```
In [1]:
         import pickle
         from rdkit import Chem
         from rdkit.Chem import Draw
         from rdkit.Chem.Draw import IPythonConsole
         from rdkit.Chem import rdFMCS
         from rdkit.Chem.Draw import rdDepictor
         from IPython.display import display
         import matplotlib.pyplot as plt
         from IPython.display import HTML
         import pandas as pd
         IPythonConsole.ipython useSVG=True
         rdDepictor.SetPreferCoordGen(True)
         #IPythonConsole.drawOptions.minFontSize=20
In [2]:
         with open('predictions/w_logs.pkl', 'rb') as file: w_te_data = pickle.load(fi
         with open('predictions/wo_logs.pkl', 'rb') as file: wo_te_data = pickle.load(
         original = pd.read csv('predictions/chem departm output wo tie embedding/outp
In [3]:
         def view_difference(mol1, mol2):
             mcs = rdFMCS.FindMCS([mol1,mol2])
             mcs_mol = Chem.MolFromSmarts(mcs.smartsString)
             match1 = mol1.GetSubstructMatch(mcs mol)
             target_atm1 = []
             for atom in mol1.GetAtoms():
                 if atom.GetIdx() not in match1:
                     target atml.append(atom.GetIdx())
             match2 = mol2.GetSubstructMatch(mcs mol)
             target atm2 = []
             for atom in mol2.GetAtoms():
                 if atom.GetIdx() not in match2:
                     target atm2.append(atom.GetIdx())
             return Draw.MolsToGridImage([mol1, mol2],highlightAtomLists=[target atml,
```

## Generation

## Notes:

- Predict the next fragment when probability p > 0.5
- The logic takes top-5 attachments from combinations of top-5 motifs and its possible configs. E.g., motif C1=CC=CC=C1 has 2 possible configs, C1=[CH:1]C=C[CH:2]=C1 or C1=[CH:1]C=CC=C1. The first config could be connected to other motifs that the connections are marked by :X, X is a number. The second config is the end motif that couldn't connected to other motifs. Atoms marked by different mark numbers are connected together. No two atoms with same mark numbers are used for connection.
- For every attachment, it's checked for validity:
  - If the to-connect motif and to-be-connected (aka predicted motif) share common atoms for connections.
  - No self-loop.
  - If all atoms in the to-be-connected motif exist in the to-connect motif, no need to attach them.
- To view prediction logs of other molecules, subtract 2 from the molecule's index in Excel file.

```
In [4]:
        def view(data, i, _original):
            print('Original: {}'.format(_original[i]))
            display(Draw.MolsToGridImage([Chem.MolFromSmiles(_original[i])]))
            sample = data[i]
            # step 0
            step f0 = sample[0]
            print('*************Sample {}th*************.format(i))
            print('----')
            print('Root motif: {}'.format(step_f0['root']))
            print('Top 5 root motif configs:', '\n'.join([str(x) for x in step_f0['to]
            # display
            mol = Chem.MolFromSmiles(step_f0['top-5-root-attachments'][0][0])
            print('Displaying partial graph (aka molecule): {}'.format(step_f0['parti
            display(Draw.MolsToGridImage([mol]))
            # the remaing steps
            for i, step_f in enumerate(sample[1:]):
                print('----Step-{}----' \cdot format(i + 1))
                if 'Generate fragment' in step_f:
                    print('Generate next fragment p = {}'.format(step f['Generate fra
                    print('Skip, current fragment has no next fragment to be attached
                    continue
                if 'top-5-inter-cands' in step_f:
                    print('Top 5 next motifs to attach:')
                    for fragment in step_f['top-5-inter-cands']:
                        print('Molecule {} and its specific config {} w/ p={}'.format
                        display(Draw.MolsToGridImage([Chem.MolFromSmiles(fragment[1])
                        print('-----
                    if 'Attaching Fragment' in step_f:
                        frag = step_f['Attaching Fragment']
                        sub_mol = Chem.MolFromSmiles(step_f['partial-graph'])
                        print('Attaching fragment {} of config {}'.format(frag[0], fr
                        print('Latest partial graph: {}'.format(step_f['partial-graph)
                        print('Lastest graph (left) vs graph in last step (right)')
                        display(view difference(sub mol, mol))
                        mol = sub_mol
                        print('----
                        print("Skip, the best next fragment to be attached to the cur
```

```
In [12]: view(wo_te_data, 11, original)
```

Original:  $O=C(C(/C1=C(C\#N)/C\#N)=C\setminus C2=CC(C(C3=CC=C(CCCCCC)C=C3)(C4=CC=C(CCCCCC))$ 

 $\begin{array}{l} \texttt{C=C4)C5=C6SC7=C5C(C8=CC=C(CC(CC)CCCC)S8)=C(SC9=C\$10C(C\$11=CC=C(CCCCCC)C=C\$11)(C\$12=CC=C(CCCCCC)C=C\$12)C\$13=C9SC(/C=C\$14\backslash C(C(C=CC=C\$15)=C\$15C\$14=O)=C(C\#N)\backslash C\#N)=C\$13)C\$10=C7C\$16=CC=C(CC(CC)CCCC)S\$16)=C6S2)C\$17=C1C=CC=C\$17 \end{array}$ 



\_\_\_\_\_

----Step-1----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-0.0011457790387794375

-----

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:1]=C[CH:2]=[CH:2]1 w / p=-7.863254547119141



\_\_\_\_\_

Molecule C1CCC1 and its specific config [CH2:1]1[CH2:2][CH2:2][CH2:2]1 w/ p=-8 .10697078704834



------

Molecule C1=CC=CC=C1 and its specific config [CH:1]1=[CH:2][CH:2]=[CH:2][CH:2] = [CH:2]1 w/ p=-8.414703369140625



-----

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-8.76745891571045

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']
Latest partial graph: C=CC
Lastest graph (left) vs graph in last step (right)



------

----Step-2----

Generate next fragment p = 1.0 Top 5 next motifs to attach: Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-0.022 86357991397381



-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-4.2795324 32556152



\_\_\_\_\_

Molecule C#N and its specific config N#[CH:1] w/ p=-5.083974838256836

-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-6.99 843692779541



\_\_\_\_\_\_

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-7.2496418952941895

-----

Attaching fragment C1=[CH:1]C=C[CH:2]=C1 of config ['C1:C:C:[CH:1]:C:C:1'] Latest partial graph: C=Cc1cccc1 Lastest graph (left) vs graph in last step (right)



------

----Step-3----

Generate next fragment p = 1.0
Top 5 pext motifs to attach:

Top 5 next motifs to attach: Molecule CN(C)C and its specific config N([CH3:1])([CH3:2])[CH3:2] w/ p=-0.484 2117428779602



-----

Molecule CC and its specific config [CH3:1][CH3:2] W/ p=-1.2833836078643799

-----

Molecule C1CCNC1 and its specific config [CH2:1]1[CH2:1][NH:2][CH2:2]1 w/ p=-2.5312082767486572



-----

Molecule CCCCCC and its specific config CCCCCC[CH3:1] w/ p=-4.782156944274902



-----

Molecule C1=CSCC1 and its specific config C1=[CH:2]S[CH2:1][CH2:1]1 w/ p=-5.16 9488906860352



\_\_\_\_\_

Attaching fragment N([CH3:1])([CH3:2])[CH3:2] of config ['CN(C)[CH3:1]'] Latest partial graph: C=Cclccc(N(C)C)ccl Lastest graph (left) vs graph in last step (right)



-----

----Step-4----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-0.354 3316721916199



-----

Molecule C1=CC=CC=C1 and its specific config C1=CC=[CH:1]C=C1 w/ p=-1.44056677 81829834



-----

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:1]=C[CH:2]=[CH:2]1 w / p=-3.485084295272827



-----

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=[CH:2][CH:2]=C1 w/ p=- 3.56367564201355



------

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:1]=C[CH:2]=C1 w/ p=- 6.2220940589904785



-----

Attaching fragment C1=[CH:1]C=C[CH:2]=C1 of config ['C1:C:C:[CH:1]:C:C:1'] Latest partial graph: C=Cc1ccc(N(C)c2cccc2)cc1 Lastest graph (left) vs graph in last step (right)



-----

----Step-5----

Generate next fragment p = 0.976083517074585

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-0.17526289820671082

Molecule CN and its specific config [CH3:1][NH2:2] w/p=-2.208272695541382

Molecule C1=CSCC1 and its specific config C1=[CH:2]S[CH2:1][CH2:1]1  $\mbox{w/p}=-3.20$ 

7990884780884



Molecule [CH2-]C and its specific config [CH2-:1][CH3:2] w/ p=-5.4057230949401855

-----

Molecule C1=CSCC1 and its specific config S1[CH2:1][CH2:1][CH:2]=[CH:2]1 w/ p= -6.09433650970459



Attaching fragment [CH3.1][CH3.2] of config ['C[CH3.1]']

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']
Latest partial graph: C=Cc1ccc(N(C)c2ccc(C)cc2)cc1
Lastest graph (left) vs graph in last step (right)





------

----Step-6----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-0.9011122 584342957



-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-1.11 5161657333374



\_\_\_\_\_

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-1.3277950286865234

-----

Molecule CC1=CSC=C1 and its specific config CC1=[CH:2]S[CH:1]=C1 w/ p=-8.337925910949707



-----

Molecule C1=CC=S=C1 and its specific config C1=[CH:2][CH:2]=S=[CH:1]1  $\text{w/p}=-9.081652641296387}$ 



-----

Attaching fragment C1=[CH:1]S[CH:2]=C1 of config ['C1:C:S:[CH:1]:C:1'] Latest partial graph: C=Cc1ccc(N(C)c2ccc(-c3cccs3)cc2)cc1 Lastest graph (left) vs graph in last step (right)



-----

----Step-7----

Generate next fragment p = 0.9999912977218628

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-0.3353980779647827

-----

Molecule C1=C[SiH2]C=C1 and its specific config [CH:1]1=[CH:1][SiH2:2][CH:2]=[CH:2]1 w/ p=-1.6166595220565796



-----

Molecule C1=CCC=C1 and its specific config [CH:1]1=[CH:1][CH2:2][CH:2]=[CH:2]1  $\mbox{w/}\ p=-2.5998778343200684$ 



------

Molecule C1=CSC=C1 and its specific config S1[CH:1]=[CH:1][CH:2]=[CH:2]1 w/ p= -4.649660587310791



\_\_\_\_\_

Molecule [CH2-]C and its specific config [CH3:1][CH2-:2] w/ p=-6.822177410125732

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]'] Latest partial graph: C=Cclccc(N(C)c2ccc(-c3ccc(C)s3)cc2)cc1

Lastest graph (left) vs graph in last step (right)



-----

----Step-8----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-0.04345783218741417

------

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-3.9461703 300476074



-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/p=-4.16 166353225708



------

Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w / p=-5.0577592849731445



-----

Molecule C1=C[SiH2]C=C1 and its specific config [CH:1]1=[CH:2][CH:2]=[CH:2][SiH2:2]1 w/ p=-8.179245948791504



-----

Attaching fragment [CH2:1]=[CH2:2] of config ['C=[CH2:1]']
Latest partial graph: C=Cclccc(N(C)c2ccc(-c3ccc(C=C)s3)cc2)cc1
Lastest graph (left) vs graph in last step (right)



-----

----Step-9----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C and its specific config C w/p=-0.14302974939346313

-----

Molecule CC and its specific config [CH3:1][CH3:2] W/ p=-2.0491089820861816

-----

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:2][CH2:2][CH2:2]1 w/ p=-5.688033580780029



\_\_\_\_\_\_

Molecule C1CSCS1 and its specific config S1[CH2:1]S[CH2:2][CH2:2]1 w/ p=-7.512 922763824463



\_\_\_\_\_\_

Molecule C1=CCCC1 and its specific config [CH2:1]1[CH2:2][CH:2]=[CH:2][CH2:2]1 w/ p=-8.504197120666504



-----

Attaching fragment C of config ['[CH4:1]']
Latest partial graph: C=Cclccc(N(C)c2ccc(-c3ccc(C=C)s3)cc2)cc1
Lastest graph (left) vs graph in last step (right)



------

----Step-10----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/ p=0.0

Molecule C=C and its specific config [CH2:1]=[CH2:2] W/ p=-17.890235900878906

-----

Molecule C1=CCNCC1 and its specific config [CH:1]1=[CH:2][CH2:2][NH:2][CH2:2][ CH2:2]1 w/ p=-18.23428726196289



-----

Molecule C=O and its specific config O=[CH2:1] w/ p=-18.619274139404297

-----

Molecule C1=C[SiH2]C=C1 and its specific config [CH:1]1=[CH:1][SiH2:2][CH:2]=[CH:2]1 w/p=-20.469430923461914



Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]'] Latest partial graph: C=Cclccc(N(C)c2ccc(-c3ccc(C=CC)s3)cc2)cc1

Lastest graph (left) vs graph in last step (right)



------

----Step-11----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C#N and its specific config N#[CH:1] w/ p=-1.7762025890988298e-05

Molecule C=O and its specific config O=[CH2:1] w/ p=-11.711331367492676

-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-12.286079 406738281



-----

Molecule C and its specific config C  $\text{w/p}=-12.406049728393555}$ 

-----

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-14.15 0064468383789



\_\_\_\_\_

Attaching fragment N#[CH:1] of config ['N#[CH:1]']
Latest partial graph: C=Cclccc(N(C)c2ccc(-c3ccc(C=CC#N)s3)cc2)cc1
Lastest graph (left) vs graph in last step (right)

3/20/22, 4:17 PM Debug

```
----Step-12----
Generate next fragment p = 8.297082461528722e-26
----Step-13----
Generate next fragment p = 6.316603361514964e-15
----Step-14----
Generate next fragment p = 1.0
Top 5 next motifs to attach:
Molecule CC and its specific config [CH3:1][CH3:2] \text{w/} p=-1.1920928244535389e-0
```

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-16.106910705566406

Molecule [CH2-]C and its specific config [CH3:1][CH2-:2] w/ p=-19.303838729858

\_\_\_\_\_\_

Molecule C=O and its specific config O=[CH2:1] w/ p=-21.74822235107422

-----

Molecule [CH-]1CCC1 and its specific config C1[CH2:1][CH2:2][CH-:2]1 w/ p=-23. 587783813476562



\_\_\_\_\_\_

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']
Latest partial graph: C=Cclccc(N(C)c2ccc(-c3ccc(C=C(C)C#N)s3)cc2)cc1
Lastest graph (left) vs graph in last step (right)



------

----Step-15----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C and its specific config C w/p=-0.2121753990650177

Molecule C#N and its specific config N#[CH:1] w/ p=-1.7091403007507324

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/p=-4.714538097381592



Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-7.2053213 11950684



-----

Molecule CC1=CSC=C1 and its specific config CC1=CS[CH:1]=C1 w/ p=-8.2446336746 21582



\_\_\_\_\_\_

Attaching fragment C of config ['[CH4:1]']
Latest partial graph: C=Cclccc(N(C)c2ccc(-c3ccc(C=C(C)C#N)s3)cc2)cc1
Lastest graph (left) vs graph in last step (right)



-----

----Step-16----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C=O and its specific config O=[CH2:1] w/ p=-1.1920928244535389e-07



Mologula CN and its specific config NCCH2.11 1/ n= 10 02/7205207051

Molecule CN and its specific config N[CH3:1] w/ p=-18.934730529785156

\_\_\_\_\_

Attaching fragment O=[CH2:1] of config ['O=[CH2:1]'] Latest partial graph: C=Cclccc(N(C)c2ccc(-c3ccc(C=C(C#N)C=O)s3)cc2)cc1 Lastest graph (left) vs graph in last step (right)



----Step-17----

Generate next fragment p = 4.2734245125838786e-30

----Step-18----

Generate next fragment p = 0.9999843835830688

Top 5 next motifs to attach:

Molecule CO and its specific config O[CH3:1] w/ p=-0.06822425872087479

| Molecule     | CC | and | its | specific | config | [CH3:1][( | <br>СНЗ: | <br>:2] w/ | <br>p=-3.188619136  | 8103027 |
|--------------|----|-----|-----|----------|--------|-----------|----------|------------|---------------------|---------|
|              |    |     |     |          |        |           |          |            |                     |         |
| <br>Molecule | CF | and | its | specific | config | F[CH3:1]  | w/       | p=-4.      | <br>915480613708496 |         |
|              |    |     |     |          |        |           |          |            |                     |         |
| Molecule     | CN | and | its | specific | config | N[CH3:1]  | w/       | p=-5.      | 206366539001465     |         |

Melagula C-O and its specific config O-ICU2.11 :/ n- E 2100024

Molecule C=O and its specific config O=[CH2:1] W/ p=-5.31998348236084

-----

Attaching fragment O[CH3:1] of config ['O[CH3:1]']
Latest partial graph: C=Cclccc(N(C)c2ccc(-c3ccc(C=C(C#N)C(=0)0)s3)cc2)cc1
Lastest graph (left) vs graph in last step (right)

```
----Step-19----
Generate next fragment p = 3.57101930603676e-06
----Step-20----
Generate next fragment p = 2.1999333910116547e-08
----Step-21----
Generate next fragment p = 7.065512619419678e-10
----Step-22----
Generate next fragment p = 7.199172387117869e-07
----Step-23----
Generate next fragment p = 4.2182819737224264e-12
----Step-24----
Generate next fragment p = 3.7500499091376507e-16
----Step-25----
Generate next fragment p = 0.004641843494027853
----Step-26----
Generate next fragment p = 3.592927233024611e-18
----Step-27----
Generate next fragment p = 8.48321506055072e-05
----Step-28----
Generate next fragment p = 1.0
Top 5 next motifs to attach:
Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-0.019
880110397934914
```



\_\_\_\_\_\_

Molecule C1=CCCC=C1 and its specific config C1=C[CH2:2][CH2:2][CH:1]=C1 w/ p=-4.1297407150268555



\_\_\_\_\_

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:1]=C[CH:2]=C1 w/ p=-6.395553112030029



-----

Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w / p=-6.8200578689575195



\_\_\_\_\_\_

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=[CH:2][CH:2]=C1 w/ p=-7.765378475189209



------

Attaching fragment C1=[CH:1]C=C[CH:2]=C1 of config ['C1:C:C:[CH:1]:C:C:1'] Latest partial graph: C=Cc1ccc(N(c2cccc2)c2ccc(-c3ccc(C=C(C#N)C(=0)0)s3)cc2)cc1

Lastest graph (left) vs graph in last step (right)

\_\_\_\_\_\_

----Step-29----

Generate next fragment p = 0.9999998807907104

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-0.3503771722316742

Molecule C1CCNC1 and its specific config [CH2:1]1[CH2:1][NH:2][CH2:2]1 w/ p=-1.311802625656128



\_\_\_\_\_\_

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:1][CH2:2][CH2:2]1 w/ p=-4.065310478210449

3/20/22, 4:17 PM Debug



Molecule CN and its specific config [CH3:1][NH2:2] w/p=-5.632542610168457

Molecule C1=CSCC1 and its specific config C1=[CH:2]S[CH2:1][CH2:1]1  $\mbox{w/p}=-6.00$ 679349899292



Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']

Latest partial graph: C=Cc1ccc(N(c2ccc(C)cc2)c2ccc(-c3ccc(C=C(C#N)C(=0)0)s3)cc 2)cc1

-----

----Step-30----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-0.8655498 623847961



\_\_\_\_\_

Molecule C1=CCCC=C1 and its specific config C1=C[CH2:2][CH2:2][CH:1]=C1 w/ p=-0.9156503081321716



-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-2.59 64910984039307



\_\_\_\_\_\_

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-3.4658820629119873

Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w / p=-4.144192695617676



------

Attaching fragment C1=[CH:1]S[CH:2]=C1 of config ['C1:C:S:[CH:1]:C:1']
Latest partial graph: C=Cc1ccc(N(c2ccc(-c3cccs3)cc2)c2ccc(-c3ccc(C=C(C#N)C(=O)
0)s3)cc2)cc1

-----

----Step-31----

Generate next fragment p = 0.9997395873069763

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] W/ p=-0.0018436607206240296

Molecule C1=C[SiH2]C=C1 and its specific config [CH:1]1=[CH:1][SiH2:2][CH:2]=[CH:2]1 w/ p=-7.430148601531982



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config S1[CH:1]=[CH:1][CH:2]=[CH:2]1 w/ p= -7.491175651550293



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=[CH:2]S[CH:1]=[CH:1]1 w/ p=-8.09 8220825195312



\_\_\_\_\_\_

Molecule C[SiH3] and its specific config [CH3:1][SiH3:2] w/ p=-8.8334293365478 52

-----

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']

Latest partial graph: C=Cc1ccc(N(c2ccc(-c3ccc(C)s3)cc2)c2ccc(-c3ccc(C=C(C#N)C(=0)0)s3)cc2)cc1

-----

----Step-32----

Generate next fragment p = 0.9999994039535522

Top 5 next motifs to attach:

Molecule C=C and its specific config [CH2:1]=[CH2:2] W/ p=-0.00562738487496972

\_\_\_\_\_\_

Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w / p=-5.607522010803223



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-7.33 2898139953613

3/20/22, 4:17 PM Debug



Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-7.6666479 11071777



Molecule C1=CCCC=C1 and its specific config C1=C[CH2:2][CH2:2][CH:1]=C1 w/ p=-7.793932914733887



Attaching fragment [CH2:1]=[CH2:2] of config ['C=[CH2:1]']

Latest partial graph: C=Cc1ccc(N(c2ccc(-c3ccc(C=C)s3)cc2)c2ccc(-c3ccc(C=C(C#N)

C(=0)0)s3)cc2)cc1

\_\_\_\_\_\_

----Step-33----

Generate next fragment p = 1.0 Top 5 next motifs to attach:

Molecule C and its specific config C w/p=-0.13677558302879333

-----

Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-2.2377471923828125

-----

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:2][CH2:2][CH2:2]1  $_{\rm W}/$  p=-4.045051574707031



-----

Molecule C1CSCS1 and its specific config S1[CH2:1]S[CH2:2][CH2:2]1 w/ p=-6.126 567840576172



-----

Molecule C1=CCCC1 and its specific config [CH2:1]1[CH2:2][CH:2]=[CH:2][CH2:2]1  $\mbox{w/}\ p=-6.613163948059082$ 



------

Attaching fragment C of config ['[CH4:1]']

Latest partial graph: C=Cc1ccc(N(c2ccc(-c3ccc(C=C)s3)cc2)c2ccc(-c3ccc(C=C(C#N)C(=0)0)s3)cc2)cc1

-----

----Step-34----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] W/ p=-3.576278118089249e-07

Molecule C1=CCNCC1 and its specific config [CH:1]1=[CH:2][CH2:2][NH:2][CH2:2][ CH2:2]1 w/ p=-15.156386375427246



\_\_\_\_\_\_

Molecule C=O and its specific config O=[CH2:1] w/ p=-16.070772171020508

\_\_\_\_\_

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/p=-17.90203094482422

-----

Molecule C1CCC1 and its specific config [CH2:1]1[CH2:2][CH2:2][CH2:2]1 w/ p=-2 0.270742416381836



Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']

Latest partial graph: C=Cc1ccc(N(c2ccc(-c3ccc(C=CC)s3)cc2)c2ccc(-c3ccc(C=C(C#N)C(=0)0)s3)cc2)cc1



-----

----Step-35----

Generate next fragment p = 1.0
Top 5 next motifs to attach:

Molecule C#N and its specific config N#[CH:1] w/p=-3.933898824470816e-06

-----

Molecule C and its specific config C w/ p=-13.240961074829102

\_\_\_\_\_

Molecule C=O and its specific config O=[CH2:1] w/ p=-13.430374145507812

------

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-14.62 369441986084



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-15.115761 756896973



-----

Attaching fragment N#[CH:1] of config ['N#[CH:1]']

Latest partial graph: C=Cc1ccc(N(c2ccc(-c3ccc(C=CC#N)s3)cc2)c2ccc(-c3ccc(C=C(C#N)C(=O)O)s3)cc2)cc1



-----

```
----Step-36----
Generate next fragment p = 1.2988869673185622e-25
----Step-37----
Generate next fragment p = 1.3031530065113484e-13
----Step-38----
Generate next fragment p = 1.0
Top 5 next motifs to attach:
Molecule CC and its specific config [CH3:1][CH3:2] w/ p=0.0
```

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-17.414560317993164

Molecule CN and its specific config [CH3:1][NH2:2] w/ p=-20.953163146972656

Molecule C=O and its specific config O=[CH2:1] w/ p=-21.039793014526367

Molecule CC and its specific config C[CH3:1] w/ p=-21.32840919494629

\_\_\_\_\_\_

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']
Latest partial graph: C=Cclccc(N(c2ccc(-c3ccc(C=C(C)C#N)s3)cc2)c2ccc(-c3ccc(C=C(C#N)C(=0)0)s3)cc2)cc1
Lastest graph (left) vs graph in last step (right)

http://localhost:8888/nbconvert/html/Debug.ipynb?download=false



----Step-39----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C and its specific config C w/p=-0.46422889828681946

Molecule C#N and its specific config N#[CH:1] w/ p=-1.0358774662017822

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-4.129 965305328369



-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-8.5757503 50952148



\_\_\_\_\_

Molecule CC1=CSC=C1 and its specific config CC1=CS[CH:1]=C1 w/ p=-9.5103559494 01855



Attaching fragment C of config ['[CH4:1]']

Latest partial graph: C=Cc1ccc(N(c2ccc(-c3ccc(C=C(C)C#N)s3)cc2)c2ccc(-c3ccc(C=C(C#N)C(=0)0)s3)cc2)cc1

-----

----Step-40----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C=O and its specific config O=[CH2:1] w/ p=-1.1920928244535389e-07

\_\_\_\_\_

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-16.432518005371094

-----

Molecule C=[NH2+] and its specific config [NH2+]=[CH2:1] w/p=-17.105947494506 836

3/20/22, 4:17 PM Debug

Molecule CF and its specific config F[CH3:1] w/ p=-18.272764205932617

Molecule CN and its specific config N[CH3:1] w/p=-18.63599967956543

Attaching fragment O=[CH2:1] of config ['O=[CH2:1]'] Latest partial graph: C=Cc1ccc(N(c2ccc(-c3ccc(C=C(C#N)C=O)s3)cc2)c2ccc(-c3ccc( C=C(C#N)C(=0)0)s3)cc2)cc1Lastest graph (left) vs graph in last step (right)

http://localhost:8888/nbconvert/html/Debug.ipynb?download=false



-----

----Step-41----

Generate next fragment p = 5.733921494370255e-21

----Step-42----

Generate next fragment p = 0.9999998807907104

Top 5 next motifs to attach:

Molecule CO and its specific config O[CH3:1] w/p=-0.12501999735832214

Molecule CC and the energific config (CU2.11(CU2.21 at / n= 2.06770120202706

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-2.867701292037964

-----

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-2.9431989192962646

Molecule CF and its specific config F[CH3:1] w/ p=-5.9173359870910645

-----

Molecule CN and its specific config [CH3:1][NH2:2] w/p=-5.969977378845215

\_\_\_\_\_\_

Attaching fragment O[CH3:1] of config ['O[CH3:1]']
Latest partial graph: C=Cclccc(N(c2ccc(-c3ccc(C=C(C#N)C(=0)0)s3)cc2)c2ccc(-c3ccc(C=C(C#N)C(=0)0)s3)cc2)cc1
Lastest graph (left) vs graph in last step (right)



```
----Step-43----
Generate next fragment p = 0.0005877779331058264
----Step-44----
Generate next fragment p = 4.1239500205847435e-06
----Step-45----
Generate next fragment p = 4.175789047877743e-09
----Step-46----
Generate next fragment p = 1.003355123430083e-07
----Step-47----
Generate next fragment p = 1.7379650236321043e-12
----Step-48----
Generate next fragment p = 1.6988516306605875e-16
----Step-49----
Generate next fragment p = 0.00016118038911372423
----Step-50----
Generate next fragment p = 8.228211122309318e-19
----Step-51----
Generate next fragment p = 3.517355651183607e-07
----Step-52----
Generate next fragment p = 9.966220362338436e-16
----Step-53----
Generate next fragment p = 6.167803601186961e-09
----Step-54----
Generate next fragment p = 3.2621559669038583e-15
----Step-55----
Generate next fragment p = 1.0
Top 5 next motifs to attach:
Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-7.390948667307384e-06
```

-----

Molecule C1=CCCC1 and its specific config [CH2:1]1[CH:2]=[CH:2][CH2:2][CH2:2]1  $_{\rm W}/_{\rm p=-13.064355850219727}$ 



\_\_\_\_\_\_

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:1]=C[CH:2]=[CH:2]1 w / p=-13.119878768920898



\_\_\_\_\_\_

Molecule C1CSCS1 and its specific config S1[CH2:1]S[CH2:2][CH2:2]1 w/ p=-13.66 5507316589355



------

Molecule C1=CSC=C1 and its specific config C1=[CH:2]S[CH:1]=[CH:1]1 w/ p=-14.9 61623191833496



-----

Attaching fragment C1=[CH:2]S[CH:1]=[CH:1]1 of config ['C1:C:S:[CH:1]:C:1', 'C 1:C:[CH:1]:C:S:1']

Latest partial graph: N#CC(=Cc1ccc(-c2ccc(N(c3ccc(-c4ccsc4)cc3)c3ccc(-c4ccc(C=C(C#N)C(=0)0)s4)cc3)cc2)s1)C(=0)0

Lastest graph (left) vs graph in last step (right)



\_\_\_\_\_\_

----Step-56----

Generate next fragment p = 0.9999998807907104

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-0.006059726700186729

\_\_\_\_\_\_

Molecule C1=CCCC1 and its specific config [CH:1]1=[CH:1][CH2:2][CH2:2][CH2:2]1 w/ p=-6.062966346740723



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config S1[CH:1]=[CH:1][CH:2]=[CH:2]1 w/ p= -7.047158718109131



\_\_\_\_\_\_

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:1][CH2:2][CH2:2]1 w/ p=-7.105920791625977



------

Molecule C1=CCCC1 and its specific config [CH2:1]1[CH2:1][CH2:2][CH:2]=[CH:2]1  $\mbox{w/}\ p=-7.136292457580566$ 



-----

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]'] Latest partial graph: Cclcc(-c2ccc(N(c3ccc(-c4ccc(C=C(C#N)C(=0)0)s4)cc3)c3ccc(-c4ccc(C=C(C#N)C(=0)0)s4)cc3)cc2)cs1

Lastest graph (left) vs graph in last step (right)



-----

----Step-57----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-0.979 3902635574341



\_\_\_\_\_\_

Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w / p=-1.162528395652771



-----

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-1.3957931995391846

-----

Molecule C1=CCCC=C1 and its specific config C1=C[CH2:2][CH2:2][CH:1]=C1 w/ p=- 3.6127207279205322



-----

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:2]=[CH:2][CH:2]=C1 w / p=-4.562339782714844



\_\_\_\_\_\_

Attaching fragment C1=[CH:1]C=C[CH:2]=C1 of config ['C1:C:C:[CH:1]:C:C:1'] Latest partial graph: N#CC(=Cc1ccc(-c2ccc(N(c3ccc(-c4csc(-c5cccc5)c4)cc3)c3cc c(-c4ccc(C=C(C#N)C(=0)0)s4)cc3)cc2)s1)C(=0)0 Lastest graph (left) vs graph in last step (right)



\_\_\_\_\_\_

----Step-58----

Generate next fragment p = 1.0 Top 5 next motifs to attach:

Molecule C1CCNC1 and its specific config [CH2:1]1[CH2:1][NH:2][CH2:2]1 w/ p=-0.13806338608264923



-----

Molecule CN(C)C and its specific config N([CH3:1])([CH3:2])[CH3:2] w/ p=-2.325 024366378784



-----

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:1][CH2:2][CH2:2]1 w/ p=-4.258026123046875



-----

Molecule C1CCNCC1 and its specific config [CH2:1]1[CH2:2][CH2:2][NH:2][CH2:2][ CH2:2]1 W/ p=-4.540945053100586



Molecule CBr and its specific config Br[CH3:1] w/ p=-6.290832996368408

-----

Attaching fragment [CH2:1]1[CH2:1][NH:2][CH2:2][CH2:2]1 of config ['C1C[CH2:1] CN1', 'C1CN[CH2:1]C1']

Latest partial graph: N#CC(=Cc1ccc(-c2ccc(N(c3ccc(-c4csc(-c5ccc6c5CCN6)c4)cc3)c3ccc(-c4ccc(C=C(C#N)C(=0)0)s4)cc3)cc2)s1)C(=0)O
Lastest graph (left) vs graph in last step (right)



-----

----Step-59----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CN and its specific config C[NH2:1] w/ p=-0.7608727812767029

\_\_\_\_\_\_

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:1]=C[CH:2]=C1 w/ p=- 1.268972396850586



Molecule N and its specific config N w/ p=-1.4923498630523682

Molecule C and its specific config C w/p=-4.306382179260254

Molecule CN and its specific config [NH2:1][CH3:2] w/p=-4.552807331085205

\_\_\_\_\_\_

Attaching fragment C[NH2:1] of config ['C[NH2:1]']
Latest partial graph: CN1CCc2c(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)cc4)cs3)cccc21
Lastest graph (left) vs graph in last step (right)



-----

----Step-60----

Generate next fragment p = 0.767174482345581

Top 5 next motifs to attach:

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-0.094 02607381343842



-----

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-2.441336154937744

Molecule C and its specific config C w/ p=-6.683434963226318

-----

Molecule C1=CCCCC1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH2:2][CH2:2]1 w/ p=-7.410592079162598



\_\_\_\_\_\_

Molecule C1=CC=CC=C1 and its specific config C1=CC=[CH:1]C=C1 w/ p=-7.66150808 3343506



-----

Skip, the best next fragment to be attached to the current fragment does not y ield a valid sub-molecule . Go back to the previous fragment.

----Step-61----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CN and its specific config C[NH2:1] w/ p=-0.7608727812767029

-----

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:1]=C[CH:2]=C1 w/ p=-1.268972396850586



\_\_\_\_\_\_

Molecule N and its specific config N w/ p=-1.4923498630523682

Molecule C and its specific config C w/ p=-4.306382179260254

Molecule CN and its specific config [NH2:1][CH3:2] w/ p=-4.552807331085205

Attaching fragment C1=[CH:1][CH:1]=C[CH:2]=C1 of config ['C1:C:C:[CH:1]:C:C:1', 'C1:C:C:[CH:1]:C:C:1'] Latest partial graph: Cn1c2cccc2c2c(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=O)O)s6)cc5)c5ccc(-c6ccc(C=C(C#N)C(=O)O)s6)cc5)cc4)cs3)cccc21 Lastest graph (left) vs graph in last step (right)

-----

----Step-62----

Generate next fragment p = 0.9999222755432129

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-0.2408195436000824

Molecule CN(C)C and its specific config N([CH3:1])([CH3:2])[CH3:2] w/ p=-1.597 2133874893188



-----

Molecule CN and its specific config [CH3:1][NH2:2] w/p=-5.819917678833008

-----

Molecule C1=CCC=C1 and its specific config [CH:1]1=[CH:1][CH2:2][CH:2]=[CH:2]1  $_{\rm W}/_{\rm p=-6.302859783172607}$ 



-----

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:1][CH2:2][CH2:2]1  $_{\rm W}/_{\rm p=-6.495670795440674}$ 



-----

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']
Latest partial graph: Cclccc2c(cl)clc(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=O)0)s6)cc5)c5ccc(-c6ccc(C=C(C#N)C(=O)0)s6)cc5)cc4)cs3)ccccln2C
Lastest graph (left) vs graph in last step (right)

-----

----Step-63----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-1.1266475915908813

Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w / p=-1.7038252353668213



\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-1.74 80614185333252



-----

Molecule C1=CCCC=C1 and its specific config C1=C[CH2:2][CH2:2][CH:1]=C1 w/ p=- 1.7600538730621338



-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-2.2401049 13711548



Attaching fragment [CH2:1]=[CH2:2] of config ['C=[CH2:1]']

Latest partial graph: C=Cc1ccc2c(c1)c1c(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=O)O)s6)cc5)cc5)cc5ccc(-c6ccc(C=C(C#N)C(=O)O)s6)cc5)cc4)cs3)cccc1n2C

Lastest graph (left) vs graph in last step (right)



-----

----Step-64----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-0.5033437609672546

\_\_\_\_\_

Molecule C and its specific config C  $\text{w/}\ p=-1.5061886310577393}$ 

-----

Molecule C1CSCS1 and its specific config S1[CH2:1]S[CH2:2][CH2:2]1 w/ p=-2.095 09015083313



-----

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:2][CH2:2][CH2:2]1 w/ p=-3.5078327655792236



\_\_\_\_\_\_

Molecule C1=CCCC1 and its specific config [CH2:1]1[CH2:2][CH:2]=[CH:2][CH2:2]1  $_{\rm W}/_{\rm p=-3.912304639816284}$ 



Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']
Latest partial graph: CC=Cclccc2c(c1)clc(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)cc4)cs3)ccccln2C
Lastest graph (left) vs graph in last step (right)

-----

----Step-65----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-0.1306476 891040802



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-2.94 43016052246094



\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=CS[CH:1]=C1 w/ p=-3.454170227050 7812



------

Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w / p=-3.6914918422698975



\_\_\_\_\_\_

Molecule CC1=CSC=C1 and its specific config CC1=[CH:1]S[CH:2]=C1 w/ p=-4.74936 9144439697



-----

Attaching fragment C1=[CH:1]S[CH:2]=C1 of config ['C1:C:S:[CH:1]:C:1'] Latest partial graph: Cn1c2ccc(C=Cc3cccs3)cc2c2c(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=O)O)s6)cc5)c5ccc(-c6ccc(C=C(C#N)C(=O)O)s6)cc5)cc4)cs3)cccc21 Lastest graph (left) vs graph in last step (right)

\_\_\_\_\_\_

----Step-66----

Generate next fragment p = 0.871691882610321

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-0.06206965819001198

Molecule C1=C[SiH2]C=C1 and its specific config [CH:1]1=[CH:1][SiH2:2][CH:2]=[CH:2]1 w/ p=-3.3673901557922363



\_\_\_\_\_

Molecule C[SiH3] and its specific config [CH3:1][SiH3:2] w/ p=-4.4592947959899

\_\_\_\_\_\_

Molecule CCCCCC and its specific config CCCCCC[CH3:1] w/p=-4.933238506317139

\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config S1[CH:1]=[CH:1][CH:2]=[CH:2]1 w/ p= -5.725491046905518



Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']

Latest partial graph: Cclccc(C=Cc2ccc3c(c2)c2c(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=O)O)s7)cc6)cc5)cs4)cccc2n3C)s1

Lastest graph (left) vs graph in last step (right)

-----

----Step-67----

Generate next fragment p = 0.9999935626983643

Top 5 next motifs to attach:

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/p=-0.05087331682443619

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-3.4192779 064178467



\_\_\_\_\_

Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w / p=-5.058685779571533



-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-5.07 9668045043945



-----

Molecule C1=CSC=C1 and its specific config C1=CS[CH:1]=C1 w/p=-6.652697563171387



------

Attaching fragment [CH2:1]=[CH2:2] of config ['C=[CH2:1]'] Latest partial graph: C=Cc1ccc(C=Cc2cc3c(c2)c2c(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)cc5)cs4)ccc2n3C)s1 Lastest graph (left) vs graph in last step (right)



----Step-68----

Generate next fragment p = 1.0Top 5 next motifs to attach:

Molecule C and its specific config C w/p=-0.008251977153122425

Molecule CC and its specific config [CH3:1][CH3:2] W/ p=-4.8112382888793945

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:2][CH2:2][CH2:2]1 w/p=-9.474623680114746



\_\_\_\_\_\_

Molecule C1=CCCC1 and its specific config [CH2:1]1[CH2:2][CH:2]=[CH:2][CH2:2]1 w/ p=-13.712762832641602



\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-14.705827 713012695



-----

Attaching fragment C of config ['[CH4:1]']

Latest partial graph: C=Cc1ccc(C=Cc2ccc3c(c2)c2c(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)cc5)cs4)ccc2n3C)s1 Lastest graph (left) vs graph in last step (right)



-----

----Step-69----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] W/ p=-5.722029527532868e-06

\_\_\_\_\_\_

Molecule C=O and its specific config O=[CH2:1] w/ p=-12.142008781433105

-----

Molecule C[SiH3] and its specific config [CH3:1][SiH3:2] w/p=-16.139099121093 75

-----

Molecule CCCCCC and its specific config CCCCCC[CH3:1] w/ p=-16.46016502380371



\_\_\_\_\_

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/p=-16.62950325012207

\_\_\_\_\_

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']
Latest partial graph: CC=Cc1ccc(C=Cc2ccc3c(c2)c2c(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)cc5)cs4)cccc2n3C)s1
Lastest graph (left) vs graph in last step (right)

\_\_\_\_\_\_

----Step-70----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C#N and its specific config N#[CH:1] w/ p=-0.00012432756193447858

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-9.358 192443847656



\_\_\_\_\_

Molecule C and its specific config C w/ p=-10.463768005371094

-----

Molecule C=O and its specific config O=[CH2:1] w/ p=-11.708535194396973

-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-13.973919 868469238



\_\_\_\_\_\_

Attaching fragment N#[CH:1] of config ['N#[CH:1]']

Latest partial graph: Cnlc2ccc(C=Cc3ccc(C=CC#N)s3)cc2c2c(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=O)O)s6)cc5)cc5)cc5)cc6ccc(-c6ccc(C=C(C#N)C(=O)O)s6)cc5)cc4)cs3)cccc21

Lastest graph (left) vs graph in last step (right)



------

```
----Step-71---- Generate next fragment p = 1.2375428747618282e-21 ----Step-72---- Generate next fragment p = 1.074212333668223e-13 ----Step-73---- Generate next fragment p = 1.0 Top 5 next motifs to attach: Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-1.6689286894688848e-0 6
```

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-14.100028991699219

Molecule [CH2-]C and its specific config [CH3:1][CH2-:2] w/ p=-14.389986038208 008

Molecule C=O and its specific config O=[CH2:1] w/ p=-14.865312576293945

-----

Molecule CN and its specific config [CH3:1][NH2:2] W/ p=-17.095169067382812

-----

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]'] Latest partial graph: CC(C#N)=Cc1ccc(C=Cc2ccc3c(c2)c2c(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)cc5)cs4)cccc2n3C)s1

Lastest graph (left) vs graph in last step (right)



\_\_\_\_\_\_

----Step-74----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C and its specific config C w/p=-0.33791378140449524

------

Molecule C#N and its specific config N#[CH:1] w/ p=-1.2967579364776611

-----

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-4.329 936504364014



-----

Molecule C=O and its specific config O=[CH2:1] w/ p=-9.103432655334473

-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-10.106388 092041016



\_\_\_\_\_\_

Attaching fragment C of config ['[CH4:1]']

Latest partial graph: CC(C#N)=Cc1ccc(C=Cc2ccc3c(c2)c2c(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)cc5)cs4)ccc2n3C)s1

Lastest graph (left) vs graph in last step (right)



----Step-75----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C=O and its specific config O=[CH2:1] w/ p=-1.1920928244535389e-07

Molecule C=[NH2+] and its specific config [NH2+]=[CH2:1] w/ p=-16.645597457885 742

Molecule CC and its specific config [CH3:1][CH3:2] W/ p=-17.349523544311523

Molecule CN and its specific config N[CH3:1] w/ p=-18.376365661621094

Molecule CO and its specific config O[CH3:1] w/ p=-18.986194610595703

\_\_\_\_\_\_

Attaching fragment O=[CH2:1] of config ['O=[CH2:1]'] Latest partial graph: Cnlc2ccc(C=Cc3ccc(C=C(C#N)C=0)s3)cc2c2c(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)cc4)cs3)ccc21

Lastest graph (left) vs graph in last step (right)



-----

----Step-76----

Generate next fragment p = 4.98099528597485e-21

----Step-77----

Generate next fragment p = 0.9999995231628418

Top 5 next motifs to attach:

Molecule CO and its specific config O[CH3:1] W/ p=-0.009655111469328403

Malagraha (N. and d. a. and distribution of the COVA 115 MV2 - 21 and the COVA 2005 COVA

Molecule CN and its specific config [CH3:1][NH2:2] W/ p=-5.474306583404541

\_\_\_\_\_

Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-5.6051836013793945

Molecule CO and its specific config [CH3:1][OH:2] w/ p=-7.083941459655762

Mologulo CN and its specific config N(CH2:11 W/ n= 7 /250/119973

Molecule CN and its specific config N[CH3:1] W/ p=-7.425041198730469

\_\_\_\_\_\_

Attaching fragment O[CH3:1] of config ['O[CH3:1]'] Latest partial graph: Cnlc2ccc(C=C(C#N)C(=0)0)s3)cc2c2c(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)cc4)cs 3)ccc21

Lastest graph (left) vs graph in last step (right)



----Step-78----Generate next fragment p = 0.011908629909157753----Step-79----Generate next fragment p = 4.349339022269305e-08----Step-80----Generate next fragment p = 1.575442547618877e-05----Step-81----Generate next fragment p = 2.9677555968277147e-09----Step-82----Generate next fragment p = 1.1139944388228063e-15----Step-83----Generate next fragment p = 2.546456490590407e-17----Step-84----Generate next fragment p = 3.1717577257950325e-06----Step-85----Generate next fragment p = 6.617580609743468e-20----Step-86----Generate next fragment p = 2.0310472054196893e-11----Step-87----Generate next fragment p = 1.663748432588825e-19----Step-88----Generate next fragment p = 2.262406262332206e-08----Step-89----Generate next fragment p = 0.9998952150344849Top 5 next motifs to attach: Molecule CN and its specific config [NH2:1][CH3:2] w/ p=-0.023700183257460594

Molecule CN and its specific config C[NH2:1] w/ p=-3.787357807159424

| Morecure N and its specific confry N w/ p/.0394231003329703       |       |
|-------------------------------------------------------------------|-------|
|                                                                   |       |
|                                                                   |       |
|                                                                   |       |
| Molecule [SiH4] and its specific config [SiH4] w/ p=-7.9542069435 | 11963 |
|                                                                   |       |
|                                                                   |       |
|                                                                   |       |
| Molecule C and its specific config C w/ p=-11.697789192199707     |       |

\_\_\_\_\_\_

Skip, the best next fragment to be attached to the current fragment does not y ield a valid sub-molecule . Go back to the previous fragment.

----Step-90----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C1CCNC1 and its specific config [CH2:1]1[CH2:1][NH:2][CH2:2]1 w/ p=-0.13806328177452087



-----

Molecule CN(C)C and its specific config N([CH3:1])([CH3:2])[CH3:2] w/ p=-2.325 0250816345215



\_\_\_\_\_\_

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:1][CH2:2][CH2:2]1 w/ p=-4.258025169372559



\_\_\_\_\_\_

Molecule C1CCNCC1 and its specific config [CH2:1]1[CH2:2][CH2:2][NH:2][CH2:2][ CH2:2]1  $\mbox{w/} p=-4.540942192077637$ 



\_\_\_\_\_

Molecule CBr and its specific config Br[CH3:1] w/ p=-6.290830135345459

-----

Attaching fragment [CH2:1]1[CH2:1][NH:2][CH2:2][CH2:2]1 of config ['C1C[CH2:1] CN1', 'C1CN[CH2:1]C1']

Latest partial graph: Cn1c2ccc(C=Cc3ccc(C=C(C#N)C(=O)O)s3)cc2c2c(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=O)O)s6)cc5)c5ccc(-c6ccc(C=C(C#N)C(=O)O)s6)cc5)cc4)cs 3)cc3c(c21)CCN3

Lastest graph (left) vs graph in last step (right)



\_\_\_\_\_\_

----Step-91----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CN and its specific config C[NH2:1] w/ p=-0.7608712911605835

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:1]=C[CH:2]=C1 w/ p=-  $\frac{1}{2}$ 



\_\_\_\_\_

Molecule N and its specific config N w/ p=-1.4923474788665771

Molecule C and its specific config C w/ p=-4.306386470794678

Molecule CN and its specific config [NH2:1][CH3:2] w/ n= 4 552805900573730

Molecule CN and its specific config [NH2:1][CH3:2] W/p=-4.5528059005737305

\_\_\_\_\_

Attaching fragment C[NH2:1] of config ['C[NH2:1]'] Latest partial graph: CN1CCc2c1cc(-c1cc(-c3ccc(N(c4ccc(-c5ccc(C=C(C#N)C(=0)0)s5)cc4)c4ccc(-c5ccc(C=C(C#N)C(=0)0)s5)cc4)cc3)cs1)c1c3cc(C=Cc4ccc(C=C(C#N)C(=0)0)s4)ccc3n(C)c21

Lastest graph (left) vs graph in last step (right)



\_\_\_\_\_\_

----Step-92----

Generate next fragment p = 0.7671745419502258

Top 5 next motifs to attach:

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-0.094 0258577466011



\_\_\_\_\_\_

Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-2.4413399696350098

\_\_\_\_\_

Molecule C and its specific config C w/p=-6.6834330558776855

-----

Molecule C1=CCCCC1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH2:2][CH2:2]1  $\mbox{w/p}=-7.4105939865112305$ 



\_\_\_\_\_\_

Molecule C1=CC=CC=C1 and its specific config C1=CC=[CH:1]C=C1 w/ p=-7.66151380 5389404



-----

Skip, the best next fragment to be attached to the current fragment does not y ield a valid sub-molecule . Go back to the previous fragment.

----Step-93----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CN and its specific config C[NH2:1] w/ p=-0.7608712911605835

-----

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:1]=C[CH:2]=C1 w/ p=-1.2689768075942993



\_\_\_\_\_

Molecule N and its specific config N w/ p=-1.4923474788665771

-----

Molecule C and its specific config C  $\text{w/p}=-4.306386470794678}$ 

------

Molecule CN and its specific config [NH2:1][CH3:2] W/ p=-4.5528059005737305

-----

Attaching fragment C1=[CH:1][CH:1]=C[CH:2]=C1 of config ['C1:C:C:[CH:1]:C:C:1', 'C1:C:C:[CH:1]:C:C:1']

Latest partial graph: Cn1c2cccc2c2c1cc(-c1cc(-c3ccc(N(c4ccc(-c5ccc(C=C(C#N)C(=0)0)s5)cc4)c4ccc(-c5ccc(C=C(C#N)C(=0)0)s5)cc4)cc3)cs1)c1c3cc(C=Cc4ccc(C=C(C#N)C(=0)0)s4)ccc3n(C)c12

Lastest graph (left) vs graph in last step (right)



-----

----Step-94----

Generate next fragment p = 0.9999222755432129

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-0.24081973731517792

-----

Molecule CN(C)C and its specific config N([CH3:1])([CH3:2])[CH3:2] w/ p=-1.597 212553024292



\_\_\_\_\_

Molecule CN and its specific config [CH3:1][NH2:2] w/ p=-5.8199143409729

-----

Molecule C1=CCC=C1 and its specific config [CH:1]1=[CH:1][CH2:2][CH:2]=[CH:2]1  $\mbox{w/}\ p=-6.302864074707031$ 



\_\_\_\_\_\_

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:1][CH2:2][CH2:2]1 w/ p=-6.495669364929199



-----

Lastest graph (left) vs graph in last step (right)



\_\_\_\_\_\_

----Step-95----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/p=-1.126648187637329

-----

Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w / p=-1.7038220167160034



-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-1.74 80615377426147



------

Molecule C1=CCCC=C1 and its specific config C1=C[CH2:2][CH2:2][CH:1]=C1 w/ p=- 1.7600525617599487



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-2.2401089 668273926



-----

Attaching fragment [CH2:1]=[CH2:2] of config ['C=[CH2:1]']

Latest partial graph: C=Cc1ccc2c(c1)c1c(cc(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)cc4)cs3)c3c4cc(C=Cc5ccc(C=C(C#N)C(=0)0)s5)ccc4n(C)c31)n2C

Lastest graph (left) vs graph in last step (right)



-----

----Step-96----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-0.503343403339386

Molecule C and its specific config C w/p=-1.506188154220581

Molecule C1CSCS1 and its specific config S1[CH2:1]S[CH2:2][CH2:2]1  $\mbox{w/} \mbox{p=-2.095}$ 0944423675537



Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:2][CH2:2][CH2:2]1 w/p=-3.5078275203704834



\_\_\_\_\_\_

Molecule C1=CCCC1 and its specific config [CH2:1]1[CH2:2][CH:2]=[CH:2][CH2:2]1  $_{\rm W}/_{\rm p=-3.9123003482818604}$ 



-----

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]'] Latest partial graph: CC=Cc1ccc2c(c1)c1c(cc(-c3cc(-c4ccc(N(c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)c5ccc(-c6ccc(C=C(C#N)C(=0)0)s6)cc5)cc4)cs3)c3c4cc(C=Cc5ccc(C=C(C#N)C(=0)0)s5)ccc4n(C)c31)n2C

Lastest graph (left) vs graph in last step (right)



-----

----Step-97----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-0.1306475 8479595184



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-2.94 429874420166



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=CS[CH:1]=C1 w/ p=-3.454175949096 6797



------

Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w / p=-3.6914896965026855



-----

Molecule CC1=CSC=C1 and its specific config CC1=[CH:1]S[CH:2]=C1 w/ p=-4.74936 9144439697



-----

Attaching fragment C1=[CH:1]S[CH:2]=C1 of config ['C1:C:S:[CH:1]:C:1'] Latest partial graph: Cn1c2ccc(C=Cc3cccs3)cc2c2c1cc(-c1cc(-c3ccc(N(c4ccc(-c5ccc(C=C(C#N)C(=0)0)s5)cc4)c4ccc(-c5ccc(C=C(C#N)C(=0)0)s5)cc4)cc3)cs1)c1c3cc(C=Cc4ccc(C=C(C#N)C(=0)0)s4)ccc3n(C)c12

Lastest graph (left) vs graph in last step (right)



------

----Step-98----

Generate next fragment p = 0.8716926574707031

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-0.062069881707429886

-----

Molecule C1=C[SiH2]C=C1 and its specific config [CH:1]1=[CH:1][SiH2:2][CH:2]=[CH:2]1 w/p=-3.3673901557922363



-----

Molecule C[SiH3] and its specific config [CH3:1][SiH3:2] w/ p=-4.459293842315674

------

Molecule CCCCCCC and its specific config CCCCCC[CH3:1] w/ p=-4.933238506317139



-----

Molecule C1=CSC=C1 and its specific config S1[CH:1]=[CH:1][CH:2]=[CH:2]1 w/ p= -5.725485324859619



Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]']

Latest partial graph: Cc1ccc(C=Cc2ccc3c(c2)c2c(cc(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)cc5)cs4)c4c5cc(C=Cc6ccc(C=C(C#N)C(=0)0)s6)ccc5n(C)c42)n3C)s1

Lastest graph (left) vs graph in last step (right)



\_\_\_\_\_\_

----Step-99----

Generate next fragment p = 0.9999935626983643

Top 5 next motifs to attach:

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/p=-0.05087331682443619

------

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-3.4192769 527435303



Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w

/ p=-5.058681011199951



-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=[CH:2]1 w/ p=-5.07 9664707183838



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=CS[CH:1]=C1 w/ p=-6.652697563171387



Attaching fragment [CH2:1]=[CH2:2] of config ['C=[CH2:1]'] Latest partial graph: C=Cc1ccc(C=Cc2ccc3c(c2)c2c(cc(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=O)O)s7)cc6)c6ccc(-c7ccc(C=C(C#N)C(=O)O)s7)cc6)cc5)cs4)c4c5cc(C=Cc6ccc(C=C(C#N)C(=O)O)s6)ccc5n(C)c42)n3C)s1

Lastest graph (left) vs graph in last step (right)



-----

----Step-100----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C and its specific config C w/p=-0.008251977153122425

-----

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-4.811239719390869

-----

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:2][CH2:2][CH2:2]1 w/ p=-9.474627494812012



\_\_\_\_\_\_

Molecule C1=CCCC1 and its specific config [CH2:1]1[CH2:2][CH:2]=[CH:2][CH2:2]1 w/ p=-13.712767601013184



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-14.705822 944641113



-----

Attaching fragment C of config ['[CH4:1]']

Latest partial graph: C=Cc1ccc(C=Cc2ccc3c(c2)c2c(cc(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)c6ccc(-c7ccc(C=C(C#N)C(=0)0)s7)cc6)cc5)cs4)c4c5cc(C=Cc6ccc(C=C(C#N)C(=0)0)s6)ccc5n(C)c42)n3C)s1

Lastest graph (left) vs graph in last step (right)



\_\_\_\_\_\_

----Step-101----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-5.722029527532868e-06

3/20/22, 4:17 PM

Molecule C=O and its specific config O=[CH2:1] w/ p=-12.142010688781738Molecule C[SiH3] and its specific config [CH3:1][SiH3:2] w/p=-16.139101028442383

Molecule CCCCCC and its specific config CCCCCC[CH3:1] W/ p=-16.46015930175781



Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-16.629497528076172

-----

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]'] Latest partial graph: CC=Cc1ccc(C=Cc2cc3c(c2)c2c(cc(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=O)O)s7)cc6)c6ccc(-c7ccc(C=C(C#N)C(=O)O)s7)cc6)cc5)cs4)c4c5cc(C=C(C#N)C(=O)O)s6)ccc5n(C)c42)n3C)s1 Lastest graph (left) vs graph in last step (right)



-----

----Step-102----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C#N and its specific config N#[CH:1] w/ p=-0.00012432756193447858

------

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-9.358 190536499023



\_\_\_\_\_

Molecule C and its specific config C w/p=-10.463766098022461

-----

Molecule C=O and its specific config O=[CH2:1] w/ p=-11.708536148071289

-----

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-13.973914 14642334



\_\_\_\_\_\_

Attaching fragment N#[CH:1] of config ['N#[CH:1]']

Latest partial graph: Cn1c2ccc(C=Cc3ccc(C=CC#N)s3)cc2c2c1cc(-c1cc(-c3ccc(N(c4ccc(-c5ccc(C=C(C#N)C(=0)0)s5)cc4)c4ccc(-c5ccc(C=C(C#N)C(=0)0)s5)cc4)cc3)cc1)c1c 3cc(C=Cc4ccc(C=C(C#N)C(=0)0)s4)ccc3n(C)c12

Lastest graph (left) vs graph in last step (right)



3/20/22, 4:17 PM Debug

```
----Step-103----
Generate next fragment p = 1.2375334841616124e-21
----Step-104----
Generate next fragment p = 1.074206167268367e-13
----Step-105----
Generate next fragment p = 1.0
Top 5 next motifs to attach:
Molecule CC and its specific config [CH3:1][CH3:2] \text{W/} p=-1.6689286894688848e-0
```

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-14.100029945373535

Molecule [CH2-]C and its specific config [CH3:1][CH2-:2] w/ p=-14.389986991882 324

\_\_\_\_\_\_

Molecule C=O and its specific config O=[CH2:1] w/ p=-14.865313529968262

-----

Molecule CN and its specific config [CH3:1][NH2:2] W/ p=-17.095172882080078

-----

Attaching fragment [CH3:1][CH3:2] of config ['C[CH3:1]'] Latest partial graph: CC(C#N)=Cc1ccc(C=Cc2cc3c(c2)c2c(cc(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=O)O)s7)cc6)c6ccc(-c7ccc(C=C(C#N)C(=O)O)s7)cc6)cc5)cs4)c4c5cc(C=Cc6ccc(C=C(C#N)C(=O)O)s6)ccc5n(C)c42)n3C)s1 Lastest graph (left) vs graph in last step (right)



\_\_\_\_\_\_

----Step-106----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C and its specific config C w/p=-0.3379138708114624

Molecule C#N and its specific config N#[CH:1] w/ p=-1.2967575788497925

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-4.329 935550689697



Molecule C=O and its specific config O=[CH2:1] w/p=-9.10343074798584

------

Molecule C1=CSC=C1 and its specific config C1=[CH:1]S[CH:2]=C1 w/ p=-10.106386 184692383



-----

Attaching fragment C of config ['[CH4:1]']

Latest partial graph: CC(C#N)=Cc1ccc(C=Cc2ccc3c(c2)c2c(cc(-c4cc(-c5ccc(N(c6ccc(-c7ccc(C=C(C#N)C(=O)O)s7)cc6)c6ccc(-c7ccc(C=C(C#N)C(=O)O)s7)cc6)cc5)cs4)c4c5cc(C=Cc6ccc(C=C(C#N)C(=O)O)s6)ccc5n(C)c42)n3C)s1

Lastest graph (left) vs graph in last step (right)



\_\_\_\_\_\_

----Step-107----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C=O and its specific config O=[CH2:1] w/ p=-1.1920928244535389e-07



Molecule CO and its specific config O[CH3:1] w/ p=-18.986196517944336

-----

Attaching fragment O=[CH2:1] of config ['O=[CH2:1]'] Latest partial graph: Cn1c2ccc(C=Cc3ccc(C=C(C#N)C=O)s3)cc2c2c1cc(-c1cc(-c3ccc(N(c4ccc(-c5ccc(C=C(C#N)C(=O)O)s5)cc4)c4ccc(-c5ccc(C=C(C#N)C(=O)O)s5)cc4)cc3)cs 1)clc3cc(C=Cc4ccc(C=C(C\#N)C(=O)O)s4)ccc3n(C)c12 Lastest graph (left) vs graph in last step (right)



-----

----Step-108----

Generate next fragment p = 4.980957319677204e-21

----Step-109----

Generate next fragment p = 0.9999995231628418

Top 5 next motifs to attach:

Molecule CO and its specific config O[CH3:1] W/ p=-0.009655111469328403

Molecule CN and its specific config [CH3:1][NH2:2] w/p=-5.474302291870117Molecule CC and its specific config [CH3:1][CH3:2] w/p=-5.605182647705078Molecule CO and its specific config [CH3:1][OH:2] w/p=-7.083941459655762

Molecule CN and its specific config N[CH3:1] w/ p=-7.4250383377075195

-----

Attaching fragment O[CH3:1] of config ['O[CH3:1]'] Latest partial graph: Cn1c2ccc(C=Cc3ccc(C=C(C#N)C(=0)0)s3)cc2c2c1cc(-c1cc(-c3ccc(N(c4ccc(-c5ccc(C=C(C#N)C(=0)0)s5)cc4)c4ccc(-c5ccc(C=C(C#N)C(=0)0)s5)cc4)cc3)cs1)c1c3cc(C=Cc4ccc(C=C(C#N)C(=0)0)s4)ccc3n(C)c12 Lastest graph (left) vs graph in last step (right)



```
----Step-110----
Generate next fragment p = 0.01190867368131876
----Step-111----
Generate next fragment p = 4.3493557200235955e-08
----Step-112----
Generate next fragment p = 1.575424539623782e-05
----Step-113----
Generate next fragment p = 2.967772472217689e-09
----Step-114----
Generate next fragment p = 1.11399020365807e-15
----Step-115----
Generate next fragment p = 2.546446729859179e-17
----Step-116----
Generate next fragment p = 3.1717604542791378e-06
----Step-117----
Generate next fragment p = 6.617605812902757e-20
----Step-118----
Generate next fragment p = 2.031031766380753e-11
----Step-119----
Generate next fragment p = 1.663748432588825e-19
----Step-120----
Generate next fragment p = 2.262406262332206e-08
----Step-121----
Generate next fragment p = 0.9998952150344849
Top 5 next motifs to attach:
Molecule CN and its specific config [NH2:1][CH3:2] w/ p=-0.023700183257460594
```

Molecule CN and its specific config C[NH2:1] w/ p=-3.787360668182373



Skip, the best next fragment to be attached to the current fragment does not y ield a valid sub-molecule . Go back to the previous fragment. ----Step-122----- Generate next fragment p=1.0 Top 5 next motifs to attach: Molecule C1CCNC1 and its specific config [CH2:1]1[CH2:1][NH:2][CH2:2]1 w/ p=-0.13806338608264923



\_\_\_\_\_\_

Molecule CN(C)C and its specific config N([CH3:1])([CH3:2])[CH3:2] w/ p=-2.325 0234127044678



-----

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:1][CH2:2][CH2:2]1 w/ p=-4.258027076721191



Molecule C1CCNCC1 and its specific config [CH2:1]1[CH2:2][CH2:2][NH:2][CH2:2][ CH2:2]1 w/ p=-4.5409440994262695



Molecule CBr and its specific config Br[CH3:1] w/ p=-6.290830135345459

-----

Skip, the best next fragment to be attached to the current fragment does not y ield a valid sub-molecule . Go back to the previous fragment.

----Step-123----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1]C=C[CH:2]=C1 w/ p=-0.979 3890714645386



\_\_\_\_\_

Molecule C1=CCCC=C1 and its specific config C1=[CH:1][CH2:2][CH2:2][CH:2]=C1 w / p=-1.16252863407135



-----

Molecule C=C and its specific config [CH2:1]=[CH2:2] w/ p=-1.39579439163208

-----

Molecule C1=CCCC=C1 and its specific config C1=C[CH2:2][CH2:2][CH:1]=C1 w/ p=- 3.6127209663391113



-----

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:2]=[CH:2][CH:2]=C1 w / p=-4.562343597412109



-----

Skip, the best next fragment to be attached to the current fragment does not y ield a valid sub-molecule . Go back to the previous fragment.

----Step-124----

Generate next fragment p = 0.9999998807907104

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/p=-0.006059726700186729

-----

Molecule C1=CCCC1 and its specific config [CH:1]1=[CH:1][CH2:2][CH2:2][CH2:2]1 w/ p=-6.0629658699035645



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config S1[CH:1]=[CH:1][CH:2]=[CH:2]1 w/ p= -7.047156810760498



\_\_\_\_\_\_

Molecule C1CCCC1 and its specific config [CH2:1]1[CH2:1][CH2:2][CH2:2]1 w/ p=-7.10591983795166



\_\_\_\_\_

Molecule C1=CCCC1 and its specific config [CH2:1]1[CH2:1][CH2:2][CH:2]=[CH:2]1 w/ p=-7.136286735534668



-----

Skip, the best next fragment to be attached to the current fragment does not y ield a valid sub-molecule . Go back to the previous fragment.

----Step-125----

Generate next fragment p = 1.0

Top 5 next motifs to attach:

Molecule CC and its specific config [CH3:1][CH3:2] w/ p=-7.390948667307384e-06

\_\_\_\_\_\_

Molecule C1=CCCC1 and its specific config [CH2:1]1[CH:2]=[CH:2][CH2:2][CH2:2]1 w/ p=-13.06435489654541



\_\_\_\_\_

Molecule C1=CC=CC=C1 and its specific config C1=[CH:1][CH:1]=C[CH:2]=[CH:2]1 w / p=-13.119874954223633



Molecule C1CSCS1 and its specific config S1[CH2:1]S[CH2:2][CH2:2]1 w/ p=-13.66 5506362915039



\_\_\_\_\_\_

Molecule C1=CSC=C1 and its specific config C1=[CH:2]S[CH:1]=[CH:1]1 w/ p=-14.9 6162223815918



\_\_\_\_\_

Skip, the best next fragment to be attached to the current fragment does not y ield a valid sub-molecule . Go back to the previous fragment.

----Step-126----

Skip, current fragment has no next fragment to be attached. Go back to the pre vious fragment.

In [ ]: