18MAB102T-Surprise Test 5-July 24

* Required

A	AII			
Answer	$\Delta \Pi$	(.)	actions	2
WII 12 A A C I	\neg LL	$ \vee$ $^{\prime}$ $^{\prime}$ U	COLIUII	3

Each question carries ONE mark.

1*

If f(z) is analytic and f'(z) is continuous at all points inside and on a simple closed curve C, then by Cauchy's integral theorem $\int_C f(z) dz =$

(A)0

(B) 2πi

(C) $-2\pi i$

(D) 1

() E

 \bigcirc c

 \bigcirc D

If f(z) is analytic inside and on C, then the value of $\oint_C \frac{f(z)}{z-a} dz$, where C is a simple closed curve and 'a' is any point within C is

(A)0

(B) $2\pi i f(a)$

(C) $-2\pi i f(a)$

(D) 1

- (A
- B
- \bigcirc

3 *

If f(z) is analytic inside and on C, then the value of $\oint_C \frac{f(z)}{(z-a)^{n+1}} dz$, where C is a simple closed curve and 'a' is any point within C is

(A) 0

(B) $\frac{2\pi i}{n!} f^n(a)$

(C) $-\frac{2\pi i}{n!} f^{n+1}(a)$

(D) $\frac{2\pi i}{n!} f^{n+1}(a)$

- E
- O c

If f(z) is analytic at all points inside and on a simple closed curve C except for a finite number of isolated singular points $z_1, z_2, ..., z_n$ within C, then by Cauchy's residue theorem $\oint_C f(z) dz =$

(A)0

(B) 2 π $i \times$ Sum of residues of f(z) at $z_1, z_2, ..., z_n$

(C) 1

(D) $-2\pi i \times \text{Sum of residues of } f(z) \text{ at } z_1, z_2, ..., z_n$

- (A
- B
- O 0
- O D

5 *

If $z = z_0$ is a simple pole, then the residue of f(z) is

- (A) $\operatorname{Re} s[f(z), z_0] = \lim_{z \to z_0} (z z_0) f'(z)$
- (B) $\operatorname{Res}[f(z), z_0] = \lim_{z \to z_0} f'(z)$
- (C) $\text{Re} s[f(z), z_0] = \lim_{z \to z_0} f(z)$
- (D) Res $[f(z), z_0] = \lim_{z \to z_0} (z z_0) f(z)$
- A
- B
- \bigcirc c
- D

The singular points of $f(z) = \frac{z+3}{(z+1)(z+2)}$ are

(A) z = 1, 3

(B) z = 1,0

(C) z = -1, -2

(D) z = 2,3

- () A
- B
- () D

7 *

If f(z) is analytic at all points inside a circle C, with centre at 'a' and radius R, then Taylor's series expansion of f(z) is

- (A) $f(z)=1+\frac{(z-a)}{1!}f'(a)+\frac{(z-a)^2}{2!}f''(a)+...$
- (B) $f(z) = \frac{(z-a)}{1!} f'(a) + \frac{(z-a)^2}{2!} f''(a) + \dots$
- (C) $f(z) = f(a) + \frac{(z-a)}{1!} f'(a) + \frac{(z-a)^2}{2!} f''(a) + \dots$
- (D) $f(z) = f(a) \frac{(z-a)}{1!} f'(a) + \frac{(z-a)^2}{2!} f''(a) \dots$
- A
- B
- O

A zero of an analytic function f(z) is a value of z for which

(A) f(z) = 1

(B) $f(z) \neq 1$

- (C) $f(z) \neq 0$
- (D) f(z) = 0
- () A
- () B
- \bigcirc

9 *

The value of $\oint_C \frac{\cos z}{z-3} dz$ where C is a circle |z-1|=1 is

(A) 0

(B) 1

(C) e

(D) 2πi

- A
- \bigcirc B
- \bigcap D

The value of $\oint_C \frac{dz}{z+2}$ where C is the circle |z| = 2 is

(A) 0

(B) 2πi

 $(C) -2\pi i$

(D) πi

- B
- \bigcirc c
- \bigcirc D
- Send me a copy of my responses.

Back

Submit

Never submit passwords through Google Forms.

reCAPTCHA

Privacy Terms

This form was created inside of SRM Institute of Science and Technology. Report Abuse

Google Forms