Capacity of Quantum Private Information Retrieval with Colluding Servers

Seunghoan Song¹, Masahito Hayashi^{2,1}

I. Private Information Retrieval (PIR)

¹Nagoya University, ²Southern University of Science and Technology

Private Information Retrieval (PIR) is the problem to retrieve one of f classical files from servers without revealing the identity of the retrieved file.

Existing Results and Our Result

- Existing Quantum PIR (QPIR) studies mainly focused on <u>one-server</u> PIR with finite-bit files. [Le Gall12], [Aharonov et al.19], · · ·
- Capacities of <u>n-server</u> PIR with <u>arbitrary size files</u>: $C = \sup \frac{\text{(File size)}}{\text{(Communication)}}$

	Classical PIR	Quantum PIR our result
PIR Capacity	$\frac{1-n^{-1}}{1-n^{-f}} \text{ [Sun-Jafar16]}$	1^{\S} [SH, arXiv:1903.10209]
- with t-collusion	$rac{1-t/n}{1-\left(t/n ight)^f}$ [Sun-Jafar18]	$\min \left\{ 1, \frac{2(n - t)}{n} \right\} \S$

§ With server secrecy and by strong converse.

* n servers and f files.

II. QPIR Model with Multiple and Colluding Servers

QPIR Model

 User and servers are honest but colluding servers (at most t, unknown to user) communicate to reveal K.

Evaluation of QPIR Protocol $\Psi^{(m)}_{\mathrm{QPIR}}$

- Error Probability $P_{\mathrm{err}}^{(\mathsf{m})} := \Pr[\hat{M}_K = M_K]$
- User Secrecy $S_{\mathrm{user}}^{(\mathsf{m})} := \max_{\pi:\mathsf{perm}(\mathsf{n})} I(K; (Q_{\pi(1)}, \dots, Q_{\pi(\mathsf{t})}))$
- Server Secrecy $S_{\operatorname{serv}}^{(\mathsf{m})} := I(M \setminus \{M_K\}; Q_{[\mathsf{n}]}, \bigotimes_{i=1}^{\mathsf{n}} \mathcal{A}_i | K)_{\rho_{M,Q}}$
- QPIR Rate $R^{(m)} = \frac{\text{(File size)}}{\text{(Download size)}} = \frac{\log m}{\sum_{i=1}^{n} \log \dim \mathcal{H}_i}$

QPIR Capacity For n servers and f files, QPIR capacity is defined as

$$C_{\text{exact}}^{\alpha,\beta,\gamma} := \sup_{\substack{\mathsf{m}_{\ell} \to \infty, \\ \{\Psi_{\text{QPIR}}^{(\mathsf{m}_{\ell})}\}_{\ell=1}^{\infty}}} \left\{ \lim_{\ell \to \infty} R^{(\mathsf{m}_{\ell})} \middle| P_{\text{err}}^{(\mathsf{m}_{\ell})} \le \alpha, \ S_{\text{user}}^{(\mathsf{m}_{\ell})} \le \beta, \ S_{\text{serv}}^{(\mathsf{m}_{\ell})} \le \gamma \right\},$$

$$C^{\alpha,\beta,\gamma} := \sup_{\mathsf{m}_{\ell} \to \infty} \left\{ \lim_{\ell \to \infty} R^{(\mathsf{m}_{\ell})} \middle| P_{\text{err}}^{(\mathsf{m}_{\ell})} \le \alpha, \ S_{\text{user}}^{(\mathsf{m}_{\ell})} \le \beta, \ S_{\text{serv}}^{(\mathsf{m}_{\ell})} \le \gamma \right\},$$

$$C_{\text{asymp}}^{\alpha,\beta,\gamma} := \sup_{\substack{\mathsf{m}_{\ell} \to \infty, \\ \{\Psi_{\text{QPIR}}^{(\mathsf{m}_{\ell})}\}_{\ell=1}^{\infty}}} \left\{ \lim_{\ell \to \infty} R^{(\mathsf{m}_{\ell})} \mid \lim_{\ell \to \infty} P_{\text{err}}^{(\mathsf{m}_{\ell})} \le \alpha, \lim_{\ell \to \infty} S_{\text{user}}^{(\mathsf{m}_{\ell})} \le \beta, \lim_{\ell \to \infty} S_{\text{serv}}^{(\mathsf{m}_{\ell})} \le \gamma \right\}.$$

III. Main Result

Theorem 1 For any $\alpha \in [0,1)$ and $\beta, \gamma \in [0,\infty]$, the QPIR capacity with $f \ge 2$ files, $n \ge 2$ servers, and $1 \le t < n$ colluding servers is

$$C_{\mathrm{exact}}^{\alpha,\beta,\gamma} = C_{\mathrm{asymp}}^{\alpha,\beta,\gamma} = 1 \quad \textit{for} \ \mathsf{t} \leq \frac{\mathsf{n}}{2}, \qquad C_{\mathrm{exact}}^{\alpha,0,0} = C_{\mathrm{exact}}^{0,\beta,0} = \frac{2(\mathsf{n}-\mathsf{t})}{\mathsf{n}} \quad \textit{for} \ \mathsf{t} > \frac{\mathsf{n}}{2}.$$

IV. Preliminaries

Lemma 1: Let n, t be $n/2 \le t < n$. There exists a $2n \times 2t$ matrix $D=(\mathbf{v}_1,\ldots,\mathbf{v}_{2\mathsf{t}})=(\mathbf{w}_1^{\top},\ldots,\mathbf{v}_{2\mathsf{n}}^{\top})^{\top}$ over a finite field \mathbb{F}_q s.t.

- (a) $\langle \mathbf{v}_i, J \mathbf{v}_j \rangle = 0$ for any $i \in \{1, ..., 2(n-t)\}$ and $j \in \{1, ..., 2t\}$, where $J = \begin{pmatrix} 0 & -I_{\mathsf{n}} \\ I_{\mathsf{n}} & 0 \end{pmatrix}$, and
- (b) $\mathbf{w}_{\pi(1)}, \dots, \mathbf{w}_{\pi(t)}, \mathbf{w}_{\pi(1)+n}, \dots, \mathbf{w}_{\pi(t)+n}$ are linearly independent for any perm $\pi \in \text{perm}(\mathsf{t})$.

Stabilizer Formalism by Condition (a)

- $V := span\{v_1, \dots, v_{2(n-t)}\}\$ defines a stabilizer.
 - (: Self-orthogonality $V \subset V^{\perp} \coloneqq \{ \mathbf{v} \in \mathbb{F}_q^{2n} \mid \langle \mathbf{v}, J\mathbf{v}' \rangle = 0 \ \forall \mathbf{v}' \in V \}$)
- Let $\mathcal{A} = \text{span}\{|i\rangle \mid i \in \mathbb{F}_q\}$. For $a, b \in \mathbb{F}_q$ and $\mathbf{v} = (v_1, \dots, v_{2n}) \in \mathbb{F}_q^{2n}$,

$$\mathsf{X}(a) \coloneqq \sum_{i \in \mathbb{F}_a} |i + a\rangle\langle i|, \quad \mathsf{Z}(b) \coloneqq \sum_{i \in \mathbb{F}_a} \omega^{\operatorname{tr} bi} |i\rangle\langle i| \quad \mathsf{on} \ \mathcal{A},$$

$$\mathbf{W}(\mathbf{v}) \coloneqq \mathsf{X}(v_1)\mathsf{Z}(v_{n+1}) \otimes \mathsf{X}(v_2)\mathsf{Z}(v_{n+2}) \otimes \cdots \otimes \mathsf{X}(v_n)\mathsf{Z}(v_{2n}) \quad \text{on } \mathcal{A}^{\otimes n},$$

where $\omega := \exp(2\pi \sqrt{-1/p})$.

• $\mathcal{A}^{\otimes n}$ is decomposed as $\mathcal{H}^{\otimes n} = \mathcal{W} \otimes \mathbb{C}^{q^{n-\dim V}}$ where $\mathcal{W} = \operatorname{span}\{|[\mathbf{v}]\rangle \mid [\mathbf{v}] \coloneqq \mathbf{v} + \mathbf{V}^{\perp} \in \mathbb{F}_q^{2n}/\mathbf{V}^{\perp}\}.$

Lemma 2: . For any $\mathbf{v}, \mathbf{v}' \in \mathbb{F}_q^{2n}$, we have

$$|[\mathbf{v}]\rangle\langle[\mathbf{v}]|\otimes\rho_{\mathrm{mix}}\xrightarrow{\mathbf{W}(\mathbf{v}')}|[\mathbf{v}+\mathbf{v}']\rangle\langle[\mathbf{v}+\mathbf{v}']|\otimes\rho_{\mathrm{mix}}.$$
 (1)

V. Our QPIR Protocol

Protocol for n servers, f files, $t \ge \frac{n}{2}$ colluding servers

- Files $\mathbf{m}:=(\mathbf{m}_1,\mathbf{m}_2,\ldots,\mathbf{m}_{\mathsf{f}})\in \mathbb{F}_q^{2(\mathsf{n}-\mathsf{t})}\times\cdots\times \mathbb{F}_q^{2(\mathsf{n}-\mathsf{t})}=\mathbb{F}_a^{2(\mathsf{n}-\mathsf{t})\mathsf{f}}$.
- The target file is $\mathbf{m}_k \in \mathbb{F}_q^{2(\mathsf{n}-\mathsf{t})}$
- Choose $\mathbf{v}_{2\mathsf{t}+1},\ldots,\mathbf{v}_{2\mathsf{n}}\in\mathbb{F}_q^{2n}$ s.t. $\{\mathbf{v}_1,\ldots,\mathbf{v}_{2\mathsf{n}}\}$ is a basis of $\mathbb{F}_q^{2\mathsf{n}}$.
- For secret random $R \in \mathbb{F}_q^{2\mathsf{t} \times 2(\mathsf{n}-\mathsf{t})\mathsf{f}}$ and $E_k = (0,\ldots,0,I,0,\ldots,0)^\top$, $(\mathbf{q}_{1X},\ldots,\mathbf{q}_{\mathsf{n}X},\mathbf{q}_{1Z},\ldots,\mathbf{q}_{\mathsf{n}Z})^\top \coloneqq (\mathbf{v}_1,\ldots,\mathbf{v}_{2\mathsf{t}})R + (\mathbf{v}_{2\mathsf{t}+1},\ldots,\mathbf{v}_{2\mathsf{n}})E_k$

- Analysis of Protocol $R^{(m)} = \frac{\text{(Size of } \mathbf{m}_k)}{\text{(Download size)}} = \frac{2(\mathsf{n}-\mathsf{t})}{\mathsf{n}}$.
- $P_{\mathrm{err}}^{(\mathsf{m})} = 0$ and $S_{\mathrm{serv}}^{(\mathsf{m})} = 0$ (: the received state is $|[\mathbf{m}_k]\rangle\langle[\mathbf{m}_k]|\otimes\rho_{\mathrm{mix}}$).
- $S_{\text{user}}^{(m)} = 0$ (: queries of any t servers are uniform random by (b)).

VI. Proof Sketch of $C_{\rm exact}^{\alpha,0,0} = C_{\rm exact}^{0,\beta,0} \le 2(\mathsf{n}-\mathsf{t})/\mathsf{n}$

- By secrecy, colluding servers generate t ebits b/w user and other servers,
- With shared ebits, non-colluding (n-t) servers can send at most 2(n-t)bits to the user.