An ODE Model of Root Zonation in A. Thaliana Mutants

Riley Wheadon

University of British Columbia

Snacks, December 4th, 2024

Acknowledgements

- Dr. Eric Cytrynbaum (Supervisor)
- Dr. Geoffrey Wasteneys (Experimental Collaborator)
- NSERC USRA Program

Root Zonation

Figure: Zonation of the root apical meristem in A. thaliana.

Microtubules

Figure: The arrangement of microtubules is linked with cell behaviour.

Signalling Network

Figure: Hormone interactions observed in A. thaliana roots.

brinCLASPpro (BRIN-CLASP) Mutant

clasp-1 Mutant

Mutant Roots

Figure: Experimental data from the wild type and mutants.

Hypothesis[®]

Figure: A "sizer" mechanism for division zone exit produces the different phenotypes in the wild type, BRIN-CLASP, and CLASP-1 roots!

Growth Model Assumptions

- We model a *single column* of cells over time.
- Our data has no time dependence so Δt is arbitrary.
- Cells grow at a basal rate $\gamma_0 L$.
- Cell growth is increased by BES1 at a rate γ_1 . The exact model for BES1 signalling is discussed later.

Division Model Assumptions

- Cells complete a cell cycle and divide when D=1.
- Cells also must be at least $m \mu m$ long to divide.
- Cell division creates two cells with length L/2 and D=0.
- Progress in the cell cyle proceeds at a basal rate d_0 .
- Progress in the cell cyle is inhibited by length.

Abridged Signalling Network

Figure: Simplified signalling network used in the model.

Equations

The intracellular equations are assumed to be in QSS:

$$0 = \frac{dC}{dt} = (c_0 - c_1 R_B) - c_2 C$$

$$0 = \frac{dR_T}{dt} = (r_0 + r_1 C) - r_2 R_T$$

$$0 = \frac{dR_B}{dt} = k_{on}(R_T - R_B) B_{free} - k_{off} R_B$$

Growth and division take place on a much longer time scale:

$$\frac{dD}{dt} = (1 + \delta_0 C) \left(1 - \frac{L^n}{\delta_1^n + L^n} \right)$$

$$\frac{dL}{dt} = (\gamma_0 + \gamma_1 R_B) L$$

Initial Results

Figure: The model failed to differentiate cell lengths in the BRIN-CLASP mutant from the wild type.

Troubleshooting the Model

The BRIN-CLASP mutant is behaving almost identically to the wild type. There are two possible ways to rescue the mutant:

- Make cells in the BRIN-CLASP mutant grow faster.
- Make cells in the BRIN-CLASP mutant divide slower relative to the wild type, which makes them larger on average.

Solution 1: Promoting Growth in BRIN-CLASP

Why? The BRIN-CLASP mutant has more CLASP and thus more BRI1 receptors. These additional receptors could be binding to brassinosteroid molecules that weren't included in our model, increasing BES1 signalling and growth.

Solution 1: Promoting Growth in BRIN-CLASP

Why? The BRIN-CLASP mutant has more CLASP and thus more BRI1 receptors. These additional receptors could be binding to brassinosteroid molecules that weren't included in our model, increasing BES1 signalling and growth.

How? Increase the level of extracellular BL to account for other brassinsteroids. This (as well as some other changes) ultimately *did not* rescue the BRIN-CLASP mutant.

Solution 2: Inhibiting Division in BRIN-CLASP

Why? The higher concentration of CLASP in the BRIN-CLASP mutant increases the amount of transfacial microtubule bundles. An excess of these bundles could prevent tubulin from forming the mitotic spindle.

Solution 2: Inhibiting Division in BRIN-CLASP

Why? The higher concentration of CLASP in the BRIN-CLASP mutant increases the amount of transfacial microtubule bundles. An excess of these bundles could prevent tubulin from forming the mitotic spindle.

How? To implement this change, we modify the division equation to lower the division rate for low *and* high CLASP concentrations.

$$\frac{dD}{dt} = (\sigma_0 + \sigma_1 C - C^2) \left(1 - \frac{L^n}{\delta_1^n + L^n} \right)$$

Updated Results (1)

Figure: The updated model correctly differentiates cell lengths in the BRIN-CLASP mutant from the wild type.

Updated Results (2)

The updated model accurately explains the mutant phenotypes:

Mutant	Length	Division Zone Size	Divisions
Wild Type	43 692µm	456.5µm	324
BRIN-CLASP	28 352μm	275.0μm	213
clasp-1	19 241µm	234.5µm	142

Conclusion

Key Idea: A mechanism which causes the CLASP protein to inhibit cell division at superphysiological concentrations is sufficient to explain the BRIN-CLASP mutant (and *clasp-1* and wild type).

Conclusion

Key Idea: A mechanism which causes the CLASP protein to inhibit cell division at superphysiological concentrations is sufficient to explain the BRIN-CLASP mutant (and *clasp-1* and wild type).

Next Steps:

- Preparing the results presented today for publication.
- Exploring other mechanisms for zonation (i.e. "timer").
- Integrating this work with intracellular microtubule models.
- Modelling the effects of CLASP on auxin signalling.

Conclusion

Key Idea: A mechanism which causes the CLASP protein to inhibit cell division at superphysiological concentrations is sufficient to explain the BRIN-CLASP mutant (and *clasp-1* and wild type).

Next Steps:

- Preparing the results presented today for publication.
- Exploring other mechanisms for zonation (i.e. "timer").
- Integrating this work with intracellular microtubule models.
- Modelling the effects of CLASP on auxin signalling.

Thanks for listening. Any questions?

