637.1. Последовательность x_n задается следующим образом:

$$x_1 = 0, x_2 = 1,$$

 $x_n = \frac{1}{2}(x_{n-1} + x_{n-2}) \quad (n = 2, 3, ...).$

Найти lim x_n

637.2. Последовательность y_n определяется с помощью последовательности x_n соотношениями:

$$y_0 = x_0, y_n = x_n - \alpha x_{n-1} \quad (n = 1, 2, ...),$$

где $|\alpha| < 1$. Найти $\lim_{n \to \infty} x_n$, если $\lim_{n \to \infty} y_n = b$.

637.3. Последовательность x_n определяется следующим образом:

$$x_0 = 1, x_n = \frac{1}{1 + x_{n-1}}$$
 $(n = 1, 2, ...).$

Найти $\lim_{n\to\infty} x_n$.

Указание Рассмотреть разности между x_n и корнями уравнения $x=\frac{1}{1+x}$.

638. Последовательность функций

$$y_n = y_n(x) \quad (0 \leqslant x \leqslant 1)$$

определяется следующим образом:

$$y_1 = \frac{x}{2}$$
, $y_n = \frac{x}{2} - \frac{y_{n-1}^2}{2}$ $(n = 2, 3, ...)$.

Найти $\lim_{n\to\infty} y_n$.

639. Последовательность функций $y_n = y_n(x)$ (0 $\leq x \leq$ 1) определяется следующим образом:

$$y_1 = \frac{x}{2}$$
, $y_n = \frac{x}{2} + \frac{y_{n-1}^2}{2}$ $(n = 2, 3, ...)$.

Найти $\lim y_n$.

639.1. Пусть x > 0 и $y_n = y_{n-1} (2-xy_{n-1})$ (n = 1, . . .). Доказать, что если $y_i > 0$ (i = 0, 1), то последовательность y_n сходится и

$$\lim_{n\to\infty}y_n=\frac{1}{x}.$$