## **Question 1:**

 $U_3Si_5$  is a uranium silicide fuel being considered for use in light water reactors. It has a thermal conductivity of 12.5 W/(m K) and a density of Uranium metal of 7.5 g of U/cm<sup>3</sup>. Answer the following questions

- a) What is the fissile isotope in U<sub>3</sub>Si<sub>5</sub>? What would be the enrichment of this isotope in the natural (unenriched) form of the fuel? (7 points)
- b) What enrichment would be required for  $U_3Si_5$  to have the same energy release rate of  $U_3Si_2$  enriched to 3% with a neutron flux of 3.2e13 n/(cm<sup>2</sup> s)? You can assume that  $U_{235}$  has a negligible impact on the total molar mass of U in the fuel (15 points)

c) How would you rank U<sub>3</sub>Si<sub>5</sub> as a potential fuel compared to U<sub>3</sub>Si<sub>2</sub>? Why? (8 points)

## **Question 2:**

Consider a fuel rod with a pellet radius of 4.5 mm, an 80 micron gap, and a zircaloy cladding thickness of 0.6 mm. It is experiencing a linear heat rate of 250 W/cm with a co

| cool | ant temperature of 580 K. The gap is filled with He and 5% Xe and the coolar ctance is $2.5 \text{ W/(cm}^2 \text{ K)}$ .                                                                                |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | What is the surface temperature of the fuel rod? (15 points)                                                                                                                                             |
| b)   | Assume the pellet is made from Uranium Nitride. What is the maximum stress experienced by the pellet, given that uranium nitride has E = 246.7 GPa, $\nu$ = 0.25, and $\alpha$ = 7.5e-6 1/K? (10 points) |
| c)   | Would you expect this stress to be higher or lower if the pellet was $UO_2$ ? Why? (5 points)                                                                                                            |
| d)   | What assumptions were made in your calculations for a) and b)? (5 points)                                                                                                                                |

## **Question 3:**

Consider the stress state in a zircaloy fuel rod pressurized to 6 MPa with an average radius of 5.6 mm and a cladding thickness of 0.6 mm.

- a) What assumptions are made in the thin walled cylinder approximation for the stress state? (5 points)
- b) Calculate all three components of the stress using the thin walled cylinder approximation. (10 points)

c) Quantify how accurate the thin walled cylinder approximation is for the cladding. Would the thin walled cylinder approximation be conservative if used to estimate if the cladding would fail? (10 points)

d) Write the stress and strain tensors for the stress state in the thin walled cylinder, with E = 70 GPa and  $\nu$  = 0.41. (10 points)