Cap 3 - Interação Mecânica (parte 2)

Tópicos

Conservação do momento linear; Impulso. Sistemas de partículas. Centro de massa. Sistemas de massa variável

Objetivos de aprendizagem

- > Conhecer a grandeza Momento Linear
- Interpretar o Princípio da Conservação do Momento Linear como uma consequência da 1ª Lei de Newton
- Classificar as colisões como Elásticas, Inelásticas e Plásticas
- Calcular o impulso originado por uma força quando atua sobre um corpo
- > Prever o movimento do centro de massa
- Aplicar o Princípio da conserva do momento linear a sistemas de massa variável

Estudo recomendado:

R. Resnick, D. Halliday, "Fundamentos de Física", Livros Técnicos e Científicos Editora, Rio de Janeiro (2011) (cap
 9)

Cap 3.2.1

Questão inicial

Destes dois "atletas", qual deles prefeririam placar, se corressem com a bola no vosso sentido, com a mesma velocidade?

No final do cap. 3 (parte 2) deve saber responder a esta questão

Luís Cunha-DFUM

Cap 3,2,2

QUANTIDADE DE MOVIMENTO (OU MOMENTO LINEAR)

Cap 3 – Interação Mecânica (parte 2)

Recordando a 2ª Lei de Newton

$$\vec{F} = m\vec{a}$$

$$\vec{F} = m \frac{d\vec{v}}{dt} \Leftrightarrow \vec{F} = \frac{d(m\vec{v})}{dt} \Leftrightarrow \vec{F} = \frac{d\vec{p}}{dt}$$

$$\vec{p} = m\vec{v}$$

Quantidade de movimento ou Momento linear (S.I.: kgms⁻¹)

Luís Cunha-DFUM

Num sistema isolado constituído por 2 partículas:

$$\vec{F}_{12} + \vec{F}_{21} = \vec{0} \Leftrightarrow m_1 \vec{a}_1 + m_2 \vec{a}_2 = \vec{0}$$

$$m_1 \frac{d\vec{v}_1}{dt} + m_2 \frac{d\vec{v}_2}{dt} = \vec{0} \Leftrightarrow \frac{d}{dt} (m_1 \vec{v}_1 + m_2 \vec{v}_2) = \vec{0}$$

$$\frac{d(m_1\vec{v}_1)}{dt} + \frac{d(m_2\vec{v}_2)}{dt} = \vec{0}$$

$$\frac{d(\vec{p}_1)}{dt} + \frac{d(\vec{p}_2)}{dt} = \vec{0}$$

.

Cap 3 – Interação Mecânica (parte 2)

Análise de um sistema isolado

$$\frac{d}{dt}(m_1\vec{v}_1 + m_2\vec{v}_2) = \vec{0}$$

$$\frac{d}{dt}(\vec{p}_1 + \vec{p}_2) = \vec{0} \Rightarrow \vec{p}_{\text{total}} = \text{CONSTANTE}$$

 \longrightarrow Sistema isolado ($\sum \vec{F}_{\text{exteriores}} = \vec{0}$)

Lei da Conservação do Momento Linear

$$\vec{p}_{1,i} + \vec{p}_{2,i} = \vec{p}_{1,f} + \vec{p}_{2,f}$$

Quando as partículas interagem num **sistema isolado** , o momento linear total mantém-se constante.

$$m_1 \vec{v}_{1,i} + m_2 \vec{v}_{2,i} = m_1 \vec{v}_{1,f} + m_2 \vec{v}_{2,f}$$

Num sistema isolado o momento linear total mantém-se constante, mas o momento linear de cada partícula do sistema pode variar.

Cap 3,2.4

$$\vec{F} = \frac{d\vec{p}}{dt} \Leftrightarrow \vec{F} dt = d\vec{p} \Leftrightarrow \int_{t_0}^{t_1} \vec{F} dt = \int_{\vec{p}_0}^{\vec{p}_1} d\vec{p}$$

$$\vec{I} = \Delta \vec{p}$$

 $ec{I} = \Delta ec{p}$ Impulso de uma força ($ec{I}$) S.I.:(N.s = kg.m.s⁻¹)

Teorema do impulso-quantidade de movimento

A variação da quantidade de movimento é igual ao impulso da resultante das forças exteriores aplicadas ao sistema.

Se \vec{F} for constante no tempo:

$$\vec{F}\Delta t = \Delta \vec{p}$$

Cap 3_2_5 Luís Cunha-DFUM

Em geral, a força não é constante

$$\vec{F} = \frac{d\vec{p}}{dt}$$

Cap 3 – Interação Mecânica (parte 2)

Variação típica da força durante a colisão.

O impulso de uma força média constante no tempo ("área" é a mesma)

 $\Rightarrow \vec{I} = \int_{t}^{t_f} \vec{F} \ dt = \Delta \vec{p}$

$$\vec{I} = \bar{\vec{F}} \Delta t = \Delta \vec{p}$$

Cap 3_2_6 Luís Cunha-DFUM

CHECKPOINT 3.2.1

Cap 3 – Interação Mecânica (parte 2)

A força resultante aplicada a corpo, inicialmente em repouso, de massa 100 kg, tem uma direção constante e o **seu módulo varia em função do tempo** do modo como a figura mostra.

Calcular o módulo da velocidade final do corpo.

Luís Cunha-DFUM Cap 3_2_7

CHECKPOINT 3.2.2

Cap 3 – Interação Mecânica (parte 2)

Num teste de embate frontal, um carro de massa 1500 kg Colide com uma parede. As velocidades iniciais e finais do carro são $\vec{v}_i = -15.0\hat{\imath}$ (m/s) e $\vec{v}_f = 2.60\hat{\imath}$ (m/s), respetivamente.

- 1 Se o tempo da colisão for igual a 0.150 s, determine:
- a) O impulso durante a colisão
- b) A força média resultante exercida no caro

2 – Suponha agora que o tempo de colisão é o mesmo, mas o carro não recua ($\vec{v}_f = 0$ (m/s)). Nestas condições a força média resultante no carro é maior ou menor que a determinada na alínea b)? Comente o resultado.

Luís Cunha-DFUM Cap 3,22,8

Colisões 1D sem ação de forças exteriores

Cap 3 – Interação Mecânica (parte 2)

Para analisar as colisões (choques) há três conceitos a ter em consideração:

- Momento linear (quantidade de movimento) (\vec{p})
- \triangleright Energia cinética (E_c)
- Coeficiente de restituição (e)

Luís Cunha-DFUM Cap 3_2_10

O que é o coeficiente de restituição (e)?

Afastamento

Coeficiente de restituição:

$$e = \frac{v_{\text{afastamento}}}{v_{\text{aproximação}}} = \frac{\left|v_{2,f} - v_{1,f}\right|}{\left|v_{1,i} - v_{2,i}\right|}$$

Luís Cunha-DFUM Cap 3_2_11

1 1	Velocidade de afastamento	40 ms ⁻¹
$e = \frac{v_{\text{afastamento}}}{v_{\text{abs}}} = \frac{ v_{2,f} - v_{1,f} }{ v_{\text{abs}} }$	Velocidade de aproximação	40 ms ⁻¹
$v_{ m aproximação} = v_{1,i} - v_{2,i} $	Coeficiente de restituição	1

Luís Cunha-DFUM Cap 3_2_12

p / kg m s ⁻¹	Inicial	Final
Carro	0.0	3.0×10 ⁴
Camião	6.0×10 ⁴	3.0×10 ⁴
Total	6.0×10 ⁵	6.0×10 ⁴

E_c / J	Inicial	Final
Carro	0.0	4.5×10^{5}
Camião	6.0×10 ⁵ J	1.5×10 ⁵
Total	6.0×10 ⁵	6.0×10 ⁵

Velocidade de afastamento	20 ms ⁻¹
Velocidade de aproximação	20 ms ⁻¹
Coeficiente de restituição	1

Luís Cunha-DFUM Cap 3_2_13

p / kg m s ⁻¹	Inicial	Final
Carro	2.0×10^{4}	-1.0×10 ⁴
Camião	0.0	3.0×10 ⁴
Total	2.0×10 ⁴	2.0×10 ⁴

E_c / J	Inicial	Final
Carro	2.0×10 ⁵	0.5×10 ⁵
Camião	0.0	1.5×10 ⁵
Total	2.0×10 ⁵	2.0×10 ⁵

Velocidade de afastamento	20 ms ⁻¹
Velocidade de aproximação	20 ms ⁻¹
Coeficiente de restituição	1

Luís Cunha-DFUM Cap 3_2_14

Colisões elásticas

- ightharpoonup Conservação do momento linear: $\vec{p}_i = \vec{p}_f$
- \triangleright Conservação da energia cinética: $E_{ci}=E_{cf}$
- ightharpoonup Coeficiente de restituição: e=1

Para baixos valores de v, os choques entre automóveis são praticamente elásticos.

Os para-choques são suficientemente elásticos para que isso aconteça.

Luís Cunha-DFUM Cap 3_2_15

Colisões inelásticas (exemplo 1)

Após a o	colisão
<u>σ=</u> 3π/	s σ=6π/s
m=10 kg	m=6kg

p / kg m s ⁻¹	Inicial Final	
amarela	60.0	30.0
azul	6.0	36.0
Total	66.0	66.0

E_c / J	Inicial	Final
amarela	180.0	45.0
azul	3.0	108.0
Total	183.0	153.0

Velocidade de afastamento 3.0 ms ⁻¹	
Velocidade de aproximação	5.0 ms ⁻¹
Coeficiente de restituição	0.6

Colisões inelásticas

- \succ Conservação do momento linear $ec{p}_i = ec{p}_f$
- \succ Não há conservação da energia cinética: $E_{ci} > E_{cf}$
- \triangleright Coeficiente de restituição: 0 < e < 1

A quase totalidade dos choques pertence a esta categoria.

Cap 3_2_17

Cap 3 -	Interação	Mecânica	(parte	21

Corpos ficam juntos após a colisão

p / kg m s ⁻¹	Inicial	Final
Locomotiva	4.0×10^{4}	3.2×10^4
vagão	0.0	0.8×10^4
Total	4.0×10^{4}	4.0×10^4

E_c / J	Inicial	Final
Locomotiva	1.0×10^{5}	6.4×10 ⁴
vagão	0.0	1.6×10 ⁴
Total	1.0×10^{5}	8.0×10 ⁴

Velocidade de afastamento	0 m s ⁻¹
Velocidade de aproximação	5 m s ⁻¹
Coeficiente de restituição	0

p / kg m s ⁻¹	Inicial	Final
Camião	6.0×10 ⁴	4.5×10^4
Carro	0.0	1.5×10 ⁴
Total	6.0×10 ⁴	6.0×10 ⁴

E_c / J	Inicial	Final
Camião	6.0×10 ⁵	33.75×10 ⁴
Carro	0.0	11.25×10 ⁴
Total	6.0×10 ⁵	4.5×10 ⁵

Velocidade de afastamento	0 ms ⁻¹
Velocidade de aproximação	20 ms ⁻¹
Coeficiente de restituição	0

Luís Cunha-DFUM Cap 3_2_19

Colisões totalmente inelásticas (ou plásticas) (exemplo 3)

Cap 3 – Interação Mecânica (parte 2)

p	/ kg m s ⁻¹	Inicial	Final
C	arro	2.0×10 ⁴	0.5×10^4
C	lamião	0.0	1.5×10 ⁴
Т	`otal	2.0×10 ⁴	2.0×10 ⁴

E_c / J	Inicial	Final
Carro	2.0×10 ⁵	1.25×10^4
Camião	0.0	3.75×10^{4}
Total	2.0×10 ⁵	5.0×10 ⁴

Velocidade de afastamento	0 ms ⁻¹
Velocidade de aproximação	20 ms ⁻¹
Coeficiente de restituição	0

Colisões totalmente inelásticas (ou plásticas)

Corpos seguem juntos após colisão

- \triangleright Conservação do momento linear: $\vec{p}_i = \vec{p}_f$
- ightharpoonup Não há conservação da energia cinética: $E_{ci} > E_{cf}$
- \triangleright Coeficiente de restituição: e = 0

Cap 3_2_21

CHECKPOINT 3.2.3

Cap 3 – Interação Mecânica (parte 2)

Uma bala de massa m_1 = 0,05 kg é disparada horizontalmente com uma velocidade de v_{1A} = 500,00 m/s na direcção de um bloco de massa m_2 = 5 kg, que se encontra suspenso do tecto (ver esquema). A bala fica encravada no bloco. Os atritos com o ar e o efeito da gravidade sobre a bala são desprezáveis neste problema. Calcule:

a) O valor da velocidade do bloco (v_B) após o impacto da bala.

- b) A altura máxima (h) atingida pelo bloco.
- c) A energia mecânica dissipada no impacto da bala sobre o bloco.

OCO. $m_1 + m_2 = \overrightarrow{v}_{1A}$ $m_2 = \overrightarrow{v}_{B}$

Luís Cunha-DFIIM

Colisões 2D sem ação de forças exteriores

Colisões 2D

Para todos os tipos de choques sem interações externas: Conservação de momento linear

$$\vec{p}_{1,i} + \vec{p}_{2,i} = \vec{p}_{1,f} + \vec{p}_{2,f} \iff \begin{cases} m_1 \vec{v}_{1,ix} + m_2 \vec{v}_{2,ix} = m_1 \vec{v}_{1,fx} + m_2 \vec{v}_{2,fx} \\ m_1 \vec{v}_{1,iy} + m_2 \vec{v}_{2,iy} = m_1 \vec{v}_{1,fy} + m_2 \vec{v}_{2,fy} \end{cases}$$

Para todos os choques elásticos: Conservação da Energia Cinética

$$E_{c1,i} + E_{c2,i} = E_{c1,f} + E_{c2,f}$$

Luís Cunha-DFUM Cap 3_2_23

CHECKPOINT 3.2.4

Cap 3 – Interação Mecânica (parte 2)

O carro, com 1500 kg colide, na intersecção perpendicular de duas estradas, com uma pick-up de 2500 kg. As velocidades de cada veículo estão representadas na figura. Após o choque os veículos ficam juntos e escorregam num determinado sentido. Qual a direção e a velocidade do conjunto imediatamente após a colisão?

Luís Cunha-PFUM

CHECKPOINT 3.2.5

A figura corresponde à vista de cima do percurso realizado por um piloto (de massa 80~kg) quando o seu carro colide com o muro da pista. No instante antes da colisão ele desloca-se com uma velocidade de 70~m/s, em linha reta, com uma direção que forma um ângulo de 30° com a direção do muro, enquanto que após o choque a sua velocidade é de 50~m/s com um ângulo de 10° em relação ao muro.

- a) Qual foi o impulso, \vec{l} , no piloto devido à colisão?
- b) A duração da colisão foi de 14 ms. Qual o valor médio da força a que o piloto ficou sujeito?

Luís Cunha-DFUM Cap 3_2_25

CENTRO DE MASSA

Cap 3 – Interação Mecânica (parte 2)

Até este ponto da matéria lecionada nunca nos preocupamos com as dimensões dos corpos (considerados rígidos, até agora), apesar de podermos tê-los representado com formas específicas (como carros, blocos, bolas, etc...).

Até este ponto da matéria lecionada, considerou-se que toda a massa do corpo rígido estava concentrada num ponto, designado por **Centro de Massa**.

Resolveram-se os problemas e discutiram-se as questões de acordo com o modelo da partícula material. Os corpos não tinha dimensão (eram pontos).

Se um determinado corpo rígido, com uma forma caraterística, estiver em repouso, o **Centro de Massa** dessa distribuição de massa (que é o corpo) é um ponto onde, se uma força resultante for aplicada nesse ponto, o corpo acelera no sentido da força, de acordo com a 2ª lei de Newton, sem sofrer rotação.

Luís Cunha-PFIM

Um ponto especial...

Um corpo sendo rígido, ou não, é constituído por um conjunto de partículas.

Se a resultante das forças exteriores aplicadas num sistema de partículas for nula, mesmo que a velocidade das partículas individualmente possa variar, existe um ponto associado ao conjunto de partículas do Sistema, que tem aceleração nula (velocidade constante).

Este ponto designa-se por Centro de Massa do Sistema.

Cap 3_2_27

Cap 3 – Interação Mecânica (parte 2)

O CM de um sólido regular rígido e homogéneo coincide com o centro geométrico do corpo.

O CM de um sólido irregular rígido homogéneo, ou não, pode ser mais difícil de calcular. No caso de uma lâmina irregular:

Luís Cunha-DFUM
Cap 3_2_28

CENTRO DE MASSA (CM)

Luís Cunha-DFUM Cap 3_2_29

CENTRO DE MASSA (CM)

Mas mesmo que o corpo rígido sofra translação, em rotação, o centro de massa do corpo é o ponto que se move como se toda a massa do sistema estivesse concentrada nesse ponto, onde todas as força externas estão aplicadas.

Cap 3 – Interação Mecânica (parte 2)

Luís Cunha-DFUM Cap 3_2_30

DETERMINAÇÃO DO CENTRO DE MASSA

Cap 3 – Interação Mecânica (parte 2)

No caso de um sistemas constituído por várias particular como se determina a posição do CM (\vec{r}_{CM}) ?

$$x_{CM} = \frac{\sum_{i=1}^{n} m_i x_i}{M}$$

$$y_{CM} = \frac{\sum_{i=1}^{n} m_i y_i}{M}$$

$$z_{CM} = \frac{\sum_{i=1}^{n} m_i z_i}{M}$$

$$\vec{r}_{CM} = \frac{\sum_{i=1}^{n} m_i \vec{r}_i}{\sum_{i=1}^{n} m_i} = \frac{\sum_{i=1}^{n} m_i \vec{r}_i}{M}$$

Cap 3_2_31

DETERMINAÇÃO DO CENTRO DE MASSA

Cap 3 – Interação Mecânica (parte 2)

Sólido irregular homogéneo

$$x_{CM} = \frac{1}{M} \int x dm$$

$$y_{CM} = \frac{1}{M} \int y dm$$

$$\rho = \frac{M}{V} = \frac{dm}{dV}$$

$$z_{CM} = \frac{1}{V} \int x dV$$

$$y_{CM} = \frac{1}{V} \int y dV$$

$$z_{CM} = \frac{1}{M} \int z dm$$

$$dm = \frac{M dV}{V}$$

$$z_{CM} = \frac{1}{V} \int z dV$$

$$z_{CM} = \frac{1}{M} \int z dm$$

$$o = \frac{M}{V} = \frac{dm}{dV}$$

$$dm = \frac{MdV}{V}$$

$$x_{CM} = \frac{1}{V} \int x dV$$
$$y_{CM} = \frac{1}{V} \int y dV$$

$$z_{CM} = \frac{1}{V} \int z dV$$

Cap 3_2_32 Luís Cunha-DFUM

Considere o sistema de 3 partículas em que $m_1 = m_2 = 1$ kg e $m_3 = 2$ kg. Calcule a posição do centro de massa do sistema?

Luís Cunha-DFUM Cap 3_2_33

Movimento do Centro de Massa

Cap 3 – Interação Mecânica (parte 2)

$$\vec{r}_{CM} = \frac{\sum_{i=1}^{n} m_i \vec{r}_i}{M} \Rightarrow \qquad \vec{v}_{CM} = \frac{d\vec{r}_{CM}}{dt} = \frac{1}{M} \sum_{i=1}^{n} m_i \frac{d\vec{r}_i}{dt} \Rightarrow \qquad \vec{v}_{CM} = \frac{1}{M} \sum_{i=1}^{n} m_i \vec{v}_i$$

Num sistema de partículas podem atuar:

- Forças interiores (nas interações entre as partículas);
- Forças exteriores.

As forças interiores anulam-se (de acordo com a 3ª lei de Newton).

As forças exteriores podem ou não ser nulas

Movimento do Centro de Massa

Cap 3 – Interação Mecânica (parte 2)

$$\vec{v}_{CM} = \frac{1}{M} \sum_{i=1}^{n} m_i \, \vec{v}_i$$

Se $\vec{F}_{ext} = \vec{0}$

 $\vec{v}_{\mathit{CM}} = \vec{0}$ ou $\vec{v}_{\mathit{CM}} = \mathrm{constante}$

Luís Cunha-DFUM

Se
$$\vec{F}_{ext} \neq \vec{0}$$

$$\vec{a}_{CM} = \frac{d\vec{v}_{CM}}{dt} = \frac{1}{M} \sum_{i=1}^{n} m_i \frac{d\vec{v}_i}{dt}$$

$$\vec{a}_{CM} = \frac{1}{M} \sum_{i=1}^{n} m_i \, \vec{a}_i$$

Quantidade de Movimento do Centro de Massa

$$\vec{v}_{CM} = \frac{1}{M} \sum_{i=1}^{n} m_i \, \vec{v}_i = \frac{1}{M} \sum_{i=1}^{n} \vec{p}_i \qquad \Leftrightarrow \vec{v}_{CM} = \frac{1}{M} \vec{p}_{total} \qquad \qquad \vec{p}_{total} = M \vec{v}_{CM}$$

$$\Leftrightarrow \vec{v}_{CM} = \frac{1}{M} \vec{p}_{total}$$

$$\vec{p}_{total} = M \vec{v}_{CM}$$

path of center of mass

Cap 3_2_36 Luís Cunha-DFUM

CHECKPOINT 3.2.7

Um projétil é atirado verticalmente para cima. Quando estava a 1000 m de altitude, com uma velocidade de 300 m s⁻¹, explode e separa-se em três fragmentos de massa igual. O primeiro fragmento tem velocidade com sentido para cima de 450 m s^{-1} . O segundo fragmento tem velocidade para este com 240 m s^{-1} . a)Qual a velocidade do terceiro fragmento?

b) Qual a posição do centro de massa do sistema, relativamente ao solo, 3 segundos após a explosão?

Luís Cunha-DFUM Cap 3_2_37

SISTEMAS DE MASSA VARIÁVEL

Cap 3 – Interação Mecânica (parte 2)

Sistemas com massa variável

A força de atrito da estrada sobre o pneu do automóvel é que propulsionar o carro.

No espaço, as naves não têm um piso para que a força de atrito de escorregamento as possa propulsionar.

SISTEMAS DE MASSA VARIÁVEL

$$\vec{F}_R = \frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt} \Leftrightarrow \vec{F}_R = m\frac{d\vec{v}}{dt} + \vec{v}\frac{dm}{dt}$$

Se a massa não variar, o último termo desaparece e obtemos a forma já conhecida da 2^a lei de Newton:

$$\vec{F}_R = m \frac{d\vec{v}}{dt} = m\vec{a}$$

Nos casos em que a massa varia (por exemplo foguetes que queimam grande quantidade de combustível) tem de se usar a expressão completa e nesse caso a forma correta da 2ª lei de Newton é:

$$\vec{F}_R = \frac{d\vec{p}}{dt} = m\frac{d\vec{v}}{dt} + \vec{v}\frac{dm}{dt}$$

Luís Cunha-PFUM Cap 3_2.39

EXEMPLO DOS FOGUETÕES NO ESPAÇO

Cap 3 – Interação Mecânica (parte 2)

M – Massa do foguetão+ combustível+comburente (que vai restar)

 Δm – massa dos gases de escape (combustível+comburente, após a combustão)

 $ec{v}_0$ - Velocidade inicial do conjunto relativamente à Terra

 $\Delta \vec{v}$ - aumento de velocidade do foguetão relativamente à Terra

 $ec{v}_e$ - velocidade dos gases de escape relativamente ao foguetão

 $ec{v}_0 + ec{v}_e$ - velocidade dos gases de escape relativamente à Terra

Sendo um sistema isolado: $\vec{p}_0 = \vec{p}_f$

$$(M+\Delta m)v_0=M(v_0+\Delta v)+\Delta m(v_0-v_e) \Leftrightarrow Mv_0+\Delta mv_0=Mv_0+M\Delta v+\Delta mv_0-\Delta mv_e$$

$$0 = M\Delta v - \Delta m v_e \Leftrightarrow M\Delta v = \Delta m v_e$$

Considerando o intervalo de tempo $\Delta t \rightarrow 0$, tem-se: $\Delta v \rightarrow dv \ e \ \Delta m \rightarrow dm$

$$Mdv = dmv_o$$

 $Mdv = dmv_{\rho}$

O aumento na massa dos gases de escape (dm) corresponde a uma diminuição da massa do sistema (-dM)

$$Mdv = -dMv_e$$

Dividindo por dt:

$$dv = -\frac{dM}{M}v_e \Leftrightarrow \int_{v_0}^{v_f} dv = -v_e \int_{M_0}^{M_f} \frac{dM}{M}$$

$$\Leftrightarrow v_f - v_0 = -v_e \ln \frac{M_f}{M_0} \Leftrightarrow v_f - v_0 = v_e \ln \frac{M_0}{M_f}$$

Para uma grande variação velocidade do foguetão:

- a velocidade dos gases de escape deve ser a maior possível;
- a razão das massas deve ser a maior possível.

$$M\frac{dv}{dt} = -v_e \frac{dM}{dt}$$

Obtém-se a força propulsora (thrust) que é a força que os gases de escape exercem no foguetão:

$$F_{\text{propulsora}} = M \frac{dv}{dt} = -v_e \frac{dM}{dt}$$

Que é proporcional à velocidade dos gases de escape e à taxa com que massa varia (burn rate)

Cap 3_2_41

CHECKPOINT 3.2.8

Cap 3 – Interação Mecânica (parte 2)

Os foguetões Saturno V (das missões Apollo) tinham uma massa de 2.85×106 kg em condições de lançamento. A carga útil do Saturno V era somente 27% da massa em condições de partida. Os motores consumiam combustível à taxa de 13.84×10³ kg/s e a força propulsora era de 34×10⁶ N.

- a) Qual o valor da velocidade dos "gases de escape";
- b) Qual a duração da combustão (tempo que os motores levam a consumir o combustível).
- c) Qual o valor da aceleração no lançamento (aceleração inicial)
- d) Qual o valor da aceleração no final (após toda a combustão do combustível)

Cap 3_2_42 Luís Cunha-DFIIM

Relembre os objetivos de aprendizagem.....

Objetivos de aprendizagem

- > Conhecer a grandeza Momento Linear
- > Interpretar o Princípio da Conservação do Momento Linear como uma consequência da 1ª Lei de Newton
- Classificar as colisões como Elásticas, Inelásticas e Plásticas
- > Calcular o impulso originado por uma força quando atua sobre um corpo
- > Prever o movimento do centro de massa
- > Aplicar o Princípio da conserva do momento linear a sistemas de massa variável

... certifique-se que foram atingidos.

Cap 3_2_43