Automating Architecture Services Computation workshop SIDE PROJECT Soyoon Kwon

Brainstorming

Automating Architecture

건축자동화

Save time Nz \(\frac{\pmathb{1}}{2}\)

Accuracy

정확성

Rapid Simulation

me No Model

Rapid Analysis

Flexibility Redd

Data-Driven Decision - Making

데이터 기반 의사결정

Consistency <u>Qued</u>

Data Transformation

In the second se

Improved Efficiency <u>abd 88</u>

IDEA

Analysis

Building Height measurement

Node

Site Planning

information

Path

Edge

Base massing

magnitude

Landmark

District

Layout

Mapping

Point of view

OPT1 Automate Site Analysis 주변 데이터를 시각화 한다.

→ 분석 자동화

OPT2 Automate building height 내 건물 높이를 산정한다.

높이(배치) 자동화

OPT3 Automate Basemassing build 기준층 평면에 맟춰서 베이스매싱을 만든다.

베이스매싱 자동화

Approach

OPT1_Automate building height

Processing IDEA

기준(법적 ,높이,거리,규모..). 고려사항 에 따른 대응 값 설정

내 건물의 좌표설정

높이에 대한 기준을 섬세하게 설정해야할것 같다.

Strength

디자인 전 단계를 빠르고 정확하게 여러가지 고려사항을 한번에 반영 바뀌는 값들에 대한 유연성 디자인하는 시간에 더 투자

OPT2_Automate Site Analysis

Processing IDEA

Strength

GIS에 있는 자료, 높이, 연도, 재료 등 각종 특성을 한번에 시각화 가능 엑셀로된 자료의 형태를 시각화. 분석 다이어그램 순식간.

```
side.py > ...
     import geopandas as gpd
     from shapely.geometry import Point
     import matplotlib.pyplot as plt
     import math
     # 주변 건물 데이터 (가상의 데이터)
     building_data = {'geometry': [Point(0, 0), Point(1, 1), Point(2, 0)],
                      'height': [20, 30, 25]}
     buildings = gpd.GeoDataFrame(building_data, crs='EPSG:4326')
11
     # 나의 건물 위치 (가상의 위치)
12
     my building location = Point(1.5, 0)
13
     # 시각화: 주변 건물과 나의 건물 위치
15
     ax = buildings.plot(column='height', cmap='OrRd', legend=True)
     gpd.GeoSeries([my_building_location]).plot(ax=ax, color='blue', markersize=50, label='My Building')
17
     plt.legend()
     plt.show()
19
     # 나의 건물 높이 계산
21
     def calculate_building_height(buildings, my_location):
22
         distances = buildings.distance(my location)
23
         angles = buildings.geometry.angle(my_location)
         total_weighted_height = 0
         total weight = 0
         for distance, angle, height in zip(distances, angles, buildings['height']):
29
             weight = math.cos(angle) / distance
             total_weighted_height += weight * height
             total_weight += weight
32
         if total weight != 0:
             my_building_height = total_weighted_height / total_weight
         else:
             my building height = 0
         return my building height
     my_building_height = calculate_building_height(buildings, my_building_location)
     print(f"나의 건물의 높이: {my_building_height:.2f} 미터")
42
```

OPT3_Automate Base Massing Build

Processing IDEA

Strength

귀찮은 베이스 매싱만들기를 쉽고 간단하게! 도면이 수정될때마다 새로 만들 필요 없이 도면만 바꾸면 됨! 시간 절약, 디자인 단계에서 시간 투자 가능

1. Plan Clean-up

2. Build Base Massing

