

SEQUENCE LISTING

<110> Advisys
Baylor College of Medicine

<120> SYNTHETIC MUSCLE PROMOTERS WITH ACTIVITIES EXCEEDING NATURALLY OCCURRING REGULATORY SEQUENCES IN CARDIAC CELLS

<130> 108328.00161 - AVSI-0027

<140> 10699597
<141> 2003-10-30

<150> US 60/423,536
<151> 2002-11-04

<160> 22

<170> PatentIn version 3.1

<210> 1
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> SRE control elements used in the promoters.

<400> 1
gacacccaaa tatggcgacg g

21

<210> 2
<211> 19
<212> DNA
<213> artificial sequence

<220>
<223> MEF-1 control element used in the promoters

<400> 2
ccaacacactg ctgcctgcc

19

<210> 3
<211> 19
<212> DNA
<213> artificial sequence

<220>
<223> MEF-2 control element used in the promoters.

<400> 3
cgctctaaaa ataactccc

19

<210> 4
<211> 13
<212> DNA
<213> artificial sequence

<220>
<223> TEF-1 control element used in the promoters.

<400> 4
caccatttcct cac

13

<210> 5
<211> 335
<212> DNA
<213> artificial sequence

<220>
<223> Nucleic acid sequence of an eukaryotic promoter c5-12.

<400> 5
cgcccgtccg ctttcggcac catcctcacg acacccaaat atggcgacgg gtgaggaatg 60
gtggggagtt attttagag cggtgaggaa ggtgggcagg cagcaggtgt tggcgctcta 120
aaaataactc cgggaggtta ttttagagc ggaggaatgg tggacaccca aatatggcga 180
cggttcctca cccgtcgcca tatttgggtg tccgcctcg gccggggccg cattcctggg 240
ggccgggcgg tgctcccgcc cgccctcgata aaaggctccg gggccggcgg cggccccacga 300
gctacccgga ggagcgggag gcgc当地 agct ctaga 335

<210> 6
<211> 40
<212> PRT
<213> artificial sequence

<220>
<223> This is the artificial sequence for GHRH (1-40)OH.

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa at position 1 may be tyrosine, or histidine

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa at position 2 may be alanine, valine, or isoleucine.

<220>
<221> MISC_FEATURE
<222> (15)..(15)
<223> Xaa at position 15 may be alanine, valine, or isoleucine.

<220>
<221> MISC_FEATURE
<222> (27)..(27)
<223> Xaa at position 27 may be methionine, or leucine.

<220>
<221> MISC_FEATURE
<222> (28)..(28)
<223> Xaa at position 28 may be serine or asparagine.

<400> 6

Xaa Xaa Asp Ala Ile Phe Thr Asn Ser Tyr Arg Lys Val Leu Xaa Gln
1 5 10 15

Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Xaa Xaa Arg Gln Gln Gly
20 25 30

Glu Arg Asn Gln Glu Gln Gly Ala
35 40

<210> 7
<211> 3534
<212> DNA
<213> artificial sequence

<220>
<223> Nucleic acid sequence for the HV-GHRH plasmid.

<400> 7
gttgtaaaac gacggccagt gaattgtaat acgactcaact atagggcgaa ttggagctcc 60
accgcgggtgg cggccgtccg ccctcggcac catcctcaca cg acacccaaat atggcgacgg 120
gtgaggaatg gtggggagtt atttttagag cggtgaggaa ggtgggcagg cagcaggtgt 180
tggcgctcta aaaataactc ccgggagttt ttttagagc ggaggaatgg tggacaccca 240
aatatggcga cggttcctca cccgtcgcca tattttgggtg tccgcctcg gccggggccg 300
catttcctggg ggccgggcgg tgctccgcgc cgccctcgata aaaggctccg gggccggcgg 360
cggcccacga gctacccgga ggagcgggag ggcggcaagct ctagaacttag tggatccaa 420
ggcccaactc cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct 480
ctgggtgttc ttctttgtga tcctcaccct cagcaacagc tcccactgct ccccacctcc 540
ccctttgacc ctcaggatgc ggcggcacgt agatgccatc ttcaccaaca gctaccggaa 600
ggtgctggcc cagctgtccg cccgcaagct gctccaggac atcctgaaca ggcagcaggg 660
agagaggaac caagagcaag gagcataatg actgcaggaa ttcgatataca agcttatcgg 720
ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc cctggaagtt gccactccag 780
tgcccaccag ctttgtccta ataaaattaa gttgcatcat tttgtctgac taggtgtcct 840
tctataatat tatgggggtgg aggggggtgg tatggagcaa gggcaagtt gggaaagacaa 900

cctgtagggc ctgcggggtc tattgggaac caagctggag tgcagtggca caatcttggc 960
tcactgcaat ctccgcctcc tgggttcaag cgattctcct gcctcagcct cccgagttgt 1020
tgggattcca ggcatgcatg accaggctca gctaattttt gtttttttgt tagagacggg 1080
gtttcaccat attggccagg ctggtctcca actcctaatac tcaggtgatc tacccacctt 1140
ggcctcccaa attgctggta ttacaggcgt gaaccactgc tcccttcctt gtccttctga 1200
ttttaaaata actataaccag caggaggacg tccagacaca gcataggcta cctggccatg 1260
cccaaccgggt gggacatttg agttgcttgc ttggcactgt cctctcatgc gttgggtcca 1320
ctcagtagat gcctgttgaa ttcgataccg tcgacacctga gggggggccc ggtaccagct 1380
tttgccttccct ttagtgaggg ttaatttcga gcttggcgta atcatggtca tagctgttcc 1440
ctgtgtgaaa ttgttatccg ctcacaattt cacacaacat acgagccgga agcataaaagt 1500
gtaaaggcctg ggggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcactgc 1560
ccgccttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg 1620
ggagaggcgg tttgcgtatt gggcgcttcc cgcgttcctc gctcactgac tcgctgcgct 1680
cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca 1740
cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga 1800
accgtaaaaaa ggccgcgttg ctggcgcccc tccataggct ccgcggccctt gacgagcatc 1860
acaaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 1920
cgttcccccc tggaaagctcc ctcgtgcgct ctcctgttcc gaccctgccc cttaccggat 1980
acctgtccgc ctttctccct tcgggaagcg tggcgcttcc tcatacgctca cgctgttaggt 2040
atctcagttc ggtgttaggtc gttcgctcca agctggctg tgtgcacgaa ccccccgttc 2100
agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaaacccg gtaagacacg 2160
acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg 2220
gtgctacaga gttcttgaag tgggtggcta actacggcta cactagaaga acagtatttg 2280
gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgcgttc 2340
gcaaacaacacc caccgctggc agcggtggtt tttttgttttcaagcagcag attacgcgc 2400
gaaaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagaaga 2460
actcgtaag aaggcgatag aaggcgatgc gctgcgaatc gggagcggcg ataccgtaaa 2520
gcacgaggaa gcggtcagcc cattcgccgc caagcttttc agcaaatatca cgggttagcca 2580
acgctatgtc ctgatagcgg tccgccacac ccagccggcc acagtcgatg aatccagaaa 2640
acgcccatt ttccaccatg atattcggca agcaggcatc gccatgggtc acgacgagat 2700

cctcgccgtc	gggcatgcgc	gcctttaggcc	tggcgaacag	ttcggtggc	gcgagcccc	2760
gatgctttc	gtccagatca	tcctgatcga	caagaccggc	ttccatccga	gtacgtgctc	2820
gctcgatgcg	atgtttcgct	tggtggtcga	atgggcaggt	agccggatca	agcgtatgca	2880
gccgcccgcatt	tgcatacgcc	atgatggata	ctttctcgcc	aggagcaagg	tgagatgaca	2940
ggagatcctg	ccccggcact	tcgccccata	gcagccagtc	ccttcccgt	tcagtgacaa	3000
cgtcgagcac	agctgcgcaa	ggaacgcccc	tcgtggccag	ccacgatagc	cgcgctgcct	3060
cgtcctgcag	ttcatttcagg	gcacccggaca	ggtcgggtctt	gacaaaaaga	accggggcgcc	3120
cctgcgctga	cagccggAAC	acggccggcat	cagagcagcc	gattgtctgt	tgtgcccagt	3180
catagccgaa	tagcctctcc	acccaagcgg	ccggagaacc	tgcgtgcaat	ccatcttgtt	3240
caatcatgcg	aaacgatcct	catcctgtct	cttgatcaga	tcttgatccc	ctgcgcccatt	3300
agatccttgg	cggcaagaaa	gccatccagt	ttactttgca	gggcttccca	accttaccag	3360
agggcgcccc	agctggcaat	tccgggttcgc	ttgctgtcca	taaaaccgcc	cagtctagca	3420
actgttggga	agggcgatcg	gtgcgggcct	cttcgctatt	acgccagctg	gcgaaagggg	3480
gatgtgctgc	aaggcgatta	agttgggtaa	cggcagggtt	ttcccaagtca	cgac	3534

<210> 8
 <211> 3534
 <212> DNA
 <213> artificial sequence

<220>
 <223> Nucleic acid sequence for the TI-GHRH plasmid.

<400> 8	gttgtaaaac	gacggccagt	gaattgtat	acgactca	ataggcgaa	ttggagctcc	60
	accgcgggtgg	cggccgtccg	ccctcggcac	catcctcact	acacccaaat	atggcgacgg	120
	gtgaggaatg	gtggggagtt	attttagag	cggtgaggaa	ggtgggcagg	cagcaggtgt	180
	tggcgctcta	aaaataactc	ccgggagtt	tttttagagc	ggaggaatgg	tggacaccca	240
	aatatggcga	cgttcctca	cccgtcgcca	tatttgggtg	tccgcctcg	gccggggccg	300
	cattcctggg	ggccggggcg	tgctcccgcc	cgcctcgata	aaaggctccg	gggcccggcg	360
	cggcccacga	gctacccgga	ggagcgggag	gcccggatct	ctagaactag	tggatccaa	420
	ggcccaactc	cccgaaccac	tcagggtcct	gtggacagct	cacctagctg	ccatgggtct	480
	ctgggtgttc	ttctttgtga	tcctcaccct	cagcaacagc	tcccactgct	ccccacccctcc	540
	ccctttgacc	ctcaggatgc	ggcggtatat	cgtgcgcattc	ttcaccaaca	gctaccggaa	600
	ggtgctggcc	cagctgtccg	cccgcaagct	gctccaggac	atcctgaaca	ggcagcagg	660

agagaggaac caagagaac gaggataatg actgcaggaa ttgcataatca agcttatcg 720
ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc cctgaaagtt gccactccag 780
tgcccaccag ccttgcctta ataaaattaa gttgcataat tttgtctgac taggtgtcct 840
tctataatat tatgggggtgg aggggggtgg tatggagcaa gggcaagtt gggaaagacaa 900
cctgttagggc ctgcggggtc tattggaaac caagctggag tgcaatggca caatcttggc 960
tcactgcaat ctccgcctcc tgggttcaag cgattctcct gcctcagcct cccgagttgt 1020
tgggattcca ggcattgcatt accaggctca gctaattttt gtttttttgg tagagacggg 1080
gtttcaccat attggccagg ctggtctcca actcctaatac tcaggtgatc tacccacctt 1140
ggcctcccaa attgctggga ttacaggcgt gaaccactgc tcccttcctt gtccttctga 1200
ttttaaaata actataccag caggaggacg tccagacaca gcataggcta cctggccatg 1260
cccaaccggc gggacatttgc agttgcattgc ttggcaactgt cctctcatgc gttgggtcca 1320
ctcagtagat gcctgttcaa ttgcataaccg tcgacccctga gggggggccc ggtaccagct 1380
tttgccttccct ttagtgaggg ttaatttcga gcttggcgta atcatggtca tagctgttcc 1440
ctgtgtgaaa ttgttatccg ctcacaatttcc cacacaacat acgagccgga agcataaaagt 1500
gtaaaggctg ggggccttaa tgagttagt aactcacatt aattgcgttg cgctcaactgc 1560
ccgctttcca gtcggaaac ctgtcgtgcc agctgcatttta atgaatcggc caacgcgcgg 1620
ggagaggcgg tttgcgtatt gggcgcttcc cgcttcctc gctcaactgac tcgctgcgt 1680
cggtcggtcg gctgcggcga gcggtatcag ctcactcaaa ggccgtataa cggttatcca 1740
cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga 1800
accgtaaaaaa ggccgcgttg ctggcggttt tccataggct ccgcggccctt gacgagcatc 1860
acaaaaatcg acgctcaagt cagagggtggc gaaacccgac aggactataa agataccagg 1920
cgtttcccccc tggaaagctcc ctgcgtgcgt ctcctgttcc gaccctgccc cttaccggat 1980
acctgtccgc ctttctccct tcggaaagcg tggcgcttcc tcatacgctca cgctgttaggt 2040
atctcagttc ggtgttaggtc gttcgctcca agctggctg tgtgcacgaa ccccccgttc 2100
agcccgaccg ctgcgcctta tccggtaact atcgcttgc gtcaccccg gtaagacacg 2160
acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg 2220
gtgctacaga gttcttgaag tgggtggccta actacggcta cactagaaga acagtatttgc 2280
gtatctgcgc tctgcgttgc acgtttaccc tcggaaaaag agttggtagc tcttgcgttcc 2340
gcaaaacaaac caccgctggt agcggtggtt tttttgttttgc caagcagcag attacgcgc 2400
gaaaaaaaaagg atctcaagaa gatcccttgc tctttctac ggggtctgac gtcagaaga 2460

actcgtaag aaggcgatag aaggcgatgc	gctcgaaatc gggagcggcg	ataccgtaaa	2520
gcacgaggaa gcggtcagcc cattcgccgc	caagctttc agcaatatca	cggtagcca	2580
acgctatgtc ctgatagcg	tccgccacac ccagccggcc	acagtcgatg aatccagaaa	2640
agcggccatt ttccaccatg	atattcggca agcaggcatc	gccatggtc acgacgagat	2700
cctcgccgtc gggcatgcgc	gccttgagcc tggcaacag	ttcggctggc gcgagccct	2760
gatgctttc gtccagatca	tcctgatcga caagaccggc	ttccatccga gtacgtgctc	2820
gctcgatgcg atgttgcgt	tggtggtcga atgggcaggt	agccggatca agcgtatgca	2880
gccggccgtat tgcatcagcc	atgatggata ctttcggc	aggagcaagg tgagatgaca	2940
ggagatccctg cccccggact	tcgcccataa gcagccagtc	ccttcccgt tcagtgacaa	3000
cgtcgagcac agctgcgcaa	gaaacgccccg tcgtggccag	ccacgatagc cgccgtgcct	3060
cgtcctgcag ttcattcagg	gcaccggaca ggtcggtctt	gacaaaaaga accggggcgcc	3120
cctgcgctga cagccgaaac	acggcggcat cagagcagcc	gattgtctgt tgtgcccagt	3180
catagccaa tagcctctcc	acccaagcgg ccggagaacc	tgcgtgcaat ccatcttgtt	3240
caatcatgcg aaacgatcct	catcctgtct cttgatcaga	tcttgcattt ctgcgccatc	3300
agatccttgg cggcaagaaa	gccatccagt ttactttgca	gggcttccca accttaccag	3360
agggcgcccc agctggcaat	tccggttcgc ttgctgtcca	taaaaccgccc cagtc tagca	3420
actgttggaa agggcgatcg	gtgcggccct cttcgcattt	acgcccagctg gcgaaagggg	3480
gatgtgctgc aaggcgatta	agttggtaa cgccagggtt	ttcccagtca cgac	3534

<210> 9
<211> 3534
<212> DNA
<213> artificial sequence

<220>
<223> Nucleic acid sequence for the TV-GHRH plasmid.

<400> 9	gttgtaaaac gacggccagt	gaattgtat acgactcact	atagggcgaa ttggagctcc	60	
	accgcgggtgg	cggccgtccg	ccctcgccac catcctcactg	acacccaaat atggcgacgg	120
	gtgaggaatg	gtggggagtt	attttagag cggtgaggaa	ggtgggcagg cagcaggtgt	180
	tggcgctcta	aaaataactc	ccgggagttt	tttttagagc ggaggaatgg tggacaccca	240
	aatatggcga	cgttcctca	cccgtcgcca	tatgggttgc tccgcctcg gcccggccg	300
	cattcctggg	ggccggccgg	tgctcccgcc	cgcctcgata aaaggctccg gggccggccg	360
	cggcccacga	gctacccgga	ggagcggag	gcccggccgg cgtacccaa	420

ggcccaactc cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct 480
ctgggtgttc ttctttgtga tcctcacccct cagcaacagc tcccactgct ccccacctcc 540
cccttgcacc ctcaggatgc ggcggtatgt agatgccatc ttcaccaaca gctaccggaa 600
ggtgctggcc cagctgtccg cccgcaagct gctccaggac atcctgaaca ggcagcaggg 660
agagaggaac caagagcaag gaggataatg actgcaggaa ttcgatatac agcttatcgg 720
ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc cctggaagtt gccactccag 780
tgcccaccag ccttgcctta ataaaattaa gttgcatcat tttgtctgac taggtgtcct 840
tctataatat tatggggtgg aggggggtgg tatggagcaa gggcaagtt gggaaagacaa 900
cctgttagggc ctgcggggtc tattggaaac caagctggag tgcagtggca caatcttggc 960
tcactgcaat ctccgcctcc tgggttcaag cgattctcct gcctcagcct cccgagttgt 1020
tgggattcca ggcatgcatg accaggctca gctaattttt gtttttttgg tagagacggg 1080
gtttcaccat attggccagg ctggtctcca actcctaatac tcaggtgatc taccacac 1140
ggcctcccaa attgctggga ttacaggcgt gaaccactgc tcccttcctt gtccttctga 1200
ttttaaaata actataccag caggaggacg tccagacaca gcataggcta cctggccatg 1260
cccaaccgggt gggacatttg agttgcttgc ttggcactgt cctctcatgc gttgggtcca 1320
ctcagtagat gcctgttcaa ttgcataccg tcgacactcga gggggggccc ggtaccagct 1380
tttgccttccct ttagtgaggg ttaatttcga gcttggcgta atcatggtca tagctgttcc 1440
ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaaagt 1500
gtaaagcctg ggggcctaa tgagtgagct aactcacatt aattgcgttgc cgctcactgc 1560
ccgccttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg 1620
ggagaggcgg tttgcgtatt gggcgcttcc cgcgttcctc gctcactgac tcgctgcgt 1680
cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca 1740
cagaatcagg ggataacgcgaa gaaaagaaca tgtgagcaaa aggccagcaa aaggccagga 1800
accgtaaaaaa ggccgcgttgc ctggcggttt tccataggct ccgcggccctt gacgagcatc 1860
acaaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 1920
cgtttcccccc tggaaagctcc ctcgtgcgtc ctcctgttcc gaccctgccc cttaccggat 1980
acctgtccgc ctttgccttcc tcgggaagcg tggcgcttcc tcatacgctca cgctgttaggt 2040
atctcagttc ggtgttaggtc gttcgctcca agctggcgtg tgtgcacgaa ccccccgttc 2100
agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaaacccg gtaagacacg 2160
acttatacgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg 2220

gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaaga	acagtattt	2280
gtatctgcgc	tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	tcttgatccg	2340
gcaaacaac	caccgctgg	tgccgggttt	ttttgttt	caaggcagcag	attacgcgc	2400
gaaaaaaaaagg	atctcaagaa	gatccttga	tctttctac	ggggctgac	gctcagaaga	2460
actcgtaag	aaggcgatag	aaggcgatgc	gctgcgaatc	gggagcggcg	ataccgtaaa	2520
gcacgaggaa	gcggtcagcc	cattcgccgc	caagctcttc	agcaatatca	cggtagcca	2580
acgctatgtc	ctgatagcgg	tccgccacac	ccagccggcc	acagtcgatg	aatccagaaa	2640
agcggccatt	ttccaccatg	atattcggca	agcaggcatc	gccatgggtc	acgacgagat	2700
cctcgccgtc	gggcatgcgc	gccttgagcc	tggcgaacag	ttcggctggc	gcgagcccc	2760
gatgctttc	gtccagatca	tcctgatcga	caagaccggc	ttccatccga	gtacgtgctc	2820
gctcgatgcg	atgttcgct	tggtggtcga	atgggcaggt	agccggatca	agcgtatgca	2880
gccgcccgc	tgcatacgcc	atgatggata	ctttctcgcc	aggagcaagg	tgagatgaca	2940
ggagatcctg	ccccggact	tcgcccata	gcagccagtc	cttcccgct	tcagtgacaa	3000
cgtcgagcac	agctgcgcaa	ggaacgcccc	tcgtggccag	ccacgatagc	cgcgctgcct	3060
cgtcctgcag	ttcattcagg	gcaccggaca	ggtcggcttt	gacaaaaaga	accggggcgcc	3120
cctgcgctga	cagccggAAC	acggcggcat	cagagcagcc	gattgtctgt	tgtccccagt	3180
catagccgaa	tagcctctcc	acccaagcgg	ccggagaacc	tgcgtgcaat	ccatcttgtt	3240
caatcatgcg	aaacgatcct	catcctgtct	cttgcata	tcttgcattcc	ctgcgcacatc	3300
agatccttgg	cggaagaaa	gccatccagt	ttactttgca	gggcttccca	accttaccag	3360
agggcgcccc	agctggcaat	tccggttcgc	ttgctgtcca	taaaaccgcc	cagtctagca	3420
actgttggga	aggcgatcg	gtgcggccct	cttcgcattt	acgcccagctg	gcgaaagggg	3480
gatgtgctgc	aaggcgat	tttggtaa	cgccagggtt	ttcccaagtca	cgac	3534

<210> 10
<211> 3534
<212> DNA
<213> artificial sequence

<220>
<223> Nucleic acid sequence for the 15/27/28 GHRH plasmid.

<400> 10	gttgtaaaac	gacggccagt	gaattgtat	acgactcact	ataggcgaa	ttggagctcc	60
	accgcgggtgg	cggccgtccg	ccctcggcac	catcctcact	acacccaaat	atggcgacgg	120
	gtgaggaatg	gtggggagtt	attttagag	cggtgaggaa	ggtggcagg	cagcagggtgt	180

tggcgctcta aaaataactc ccgggagttt ttttagagc ggaggaatgg tggacaccca 240
aatatggcga cggttcctca cccgtcgcca tatttgggtg tccgcctcg gcccggccg 300
catccctggg ggccgggcgg tgctccgccc cgccctcgata aaaggctccg gggccggccg 360
cgccccacga gctaccggaa ggagcgggag gcgccaagct ctagaactag tggatcccaa 420
ggcccaactc cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct 480
ctgggtgttc ttctttgtga tcctcacccct cagcaacagc tcccactgct ccccacctcc 540
cccttgacc ctcaggatgc ggcggtatat cgatgccatc ttcaccaaca gctaccggaa 600
ggtgctggcc cagctgtccg cccgcaagct gctccaggac atcctgaaca ggcagcaggg 660
agagaggaac caagagcaag gacgataatg actgcaggaa ttcgatatac agcttacgg 720
ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc cctggaaagtt gccactccag 780
tgcccaccag ctttgtcccta ataaaattaa gttgcatcat tttgtctgac taggtgtcct 840
tctataatat tatgggggtgg aggggggtgg tatggagcaa gggcaagtt gggaaagacaa 900
cctgtagggc ctgcggggtc tattggaaac caagctggag tgcagtggca caatcttggc 960
tcactgcaat ctccgcctcc tgggttcaag cgatttcct gcctcagcct cccgagttgt 1020
tgggattcca ggcacatgc accaggctca gctaattttt gtttttttgg tagagacggg 1080
gtttcaccat attggccagg ctggtctcca actcctaatac tcaggtgatc tacccacctt 1140
ggcctcccaa attgctggga ttacaggcgt gaaccactgc tcccttcct gtccttctga 1200
ttttaaaata actataaccag caggaggacg tccagacaca gcataggcta cctggccatg 1260
cccaaccgggt gggacatttgc agttgcttgc ttggcactgt cctctcatgc gttgggtcca 1320
ctcagtagat gcctgttcaa ttgcataccg tcgacccctgaa gggggggccc ggtaccagct 1380
tttggccct ttagtgaggg ttaatttgcgta gcttggcgta atcatggtca tagctgttcc 1440
ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaaagt 1500
gtaaaggcctg ggggtgcctaa tgagtgagct aactcacatt aattgcgttgc gctcactgc 1560
ccgccttcca gtcgggaaac ctgtcgtgcc agctgcattt atgaatcgcc caacgcgcgg 1620
ggagaggcgg tttgcgtatt gggcgctttt ccgccttcctc gctcactgac tcgctgcgt 1680
cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggccgtataa cggttatcca 1740
cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga 1800
accgtaaaaa ggccgcgttgc ctggcggtttt tccataggct ccgccttcct gacgagcatc 1860
acaaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 1920
cgtttcccccc tggaaagctcc ctgcgtgcgtc ctccctgttcc gaccctgccc cttaccggat 1980

acctgtccgc	ctttctccct	tcgggaagcg	tggcgcttcc	tcatagctca	cgctgttaggt	2040
atctcagttc	ggtgttaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	ccccccgttc	2100
agcccgaccg	ctgcgcctta	tccggtaact	atcgcttga	gtccaaacccg	gtaagacacg	2160
acttatcgcc	actggcagca	gccactggta	acaggattag	cagagcgagg	tatgtaggcg	2220
gtgctacaga	gttcttgaag	tggtggccta	actacggcta	caactagaaga	acagtatttg	2280
gtatctgcgc	tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	tcttgcgtcc	2340
gcaaacaac	caccgctgg	agcgggtgg	tttttgg	caagcagcag	attacgcgc	2400
gaaaaaaaaagg	atctcaagaa	gatccttga	tctttctac	ggggctgac	gctcagaaga	2460
actcgtcaag	aaggcgatag	aaggcgatgc	gctgcgaatc	gggagcggcg	ataccgtaaa	2520
gcacgaggaa	gcggtcagcc	cattcgccgc	caagcttcc	agcaatata	cggtagcca	2580
acgctatgtc	ctgatagcgg	tccgcccacac	ccagccggcc	acagtcgatg	aatccagaaa	2640
agcggccatt	ttccaccatg	atattcggca	agcaggcatc	gccatgggc	acgacgagat	2700
cctcgccg	gggcatgcgc	gccttgagcc	tggcgaacag	tccggctggc	gcgagccc	2760
gatgcttcc	gtccagatca	tcctgatcga	caagaccggc	ttccatccga	gtacgtgctc	2820
gctcgatgc	atgttcgct	tggtggtcga	atgggcaggt	agccggatca	agcgtatgca	2880
gccgcccgc	tgcattcagcc	atgatggata	cttctcgcc	aggagcaagg	tgagatgaca	2940
ggagatcctg	ccccggcact	tcgcccata	gcagccagtc	cttcccgct	tcagtgacaa	3000
cgtcgagcac	agctgcgc	gaaacgccc	tcgtggccag	ccacgatagc	cgcgtgcct	3060
cgtcctgcag	ttcattcagg	gcaccggaca	ggtcggtctt	gacaaaaaga	accgggcg	3120
cctgcgtga	cagccggAAC	acggcggcat	cagagcagcc	gattgtctgt	tgtgccc	3180
catagccgaa	tagcctctcc	acccaagcgg	ccggagaacc	tgcgtgcaat	ccatcttgtt	3240
caatcatgcg	aaacgatcct	catcctgtct	cttgcata	tcttgcattcc	ctgcgc	3300
agatccttgg	cggcaagaaa	gccatccagt	ttactttgca	gggcttccca	actttaccag	3360
agggcgcccc	agctggcaat	tccggttcgc	ttgctgtcca	taaaaccgccc	cagtctagca	3420
actgttggga	agggcgatcg	gtgcgggcct	cttcgcattt	acgcccagctg	gcgaaagggg	3480
gatgtgctgc	aaggcgat	ttttggtaa	cgccagggtt	ttccca	gtca	3534

<210> 11
<211> 2710
<212> DNA
<213> artificial sequence

<220>

<223> Vector with a mouse codon optimized GHRH analog sequence

<400> 11
tgtaatacga ctcactatacg ggcgaattgg agctccaccg cggtggcggc cgtccgcctt 60
cggcaccatc ctcacgacac ccaaataatgg cgacgggtga ggaatggtgg ggagttatTTT 120
tttagagcggt gaggaagggtg ggcaggcagc aggtgttggc gctctaaaaa taactcccgg 180
gagttatTTT tagagcggtgg gaatggtggc cacccaaata tggcgcacggt tcctcaccCG 240
tcgccccatatt tgggtgtccg ccctcgcccg gggccgcatt cctgggggcc gggcggtgct 300
cccgccccGCC tcgataaaaAG gctccggggc cggcggcggc ccacgagcta cccggaggAG 360
cgggaggcgc caagcggatc ccaaggcccc actccccgaa ccactcaggG tcctgtggac 420
agctcaccta gctgccatgg tgctctgggt gctctttgtg atcctcatCC tcaccagcgg 480
cagccactgc agcctgcctc ccagccctcc cttaggatg cagaggcACG tggacgccc 540
cttcaccacc aactacagga agctgctgag ccagctgtac gccaggaagg tgatccagga 600
catcatgaac aagcagggcg agaggatcca ggagcagagg gccaggctGA gctgataAGC 660
ttatcggggtt ggcatccctg tgaccCCTCC ccagtgcctc tcctggccct ggaagttGCC 720
actccagtgc ccaccagcct tgccttaata aaattaagtt gcatcatttt gtctgactAG 780
gtgtccttct ataataattat ggggtggagg ggggtggat ggagcaaggg gcaagttggg 840
aagacaacct gtagggctcg agggggggcc cggtaaccAGC ttttgttccc ttttagtgagg 900
gttaatttgc agcttggtct tccgcttcc CGCTCACTGA CTCGCTGCgc tcggtcgttc 960
ggctgcggcg agcggtatca gctcaCTAA aggCGTAAT acggttatCC acagaatcAG 1020
gggataacgc aggaaAGAAC atgtgagcaa aaggCCAGCA aaaggCCAGG aaccgtaaaa 1080
aggccgcgtt gctggcgTTT ttccataggc tccgcCCCCC tgacgagcat cacaaaaATC 1140
gacgctcaag tcagaggtgg cgaaACCCGA caggactata aagataACCAG gcgtttcccc 1200
ctggaaagctc cctcgtgcgc tctcctgttc cgaccctGCC gcttaccggA tacctgtccg 1260
cctttctccc ttccggaaAGC gtggcgCTTT ctcatagCTC acgctgtAGG tatctcagtt 1320
cggtgttaggt cgttcgctcc aagctggct gtgtgcacGA accccccGTT cagccccGACC 1380
gctgcgcctt atccggtaac tatcgTCTTG agtccAAACCC ggtaAGACAC gacttatcgc 1440
caactggcAGC agccactggT aacaggatta gcagagcGAG gtatgtAGGC ggtgctacAG 1500
agttcttgaa gtggtggcCTT aactacggct acactAGAAG aacagtatTTT ggtatctgcG 1560
ctctgctgaa gccagttacc ttccggaaaaa gagttggtag ctcttgatCC ggcaAAACAAA 1620
ccaccgctgg tagcggtggT tttttgtttt gcaAGCAGCA gattacgcgc agaaaaAAAG 1680
gatctcaaga agatcctttG atctttcta cggggctAGC gcttagaAGA actcatccAG 1740

cagacggtag aatgcaatac gttgagagtc tggagctgca ataccataca gaaccaggaa	1800
acggtcagcc cattcaccac ccagttcctc tgcaatgtca cgggttagcca gtgcaatgtc	1860
ctggtaacgg tctgcaacac ccagacgacc acagtcaatg aaaccagaga aacgaccatt	1920
ctcaaccatg atgttccggca ggcatgcatt accatgagta actaccaggt cctcaccatc	1980
cggcatacga gctttcagac gtgcaaacag ttcatcggtt gccagaccct gatgttccct	2040
atccaggtca tcctggtcaa ccagacctgc ttccatacgg gtacgagcac gttcaatacg	2100
atgtttgcc tggtggtcaa acggacaggt agctgggtcc agggtgtgca gacgacgcat	2160
tgcatcagcc atgatagaaa ctttctctgc cggagccagg tgagaagaca gcaggtcctg	2220
acccggaaact tcacccagca gcagccagtc acgaccagct tcagtaacta catccagaac	2280
tgcagcacac ggaacaccag tgggtgccag ccaagacaga cgagctgctt catcctgcag	2340
ttcattcaga gcaccagaca ggtcagttt aacaaacaga actggacgac cctgtgcaga	2400
cagacggaaa acagctgcat cagagcaacc aatggtctgc tgtgcccagt cataaccaaa	2460
cagacgttca acccaggctg cggagaacc tgcatgcaga ccattctgtt caatcatgcg	2520
aaacgatcct catcctgtct cttgatcaga tcttgatccc ctgcgccatc agatccttgg	2580
cggcaagaaa gccatccagt ttactttgca gggctccca accttaccag agggcgcccc	2640
agctggcaat tccggttcgc ttgctgtcca taaaaccgcc cagtctagca actgttggga	2700
agggcgatcg	2710

<210> 12
 <211> 2713
 <212> DNA
 <213> artificial sequence

<220>
 <223> Vector with a rat codon optimized GHRH analog sequence

<400> 12	
tgtaatacga ctcactatag ggcgaattgg agctccaccg cggggcggc cgtccgcct	60
cggcaccatc ctcacgacac ccaaataatgg cgacgggtga ggaatggtgg ggagttat	120
ttagagcggt gaggaaggtg ggcaggcagc aggtgttggc gctctaaaaa taactccgg	180
gagttattt tagagcgag gaatggtggc cacccaaata tggcgacggt tcctcacccg	240
tgcgcattt tgggtgtccg ccctcgccg gggccgcatt cctgggggcc gggcggtgct	300
cccgcccccc tcgataaaag gctccggggc cggcgccggc ccacgagcta cccggaggag	360
cgggaggcgc caagcgatc ccaaggccca actccccgaa ccactcaggg tcctgtggac	420
agctcaccta gctgccatgg ccctgtgggt gttcttcgtg ctgctgaccc tgaccagcgg	480

aagccactgc agcctgcctc ccagccctcc cttcagggtg cgccggcacg ccgacgccc 540
cttcaccagc agctacagga ggatcctggg ccagctgtac gctaggaagc tcctgcacga 600
gatcatgaac aggcaaggcagg gcgagaggaa ccaggagcag aggagcaggt tcaactgata 660
agcttatacg ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc cctggaagtt 720
gccactccag tgcccaccag ccttgcctta ataaaattaa gttgcacatcat tttgtctgac 780
taggtgtcct tctataatat tatgggggtgg aggggggtgg tatggagcaa ggggcaagtt 840
gggaagacaa cctgttagggc tcgagggggg gcccggtacc agctttgtt ccctttagtg 900
agggttaatt tcgagcttgg tcttccgctt cctcgctcac tgactcgctg cgctcggtcg 960
ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggta tccacagaat 1020
caggggataa cgcagggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta 1080
aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag catcacaaaa 1140
atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgttc 1200
ccccctggaag ctccctcggt cgctctccctg ttccgaccct gccgcttacc ggataacctgt 1260
ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt aggtatctca 1320
gttcggtgta ggtcggttcgc tccaagctgg gctgtgtgca cgaacccccc gttcagcccg 1380
accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat 1440
cgccactggc agcagccact ggtAACAGGA ttagcagagc gaggtatgtt ggcggtgcta 1500
cagagttctt gaagtgggtgg cctaactacg gctacactag aagaacagta tttggtatct 1560
gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga tccggcaaac 1620
aaaccaccgc tggtagcggt ggttttttg tttgcaagca gcagattacg cgcagaaaaa 1680
aaggatctca agaagatcct ttgatctttt ctacggggct agcgcttaga agaactcatc 1740
cagcagacgg tagaatgcaa tacgttgaga gtctggagct gcaataccat acagaaccag 1800
gaaacggtaa gcccattcac caccaggatcc ctctgcaatg tcacgggttag ccagtgaat 1860
gtcctggtaa cggctcgcaa caccaggacg accacagtca atgaaaccag agaaacgacc 1920
attctcaacc atgatgttcg gcaggcatgc atcaccatga gtaactacca ggtcctcacc 1980
atccggcata cgagcttca gacgtgcaaa cagttcagcc ggtgccagac cctgatgttc 2040
ctcatccagg tcatcctggc caaccagacc tgcttccata cgggtacgag cacgttcaat 2100
acgatgtttt gcctgggtgg caaacggaca ggtagctggg tccaggggtgt gcagacgacg 2160
cattgcatca gccatgatag aaactttctc tgccggagcc aggtgagaag acagcaggtc 2220
ctgaccggaa acttcaccca gcagcagccca gtcacgacca gttcagtaa ctacatccag 2280

aactgcagca cacggaacac cagtggttgc cagccaagac agacgagctg cttcatcctg 2340
cagttcattc agagcaccag acaggtcagt tttaacaaac agaactggac gaccctgtgc 2400
agacagacgg aaaacagctg catcagagca accaatggtc tgctgtgcc agtcataacc 2460
aaacagacgt tcaacccagg ctgcccggaga acctgcatgc agaccatcct gttcaatcat 2520
gcgaaaacgtat cctcatcctg tctcttgatc agatcttgat cccctgcgcc atcagatcct 2580
tggccggcaag aaagccatcc agtttacttt gcagggcttc ccaaccttac cagagggcgc 2640
cccagctggc aattccggtt cgcttgctgt ccataaaaacc gcccagtcta gcaactgttg 2700
ggaagggcga tcg 2713

<210> 13
<211> 2704
<212> DNA
<213> artificial sequence

<220>
<223> Vector with a bovine codon optimized GHRH analog sequence

<400> 13
tgtaatacga ctcactatacg ggcgaattgg agctccacccg cgggtggcggc cgtccgcct 60
cggcaccatc ctcacgacac ccaaataatgg cgacgggtga ggaatggtgg ggagttatTTT 120
tttagagcggt gaggaagggtg ggcaggcagc aggtgttggc gctctaaaaa taactcccg 180
gagttatTTT tagagcggag gaatggtggc cacccaaata tggcgacggc tcctcacccg 240
tcgccccatatt tgggtgtccg ccctcgcccg gggccgcatt cctgggggccc gggcggtgct 300
cccgccccccc tcgataaaaag gctccggggc cggcggcggc ccacgagcta cccggaggag 360
cgggaggcgc caagcggatc ccaaggccca actccccgaa ccactcaggg tcctgtggac 420
agctcaccta gctgccatgg tgctgtgggt gttcttcctg gtgaccctga ccctgagcag 480
cggctcccac ggctccctgc cctcccagcc tctgcgcatc cctcgctacg ccgacgccc 540
cttcaccaac agctaccgca aggtgctcgg ccagctcagc gcccgcacgc tcctgcagga 600
catcatgaac cggcagcagg gcgagcgc当地 ccaggagcag ggagcctgat aagcttatcg 660
gggtggcatac cctgtgaccc ctccccagtg cctctcctgg ccctggaaagt tgccactcca 720
gtgcccacca gccttgtcct aataaaaatta agttgcata ttttgtctga ctaggtgtcc 780
ttctataata ttatggggtg gaggggggtg gtatggagca agggggcaagt tgggaagaca 840
acctgttaggg ctcgaggggg ggcccggtac cagctttgt tccctttagt gagggtaat 900
ttcggagcttgc tcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc 960
ggcgagcggcgt atcagctcac tcaaaggcgg taatacggtt atccacagaaa tcagggata 1020

acgcaggaaa gaacatgtga gcaaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 1080
cgttgctggc gttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct 1140
caagtcagag gtggcgaaac ccgcacaggac tataaagata ccaggcggtt ccccctggaa 1200
gctccctcggt gcgctctcct gttccgaccc tgccgcttac cgatcacctg tccgcctttc 1260
tccctcggg aagcgtggcg ctttctata gctcacgctg taggtatctc agttcggtgt 1320
aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgctg 1380
ccttatccgg taactatcggt cttgagtcctt accccggtaag acacgactta tcgcccactgg 1440
cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct 1500
tgaagtggtg gcctaactac ggctacacta gaagaacagt atttggtatac tgcgctctgc 1560
tgaagccagt taccttcgga aaaagagttt gtagctctt atccggcaaa caaaccaccg 1620
ctggtagcgg tggttttttt gtttgcaggc agcagattac ggcggaaaa aaaggatctc 1680
aagaagatcc ttgtatctt tctacggggc tagcgcttag aagaactcat ccagcagacg 1740
gtagaatgca atacgttgag agtctggagc tgcaataccat tacagaacca ggaaacggtc 1800
agcccattca ccacccagtt cctctgcaat gtcacgggta gccagtgcaa tgtcctggta 1860
acggtctgca acacccagac gaccacagtc aatgaaacca gagaaacgac cattctcaac 1920
catgatgttc ggcaggcatg catcaccatg agtaactacc aggtcctcac catccggcat 1980
acgagcttcc agacgtgcaa acagttcagc cggtgccaga ccctgatgtt cctcatccag 2040
gtcatcctgg tcaaccagac ctgcttccat acgggtacga gcacgttcaa tacatgttt 2100
tgcctgggtgg tcaaacggac aggtagctgg gtccagggtg tgcagacgac gcattgcattc 2160
agccatgata gaaactttct ctgcccggagc caggtgagaa gacagcaggt cctgaccgg 2220
aacttcaccc agcagcagcc agtcacgacc agttcagta actacatcca gaactgcagc 2280
acacggaaca ccagtgggtt ccagccaaga cagacgagct gcttcatcct gcagttcatt 2340
cagagcacca gacaggtcag ttttaacaaa cagaactgga cgaccctgtg cagacagacg 2400
gaaaacagct gcatcagagc aaccaatggt ctgctgtgcc cagtcataac caaacagacg 2460
ttcaacccag gctgccggag aacctgcattc cagaccatcc tggtaatca tgcgaaacga 2520
tcctcatcct gtctcttgcat cagatcttga tccctgcgc catcagatcc ttggcggcaa 2580
gaaagccatc cagtttactt tgcagggctt cccaaacctta ccagagggcg ccccgactgg 2640
caattccggt tcgcttgctg tccataaaac cggccagttc agcaactgtt gggaaaggcg 2700
atcg 2704

```

<210> 14
<211> 2704
<212> DNA
<213> artificial sequence

<220>
<223> Vector with a ovine codon optimized GHRH analog sequence

<400> 14
tgtaatacga ctcactatacg ggcgaattgg agctccaccg cggtggcggc cgtccgccc       60
cggcaccatc ctcacgacac ccaaataatgg cgacgggtga ggaatggtgg ggagttatTTT      120
tttagagcggt gaggaagggtg ggcaggcagc aggtgttggc gctctaaaaa taactcccgg      180
gagttatTTT tagagcgag gaatggtggc cacccaaata tggcgacggt tcctcacccg      240
tcgccccatatt tgggtgtccg ccctcgcccg gggccgcatt cctgggggccc gggcggtgct      300
cccgccccccc tcgataaaaag gctccggggc cggcggcggc ccacgagcta cccggaggag      360
cgggaggcgc caagcggatc ccaaggccca actccccgaa ccactcaggg tcctgtggac      420
agctcaccta gctgccatgg tgctgtgggt gttcttcctg gtgaccctga ccctgagcag      480
cggaagccac ggcagcctgc ccagccagcc cctgaggatc cctaggtacg ccgacgccc      540
ttcaccaac agctacagga agatcctggg ccagctgagc gctaggaagc tcctgcagga      600
catcatgaac aggccggcagg gcgagaggaa ccaggagcag ggccgcctgat aagcttatcg      660
gggtggcattc cctgtgaccc ctccccagtg cctctcctgg ccctggaagt tgccactcca      720
gtgcccacca gccttgtcct aataaaatta agttgcatca ttttgtctga cttaggtgtcc      780
ttctataata ttatggggtg gaggggggtg gtatggagca aggggcaagt tgggaagaca      840
acctgttaggg ctcgaggggg ggccccgtac cagctttgt tccctttagt gagggttaat      900
ttcgagcttg gtcttcgcct tcctcgctca ctgactcgct gcgctcggtc gttcggtgc      960
ggcgagcggc atcagctcac tcaaaggcgg taatacggtt atccacagaa tcagggata      1020
acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg      1080
cgttgctggc gttttccat aggctccgccc cccctgacga gcatcacaaa aatcgacgct      1140
caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgTTT cccctggaa      1200
gctccctcggt gcgctctcct gttccgaccc tgccgcttac cggataacctg tccgccttc      1260
tcccttcggg aagcgtggcg cttctcata gctcacgctg taggtatctc agttcggtgt      1320
aggtcgttcg ctccaaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgct      1380
ccttatccgg taactatcgat cttgagtcca acccggtaaag acacgactta tcgcccactgg      1440
cagcagccac tggtaacagg attagcagag cgaggtatgt aggcgggtgct acagagttct      1500
tgaagtggtg gcctaaactac ggctacacta gaagaacagt atttggtatac tgccactctgc      1560

```

tgaagccagt taccttcgga	aaaagagttg	gtagcttttgc	atccggcaaa	caaaccaccg	1620	
ctggtagcgg tggttttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	1680	
aagaagatcc tttgatcttt	tctacggggc	tagcgcttag	aagaactcat	ccagcagacg	1740	
gtagaatgca atacgttgag	agtctggagc	tgcaatacca	tacagaacca	ggaaacggtc	1800	
agcccattca ccacccagtt	cctctgcaat	gtcacggta	gccagtgc当地	tgtcctggta	1860	
acggctcgca acacccagac	gaccacagtc	aatgaaacca	gagaaacgac	cattctcaac	1920	
catgatgttc ggcagggcatg	catcaccatg	agtaactacc	aggcctcac	catccggcat	1980	
acgagctttc agacgtgcaa	acagttcagc	cggtgccaga	ccctgatgtt	cctcatccag	2040	
gtcatcctgg tcaaccagac	ctgcttccat	acgggtacga	gcacgttcaa	tacgatgttt	2100	
tgcctgggtgg tcaaacggac	aggttagctgg	gtccagggtg	tgcagacgac	gcattgc当地	2160	
agccatgata gaaactttct	ctgcccggagc	caggtgagaa	gacagcaggt	cctgaccgg	2220	
aacttcaccc agcagcagcc	agtcacgacc	agttcagta	actacatcca	gaactgcagc	2280	
acacggaaaca ccagtgggtg	ccagccaaga	cagacgagct	gcttcatcct	gcagttcatt	2340	
cagagcacca gacaggtcag	tttaacaaa	cagaactgga	cgaccctgtg	cagacagacg	2400	
gaaaacagct gcatcagagc	aaccaatgg	ctgctgtgcc	cagtataac	caaacagacg	2460	
ttcaacccag gctgccggag	aacctgc当地	cagaccatcc	tgttcaatca	tgcgaaacga	2520	
tcctcatcct gtctttgat	cagatcttga	tccccctgc当地	catcagatcc	ttggcggcaa	2580	
gaaagccatc cagtttactt	tgcagggctt	cccaaccta	ccagagggcg	ccccagctgg	2640	
caattccggc	tcgcttgctg	tccataaaaac	cgcccagtct	agcaactgtt	ggaaagggcg	2700
atcg					2704	

<210> 15
 <211> 2713
 <212> DNA
 <213> artificial sequence

<220>
 <223> Vector with a chicken codon optimized GHRH analog sequence

<400> 15	tgtaatacga	ctcactatag	ggcgaattgg	agctccaccg	cggtggcggc	cgtccgccc	60
	cggcaccatc	ctcacgacac	ccaaatatgg	cgacgggtga	ggaatggtgg	ggagttattt	120
	ttagagcggt	gaggaaggtg	ggcaggcagc	aggtgttggc	gctctaaaaa	taactcccgg	180
	gagttat	ttt tagagcggag	gaatggtgga	cacccaaata	tggcgacggt	tcctcacc	240
	tcgcccattt	tgggtgtccg	ccctcggccg	gggcccattt	cctggggg	gggcgggtct	300

cccgccccgc tcgataaaaag gctccggggc cggcggcggc ccacgagcta cccggaggag 360
cgggaggcgc caagcggatc ccaaggccca actccccgaa ccactcaggg tcctgtggac 420
agctcaccta gctgccatgg ccctgtgggt gttcttgtg ctgctgaccc tgacctccgg 480
aagccactgc agcctgccac ccagcccacc cttccgcgtc aggcccaacg ccgacggcat 540
cttcagcaag gcctaccgca agtcctggg ccagctgagc gcacgcaact acctgcacag 600
cctgatggcc aagcgcgtgg gcagcggact gggagacgag gccgagcccc tgagctgata 660
agcttatcg ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc cctggaagtt 720
gccactccag tgcccaccag ctttgtccta ataaaattaa gttgcacatcat tttgtctgac 780
taggtgtcct tctataatat tatggggtgg aggggggtgg tatggagcaa gggcaagtt 840
gggaagacaa cctgttagggc tcgagggggg gcccggtacc agctttgtt ccctttagtg 900
agggttaatt tcgagcttgg tcttccgctt cctcgctcac tgactcgctg cgctcggtcg 960
ttcggctgcg gcgagcggta tcagctcaact caaaggcggta aatacggta tccacagaat 1020
caggggataa cgcagggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta 1080
aaaaggccgc gttgctggcg ttttccata ggctccgccc ccctgacgag catcacaaaa 1140
atcgacgctc aagttaggagg tggcgaaacc cgacaggact ataaagatac caggcgttc 1200
cccctggaag ctccctcggt cgctctcctg ttccgaccct gccgcttacc ggataacctgt 1260
ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt aggtatctca 1320
gttcggtgta ggtcggtcg tccaagctgg gctgtgtgca cgaacccccc gttcagcccg 1380
accgctgcgc cttatccggt aactatcgtc ttgagtc当地 cccggtaaga cacgacttat 1440
cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta ggcggtgcta 1500
cagagttctt gaagtgggtgg cctaactacg gctacactag aagaacagta tttggtatct 1560
gwgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga tccggcaaac 1620
aaaccaccgc tggtagcggg ggttttttgg tttgcaagca gcagattacg cgcagaaaaa 1680
aaggatctca agaagatcct ttgatctttt ctacggggct agcgctttaga agaactcatc 1740
cagcagacgg tagaatgcaa tacgttgaga gtctggagct gcaataccat acagaaccag 1800
gaaacggtca gcccattcac caccctggatc ctctgcaatg tcacgggttag ccagtgcaat 1860
gtcctggtaa cggctctgcaa cacccagacg accacagtca atgaaaccag agaaacgacc 1920
attctcaacc atgatgttcg gcaggcatgc atcaccatga gtaactacca ggtcctcacc 1980
atccggcata cgagcttca gacgtgcaaa cagttcagcc ggtgccagac cctgatgttc 2040
ctcatccagg tcatcctggc caaccagacc tgcttcata cgggtacgag cacgttaat 2100

acgatgttt gcctggtgt caaacggaca ggtagctggg tccagggtgt gcagacgacg	2160
cattgcataa gccatgatag aaacttctc tgccggagcc aggtgagaag acagcaggta	2220
ctgaccggaa acttcaccca gcagcagcca gtcacgacca gcttcagtaa ctacatccag	2280
aactgcagca cacggaacac cagtggttgc cagccaagac agacgagctg cttcatcctg	2340
cagttcattc agagcaccag acaggtcagt tttaacaaac agaactggac gaccctgtgc	2400
agacagacgg aaaacagctg catcagagca accaatggtc tgctgtgcc agtcataacc	2460
aaacagacgt tcaacccagg ctgccggaga acctgcatac agaccatcct gttcaatcat	2520
gcgaaacgat cctcatcctg tctcttgatc agatcttgat cccctgcgcc atcagatcct	2580
tggcggcaag aaagccatcc agtttacttt gcagggcttc ccaaccttac cagagggcgc	2640
cccagctggc aattccggtt cgcttgctgt ccataaaacc gcccagtcta gcaactgttg	2700
ggaagggcga tcg	2713

<210> 16
<211> 382
<212> DNA
<213> artificial sequence

<220>
<223> This is the synthetic promoter c1-26.

ggcgcccgag ggcggcgggg cagggcagcag gtgtggcac cattcctcac cgctctaaaa	60
ataactcccc tgaggaatgg tgccgtcgcc atattgggt gtcgacaccc aaatatggcg	120
acgggtgagg aatggtgggc aggcagcagg tggggaca cccaaatatg ggcacggcca	180
acacctgctg cctgccggga gttatttta gagcggggag ttattttag agcggtgagg	240
aatggtggac acccaaataat ggcgacggcc ggggcccata tcctgggggc cggcggtgc	300
tcccgccccgc ctcgataaaa ggctccgggg ccggcggcgg cccacgagct acccggagga	360
gcgggaggcg ccaagctcta ga	382

<210> 17
<211> 218
<212> DNA
<213> artificial sequence

<220>
<223> This is the synthetic promoter sequence for c2-26.

cggccgtcgc catatttggg tgtccgtct aaaaataact cccgacaccc aaatatggcg	60
acggggcagg cagcagggtgt tggacacacc aatatatggcg acggccgggg ccgcattcct	120

ggggggccggg cggtgctccc gccccctcg ataaaaggct ccggggccgg cggcggccca	180
cgagctaccc ggaggagcgg gaggcgccaa gctctaga	218
<210> 18	
<211> 230	
<212> DNA	
<213> artificial sequence	
<220>	
<223> This is the synthetic sequence for c2-27.	
<400> 18	
cggccgtcgc catatttggg tgtcggcagg cagcaggtgt tggcaccatt cctcaccgt	60
cgcacatattt gggtgtcggc aggcagcagt gttggacac ccaaataatgg cgacggccgg	120
ggccgcattc ctgggggccc ggcggtgctc ccgcgcgcct cgataaaagg ctccggggcc	180
ggcggcggcc cacgagctac ccggaggagc gggaggcgcc aagctctaga	230
<210> 19	
<211> 231	
<212> DNA	
<213> artificial sequence	
<220>	
<223> This is the synthetic promoter for c5-5.	
<400> 19	
cggccgtccg ccctcgggac acccaaataat ggcgacgggt gaggaatggt gcaccattcc	60
tcaacggagt tattttaga gcggtgagga atggtgaca cccaaataatg ggcacggccg	120
gggcgcatt cctgggggccc ggcggtgct cccgcgcgc tcgataaaag gtcgggggc	180
cggcggcggc ccacgagcta cccggaggag cggaggcgcc caagctctag a	231
<210> 20	
<211> 255	
<212> DNA	
<213> artificial sequence	
<220>	
<223> This is the synthetic promoter for c6-5.	
<400> 20	
cggccgtcgc catatttggg tgtccaaaca cctgctgcct gccccgtcgc catatttggt	60
gtcggcaggc agcaggtgtt ggccaacacc tgctgcctgc cgggagttat ttttagagcg	120
gacacccaaa tatggcgacg gcccggccg cattcctggg ggccggccgg tgctccgc	180
cgcctcgata aaaggctccg gggccggccgg cggcccacga gctacccgga ggagcgggag	240
gcgcacaagct ctaga	255

```

<210> 21
<211> 283
<212> DNA
<213> artificial sequence

<220>
<223> This is the synthetic promoter for c6-16.

<400> 21
cggccgtcgc catatttggg tgtccgctct aaaaataact cccccaacac ctgctgcctg      60
ccccgtcgcc atatttgggt gtcggcagggc agcaggtgtt ggccaacacc tgctgcctgc      120
cccaacacacct gctgcctgcc ccgtcgccat atttggtgtc cgccctcggc cggggccgca      180
ttcctggggg ccgggcggtg ctcccgccccg cctcgataaaa aggctccggg gccggcggcg      240
gcccacgagc taccggagg agcgggagggc gccaagctct aga                         283

<210> 22
<211> 263
<212> DNA
<213> artificial sequence

<220>
<223> This is the synthetic promoter for c6-39.

<400> 22
cggccgtccg ccctcgaaaa agttatttt agagcgccaa cacctgctgc ctgccccgtc      60
ccatatatttgg ggtgtcgca ggcagcaggt gttggggag ttattttag agcgccgtcg      120
ccatatatttgg gtgtcccgag ggcggacggc cggggccgca ttcctggggg ccgggcggtg      180
ctcccgccccg cctcgataaaa aggctccggg gccggcggcg gcccacgagc taccggagg      240
agcgggagggc gccaagctct aga                         263

```