南开大学 2020 级文科高等数学统考试卷 (A卷)答案

一、填空题(每小题3分,共36分)

- 1. -2
- 2.2
- 3.3
- 4. 1

5.
$$2x+y-2=0$$

6.
$$x \sin x + \cos x + C$$

7.
$$5 - \frac{1}{e}$$

- 8.19
- 9. 2
- 10.5
- 11.2

12.2

1.解:

$$\lim_{x \to 0} \left(\frac{1}{x} - \cot x \right) = \lim_{x \to 0} \frac{\sin x - x \cos x}{x \sin x} = \lim_{x \to 0} \frac{\sin x - x \cos x}{x^2}$$
$$= \lim_{x \to 0} \frac{\cos x - (\cos x - x \sin x)}{2x} = \lim_{x \to 0} \frac{x \sin x}{2x} = 0$$

2.解:

$$\lim_{x \to 0^{-}} \frac{1}{x} \sin x = 1 = \lim_{x \to 0^{-}} x \sin \frac{1}{x} + a = 0 + a$$

 $\therefore a = 1$

3. 解:

 $x = 2 \sec t, dx = 2 \sec t \tan t dt$

$$\int \frac{2 \sec t \tan t}{4 \sec^2 t \cdot 2 \tan t} dt = \int \frac{1}{4 \sec t} dt = \frac{1}{4} \int \cos t dt$$
$$= \frac{1}{4} \sin t + C = \frac{\sqrt{x^2 - 4}}{4x} + C$$

4. 解:

$$D_f: (-\infty, +\infty)$$

$$f'(x) = 1 - \frac{1}{\sqrt[3]{x}} = \frac{\sqrt[3]{x} - 1}{\sqrt[3]{x}}$$

驻点 x=1,不可导点 x=0

	(-∞,0)	0	(0,1)	1	(1,+∞)
f'(x)	+		-	0	+
f(x)	1		↓		↑

极大值 y(0)=0, 极小值 y(1)=-1/2

5. 解:

令
$$k = \int_0^a f(x) dx$$
,对 $f(x) = x^2 - \int_0^a f(x) dx = x^2 - k$ 两边取定积分有 $k = \int_0^a f(x) dx = \int_0^a (x^2 - k) dx = \left(\frac{x^3}{3} - kx\right)\Big|_0^a = \frac{a^3}{3} - ka$ 因此有 $k + ak = \frac{a^3}{3}$, $\int_0^a f(x) dx = k = \frac{a^3}{3(1+a)}$

6. (A-I)X = B 运用初等变换

$$(A - I B) = \begin{pmatrix} 1 & 1 & 0 & 1 & -1 \\ 1 & 1 & 1 & 2 & 0 \\ -1 & 0 & 1 & 5 & -3 \end{pmatrix}$$

7. 对系数矩阵做初等行变换

$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 2 & 0 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

原方程组同解于方程组 $x_1 + x_4 = 0$, $x_2 - x_4 = 0$, $x_3 - x_4 = 0$

令 $x_4 = c$,方程组通解为 $x_1 = -c$, $x_2 = c$, $x_3 = c$, $x_4 = c$ 。 其中 c 为任意常数。

3. 解答题 (每小题 4 分, 共 8 分)

1. 解:

由于
$$\lim_{x\to 1} \frac{f(x)}{x-1} = 2$$
 且有 $\lim_{x\to 1} (x-1) = 0$,得知 $\lim_{x\to 1} f(x) = 0$ 。又因 $f(x)$ 在 $x=1$ 处连续,有 $f(1) = \lim_{x\to 1} f(x) = 0$ 。由导数定义, $f'(1) = \lim_{x\to 1} \frac{f(x)-f(1)}{x-1} = \lim_{x\to 1} \frac{f(x)}{x-1} = 2$

2. 直接计算可得

$$A^2 = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 2 \end{pmatrix} = 2A$$

因此 $A^n - 2A^{n-1} = (A^2 - 2A)A^{n-2} = 0$