Bernoulli Random Variable: The random variable only has 2 possible outcomes. Probability of one of them is p

 $X \sim Bernoulli(p)$

Probability Mass Function (PMF):

$$P(X = k) = \begin{cases} p, & k = 1\\ 1 - p, & k = 0 \end{cases}$$

Expectation: E(X) = p

Variance: Var(x) = p(1-p)

Indicator Function is a Bernoulli Random Variable

$$1_A = \begin{cases} 1, & \text{if A happens} \\ 0, & \text{if A doesnt happen} \end{cases}$$

Binomial Random Variable: Number of successes in n Bernoulli trials

$$X \sim Bin(n, p)$$

Probability Mass Function (PMF):

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \quad k = 0, 1, \dots, n$$

Expectation: E(X) = np

Variance: Var(X) = np(1-p)

If X_1, \dots, X_n are i.i.d. with common distribution Bernoulli(p), then $X_1 + \dots + X_n \sim Bin(n, p)$

Geometric Random Variable: Number of Bernoulli trials to obtain the first success $X \sim Geometric(p)$

Probability Mass Function (PMF):

$$P(X = k) = p(1-p)^{k-1}, k = 1, 2, 3, \dots$$

Expectation: $E(X) = \frac{1}{x}$ Variance: $Var(X) = \frac{1-p}{r^2}$

Poisson Random Variable: The number of events occurring in a fixed time interval or region of opportunity. Number of events per single unit of time

 $X \sim Poi(\lambda)$

Probability Mass Function (PMF):

Note that $\lambda > 0$

$$P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}, \qquad k = 0, 1, 2, \dots$$

Expectation: $E(X) = \lambda$

Variance: $Var(X) = \lambda$

Poisson Approximation: When n is large and p is small, np is moderate $Bin(n, p) \rightarrow Poisson(np)$

Uniform Random Variable:

 $X \sim Uniform(a, b)$ **Probability Density Function (PDF):**

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & otherwise \end{cases}$$

Cumulative Distribution Function (CDF):

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x < b \\ 1, & b \le x \end{cases}$$

Expectation: $E(X) = \frac{a+b}{a}$ Variance: $Var(X) = \frac{(b-a)^2}{a}$

Standard Uniform Distribution:

 $X \sim Uniform(a, b)$

$$U(0, 1) \equiv Beta(1, 1)$$

PDF: $f(x) = 1$, $for 0 \le x \le 1$
CDF: $F(x) = x$, $for 0 \le x \le 1$

Expectation: $E(X) = \frac{1}{2}$ Variance: $Var(X) = \frac{1}{12}$

Transform to Uniform(a, b):

$$Y = (b - a)X + a$$

Normal Random Variable:

$$X \sim N(\mu, \sigma^2)$$
 Probability Density Function (PDF):

 $f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), -\infty < x < \infty$

$$F(x) = \int_{-\infty}^{\infty} f(x) dx, -\infty < x < \infty$$

Expectation: $E(X) = \mu$ Variance: $Var(X) = \sigma^2$

Standard Normal Distribution: N (0, 1) If $Z \sim N(0, 1)$ then $\mu + \sigma Z \sim N(\mu, \sigma^2)$

Probability Density Function (PDF): $f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^2\right), \quad -\infty < x < \infty$ Cumulative Distribution Function (CDF):

$$F(x) = \int_{-\infty}^{\infty} f(x)dx, -\infty < x < \infty$$

Expectation: E(X) = 0Variance: Var(X) = 1

d-dimensional normal with mean μ and covariance matrix Σ

$$f(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right), \quad -\infty < x < \infty$$

Note that $|\Sigma|$ is the determinant of Σ

Exponential Random Variable:

Note that $\lambda > 0$

$$X \sim Exp(\lambda)$$

Probability Density Function (PDF):

$$F(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

Cumulative Distribution Function (CDF)

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x < 0 \end{cases}$$

Expectation: $E(X) = \frac{1}{\lambda}$ Variance: $Var(X) = \frac{1}{x^2}$

Memoryless Property: For any $X \sim Exp(\lambda)$

$$P(X > s + t | X > s) = P(X > t)$$

Gamma Random Variable:

Note that shape parameter a > 0, rate parameter b > 0 $X \sim Gamma(a, b)$

Probability Density Function (PDF):

$$g(x) = \begin{cases} \frac{\lambda^a}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda t}, & x \ge 0\\ 0, & t < 0 \end{cases}$$

Cumulative Distribution Function (CDF)

$$G(x) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \lambda X)$$

Expectation: $E(X) = \frac{\alpha}{\lambda}$ Variance: $Var(X) = \frac{\alpha}{32}$

Gamma Function: $\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt$

Recursion Property: $\Gamma(a+1) = a\Gamma(a)$

Gamma Function Computation: $\Gamma(x) = (x-1)!$

Sum of Gamma Random Variables: Let X_1, \dots, X_k be independent random variables, assume $X_i \sim Gamma(a_i, b)$ for each i. Then

$$X_1 + \cdots + X_k \sim Gamma (a_1 + \cdots + a_k, b)$$

Connection with Standard Normal: If $Z \sim N(0,1)$ then $Z^2 \sim Gamma\left(\frac{1}{2},\frac{1}{2}\right) \sim \chi^2(1)$

Connection with Chi Squared: Assume Z_1, \dots, Z_k are i.i.d N(0, 1) random variables. Then

$$Z_1^2 + \cdots + Z_k^2 \sim Gamma\left(\frac{k}{2}, \frac{1}{2}\right) \sim \chi^2(k)$$

Connection with Exponential Distribution: If X_1, \dots, X_n i.i.d $Exp(\lambda) = Gamma(1, \lambda)$ $X_1 + \cdots + X_n \sim Gamma(n, \lambda)$

Scaling: If $X \sim Gamma(a, b)$ then $\lambda X \sim Gamma(a, \frac{b}{a})$

Beta Random Variable:

Note that a > 0, b > 0

$$X \sim Beta(a, b)$$

Probability Density Function (PDF):

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{b - 1}, \ 0 \le x \le 1$$

Expectation: $E(X) = \frac{a}{a+b}$ Variance: $Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$

Swap of parameters: If $X \sim Beta(a, b)$, then $1 - X \sim Beta(b, a)$

If $X \sim Gamma(a, \beta)$, $Y \sim Gamma(b, \beta)$ and X, Y are independent, then

$$\frac{X}{X+Y} \sim Beta(a,b)$$

 $\frac{X}{X+Y} \sim Beta(a,b)$ Order Statistics: If X_1, \cdots, X_n are i.i.d from Uniform(0,1) and $X_{(1)} \leq \cdots \leq X_{(n)}$ are their order statistics, then for $k = 1, \dots, n$

$$X_{(k)} \sim Beta(k, n+1-k)$$

Useful to know when we want to generate Beta distribution, we can just draw iid uniform and order them then pick the kth one

Cauchy Random Variable

 $X \sim Cauchy(x_0, \gamma)$

$$f(x) = \frac{1}{\pi y} \left(\frac{1}{1 + \left(\frac{x - x_0}{y} \right)^2} \right), \quad -\infty < x < \infty$$

Cumulative Distribution Function (CDF):

Standard Cauchy Random Variable: $X \sim Cauchy(0,1)$

Probability Density Function (PDF): $f(x) = \frac{1}{\pi} \left(\frac{1}{1+x^2} \right), \quad -\infty < x < \infty$

Cumulative Distribution Function

$$F(x) = \frac{1}{\pi} \arctan\left(\frac{x - x_0}{\gamma}\right) + \frac{1}{2}, \quad -\infty < x < \infty$$
Inverse CDF:
$$F^{-1}(u) = \gamma \tan[\pi(u - 0.5)] + x_0, \quad u \in [0, 1]$$

$$F(x) = \frac{1}{\pi} \arctan x + \frac{1}{2}, \quad -\infty < x < \infty$$
Inverse CDF:
$$F^{-1}(u) = \tan[\pi(u - 0.5)], \quad u \in [0, 1]$$

Scaling and Shifting of Random Variables: Suppose that *X* is a continuous random variable with pdf f(x)

- **Shift**: If a is a real number, then pdf of X + a is f(x a)
- **Scale:** If b is a positive number, then the pdf of bX is $b^{-1}f\left(\frac{x}{b}\right)$

Let X_1, X_2, \cdots be a sequence of iid random variables with mean μ and variance σ^2 . We define the n-th sample mean and sample variance by:

Sample Mean: The mean of the sample that we are currently looking at

$$X_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad E(X_n) = \mu$$

 $X_n=\frac{1}{n}\sum_{i=1}^nX_i\,,\qquad E(X_n)=\mu$ Sample Variance: Variance of the sample data that we are currently looking at

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2, \qquad E(S_n^2) = \sigma^2$$

Variance of Sample Mean: Variation of the sample means that we will get over the n samples

 $Var(\bar{X}_n)=\frac{\sigma^2}{n}$ Change of variable formula: Suppose U and V are functions of X and Y, $u=g_1(x,y)\ v=1$ $g_2(x, y), J(x, y) \neq 0$

Multivariable Joint Density of U and V:

$$f_{UV}(u, v) = f_{XY}(h_1(u, v), h_2(u, v))|J(x, y)|$$

Note that $h_1(u, v)$ is x represented by u, v only. $h_2(u, v)$ is y represented by u, v only.

Jacobian:
$$J(x, y) = det \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \end{bmatrix} = \begin{pmatrix} \frac{\partial u}{\partial x} \end{pmatrix} \begin{pmatrix} \frac{\partial v}{\partial y} \end{pmatrix} - \begin{pmatrix} \frac{\partial v}{\partial x} \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial y} \end{pmatrix}$$
, Rows – Functions, Columns, Variables

Single Variable: Suppose g(x) is a one-to-one differentiable function. If X has pdf $f_X(x)$ and Y = g(X) then pdf of Y is:

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \cdot \left| \frac{dg^{-1}(y)}{dy} \right|$$

 $g^{-1}(y)$ is just x in terms of y and we substitute it into f_x

Note that if g(x,y) is not one-to-one, we break it into intervals such that it is one to one and we just add up the distribution on the range where they are one-to-one

(Strong) Law of Large Numbers (SLLN): Suppose that the random variable X has finite first moment(i.e. $E[|X|] < \infty$), then the sample mean (based on a random sample $\{X_1, \dots, X_n\}$) converges almost surely to the population mean

$$\lim_{n \to \infty} \frac{(X_1 + \dots + X_n)}{n} = E[X]$$

Central Limit Theorem (CLT iid version): Suppose that the random variable X has finite second moment (i.e. $E[X^2] < \infty$), then the following **convergence in distribution** holds $\lim \sqrt{n}(\bar{X}_n - \mu) = N(0, \sigma^2)$

- $\bar{X}_n \mu$ converges to 0 in order of $n^{-\frac{1}{2}}$
- In the multivariate case, replace σ^2 by the covariance matrix

Monte Carlo Integration:

Used for estimating some kind of parameter

Consider the density function to be $f(u) = 1, U \sim Uniform(0, 1)$

$$\theta = \int_{0}^{1} g(U) \cdot 1 \, du = E_{U}[g(U)]$$

By SLLN, if $\int_0^1 |g(x)| dx < \infty$, then with probability 1

$$\frac{1}{k} \sum_{i=1}^{k} g(U_i) \to E[g(U)] = \theta \text{ as } k \to \infty$$

If we can generate large number of random numbers from Uniform(0, 1) then we can approximate θ by the average of the $g(u_i)$

$$\hat{\theta} = \frac{1}{k} \sum_{i=1}^{k} g(u_i)$$

Expectation is an integral and probability is an expectation of an indicator function

$$\theta = E(g(X,Y)) = \int_{S} 1_{condition}(x,y) f(x,y) dx \approx \frac{1}{n} \sum_{i=1}^{n} 1_{condition}(x,y) \xrightarrow{SLIN} \theta$$

Discrete Random Variable Generation:

Compute the probability for each of the possible values for the pmf. Then we just generate a uniform distribution to check which of the probability range it lies within.

- Generate $U \sim Uniform(0,1)$ 1.
- If $U < p_0$, set $X = x_0$ and stop
- If $U < p_0 + p_1$, set $X = x_1$ and stop
- 4. Otherwise, set $X = x_n$

Inversion Method (Continuous Random Variable):

For a given random variable *X*, if we want to generate it, we can do the following. If we are given the pdf of the random variable X, f(x):

- Integrate f(x) over the entire range to get the CDF, F(x)
- Let $U \sim Uniform(0,1)$. Set U = F(x) and find the inverse of the cdf $F^{-1}(u) = X$
- Once we have found the inverse CDF, we can just generate a uniform distribution and put inside the inverse CDF to get one X

- Generate $U \sim Uniform(0, 1)$
- $Set X = F^{-1}(U)$

Note:

For $Exp(\lambda)$, we can use the following to generate the random variable:

$$X = -\frac{1}{2}\log U$$

For Gamma (n, λ) , we can use the following to generate the random variable: Note that we are making use of the fact that $Gamma(n, \lambda)$ is the sum of $n Exp(\lambda)$

$$X = -\frac{1}{2}\log(U_1 \cdots U_n)$$

Fundamental Theorem of Simulation

If X is a random variable with pdf f(x), then simulating X is equivalent to simulating a pair fo random variables (X, U) jointly from

Basically we can just sample some value of x and check that the probability of randomly getting that value of x is within the density of that particular x. If we can get the values of X like that, then it will have a pdf of f(x)

$$(X,U) \sim Uniform\{(x,u): 0 < u < f(x)\}$$

Rejection Sampling:

Quick ways to check that $\sup_{g(x)} \frac{f(x)}{g(x)} < +\infty$ (But still need to rigorously show, this can give a brief

idea)

- Domain of g(x) should cover the domain of f(x)
- The tails of the proposal g(x) should be heavier than the tails of f(x)

- Differentiate the ratio of $\frac{f(x)}{g(x)}$ and find the maximum value that the ratio can attain
- Try to observe what will happen to the ratio $\frac{f(x)}{g(x)}$ when $x \to +\infty$. Look at what kind of function it will look like and make the conclusion from there

Theoretical number of simulations required to get 1 acceptance: $M = \sup_{a(x)} \frac{f(x)}{a(x)}$

Logical steps to do (When we are computing):

- Try to imagine the shape of g(x) and f(x), when one increases, the other should increase also, vice versa
- Find the value of $M = \sup_{\alpha(x)} \frac{f(x)}{g(x)}$. Check that it exists and state the value where we can compute the maximum value using the rigorous way to check
- Specify the rejection function of $\frac{f(x)}{Ma(x)}$ and our U needs to be within the rejection function range else it will be rejected
- Generate Y using some kind of method (normally inversion)

Algorithm:

- Generate $U \sim Uniform(0,1)$
- If $U \le \frac{f(Y)}{Ma(Y)}$, then accept: set X = Y and stop. Otherwise, reject and return to step 1

Unknown Normalising Constant:

If we only know f(x) up till a certain normalising constant, it will work the same, just take the ratio and supremum to be:

$$\frac{\widetilde{f}(x)}{g(x)}$$
, $\sup_{x} \frac{\widetilde{f}(x)}{\widetilde{M}g(x)}$

Polar Method for Bivariate Normal:

$$S = R^2 = X^2 + Y^2$$
, $\tan \theta = \frac{Y}{Y}$, $X = R\cos(\theta)$, $Y = R\sin(\theta)$

Change of variable from (X, Y) to (S, θ)

$$f(s,\theta) = \frac{1}{2}e^{-\frac{s}{2}}\frac{1}{2\pi}, \qquad 0 < s < \infty, 0 < \theta < 2\pi$$

 $S = R^2 \sim Exp\left(\frac{1}{2}\right)$ and $\theta \sim Uniform(0, 2\pi)$

Box-Muller Algorithm v1:

- 1. Generate random numbers $U_1 \sim Uniform(0, 1)$ and $U_2 \sim Uniform(0, 1)$
- Set:

$$X = \sqrt{-2\log U_1}\cos(2\pi U_2)$$
$$Y = \sqrt{-2\log U_1}\sin(2\pi U_2)$$

Box-Muller Algorithm v2: Suppose that (V_1, V_2) is uniformly distributed in the disk centered at (0,0) with radius 1 and the random angle is $\theta \sim Uniform(0,2\pi)$

- Generate random numbers $U_1 \sim Uniform(0,1)$ and $U_2 \sim Uniform(0,1)$
- Set $V_1 = 2U_1 1$, $V_2 = 2U_2 1$, $S = V_1^2 + V_2^2$ (V_1, V_2 are just X and Y coordinates sampled
- 3. If S > 1, return to Step 1 (S is the radius squared for a unit disk so it should be < 1)
- Return the independent unit normals

$$X = \sqrt{-\frac{2\log S}{S}}V_1$$
$$Y = \sqrt{-\frac{2\log S}{S}}V_2$$

Simple Sampling: Sample X_1, X_2, \dots, X_n independently from f, we can estimate the true parameter shown below by

$$\theta = E[\varphi(X)] = \int_{C} \varphi(X) f(x) \, dx$$

Simple Sampling Estimator:

$$\hat{\theta}_{SS} = \frac{1}{n} \sum_{i=1}^{n} \varphi(X_i)$$

Simple Sampling Exact Variance of $\widehat{\theta}$ (Variance of Sample Mean):

Simple Sampling Exact Variance of
$$\widehat{\theta}$$
 (Variance of Sample Mean):
$$Var(\widehat{\theta}) = \frac{Var[\varphi(X)]}{n} = \frac{\int_{S} \varphi^2(X)f(X)dX - \theta^2}{n}$$
 Simple Sampling Asymptotic Variance of $\widehat{\theta}$:
$$\varphi^2 = Var[\varphi(X)] = \int_{\Theta^2(X)} f(X) \, dX - \theta^2$$

$$\sigma^2 \equiv Var[\varphi(X)] = \int_{0}^{\infty} \varphi^2(x)f(x) dx - \theta^2$$

Simple Sampling Estimated Asymptotic Variance of $\widehat{ heta}$: Note that this is not an unbiased estimate of σ^2

$$\hat{\sigma}_{SS}^2 = \frac{1}{n} \sum_{i=1}^n \varphi^2(X_i) - \widehat{\theta_{SS}}^2$$

Simple Sampling Estimated Variance of $\widehat{\theta}$ (Sample Variance):

$$\widehat{Var}(\widehat{\theta}) = \frac{\widehat{\sigma}_{SS}^2}{n}$$

Simple Sampling Asymptotic Confidence Interval for θ

$$\left[\hat{\theta} - 1.96 \frac{\hat{\sigma}_{SS}}{\sqrt{n}}, \hat{\theta} + 1.96 \frac{\hat{\sigma}_{SS}}{\sqrt{n}}\right]$$

Importance Sampling: Sample X_1, X_2, \dots, X_n independently from g_i , we can estimate the true parameter shown below by

$$\theta = E_f[\varphi(X)] = \int_S \varphi(x) f(x) \, dx$$

$$\theta = \int_S \frac{\varphi(x) f(x)}{g(x)} g(x) \, dx = E_g \left[\frac{\varphi(x) f(x)}{g(X)} \right] = E_g[\varphi(Y) w(Y)]$$

Weighting Function:

$$w(y) = \frac{f(y)}{g(y)}$$

Importance Sampling Estimator: Unbiase

$$\hat{\theta}_{IS} = \frac{1}{n} \sum_{i=1}^{n} \frac{\varphi(x_i) f(x_i)}{g(x_i)} = \frac{1}{n} \sum_{i=1}^{n} \varphi(x_i) w(x_i)$$

$$Var(\hat{\theta}) = \frac{Var[\varphi(X)w(X)]}{n} = \frac{\int_{S} \frac{\varphi^{2}(x)f^{2}(x)}{g(x)} dx - \theta^{2}}{n}$$

Importance Sampling Asymptotic Variance of $\hat{\theta}$:

$$\sigma_{IS}^2 \equiv Var[\varphi(X)w(X)] = \int_S \frac{\varphi^2(x)f^2(x)}{g(x)} dx - \theta^2$$

Importance Sampling Estimated Asymptotic Variance of $\widehat{\theta}$: Note that this is not an unbiased estimate of σ^2

$$\widehat{\sigma}_{IS}^{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{\varphi^{2}(x) f^{2}(x)}{g(x)} - \widehat{\theta}_{IS}^{2}$$

Importance Sampling Estimated Variance of $\widehat{\theta}$ (Sample Variance):

$$\widehat{Var}(\widehat{\theta}) = \frac{\widehat{\sigma}_{IS}^2}{n}$$

Importance Sampling Asymptotic Confidence Interval for θ :

$$\left[\hat{\theta} - 1.96 \frac{\hat{\sigma}_{IS}}{\sqrt{n}}, \hat{\theta} + 1.96 \frac{\hat{\sigma}_{IS}}{\sqrt{n}}\right]$$

Optimal $g: g(x) \propto |\varphi(x)| \cdot f(x)$

Asymptotic variance of $\hat{\theta}_{IS}$ with the proposal density g is exactly 0 if $\varphi(x) \ge 0$ for all $X \in S$ To find g(x):

1. Let $h(x) = c|\varphi(x)|f(x)$

2. Let $1 = \int_S h(x) = \int_S c|\varphi(x)|f(x)$ and solve for c (Note that if we have the value for $I = \int_S h(x) = \int_S c|\varphi(x)|f(x)$ $\int_{c} |\varphi(x)| f(x) dx \Rightarrow c = \frac{1}{c}$

3. g(x) = ch(x)

Self-Normalizing Importance Sampling: We only know the distribution of f and g up to a normalising constant $(Z_f > 0, Z_a > 0)$

$$f(x) = \frac{\tilde{f}(x)}{Z_f}, \qquad g(x) = \frac{\tilde{g}(x)}{Z_g}$$

Generalised weights:

$$\widetilde{w}(x) = \frac{\widetilde{f}(x)}{\widetilde{g}(x)}, \quad \text{for all } x \in S$$

Self-normalised importance sampling estimator of $\theta = E_f[\varphi(X)] = \int_{S} \varphi(x) f(x) dx$:

$$\widehat{\theta}_{SIS} = \frac{\sum_{i=1}^{n} \varphi(X_i) \widetilde{w}(X_i)}{\sum_{i=1}^{n} \widetilde{w}(X_i)}$$

Asymptotic variance of $\hat{\theta}_{sis}$: Normally larger than the IS version because of the random denominator

$$\sigma_{SIS}^2 = E_g(w^2(X) \cdot [\varphi(X) - \theta]^2)$$

Where w(x) = f(x)/g(x), it is the true weight

Exact Variance for \hat{\theta}_{SIS}: No closed form

Note that $Var[\hat{\theta}_{SIS}] \neq \frac{\sigma_{SIS}^2}{m}$ (Not the same as simple sampling and importance sampling)

Estimator of the Variance of $\widehat{\theta}_{SL}$

$$\widehat{Var}(\hat{\theta}_{SIS}) = \frac{\hat{\sigma}_{SIS}^2}{n} = \frac{\sum_{i=1}^{n} \left\{ \widehat{w}^2(X_i) \left[\varphi(X_i) - \hat{\theta}_{SIS} \right]^2 \right\}}{\left\{ \sum_{i=1}^{n} \widehat{w}(X_i) \right\}^2}$$

95% Asymptotic Confidence Interv

$$\left[\hat{\theta} - 1.96 \sqrt{\frac{\hat{\sigma}_{SIS}^2}{n}}, \hat{\theta} + 1.96 \sqrt{\frac{\hat{\sigma}_{SIS}^2}{n}}\right]$$

Calculus Results:

$$\int_{1}^{+\infty} \frac{1}{x^{p}} = \frac{1}{-n+1} x^{-p+1} \Big|_{1}^{+\infty} = \begin{cases} < +\infty \text{ if } p > 1 \\ +\infty \text{ if } n < 1 \end{cases}$$

2.
$$\int_0^1 \frac{1}{x^p} = \frac{1}{-p+1} x^{-p+1} \Big|_0^1 = \begin{cases} < +\infty & \text{if } p < 1 \\ +\infty & \text{if } p > 1 \end{cases}$$

3.
$$\int_0^1 \frac{e^x}{x^p} = \begin{cases} < +\infty \text{ if } p < 1 \\ +\infty \text{ if } n > 1 \end{cases}$$

1. $\int_{1}^{+\infty} \frac{1}{x^{p}} = \frac{1}{-p+1} x^{-p+1} \Big|_{1}^{+\infty} = \begin{cases} < +\infty \text{ if } p > 1 \\ +\infty \text{ if } p \leq 1 \end{cases}$ 2. $\int_{0}^{1} \frac{1}{x^{p}} = \frac{1}{-p+1} x^{-p+1} \Big|_{0}^{1} = \begin{cases} < +\infty \text{ if } p < 1 \\ +\infty \text{ if } p < 1 \end{cases}$ 3. $\int_{0}^{1} \frac{e^{x}}{x^{p}} = \begin{cases} < +\infty \text{ if } p < 1 \\ +\infty \text{ if } p \geq 1 \end{cases}$ Rare Event Estimation: When the p^{*} we want to estimate is small

Relative Standard Deviation = $\frac{asymptotic s.d}{s}$

- Checks the magnitude of the asymptotic sd of our estimator as compared to the actual value → If it is large, it means that the magnitude of the sd of our estimator is larger than the actual value and it will give a very bad estimate
- For a Bernoulli RV \rightarrow Relative s. d. = $\frac{\sqrt{p(1-p)}}{p} = \sqrt{\frac{1-p}{p}}$ (Therefore, if the probability of it happening is low then the sd is high
- Consider using a density centered at the point where we need more points so that the probability is higher and lowering the relative sd
- Remember that we can take the φ as the indicator function to indicate $P(X_i > 4)$ for example.