제 6 장 IP 패킷의 전달과 포워딩

- 6.1 전달 (Delivery)
- 6.2 포워딩 (Forwarding)
- 6.3 라우터의 구조

TCP/IP

6-1

6.1 전달 (Delivery)

- 직접 전달 vs. 간접 전달
 - 1.
- ◆ 패킷의 최종 목적지가 전달자 (Deliverer)와 같은 네트워크에 위치
- ◆ 직접 전달 여부 판별은 어떻게?
- ◆ ARP: 목적지 IP 주소 ⇔ 목적지 MAC 주소

TCP/IP

6.1 전달 (계속)

■ 직접 전달 vs. 간접 전달

2

- ◆ 목적지 호스트가 전달자 (Deliverer)와 다른 네트워크에 위치
- ◆ 라우터 (Router)를 경유
- ◆ ARP: 다음 라우터의 IP 주소 ⇔ 다음 라우터의 MAC 주소

6.2 포워딩 (Forwarding)

■ 기반 포워딩

- ⇒ IP가 비연결형 프로토콜로 사용되는 경우 (전통적 방법)
- ⇒ 목적지 주소 → 라우팅 테이블 검색
- ➡ 포워딩 기술
 - ◆ 다음 홉 방법 (Next-hop method)
 - ◆ 네트워크 지정 방법 (Network-specific method)
 - ◆ 호스트 지정 방법 (Host-specific method)
 - ◆ 디폴트 방법 (Default method)

■ 기반 포워딩

- ⇒ IP가 연결형 프로토콜로 사용되는 경우
- ⊃ 레이블 (Label) → 스위칭 테이블에 접근 (Accessing)
- (Multi-Protocol Label Switching)

TCP/IP

- 클래스 기반 주소체계에서의 포워딩
 - → 서브넷팅이 없는 경우
 - ⇒ 서브넷팅이 있는 경우
- 클래스 없는 주소체계에서의 포워딩

TCP/IP

6.2 포워딩 (계속) ■ 예제 6.1 : 라우터 R1의 라우팅 테이블을 보여라. (클래스 기반, Without subnetting) 170.14.0.0/16 145.80.0.0/16 170.14.5.165 145.80.7.11 mo 111.0.0.0/8 111.25.19.20 Rest of the 111.30.31.18 Internet 111.15.17.32 Default router 192.16.7.5 192.16.7.0/24

TCP/IP

■ 예제 6.4 : 고정길이 서스넷팅에서 라우팅 테이블 (클래스 기반)

■ 예제 6.5 : 목적지 주소기 145.14.32.78 인 패킷의 포워딩

■ 예제 6.6 : 목적지 주소가 7.22.67.91 인 패킷의 포워딩

TCP/IP

6-13

6.2 포워딩 (계속)

■ 클래스 없는 주소 체계에서 단순화된 포워딩 모듈

* 클래스 기반 주소체계에서는 라우팅 테이블에 3개의 열이 필요하지만, 클래스 없는 주소체계에서는 적어도 4개의 열이 필요하다.

TCP/IP

■ 예제 6.7 : 라우터 R1의 라우팅 테이블을 보여라

6.2 포워딩 (계속)

ᢒ 정답

Mask	Network Address	Next Hop	Interface
/26	180.70.65.192	-	m2
/25	180.70.65.128	-	m0
/24	201.4.22.0	-	m3
/22	201.4.16.0		m1
Default	Default	180.70.65.200	m2

■ 에제 6.8 : 목적지 주소가 180.70.65.140 인 패킷의 포워딩

■ 예제 6.9 : 목적지 주소가 201.4.22.35 인 패킷의 포워딩

■ 예제 6.1O : 목적지 주소가 18.24.32.78 인 패킷의 포워딩

TCP/IP

TCP/IP

■ 예제 6.11 : 라우팅 테이블을 보고, 토폴로지 그리기

 Table 6.2
 Routing table for Example 6.11

Mask	Network Address	Next-Hop Address	Interface Number
/26	140.6.12.64	180.14.2.5	m2
/24	130.4.8.0	190.17.6.2	m1
/16	110.70.0.0		m0
/16	180.14.0.0		m2
/16	190.17.0.0		m1
Default	Default	110.70.4.6	m0

TCP/IP

- 라우팅 테이블 사이즈
 - ⇒ 클래스 기반 주소체계 vs. 클래스가 없는 주소체계
- 클래스가 없는 주소체계에서 라우팅 테이블 사이즈를 줄이기 위한 방법
 - ⊃ 주소 집단화 (
 - ⇒ 가장 긴 마스크 부합(
 - ⇒ 계층적 라우팅 (Hierarchical Routing)
 - ⇒ 지리적 라우팅 (Geographical Routing)
- 리우팅 테이블 탐색 알고리즘

TCP/IP

6-19

6.2 포워딩 (계속)

■ 주소 집단화 (Address aggregation)

Mask	Network address	Next-hop address	Interface	
/26	140.24.7.0		m0	
/26	140.24.7.64		ml	
/26	140.24.7.128		m2	
/26	140.24.7.192		m3	
/0	0.0.0.0	default router	m4	
Dayting table for D1				

Mask	Network address	Next-hop address	Interface
/24	140.24.7.0		m0
/0	0.0.0.0	default router	ml

Routing table for R2

TCP/IP

- 레이블 (Label) 기반 포워딩
 - ➡ Routing을 ____으로 대치하여 IP를 연결 지향 프로토콜 처럼 동작
 - ⇒ : 스위칭 테이블의 인덱스(index)
 - ⊃ 패킷 헤더에 Label 부착 → 스위칭 테이블에 바로 접근
 - ◆ 탐색 과정이 필요 없으므로 신속한 포워딩 가능
 - → MPLS (Multi-Protocol Label Switching)

TCP/IP 6-2

- MPLS (Multi-Protocol Label Switching)
 - **⊃** 1980년대 교환기술을 구현한 MPLS 라우터 개발 **→** IETF 표준
 - ⇒ 라우터로 동작할 때는 목적지 주소 기반, 스위치로 동작할 때 는 Label 기반으로 포워딩
 - → MPLS 헤더 추가: IPv4 패킷을 MPLS 패킷으로 캡슐화

TCP/IP 6--

6.2 포워딩 (계속)

- MPLS (Multi-Protocol Label Switching)
 - ⇒ MPLS 헤더: 레이블 스택 (Label stack)으로 구성

- ◆ 레이블(Label): 20 비트, 라우팅 테이블 인덱스에 사용
- ◆ Exp: 3 비트, 실험 목적 예약
- ◆ S: 1 비트, 서브 헤더의 상황 정의 (1: 마지막 서브 헤더)
- ◆ TTL: 8 비트, IP의 TTL과 유사
- 계층적 교환 (Hierarchical switching)
 - ◆ 계층적 라우팅과 유사

Ex. 상위 레이블은 조직 외부 교환기를 통하여, 하위 레이블은 조직 내 부 교환기를 통하여 패킷 포워딩

TCP/IP

