Notes of "Group"

Jinxin Wang

1 Overview

- Group and subgroup
 - Def: A group
 - * Rmk: The uniqueness of the identity element in a group
 - * Rmk: The uniqueness of the inverse element of an element in a group
 - * Rmk: The definition of a group does not specify the uniqueness of the identity element and the inverse element of each element
 - * Rmk: The default notation of an abstract group is with multiplication, such as the operator and the identity element
 - Def: A subgroup of a group
 - \ast Rmk: Trivial subgroups and proper subgroups
 - * Rmk: Is the identity element of a subgroup always the same as the one of its parent group?
 - Examples of groups and subgroups
 - * Eg: $(\mathbb{Q}, +)$ and $(\mathbb{Z}, +)$
 - * Eg: $(\mathbb{R}/\{0\},\cdot)$ and (\mathbb{R}^+,\cdot)
 - * Eg: S_n and the set of even permutations of order n
 - * Eg: $GL_n(\mathbb{R})$ and $SL_n(\mathbb{R})$
 - * Eg: The set of inversible elements in a monoid
 - * Eg: $(\{1, -1\}, \cdot)$
 - Def: An abelian group
 - Examples of abelian groups
 - * Eg: $(\mathbb{Z}/n\mathbb{Z}, +)$
 - * Eg: $A(X,Y) = \{f: X \to Y\}$ where Y is a abelian group
 - * Eg: $L(X,Y) = \{f : X \to Y \mid f \text{ is an additive map } \}$
 - Def: The order (cardinality) of a group, a finite group and an infinite group
 - Examples of finite groups and infinite groups
 - * Examples of finite groups: S_n , $(\{1, -1\}, \cdot)$
 - * Examples of infinite groups: $(\mathbb{Q}, +)$

1 OVERVIEW 2

- Cyclic groups
 - Rmk: An element in a group generates a subgroup of the group
 - Def: A cyclic group and its generator(s)
 - * Rmk: The uniqueness of the generator(s) of a cyclic group
 - Examples of cyclic groups
 - * Eg: $(\mathbb{Z}, +)$ can be generated by 1 or -1
 - * Eg: $(\{1,-1\},\cdot)$ can be generated by -1
 - Rmk: The order of a generated cyclic group by an element in a finite group
- The order of an element in a group
 - Def: An element of infinite order or finite order in a group
 - Examples of elements of infinite order and elements of finite order in groups
 - * Examples of elements of finite order in groups: A permutation in S_n
 - * Examples of elements of infinite order in groups: 1 and -1 in $(\mathbb{Z},+)$
 - Prop: The relationship between the order of an element in a group and the order of the cyclic group generated by it
- Subgroups of a cyclic group
 - Prop: The form of subgroups of a cyclic group
 - * Rmk: For a subgroup of a finite cyclic group, the factor k is not unique?
 - Prop: The relationship between different generators of a finite cyclic group
 - Eg: An application of the form of subgroups of a cyclic group to $(\mathbb{Z},+)$
- Homomorphisms and isomorphisms
 - Def: A group homomorphism
 - Def: A group isomorphism
 - * Rmk: Both a homomorphism and an isomorphism refer to a mapping rather than a relation between two algebraic structures
 - Prop: Some basic properties of a group homomorphism
 - Prop: Some basic properties of a group isomorphism
- Examples and conclusions of group homomorphisms and group isomorphisms
 - Prop: A necessary and sufficient condition of two cyclic groups to be isomorphic in terms of the orders of them

2 Group and subgroup

Definition 1 (A group). A set G is called a group if a binary operation \cdot is defined on it, and for any $a, b, c \in G$, it holds that

D1 Associative law: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

D2 Identity element: There exists $e \in G$ such that $e \cdot a = a \cdot e = a$ for each $a \in G$

D3 Inverse element: For each $a \in G$, there exists $b \in G$ such that ab = ba = e

Remark 1 (The uniqueness of the identity element in a group). Suppose there are $e \in G$ and $e' \in G$ which satisfy the definition of the identity element, then

$$e = e \cdot e' = e'$$

Remark 2 (The uniqueness of the inverse element of an element in a group). For each $a \in G$, suppose there are two inverse elements $b \in G$ and $b' \in G$, then

$$b = b \cdot e = b \cdot (a \cdot b') = (b \cdot a) \cdot b' = e \cdot b' = b'$$

Remark 3 (The definition of a group does not specify the uniqueness of the identity element and the inverse element of each element). As we can see, the definition of a group does not require the uniqueness of the identity element and the inverse element of each element in a group. The reason is that the uniqueness is a natural property of the identity element and the inverse element of each element once a set satisfies the definition of a group. Hence, we don't need and aren't supposed to add such conditions to the definition.

Remark 4 (The default notation of an abstract group is with multiplication, such as the operator and the identity element).

Definition 2 (A subgroup of a group).

Remark 5 (Is the identity element of a subgroup always the same as the one of its parent group?). The identity element of a group is also the identity of its every subgroup.

Proof: Suppose U is a group, $V \subset U$ is a subgroup of U, and e_U and e_V are the identity elements of them respectively. For e_V , we have $e_V^2 = e_V$. Since $e_V \in U$, the equation also holds in U. Then we have $e_V^{-1}e_V^2 = e_V^{-1}e_V$, which is $e_V = e_U$.

Recall that the similar conclusion doesn't hold for monoids. We can see the changes brought by the additional axioms of a group compared with a monoid.

Example 1 $((\mathbb{Q},+))$ and $(\mathbb{Z},+)$. $(\mathbb{Q},+)$ is a group, and $(\mathbb{Z},+)$ is a subgroup of it.

Example 2 $((\mathbb{R}/\{0\},\cdot))$ and (\mathbb{R}^+,\cdot) . $(\mathbb{R}/\{0\},\cdot)$ is a group, and (\mathbb{R}^+,\cdot) is a subgroup of it.

Example 3 (S_n and the set of even permutations of order n). The set of permutations of order n S_n is a group, and the set of even permutations of order n is a subgroup of S_n .

Example 4 $(GL_n(\mathbb{R}))$ and $SL_n(\mathbb{R})$. The set of inversible real-valued matrices of order n, denoted by $GL_n(\mathbb{R})$, forms a group. The set of inversible real-valued matrices of order n whose determinant is 1, denoted by $SL_n(\mathbb{R})$, is a subgroup of $GL_n(\mathbb{R})$.

3 CYCLIC GROUPS 4

3 Cyclic groups

4 The order of an element in a group

Definition 3 (An element of infinite order or finite order in a group). Given an element a in a group, we check the sequence of its integer exponentions. If all of them are different, we say that the order of the element a is infinite, and a is called an element of infinite order in the group. If there are same elements, then there exists integers k_i such that $a^{k_i} = e$. The minimal integer in the set $\{k_i\}$, denoted by q, is called the order of the element a in the group, and a is called an element of finite order in the group, or an element of order q in the group.

- 5 Subgroups of a cyclic group
- 6 Homomorphisms and isomorphisms
- 7 Examples and conclusions of group homomorphisms and group isomorphisms