$\exists i = \mathcal{E}_{j=1}^{m} \omega_{j} h_{j} (n_{j}) + \mathcal{E}_{i}$, $h - basis f^{o}$

w= (HTH) -1 HTy (H- N+m) (Hij = hij(xi)

 $\tilde{y} = h(x)^T \omega = h(x)^T (H^T H)^T H^T y$

= H(HTH) - h(n)) Ty

 $I(X) = H (H^TH)^{-1}h(n) -$

| ŷ = (x) y |

9 = L(n). Y - linear Smoother

 $\left(\omega_{i} = \exp\left(-\frac{D(x_{i},x)^{2}}{K^{2}\omega}\right) \right)$ $\hat{y} = \sum_{i=1}^{n} \omega_{i} y_{i}$

) we expanded this $\lim_{\Sigma \to \infty} (x) = \frac{\omega_1}{\Sigma_{1=1}^h \omega_1}$ egn is form of R(x)^T Y

> So the above linear Regression is Revnel of smoother.

som of regidual zerosax square 114W-112 Am 2(b) There is no way we can convert to W

That will be be minimize Eabscerror) optimal w has same # of tree -ve error \Rightarrow xi = 1 C or any constant) (xi -rinput) for different y

w = median (y) $w = \text{ineason} \quad (3)$ $w = \text{ineason} \quad (3)$ w =[Median & Rank of matrix for nEBK g = IBKI Eq Xi E BK Si $l_j(n) = \frac{I(n_j \in B_i)}{I}$ I > indicator Random variable (Bi)

8ince I- is indicator Random Varioble since I- is indicator unear smo