MATHEMATICS FOR PROGRAMMING

NECESSARY RECAP

- Real number, Integer, Natural number and more
- Divisor, dividend, quotient, remainder
- Factor
- Prime number
- Even vs odd

FLOOR, CEILING, ROUND!

- Floor: Nearest integer below
- Ceiling: Nearest integer above
- Round: Nearest integer

- 12.65 → Floor: 12, Ceiling: 13, Round: 13
- 9.21 → Floor: 9, Ceiling: 10, Round: 9
- 24 → Floor: 24, Ceiling: 24, Round: 24

DIVISOR COUNTING

- Problem statement: Given an integer n. How many divisors are there for n?
- You know the answer if n is a prime, right?
 - Example: 3, 11, 73 etc
- What about if it is not a prime number? How do you count divisors?
 - Pause the video and think
 - Example: 8, 15, 27 etc

DIVISOR COUNTING - NAIVE

- Take all the integers (1 to n) and test if remainder is 0.
 - Example: Let's take 12

1	12%1=0	$\sqrt{}$
2	12%2=0	$\sqrt{}$
3	12%3=0	$\sqrt{}$
4	12%4=0	$\sqrt{}$
5	12%5=2	х
6	12%6=0	1

7	12%7=5	x
8	12%8=4	x
9	12%9=3	x
10	12%10=2	x
11	12%11=1	х
12	12%12=0	1

- The divisors: 1, 2, 3, 4, 6, 12.

- Number of divisors: 6

DIVISOR COUNTING - BETTER?

- We already know 1 and n will be there!
- So, 2 to (n-1) need to be tested.
- But ... look at the second half!

1	12%1=0	V
2	12%2=0	$\sqrt{}$
3	12%3=0	$\sqrt{}$
4	12%4=0	V
5	12%5=2	х
6	12%6=0	V

7	12%7=5	x
8	12%8=4	x
9	12%9=3	x
10	12%10=2	x
11	12%11=1	х
12	12%12=0	$\sqrt{}$

- We only need to check for 2 to n/2
- What about odd n?

DIVISOR COUNTING — EVEN BETTER?

•	1	12%1=0	$\sqrt{}$
	2	12%2=0	$\sqrt{}$
	3	12%3=0	V
	4	12%4=0	V
	5	12%5=2	x
	6	12%6=0	

7	12%7=5	x
8	12%8=4	х
9	12%9=3	x
10	12%10=2	х
11	12%11=1	x
12	12%12=0	

- Could you stop earlier than 6?
 - Yes!
 - 12%2 = 0 means 12/2 = 6 also divides 12
 - Same goes for 3 and 4
 - So, we could stop at 3 and still identify all the divisors!

DIVISOR COUNTING — EVEN BETTER?

- Then where do I stop?
- For 12, we stopped at 3.
- Let's look at 16

$$1 \times 16 = 16$$
 $2 \times 8 = 16$
 $4 \times 4 = 16$
 $8 \times 2 = 16$
 $16 \times 1 = 16$

- So, we do not need to test any number greater than \sqrt{n}
- $\sqrt{12} = 3.464 \dots, \sqrt{16} = 4$

PRIMALITY TEST

• **Problem statement:** Given an integer n. Determine if n is a prime number or not?

- You already know divisor counting
- Take numbers from 2 to \sqrt{n}
 - If any of them divide n, NOT prime

PRIMALITY TEST

- Is 77 a prime number?
- $\sqrt{77} = 8.77 \dots$
- Check 2 to 8
 - 77%2 = 1
 - 77 % 3 = 2
 - 77%4 = 1
 - 77 % 5 = 2
 - 77%6 = 5
 - 77 % 7 = 0 \rightarrow Factors: 7 and 77/7 = 11
- NOT Prime!

PRIMALITY TEST

- But ... do you see the extra calculations we did?
 - 77%2 = 1
 - 77 % 3 = 2
 - \bullet 77 % 4 = 1
 - 77%5 = 2
 - \bullet 77 % 6 = 5
 - 77 % 7 = $\mathbf{0}$
- Can we get a better method?
 - Yes. Let's talk about Sieve of Eratosthenes

SIEVE OF ERATOSTHENES

- Identifies all the prime numbers in a given range (very fast)
- Idea:
 - Step 1: Take a number (start with 2) and find its multiples in the range
 - Step 2:Those multiples must be composite, cross them out
 - Step 3: Proceed to the next number
 - Step 4: If it's prime, go to step 1, otherwise step 3

SIEVE OF ERATOSTHENES

• Find out all the prime numbers between 1 to 100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

SIEVE OF ERATOSTHENES

• FIND OUT ALL THE PRIME NUMBERS
BETWEEN 1 to 120

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

EXTRACT DIGITS FROM AN INTEGER

- You can tell the digits just by looking at the number
- Then why do we solve this problem?
 - Think of computers
 - If you store a number and want to get a certain digit, you need to get it yourself!
 - Formulate a set of operations on the number that can return individual digits
- Division is all you need!
- Let's go through an example with n = 237
 - How do you get the last digit?
 - -237%10 = 7

EXTRACT DIGITS FROM AN INTEGER

•

$$237 \% 10 = 7$$

- So, we know the rightmost digit is 7
- After knowing this, we do not have anything to do with 7 anymore
- Now we can focus on 23. But how do you get 23 separated?
 - Divide 237 with 10 and get the quotient
 - *Floor*(237 ÷ 10) = 23
- Repeat the same process with 23

EXTRACT DIGITS FROM AN INTEGER

•

- Find the i-th digit of a number (Say n = 91408) from right. [i = 0,1,2,3,4]
- $i = 0 \rightarrow n\%10 = 8$
- $i = 1 \rightarrow Floor(n/10)\%10 = 0$
- $i = 2 \rightarrow Floor(n/100)\%10 = 4$
- $i = 3 \rightarrow Floor(n/1000)\%10 = 1$
- $i = 4 \rightarrow Floor(n/10000)\%10 = 9$
- General Formula: $Floor\left(\frac{n}{10^i}\right)\%10 = \left\lfloor\frac{n}{10^i}\right\rfloor\%10$

SUMMARY

- Floor vs Ceiling
- Counting number of divisors
- Improving our method
- Prime number check
- Sieve of Eratosthenes
- Digit extraction

PRACTICE DAY