University of Waterloo CS 462 — Formal Languages and Parsing Winter 2011 Problem Set 1

Distributed Wednesday, January 5 2011.

Due Wednesday, January 12 2011, in class.

All answers should be accompanied by proofs.

1. [8 marks] Let L be any language over the alphabet Σ . Consider the languages L_1 and L_2 defined by

$$L_1 := \overline{L^*}$$

$$L_2 := \Sigma^* \overline{L} \Sigma^*.$$

Which of the following symbols

$$=$$
, \neq , \subsetneq , \subseteq , \supseteq , \supseteq

can be placed between L_1 and L_2 to make an identity that holds for all L?

Note: \subseteq means "subset, including equality" and \subsetneq means "subset, not including equality", and similarly for \supseteq and \supseteq .

2. [12 marks] On pages 2 and 92–93 of the course textbook you can find the definition of "subsequence" and the operation on languages $\mathrm{sub}(L)$: a word x is a subsequence of a word y if x can be obtained from y by striking out 0 or more letters. For example, gem is a subsequence of enlightenment. Furthermore,

 $\operatorname{sub}(L) = \{x : \text{ there exists } y \in L \text{ such that } x \text{ is a subsequence of } y\}.$

Which of the following are identities? Prove your answer.

- (a) $\operatorname{sub}(L_1 \cup L_2) = \operatorname{sub}(L_1) \cup \operatorname{sub}(L_2)$
- (b) $\operatorname{sub}(L_1L_2) = \operatorname{sub}(L_1)\operatorname{sub}(L_2)$
- (c) $\operatorname{sub}(L^*) = \operatorname{sub}(L)^*$
- 3. [10 marks] On page 2 of the course textbook you can find the definition of "prefix" and "suffix": a word x is a prefix of a word y if there exists z (possibly empty) such that y = xz.

A word x is a suffix of a word y if there exists a z (possibly empty) such that y = zx.

We can extend this definition to languages by writing

```
\operatorname{pref}(L) = \{x : \text{ there exists } y \in L \text{ such that } x \text{ is a prefix of } y\} \operatorname{suff}(L) = \{x : \text{ there exists } y \in L \text{ such that } x \text{ is a suffix of } y\}
```

Prove that for all languages L over the alphabet Σ , either pref($\overline{\operatorname{suff}(L)}$) = Σ^* or pref($\overline{\operatorname{suff}(L)}$) = \emptyset .