Application Note

DODO

目录

MCU Interface - 3 Wire SPI 单片机接口-三线SPI	2
Reigster Initialization 寄存器初始化	2
Tx/Rx Audio 发送/接收 音频	_
ctcss/cdcss 连续音调编码静噪系统/连续数字编码静噪系	统 5
SELCALL 选择性呼叫系统	7
DTMF 双音频多频编码	7
FSK <mark>频移键控</mark>	8
MDC1200 专门用于对讲机和无线通信系统的数字编码标准	10
NOAA SAME 天气广播特定区域消息编码	11
vox 语音激活传输	11
Power Saving 节能	11
Tx/Rx Mode Switch 发送/接收模式选择	12
Squelchuelch, RSSI, Ex-Noise, Gltich 静噪/接收信号强度指示器/外	部噪声/故障或毛刺
Squelchuelch, RSSI, Ex-Noise, Gltich 静噪/接收信号强度指示器/外	部噪声/故障或毛刺
Tx/Rx Mode Switch 友达/接收 模式选择 Squelchuelch, RSSI, Ex-Noise, Gltich 静噪/接收信号强度指示器/外 AFC, ALC, MIC AGC 自动频率控制/自动电平控制/麦克风/自定 Frequency Setting 频率设置	部噪克/故障或毛刺动增益控制
Squelchuelch, RSSI, Ex-Noise, Gltich 静噪/接收信号强度指示器/外AFC, ALC, MIC AGC 自动频率控制/自动电平控制/麦克风/自定 Frequency Setting 频率设置 Tx Output Power 发送输出功率	部噪克/故障或毛刺 动增益控制 14
Squelchuelch, RSSI, Ex-Noise, Gltich 静噪/接收信号强度指示器/外AFC, ALC, MIC AGC 自动频率控制/自动电平控制/麦克风/自定 Frequency Setting 频率设置 Tx Output Power 发送输出功率	部噪克/故障或毛刺 动增益控制 14
Squelchuelch, RSSI, Ex-Noise, Gltich 静噪/接收信号强度指示器/外AFC, ALC, MIC AGC 自动频率控制/自动电平控制/麦克风/自z Frequency Setting 频率设置	部噪克/故障或毛刺 动增益控制 14 15
Squelchuelch, RSSI, Ex-Noise, Gltich 静噪/接收信号强度指示器/外AFC, ALC, MIC AGC 自动频率控制/自动电平控制/麦克风/自定 Frequency Setting 频率设置 Tx Output Power 发送输出功率 Interrupt 中断	部噪克/故障或毛刺 动增益控制 14 15 16
Squelchuelch, RSSI, Ex-Noise, Gltich 静噪/接收信号强度指示器/外AFC, ALC, MIC AGC 自动频率控制/自动电平控制/麦克风/自z Frequency Setting 频率设置 Tx Output Power 发送输出功率 Interrupt 中断	部噪克/故障或毛刺 动增益控制 14 15 16 18
Squelchuelch, RSSI, Ex-Noise, Gltich 静噪/接收信号强度指示器/外AFC, ALC, MIC AGC 自动频率控制/自动电平控制/麦克风/自z Frequency Setting 频率设置 Tx Output Power 发送输出功率 Interrupt 中断 GPIO 通用输入输出口 XTAL 晶体振荡器 Frequency Scan 频率扫描	部噪克/故障或毛刺 动增益控制
Squelchuelch, RSSI, Ex-Noise, Gltich 静噪/接收信号强度指示器/外AFC, ALC, MIC AGC 自动频率控制/自动电平控制/麦克风/自定Frequency Setting 频率设置 Tx Output Power 发送输出功率 Interrupt 中断 GPIO 通用输入输出口 XTAL 晶体振荡器	部噪克/故障或毛刺 动增益控制

术语说明

1. SCK (Serial Clock): SPI 通信中的时钟信号,由主机提供,用于同步数据传输。

2. SDATA (Serial Data): SPI 数据线,用于传输数据。

3. SCN (Serial Chip Select): SPI 片选信号, 用于选择从设备。

4. tHIGH 和 tLOW: 时钟高低电平时间,决定时钟周期,因此影响 SPI 的频率。

5. tS 和 tHSDATA: 确保输入数据在时钟变化时足够稳定,避免数据错误。

6. tCDV: 数据输出延迟时间,表示从时钟下降沿到有效数据之间的延迟。

7. tR, tF: 信号的上升和下降时间,影响信号的质量。

MCU 接口 - 三线 SPI 参数说明

参数	符号	最小值	典型值	最大值	描述
SCK 频率	fSCK	0 MHz	-	8 MHz	SPI 时钟频率,最小为 0 MHz,最大支持 8 MHz。
SCK 高电平时间	tHIGH	25 ns	<u> </u>	St	SPI 时钟信号高电平持续的最短时间。
SCK 低电平时间	tLOW	25 ns	N - 10	87 2	SPI 时钟信号低电平持续的最短时间。
SDATA 输入,SCN 到 SCK 上升沿设置时 间	tS	20 ns	<u> </u>	16 <u></u>	SCN 信号切换到 SCK 上升沿之间的最短时间,用于保证数据稳定。
SDATA 输入到 SCK 上升沿的保持时间	tHSDATA	10 ns	57 TK	M K	SDATA 数据输入信号需要在 SCK 上升沿之后保持的最短时间。
SCN 输入到 SCK 下 降沿的保持时间	tHSCN	10 ns		39 	SCN 输入信号需要在 SCK 下降沿之后保持的最短时间。
SCK 下降沿到 SDATA 输出有效时间	tCDV	2 ns	<u>a-u</u>	25 ns	SCK 下降沿到 SDATA 輸出数据有效之间的时间延迟范围。
地址输入后,从 SCK 下降到下一个 SCK 上 升	tNXT	1 μs	-	88 841	地址输入完成后,下一个 SCK 上升沿所需的最短时间间隔。
SCK、SCN、SDATA 的上升/下降时间	tR, tF	_	-	10 ns	SCK、SCN 和 SDATA 信号从低电平到高电平 (上升) 或从高电平到低电平 (下降) 的时间范围。

MCU Interface - 3 Wire SPI

Parameter	Symbol符号	Min.	Тур.	Max.
SCK Frequency	fSCK	0 MHz	_	8 MHz
SCK High Time	tHIGH	25 ns	_	_
SCK Low Time	tLOW	25 ns	_	_
SDATA Input, SCN to SCK † Setup	tS	20 ns	_	_
SDATA Input to SCK † Hold	tHSDATA	10 ns	_	_
SCN Input to SCK ↓ Hold	tHSCN	10 ns	_	_
SCK ↓ to SDATA Output Valid	tCDV	2 ns	-	25 ns
SCK ↓ to next SCK ↑ after Address In	tNXT	1 us	-	-
SCK, SCN, SDATA, Rise/Fall Time	tR,tF	_	+	10 ns

Reigster Initialization

芯片上电后进行 SoftReset、内部 PowerUp 和其他初始化设置。使用 RF_Initial(),在 RF_Initial() 里根据需求设置静噪门限、接收音量、接收 AGC、MIC 灵敏度、VoX 门限、调制深度、发射功率、亚音频等。

Tx/Rx Audio

- 1. 初始化后默认状态为正常 Speech 模式,可进行语音(300~3kHz)收发。
- 2. 开启压扩需要设置 RF_EnterCompander(),关闭压扩使用 RF_ExitCompander()

Register	Default	Description
REG_31<3>	0	Enable Compander Function. 开启信号压扩器功能
		1= Enable; 0=Disable
REG_28<15:14>	0b01	Expander (AF Rx) Ratio. 扩展器 (AF Rx) 比
		00=Disable; 01=1:2; 10=1:3; 11=1:4
REG_28<13:7>	0x56	Expander (AF Rx) 0 dB point(dB)
REG_28<6:0>	0x38	Expander (AF Rx) noise point(dB)
REG_29<15:14>	0b10	Compress (AF Tx) Ratio.
		00=Disable; 01=1.333:1; 10=2:1; 11=4:1
REG_29<13:7>	0x56	Compress (AF Tx) 0 dBpoint(dB)
REG_29<6:0>	0x40	Compress (AF Tx) noise point(dB)
REG_6F<6:0>	Read Only	AF Tx/Rx Input Amplitude(dB)

3. 开启扰频需要设置 RF_EnterScramble(),关闭扰频使用 RF_ExitScramble()

Register	Default	Description
REG_31<1>	0	Enable Scramble Function.
		1=Enable; 0=Disable
REG_71<15:0>	0x8517	Scramble/Tone1FrequencyControlWord.
		=3300(Hz)*10.32444 for XTAL 13M/26M or
		=3300(Hz)* 10.48576 for XTAL
		12.8M/19.2M/25.6M/38.4M.
	\	- The scrambler inversion mixing frequency should be kept
		between 2.6kHz and 3.5kHz

4. 滤波器开关使能

Register	Default	Description
REG_2B<10>	0	Disable AFRxHPF300filter.
		0=Enable; 1=Disable
REG_2B<9>	0	Disable AF RxLPF3K filter.
		0=Enable; 1=Disable
REG_2B<8>	0	Disable AF Rx de-emphasisfilter.
		0=Enable; 1=Disable
REG_2B<2>	0	Disable AFTxHPF300filter.

		0-Enable: 1-Disable
		0=Enable; 1=Disable
REG_2B<1>	0	Disable AFTxLPF1filter.
		0=Enable; 1=Disable
REG_2B<0>	0	Disable AFTxpre-emphasisfilter.
		0=Enable; 1=Disable
REG_43<8:6>	0b001	AFTxLPF2 filter Band Width(Apass=1dB) Selection.
		100 = 4.5 kHz
		101 = 4.25 kHz
		110 =4kHz
		111 = 3.75 kHz
		000 = 3 kHz (for 25k Channel Space)
		001 = 2.5 kHz (for 12.5k Channel Space)
		010 = 2.75 kHz
		011 =3.5 kHz

5. 音频响应调整使用 RF_SetAfResponse(u8 tx, u8 f3k, u8 db), 其中参数 tx=1 发射/tx=0 接收, f3k=1 调整 3kHz/f3k=0 调整 300Hz,db=调整范围-1~+4dB。例如: 发射 300Hz 增大 2dB: RF_SetAfResponse(1,0,2); 接收 3kHz 减小 3dB: RF_SetAfResponse(0,1,-3);

6. 接收音量设置

Register	Default	Description
REG_48<11:10>	0b00	AF Rx Gain1.
		00=0dB;01=-6dB;10=-12dB;11=-18dB
REG_48<9:4>	0x3C	AF Rx Gain2.
		-26dB~5.5dB, 0.5dB/step.
		0x00=mute
REG_48<3:0>	0b1111	AF DAC Gain (after Gain1 and Gain2).
		1111=max; 0000=min; about 2dB/step

7. 发射调制设置及发射 mute

Register	Default	Description
REG_40<12>	1	Enable RF TxDeviation.
		1=Enable; 0=Disable
REG_40<11:0>	0x4D0	RF Tx Deviation Tuning (Apply for both in-band signal and sub-audio signal). 0=min; 0xFFF=max
REG_50<15>	0	Enable AF Tx Mute (for DTMF Tx or other applications). 1=Mute; 0=Normal

8. MIC 灵敏度设置

Register	Default	Description
REG_7D<4:0>	0x10	MIC Sensitivity Tuning.
		0x00=min; 0x1F=max; 0.5dB/step

9. AF 输出选择使用 RF_SetAf(u8 mode),产生本地按键音、提示音可参考 RF_Key(),产生铃音并发射可参考 RF Call()

Register	Default	Description
REG_47<13>	1	AF Output Inverse Mode.
		1=Inverse
REG_47<11:8>	0x1	AFOutputSelection.
		0x0=Mute;
		0x1=Normal AF Out;
		0x2=Tone Out for Rx (Should enable Tone1 first);
		0x3=Beep Out for Tx (Should enable Tone1 first and set
		REG_03[9]=1 to enable AF;
		0x6=CTCSS/CDCSS Out for Rx Test;
		0x8=FSK Out for Rx Test;
		Others=Reserved;

CTCSS/CDCSS

- 1. 开启 CTCSS 需要设置 RF_SetCtcss()和 RF_SetCtc2(),其中后者仅用于接收频率 55Hz(或 其他 100Hz 以内频率)的 CTCSS 尾音;前者用于接收和发射正常 CTCSS。
- 2. 开启 CDCSS 需要设置 RF SetCdcss(),需要设置 134.4Hz 码率和 CDCSS 码。
- 3. 关闭亚音频使用 RF ExitSubau()
- 4. 发射结東时产生尾音使用 RF_GenTail(),相位尾音使用参数 CTC120/CTC180/CTC240,如 RF_GenTail(CTC180); 换频尾音 (如 55Hz) 使用参数 CTC55,如 RF_GenTail(CTC55); 在 CDCSS 模式下产生 134.4Hz 尾音使用参数 CTC134,如 RF_GenTail(CTC134)
- 5. 读取 CTCSS 状态使用 RF_GetCtcss(),返回 1 表示收到 CTC1 (主 CTC),返回 2 表示收到 CTC2 (如 55Hz 尾音);读取 CDCSS 状态使用 RF_GetCdcss(),返回 1 表示收到 CDC 正码,返回 2 表示收到 CDC 反码;读取相位尾音状态使用 RF_GetTail(),返回 1 表示收到 120°相位变化尾音,返回 2 表示收到 180°相位变化尾音,返回 3 表示收到 240°相位变化尾音。

Register	Default	Description
REG_51<15>	0	1=Enable TxCTCSS/CDCSS; 0=Disable
REG_51<14>	0	1= GPIO6(PIN2)Input for CDCSS; 0=Normal Mode.(for BK4819v3)
REG_51<13>	0	1=Transmit negative CDCSS code
		0=Transmit positive CDCSScode
REG_51<12>	0	CTCSS/CDCSS mode selection.
		1=CTCSS, 0=CDCSS
REG_51<11>	0	CDCSS 24/23bit selection.
		1=24bit, 0=23bit
REG_51<10>	0	1050HzDetectionMode.
		1=1050/4 Detect Enable, CTC1 should be set to 1050/4 Hz
REG_51<9>	0	Auto CDCSS Bw Mode.
		1=Disable; 0=Enable.
REG_51<8>	0	Auto CTCSS Bw Mode.
		0=Enable; 1=Disable
REG_51<6:0>	0	CTCSS/CDCSS Tx Gain1 Tuning.
		0=min; 0x7F=max
REG_2E<9:8>	0x10	CTCSS/CDCSS Tx Gain2 Tuning (after Gain1).
		00=12dB; 01=6dB; 10=0dB; 11=-6dB
REG_07<15:0>		When <15:13>=0 for CTC1
		<12:0>=CTC1 frequencycontrolword
		= freq(Hz)*20.64888 for XTAL 13M/26M or
		=freq(Hz)*20.97152 for XTAL 12.8M/19.2M/25.6M/38.4M
	.4 >	When<15:13>=1 for CTC2(Tail 55Hz Rx detection)
		<12:0>=CTC2(should below 100Hz)frequencycontrolword
		= 25391/freq(Hz) for XTAL 13M/26M or
		= 25000/freq(Hz)for XTAL 12.8M/19.2M/25.6M/38.4M
)	When <15:13>=2 for CDCSS 134.4Hz
		<12:0>=CDCSS baud rate frequency(134.4Hz) controlword
		= freq(Hz)*20.64888 for XTAL 13M/26M or
		=freq(Hz)*20.97152 for XTAL 12.8M/19.2M/25.6M/38.4M
REG_08<15:0>		<15>=1 for CDCSS high 12bit
		<15>=0 for CDCSS low 12bit
		<11:0>=CDCSShigh/low 12bit code
REG_52<15>	0	Enable 120/180/240 degree shift CTCSS or 134.4Hz Tail
		when CDCSS mode.
		0=Normal, 1=Enable
REG_52<14:13>	0b00	CTCSS tail modeselection (only valid when REG_52<15>=1).

		00= for 134.4Hz CTCSS Tail when CDCSS mode. 01=CTCSS0 120° phase shift, 10= CTCSS0 180° phase shift
REG_52<12>	0	11= CTCSSO 240 ° phase shift CTCSSDetectionThreshold Mode,
REG_52<11:6>	0x0A	1=~0.1%; 0=0.1 Hz CTCSS found detect threshold.
REG_52<5:0>	0x0F	CTCSS lost detect threshold.
REG_0C<15:14>	Read Only	<14>:CDCSS positive code received <15>:CDCSS negative code received
REG_0C<13:12>	Read Only	CTCSS Phase Shift Received. 00=No phase shift 01=CTCSSO 120° phase shift, 10= CTCSSO 180° phase shift 11= CTCSSO 240° phase shift
REG_0C<10:11>	Read Only	<11>:CTC2(55Hz) received <10>:CTC1 received

SELCALL

- 1. 开启 SELCALL(5Tone)模式使用 RF_Enter5tone(),该函数仅对接收频率系数、接收门限、发射通路进行了设置,不会影响到正常音频收听。
- 2. 退出 SELCALL(5Tone)模式使用 RF_Exit5tone()
- 3. 发射 SELCALL(5Tone)使用 RF_5toneTransmit(),使用 MCU 计时根据发射码更换发射 SELCALL(5Tone)的频率(Tone1)。
- 4. 接收 SELCALL(5Tone)使用 RF_5toneReceive(),返回 1 失败,返回 0 成功

DTMF

- 1. 开启 DTMF 模式使用 RF_EnterDtmf(),该函数仅对 DTMF 接收频率系数、接收门限、发射通路进行了设置,不会影响到正常音频收听。
- 2. 退出 DTMF 模式使用 RF_ExitDtmf()

- 3. 发射 DTMF 使用 RF_DtmfTransmit(),使用 MCU 计时根据发射码更换发射 DTMF 的频率 (Tone1+Tone2)。
- 4. 接收 DTMF 使用 RF_DtmfReceive(),返回 1 失败,返回 0 成功

Register	Default	Description
REG_70<15>	0	Enable TONE1
		1=Enable; 0=Disable.
REG_70<14:8>	0	TONE1tuninggain
REG_70<7>	0	Enable TONE2
		1=Enable; 0=Disable.
REG_70<6:0>	0	TONE2/FSK tuninggain
REG_71<15:0>	0x8517	TONE1/Scramblefrequencycontrolword.
		=freq(Hz)*10.32444 for XTAL 13M/26M or
		=freq(Hz)* 10.48576 for XTAL 12.8M/19.2M/25.6M/38.4M.
REG_72<15:0>	0x2854	TONE2/FSK frequencycontrolword
		=freq(Hz)*10.32444 for XTAL 13M/26M or
		=freq(Hz)* 10.48576 for XTAL 12.8M/19.2M/25.6M/38.4M.
REG_50<15>	0	Enable AF Tx Mute (for DTMF Tx or other applications).
		1=Mute; 0=Normal
REG_0B<11:8>	Read Only	DTMF/5Tone Code Received.

FSK

- 1. 开启 FSK 模式使用 RF_EnterFsk(),不会影响到正常音频收听,且可以同时进入 DTMF/SELCALL 模式进行接收。FSK 速率寄存器与 Tone2 寄存器复用。使用 2400bps 模式 需要开启宏定义 FSK2400
- 2. 退出使用 RF_ExitFsk()
- 3. 发射 FSK 使用 RF_FskTransmit(),返回 1 失败,返回 0 成功
- 4. FSK 帧格式 (CRC 为可选),如果要兼容 BK4815/BK4818 则需要在 Data 部分完成 BK4815/BK4818FSK 帧结构里的 Addr/Type/Size/CRCA/Payload/CRCB 数据组帧,并且关掉 BK4819 FSK 帧结构的 CRC 部分,设置相同的 Preamble 和 SyncWord。

Preamble	Sync Word	Data	CRC(opt)
1~16 bytes	2 or 4 bytes	Config (maximum 1024 words)	2 bytes
		1 word = 2 hytes	

5. 接收 FSK 使用 RF_FskReceive(),返回 1 失败,返回 0 成功

Register	Default	Description
REG_58<15:13>	000	FSK Tx Mode Selection.
		000 for FSK1.2K and FSK2.4K Tx;
		001 for FFSK1200/1800 Tx;
		011 for FFSK1200/2400 Tx;
		101 for NOAA SAME Tx
REG_58<12:10>	000	FSK Rx Mode Selection.
		000 for FSK1.2K, FSK2.4K Rx and NOAA SAME Rx;
		111 for FFSK1200/1800 Rx;
		100 for FFSK1200/2400 Rx;
REG_58<9:8>	00	FSK Rx Gain.
REG_58<5:4>	00	FSK Preamble Type Selection.
		11=0xAA; 10=0x55; 00=0xAA or 0x55 due to the MSB of
		FSK Sync Byte 0.
REG_58<3:1>	000	FSK Rx BandWidth Setting.
		100 for FSK 2.4K and FFSK1200/2400;
		000 for FSK 1.2K;
		001 for FFSK1200/1800;
		010 for NOAA SAME Rx
REG_58<0>	0	FSK Enable.
		1=Enable; 0=Disable.
REG_59<15>	0	Clear TX FIFO, 1=clear
REG_59<14>	0	Clear RX FIFO, 1=clear
REG_59<13>	0	1=Enable FSK Scramble
REG_59<12>	0	1=Enable FSK RX
REG_59<11>	0	1=Enable FSK TX
REG_59<10>	0	1=Invert FSK data when RX
REG_59<9>	0	1=Invert FSK data when TX
REG_59<7:4>	0	FSK Preamble Length Selection
		0=1 byte; 1=2 bytes; 2=3 bytes;; 15=16 bytes.
REG_59<3>	0	FSK SyncLength Selection.
		1=4 bytes (FSK Sync Byte 0,1,2,3)
		0=2 bytes (FSK Sync Byte 0,1)
REG_5A<15:8>	0x85	FSK Sync Byte 0 (Sync Byte 0 first, then 1,2,3)
REG_5A<7:0>	0xCF	FSK Sync Byte 1

REG_5B<15:8>	0xAB	FSK Sync Byte 2
REG_5B<7:0>	0x45	FSK Sync Byte 3
REG_5C<6>	1	CRC Option Enable.
		1=Enable; 0=Disable.
REG_5D<15:8>	0x0F	FSK Data Length(Byte)
		Low 8bits(Total 11 bits for BK4819v3).
		For example, 0xF means 16 bytes length.
REG_5D<7:5>	0	FSK Data Length(Byte)
		High 3bits(Total 11 bits for BK4819v3).
REG_5E<9:3>	64	FSK Tx FIFO (Total 128 Words) Almost Empty Threshold.
REG_5E<2:0>	4	FSK Rx FIFO (Total 8 Words) Almost Full Threshold.
REG_5F<15:0>	X	FSK Word Input/Output.
REG_70<6:0>	0	TONE2/FSK tuninggain
REG_72<15:0>	0x2854	TONE2/FSK frequencycontrolword
		=freq(Hz)*10.32444 for XTAL 13M/26M or
		=freq(Hz)* 10.48576 for XTAL
		12.8M/19.2M/25.6M/38.4M.
REG_0B<7>	Read Only	FSK Rx SyncN Fround.
REG_0B<6>	Read Only	FSK Rx SyncP Fround.
REG_0B<4>	Read Only	FSK Rx CRC Indicator.
		1=CRC Pass; 0=CRC Fail.

MDC1200

- 1. 开启 MDC 模式使用 RF_EnterMdc(),不会影响到正常音频收听,且可以同时进入 DTMF/SELCALL 模式进行接收。MDC 速率寄存器与 Tone2 寄存器复用。默认模式为 1200/1800,若想使用 1200/2400 模式需要开启宏定义 MDC2400
- 2. 退出使用 RF_ExitMdc()
- 3. 发射 MDC 使用 RF_MdcTransmit(),返回 1 失败,返回 0 成功
- 4. 接收 MDC 使用 RF_MdcReceive(),返回 1 失败,返回 0 成功
- 5. 可支持 HDC1200 模式

NOAA SAME

- 1. 接收 NOAASAME 码使用 RF_EnterNoaa (),不会影响到正常音频收听,且可以同时进入 NOAA 模式进行接收。NOAA 速率寄存器与 Tone2 寄存器复用
- 2. 退出使用 RF_ExitNoaa()
- 3. 接收 FSK 使用 RF_NoaaReceive(),返回 1 失败,返回 0 成功,MCU 根据收到的码进行协议处理

VoX

- 1. 开启 VoX 使用 RF_EnterVox(); 关闭使用 RF_ExitVox()
- 2. 获取 VoX 状态使用 RF_GetVox(),返回 1 收到 MIC 语音,返回 0 未收到语音。
- 3. 获取 VoX 幅度使用 RF_GetVoxAmp(),返回值为 MIC 语音幅度,供 MCU 自行 VoX 判断使用。

Register	Default	Description
REG_31<2>	0	Enable VOX detection.
		1=Enable; 0=Disable
REG_7A<15:12>	8	VoX=0 Detection delay, *128ms
REG_46<10:0>	0x50	Voice AmplitudeThreshold for VOX=1 detect
REG_79<15:11>	8	VoX Detection Interval Time.
REG_79<10:0>	0x40	Voice Amplitude Threshold for VOX=0 detect
REG_64<15:0>	Read Only	Voice AmplitudeOut.
REG_0C<2>	Read Only	VoX Indicator
		0: No
		1: Yes

Power Saving

- 1. 进入睡眠使用 RF_Slee(),唤醒可以使用 RF_WakeUp(),也可以直接进入发射 RF_Txon() 或接收 RF_Rxon()
- 2. 睡眠状态下电流 200uA? (待改进); 唤醒后 IDLE 电流 3mA?

Register	Default	Description
REG_37<14:12>	0b001	DSP Voltage Setting.
REG_37<11>	1	ANA LDO Selection.
		1=2.7v, 0=2.4v
REG_37<10>	1	VCO LDO Selection.
		1=2.7v, 0=2.4v
REG_37<9>	1	RF LDO Selection.
		1=2.7v, 0=2.4v
REG_37<8>	1	PLL LDO Selection.
		1=2.7v, 0=2.4v
REG_37<7>	0	ANA LDO Bypass.
		1=Bypass, 0=Enable.
REG_37<6>	0	VCO LDO Bypass.
		1=Bypass, 0=Enable.
REG_37<5>	0	RF LDO Bypass.
		1=Bypass, 0=Enable.
REG_37<4>	0	PLL LDO Bypass.
		1=Bypass, 0=Enable.
REG_37<3>	0	Reserved.
REG_37<2>	0	DSP Enable.
		1=Enable, 0=Disable.
REG_37<1>	0	XTAL Enable.
		1=Enable, 0=Disable.
REG_37<0>	0	Band-Gap Enable.
		1=Enable, 0=Disable.

Tx/Rx Mode Switch

- 1. 发射使用 RF_Txon()
- 2. 接收使用 RF_Rxon()
- 3. 发射带侧音(如发送铃音)时,使用 RF_Txon_Beep()

Register	Default	Description
REG_30<15>	0	VCO Calibration Enable.
		1=Enable, 0=Disable
REG_30<13:10>	0	Rx Link Enable (include LNA/MIXER/PGA/ADC).
		1111=Enable, 0000=Disable
REG_30<9>	0	AF DAC Enable.
		1=Enable, 0=Disable.
REG_30<7:4>	0	PLL/VCO Enable.

		1111=Enable, 0000=Disable
REG_30<3>	0	PA Gain Enable.
		1=Enable, 0=Disable
REG_30<2>	0	MIC ADC Enable.
		1=Enable, 0=Disable
REG_30<1>	0	Tx DSP Enable.
		1=Enable, 0=Disable
REG_30<0>	0	Rx DSP Enable.
		1=Enable, 0=Disable

Squelchuelch, RSSI, Ex-Noise, Gltich

可通过 RF_GetRssi(),RF_GetNoise(),RF_GetGlitch()获取相应的参数,便于设置静噪等级

Register	Default	Description
REG_78<15:8>	0x48	RSSI threshold for Squelch=1, 0.5dB/step
REG_78<7:0>	0x46	RSSI threshold for Squelch =0, 0.5dB/step
REG_4F<14:8>	0x2F	Ex-noise threshold for Squelch =0
REG_4F<6:0>	0x2E	Ex-noise threshold for Squelch =1
REG_4D<7:0>	0x20	Glitch threshold for Squelch =0
REG_4E<7:0>	0x08	Glitch threshold for Squelch =1
REG_4E<13:11>	0b101	Squelch=1 Delay Setting.
REG_4E<10:9>	0b111	Squelch=0 Delay Setting.
REG_67<8:0>	Read Only	0.5dB/step, RSSI (dBm) ~= REG_67 <8:0> /2 − 160.
REG_65<6:0>	Read Only	Ex-noiseindicator, dB/step.
REG_63<7:0>	Read Only	Glitch indicator.
REG_0C<1>	Read Only	Squelch resultoutput.
	\	1=Link; 0=Loss

AFC, ALC, MIC AGC

MIC PGA 增益自动控制可扩展 MIC 信号动态范围,使较大幅度 MIC 信号不失真发射。用在 DMR 方案中发射时应该关掉此功能($REG_19<15>=1$),同时 ALC 功能也应关闭($REG_4B<5>=1$)。

Register	Default	Description
REG_73<13:11>	0b000	Automatic Frequency Correction(AFC) Range Selection. 000=max; 111=min
REG_73<4>	0	Automatic Frequency Correction(AFC) Disable. 1=Disable; 0=Enable.

REG_19<15>	1	Automatic MIC PGA Gain Controller(MIC AGC) Disable. 1=Disable; 0=Enable.
REG_4B<5>	0	AF Level Controller(ALC) Disable. 1=Disable; 0=Enable.

Frequency Setting

设置频率使用 RF_SetFreq(u16 freq_hi16, u16 freq_lo16),注意换算公式: Frequency(Hz)= (freq_hi16<<16 + freq_lo16)*10

Register	Default	Description
REG_38<15:0>	0x3A98	Frequency(Hz)= (freq_hi16<<16 + freq_lo16)*10
REG_39<15:0>	0x0271	

如设置 409.75MHz 频点,则 RF_SetFreq((40975000>>16)&0xFFFF, 40975000&0xFFFF)

Tx Output Power

Register	Default	Description
REG_36<15:8>	0	PA Biasoutput 0~3.2V
		0x00=0V
		0xFF=3.2V
REG_36<7>	0	1=Enable PACTLoutput; 0=Disable(Output 0 V)
REG_36<5:3>	0b111	PA Gain1 Tuning.
		111(max)->000(min)
REG_36<2:0>	0b111	PA Gain2 Tuning.
		111(max)->000(min)

功率输出表(近似)

Power(dBm)	PA Gain1							
PA Gain2	111	110	101	100	011	010	001	000
111	7.26	7.01	6.67	6.17	5.39	4.10	1.52	-5.02
110	6.38	6.08	5.67	6.06	4.12	2.53	-0.72	-9.45
101	5.65	5.30	4.82	4.13	3.03	1.18	-2.58	-13.4
100	5.01	4.62	4.08	3.30	2.08	0.01	-4.16	-16.9
011	4.19	3.73	3.11	2.21	0.84	-1.48	-6.11	-20.5
010	2.60	2.04	1.24	0.13	-1.56	-4.25	-9.50	-22.9
001	1.04	0.35	-0.63	-1.98	-3.90	-6.80	-12.3	-23.7

Interrupt

中断信号可由任意 GPIO 送出(见 GPIO 设置函数),也可轮询 $REG_OC<0>$ 位,高有效,默认低。

中断可由芯片任意 GPIO 口输出,中断通过对 *REG_02* 寄存器写任意值来清除,如 RF_Write (0x02,0x0000); //clear interrupt

中断高电平(或中断寄存器 $REG_0C<0>$ 为 1)有效,得到中断时,要先清除中断,才能去读取中断向量表。

Register	Default	Description
REG_0C<0>	Read Only	Interrupt Indicator.
		1=Interrupt Request; 0=No Request.
REG_3F<15>	0	FSK Tx Finished Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<14>	0	FSK FIFO Almost Empty Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<13>	0	FSK Rx Finished Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<12>	0	FSK FIFO Almost FullInterrupt Enable.
		1=Enable; 0=Disable.
REG_3F<11>	0	DTMF/5TONE Found Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<10>	0	CTCSS/CDCSSTail Found InterruptEnable.
		1=Enable; 0=Disable.
REG_3F<9>	0	CDCSS Found InterruptEnable.
		1=Enable; 0=Disable.
REG_3F<8>	0	CDCSS Lost InterruptEnable.
		1=Enable; 0=Disable.
REG_3F<7>	0	CTCSS Found InterruptEnable.
		1=Enable; 0=Disable.
REG_3F<6>	0	CTCSS Lost InterruptEnable.
		1=Enable; 0=Disable.
REG_3F<5>	0	VoX Found InterruptEnable.
		1=Enable; 0=Disable.
REG_3F<4>	0	VoX Lost InterruptEnable.
		1=Enable; 0=Disable.

REG_3F<3>	0	Squelch Found InterruptEnable.
		1=Enable; 0=Disable.
REG_3F<2>	0	Squelch Lost InterruptEnable.
		1=Enable; 0=Disable.
REG_3F<1>	0	FSK Rx Sync Interrupt Enable.
		1=Enable; 0=Disable.
REG_02<15>	Read Only	FSK Tx Finished Interrupt.
REG_02<14>	Read Only	FSK FIFO Almost Empty Interrupt Enable.
REG_02<13>	Read Only	FSK Rx Finished Interrupt Enable.
REG_02<12>	Read Only	FSK FIFO Almost FullInterrupt.
REG_02<11>	Read Only	DTMF/5TONE Found Interrupt.
REG_02<10>	Read Only	CTCSS/CDCSSTail Found Interrupt.
REG_02<9>	Read Only	CDCSS Found Interrupt.
REG_02<8>	Read Only	CDCSS Lost Interrupt.
REG_02<7>	Read Only	CTCSS Found Interrupt.
REG_02<6>	Read Only	CTCSS Lost Interrupt.
REG_02<5>	Read Only	VoX Found Interrupt.
REG_02<4>	Read Only	VoX Lost Interrupt.
REG_02<3>	Read Only	Squelch Found Interrupt.
REG_02<2>	Read Only	Squelch Lost Interrupt.
REG_02<1>	Read Only	FSK Rx Sync Interrupt.

GPIO

- 1. 根据对应的 PIN 及输出的模式使用 RF_SetGpioOut(u8 num, u8 type, u8 val),其中 num 为 GPIO 序号,type 为输出模式,val 为 GPIO 输出模式下输出值。输出模式详见参考代码 drive.c
- 2. 获取 GPIO 输入值使用 RF_GetGpioIn(u8 num),其中 num 为 GPIO 序号。

Register	Default	Description
REG_0A<6>	Read Only	GPIO0 (PIN28) Input Indicator.
		1=High; 0=Low.
REG_0A<5>	Read Only	GPIO1(PIN29) Input Indicator.
		1=High; 0=Low.
REG_0A<4>	Read Only	GPIO2 (PIN30) Input Indicator.
		1=High; 0=Low.
REG_0A<3>	Read Only	GPIO3 (PIN31) Input Indicator.
		1=High; 0=Low.
REG_0A<2>	Read Only	GPIO4 (PIN32) Input Indicator.

		1=High; 0=Low.
REG_0A<1>	Read Only	GPIO5 (PIN1) Input Indicator.
	,	1=High; 0=Low.
REG_0A<0>	Read Only	GPIO6(PIN2) Input Indicator.
_	,	1=High; 0=Low.
REG_33<14>	1	GPIOO(PIN28) Output Disable.
_		1=Output Disable; 0=Output Enable.
REG_33<13>	1	GPIO1(PIN29) Output Disable.
_		1=Output Disable; 0=Output Enable.
REG_33<12>	1	GPIO2(PIN30) Output Disable.
_		1=Output Disable; 0=Output Enable.
REG_33<11>	1	GPIO3(PIN31) Output Disable.
_		1=Output Disable; 0=Output Enable.
REG_33<10>	1	GPIO4(PIN32) Output Disable.
		1=Output Disable; 0=Output Enable.
REG_33<9>	1	GPIO5(PIN1) Output Disable.
		1=Output Disable; 0=Output Enable.
REG_33<8>	1	GPIO6(PIN2) Output Disable.
		1=Output Disable; 0=Output Enable.
REG_33<6>	0	GPIOO(PIN28) Output Value.
		1= High when Output Enable; 0=Low when Output Enable.
REG_33<5>	0	GPIO1(PIN29) Output Value.
		1= High when Output Enable; 0=Low when Output Enable.
REG_33<4>	0	GPIO2(PIN30) Output Value.
		1= High when Output Enable; 0=Low when Output Enable.
REG_33<3>	0	GPIO3(PIN31) Output Value.
		1= High when Output Enable; 0=Low when Output Enable.
REG_33<2>	0	GPIO4(PIN32) Output Value.
		1= High when Output Enable; 0=Low when Output Enable.
REG_33<1>	0	GPIO5(PIN1) Output Value.
		1= High when Output Enable; 0=Low when Output Enable.
REG_33<0>	0	GPIO6(PIN2) Output Value.
		1= High when Output Enable; 0=Low when Output Enable.
REG_34<15:12>	0x0	GPIO3(PIN31) Output Type Selection.
		The Definitions is the same as REG_34<3:0>.
REG_34<11:8>	0x0	GPIO4(PIN32) Output Type Selection.
		The Definitions is the same as REG_34<3:0>.
REG_34<7:4>	0x0	GPIO5(PIN1) Output Type Selection.
		The Definitions is the same as REG_34<3:0>.
REG_34<3:0>	0x0	GPIO6(PIN2)Output Type Selection.
		0=High/Low
		1=Interrupt

		2=Squelch
		3=VoX
		4=CTCSS/CDCSS Compared Result
		5=CTCSS Compared Result
		6=CDCSS Compared Result
		7=Tail Detected Result
		8=DTMF/5Tone Symbol Received Flag
		9=CTCSS/CDCSS Digital Wave
		Others=Reserved
REG_35<11:8>	0x0	GPIOO(PIN28)Output Type Selection.
		The Definitions is the same as REG_34<3:0>.
REG_35<7:4>	0x0	GPIO1(PIN29) Output Type Selection.
		The Definitions is the same as REG_34<3:0>.
REG_35<3:0>	0x0	GPIO2(PIN30) Output Type Selection.
		The Definitions is the same as REG_34<3:0>.

XTAL

1. 芯片支持 26M, 25.6M, 13M, 12.8M, 19.2M 和 38.4M 的晶体或温补。默认 26M, 若使用 26M 外的其他频率晶体或温补使用 RF_SetXtal(u8 mode), 如 RF_SetXtal(XTAL19M2)

Frequency Scan

- 1. 扫频使用 RF_FreqScan()可以获取 LNAIN 脚的射频频率 (需要较大幅度>-40dBm),返回 1 表示失败,返回 0 表示成功。频率写入到全局变量 *FRQ_HI16* 和 *FRQ_LO16*。
- 2. 扫到频率后,设置接收频率到该频点,使用 RF_CtcDcsScan()可获取 CTCSS 频率或 CDCSS 码,返回 0 表示失败,返回 1 表示收到 CTCSS 且频率写入全局变量 *CtC_FREQ*,返回 2 表示收到 23bit CDCSS,返回 3 表示收到 24bitCDCSS,23 或 24bitCDCSS 均写入全局变量 *DCS_HI12* 和 *DCS_LO12。*

Register	Default	Description
REG_32<15:14>	0b00	FrequencyScan Time.
		00=0.2 Sec; 01=0.4 Sec; 10=0.8 Sec; 11=1.6 Sec
REG_32<0>	0	FrequencyScanEnable.
		1=Enable; 0=Disable.
REG_0D<15>	Read Only	Frequency Scan Indicator.
		1=Busy; 0=Finished.
REG_0D<10:0>	Read Only	Frequency Scan High 16 bits.

REG_0E<15:0>	Read Only	Frequency Scan Low 16 bits. = REG_0D<10:0> <<16 + REG_0E<15:0> , unit is 10Hz
REG_68<15>	Read Only	CTCSS Scan Indicator.
		1=Busy; 0=Found.
REG_68<12:0>	Read Only	CTCSS Frequency.
		Frequency(Hz)
		= REG_68<12:0>/ 20.64888 for 13M/26M XTAL and
		= REG_68<12:0>/ 20.97152 for 12.8M/19.2M/25.6M/38.4M
		XTAL
REG_69<15>	Read Only	CDCSS Scan Indicator.
		1=Busy; 0=Found.
REG_69<14>	Read Only	23 or 24 bit CDCSS Indicator.(for BK4819v3)
		1=24 bit; 0=23 bit.
REG_69<11:0>	Read Only	CDCSS High 12 bits.
REG_6A<11:0>	Read Only	CDCSS Low 12 bits.

Channel Spacing

芯片支持多种带宽,包括常见的 12.5k/25k/6.25k/20k,使用 RF_SetChnSpace(u8 space),输入 参数 SPACE_12K5/SPACE_25K/SPACE_6K25/SPACE_20K 即可。可根据实际需求设置发射接收带宽。

Register	Default	Description
REG_43<14:12>	0b100	RF filter bandwidth (Apass=0.1dB)
		000 = 1.7 kHz
		001 = 2 kHz
		010 = 2.5 kHz
		011 = 3 kHz
		100 = 3.75 kHz
		101 = 4 kHz
		110 = 4.25 kHz
		111 = 4.5 kHz
		if REG_43<5>=1, RF filter bandwidth *=2;
REG_43<11:9>	0b000	RF filter bandwidth when signal is weak (Apass=0.1dB)
		000 = 1.7 kHz
		001 = 2 kHz
		010 = 2.5 kHz
		011 = 3 kHz
		100 = 3.75 kHz
		101 = 4 kHz

		110 = 4.25 kHz
		111 = 4.5 kHz
		if REG_43<5>=1, RF filter bandwidth *=2;
REG_43<8:6>	0b001	AFTxLPF2 filter Band Width (Apass=1dB) Selection.
		100 = 4.5 kHz
		101 = 4.25 kHz
		110 =4kHz
		111 = 3.75 kHz
		000 = 3 kHz (for 25k Channel Space)
		001 = 2.5 kHz (for 12.5k Channel Space)
		010 = 2.75 kHz
		011 =3.5 kHz
REG_43<5:4>	0b00	BW Mode Selection.
		00=12.5k; 01=6.25k; 10=25k/20k

Digital Walkie-Talkie

当做数字收发机使用时需要 bypass 所有音频滤波器,使用 RF_EnterBypass(),退出该模式使用 RF_ExitBypass()

Hardware Design

SeeBK4819Datasheet.