Package 'cTMed'

January 14, 2025
Title Continuous Time Mediation
Version 1.0.4.9000
Description Calculates standard errors and confidence intervals for effects in continuous-time mediation models. This package extends the work of Deboeck and Preacher (2015) <doi:10.1080 10705511.2014.973960=""> and Ryan and Hamaker (2021) <doi:10.1007 s11336-021-09767-0=""> by providing methods to generate standard errors and confidence intervals for the total, direct, and indirect effects in these models.</doi:10.1007></doi:10.1080>
<pre>URL https://github.com/jeksterslab/cTMed,</pre>
https://jeksterslab.github.io/cTMed/
<pre>BugReports https://github.com/jeksterslab/cTMed/issues</pre>
License GPL (>= 3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
Depends R (>= $3.5.0$)
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp, numDeriv, parallel, simStateSpace
Suggests knitr, rmarkdown, testthat, expm
RoxygenNote 7.3.2
NeedsCompilation yes
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>
Contents
BootBeta

2 Contents

confint.ctmedboot	18
confint.ctmeddelta	21
confint.ctmedmc	23
DeltaBeta	25
DeltaBetaStd	28
DeltaIndirectCentral	32
DeltaMed	35
DeltaMedStd	
DeltaTotalCentral	
Direct	
DirectStd	49
ExpCov	
ExpMean	
Indirect	
IndirectCentral	
IndirectStd	
MCBeta	
MCBetaStd	
MCIndirectCentral	
MCMed	
MCMedStd	
MCPhi	
MCPhiSigma	
MCTotalCentral	
Med	
MedStd	
plot.ctmedboot	
plot.ctmeddelta	
plot.ctmedmc	
plot.ctmedmed	
plot.ctmedtraj	
PosteriorBeta	
PosteriorIndirectCentral	
PosteriorMed	
PosteriorTotalCentral	
print.ctmedboot	
1	
print.ctmeddelta	
print.ctmedeffect	
print.ctmedmc	
print.ctmedmcphi	
print.ctmedmed	
print.ctmedtraj	
summary.ctmedboot	
summary.ctmeddelta	
summary.ctmedmc	
summary.ctmedmed	
summary.ctmedposteriorphi	
summary.ctmedtraj	131

BootBeta 3

	TotalCentral					
Index						140
Boot	Beta	Lag	•	1 0	v	Elements of the Matrix of sterval or a Range of Time

Description

This function generates a bootstrap method sampling distribution for the elements of the matrix of lagged coefficients β over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model drift matrix Φ .

Usage

```
BootBeta(phi, phi_hat, delta_t, ncores = NULL, tol = 0.01)
```

Arguments

phi	List of numeric matrices. Each element of the list is a bootstrap estimate of the drift matrix (Φ) .
phi_hat	Numeric matrix. The estimated drift matrix $(\hat{\Phi})$ from the original data set. phi_hat should have row and column names pertaining to the variables in the system.
delta_t	Numeric. Time interval (Δt).
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
tol	Numeric. Smallest possible time interval to allow.

Details

See Total().

Value

Returns an object of class ctmedboot which is a list with the following elements:

```
call Function call.args Function arguments.fun Function used ("BootBeta").output A list with length of length(delta_t).
```

4 BootBeta

Each element in the output list has the following elements:

est Estimated elements of the matrix of lagged coefficients.

thetahatstar A matrix of bootstrap elements of the matrix of lagged coefficients.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

Other Continuous Time Mediation Functions: BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()

```
## Not run:
library(simStateSpace)
# prepare parameters
## number of individuals
n <- 50
## time points
time <- 100
delta_t <- 0.10
## dynamic structure
p < -3
mu0 < -rep(x = 0, times = p)
sigma0 <- matrix(</pre>
  data = c(
    1.0,
    0.2,
    0.2,
    0.2,
    1.0,
    0.2,
    0.2,
    0.2,
```

BootBeta 5

```
1.0
 ),
 nrow = p
)
sigma0_l <- t(chol(sigma0))</pre>
mu \leftarrow rep(x = 0, times = p)
phi <- matrix(</pre>
  data = c(
    -0.357,
    0.771,
    -0.450,
    0.0,
    -0.511,
    0.729,
    0,
    0,
    -0.693
  ),
  nrow = p
sigma <- matrix(</pre>
  data = c(
    0.24455556,
    0.02201587,
    -0.05004762,
    0.02201587,
    0.07067800,
    0.01539456,
    -0.05004762,
    0.01539456,
    0.07553061
  ),
  nrow = p
sigma_l <- t(chol(sigma))</pre>
## measurement model
k <- 3
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta <-0.2 * diag(k)
theta_l \leftarrow t(chol(theta))
boot <- PBSSMOUFixed(</pre>
  R = 10L, # use at least 1000 in actual research
  path = getwd(),
  prefix = "ou",
  n = n,
  time = time,
  delta_t = delta_t,
  mu0 = mu0,
  sigma0_1 = sigma0_1,
  mu = mu,
  phi = phi,
```

```
sigma_l = sigma_l,
 nu = nu,
 lambda = lambda,
 theta_l = theta_l,
 ncores = NULL, # consider using multiple cores
 seed = 42
)
phi_hat <- phi
colnames(phi_hat) <- rownames(phi_hat) <- c("x", "m", "y")</pre>
phi <- extract(object = boot, what = "phi")</pre>
# Specific time interval ------
BootBeta(
 phi = phi,
 phi_hat = phi_hat,
 delta_t = 1
)
# Range of time intervals ------
boot <- BootBeta(</pre>
 phi = phi,
 phi_hat = phi_hat,
 delta_t = 1:5
plot(boot)
plot(boot, type = "bc") # bias-corrected
# BootBeta has a number of methods including
# print, summary, confint, and plot
print(boot)
summary(boot)
confint(boot, level = 0.95)
print(boot, type = "bc") # bias-corrected
summary(boot, type = "bc")
confint(boot, level = 0.95, type = "bc")
## End(Not run)
```

BootBetaStd

Bootstrap Sampling Distribution for the Elements of the Standardized Matrix of Lagged Coefficients Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a bootstrap method sampling distribution for the elements of the standardized matrix of lagged coefficients β over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model drift matrix Φ .

Usage

```
BootBetaStd(phi, sigma, phi_hat, sigma_hat, delta_t, ncores = NULL, tol = 0.01)
```

Arguments

phi	List of numeric matrices. Each element of the list is a bootstrap estimate of the drift matrix (Φ) .
sigma	List of numeric matrices. Each element of the list is a bootstrap estimate of the process noise covariance matrix (Σ) .
phi_hat	Numeric matrix. The estimated drift matrix $(\hat{\Phi})$ from the original data set. phi_hat should have row and column names pertaining to the variables in the system.
sigma_hat	Numeric matrix. The estimated process noise covariance matrix $(\hat{\Sigma})$ from the original data set.
delta_t	Numeric. Time interval (Δt) .
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
tol	Numeric. Smallest possible time interval to allow.

Details

See TotalStd().

Value

Returns an object of class ctmedboot which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("BootBetaStd").

output A list with length of length(delta_t).

Each element in the output list has the following elements:

est Estimated elements of the standardized matrix of lagged coefficients.

thetahatstar A matrix of bootstrap elements of the standardized matrix of lagged coefficients.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
## Not run:
library(simStateSpace)
# prepare parameters
## number of individuals
n <- 50
## time points
time <- 100
delta_t <- 0.10
## dynamic structure
p <- 3
mu0 < -rep(x = 0, times = p)
sigma0 <- matrix(</pre>
  data = c(
    1.0,
    0.2,
    0.2,
    0.2,
    1.0,
    0.2,
    0.2,
    0.2,
    1.0
  ),
  nrow = p
sigma0_l <- t(chol(sigma0))</pre>
mu \leftarrow rep(x = 0, times = p)
phi <- matrix(</pre>
  data = c(
    -0.357,
```

```
0.771,
    -0.450,
    0.0,
    -0.511,
    0.729,
    0,
    0,
    -0.693
  ),
  nrow = p
)
sigma <- matrix(</pre>
  data = c(
    0.24455556,
    0.02201587,
    -0.05004762,
    0.02201587,
    0.07067800,
    0.01539456,
    -0.05004762,
    0.01539456,
    0.07553061
  ),
  nrow = p
)
sigma_l <- t(chol(sigma))</pre>
## measurement model
k <- 3
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta <- 0.2 * diag(k)
theta_l <- t(chol(theta))</pre>
boot <- PBSSMOUFixed(</pre>
  R = 10L, # use at least 1000 in actual research
  path = getwd(),
  prefix = "ou",
  n = n,
  time = time,
  delta_t = delta_t,
  mu0 = mu0,
  sigma0_1 = sigma0_1,
  mu = mu,
  phi = phi,
  sigma_l = sigma_l,
  nu = nu,
  lambda = lambda,
  theta_1 = theta_1,
  ncores = NULL, # consider using multiple cores
  seed = 42
)
phi_hat <- phi
colnames(phi_hat) <- rownames(phi_hat) <- c("x", "m", "y")</pre>
```

```
sigma_hat <- sigma
phi <- extract(object = boot, what = "phi")</pre>
sigma <- extract(object = boot, what = "sigma")</pre>
# Specific time interval ------
BootBetaStd(
 phi = phi,
 sigma = sigma,
 phi_hat = phi_hat,
 sigma_hat = sigma_hat,
 delta_t = 1
)
# Range of time intervals -----
boot <- BootBetaStd(</pre>
 phi = phi,
 sigma = sigma,
 phi_hat = phi_hat,
 sigma_hat = sigma_hat,
 delta_t = 1:5
)
plot(boot)
plot(boot, type = "bc") # bias-corrected
# Methods ------
# BootBetaStd has a number of methods including
# print, summary, confint, and plot
print(boot)
summary(boot)
confint(boot, level = 0.95)
print(boot, type = "bc") # bias-corrected
summary(boot, type = "bc")
confint(boot, level = 0.95, type = "bc")
## End(Not run)
```

BootMed

Bootstrap Sampling Distribution of Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a bootstrap method sampling distribution of the total, direct and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model drift matrix $\mathbf{\Phi}$.

Usage

```
BootMed(phi, phi_hat, delta_t, from, to, med, ncores = NULL, tol = 0.01)
```

Arguments

phi	List of numeric matrices. Each element of the list is a bootstrap estimate of the drift matrix (Φ) .
phi_hat	Numeric matrix. The estimated drift matrix $(\hat{\Phi})$ from the original data set. phi_hat should have row and column names pertaining to the variables in the system.
delta_t	Numeric. Time interval (Δt).
from	Character string. Name of the independent variable X in phi.
to	Character string. Name of the dependent variable Y in phi.
med	Character vector. Name/s of the mediator variable/s in phi.
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
11001 00	

Details

tol

See Total(), Direct(), and Indirect() for more details.

Value

Returns an object of class ctmedboot which is a list with the following elements:

Numeric. Smallest possible time interval to allow.

```
call Function call.
```

args Function arguments.

fun Function used ("BootMed").

output A list with length of length(delta_t).

Each element in the output list has the following elements:

est A vector of total, direct, and indirect effects.

thetahatstar A matrix of bootstrap total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()

```
## Not run:
library(simStateSpace)
# prepare parameters
## number of individuals
n <- 50
## time points
time <- 100
delta_t <- 0.10
## dynamic structure
p <- 3
mu0 < -rep(x = 0, times = p)
sigma0 <- matrix(</pre>
  data = c(
    1.0,
    0.2,
    0.2,
    0.2,
    1.0,
    0.2,
    0.2,
    0.2,
    1.0
  ),
  nrow = p
sigma0_l <- t(chol(sigma0))</pre>
mu \leftarrow rep(x = 0, times = p)
phi <- matrix(</pre>
  data = c(
    -0.357,
```

```
0.771,
    -0.450,
    0.0,
    -0.511,
    0.729,
    0,
    0,
    -0.693
  ),
  nrow = p
)
sigma <- matrix(</pre>
  data = c(
    0.24455556,
    0.02201587,
    -0.05004762,
    0.02201587,
    0.07067800,
    0.01539456,
    -0.05004762,
    0.01539456,
    0.07553061
  ),
  nrow = p
)
sigma_l <- t(chol(sigma))</pre>
## measurement model
k <- 3
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta <- 0.2 * diag(k)
theta_l <- t(chol(theta))</pre>
boot <- PBSSMOUFixed(</pre>
  R = 10L, # use at least 1000 in actual research
  path = getwd(),
  prefix = "ou",
  n = n,
  time = time,
  delta_t = delta_t,
  mu0 = mu0,
  sigma0_1 = sigma0_1,
  mu = mu,
  phi = phi,
  sigma_l = sigma_l,
  nu = nu,
  lambda = lambda,
  theta_1 = theta_1,
  ncores = NULL, # consider using multiple cores
  seed = 42
)
phi_hat <- phi
colnames(phi_hat) <- rownames(phi_hat) <- c("x", "m", "y")</pre>
```

```
phi <- extract(object = boot, what = "phi")</pre>
# Specific time interval ------
BootMed(
 phi = phi,
 phi_hat = phi_hat,
 delta_t = 1,
 from = x,
 to = "y",
 med = "m"
)
# Range of time intervals ------
boot <- BootMed(</pre>
 phi = phi,
 phi_hat = phi_hat,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
)
plot(boot)
plot(boot, type = "bc") # bias-corrected
# Methods ------
# BootMed has a number of methods including
# print, summary, confint, and plot
print(boot)
summary(boot)
confint(boot, level = 0.95)
print(boot, type = "bc") # bias-corrected
summary(boot, type = "bc")
confint(boot, level = 0.95, type = "bc")
## End(Not run)
```

BootMedStd

Bootstrap Sampling Distribution of Standardized Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a bootstrap method sampling distribution of the standardized total, direct and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model drift matrix $\mathbf{\Phi}$.

Usage

```
BootMedStd(
   phi,
   sigma,
   phi_hat,
   sigma_hat,
   delta_t,
   from,
   to,
   med,
   ncores = NULL,
   tol = 0.01
)
```

Arguments

phi	List of numeric matrices. Each element of the list is a bootstrap estimate of the drift matrix (Φ) .
sigma	List of numeric matrices. Each element of the list is a bootstrap estimate of the process noise covariance matrix (Σ) .
phi_hat	Numeric matrix. The estimated drift matrix $(\hat{\Phi})$ from the original data set. phi_hat should have row and column names pertaining to the variables in the system.
sigma_hat	Numeric matrix. The estimated process noise covariance matrix $(\hat{\Sigma})$ from the original data set.
delta_t	Numeric. Time interval (Δt).
from	Character string. Name of the independent variable X in phi.
to	Character string. Name of the dependent variable Y in phi.
med	Character vector. Name/s of the mediator variable/s in phi.
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
tol	Numeric. Smallest possible time interval to allow.

Details

See TotalStd(), DirectStd(), and IndirectStd() for more details.

Value

Returns an object of class ctmedboot which is a list with the following elements:

```
call Function call.
args Function arguments.
fun Function used ("BootMedStd").
output A list with length of length(delta_t).
```

Each element in the output list has the following elements:

est A vector of standardized total, direct, and indirect effects.

thetahatstar A matrix of bootstrap standardized total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
## Not run:
library(simStateSpace)
# prepare parameters
## number of individuals
n <- 50
## time points
time <- 100
delta_t <- 0.10
## dynamic structure
p <- 3
mu0 < -rep(x = 0, times = p)
sigma0 <- matrix(</pre>
  data = c(
    1.0,
    0.2,
    0.2,
    0.2,
    1.0,
    0.2,
    0.2,
    0.2,
```

```
1.0
  ),
 nrow = p
)
sigma0_l <- t(chol(sigma0))</pre>
mu \leftarrow rep(x = 0, times = p)
phi <- matrix(</pre>
  data = c(
    -0.357,
    0.771,
    -0.450,
    0.0,
    -0.511,
    0.729,
    0,
    0,
    -0.693
  ),
  nrow = p
sigma <- matrix(</pre>
  data = c(
    0.24455556,
    0.02201587,
    -0.05004762,
    0.02201587,
    0.07067800,
    0.01539456,
    -0.05004762,
    0.01539456,
    0.07553061
  ),
  nrow = p
sigma_l <- t(chol(sigma))</pre>
## measurement model
k <- 3
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta <-0.2 * diag(k)
theta_l \leftarrow t(chol(theta))
boot <- PBSSMOUFixed(</pre>
  R = 10L, # use at least 1000 in actual research
  path = getwd(),
  prefix = "ou",
  n = n,
  time = time,
  delta_t = delta_t,
  mu0 = mu0,
  sigma0_1 = sigma0_1,
  mu = mu,
  phi = phi,
```

```
sigma_l = sigma_l,
 nu = nu,
 lambda = lambda,
 theta_l = theta_l,
 ncores = NULL, # consider using multiple cores
 seed = 42
)
phi_hat <- phi
colnames(phi_hat) <- rownames(phi_hat) <- c("x", "m", "y")</pre>
sigma_hat <- sigma</pre>
phi <- extract(object = boot, what = "phi")</pre>
sigma <- extract(object = boot, what = "sigma")</pre>
# Specific time interval -----
BootMedStd(
 phi = phi,
 sigma = sigma,
 phi_hat = phi_hat,
 sigma_hat = sigma_hat,
 delta_t = 1,
 from = x,
 to = "y",
 med = "m"
)
# Range of time intervals ------
boot <- BootMedStd(</pre>
 phi = phi,
 sigma = sigma,
 phi_hat = phi_hat,
 sigma_hat = sigma_hat,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
)
plot(boot)
plot(boot, type = "bc") # bias-corrected
# Methods ------
# BootMedStd has a number of methods including
# print, summary, confint, and plot
print(boot)
summary(boot)
confint(boot, level = 0.95)
print(boot, type = "bc") # bias-corrected
summary(boot, type = "bc")
confint(boot, level = 0.95, type = "bc")
## End(Not run)
```

confint.ctmedboot 19

confint.ctmedboot Bootstrap Method Confidence In	Intervals
--	-----------

Description

Bootstrap Method Confidence Intervals

Usage

```
## S3 method for class 'ctmedboot'
confint(object, parm = NULL, level = 0.95, type = "pc", ...)
```

Arguments

object Object of class ctmedboot.

parm a specification of which parameters are to be given confidence intervals, either

a vector of numbers or a vector of names. If missing, all parameters are consid-

ered.

level the confidence level required.

type Charater string. Confidence interval type, that is, type = "pc" for percentile;

type = "bc" for bias corrected.

... additional arguments.

Value

Returns a data frame of confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
## Not run:
library(simStateSpace)
# prepare parameters
## number of individuals
n <- 50
## time points
time <- 100
delta_t <- 0.10
## dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- matrix(
   data = c(
        1.0,
        0.2,</pre>
```

20 confint.ctmedboot

```
0.2,
    0.2,
    1.0,
    0.2,
    0.2,
    0.2,
    1.0
  ),
  nrow = p
)
sigma0_l \leftarrow t(chol(sigma0))
mu \leftarrow rep(x = 0, times = p)
phi <- matrix(</pre>
  data = c(
    -0.357,
    0.771,
    -0.450,
    0.0,
    -0.511,
    0.729,
    0,
    0,
    -0.693
  ),
  nrow = p
sigma <- matrix(</pre>
  data = c(
    0.24455556,
    0.02201587,
    -0.05004762,
    0.02201587,
    0.07067800,
    0.01539456,
    -0.05004762,
    0.01539456,
    0.07553061
  ),
  nrow = p
sigma_l <- t(chol(sigma))</pre>
## measurement model
k <- 3
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta <- 0.2 * diag(k)
theta_l <- t(chol(theta))</pre>
boot <- PBSSMOUFixed(</pre>
  R = 1000L,
  path = getwd(),
  prefix = "ou",
  n = n,
```

confint.ctmeddelta 21

```
time = time,
 delta_t = delta_t,
 mu0 = mu0,
 sigma0_1 = sigma0_1,
 mu = mu,
 phi = phi,
 sigma_l = sigma_l,
 nu = nu,
 lambda = lambda,
 theta_1 = theta_1,
 ncores = parallel::detectCores() - 1,
 seed = 42
phi_hat <- phi
colnames(phi_hat) \leftarrow rownames(phi_hat) \leftarrow c("x", "m", "y")
phi <- extract(object = boot, what = "phi")</pre>
# Specific time interval ------
boot <- BootMed(</pre>
 phi = phi,
 phi_hat = phi_hat,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
confint(boot)
confint(boot, type = "bc") # bias-corrected
# Range of time intervals ------
boot <- BootMed(</pre>
 phi = phi,
 phi_hat = phi_hat,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
)
confint(boot)
confint(boot, type = "bc") # bias-corrected
## End(Not run)
```

 ${\tt confint.ctmeddelta}$

Delta Method Confidence Intervals

Description

Delta Method Confidence Intervals

22 confint.ctmeddelta

Usage

```
## S3 method for class 'ctmeddelta'
confint(object, parm = NULL, level = 0.95, ...)
```

Arguments

object Object of class ctmeddelta.

parm a specification of which parameters are to be given confidence intervals, either

a vector of numbers or a vector of names. If missing, all parameters are consid-

ered.

level the confidence level required.

... additional arguments.

Value

Returns a data frame of confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
    0.00644, 0.00031, -0.00119,
    -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
    0.00031, 0.00287, 0.00013,
    -0.00014, -0.00170, -0.00012,
    0.00110, -0.00016, -0.00283,
```

confint.ctmedmc 23

```
-0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
   -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
   -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
confint(delta, level = 0.95)
# Range of time intervals ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
confint(delta, level = 0.95)
```

confint.ctmedmc

Monte Carlo Method Confidence Intervals

Description

Monte Carlo Method Confidence Intervals

Usage

```
## S3 method for class 'ctmedmc'
confint(object, parm = NULL, level = 0.95, ...)
```

24 confint.ctmedmc

Arguments

object Object of class ctmedmc.

parm a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.

level the confidence level required.
... additional arguments.

Value

Returns a data frame of confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
set.seed(42)
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) \leftarrow rownames(phi) \leftarrow c("x", "m", "y")
vcov_phi_vec <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
    0.00644, 0.00031, -0.00119,
    -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
    0.00031, 0.00287, 0.00013,
    -0.00014, -0.00170, -0.00012,
    0.00110, -0.00016, -0.00283,
    -0.00119, 0.00013, 0.00297,
    0.00063, -0.00004, -0.00177,
    0.00324, 0.00009, -0.00050,
    -0.00374, -0.00014, 0.00063,
```

DeltaBeta 25

```
0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
   -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m",
 R = 100L # use a large value for R in actual research
)
confint(mc, level = 0.95)
# Range of time intervals ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m",
 R = 100L # use a large value for R in actual research
)
confint(mc, level = 0.95)
```

DeltaBeta

Delta Method Sampling Variance-Covariance Matrix for the Elements of the Matrix of Lagged Coefficients Over a Specific Time Interval or a Range of Time Intervals

Description

This function computes the delta method sampling variance-covariance matrix for the elements of the matrix of lagged coefficients β over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model's drift matrix Φ .

Usage

```
DeltaBeta(phi, vcov_phi_vec, delta_t, ncores = NULL, tol = 0.01)
```

26 DeltaBeta

Arguments

phi Numeric matrix. The drift matrix (Φ) , phi should have row and column names

pertaining to the variables in the system.

vcov_phi_vec Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\Phi\right)$.

delta_t Vector of positive numbers. Time interval (Δt) .

ncores Positive integer. Number of cores to use. If ncores = NULL, use a single core.

Consider using multiple cores when the length of delta_t is long.

tol Numeric. Smallest possible time interval to allow.

Details

See Total().

Delta Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. By the multivariate central limit theory, the function g using $\hat{\theta}$ as input can be expressed as:

$$\sqrt{n}\left(\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) - \mathbf{g}\left(\boldsymbol{\theta}\right)\right) \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, \mathbf{J}\boldsymbol{\Gamma}\mathbf{J}'\right)$$

where **J** is the matrix of first-order derivatives of the function **g** with respect to the elements of θ and Γ is the asymptotic variance-covariance matrix of $\hat{\theta}$.

From the former, we can derive the distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ as follows:

$$\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) \approx \mathcal{N}\left(\mathbf{g}\left(\boldsymbol{\theta}\right), n^{-1}\mathbf{J}\mathbf{\Gamma}\mathbf{J}'\right)$$

The uncertainty associated with the estimator $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is, therefore, given by $n^{-1}\mathbf{J}\Gamma\mathbf{J}'$. When Γ is unknown, by substitution, we can use the estimated sampling variance-covariance matrix of $\hat{\boldsymbol{\theta}}$, that is, $\hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right)$ for $n^{-1}\Gamma$. Therefore, the sampling variance-covariance matrix of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is given by

$$\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) \approx \mathcal{N}\left(\mathbf{g}\left(\boldsymbol{\theta}\right), \mathbf{J}\hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right) \mathbf{J}'\right).$$

Value

Returns an object of class ctmeddelta which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("DeltaBeta").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

delta_t Time interval.

DeltaBeta 27

jacobian Jacobian matrix.

est Estimated elements of the matrix of lagged coefficients.

vcov Sampling variance-covariance matrix of estimated elements of the matrix of lagged coefficients.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()

```
phi <- matrix(</pre>
 data = c(
    -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
 ),
 nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
 data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
```

```
-0.00600, -0.00022, 0.00103,
   0.00644, 0.00031, -0.00119,
   -0.00374, -0.00021, 0.00070,
   -0.00033, -0.00273, -0.00007,
   0.00031, 0.00287, 0.00013,
   -0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
   -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
   -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
   -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval ------
DeltaBeta(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1
)
# Range of time intervals -----
delta <- DeltaBeta(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5
plot(delta)
# Methods ------
# DeltaBeta has a number of methods including
# print, summary, confint, and plot
print(delta)
summary(delta)
confint(delta, level = 0.95)
plot(delta)
```

DeltaBetaStd

Delta Method Sampling Variance-Covariance Matrix for the Elements of the Standardized Matrix of Lagged Coefficients Over a Specific Time Interval or a Range of Time Intervals

Description

This function computes the delta method sampling variance-covariance matrix for the elements of the standardized matrix of lagged coefficients β over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model's drift matrix Φ and process noise covariance matrix Σ .

Usage

DeltaBetaStd(phi, sigma, vcov_theta, delta_t, ncores = NULL, tol = 0.01)

Arguments

phi	Numeric matrix. The drift matrix (Φ) . phi should have row and column names pertaining to the variables in the system.
sigma	Numeric matrix. The process noise covariance matrix (Σ) .
vcov_theta	Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\mathbf{\Phi}\right)$ and $\operatorname{vech}\left(\mathbf{\Sigma}\right)$
delta_t	Numeric. Time interval (Δt).
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
tol	Numeric. Smallest possible time interval to allow.

Details

See TotalStd().

Delta Method:

Let θ be a vector that combines $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise and $\operatorname{vech}(\Sigma)$, that is, the unique elements of the Σ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be a vector that combines $\operatorname{vec}(\hat{\Phi})$ and $\operatorname{vech}(\hat{\Sigma})$. By the multivariate central limit theory, the function \mathbf{g} using $\hat{\theta}$ as input can be expressed as:

$$\sqrt{n}\left(\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) - \mathbf{g}\left(\boldsymbol{\theta}\right)\right) \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, \mathbf{J}\boldsymbol{\Gamma}\mathbf{J}'\right)$$

where **J** is the matrix of first-order derivatives of the function **g** with respect to the elements of θ and Γ is the asymptotic variance-covariance matrix of $\hat{\theta}$.

From the former, we can derive the distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ as follows:

$$\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) \approx \mathcal{N}\left(\mathbf{g}\left(\boldsymbol{\theta}\right), n^{-1}\mathbf{J}\mathbf{\Gamma}\mathbf{J}'\right)$$

The uncertainty associated with the estimator $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is, therefore, given by $n^{-1}\mathbf{J}\Gamma\mathbf{J}'$. When Γ is unknown, by substitution, we can use the estimated sampling variance-covariance matrix of $\hat{\boldsymbol{\theta}}$, that is, $\hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right)$ for $n^{-1}\Gamma$. Therefore, the sampling variance-covariance matrix of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is given by

$$\mathbf{g}\left(\hat{oldsymbol{ heta}}
ight)pprox\mathcal{N}\left(\mathbf{g}\left(oldsymbol{ heta}
ight),\mathbf{J}\hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight)\mathbf{J}'
ight).$$

Value

Returns an object of class ctmeddelta which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("DeltaBetaStd").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

delta_t Time interval.

jacobian Jacobian matrix.

est Estimated elements of the standardized matrix of lagged coefficients.

vcov Sampling variance-covariance matrix of estimated elements of the standardized matrix of lagged coefficients.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
),
  nrow = 3</pre>
```

```
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
sigma <- matrix(</pre>
 data = c(
   0.24455556, 0.02201587, -0.05004762,
   0.02201587, 0.07067800, 0.01539456,
   -0.05004762, 0.01539456, 0.07553061
 ),
 nrow = 3
)
vcov_theta <- matrix(</pre>
 data = c(
    0.00843, 0.00040, -0.00151, -0.00600, -0.00033,
    0.00110, 0.00324, 0.00020, -0.00061, -0.00115,
    0.00011, 0.00015, 0.00001, -0.00002, -0.00001,
   0.00040, 0.00374, 0.00016, -0.00022, -0.00273,
   -0.00016, 0.00009, 0.00150, 0.00012, -0.00010,
   -0.00026, 0.00002, 0.00012, 0.00004, -0.00001,
   -0.00151, 0.00016, 0.00389, 0.00103, -0.00007,
   -0.00283, -0.00050, 0.00000, 0.00156, 0.00021,
   -0.00005, -0.00031, 0.00001, 0.00007, 0.00006,
    -0.00600, -0.00022, 0.00103, 0.00644, 0.00031,
   -0.00119, -0.00374, -0.00021, 0.00070, 0.00064,
    -0.00015, -0.00005, 0.00000, 0.00003, -0.00001,
    -0.00033, -0.00273, -0.00007, 0.00031, 0.00287,
    0.00013, -0.00014, -0.00170, -0.00012, 0.00006,
    0.00014, -0.00001, -0.00015, 0.00000, 0.00001,
    0.00110, -0.00016, -0.00283, -0.00119, 0.00013,
   0.00297, 0.00063, -0.00004, -0.00177, -0.00013,
   0.00005, 0.00017, -0.00002, -0.00008, 0.00001,
   0.00324, 0.00009, -0.00050, -0.00374, -0.00014,
   0.00063, 0.00495, 0.00024, -0.00093, -0.00020,
   0.00006, -0.00010, 0.00000, -0.00001, 0.00004,
    0.00020, 0.00150, 0.00000, -0.00021, -0.00170,
    -0.00004, 0.00024, 0.00214, 0.00012, -0.00002,
    -0.00004, 0.00000, 0.00006, -0.00005, -0.00001,
    -0.00061, 0.00012, 0.00156, 0.00070, -0.00012,
    -0.00177, -0.00093, 0.00012, 0.00223, 0.00004,
    -0.00002, -0.00003, 0.00001, 0.00003, -0.00013,
    -0.00115, -0.00010, 0.00021, 0.00064, 0.00006,
    -0.00013, -0.00020, -0.00002, 0.00004, 0.00057,
   0.00001, -0.00009, 0.00000, 0.00000, 0.00001,
   0.00011, -0.00026, -0.00005, -0.00015, 0.00014,
   0.00005, 0.00006, -0.00004, -0.00002, 0.00001,
   0.00012, 0.00001, 0.00000, -0.00002, 0.00000,
    0.00015, 0.00002, -0.00031, -0.00005, -0.00001,
    0.00017, -0.00010, 0.00000, -0.00003, -0.00009,
    0.00001, 0.00014, 0.00000, 0.00000, -0.00005,
    0.00001, 0.00012, 0.00001, 0.00000, -0.00015,
    -0.00002, 0.00000, 0.00006, 0.00001, 0.00000,
   0.00000, 0.00000, 0.00010, 0.00001, 0.00000,
    -0.00002, 0.00004, 0.00007, 0.00003, 0.00000,
    -0.00008, -0.00001, -0.00005, 0.00003, 0.00000,
```

32 DeltaIndirectCentral

```
-0.00002, 0.00000, 0.00001, 0.00005, 0.00001,
   -0.00001, -0.00001, 0.00006, -0.00001, 0.00001,
   0.00001, 0.00004, -0.00001, -0.00013, 0.00001,
   0.00000, -0.00005, 0.00000, 0.00001, 0.00012
 ),
 nrow = 15
)
# Specific time interval ------
DeltaBetaStd(
 phi = phi,
 sigma = sigma,
 vcov_theta = vcov_theta,
 delta_t = 1
)
# Range of time intervals ------
delta <- DeltaBetaStd(</pre>
 phi = phi,
 sigma = sigma,
 vcov_theta = vcov_theta,
 delta_t = 1:5
)
plot(delta)
# Methods -----
# DeltaBetaStd has a number of methods including
# print, summary, confint, and plot
print(delta)
summary(delta)
confint(delta, level = 0.95)
plot(delta)
```

DeltaIndirectCentral Delta Method Sampling Variance-Covariance Matrix for the Indirect

Effect Centrality Over a Specific Time Interval or a Range of Time

Intervals

Description

This function computes the delta method sampling variance-covariance matrix for the indirect effect centrality over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model's drift matrix Φ .

Usage

```
DeltaIndirectCentral(phi, vcov_phi_vec, delta_t, ncores = NULL, tol = 0.01)
```

DeltaIndirectCentral 33

Arguments

phi Numeric matrix. The drift matrix (Φ) , phi should have row and column names

pertaining to the variables in the system.

vcov_phi_vec Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\Phi\right)$.

delta_t Vector of positive numbers. Time interval (Δt).

ncores Positive integer. Number of cores to use. If ncores = NULL, use a single core.

Consider using multiple cores when the length of delta_t is long.

tol Numeric. Smallest possible time interval to allow.

Details

See IndirectCentral() more details.

Delta Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. By the multivariate central limit theory, the function g using $\hat{\theta}$ as input can be expressed as:

$$\sqrt{n}\left(\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) - \mathbf{g}\left(\boldsymbol{\theta}\right)\right) \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, \mathbf{J}\boldsymbol{\Gamma}\mathbf{J}'\right)$$

where **J** is the matrix of first-order derivatives of the function **g** with respect to the elements of θ and Γ is the asymptotic variance-covariance matrix of $\hat{\theta}$.

From the former, we can derive the distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ as follows:

$$\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) \approx \mathcal{N}\left(\mathbf{g}\left(\boldsymbol{\theta}\right), n^{-1}\mathbf{J}\boldsymbol{\Gamma}\mathbf{J}'\right)$$

The uncertainty associated with the estimator $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is, therefore, given by $n^{-1}\mathbf{J}\Gamma\mathbf{J}'$. When Γ is unknown, by substitution, we can use the estimated sampling variance-covariance matrix of $\hat{\boldsymbol{\theta}}$, that is, $\hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right)$ for $n^{-1}\Gamma$. Therefore, the sampling variance-covariance matrix of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is given by

$$\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) \approx \mathcal{N}\left(\mathbf{g}\left(\boldsymbol{\theta}\right), \mathbf{J}\hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right) \mathbf{J}'\right).$$

Value

Returns an object of class ctmeddelta which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("DeltaIndirectCentral").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

delta_t Time interval.

34 DeltaIndirectCentral

jacobian Jacobian matrix.

est Estimated indirect effect centrality.

vcov Sampling variance-covariance matrix of estimated indirect effect centrality.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(</pre>
 data = c(
    -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
 ),
 nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
 data = c(
    0.002704274, -0.001475275, 0.000949122,
    -0.001619422, 0.000885122, -0.000569404,
    0.00085493, -0.000465824, 0.000297815,
    -0.001475275, 0.004428442, -0.002642303,
    0.000980573, -0.00271817, 0.001618805,
    -0.000586921, 0.001478421, -0.000871547,
    0.000949122, -0.002642303, 0.006402668,
    -0.000697798, 0.001813471, -0.004043138,
    0.000463086, -0.001120949, 0.002271711,
    -0.001619422, 0.000980573, -0.000697798,
```

DeltaMed 35

```
0.002079286, -0.001152501, 0.000753,
   -0.001528701, 0.000820587, -0.000517524,
   0.000885122, -0.00271817, 0.001813471,
   -0.001152501, 0.00342605, -0.002075005,
   0.000899165, -0.002532849, 0.001475579,
   -0.000569404, 0.001618805, -0.004043138,
   0.000753, -0.002075005, 0.004984032,
   -0.000622255, 0.001634917, -0.003705661,
   0.00085493, -0.000586921, 0.000463086,
   -0.001528701, 0.000899165, -0.000622255,
   0.002060076, -0.001096684, 0.000686386,
   -0.000465824, 0.001478421, -0.001120949,
   0.000820587, -0.002532849, 0.001634917,
   -0.001096684, 0.003328692, -0.001926088,
   0.000297815, -0.000871547, 0.002271711,
   -0.000517524, 0.001475579, -0.003705661,
    0.000686386, \ -0.001926088, \ 0.004726235 
 ),
 nrow = 9
)
# Specific time interval -----
DeltaIndirectCentral(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1
# Range of time intervals ------
delta <- DeltaIndirectCentral(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5
plot(delta)
# Methods ------
# DeltaIndirectCentral has a number of methods including
# print, summary, confint, and plot
print(delta)
summary(delta)
confint(delta, level = 0.95)
plot(delta)
```

DeltaMed

Delta Method Sampling Variance-Covariance Matrix for the Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals

Description

This function computes the delta method sampling variance-covariance matrix for the total, direct, and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model's drift matrix $\mathbf{\Phi}$.

Usage

DeltaMed(phi, vcov_phi_vec, delta_t, from, to, med, ncores = NULL, tol = 0.01)

Arguments

phi Numeric matrix. The drift matrix (Φ), phi should have row and column names pertaining to the variables in the system.

vcov_phi_vec Numeric matrix. The sampling variance-covariance matrix of $\text{vec}(\Phi)$.

delta_t Vector of positive numbers. Time interval (Δt).

from Character string. Name of the independent variable X in phi. to Character string. Name of the dependent variable Y in phi. med Character vector. Name/s of the mediator variable/s in phi.

ncores Positive integer. Number of cores to use. If ncores = NULL, use a single core.

Consider using multiple cores when the length of delta_t is long.

tol Numeric. Smallest possible time interval to allow.

Details

See Total(), Direct(), and Indirect() for more details.

Delta Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. By the multivariate central limit theory, the function \mathbf{g} using $\hat{\theta}$ as input can be expressed as:

$$\sqrt{n}\left(\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) - \mathbf{g}\left(\boldsymbol{\theta}\right)\right) \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, \mathbf{J}\boldsymbol{\Gamma}\mathbf{J}'\right)$$

where **J** is the matrix of first-order derivatives of the function **g** with respect to the elements of θ and Γ is the asymptotic variance-covariance matrix of $\hat{\theta}$.

From the former, we can derive the distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ as follows:

$$\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) \approx \mathcal{N}\left(\mathbf{g}\left(\boldsymbol{\theta}\right), n^{-1}\mathbf{J}\boldsymbol{\Gamma}\mathbf{J}'\right)$$

The uncertainty associated with the estimator $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is, therefore, given by $n^{-1}\mathbf{J}\Gamma\mathbf{J}'$. When Γ is unknown, by substitution, we can use the estimated sampling variance-covariance matrix of $\hat{\boldsymbol{\theta}}$, that is, $\hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right)$ for $n^{-1}\Gamma$. Therefore, the sampling variance-covariance matrix of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is given by

$$\mathbf{g}\left(\hat{oldsymbol{ heta}}
ight)pprox\mathcal{N}\left(\mathbf{g}\left(oldsymbol{ heta}
ight),\mathbf{J}\hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight)\mathbf{J}'
ight).$$

DeltaMed 37

Value

Returns an object of class ctmeddelta which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("DeltaMed").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

delta_t Time interval.

jacobian Jacobian matrix.

est Estimated total, direct, and indirect effects.

vcov Sampling variance-covariance matrix of the estimated total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)</pre>
```

38 DeltaMed

```
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
 data = c(
   0.00843, 0.00040, -0.00151,
   -0.00600, -0.00033, 0.00110,
   0.00324, 0.00020, -0.00061,
   0.00040, 0.00374, 0.00016,
   -0.00022, -0.00273, -0.00016,
   0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
   0.00103, -0.00007, -0.00283,
   -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
   0.00644, 0.00031, -0.00119,
   -0.00374, -0.00021, 0.00070,
   -0.00033, -0.00273, -0.00007,
   0.00031, 0.00287, 0.00013,
   -0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
   -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
    -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
    -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval ------
DeltaMed(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
)
# Range of time intervals ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
```

DeltaMedStd 39

```
# Methods ------
# DeltaMed has a number of methods including
# print, summary, confint, and plot
print(delta)
summary(delta)
confint(delta, level = 0.95)
plot(delta)
```

DeltaMedStd

Delta Method Sampling Variance-Covariance Matrix for the Standardized Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals

Description

This function computes the delta method sampling variance-covariance matrix for the standardized total, direct, and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model's drift matrix $\mathbf{\Phi}$ and process noise covariance matrix $\mathbf{\Sigma}$.

Usage

```
DeltaMedStd(
   phi,
   sigma,
   vcov_theta,
   delta_t,
   from,
   to,
   med,
   ncores = NULL,
   tol = 0.01
)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ) , phi should have row and column names pertaining to the variables in the system.
sigma	Numeric matrix. The process noise covariance matrix (Σ) .
vcov_the	Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\mathbf{\Phi}\right)$ and $\operatorname{vech}\left(\mathbf{\Sigma}\right)$
delta_t	Numeric. Time interval (Δt).
from	Character string. Name of the independent variable X in phi.

to	Character string. Name of the dependent variable Y in phi.	
med	Character vector. Name/s of the mediator variable/s in phi.	
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.	
tol	Numeric Smallest possible time interval to allow	

Details

See TotalStd(), DirectStd(), and IndirectStd() for more details.

Delta Method:

Let θ be a vector that combines $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise and $\operatorname{vech}(\Sigma)$, that is, the unique elements of the Σ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be a vector that combines $\operatorname{vec}(\hat{\Phi})$ and $\operatorname{vech}(\hat{\Sigma})$. By the multivariate central limit theory, the function \mathbf{g} using $\hat{\theta}$ as input can be expressed as:

$$\sqrt{n}\left(\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) - \mathbf{g}\left(\boldsymbol{\theta}\right)\right) \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, \mathbf{J}\boldsymbol{\Gamma}\mathbf{J}'\right)$$

where **J** is the matrix of first-order derivatives of the function **g** with respect to the elements of θ and Γ is the asymptotic variance-covariance matrix of $\hat{\theta}$.

From the former, we can derive the distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ as follows:

$$\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) \approx \mathcal{N}\left(\mathbf{g}\left(\boldsymbol{\theta}\right), n^{-1}\mathbf{J}\boldsymbol{\Gamma}\mathbf{J}'\right)$$

The uncertainty associated with the estimator $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is, therefore, given by $n^{-1}\mathbf{J}\Gamma\mathbf{J}'$. When Γ is unknown, by substitution, we can use the estimated sampling variance-covariance matrix of $\hat{\boldsymbol{\theta}}$, that is, $\hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right)$ for $n^{-1}\Gamma$. Therefore, the sampling variance-covariance matrix of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is given by

$$\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) \approx \mathcal{N}\left(\mathbf{g}\left(\boldsymbol{\theta}\right), \mathbf{J}\hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right) \mathbf{J}'\right).$$

Value

Returns an object of class ctmeddelta which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("DeltaMedStd").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

delta_t Time interval.

jacobian Jacobian matrix.

est Estimated standardized total, direct, and indirect effects.

vcov Sampling variance-covariance matrix of the estimated standardized total, direct, and indirect effects.

DeltaMedStd 41

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
sigma <- matrix(</pre>
  data = c(
    0.24455556, 0.02201587, -0.05004762,
    0.02201587, 0.07067800, 0.01539456,
    -0.05004762, 0.01539456, 0.07553061
  ),
  nrow = 3
)
vcov_theta <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151, -0.00600, -0.00033,
    0.00110, 0.00324, 0.00020, -0.00061, -0.00115,
    0.00011, 0.00015, 0.00001, -0.00002, -0.00001,
    0.00040, 0.00374, 0.00016, -0.00022, -0.00273,
    -0.00016, 0.00009, 0.00150, 0.00012, -0.00010,
    -0.00026, 0.00002, 0.00012, 0.00004, -0.00001,
    -0.00151, 0.00016, 0.00389, 0.00103, -0.00007,
```

42 DeltaMedStd

```
-0.00283, -0.00050, 0.00000, 0.00156, 0.00021,
   -0.00005, -0.00031, 0.00001, 0.00007, 0.00006,
   -0.00600, -0.00022, 0.00103, 0.00644, 0.00031,
   -0.00119, -0.00374, -0.00021, 0.00070, 0.00064,
   -0.00015, -0.00005, 0.00000, 0.00003, -0.00001,
   -0.00033, -0.00273, -0.00007, 0.00031, 0.00287,
   0.00013, -0.00014, -0.00170, -0.00012, 0.00006,
    0.00014, -0.00001, -0.00015, 0.00000, 0.00001,
   0.00110, -0.00016, -0.00283, -0.00119, 0.00013,
   0.00297, 0.00063, -0.00004, -0.00177, -0.00013,
   0.00005, 0.00017, -0.00002, -0.00008, 0.00001,
   0.00324, 0.00009, -0.00050, -0.00374, -0.00014,
    0.00063, 0.00495, 0.00024, -0.00093, -0.00020,
    0.00006, -0.00010, 0.00000, -0.00001, 0.00004,
   0.00020, 0.00150, 0.00000, -0.00021, -0.00170,
    -0.00004, 0.00024, 0.00214, 0.00012, -0.00002,
   -0.00004, 0.00000, 0.00006, -0.00005, -0.00001,
   -0.00061, 0.00012, 0.00156, 0.00070, -0.00012,
    -0.00177, -0.00093, 0.00012, 0.00223, 0.00004,
   -0.00002, -0.00003, 0.00001, 0.00003, -0.00013,
    -0.00115, -0.00010, 0.00021, 0.00064, 0.00006,
    -0.00013, -0.00020, -0.00002, 0.00004, 0.00057,
   0.00001, -0.00009, 0.00000, 0.00000, 0.00001,
    0.00011, -0.00026, -0.00005, -0.00015, 0.00014,
    0.00005, 0.00006, -0.00004, -0.00002, 0.00001,
    0.00012, 0.00001, 0.00000, -0.00002, 0.00000,
    0.00015, 0.00002, -0.00031, -0.00005, -0.00001,
    0.00017, -0.00010, 0.00000, -0.00003, -0.00009,
   0.00001, 0.00014, 0.00000, 0.00000, -0.00005,
   0.00001, 0.00012, 0.00001, 0.00000, -0.00015,
   -0.00002, 0.00000, 0.00006, 0.00001, 0.00000,
   0.00000, 0.00000, 0.00010, 0.00001, 0.00000,
   -0.00002, 0.00004, 0.00007, 0.00003, 0.00000,
    -0.00008, -0.00001, -0.00005, 0.00003, 0.00000,
   -0.00002, 0.00000, 0.00001, 0.00005, 0.00001,
    -0.00001, -0.00001, 0.00006, -0.00001, 0.00001,
    0.00001, \ 0.00004, \ -0.00001, \ -0.00013, \ 0.00001, \\
    0.00000, -0.00005, 0.00000, 0.00001, 0.00012
 ),
 nrow = 15
# Specific time interval -------
DeltaMedStd(
 phi = phi,
 sigma = sigma,
 vcov_theta = vcov_theta,
 delta_t = 1,
 from = "x".
 to = "y",
 med = "m"
```

DeltaTotalCentral 43

```
# Range of time intervals ------
delta <- DeltaMedStd(</pre>
 phi = phi,
 sigma = sigma,
 vcov_theta = vcov_theta,
 delta_t = 1:5,
 from = x^*,
 to = "y",
 med = "m"
)
plot(delta)
# Methods -----
# DeltaMedStd has a number of methods including
# print, summary, confint, and plot
print(delta)
summary(delta)
confint(delta, level = 0.95)
plot(delta)
```

DeltaTotalCentral

Delta Method Sampling Variance-Covariance Matrix for the Total Effect Centrality Over a Specific Time Interval or a Range of Time Intervals

Description

This function computes the delta method sampling variance-covariance matrix for the total effect centrality over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model's drift matrix Φ .

Usage

```
DeltaTotalCentral(phi, vcov_phi_vec, delta_t, ncores = NULL, tol = 0.01)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ) . phi should have row and column names pertaining to the variables in the system.
vcov_phi_vec	Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\Phi\right)$.
delta_t	Vector of positive numbers. Time interval (Δt).
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when the length of delta_t is long.
tol	Numeric. Smallest possible time interval to allow.

44 DeltaTotalCentral

Details

See TotalCentral() more details.

Delta Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. By the multivariate central limit theory, the function \mathbf{g} using $\hat{\theta}$ as input can be expressed as:

$$\sqrt{n}\left(\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) - \mathbf{g}\left(\boldsymbol{\theta}\right)\right) \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, \mathbf{J}\boldsymbol{\Gamma}\mathbf{J}'\right)$$

where **J** is the matrix of first-order derivatives of the function **g** with respect to the elements of θ and Γ is the asymptotic variance-covariance matrix of $\hat{\theta}$.

From the former, we can derive the distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ as follows:

$$\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) \approx \mathcal{N}\left(\mathbf{g}\left(\boldsymbol{\theta}\right), n^{-1}\mathbf{J}\mathbf{\Gamma}\mathbf{J}'\right)$$

The uncertainty associated with the estimator $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is, therefore, given by $n^{-1}\mathbf{J}\Gamma\mathbf{J}'$. When Γ is unknown, by substitution, we can use the estimated sampling variance-covariance matrix of $\hat{\boldsymbol{\theta}}$, that is, $\hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right)$ for $n^{-1}\Gamma$. Therefore, the sampling variance-covariance matrix of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ is given by

$$\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right) \approx \mathcal{N}\left(\mathbf{g}\left(\boldsymbol{\theta}\right), \mathbf{J}\hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right) \mathbf{J}'\right).$$

Value

Returns an object of class ctmeddelta which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("DeltaTotalCentral").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

delta_t Time interval.

jacobian Jacobian matrix.

est Estimated total effect centrality.

vcov Sampling variance-covariance matrix of estimated total effect centrality.

Author(s)

Ivan Jacob Agaloos Pesigan

DeltaTotalCentral 45

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) \leftarrow rownames(phi) \leftarrow c("x", "m", "y")
vcov_phi_vec <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
    0.00644, 0.00031, -0.00119,
    -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
    0.00031, 0.00287, 0.00013,
    -0.00014, -0.00170, -0.00012,
    0.00110, -0.00016, -0.00283,
    -0.00119, 0.00013, 0.00297,
    0.00063, -0.00004, -0.00177,
    0.00324, 0.00009, -0.00050,
```

46 Direct

```
-0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
   -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval ------
DeltaTotalCentral(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1
# Range of time intervals ------
delta <- DeltaTotalCentral(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5
plot(delta)
# Methods -----
# DeltaTotalCentral has a number of methods including
# print, summary, confint, and plot
print(delta)
summary(delta)
confint(delta, level = 0.95)
plot(delta)
```

Direct

Direct Effect of X on Y Over a Specific Time Interval

Description

This function computes the direct effect of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt using the first-order stochastic differential equation model's drift matrix $\mathbf{\Phi}$.

Usage

```
Direct(phi, delta_t, from, to, med)
```

Direct 47

Arguments

pertaining to the variables in the system. delta_t Numeric. Time interval (Δt) . from Character string. Name of the independent variable X in phi. to Character string. Name of the dependent variable Y in phi. med Character vector. Name/s of the mediator variable/s in phi.	phi	Numeric matrix. The drift matrix (Φ). phi should have row and column names
from Character string. Name of the independent variable X in phi. to Character string. Name of the dependent variable Y in phi.		pertaining to the variables in the system.
to Character string. Name of the dependent variable Y in phi.	delta_t	Numeric. Time interval (Δt).
	from	Character string. Name of the independent variable X in phi.
med Character vector. Name/s of the mediator variable/s in phi.	to	Character string. Name of the dependent variable Y in phi.
	med	Character vector. Name/s of the mediator variable/s in phi.

Details

The direct effect of the independent variable X on the dependent variable Y relative to some mediator variables \mathbf{m} is given by

$$\operatorname{Direct}_{\Delta t_{i,j}} = \exp\left(\Delta t \mathbf{D} \mathbf{\Phi} \mathbf{D}\right)_{i,j}$$

where Φ denotes the drift matrix, \mathbf{D} a diagonal matrix where the diagonal elements corresponding to mediator variables \mathbf{m} are set to zero and the rest to one, i the row index of Y in Φ , j the column index of X in Φ , and Δt the time interval.

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\mathbf{y}_{i,t}$, $\boldsymbol{\eta}_{i,t}$, and $\boldsymbol{\varepsilon}_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\boldsymbol{\eta}_{i,t}$ a vector of latent random variables, and $\boldsymbol{\varepsilon}_{i,t}$ a vector of random measurement errors, at time t and individual i. $\boldsymbol{\nu}$ denotes a vector of intercepts, $\boldsymbol{\Lambda}$ a matrix of factor loadings, and $\boldsymbol{\Theta}$ the covariance matrix of $\boldsymbol{\varepsilon}$.

An alternative representation of the measurement error is given by

$$oldsymbol{arepsilon}_{i,t} = oldsymbol{\Theta}^{rac{1}{2}} \mathbf{z}_{i,t}, \quad ext{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\Theta^{\frac{1}{2}}\right)\left(\Theta^{\frac{1}{2}}\right)' = \Theta$. The dynamic structure is given by

$$\mathrm{d} \boldsymbol{\eta}_{i,t} = \left(\boldsymbol{\iota} + \boldsymbol{\Phi} \boldsymbol{\eta}_{i,t} \right) \mathrm{d} t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d}W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns an object of class ctmedeffect which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("Direct").

output The direct effect.

48 Direct

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
delta_t <- 1
Direct(
  phi = phi,
  delta_t = delta_t,
  from = "x",
  to = "y",
  med = "m"
)
phi <- matrix(</pre>
  data = c(
    -6, 5.5, 0, 0,
    1.25, -2.5, 5.9, -7.3,
    0, 0, -6, 2.5,
    5, 0, 0, -6
  ),
  nrow = 4
)
```

DirectStd 49

```
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)
Direct(
  phi = phi,
  delta_t = delta_t,
  from = "y2",
  to = "y4",
  med = c("y1", "y3")
)</pre>
```

DirectStd

Standardized Direct Effect of X on Y Over a Specific Time Interval

Description

This function computes the standardized direct effect of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt using the first-order stochastic differential equation model's drift matrix $\mathbf{\Phi}$ and process noise covariance matrix $\mathbf{\Sigma}$.

Usage

```
DirectStd(phi, sigma, delta_t, from, to, med)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ) , phi should have row and column names pertaining to the variables in the system.
sigma	Numeric matrix. The process noise covariance matrix (Σ) .
delta_t	Numeric. Time interval (Δt).
from	Character string. Name of the independent variable X in phi.
to	Character string. Name of the dependent variable Y in phi.
med	Character vector. Name/s of the mediator variable/s in phi.

Details

The standardized direct effect of the independent variable X on the dependent variable Y relative to some mediator variables \mathbf{m} is given by

$$\operatorname{Direct}_{\Delta t_{i,j}}^{*} = \mathbf{S}\left(\exp\left(\Delta t \mathbf{D} \mathbf{\Phi} \mathbf{D}\right)_{i,j}\right) \mathbf{S}^{-1}$$

where Φ denotes the drift matrix, \mathbf{D} a diagonal matrix where the diagonal elements corresponding to mediator variables \mathbf{m} are set to zero and the rest to one, i the row index of Y in Φ , j the column index of X in Φ , \mathbf{S} a diagonal matrix with model-implied standard deviations on the diagonals, and Δt the time interval.

50 DirectStd

Value

Returns an object of class ctmedeffect which is a list with the following elements:

```
call Function call.args Function arguments.fun Function used ("DirectStd").output The standardized direct effect.
```

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
sigma <- matrix(
  data = c(
    0.24455556, 0.02201587, -0.05004762,
    0.02201587, 0.07067800, 0.01539456,
    -0.05004762, 0.01539456, 0.07553061
),
  nrow = 3</pre>
```

ExpCov 51

```
)
delta_t <- 1
DirectStd(
    phi = phi,
    sigma = sigma,
    delta_t = delta_t,
    from = "x",
    to = "y",
    med = "m"
)</pre>
```

ExpCov

Model-Implied State Covariance Matrix

Description

The function returns the model-implied state covariance matrix for a particular time interval Δt given by

$$\operatorname{vec}\left(\operatorname{Cov}\left(\boldsymbol{\eta}\right)\right) = \left(\mathbf{J} - \boldsymbol{\beta}_{\Delta t} \otimes \boldsymbol{\beta}_{\Delta t}\right)^{-1} \operatorname{vec}\left(\boldsymbol{\Psi}_{\Delta t}\right)$$

where

$$eta_{\Delta t} = \exp\left(\Delta t \mathbf{\Phi}\right),$$
 $oldsymbol{\Psi}_{\Delta t} = \mathbf{\Phi}^{\#} \left(\exp\left(\Delta t \mathbf{\Phi}\right) - \mathbf{J}\right) \operatorname{vec}\left(\mathbf{\Sigma}\right), \quad ext{and}$
 $oldsymbol{\Phi}^{\#} = \left(\mathbf{\Phi} \otimes \mathbf{I}\right) + \left(\mathbf{I} \otimes \mathbf{\Phi}\right).$

Note that I and J are identity matrices.

Usage

```
ExpCov(phi, sigma, delta_t)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ) . phi should have row and column names
	pertaining to the variables in the system.
sigma	Numeric matrix. The process noise covariance matrix (Σ) .
delta_t	Numeric. Time interval (Δt).

Details

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = oldsymbol{
u} + oldsymbol{\Lambda} oldsymbol{\eta}_{i,t} + oldsymbol{arepsilon}_{i,t}, \quad ext{with} \quad oldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Theta}
ight)$$

where $\mathbf{y}_{i,t}$, $\boldsymbol{\eta}_{i,t}$, and $\boldsymbol{\varepsilon}_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\boldsymbol{\eta}_{i,t}$ a vector of latent random variables, and

 $\varepsilon_{i,t}$ a vector of random measurement errors, at time t and individual i. ν denotes a vector of intercepts, Λ a matrix of factor loadings, and Θ the covariance matrix of ε .

An alternative representation of the measurement error is given by

$$\boldsymbol{\varepsilon}_{i,t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i,t}, \quad \text{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\Theta^{\frac{1}{2}}\right)\left(\Theta^{\frac{1}{2}}\right)' = \Theta$. The dynamic structure is given by

$$\mathrm{d} oldsymbol{\eta}_{i,t} = \left(oldsymbol{\iota} + oldsymbol{\Phi} oldsymbol{\eta}_{i,t}
ight) \mathrm{d} t + oldsymbol{\Sigma}^{rac{1}{2}} \mathrm{d} \mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d} W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns a numeric matrix.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
sigma <- matrix(
  data = c(
    0.24, 0.02, -0.05,
    0.02, 0.07, 0.02,
    -0.05, 0.02, 0.08
),</pre>
```

ExpMean 53

```
nrow = 3
)
delta_t <- 1
ExpCov(
  phi = phi,
  sigma = sigma,
  delta_t = delta_t
)</pre>
```

ExpMean

Model-Implied State Mean Vector

Description

The function returns the model-implied state mean vector for a particular time interval Δt given by

Mean
$$(\boldsymbol{\eta}) = (\mathbf{I} - \boldsymbol{\beta}_{\Delta t})^{-1} \boldsymbol{\alpha}_{\Delta t}$$

where

$$eta_{\Delta t} = \exp\left(\Delta t \mathbf{\Phi}\right),$$
 $oldsymbol{lpha}_{\Delta t} = \mathbf{\Phi}^{-1} \left(oldsymbol{eta}_{\Delta t} - \mathbf{I}\right) oldsymbol{\iota}.$

Note that **I** is an identity matrix.

Usage

```
ExpMean(phi, iota, delta_t)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ), phi should have row and column names pertaining to the variables in the system.
iota	Numeric vector. An unobserved term that is constant over time (ι).
delta_t	Numeric. Time interval (Δt).

Details

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{
u} + \mathbf{\Lambda} oldsymbol{\eta}_{i,t} + oldsymbol{arepsilon}_{i,t}, \quad ext{with} \quad oldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Theta}
ight)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\eta_{i,t}$ a vector of latent random variables, and $\varepsilon_{i,t}$ a vector of random measurement errors, at time t and individual i. $\boldsymbol{\nu}$ denotes a vector of intercepts, $\boldsymbol{\Lambda}$ a matrix of factor loadings, and $\boldsymbol{\Theta}$ the covariance matrix of ε .

54 ExpMean

An alternative representation of the measurement error is given by

$$oldsymbol{arepsilon}_{i,t} = oldsymbol{\Theta}^{rac{1}{2}} \mathbf{z}_{i,t}, \quad ext{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}
ight)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\Theta^{\frac{1}{2}}\right)\left(\Theta^{\frac{1}{2}}\right)' = \Theta$. The dynamic structure is given by

$$\mathrm{d} \boldsymbol{\eta}_{i,t} = \left(\boldsymbol{\iota} + \boldsymbol{\Phi} \boldsymbol{\eta}_{i,t} \right) \mathrm{d} t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d}W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns a numeric matrix.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) \leftarrow rownames(phi) \leftarrow c("x", "m", "y")
iota <-c(.5, .3, .4)
delta_t <- 1
ExpMean(
  phi = phi,
  iota = iota,
  delta_t = delta_t
)
```

Indirect 55

Indirect

Indirect Effect of X on Y Through M Over a Specific Time Interval

Description

This function computes the indirect effect of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt using the first-order stochastic differential equation model's drift matrix $\mathbf{\Phi}$.

Usage

Indirect(phi, delta_t, from, to, med)

Arguments

phi	Numeric matrix. The drift matrix (Φ). phi should have row and column names pertaining to the variables in the system.	
delta_t	Numeric. Time interval (Δt).	
from	Character string. Name of the independent variable X in \mathtt{phi} .	
to	Character string. Name of the dependent variable Y in phi.	
med	Character vector. Name/s of the mediator variable/s in phi.	

Details

The indirect effect of the independent variable X on the dependent variable Y relative to some mediator variables \mathbf{m} over a specific time interval Δt is given by

Indirect_{$$\Delta t_{i,j}$$} = exp $(\Delta t \mathbf{\Phi})_{i,j}$ - exp $(\Delta t \mathbf{D_m} \mathbf{\Phi} \mathbf{D_m})_{i,j}$

where Φ denotes the drift matrix, $\mathbf{D_m}$ a matrix where the off diagonal elements are zeros and the diagonal elements are zero for the index/indices of mediator variables \mathbf{m} and one otherwise, i the row index of Y in Φ , j the column index of X in Φ , and Δt the time interval.

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{\nu} + \mathbf{\Lambda} \boldsymbol{\eta}_{i:t} + \boldsymbol{\varepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Theta}\right)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\eta_{i,t}$ a vector of latent random variables, and $\varepsilon_{i,t}$ a vector of random measurement errors, at time t and individual i. $\boldsymbol{\nu}$ denotes a vector of intercepts, $\boldsymbol{\Lambda}$ a matrix of factor loadings, and $\boldsymbol{\Theta}$ the covariance matrix of ε .

An alternative representation of the measurement error is given by

$$\boldsymbol{\varepsilon}_{i,t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i,t}, \quad \text{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\mathbf{\Theta}^{\frac{1}{2}}\right)\left(\mathbf{\Theta}^{\frac{1}{2}}\right)' = \mathbf{\Theta}$.

56 Indirect

The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_{i,t} = \left(\boldsymbol{\iota} + \boldsymbol{\Phi} \boldsymbol{\eta}_{i,t}\right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d}W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns an object of class ctmedeffect which is a list with the following elements:

```
call Function call.args Function arguments.
```

fun Function used ("Indirect").

output The indirect effect.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
),</pre>
```

IndirectCentral 57

```
nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
delta_t <- 1
Indirect(
  phi = phi,
  delta_t = delta_t,
  from = "x",
  to = "y",
  med = "m"
phi <- matrix(</pre>
  data = c(
    -6, 5.5, 0, 0,
    1.25, -2.5, 5.9, -7.3,
    0, 0, -6, 2.5,
   5, 0, 0, -6
  ),
  nrow = 4
)
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
Indirect(
  phi = phi,
  delta_t = delta_t,
  from = "y2",
  to = "y4",
  med = c("y1", "y3")
)
```

IndirectCentral

Indirect Effect Centrality

Description

Indirect Effect Centrality

Usage

```
IndirectCentral(phi, delta_t, tol = 0.01)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ) , phi should have row and column names pertaining to the variables in the system.
delta_t	Vector of positive numbers. Time interval (Δt) .
tol	Numeric. Smallest possible time interval to allow.

58 IndirectCentral

Details

Indirect effect centrality is the sum of all possible indirect effects between different pairs of variables in which a specific variable serves as the only mediator.

Value

Returns an object of class ctmedmed which is a list with the following elements:

```
call Function call.args Function arguments.fun Function used ("IndirectCentral").output A matrix of indirect effect centrality.
```

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

IndirectStd 59

```
IndirectCentral(
 phi = phi,
 delta_t = 1
)
# Range of time intervals ------
indirect_central <- IndirectCentral(</pre>
 phi = phi,
 delta_t = 1:30
)
plot(indirect_central)
# Methods -----
# IndirectCentral has a number of methods including
# print, summary, and plot
indirect_central <- IndirectCentral(</pre>
 phi = phi,
 delta_t = 1:5
)
print(indirect_central)
summary(indirect_central)
plot(indirect_central)
```

IndirectStd

Standardized Indirect Effect of X on Y Through M Over a Specific Time Interval

Description

This function computes the standardized indirect effect of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt using the first-order stochastic differential equation model's drift matrix $\mathbf{\Phi}$ and process noise covariance matrix $\mathbf{\Sigma}$.

Usage

```
IndirectStd(phi, sigma, delta_t, from, to, med)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ) . phi should have row and column names pertaining to the variables in the system.
sigma	Numeric matrix. The process noise covariance matrix (Σ) .
delta_t	Numeric. Time interval (Δt).
from	Character string. Name of the independent variable X in phi.
to	Character string. Name of the dependent variable Y in phi.
med	Character vector. Name/s of the mediator variable/s in phi.

60 IndirectStd

Details

The standardized indirect effect of the independent variable X on the dependent variable Y relative to some mediator variables \mathbf{m} over a specific time interval Δt is given by

$$\operatorname{Indirect}_{\Delta t_{i,j}}^* = \operatorname{Total}_{\Delta t}^* - \operatorname{Direct}_{\Delta t}^*$$

where $\operatorname{Total}_{\Delta t}^*$ and $\operatorname{Direct}_{\Delta t}^*$ are standardized total and direct effects for time interval Δt .

Value

Returns an object of class ctmedeffect which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("IndirectStd").

output The standardized indirect effect.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
),
  nrow = 3</pre>
```

MCBeta 61

```
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
sigma <- matrix(</pre>
 data = c(
   0.24455556, 0.02201587, -0.05004762,
   0.02201587, 0.07067800, 0.01539456,
    -0.05004762, 0.01539456, 0.07553061
 ),
 nrow = 3
)
delta_t <- 1
IndirectStd(
 phi = phi,
 sigma = sigma,
 delta_t = delta_t,
 from = "x",
 to = "y",
 med = "m"
)
```

MCBeta

Monte Carlo Sampling Distribution for the Elements of the Matrix of Lagged Coefficients Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a Monte Carlo method sampling distribution for the elements of the matrix of lagged coefficients β over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model drift matrix Φ .

Usage

```
MCBeta(
   phi,
   vcov_phi_vec,
   delta_t,
   R,
   test_phi = TRUE,
   ncores = NULL,
   seed = NULL,
   tol = 0.01
)
```

Arguments

phi

Numeric matrix. The drift matrix (Φ) . phi should have row and column names pertaining to the variables in the system.

62 MCBeta

vcov_phi_vec Numeric matrix. The sampling variance-covariance matrix of vec (Φ) .

delta_t Numeric. Time interval (Δt).

R Positive integer. Number of replications.

test_phi Logical. If test_phi = TRUE, the function tests the stability of the generated

drift matrix Φ . If the test returns FALSE, the function generates a new drift

matrix Φ and runs the test recursively until the test returns TRUE.

ncores Positive integer. Number of cores to use. If ncores = NULL, use a single core.

Consider using multiple cores when number of replications R is a large value.

seed Random seed.

tol Numeric. Smallest possible time interval to allow.

Details

See Total().

Monte Carlo Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters.

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}\left(oldsymbol{ heta}, \mathbb{V}\left(\hat{oldsymbol{ heta}}
ight)
ight)$$

Using this distributional assumption, a sampling distribution of $\hat{\theta}$ which we refer to as $\hat{\theta}^*$ can be generated by replacing the population parameters with sample estimates, that is,

$$\hat{oldsymbol{ heta}}^* \sim \mathcal{N}\left(\hat{oldsymbol{ heta}}, \hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight)
ight).$$

Let $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ be a parameter that is a function of the estimated parameters. A sampling distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$, which we refer to as $\mathbf{g}\left(\hat{\boldsymbol{\theta}}^*\right)$, can be generated by using the simulated estimates to calculate \mathbf{g} . The standard deviations of the simulated estimates are the standard errors. Percentiles corresponding to $100\left(1-\alpha\right)\%$ are the confidence intervals.

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("MCBeta").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

est Estimated elements of the matrix of lagged coefficients.

thetahatstar A matrix of Monte Carlo elements of the matrix of lagged coefficients.

MCBeta 63

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
set.seed(42)
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
    0.00644, 0.00031, -0.00119,
    -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
    0.00031, 0.00287, 0.00013,
```

64 MCBetaStd

```
-0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
   -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
   -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
   -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval ------
MCBeta(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 R = 100L \; \# \; use \; a \; large \; value \; for \; R \; in \; actual \; research
)
# Range of time intervals ------
mc <- MCBeta(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 R = 100L \; \# \; use \; a \; large \; value \; for \; R \; in \; actual \; research
)
plot(mc)
# Methods -----
# MCBeta has a number of methods including
# print, summary, confint, and plot
print(mc)
summary(mc)
confint(mc, level = 0.95)
plot(mc)
```

 ${\tt MCBetaStd}$

Monte Carlo Sampling Distribution for the Elements of the Standardized Matrix of Lagged Coefficients Over a Specific Time Interval or a Range of Time Intervals MCBetaStd 65

Description

This function generates a Monte Carlo method sampling distribution for the elements of the standardized matrix of lagged coefficients β over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model drift matrix Φ and process noise covariance matrix Σ .

Usage

```
MCBetaStd(
  phi,
  sigma,
  vcov_theta,
  delta_t,
  R,
  test_phi = TRUE,
  ncores = NULL,
  seed = NULL,
  tol = 0.01
)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ). phi should have row and column names pertaining to the variables in the system.
sigma	Numeric matrix. The process noise covariance matrix (Σ) .
vcov_theta	Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\mathbf{\Phi}\right)$ and $\operatorname{vech}\left(\mathbf{\Sigma}\right)$
delta_t	Numeric. Time interval (Δt).
R	Positive integer. Number of replications.
test_phi	Logical. If test_phi = TRUE, the function tests the stability of the generated drift matrix Φ . If the test returns FALSE, the function generates a new drift matrix Φ and runs the test recursively until the test returns TRUE.
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
seed	Random seed.
tol	Numeric. Smallest possible time interval to allow.

Details

See TotalStd().

Monte Carlo Method:

Let θ be a vector that combines $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise and $\operatorname{vech}(\Sigma)$, that is, the unique elements of the Σ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be a vector that combines $\operatorname{vec}(\hat{\Phi})$ and $\operatorname{vech}(\hat{\Sigma})$. Based on the

asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters.

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}\left(oldsymbol{ heta}, \mathbb{V}\left(\hat{oldsymbol{ heta}}
ight)
ight)$$

Using this distributional assumption, a sampling distribution of $\hat{\theta}$ which we refer to as $\hat{\theta}^*$ can be generated by replacing the population parameters with sample estimates, that is,

$$\hat{oldsymbol{ heta}}^* \sim \mathcal{N}\left(\hat{oldsymbol{ heta}}, \hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight)
ight).$$

Let $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ be a parameter that is a function of the estimated parameters. A sampling distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$, which we refer to as $\mathbf{g}\left(\hat{\boldsymbol{\theta}}^*\right)$, can be generated by using the simulated estimates to calculate \mathbf{g} . The standard deviations of the simulated estimates are the standard errors. Percentiles corresponding to $100\left(1-\alpha\right)\%$ are the confidence intervals.

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("MCBetaStd").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

est Estimated elements of the standardized matrix of lagged coefficients.

thetahatstar A matrix of Monte Carlo elements of the standardized matrix of lagged coefficients.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

MCBetaStd 67

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(</pre>
 data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
 ),
 nrow = 3
)
colnames(phi) \leftarrow rownames(phi) \leftarrow c("x", "m", "y")
sigma <- matrix(</pre>
 data = c(
   0.24455556, 0.02201587, -0.05004762,
    0.02201587, 0.07067800, 0.01539456,
    -0.05004762, 0.01539456, 0.07553061
 ),
 nrow = 3
vcov_theta <- matrix(</pre>
 data = c(
    0.00843, 0.00040, -0.00151, -0.00600, -0.00033,
    0.00110, 0.00324, 0.00020, -0.00061, -0.00115,
    0.00011, 0.00015, 0.00001, -0.00002, -0.00001,
    0.00040, 0.00374, 0.00016, -0.00022, -0.00273,
    -0.00016, 0.00009, 0.00150, 0.00012, -0.00010,
    -0.00026, 0.00002, 0.00012, 0.00004, -0.00001,
    -0.00151, 0.00016, 0.00389, 0.00103, -0.00007,
    -0.00283, -0.00050, 0.00000, 0.00156, 0.00021,
    -0.00005, -0.00031, 0.00001, 0.00007, 0.00006,
    -0.00600, -0.00022, 0.00103, 0.00644, 0.00031,
    -0.00119, -0.00374, -0.00021, 0.00070, 0.00064,
    -0.00015, -0.00005, 0.00000, 0.00003, -0.00001,
    -0.00033, -0.00273, -0.00007, 0.00031, 0.00287,
    0.00013, -0.00014, -0.00170, -0.00012, 0.00006,
     0.00014, \ -0.00001, \ -0.00015, \ 0.00000, \ 0.00001, \\
    0.00110, -0.00016, -0.00283, -0.00119, 0.00013,
    0.00297, 0.00063, -0.00004, -0.00177, -0.00013,
    0.00005, 0.00017, -0.00002, -0.00008, 0.00001,
    0.00324, 0.00009, -0.00050, -0.00374, -0.00014,
    0.00063, 0.00495, 0.00024, -0.00093, -0.00020,
    0.00006, -0.00010, 0.00000, -0.00001, 0.00004,
    0.00020, 0.00150, 0.00000, -0.00021, -0.00170,
    -0.00004, 0.00024, 0.00214, 0.00012, -0.00002,
```

68 MCBetaStd

```
-0.00004, 0.00000, 0.00006, -0.00005, -0.00001,
   -0.00061, 0.00012, 0.00156, 0.00070, -0.00012,
   -0.00177, -0.00093, 0.00012, 0.00223, 0.00004,
   -0.00002, -0.00003, 0.00001, 0.00003, -0.00013,
   -0.00115, -0.00010, 0.00021, 0.00064, 0.00006,
   -0.00013, -0.00020, -0.00002, 0.00004, 0.00057,
   0.00001, -0.00009, 0.00000, 0.00000, 0.00001,
   0.00011, -0.00026, -0.00005, -0.00015, 0.00014,
   0.00005, 0.00006, -0.00004, -0.00002, 0.00001,
   0.00012, 0.00001, 0.00000, -0.00002, 0.00000,
   0.00015, 0.00002, -0.00031, -0.00005, -0.00001,
   0.00017, -0.00010, 0.00000, -0.00003, -0.00009,
   0.00001, 0.00014, 0.00000, 0.00000, -0.00005,
   0.00001, 0.00012, 0.00001, 0.00000, -0.00015,
   -0.00002, 0.00000, 0.00006, 0.00001, 0.00000,
   0.00000, 0.00000, 0.00010, 0.00001, 0.00000,
   -0.00002, 0.00004, 0.00007, 0.00003, 0.00000,
   -0.00008, -0.00001, -0.00005, 0.00003, 0.00000,
   -0.00002, 0.00000, 0.00001, 0.00005, 0.00001,
   -0.00001, -0.00001, 0.00006, -0.00001, 0.00001,
   0.00001, 0.00004, -0.00001, -0.00013, 0.00001,
   0.00000, -0.00005, 0.00000, 0.00001, 0.00012
 ),
 nrow = 15
)
# Specific time interval -------
MCBetaStd(
 phi = phi,
 sigma = sigma,
 vcov_theta = vcov_theta,
 delta_t = 1,
 R = 100L # use a large value for R in actual research
)
# Range of time intervals ------
mc <- MCBetaStd(</pre>
 phi = phi,
 sigma = sigma,
 vcov_theta = vcov_theta,
 delta_t = 1:5,
 R = 100L # use a large value for R in actual research
)
plot(mc)
# Methods ------
# MCBetaStd has a number of methods including
# print, summary, confint, and plot
print(mc)
summary(mc)
confint(mc, level = 0.95)
plot(mc)
```

MCIndirectCentral 69

MCIndirectCentral	Monte Carlo Sampling Distribution of Indirect Effect Centrality Over
	a Specific Time Interval or a Range of Time Intervals

Description

This function generates a Monte Carlo method sampling distribution of the indirect effect centrality at a particular time interval Δt using the first-order stochastic differential equation model drift matrix Φ .

Usage

```
MCIndirectCentral(
  phi,
  vcov_phi_vec,
  delta_t,
  R,
  test_phi = TRUE,
  ncores = NULL,
  seed = NULL,
  tol = 0.01
)
```

Arguments

•	natrix. The drift matrix (Φ) , phi should have row and column names to the variables in the system.
vcov_phi_vec Numeric n	natrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\mathbf{\Phi}\right)$.
delta_t Numeric.	Time interval (Δt) .
R Positive in	teger. Number of replications.
drift matri	If test_phi = TRUE, the function tests the stability of the generated $\mathbf{x} \mathbf{\Phi}$. If the test returns FALSE, the function generates a new drift and runs the test recursively until the test returns TRUE.
	steger. Number of cores to use. If ncores = NULL, use a single core. using multiple cores when number of replications R is a large value.
seed Random se	eed.

Details

See IndirectCentral() for more details.

Monte Carlo Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters.

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}\left(oldsymbol{ heta}, \mathbb{V}\left(\hat{oldsymbol{ heta}}
ight)
ight)$$

Using this distributional assumption, a sampling distribution of $\hat{\theta}$ which we refer to as $\hat{\theta}^*$ can be generated by replacing the population parameters with sample estimates, that is,

$$\hat{oldsymbol{ heta}}^* \sim \mathcal{N}\left(\hat{oldsymbol{ heta}}, \hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight)
ight).$$

Let $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ be a parameter that is a function of the estimated parameters. A sampling distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$, which we refer to as $\mathbf{g}\left(\hat{\boldsymbol{\theta}}^*\right)$, can be generated by using the simulated estimates to calculate \mathbf{g} . The standard deviations of the simulated estimates are the standard errors. Percentiles corresponding to $100\left(1-\alpha\right)\%$ are the confidence intervals.

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("MCIndirectCentral").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

est A vector of indirect effect centrality.

thetahatstar A matrix of Monte Carlo indirect effect centrality.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

MCIndirectCentral 71

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCMed(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
set.seed(42)
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
    0.00644, 0.00031, -0.00119,
    -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
    0.00031, 0.00287, 0.00013,
    -0.00014, -0.00170, -0.00012,
    0.00110, -0.00016, -0.00283,
    -0.00119, 0.00013, 0.00297,
    0.00063, -0.00004, -0.00177,
    0.00324, 0.00009, -0.00050,
    -0.00374, -0.00014, 0.00063,
    0.00495, 0.00024, -0.00093,
    0.00020, 0.00150, 0.00000,
    -0.00021, -0.00170, -0.00004,
    0.00024, 0.00214, 0.00012,
    -0.00061, 0.00012, 0.00156,
    0.00070, -0.00012, -0.00177,
    -0.00093, 0.00012, 0.00223
  ),
  nrow = 9
)
```

72 MCMed

```
# Specific time interval -------
MCIndirectCentral(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 R = 100L # use a large value for R in actual research
# Range of time intervals ------
mc <- MCIndirectCentral(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 R = 100L # use a large value for R in actual research
)
plot(mc)
# Methods -----
# MCIndirectCentral has a number of methods including
# print, summary, confint, and plot
print(mc)
summary(mc)
confint(mc, level = 0.95)
plot(mc)
```

MCMed

Monte Carlo Sampling Distribution of Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a Monte Carlo method sampling distribution of the total, direct and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model drift matrix $\mathbf{\Phi}$.

Usage

```
MCMed(
   phi,
   vcov_phi_vec,
   delta_t,
   from,
   to,
   med,
   R,
```

MCMed 73

```
test_phi = TRUE,
ncores = NULL,
seed = NULL,
tol = 0.01
)
```

Arguments

phi Numeric matrix. The drift matrix (Φ), phi should have row and column names

pertaining to the variables in the system.

vcov_phi_vec Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\Phi\right)$.

delta_t Numeric. Time interval (Δt).

from Character string. Name of the independent variable X in phi. to Character string. Name of the dependent variable Y in phi. med Character vector. Name/s of the mediator variable/s in phi.

R Positive integer. Number of replications.

test_phi Logical. If test_phi = TRUE, the function tests the stability of the generated

drift matrix Φ . If the test returns FALSE, the function generates a new drift

matrix Φ and runs the test recursively until the test returns TRUE.

ncores Positive integer. Number of cores to use. If ncores = NULL, use a single core.

Consider using multiple cores when number of replications R is a large value.

seed Random seed.

tol Numeric. Smallest possible time interval to allow.

Details

See Total(), Direct(), and Indirect() for more details.

Monte Carlo Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters.

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}\left(oldsymbol{ heta}, \mathbb{V}\left(\hat{oldsymbol{ heta}}
ight)
ight)$$

Using this distributional assumption, a sampling distribution of $\hat{\theta}$ which we refer to as $\hat{\theta}^*$ can be generated by replacing the population parameters with sample estimates, that is,

$$\hat{\boldsymbol{\theta}}^* \sim \mathcal{N}\left(\hat{\boldsymbol{\theta}}, \hat{\mathbb{V}}\left(\hat{\boldsymbol{\theta}}\right)\right).$$

Let $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ be a parameter that is a function of the estimated parameters. A sampling distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$, which we refer to as $\mathbf{g}\left(\hat{\boldsymbol{\theta}}^*\right)$, can be generated by using the simulated estimates to calculate \mathbf{g} . The standard deviations of the simulated estimates are the standard errors. Percentiles corresponding to $100\left(1-\alpha\right)\%$ are the confidence intervals.

74 MCMed

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("MCMed").

output A list with length of length(delta_t).

Each element in the output list has the following elements:

est A vector of total, direct, and indirect effects.

thetahatstar A matrix of Monte Carlo total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMed(), BootMedStd(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
set.seed(42)
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(</pre>
```

MCMed 75

```
data = c(
   0.00843, 0.00040, -0.00151,
   -0.00600, -0.00033, 0.00110,
   0.00324, 0.00020, -0.00061,
   0.00040, 0.00374, 0.00016,
   -0.00022, -0.00273, -0.00016,
   0.00009, 0.00150, 0.00012,
   -0.00151, 0.00016, 0.00389,
   0.00103, -0.00007, -0.00283,
   -0.00050, 0.00000, 0.00156,
   -0.00600, -0.00022, 0.00103,
   0.00644, 0.00031, -0.00119,
   -0.00374, -0.00021, 0.00070,
   -0.00033, -0.00273, -0.00007,
   0.00031, 0.00287, 0.00013,
   -0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
   -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
   -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
   -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval -------
MCMed(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
 R = 100L # use a large value for R in actual research
)
# Range of time intervals ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m",
 R = 100L # use a large value for R in actual research
```

```
plot(mc)

# Methods ------
# MCMed has a number of methods including
# print, summary, confint, and plot
print(mc)
summary(mc)
confint(mc, level = 0.95)
```

MCMedStd

Monte Carlo Sampling Distribution of Standardized Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a Monte Carlo method sampling distribution of the standardized total, direct and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model drift matrix $\mathbf{\Phi}$ and process noise covariance matrix $\mathbf{\Sigma}$.

Usage

```
MCMedStd(
    phi,
    sigma,
    vcov_theta,
    delta_t,
    from,
    to,
    med,
    R,
    test_phi = TRUE,
    ncores = NULL,
    seed = NULL,
    tol = 0.01
)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ). phi should have row and column names pertaining to the variables in the system.
sigma	Numeric matrix. The process noise covariance matrix (Σ) .
vcov_theta	Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\Phi\right)$ and $\operatorname{vech}\left(\Sigma\right)$
delta_t	Numeric. Time interval (Δt).
from	Character string. Name of the independent variable X in phi.

to	Character string. Name of the dependent variable Y in phi.
med	Character vector. Name/s of the mediator variable/s in phi.
R	Positive integer. Number of replications.
test_phi	Logical. If test_phi = TRUE, the function tests the stability of the generated drift matrix Φ . If the test returns FALSE, the function generates a new drift matrix Φ and runs the test recursively until the test returns TRUE.
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
seed	Random seed.
tol	Numeric. Smallest possible time interval to allow.

Details

See TotalStd(), DirectStd(), and IndirectStd() for more details.

Monte Carlo Method:

Let θ be a vector that combines $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise and $\operatorname{vech}(\Sigma)$, that is, the unique elements of the Σ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be a vector that combines $\operatorname{vec}(\hat{\Phi})$ and $\operatorname{vech}(\hat{\Sigma})$. Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters.

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}\left(oldsymbol{ heta}, \mathbb{V}\left(\hat{oldsymbol{ heta}}
ight)
ight)$$

Using this distributional assumption, a sampling distribution of $\hat{\theta}$ which we refer to as $\hat{\theta}^*$ can be generated by replacing the population parameters with sample estimates, that is,

$$\hat{oldsymbol{ heta}}^* \sim \mathcal{N}\left(\hat{oldsymbol{ heta}}, \hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight)
ight).$$

Let $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ be a parameter that is a function of the estimated parameters. A sampling distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$, which we refer to as $\mathbf{g}\left(\hat{\boldsymbol{\theta}}^*\right)$, can be generated by using the simulated estimates to calculate \mathbf{g} . The standard deviations of the simulated estimates are the standard errors. Percentiles corresponding to $100\left(1-\alpha\right)\%$ are the confidence intervals.

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("MCMedStd").

output A list with length of length(delta_t).

Each element in the output list has the following elements:

est A vector of standardized total, direct, and indirect effects.

thetahatstar A matrix of Monte Carlo standardized total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
sigma <- matrix(</pre>
  data = c(
    0.24455556, 0.02201587, -0.05004762,
    0.02201587, 0.07067800, 0.01539456,
    -0.05004762, 0.01539456, 0.07553061
  ),
  nrow = 3
)
vcov_theta <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151, -0.00600, -0.00033,
    0.00110, 0.00324, 0.00020, -0.00061, -0.00115,
    0.00011, 0.00015, 0.00001, -0.00002, -0.00001,
    0.00040, 0.00374, 0.00016, -0.00022, -0.00273,
    -0.00016, 0.00009, 0.00150, 0.00012, -0.00010,
    -0.00026, 0.00002, 0.00012, 0.00004, -0.00001,
    -0.00151, 0.00016, 0.00389, 0.00103, -0.00007,
```

```
-0.00283, -0.00050, 0.00000, 0.00156, 0.00021,
   -0.00005, -0.00031, 0.00001, 0.00007, 0.00006,
   -0.00600, -0.00022, 0.00103, 0.00644, 0.00031,
   -0.00119, -0.00374, -0.00021, 0.00070, 0.00064,
   -0.00015, -0.00005, 0.00000, 0.00003, -0.00001,
   -0.00033, -0.00273, -0.00007, 0.00031, 0.00287,
   0.00013, -0.00014, -0.00170, -0.00012, 0.00006,
   0.00014, -0.00001, -0.00015, 0.00000, 0.00001,
   0.00110, -0.00016, -0.00283, -0.00119, 0.00013,
   0.00297, 0.00063, -0.00004, -0.00177, -0.00013,
   0.00005, 0.00017, -0.00002, -0.00008, 0.00001,
   0.00324, 0.00009, -0.00050, -0.00374, -0.00014,
   0.00063, 0.00495, 0.00024, -0.00093, -0.00020,
   0.00006, -0.00010, 0.00000, -0.00001, 0.00004,
   0.00020, 0.00150, 0.00000, -0.00021, -0.00170,
   -0.00004, 0.00024, 0.00214, 0.00012, -0.00002,
   -0.00004, 0.00000, 0.00006, -0.00005, -0.00001,
   -0.00061, 0.00012, 0.00156, 0.00070, -0.00012,
   -0.00177, -0.00093, 0.00012, 0.00223, 0.00004,
   -0.00002, -0.00003, 0.00001, 0.00003, -0.00013,
   -0.00115, -0.00010, 0.00021, 0.00064, 0.00006,
   -0.00013, -0.00020, -0.00002, 0.00004, 0.00057,
   0.00001, -0.00009, 0.00000, 0.00000, 0.00001,
   0.00011, -0.00026, -0.00005, -0.00015, 0.00014,
   0.00005, 0.00006, -0.00004, -0.00002, 0.00001,
   0.00012, 0.00001, 0.00000, -0.00002, 0.00000,
   0.00015, 0.00002, -0.00031, -0.00005, -0.00001,
   0.00017, -0.00010, 0.00000, -0.00003, -0.00009,
   0.00001, 0.00014, 0.00000, 0.00000, -0.00005,
   0.00001, 0.00012, 0.00001, 0.00000, -0.00015,
   -0.00002, 0.00000, 0.00006, 0.00001, 0.00000,
   0.00000, 0.00000, 0.00010, 0.00001, 0.00000,
   -0.00002, 0.00004, 0.00007, 0.00003, 0.00000,
   -0.00008, -0.00001, -0.00005, 0.00003, 0.00000,
   -0.00002, 0.00000, 0.00001, 0.00005, 0.00001,
   -0.00001, -0.00001, 0.00006, -0.00001, 0.00001,
   0.00001, 0.00004, -0.00001, -0.00013, 0.00001,
   0.00000, -0.00005, 0.00000, 0.00001, 0.00012
 ),
 nrow = 15
# Specific time interval -------
MCMedStd(
 phi = phi,
 sigma = sigma,
 vcov_theta = vcov_theta,
 delta_t = 1,
 from = "x".
 to = "y",
 med = "m"
 R = 100L # use a large value for R in actual research
```

80 MCPhi

```
# Range of time intervals ------
mc <- MCMedStd(</pre>
 phi = phi,
 sigma = sigma,
 vcov_theta = vcov_theta,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m",
 R = 100L # use a large value for R in actual research
plot(mc)
# MCMedStd has a number of methods including
# print, summary, confint, and plot
print(mc)
summary(mc)
confint(mc, level = 0.95)
```

MCPhi

Generate Random Drift Matrices Using the Monte Carlo Method

Description

This function generates random drift matrices Φ using the Monte Carlo method.

Usage

```
MCPhi(phi, vcov_phi_vec, R, test_phi = TRUE, ncores = NULL, seed = NULL)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ). phi should have row and column names pertaining to the variables in the system.
vcov_phi_vec	Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\Phi\right)$.
R	Positive integer. Number of replications.
test_phi	Logical. If test_phi = TRUE, the function tests the stability of the generated drift matrix Φ . If the test returns FALSE, the function generates a new drift matrix Φ and runs the test recursively until the test returns TRUE.
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
seed	Random seed.

MCPhi 81

Details

Monte Carlo Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters.

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}\left(oldsymbol{ heta}, \mathbb{V}\left(\hat{oldsymbol{ heta}}
ight)
ight)$$

Using this distributional assumption, a sampling distribution of $\hat{\theta}$ which we refer to as $\hat{\theta}^*$ can be generated by replacing the population parameters with sample estimates, that is,

$$\hat{oldsymbol{ heta}}^* \sim \mathcal{N}\left(\hat{oldsymbol{ heta}}, \hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight)
ight).$$

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("MCPhi").

output A list simulated drift matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
set.seed(42)
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
MCPhi(</pre>
```

82 MCPhiSigma

```
phi = phi,
  vcov_phi_vec = 0.1 * diag(9),
  R = 100L # use a large value for R in actual research
phi <- matrix(</pre>
  data = c(
    -6, 5.5, 0, 0,
    1.25, -2.5, 5.9, -7.3,
    0, 0, -6, 2.5,
    5, 0, 0, -6
  ),
  nrow = 4
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
MCPhi(
  phi = phi,
  vcov_phi_vec = 0.1 * diag(16),
  R = 100L, # use a large value for R in actual research
  test_phi = FALSE
)
```

MCPhiSigma

Generate Random Drift Matrices and Process Noise Covariance Matrices Using the Monte Carlo Method

Description

This function generates random drift matrices Φ and process noise covariabces matrices Σ using the Monte Carlo method.

Usage

```
MCPhiSigma(
  phi,
  sigma,
  vcov_theta,
  R,
  test_phi = TRUE,
  ncores = NULL,
  seed = NULL
)
```

Arguments

Numeric matrix. The drift matrix (Φ). phi should have row and column names pertaining to the variables in the system.

sigma Numeric matrix. The process noise covariance matrix (Σ) .

MCPhiSigma 83

vcov_theta	Numeric matrix. The sampling variance-covariance matrix of $\operatorname{vec}\left(\mathbf{\Phi}\right)$ and $\operatorname{vech}\left(\mathbf{\Sigma}\right)$
R	Positive integer. Number of replications.
test_phi	Logical. If test_phi = TRUE, the function tests the stability of the generated drift matrix Φ . If the test returns FALSE, the function generates a new drift matrix Φ and runs the test recursively until the test returns TRUE.
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
seed	Random seed.

Details

Monte Carlo Method:

Let θ be a vector that combines $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise and $\operatorname{vech}(\Sigma)$, that is, the unique elements of the Σ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be a vector that combines $\operatorname{vec}(\hat{\Phi})$ and $\operatorname{vech}(\hat{\Sigma})$. Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters.

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}\left(oldsymbol{ heta}, \mathbb{V}\left(\hat{oldsymbol{ heta}}
ight)
ight)$$

Using this distributional assumption, a sampling distribution of $\hat{\theta}$ which we refer to as $\hat{\theta}^*$ can be generated by replacing the population parameters with sample estimates, that is,

$$\hat{oldsymbol{ heta}}^* \sim \mathcal{N}\left(\hat{oldsymbol{ heta}}, \hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight)
ight).$$

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("MCPhiSigma").

output A list simulated drift matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

84 MCTotalCentral

Examples

```
set.seed(42)
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
sigma <- matrix(</pre>
  data = c(
    0.24455556, 0.02201587, -0.05004762,
    0.02201587, 0.07067800, 0.01539456,
    -0.05004762, 0.01539456, 0.07553061
  ),
  nrow = 3
)
MCPhiSigma(
  phi = phi,
  sigma = sigma,
  vcov_{theta} = 0.1 * diag(15),
  R = 100L # use a large value for R in actual research
)
```

MCTotalCentral

Monte Carlo Sampling Distribution of Total Effect Centrality Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a Monte Carlo method sampling distribution of the total effect centrality at a particular time interval Δt using the first-order stochastic differential equation model drift matrix Φ .

Usage

```
MCTotalCentral(
  phi,
  vcov_phi_vec,
  delta_t,
  R,
  test_phi = TRUE,
  ncores = NULL,
  seed = NULL,
  tol = 0.01
)
```

MCTotalCentral 85

Arguments

phi Numeric matrix. The drift matrix (Φ), phi should have row and column names

pertaining to the variables in the system.

vcov_phi_vec Numeric matrix. The sampling variance-covariance matrix of vec (Φ) .

delta_t Numeric. Time interval (Δt).

R Positive integer. Number of replications.

test_phi Logical. If test_phi = TRUE, the function tests the stability of the generated

drift matrix Φ . If the test returns FALSE, the function generates a new drift

matrix Φ and runs the test recursively until the test returns TRUE.

ncores Positive integer. Number of cores to use. If ncores = NULL, use a single core.

Consider using multiple cores when number of replications R is a large value.

seed Random seed.

tol Numeric. Smallest possible time interval to allow.

Details

See TotalCentral() for more details.

Monte Carlo Method:

Let θ be $\operatorname{vec}(\Phi)$, that is, the elements of the Φ matrix in vector form sorted column-wise. Let $\hat{\theta}$ be $\operatorname{vec}(\hat{\Phi})$. Based on the asymptotic properties of maximum likelihood estimators, we can assume that estimators are normally distributed around the population parameters.

$$\hat{oldsymbol{ heta}} \sim \mathcal{N}\left(oldsymbol{ heta}, \mathbb{V}\left(\hat{oldsymbol{ heta}}
ight)
ight)$$

Using this distributional assumption, a sampling distribution of $\hat{\theta}$ which we refer to as $\hat{\theta}^*$ can be generated by replacing the population parameters with sample estimates, that is,

$$\hat{oldsymbol{ heta}}^* \sim \mathcal{N}\left(\hat{oldsymbol{ heta}}, \hat{\mathbb{V}}\left(\hat{oldsymbol{ heta}}
ight)
ight).$$

Let $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$ be a parameter that is a function of the estimated parameters. A sampling distribution of $\mathbf{g}\left(\hat{\boldsymbol{\theta}}\right)$, which we refer to as $\mathbf{g}\left(\hat{\boldsymbol{\theta}}^*\right)$, can be generated by using the simulated estimates to calculate \mathbf{g} . The standard deviations of the simulated estimates are the standard errors. Percentiles corresponding to $100\left(1-\alpha\right)\%$ are the confidence intervals.

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("MCTotalCentral").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

est A vector of total effect centrality.

thetahatstar A matrix of Monte Carlo total effect centrality.

86 MCTotalCentral

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMed(), BootMedStd(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCPhi(), MCPhi(), MCPhiSigma(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
set.seed(42)
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
    0.00644, 0.00031, -0.00119,
    -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
    0.00031, 0.00287, 0.00013,
```

Med 87

```
-0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
   -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
   -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
   -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval ------
MCTotalCentral(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 R = 100L # use a large value for R in actual research
)
# Range of time intervals ------
mc <- MCTotalCentral(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 R = 100L # use a large value for R in actual research
)
plot(mc)
# Methods ------
# MCTotalCentral has a number of methods including
# print, summary, confint, and plot
print(mc)
summary(mc)
confint(mc, level = 0.95)
plot(mc)
```

Med

Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals

Description

This function computes the total, direct, and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt or a range of

88 Med

time intervals using the first-order stochastic differential equation model's drift matrix Φ .

Usage

```
Med(phi, delta_t, from, to, med, tol = 0.01)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ) . phi should have row and column names pertaining to the variables in the system.
delta_t	Vector of positive numbers. Time interval (Δt).
from	Character string. Name of the independent variable X in phi.
to	Character string. Name of the dependent variable Y in phi.
med	Character vector. Name/s of the mediator variable/s in phi.
tol	Numeric. Smallest possible time interval to allow.

Details

See Total(), Direct(), and Indirect() for more details.

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{arepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Theta}
ight)$$

where $\mathbf{y}_{i,t}$, $\boldsymbol{\eta}_{i,t}$, and $\boldsymbol{\varepsilon}_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\boldsymbol{\eta}_{i,t}$ a vector of latent random variables, and $\boldsymbol{\varepsilon}_{i,t}$ a vector of random measurement errors, at time t and individual i. $\boldsymbol{\nu}$ denotes a vector of intercepts, $\boldsymbol{\Lambda}$ a matrix of factor loadings, and $\boldsymbol{\Theta}$ the covariance matrix of $\boldsymbol{\varepsilon}$.

An alternative representation of the measurement error is given by

$$\boldsymbol{\varepsilon}_{i,t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i,t}, \quad \text{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\Theta^{\frac{1}{2}}\right)\left(\Theta^{\frac{1}{2}}\right)' = \Theta$. The dynamic structure is given by

$$\mathrm{d}oldsymbol{\eta}_{i,t} = \left(oldsymbol{\iota} + oldsymbol{\Phi}oldsymbol{\eta}_{i,t}
ight)\mathrm{d}t + oldsymbol{\Sigma}^{rac{1}{2}}\mathrm{d}\mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d} W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns an object of class ctmedmed which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("Med").

output A matrix of total, direct, and indirect effects.

Med 89

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(</pre>
 data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
 ),
 nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
# Specific time interval ------
Med(
 phi = phi,
 delta_t = 1,
 from = x^{*},
 to = "y",
 med = "m"
)
# Range of time intervals ------
med <- Med(
 phi = phi,
 delta_t = 1:30,
 from = "x",
 to = "y",
 med = "m"
```

90 MedStd

```
plot(med)

# Methods ------
# Med has a number of methods including
# print, summary, and plot
med <- Med(
   phi = phi,
   delta_t = 1:5,
   from = "x",
   to = "y",
   med = "m"
)
print(med)
summary(med)
plot(med)</pre>
```

MedStd

Standardized Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals

Description

This function computes the standardized total, direct, and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model's drift matrix $\mathbf{\Phi}$ and process noise covariance matrix $\mathbf{\Sigma}$.

Usage

```
MedStd(phi, sigma, delta_t, from, to, med, tol = 0.01)
```

Arguments

phi	Numeric matrix. The drift matrix (Φ) . phi should have row and column names pertaining to the variables in the system.
sigma	Numeric matrix. The process noise covariance matrix (Σ) .
delta_t	Numeric. Time interval (Δt).
from	Character string. Name of the independent variable X in phi.
to	Character string. Name of the dependent variable Y in phi.
med	Character vector. Name/s of the mediator variable/s in phi.
tol	Numeric. Smallest possible time interval to allow.

Details

See TotalStd(), DirectStd(), and IndirectStd() for more details.

MedStd 91

Value

Returns an object of class ctmedmed which is a list with the following elements:

```
call Function call.args Function arguments.fun Function used ("MedStd").
```

output A standardized matrix of total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
sigma <- matrix(
  data = c(
    0.24455556, 0.02201587, -0.05004762,
    0.02201587, 0.07067800, 0.01539456,
    -0.05004762, 0.01539456, 0.07553061
),
  nrow = 3</pre>
```

92 plot.ctmedboot

```
)
# Specific time interval ------
MedStd(
 phi = phi,
 sigma = sigma,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
)
# Range of time intervals ------
med <- MedStd(</pre>
 phi = phi,
 sigma = sigma,
 delta_t = 1:30,
 from = "x",
 to = "y",
 med = "m"
)
plot(med)
# Methods -----
# MedStd has a number of methods including
# print, summary, and plot
med <- MedStd(</pre>
 phi = phi,
 sigma = sigma,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
)
print(med)
summary(med)
plot(med)
```

plot.ctmedboot

Plot Method for an Object of Class ctmedboot

Description

Plot Method for an Object of Class ctmedboot

Usage

```
## S3 method for class 'ctmedboot'
plot(x, alpha = 0.05, col = NULL, type = "pc", ...)
```

plot.ctmedboot 93

Arguments

x	Object of class ctmedboot.
alpha	Numeric. Significance level
col	Character vector. Optional argument. Character vector of colors.
type	Charater string. Confidence interval type, that is, type = "pc" for percentile; type = "bc" for bias corrected.
	Additional arguments.

Value

Displays plots of point estimates and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
## Not run:
library(simStateSpace)
# prepare parameters
## number of individuals
n <- 50
## time points
time <- 100
delta_t <- 0.10
## dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- matrix(</pre>
  data = c(
    1.0,
    0.2,
    0.2,
    0.2,
    1.0,
    0.2,
    0.2,
    0.2,
    1.0
  ),
  nrow = p
)
sigma0_1 \leftarrow t(chol(sigma0))
mu \leftarrow rep(x = 0, times = p)
phi <- matrix(</pre>
  data = c(
    -0.357,
    0.771,
    -0.450,
```

94 plot.ctmedboot

```
0.0,
    -0.511,
    0.729,
    0,
    0,
    -0.693
  ),
  nrow = p
)
sigma <- matrix(</pre>
  data = c(
    0.24455556,
    0.02201587,
    -0.05004762,
    0.02201587,
    0.07067800,
    0.01539456,
    -0.05004762,
    0.01539456,
    0.07553061
  ),
  nrow = p
)
sigma_l <- t(chol(sigma))</pre>
## measurement model
k <- 3
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta <- 0.2 * diag(k)
theta_l <- t(chol(theta))</pre>
boot <- PBSSMOUFixed(</pre>
  R = 1000L,
  path = getwd(),
  prefix = "ou",
  n = n,
  time = time,
  delta_t = delta_t,
  mu0 = mu0,
  sigma0_1 = sigma0_1,
  mu = mu,
  phi = phi,
  sigma_l = sigma_l,
  nu = nu,
  lambda = lambda,
  theta_l = theta_l,
  ncores = parallel::detectCores() - 1,
  seed = 42
)
phi_hat <- phi
colnames(phi_hat) \leftarrow rownames(phi_hat) \leftarrow c("x", "m", "y")
phi <- extract(object = boot, what = "phi")</pre>
```

plot.ctmeddelta 95

```
# Range of time intervals -----
boot <- BootMed(
    phi = phi,
    phi_hat = phi_hat,
    delta_t = 1:5,
    from = "x",
    to = "y",
    med = "m"
)
confint(boot)
confint(boot, type = "bc") # bias-corrected
## End(Not run)</pre>
```

plot.ctmeddelta

Plot Method for an Object of Class ctmeddelta

Description

Plot Method for an Object of Class ctmeddelta

Usage

```
## S3 method for class 'ctmeddelta'
plot(x, alpha = 0.05, col = NULL, ...)
```

Arguments

X	Object of class ctmeddelta.
alpha	Numeric. Significance level
col	Character vector. Optional argument. Character vector of colors.
	Additional arguments.

Value

Displays plots of point estimates and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

96 plot.ctmeddelta

```
phi <- matrix(</pre>
  data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) \leftarrow rownames(phi) \leftarrow c("x", "m", "y")
vcov_phi_vec <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
    0.00644, 0.00031, -0.00119,
    -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
    0.00031, 0.00287, 0.00013,
    -0.00014, -0.00170, -0.00012,
    0.00110, -0.00016, -0.00283,
    -0.00119, 0.00013, 0.00297,
    0.00063, -0.00004, -0.00177,
    0.00324, 0.00009, -0.00050,
    -0.00374, -0.00014, 0.00063,
    0.00495, 0.00024, -0.00093,
    0.00020, 0.00150, 0.00000,
    -0.00021, -0.00170, -0.00004,
    0.00024, 0.00214, 0.00012,
    -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
    -0.00093, 0.00012, 0.00223
  ),
  nrow = 9
)
# Range of time intervals ------
delta <- DeltaMed(</pre>
  phi = phi,
  vcov_phi_vec = vcov_phi_vec,
  delta_t = 1:5,
  from = "x",
  to = "y",
  med = "m"
)
```

plot.ctmedmc 97

```
plot(delta)
```

plot.ctmedmc

Plot Method for an Object of Class ctmedmc

Description

Plot Method for an Object of Class ctmedmc

Usage

```
## S3 method for class 'ctmedmc'
plot(x, alpha = 0.05, col = NULL, ...)
```

Arguments

```
    x Object of class ctmedmc.
    alpha Numeric. Significance level
    col Character vector. Optional argument. Character vector of colors.
    . . . Additional arguments.
```

Value

Displays plots of point estimates and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
set.seed(42)
phi <- matrix(
    data = c(
        -0.357, 0.771, -0.450,
        0.0, -0.511, 0.729,
        0, 0, -0.693
    ),
    nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
    data = c(
        0.00843, 0.00040, -0.00151,
        -0.00600, -0.00033, 0.00110,
        0.00324, 0.00020, -0.00061,
        0.00040, 0.00374, 0.00016,</pre>
```

98 plot.ctmedmed

```
-0.00022, -0.00273, -0.00016,
   0.00009, 0.00150, 0.00012,
   -0.00151, 0.00016, 0.00389,
   0.00103, -0.00007, -0.00283,
   -0.00050, 0.00000, 0.00156,
   -0.00600, -0.00022, 0.00103,
   0.00644, 0.00031, -0.00119,
   -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
   0.00031, 0.00287, 0.00013,
    -0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
    -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
   -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
    -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
    -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
    -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Range of time intervals ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m",
 R = 100L # use a large value for R in actual research
plot(mc)
```

plot.ctmedmed

Plot Method for an Object of Class ctmedmed

Description

Plot Method for an Object of Class ctmedmed

Usage

```
## S3 method for class 'ctmedmed'
plot(x, col = NULL, legend_pos = "topright", ...)
```

plot.ctmedtraj 99

Arguments

Χ	Object of class ctmedmed.
col	Character vector. Optional argument. Character vector of colors.
legend_pos	Character vector. Optional argument. Legend position.
	Additional arguments.

Value

Displays plots of point estimates and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
phi <- matrix(</pre>
 data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
 ),
 nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
# Range of time intervals -----
med <- Med(
 phi = phi,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
)
plot(med)
```

plot.ctmedtraj

Plot Method for an Object of Class ctmedtraj

Description

Plot Method for an Object of Class ctmedtraj

Usage

```
## S3 method for class 'ctmedtraj'
plot(x, legend_pos = "topright", total = TRUE, ...)
```

100 PosteriorBeta

Arguments

X	Object of class ctmedtraj.
legend_pos	Character vector. Optional argument. Legend position.
total	Logical. If total = TRUE, include the total effect trajectory. If total = FALSE, exclude the total effect trajectory.
	Additional arguments.

Value

Displays trajectory plots of the effects.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
traj <- Trajectory(</pre>
  mu0 = c(3, 3, -3),
  time = 150,
  phi = phi,
  med = "m"
)
plot(traj)
```

PosteriorBeta

Posterior Sampling Distribution for the Elements of the Matrix of Lagged Coefficients Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a posterior sampling distribution for the elements of the matrix of lagged coefficients β over a specific time interval Δt or a range of time intervals using the first-order stochastic differential equation model drift matrix Φ .

PosteriorBeta 101

Usage

```
PosteriorBeta(phi, delta_t, ncores = NULL, tol = 0.01)
```

Arguments

phi Numeric matrix. The drift matrix (Φ), phi should have row and column names

pertaining to the variables in the system.

delta_t Numeric. Time interval (Δt).

ncores Positive integer. Number of cores to use. If ncores = NULL, use a single core.

Consider using multiple cores when number of replications R is a large value.

tol Numeric. Smallest possible time interval to allow.

Details

See Total().

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("PosteriorBeta").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

est A vector of total, direct, and indirect effects.

thetahatstar A matrix of Monte Carlo total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

102 PosteriorBeta

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalStd(), Trajectory()
```

```
phi <- matrix(</pre>
 data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
 ),
 nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
 data = c(
   0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
   0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283.
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
    0.00644, 0.00031, -0.00119,
    -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
    0.00031, 0.00287, 0.00013,
    -0.00014, -0.00170, -0.00012,
    0.00110, -0.00016, -0.00283,
    -0.00119, 0.00013, 0.00297,
    0.00063, -0.00004, -0.00177,
    0.00324, 0.00009, -0.00050,
    -0.00374, -0.00014, 0.00063,
    0.00495, 0.00024, -0.00093,
    0.00020, 0.00150, 0.00000,
    -0.00021, -0.00170, -0.00004,
    0.00024, 0.00214, 0.00012,
    -0.00061, 0.00012, 0.00156,
    0.00070, -0.00012, -0.00177,
    -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
```

PosteriorIndirectCentral 103

```
phi <- MCPhi(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 R = 1000L
)$output
# Specific time interval ------
PosteriorBeta(
 phi = phi,
 delta_t = 1
# Range of time intervals ------
posterior <- PosteriorBeta(</pre>
 phi = phi,
 delta_t = 1:5
plot(posterior)
# Methods -----
# PosteriorBeta has a number of methods including
# print, summary, confint, and plot
print(posterior)
summary(posterior)
confint(posterior, level = 0.95)
plot(posterior)
```

PosteriorIndirectCentral

Posterior Distribution of the Indirect Effect Centrality Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a posterior distribution of the indirect effect centrality over a specific time interval Δt or a range of time intervals using the posterior distribution of the first-order stochastic differential equation model drift matrix Φ .

Usage

```
PosteriorIndirectCentral(phi, delta_t, ncores = NULL, tol = 0.01)
```

Arguments

phi	List of numeric matrices. Each element of the list is a sample from the posterior
	distribution of the drift matrix (Φ). Each matrix should have row and column
	names pertaining to the variables in the system.

delta_t Numeric. Time interval (Δt) .

104 PosteriorIndirectCentral

ncores Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.

tol Numeric. Smallest possible time interval to allow.

Details

See TotalCentral() for more details.

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("PosteriorIndirectCentral").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

est Mean of the posterior distribution of the total, direct, and indirect effects.

thetahatstar Posterior distribution of the total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

PosteriorIndirectCentral 105

```
phi <- matrix(</pre>
  data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) \leftarrow rownames(phi) \leftarrow c("x", "m", "y")
vcov_phi_vec <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
   0.00644, 0.00031, -0.00119,
   -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
   0.00031, 0.00287, 0.00013,
    -0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
    -0.00119, 0.00013, 0.00297,
    0.00063, -0.00004, -0.00177,
    0.00324, 0.00009, -0.00050,
    -0.00374, -0.00014, 0.00063,
    0.00495, 0.00024, -0.00093,
    0.00020, 0.00150, 0.00000,
    -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
    -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
  ),
  nrow = 9
)
phi <- MCPhi(</pre>
  phi = phi,
  vcov_phi_vec = vcov_phi_vec,
  R = 1000L
)$output
# Specific time interval ------
PosteriorIndirectCentral(
  phi = phi,
```

106 PosteriorMed

PosteriorMed

Posterior Distribution of Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a posterior distribution of the total, direct and indirect effects of the independent variable X on the dependent variable Y through mediator variables \mathbf{m} over a specific time interval Δt or a range of time intervals using the posterior distribution of the first-order stochastic differential equation model drift matrix $\mathbf{\Phi}$.

Usage

```
PosteriorMed(phi, delta_t, from, to, med, ncores = NULL, tol = 0.01)
```

Arguments

phi	List of numeric matrices. Each element of the list is a sample from the posterior distribution of the drift matrix (Φ). Each matrix should have row and column names pertaining to the variables in the system.
delta_t	Numeric. Time interval (Δt) .
from	Character string. Name of the independent variable X in phi.
to	Character string. Name of the dependent variable Y in phi.
med	Character vector. Name/s of the mediator variable/s in phi.
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
tol	Numeric. Smallest possible time interval to allow.

PosteriorMed 107

Details

See Total(), Direct(), and Indirect() for more details.

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("PosteriorMed").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

est Mean of the posterior distribution of the total, direct, and indirect effects.

thetahatstar Posterior distribution of the total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
),
  nrow = 3</pre>
```

108 PosteriorMed

```
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
 data = c(
   0.00843, 0.00040, -0.00151,
   -0.00600, -0.00033, 0.00110,
   0.00324, 0.00020, -0.00061,
   0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
   0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
   0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
   0.00644, 0.00031, -0.00119,
   -0.00374, -0.00021, 0.00070,
   -0.00033, -0.00273, -0.00007,
   0.00031, 0.00287, 0.00013,
   -0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
    -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
    -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
    -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
phi <- MCPhi(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 R = 1000L
)$output
# Specific time interval ------
PosteriorMed(
 phi = phi,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
)
# Range of time intervals ------
posterior <- PosteriorMed(</pre>
 phi = phi,
```

PosteriorTotalCentral 109

Posterior Total Central $\,$ Posterior Distribution of the Total Effect Centrality Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a posterior distribution of the total effect centrality over a specific time interval Δt or a range of time intervals using the posterior distribution of the first-order stochastic differential equation model drift matrix Φ .

Usage

```
PosteriorTotalCentral(phi, delta_t, ncores = NULL, tol = 0.01)
```

Arguments

phi	List of numeric matrices. Each element of the list is a sample from the posterior distribution of the drift matrix (Φ). Each matrix should have row and column names pertaining to the variables in the system.
delta_t	Numeric. Time interval (Δt) .
ncores	Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.
tol	Numeric. Smallest possible time interval to allow.

Details

See TotalCentral() for more details.

110 PosteriorTotalCentral

Value

Returns an object of class ctmedmc which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("PosteriorTotalCentral").

output A list the length of which is equal to the length of delta_t.

Each element in the output list has the following elements:

est Mean of the posterior distribution of the total, direct, and indirect effects.

thetahatstar Posterior distribution of the total, direct, and indirect effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCPhi(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), Total(), TotalCentral(), TotalStd(), Trajectory()
```

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
  data = c(</pre>
```

PosteriorTotalCentral 111

```
0.00843, 0.00040, -0.00151,
   -0.00600, -0.00033, 0.00110,
   0.00324, 0.00020, -0.00061,
   0.00040, 0.00374, 0.00016,
   -0.00022, -0.00273, -0.00016,
   0.00009, 0.00150, 0.00012,
   -0.00151, 0.00016, 0.00389,
   0.00103, -0.00007, -0.00283,
   -0.00050, 0.00000, 0.00156,
   -0.00600, -0.00022, 0.00103,
   0.00644, 0.00031, -0.00119,
   -0.00374, -0.00021, 0.00070,
   -0.00033, -0.00273, -0.00007,
   0.00031, 0.00287, 0.00013,
   -0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
   -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
   -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
   -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
phi <- MCPhi(
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 R = 1000L
)$output
# Specific time interval ------
PosteriorTotalCentral(
 phi = phi,
 delta_t = 1
)
# Range of time intervals ------
posterior <- PosteriorTotalCentral(</pre>
 phi = phi,
 delta_t = 1:5
# Methods ------
# PosteriorTotalCentral has a number of methods including
# print, summary, confint, and plot
print(posterior)
```

print.ctmedboot

```
summary(posterior)
confint(posterior, level = 0.95)
plot(posterior)
```

print.ctmedboot

Print Method for Object of Class ctmedboot

Description

Print Method for Object of Class ctmedboot

Usage

```
## S3 method for class 'ctmedboot'
print(x, alpha = 0.05, digits = 4, type = "pc", ...)
```

Arguments

x an object of class ctmedboot. alpha Numeric vector. Significance level α . digits Integer indicating the number of decimal places to display. type Charater string. Confidence interval type, that is, type = "pc" for percentile; type = "bc" for bias corrected. ... further arguments.

Value

Prints a list of matrices of time intervals, estimates, standard errors, number of bootstrap replications, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
## Not run:
library(simStateSpace)
# prepare parameters
## number of individuals
n <- 50
## time points
time <- 100
delta_t <- 0.10
## dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)</pre>
```

print.ctmedboot 113

```
sigma0 <- matrix(</pre>
  data = c(
    1.0,
    0.2,
    0.2,
    0.2,
    1.0,
    0.2,
    0.2,
    0.2,
    1.0
  ),
  nrow = p
)
sigma0_1 \leftarrow t(chol(sigma0))
mu \leftarrow rep(x = 0, times = p)
phi <- matrix(</pre>
  data = c(
    -0.357,
    0.771,
    -0.450,
    0.0,
    -0.511,
    0.729,
    0,
    0,
    -0.693
  ),
  nrow = p
sigma <- matrix(</pre>
  data = c(
    0.24455556,
    0.02201587,
    -0.05004762,
    0.02201587,
    0.07067800,
    0.01539456,
    -0.05004762,
    0.01539456,
    0.07553061
  ),
  nrow = p
)
sigma_l <- t(chol(sigma))</pre>
## measurement model
k <- 3
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta <- 0.2 * diag(k)
theta_l \leftarrow t(chol(theta))
boot <- PBSSMOUFixed(</pre>
```

114 print.ctmeddelta

```
R = 1000L
 path = getwd(),
 prefix = "ou",
 n = n,
 time = time,
 delta_t = delta_t,
 mu0 = mu0,
 sigma0_1 = sigma0_1,
 mu = mu,
 phi = phi,
 sigma_l = sigma_l,
 nu = nu,
 lambda = lambda,
 theta_l = theta_l,
 ncores = parallel::detectCores() - 1,
 seed = 42
)
phi_hat <- phi</pre>
colnames(phi_hat) <- rownames(phi_hat) <- c("x", "m", "y")</pre>
phi <- extract(object = boot, what = "phi")</pre>
# Specific time interval ------
boot <- BootMed(</pre>
 phi = phi,
 phi_hat = phi_hat,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
)
print(boot)
print(boot, type = "bc") # bias-corrected
# Range of time intervals ------
boot <- BootMed(</pre>
 phi = phi,
 phi_hat = phi_hat,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
)
print(boot)
print(boot, type = "bc") # bias-corrected
## End(Not run)
```

print.ctmeddelta 115

Description

Print Method for Object of Class ctmeddelta

Usage

```
## S3 method for class 'ctmeddelta'
print(x, alpha = 0.05, digits = 4, ...)
```

Arguments

```
x an object of class ctmeddelta.  
alpha Numeric vector. Significance level \alpha.  
digits Integer indicating the number of decimal places to display.  
further arguments.
```

Value

Prints a list of matrices of time intervals, estimates, standard errors, test statistics, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
    0.00644, 0.00031, -0.00119,
    -0.00374, -0.00021, 0.00070,
    -0.00033, -0.00273, -0.00007,
```

116 print.ctmedeffect

```
0.00031, 0.00287, 0.00013,
   -0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
   -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
   -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
   -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
print(delta)
# Range of time intervals ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
print(delta)
```

print.ctmedeffect

Print Method for Object of Class ctmedeffect

Description

Print Method for Object of Class ctmedeffect

print.ctmedeffect 117

Usage

```
## S3 method for class 'ctmedeffect'
print(x, digits = 4, ...)
```

Arguments

x an object of class ctmedeffect.digits Integer indicating the number of decimal places to display.... further arguments.

Value

Prints the effects.

Author(s)

Ivan Jacob Agaloos Pesigan

```
phi <- matrix(</pre>
 data = c(
  -0.357, 0.771, -0.450,
  0.0, -0.511, 0.729,
  0, 0, -0.693
 ),
 nrow = 3
colnames(phi) \leftarrow rownames(phi) \leftarrow c("x", "m", "y")
delta_t <- 1
# Time Interval of One ------
## Total Effect -----
total_dt <- Total(</pre>
 phi = phi,
 delta_t = delta_t
)
print(total_dt)
direct_dt <- Direct(</pre>
 phi = phi,
 delta_t = delta_t,
 from = "x",
 to = "y",
 med = "m"
print(direct_dt)
## Indirect Effect ------
```

print.ctmedmc

```
indirect_dt <- Indirect(
  phi = phi,
  delta_t = delta_t,
  from = "x",
  to = "y",
  med = "m"
)
print(indirect_dt)</pre>
```

print.ctmedmc

Print Method for Object of Class ctmedmc

Description

Print Method for Object of Class ctmedmc

Usage

```
## S3 method for class 'ctmedmc'
print(x, alpha = 0.05, digits = 4, ...)
```

Arguments

x an object of class ctmedmc. alpha Numeric vector. Significance level α . digits Integer indicating the number of decimal places to display. ... further arguments.

Value

Prints a list of matrices of time intervals, estimates, standard errors, number of Monte Carlo replications, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
set.seed(42)
phi <- matrix(
    data = c(
        -0.357, 0.771, -0.450,
        0.0, -0.511, 0.729,
        0, 0, -0.693
    ),
    nrow = 3</pre>
```

print.ctmedmc 119

```
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
 data = c(
   0.00843, 0.00040, -0.00151,
   -0.00600, -0.00033, 0.00110,
   0.00324, 0.00020, -0.00061,
   0.00040, 0.00374, 0.00016,
   -0.00022, -0.00273, -0.00016,
   0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
   0.00103, -0.00007, -0.00283,
    -0.00050, 0.00000, 0.00156,
    -0.00600, -0.00022, 0.00103,
   0.00644, 0.00031, -0.00119,
   -0.00374, -0.00021, 0.00070,
   -0.00033, -0.00273, -0.00007,
   0.00031, 0.00287, 0.00013,
   -0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
    -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
    -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
    -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
 R = 100L # use a large value for R in actual research
)
print(mc)
# Range of time intervals ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 from = "x",
```

120 print.ctmedmcphi

```
to = "y",
  med = "m",
  R = 100L # use a large value for R in actual research
)
print(mc)
```

print.ctmedmcphi

Print Method for Object of Class ctmedmcphi

Description

Print Method for Object of Class ctmedmcphi

Usage

```
## S3 method for class 'ctmedmcphi'
print(x, digits = 4, ...)
```

Arguments

```
x an object of class ctmedmcphi.digits Integer indicating the number of decimal places to display.... further arguments.
```

Value

Prints a list of drift matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

```
set.seed(42)
phi <- matrix(
    data = c(
        -0.357, 0.771, -0.450,
        0.0, -0.511, 0.729,
        0, 0, -0.693
    ),
    nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
mc <- MCPhi(
    phi = phi,
    vcov_phi_vec = 0.1 * diag(9),
    R = 100L # use a large value for R in actual research</pre>
```

print.ctmedmed 121

```
)
print(mc)
```

print.ctmedmed

Print Method for Object of Class ctmedmed

Description

Print Method for Object of Class ctmedmed

Usage

```
## S3 method for class 'ctmedmed'
print(x, digits = 4, ...)
```

Arguments

```
x an object of class ctmedmed.digits Integer indicating the number of decimal places to display.... further arguments.
```

Value

Prints a matrix of effects.

Author(s)

Ivan Jacob Agaloos Pesigan

```
phi <- matrix(</pre>
 data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
 ),
 nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
# Specific time interval ------
med <- Med(
 phi = phi,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
```

122 print.ctmedtraj

```
print(med)

# Range of time intervals -----
med <- Med(
   phi = phi,
    delta_t = 1:5,
   from = "x",
   to = "y",
   med = "m"
)
print(med)</pre>
```

print.ctmedtraj

Print Method for Object of Class ctmedtraj

Description

Print Method for Object of Class ctmedtraj

Usage

```
## S3 method for class 'ctmedtraj'
print(x, ...)
```

Arguments

```
x an object of class ctmedtraj.... further arguments.
```

Value

Prints a data frame of simulated data.

Author(s)

Ivan Jacob Agaloos Pesigan

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)</pre>
```

summary.ctmedboot 123

```
colnames(phi) <- rownames(phi) <- c("x", "m", "y")

traj <- Trajectory(
  mu0 = c(3, 3, -3),
  time = 150,
  phi = phi,
  med = "m"
)

print(traj)</pre>
```

summary.ctmedboot

Summary Method for an Object of Class ctmedboot

Description

Summary Method for an Object of Class ctmedboot

Usage

```
## S3 method for class 'ctmedboot'
summary(object, alpha = 0.05, type = "pc", ...)
```

Arguments

object Object of class ctmedboot.
 alpha Numeric vector. Significance level α.
 type Charater string. Confidence interval type, that is, type = "pc" for percentile; type = "bc" for bias corrected.
 additional arguments.

Value

Returns a data frame of effects, time intervals, estimates, standard errors, number of bootstrap replications, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

124 summary.ctmedboot

```
## Not run:
library(simStateSpace)
# prepare parameters
## number of individuals
n <- 50
## time points
time <- 100
delta_t <- 0.10
## dynamic structure
p <- 3
mu0 < -rep(x = 0, times = p)
sigma0 <- matrix(</pre>
  data = c(
    1.0,
    0.2,
    0.2,
    0.2,
    1.0,
    0.2,
    0.2,
    0.2,
    1.0
  ),
  nrow = p
)
sigma0_l <- t(chol(sigma0))</pre>
mu \leftarrow rep(x = 0, times = p)
phi <- matrix(</pre>
  data = c(
    -0.357,
    0.771,
    -0.450,
    0.0,
    -0.511,
    0.729,
    0,
    0,
    -0.693
  ),
  nrow = p
)
sigma <- matrix(</pre>
  data = c(
    0.24455556,
    0.02201587,
    -0.05004762,
    0.02201587,
    0.07067800,
    0.01539456,
    -0.05004762,
    0.01539456,
```

summary.ctmedboot 125

```
0.07553061
 ),
 nrow = p
)
sigma_l <- t(chol(sigma))</pre>
## measurement model
k <- 3
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta <- 0.2 * diag(k)
theta_l <- t(chol(theta))</pre>
boot <- PBSSMOUFixed(</pre>
 R = 1000L
 path = getwd(),
 prefix = "ou",
 n = n,
 time = time,
 delta_t = delta_t,
 mu0 = mu0,
 sigma0_1 = sigma0_1,
 mu = mu,
 phi = phi,
 sigma_l = sigma_l,
 nu = nu,
 lambda = lambda,
 theta_l = theta_l,
 ncores = parallel::detectCores() - 1,
 seed = 42
)
phi_hat <- phi</pre>
colnames(phi_hat) <- rownames(phi_hat) <- c("x", "m", "y")</pre>
phi <- extract(object = boot, what = "phi")</pre>
# Specific time interval ------
boot <- BootMed(</pre>
 phi = phi,
 phi_hat = phi_hat,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
)
summary(boot)
summary(boot, type = "bc") # bias-corrected
# Range of time intervals -----
boot <- BootMed(</pre>
 phi = phi,
 phi_hat = phi_hat,
 delta_t = 1:5,
 from = "x",
 to = "y",
```

126 summary.ctmeddelta

```
med = "m"
)
summary(boot)
summary(boot, type = "bc") # bias-corrected
## End(Not run)
```

summary.ctmeddelta

Summary Method for an Object of Class ctmeddelta

Description

Summary Method for an Object of Class ctmeddelta

Usage

```
## S3 method for class 'ctmeddelta'
summary(object, alpha = 0.05, ...)
```

Arguments

object Object of class ctmeddelta. alpha Numeric vector. Significance level α additional arguments.

Value

Returns a data frame of effects, time intervals, estimates, standard errors, test statistics, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
  data = c(
    0.00843, 0.00040, -0.00151,</pre>
```

summary.ctmeddelta 127

```
-0.00600, -0.00033, 0.00110,
   0.00324, 0.00020, -0.00061,
   0.00040, 0.00374, 0.00016,
   -0.00022, -0.00273, -0.00016,
   0.00009, 0.00150, 0.00012,
   -0.00151, 0.00016, 0.00389,
   0.00103, -0.00007, -0.00283,
   -0.00050, 0.00000, 0.00156,
   -0.00600, -0.00022, 0.00103,
   0.00644, 0.00031, -0.00119,
   -0.00374, -0.00021, 0.00070,
   -0.00033, -0.00273, -0.00007,
   0.00031, 0.00287, 0.00013,
   -0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
   -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
   -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
   -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval ------
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
summary(delta)
# Range of time intervals -----
delta <- DeltaMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
)
summary(delta)
```

128 summary.ctmedmc

summary.ctmedmc

Summary Method for an Object of Class ctmedmc

Description

Summary Method for an Object of Class ctmedmc

Usage

```
## S3 method for class 'ctmedmc'
summary(object, alpha = 0.05, ...)
```

Arguments

```
object Object of class ctmedmc.  
alpha Numeric vector. Significance level \alpha.  
additional arguments.
```

Value

Returns a data frame of effects, time intervals, estimates, standard errors, number of Monte Carlo replications, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

```
set.seed(42)
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
vcov_phi_vec <- matrix(</pre>
  data = c(
    0.00843, 0.00040, -0.00151,
    -0.00600, -0.00033, 0.00110,
    0.00324, 0.00020, -0.00061,
    0.00040, 0.00374, 0.00016,
    -0.00022, -0.00273, -0.00016,
    0.00009, 0.00150, 0.00012,
    -0.00151, 0.00016, 0.00389,
    0.00103, -0.00007, -0.00283,
```

summary.ctmedmed 129

```
-0.00050, 0.00000, 0.00156,
   -0.00600, -0.00022, 0.00103,
   0.00644, 0.00031, -0.00119,
   -0.00374, -0.00021, 0.00070,
   -0.00033, -0.00273, -0.00007,
   0.00031, 0.00287, 0.00013,
   -0.00014, -0.00170, -0.00012,
   0.00110, -0.00016, -0.00283,
   -0.00119, 0.00013, 0.00297,
   0.00063, -0.00004, -0.00177,
   0.00324, 0.00009, -0.00050,
   -0.00374, -0.00014, 0.00063,
   0.00495, 0.00024, -0.00093,
   0.00020, 0.00150, 0.00000,
   -0.00021, -0.00170, -0.00004,
   0.00024, 0.00214, 0.00012,
   -0.00061, 0.00012, 0.00156,
   0.00070, -0.00012, -0.00177,
   -0.00093, 0.00012, 0.00223
 ),
 nrow = 9
)
# Specific time interval ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m",
 R = 100L # use a large value for R in actual research
)
summary(mc)
# Range of time intervals ------
mc <- MCMed(</pre>
 phi = phi,
 vcov_phi_vec = vcov_phi_vec,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
 R = 100L # use a large value for R in actual research
)
summary(mc)
```

130 summary.ctmedmed

Description

Summary Method for an Object of Class ctmedmed

Usage

```
## S3 method for class 'ctmedmed'
summary(object, digits = 4, ...)
```

Arguments

```
object an object of class ctmedmed.

digits Integer indicating the number of decimal places to display.

further arguments.
```

Value

Returns a matrix of effects.

Author(s)

Ivan Jacob Agaloos Pesigan

```
phi <- matrix(</pre>
 data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
 ),
 nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
# Specific time interval ------
med <- Med(
 phi = phi,
 delta_t = 1,
 from = "x",
 to = "y",
 med = "m"
)
summary(med)
# Range of time intervals -----
med <- Med(
 phi = phi,
 delta_t = 1:5,
 from = "x",
 to = "y",
 med = "m"
```

```
summary.ctmedposteriorphi
```

```
131
```

```
)
summary(med)
```

```
summary.ctmedposteriorphi
```

Summary Method for Object of Class ctmedposteriorphi

Description

Summary Method for Object of Class ctmedposteriorphi

Usage

```
## S3 method for class 'ctmedposteriorphi'
summary(object, ...)
```

Arguments

```
object an object of class ctmedposteriorphi.
... further arguments.
```

Value

Returns a list of the posterior means (in matrix form) and covariance matrix.

Author(s)

Ivan Jacob Agaloos Pesigan

summary.ctmedtraj

Summary Method for an Object of Class ctmedtraj

Description

Summary Method for an Object of Class ctmedtraj

Usage

```
## S3 method for class 'ctmedtraj'
summary(object, ...)
```

Arguments

```
object an object of class ctmedtraj.
... further arguments.
```

Total

Value

Returns a data frame of simulated data.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

```
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")

traj <- Trajectory(
  mu0 = c(3, 3, -3),
  time = 150,
  phi = phi,
  med = "m"
)
summary(traj)</pre>
```

Total

Total Effect Matrix Over a Specific Time Interval

Description

This function computes the total effects matrix over a specific time interval Δt using the first-order stochastic differential equation model's drift matrix Φ .

Usage

```
Total(phi, delta_t)
```

Arguments

Numeric matrix. The drift matrix (Φ) , phi should have row and column names pertaining to the variables in the system.

delta_t Numeric. Time interval (Δt).

Total 133

Details

The total effect matrix over a specific time interval Δt is given by

$$Total_{\Delta t} = \exp(\Delta t \mathbf{\Phi})$$

where Φ denotes the drift matrix, and Δt the time interval.

Linear Stochastic Differential Equation Model:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{\nu} + \mathbf{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{arepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Theta}
ight)$$

where $\mathbf{y}_{i,t}$, $\boldsymbol{\eta}_{i,t}$, and $\boldsymbol{\varepsilon}_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\boldsymbol{\eta}_{i,t}$ a vector of latent random variables, and $\boldsymbol{\varepsilon}_{i,t}$ a vector of random measurement errors, at time t and individual i. $\boldsymbol{\nu}$ denotes a vector of intercepts, $\boldsymbol{\Lambda}$ a matrix of factor loadings, and $\boldsymbol{\Theta}$ the covariance matrix of $\boldsymbol{\varepsilon}$.

An alternative representation of the measurement error is given by

$$\boldsymbol{\varepsilon}_{i,t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i,t}, \quad \text{with} \quad \mathbf{z}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$$

where $\mathbf{z}_{i,t}$ is a vector of independent standard normal random variables and $\left(\Theta^{\frac{1}{2}}\right)\left(\Theta^{\frac{1}{2}}\right)' = \Theta$. The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_{i,t} = \left(\boldsymbol{\iota} + \boldsymbol{\Phi}\boldsymbol{\eta}_{i,t}\right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_{i,t}$$

where ι is a term which is unobserved and constant over time, Φ is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, Σ is the matrix of volatility or randomness in the process, and $\mathrm{d}W$ is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns an object of class ctmedeffect which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("Total").

output The matrix of total effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

134 TotalCentral

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), TotalCentral(), TotalStd(), Trajectory()
```

Examples

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
delta_t <- 1
Total(
  phi = phi,
  delta_t = delta_t
phi <- matrix(</pre>
  data = c(
    -6, 5.5, 0, 0,
    1.25, -2.5, 5.9, -7.3,
    0, 0, -6, 2.5,
    5, 0, 0, -6
  ),
  nrow = 4
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)</pre>
Total(
  phi = phi,
  delta_t = delta_t
```

TotalCentral

Total Effect Centrality

Description

Total Effect Centrality

Usage

```
TotalCentral(phi, delta_t, tol = 0.01)
```

TotalCentral 135

Arguments

phi	Numeric matrix. The drift matrix (Φ) , phi should have row and column names pertaining to the variables in the system.
delta_t	Vector of positive numbers. Time interval (Δt) .
tol	Numeric. Smallest possible time interval to allow.

Details

The total effect centrality of a variable is the sum of the total effects of a variable on all other variables at a particular time interval.

Value

Returns an object of class ctmedmed which is a list with the following elements:

```
call Function call.args Function arguments.fun Function used ("TotalCentral").output A matrix of total effect centrality.
```

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCPhi(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalStd(), Trajectory()
```

136 TotalStd

Examples

```
phi <- matrix(</pre>
 data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
 ),
 nrow = 3
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
# Specific time interval ------
TotalCentral(
 phi = phi,
 delta_t = 1
)
# Range of time intervals ------
total_central <- TotalCentral(</pre>
 phi = phi,
 delta_t = 1:30
plot(total_central)
# Methods ------
# TotalCentral has a number of methods including
# print, summary, and plot
total_central <- TotalCentral(</pre>
 phi = phi,
 delta_t = 1:5
print(total_central)
summary(total_central)
plot(total_central)
```

TotalStd

Standardized Total Effect Matrix Over a Specific Time Interval

Description

This function computes the standardized total effects matrix over a specific time interval Δt using the first-order stochastic differential equation model's drift matrix Φ and process noise covariance matrix Σ .

Usage

```
TotalStd(phi, sigma, delta_t)
```

TotalStd 137

Arguments

phi	Numeric matrix. The drift matrix (Φ) . phi should have row and column natrix	
	pertaining to the variables in the system.	
sigma	Numeric matrix. The process noise covariance matrix (Σ) .	
delta_t	Numeric. Time interval (Δt).	

Details

The standardized total effect matrix over a specific time interval Δt is given by

$$\operatorname{Total}_{\Delta t}^{*} = \mathbf{S} \left(\exp \left(\Delta t \mathbf{\Phi} \right) \right) \mathbf{S}^{-1}$$

where Φ denotes the drift matrix, ${\bf S}$ a diagonal matrix with model-implied standard deviations on the diagonals and Δt the time interval.

Value

Returns an object of class ctmedeffect which is a list with the following elements:

call Function call.

args Function arguments.

fun Function used ("TotalStd").

output The standardized matrix of total effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. doi:10.2307/271028

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. doi:10.1080/10705511.2014.973960

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. doi:10.1007/s11336021097670

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), Trajectory()
```

Trajectory Trajectory

Examples

```
phi <- matrix(</pre>
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
colnames(phi) \leftarrow rownames(phi) \leftarrow c("x", "m", "y")
sigma <- matrix(</pre>
  data = c(
    0.24455556, 0.02201587, -0.05004762,
    0.02201587, 0.07067800, 0.01539456,
    -0.05004762, 0.01539456, 0.07553061
  ),
  nrow = 3
)
delta_t <- 1
TotalStd(
  phi = phi,
  sigma = sigma,
  delta_t = delta_t
```

Trajectory

Simulate Trajectories of Variables

Description

This function simulates trajectories of variables without measurement error or process noise. Total corresponds to the total effect and Direct corresponds to the portion of the total effect where the indirect effect is removed.

Usage

```
Trajectory(mu0, time, phi, med)
```

Arguments

mu0	Numeric vector. Initial values of the variables.
time	Positive integer. Number of time points.
phi	Numeric matrix. The drift matrix (Φ) . phi should have row and column names pertaining to the variables in the system.
med	Character vector. Name/s of the mediator variable/s in phi.

Trajectory 139

Value

Returns an object of class ctmedtraj which is a list with the following elements:

```
call Function call.args Function arguments.fun Function used ("Trajectory").output A data frame of simulated data.
```

See Also

```
Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootMed(), BootMedStd(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), ExpCov(), ExpMean(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd()
```

```
phi <- matrix(</pre>
 data = c(
   -0.357, 0.771, -0.450,
   0.0, -0.511, 0.729,
   0, 0, -0.693
 ),
 nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")</pre>
traj <- Trajectory(</pre>
 mu0 = c(3, 3, -3),
 time = 150,
 phi = phi,
 med = "m"
plot(traj)
# Methods ------
# Trajectory has a number of methods including
# print, summary, and plot
traj <- Trajectory(</pre>
 mu0 = c(3, 3, -3),
 time = 25,
 phi = phi,
 med = "m"
print(traj)
summary(traj)
plot(traj)
```

Index

* Continuous Time Mediation Functions	MCBeta, 61
BootBeta, 3	MCBetaStd, 64
BootBetaStd, 6	PosteriorBeta, 100
BootMed, 10	* boot
BootMedStd, 14	BootBeta, 3
DeltaBeta, 25	BootBetaStd, 6
DeltaBetaStd, 28	BootMed, 10
DeltaIndirectCentral, 32	BootMedStd, 14
DeltaMed, 35	* cTMed
DeltaMedStd, 39	BootBeta, 3
DeltaTotalCentral, 43	BootBetaStd, 6
Direct, 46	BootMed, 10
DirectStd, 49	BootMedStd, 14
ExpCov, 51	DeltaBeta, 25
ExpMean, 53	DeltaBetaStd, 28
Indirect, 55	DeltaIndirectCentral, 32
<pre>IndirectCentral, 57</pre>	DeltaMed, 35
<pre>IndirectStd, 59</pre>	DeltaMedStd, 39
MCBeta, 61	DeltaTotalCentral, 43
MCBetaStd, 64	Direct, 46
MCIndirectCentral,69	DirectStd, 49
MCMed, 72	ExpCov, 51
MCMedStd, 76	ExpMean, 53
MCPhi, 80	Indirect, 55
MCPhiSigma, 82	<pre>IndirectCentral, 57</pre>
MCTotalCentral, 84	IndirectStd, 59
Med, 87	MCBeta, 61
MedStd, 90	MCBetaStd, 64
PosteriorBeta, 100	MCIndirectCentral, 69
PosteriorIndirectCentral, 103	MCMed, 72
PosteriorMed, 106	MCMedStd, 76
PosteriorTotalCentral, 109	MCPhi, 80
Total, 132	MCPhiSigma, 82
TotalCentral, 134	MCTotalCentral, 84
TotalStd, 136	Med, 87
Trajectory, 138	MedStd, 90
* beta	PosteriorBeta, 100
DeltaBeta, 25	PosteriorIndirectCentral, 103
DeltaBetaStd, 28	PosteriorMed, 106

INDEX 141

PosteriorTotalCentral, 109	print.ctmedmc, 118
Total, 132	print.ctmedmcphi, 120
TotalCentral, 134	print.ctmedmed, 121
TotalStd, 136	print.ctmedtraj, 122
Trajectory, 138	summary.ctmedboot, 123
* delta	summary.ctmeddelta, 126
DeltaBeta, 25	summary.ctmedmc, 128
DeltaBetaStd, 28	summary.ctmedmed, 129
DeltaIndirectCentral, 32	summary.ctmedposteriorphi, 131
DeltaMed, 35	summary.ctmedtraj, 131
DeltaMedStd, 39	* network
DeltaTotalCentral, 43	DeltaIndirectCentral, 32
* effects	DeltaTotalCentral,43
Direct, 46	<pre>IndirectCentral, 57</pre>
DirectStd, 49	MCIndirectCentral, 69
Indirect, 55	MCTotalCentral, 84
<pre>IndirectCentral, 57</pre>	PosteriorIndirectCentral, 103
IndirectStd, 59	PosteriorTotalCentral, 109
Med, 87	TotalCentral, 134
MedStd, 90	* path
Total, 132	BootBeta, 3
TotalCentral, 134	BootBetaStd, 6
TotalStd, 136	BootMed, 10
Trajectory, 138	BootMedStd, 14
* expectations	DeltaMed, 35
ExpCov, 51	DeltaMedStd, 39
ExpMean, 53	MCMed, 72
* mc	MCMedStd, 76
MCBeta, 61	Med, 87
MCBetaStd, 64	MedStd, 90
MCIndirectCentral, 69	PosteriorMed, 106
MCMed, 72	Trajectory, 138
MCMedStd, 76	* posterior
MCPhi, 80	PosteriorBeta, 100
MCPhiSigma, 82	PosteriorIndirectCentral, 103
MCTotalCentral, 84	PosteriorMed, 106
* methods	PosteriorTotalCentral, 109
confint.ctmedboot, 18	
confint.ctmeddelta, 21	BootBeta, 3, 8, 11, 16, 27, 30, 34, 37, 41, 45,
confint.ctmedmc, 23	48, 50, 52, 54, 56, 58, 60, 63, 67, 71
plot.ctmedboot, 92	74, 78, 81, 83, 86, 89, 91, 102, 104,
plot.ctmeddelta,95	107, 110, 134, 135, 137, 139
plot.ctmedmc, 97	BootBetaStd, 4, 6, 11, 16, 27, 30, 34, 37, 41,
plot.ctmedmed, 98	45, 48, 50, 52, 54, 56, 58, 60, 63, 67
plot.ctmedtraj,99	71, 74, 78, 81, 83, 86, 89, 91, 102,
print.ctmedboot, 112	104, 107, 110, 134, 135, 137, 139
print.ctmeddelta,114	BootMed, 4, 8, 10, 16, 27, 30, 34, 37, 41, 45,
print.ctmedeffect.116	48. 50. 52. 54. 56. 58. 60. 63. 67. 71

INDEX

107, 110, 134, 135, 137, 139 BootMedStd, 4, 8, 11, 14, 27, 30, 34, 37, 41, 45, 48, 50, 52, 54, 56, 58, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 confint.ctmedboot. 18 confint.ctmeddelta, 21 confint.ctmedmc, 23 DeltaBeta, 4, 8, 11, 16, 25, 30, 34, 37, 41, 45, 48, 50, 52, 54, 56, 58, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 DeltaBetaStd, 4, 8, 11, 16, 27, 28, 34, 37, 41, 45, 48, 50, 52, 54, 56, 58, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 DeltaIndirectCentral, 4, 8, 11, 16, 27, 30, 32, 37, 41, 45, 48, 50, 52, 54, 56, 58, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137.139 DeltaMed, 4, 8, 11, 16, 27, 30, 34, 35, 41, 45, 48, 50, 52, 54, 56, 58, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 DeltaMedStd, 4, 8, 11, 16, 27, 30, 34, 37, 39, 45, 48, 50, 52, 54, 56, 58, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 DeltaTotalCentral, 4, 8, 11, 16, 27, 30, 34, 37, 41, 43, 48, 50, 52, 54, 56, 58, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 Direct, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 46, 50, 52, 54, 56, 58, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 Direct(), 11, 36, 73, 88, 107 DirectStd, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48, 49, 52, 54, 56, 58, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 DirectStd(), 15, 40, 77, 90 ExpCov, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48,

50, 51, 54, 56, 58, 60, 63, 67, 71, 74,

74, 78, 81, 83, 86, 89, 91, 102, 104,

78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 ExpMean, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48, 50, 52, 53, 56, 58, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 Indirect, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48, 50, 52, 54, 55, 58, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 Indirect(), 11, 36, 73, 88, 107 IndirectCentral, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48, 50, 52, 54, 56, 57, 60, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 IndirectCentral(), 33, 69 IndirectStd, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48, 50, 52, 54, 56, 58, 59, 63, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 IndirectStd(), 15, 40, 77, 90 MCBeta, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48, 50, 52, 54, 56, 58, 60, 61, 67, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 MCBetaStd, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48, 50, 52, 54, 56, 58, 60, 63, 64, 71, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 MCIndirectCentral. 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48, 50, 52, 54, 56, 58, 60, 63, 67, 69, 74, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 MCMed, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48, 50, 52, 54, 56, 58, 60, 63, 67, 71, 72, 78, 81, 83, 86, 89, 91, 102, 104, 107, 110, 134, 135, 137, 139 MCMedStd, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48, 50, 52, 54, 56, 58, 60, 63, 67, 71, 74, 76, 81, 83, 86, 89, 91, 102, 104,

107, 110, 134, 135, 137, 139

50, 52, 54, 56, 58, 60, 63, 67, 71, 74,

78, 80, 83, 86, 89, 91, 102, 104, 107,

MCPhi, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48,

110, 134, 135, 137, 139

INDEX 143

```
MCPhiSigma, 4, 8, 11, 16, 27, 30, 34, 37, 41,
                                                        summary.ctmedboot, 123
                                                       summary.ctmeddelta, 126
         45, 48, 50, 52, 54, 56, 58, 60, 63, 67,
          71, 74, 78, 81, 82, 86, 89, 91, 102,
                                                       summary.ctmedmc, 128
          104, 107, 110, 134, 135, 137, 139
                                                       summary.ctmedmed, 129
MCTotalCentral, 4, 8, 11, 16, 27, 30, 34, 37,
                                                       summary.ctmedposteriorphi, 131
         41, 45, 48, 50, 52, 54, 56, 58, 60, 63,
                                                       summary.ctmedtraj, 131
         67, 71, 74, 78, 81, 83, 84, 89, 91,
                                                       Total, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48,
          102, 104, 107, 110, 134, 135, 137,
                                                                 50, 52, 54, 56, 58, 60, 63, 67, 71, 74,
          139
                                                                 78, 81, 83, 86, 89, 91, 102, 104, 107,
Med, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48, 50,
                                                                 110, 132, 135, 137, 139
         52, 54, 56, 58, 60, 63, 67, 71, 74, 78,
                                                       Total(), 3, 11, 25, 36, 62, 73, 88, 101, 107
         81, 83, 86, 87, 91, 102, 104, 107,
                                                       TotalCentral, 4, 8, 11, 16, 27, 30, 34, 37, 41,
          110, 134, 135, 137, 139
                                                                 45, 48, 50, 52, 54, 56, 58, 60, 63, 67,
MedStd, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45, 48,
                                                                 71, 74, 78, 81, 83, 86, 89, 91, 102,
         50, 52, 54, 56, 58, 60, 63, 67, 71, 74,
                                                                 104, 107, 110, 134, 134, 137, 139
          78, 81, 83, 86, 89, 90, 102, 104, 107,
                                                       TotalCentral(), 43, 85, 104, 109
          110, 134, 135, 137, 139
                                                       TotalStd, 4, 8, 11, 16, 27, 30, 34, 37, 41, 45,
plot.ctmedboot, 92
                                                                 48, 50, 52, 54, 56, 58, 60, 63, 67, 71,
plot.ctmeddelta, 95
                                                                 74, 78, 81, 83, 86, 89, 91, 102, 104,
plot.ctmedmc, 97
                                                                 107, 110, 134, 135, 136, 139
plot.ctmedmed, 98
                                                       TotalStd(), 7, 15, 29, 40, 65, 77, 90
plot.ctmedtraj, 99
                                                       Trajectory, 4, 8, 11, 16, 27, 30, 34, 37, 41,
PosteriorBeta, 4, 8, 11, 16, 27, 30, 34, 37,
                                                                 45, 48, 50, 52, 54, 56, 58, 60, 63, 67,
         41, 45, 48, 50, 52, 54, 56, 58, 60, 63,
                                                                 71, 74, 78, 81, 83, 86, 89, 91, 102,
         67, 71, 74, 78, 81, 83, 86, 89, 91,
                                                                 104, 107, 110, 134, 135, 137, 138
          100, 104, 107, 110, 134, 135, 137,
          139
PosteriorIndirectCentral, 4, 8, 11, 16, 27,
         30, 34, 37, 41, 45, 48, 50, 52, 54, 56,
         58, 60, 63, 67, 71, 74, 78, 81, 83, 86,
         89, 91, 102, 103, 107, 110, 134, 135,
          137.139
PosteriorMed, 4, 8, 11, 16, 27, 30, 34, 37, 41,
         45, 48, 50, 52, 54, 56, 58, 60, 63, 67,
          71, 74, 78, 81, 83, 86, 89, 91, 102,
          104, 106, 110, 134, 135, 137, 139
PosteriorTotalCentral, 4, 8, 11, 16, 27, 30,
         34, 37, 41, 45, 48, 50, 52, 54, 56, 58,
         60, 63, 67, 71, 74, 78, 81, 83, 86, 89,
         91, 102, 104, 107, 109, 134, 135,
          137, 139
print.ctmedboot, 112
print.ctmeddelta, 114
print.ctmedeffect, 116
print.ctmedmc, 118
print.ctmedmcphi, 120
print.ctmedmed, 121
print.ctmedtraj, 122
```