Variáveis Aleatórias Contínuas

Questão 1

Seja X uma variável aleatória normal tal que, $\mu_{\mathbf{X}}=0$ e $\sigma_{\mathbf{X}}^2=1$, calcule:

- a) P(X > -1)
- b) $P(X \le -2)$
- c) $P(-2 \le X \le 1)$

Seja $\mathbf{V} = (4 - \mathbf{Y})/3$ e tal que, \mathbf{Y} é uma variável aleatória normal com média 3 e variância 16, calcule:

- $d) \mathbf{E}[\mathbf{V}]$
- e) Var[V]
- f) $P(-2 < Y \le 2)$

Questão 2

A função densidade de probabilidade conjunta de duas variáveis aleatórias \mathbf{X} e \mathbf{Y} é dada pela seguinte expressão:

$$f_{X,Y}(x,y) \begin{cases} c \cdot x^2, & \text{se } 1 \le x \le 2 \text{ e } 0 \le y \le x \\ 0, & c.c. \end{cases}$$

- a) Calcule a constante \mathbf{c} :
- b) se $0 \le y \le 1$, quanto é $f_Y(y)$?
- c) se $1 < y \le 2$, quanto é $f_Y(y)$?
- d) Calcule $\mathbf{E}\left[\frac{1}{\mathbf{X}^2\mathbf{Y}}\middle|\mathbf{Y} = \frac{5}{4}\right]$

Questão 3

Sofia está de férias em Monte Carlo. Em uma certa noite, ela saca \mathbf{X} dólares e vai ao cassino, no final da noite ela volta para o hotel com \mathbf{Y} dólares. Seja \mathbf{X} e \mathbf{Y} duas variáveis aleatórias, a PDF de \mathbf{X} é mostrada na figura abaixo. Condicionado em $\mathbf{X} = x$, \mathbf{Y} tem distribuição uniforme e contínua entre 0 e 3x.

Determine a distribuição conjunta $f_{X,Y}(x,y)$ as seguintes situações:

- a) 0 < x < 40 e 0 < y < 3x
- b) y < 0 ou y > 3x
- c) Em uma noite em particular Sofia teve um lucro de $\mathbf{Z} = \mathbf{Y} \mathbf{X}$ dólares, ache a probabilidade do lucro dela ser positivo, ou seja, $\mathbf{P}(\mathbf{Z} > 0)$

Determine a PDF de \mathbf{Z} para as seguintes situações: (dica: Primeiro ache $f_{\mathbf{Z}|\mathbf{X}}(z|x)$)

- d) -40 < z < 0
- e) 0 < z < 80
- d) z < -40 ou z > 80
- e) Calcule $\mathbf{E}[\mathbf{Z}]$:

Questão 4

A figura abaixo descreve a PDF de duas variáveis aleatórias \mathbf{X} e \mathbf{Y} . Essas variáveis tem valores nos intervalos [0,2] e [0,1] respectivamente. Em x=1 o valor da PDF é 1/2

a) X e Y são idenpendentes?

Calcule $f_X(x)$ em termos de x para as seguintes situações:

- b) $0 < x \le 1$:
- c) $1 < x \le 2$:
- d) x < 0 ou $x \ge 2$

Calcule $f_{Y|X}(y|0.5)$ para as seguintes situações:

- e) 0 < y < 1/2:
- f) y<0 ou $y\geq 1/2$

Calcule $f_{X|Y}(x|0.5)$ para as seguintes situações:

- g) 1/2 < x < 1:
- h) 1 < x < 3/2:
- i) x < 1/2 ou x > 3/2
- j) Seja
 $\mathbf{R} = \mathbf{X}\mathbf{Y}$ e Ao evento em que $\mathbf{X} < 0.5.$ Calcul
e $\mathbf{E}[\mathbf{R}|A]$

Valores para distribuição cumulativa $\Phi(z)=P(\mathbf{Z}\leq z),$ onde \mathbf{Z} é uma variável aletória normal padrão $(\mu_{\mathbf{Z}}=0,\sigma_{\mathbf{Z}}^2=1)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998