

HiPerFAST™IGBT

IXGH40N30A

 $V_{CES} = 300 \text{ V}$ $I_{C25} = 60 \text{ A}$ $V_{CE(sat)} = 2.1 \text{ V}$ $t_e = 120 \text{ ns}$

Preliminary data

Symbol	Test Conditions	Maximum R	atings
V _{CES}	T _J = 25°C to 150°C	300	V
$\mathbf{V}_{\mathtt{CGR}}$	$T_{_{\mathrm{J}}}$ = 25°C to 150°C; $R_{_{\mathrm{GE}}}$ = 1 M Ω	300	V
V _{GES}	Continuous	±20	V
$V_{\scriptscriptstyle{\sf GEM}}$	Transient	±30	V
I _{C25}	T _C = 25°C	60	A
I _{C90}	$T_{c} = 90^{\circ}C$	40	Α
I _{CM}	$T_{\rm C} = 25^{\circ} \rm C, 1 \ ms$	160	Α
SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_{G} = 10 Ω Clamped inductive load, $L_{=}$ = 30 μH	I _{CM} = 80 @ 0.8 V _{CES}	A
P _c	T _c = 25°C	200	W
T_{J}		-55 + 150	°C
T_{JM}		150	°C
T _{stg}		-55 + 150	°C
Maximum L	ead temperature for soldering 162 in.) from case for 10 s	300	°C
M _d	Mounting torque (M3)	1.13/10 N	lm/lb.in.
Weight		TO-247 AD 6	g

TO-247 AD	
	C (TAB)
G C E	

G = Gate,	C = Collector,
E = Emitter,	TAB = Collector

Features

- International standard package JEDEC TO-247 AD
- High current handling capability
- Newest generation HDMOS[™] process
- MOS Gate turn-on
 - drive simplicity

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies

Advantages

- High power density
- Suitable for surface mounting
- Switching speed for high frequency applications
- Easy to mount with 1 screw, (isolated mounting screw hole)

Symbol	Test Conditions	$(T_J = 25^{\circ}C, \text{ unless otherw})$			ristic Values se specified)	
		min.	typ.	max.		
BV _{CES}	$I_{C} = 250 \mu A, V_{GE} = 0 V$ $I_{C} = 250 \mu A, V_{CE} = V_{GE}$	300 2.5		5	V	
GE(th)						
CES	$V_{CE} = 0.8 \cdot V_{CES}$ $V_{GE} = 0 V$	T _J = 25°C T _J = 125°C		200	μA mA	
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±100	nA	
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{ V}$			2.1	V	

IXYS reserves the right to change limits, test conditions, and dimensions.

Symbol	Test Conditions Characteristic Values (T ₁ = 25°C, unless otherwise specified)				
	(1,1-20-0,	min.	typ.	max.	
g _{fs}	$I_{\text{C}} = I_{\text{C90}}$; $V_{\text{CE}} = 10 \text{ V}$, Pulse test, t $\leq 300 \mu\text{s}$, duty cycle $\leq 2 \%$	20	28		S
C _{ies}			2500		рF
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		210		рF
C _{res})		60		рF
Q_{g}			145	170	nC
\mathbf{Q}_{ge}^{g}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \rm V, V_{\rm CE} = 0.5 \rm V_{\rm CES}$		23	35	nC
Q _{gc})		50	75	nC
t _{d(on)}	Inductive load, T _J = 25°C		25		ns
t _{ri}	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H},$		45		ns
$\mathbf{t}_{d(off)}$	$V_{CE} = 0.8 V_{CES}, R_G = R_{off} = 1.0 \Omega$		100		ns
t _{fi}	Remarks: Switching times may increase for V _{CE} (Clamp) > 0.8 • V _{CES} ,		120		ns
E _{off}	higher T _J or increased R _G		0.75		mJ
t _{d(on)}	Inductive load, T _{.i} = 125°C		25		ns
t _{ri}	$I_{c} = I_{coo}, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H}$		45		ns
E _{on}	$V_{CE} = 0.8 V_{CES}, R_{G} = R_{off} = 1.0 \Omega$		0.3		mJ
$\mathbf{t}_{d(off)}$	Remarks: Switching times may		150	300	ns
t _{fi}	increase for V _{CE} (Clamp) > 0.8 • V _{CES} ,		220	330	ns
E _{off}	higher T _J or increased R _G		1.6	2.4	mJ
R _{thJC}				0.62	K/W
R _{thCK}			0.25		K/W

ווט ן lm.	IVIIIIII	viiiimeter inches		ies
	Min.	Max.	Min.	Max.
A B		20.32 21.46		0.800 0.845
C D		16.26 3.65	0.610 0.140	0.640 0.144
E F	4.32 5.4	5.49 6.2		0.216 0.244
G H	1.65	2.13 4.5	0.065	0.084 0.177
J K	1.0 10.8	1.4 11.0		0.055 0.433
L M	4.7 0.4	5.3 0.8	0.185 0.016	0.209 0.031
N	1.5	2 49	0.087	0 102