1 | Export

https://www.overleaf.com/project/606b2fa8be363f9005d8ce03

2 | Exercise 7

Suppose $T \in \mathcal{L}(V)$ has a diagonal matrix A with respect to some basis of V and that $\lambda \in \mathbb{F}$. Prove that λ appears on the diagonal of A precisely $E(\lambda, T)$ times.

3 | **Proof**

We will show that for each eigenvalue λ , there are at least $E(\lambda,T)$ occurrences of that eigenvalue and at most $E(\lambda,T)$ occurrences.

Suppose first that $\dim E(\lambda,T)=m$ and v_1,\ldots,v_m is a basis of $E(\lambda,T)$. In the diagonal matrix, the column corresponding to each of the m eigenvectors is comprised of the coefficients of

$$Tv_i = \lambda v_i$$

The coefficients of an eigenvector linear combination are just the eigenvalue, so the associated eigenvalue (λ) appears once for each eigenvector. Thus, λ appears on the diagonal at least m times.

Suppose then that λ is on the diagonal m times. Each of those occurrences corresponds to where the diagonal matrix sends a (linearly independent) basis eigenvector, which implies that the basis of V has at least m eigenvectors corresponding to λ . These m eigenvectors can be extended to a basis of $E(\lambda,T)$, implying that $\dim E(\lambda,T) \geq m$.