

MANUAL DE INSTRUÇÕES

AQUISITOR DE DADOS

Modelo **A202**

Versão 1.09 / Revisão 11

CONTEMP IND. COM. E SERVIÇOS LTDA.

Al. Araguaia, 204 - CEP 09560-580 São Caetano do Sul - SP - Brasil

Fone: 11 4223-5100 vendas@contemp.com.br www.contemp.com.br

SUPORTE TÉCNICO:

11 4223-5125 suporte.tecnico@contemp.com.br

> 9001 Sistema de Gestão da Qualidade Certificado

ÍNDICE

Item	Página
1. Introdução	
2. Características	
3. Especificações	5
3.1 Entradas universais	5
3.2 Saídas a relé	
3.3 Entrada digital	6
3.4 LOG (opcional)	
3.5 Sinalizações	
3.6 Comunicação Serial	
3.7 Generalidades	7
4. Instalação	7
4.1 Mecânica	
4.2 Elétrica	
4.3 Conexões	
4.3.1 Comunicação RS-485	
4.3.2 Sinais de entrada	
5. Tabela de registros	
6. Garantia	

1. INTRODUÇÃO

O A202 é um aquisitor de dados padrão altamente versátil, que possibilita o registro e monitoramento das variáveis analógicas em um computador ou no próprio instrumento, sendo tipicamente feito através de um sistema supervisório ou do software Contemp Connect que acompanha o produto. Dispõe de oito entradas analógicas configuráveis, comunicação serial isolada galvanicamente (padrão elétrico RS-485), LOG de dados para até 2MB de registro, dezesseis alarmes configuráveis, duas saídas a relé e uma entrada digital.

2. CARACTERÍSTICAS

- · Oito entradas universais configuráveis via software
- Três unidades de medição de temperatura: °C, °F, K
- · Dois sensores internos de temperatura ambiente
- · Ponto decimal configurável
- Escala quadrática para sensores lineares
- · Ajuste de Offset
- · Filtro digital
- · Uma Entrada digital
- · Dezesseis alarmes
- · Duas saídas a relé
- · Calibração de Zero e Span
- Comunicação RS485 (Modbus RTU) isolada
- Sinalizações: Alimentação, Entrada Digital, Relés, Comunicação e LOG
- · Memória para LOG: 2MBytes
- · Registros para TAG's do instrumento e de cada canal
- Alimentação: 85~265Vac/Vcc 47 a 63Hz

3. ESPECIFICAÇÃO

3.1 Entradas universais

Quantidade: 8 configuráveis

Exatidão @ 25°C: ± 0,1% Fundo de Escala + Junta fria (±2°C)

Resolução: 16 bits

Taxa de atualização: 900ms / 8 canais Estabilidade Térmica: 100ppm

Norma de calibração: ASTM

Tipo	Escala	Casa decimal	Impedância
0~10V; 1~5V; 0~5V; 0~60mV; ±10V; ±5V; ±60mV	-20000 a 20000	0 a 3	> 800 Kohms
4~20 mA; 0~20mA	-20000 a 20000	0 a 3	25 ohms + 0,7V
PT100	-200 a 600 °C	0 ou 1	> 10 Mohms
Termopar B	0 a 1800 °C	0	> 800 Kohms
Termopar S	0 a 1760 °C	0	> 800 Kohms
Termopar R	0 a 1760 °C	0	> 800 Kohms
Termopar T	-200 a 400 °C	0 ou 1	> 800 Kohms
Termopar N	-50 a 1300 °C	0 ou 1	> 800 Kohms
Termopar E	-100 a 720 °C	0 ou 1	> 800 Kohms
Termopar K	-100 a 1300 °C	0 ou 1	> 800 Kohms
Termopar J	-50 a 1100 °C	0 ou 1	> 800 Kohms

3.2 Saídas a relé

Tipo: Relé SPST, Contato NA Capacidade: 3A/250Vac Isolação Galvânica: 2500Vac Quantidade de Saídas: 2

Configuração: Desligado, Alto, Baixo, Bournout

3.3 Entrada digital

Modo de Operação: Pulso ou Nível Tipo de entrada: Contato Seco Configuração: Off, RL1, RL2, LOG

Isolação Galvânica: 1500Vac (opto isolada)

3.4 LOG

Real Time Clock (RTC): Sim Seleção dos canais: Sim

Intervalo entre aquisições: 0.1s a 1 dia

Qtde de Registros: até 2Mb (aprox. 1045000 registros no formato padrão e

com 1 canal habilitado)

Formatos do dado: Padrão, RTC, ASCII

Transferência das aquisições para memória de dados a cada 35 minutos

3.5 Sinalizações

Tipo: Led Quantidade: 7

Função: On, RL1, RL2, Entrada Digital, RX, TX, LOG

3.6 Comunicação Serial

Velocidade: 9600, 19200, 38400, 57600 bps Paridade: None, Par (Even), Ímpar (Odd)

Bits de Dados: 8 Stop Bits: 1 ou 2

Protocolo: MODBUS RTU
Padrão Elétrico: RS 485
Isolação Galvânica: 1500Vac
Distância Máx.: 1000m s/ repetidor
Quantidade Aparelhos: máx. 247*

^{*} a cada 30 instrumentos deverá ser utilizado um repetidor.

3.7 Generalidades

Temp. de Operação: -10°C a 55°C Temp. de Armazenagem: -25°C a 70°C Umidade Relativa: 5 a 95% não condensado

Altitude Max. de Operação: 2000m

Alimentação: 85~265Vac/Vcc - 47 a 63Hz

Consumo: 6VA (máx.)

Dimensões: 106 x 90 x 58 mm Material: ABS e Policarbonato

Grau de Proteção: IP40

Peso: 230g

4. INSTALAÇÃO

4.1 Mecânica

O A202 deve ser montado em trilho DIN, permitindo agilidade na montagem e na manutenção, sem a utilização de parafusos.

Dimensões (mm):

4.2 Elétrica

As conexões são feitas através de bornes do tipo parafusado, os quais permitem o uso de terminais ou condutores elétricos com secção transversal entre 0,2 a 3,0 mm². Os bornes de interligação são dotados de tampas de proteção facilmente removíveis com a utilização de uma chave de fenda.

Na figura abaixo são mostrados os bornes e suas possíveis conexões:

CUIDADOS A SEREM TOMADOS NA INSTALAÇÃO:

A alimentação deve ser feita através de uma rede própria para instrumentação, isenta de flutuações de tensão, harmônicas e interferências.

Para minimizar as interferências eletromagnéticas (EMI) é recomendado o uso de filtros RC em paralelo com bobinas de contatores ou solenóides.

Para ligar um termopar ao A202, utilizar cabo de extensão ou compensação compatível com o tipo de termopar utilizado, observando a polaridade correta.

Para ligar um PT100 ao controlador, utilizar condutores de mesmo comprimento e bitola, de forma que a resistência da linha não exceda a 10Ω .

4.3 Conexões

4.3.1 Comunicação RS-485

Utilizar cabos do tipo par trançado 24AWG com malha de blindagem, de modo a atender a norma EIA-485, reduzindo assim as possibilidades de interferência eletromagnética (EMI).

Apenas um par de fios é necessário para a comunicação serial. Especial atenção deve ser dada durante a instalação para que o comprimento máximo de 1000m não seja excedido e para que cabos de potência não transitem juntamente com os de comunicação.

Em função do comprimento e ambiente de aplicação devem ser avaliados os pontos de aterramento da blindagem e a necessidade de utilização dos resistores de terminação.

Não devem ser utilizadas emendas do tipo "T" a fim de evitar perda na qualidade do sinal.

9

4.3.2 Sinais de entrada

Quatro tipos de sinais podem ser conectados ao A202 sem a necessidade de qualquer tipo de alteração ou conexão de acessório externo.

Na tabela abaixo estão os quatro tipos de sinais e sua respectiva forma de conexão:

		Tipos		
Termorre	sistência	Termopares	Tensão	Corrente
2 fios	3 fios			
1 2 3	1 2 3	1 2 3	1 2 3	1 2 3

5. TABELA DE REGISTROS

Segue abaixo os principais registros Modbus para monitoramento. Para maiores informações, seguir a tabela de registros completa disponível para download no site www.contemp.com.br

Registro (base 1)	Nome do registro	LIMITES	R/W	FUNÇÃO Modbus
1	PV1	in.L1~in.H1	R	03h,04h
2	PV2	in.L2~in.H2	R	03h,04h
3	PV3	in.L3~in.H3	R	03h,04h
4	PV4	in.L4~in.H4	R	03h,04h

Registro (base 1)	Nome do registro	LIMITES	R/W	FUNÇÃO MODBUS
5	PV5	in.L5~in.H5	R	03h,04h
6	PV6	in.L6~in.H6	R	03h,04h
7	PV7	in.L7~in.H7	R	03h,04h
8	PV8	in.L8~in.H8	R	03h,04h
9	AMB1	0~60,0	R	03h,04h
10	AMB2	0~60,0	R	03h,04h
50	AL.A.1.SP	in.L1~in.H1	R/W	03h,04h,06h,10h
51	AL.A.2.SP	in.L2~in.H2	R/W	03h,04h,06h,10h
52	AL.A.3.SP	in.L3~in.H3	R/W	03h,04h,06h,10h
53	AL.A.4.SP	in.L4~in.H4	R/W	03h,04h,06h,10h
54	AL.A.5.SP	in.L5~in.H5	R/W	03h,04h,06h,10h
55	AL.A.6.SP	in.L6~in.H6	R/W	03h,04h,06h,10h
56	AL.A.7.SP	in.L7~in.H7	R/W	03h,04h,06h,10h
57	AL.A.8.SP	in.L8~in.H8	R/W	03h,04h,06h,10h
58	AL.B.1.SP	in.L1~in.H1	R/W	03h,04h,06h,10h
59	AL.B.2.SP	in.L2~in.H2	R/W	03h,04h,06h,10h
60	AL.B.3.SP	in.L3~in.H3	R/W	03h,04h,06h,10h
61	AL.B.4.SP	in.L4~in.H4	R/W	03h,04h,06h,10h
62	AL.B.5.SP	in.L5~in.H5	R/W	03h,04h,06h,10h
63	AL.B.6.SP	in.L6~in.H6	R/W	03h,04h,06h,10h
64	AL.B.7.SP	in.L7~in.H7	R/W	03h,04h,06h,10h
65	AL.B.8.SP	in.L8~in.H8	R/W	03h,04h,06h,10h
66	OUT Stat	Tabela 1	R/W	03h,04h,06h,10h
67	IN Stat	Tabela 2	R	03h,04h
68	AL.Stat	Tabela 3	R	03h,04h

Registro (base 1)	Nome do registro	LIMITES	R/W	FUNÇÃO MODBUS
69	CH.Stat	Tabela 4	R	03h,04h
100	AL.A.1.Stat	0/1 - off/on	R	03h,04h
101	AL.A.2.Stat	0/1 - off/on	R	03h,04h
102	AL.A.3.Stat	0/1 - off/on	R	03h,04h
103	AL.A.4.Stat	0/1 - off/on	R	03h,04h
104	AL.A.5.Stat	0/1 - off/on	R	03h,04h
105	AL.A.6.Stat	0/1 - off/on	R	03h,04h
106	AL.A.7.Stat	0/1 - off/on	R	03h,04h
107	AL.A.8.Stat	0/1 - off/on	R	03h,04h
108	AL.B.1.Stat	0/1 - off/on	R	03h,04h
109	AL.B.2.Stat	0/1 - off/on	R	03h,04h
110	AL.B.3.Stat	0/1 - off/on	R	03h,04h
111	AL.B.4.Stat	0/1 - off/on	R	03h,04h
112	AL.B.5.Stat	0/1 - off/on	R	03h,04h
113	AL.B.6.Stat	0/1 - off/on	R	03h,04h
114	AL.B.7.Stat	0/1 - off/on	R	03h,04h
115	AL.B.8.Stat	0/1 - off/on	R	03h,04h
116	RL1.Stat	0/1 - off/on	R/W	03h,04h,06h,10h
117	RL2.Stat	0/1 - off/on	R/W	03h,04h,06h,10h
118	LOG.Stat	0/1 - off/on	R/W	03h,04h,06h,10h
119	DI.Stat	0/1 - off/on	R	03h,04h

TABELA 1 - Identificação dos bits no registro 66.

Bit	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
OUT.STAT															RL2	RL1

RL1 - Relé 1; RL2 - Relé 2

TABELA 2 - Identificação dos bits no registro 67.

Bit	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
IN.STAT																ED1

ED1 - Entrada Digital 1

TABELA 3 - Identificação dos bits no registro 68.

Bit	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
AL.STAT	AI.B.8	AI.A.8	AI.B.7	AI.A.7	AI.B.6	AI.A.6	AI.B.5	AI.A.5	AI.B.4	AI.A.4	AI.B.3	AI.A.3	AI.B.2	AI.A.2	AI.B.1	AI.A.1

Al.A.n - Alarme A do canal "n"; Al.B.n - Alarme B do canal "n".

TABELA 4 - Identificação dos bits no registro 69;

Bit	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
CH.STAT	Burnout	Canal 8	Burnout Canal 7		Burnout	Canal 6	Burnout Canal 5		Burnout Canal 4		Burnout Canal 3		Burnout Canal 2		Burnout	Canal 1
	0	0	Car	al O	K											
	0	1	Val	or ac	ima	do in	.H (s	ensc	r abe	erto)	, indi	caçã	o: 'u	uuı	ı'	
	1	0	Val	Valor abaixo do in.L (sensor em curto), indicação: 'n n n n'												
	1	1	Ter	Terceiro fio do PT100 aberto, indicação: ''												

6 GARANTIA

O fabricante garante que os equipamentos relacionados na Nota Fiscal de venda estão isentos de defeitos e cobertos por garantia de 12 meses a contar da data de emissão da referida Nota Fiscal.

Ocorrendo defeito dentro do prazo de garantia, os equipamentos devem ser enviados à nossa fábrica, acompanhados de NF de remessa para conserto, onde serão reparados ou substituídos sem ônus desde que comprovado o uso de acordo com as especificações técnicas contidas neste manual.

O que a garantia não cobre

Despesas indiretas como: fretes, viagens e estadias.

O fabricante não assume nenhuma responsabilidade por qualquer tipo de perda, dano, acidente, ou lucro cessante decorrentes de falha ou defeito no equipamento, tão somente se comprometendo a consertar ou repor os componentes defeituosos quando comprovado o uso dentro das especificacões técnicas.

Perda da Garantia

A perda de garantia se processará caso haja algum defeito no equipamento e seja constatado que tal fato ocorreu devido à instalação elétrica inadequada e/ou o equipamento ter sido utilizado em ambiente agressivo, modificado sem autorização, sofrido violação ou ter sido utilizado fora das especificações técnicas.

O fabricante reserva-se no direito de modificar qualquer informação contida neste manual sem aviso prévio.

