Classifying Charged Particles from High Energy Collisions at the Large Hadron Collider

Justin Anguiano, Margaret Lazarovitz

University of Kansas

May 10, 2020

Introduction

Overall project goal:

Classify particles better to assist with search for particle darkmatter

Specific focus:

- Discrminate low momentum true muons($\mu^\pm)$ from particles imitating muons in reconstruction

Motivation

KU CMS analysis in progress – searching for particle dark matter via compressed SUSY models

- Protons P_1 , P_2 collide producing SUSY $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2$
- SUSY $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2$ decays to D.M. $\tilde{\chi}_1^0$ and known particles W^{\pm} , Z
- W^{\pm},Z immediately decay into charged particles (μ^{\pm}) that we see in the detector

A compressed scenario implies $\tilde{\chi}_1^\pm, \tilde{\chi}_2$ and $\tilde{\chi}_1^0$ are very close in rest mass

With compression the decay products of $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2$ are soft (low momentum), including ending charged particles

The current CMS detector is less optimized for correctly identifying soft μ^\pm

If we can optimize soft charged particle classification, we have a better chance of discovering compressed $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2$, and $\tilde{\chi}_1^0$

Anatomy of an Event

The "physics workflow"

- An event consists of colliding protons which produces particles showering outward(transverse)
- We measure the energy and momentum of all the visible particles in the event
- There are 100s of charged particles per event
- Reconstruct intermediate or invisible particles through momentum and energy conservation

Charged Particle Reconstruction

Charged particles bend in Mag. field and create "tracks"

Tracks are connecting the dots: "hits" that are fit with a curve

Main particle of interest is the Muon(μ^{\pm})

- at high energies μ is easily correctly identified
- low energies leaves room for ambiguity

Sometimes other particles can be reconstructed incorrectly as a muon

- Common fakes: $\mathsf{Pion}(\pi^\pm)$, $\mathsf{Electron}(e^\pm)$, $\mathsf{Kaon}(K^\pm)$, $\mathsf{Proton}(p)$, or non physical junk particles
- created from punch through
- junk particles are a result of hit combinatorics

ML Model Introduction

- Use fully simulated processes to get collections of reconstructed muons
- Reconstructed muons contains both true(Gen.) muons and fakes.
- reconstructed to truth particle from the simulation's Gen.collection
 - > some particles cant be matched because they are junk this is unmatched label
- Utilize two types of classification
 - 1 I.D. true muons against everything else [Unmatched, π , K, e, p] binary classification
 - 2 I.D. every particle simultaneously 6 classes logistic
 - Network inputs are measured quantites and track quality metrics

End of Pt. I

backup

 ${\tt Project \; Repository: \; https://github.com/Jphsx/KUSoftMVA}$