Introduction Main theorem Exact symplectic Symplectization Proof Example Other notions Toric manifolds References

Integrability of contact Hamiltonian systems

Manuel Lainz¹ and Asier López-Gordón²

¹Department of Quantitative Methods, CUNEF University, Madrid, Spain ²Institute of Mathematical Sciences (ICMAT), CSIC, Madrid, Spain

Joint work with Leonardo Colombo and Manuel de León

deLeonfest 2023

Financially supported by Grants CEX2019-000904-S, PID2019-106715GB-C21, PID2022-137909NB-C21 and RED2022-134301-T, funded by MCIN/AEI/10.13039/501100011033

Outline of the presentation

- Introduction
- Main theorem
- 3 Exact symplectic manifolds
- 4 Symplectization
- 6 Proof
- 6 Example
- Other notions
- Toric manifolds and integrable systems

Symplectic geometry

- Symplectic geometry is the natural framework for classical mechanics.
- Recall that a symplectic form ω on M is a 2-form such that $d\omega = 0$ and $TM \ni v \mapsto \iota_v \omega \in T^*M$ is an isomorphism.
- Given a function f on M, its its Hamiltonian vector field X_f is given by

$$\iota_{X_f}\omega=\mathrm{d}f.$$

• The Poisson bracket $\{\cdot,\cdot\}$ is given by

$$\{f,g\}=\omega(X_f,X_g).$$

Theorem (Liouville–Arnold theorem)

Let f_1, \ldots, f_n be independent functions in involution (i.e., $\{f_i, f_j\} = 0 \ \forall i, j$) on a symplectic manifold (M^{2n}, ω) . Let $M_{\Lambda} = \{x \in M \mid f_i = \Lambda_i\}$.

- **1** Any compact connected component of M_{Λ} is diffeomorphic to \mathbb{T}^n .
- **2** On a neighborhood of M_{Λ} there are coordinates (φ^{i}, J_{i}) such that

$$\omega = \mathrm{d}\varphi^i \wedge \mathrm{d}J_i,$$

and the Hamiltonian dynamics are given by

$$\frac{\mathrm{d}\varphi^i}{\mathrm{d}t} = \Omega^i(J_1, \dots, J_n),$$

$$\frac{\mathrm{d}J_i}{\mathrm{d}t} = 0.$$

Contact geometry

Definition

A (co-oriented) **contact manifold** is a pair (M, η) , where M is an (2n+1)-dimensional manifold and η is a 1-form on M such that $\eta \wedge (\mathrm{d}\eta)^n$ is a volume form.

• The contact form η defines an isomorphism

$$egin{aligned} eta \colon \mathfrak{X}(M) &
ightarrow \Omega^1(M) \ X &\mapsto \iota_X \mathrm{d}\eta + \eta(X)\eta, \end{aligned}$$

• There exists a unique vector field \mathcal{R} on (M, η) , called the **Reeb** vector field, such that $\flat(\mathcal{R}) = \eta$, that is,

$$\iota_{\mathcal{R}} d\eta = 0, \ \iota_{\mathcal{R}} \eta = 1.$$

Contact geometry

• The **Hamiltonian vector field** of $f \in C^{\infty}(M)$ is given by

$$\flat(X_f)=\mathrm{d} f-\left(\mathcal{R}(f)+f\right)\eta,$$

• Around each point on M there exist **Darboux coordinates** (q^i, p_i, z) such that

$$\begin{split} \eta &= \mathrm{d}z - p_i \mathrm{d}q^i, \\ \mathcal{R} &= \frac{\partial}{\partial z}, \\ X_f &= \frac{\partial f}{\partial p_i} \frac{\partial}{\partial q^i} - \left(\frac{\partial f}{\partial q^i} + p_i \frac{\partial f}{\partial z} \right) \frac{\partial}{\partial p_i} + \left(p_i \frac{\partial f}{\partial p_i} - f \right) \frac{\partial}{\partial z}. \end{split}$$

Contact geometry

• The Jacobi bracket is given by

$$\{f,g\} = -\mathrm{d}\eta(\flat^{-1}\mathrm{d}f,\flat^{-1}\mathrm{d}g) - f\mathcal{R}(g) + g\mathcal{R}(f).$$

- This bracket is bilinear and satisfies the Jacobi identity.
- However, unlike a Poisson bracket, it does not satisfy the Leibnitz identity:

$${f,gh} \neq {f,g}h + {f,h}g.$$

Dissipated quantities

- In contact Hamiltonian dynamics dissipated quantities are akin to conserved quantities in symplectic dynamics.
- Energy (Hamiltonian function) is no longer conserved, but dissipated in a certain manner:

$$X_H(H) = -\mathcal{R}(H)H$$
.

Dissipated quantities

Example (linear dissipation)

Let

$$M=\mathbb{R}^3,\quad \eta=\mathrm{d}z-p\mathrm{d}q,\quad H=rac{p^2}{2}+V(q)+\kappa z.$$

Then $X_H(H) = -\kappa H$, so

$$H \circ c(t) = e^{-\kappa t} H \circ c(0)$$
,

along an integral curve c of X_H .

Dissipated quantities

Definition

An *H*-dissipated quantity is a solution $f \in C^{\infty}(M)$ to the PDE

$$X_H(f) = -\mathcal{R}(H)f$$
.

A function f is H-dissipated iff

$$\{f, H\} = 0.$$

Noether's theorem: symmetries \leftrightarrow dissipated quantities.

• Let $M_{\langle \Lambda \rangle_+} = \{ x \in M \mid \exists r \in \mathbb{R}^+ : f_{\alpha}(x) = r\Lambda_{\alpha} \}.$

Theorem (Colombo, de León, L., L.-G., 2023)

Let (M, η) be a (2n+1)-dimensional contact manifold. Suppose that f_0, f_1, \ldots, f_n are functions in involution such that $(\mathrm{d} f_\alpha)$ has rank at least n. Then, $M_{\langle \Lambda \rangle_+}$ is invariant by the Hamiltonian flow of f_α and diffeomorphic to $\mathbb{T}^k \times \mathbb{R}^{n+1-k}$.

Moreover, there is a neighborhood U of $M_{\langle \Lambda \rangle_+}$ such that

1 There exists coordinates $(y^0, \ldots, y^n, \tilde{A}_1, \ldots, \tilde{A}_n)$ on U such that the equations of motion are given by

$$\dot{y}^{\alpha} = \Omega^{\alpha}(\tilde{A}_i), \quad \dot{\tilde{A}}_i = 0, \quad \alpha \in \{0, \dots, n\}, i \in \{1, \dots, n\}.$$

2 There exists a conformal change $\tilde{\eta} = \eta/A_0$ such that (y^i, \tilde{A}_i, y^0) are Darboux coordinates for $(M, \tilde{\eta})$, i.e. $\tilde{\eta} = \mathrm{d}y^0 - \tilde{A}_i \mathrm{d}y^i$.

Steps of the proof

- Symplectize (M, η) and f_{α} , obtaining an exact symplectic manifold (M^{Σ}, θ) and homogeneous functions in involution f_{α}^{Σ} .
- Prove a Liouville—Arnold theorem for exact symplectic manifolds with homogeneous functions in involution.
- **3** "Un-symplectize" the action-angle coordinates $(y_{\Sigma}^{\alpha}, A_{\alpha}^{\Sigma})$ on M^{Σ} , yielding functions (y^{α}, A_{Σ}) on M.
- **4** Introduce action-angle coordinates $(y^{\alpha}, \tilde{A}_i)$ on M, where $\tilde{A}_i = -\frac{A_i}{A_0}$.

Exact symplectic manifolds: Liouville geometry

Definition

An **exact symplectic manifold** is a pair (M, θ) , where M is a manifold and θ a one-form on N such that $\omega = -d\theta$ is a symplectic form on M.

• The **Liouville vector field** Δ of (M, θ) is given by

$$\iota_{\Delta}\omega = -\theta.$$

• A tensor T is called **homogeneous of degree** n if $\mathcal{L}_{\Delta}T = nT$.

Definition

Let (M, η) be a contact manifold and (M^{Σ}, θ) an exact symplectic manifold. A **symplectization** is a fibre bundle $\Sigma \colon M^{\Sigma} \to M$ such that

$$\sigma \Sigma^* \eta = \theta$$
,

for a function σ on M^{Σ} called the **conformal factor**.

Category of contact manifolds

Category of exact symplectic manifolds

- Contact distribution $\ker \eta \longleftrightarrow \mathsf{symplectic}$ potential θ
- ullet Functions \longleftrightarrow homogeneous functions of degree 1

Theorem

Given a symplectization $\Sigma \colon (M^{\Sigma}, \theta) \to (M, \eta)$ with conformal factor σ , there is a bijection between functions f on M and homogeneous functions of degree 1 f^{Σ} on M^{Σ} such that

$$\Sigma_*(X_{f^{\Sigma}}) = X_f.$$

This bijection is given by

$$f^{\Sigma} = \sigma \Sigma^* f$$
.

Moreover, one has

$$\left\{f^{\Sigma},g^{\Sigma}\right\}_{\theta}=\left\{f,g\right\}_{\eta}^{\Sigma}.$$

Example

 $\Sigma = \pi_1 : (M \times \mathbb{R}^+, \theta = r\eta) \to (M, \eta)$ is a symplectization with conformal factor $\sigma = r$, for r the global coordinate on \mathbb{R}^+ .

Liouville-Arnold theorem for exact symplectic manifolds

- We want to obtain action-angle coordinates $(\varphi_{\Sigma}^{\alpha}, J_{\alpha}^{\Sigma})$ on (M^{Σ}, θ) in order to define functions $(\varphi^{\alpha}, J_{\alpha})$ on (M, η)
- We need homogeneous objects on (M^{Σ}, θ) so that they have a correspondence with objects on (M, η) .
- However, the classical Liouville–Arnold theorem does not take into account the homogeneity of θ and f_{α}^{Σ} .
- Moreover, we need to consider non-compact level sets of f_{α}^{Σ} .

Liouville-Arnold theorem for exact symplectic manifolds

Theorem (Colombo, de León, Lainz, L.-G., 2023)

Let (M, θ) be an exact symplectic manifold. Suppose that the functions f_{α} , $\alpha = 1, ..., n$, on M are independent, in involution and homogeneous of degree 1. Let U be an open neighborhood of M_{Λ} such that:

- **1** f_{α} have no critical points in U,
- **2** the Hamiltonian vector fields of $X_{f_{\alpha}}$ are complete,
- **3** the submersion $(f_{\alpha}) \colon U \to \mathbb{R}^n$ is a trivial bundle over $V \subseteq \mathbb{R}^n$.

Then, $U \simeq \mathbb{R}^{n-m} \times \mathbb{T}^m \times V$, provided with action-angle coordinates (y^{α}, A_{α}) such that

$$\theta = A_{\alpha} \mathrm{d} y^{\alpha}, \qquad \frac{\mathrm{d} y^{\alpha}}{\mathrm{d} t} = \Omega^{\alpha}, \qquad \frac{\mathrm{d} A_{\alpha}}{\mathrm{d} t} = 0.$$

Sketch of proof

- Since $X_{f_{\alpha}}$ are n vector fields tangent to M_{Λ} , linearly independent and pairwise commutative, they generate the algebra \mathbb{R}^n and $M_{\Lambda} \simeq \mathbb{R}^n/\mathbb{Z}^k$.
- Thus there are coordinates $y^{\alpha} = M_{\alpha}^{\beta} s^{\beta}$, where $X_{f_{\alpha}}(s^{\beta}) = \delta_{\alpha}^{\beta}$.
- The values of f_{α} define coordinates (J_{α}) on V.
- Since M_{Λ} is Lagrangian, $\theta = A_{\alpha}(J)dy^{\alpha} + B^{\alpha}(y,J)dJ_{\alpha}$.
- Since f_{α} are homogeneous of degree 1, $\theta(X_{f_{\alpha}}) = f_{\alpha}$.
- By construction, $\Delta(y^{\alpha}) = 0$.
- With additional contractions with θ and ω , one concludes that $\theta = A_{\alpha} dy^{\alpha}$, where $J_{\beta} = M_{\beta}^{\alpha} J_{\alpha}$.

Definition

A completely integrable contact system is a triple (M, η, F) , where (M, η) is a contact manifold and $F = (f_0, \dots, f_n) \colon M \to \mathbb{R}^{n+1}$ is a map such that

- **1** f_0, \ldots, f_n are in involution, i.e., $\{f_\alpha, f_\beta\} = 0 \ \forall \alpha, \beta$,
- **2** rank $TF \ge n$ on a dense open subset $M_0 \subseteq M$.

The functions f_0, \ldots, f_n are called **integrals**.

Assumptions

- **1** Assume that the Hamiltonian vector fields X_{f_0}, \ldots, X_{f_n} are complete.
- ② Given $\Lambda \in \mathbb{R}^{n+1} \setminus \{0\}$, let $B \subseteq \mathbb{R}^{n+1} \setminus \{0\}$ be an open neighbourhood of Λ .
- **3** Let $\pi \colon U \to M_{\langle \Lambda \rangle_+}$ be a tubular neighbourhood of $M_{\langle \Lambda \rangle_+}$ such that $F|_U \colon U \to B$ is a trivial bundle over a domain $V \subseteq B$.

Theorem (Colombo, de León, L., L.-G., 2023)

Let (M, η, F) be a completely integrable contact system, where $F = (f_0, \dots, f_n)$. Consider the assumptions of the previous slide. Then:

- **1** $M_{\langle \Lambda \rangle_+}$ is coisotropic, invariant by the Hamiltonian flow of f_{α} , and diffeomorphic to $\mathbb{T}^k \times \mathbb{R}^{n+1-k}$ for some $k \leq n$.
- **2** There exists coordinates $(y^0, \ldots, y^n, \tilde{A}_1, \ldots, \tilde{A}_n)$ on U such that the equations of motion are given by

$$\dot{y}^{\alpha}=\Omega^{\alpha}\quad \dot{\tilde{A}}_{i}=0.$$

3 There exists a nowhere-vanishing function $A_0 \in C^{\infty}(U)$ and a conformally equivalent contact form $\tilde{\eta} = \eta/A_0$ such that (y^i, \tilde{A}_i, y^0) are Darboux coordinates for $(M, \tilde{\eta})$, namely, $\tilde{\eta} = \mathrm{d}y^0 - \tilde{A}_i \mathrm{d}y^i$.

Sketch of the proof

- **1** Symplectize (M, η) and f_{α} , in order to apply the Liouville–Arnold theorem for exact symplectic manifolds
 - $\{f_{\alpha}, f_{\beta}\} = 0 \Rightarrow \{f_{\alpha}^{\Sigma}, f_{\beta}^{\Sigma}\} = 0.$
 - $X_{f_{\alpha}}$ complete $\Rightarrow X_{f_{\alpha}^{\Sigma}}$ complete.
 - $\operatorname{\mathsf{rank}} \operatorname{\mathsf{d}} f_\alpha \geq n \Rightarrow \operatorname{\mathsf{rank}} \operatorname{\mathsf{d}} (\underbrace{\sigma \Sigma^* f_\alpha}_{c \Sigma}) \geq n+1.$
 - $\Sigma((F^{\Sigma})^{-1}(\Lambda)) = \{x \in M \mid \exists s \in \mathbb{R}^+ : F(x) = \frac{\Lambda}{s}\} = M_{\langle \Lambda \rangle_+}.$
 - $X_{f_{\alpha}}$ commute and are tangent to $M_{\langle \Lambda \rangle_{+}} \Rightarrow M_{\langle \Lambda \rangle_{+}} \simeq \mathbb{T}^{k} \times \mathbb{R}^{n+1-k}$.
- **2** "Un-symplectize" the action-angle coordinates $(y_{\Sigma}^{\alpha}, A_{\alpha}^{\Sigma})$ on \tilde{U} , yielding functions (y^{α}, A_{α}) on U.
- **3** Introduce action-angle coordinates $(y^{\alpha}, \tilde{A}_i)$ on U
 - Since $\Lambda \neq 0$, $\exists A_{\alpha} \neq 0$. W.l.o.g., assume $A_0 \neq 0$.
 - Then $\left(y^{\alpha}, \tilde{A}_{i} = -\frac{A_{i}}{A_{0}}\right)$ are coordinates on U.

Sketch of the proof

• By construction, y^{α} are linear combinations of flows of $X_{f_{\alpha}}$, namely,

$$X_{f_{\alpha}}=M^{\alpha}_{\beta}\frac{\partial}{\partial s^{\beta}}.$$

Therefore, the dynamics are given by

$$\frac{\mathrm{d} y^{\alpha}}{\mathrm{d} t} = \Omega^{\alpha}, \qquad \frac{\mathrm{d} \tilde{A}_{i}}{\mathrm{d} t} = 0.$$

• $\theta^{\Sigma} = A^{\Sigma}_{\alpha} \mathrm{d} y^{\alpha}_{\Sigma} \leadsto \eta = A_{\alpha} \mathrm{d} y^{\alpha}$, so

$$\tilde{\eta} = \frac{1}{A_0} \eta = \mathrm{d} y^0 - \tilde{A}_i \mathrm{d} y^i.$$

- Let $M = \mathbb{R}^3 \setminus \{0\}$ with canonical coordinates (q, p, z), and $\eta = \mathrm{d}z p\mathrm{d}q$.
- The functions h = p and f = z are in involution.
- Let $F = (h, f) \colon M \to \mathbb{R}^2$.
- rank $\mathrm{T}F=2$, and thus (M,η,F) is a completely integrable contact system.

- Hypothesis of the theorem are satisfied:
 - 1 The Hamiltonian vector fields

$$X_h = \frac{\partial}{\partial q}, \quad X_f = -p\frac{\partial}{\partial p} - z\frac{\partial}{\partial z}$$

are complete,

② Since $F: (q, p, z) \mapsto (p, z)$ is the canonical projection, $F: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\}$ is a trivial bundle.

The invariant submanifolds are given by

$$M_{\langle \Lambda \rangle_{+}} = \{(q, p, z) \in M \mid \exists r \in \mathbb{R}_{+} \colon p = r\Lambda_{1}, z = r\Lambda_{2}\},$$

or, equivalently,

$$M_{\langle \Lambda \rangle_{+}} = \{ (q, p, z) \in M \mid \exists r \in \mathbb{R}_{+} \colon p = r \sin \varphi, z = r \cos \varphi \},$$

where $\langle \Lambda \rangle_+ = \langle (\sin \varphi, \cos \varphi) \rangle_+$ for some $\varphi \in [0, 2\pi)$.

Consider the chart $(U; \xi, \zeta, \varphi)$, where

$$U=M\setminus \{z=0\}\,,\quad \xi=q\,,\quad \zeta=z\,,\quad arphi=rctan\left(rac{
ho}{z}
ight)\,\left(\operatorname{mod}2\pi
ight),$$

Suppose that $\langle \Lambda \rangle_+ \neq \langle (1,0) \rangle_+$. Then, one can write

$$M_{\langle \Lambda \rangle_+} = \left\{ (\xi, \zeta, arphi) \mid arphi = \mathrm{arctan}\left(rac{\Lambda_1}{\Lambda_2}
ight)
ight\} \,.$$

In the chart $(U; \xi, \zeta, \varphi)$, the Hamiltonian vector fields read

$$X_h = \frac{\partial}{\partial \xi}, \quad X_f = -\zeta \frac{\partial}{\partial \zeta}.$$

Therefore, the action $\Phi \colon \mathbb{R}^2 \to M$ defined by their flows is given by

$$\Phi(t,s;\xi,\zeta,\varphi)=(\xi+t,\zeta e^{-s},\varphi).$$

- Consider a reference point $x_0 \in M_{\langle \Lambda \rangle_+}$ with coordinates $(\xi_0, \zeta_0, \varphi_0)$.
- The angle coordinates (y^0, y^1) of a point $x \in M_{\langle \Lambda \rangle_+}$ with coordinates (ξ, ζ, φ_0) are given by

$$(\xi,\zeta,\varphi_0) = \Phi(y^0,y^1;\xi_0,\zeta_0,\varphi_0) = (\xi^0 + y^0,\zeta_0e^{-y^1},\varphi_0),$$

that is

$$y^0 = \xi - \xi_0 = q - q_0$$
, $y^1 = \log \zeta_0 - \log \zeta = \log z_0 - \log z$.

• We know that the contact form can be written as

$$\eta = A_0 \mathrm{d} y^0 + A_1 \mathrm{d} y^1 \,.$$

• Therefore,

$$A_{0} = \eta \left(\frac{\partial}{\partial y^{0}} \right) = \eta \left(\frac{\partial}{\partial q} \right) = -p = -h,$$

$$A_{1} = \eta \left(\frac{\partial}{\partial y^{1}} \right) = \eta \left(-z \frac{\partial}{\partial z} \right) = -z = -f.$$

• The action coordinate is

$$\tilde{A} = -\frac{A_1}{A_0} = -\frac{h}{f} = -\frac{p}{z}.$$

• To sum up, we have a chart $(M \setminus \{z=0\}; y^0, y^1, \tilde{A})$, where

$$y^0 = q - q_0$$
, $y^1 = \log z_0 - \log z$ $\tilde{A} = -\frac{p}{z}$.

• In this chart,

$$X_h = \frac{\partial}{\partial y^0}, \quad X_f = \frac{\partial}{\partial y^1}$$

• It is a Darboux chart for the contact form

$$\tilde{\eta} = \frac{1}{A_0} \eta = \mathrm{d} y^0 - \tilde{A} \mathrm{d} y^1.$$

• Notice that X_h is the Reeb vector field of $\tilde{\eta}$ and X_f is the Hamiltonian vector field of \tilde{A} w.r.t. $\tilde{\eta}$.

Other notions of integrability

- Khesin and Tabachnikov, Liberman, Banyaga and Molino, Lerman, etc. have defined notions of contact complete integrability which are geometric but not dynamical, e.g. a certain foliation over a contact manifold.
- Boyer considers the so-called good Hamiltonians H, i.e., $\mathcal{R}(H) = 0 \rightsquigarrow$ no dissipated quantities, "symplectic" dynamics.
- Miranda considered integrability of the Reeb dynamics when ${\cal R}$ is the generator of an S^1 -action.
- We are interested in complete integrability of contact Hamiltonian dynamics.

A **toric manifold** is a (compact) symplectic manifold (M,ω) , a smooth effective Hamiltonian Lie group action of \mathbb{T}^n and a moment map $J=(J_i)^i:M\to\mathfrak{g}^*\simeq\mathbb{R}^n$ that satisfies $\xi_M=X_{\langle J,\xi\rangle}$ for all $\xi\in\mathfrak{g}$. Note that, choosing a basis of the Lie algebra we obtain an integrable system $(J_i)_i$.

Conversely, an integrable system provides the structure of a toric manifold. The flow of the Hamiltonian vector fields provides a Hamiltonian effective action of \mathbb{T}^n and a the the action variables provide a moment map. By the theorem of Atiyah, Guillemin and Sternberg, if M is compact, $\mathrm{J}(M)$ is a convex polytope.

The moment map and integrable systems

In the contact case, we may equivalently define a moment map $\hat{\mathbf{J}} = \langle (\mathbf{J}_{\alpha})_{\alpha} \rangle_{+} : M \to \mathbb{S}^{n}$, having coisotropic level sets. Here \mathbb{S}^{n} can be seen as $\mathbb{R}^{n} \setminus \{0\}$ modulo multiplication by positive integers.

$$M^{\Sigma} \xrightarrow{J} \mathbb{R}^{n+1} \setminus \{0\}$$

$$\downarrow^{\Sigma} \qquad \qquad \downarrow^{\pi_{\mathbb{S}}}$$

$$M \xrightarrow{\hat{J}} \mathbb{S}^{n}$$

The flow of the Hamiltonian vector fields also provides an effective action, which can be related using Σ to the symplectic one.

- [1] V. I. Arnold, *Mathematical Methods of Classical Mechanics* (Graduate Texts in Mathematics). Springer-Verlag, 1978.
- [2] L. Colombo, M. de León, M. Lainz, and A. López-Gordón, Liouville-Arnold theorem for contact manifolds, Feb. 23, 2023. arXiv: 2302.12061 [math.SG].
- [3] E. Fiorani, G. Giachetta, and G. Sardanashvily, "An extension of the Liouville-Arnold theorem for the non-compact case," *Nuovo Cimento Soc. Ital. Fis. B*, 2003.
- [4] J. Liouville, "Note sur l'intégration des équations différentielles de la Dynamique," *J. Math. Pures Appl.*, pp. 137–138, 1855. (visited on 03/29/2023).

Introduction Main theorem Exact symplectic Symplectization Proof Example Other notions Toric manifolds References

Happy birthday, Manolo!

