PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/13, C07K 16/46, 16/00, C12N A1 5/10, A61K 39/395, G01N 33/577

WO 97/38102 (11) International Publication Number:

(43) International Publication Date:

16 October 1997 (16.10.97)

(21) International Application Number:

PCT/EP97/01609

(22) International Filing Date:

26 March 1997 (26.03.97)

(30) Priority Data:

4 April 1996 (04.04.96) 96302412.0 (34) Countries for which the regional or international application was filed:

EP

AT et al.

(71) Applicant (for AU BB CA GB IE IL KE LC LK LS MN MW NZ SD SG SZ TT UG only): UNILEVER PLC [GB/GB]: Unilever House, Blackfriars, London EC4P 4BQ (GB).

(71) Applicant (for all designated States except AU BB CA GB IE IL KE LC LK LS MN MW NZ SD SG SZ TT UG): UNILEVER N.V. [NL/NL]; Weena 455, NL-3013 AL Rotterdam (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DAVIS, Paul, James [GB/GB]; The Hawthoms, Pavenham Road, Felmersham, Bedford MK43 7EX (GB). VAN DER LOGT, Cornelis, Paul, Erik [NL/GB]; 1 Bluebell Rise, Peverel Manor Estate, Rushden, Northampton NN10 OTU (GB). VERHOEYEN, Martine, Elisa [BE/GB]; 1 Tintagel Close, Manor Farm Estate, Rushden, Northampton NN10 0QN (GB).

(74) Agent: EVANS, Jacqueline, Gail, Victoria; Unilever plc, Patent Division, Colworth House, Sharnbrook, Bedford MK44 1LQ (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: MULTIVALENT AND MULTISPECIFIC ANTIGEN-BINDING PROTEIN

(57) Abstract

A multivalent antigen-binding protein comprises a first polypeptide comprising, in series, three or more variable domains of an antibody heavy chain and a second polypeptide comprising, in series, three of more variable domains of an antibody light chain, said first and second polypeptides being linked by association of the respective heavy chain and light chain variable domains, each associated variable domain pair forming an antigen binding site. Methods for their production and uses thereof, in particular for therapeutic and diagnostic applications, are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	RS	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	PI	Pipland	LT	Lithuania	SK	Slovakia
AT	Anstria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Amstralia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbeijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece	•	Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IR.	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	П	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KR	Kenya	NL	Netherlands	ΥU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwc
a	Câte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		•
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liochtenstein	SD	Sodan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
i			•				

- 1 -

MULTIVALENT AND MULTISPECIFIC ANTIGEN-BINDING PROTEIN

FIELD OF THE INVENTION

The present invention relates to multivalent and multispecific antigen binding proteins, methods for their production and uses thereof. In particular, the invention relates to binding proteins comprising polypeptides which associate to form multivalent or multispecific multimers.

BACKGROUND OF THE INVENTION

Antibodies are protein molecules having a structure based 15 on a unit comprising four polypeptides, two identical heavy chains and two identical light chains, which are covalently linked together by disulphide bonds. Each of these chains is folded in discrete domains. The Cterminal regions of both heavy and light chains are conserved in sequence and are called the constant 20 regions, comprising one or more so-called C-domains. N-terminal regions of the heavy and light chains, also known as V-domains, are variable in sequence and determine the specificity of the antibody. The regions in the variable domains of the light and heavy chains (V. 25 and V, respectively) responsible for antigen binding activity are known as the hypervariable or complementarity determining regions (CDR). Natural antibodies have at least two identical antigen-binding 30 sites defined by the association of the heavy and light chain variable regions.

It is known that proteolytic digestion of an antibody can lead to the production of antibody fragments. Such fragments, or portions, of the whole antibody can exhibit antigen binding activity. An example of a binding fragment is an Fab fragment which comprises a light chain

- 2 -

associated with the V_H and C_{H1} domains of a heavy chain. The bivalent $F(ab^1)_2$ fragment comprises two such F_{ab} fragments connected together via the hinge region, giving two antigen binding sites. F_v fragments, consisting only of the V-domains of the heavy and light chains associated with each other may also be obtained. These F_v fragments are monovalent for antigen binding. Smaller fragments such as individual V-domains (domain antibodies or dABs, Ward et al Nature, 341, 544 (1989) and individual CDR's (Williams et al, Proc. Natl. Acad. Sci, USA, 86, 5537 (1989)) have also been shown to retain the binding characteristics of the parent antibody although generally most naturally occurring antibodies need both a V_H and V_L to retain full immunoreactivity.

15

20

25

30

10

5

Antibody fragments comprising V_H and V_L domains associated together to have antigen binding activity have also been described. The single chain F_v fragment (scFv) comprises a V_H domain linked to a V_L domain by a flexible polypeptide linker such that the domains can associate to form an antigen binding site (see, for example, EP-B-0281604, Enzon Labs Inc).

Microbial expression systems for producing active antibody fragments are known in the literature. The production of Fab in various hosts such as E.coli. (Better et al, Science, 240, 104, (1988)), yeast (Horwitz et al, Proc. Natl. Acad. Sci, US4, 85, 8678 (1988)) and the filamentous fungus Trichoderma reesei (Nyyssönen et al, Bio/Technology, 11, 591 (1993)) have previously been described, for example. It is also known that plants can be used as hosts for the production of SCFv fragments (Owen et al, Bio/Technology, 10, 790 (1992)) as well as whole antibodies.

35

An advantage of using antibody fragments rather than whole antibodies in diagnosis and therapy lies in their

- 3 -

smaller size. They are likely to be less immunogenic than whole antibodies and more able to penetrate tissue. A disadvantage associated with the use of fragments such as the F_{ab} , F_{v} , and $S_{c}F_{v}$ antibody fragments described above, however is that they have only one binding site for antigen binding as compared to the two or more sites contained in the whole antibody, preventing polyvalent binding to the antigen and hence leading to reduced avidity.

10

15

20

25

30

35

5

In an attempt to overcome this problem, attention has been directed to providing multivalent antigen binding proteins, that is binding proteins having more than one antigen binding site. In addition, there has been interest in producing antigen-binding proteins having multiple specificities capable of binding to different antigenic determinants and containing antigen binding domains derived from different sources. Antigen-binding proteins having distinct binding specificities may be useful, for example, in targeting effector cells to target cells by virtue of the specific binding of the different binding domains. By way of illustration, a bispecific antigen binding protein having specificity for both tumour cells and cytotoxic drugs may be used to target specifically cytotoxic drug to tumour cell in an efficient manner. By avoiding the need for chemical modification, adverse immune responses may be avoided.

Hitherto, the potential application of multivalent and multispecific antigen binding proteins have been hindered by the difficulties in generating and purifying such molecules.

Recombinant antigen-binding proteins having two binding sites may be prepared by methods such as chemical crosslinking of cysteine residues, either through cysteine residues introduced at the C-terminus of the V_R of an F_V

- 4

(Cumber et al, J.Immunol., $\underline{149}$, 120 (1992)), through the hinge cysteine residues in F_{ab} to generate $(Fab^1)_2$ (Carter et al, Bio/Tech., $\underline{10}$, 163 (1992)) or at the C-terminus of the V_L of an scFv (Pack and Plückthun, Biochemistry, $\underline{31}$, 1579 (1992)). Alternatively, the production of bivalent and bispecific antibody fragments based on the inclusion of F_{ab} fragments of C-terminal peptide sequences which promote dimerisation has been described. (Kostelny et al, J.Immunol., $\underline{148}$, 1547).

10

15

20

25

30

35

5

Bivalent or bispecific antibody fragments comprising a binding complex containing two polypeptide chains, one comprising two heavy chain variable domains (V_R) in series and the other comprising two light chain variable domains (V_L) in series are described in our pending European Patent Application No. 95307332.7.

Multivalent and/or multispecific antibody fragments are described in WO 94/09131 (Scotgen Limited). binding proteins having two binding regions, contained at least in part on first and second polypeptide chains which chains additionally incorporate associating domains capable of binding to each other causing the polypeptide chains to combine are disclosed therein. It is disclosed that the first and second binding regions preferably are antibody antigen-binding domains, for example comprising $V_{\scriptscriptstyle R}$ and $V_{\scriptscriptstyle L}$ regions contained in a Fab fragment or in a single-chain Fv fragment, or may be derived from just one of the V_H or V_L regions of an antibody. The associating domains may suitably be derived from an antibody and may be inter alia antibody V_H and V_L regions. It is further disclosed that using a V_n/V_r domain combination to achieve association leads to the creation of a supplementary Fv domain such that the antibody produced may be trivalent. Schematic representations of the arrangements suggested in WO 94/09131 to produce trivalent fragments are shown in Figure 1A.

- 5 -

WO 93/11161 (Enzon Inc) describes multivalent antigenbinding proteins comprising two or more single-chain protein molecules, each single chain molecule comprising first and second polypeptides each comprising the binding portion of the variable region of an antibody heavy or light chain with the polypeptides being linked together via a peptide linker. Hypothetical trimers and tetramers are discussed, comprising three or four single-chain antigen binding proteins as appropriate. Schematic representations of the trivalent arrangements suggested are shown in Figure 1B.

WO 91/19739 (Celltech Limited) discloses multivalent antigen binding proteins comprising an Fv fragment bound to at least one further Fv fragment by a connecting structure which links the Fv fragments together but which maintains them spaced apart such that they can bind to adjacent antigenic determinants. Conveniently the connecting structure consists of a spacing polypeptide and a linkage unit such as a cross-linking maleimide linker or a molecule which allows for non-covalent binding. Particularly preferred connecting structures which are disclosed are based on antibody joining and hinge region sequences.

25

20

5

10

15

SUMMARY OF THE INVENTION

According to the present invention there is provided a multivalent antigen binding protein comprising:

30

a first polypeptide comprising in series, three or more variable domains of an antibody heavy chain; and

35

a second polypeptide comprising, in series, three or more variable domains of an antibody light chain,

PCT/EP97/01609

said first and second polypeptides being linked by association of the respective heavy chain and light chain variable domains, each associated variable domain pair forming an antigen binding site.

- 6 -

5

As used herein, the term multivalent means more than one antigen binding site.

preferably the first polypeptide comprises three variable domains of an antibody heavy chain and the second polypeptide comprises three variable domains of an antibody light chain, providing a trivalent protein.

It will be appreciated that the polypeptides may comprise heavy or light chains, variable domains, as appropriate, or functional equivalents thereof.

The respective heavy or light chain variable domains may suitably be linked without any intervening linker. According to a preferred embodiment, however, the 20 variable domains contained in the individual polypeptides are linked by peptide linkers. Preferably the peptide linker is flexible, allowing the variable domains to flex in relation to each other such that they can bind to multiple antigenic determinants simultaneously. It will 25 be appreciated that the binding of the linker to the individual heavy or light chain variable domains will be such that it does not affect the binding capacity of the binding site formed by the associated variable domain pair. Conveniently the peptide linker comprises from 16 30 to 19 amino acid residues. A preferred, peptide linker for heavy chain domains is (Gly₄Ser)₃AlaGlySerAla and for the light chain domains is (Gly, Ser), Val.

It will be appreciated that if two or more of the associated variable domain pairs $(V_{\rm H}/V_{\rm L}$ pairs) have the same antigen specificity, for example if they are derived

- 7 -

from the same parent antibody or fragment thereof or from different antibodies which bind the same epitope, then a binding protein which binds more than one molecule of the same type will be produced.

5

10

15

35

According to one embodiment, where the binding protein according to the invention comprises three antigen binding sites which are able to bind different epitopes from each other, a trivalent trispecific protein is produced.

In another embodiment, where the binding protein according to the invention comprises three associated variable domain pair binding sites, two of which sites bind the same epitopes, a trivalent, bispecific protein is provided. Where all three binding sites have the same antigen specificity, a trivalent, monospecific binding protein is provided.

- The invention also provides nucleotide sequences coding for the polypeptides of the multivalent antigen binding protein according to the invention and cloning and expression vectors containing such nucleotide sequences.
- The invention further provides host cells transformed with vectors containing such nucleotide sequences and methods of producing such polypeptides by expression of the nucleotide sequences in such hosts.
- The invention further provides a process for preparing a multivalent antigen binding protein as set forth above comprising:
 - (i) transforming one or more hosts by incorporating genes encoding said first and second polypeptides;
 - (ii) expressing said genes in said host or hosts:

- 8 -

(iii) allowing said first and second polypeptides to combine to form the antigen binding protein.

Suitably the host or hosts may be selected from prokaryotic bacteria, such as Gram-negative bacteria, for example E.Coli, and Gram-positive bacteria, for example B. subtilis or lactic acid bacteria, lower eukaryotes such as yeasts, for example belonging to the genera Saccharomyces Kluyveromyces or Trichoderma, moulds such as those belonging to the genera Aspergillus and Neurospora and higher eukaroytes, such as plants, for example tobacco, and animal cells, examples of which are myeloma cells and CHO, COS cells and insect cells. A particularly preferred host for use in connection with the present invention is COS (monkey kidney) cells.

Techniques for synthesising genes, incorporating them into hosts and expressing genes in hosts are well known in the art and the skilled person would readily be able to put the invention into effect using common general knowledge. Proteins according to the invention may be recovered and purified using conventional techniques such as affinity chromatography, ion exchange chromatography or gel filtration chromatography.

25

30

35

5

10

15

20

The activity of the multivalent binding proteins according to the invention may conveniently be measured by standard techniques known in the art such as enzymelinked immunosorbant assay (RLISA), radioimmune assay (RIA) or by using biosensors.

The multivalent antigen binding proteins of the present invention may suitably be used in diagnostics or therapy for example in targeting a tumour cell with natural killer cells and cytotoxic agent. Other uses for which the multivalent binding proteins according to the invention are useful include those uses for which

- 9 -

antibodies or fragments thereof are commonly used, including for immunoassays and in purification.

According to a particular preferred embodiment, multienzyme complexes may be assembled, at a target, for example a cell surface. As an illustration, multivalent binding proteins according to the invention may be used to target cell killing enzymes such as an oxidase (for example glucose oxidase) and peroxidase (for example horseradish peroxidase) to a target species which is an antigenic component of dental plaque, such as S. sanguis or S. mutans. Complexes comprising enzyme, coenzyme and target antigen may also conveniently be assembled.

5

10

15

20

25

30

35

Accordingly, the invention also provides compositions comprising the multivalent antigen binding proteins according to the invention, conveniently in combination with a cosmetically or pharmaceutically acceptable carrier, diluent or excipient. Methods of treatment using the multivalent antigen binding proteins according to the invention are also provided.

For use in diagnosis or therapy, the multivalent antigen binding proteins according to the invention may conveniently be attached to an appropriate diagnostically or therapeutically effective agent or carrier by methods conventional in the art.

An advantage of using multivalents antigen binding proteins according to the invention over multivalent binding proteins prepared by existing techniques known in the art is that the "self-assembling" association of the respective heavy and light chain variable domains to form the multivalent binding sites avoids the need for chemical coupling steps or the introduction of linking residues to stabilise the multivalent constructs, thereby minimising the risk of eliciting an immune response to such molecules when the resulting multivalent binding

- 10 -

proteins are used in therapy.

A particular advantage of molecules according to the present invention is that they may conveniently be purified straight from the supernatant using conventional purification techniques. As they are self-assembling, there is no need to purify individual subunits prior to coupling as in existing techniques.

The present invention may be more fully understood with reference to the following description, when read together with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

15

5

Figures 1A and 1B show schematic representations of published arrangements of heavy and light chain V-domain gene fragments that have been suggested to produce trispecific or trivalent antibody fragments:

20

25

30

A)	scFvl-VLa + scFv2-VHa (2 chains)	WO 94/09131
B)	Fab1-Vla + Fab2-VHa (4 chains)	WO 94/09131
C)	scFv1-VLa-CLa + scFv1-VHa-CHa (2 chains)	WO 94/09131
D)	Fab1-VLa-CLa + Fab2-VHa-CHa (4 chains)	WO 94/09131
E)	scFvl + scFv2 + scFv3 (3 chains)	WO 93/11161
F)	VH1-VL2 + VH2-VL3 + VH3-VH1 (3 chains)	WO 93/11161

Figure 2A/B shows the nucleotide sequence of the EcoRI-HindIII insert of pGOSA.E2t containing DNA encoding pelB leader-VH4715-linker-VL3418 and DNA encoding pelB leader-VL3418-linker-VH4715-hydrophil2 tag (SEQ ID No. 1).

Figure 3

35 A) shows the nucleotide sequence of the HindIII-EcoRI insert of plasmid scPv.Lys with DNA encoding pelB leader-VHLys-linker-VLLys (SEQ ID No. 2).

- 11 -

B) shows the nucleotide sequence of the HindIII-EcoRI insert of plasmid scFv.4715.2t with DNA encoding pelB leader-VH4715.2t (SEQ ID No. 3).

Figure 4 shows the nucleotide sequence of the genomic leader sequence of the anti-NP antibody (Jones et al, Nature, 321, 522). Exon sequences are indicated with shaded boxes. NcoI and PstI restriction sites are in bold and underlined (SEQ ID No. 4).

Figure 5 gives a schematic representation of the eukaryotic expression vector pSV.51.

Figure 6 gives an overview of the pUC19 double head (A)
and triple head (B) constructs. The position of the
oligonucleotides and the restriction sites used for
assembling double and triplehead pUC constructs are
indicated.

20 Figure 7

10

35

- A) shows the origin of the VH-C-linker and VL-C-linker fragments.
- B) gives a schematic representation of the construction of the pUC.19-triple-head vectors.

Figure 8

- A) gives a schematic representation of the construction of the Euka.VH and Euka.VL vectors.
 - B) gives a schematic representation of the construction of the pSV.VH expression vectors.
 - C) gives a schematic representation of the construction of the pSV.VL expression vectors.

- 12 -

Figure 9 shows the expression of the trispecific Golysan proteins on an SDS-PAGE gel containing total COS culture supernatant. Crude supernatants of COS cells transfected with pSV expression vectors were separated on SDS-PAGE gels. The proteins were transferred onto a nitrocellulose membrane and the VH3 and VL3-2t were detected using anti-VH and anti-hydrophil 2 tag specific monoclonal antibodies respectively. (A=anti-Hydro-II, B=anti-Hydro-II + anti-VH) Samples: M) Low Molecular Weight Markers, 1) pSV.K + pSV.V,2) pSV.K + pSV.W,3) pSV.M + pSV.V,4) pSV.M + pSV.W.

Figure 10 shows the results of three ELISA's. Lysozyme, Glucose oxidase and S.sanguis binding activity was determined in crude COS supernatants by measuring 1) Lysozyme-Glucose oxidase (=LYSOX), 2) Glucose oxidase-S.sanguis (=GOSA) and 3) Lysozyme-S.sanguis (= LYSAN) bispecific binding activities.

Figure 11 shows the results of three ELISA's. Lysozyme, Glucose oxidase and S.sanguis binding activity of purified Golysan.A (A) and Golysan.B (B) was determined by measuring 1) Lysozyme-Glucose oxidase (=LYSOX), 2) Glucose oxidase-S.sanguis (=GOSA) and 3) Lysozyme-S.sanguis (=LYSAN) bispecific binding activities.

Figure 12 shows the nucleotide sequence of the EcoRI-HindIII insert of pUR.4124 containing DNA (see SEQ ID NO: 23) encoding V_LLys-Linker-V_RLys.

Figure 13 shows the nucleotide sequence of the *Hin*dIII-EcoRI insert of plasmid Fv.3418 (see SEQ ID NO: 24) containing DNA encoding pelB leader-V_H3418 and pelB leader-V_H3418.

Figure 14 shows the nucleotide sequence of the HindIII-EcoRI insert of plasmid Fv.4715-myc (see SEQ ID NO: 25)

30

5

10

15

35

containing DNA encoding pelB leader-V,4715 and pelB leader-V₁4715-Myc tag.

Figure 15 shows the nucleotide sequence of the HindIII-EcoRI insert of scFv.4715-myc containing DNA (see SEO ID NO: 26) encoding pelB leader-V_H4715-Linker-V_L4715-Myc tag.

5

10

15

20

30

Figure 16a/b shows the nucleotide sequence of the HindIII-EcoRI insert of pGOSA.E (see SEQ ID NO: 27) containing DNA encoding pelB leader-V,4715-Linker-V,3418 and pelB leader-V_L3418-Linker-V_R4715.

Figure 16c gives an overview of the oligonucleotides and their positions in pGOSA.E that can be used to replace Vdomain gene fragments.

Figure 17 shows the construction of plasmid pGOSA.A.

Figure 18 shows the construction of plasmid pGOSA.B.

Figure 19 shows the construction of plasmid pGOSA.C.

Figure 20 shows the construction of plasmid pGOSA.D.

25 Figure 21 shows the construction of plasmid pGOSA.E.

Figure 22 shows the source of fragment PCR.I BstEII/SacI.

Figure 23 shows the source of fragment PCR.IV XhoI/EcoRI.

Figure 24 shows the source of fragment PCR.V Sall/EcoRI.

Figure 25 shows the source of fragment PCR.III Nhel/SacI.

35 Figure 26 shows the source of fragment PCR.II Sfil/EcoRI.

> Table 1 shows the nucleotide sequence of all

- 14 -

oligonucleotides used in the construction of the described double and triple head constructs.

Table 2 lists all pSV expression constructs described in this specification.

The following examples are provided by way of illustration only:

10 EXAMPLES

5

General Experimental

Strains, Plasmids and Media

All cloning steps were performed in E.Coli JM109 or 15 B.Coli XL-1 Blue. Cultures were grown in 2xTY/Amp/Glucose medium (16g tryptone, 10g yeast extract, 5g NaCL per liter H₂O supplemented with 2% glucose and 100μg/ml ampicillin). Transformations were plated out on SOBAG plates (20g tryptone, 5g yeast extract, 15g agar, 20 0.5g NaCl per liter H2O plus 10mM MgCl2, 2% glucose, 100µg/ml ampicillin). The bicistronic E.coli vectors used are derivatives of pUC19. The COS expression vector pSV.51 (LMBP strain nr 1829) was obtained from the LMBP Culture collection (Laboratory of Molecular Biology 25 University Gent). COS-1 cells (ECACC No: 88031701; African green monkey kidney cells) were obtained from the European Collection of Animal Cell Cultures (ECACC). tissue culture reagents were from Gibco BRL (Life Technologies, Paisley, UK) 30

DNA Manipulations

Oligonucleotides and PCR

The oligonucleotide primers used in the PCR reactions
were synthesized on an Applied Biosystems 381A DNA
Synthesiser by the phosphoramidite method. The primary
structures of the oligonucleotide primers used in the

- 15 -

construction of the trispecific pSV constructs (Table 2) are shown in Table 1. Reaction mixture used for amplification of DNA fragments were 10mM Tris-HCl, pH8.3, 2.5mM MgCl₂, 50mM KCl, 0.01% gelatin (w/v), 0.1% Triton X-100, 400mM of each dNTP, 5.0 units of Vent DNA polymerase (New England Biolabs), 100ng of template DNA, and 500ng of each primer (for $100\mu l$ reactions). Reaction conditions were: $94^{\circ}C$ for 4 minutes, followed by 33 cycles of each 1 minute at $94^{\circ}C$, 1 minute at $55^{\circ}C$, and 1 minute $72^{\circ}C$.

Plasmid DNA\Vector\Insert preparation and ligation\transformation.

5

10

Plasmid DNA was prepared using the 'Qiagen P-100 and P-15 500 Midi/Maxi-DNA Preparation' system. Vectors and inserts were prepared by digestion of 10µg (for vector preparation) or 20µg (for insert preparation) with the specified restriction endonucleases under appropriate conditions (buffers and temperatures as specified by 20 suppliers). Klenow fill-in reactions and dephosphorylation with Calf Intestine Phosphorylase were performed according to the manufacturers instructions. Vector DNA's and inserts were separated through agarose gel electrophoresis and purified with DEAE-membranes NA45 25 (Schleicher & Schnell) as described by Maniatis et al. (Molecular cloning: a Laboratory manual, Cold Spring Harbour, N.Y. (1982)) Ligations were performed in 20μ l volumes containing 30mM Tris-HCl pH7.8, 10mM MgCl2, 10mM DTT, 1mM ATP, 300-400ng vector DNA, 100-200ng insert DNA and 1 Weiss unit T4 DNA ligase. After ligation for 2-4 h 30 at room temperature, CaCl2 competent E. coli JM109 or XL-1 Blue (Maniatis et al) were transformed using 7.5μ l ligation reaction. The transformation mixtures were plated onto SOBAG plates and grown overnight at 37°C. Correct clones were identified by restriction analysis 35 and verified by automated dideoxy sequencing (Applied Biosystems).

- 16 -

Restriction digestion of PCR products

Following amplification each reaction was checked for the presence of a band of the appropriate size by agarose gel electrophoresis. One or two $100\mu l$ PCR reaction mixtures of each of the PCR reactions, together containing approximately 2-4 μg DNA product were subjected to phenol-chloroform extraction, chloroform extraction and ethanol precipitation. The DNA pellets were washed twice with 70% ethanol and allowed to dry. Next, the PCR products were digested overnight (18 h) in $200\mu L$ lxBuffer with excess of the appropriate restriction enzyme.

Transformation of COS Cells

5

10

15

20

25

30

35

Cos-1 cells were maintained in DMEM culture medium with glutamine (2mM), Penicillin (100U/mL), streptomycin (100µg/mL) containing 10% F.C.S. For transient transfection assays 1-3 x10⁵ COS-1 cells were seeded in 3 cm-diameter tissue culture dishes (2mL). The cells were incubated at 37°C in a CO, incubator until cells were 50-80% confluent (overnight). For each transfection the following mixes were prepared: A) $1\mu g$ of each of the specified DNA's in 100 µL Opti-MEM-I Reduced Serum Medium, B) 1μ L LipofectAmine in 100μ L Opti-MEM-I Reduced Serum Medium. Mixes A and B were combined (gently). After allowing the DNA-liposome complexes to form for 30-45 minutes at room temperature, 0.8mL Opti-MEM-I Reduced Serum Medium was added to each lipid DNA complex containing tube. The COS-1 cells were washed once with 2mL of Opti-MEM-I Reduced Serum Medium and overlayed with the diluted complex solution. The COS-1 cells were incubated for 5 hr at 37°C. Following incubation, 2mL growth medium was added. 20 hours following transfection the medium was replaced with 2mL fresh growth medium containing 0.1mM Na-butyrate. After 48 hours incubation at 37°C the supernatant was harvested and assayed for the presence of antibody fragments.

- 17 -

ELISA

5

10

15

20

25

30

35

A) GOSA: Glucose Oxidase and S. sanguis binding activity 96 well BLISA plates (Greiner HC plates) were activated overnight at 37°C with 200µl/well of a 1/10 dilution of an overnight culture of Streptococcus sanguis cells in 0.05M sodium carbonate buffer pH9.5 was used to sensitise each well. Following one wash with PBST, the antigen sensitised plates were pre-blocked for 1 hour at 37°C with 200µl/well blocking buffer (1% BSA, 0.15% Tween in 50µl COS culture supernatants (neat or diluted with PBS) plus 50µl blocking buffer containing glucose oxidase (50µg/ml) was added to the Streptococcus Sanguis sensitised plate and incubated for 2 hours at 37°C. Following 4 washes with PBS-T, bound glucose oxidase was detected by adding 100 µl substrate to each well (70mM Nacitrate, 320mM Na-phosphate, 27mg/ml glucose, 0.5μ g/ml HRP, $100\mu g/ml$ TMB). The colour reaction was stopped after 1 hour by the addition of 35μ l 2M HCl and the A450 was measured.

B) LYSOX: Lysozyme and Glucose Oxidase binding activity 96 well ELISA plates (Greiner HC plates) were activated overnight at 37°C with lysozyme ($50\mu g/mL$ in 0.05M sodium carbonate buffer pH9.5; $200\mu l/well$). Following one wash with PBST, the antigen sensitised plates were pre-blocked for 1 hour at 37°C with 200µl/well blocking buffer (1% BSA, 0.15% Tween in PBS). 50µl COS culture supernatants (neat or diluted with PBS) plus 50µl blocking buffer containing glucose oxidase ($50\mu g/ml$) was added to the Streptococcus Sanguis sensitised plate and incubated for 2 hours at 37°C. Following 4 washes with PBS-T, bound glucose oxidase was detected by adding $100\mu l$ substrate to each well (70mM Na-citrate, 320mM Na-phosphate, 27mg/ml glucose, $0.5\mu g/ml$ HRP, $100\mu g/ml$ TMB). The colour reaction was stopped after 1 hour by the addition of $35\mu l$ 2M HCl and the A450 was measured.

5

10

15

C) LYSAN: S. sanguis and Lysozyme binding activity 96 well BLISA plates (Greiner HC plates) were activated overnight at 37°C with $200\mu l/well$ of a 1/10 dilution of an overnight culture of Streptococcus sanguis cells in 0.05M sodium carbonate buffer pH9.5 was used to sensitise each well. Following one wash with PBST, the antigen sensitised plates were pre-blocked for 1 hour at 37°C with 200µl/well blocking buffer (1% BSA, 0.15% Tween in 50µl COS culture supernatants (neat or diluted with PBS) plus 50µl blocking buffer was added to the Streptococcus Sanguis sensitised plate and incubated for 2 hours at 37°C. Following 4 washes with PBS-T, 50μL blocking buffer containing Alkaline-Phosphatase conjugated Lysozyme (100 μ/mL). Unbound Lysozyme was removed by 4 washes with PBS-T. Bound Lysozyme was detected by adding 100 µL substrate solution to each well (1mg/ml pNPP in 1M diethanolamine, 1mM MgCl₂). After 1 hour the A405 was measured.

20 EXAMPLE 1: Construction of the pSV.Golysan expression vectors

The construction of the pSV COS expression vectors consisted of three stages:

25

1A): Assembly of 2 heavy chain variable domains and 2 light chain variable domains in a pUC based E.Coli expression vector thus constructing the VH_A-VH_B and VL_A-VL_B modules respectively.

30

1B): Assembly of 3 heavy chain variable domains and 3
light chain variable domains in a pUC based E.Coli
expression vector thus constructing the VH_A-VH_B-VH_C
and VL_A-VL_B-VL_C modules respectively.

35

2) Linking the VH_A-VH_B , $VH_A-VH_B-VH_C$ and VL_A-VL_B , $VL_A-VL_B-VL_C$ to the genomic anti-NP leader sequence in the

- 19 -

intermediate "EUKA" vectors to ensure efficient secretion by COS cells.

Inserting the leader-VH_A-VH_B, leader-VH_A-VH_B-VH_C and leader-VL_A-VL_B, leader-VL_A-VL_B-VL_C as XbaI/XbaI fragments downstream of the SV40 promoter in the COS expression vector pSV.51.

ad.1) E.coli expression vectors.

5

- The E.coli expression vectors are derivatives of pUC.19 10 containing a HindIII-EcoRI fragment that in the case of the scFv.lys-myc contains a pelB signal sequence fused to the 5' end of the heavy chain V-domain that is directly linked to the corresponding light chain V-domain of the 15 antibody through a connecting sequence that codes for a flexible peptide (Gly₄Ser), thus generating a single-chain molecule. In the 'double head' expression vector both the heavy chain and the light chain V-domains of the antibody are preceded by a ribosome binding site and a 20 pelB signal sequence in an artificial dicistronic operon under the control of a single inducible promoter. Expression of these constructs is driven by the inducible lacZ promoter. The nucleotide sequence of the HindIII-BCORI inserts of the scFv.lys-myc, scFv.4715.2t and 25 pGOSA.E2t constructs used for the generation of the trispecific antibody fragments are listed in Figures 3 and 2 respectively.
- ad.1A) Assembly of bi-specific fragments or double heads.

 The construct pGOSA.E2t (Figures 2 and 6A) is derived from the E.coli expression construct pGOSA.E. The construction of pGOSA.E has been described in detail in preparation 1 below.
- In contrast with pGOSA.E, pGOSA.E2t contains a peptide tag at the C-terminus of the Variable light chain. Using oligonucleotides DBL3 and DBL.4 the VL4715 gene fragment

5

10

15

was amplified using scFv.4715.2t as a template. The Sall/BamHI VH4715.2t PCR fragment and the Hydrophil-2 tag containing BamHI/EcoRI fragment from scFv.4715.2t (Figure 3B) were used to replace the Sall/EcoRI VH4715 fragment in pGOSA.E thus producing pGOSA.E2t.

The vector pGOSA.E2t and the oligonucleotides in Table 1 have been designed to enable most specificities to be cloned into the pGOSA.E2t construct (Figure 6A). The upstream V_H domain can be replaced by any PstI-BstEII V_H gene fragment obtained with oligonucleotides PCR.51 and PCR.89. The oligonucleotides DBL.1 and DBL.2 were designed to introduce SfiI and NheI restriction sites in the V_H gene fragments thus allowing cloning of those V_H gene fragments into the SfiI-NheI sites as the downstream V_H domain. Using this approach the following VH_A-VH_B combinations were constructed: VH4715-VH3418, VH4715-VHJys, VH3418-VHJys, VHJys-VH3418.

All V_L gene fragments obtained with oligonucleotides PCR.116 and PCR.90 can be cloned into the position of the 3418 V_L gene fragment as a SacI-XhoI fragment. A complication here however is the presence of an internal SacI site in the 3418 V_H gene fragment. Oligonucleotides DBL.3 and DBL.4 are designed to allow cloning of V_L gene fragments into the position of the 4715 V_L gene fragment as a SalI-BamHI fragment. A complication here however is the presence of an internal BamHI site in the hydrophil-2-tag gene fragment (2t). Using this approach the following VL_A-VL_B combinations were constructed: VL3418-VL4715.2t, VLlys-VL4715.2t and VLlys-VL3418.2t.

ad.1B) Assembly of tri-specific fragments or triple heads.

Amplification of the VH-linker fragments using either scPv (VH-linker-VL) or bi-specific constructs (VH-linker-VH) as template with the primer combination DBL.1/DBL.5

PCT/EP97/01609

(Figure 7A) yields one of the building blocks for the construction of the VH_A-VH_B-VH_C modules. The VH-linker DBL.1/DBL.5 PCR fragment is digested with SfiI and inserted into the SfiI site that is present between the linker sequence and the downstream VH domain in all bispecific constructs (Figure 7B) thus producing a VH_A-VH_B-VH_C module. Using this approach the following VH_A-VH_B-VH_C combinations were constructed for this filing: VH4715-VHJys-VH3418 and VHlys-VH4715-VH3418.

10

15

5

Using a bi-specific construct (VL-linker-VL) as the template in an amplification reaction with the primer combination DBL.3/DBL.6 (Figure 7A) yields the VL-linker building block for the construction of the VL_A-VL_B-VL_C modules. The VL-linker DBL.3/DBL.6 PCR fragment is digested with SalI and inserted into the SalI site that is present between the linker sequence and the downstream VL domain in all bi-specific constructs (Figure 7B) thus producing a VL_A-VL_B-VL_C module. Using this approach the following VL_A-VL_B-VL_C combinations were constructed: VLlys-VL4715-VL3418.2t and VL3418-VLlys-VL4715.2t.

A schematic representation of the final tri-specific constructs is shown in Figure 6B.

25

30

35

20

ad.2) Linking the variable region domains to the leader sequence.

The HindIII/EcoRI polylinker of pUC19 was replaced with a synthetic EcoRI/HindIII 'Euka' polylinker. This was achieved by annealing and inserting the synthetic oligonucleotides Euka.1 and Euka.2 (Table 1) into EcoRI/HindIII digested pUC19 vector. The resulting Euka.pUC vector contains all restriction sites needed for the subcloning of the leader sequence and the VH and VL domains. The NcoI/PstI genomic anti-NP leader sequence fragment was cloned into the NcoI/PstI digested Euka.pUC vector yielding the Euka.VH construct (Figure 8A).

- 22 -

Oligonucleotides ML.1 and ML.2 (Table 1) were used in an amplification reaction to introduce a SacI site at the 3' end of the leader sequence that allows the construction of leader-VL fusions. The NcoI/SacI leader sequence PCR fragment was inserted into NcoI/SacI digested Euka.pUC vector yielding the Euka.VL construct (Figure 8A).

5

The VH_A-VH_B and VH_A-VH_C modules were excised from the pUC expression vectors as PstI/NheI fragments and inserted into PstI/NheI digested Euka.VH vector (Figure 8B). Using this approach the following leader-VH_A-VH_B and leader-VH_A-VH_B-VH_C combinations were constructed for this filing: Euka.B: leader-VH4715-VH3418, Euka.D: leader-VH4715-VH1ys, Euka.G: leader-VH3418-VH1ys, Euka.K: leader-VH4715-VH3418 and Euka.M: leader-VH1ys-VH4715-VH3418.

The VL_A-VL_B and VL_A-VL_C modules were excised from the pUC expression vectors as EcoRI-Klenow/SacI fragments and inserted into NotI-Klenow/SacI treated Euka.VL vector (Figure 8C). Using this approach the following leader-VL_A-VL_B and leader-VL_A-VL_C combinations were constructed: Euka.N: leader-VL3418-VL4715.2t, Euka.P: leader-VLlys-VL4715.2t Euka.S: leader-VLlys-VL3418.2t, Euka.V: leader-VLlys-VL4715-VL3418.2t and Euka.W: leader-VL3418-VLlys-VL4715.2t.

ad.3) Subcloning of leader-variable domain fusions into the pSV.51 expression vector

All leader-VH_A-VH_B, leader-VH_A-VH_B-VH_C, leader-VL_A-VL_B and leader-VL_A-VL_B-VI_C combinations were excised from the 'Euka' vectors as XbaI/XbaI fragments and subcloned downstream of the SV40 promoter in pSV.51 (Figure 5) by insertion into the XbaI site (Figure 8B and 8C). After confirmation of the correct orientation of the inserts the pSV expression vectors were used to transfect COS-1 cells (see Example 2). The pSV expression vectors used

- 23 -

are listed in Table 2.

Example 2: Bifunctional binding activity of Golysan triple heads

5

This example describes the production of three types of bispecific binding activity by COS-1 cells transfected with expression plasmids encoding the corresponding VH_A - VH_B - VH_C and VL_A - VL_B - VL_C genes fragments.

10

15

20

30

35

1. Production of antibody fragments by COS-1 cells

Supernatants of COS-1 cells transfected with combinations of pSV-VH_A-VH_B-VH_C and pSV-VL_A-VL_B-VL_C expression plasmids were separated on 10% SDS-PAGE and transferred onto nitrocellulose. The resulting Western blots were screened with a monoclonal antibody recognising a peptide sequence in framework 4 of the VH domains (region encoded by PCR.89: conserved in all used VH domains, {in-house reagent}) and/or a monoclonal specific for the hydrophil-2 tag. As shown in Figure 9 all supernatants contained products with the expected molecular weight of the VH_A-VH_B-VH_C and VL_A-VL_B-VL_C fragments, indicating that the COS cells were successfully tranfected and were secreting the produced antibody fragments into the culture medium at

25 detectable levels.

2. Bifunctional binding activity

Supernatants of COS-1 cells transfected with single pSV expression plasmids and combinations of pSV expression plasmids were tested for the production of bifunctional binding activity using ELISA format:

* Supernatants of COS-1 cells transfected with the bispecific positive controls 'LYSAN' (pSV.D + pSV.P), 'LYSOX' (pSV.G + pSV.S) and 'GOSA' (pSV.B + pSV.N) only produced LYSAN, LYSOX and GOSA bispecific activity respectively (Figure 10). No significant cross

PCT/EP97/01609

reactivity was detected.

* Supernatants of COS-1 cells transfected with only one expression vector encoding either one of the $VH_{\lambda}-VH_{B}-VH_{C}$ fragments (pSV.K and pSV.M) or one of the $VL_{\lambda}-VL_{B}-VL_{C}$ fragments (pSV.V and pSV.W) did not exhibit any bispecific binding activity, indicating that no background binding or a specific binding activity is produced.

10

15

20

25

5

* All tested supernatants of COS-1 cells transfected with an expression vector encoding one of the $VH_A-VH_B-VH_C$ fragments (pSV.K and pSV.M) and an expression vector encoding one of the $VL_A-VL_B-VL_C$ fragments (pSV.V and pSV.W) showed significant levels of all three bifunctional binding activities LYSOX, GOSA and LYSAN.

These results show that COS cells transfected with expression vectors encoding $VH_A-VH_B-VH_C$ and expression vectors encoding $VL_A-VL_B-VL_C$ fragments produce and secrete molecules that contain three binding activities. In this example those three activities are: Glucose Oxidase binding, S.sanguis binding and Lysozyme binding. Furthermore, the results illustrated in Figure 10 clearly show that at least two of these binding activity are present in one self assembling molecular complex. In this example those combinations are: GOSA (Glucose Oxidase + S.sanguis), LYSOX (Lysozyme + Glucose Oxidase) and LYSAN (Lysozyme + S.sanguis).

30

35

Example 3: Trifunctional binding activity of Golysan triple heads

This example describes experiments that show that the three types of bispecific binding activity that are produced by COS-1 cells transfected with expression plasmids encoding the corresponding VH_A-VH_B-VH_C and VL_A-

- 25 -

 $VL_{B}-VL_{c}$ genes fragments are present in <u>one</u> self assembling molecular complex.

Golysan.A (VHlys-VH4715-VH3418 + VLlys-VL4715-VL3418.2t)

and Golysan.B (VHlys-VH4715-VH3418 + VL3418-VLlysVL4715.2t) was purified by affinity chromatography.

100ml supernatant of COS-1 cells transfected with
expression plasmids pSV.M/pSV.V (Golysan.A) or
pSV.M/pSV.W (Golysan.B) were loaded onto a LysozymeSepharose column (CNBr-Sepharose, Pharmacia; column was
prepared according to the manufacturer's instructions).
After extensive washes with PBS the bound Golysan
antibody fragments were eluted in 0.1M glycine buffer at
pH=2.2. The fractions were neutralised with Tris and
tested for the presence of trispecific binding activity.

As shown in Figure 11 no bispecific binding activity was detect in the column fall-through. All three bispecific binding activities (GOSA, LYSOX and LYSAN) were extracted from the COS-1 supernatant by passing over the Lysozyme affinity matrix. After acid elution all three bispecific binding activities (GOSA, LYSOX and LYSAN) were recovered from the column. Since both Golysan. A and B were affinity purified based on the ability to bind to Lysozyme, the finding that these molecules also bind S.sanguis and Glucose Oxidase shows that all three binding activities are present in one self assembling molecular complex.

30 Preparation 1.

Construction of the pGOSA.E double head expression vector

In the pGOSA expression vectors, the DNA fragments encoding both the V_H and V_L of the antibody are preceded by a ribosome binding site and a DNA sequence encoding the pelB signal sequence in an artificial dicistronic operon under the control of a single inducible promoter.

- 26 -

Expression of these constructs is driven by the inducible lacZ promoter. The nucleotide sequence of the HindIII-EcoRI inserts of the plasmids pUR.4124 (SEQ ID NO. 23), Fv.3418 (SEQ ID NO. 24), Fv.4715-myc (SEQ ID NO. 25) and scFv.4715-myc (SEQ ID NO. 26) constructs used for the generation of the bispecific antibody fragments are given in Figures 12-15, respectively. Moreover, a culture of E. coli cells harbouring plasmid scFv.4715-myc and a culture of E. coli cells harbouring plasmid Fv.3418 were deposited under the Budapest Treaty at the National Collection of Type Cultures (Central Public Health Laboratory) in London (United Kingdom) with deposition numbers NCTC 12916 and NCTC 12915, respectively.

In agreement with Rule 28 (4) EPC, or a similar arrangement for a State not being a Contracting State of the EPC, it is hereby requested that a sample of such deposit, when requested, will be submitted to an expert only.

20

25

30

35

5

10

The construction of pGOSA.E (see Figure 16 for the HindIII-EcoRI insert of pUC19) involved several cloning steps. The appropriate restriction sites in the various domains were introduced by PCR directed mutagenesis using the oligonucleotides listed in Table 1 below.

The construction of pGOSA.E involved several cloning steps that produced 4 intermediate constructs pGOSA.A to pGOSA.D (see FigureS 17-21). The final expression vector pGOSA.E and the oligonucleotides in Table 1 have been designed to enable most specificities to be cloned into the final pGOSA.E construct (Figure 16c). The upstream $V_{\rm H}$ domain can be replaced by any PstI-BstEII $V_{\rm H}$ gene fragment obtained with oligonucleotides PCR.51 and PCR.89 (see Table 1). The oligonucleotides DBL.1 and DBL.2 (see Table 1) were designed to introduce SfiI and NheI restriction sites in the $V_{\rm H}$ gene fragments thus allowing

WO 97/38102

- 27 -

cloning of those V, gene fragments into the Sfil-Nhel sites as the downstream V_R domain. All V_L gene fragments obtained with oligonucleotides PCR.116 and PCR.90 (see Table 1) can be cloned into the position of the V. 3418 gene fragment as a SacI-XhoI fragment. A complication here however is the presence of an internal SacI site in the V_H.3418 gene fragment. Oligonucleotides DBL.3 and DBL.9 (see Table 1) are designed to allow cloning of V, gene fragments into the position of the V1.4715 gene fragment as a SalI-NotI fragment.

pGOSA.A

5

10

This plasmid is derived from both the Fv.4715-myc construct (SEQ ID NO. 25) and the scFv.4715-myc construct 15 (SEQ IN NO. 26). An Sfil restriction site was introduced between the DNA sequence encoding the (Glyser), linker and the gene fragment encoding the V_L of the scFv.4715-myc construct (see Figure 17). This was achieved by replacing the BstBII-SacI fragment of the latter 20 construct by the fragment PCR-I BstEII/SacI (Figure 22) that contains an SfiI site between the DNA encoding the (Gly₄Ser), linker and the V₁.4715 gene fragment. introduction of the SfiI site also introduced 4 additional amino acids (AlaGlySerAla) between the 25 (Gly₄Ser)₃ linker and V_L.4715 resulting in a (Gly₄Ser)₃AlaGlySerAla linker (linkerA). oligonucleotides used to produce PCR-I (DBL.5 and DBL.7. see Table 1) were designed to match the sequence of the framework-3 region of V_H.4715 and to prime at the junction of the DNA encoding the (Gly₄Ser), linker and the V_L .4715 30 gene fragment, respectively. Thus pGOSA.A can be indicated as:

pelB-V₈4715-linkerA-(SfiI)-V₂4715-myc.

35 pGOSA.B

This plasmid is derived from plasmid Fv.3418 (see Figure The XhoI-EcoRI fragment of plasmid Fv.3418

WO 97/38102 PC

- 28 -

comprising the 3' end of DNA encoding framework-4 of the V_L including the stop codon was removed and replaced by the fragment PCR-IV XhoI/EcoRI (Figure 23). The oligonucleotides used to produce PCR-IV (DBL.8 and DBL.6, see Table 1) were designed to match the sequence at the junction of the V_L and the (Gly₄Ser)₃ linker perfectly (DBL.8), and to be able to prime at the junction of the (Gly₄Ser)₃ linker and the V_H in pUR.4124 (DBL.6). DBL.6 removed the PstI site in the V_H (silent mutation) and introduced a SalI restriction site at the junction of the (Gly₄Ser)₃ linker and the V_H , thereby replacing the last Ser of the linker by a Val residue resulting in a (Gly₄Ser)₂Gly₄Val linker (linkerV). Thus pGOSA.B can be indicated as:

pelB-V_x3418 + pelB-V_x3418-linkerV-(SalI-EcoRI).

pGOSA.C

5

10

15

20

25

30

This plasmid contains DNA encoding $V_{\rm H}$.4715 linked by the $(Gly_4Ser)_3AlaGlySerAla$ linker to $V_{\rm H}$.3418 (see Figure 19), thus:

pelB-V₈4715-linkerA-V₈3418.

This construct was obtained by replacing the SfiI-EcoRI fragment from pGOSA.A encoding $V_L.4715$ by the fragment PCR-II SfiI/EcoRI containing the $V_R.3418$ gene. The oligonucleotides used to produce PCR-II (DBL.1 and DBL.2, see Table 1) hybridize in the framework-1 and framework-4 region of the gene encoding $V_R.3418$, respectively. DBL.1 was designed to remove the PstI restriction site (silent mutation) and to introduce an SfiI restriction site upstream of the V_R gene. DBL.2 destroys the BstEII restriction site in the framework-4 region and introduces an NheI restriction site downstream of the stopcodon.

35 pGOSA.D

This plasmid contains a dicistronic operon comprising the $V_{\rm B}.3418$ gene and DNA encoding $V_{\rm L}.3418$ linked by the

5

10

15

20

 $(Gly_4Ser)_2Gly_4Val$ linker to V_L .4715 (see Figure 20), thus: $pelB-V_a3418 + pelB-V_b3418-linkerV-V_b4715$.

This construct was obtained by digesting plasmid pGOSA.B with SalI-EcoRI and inserting the fragment PCR-V SalI/EcoRI (Figure 24) containing the V_L.4715 gene. The oligonucleotides used to obtain PCR-V (DBL.3 and DBL.9, see Table 1) were designed to match the nucleotide sequence of the framework-1 and framework-4 regions of the V_L.4715 gene, respectively. DBL.3 removed the SacI site from the framework-1 region (silent mutation) and introduced a SalI restriction site upstream of the V_L.4715 gene. DBL.9 destroyed the XhoI restriction site in the framework-4 region of the V_L.4715 gene (silent mutation) and introduced a NotI and an EcoRI restriction site downstream of the stop codon.

pGOSA.E

This plasmid contains a dicistronic operon comprising DNA encoding V_H.4715 linked by the (Gly₄Ser)₃AlaGlySerAla linker to V_H.3418 plus DNA encoding V_L.3418 linked by the (Gly₄Ser)₂Gly₄Val linker to V_L.4715 (see Figure 21), thus: pelB-V_H4715-linkerA-V_H3418 + pelB-V_L3418-linkerV-V_L4715.

25 Both translational units are preceded by a ribosome binding site and DNA encoding a pelB leader sequence. This plasmid was obtained by a three-point ligation by mixing the vector resulting from pGOSA.D after removal of the V_B3418-encoding PstI-SacI insert with the PstI-NheI pGOSA.C insert containing V_H.4715 linked to V_H.3418 and 30 the PCR-III NheI/SacI fragment (see Figure 25). remaining PstI-SacI pGOSA.D vector contains the 5' end of the framework-1 region of V_H.3418 upto the PstI restriction site and V_L.3418 linked by the 35 (Gly₄Ser)₂Gly₄Val linker to V_L.4715 starting from the SacI restriction site in V_L.3418. The PstI-NheI pGOSA.C insert contains V_H.4715 linked by the (Gly₄Ser)₃AlaGlySerAla

PCT/EP97/01609

- 30 -

WO 97/38102

linker to V_H.3418, starting from the PstI restriction site in the framework-1 region in V_H.4715. The NheI-SacI PCR-III fragment provides the ribosome binding site and DNA encoding the pelB leader sequence for the V_L.3418-(Gly₄Ser)₂Gly₄Val-V_L.4715 construct. The oligonucleotides DBL.10 and PCR.116 (see Table 1) used to generate PCR-III were designed to match the sequence upstream of the ribosome binding site of V_L.4715 in Fv.4715 and to introduce an NheI restriction site (DBL.10), and to match the framework-4 region of V_L.3418 (PCR.116).

PCT/EP97/01609

- 31 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: UNILEVER PLC
 - (B) STREET: Blackfriars
 - (C) CITY: London
 - (E) COUNTRY: United Kingdom
 - (F) POSTAL CODE (ZIP): EC4P 4BQ
 - (G) TELEPHONE: (01234) 222644
 - (H) TELBFAX: (01234) 222633
 - (I) TELEX: 82229 UNILAB G
- (ii) TITLE OF INVENTION: Multivalent and multispecific antigen-binding protein
 - (iii) NUMBER OF SEQUENCES: 27
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Ploppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE:

PatentIn Release #1.0, Version #1.25 (EPO) (SEC ID NO. 1 to 18)
PatentIn Release #1.0, Version #1.30 (EPO) (SEC ID NO. 19 to 27)

- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1745 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

AAGCTTGCAT GGAAATTCTA TTTCAAGGAG ACAGTCATAA TGAAATACCT ATTGCCTACG 60

GCAGCCGCTG GATTGTTATT ACTCGCTGCC CAACCAGCGA TGGCCCAGGT GCAGCTGCAG 120

180	TGCAACCTCT	CACTCTCCTG	GGGTCCCTGA	GAAGCCTGGA	GAGACTTAGT	GAGTCAGGGG
240	CAAGAGTCTG	AGACCTCAGA	TGGGTCCGCC	TGCCTTTTCT	TCAGTAGTTA	GGATTCACTT
300	CAATGTGAAG	ATTATTCAGA	ACTTATACCT	TAGTACTGAT	CAACCATCAG	GAGTGGGTCG
360	AATGAGCAGT	TGTACCTGCA	AAGAACACCC	AGACAATGGC	CCATCTCCAG	GGGCGCTTCA
420	TGGTAAAGGC	ATGGGTACTA	TGTGCAAGAC	CGTGTATTAC	AGGACACAGC	CTGAAGTCTG
480	AGGCGGTTCA	CCTCAGGTGG	GTCACCGTCT	AGGGACCACG	ACTGGGGCCA	TATTTTGACT
540	GCTGCAACAG	CCCAGGTCCA	GCCGGTTCGG	TGGCGGATCG	GCTCTGGCGG	GGCGGAGGTG
600	GGCTTCTGGA	TGTCCTGCAA	TCAGTGAAGA	GCCTGGGGCT	AGCTGGTAAA	TCAGGACCTG
660	GGGCCTTGAG	AGCCTGGGCA	GTGAAACAGA	TATGCACTGG	CTAGCTATGT	TACACATTCA
720	GTTCAAAGGC	ACAATGAGAA	GGTACTAAGT	TTACAATGAT	ATATTTATCC	TGGATTGGAT
780	CAGCAGCCTG	ACATGGAGCT	AGCACAGCCT	CAAATCCTCC	TGACTTCAGA	AAGGCCACAC
840	GGGCCAAGGG	TTGACTACTG	TCAAGACGCT	CTATTACTGT	ACTCTGCGGT	ACCTCTGAGG
900	CTATTTCAAG	CATGCAAATT	AGCGGAGCTG	ATAATAAGCT	CCGTCTCCTC	ACCACCGTCA
960	ATTACTCGCT	CTGGATTGTT	ACGGCAGCCG	CCTATTGCCT	TAATGAAATA	GAGACAGTCA
1020	GTATGCATCT	CATCTTCCAT	ACCCAGTCTC	CATCGAGCTC	CGATGGCCGA	GCCCAACCAG
1080	CTATTTAACC	ACATTAATAC	GCGAGTCAGG	CACTTGCAAG	GAATCACTAT	CTAGGAGAGA
1140	AAACAGATTG	TCTATCGTGC	AAGACCCTGA	GAAATCTCCC	AGAAACCAGG	TGGTTCCAGC
1200	TTCTCTCACC	GGCAAGATTA	AGTGGATCTG	GTTCAGTGGC	TCCCATCAAG	CTAGATGGGG
1260	TGATGAGTTG	GTCTACAATA	ATTTATTATT	AGATATGGGA	TGGACTATGA	ATCAGCAGCC
1320	TTCAGGCGGA	GTGGAGGCGG	ATCAAACGGG	CAAGCTCGAG	GAGGGGGAC	TACACGTTCG
1380	CTCCCTGACT	AGTCTCCATT	GAACTCACTC	AGTCGACATC	GCGGTGGCGG	GGTGGCTCTG
1440	GTTAAACAGT	GTCAGAGTCT	TGCAAGTCCG	СУСТУТСУУТ	CACACAACCT	GTGACAGCAG

- 33 -

GTAAATCAGA	GGAACTACTT	GACCTGGTAC	CAGCAGAAGC	CAGGGCAGCC	TCCTAAACTG	1500
TTGATCTACT	GGGCATCCAC	TAGGGAATCT	GGAGTCCCTG	ATCGCTTCAC	AGCCAGTGGA	1560
TCTGGAACAG	ATTTCACTCT	CACCATCAGC	AGTGTGCAGG	CTGAAGACCT	GGCAGTTTAT	1620
TACTGTCAGA	ATGATTATAC	TTATCCGTTC	ACGTTCGGAG	GGGGGACCAA	GCTCGAAATC	1680
AAACGGGGAT	CCGGTAGCGG	GAACTCCGGT	AAGGGGTACC	TGAAGTAATA	AGCGGCCGCG	1740
AATTC						1745

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 894 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

AAGCTTGCAT	GCAAATTCTA	TTTCAAGGAG	ACAGTCATAA	TGAAATACCT	ATTGCCTACG	60
GCAGCCGCTC	GATTGTTATT	ACTCGCTGCC	CAACCAGCGA	TGGCCCAGGT	GCAGCTGCAG	120
GAGTCAGGAG	CTGGCCTGGT	GGCGCCCTCA	CAGAGCCTGT	CCATCACATG	CACCGTCTCA	180
GGGTTCTCAT	TAACCGGCTA	TGGTGTAAAC	TGGGTTCGCC	AGCCTCCAGG	AAAGGGTCTG	240
GAGTGGCTGG	GAATGATTTG	GGGTGATGGA	AACACAGACT	ATAATTCAGC	TCTCAAATCC	300
AGACTGAGCA	TCAGCAAGGA	CAACTCCAAG	AGCCAAGTTT	ТСТТАААААТ	GAACAGTCTG	360
CACACTGATG	ACACAGCCAG	GTACTACTGT	GCCAGAGAGA	GAGATTATAG	GCTTGACTAC	420
TGGGGCGAAG	GCACCACGGT	CACCGTCTCC	TCAGGTGGAG	GCGGTTCAGG	CGGAGGTGGC	480
TCTGGCGGTG	GCĞGATCGGA	CATCGAGCTC	ACCCAGTCTC	CAGCCTCCCT	TTCTGCGTCT	540
GTGGGAGAAA	CTGTCACCAT	CACATGTCGA	GCAAGTGGGA	ATATTCACAA	TTATTTAGCA	600

_	34	_

TGGTATCAGC	AGAAACAGGG	AAAATCTCCT	CAGCTCCTGG	TCTATTATAC	AACAACCTTA	660
GCÁGATGGTG	TGCCATCAAG	GTTCAGTGGC	AGTGGATCAG	GAACACAATA	TTCTCTCAAG	720
ATCAACAGCC	TGCAACCTGA	AGATTTTGGG	AGTTATTACT	GTCAACATTT	TTGGAGTACT	780
CCTCGGACGT	TCGGTGGAGG	CACCAAGCTC	GAGATCAAAC	GGGAACAAAA	ACTCATCTCA	840
GAAGAGGATC	TGAATTAATA	AGATCAAACG	GTAATAAGGA	TCCAGCTCGA	ATTC	894

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 930 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

AAGCTTGCAT GCAAATTCTA TTTCAAGGAG ACAGTCATAA TGAAATACCT ATTGCCTACG 60 GCAGCCGCTG GATTGTTATT ACTCGCTGCC CAACCGGCCA TGGCCCAGGT GCAGCTGCAG 120 GAGTCAGGGG GAGACTTAGT GAAGCCTGGA GGGTCCCTGA CACTCTCCTG TGCAACCTCT 180 GGATTCACTT TCAGTAGTTA TGCCTTTTCT TGGGTCCGCC AGACCTCAGA CAAGAGTCTG 240 GAGTGGGTCG CAACCATCAG TAGTACTGAT ACTTATACCT ATTATTCAGA CAATGTGAAG 300 GGGCGCTTCA CCATCTCCAG AGACAATGGC AAGAACACCC TGTACCTGCA AATGAGCAGT 360 CTGAAGTCTG AGGACACAGC CGTGTATTAC TGTGCAAGAC ATGGGTACTA TGGTAAAGGC 420 TATTTTGACT ACTGGGGCCA AGGGACCACG GTCACCGTCT CCTCAGGTGG AGGCGGTTCA 480 GGCGGAGGTG GCTCTGGCGG TGGCGGATCG GACATCGAGC TCACTCAGTC TCCATTCTCC 540 CTGACTGTGA CAGCAGGAGA GAAGGTCACT ATGAATTGCA AGTCCGGTCA GAGTCTGTTA 600 AACAGTGTAA ATCAGAGGAA CTACTTGACC TGGTACCAGC AGAAGCCAGG GCAGCCTCCT 660

 35	_

AAACTGTTGA TCTACTGGGC ATCCACTAGG GAATCTGGAG TCCCTGATCG CTTCACAGCC	720
AGTGGATCTG GAACAGATTT CACTCTCACC ATCAGCAGTG TGCAGGCTGA AGACCTGGCA	780
GTTTATTACT GTCAGAATGA TTATACTTAT CCGTTCACGT TCGGAGGGGG GACCAAGCTC	840
GAGATCAAAC GGGGATCCGG TAGCGGGAAC TCCGGTAAGG GGTACCTGAA GTAATAAGAT	900
CAAACGGTAA TAAGGATCCA GCTCGAATTC	930
(2) INFORMATION FOR SEQ ID NO: 4:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LBNGTH: 156 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
CCATGGGATG GAGCTGTATC ATCCTCTTCT TGGTAGCAAC AGCTACAGGT AAGGGGCTCA	60
CAGTAGCAGG CTTGAGGTCT GGACATATAT ATGGGTGACA ATGACATCCA CTTTGCCTTT	120
CTCTCCACAG GTGTCCACTC CCAGGTCCAA CTGCAG	156
(2) INFORMATION FOR SEQ ID NO: 5:	
(i) SEQUENCE CHARACTERISTICS:	•
(A) LENGTH: 22 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
AGGTSMAMCT GCAGSAGTCW GG	22
(2) INFORMATION FOR SBO ID NO: 6:	

(i) SEQUENCE CHARACTERISTICS:

- 36 -

(A) LENGTH: 32 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
TGAGGAGACG GTGACCGTGG TCCCTTGGCC CC	32
(2) INFORMATION FOR SEQ ID NO: 7:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 24 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
GACATTGAGC TCACCCAGTC TCCA	24
(2) INFORMATION FOR SEQ ID NO: 8:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 22 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
GTTAGATCTC GAGCTTGGTC CC	22
(2) INFORMATION FOR SBQ ID NO: 9:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 45 base pairs	

_	37	_
	.	

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
CAGO	GATCCGG CCGGTTCGGC CCAGGTCCAG CTGCAACAGT CAGGA	4
(2)	INFORMATION FOR SEQ ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 53 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
CTAC	CATGAAT TCGCTAGCTT ATTATGAGGA GACGGTGACG GTGGTCCCTT GGC	53
(2)	INFORMATION FOR SEQ ID NO: 11:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 39 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
ATTG	SGAGTCG ACATCGAACT CACTCAGTCT CCATTCTCC	39
(2)	INFORMATION FOR SEQ ID NO: 12:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 36 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	

PCT/EP97/01609

- 38 -

(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
CGAATTCGGA TCCCCGTTTG ATTTCGAGCT TGGTCC	36
(2) INFORMATION FOR SEQ ID NO: 13:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 45 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic) .	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
GAGCGCGAGC TCGGCCGAAC CGGCCGATCC GCCACCGCCA GAGCC	45
(2) INFORMATION FOR SEQ ID NO: 14:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 36 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
ATTGTCGAAT TCGTCGACTC CGCCACCGCC AGAGCC	36
(2) INFORMATION FOR SEQ ID NO: 15:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 57 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

PCT/EP97/01609

- 39 -

		
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
AGCI	TTCTAGA CCACCATGGA AAACTGCAGA GCTCAAAAGC TAGCGCGGCG GCTCTAG	5
(2)	INFORMATION FOR SEQ ID NO: 16:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 57 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
AATT	CTAGAG CGGCCGCCT AGCTTTTGAG CTCTGCAGTT TTCCATGGTG GTCTAGA	57
(2)	INFORMATION FOR SEQ ID NO: 17:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LBNGTH: 40 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	•
ACGG	GTGAGC TCGATGTCGG AGTGGACACC TGTGGAGAGA	40
(2)	INFORMATION FOR SEQ ID NO: 18:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 24 base pairs	

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

- 40 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

GGAAACAGCT ATGACCATGA TTAC

24

- (2) INFORMATION FOR SEQ ID NO: 19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "synthetic DNA"
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer DBL.7
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

CACCATCTCC AGAGACAATG GCAAG

25

- (2) INFORMATION FOR SEQ ID NO: 20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "synthetic DNA"
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer DBL.8
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

ACCAAGCTCG AGATCAAACG GGG

- (2) INFORMATION FOR SEQ ID NO: 21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 50 base pairs

- 41 -

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "synthetic DNA"
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer DBL.9
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

TGAAGTGAAT TCGCGGCCGC TTATTACCGT TTGATTTCGA GCTTGGTCCC

50

- (2) INFORMATION FOR SEQ ID NO: 22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "synthetic DNA"
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: primer DBL.10
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

TAATAAGCTA GCGGAGCTGC ATGCAAATTC TATTTC

- (2) INFORMATION FOR SEQ ID NO: 23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 737 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "cDNA domains with synthetic linker(s)"
 - (vii) IMMEDIATE SOURCE:

- 42 -													
(B) CLONE: EcoRI-HindIII insert of pUR4124													
(ix) FEATURE:													
(A) NAME/KEY: CDS													
(B) LOCATION:11730													
(D) OTHER INFORMATION:/product= "VLlys-GS-VHlys"													
(ix) PEATURE:													
(A) NAME/KEY: mat_peptide													
(B) LOCATION:11334													
(D) OTHER INFORMATION:/product= "VLlys"													
(ix) FEATURE:													
(A) NAME/KEY: misc_RNA													
(B) LOCATION: 335379													
(D) OTHER INFORMATION:/product= "(Gly4Ser)3 linker"													
(ix) FBATURE:													
(A) NAMB/KEY: mat_peptide													
(B) LOCATION:380727													
(D) OTHER INFORMATION:/product= "VHlys"													
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:													
GAATTCGGCC GAC ATC GAG CTC ACC CAG TCT CCA GCC TCC CTT TCT GCG	49												
Asp Ile Glu Leu Thr Gln Ser Pro Ala Ser Leu Ser Ala													
1 5 10													
TCT GTG GGA GAA ACT GTC ACC ATC ACA TGT CGA GCA AGT GGG AAT ATT	97												
Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Gly Asn Ile													
15 20 25													
CAC AAT TAT TTA GCA TGG TAT CAG CAG AAA CAG GGA AAA TCT CCT CAG	145												
His Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro Gln													
30 35 40 45													
CTC CTG GTC TAT TAT ACA ACA ACC TTA GCA GAT GGT GTG CCA TCA AGG	193												
Leu Leu Val Tyr Tyr Thr Thr Leu Ala Asp Gly Val Pro Ser Arg													
50 55 60													

TTC AGT GGC AGT GGA TCA GGA ACA CAA TAT TCT CTC AAG ATC AAC AGC

Phe Ser Gly Ser Gly Ser Gly Thr Gln Tyr Ser Leu Lys Ile Asn Ser

65 70 75

- 43 -

CTC	CA	CC.	r gaa	GAI	TTT	GGG	AGT	TAT	TAC	TGT	CAZ	CAT	TT:	r Tg	AGT	289
Lev	Glr	Pro	Glu	Asp	Phe	Gly	Ser	Tyr	Туг	Сув	Glr	n His	Pho	e Tr	Ser	
		8 ()				85					90				
															GGT	337
Thi			, Thr	Phe	Gly		Gly	Thr	Lys	Leu			Lye	Arg	Gly	
	95	i				100					105					
GGZ	cec	. 661	' ጥሮል	aac	CCA	CCT	000	Tr Car	C00	CCT	-				GTG	
			Ser													385
110		1	-02		115	O ₁	ULJ		G.,	120	Gry	GIY	Ser	GIN		
				*						120					125	
CAG	CTG	CAG	GAG	TCA	GGA	CCT	GGC	CTG	GTG	GCG	CCC	TCA	CAG	AGC	CTG	433
			Glu													
				130					135					140		
			TGC													481
Ser	Ile	Thr	Сув	Thr	Val	Ser	Gly	Phe	Ser	Leu	Thr	Gly	Tyr	Gly	Val	
			145					150					155			
														,		
AAC	TGG	GTT	CGC	CAG	CCT	CCA	GGA	AAG	GGT	CTG	GAG	TGG	CTG	GC A	ATC	520
			Arg													529
	_	160	_				165		,			170		U_y	1100	
																•
ATT	TGG	GGT	GAT	GGA	AAC	ACA	GAC	TAT	AAT	TCA	GCT	CTC	AAA	TCC	AGA	577
Ile	Trp	Gly	qaA	Gly	Asn	Thr	Asp	Tyr	Asn	Ser	Ala	Leu	Lys	Ser	Arg	
	175					180					185					
			AGC													625
190	ser	TTE	Ser	ras		Asn	Ser	Lys	Ser		Val	Phe	Leu	Lye	Met	
190					195					200					205	•
AAC	AGT	CTG	CAC	ACT	ር አ ጥ	GAC	202	ccc	ACC	тъс	ጥ ስ ር	ጥርም		202		
			His													673
				210		F			215	-1-	-1-	cyb .	uT d	220	GIU	
AGA	GAT	TAT	AGG	CTT	GAC	TAC '	TGG	GGC	CAA	GGG .	ACC .	ACG (GTC	ACC	GTC	721
			Arg													,
			225					230					235			
TCC	TCA	TGA	TAAG	CTT												737
Ser	Ser	•														

- 44 -

- (2) INFORMATION FOR SEQ ID NO: 24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 920 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "cDNA domains with synthetic linker(s)"
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: HindIII-EcoRI insert Pv.3418
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 36..443
 - (D) OTHER INFORMATION:/product= "pelB-VH3418"
 - (ix) FEATURE:
 - (A) NAME/KEY: sig_peptide
 - (B) LOCATION: 36..101
 - (D) OTHER INFORMATION:/product= "pectate lyase"
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 102..440
 - (D) OTHER INFORMATION:/product= "VH3418"
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 495..884
 - (D) OTHER INFORMATION:/product= "pelB-VL4318"
 - (ix) FEATURE:
 - (A) NAME/KEY: sig_peptide
 - (B) LOCATION: 495..560
 - (D) OTHER INFORMATION:/product= "pectate lyase"
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 561..881

- 45 -

(D) OTHER INFORMATION:/product= "VL3418"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

AAG	CTTG	CAA	ATTC	TATT	TC A	AGGA	GACA	G TC				TAC Tyr -20				53
												Pro			GCC Ala	
															GCT Ala	149
														Ser	TAT	197
			TGG Trp													245
			TAT Tyr													293
			GCC Ala													341
			AGC Ser													389
			TTT Phe 100												TCC Ser	437
Ser	•		SAGCT													493
A AI	G AA	A TA	CT	A TI	G CC	T AC	G GC	A GC	C GC	T GG	A TI	G TI	TT A	'A CI	.C	539

- 46 -

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu																	
- 2	22	-2	20				` -:	15		-10							
				GCG												587	
Ala	Ala		Pro	Ala	Met	Ala	Asp	Ile	Glu	Leu		Gln	Ser	Pro	Ser		
		-5					1		,		5						
							~~~		> m.c.	3 cm	200	3 CM	maa				
				TCT										•		635	
	met	Tyr	Ala	Ser	15	GIÀ	GIU	Arg	TIG	20	116	Int	сув	гур	25		
10					13					20			٠		25		
AGT	CAG	GAC	ATT	AAT	ACC	TAT	TTA	ACC	TGG	TTC	CAG	CAG	AAA	CCA	GGG	683	
Ser	Gln	qaA	Ile	Asn	Thr	Tyr	Leu	Thr	Trp	Phe	Gln	Gln	Lys	Pro	Gly		
		_		30					35					40	_		
AAA	TCT	ccc	AAG	ACC	CTG	ATC	TAT	CGT	GCA	AAC	AGA	TTG	CTA	GAT	GGG	731	
Lys	Ser	Pro	Lys	Thr	Leu	Ile	Tyr	Arg	Ala	Asn	Arg	Leu	Leu	Asp	Gly		
			45				•	50					55				
				_													
				TTC			-									779	
Val	Pro		Arg	Phe	Ser	GIÀ		GIY	ser	GIY	GIN	70	Tyr	ser	Leu		
		60					65					70					
ACC	እተ ር	AGC	AGC	CTG	GAC	TAT	GAA	GAT	ATG	GGA	ATT	TAT	TAT	TGT	CTA	827	
				Leu													
	75					80		•		-	85	-	-	-			
CAA	TAT	GAT	GAG	TTG	TAC	ACG	TTC	GGA	GGG	GGG	ACC	AAG	CTC	GAG	ATC	875	
Gln	Tyr	Авр	Glu	Leu	Tyr	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile		
90					95					100					105		
			TAA!	rgat(	CAA A	ACGG:	[ATA]	AG G	ATCC	AGCT	C GA	ATTC				920	
Lув	Arg	•															
(2)	TNID	SDMAG	PTON	PΛP	e PA	TD 1	10 · 1	>5.									
(2)	TMP	JKMA.	LION	FOR	SEV	ו עב											
	(i)	SBO	OUEN	CE CI	HARA	CTER	ISTI	cs:									
	,_,		_	ENGT				_	3								

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
  - (A) DESCRIPTION: /desc = "cDNA domains with synthetic linker(s)"

- 47 -

#### (vii) IMMEDIATE SOURCE:

(B) CLONE: HindIII-EcoRI insert of Fv.4715-myc

## (ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 40..468
- (D) OTHER INFORMATION:/product= "pelB-VH4715"

## (ix) FEATURE:

- (A) NAME/KEY: sig peptide
- (B) LOCATION: 40..105
- (D) OTHER INFORMATION:/product= "pectate lyase"

#### (ix) FEATURE:

- (A) NAME/KEY: mat_peptide
- (B) LOCATION: 106..465
- (D) OTHER INFORMATION:/product= "VH4715"

## (ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION:520..963
- (D) OTHER INFORMATION:/product= "pelB-VL4715-myc"

## (ix) FEATURE:

- (A) NAME/KEY: sig_peptide
- (B) LOCATION:520..585
- (D) OTHER INFORMATION:/product= "pectate lyase"

#### (ix) FEATURE:

- (A) NAME/KBY: mat_peptide
- (B) LOCATION: 586..927
- (D) OTHER INFORMATION:/product= "VL4715"

#### (ix) FEATURE:

- (A) NAME/KEY: misc_RNA
- (B) LOCATION: 928..960
- (D) OTHER INFORMATION:/product= "myc-tag"

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

AAGCTTGCAT GCAAATTCTA TTTCAAGGAG ACAGTCATA ATG AAA TAC CTA TTG

- 48 -

CCT	ACG	GCA	GCC	GCT	GGA	TTG	TTA	TTA	CTC	GCT	GCC	CAA	CCA	GCG	ATG	102
Pro	Thr	Ala	Ala	Ala	Gly	Leu	Leu	Leu	Leu	Ala	Ala	Gln	Pro	Ala	Met	
		-15					-10					-5				
										~~~	<b></b>	cm.c				
							TCA									150
Ala		Val	Gln	Leu		Glu	Ser	GIA	GIY		Leu	VAI	гув	Pro		
	1				5					10					15	
GGG	TCC	CTG	ACA	CTC	TCC	TGT	GCA	ACC	TCT	GGA	TTC	ACT	TTC	AGT	AGT	198
Gly	Ser	Leu	Thr	Leu	Ser	Сув	Ala	Thr	Ser	Gly	Phe	Thr	Phe	Ser	Ser	
_				20					25					30		
							CAG									246
Tyr	Ala	Phe	Ser 35	Trp	Val	Arg	Gln	Thr	ser	Asp	гÀв	ser	45	GIU	Trp	
			33													
GTC	GCA	ACC	ATC	AGT	AGT	ACT	GAT	ACT	TAT	ACC	TAT	TAT	TCA	GAC	AAT	294
Val	Ala	Thr	Ile	Ser	Ser	Thr	qaA	Thr	Tyr	Thr	Tyr	Tyr	Ser	Авр	Asn	
		50					55					60				
															-	7.40
							TCC									342
Val	_	GIĀ	Arg	Pne	Thr		Ser	Arg	мвр	WRU	75	гув	ABII	Int	Leu	
	65					70					,,					
TAC	CTG	CAA	ATG	AGC	AGT	CTG	AAG	TCT	GAG	GAC	ACA	GCC	GTG	TAT	TAC	390
Tyr	Leu	Gln	Met	Ser	Ser	Leu	Lys	Ser	Glu	qaA	Thr	Ala	Val	Tyr	Tyr	
80					85					90					95	
			~ > ~		m> a	m>#	~~~		ccc	ጥእሞ	and an	CAC	ምእ ሮ	TCC	<i></i>	430
							GGT Gly									438
Сув	AIA	Arg	HIB		ıyr	ıyı	GIY	пув	105	171	FIIC	пор	- 7 -	110	GIY	
				100					103					110		
CAA	GGG	ACC	ACG	GTC	ACC	GTC	TCC	TCA	TAA	TAAC	SAGC	TAT (GGA(GCTT(3C	488
Gln	Gly	Thr	Thr	Val	Thr	Val	Ser	Ser	*							
			115					120								
									. m.a. 1		.		DDC (7.0M		F.4.0
ATG	CAAA:	rrc :	ratt.	rcaa(GG A	GACA	GTCA:						Leu l			540
									-22	•	-20				• • • •	
	,															
GCA	GCC	GCT	GGA	TTG	TTA	TTA	CTC	GCT	GCC	CAA	CCA	GCG	ATG	GCC	GAC	588
Ala	Ala	Ala	Gly	Leu	Leu	Leu	Leu	Ala	Ala	Gln	Pro	Ala	Met	Ala	Asp	
-15					-10					- 5					1	

- 49 -

ATC	GAG	CTC	ACT	CAG	TCT	CCA	TTC	TCC	CTG	ACT	GTG	ACA	GCA	GGA	GAG	636
Ile	Glu	Leu	Thr	Gln	Ser	Pro	Phe	Ser	Leu	Thr	Val	Thr	Ala	Gly	Glu	
			5					10					15			
															GTA	684
Lys	Val	Thr	Met	Asn	CAa	Lys	Ser	Gly	Gln	Ser	Leu	Leu	Asn	Ser	Val	
		20					25					30				
እእጥ	CRC	»cc	220	TO C	man Ca	3.00	maa	m 2 4	a. a	~~		~~~		 -		
												CCA Pro				732
4011	35	nrg	VOII	171	Deu	40	ILP	IYL	GIII	GIII	45	PIO	GIY	GIN	Pro	
											43					
CCT	AAA	CTG	TTG	ATC	TAC	TGG	GCA	TCC	ACT	AGG	GAA	TCT	GGA	GTC	ССТ	780
												Ser			_	,
50					55					60					65	
												ACT				828
Asp	Arg	Phe	Thr		Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	
				70				-	75					80		
) AGC	AGT	GTG	CAG	CCT	CDD	CAC	CT C	CCN	Cathath	ጥልጥ	T > C	TGT	63.6		~~=	
												Cys				876
			85					90		-,-	-11-	Cys	95	POIT	мвр	
TAT	ACT	TAT	CCG	TTC	ACG	TTC	GGA	GGG	GGG	ACC	AAG	CTC	GAG	ATC	AAA	924
Tyr	Thr	Tyr	Pro	Phe	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lys	
		100					105					110				•
												TAA	TAAG	ATCA	AA	973
Arg	115	Gln	Lys	Leu	Ile		Glu	Glu	Авр			*				
	113					120					125					
CGGI	'AATA	AG G	ATCC	AGCT	C GA	ATTC										
																999
(2)	INFO	RMAT	ION	POR	SEQ	ID N	0: 2	6 :								
	(i)	SEQ	UBNC	в сн	ARAC	TERI	STIC	S :								
		(A) LE	ngth	: 92	4 ba	ве р	airs								
		(B	TY:	PE:	nucl	eic .	acid									

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = *cDNA domains with synthetic linker(s) *

PCT/EP97/01609

(vii) IMMEDIATE SOURCE:

(B) CLONE: HindIII-EcoRI insert of scFv.4715-myc

(ix) FEATURE:

- (A) NAME/KEY: sig_peptide
- (B) LOCATION: 40..105
- (D) OTHER INFORMATION:/product= "pectate lyase"

(ix) FEATURE:

- (A) NAMB/KBY: mat_peptide
- (B) LOCATION: 106..465
- (D) OTHER INFORMATION:/product= "VH4715"

(ix) FEATURE:

- (A) NAME/KEY: misc_RNA
- (B) LOCATION: 466..510
- (D) OTHER INFORMATION:/product= "(Gly4Ser)3-linker"

(ix) FEATURE:

- (A) NAME/KBY: mat_peptide
- (B) LOCATION:511..852
- (D) OTHER INFORMATION:/product= "VL4715"

(ix) FBATURE:

- (A) NAME/KEY: misc RNA
- (B) LOCATION: 853..885
- (D) OTHER INFORMATION:/product= "myc-tag"

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION:40..888
 - (D) OTHER INFORMATION:/product=
 "pelB-VH4715-(Gly4Ser)3-VL4715-myc"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

AAGCTTGCAT GCAAATTCTA TTTCAAGGAG ACAGTCATA ATG AAA TAC CTA TTG 54

Met Lys Tyr Leu Leu

-22 -20

CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC GCT GCC CAA CCA GCG ATG 102
Pro Thr Ala Ala Ala Gly Leu Leu Leu Ala Ala Gln Pro Ala Met

-15 -10

GCC	CAG	GTG	CAG	CTG	CAG	GAG	TCA	GGG	GGA	GAC	TT	A GT	AA(CC	r gga	150
Ala	Gln	Val	Gln	Leu	Gln	Glu	Ser	Gly	Gly	yet	Le	ı Val	Lys	Pro	Gly	
	1				5	,				10)				15	
															AGT	198
Gly	Ser	`Leu	Thr	Leu	Ser	Сув	Ala	Thr	Ser	Gly	Phe	> Thr	Phe	Ser	Ser	
				20					25					30)	
					٠											
															TGG	246
ıyr	АТа	Pne		Trp	Val	Arg	GIn		Ser	qaA	Lys	Ser			Trp	
			35					40					45			
GTC	GCA	ACC	ATC	AGT	AGT	ACT	GAT	ልሮሞ	ጥልጥ	acc	ጥልፕ	י ייארי	ጥሮአ	GNO	AAT	204
															Asn	294
		50					55		-2-		-,-	60		nop	Aon	
GTG	AAG	GGG	CGC	TTC	ACC	ATC	TCC	AGA	GAC	AAT	GGC	AAG	AAC	ACC	CTG	342
Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Авр	Asn	Gly	Lys	Asn	Thr	Leu	
	65					70					75					
				•												
												GCC				390
	Leu	Gln	Met	Ser	Ser	Leu	Lys	Ser	Glu	yeb	Thr	Ala	Val	Tyr	Tyr	
80					85					90					95	
*			a> m													
												GAC				438
сув	HIG	Arg	ulb	100	TYF	Tyr	GIŸ	гув		Tyr	Phe	Asp	Tyr	-	Gly	
				100					105					110		
CAA	GGG	ACC	ACG	GTC	ACC	GTC	TCC	TCA	сст	CCA	GGC	GGT	TCA	ccc	CCA	400
												Gly				486
	•		115					120	1	1	,		125	GIY	GLY	
3GT	GGC	TCT	GGC	GGT	GGC	GGA	TCG	GAC	ATC	GAG	CTC	ACT	CAG	тст	CCA	534
Sly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Asp	Ile	Glu	Leu	Thr	Gln	Ser	Pro	
		130					135	-				140				
												ATG		•		582
he	Ser	Leu	Thr	Val	Thr	Ala	Gly	Glu	ГÀв	Val	Thr	Met	Asn	Сув	Lys	
	145					150					155					
100	0.e.	a. -														
												AAC				630
	ela (GIN	ser :			Asn .	Ser	Val			Arg	naA	Tyr	Leu	Thr	
60			•		165					170					175	

- 52 -

 								CTG Leu						678
								TTC Phe						726
 								GTG Val					·	774
 	 							TAT Tyr 235						822
 	 							CAA Gln				-		870
G A G Glu		TAA •	TAAC	atc <i>i</i>	AAA (GGT	ATA	AG G7	ATCC#	(CTC	: GAJ	ATTC ·		924

- (2) INFORMATION FOR SEQ ID NO: 27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1706 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "cDNA domains with synthetic linker(s)"
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: HindIII-EcoRI insert of pGOSA.B
 - (ix) FEATURE:
 - (A) NAME/KBY: CDS
 - (B) LOCATION: 40..864
 - (D) OTHER INFORMATION:/product= "pelB-VH4715-LiA-VH3418"
 - (ix) FEATURE:

- (A) NAME/KEY: sig_peptide
- (B) LOCATION: 40..105
- (D) OTHER INFORMATION:/product= "pectate lyase"

(ix) FEATURE:

- (A) NAME/KEY: mat_peptide
- (B) LOCATION: 106..465
- (D) OTHER INFORMATION:/product= "VH4715"

(ix) FEATURE:

- (A) NAME/KEY: misc_RNA
- (B) LOCATION: 466..522
- (D) OTHER INFORMATION:/product= "linkerA (Gly4Ser)3AlaGlySerAla"

(ix) PEATURE:

- (A) NAME/KEY: mat_peptide
- (B) LOCATION: 523..861
- (D) OTHER INFORMATION:/product= "VH3418"

(ix) FEATURE:

- (A) NAME/KBY: CDS
- (B) LOCATION: 913..1689
- (D) OTHER INFORMATION:/product= "pelB-VL3418-LiV-VL4715"

(ix) FEATURE:

- (A) NAME/KEY: sig_peptide
- (B) LOCATION: 913..978
- (D) OTHER INFORMATION:/product= "pectate lyase"

(ix) FEATURE:

- (A) NAME/KEY: mat_peptide
- (B) LOCATION: 979..1299
- (D) OTHER INFORMATION:/product= "VL3418"

(ix) FEATURE:

- (A) NAME/KEY: misc_RNA
- (B) LOCATION: 1300..1344
- (D) OTHER INFORMATION:/product= "linker V (Gly4Ser)2Gly4Val"

(ix) FEATURE:

- (A) NAME/KEY: mat_peptide
- (B) LOCATION: 1345..1686

- 54 -

(D) OTHER INFORMATION:/product= "VL4715"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

ARCOMMODAY COARRYTON TOTO BECOME BORGTORY ATC ARE THE CORRESPONDED													
AAGCTTGCAT GGAAATTCTA TTTCAAGGAG ACAGTCATA ATG AAA TAC CTA TTG 54													
Met Lys Tyr Leu Leu -22 -20													
CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC GCT GCC CAA CCA GCG ATG	102												
Pro Thr Ala Ala Gly Leu Leu Leu Ala Ala Gln Pro Ala Met													
-15 -10 -5													
GCC CAG GTG CAG CTG CAG GAG TCA GGG GGA GAC TTA GTG AAG CCT GGA	150												
Ala Gln Val Gln Leu Gln Glu Ser Gly Gly Asp Leu Val Lys Pro Gly													
1 5 10 15													
GGG TCC CTG ACA CTC TCC TGT GCA ACC TCT GGA TTC ACT TTC AGT AGT	198												
Gly Ser Leu Thr Leu Ser Cys Ala Thr Ser Gly Phe Thr Phe Ser Ser	150												
20 25 30													
·													
TAT GCC TTT TCT TGG GTC CGC CAG ACC TCA GAC AAG AGT CTG GAG TGG	246												
Tyr Ala Phe Ser Trp Val Arg Gln Thr Ser Asp Lys Ser Leu Glu Trp													
35 40 45													
GTC GCA ACC ATC AGT AGT ACT GAT ACT TAT ACC TAT TAT TCA GAC AAT	294												
Val Ala Thr Ile Ser Ser Thr Asp Thr Tyr Thr Tyr Tyr Ser Asp Asn 50 55 60													
50 55													
GTG AAG GGG CGC TTC ACC ATC TCC AGA GAC AAT GGC AAG AAC ACC CTG	342												
Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Gly Lys Asn Thr Leu													
65 70 75													
•													
TAC CTG CAA ATG AGC AGT CTG AAG TCT GAG GAC ACA GCC GTG TAT TAC	390												
Tyr Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr Tyr													
80 85 90 95													
TGT GCA AGA CAT GGG TAC TAT GGT AAA GGC TAT TTT GAC TAC TGG GGC	420												
Cys Ala Arg His Gly Tyr Tyr Gly Lys Gly Tyr Phe Asp Tyr Trp Gly	438												
100 105 110													
CAA GGG ACC ACG GTC ACC GTC TCC TCA GGT GGA GGC GGT TCA GGC GGA	486												
Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly													
115 120 125													

WO 97/38102	PCT/EP97/0160
W C 7/150102	rc1/Ery//utou

	,	WO 9	7/3810	2												PC	T/EP97/0160
										-	55	-					
				•												G CTG	
	Gly	/ Gly	/ Ser 130		, Gl	/ Gly	, Gl	7 Sez 139		a Gly	, Sei	Ala	Gl 14		l Gl	n Leu	
									•					U			
																G ATG	58
•	GII	145		GIŞ	Pro) GIV	ьеи 150		. цує	Pro	GIY	7 Ala 155		r Va	l Ly	s Met	
																TGG Trp	63
	160		_,_	••••		165		****	FIIC	1111	170		Va.	. me	C HI	175	
	CTC		C) C	220	0.00		a> a										
																TAT Tyr	67
					180			•		185	-			-3-	190	-	
	ССТ	TAC	AAT	GAT	GGT	ACT	AAG	TAC	ААТ	GAG	AAG	ጥጥር	222	cci	7 AAC	GCC	30.
																Ala	720
				195					200					205	5		
	ACA	CTG	ACT	TCA	GAC	AAA	TCC	TCC	AGC	ACA	GCC	TAC	ATG	GAG	CTC	AGC	774
			Thr					Ser								Ser	
	,		210					215					220				
															CGC		822
	Ser	Leu 225	Thr	Ser	Glu	yab	Ser 230	Ala	Val	Tyr	Tyr	Сув 235	Ser	Arg	Arg	Phe	
							230					233		,			
	GAC	TAC								ACC							864
	240	Tyr	-	GIÀ	GIN	G1y 245	Thr	Thr	Val	Thr	Val 250	Ser	Ser	*			
1								٠					٠				
	TAAC	SCTAG	CG G	AGCI	GCAT	rg C#	LAATI	CTAT	' TTC	CAAGG	AGA	CAGT	CAT			A TAC	921
,														-2	_	-20	
	СТА	TTG	CCT	ACG.	GCA	GCC	CCT	CCA	ጥጥር	ጥጥ እ	מידשת	ama	~~m	222	CAA		
															Gln		969
					-15					-10					-5		
•	GCG	ATG	GCC	GAC	ATC	GAG	CTC	ACC	CAG	тст	CCA '	TCT '	TCC	ATG	TAT	GC»	1017
															Tyr		1017
				1				5					10				

- 56 -

TCT	CTA	GGA	GAG	AGA	ATC	ACT	ATC	ACT	TGC	AAG	GCG	AGT	CAG	GAC	ATT	1065
Ser	Leu	Gly	Glu	Arg	Ile	Thr	Ile	Thr	Cys	Lys	Ala	Ser	Gln	Asp	Ile	
	15					20					25					
AAT	ACC	TAT	TTA	ACC	TGG	TTC	CAG	CAG	AAA	CCA	GGG	AAA	TCT	CCC	AAG	1113
Aen	Thr	Tyr	Leu	Thr	Trp	Phe	Gln	Gln	Lys	Pro	Gly	Lys	Ser	Pro	Lys	
30					35					40					45	
ACC	CTG	ATC	TAT	CGT	GCA	AAC	AGA	TTG	CTA	GAT	GGG	GTC	CCA	TCA	AGG	1161
Thr	Leu	Ile	Tyr	Arg	Ala	Aen	Arg	Leu	Leu	Aap	Gly	Val	Pro	Ser	Arg	
				50			•		55					60		
TTC	AGT	GGC	AGT	GGA	TCT	GGG	CAA	GAT	TAT	TCT	CTC	ACC	ATC	AGC	AGC	1209
Phe	Ser	Gly	Ser	Gly	Ser	Gly	Gln	Asp	Tyr	Ser	Leu	Thr	Ile	Ser	Ser	
			65					70					75			
CTG	GAC	TAT	GAA	GAT	ATG	GGA	ATT	TAT	TAT	TGT	CTA	CAA	TAT	GAT	GAG	1257
Leu	qaA	Tyr	Glu	Авр	Met	Gly	Ile	Tyr	Tyr	Сув	Leu	Gln	Tyr	qaA	Glu	
		80					85					90				
TTG	TAC	ACG	TTC	GGA	GGG	GGG	ACC	AAG	CTC	GAG	ATC	AAA	CGG	GGT	GGA	1305
Leu	Tyr	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lув	Arg	Gly	Gly	
	95					100					105					
GGC	GGT	TCA	GGC	GGA	GGT	GGC	TCT	GGC	GGT	GGC	GGA	GTC	GAC	ATC	GAA	1353
Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Val	Asp	Ile	Glu	
110					115					120					125	
CTC	ACT	CAG	TCT	CCA	TTC	TCC	CTG	ACT	GTG	ACA	GCA	GGA	GAG	AAG	GTC	1401
Leu	Thr	Gln	Ser	Pro	Phe	Ser	Leu	Thr	Val	Thr	Ala	Gly	Glu	Lys	Val	
				130					135					140		
ACT	ATG	AAT	TGC	AAG	TCC	GGT	CAG	AGT	CTG	TTA	AAC	AGT	GTA	AAT	CAG	1449
Thr	Met	Asn	Сув	Lys	Ser	Gly	Gln	Ser	Leu	Leu	Aen	Ser	Val	Asn	Gln	
			145					150					155			
												•				
AGG	AAC	TAC	TTG	ACC	TGG	TAC	CAG	CAG	AAG	CCA	GGG	CAG	CCT	CCT	AAA	1497
Arg	Asn	Tyr	Leu	Thr	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Pro	Pro	Lys	,
		160					165					170				
CTG	TTG	ATC	TAC	TGG	GCA	TCC	ACT	AGG	GAA	TCT	GGA	GTC	CCT	GAT	CGC	1545
Leu	Leu	Ile	Tyr	Trp	Ala	Ser	Thr	Arg	Glu	Ser	Gly	Val	Pro	Asp	Arg	
	175					180					185					

- 57 -

TTC	ACA	GCC	AGT	GGA	TCT	GGA	ACA	GAT	TTC	ACT	CTC	ACC	ATC	AGC	AGT	1593
Phe	Thr	Ala	Ser	Gly	Ser	Gly	Thr	qaA	Phe	Thr	Leu	Thr	Ile	Ser	Ser	
190					195					200					205	
GTG	CAG	GCT	GAA	GAC	CTG	GCA	GTT	TAT	TAC	TGT	CAG	AAT	GAT	TAT	ACT	1641
Val	Gln	Ala	Glu	Asp	Leu	Ala	Val	Tyr	Tyr	Сув	Gln	Asn	Авр	Tyr	Thr	
				210					215					220		
TAT	CCG	TTC	ACG	TTC	GGA	GGG	GGG	ACC	AAG	CTC	GAA	ATC	AAA	CGG	TAA	1689
Tyr	Pro	Phe	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lув	Arg	•	
			225					230					235			·
TAAG	CGGC	cc c	GAAT	TC							*					1706

- 58 -

CLAIMS

1. A multivalent antigen binding protein comprising: a first polypeptide comprising, in series, three or more variable domains of an antibody heavy chain; and a second polypeptide comprising, in series, three or more variable domains of an antibody light chain,

10

5

said first and second polypeptides being linked by association of the respective heavy chain and light chain variable domains, each associated variable domain pair forming an antigen binding site.

15

 A protein according to Claim 1 comprising a trivalent antigen binding protein.

20

3. A protein according to Claim 1 or Claim 2 wherein the variable domains of the antibody heavy chain of said first polypeptide are linked by a peptide linker and the variable domains of the antibody light chain of said second polypeptide are linked by a peptide linker.

25

4. A protein according to any one of Claims 1 to 3 wherein the associated variable domain pair binding sites are able to bind different epitopes from each other.

30

5. A protein according to any one of Claims 1 to 3 wherein the associated variable domain pair binding sites are able to bind the same epitope as each other.

35

6. Nucleotide sequences coding for the polypeptides of the multivalent antigen binding protein of any one

- 59 -

of the preceding claims.

20

25

- 7. Nucleotide sequences according to Claim 6 contained in one or more expression vectors.
- 8. A host cell transformed with a vector according to Claim 7, and capable of expression of the nucleotide sequences to produce the polypeptides of the multivalent antigen binding protein.
- 9. A host cell according to Claim 8 wherein the polypeptides on expression associate to form the multivalent antigen binding protein.
- 10. A process for preparing a multivalent antigen
 binding protein according to any one of Claims 1 to
 5 comprising
 - (i) transforming one or more hosts by incorporating genes encoding said first and second polypeptides;
 - (ii) expressing said genes and said host or hosts; and
 - (iii) allowing said first and second polypeptides to associate to form the protein.
 - 11. A protein according to any one of Claims 1 to 5 for use in medicine.
- 12. A diagnostic or therapeutic composition comprising a protein according to any one of Claims 1 to 5.
 - 13. Use of composition according to Claim 12 in the preparation of an agent for use in diagnosis or therapy.
 - 14. A method of diagnosis or therapy comprising administering a protein according to any one of

Claims 1 to 5.

15. Use of a protein according to any one of Claims 1 to 5 in an immunoassay method or for purification.

Fig.1A.

3/35

Fig.2A. MKYLLPT **AAGCTTGCATGCAAATTCTATTTCAAGGAGACAGTCATAATGAAATACCTATTGCCTACG** AAAGLLLAAQPAMAQUUQLO pelB GCAGCCGCTGGATTGTTATTACTCGCTGCCCAACCAGCGATGGCCCAGGTGCAGCTGCAG leader ESGGDLWKEGGSLTCKE GAGTCAGGGGGAGACTTAGTGAAGCCTGGAGGGTCCCTGACACTCTCCTGTGCAACCTCT GFTPSTSTY ASPS WWW.ELOTS DKSTL GGATTCACTTTCAGTAGTTATGCCTTTTCTTGGGTCCGCCAGACCTCAGACAAGAGTCTG EWVAILES STOTINGY SONWA GAGTGGGTCGCAACCATCAGTAGTACTGATACTTATACCTATTATTCAGACAATGTGAAG VH4715 GRFT.IS.BOINGRANTHYILONS GGGCGCTTCACCATCTCCAGAGACAATGGCAAGAACACCCTGTACCTGCAAATGAGCAGT L K S E D T A V Y Y C A R H G Y Y G K G CTGAAGTCTGAGGACACAGCCGTGTATTACTGTGCAAGACATGGGTACTATGGTAAAGGC Y F D Y W G O G T T V T V S S G G G G S TATTTTGACTACTGGGGCCAAGGGACCAC<u>GGTCACC</u>GTCTCCTCAGGTGGAGGCGGTTCA G G G G G G G S A G S A Q V Q L Q Q Linker GGCGGAGGTGGCTCTGGCGGTGGCGGATCGGCCGGTTCGGCCCAGGTCCAGCTGCAACAG S G P E L'AL F G.A.S V K M S-C K A S C TCAGGACCTGAGCTGGTAAAGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCTTCTGGA Y T F 7 SHY V M H W V K Q K P G Q G L E TACACATTCACTAGCTATGTTATGCACTGGGTGAAACAGAAGCCTGGGCAGGGCCTTGAG Q I G Y I Y P Y N D G T R Y N E R F R G TGGATTGGATATATTTATCCTTACAATGATGGTACTAAGTACAATGAGAAGTTCAAAGGC VH3418 KATLUTSOD KS SISTAYUE ELISS AAGGCCACACTGACTTCAGACAAATCCTCCAGCACAGCCTACATGGAGCTCAGCAGCCTG TO SOE DESCAPANT YOUR SOME REPORT HOUSE QUES ACCTCTGAGGACTCTGCGGTCTATTACTGTTCAAGACGCTTTGACTACTGGGGCCAAGGG T T V T V S S M K Y L L P T A A A G L L L L A pelB GAGACAGTCATAATGAAATACCTATTGCCTACGGCAGCCGCTGGATTGTTATTACTCGCT leader AQPAMAD RELITEDS PS SMENAS GCCCAACCAGCGATGGCCGACATCGAGCTCACCCAGTCTCCATCTTCCATGTATGCATCT LGERITHEKASODINTYI CTAGGAGAGAATCACTATCACTTGCAAGGCGAGTCAGGACATTAATACCTATTTAACC VL3418 W P Q C K P G K S P R J L L Y R A N R L

TGGTTCCAGCAGAAACCAGGGAAATCTCCCAAGACCCTGATCTATCGTGCAAACAGATTG

4/35

Fig.2B.

Fig.3A.

MKYLLPT AAGCTTGCATGCAAATTCTATTTCAAGGAGACAGTCATAATGAAATACCTATTGCCTACG pelB AAAGLLLAAQPAMAQ.V.Q.L.Q leader GCAGCCGCTGGATTGTTATTACTCGCTGCCCAACCAGCGATGGCCCCAGGTGCAGCTGCAG ELS GEPRELLENING P. S. O. SLE S. I. PROTECTED GAGTCAGGACCTGGCCTGGTGGCGCCCTCACAGAGCCTGTCCATCACATGCACCGTCTCA G P S LI TEIG E-GEV NEW VER O R P C S C S GGGTTCTCATTAACCGGCTATGGTGTAAACTGGGTTCGCCAGCCTCCAGGAAAGGGTCTG P. W. L. S. M. H. W. G. D. G. N. T. D. Y. M. S. A. LUKUS GAGTGGCTGGGAATGATTTGGGGTGATGGAAACACAGACTATAATTCAGCTCTCAAATCC VHlys R L S I S K D NIGHT SUC V P L R M N S L AGACTGAGCATCAGCAAGGACAACTCCAAGAGCCAAGTTTTCTTAAAAATGAACAGTCTG H. T. D. D. P. ANN. M. V. C. A. C. E. R. D. YORLD, B. S. W G E G N N V V S S G G G G G G G TGGGGCGAAGGCACCACGGTCACCGTCTCCTCAGGTGGAGGCGGTTCAGGCGGAGGTGGC Linker S G G G S D I F L I O S P A S L S A S TCTGGCGGTGGCGGATCGGACATCGAGCTCACCCAGTCTCCAGCCTCCCTTTCTGCGTCT W Y TO G KERGERS KESTER OLD WELV Y THERE D TGGTATCAGCAGAAACAGGGAAAATCTCCTCAGCTCCTGGTCTATTATACAACAACCTTA A D G V PRESERVENCE GINSHIE STORE GINSHIE GCAGATGGTGTGCCATCAAGGTTCAGTGGCAGTGGATCAGGAACACAATATTCTCTCAAG **VLlys** INSUMBRESSES FOR COLUMN ATCAACAGCCTGCAACCTGAAGATTTTGGGAGTTATTACTGTCAACATTTTTGGAGTACT PRIPEGE TKLEIK REQKLIS CCTCGGACGTTCGGTGGAGGCACCAAGCTCGAGATCAAACGGGAACAAAAACTCATCTCA Myc-tag E E D L N GAAGAGGATCTGAATTAATAAGATCAAACGGTAATAAGGATCCAGCTCGAATTC

Fig.3B. MKYLLPT AAGCTTGCATGCAAATTCTATTTCAAGGAGACAGTCATAATGAAATACCTATTGCCTACG pelB A A A G L L L A A Q P A M A Q T C L Q leader GCAGCCGCTGGATTGTTATTACTCGCTGCCCAACCAGCGATGGCCCAGGTGCAGCTGCAG E 5 G G D L Y K P G G S E T T G G A D G GAGTCAGGGGGAGACTTAGTGAAGCCTGGAGGGTCCCTGACACTCTCCTGTGCAACCTCT GGATTCACTTTCAGTAGTTATGCCTTTTCTTGGGTCCGCCAGACCTCAGACAAGAGTCTG E. A. V. D. H. E. SEERING D. M. S. D. T. Y. S. B. R. W. K. GACTGGGTCGCAACCATCAGTAGTACTGATACTTATACCTATTATTCAGACAATGTGAAG VH4715 G P P T I S B B N G K N T L Y L Q W F 5 GGGCGCTTCACCATCTCCAGAGACAATGGCAAGAACACCCTGTACCTGCAAATGAGCAGT L KINS BIDET, A MY YEN COA R H G Y Y G KNG CTGAAGTCTGAGGACACAGCCGTGTATTACTGTGCAAGACATGGGTACTATGGTAAAGGC Y F D Y W GPO G R R V T V S S G G G S TATTTTGACTACTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGGTGGAGGCGGTTCA $B_{ij}(\Omega)=V_{ij}(X_{ij}(A_{ij})G_{ij}(B_{ij}(A_{ij}(A_{ij}))Y_{ij}(A_{ij}(A_{ij}))X_{i$ CTGACTGTGACAGCAGGAGAGAGGTCACTATGAATTGCAAGTCCGGTCAGAGTCTGTTA N S V N Q R N W L T W T G C L P G Q P P AACAGTGTAAATCAGAGGAACTACTTGACCTGGTACCAGCAGAAGCCAGGGCAGCCTCCT $K = L_{\mathcal{B}}(E_{\mathcal{B}}, Y) \cap W \cap A = \mathcal{B}(E_{\mathcal{B}}, Y) \cap R \cap B = G = V \cap P \cap D \cap F \cap P \cap P \cap M \cap A$ AAACTGTTGATCTACTGGGCATCCACTAGGGAATCTGGAGTCCCTGATCGCTTCACAGCC VL4715 S. G. S. G. T. D. P. T. L. BULL STIE IV. Q. A. ES D. LACA AGTGGATCTGGAACAGATTTCACTCTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCA V Y Y C Q N.D Y P Y P T F G G G T KG L GTTTATTACTGTCAGAATGATTATACTTATCCGTTCACGTTCGGAGGGGGGGACCAAGCTC Hydro2-tag E I K R G S G S G N S G <u>GAG</u>ATCAAACGGGGATCCGGTAGCGGGAACTCCGGTAAGGGGTACCTGAAGTAATAAGAT CAAACGGTAATAAGGATCCAGCTCGAATTC

735

Fig.4.

Fig.6A.

Fig.6B.

SUBSTITUTE SHEET (RULE 26)

Fig.7A.

10/35

Fig.7B.

Fig.8B.

/3/35

135

Fig. 12.

Fig. 13. pelB AAGCTTGCAAATTCTATTTCAAGGAGACAGTCATAATGAAATACCTATTGCCTACGGCAG leader AAGLLLAAQPAMA<mark>OTQL</mark>O CCGCTGGATTGTTATTACTCGCTGCCCAACCAGCGATGGCCCAGGTGCAGCTGCAGCAGT S G P B D V K P G A S V TO MOST CONTO A S G CAGGACCTGAGCTGGTAAAGCCTGGGGCTTCAGTGAAGATGTCCTGCAAGGCTTCTGGAT Y THE PROPERTY OF A PROPERTY REPORTED FOR THE PROPERTY OF THE ACACATTCACTAGCTATGTTATGCACTGGGTGAAACAGAAGCCTGGGCAGGGCCTTGAGT VH3418 FING VIT YER VINED CIT KOM NE K BOK C GGATTGGATATTTATCCTTACAATGATGGTACTAAGTACAATGAGAAGTTCAAAGGCA KATLTSTIKS SETAMORE LSS. AGGCCACACTGACTTCAGACAAATCCTCCAGCACAGCCTACATGGAGCTCAGCAGCCTGA TO SEE DESCRIPTION OF THE PROPERTY OF THE PROP CCTCTGAGGACTCTGCGGTCTATTACTGTTCAAGACGCTTTGACTACTGGGGCCAAGGGA TTVTVSS CCAC<u>GGTCACC</u>GTCTCCTCATAATAAGAGCTATGGGAGCTTGCATGCAAATTCTATTTCA M K Y L L P T A A A G L L L L AGGAGACAGTCATAATGAAATACCTATTGCCTACGGCAGCCGCTGGATTGTTATTACTCG pelB leader A A Q P A M A DIL ELL TO 6 P S E M Y A CTGCCCAACCAGCGATGGCCGACATCGAGCTCACCCAGTCTCCATCTTCCATGTATGCAT S L C P R I T I T C R A S Q D I M T Y 4 CTCTAGGAGAGAATCACTATCACTTGCAAGGCGAGTCAGGACATTAATACCTATTTAA THE WITH CONTRACT BETWEEN THE PROPERTY OF THE CCTGGTTCCAGCAGAAACCAGGGAAATCTCCCAAGACCCTGATCTATCGTGCAAACAGAT VL3418 B D G-V P 8 R F B G S G S G C D Y S B TGCTAGATGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGCAAGATTATTCTCTCA THE THE PROPERTY OF THE PROPER CCATCAGCAGCCTGGACTATGAAGATATGGGGAATTTATTATTGTCTACAATATGATGAGT PYTPGGGGCSKKLEIKE TGTACACGTTCGGAGGGGGGACCAAG<u>CTCGAG</u>ATCAAACGGTAATAATGATCAAACGGT ATAAGGATCCAGCTCGAATTC

Fig.14.

MKYLLPT pelB **AAGCTTGCATGCAAATTCTATTTCAAGGAGACAGTCATAATGAAATACCTATTGCCTACG** leader GCAGCCGCTGGATTGTTATTACTCGCTGCCCAACCAGCGATGGCCCAGGTGCAGCTGCAG E 6 G GEOLE VERNEUGRG SELLERBREE S CHANGES GAGTCAGGGGGAGACTTAGTGAAGCCTGGAGGGTCCCTGACACTCTCCTGTGCAACCTCT GO FOR THE SECOND SECOND ASSESSMENT OF THE SECOND S GGATTCACTTTCAGTAGTTATGCCTTTTCTTGGGTCCGCCAGACCTCAGACAAGAGTCTG E W V A T S C T DOT LANGUAGE TO SELECT GAGTGGGTCGCAACCATCAGTAGTACTGATACTTATACCTATTATTCAGACAATGTGAAG VH4715 GRETISED NEGLENITOTET CHSS GGGCGCTTCACCATCTCCAGAGACAATGGCAAGAACACCCTGTACCTGCAAATGAGCAGT L X S E D T A V-CYMY-C ARREST Y Y G K G CTGAAGTCTGAGGACACAGCCGTGTATTACTGTGCAAGACATGGGTACTATGGTAAAGGC Y F D Y W G Q G T T V T V SWS TATTTTGACTACTGGGGCCAAGGGACCACGGTCACCGTCTCCTCATAATAAGAGCTATGG MKYLLPT GAGCTTGCATGCAAATTCTATTTCAAGGAGACAGTCATAATGAAATACCTATTGCCTACG pelB leader A A A G L L L A A Q P A M A D T E L GCAGCCGCTGGATTGTTATTACTCGCTGCCCAACCAGCGATGGCCGACATCGAGCTCACT Q 5 P F 5 L I W I A G E TO T THE H CHES CAGTCTCCATTCTCCCTGACTGTGACAGCAGGAGAAGGTCACTATGAATTGCAAGTCC GO S L LEW S V A O R N G B P Y G G A GGTCAGAGTCTGTTAAACAGTGTAAATCAGAGGAACTACTTGACCTGGTACCAGCAGAAG F C Q F F E L L I L H A L L T A E S C N P CCAGGGCAGCCTCCTAAACTGTTGATCTACTGGGCATCCACTAGGGAATCTGGAGTCCCT **VL4715** DEFTALL OF A TOTAL TOTAL SECTION GATCGCTTCACAGCCAGTGGATCTGGAACAGATTTCACTCTCACCATCAGCAGTGTGCAG A B D L A V Y Y C G N D X L P P T P G GCTGAAGACCTGGCAGTTTATTACTGTCAGAATGATTATACTTATCCGTTCACGTTCGGA Myc-tag G T K L B L K R E Q K LI GGGGGGACCAAG<u>CTCGAG</u>ATCAAACGGGAACAAAAACTCATCTCAGAAGAGGATCTGAAT TAATAAGATCAAACGGTAATAAGGATCCAGCTCGAATTC

Fig.15.

MKYLLPT pelB AAGCTTGCATGCAAATTCTATTCAAGGAGACAGTCATAATGAAATACCTATTGCCTACG leader AAAGLLLAAQPAMAQVQ GCAGCCGCTGGATTGTTATTACTCGCTGCCCAACCAGCGATGGCCCAGGTGCAGCTGCAG E S G G D L'V V K P G G S DOM USS C AST S GAGTCAGGGGGAGACTTAGTGAAGCCTGGAGGGTCCCTGACACTCTCCTGTGCAACCTCT GFTFSSXANFSWVLOTSDEKSL GGATTCACTTTCAGTAGTTATGCCTTTTCTTGGGTCCGCCAGACCTCAGACAAGAGTCTG EWVATESSTOTYTYSDWXXX GAGTGGGTCGCAACCATCAGTAGTACTGATACTTATACCTATTATTCAGACAATGTGAAG VH4715 G R F T I S A D N Q K N T L Y D Q M S S GGGCGCTTCACCATCTCCAGAGACAATGGCAAGAACACCCTGTACCTGCAAATGAGCAGT L K SEE DET ATVISE YEE A RELIGIOUS YEEK CTGAAGTCTGAGGACACAGCCGTGTATTACTGTGCAAGACATGGGTACTATGGTAAAGGC Y F D Y W G O G T T V T V S S G G G G S TATTTTGACTACTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGGTGGAGGCGGTTCA Linker G G G G G G G S D I E L T O E P F S LITY TAREEN NOT BE WINDER SEC. S. L. T. CTGACTGTGACAGCAGGAGAGAAGGTCACTATGAATTGCAAGTCCGGTCAGAGTCTGTTA H S Y ALC P & Y LOBORY COC K P G OF F AACAGTGTAAATCAGAGGAACTACTTGACCTGGTACCAGCAGAAGCCAGGGCAGCCTCCT VL4715 B. L. M. C. Y. W. L. S. T. B. E. A. C. C. C. P. T. R. T. P. A. AAACTGTTGATCTACTGGGCATCCACTAGGGAATCTGGAGTCCCTGATCGCTTCACAGCC CONTROL OF THE PROPERTY OF A P AGTGGATCTGGAACAGATTTCACTCTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCA V Y Z I Z I G I R I D Y WENT P P I T F G G G G I T F T GTTTATTACTGTCAGAATGATTATACTTATCCGTTCACGTTCGGAGGGGGGGCCAAGCTC Myc-tag E K K E Q K L I S E E D L N GAGATCAAACGGGAACAAAAACTCATCTCAGAAGAGGGATCTGAATTAATAAGATCAAACG **GTAATAAGGATCCAGCTCGAATTC**

Fig.16A. AAGCTTGCATGCAAATTCTATTTCAAGGAGACAGTCATAATGAAATACCTATTGCCTACG pelB AAAGLLLAAQPAMAQQQQQ leader GCAGCCGCTGGATTGTTATTACTCGCTGCCCAACCAGCGATGGCCCAGGTGCAGCTGCAG E S G E DELTIVER OF G G S L 7:10 Centre GAGTCAGGGGGAGACTTAGTGAAGCCTGGAGGGTCCCTGACACTCTCCTGTGCAACCTCT G F T R S S T ATT S W U H O T S DARMEN. GGATTCACTTTCAGTAGTTATGCCTTTTCTTGGGTCCGCCAGACCTCAGACAAGAGTCTG E. W. V. A. P. E. S. S. E. D. T. Y. B. Y. Y. S. BERGERS GAGTGGGTCGCAACCATCAGTAGTACTGATACTTATACCTATTATTCAGACAATGTGAAG VH4715 GREET HELS REDER GENERAL TOTAL VOICE COMMISSION GGGCGCTTCACCATCTCCAGAGACAATGGCAAGAACACCCTGTACCTGCAAATGAGCAGT LESEDTANIA VIN Y CHARREST SY Y GOK CTGAAGTCTGAGGACACAGCCGTGTATTACTGTGCAAGACATGGGTACTATGGTAAAGGC Y E B Y W G O G T T V T Y S S G G G TATTTGACTACTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGGTGGAGGCGGTTCA G G G G G G G S A G S A Q V Q L Q Q Linker GGCGGAGGTGGCTCTGGCGGTGGCGGATCGGCCGGTTCGGCCCAGGTCCAGCTGCAACAG 5 G.P. E. L. V. K. Ph.G., A. S. V. R. M. S. C. Ke Y T F T S Y V MARK W V K O X P G 10 TG TIPE TACACATTCACTAGCTATGTTATGCACTGGGTGAAACAGAAGCCTGGGCAGGGCCTTGAG WILGIT TO YUND G TOKEY N BEKER REG TGGATTGGATATATTTATCCTTACAATGATGGTACTAAGTACAATGAGAAGTTCAAAGGC VH3418 AAGGCCACACTGACTTCAGACAAATCCTCCAGCACAGCCTACATGGAGCTCAGCAGCCTG TO SHE DIS A VOY Y C STRUCTURE DITHER C' Q 36 ACCTCTGAGGACTCTGCGGTCTATTACTGTTCAAGACGCTTTGACTACTGGGGCCAAGGG T. T. V. T. V. S. E. MKYLLPTAAAGLLLLA pelB GAGACAGTCATAATGAAATACCTATTGCCTACGGCAGCCGCTGGATTGTTATTACTCGCT leader A Q P A M A BUTTER LINE OF S THE SHARES GCCCAACCAGCGATGGCCGACATCGAGCTCACCCAGTCTCCATCTTCCATGTATGCATCT L GOE BOLT TO POST A S O DOLT TO TO I LET CTAGGAGAGAGAATCACTATCACTTGCAAGGCGAGTCAGGACATTAATACCTATTTAACC **VL3418** M. P. O. C. R. P. G. Kais, Phys. Thur. 3, 21 (1996) A. P. B. G. TGGTTCCAGCAGAAACCAGGGAAATCTCCCAAGACCCTGATCTATCGTGCAAACAGATTG

Fig.16B.

SUBSTITUTE SHEET (RULE 26)

SEO ID

NO.

- 5 PCR.51 : 5' AGG T(C/G) (A/C) A(C/A) C TGC AG(C/G) AGT C(A/T)G G
- 6 PCR.89 : 5' TGA GGA GAC GGT GAC CGT GGT CCC TTG GCC CC 3'
- 7 PCR.90 : 5' GAC ATT GAG CTC ACC CAG TCT CCA 3'
- 8 PCR.116: 5' GTT AGA TCT CGA GCT TGG TCC C 3'
- 9 DBL.1 : 5' CAG GAT CCG GCC GGT TCG GCC CAG GTC CAG CTG CAA CAG TCA GGA '3
- 10 DBL.2 : 5' CTA CAT GAA TTC GCT AGC TTA TTA TGA GGA GAC GGT GAC GGT GGT CCC TTG GC '3
- 11 DBL.3 : 5' ATT GGA GTC GAC ATC GAA CTC ACT CAG TCT CCA TTC TCC 3'
- 12 DBL.4 : 5' CGA ATT CGG ATC CCC GTT TGA TTT CGA GCT TGG TCC '3
- 13 DBL.5 : 5' GAG CGC GAG CTC GGC CGA ACC GGC CGA TCC GCC ACC
 GCC AGA GCC '3
- 14 DBL.6 : 5' AAT GTC GAA TTC GTC GAC TCC GCC ACC GCC AGA GCC '3
- 15 Euka.1 : 5' AGC TTC TAG ACC ACC ATG GAA AAC TGC AGA GCT CAA
 AAG CTA GCG CGG CGG CTC TAG '3
- 16 Buka.2 : 5' AAT TCT AGA GCG GCC GCG CTA GCT TTT GAG CTC TGC AGT TTT CCA TGG TGG TCT AGA '3
- 17 ML.1 : 5' ACG GGT GAG CTC GAT GTC GGA GTG GAC ACC TGT GGA GAG A '3
- 18 ML.2 : 5' GGA AAC AGC TAT GAC CAT GAT TAC '3
- 19 DBL.7 : 5' CAC CAT CTC CAG AGA CAA TGG CAA G 3'
- 20 DBL.8 : 5' ACC AAG CTC GAG ATC AAA CGG GG 3'
- 21 DBL.9 : 5' TGA AGT GAA TTC GCG GCC GCT TAT TAC CGT TTG ATT TCG AGC TTG GTC CC 3'
- 22 DBL.10 : 5' TAA TAA GCT AGC GGA GCT GCA TGG AAA TTC TAT TTC 3'

Table 1

Code		Expressed Antibody fragment
pSV.B	:	VH4715-VH3418
pSV.D	:	VH4715-VHlys
pSV.G	:	VH3418-VHlys
pSV.K	:	VH4715-VHlys-VH3418
pSV.M	:	VHlys-VH4715-VH3418
pSV.N	:	VL3418-VL4715.2t
pSV.P	:	VLlys-VL4715.2t
pSV.S	:	VLlys-VL3418.2t
pSV.V	:	VLlys-VL4715-VL3418.2t
pSV.W	:	VL3418-VLlys-VL4715.2t
		Table 2

INTERNATIONAL SEARCH REPORT

Internation Application No PCT/EP 97/01609

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/13 C07K10 A61K39/395 C07K16/46 C07K16/00 C12N5/10 G01N33/577 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N CO7K A61K G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 93 11161 A (ENZON, INC.) 10 June 1993 A 1-15 cited in the application see page 22, line 1 - line 10 see claims A WO 94 09131 A (SCOTGEN LTD.) 28 April 1994 1-15 cited in the application see claims see figures -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. ectal categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application bu-cited to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 10.09.97 14 August 1997 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni. Fax: (+31-70) 340-3016 Nooij, F

. 2

INTERNATIONAL SEARCH REPORT

Internati Application No
PCT/EP 97/01609

		PC1/EF 37/01003	
C.(Continua Category	citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 90, no. 14, 15 July 1993, WASHINGTON, DC, USA, pages 6444-6448, XP002014058 P. HOLLIGER ET AL.: ""Diabodies": Small bivalent and bispecific antibody fragments." see the whole document		1-15
A	WO 94 13806 A (THE DOW CHEMICAL COMPANY) 23 June 1994 see figure 1	·	1-15
A	WO 94 13804 A (CAMBRIDGE ANTIBODY TECHNOLOGY LTD. ET AL.) 23 June 1994 see page 31, line 10 - line 12 see figure 1		1-15
T	WO 97 14719 A (UNILEVER) 24 April 1997 see the whole document		1-15
	·		
	-		
	·		

2

INTERNATIONAL SEARCH REPORT

Inti .ional application No.

PCT/EP 97/01609

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
1. X Claims Nos.: 14 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim(s) 14 is(are) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.						
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:						
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).						
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)						
This International Searching Authority found multiple inventions in this international application, as follows:						
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.						
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.						
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:						
No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Noz.:						
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.						

INTERNATIONAL SEARCH REPORT Intermation on patent family members

Application No PCT/EP 97/01609

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9311161 A	10-06-93	AU 3178993 A CA 2122732 A EP 0617706 A JP 7501451 T	28-06-93 10-06-93 05-10-94 16-02-95
WO 9409131 A	28-04-94	AU 5283793 A CA 2146854 A GB 2286189 A JP 8505761 T	09-05-94 28-04-94 09-08-95 25-06-96
WO 9413806 A	23-06-94	AU 5747794 A CA 2117477 A EP 0628078 A JP 7503622 T	04-07-94 23-06-94 14-12-94 20-04-95
WO 9413804 A	23-06-94	AU 5654894 A CA 2150262 A EP 0672142 A JP 8504100 T AU 7621494 A CA 2169620 A EP 0720624 A WO 9508577 A	04-07-94 23-06-94 20-09-95 07-05-96 10-04-95 30-03-95 10-07-96 30-03-95
WO 9714719 A	24-04-97	AU 6873396 A	07-05-97