

Universität Konstanz Fachbereich Physik PD Dr. Peter Keim

Ausgabedatum: 02.11.2017 Besprechung: 09./10.11.2017

ÜbungsgruppenleiterInnen: M. Cimander, C. Derricks, J. Fichtner, C. Fischer, A. Graf, R. Löffler, M. Rudolf, A. Schmid, L. Siedentop

Übungen zu Experimentalphysik I für Studierende der Biologie und der Sportwissenschaft Blatt 02

Aufgabe 1:

Der Turm des Konstanzer Münsters ist bis zur Spitze 78 m hoch. Die Aussichtsplattform befindet sich jedoch unterhalb davon. Um die Höhe der Aussichtsplattform zu bestimmen werden Fallversuche durchgeführt. Hierbei ergeben sich folgende Messwerte für die Fallzeit t:

									t_{10}
2,7 s	$2,9 \mathrm{\ s}$	$3,0 \mathrm{\ s}$	2,8 s	$2,9 \mathrm{\ s}$	$3,0 \mathrm{\ s}$	$2,8 \mathrm{\ s}$	$2,7 \mathrm{\ s}$	$2,9 \mathrm{\ s}$	2,9 s

- a) Bestimmen Sie aus den Daten für die Fallzeit t und der Fallbeschleunigung $g=9,81~\mathrm{m/s^2}$ den Mittelwert und die zugehörige Standardabweichung für die Höhe h der Aussichtsplattform
- b) Vergleichen Sie den erhaltenen Wert mit einem Literaturwert. (Beispielsweise wikipedia.de)
- c) Machen Sie sich mit den entsprechenden Funktionen in ihrem Taschenrechner vertraut.

Aufgabe 2:

Der Intelligenzquotient ist das Ergebnis eines Intelligenztests bezogen auf eine Referenzgruppe. Hierbei wird die Referenzgruppe gerade so normiert, dass diese einer Normalverteilung mit Mittelwert 100 und Standardabweichung 15 entspricht.

- a) Eine Person mit einen Intelligenzquotient von 130 gilt als hochbegabt. Auf wieviel Prozent der Bevölkerung trifft dies demnach statistisch gesehen zu?
- b) Wieviele Personen in einer Stadt mit 10 000 Einwohner besitzen statistisch gesehen einen IQ unter 85?

Aufgabe 3:

Rechts ist das Geschwindigkeits-Zeit-Diagramm eines sich in einer Dimension bewegenden Körpers abgebildet. Fertigen Sie ein Beschleunigungs-Zeit- und ein Orts-Zeit-Diagramm an! Wie verlaufen diese Kurven zwischen den Zeitpunkten 1 bis 10?

Aufgabe 4:

Sie bewegen sich in der x, y-Ebene eines kartesischen Koordinatensystems und starten vom Ursprung $\vec{0} = (0,0)$ aus. Sie bewegen sich zuerst 10 s lang mit konstanter Geschwindigkeit $v_x = 2$ m/s nur in x-Richtung und danach für 10 s mit $v_y = 4$ m/s nur in y-Richtung.

- a) Fertigen Sie zwei Weg-Zeit-Diagramme an, in dem Sie den zeitlichen Verlauf Ihrer Bewegung x(t) und y(t) von t = 0 s bis t = 20 s darstellen!
- b) In welche Richtung haben Sie einen längeren Weg zurückgelegt?
- c) Wie groß ist die direkte Verbindung $s = |\vec{s}|(t = 20 \text{ s})|$ Ihres Anfangs- und Endpunktes (Luftlinie) im Vergleich zu dem insgesamt zurückgelegten Weg? Hinweis: Für Ihren Verbindungsvektor gilt $\vec{s}(t) = (x(t), y(t))$, bestimmen Sie den Betrag $|\vec{s}|$ (Länge) des Vektors \vec{s} !

Nun bewegen Sie sich 10 s lang gleichzeitig in x- und y-Richtung mit den oben genannten Geschwindigkeiten.

- d) Wie groß ist der Betrag $v = |\vec{v}|$ Ihrer Gesamtgeschwindigkeit $\vec{v} = (v_x, v_y)$?
- e) Wie groß ist Ihr insgesamt zurückgelegter Weg $s = |\vec{v}| t$? Kommen Sie an dem gleichen Punkt an wie in a)?
- f) Nun sind Sie nicht mehr an dem zeitlichen Verlauf ihrer Bewegung interessiert sondern an dem \ddot{o} rtlichen Verlauf der jeweils anderen Koordinate, also x(y) bzw. y(x). Versuchen Sie also x als Funktion von y (und umgekehrt) auszudrücken und tragen Sie diese beiden Funktionen auch in ein Diagramm ein!