

Technische Optik Praktikum Laser-Triangulation

Hans Herrmann Felix Kayser Hermann Pommerenke Tino Steinmetz

09. Juli 2015

IN	JHALTSVERZEICHNIS]
Ir	nhaltsverzeichnis	
1	Einleitung	1
2	Versuchsaufbau	3

4

3 Auswertung

1 EINLEITUNG 1

1 Einleitung

$$z = z_{ges} - z_0 \tag{1}$$

$$\sin(90^{\circ} - \beta + \alpha) = \frac{z_{ges}}{g'} \tag{2}$$

$$\sin(\beta - \alpha) = \frac{d}{g'} \tag{3}$$

$$\sin(90^\circ - \beta) = \frac{z_0}{g_1} \tag{4}$$

$$\sin(\beta) = \frac{d}{a_1} \tag{5}$$

$$z = d \cdot \left(\frac{\sin(90^{\circ} - (\beta - \alpha))}{\sin(\beta - \alpha)} - \frac{\sin(90^{\circ} - \beta)}{\sin(\beta)} \right)$$
 (6)

$$= d \cdot \left(\frac{\cos(\beta - \alpha)}{\sin(\beta - \alpha)} - \frac{\cos(\beta)}{\sin(\alpha)} \right) \tag{7}$$

$$= d \cdot (\cot(\beta - \alpha) - \cot(\beta)) \tag{8}$$

$$\sin(\alpha) = \frac{\Delta p'}{b'} \tag{9}$$

$$\cos(\alpha) = \frac{b}{b'} \tag{10}$$

$$\frac{\sin(\alpha)}{\cos(\alpha)} = \frac{\Delta p'}{b} = \tan(\alpha) \tag{11}$$

$$\alpha = \arctan\left(\frac{\Delta p'}{b}\right) \tag{12}$$

$$\sin(\beta) = \frac{d}{g_1} \tag{13}$$

$$d = g_1 \cdot \sin(\beta) \tag{14}$$

$$z = g_1 \cdot \sin(\beta) \cdot \left\{ \cot \left[\beta - \arctan\left(\frac{\Delta p'}{b}\right) \right] - \cot(\beta) \right\}$$
 (15)

1 EINLEITUNG 2

$$\frac{1}{f} = \frac{1}{b} + \frac{1}{g} \tag{16}$$

$$b = \frac{f \cdot g}{g - f} \tag{17}$$

$$z = g_1 \cdot \sin(\beta) \cdot \left\{ \cot \left[\beta - \arctan\left(\frac{\Delta p'}{\frac{f \cdot g}{g - f}}\right) \right] - \cot(\beta) \right\}$$
 (18)

3

2 Versuchsaufbau

3 AUSWERTUNG 4

3 Auswertung

z/mm	px_g	px_m	z_g/mm	z_m/mm	$\Delta z_g/\mathrm{mm}$	$\Delta z_m/\mathrm{mm}$	$\frac{\Delta z_g}{z}$	$\frac{\Delta z_m}{z}$
0	150.93	147	0	0	0	0	0	0
10	241.02	226	9.87	8.64	-0.13	-1.36	-1.32	-13.6
20	329.67	337	19.81	21.09	-0.19	1.09	-0.96	5.44
30	416.47	419	29.77	30.52	-0.23	0.52	-0.77	1.74
40	501.17	501	39.72	40.17	-0.28	0.17	-0.7	0.41
50	583.43	569	49.6	48.33	-0.4	-1.67	-0.8	-3.34
60	664.29	650	59.54	58.25	-0.46	-1.75	-0.77	-2.91
70	743.56	728	69.5	68.02	-0.5	-1.98	-0.72	-2.83
80	820.99	831	79.44	81.26	-0.56	1.26	-0.7	1.57
90	896.68	890	89.38	89.01	-0.62	-0.99	-0.69	-1.1
100	970.41	968	99.27	99.47	-0.73	-0.53	-0.73	-0.53

Tabelle 1: Messwerte

3 AUSWERTUNG 5

Abbildung 1: Relative Fehler

Abbildung 2: Absolute Fehler