2018 高考试题 (全国卷 II) 理科数学

2018 高考试题(全国卷 II) 理科数学

一、选择题: 本题共 12个小题, 每小题 5 分, 共 60 分, 在每小题给出的四个选项中, 只有 一项是符合题目要求的。

1.
$$\frac{1+2i}{1-2i} =$$

- A. $-\frac{4}{5} \frac{3}{5}i$ B. $-\frac{4}{5} + \frac{3}{5}i$ C. $-\frac{3}{5} \frac{4}{5}i$ D. $-\frac{3}{5} + \frac{4}{5}i$
- 2. 已知集合 $A = \{(x, y) \mid x^2 + y^2 \le 3, x \in \mathbf{Z}, \mathbf{y} \in \mathbf{Z}\}$, 则 A 中的元素个数为
 - A. 9

- B. 8
- C. 5

3. 函数 $f(x) = \frac{e^x - e^{-x}}{x^2}$ 的图像大致是

- 4. 已知向量 a, b 满足 $|a| = 1, a \cdot b = -1$, 则 $a \cdot (2a b) =$

- D. 0
- 5. 双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的离心率为 $\sqrt{3}$,则其渐近线方程为

- A. $y = \pm \sqrt{2}x$ B. $y = \pm \sqrt{3}x$ C. $y = \pm \frac{\sqrt{2}}{2}x$ D. $y = \pm \frac{\sqrt{3}}{2}x$
- 6. 在 $\triangle ABC$ 中, $\cos \frac{C}{2} = \frac{\sqrt{5}}{5}$, BC = 1 , AC = 5 ,则 AB =
 - A. $4\sqrt{2}$
- B. $\sqrt{30}$
- C. $\sqrt{29}$
- D. $2\sqrt{5}$

- 7. 为计算 $S = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + \frac{1}{99} \frac{1}{100}$,设 计了右侧的程序框图,则在空白框中应填入
 - A. i = i + 1
 - B. i = i + 2
 - C. i = i + 3
 - D. i = i + 4

- 8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果. 哥德巴赫猜是"每个大于 2 的偶数可以表示为两个素数的和",如 30 = 7 + 23.在不超过 30 的素数中,随机选取两个不 同的数,其和等于30的概率是

- B. $\frac{1}{14}$ C. $\frac{1}{15}$ D. $\frac{1}{18}$
- 9. 在长方体 $ABCD-A_1B_1C_1D_1$ 中,AB=BC=1 , $AA_1=\sqrt{3}$,则异面直线 AD_1 与 DB_1 所成 角的余弦值为

- A. $\frac{1}{5}$ B. $\frac{\sqrt{5}}{6}$ C. $\frac{\sqrt{5}}{5}$ D. $\frac{\sqrt{2}}{2}$
- 10. 若 $f(x) = \cos x \sin x$ 在 [-a, a] 是减函数,则 a 的最大值是

- A. $\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $\frac{3\pi}{4}$

- D. π
- 11. 已知 f(x) 是定义域为 $(-\infty, +\infty)$ 的奇函数,满足 f(1-x) = f(1+x). 若 f(1) = 2,则 $f(1) + f(2) + \cdots + f(50) =$
 - A. -50 B. 0

- 12. 已知 F_1 , F_2 是椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的左、右焦点,A 是 C 的左顶点,点 P 在过 A 且斜率为 $\frac{\sqrt{3}}{6}$ 的直线上, $\triangle PF_1F_2$ 为等腰三角形, $\angle F_1F_2P=120^\circ$,则 C 的离心率为

- A. $\frac{2}{3}$ B. $\frac{1}{2}$ C. $\frac{1}{3}$ D. $\frac{1}{4}$

- 二、填空题: 共 4 个小题, 每小题 5 分, 共 20 分。
- 13. 曲线 $y = 2\ln(x+1)$ 在点 (0,0) 处的切线方程为____
- 14. 若 x, y 满足约束条件 $\begin{cases} x + 2y 5 \ge 0, \\ x 2y + 3 \ge 0, \end{bmatrix}$ 则 z = x + y 的最大值为_____.
- 15. 己知 $\sin \alpha + \cos \beta = 1$, $\cos \alpha + \sin \beta = 0$, 则 $\sin(\alpha + \beta) =$ _____.
- 16. 已知圆锥的顶点为 S, 母线 SA, SB 所成角的余弦值为 $\frac{7}{8}$, SA 与圆锥底面所成角为 45° . 若 $\triangle SAB$ 的面积为 $5\sqrt{15}$, 则该圆锥的侧面积为