

Figura 1.4.6 C álculo de (a) las coordenadas esféricas del punto (1, -1, 1), y de (b) las coordenadas cartesianas de $(3, \pi/6, \pi/4)$.

Figura 1.4.7 Cálculo de (a) las coordenadas esf éricas del punto (2, -3, 6), y de las (b) coordenadas cartesianas de (1, $-\pi/2$, $\pi/4$).

Ejemplo 3

Expresar (a) la superficie xz=1 y (b) la superficie $x^2+y^2-z^2=1$ en coordenadas esféricas.

Solución

A partir de la Fórmula (3), $x = \rho \sin \phi \cos \theta$ y $z = \rho \cos \phi$, y así la superficie xz = 1 de (a) está formada por los puntos (ρ, θ, ϕ) tales que

$$\rho^2 \sin \phi \cos \theta \cos \phi = 1, \qquad \text{esto es}, \qquad \rho^2 \sin 2\phi \cos \theta = 2.$$

En cuanto al apartado (b), podemos escribir

$$x^{2} + y^{2} - z^{2} = x^{2} + y^{2} + z^{2} - 2z^{2} = \rho^{2} - 2\rho^{2}\cos^{2}\phi,$$

de modo que la superficie es $\rho^2(1-2\cos^2\phi)=1$; esto es, $-\rho^2\cos(2\phi)=1$.

Asociados a las coordenadas cilíndricas y esféricas están los vectores unitarios que se corresponden con \mathbf{i} , \mathbf{j} y \mathbf{k} en las coordenadas rectangulares, que se muestran en la Figura 1.4.8. Por ejemplo, \mathbf{e}_r es el vector unitario paralelo al plano xy que tiene dirección radial, de modo que $\mathbf{e}_r = (\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}$. De forma similar, en coordenadas esféricas, \mathbf{e}_{ϕ} es el vector unitario tangente a la curva parametrizada por la variable ϕ manteniendo fijas las variables ρ y θ . Utilizaremos estos vectores unitario