UNIVERSIDADE FEDERAL FLUMINENSE

MATHEUS SOUZA D'ANDREA ALVES

COLORAÇÃO DE GRAFOS (r,ℓ)

Niterói

UNIVERSIDADE FEDERAL FLUMINENSE

MATHEUS SOUZA D'ANDREA ALVES

COLORAÇÃO DE GRAFOS (r,ℓ)

Trabalho de Conclusão de Curso apresentado à Universidade Federal Fluminense como requisito parcial para a obtenção do Grau de Bacharel em Ciência da Computação.

Orientador:

Dr. Uéverton dos Santos Souza

Niterói

MATHEUS SOUZA D'ANDREA ALVES

Coloração de $Grafos(r, \ell)$

Trabalho de Conclusão de Curso apresentado à Universidade Federal Fluminense como requisito parcial para a obtenção do Grau de Bacharel em Ciência da Computação.

Aprovada em xx/xx/2018.

Niterói

2018

Resumo

Um problema clássico na literatura é o problema de coloração própria de um grafo, isto é, encontrar uma q-coloração para um grafo G tal que todo vértice $v \in V(G)$ não possua nenhum vizinho da mesma cor e q seja mínimo. Esse problema é conhecido ser NP-Difícil para grafos gerais. O trabalho a seguir tem como proposta desvendar e catalogar a complexidade clássica e parametrizada de tal problema para a classe de $\operatorname{Grafos}(r,\ell)$, i.e. grafos particionáveis em r conjuntos independentes e l cliques; Identificando as características que tornam o problema difícil e a relação do problema de coloração com outros problemas, quando abordado pela perspectiva parametrizada.

Palavras-chave: Complexidade parametrizada. Grafos (r,ℓ) . Partição de grafos. Coloração de Grafos

Abstract

A classical problem in the literature is the problem of proper coloring a graph, i.e. to find a q-coloring for a graph G such that every vertex $v \in V(G)$ does not have any neighbor of the same color and q is the smallest possible number, a problem known to be NP-Hard for a general graphs. The following work attempts to uncover and catalog the parametrized complexity of such problem for the class of graphs (r, ℓ) , i.e. partitionable graphs in r independent sets and l cliques; Identifying the characteristics that make the problem hard and the relation of the stated problem to other problems when approached by the parameterized perspective.

Keywords: Parametrized Complexity. Graph (r, ℓ) . Graph Partitioning. Graph Coloring.

Lista de Figuras

2.1 Grafo G: Transformação de 3-SAT em co-bipartido com foco na cláusula P

Lista de Tabelas

2.1	1^{a} Dicotomia parcial do problema de coloração em $\mathrm{Grafos}(r,\ell)$	11
2.2	2^{a} Dicotomia parcial do problema de coloração em $\mathrm{Grafos}(r,\ell)$	13
2.3	Dicotomia do problema de coloração em Grafos (r,ℓ)	17

Conteúdo

1	Intr	odução		9
	1.1	Conce	itos básicos	9
		1.1.1	$\operatorname{Grafos}(r,\ell)$	9
		1.1.2	Coloração mínima de Grafos	9
		1.1.3	Lista coloração de Grafos	9
		1.1.4	Clique multicolorida	10
		1.1.5	PreColoring extension	10
2	Aná	llise clás	esica para coloração em $\operatorname{Grafos}(r,\ell)$	11
	2.1	Explo	ração do problema de coloração mínima em $\operatorname{Grafos}(r,\ell)$	11
3	Aná	llise par	ametrizada para coloração em $\operatorname{Grafos}(2,1)$	18
	3.1	Param	netrização pelo tamanho do menor conjunto independente	18
	3.2	Param	netrização pelo tamanho do maior independente	20
	3.3	Param	netrização pelo tamanho da clique	20
	3.4	Param	netrizado pela quantidade de vértices vizinhos à clique	21
		3.4.1	Apenas vértices com listas tamanho um	21
		3.4.2	Vértices com listas de tamanho dois	22
		3.4.3	Vértices com listas de tamanho um e dois	22
4	Prol	blemas :	relacionados a coloração de (r,ℓ)	23
5	Con	clusão		24

Conteúdo	viii
----------	------

Referências 25

Introdução

1.1 Conceitos básicos

1.1.1 Grafos (r, ℓ)

Definição 1. Um Grafo dito $Grafo(r, \ell)$ ou abreviadamente $G(r, \ell)$ é qualquer grafo pertencente á classe dos grafos que podem ser particionados em r conjuntos independentes e l cliques.

1.1.2 Coloração mínima de Grafos

Definição 2. Entrada: um Grafo G e um inteiro k

Questão: Cada vértice pertencente à G pode ser colorido com uma entre k cores de tal forma que dado quaisquer dois vértices adjacentes eles tenham cores distintas e k seja o mínimo de cores possível?

1.1.3 Lista coloração de Grafos

Definição 3. Entrada: Uma paleta de cores P e um Grafo G onde todo $v \in V(G)$ pode ser colorido com um subconjunto $P(v) \subset P$

Questão: É possível escolher uma cor dentro das de P(v) para todo vértice v de forma que dado quaisquer dois vértices adjacentes eles tenham cores distintas?

1.1 Conceitos básicos 10

1.1.4 Clique multicolorida

Definição 4. Entrada: Um Grafo G com uma k-coloração própria Questão: Existe em G uma clique que contenha todas as k cores?

1.1.5 PreColoring extension

Definição 5. Entrada: Um grafo G onde alguns vértices já possuem uma coloração definida com cores escolhidas dentre k possíveis cores. Questão: É possível extender a coloração já existente para todo o grafo sem que dois vértices adjacentes possuam a mesma cor?

Análise clássica para coloração em $\operatorname{Grafos}(r,\ell)$

2.1 Exploração do problema de coloração mínima em $\operatorname{Grafos}(r,\ell)$

O problema de coloração aplicado a $Grafos(r, \ell)$ é de fácil solução para algumas especificações, por exemplo um Grafo vazio, que é um Grafo(0,0) pode ser colorido com 0 cores, um Grafo disperso i.e um Grafo(1,0) é colorível com apenas uma cor, já que não existem arestas nesse grafo.

Já um Grafo completo, ou seja um Grafo(0,1), é colorível com K cores onde K é a quantidade de vértices nesse grafo completo, em um Grafo split que é um Grafo(1,1) essa regra se repete, já que cada vértice do conjunto independete pode ser colorível com alguma cor já presente na clique.

r	0	1	2	3	4		n
0	P	P	?	?	?		?
1	P	P	?	?	?		?
2	P	?	?	?	?		?
3	?	?	?	?	?		?
4	?	?	?	?	?		?
:	:	:	:	:	:	٠	?
n	?	?	?	?	?		?

Tabela 2.1: 1º Dicotomia parcial do problema de coloração em $Grafos(r, \ell)$

E por fim, Grafos bipartidos são coloridos com 2 cores uma cor para cada conjunto

independente.

Sabemos então que coloração é de solução polinomial para grafos completos, dispersos, split e para grafos bipartidos. Assim sendo, temos como ponto de partida para a exploração futura da complexidade de Grafos de cardinalidade superiores a Tabela 2.1, a ser preenchida de acordo com os seguintes resultados.

Teorema 1. Coloração de Grafo(0,2) é Polinomial.

Demonstração. Um Grafo(0,2) é um grafo separável em 2 cliques, e que todo vértice faz parte de alguma das cliques, logo conhecer a clique máxima é simples e tendo a clique máxima sabemos que o numero mínimo de cores que pode ser usado para colorir o grafo é igual a cardinalidade de tal clique.

Teorema 2. Coloração de Grafo(3,0) é Polinomial.

Demonstração. Tendo um Grafo G da classe (3,0) como entrada para o problema de coloração sabemos então que o grafo pode ser colorido com 3 cores, resta saber se 3 é o o número mínimo de cores que pode ser usado, portanto devemos verificar se G é bipartido (colorível com duas cores) ou um grafo sem arestas (colorível com uma cor), como ambas verificações são polinomiais podemos afirmar que coloração de Grafo(3,0) é resolvível de forma polinomial.

Teorema 3. Coloração de Grafo(4,0) é NP-Completo.

Demonstração. Sabemos que todo grafo planar é 4-colorível, e que alguns Grafos(4,0) são planares, portanto sabemos que para qualquer Grafo $G \in subconjunto de planares de <math>Grafos(4,0)$, sua quantidade máxima de cores é 4, nos resta saber se 4 também é sua quantidade mínima, porém 3-coloração de planar é NP-Completo logo descobrir a coloração mínima de G é NP-Completo e consequentemente coloração de Grafos(4,0) é Grafos(4,0) é Grafos(4,0)

É importante notar aqui que, todo $Grafo(r,\ell)$ é simultaneamente um $Grafo(r,\ell+1)$ já que podemos formar uma nova clique trivial utilizando qualquer vértice, e um $Grafo(r+1,\ell)$ já que podemos formar um novo conjunto independente trivial a partir de qualquer vértice, portanto se o problema de coloração é NP-Completo para um $Grafo(r,\ell)$ então ele é NP-Completo para qualquer $Grafo(r+1,\ell)$ ou $Grafo(r,\ell+1)$.

Esses resultados nos levam à preencher a dicotomia da forma mostrada na Tabela 2.2

r	0	1	2	3	4		n
0	P	P	P	?	?		?
1	P	P	?	?	?		?
2	P	?	?	?	?		?
3	P	?	?	?	?		?
4	NPc	NPc	NPc	NPc	NPc		NPc
:	:	÷	÷	÷	÷	٠.	NPc
n	NPc	NPc	NPc	NPc	NPc		NPc

Tabela 2.2: 2^{a} Dicotomia parcial do problema de coloração em $\operatorname{Grafos}(r,\ell)$

Ainda nos falta mostrar a complexidade para alguns casos de fronteira, que necessitam de uma demonstração mais complexa.

Iremos demonstrar abaixo a complexidade para tais casos utilizando o seguinte teorema.

Teorema 4. Uma solução de lista coloração para um grafo $G(r, \ell)$, implica em uma solução para o problema de coloração de um grafo $H_G(r, \ell + 1)$.

Demonstração. Para a demonstração é preciso mostrar que

- Se um grafo $G(r, \ell)$ possui uma lista coloração própria então H_G é k-colorível para k do tamanho da paleta C (1)
- Se H_G é k-colorível então G possui uma lista coloração própria (2)

(1):

Usaremos a seguinte construção:

Considere G um grafo (r,ℓ) e que para cada vértice $v \in V(G)$ exista uma lista de cores S_v referente a esse vértice, cada lista contém pelo menos uma cor da paleta $C = \{c_1, c_2, c_3, ..., c_k\}$, sendo G uma instância sim para o problema de lista coloração, criemos uma clique K onde cada vértice $k \in V(K)$ representa uma cor presente em C. Seja $H_G = G \cup K$ para todo vértice $v \in G$ e todo vértice $u_i \in K$ adicione uma aresta (u_i, v) à H_G se e somente se v não possui a cor c_i em sua lista coloração em G

Podemos então generalizar da seguinte forma, dado um grafo (r, ℓ) G onde cada vértice de G possui uma lista de possíveis cores então o grafo H_G obtido pela construção anterior possui uma k-coloração.

Note que a clique K possui exatamente k vértices, consequentemente para colorirmos K precisaremos de k cores, sem perda de generalidade assumimos que u_1 será colorido com c_1 , u_2 com c_2 e assim por diante.

Por construção uma aresta de u_i só existe para v_a em H_G se e somente se, v_a não possui c_i em sua lista de cores, portanto a coloração atribuída à K não conflita com a com a lista coloração de G, e portanto para todo vértice perntecente a G podemos lhe atribuir a mesma cor que lhe foi atribuída no problema de lista coloração, obtendo uma coloração própria mínima para H_G

(2):

Suponha que o grafo H_G possua uma k-coloração própria, onde k é o número de cores nas listas de G

Seja K a maior clique presente em H_G , por construção H_G é colorível com k cores onde k é a cardinalidade de K, observe que a remoção de K não afeta a coloração de $H_G - K$

Como H_G é k-colorível e a clique K possui k vértices todas as cores de tal k-coloração estão presentes em K. Sem perda de generalidade podemos assumir que as cores $c_1, c_2, ..., c_k$ estão atribuídas aos vértices $u_1, u_2, ..., u_k$ pertencentes à K

Por construção de H_G todo par (v, u_i) onde $v \in H_G - K$ e $u_i \in K$ é não adjacente se e somente se o vértice v não possui c_i em sua lista coloração no grafo G

Logo a k-coloração atribuídas aos vértices em H_G-K formam uma coloração para G onde todo vértice em V(G) possui uma cor de sua lista. Portanto G é uma instância sim de lista coloração

Portanto utilizando o teorema 4, derivamos os seguintes corolários:

Corolário 1. O problema de coloração é NP-Completo para Grafos(1, 2).

Demonstração. A NP-Completude de lista coloração em grafos split i.e. grafos(1,1) é demonstrado por Jensen et al. [3].

Corolário 2. O problema de coloração é NP-Completo em Grafos(2, 1).

Demonstração. A NP-Completude de lista coloração em grafos bipartido é demonstrado por Fellows et al. em [1].

Corolário 3. Se lista coloração é NP-Completo para Grafos(0,2) então Coloração é NP-Completo em Grafos(0,3).

Demonstração. Para essa demonstração nos basearemos em um resultado obtido por Jensen em [2]. a demonstração se baseia em realizar uma redução do problema 3-SAT restrito para lista coloração de co-bipartido i.e. Grafo(0,2). Suponha o problema 3-SAT com as seguintes restrições:

- cada cláusula c_i contém dois ou três terminais.
- cada terminal ou sua negação aparece no máximo em 3 cláusulas

Construiremos agora uma instância de lista coloração da seguinte forma:

Para cada terminal j crie seis vértices: $a_j^{(1)}$, $a_j^{(2)}$, $a_j^{(3)}$; $b_j^{(1)}$, $b_j^{(2)}$, $3_j^{(3)}$. Atribuindo a cada uma lista de cores da seguinte forma:

$$a_{j}^{(k)} <= \{x_{j}^{(k)}, \, \overline{x_{j}}^{(k)} \,\,\}; \, b_{j}^{(k)} <= \{\overline{x_{j}}^{(k)}, \! x_{j}^{((k \pmod{3}))+1)} \,\,\}$$

Definimos como A o conjunto de todos os $a_j^{(k)}$ e B o conjunto de todos os $b_j^{(k)}$ e construímos uma clique com os vértices de A e B. Observe que só existem duas maneiras de se colorir este grafo:

• (1)
$$f(a_j^{(k)}) = x_j^{(k)} => b_j^{(k)} = \overline{x_j}^{(k)}$$

• (2)
$$f(a_i^{(k)}) = \overline{x_i}^{(k)} = b_i^{(k)} = x_i^{((k \pmod{3}))+1)}$$

Agora, para cada cláusula definimos um vértice c_i e sua lista de cores da seguinte forma: para cada literal j ou sua negação \bar{j} presente na cláusula adicionamos à lista de c_i o $x_j^{(k)}$ onde k é o indice de ocorrência do literal ou de sua negação.

Por exemplo, suponha o seguinte 3-SAT:

$$(p \lor q \lor r) \land (\neg p \lor q \lor r) \land (\neg p \lor \neg r \lor s)$$

suas cláusulas seriam traduzidas para

- c_1 com lista: $\{p^1, q^1, r^1\}$
- c_2 com lista: $\{\overline{p}^2, q^2, r^2\}$
- c_3 com lista: $\{\overline{p}^3, \overline{r}^3, s^1\}$

Seja C o conjunto contendo todos os c_i criamos uma clique com $C \cup A$. Nosso grafo tem portanto a seguinte configuração(considere x' como \overline{x}):

Figura 2.1: Grafo G: Transformação de 3-SAT em co-bipartido com foco na cláusula P

Suponha a cláusula p, se p é verdadeiro então $a_p^{(1)}, a_p^{(2)}, a_p^{(3)}$ será colorido com p'^1, p'^2, p'^3 , permitindo que a cor p^x possa, e que a cor p'^x não possa ser escolhidas para colorir uma cláusula.

De tal forma, podemos facilmente notar que, expandindo a explicação anterior para os outros terminais uma resposta sim para o problema 3-SAT restrito nos leva a uma solução do problema de lista coloração em co-bipartido por exclusão das cores nas listas disponíveis. Para a volta a existência de uma lista coloração válida para o co-bipartido mostra uma solução para o 3-SAT restrito correspondente simplesmente descobrindo a representação em valor de terminal das cores escolhidas para as cláusulas.

Portanto podemos agora completar nossa tabela com:

r	0	1	2	3	4		n
0	P	P	P	NPc	NPc		NPc
1	P	P	NPc	NPc	NPc		NPc
2	P	NPc	NPc	NPc	NPc		NPc
3	P	NPc	NPc	NPc	NPc		NPc
4	NPc	NPc	NPc	NPc	NPc		NPc
:	:	:	:	:	:	٠.	NPc
n	NPc	NPc	NPc	NPc	NPc		NPc

Tabela 2.3: Dicotomia do problema de coloração em $\operatorname{Grafos}(r,\ell)$

Análise parametrizada para coloração em Grafos(2,1)

Tendo mostrado a complexidade clássica nos é interessante agora que elucidemos quais caractéristicas dos grafos (r,ℓ) se mostram propícias a abordagem parametrizada, a cardinalidade de suas partições se mostrou uma interessante característica. Decidimos abordar a classe (2,1), já que a mesma é a classe onde o problema é NP-Completo com o menor número de partições.

Um Grafo(2,1) é um grafo particionado em 2 conjuntos independentes e 1 clique, portanto ele nos entrega 3 naturais candidatos a parametrização, o tamanho da clique ℓ , o tamanho do menor conjunto independente r_1 e o tamanho do maior conjunto independente r_2 .

3.1 Parametrização pelo tamanho do menor conjunto independente

Em [1] Fellows (et. al) mostrou que o problema de lista coloração é W[1]-hard parametrizado pela treewidth através da transformação do problema da clique multicolorida parametrizada pelo tamanho da clique para tal, nos aproveitaremos dessa transformação para mostrar que:

Teorema 5. Coloração em Grafos(2,1) é W[1]-hard quando parametrizado pelo tamanho do menor conjunto independente.

Demonstração. Observe a seguinte transformação.

O problema da clique multicolorida é conhecidamente W[1] - hard.

Portanto suponha tal G proposto ao problema de clique multicolorida, temos como intenção montar um problema de lista coloração em um grafo G' a partir dele, para tanto seguimos os seguintes passos:

- Para cada cor i presente em G cria-se em G' um vértice v_i (os chamaremos de vértices-cor).
- Para cada vértice u em G colorido com a cor i, adicionamos à lista do vértice-cor v_i em G' uma cor c_u relacionada a esse vértice (as chamaremos de cores-vértice).
- Para cada aresta $e(x,y) \notin E(G)$ onde $x,y \in V(G)$ cria-se em G' um vértice z_e adjacente ao vértice-cor v_i onde i representa as cores de x e y, a lista coloração de z_e será formada por c_x e c_y .

É notável que a treewidth de G' é dada por k, já que a remoção dos vértices-cor leva a um grafo sem arestas. Assim sendo se G possui uma clique multicolorida podemos facilmente colorir G' da seguinte forma:

Ao vértice-cor v_i atribua a cor-vértice c_u onde u é o vértice colorido com a cor i em G. Dessa forma todos os vértices z_e possuem ainda uma cor disponível para sua coloração já que ele representa uma não-aresta em G.

Para a volta observe que uma lista coloração válida em G' implica em uma clique multicolorida em G, isso se dá pois dois vértices x, y coloridos com cores diferentes em G não aparecem em uma lista de algum z_e em G' se e somente se existe uma aresta $e(x,y) \in E(G)$, portanto as cores-vértices escolhidas para os vértices v_i são uma respectivamente uma clique formadas por tais i em G. Mostramos assim que lista coloração parametrizada por treewidth é W[1] - hard.

Sabemos que coloração em Grafos(2,1) é equivalente a lista coloração em um grafo bipartido, portanto nossa tentativa de parametrizar a coloração de (2,1) pelo tamanho do menor conjunto independente é equivalente a parametrizar lista-coloração em bipartidos pelo tamanho do menor conjunto independente, é de pouca dificuldade ver que a treewidth de um grafo bipartido existe em função do menor independente, mostrando assim que coloração em Grafos(2,1) parametrizada pelo tamanho do menor conjunto independente é W[1] - hard.

3.2 Parametrização pelo tamanho do maior independente

Sabemos agora que a parametrização pelo menor independente não nos traz um algoritmo FTP, porém ao analisarmos o comportamento do problema quando parametrizado pelo maior independente vemos que a limitação do tamanho de r2 também limita r1; Tendo tal limitação a utilização do método de árvore de altura limitada se mostra uma abordagem válida, como mostra o seguinte teorema.

Teorema 6. Coloração de Grafos(2,1) é FTP quando parametrizado pelo tamanho do maior conjunto independente.

Demonstração. Observe primeiramente que em um grafo(2,1) o número de cores necessárias para o colorir é sempre ou do tamanho da clique ou uma cor a a mais que o tamanho da clique (no caso em que existem vétices vizinhos entre r1 e r2 que são vizinhos de todos os vértices da clique exceto um). — Perguntar uéverton —

3.3 Parametrização pelo tamanho da clique

Para a demonstração da complexidade parametrizada utilizando $k=\#\ell$ nos voltamos novamente para transformação da clique em um $\operatorname{Grafo}(2,1)$ em listas coloração do restante bipartido, dessa forma nosso problema parametrizado original se torna um novo problema, lista coloração de bipartido parametrizado pelo tamanho da paleta de cores.

Mostraremos no entanto que essa parametrização não é proveitosa já que o problema se mostra equivalente à PreColoring Extension com limite de cores, mostrado ser NP-Completo para grafos bipartidos mesmo quando sua paleta é de tamanho 3[4].

Teorema 7. Lista coloração em bipartidos é NP-Completo

Demonstração. Suponha uma instância P do problema PreColoring Extension e G seu grafo de entrada, sabemos que G possui uma paleta C de cores de tamanho definido, e que existem $v \in V(G)$ que já estão coloridos com uma cor $c \in C$, podemos ver tal configuração como um grafo G' onde os vértices v possuem listas contendo apenas c, e os demais vértices possuem listas de tamanho #C contendo todas as cores, nos levando a um problema de lista coloração Q que tem como entrada G'.

Uma coloração possível para P implica em uma coloração possível para Q, já que nos basta atribuir aos vértices em G' as mesmas cores atribuídas em G. Da mesma forma uma lista coloração possível em Q implica em uma coloração possível em P.

Apesar do tamanho da paleta não ter se mostrado uma escolha adequada, ele levanta novos parametros que são interessantes para o problema de lista coloração em bipartidos, observe pois que, sabemos que Precoloring extension é polinomial se todas as listas tem tamanho 1 ou 2 [5], e NP-Completo se todas tem listas e tamanho 1 à 3 [4], isso levanta duas formas de se abordar o problema, o que acontece quando o número de vértices com listas de tamanho 1 e 2 varia, e o que acontece quando o número de vertices com listas de tamanho 3 varia.

Mostraremos nas próximas seções como se dão tais comportamentos e como eles se relacionam a coloração de $\operatorname{Grafos}(r,\ell)$

3.4 Parametrizado pela quantidade de vértices vizinhos à clique

Nos focaremos nessa seção em grafos(2,1) cuja a clique tenha tamanho 3, já mostrada ser o menor tamanho necessário para que o problema de seja NP-Completo mostrado no teorema 3.3 e em [4]. Portanto um vértice que é vizinho da clique tem necessariamente uma lista contendo uma ou duas cores, já que um vértice não pertencente a clique que tenha lista de tamanho zero deveria fazer parte da clique, em contrapartida um vértice com lista tamanho 3 é um vértice não vizinho a clique.

Portanto essa seção será dividida em 2 casos, um contendo vértices de listas tamanho um, outro contendo vértices com listas de tamanhos dois, e finalizado contendo listas de tamanho 1 e 2.

3.4.1 Apenas vértices com listas tamanho um

Os seguintes teoremas estabelecem a base para a resolução do problema envolvendo os vizinhos da clique.

Teorema 8. Seis vértices com lista de tamanho um são necessários para que lista coloração em bipartido seja Para-NP-completo.

Demonstração.

Teorema 9. Três vértices com lista de tamanho 3 são suficientes para que lista coloração em bipartido seja Para-NP-completo.

Demonstração.

Dado os resultados mostrados nessa seção mostramos que vértices com listas tamanho um não é um parâmetro viável para uma solução.

3.4.2 Vértices com listas de tamanho dois

Mostraremos nessa seção que vértices com listas tamanho dois não são suficientes

3.4.3 Vértices com listas de tamanho um e dois

Problemas relacionados a coloração de (r, ℓ)

Conclusão

Referências

- [1] Fellows, M.; Fomin, F. V.; Lokshtanov, D.; Rosamond, F.; Saurabh, S.; Szeider, S.; Thomassen, C. On the complexity of some colorful problems parameterized by treewidth.
- [2] Jansen, K. Complexity results for the optimum cost chromatic partition problem.
- [3] Jansen, K.; Scheffler, P. Generalized coloring for tree-like graphs.
- [4] Kratochvil, J. Precoloring extension with fixed color bound.
- [5] M.HUJTER; ZS.TUZA.