- 1. In graph theory, how many nodes does a single edge connect?
 - a. One node
 - b. Two nodes
 - c. Three nodes
 - d. Any number of nodes
- 2. Which of the following tasks do Graph Neural Networks (GNNs) typically struggle with?
 - a. Node classification
 - b. Link prediction
 - c. Cycle detection
 - d. Graph clustering
- 3. In the context of cell complexes, what does a p-cell represent?
 - a. A cell with p sides
 - b. A cell with p vertices
 - c. An element of dimension p
 - d. A cell with p edges
- 4. What does the acronym FORGE stand for in the context of graph learning?
 - a. Framework for Higher-Optimized Representation in Graph Environments
 - b. Framework for Higher-Order Representations in Graph Explanations
 - c. Functional Optimization for Regular Graph Embeddings
 - d. Fast Operational Research for Graph Equations
- 5. After applying FORGE, how do explainers perform compared to Random baselines?
 - a. They consistently surpass Random baselines
 - b. They perform equally to Random baselines
 - c. They occasionally underperform Random baselines
 - d. They consistently underperform compared to Random baselines
- 6. Based on the lecture content: What can the boundary relation be loosely translated to in graph theory?
 - a. Nodes
 - b. Edges
 - c. Faces
 - d. Weights
- 7. What does guardedness mean as discussed in the lecture?
 - Personal information is guarded from being revealed to the outside world due to privacy reasons
 - b. A class is guarded if a classifier can't identify data points belonging to that class
 - c. A model is guarded if you cannot retrieve training data from it
 - d. An attribute is guarded if you can't classify along that attribute

- 8. What is the process/transformation used to achieve guardedness?
 - a. Affine Concept Erasure
 - b. Affine Attribute Erasure
 - c. Affine Model Erasure
 - d. Affine Class Erasure
- 9. How are steering vectors generally defined as discussed in the lecture?
 - a. $v = \mu_0 \mu_1$ where μ_0 is the mean of undesirable class and μ_1 is the mean of desirable class
 - b. v = μ_0 μ_1 where μ_0 is the mean of desirable class and μ_1 is the median of desirable class
 - c. v = μ_0 μ_1 where μ_0 is the mean of desirable class and μ_1 is the mean of undesirable class
 - d. $v = \mu_0 \mu_1$ where μ_0 is the mean of undesirable class and μ_1 is the median of undesirable class
- 10. Which of the following is a limitation of graphs as a data structure?
 - a. They can only represent hierarchical relationships
 - b. They can only model pairwise relationships between nodes
 - c. They are restricted to acyclic structures
 - d. They cannot represent directed edges