Two-Sample Kernel Based Tests

Nelson Ray (joint work with Susan Holmes)

Stanford University

February 24, 2012

The two-sample problem

- The two-sample problem
- Priedman's two-sample test [1]: leverage regression and classification techniques

- The two-sample problem
- ② Friedman's two-sample test [1]: leverage regression and classification techniques
- Univariate data and linear scoring functions: permutation t-test

- The two-sample problem
- ② Friedman's two-sample test [1]: leverage regression and classification techniques
- Univariate data and linear scoring functions: permutation t-test
- Twitter example for text data

- The two-sample problem
- Priedman's two-sample test [1]: leverage regression and classification techniques
- Univariate data and linear scoring functions: permutation t-test
- Twitter example for text data
- Image data: airplanes and cars / pigeons and roosters

Problem

 $\{\mathbf{x}_i\}_1^N$ from $p(\mathbf{x})$ and $\{\mathbf{z}_i\}_1^M$ from $q(\mathbf{z})$ testing \mathcal{H}_A : $p \neq q$ against \mathcal{H}_0 : p = q

Problem

$$\{\mathbf{x}_i\}_1^N$$
 from $p(\mathbf{x})$ and $\{\mathbf{z}_i\}_1^M$ from $q(\mathbf{z})$ testing \mathcal{H}_A : $p \neq q$ against \mathcal{H}_0 : $p = q$

Solutions

1D/parametric/shift *t*-test

Problem

```
\{\mathbf{x}_i\}_1^N from p(\mathbf{x}) and \{\mathbf{z}_i\}_1^M from q(\mathbf{z}) testing \mathcal{H}_A: p \neq q against \mathcal{H}_0: p = q
```

Solutions

1D/parametric/shift *t*-test

1D/non-parametric/shift randomization test

Problem

```
\{\mathbf{x}_i\}_1^N from p(\mathbf{x}) and \{\mathbf{z}_i\}_1^M from q(\mathbf{z}) testing \mathcal{H}_A: p \neq q against \mathcal{H}_0: p = q
```

- 1D/parametric/shift *t*-test
- 1D/non-parametric/shift randomization test
- pD/parametric/shift Hotelling's T^2 -test

Problem

```
\{\mathbf{x}_i\}_1^N from p(\mathbf{x}) and \{\mathbf{z}_i\}_1^M from q(\mathbf{z}) testing \mathcal{H}_A: p \neq q against \mathcal{H}_0: p = q
```

- 1D/parametric/shift t-test
- 1D/non-parametric/shift randomization test
- pD/parametric/shift Hotelling's T²-test
- 1D/non-parametric/omnibus Mann-Whitney U/Wilcoxon rank-sum test

Problem

```
\{\mathbf{x}_i\}_1^N from p(\mathbf{x}) and \{\mathbf{z}_i\}_1^M from q(\mathbf{z}) testing \mathcal{H}_A: p \neq q against \mathcal{H}_0: p = q
```

- 1D/parametric/shift *t*-test
- 1D/non-parametric/shift randomization test
- pD/parametric/shift Hotelling's T²-test
- 1D/non-parametric/omnibus Mann-Whitney U/Wilcoxon rank-sum test
- pD/non-parametric/omnibus Friedman-Rafsky test

Problem

```
\{\mathbf{x}_i\}_1^N from p(\mathbf{x}) and \{\mathbf{z}_i\}_1^M from q(\mathbf{z}) testing \mathcal{H}_A: p \neq q against \mathcal{H}_0: p = q
```

- 1D/parametric/shift *t*-test
- 1D/non-parametric/shift randomization test
- pD/parametric/shift Hotelling's T²-test
- $1 D/non\text{-parametric/omnibus} \ \ Mann\text{-Whitney} \ \ U/Wilcoxon \ rank\text{-sum test}$
- pD/non-parametric/omnibus Friedman-Rafsky test
- ker/non-parametric/omnibus KMMD test

 $\textbf{ 0} \ \ \mathsf{Pool the two samples} \ \{\mathbf{u}_i\}_1^{N+M} = \{\mathbf{x}_i\}_1^N \cup \{\mathbf{z}_i\}_1^M.$

- ② Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.

- ② Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- **3** Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{u}_i)\}_1^{N+M}$.

- $\textbf{ 1 Pool the two samples } \{\mathbf{u}_i\}_1^{N+M} = \{\mathbf{x}_i\}_1^N \cup \{\mathbf{z}_i\}_1^M.$
- ② Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- **3** Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{u}_i)\}_1^{N+M}$.
- **3** Calculate a univariate two-sample test statistic $T = T(\{s_i\}_1^N, \{s_i\}_{N+1}^{N+M})$.

- ② Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- **3** Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{u}_i)\}_1^{N+M}$.
- Calculate a univariate two-sample test statistic $T = T(\{s_i\}_{1}^{N}, \{s_i\}_{N+1}^{N+M})$.
- Determine the permutation null distribution of the above statistic to yield a p-value.

Permutation t-test Connection

With univariate data and linear scoring functions, Friedman's test reduces to the permutation t-test.

Permutation t-test Connection

With univariate data and linear scoring functions, Friedman's test reduces to the permutation t-test.

With multivariate data, the test is close to Hotelling's T^2 -test.

Warm-up (1D)

$$x_i \sim \mathcal{N}(0,1), z_i \sim \mathcal{N}(3,1), \{u_i\}_{i=1}^{20} = \{x_i\}_1^{10} \cup \{z_i\}_1^{10}$$

Warm-up (1D)

$$x_i \sim \mathcal{N}(0,1), z_i \sim \mathcal{N}(3,1), \{u_i\}_{i=1}^{20} = \{x_i\}_1^{10} \cup \{z_i\}_1^{10}$$

 $\hat{f}(u_i) = \hat{\beta}_0 + \hat{\beta}_1 u_i$

6 / 24

Warm-up (1D)

$$x_{i} \sim \mathcal{N}(0,1), z_{i} \sim \mathcal{N}(3,1), \{u_{i}\}_{i=1}^{20} = \{x_{i}\}_{1}^{10} \cup \{z_{i}\}_{1}^{10}$$
$$\hat{f}(u_{i}) = \hat{\beta}_{0} + \hat{\beta}_{1}u_{i}$$
$$|T(\{u_{i}\}_{1}^{N}, \{u_{i}\}_{N+1}^{N+M})| = 6.12 = |T(\{s_{i}\}_{1}^{N}, \{s_{i}\}_{N+1}^{N+M})|$$

Twitter Example

Barack Obama

@BarackObama Washington, DC 44th President of the United States http://www.barackobama.com

Sarah Palin 🤣

@SarahPalinUSA Alaska

Former Governor of Alaska and GOP Vice Presidential Nominee http://www.facebook.com/sarahpalin

BarackObama Barack Obama
Speaking today about the United States' policy in the Middle

East and North Africa. Watch live: http://wh.gov/live #MEspeech

BarackObama Barack Obama

Delivering the commencement address at the United States Coast Guard Academy. Watch live at 11:30am ET:

www.wh.gov/live

18 May

C Follow

s Favorites Following Followers Lists

You betcha!! MT "@AlaskaAces: Alaska Aces are 2011 Kelly Cup Champs w/ 5-3 win over Kalamazoo Wings! Aces win ECHL Championship series 4-1"

Yes, they did & we couldn't be any more blessed! RT" @C4Palin: Track Palin and Britta Hanson Married http://bit.ly/jCkT3i #tcot #palin" 19 May

SarahPalinUSA Sarah Palin

I'm jealous! RT"@secupp: At the Wasilla Sportsman's Warehouse w/Joe the Plumber, Colorado Buck, Ken Onion and Sarah's parents. Good people."

Twitter Data

Raw:

"BarackObama: We need to reward education reforms that are driven not by Washington, but by principals and teachers and parents. http://OFA.BO/6p2EMy" $\,$

"SarahPalinUSA: You betcha!! MT \"@AlaskaAces: Alaska Aces are 2011 Kelly Cup Champs w/ 5-3 win over Kalamazoo Wings! Aces win ECHL Championship series 4-1\""

After pre-processing:

"we need to reward education reforms that are driven not by washington but by principals and teachers and parents "
"you betcha mt alaskaaces alaska aces are kelly cup champs w win over kalamazoo wings aces win echl championship series "

Compares two strings based on the their length k contiguous subsequences.

• \mathcal{X} is our input space, built up from an alphabet $\mathcal{A} = \{a, b, \dots, z, \}$ with $|\mathcal{A}| = 27$.

- \mathcal{X} is our input space, built up from an alphabet $\mathcal{A} = \{a, b, \dots, z, \}$ with $|\mathcal{A}| = 27$.
- The k-spectrum ($k \ge 1$) of an input sequence is the set of all length k contiguous subsequences it contains.

- \mathcal{X} is our input space, built up from an alphabet $\mathcal{A} = \{a, b, \dots, z, \}$ with $|\mathcal{A}| = 27$.
- The k-spectrum ($k \ge 1$) of an input sequence is the set of all length k contiguous subsequences it contains.
- Define the feature map from \mathcal{X} to $\mathbb{R}^{|\mathcal{A}|^k}$ by $\Phi_k(x) = (\phi_a(x))_{a \in \mathcal{A}^k}$ where $\phi_a(x)$ is the number of times a occurs in x: $\{\#aaa, \#aab, \#aac, \ldots, \}$.

- \mathcal{X} is our input space, built up from an alphabet $\mathcal{A} = \{a, b, \dots, z, \}$ with $|\mathcal{A}| = 27$.
- The k-spectrum ($k \ge 1$) of an input sequence is the set of all length k contiguous subsequences it contains.
- Define the feature map from \mathcal{X} to $\mathbb{R}^{|\mathcal{A}|^k}$ by $\Phi_k(x) = (\phi_a(x))_{a \in \mathcal{A}^k}$ where $\phi_a(x)$ is the number of times a occurs in x: $\{\#aaa, \#aab, \#aac, \ldots, \}$.
- $K_k(x,y) = \langle \Phi_k(x), \Phi_k(y) \rangle$.

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x) + \beta_0, \quad h_m(x) \text{ basis functions}$$

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x) + \beta_0, \quad h_m(x) \text{ basis functions}$$

To estimate β and β_0 , minimize

$$H(\beta, \beta_0) = \sum_{i=1}^{N} V(y_i - f(x_i)) + \frac{\lambda}{2} \sum_{m=1}^{M} \beta_m^2.$$

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x) + \beta_0, \quad h_m(x) \text{ basis functions}$$

To estimate β and β_0 , minimize

$$H(\beta, \beta_0) = \sum_{i=1}^{N} V(y_i - f(x_i)) + \frac{\lambda}{2} \sum_{m=1}^{M} \beta_m^2.$$

is taken to be ϵ -insensitive loss:

$$V_{\epsilon}(r) = \left\{ egin{array}{ll} 0 & ext{if } |r| < \epsilon, \ |r| - \epsilon & ext{otherwise}. \end{array}
ight.$$

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x) + \beta_0, \quad h_m(x) \text{ basis functions}$$

To estimate β and β_0 , minimize

$$H(\beta, \beta_0) = \sum_{i=1}^{N} V(y_i - f(x_i)) + \frac{\lambda}{2} \sum_{m=1}^{M} \beta_m^2.$$

V is taken to be ϵ -insensitive loss:

$$V_{\epsilon}(r) = \left\{ egin{array}{ll} 0 & ext{if } |r| < \epsilon, \ |r| - \epsilon & ext{otherwise}. \end{array}
ight.$$

The solution has the form $\hat{f}(x) = \sum_{i=1}^{N} \hat{\alpha}_i K(x, x_i)$, where $K(x, y) = \langle h(x), h(y) \rangle$.

Twitter Example

p < .001:

Power Simulations at .05 Level

Image Data (Cars)

Caltech 101 Object Categories [2] The cars are 300×197 grayscale.

Planes Before

The planes aren't.

Planes After

Polynomial Kernel

Each $m \times n$ grayscale image is converted to a vector of length p = mn.

Polynomial Kernel

Each $m \times n$ grayscale image is converted to a vector of length p = mn. Given $X \in \mathbb{R}^{n \times p}$, the linear kernel is given by

$$K(x, x') = \langle x, x' \rangle = \langle \Phi(x), \Phi(x') \rangle.$$

The kernel matrix is given simply by $XX^T \succeq 0$. This corresponds to the identity mapping: $\Phi(x) = x$.

Polynomial Kernel

Each $m \times n$ grayscale image is converted to a vector of length p = mn. Given $X \in \mathbb{R}^{n \times p}$, the linear kernel is given by

$$K(x, x') = \langle x, x' \rangle = \langle \Phi(x), \Phi(x') \rangle.$$

The kernel matrix is given simply by $XX^T \succeq 0$. This corresponds to the identity mapping: $\Phi(x) = x$.

The homogeneous polynomial kernel,

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle = \langle x, x' \rangle^d,$$

corresponds to the mapping

$$\Phi(x) = [x_1^d, \dots, x_p^d, x_1^{d-1} x_2, \dots, x_p^{d-1} x_{p-1}]^T \in \mathbb{R}^{d'}, \text{ where } d' = \binom{d+N-1}{d}.$$

Standardization

In order to mitigate the effects of global differences in illumination, each vector is scaled so that it has mean zero and unit norm.

Standardization

In order to mitigate the effects of global differences in illumination, each vector is scaled so that it has mean zero and unit norm.

Unscaled linear kernel matrix, left; scaled, right

Car/Airplane Example (Linear Kernel)

Roosters

Pigeons

Rooster/Pigeon Example (Linear Kernel)

p = .138

Rooster/Pigeon Example (Inhomogeneous Degree 4)

p < .001

• String Kernels:

- String Kernels: k-spectrum, decay factors
- Side Information:

- String Kernels: k-spectrum, decay factors
- Side Information: phylogenetic tree, Twitter post times
- Heterogeneous Data (Wikipedia pages):

- String Kernels: *k*-spectrum, decay factors
- Side Information: phylogenetic tree, Twitter post times
- Heterogeneous Data (Wikipedia pages): optimal combinations of kernels via SDPs, KL divergence

References I

J. Friedman, "On Multivariate Goodness-of-Fit and Two-Sample Testing," *Proceedings of Phystat2003*, http://www.slac.stanford.edu/econf/C, vol. 30908, 2003.

L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories," *Computer Vision and Image Understanding*, vol. 106, no. 1, pp. 59–70, 2007.