PREDICTING HOUSE AND PRICES USING ML

Phase 3: Development part;

NAME: RAGULAN.M

NMID:AU513521106028

PROJECT: LOADING AND PRE-PROCESSING DATASET USING ML

CLGNAME: AMCET

- Data cleaning can be applied to filling in missing values, remove noise, resolving inconsistencies, identifying and removing outliers in the data.
- Data integration merges data from multiple sources into a coherent data store, such as a data warehouse.
- Data transformations, such as normalization, may be applied. For example, normalization may improve the accuracy and efficiency of mining algorithms involving distance measurements.
- Data reduction can reduce the data size by eliminating redundant features, or clustering, for instance.

Reference: Data Mining:Concepts and Techniques Second Edition, Jiawei Han, Micheline Kamber.

PS: This is my first kaggle notebook contribution. Hope you like it!!

There are a number of data preprocessing techniques available such as,

- 1. Data Cleaning
- 2. Data Integration
- 3. Data Transformation
- 4. Data Reduction

Data transformation $-2, 32, 100, 59, 48 \longrightarrow -0.02, 0.32, 1.00, 0.59, 0.48$


```
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from operator import itemgetter
from sklearn.experimental import enabl
e_iterative_imputer
from sklearn.impute import IterativeIm
puter
from sklearn.preprocessing import Ordi
nalEncoder
from category_encoders.target_encoder
import TargetEncoder
from sklearn.preprocessing import Stan
dardScaler
from sklearn.ensemble import (Gradient
BoostingRegressor, GradientBoostingCla
ssifier)
import xgboost
```

man product

```
miss_df = find_missing_percent(train)
'''Displays columns with missing value
s'''
display(miss_df[miss_df['PercentMissin
g']>0.0])
print("\n")
print(f"Number of columns with missing
values:{str(miss_df[miss_df['PercentMissing']>0.0].shape[0])}")
```

	ColumnName	TotalMissingVals	PercentMissing
3	LotFrontage	259.0	17.74
6	Alley	1369.0	93.77
25	MasVnrType	8.0	0.55
26	MasVnrArea	8.0	0.55
30	BsmtQual	37.0	2.53
31	BsmtCond	37.0	2.53
32	BsmtExposure	38.0	2.60
33	BsmtFinType1	37.0	2.53
35	BsmtFinType2	38.0	2.60
42	Electrical	1.0	0.07
57	FireplaceQu	690.0	47.26
58	GarageType	81.0	5.55
59	GarageYrBlt	81.0	5.55
60	GarageFinish	81.0	5.55
63	GarageQual	81.0	5.55
64	GarageCond	81.0	5.55
72	PoolQC	1453.0	99.52
73	Fence	1179.0	80.75
74	MiscFeature	1406.0	96.30

1.2 Drop the columns which have more than 70% of missing values

In [5]:

```
drop_cols = miss_df[miss_df['PercentMi
ssing'] >70.0].ColumnName.tolist()
print(f"Number of columns with more th
an 70%: {len(drop_cols)}")
train = train.drop(drop_cols,axis=1)
test = test.drop(drop_cols,axis =1)
miss_df = miss_df[miss_df['ColumnNam
e'].isin(train.columns)]
'''Columns to Impute'''
impute_cols = miss_df[miss_df['TotalMi
ssingVals']>0.0].ColumnName.tolist()
miss_df[miss_df['TotalMissingVals']>0.
0]
```

Number of columns with more than 70%:

	ColumnName	TotalMissingVals	PercentMissing
3	LotFrontage	259.0	17.74
25	MasVnrType	8.0	0.55
26	MasVnrArea	8.0	0.55
30	BsmtQual	37.0	2.53
31	BsmtCond	37.0	2.53
32	BsmtExposure	38.0	2.60
33	BsmtFinType1	37.0	2.53
35	BsmtFinType2	38.0	2.60
42	Electrical	1.0	0.07
57	FireplaceQu	690.0	47.26
58	GarageType	81.0	5.55
59	GarageYrBlt	81.0	5.55
60	GarageFinish	81.0	5.55
63	GarageQual	81.0	5.55
64	GarageCond	81.0	5.55


```
def fit_model(x_train,y_train, model):
    Fits x_train to y_train for the giv
en
    model.
    11 11 11
    model.fit(x_train,y_train)
    return model
'''Xtreme Gradient Boosting Regresso
model = xgboost.XGBRegressor(objective
="reg:squarederror", random_state=42)
model = fit_model(x_train,y_train, mod
el)
'''Predict the outcomes'''
predictions = model.predict(test)
```


DATASET

Here we have web scrapped the Data from 99acres.com website which is one of the leading real estate websites operating in INDIA.

Our Data contains Bombay Houses only.

Dataset looks as follows-

	Price	PricePerSqft	Area_Sqm	Location	Bedrooms	Latitude	Longitude	PricePerSqM
0	13300000	16625	74.32	Kandivali (East)	2	19.210200	72.864891	178885.00
1	9000000	15666	55.74	Ramgad Nagar	1	19.167700	72.949300	168566.16
2	9000000	19148	43.66	Mahakali Caves	1	19.130609	72.873816	206032.48
3	9000000	10588	78.97	Louis Wadi	2	19.126005	72.825052	113926.88
4	100000000	20000	464.51	Barrister Nath Pai Nagar	5	19.075014	72.907571	215200.00

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 840 entries, 0 to 839
Data columns (total 6 columns):
Price 840 non-null int64
Area_Sqm 840 non-null float64
Bedrooms 840 non-null int64
Latitude 840 non-null float64
Longitude 840 non-null float64
PricePerSqM 840 non-null float64
dtypes: float64(4), int64(2)
memory usage: 39.5 KB
```