Importing Libraries and dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

data=pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/551/original/delhivery_data.csv?1642751181")

Basic Cleaning and Exploration

data.info()

<pr RangeIndex: 144867 entries, 0 to 144866 Data columns (total 24 columns): Non-Null Count Dtype # Column 144867 non-null object 0 data trip_creation_time route_schedule_uuid route_type trip_uuid 144867 non-null object 144867 non-null object 144574 non-null object 144867 non-null object 144606 non-null object 144867 non-null object source_center source_name destination_center destination_name od start time 144867 non-null int64 144867 non-null object 13 cutoff_factor 14 cutoff_timestamp 15 actual_distance_to_destination 144867 non-null 144867 non-null float64
 1. Osnim_cime
 144867 non-null
 float64

 18 osrm_distance
 144867 non-null
 float64

 19 factor
 144867 non-null
 float64

 20 segment_actual_time
 144867 non-null
 float64

 21 segment_osrm_time
 144867 non-null
 float64

 22 segment_osrm_distance
 144867 non-null
 float64

 23 segment_factor
 144867 non-null
 float64
 17 osrm_time 144867 non-null 23 segment_factor 144867 non-null float64 dtypes: bool(1), float64(10), int64(1), object(12)

data.describe()

memory usage: 25.6+ MB

_		start_scan_to_end_scan	cutoff_factor	actual_distance_to_destination	actual_time	osrm_time	osrm_distance	fac
	count	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000
	mean	961.262986	232.926567	234.073372	416.927527	213.868272	284.771297	2.120
	std	1037.012769	344.755577	344.990009	598.103621	308.011085	421.119294	1.715
	min	20.000000	9.000000	9.000045	9.000000	6.000000	9.008200	0.144
	25%	161.000000	22.000000	23.355874	51.000000	27.000000	29.914700	1.604
	50%	449.000000	66.000000	66.126571	132.000000	64.000000	78.525800	1.857
	75%	1634.000000	286.000000	286.708875	513.000000	257.000000	343.193250	2.213
	max	7898.000000	1927.000000	1927.447705	4532.000000	1686.000000	2326.199100	77.387

data.nunique()

	_
	-
	4
•	

	0
data	2
trip_creation_time	14817
route_schedule_uuid	1504
route_type	2
trip_uuid	14817
source_center	1508
source_name	1498
destination_center	1481
destination_name	1468
od_start_time	26369
od_end_time	26369
start_scan_to_end_scan	1915
is_cutoff	2
cutoff_factor	501
cutoff_timestamp	93180
actual_distance_to_destination	144515
actual_time	3182
osrm_time	1531
osrm_distance	138046
factor	45641
segment_actual_time	747
segment_osrm_time	214
segment_osrm_distance	113799
segment_factor	5675
dtune: int6/	_

pd.set_option('display.max_columns', None)
to display all columns

data.head()

₹	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_c
	0 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	1 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	2 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	3 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	4 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:

data.shape

→ (144867, 24)

data.ndim

______ 2

₹	dat	a trip_creation_tim	e route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_c
	0 trainir	2018-09-2 g 02:35:36.47684	- h251-/o0o-2051-	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	1 trainir	g 2018-09-2 g 02:35:36.47684	- h251-/o0o-2051-	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	2 trainir	g 2018-09-2 g 02:35:36.47684	1 h351-4c0e-a951-	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	3 trainir	g 2018-09-2 g 02:35:36.47684	h351-4c0e-a951-	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	4 trainir	g 2018-09-2 g 02:35:36.47684	1 h351-4c0e-a951-	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:

data.isna().sum()

	6
data	C
trip_creation_time	C
route_schedule_uuid	C
route_type	C
trip_uuid	C
source_center	C
source_name	293
destination_center	C
destination_name	261
od_start_time	C
od_end_time	C
start_scan_to_end_scan	C
is_cutoff	C
cutoff_factor	C
cutoff_timestamp	C
actual_distance_to_destination	C
actual_time	C
osrm_time	C
osrm_distance	C
factor	C
segment_actual_time	C
segment_osrm_time	C
segment_osrm_distance	C
segment_factor	C

dtune int64

Function to create a data frame with number and percentage of missing data in a data frame

```
def missing_values(data):
    # Number and percentage of missing data in data set for each column
    total_missing_data = data.isnull().sum().sort_values(ascending =False)
    percent_missing_data = (data.isnull().sum()/data.isnull().count()*100).sort_values(ascending=False)
    missing_values_data = pd.concat([total_missing_data, percent_missing_data], axis=1, keys=['Total', 'Percent'])
    return missing_values_data
```


Understanding the flow

```
data_copy=data.copy()

data_copy_grouped=data_copy.groupby(['trip_uuid','source_center','destination_center']).count().reset_index()
data_copy_grouped
```

	-

	trip_uuid	source_center	${\tt destination_center}$	data	<pre>trip_creation_time</pre>	route_schedule_uuid	route_type	source_name
0	trip- 153671041653548748	IND209304AAA	IND00000ACB	18	18	18	18	11
1	trip- 153671041653548748	IND462022AAA	IND209304AAA	21	21	21	21	2.
2	trip- 153671042288605164	IND561203AAB	IND562101AAA	3	3	3	3	;
3	trip- 153671042288605164	IND572101AAA	IND561203AAB	6	6	6	6	1
4	trip- 153671043369099517	IND00000ACB	IND160002AAC	12	12	12	12	1:
26217	trip- 153861115439069069	IND628204AAA	IND627657AAA	4	4	4	4	ı
26218	trip- 153861115439069069	IND628613AAA	IND627005AAA	4	4	4	4	4
26219	trip- 153861115439069069	IND628801AAA	IND628204AAA	2	2	2	2	:
26220	trip- 153861118270144424	IND583119AAA	IND583101AAA	2	2	2	2	:
26221	trip- 153861118270144424	IND583201AAA	IND583119AAA	2	2	2	2	:

26222 rows × 24 columns

data_copy[data_copy['trip_uuid']=='trip-153671041653548748']

_		

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	desti
124981	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124982	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124983	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124984	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124985	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124986	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124987	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124988	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124989	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124990	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124991	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124992	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124993	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124994	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	-1
124995	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	
124996	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	
124997	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	
124998	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	
124999	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	
125000	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	
125001	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND462022AAA	Bhopal_Trnsport_H (Madhya Pradesh)	
125002	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)	
125003	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)	

125004	training	2018-09-12 00:00:16.535741	tnanos::sroute:d/c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125005	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125006	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125007	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125008	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125009	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125010	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125011	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125012	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125013	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125014	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125015	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125016	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125017	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125018	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)
125019	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	trip- 153671041653548748	IND209304AAA	Kanpur_Central_H_6 (Uttar Pradesh)

Converting the datatype to datetime format

```
#changing datatype of date like columns from object to timestamp
data_copy.info()
</pre
          Index: 144316 entries, 0 to 144866
          Data columns (total 24 columns):
            # Column
                                                                                       Non-Null Count Dtype

        0
        data
        144316 non-null datetime64[ns]

        1
        trip_creation_time
        144316 non-null datetime64[ns]

        2
        route_schedule_uuid
        144316 non-null object

        3
        route_type
        144316 non-null object

        4
        trip_uuid
        144316 non-null object

        5
        source_center
        144316 non-null object

        6
        source_name
        144316 non-null object

        7
        destination_center
        144316 non-null object

        8
        destination_name
        144316 non-null datetime64[ns]

        9
        od_start_time
        144316 non-null datetime64[ns]

        10
        od_end_time
        144316 non-null float64

        12
        is_cutoff
        144316 non-null bool

        12
        is_cutoff_factor
        144316 non-null bool

        14
        cutoff_timestamp
        144316 non-null object

        15
        actual_distance_to_destination
        144316 non-null float64

                                                                                      144316 non-null object
            15 actual_distance_to_destination 144316 non-null float64
                                                         144316 non-null float64
            16 actual time
            dtypes: bool(1), datetime64[ns](3), float64(10), int64(1), object(9)
          memory usage: 26.6+ MB
```

Extracting and Creating New Columns

```
#extracting day, month & year from trip creation time
data_copy['trip_creation_month']=data_copy['trip_creation_time'].dt.month
data_copy['trip_creation_year']=data_copy['trip_creation_time'].dt.year
data_copy['trip_creation_day']=data_copy['trip_creation_time'].dt.day
data_copy.head(1)
```

_		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_c
	0 t	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND38862
data_	сору	['Timed .head(1		nd time in hours bund((data_copy['od_end		a_copy['od_start_time trip uuid		ta(minutes=1),2) source name	destination o
	0 t	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:

fa3d5c3...

Analyzing a single trip and its flow.

data_copy[data_copy['trip_uuid']=='trip-153741093647649320']

	_

3		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destinatio
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3
	3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3
	4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3
	5	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388620AAB	Khambhat_MotvdDPP_D (Gujarat)	IND3
	6	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388620AAB	Khambhat_MotvdDPP_D (Gujarat)	IND3
	7	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388620AAB	Khambhat_MotvdDPP_D (Gujarat)	IND3
	8	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388620AAB	Khambhat_MotvdDPP_D (Gujarat)	IND3
	9	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388620AAB	Khambhat_MotvdDPP_D (Gujarat)	IND3

Creating Features

#as below mentioned columns are comprising of segment related details we will do a cum. sum
data_copy['agg_segment_actual_time']=data_copy.groupby(['trip_uuid','source_center','destination_center'])['segment_actual_time'].transf
data_copy['agg_segment_osrm_time']=data_copy.groupby(['trip_uuid','source_center','destination_center'])['segment_osrm_time'].transform
data_copy['agg_segment_osrm_distance']=data_copy.groupby(['trip_uuid','source_center','destination_center'])['segment_osrm_distance'].tr

data_copy.head()

₹		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_c
	0 t	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	1 t	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	2 t	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	3 t	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	4 t	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:

#After finding out the cum. sum of above columns we will pick their max

data_copy['agg_segment_actual_time1']=data_copy.groupby(['trip_uuid','source_center','destination_center'])['agg_segment_actual_time'].1

data_copy['agg_segment_osrm_time1']=data_copy.groupby(['trip_uuid','source_center','destination_center'])['agg_segment_osrm_time'].transdata_copy['agg_segment_osrm_distance1']=data_copy.groupby(['trip_uuid','source_center','destination_center'])['agg_segment_osrm_distance1']

_	data	trip_creation_time	route_schedule_uuid	route_type

trip_uuid source_center

source_name destination_c

				, , , .				
IND3886:	Anand_VUNagar_DC (Gujarat)	IND388121AAA	trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	0
IND3886:	Anand_VUNagar_DC (Gujarat)	IND388121AAA	trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	1
IND3886:	Anand_VUNagar_DC (Gujarat)	IND388121AAA	trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	2
IND3886:	Anand_VUNagar_DC (Gujarat)	IND388121AAA	trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	3
IND3886:	Anand_VUNagar_DC (Gujarat)	IND388121AAA	trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	4

aggregation of below mentioned based on their Trip_uuid, Source ID and Destination ID

data_copy['agg_osrm_time']=data_copy.groupby(['trip_uuid','source_center','destination_center'])['osrm_time'].transform('max')
data_copy['agg_osrm_distance']=data_copy.groupby(['trip_uuid','source_center','destination_center'])['osrm_distance'].transform('max')
data_copy.head()

₹	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_c
	0 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	1 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	2 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	3 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	4 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:

#creating column with city, place, state from source centre & destination centre
data_copy[['Source_City', 'Source_Place', 'Source_Code/State']]=data_copy['source_name'].str.rsplit('_',n=2, expand=True)
data_copy.head()

_	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_c
	0 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	1 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	2 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	3 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	4 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:

 $[\]mbox{\#}$ as they are mentioned as a cumsum in data dictionary we will take \mbox{max}

data_copy['agg_distance_to_destination']=data_copy.groupby(['trip_uuid','source_center','destination_center'])['actual_distance_to_destination_center'])['actual_time']=data_copy.groupby(['trip_uuid','source_center','destination_center'])['actual_time'].transform('max')

₹	data	trip creation time	route schedule uuid	route type	trip uuid	source center	source_name	destination c
	data	er ip_er edeion_eime	. ou cc_schedure_duru	· oucc_cypc	C. 1p_uu1u	Jour cc_ccncci	Jour cc_name	desernation_t
	0 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	1 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	2 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	3 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	4 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:

#creating Source Code, Source state column, Destination Code, Destination state column from source centre & destination centre
data_copy[['Source_Code','Source_State']]=data_copy['Source_Code/State'].str.rsplit('(',n=2, expand=True)
data_copy[['destination_Code','destination_State']]=data_copy['destination_Code/State'].str.rsplit('(',n=2, expand=True)
data_copy.head()

₹	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_c
	0 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	1 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	2 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	3 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	4 training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:

data_copy['Source_State'] = data_copy['Source_State'].str.rstrip(')')
data_copy['destination_State'] = data_copy['destination_State'].str.rstrip(')')
data_copy.head()

→		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	destination_c
	0 ti	raining	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	1 tı	raining	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	2 tr	raining	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	3 ti	raining	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:
	4 tı	raining	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388121AAA	Anand_VUNagar_DC (Gujarat)	IND3886:

#dropping the existing columns as we have already got engineered features from them data_copy.drop(columns=['od_end_time','od_start_time','trip_creation_time','source_name','destination_name'],axis=1,inplace=True)

 $print('Rows:', \ data_copy.shape[0],'\n' \ 'Columns: \ ', data_copy.shape[1])$

Rows: 144316 Columns: 43

The data's were not duplicated as the original columns have unique values. Lets create a new dataframe which includes the newly created features column.

data_merged.head()

₹	ro	ute_type	trip_uuid	start_scan_to_end_scan	trip_creation_month	trip_creation_year	trip_creation_day	Timediff_sta
	0	Carting	trip- 153741093647649320	86.0	9	2018	20	
	1	Carting	trip- 153741093647649320	86.0	9	2018	20	
	2	Carting	trip- 153741093647649320	86.0	9	2018	20	
	3	Carting	trip- 153741093647649320	86.0	9	2018	20	
	4	Carting	trip- 153741093647649320	86.0	9	2018	20	

data_merged[data_merged['trip_uuid']=='trip-153741093647649320']

₹	rou ⁻	te_type	trip_uuid	start_scan_to_end_scan	trip_creation_month	trip_creation_year	trip_creation_day	Timediff_sta
	0	Carting	trip- 153741093647649320	86.0	9	2018	20	
	1	Carting	trip- 153741093647649320	86.0	9	2018	20	
	2	Carting	trip- 153741093647649320	86.0	9	2018	20	
	3	Carting	trip- 153741093647649320	86.0	9	2018	20	
	4	Carting	trip- 153741093647649320	86.0	9	2018	20	
	5	Carting	trip- 153741093647649320	109.0	9	2018	20	
	6	Carting	trip- 153741093647649320	109.0	9	2018	20	
	7	Carting	trip- 153741093647649320	109.0	9	2018	20	
	8	Carting	trip- 153741093647649320	109.0	9	2018	20	
	9	Carting	trip- 153741093647649320	109.0	9	2018	20	

data_merged.shape

→ (144316, 20)

data_merged.duplicated().sum()

→ 118093

data_merged.drop_duplicates(inplace=True)
data_merged.head()

₹		route_type	trip_uuid	start_scan_to_end_scan	trip_creation_month	trip_creation_year	trip_creation_day	Timediff_st
	0	Carting	trip- 153741093647649320	86.0	9	2018	20	
	5	Carting	trip- 153741093647649320	109.0	9	2018	20	
	10	FTL	trip- 153768492602129387	302.0	9	2018	23	
	15	Carting	trip- 153693976643699843	108.0	9	2018	14	
	17	FTL	trip- 153687145942424248	195.0	9	2018	13	

Next steps: Generate code with data_merged View recommended plots

data_merged[data_merged['trip_uuid']=='trip-153741093647649320']

 route_type
 trip_uuid
 start_scan_to_end_scan
 trip_creation_month
 trip_creation_year
 trip_creation_day
 Timediff_sta

 0
 Carting
 153741093647649320
 86.0
 9
 2018
 20

 5
 Carting
 153741093647649320
 109.0
 9
 2018
 20

New interactive sheet

data_merged.duplicated().sum()

→ 0

data_merged.shape

→ (26223, 20)

data_merged.head()

$\overline{\Rightarrow}$	rou	ite_type	trip_uuid	start_scan_to_end_scan trip_creation_mon		trip_creation_year	trip_creation_day	Timediff_st
	0	Carting	trip- 153741093647649320	86.0	9	2018	20	
	5	Carting	trip- 153741093647649320	109.0	9	2018	20	
	10	FTL	trip- 153768492602129387	302.0	9	2018	23	
	15	Carting	trip- 153693976643699843	108.0	9	2018	14	
	17	FTL	trip- 153687145942424248	195.0	9	2018	13	

Lets create a dataframe having unique rows for trips by combining, Summing the rows of subset package of the trips

data_uuid=data_merged.copy()

```
# aggregation of below mentioned based on their Trip_uuid, Source ID and Destination ID
# as they are mentioned as a cum. sum in data dictionary we will take max
data_uuid['start_scan_to_end_scan11']=data_uuid.groupby(['trip_uuid'])['start_scan_to_end_scan'].transform('sum')
data_uuid['Timediff_start_end_H11']=data_uuid.groupby(['trip_uuid'])['Timediff_start_end_H'].transform('sum')
data_uuid['agg_segment_actual_time11']=data_uuid.groupby(['trip_uuid'])['agg_segment_actual_time1'].transform('sum')
data_uuid['agg_segment_osrm_time11']=data_uuid.groupby(['trip_uuid'])['agg_segment_osrm_time1'].transform('sum')
data_uuid['agg_segment_osrm_distance11']=data_uuid.groupby(['trip_uuid'])['agg_segment_osrm_distance1'].transform('sum')
data_uuid['agg_actual_time11']=data_uuid.groupby(['trip_uuid'])['agg_actual_time'].transform('sum')
data_uuid['agg_osrm_time11']=data_uuid.groupby(['trip_uuid'])['agg_osrm_time'].transform('sum')
data_uuid['agg_osrm_distance11']=data_uuid.groupby(['trip_uuid'])['agg_osrm_distance'].transform('sum')
```

data_uuid.head()

₹		route_type	trip_uuid	start_scan_to_end_scan	trip_creation_month	trip_creation_year	trip_creation_day	Timediff_st
	0	Carting	trip- 153741093647649320	86.0	9	2018	20	
	5	Carting	trip- 153741093647649320	109.0	9	2018	20	
	10	FTL	trip- 153768492602129387	302.0	9	2018	23	
	15	Carting	trip- 153693976643699843	108.0	9	2018	14	
	17	FTL	trip- 153687145942424248	195.0	9	2018	13	

```
data_uuid['Source_City11']=data_uuid.groupby(['trip_uuid'])['Source_City'].transform('first')
data_uuid['Source_Place11']=data_uuid.groupby(['trip_uuid'])['Source_Place'].transform('first')
data_uuid['Source_Code/State11']=data_uuid.groupby(['trip_uuid'])['Source_Code/State'].transform('first')
data_uuid['destination_City11']=data_uuid.groupby(['trip_uuid'])['destination_City'].transform('last')
data_uuid['destination_Place11']=data_uuid.groupby(['trip_uuid'])['destination_Place'].transform('last')
data_uuid['destination_Code/State11']=data_uuid.groupby(['trip_uuid'])['destination_Code/State'].transform('last')
```

₹	route_type		trip_uuid	start_scan_to_end_scan trip_creation_month		trip_creation_year	trip_creation_day	Timediff_st	
	0	Carting	trip- 153741093647649320	86.0	9	2018	20		
	5	Carting	trip- 153741093647649320	109.0	9	2018	20		
	10	FTL	trip- 153768492602129387	302.0	9	2018	23		
	15	Carting	trip- 153693976643699843	108.0	9	2018	14		
	17	FTL	trip- 153687145942424248	195.0	9	2018	13		

Creating a new DataFrame for eliminating the duplicates and having only one row detail for one trip which comprises all the details of the trip.

```
data_final=data_uuid.loc[:,['route_type', 'trip_uuid',
       'trip_creation_month', 'trip_creation_year', 'trip_creation_day',
       \verb|'start_scan_to_end_scan11', \verb|'Timediff_start_end_H11'|, \\
       'agg_segment_actual_time11', 'agg_segment_osrm_time11',
       \verb|'agg_segment_osrm_distance11', \verb|'agg_distance_to_destination11'|, \\
       'agg_actual_time11', 'agg_osrm_time11', 'agg_osrm_distance11',
       'Source_City11', 'Source_Place11', 'Source_Code/State11',
       'destination_City11', 'destination_Place11',
       'destination_Code/State11']]
data_final.duplicated().sum()
→ 11436
data_final[data_final['trip_uuid']=='trip-153741093647649320']
₹
         route_type
                               trip_uuid trip_creation_month trip_creation_year trip_creation_day start_scan_to_end_scan11 Timediff_s
      0
             Carting 153741093647649320
                                                                              2018
                                                                                                    20
                                                                                                                             195.0
             Carting 153741093647649320
                                                                              2018
                                                                                                    20
                                                                                                                             195.0
data_final.drop_duplicates(inplace=True)
data_final.duplicated().sum()
<del>→</del> 0
data_final.shape
→ (14787, 20)
data_final[data_final['trip_uuid']=='trip-153741093647649320']
\overline{2}
         route_type
                               trip_uuid trip_creation_month trip_creation_year trip_creation_day start_scan_to_end_scan11 Timediff_s
                                                                              2018
      0
             Carting 153741093647649320
                                                                                                    20
                                                                                                                            195.0
```

Hypothesis/ Visual Analysis

Comparison between Timediff_start_end_H11(od_start_time and od_end_time) and start_scan_to_end_scan

```
import pandas as pd
import numpy as np
from numpy import NaN, nan, NAN
import matplotlib.pyplot as plt
import seaborn as sns
import math, random
from scipy import stats
from statsmodels.stats.weightstats import ztest
from \ statsmodels. distributions. empirical\_distribution \ import \ ECDF
from statsmodels.graphics.gofplots import qqplot, qqplot_2samples
import statsmodels.api as sm
import warnings
warnings.filterwarnings("ignore")
plt.figure(figsize=(17,4))
plt.subplot(131)
plt.hist(data_final['Timediff_start_end_H11'],bins=100,label='Timediff_start_end_H')
\verb|plt.hist(data_final['start_scan_to_end_scan11'], bins=100, label='start_scan_to_end_scan')| \\
plt.legend()
plt.subplot(132)
sns.kdeplot(data_final['Timediff_start_end_H11'],label='Timediff_start_end_H')
sns.kdeplot(data_final['start_scan_to_end_scan11'],label='start_scan_to_end_scan')
# Quantile-Quantile plot for 2samples
 \verb|qqplot_2samples(data_final['Timediff_start_end_H11'], | data_final['start_scan_to_end_scan11'], | line="r", | ax=plt.subplot(133)| |
plt.show()
 ₹
                3000
                                                                                                                                                                                                                                                        8000
                                                                           Timediff start end H
                                                                                                                                                                                                   Timediff start end H
                                                                                                                              0.00175
                                                                               start_scan_to_end_scan
                                                                                                                                                                                                    start_scan_to_end_scan
                                                                                                                                                                                                                                                        7000
                2500
                                                                                                                               0.00150
                                                                                                                                                                                                                                                   ble
                                                                                                                                                                                                                                                       6000
                                                                                                                               0.00125
                2000
                                                                                                                                                                                                                                                   2nd
                                                                                                                               0.00100
                                                                                                                                                                                                                                                        4000
                1500
                                                                                                                                                                                                                                                   tiles
                                                                                                                               0.00075
                                                                                                                                                                                                                                                        3000
                1000
                                                                                                                                                                                                                                                        2000
                                                                                                                               0.00050
                  500
                                                                                                                                                                                                                                                        1000
                                                                                                                               0.00025
                      0
                                                                                                                              0.00000
                                     1000 2000 3000 4000 5000 6000 7000 8000
                                                                                                                                                                                            4000
                                                                                                                                                                                                                6000
                                                                                                                                                                                                                                     8000
                                                                                                                                                                                                                                                                            1000 2000 3000 4000 5000 6000 7000 8000
Quantiles of 1st Sample
```

Timediff_start_end_H11

Step-1: Defining Null & Alternate Hypothesis

H0: The mean for Timediff_start_end_H & start_scan_to_end_scan are same

Ha: The mean for start_scan_to_end_scan and start_scan_to_end_scan are difference.

Step-2: Choosing Appropriate test

Here we are using Two Sample T-Test

Step-3: Choosing Significance level

Here we are aiming for 95% confidence, hence alpha=0.05

Step-4: Perform the test and determine the pvalue

```
import scipy.stats as stats
t_stat,p_value = stats.ttest_ind(data_final['Timediff_start_end_H11'],data_final['start_scan_to_end_scan11'],alternative="two-sided")
print("t_stat : ",t_stat)
print("p_value : ",p_value)
print('P_value One_side :',(p_value/2))
if p_value < 0.05:
    print('Reject NULL HYPOTHESIS')
    print('Fail to Reject NULL HYPOTHESIS')
    t_stat : 0.11551867533202027
     p_value : 0.9080348031420551
     P_value One_side : 0.45401740157102755
     Fail to Reject NULL HYPOTHESIS
```

The pvalue is not less than alpha, hence the mean between Timediff_start_end_H11 and start_scan_to_end_scan11 are same.

Comparision Between Aggregate Actual time & Aggregate OSRM Time

```
plt.figure(figsize=(17,4))
plt.subplot(131)
plt.hist(data_final['agg_actual_time11'],bins=10,label='agg_actual_time')
plt.hist(data_final['agg_osrm_time11'],bins=10,label='agg_osrm_time')
plt.legend()
plt.subplot(132)
sns.kdeplot(data_final['agg_actual_time11'],label='agg_actual_time')
sns.kdeplot(data_final['agg_osrm_time11'],label='agg_osrm_time')
plt.legend()
# Quantile-Quantile plot for 2samples
qqplot_2samples(data_final['agg_actual_time11'],data_final['agg_osrm_time11'], line="r", ax=plt.subplot(133))
plt.show()
```


Step-1: Defining Null & Alternate Hypothesis

H0: The mean for agg_actual_time & agg_osrm_time are same

Ha: The mean for agg_actual_time and agg_osrm_time are difference.

Step-2: Choosing Appropriate test

Here we are using Two Sample T-Test

Step-3: Choosing Significance level

Here we are aiming for 95% confidence, hence alpha=0.05

Step-4: Perform the test and determine the pvalue

▼ The pvalue is less than alpha, hence the mean between agg_actual_time11 and agg_osrm_time11 are not same.

Comparision Between Aggregate Actual time & Aggregate segment_actual_time

```
plt.figure(figsize=(17,4))
plt.subplot(131)
sns.kdeplot(data_final['agg_actual_time11'],label='agg_actual_time')
sns.kdeplot(data_final['agg_segment_actual_time11'],label='agg_segment_act_time')
plt.legend()
plt.subplot(132)
plt.hist(data_final['agg_actual_time11'],bins=10,label='agg_actual_time')
plt.hist(data_final['agg_segment_actual_time11'],bins=10,label='agg_segment_actual_time')
# Quantile-Quantile plot for 2samples
plt.show()
₹
       0.0025
                               agg_actual_time
                                                                     agg_actual_time
                                                 12000
                                                                                           6000
                                                                       agg_segment_actual_time
                               agg_segment_act_time
                                                                                           5000
       0.0020
                                                 10000
                                                                                           4000
                                                  8000
     <u>₹</u> 0.0015
                                                                                          of 2nd
                                                                                           3000
                                                  6000
       0.0010
                                                                                           2000
                                                  4000
       0.0005
                                                  2000
       0.0000
                  1000
                      2000 3000
                               4000
                                     5000
                                         6000
                                                           1000
                                                                     3000
                                                                          4000
                                                                               5000
                                                                                    6000
                                                                                                   1000
                                                                                                         2000
                                                                                                              3000
                                                                                                                   4000
                                                                                                                         5000
                                                                                                                              6000
                        agg_actual_time11
```

Step-1: Defining Null & Alternate Hypothesis

 $\ensuremath{\mathsf{H0}}$: The mean for agg_Actual_time & agg_segment_actual_time are same

Ha: The mean for agg_Actual_time and agg_segment_actual_time are difference.

Step-2: Choosing Appropriate test

Here we are using Two Sample T-Test

Step-3: Choosing Significance level

Here we are aiming for 95% confidence, hence alpha=0.05

Step-4: Perform the test and determine the pvalue

```
t_stat,p_value = stats.ttest_ind(data_final['agg_actual_time11'],data_final['agg_segment_actual_time11'])
print('t_stat :', t_stat)
print('P-value :',(p_value))

if p_value < 0.05:
    print('Reject NULL HYPOTHESIS')

else:
    print('Fail to Reject NULL HYPOTHESIS')

    t_stat : 0.4978641813349065
    P-value : 0.6185834771383849
    Fail to Reject NULL HYPOTHESIS</pre>
```

The pvalue is not less than alpha, hence the mean between agg_actual_time11 and agg_segment_actual_time11 are same.

Double-click (or enter) to edit

Comparision Between Aggregate OSRM distance & Aggregate Segment osrm distance

```
plt.figure(figsize=(17,4))
plt.subplot(1,3,1)
plt.hist(data_final['agg_osrm_distance11'],bins=10,label='agg_osrm_distance')
plt.hist(data_final['agg_segment_osrm_distance11'],bins=10,label='agg_segment_osrm_distance')
```

```
plt.legend()
plt.subplot(1,3,2)
sns.kdeplot(data_final['agg_osrm_distance11'],label='agg_osrm_distance')
sns.kdeplot(data_final['agg_segment_osrm_distance11'],label='agg_segment_osrm_distance')
plt.legend()
# Quantile-Quantile plot for 2samples
qqplot_2samples(data_final['agg_osrm_distance11'],data_final['agg_segment_osrm_distance11'], line="r", ax=plt.subplot(133))
plt.show()
```


Step-1: Defining Null & Alternate Hypothesis

 $\ensuremath{\mathsf{H0}}$: The mean for Agg_osrm_distance & agg_segment_osrm_distance are same

Ha: The mean for Agg_osrm_distance and agg_segment_osrm_distance are difference.

Step-2: Choosing Appropriate test

Here we are using Two Sample T-Test

Step-3: Choosing Significance level

Here we are aiming for 95% confidence, hence alpha=0.05

Step-4: Perform the test and determine the pvalue

```
import scipy.stats as stats
t_stat,p_value = stats.ttest_ind(data_final['agg_osrm_distance11'],data_final['agg_segment_osrm_distance11'])
print('t_stat :', t_stat)
print('P-value :',(p_value))

if p_value < 0.05:
    print('Reject NULL HYPOTHESIS')
else:
    print('Fail to Reject NULL HYPOTHESIS')

    t_stat : -3.9379741183399783
    P-value : 8.236076174381012e-05
    Reject NULL HYPOTHESIS</pre>
```

The pvalue is less than alpha, hence the mean between agg_osrm_distance11 and agg_segment_osrm_distance11 are not same.

Comparision Between Aggregate OSRM time & Aggregate Segment OSRM Time

```
plt.figure(figsize=(16,5))
plt.subplot(131)
sns.kdeplot(data_final['agg_osrm_time11'],label='agg_osrm_time')
sns.kdeplot(data_final['agg_segment_osrm_time11'],label='agg_segment_osrm_time')
plt.legend()
plt.subplot(132)
plt.hist(data_final['agg_osrm_time11'],bins=10,label='agg_osrm_time')
plt.hist(data_final['agg_segment_osrm_time11'],bins=10,label='agg_segment_osrm_time')
plt.legend()
# Quantile-Quantile plot for 2samples
```

qqplot_2samples(data_final['agg_osrm_time11'],data_final['agg_segment_osrm_time11'], line="r", ax=plt.subplot(133))
plt.show()

Step-1: Defining Null & Alternate Hypothesis

H0: The mean for Agg_osrm_distance & agg_segment_osrm_distance are same

Ha: The mean for Agg_osrm_distance and agg_segment_osrm_distance are difference.

Step-2: Choosing Appropriate test

Here we are using Two Sample T-Test

Step-3: Choosing Significance level

Here we are aiming for 95% confidence, hence alpha=0.05

Step-4: Perform the test and determine the pvalue

```
import scipy.stats as stats
t_stat,p_value = stats.ttest_ind(data_final['agg_osrm_time11'],data_final['agg_segment_osrm_time11'])
print('t_stat :', t_stat)
print('P-value :', p_value)
if p_value < 0.05:
    print('Reject NULL HYPOTHESIS')
else:
    print('Fail to Reject NULL HYPOTHESIS')

    t_stat : -5.505522067054686
    P-value : 3.711314386305602e-08
    Reject NULL HYPOTHESIS</pre>
```

The pvalue is less than alpha, hence the mean between agg_osrm_time11 and agg_segment_osrm_time11 are not same.

Exploratory Data Analysis

Univariate Data Analysis

```
num_cols = data_final.select_dtypes('float64').columns.values
cat_cols = data_final.select_dtypes('object').columns.values

for i in num_cols:
    print('###########"')
    print(data_final[i].value_counts())
    sns.histplot(data_final[i],kde=True)
    plt.show()
```

```
\overline{\Rightarrow}
    start_scan_to_end_scan11
    148.0
              51
    115.0
               51
    87.0
               50
               49
    113.0
               49
    128.0
    1895.0
               1
    1634.0
               1
    1199.0
    1205.0
    2429.0
    Name: count, Length: 2203, dtype: int64
        1600
        1400
        1200
        1000
         800
         600
          400
          200
            0
                                      3000
                                             4000
                                                     5000
                                                             6000
                0
                      1000
                              2000
                                                                     7000
                                                                            8000
                                   start_scan_to_end_scan11
    ##############
    Timediff_start_end_H11
    319.61
               4
    286.63
               4
               4
    122.43
    147.10
               4
    86.20
               4
    227.87
               1
    924.06
    658.28
               1
    3732.37
               1
    427.69
    Name: count, Length: 13573, dtype: int64
        1600
        1400
        1200
        1000
         800
          600
          400
          200
            0
                                             4000
                                                     5000
                                                             6000
                                                                            8000
                0
                      1000
                              2000
                                      3000
                                                                     7000
                                     Timediff_start_end_H11
    ###############
    agg_segment_actual_time11
    47.0
              121
    41.0
               107
    60.0
    35.0
               100
    55.0
               100
    1120.0
                1
    1684.0
                1
```

2862.0

2662.0


```
agg_segment_osrm_time11
17.0
          221
20.0
          213
19.0
          210
18.0
          209
22.0
          208
1845.0
2422.0
938.0
1185.0
1723.0
```

Name: count, Length: 1240, dtype: int64

#############

Name: count, Length: 14724, dtype: int64

###############

Name: count, Length: 14771, dtype: int64

###############

```
agg_actual_time11
          134
60.0
50.0
          130
42.0
          121
48.0
          115
38.0
966.0
2817.0
            1
2331.0
            1
2379.0
2784.0
```

Name: count, Length: 1851, dtype: int64

agg_osrm_time11 20.0 265 34.0 265 29.0 254 239 23.0 32.0 235 967.0 1087.0 1 782.0 1 1744.0 702.0

Name: count, Length: 827, dtype: int64

Name: count, Length: 14706, dtype: int64

The data's are heavily right skewed.

```
    The data's are heavily right skewed.
```

```
for i in cat_cols:
    print('#########")
    print(data_final[i].value_counts())
     Shahdara (Delhi)
                           1
     KalikDPP
                           1
     PuranDPP
                           1
     ShantiNg
     Name: count, Length: 672, dtype: int64
     #############
     Source_Code/State11
     HB (Haryana)
                           937
     HB (Maharashtra)
                           811
     HB (Karnataka)
                           757
     H (Karnataka)
                           751
     H (Punjab)
                           370
     2 (Andhra Pradesh)
                             1
     1 (Andhra Pradesh)
                             1
     2 (Karnataka)
     D (Meghalaya)
     9 (Gujarat)
     Name: count, Length: 181, dtype: int64
     ##############
     destination_City11
     Bengaluru
                  1056
     Gurgaon
                   869
     Mumbai
                   814
     Hyderabad
                   630
     Bangalore
                   628
     Shahabad
     Nadiad
     Mussoorie
                     1
     Jairampur
                     1
     Kanigiri
                     1
     Name: count, Length: 799, dtype: int64
     ###############
     destination_Place11
     Bilaspur
     Nelmngla
                 604
     Mankoli
                 542
                 488
     JJCpxDPP
                   1
     GhtimDPP
                   1
     Thsil3PL
     Sector02
                   1
     Ghansoli
     Name: count, Length: 747, dtype: int64
     ###############
     destination_Code/State11
     HB (Haryana)
                         813
     H (Karnataka)
                         655
     HB (Karnataka)
                         589
     HB (Maharashtra)
                         573
     H (Punjab)
                         431
     L (Punjab)
     I (Tripura)
     7 (Maharashtra)
                           1
     4 (Maharashtra)
```

Busiest Route

data_copy_grouped.head()

₹	trip_uuid	source_center	destination_center	data	trip_creation_time	route_schedule_uuid	route_type	source_name	d€
	o trip- 153671041653548748	IND209304AAA	IND00000ACB	18	18	18	18	18	
	trip- 1 153671041653548748	IND462022AAA	IND209304AAA	21	21	21	21	21	
	trip- 153671042288605164	IND561203AAB	IND562101AAA	3	3	3	3	3	
	trip- 153671042288605164	IND572101AAA	IND561203AAB	6	6	6	6	6	
	trip- 153671043369099517	IND00000ACB	IND160002AAC	12	12	12	12	12	

data_copy_grouped.route_type.max()

₹ 81

 $\ensuremath{\text{\#}}$ find trip uuid of \max count data_copy_grouped[data_copy_grouped['route_type']==81]

₹		trip_uuid	source_center	destination_center	data	trip_creation_time	route_schedule_uuid	route_type	source_name
	12201	trip- 153755502932196495	IND160002AAC	IND562132AAA	81	81	81	81	8.

data[data['trip_uuid']=='trip-153755502932196495']

_									
_		data	<pre>trip_creation_time</pre>	route_schedule_uuid	route_type	trip_uuid	source_center	source_name	dest
	61008	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_H (Punjab)	
	61009	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_H (Punjab)	
	61010	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_H (Punjab)	
	61011	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_H (Punjab)	
	61012	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_H (Punjab)	
	61084	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_H (Punjab)	
	61085	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_H (Punjab)	
	61086	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_H (Punjab)	
	61087	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_H (Punjab)	
	61088	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	trip- 153755502932196495	IND160002AAC	Chandigarh_Mehmdpur_H (Punjab)	

81 rows × 24 columns

Bussiest Route is from source Chandigarh_Mehmdpur_H (Punjab) to Bangalore_Nelmngla_H (Karnataka)

Average_distance between them is 1927 kms & average time taken is 3784 mins

```
temp=['start_scan_to_end_scan11',
       'trip_creation_day', 'Timediff_start_end_H11', 'agg_segment_actual_time11',
       'agg_segment_osrm_time11', 'agg_segment_osrm_distance11',
       'agg_distance_to_destination11', 'agg_actual_time11', 'agg_osrm_time11',
       'agg_osrm_distance11']
temp
→ ['start_scan_to_end_scan11',
      'trip_creation_day',
      'Timediff_start_end_H11',
      'agg_segment_actual_time11',
      'agg_segment_osrm_time11',
      'agg_segment_osrm_distance11'
      'agg_distance_to_destination11',
      'agg_actual_time11',
      'agg_osrm_time11',
      'agg_osrm_distance11']
```

Data Visualization

 $\overline{\Rightarrow}$

```
for i in temp:
    sns.histplot(data_final[i], bins=25, kde=True, color='orchid')
    plt.show()
```

