Online Course: "Reps of Lie Algs" by Vyacheslav Fictorny

· PBW Thm. If e.e.,-, en basis of g, then { ein en | ij EZ, , bj} is a basis of lleg)

- · g-modele > Legs-modele
- · 12-module construction
 - 1) Was CIXJan= [fix10f an] e → dx, f → -x2d+nx, h → -2x2x+n
- 2) Vn = CIXIYIn homogeneous polynomial of degree n.

e Hx & ; h Hx x & -y & ; f Hy y &

· Cartan subalg of g is a meximal toral Lie alg. (consisting of semi-simple elements respect to adjoint nep)

- Ug) = U(N-) &U(H) &U(N+) Where J=NOHON+

· Single Like algs -> Dynkin diagrams ->

A=caij) is a Cartan matrix if

-A is indecomposable

- aw =2, Vi

- ay=0 ⇒ ay=0

- aijeZ≤o

_ I a cliagonal D such that DAD is

symmetric and positive definite.

as a consequence, we get that air 6 [2,0,-1,-2,-3]

Serre relation. [et, Tei, Gi]=[fi, fi, fi]=0.

· Any submodule and any quotient module of a weight module is a weight module

Let $\lambda \in H^*$, a g-module V is a highest wedght module with highest weight it of 1) Fire is, such that V= Uggro (generated by v)

2) No 2 = 0.

 Universal highest weight modules = Verma modules Denote by S(2) a left ideal of Mg, generated by 14 and elements h-26h), theH. Then S(2) is a g-submool and S(2) NU(N)=0 $M(\lambda) = U(g)/S(\lambda) \cong U(g) \otimes kV_{\lambda} \cong U(N_{\perp}) \stackrel{?}{1}, \text{ where } hV_{\lambda} = \lambda(h)V_{\lambda}, \forall h$ $U(N_{\perp}) \stackrel{?}{1} = 0$ and 1414=0.

- . Properties of M(2)
- 1) Any highest module with highest weight λ is a homomorphie image of M(λ).
- 2) M(X) has a unique maximal submodule and hence a unique orreducible quotient L(X)
- 3) Theorem. a) dom L(N) <∞ ⇔ \(\lambda\)(hi) \(\inZ_4\). \(\text{\tilde{D}}\)
 b) Any irreducible finitioning—module is isomorphic to L(X) for some \(\lambda\).

Example 1) $g = 8b_2$, $\lambda \in \mathbb{C}$. then Verma module $M(\lambda) \cong U(\lambda L) \cong kif$ $-if \lambda \notin \mathbb{Z}_r$, then $L(\lambda) = M(\lambda)$

-If $\lambda \in \mathbb{Z}_+$, then $M(-\lambda - 1) \subseteq M(\lambda)$ as a submodule and

 $L(A) \cong M(A)/M(-A-2) \cong V_n$ (that we construct before)

2) g=8/3. Consider adjoint vep ad: 5/3 → g(sS/3).

weights of ad ⇔ {note of g}U{o}(for H)

· Adjoint rep is in (as of) is simple) of olim 8.

weights: Q, β , $Q+\beta$, -Q, $-\beta$, $-Q-\beta$, Q E_{12} E_{23} E_{3} E_{3} E_{4}

- Since Kg is nondeg, we have an isomorphism: $H \rightarrow H^*$: $h \rightarrow Kg(h, \bullet)$ This allows to define a non-deg form on H^* : (v(h), v(h')) = K(h, h').
- For any $\alpha \in \Delta$, obegine a reflection in $\alpha : S_{\alpha} \in Aut H^*$ Such that $S_{\alpha}(\lambda) = \lambda - \frac{2(\lambda, d)}{(\alpha, d)} \alpha$ (fixes the hyperplane enthogral took)
- · Further properties of Verma modules

1) E(U) $\subset U(g)$ the center of U(g) (not g!) action by a scalar! $\exists a \text{ homo } X_A : Z(U) \longrightarrow k$ such that $ZV = X_A(Z)V$, $VZ \in Z(U)$, $V \in M(X)$ X_A is the central character of M(X). (or $L(X_1)$)

2) 2(U) & S(H) W CHarish - Chandra isomorphism)
eg. $g = gl_3$, $H = Ch_1 \oplus Ch_2$, $S(H) \cong C[h_1, h_2]$, $W = S_2$ (Weigh group) $S(H)^{W} = C[h_1, h_2]^{S_2} = C[h_1 + h_2, h_1 h_2] \subseteq C[X, Y] \subseteq Z(U)$

• Theorem. (Harish-Chandra) $X_{\lambda} = X_{\mu} \Leftrightarrow \mu \in \mathcal{W} \cdot \lambda$. Wis Weyl group where $\omega \cdot \lambda = \omega(\lambda + \rho) - \rho$, $\rho = \frac{1}{2} \sum_{\alpha \in \Omega} \lambda$

Character of a weight module:

er is a formal symbol such that ere = ext.

(14K) = (2+18+ 02+0) = -2+0+02+

Ex. $\operatorname{ch}(\operatorname{Llot}p) = e^{\operatorname{at}\beta} + e^{\operatorname{d}} + e^{\operatorname{d}} + e^{\operatorname{d}} + e^{\operatorname{d}} + 2e^{\operatorname{d}}$ Remark. For λ dominant integral, $\operatorname{dim} L(\lambda) < \infty$ and $\operatorname{ch} L(\lambda)$ can be viewed as a \mathbb{Z} -valued function on the lattice of integral weight: $\operatorname{ch} L(\lambda)$ $(\mu) = \operatorname{dim} L(\lambda)_{\mu}$ Besides, it has finite support.

Theorem. (Weyl character formular) For any dominant 2.

or equivalently length of w (about ringle reflection)

 $ch(L(\lambda)) * (\sum_{w \in W} (H)^{l(w)} \mathcal{E}_{w}(\beta)) = \sum_{w \in W} (H)^{l(w)} \mathcal{E}_{w}(\mathcal{H}_{\beta})$

- If $M(\mu) \subset M(\lambda)$. then $\chi_{\mu} = \chi_{\lambda}$ and $\mu \in \mathcal{W} \in \lambda$. Converse is not true.
- $M(\lambda)$ has a finite composition series $M(\lambda) = M_0 \supset M_1 \supset \cdots \supset M_r = 0$, where $M_{\tilde{c}/M_{\tilde{c}+1}} \cong L(\mu_{\tilde{c}})$

The number of times L(u) appears as a subquotient in the composition series doesn't depend on the series. It's denoted by IM(A): L(u).

1) [M(a): L(a)] = 1 (only comes from the highest weight)

2) If IM(2): LIM] =0, then MEWer (as for Verma modules above)

3) ch M(X) = I [M(X): Lyw] ch Lyw = I [M(X): L(W,X)] ch L(w,X)

Brutist order on W: a partial order such that $V \leq W$ of any reduced expression for W contains a subserpression which is reduced for V. (reduced expression is the shortest decomposition in the product of simple reflections)

· Kazhdan Lusztig conjecture:

Let $-\lambda$ be integral dominant weight. Then we'd, $\chi=\lambda-2\rho$.

1) ch M(Wor) = \(\sum_{V\in W} \) Pwow, wor (1) ch L(Vir) \(\text{cohere Px.y are certain polynomials (called Kazhdan Lusztig polynomials)} \(\text{Mte that the formular closs not depend on } \lambda \).

2) ch L(w.2) = [(-1) lw1-lw) Pu, w (1) ch M(v.2)

Ex. Apply it on $\operatorname{ch} M(\lambda')$, we can get $\operatorname{ch} M(\lambda') = -\underbrace{P_{e,5a}(1)}_{1} \operatorname{ch} M(h-2) + \underbrace{P_{a,5a}(1)}_{1} \operatorname{ch} M(h)$

Page 3

Category O

Consider of g-modules satisfying:

- 1) V is a weighted module
- 2) V is a finitely generated module
- 3) $\forall v \in V$, $\dim U(N_{+})v < \infty$ then we say $V \in \mathcal{C}$

Ex. YREH*, M(R), L(R) & O

Infinite dimensional Lie algo

```
Ex. (First Witt alg)

W_1 = \text{Der Cit.}t^1]. has basis d_n = t \frac{d_n}{d_n}, ne_{\mathbb{Z}} and id_n, d_n = (n-m)d_{n+n}

W_1 = \text{module V is called neight if do is diagonalizable on V. (C& Cit.t!)}

and C = Cit.t^1 as a submodule. & Cit.t^1/L is in .

Where the part modules:

W_1 = W_1 \oplus Cd_0 \oplus W_2^{\dagger} (d_n \in W_1^{\dagger} \Leftrightarrow n>0)
```

 $W_1 = W_1 \oplus Colo \oplus W_2$ (du $\in W_1^{\dagger} \Leftrightarrow n>0$)

Let $a \in C$ and Cv_a is a 1-dim module over $Colo \oplus W_1^{\dagger} : \{ w_1^{\dagger} \ v_a = o \}$. Then

Define $M^{\dagger}(a) = U(W_1) \otimes CV_a \cong U(W_1^{\dagger})$ as vector space as the Verma module.

Notice that $d_0(d_n V_a) = (a-n) d_n V_a$, so $M_0 = \sum_{n \ge 0} M(\omega)_{a+n}$. Prop 1) $ch M(\omega) := \sum_{n \ge 0} (d_{1n} M(\omega)_{a+n}) t^n = \prod_{j \ge 1} (1-t^j)^{-1}$

2) M(a) is in $\Leftrightarrow a \neq \frac{m^2 1}{24}$, $y m \in \mathbb{Z}$

Remark: 1). Similarly, we can define the lowest weight modules M(a). Where $W_1V_0=0$.

2). Virosoro alg: $Vir = W_1 \oplus \mathbb{C}_C$ with $[dn,din] = (m-n)dmn + \delta_{1,m} \frac{m^2m}{12}C$ 3) We is isomorphic to the Lie alg of vector field on aircle S^1 .

Modules of Intermediate series = Kaplansky - Santharoubane modules.

Y2, BEC, define T(d, B) = I C Var, where dn Var = (K+B+oln) Varnip Vn.

4) Check that T(2,1) is a We-module 2) SES: 0→ C→T(0,0)→T(1,0)→C→0

Since T(0,0) ∈ C[t,t], T(0,0) ⊆ C[t,t], this SES contributes 2 in modules (C & attit)

Theorem. T(2,3) is in unless 2=0,1 and BGZ.

Remark. Let A = Citit. Consider $A \otimes A$ is a left A = Citit. Consider $A \otimes A$ is a left A = A = Cit. Let A = A = Cit. Let A = A = A = Cit. Let A = Cit

· TCI,0) \(\Omega \Omega_4 \), \(\T(0,0) \(\Omega \Omega_4 \\ \A \)

Theorem. (O. Mathieu, Martin-Praid, 1982) Irreducible weight W1-modules are:

- 1) CEtit 1/C; 2) Highest/lowest weight
 - 3) Intermediate series T(d, B)

• Let $W_n = \text{Der } \Omega \text{ It}^{\pm}, t_{2}^{\pm}, \dots t_{n}^{\pm}$. If $W_n \subseteq \text{ket } S^1$, then $W_n \subseteq ?$ In fact, $W_n = \text{polynomial vector fields on the torus } T^n$.

Generalization. Let $X \subset A$ an affine variety defined by an ideal $I \subset k[X_1, \dots, X_n]$ and $A = k[X_1, \dots, X_n] I$ ring of functions on X. The Lie alg of polynomials vector fields on X: V(X) = Der A. Theorem Let K algebraically closed and chark = 0. If X

Theorem. Let K algebraically closed and chark=0, If X is simple if and only if X is smooth. G order, G is best.

Remark. 1) X is irreducible A has no zero divisions (I is prime)
2) X is smooth if the Jacobian matrix of I has the

Examples 1) $V(A^n) = W_n^+ = Der k \overline{1} x_1, \dots, x_n \overline{1}$.

2) Consider an elliptic aure $C: y^2 = x^3 + 1$, then V(C) = Ag, where $g = y \frac{1}{2} + \frac{3}{2} \cdot x^2 \frac{1}{2} = A = \frac{1}{2} \cdot \frac{1}{2}$

3) $X=S^2$, $A=N[x_1y_1z]/(x_1y_1z_2^2-1)$. $\Rightarrow J(f)=(2x_2y_1z_2^2)$ f $\Delta xy=x_2^2-y_2^2$, $\Delta xy_1(f)=0 \Rightarrow \Delta xy_2\in V(S^2)$. Similarly, $\Delta xz_1, \Delta yz_2$.

· V(S²) = A Dry + A Dryz + A Dryz as an A-module. But x Dryz + y Dzx+Z Dry=0_ ⇒ not a free module.

· Kac-Moody algs.

Ex. Loop alg. g=g@CIt'it] = [g)

Consider D_A^2 and D_A^2/dA (1-forms module exact form), there is a quotient Kähler differentials conter of \hat{g} , with D_A^2 with D_A^2 and D_A^2 and

Theorem. (Kassel) $\hat{g} = g \otimes Cit.t'] \otimes \Omega_A/dA$ is the universal center extension of \hat{g}

· g is untwisted Affine Lie alg

· Let $\sigma \in \operatorname{Aut} g$, $\sigma' = 1$. Consider $\mu \in \mathbb{C}$, $\mu' = 1$, Extend σ to an automorphism $\widehat{\sigma}: L(g) \to L(g): F(x \otimes t^n) = \mu^n \widehat{\sigma}(x \otimes t^n)$. Then $L(g)^{\widehat{\sigma}}$ is twisted affine Lie alg.