

Universal Dependency Parsing from Scratch

Peng Qi* Timothy Dozat* Yuhao Zhang* Christopher D. Manning Stanford University

(* = Equal contribution)

System Highlights

Fully neural pipeline system for all stages required by the Shared Task, including: word/sentence segmentation, POS/UFeats tagging, lemmatization, and dependency parsing.

	LAS	MLAS	BLEX
Stanford	72.29 (7 th)	60.92 (2 nd)	64.04 (5 th)
		fixed in th	e tokenizer
Stanford+	74.16	62.08	65.28
Top System	75.84	61.25	66.09

Key Contributions

- Symbolic statistics Neural nets
- Biaffine POS/UFeats Classifier → Consistency
- Lemmatizer + Edit Classifier -> Shortcut for long sequence
- Biaffine parser with relative location features
- Fully open-source implementation/models

Tokenizer / Sentence Segmenter

Joint word and sentence segmentation as tagging.

Multiword-Token (MWT) Expansion

German example: im → in dem

Combining a frequency lexicon (symbolic) with a seq2seq model as fallback (neural).

System	Tokens	Sentences	Words
Stanford+	99.46	91.33	99.27
- conv	99.45	91.03	98.67
- seq2seq	_	-	98.97

Lemmatizer

- 2 Frequency lexicons (word x UPOS, word) + seq2seq
- Edit (e.g., lowercase, identity) classifier to skip decoder

e.g., URL, email, proper nouns, sentence-leading capitalization, etc.

POS / UFeats Tagger

Biaffine classifier that conditions on UPOS embeddings to enforce consistency between predicted tags/features.

Dependency Parser

Deep Biaffine parser + terms to model relative positions of heads and dependents:

- Linearization: If there's an edge, are the words in the right order?
- Distance: If there's an edge, are the words close/far enough?

System	LAS	CLAS
Stanford	87.60	84.68
- linearization	87.55*	84.62*
- distance	87.43*	84.48*

Full Pipeline

Highly accurate system on small and large tree-banks alike.

Law Das	Stanfor
Low-Res	Top Sys
	Stanfor
PUD	Top Sys

Treebanks

Small

Easy to make iterative improvements to the performance of the entire pipeline.

System

Stanford+

Top System

LAS

83.90

69.53

63.20

27.89

82.25

74.20

MLAS

72.75

49.24

51.64

6.13

74.20

58.75

Most of the potential for gains still remain with the challenging tasks of tagging and parsing.

Code and Pretrained Models

Tensorflow tagger/parser code at https://github.com/tdozat/Parser-v3

PyTorch full pipeline at

https://github.com/stanfordnlp/UD-from-scratch

For more details see (also in QR code): https://stanfordnlp.github.io/UD-from-scratch