IDIOSYNCRATIC RISK

Juan Herreño Johannes Wieland

UCSD, Spring 2024

OUTLINE

- WHERE WE ARE AND WHERE WE ARE GOING
- 2 IDIOSYNCRATIC RISK
- 3 DIFFUSION PROCESSES AND THE KF EQUATION

OUTLINE

- **1** Where we are and where we are going
- 2 IDIOSYNCRATIC RISK
- 3 DIFFUSION PROCESSES AND THE KF EQUATION

ROADMAP

- You learned how to solve the problem of one agent living in a deterministic world
- In a number of ways: Iterating v, iterating c, iterating both v and c.
- Today, we will learn to solve the problem of one age living in a stochastic world...
- and then how to compute the stationary distribution of agents given a price
- Lots of things to do today!

OUTLINE

- WHERE WE ARE AND WHERE WE ARE GOING
- 2 IDIOSYNCRATIC RISK
- 3 DIFFUSION PROCESSES AND THE KF EQUATION

OUR PROBLEM

$$\max_{\left\{c_{jt}\right\}} \int_{0}^{\infty} u(c_{jt}) \tag{1}$$

$$u(c_{jt}) = \log(c_{jt}) \tag{2}$$

$$\dot{a}_{jt} = ra_{jt} + y_{jt} - c_{jt} \tag{3}$$

$$y_{jt} = \begin{cases} y_H \\ y_L \end{cases} \tag{4}$$

with Poisson intensities
$$\lambda_L, \lambda_H$$
 (5)

Very similar to our previous problem! No aggregate shocks.

OUR OLD HJB EQUATION

$$\rho v(a) = \max_{c} u(c) + v'(a)\dot{a}$$

subject to $\dot{a} = ra + y - c$.

We replaced the constraint into the objective

$$\rho v(a) = \max_{c} u(c) + v'(a)(ra + y - c)$$
 (6)

How does the HJB equation changes in the presence of risk?

OUR NEW HJB EQUATION

Instead of

$$\rho v(a) = \max_{c} u(c) + v'(a)(ra + y - c)$$
 (7)

we now have

$$\rho v_i(a) = \max_c u(c) + v_i'(a)(ra + y_i - c) + \lambda_i [v_j(a) - v_i(a)]$$
 (8)

- Notice the subscripts first. One HJB equation per income level i ∈ L, H.
- Notice the last term. With some intensity you transition to v_j for $j \neq i$
- v_L and v_H depend on each other

COMPARISON DISCRETE VS. CONTINUOUS TIME

Continuous time

$$\rho v_i(a) = \max_c u(c) + v_i'(a)(ra + y_i - c) + \lambda_i [v_j(a) - v_i(a)] \,\forall i$$
 (9)

Discrete time

$$v_{i}(a) = \max_{c} u(c) + \beta \left[p_{ij} v_{j}(a') + p_{ii} v_{i}(a') \right], \tag{10}$$

s.t.
$$a' = a(1+r) + y_i - c \forall i$$
 (11)

where $i,j \in \{L,H\}, i \neq j, p$ is a transition probability

ALGORITHM

$$\rho v_i(a) = \max_{c} u(c) + v_i'(a)(ra + y_i - c) + \lambda_i [v_j(a) - v_i(a)] \,\forall i$$
 (12)

Algorithm:

- **①** Create a guess for v (now a $a_n \times 2$) matrix
- ② Apply the upwind scheme for each v_i
- ① Use v_i' from the upwind scheme to back out $c_i \ \forall i$
- Iterate using the implicit (preferred) or explicit method Very similar to what we had before!

TASK 1: SOLVE THE CONSUMER PROBLEM

- Open the folder Task 1
- Inspect its contents starting with the file main.m. Make sure to inspect every file.
- **⑤** The codes solve the deterministic case we worked on last week for two "types". One with income y_H that always has income y_L that always has income y_L
- Modify the set of codes so that instead you solve our problem with idiosyncratic risk
- **5** plot the consumption function c and the saving function \dot{a} .

OUTLINE

- WHERE WE ARE AND WHERE WE ARE GOING
- 2 IDIOSYNCRATIC RISK
- 3 DIFFUSION PROCESSES AND THE KF EQUATION

DIFFUSION PROCESSES: A CRASH COURSE

In their general form they satisfy

$$dx = \mu(x)dt + \sigma(x)dW$$

- As long as you are interested in process that does not jump, you can choose $\mu(x)$ and $\sigma(x)$ functions and get interesting processes as special cases
- Examples:
 - **1** Browinian motion $\mu(x) = \mu$, $\sigma(x) = \sigma$, the equivalent of the random walk in continuous time

$$dx = \mu dt + \sigma dW$$

② Ornstein-Uhlenbeck $\mu(x) = \theta(\bar{x} - x)$, $\sigma(x) = \sigma$, the equivalent of the AR(1) process with autocorrelation $e^{-\theta} \approx 1 - \theta$

$$dx = \theta(\bar{x} - x)dt + \sigma dW$$

3 Can also get geometric processes where $\mu(x) = \mu x$ and $\sigma(x) = \sigma x$.

ITO'S LEMMA

- If x(t) is a diffusion (you are world class experts now)
- and you are interested in a function of that diffusion

$$y(t) = f(x(t))$$
 that is twice continuously differentiable...

• then Ito's lemma gives you the behavior of f(x).

$$df(x) = \left(\mu(x)f'(x) + \frac{1}{2}\sigma^2(x)f''(x)\right)dt + \sigma(x)f'(x)dW$$

• and this extends to multivariate functions. If $\mu(x,t)$, and $\sigma(x,t)$.

KOLMOGOROV FORWARD EQUATION

• I will not bother you with the proof, but the KF equation comes from using Ito's lemma on the density of x, which we call g(x,t) we get the following relation

$$\frac{\partial g(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left[\mu(x)g(x,t) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[\sigma^2(x)g(x,t) \right]$$

- think of x as wealth in our example, and g as the joint distribution of wealth and time in the cross-section
- If a stationary distribution exists, where we define it as g(x) such that if g(x,t)=g(x) then $g(x,\tau)=g(x)$ $\forall \tau \geq t$
- Then the Kolmogorov Equation simplifies to

$$0 = -\frac{\partial}{\partial x} \left[\mu(x) g(x) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[\sigma^2(x) g(x) \right]$$

 One note before proceeding. We are studying a condition that a stationary distribution needs to satisfy if it exists, we are not claiming existence.

WHEN THE MAGIC HAPPENS

- Cookbook approach and then some words on how it works
- The stationary distribution for Poisson shocks satisfies:

$$0 = -\frac{d}{da}[s_i(a)g_i(a)] - \lambda_i g_i(a) + \lambda_j g_j(a)$$
 (13)

$$\int_{a}^{\infty} (g_1(a) + g_2(a)) da = 1$$
 (14)

$$g_1(a) \ge 0 \forall a \tag{15}$$

$$g_2(a) \ge 0 \forall a \tag{16}$$

• It turns out that discretizing and finding g is extremely easy.

Although it looks like a nightmare

$$0 = A(v)^T g$$

- ullet g solves an eigenvalue problem using the transpose of A from the HJB equation
- Notice that to have A you must use the implicit method.

Intuition

- For simplicity assume no shocks
- g(x) is the density of x, $\mu(x)$ the drift of x
- $0 = \mu(x)g'(x)$ from Ito's lemma and no shocks.
- meaning: g is such that $\dot{g} = 0$
- Notice that in the HJB equation we had that the upwind scheme implied $v'(x)\mu(x)$ which we expressed in matrix form as Av (check lecture 3)
- Similarly now we have $\mu(x)g'(x)$ which we will discretize by $A^Tg=0$
- So we only need to find g from

$$0 = A^T g$$

• Transpose because we want to capture how much wealth is flowing to state i in net. Second row of A^T times g:

$$\frac{s_{1F}^{+}}{\Delta k}g_{1} + \left(-\frac{s_{3B}^{-}}{\Delta k}\right)g_{3} - \left(\frac{s_{2,F}^{+} + \left(-s_{2,B}^{-}\right)}{\Delta k}\right)g_{2}$$

LOOK AT SOME CODE TOGETHER TO SEE HOW THIS IS ACTUALLY IMPLEMENTED

- I do not have any doubt that you can deduct how to write the code to solve the KF equation
- But it uses a couple of tricks that would require more time than we have today
- So go to exercise1 and inspect the code. Study the following variables
 - 0
 - Aswitch
 - gg

INDIRECT INFERENCE

• Indirect inference refers to the exercise of fixing a parameter value to replicate a moment in the data

 You did one exercise like that when we ran regressions of consumption on wealth

Today we will perform more exercises that do not require simulations

INDIRECT INFERENCE

- Imagine that you want to target a wealth to income ratio in the economy of 3. Can you find the level of ρ that gets you this number?
- Go back to the original parameterization. Imagine you see in the data that high income earners hold twice as much wealth as low income earners. Fixing λ_H , find the level of λ_L that gets you that number
- Fix the value λ_H . Find the value λ_L that gets you a variance of wealth equal to 0.02.

For each of these exercises write a function that outputs the squared difference between the moment of interest and the target. Then use the function fminsearch to minimize the difference.

HOMEWORK

• You observe in the data that the length of an unemployment spell is equal to 3 months. Write a function that simulates the model we developed in class, and sets λ_L such that you match the average length of unemployment.

• Write down a function that gives as an output the aggregate amount of savings in the economy as a function of the interest rate. Fix the parameterization of the model to the value in the prompts for today's lecture. Create a function that plots the aggregate demand for savings as a function of the interest rate in the economy for a range $\vec{r} = [0,0.04]$ in increments of 0.001