- Good morning examiners and audiances
- My name is
- My thesis topic is

Introduction

- Know distance and direction of the obstacle
- Sensors
 - Lidar etc requires 2D scanning
 - 3D flash lidar: expensive
 - Imaging Sensor: inexpensive, small, many options
- Configuration: bearing only, requires >2 frames
 - Binocular: stereoscopic, like human eye
 - Monocular: optical flow
- Computer Algorithm
 - Machine vision: process images
 - SLAM:
 - *Data fusion *estimate UAV trajectory * landmark position

Problem Statement

- Targetted Application
 - Small Mid size UAV,
 - Low Altitude, Terrain Following
 - High resolution geological survey
- Scenario
 - Digital Elevation Map → Flight Path Planning
 - Low resolution
 - UAV detect discrete threat and fly around

Problem Statement

- How far away ?
- Based on GeoSurvII specs
- tree height 20 meter
- flying at minimum altitude
- Obstacle clearance 10 meters
 - 300 meters at 60 knots
 - 500 meters at 100 knots

Problem Statement

- Solution:
- 1. Capture image sequence of natural scene
- 2. Extract visual feature from image, assocated physical point is Landmark
- 3. Combine feature tracking and UAV motion
- 4. Get UAV trajectory and sparse terrain map

Contribution 1

- Real Aerial Video and Navigation Data
- Test flight conducted by SGL
- SUAS carried sensors, towed by helicopter
- Helicopter at 100m above ground, SUAS at 60-70 above ground
- Test Site, mountain north of Gatineau

Contribution 1 – Sensors and equipment

- Sensors on SUAS
 - Wide angle 6mm monocular camera 30fps
 - Narrow angle binocular cameras
 - GPS antenna
 - GS-111M INS/GPS navigation unit, with external fluxgate
 - Data sent through BNC and RS485
- Helicopter
 - CDAC
 - Monitors for operator

Contribution 1 – flight video

- CCD camera has 480x720 resolution, digitized to 480x720 pixels
- GPS second timestamped

Contribution 1- camera calibration

- Calibration target checkerboard
- 20 views are fed to calibration algorithm
- Results

Contribution 2 — CC-EKF-SLAM

- Input:
 - Monocular image sequence
 - Velocity, acceleration, SUAS orientation
- Algorithm:
 - EKF based
 - SLAM
- Output:
 - UAV Trajectory
 - Landmark locations

Contribution 2 — CC-EKF-SLAM

- Algorithm features:
 - Inverse depth parameterization
 - All parameters referenced to camera frame
 - Deletion and addition of landmark for continuous operation

Contribution 3 – Test flight result

- Two pieces of video were processed by CC-EKF-SLAM
 - Natural Scene
 - Airport Landing Scene
 - For manual correspondence of estimated landmark and ground truth

Contribution 3 - Convergence

- Most Landmark converged in 20-30 frames
- Some drift away
 - Landmark located on hill top
 - Visual tracking algo allows for small error to accommodate camera view change and noise
- Landmark 13
 - Original feature at hill top
 - End feature at mountain behind lake

Contribution 3 – SUAS localization

- Estimated result in general agree with ground truth
- X axis position has good accuracy
- Y and Z axis has more noise
- Orientation estimates has some offset error
- Y and Z position error correlated with orientation

Contribution 3 – Landmark mapping

- Average landmark distance ~ 1000m
 - CC-EKF-SLAM able to map object at 1000m
- Landmark with ID > 40 has offset error
 - They are not initialized at 1st frame
 - Error analysis shows the source of these error
- Airport landing scene,
 - Offset on all axis
 - Landmark located on corner of image
 - Lens distortion

Contribution 3 – Publication

Result of test flight were published in 2012
IEEE I2MTC

Contribution 4 – Error Analysis

- Analyze algorithm performance under several scenario
- Oscillatory motion of UAV
 - Flight data show oscillatory rotation on pitch and heading
- Error in camera calibration
 - Camera calibration result is different with change in input images
 - Estimate has error, and what's the impact?
- Sensor resolution
 - For future sensor selection

Contribution 4 – Oscillatory rotation

- CC-EKF-SLAM sensitive to oscillatory rotation
- Example: Oscillatory rotation around Y
 - Localization: Oscillating and diverging error on X and Z
 - Mapping:
 - Result of localization error
 - Offset error for landmark added after 1st frame
 - Error caused by coordinates transformation from camera frame to world frame

Contribution 4 – Calibration error and sensor resolution

- Error in Cx, Cy, (coordinate of optical axis on image)
 - Impact both localization and mapping
 - Error model by 1st order polynomial
- Error in fx, fy, (scaling factor from world to image)
 - No impact on localization,
 - Mapping error model by 1st order polynomial

Contribution 4 – Calibration error and sensor resolution

- Lens Distortion
 - Diverging error in localization
 - Mapping error proportional to landmark distance to optical axis on image
- Sensor resolution
 - -> 1080x1440 for targeted distance

Conclusion

Recommendation for future work

Acknowledgement

- Professor Goubran and Professor Straznicky
 - Great guidance
- SGL
 - Conducting test flight and provide data
- Ontario Centers of Excellence and NSERC
 - Financial Support
- Family
 - Support over the years of study