Aprendizado de Máquina e Reconhecimento de Padrões 2021.2

Machine Learning Concepts

Prof. Samuel Martins (Samuka)

samuel.martins@ifsp.edu.br

Checking Homoscedasticity Visually

Checking Homoscedasticity Visually

Overfitting vs Underfitting

	Underfitting	Overfitting	Just right
Symptoms	High training errorTraining error close to test errorHigh bias	Very low training errorTraining error much lower than test errorHigh variance	Training error slightly lower than test error
Regression illustration			
Classification illustration			
Possible remedies	Complexify modelAdd more featuresTrain longer	Perform regularizationGet more data	

Feature Scaling

Standardization

$$X_{new} = (X - X_{min})/(X_{max} - X_{min})$$

$$X_{new} = (X - mean)/Std$$

Robust Scaler

$$X_{new} = (X - median)/IQR$$

Standardization

$$X_{new} = (X - X_{min})/(X_{max} - X_{min})$$

$$X_{new} = (X - mean)/Std$$

Robust Scaler

$$X_{new} = (X - median)/IQR$$

Data

Standardization

$$X_{new} = (X - X_{min})/(X_{max} - X_{min})$$

$$X_{new} = (X - mean)/Std$$

Robust Scaler

$$X_{new} = (X - median)/IQR$$

Data

Standardization

$$X_{new} = (X - X_{min})/(X_{max} - X_{min})$$

$$X_{new} = (X - mean)/Std$$

Robust Scaler

$$X_{new} = (X - median)/IQR$$

Data with Outliers

Normalization (Min-Max Scaling)

$$X_{new} = (X - X_{min})/(X_{max} - X_{min})$$

Minimum and maximum value of features are used for scaling

It is used when features are of different scales.

Scales values between [0, 1] or [-1, 1].

It is really affected by outliers.

Scikit-Learn provides a transformer called MinMaxScaler for Normalization.

This transformation squishes the n-dimensional data into an n-dimensional unit hypercube.

It is useful when we don't know about the distribution

It is a often called as Scaling Normalization

sklearn.preprocessing.MinMaxScaler

Standardization (Z-Score Normalization)

$$X_{new} = (X - mean)/Std$$

Mean and standard deviation is used for scaling.

It is used when we want to ensure zero mean and unit standard deviation.

It is not bounded to a certain range.

It is much less affected by outliers.

Scikit-Learn provides a transformer called StandardScaler for standardization.

It translates the data to the mean vector of original data to the origin and squishes or expands.

It is useful when the feature distribution is Normal or Gaussian.

It is a often called as Z-Score Normalization.

sklearn.preprocessing.StandardScaler

Robust Scaler

$$X_{new} = (X - median)/IQR$$

Alternative to Standardization to be yet much less affected by **outliers.**

sklearn.preprocessing.RobustScaler

Model Validation

Holdout Validation

Stratified Holdout Validation

Rule of Thumb

Train set: 80% of the dataset = 60% (train-dev set) + 20% (validation set)

Test set: 20% of the dataset

k-Fold Cross-Validation

Stratified k-Fold Cross-Validation

Aprendizado de Máquina e Reconhecimento de Padrões 2021.2

Machine Learning Concepts

Prof. Samuel Martins (Samuka)

samuel.martins@ifsp.edu.br

