6- Properties of Regular Languages

6.1 Pumping Lemma for Regular Languages:

This theorem is used to prove that certain languages are non-regular.

Statement:

Let L be a Regular Language.

There exists a constant n > 0, such that for every string $w \in L$ such that $|w| \ge n$, we can break w into three strings x, y and z, such that:

- a. $y \neq \varepsilon$.
- b. $|xy| \le n$.
- c. For all $k \ge 0$, the string $xy^kz \in L$.

PROOF:

- Let the Language L be a Regular Language.
- Then L = L(A) for some DFA A.
- Consider any string w such that $|w| \ge n$ i.e., $w = a_1 a_2 a_3 ... a_m$ where $m \ge n$.
- Let $p_i = \hat{\delta}(q_0, a_1 a_2 a_3 ... a_i)$. i.e., p_i is the state after reading the first *i* symbols.
- $p_0 = q_0$.
- By the pigeonhole principle all p_i's cannot be distinct.
- \therefore We find two integers i and j, with $0 \le i < j \le n$, such that $p_i = p_i$.
- Now we break w into x, y and z i.e., w = xyz, such that
 - 1. $x = a_1 a_2 a_3 ... a_i$
 - 2. $y = a_{i+1}a_{i+2}a_{i+3}...a_{i}$
 - 3. $z = a_{j+1}a_{j+2}a_{j+3}...a_{m}$

- The string xy^kz (For k >=0) is processed by the above DFA as follows
 - For k = 0
 - The DFA goes from p_0 to p_i on x.
 - The DFA goes from $\mathbf{p_i}$ to $\mathbf{p_m}$ on \mathbf{z} .
 - Hence the string xz is accepted.
 - o For **k > 0**
 - The DFA goes from p_0 to p_i on x.
 - The DFA goes from p_i to p_i on y k times (Loop) i.e., y repeated k times.
 - The DFA goes from p_i to p_m on z.
 - Hence the string xy^kz (For k >0) is accepted.

Proving Language is Non Regular (Pumping Lemma)

- 1. Assume the language L is Regular.
- 2. Let $w \in L$ and $|w| \ge n$.
- 3. Split w into x, y and z such that
 - $y \neq \varepsilon$.
 - $|xy| \le n$ and
- 4. Show that for some $k \geq 0$, $xy^kz \notin L$. Hence conclude the language L is Non Regular.

Ex: Prove that the language

 $L = \{a^nb^n \mid n \ge 0 \}$ is non regular.

- 1. Let the language L be regular.
- 2. Let $w = a^n b^n$ and |w| = 2n >= n.
- 3. Split w into x, y, z such that $y \neq \varepsilon$ and $|xy| \leq n$.

$$X = a^{i} 0 <= i < n$$

$$Y = a^{j} i >= 1$$

$$Z = a^{n-i-j}b^n$$

4.
$$xy^kz = a^i (a^j)^k a^{n-i-j}b^n$$

$$= a^{i+jk+n-i-j}b^n$$

$$= a^{n+jk-j}b^n$$

$$=a^{n+j(k-1)}b^n$$

For
$$k = 0$$

$$xy^kz = a^{n-j}b^n$$

Since $j \ge 1$ the number of a's in the above string will be less than the number of b's i.e., number of a's \neq number of b's.

Hence the language L is not a regular language.

Ex: Prove that the language

 $L = \{a^mb^n \mid m > n \}$ is non regular.

- 1. Let the language L be regular.
- 2. Let $w = a^n b^{n-1}$ and |w| = 2n-1 >= n.
- 3. Split w into x, y, z such that $y \neq \varepsilon$ and $|xy| \le n$.

$$X = a^{i} 0 \le i \le n$$

$$Y = a^{j} | >= 1$$

$$Z = a^{n-i-j}b^{n-1}$$

4.
$$xy^kz = a^i (a^j)^k a^{n-i-j}b^{n-1}$$

$$=a^{i+jk+n-i-j}b^{n-1}$$

$$= a^{n+jk-j}b^{n-1}$$

$$= a^{n+j(k-1)}b^{n-1}$$

For
$$k = 0$$

$$xy^kz = a^{n-j}b^{n-1}$$

Since j >=1 the number of a's in the above string will be less than or equal to the number of b's.

Hence the language L is not a regular language.

Ex: Prove that the language

 $L = \{a^m b^n \mid m < n \}$ is non regular.

- 1. Let the language L be regular.
- 2. Let $w = a^n b^{n+1}$ and |w| = 2n-1 >= n.
- 3. Split w into x, y, z such that $y \neq \varepsilon$ and $|xy| \le n$.

$$X = a^{i} 0 \le i \le n$$

$$Y = a^{j} j >= 1$$

$$Z = a^{n-i-j}b^{n+1}$$

4.
$$xy^kz = a^i (a^j)^k a^{n-i-j}b^{n+1}$$

$$= a^{i+jk+n-i-j}b^{n+1}$$

$$= a^{n+jk-j}b^{n+1}$$

$$= a^{n+j(k-1)}b^{n+1}$$

For
$$k = 2$$

$$xy^kz = a^{n+j}b^{n+1}$$

Since j >=1 the number of a's in the above string will be greater than or equal to the number of b's.

Hence the language L is not a regular language.

6.2 Closure Properties of Regular Languages.

- Union of Regular Languages is a Regular Language.
- Concatenation of Regular Languages is a Regular Language.
- Closure of a Regular Language is a Regular Language.
- Intersection of Regular Languages is a Regular Language.
- Complement of a Regular Language is a Regular Language.
- Difference of two Regular Languages is a Regular Language.
- Reversal of a Regular Language is a Regular Language.
- Homomorphism of a Regular Language is a Regular Language.
- Inverse Homomorphism of a Regular Language is a Regular Language.

Theorem: If L and M are regular languages then L U M is a regular language.

PROOF: (Union of Regular Languages is a Regular Language)

 \therefore L is a RL, L = L(R) for some RE R.

 \therefore M is a RL, M = L(S) for some RE S.

∵ R and S are REs, R + S is a RE.

L(R + S) = L(R) U L(S) = L U M.

Theorem: If L and M are regular languages then LM is a regular language.

PROOF: (Concatenation of Regular Languages is a Regular Language)

 \therefore L is a RL, L = L(R) for some RE R.

 \therefore M is a RL, M = L(S) for some RE S.

∵ R and S are REs, RS is a RE.

L(RS) = L(R)L(S) = LM.

Theorem: If L is a regular language then L* is a regular language.

PROOF: (Closure of Regular Language is a Regular Language)

 \therefore L is a RL, L = L(R) for some RE R.

∵ R is a RE, R* is a RE.

 $L(R^*) = (L(R))^* = (L)^* = L^*$.

Theorem: If L is a regular language then \bar{L} is a regular language.

PROOF: (Complement of a Regular Language is a Regular Language).

Idea: to complement the accepting and non-accepting states of the machine.

Let L = L(A) for some DFA A=(Q, Σ , δ , q_0 , F)

Then $\bar{L} = L(B)$ for some DFA B=(Q, Σ , δ , q_0 , Q - F)

The string w is in L(B) iff $\hat{\delta}(q0,w)$ in Q – F.

Theorem: If L and M are regular languages then L \cap M is a regular language.

PROOF: (Intersection of Regular Languages is a Regular Language)

 $L \cap M = \overline{\overline{L} \cup \overline{M}}$ (De Morgan's Theorem).

L and M are regular languages. (Given)

 $\div \, \overline{L} \,$ and \overline{M} are regular languages. (Proven)

 $\therefore \overline{L} \ \ \mathsf{U} \ \overline{M}$ is a regular language and $\overline{\overline{L} \ \cup \ \overline{M}}$ is a Regular Language. (Proven)

Theorem: If L and M are regular languages then L-M is a regular language.

PROOF: (Difference of Regular Languages is a Regular Language)

$$L - M = L \cap \overline{M}$$
.

 \because M is regular, $\overline{M}\;$ is Regular.

 \because L and $\overline{M}~$ are Regular, L $\cap~\overline{M}$ is regular.

Theorem: Reversal of a Regular Language is a Regular Language.

- If $w = a_1 a_2 a_3 \dots a_{n-1} a_n$, then the reversal $w = a_1 a_2 a_1 \dots a_n a_n a_n$.
- If L is a Language then L^R is the language consisting of reversals of strings of L.
- Ex: L = {001, 10, 111} L^R = {100, 01, 111}

PROOF: (Reversal of Regular Language is a Regular Language)

Given a Language L for some DFAA, we may construct a DFA for L^R as follows.

- Reverse all edges in A.
- Make the start state of A the only final state.
- Create a new start state p_0 , with ϵ transitions to all the final states of A.

