semana 5- aula 01 Meios de transmissão

Meios de transmissão guiados: cabos de cobre

Código da aula: [SIS]ANO1C2B1S5A1

Objetivos da Aula:

- Demonstrar como os meios de transmissão guiados são fundamentais dentro das redes de computadores;
- Compreender o que é e como funciona o par trançado.
- Conhecer técnicas de computação e gerenciamento de dados para soluções em nuvem, parametrizando aplicações e dimensionando-as de acordo com as necessidades do negócio;
- Trabalhar a criatividade na resolução de problemas técnicos computacionais.
- Recurso audiovisual para a exibição de vídeos e imagens;
- Caderno para anotações;
- Acesso ao laboratório de informática e/ou à internet. Recursos didáticos Competências da unidade (técnicas e socioemocionais)

Exposição:

Meios de Transmissão (Resumido)

Meios de transmissão são os canais físicos através dos quais os dados são transferidos de um ponto a outro em um sistema de comunicação. Eles podem ser guiados (como cabos) ou não guiados (como ondas de rádio).

Cabo de Par Trançado e Conector RJ45

O cabo de par trançado é um tipo de meio de transmissão guiado que consiste em dois ou mais fios de cobre isolados que são trançados juntos. Esse trançamento ajuda a reduzir a interferência eletromagnética (EMI) e a diafonia entre os pares de fios.

O conector RJ45 é um tipo de interface física padronizada usada para conectar cabos de par trançado a equipamentos de rede, como computadores, roteadores e switches. Ele possui oito pinos para conectar os oito fios do cabo de par trançado.

Diferenças entre Cabo de Par Trançado e Cabo Coaxial

Característica	Cabo de Par Trançado	Cabo Coaxial

Estrutura	Múltiplos fios de cobre isolados e trançados.	Um fio de cobre central isolado, envolto por uma malha condutora e isolamento externo.
Imunidade a Ruído	Menor (o trançamento ajuda, mas é mais suscetível).	Maior (a malha condutora atua como blindagem).
Largura de Banda	Menor (geralmente).	Maior (geralmente).
Custo	Geralmente mais baixo.	Geralmente mais alto.
Distância	Limitações de distância (atenuação do sinal).	Pode transmitir sinais por distâncias maiores com menos perda.
Conector Típico	RJ45.	Conectores BNC ou F.

Exemplos de Uso do Cabo de Par Trançado

O cabo de par trançado é amplamente utilizado em:

- Redes Ethernet (LANs): Conexão de computadores, impressoras, roteadores e outros dispositivos em redes locais.
- Sistemas telefônicos: Embora mais antigos, ainda são usados em algumas instalações para linhas telefônicas analógicas.
- Redes de comunicação de dados de curta distância.

Imagem do Cabo de Par Trançado e do Conector RJ45

(Representação simplificada dos fios trançados dentro da capa do cabo)

semana 5- aula 02 Meios de transmissão

Meios de transmissão guiados: cabos de cobre

Código da aula: [SIS]ANO1C2B1S5A2

Objetivos da Aula:

- Demonstrar como os meios de transmissão guiados são fundamentais dentro das redes de computadores;
- Compreender o que é e como funciona o par trançado.
- Conhecer técnicas de computação e gerenciamento de dados para soluções em nuvem, parametrizando aplicações e dimensionando-as de acordo com as necessidades do negócio;
- Trabalhar a criatividade na resolução de problemas técnicos computacionais.
- Recurso audiovisual para a exibição de vídeos e imagens;
- Caderno para anotações;
- Acesso ao laboratório de informática e/ou à internet. Recursos didáticos Competências da unidade (técnicas e socioemocionais)

Exposição:

Slide 05 Padrão 568 A

O Padrão 568A é uma das duas normas de cores utilizadas para crimpar os fios de um cabo de par trançado em um conector RJ45. Ele especifica a ordem exata em que cada um dos oito fios deve ser conectado aos pinos do conector. Essa padronização é crucial para garantir a funcionalidade e a compatibilidade das redes Ethernet. A principal característica do 568A é a posição dos pares verde e branco/verde, que são trocados em relação ao padrão 568B.

semana 5- aula 03

Meios de transmissão

Meios de transmissão guiados: cabos de cobre

Código da aula: [SIS]ANO1C2B1S5A3

Objetivos da Aula:

- Demonstrar como os meios de transmissão guiados são fundamentais dentro das redes de computadores;
- Compreender o que é e como funciona o par trançado.
- Conhecer técnicas de computação e gerenciamento de dados para soluções em nuvem, parametrizando aplicações e dimensionando-as de acordo com as necessidades do negócio;
- Trabalhar a criatividade na resolução de problemas técnicos computacionais.
- Recurso audiovisual para a exibição de vídeos e imagens;
- Caderno para anotações;
- Acesso ao laboratório de informática e/ou à internet. Recursos didáticos Competências da unidade (técnicas e socioemocionais)

Exposição:

Slide 5

Definição de Cabo Coaxial

O cabo coaxial é um tipo de cabo elétrico utilizado para transmitir sinais de alta frequência. Sua estrutura é composta por um condutor central de cobre envolto por uma camada de isolamento dielétrico, que por sua vez é coberta por uma blindagem metálica (geralmente uma malha de cobre ou folha de alumínio). Finalmente, uma capa externa isolante protege todo o conjunto. O nome "coaxial" deriva do fato de que todos esses elementos compartilham o mesmo eixo geométrico. Essa construção oferece boa proteção contra interferências eletromagnéticas.

Onde o Cabo Coaxial é Usado

O cabo coaxial é utilizado em diversas aplicações, incluindo:

- Televisão a cabo (TV a cabo): Para transmitir sinais de vídeo para as residências. Embora a fibra óptica esteja substituindo algumas partes da rede, o cabo coaxial ainda é comum na conexão final com o usuário.
- Conexões de antenas: Para ligar antenas de TV, rádio e satélite aos seus respectivos receptores.
- Redes de computadores mais antigas: Em topologias como a Ethernet em barramento (embora amplamente substituído pelo par trançado).
- Circuitos fechados de televisão (CFTV): Para conectar câmeras de segurança a monitores ou gravadores.

- Equipamentos de rádiofrequência: Em transmissores e receptores de rádio.
- Ligações de áudio e vídeo: Em alguns equipamentos mais antigos.
- Internet a cabo: Para fornecer acesso à internet através da infraestrutura de TV a cabo.

semana 6- aula 01

Protocolos e camadas

Camada física: transmissão de dados e meios de

comunicação

Código da aula: [SIS]ANO1C2B1S6A1

Objetivos da Aula:

- Compreender a importância da camada física dentro do modelo OSI;
- Analisar como essa camada interage com a rede e sua importância dentro dela.
- Conhecer técnicas de computação e gerenciamento de dados para soluções em nuvem, parametrizando aplicações e dimensionando de acordo com as necessidades do negócio;
- Trabalhar a resolução de problemas voltados para o cotidiano de redes de computadores.
- Recurso audiovisual para exibição de vídeos e imagens;
- Caderno para anotações;
- Acesso ao laboratório de informática e/ou internet.

Exposição:

A camada física é a primeira e mais baixa camada do modelo OSI (Open Systems Interconnection). Sua principal função é a transmissão de bits brutos (sequências de 0s e 1s) através de um meio físico de comunicação.

Em termos mais simples, a camada física se preocupa com o hardware e os meios físicos que conectam os dispositivos em uma rede. Ela define as características elétricas, mecânicas, funcionais e de procedimento para ativar, manter e desativar conexões físicas para a transmissão de bits.

As principais responsabilidades da camada física incluem:

- Definição das características do meio de transmissão: Especifica o tipo de cabo (par trançado, coaxial, fibra óptica), as ondas de rádio, ou outros meios utilizados para a comunicação.
- Definição das características elétricas e de sinalização: Define os níveis de tensão, a temporização dos sinais, a codificação dos bits em sinais elétricos, ópticos ou de rádio.

- Especificação das interfaces físicas e conectores: Define o tipo de conector (RJ45, BNC, etc.) e a pinagem das interfaces.
- Transmissão e recepção de dados: Converte os bits em sinais adequados para o meio de transmissão e vice-versa.
- Sincronização de bits: Garante que o transmissor e o receptor estejam sincronizados para que os bits sejam interpretados corretamente.
- Controle de fluxo (em alguns casos): Regula a taxa de transmissão para evitar sobrecarga.
- Detecção de portadora e colisão (em alguns protocolos): Mecanismos para gerenciar o acesso ao meio compartilhado.

Em resumo, a camada física é responsável por mover os bits de um ponto para outro na rede, sem se preocupar com o significado desses bits ou como eles estão organizados em pacotes ou quadros. Essa tarefa é delegada às camadas superiores do modelo OSI.

semana 6- aula 02

Protocolos e camadas

Camada física: transmissão de dados e meios de

comunicação

Código da aula: [SIS]ANO1C2B1S6A2

Objetivos da Aula:

- Compreender a importância da camada física dentro do modelo OSI;
- Analisar como essa camada interage com a rede e sua importância dentro dela.
- Conhecer técnicas de computação e gerenciamento de dados para soluções em nuvem, parametrizando aplicações e dimensionando de acordo com as necessidades do negócio;
- Trabalhar a resolução de problemas voltados para o cotidiano de redes de computadores.
- Recurso audiovisual para exibição de vídeos e imagens;
- Caderno para anotações;
- Acesso ao laboratório de informática e/ou internet.

Exposição:

Meios de Comunicação: Simplex, Half-Duplex, Duplex (Full-Duplex)

Os meios de comunicação podem ser classificados quanto à direção do fluxo de dados entre dois pontos. Existem três categorias principais:

1. Simplex:

 Definição: A comunicação ocorre em apenas uma direção. Um dispositivo atua como transmissor (envia os dados) e o outro como receptor (apenas recebe os dados). Não há possibilidade de comunicação no sentido inverso.

• Exemplos:

- Transmissão de rádio FM: A estação de rádio transmite o sinal, e os rádios dos ouvintes apenas recebem. Os ouvintes não enviam sinais de volta para a estação.
- Transmissão de televisão: A emissora envia o sinal de vídeo e áudio, e os televisores apenas o recebem.
- Teclado para o computador: O teclado envia dados para o computador, mas o computador normalmente não envia dados de volta para o teclado pela mesma via para comunicação de texto.
- Controle remoto para um aparelho: O controle envia comandos, e o aparelho os recebe. O aparelho não envia informações de volta pelo controle remoto.

2. Half-Duplex:

 Definição: A comunicação ocorre em ambas as direções, mas não simultaneamente. Cada dispositivo pode transmitir e receber, mas apenas um de cada vez. É necessário alternar entre os modos de transmissão e recepção.

• Exemplos:

- Walkie-talkies (rádios comunicadores): Uma pessoa fala enquanto a outra escuta. Para responder, a primeira pessoa precisa parar de falar e a segunda pressiona o botão para transmitir.
- Redes Ethernet com hubs (mais antigas): Em um dado momento, apenas um dispositivo pode transmitir dados na rede. Se dois dispositivos tentarem transmitir ao mesmo tempo, ocorre uma colisão.
- Sistemas de comunicação por linha de comando (CLI) interativos: O usuário digita um comando e envia, o sistema processa e envia a resposta. A comunicação ocorre em turnos.

3. Duplex (Full-Duplex):

Definição: A comunicação ocorre em ambas as direções simultaneamente.
Os dispositivos podem transmitir e receber dados ao mesmo tempo, como se houvesse dois caminhos de comunicação separados.

Exemplos:

 Telefones fixos e celulares: Duas pessoas podem conversar e ouvir uma à outra ao mesmo tempo.

- Conexões de internet (a maioria): Você pode baixar arquivos enquanto envia e-mails ou navega na web simultaneamente.
- Redes Ethernet com switches: Múltiplos dispositivos podem transmitir e receber dados simultaneamente sem colisões, pois o switch gerencia as conexões de forma inteligente.
- Videoconferências: Os participantes podem ver e ouvir uns aos outros ao mesmo tempo.

Em resumo, a principal diferença entre eles reside na capacidade de transmissão e recepção simultânea de dados. Simplex é unidirecional, half-duplex é bidirecional, mas alternado, e full-duplex é bidirecional e simultâneo.

semana 6- aula 03

Protocolos e camadas

Camada física: transmissão de dados e meios de

comunicação

Código da aula: [SIS]ANO1C2B1S6A3

Objetivos da Aula:

- Compreender a importância da camada física dentro do modelo OSI;
- Analisar como essa camada interage com a rede e sua importância dentro dela.
- Conhecer técnicas de computação e gerenciamento de dados para soluções em nuvem, parametrizando aplicações e dimensionando de acordo com as necessidades do negócio;
- Trabalhar a resolução de problemas voltados para o cotidiano de redes de computadores.
- Recurso audiovisual para exibição de vídeos e imagens;
- Caderno para anotações;
- Acesso ao laboratório de informática e/ou internet.

Exposição:

Seminário sobre a matéria data entrega 22/04/2025