ЛАБОРАТОРНАЯ РАБОТА № 4.

Символьные вычисления и операции с полиномами в Maxima

Цель работы – получить навыки символьных вычислений, выполнения операции с полиномами и решения систем алгебраических вычислений в системе компьютерной алгебры Maxima.

4.1. Полиномы и операции с полиномами

Наиболее известными функциями являются степенные многочлены – полиномы, которые описывают огромное разнообразие кривых на плоскости. Еще большее число разнообразных кривых можно описать с помощью рациональных полиномиальных выражений в виде отношения полиномов. Достоинствами полиномов являются единообразное представление зависимостей и использование только арифметических операций для их вычислений. Производные от полиномов и интегралы с подынтегральными функциямиполиномами легко вычисляются и имеют простой вид. Также разработаны простые алгоритмы для вычисления всех корней полиномов. Возможность описания различных кривых с помощью полиномиальных преобразований и простота представления полиномов широко используются на практике, в частности, для аппроксимации других функций.

Формально полином определяется следующим образом. Рассмотрим K область целостности и независимую переменную x. Выражение вида

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

 $p(x)=a_0+a_1x+a_2x^2+\cdots+a_{n-1}x^{n-1}+a_nx^n,$ где $a_i\in K$, $i=0,1,2,\ldots,n$, называется полиномом от x c коэффициентами из K или полиномом от x над K[1]. Каждое выражение $a_i x^i$ называется членом (одночленом или мономом) степени *i* полинома p(x). Если коэффициент при x^n не равен 0, то n – степень полинома, который обозначается deg[p(x)]. Коэффициент при x^n называется старшим коэффициентом полинома p(x) и обозначается lc[p(x)]; если lc[p(x)] = 1 (единичный элемент области K), то полином называется нормированным.

Два полинома $p_1(x) = c_0 + c_1 x + \dots + c_m x^m$, и $p_2(x) = d_0 + d_1 x + \dots + d_n x^n$ с коэффициентами из K равны тогда и только тогда, когда m=n и $c_i=d_i$, $i=0,1,2,\ldots,n$. Для этих полиномов $p_1(x)$ и $p_2(x)$ определяем их сумму и произведение следующим образом:

$$p_1(x) + p_2(x) = \sum_{i=0}^{\max(m,n)} (c_i + d_i)x^i,$$

$$p_1(x) \cdot p_2(x) = \sum_{h=0}^{\min(m,n)} \sum_{i+j=h} (c_i \cdot d_i)x^h.$$

Можно показать, что множество полиномов от х с коэффициентами из области целостности K само является *областью целостности*, обозначаемой K[x].

Maxima позволяет производить манипуляции с полиномами и рациональными функциями. В таблице 4.1 представлено описание функций упрощения алгебраических выражений.

Таблица 4.1. Описание функций СКА Maxima для решения задач математического анализа

Функция	Описание функции	
expand (expr)	Раскрытие скобок выражения ехрг	
ratsimp (expr)	Выполняет упрощение выражения ехрг	
radcan (expr)	Выполняет упрощение выражения expr, содержащее логарифмы, экспоненты и радикалы.	
solve ([eqn_1, , eqn_n], [x_1, , x_n])	Решает систему уравнений eqn_1, , eqn_n относительно переменных x_1, , x_n	

4.2. Алгоритм Бухбергера

Основная задача, которая будет здесь рассмотрена — решение систем полиномиальных уравнений. Под полиномами здесь подразумевается многочлены от многих переменных. Каждая рассматриваемая система обычно может быть преобразована к более простой системе некоторыми "элементарными" преобразованиями.

Пусть $I \in K[x_1, \dots, x_n]$ —идеал и f_1, \dots, f_m – его базис.

Определение 4.1. Говорят, что многочлены f_i и f_j имеют зацепление, если их старшие члены f_{iC} и f_{jC} делятся одновременно на некоторый одночлен w, отличный от константы.

Если f_i и f_j имеют зацепление, т. е. $f_{iC}=w\ q_1,\ f_{jC}=w\ q_2,\$ где w—наибольший общий делитель f_{iC} и f_{jC} , то рассмотрим многочлен $F_{i,j}=f_i\ q_2-f_j\ q_1\in I$. (Его принято называть S-многочленом пары f_i , f_j и обозначать $S(f_i,f_j)$ или S(i,j).) Редуцируем многочлен $F_{i,j}$ с помощью базиса f_1,\ldots,f_m до тех пор, пока это возможно. В результате получим нередуцируемый многочлен $\tilde{F}_{i,j}$. Если $\tilde{F}_{i,j}\equiv 0$, то будем говорить, что зацепление разрешимо. Иначе добавим $\tilde{F}_{i,j}$ к базису идеала $I\colon f_{m+1}=\tilde{F}_{i,j}$. В новом базисе f_1,\ldots,f_m,f_{m+1} будем вновь искать возможные зацепления и редуцировать соответствующие многочлены $F_{i,j}$.

Пример 4.1. Рассмотрим идеал $I=(x^2-y,\ x^2-z)$. Здесь $f_1=x^2-y,\ f_2=x^2-z$. Имеется зацепление . f_{1C} : x^2 , f_{2C} : $x^2\Rightarrow F_{1,2}=-y+z$. Положим $f_3=y-z$. Других зацеплений нет.

Пример 4.2. Пусть $I=(f_1=x^2+y^2+z^2,\ f_2=x+y-z,\ f_3=y+z^2)$. Зацепление имеют только f_1 и f_2 : $F_{1,2}=f_1-xf_2=y^2+z^2-xy+xz=-xy+xz+y^2+z^2$. Редуцируем с помощью f_2 :

$$-xy + xz + y^2 + z^2 \rightarrow (y-z)y - (y-z)z + y^2 + z^2 = 2y^2 + 2z^2 - 2yz$$
 Редуцируем с помощью f_3 :

$$2y^2 + 2z^2 - 2yz \rightarrow 2z^4 + 2z^3 + 2z^2$$

Дальше редуцировать нельзя, поэтому $f_4=2z^4+2z^3+2z^2$. На константу можно сократить и считать, что $f_4=z^4+z^3+z^2$. Других зацеплений нет.

Оказывается, что и в общем случае возможно лишь конечное число неразрешимых зацеплений.

Теорема 4.1. Для каждого набора многочленов $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ после редуцирования конечного числа зацеплений мы получим набор $f_1, \ldots, f_m, f_{m+1}, \ldots, f_M$, в котором каждое зацепление разрешимо.

Теорема 4.2. (Diamond Lemma). Базис f_1, \ldots, f_m идеала I является базисом Грёбнера тогда и только тогда, когда в нем нет зацеплений или каждое зацепление разрешимо.

Теоремы 4.1 и 4.2 обосновывают существование эффективного алгоритма для построения базиса Грёбнера идеала. Этот алгоритм называется алгоритмом Бухбергера. Повторим еще раз его этапы. Пусть f_1, \ldots, f_m – набор многочленов, являющийся базисом идеала I.

1) Проверим, есть ли в наборе зацепления. Если зацеплений нет, то набор является базисом Грёбнера идеала I, иначе переходим к пункту 2.

- 2) По найденному зацеплению (i,j) многочленов f_i и f_j положим $f_{iC} = w \, q_1, f_{jC} = w \, q_2,$ и составим многочлен $F_{i,j} = f_i \, q_2 f_j \, q_1$. Редуцируем многочлен $F_{i,j}$ с помощью набора $\{f_i\}$ до тех пор, пока это возможно. Если многочлен $F_{i,j}$ редуцировался к ненулевому многочлену f, то переходим к пункту 3, иначе к пункту 4. (Отметим, что редуцируемость многочлена $F_{i,j}$ к нулю и вид многочлена f, вообще говоря, зависят от выбранной нами последовательности применяемых редукций. В алгоритме мы используем любую применимую последовательность редукций и, получив нередуцируемый многочлен f, переходим к пункту 3, более никогда зацепление (i,j) не рассматривая.)
 - 3) Добавляем многочлен f к набору f_1, \ldots, f_k в качестве f_{k+1} и переходим к пункту 4.
- 4) В построенном к настоящему моменту множестве многочленов $\{f_i\}$ рассматриваем зацепление, которое не было рассмотрено ранее, и переходим к пункту 2. Если все имеющиеся зацепления ранее рассматривались, алгоритм завершен.

За конечное число шагов мы получим набор $f_1, \ldots, f_m, f_{m+1}, \ldots, f_M$, где каждое зацепление разрешимо. Это и есть базис Грёбнера идеала $I = (f_1, \ldots, f_m)$ (см. примеры 4.1, 4.2).

4.3. Решение системы алгебраических уравнений с применением базисов Грёбнера

Решение системы алгебраических уравнений с применением базисов Грёбнера описывается в главе 5 учебного пособия [2].

B Maxima имеется библиотека grobner, функции которой можно использовать при выполнении работы. Библиотека устанавливается командой load(grobner). Демонстрация возможностей библиотеки — demo ("grobner.demo").

4.4.Задание на лабораторную работу

В системе компьютерной алгебры Махіта решить задачи:

- упростить алгебраическое выражение;
- раскрыть скобки и привести подобные слагаемые;
- разложить алгебраические выражения на множители;
- разложить рациональную дробь на простейшие дроби;
- построить графики многочленов и найти их корни;
- решить систему алгебраических уравнений с помощью стандартного метода algsys;
- реализовать алгоритм Бухбергера и решить систему алгебраических уравнений.

4.3.Варианты заданий

Варианты заданий содержатся в разделах 1.1.-1.5 учебного пособия [4], в главе 2 учебника [5] и на стр. 46 [1].

Таблица 4.2. Варианты заданий для решения задач

$\mathcal{N}_{\underline{o}}$	Из учебного пособия [4]	Из сборника задач [5]
1.	1 (раздел 1.1-1.5)	2.068, 2.187
2.	2 (раздел 1.1-1.5)	2.069, 2.188
3.	3 (раздел 1.1-1.5)	2.070, 2.189
4.	4 (раздел 1.1-1.5)	2.071, 2.190
5.	5 (раздел 1.1-1.5)	2.073, 2.191
6.	6 (раздел 1.1-1.5)	2.074, 2.194
7.	7 (раздел 1.1-1.5)	2.075, 2.195
8.	8 (раздел 1.1-1.5)	2.076, 2.196
9.	9 (раздел 1.1-1.5)	2.079, 2.197
10.	10 (раздел 1.1-1.5)	2.080, 2.198
11.	11 (раздел 1.1-1.5)	2.082, 2.199
12.	12 (раздел 1.1-1.5)	2.085, 2.200
13.	13 (раздел 1.1-1.5)	2.086, 2.203
14.	14 (раздел 1.1-1.5)	2.089, 2.208
15.	15 (раздел 1.1-1.5)	2.090, 2.209
16.	16 (раздел 1.1-1.5)	2.091, 2.210
17.	17 (раздел 1.1-1.5)	2.092, 2.211
18.	18 (раздел 1.1-1.5)	2.093, 2.212
19.	19 (раздел 1.1-1.5)	2.094, 2.213
20.	20 (раздел 1.1-1.5)	2.095, 2.214

Таблица 4.3. Варианты заданий для решения системы алгебраических уравнений

$N_{\underline{0}}$	Из учебного пособия [2]	$\mathcal{N}_{\underline{0}}$	Из учебного пособия [2]
1.	$\begin{cases} x^{2} - 1 = 0, \\ (x - 1)y = 0, \\ (x + 1)z = 0. \end{cases}$	6.	$\begin{cases} x^{2} + y^{2} + z^{2} = 0, \\ x + y - z = 0, \\ y + z^{2} = 0. \end{cases}$
2.	$\begin{cases} xz + 2y + 1 = 0, \\ yz - 1 + z = 0, \\ yz + xyz + z = 0. \end{cases}$	7.	$\begin{cases} x^{3}yz - xz^{2} = 0, \\ xy^{2}z - xyz = 0, \\ x^{2}y^{2} - z = 0. \end{cases}$
3.	$\begin{cases} xy^2 - z - z^2 = 0, \\ x^2y - y = 0, \\ y^2 - z^2 = 0. \end{cases}$	8.	$\begin{cases} xy + z - 1 = 0, \\ x - y - z^{2} = 0, \\ x^{2} - 2y + 1 = 0. \end{cases}$
4.	$\begin{cases} xz - y - x + xy = 0, \\ yz - z + x^2 + yx^2 = 0, \\ x - x^2 + y = 0. \end{cases}$	9.	$\begin{cases} xy + xz + y^{2} = 0, \\ yz - x^{2} + x^{2}y = 0, \\ x - xy + y = 0. \end{cases}$
5.	$\begin{cases} yz + x^{2} + z = 0, \\ xyz + xz - y^{3} = 0, \\ xz + y^{2} = 0. \end{cases}$	10.	$\begin{cases} x^{2} + z^{2}y + yz = 0, \\ y^{2} - zx + x = 0, \\ xy + z^{2} - 1 = 0. \end{cases}$

Литература

- 1. *Бухбергер Б*. Алгоритмический метод в теории полиномиальных идеалов // Компьютерная алгебра. Символьные и алгебраические вычисления. М.: Мир, 1986. 392 с.
- 2. *Аржанцев И.В.* Базисы Грёбнера и системы алгебраических уравнений. М.: МЦНМО, 2003. 68 с.
- 3. Дэвенпорт Дж., Сирэ И., Турнье Э. Компьютерная алгебра: Перевод с франц. Москва. Из-во: Мир, 1991 г. 352 с.
- 4. *Малышев И.А.* Компьютерная алгебра: сборник заданий для упражнений. Спб.: Изд-во СПГПУ, 2012. 28 с.
- 5. *Сканави М.И.* Сборник задач по математике для поступающих во втузы. (с решениями). Кн. 1. Алгебра. – М.: Высшая школа, 1992. - 528 с.