

COMPATH: เว็บแอปพลิเคชันสำหรับนักศึกษาวิศวกรรมคอมพิวเตอร์เพื่อปรับปรุงการพัฒนาตนเองและเรซูเม COMPATH: WEB APPLICATION FOR CPE STUDENTS TO IMPROVE THEIR SELF-DEVELOPMENT AND RESUME

> 63070501025 NIWATCHAI WANGTRAKULDEE 63070501038 นายนภัทร วารีดี 63070501039 NARITH THANOMSUP

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR
THE DEGREE OF BACHELOR OF ENGINEERING (COMPUTER ENGINEERING)
FACULTY OF ENGINEERING
KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI
2023

Compath: เว็บแอปพลิเคชันสำหรับนักศึกษาวิศวกรรมคอมพิวเตอร์เพื่อปรับปรุงการพัฒนาตนเองและเรซูเม Compath: Web application for CPE students to improve their self-development and resume

### 63070501025 Niwatchai Wangtrakuldee 63070501038 นายนภัทร วารีดี 63070501039 Narith Thanomsup

A Project Submitted in Partial Fulfillment
of the Requirements for
the Degree of Bachelor of Engineering (Computer Engineering)
Faculty of Engineering
King Mongkut's University of Technology Thonburi
2023

| Project Committe | ee                               |                  |
|------------------|----------------------------------|------------------|
|                  | <br>(ผศ.ดร. ขจรพงษ์ อัครจิตสกุล) | Project Advisor  |
|                  | (Asst.Prof. Committee1, Ph.D.)   | Committee Member |
|                  | (Asst.Prof. Committee2, Ph.D.)   | Committee Member |
|                  | (Asst.Prof. Committee3, Ph.D.)   | Committee Member |

Copyright reserved

Project Title Compath: เว็บแอปพลิเคชันสำหรับนักศึกษาวิศวกรรมคอมพิวเตอร์เพื่อปรับปรุงการพัฒนาตน

เองและเรซูเม

Compath: Web application for CPE students to improve their self-development

and resume

Credits 3

Member(s) 63070501025 Niwatchai Wangtrakuldee

63070501038 นายนภัทร วารีดี

63070501039 Narith Thanomsup

Project Advisorผศ.ดร. ขจรพงษ์ อัครจิตสกุลProgramBachelor of EngineeringField of StudyComputer EngineeringDepartmentComputer Engineering

Faculty Engineering

Academic Year 2023

#### **Abstract**

In a multihop ad hoc network, the interference among nodes is reduced to maximize the throughput by using a smallest transmission range that still preserve the network connectivity. However, most existing works on transmission range control focus on the connectivity but lack of results on the throughput performance. This paper analyzes the per-node saturated throughput of an IEEE 802.11b multihop ad hoc network with a uniform transmission range. Compared to simulation, our model can accurately predict the per-node throughput. The results show that the maximum achievable per-node throughput can be as low as 11% of the channel capacity in a normal set of  $\alpha$  operating parameters independent of node density. However, if the network connectivity is considered, the obtainable throughput will reduce by as many as 43% of the maximum throughput.

**Keywords**: Multihop ad hoc networks / Topology control / Single-Hop Throughput

หัวข้อปริญญานิพนธ์ หัวข้อปริญญานิพนธ์บรรทัดแรก

หัวข้อปริญญานิพนธ์บรรทัดสอง

หน่วยกิต 3

ผู้เขียน นายสมศักดิ์ คอมพิวเตอร์

นางสาวสมศรี คอมพิวเตอร์2 นางสาวสมปอง คอมพิวเตอร์3

 อาจารย์ที่ปรึกษา
 รศ.ดร.ที่ปรึกษา วิทยานิพนธ์

 หลักสูตร
 วิศวกรรมศาสตรบัณฑิต

 สาขาวิชา
 วิศวกรรมคอมพิวเตอร์

 ภาควิชา
 วิศวกรรมศาสตร์

ปีการศึกษา 2566

#### บทคัดย่อ

เซ็นเซอร์ เอ็กซ์เพรสรองรับคอนเซปต์สหัสวรรษเมจิก อิ่มแปร้ เฟรซชี่ ชาร์ปเซ็งเม้งคลาสสิก แพตเทิร์น แอลมอนด์ เพลชว้อยก๊วน ชาร์ดีนซื้ เนิร์สเซอรีอีสต์ สเตเดียมเพียบแปร์โอ้ยแคมปัส จัมโบ้ซ็อตแมคเคอเรลอึ๋ม สตริง แมกกาซีนสตริงผ้าห่ม ฮัลโหล อิม รอยัลตี้

คำสำคัญ: การชุบเคลือบด้วยไฟฟ้า / การชุบเคลือบผิวเหล็ก / เคลือบผิวรังสี

### กิตติกรรมประกาศ

ขอบคุณอาจารย์ที่ปรึกษา กรรมการ พ่อแม่พี่น้อง และเพื่อนๆ คนที่ช่วยให้งานสำเร็จ ตามต้องการ

# สารบัญ

|                                                          | หน้า |
|----------------------------------------------------------|------|
| ABSTRACT                                                 | ii   |
| บทคัดย่อ                                                 | iii  |
| กิตติกรรมประกาศ                                          | iv   |
| สารบัญ                                                   | v    |
| สารบัญตาราง                                              | vii  |
| สารบัญรูปภาพ                                             | viii |
| สารบัญสัญลักษณ์                                          | ix   |
| สารบัญคำศัพท์ทางเทคนิคและคำย่อ                           | ×    |
| บทที่ 1 บทนำ                                             | 1    |
| 1.1 ที่มาและความสำคัญ                                    |      |
| 1.2 วัตถุประสงค์                                         | 2    |
| 1.3 ขอบเขตของโครงงาน                                     | 2    |
| 1.4 ประโยชน์ที่คาดว่าจะได้รับ                            | 2    |
| 1.5 ตารางการดำเนินงาน                                    | 2    |
| บทที่ 2 ทฤษฎีความรู้และงานที่เกี่ยวข้อง                  | 3    |
| 2.1 อัลกอริทึมในการแปลผลภาษา                             | 3    |
| 2.1.1 Term Frequency Inverse Document Frequency (TF-IDF) | 3    |
| 2.2 อัลกอริทึมในการแยกประเภทเรซูเม                       | 3    |
| 2.2.1 อัลกอริทีม I K-Nearest Neighbors (KNN)             | 3    |
| 2.2.2 อัลกอริทีม II Naive Bayes Classifier               | 4    |
| บทที่ 3 วิธีการดำเนินงาน                                 | 5    |
| 3.1 ข้อกำหนดและความต้องการของระบบ                        | 5    |
| 3.2 สถาปัตยกรรมระบบ                                      | 5    |
| 3.3 Hardware Module 1                                    | 5    |
| 3.3.1 Component 1                                        | 5    |
| 3.3.2 Logical Circuit Diagram                            | 5    |
| 3.4 Hardware Module 2                                    | 5    |
| 3.4.1 Component 1                                        | 5    |
| 3.4.2 Component 2 3.5 Path Finding Algorithm             | 5    |
| 3.6 Database Design                                      | 5    |
| 3.7 UML Design                                           | 5    |
| 3.8 GUI Design                                           | 5    |
| 3.9 การออกแบบการทดลอง                                    | 5    |
| 3.9.1 ตัวชี้วัดและปัจจัยที่ศึกษา                         | 5    |
| 3.9.2 รูปแบบการเก็บข้อมูล                                | 5    |
| บทที่ 4 ผลการดำเนินงาน                                   | 6    |
| 4.1 ประสิทธิภาพการทำงานของระบบ                           | 6    |
| 4.2 ความพึงพอใจการใช้งาน                                 | 6    |
| 4.3 การวิเคราะห์ข้อมูลและผลการทดลอง                      | 6    |

| บทที่ 5 บทสรุป            | 7  |
|---------------------------|----|
| 5.1 สรุปผลโครงงาน         | 7  |
| 5.2 ปัญหาที่พบและการแก้ไข | 7  |
| 5.3 ข้อจำกัดและข้อเสนอแนะ | 7  |
| หนังสืออ้างอิง            | 8  |
| APPENDIX                  | 9  |
| A ชื่อภาคผนวกที่ 1        | 10 |
| B ชื่อภาคผบวกที่ 2        | 12 |

# สารบัญตาราง

| ตารางที |               | หน้า |
|---------|---------------|------|
|         |               |      |
| 3.1     | test table x1 | 5    |

# สารบัญรูป

| รูปที่ |                                                         | หน้า |
|--------|---------------------------------------------------------|------|
| 1.1    | This is the figure x1 ทดสอบ จาก https://www.google.com  | 1    |
| 2.1    | สมการการคำนวณ Term-Frequency (TF)                       | 3    |
| 2.2    | สมการการคำนวณ Inverse Document Frequency (IDF)          | 3    |
| 2.3    | ลักษณะการทำงานของ K-Nearest Neighbors                   | 4    |
| 2.4    | สมการความน่าจะเป็นของ Bayes หรือ Bayesian               | 4    |
| A.1    | This is the figure x11 ทดสอบ จาก https://www.google.com | 10   |
| B.1    | This is the figure x11 ทดสอบ จาก https://www.google.com | 12   |

# สารบัญสัญลักษณ์

| SYMBOL    |                  | UNIT        |
|-----------|------------------|-------------|
| $\alpha$  | Test variable    | ${\rm m}^2$ |
| $\lambda$ | Interarival rate | jobs/       |
|           |                  | second      |
| $\mu$     | Service rate     | jobs/       |
|           |                  | second      |

## สารบัญคำศัพท์ทางเทคนิคและคำย่อ

Test = Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam non condimentum

purus. Pellentesque sed augue sapien. In volutpat quis diam laoreet suscipit.

Curabitur fringilla sem nisi, at condimentum lectus consequat vitae.

MANET = Mobile Ad Hoc Network

### บทที่ 1 บทนำ

หัวข้อต่าง ๆ ในแต่ละบทเป็นเพียงตัวอย่างเท่านั้น หัวข้อที่จะใส่ในแต่ละบทขึ้นอยู่กับโปรเจคของนักศึกษาและอาจารย์ที่ปรึกษา

### 1.1 ที่มาและความสำคัญ

ตัวอย่างการใส่อ้างอิงที่มา -> [1] ถ้าต้องการใส่แหล่งอ้างอิงมากกว่า 1 ให้ทำดังนี้ -> [1, 2] มนุษย์มีความสามารถในการประดิษฐ์คิดค้น มาตั้งแต่สมัยโบราณ ย้อนกลับไปตั้งแต่สมัยยุคปฏิวัติอุตสาหกรรม ที่มนุษย์ได้คิดค้นเครื่องจักรไอน้ำขึ้นมาแล้ว เพื่อเป็นเครื่องทุ่นแรงในการ ผลิตสิ่งต่างๆ กาลเวลาผ่านพลังไอน้ำก็แปรเปลี่ยนเป็นพลังงานไฟฟ้า จนต่อมาก็ได้มีสิ่งประดิษฐ์ที่พลิกประวัติศาสตร์โลกเกิดขึ้น นั่นก็คือ เครื่องคอมพิวเตอร์ การมาของคอมพิวเตอร์นั่นช่วยให้เครื่องจักรสามารถควบคุมแบบอัตโนมัติได้ แม้คอมพิวเตอร์จะมีประโยชน์เป็นอย่าง มาก แต่ก็ปฏิเสธไม่ได้ว่าบางอย่างการควบคุมโดย มนุษย์นั้นมีความจำเป็นมากกว่า ซึ่งในปัจจุบันการควบคุมคอมพิวเตอร์ของมนุษย์ ไม่ได้ ใช้อวัยวะเพียงแค่มือสองมือ แต่ยังมีการนำอวัยวะอื่นภายในร่างกายมาใช้ควบคุมคอมพิวเตอร์ด้วย ยกตัวอย่างเช่น Amazon Alexa เป็น ลำโพงที่เราสามารถออกคำสั่งเสียงเพื่อควบคุมการทำงานต่างๆ ไม่ว่าจะเป็น การตั้งเวลา, สร้างกิจกรรมในปฏิทิน, การแจ้งเตือน, การตรวจ เช็คข่าวหรือแม้กระทั่งการสั่งการให้ เปิด-ปิด หลอดไฟภายในห้องได้ อีกทั้งยังมี Kinect Xbox ที่เป็นอุปกรณ์ที่ใช้ตรวจจับการเคลื่อนไหว แล้วนำไปควบคุมตัวละครภายในวีดีโอเกม จนทำให้เกิดความคิดที่จะใช้สมองควบคุมคอมพิวเตอร์โดยตรง โดยหวังผลให้เกิดประสิทธิภาพ ที่ดีขึ้นกว่าการใช้อวัยวะในการควบคุม จึงเป็นจุดเริ่มต้นของการจินตนาการการเคลื่อนไหว (Motor Imagery) ซึ่งเป็นการจินตนาการว่าเรา ้ต้องการจะทำอะไร โดยที่เราไม่ได้ทำสิ่งนั้นจริง เมื่อเราจินตนาการสมองของเราจะส่งสัญญาณคลื่นไฟฟ้าสมองออกมา ซึ่งสามารถตรวจวัด ได้ด้วยเครื่องวัดสัญญาณไฟฟ้าสมอง (EEG) แต่ด้วยความยุ่งยากของอุปกรณ์เครื่องวัดสัญญาณคลื่นไฟฟ้าสมองและมีค่าใช้จ่ายที่ค่อนข้างสูง ทางกลุ่มเราจึงเล็งเห็นว่า อยากที่จะพัฒนาอุปกรณ์เครื่องวัดสัญญาณคลื่นไฟฟ้าสมอง (EEG) โดยมีการลดจำนวนขั้ววัดสัญญาณคลื่นไฟฟ้า สมองให้น้อยลง และมีการพัฒนาการแยกประเภทของสัญญาณให้ดีขึ้น เพื่อการทำงานและควบคุมได้หลากหลายรูปแบบขึ้น ตามอุปกรณ์ เครื่องวัดสัญญาณคลื่นไฟฟ้าสมองที่เราใช้ หากผลงานเสร็จสมบูรณ์ จะช่วยให้ผู้คนสามารถเข้าถึงและใช้ง่ายอุปกรณ์เครื่องวัดสัญญาณคลื่น ไฟฟ้าสมองได้ง่ายขึ้น จากการที่ความยุ่งยากและค่าใช้จ่ายที่ของอุปกรณ์ลดลง และสามารถนำไปประยุกต์ใช้ในการใช้งานต่างๆได้ เช่น การ ฟื้นฟูสมรรถภาพทางสมองสำหรับนักกีฬา, การฟื้นฟูสมรรถภาพในผู้ป่วยที่ได้รับผลกระทบจากโรคหลอดเลือดสมอง, การควบคุมอุปกรณ์ ช่วยเหลือสำหรับผู้พิการ หรือการเล่นเกมส์ เป็นต้น

วิธีการใส่ลิ้งค์จากเว็บไซต์ -> http://www.cpe.kmutt.ac.th

[2]



รูปที่ 1.1 This is the figure x1 ทดสอบ จาก https://www.google.com

Explain the motivations of your works.

• What are the problems you are addressing?

- Why they are important?
- What are the limitations of existing approaches?

You may combine this section with the background section.

### 1.2 วัตถุประสงค์

ระบุสิ่งที่จะทำในโครงการ ซึ่งจะใช้สำหรับการประเมินว่าโครงงานทำสำเร็จหรือไม่

#### 1.3 ขอบเขตของโครงงาน

Explain the scope of your works.

- What are the problems you are addressing?
- Why they are important?
- What are the limitations of existing approaches?

### 1.4 ประโยชน์ที่คาดว่าจะได้รับ

โครงงานนี้จะเป็นประโยชน์กับใคร ยังไง ทั้งในเชิงรูปธรรมและนามธรรม ในปัจจุบันหรือในอนาคตล้านำไป ต่อยอด

### 1.5 ตารางการดำเนินงาน

## บทที่ 2 ทฤษฎีความรู้และงานที่เกี่ยวข้อง

หัวข้อต่าง ๆ ในแต่ละบทเป็นเพียงตัวอย่างเท่านั้น หัวข้อที่จะใส่ในแต่ละบทขึ้นอยู่กับโปรเจคของนักศึกษาและอาจารย์ที่ปรึกษา ตัวอย่างการใส่อ้างอิงที่มา -> [1] ถ้าต้องการใส่แหล่งอ้างอิงมากกว่า 1 ให้ทำดังนี้ -> [1, 2] อธิบายทฤษฎี องค์ความรู้หลักที่ใช้ในงาน งานวิจัยที่นำมาใช้ในโครงงาน หรือเปรียบเทียบผลิตภัณฑ์ที่มีอยู่ในท้องตลาด[2] Explain theory, algorithms, protocols, or existing research works and tools related to your work.

#### 2.1 อัลกอริทึมในการแปลผลภาษา

#### 2.1.1 Term Frequency Inverse Document Frequency (TF-IDF)

เป็นอัลกอริทึมที่ผสมผสานกันระหว่าง Term-Frequency (TF) และ Inverse Document Frequency (IDF) ซึ่งเป็น เทคนิคพื้นฐานเทคนิค หนึ่งที่ใช้ในการวิเคราะห์ค้นหาคำสำคัญของข้อมูลในลักษณะของข้อความ

• Term-Frequency (TF) โดยจะคำนวณเป็นอัตราส่วนของจำนวนคำนั้น ๆ ต่อจำนวนคำทั้งหมดในเอกสาร เพื่อหาว่าคำนั้นมี ความถี่เท่าไหร่

รูปที่ 2.1 สมการการคำนวณ Term-Frequency (TF)

• Inverse Document Frequency (IDF) โดยจะคำนวณความสำคัญของแต่ละคำโดยคำที่พบได้บ่อยจะมีค่า IDF ที่ต่ำ ซึ่งบ่งบอก ว่าคำเหล่านั้นไม่สามารถดึงเอาจุดเด่นของเอกสารออกมาได้ดี

$$IDFig($$
ของคำคำหนึ่ง $ig)=\logigg(rac{ ext{
m e}$ ำนวนเอกสารทั้งหมคที่ใช้พิจารณา $igg( ext{
m e}$ จำนวนเอกสารที่มีคำคำนั้นปรากฏอยู $igg)$ 

รูปที่ 2.2 สมการการคำนวณ Inverse Document Frequency (IDF)

• คำนวณค่า TF-IDF โดยเราจะนำ TF กับ IDF มาคำนวณและถ้าหากคำไหนที่มาค่า TF-IDF ที่สูง จะถูกมองว่าเป็นคำที่มีความสำคัญ สูง (กล่าวถึงบ่อย แต่ก็ไม่ได้ปรากฏอยู่หลายเอกสารเกินไป) และมีแนมโน้มจะเป็นใจความสำคัญของเอกสาร

$$TFIDF = TF * IDF$$

### 2.2 อัลกอริทึมในการแยกประเภทเรซูเม

#### 2.2.1 อัลกอริทึม I K-Nearest Neighbors (KNN)

เป็นอัลกอริทีมสำหรับการจัดกลุ่มข้อมูล (Classfication) ซึ่งอยู่ในกลุ่มของการเรียนรู้แบบมีผู้สอน (Supervised Learning) หลักการ ทำงาน คือการจัดกลุ่มโดยอิงถึงความใกล้เคียงของข้อมูล เพื่อคาดเดาหรือจำแนกประเภทข้อมูลใหม่ โดยหลักการทำงานสามารถสรุปได้ ดังนี้

- 1. เลือกค่า K : กำหนดค่า K ที่ต้องการ ซึ่งเป็นจำนวนของข้อมูลที่ใกล้ที่สุดที่จะใช้ในการตัดสินใจ
- 2. คำนวณระยะทาง : ใช้ระยะทางยูคลิเดียน (Euclidean distance) เพื่อคำนวณหาความคล้ายคลึงระหว่างข้อมูล
- 3. หาข้อมูลที่ใกล้ที่สุด : หลังจากคำนวณระยะทางระหว่างข้อมูลทดสอบกับข้อมูลในชุดข้อมูลการฝึกฝน เราจะเลือกข้อมูล K รายการ ที่มีระยะทางน้อยที่สุด
- 4. คำนวณผลโหวต : เมื่อเราได้ข้อมูล K รายการที่ใกล้ที่สุดแล้ว เราจะนับจำนวนรายการในแต่ละกลุ่มหรือประเภทข้อมูล และกำหนด กลุ่มหรือประเภทข้อมูลของข้อมูลทดสอบตามจำนวนที่มากที่สุดใน K รายการนั้น
- 5. ทำนายผลลัพธ์ : สุดท้ายเราก็จะได้กลุ่มข้อมูลที่ถูกแบ่งออกมาพร้อมใช้ในการทำนายต่อไป



รูปที่ 2.3 ลักษณะการทำงานของ K-Nearest Neighbors

#### 2.2.2 อัลกอริทึม II Naive Bayes Classifier

Naive Bayes Classification เป็นหนึ่งใน Classification Model ใช้ในการแบ่งกลุ่มหรือหาเหตุการณ์ที่จะเกิดขึ้นโดยการอิงทฤษฎีความ น่าจะเป็นของ Bayes หรือ Bayesian ซึ่งจะคำนวณว่าจะเกิดเหตุการณ์นั้นหรือไม่โดยจะเพิ่มโอกาสในการเกิดเหตุการณ์เข้าไปด้วย โดยมัก จะใช้ในการวิเคราะห์ข้อมูลที่มีความต่อเนื่องของเหตุการณ์ (Dependent Event) เช่น โอกาสในการเกิดโรคในกลุ่มประชากรที่เราสนใจ ซึ่ง จำเป็นจะต้องอาศัยการคำนวณผ่านสูตรดังนี้ และกำหนดให้

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

รูปที่ 2.4 สมการความน่าจะเป็นของ Bayes หรือ Bayesian

P(A|B) คือความน่าจะเป็นในการเกิดเหตุการณ์ A โดยมี B เป็น Condition

P(B|A) คือความน่าจะเป็นในการเกิดเหตุการณ์ B โดยมี A เป็น Condition

P(A) คือโอกาสในการเกิดเหตุการณ์ A จากเหตุการณ์ทั้งหมด

P(B) คือโอกาสในการเกิดเหตุการณ์ B จากเหตุการณ์ทั้งหมด

### บทที่ 3 วิธีการดำเนินงาน

หัวข้อต่าง ๆ ในแต่ละบทเป็นเพียงตัวอย่างเท่านั้น หัวข้อที่จะใส่ในแต่ละบทขึ้นอยู่กับโปรเจคของนักศึกษาและอาจารย์ที่ปรึกษา ตัวอย่างการใส่อ้างอิงที่มา -> [1] ถ้าต้องการใส่แหล่งอ้างอิงมากกว่า 1 ให้ทำดังนี้ -> [1, 2] Explain the design (how you plan to implement your work) of your project. Adjust the section titles below to suit the types of your work. Detailed physical design like circuits and source codes should be placed in the appendix.

#### 3.1 ข้อกำหนดและความต้องการของระบบ

### 3.2 สถาปัตยกรรมระบบ

#### **ตารางที่ 3.1** test table x1

| SYMBOL    |                   | UNIT   |
|-----------|-------------------|--------|
| $\alpha$  | Test variable     | $m^2$  |
| $\lambda$ | Interarrival rate | jobs/  |
|           |                   | second |
| $\mu$     | Service rate      | jobs/  |
|           |                   | second |

- 3.3 Hardware Module 1
- 3.3.1 Component 1
- 3.3.2 Logical Circuit Diagram
- 3.4 Hardware Module 2
- 3.4.1 Component 1
- 3.4.2 Component 2
- 3.5 Path Finding Algorithm
- 3.6 Database Design
- 3.7 UML Design
- 3.8 GUI Design
- 3.9 การออกแบบการทดลอง
- 3.9.1 ตัวชี้วัดและปัจจัยที่ศึกษา
- 3.9.2 รูปแบบการเก็บข้อมูล

### บทที่ 4 ผลการดำเนินงาน

หัวข้อต่าง ๆ ในแต่ละบทเป็นเพียงตัวอย่างเท่านั้น หัวข้อที่จะใส่ในแต่ละบทขึ้นอยู่กับโปรเจคของนักศึกษาและอาจารย์ที่ปรึกษา ตัวอย่างการใส่อ้างอิงที่มา -> [1] ถ้าต้องการใส่แหล่งอ้างอิงมากกว่า 1 ให้ทำดังนี้ -> [1, 2]

You can title this chapter as **Preliminary Results** ผลการดำเนินงานเบื้องต้น or **Work Progress** ความก้าวหน้าโครงงาน for the progress reports. Present implementation or experimental results here and discuss them. ใส่เฉพาะหัวข้อที่เกี่ยวข้องกับ งานที่ทำ

- 4.1 ประสิทธิภาพการทำงานของระบบ
- 4.2 ความพึงพอใจการใช้งาน
- 4.3 การวิเคราะห์ข้อมูลและผลการทดลอง

# บทที่ 5 บทสรุป

หัวข้อต่าง ๆ ในแต่ละบทเป็นเพียงตัวอย่างเท่านั้น หัวข้อที่จะใส่ในแต่ละบทขึ้นอยู่กับโปรเจคของนักศึกษาและอาจารย์ที่ปรึกษา This chapter is optional for proposal and progress reports but is required for the final report.

### 5.1 สรุปผลโครงงาน

สรุปว่าโครงงานบรรลุตามวัตถุประสงค์ที่ตั้งไว้หรือไม่ อย่างไร

## 5.2 ปัญหาที่พบและการแก้ไข

State your problems and how you fixed them.

### 5.3 ข้อจำกัดและข้อเสนอแนะ

ข้อจำกัดของโครงงาน What could be done in the future to make your projects better.

#### หนังสืออ้างอิง

- 1. Hypersense, 2020, "Is the virtual celebrity industry still on the rise in 2020?," Available at https://arvrjourney.com/is-the-virtual-celebrity-industry-still-on-the-rise-in-2020-60cfd2b2c315, [Online; accessed 26-August-2020].
- 2. Ingo Lütkebohle, 2008, "BWorld Robot Control Software ทดสอบ," Available at http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software-ทดสอบ/, [Online; accessed 19-July-2008].
- 3. I. Norros, 1995, "On the use of Fractional Brownian Motion in the Theory of Connectionless Networks," IEEE J. Select. Areas Commun., vol. 13, no. 6, pp. 953–962, Aug. 1995.
- 4. H.S. Kim and N.B. Shroff, 2001, "Loss Probability Calculations and Asymptotic Analysis for Finite Buffer Multiplexers," IEEE/ACM Trans. Networking, vol. 9, no. 6, pp. 755–768, Dec. 2001.
- 5. D.Y. Eun and N.B. Shroff, 2001, "A Measurement-Analytic Framework for QoS Estimation Based on the Dominant Time Scale," in **Proc. IEEE INFOCOM'01**, Anchorage, AK, Apr. 2001.

ภาคผนวก A

ชื่อภาคผนวกที่ 1

#### ใส่หัวข้อตามความเหมาะสม

This is where you put hardware circuit diagrams, detailed experimental data in tables or source codes, etc...

#### รูปที่ A.1 This is the figure x11 ทดสอบ จาก https://www.google.com

This appendix describes two static allocation methods for fGn (or fBm) traffic. Here,  $\lambda$  and C are respectively the traffic arrival rate and the service rate per dimensionless time step. Their unit are converted to a physical time unit by multiplying the step size  $\Delta$ . For a fBm self-similar traffic source, Norros [3] provides its EB as

$$C = \lambda + (\kappa(H)\sqrt{-2\ln\epsilon})^{1/H} a^{1/(2H)} x^{-(1-H)/H} \lambda^{1/(2H)}$$
(A.1)

where  $\kappa(H) = H^H (1-H)^{(1-H)}$ . Simplicity in the calculation is the attractive feature of (A.1).

The MVA technique developed in [4] so far provides the most accurate estimation of the loss probability compared to previous bandwidth allocation techniques according to simulation results. Consider a discrete-time queueing system with constant service rate C and input process  $\lambda_n$  with  $\mathbb{E}\{\lambda_n\}=\lambda$  and  $\mathrm{Var}\{\lambda_n\}=\sigma^2$ . Define  $X_n\equiv\sum_{k=1}^n\lambda_k-Cn$ . The loss probability due to the MVA approach is given by

$$\varepsilon \approx \alpha e^{-m_x/2}$$
 (A.2)

where

$$m_x = \min_{n \ge 0} \frac{((C - \lambda)n + B)^2}{\text{Var}\{X_n\}} = \frac{((C - \lambda)n^* + B)^2}{\text{Var}\{X_{n^*}\}}$$
(A.3)

and

$$\alpha = \frac{1}{\lambda\sqrt{2\pi\sigma^2}} \exp\left(\frac{(C-\lambda)^2}{2\sigma^2}\right) \int_C^\infty (r-C) \exp\left(\frac{(r-\lambda)^2}{2\sigma^2}\right) dr \tag{A.4}$$

For a given  $\varepsilon$ , we numerically solve for C that satisfies (A.2). Any search algorithm can be used to do the task. Here, the bisection method is used.

Next, we show how  $\mathrm{Var}\{X_n\}$  can be determined. Let  $C_\lambda(l)$  be the autocovariance function of  $\lambda_n$ . The MVA technique basically approximates the input process  $\lambda_n$  with a Gaussian process, which allows  $\mathrm{Var}\{X_n\}$  to be represented by the autocovariance function. In particular, the variance of  $X_n$  can be expressed in terms of  $C_\lambda(l)$  as

$$Var\{X_n\} = nC_{\lambda}(0) + 2\sum_{l=1}^{n-1} (n-l)C_{\lambda}(l)$$
(A.5)

Therefore,  $C_{\lambda}(l)$  must be known in the MVA technique, either by assuming specific traffic models or by off-line analysis in case of traces. In most practical situations,  $C_{\lambda}(l)$  will not be known in advance, and an on-line measurement algorithm developed in [5] is required to jointly determine both  $n^*$  and  $m_x$ . For fGn traffic,  $\mathrm{Var}\{X_n\}$  is equal to  $\sigma^2 n^{2H}$ , where  $\sigma^2 = \mathrm{Var}\{\lambda_n\}$ , and we can find the  $n^*$  that minimizes (A.3) directly. Although  $\lambda$  can be easily measured, it is not the case for  $\sigma^2$  and H. Consequently, the MVA technique suffers from the need of prior knowledge traffic parameters.

ภาคผนวก B

ชื่อภาคผนวกที่ 2

#### ใส่หัวข้อตามความเหมาะสม

รูปที่ B.1 This is the figure x11 ทดสอบ จาก https://www.google.com

Next, we show how  $\mathrm{Var}\{X_n\}$  can be determined. Let  $C_\lambda(l)$  be the autocovariance function of  $\lambda_n$ . The MVA technique basically approximates the input process  $\lambda_n$  with a Gaussian process, which allows  $\mathrm{Var}\{X_n\}$  to be represented by the autocovariance function. In particular, the variance of  $X_n$  can be expressed in terms of  $C_\lambda(l)$  as

$$Var\{X_n\} = nC_{\lambda}(0) + 2\sum_{l=1}^{n-1} (n-l)C_{\lambda}(l)$$
(B.1)

#### Add more topic as you need

Therefore,  $C_{\lambda}(l)$  must be known in the MVA technique, either by assuming specific traffic models or by off-line analysis in case of traces. In most practical situations,  $C_{\lambda}(l)$  will not be known in advance, and an on-line measurement algorithm developed in [5] is required to jointly determine both  $n^*$  and  $m_x$ . For fGn traffic,  $\mathrm{Var}\{X_n\}$  is equal to  $\sigma^2 n^{2H}$ , where  $\sigma^2 = \mathrm{Var}\{\lambda_n\}$ , and we can find the  $n^*$  that minimizes (A.3) directly. Although  $\lambda$  can be easily measured, it is not the case for  $\sigma^2$  and H. Consequently, the MVA technique suffers from the need of prior knowledge traffic parameters.