Mo Tu We Th Fr Sa Su		Memo No Date		/
Unit 2 Partial	Derivai	tives	20	5.660
Session 24: Functions				
Fig. 11				
Readings:	2bant mid	la bandant		ables
dependent and sade $\frac{1}{2} = f(x, y)$	T)	eperaere	Vari	apies
1 x,y can	be any			
How to graph: take				
y-z plane and then				
X-z plane then take Example	z = a	constem	5	¿²º
$\frac{\chi^{2}}{a^{2}} + \frac{\chi^{2}}{4^{2}} + \frac{\dot{z}^{2}}{a^{2}} = 1$			>	х=ю -
) a	S	6	
Problems:	/ x			
1 Daw) - u ² -	v ² 1	/ 5	

Mo Tu We Th Fr Sa Su	Memo No
Session 26: Partial Den	
detination:	(2, 篇代数制
1) W=fcx.y/, y fixed in	yo , x is vary
50 w = f(x, y₀) =) the	partial function for y= yo
whose slope at the x ponit	P where x=x0 is given =
by the derwate	af 1 Standard
$(2) \int_{\Lambda} \int_{\Lambda} f(x, y) x=x_0 $	or $\frac{\partial}{\partial x}/(x_0, y_0)$
	1
	Partial derivative
	aw 1
V Y Other notations: fx ()	ko, yo), $\frac{1}{\partial x} (x_0, y_0)$
$(\frac{\partial f}{\partial x})_{o}$, $(\frac{\partial w}{\partial x})_{o}$	
as the same way: X fixed	1 Xo, y is vary
2001 (3y)0, 5y/(x,0)	ys), fy(xs, ys)
•	pend on (xo, yo) and therefore
•	JA) how fast W increese
By & Increase when y's h	eld constant

Ď.	7	5	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			-
Date	1	/	

	•			/	^	
-	to		variables	· 10)= 7	1'X.	V 2-1
	71	INDE	VUITUDES	1 100 -17	1././	1. 6.

as the same way, make the other variables constant and take the ordinary derivative with respect $t(X) \ni f_X f(X, X_0, z_0, \dots) = f_X(X_0, X_0, z_0, \dots)$ $\begin{pmatrix} \partial f \\ \partial X \end{pmatrix}_0, \begin{pmatrix} 2w \\ \delta X \end{pmatrix}_0.$

chalk board?

Example:
$$f(x,y) = x^{3}y + y^{2}$$

 $\frac{\partial f}{\partial x} = 3x^{2}y + 0$, $\frac{\partial f}{\partial y} = x^{3} + 2y$

Problems:

Let
$$f(x,y) = e^{(x^2+y^2)} + x^2+y^2 + xy+2y+3$$
,
a) $\frac{\partial f}{\partial x} = e^{y^2} \cdot e^{x^2} \cdot 2x + 2x + y$
 $= 2x e^{x^2+y^2} + 2x + y$

母野区

Мо	Tu	We	Th	Fr	Sa	Su
----	----	----	----	----	----	----

Memo No. Date

b) show
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

$$\frac{\partial}{\partial x}(\frac{\partial f}{\partial x}) = 2y \cdot 2x \cdot e^{x^2} e^{x^2} + 1$$

$$= 4x \cdot y \cdot e^{x^2} e^{x^2} + 1$$

$$\frac{\partial}{\partial x}(\frac{\partial f}{\partial y}) = 4x \cdot y \cdot e^{x^2} e^{x^2} + 1$$

$$50 \stackrel{?}{\Rightarrow} (\stackrel{?}{\Rightarrow}) = \stackrel{?}{\Rightarrow} (\stackrel{?}{\Rightarrow}) = \stackrel{?}{\Rightarrow} \stackrel$$

$$\frac{\partial f}{\partial x}(1,3) = 2 \cdot e^{1+9} + 24 + 3 = 2e^{16} + 5$$

Session 27: Approximation Function 225.1.11 For a function w = f(x, y), the nature analogue is the tagent plane to the graph ort point?