Final Exam

- 1. Let $U \sim \text{Unif}([0,1])$. Find the p.d.f. of the following random variables:
 - (a) $X = U^2$
 - (b) $Y = e^U$
 - (c) $Z = \sqrt{U}$
 - (5 points for each problems)
- 2. Let $\{X_i\}_{i=1}^{\infty}$ be independent random variables having the exponential distribution with parameters λ .
 - (a) (5 points) Find the density function of $X_1 + X_2$.
 - (b) (10 points) Let $S_n = X_1 + \cdots + X_n$. Prove that the density of S_n is

$$f_{S_n}(s) = \frac{\lambda^n}{(n-1)!} s^{n-1} e^{-\lambda s}, \ s > 0.$$

- (c) (5 points) Consider the same S_n , and let $\overline{X}_n = S_n/n$. Calculate $E(\overline{X}_n)$ and $Var(\overline{X}_n)$.
- (d) (5 points) Prove the weak law of large numbers for \overline{X}_n . That is, show that for any $\epsilon > 0$,

$$P(|\overline{X}_n - E(\overline{X}_n)| \ge \epsilon) \to 0 \text{ as } n \to \infty.$$

- 3. Let X, Y have the normal distribution with unit variance and zero mean, and their covariance $\rho \neq 0$.
 - (a) (5 points) Write down the joint density function of (X, Y).
 - (b) (10 points) Let $U_{\theta} = X \cos \theta + Y \sin \theta$ and $V_{\theta} = -X \sin \theta + Y \cos \theta$, $\theta \in [0, \pi)$. Find all the possible θ such that U_{θ} and V_{θ} are independent.
- 4. Find the value C for the following probability density functions.
 - (a) (5 points) $f(x) = C(1+x^2)^{-1}, x \in \mathbb{R}$.
 - (b) (5 points) $f(x) = C \exp(-x e^{-x}), x \in \mathbb{R}.$
- 5. Let X and Y be independent random variables with the same c.d.f F and p.d.f. f.
 - (a) (5 points) What is the c.d.f. of $V = \max\{X, Y\}$?
 - (b) (5 points) Write down the p.d.f. of V.
 - (c) (10 points) Write down the p.d.f. of $Z = \min\{X, Y\}$.
- 6. Roll a die n times and let S_n be the number of times you roll 6 by time n. Assume

1

that each rolls are independent. Let $\overline{X}_n = S_n/n$.

- (a) (5 points) Compute $E(S_n)$ and $Var(S_n)$.
- (b) (10 points) Consider $\overline{X}_n = S_n/n$. We want to estimate $P(|\overline{X}_n E(\overline{X}_n)| < \epsilon)$ for some small $\epsilon > 0$. Let $\Phi(x) = P(Z \le x)$ be the c.d.f. of $Z \sim N(0,1)$. Use central limit theorem to write down an approximation of $P(|\overline{X}_n E(\overline{X}_n)| < \epsilon)$. (Use Φ and n to express your answer)