

SF1624 Algebra och geometri Tentamen Onsdag, 13 januari 2016

Skrivtid: 08:00–13:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer

Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Del A på tentamen utgörs av de tre första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan.

De tre följande uppgifterna utgör del B och de tre sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	Α	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

DEL A

- 1. Låt A = (1, -1, 1), B = (1, 3, 1), C = (1, 1, 0) vara punkter i \mathbb{R}^3 .
 - (a) Beskriv på parameterform planet P som innehåller A, B och C och ange ett system av linjära ekvationer som beskriver P. (2 p)
 - (b) Låt L vara linjen genom A och B. Beräkna avståndet mellan C och linjen L.

(2p)

Lösningsförslag

(a): Bilda två vektorer i planet, $\vec{AC}=(0,2,-1)$ och $\vec{BC}=(0,-2,-1)$. Planet P kan då skrivas på parameterform som

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} + t \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix}$$

Planets normalvektor ges av $\vec{AC} \times \vec{BC} = (-4,0,0)$ vilket ger planets ekvation -4x + D = 0. Planet ska gå genom punkten (1,1,0) vilket ger att D = 4. Ekvationen för planet blir -4x + 4 = 0 dvs x = 1 vilket är ett plan parallellt med yz-planet och som skär x-axeln i x = 1.

- (b): En linje som går mellan A och B har riktningsvektorn $\overrightarrow{AB} = (0,4,0)$. Dvs den är parallell med y-axeln. Avståndet från C = (1,1,0) till linjen blir då lika med 1.
- 2. Betrakta följande matris:

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & -2 \end{bmatrix}$$

(a) Avgör om vektorn
$$\begin{bmatrix} -1\\1\\1 \end{bmatrix}$$
 ligger i bilden im (A) . (2 **p**)

(b) Bestäm en bas till nollrummet ker(A). (2 p)

Lösningsförslag

(a): Vektorn
$$\begin{bmatrix} -1\\1\\1 \end{bmatrix}$$
 ligger i im (A) om systemet $A\vec{x} = \begin{bmatrix} -1\\1\\1 \end{bmatrix}$ är lösbart.

Gauss-elimination ger

$$\begin{bmatrix} 2 & 4 & 2 & | & -1 \\ 1 & 1 & 0 & | & 1 \\ 2 & 0 & -2 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & | & -1/2 \\ 0 & 1 & 1 & | & -3/2 \\ 0 & 0 & 0 & | & -2 \end{bmatrix}$$

Systemet är inte lösbart dvs vektorn $\left[\begin{array}{c} -1 \\ 1 \\ 1 \end{array} \right]$ ligger inte i $\operatorname{im}(A)$.

- (b): Basen till $\ker(A)$ ges av lösningsmängden till $A\vec{x} = \vec{0}$. Gausselimination av A, se uppgift (a), ger lösningen $t \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ där t är godtyckligt tal, dvs $\left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$ är en bas till $\ker(A)$.
- 3. Låt

$$A = \begin{bmatrix} -1 & 4 \\ 0 & 1 \end{bmatrix}$$

- (a) Bestäm egenvärdena och motsvarande egenvektorerna till matrisen A. (1 p)
- (b) Bestäm en 2×2 -matris S så att $S^{-1}AS$ är en diagonalmatris. (1 p)
- (c) Beräkna A^{139} . (2 p)

Lösningsförslag

(a): Egenvärdena ges av nollställena till det karakteristiska polynomet

$$\det(A - \lambda I) = \begin{vmatrix} (-1 - \lambda) & 4 \\ 0 & (1 - \lambda) \end{vmatrix} = \lambda^2 - 1 = 0 \Rightarrow (\lambda_1 = -1, \lambda_2 = 1)$$

Egenvektorerna som motsvarar $\lambda_1 = -1$ fås ur ekvationen

$$\det(A-\lambda_1I)\vec{v}=0\Rightarrow\left[\begin{array}{cc}0&4\\0&2\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}0\\0\end{array}\right]\Rightarrow\vec{v}=t\left[\begin{array}{c}1\\0\end{array}\right].$$

En egenvektor motsvarande λ_1 är exempelvis $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. På samma sätt får vi att $\vec{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ är en egenvektor som svarar mot $\lambda_2 = 1$.

- (b): Egenvektorerna är kolonner i den sökta matrisen S. Alltså är $S = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$.
- (c): Låt D beteckna diagonalmatrisen som ges av $D=S^{-1}AS$. Från detta samband får vi att $A=SDS^{-1}$. Därför blir

$$A^{139} = (SDS^{-1})^{139} = SDS^{-1}SDS^{-1} \cdots SDS^{-1} = SD^{139}S^{-1}.$$

$$A^{139} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^{139} \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 1 \end{bmatrix}$$

DEL B

4. För att bestämma längdutvidgningskoefficienten λ för en metall gjordes ett experiment där en metallstång upphettades och längden avlästes. Använd minsta kvadratmetoden för att ur dessa data bestämma λ .

Temp (C°)	20	22	24	26
Längd (mm)	1	2	4	5

Följande linjära samband mellan temperaturen T och längden L gäller:

$$L(T) = L_0 + L_1(T - T_m),$$

där $T_m=23$ är medelvärdet av de fyra temperaturvärdena. Längdutvidgningskoefficienten λ fås ur sambandet $L_1=\lambda L_0$.

Lösningsförslag

 L_0 och L_1 uppfyller ekvationer:

Minstakvadratlösningen till detta ges av lösningen till:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 1 & -1 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} L_0 \\ L_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 0 \\ 0 & 20 \end{bmatrix} \begin{bmatrix} L_0 \\ L_1 \end{bmatrix} = \begin{bmatrix} 12 \\ 14 \end{bmatrix}$$

Vi får $L_0 = 3$ och $L_1 = 0.7$ som ges $\lambda = L_1/L_0 = \frac{0.7}{3}$.

5. (a) Motivera varför det finns precis en linjär avbildning $f\colon \mathbb{R}^2 \to \mathbb{R}^3$ sådan att

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}2\\1\\-1\end{bmatrix}, \quad f\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}-1\\-1\\-1\end{bmatrix} \quad \text{och} \quad f\left(\begin{bmatrix}3\\1\end{bmatrix}\right) = \begin{bmatrix}0\\-1\\-3\end{bmatrix}.$$

(2 p)

(b) Bestäm matrisen till f i standardbaserna.

(2p)

Lösningsförslag

(a): Vektorerna $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ och $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ är ickeparallella och därför bildar de en bas till \mathbb{R}^2 . Det innebär att det finns precis en linjär avbildning f som uppfyller de första två ekvationerna.

Eftersom $\begin{bmatrix} 3 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, så måste vi kontrollera om

$$f\left(\begin{bmatrix} 3\\1\end{bmatrix}\right) = 2f\left(\begin{bmatrix} 1\\-1\end{bmatrix}\right) + f\left(\begin{bmatrix} 1\\1\end{bmatrix}\right)$$

för att inse att f är en väldefinierad linjär avbilding. Men detta stämmer:

$$\begin{bmatrix} 0 \\ -1 \\ -3 \end{bmatrix} = 2 \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}.$$

(b): Notera att:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ och } \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{-1}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Detta ger:

$$f\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \frac{1}{2}f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) + \frac{1}{2}f\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \frac{1}{2}\begin{bmatrix}2\\1\\-1\end{bmatrix} + \frac{1}{2}\begin{bmatrix}-1\\-1\\-1\end{bmatrix} = \begin{bmatrix}1/2\\0\\-1\end{bmatrix}$$

$$f\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \frac{-1}{2}f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) + \frac{1}{2}f\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \frac{-1}{2}\begin{bmatrix}2\\1\\-1\end{bmatrix} + \frac{1}{2}\begin{bmatrix}-1\\-1\\-1\end{bmatrix} = \begin{bmatrix}-3/2\\-1\\0\end{bmatrix}$$

Vi kan konstatera att matrisen till f i standardbaserna ges av:

$$\begin{bmatrix} 1/2 & -3/2 \\ 0 & -1 \\ -1 & 0 \end{bmatrix}$$

6. Vektorrummet W spänns upp av basen $\mathcal{B} = \{\vec{u}, \vec{v}\}$, där

$$\vec{u} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} \quad \text{och} \quad \vec{v} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

(a) Låt \mathcal{C} vara en annan bas till W sådant att matrisen $T = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ är övergångsmatrisen från basen \mathcal{B} till basen \mathcal{C} . Bestäm basen \mathcal{C} .

(b) Avgör om vektorn $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ ligger i W och i så fall bestäm vektorns koordinater i baserna \mathcal{B} och \mathcal{C} . (2 p)

Lösningsförslag

(a): Låt $C = {\vec{a}, \vec{b}}$. Notera att:

$$T^{-1} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}$$

Övergångsmatrisen från basen \mathcal{B} till basen \mathcal{C} är en matris T så att $T[\vec{x}]_{\mathcal{B}} = [\vec{x}]_{\mathcal{C}}$, som ger $[\vec{x}]_{\mathcal{B}} = T^{-1}[\vec{x}]_{\mathcal{C}}$. Därmed får vi:

$$[\vec{a}]_{\mathcal{B}} = T^{-1}[\vec{a}]_{\mathcal{C}} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$[\vec{b}]_{\mathcal{B}} = T^{-1}[\vec{b}]_{\mathcal{C}} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Det betyder att:

$$\vec{a} = 3 \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} - 2 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -7 \\ -3 \\ -5 \end{bmatrix} \text{ och } \vec{b} = - \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

(b): Låt $\vec{w} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$. Betrakta följande ekvation systemet:

$$\left[
\begin{array}{cc|c}
-1 & 2 & 0 \\
-1 & 0 & 2 \\
-1 & 1 & 1
\end{array}
\right]$$

Gauss elimination ger:

$$\begin{bmatrix} -1 & 2 & 0 \\ -1 & 0 & 2 \\ -1 & 1 & 1 \end{bmatrix} \mapsto \begin{bmatrix} -1 & 2 & 0 \\ 0 & -2 & 2 \\ 0 & -1 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Som betyder att:

$$\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = -2 \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

Vi kan konstatera att \vec{w} ligger i W och att:

$$[\vec{w}]_{\mathcal{B}} = \begin{bmatrix} -2\\-1 \end{bmatrix} \text{ och } [\vec{w}]_{\mathcal{C}} = \begin{bmatrix} 1 & 1\\2 & 3 \end{bmatrix} \begin{bmatrix} -2\\-1 \end{bmatrix} = \begin{bmatrix} -3\\-7 \end{bmatrix}$$

DEL C

7. För en $n \times n$ matris

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

kallas summan av de diagonala elementerna $a_{11} + a_{22} + \cdots + a_{nn}$ för **spåret** av A och betecknas med tr(A).

- (a) Låt A och B vara $n \times n$ -matriser. Bevisa att tr(AB) = tr(BA). Konkludera att $tr(A) = tr(B^{-1}AB)$ under förutsättningen att B är inverterbar. (2 p)
- (b) Låt $f: \mathbb{R}^n \to \mathbb{R}^n$ vara en linjär avbildning. Låt M vara matrisen till f med avseende på en bas \mathcal{B} . Spåret av avbildningen f definieras som spåret till matrisen M. Visa att detta är väldefinierad, dvs. att spåret är oberoende av basvalet. (2 p)

Lösningsförslag

(a): Låt:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$AB = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} \qquad BA = \begin{bmatrix} d_{11} & d_{12} & \cdots & d_{1n} \\ d_{21} & d_{22} & \cdots & d_{2n} \\ \vdots & \vdots & & \vdots \\ d_{n1} & d_{n2} & \cdots & d_{nn} \end{bmatrix}$$

Notera att vi har följande likheter:

Som ger:

$$tr(AB) = c_{11} + c_{22} + \dots + c_{nn} = d_{11} + d_{22} + \dots + d_{nn} = tr(BA)$$

(b): Låt \mathcal{B} och \mathcal{C} vara två baser till \mathbb{R}^n . Låt M vara matrisen till f med avseende på basen \mathcal{B} och N vara matrisen till f med avseende på basen \mathcal{C} . Vi måste bevisa att $\operatorname{tr}(M) = \operatorname{tr}(N)$.

Komma ihåg att $N = S^{-1}MS$ där S är övergångsmatrisen från bas C till B. Vi kan använda del (a) av uppgiften för att få:

$$\operatorname{tr}(N) = \operatorname{tr}(S^{-1}MS) = \operatorname{tr}((S^{-1}M)S) = \operatorname{tr}(S(S^{-1}M)) = \operatorname{tr}((SS^{-1})M) = \operatorname{tr}(M)$$

- 8. Låt A vara en symmetrisk och inverterbar matris.
 - (a) Bevisa att inversen A^{-1} också är en symmetrisk matris. (2 p)
 - (b) Bevisa att $(\vec{x})^T A \vec{x}$ är en positivt definit kvadratisk form om och endast om $(\vec{x})^T A^{-1} \vec{x}$ är en positivt definit kvadratisk form. (2 p)

Lösningsförslag

(a): Matrisen A är symmetrisk, som ger $A = A^T$. Därför:

$$A(A^{-1})^T = A^T(A^{-1})^T = (A^{-1}A)^T = I^T = I$$

om vi multiplicerar båda sidor med A^{-1} , får vi:

$$(A^{-1})^T = A^{-1}$$

som säger att A är symmetrisk.

(b): Låt B vara en symmetrisk matris. En kvadratisk form $(\vec{x})^T B \vec{x}$ är positivt definit om och endast om alla egenvärden till B är positiva.

Det betyder att för att bevisa (b), måste vi bevisa att egenvärdena till A är positiva om och endast om egenvärdena till A^{-1} är positiva. För detta ändamål skulle det vara tillräckligt att visa att λ är egenvärde till A^{-1} om och endast om $\frac{1}{\lambda}$ är egenvärde till A.

Kom ihåg att λ är ett egenvärde till A^{-1} om och endast om det finns en vektor $\vec{v} \neq \vec{0}$ så att $A^{-1}\vec{v} = \lambda \vec{v}$. Om vi multiplicerar båda sidor av den likheten med A, får vi $\vec{v} = \lambda A \vec{v}$. Eftersom $\vec{v} \neq \vec{0}$, har vi $\lambda \neq 0$. Vi kan därför dela båda sidor av sista likheten med λ och får

$$A(\vec{v}) = \frac{1}{\lambda}\vec{v}$$

Det betyder att λ är egenvärden till A^{-1} om och endast om $\frac{1}{\lambda}$ är en egenvärde till A.

9. Låt \vec{v}_1 , \vec{v}_2 , och \vec{v}_3 vara ortonormala vektorer i \mathbb{R}^3 . Beräkna beloppet av determinanten:

$$\left|\det\begin{bmatrix}\vec{v}_1+\vec{v}_2 & \vec{v}_2+\vec{v}_3 & \vec{v}_3+\vec{v}_1\end{bmatrix}\right|$$

(4 p)

Lösningsförslag

Determinanten är multilinjär och den är 0 om två kolonner är lika eller om en kolonn är linjärt beroende av de andra. Således:

$$\det \begin{bmatrix} \vec{v}_1 + \vec{v}_2 & \vec{v}_2 + \vec{v}_3 & \vec{v}_3 + \vec{v}_1 \end{bmatrix} =$$

$$= \det \begin{bmatrix} \vec{v}_1 & \vec{v}_2 + \vec{v}_3 & \vec{v}_3 + \vec{v}_1 \end{bmatrix} + \det \begin{bmatrix} \vec{v}_2 & \vec{v}_2 + \vec{v}_3 & \vec{v}_3 + \vec{v}_1 \end{bmatrix} =$$

$$=\det\begin{bmatrix}\vec{v}_1 & \vec{v}_2 & \vec{v}_3 + \vec{v}_1\end{bmatrix} + \det\begin{bmatrix}\vec{v}_1 & \vec{v}_3 & \vec{v}_3 + \vec{v}_1\end{bmatrix} + \det\begin{bmatrix}\vec{v}_2 & \vec{v}_2 & \vec{v}_3 + \vec{v}_1\end{bmatrix} + \det\begin{bmatrix}\vec{v}_2 & \vec{v}_3 & \vec{v}_3 + \vec{v}_1\end{bmatrix} = \\ = \det\begin{bmatrix}\vec{v}_1 & \vec{v}_2 & \vec{v}_3 + \vec{v}_1\end{bmatrix} + \det\begin{bmatrix}\vec{v}_2 & \vec{v}_3 & \vec{v}_3 + \vec{v}_1\end{bmatrix} = \\ = \det\begin{bmatrix}\vec{v}_1 & \vec{v}_2 & \vec{v}_3\end{bmatrix} + \det\begin{bmatrix}\vec{v}_1 & \vec{v}_2 & \vec{v}_1\end{bmatrix} + \det\begin{bmatrix}\vec{v}_2 & \vec{v}_3 & \vec{v}_3\end{bmatrix} + \det\begin{bmatrix}\vec{v}_2 & \vec{v}_3 & \vec{v}_1\end{bmatrix} = \\ = \det\begin{bmatrix}\vec{v}_1 & \vec{v}_2 & \vec{v}_3\end{bmatrix} + \det\begin{bmatrix}\vec{v}_2 & \vec{v}_3 & \vec{v}_1\end{bmatrix} = 2\det\begin{bmatrix}\vec{v}_1 & \vec{v}_2 & \vec{v}_3\end{bmatrix}$$

För att \vec{v}_1 , \vec{v}_2 , och \vec{v}_3 vara ortonormala vektorer i \mathbb{R}^3 ,

$$\det\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} = \pm 1$$

Vi kan konstatera att:

$$\det\begin{bmatrix}\vec{v}_1+\vec{v}_2 & \vec{v}_2+\vec{v}_3 & \vec{v}_3+\vec{v}_1\end{bmatrix}=\pm 2$$

och därför är determinantens belopp 2.