

BINOMIAL THEOREM

THEORY AND EXERCISE BOOKLET

CONTENTS

S.NO.	TOPIC	PAGE NO.

r — — — — — — — — — — — — — — — — — — —		
JEE Syllabus :		
Binomial theorem for a positive integral index, properties of binomial coefficients		

BINOMIAL THEOREM Page #3

A. **BINOMIAL THEOREM**

The formula by which any positive integral power of a binomial expression can be expanded in the form of a series is known as BINOMIAL THEOREM. If $x, y \in R$ and $n \in N$, then

$$(x + y)^n = {^nC_0}x^n + {^nC_1}x^{n-1}y + {^nC_2}x^{n-2}y^2 + \dots + {^nC_r}x^{n-r}y^r + \dots + {^nC_n}y^n = \sum_{r=0}^n {^nC_r}x^{n-r}y^r.$$

This theorem can be proved by induction.

Observations:

Sol.

- (a) The number of terms in the expansion is (n + 1) i.e. one more than the index.
- **(b)** The sum of the indices of x & y in each term is n.
- (c) The binomial coefficients of the terms (${}^{n}C_{0}$, ${}^{n}C_{1}$) equidistant from the beginning and the end are equal.

Ex.1 The value of
$$\frac{(18^3 + 7^3 + 3.18.7.25)}{3^6 + 6.243.2 + 15.81.4 + 20.27.8 + 15.9.16 + 6.3.32 + 64}$$
 is

Sol. The numerator is of the form
$$a^3 + b^3 + 3ab$$
 (a + b) = (a + b)³ where a = 18, and b = 7
∴ Nr = (18 + 7)³ = (25)³. Denominator can be written as
$$3^6 + {}^6C_1 \cdot 3^5 \cdot 2^1 + {}^6C_2 \cdot 3^4 \cdot 2^2 + {}^6C_3 \cdot 3^3 \cdot 2^3 + {}^6C_4 \cdot 3^2 \cdot 2^4 + {}^6C_5 \cdot 3 \cdot 2^5 + {}^6C_6 \cdot 2^6 = (3 + 2)^6 = 5^6 = (25)³ ∴ \frac{Nr}{Dr} = \frac{(25)^3}{(25)^3} = 1$$

- (a) **GENERAL TERM**: The general term or the (r + 1)th term in the expansion of (x + y)ⁿ is given by $T_{r+1} = {}^{n}C_{r}X^{n-r}. y^{r}$
- Find: (a) The coefficient of x^7 in the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{1/3}$
 - **(b)** The coefficient of x^{-7} in the expansion of $\left(ax \frac{1}{bx^2}\right)^{11}$

Also, find the relation between a and b, so that these coefficients are equal.

Sol. (a) In the expansion of
$$\left(ax^2 + \frac{1}{bx}\right)^{11}$$
, the general terms is $T_{r+1} = {}^{11}C_r(ax^2)^{11-r}\left(\frac{1}{bx}\right)^r = {}^{11}C_r \cdot \frac{a^{11-r}}{b^r} \cdot x^{22-3r}$

putting 22 - 3r = 7
$$\Rightarrow$$
 3r = 15 \Rightarrow r = 5 \therefore T₆ = 11 C₅ $\frac{a^6}{b^5}$.x⁷

Hence the coefficient of
$$x^7$$
 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ is $^{11}C_5$ a^6b^{-5} .

(b) In the expansion of $\left(ax - \frac{1}{bx^2}\right)^{11}$, general terms is $T_{r+1} = {}^{11}C_r(ax)^{11-r} \left(\frac{-1}{bx^2}\right)^r = (-1)^r {}^{11}C_r \frac{a^{11-r}}{b^r}.x^{11-3r}$

putting
$$11 - 3r = -7 \implies 3r = 18 \implies r = 6$$
: $T_7 = (-1)^6.11 C_6 \frac{a^5}{b^6} \cdot x^{-7}$

Hence the coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$ is ${}^{11}C_6a^5b^{-6}$

Also given coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11} = \text{coefficient of } x^{-7} \text{ in } \left(ax - \frac{1}{bx^2}\right)^{11}$

- \Rightarrow $^{11}C_5a^6b^{-5}=^{11}C_6a^5b^{-6}$ \Rightarrow ab=1 (\therefore $^{11}C_5=$ $^{11}C_6$). Which is a required relation between a and b.
- **Ex.3** Find the number of rational terms in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$.
- **Sol.** The general term in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$ is $T_{r+1} = {}^{1000}C_r \left(9^{\frac{1}{4}}\right)^{1000-r} \left(8^{\frac{1}{6}}\right)^r = {}^{1000}C_r \ 3^{\frac{1000-r}{2}}2^{\frac{r}{2}}$

The above term will be rational if exponent of 3 and 2 are integers. i.e. $\frac{1000-r}{2}$ and $\frac{r}{2}$ must be integers

The possible set of values of r is {0, 2, 4,1000}. Hence, number of rational terms is 501

- (b) MIDDLE TERM : The middle term(s) in the expansion of $(x + y)^n$ is (are)
 - (i) If n is even, there is only one middle term which is given by $T_{(n+2)/2} = {}^{n}C_{n/2}$. $x^{n/2}$. $y^{n/2}$
 - (ii) If n is odd, there are two middle terms which are $T_{(n+1)/2}$ & $T_{[(n+1)/2]+1}$
- **Ex.4** Find the middle term in the expansion of $\left(3x \frac{x^3}{6}\right)^9$
- **Sol.** The number of terms in the expansion of $\left(3x \frac{x^3}{6}\right)^9$ is 10 (even). So there are two middle terms.

i.e. $\left(\frac{9+1}{2}\right)$ th and $\left(\frac{9+3}{2}\right)$ th two middle terms. They are given by T₅ and T₆

$$\therefore T_5 = T_{4+1} = {}^9C_4(3x)^5 \left(-\frac{x^3}{6}\right)^4 = {}^9C_43^5x^5 \cdot \frac{x^{12}}{6^4} = \frac{9.8.7.6}{1.2.3.4} \cdot \frac{3^5}{2^4.3^4}x^{17} = \frac{189}{8}x^{17}$$

and
$$T_6 = T_{5+1} = {}^9C_5(3x)^4 \left(-\frac{x^3}{6}\right)^5 = -{}^9C_43^4.x^4\frac{x^{15}}{6^5} = \frac{-9.8.7.6}{1.2.3.4}.\frac{3^4}{2^5.3^5}x^{19} = -\frac{21}{16}x^{19}$$

(c) TERM INDEPENDENT OF x:

Term independent of x contains no x; Hence find the value of r for which the exponent of x is zero.

- **Ex.5** The term independent of x in $\left[\sqrt{\frac{x}{3}} + \sqrt{\left(\frac{3}{2x^2}\right)}\right]^{10}$ is
- **Sol.** General term in the expansion is ${}^{10}C_r \left(\frac{x}{3}\right)^{\frac{r}{2}} \left(\frac{3}{2x^2}\right)^{\frac{10-r}{2}} = {}^{10}C_r x^{\frac{3r}{2}-10} \cdot \frac{3^{5-r}}{2^{\frac{10-r}{2}}}$

For constant term, $\frac{3r}{2} = 10 \Rightarrow r = \frac{20}{3}$ which is not an integer. Therefore, there will be no constant term.

(d) NUMERICALLY GREATEST TERM: To find the greatest term in the expansion of $(x + a)^n$.

We have $(x + a)^n = x^n \left(1 + \frac{a}{x}\right)^n$; therefore, since x^n multiplies every term in $\left(1 + \frac{a}{x}\right)^n$, it will be sufficient to find the greatest term in this later expansion. Let the T_r and T_{r+1} be the r^{th} and $(r+1)^{th}$

terms in the expansion of $\left(1+\frac{a}{x}\right)^n$ then $\frac{T_{r+1}}{T_r} = \frac{{}^n C_r \left(\frac{a}{x}\right)^r}{{}^n C_{r-1} \left(\frac{a}{x}\right)^{r-1}} = \frac{n-r+1}{r} \frac{a}{x}$. Let numerically, T_{r+1} be the

greatest term in the above expansion. Then $T_{r+1} \ge T_r \Rightarrow \frac{T_{r+1}}{T_r} \ge 1 \Rightarrow \frac{n-r+1}{r} \left| \frac{a}{x} \right| \ge 1 \Rightarrow r \le \frac{(n+1)}{\left(\left| \frac{x}{a} \right| + 1 \right)}$

Substituting values of n and x, we get $r \le m + f$ or $r \le m$ where m is a positive integer and f is fraction such that 0 < f < 1. In the first case T_{m+1} is the greatest term, while in the second case T_m and T_{m+1} are the greatest terms and both are equal.

- **Ex.6** Find numerically the greatest term in the expansion of $(3 5x)^{11}$ when x = 1/5
- **Sol.** Since $(3 5x)^{11} = 3^{11} \left(1 \frac{5x}{3}\right)^{11}$. Now in the expansion of $\left(1 \frac{5x}{3}\right)^{11}$,

 $\text{we have } \frac{T_{r+1}}{T_r} = \frac{(11-r+1)}{r} \left| -\frac{5x}{3} \right| = \left(\frac{12-r}{r} \right) \left| -\frac{5}{3} \times \frac{1}{5} \right| \\ = \left(\frac{12-r}{r} \right) \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\therefore \ x = \frac{1}{5} \right) \\ = \left(\frac{12-r}{r} \right) \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3r} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ \left(\frac{1}{3} \right) \\ = \left(\frac{12-r}{3} \right) \\ \left(\frac{1}{3} \right) \\ \left(\frac{1$

 $\therefore \quad \frac{T_{r+1}}{T_r} \ge 1 \qquad \Rightarrow \quad \frac{12-r}{3r} \ge 1 \qquad \Rightarrow \quad 4r \le 12 \qquad \Rightarrow \quad r \le 3 \quad \therefore \quad r = 2, 3$

so, the greatest terms are T_{2+1} and T_{3+1} . \therefore Greatest term (when r=2)

 $=3^{11} \mid T_{2+1} \mid =3^{11} \left| {}^{11}C_2 \left(-\frac{5}{3}x \right)^2 \right| =3^{11} \left| {}^{11}C_2 \left(-\frac{5}{3} \times \frac{1}{5} \right)^2 \right| \\ =3^{11} \left| \frac{11.10}{1.2} \times \frac{1}{9} \right| =55 \times 3^9 \\ \qquad \left(\therefore \ x = \frac{1}{5} \right)^2 \left| \frac{1}{3} \times \frac{1}{3} \right| =3^{11} \left| \frac{11.10}{1.2} \times \frac{1}{9} \right| =55 \times 3^9 \\ \qquad \left(\frac{1}{3} \times \frac{$

and greatest term (when r=3) = $3^{11} |T_{3+1}| = 3^{11} |^{11} C_3 \left(-\frac{5}{3}x\right)^3 | = 3^{11} |^{11} C_3 \left(-\frac{5}{3} \times \frac{1}{5}\right)^3 | = 3^{11} |\frac{11.10.9}{1.2.3} \times \frac{-1}{27}| = 55 \times 3^9$

From above we say that the value of both greatest terms are equal.

- C. If $(\sqrt{A} + B)^n = I + f$, where I & n are positive integers, n being odd and 0 < f < 1, then (I + f). $f = K^n$ where $A B^2 = K > 0$ & $\sqrt{A} B < 1$. If n is an even integer, then $(I + f)(1 f) = k^n$
- **Ex.7** If $(6\sqrt{6} + 14)^{2n+1} = [N] + F$ and F = N [N]; where [*] denotes greatest integer, then NF is equal to
- **Sol.** Since $(6\sqrt{6} + 14)^{2n+1} = [N] + F$. Let us assume that $f = (6\sqrt{6} 14)^{2n+1}$; where $0 \le f < 1$.

$$\text{Now, } \left[\text{N} \right] + \text{F} - \text{f} = \left(6\sqrt{6} + 14 \right)^{2n+1} \\ - \left(6\sqrt{6} - 14 \right)^{2n+1} \\ = 2 \left[\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n} (14) + \frac{2n+1}{6} C_3 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right] \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n} (14) + \frac{2n+1}{6} C_2 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right) \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n} (14) + \frac{2n+1}{6} C_2 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right) \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14) + \frac{2n+1}{6} C_2 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right) \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14) + \frac{2n+1}{6} C_2 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right) \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14) + \frac{2n+1}{6} C_2 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right) \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14) + \frac{2n+1}{6} C_2 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right) \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14) + \frac{2n+1}{6} C_2 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right) \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14) + \frac{2n+1}{6} C_2 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right) \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14) + \frac{2n+1}{6} C_2 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right) \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14) + \frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right) \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14) + \frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14)^3 + \ldots \right) \\ + \left(\frac{2n+1}{6} C_1 (6\sqrt{6})^{2n-2} (14)^{2n-2} (14$$

 \Rightarrow [N] + F - f = even integer.

Now 0 < F < 1 and 0 < f < 1 so -1 < F - f < 1 and F - f is an integer so it can only be zero

Thus NF = $(6\sqrt{6} + 14)^{2n+1}$ $(6\sqrt{6} - 14)^{2n+1} = 20^{2n+1}$.

D. SOME RESULTS ON BINOMIAL COEFFICIENTS

(a)
$$C_0 + C_1 + C_2 + \dots + C_n = 2^n$$

(b)
$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

(c)
$$C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = {}^{2n}C_n = \frac{(2n)!}{n!n!}$$

(d)
$$C_0$$
. $C_r + C_1$. $C_{r+1} + C_2$. $C_{r+2} + \dots + C_{n-r} = \frac{(2n)!}{(n+r)(n-r)!}$

Remember: $(2n) ! = 2^n . n! [1.3.5....(2n - 1)]$

Ex.8 If $(1 + x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$ then show that the sum of the products of the C_i 's

taken two at a time represents by : $\sum_{0 \le i \le n} \sum_{j \in I} C_j C_j$ is equal to $2^{2n-1} - \frac{2n!}{2 \cdot n! \cdot n!}$

Sol. Since $(C_0 + C_1 + C_2 + \dots + C_{n-1} + C_n)^2 = C_0^2 + C_1^2 + C_2^2 + \dots + C_{n-1}^2 + C_n^2 + \dots + C_n^2$

$$2(C_0C_1+C_0C_2+C_0C_3+...+C_0C_n+C_1C_2+C_1C_3+C_1C_n+C_2C_3+C_2C_4+...+C_2C_n+.....+C_{n-1}C_n)$$

$$\Rightarrow (2^{n})^{2} = {}^{2n}C_{n} + 2\sum_{0 \le i < j \le n} C_{i}C_{j} \text{. Hence } \sum_{0 \le i < j \le n} C_{i}C_{j} = 2^{2n-1} - \frac{2n!}{2 \cdot n! \cdot n!}$$

- **Ex.9** If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ then prove that $\sum_{0 \le i < j \le n} (C_i + C_j)^2 = (n-1)^{2n} C_n + 2^{2n}$

E. BINOMIAL THEOREM FOR NEGATIVE OR FRACTIONAL INDICES

If
$$n \in Q$$
, then $(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots \infty$ provided $|x| < 1$.

Note:

- (i) When the index n is a positive integer the number of terms in the expansion of $(1 + x)^n$ is finite i.e. (n + 1) & the coefficient of successive terms are : nC_0 , nC_1 , nC_2 ,, nC_n
- (ii) When the index is other than a positive integer such as negative integer or fraction, the number of terms in the expansion of $(1 + x)^n$ is infinite and the symbol nC_r cannot be used to denote the coefficient of the general term.
- (iii) Following expansion should be remembered (|x| < 1)

(a)
$$(1 + x)^{-1} = 1 - x + x^2 - x^3 + x^4 - \dots \infty$$

(b)
$$(1-x)^{-1} = 1 + x + x^2 + x^3 + x^4 + \dots \infty$$

(c)
$$(1 + x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \dots \infty$$

(d)
$$(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots \infty$$

(iv) The expansions in ascending powers of x are only valid if x is 'small'. If x is large i.e. |x| > 1 then we may find it convenient to expand in powers of 1/x, which then will be small.

F. APPROXIMATIONS

$$(1+x)^n = 1+nx+\frac{n(n-1)}{1.2}x^2+\frac{n(n-1)(n-2)}{1.2.3}x^3+.....$$

If x < 1, the terms of the above expansion go on decreasing and if x be very small, a stage may be reached when we may neglect the terms containing higher powers of x in the expansion. Thus, if x be so small that its squares and higher powers may be neglected then $(1 + x)^n = 1 + nx$, approximately, This is an approximate value of $(1 + x)^n$

Ex.10 If x is so small such that its square and higher powers may be neglected then find the approximate

value of
$$\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{(4+x)^{1/2}}$$

Sol.
$$\frac{(1-3x)^{1/2}+(1-x)^{5/3}}{(4+x)^{1/2}} = \frac{1-\frac{3}{2}x+1-\frac{5x}{3}}{2\left(1+\frac{x}{4}\right)^{1/2}} = \frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1+\frac{x}{4}\right)^{-1/2} = \frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1-\frac{x}{8}\right)$$

$$= \frac{1}{2} \left(2 - \frac{x}{4} - \frac{19}{6} x \right) = 1 - \frac{x}{8} - \frac{19}{12} x = 1 - \frac{41}{24} x$$

Ex.11 The value of cube root of 1001 upto five decimal places is

Sol.
$$(1001)^{1/3} = (1000 + 1)^{1/3} = 10 \left(1 + \frac{1}{1000} \right)^{1/3} = 10 \left\{ 1 + \frac{1}{3} \cdot \frac{1}{1000} + \frac{1/3(1/3 - 1)}{2!} \cdot \frac{1}{1000^2} + \dots \right\}$$

= $10 \left\{ 1 + 0.0003333 - 0.00000011 + \dots \right\} = 10.00333$

Ex.12 The sum of
$$1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \dots \infty$$
 is

Sol. Comparing with
$$1 + nx + \frac{n(n-1)}{2!}x^2 +$$
 $\Rightarrow nx = 1/4$...(i)

$$\& \frac{n(n-1)x^2}{2!} = \frac{1.3}{4.8} \text{ or } \frac{nx(nx-x)}{2!} = \frac{3}{32} \Rightarrow \frac{1}{4} \left(\frac{1}{4} - x\right) = \frac{3}{16} \Rightarrow \left(\frac{1}{4} - x\right) = \frac{3}{4} \Rightarrow x = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2} \text{ ...(ii) } \{by (i)\}$$

putting the value of x in (i) \Rightarrow n(-1/2) = 1/4 \Rightarrow $n = -\frac{1}{2}$

$$\therefore$$
 sum of series = $(1 + x)^n = (1 - 1/2)^{-1/2} = (1/2)^{-1/2} = \sqrt{2}$

G. EXPONENTIAL SERIES

- (a) e is an irrational number lying between 2.7 & 2.8. Its value correct upto 10 places of decimal is 2.7182818284.
- **(b)** Logarithms to the base 'e' are known as the Napierian system, so named after Napier, their inventor. They are also called **Natural Logarithm.**

(c)
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty$$
; where x may be any real or complex number & $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$

(d)
$$a^x = 1 + \frac{x}{1!} \ln a + \frac{x^2}{2!} \ln^2 a + \frac{x^3}{3!} \ln^3 a + \dots \infty$$
 where $a > 0$

(e)
$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \infty$$

H. LOGARITHMIC SERIES

(a)
$$\ln (1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \infty$$
 where $-1 < x \le 1$

(b)
$$ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} + \dots \infty$$
 where $-1 \le x < 1$

Remember : (i)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ell n 2$$
 (ii) $e^{\ell n \times} = x$ (iii) $\ell n = 0.693$ (iv) $\ell n = 0.693$