## Smoothening of Kandinsky Drawings

Benjamin Ulvi Çoban

Wilhelm-Schickard-Institut für Informatik Universität Tübingen, Germany





- underlying grid embedding
- vertices as boxes of uniform size, inherit ports.



- underlying grid embedding
- vertices as boxes of uniform size, inherit ports.
- polyedges as non-empty line segment sequence



- new segments quarter / semi circular arcs
- Clarity + Aesthetics combined

#### Previous results

- Kandinsky drawings
  - ▶ admit a complexity-2 smoothened drawing in  $\mathcal{O}(n^2)$  area inspired by book embeddings [Bekos et al. 2013]



#### Previous results

#### Kandinsky drawings

▶ admit a complexity-2 smoothened drawing in  $\mathcal{O}(n^2)$  area inspired by book embeddings [Bekos et al. 2013]



#### Orthogonal drawings with max degree 4

► Fixation of the vertex boxes lead to a high complexity increase

[Bekos et al. 2013]



#### Previous results

#### Kandinsky drawings

▶ admit a complexity-2 smoothened drawing in  $\mathcal{O}(n^2)$  area inspired by book embeddings [Bekos et al. 2013]



#### Orthogonal drawings with max degree 4

► Fixation of the vertex boxes lead to a high complexity increase [Bekos et al. 2013]



#### Disadvantages

► Either shape alternation or high complexity increase

- ► Orthogonal drawings with max degree 4 can be smoothened with reasonable complexity increase and area consumption [Bekos et al. 2013]
- Stretching guarantees area for quarter circular arc substitution

- ► Orthogonal drawings with max degree 4 can be smoothened with reasonable complexity increase and area consumption [Bekos et al. 2013]
- Stretching guarantees area for quarter circular arc substitution
- ► Plane Sweep implementation
  - horizontal line segments as events
  - elongated by the length of the longest vertical segment



- ► Orthogonal drawings with max degree 4 can be smoothened with reasonable complexity increase and area consumption [Bekos et al. 2013]
- Stretching guarantees area for quarter circular arc substitution
- ► Plane Sweep implementation
  - horizontal line segments as events
  - elongated by the length of the longest vertical segment



- ► Orthogonal drawings with max degree 4 can be smoothened with reasonable complexity increase and area consumption [Bekos et al. 2013]
- Stretching guarantees area for quarter circular arc substitution
- ► Plane Sweep implementation
  - horizontal line segments as events
  - elongated by the length of the longest vertical segment



- ► Orthogonal drawings with max degree 4 can be smoothened with reasonable complexity increase and area consumption [Bekos et al. 2013]
- Stretching guarantees area for quarter circular arc substitution
- ► Plane Sweep implementation
  - horizontal line segments as events
  - elongated by the length of the longest vertical segment



- ► Orthogonal drawings with max degree 4 can be smoothened with reasonable complexity increase and area consumption [Bekos et al. 2013]
- Stretching guarantees area for quarter circular arc substitution
- ► Plane Sweep implementation
  - horizontal line segments as events
  - elongated by the length of the longest vertical segment



- ▶ linear runtime relative to the width of the drawing
- Does not alter the drawing drastically

- ▶ linear runtime relative to the width of the drawing
- Does not alter the drawing drastically
- worst case area: quadratic in width size



- ▶ linear runtime relative to the width of the drawing
- ► Does not alter the drawing drastically
- worst case area: quadratic in width size



- linear runtime relative to the width of the drawing
- Does not alter the drawing drastically
- worst case area: quadratic in width size



• worst case complexity increase:  $k o \left\lceil \frac{3}{2} k \right\rceil - 1$ 



- linear runtime relative to the width of the drawing
- Does not alter the drawing drastically
- worst case area: quadratic in width size



• worst case complexity increase:  $k o \left\lceil \frac{3}{2}k \right\rceil - 1$ 





#### Smoothening of Kandinsky drawings

#### Outline

- Stretching Technique
  - ▶ Does the stretching technique smoothening work for Kandinsky drawings of arbitrary degree?
  - ► Area bounds?
  - Complexity bounds?

### Smoothening of Kandinsky drawings

#### Outline

#### Stretching Technique

- ▶ Does the stretching technique smoothening work for Kandinsky drawings of arbitrary degree?
- Area bounds?
- Complexity bounds?

#### Saving measures

- Area saving measures
- Complexity saving measures

- ► The stretching technique smoothening does work for Kandinsky drawings of arbitrary degree
- ► Three szenarios for vertical segments to consider:

- ► The stretching technique smoothening does work for Kandinsky drawings of arbitrary degree
- ► Three szenarios for vertical segments to consider:
  - Vertical segment between two horizontal segments



- ► The stretching technique smoothening does work for Kandinsky drawings of arbitrary degree
- ► Three szenarios for vertical segments to consider:
  - Vertical segment between two horizontal segments



- ► The stretching technique smoothening does work for Kandinsky drawings of arbitrary degree
- ► Three szenarios for vertical segments to consider:
  - Vertical segment between two horizontal segments











Multiple vertical segments adjacent to a vertex



► Single vertical segment between two vertices - do nothing

- ► Length of every vertical segment I' is bounded by the length of the longest one
  - ► Therefore, the quarter circular arc substitution works

- ► Length of every vertical segment I' is bounded by the length of the longest one
  - ► Therefore, the quarter circular arc substitution works
  - ▶ Worst case area consumption:  $\mathcal{O}(n^2) \times \mathcal{O}(n)$ 
    - ► Implied by the orthogonal 4-planar drawing worst case



- ► Length of every vertical segment I' is bounded by the length of the longest one
  - ► Therefore, the quarter circular arc substitution works
  - ▶ Worst case area consumption:  $\mathcal{O}(n^2) \times \mathcal{O}(n)$ 
    - ► Implied by the orthogonal 4-planar drawing worst case



- ► Length of every vertical segment I' is bounded by the length of the longest one
  - ► Therefore, the quarter circular arc substitution works
  - ▶ Worst case area consumption:  $\mathcal{O}(n^2) \times \mathcal{O}(n)$ 
    - ► Implied by the orthogonal 4-planar drawing worst case



Consider the complexity increase from three to four

### Complexity Investigation

► How does the complexity of polyedges "behave" by smoothening an orthogonal drawing?

### Complexity Investigation

- ► How does the complexity of polyedges "behave" by smoothening an orthogonal drawing?
- ► Known results [Bekos et al. 2013]
  - "spiral-shaped" polyedges do not increase in complexity



- ► How does the complexity of polyedges "behave" by smoothening an orthogonal drawing?
- ► Known results [Bekos et al. 2013]

"spiral-shaped" polyedges do not increase in complexity



- ► How does the complexity of polyedges "behave" by smoothening an orthogonal drawing?
- ► Known results [Bekos et al. 2013]

"spiral-shaped" polyedges do not increase in complexity



"staircase" polyedges do increase in complexity



- Orthogonal polyedge e given
  - ► "Partition" e:
    - Fragment := non-empty sequence of segments
    - Fragmentation := non-empty sequence of fragments

- Orthogonal polyedge e given
  - ► "Partition" e:
    - Fragment := non-empty sequence of segments
    - Fragmentation := non-empty sequence of fragments



- Orthogonal polyedge e given
  - ► "Partition" e:
    - Fragment := non-empty sequence of segments
    - Fragmentation := non-empty sequence of fragments



- ► Orthogonal polyedge *e* given
  - ► "Partition" e:
    - Fragment := non-empty sequence of segments
    - Fragmentation := non-empty sequence of fragments



- Orthogonal polyedge e given
  - ► "Partition" e:
    - Fragment := non-empty sequence of segments
    - Fragmentation := non-empty sequence of fragments



- ▶ What fragmentation is the "most accurate"?
- ► How can we utilize the partitioning for complexity investigaion?

### Fragmentation properties

I Multiple valid fragmentations can describe one polyedge



### Fragmentation properties

- I Multiple valid fragmentations can describe one polyedge
- II Fragments of length up to 2 are both uniform and alternating
- III Two fragments are *incompatible*⇔ they are not further mergable



### Fragmentation Properties

IV Alternating fragments can be decomposed in uniform fragments of length at most two



### Fragmentation Properties

IV Alternating fragments can be decomposed in uniform fragments of length at most two



V Incompatible fragments increase the complexity by 1 in the smoothened drawing



► Uniform-only fragmentations describe "smoothening behaviour" accurately, linear runtime algorithm

- ► Uniform-only fragmentations describe "smoothening behaviour" accurately, linear runtime algorithm
- $\triangleright k \triangleq$  complexity of input orthogonal polyedge
  - ▶  $1 \le \text{fragmentation length} \le \left\lceil \frac{k}{2} \right\rceil$

- Uniform-only fragmentations describe "smoothening behaviour" accurately, linear runtime algorithm
- $\triangleright k \triangleq$  complexity of input orthogonal polyedge
  - ▶  $1 \le \text{fragmentation length} \le \left\lceil \frac{k}{2} \right\rceil$
  - worst case: staircase polyedge
    - "chopped"into fragments of length at most 2
    - ► *k* odd:
      - ▶ fragmentation length:  $\left\lceil \frac{k}{2} \right\rceil$



- Uniform-only fragmentations describe "smoothening behaviour" accurately, linear runtime algorithm
- $\triangleright k \triangleq$  complexity of input orthogonal polyedge
  - ▶  $1 \leq \text{fragmentation length} \leq \left\lceil \frac{k}{2} \right\rceil$
  - worst case: staircase polyedge
    - "chopped"into fragments of length at most 2
    - ► *k* odd:
      - fragmentation length:  $\left|\frac{k}{2}\right|$
      - $ightharpoonup \left\lceil \frac{k}{2} \right\rceil 1$  fragments of length 2
    - - ▶ 1 Fragment of length 1

- Uniform-only fragmentations describe "smoothening behaviour" accurately, linear runtime algorithm
- $\triangleright k \triangleq$  complexity of input orthogonal polyedge
  - ▶  $1 \le \text{fragmentation length} \le \left\lceil \frac{k}{2} \right\rceil$
  - worst case: staircase polyedge
    - "chopped"into fragments of length at most 2
    - ► *k* odd:
      - fragmentation length:  $\lceil \frac{k}{2} \rceil$
      - $ightharpoonup \left\lceil \frac{k}{2} \right\rceil 1$  fragments of length 2
      - $rac{k}{2}$  1 incompatible fragment transitions
      - ▶ 1 Fragment of length 1

$$\qquad \qquad \blacktriangleright \left( \sum_{i=1}^{\left \lceil \frac{k}{2} \right \rceil - 1} 2 \right) + 1 + \left \lceil \frac{k}{2} \right \rceil - 1 = \left \lfloor \frac{3k}{2} \right \rceil - 1$$
 (complexity upper bound)

## What about Kandinsky drawings?

- Upper bound holds for low complexity polyedges
- ► The upper bound can be further improved for polyedges with high complexity

## What about Kandinsky drawings?

- Upper bound holds for low complexity polyedges
- ► The upper bound can be further improved for polyedges with high complexity
- Large polyedges in Kandinsky may inherit two bends which are not deducable
- Polyedge spiral-shaped in-between those bends



▶ In this case: complexity increase from k to k+2

#### Overall results

- Kandinsky drawings can be smoothened with the stretching technique
  - worst case area consumption: quadratic in width size
  - height stays unaltered

#### Overall results

- Kandinsky drawings can be smoothened with the stretching technique
  - worst case area consumption: quadratic in width size
  - height stays unaltered
  - ► Edge complexity increase:

| Original<br>Kandinsky<br><i>k</i> | Smoothened<br>Kandinsky<br><i>k'</i> |
|-----------------------------------|--------------------------------------|
| ≤ 5                               | $\lceil \frac{3k}{2} \rceil - 1$     |
| ≥ <b>5</b>                        | k+2                                  |

► Port reassignment

- ► Port reassignment
  - ► May reduce the edge complexity by one



- ► Port reassignment
  - ► May reduce the edge complexity by one



- Port reassignment
  - ► May reduce the edge complexity by one



► However, it does not always work



- Port reassignment
  - ► May reduce the edge complexity by one



► However, it does not always work



- Using the fragmentation
  - ► If an alternating fragment of length one inherits a vertical fragment, the complexity does not increase



- Using the fragmentation
  - ► If an alternating fragment of length one inherits a vertical fragment, the complexity does not increase



- Stretching technique
  - Stretch by only the square root of the longest vertical segment
  - ▶ Worst case area consumption:  $\mathcal{O}(n \cdot \sqrt{n}) \times \mathcal{O}(n)$
  - ► Substitute quarter circular arcs with:

- Stretching technique
  - Stretch by only the square root of the longest vertical segment
  - ▶ Worst case area consumption:  $\mathcal{O}(n \cdot \sqrt{n}) \times \mathcal{O}(n)$
  - Substitute quarter circular arcs with:
    - ► Ellipse arcs



- Stretching technique
  - Stretch by only the square root of the longest vertical segment
  - ▶ Worst case area consumption:  $\mathcal{O}(n \cdot \sqrt{n}) \times \mathcal{O}(n)$
  - Substitute quarter circular arcs with:
    - Ellipse arcs
      - Low readability for high values



- Stretching technique
  - Stretch by only the square root of the longest vertical segment
  - ▶ Worst case area consumption:  $\mathcal{O}(n \cdot \sqrt{n}) \times \mathcal{O}(n)$
  - Substitute quarter circular arcs with:
    - Ellipse arcs
    - Low readability for high values



- Stretching technique
  - Stretch by only the square root of the longest vertical segment
  - ▶ Worst case area consumption:  $\mathcal{O}(n \cdot \sqrt{n}) \times \mathcal{O}(n)$
  - ► Substitute quarter circular arcs with:
    - ► Smaller quarter circular arc + 1 vertical segment



- Stretching technique
  - Stretch by only the square root of the longest vertical segment
  - ▶ Worst case area consumption:  $\mathcal{O}(n \cdot \sqrt{n}) \times \mathcal{O}(n)$
  - Substitute quarter circular arcs with:
    - ► Smaller quarter circular arc + 1 vertical segment



- Stretching technique
  - Stretch by only the square root of the longest vertical segment
  - ▶ Worst case area consumption:  $\mathcal{O}(n \cdot \sqrt{n}) \times \mathcal{O}(n)$
  - Substitute quarter circular arcs with:
    - ► Smaller quarter circular arc + 1 vertical segment
      - ► Higher readability, but high complexity increase



## Area & complexity savings combined

Saving plane sweep

- Saving plane sweep
  - ► If sweep line only crosses horizontal segments, look for redundancy

- Saving plane sweep
  - ► If sweep line only crosses horizontal segments, look for redundancy
  - ▶ Reduces width up to its square root and save segments



- Saving plane sweep
  - ► If sweep line only crosses horizontal segments, look for redundancy
  - ► Reduces width up to its square root and save segments



- Saving plane sweep
  - ► If sweep line only crosses horizontal segments, look for redundancy
  - ► Reduces width up to its square root and save segments



- ► Area saving algorithm for orthogonal drawings [Fößmeier et al. 1998]
- Finds a directed path through horizontal line segments

- ► Area saving algorithm for orthogonal drawings [Fößmeier et al. 1998]
- Finds a directed path through horizontal line segments
  - downwards: reduction by one unit length
  - upwards: elongation by one unit length
  - repeat until one of the segments achieved unit length

- ► Area saving algorithm for orthogonal drawings [Fößmeier et al. 1998]
- Finds a directed path through horizontal line segments
  - downwards: reduction by one unit length
  - upwards: elongation by one unit length
  - repeat until one of the segments achieved unit length



- ► Area saving algorithm for orthogonal drawings [Fößmeier et al. 1998]
- Finds a directed path through horizontal line segments
  - downwards: reduction by one unit length
  - upwards: elongation by one unit length
  - repeat until one of the segments achieved unit length



- ► Area saving algorithm for orthogonal drawings [Fößmeier et al. 1998]
- Finds a directed path through horizontal line segments
  - downwards: reduction by one unit length
  - upwards: elongation by one unit length
  - repeat until one of the segments achieved unit length



- Can save area either horizontally or vertically
- Can be modified for Smoothened Kandinsky drawings

Finds a directed path through horizontal line segments and quarter circular arcs

► Finds a directed path through horizontal line segments and quarter circular arcs

► Try to cross line segments

Complexity might decrease

► Finds a directed path through horizontal line segments and quarter circular arcs

► Try to cross line segments

► Complexity might decrease



► Finds a directed path through horizontal line segments

and quarter circular arcs

► Try to cross line segments

Complexity might decrease



Complexity might increase



Finds a directed path through horizontal line segments

and quarter circular arcs

► Try to cross line segments

Complexity might decrease

- Else cross circular arc
  - Complexity might increase



- Quarter circular arcs substituted
  - downwards: smaller circular arc, line segment
  - upwards: same-sized circular arc, line segment

► Horizontal saving...



► Horizontal saving...



► Horizontal saving...



Followed by vertical saving



► Horizontal saving...



Followed by vertical saving



Upwards-crossing path



► Horizontal saving...



Followed by vertical saving



Upwards-crossing path





### Summary

- Area saving often requires complexity increase
  - Square root stretching would suffice, needs complexity increase for clarity
  - ▶ 4M always increases complexity, when crossing a circular arc, but saves area consequently

### Summary

- Area saving often requires complexity increase
  - Square root stretching would suffice, needs complexity increase for clarity
  - ▶ 4M always increases complexity, when crossing a circular arc, but saves area consequently
- Area saving plane sweep not sufficient
- ▶ 4M Moving Modification may suit well for saving measures

### Summary

- Area saving often requires complexity increase
  - Square root stretching would suffice, needs complexity increase for clarity
  - ▶ 4M always increases complexity, when crossing a circular arc, but saves area consequently
- Area saving plane sweep not sufficient
- ▶ 4M Moving Modification may suit well for saving measures
- Port reassignment may decrease complexity
  - ▶ hard to determine, whether possible or not

#### Open Problems

- Implementation
  - Useful for heuristics
    - ► How do smoothened Kandinsky drawings look like?
    - ► How efficient are the saving measures?

### Open Problems

- Implementation
  - Useful for heuristics
    - ► How do smoothened Kandinsky drawings look like?
    - ► How efficient are the saving measures?
- Graphs with crossings



### Open Problems

- Implementation
  - Useful for heuristics
    - How do smoothened Kandinsky drawings look like?
    - ► How efficient are the saving measures?
- Graphs with crossings

Further saving approaches



# Questions?

### Appendix - Let's see, how it should look

- Example
  - ► Input drawing



- ▶ Example
  - Stretched by the longest vertical segment



- ► Example
  - Substituted



- ► Example
  - Optimized



- Example
  - ► Input drawing



- ▶ Example
  - Stretched by the sqrt of longest vertical segment



- ► Example
  - ► Substitution of circular arcs with vertical segments



- ► Example
  - ▶ Optimization



- ► Example
  - Comparism





# Thank you!

:)