Окружности

- 1. В треугольнике ABC проведена высота AA_1 и отмечен ортоцентр H.
- а) Докажите, что продолжение AA_1 за точку A_1 пересекает описанную окружность треугольника ABC в такой точке E, что $A_1E = HA_1$.
- б) Пусть A_2 середина BC. Докажите, что луч HA_2 пересекает описанную окружность в такой точке F, что $A_2F = HA_2$.
- 2. Доказать, что в произвольном треугольнике середины сторон, основания перпендикуляров, а также середины отрезков, соединяющих вершины с ортоцентром, лежат на одной окружности, радиус которой вдвое меньше радиуса описанной окружности.
- 3. Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность. Перпендикуляры, опущенные на сторону AD из вершин B и C, пересекают диагонали AC и BD в точках E и F соответственно. Найдите EF, если BC = 1.
- 5. Докажите, что касательная к окружности девяти точек треугольника ABC, проведённая в середине A_1 стороны BC, параллельна касательной к описанной окружности треугольника ABC в вершине A.
- 6. Докажите, что AOA_1A_2 и A_2OA_1H параллелограммы.
- 7. Пусть, как и в задаче 1, A_3 пересечение продолжения высоты AA_0 за точку A_0 с описанной окружностью ΔABC , а E середина отрезка OH. Докажите, что расстояние от E до стороны BC в четыре раза меньше AA_3 .
- 8. Найдите радиусы вписанной и описанной окружностей треугольника со сторонами 13, 13, 24 и расстояние между центрами этих окружностей.
- 9. В треугольнике ABC проведены высоты AK и CM. На них из точек M и K опущены перпендикуляры ME и KH соответственно. Докажите, что прямые EH и AC параллельны. Найдите отношение EH: AC, если угол ABC равен 30° .
- 10. Пусть Γ окружность, описанная около остроугольного треугольника ABC. Точки D и E лежат на отрезках AB и AC соответственно, причем AD = AE. Серединные перпендикуляры к отрезкам BD и CE пересекают меньшие дуги AB и AC окружности Γ в точках F и G соответственно. Докажите, что прямые DE и FG параллельны или совпадают.