CAMBRIDGE INTERNATIONAL EXAMINATIONS

JUNE 2002

GCE Advanced Level

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT:9701/6

CHEMISTRY (OPTIONS (A2))

Page 1 Mark Scheme WWW Studyguide.pk

A Level Examinations - June 2002 9701 6

Biochemistry

1.	(a)	The three-dimensional shape / how structure folds areals	(1)
		Coulains, a-helix:	(1) [2]
	(b)	- OH hydrogen bonding or any polar group	(1)
		-CO ₂ or -NH ₃ ionic/electrostatic bonding	(1)
		if no group: identified, 2 types of budges some	[2] (1)
	(c)	(i) tonic / weide - banic / wherestehr	(1)
		forms saits or complex ions e.gCO ₂ Ag ⁺	(1)
	-	OR disulphide links	(1)
		-CH ₂ - S - Ag ⁺	(1)
		(ii) Heat breaks the weakest bond first	(1)
		van der Waals' <u>or</u> hydrogen bonds	(1)
		(iii) Addition of H* or OH breaks polar bonds / pretainth a depotentia	(1)
		ionic OR hydrogen bonds	
		$OR -CO_2$ + H ⁺ => -CO ₂ H	(1) [6]

{b}	DNA is the repository of genetic information	(1)
	It can replicate itself	(1)
	It contains a triplet code of bases	(1)
	It unwinds to give a single strand which acts as a template	(1)
	This forms m-RNA	(1)
	t-RNA translates the code into a sequence of amino acid	(1)
	and brings each amino acid in turn	(1) [max 6]

[4]

Environmental Chemistry

- 3. (a) SO₂ bond vibrations absorb in the IR region (1)
 - There is a change in dipole moment (1)
 - This process absorbs energy which would be re-radiated as heat back to the Earth's surface (1)

(could be on a diagram)

- (b) SO_2 is easily oxidised to SO_3 (1)

 This dissolves in water to form sulphate ions

 Oxidising agents include O_2 , O_3 , NO_2 (one only)

 (1)
- (c) $SO_2 + H_2O \Rightarrow H_2SO_3 \Leftrightarrow id^+ HS^{-}_3$ only scores (1)
 - SO₂ is first oxidised to SO₃ (1)
 - Then this dissolves: $SO_3 + H_2O \Rightarrow H_2SO_4$ (1)
- (d) Powdered coal and limestone are fluidised by forcing gas through them (1)
 - On burning, the SO₂ is released and reacts with the limestone (1)
 - $SO_2(g) + CaCO_3(s) \Rightarrow CO_2(g) + CaSO_3(s)$ (1)

[nor 10]

4.	(a)	Rai	n water containing CO ₂ attacks the timestone	(1)
		This	s forms calcium hydrogencarbonate causing the rock to dissolve	(1)
			sed temperature or alkaline conditions cause HCO3 to precipitate	(1)
	മ	- i.	$CaCO_3 + H_2O_1 + CO_2 <=> Ca(HCO_3)_2$ in Cat case	(1) [4]
	(b)	(i)	Root respiration releases carbon dioxide	
			OR hydrogen ions occupy in exchange sites released by the removal of nutrients by the growing plant.	(1)
		(ii)	The calcium ions from the liming displace hydrogen ions from the exchange sites.	(1)
			This provides long term protection by inhibiting the subsequent retention of hydrogen ions at the exchange sites	
			OR by being able to release the calcium ions as carbonate to neutralise the soil solution.	(1)
		(iii)	Prevents the development of reducing conditions in the soil	(1)
			Reduces the risk of ion deficiencies : 59 precipitation	(1)
		•	Inders processes which result in the breakdown of clay structures	(1) [6]
	C.	ا ب	pH course wedelogging of day sorts	

Phase Equilibria

5. (a) (i)

(ii) From (a)(ii) 12g of KCI separate from the solutions in 100g water (mark consequentially) (1) [2]

studyguide.pk

6. (a)

[2]

(1)

(1)

[3]

Liquid (a) boils (b) giving a vapour richer in the more volatile component (1)

This condenses to liquid (d) in the fractionating column (1)

Each horizontal line represents a 'theoretical plate'

A him than (1)

Ex skp

(c) Propan-1-ol and water have similar intermolecular forces

OR both form hydrogen bonds

The larger hydrophobic C₅H₁₂ of the pentan-1-ol prevents miscibility (1)

Intermolecular forces pentan-1-ol – pentan-1-ol and water – water are stronger than pentan-1-ol – water.

Page 7 Mark Scheme Syll W Park O Syll W Park

Spectroscopy

7.	(a)	Make a mull with hydrocarbon / Nujol	(1)
		Place between NaCl / KBr plates	(1)
		OR Grind up with KBr	(1)
		Compress under vacuum	(1)
		OR Dissolve in solvent	(1)
		Use double beam spectrometer with solvent blank	(1) [2 x 2]
	(b)	(i) Aspirin: -OH, C=O, C—O, (a) -N-H	(1) (1)
		(ii) -N—H is the only difference, at 3100-3600 cm ⁻¹	(1) [3]
	(c)	Nmr absorptions depend upon the proton environment	(1)
		Aspirin has protons in 3 (4) environments	(1)
		Paracetamol has protons in 4 (5) environments	(1)
		Aspin as 8 proms, paracticual 9 protons	[3] May (1)

8.	(a)	(i) J ¹³ C which gives the M+1 peak	(1)
		(ii) Chlorine OR bromine :	(1)
		. · · · ³⁵ Cl and ³⁷ Cl, OR ⁷⁹ Br and ⁸¹ Br՝	(1) [3]
	(b)	Ratio M : M+1 is 100 : 4.4	(1)
		No. of carbons, n = <u>4.4 x 100</u> = 4 100 x 1.1	(1)
		Allow any correct lagic - calculation not essential	[2]
	(c)	$M_{\rm r}$ of F is 72, hence peak at 57 is (M $-$ 15) loss of CH_3	(ii
		Peak at 57 is *CH2CH2CHO allow C3 H50	(1)
		Peak at 29 is CH3CH2+ chlor C2H, an CLIO Do Neil Insist at charge	(1) [3]
	(d)	M _r of F is 72, hence peak at 44 is (M – 28)	
		The alkene is therefore C ₂ H ₄	(1)
		Thus the peak at 44 is caused by a C₂H₄O fragment	(1)
			[3]

Transition Elements

9.	(a)	Ligands possess pairs of electrons / regular image The orbitals pointing towards the ligands are higher in energy	
	(b)	(i) [Ar]3d ⁷	(1)
		(ii) Paramagnetic, since it contains (at least) one unpaired electron	(1) [2]

(c) (i) Co:
$$25.2/58.9$$
 = 0.428 => 1
N: $24/14.0$ = 1.714 => 4
H: $5.1/1.0$ = 5.10 => 12
Cl: $45.6/35/5$ = 1.29 => 3 (1)

Empirical formula =
$$CoN_4H_{12}Cl_3$$
 (1)

10. (a) (i) Iron is oxidised to
$$Fe^{2+}$$
 / $Fe - 2e^{-} \Rightarrow Fe^{2+}$ (1)

Electrons add to oxygen
$$/2H_2O + O_2 + 4e^- \Rightarrow 4OH^-$$
 (1)

The ions combine
$$Fe^{2+} + 2OH^- => Fe(OH)_2$$
 (1)

Further oxidation occurs
$$\sqrt{2\text{Fe}(\text{OH})_2 + \frac{1}{2}\text{O}_2 + \text{H}_2\text{O}} = 2\text{Fe}(\text{OH})_3$$
 (1)

(ii) Magnesium has a more negative E° than iron

$$OR E^{\circ} (Mg) = -2.38 V$$
 (1)

(b) (i)
$$S_2O_8^{2} + 2\Gamma \Rightarrow 2SO_4^{2} + I_2$$
 (1)

$$E^{9}$$
 of +0.77 is lower than for $S_{2}O_{8}^{2}/SO_{4}^{2}$ but higher than for I_{2}/I^{-} (1)

$$2l' + 2Fe^{3+} \Rightarrow l_2 + 2Fe^{2+}$$
 (1)

$$S_2O_8^{2-} + 2Fe^{2+} => 2SO_4^{2-} + 2Fe^{3+}$$
 (1)

