1. Рычаг длиной 5L имеет точку опоры на расстоянии 3L от левого края. На правом конце рычага установлена бочка с водой. Слева от опоры расположен груз А массой m. Веревка, перекинутая через систему блоков (см.рис.), соединяет груз А и металлический груз В массой μ , который находится в бочке с водой. На каком расстоянии x от точки опоры следует закрепить груз А, чтобы система находилась в положении равновесия? Груз В имеет форму цилиндра высотой H и площадью сечения S_1 . Если систему удерживают так, что груз А находится непосредственно над точкой опоры, то основание груза В касается поверхности воды. Площадь сечения бочки равна S_2 . Масса бочки с водой M. Плотность воды ρ . Массы рычага и блоков пренебрежимо малы.

2. Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы. Вершина прямого угла C лежит дальше от центра линзы, чем вершина острого угла A. Расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.

- **3.** Эскалатор метро движется со скоростью v. Пассажир заходит на эскалатор и начинает идти по его ступенькам следующим образом: делает шаг на одну ступеньку вперёд и два шага по ступенькам назад. При этом он добирается до другого конца эскалатора за время t_1 . Через какое время пассажир добрался бы до конца эскалатора, если бы шёл другим способом: делал два шага вперёд и один шаг назад? Скорость пассажира относительно эскалатора при движении вперёд и назад одинакова и равна u. Считайте, что размеры ступеньки много меньше длины эскалатора.
- **4.** В вертикально расположенном сосуде с сечениями S_1 и S_2 ($S_1 = 9S_2$) находятся два невесомых поршня. Пространство между поршнями заполнено водой. Концы сосуда открыты в атмосферу. К верхнему поршню прикреплена пружина жесткостью k, а к нижнему подвешен груз массой m. В начальный момент времени пружина не растянута, поршни закреплены, расстояние между поршнями h_0 . Найдите, насколько просядет верхний поршень, если оба поршня отпустить.

