COMP30024 Artificial Intelligence Project 1 Report

team member: XuLin Yang(904904), Liguo Chen()

search problem formulation

- State: player pieces and obstacle pieces' location on board
- Action: player can move, jump or exit one player piece per turn defined in specification
- Goal Test: no player's piece on board
- Path Cost: 1 cost per action

search algorithms

terminology

- b: branching factor for search tree
- d: length for the solution path in search tree
- δ: relative error in heuristic = |h*(s) h(s)|
- dist_{SLD}: straight line distance in hexe

a* search

- · time complexity
 - \circ best case \in O(d) if we disregard the complexity of the heuristic calculation
 - average case $\in O(b^{\delta d})$ (from lecture)
 - worst case ∈ O(b^d) (because it is uniform cost search now)
- space complexity $\in O(b^{\delta d})$ (because "keep all nodes in memory")
- · completeness
 - Yes, as we are guaranteed in the specification "at least one winning sequence of actions exists"
- · optimality
 - Yes, as long as h(s) ≤ h*(s) ∀ s ∈ state space

heuristic function

- h(state) = $\sum_{piece \in player} (\lceil \text{dist}_{SLD}(\text{piece}) / 2 \rceil + 1)$
- · admissibility:
 - Discussing Red player is similar for Green and Blue player as they are parallel cases. So we can only discuss Red player case at here.
 - Fastest path for a single piece on board to reach in goal hexe is that the piece can jump to goal hexe as much as possible and then exit. i.e. h(piece to goal hexe) = # jump action = $\lceil \frac{number\ of\ move\ action}{2} \rceil$. Where #move action can be measured by SLD distance
 - : # jump action is the ideal(lower bound of) length of path for the piece to reach the goal hexe as described above
 - ∴h*(piece) ≥ # jump action + 1. Note: plus 1 for exit action
 - \therefore h*(state) $\geq \sum_{piece \in player}$ h(piece) = $\sum_{piece \in player}$ ($\lceil \text{dist}_{SLD}$ (piece) / 2 \rceil + 1)

problem feature impact

search tree

- branching factor
- depth

other features of the input impact on search algorithm

- time complexity
- space complexity