TD 5: FONCTIONS HARMONIQUES

Exercice 1 Soient $u, v: \Omega \to \mathbb{R}$ deux fonctions harmoniques non constantes, où Ω est un ouvert connexe.

- 1. Montrer que u^2 ne peut jamais être harmonique. Pour quelles fonctions holomorphes $f: \Omega \to \mathbb{C}$ a-t-on que $|f|^2$ est harmonique?
- 2. Montrer que uv est harmonique si et seulement s'il existe une constante $C \in \mathbb{R}^*$ telle que u + iCv est holomorphe.

Exercice 2 Soit $f:\Omega\to\mathbb{C}$ une fonction holomorphe qui ne s'annule pas. Montrer que $\ln |f|$ est une fonction harmonique sur Ω , en calculant son Laplacien. Trouver aussi une preuve plus rapide.

Exercice 3 [Principe du maximum] Soit u une fonction harmonique réelle non constante sur un ouvert U connexe de \mathbb{C} . Montrer que u n'a ni maximum ni minimum dans U.

En déduire que pour tout a, R tels que $\bar{D}(a, R) \subset U$, on a $\sup_{z \in \bar{D}(a, R)} u(z) =$ $\sup_{|z-a|=R} u(z)$, et de même pour inf.

Soit $a \in U$ tel que u(a) = 0. Montrer que pour tout disque $\overline{D}(a,r) \subset U$, on a $\sup_{\partial D} u \geq 0$ et $\inf_{\partial D} u \leq 0$.

Montrer que u n'a aucun zéro isolé.

Exercice 4 [Formules de moyenne] Soit U un ouvert de \mathbb{C} , et u une fonction

harmonique sur U. Soit a,R tels que $\bar{D}(a,R) \subset U$. Montrer que l'on a $u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a+Re^{it})dt$, et $u(a) = \frac{1}{\pi R^2} \int_{\bar{D}(a,R)} u(z)dxdy$.

Exercice 5 [Formule de Poisson] Soit U un ouvert de \mathbb{C} tel que $\overline{D}(0,1) \subset U$, et u une fonction harmonique sur U.

Montrer que $u(0) = \frac{1}{2\pi} \int_0^{2\pi} u(e^{it}) dt$. Pour $a \in D(0,1)$, soit $\phi_a(z) = \frac{z-a}{1-\bar{a}z}$. On rappelle que ϕ_a envoie bijectivement D(0,1) sur D(0,1) et le cercle unité sur le cercle unité.

Montrer que $v = u \circ (\phi_a^{-1})$ est harmonique.

En déduire que pour tout $a \in D(0,1)$, on a $u(a) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1-|a|^2}{|e^{it}-a|^2} u(e^{it}) dt$.

Montrer que $\frac{1-|a|^2}{|e^{it}-a|^2} = \operatorname{Re} \frac{e^{it}+a}{e^{it}-a}$.

Montrer que si u est une fonction continue sur le cercle unité, la formule f(a) = $\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + a}{e^{it} - a} u(e^{it}) dt$ permet de définir une fonction holomorphe sur D(0, 1).

En déduire que si u est une fonction réelle continue sur le cercle unité, la formule $v(a) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1-|a|^2}{|e^{it}-a|^2} u(e^{it}) dt$ permet de définir une fonction v qui est harmonique sur

Exercice 6 Soit u une fonction continue sur un ouvert $U \subset \mathbb{C}$. On suppose que pour tout $\bar{D}(a,R) \subset U$, on a $u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a+Re^{it})dt$. Montrer que u est harmonique dans U.

Exercice 7 [Principe de réflexion de Schwarz] On note $U_+ = D(0,1) \cap \{z, \text{Im} z > 0\}$, $U_- = D(0,1) \cap \{z, \text{Im} z < 0\}$, et S =]-1,1[.

Soit f une fonction holomorphe de U_+ dans $\mathbb C$ dont la partie imaginaire se prolonge en une fonction continue sur $U_+ \cup S$ nulle sur S. Montrer que f se prolonge de façon unique en une fonction holomorphe sur D(0,1), et que le prolongement vérifie $f(\bar{z}) = \overline{f(z)}$.