香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九八二年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1982

Additional Mathematics II

MARKING SCHEME

This is a restricted document.

It is meant for use by markers of this paper for marking purposes only.

Reproduction in any form is strictly prohibited.

© 香港考試局 呆溜版灌 Hong Kong Examinations Authority All Rights Reserved 1982

-	RESTRICTED 内部文件 Solutions	Marks	Remarks
1	Let $u = \sqrt{x+9}$		
	$u^2 = x + 9$ $2 u d u = d x$	I A	and for lands
. e	$\int \frac{x}{\sqrt{x+q}} dx = \int \frac{(u^2-q)}{u} 2u du$	I A	no mark for finds int may proceed to mark termologies per
	$= 2 \int (u^2 - 9) du$ $= \frac{2}{3} u^3 - 18u + C$	1+1 A	-1 if omit C throughout
terri	$= \frac{2}{3} (x+q)^{\frac{3}{2}} - 18 (x+q)^{\frac{1}{2}} + C$	1 A 5	
2	The line through A and B is given by		Alternatively Let (a, b) divids
	$3+1 = \frac{-1-1}{3+1}(x-3)$		AB in the ratio
	Solving this with $x-y-1=0$	1A IM	$a = \frac{3 \ \gamma - 1}{1 + \gamma} \qquad \text{(in)}$ $b = \frac{-\gamma + 1}{1 + \gamma} \qquad \text{(in)}$
\$45 _.	$\gamma = 0$ this is accorded alrawing 2 lines (maximal $x = 1$)	/	Sub. in gwentine
•	: the two lines meet at C= (1,0) () y=	a)IA	$\frac{3\tau-1}{1+\tau} - \frac{-\tau+1}{1+\tau} - =$
	If C divides AB in the ratio 1: r,		r=1
a, e	$1 = \frac{3\gamma - 1}{1 + \gamma} \qquad \left(\text{ or } 0 = \frac{1 - \gamma}{1 + \gamma} \right)$ $\gamma = 1$	IM IA	$ \begin{cases} \frac{Act}{C8} = \frac{\sqrt{(3-1)^2 + (1-0)^2}}{\sqrt{(-1-1)^2 + (1-0)^2}} \end{cases} $
	: C divides AB in the ratio 1=1	5	$=\frac{\sqrt{5}}{\sqrt{5}}$
	Graphical method assispendide.	-	= $/$ A
			CATACTUS.

RESTRICTED 內部文件	=	2
Solutions	Marks	Rémarks
$3 \cos 2\theta - J3 \cos \theta + 1 = \omega$ $2 \cos^2 \theta - J3 \cos \theta = 0$ $\cos \theta \left(2 \cos^2 - J3 \right) = 0$	IM	Attempt to express co 28 in tems of co20.
$COO = O$ or $\frac{\sqrt{3}}{2}$ $Fro 0 \neq 0 = \frac{\pi}{2}$, $\vartheta = \frac{\pi}{2}$ or $\frac{\pi}{6}$ $(90^{\circ} \text{ or } 30^{\circ})$ The general solution $0 = 2h\pi \pm \frac{\pi}{2}$ or $2h\pi \pm \frac{\pi}{6}$, Where $n = 0$, ± 1 , ± 2 ,	JA.	for 2nπ±d -if mixing degree uns radian.
Note other variations of answers. e.g. $(2n+1)\pi\pm\frac{\pi}{2}$, $(2n+1)\frac{\pi}{2}$, etc.		
(4) Volume = $\frac{\pi}{\sqrt{0}} \int_{0}^{2\pi} x^{2} dy$ = $\frac{\pi}{\sqrt{0}} \int_{0}^{2\pi} (4 + 4 \sin y + \sin^{2} y) dy$	/ A	Trountre a grante
$= \pi \int_{0}^{2\pi} (4 + 4\sin y + \frac{1 - \cos 2y}{2}) dy$ $= \pi \left[\frac{9}{2}y - 4\cos y - \frac{\sin 2y}{4} \right]_{0}^{2\pi}$ $= 9\pi^{2}$ hust fair	IM D+1+1	Attempt to express Sinzy in terms or copzy. A proceeded land: -2 if omit To but otherwise
huist e	6	correct

RESTRICTED 內部文件	= ,	3
Solutions	marks	Remarks
$ \frac{1}{5} \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3}x}{\cos x + \sin x} dx + \int_{0}^{\frac{\pi}{2}} \frac{\cos^{3}x}{\cos x + \sin x} dx $		
$= \int_0^{\frac{\pi}{2}} \frac{\sin^3 x + \cos^3 x}{\cos x + \sin x} dx$	Į A	
$= \int_0^{\frac{\pi}{2}} \left(\sin^2 x - \sin x \cos x + \cos^2 x \right) d\pi$	/A	
$= \int_0^{\frac{\pi}{2}} \left(1 - \frac{\sin 2x}{2}\right) dx$	IA	
$= \left[x + \frac{\cos 2x}{4} \right]_0^{\frac{\pi}{2}}$	/A	
$= \frac{\pi}{2} - \frac{1}{2}$	/A	
$\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\cos x + \sin x} dx = \frac{1}{2} \left(\frac{\pi}{2} - \frac{1}{2} \right)$	1M	
6 Let $Q = (x, y)$		光、 机 分分次
$\chi = \frac{2\chi_1 + 9}{5}$	IA	
$\gamma = \frac{2y_1}{5}$	1A	
$x_1 = \frac{5x - q}{2}$ $y_1 = \frac{5y}{2}$	IM+1	1 M for attempt to change subject
Since (x, y,) his on the circle		1
$\left(\frac{5\times -9}{2}\right)^2 + \left(\frac{5\cancel{4}}{\cancel{2}}\right)^2 = 4$	114	2.012 2.12-
$5x^{2} + 5y^{2} - 16x + 13 = 0$	14	Sa2-Sb2-18x+13= 100. acceptable.
Gr $\left(x - \frac{9}{5}\right)^2 + y^2 = \frac{16}{25}$		

Remar Solutions marks (7) (a) Di= anen of DOPA = 1 pQ x 0 a $= \frac{1}{2} x^2 \sin \theta \cos \theta$ 1A De = area B D ORS $= \frac{1}{2} RS \times OS$ = $\frac{1}{2}$ (2 x cos θ sin θ) (2x $\cos^2 \theta$) = $2 \chi^2 \sin \theta \cos^3 \theta$ IA -i if write du (b) $\frac{d\Delta}{dx} = x \cos\theta \sin\theta$ 1A -1 if write daz $\frac{d\Omega_2}{dx} = 4\pi \sin\theta \cos^3\theta$ コーラ 雑・祭 $\frac{d\Delta t}{dx} = \frac{d\Delta t}{dx}$ => x co 0 min 0 = 4x sin 0 co 30 => co20=4 => co0 = 1 $0 = 60^{\circ} \left(\frac{7}{3}\right)$ 1A

RESTRICTED 內部文件	: .	5
Solutions	Montes	Remarks
(8) (a) Distance from M to L = $\frac{5x + 12y - 32}{\sqrt{25 + 144}}$	13	1 (1 รูปกระการที่) มีเราที่จะค่า รูปกา
$= \frac{65}{13} = 5 (r)$ Equation of C is $(x-5)^2 + (y-6)^2 = 25$	1 A 1M+1A	Might r
or $\chi^2 + \chi^2 - 10\chi - 12\chi + 36 = 0 (*)$	4	
(b) Since distance from M to y-axis = 5,	ZA	
C also touches the y-axis	2	ALT
(c) Let y=mx be a tangent to C through O.	14	y=mx (14
Solving with (*), x2+m2x2-10x-12mx+36=0	IM+IA	Rist. from M to you
$(1+m^2)\chi^2 - (10+12m)\chi + 36 = 0$	1	$= \frac{ 5m-6 }{\sqrt{m^2+1}}$
For tangency, $(10+12m)^2 4(1+m^2) = 0$	119	$= 5$ $\frac{(5m-5)^2}{m^2+1} = 25$
240m-44=0		25m2-60m+36=25m2+2
$m = \frac{11}{60}$ if the other tangent is $y = \frac{11}{60}x$	/ A /A	$m = \frac{1}{60}$ $y = \frac{1}{60}x$ (1)
or $11x - 60y = 0$	<u> </u>	
(d) Slope of PQ = $\frac{6-2}{5-2} = \frac{4}{3}$	IA	$\frac{Alt}{P=(2,2)}, M=(5,6)$
Egn of PQ is $3-2=\frac{4}{3}(x-2)$	۵۱	-: Q = (8,10) Let circle be
Ean of Lamily of cricle is	' C = 0	$-x^{2}+y^{2}+ax+by=0$
9 0 0 0		Sub. P, Q
$x^{2} + y^{2} - 10x - 12y + 36 + k(4x - 3y - 2) = 0$	2141	64+100+80+106=
[or $4x-3y-2+k(x^2+y^2)0x-12y+36)=0$] Putting $(x, y)=(0,0)$, $36-2k=0$	114	b = -66 (1A) $a = 62 (1A)$
$3 = 18$ ($\pi = 18$) $3 = 18 \times 18$ $3 = 18 \times 18$ $3 = 18 \times 18$ $4 = 18 \times 18$ $3 = 18 \times 18$ $4 = 18 \times 18$ $4 = 18 \times 18$ $5 = 18 \times 18$ $6 = 18 \times 18$ $7 = 18 \times 18$ $8 = 18 \times 18$ $8 = 18 \times 18$ $8 = 18 \times 18$ $18 = 18 \times 1$	JA JA	$\begin{cases} \therefore x^{2} y^{2} + 62x - 66y = 0 \end{cases}$
RESTRICTED 内部文	件 8	

RESTRICTED 內部文件			
Solutions	Marks	Remarks	
$9(a) y^{2} = 4x$		Alt Egn. of tangent	
$2yy'=4$ $y'=\frac{2}{y}.$	14	5 3y,=2(x+x1) 4t (s²,25),	
Eqn of PRis $y-25=\frac{2}{25}(\chi-5)$	114	25 g = 2(x+5²)	
$i \approx 3 = \frac{1}{5}x + 5$ ($\sim x - 5y + 5^2 = 0$)	14	or x-sy+s=0 €	
Similarly, egn of QR is			
$y = \frac{1}{t}x + t (w x - ty + t^2 = 0)$	14		
Solving these two egns.			
$\frac{1}{5}x+5=\frac{1}{5}x+t$			
$\alpha = st$	14		
y = s + t	1,7		
R = (st, s+t)	8	4	
(b) If ===================================	IM+1	4	
$\frac{S+T}{S+}=2$			
$\frac{y}{x} = 2$	2 A		
: R must lie on the line y=2x	4		
(c) Solving $\begin{cases} y^2 = 4x \\ y = 2x \end{cases}$	•		
y = 0 or 2 $(x = 0 or 1)$			
$(x,y) = (0,0) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1+1A	1	

Provided by dse.life

RESTRICTED 內部文件	1	8
Solutions	Marks	Remarks
$(3)^{(Cont'ed)} = A = \left(\frac{4m}{2m-1}, \frac{2m}{2m-1}\right)$		
Solving L with Lz,		
m(x-2)=2x-6		
$x = \frac{2m-6}{n_1-2}$	14	·
$y = m \left[\frac{2m-6}{m-2} - 2 \right]$		
$=\frac{-2m}{m-2}$	1,9	
$\beta = \left(\frac{2m-6}{m-2}, \frac{-2m}{m-2}\right)$	•	
$3 \sim 3 \Delta PAB = \frac{1}{2} \begin{vmatrix} \frac{4m}{4m} & \frac{2m}{2m-1} \\ \frac{2m-6}{m-2} & \frac{-2m}{m-2} \end{vmatrix}$	1m + 24	- if oain 1/2
$=\frac{1}{2(\frac{3m}{2m-1})}-\frac{3m^2}{(2m-1)(m-1)}+\frac{2(2m-6)}{m-2}-\frac{2m/2m-6)}{(2m-1)(2m-1)}-\frac{3m}{2m-1}+\frac{3m}{m-2}$		
$= \frac{6 \left(m^2 - 2m + 1\right)}{(m-1)(2m-1)}$		
$= \frac{6(m-1)^2}{(m-2)(2m-1)}$		
$\frac{d\Delta}{dm} = 6 \frac{(m-2)(2m-1)(2m-2) - (m-1)(4m-5)}{(m-2)^2(2m-1)^2}$	IM	strengt to diff.
$= \frac{6(1-m^2)}{(m-2)^2(2m-1)^2}$	14	e de la propiedad de la compansión de la c La compansión de la compa
$\frac{1}{2}$	IA	
If m=1, Lis the line pa, rejected. Take m=-1	14	
Checking that m=-1, A = a min.	1M.	Attempt to check

Egn. 56 c is b = -(x-2) x+y-2=0**RESTRICTED** 內部文件

	RESTRICTED 內部文件	=	<u>(q)</u>
	Solution	Wanks	Remarks
	(1) (a) Putting $u = \cos \theta$, $du = -\sin \theta d\theta$	1A	
	When $\theta = 0$, $M = 1$; $\theta = \frac{7}{2}$, $M = 0$.	/À	
-	$\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta \cos^{2}\theta d\theta = -\int_{0}^{\infty} (1-m^{2}) u^{2} du$	17	for sub. of limits
	$= \int_0^1 (u^2 u^4) du$		$\frac{Alt}{I} = -\int_{0}^{\pi} \sin^{2}\theta \cos^{2}\theta dcc$
	$= \left[\frac{u^3}{3} - \frac{u^5}{5}\right]^{\frac{1}{3}}$	IA	$=-\int_0^{\frac{\pi}{2}}(1-\cos^2\theta)\cos^2\theta dc$
	$= \frac{2}{15} be correct$	17	$=-\int_{0}^{\frac{\pi}{2}}(\cos^{2}\theta-\cos^{4}\theta)dc$
	(b) (i) The range is -1 ≤ x ≤ 1	1	$= -\left[\frac{\cos^{3}\theta}{3} - \frac{\cos^{5}\theta}{5}\right]^{\frac{1}{2}}$ $= \frac{2}{15} \qquad (74)$
	(ii) Putting 3=0, 1=0 or ±1		
	: (meets the x-axis at (0,0), (1,0),(1,0)	14	
	(m) $y = x^3 \sqrt{1-x^2}$		
,	$\frac{dy}{dx} = 3x^{2}(1-x^{2})^{\frac{1}{2}} + \frac{1}{2} \cdot \frac{x^{3}(-2x)}{(1-x^{2})^{\frac{1}{2}}}$		
	$= \frac{x^{2}(3-4x^{2})}{(1-x^{2})^{2}}$ $= \frac{dy}{(1-x^{2})^{2}} = x = 0 \text{ or } \pm \sqrt{3} \text{ (± 0.8660)}$	I (M	
	$y = 0 \text{ or } \pm \frac{3\sqrt{3}}{\sqrt{6}} \left(\pm 0.3248 \right)$ $\pm 4.5 \text{ pts. are } (0,0), \left(\frac{5}{2}, \frac{35}{16} \right), \left(\frac{5}{2}, -\frac{3\sqrt{5}}{16} \right)$	[+1+)	5x=, 5
	(c) * must label 36	6	- coal chake
	in Conclusion of the state of t	1/#	general shake
	-36 16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3	tangent at (0,0)
	RESTRICTED 内部文	件	-

RESTRICTED 內部文件	- - i !	(10)
Solutions	manko	Lemarks
Conted) (d) Putting $x = \sin \theta$, $dx = \cos \theta d\theta$ when $x = 0$, $\theta = 0$; $x = 1$, $\theta = \frac{\pi}{2}$.	IA /A	
Area bounded = $2\int_0^1 x^3 \sqrt{1-x^2} dx$ = $2\int_0^{\frac{\pi}{2}} \sin^3 0 \cos^2 0 d\theta$	IM IA	for 2 x area so you or sun y areas
$= \frac{4}{15}$ (12) (a) $tan20 = \frac{2 tan0}{1 - tan20}$	1A 5	
$\frac{1}{\sqrt{3}} = \frac{1}{\tan 30}$ $= \frac{2 \tan 5}{1 - \tan^2 5}$ $= \frac{2 \tan 5}{1 - \tan^2 5}$	IM IA	θ φ C
$tam 15° = \frac{-2\sqrt{3} + \sqrt{12+4}}{2}$ $= -\sqrt{3} + 2$ $= -\sqrt{3} + 2$ $= -\sqrt{3} + 2$ $= -\sqrt{3} + 2$		10 A T
$= 2 - \sqrt{3} (-\text{ve nowl sejected})$ $(b) (i) BT = \frac{10}{\tan 15} = \frac{10}{2 - \sqrt{3}} (=37.32)$ $AT = \frac{10}{\tan 30} = \frac{10\sqrt{3}}{10\sqrt{3}} (=17.32)$	1A 1A	$AC = \frac{10}{\sin 30}$ = 20 (14) $LACB = (30.45)$
$AB = \frac{10}{2-\sqrt{3}} - 10\sqrt{3}$ $= 20$	IA	$= 15^{\circ}$ $\therefore AB = AC = 20$

G.F. 405 (2/77)

RESTRICTED 內部文件		(1)
Solutions	Marka	Remarks
$\frac{12}{(b)(\pi)} (\cosh^2 \theta) = \frac{10\sqrt{3}}{h} (\frac{7.3}{h})$	/ A	,
$tan(\theta+\phi) = \frac{10}{(2-\sqrt{3})h_2}$	/A	
$tan(\theta+\phi) = \frac{tan \theta + tan \phi}{1 - tan \theta + tan \phi}$	· IA	
$\frac{10}{(2-\sqrt{3})h} = \frac{\tan \theta + \frac{10\sqrt{3}}{2}}{1 - \tan \theta \times \frac{10\sqrt{3}}{h}}$	1M+ 1A	
= Rtand + 105 h - 105 tand		
(2-53) h2 tand + 1053 (2-53)h= 10h-10053 tand	•	
$ \frac{\left[2-\sqrt{3}h^2+100\sqrt{3}\right] \tan \theta = 10h - \left(20\sqrt{3}-30\right)h}{\tan \theta = \frac{\left(40-20\sqrt{3}\right)h}{\left(2-\sqrt{3}\right)h^2+100\sqrt{3}}} = \frac{20h}{20h} $		
$h^2 + 100 (3 + 2\sqrt{3})$ (m) If AB subtends 2 ynal angles at D + e,		ALT If LADB = LACB,
since LACB= LABC=15°		ABDC are congdie LØ=LABC
G= C ADB = 15°	IA	
$- intan \theta = \frac{20h}{h^2 + 100(3 + 25)}$		
= 2-/3	114	h= AT (in)
(2-53) h²-20h+100/3 =0 (ani equire	let 117	$=\frac{10\sqrt{3}}{2-\sqrt{3}} (A)$
$h = \frac{20 \pm \sqrt{400 - 400/3(2-\sqrt{3})}}{2(2-\sqrt{3})}$		$= 10(3+2\sqrt{3})$
$= \frac{10 \pm 10 \sqrt{4-2\sqrt{3}}}{2-\sqrt{3}}$		
$= \frac{10 \pm 10(\sqrt{3}-1)}{2 - \sqrt{3}} \left(64.64 \approx 10\right)$		
$= \frac{10 \sqrt{3}}{2-\sqrt{3}} (64.64, f=10 \text{ rejected})$	/A 性	
= / v(3 +2√3) RESTRICTED 內部文	T	

Provided by dse.life

. :	RESTRICTED P	内部文件	. (12)
~·	Solutions	Manks	Remarks
(2) (Cont'2d) 0 6	greatest when tand is q	vertest.	
d(tand) =	20(h²+100(3+25))-40h² [h²+100(3+25)]²	-1M	Attempt to diff
=	2000 (3+253) -20h ² (h ² +100 (3+253)] ²	× 25.42	
d (tan 8) a h	$=0 =) h = 10\sqrt{3+2\sqrt{3}} (-1)$	rejever) 2A	
	< 10/3+253 shightly, alterno,		Attempt to check
' i when	Q is max., h = 10/3+25	16	
<u>tuu uuda</u> kootoo eek			
	• • • • • • • • • • • • • • • • • • •		