CS & IT ENGINEERING

Tree

DPP-06 (Discussion Notes)

TOPICS TO BE COVERED

01 Question

02 Discussion

The maximum number of comparisons to find the maximum element in a min heap of 1024 elements is _____ NAT

The elements
$$\frac{|eaf \text{ nodes}|}{2}$$

The elements $\frac{3}{2}$ $-1.57 = 3$
 $\frac{4}{2}$ $= 2$

$$\frac{3}{3} = \frac{3}{3} = \frac{3}{3} = \frac{3}{3}$$

1024 2 (e,) C1,C2>4
C3 (4>Z y, z => Con not be largest element

					_		
50 40	10	5	60	70	40	15	80

The minimum number of comparisons required to convert the above array into max heap is _____

50	40	10	5	60	70	40	15	80

The minimum number of swap operations required to convert the above array into max-heap is _____.

	0 40						
50 4	0 10	5	60	70	40	15	80

The minimum number of swap operations required to convert the

above array into max-heap is 5

٠									
١	50	40	10	5	60	70	40	15	80

The resultant max-heap using bottom-up approach of build heap is-

- 80, 60, 70, 40, 50, 10, 40, 15, 5
- B. 80, 70, 60, 50, 40, 10, 40, 5, 15
- c. 80, 70, 60, 50, 40, 40, 15, 10, 5
- D. None of the above

Consider a sequence of elements are inserted into a max-heap one after another as-

[NAT]

50, 40, 10, 5, 60, 70, 40, 15, 80

The number of shift operations required in building the heap one element at a time is ______.

Consider a sequence of elements are inserted into a max-heap one after another as-

50, 40, 10, 5, 60, 70, 40, 15, 80

The number of shift operations required in building the heap one

element at a time is _____

Consider a sequence of elements are inserted into a max-heap one after another as-

50, 40, 10, 5, 60, 70, 4(, 15, 80

The resultant max-heap using bottom-up approach of build heap is-

80, 60, 70, 40, 50, 10, 40, 15, 5

80, 70, 60, 50, 40, 10, 40, 5, 15

80, 70, 60, 50, 40, 40, 15, 10, 5

None of the above

Consider the following two statements:

P: The number of comparisons required to find the minimum element in a min heap of n elements is n - 1. Seturn A[I]

Q: Only one comparison is required to find the minimum element in a max heap of n elements.

Which of the following is/are CORRECT?

- A. Ponly
- B. Q only
- c. Both P and Q
- Neither P nor Q

