LINKING ARTIFICIAL AND BIOLOGICAL NEURAL NETWORKS

Prof. Alexander Huth 4.7.2020

COURSE ADMIN / PROJECT

- * Proposal due this Thursday (April 9):
 - * ~1-2 paragraphs describing what you plan to do & who is in your group. Email to huth@cs.utexas.edu before class
- * Writeup (3-4 pages explaining background & what you did) due May 5
- * In-class presentations (5-10 minutes)
 May 5 & 7

COURSE ADMIN / HOMEWORK

- * Graded homeworks should be returned on Canvas tonight or tomorrow
- * The TA for this class (Mao Ye) will be holding office hours Friday, April 10, 10:30am-12:00pm on Zoom to answer questions about homework grading
 - * You will find the Zoom link on Canvas

RECAP

- * **Deep** neural networks (i.e. with many hidden layers)
 - * Trained using gradient backpropagation
 - * Can do impressive things like image classification (e.g. AlexNet)
 - * Using tricks like:
 - * localized receptive fields
 - * convolution
 - * downsampling (i.e. max pooling)

RECAP

- * Subtle switch from **system identification** to **system construction**
- * System identification: building functions to explicitly approximate representations used by a given computational system
- * System construction: building functions with (ideally) the same **behavior** or **goal** as a given computational system

RECAP: ALEXNET

- * Does it solve the problem the same way that our brains do?
- * How would we know?

RECAP: ALEXNET

* Features learned by 1st layer of AlexNet * Receptive fields of V1 neurons from a macaque

* What would it mean for a constructed system (e.g. AlexNet) to solve a problem similarly to how an existing system (e.g. a brain) does?

- * Recall Marr's levels of description:
 - * **Computational:** both systems solve the same task ✓
 - * Algorithmic/Representational: both systems use the same algorithm or representations ? ??
 - * **Implementation**: both systems use the same implementation (neurons, etc.)

- * Recall Marr's levels of description:
 - * **Computational:** both systems solve the same task ✓
 - * Algorithmic/Representational: both systems use the same algorithm or representations ? ??
 - * **Implementation**: both systems use the same implementation (neurons, etc.) \bigcirc

- * What would it mean for a constructed system (e.g. AlexNet) to solve a problem similarly to how an existing system (e.g. a brain) does?
 - * It would mean that both use the same algorithm or representations to solve the problem
 - * How do we test whether a system uses some representation?

* Key idea: use the constructed system as a linearizing transform for system identification

EXTRACTING REPRESENTATIONS FROM A NEURAL NETWORK

- * The activations at each layer of a deep neural network can serve as "features"
- * The **functions** that compute the activations (from the input) thus serve as **linearizing transformations**

EXTRACTING REPRESENTATIONS FROM A NEURAL NETWORK

* ("whiteboard" notes)

- 1. Collect dataset of brain responses Y using stimuli X
- 2. Train/find artificial system
- 3. Extract activations a(X) for the stimuli in the neuroscience experiment
- 4. Use activations as features in linearized encoding model: $Y = a(X) \cdot b$

- * Key questions:
 - * Does this work at all?
 - * If so, is this trivial?
 - * Do activations from different layers predict different parts of the brain?
 - * Does this correspond to known computational hierarchies?
 - * If so, is this trivial?

* Eickenberg, Gramfort, Varoquaux, & Thirion (2016) Seeing it all: convolutional network layers map the function of the human visual system. Neuroimage

- * fMRI data come from experiment we discussed previously (see *lecture 10*, Kay et al., Nature 2008)
- * Two human subjects viewed 1000s of images while BOLD signals were recorded from visual cortex using fMRI

* Used "Overfeat"
convolutional neural
network (similar
architecture to AlexNet)

* Built model for each voxel using activations from each layer, then tested on held-out data

VISUAL CORTEX

* Connectivity of areas in macaque visual cortex

* Felleman & Van Essen (1991)

* Lower layers of the network predict "earlier" visual areas, higher layers predict "later" visual areas!

* Fingerprint: summary model performance metric giving something like "best layer"

- * Key questions:
 - * Does this work at all? **YES**
 - * If so, is this trivial? HMM...
 - * Do activations from different layers predict different parts of the brain? **YES**
 - * Does this correspond to known computational hierarchies? **YES**
 - * If so, is this trivial? HMM...

NEXT TIME

* Recurrent neural networks (etc.) for modeling language