## Autoencoders Explained Easily

## Autoencoders

#### Autoencoders



Unsupervised learning

#### **Autoencoders**



Unsupervised learning



Representation learning



## Representation learning



Representation learning

Learning patterns in data

## Autoencoders: The sneaky idea

Create an architecture with a bottleneck, which ensures a lower-dimensional representation of the original data.

## Autoencoders: The sneaky idea

Create an architecture with a bottleneck, which ensures a lower-dimensional representation of the original data.



### Autoencoder = Encoder + Decoder





**Encoder** = compress data into lower-dimensional representation (*latent* space)

#### Necessary condition to learn a representation

Data should have dependencies across dimensions

### Necessary condition to learn a representation

- Data should have dependencies across dimensions
- If dimensions are all independent -> impossible to learn lower-dimensional representation

Both perform dimensionality reduction

- Both perform dimensionality reduction
- PCA learns linear relationships

- Both perform dimensionality reduction
- PCA learns linear relationships
- Encoders can learn non-linear relationships



- Both perform dimensionality reduction
- PCA learns linear relationships
- Encoders can learn non-linear relationships
- Encoder = PCA, if it uses linear activation functions



**Encoder** = compress data into lower-dimensional representation (*latent* space)



**Decoder** = Decompress representation back to original domain



**Original data** 

Reconstruction

Backpropagation

- Backpropagation
- Minimise reconstruction error

- Backpropagation
- Minimise reconstruction error

$$E(x, \hat{x})$$

- Backpropagation
- Minimise reconstruction error



#### What we ask an autoencoder...

- Sensitive enough to input data to reconstruct it
- Insensitive enough to input data **not** to overfit it

#### What we ask an autoencoder...

- Sensitive enough to input data to reconstruct it
- Insensitive enough to input data not to overfit it

$$E(x, \hat{x}) + regularization$$

#### What we ask an autoencoder...

- Sensitive enough to input data to reconstruct it
- Insensitive enough to input data not to overfit it

$$E(x,\hat{x}) + regularization$$



## Deep Autoencoder



### Deep Convolutional Autoencoder

- Similar architecture to AE
- Convolutional layers
- Encoder: Convolution + Leaky Relu +Batch normalization
- Decoder: Convolution transpose + Leaky Relu + Batch normalization



# The latent space keeps the most important attributes of the input data

# The latent space keeps the most important attributes of the input data



We can leverage the latent space to perform several interesting tasks

## Autoencoder applications

- Generation
- Denoising
- Anomaly detection
- ...



















Sample a point in the latent space and pass it through the decoder















## Anomaly detection with AEs



### What next?

- Building a Convolutional AE in Keras
- Discuss AE limitations