## **Modelos Lineares I**

Regressão Linear Simples (RLS):

## **ANOVA**

(7<sup>a</sup>, 8<sup>a</sup> e 9<sup>a</sup> Aulas)



Professor: Dr. José Rodrigo de Moraes Universidade Federal Fluminense (UFF) Departamento de Estatística (GET)

## Análise de Correlação no Modelo de RLS:

Suponha que uma amostra de observações  $(X_i,Y_i)$ ,  $\forall$  i=1,2,...,n; seja representada pelo gráfico de dispersão, dividido em 4 quadrantes definidos pelas médias das variáveis X e Y:



## Análise de Correlação no Modelo de RLS:

 $\square$  A soma de todos os produtos  $A = \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$  é uma medida de associação linear entre as variáveis X e Y.

- Maioria dos pontos (X<sub>i</sub>,Y<sub>i</sub>) situados nos quadrantes ímpares → A será positiva (relação positiva ou crescente).
- Maioria dos pontos (X<sub>i</sub>,Y<sub>i</sub>) situados nos quadrantes pares → A será negativa (relação negativa ou decrescente).
- Pontos situados predominantemente nos quatro quadrantes → nuvem de pontos sem tendência crescente ou decrescente (ausência de relação).

## Análise de Correlação no Modelo de RLS:

- ☐ Da forma como a medida A foi definida apresenta alguns inconvenientes:
  - Pode ser influenciada pelas unidades de medida de X e Y;
  - Pode ser aumentada pelo simples acréscimo de novas observações.
- □Para resolver tais inconvenientes, divide-se a medida A pelo produto entre os desvios-padrão de X e Y e o número de observações da amostra, obtendo assim o chamado coeficiente de correlação linear de pearson:

$$R = \frac{A}{n \cdot S_X \cdot S_Y}, \quad \text{onde:} \quad S_X = \sqrt{\frac{\sum\limits_{i=1}^n (X_i - \overline{X})^2}{n}} \quad \text{e} \quad S_Y = \sqrt{\frac{\sum\limits_{i=1}^n (Y_i - \overline{Y})^2}{n}} \quad \text{4}$$

## Coeficiente de Correlação no Modelo de RLS:

$$R = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{n} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} \sqrt{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} \sqrt{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}}$$

$$F \circ rmula \ ramificada$$

$$R = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \ \overline{X} \ \overline{Y}}{\sqrt{\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2}} \sqrt{\sum_{i=1}^{n} Y_{i}^{2} - n \overline{Y}^{2}}}$$

Intervalo de variação:  $-1 \le R \le 1$ 

## Coeficiente de Correlação Linear entre X e Y:

☐ Valores de *R* próximos de -1 ou +1 indicam correlação forte.

## ■ Sentido da relação:

- R > 0  $\rightarrow$  relação positiva (ou crescente) entre  $X \in Y$ .
- $R < 0 \rightarrow \text{relação negativa (ou decrescente) entre } X \in Y.$

## ☐ Se

- $R = -1 \rightarrow \text{relação linear negativa perfeita entre } X \in Y$ .
- $R = 0 \rightarrow$  ausência de relação linear entre  $X \in Y$ .
- $R = +1 \rightarrow \text{relação linear positiva perfeita entre } X \in Y$ .

# Coeficiente de Correlação Linear entre X e Y: ☐ Grau da relação: ☐ 0 < | R | ≤ 0,30 → fraca relação linear entre X e Y. ☐ 0,30 < | R | ≤ 0,70 → moderada relação linear entre X e Y. ☐ | R | > 0,70 → forte relação linear entre X e Y.





## Comentários sobre coeficiente de correlação linear:

- O coeficiente de correlação linear de Pearson (R) mede o quanto os pontos num gráfico de dispersão se aproximam de uma linha reta.
- Quanto mais próximo o valor de R estiver de 1 ou -1 mais forte a correlação linear; e quanto mais próximo o valor de R estiver de 0 mais fraca a correlação linear.

10



Cálculo do coeficiente de Correlação Linear no Modelo de RLS usando os dados dos n=30 bovinos. Use 4 casas decimais (ou mais) e a fórmula abaixo:

$$R = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}{\sqrt{\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2}} \sqrt{\sum_{i=1}^{n} Y_{i}^{2} - n \overline{Y}^{2}}}$$

12

## Relação entre o estimador de β<sub>1</sub> e o coef. de correlação R:

Uma relação básica importante é a relação estabelecida entre o estimador de β<sub>1</sub> e o coeficiente de correlação linear de pearson R, como mostrada a seguir:

Obtendo os desvios:  $x_i = X_i - \overline{X}$  e  $y_i = Y_i - \overline{Y}$ 

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) (Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}} \quad \rightarrow \quad \sum_{i=1}^{n} x_{i} y_{i} = \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} \quad \rightarrow \quad \sum_{i=1}^{n} x_{i} y_{i} = n \hat{\beta}_{1} S_{x}^{2} \quad (1)$$

$$R = \frac{\sum\limits_{i=1}^{n} \left( X_{i} - \overline{X} \right) \! \left( Y_{i} - \overline{Y} \right)}{\sqrt{\sum\limits_{i=1}^{n} \left( X_{i} - \overline{X} \right)^{2}} \sqrt{\sum\limits_{i=1}^{n} \left( Y_{i} - \overline{Y} \right)^{2}}} = \frac{\sum\limits_{i=1}^{n} x_{i} y_{i}}{\sqrt{\sum\limits_{i=1}^{n} x_{i}^{2}} \sqrt{\sum\limits_{i=1}^{n} y_{i}^{2}}} = \frac{\sum\limits_{i=1}^{n} x_{i} y_{i}}{n S_{X} S_{y}} \quad (2)$$

Relação entre o estimador de β<sub>1</sub> e o coef. de correlação R:

☐ Substituindo (2) em (1):



Que conclusões podemos extrair dessa relação?

1.4

## Análise de Variância no Modelo de RLS:

É um método utilizado para testar a significância da relação linear entre X e Y. Consiste em decompor a variação total em duas componentes como ilustra a figura abaixo:



## Decomposição da variação total:

$$\sum_{i=1}^{n} \big(Y_{i}^{-}\overline{Y}\big)^{2} = \sum_{i=1}^{n} \left[ \big(\hat{Y}_{i}^{-}\overline{Y}\big) + \big(Y_{i}^{-}\hat{Y}_{i}\big) \right]^{2}$$

$$\sum_{i=1}^n \big(Y_i^- \overline{Y}\big)^2 = \sum_{i=1}^n \big(\hat{Y}_i^- \overline{Y}\big)^2 + \sum_{i=1}^n \big(Y_i^- \hat{Y}\big)^2 + 2 \underbrace{\sum_{i=1}^n \big(\hat{Y}_i^- \overline{Y}\big) \! \big(Y_i^- \hat{Y}\big)}_{}$$

Qual o valor dessa quantidade ?

16

## Decomposição da variação total:

Logo a variação total pode ser descomposta da seguinte forma:

$$\underbrace{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}_{SQT} = \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2}_{SQReg} + \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y})^2}_{SQRes}$$

SQT→ Soma dos quadrados do total (mede a variação total).

 $\mbox{SQReg} \rightarrow \mbox{Soma}$  dos quadrados da regressão (variação explicada pelo modelo de regressão ajustado).

SQRes  $\rightarrow$  Soma dos quadrados dos resíduos (variação não explicada pelo modelo).

Para calcular as somas dos quadrados (SQ`s) recomenda-se o seguinte procedimento:

 Calcula-se primeiramente as somas dos quadrados total (SQT) e dos resíduos (SQRes):

$$SQT = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} Y_i^2 - n\overline{Y}^2$$

SQRes = 
$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} e_i^2$$

 Em seguida, calcula-se a soma dos quadrados da regressão (SQReg) por diferença como mostrado abaixo:

$$SQReg \, = \, \sum_{i=1}^n \, (\hat{Y}_i - \overline{Y})^2 = \sum_{i=1}^n \, \hat{Y}_i^2 - n \, \overline{Y}^2 \rightarrow SQM = SQT - \, \underset{18}{SQRes}$$

## ☐ Tabela de Análise de Variância (ANOVA):

- Com base nas somas dos quadrados definidos constróise a chamada <u>Tabela de Análise de Variância.</u>
- Dividindo-se a soma dos quadrados (SQ's) pelos respectivos graus de liberdade (gl's), obtém-se o que define-se de quadrado médio. Assim, o quadrado médio dos resíduos (QMRes) e da regressão (QMReg) são dados, respectivamente, por:

QMRes = SQRes /n-2 e QMReg = SQReg/1

19

| Tabela de Análise de Variância (ANOVA) - RLS: |                                                            |      |                                  |                                |  |  |  |  |  |
|-----------------------------------------------|------------------------------------------------------------|------|----------------------------------|--------------------------------|--|--|--|--|--|
| Fontes de<br>variação                         | Soma dos<br>quadrados                                      | gl   | Quadrado<br>médio                | Estatística de teste           |  |  |  |  |  |
| Modelo                                        | $SQM = \sum_{i=1}^{n} \hat{Y}_{i}^{2} - n\overline{Y}^{2}$ | 1    | QMReg = $\frac{\text{SQReg}}{1}$ | $F = \frac{QMReg}{QMRes} \sim$ |  |  |  |  |  |
| Resíduos                                      |                                                            |      | $QMRes = \frac{SQRes}{n-2}$      |                                |  |  |  |  |  |
| Total                                         | $SQT = \sum_{i=1}^{n} Y_i^2 - n \overline{Y}^2$            | n -1 |                                  |                                |  |  |  |  |  |
|                                               |                                                            |      |                                  | 20                             |  |  |  |  |  |

## Voltando ao exemplo dos n=30 gados [Adaptado de Magalhães & Lima (2003)]:

■ Em uma dada região acredita-se que o gado alimentado em determinado pasto tem ganho de peso maior que o normal. Estudos de laboratório detectaram uma substância no pasto e deseja-se obter evidências de que tal substância pode ser utilizada para melhorar o ganho de peso dos bovinos. Foram selecionados 15 bois de mesma raça e idade, e cada animal recebeu uma determinada concentração da substância X (em mg/l). O ganho de peso (Y) após 30 dias, foi medido e os dados estão apresentados na tabela abaixo (em kg):

**Tabela:** Dados sobre a concentração da substância X (em mg/l) e ganho de peso Y (em kg) após trinta dias, de n=30 bovinos:

| Boi | Conc. Subst.<br>(mg/l) |       |    | Conc. Subst.<br>(mg/l) | Ganho de peso<br>(kg) |  |
|-----|------------------------|-------|----|------------------------|-----------------------|--|
| 1   | 1,00                   | 9,40  | 16 | 5,00                   | 14,10                 |  |
| 2   | 3,70                   | 11,40 | 17 | 5,50                   | 12,50                 |  |
| 3   | 1,00                   | 12,00 | 18 | 6,00                   | 15,20                 |  |
| 4   | 9,00                   | 16,00 | 19 | 6,50                   | 14,20                 |  |
| 5   | 2,00                   | 11,00 | 20 | 7,00                   | 16,50                 |  |
| 6   | 2,25                   | 12,50 | 21 | 7,50                   | 17,00                 |  |
| 7   | 2,91                   | 10,40 | 22 | 8,00                   | 14,50                 |  |
| 8   | 2,75                   | 11,50 | 23 | 8,25                   | 16,00                 |  |
| 9   | 3,00                   | 12,50 | 24 | 9,40                   | 17,00                 |  |
| 10  | 3,50                   | 14,00 | 25 | 9,43                   | 14,90                 |  |
| 11  | 3,75                   | 14,50 | 26 | 8,94                   | 15,00                 |  |
| 12  | 9,45                   | 17,00 | 27 | 9,20                   | 19,00                 |  |
| 13  | 4,25                   | 13,25 | 28 | 9,50                   | 17,50                 |  |
| 14  | 7,00                   | 14,80 | 29 | 8,00                   | 16,00                 |  |
| 15  | 4,75                   | 14,00 | 30 | 9,00                   | 17,50 22              |  |

# Tabela de Análise da Variância (ANOVA): Analyse / Regression / Linear ANOVA ANOVA

## Teste de Hipóteses com base na Tabela ANOVA:

☐ A partir das v.a`s abaixo:

$$\frac{(\hat{\beta}_1-\beta_1)^2}{\sigma^2\Big/{\displaystyle\sum_{i=1}^n(X_i-\overline{X})^2}} \sim \chi_1^2 \qquad \qquad \frac{(n-2)\hat{\sigma}^2}{\sigma^2} = \frac{\displaystyle\sum_{i=1}^n e_i^2}{\sigma^2} \sim \chi_{(n-2)}^2$$

obtemos uma nova v.a F conforme mostrado a seguir:

$$F = \frac{\frac{(\hat{\beta}_1 - \beta_1)^2}{\sigma^2 / \sum_{i=1}^n (X_i - \overline{X})^2} / 1}{\frac{(n-2)\hat{\sigma}^2}{\sigma^2} / n - 2} = \frac{(\hat{\beta}_1 - \beta_1)^2 \sum_{i=1}^n (X_i - \overline{X})^2}{\hat{\sigma}^2} = \frac{(\hat{\beta}_1 - \beta_1)^2 \sum_{i=1}^n (X_i - \overline{X})^2}{\sum_{i=1}^n e_i^2 / n - 2}$$

**OBS:** A v.a F tem distribuição de F-Snedecor com 1 e (n-2) graus de liberdade.

## Teste de Hipóteses com base na Tabela ANOVA:

 Para o modelo de regressão linear simples, a análise de variância se resume na construção do teste estatístico:

## ☐ Hipóteses a serem testadas:

$$\begin{cases} H_0: \ \beta_1 = 0 \\ H_1: \ \beta_1 \neq 0 \end{cases}$$

## ☐ Estatística de Teste:

$$\mathsf{F} = \frac{\mathsf{QMReg}}{\mathsf{QMRes}} \sim F_{\mathsf{1,n-2}}$$

A estatística F tem distribuição F de Snedecor com 1 e (n-2) graus de liberdade.

## Testes de Hipóteses com base na Tabela ANOVA:

## ☐ Região crítica:

$$RC = \left\{ f \in \Re \ / \ f \ge f_{1, n-2, \alpha} \right\}$$

### ☐ Tomada de Decisão:

- Se  $f_{\text{obs}} \in \text{RC}$  rejeita-se  $H_0$ : $\beta_1$ =0 ao nível de significância  $\alpha$ , e conclui-se que existe relação linear estatisticamente significante entre X e Y.
- Se f<sub>obs</sub> ∉ RC não há evidências para rejeitar H<sub>0</sub>:β<sub>1</sub>=0 ao nível de significância α, e conclui-se que não existe relação linear estatisticamente significante entre X e Y.

## Tabela de Análise de Variância (ANOVA):

### Observações:

- No modelo de regressão linear simples (RLS) o teste F realizado com base na tabela de análise de variância corresponde ao teste T de significância individual realizado para o parâmetro β<sub>1</sub>.
- O mesmo n\u00e3o acontece no caso do modelo de regress\u00e3o linear m\u00edltipla (RLM).

27

# Tabela de Análise da Variância (ANOVA): Analyse / Regression / Linear ANOVA<sup>5</sup>

| Model |            | Sum of<br>Squares | df | Mean Square | F      | Sig.  |
|-------|------------|-------------------|----|-------------|--------|-------|
| 1     | Regression | 125,059           | 1  | 125,059     | 93,554 | ,000ª |
|       | Residual   | 37,429            | 28 | 1,337       |        | Λ     |
|       | Total      | 162,488           | 29 |             |        | //    |

a. Predictors: (Constant), X\_conc.subs
b. Dependent Variable: Y\_ganho\_peso

Teste F com base na tabela ANOVA, ao nível de 5%

Arred.:  $125,059 \equiv 125,05901915408795$  $162,488 \equiv 162,4884166666666$   $37,\!429\!\cong\!\!37,\!42939751257866$ 

## Medida de Qualidade do Ajuste: Coeficiente de Determinação do Modelo

O <u>coeficiente de determinação simples</u>, denotado por R<sup>2</sup>, é dado por:

$$R^2 = \frac{\text{SQReg}}{\text{SOT}} \text{ , ou alternativamente: } R^2 = 1 - \frac{\text{SQRes}}{\text{SQT}}$$

- O R<sup>2</sup> mede o quanto (em termos %) da variação total dos valores da variável resposta Y é explicado pelo modelo ajustado.
- Intervalo de variação: 0≤ R<sup>2</sup>≤ 1

29

## Medida de Qualidade do Ajuste: Coeficiente de Determinação do Modelo

## Observações:

- Se R²=1 → SQRes= 0. Neste caso, todos os resíduos e¡s
   são nulos e, portanto, os pontos estarão sobre a reta de
   regressão (relação perfeita entre X e Y).
- Se R²=0 → SQRes=SQT. Logo X não contribui para explicar a variação dos valores de Y.

30





Cálculo do coeficiente de Determinação do modelo de RLS:

$$R^2 = (0.877)^2 \cong 0.77 \rightarrow 77\%$$

Ou alternativamente:

$$R^2 = 1 - \frac{SQRes}{SQT} = 1 - \frac{1}{SQT}$$

33

## Medida de Qualidade do Ajuste: Coeficiente de determinação do modelo ajustado( $R^2_{ai}$ )

 $lackbox{ }$  O coeficiente de determinação do modelo ajustado, denotado por  $R^2_{aj}$ , é dado por:

$$R_{aj}^{2} = 1 - \frac{SQRes / n - 2}{SQT / n - 1} = 1 - \left(\frac{n - 1}{n - 2}\right) \cdot \frac{SQRes}{SQT}$$

**OBS:** Tanto  ${\it R}^2$  quanto  ${\it R}^2_{\it aj}$  são medidas da qualidade global do modelo.

34

