Chapter 8 Introduction to Graphs

Discrete Structures for Computing on December 21, 2016

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung Faculty of Computer Science and Engineering University of Technology - VNUHCM htnguyen@hcmut.edu.vn

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Contents

1 Graph definitions

Terminology Special Graphs

2 Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

3 Exercise

Graph Bipartie graph Isomorphism

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Course outcomes

	Course learning outcomes
L.O.1	Understanding of logic and discrete structures
	L.O.1.1 – Describe definition of propositional and predicate logic
	L.O.1.2 – Define basic discrete structures: set, mapping, graphs
L.O.2	Represent and model practical problems with discrete structures
	L.O.2.1 – Logically describe some problems arising in Computing
	L.O.2.2 – Use proving methods: direct, contrapositive, induction
	L.O.2.3 - Explain problem modeling using discrete structures
L.O.3	Understanding of basic probability and random variables
	L.O.3.1 – Define basic probability theory
	L.O.3.2 – Explain discrete random variables
L.O.4	Compute quantities of discrete structures and probabilities
	L.O.4.1 – Operate (compute/ optimize) on discrete structures
	L.O.4.2 - Compute probabilities of various events, conditional
	ones, Bayes theorem

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph

Isomorphism
Representing Graphs
Graph Isomorphism

Graph Isomorphism

Exercise

Motivations

The need of the graph

- Representation/Storing
- Searching/sorting
- Optimization

Its applications

- Electric circuit/board
- Chemical structure
- Networking
- Map, geometry, . . .

- Graph theory is useful for analysing "things that are connected to other things".
- Some difficult problems become easy when represented using a graph.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

intents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism Representing Graphs

Graph Isomorphism

Exercise

Definition

A graph $(d\hat{\delta} thi)$ G is a pair of (V, E), which are:

- ullet V nonempty set of vertices (nodes) (\emph{dinh})
- *E* set of edges (*canh*)

A graph captures abstract relationships between vertices.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definition

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Definition

A graph $(\mathring{d}\hat{o} thi)$ G is a pair of (V, E), which are:

- ullet V nonempty set of vertices (nodes) (\emph{dinh})
- E set of edges (canh)

A graph captures abstract relationships between vertices.

Undirected graph

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Definition

A graph $(\mathring{d}\hat{o} thi)$ G is a pair of (V, E), which are:

- *V* nonempty set of vertices (nodes) (*dînh*)
- *E* set of edges (*canh*)

A graph captures abstract relationships between vertices.

Undirected graph

Directed graph

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph Bipartio

Undirected Graph (Đồ thị vô hướng)

Definition (Simple graph (đơn đồ thị))

- · Each edge connects two different vertices, and
- No two edges connect the same pair of vertices

An edge between two vertices u and v is denoted as $\{u, v\}$

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

raph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Undirected Graph

Definition (Multigraph (đa đồ thị))

Graphs that may have multiple edges connecting the same vertices.

An unordered pair of vertices $\{u,v\}$ are called multiplicity m ($b\hat{\varrho}i$ m) if it has m different edges between.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

raph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs
Graph Isomorphism

Exercise

Graph Bipartie graph

Undirected Graph

Definition (Pseudograph (giả đồ thị))

Are multigraphs that have

• loops (khuyên) – edges that connect a vertex to itself

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Directed Graph

Definition (Directed Graph (đồ thị có hướng))

A directed graph G is a pair of (V, E), in which:

- ullet V nonempty set of vertices
- E set of directed edges (cạnh có hướng, arcs)

A directed edge start at u and end at v is denoted as (u, v).

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Terminologies For Undirected Graph

Neighborhood

In an undirected graph G = (V, E),

- two vertices \underline{u} and $\underline{v} \in V$ are called **adjacent** (*liền kề*) if they are end-points (diem dau mut) of edge $e \in E$, and
- e is incident with (cạnh liên thuộc) u and v
- e is said to **connect** (canh nối) u and v;

Introduction to Graphs

Huvnh Tuong Nguyen. Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Terminologies For Undirected Graph

Neighborhood

In an undirected graph G = (V, E),

- two vertices u and $v \in V$ are called **adjacent** ($li\hat{e}n \ k\hat{e}$) if they are **end-points** ($di\hat{e}m \ d\hat{a}u \ m ut$) of edge $e \in E$, and
- ullet e is incident with (cạnh liên thuộc) u and v
- e is said to connect (cạnh nối) u and v;

The degree of a vertex

The degree of a vertex ($b\hat{a}c$ $c\hat{u}a$ $m\hat{o}t$ $d\hat{i}nh$), denoted by deg(v) is the number of edges incident with it, except that a loop contributes twice to the degree of that vertex.

- isolated vertex (*dînh cô lập*): vertex of degree 0
- pendant vertex (dinh treo): vertex of degree 1

Introduction to Graphs

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Example

Example

What are the degrees and neighborhoods of the vertices in these graphs?

Solution

In
$$G$$
, $\deg(a)=2$, $\deg(b)=\deg(c)=\deg(f)=4$, $\deg(d)=1$, ... Neiborhoods of these vertices are $N(a)=\{b,f\}, N(b)=\{a,c,e,f\},\ldots$

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Graph Isomorphism

Exercise

Graph Bipartie graph

Isomorphism

Example

Example

What are the degrees and neighborhoods of the vertices in these graphs?

Solution

In G, deg(a) = 2, deg(b) = deg(c) = deg(f) = 4, deg(d) = 1, ... Neiborhoods of these vertices are

$$N(a) = \{b, f\}, N(b) = \{a, c, e, f\}, \dots$$

In
$$H$$
, $deg(a) = 4$, $deg(b) = deg(e) = 6$, $deg(c) = 1$, ...

Neiborhoods of these vertices are

$$N(a) = \{b, d, e\}, N(b) = \{a, b, c, d, e\}, \dots$$

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Basic Theorems

Theorem (The Handshaking Theorem)

Let G = (V, E) be an undirected graph with m edges. Then

$$2m = \sum_{v \in V} deg(v)$$

(Note that this applies even if multiple edges and loops are present.)

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Graph Isomorphis

Exercise

Graph

Basic Theorems

Theorem (The Handshaking Theorem)

Let G = (V, E) be an undirected graph with m edges. Then

$$2m = \sum_{v \in V} deg(v)$$

(Note that this applies even if multiple edges and loops are present.)

Theorem

An undirected graph has an even number of odd-degree vertices.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Graph Isomorphis

Exercise

Graph Bipartie graph

Isomorphism

Prove that ...

If the number of vertices in an undirected graph is an odd number,

then there exists an even-degree vertex.

...

Introduction to Graphs Huynh Tuong Nguyen

Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph Bipartie graph

Prove that ...

...

If the number of vertices in an undirected graph is an odd number, then there exists an even-degree vertex.

If the number of vertices in an undirected graph is an odd number, then the number of vertices with even degree is odd.

Introduction to Graphs

Huvnh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph

Isomorphism Representing Graphs

Graph Isomorphism

Exercise

Granh Bipartie graph

Prove that ...

Introduction to Graphs Huvnh Tuong Nguyen.

Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh Bipartie graph Isomorphism

...

If the number of vertices in an undirected graph is an odd number, then there exists an even-degree vertex.

If the number of vertices in an undirected graph is an odd number, then the number of vertices with even degree is odd.

...

If the number of vertices in an undirected graph is an even number, then the number of vertices with even degree is even.

Terminologies for Directed Graph

Neighborhood

In an directed graph G = (V, E),

- u is said to be adjacent to (nổi tới) v and v is said to be adjacent from (được nổi từ) u if (u, v) is an arc of G, and
- u is called **initial vertex** (dinh d $\hat{a}u$) of (u,v)
- v is called **terminal** (dinh cu $\acute{o}i$) or **end vertex** of (u, v)
- the initial vertex and terminal vertex of a loop are the same.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Terminologies for Directed Graph

Neighborhood

In an directed graph G = (V, E),

- u is said to be **adjacent to** $(n\acute{o}i\ t\acute{o}i)\ v$ and v is said to be adjacent from $(\emph{d}u\not{o}c\ n\acute{o}i\ t\grave{u})\ u$ if (u,v) is an arc of G, and
- u is called **initial vertex** (dinh d $\hat{a}u$) of (u,v)
- v is called **terminal** ($dinh cu\acute{o}i$) or **end vertex** of (u, v)
- the initial vertex and terminal vertex of a loop are the same.

The degree of a vertex

In a graph G with directed edges:

- in-degree ($b\hat{a}c\ v\hat{a}o$) of a vertex v, denoted by $\deg^-(v)$, is the number of edges with v as their terminal vertex.
- out-degree ($b\hat{a}c$ ra) of a vertex v, denoted by $deg^+(v)$, is the number of edges with v as their initial vertex.

Note: a loop at a vertex contributes 1 to both the in-degree and the out-degree of this vertex.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism Representing Graphs

Graph Isomorphism

Exercise Graph

Bipartie graph

Basic Theorem

Theorem

Let G = (V, E) be a graph with directed edges. Then

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|.$$

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph

Isomorphism Representing Graphs

Graph Isomorphism

Exercise

Graph

Complete Graphs

A complete graph ($d\hat{o}$ thị $d\hat{a}$ y $d\hat{u}$) on n vertices, K_n , is a simple graph that contains exactly one edge between each pair of distinct vertices.

 K_5 K_4

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Cycles

A cycle (đồ thị vòng) C_n , $n\geq 3$, consists of n vertices v_1,v_2,\ldots,v_n and edges $\{v_1,v_2\},\{v_2,v_3\},\ldots,\{v_{n-1},v_n\}$, and $\{v_n,v_1\}$.

 C_5

Introduction to Graphs

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Wheels

We obtain a wheel ($d\hat{o}$ thi hình bánh xe) W_n when we add an additional vertex to a cycle C_n , for $n \geq 3$, and connect this new vertex to each of the n vertices in C_n .

 W_5 W_4

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

n-cube

An n-dimensional hypercube ($kh\acute{b}i \ n \ chi\grave{e}u$), Q_n , is a graph that has vertices representing the 2^n bit strings of length n. Two vertices are adjacent iff the bit strings that they represent differ in exactly one bit position.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions
Terminology

Special Graphs

Representing Graphs and Graph

Isomorphism Representing Graphs

Graph Isomorphism

Exercise

Graph

n-cube

An n-dimensional hypercube ($kh\acute{b}i \ n \ chi\grave{e}u$), Q_n , is a graph that has vertices representing the 2^n bit strings of length n. Two vertices are adjacent iff the bit strings that they represent differ in exactly one bit position.

What's about Q_4 ?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions
Terminology

erminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Bipartie graph

Isomorphism

Applications of Special Graphs

- Local networks topologies
 - Star, ring, hybrid
- Parallel processing
 - Linear array
 - Mesh network

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph Bipartie graph

- One goat, a cabbage and a wolf are on a side of river; a boatman wishes to transport them to the other side but, his boat being too small, he could transport only one of them at once.
- How does he proceed not to leave them together without surveillance: the wolf and the goat, as well as the goat and the cabbage?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph

Isomorphism Representing Graphs

Graph Isomorphism

Exercise

Graph Bipartie graph

Isomorphism

- One goat, a cabbage and a wolf are on a side of river; a boatman wishes to transport them to the other side but, his boat being too small, he could transport only one of them at once.
- How does he proceed not to leave them together without surveillance: the wolf and the goat, as well as the goat and the cabbage?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Exercise (1)

Is there any undirected simple graph including four vertices that their degrees are respectively 1, 1, 2, 2?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Exercise (1)

Is there any undirected simple graph including four vertices that their degrees are respectively 1, 1, 2, 2 ?

Exercise (2)

Is there any undirected simple graph including six vertices that their degree are respectively 2, 3, 3, 3, 3, 3 ?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Graph Isomorphis

Exercise

Graph Ripartio gra

Exercise (1)

Is there any undirected simple graph including four vertices that their degrees are respectively 1, 1, 2, 2 ?

Exercise (2)

Is there any undirected simple graph including six vertices that their degree are respectively 2, 3, 3, 3, 3, 3 ?

Exercise (3)

What is the largest number of edges a undirected simple graph with 10 vertices can have ?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Graph Isomorphism

Exercise Graph

Bipartie graph

Exercise (1)

Is there any undirected simple graph including four vertices that their degrees are respectively 1, 1, 2, 2?

Exercise (2)

Is there any undirected simple graph including six vertices that their degree are respectively 2, 3, 3, 3, 3, 3 ?

Exercise (3)

What is the largest number of edges a undirected simple graph with 10 vertices can have ?

Exercise (4)

An undirected simple graph G has 15 edges, 3 vertices of degree 4 and other vertices having degree 3. What is the number of vertices of the graph G?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Graph isomorphism

Exercise

Graph Bipartie g

Exercise (5)

Give the number of edges in function of number of vertices in a complete graph K_n .

Introduction to Graphs

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Exercise (5)

Give the number of edges in function of number of vertices in a complete graph K_n .

Exercise (6)

Give an undirected simple graph G = (V, E) with |V| = n, show that

a) $\forall v \in V$, $\deg(v) < n$,

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Exercise (5)

Give the number of edges in function of number of vertices in a complete graph K_n .

Exercise (6)

Give an undirected simple graph G=(V,E) with $\left|V\right|=n$, show that

- a) $\forall v \in V$, $\deg(v) < n$,
- b) there does not exist simultaneously both a vertex of degree 0 and a vertex of degree (n-1),

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Exercise (5)

Give the number of edges in function of number of vertices in a complete graph K_n .

Exercise (6)

Give an undirected simple graph G=(V,E) with |V|=n, show that

- a) $\forall v \in V$, $\deg(v) < n$,
- b) there does not exist simultaneously both a vertex of degree 0 and a vertex of degree (n-1),
- c) deduce that there are at least two vertices of the same degree.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Exercise (5)

Give the number of edges in function of number of vertices in a complete graph K_n .

Exercise (6)

Give an undirected simple graph G = (V, E) with |V| = n, show that

- a) $\forall v \in V$, $\deg(v) < n$,
- b) there does not exist simultaneously both a vertex of degree 0 and a vertex of degree (n-1),
- c) deduce that there are at least two vertices of the same degree.

Exercise (7)

Is it possible that each person has exactly 5 friends in the same group of 9 people ?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Graph Isomorphism

Exercise Graph

Prove that ...

...

There are 101 invited people in a party. Suppose that A knows $B \Rightarrow B$ knows A. Prove that

- 1 at least one people knows an even number of other people.
- 2 at least two people who know the same number of people (but not considering himself).

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph

Isomorphism

Representing Graphs

Graph Isomorphism

Graph Isomorphism

Exercise Graph

Bipartie graph

A chess tournament of n persons plays according to the circle competition. Prove that at any moment of the tournament there are always two players having identical number of games played.

And if $n\geq 4$, at any intermediate moment of the tournament, there are always two players having identical number of games that they are the winner.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

A chess tournament of n persons plays according to the circle competition. Prove that at any moment of the tournament there are always two players having identical number of games played.

And if $n \geq 4$, at any intermediate moment of the tournament, there are always two players having identical number of games that they are the winner.

In a tournament with n teams participated ($n \ge 4$), n+1 competition games were happening. Prove that there exists a team that has played at least three matches.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph Bipartie graph

A chess tournament of n persons plays according to the circle competition. Prove that at any moment of the tournament there are always two players having identical number of games played.

And if $n \geq 4$, at any intermediate moment of the tournament, there are always two players having identical number of games that they are the winner.

In a tournament with n teams participated ($n \ge 4$), n+1 competition games were happening. Prove that there exists a team that has played at least three matches.

With any four of the n people $(n \ge 4)$, there exists a person who knows the three others. Prove that there exists a person who knows all n-1 others.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

A chess tournament of n persons plays according to the circle competition. Prove that at any moment of the tournament there are always two players having identical number of games played.

And if $n \geq 4$, at any intermediate moment of the tournament, there are always two players having identical number of games that they are the winner.

In a tournament with n teams participated ($n \ge 4$), n+1 competition games were happening. Prove that there exists a team that has played at least three matches.

With any four of the n people ($n \ge 4$), there exists a person who knows the three others. Prove that there exists a person who knows all n-1 others.

In a party of 6 people, prove that there are 3 people who know each other or 3 people who do not know each other.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism Representing Graphs

Graph Isomorphism

Exercise

A chess tournament of n persons plays according to the circle competition. Prove that at any moment of the tournament there are always two players having identical number of games played.

And if $n \geq 4$, at any intermediate moment of the tournament, there are always two players having identical number of games that they are the winner.

In a tournament with n teams participated ($n \ge 4$), n+1 competition games were happening. Prove that there exists a team that has played at least three matches.

With any four of the n people ($n \ge 4$), there exists a person who knows the three others. Prove that there exists a person who knows all n-1 others.

In a party of 6 people, prove that there are 3 people who know each other or 3 people who do not know each other.

During a summer vacation, 7 friends are vacationing away. They promised each other that during the holidays each person must write to exactly three of them. Prove that there is someone who does not write back to the his sender.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism Representing Graphs

Graph Isomorphism Exercise

Graph

Bipartite Graphs

Definition

A simple graph G is called bipartite $(d\hat{o} \ thi \ ph\hat{a} n \ d\hat{o} i)$ if its vertex set V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2)

Example

C_6 is bipartite

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph

Isomorphism Representing Graphs

Graph Isomorphism

Exercise

Graph

Complete Bipartite Graphs

Definition

A complete bipartite $K_{m,n}$ is a graph that

- has its vertex set partitioned into two subsets of m and n vertices, respectively,
- with an edge between two vertices iff one vertex is in the first subset and the other is in the second one

 $K_{3,3}$

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Bipartite graphs

Example (Bipartite graphs?)

- \bullet C_6
- C.
- *K*₃
- \bullet K_n
- the following graph

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

New Graph From Old

Definition

A subgraph $(\mathring{d}\mathring{o} \ thi \ con)$ of a graph G=(V,E) is a graph H=(W,F) where $W\subseteq V$ and $F\subseteq E$.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

New Graph From Old

Definition

A subgraph ($d\hat{o}$ thi con) of a graph G=(V,E) is a graph H=(W,F) where $W\subseteq V$ and $F\subseteq E$.

Definition

The **union** $(h \circ p)$ of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$. The union of G_1 and G_2 is denoted by $G_1 \cup G_2$.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph

Representing Graphs
Graph Isomorphism

Graph Isomorphism

Exercise Graph

Bipartie graph

New Graph From Old

Definition

A subgraph ($d\hat{o}$ thi con) of a graph G=(V,E) is a graph H=(W,F) where $W\subseteq V$ and $F\subseteq E$.

Definition

The **union** $(h\phi p)$ of two simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ is a simple graph with vertex set $V_1\cup V_2$ and edge set $E_1\cup E_2$. The union of G_1 and G_2 is denoted by $G_1\cup G_2$.

 G_1

 G_{2}

 $G_1 \cup G_2$

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph

Isomorphism
Representing Graphs
Graph Isomorphism

Graph Isomorphi

Exercise

Bipartie graph

Planar Graphs

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Planar Graphs

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Planar Graphs

Definition

- A graph is called planar (phẳng) if it can be drawn in the plane without any edges crossing.
- Such a drawing is called planar representation (biểu diễn phẳng) of the graph.

 K_4

 K_4 with no crossing

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Corollary

• If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, then $e \le 3v - 6$.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Graph Isomorphis

Exercise

Graph

Corollary

- If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, then $e \le 3v 6$.
- If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, and no circuits of length 3, then $e \le 2v 4$.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Corollary

- If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, then $e \le 3v 6$.
- If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, and no circuits of length 3, then $e \le 2v 4$.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Corollary

- If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, then $e \le 3v 6$.
- If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, and no circuits of length 3, then $e \le 2v 4$.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph

Isomorphism
Representing Graphs

Graph Isomorphism

Exercise

Graph Binartie

Corollary

- If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, then $e \le 3v 6$.
- If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, and no circuits of length 3, then $e \le 2v 4$.

 K_5 Non-planar

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Elementary Subdivision

Definition

- Given a planar graph G, an elementary subdivision (phân chia sơ cấp) is removing an edge $\{u,v\}$ and adding a new vertex w together with edges $\{u,w\}$ and $\{w,v\}$.
- Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are called homeomorphic $(d\hat{o}ng\ ph\hat{o}i)$ if they can obtained from the same graph by a sequence of elementary subdivisions.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Bipartie graph

Theorem

A graph is nonplanar iff it contains a subgraph homeomorphic to $K_{3,3}$ or K_5 .

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Theorem

A graph is nonplanar iff it contains a subgraph homeomorphic to $K_{3,3}$ or K_5 .

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Theorem

A graph is nonplanar iff it contains a subgraph homeomorphic to $K_{3,3}$ or K_5 .

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Theorem

A graph is nonplanar iff it contains a subgraph homeomorphic to $K_{3,3}$ or K_5 .

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Bipartie graph

Exercise

- Is K_4 planar?
- Is Q_3 planar?

 K_4

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Adjacency Lists (Danh sách kề)

Introduction to Graphs
Huynh Tuong Nguyen, Nguyen An Khuong, Vo
Thanh Hung

Initial vertex	Terminal vertices
а	b, c, d, e b, d
b	b, d
С	a, c, e
d	c, e
е	b, c, d

Contents

Graph definitions Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Bipartie graph Isomorphism

Vertex	Adjacent vertices			
а	b, c, e			
b	a			
С	a, d, e			
d	c, e			
е	a, c, d			

Adjacency Matrices

Definition

Adjacency matrix ($Ma\ tr\hat{a}n\ k\hat{e}$) A_G of G=(V,E)

- Dimension $|V| \times |V|$
- Matrix elements

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{if } (v_i, v_j) \in E \ 0 & ext{otherwise} \end{array}
ight.$$

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Examples

Example

Give the graph defined by the following adjacency matrix

	A	B	C	D	E	
$A \\ B \\ C$		0	1 0 0	1 1	0	
$D \\ E$	1		1		1	
E	0	0	0	1	0	

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Gruphi isomorphisi

Exercise Graph

Adjacency Matrices

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Example

Give the directed graph defined by the following adjacency matrix $% \left(1\right) =\left(1\right) \left(1\right) \left$

	_	A	B	C	D	E	
$A \\ B \\ C$		0		0	0	0	•
C D		1 1	0 1	-	$0 \\ 0$	-	
D E		1	0	0	0	0	
	L						

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Incidence Matrices

Definition

Incidence matrix (ma trận liên thuộc) M_G of G = (V, E)

- Dimension $|V| \times |E|$
- Matrix elements

$$m_{ij} = \left\{ egin{array}{ll} 1 & ext{if } e_j ext{ is incident with } v_i \ 0 & ext{otherwise} \end{array}
ight.$$

	e_1	e_2	e_3	e_4
$a \\ b$	1	1	1	0
b	0	1	0	1
$c \\ d$	1	0	0	1
d	0	0	1	0

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph Bipartie graph

Examples

Example

Give incidence matrix according to the following graph

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Graph Isomorphism

Definition

 $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** $(d\mathring{a}ng\ c\^{a}u)$ if there is a **one-to-one function** f from V_1 to V_2 with the property that a and b are adjacent in G_1 iif f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called an **isomorphism** $(m\hat{o}t\ d\mathring{a}ng\ c\^{a}u)$.

(i.e. there is a one-to-one correspondence between vertices of the two graphs that preserves the adjacency relationship.)

Isomorphism function $f:U\longrightarrow V$ with $f(u_1)=v_1$ $f(u_2)=v_4$ $f(u_3)=v_3$ $f(u_4)=v_2$

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Bipartie graph

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Grapn

Isomorphism?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs

and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Bipartie graph

Isomorphism

Isomorphism?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Isomorphism?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs
Graph Isomorphism

Exercise

Graph

Isomorphism

Are the simple graphs with the following adjacency matrices isomorphic?

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
\quad
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

Introduction to Graphs

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise Granh

Isomorphism

Are the simple graphs with the following adjacency matrices isomorphic?

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \quad \left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)$$

$$\left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right)$$

$$\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$

Introduction to Graphs

Huvnh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Isomorphism

Are the simple graphs with the following adjacency matrices isomorphic?

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
\quad
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right)$$

$$\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$

Introduction to Graphs

Huvnh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

$$\bullet \quad \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right) \quad \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise Granh

Bipartie graph Isomorphism

Determine whether the graphs (without loops) with the incidence

 $\bullet \quad \left(\begin{array}{cccccc} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{array}\right) \quad \left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{array}\right)$

matrices are isomorphic.

$$\left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{array}\right)$$

Determine whether the graphs (without loops) with the incidence matrices are isomorphic.

$$\bullet \quad \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right) \quad \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

$$\bullet \quad \left(\begin{array}{cccccc} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{array}\right) \quad \left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{array}\right)$$

- Extend the definition of isomorphism of simple graphs to undirected graphs containing loops and multiple edges.
- Define isomorphism of directed graphs

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Đồ thị G_1 và G_2 tương ứng với các ma trận liền kề và liên thuộc dưới đầy.

(G_1)	•	A	B	C	D	E		(G_2)	e_1	e_2	e_3	e_4	e_5	e_6	e_7
A	Γ	0	1	1	1	1	1	·A΄Γ					1		
B		1	0	0	1	0	-	B	1	1	0	1	0	0	0
C		1	0	0	1	0		C	0	1	1	0	1	0	0
D		1	1	1	0	1	İ	D	0	0	1	1	0	0	1
E		1	0	0	1	0		E	0	0	0	0	0	1	1

Hãy cho biết quan hệ của hai đồ thị G_1 và G_2 .

- A) Đẳng cấu
- B) Không đẳng cấu
- C) Thứ tự
- D) Tương đương

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions
Terminology
Special Graphs

Representing Graphs and Graph

Isomorphism
Representing Graphs

Graph Isomorphism

Exercise

Graph

Xét đồ thị đầy đủ K_5 và đồ thị phân đôi đầy đủ $K_{3,2}.$ Khi đó ta có:

- A) $K_{3,2}$ và K_5 là không đẳng cấu.
- B) $K_{3,2}$ và K_5 có cùng số đỉnh.
- C) $K_{3,2}$ và K_5 có cùng số cạnh.
- D) $K_{3,2}$ và K_5 là đẳng cấu.
- E) Các đáp án khác đều sai.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph

Isomorphism Representing Graphs

Graph Isomorphism

Exercise

Graph

Chọn phát biểu đúng với đồ thị đơn vô hướng ($undirected\ simple\ graph$) có n đỉnh.

- A) Bậc của một đỉnh bất kỳ trong đồ thị nhỏ hơn n-2.
- B) Tồn tại một đỉnh trong đồ thị có bậc là 1.
- C) Không thể chứa đỉnh cô lập.
- D) Tồn tại hai đỉnh trong đồ thị có cùng số bậc.
- E) Các đáp án khác đều sai.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Trong kỳ Hoa Sơn luận võ, năm vị cao thủ đã gặp nhau để xác định danh hiệu đệ nhất: Đông Tà, Tây Độc, Nam Đế, Bắc Cái và Trung Thần Thông.

Để phân biệt thắng thua thì họ đấu từng cặp đôi và không giới hạn thời gian. Nhà vô địch là người có nhiều trận thắng nhất.

Đông Tà không thể đánh bại Nam Đế, nhưng ông ta đã đánh bại Tây Độc.

Do dùng nhiều sức trong mỗi trận đấu nên Nam Đế chỉ thắng hai trận đầu tiên.

Bắc Cái chỉ thắng được Nam Đế.

Tây Độc không thể chiến thắng Trung Thần Thông, nhưng lại chiến thắng Nam Đế và Bắc Cái.

Riêng Trung Thần Thông chỉ bị thất bại một trận đấu.

Hãy cho biết Trung Thần Thông đã bị đánh bại bởi vị nào?

- A) Nam Đế
- B) Nam Đế hoặc Đông Tà
- C) Đông Tà
- D) Tây Độc

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph Bipartie graph

Isomorphism

Một dự án gồm các công việc $A,\,B,\,C,\,D,\,E,\,F$ và G cần thực hiện. Thời lượng (theo ngày) cần thiết để xử lý các công việc lần lượt là

p_A	p_B	p_C	p_D	p_E	p_F	p_G
5	2	6	7	9	3	2

Ta ký hiệu

$$X_1 + X_2 + \ldots + X_n \leq Y_1 + Y_2 + \ldots + Y_m$$

biểu diễn các công việc X_i $(i=1,\ldots,n)$ đều cần hoàn thành trước khi khởi động các công việc Y_k $(k=1,\ldots,m)$. Xét thời gian bắt đầu khởi động dự án là 0. Dự án được gọi là "kết thúc" khi tất cả các công việc trong dự án đều hoàn thành. Biết rằng: $A \preceq B + C$; $B + C \preceq D$; $C \preceq F + G$; $E \preceq F$. Hỏi dự án này sẽ kết thúc sớm nhất vào ngày nào?

Introduction to Graphs

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph

Isomorphism Representing Graphs

Graph Isomorphism

Exercise

Graph

Một ban chỉ huy quân sự muốn thiết lập một mặt trận gồm các cứ điểm $a,\,b,\,\ldots,\,g$. Các cứ điểm này và đường nối trực tiếp giữa chúng tạo nên một đồ thị đơn vô hướng.

b c d

Do số lượng thiết giáp có giới hạn nên ban chỉ huy quyết định chỉ đồn trú thiết giáp tại một số cứ điểm mà thôi. Tuy nhiên, để đảm bảo tính tác chiến nhanh chóng nên ta yêu cầu: nếu cứ điểm nào không có đồn trú thiết giáp thì ít nhất một cứ điểm bên cạnh (đỉnh kề) phải có đơn vị thiết giáp đồn trú.

Hỏi có bao nhiêu cách triển khai thiết giáp đến các cứ điểm cho mặt trận như đồ thi bên ?

Introduction to Graphs

Huynh Tuong Nguyen Nguyen An Khuong, V Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

- a) Hãy xác định danh sách kề, ma trận kề và ma trận liên thuộc của đồ thị trên.
- b) Hãy cho biết đồ thị này có phải là đồ thị phân đôi không. Nếu có, hãy vẽ lại dưới dạng một đồ thị phân đôi.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Do khói, bụi và hơi nước bốc lên từ một miệng núi lửa bên dưới mặt sông băng Eyjafjallajokull ở Iceland vào ngày thứ tư (14/04/2010), hơn 90.000 chuyến bay ở châu Âu đã bị hủy. Đây cũng là một minh chứng về sự bất ổn của thiên nhiên có thể gây tổn hai tới công việc kinh doanh toàn cầu.

Dể giảm thiểu thiệt hại về kinh tế, cơ quan quản lý tối ưu hóa và lập lịch đường bay EuroControl cố gắng tiếp tục duy trì một số đường bay đi và đến Việt Nam, liên quan đến các thành phố lớn như: Hồ Chí Minh (A), Paris (B), Berlin (C), và London (D). Tuy nhiên, do ảnh hưởng của môi trường thiên nhiên nói trên, chỉ có một vài chuyến bay có thể hoạt động: từ A hướng đến B và D, từ B hướng đến C, từ C hướng đến A và D, từ D hướng đến B.

- a) Hãy vẽ đồ thị có hướng tương ứng.
- b) Viết ma trận kề M cho đồ thị có hướng này
- c) Hãy tính $M+M^2+M^3$ và cho biết ý nghĩa của ma trận này.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Hai lớp được định nghĩa như các hình bên dưới trái. Hãy vẽ đồ thị biểu diễn hàm thành viên có thể được gọi từ một hàm.

(\it{Chú ý}: Một cung từ hàm u đến hàm v biểu diễn rằng v có thể được gọi bởi u.)

class Y public: Y(); Y(); Y(); e(); private: d();

Introduction to Graphs Huynh Tuong Nguyen,

Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph

Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Hai lớp được định nghĩa như các hình bên dưới trái. Hãy vẽ đồ thị biểu diễn hàm thành viên có thể được gọi từ một hàm.

class X
public: X(); $^{\sim}X();$ a();protected: b();private:

c();

d();

(\it{Chú ý} : Một cung từ hàm u đến hàm v biểu diễn rằng v có thể được gọi bởi u.) Ví dụ.

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Hai lớp được định nghĩa như các hình bên dưới trái. Hãy vẽ đồ thị biểu diễn hàm thành viên có thể được gọi từ một hàm.

class X
public:
 X();
 X();
 a();
protected:
 b();
private:
 c();

class Y

public:

Y(); ~ Y();

e(); private: d(); (\it{Chú ý}: Một cung từ hàm u đến hàm v biểu diễn rằng v có thể được gọi bởi u.) Ví dụ.

Có bao nhiều đường đi đơn khác nhau từ đỉnh X::a() đến đỉnh Y::d() ?

Introduction to Graphs

Huynh Tuong Nguyen, Nguyen An Khuong, Vo Thanh Hung

Contents

Graph definitions

Terminology Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph