DEVOIR À LA MAISON N°08

- ▶ Le devoir devra être rédigé sur des copies doubles.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 –

Soit $(A, +, \times)$ un anneau (non commutatif a priori).

L'élément neutre pour la loi + sera noté 0 et l'élément neutre pour la loi \times sera noté 1.

On appelle *dérivation* sur A toute application $\delta: A \to A$ telle que

$$\forall (x,y) \in A^2, \begin{cases} \delta(x+y) = \delta(x) + \delta(y) \\ \delta(x \times y) = \delta(x) \times y + x \times \delta(y) \end{cases}$$

Partie I - Crochet de Lie

Pour $(a, b) \in A^2$, on pose $[a, b] = a \times b - b \times a$.

- **1.** Soit $(a, b) \in A^2$. Quelle relation existe-t-il entre [a, b] et [b, a]?
- **2.** Montrer que pour tout $(a, b, c) \in A^3$, [a, b + c] = [a, b] + [a, c].
- **3.** Montrer que pour tout $(a, b, c) \in A^3$,

$$[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0$$

4. Pour $a \in A$, on définit l'application

$$d_A\colon \left\{ \begin{array}{ccc} A & \longrightarrow & A \\ x & \longmapsto & [\alpha,x] \end{array} \right.$$

- a. Déterminer les applications d_0 et d_1 .
- **b.** Montrer que pour tout $a \in A$, d_a est une *dérivation* de A.

Partie II -

Soit δ une dérivation de A.

- **1.** Montrer que $\delta(0) = 0$ et $\delta(1) = 0$.
- **2.** Montrer que pour tout $n \in \mathbb{Z}$ et tout $x \in A$, $\delta(nx) = n\delta(x)$.
- 3. Soit a un élément inversible de A. Montrer que

$$\delta(\alpha^{-1}) = -\alpha^{-1} \times \delta(\alpha) \times \alpha^{-1}$$

4. On pose $D_{\delta}=\{\alpha\in A,\,\delta(\alpha)=0\}.$

http://lgarcin.github.io

- a. Montrer que D_δ est un sous-anneau de A.
- **b.** On suppose que A est un corps. Montrer que D_{δ} est un sous-corps de A.

Partie III -

Si f et g sont deux applications de A dans A, on note f+g l'application $x \in A \mapsto f(x)+g(x)$ et [f,g] l'application $f \circ g - g \circ f$.

Si f est une application de A dans A, on note $f^0 = Id_A$ et $f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ fois}}$ pour $n \in \mathbb{N}^*$.

On remarquera en particulier que $f^{n+1} = f \circ f^n = f^n \circ f$ pour tout $n \in \mathbb{N}$.

- **1.** Soient δ_1 et δ_2 deux *dérivations* de A.
 - **a.** Montrer que $\delta_1 + \delta_2$ est une dérivation de A.
 - **b.** Montrer que $[\delta_1, \delta_2]$ est une dérivation de A.
- **2.** Pour $a \in A$, on définit d_a comme à la question **I.4**.
 - **a.** Soient $a \in A$ et δ une dérivation de A. Montrer que $[\delta, d_a] = d_{\delta(a)}$.
 - **b.** Soit $(a, b) \in A^2$. Montrer que $[d_a, d_b] = d_{[a,b]}$.
- 3. a. Soit $a \in A$. Montrer par récurrence que pour tout $n \in \mathbb{N}$

$$\forall x \in A, \ d_{\alpha}^{n}(x) = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \alpha^{n-k} \times x \times \alpha^{k}$$

- **b.** On se donne $a \in A$ et on suppose a *nilpotent*. Il existe donc $m \in \mathbb{N}^*$ tel que $a^m = 0$. Montrer que d_a est également *nilpotente*, c'est-à-dire qu'il existe $p \in \mathbb{N}^*$ tel que d_a^p soit l'application nulle.
- **4.** Soit $(a, b) \in A^2$. Montrer par récurrence que pour tout $n \in \mathbb{N}$,

$$\delta^{n}(\alpha \times b) = \sum_{k=0}^{n} \binom{n}{k} \delta^{k}(\alpha) \times \delta^{n-k}(b)$$