

RD-A167 328

INFLUENCE OF AL203 ON PROPERTIES OF YTTRIA STABILIZED
ZIRCONIA-AL203 COMP. (U) ILLINOIS UNIV AT URBANA DEPT
OF CERAMIC ENGINEERING R C BUCHANAN ET AL. 15 APR 86

1/1

UNCLASSIFIED

TR-13 N00014-86-K-0969

F/G 11/2

NL

MICROCOM[®]

CHART

(1)

AD-A167 328

DTIC FILE COPY

Influence of Al_2O_3 on Properties of
Yttria Stabilized Zirconia- Al_2O_3 Composites

by

R. C. Buchanan and W. W. Davison

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

DEPARTMENT OF CERAMIC ENGINEERING
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

36

(1)

Final Report
Technical Report No. 13
Contract No.: US NAVY-N-00014-80-K-0969

Influence of Al_2O_3 on Properties of
Yttria Stabilized Zirconia- Al_2O_3 Composites

by

R. C. Buchanan and W. W. Davison

DTIC
ELECTED
MAY 06 1986
S D

March, 1986

Department of Ceramic Engineering
University of Illinois at Urbana-Champaign
105 S. Goodwin Avenue
Urbana, IL 61801

Research was supported by the Office of Naval Research
Metallurgy and Ceramics Program
Department of the Navy

Production in whole or in part is permitted for any purpose
of the United States Government

This document has been approved
for public release and sale. Its
distribution is unlimited.

This document has been approved
for public release and sale; its
distribution is unlimited.

SECURITY CLASSIFICATION OF THIS PAGE

AD-7167318
REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Widespread; required no. of copies to defense documentation center; individuals and organizations on approved distribution list furnished by Metallurgy Ceramic Dept. INR	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE		4. PERFORMING ORGANIZATION REPORT NUMBER(S) Report #13	
5a. NAME OF PERFORMING ORGANIZATION University of Illinois	5b. OFFICE SYMBOL (if applicable)	6. MONITORING ORGANIZATION REPORT NUMBER(S) Office of Naval Research US NAVY-N-00014-80-K-0969	
6a. ADDRESS (City, State and ZIP Code) Department of Ceramic Engineering 105 S. Goodwin Ave. Urbana, IL 61801		7a. ADDRESS (City, State and ZIP Code)	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research	8b. OFFICE SYMBOL (if applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
9a. ADDRESS (City, State and ZIP Code) Division of Materials Research Arlington, VA 22217		10. SOURCE OF FUNDING NOS.	
11. TITLE (Include Security Classification) Influence of Al ₂ O ₃ on Properties of Yttria Stabilized Zirconia-Al ₂ O ₃ Composites		PROGRAM ELEMENT NO.	PROJECT NO.
12. PERSONAL AUTHORIS R. C. Buchanan and W. W. Davison		TASK NO.	WORK UNIT NO.
13a. TYPE OF REPORT Interim	13b. TIME COVERED FROM 10/1/85 TO 4/85	14. DATE OF REPORT (Yr., Mo., Day) April, 15, 1986	15. PAGE COUNT 40
16. SUPPLEMENTARY NOTATION Development of toughened with zirconia composites in the YSZ-Al ₂ O ₃ system			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Stabilized zirconia, toughened zirconia YSZ-composite, high fracture toughness, MOR.	
19. ABSTRACT (Continue on reverse if necessary and identify by block number)			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS <input type="checkbox"/>		21. ABSTRACT SECURITY CLASSIFICATION Unclassified	
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE NUMBER (Include Area Code)	22c. OFFICE SYMBOL

ABSTRACT

SECURITY CLASSIFICATION OF THIS PAGE

Microstructure $\propto 9M^{1/2} \times \text{the Square Root of } M$

K_{sub}Ic

Composite structures of yttria (4.5 mol%) stabilized zirconia (YSZ) with added Al₂O₃ (0.3 to 7.5 wt%) were investigated. Pressed YSZ compacts prepared from submicrometer powders of >99% purity were sintered in the range 1200-1350°C for 0.5 to 24 h. Uniform grain size microstructures (0.2 to 0.4 μm) were obtained which showed discrete Al₂O₃ grains dispersed throughout. X-ray diffraction and Raman spectral analysis indicated a combination of both cubic and tetragonal phases. Measured lattice parameters were observed to vary irregularly with Al₂O₃ content. DC conductivity was found to increase with added Al₂O₃ less than 3 wt%. Strength values obtained for the composites were in excess of ~~9 MPa·m^{1/2}~~ (K_{Ic}) and 425 MPa (MOR), significantly higher than reported for cubic phase YSZ. The increased strength was attributed to small grain size as well as to crack deflection and arrest mechanisms associated with the dispersed high modulus and lower expansion second phase. The presence of a monoclinic phase was not detected in the samples either before or after fracture, hence the strengthening could not be ascribed to transformation toughening.

FRACTURE TOUGHNESS

SECURITY CLASSIFICATION OF THIS PAGE

TABLE OF CONTENTS

	PAGE
I. Introduction.....	3
II. Experimental.....	5
III. Results and Discussion.....	7
IV. Conclusions.....	14
V. Acknowledgments.....	15
VI. References.....	16
IV. List of Figures.....	24

RE: Distribution Statement
Approved for Public Release.
Per Dr. Paul Smith, ONR/Code 1131

Accession For	
NTIS	CRA&I
DTIC	TAB
Unannounced	
Justification	
By	
Distribution /	
Availability Codes	
Dist	Avail and/or Special
A-1	

Influence of Al_2O_3 on Properties of Yttria Stabilized Zirconia- Al_2O_3 Composites

I. Introduction

The use of improved processing techniques^{1,2} and ultrafine powders have reduced sintering temperatures for zirconia from >1700°C to <1400°C.³⁻⁶ Microstructures resulting from this lower temperature sintering show smaller and more uniform grain sizes, with resultant higher strengths and fracture toughness.^{7,8}

Additives such as MgO , SiO_2 , Fe_2O_3 , B_2O_3 , TiO_2 and Bi_2O_3 have been investigated as sintering aids for zirconia.^{9,10} Various theories as to the mechanism by which these intentionally added impurities enhance the densification have been advanced.^{11,12} Most involve a segregation of the impurities to the grain boundaries, where a comparatively low melting eutectic may be formed, resulting in liquid phase assisted sintering.¹⁰ Another non-conflicting analysis contends that a major effect of the grain boundary impurities is to increase the pore drag force, minimizing pore-grain boundary breakaway and entrapped porosity.^{10,13}

Use of Al_2O_3 as an additive to the yttria-stabilized zirconia (YSZ) system has been investigated by many authors^{4-6,14,15} and found to be an effective sintering aid. Bernard's⁶ analysis of the mechanism of Al_2O_3 assisted densification of YSZ held that Al^{3+} substituted for Zr^{4+} in the YSZ lattice (to ≈ 0.1 mol%) thus enhancing the sintering rate by accelerated cation diffusion. Butler and Drennan¹⁴ proposed that the presence of Al_2O_3 particles in a YSZ microstructure would scavenge the grain boundaries of SiO_2 impurities, enabling faster grain boundary movement and therefore enhanced densification. Buchanan and Wilson⁵ noted the presence of an intergranular liquid phase with Al_2O_3 added to YSZ and a nonlinear relationship between

density and sintering time at different temperatures, indicative of particle rearrangement in the presence of an intergranular liquid phase. Buchanan and Wilson also noted excessively large Al_2O_3 particles (with respect to the YSZ grain size), often with significant adjacent porosity.

The well documented strength enhancement of ZrO_2 ceramics by a transformation toughening process is considered to be due to the mechanisms of¹⁶: 1) energy absorption near an advancing crack tip resulting from a martensitic (tetragonal \rightarrow monoclinic) phase transformation,^{17,18} and 2) nucleation of matrix cracks and residual stresses due to particles which are transformed upon cooling before the specimen is loaded.¹⁹ This toughening process has been found to take place, by Tsukuma et al., in 2 - 3.85 mol% YSZ with up to 40 wt% Al_2O_3 added.²⁰ The authors attributed an observed increase in strength and fracture toughness with added Al_2O_3 content to suppression of crack initiation within the YSZ.

Matsui et al.,²¹ have addressed the phenomenon whereby the tetragonal \rightarrow monoclinic transformation is hindered by a small grain size microstructure (grains $< 0.5 \mu\text{m}$). This phenomenon has been speculated to occur as a result of 1) progression of the transformation being interrupted by grain boundaries; and 2) difficulty in nucleation of the monoclinic phase due to the small grain size. A shear deformation often accompanies the transformation due to the cooperative movement of ions, hence a critical grain size is required for the transformation to take place. Another effect, which has been noted by Rao,²² is that $\alpha\text{-Al}_2\text{O}_3$ particles can plastically deform in response to matrix strains in the partially stabilized ZrO_2 lattice.

In this study the effect of increasing amounts of submicrometer Al_2O_3 additions on the structure, rupture modulus, fracture toughness, and dc conductivity of a 4.5 mol% YSZ was investigated. The size and distribution

of the Al_2O_3 phase regions and other microstructural features of the composite structure as a function of added Al_2O_3 were also studied.

II. Experimental

The starting powder used in this study was an 8.0 wt% (4.5 mol%) yttria-stabilized zirconia (YSZ), typical lot analysis and average particle size distribution for which is given in Table 1. X-ray diffraction analysis of the powder revealed only the cubic phase. The primary additive to the YSZ was a 0.03 μm Al_2O_3 floated powder, but other Al_2O_3 precursors including oxalate [$\text{Al}_2(\text{C}_2\text{O}_4)_3$], hydroxide powder or gel [$\text{Al}(\text{OH})_3$], were initially investigated, as shown in Table 2. After Scott et al.² residual chlorine present in the YSZ powder was reduced in concentration from 1.0% to $\approx 0.05\%$ by washing with distilled water.

Fifty gram batches were prepared by adding 0-7.5 wt% Al_2O_3 to the washed YSZ and ball milling for 12 h. Polypropylene jars and zirconia balls were used to minimize contamination, and a dispersing agent [2 ml Menahden (Z-3) fish oil] was added to each batch along with 200 ml of a 60:40 volume solution consisting of isopropanol and distilled water. A binder mixture consisting of 3 wt% PVA and 3 wt% carbowax 4000 was then added and milled for an additional 1.5 h immediately precedent to spray drying of the suspension. Pellets 1.6 cm in diameter and approximately 1.2 mm thick, and 3.1 x 0.4 x 0.4 cm bars were cold pressed at 220 MPa and 280 MPa respectively. The samples were fired in a MoSi_2 resistance furnace on ZrO_2 setters in air ambient. Sintering was carried out in the range 1200-1350°C for 0.5-24 h.

Sintered densities were measured by water displacement and He pycnometer techniques and theoretical densities were calculated using the cell dimensions determined from X-ray powder diffraction of the fired samples. The theoretical densities of samples containing Al_2O_3 additions are given in

Table 3. These were calculated using a series mixing formula since the solubility of Al_2O_3 in YSZ is quite low.^{5,6}

Samples prepared for modulus of rupture tests (bars $2.5 \times 0.4 \times 0.2$ cm) were polished on the side of tensile stress during breaking. Polishing was carried out with 45, 30, 15, 6, 1 and $0.25 \mu\text{m}$ diamond paste after initial grinding on a $70 \mu\text{m}$ diamond wheel. The lengthwise edges along the polished side were beveled at 45° and the resulting faces (≈ 0.5 mm) were also polished. Strength values were determined with an Instron model 1125 strength tester equipped with a jig for four-point loading. Inner and outer spans on the jig were 2.3 and 1.2 cm, respectively, and a strain rate of 0.1 mm/min was used. Fracture toughness (K_{IC}) measurements were made with a Tukon microhardness tester using the Vickers and Knoop indenters at loads (P) of 2.0, 2.5 and 3.0 kg to obtain values for the crack size, C_o and modulus of elasticity to hardness ratio (E/H), respectively. This loading range is considered adequate for the crack sizes measured according to Nihara et al.²³⁴ The fracture toughness calculations were made from the formula:²⁴⁵

$$K_{\text{IC}} = 0.016 (E/H)^{1/2} P/C_o^{3/2} \quad (1)$$

A (Dupont 1090) Thermal Analyzer System was used to measure the thermal expansion of the samples. DC resistivity measurements were made with a (Beckman L-8) Megohmmeter up to $\approx 300^\circ\text{C}$; above 300°C , measurements were continued using a (Hewlett Packard 4276A) LCZ Meter at 100 Hz to minimize ionic polarization effects. Coupling of the data from the two temperature regimes resulted in a linear curve. Samples were electrode with Pt paste fired at 1100°C prior to measurement.

Microstructures of the polished and thermally etched samples were analyzed using SEM (JEOL 35C) (ISI US130), STEM (Vacuum Generators HB5), TEM (Philips 400T E.M.) and EDS (Kevex)(EDAX) microanalysis techniques. X-ray diffraction analyses were carried out on fired samples ground to -100 mesh

(also on fired pellets, fracture and polished surfaces) using a (Philips 3100) X-ray Generator with a (APD 3520) Diffractometer Control System. Scan speeds of $0.5 - 2.0^\circ$ $2\theta/\text{min}$ were used. Grain size measurements were made from SEM photomicrographs of thermally etched and polished samples, using the Mendelsohn line intercept method.²⁵⁶ TEM samples were prepared by grinding and polishing a 3 mm diameter sample to $\approx 70 \mu\text{m}$ thickness, followed by dimple grinding the center to $\approx 15 \mu\text{m}$ and finally by Ar ion milling.

Raman spectra were performed in a pseudo-backscattering arrangement with $\approx 2 \text{ cm}^{-1}$ resolution using a homemade 1 m double monochromator with 200 mm slits. Laser excitation was provided by the 514.5 nm line of an argon-ion laser (Spectra-Physics).

III. Results and Discussion

Property data obtained on the sintered YSZ samples containing the different size ($0.3-10 \mu\text{m}$) Al_2O_3 powders (0.325 wt%) all showed an increase in density (2.0 to 5.0%), MOR (10 to 50%) and K_{ic} (25 to 50%) compared to the base YSZ sample. The magnitude of the increase was found to be inversely proportional to the particle size of the Al_2O_3 precursor. Hence, in terms of optimum densification and properties, the $0.03 \mu\text{m}$ floated Al_2O_3 powder was determined to be the most effective additive to the YSZ, a result to be expected in view of the similarity in particle size. SEM photomicrographs in Figure 1 show morphologies and particle sizes of the YSZ and $0.03 \mu\text{m}$ floated Al_2O_3 powders (the main alumina additive used).

Figure 2 shows densification behavior for the YSZ + Al_2O_3 (0.325 wt%) samples as a function of sintering temperature and soak time. The minimum time for achieving >99% ThD was found to be 1.5 hours at 1350°C . but, although fully dense, these samples showed evidence of discontinuous grain growth. Examination of the sintered microstructures to determine the

sintering time and temperature necessary to achieve full densification with minimal discontinuous grain growth found 8 h at 1300°C to be an optimal condition.²⁶ Data for the YSZ + Al₂O₃ (0-7.5 wt%) samples sintered under these conditions (1300°C/8 h) are given in Table 3. Fired densities >99% ThD and shrinkages ≈25% were achieved. Density and grain size effects as a function of soak time were previously reported.⁵

Microstructures resulting from selected samples in Table 3 are shown in Figure 3 for polished and thermally etched sections of the YSZ + Al₂O₃ (0-5.0 wt%) samples. Average grain sizes (0.2-0.3 μm) were equivalent, but the distribution was distinctly more bimodal for the higher content Al₂O₃ samples. Also, there was an absence of twinning in any of the YSZ grains, an effect normally observed in martensitically transformed monoclinic grains. This could result from the small size of the grains or to the absence of a monoclinic phase.

Figure 3 also shows Al₂O₃ inclusions as apparently discrete grains, of size equivalent to the YSZ grains, and fitting into the YSZ matrix with no obvious reaction zones. Lower magnification photomicrographs, however, revealed clustering of the Al₂O₃ grains (Figure 4), the volume dispersion of the inclusions (dark areas in the photomicrographs) increasing with Al₂O₃ content (0-5.0 wt%). Since the starting size of the Al₂O₃ powder was 0.03 μm, it is evident that coalescence of the Al₂O₃ particles must have occurred, either during the powder processing phase or as segregation of the Al₂O₃ phase during sintering. The presence of discrete Al₂O₃ grains in the 0.325 wt% Al₂O₃-YSZ microstructure (Figure 4b) also demonstrated the limited solubility of Al₂O₃ in the YSZ structure.

Modulus of rupture data obtained on 4-point bend specimens are given in Figure 5 for the YSZ-Al₂O₃ (0-7.5 wt%) composite samples. Data points for each composition represented the mean of ≈20 samples with a range of plus or

minus one standard deviation, as shown. Even with the spread in data points, the MOR values showed a clear trend towards higher values (from a base of ≈ 270 MPa for the YSZ sample) with increasing Al_2O_3 content.

Fracture toughness data on the YSZ- Al_2O_3 composite samples are shown in Figure 6. As with the MOR data, a small maxima was present at 0.325 wt% Al_2O_3 , ($\approx 5.5 \text{ MPa}\cdot\text{m}^{1/2}$ up from $4.5 \text{ MPa}\cdot\text{m}^{1/2}$ for the YSZ sample), followed by a more pronounced increase in the fracture toughness to $\approx 9 \text{ MPa}\cdot\text{m}^{1/2}$ at 3.25 wt% Al_2O_3 . The more pronounced effect of the Al_2O_3 additions on the fracture toughness compared to the rupture modulus reflects the greater sensitivity of the measured MOR to flaws present in the tensile surface of the test specimens.

Evaluation of the expansion data showed a decrease in the thermal expansion coefficient (over the range from room temperature to 1000°C) of the YSZ with increasing Al_2O_3 additions. Calculated coefficients of thermal expansion were $11.30 \times 10^{-6} \text{ }^\circ\text{C}^{-1}$ for the YSZ + 0.325 wt% Al_2O_3 sample and $10.73 \times 10^{-6} \text{ }^\circ\text{C}^{-1}$ for the 3.25 wt% Al_2O_3 sample. This change would be expected for the composite material since Al_2O_3 has a significantly lower thermal expansion ($7.2 \times 10^{-6} \text{ }^\circ\text{C}^{-1}$)²⁷ than the YSZ. No microcracking was observed around the Al_2O_3 inclusions, which might have resulted from the tensile state of the surrounding YSZ matrix due to the thermal expansion mismatch.

Figure 7a shows a representative TEM photomicrograph (200kX) of the YSZ (base sample) grain boundary structure and triple point regions. The accompanying microdiffraction pattern in Figure 7b (obtained from the condensed beam condition) of the [T11] axis shows the tetragonal-like structure of the grain, although a few grains were also indexed as cubic. The lack of full tetragonality is indicated by the fact that all the expected (211) diffraction spots were not present. Similar to Butler and Drennan,¹⁴

Al_2O_3 grains in the TEM samples (0.325 wt% Al_2O_3) were found to contain relatively electron-opaque spherical inclusions of YSZ as illustrated in Figure 7c. The inclusions could be resolved and identified by EDS analysis to a high degree of confidence, since the beam diameter on the (Vacuum Generators HB5 Field Emission) STEM was ≈ 0.5 nm. TEM analysis of the Al_2O_3 regions indicated the presence of "grain boundary dislocations" as illustrated in Figure 7d. This type of defect can be associated with the crystallographic mismatch ordinarily seen at grain boundaries. However, with the dislocation lines propagating some distance into the Al_2O_3 grain this defect state is indicative of deformation occurring within the Al_2O_3 grains in response to the strains generated in the YSZ matrix.²²

Figure 8 shows representative EDS [STEM] spectra from YSZ grain centers (Figure 8a) and from triple point regions (Figures 8b, 8c and 8d) for the YSZ, 0.325 and 3.25 wt% Al_2O_3 respectively. Data from the analysis of the spectra are collected in Table 4. For the composition ranges studied, the Zr content (wt%) remained relatively constant in the grain centers, but decreased in the triple points with increasing Al_2O_3 additions. For Y, the trend noted was slightly increased concentration in the grain center with added Al_2O_3 and little change in the triple point concentration. Taken together, the decrease of Zr in the triple point regions and increase of Y in the YSZ grains would suggest a stabilizing role for Al_2O_3 in the YSZ structure.

The YSZ grains revealed only marginally detectable amounts of Al within the grains in line with the indicated low solubility of Al_2O_3 in YSZ. In contrast, the Al concentration in the triple point regions increased significantly as the Al_2O_3 content was increased. The level of Si detected was slightly higher than expected from the bulk spectrochemical analysis but within the accuracy of the EDS technique. The Si content in the triple

points also increased with added Al_2O_3 , reflecting both a concentration of the impurities in the intergranular region and a greater affinity of SiO_2 for Al_2O_3 compared to ZrO_2 .¹⁴ The increased concentration of Si and Al in the triple point regions would indicate the formation of a more glassy intergranular phase with added Al_2O_3 .

X-ray diffraction spectra from the sintered YSZ- Al_2O_3 composite samples (0, 0.325, 3.25, 5.0 wt% Al_2O_3) are presented in Figure 9. The spectra show a small $\alpha\text{-Al}_2\text{O}_3$ (202) peak which increased with Al_2O_3 content. Splitting of the lower intensity peaks [(200) and (311)] was evident in the spectra. The location of the peaks matched the multiplicity of crystallographic planes for a tetragonal phase [(002) peak intensity $\approx \frac{1}{2}$ (200); (220) $\approx \frac{1}{2}$ (202); (113) $\approx \frac{1}{2}$ (311)]. The x-ray data would indicate the presence of both cubic and tetragonal phases in the sintered specimens, a result which might be expected from the composition of the starting powders, since the phase diagram for the $\text{Y}_2\text{O}_3\text{-ZrO}_2$ system places the 4.5 mol% YSZ composition at 1300°C in the cubic-tetragonal solid solution phase field. However, the lack of discreteness between the (311) and (113) peaks, as well as the broadness of the peaks, suggest a continuum between the two phases rather than a mixture of discrete cubic and tetragonal grains.²⁸ This observation is supported by the TEM electron diffraction analysis, since the tetragonal patterns observed could be interpreted as emanating from distorted cubic grains. From the x-ray data, the relative amounts of cubic and tetragonal phases were estimated. This data is presented in Figure 10, which shows an apparent slight increase in the cubic phase (63 to 67 vol%) with added Al_2O_3 , indicative of enhanced stabilization within the system and in agreement with the EDS observations.

The presence of the monoclinic phase was not detected by any of the above analytical techniques. This is supported by Raman spectra taken of the

polished, fired surfaces of 0, 0.325 and 3.25 wt% Al_2O_3 specimens at room temperature and at 10 degrees Kelvin, as can be seen in Figure 11. The low-temperature data was obtained to facilitate possible monoclinic phase formation since the further a material is taken below its martensitic transformation temperature, the stronger is its tendency to transform.²⁹ The room temperature spectra for all specimens showed distinct tetragonal peaks as well as broader cubic peaks, in agreement with Benner and Nagelberg.³⁰ At low temperature, the cubic phase appeared to be more in evidence. No evidence of monoclinic phase was detected, either in the fracture or polished surfaces for compositions up to 3.25 wt% Al_2O_3 . X-ray diffraction spectra of the fracture surfaces likewise did not reveal any trace of a monoclinic presence up to 7.5 wt% Al_2O_3 . The fact that a monoclinic phase was not developed can be attributed to the small grain size (0.2 to 0.3 μm) as discussed by Matsui et al.²¹

From the x-ray diffraction data (Figure 9), lattice parameter values were calculated as a function of Al_2O_3 content (0-7.5 wt%). These data are presented in Table 5, which gives the c and a lattice parameters, c/a ratios, cell volume, V , and equivalent cubic lattice parameter, a_0 , as well as the a_0 values calculated from the (111) peaks. A plot of these lattice parameter changes as a function of Al_2O_3 content is given in Figure 12. The lattice parameter showed an initial decrease, which is consistent with the substitution of the smaller Al^{3+} for Zr^{4+} ions in the structure. However, the absolute solubility of Al_2O_3 in 4.5 mol% YSZ remains unresolved as the x-ray powder diffraction data did not exhibit a clear region within which the lattice parameter did not change. The presence of discrete Al_2O_3 grains in the microstructure at 0.325 wt% Al_2O_3 content would indicate, however, that the solubility limit achieved was below this level.

Figure 13 gives dc conductivity data for the YSZ- Al_2O_3 samples over the

temperature range 25-800°C. The curves show two distinct slopes above and below approximately 100°C. In the lower temperature regions, no differences were detected in conductivity between the different samples, attributable to predominately electronic conduction in this region. However, above 100°C, where ionic conductivity would be expected to predominate, the conductivity first increased then progressively decreased with Al_2O_3 content, as depicted in Figure 14, with a maximum occurring for the 0.325 wt% Al_2O_3 sample. The observed increase (one-half order of magnitude) in conductivity with temperature for this sample is consistent with the limited solubility mechanism proposed since the associated defect-substitution of Al^{3+} for Zr^{4+} would result in increased O^{2-} vacancies and higher oxygen ion mobility. The subsequent decrease in conductivity is consistent with the increased presence of interstitial cations and discrete Al_2O_3 grains, both of which might be expected to have a deleterious effect on oxygen ion mobility. In line with these observations, calculated activation energies from Figure 13 were approximately 0.9-1.0 eV for the ionic conduction range and 0.46 eV for the range below 100°C.

The absence of a monoclinic presence in the composite YSZ- Al_2O_3 specimens, as determined by the various analytical techniques used in this investigation, would indicate that transformation toughening does not play a role in the increased strength and fracture toughness observed. Enhanced strength in the unmodified YSZ samples, relative to the cubic YSZ,³¹ must be attributed, therefore, to the small grain size (0.2-0.3 μm)³² and presence of a tetragonal phase in the structure.

With Al_2O_3 added, results showed discrete Al_2O_3 grains within the composite matrix, deformation within these grains, and a decrease in Y_2O_3 content in the intergranular phase, indicative of enhanced phase stability within the system. The role of the Al_2O_3 in strengthening the composite

samples would seem to be: 1) in presenting a barrier to crack propagation by crack deflection around the dispersed, high modulus second phase, and 2) crack arrest mechanisms associated with deformation within the Al_2O_3 grains.

Support for this interpretation is given in Figure 15 which shows SEM photomicrographs of crack deflection around included Al_2O_3 grains within the YSZ (5 wt% Al_2O_3) composite structure. The cracks were generated from indentations made during the K_{Ic} evaluations.

IV. Conclusions

- 1) Additions of up to 7.5 wt% Al_2O_3 (of equivalent particle size) to 4.5 mol% yttria-stabilized zirconia (YSZ) resulted in accelerated densification. Microstructures obtained consisted of well dispersed Al_2O_3 inclusions in the 0.2 to 0.4 μm grain size YSZ matrix.
- 2) Noticeable increases in the modulus of rupture and K_{Ic} values were obtained with Al_2O_3 additions, maximally in the 3 to 5 wt% range.
- 3) X-ray diffraction and Raman spectroscopy data revealed the presence of approximately 35 vol% tetragonal phase which decreased slightly but remained essentially stable with added Al_2O_3 . The presence of a monoclinic phase was not detected in either the polished or fracture surfaces of the sintered specimens.
- 4) Mechanical strengthening of the YSZ- Al_2O_3 composites was attributed to a combination of small grain size, the presence of the tetragonal phase, and the discrete Al_2O_3 inclusions presenting a barrier to crack propagation. Transformation toughening does not appear to have contributed to the strengthening.
- 5) DC conductivity data indicated enhanced ionic conductivity with less than 3.25 wt% Al_2O_3 added.

V. Acknowledgments

This work was supported by the Office of Naval Research under contract No. N-00014-80-K-0969 and in part by the National Science Foundation under MRL grant No. DMR-80-20250. Thanks are due to W. M. Kriven and P. M. Mochel for assistance with TEM and STEM work, to Dean Levi for running the Raman specimens, and to M. K. Ferber for helpful conversations.

VI. References

1. R. A. Youshaw and J. W. Halloran, "Compaction of Spray-Dried Powders," Am. Ceram. Soc. Bull. 61 [2] 227-230 (1982).
2. C. E. Scott and J. S. Reed, "Effect of Laundering and Milling on the Sintering Behavior of Stabilized Zirconia Powders," J. Am. Ceram. Soc. 58 [6] 587-590 (1979).
3. K. S. Mazdiyasni, C. T. Lynch, and J. S. Smith II, "Cubic Phase Stabilization of Translucent Yttria-Zirconia at Very Low Temperatures." J. Am. Ceram. Soc. 50 [10] 532-537 (1967).
4. D. M. Wilson, Effect of Aluminum and Boron Oxides on the Densification of Yttria-Stabilized Zirconia, Thesis, University of Illinois, (1983).
5. R. C. Buchanan and D. M. Wilson, "Role of Al_2O_3 in Sintering of Submicrometer Yttria-Stabilized ZrO_2 Powders," pp 526-540, Advances in Ceramics, Vol 10 Ed., W. D. Kingery, The American Ceramic Society, Columbus, Ohio, (1984).
6. H. Bernard, Microstructure et Conductivité de la Zircone Stabilisée Fritée, Ph. D. Thesis, Institut National Polytechnique de Genoble, (1980).
7. R. W. Rice and R. C. Pohanka, "Grain Size Dependence of Spontaneous Cracking in Ceramics," J. Am. Ceram. Soc. 62 [11-12] 559-563 (1979).
8. A. J. A. Winnubst, K. Keizer and A. J. Burggraaf, "Mechanical Properties and Fracture Behavior of $\text{ZrO}_2-\text{Y}_2\text{O}_3$ Ceramics," J. of Mater. Sci. 18 1958-66 (1983).
9. S. Wu and R. J. Brook, "Sintering Additives for ZrO_2 Ceramics," Trans. Br. Cer. Soc. 82 200-5 (1983).
10. J. E. Burke, "Sintering and Microstructure Control," G. E. Report 68-C-368, (1968).
11. M. F. Yan, R. M. Cannon, H. K. Bowen and R. L. Coble, "Space-Charge Contribution to Grain-Boundary Diffusion," J. Am. Ceram. Soc. 60 [3-4] 120-7 (1977).
12. W. D. Kingery, "Plausible Concepts Necessary and Sufficient for Interpretation of Ceramic Grain Boundary Phenomena: II, Solute Segregation, Grain Boundary Diffusion and General Discussion," J. Am. Ceram. Soc. 57 [2] 74-83 (1974).
13. M. F. Yan, R. M. Cannon and H. K. Bowen, "Effect of Grain Size Distribution on Sintered Density," Mater. Sci. and Eng. 60 275-81 (1983).

14. E. P. Butler and J. Drennan, "Microstructural Analysis of Sintered High-Conductivity Zirconia with Al_2O_3 Additions," J. Am. Ceram. Soc. 65 [10] 474-478 (1982).
15. N. M. Berkmann, L. Heyne, "Correlation Between Impedence, Microstructure and Composition of CSZ," Electrochim Acta 21, [4] 303-10 (1976).
16. N. Claussen and M. Rühle, "Design of Transformation-Toughened Ceramics," pp137-163, The Science and Technology of Zirconia, Advances in Ceramics, Vol. 3, Ed. A. H. Heuer and L. W. Hobbs, The American Ceramic Society, Columbus, Ohio (1981).
17. C. M. Wayman, "Martensitic Transformations," pp64-81 ibid.
18. W. M. Kriven, W. L. Fraser and S. W. Kennedy, "The Martensite Crystallography of Tetragonal Zirconia," pp82-97, ibid.
19. K. T. Faber, "Microcracking Contributions to the Toughness of ZrO_2 -Based Ceramics," pp293-305, The Science and Technology of Zirconia II, Advances in Ceramics, Vol. 12, The American Ceramic Society, Columbus, Ohio (1984).
20. K. Tsukuma, K. Ueda and M. Shimada, "Strength and Fracture Toughness of Isostatically Hot-Pressed Composites of Al_2O_3 and a Y_2O_3 -Partially-Stabilized ZrO_2 ," J. Am. Ceram. Soc. 68 [1] C4-C5 1985.
21. M. Matsui, T. Soma and I. Oda, "Effect of Microstructure on the Strength of Y-TZP Components," pp371-381, The Science and Technology of Zirconia II, Advances in Ceramics, Vol. 12, The American Ceramic Society, Columbus, Ohio (1984).
22. B. V. Narashimha Rao, "Accommodation Substructure in the $\alpha\text{Al}_2\text{O}_3$ of a PSZ," GM Res. Lab Tech. Rept #3533.
23. K. Niihara, R. Morena and D. P. H. Hasselman, "Evaluation of K_{Ic} of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios," J. Mater. Sci. Lett. 1 13-16 (1982).
24. G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for measuring Fracture Toughness: I, Direct Crack Measurements," J. Am. Ceram. Soc. 64 [9] 533-538 (1981).
25. M. I. Mendelsohn, "Average Grain Size in Polycrystalline Ceramics," J. Am. Ceram. Soc. 52 [8] 443-6 (1969).
26. W. W. Davison, Influence of Alumina on Structural and Mechanical Properties of Yttria-Stabilized Zirconia, p 52; M.S. Thesis, University of Illinois (1985).
27. W. J. Lackey, D. P. Stinton, G. A. Cerny, L. L. Fehrenbacher and A. C. Schaffhauser, "Ceramic Coatings for Heat Engine Materials - Status and Future Needs," Proceedings of International Symposium on Ceramic Components for Heat Engines, October 17-21, 1983, Hakone, Japan.
28. A. Feinberg and C. H. Perry, "Structural Disorder and Phase in $\text{ZrO}_2\text{-Y}_2\text{O}_3$ System," J. Phys. Chem. Solids 42 513-518 (1981).

29. P. F. Becher, M. V. Swain and M. K. Ferber, "Relation of Transformation Temperature to the Fracture Toughness of Transformation Toughened Ceramics," submitted for publication to the J. of Mater. Sci.
30. R. E. Benner and H. S. Nagelberg, "Characterization of $ZrO_2-Y_2O_3$ Thermal Barrier Coatings by Raman Spectroscopy," Thin Solid Films 84 pp89-94 (1981).
31. Ceramic Source '86, p 346, The American Ceramic Society, Columbus, OH (1985).
32. R. W. Rice, "Strength/Grain-Size Effects in Ceramics," Proc. Br. Ceram. Soc. 20 205-257 (1972).

Table I
YSZ and Al₂O₃ Precursor Properties

YSZ*

8 wt% Y₂O₃

Average Particle Size: 0.03 μm

Surface Area: 50 m²/gm

Crystalline Phase: Cubic

Impurities >0.02 wt%:

	<u>wt%</u>		<u>wt%</u>
HfO ₂	1.6	H ₂ O	2.2
Al ₂ O ₃	0.2	Cl	1.0
CaO	0.3	Na ₂ O	0.3
MgO	0.1	SiO ₂	0.1

* Zircar Corp, Florida, N. Y.

Table 2
Properties of Alumina Powders and Additive Effects to YSZ

<u>Alumina Precursor</u>	<u>Avg. P.S.</u>	<u>Amounts Added</u>	<u>Effects on Microstructure</u>
A) Al(OH)_3 Powder* (calcined)	0.05, 10 μm (Bi-modal)	0-3.25 wt%	Large inclusions with porosity, otherwise dense
B) $\text{Al}_2(\text{C}_2\text{O}_4)_3$ ** (Oxolate)	0.10 μm	0.325 wt%	Some porosity present
C) Al(OH)_3 Gel** (calcined)	0.05 μm	0.325 wt%	Samples dense
D) Al_2O_3 0.03 μm [†] Floated powder	0.03 μm	0-7.5 wt%	Samples dense, even at low psi pressing

* J.T. Baker Chemical Co., Phillipsburg, NJ

** Pfaltz and Bauer, Inc., Stamford, CT

† Apache Chemicals, Inc., Seward, IL

Table 3
Sintered Data for YSZ + Al₂O₃ Samples

<u>Sample</u>	<u>Diametrical</u>			
<u>Composition</u> (wt% Al ₂ O ₃)	<u>Green Density</u> (g/cm ³)	<u>ThD</u> (g/cm ³)	<u>Fired ThD*</u> %	<u>Shrinkage</u> %
0.0	2.54	6.04	98.3	25.0
0.325	2.55	5.99	99.7	26.4
0.65	2.55	5.98	98.7	24.6
1.3	2.55	5.93	98.5	25.4
3.25	2.55	5.83	99.1	25.7
5.0	2.43	5.81	98.5	25.2
7.5	2.39	5.74	95.9	25.8

* Sintering Temperature/Time: 1300°C/8 h

Table 4
EDS Elemental Analysis of Grain Centers
and Triple Points from YSZ-Al₂O₃ TEM Specimens

		wt%			
<u>Sample/Location</u>		Zr	Y	Si	Al
YSZ	Grain	90.9	8.4	0.5	0.2
	Tr Pt	84.6	12.6	2.1	0.7
0.325	Grain	90.3	8.8	0.7	0.2
	Tr Pt	84.0	12.9	2.2	0.9
3.25	Grain	89.7	9.1	0.9	0.3
	Tr Pt	82.5	13.1	2.5	1.9

accuracy ≈ 1.0 %

Table 5
 Lattice parameters Derived from X-Ray Diffraction
 of YSZ-Al₂O₃ Composite System

<u>Composition</u> (wt % Al ₂ O ₃)	<u>c</u> (nm)	<u>a</u> (nm)	<u>(c/a)</u>	<u>V</u> (nm) ³	<u>a₀</u> * (nm)	<u>a₀(111)</u> ** (nm)
0	0.51488	0.51108	1.0074	0.1345	0.51234	0.51425
0.325	0.51526	0.50980	1.0107	0.1339	0.51161	0.51130
0.65	0.51484	0.51012	1.0093	0.1340	0.51169	0.51177
1.3	0.51648	0.51060	1.0115	0.1346	0.51255	0.51255
3.25	0.51746	0.51174	1.0112	0.1345	0.51364	0.51381
5.0	0.51704	0.51064	1.0125	0.1348	0.51276	0.51291
7.5	0.51690	0.51074	1.0121	0.1348	0.51279	0.55284

* a₀ calculated from unit cell volume

** a₀ calculated from (111) peaks

List of Figures

- Figure 1. SEM photomicrographs of as received YSZ (A) and 0.03 μm float Al_2O_3 powders (B) showing morphology and agglomerate structure.
- Figure 2. Densification behavior for YSZ + Al_2O_3 (0.0325 wt%) sample as a function of soak temperature and time at 1200–1350°C for 0.5 to 24 h.
- Figure 3. SEM photomicrographs of polished and thermally etched sections of (YSZ + Al_2O_3) samples (1300°C/8 h), showing grain size distribution and Al_2O_3 inclusions (dark areas): (A) YSZ, (B) YSZ + Al_2O_3 (0.325 wt%), (C) YSZ + Al_2O_3 (3.25 wt%), (D) YSZ + Al_2O_3 (5.0 wt%)
- Figure 4. Lower magnification SEM photomicrographs of the samples in Figure 3, showing dispersion of Al_2O_3 grains in the YSZ- Al_2O_3 composite.
- Figure 5. Plot of MOR as a function of added Al_2O_3 content (0–7.5 wt%) for YSZ- Al_2O_3 composites.
- Figure 6. Plot of fracture toughness as a function of added Al_2O_3 content (0–7.5 wt%) for YSZ- Al_2O_3 composites.
- Figure 7. TEM photomicrographs of YSZ- Al_2O_3 composite samples: (A) representative photomicrograph of YSZ base sample showing grain boundary and triple point regions, (B) Electron microdiffraction pattern of typical YSZ grain [111] axis showing tetragonal-like structure, (C) YSZ spherical inclusions in YSZ + Al_2O_3 (3.25 wt%), (D) Al_2O_3 grain with internal and grain boundary dislocations.
- Figure 8. EDS (STEM) spectra of the YSZ- Al_2O_3 samples representing: (A) YSZ grain center, (B) YSZ triple point, (C) triple point in YSZ + Al_2O_3 (0.325 wt%), (D) triple point in YSZ + Al_2O_3 (3.25 wt%)
- Figure 9. X-Ray diffraction spectra of YSZ + Al_2O_3 (0, 0.325, 3.25 and 5.0 wt%) samples. Splitting of the major peaks indicates combined tetragonal and cubic phases.

- Figure 10. Estimated volume fraction of cubic phase in 0-7.5 wt% Al_2O_3 -YSZ.
- Figure 11. Raman spectra of YSZ + Al_2O_3 (0, 0.325, 3.25 wt%) at (A) 298°K and (B) 10°K showing primarily tetragonal and also cubic peaks.
- Figure 12. Lattice parameter changes in the YSZ- Al_2O_3 samples as a function of added Al_2O_3 content
- Figure 13. DC conductivity of YSZ- Al_2O_3 samples as a function of reciprocal temperature
- Figure 14. Variation of dc conductivity with added Al_2O_3 to YSZ at 600°C and 450°C for 0-7.5 wt% Al_2O_3 .
- Figure 15. SEM photomicrographs of YSZ + 5.0 wt% Al_2O_3 at (A) 4.09 kX and (B) 12.4 kX magnification showing crack deflection of indentation induced cracking around included Al_2O_3 grains.

Figure 1. SEM photomicrographs of as received YSZ (A) and 0.03 μm float Al_2O_3 powders (B) showing morphology and agglomerate structure.

Figure 2. Densification behavior for YSZ + Al_2O_3 (0.0325 wt%) sample as a function of soak temperature and time at 1200–1350 $^\circ\text{C}$ for 0.5 to 24 h.

Figure 3. SEM photomicrographs of polished and thermally etched sections of $(\text{YSZ} + \text{Al}_2\text{O}_3)$ samples ($1300^\circ\text{C}/8\text{ h}$), showing grain size distribution and Al_2O_3 inclusions (dark areas): (A) YSZ, (B) $\text{YSZ} + \text{Al}_2\text{O}_3(0.325\text{ wt}\%)$, (C) $\text{YSZ} + \text{Al}_2\text{O}_3(3.25\text{ wt}\%)$, (D) $\text{YSZ} + \text{Al}_2\text{O}_3(5.0\text{ wt}\%)$

Figure 4. Lower magnification SEM photomicrographs of the samples in Figure 3, showing dispersion of Al_2O_3 grains in the YSZ- Al_2O_3 composite.

Figure 5. Plot of MOR as a function of added Al_2O_3 content (0-7.5 wt%) for YSZ- Al_2O_3 composites.

Figure 6. Plot of fracture toughness as a function of added Al_2O_3 content (0-7.5 wt %) for YSZ- Al_2O_3 composites.

Figure 7. TEM photomicrographs of YSZ-Al₂O₃ composite samples:
(A) representative photomicrograph of YSZ base sample
showing grain boundary and triple point regions,
(B) Electron microdiffraction pattern of typical YSZ grain
[111] axis showing tetragonal-like structure, (C) YSZ
spherical inclusions in YSZ + Al₂O₃ (3.25 wt%), (D) Al₂O₃
grain with internal and grain boundary dislocations.

Figure 8. EDS (STEM) spectra of the YSZ-Al₂O₃ samples representing:
 (A) YSZ grain center, (B) YSZ triple point, (C) triple point
 in YSZ + Al₂O₃ (0.325 wt%), (D) triple point in
 YSZ + Al₂O₃ (3.25 wt%)

Figure 9. X-Ray diffraction spectra of YSZ + Al_2O_3 (0, 0.325, 3.25 and 5.0 wt%) samples. Splitting of the major peaks indicates combined tetragonal and cubic phases.

Figure 10. Estimated volume fraction of cubic phase in 0-7.5 wt% Al₂O₃-YSZ.

Figure 11. Raman spectra of YSZ + Al_2O_3 (0, 0.325, 3.25 wt%) at (A) 298°K and (B) 10°K showing primarily tetragonal and also cubic peaks.

Figure 12. Lattice parameter changes in the YSZ- Al_2O_3 samples as a function of added Al_2O_3 content

Figure 13. DC conductivity of YSZ-Al₂O₃ samples as a function of reciprocal temperature

Figure 14. Variation of dc conductivity with added Al_2O_3 to YSZ at 600°C and 450°C for 0-7.5 wt% Al_2O_3 .

Figure 15. SEM photomicrographs of YSZ + 5.0 wt% Al_2O_3 at (A) 4.09 kX and (B) 12.4 kX magnification showing crack deflection of indentation induced cracking around included Al_2O_3 grains.

E W D

F I L M E D

6-86

D T I C