3 תורת החישוביות – 236343 – תרגיל בית

1 תכונות של רדוקציות

א. הכלה

הוכיחו/הפריכו:

- $L_1 \leq L_2$ אז $L_1 \subseteq L_2$ אז אז בין זוג שפות כך אז L_1, L_2 אז .1
- $L_1 \nleq L_2$ אז $L_1 \not\subseteq L_2$ אוג שפות כך שים.

ב. יחידות

הוכיחו/הפריכו:

- $L_1=L_2$ אל L אז אל L_2 יה מ־L אל וגם רדוקציה מ־L אל אז וועם רדוקציה מ־L אם 1.
- $L_1=L_2$ אז L_2 אל מ־ל מ־ל וגם רדוקציה מ־ל אל בי מ־ל אל מ־ל מ־ל .2

ג. שפות טריוויאליות

 $L \in \{\emptyset, \Sigma^*\}$ שפה L נקראת **טריוויאלית** אם

- $L_1 \leq L_2$ ו־ $L_1 \in R$ היא שפה לא טריוויאלית גו $L_1 \in R$ הוכיחו .1
- $L_1 \leq L_2$ שפה טריוויאלית. מהן כל השפות L_1 המקיימות .2

ד. רדוקציות בין שפות קשות

הוכיחו/הפריכו:

- $L_1 \leq L_2$ ו־ $L_1 \neq L_2$ כך ש־ $L_1 \neq L_2$ ו־ $L_1 \leq L_2$ ו־ $L_1 \leq L_2$ ו־ .1
 - $L_1 \leq L_2$ מתקיים $L_1, L_2
 otin {
 m RE} \cup {
 m coRE}$ מתקיים.

2 סיווג שפות

. או את הבאות, קבעו האם היא שייכת ל- $RE \setminus R$ או לא שייכת ל-RE, והוכיחו את תשובתכם.

- $L_1 = \{(\langle M \rangle, x) \in \operatorname{HP} | (\langle M \rangle, x)| \le 2^{80} \}$.1
- (ניתן להניח כי למכונה האוניברסלית קידוד בגודל קטן מ $L_2 = \left\{ \left(\left\langle M \right\rangle, x \right) \in \mathrm{HP} \mid \left| \left\langle M \right\rangle \right| \leq 2^{80} \right\}$.2
 - $L_3 = \{ \langle M \rangle \mid L(M) \subseteq HP \}$.3
 - $L_4 = \{\langle M \rangle \mid \mathrm{HP} \subseteq L(M)\}$.4
 - $L_5 = \{\langle M \rangle \mid L(M) \neq \mathrm{HP}\}$.5

רמז: מצאו וריאציה מתאימה של הרדוקציה מ־HP שראיתם בהרצאה ובתרגול (הרדוקציה הראשונה בתרגול), וזכרו שרדוקציה בין שפות היא גם רדוקציה בין המשלימות שלהן.

 $L_6 = \{\langle M \rangle \mid L(M) = \mathrm{HP}\}$.6

רמז: מצאו וריאציה מתאימה של הרדוקציה מ $\overline{\mathrm{HP}}$ שראיתם בתרגול (הרדוקציה השניה בתרגול).

3 סיווג שפות, שאלה ממבחן

 $R\left(M
ight)=\left\{ x\mid x$ את אחת א דוחה, כלומר M דוחה, אחת את קבוצת את קבוצת את את את את נסמן ב־ $R\left(M
ight)$

$$.L\left(M\right)=L\left(M'\right)$$
אך אך $R\left(M\right)\neq R\left(M'\right)$ כך ש־
ל $M_{1}\neq M_{2}$ אך .1

. הוכיחו את תשובתכם, $RE \setminus RE \setminus RE$ או לא שייכת ל-RE, והוכיחו את תשובתכם לכל אחת מהשפות הבאות, קבעו האם היא שייכת ל-RE

$$L_1=\{\langle M \rangle \ | R\left(M
ight)=R\left(M'
ight)$$
בך ש־ $M'
eq M$ בקיימת $M'
eq M$ בקיימת.

$$L_{2} = \{\langle M \rangle \mid |R(M)| \geq 2\}$$
 .2

$$L_3=\{\langle M
angle\;|L\left(M
ight)
eq L\left(M'
ight)$$
 ובנוסף $R\left(M
ight)=R\left(M'
ight)$ כך ש־ $M'
eq M$ כך של $L_{\Sigma^*}\in\mathrm{coRE}$ במשלימה שלה. האם $L_{\Sigma^*}=\{\langle M
angle\;|\;L\left(M
ight)=\Sigma^*\}$ כתז: התבוננו בשפה