10 固有値・固有ベクトルの応用

演習 ${\bf 10.1}$ (行列の対角化) n 次の正方行列 A に対して, ある正則行列 P が存在して $P^{-1}AP$ が対角行列になるとき, A は対角化可能であるという.

(1) もし A が正則行列 P を用いて

$$P^{-1}AP = \left(\begin{array}{ccc} \alpha_1 & & O \\ & \ddots & \\ O & & \alpha_n \end{array}\right)$$

と対角化されるなら, $\alpha_1, \ldots, \alpha_n$ は A の固有値であり, P の各列は固有ベクトルであることを示せ. (ヒント: 両辺に左から P をかける.)

- (2) 逆に、n 個の線形独立な A の固有ベクトル v_1,\ldots,v_n が存在すれば、 $P=(v_1,\ldots,v_n)$ によって A は対角化可能であることを示せ、(ヒント:(1) の議論を逆にたどる。)
 - (3) 次の行列が対角化可能かどうかを調べて、もし可能ならば対角化せよ.

(i)
$$\begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (iii) $\begin{pmatrix} 2 & 0 & 0 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

時間が余ったら、次も考えてみてください.

演習 $oldsymbol{10.2}$ (線形微分方程式) 変数 t の関数 $y_1(t),y_2(t)$ に関する連立微分方程式:

$$\begin{cases} y_1' = ay_1 + by_2 \\ y_2' = cy_1 + dy_2 \end{cases} (a, b, c, d$$
は定数)

を考える.

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

とすれば、上記の微分方程式は y' = Ay と書ける.

(1) 微分方程式 y' = Ay が

$$m{y} = \left(egin{array}{c} x_1 e^{\lambda t} \\ x_2 e^{\lambda t} \end{array}
ight) = \left(egin{array}{c} x_1 \\ x_2 \end{array}
ight) e^{\lambda t} \quad (\lambda, x_1, x_2 \$$
は定数)

という形の解を持つためには、 λ は A の固有値で、 $m{v}=\begin{pmatrix}x_1\\x_2\end{pmatrix}$ が $(\lambda$ に対する) A の固有ベクトルであることが必要十分であることを確かめよ.

(2) A の固有値を λ_1, λ_2 として、それぞれに対する固有ベクトル v_1, v_2 が得られたとき、もし v_1, v_2 が線形独立なら、上記の微分方程式の一般解として

$$\mathbf{y} = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$$
 (c_1, c_2) は任意の定数)

が得られる. そこで、実際に次の微分方程式の一般解を求めてみよ:

$$\begin{cases} y_1' = -2y_1 + 2y_2 \\ y_2' = 2y_1 - 5y_2 \end{cases}.$$

(3) (2) の微分方程式を初期条件 $y_1(0)=5,\,y_2(0)=0$ のもとで解け. (初期条件を満たすように c_1,c_2 を決定せよ.)