Linear Algebra [KOMS119602] - 2022/2023

5.1 - Determinants of Matrices

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 7-11 February 2022

Learning objectives

After this lecture, you should be able to:

- 1. explain the concept of determinant of a matrix;
- 2. compute the determinant of (2×2) matrices;
- 3. compute the determinant of (3×3) matrices;
- 4. explain the geometric interpretation of determinant of (2×2) matrices;
- 5. explain the geometric interpretation of determinant of (3×3) matrices;
- 6. explain the use of determinant in the system of liner equations;
- 7. use permutation to compute determinants;

Good math skills are developed by doing lots of problems.

Part 1: Formal definition of determinant

Formal definition of determinant matrix

Given a square matrix $A = [a_{ij}]$ of size $n \times n$.

We can assign a *scalar* to matrix A, as a function of the entries of the square matrix. This is called the determinant of matrix A.

The determinant of matrix A is denoted by |A|, and often written as:

```
\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}
```

Determinants of orders 1 and 2

For n = 1, 2, the determinants are defined as:

$$|a_{11} = a_{11}|$$
 and $\begin{vmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$

Example

Find the determinant of the following matrices:

$$\begin{bmatrix} 5 & 3 \\ 2 & 6 \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} 4 & -5 \\ -6 & 3 \end{bmatrix}$$

Part 2: Determinants of 2×2 matrices

Determinants of 2×2 matrices

Given a matrix:

$$A = \begin{bmatrix} A_1 & B_1 \\ A_2 & B_2 \end{bmatrix}$$

In high school, you might have learned that the determinant of the matrix (size 2×2) is defined as

$$A_1B_2 - A_2B_1$$

and is denoted by:

$$|A| = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}$$

Motivating example: an important application of determinant

Recall that, given a system of linear equations in two variables:

$$A_1x + B_1y = C_1$$
$$A_2x + B_2y = C_2$$

- The system has exactly one solution when $A_1B_2-A_2B_1\neq 0$
- The system has no solution or infinitely many solutions when $A_1B_2 A_2B_1 = 0$

Motivating example: an important application of determinant

Recall that, given a system of linear equations in two variables:

$$A_1x + B_1y = C_1$$
$$A_2x + B_2y = C_2$$

- The system has exactly one solution when $A_1B_2-A_2B_1 \neq 0$
- The system has no solution or infinitely many solutions when $A_1B_2 A_2B_1 = 0$

The coefficient matrix
$$\begin{bmatrix} A_1 & B_1 \\ A_2 & B_2 \end{bmatrix}$$
 has determinant $= A_1B_2 - A_2B_1$.

Remark. Determinant of the coefficient matrix determines the number of solutions of the given system. The system has a unique solution iff $D \neq 0$.

Application to linear equations

Solving the system by variable elimination:

$$A_1B_2x + B_1B_2y = B_2C_1$$

$$A_2B_1x + B_1B_2y = B_1C_2$$

$$(A_1B_2 - A_2B_1)x = B_2C_1 - B_1C_2$$

$$x = \frac{B_2C_1 - B_1C_2}{A_1B_2 - A_2B_1}$$

We have:

$$B_2C_1 - B_1C_2 = \begin{vmatrix} C_1 & B_1 \\ C_2 & B_2 \end{vmatrix} = N_x \text{ and } A_1B_2 - A_2B_1 = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = D$$

Hence,
$$x = \frac{N_x}{D}$$

Application to linear equations

Similarly, we can find the value of y:

$$A_1 A_2 x + A_2 B_1 y = A_2 C_1$$

 $A_1 A_2 x + A_1 B_2 y = A_1 C_2$

$$(A_2B_1 - A_1B_2)y = A_2C_1 - A_1C_2$$
$$x = \frac{A_2C_1 - A_1C_2}{A_2B_1 - A_1B_2} = \frac{A_1C_2 - A_2C_1}{A_1B_2 - A_2B_1}$$

We have:

$$A_1C_2 - A_2C_1 = \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix} = N_y \text{ and } A_1B_2 - A_2B_1 = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} = D$$

Hence,
$$y = \frac{N_y}{D}$$

Example

Solve the following system using determinants:

$$\begin{cases} 3x - 4y = -10 \\ -x + 2y = 2 \end{cases}$$

Solution:

$$N_{x} = \begin{vmatrix} -10 & -4 \\ 2 & 2 \end{vmatrix} = -20 - (-8) = -12$$

$$N_{y} = \begin{vmatrix} 3 & -10 \\ -1 & 2 \end{vmatrix} = 6 - 10 = -4$$

$$D = \begin{vmatrix} 3 & -4 \\ -1 & 2 \end{vmatrix} = 6 - 4 = 2$$

Hence,
$$x = \frac{-12}{2} = -6$$
 and $y = \frac{-4}{2} = -2$.

Conclusion

Given:

$$A_1x + B_1y = C_1$$
$$A_2x + B_2y = C_2$$

with the coefficient matrix $\begin{bmatrix} A_1 & B_1 \\ A_2 & B_2 \end{bmatrix}$ having non-zero determinant (meaning that, the system has a unique solution).

The solution is given by:

$$x = \frac{N_x}{D}$$
 and $y = \frac{N_y}{D}$

where
$$N_x = \begin{vmatrix} C_1 & B_1 \\ C_2 & B_2 \end{vmatrix}$$
, $N_y = \begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix}$, and $D = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}$.

Geometric interpretation

Matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ can be viewed as an "arrangement" of:

- row vectors: $\begin{bmatrix} a & b \end{bmatrix}$ and $\begin{bmatrix} c & d \end{bmatrix}$
- or, column vectors: $\begin{bmatrix} a \\ c \end{bmatrix}$ and $\begin{bmatrix} b \\ d \end{bmatrix}$

The matrix defines the so-called *linear transformation* of the unit square (in green) formed by the *basis vectors* $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, with respect to:

- the row vectors, shown by the red parallelogram; or
- the column vectors, shown by the blue parallelogram

Both parallelograms have the same area.

Example

Given a matrix
$$A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$
.

Draw two parallelograms that define the transformation of the unit square w.r.t. the row vectors and the column vectors, respectively.

Solution:

Part 3: Determinants of 3×3 matrices

Determinants of matrices of order 3 (i.e., size 3×3)

Given a matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

The determinant of the matrix above is defined as:

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

Alternative form for the determinant of an order-3 matrix

The determinant of the matrix above is defined as:

$$\begin{aligned} \det(A) &= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32} \\ &= a_{11}(a_{22}a_{23} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \\ &= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \end{aligned}$$

This formula can be illustrated as follows:

Example

Find the determinant of matrix
$$A = \begin{bmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{bmatrix}$$

Solution:

• Using the diagram

$$det(A) = 3(5)(4) + 2(-1)(2) + (1)(-4)(-3) - 1(5)(2) - 2(-4)(4)(-3)(-3)$$
$$= 60 - 4 + 12 - 10 + 32 - 9 = 81$$

Using the alternative form

$$\begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix} = 1 \begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix} - 2 \begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix} + 3 \begin{vmatrix} 3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4 \end{vmatrix}$$
$$= 1 \begin{vmatrix} 5 & -1 \\ -3 & 4 \end{vmatrix} - 2 \begin{vmatrix} -4 & -1 \\ 2 & 4 \end{vmatrix} + 3 \begin{vmatrix} -4 & 5 \\ 2 & -3 \end{vmatrix}$$
$$= 1(20 - 3) - 2(-16 + 2) + 3(12 - 10) = 17 + 28 - 6 = 39$$

Applications to linear equations system

Given the following linear system:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z &= b_1 \\ a_{21}x + a_{22}y + a_{23}z &= b_2 \\ a_{31}x + a_{32}y + a_{33}z &= b_3 \end{cases}$$

We can perform similar computations as in the case (2×2) matrix, in order to find a solution of the system.

The coefficient matrix of the system is given by:
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

The system has a unique solution only if $D = \det(A) \neq 0$. The solution is given by:

$$x = \frac{N_x}{D}, \quad y = \frac{N_y}{D}, \quad z = \frac{N_z}{D}$$

where N_x , N_y , and N_z is obtained by replacing the 1st, 2nd, and 3rd

column of
$$A$$
 by the constant vector $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

Geometric interpretation

In \mathbb{R}^3 , the vectors u_1 , u_2 , and u_3 determine the parallelepiped,

which is the result of transforming the unit cube using the vectors $\{u_1, u_2, u_3\}$.

Remark.

Let u_1, u_2, \ldots, u_n be vectors in \mathbb{R}^n . Then:

$$S = \{a_1u_1 + a_2u_2 + \dots + a_nu_n : 0 \le a_i \le 1 \text{ for } i = 1, \dots, n\}$$

$$V(S) = \mathsf{absolute} \ \mathsf{value} \ \mathsf{of} \ \mathsf{det}(A)$$

Part 4: Determinants of arbitrary order (a combinatorial way)

Pattern in the determinant formulas

Can you find a pattern of the following determinant formulas?

• For
$$2 \times 2$$
 matrix: $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ then
$$\det(A) = a_{11}a_{22} - a_{12}a_{21}$$

• For
$$3 \times 3$$
 matrix: $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

We will study these patterns!

Sign (parity) of a permutation

Given a sequence of elements: $\sigma = j_1 j_2 \dots j_n$, a permutation of σ is defined as an arrangement of the objects in σ in a definite order.

The set of all permutations of n objects is denoted by S_n .

An inversion in σ is a pair of integers (i, k), such that i > k but i precedes k in σ .

σ is called:

- even permutation, if there are an even number of inversions in σ;
- odd permutation, otherwise.

The sign or parity of the permutation σ is defined by:

$$\operatorname{sgn}(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even} \\ -1 & \text{if } \sigma \text{ is odd} \end{cases}$$

Example: sign of a permutation

Given a permutation $\sigma = 35412$ in S_5 . What is the sign of σ ?

Solution:

- 3 numbers (3, 4 and 5) precede 1;
- 3 numbers (3, 4 and 5) precede 2;
- 1 number (5) precedes 4;
- no number that precedes 3 or 4

Since 3+3+1=7 is odd, then σ is an odd permutation. Hence

$$\operatorname{sgn}(\sigma) = -1$$

Exercises:

- 1. Find the sign of the permutation: $\epsilon = 123 \dots n$ in S_n .
- 2. Find the sign of each permutation in S_2 and S_3 .
- 3. Is it true that in S_n , half of the permutations are even, and half of them are odd?

Using permutation in computing determinants (1)

Given an $n \times n$ matrix $A = [a_{ij}]$ over a field K.

Consider a product of n elements of A (here, $j_1j_2...j_n$ is a permutation of 123...n):

$$a_{1j_1}a_{2j_2}\ldots a_{nj_n}$$

such that:

- one and only one element comes from each row of A; and
- one and only one element comes from each column of A.

Q: How many different products of form $a_{1j_1}a_{2j_2}\dots a_{nj_n}$ are there?

A: There are n! such products, because there are n! permutations of $j_1 j_2 \dots j_n$.

Using permutation in computing determinants (2)

The determinant of the $n \times n$ matrix $A = [a_{ij}]$ is defined as: the sum of all the n! products $a_{1j_1}a_{2j_2}\ldots a_{nj_n}$, where each product is multiplied by the sign of $\sigma = j_1j_2\ldots j_n$.

$$|A| = \sum_{\sigma} \operatorname{sgn}(\sigma) a_{1j_1} a_{2j_2} \dots a_{nj_n}$$

or, this can be written as:

$$|A| = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \ a_{1\sigma(1)} a_{2j\sigma(2)} \dots a_{n\sigma(n)}$$

Using permutation in computing determinants (3)

- 1. Given $A = [a_{11}]$, then $det(A) = a_{11}$.
- 2. Given $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, then $det(A) = a_{11}a_{22} a_{12}a_{21}$.
- 3. Given $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, then:

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

to be continued...