1° turno Parte A [punti 9]

- 1) Dato un sistema dinamico Σ con funzione di trasferimento $T(s) = \frac{\left[(s+1)^2+9\right]^2}{\left[(s-1)^2+16\right]^3}$ scrivere i modi di Σ : {modi di Σ } =
- 2) Scrivere l'approssimante di Padé del primo ordine del ritardo finito e^{-4s} :
- 3) Dato un sistema Σ con funzione di trasferimento $T(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1}$ stabilire (vero = V, falso = F):
 - a) Σ è asintoticamente stabile:
 - b) Σ è semplicemente stabile:
 - c) Σ è instabile:
 - d) Σ è a fase minima:
 - e) Σ è stabile ingresso-limitato uscita limitata:
- **4)** Ad un sistema con funzione di trasferimento $\frac{5}{(s+1)^2}$ ed in quiete nell'intervallo $(-\infty,0)$ viene applicato l'ingresso $u(t) = 3\sin(t)$ $t \ge 0$. Determinare la corrispondente uscita y(t) per $t \to \infty$:
- 5) Determinare il coefficiente di smorzamento e la pulsazione naturale dei poli dominanti del sistema con funzione di trasferimento $\frac{10}{s^2+3s+9}$: $\delta=\omega_n=$
- 6) Il diagramma polare associato alla funzione di trasferimento $L(s) = \frac{s+2}{s(s+1)^3}$ presenta un asintoto verticale parallelo all'asse immaginario. Determinare l'ascissa reale σ_a di tale asintoto: $\sigma_a = \frac{s+2}{s(s+1)^3}$
- 7) Determinare il segnale f(t) nota la sua trasformata di Laplace $F(s) = \frac{1}{(s+2)^3}$: $f(t) = \frac{1}{(s+2)^3}$
- 8) Determinare la risposta al gradino unitario del sistema con funzione di trasferimento $G(s) = \frac{3}{s^2}$: $g_s(t) =$
- 9) Un sistema dinamico Σ sia descritto dall'eq. diff. Dy + 2y = u dove u è l'ingresso e y l'uscita. Determinare la risposta all'impulso di Σ : g(t) =
- **10)** Sia dato il luogo delle radici di equazione caratteristica $1 + K_1 \frac{1}{(s+4)^5} = 0$ con $K_1 > 0$.
- a) Determinare il centro della stella degli asintoti: $\sigma_a = .$
- b) Le radici dell'eq. caratteristica sono tutte a parte reale negativa $\forall K_1 \in (0, +\infty)$ (vero = V, falso = F, I = non è possibile stabilirlo):

1

- 11) Dato il segnale a tempo discreto x(k), $k \in \mathbb{Z}$ determinare la trasformata zeta del segnale ritardato x(k-4) in funzione delle condizioni iniziali del segnale: $\mathbb{Z}[x(k-4)] =$
- 12) Determinare la trasformata zeta del segnale $k2^k$, ovvero $\mathcal{Z}[k2^k] =$
- 13) Discretizzare il controllore a tempo continuo $C(s) = \frac{10}{s}$ con il metodo di Eulero in avanti (il tempo di campionamento è T = 0.01 sec.): $C_d(z) =$
- 14) Sia dato il sistema a tempo discreto $H(z) = \frac{1}{z \frac{1}{2}}$.
- a) Determinarne il guadagno statico del sistema:
- b) Determinarne la risposta all'impulso:
- 15) Determinare la seguente antitrasformata zeta $Z^{-1}\left[\frac{z}{z-j} + \frac{z}{z+j}\right] =$
- **16)** Sia dato il sistema $G(s) = \frac{1 + \frac{1}{2}s}{(s+6)(s+2)}$ a cui si applica all'ingresso il gradino $5 \cdot 1(t)$ a partire da condizioni iniziali tutte nulle.
- a) Determinare il tempo di assestamento della risposta: $T_a =$
- b) Determinare la sovraelongazione della risposta: S =
- 17) Dato il polinomio $a(s) = s^3 + 2s^2 + s + 4$ determinare il segno della parte reale delle sue radici:
 - $n_+(a) =$
 - $n_{-}(a) =$
 - $n_0(a) =$
- 18) Sia dato il controllore $C(s) = \frac{10+5s}{50s+10}$. Stabilirne il tipo di rete correttrice e determinare i suoi parametri caratteristici:

1. [punti 4,5] Sia assegnato il sistema meccanico vibrante di figura

caratterizzato da due molle di costante elastica k e due corpi di massa m accoppiati da uno smorzatore viscoso di coefficiente b. Il corpo di sinistra sia soggetto ad una forza f e le posizioni delle due masse siano descritte dalle variabili x_1 e x_2 (quando il sistema è in quiete $x_1 = x_2 = 0$).

- a) Determinare le equazioni differenziali che descrivono il moto delle due masse.
- b) Determinare la funzione di trasferimento del sistema orientato dall'ingresso f all'uscita x_1 .
- **2.** [punti 4,5] Determinare l'evoluzione forzata y(t) in risposta alla rampa $u(t) = 2t \cdot 1(t)$ di un sistema con funzione di trasferimento $G(s) = \frac{1}{(s+1)^4}$. Determinare inoltre il grado massimo di continuità di y(t) su \mathbb{R} .

Parte C

3. [punti 4,5] Dato un sistema retroazionato con guadagno di anello

$$L(s) = 50 \frac{(s+1)^2}{s^3(s+10)}$$

- 1. Tracciare il diagramma polare di $L(j\omega)$ determinando le eventuali intersezioni con l'asse reale.
- 2. Studiare la stabilità del sistema retroazionato con il Criterio di Nyquist.
- 4. [punti 4,5] Si tracci il luogo delle radici della seguente equazione caratteristica:

$$1 + K_1 \frac{s - 1}{s(s + 2)^4} = 0$$

per $K_1 > 0$ (luogo diretto) e per $K_1 < 0$ (luogo inverso) determinando in entrambi i casi gli angoli di partenza del luogo, gli asintoti e le eventuali radici doppie.

Parte D

5. [punti 4,5] Sia dato lo schema di sistema di controllo di figura

dove $P(s) = \frac{4}{s+2}$. Determinare un controllore C(s) di ordine minimo ed il blocco algebrico $F \in \mathbb{R}$ affinché

il sistema di controllo soddisfi le seguenti specifiche:

- 1. reiezione infinita asintotica al disturbo sinusoidale $d(t) = 4\sin(3t)$,
- 2. sistema retroazionato con poli dominanti in $-2 \pm j$,
- 3. costante di posizione $K_p = 4$,
- 4. in condizioni nominali l'errore a regime in risposta ad un gradino del riferimento sia nullo.

6. [punti 4,5] Sia dato il sistema a tempo discreto definito dall'equazione

$$16y(k+13)-12y(k+12)+y(k+10)=16u(k+11)+16u(k+10), k \in \mathbb{Z}$$

ed orientato da u(k) (ingresso) a y(k) (uscita).

- 1) Determinare la funzione di trasferimento del sistema.
- 2) Studiare la stabilità alle perturbazioni del sistema.