C_1 := 10000 pF	C_2 := 1200 pF	$\alpha_1 \coloneqq \frac{1}{68.2 \; \mu s}$	$\alpha_2 \coloneqq \frac{1}{0.405 \; \mu s}$
$R_1 \coloneqq \frac{1}{2 \ C_2} \boldsymbol{\cdot} \left(\left(\frac{1}{\alpha_1} + \frac{1}{\alpha_2} \right) \right)$	$-\sqrt{\left(\frac{1}{\alpha_1} + \frac{1}{\alpha_2}\right)^2 - \frac{4 \cdot (C_1 + C_2)}{\alpha_1 \cdot \alpha_2}}$	$\begin{vmatrix} -C_2 \\ C_2 \end{vmatrix} = 3.325 \ \boldsymbol{k\Omega}$	
$R_2 \coloneqq \frac{1}{2 \cdot \left(C_1 + C_2\right)} \cdot \left(\left(\frac{1}{\alpha_1}\right) \cdot \left(\frac{1}{\alpha_2}\right)\right)$	$-+rac{1}{lpha_2}igg)+\sqrt{\left(rac{1}{lpha_1}+rac{1}{lpha_2} ight)^2-rac{1}{lpha_2}}$	$\frac{4 \cdot \left(C_1 + C_2\right)}{\alpha_1 \cdot \alpha_2 \cdot C_1} = 6.0$	085 kΩ
$\eta \coloneqq \frac{1}{1 + \frac{C_2}{C_1}} = 0.893$			