Knapsack Problem	Solution .	 	 20
Miapsack i Tobiciii	Jointion .	 	 •

2

Chapter 3: Brute Force

Adequacy is sufficient. (Adam Osborne)

Introduction	
Bubble Sort and Selection Sort Bubble Sort	4
Brute-Force String Matching Brute-Force String Matching	
Closest-Pair and Convex-Hull Closest Pair Problem Closest-Pair Brute-Force Algorithm The Convex Hull Problem Examples of Convex Sets Example of Convex Hull Idea for Solving Convex Hull Development of Idea for Convex Hull	10 12 13 14
Exhaustive Search Exhaustive Search TSP Example TSP Solution. Knapsack Problem Example	1 ¹

1

Introduction

Brute force is a straightforward approach to solving a problem without regard for efficiency. Example: an O(n) algorithm for a^n :

CS 3343 Analysis of Algorithms

Chapter 3: Slide - 2

Bubble Sort and Selection Sort

Bubble Sort

My bubble sort varies from the book.

```
 \begin{tabular}{ll} \textbf{algorithm} & BubbleSort(A[0..n-1])\\ & // & Sorts a given array by bubble sort\\ & // & Input: & An array $A$ of orderable elements\\ & // & Output: & Array $A[0..n-1]$ in ascending order <math display="block"> sorted \leftarrow \textbf{false}\\ & \textbf{while} \neg sorted \ \textbf{do}\\ & sorted \leftarrow \textbf{true}\\ & \textbf{for} \ j \leftarrow 0 \ \textbf{to} \ n-2 \ \textbf{do}\\ & \textbf{if} \ A[j] > A[j+1] \ \textbf{then}\\ & swap \ A[j] \ and \ A[j+1]\\ & sorted \leftarrow \textbf{false} \\ \end{tabular}
```

CS 3343 Analysis of Algorithms

Chapter 3: Slide – 3

Correctness of Bubble Sort

- \Box If A is not sorted, sorted is set to false, and loop continues.
- □ Once a pair of elements are swapped, they won't be swapped again.
- $\ \square$ n elements have n(n-1)/2 different pairs, so at most n(n-1)/2 swaps, so loop must eventually exit.
- \square The number of comparisons is $\Theta(n^2)$. See book.

CS 3343 Analysis of Algorithms

Chapter 3: Slide - 4

Selection Sort

```
 \begin{tabular}{ll} \textbf{algorithm} & SelectionSort(A[0..n-1])\\ & // & Sorts a given array by selection sort\\ & // & Input: & An array $A$ of orderable elements\\ & // & Output: & Array $A[0..n-1]$ in ascending order\\ & \textbf{for } i \leftarrow 0 \ \textbf{to } n-2 \ \textbf{do}\\ & & min \leftarrow i\\ & \textbf{for } j \leftarrow i+1 \ \textbf{to } n-1 \ \textbf{do}\\ & & \textbf{if } A[j] < A[min] \ \textbf{then } min \leftarrow i\\ & & swap $A[i]$ and $A[min]$ \end{tabular}
```

CS 3343 Analysis of Algorithms

Chapter 3: Slide - 5

Efficiency of Selection Sort

- \Box Correct because A[i] is minimum of A[i..n-1].
- \Box The i=0 pass (outer loop iteration) performs n-1 comparisons.
- $\ \square$ The i=1 pass performs n-2 comparisons.
- \square The last i = n 2 pass performs 1 comparison.
- \Box The number of comparisons C(n) is $\Theta(n^2)$.

$$C(n) = \sum_{i=0}^{n-2} (n-1-i) = \sum_{k=1}^{n-1} k = \frac{(n-1)n}{2} \approx \frac{n^2}{2}$$

CS 3343 Analysis of Algorithm

Chapter 3: Slide – 6

Brute-Force String Matching

Analysis of Brute-Force String Matching

- \Box Correct because every possible index i is checked.
- \Box i=n-m is the highest possible index.
- $\ \square$ At worst, m comparisons are made for a given value of i.
- \Box There are n-m+1 values for i.
- \square The number of comparisons is $\leq m(n-m+1) \leq mn \in O(mn)$.

CS 3343 Analysis of Algorithms

Chapter 3: Slide - 8

Closest-Pair and Convex-Hull

Closest Pair Problem

- \Box A point (2D case) is an ordered pair of values (x, y).
- \square The (Euclidean) distance between two points $P_i = (x_i, y_i)$ and $P_j = (x_i, y_j)$ is:

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

- $\hfill\Box$ The closest-pair problem is finding the two closest points in a set of n points.
- $\hfill\Box$ The brute force algorithm checks every pair of points, which will make it $\Theta(n^2).$
- □ We can avoid computing square roots by using squared distance.

CS 3343 Analysis of Algorithms

Chapter 3: Slide - 9

Closest-Pair Brute-Force Algorithm

CS 3343 Analysis of Algorithms

Chapter 3: Slide - 10

The Convex Hull Problem

- □ A region (set of points) in the plane is *convex* if every line segment between two points in the region is also in the region.
- \Box The convex hull of a finite set of points P is the smallest convex region containing P.
- \Box Theorem: The *convex hull* of a finite set of points P is a convex polygon whose vertices is a subset of P.
- \Box The *convex hull problem* is finding the convex hull given P.

CS 3343 Analysis of Algorithms

Examples of Convex Sets

FIGURE 3.4 (a) Convex sets. (b) Sets that are not convex.

CS 3343 Analysis of Algorithms

Chapter 3: Slide - 12

Chapter 3: Slide - 13

Chapter 3: Slide - 11

Example of Convex Hull

CS 3343 Analysis of Algorithms

Idea for Solving Convex Hull

- \Box Consider the straight line that goes through two points P_i and P_i .
- \Box Suppose there are points in P on both sides of this line.
 - This implies that the line segment between P_i and P_j is not on the boundary of the convex hull.
- \Box Suppose all the points in P are on one side of the line (or on the line).
 - This implies that the line segment between P_i and P_j is on the boundary of the convex hull.

CS 3343 Analysis of Algorithms

Chapter 3: Slide - 14

Development of Idea for Convex Hull

 $\hfill\Box$ The straight line through $P_i=(x_i,y_i)$ and $P_j=(x_j,y_j)$ can be defined by a nonzero solution for:

$$a x_i + b y_i = c$$

$$a x_j + b y_j = c$$

- $\quad \square \quad \text{One solution is } a=y_j-y_i\text{, } b=x_i-x_j\text{, and } c=x_iy_j-y_ix_j.$
- The line segment from P_i to P_j is on the convex hull if either $a\,x+b\,y\geq c$ or $a\,x+b\,y\leq c$ is true for all the points.
- \square Brute force algorithm is $\Theta(n^3)$. See book.

CS 3343 Analysis of Algorithms

Chapter 3: Slide – 15

Exhaustive Search

16

Exhaustive Search

- □ *Exhaustive search* generates all combinatorial objects (e.g., permutations, combinations, subsets) for a problem.
- $\ \square$ The traveling salesman problem (TSP) is finding the shortest tour through n cities
 - Brute Force Approach: Calculate the distance of all cycles of n vertices in a weighted graph.
- $\hfill\Box$ The knapsack problem is finding the most valuable subset of items \leq a given weight.
 - Brute Force Approach: Calculate the value and weight of all subsets.

TSP Example

TSP Solution

CS 3343 Analysis of Algorithms

 Tour
 Length

 $a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$ I = 2 + 8 + 1 + 7 = 18

 $a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$ I = 2 + 3 + 1 + 5 = 11 optimal

 $a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$ I = 5 + 8 + 3 + 7 = 23

 $a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$ I = 5 + 1 + 3 + 2 = 11 optimal

 $a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$ I = 7 + 3 + 8 + 5 = 23

FIGURE 3.7 Solution to a small instance of the traveling salesman problem by exhaustive

/ = 7 + 1 + 8 + 2 = 18

searc

CS 3343 Analysis of Algorithms

Chapter 3: Slide – 18

Chapter 3: Slide - 17

