QCM n° 2

Un peu de calcul.

Calculer $\lim_{x\to 0} (1+x)^{1/x}$ et $\lim_{x\to 0} 2x \ln(x+\sqrt{x})$. Échauffement n°1

Calculer $\frac{\mathrm{d}}{\mathrm{d}x} \left(\ln \sqrt{\frac{1+x}{1-x}} \right)$. Échauffement n°2

QCM - cocher une case si la phrase qui suit est correcte.

Question n°1 Soit θ un réel.

 $\Box \sin(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ $\Box e^{1+i\frac{\pi}{4}} = \frac{e\sqrt{2}}{2}(1+i).$

 $\Box \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ $\Box \left| e^{\theta(1+i)} \right| = 1.$

Les fonctions f suivantes sont de la forme $\frac{Cu'}{u}$ où C est une constante et u est une Question n°2 fonction de classe \mathscr{C}^1 sur le segment I.

 $\Box f(x) = \frac{x^2}{x^3 + 1}$ et I = [1, 2]. $\Box f(x) = \tan x \text{ et } I = [0, \frac{\pi}{4}]$

 $\Box f(x) = \frac{1}{x \ln x} \text{ et } I = [2, 4]$ $\Box f(x) = \frac{e^x}{1 + 2e^x + e^{2x}} \text{ et } I = [0, 1]$

Soit f une fonction définie et croissante sur \mathbb{R}_+ Question n°3

- \square Alors f est continue sur \mathbb{R}_+ .
- \square Alors $\lim_{x \to +\infty} f(x) = +\infty$. \square Alors f' est positive sur \mathbb{R}_+ .
- \square Alors $\forall x \in \mathbb{R}_+, f(x+1) \geqslant f(x)$.

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2^{(x-1)^2+2}$ Question n°4

- \square f est définie et continue sur \mathbb{R} .
- \square f est injective sur \mathbb{R} .
- \square f admet un minimum sur $\mathbb R$ en 1 qui vaut 4.
- \square f est dérivable sur \mathbb{R}_+ .

Question n°5 Soit f une fonction décroissante définie sur un intervalle I . Alors $\Box \forall x, y \in I, \ x \leqslant y \Rightarrow f(x) \leqslant f(y).$ $\Box \forall x, y \in I, \ x < y \Rightarrow f(x) \geqslant f(y).$ $\Box \forall x, y \in I, \ x < y \Rightarrow f(x) > f(y).$ $\Box \forall x, y \in I, \ f(x) \geqslant f(y) \Rightarrow x < y.$ $\Box \forall x, y \in I, \ f(x) > f(y) \Rightarrow x < y.$ $\Box \forall x, y \in I, \ f(x) \geqslant f(y) \Rightarrow x \leqslant y.$ $\Box f' \leqslant 0.$
Question n°6 Soit f la fonction définie par $f(t) = \ln \left(t + \sqrt{t^2 + 1}\right)$.
☐ f est continue sur \mathbb{R}_+ en tant que composée de fonctions continues. ☐ f est dérivable sur \mathbb{R}_+ car $t + \sqrt{t^2 + 1}$ ne s'annule pas. ☐ f est dérivable sur \mathbb{R}_+ et $f'(t) = \frac{1 + \frac{1}{\sqrt{t^2 + 1}}}{t + \sqrt{t^2 + 1}}$. ☐ Comme les fonctions $t \mapsto t^2 + 1$, $u \mapsto \sqrt{u}$, $v \mapsto \ln(v)$ sont croissantes sur \mathbb{R}_+^* , f est croissantes sur \mathbb{R}_+^* .
Question n°7 $\ln(x)$
\square La fonction $x \longmapsto \frac{\ln(x)}{x}$ est la dérivée de $x \longmapsto (\ln x)^2$ sur $[1, +\infty[$.
\square La fonction $x \longmapsto \frac{1}{x}$ est la dérivée de $x \longmapsto \frac{-1}{x^2}$ sur $[1, +\infty[$.
\square La fonction $x \longmapsto \frac{1}{x^3}$ a pour dérivée $x \longmapsto \frac{-1}{x^2}$ sur $]0, +\infty[$.
\square La fonction $x \longmapsto e^{-\frac{x^2}{2}}$ admet comme primitive $x \longmapsto \frac{1}{x} e^{-\frac{x^2}{2}}$ sur $[1, +\infty[$.
Question n°8 Soit f une fonction continue sur $]a,b[$, strictement décroissante sur $]a,b[$. \Box Alors d'après le théorème de la bijection, il existe un unique réel c de $]a,b[$ tel que $f(c)=c$. \Box Alors d'après le théorème de la bijection, f est bijective de $]a,b[$ vers $]f(a),f(b)[$. \Box Alors f est bijective et f^{-1} est continue et strictement décroissante. \Box Alors f est dérivable sur $]a,b[$ et $\forall t\in]a,b[$, $f'(t)<0$.
Question n°9 Soit A et B deux parties de \mathbb{R} et f,g deux fonctions définies respectivement sur A et sur B , telles que $g \circ f$ existe. \Box pour tout $x \in B$, $g(x) \in A$. \Box pour tout $x \in A$, $g(x) \in B$. \Box pour tout $x \in A$, $f(x) \in B$. \Box $g \circ f = g(f(x))$. \Box $g \circ f$ est la fonction telle que g a f pour variable. \Box une composée de fonctions est une fonction qui prend une fonction comme variable.