Basic notation

```
 \begin{array}{llll} \mathbb{N} & & \text{The natural numbers: } \{0,1,2,\ldots\} \\ \mathbb{P} & & \text{The positive integers: } \{1,2,3,\ldots\} \\ [n] & & \text{The set } \{1,2,\ldots,n\} \quad (1/18) \\ \mathbb{F}_q & & \text{Finite field with } q \text{ elements} \quad (1/25) \\ \mathbb{S}_n & & \text{Symmetric group on } n \text{ elements} \quad (1/25) \\ 2^E & & \text{Power set of a set } E \quad (2/4) \\ A \cup e, \ A \setminus e & \text{Abbreviations for } A \cup \{e\}, \ A \setminus \{e\} \quad (2/8) \\ \end{array}
```

Posets and lattices

```
Covering relation in a poset
x \gg y
                                                (1/18)
[x,y]
               Interval in a poset (1/18)
\hat{0}, \hat{1}
               Unique minimal and maximal elements
                                                            (1/18)
               Rank-generating function of a poset P
F_P(q)
                                                            (1/18)
P^*
               Dual poset of P
                                  (1/18)
x \vee y, x \wedge y
               Join and meet operations in a lattice
                                                          (1/23)
J(P)
               (Distributive) lattice of order ideals of a poset P
                                                                       (1/28)
Irr(L)
               Poset of (join-)irreducibles in a lattice L
               Order ideal generated by x_1, \ldots, x_n
\langle x_1,\ldots,x_n\rangle
\mathscr{B}_n
               Boolean algebra of rank n (1/18)
\Pi_n
               Partition lattice of order n (1/18)
Y
               Young's lattice
                                  (1/23)
               Subspace lattice of \mathbb{F}_q^n
L_n(q)
                                          (1/25)
K(G)
               Clique poset of a graph
                                            (1/23)
               Modular, nondistributive lattice with five elements
M_5
N_5
               Non-ranked lattice with five elements
                                                          (1/18)
L(S)
               Geometric lattice of linear spans of sets of vectors in S
L^{\mathrm{aff}}(S)
               Geometric lattice of affine spans of sets of vectors in S
                                                                              (2/1)
Int(P)
               Set of intervals of P(2/25)
I(P)
               Incidence algebra of P(2/25)
               Convolution product on I(P) (2/25)
f * g
δ
               Kronecker delta (identity in I(P)) (2/25)
               Möbius function (2/25)
\chi(L;x)
               Characteristic polynomial of a ranked lattice L (2/27)
               Möbius algebra of a lattice L (2/29)
A(L)
               Unit in A(L) corresponding to x \in L (2/29)
\varepsilon_x
```

Matroids

$A\mapsto ar{A} \ \mathscr{B},\mathscr{B}(M) \ \mathscr{I},\mathscr{B}(M) \ \mathscr{C},\mathscr{B}(M)$	Matroid closure operator $(2/4)$ Matroid basis system (of matroid M) $(2/11)$ Matroid independence system (of matroid M) $(2/11)$ Matroid circuit system (of matroid M) $(2/11)$
θ , $\mathcal{B}(M)$	Watfold Circuit System (of matfold M) (2/11)
L(M)	(Geometric) lattice of flats of a matroid M (2/8)
$U_k(n)$	Uniform matroid of rank k on n elements $(2/8)$
M(G)	Graphic matroid of a graph G (2/11)
M(S)	Linear matroid of a set S of vectors $(2/13)$
M^*	Dual of a matroid (2/13)
$M_1 \oplus M_2$	Direct sum of matroids $(2/15)$
M-e	Deletion $(2/15)$
M/e	Contraction $(2/15)$
C(e,B)	Fundamental circuit of e with respect to basis B (2/20)
$C^*(e,B)$	Fundamental cocircuit of e with respect to basis B $(2/20)$
T(M), T(M, x, y)	The Tutte polynomial of M (2/18)

Graphs

V(G), E(G)	Vertex and edge sets of graph G	
G + H	Disjoint union of graphs	
K_n	Complete graph with vertex set $[n]$	(1/23)
$\overline{K_n}$	Graph with n vertices and no edges	(2/20)
$\mathscr{X}_k(G)$	Proper k -colorings of G (2/20)	
$\chi(G; k)$	Chromatic polynomial of G (2/20)	

Hyperplane arrangements

\mathscr{B}_n	Boolean arrangement of dimension $n = (3/3)$
Br_n	Braid arrangement of dimension $n = (3/3)$
$L(\mathcal{A})$	Intersection poset of an arrangement \mathcal{A} (3/3)
$\operatorname{ess}(\mathcal{A})$	Essentialization of an arrangement \mathcal{A} (3/3)
$r(\mathcal{A})$	Number of regions of \mathcal{A} (3/5)
$b(\mathcal{A})$	Number of relatively bounded regions of A (3/5)
\mathcal{A}_x	Deletion of all hyperplanes not containing $x = (3/5)$
\mathcal{A}^x	Restriction of \mathcal{A} to $x = (3/5)$
$\operatorname{proj}(\mathcal{A})$	Projectivization of \mathcal{A} (3/10)
cA	Cone over \mathcal{A} (3/10)
\mathcal{A}_G	Graphic arrangement of a graph G (3/10)
$\mathscr{F}(\mathcal{A})$	Set of faces of an arrangement \mathcal{A} (3/24)
$\hat{\mathscr{F}}(\mathcal{A})$	Big face lattice of \mathcal{A} (3/24)

Representation theory

 $\mathbb{F}G$ Group algebra of G over \mathbb{F} (4/7) Character of a representation ρ (4/9) χ_{ρ} Trivial repn/character of a group (4/7) $\chi_{\rm triv}, \, \rho_{\rm triv}$

Sign (or alternating) repn/character of \mathfrak{S}_n (4/7) $\chi_{\rm sign}, \, \rho_{\rm sign}$

Regular repn/character of a group (4/7) $\chi_{\rm reg}, \, \rho_{\rm reg}$ Defining repn/character of \mathfrak{S}_n (4/7) $\chi_{\mathrm{def}}, \, \rho_{\mathrm{def}}$

 $C\ell(G)$ Vector space of class functions on a group G(4/9)

 $_{\rho^*}^{\langle\cdot,\cdot\rangle_G}$ Inner product on $C\ell(G)$ (4/9)

Dual (contragredient) representation of ρ (4/11)

[G,G]Commutator subgroup of G (4/16)

 G^{ab} Abelianization of G (4/16)

Ch(G)Group of 1-dimensional characters of G (4/16)

 $\lambda \vdash n$ Indicates that λ is a partition of n (4/18)

Conjugacy class in \mathfrak{S}_n of all permutations of cycle shape μ (4/18) C_{μ}

 $\lambda < \mu$ Lexicographic order on partitions (4/18)

Permutation representation of \mathfrak{S}_n on tabloids of shape λ (4/18) ρ_{λ}

Character of ρ_{λ} on C_{μ} (4/18) $\chi_{\lambda,\mu}$

 $\operatorname{Res}_H^G \rho$ Restriction of the representation ρ from G to H (4/21)

 $\operatorname{Ind}_H^G \rho$ Induced representation ρ on G (4/21)

Symmetric functions

Monomial symmetric function indexed by λ (4/23) m_{λ} e_{λ} Elementary symmetric function indexed by λ (4/23)

 h_{λ} Complete homogeneous symmetric function indexed by λ (4/23)

Power-sum symmetric function indexed by λ (4/25) p_{λ} Schur symmetric function indexed by λ (4/25) s_{λ}

 $\Lambda_n, \Lambda_{R,n}$ Degree-n symmetric functions [with coefficients in R] (4/23) Ring of all symmetric functions [with coefficients in R] (4/23) Λ, Λ_R

 $CST(\lambda)$ Set of column-strict tableaux of shape λ (4/25) $SYT(\lambda)$ Set of standard (Young) tableaux of shape λ (4/30) f^{λ} Number of standard tableaux of shape λ (4/30)

 $K_{\lambda\mu}$ Kostka numbers (4/25)

 $\lambda \lhd \mu$ Dominance partial order on partitions (4/25)