In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler

In [2]: from sklearn.linear_model import LogisticRegression

In [3]: df=pd.read_csv("framingham.csv").dropna()
 df

Out[3]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0
4231	1	58	3.0	0	0.0	0.0	0	1
4232	1	68	1.0	0	0.0	0.0	0	1
4233	1	50	1.0	1	1.0	0.0	0	1
4234	1	51	3.0	1	43.0	0.0	0	0
4237	0	52	2.0	0	0.0	0.0	0	0

3656 rows × 16 columns

In [4]: df.head()

Out[4]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	dia
0	1	39	4.0	0	0.0	0.0	0	0	
1	0	46	2.0	0	0.0	0.0	0	0	
2	1	48	1.0	1	20.0	0.0	0	0	
3	0	61	3.0	1	30.0	0.0	0	1	
4	0	46	3.0	1	23.0	0.0	0	0	
4.6						_			

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3656 entries, 0 to 4237
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	male	3656 non-null	int64
1	age	3656 non-null	int64
2	education	3656 non-null	float64
3	currentSmoker	3656 non-null	int64
4	cigsPerDay	3656 non-null	float64
5	BPMeds	3656 non-null	float64
6	prevalentStroke	3656 non-null	int64
7	prevalentHyp	3656 non-null	int64
8	diabetes	3656 non-null	int64
9	totChol	3656 non-null	float64
10	sysBP	3656 non-null	float64
11	diaBP	3656 non-null	float64
12	BMI	3656 non-null	float64
13	heartRate	3656 non-null	float64
14	glucose	3656 non-null	float64
15	TenYearCHD	3656 non-null	int64
d+vn	$ac \cdot float64(9) i$	n+64(7)	

dtypes: float64(9), int64(7) memory usage: 485.6 KB

In [6]: df.describe()

Out[6]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevaler
count	3656.000000	3656.000000	3656.000000	3656.000000	3656.000000	3656.000000	3656
mean	0.443654	49.557440	1.979759	0.489059	9.022155	0.030361	0
std	0.496883	8.561133	1.022657	0.499949	11.918869	0.171602	0
min	0.000000	32.000000	1.000000	0.000000	0.000000	0.000000	0
25%	0.000000	42.000000	1.000000	0.000000	0.000000	0.000000	0
50%	0.000000	49.000000	2.000000	0.000000	0.000000	0.000000	0
75%	1.000000	56.000000	3.000000	1.000000	20.000000	0.000000	0
max	1.000000	70.000000	4.000000	1.000000	70.000000	1.000000	1

```
In [7]: df.columns
```

```
In [8]: | feature_matrix = df.iloc[:,0:15]
         target_vector = df.iloc[:,-1]
 In [9]: | fs=StandardScaler().fit_transform(feature_matrix)
         logr=LogisticRegression()
         logr.fit(fs,target_vector)
Out[9]: LogisticRegression()
In [10]: observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
In [11]: | prediction=logr.predict(observation)
         print(prediction)
         [1]
In [12]:
         logr.classes
Out[12]: array([0, 1], dtype=int64)
In [13]: logr.predict proba(observation)[0][0]
Out[13]: 0.0002214783507201723
In [14]: logr.predict proba(observation)[0][1]
Out[14]: 0.9997785216492798
```

Random Forest

```
In [17]: g1={'TenYearCHD':{'0':1, "1":2}}
    df=df.replace(g1)
    df
```

Out[17]:

_		male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
	0	1	39	4.0	0	0.0	0.0	0	0
	1	0	46	2.0	0	0.0	0.0	0	0
	2	1	48	1.0	1	20.0	0.0	0	0
	3	0	61	3.0	1	30.0	0.0	0	1
	4	0	46	3.0	1	23.0	0.0	0	0
4	231	1	58	3.0	0	0.0	0.0	0	1
4	232	1	68	1.0	0	0.0	0.0	0	1
4	233	1	50	1.0	1	1.0	0.0	0	1
4	234	1	51	3.0	1	43.0	0.0	0	0
4	237	0	52	2.0	0	0.0	0.0	0	0

3656 rows × 16 columns

```
In [18]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
```

```
In [19]: from sklearn.ensemble import RandomForestClassifier
    rfc = RandomForestClassifier()
    rfc.fit(x_train,y_train)
```

Out[19]: RandomForestClassifier()

```
In [*]: from sklearn.model_selection import GridSearchCV
    grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acgrid_search.fit(x_train,y_train)
```

```
In [ ]:
```