Ch1-8 Review

13 Oct 2011 BUSI275 Dr. Sean Ho

- HW5 due tonight
- Midterm next Thu
- **REB** forms due Tues

Overview, ch1-8

- Ch1: Variables, sampling
- Ch2: Exploring via charts
 - Ch3: Exploring via descriptives
- Ch4: Probability and independence
- Ch5: Discrete distribs: binom, Poisson, hypg
 - Ch6: Continuous distribs: norm, unif, expon
- Ch7, 8: Sampling distributions
 - SDSM (norm and t-dist), binomial
 - Types of problems: % area, conf. Int., n

Ch1: Introduction

- Population vs. sample
 - Sampling, inference
 - Statistics, parameters
- Sampling
 - Kinds of bias in collecting data
- 4 levels of measurement

Ch2-3: Exploring Data

- For nominal variables:
 - Charts: bar/col, pie
 - Joint distrib of 2 vars: pivot table
 - Stats: frequency distribution
- For scale (quantitative) (interval/ratio) vars:
 - Charts: histogram, ogive (cum), boxplot
 - ◆ 2 vars: scatter
 - Time series: line
 - Centre: mean, median, mode, (skew)
 - Quantile: Q₁/Q₃, %ile, IQR
 - Std dev: σ, s, CV, empirical rule, z-score

Ch4: Probability

- Tree diagrams
- P(A) notation, Venn diagrams
 - Sample space, outcome, event
 - n, U, complement
- Addition rule: $A \cup B = A + B (A \cap B)$
 - Mutual exclusivity
- Conditional probability
 - What does it mean; how to find it (Bayes)
 - Statistical independence
 - ◆ Does P(A|B) = P(A) ?

Ch5: Discrete distributions

- Binomial: BINOM(x, n, p, cum)
 - x: counting # of successes out of n trials
 - p: probability of success (binom proportion)
- Poisson: POISSON(x, λ, cum)
 - x: # occurrences within the time period
 - λ : mean (expected) # occ w/in the period
- Hypergeometric: HYPGEOMDIST(X, N, x, n)
 - X, N: # successes & tot size of population
 - Binomial p = X/N
 - x, n: # successes & tot size of sample

Ch6: Continuous distributions

- Normal: NORMDIST(x, μ, σ, cum)
 - Also NORMINV(area, μ, σ),
 NORMSDIST(z), NORMSINV(area)
- Uniform:
 - $P(x) = 1/(b-a), \mu = (a+b)/2, \sigma = \sqrt{((b-a)^2/12)}$
- Exponential: EXPONDIST(x, λ, cum)
 - x: time between occurrences
 - λ : 1 / (mean time between occurrences)
 - λ = expected frequency of occurrences (e.g., occurrences per min)

Ch7-8: Sampling distributions

- Sampling distributions:
 - SDSM, w/ σ : NORMDIST(), SE = σ/\sqrt{n}
 - SDSM, w/s: TDIST(), SE = s/\sqrt{n}
 - Binomial proportion: norm, $SE = \sqrt{(pq / n)}$
- Types of problems: area, μ, thresh, n, σ
 - Area: prob of getting a sample in given range
 - Threshold: e.g., confidence interval
 - n: minimum sample size

TODO

- HW5 (ch7-8): tonight 10pm
- REB form due Tue 18 Oct 10pm
 - If approval by TWU's REB is required, also submit printed signed copy to me
- Midterm (ch1-8): next week Thu

