第二部分循环神经网络 / Recurrent Neural Networks

翻译&校正 | **韩信子@ShowMeAI** 编辑 | **南乔@ShowMeAI** /

原文作者 https://stanford.edu/~shervine

本节原文超链

[1] 概述 / Overview

IRNN 结构 Architecture of a traditional RNN

循环神经网络,也称为 RNN,是一类特殊的神经网络,它会将之前步骤节点的输出作为后续输入,它也具有隐藏状态。典型的结构:

在每个步骤节点 t 上,激活输出 a<t> 和标签概率输出 y<t> 是这样计算得到的:

$$a^{} = g_1(W_{aa}a^{} + W_{ax}x^{} + b_a)$$
 and $y^{} = g_2(W_{ya}a^{} + b_y)$

其中, W_{ax} , W_{aa} , W_{ya} , b_a , b_y 是共享参数, g_1 , g_2 是激活函数。

下表总结了典型 RNN 结构的优缺点:

优点	缺点
可以处理任意长度的输入	计算速度缓慢
模型大小不随输入大小而增加	难以访问很久以前的信息
计算考虑了历史信息,权重跨时间共享	无法把未来输入纳入计算

■ RNN 应用 Applications of RNNs

RNN 模型主要用于自然语言处理和语音识别领域。下表总结了不同的应用:

不同类型的 RNN	图例	应用示例
One-to-one (1 vs 1) $T_x = T_y = 1$	$a^{<0>} \rightarrow \begin{array}{c} \downarrow \\ \uparrow \\ \downarrow \\ x \end{array}$	传统神经网络
One-to-many (1 vs N) $T_x = 1, T_y > 1$		音乐生成
Many-to-one (N vs 1) $T_x > 1, T_y = 1$	$a^{<0>} \xrightarrow{\uparrow} \xrightarrow{\uparrow} \xrightarrow{\downarrow} \dots \xrightarrow{\uparrow} \xrightarrow{\uparrow} \xrightarrow{\chi^{}}$	情感分类
Many-to-many (N vs N) $T_x = T_y$		命名实体识别
Many-to-many (N vs N) $T_x \neq T_y$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

■ 损失函数 Loss function

在循环神经网络中,所有时间步的损失函数,以及每个时间步的损失定义:

$$\mathcal{L}(\hat{y}, y) = \sum_{t=1}^{T_y} \mathcal{L}(\hat{y}^{< t>}, y^{< t>})$$

■ BPTT 反向传播 Backpropagation through time

反向传播在每个时间点都会进行。在时间步 T,损失 L 对权重矩阵 W 的导数表示:

$$\frac{\partial \mathcal{L}^{(T)}}{\partial W} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}^{(T)}}{\partial W} \bigg|_{(t)}$$

[2] 处理长时依赖 / Handling Long Term Dependencies

■ RNN 常用激活函数

Sigmoid	Tanh	RELU
$g(z) = \frac{1}{1 + e^{-z}}$	$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	$g(z) = \max(0, z)$
$\begin{array}{c c} 1 \\ \hline \frac{1}{2} \\ \hline -4 & 0 & 4 \end{array}$	1 -4 0 4	

■ 梯度消失与梯度爆炸 Vanishing/exploding gradient

在 RNN 中经常会遇到梯度消失和爆炸的现象。它们发生的原因是梯度连乘操作,随着层数增加,会指数级别减少或者增加。这会使得 RNN 很难捕获长时依赖关系。

■ 梯度裁剪 Gradient clipping

它是一种用于处理 RNN 反向传播时有时会遇到的梯度爆炸问题的技术。通过限制梯度的最大值,控制梯度爆炸。

■ 不同的门操作 Types of gates

为了解决梯度消失问题,某些类型的 RNN 中使用了特定的门,并且通常具有明确的目的。它们通常记为 Γ ,计算方式:

$$\Gamma = \sigma(Wx^{< t>} + Ua^{< t-1>} + b)$$

其中 W, U, b 是特定于门的系数, σ 是 sigmoid 函数。下表总结了主要操作:

门的类型	作用	在那些网络中使用
更新门 Γ_u	过去的信息保留多少?	GRU, LSTM
关联门 Γ_r	遗忘掉之前的信息?	GRU, LSTM
遗忘门 $arGamma_f$	擦除单元信息?	LSTM
输出门 Γ 。	输出这个单元多少的信息?	LSTM

■ GRU/LSTM

为了处理传统 RNN 遇到的梯度消失问题,我们改进得到了门控循环单元 (GRU) 和长短期记忆单元 (LSTM), LSTM 是 GRU 的泛化。下表总结了不同模型结构的细节内容:

Characterization	Gated Recurrent Unit (GRU)	Long Short-Term Memory (LSTM)
č <t></t>	$\tanh\left(W_{c}\left[\Gamma_{r}\star a^{< t-1>}, x^{< t>}\right] + b_{c}\right)$	$\tanh(W_c[\Gamma_r \star a^{< t-1>}, x^{< t>}] + b_c)$
c <t></t>	$\Gamma_{\rm u} \star \tilde{\rm c}^{<{\rm t}>} + (1 - \Gamma_{\rm u}) \star {\rm c}^{<{\rm t}-1>}$	$\Gamma_{\rm u} \star \tilde{\rm c}^{<{\rm t}>} + \Gamma_{\rm f} \star {\rm c}^{<{\rm t}-1>}$
a ^{<t></t>}	c ^{<t></t>}	$\Gamma_{\rm o}\star {\rm c}^{<{\rm t}>}$
Dependencies	$c^{< t-1>} \xrightarrow{c^{< t>}} c^{< t>}$ $a^{< t-1>} \xrightarrow{c} a^{< t>}$	$c^{< t-1>} \xrightarrow{\tilde{c} < t>} c^{< t>}$ $a^{< t-1>} \xrightarrow{\tilde{c}} \Gamma_{u} \Gamma_{r} \xrightarrow{\Gamma_{o}} a^{< t>}$

备注: 其中的 * 表示两个向量逐元素的乘法计算

■ RNN 变种 Variants of RNNs

下表总结了其他常用的 RNN 结构:

[3]词向量表示 / Learning Word Representation

在本节中,我们用 V 表示词表,而 |V| 是它的大小。

3.1 Motivation and Notations

■ 向量表征技术 Representation techniques

下表总结了两种主要的词向量表示方式:

独热向量表示 1-hot representation	词嵌入 Word embedding
teddy bear soft	teddy bear soft
记作 o_w ,很原始的方式,并不包含词汇相似度信息	记作 ew,考虑了词汇相似度

■ 嵌入矩阵 Embedding matrix

对于给定的词 w,嵌入矩阵 E 是一个将其 1-hot 表示 o_w 映射到其嵌入 e_w 的矩阵:

$$e_w = Eo_w$$

备注: 可以使用目标词/上下文词似然预估模型来学习嵌入矩阵。

3.2 词嵌入 Word Embeddings

■ Word2vec

Word2vec 通过估计给定中心单词和其上下文单词一起出现(中心词被上下文词汇包围)的可能性来学习单词嵌入。流行模型包括 skip-gram、负采样和 CBOW。

Skip-gram

skip-gram word2vec 模型是一个监督学习任务模型,它通过给定目标词 t 预估上下文词 c 发生的可能性来学习词嵌入。我们记与t关联的参数为 θ_t ,概率 P(t|c) 见下式:

$$P(t|c) = \frac{\exp(\theta_t^T e_c)}{\sum_{i=1}^{|V|} \exp(\theta_i^T e_c)}$$

备注:在 softmax 部分的分母中对整个词汇表求和使该模型的计算成本很高。 CBOW 是另一个 word2vec 模型,它使用周围的词来预测给定的词。

■ **● 负例采样** Negative sampling

它是一组使用逻辑回归的二元分类器,作用是评估给定的上下文和给定的目标词同时出现的可能性,模型在一组 k 个负例和 1 个正例的样本集合上进行训练。给定上下文词 c 和目标词 t ,预测表示为:

$$P(y = 1|c,t) = \sigma(\theta_t^T e_c)$$

备注: 这种方法的计算成本比 skip-gram 模型小。

GloVe

GloVe 模型是词表示的全局向量的缩写,是一种词嵌入技术,它使用共现矩阵 X,其中每个 $X_{i,i}$ 表示目标 i 和上下文 j共现的次数。其代价函数J:

$$J(\theta) = \frac{1}{2} \sum_{i,j=1}^{|V|} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - \log(X_{ij}))^2$$

其中 f 是一个加权函数,使得 $X_{i,j} = 0 \Rightarrow f(X_{i,j}) = 0$ 。 鉴于 e 和 θ 在该模型中的对称性,最终词嵌入 $e_{i,i}^{(final)}$ 由下式给出:

$$e_w^{\text{(final)}} = \frac{e_w + \theta_w}{2}$$

备注: 学习到的词嵌入的各个组成部分不一定是可解释的。

[4] 词向量对比 / Comparing Words

■ 余弦相似度 Cosine similarity

词w₁和w₂之间的余弦相似度可以通过公式计算:

similarity=
$$\frac{w_1 \cdot w_2}{||w_1|| ||w_2||} = \cos(\theta)$$

备注: θ 是词向量 w_1 和 w_2 之间的夹角。

t-SNE(*t*-distributed Stochastic Neighbor Embedding) 是一种可以将高维向量投射到低维空间的技术。在实践中,它通常用于在 **2D** 空间中可视化词向量。

[5] 语言模型 / Language Model

■ 概述 Overview

语言模型用于估计句子 P(y) 的概率。

◎ In-gram 模型

该模型是一种简单的方法,旨在通过计算某个表达式在训练数据中出现的次数来量化它 在语料库中出现的概率。

■ 困惑度 Perplexity

语言模型通常使用困惑度度量(也称为 PP)进行评估,可以将其解释为由词数 T 归一化的数据集的逆概率。困惑度越低越好,定义:

$$PP = \prod_{t=1}^{T} \left(\frac{1}{\sum_{j=1}^{|V|} y_j^{(t)} \cdot \hat{y}_j^{(t)}} \right)^{\frac{1}{T}}$$

备注: PP 常用在 t-SNE.

[6] 机器翻译 / Machine Translation

■ 概述 [Overview]

机器翻译模型有点像语言模型,不同之处在于它有一个前置的编码器网络。也因为这样,它有时被称为条件语言模型。目标是找到一个句子 *y* 使得:

$$y = \underset{y^{<1},...,y^{< T_y}}{\arg \max} P(y^{<1}),...,y^{< T_y}|x)$$

■集束搜索 Beam search

Beam search 是一种用于机器翻译和语音识别的启发式搜索算法,用于在给定输入:的情况下找到最可能的句子 y。

第1步: 查找前 B 个可能的词 y<1>

第 2 步: 计算条件概率 y^{<k>}|x,y^{<1>},...,y^{<k-1>}

第3步: 保留 top B 个组合 x,y<1>,...,y<k>

备注: 如果集束 beam 宽度设置为 1,那么这相当于一个朴素的贪婪搜索。

■ 集束宽度 Beam width

集束宽度B是集束搜索的重要参数。较大的 B 值会产生更好的结果,但会降低性能并增加内存。B 的小值会导致更差的结果,但计算量较小。B 的标准值约为 10。

■ 长度归一化 Length normalization

为提高数值稳定性, 集束搜索通常会做归一化处理, 公式为归一化对数似然目标函数:

Objective=
$$\frac{1}{T_y^{\alpha}} \sum_{t=1}^{T_y} \log \left[p(y^{< t>} | x, y^{< 1>}, \dots, y^{< t-1>}) \right]$$

备注:参数α可以看作是一个调节器,它的值通常在 0.5 到 1 之间。

■ 错误分析 Error analysis

当预测翻译结果 \hat{y} 不太理想时,我们会进行错误分析,以便了解底层原因和获得更好的翻译结果 y^* :

Case	$P(y^* x) > P(\hat{y} x)$	$P(y^* x) \le P(\hat{y} x)$
Root cause	Beam search faulty	RNN faulty
Remedies	Increase beam width	Try different architecture Regularize Get more data

■ BLEU 得分 Bleu score

双语评估研究 (bilingual evaluation understudy,bleu) 分数通过计算基于 n-gram 精度的相似性分数来量化机器翻译的好坏。它的定义:

bleu score=
$$\exp\left(\frac{1}{n}\sum_{k=1}^{n}p_{k}\right)$$

n-gram 上的 bleu 分数 p_n 计算公式:

$$p_n = \frac{\sum_{\text{n-gram} \in \hat{y}} \text{count}_{\text{clip}} \text{ (n-gram)}}{\sum_{\text{n-gram} \in \hat{y}} \text{count (n-gram)}}$$

备注:可能会对简短的预测翻译施加惩罚 penalty,以防止人为夸大的 bleu 分数。

[7] 注意力机制 / Attention

■ 注意力模型 Attention model

注意力模型允许 RNN 关注输入中被认为重要的特定部分,在很多应用中提高了结果模型的效果。我们把输出 $y^{<t>}$ 在时间点 t时应该对激活 $a^{<t'>}$ 和上下文 $c^{<t>}$ 的关注程度记作 $a^{<t,t'>}$,有公式: $c^{<t>}=\sum_{t'} a^{<t,t'>} a^{<t'}$ 其中 $\sum_{t'} a^{<t,t'>}=1$

备注:注意力分数常用于看图说话(image captioning)和机器翻译。

A cute teddy bear is reading Persian

A cute teddy bear is reading Persian

■ 注意力权重 Attention weight

输出 $y^{< t>}$ 应该对激活 $a^{< t'>}$ 的注意力向量 $\alpha^{< t, t'>}$ 计算:

$$\alpha^{\langle t,t'\rangle} = \frac{\exp\left(e^{\langle t,t'\rangle}\right)}{\sum_{t''=1}^{T_x} \exp\left(e^{\langle t,t''\rangle}\right)}$$

备注: 计算复杂度是 T_v 的二次方。

Awesome Al Courses Notes Cheat Sheets

Machine Learning CS229

Deep Learning CS230

Natural Language Processing CS224n

Computer Vision CS231n

Deep Reinforcement Learning

Neural Networks for NLP CS11-747

DL for Self-Driving Cars 6.S094

Stanford

Stanford

Stanford

Stanford

UC Berkeley

CMU

MIT

...

是 ShowMeAI 资料库的分支系列,覆盖最具知名度的 TOP20+门 AI 课程,旨在为读者和学习者提供一整套高品质中文速查表,可以点击【这里】查看。

斯坦福大学(Stanford University)的 Machine Learning(CS229)和 Deep Learning(CS230)课程,是本系列的第一批产出。

本批两门课程的速查表由斯坦福大学计算机专业学生 Shervine Amidi 总结整理。原速查表为英文,可点击 【这里】 查看,ShowMeAI 对内容进行了翻译、校对与编辑排版,整理为当前的中文版本。

有任何建议和反馈,也欢迎通过下方渠道和我们联络(*-3-)

CS229 | Machine Learning @ Stanford University

监督学习

Supervised Learning

| The state of the

无监督学习

Unsupervised Learning

深度学习

Deep Learning

机器学习技巧和经验

Tips and Tricks

中文速查表链接

中文速查表链接

中文速查表链接

CS230 | Deep Learning @ Stanford University

卷积神经网络

CNN

循环神经网络

RNN

深度学习技巧与建议

Tips and Tricks

中文速查表链接

中文速查表链接

中文速查表链接

概率统计

线性代数与微积分 Linear Algebra and Calculus

Probabilities /Statistics

The state of the s

中文速查表链接

中文速查表链接

GitHub

ShowMeAl

https://github.com ShowMeAl-Hub/

ShowMeAI 研究中心

扫码回复"**速查表**"

下载最新全套资料