

Lab Prep

Session 1: Fiber Reinforced Composites

CE 331 Spring 2014

Session 1 Objectives

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

Measure E in flexure

 Measure variation in E with respect to reinforcement orientation

Materials

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- Continuous Fiber Reinforced Polymer (FRP)
- Cut from the same sheet at different angles
- These are brittle
 be careful with
 them!

Edges can be sharp!

Midpoint Deflection

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

- E in flexure = beam deflection
- Similar to ASTM D143 for wood

Δ: mid-span deflection (mm)

P: applied load (N)

L: length between supports (150mm)

E: Young's Modulus

I: moment of inertia $(bh^3/12)$

Experimental Setup

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

- Width/thickness
- No weight zero gauge
- Hang weight and read mdpt Δ
- Masses of: 500, 750, 1000, 1250
 g

Weight [N] = mass [kg] * 9.81 [m/s²]

Calculations

Session 1

Setup

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

For each specimen:

- Plot P vs Δ
- Linear Regression to find slope (s)
 - Non-zero intercept

•
$$E = \frac{P}{\Delta} \frac{L^3}{48I} = S \frac{L^3}{48I}$$

- All specimens on the same figure
- UNITS!

Reports

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- Not meant to be a full lab report that you are probably familiar with
- There will not be a minimum length requirement
 - Grading will be based on content
 - A few reports during the semester will have a maximum limit
- Rubrics will be provided
- If you have questions, ASK US!

What to include in this Report

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- This information is provided in the rubric
- Summary (<1 pg)
 - Goals/objectives
 - Method
 - Results/conclusions
- Results
 - Summary (slide 9)
 - Plot of P vs Δ
 - Plot of E vs θ

- Format/Organization
 - Structure
 - Spelling
 - Sig figs
- Appendix
 - Raw data table (slide 11)
 - Example hand calculation
 - Unit analysis

Example Summary Table

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Cut Angle [deg]	Applied Load [N]	Mid-Pt Δ [mm]	Slope	E [GPa]
0			- - -	
22.5			- -	
45			-	
67.5			- - -	
90			~	6 GPa

Example E vs θ

Session 1

Setup

Analysis

Session 2

Background

Setup

Task 1

Task 2

Figure 2: Elastic modulus as a function of reinforcement orientation

Data Table

					Measured Delection [mm]			
Specimen #	Cut Angle [deg]	b [mm]	h [mm]	I [mm ⁴]	500 g	750 g	1000 g	1250 g
1	0							
2	22.5							
3	45							
4	67.5							
5	90							

CE 331, Printed SP14 Lab 1 and 2 Slide 12 of 48

Lab Prep

Session 2: Particulate Composites and NDT

CE 331 Spring 2014

Non-Destructive Testing (NDT)

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- In situ properties
- Typically strength / stiffness
- Member thickness
- Defects
- Reinforcement
- More recent: durability

Rebound Hammer

Session 1

Setup

Analysis

Report

Session 2

-Background

Setup

Task 1

Task 2

Task 3

- 50,000+ Sold World Wide
- Can Be Conducted in Any Direction
- Correlate with Cylinders with Indents at 120 Degrees
- ASTM C805
- +/- 15-20%

Push Hammer (Store Energy)

Pin Released

Rebound Measured

Rebound Hammer

Data Analysis

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Drawbacks

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- Measure of How Much Energy is Absorbed
- Related to Stiffness (Strength of Concrete)
- Aggregate Dependence
- Sensitive to Local Conditions (Average of 10 Values Reported)
- Near Surface Layer Measurement Not Core Concrete
- Sensitive To Moisture Conditions at Surface
- Surface (Trowel or Plywood Forms Higher)
- Calibrate with Local Materials
- Rigidity of Test Samples

Ultrasonics

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- Similar to radar, medical ultrasound
- Above audible sound freq
- Sound/Stress waves
- Piezoelectric material converts electricity into stress waves

Benefits

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- May Be Required to Assess To Find Out What Quality of Concrete Was Placed (QC/QA new construction, troubleshooting problems)
- Condition Evaluation of Older Concrete (rehab), Increasingly Common to Find Structures "Deteriorating" From Materials Related Problems
- Quality Assurance of Concrete Repairs
- Able to Assess Large Volumes of Concrete Rapidly

Principle

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- Sound waves travel through materials
- Defects influence travel time
- Voids can reflect or alter wave direction

Speed of Sound

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

Sound travels through materials

•
$$f\left(\frac{E}{\rho}\right)^{1/2}$$

E:elastic modulus ρ :density

Air

Water

Solid

Types of Waves

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

- Primary**
 - P-wave
 - compression
- Secondary
 - S-wave
 - shear
 - transverse
- Rayleigh
 - surface

http://www.darylscience.com/Demos/PSWaves.html

Indirect Transmission (Ultrasonic Pulse Velocity) ASTM C 597

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

Measure travel time as a function of distance, *L*, between transducers; determine depth of interface, *d*

Determine "d"

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

$$d = \frac{X}{2} \sqrt{\frac{V_2 - V_1}{V_2 + V_1}}$$

Naik, Malhotra, Popovics

Rate Effects

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

- Later in semester
- Faster = Stiffer

Long-Term Behavior

Creep

Static

Non Destructive Testing (ex. UPV)

Earthquake

Impact

Blast

Slow

Typical Load Rate 25-50 psi/sec Strain Rate (sec-1)

Fast

UPV Machine (1970s)

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

Pulse generator/receiver has a timer which measures the transit time (μ s)

Display: Wave transit time

Pulse generator/receiver

UPV Machine (2011)

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

Pulse generator/receiver has a timer which measures the transit time (μ s)

Wave Speed

Session 1

Setup

Analysis

Report

Session 2

Background

Task 1

Task 2

Task 3

Machines give transit time (t)

$$-C = \frac{L}{t}$$

C: wave speed [m/s]

L: dist. between electrodes or length of sample [m]

t: transit time [s] (convert from what's given on machine in μ s)

For some reason, convention in this field uses "C" for wave speed

$$-C = \sqrt{\frac{E(1-\mu)}{\rho(1+\mu)(1-2\mu)}}$$

*this is good only for p-waves

C: wave speed [m/s]

 μ : Poisson's ratio

 ρ : density [kg/m³]

Session 2 Objectives

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- Learn the principles of dynamic nondestructive testing (NDT), technology known as ultrasonic pulse velocity (UPV)
- Determine E of common homogeneous materials
- Determine E of plaster/alum composites
 - Volume fraction effects
- Evaluate structural integrity in the field

Task 1: Homogeneous Materials

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- Measure mass and dimensions (ρ)
- Measure transit time
- Compute velocity

SAMPLE	Mass (g)	Length (mm)	Diameter (mm)	Time (μs)	Speed (m/s)
Steel					
Copper					
Aluminu m					
HDPE					
Glass					

Task 1: Homogeneous Materials

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- Compute E
- Compare to literature values
 - Credible sources
 - http://www.engineeringtoolbox.com/young-modulus-d_417.html
 - Why might there be differences?
- Summary Table

SAMPLE	Density (g/cm³)	Pulse Velocity (m/s)	Elastic Modulus (Gpa)
Steel			
Copper			
Aluminum			
HDPE			
Glass			

Task 2: Particulate Composites

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

Plaster Matrix / Aluminum dispersion

- 5 specimens
 - 100 % plaster
 - 100 % Al
 - 3 composites

$E \vee V_{al}$ (Fig. 3)

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

• Experimental Data Points of $E \vee V_{al}$

Calculations

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

- Task 2
 - Task 3

- Measure transit time
- Compute velocity
- Elastic Modulus

$$- C = \sqrt{\frac{E(1-\mu)}{\rho(1+\mu)(1-2\mu)}}$$

For some reason, convention in this field uses "C" for wave speed

– μ and ρ are different for each sample (see previous slides)

Determine ρ and V_{al} (Fig. 1)

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- Mass / dimensions $\rightarrow \rho$
- Determine V_{al} for each of specimens

Determine μ (Fig. 2)

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

•
$$V_{al} \rightarrow \mu$$

•
$$\mu_{al} = 0.33$$

• $\mu_{plaster} = 0.15$

$E \vee V_{al}$ Models (Fig. 3)

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

- Models can be used to predict intermediate values of E
- Theoretical relationships that involve some assumptions
- Parallel and Series Model
- These will be covered in detail with Dr.
 Weiss

Task 3

Series $E \vee V_{al}$ Models (Fig. 3)

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

Parallel (Voight) Law

Series $E \vee V_{al}$ Models (Fig. 3)

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

Series (Reuss) Law

Model Conventions

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

 There are some general rules when showing experimental data and models on the same plot

- Experimental Data
 - Measured points
 - Not connected with a line
- Model Data
 - No data points
 - Continuous: Use lines and a large number of points to define the curve

Report

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Summary Table

SAMPLE	Density (kg/m³)	V_{al}	Poisson's Ratio μ	Time (μs)	Elastic Modulus (MPa)
1					
2					
3					
Aluminum					
Plaster					

Figures

$$- \rho v V_{al}$$

- $-\mu v V_{al}$
- E v V_{al} with both models (make sure to describe these models in the report)

Task 3: Field Investigation

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

- Movement of a newly constructed wall during loading has raised concerns about the structural integrity of the wall
- The contractor cannot recall if the concrete was properly consolidated during placement

Recall: Through Transmission

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

- Through thickness CP measurements used to monitor uniformity of in-place concrete.
- Presence of "defect" increases travel time (lower speed).
- Requires access to both sides

Task 3: Field Investigation

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

 Determine sample location and frequency (previously chosen)

Task 3: Field Investigation

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

Create a graphic showing the integrity of the wall based on measurements

- 50μs< value < 100μs
 yellow
- value>100μs red

Task 3: Report

Session 1

Setup

Analysis

Report

Session 2

Background

Setup

Task 1

Task 2

Task 3

- Table showing values collected from lab
- Visual graphic showing integrity of the wall
 - Make sure to include a legend
- Discussion of how the defect(s) affected the wave speed within the wall

MAKE SURE TO CHECK THE RUBRICS!

Questions?!

CE 331, Printed SP14 Lab 1 and 2 Slide 48 of 48