Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

«Определение постоянной Ридберга для атомного водорода»

Проверил:		Выполнил:	
Пшеничнов В.Е		Студент группы Р3255	
« »	2019г.	Федюкович С. А.	

Цель работы

Получение численного значения постоянной Ридберга для атомного водорода из экспериментальных данных и его сравнение с рассчитанной теоретически.

Теоретические основы лабораторной работы

В 1885г. Бальмер показал на примере спектра испускания атомного водорода, что длины волн четырёх линий, лежащих в видимой части и обозначаемых символами $H_{\alpha}, H_{\beta}, H_{\gamma}, H_{\sigma}$, можно точно представить эмпирической формулой:

$$\lambda = B \frac{n^2}{n^2 - 4},\tag{1}$$

где вместо n следует подставить числа 3, 4, 5, и 6; B — эмпирическая константа 364,61нм

Закономерность, выраженная формулой Бальмера, становится особенно наглядной, если представить эту формулу в том виде, в каком ею пользуются в настоящее время. Для этого следует преобразовать ее так, чтобы она позволяла вычислять не длины волн, а частоты или волновые числа.

Известно, что частота $\nu=\frac{c}{\lambda_0},c^{-1}$ — число колебаний в 1 сек., где c — скорость света в вакууме; λ_0 — длина волны в вакууме.

Волновое число — это число длин волн, укладывающихся в 1м:

$$\widetilde{\nu} = \frac{1}{\lambda} = \frac{1}{B} \cdot \frac{n^2 - 4}{n^2} = \frac{4}{B} \left(\frac{1}{4} - \frac{1}{n^2} \right);$$
 (2)

обозначив $\frac{4}{B}$ через R, перепишем формулу (2):

$$\widetilde{\nu} = R \cdot \left(\frac{1}{2^2} - \frac{1}{n^2}\right),\tag{3}$$

где n = 3, 4, 5,

Уравнение (3) представляет собой формулу Бальмера в обычном виде. Выражение (3) показывает, что по мере увеличения n разность между волновыми числами соседних линий уменьшается и при $n \to \infty$ мы получаем постоянное значение $\widetilde{\nu} = \frac{R}{4}$. Таким образом, линии должны постепенно сближаться, стремясь к предельному положению $\widetilde{\nu} = \frac{R}{4}$.

Предельное волновое число, около которого сгущаются линии при $n \to \infty$, называется границей серии. Для серии Бальмера это волновое число $\widetilde{\nu} = 2742000 \mathrm{m}^{-1}$, и ему соответствует значение длины волны $\lambda_0 = 364,61 \mathrm{mm}$.

Наряду с серией Бальмера в спектре атомного водорода был обнаружен ряд других серий. Все эти серии могут быть представлены общей формулой:

$$\widetilde{\nu} = R \cdot \left(\frac{1}{n_1^2} - \frac{1}{n_1^2}\right),\tag{4}$$

где n_1 имеет для каждой серии постоянное значение $n_1=1,2,3,4,5,...$; для серии Бальмера $n_1=2; n_2$ — ряд целых чисел от (n_1+1) до ∞ .

Формула (4) называется обобщенной формулой Бальмера. Она выражает собой один из главных законов физики — закон, которому подчиняется процесс изучения атома.

Теория атома водорода и водородоподобных ионов создана Нильсом Бором. В основе теории лежат постулаты Бора, которым подчиняются любые атомные системы.

Второй квантовый закон относится к переходам с излучением. Согласно этому закону электромагнитное излучение, связанное с переходом атомной системы из стационарного состояния с энергией E_j стационарное состояние с энергией $E_l < E_j$, является монохроматическим, и его частота определяется соотношением:

$$E_i - E_i = h\nu, (5)$$

где h — постоянная Планка.

Стационарные состояния E_i в спектроскопии характеризуют уровни энергии, а об излучении говорят как о переходах между этими уровнями энергии. Каждому возможному переходу между дискретными уровнями энергии соответствует определенная спектральная линия, характеризуемая в спектре значением частоты (или волнового числа) монохроматического излучения.

Дискретные уровни энергии атома водорода определяются известной формулой Бора:

$$E_n = -\frac{2\pi^2 m e^4}{h} \cdot \frac{1}{n^2} = -hcR \frac{1}{n^2},\tag{6}$$

$$R = \frac{2\pi^2 me^4}{ch^3}$$
 (СГС) или $R = \frac{me^4}{8ch^3\varepsilon_0^2}$ (СИ), (7)

где n — главное квантовое число; m — масса электрона (точнее, приведенная масса протона и электрона).

Для волновых чисел спектральных линий согласно условию частот (5) получается общая формула:

$$\widetilde{\nu} = \frac{En_2}{hc} - \frac{En_1}{hc} = \frac{R}{n_1^2} - \frac{R}{n_2^2} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right),\tag{8}$$

где $n_1 < n_2$, а R определяется формулой (7). При переходе между определенным нижним уровнем $(n_1$ фиксировано) и последовательными верхними уровнями $(n_2$ изменяется от (n1+1) до ∞) получаются спектральные линии атома водорода. В спектре водорода известны следующие серии: серия Лаймана $(n_1=1,n_2\geq 2)$; серия Бальмера $(n_1=2;n_2\geq 3)$; серия Пашена $(n_1=3,n_2\geq 4)$; серия Брекета $(n_1=4,n_2\geq 5)$; серия Пфунта $(n_1=5,n_2\geq 6)$; серия Хамфри $(n_1=6,n_2\geq 7)$.

Как видим, формула (8) совпадает с формулой (4), полученной эмпирически, если R — постоянная Ридберга, связанная с универсальными константами формулой (7).

Из уравнения (3), отложив по вертикальной оси значения волновых чисел линий серии Бальмера, а по горизонтальной — соответственно значения $1/n^2$, получаем прямую, угловой коэффициент которой дает постоянную R, а точка пересечения прямой с осью ординат дает значение R/4

Для определения постоянной Ридберга нужно знать квантовые числа линий серии Бальмера атомного водорода. Длины волн линий водорода определяются с помощью монохроматора (спектрометра).

Изучаемый спектр сравнивается с линейчатым спектром, длины волн которого известны. По спектру известного газа, можно построить градуировочную кривую монохроматора, по которой затем определить длины волн излучения атомного водорода.

Ход работы

- 1. Зажечь ртутную лампу ДРШ. Для этого включить тумблер «сеть» на источнике питания $\Theta\Pi C-III$, включить тумблер «лампа ДРШ», нажать кнопку «пуск»и удерживать её нажатой 2-3 секунды.
- 2. Установить ширину входной щели примерно 0,1мм.
- 3. Снять градуировочную кривую монохроматора по спектру ртути и заполнить таблицу (1).

Таблица 1: Градуировка барабана монохроматора

onique it i pudji pozna oupuouna mononpoma.					
Длина волны λ , [нм]	Угол поворота m				
690,700	2900,000				
671,600	2825,000				
623,400	2660,000				
612,300	2620,000				
607,200	2590,000				
579,000	2460,000				
576,900	2450,000				
546,000	2270,000				
491,600	1850,000				
435,800	1190,000				
434,700	1175,000				
433,900	1140,000				
407,700	700,000				
404,600	635,000				

Рис. 1: Градуировочная кривая

4. Поставить перед монохроматором водородную лампу, обозначив длины волн линий водорода λ_1 , λ_2 и λ_3 , снять отсчет их положения m' по барабану длин волн. Заполнить таблицу (2).

Таблица 2: Определение длин волн спектра излучения атома водорода

Угол поворота m'	Длина волны $\lambda, [{\scriptscriptstyle ext{HM}}]$	Волновое число \widetilde{v} , м ⁻¹	Квантовое число n	$1/n^2$
2790,000	661,376	15119,998	3,000	0,111
1800,000	487,373	20518,177	4,000	0,063
1160,000	434,357	23022,529	5,000	0,040

- 5. По построенной градуировочной кривой определить длины волн линий спектра водорода, рассчитать волновые числа для полученных длин. Результаты записать в таблицу (2).
- 6. Построить график зависимости $\widetilde{v}, [\mathrm{cm}^{-1}],$ от $1/n^2,$ где n- соответствующее главное квантовое число.

Рис. 2: Градуировочная кривая

Уравнение аппроксимирующей прямой:

$$\widetilde{v} = -111116,363 \cdot (1/n^2) + 27465,465$$
 (9)

- 7. Найти постоянную Ридберга двумя способами:
- (a) Из углового коэффициента прямой уравнения (9) получаем $R=111116,363[cm^{-1}]$
- (b) Подставив 0 в уравнение (9) получаем:

$$R/4 = 27465, 465 [\text{cm}^{-1}]; R = 109861, 859 [\text{cm}^{-1}]$$

Теоретическое значение:

$$R = 109677, 593[\text{cm}^{-1}]$$

8. Используя полученное значение постоянной Ридберга, рассчитать энергию ионизации атома водорода, находящегося в основном состоянии:

$$E_{\text{m}} = hcR = 1,054 \cdot 10^{-15} \cdot 299792458 \cdot 109861,859/1,6 = 13,464[9B]$$

Теоретическое значение:

$$E = 13,600[9B]$$

Вывод

В ходе выполнения данной работы мной был проведён эксперимент по изучению серии Бальмера, в результате которого я подтвердил свои теоретические знания практическим путём. Также экспериментальным путём были получены значений постоянной Ридберга $R=11116,363;\,R=109861,859$ и энергии ионизации атома водорода $E_{\rm M}=13,464[{\rm pB}]$, разница которых с теоретическими значениями незначительна и вызвана погрешностью измерений, что опять же подтверждает верность теорий.