MAC 338 - Análise de Algoritmos

$1^{\underline{a}}$ Lista de Exercícios 1.0 – 2/3/2015 – Entrega 12/3/2015

Procure fazer todos os exercícios do Cap. 3 do CLRS. Mesmo que não faça, tenteler todos e entender seus enunciados. Eles apontam para algumas definições e conceitos que não foram apresentados em aula, mas que podem aparecer de uma hora para outra.

Aqui vai uma relação de recomendados:

- 3.2 2
- 3.2-3 (Sem usar Stirling)
- 3-4 (Importante!)
- 3-5 (Importante!)

Agora vem a lista, só duas questões :-)

- 1. (2.0) Dê um exemplo de funções estritamente crescentes f, g tais que nem f = O(g) nem g = O(f). Obs.: eu não conheço exemplos assim dados por fórmulas simples.
- 2. (8.0) CLRS 3-3 ligeiramente modificado.

Ordene as funções abaixo conforme \leq , deixando claro quais funções estão na mesma classe Θ . Note que o exercício consiste em **provar** cada uma das alternativas. Por sorte, nessa lista, vale que se f = O(g) mas $g \neq O(f)$, então f = o(g). Não precisa fazer todas as funções, basta as 18 que estão em **negrito vermelho**. Apresente sua resposta assim: primeiro organize visualmente as funções de forma a ficar claro a relação entre suas ordens de crescimento. Depois coloque as várias demonstrações.

$\lg(\lg^* n)$	$2^{\lg^* n}$	$\left(\sqrt{2} ight)^{\lg\mathbf{n}}$	n^2	$\mathbf{n}!$	$\lfloor \lg \mathbf{n} \rfloor !$
$\big(\frac{3}{2}\big)^{\mathbf{n}}$	n^3	$\lg^2 n$	$\lg(\mathbf{n}!)$	$2^{2^{n}}$	$n^{1/\lg n}$
$\ln \ln \mathbf{n}$	$\lg^* n$	$\mathbf{n}\cdot\mathbf{2^n}$	$\mathbf{n}^{\lg\lg\mathbf{n}}$	$\ln \mathbf{n}$	1
$2^{\lg n}$	$(\lg n)^{\lg n}$	e^n	$4^{\lg \mathbf{n}}$	(n + 1)!	$\sqrt{\lg n}$
$\lg^*(\lg n)$	$2^{\sqrt{2 \lg n}}$	n	$2^{\rm n}$	$\mathbf{n} \lg \mathbf{n}$	2^{2^n}