SDS 387, Fall 2024 Homework 4

Due November 14, by midnight on Canvas.

1. (For this problem you may want to consult Chapter 5 of Bach's book). Let Φ be a $n \times d$ marix and Y an n-dimensional vector. We want to use gradient descent to solve the least squares problem and find a solution

$$\widehat{\beta} \in \operatorname{argmin}_{\beta \in \mathbb{R}^d} \frac{1}{2} \|Y - \Phi \beta\|^2.$$

When Φ is of full column rank, we saw in class that the gradient descent iterations converge to the OLS estimator from any starting point. Assume instead that rank(Φ) = n < d. Show that gradient descent initialized at 0 will converge to the min-norm solutions

$$\widehat{\beta}_{\min-\text{norm}} = \Phi^+ Y = (\Phi^\top \Phi)^+ \Phi^\top Y = \operatorname{argmin} \{ \|\beta\| \colon Y = \Phi \beta \} .$$

Bonus. Show that the same result is true when gradient descent is initialized at any point in the row span of Φ .

- 2. Assume a linear regression model with fixed (i.e., deterministic) covariate matrix Φ and denote with $\beta^* \in \mathbb{R}^d$ the true regression parameters. Let $\widehat{\beta}$ be the OLS. Let $c \in \mathbb{R}^d$ be a non-zero vector. Show that the best linear unbiased estimator of $c^{\top}\beta^*$ is $c^{\top}\widehat{\beta}$. (To be clear, you have to show that, among all estimators of the form $a^{\top}Y$, where Y is the vector of responses, such that $\mathbb{E}[a^{\top}Y] = c^{\top}\beta^*$, $c^{\top}\widehat{\beta}$ has the smallest variance).
- 3. Consider the min-norm least squares estimator $\widehat{\beta}_{MN} = \Phi^+ Y$, where $Y \in \mathbb{R}^n$ and Φ is a $n \times d$ design matrix of rank r. You may want to think of R as d < n but this is not necessary; in particular, the results below works also when r = n < d. Let U be the $n \times r$ matrix containing the left singular vectors of Φ (spanning the column space of Φ , an r-dimensional linear subspace of \mathbb{R}^n). Using the expression of $\widehat{\beta}_{MN}$ show that the vector of fitted values is still the orthogonal projection of Y onto the column space of Φ , i.e.

$$\Phi \widehat{\beta}_{MN} = \sum_{i=1}^{r} u_i \langle u_i, Y \rangle. \tag{1}$$

Now consider instead the ridge estimator

$$\widehat{\beta}_{\lambda} = \operatorname{argmin}_{\beta \in \mathbb{R}^d} \frac{1}{n} \|Y - \Phi \beta\|^2 + \lambda \|\beta\|^2,$$

where λ is a positive parameter. As we know, $\widehat{\beta}_{\lambda}$ is unique, even if Φ is rank deficient. Show that

$$\Phi \widehat{\beta}_{\lambda} = \sum_{i=1}^{r} u_i \langle u_i, Y \rangle \frac{\sigma_i^2}{\sigma_i^2 + \lambda}$$
 (2)

where σ_i is the *i*th singular value of Φ . This shows that

$$\widehat{\beta}_{\mathrm{MN}} = \lim_{\lambda \downarrow 0} \widehat{\beta}_{\lambda}.$$

Compare (1) and (2) and interpret.

- 4. Recall that Loewner order is a partial order on the set of positive semidefinite (psd) matrices. Give an example of two psd matrices A and B such that $A \not\preceq B$ and $A \not\succeq B$.
- 5. Exercise 3.2 on page 54 of Bach's book.
- 6. Exercise 3.5 on page 57 of Bach's book.
- 7. Exercise 3.6 on page 60 of Bach's book.
- 8. Quadratic forms.
 - (a) Let X be a d dimensional random vector with mean μ and covariance matrix Σ . Let A a $d \times d$ symmetric matrix. Show that $\mathbb{E}[X^{\top}AX] = \operatorname{tr}(A\Sigma) + \mu^{\top}A\mu$.
 - (b) If $X \sim N_d(\mu, \Sigma)$ and \mathcal{P} is an orthogonal projection matrix in \mathbb{R}^d , show that $X^\top \mathcal{P} X \sim \chi_r^2(\mu^\top \mathcal{P} \mu/2)$, where r is the rank of \mathcal{P} . You can use these facts: if $X \sim N_d(\mu, I_d)$ then $||X||^2 \sim \chi_d(||\mu||^2/2)$ and, for any $r \times d$ matrix A with $\operatorname{rank}(A) = r \leq d$, $AZ \sim N_r(A\mu, A\Sigma A^\top)$.