1/27/23, 10:44 PM HW3_IN_CLASS.ipynb - Colaboratory

→ 1.) Import the Credit Card Fraud Data From CCLE

```
import pandas as pd
from google.colab import drive
import matplotlib.pyplot as plt
import numpy as np

drive.mount('/content/gdrive/', force_remount = True)
    Mounted at /content/gdrive/

df = pd.read_csv("/content/gdrive/MyDrive/Econ 441B/fraudTest.csv")
```

₽	Unnamed:	trans_date_trans_time	cc_num	merchant	category	amt	first	last	gender	street	• • •	lat	long	city_pop	job	dob	
(0	2020-06-21 12:14:25	2291163933867244	fraud_Kirlin and Sons	personal_care	2.86	Jeff	Elliott	М	351 Darlene Green		33.9659	-80.9355	333497	Mechanical engineer	1968- 03-19	2da90c7d74b
1	1	2020-06-21 12:14:33	3573030041201292	fraud_Sporer- Keebler	personal_care	29.84	Joanne	Williams	F	3638 Marsh Union		40.3207	-110.4360	302	Sales professional, IT	1990- 01-17	324cc204407
	2	2020-06-21 12:14:53	3598215285024754	fraud_Swaniawski, Nitzsche and Welch	health_fitness	41.28	Ashley	Lopez	F	9333 Valentine Point		40.6729	-73.5365	34496	Librarian, public	1970- 10-21	c81755dbbbea
	3	2020-06-21 12:15:15	3591919803438423	fraud_Haley Group	misc_pos	60.05	Brian	Williams	М	32941 Krystal Mill Apt. 552		28.5697	-80.8191	54767	Set designer	1987- 07-25	2159175b9e ⁻
4	4	2020-06-21 12:15:17	3526826139003047	fraud_Johnston- Casper	travel	3.19	Nathan	Massey	M	5783 Evan Roads Apt. 465		44.2529	-85.0170	1126	Furniture designer	1955- 07-06	57ff021bd3f

 $5 \text{ rows} \times 23 \text{ columns}$

df.head()

- 2.) Select four columns to use as features (one just be trans_date_trans)

tps://colab.research.google.com/drive/1SbD0VhtenaRhqUgbb7WEQ_4ZdwlOXfR6#scrollTo=9IF6m1oUG0VW&printMode=true

```
df_select = df[["trans_date_trans_time", "category", "amt", "city_pop", "is_fraud"]]

df_select.columns

Index(['trans_date_trans_time', 'category', 'amt', 'city_pop', 'is_fraud'], dtype='object')
```

https://colab.research.google.com/drive/1SbD0VhtenaRhqUgbb7WEQ 4ZdwlOXfR6#scrollTo=9IF6m1oUG0VW&printMode=true

3.) Create a your own variable out of trans_date. Create dummies for factor vars

```
type(df_select["trans_date_trans_time"][0])
     str
df_select["trans_date_trans_time"] = pd.to_datetime(df_select["trans_date_trans_time"])
     <ipython-input-81-99f721e4ce0f>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy">https://pandas.pydata.org/pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy</a>
       df_select["trans_date_trans_time"] = pd.to_datetime(df_select["trans_date_trans_time"])
dir(df_select["trans_date_trans_time"][0])
       rreq,
      'freqstr',
      'fromisocalendar',
      'fromisoformat',
      'fromordinal',
      'fromtimestamp',
      'hour',
      'is_leap_year',
      'is_month_end',
      'is_month_start',
      'is_quarter_end',
      'is_quarter_start',
      'is_year_end',
      'is_year_start',
      'isocalendar',
      'isoformat',
      'isoweekday',
       'max',
       'microsecond',
      'min',
      'minute',
       'month',
       'month_name',
      'nanosecond',
      'normalize',
      'now',
       'quarter',
      'replace',
      'resolution',
      'round',
       'second'
      'strftime',
      'strptime',
      'time',
      'timactamn'
```

HW3_IN_CLASS.ipynb - Colaboratory

```
'timetuple',
      'timetz',
      'to_datetime64',
      'to_julian_date',
      'to_numpy',
      'to_period',
      'to_pydatetime',
      'today',
      'toordinal',
      'tz',
      'tz_convert',
      'tz_localize',
      'tzinfo',
      'tzname',
      'utcfromtimestamp',
      'utcnow',
      'utcoffset',
      'utctimetuple',
      'value',
      'week',
      'weekday',
      'weekofyear',
      'year']
df_select["time_var"] = [i.second for i in df_select["trans_date_trans_time"]]
     <ipython-input-83-fa4370ef92e9>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy</a>
       df_select["time_var"] = [i.second for i in df_select["trans_date_trans_time"]]
X = pd.get_dummies(df_select, ["category"]).drop(["trans_date_trans_time", "is_fraud"], axis = 1)
y = df["is_fraud"]
X.head()
```

	amt	city_pop	time_var	category_entertainment	category_food_dining	category_gas_transport	category_grocery_net	category_grocery_pos	category_
0	2.86	333497	25	0	0	0	0	0	
1	29.84	302	33	0	0	0	0	0	
2	41.28	34496	53	0	0	0	0	0	
3	60.05	54767	15	0	0	0	0	0	
4	3.19	1126	17	0	0	0	0	0	

- XXX SKIP THIS WE WILL TALK ABOUT NEXT CLASS

https://colab.research.google.com/drive/1SbD0VhtenaRhqUgbb7WEQ_4ZdwlOXfR6#scrollTo=9IF6m1oUG0VW&printMode=true

```
resample_X = X
resample_y = y
```

→ 5.) Train a Logistic regression.

```
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
scaler = StandardScaler()
X_normalized = scaler.fit_transform(resample_X)
log_reg = LogisticRegression().fit(X_normalized, resample_y)
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression().fit(X_normalized, resample_y)
```

6.) The company you are working for wants to target at a False Positive rate of 5% what threshold should you use? (Use oversampled data)

7.) If the company makes .02*amt on True transactions and loses -amt on False (Use original data)

```
df_temp = df_select.copy()
```

https://colab.research.google.com/drive/1SbD0VhtenaRhqUgbb7WEQ_4ZdwlOXfR6#scrollTo=9IF6m1oUG0VW&printMode=true

```
HW3_IN_CLASS.ipynb - Colaboratory
df_temp["pred"] = log_reg.predict(resample_X)
     /usr/local/lib/python3.8/dist-packages/sklearn/base.py:443: UserWarning: X has feature names, but LogisticRegression was fitted without feature names
       warnings.warn(
df_temp = df_temp[["pred", "is_fraud", "amt"]]
df_temp.head()
                           amt 🥂
         pred is_fraud
                       0 2.86
                       0 29.84
            0
                       0 41.28
            0
                       0 60.05
            0
                       0 3.19
            0
df2 = df_temp.loc[df_temp['pred']==0,]
df2.dropna(axis=0, how='any', inplace=True)
df2 = df2.reset_index()
     /usr/local/lib/python3.8/dist-packages/pandas/util/_decorators.py:311: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user-guide/indexing.html#returning-a-view-versus-a-copy-">https://pandas.pydata.org/pandas-docs/stable/user-guide/indexing.html#returning-a-view-versus-a-copy-</a>
       return func(*args, **kwargs)
a=0
for i in range(0,len(df2)):
  if df2.loc[i,'is_fraud']==0 :
    a = a + 0.02*df2.loc[i,'amt']
  if df2.loc[i,'is_fraud']==1 :
    a = a - df2.loc[i,'amt']
print("the profit is", a)
```

8.) Using Logistic Regression Lasso to inform you. Would you use the selected features in a trusted prediction model?

```
LogisticRegression('ll')

LogisticRegression(penalty='ll')

# If most or all your variables go to 0 => Your data is garbage
# The regularization will tell us if our model has significance
https://colab.research.google.com/drive/ISbDOVhtenaRhqUgbb7WEQ_4ZdwIOXfR6#serolITo=9IF6m1oUGOVW&printMode=true
```

the profit is -35132.44080000058

We see that only 1 variable is 0. Therefore, I will use selected features in a trusted prediction model.

 $I \leftrightarrow \bigoplus$

We see that only 1 variable is 0. Therefore, I will use selected features in a trusted prediction model.

Colab paid products - Cancel contracts here

40s completed at 10:39 PM

 $https://colab.research.google.com/drive/1SbD0V htenaRhqUgbb7WEQ_4ZdwlOXfR6\#scrollTo=9IF6m1oUG0VW\&printMode=true, which is a property of the property of the$

X