01: Preprocessament de les dades

Soulaiman el Hamri

2025-05-03

Contents

1.	Introducció	1
	1.1. Fonts de dades	1
2.	Descripció de les dades	2
	2.1. Dades meteorològiques (Meteocat)	2
	2.2. Dades de qualitat de l'aire	2
3.	Preprocessat	3
	3.1. Dades meteorologiques	3
	3.2. Dades de contaminants	6
4.	Conclusions generals	8

1. Introducció

Aquest document descriu el **preprocessament inicial de les dades meteorològiques i de qualitat de l'aire** registrades a la ciutat de Barcelona. Aquest pas és essencial per garantir la **coherència**, **qualitat i integritat** de les dades abans de realitzar qualsevol anàlisi estadística o modelització posterior.

1.1. Fonts de dades

- Dades meteorològiques (1991–2025): registres diaris de les estacions meteorològiques de Barcelona.
- Metadades meteorològiques: descripcions de cada acrònim i unitats.
- Fitxer d'estacions: ubicació i municipi de cada estació meteorològica.
- Dades de qualitat de l'aire: registres històrics dels principals contaminants (NO2, PM10, PM2.5, O3, etc.).

2. Descripció de les dades

2.1. Dades meteorològiques (Meteocat)

Els conjunts de dades meteorològiques han estat descarregats del portal de dades obertes de la Generalitat de Catalunya. Cada fitxer conté **observacions diàries** mesurades per les estacions automàtiques de Barcelona (XEMA). A Barcelona hi ha 4 estacions operatives i tenim un fitxer csv per cada estació.

Les columnes principals són:

- DATA: Data de la mesura, en format "YYYY-MM-DD" o "YYYY-MM-DD HH: MM: SS".
- CODI_ESTACIO: Codi identificador únic de l'estació meteorològica.
- ACRÒNIM: Sigla curta que identifica la variable mesurada (ex.: TM, TX, HRM, PPT, PM...)
- VALOR: Valor mesurat de la variable corresponent.

Aquesta informació es completa amb un fitxer de metadades, que inclou:

- ACRÒNIM: Coincideix amb el del dataset principal.
- NOM_VARIABLE: Nom complet de la variable (ex.: "Temperatura mitjana diària").
- UNITAT: Unitat de mesura (ex.: °C, %, mm, hPa).
- CODI_VARIABLE: Identificador intern de la variable.

A continuació es mostra una taula amb les variables meteorològiques rellevants:

ACRÒNIM	NOM VARIABLE	UNITAT
$\overline{\mathrm{TM}}$	Temperatura mitjana diària	$^{\circ}\mathrm{C}$
$_{\mathrm{HRM}}$	Humitat relativa mitjana	%
PPT	Precipitació acumulada	mm
PM	Pressió atmosfèrica mitjana	hPa
VVM10	Velocitat mitjana del vent a 10 m	m/s

Aquestes dades són fonamentals per contextualitzar els nivells de contaminació en funció de la meteorologia.

2.2. Dades de qualitat de l'aire

El conjunt de dades conté registres de **mesures horàries** de concentració de contaminants atmosfèrics des de l'any 1991 fins al 2025. L'origen de les dades és de portal Open Data BCN.

Les columnes principals inclouen:

- CODI_ESTACIO: Codi alfanumèric de l'estació de mesura.
- NOM_ESTACIO: Nom de l'estació (ex.: "Eixample", "Gràcia", "Zona Universitària"...).
- DATA: Data de mesura.
- HORA: Hora de mesura (de 1 a 24).

- CONTAMINANT: Substància mesurada (ex.: NO2, PM10, PM2.5, O3).
- VALOR: Valor de concentració horària (normalment en μg/m³).

Es descarten columnes complementàries com:

• magnitud, codi_ine, municipi, geocoded_column, codi_comarca, nom_comarca

Contaminants d'interès seleccionats:

- NO2 (diòxid de nitrogen): Indica presència de trànsit intens.
- PM10 i PM2.5 (partícules en suspensió): Afavoreixen problemes respiratoris.
- O3 (ozó troposfèric): Forma contaminant secundari amb impactes en salut i vegetació.

3. Preprocessat

3.1. Dades meteorologiques

Aquest apartat descriu detalladament el procés de preparació inicial de les dades meteorològiques corresponents als anys 1995 a 2025. El flux de treball inclou la lectura dels fitxers, la unificació en un únic conjunt de dades, l'enriquiment amb metadades descriptives, la conversió correcta de dates i el filtratge per seleccionar només dades rellevants per a l'anàlisi.

Primerament, farem la lectura dels fitxers per estacions:

Un cop llegits, els quatre conjunts s'uneixen en un únic dataframe mitjançant bind_rows(). Aquesta operació genera un sol conjunt homogeni, amb totes les observacions agrupades.

```
# Unifiquem tots els conjunts de dades en un únic dataframe df_meteo <- bind_rows(df_D5, df_X2, df_X4, df_X8)
```

A continuació, es genera un resum estadístic (summary(df_meteo)) per identificar possibles inconsistències o valors anòmals.

```
# Mostrem un resum del conjunt complet summary(df_meteo)
```

```
##
        EMA
                            DATA
                                                  TM
                                                                      TX
   Length: 30287
                                            Length: 30287
                        Length: 30287
                                                                Length: 30287
##
                        Class : character
                                            Class : character
##
    Class : character
                                                                 Class : character
   Mode : character
                              :character
                                            Mode :character
                                                                 Mode :character
##
                        Mode
##
    Data Extrem TX
                                            Data Extrem TN
                                                                     HRM
                        Length: 30287
                                                                Length: 30287
##
   Length: 30287
                                            Length: 30287
                        Class : character
                                                                 Class : character
##
    Class : character
                                            Class : character
##
    Mode :character
                        Mode :character
                                            Mode :character
                                                                 Mode :character
##
        HRX
                        Data Extrem HRX
                                                 HRN
                                                                 Data Extrem HRN
##
    Length: 30287
                        Length: 30287
                                            Length: 30287
                                                                 Length: 30287
##
    Class : character
                        Class : character
                                            Class : character
                                                                 Class : character
    Mode :character
                                            Mode :character
                              :character
                                                                 Mode : character
##
                        Mode
##
                             PX
                                            Data Extrem PX
                                                                      PN
   Length: 30287
##
                        Length: 30287
                                            Length: 30287
                                                                 Length: 30287
##
    Class :character
                        Class : character
                                            Class : character
                                                                 Class : character
##
   Mode :character
                        Mode : character
                                            Mode :character
                                                                 Mode :character
##
   Data Extrem PN
                            PPT
                                                RS24h
                                                                    VVM10
##
   Length: 30287
                        Length: 30287
                                            Length: 30287
                                                                 Length: 30287
##
   Class : character
                        Class : character
                                            Class : character
                                                                 Class : character
##
   Mode :character
                        Mode :character
                                            Mode :character
                                                                 Mode :character
##
       DVM10
                           VVX10
                                            Data Extrem VVX10
                                                                    DVVX10
##
   Length: 30287
                        Length: 30287
                                            Length: 30287
                                                                 Length: 30287
   Class :character
                                                                 Class : character
##
                        Class : character
                                            Class : character
    Mode : character
                                            Mode : character
                                                                 Mode : character
                        Mode :character
```

Per entendre i etiquetar correctament les variables (ex. TX = Temperatura màxima, HRM = Humitat mitjana), aquestes metadades són clau per enriquir les observacions i preparar-les per visualització i interpretació.

```
# Carreguem el fitzer de metadades
df_metadata <- read_csv("../data/raw/meteocat/MeteoCat_Metadades.csv", col_types = cols(
    CODI_VARIABLE = col_double(),
    NOM_VARIABLE = col_character(),
    UNITAT = col_character(),
    ACRÒNIM = col_character()
))</pre>
```

La columna de data s'estandarditza al format ISO (%Y-%m-%dT00:00:00Z) per garantir compatibilitat amb sistemes com ArcGIS Online i assegurar la correcta ordenació temporal.

```
# Normalitzem la data de lectura
df_meteo <- df_meteo %>%
  mutate(DATA_LECTURA = dmy(DATA) %>% format("%Y-%m-%dT00:00:00Z"))
```

Els fitxers meteorològics tenen una estructura de "taula ampla", on cada variable meteorològica és una columna. Per facilitar les operacions d'anàlisi, es transforma a format "longitudinal" o **long format**, on cada fila representa un registre d'una sola variable per dia i estació. Això es fa mitjançant una iteració sobre cada acrònim (ex. TX, HRM, PPT) i es construeix un dataframe agregat.

A més, per a certes variables que tenen una **data extrema** associada (ex. temperatura màxima amb hora), també es processa i incorpora aquesta informació en format ISO 8601.

```
# Variables que tenen columna de 'Data Extrem'
variables_amb_extrem <- c("TX", "TN", "HRX", "HRN", "PX", "PN", "VVX10")</pre>
# Transformem a format llarg
acronims <- df_metadata$ACRONIM
resultats <- map_dfr(acronims, function(acronim) {
  col_valor <- sym(acronim)</pre>
  # Si la variable té data extrem, l'afegim
  if (acronim %in% variables amb extrem) {
    col_extrem <- sym(paste0("Data Extrem ", acronim))</pre>
    dades <- df meteo %>%
      select(DATA_LECTURA, CODI_ESTACIO = EMA, valor = !!col_valor,
             data_extrem = !!col_extrem)
  } else {
    dades <- df_meteo %>%
      select(DATA_LECTURA, CODI_ESTACIO = EMA, valor = !!col_valor) %>%
      mutate(data_extrem = NA)
  }
  # Tractament del valor i format final
  dades %>%
    filter(!is.na(valor)) %>%
    mutate(
      ACRÒNIM = acronim,
      VALOR = str_replace(valor, ",", ".") %>% as.numeric(),
      DATA EXTREM = if else(
        !is.na(data_extrem),
        format(ymd_hms(data_extrem), "%Y-%m-%dT%H:%M:%SZ"),
        NA_character_
      )
    ) %>%
    select(DATA_LECTURA, DATA_EXTREM, CODI_ESTACIO, ACRÒNIM, VALOR)
  left_join(df_metadata, by = "ACRONIM") %>%
  select(DATA_LECTURA, DATA_EXTREM, CODI_ESTACIO, ACRÒNIM, VALOR, CODI_VARIABLE,
         NOM_VARIABLE, UNITAT)
```

Es comprova la presència de NA per columna amb colSums(is.na(...)) i es realitza una ordenació final per data, estació i variable (arrange()) per garantir una estructura ordenada i fàcilment interpretable.

```
na_summary <- colSums(is.na(resultats))</pre>
print(na summary)
                   DATA_EXTREM CODI_ESTACIO
                                                     ACRÒNIM
                                                                     VALOR
##
  DATA LECTURA
                         190773
                                            0
                                                           0
                                                                         0
## CODI_VARIABLE NOM_VARIABLE
                                       UNITAT
##
               0
                              0
# Ordenem per data, estació i variable
resultats <- resultats %>%
  arrange(DATA_LECTURA, CODI_ESTACIO, ACRÒNIM)
```

Els valors NA (valors buits) a la columna DATA_EXTREM es deuen al fet que **no totes les variables meteorològiques tenen una data extrema associada**. Això és un comportament esperat i correcte segons la naturalesa de les dades.

Per últim, el resultat és un fitxer .csv preparat i net, que conté totes les observacions diàries de les quatre estacions meteorològiques, en format llarg i enriquit amb metadades.

```
# Guardem el resultat final en CSV
write_csv(resultats, "../data/processed/meteocat_1995_2025_bcn_processed.csv")
```

3.2. Dades de contaminants

En aquest apartat es duu a terme el preprocessament de les dades de qualitat de l'aire, provinents del conjunt històric (1991–2025) que conté mesuraments horaris dels principals contaminants atmosfèrics a diferents estacions de Catalunya. Ens centrarem exclusivament en les estacions ubicades dins del municipi de Barcelona, i seleccionarem només aquells contaminants d'interès per a l'estudi, amb un filtratge, neteja i preparació estructurada per a l'anàlisi posterior.

```
# Carreguem les dades crues de qualitat de l'aire
contaminants_raw <- read_csv("../data/raw/contaminants/dades_qualitat_aire_1991_2025.csv")
head(contaminants_raw)</pre>
```

```
## # A tibble: 6 x 40
##
     codi eoi nom estacio
                                    data
                                                        magnitud contaminant unitats
##
     <chr>>
              <chr>>
                                    <dt.tm>
                                                           <dbl> <chr>
                                                                              <chr>>
## 1 08307012 Vilanova i la Geltrú 2025-04-07 00:00:00
                                                               6 CO
                                                                              mg/m3
## 2 43171002 Vila-seca (IES Vila~ 2025-04-07 00:00:00
                                                              14 03
                                                                              µg/m3
## 3 43162005 Vandellos (Barranc ~ 2025-04-07 00:00:00
                                                               7 NO
                                                                              µg/m3
## 4 25120001 Lleida
                                   2025-04-07 00:00:00
                                                               9 PM2.5
                                                                              µg/m3
## 5 25196001 Montsec
                                   2025-04-07 00:00:00
                                                              14 03
                                                                              µg/m3
## 6 43103001 Perafort (Puigdelfi) 2025-04-07 00:00:00
                                                              12 NOX
                                                                              µg/m3
## # i 34 more variables: tipus_estacio <chr>, area_urbana <chr>, codi_ine <chr>,
       municipi <chr>, codi_comarca <chr>, nom_comarca <chr>, h01 <dbl>,
## #
       h02 <dbl>, h03 <dbl>, h04 <dbl>, h05 <dbl>, h06 <dbl>, h07 <dbl>,
## #
## #
      h08 <dbl>, h09 <dbl>, h10 <dbl>, h11 <dbl>, h12 <dbl>, h13 <dbl>,
       h14 <dbl>, h15 <dbl>, h16 <dbl>, h17 <dbl>, h18 <dbl>, h19 <dbl>,
## #
       h20 <dbl>, h21 <dbl>, h22 <dbl>, h23 <dbl>, h24 <dbl>, altitud <dbl>,
       latitud <dbl>, longitud <dbl>, geocoded_column <chr>
```

```
# Filtratge per municipi (municipi == "Barcelona")

df_bcn_contaminants <- contaminants_raw %>%
    filter(municipi == "Barcelona")

# Definim els contaminants rellevants per a l'estudi
contaminants_interessants <- c("NO2", "PM10", "PM2.5", "03")

# Seleccionem només les observacions corresponents a aquests contaminants
df_bcn_contaminants <- df_bcn_contaminants %>%
    filter(contaminant %in% contaminants_interessants)

# Comptem quantes observacions hi ha per estació i contaminant
df_bcn_contaminants %>%
```

```
arrange(nom_estacio, contaminant)
## # A tibble: 34 x 3
##
     nom estacio
                                         contaminant
##
      <chr>
                                                     <int>
                                         <chr>
## 1 Barcelona (Ciutadella)
                                         NO2
                                                      7383
## 2 Barcelona (Ciutadella)
                                         03
                                                      7475
## 3 Barcelona (Eixample)
                                         NO2
                                                      9231
## 4 Barcelona (Eixample)
                                                      9525
                                         03
## 5 Barcelona (Eixample)
                                         PM10
                                                      6684
## 6 Barcelona (Eixample)
                                         PM2.5
                                                       829
## 7 Barcelona (Gràcia - Sant Gervasi) NO2
                                                      9422
## 8 Barcelona (Gràcia - Sant Gervasi) 03
                                                      9528
## 9 Barcelona (Gràcia - Sant Gervasi) PM10
                                                      4557
## 10 Barcelona (Gràcia - Sant Gervasi) PM2.5
                                                       253
## # i 24 more rows
# Eliminem columnes que no aporten valor analític directe
df_bcn_contaminants <- df_bcn_contaminants %>%
  select(-magnitud, -codi_ine, -municipi, -codi_comarca, -nom_comarca, -geocoded_column)
# Comprovem la presència de valors nuls a les columnes principals
na_summary_contaminants <- colSums(is.na(df_bcn_contaminants))</pre>
print(na_summary_contaminants)
##
                                                contaminant
                                                                   unitats
        codi_eoi
                   nom_estacio
                                         data
##
                                           0
                                                          0
                                                                         0
## tipus_estacio
                                                                      h03
                                          h01
                                                        h02
                   area_urbana
                                         4808
                                                       5175
                                                                      4842
##
               0
                             0
##
             h04
                           h05
                                         h06
                                                        h07
                                                                      h08
##
            4684
                          4803
                                         4863
                                                       4827
                                                                      4955
##
             h09
                           h10
                                          h11
                                                        h12
                                                                      h13
##
            5688
                          6428
                                         8044
                                                       8604
                                                                      8487
##
             h14
                           h15
                                          h16
                                                        h17
                                                                      h18
##
            7452
                          6829
                                         6716
                                                       5241
                                                                      4535
##
             h19
                           h20
                                          h21
                                                        h22
                                                                       h23
##
            4436
                          4322
                                         4363
                                                       4547
                                                                      4562
##
             h24
                       altitud
                                      latitud
                                                   longitud
##
            4813
                             0
# Ordenem les dades per facilitar l'anàlisi temporal posterior
df_bcn_contaminants <- df_bcn_contaminants %>%
  arrange(nom_estacio, contaminant, data)
# Crear carpeta de sortida si no existeix
dir.create("../data/processed/contaminants", recursive = TRUE, showWarnings = FALSE)
# Guardar el dataset filtrat
write csv(df bcn contaminants,
          "../data/processed/contaminants/contaminants_bcn_filtrat.csv")
```

count(nom_estacio, contaminant) %>%

El dataset resultant conté les observacions horàries dels contaminants NO2, PM10, PM2.5 i O3 a les diferents estacions de Barcelona, estructurat cronològicament i amb les columnes essencials per a l'anàlisi temporal i espacial. En la següent fase es podrà integrar amb les dades meteorològiques per estudiar les relacions entre qualitat de l'aire i condicions ambientals.

4. Conclusions generals

Aquest document ha permès dur a terme una primera fase fonamental del projecte: la preparació, neteja i estructuració dels conjunts de dades que seran la base de les anàlisis posteriors sobre la qualitat de l'aire a la ciutat de Barcelona.

S'han abordat dues fonts de dades complementàries:

- Dades meteorològiques (1995–2025), proporcionades pel Servei Meteorològic de Catalunya, que han estat unificades, enriquides amb metadades descriptives i filtrades geogràficament per a les estacions situades dins del municipi de Barcelona. El conjunt resultant conté variables ambientals clau (temperatura, humitat, precipitació, pressió atmosfèrica, etc.) en format net i estandarditzat.
- Dades de contaminants atmosfèrics (1991–2025), provinents de l'administració ambiental catalana, que han estat transformades i filtrades per obtenir observacions horàries dels contaminants NO2, PM10, PM2.5 i O3 a estacions urbanes de Barcelona. Les dades han estat reorganitzades cronològicament i simplificades per facilitar l'anàlisi temporal i espacial.

Gràcies a aquest treball de preprocessament:

- S'ha garantit la **coherència temporal i geogràfica** entre les diferents fonts.
- S'ha assegurat la qualitat i integritat de les dades, descartant camps no rellevants i detectant possibles valors nuls.
- S'han creat conjunts de dades **preparats per a la fusió** i anàlisi conjunta, amb l'objectiu d'estudiar les relacions entre condicions meteorològiques i nivells de contaminació atmosfèrica.

A partir d'aquesta base sòlida, en la següent fase del projecte es podrà dur a terme una anàlisi exploratòria, visualització de sèries temporals, estudi de correlacions i construcció de models explicatius o predictius.

Aquest preprocessament inicial constitueix, doncs, una etapa clau per garantir la robustesa i el rigor analític de tot el treball posterior.