} = 12,74$$

 $Q_{0(Teop)} = 14,98$

5. Теоретическое и экспериментальное значение критического сопротивления:

$$R_{\text{крит(эксп)}} = 1250 \text{ OM}$$

 $R_{\text{крит(теор)}} = 1348,4 \text{ OM}$

- 13. Выводы и анализ результатов работы.
 - 1. Графики зависимостей теоретического периода колебаний от емкости и экспериментального периода колебаний от емкости практически идентичны.
 - 2. Экспериментальная средняя индуктивность катушки меньше, чем теоретическая индуктивность стенда, равная 10.
 - 3. Теоретические периоды колебаний при 0, 200, 400 Ом близки к экспериментальным.
 - 4. Теоретическое значение добротности при 0 Ом практически совпадаете с экспериментальным.
 - 5. Теоретическое критическое значение сопротивления различается с экспериментальным меньше, чем на 100 Ом.
 - 6. Что же касается использования формулы Томпсона, то исходя из пункта 1 становится понятно, что мы можем ее использовать т.к. $\beta \ll \omega_0$.

Приложение 1.

RM, Ом	Т, мс	2U _i , дел	2U _{і+п} ,дел	n	λ	Q	R, Om	L, мГн
0	0,1	G, @ A	2,2	3	0,34	12,34	45	3,8
10	0,1	6,0	1,8	3	0,4	11,39	55	408
20	0,1	5,8	1,6	3	0,43	10,8	65	4,38
30	0,1	5,8	4,5	3	0,45	10,58	75	6,01
40	0,1	5,7	1,0	3	0,5%	3,15	28	4,66
50	0,1	5,6	0,8	3	0,65	8,65	35	4,66
60	0,1	5,5	r,0	3	0,69	8141	105	5,07
¥ O	0,1	5,4	0,5	3	0,40	4,9	115	4,56
80	1,0	5,3	0,3	3	0,86	7,34	125	3,7
80	0,1	5.1	0,1	3	1,31	6,48	135	2,3
100	0,1	3,1	0,4	2	0,44	8,12	145	8,25
100	0,1	2.5	0,8	1	1,14	4,0	245	10,04
300	0,1	1,8	0,3	1	1,49	6,46	345	8,05
400	0,1	1,2	0,1	١	2,48	6,33	445	6,86

C , $MK\Phi$	T_{oken}, MC	T_{Teop} , MC	$\delta T = \frac{T_{\text{secon}} - T_{\text{reop}}}{T_{\text{reop}}}, \%$
0,022	0,09	0,04	38,4
0,033	0,10	0,09	46, 8
0,047	0,13	0,11	51,2
0,47	0,42	0,34	30,8

Rup=1250 Om

