EEE109 Assignment 2

- 1. The parameters of the MOSFET in the circuit shown in Figure 1. Parameters are $V_{TN}=0.8~{
 m V}, K_n=0.85~{
 m mA/V^2},$ and $\lambda=0.02~{
 m V^{-1}}$
 - (a) Determine R_S and R_D such that $I_{DQ}=0.1~\mathrm{mA}$ and $V_{DSQ}=5.5~\mathrm{V}$ [10 marks]
 - (b) Find the small-signal transistor parameters g_m , and r_o . [6 marks]
 - (c) Draw the small-signal equivalent circuit [6 marks]
 - (d) Determine the small-signal voltage gain. [8 marks]

Figure 1

- 2. Consider the circuit show in Figure 2. The transistor parameters are $\beta=100$ and $V_A = 100$ V. Assume $V_{BE}(\text{on}) = 0.7$ V and $V_T = 0.026$ V.
 - (a) Determine I_{CQ} and V_{CEQ} .

[12 marks]

(b) Draw the small-signal equivalent circuit.

[4 marks]

(c) Determine the input resistance R_i

[5 marks]

(d) Determine the small-signal voltage gain A_{ν}

[9 marks]

Figure 2

- 3. For the circuit in Figure 3, the transistor parameters are $\beta=120$, $V_{BE}(\text{on})=0.7$ V, and $V_A=50$ V. Let $R_{TH}=0.1(1+\beta)R_E$.
 - (a) Design a bias-stable circuit such that $I_{EQ}=1.5~\mathrm{mA}$ [10 marks]
 - (b) Using the results of part (a), find the small-signal mid-band voltage gain

[14 marks]

(c) Determine the output resistance R_o

[10 marks]

(d) What is the lower 3 dB corner frequency?

[6 marks]

Figure 3