

Miria M. Finckenor

Dr. John Carr

Michael SanSoucie

Darren Boyd

NASA Marshall Space Flight Center, Huntsville, AL 35812 USA

Brandon Phillips

ESSSA, Huntsville, AL USA,

Applied Space Environments Conference

Huntsville, AL

May 2017

M. Finckenor May 2017 ASEC

- Background
- Solar Array Materials
- Simulated Space Environment Exposures
 - **►** Atomic Oxygen
 - Ultraviolet Radiation
 - **Electron Radiation**
 - > Proton Radiation
 - **▶** Thermal Cycling
- Summary

- Lightweight Integrated Solar Array and Transceiver (LISA-T)
 - ➤ Deployable solar array
 - Can provide over a hundred watts of power yet stow into less than a standard one-unit (1U) CubeSat, or a volume of less than 4 inches x 4 inches x 4 inches
 - ➤ Flexible solar cells do not allow for standard coverglass protection from the space environment
 - ➤ Candidate solar cells and protective thin films tested in space environment simulations

- Solar Cells
 - ➤ Inverted metamorphic multi-junction (IMM)
 - **■** High performance, higher cost, modestly lightweight, extremely thin
 - **➤** Copper indium gallium (di)selenide (CIGS)
 - **■** Low cost, lower efficiency
 - **■** Less than half the weight of the IMM cell but twice the thickness
 - ➤ Single junction GaAs cells
 - **■** Medium option in cost and efficiency
- Solar cell performance evaluated by power curves, optical properties, mass loss

- Thin Films
 - **CORIN**
 - **CORIN** with cerium oxide
 - **≻** Optinox
 - Optinox with cerium oxide
- Applied to solar cells or exposed separately
- Performance evaluated by transmission measurements, mass loss

M. Finckenor May 2017 ASEC

Atomic Oxygen

- ➤ Atomic Oxygen Beam Facility
- ➤ 5 eV neutral oxygen atoms with concurrent vacuum UV radiation
- ➤ Iterations up to 2.5 x 10²¹ atoms/cm² fluence
- ➤ One bare and one CORIN-coated IMM solar cell
- ➤ All candidate thin films plus nitinol wire

- Atomic Oxygen Results
 - **➤** Bare Solar Cell
 - Mass loss of 1.3%
 - 97.6% power retention
 - CORIN coated solar cell
 - Mass loss of 1.9%
 - 103.6% power retention due to surface texturing and slight decrease in reflectance

- Optinox film heavily eroded
- ➤ CORIN formed self-passivating layer in AO
- ➤ Nitinol wire had slight mass loss, no performance changes

• Ultraviolet Radiation

- Solar Simulator with xenon arc lamp
- > IMM and CIGS cells
 - Bare
 - **■** Coated with Optinox
 - Coated with CORIN
 - Coated with CORIN with cerium oxide
- ➤ Iterations up to 2,000 equivalent sun hours

Ultraviolet Radiation Results

- **Bare IMM**
 - 98.5% power retention
- Coated IMM
 - 80.8% power retention for CORIN, slightly better with addition of ceria
 - 85.5% power retention for Optinox
- **Bare CIGS**
 - Degraded open circuit voltage, 70% power retention at best
- Coated CIGS
 - 86.5% power retention for CORIN, 91.6% with addition of ceria
 - 73.4% power retention for Optinox

Electron Radiation

- > Combined Environmental Effects Facility with Pelletron accelerator
- **▶** 1 MeV electrons
- ➤ IMM, CIGS, and single junction GaAs cells
 - Bare
 - **■** Coated with Optinox
 - Coated with CORIN
 - **■** Coated with CORIN with cerium oxide
- CORIN and CORIN with ceria thin films also exposed
- \triangleright Iterations from 3 x 10¹³ up to 5 x 10¹⁵ e-/cm²

- Electron Radiation Results
 - > Coatings had little effect on solar cell durability
 - > IMM
 - Slightly degraded after 1 x 10¹⁴ e-/cm²
 - **CIGS**
 - Maintained power retention through all exposures
 - **➤** Bare single junction GaAs
 - **■** Significant degradation
 - ➤ No significant change in transmission for either type of film

Proton Radiation

- > Combined Environmental Effects Facility with Pelletron accelerator
- > IMM and CIGS cells
 - Bare
 - **■** Coated with Optinox (IMM only)
 - Coated with CORIN
 - Coated with CORIN with cerium oxide
- \triangleright 50 keV iterations from 7 x 10¹⁰ up to 1 x 10¹⁵ p+/cm²
- > 100 keV, 500 keV, 700 keV 1 x 10¹³ p+/cm²

Proton Radiation Results

- > IMM
 - Bare cells degraded after 1 x 10¹² p+/cm² at 50 keV
 - Coated cells started degrading at 1 x 10¹⁵ p+/cm² at 50 keV
 - Coated cells maintained power retention through higher energy **exposures**
- **CIGS**
 - Bare cells degraded with 50 keV exposure
 - Coated cells maintained power retention through all exposures

13

- Thermal Cycling
 - ➤ Associate Engineering rapid thermal shock chamber
 - > IMM cells
 - Bare
 - **■** Coated with CORIN
 - > CIGS cells
 - Bare
 - Coated with CORIN

> Temperatures from -55 to +125 °C

- Thermal Cycling Results
 - > IMM
 - Some delamination of coating
 - **CIGS**
 - **CORIN-coated cells performed well**
 - AR coating delaminated
 - AR process has been improved but not yet tested
 - ➤ IMM and CIGS sub-coupons with boom elements
 - Both had one cell drop out for power loss
 - Test will be repeated to determine if power loss due to handling or thermal cycling

Summary

- CORIN and CORIN with cerium oxide show promise as protective coatings for both IMM and CIGS solar cells.
- CORIN was particularly effective in protection from AO and proton radiation damage.
- Optinox shows promise as a protective coating for the IMM solar cells outside of the AO environment.

16

Acknowledgements

- > Special thanks to:
 - Space Technology Mission Directorate (STMD) Early Career Initiative for funding this effort
 - Curtis Bahr for lab support and Joey Norwood for assistance during AO testing
 - Nexolve partner in LISA-T program, providing coated solar cells and thin film samples

17