Relaciones

Álgebra y Geometría Analítica I (LM, PM, LF, PF, LCC)

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

20 de mayo de 2024

Producto cartesiano de dos conjuntos no vacíos

Recordemos que dados dos conjuntos A y B, un par ordenado es un objeto de la forma (a,b) donde $a \in A$ y $b \in B$. El elemento a es la primera componente de (a,b) y b es la segunda componente de (a,b).

Observar que si (a, b) y (c, d) son pares ordenados, entonces (a, b) = (c, d) si y solo si a = c y b = d.

Definición

Dados dos conjuntos A y B, llamaremos producto cartesiano de A y B y lo indicaremos con $A \times B$ al conjunto formado por los pares ordenados (a, b) tales que a es un elemento del conjunto A y b es un elemento del conjunto B.

Con las notaciones usuales de la teoría de conjuntos esto se escribe como:

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

Ejemplo:
$$A = \{1, 2\}$$
 $B = \{x, y, z\}$

$$A \times B = \{(1,x), (1,y), (1,z), (2,x), (2,y), (2,z)\}$$

$$B \times A = \{(x,1), (y,1), (z,1), (x,2), (y,2), (z,2)\}$$

- ▶ Si $A = \emptyset$ o $B = \emptyset$ entonces $A \times B = \emptyset$.
- ▶ En general, $A \times B \neq B \times A$.
- ▶ Si A y B finitos, $|A \times B| = |B \times A| = |A|.|B|$.
- ightharpoonup Si $A = \mathbb{R} = B$, $A \times B = \mathbb{R}^2$.
- ightharpoonup A imes B representado por pares ordenados, y/o con gráficos cartesianos.

Ejemplo de Producto Cartesiano

$$A = \{1, 2\} \text{ y } B = \{x, y, z\}$$

 $C = [1, 3) \text{ y } D = \{3, 4\}$ $A \times C = \{(x, 3), (x, 4) \mid 1 \le x < 3\}$
 $E = [2, 3) \text{ y } F[1, 3]$

Teorema (1)

Dados A, B y C conjuntos , se tiene:

- 1. $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 2. $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 3. $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- 4. $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Demostración.

1. $(x,y) \in A \times (B \cap C)$ si y solo si $x \in A \land y \in (B \cap C)$ si y solo si

 $[x \in A \land y \in B \land y \in C]$ si y solo si $[x \in A \land y \in B] \land [x \in A \land y \in C]$ si y solo si

 $(x,y) \in A \times B \wedge (x,y) \in (A \times C)$ si y solo si $(x,y) \in (A \times B) \cap (A \times C)$.

Demostración del Teorema (cont.)

4. $(x,y) \in (A \cup B) \times C$ si y solo si $x \in (A \cup B) \land y \in C$ si y solo si

 $[x \in A \lor x \in B] \land y \in C$ si y solo si $[x \in A \land y \in C] \lor [x \in B \land y \in C]$ si y solo si

$$(x,y) \in (A \times C) \cup (B \times C).$$

Queda como ejercicio la prueba de 2 y 3

Relación binaria entre dos conjuntos

Definición

Dados dos conjuntos A y B, llamaremos relación de A en B a un subconjunto del producto cartesiano de A y B y lo indicaremos con \mathcal{R} .

Dada \mathcal{R} una relación de A en B, $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{B}$, y si $(a,b) \in \mathcal{R}$ se escribe $a\mathcal{R}b$ si $(a,b) \notin \mathcal{R}$ se escribe $a\mathcal{R}b$.

 $A = \{a, b, c, d\}$ y $B = \{1, 2, 3\}$, consideremos las relaciones de A en B:

$$\mathcal{R}_1 = \{(a,1), (b,1), (b,2), (d,1), (d,2)\} \text{ y}$$

$$\mathcal{R}_2 = \{(a,2), (b,1), (c,1), (c,2), (c,3), (d,2)\}$$

Cuando A = B, se dice que \mathcal{R} es una *relación en A*.

Dominio, Conjunto imagen de una relación ${\cal R}$

Definición

Dada \mathcal{R} , una relación de A en B,

ightharpoonup el DOMINIO de \mathcal{R} es el conjunto

$$\textit{Dom}(\mathcal{R}) = \{a \in A \mid (a,b) \in \mathcal{R} \text{ , para algún } b \in B\}$$

ightharpoonup CONJUNTO IMAGEN de $\mathcal R$ al conjunto

$$\mathit{Im}(\mathcal{R}) = \{b \in B \mid (a,b) \in \mathcal{R} \;\; \text{, para algún} \;\; a \in A\}$$

Observamos que $Dom(\mathcal{R}) \subseteq \mathcal{A}$ y $Im((\mathcal{R}) \subseteq \mathcal{B}$.

Ejemplo de Dominio y Conjunto imagen de una relación

 $A = \{a, b, c, d\}$ y $B = \{1, 2, 3\}$, consideremos las relaciones de A en B: $\mathcal{R}_1 = \{(a, 1), (b, 1), (b, 2), (d, 1), (d, 2)\}$ y $\mathcal{R}_2 = \{(a, 2), (b, 1), (c, 1), (c, 2), (c, 3), (d, 2)\}$

Conjunto imagen y conjunto pre-imagen de un elemento por una relación $\ensuremath{\mathcal{R}}$

Definición

Dada \mathcal{R} , una relación de A en B, $a \in A$ y $b \in B$

ightharpoonup el Conjunto imagen de *a* por \mathcal{R} es el conjunto

$$\mathcal{R}(a) = \{b \in B \mid (a, b) \in \mathcal{R}\}\$$

ightharpoonup el conjunto pre-imagen de b por \mathcal{R} es el conjunto

$$\mathcal{R}^{-1}(b) = \{a \in A \mid (a,b) \in \mathcal{R}\}$$

.

Ejemplo de Conjunto imagen y conjunto pre-imagen de un elemento

Conjunto imagen y conjunto pre-imagen de un subconjunto por una relación \mathcal{R}

Definición

Dada \mathcal{R} , una relación de A en B, $X \subseteq A$ y $Y \subseteq B$.

ightharpoonup el Conjunto imagen de X por \mathcal{R} es el conjunto

$$\mathcal{R}(X) = \{ b \in B \mid (x, b) \in \mathcal{R} \text{ , para algun } x \in X \}$$

ightharpoonup el conjunto pre-imagen de Y por \mathcal{R} es el conjunto

$$\mathcal{R}^{-1}(Y) = \{a \in A \mid (a,y) \in \mathcal{R} \text{ , para algun } y \in Y \}$$

12 / 43

Ejemplo de Conjunto imagen y conjunto pre-imagen de un subconjunto

Ejemplos.. Conjunto imagen y conjunto pre-imagen de un conjunto

$$A = \{x \in \mathbb{Z} | 0 \le x \le 20\}$$
 $B = \{x \in \mathbb{Z} | 0 \le x \le 26\}$, \mathcal{R} y \mathcal{R}_1 relaciones de A en B .

$$\mathcal{R}_1 = \{(0,0), (1,1), (2,4), (3,9), (4,16), (5,25)\}.$$

$$Dom(\mathcal{R}_1) = \{0, 1, 2, 3, 4, 5\}$$
 $Im(\mathcal{R}_1) = \{0, 1, 4, 9, 16, 25\}.$

$$\mathcal{R}_1(\{3,6,9\}) = \{9\}$$
 $\mathcal{R}_1^{-1}(\{y \in B \mid y \text{ es par } \}) = \{0,2,4\}.$

$$Dom(\mathcal{R}) = \{x \in A \mid 0 \le x \le 8\}$$
 $Im(\mathcal{R}) = \{0, 3, 6, 9, 12, 15, 18, 21, 24\}.$

$$\mathcal{R}(\{3,6,9\}) = \{9,18\}$$
 $\mathcal{R}^{-1}(\{y \in B \mid y \text{ es par }\}) = \{0,2,4,6,8\}.$

Relación inversa de una relación \mathcal{R}

Definición

Dada \mathcal{R} , una relación de A en B, definimos la relación INVERSA de \mathcal{R} como la relación de B en A, notada \mathcal{R}^{-1} dada por :

$$y \mathcal{R}^{-1} x$$
 si y solo si $x \mathcal{R} y$

es decir $\mathcal{R}^{-1} = \{(y, x) \mid (x, y) \in \mathcal{R}\}.$

Relación inversa de una relación ${\cal R}$

Dada \mathcal{R} , una relación de A en B,

- $ightharpoonup \mathcal{R}^{-1}$ es la relación INVERSA de \mathcal{R}
- $ightharpoonup \mathcal{R}^{-1}(b)$ es la pre-imagen de $b \in \mathcal{B}$ a traves de la relación \mathcal{R} .
- $ightharpoonup \mathcal{R}^{-1}(Y)$ es la pre-imagen del subconjunto $Y \subseteq B$ a traves de la relación \mathcal{R} .

Teorema

Si $\mathcal R$ es una relación de un conjunto A en un conjunto B, entonces $(\mathcal R^{-1})^{-1}=\mathcal R$

Demostración.

$$a(\mathcal{R}^{-1})^{-1}b$$
 si y solo si $b\mathcal{R}^{-1}a$ si y solo si $a\mathcal{R}b$

Composición de dos relaciones $\mathcal R$ y $\mathcal S$

Definición

Dadas \mathcal{R} , una relación de A en B, S, una relación de B en C, la relación composición de R con S es la relación de A en C dada por la ley:

$$x(S \circ R)y$$
 si y solo si $\exists u \in B \mid xRu \land uSy$

$$S \circ \mathcal{R} = \{(x, y) \in A \times C \mid (x, u) \in \mathcal{R}, (u, y) \in S \text{ para alg} \tilde{A}^{\Omega} \text{n} u \in B\}$$

Teorema sobre composición de relaciones

Teorema

Dadas \mathcal{R} , \mathcal{S} y \mathcal{T} , con \mathcal{R} una relación de A en B, \mathcal{S} , una relación de B en C, \mathcal{T} , una relación de C en D, entonces

- la composición de relaciones es asociativa, $(\mathcal{T} \circ \mathcal{S}) \circ \mathcal{R} = \mathcal{T} \circ (\mathcal{S} \circ \mathcal{R})$.
- $\triangleright (\mathcal{T} \circ \mathcal{S})^{-1} = \mathcal{S}^{-1} \circ \mathcal{T}^{-1}$

La composición de relaciones NO es conmutativa, vemos un ejemplo:

$$A = \{1, 2, 3, 4\} = B = C$$
 $\mathcal{R} = \{(1, 1), (1, 2), (2, 3), (3, 4)\} \in A \times B$ y $\mathcal{S} = \{(1, 4), (1, 2), (2, 3), (3, 4)\} \in B \times C$.

Observemos que $\ (1,4)\in\mathcal{S}\circ\mathcal{R}\$, y $\ (1,4)\notin\mathcal{R}\circ\mathcal{S}$

Propiedades de una relación definida en un conjunto

A partir de ahora vamos a enfocarnos solamente en relaciones de un conjunto en si mismo, es decir, para un conjunto A trabajaremos con relaciones en A. Si A es finito, la representación de $\mathcal R$ se puede hacer en un diagrama de este tipo:

Cuando A = B, se dice que la relación en A.

Relacion en A con propiedad reflexiva

 \mathcal{R} es REFLEXIVA si $\forall a \in A \ , (a,a) \in \mathcal{R}$

Relacion en A con propiedad simétrica

 \mathcal{R} es SIMETRICA si $\forall a, b \in A$, $(a, b) \in \mathcal{R} \Rightarrow (b, a) \in \mathcal{R}$

Relacion en A con propiedad antisimétrica

 \mathcal{R} es ANTISIMÉTRICA si $\forall a, b \in A, a \neq b \ [(a, b) \in \mathcal{R} \Rightarrow (b, a) \notin \mathcal{R}].$ \mathcal{R} es antisimétrica si

$$\forall a, b \in A, \ [(a, b) \in \mathcal{R} \land (b, a) \in \mathcal{R}] \Rightarrow a = b$$

.

Relacion en A con propiedad transitiva

 \mathcal{R} es TRANSITIVA si $\forall a, b, c \in A$, $[(a, b) \in \mathcal{R} \land (b, c) \in \mathcal{R}] \Rightarrow (a, c) \in \mathcal{R}$.

Definición

Dada \mathcal{R} , una relación en A, diremos que es:

- $ightharpoonup \mathcal{R}$ es REFLEXIVA si $\forall a \in A \ , (a,a) \in \mathcal{R}$
- $ightharpoonup \mathcal{R}$ es SIMÉTRICA si $\forall a,b \in \mathcal{A}, \ (a,b) \in \mathcal{R} \Rightarrow (b,a) \in \mathcal{R}.$
- $ightharpoonup \mathcal{R}$ es ANTISIMÉTRICA si $\forall a,b\in A,\ a\neq b\ [(a,b)\in \mathcal{R} \Rightarrow (b,a)\notin \mathcal{R}].$
- ▶ \mathcal{R} es TRANSITIVA si $\forall a, b, c \in A$, $[(a, b) \in \mathcal{R} \land (b, c) \in \mathcal{R}] \Rightarrow (a, c) \in \mathcal{R}$.

Una forma equivalente de definir una ${\cal R}$ ANTISIMÉTRICA es:

$$\forall a, b \in A, \quad [(a, b) \in \mathcal{R} \land (b, a) \in \mathcal{R}] \Rightarrow a = b$$

.

Ejemplos de una relación definida en un conjunto

Dada \mathcal{R} , una relación en A, analicemos que propiedades se verifican...

- 1. $a\mathcal{R}_1b \Leftrightarrow a = b$ es decir, $\mathcal{R}_1 = \{(a, a) : a \in A\}$ \mathcal{R}_1 es reflexiva, simétrica, antisimétrica y transitiva.
- 2. $A = \mathbb{R}$, donde $a\mathcal{R}_2b \Leftrightarrow a < b$ es decir, la relacion 'menor que' usual en \mathbb{R} . \mathcal{R}_2 es NO reflexiva, NO simétrica, antisimétrica y transitiva.
- 3. $A = \mathbb{Z}$, donde $a\mathcal{R}_3b \Leftrightarrow a b$ es múltiplo de 3 \mathcal{R}_3 es reflexiva, simétrica, NO antisimétrica y transitiva.
- 4. A un conjunto y la relación en $\mathcal{P}(A)$ definida por $X\mathcal{R}_4Y \Leftrightarrow X \subseteq Y.\mathcal{R}_3$ es reflexiva, NO simétrica, antisimétrica y transitiva.
- 5. A el conjunto de rectas en plano xy y la relación \mathcal{R} en A definida por $r\mathcal{R}t \Leftrightarrow r \perp t$.

Relaciones de Orden

Definición

Dada \mathcal{R} , una relación en A, diremos que es una relación de orden si es reflexiva, antisimétrica y transitiva.

Cuando \mathcal{R} es una relación de orden en A, al par (A, \mathcal{R}) se le dice que es un conjunto ordenado, y es usual notar $x \prec y$ cuando $(x, y) \in \mathcal{R}$ y decir que x precede a y, o que x es anterior a y.

Dados $x, y \in A$ se dirá que x e y son comparables si $x \prec y$ o $y \prec x$. En caso contrario, x e y son no comparables.

Diagrama de Hasse

Diagrama de un conjunto ordenado finito (Diagrama de Hasse) Para facilitar su comprensión, se acuerda la siguiente convención: no se dibujan las flechas correspondientes a $a \prec a$ ni la flecha $a \prec c$ cuando existe un b tal que $a \prec b$ y $b \prec c$ y estas flechas están dibujadas. Además, si $a \prec b$ se dibuja a abajo de b.

Ejemplos de relaciones de Orden

▶ La relación \subseteq en $\mathcal{P}(A)$ para algún conjunto A.

▶ La relación \leq usual en \mathbb{R} . (análogo la relación \geq).

Orden Inducido en un subconjunto

Definición

Sean (A,R) un conjunto ordenado y $S\subseteq A$. El orden inducido por R en S es $R_S=R\cap (S\times S)$, es decir, si $x,y\in S$, xR_Sy si y solo si xRy. Un conjunto ordenado (S,R_S) es un subconjunto ordenado de (A,R) si $S\subseteq A$ y $R_S=\{(x,y)\in S\times S\mid (x,y)\in R\}$.

Orden lineal o total

Definición

Dada \mathcal{R} , una relación en A, diremos que es una relación de orden total si todo par de elementos son comparables.

Su diagrama es de la forma :

Elementos minimales y maximales de un Orden

Definición

Dada \mathcal{R} , una relación de orden en A, diremos que

- 1. $a \in A$ es un elemento minimal del Orden si $\forall x \in A : x \prec a$ se tiene que x = a.
- 2. $a \in A$ es un elemento maximal del Orden si $\forall x \in A$: $a \prec x$ se tiene que x = a.

Minimales de $(B, \mathcal{R}) = \{a, b, c, d\}$. Maximales de $(B, \mathcal{R}) = \{j, g\}$. Minimales de $(\mathcal{P}(A), \subseteq) = \{\emptyset\}$, Maximales de $(\mathcal{P}(A), \subseteq) = \{A\}$.

Elementos mínimos y máximos de un Orden

Definición

Dada \mathcal{R} , una relación de orden en A, diremos que

- 1. $a \in A$ es un elemento mínimo del orden si todo $\forall x \in A$ tal que $a \prec x$.
- 2. $a \in A$ es un elemento máximo del orden si todo $\forall x \in A$ tal que $x \prec a$.

 $(B, \mathcal{R}) = \{a, b, c, d\}$ no tiene máximo, ni mínimo.

 $(\mathcal{P}(A),\subseteq)$ tiene máximo: A, y tiene mínimo: $\{\ \}$.

Cotas inferiores y superiores de un Orden

Definición

Dada \mathcal{R} , una relación de orden en A y $S \subseteq A$ diremos que

- 1. a es una cota inferior de S en el orden si todo $\forall x \in S$ se tiene que $a \prec x$.
- 2. a es una cota superior de S en el orden si todo $\forall x \in S$ tal que se tiene que $x \prec a$.

$$S = \{f, e\}$$
 Cota superior de $S \to \{j\}$ y Cota inferior de $S \to \{a\}$ $S' = \{v, z, t\}$ Cota superior de $S' \to \{s, w\}$ y Cota inferior de $S' \to \{z, x\}$

Ínfimo y supremo de un Orden

Definición

Dada \mathcal{R} , una relación de orden en A y $S\subseteq A$ diremos que

- 1. x^* es el ínfimo de S si es la máxima cota inferior de S, es decir, $\forall x \in S$, $x^* \prec x$ y si $y \prec x \ \forall x \in S$ entonces $y \prec x^*$.
- 2. y^* es el supremo de S si es la mínima cota superior de S en el orden, es decir, $\forall x \in S, x \prec y^*$ y si $x \prec y \ \forall x \in S$, entonces $y^* \prec y$.

$$S = \{f, e\} \qquad \text{Cota sup. de } S \to \{j\} = \text{Supr. y Cota inf. de } S \to \{a\} = \text{Inf.}$$

$$S' = \{v, z, t\} \text{Cota sup. de } S' \to \{s, w\}, \not\exists \text{ Supr. y Cota inf. de } S' \to \{z, x\}, \text{ Inf} \to z$$

Observaciones

Dado (A, \mathcal{R}) conjunto parcialmente ordenado, con A conjunto finito. Entonces

- i) Existe un elemento minimal y un elemento maximal de R. Supongamos A = {a_i}_{i=1,···n}.
 Si no existe x ∈ A {a₁} tal que x ≺ a₁, se tiene que a₁ es minimal.En caso contrario, si existe x ≺ a₁, analizo este elemento x que renombro a₂.
 Si no existe x ∈ A {a₁, a₂} tal que x ≺ a₂, se tiene que a₂ es minimal.En caso contrario, si existe y ≺ a₂, analizo este elemento y que renombro a₃.
 Este procedimiento, a lo sumo se podrá hacer n veces, y termina al hallar un minimal de R.
- ii) Si $\mathcal R$ tiene un elemento mínimo (máximo), es único. Supongamos m_1 y m_2 mínimos de $\mathcal R$. Como m_1 es mínimo, $m_1 \prec x$ para todo $x \in A$. En particular, $m_1 \prec m_2$. Como m_2 es mínimo, $m_2 \prec x$ para todo $x \in A$. En particular, $m_2 \prec m_1$. Luego, $m_1 = m_2$.

Ejemplos

S	C. Superiores	Supremo	C.Inferiores	Ínfimo
$\{f,c,d\}$	f,g,h	f	a, b, i	A
$\{c, e, f, g\}$	g	g	c, b, a, i	С
$\{i,a,b\}$	c,d,e,f,g,h	A	A	A
$\{a,b,c,d\}$	f, h, g	f	A	A

Relaciones de Equivalencia

Definición

Dada \mathcal{R} , una relación en A, diremos que es una relación de Equivalencia si es reflexiva, simétrica y transitiva.

Cuando \mathcal{R} es una relación de equivalencia en A, es usual notar $x \sim y$ cuando $(x,y) \in \mathcal{R}$ y decir que x es equivalente a y.

Dados $x \in A$ se define la clase de equivalencia de x al conjunto $\mathcal{R}(x)$ y se lo nota [x]. Es decir, $[x] = \{y \in A \mid (x,y) \in \mathcal{R}\} = \{y \in A \mid (y,x) \in \mathcal{R}\}.$

Ejemplos de relaciones de Equivalencia

- 1. La relación definida en \mathbb{R} donde $x \sim y \Leftrightarrow x y \in \mathbb{Z}$.
- 2. A las rectas del plano xy, la relación \mathcal{R} en A definida por $r\mathcal{R}t \Leftrightarrow r||t$.
- 3. Para un $m \in \mathbb{Z} \{0\}$, la relación "congruencia módulo m" está definida de la siguiente manera: $x \sim y \Leftrightarrow x y$ es múltiplo de m.
 - ▶ Reflexiva: si $x \in \mathbb{Z}$, x x = 0. Como 0 es múltiplo de m, $x \sim x$ para todo $x \in \mathbb{Z}$.
 - Simétrica: si $x,y\in\mathbb{Z}$ tales que $x\sim y$, $\exists k_1\in\mathbb{Z}$ tal que $x-y=k_1\cdot m$. Luego $y-x=-k_1\cdot m$. Esto nos dice que $\exists \ k_2=-k_1\ |\ y-x=k_2\cdot m$ $y\sim x$.
 - ► Transitiva: si $x, y, z \in \mathbb{Z}$, tales que $x \sim y$ y $y \sim z$ $\exists k_1, k_2 \in \mathbb{Z}$ tales que $x y = k_1 \cdot m$ y $y z = k_2 \cdot m$. Luego $x z = x y + y z = k_1 \cdot m + k_2 \cdot m = (k_1 + k_2) \cdot m$, v.d x z es múltiplo de m, $x \sim z$.

Teorema sobre clases de equivalencia

Dados $x \in A$ se define la clase de equivalencia de x al conjunto $\mathcal{R}(x)$ y se lo nota [x]. Es decir, $[x] = \{y \in A \mid (x,y) \in \mathcal{R}\} = \{y \in A \mid (y,x) \in \mathcal{R}\}.$

Teorema

Dada \mathcal{R} , una relación de equivalencia en A, con $a, b \in A$.

- 1. $[a] \neq \emptyset$
- 2. $(a, b) \in R$ si y sólo si [a] = [b].
- 3. $(a, b) \notin R$ si y sólo si $[a] \cap [b] = \emptyset$.

Demostración.

Para ver que (1) es cierto, es suficiente observar que $a \in [a]$ ya que R es reflexiva.

- (2) Sean ahora $a, b \in A$ tales que $(a, b) \in R$. Si $x \in [a]$, por definición, $(a, x) \in R$ o, dado que R es simétrica, $(x, a) \in R$. Puesto que, por hipótesis $(a, b) \in R$ y R es transitiva, resulta $(x, b) \in R$ y por lo tanto $x \in [b]$. Esto prueba que $[a] \subseteq [b]$. La prueba de que $[b] \subseteq [a]$ es análoga.
- Recíprocamente, sean ahora $a, b \in A$ tales que [a] = [b]. Esto implica, en particular, que $a \in [b]$ y, por definición de clases de equivalencia, $(a, b) \in R$.
- (3) Finalmente, sean ahora $a, b \in A$. Si $[a] \cap [b] \neq \emptyset$, existe $x \in [a] \cap [b]$, por definición de clases de equivalencia, $(a, x) \in R$ y $(b, x) \in R$. Dado que R es simétrica, resulta $(a, x) \in R$ y $(x, b) \in R$, y como R es transitiva, $(a, b) \in R$.

Recíprocamente, sean ahora $a, b \in A$. Si $(a, b) \in R$, por (2) sabemos que [a] = [b]. En particular $a \in [a] \cap [b]$, vd, $[a] \cap [b] \neq \emptyset$.

Observar que el resultado anterior nos dice que:

- ► Todo elemento de A pertenece a alguna clase.
- Dos clases de equivalencia, o bien son iguales, o bien son conjuntos disjuntos.

Es decir, una relación de equivalencia separa los elementos de A en conjuntos disjuntos dos a dos (las clases de equivalencias).

Definición

Dado un conjunto A, una colección de subconjutos no vacíos de A, $\mathcal{P} = \{X_1, X_2, \cdots\}$ es una partición de A si verifican

- 1. $i \neq j$ entonces $X_i \cap X_i = \emptyset$.
- 2. $\forall a \in A$ existe $X_i \in \mathcal{P}$ tal que $a \in X_i$.

$$A = \{a, b, c, d, e, f, g, h, i\}$$
 una partición $\mathcal{P} = \{\{a, g, d\}, \{c\}, \{b, e\}, \{f, i, h\}\}$

A partir del teorema anterior, se tiene que una relación de equivalencia genera una partición del conjunto, a través de las clases de equivalencia. Además, si tenemos una partición de un conjunto, entonces existe una relación de equivalencia subyacente, como demuestra el teorema siguiente.

Teorema

Sea $\mathcal P$ una partición del conjunto A. Existe una única relación de equivalencia en A cuyas clases de equivalencia son los elementos de $\mathcal P$.

Demostración.

Definamos la relación R en A como sigue: $(a, b) \in R$ si y solo si existe $X_i \in \mathcal{P}$ tal que $a, b \in X_i$.

Se puede demostrar, que R es una relación de equivalencia (Ejercicio).

Conjunto cociente de una relación de equivalencia

Definición

Sea R una relación de equivalencia en un conjunto A. Llamaremos conjunto cociente de A por R, y lo notaremos $A|_R$, al conjunto cuyos elementos son las clases de equivalencia de A definidas por R, es decir:

$$A|_R = \{[a] : a \in A\}.$$