ADVANCED MACHINE LEARNING STATE-SPACE MODELS LECTURE 2

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

LECTURE OVERVIEW

- ► Live demo of some R packages
- ► Estimating model parameters
- Bayesian inference for the LGSS model

DLM PACKAGE

► The linear Gaussian state-space (LGSS) model

$$\begin{split} \text{Measurement eq:} \quad \mathbf{Y}_t &= \mathbf{C}\mathbf{x}_t + \boldsymbol{\varepsilon}_t \\ \text{State eq:} \quad \mathbf{x}_t &= \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_t + \boldsymbol{\nu}_t \\ \end{split} \qquad \qquad \boldsymbol{\varepsilon}_t \overset{\textit{iid}}{\sim} \textit{N}\left(\mathbf{0}, \Omega_{\boldsymbol{\varepsilon}}\right) \end{split}$$

▶ In the dlm package

$$\begin{array}{ll} \text{Measurement eq:} \quad Y_t = F\theta_t + v_t & \qquad \epsilon_t \stackrel{\textit{iid}}{\sim} \textit{N}\left(0,\textit{V}\right) \\ \\ \text{State eq:} \quad \theta_t = G\theta_{t-1} + w_t & \qquad v_t \stackrel{\textit{iid}}{\sim} \textit{N}\left(0,\textit{W}\right) \end{array}$$

- \triangleright θ_t is the state vector in dlm. Y_t are the measurements (a vector).
- ▶ The dlm notation goes back to West and Harrison's yellow DLM bible.
- ▶ The state is an unknown, so it is a greek letter.
- ▶ Measurements is a random variable so it is a capital letter.
- ▶ dlm can also handle when F, G, V, W vary of over time.

DLM PACKAGE

▶ DLM

$$\begin{array}{ll} \text{Measurement eq:} \quad Y_t = F\theta_t + v_t & \qquad \epsilon_t \stackrel{\textit{iid}}{\sim} \textit{N}\left(0, \textit{V}\right) \\ \\ \text{State eq:} \quad \theta_t = G\theta_{t-1} + w_t & \qquad v_t \stackrel{\textit{iid}}{\sim} \textit{N}\left(0, \textit{W}\right) \end{array}$$

- Main functions:
 - ▶ dlm creates the dlm model object
 - dlmFilter Kalman filtering
 - dlmSmooth State smoothing
 - ▶ dlmLL computes the log-likelihood

► The linear Gaussian state-space (LGSS) model

$$\begin{split} \text{Measurement eq:} \quad \mathbf{y}_t &= \mathbf{C}\mathbf{x}_t + \boldsymbol{\varepsilon}_t \\ \text{State eq:} \quad \mathbf{x}_t &= \mathbf{A}\mathbf{x}_{t-1} + \mathbf{B}\mathbf{u}_t + \boldsymbol{\nu}_t \\ \end{split} \qquad \qquad \boldsymbol{\varepsilon}_t \overset{iid}{\sim} \textit{N}\left(\mathbf{0}, \Omega_{\boldsymbol{\varepsilon}}\right) \end{split}$$

- ▶ The elements in **A**, **B**, **C**, Ω_{ε} and Ω_{ν} may be unknown.
- \triangleright Example: time-varying regression with p covariates \mathbf{z}_t $(p \times 1)$

$$\begin{aligned} y_t &= \mathbf{z}_t^T \boldsymbol{\beta}_t + \boldsymbol{\varepsilon}_t, & \boldsymbol{\varepsilon}_t \stackrel{iid}{\sim} N\left(0, \Omega_{\varepsilon}\right) \\ \boldsymbol{\beta}_{1t} &= \mathbf{a}_1 \cdot \boldsymbol{\beta}_{t-1} + \boldsymbol{\nu}_t & \boldsymbol{\nu}_t \stackrel{iid}{\sim} N\left(0, \Omega_{\nu}\right) \\ &\vdots \\ \boldsymbol{\beta}_{pt} &= \mathbf{a}_p \cdot \boldsymbol{\beta}_{t-1} + \boldsymbol{\nu}_t & \boldsymbol{\nu}_t \stackrel{iid}{\sim} N\left(0, \Omega_{\nu}\right) \end{aligned}$$

- ▶ Here $C = \mathbf{z}_t^T$, $\mathbf{x}_t = \beta_t$ and $\mathbf{A} = \text{Diag}(a_1, ..., a_n)$.
- The state space model's matrices (**A** etc) are parametrized by $\theta = (\theta_1, ..., \theta_s)$. To be explicit: $A(\theta), B(\theta), ..., \Omega_{\nu}(\theta)$.

- ► Two options: Maximum likelihood estimate (MLE) or Bayesian.
- Likelihood function

$$\rho\left(\mathbf{y}_{1},...,\mathbf{y}_{T}|\theta\right) = \prod_{t=1}^{T} \rho\left(\mathbf{y}_{t}|\mathbf{y}_{1:t-1},\theta\right)$$

▶ How compute $p(\mathbf{y}_t|\mathbf{y}_{1:t-1},\theta)$? The trick: i) condition on \mathbf{x}_t , ii) exploit conditional independencies, iii) get rid of \mathbf{x}_t by integrating it out:

$$p(\mathbf{y}_{t}|\mathbf{y}_{1:t-1}, \theta) = \int p(\mathbf{y}_{t}|\mathbf{y}_{1:t-1}, \mathbf{x}_{t}, \theta) p(\mathbf{x}_{t}|\mathbf{y}_{1:t-1}, \theta) d\mathbf{x}_{t}$$
$$= \int p(\mathbf{y}_{t}|\mathbf{x}_{t}, \theta) p(\mathbf{x}_{t}|\mathbf{y}_{1:t-1}, \theta) d\mathbf{x}_{t}$$

- ► Note:
 - $p(\mathbf{x}_t|\mathbf{y}_{1:t-1},\theta) = \overline{\mathrm{bel}}(\mathbf{x}_t)$ is Gaussian
 - $ightharpoonup p(\mathbf{y}_t|\mathbf{x}_t,\theta)$ is Gaussian
 - ▶ $p(\mathbf{y}_t|\mathbf{y}_{1:t-1},\theta)$ is then also Gaussian [not obvious, but expected].

- ▶ Remember: we are looking for the Gaussian $p(y_t|y_{1:t-1}, \theta)$.
- ▶ Mean by law of iterated expectations (E = EE)

$$\mathbb{E}\left(\mathbf{y}_{t}|\mathbf{y}_{1:t-1},\boldsymbol{\theta}\right)=\mathbf{C}\mathbb{E}\left(\mathbf{x}_{t}|\mathbf{y}_{1:t-1},\boldsymbol{\theta}\right)=\mathbf{C}\bar{\mu}_{t}$$

▶ Variance by conditional variance formula (V = EV + VE)

$$\begin{split} \mathbb{V}\left(\mathbf{y}_{t}|\mathbf{y}_{1:t-1},\theta\right) &= \mathbb{E}_{\mathbf{x}_{t}|\mathbf{y}_{1:t-1},\theta}\left[\mathbb{V}\left(\mathbf{y}_{t}|\mathbf{x}_{t},\mathbf{y}_{1:t-1},\theta\right)\right] \\ &+ \mathbb{V}_{\mathbf{x}_{t}|\mathbf{y}_{1:t-1},\theta}\left[\mathbb{E}\left(\mathbf{y}_{t}|\mathbf{x}_{t},\mathbf{y}_{1:t-1},\theta\right)\right] \\ &= \Omega_{\varepsilon} + \mathbb{V}_{\mathbf{x}_{t}|\mathbf{y}_{1:t-1},\theta}\left(\mathbf{C}\mathbf{x}_{t}\right) = \Omega_{\varepsilon} + \mathbf{C}\bar{\Sigma}_{t}\mathbf{C}^{T} \end{split}$$

▶ In summary, the likelihood function is

$$p\left(\mathbf{y}_{1},...,\mathbf{y}_{T}|\theta\right) = \prod_{t=1}^{T} N\left(\mathbf{y}_{t}|\mathbf{C}\bar{\mu}_{t},\mathbf{C}\bar{\Sigma}_{t}\mathbf{C}^{T} + \Omega_{\varepsilon}\right)$$

where **C**, Ω_{ε} , $\bar{\mu}_t$ and $\bar{\Sigma}_t$ all depend on θ generally.

- ▶ The Kalman filter gives us everything we need for $p(\mathbf{y}_1, ..., \mathbf{y}_T | \theta)!$
- ▶ Numerical optimization (e.g. optim in R) to find MLE $\hat{\theta}_{MLE}$.
- ▶ Approximate $\mathbb{V}\left(\hat{\theta}_{MLE}\right)$ from the numerical Hessian.
- ► Sampling from the posterior distribution

$$p(\theta|\mathbf{y}_{1},...,\mathbf{y}_{T}) \propto p(\mathbf{y}_{1},...,\mathbf{y}_{T}|\theta) p(\theta)$$

by Metropolis-Hastings.

STATE SMOOTHING

► Filtering (real time):

$$p(\mathbf{x}_t|\mathbf{y}_{1:t})$$

► **Smoothing** (retrospective):

$$p(\mathbf{x}_t|\mathbf{y}_{1:T})$$

- ▶ Start at the end t = T. We already have $p(\mathbf{x}_T | \mathbf{y}_{1:T})$ from the last iteration of the Kalman filter. Work yourself backward in time to obtain $p(\mathbf{x}_{T-1} | \mathbf{y}_{1:T}), ..., p(\mathbf{x}_1 | \mathbf{y}_{1:T})$.
- Note: the end result are the marginal densities at any t, $p(\mathbf{x}_t|\mathbf{y}_{1:T})$. More work to do if one also wants $p(\mathbf{x}_{t_1}, \mathbf{x}_{t_2}|\mathbf{y}_{1:T})$ for some times t_1 and t_2 .

STATE SMOOTHING

▶ By Bayes' theorem (note how I use conditional independencies)

$$p\left(\mathbf{x}_{T-1}|\mathbf{y}_{1:T}\right) \propto p\left(\mathbf{y}_{T-1}|\mathbf{x}_{T-1}\right) p\left(\mathbf{x}_{T-1}|\mathbf{y}_{1:T-2},\mathbf{y}_{T}\right)$$

- ▶ But $p(\mathbf{x}_{T-1}|\mathbf{y}_{1:T-2}) = \overline{\mathrm{bel}}(\mathbf{x}_{T-1})$, which is Gaussian.
- $\triangleright p(\mathbf{y}_{T-1}|\mathbf{x}_{T-1})$ is Gaussian.
- ▶ So $p(\mathbf{x}_{T-1}|\mathbf{y}_{1:T})$ is Gaussian.
- ▶ $p(\mathbf{x}_t|\mathbf{y}_{1:T})$ can be computed from the Kalman filtering output by iterating backward: $p(\mathbf{x}_T|\mathbf{y}_{1:T})$, $p(\mathbf{x}_{T-1}|\mathbf{y}_{1:T})$,..., $p(\mathbf{x}_1|\mathbf{y}_{1:T})$.

STATE SMOOTHING

- ▶ Algorithm Smoothing($\mathbf{s}_{t+1}, \mathbf{S}_{t+1}, \mu_t, \Sigma_t, \bar{\mu}_{t+1}, \bar{\Sigma}_{t+1}$)
 - ► Mean update:

$$\mathbf{s}_{t} = \mu_{t} + \Sigma_{t} \mathbf{A}^{T} \bar{\Sigma}_{t+1}^{-1} (\mathbf{s}_{t+1} - \bar{\mu}_{t+1})$$

Covariance update:

$$\mathbf{S}_t = \Sigma_t + \Sigma_t \mathbf{A}^T \bar{\Sigma}_{t+1}^{-1} \left(\mathbf{S}_{t+1} - \bar{\Sigma}_{t+1} \right) \bar{\Sigma}_{t+1}^{-1} \mathbf{A} \Sigma_t$$

▶ Return \mathbf{s}_t , \mathbf{S}_t

BAYESIAN INFERENCE FOR THE STATE

- ▶ How to sample from posterior of the state $p(x_1, ..., x_T | y_{1:T}, \theta)$?
- ► Single-move Gibbs sampling:
 - for t = 1, ..., T do:
 - $ightharpoonup \mathbf{x}_t | \mathbf{x}_{-t}, \mathbf{y}_{1:T} \sim \textit{Normal}$
- ► Forward Filtering Backward Sampling (FFBS):
 - Run the Kalman filter forward in time t = 1, ..., T.
 - ▶ Simulate from (almost) the smoothing distributions backward in time t = T, T 1, ..., 1:

$$\mathbf{x}_t | \mathbf{x}_{t+1}, ..., \mathbf{x}_T, \theta \sim \mathcal{N}(\mathbf{\tilde{s}}_t, \mathbf{S}_t)$$

$$\tilde{\mathbf{s}}_t = \mu_t + \Sigma_t \mathbf{A}^T \bar{\Sigma}_{t+1}^{-1} \left(\mathbf{x}_{t+1} - \bar{\mu}_{t+1} \right)$$

and S_t is exactly as in the smoothing.

