20

25

30

5

What is claimed is:

- An isolated Ikaros transcriptional control region comprising one or more Ikaros regulatory element.
- 2. The Ikaros transcriptional control region of claim 1, comprising all or a functional fragment of a promoter of the β cluster.
- 3. The Ikaros regulatory control region of claim 1, comprising all or a functional fragment of a promoter of the y cluster. 10
 - 4. The Ikaros regulatory control region of claim 2, further comprising all or a functional fragment of a promoter of the y cluster.
 - 5. The Ikaros regulatory control region of any of claims 2, 3 or 4, further comprising one or more Ikaros regulatory element from the α cluster, the ϵ cluster, the η cluster or the θ cluster.
 - 6. The Ikaros regulatory control region of claim 4, further comprising the ε cluster or a portion thereof.
 - 7. A DNA construct comprising an Ikaros transcriptional control region of claim 1 and a sequence encoding a reporter molecule.
 - 8. The DNA construct of claim 7, wherein the reporter molecule is a reporter molecule which can luminesce or fluoresce.
 - 9. The DNA construct of claim 7, wherein the reporter molecule is selected from a beta-galactosidase gene, a luciferase gene, a green fluorescent protein gene, an alkaline phosphatase gene, a horseradish peroxidase gene, and a chloramphenicol acetyl transferase gene.

10

15

20

25

- 11. A transgenic animal, or cell or tissue therefrom, comprising a transgene includes an Ikaros transcriptional control region operably linked to a sequence which is functionally unrelated to the Ikaros gene.
 - 12. The transgenic animal of claim 11, wherein the animal is a rodent.
 - 13. The transgenic animal of claim 12, wherein the rodent is a mouse.
- 14. The transgenic animal of claim 11, wherein the Ikaros transcriptional control region includes one or more Ikaros regulatory element.
- 15. The transgenic animal of claim 11, wherein the Ikaros transcriptional control region comprises the β cluster or a functional fragment of the promoter of the β cluster.
- 16. The transgenic animal of claim 11, wherein the Ikaros transcriptional control region comprises the γ cluster or a functional fragment of the promoter of the γ cluster.
- 17. The transgenic animal of claim 15, wherein the Ikaros transcriptional control region further comprises the γ cluster or a functional fragment of the promoter of the γ cluster.
- 18. The transgenic animal of any of claims 14, 15, or 16, wherein the Ikaros transcriptional control region further comprises one or more Ikaros regulatory element from the α cluster or a portion thereof, the ϵ cluster or a portion thereof, or the θ cluster or a portion thereof.

20

- The transgenic animal of claim 19, wherein the Ikaros transcriptional control
 region comprises a portion of the ε cluster.
 - 21. The transgenic animal of claim 11, wherein the sequence functionally unrelated to the Ikaros gene encodes a reporter molecule.
- The transgenic animal of claim 21, wherein the reporter molecule is a reporter molecule which can luminesce or fluoresce.
 - 23. The transgenic animal of claim 21, wherein the sequence encoding the reporter molecule is selected from a beta-galactosidase gene, a luciferase gene, a green fluorescent protein gene, an alkaline phosphatase gene, a horseradish peroxidase gene, and a chloramphenicol acetyl transferase gene.
 - 24. The transgenic animal of claim 21, wherein the reporter molecule is green fluorescent protein or a variant thereof.
 - 25. The transgenic animal of claim 24, wherein the reporter molecule is a variant of green fluorescent protein.
 - 26. The transgenic animal of claim 25, wherein the variant of green fluorescent protein is selected from the group consisting of EGFP, EBFP, EYFP, d2EGFP, ECFP, and GFPuv.
 - 27. The transgenic animal of claim 11, wherein the genome of the animal further comprises an alteration by disrupting at least one exon of the endogenous Ikaros gene.

15

20

25

- 28. The transgenic animal of claim 27, wherein the endogenous Ikaros gene is disrupted by insertion of a nucleic acid sequence.
- 29. The transgenic animal of claim 28, wherein the insertion results in any of an inversion, deletion, translocation, or reciprocal translocation.
 - 30. The transgenic animal of claim 28, wherein the insertion is in or alters the sequence, expression, or splicing of one or more of the following exons: exon 1/2, exon 3, exon 4, exon 5, exon 6, and exon 7.
 - 31. The transgenic animal of claim 28, wherein the insertion is in or alters the sequence, expression, or splicing of a DNA binding domain of the Ikaros gene.
 - 32. The transgenic animal of claim 28, wherein the insertion results in a deletion of portions of exon 3 and exon 4.
 - 33. The transgenic animal of claim 28, wherein the animal is heterozygous for the insertion.
 - 34. The transgenic animal of claim 28, wherein the animal is homozygous for the insertion.
 - 35. The transgenic animal of claim 28, wherein the insertion is in a domain involved in transcriptional activation or in dimerization.
 - 36. The transgenic animal of claim 28, wherein the insertion is in exon 7.
 - 37. The transgenic animal of claim 11, wherein the genome of the animal further comprises an alteration by disrupting at least one exon of the endogenous gene encoding a protein involved in hematopoiesis.

20

- 39. The transgenic animal of claim 38, wherein the endogenous gene encodes Helios.
 - 40. The transgenic animal of claim 38, wherein the endogenous gene encodes Aiolos.
- 10 41. The transgenic animal of claim 38, wherein the insertion results in any of an inversion, deletion, translocation, or reciprocal translocation.
 - 42. A method of evaluating the development of a component or a cell lineage of the immune system, comprising:

providing a transgenic animal of claim 11 or claim 37, or a cell or tissue therefrom; and

monitoring expression of the protein unrelated to Ikaros.

- 43. The method of claim 42, wherein the sequence functionally unrelated to the Ikaros gene encodes a reporter molecule.
- 44. The method of claim 43, wherein the reporter molecule is a reporter molecule which can luminesce or fluoresce.
- 25 45. The method of claim 43, wherein the sequence encoding the reporter molecule is selected from a beta-galactosidase gene, a luciferase gene, a green fluorescent protein gene, an alkaline phosphatase gene, a horseradish peroxidase gene, and a chloramphenicol acetyl transferase gene.

- 47. The method of claim 46, wherein the reporter molecule is a variant of green fluorescent protein.
 - 48. The method of claim 47, wherein the variant of green fluorescent protein is selected from the group consisting of EGFP, EBFP, EYFP, d2EGFP, ECFP, and GFPuv.
- 10 49. The method of claim 43, wherein hematopoietic development is evaluated in a living animal.
 - 50. The method of claim 49, wherein hematopoietic development is evaluated by detecting a fluorescent signal on the live animal.