2022-05-03, 10:30 PM OneNote

STA130 W2

Monday, October 28, 2019 9:34 PM

Typical Value:

The mean is a common way to measure the center of a distribution of numerical data.

- The average
- · Captures the contribution of extreme values

The **median** is another way to measure the **center** of a numerical variable.

- The value such that 50% of the data are less than and 50% are greater than it.
- Rank the values from smallest to largest
- Less affected by extreme values

*When its bimodal, neither of them are good value

The mode is the most frequent value in a dataset

- Not necessary in the center, but better for talking about the shape
- Not typical value

Numerical summaries of the spread of a distribution:

The variance is roughly the average squared distance from the mean.

The standard deviation is the square root of the variance.

- Unlike the variance, it is measured in the same units as the data so is easier to interpret.
- Small standard deviation/variance means that on average the data is close to the mean
- Large standard deviation means further away from the mean(more spread out)

<u>Visualizing summary of center / spread: boxplots:</u>

ggplot(data=happinessdata_2017, aes(x=" ", y=life_ladder)) + geom_boxplot()

A boxplot summarizes the distribution of a quantitative (numerical) variable using five statistics, while also plotting unusual observations (outliers).

- Line in the middle of the box: median
- Edges of the box:
 - Lower edge: first quartile the value such that 25% of the data values are less than it (Q_1)
 - Upper edge: third quartile the value such that 25% of the data values are less than it (Q_3)
- Length of the box: Inter-Quartile Range (IQR). Q_3-Q_1 - a measure of how spread out the data are
- Whiskers on the box extend to the most extreme value that is outside the box but within 1.5 imes IQR
- Plot points beyond the whiskers (outliers). These points are farther than 1.5 imes IQR from the box (i.e. lower

than $Q_1-1.5 imes IQR$ or higher than $Q_3 + 1.5 \times IQR$

Compare distributions of a quantitative variable across groups:

*Association between a categorical(x) and a numerical(y) variables ggplot(data=happinessdata_2017, aes(x=continent, y=life_ladder)) + geom_boxplot() + coord_flip()

If a distribution is **symmetrical**:

- The median will be in the middle of the box
- The whiskers will be the same length

OneNote 2022-05-03, 10:30 PM

Use console (bottom left window) as a calculator:

Saving R objects:

R lets you save data by storing it inside an "R object"

An **R object** is a name that you can use to call up stored data

x <- 1

[1] 1

When you create an object, it will be listed in the environment pane (top right)

Atomic vectors:

Vectors are the simplest data structure in R.

Make an atomic vector by grouping some values of data together with c()

The c() function combines elements of one type into a vector

A 6-sided die:

die <- c(1, 2, 3, 4, 5, 6) die

[1] 1 2 3 4 5 6

is.vector(die)

[1] TRUE

length(die)

[1] 6

Types of variables in R:

Variable Type	Description
Double (dbl)	Numbers (with or without decimals)
Integer (int)	Integers only (no decimals)
Character (chr)	Words, surrounded by quotation marks (e.g. names of students in STA130)
Logical (lgl)	TRUE or FALSE
Factor (fct)	Looks like "character" type, but can only take values from a pre-specified list (e.g. continents)

Each atomic vector can store only **one** type of data

Use is. functions (e.g. is.numeric(), is.character()) to check the data type of a vector

Logicals:

	Operator	Syntax	Example
Comparisons	equal	==	> 2==3 [1] FALSE
	not equal	!=	> 2!=3 [1] TRUE
	less than (less than or equal to)	< (<=)	> 2<3 [1] TRUE
	greater than (greater than or equal to)	> (>=)	> 2>=3 [1] FALSE
al	not	!	> ! (2==3) [1] TRUE
Logical	and	&	>(2<3) & (2<=3) [1] TRUE

2022-05-03, 10:30 PM OneNote

Coercion:

R switches between data types automatically for certain operations.

I.e. sum(c(TRUE, FALSE)) becomes sum(c(1,0)) which counts the number of values of TRUE in a vector

Command	Output
3 + "2"	Error
c(1, "2")	"1""2"
c(TRUE, "FALSE")	"TRUE""FALSE"
sum(c(TRUE, TRUE, TRUE))	3
sum(c(FALSE, FALSE, FALSE))	0
sum(c(10 == 5*2, 2 != 3, 2 <= 1.5*2))	3

Data Frames:

An R data frame is used for storing data sets (similar to Excel spreadsheets)

- · rows: individual observations/records
- · columns: variables Each column of a data frame can contain a different type of

Within a column, every cell must be the same type of data.

Access/create data frames in R:

1-Download & open a package to access a data frame which is included in the package

2-Import a data frame from an external file (e.g. Excel file) and save it as a **dataframe** object in R

· Using the read_csv() or read excel() functions, as with the happiness data last week Aer you have loaded it, you can view a data frame in RStudio by clicking on the data frame name in the Environment tab (top right corner)

Built-in functions:

```
round(-2.718282, digits = 2)
                             length(data)
## [1] -2.72
                              ## [1] 6
abs(-2.718282)
                              mean(data)
## [1] 2.718282
                             ## [1] 3.5
data <- c(1,2,3,4,5,6)
                              median(data)
                              ## [1] 3.5
                              round(sd(data), digits = 1)
                             ## [1] 1.9
```

Built-in help documentation on R functions: Type ?round in the R console window

glimpse(AutoClaims)

Observations: 6,773

Variables: 5

\$ STATE <fct> STATE 14, STATE 15, STATE 15, STATE 15, STATE 15, STATE...

\$ CLASS <fct> C6 , C6 , C11, F6 , F6 , F6 , C11, C6 , C11, C11, C6 , .

##\$ GENDER <fct> M, M, M, F, M, F, F, F, M, F...

##\$ AGE <int> 97, 96, 95, 95, 95, 94, 94, 93, 93, 93, 93, 92, 92,...

\$ PAID $\$ <dbl> 1134.44, 3761.24, 7842.31, 2384.67, 650.00, 391.12, 377...

fct: factors int: integers dbl: doubles

<u>Using the **summarise**(in tidyverse) function:</u>

summarise(AutoClaims, mean = mean(PAID), median = median(PAID), Columns in our summary table sd = sd(PAID),PAID is the \$ value of the claim min = min(PAID)max = max(PAID))

mean median sd min max ## ## 1 1853.035 1001.7 2646.909 9.5 60000 OneNote 2022-05-03, 10:30 PM

*1 output, grouped data

Using the **group_by** function with summarise:

AutoClaims_grpGender <- group_by(AutoClaims, GENDER) *what variable to group by

```
summarise(AutoClaims_grpGender,

n = n(),

mean = mean(PAID),

median = median(PAID),

sd = sd(PAID))
```

A tibble: 2 x 5 ## GENDER n mean median sd

<fct> <int> <dbl> <dbl> <dbl> <dbl>

 ## 1 F 2582 1864. 963. 2761. ## 2 M 4191 1847. 1032. 2575.

x1 = sum(PAID > 5000)) x2 = sum(PAID > 5000) / n) x3 = mean(PAID > 5000))X1: The number of people with claims larger than 5K x3 = mean(PAID > 5000))

Vocabulary/ terms:

- Mean, average
- Median
- Standard deviation
- Variance
- Boxplot
- Interquartile range
- Quartile
- Outlier
- R object
- Vector
- Types of variables: e.g. character, numeric, logical
- Data frame
- Summary table, summary statistics
- Proportion