Hoja 5. Contrastes de hipótesis uniformemente de máxima potencia.

Estadística. Grupo m3

1. Sea (X_1, \ldots, X_n) una muestra aleatoria de una población $N(\mu, 1)$, donde $\mu \in \Theta = \{\mu_0, \mu_1\}$, con $\mu_0 < \mu_1$. Para contrastar $H_0 : \mu = \mu_0$ frente a $H_1 : \mu = \mu_1$ se considera el test

$$\phi(x_1, \dots, x_n) = \begin{cases} 1 & \text{si } \bar{x} > k \\ 0 & \text{si } \bar{x} < k \end{cases}$$

- (a) Hallar k para que el test tenga nivel α .
- (b) Hallar la función de potencia.
- 2. Sea $(X_1, ..., X_{12})$ una muestra aleatoria de una distribución $Poisson(\theta)$, donde $\theta \in \Theta = (0, 1/2]$. Si la región de rechazo, para contrastar $H_0: \theta = 1/2$ frente a $H_1: \theta < 1/2$, es $R = \{(x_1, ..., x_{12}): 12\bar{x} \leq 2\}$, hallar la potencia del test en $\theta = 1/2$, $\theta = 1/4$ y $\theta = 1/12$.
- 3. Sea (X_1, \ldots, X_5) una muestra aleatoria de una distribución B(1, p) con $0 \le p \le 1$. Para contrastar $H_0: p = 1/2$ frente a $H_1: p \ne 1/2$, decidimos aceptar la hipótesis nula si $|\bar{x} 1/2| \le c$.
 - (a) ¿Se puede construir un test no aleatorizado de esta forma, tal que su nivel de significación sea 0.1?
 - (b) Construir el test correspondiente a ese nivel de significación (aleatorizado o no aleatorizado) y hallar su función de potencia.
- 4. Sea (X_1, \ldots, X_n) una muestra aleatoria de una población. Se pide:
 - (a) Hallar el test UMP de tamaño $\alpha=0.05$ para contrastar $H_0:\theta=\theta_0$ frente a $H_1:\theta=\theta_1(\theta_0<\theta_1)$
 - (b) Hallar el test UMP de tamaño $\alpha = 0.05$ para contrastar $H_0: \theta \leq \theta_0$ frente a $H_1: \theta > \theta_0$ y encontrar su función de potencia
 - (c) Hallar el test UMP de tamaño $\alpha=0.05$ para contrastar $H_0:\theta\geq\theta_0$ frente a $H_1:\theta<\theta_0$ y encontrar su función de potencia

Hacerlo para los siguientes casos:

- i. Población $N(\theta, \sigma^2 = 4), n = 4, \theta_0 = 1, \theta_1 = 2.$
- ii. Población $N(0, \sigma^2 = \theta^2), n = 10, \theta_0 = 1, \theta_1 = 2.$
- iii. Población $Poisson(\theta)$, n = 5, $\theta_0 = 1$, $\theta_1 = 2$.
- iv. Población $U(0, \theta), n = 4, \theta_0 = 1, \theta_1 = 2.$
- v. Población $Gamma(\theta, p = 1/2), n = 10, \theta_0 = 1/2, \theta_1 = 1.$