

Forecasting

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Time series data

https://www.google.com/finance

What is different?

- Data are dependent over time
- Specific pattern types
 - Trends long term increase or decrease
 - Seasonal patterns patterns related to time of week, month, year, etc.
 - Cycles patterns that rise and fall periodically
- Subsampling into training/test is more complicated
- · Similar issues arise in spatial data
 - Dependency between nearby observations
 - Location specific effects
- Typically goal is to predict one or more observations into the future.
- All standard predictions can be used (with caution!)

Beware spurious correlations!

http://www.google.com/trends/correlate

http://www.newscientist.com/blogs/onepercent/2011/05/google-correlate-passes-our-we.html

Also common in geographic analyses

PET PEEVE #208: GEOGRAPHIC PROFILE MAPS WHICH ARE BASICALLY JUST POPULATION MAPS

http://xkcd.com/1138/

Beware extrapolation!

http://www.nature.com/nature/journal/v431/n7008/full/431525a.html

Google data

```
library(quantmod)
from.dat <- as.Date("01/01/08", format="m/d/v")
to.dat <- as.Date("12/31/13", format="m/d/v")
getSymbols("GOOG", src="google", from = from.dat, to = to.dat)
```

```
[1] "GOOG"
```

```
head(GOOG)
```

```
GOOG.Open GOOG.High GOOG.Low GOOG.Close GOOG.Volume
2008-01-02
              692.9
                        697.4
                                 677.7
                                            685.2
                                                      4306848
2008-01-03
              685.3
                                 676.5
                                            685.3
                        686.9
                                                      3252846
2008-01-04
              679.7
                        681.0
                                655.0
                                            657.0
                                                      5359834
2008-01-07
              653.9
                        662.3
                               637.4
                                            649.2
                                                      6404945
2008-01-08
              653.0
                        660.0
                                631.0
                                            631.7
                                                      5341949
2008-01-09
              630.0
                        653.3
                                 622.5
                                            653.2
                                                      6744242
                                                                                         7/16
```

Summarize monthly and store as time series

```
mGoog <- to.monthly(GOOG)
googOpen <- Op(mGoog)
ts1 <- ts(googOpen,frequency=12)
plot(ts1,xlab="Years+1", ylab="GOOG")</pre>
```


Example time series decomposition

- Trend Consistently increasing pattern over time
- Seasonal When there is a pattern over a fixed period of time that recurs.
- Cyclic When data rises and falls over non fixed periods

https://www.otexts.org/fpp/6/1

Decompose a time series into parts

plot(decompose(ts1),xlab="Years+1")

Decomposition of additive time series

Training and test sets

```
tslTrain <- window(tsl,start=1,end=5)
tslTest <- window(tsl,start=5,end=(7-0.01))
tslTrain
```

```
Feb
               Mar
                     Apr
                           May
                                 Jun
                                       Jul
                                             Aug
                                                   Sep
                                                         Oct
                                                               Nov
    Jan
                                                                     Dec
1 692.9 528.7 471.5 447.7 578.3 582.5 519.6 472.5 476.8 412.1 357.6 286.7
2 308.6 334.3 333.3 343.8 395.0 418.7 424.2 448.7 459.7 493.0 537.1 588.1
3 627.0 534.6 529.2 571.4 526.5 480.4 445.3 489.0 455.0 530.0 615.7 563.0
4 596.5 604.5 617.8 588.8 545.7 528.0 506.7 611.2 540.8 509.9 580.1 600.0
5 652.9
```

Simple moving average

$$Y_t = \frac{1}{2 * k + 1} \sum_{j=-k}^{k} y_{t+j}$$

```
plot(ts1Train)
lines(ma(ts1Train,order=3),col="red")
```

Exponential smoothing

Example - simple exponential smoothing

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_{t-1}$$

		Seasonal Component	
Trend	N	A	M
Component	(None)	(Additive)	(Multiplicative)
N (None)	(N,N)	(N,A)	(N,M)
A (Additive)	(A,N)	(A,A)	(A,M)
A _d (Additive damped)	(A_d,N)	(A_d,A)	(A_d,M)
M (Multiplicative)	(M,N)	(M,A)	(M,M)
M _d (Multiplicative damped)	(M_d,N)	(M_d,A)	(M_d,M)

https://www.otexts.org/fpp/7/6

Exponential smoothing

```
ets1 <- ets(ts1Train, model="MMM")
fcast <- forecast(ets1)
plot(fcast); lines(ts1Test, col="red")</pre>
```

Forecasts from ETS(M,Md,M)

Get the accuracy

accuracy(fcast,ts1Test)

```
        ME
        RMSE
        MAE
        MPE
        MAPE
        MASE
        ACF1 Theil's U

        Training set
        0.9464
        48.78
        39.35 -0.3297
        7.932
        0.3733
        0.07298
        NA

        Test set
        156.1890
        205.76
        160.78
        18.1819
        18.971
        1.5254
        0.77025
        3.745
```

Notes and further resources

- Forecasting and timeseries prediction is an entire field
- · Rob Hyndman's Forecasting: principles and practice is a good place to start
- Cautions
 - Be wary of spurious correlations
 - Be careful how far you predict (extrapolation)
 - Be wary of dependencies over time
- · See quantmod or quandl packages for finance-related problems.