Today

- Details and deadline
 - 11:59 PM 14 Dec 2022 (official)
 - 15_1_homework_ind_project.md
 - 00_individual_project.md
 - 00_portfolio_checklist.md
- Simulating data
- Posterior predictive checks

Simulating data

- Gain understanding
 - science, design, algorithm
- Test for correct setup
 - math, code, recover known parameters
- Explore study design
 - how many reps? etc
- Does the fitted model look right?
 - generate data like the real data?

Plot
$$y_i \sim \text{Poisson}(\mu_i)$$

$$\ln(\mu_i) = \alpha_{j[i]} + \beta_1 \text{forest}_i + \beta_3 \text{forest}_i \times \text{latitude}_{j[i]}$$
 Site $\alpha_j \sim \text{Normal}(\ln(\mu_j), \sigma_\alpha^2)$

$$\ln(\mu_i) = \beta_0 + \beta_2 \text{ latitude}_i$$

Data story: pseudocode

for each site jlatitude determines broad-scale richnessbut there is some stochasticity about this

Plot
$$y_i \sim \text{Poisson}(\mu_i)$$

$$\ln(\mu_i) = \alpha_{j[i]} + \beta_1 \text{forest}_i + \beta_3 \text{forest}_i \times \text{latitude}_{j[i]}$$

Site $\alpha_j \sim \text{Normal}(\ln(\mu_j), \sigma_\alpha^2)$

$$\ln(\mu_j) = \beta_0 + \beta_2 \text{ latitude}$$

Data story: pseudocode

for each site j
latitude determines broad-scale richness
but there is some stochasticity about this

Plot
$$y_i \sim \text{Poisson}(\mu_i)$$

$$\ln(\mu_i) = \alpha_{j[i]} + \beta_1 \text{forest}_i + \beta_3 \text{forest}_i \times \text{latitude}_{j[i]}$$
 Site $\alpha_j \sim \text{Normal}(\ln(\mu_j), \sigma_\alpha^2)$

 $\ln(\mu_i) = \beta_0 + \beta_2 \text{ latitude}_i$

Data story: pseudocode

for each site j latitude determines broad-scale richness but there is some stochasticity about this

Plot $y_i \sim Poisson(\mu_i)$

$$\ln(\mu_i) = \alpha_{j[i]} + \beta_1 \text{forest}_i + \beta_3 \text{forest}_i \times \text{latitude}_{j[i]}$$

Site $\alpha_j \sim \text{Normal}(\ln(\mu_j), \sigma_\alpha^2)$

$$\ln(\mu_j) = \beta_0 + \beta_2 \text{ latitude}_j$$

Data story: pseudocode

for each site j

latitude determines broad-scale richness but there is some stochasticity about this

Plot
$$y_i \sim \text{Poisson}(\mu_i)$$

$$\ln(\mu_i) = \alpha_{j[i]} + \beta_1 \text{forest}_i + \beta_3 \text{forest}_i \times \text{latitude}_{j[i]}$$
Site $\alpha_j \sim \text{Normal}(\ln(\mu_j), \sigma_\alpha^2)$

$$\ln(\mu_i) = \beta_0 + \beta_2 \text{ latitude}_i$$
Data ge

Data generating algorithm

for each site j
 generate expected In(richness) by latitude generate stochasticity about this

Plot
$$y_i \sim \text{Poisson}(\mu_i)$$

$$\ln(\mu_i) = \alpha_{j[i]} + \beta_1 \text{forest}_i + \beta_3 \text{forest}_i \times \text{latitude}_{j[i]}$$
 Site $\alpha_i \sim \text{Normal}(\ln(\mu_i), \sigma_\alpha^2)$

$$\ln(\mu_j) = \beta_0 + \beta_2 \text{ latitude}$$

Data generating algorithm

for each site j generate expected In(richness) by latitude generate stochasticity about this

Data generating algorithm

for each site j generate expected In(richness) by latitude generate stochasticity about this

Plot $y_i \sim Poisson(\mu_i)$

$$\ln(\mu_i) = \alpha_{j[i]} + \beta_1 \text{forest}_i + \beta_3 \text{forest}_i \times \text{latitude}_{j[i]}$$

Site $\alpha_j \sim \text{Normal}(\ln(\mu_j), \sigma_\alpha^2)$

$$\ln(\mu_i) = \beta_0 + \beta_2$$
 latitude

Data generating algorithm

for each site j generate expected In(richness) by latitude generate stochasticity about this

 $\ln(\mu_i) = \beta_0 + \beta_2 \text{ latitude}_i$

```
# For each site, generate an expected ln(richness) based on latitude
mu_alpha <- b_0 + b_2 * latitude

# For each site, generate stochasticity around this expectation (Eq.
# (note how this value will be the same for both plots at a site)
alpha <- rnorm(22, mu_alpha, sigma_alpha)

# For each plot, generate an expected ln(richness) based on habitat
# (we use j to extract the appropriate alpha and latitude values)
ln_mu <- alpha[j] + b_1 * forest + b_3 * forest * latitude[j]

# For each plot, generate richness with stochasticity (Eq. line 1)
# (we use the inverse link function to obtain mu)
y <- rpois(44, exp(ln_mu))</pre>
```

Plot
$$y_i \sim \text{Poisson}(\mu_i)$$

$$\ln(\mu_i) = \alpha_{j[i]} + \beta_1 \text{forest}_i + \beta_3 \text{forest}_i \times \text{latitude}_{j[i]}$$

Site $\alpha_j \sim \text{Normal}(\ln(\mu_j), \sigma_\alpha^2)$

 $\ln(\mu_j) = \beta_0 + \beta_2 \text{ latitude}$

```
# For each site, generate an expected ln(richness) based on latitude
mu_alpha <- b_0 + b_2 * latitude

# For each site, generate stochasticity around this expectation (Eq.
# (note how this value will be the same for both plots at a site)
alpha <- rnorm(22, mu_alpha, sigma_alpha)

# For each plot, generate an expected ln(richness) based on habitat
# (we use j to extract the appropriate alpha and latitude values)
ln_mu <- alpha[j] + b_1 * forest + b_3 * forest * latitude[j]

# For each plot, generate richness with stochasticity (Eq. line 1)
# (we use the inverse link function to obtain mu)
y <- rpois(44, exp(ln_mu))</pre>
```


$\ln(\mu_j) = \beta_0 + \beta_2 \text{ latitude}_j$

```
# For each site, generate an expected ln(richness) based on latitude
mu_alpha <- b_0 + b_2 * latitude

# For each site, generate stochasticity around this expectation (Eq.
# (note how this value will be the same for both plots at a site)
alpha <- rnorm(22, mu_alpha, sigma_alpha)

# For each plot, generate an expected ln(richness) based on habitat
# (we use j to extract the appropriate alpha and latitude values)
ln_mu <- alpha[j] + b_1 * forest + b_3 * forest * latitude[j]

# For each plot, generate richness with stochasticity (Eq. line 1)
# (we use the inverse link function to obtain mu)
y <- rpois(44, exp(ln_mu))</pre>
```

Plot $y_i \sim Poisson(\mu_i)$

$$\ln(\mu_i) = \alpha_{j[i]} + \beta_1 \text{forest}_i + \beta_3 \text{forest}_i \times \text{latitude}_{j[i]}$$

Site $\alpha_j \sim \text{Normal}(\ln(\mu_j), \sigma_\alpha^2)$

$$\ln(\mu_i) = \beta_0 + \beta_2 \text{ latitude}_i$$

```
# For each site, generate an expected ln(richness) based on latitude
mu_alpha <- b_0 + b_2 * latitude

# For each site, generate stochasticity around this expectation (Eq.
# (note how this value will be the same for both plots at a site)
alpha <- rnorm(22, mu_alpha, sigma_alpha)

# For each plot, generate an expected ln(richness) based on habitat
# (we use j to extract the appropriate alpha and latitude values)
ln_mu <- alpha[j] + b_1 * forest + b_3 * forest * latitude[j]

# For each plot, generate richness with stochasticity (Eq. line 1)
# (we use the inverse link function to obtain mu)
y <- rpois(44, exp(ln_mu))</pre>
```

Parameter values

- What values?
- Depends on what you want to do
- Ballparks are sufficient for most things
 - exploring study design
 - testing algorithms
 - scenarios

Simulated data

Code: ants_simulated_data.md

Does it work?

- ants_simulated_data.md
- recover parameter values?
- how reliable?

What to do when simulated data goes wrong?

Three possibilities

- 1. Math wrong
- 2. Simulation wrong
 - code error (bug) or translation of math to code
- 3. Fit wrong
 - training algorithm issue or model code wrong

Strategy: build from simple models

- 1. Make it as simple as possible at first
- 2. Build complexity incrementally

Bayesian diagnostics

- launch_shinystan
- NUTS (plots) "By model parameter"
 - top left: trace; top right: posterior
- R_hat, n_eff, se_mean
- Autocorrelation
- PPcheck look at all

pp_check(bayesHLE, plotfun = "dens_overlay")

pp_check(bayesHLE, plotfun = "stat", stat = "max")


```
pp_check(bayesHLE, plotfun = "stat", stat = "min")
```


