# Mineração de Padrões Freqüentes Ortogonais e sua Aplicação em Classificação Associativa

Leandro Souza Costa Orientador: Wagner Meira Jr.

Departamento de Ciência da Computação Universidade Federal de Minas Gerais

Defesa de Dissertação de Mestrado 16 de abril de 2008





- Era da Informação;
- Sistemas de Gerenciamento de Banco de Dados (SGBD);
- Data Warehouse;
- Mineração de Dados.





00000

- Era da Informação;
- Sistemas de Gerenciamento de Banco de Dados (SGBD);
- Data Warehouse:
- Mineração de Dados.





00000

- Era da Informação;
- Sistemas de Gerenciamento de Banco de Dados (SGBD);
- Data Warehouse;
- Mineração de Dados.





00000

- Era da Informação;
- Sistemas de Gerenciamento de Banco de Dados (SGBD);
- Data Warehouse:
- Mineração de Dados.





00000

- Descoberta de Conhecimento em Bases de Dados (KDD -Knowledge Discovery in Databases);
- Padrões Freqüentes;





- Descoberta de Conhecimento em Bases de Dados (KDD -Knowledge Discovery in Databases);
- Padrões Freqüentes;





- Descoberta de Conhecimento em Bases de Dados (KDD -Knowledge Discovery in Databases);
- Padrões Freqüentes;
- Regras de Associação;
- Classificação Associativa.





- Descoberta de Conhecimento em Bases de Dados (KDD -Knowledge Discovery in Databases);
- Padrões Freqüentes;
- Regras de Associação;
- Classificação Associativa.





# Ortogonalidade

#### Definicão Matemática

Dois vetores x e y são ortogonais num espaço vetorial V se o produto interno  $\langle x, y \rangle$  é zero. Esta situação é descrita por  $x \perp y$ .





# Definicão Matemática

Dois vetores x e y são ortogonais num espaço vetorial V se o produto interno  $\langle x, y \rangle$  é zero. Esta situação é descrita por  $x \perp y$ .

#### Definicão Adotada

Estamos interessados no quanto os elementos de um conjunto contribuem com informações não redundantes para a solução de um problema. Considerando que seja possível medir esta contribuição, e chamá-la de **significância**, podemos definir **ortogonalidade** como a média das significâncias dos elementos do conjunto.





# Objetivos '

Explorar o problema de classificação associativa considerando ortogonalidade entre padrões frequentes com a intenção de:

- Minimizar o número de padrões utilizados na geração das regras;
- Diminuir a redundância das regras geradas;
- Diminuir a ambigüidade das regras geradas;
- Aumentar a efetividade das classificações.





# Objetiv<u>os</u>

Explorar o problema de classificação associativa considerando ortogonalidade entre padrões frequentes com a intenção de:

- Minimizar o número de padrões utilizados na geração das regras;
- Diminuir a redundância das regras geradas;
- Aumentar a efetividade das classificações.





# Objetivos

Explorar o problema de classificação associativa considerando ortogonalidade entre padrões freqüentes com a intenção de:

- Minimizar o número de padrões utilizados na geração das regras;
- Diminuir a redundância das regras geradas;
- Diminuir a ambigüidade das regras geradas;
- Aumentar a efetividade das classificações.





# Objetivos

Explorar o problema de classificação associativa considerando ortogonalidade entre padrões frequentes com a intenção de:

- Minimizar o número de padrões utilizados na geração das regras;
- Diminuir a redundância das regras geradas;
- Diminuir a ambigüidade das regras geradas;
- Aumentar a efetividade das classificações.





- Compactação do Conjunto de Padrões Freqüentes:
  - Padrões Fechados e Maximais
  - Extração de sub-conjunto (top-k) de padrões;
  - Representação alternativa do conjuntos de padrões
- Diminuição de Redundância no Conjunto de Padrões Frequentes:
  - Função objetivo relacionando significância e redundância
  - Modelos baseados em agrupamentos e representantes;
  - $\blacksquare$  ORIGAMI ( $\alpha$ -ortogonalidade)
- Classificação Associativa:
  - Estratégia /azv





- Compactação do Conjunto de Padrões Fregüentes:
  - Padrões Fechados e Maximais:
- Diminuição de Redundância no Conjunto de Padrões
- Classificação Associativa:





- Compactação do Conjunto de Padrões Fregüentes:
  - Padrões Fechados e Maximais:
  - Extração de sub-conjunto (top-k) de padrões;
- Diminuição de Redundância no Conjunto de Padrões
- Classificação Associativa:





- Compactação do Conjunto de Padrões Freqüentes:
  - Padrões Fechados e Maximais:
  - Extração de sub-conjunto (top-k) de padrões;
  - Representação alternativa do conjuntos de padrões.
- Classificação Associativa:





- Compactação do Conjunto de Padrões Fregüentes:
  - Padrões Fechados e Maximais:
  - Extração de sub-conjunto (top-k) de padrões;
  - Representação alternativa do conjuntos de padrões.
- Diminuição de Redundância no Conjunto de Padrões Frequentes:
  - Função objetivo relacionando significância e redundância;

  - $\blacksquare$  ORIGAMI ( $\alpha$ -ortogonalidade).





- Compactação do Conjunto de Padrões Freqüentes:
  - Padrões Fechados e Maximais;
  - Extração de sub-conjunto (top-k) de padrões;
  - Representação alternativa do conjuntos de padrões.
- Diminuição de Redundância no Conjunto de Padrões Freqüentes:
  - Função objetivo relacionando significância e redundância;
  - Modelos baseados em agrupamentos e representantes;
  - ORIGAMI ( $\alpha$ -ortogonalidade).
- Classificação Associativa:
  - Estratégia lazy





- Compactação do Conjunto de Padrões Fregüentes:
  - Padrões Fechados e Maximais:
  - Extração de sub-conjunto (top-k) de padrões;
  - Representação alternativa do conjuntos de padrões.
- Diminuição de Redundância no Conjunto de Padrões Frequentes:
  - Função objetivo relacionando significância e redundância;
  - Modelos baseados em agrupamentos e representantes;
- Classificação Associativa:





- Compactação do Conjunto de Padrões Fregüentes:
  - Padrões Fechados e Maximais:
  - Extração de sub-conjunto (top-k) de padrões;
  - Representação alternativa do conjuntos de padrões.
- Diminuição de Redundância no Conjunto de Padrões Frequentes:
  - Função objetivo relacionando significância e redundância;
  - Modelos baseados em agrupamentos e representantes;
  - ORIGAMI ( $\alpha$ -ortogonalidade).
- Classificação Associativa:





- Compactação do Conjunto de Padrões Fregüentes:
  - Padrões Fechados e Maximais:
  - Extração de sub-conjunto (top-k) de padrões;
  - Representação alternativa do conjuntos de padrões.
- Diminuição de Redundância no Conjunto de Padrões Frequentes:
  - Função objetivo relacionando significância e redundância;
  - Modelos baseados em agrupamentos e representantes;
  - ORIGAMI ( $\alpha$ -ortogonalidade).
- Classificação Associativa:
  - Estratégia lazy.





- Compactação do Conjunto de Padrões Freqüentes:
  - Padrões Fechados e Maximais;
  - Extração de sub-conjunto (top-k) de padrões;
  - Representação alternativa do conjuntos de padrões.
- Diminuição de Redundância no Conjunto de Padrões Frequentes:
  - Função objetivo relacionando significância e redundância;
  - Modelos baseados em agrupamentos e representantes;
  - ORIGAMI ( $\alpha$ -ortogonalidade).
- Classificação Associativa:
  - Estratégia lazy.





# Modelos de Classificação

- Modelos propostos: redes neurais, estatísticos, árvores de decisão, algoritmos genéticos, etc.;
- Modelo baseado em árvores de decisão é um dos mais indicados para Mineração de Dados;
- Classificação Associativa produz resultados ainda melhores





# Modelos de Classificação

- Modelos propostos: redes neurais, estatísticos, árvores de decisão, algoritmos genéticos, etc.;
- Modelo baseado em árvores de decisão é um dos mais indicados para Mineração de Dados:





# Modelos de Classificação

- Modelos propostos: redes neurais, estatísticos, árvores de decisão, algoritmos genéticos, etc.;
- Modelo baseado em árvores de decisão é um dos mais indicados para Mineração de Dados;
- Classificação Associativa produz resultados ainda melhores.





- Um conjunto  $X = \{i_1, \dots, i_k\} \subseteq \mathcal{I}$ , onde  $\mathcal{I}$  é um conjunto de itens, é chamado de *itemset* (ou padrão);
- Uma transação sobre  $\mathcal{I}$  é um par T = (tid, I) onde tid é o
- $\blacksquare$  Uma base de dados de transacões  $\mathcal D$  sobre  $\mathcal I$  é um conjunto de
- $\blacksquare$  O suporte de um *itemset X* em  $\mathcal{D}$  é a probabilidade de X
- Um padrão é frequente se o seu suporte é maior ou igual a um



- Um conjunto  $X = \{i_1, \dots, i_k\} \subseteq \mathcal{I}$ , onde  $\mathcal{I}$  é um conjunto de itens, é chamado de *itemset* (ou padrão);
- Uma transação sobre \( \mathcal{I}\) é um par \( T = (tid, I) \) onde \( tid \) é o identificador da transação e \( I \) é um \( itemset \);
- Uma base de dados de transações D sobre I é um conjunto de transações sobre I;
- O suporte de um *itemset* X em  $\mathcal{D}$  é a probabilidade de X ocorrer em uma transação  $T \in \mathcal{D}$ ;
- Um padrão é frequente se o seu suporte é maior ou igual a um dado valor relativo mínimo  $\sigma$ , com  $0 \le \sigma \le 1$ .



- Um conjunto  $X = \{i_1, \dots, i_k\} \subseteq \mathcal{I}$ , onde  $\mathcal{I}$  é um conjunto de itens, é chamado de *itemset* (ou padrão);
- Uma transação sobre  $\mathcal{I}$  é um par T = (tid, I) onde tid é o identificador da transação e I é um itemset;
- Uma base de dados de transações D sobre I é um conjunto de transações sobre I;
- O suporte de um *itemset* X em  $\mathcal{D}$  é a probabilidade de X ocorrer em uma transação  $T \in \mathcal{D}$ ;
- Um padrão é frequente se o seu suporte é maior ou igual a um dado valor relativo mínimo  $\sigma$ , com  $0 < \sigma < 1$ .



- Um conjunto  $X = \{i_1, \dots, i_k\} \subseteq \mathcal{I}$ , onde  $\mathcal{I}$  é um conjunto de itens, é chamado de *itemset* (ou padrão);
- Uma transação sobre  $\mathcal{I}$  é um par T = (tid, I) onde tid é o identificador da transação e I é um itemset;
- Uma base de dados de transações D sobre I é um conjunto de transações sobre I;
- O suporte de um *itemset* X em  $\mathcal{D}$  é a probabilidade de X ocorrer em uma transação  $T \in \mathcal{D}$ ;
- Um padrão é frequente se o seu suporte é maior ou igual a um dado valor relativo mínimo  $\sigma$ , com  $0 < \sigma < 1$ .



- Um conjunto  $X = \{i_1, \dots, i_k\} \subseteq \mathcal{I}$ , onde  $\mathcal{I}$  é um conjunto de itens, é chamado de *itemset* (ou padrão);
- Uma transação sobre  $\mathcal{I}$  é um par T = (tid, I) onde tid é o identificador da transação e I é um itemset;
- Uma base de dados de transações D sobre I é um conjunto de transações sobre I;
- O suporte de um *itemset X* em  $\mathcal{D}$  é a probabilidade de X ocorrer em uma transação  $T \in \mathcal{D}$ ;
- Um padrão é frequente se o seu suporte é maior ou igual a um dado valor relativo mínimo  $\sigma$ , com  $0 \le \sigma \le 1$ .



#### Definição

Seja  $\mathcal{D}$  uma base de dados de transações sobre um conjunto de itens  $\mathcal{I}$ , e  $\sigma$  um valor mínimo de suporte. A coleção de *itemsets* frequentes em  $\mathcal{D}$  em relação a  $\sigma$  é dado por:

$$\mathcal{F}(\mathcal{D}, \sigma) := \{ X \subseteq \mathcal{I} | suporte(X, \mathcal{D}) \geq \sigma \}.$$





# Regras de Associação

- Uma regra de associação é uma implicação da forma  $X \Rightarrow Y$ , onde X é um conjunto de itens em  $\mathcal{I}$ , e Y é um único item em  $\mathcal{I}$  que não está presente em X;
- O suporte de uma regra  $X \Rightarrow Y$  em  $\mathcal{D}$  é o suporte de  $X \cup Y$  em  $\mathcal{D}$ ;
- A regra  $X \Rightarrow Y$  é satisfeita no conjunto de transações T com confiança  $0 \le \gamma \le 1$  se, e somente se, a probabilidade condicional de encontrar Y numa transação, dado que esta contém X, é maior que  $\gamma$ ;





# Regras de Associação

- Uma regra de associação é uma implicação da forma  $X \Rightarrow Y$ , onde X é um conjunto de itens em  $\mathcal{I}$ , e Y é um único item em  $\mathcal{I}$  que não está presente em X;
- O suporte de uma regra  $X \Rightarrow Y$  em  $\mathcal{D}$  é o suporte de  $X \cup Y$  em  $\mathcal{D}$ ;
- A regra  $X \Rightarrow Y$  é satisfeita no conjunto de transações T com confiança  $0 \le \gamma \le 1$  se, e somente se, a probabilidade condicional de encontrar Y numa transação, dado que esta contém X, é maior que  $\gamma$ ;





# Regras de Associação

- Uma regra de associação é uma implicação da forma  $X \Rightarrow Y$ , onde X é um conjunto de itens em  $\mathcal{I}$ , e Y é um único item em  $\mathcal{I}$  que não está presente em X;
- O suporte de uma regra  $X \Rightarrow Y$  em  $\mathcal{D}$  é o suporte de  $X \cup Y$  em  $\mathcal{D}$ ;
- A regra  $X \Rightarrow Y$  é satisfeita no conjunto de transações T com confiança  $0 \le \gamma \le 1$  se, e somente se, a probabilidade condicional de encontrar Y numa transação, dado que esta contém X, é maior que  $\gamma$ ;





# Regras de Associação

#### Definição

Seja  $\mathcal D$  uma base de dados de transações sobre um conjunto de itens  $\mathcal I$ ,  $\sigma$  um valor mínimo para suporte e  $\gamma$  um valor mínimo para confiança, o conjunto de regras de associação freqüentes e de confiança considerando  $\sigma$  e  $\gamma$  é dado por:

$$\mathcal{R}(\mathcal{D}, \sigma, \gamma) := \{X \Rightarrow Y | X, Y \subseteq \mathcal{I}, X \cap Y = \{\}, X \cup Y \in \mathcal{F}(\mathcal{D}, \sigma), \\ confianca(X \Rightarrow Y, \mathcal{D}) \ge \gamma\}.$$





# Classificação Associativa

- Dados de entrada: Coleção de registros;
- Cada registro é caracterizado por um par (x, y), onde x é um conjunto de atributos comuns, e y é um atributo especial, designado como classe;
- Classificação é o processo de se descobrir uma função f que realiza o mapeamento de cada conjunto de atributos x para uma das classes y pré-definidas.





# Classificação Associativa

- Dados de entrada: Coleção de registros;
- Cada registro é caracterizado por um par (x, y), onde x é um conjunto de atributos comuns, e y é um atributo especial, designado como classe;
- Classificação é o processo de se descobrir uma função f que realiza o mapeamento de cada conjunto de atributos x para uma das classes y pré-definidas.





# Classificação Associativa

- Dados de entrada: Coleção de registros;
- Cada registro é caracterizado por um par (x, y), onde x é um conjunto de atributos comuns, e y é um atributo especial, designado como classe;
- Classificação é o processo de se descobrir uma função f que realiza o mapeamento de cada conjunto de atributos x para uma das classes y pré-definidas.





# Estratégias *eager* e *lazy*

#### Estratégia eager

Gera um conjunto de regras a partir da base de treinamento, e, para cada instância de teste, utiliza a melhor regra do conjunto para classificá-la.





# Estratégias *eager* e *lazy*

### Estratégia eager

Gera um conjunto de regras a partir da base de treinamento, e, para cada instância de teste, utiliza a melhor regra do conjunto para classificá-la.

#### Estratégia lazy

Para cada instância de teste, gera um conjunto de regras a partir de uma projeção da base de treinamento que possui apenas transações relacionadas com a instância de teste.





- Largamente utilizados em diversas aplicações, incluindo regras de associação, classificação, agrupamento, indexação, etc.;
- Minimizar o conjunto-solução ainda é um desafio:
  - Padrões frequentes obedecem à propriedade de anti-monotonia;
  - Soluções propostas minimizam o conjunto-solução apenas sob a perspectiva do suporte, não considerando a semântica dos dados
- Diminuir a redundância no conjunto-solução é outro desafio:
  - Poucos estudos têm se dedicado a obter sub-conjuntos de alta significância e baixa redundância ao mesmo tempo.





- Largamente utilizados em diversas aplicações, incluindo regras de associação, classificação, agrupamento, indexação, etc.;
- Minimizar o conjunto-solução ainda é um desafio:
  - Padrões freqüentes obedecem à propriedade de anti-monotonia;
  - Soluções propostas minimizam o conjunto-solução apenas sob a perspectiva do suporte, não considerando a semântica dos dados.
- Diminuir a redundância no conjunto-solução é outro desafio:
  - Poucos estudos têm se dedicado a obter sub-conjuntos de alta significância e baixa redundância ao mesmo tempo.





- Largamente utilizados em diversas aplicações, incluindo regras de associação, classificação, agrupamento, indexação, etc.;
- Minimizar o conjunto-solução ainda é um desafio:
  - Padrões freqüentes obedecem à propriedade de anti-monotonia;
  - Soluções propostas minimizam o conjunto-solução apenas sob a perspectiva do suporte, não considerando a semântica dos dados
- Diminuir a redundância no conjunto-solução é outro desafio:
  - Poucos estudos têm se dedicado a obter sub-conjuntos de alta significância e baixa redundância ao mesmo tempo.





- Largamente utilizados em diversas aplicações, incluindo regras de associação, classificação, agrupamento, indexação, etc.;
- Minimizar o conjunto-solução ainda é um desafio:
  - Padrões frequentes obedecem à propriedade de anti-monotonia;
  - Soluções propostas minimizam o conjunto-solução apenas sob a perspectiva do suporte, não considerando a semântica dos dados.
- Diminuir a redundância no conjunto-solução é outro desafio:
  - Poucos estudos têm se dedicado a obter sub-conjuntos de alta significância e baixa redundância ao mesmo tempo.





- Largamente utilizados em diversas aplicações, incluindo regras de associação, classificação, agrupamento, indexação, etc.;
- Minimizar o conjunto-solução ainda é um desafio:
  - Padrões frequentes obedecem à propriedade de anti-monotonia;
  - Soluções propostas minimizam o conjunto-solução apenas sob a perspectiva do suporte, não considerando a semântica dos dados.
- Diminuir a redundância no conjunto-solução é outro desafio:
  - Poucos estudos têm se dedicado a obter sub-conjuntos de alta significância e baixa redundância ao mesmo tempo.





- Largamente utilizados em diversas aplicações, incluindo regras de associação, classificação, agrupamento, indexação, etc.;
- Minimizar o conjunto-solução ainda é um desafio:
  - Padrões frequentes obedecem à propriedade de anti-monotonia;
  - Soluções propostas minimizam o conjunto-solução apenas sob a perspectiva do suporte, não considerando a semântica dos dados.
- Diminuir a redundância no conjunto-solução é outro desafio:
  - Poucos estudos têm se dedicado a obter sub-conjuntos de alta significância e baixa redundância ao mesmo tempo.





#### Padrões Ortogonais

O objetivo da aplicação de ortogonalidade no problema da mineração de padrões freqüentes é desenvolver uma técnica capaz de extrair um sub-conjunto de padrões com tanto alta significância quanto baixa redundância entre seus elementos.





# Métricas de Ortogonalidade

- É necessário definir métricas de ortogonalidade capazes de avaliar um possível conjunto solução;
- O complemento do coeficiente de Jaccard aplicado à

$$D(p_1, p_2) = 1 - \frac{|TS(p_1) \cap TS(p_2)|}{|TS(p_1) \cup TS(p_2)|},$$

Estamos interessados em definir métricas aplicáveis a





### Métricas de Ortogonalidade

- É necessário definir métricas de ortogonalidade capazes de avaliar um possível conjunto solução;
- O complemento do coeficiente de Jaccard aplicado à cobertura da base de dados pode ser considerado como uma métrica de ortogonalidade entre dois padrões:

$$D(p_1, p_2) = 1 - \frac{|TS(p_1) \cap TS(p_2)|}{|TS(p_1) \cup TS(p_2)|},$$

onde TS(p) é o conjunto de transações cobertas por p.

Estamos interessados em definir métricas aplicáveis a conjuntos de qualquer tamanho.





# Métricas de Ortogonalidade

- É necessário definir métricas de ortogonalidade capazes de avaliar um possível conjunto solução;
- O complemento do coeficiente de Jaccard aplicado à cobertura da base de dados pode ser considerado como uma métrica de ortogonalidade entre dois padrões:

$$D(p_1, p_2) = 1 - \frac{|TS(p_1) \cap TS(p_2)|}{|TS(p_1) \cup TS(p_2)|},$$

onde TS(p) é o conjunto de transações cobertas por p.

Estamos interessados em definir métricas aplicáveis a conjuntos de qualquer tamanho.





#### Motivação

Dois padrões são ortogonais se eles não possuem itens em comum, ou seja, pode-se dizer que os padrões ABC e DEF são ortogonais, mas ABC e CDE não o são, já que o item C está presente nos dois padrões. O mesmo pode ser aplicado a conjuntos maiores, por exemplo, os padrões AB, CD e EF são ortogonais, mas os padrões AB, BC e CD não o são.





- Seja  $\mathcal{I}$  um conjunto de itens,  $\mathcal{D}$  uma base de dados de transações em  $\mathcal{I}$ ,  $\mathcal{F}$  o conjunto de padrões freqüentes em  $\mathcal{D}$ , e  $\mathcal{F}'$  um sub-conjunto de  $\mathcal{F}$  ( $\mathcal{F}' \subseteq \mathcal{F}$ );
- Chamamos de  $\mathcal{I}' \subseteq \mathcal{I}$  o sub-conjunto itens que aparecem em, pelo menos, um dos padrões de  $\mathcal{F}'$ ;
- Para cada item  $i \subseteq \mathcal{I}'$  é dado um peso:

$$w_i = \frac{|\mathcal{F}'| - |\mathcal{F}'_i|}{|\mathcal{F}'| - 1},$$

onde  $\mathcal{F}_i'\subseteq\mathcal{F}'$  é o sub-conjunto de padrões de  $\mathcal{F}'$  que contém o item i;





- lacksquare Seja  $\mathcal I$  um conjunto de itens,  $\mathcal D$  uma base de dados de transações em  $\mathcal{I}$ ,  $\mathcal{F}$  o conjunto de padrões frequentes em  $\mathcal{D}$ , e  $\mathcal{F}'$  um sub-conjunto de  $\mathcal{F}$  ( $\mathcal{F}' \subseteq \mathcal{F}$ );
- $\blacksquare$  Chamamos de  $\mathcal{I}' \subseteq \mathcal{I}$  o sub-conjunto itens que aparecem em, pelo menos, um dos padrões de  $\mathcal{F}'$ ;
- Para cada item  $i \subseteq \mathcal{I}'$  é dado um peso:

$$w_i = \frac{|\mathcal{F}'| - |\mathcal{F}'_i|}{|\mathcal{F}'| - 1}.$$





- Seja  $\mathcal I$  um conjunto de itens,  $\mathcal D$  uma base de dados de transações em  $\mathcal I$ ,  $\mathcal F$  o conjunto de padrões freqüentes em  $\mathcal D$ , e  $\mathcal F'$  um sub-conjunto de  $\mathcal F$  ( $\mathcal F'\subseteq \mathcal F$ );
- Chamamos de  $\mathcal{I}' \subseteq \mathcal{I}$  o sub-conjunto itens que aparecem em, pelo menos, um dos padrões de  $\mathcal{F}'$ ;
- Para cada item  $i \subseteq \mathcal{I}'$  é dado um peso:

$$w_i = \frac{|\mathcal{F}'| - |\mathcal{F}'_i|}{|\mathcal{F}'| - 1},$$

onde  $\mathcal{F}_i'\subseteq\mathcal{F}'$  é o sub-conjunto de padrões de  $\mathcal{F}'$  que contém o item i;





A ortogonalidade baseada na estrutura dos padrões do conjunto é dada por:

$$O_{\mathrm{e}} = rac{\sum_{i\subseteq\mathcal{I}'} w_i}{|\mathcal{I}'|}.$$





#### Motivação

Dois padrões são ortogonais se eles cobrem áreas diferentes da base de dados, ou seja, se os conjuntos de transações cobertas por cada padrão não possuem elementos em comum.







Figura: Visualização de Cobertura de Transações na Base de Dados





- Seja  $\mathcal{I}$  um conjunto de itens,  $\mathcal{D}$  uma base de dados de transações em  $\mathcal{I}$ ,  $\mathcal{F}$  o conjunto de padrões freqüentes em  $\mathcal{D}$ , e  $\mathcal{F}'$  um sub-conjunto de  $\mathcal{F}$  ( $\mathcal{F}' \subseteq \mathcal{F}$ );
- Chamamos de  $\mathcal{D}' \subseteq \mathcal{D}$  o sub-conjunto transações cobertas por, pelo menos, um dos padrões de  $\mathcal{F}'$ ;
- lacksquare Para cada transação  $t\subseteq \mathcal{D}'$  é dado um peso:

$$w_t = \frac{|\mathcal{F}'| - |\mathcal{F}'_t|}{|\mathcal{F}'| - 1},$$

onde  $\mathcal{F}_t'$  é o sub-conjunto de padrões de  $\mathcal{F}'$  que cobrem a transação t;





- Seja  $\mathcal{I}$  um conjunto de itens,  $\mathcal{D}$  uma base de dados de transações em  $\mathcal{I}$ ,  $\mathcal{F}$  o conjunto de padrões freqüentes em  $\mathcal{D}$ , e  $\mathcal{F}'$  um sub-conjunto de  $\mathcal{F}$  ( $\mathcal{F}' \subseteq \mathcal{F}$ );
- Chamamos de  $\mathcal{D}' \subseteq \mathcal{D}$  o sub-conjunto transações cobertas por, pelo menos, um dos padrões de  $\mathcal{F}'$ ;
- Para cada transação  $t \subseteq \mathcal{D}'$  é dado um peso:

$$w_t = \frac{|\mathcal{F}'| - |\mathcal{F}'_t|}{|\mathcal{F}'| - 1},$$

onde  $\mathcal{F}_t'$  é o sub-conjunto de padrões de  $\mathcal{F}'$  que cobrem a transação t;





- lacksquare Seja  $\mathcal I$  um conjunto de itens,  $\mathcal D$  uma base de dados de transações em  $\mathcal{I}$ ,  $\mathcal{F}$  o conjunto de padrões frequentes em  $\mathcal{D}$ , e  $\mathcal{F}'$  um sub-conjunto de  $\mathcal{F}$  ( $\mathcal{F}' \subseteq \mathcal{F}$ );
- lacktriangle Chamamos de  $\mathcal{D}'\subseteq\mathcal{D}$  o sub-conjunto transações cobertas por, pelo menos, um dos padrões de  $\mathcal{F}'$ :
- Para cada transação  $t \subseteq \mathcal{D}'$  é dado um peso:

$$w_t = rac{|\mathcal{F}'| - |\mathcal{F}_t'|}{|\mathcal{F}'| - 1},$$

onde  $\mathcal{F}_t^{\prime}$  é o sub-conjunto de padrões de  $\mathcal{F}^{\prime}$  que cobrem a transação t;





A ortogonalidade baseada em cobertura de transações do conjunto é dada por:

$$O_t = rac{\sum_{t \subseteq \mathcal{D}'} w_t}{|\mathcal{D}'|}.$$





#### Motivação

Dois padrões são ortogonais se são encontrados em transações de classes distintas na base de dados, ou seja, os conjuntos de transações cobertas por cada um dos padrões não devem possuir classes em comum.





- Seja  $\mathcal I$  um conjunto de itens,  $\mathcal D$  uma base de dados de transações em  $\mathcal I$ ,  $\mathcal F$  o conjunto de padrões freqüentes em  $\mathcal D$ ,  $\mathcal F'$  um sub-conjunto de  $\mathcal F$  ( $\mathcal F'\subseteq \mathcal F$ ) e  $\mathcal D'\subseteq \mathcal D$  o sub-conjunto transações cobertas por, pelo menos, um dos padrões de  $\mathcal F'$ ;
- Seja  $\mathcal C$  um conjunto de classes associadas às transações de  $\mathcal D$  e  $\mathcal C'\subseteq\mathcal C$  o sub-conjunto de classes associadas às transações de  $\mathcal D'$ :
- Para cada classe  $c \subseteq \mathcal{C}'$  é dado um peso:

$$w_c = \frac{|\mathcal{F}'| - |\mathcal{F}'_c|}{|\mathcal{F}'| - 1},$$

onde  $\mathcal{F}'_c$  é o sub-conjunto de padrões de  $\mathcal{F}'$  que cobrem uma quantidade de transações de classe  $c\subseteq\mathcal{C}'$  maior que 90% da média esperada;



- Seja  $\mathcal I$  um conjunto de itens,  $\mathcal D$  uma base de dados de transações em  $\mathcal I$ ,  $\mathcal F$  o conjunto de padrões freqüentes em  $\mathcal D$ ,  $\mathcal F'$  um sub-conjunto de  $\mathcal F$  ( $\mathcal F'\subseteq \mathcal F$ ) e  $\mathcal D'\subseteq \mathcal D$  o sub-conjunto transações cobertas por, pelo menos, um dos padrões de  $\mathcal F'$ ;
- Seja  $\mathcal C$  um conjunto de classes associadas às transações de  $\mathcal D$  e  $\mathcal C'\subseteq\mathcal C$  o sub-conjunto de classes associadas às transações de  $\mathcal D'$ :
- Para cada classe  $c \subseteq \mathcal{C}'$  é dado um peso:

$$w_c = \frac{|\mathcal{F}'| - |\mathcal{F}'_c|}{|\mathcal{F}'| - 1},$$

onde  $\mathcal{F}'_c$  é o sub-conjunto de padrões de  $\mathcal{F}'$  que cobrem uma quantidade de transações de classe  $c\subseteq\mathcal{C}'$  maior que 90% da média esperada;



- Seja  $\mathcal I$  um conjunto de itens,  $\mathcal D$  uma base de dados de transações em  $\mathcal I$ ,  $\mathcal F$  o conjunto de padrões freqüentes em  $\mathcal D$ ,  $\mathcal F'$  um sub-conjunto de  $\mathcal F$  ( $\mathcal F'\subseteq \mathcal F$ ) e  $\mathcal D'\subseteq \mathcal D$  o sub-conjunto transações cobertas por, pelo menos, um dos padrões de  $\mathcal F'$ ;
- Seja  $\mathcal C$  um conjunto de classes associadas às transações de  $\mathcal D$  e  $\mathcal C'\subseteq\mathcal C$  o sub-conjunto de classes associadas às transações de  $\mathcal D'$ ;
- lacksquare Para cada classe  $c\subseteq \mathcal{C}'$  é dado um peso:

$$w_c = \frac{|\mathcal{F}'| - |\mathcal{F}'_c|}{|\mathcal{F}'| - 1},$$

onde  $\mathcal{F}'_c$  é o sub-conjunto de padrões de  $\mathcal{F}'$  que cobrem uma quantidade de transações de classe  $c \subseteq \mathcal{C}'$  maior que 90% da média esperada;



■ A ortogonalidade baseada em cobertura de classes é dada por:

$$O_c = \frac{\sum_{c \subseteq \mathcal{C}'} w_c}{|\mathcal{C}'|}.$$





### Utilização da ortogonalidade no LAC

- Para cada instância de teste, o LAC (*Lazy Associative* Classifier) cria uma projeção da base de treinamento apenas com as transações que possuem itens em comum com a instância:
- A partir desta projeção, a obtém um conjunto de padrões
- Com estes padrões, gera as regras de associação utilizadas





# Utilização da ortogonalidade no LAC

- Para cada instância de teste, o LAC (Lazy Associative Classifier) cria uma projeção da base de treinamento apenas com as transações que possuem itens em comum com a instância;
- A partir desta projeção, a obtém um conjunto de padrões freqüentes, de acordo com determinado suporte fornecido pelo usuário;
- Com estes padrões, gera as regras de associação utilizadas durante a tarefa de classificação.





# Utilização da ortogonalidade no LAC

- Para cada instância de teste, o LAC (*Lazy Associative* Classifier) cria uma projeção da base de treinamento apenas com as transações que possuem itens em comum com a instância:
- A partir desta projeção, a obtém um conjunto de padrões fregüentes, de acordo com determinado suporte fornecido pelo usuário:
- Com estes padrões, gera as regras de associação utilizadas durante a tarefa de classificação.





# Utilização da ortogonalidade no LAC

- Neste trabalho, a ortogonalidade foi utilizada para se extrair, do conjunto de padrões freqüentes, um sub-conjunto de padrões ortogonais;
- As regras de associação foram geradas a partir do sub-conjunto de padrões ortogonais obtido.





## Utilização da ortogonalidade no LAC

- Neste trabalho, a ortogonalidade foi utilizada para se extrair, do conjunto de padrões fregüentes, um sub-conjunto de padrões ortogonais;
- As regras de associação foram geradas a partir do sub-conjunto de padrões ortogonais obtido.





- O problema de se encontrar o sub-conjunto de padrões com maior métrica de ortogonalidade, dado o conjunto de padrões frequentes, é não polinomial;
- Foi desenvolvida uma heurística gulosa que inicia com um





- O problema de se encontrar o sub-conjunto de padrões com maior métrica de ortogonalidade, dado o conjunto de padrões freqüentes, é não polinomial;
- Foi desenvolvida uma heurística gulosa que inicia com um conjunto ortogonal de dois elementos, e, iterativamente, tenta obter um novo conjunto com um elemento a mais, acrescentando padrões candidatos e realizando modificações para que a métrica de ortogonalidade seja maximizada.





```
Require: \mathcal{D}, \sigma
  1: \mathcal{F} \leftarrow FindFrequentPatterns(\mathcal{D}, \sigma)
  2: Sort(\mathcal{F})
  3: \mathcal{O} \leftarrow \mathsf{GetFirstAvailablePattern}(\mathcal{F})
  4: repeat
  5.
          rate \leftarrow GetOrthogonalityRate(O)
          \mathcal{O}_c \leftarrow GetNextCandidateSet(\mathcal{O}, \mathcal{F})
  6.
       rate_c = GetOrthogonalityRate(\mathcal{O}_c)
  7:
  8: if rate_c > rate then
          \mathcal{O} \leftarrow \mathcal{O}_c
  9:
          end if
10.
11: until rate<sub>c</sub> < rate
12: \mathcal{R} \leftarrow \mathcal{O}
```



Algoritmo 1: OLAC



```
Require: \mathcal{O}, \mathcal{F}
  1 \mathcal{O}_c \leftarrow \mathcal{O} \cup GetFirstAvailablePattern(\mathcal{F})
  2 rate_c = GetOrthogonalityRate(\mathcal{O}_c)
  3: for P \in \mathcal{F}, P \notin \mathcal{O}_{\mathcal{C}} do
       S \leftarrow GetMoreSimilar(\mathcal{O}_{c}, P)
  5: \mathcal{O}_{c} \leftarrow \mathcal{O}_{c} \cup P \setminus S
      rate_{trv} = GetRate(\mathcal{O}_c)
       if rate_{trv} > rate_c then
  7:
         rate_c \leftarrow rate_{trv}
  8:
        else
  Q٠
               \mathcal{O}_c \leftarrow \mathcal{O}_c \cup S \setminus P
10
          end if
11 -
12 end for
13 return \mathcal{O}_c
```



Algoritmo 2: OLAC - GetNextCandidateSet

#### Contextualização

O ORIGAMI é um algoritmo para mineração de grafos encontrado na literatura, onde os autores introduzem a definição de conjuntos  $\alpha$ -ortogonais e  $\beta$ -representativos, e apresentam o novo paradigma de mineração de conjuntos de grafos ortogonais com foco nos padrões, e não nas transações.





- Seja F o conjunto de todos os sub-grafos freqüentes de uma coleção;
- Seja  $sim : \mathcal{F} \times \mathcal{F} \rightarrow [0,1]$  uma função binária e simétrica que retorna a similaridade entre dois grafos;
- Dada uma coleção de grafos  $\mathcal{G}$ , e um limite superior para similaridade  $\alpha \in [0,1]$ , dizemos que o sub-conjunto de grafos  $\mathcal{R} \subseteq \mathcal{G}$  é  $\alpha$ -ortogonal em relação a  $\mathcal{G}$  se, e somente se, para quaisquer  $G_a$ ,  $G_b \in \mathcal{R}$ ,  $sim(G_a, G_b) \leq \alpha$  e para qualquer  $G_a \in \mathcal{R}$  e qualquer  $G_b \in \mathcal{G} \backslash \mathcal{R}$ ,  $sim(G_a, G_b) > \alpha$ ;





#### Seja F o conjunto de todos os sub-grafos freqüentes de uma coleção;

- Seja  $sim : \mathcal{F} \times \mathcal{F} \rightarrow [0,1]$  uma função binária e simétrica que retorna a similaridade entre dois grafos;
- Dada uma coleção de grafos  $\mathcal{G}$ , e um limite superior para similaridade  $\alpha \in [0,1]$ , dizemos que o sub-conjunto de grafos  $\mathcal{R} \subseteq \mathcal{G}$  é  $\alpha$ -ortogonal em relação a  $\mathcal{G}$  se, e somente se, para quaisquer  $G_a$ ,  $G_b \in \mathcal{R}$ ,  $sim(G_a, G_b) \leq \alpha$  e para qualquer  $G_a \in \mathcal{R}$  e qualquer  $G_b \in \mathcal{G} \backslash \mathcal{R}$ ,  $sim(G_a, G_b) > \alpha$ ;





- $\blacksquare$  Seja  $\mathcal{F}$  o conjunto de todos os sub-grafos frequentes de uma coleção;
- Seja  $sim : \mathcal{F} \times \mathcal{F} \rightarrow [0,1]$  uma função binária e simétrica que retorna a similaridade entre dois grafos;
- lacktriangle Dada uma coleção de grafos  $\mathcal{G}$ , e um limite superior para similaridade  $\alpha \in [0,1]$ , dizemos que o sub-conjunto de grafos  $\mathcal{R} \subseteq \mathcal{G}$  é  $\alpha$ -ortogonal em relação a  $\mathcal{G}$  se, e somente se, para quaisquer  $G_a, G_b \in \mathcal{R}, sim(G_a, G_b) \leq \alpha$  e para qualquer  $G_a \in \mathcal{R}$  e qualquer  $G_b \in \mathcal{G} \setminus \mathcal{R}$ ,  $sim(G_a, G_b) > \alpha$ ;





■ Dada uma coleção de grafos  $\mathcal{G}$ , um conjunto  $\alpha$ -ortogonal  $\mathcal{R} \subseteq \mathcal{G}$  e um limite inferior para similaridade  $\beta \in [0,1]$ , dizemos que  $\mathcal{R}$  representa um grafo  $G \in \mathcal{G}$  se existe algum  $G_a \in \mathcal{R}$  tal que  $sim(G_a, G) > \beta$ . Seja  $\Upsilon(\mathcal{R},\mathcal{G}) = \{G \in \mathcal{G} : \exists G_a \in \mathcal{R}, sim(G,G_a) \geq \beta\}, \text{ dizemos que} \}$  $\mathcal{R}$  é um conjunto  $\beta$ -representativo para  $\Upsilon(\mathcal{R},\mathcal{G})$ ;





lacktriangle Dada uma coleção de grafos  $\mathcal G$  e o seu conjunto lpha-ortogonal e  $\beta$ -representativo  $\mathcal{R}_i$  chamamos de **resíduo** de  $\mathcal{R}$  o conjunto de padrões não representados em  $\mathcal{G}$ , dado como  $\Delta(\mathcal{R},\mathcal{G}) = \mathcal{G} \setminus \{\mathcal{R} \cup \Upsilon(\mathcal{R},\mathcal{G})\}\$ , o resíduo de  $\mathcal{R}$  é definido como a cardinalidade do seu conjunto resíduo  $|\Delta(\mathcal{R},\mathcal{G})|$ . Finalmente, definimos a média de similaridade do resíduo de  ${\cal R}$  $\mathsf{como}\ \mathit{ars}(\mathcal{R},\mathcal{G}) = \frac{\sum_{G_b \in \Delta(\mathcal{R},\mathcal{G})} \mathit{max}_{G_a \in \mathcal{R}} \{\mathit{sim}(G_a,G_b)\}}{|\Delta(\mathcal{R},\mathcal{G})|}$ 





#### Objetivo

O objetivo é encontrar conjuntos de grafos lpha-ortogonais e  $\beta$ -representativos em relação ao conjunto de sub-grafos maximais  $\mathcal{M}$ .





# O Algoritmo ORIGAMI

```
Require: \mathcal{D}, \sigma, \alpha, \beta
```

- 1:  $EM \leftarrow EdgeMap(\mathcal{D})$
- 2:  $\mathcal{F}_1 \leftarrow FindFrequentEdges(\mathcal{D}, \sigma)$
- 3:  $\widehat{\mathcal{M}} \leftarrow 0$
- 4: while ¬StopCondition() do
- $M \leftarrow RandomMaximalGraph(\mathcal{D}, \mathcal{F}_1, EM, \sigma)$
- $\widehat{M} \leftarrow \widehat{M} \cup M$
- 7: end while
- 8:  $\mathcal{R} \leftarrow OrthogonalRepresentativeSets(\widehat{\mathcal{M}}, \alpha, \beta)$

Algoritmo 3: ORIGAMI





### Adaptação do Algoritmo

- Foi implementada uma adaptação do ORIGAMI para o problema de Classificação Associativa;
- Foi implementada uma heurística de obtenção de padrões maximais baseada no trabalho apresentado no artigo;
- Foi implementada uma heurística de obtenção do conjunto ortogonal baseada no trabalho apresentado no artigo.





### Adaptação do Algoritmo

- Foi implementada uma adaptação do ORIGAMI para o problema de Classificação Associativa;
- Foi implementada uma heurística de obtenção de padrões maximais baseada no trabalho apresentado no artigo;
- Foi implementada uma heurística de obtenção do conjunto ortogonal baseada no trabalho apresentado no artigo.





### Adaptação do Algoritmo

- Foi implementada uma adaptação do ORIGAMI para o problema de Classificação Associativa;
- Foi implementada uma heurística de obtenção de padrões maximais baseada no trabalho apresentado no artigo;
- Foi implementada uma heurística de obtenção do conjunto ortogonal baseada no trabalho apresentado no artigo.





- O algoritmo inicia a execução com o conjunto-resultado vazio;





- O algoritmo inicia a execução com o conjunto-resultado vazio;
- A cada iteração, tenta obter o maior padrão frequente possível, selecionando itens aleatoriamente;
  - Se o algoritmo escolhe um item já utilizado, ou que produz um
  - A condição de parada para a geração do padrão maximal





- O algoritmo inicia a execução com o conjunto-resultado vazio;
- A cada iteração, tenta obter o maior padrão frequente possível, selecionando itens aleatoriamente;
  - Se o algoritmo escolhe um item já utilizado, ou que produz um padrão não fregüente, um contador de tentativas é decrementado:
  - A condição de parada para a geração do padrão maximal





- O algoritmo inicia a execução com o conjunto-resultado vazio;
- A cada iteração, tenta obter o maior padrão frequente possível, selecionando itens aleatoriamente;
  - Se o algoritmo escolhe um item já utilizado, ou que produz um padrão não fregüente, um contador de tentativas é decrementado:
  - A condição de parada para a geração do padrão maximal candidato é que o número de escolhas erradas do item não deve ser maior que o tamanho da instância de teste.





- Ao obter um novo padrão maximal, o algoritmo tenta inseri-lo no conjunto-solução;
  - Se o padrão escolhido já existe no conjunto, o algoritmo incrementa um segundo contador de tentativas;
  - A condição de parada para a obtenção de padrões maximais é que o número de padrões candidatos não maximais ou já conhecidos não deve ser superior ao tamanho da instância de teste.





- Ao obter um novo padrão maximal, o algoritmo tenta inseri-lo no conjunto-solução;
  - Se o padrão escolhido já existe no conjunto, o algoritmo incrementa um segundo contador de tentativas;
  - A condição de parada para a obtenção de padrões maximais é que o número de padrões candidatos não maximais ou já conhecidos não deve ser superior ao tamanho da instância de teste.





- Ao obter um novo padrão maximal, o algoritmo tenta inseri-lo no conjunto-solução:
  - Se o padrão escolhido já existe no conjunto, o algoritmo incrementa um segundo contador de tentativas;
  - A condição de parada para a obtenção de padrões maximais é que o número de padrões candidatos não maximais ou já conhecidos não deve ser superior ao tamanho da instância de teste





- O algoritmo inicia a execução com o valor de resíduo igual a 0 (zero);
- A cada iteração, tenta obter um novo conjunto ortogonal





- O algoritmo inicia a execução com o valor de resíduo igual a 0 (zero);
- A cada iteração, tenta obter um novo conjunto ortogonal selecionando, aleatoriamente, padrões maximais encontrados na primeira fase do algoritmo, e adicionando-os ao conjunto-solução;
  - lacktriangle Se, durante a obtenção dos padrões, o padrão selecionado já ter sido utilizado, ou não possuir similaridade menor que lpha para com todos os outros padrões do conjunto-solução, o algoritmo decrementa um contador de tentativas;
  - A condição de parada local para a geração de conjuntos ortogonais é que, durante este processo, o número máximo de escolhas erradas de padrões não pode ser maior que a quantidade de padrões maximais total.



- O algoritmo inicia a execução com o valor de resíduo igual a 0 (zero);
- A cada iteração, tenta obter um novo conjunto ortogonal selecionando, aleatoriamente, padrões maximais encontrados na primeira fase do algoritmo, e adicionando-os ao conjunto-solução;
  - lacktriangle Se, durante a obtenção dos padrões, o padrão selecionado já ter sido utilizado, ou não possuir similaridade menor que lpha para com todos os outros padrões do conjunto-solução, o algoritmo decrementa um contador de tentativas;
  - A condição de parada local para a geração de conjuntos ortogonais é que, durante este processo, o número máximo de escolhas erradas de padrões não pode ser maior que a quantidade de padrões maximais total.



- O algoritmo inicia a execução com o valor de resíduo igual a 0 (zero);
- A cada iteração, tenta obter um novo conjunto ortogonal selecionando, aleatoriamente, padrões maximais encontrados na primeira fase do algoritmo, e adicionando-os ao conjunto-solução;
  - lacktriangle Se, durante a obtenção dos padrões, o padrão selecionado já ter sido utilizado, ou não possuir similaridade menor que lpha para com todos os outros padrões do conjunto-solução, o algoritmo decrementa um contador de tentativas;
  - A condição de parada local para a geração de conjuntos ortogonais é que, durante este processo, o número máximo de escolhas erradas de padrões não pode ser maior que a quantidade de padrões maximais total.



4□ > 4團 > 4 ≣ > 4 ≣ > 9 Q @

- Ao obter um novo conjunto ortogonal, o algoritmo calcula o valor do seu resíduo;
- Se este valor é menor que o atual, o resíduo é atualizado, e o
- A condição de parada para o algoritmo é que, durante todo o





- Ao obter um novo conjunto ortogonal, o algoritmo calcula o valor do seu resíduo;
- Se este valor é menor que o atual, o resíduo é atualizado, e o conjunto-solução passa a ser o conjunto ortogonal recém-encontrado;
- A condição de parada para o algoritmo é que, durante todo o processo, o número máximo de conjuntos ortogonais candidatos que não melhoram o resultado não pode ser maior que a quantidade de padrões maximais total.





- Ao obter um novo conjunto ortogonal, o algoritmo calcula o valor do seu resíduo;
- Se este valor é menor que o atual, o resíduo é atualizado, e o conjunto-solução passa a ser o conjunto ortogonal recém-encontrado;
- A condição de parada para o algoritmo é que, durante todo o processo, o número máximo de conjuntos ortogonais candidatos que não melhoram o resultado não pode ser maior que a quantidade de padrões maximais total.





- O aplicativo olac possui a implementação de três abordagens distintas de um classificador baseado em regras de associação:
  - A abordagem LAC (*Lazy Associative Classifier*), é a abordagem *lazy* na sua versão original (e não-ortogonal)
  - A abordagem OLAC (Orthogonal Lazy Associative Classifier) é a modificação da abordagem lazy que considera a ortogonalidade dos padrões durante a tarefa de obtenção de regras;
  - A abordagem ORIGAMI é a implementação da adaptação apresentada para a estratégia ORIGAMI.





- O aplicativo olac possui a implementação de três abordagens distintas de um classificador baseado em regras de associação:
  - A abordagem LAC (Lazy Associative Classifier), é a abordagem lazy na sua versão original (e não-ortogonal);
  - A abordagem OLAC (Orthogonal Lazy Associative Classifier) é a modificação da abordagem lazy que considera a ortogonalidade dos padrões durante a tarefa de obtenção de regras;
  - A abordagem ORIGAMI é a implementação da adaptação apresentada para a estratégia ORIGAMI.





- O aplicativo olac possui a implementação de três abordagens distintas de um classificador baseado em regras de associação:
  - A abordagem LAC (Lazy Associative Classifier), é a abordagem lazy na sua versão original (e não-ortogonal);
  - A abordagem OLAC (Orthogonal Lazy Associative Classifier) é a modificação da abordagem lazy que considera a ortogonalidade dos padrões durante a tarefa de obtenção de regras;
  - A abordagem ORIGAMI é a implementação da adaptação apresentada para a estratégia ORIGAMI.





- O aplicativo olac possui a implementação de três abordagens distintas de um classificador baseado em regras de associação:
  - A abordagem LAC (Lazy Associative Classifier), é a abordagem lazy na sua versão original (e não-ortogonal);
  - A abordagem OLAC (Orthogonal Lazy Associative Classifier) é a modificação da abordagem lazy que considera a ortogonalidade dos padrões durante a tarefa de obtenção de regras;
  - A abordagem ORIGAMI é a implementação da adaptação apresentada para a estratégia ORIGAMI.





## Metodologia

- Foram utilizadas 26 bases de dados do repositório UCI (UC Irvine Machine Learning Repository), amplamente referenciado em pesquisas na área de classificação em mineração de dados;
- Todas as bases utilizadas durante os testes foram reordenadas aleatoriamente e particionadas em dez sub-conjuntos, de onde foram criadas dez configurações de teste para cada uma delas;
- Cada configuração de teste consiste de uma parte (um sub-conjunto da base) como arquivo de teste, e nove partes (os nove sub-conjuntos restantes da base) como arquivo de treinamento;
- Como resultados foram considerados a média das dez execuções diferentes para cada base de dados;





- Foram utilizadas 26 bases de dados do repositório UCI (UC Irvine Machine Learning Repository), amplamente referenciado em pesquisas na área de classificação em mineração de dados;
- Todas as bases utilizadas durante os testes foram reordenadas aleatoriamente e particionadas em dez sub-conjuntos, de onde foram criadas dez configurações de teste para cada uma delas;
- Cada configuração de teste consiste de uma parte (um sub-conjunto da base) como arquivo de teste, e nove partes (os nove sub-conjuntos restantes da base) como arquivo de treinamento;
- Como resultados foram considerados a média das dez execuções diferentes para cada base de dados;





- Foram utilizadas 26 bases de dados do repositório UCI (UC Irvine Machine Learning Repository), amplamente referenciado em pesquisas na área de classificação em mineração de dados;
- Todas as bases utilizadas durante os testes foram reordenadas aleatoriamente e particionadas em dez sub-conjuntos, de onde foram criadas dez configurações de teste para cada uma delas;
- Cada configuração de teste consiste de uma parte (um sub-conjunto da base) como arquivo de teste, e nove partes (os nove sub-conjuntos restantes da base) como arquivo de treinamento;
- Como resultados foram considerados a média das dez execuções diferentes para cada base de dados;





- Foram utilizadas 26 bases de dados do repositório UCI (UC Irvine Machine Learning Repository), amplamente referenciado em pesquisas na área de classificação em mineração de dados;
- Todas as bases utilizadas durante os testes foram reordenadas aleatoriamente e particionadas em dez sub-conjuntos, de onde foram criadas dez configurações de teste para cada uma delas;
- Cada configuração de teste consiste de uma parte (um sub-conjunto da base) como arquivo de teste, e nove partes (os nove sub-conjuntos restantes da base) como arquivo de treinamento;
- Como resultados foram considerados a média das dez execuções diferentes para cada base de dados;





| Parâmetros         | Valores                                                                               |
|--------------------|---------------------------------------------------------------------------------------|
| support            | $\{0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1\}$ |
| confidence         | $\{0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1\}$ |
| min-num-rules      | {1}                                                                                   |
| max-num-rank-rules | {1, 10, 100, 1000, 10000, 100000, 1000000}                                            |
| min-rule-len       | {1}                                                                                   |
| max-rule-len       | {1, 2, 3}                                                                             |
| rule- m easur e    | $\{s,c,j,k,o,n,e,p,l,i,v\}$                                                           |
| orth-metric        | $\{e,c,l,a\}$                                                                         |
| orth-method        | $\{s,p\}$                                                                             |
| orth-pat-ordering  | $\{s,r,i,z,n\}$                                                                       |
| origami-alpha      | {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}                                         |
| origami-beta       | {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}                                         |

Tabela: Parâmetros Utilizados para Todas as Abordagens





ORIGAMI I

# Melhores Resultados para Cada Base







ORIGAMI

### Melhores Resultados para Cada Base







# Melhores Resultados para Cada Base







ORIGAMI

# Melhores Médias dos Resultados para Todas as Bases







ORIGAMI

# Melhores Médias dos Resultados para Todas as Bases







## Melhores Médias dos Resultados para Todas as Bases







## Parâmetros de Execução

|                    | LAC   | OLAC   | ORIGAMI |
|--------------------|-------|--------|---------|
| support            | 0.001 | 0.0001 | 0.0001  |
| confidence         | 0.01  | 0.0001 | 0.0001  |
| min-num-rules      | 1     | 1      | 1       |
| max-num-rank-rules | 1000  | 100    | 10      |
| min-rule-len       | 1     | 1      | -       |
| max-rule-len       | 1     | 2      | -       |
| rule-measure       | n     | n      | С       |
| orth-metric        | -     | S      | s       |
| orth-method        | -     | S      | =       |
| orth-pat-ordering  | -     | S      | =       |
| origami-alpha      | -     | -      | 0.1     |
| origami-beta       | -     | -      | 0.8     |

Tabela: Melhores Parâmetros para cada Execução



#### Resultados do LAC com os melhores parâmetros do OLAC

Número de Padrões: 249.03 Número de Regras: 628.12

Acurácia: 0.54





## Comparação entre os Resultados

|                | OLAC  | OLAC  | ¬ OLAC | ¬ OLAC       |
|----------------|-------|-------|--------|--------------|
| Bases de Dados | &     | &     | &      | <b>&amp;</b> |
|                | LAC   | ¬ LAC | LAC    | │ ¬ LAC │    |
| anneal.ac      | 95.11 | 1.13  | 0.75   | 3.01         |
| austra.ac      | 84.93 | 1.88  | 1.45   | 11.74        |
| auto.ac        | 39.51 | 6.83  | 4.39   | 49.27        |
| breast.ac      | 96.28 | 0.29  | 1.00   | 2.43         |
| cleve.ac       | 81.19 | 1.32  | 1.98   | 15.51        |
| crx.ac         | 84.93 | 1.59  | 1.88   | 11.59        |
| :              | :     | :     | :      |              |
| wine.ac        | 96.07 | 0.00  | 2.81   | 1.12         |
| zoo.ac         | 73.27 | 0.99  | 0.00   | 25.74        |
| average        | 78.91 | 2.39  | 1.90   | 16.80        |

Tabela: Comparação entre LAC e OLAC (número de acertos)





#### Acurácia

- As abordagens baseadas em ortogonalidade obtiveram resultados semelhantes aos da abordagem clássica:
  - Considerando os melhores parâmetros para cada base, as
  - Considerando os melhores parâmetros para a média dos





#### Acurácia

- As abordagens baseadas em ortogonalidade obtiveram resultados semelhantes aos da abordagem clássica:
  - Considerando os melhores parâmetros para cada base, as médias de acurácia obtidas para as abordagens LAC, OLAC e ORIGAMI foram, respectivamente, 0.843, 0.840 e 0.839;
  - Considerando os melhores parâmetros para a média dos





#### Acurácia

- As abordagens baseadas em ortogonalidade obtiveram resultados semelhantes aos da abordagem clássica:
  - Considerando os melhores parâmetros para cada base, as médias de acurácia obtidas para as abordagens LAC. OLAC e ORIGAMI foram, respectivamente, 0.843, 0.840 e 0.839;
  - Considerando os melhores parâmetros para a média dos resultados, as médias de acurácia obtidas para as abordagens LAC, OLAC e ORIGAMI foram, respectivamente, 0.808, 0.813 e 0.782



Conclusão



#### Padrões

- A quantidade de padrões utilizados na geração das regras nas abordagens ortogonais foi bem menor que na abordagem clássica:
  - Considerando os melhores parâmetros para cada base, as
  - Considerando os melhores parâmetros para a média dos





#### Padrões

- A quantidade de padrões utilizados na geração das regras nas abordagens ortogonais foi bem menor que na abordagem clássica:
  - Considerando os melhores parâmetros para cada base, as quantidades médias de padrões utilizados pelas abordagens LAC, OLAC e ORIGAMI foram, respectivamente, 213, 12 e 12;
  - Considerando os melhores parâmetros para a média dos





#### Padrões

- A quantidade de padrões utilizados na geração das regras nas abordagens ortogonais foi bem menor que na abordagem clássica:
  - Considerando os melhores parâmetros para cada base, as quantidades médias de padrões utilizados pelas abordagens LAC, OLAC e ORIGAMI foram, respectivamente, 213, 12 e 12;
  - Considerando os melhores parâmetros para a média dos resultados, as quantidades de padrões utilizados pelas abordagens LAC, OLAC e ORIGAMI foram, respectivamente, 19.12 e 1.





### Regras

- Consequentemente, a quantidade de regras geradas nas abordagens ortogonais também foi menor que na abordagem clássica:
  - Considerando os melhores parâmetros para cada base, as
  - Considerando os melhores parâmetros para a média dos



Conclusão



### Regras

- Consequentemente, a quantidade de regras geradas nas abordagens ortogonais também foi menor que na abordagem clássica:
  - Considerando os melhores parâmetros para cada base, as quantidades médias de regras geradas pelas abordagens LAC. OLAC e ORIGAMI foram, respectivamente, 628, 25 e 23;
  - Considerando os melhores parâmetros para a média dos





### Regras

- Consequentemente, a quantidade de regras geradas nas abordagens ortogonais também foi menor que na abordagem clássica:
  - Considerando os melhores parâmetros para cada base, as quantidades médias de regras geradas pelas abordagens LAC, OLAC e ORIGAMI foram, respectivamente, 628, 25 e 23;
  - Considerando os melhores parâmetros para a média dos resultados, as quantidades de regras geradas pelas abordagens LAC, OLAC e ORIGAMI foram, respectivamente, 51, 31 e 1.



Conclusão



### Outros Resultados

- A métrica de ortogonalidade baseada na estrutura dos padrões obteve melhores resultados:
- As métricas para avaliação de Regras Associativas que
- A maior parte das falhas na classificação baseada em



Conclusão



### Outros Resultados

- A métrica de ortogonalidade baseada na estrutura dos padrões obteve melhores resultados:
- As métricas para avaliação de Regras Associativas que obtiveram melhores resultados foram convicção para LAC e OLAC e confiança para ORIGAMI;
- A maior parte das falhas na classificação baseada em



Conclusão



### Outros Resultados

- A métrica de ortogonalidade baseada na estrutura dos padrões obteve melhores resultados:
- As métricas para avaliação de Regras Associativas que obtiveram melhores resultados foram conviçção para LAC e OLAC e confiança para ORIGAMI;
- A maior parte das falhas na classificação baseada em ortogonalidade foi causada pela característica dos padrões, e não pela baixa medida de ortogonalidade no conjunto.





- Utilização de ortogonalidade em outros pontos do algoritmo de classificação;
- Pesquisa por novos algoritmos de mineração de padrões
- Utilização de uma abordagem híbrida OLAC-ORIGAMI.





- Utilização de ortogonalidade em outros pontos do algoritmo de classificação;
- Pesquisa por novas heurísticas de obtenção de conjuntos ortogonais, com ênfase em desempenho;
- Pesquisa por novos algoritmos de mineração de padrões
- Utilização de uma abordagem híbrida OLAC-ORIGAMI.





- Utilização de ortogonalidade em outros pontos do algoritmo de classificação;
- Pesquisa por novas heurísticas de obtenção de conjuntos ortogonais, com ênfase em desempenho;
- Pesquisa por novos algoritmos de mineração de padrões frequentes que já considerem ortogonalidade durante a exploração do espaço de busca dos padrões;
- Utilização de uma abordagem híbrida OLAC-ORIGAMI.





- Utilização de ortogonalidade em outros pontos do algoritmo de classificação;
- Pesquisa por novas heurísticas de obtenção de conjuntos ortogonais, com ênfase em desempenho;
- Pesquisa por novos algoritmos de mineração de padrões frequentes que já considerem ortogonalidade durante a exploração do espaço de busca dos padrões;
- Utilização de uma abordagem híbrida OLAC-ORIGAMI.





Perguntas?





Fim