16.10.2019

- 1. Zbiory aksjomatyczna teoria zbiorów.
 - (a) Zbiór pojęcie pierwotne (nie definiujemy go)
 - (b) bycie elementem zbioru pojęcie pierwotne
 - (c) $A, B, C, \ldots X, \ldots$ zbiory
 - (d) $a \in A$ a jest elementem zboiru A (a należy do A)
 - (e) $a \notin A \iff \neg(a \in A) a$ nie należy do A
 - (f) Aksjomat ekstencjonalności
 - i. Zbiory A i B są równe wtedy i tylko wtedy gdy mają te same elementy, czyli
 - ii. $A = B \iff \forall_x (x \in A \iff x \in B)$
 - iii. **Uwaga** aby pokazać, że A=B wystarczy udowodnić dwie implikacje $\forall_x (x\in A\implies x\in B) \land (x\in B\implies x\in A)$
 - (g) Aksjomat zbioru pustego
 - i. Istnieje zbiór pusty czyli taki, który nie ma żadnego elementów
 - ii. \emptyset —zbiór pusty, $\forall_x x \notin \emptyset$
 - iii. Twierdzenie istnieje tylko jeden zbiór pusty
 - D: A, B zbiory puste, $\neg (A = B)$ czyli $A \neq B$
 - Z aksjomatu ekstencjonalności zbiory są różne $\iff \exists_x \neg ((x \in A \implies x \in B) \land (x \in B \implies x \in A)) \iff \exists_x \neg (x \in A \implies x \in B) \lor \neg (x \in B \implies x \in A) \iff$
 - $\exists_x (x \in A \land x \notin B) \lor (x \in B \land a \notin B)$
 - : $x \in A \land x \notin B$ zdanie fałszywe, bo A jest zbiorem pustym
 - : $x \in B \land a \notin B$ zdanie fałszywe, bo B jest zbiorem pustym
 - : Sprzeczność
 - (h) Sposoby definiowania zbiorów
 - i. $A = \{1, 3, \sqrt{2}\}, \mathbb{N} = \{1, 2, 3, \dots\}$
 - ii. $\phi(x)$ funkcja zdaniowa $A = \{x:\, \phi(x)\}$