Definition Transzenddenzbasis [vlg. Anhang A1 David Eisenbud 1994] Sei $L \supset k$ eine Körpererweiterung. Dann definieren wir:

• Eine endliche Teilmenge $\{l_1, \ldots, l_n\} \subseteq L$ heißt <u>algebraisch abhängig</u> über k, falls gilt:

$$\exists P(x_1, \dots, x_n) \in k[x_1, \dots, x_n] : P(l_1, \dots, l_n) = 0$$

• Eine endliche Teilmengen $\{l_1, \ldots, l_n\} \subseteq L$ heißt <u>algebraisch unabhängig</u> über k, falls gilt:

$$\forall P(x_1, ..., x_n) \in k[x_1, ..., x_n] : P(l_1, ..., l_n) \neq 0$$

- Eine Teilmenge $B \subseteq L$ heißt <u>transzendent</u> über k, falls jede ihrer endlichen Teilmengen $\{b_1, \ldots, b_n\}$ algebraisch unabhängig über k ist.
- Eine Teilmenge $B \subseteq L$ ist eine <u>Transzendenzbasis</u> von L über k, falls sie transzendent über k und die Körpererweiterung $L \supset k(B)$ algebraisch ist.

Transzendenzbasis ist maximale transzendente Menge [Lemma 22.1 Christian Karpfinger, Kurt Meyberg 2009]

Lemma 1. Sei $L \supset k$ ein Körpererweiterung und $B \subseteq L$ eine über k transzendente Teilmenge. Dann gilt:

B ist genau dann eine Transzendenzbasis von L über k, wenn B bezüglich der Inklusion ein maximales Element der Menge aller über k transzendenten Elemente aus L ist.

Beweis.

 $\underline{,,⇒}$:" Sei B eine Transzendenzbasis über k. Zeige, dass für ein beliebiges Element $a \in L \setminus B$ die Menge $B \cup \{a\} \subseteq L$ nicht transzendent über k ist:

Da die Körpererweiterung
$$L \supset k(B)$$
 algebraisch ist existiert $P(x) \in k(\{b_1, \dots, n\})$ mit $P(a) = 0$.

Wir können ohne weitere Einschränkung annehmen, dass $P(x) \in k[\{b_1, \dots, n\}]$ gilt, denn falls dies nicht der Fall sein sollte, wähle $m \in \mathbb{N}$ groß genug, sodass $P(x) \cdot (\prod_i {}^n b_i)^m \in k[\{b_1, \dots, n\}]$ gilt.

Wähle nun
$$P'(x_1, ..., x_n, x) \in k[x_1, ..., x_n, x]$$
 mit $P(b_1, ..., b_n, x) = P(x)$

Für dieses gilt $P'(b_1, \ldots, b_n, a) = 0$. Somit ist $\{b_1, \ldots, b_n\}$ nicht algebraisch unabhängig und insbesondere $B \cup \{a\}$ nicht transzendent.

<u>"</u> \Leftarrow :" Sei B bezüglich der Inklusion ein maximales Element der Menge aller über k transzendenten Elemente aus L. Zeige für ein beliebiges Element

 $a \in L \setminus k(B)$, dass dieses algebraisch über k(B) ist:

Nach Voraussetzung existiert eine endliche Teilmenge von $B \cup \{a\}$, welche algebraisch abhängig über k ist. Da B transzendent über k ist, muss diese a enthalten. Somit gilt:

$$\exists \{b_1, \dots, b_n\} \subseteq B : \{b_1, \dots, b_n, a\} \text{ ist algebraisch abhängig ""uber k}$$

$$\Rightarrow \exists P(x_1, \dots, x_{n+1}) \in k[x] : P(b_1, \dots, b_n, a) = 0$$

$$\Rightarrow \text{Für } P'(x) := P(b_1, \dots, b_n, x) \in k(B)[x] \text{ gilt } P'(a) = 0$$

Es existiert also ein Polynom $P'(x) := P(b_1, \ldots, b_n, x) \in k(B)[x]$ mit P'(a) = 0 gefunden. Somit ist a algebraisch über k(B).

Transzendenzbasen sind immer gleich lang [Theorem A1.1 David Eisenbud 1994]

Proposition 2. Sei $L \supset k$ eine Körpererweiterung. Seinen weiter A, B zwei Transzendenzbasen von L über k. Dann gilt:

$$|A| = |B|$$

Wir nennen |B| den Transzendenzgrad von L über k.

Beweis. Im Fall von $|A| = |B| = \infty$ sind wir schon fertig, sei also ohne Einschränkung $A = \{a_1, \ldots, a_m\}$ und $B = \{b_1, \ldots, b_n\}$ mit $min(m, n) = n < \infty$. Wir wollen zunächst in n Schritten die Elemente aus B durch Elemente aus A ersetzten und damit zeigen, dass $\{a_1, \ldots, a_n\}$ eine Transzendenzbasis von L über k ist:

Für den *i*-ten Schritt definiere $A_i := \{a_1, \dots, a_{i-1}\} \subseteq A, B_i := \{b_i, \dots, b_n\} \subseteq B$ und gehe davon aus, dass $A_i \cup B_i$ eine Transzendenzbasis ist:

Nach lemma 1 ist $\{a_i\} \cup A_i \cup B_i = A_{i+1} \cup B_i$ nicht transzendent und somit algebraisch abhängig.

Also existiert
$$P \in k[x, x_1, \dots, x_n]$$
 mit $P(a_i, a_1, \dots, a_{i-1}, b_i, \dots, b_n) = 0$.
Definiere $P'(x) := P(a_i, a_1, \dots, a_{i-1}, x, b_{i+1}, \dots, b_n) \in k(A_{i+1} \cup B_{i+1})[x]$.
Dieses erfüllt $P'(b_i) = 0$.

Da $A_i \subseteq A$ algebraisch unabhängig ist, gilt $P(a_1, \ldots, a_{i-1}, x_i, \ldots, x_n) \neq 0$. Nummeriere also gegebenenfalls B vor der Bildung von P'(x) so um, dass auch $P'(x) \neq 0$ gilt.

Die Existenz eines solchen P'(x) zeigt uns, dass die Körpererweiterungen $L \subset k(A_{i+1} \cup B_i) = k(A_{i+1} \cup B_{i+1})(\{b_i\}) \subset k(A_{i+1} \cup B_{i+1})$ algebraisch sind und legt nahe, dass $A_{i+1} \cup B_{i+1}$ wieder eine Transzendenzbasis ist.

Um dies zu zeigen nehme zunächst an $A_{i+1} \cup B_{i+1}$ wäre algebraisch abhängig.

Also existiert
$$Q \in k[x_1, \ldots, x_n]$$
 mit $Q(a_1, \ldots, a_i, b_{i+1}, \ldots, b_n) = 0$.
Definiere $Q'(x) := Q(a_1, \ldots, a_{i-1}, x, b_{i+1}, b_n) \in k(a_1, \ldots, a_{i-1}, b_{i+1}, b_n)[x]$.
Dieses erfüllt $Q'(a_i) = 0$.

Da $(A_{i+1} \cup B_{i+1}) \setminus \{a_i\} \subseteq A_i \cup B_i$ algebraisch unabhängig ist gilt $Q'(x) \neq 0$. Die Existenz eines solchen Q'(x) zeigt uns, dass die Körpererweiterung $L \subset k(A_{i+1} \cup B_{i+1}) \subset k((A_{i+1} \cup B_{i+1}) \setminus \{a_i\}) = k((A_i \cup B_i) \setminus \{b_i\})$ algebraisch ist. Damit ist $(A_i \cup B_i) \setminus \{b_i\}$ eine Transzendenzbasis, was nach lemma 1 im Widerspruch dazu steht, dass $A_i \cup B_i$ eine Transzendenzbasis ist. Folglich ist $A_{i+1} \cup B_{i+1}$ transzendent und somit eine Transzendenzbasis von L über k.

Dieses Verfahren zeigt uns, dass $\{a_1, \ldots, a_n\} \subseteq A$ eine Transzendenbasis von L über k ist. Nach lemma 1 muss somit $A = \{a_1, \ldots, a_n\}$ und m = n gelten. \square

Bemerkung 3. Für jede Körpererweiterung $L \subseteq k$ existiert eine Transzendenzbasis $B \subseteq L$ von L über k lemma 1 zeigt uns auch, wie wir für jede eine beliebige Körpererweiterung $k \subseteq L$ eine Transzendenzbasis finden.