

Evolución de COCOMO 81 a COCOMO II

- 1. Cambio en las técnicas de programación
- 2. Cambio de los procesos batch a procesos on-line
- 3. Cambio en los ordenadores
- 4. Cambio en los ciclos de vida cascada a espiral
- 5. Reutilización del software

Modificaciones de COCOMO 81 A COCOMO II

- 1. El exponente se ha sustituido por un factor de escala
- 2. Se han añadido los drivers de coste: DOCU, RUSE, PVOL, PEXP, LTEXT, PCON Y SITE
- 3. Se han eliminado los drivers de coste:VIRT,TURN,VEXP, LEXPY MODP
- 4. Se han recalibrado los otros
- 5. La ecuación queda:

Esfuerzo=MM=a(q)*Sizeexp

 $Exp = 0.91 + 0.01 * \Sigma_{i=1..5} f_i$

 $f_{i=}$ PREC, FLEX, RESL, TEAM, PMAT

3

Estrategia COCOMO II

- Preservar la apertura de COCOMO
- ▶ Desarrollar COCOMO II compatible con mercado SW
- ▶ Es de libre distribución
- ▶ Está soportado por herramientas

- 4

Método COCOMO II

- ▶ COCOMO distingue:
 - Tres modelos:
 - Diseño Preliminar
 - Diseño Post-Arquitectura
 - Diseño de composición de aplicaciones (no existe calibrado para este submodelo)

5

Diseño de Composición de aplicaciones

- ▶ Indicado para
 - ▶ Proyectos construidos con herramientas
 - Reutilización del software
 - Construcción de Interfaces
- ▶ Entrada: tamaño en puntos objeto
- No existe calibrado para este modelo

Modelo de Diseño preliminar (early design)

- Está indicado para estimar en proyectos antes de que la arquitectura esté completa
- La medida de tamaño se hace en Puntos de función que luego se transforman en KLSI para su entrada en las fórmulas
- ▶ Contempla:
 - ▶ 5 factores de escala
 - ▶ 7 multiplicadores de esfuerzo si deseas ajustarlo

7

Modelo Post-arquitectura

- Está indicado para proyectos:
- ▶ En los que se ha completado el diseño de alto nivel
- La arquitectura debe está definida.
- Personal con experiencia intermedia
- Algunos tienen experiencia y otros no
- Algunas interfaces muy rigurosas otras flexibles
- Tamaño máximo 300 KLSI
- Toma como entrada puntos de función o KLOC
- Contempla:
 - ▶ 5 factores de escala
 - ▶ 17 drivers de coste (multiplicadores de esfuerzo) si deseas ajustarlo

Método COCOMO 81-II

Drivers COCOMO 81 (15)	Drivers COCOMO II Diseño Anticipado (7)	Drivers COCOMO II Post-Arquitectura (17)
RELY, DATA, CPLX TIME, STOR, VIRT, TURN, ACAP, AEXP, PCAP, VEXP, LEXP, MODP, TOOL,SCED	RCPX	RELY, DATA, CPLX, DOCU
	RUSE	RUSE
	PDIF	TIME, STOR, PVOL
	PERS	ACAP, PCARP, PCON
	PREX	AEXP, PEXP, LTEX
	FCIL	TOOL,SITE
	SCED	SCED

9

Método COCOMO II

- ▶ Factores de corrección
 - ▶ Entorno empresarial (horas de trabajo/mes)
 - ▶ Características del trabajo
 - > Exigencias del sw
 - ▶ Plataforma y entorno de desarrollo
 - ▶ Competencia del equipo de desarrollo
 - ▶ Contexto del proyecto

COCOMO 81/II

Cocomo 81	Cocomo II
Esfuerzo=MM=a*Size ^{b*} V V para ajustar a,b constantes	Esfuerzo=MM=a(q)*size ^{exp} *EAF a(q) depende del calibrado (2,45) size=size *[1+BRAK/100] exp= 0,91+0.01* Σ_{i-1} s f_i
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	f _{i=} PREC, FLEX, RESL, TEAM, PMAT EAF para ajustar
V depende de 15 FACTORES (intermedio)	EAF depende de: •17 FACTORES (post arquitectura) •7 FACTORES (anticipado)
3 MODOS, 3 MODELOS	3 SUB-MODELOS
Tamaño: lineas de código fuente (KLSI)	Tamaño Puntos objeto, puntos función, líneas de código
La entrada al modelo en KLSI	La entrada al modelo en KLSI

--V-y-EAF-solo cuando queremos ajustar-el modelo

11

COCOMO 81/II

Modelo basado en:

- Formula de reutilización lineal
- Requisitos razonablemente estables

Mejoras que incluyen:

- Formula de reutilización no lineal
- Medidas de rotura para la volatilidad de requisitos
- Características de autocalibración

Esfuerzo

(sin ajustar, diseño anticipado y post-arquitectura)

- MM(meses.hombre)= a(q)* SIZE (kloc) B
 - a(q), depende del calibrado (usaremos 2,45)
 - ▶ B= 0,91 + 0,01* $\sum_{j=1...5}^{SF}$ (SF scale factor)
 - Los factores de escala son:
 - □ PREC (precedentes)
 - □ FLEX (Flexibilidad de desarrollo)
 - □ RESL (Arquitectura /resolución de riesgos)
 - □ TEAM (cohesión del equipo)
 - □ PMAT (Madurez del proceso)
- Size (kloc) = size (kloc) *(1 + (BRAK(kloc)/100))
- El porcentaje de rotura de BRAK es para ajustar el tamaño eficaz del producto
- ▶ Refleja la volatilidad de requisitos
- ▶ Es el % de código despreciado debido a los requisitos

13

Esfuerzo

(sin ajustar, diseño anticipado y post-arquitectura)

- ▶ MM= a(q)* SIZE (kloc) ^B
 - ▶ a(q), depende del calibrado (usaremos 2,45)
 - ▶ B= 0,91 + 0,01* $\sum_{j=1..5}^{SF}$ (SF scale factor)
 - ▶ B<I Proyecto presenta ahorro de escala
 - ▶ B=1 Los ahorros de escala y los gastos están equilibrados
 - ▶ B>I El proyecto presenta gasto de escala
 - Los factores de escala son:
 - □ PREC (precedentes)
 - □ FLEX (Flexibilidad de desarrollo)
 - □ RESL (Arquitectura /resolución de riesgos)
 - □ TEAM (cohesión del equipo)
 - □ PMAT (Madurez del proceso)

Esfuerzo

(sin ajustar, diseño anticipado y post-arquitectura)

- Size (Kloc)= size (Kloc) *(I + (BRAK(kloc)/100))
- ▶ El porcentaje de rotura de BRAK es para ajustar el tamaño eficaz del producto
- ▶ Refleja la volatilidad de requisitos
- Es el % de código despreciado debido a los requisitos

15

Esfuerzo

(ajustado, diseño anticipado y post-arquitectura)

- ▶ MM= MM (sin ajustar)* ΠX_i
- > Xi son los diferentes drivers.
 - > 7 para el caso del modelo diseño anticipado
 - ▶ 17 para el modelo post arquitectura
- ▶ Se han calibrado sobre 198 proyectos

Tiempo de desarrollo

(diseño anticipado y post-arquitectura)

- ► TDEV= 3,67* (MM exp)* (%SCED/100)
- \rightarrow Exp = 0,28+ 0,2* (B-1,01)
- > %SCED es el porcentaje de compresión del proyecto
- ▶ Tablas de COCOMOII

17

Nota Aclaratoria

- ▶ KLSI = KDSI = KLOC
- ▶ KLSI Kilo lines source instructions
- ▶ KDSI Kilo Delivered Source Instructions
- ▶ KLOC Kilo lines of code