Machine Learning - 1 Project Business Report

Name: Aishwariya Hariharan

PGP-DSBA Online September' 23

Date: 21/01/2024

Contents

SI. no.	Topic	Page no.
	Part 1	
1	Problem	
2	About the dataset	
3	Observations	
4	Data preprocessing	
5	Clustering the data	
6	Actionable insights and recommendation	
	Part 2	
1	Problem	
2	About the dataset	
3	Data preprocessing	
4	PCA	
5	Heatmap	

Part 1

Problem:

We need to analyse the data collected by the Ads24x7 digital marketing company, use clustering methods, and provide actionable recommendations on how to optimize their digital marketing efforts, allocate budgets efficiently, and tailor ad content to specific audience segments.

About the data set:

- Number of rows = 23066
- Columns and the datatypes

	• •			
0	Timestamp	23066	non-null	object
1	InventoryType	23066	non-null	object
2	Ad - Length	23066	non-null	int64
3	Ad- Width	23066	non-null	int64
4	Ad Size	23066	non-null	int64
5	Ad Type	23066	non-null	object
6	Platform	23066	non-null	object
7	Device Type	23066	non-null	object
8	Format	23066	non-null	object
9	Available_Impressions	23066	non-null	int64
10	Matched_Queries	23066	non-null	int64
11	Impressions	23066	non-null	int64
12	Clicks	23066	non-null	int64
13	Spend	23066	non-null	float64
14	Fee	23066	non-null	float64
15	Revenue	23066	non-null	float64
16	CTR	18330	non-null	float64
17	CPM	18330	non-null	float64
18	CPC	18330	non-null	float64

CTR

- CTR stands for "Click through rate". CTR is the number of clicks that an ad receives divided by the number of times your ad is shown.
- Formula used here is CTR = Total Measured Clicks / Total Measured Ad Impressions x 100.

CPM

- CPM stands for "cost per 1000 impressions."
- Formula used here is CPM = (Total Campaign Spend / Number of Impressions) * 1000.

CPC

- o CPC stands for "Cost-per-click".
- Cost-per-click (CPC) bidding means that you pay for each click on your ads.
- The Formula used here is CPC = Total Cost (spend) / Number of Clicks.

• Statistical summary of data

	count	mean	std	min	25%	50%	75%	max
Ad - Length	23066.0	3.851631e+02	2.336514e+02	120.0000	120.000000	300.00000	7.200000e+02	728.00
Ad- Width	23066.0	3.378960e+02	2.030929e+02	70.0000	250.000000	300.00000	6.000000e+02	600.00
Ad Size	23066.0	9.667447e+04	6.153833e+04	33600.0000	72000.000000	72000.00000	8.400000e+04	216000.00
Available_Impressions	23066.0	2.432044e+06	4.742888e+06	1.0000	33672.250000	483771.00000	2.527712e+06	27592861.00
Matched_Queries	23066.0	1.295099e+06	2.512970e+06	1.0000	18282.500000	258087.50000	1.180700e+06	14702025.00
Impressions	23066.0	1.241520e+06	2.429400e+06	1.0000	7990.500000	225290.00000	1.112428e+06	14194774.00
Clicks	23066.0	1.067852e+04	1.735341e+04	1.0000	710.000000	4425.00000	1.279375e+04	143049.00
Spend	23066.0	2.706626e+03	4.067927e+03	0.0000	85.180000	1425.12500	3.121400e+03	26931.87
Fee	23066.0	3.351231e-01	3.196322e-02	0.2100	0.330000	0.35000	3.500000e-01	0.35
Revenue	23066.0	1.924252e+03	3.105238e+03	0.0000	55.365375	926.33500	2.091338e+03	21276.18
CTR	18330.0	7.366054e-02	7.515992e-02	0.0001	0.002600	0.08255	1.300000e-01	1.00
СРМ	18330.0	7.672045e+00	6.481391e+00	0.0000	1.710000	7.66000	1.251000e+01	81.56
СРС	18330.0	3.510606e-01	3.433338e-01	0.0000	0.090000	0.16000	5.700000e-01	7.26

Observations:

- There are 7 Inventory types: Format 1, Format 2, Format 3, Format 4, Format 5, Format 6, and Format 7.
- There are 3 types of platforms: Video, Web, App
- There are 2 Formats: Video and Display

- There are no duplicate values
- About key variables:
 - The areas of the maximum number of Ad-sizes are about 75000 sq units

• The maximum spend and revenue ranges are below 5000.

o Frequency of distribution of inventory type

Frequency of distribution of platforms

Frequency of distribution of device type

Frequency of distribution of format

Distribution of inventory type across platforms

• Distribution of inventory type based on device types

Device types used across different platforms

• Format used across devices

• Correlation between variables

- There's a high correlation between:
 - The matched queries and available impressions.
 - o Revenue and available impressions as well as matched queries and Impressions
 - Spend and Revenue

Data preprocessing

- The data has outliers.
 - o Only the Ad-length and Ad-width columns do not have outliers.

The outliers are treated using the quantile method

- The variables are scaled using the z-score method.
 - For k-means clustering and PCA, it's generally recommended to use
 Z-score scaling (standardization).
 - Z-score scaling standardizes the features by centering them around their mean and scaling them by their standard deviation. This ensures that all features contribute equally to the distance calculations, making k-means clustering more robust and effective.
 - Z-score scaling is often applied before PCA to ensure that all features have comparable scales. Standardizing the features helps PCA identify the directions (principal components) of maximum variance more accurately, leading to a more meaningful representation of the data.
 - Additionally, Z-score scaling helps in interpreting the importance of each principal component since the scaling ensures that the variance captured by each component is not influenced by the scale of the original features.
- Null values exist in the original dataset and are treated.
 - Missing values in CPC, CTR, and CPM are found using their respective formulas.

Clustering the data

• Using the Hierarchical Clustering method, we construct a dendrogram using Ward linkage and Euclidean distance.

The truncated cluster:

o The optimum number of clusters is 2.

- Applying the K-means clustering, we get:
 - o An elbow curve such as this:

From the elbow curve we can observe that there is no significant drop after the 6th point. Hence we can cluster the data in 6 groups - 0, 1, 2, 3, 4, 5.

The Silhouette scores verify that 6 is an ideal number of clusters

```
For n_clusters=2, the silhouette score is 0.3932561565198712
For n_clusters=3, the silhouette score is 0.30716308427464184
For n_clusters=4, the silhouette score is 0.38928044688821073
For n_clusters=5, the silhouette score is 0.4456101369724424
For n_clusters=6, the silhouette score is 0.46578764296561953
For n_clusters=7, the silhouette score is 0.4612993260631106
For n_clusters=8, the silhouette score is 0.49024324848326967
For n_clusters=9, the silhouette score is 0.5098023825328091
For n_clusters=10, the silhouette score is 0.5077423641698394
```

After profiling the clusters, we can observe the grouping as follows:

Clus_kmeans	0	1	2	3	4	5
Ad - Length	154.602855	140.233577	4.263269e+02	4.656149e+02	671.426699	347.042553
Ad- Width	559.601850	573.988056	1.402837e+02	1.993366e+02	308.490308	482.322695
Ad Size	79248.743213	75400.132714	5.185801e+04	7.521959e+04	203829.647830	126677.659574
Available_Impressions	58570.012869	814312.321168	1.842541e+06	1.041504e+07	318841.528529	57833.497872
Matched_Queries	33171.650111	572667.611812	8.816976e+05	5.639272e+06	169279.338247	34156.909220
Impressions	25580.851599	483060.311214	8.430617e+05	5.460381e+06	145054.111111	27995.592553
Clicks	2177.394933	66006.355674	3.305285e+03	1.127562e+04	16488.094458	3553.767021
Spend	252.944812	7060.567034	1.530991e+03	8.663623e+03	1436.591518	350.066195
Fee	0.349984	0.287445	3.491786e-01	2.903267e-01	0.349339	0.349887
Revenue	164.464013	5071.300161	9.978016e+02	6.386974e+03	936.021468	227.936613
CTR	0.144604	2.132338	6.264290e-02	3.458832e-02	0.522129	19.131128
CDM	12 504272	15 264200	4 7002200100	1 5710050100	11 005007	10 10/101

- Cluster 4 has ads that have a higher mean length than other clusters.
- Clusters 0 and 1 have ads that have a higher mean width than other clusters.
- Cluster 2 has a minimum ad size.
- Available impressions are highest for cluster 2.
- There is not much difference in the fee charged.
- Cluster 3 has very high mean spend and mean revenue compared to the others.

Actionable Insights & Recommendations

- Selling ads according to CPM puts a ceiling on revenue.
- If you want to increase your revenue, you have to spend money on increasing your reach to create more ad opportunities or pumping out more ads to the same users before seeing a return.
- But if you sell on CTR, revenue is not capped.
- You can increase engagement on the same number of impressions per person, or DAU (daily active user).
- Whereas with CPM, you stretch to reach more and more people or degrade your user experience with more ads per user.

Part 2

Problem:

Analyse the Indian census data and perform exploratory data analysis for key variables and principle component analysis to explain the variance.

About the data set:

	State Code	Dist.Code	State	Area Name	No_HH	TOT_M	TOT_F	M_06	F_06	M_SC	 MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_
0	1	1	Jammu & Kashmir	Kupwara	7707	23388	29796	5862	6196	3	 1150	749	180	
1	1	2	Jammu & Kashmir	Badgam	6218	19585	23102	4482	3733	7	 525	715	123	
2	1	3	Jammu & Kashmir	Leh(Ladakh)	4452	6546	10964	1082	1018	3	 114	188	44	
3	1	4	Jammu & Kashmir	Kargil	1320	2784	4206	563	677	0	 194	247	61	
4	1	5	Jammu & Kashmir	Punch	11654	20591	29981	5157	4587	20	 874	1928	465	

5 rows × 61 columns

- Total number of rows = 640
- Total number of columns = 61
- Columns State Code and Dist.Code are integer values but categorical. State and Area Name are categorical variables and all other variables are numerical in nature.

Data preprocessing

• Outliers:

Outliers are treated using the quantile method.

Variables are scaled using the z-score method.

Before scaling

After scaling

PCA

- Bartletts Test of Sphericity is done to tests the hypothesis that the variables are uncorrelated in the population.
 - H0: All variables in the data are uncorrelated
 - Ha: At least one pair of variables in the data are correlated
 - We get p-value = 0, which implies we can reject the null hypothesis and agree that there is at least one pair of variables in the data which are correlated hence PCA is recommended.
- The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (MSA) is an index used to examine how appropriate PCA is.
 - We get MSA = 0.9324595054325264
 - If MSA is less than 0.5, PCA is not recommended, since no reduction is expected.
 - Since MSA > 0.7, it is expected that a considerable reduction in the dimension and extraction of meaningful components is possible.
- Eigen vectors;

```
Eigen Vectors
%s [[ 0.15  0.16  0.16  ...  0.14  0.15  0.14]
[-0.12 -0.08 -0.09  ...  0.04 -0.05 -0.05]
[ 0.1  -0.03  0.03  ... -0.1  -0.14 -0.04]
...
[-0.2  0.03 -0.04  ... -0.14 -0.02  0.09]
[-0.27  0.19 -0.04  ...  0.18 -0.1  0.21]
[-0.2  0.26  0.05  ... -0.08 -0.19  0.01]]
```

Explained variance ratio

Cumulative Variance Explained in Percentage: [62.4 75.8 82.44 87.31 90.66 92.68 94.4 95.21 95.9 96.47 96.95 97.36 97.68 97.97 98.22 98.45 98.63 98.8 98.95 99.09 99.2 99.32 99.4 99.48 99.56 99.61 99.66 99.71 99.75 99.79 99.82 99.85 99.87]

- The 1st Principal component is positively correlated with Number of Household, Total Male & Female population, Literacy & Illiteracy Numbers among M & F, Number of SC in Males & Females, Working population, etc. These variables explain the most variance in the data i.e. 56%
- The 2nd Principal component is correlated with the Marginal Cultivator Male/Female population and Marginal Agriculture (Male & Female) population etc. The Second PC explains about 14% of the variation in the data.
- The 3rd Principal Component explains about 7% variation in the data. It positively correlates with Marginal Agriculture 0-3 Female, and 3-6 M&F Population.
- The 4th Principal Component correlated positively with Marginal Households Male, Marginal Other (0- 3,3-6) Workers Male population. It explains about 6% of the variation in the data.
- The 5th Principal Component explains about 4% variation in data. It is positively correlated with Scheduled Tribes Population Male& Female, Non-working Male& Female population.
- The 6th Principal Component explains about 3% variation in data. It is positively correlated with Female Marginal Other workers (0-3,3-6), Main & Marginal Households Female population.
- We can see that about 82% of the variance is explained by 3 Principal Components.
- We can see that about 90% of the variance is explained by 5 Principal Components.
- We can see that about 92% of the variance is explained by 6 Principal Components.

Each PC correlates with a different set of variables explaining how different aspects of the population contribute to the variation in data • Scree plot to identify the number of components to be built

Here, it is decided to keep the number of components as 6 as the cumulative explained variance is around 92%.

Heatmap showing features have maximum loading across the components.

