Análisis de series de tiempo

Primer examen parcial

Instrucciones: Lea cuidadosamente las preguntas y resuelva.

Pregunta 1. Demuestre que la función, definida por

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

es una distribución de probabilidad.

(5 puntos)

Pregunta 2. Demuestre que el valor esperado de una variable aleatoria $X \sim \mathcal{N}(\mu, \sigma)$ es μ , donde $\mathcal{N}(\mu, \sigma)$ es la distribución normal.

(5 puntos)

Pregunta 3. La estacionareidad estricta es un comportamiento probabilista que implica que una colección de valores

$$\{x_{t_1}, x_{t_2}, \cdots, x_{t_k}\}$$

es identica si se desplaza en el tiempo, es decir, es identica a

$$\{X_{t_1+h}, X_{t_2+h}, \cdots, X_{t_k+h}\}$$

lo que implica que

$$Pr(X_{t_1} \leq c_1, \cdots, X_{t_k} \leq c_k) = Pr(X_{t_1+h} \leq c_1, \cdots, X_{t_k+h} \leq c_k)$$

para todas las $k=1,2,\cdots$, todos los puntos en el tiempo t_1,t_2,\cdots , todos los valores c_1,c_2,\cdots y todos los desplazamientos $h=0,\pm 1,\pm 2,\cdots$.

Por otra parte, la estacionareidad en sentido amplio "relaja" estas restricciones pues no suelen verse en los fenómenos reales, estableciendo únicamente tres principios quedeben cumplirse:

- 1. La media (el valor esperado) es una constante que no depende del tiempo.
- 2. La función de autocovarianza $\gamma(s,t)$ dependerá en s y t únicamente por su diferencia |s-t|.
- 3. La varianza debe ser finita para todo tiempo t.

Explique ampliamente por qué las restricciones establecidas por la estacionareidad débil "relajan" las restricciones establecidas por la estacionareidad estricta.

(4 puntos)

Pregunta 4. Dado el modelo

$$X_t = \frac{1}{2}(W_{t-1} + W_t)$$

Compruebe si cumple las tres propiedades necesarias para ser considerado estacionario (en sentido amplio), es decir, compruebe si cumple:

- 1. La media (el valor esperado) es una constante que no depende del tiempo.
- 2. La función de autocovarianza $\gamma(s,t)$ dependerá en s y t únicamente por su diferencia |s-t|.
- 3. La varianza debe ser finita para todo tiempo t.

En caso de cumplirlas, calcule su función de autocorrelación y grafíquela.

(5 puntos)

Pregunta 5. De un ejemplo real para cada uno de los siguientes casos y explique brevemente por qué sería útil.

- 1. Una serie de tiempo
- $2.\,$ Dos series de tiempo en las cuales su covarianza probablemente no es $0.\,$

(3 puntos)