Lead Screw

Lead Screws - Overview

Lead Screw

Lead Screw Specifications / Technical Calculations

Feed Screw Comparison

Туре	Slide Screws	Lead Screw	Rolled Ball Screw	Precision Ball Screw						
Shape										
Feature	Simple feed and adjust mechanisms, etc. Made of stainless steel shaft and plastic nut. No- grease operation is possible.		costs when precision ball screw	Optimal for the case where high positioning and velocity accuracy are required.						
Example	Stoppers In/Out and Transfer Pitch Changeover	Transfer Pitch Changeover Jacks, Feed Screw for Lathes	Transfer Line	Measurement Instruments						
Allowable Rotational Speed	Low Speed	Medium Speed	High Speed	High Speed						
Accuracy	**	**	***	****						
Allowable Axial Load () is for reference.		© (max30000N)	(max9960N)	(max9960N)						

Lineup: Lead Screws

Lead Screw Type	Shape	Right-Hand Screw	Left-Hand Screw	Fine Pitch R Screw	R / L Screw	Prec. R / L Screw	Page
Both Ends Stepped		0	0	0	0	0	P.691
One End Stepped, One End Double Stepped		0	0	-	0	0	P.693
One End Stepped / One End Double Stepped		0	-	-	-	-	P.695
Both Ends Double Stepped		0	0	-	-	-	P.697
Straight		0	0	-	0	-	P.698

Lead Screw Accuracy Standards

Item	Content
Allowable Dimension and Tolerance	JISB0217 0218
Screw Accuracy	7e Grade
Nut Accuracy	7H Grade
Single Pitch Error	±0.02
Accumulated Pitch Error	±0.15/300mm
Shaft Maximum Runout	See table below
Length Tolerance	JIS B 0405 (Medium Class)

Lead Screw Thread Geometry Standards (JIS Tr)

H=1.866P H1=0.5P d2=d-0.5P d1=d-P D=d D2=d2 D1=d1

d1: Root Dia. d2: Effective Dia. D1: I.D. d2: Effective Dia. H1: Engage Height d: 0.D. Tapped D: Root Dia.

Pitch 3 of D Dimension 16, Pitch 5 of D Dimension 25 and Pitch 6 of D Dimension 40 conform to Tr Standard.

· Runout Measurement Method

■Lead Screw Specifications

Lead Screw Specifications															
Shaft		Screw Shaft	Screw Shaft	Screw Shaft		Screw Shaft Runout (Max.)									
Dia.	Pitch	Effective		Lead					Shaf	t Overall Le	ength				
		Dia.	(MIN.)	Angle	~125	126~200	201~315	315~400	401~500	501~630	631~800	801~1000	1001~1250	1251~1600	1601~2000
8	1.5	7.25	(5.9)	3°46'	0.1	0.14	0.21	0.27	0.35	-	-	-			
10	2	9	(7.2)	4°03'	0.09	0.00	0.16 0.21	0.07	0.35	0.05	0.58	-	-	-	
12	2	11	(9.2)	3°19'	0.09	0.12		0.21	0.27	0.35	0.46	0.58			
14	3	12.5	(10.1)	4°22'		0.09			0.2 0				-	-	-
16	2	15	(13.18)	2°25'	0.09		0.13 0.16			0.25					
10	3	14.5	(12.1)	3°46'		0.44		0.10			0.25 0.32 0.4	0.40			
18	4	16	(13.1)	4°33'		0.11		0.16				0.42 0.55	0.55	0.73	1
20	2	19	(17.18)	1°55'	-										
20	4	18	(15.1)	4°03'											
22	5	19.5	(16.1)	4°40'			0.11		0.13 0.16	0.19 0.23	0.00	0.23 0.3			
25	5	22.5	(19)	4°03'		0.09		0.11 0.13					0.38 0.5	0.5	0.69
28	5	25.5	(22)	3°34'	_	0.09	0.11		0.10		0.23			0.69	
32	6	29	(24.5)	3°46'											
36	6	33	(28.5)	3°19'	- 0.11										
40	6	37	(32.5)	2°57'		- 0.11	0.11	0.11	0.13	0.15	0.15 0.17	0.22	0.27	0.34	0.46
50	8	46	(40.4)	3°10'											

Nuts for Lead Screw Specifications

		Part Number / Type											
_		MTS/ Standard	MTSP/ Compact	MTSJR / Pilot	MTSQR / Slotted Holes	MTRFR / RoHS Compliant	MTBLR / Anti-Backlash	MTSM/ Lubrication-Free	MTSR/ High Strength Plastic	MTSF/ Plastic			
Shaft Dia.	Pitch	.0.	.0.			, o.	0	0000		0			
		P.685	P.685	P.685	P.685	P.686	P.686	P.687	P.688	P.688			
		Allowable Dynamic Thrust (N)											
8	1.5	1470	-	-	-	-	-	-	-	-			
10	2	2550	2020	-	-	2550	2600	2550	278	255			
12	2	3920	3140	-	-	3920	3390	3920	428	392			
14	3	4900	3920	4900	4900	4900	-	4900	536	490			
16	2	-	-	6670	6670	6670	-	-	-	-			
10	3	6670	5340	-	-	6670	6290	6670	686	628			
18	4	8720	-	-	-	-	-	-	954	873			
20	2	-	-	-	-	10100	-	-	-	-			
	4	9810	7850	9810	9810	9810	9320	9810	1071	980			
22	5	12360	9890	12360	12360	-	-	12360	-	-			
25	5	14220	11380 14220		14220	14220	-	14220	-	1412			
28	5	17950	14420	17950	17950	17950	-	17950	-	1765			
32	6	21080	16940	21080	21080	21080	-	21080	-	2050			
36	6	25780	-	-	-	-	-	25780	-	-			
40	6	33830	-	-	-	-	-	33830	-	-			
50	8	40310	-	-	-	-	-	-	-	-			

Lead Screw Technical Calculations

Calculate Contact Pressure P and Sliding Velocity V based on conditions of use to check that no abnormal wear will occur.

Calculate cross point based on the calculated P and V values in PV Graph.

When the cross point is located inside the line ① or ② in PV Value Graph, it can be stated that no abnormal wear will occur.

Lead Screw Nut Selection Procedure

1) Contact Pressure P (N/mm²)

2 Sliding Speed V (m/min)

 $V = \frac{\pi \cdot d_2 \cdot n}{\cos(d)} \times 10^{-3}$

d2: Screw Shaft Effective Dia.

→Nuts for Lead Screw Specifications d: Screw Shaft Lead Angle (Degree)

Nuts for

Screw Shaft Revolution Frequency per Minute (min⁻¹) →Nuts for Lead Screw Specifications

3Screw Efficiency η 1-µtan(d)

 $\eta = \frac{1 - \mu \tan (d)}{1 + \mu / \tan(d)}$

μ: Dynamic Friction Coefficient d: Screw Shaft Lead Angle (Degree)

■ Dynamic Friction Coefficient Reference Value

Thread Shaft	Nut	Dynamic Friction Coefficient µ		
Steel (Lubrication)	Brass	0.21		
Steel (Non Lubrication)	Polyacetal / PPS Resin with Sliding Property	0.13		

(4)Load Torque T (N·cm)

T= FS·R

 $T = \frac{2\pi \cdot \eta}{2\pi \cdot \eta}$ Fs: Axial Load

Thread Shaft	Nut	Dynamic Friction Coefficient μ		
Steel (Lubrication)	Brass	0.21		
Steel (Non Lubrication)	Polyacetal / PPS Resin with Sliding Property	0.13		

η: Screw Efficiency R: Lead (cm)

Calculation Example

In case of using MTSRW16 shaft, pitch 3 and MTSFR16 brass flanged nut when the axial load is 300(N) as rotational speed at 500min-1

①Contact Pressure P (N/mm²)

 $P = \frac{Fs}{Fo} x \alpha = \frac{300}{6670} x9.8 = 0.44(N/mm^2)$

②Sliding Speed V (m/min)

 $V = \frac{\pi \cdot d_2 \cdot n}{\cos(d)} \times 10^{-3} = \frac{\pi x 14.5 x 500}{\cos(3^{\circ} 46^{\circ})} \times 10^{-3} = 22.8 \text{(m/min)}$

When the PV Graph is viewed based on the calculated P and V values, the cross point V=22.8(m/min) when P=0.44(N/mm²) is located inside the line ①, thus it can be stated that no abnormal wear will occur.

Calculation Example

Required Torque when using screw shaft MTSRW16, pitch 3, nut MTSFR16 (flanged brass)

3Screw Efficiency η

 $\eta = \frac{1 - \mu \tan(d)}{1 + \mu / \tan(d)} = \frac{1 - 0.21 \times \tan(3^{\circ}46')}{1 + 0.21 / \tan(3^{\circ}46')} = 0.24$

Also, in a case of calculating for the Load Torque T (N·cm) when the axial load is 300N. ④Load Torque T (N·cm)

 $T = \frac{FS \cdot R}{2\pi \cdot \eta} = \frac{300 \times 0.3}{2\pi \times 0.24} = 59.7 \text{(N·cm)}$