Implémentation d'un Modèle de Scoring

JPENCLASSROOMS

Eloi Le Quilleuc 23/11/2021

Objectif du Projet

Prêt à Dépenser: société financière qui fournit des crédits à ses clients

- 1. réaliser un modèle pour identifier les clients
- 2. rendre le modèle accessible et interprétable depuis le web

Le Modèle de Classification

Les Données

On réalise un modèle statistique, entraîné sur les données de Prêt à Dépenser

Tables prétraitées récupérées à partir d'un kernel Kaggle (lien)

Ensemble des tables d'information client de Prêt à Dépenser

Le Pré-traitement

Sélection des clients : ceux enregistrés dans application_train.csv

Valeurs manquantes : prises en compte

Encodage : One Hot pour les variables catégorielles

Feature Aggregation: une ligne par client pour chaque table (sum, mean)

Feature ingineering: combinaison de variables, mean, max

Les Données de Modélisation

Les 7 jeux de données pré-traités sont fusionnés.

Séparation entraînement - test, avec les proportions 93 % - 7 %

Variable cible

0 : le client rembourse ses crédits

1 : le client n'a pas remboursé un crédit

~ 10 % des clients ne remboursent pas leur crédit

Algorithme d'Apprentissage Machine

Classifieur LightGBM : arbre de décision boosté

Hyperparamètres: par défaut (100 arbres, 32 feuilles, taux d'app. de 0.1)

Fonction de coût : régression logistique

Métrique d'évaluation : aire sous la courbe ROC

Premiers Résultats

ROC AUC: 0.79 -> bonnes

performances

Inconvéniant: 1200 variables ->

trop complexe

Performances vs Nb de Variables

Amélioration: retirer des variables d'entrée par ordre d'importance

Modèle Final

Nombre de variables : 37

ROC AUC: 0.783 (<1 % de perte par / baseline 1200 variables)

Intervalle de confiance 95 % :

 $[0.771 - 0.794] (\pm 1.5 \%)$

feature_importance

NEW_EXT_MEAN	87
PAYMENT_RATE	83
PREV_DAYS_LAST_DUE_1ST_VERSION_MAX	57
AMT_ANNUITY	56
DAYS_BIRTH	54
EXT_SOURCE_3	46
EXT_SOURCE_1	44

7 variables les plus importantes pour le modèle

Score Crédit

Score : probabilité de défaut de paiement

Note : répartition des scores en quartiles

Score médian: 5 %

Répartition des clients en fonction du score crédit

L'Application Web

Page Web: Deux Parties

- 1. Dashboard: accéder au score crédit client et son interprétation
- 2. Predicteur : utiliser le modèle statistique sur de nouveaux clients

Dashboard

Interprétation Locale : pour 1 client donné

Coefficient de Shapley : quantifie l'influence de chaque variable sur la prédiction du score

Dashboard

Explication Semi-globale

Distributions des variables, ou 'visualiser où se situe le client X par rapport à la population de clients'

Dashboard Interprétation Globale

Coefficients de Shapley: moyenne des valeurs absolues pour chaque variable

Prédicteur

Entrée : fichier .csv avec les variables d'entrée client

Sortie : score crédit du modèle

Conclusion

Conclusion

À travers ce projet, on a réalisé:

- un modèle de classification des clients non payeurs, aux bonnes performances, relativement simple
- une application web pour utiliser le modèle et interpréter les résultats

Perspectives

Améliorations

- Optimisation des hyperparamètres LightGBM
- Balance 50-50 des classes à prédire
- Utilisation du bagging

Limites: des scores crédit faibles (grande majorité < 50 %) -> un modèle difficile pour prendre une décision. Utile pour classer les clients