

- 1. Main page: http://cortanaanalytics.com
- 2. Before you begin this Module, you should have:
 - 1. Basic Math and Stats skills
 - 2. Business and Domain Awareness
 - 3. Familiarity with Azure ML
 - 4. An understanding of interpreting a problem Statement for a Customer Scenario

Learning objectives

Using Azure ML:

- Split data into testing and training sets
- 2. Build a model for predicting customer churn
- 3. Compare two models
- 4. Share an experiment
- 5. Deploy a model as an API

When you have completed this Module, using Azure ML you will be able to:

- 1. Split data into testing and training sets
- 2. Build a model for predicting customer churn
- 3. Compare two models
- 4. Share an experiment
- 5. Deploy a model as an API

Cortana	Cortana Hola. Soy Cortana.
Analytics	Power BI Power BI
	Azure Stream Analytics
	Azure HDInsight
	Azure Machine Learning
	Azure SQL DB, Data Warehouse, DocumentDB
	Azure Data Lake
	Azure Event Hubs
	Azure Data Catalog
	Azure Data Factory
	Microsoft Azure

- 1. Platform: Microsoft Azure http://microsoftazure.com
- 2. Storage: https://azure.microsoft.com/en-us/documentation/services/storage/ (Blobs)
- 3. Azure Data Lake: http://azure.microsoft.com/en-us/campaigns/data-lake/ (from Bing)
- 4. Azure Data Factory: http://azure.microsoft.com/en-us/services/data-factory/ (Orchestration and Movement)
- 5. Azure Event Hubs: http://azure.microsoft.com/en-us/services/event-hubs/ (Ingest to streaming (IoT))
- 6. Azure Data Catalog: http://azure.microsoft.com/en-us/services/data-catalog (Social networking for data)
- Azure DocumentDB: https://azure.microsoft.com/enus/services/documentdb/?WT.srch=1&WT.mc_ID=SEM_JQ3fO8dU
- 8. Azure SQL Data Warehouse: http://azure.microsoft.com/en-us/services/sgl-data-warehouse/
- 9. Azure Stream Analytics: http://azure.microsoft.com/en-us/services/stream-analytics/ (Consume from EH, Output to Alerting (Telco Example))
- 10. Azure HDInsight: http://azure.microsoft.com/en-us/services/hdinsight/ (Platform on a Platform)
- 11. Azure Machine Learning: http://azure.microsoft.com/en-us/services/machine-learning/ (Prediction and Prescription to API)
- 12. Revolution R Enterprise: http://www.revolutionanalytics.com/revolution-r-enterprise (ML)
- 13. Power BI: https://powerbi.microsoft.com/
- 14. Cortana: http://blogs.windows.com/buildingapps/2014/09/23/cortana-integration-and-speech-recognition-new-code-samples/ and https://blogs.windows.com/buildingapps/2015/08/25/using-cortana-to-interact-with-your-customers-10-by-10/

Full explanation of this example: https://azure.microsoft.com/en-us/blog/getting-started-with-azure-data-factory-and-azure-machine-learning-4/

Azure Machine Learning Initialize Model - Classification Predict the class or Multidass Decision Forest Two-Class Boosted Decision ... category for data Multiclass Decision Jungle Two-Class Decision Jungle Multiclass Logistic Regression Two-Class Locally-Deep Sup... Multiclass Neural Network Two-Class Logistic Regression One-vs-All Multiclass Two-Class Neural Network Two-Class Averaged Percept... Two-Class Support Vector M... Two-Class Bayes Point Machi...

- 1. Head link for this topic note that it has a section for choosing the right algorithm: https://msdn.microsoft.com/en-us/library/azure/dn905812.aspx
- 2. Example using flight times: http://blogs.msdn.com/b/cdndevs/archive/2016/02/18/step-by-step-how-to-predict-the-future-with-machine-learning.aspx

Azure Machine Learning Initialize Model – Regression

 Algorithms that learn to predict the value of a real function for a single instance of data

 Creating a model with a SQL Server Database: http://blogs.msdn.com/b/business_intelligence1/archive/2014/09/14/how-to-setup-machine-learning-and-run-a-linear-regression-model-on-the-azure-cloud.aspx

Azure Machine Learning Initialize Model – Clustering

Create an untrained K-means clustering model

 A good comparison of clustering versus classification: http://www.scientificcomputing.com/blogs/2015/09/machine-learning-techniques-help-find-patterns-big-data-sets

Azure Machine Learning

Train

Variety of methods for training models, which can also incorporate parameter sweeping and cross-validation

- 1. https://msdn.microsoft.com/library/azure/038d91b6-c2f2-42a1-9215-1f2c20ed1b40
- 2. More on tuning parameters (aka hyperparameter optimization): http://www.johnmyleswhite.com/notebook/2012/07/21/automatic-hyperparameter-tuning-methods/

Azure Machine Learning

Score

Apply a trained model to:

- A list of recommended items
- Forecasts for time series models
- Estimates of projected demand, volume, or other numeric quantity, for regression models
- · Cluster assignments
- A predicted class or outcome, for classification models
- Probability scores associated with these outputs

 An example of training and scoring a model: https://azure.microsoft.com/enus/documentation/articles/machine-learning-walkthrough-4-train-and-evaluate-models/

Azure Machine Learning

Evaluate

Metrics for Classification Models

- Accuracy
- Recall
- Precision
- F-Score
- AUC
- Average Log Loss
- Training Log Loss

Metrics for Regression Models

- Mean absolute error (MAE)
- Root mean squared error (RMSE)
- Relative absolute error (RAE)
- Relative squared error (RSE)
- · Coefficient of determination

1. A discussion on using AUC eefectively: http://academic.research.microsoft.com/Paper/428291.aspx

1. A Video of the connection between the app and the API – we'll cover this again in the next module: https://channel9.msdn.com/Blogs/Windows-Azure/Introduction-to-Azure-ML-API-Service

1. Follow the subsequent slides for the lab

Start Azure ML Studio

- Go to: http://studio.azureml.net/
- Click Get started ⊙
- If you have an Azure account, sign in; otherwise click Guest Access
- In the bottom left corner, click + NEW
- Click "Blank Experiment"

Our Dataset

- Telecom data for 4,667 fictitious customers
- Feature selection already complete, leaving us with:
 - · Day_Mins: daytime call usage
 - · Eve_Mins: evening call usage
 - Intl_Mins: international call usage
 - VMail_Message: Number of voicemails received
 - · CustServ Calls: number of customer service calls
 - · Churn_: indicating whether the customer churned

1. https://aka.ms/AzureMLChurnTutorial

1. Paste from here: https://telecomchurndemo.blob.core.windows.net/churnfeatures/churnfeatures.csv

Split the Data

- 70% training (1st port)
- 30% testing (2nd port)

- Splitting helps us avoid overfitting: http://www.kdnuggets.com/2015/01/clever-methods-overfittingavoid.html
- 2. An alternative to the train-test split: Crossvalidation https://msdn.microsoft.com/en-us/library/azure/dn905852.aspx

Select the Model

- 1. Search for "Logistic" in the top left box
- 2. Drag "Two-Class Logistic Regression" into the experiment

 How to choose a model: https://azure.microsoft.com/en-us/documentation/articles/machine-learningalgorithm-choice/

Train the Model

- 1. Search for "Train Model" and drag into experiment
- 2. Link untrained model to left port, training data to right port

Score the Model (aka Prediction)

- , O.,
- 1. Search for "Score Model" and drag into experiment
- 2. Link trained model to left port, testing data to right port
- 3. Output: the testing dataset, with predictions

... but are they good predictions?

Evaluate the Model

- 1. Search for "Evaluate Model" and link to "Score"
- 2. Run experiment
- 3. Click the "Evaluate" out port and "Visualize"

- Overview of evaluation statistics: https://msdn.microsoft.com/library/azure/927d65ac-3b50-4694-9903-20f6c1672089/#bkmk classification
- 2. Compared with Crossvalidation: https://azure.microsoft.com/en-us/documentation/articles/machine-learning-evaluate-model-performance/#evaluating-a-binary-classification-model

Microsoft Cloud OS

23

1. More on managing your workspace: https://azure.microsoft.com/en-us/documentation/articles/machine-learning-manage-workspace/

1. More on managing your workspace: https://azure.microsoft.com/en-us/documentation/articles/machine-learning-manage-workspace/

1. How to choose a model: https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice/

1. How to choose a model: https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice/

 A more complex model comparison example: https://gallery.cortanaanalytics.com/Experiment/Compare-Binary-Classifiers-2?share=1

1. Use this for Q/A time