电子技术基础实验报告

微电子与固体电子学院 傅宣登 (2016030102010) 2017 年 6 月 6 日

实验名称: 叠加定理的验证

一、实验目的

- 1. 学习和掌握使用 Ngspice 进行电路仿真的方法。
- 2. 掌握 Ngspice 中直流电压和直流电流的测试方法。
- 3. 进一步加深对叠加定理的理解。

二、实验原理与测量方法

1 叠加定理

叠加定理指出,全部电源在线性电路中产生的任一电压或电流,等于每一个电源单独作用产生的相应电压或电流的代数和。

考虑如图 1a 所示的电路,电路中各支路电流、电压等于图 1b 中 u_{1S} 单独作用产生的电流、电压与图 1c 中 u_{2S} 单独作用产生的电流、电压的代数和。

图 1: 叠加定理原理图

2 测量方法

Ngspice 与 Multisim 的核心都是基于使用带 XSPICE 扩展的伯克利 SPICE 的强大的工业标准 SPICE 引擎。与 Multisim 不同的是, Ngspice 是一款自由软件。为远离高昂的授权费用或获取免费教育版的周折,本文使用 Ngspice 进行计算机辅助分析。

在 Ngspice 中, 电路是通过一种名为 netlist 的文本文件描述的。

在图 1 所示电路中, 选取

$$\begin{split} u_{1S} &= 5 \, \mathrm{V} \quad u_{2S} = 2 \, \mathrm{V} \\ R_1 &= 2 \, \Omega \quad R_2 = 3 \, \Omega \quad R_3 = 4 \, \Omega \end{split}$$

则该电路可通过图 2 所示的 netlist 来描述。其中 va 是一个 0 V 的电压源,用来充当电流表以方便测定 R_2 所在支路的电流。

*** complete.cir *** .title Verification of the superposition theorem - Complete Circuit. vs1 1 0 dc 5

vs2 3 0 dc 2 r1 1 2 2

 $r2\ 2\ 4\ 3$

 $r3\ 2\ 3\ 4$

va 4 0 dc 0 ; Ammeter to measure current into R2 .end

图 2: 完整电路的 netlist

将其中 vs1 或 vs2 的电压改为 0 即可描述某个电压源单独作用时的分电路。将上述 netlist 文件分别存为 complete.cir、vs1.cir、vs2.cir。

当 netlist 文件准备好后,就在终端下运行下面的命令进入 Ngspice 了。

\$ ngspice

进入 Ngspice 环境后,运行以下命令载入指定电路并准备仿真数据的读取,

- -> source netlist.cir
- -> op

这时可以通过 print 命令获取电路响应信息了。

- -> print -i (vs1), i (va), i (vs2)
- \rightarrow print v(1,2), v(2), v(2,3)

上述代码显示了载入的电路各节点电压和支路电流。

三、实验内容

运行 Ngspice 并载入电路文件、模拟仿真后,记录相关数据于表 1 中。

参数	I_{R1}/A	I_{R2}/A	I_{R3}/A	$U_{R1}/{ m V}$	$U_{R2}/{ m V}$	$U_{R3}/{ m V}$
U_{S1} 单独作用	1.35	0.77	0.58	2.69	2.31	2.31
U_{S2} 单独作用	-0.23	0.15	-0.38	-0.46	0.46	-1.54
共同作用时的测量值	1.12	0.92	0.19	2.23	2.77	0.77

表 1: 仿真实验数据

四、数据分析与结论

分析上表数据可知,在误差范围内,线性电路中各支路电流、电压等于 U_{S1} 与 U_{S2} 单独作用产生的电流、电压的代数和。叠加定理是正确的。