Paths of analysis* Analysis 2

Synthia

March 3, 2022

Analysis parameters 1

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: FGI, FGI with protections

Max. paths returned: 5

Max. iterations: 300

Commercial:

- 1. Max. molecular weight 1000 g/mol
- 2. Max. price 1000 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 10

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL COEF*FGI COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

JSON Parameters: {}

2 Paths

2 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 430.36

Figure 1: Outline of path 1

2.1.1 Mitsunobu reaction

Substrates:

- $1. \ \ 1-tert-butyl \ 2-methyl \ 4-hydroxypyrrolidine-1, 2-dicarboxylate \\ \textit{at Sigma-Aldrich} \\$
- 2. C6H6O available at Sigma-Aldrich

Products:

1. n-tert-butoxycarbonyl-4-phenoxyproline methyl ester

Typical conditions: DEAD.or.DCAD.or.DIAD.PPh3

Protections: none

Yield: good

Reference: DOI: 10.1021/jo0345751 AND 10.1021/ol0618757

Retrosynthesis ID: 7562

2.1.2 amine formylation

Substrates:

 $1. \ \, d, l-p-fluor phenylalan in-methyle ster - {\color{blue} Combi-Blocks}$

2. Formic acid - available at Sigma-Aldrich

Products:

1. COC(=O)C(Cc1ccc(F)cc1)NC=O

Typical conditions: HEU(zeolite).RT.no solvent

Protections: none

Yield: good

Reference: 10.5012/bkcs.2012.33.7.2251

Retrosynthesis ID: 6000040

2.1.3 Boc removal

Substrates:

1. n-tert-butoxycarbonyl-4-phenoxyproline methyl ester

Products:

1. COC(=O)C1CC(Oc2cccc2)CN1

 $\textbf{Typical conditions:} \ \, \textbf{TFA.DCM or HCl.EtOH}$

Protections: none

Yield: good

Reference: 10.1021/jm070794t and 10.1021/jm020598g and

10.1021/acs.oprd.5b00144 and 10.1016/j.bmc.2003.08.022

Retrosynthesis ID: 10025810

2.1.4 Synthesis of acid chlorides from esters

Substrates:

1. COC(=O)C(Cc1ccc(F)cc1)NC=O

Products:

1. O=CNC(Cc1ccc(F)cc1)C(=O)Cl

Typical conditions: 1. LiOH.H2O.THF.2. evapo-

rate.3.SOCl2.or.oxalyl.chloride

Protections: none
Yield: moderate

Reference: 10.1021/ja073476s and 10.1016/j.tet.2007.04.043 and

10.1002/adsc.200303011 and 10.3390/50500714

2.1.5 Synthesis of tertiary amides from acid chlorides

Substrates:

1. O=CNC(Cc1ccc(F)cc1)C(=O)Cl

 $2. \ \mathrm{COC}(=\mathrm{O})\mathrm{C1CC}(\mathrm{Oc2cccc2})\mathrm{CN1}$

Products:

 $1. \ \ COC(=O)C1CC(Oc2cccc2)CN1C(=O)C(Cc1ccc(F)cc1)NC=O$

 $\textbf{Typical conditions:} \ \mathrm{TEA.DCM.rt}$

Protections: none

Yield: good

Reference: DOI: 10.1016/j.bmcl.2008.08.004 and 10.1016/j.tetlet.2008.05.010

2.1.6 Synthesis of acid chlorides from esters

Substrates:

 $1. \ \ COC(=O)C1CC(Oc2cccc2)CN1C(=O)C(Cc1ccc(F)cc1)NC=O$

Products:

 $1. \ O{=}CNC(Cc1ccc(F)cc1)C({=}O)N1CC(Oc2cccc2)CC1C({=}O)C1 \\$

Typical conditions: 1. LiOH.H2O.THF.2. evaporate.3.SOCl2.or.oxalyl.chloride

Protections: none

Yield: moderate

Reference: 10.1021/ja073476s and 10.1016/j.tet.2007.04.043 and 10.1002/adsc.200303011 and 10.3390/50500714

Retrosynthesis ID: 24406

2.1.7 Reaction of acyl chlorides with amines

Substrates:

1. methyl 1-aminocyclobutane-1-carboxylate - Combi-Blocks

2. O=CNC(Cc1ccc(F)cc1)C(=O)N1CC(Oc2cccc2)CC1C(=O)Cl

Products:

 $1. \ \ COC(=O)C1(NC(=O)C2CC(Oc3ccccc3)CN2C(=O)C(Cc2ccc(F)cc2)NC=O)CCC1$

Typical conditions: Net3 or pyridine.DCM

Protections: none

Yield: good

Retrosynthesis ID: 28547

2.1.8 Synthesis of isocyanides from formamides

Substrates:

 $1. \ \ COC(=O)C1(NC(=O)C2CC(Oc3ccccc3)CN2C(=O)C(Cc2ccc(F)cc2)NC=O)CCC1$

Products:

 $1. \ [C-]\#[N+]C(Cc1ccc(F)cc1)C(=O)N1CC(Oc2cccc2)CC1C(=O)NC1(C(=O)OC)CCC1$

 $\textbf{Typical conditions:} \ \, \textbf{TCT.DCM.TEA.MW.50-100C}$

Protections: none
Yield: moderate

Reference: DOI: 10.1021/jo047924f

Retrosynthesis ID: 245867

2.1.9 Parikh-Doering Oxidation

Substrates:

1. Propanolamine - available at Sigma-Aldrich

Products:

1. 3-amino-propionaldehyde

Typical conditions: DMSO. sulfur trioxide pyridine complex. NEt3

Protections: none

Yield: good

Reference: 10.1021/ja00997a067

Retrosynthesis ID: 10255

2.1.10 Ugi reaction

Substrates:

1. 2-[(tert-butoxy)carbonyl]amino-3,3-dimethylbutanoic acid - Enamine

 $2. \ [C-]\#[N+]C(Cc1ccc(F)cc1)C(=O)N1CC(Oc2cccc2)CC1C(=O)NC1(C(=O)OC)CCC1$

3. 3-amino-propionaldehyde

Products:

Typical conditions: MeOH

Protections: none

Yield: good

Reference: DOI: 10.1002/ange.19590711110

Retrosynthesis ID: 222

2.1.11 Aminolysis of esters to primary amides

Substrates:

Products:

Typical conditions: NH3.MeOH.50C or NH3.H2O or NH3.THF.H2O

Protections: none
Yield: moderate

Reference: 10.1021/jacs.6b02276 and WO2016114668 p.36 and

 $10.1016/j.bmc.2008.10.057 \ \ \mathbf{and} \ \ 10.1016/j.bmc.2014.01.030$

Retrosynthesis ID: 31015629

2.2 Path 2

Score: 833.05

Figure 2: Outline of path 2

2.2.1 Amide coupling

Substrates:

- $1. \ \, d, l-p-fluor phenylalan in-methyle ster {\color{blue} Combi-Blocks}$
- 2. 2,4-Dibromo-butyric acid available at Sigma-Aldrich

Products:

 $1. \ \mathrm{COC}(=\mathrm{O})\mathrm{C}(\mathrm{Cc1ccc}(\mathrm{F})\mathrm{cc1})\mathrm{NC}(=\mathrm{O})\mathrm{C}(\mathrm{Br})\mathrm{CCBr}$

Typical conditions: DCC.DCM or EDC.DCM or SOCl2.DCM

Protections: none

 $\bf Yield: \ good$

Reference: 10.1021/cr100048w and 10.1039/B701677H and 10.1039/C5RA24527C and 10.3727/0000000006783981206 and 10.1021/np060007f and 10.1021/j000012a058 and 10.1016/j.bmcl.2007.08.037

and 10.1039/C0OB00355G and 10.1021/jm500031w (p.3056) and 10.1016/j.tet.2011.03.046

Retrosynthesis ID: 10087

2.2.2 Synthesis of Azetidines from Dihalides followed by N-Tosyl Deprotection

Substrates:

- $1. \ \mathrm{COC}(=\mathrm{O})\mathrm{C}(\mathrm{Cc1ccc}(\mathrm{F})\mathrm{cc1})\mathrm{NC}(=\mathrm{O})\mathrm{C}(\mathrm{Br})\mathrm{CCBr}$
- 2. Benzenesulfonamide available at Sigma-Aldrich

Products:

1. COC(=O)C(Cc1ccc(F)cc1)NC(=O)C1CCN1

Typical conditions: 1) K2CO3. CH3CN. Reflux. 2) Na. Napthalene. DME. -78C

Protections: none

Yield: moderate

Reference: DOI: 10.1021/jo00112a014 or DOI: 10.1016/j.tetlet.2004.03.036 (de-

protection)

Retrosynthesis ID: 21047

2.2.3 Amide coupling

Substrates:

 $1. \ \mathrm{COC}(=\mathrm{O})\mathrm{C}(\mathrm{Cc1ccc}(\mathrm{F})\mathrm{cc1})\mathrm{NC}(=\mathrm{O})\mathrm{C1CCN1}$

2. 2-[(tert-butoxy)carbonyl]amino-3,3-dimethylbutanoic acid - Enamine

Products:

 $1. \ COC(=O)C(Cc1ccc(F)cc1)NC(=O)C1CCN1C(=O)C(NC(=O)OC(C)(C)C)C(C)C$

Typical conditions: DCC.DCM or EDC.DCM or SOC12.DCM

Protections: none

Yield: good

Reference: 10.1021/o1400686f and 10.1021/jo00200a057 and 10.1021/cr100048w and 10.1039/B701677H and 10.1039/C5RA24527C and 10.3727/000000006783981206 and 10.1021/np060007f and 10.1021/jo00012a058 and 10.1016/j.bmcl.2007.08.037 and 10.1039/C0OB00355G and 10.1021/jm500031w (p.3056) and 10.1016/j.tet.2011.03.046

Retrosynthesis ID: 9147

2.2.4 Intramolecular amidation of esters

Substrates:

- 1. tert-butyl 3-oxo-2-oxa-5-azabicyclo
[2.2.1]heptane-5-carboxylate availet at Sigma-Aldrich
- 2. 1-aminocyclobutane-1-carboxamide available at Sigma-Aldrich

Products:

 $1. \ \mathrm{CC}(\mathrm{C})(\mathrm{C})\mathrm{OC}(=\mathrm{O})\mathrm{N1CC}(\mathrm{O})\mathrm{CC1C}(=\mathrm{O})\mathrm{NC1}(\mathrm{C}(\mathrm{N})=\mathrm{O})\mathrm{CCC1}$

Typical conditions: DABAL-(Me)3.THF.cooling

Protections: none

Yield: good

Reference: 10.1016/j.tetlet.2006.06.004 and 10.1246/cl.1987.803 and 10.1016/j.polymer.2013.01.040 and 10.1016/j.tetasy.2003.11.026 and 10.1021/ol050773y

2.2.5 Mitsunobu reaction

Substrates:

 $1. \ \mathrm{CC}(\mathrm{C})(\mathrm{C})\mathrm{OC}(=\mathrm{O})\mathrm{N1CC}(\mathrm{O})\mathrm{CC1C}(=\mathrm{O})\mathrm{NC1}(\mathrm{C}(\mathrm{N})=\mathrm{O})\mathrm{CCC1}$

2. C6H6O - available at Sigma-Aldrich

Products:

 $1. \ CC(C)(C)OC(=O)N1CC(Oc2cccc2)CC1C(=O)NC1(C(N)=O)CCC1$

 $\textbf{Typical conditions:} \ DEAD.or.DCAD.or.DIAD.PPh3$

Protections: none

Yield: good

Reference: DOI: 10.1021/jo0345751 AND 10.1021/ol0618757

Retrosynthesis ID: 7562

2.2.6 Synthesis of acid chlorides from esters

? → ?

Substrates:

 $1. \ COC(=O)C(Cc1ccc(F)cc1)NC(=O)C1CCN1C(=O)C(NC(=O)OC(C)(C)C)C(C)C)\\$

Products:

Typical conditions: 1. LiOH.H2O.THF.2. evaporate.3.SOCl2.or.oxalyl.chloride

Protections: none
Yield: moderate

Reference: 10.1021/ja073476s and 10.1016/j.tet.2007.04.043 and

10.1002/adsc.200303011 and 10.3390/50500714

Retrosynthesis ID: 24406

2.2.7 Boc removal

Substrates:

 $1. \ \mathrm{CC}(\mathrm{C})(\mathrm{C})\mathrm{OC}(=\mathrm{O})\mathrm{N1CC}(\mathrm{Oc2cccc2})\mathrm{CC1C}(=\mathrm{O})\mathrm{NC1}(\mathrm{C}(\mathrm{N})=\mathrm{O})\mathrm{CCC1}$

Products:

1. NC(=O)C1(NC(=O)C2CC(Oc3ccccc3)CN2)CCC1

Typical conditions: TFA.DCM or HCl.EtOH

Protections: none

Yield: good

Reference: 10.1021/jm070794t and 10.1021/jm020598g and

10.1021/acs.oprd.5b00144 and 10.1016/j.bmc.2003.08.022

Retrosynthesis ID: 10025810

2.2.8 Synthesis of tertiary amides from acid chlorides

Substrates:

- 2. NC(=O)C1(NC(=O)C2CC(Oc3ccccc3)CN2)CCC1

Products:

 $1. \ \ CC(C)(C)OC(=O)NC(C(=O)N1CCC1C(=O)NC(Cc1ccc(F)cc1)C(=O)N1CC(Oc2cccc2)CC1C(=O)NC(Cc1ccc(F)cc1)C(=O)NC(Cc1ccc(F)cc1)C(=O)NC(Cc1ccc(F)cc1)C(=O)NC(Cc1ccc(F)cc1)C(=O)NC(Cc1ccc(F)cc1)C(=O)NC(Cc1cccC2)CC1C(=O)NC(Cc1cccC2)CC1C(=O)NC(Cc1cccC2)CC1C(=O)NC(Cc1cccC2)CC1C(=O)NC(Cc1cccC2)CC1C(=O)NC(Cc1cC2)CC1C(=O)NC(Cc1cC2)CC1C(=O)NC(CC1CC2)CC1C(=O)NC(CC1CC2)CC1C(=O)NC(CC1CC2)CC1C(=O)NC(CC1CC1)CC1C(=O)NC(CC1CC1)CC1C(=O)NC(CC1CC1)CC1C(=O)NC(CC1CC1)CC1C(=O)NC(CC1CC1)CC1C(CC1C1$

Typical conditions: TEA.DCM.rt

Protections: none
Yield: moderate

Reference: DOI: 10.1016/j.bmcl.2008.08.004 and 10.1016/j.tetlet.2008.05.010