Правила оформления домашних заданий

- 1. Домашние задания выполняются либо в отдельных (тонких, не более 18-ти листов) тетрадках, либо на отдельных листах (например, формата А4), которые обязательно должны быть либо упакованы в файл, либо скреплены степлером или канцелярской скрепкой. Разрозненные листы, а также листы, скрепленные путем загибания уголка, не принимаются;
- 2. каждая работа должна иметь титульный лист, на котором указаны фамилия автора, индекс его группы и номер выполненного варианта.

ДОМАШНЕЕ ЗАЛАНИЕ № 1

Линейное программирование

- 1. Составить двойственную задачу¹ и решить ее графически;
- 2. решить исходную задачу с использованием симплекс-таблиц:
- 3. решить двойственную задачу с использованием симплекс-таблиц;
- 4. сравнить найденные решения.

1.
$$\begin{cases} 4x_1 - 10x_2 - 12.5x_3 - 6.5x_4 \rightarrow \max, \\ x_2 + 0.5x_3 - 1.5x_4 \geqslant 2, \\ -x_1 - 3x_3 + 2x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
2.
$$\begin{cases} -3x_1 + 2x_2 - x_3 \rightarrow \max, \\ -x_1 + 2x_2 + x_3 \leqslant 1, \\ x_1 - x_2 + x_3 \geqslant 2, \\ x_i \geqslant 0, \quad i = \overline{1:3}. \end{cases}$$
3.
$$\begin{cases} x_1 + 2x_2 + x_3 + 8x_4 \rightarrow \min, \\ 2x_1 + 3x_2 - x_3 - 2x_4 \geqslant 3, \\ -x_1 - 4x_2 + 3x_3 + 4x_4 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
4.
$$\begin{cases} 6x_1 + 9x_2 + 8x_3 \rightarrow \min, \\ 3x_1 - 2x_2 - 4x_3 \leqslant -4, \\ 5x_1 + x_2 - 3x_3 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
5.
$$\begin{cases} 6x_1 + 9x_2 + 8x_3 \rightarrow \min, \\ 3x_1 - 2x_2 - 4x_3 \leqslant -4, \\ 5x_1 + x_2 - 3x_3 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
6.
$$\begin{cases} x_1 - 4x_2 + 16x_3 - 6x_4 \rightarrow \max, \\ -x_1 + 1.5x_3 + x_4 \geqslant 1, \\ x_2 - 2x_3 - 3x_4 \geqslant -4, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
7.
$$\begin{cases} -3x_1 + 2x_2 - x_3 \rightarrow \max, \\ -x_1 + 2x_2 - x_3 \rightarrow \max, \\ -x_1 - 3x_2 + x_3 + 5x_4 \geqslant 5, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
8.
$$\begin{cases} x_1 - 4x_2 + 6x_3 - 18x_4 \rightarrow \max, \\ -x_1 + 1.5x_3 + x_4 \geqslant 1, \\ x_2 - 5x_3 + 4x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
8.
$$\begin{cases} -0.5x_1 - x_2 - 0.5x_3 - 4x_4 \rightarrow \max, \\ -2x_1 + 3x_2 - x_3 - 2x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
9.
$$\begin{cases} x_1 - 16x_2 - 4x_3 + 6x_4 \rightarrow \max, \\ x_1 - 4x_2 + 1.5x_4 \leqslant -1, \\ 2x_1 + 3x_2 - x_3 - 2x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
10.
$$\begin{cases} 3x_1 + 7x_2 + 2.5x_3 + 1.5x_4 \rightarrow \min, \\ -2x_1 + x_2 + 2x_3 + x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
11.
$$\begin{cases} 25x_1 - 20x_2 - 8x_3 + 13x_4 \rightarrow \min, \\ x_1 + 2x_2 - 3x_4 \geqslant 4, \\ 3x_2 + x_3 - 2x_4 \leqslant -3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
12.
$$\begin{cases} 3x_1 + 4x_2 + 4.5x_3 + 3x_4 \rightarrow \min, \\ -2x_1 + x_2 + 2x_3 + x_4 \geqslant 3, \\ x_1 + x_2 - 2x_3 - 2x_4 \geqslant 2, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
13.
$$\begin{cases} x_1 - 15x_2 - 10x_3 + 6x_4 \rightarrow \max, \\ -3x_1 + 3x_2 - 3x_3 + 3x_4 \leqslant -1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
14.
$$\begin{cases} 18x_1 + 4x_2 - 6x_3 - x_4 \rightarrow \min, \\ 2x_1 + 3x_2 - 2x_4 \geqslant 2, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
15.
$$\begin{cases} 18x_1 + 4x_2 - 6x_3 - x_4 \rightarrow \min, \\ 2x_1 + 3x_2 - 2x_3 + 3x_4 \leqslant -1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
16.
$$\begin{cases} 1x_1 + 2x_2 + 3x_3 + x_4 \Rightarrow 1, \\ x_1 + 3x_2 - 3x_3 + 3x_4 \Rightarrow -1, \\ x_1 + 3x_2 - 3x_3 + 3x_4 \leqslant -1, \\ x_1 + 3x_2 - 3x_3 + 3x_4 \leqslant -1, \\ x_1 + 3x_2 - 3x_3 + 3x_4 \leqslant -1, \\ x_1 + 3x_2 - 3x_3 + 3x_4 \leqslant -1, \\ x_1 + 3x_2 - 3x_3 + 3x_4 \leqslant -1, \\ x_1$$

$$\textbf{15.} \begin{cases} -6x_1 + 4x_2 + 16x_3 - 4x_4 \to \min, \\ 3x_1 - 8x_3 + 2x_4 \leqslant -2, \\ -3x_1 + x_2 + 2x_3 \geqslant -4, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases} \\ \textbf{16.} \begin{cases} x_1 + 2x_2 + x_3 + 8x_4 \to \min, \\ x_1 + 4x_2 - 3x_3 - 4x_4 \leqslant -1, \\ 2x_1 + 3x_2 - x_3 - 2x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

$$\mathbf{19.} \begin{cases} 3x_1 + 14x_2 + 5x_3 + 6x_4 \to \min, \\ x_1 + x_2 + 2x_3 - 2x_4 \geqslant 3, \\ 2x_1 - x_2 + 2x_3 - x_4 \leqslant -2, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases} \qquad \mathbf{20.} \begin{cases} x_1 - 16x_2 - 4x_3 + 6x_4 \to \max, \\ x_1 - 4x_2 + 1.5x_4 \leqslant -1, \\ 2x_2 + x_3 - 3x_4 \geqslant -4, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

$$\mathbf{21.} \begin{cases} 3x_1 + 2.5x_2 + 7x_3 + 1.5x_4 \to \min, \\ x_1 - 2x_2 + x_3 - 2x_4 \geqslant 2, \\ 2x_1 - 2x_2 - x_3 - x_4 \leqslant -3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases} \qquad \mathbf{22.} \begin{cases} -x_1 + 4x_2 + 16x_3 \to \min, \\ x_1 - 4x_3 \leqslant -2, \\ -x_2 - 2x_3 \leqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:3}. \end{cases}$$

27.
$$\begin{cases} 7x_1 + 1.5x_2 + 3x_3 + 2.5x_4 \to \min, \\ x_1 - 2x_2 + x_3 - 2x_4 \geqslant 2, \\ -x_1 - x_2 + 2x_3 - 2x_4 \leqslant -3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
28.
$$\begin{cases} 13x_1 + 25x_2 - 20x_3 - 8x_4 \to \min, \\ 2x_1 - 3x_2 - x_4 \geqslant 3, \\ -3x_1 + x_2 + 2x_3 \geqslant 4, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

26.
$$\begin{cases} 6x_1 + x_2 - 16x_3 - 4x_4 \to 3x_1 - 2x_2 - x_4 \leqslant 4, \\ 1.5x_1 + x_2 - 4x_3 \leqslant -1, \end{cases}$$

¹В случае, когда исходная задача является задачей минимизации, ее лучше привести к стандартной форме двойственной задачи, а двойственную задачу записать в стандартной форме прямой.

Правила оформления и защиты лабораторных работ

- Реализованные алгоритмы должны работать для любого набора допустимых входных данных, в том числе и для матриц различного порядка;
- 2. приступая к защите лабораторной работы, студент должен иметь при себе готовый отчет, содержание которого определяется заданием на конкретную лабораторную работу.

ЛАБОРАТОРНАЯ РАБОТА№ 1

Венгерский метод решения задачи о назначениях

Цель работы: изучение венгерского метода решения задачи о назначениях.

Содержание работы

- 1. реализовать венгерский метод решения задачи о назначениях в виде программы на ЭВМ²;
- провести решение задачи с матрицей стоимостей, заданной в индивидуальном варианте, рассмотрев два случая:
 - а) задача о назначениях является задачей минимизации,
 - б) задача о назначениях является задачей максимизации.

Содержание отчета

- содержательная и математическая постановки задачи о назаначениях, а также исходные данные конкретного варианта;
- 2. краткое описание венгерского метода (можно в "псевдокодах");
- 3. текст программы;
- 4. результаты расчетов для задач из индивидуального варианта.

Индвидуальные варианты матрицы стоимостей

1. 5 9	2 1 3 5 4 6 4 8 7 9 3 2 4 7 8	$\begin{bmatrix} 7\\3\\2\\5\\2 \end{bmatrix}$.	$ 2. \begin{bmatrix} 4 & 10 & 10 & 3 & 6 \\ 5 & 6 & 2 & 7 & 4 \\ 9 & 5 & 6 & 8 & 3 \\ 2 & 3 & 5 & 4 & 8 \\ 8 & 5 & 4 & 9 & 3 \end{bmatrix}. $	3. $\begin{bmatrix} 1 & 4 & 7 & 9 & 4 \\ 9 & 3 & 8 & 7 & 4 \\ 3 & 4 & 6 & 8 & 2 \\ 8 & 2 & 4 & 6 & 7 \\ 7 & 6 & 9 & 8 & 5 \end{bmatrix}.$	4. $\begin{bmatrix} 3 & 5 & 2 & 4 & 8 \\ 10 & 10 & 4 & 3 & 6 \\ 5 & 6 & 9 & 8 & 3 \\ 6 & 2 & 5 & 8 & 4 \\ 5 & 4 & 8 & 9 & 3 \end{bmatrix}.$
5. $\begin{bmatrix} 9 \\ 10 \\ 8 \\ 6 \\ 11 \end{bmatrix}$	11 3 9 11 10 5 8 10 10 9	$\begin{bmatrix} 6 & 6 \\ 5 & 6 \\ 6 & 4 \\ 4 & 9 \\ 8 & 7 \end{bmatrix}$.	$\textbf{6.} \begin{bmatrix} 10 & 8 & 6 & 4 & 9 \\ 11 & 9 & 10 & 5 & 6 \\ 5 & 10 & 8 & 6 & 4 \\ 3 & 11 & 9 & 6 & 6 \\ 8 & 10 & 11 & 8 & 7 \end{bmatrix}.$	7. $\begin{bmatrix} 11 & 4 & 11 & 6 & 11 \\ 7 & 5 & 6 & 7 & 12 \\ 9 & 7 & 8 & 10 & 10 \\ 9 & 11 & 6 & 10 & 9 \\ 7 & 10 & 4 & 8 & 8 \end{bmatrix}.$	8. \begin{bmatrix} 7 & 4 & 3 & 8 & 2 \\ 4 & 5 & 1 & 6 & 3 \\ 8 & 4 & 5 & 7 & 2 \\ 1 & 2 & 4 & 7 & 2 \\ 3 & 9 & 9 & 2 & 5 \end{bmatrix}.
9. 6 4	7 1 5 8 3 7 4 5 7 2 3 4 1 8 3	5 6 7 9 8	$10. \begin{bmatrix} 7 & 7 & 4 & 6 & 5 \\ 3 & 8 & 1 & 8 & 8 \\ 5 & 5 & 7 & 4 & 1 \\ 7 & 6 & 8 & 6 & 3 \\ 4 & 9 & 2 & 4 & 3 \end{bmatrix}.$	11. $\begin{bmatrix} 5 & 6 & 8 & 2 & 7 \\ 7 & 9 & 1 & 4 & 4 \\ 6 & 8 & 3 & 4 & 2 \\ 8 & 7 & 9 & 3 & 4 \\ 9 & 8 & 7 & 6 & 5 \end{bmatrix}.$	12. $\begin{bmatrix} 6 & 10 & 4 & 5 & 8 \\ 8 & 10 & 7 & 9 & 11 \\ 4 & 8 & 9 & 10 & 6 \\ 5 & 9 & 6 & 11 & 10 \\ 6 & 11 & 6 & 3 & 9 \end{bmatrix}.$
13. \begin{pmatrix} 10 \\ 9 \\ 2 \\ 4 \\ 8 \end{pmatrix}	4 9 3 5 5 8 5 7 7 10	$\begin{bmatrix} 8 & 5 \\ 7 & 8 \\ 10 & 5 \\ 9 & 3 \\ 9 & 6 \end{bmatrix}$.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15. $\begin{bmatrix} 10 & 12 & 7 & 11 & 10 \\ 12 & 5 & 12 & 7 & 12 \\ 8 & 6 & 7 & 8 & 13 \\ 8 & 11 & 5 & 9 & 9 \\ 10 & 8 & 9 & 11 & 11 \end{bmatrix}.$	16. $\begin{bmatrix} 7 & 7 & 9 & 6 & 3 \\ 9 & 9 & 6 & 8 & 7 \\ 6 & 11 & 4 & 6 & 5 \\ 5 & 10 & 3 & 10 & 10 \\ 9 & 8 & 10 & 8 & 5 \end{bmatrix}.$

²В программе необходимо предусмотреть два режима работы: "итоговый", когда программа печатает только матрицу назначений, и "отладочный", когда на каждой итерации на экран выводится текущая матрица эквивалентной задачи с отмеченной (например, цветом или шрифтом) системой независимых нулей.

17.
$$\begin{bmatrix} 8 & 10 & 5 & 6 & 4 \\ 11 & 10 & 9 & 8 & 7 \\ 6 & 8 & 10 & 4 & 9 \\ 10 & 9 & 11 & 5 & 6 \\ 9 & 11 & 3 & 6 & 6 \end{bmatrix}$$
18.
$$\begin{bmatrix} 6 & 7 & 3 & 9 & 9 \\ 8 & 9 & 7 & 6 & 9 \\ 6 & 11 & 5 & 4 & 6 \\ 10 & 10 & 10 & 3 & 5 \\ 8 & 8 & 5 & 10 & 9 \end{bmatrix}$$
19.
$$\begin{bmatrix} 9 & 5 & 10 & 4 & 8 \\ 5 & 8 & 9 & 3 & 7 \\ 8 & 5 & 2 & 5 & 10 \\ 7 & 3 & 4 & 5 & 9 \\ 10 & 6 & 8 & 7 & 9 \end{bmatrix}$$
20.
$$\begin{bmatrix} 4 & 2 & 8 & 7 & 5 \\ 4 & 5 & 7 & 8 & 3 \\ 2 & 2 & 1 & 7 & 4 \\ 9 & 5 & 3 & 2 & 9 \\ 5 & 3 & 4 & 6 & 1 \end{bmatrix}$$
21.
$$\begin{bmatrix} 11 & 10 & 10 & 7 & 12 \\ 7 & 12 & 12 & 12 & 5 \\ 8 & 8 & 13 & 7 & 6 \\ 9 & 8 & 9 & 5 & 11 \\ 11 & 10 & 11 & 9 & 8 \end{bmatrix}$$

ЛАБОРАТОРНАЯ РАБОТА№ 2

Задача коммивояжера

Цель работы: изучение метода ветвей и границ на примере задачи коммивояжера.

Содержание работы

- 1. реализовать метод ветвей и границ в виде программы на ЭВМ³;
- 2. провести решение задачи коммивояжера с матрицей, заданной в индивидуальном варианте.

Содержание отчета

- содержательная и математическая постановки задачи коммивояжера, а также входные данные индивидуального варианта;
- 2. краткое описание метода ветвей и границ для решения задачи коммивояжера;
- 3. текст программы;
- 4. результаты расчетов для задачи из индивидуального варианта.

Индвидуальные варианты матрицы стоимостей

1.	$ \begin{array}{c} \infty \\ 9 \\ 11 \\ 2 \\ 9 \end{array} $	$1 \\ \infty \\ 1 \\ 9 \\ 1$	$\begin{array}{c} 15 \\ 2 \\ \infty \\ 10 \\ 9 \end{array}$	10 2 9 ∞ 10	$\begin{bmatrix} 9 \\ 3 \\ 4 \\ 12 \\ \infty \end{bmatrix}$.	2.	$\begin{bmatrix} \infty \\ 10 \\ 10 \\ 1 \\ 5 \end{bmatrix}$	$\begin{array}{c} 2 \\ \infty \\ 9 \\ 10 \\ 2 \end{array}$	$\begin{array}{c} 10 \\ 8 \\ \infty \\ 5 \\ 7 \end{array}$	$1 \\ 10 \\ 6 \\ \infty \\ 10$	$\begin{bmatrix} 4 \\ 2 \\ 4 \\ 10 \\ \infty \end{bmatrix}$.	3.	$\begin{bmatrix} \infty \\ 9 \\ 11 \\ 2 \\ 9 \end{bmatrix}$	8 ∞ 10 9 1	$9 \\ 2 \\ \infty \\ 10 \\ 9$	$\begin{array}{c} 2 \\ 10 \\ 9 \\ \infty \\ 10 \end{array}$	$\begin{bmatrix} 9 \\ 9 \\ 3 \\ 12 \\ \infty \end{bmatrix}.$
4.	∞ 9 3 9 10	11 ∞ 8 2 8	$\begin{array}{c} 3 \\ 12 \\ \infty \\ 10 \\ 11 \end{array}$	9 8 9 ∞ 4	$\begin{bmatrix} 10\\2\\11\\10\\\infty \end{bmatrix}.$	5.	$\begin{bmatrix} \infty \\ 9 \\ 10 \\ 3 \\ 10 \end{bmatrix}$	$ \begin{array}{c} 10 \\ \infty \\ 3 \\ 11 \\ 10 \end{array} $	$12 \\ 10 \\ \infty \\ 10 \\ 4$	$\begin{array}{c} 3 \\ 10 \\ 11 \\ \infty \\ 13 \end{array}$	$\begin{bmatrix} 10\\2\\10\\11\\\infty \end{bmatrix}.$	6.	$\begin{bmatrix} \infty \\ 10 \\ 2 \\ 8 \\ 9 \end{bmatrix}$	8 ∞ 11 7 1	0 7 ∞ 8 10	$ \begin{array}{c} 8 \\ 1 \\ 9 \\ \infty \\ 9 \end{array} $	$\begin{bmatrix} 9 \\ 7 \\ 10 \\ 3 \\ \infty \end{bmatrix}.$
7.	∞ 8 10 1 8	7 ∞ 9 8 0	$ \begin{array}{c} 8 \\ 1 \\ \infty \\ 9 \\ 8 \end{array} $	1 9 8 ∞ 9	$\begin{bmatrix} 8 \\ 8 \\ 2 \\ 11 \\ \infty \end{bmatrix}.$	8.	$\begin{bmatrix} \infty \\ 11 \\ 13 \\ 4 \\ 11 \end{bmatrix}$	3 ∞ 3 11 3	17 4 ∞ 12 11	12 4 11 ∞ 12	$\begin{bmatrix} 11 \\ 5 \\ 6 \\ 14 \\ \infty \end{bmatrix}$.	9.	$\begin{bmatrix} \infty \\ 12 \\ 12 \\ 3 \\ 7 \end{bmatrix}$	$4 \\ \infty \\ 11 \\ 12 \\ 4$	$ \begin{array}{c} 12 \\ 10 \\ \infty \\ 7 \\ 9 \end{array} $	$\begin{array}{c} 3\\12\\8\\\infty\\12 \end{array}$	$\begin{bmatrix} 6 \\ 4 \\ 6 \\ 12 \\ \infty \end{bmatrix}.$
10.	$\begin{bmatrix} \infty \\ 11 \\ 12 \\ 5 \\ 12 \end{bmatrix}$	12 ∞ 5 13 12	12 ∞ 12	12 13	13	11.	$\begin{bmatrix} \infty \\ 7 \\ 8 \\ 1 \\ 8 \end{bmatrix}$	$ \begin{array}{c} 8 \\ \infty \\ 1 \\ 9 \\ 6 \end{array} $	$ \begin{array}{c} 10 \\ 8 \\ \infty \\ 8 \\ 9 \end{array} $	1 8 9 ∞ 2	$\begin{bmatrix} 8 \\ 0 \\ 8 \\ 9 \\ \infty \end{bmatrix}$.	12.	$\begin{bmatrix} \infty \\ 7 \\ 1 \\ 7 \\ 8 \end{bmatrix}$	9 ∞ 6 0 6	$ \begin{array}{c} 1\\ 10\\ \infty\\ 8\\ 9 \end{array} $	7 6 7 ∞ 2	$\begin{bmatrix} 8 \\ 0 \\ 9 \\ 8 \\ \infty \end{bmatrix}$.

³В программе необходимо предусмотреть "итоговый" и "отладочный" режимы работы. Во втором случае на каждой итерации необходимо выводить на экран информацию о числе задач в списке, печатать матрицу и решение текущей задачи, а также информацию о принимаемом решении (добавление новых задач, обновление оптимального маршрута и т.д.).

13.
$$\begin{bmatrix} \infty & 10 & 2 & 10 & 11 \\ 12 & \infty & 9 & 3 & 9 \\ 4 & 13 & \infty & 11 & 12 \\ 10 & 9 & 10 & \infty & 5 \\ 11 & 3 & 12 & 11 & \infty \end{bmatrix}$$
14.
$$\begin{bmatrix} \infty & 13 & 5 & 11 & 12 \\ 11 & \infty & 14 & 10 & 0 \\ 5 & 10 & \infty & 11 & 13 \\ 11 & 4 & 12 & \infty & 12 \\ 12 & 10 & 13 & 6 & \infty \end{bmatrix}$$
15.
$$\begin{bmatrix} \infty & 10 & 11 & 4 & 1 \\ 11 & \infty & 4 & 12 & 11 \\ 3 & 12 & \infty & 11 & 5 \\ 4 & 11 & 12 & \infty & 14 \\ 11 & 3 & 11 & 12 & \infty \end{bmatrix}$$
16.
$$\begin{bmatrix} \infty & 2 & 16 & 11 & 10 \\ 10 & \infty & 3 & 3 & 4 \\ 12 & 2 & \infty & 10 & 5 \\ 3 & 10 & 11 & \infty & 13 \\ 10 & 2 & 10 & 11 & \infty \end{bmatrix}$$
17.
$$\begin{bmatrix} \infty & 13 & 15 & 8 & 13 \\ 12 & \infty & 13 & 15 & 8 & 13 \\ 12 & \infty & 13 & 13 & 5 \\ 13 & 6 & \infty & 14 & 13 \\ 6 & 14 & 13 & \infty & 14 \\ 13 & 13 & 7 & 16 & \infty \end{bmatrix}$$
18.
$$\begin{bmatrix} \infty & 1 & 9 & 0 & 3 \\ 9 & \infty & 7 & 9 & 1 \\ 9 & 8 & \infty & 5 & 3 \\ 0 & 9 & 4 & \infty & 9 \\ 4 & 1 & 6 & 9 & \infty \end{bmatrix}$$
19.
$$\begin{bmatrix} \infty & 12 & 4 & 10 & 11 \\ 10 & \infty & 13 & 10 & 3 \\ 4 & 9 & \infty & 10 & 12 \\ 10 & 3 & 11 & \infty & 11 \\ 11 & 9 & 12 & 5 & \infty \end{bmatrix}$$
20.
$$\begin{bmatrix} \infty & 5 & 13 & 4 & 7 \\ 13 & \infty & 11 & 13 & 5 \\ 13 & 12 & \infty & 9 & 7 \\ 4 & 13 & 8 & \infty & 13 \\ 8 & 5 & 10 & 13 & \infty \end{bmatrix}$$
21.
$$\begin{bmatrix} \infty & 10 & 11 & 4 & 1 \\ 11 & \infty & 4 & 12 & 11 \\ 13 & 12 & \infty & 9 & 7 \\ 11 & \infty & 8 & 2 & 8 \\ 3 & 12 & \infty & 10 & 11 \\ 9 & 8 & 9 & \infty & 4 \\ 10 & 2 & 11 & 10 & \infty \end{bmatrix}$$

ЛАБОРАТОРНАЯ РАБОТА№ 3

Транспортная задача

Цель работы: изучение метода потенциалов на примере решения транспортной задачи и задачи о назначениях.

Содержание работы

- 1. реализовать метод потенциалов в виде программы на ЭВМ;
- 2. для транспортной задачи

$$\begin{cases} z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \min, \\ \sum_{j=1}^{n} x_{ij} = S_i, \\ \sum_{i=1}^{m} x_{ij} = D_j, \\ \sum_{i=1}^{m} S_i = \sum_{j=1}^{n} D_j, \\ x_{ij} \geqslant 0 \end{cases}$$

- а) найти начальное базисное допустимое решение методом северо-западного угла;
- б) найти решение методом потенциалов⁴.
- Решить методом потенциалов задачу о назначениях, взяв индивидуальные данные своего варианта из задания к лабораторной работе №1.

Содержание отчета

- 1. постановки решаемых задач и исходные данные;
- 2. краткое описание метода потенциалов;
- 3. текст программы;
- 4. результаты расчетов задач из индивидуального варианта.

Индвидуальные варианты входных данных

Bap.	S_1	S_2	S_3	D_1	D_2	D_3	D_4	C_{11}	C_{12}	C_{13}	C_{14}	C_{21}	C_{22}	C_{23}	C_{24}	C_{31}	C_{32}	C_{33}	C_{34}
1.	140	100	60	80	80	60	80	5	4	3	4	3	2	5	5	1	6	3	2
2.	80	100	70	80	50	50	70	4	2	3	1	6	3	5	6	3	2	6	3
3.	135	45	170	45	45	100	160	6	7	3	2	5	1	4	3	3	2	6	2
4.	100	150	50	75	80	60	85	6	7	3	5	1	2	5	6	8	10	20	1
5.	110	190	90	80	60	170	80	5	8	1	9	7	4	6	2	12	3	8	9
6.	170	125	95	180	110	60	40	9	7	5	3	1	2	4	6	8	10	12	1
7.	31	48	38	22	34	41	20	10	7	6	8	5	6	5	4	8	7	6	7
8.	70	50	30	40	40	30	40	6	5	4	5	4	3	6	6	2	7	4	3
9.	40	50	35	40	25	25	35	5	3	4	2	7	4	6	7	4	3	7	4
10.	270	90	340	90	90	200	320	7	8	4	3	6	2	5	4	4	3	7	3
11.	20	30	10	15	16	12	17	5	6	2	4	0	1	4	5	7	9	19	0
12.	55	95	45	40	30	85	40	7	0	8	6	3	5	1	11	2	4	7	8
13.	34	25	19	36	22	12	8	10	8	6	4	2	3	5	7	9	11	13	2
14.	93	144	114	66	102	123	60	11	8	7	9	6	7	6	5	9	8	7	8
15.	28	20	12	16	16	12	16	4	3	2	3	2	1	4	4	0	5	2	1
16.	16	20	14	16	10	10	14	3	1	2	0	5	2	4	5	2	1	5	2
17.	27	9	31	9	9	20	32	5	6	2	1	4	0	3	2	2	1	5	1
18.	200	300	100	150	160	120	170	7	8	4	6	2	3	6	7	9	11	21	2
19.	22	38	18	16	12	34	16	9	2	10	8	5	7	3	13	4	6	9	10
20.	68	50	38	72	44	24	16	11	9	7	5	3	4	6	8	10	12	14	3
21.	62	96	76	44	68	82	40	9	6	5	7	4	5	4	3	7	6	5	6

⁴В программе для каждой итерации необходимо выводить текущую транспортную таблицу и указывать цикл (можно печатать индексы элементов, образующих цикл).