Theorem 1. Let $A = (Q, \Sigma, q_0, \Delta, F)$ be a TWA. There is an NTA A' of size exponential in |Q| that recognizes T(A).

Proof. Let $\sim_{T(\mathcal{A})}$ be the usual equivalence relation, i.e. $t_1 \sim_{T(\mathcal{A})} t_2$ iff $\forall s \in S_{\Sigma} : s \cdot t_1 \in T(\mathcal{A}) \leftrightarrow s \cdot t_2 \in T(\mathcal{A})$. We define a relation $\sim \subseteq T_{\Sigma} \times T_{\Sigma}$ such that $\operatorname{index}(\sim_{T(\mathcal{A})}) \leq \operatorname{index}(\sim) \leq 2^{|Q|^2 \cdot m + 1}$, where m is the maximal rank in Σ .

Let $t_0 \in T_{\Sigma}$ and $a_m \in \Sigma_m$ be arbitrary. For every $t \in T_{\Sigma}$ and $1 \leq i \leq m$, we define $t^{(i)} = a_m(t_0, t_0, \dots, t, \dots, t_0)$, meaning the *i*-th subtree below the root is *t*. Further, we define a relation $B_t^i \subseteq Q \times Q$ with $(p,q) \in B_t^i$ iff there is a run segment ρ of \mathcal{A} on $t^{(i)}$, such that the run begins at the root of *t*, never leaves that subtree until the end. Meaning, $\rho = (p,i)(q_1,iu_1)\dots(q_n,iu_n)(q,\varepsilon)$. Finally, let $t_1 \sim t_2$ iff $t_1 \in T(\mathcal{A}) \leftrightarrow t_2 \in T(\mathcal{A})$ and $\forall i : B_{t_1}^i = B_{t_2}^i$.

Idea: $(p,q) \in B_t^i$ if \mathcal{A} can enter t as i-th child with state p and after some while leaves it again with state q.

Claim : Let $t_1 \sim t_2$. Then $t_1 \sim_{T(A)} t_2$.

Let $s \in S_{\Sigma}$. Due to the symmetric definition of \sim , it suffices to show that $t_1 \in T(\mathcal{A})$ implies $t_2 \in T(\mathcal{A})$, so let $t_1 \in T(\mathcal{A})$. If $s = \circ$, then $s \cdot t_1 = t_1 \in T(\mathcal{A})$. By definition of \sim , this implies $s \cdot t_2 = t_2 \in T(\mathcal{A})$.

Otherwise $s \neq \infty$. Let $\rho_1 \rho_2 \rho_3$ be an accepting run of \mathcal{A} on $s \cdot t_1$ such that ρ_1 only stays outside of t_1 and ρ_2 only stays inside of t_1 . Since $B_{t_1}^i = B_{t_2}^i$, there is a run segment of \mathcal{A} on t_2 which enters and exits the tree with the same states as ρ_2 does, meaning it can replace ρ_2 in the accepting run. Repeating this procedure gives an accepting run of \mathcal{A} on $s \cdot t_2$, so $t_2 \in T(\mathcal{A})$.

Notes on the construction: each state in the NTA corresponds to a list of Q-states that \mathcal{A} had when visiting this node, together with the direction from which it was coming. That can be used to check the correctness of a run.

Theorem 2. A language of finite trees $T \subseteq T_{\Sigma}$ can be recognized by an NTA iff it can be described by a regular tree expression.

Proof.

Theorem 3. Let D be an EDTD. We can construct a NUTA \mathcal{A} with $T(D) = T(\mathcal{A})$ in polynomial time in |D|.

Proof.

Theorem 4. The class of DTWA-recognizable languages is closed under complement.

Proof.

Theorem 5. Let $T \subseteq T_{\Sigma}$. T is regular iff fcns(T) is regular.

Proof.