





Lecture 5.3 - Supervised Learning Classification - Decision Regions

Erik Bekkers

(Bishop 1.5, 4.1)





# Classification through decision regions

- Input:  $\mathbf{x} = (x_1, ..., x_D)^T$
- Target:  $t \in \{C_1, C_2, -\infty, C_k\}$ 
  - 2-class targets:  $t = C_1$ ,  $t = C_2$  t = 0, t = 1
  - Multi-class targets e.g. K=5 ,  $t=C_3 \Leftrightarrow \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$  rategy:

#### **Strategy:**

- Divide input space  $\mathbb{R}^D$  into K decision regions.  $\mathcal{R}_{k}$
- Assign each decision region to a class
- Boundaries of decision regions are called decision boundaries/surfaces.

Machine Learning 1

## Classification through Decision Regions



Figures: 3 class problem with decision boundaries. (Bishop 1.19 & 1.20)

K=3

Machine Learning 1

### Linear Classification

- Linear Classification: consider only *linear* decision boundaries
- For D dimensional input space:  $26 \times 10^{10}$  decision surface is a 10-1 dimensional hyperplane

Datasets whose classes can be separated *exactly* by linear decision surfaces are called





**Figure:** Linearly separable dataset (Bishop 4.5)

**Figure:** Not linearly separable dataset (Bishop 1.19)



Figure: one-versus-the-rest classifiers (Bishop 4.2)

Machine Learning 1 5

# Multiple Classes (K > 2)

• K(K-1)/2 classifiers:  $\psi_{ij}(x) \rightarrow t = C_i$  or  $t = C_j$ 

 Points are classified according to majority vote of classifiers

one-versus-one

 $\mathcal{R}_1$   $\mathcal{R}_3$   $\mathcal{R}_3$   $\mathcal{C}_3$  ass classifier!  $\mathcal{C}_2$ 

Solution: Make one K-class classifier! (See later)

Figure: one-versus-one classifiers (Bishop 4.2)

Machine Learning 1