Graph Data Structures and Algorithms

from Scratch

Agenda

- Graph Theory
- Graph Data Structures
- Graph Properties
- Graph Algorithms
- Advanced Graph Algorithms (bonus)
- 5-10 minute break every hour

Graph Theory

What Is A Graph?

- Nodes/vertices
- Edges

How many nodes and edges in each of these graphs?

Directed Graphs

- Edges have a direction
- Can go both ways
- Sometimes called "arcs"

Which of these graphs are directed?

Weighted Graphs

• Each edge has a weight

Directed Weighted Graphs

Both of the above descriptors

Which edge in these graphs has the highest weight? Lowest weight?

Naming Conventions

- A Graph G is an ordered pair (V, E)
- V is the set of vertices
- E is the set of edges
 - Edges are described as (u, v)
 - o There being an edge from u to v is the same as saying v is a neighbor of u
- ∅ is the empty set; (∅, ∅) is the empty graph

Example

$$G = \{V, E\}$$

$$V = \{A, B, C\}$$

$$E = \{ (A,B), (B,A), (C,B) \}$$

Write down these graphs in mathematical notation.

If G = (V, E) is an undirected graph, and (u, v) is in E, what else must be in E?

What Is A Subgraph?

- H = (V', E')
- $V' \subseteq V$ (subset)
- $E' \subseteq E$ (subset)

What Is A Path?

- A path from u to v is a subgraph with edges (u, v₀), (v₀, v₁), ..., (v_n, v)
- (A, B)
- (A, B), (B, C)
- (A, B), (B, C), (C, A)

What Is A Cycle?

- A subgraph that has a path from v to v for all v in V
- Directed vs undirected

Find a subgraph of these graphs that does not have a cycle

Graph Data Structures

Adjacency Matrix

- Make a |V| by |V| matrix, called A
- For each edge $(v_{i, v_{j}}) \in E$, set A[i][j] = 1

Adjacency Matrix Example

A[C, B] is 1 because C and B are adjacent because (C, B) \in E

Adjacency Matrix Properties

- Diagonal
- Symmetry
- Matrix operations like exponentiation

Adjacency Matrix Exercise

Find the adjacency matrix for these graphs (NOTE: one is directed!)

Adjacency List

- Make a list of |V| lists (usually linked lists)
- Add each edge (v_i, v_i) to the list A[j]

Adjacency List Example


```
A [C]
B [C, D]
C [A, B, D, E]
```

D [B, C]

E [C]

Find the adjacency list for these graphs (NOTE: one is directed!)

Discussion

- Space complexity
- Time complexity
- Ease of use

Programming Exercise

Graph Properties

Degree

• The degree of a vertex is the number of edges containing it

Degree

 In a directed graph in-degree is the number of edges coming in, and out-degree is the number of edges going out

Degree

• The minimum and maximum degree of a graph are the degree of the node with the smallest or largest degree, respectively

Find the degree of each node. For the directed graph, find in- and out-degree.

Programming Exercise

Find the degree of each of these nodes.

Connectedness

• A graph is connected if there is a path from every vertex to every other vertex.

Programming Exercise

Cut edge

- An edge that, if removed, disconnects the graph.
- An edge that is not in a cycle.

Exercise

- Are these graphs connected?
- Which edges are cut edges?

Completeness

• A graph is complete if there is an edge from every vertex to every vertex

Exercise

Which of these graphs are complete graphs?

Programming Exercise

Cyclic

• A graph is cyclic if it has a cycle in it

Exercise

- Can a connected graph be acyclic?
- Can a complete graph be cyclic?
- Can an undirected graph where each node has degree 2 be acyclic?

Trees

• A graph is a tree if it has no cycles and is connected

Discussion

- Cut-edges represent a place where you can stop the spread of a disease
- Cut-edges represent a place where one power line going down takes out power
- In-degree was used for search result rankings
- High degree in an infection graph can represent a super-spreader
- Degree of social networks tells you how connected people are
- Out-degree of dependency graph shows number of dependencies
- When else are these things useful to use?

Graph Algorithms

Search Algorithm Uses

- Finding files
- Navigation
- Currency conversion

Breadth-first Search

Depth-first Search

Difference

BFS will always find the shortest path

BFS on weighted graphs

- "Shortest path" means something different
- Can convert weighted graphs to non-weighted
- Dijkstra's algorithm

These two graphs are equivalent!

Dijkstra's algorithm

- Keep track of shortest known distance to each node
- From the node with the shortest distance from the start point, re-calculate everything next to it
 - o If this node has a shorter path, remember that
- Once you have found the target, trace the shortest path

Dijkstra's algorithm

Generic search

```
def search(graph, source, target):
    visited = set()
    to visit = ToVisitDataStructure(source)
    while to_visit:
         current = get next(to visit)
         if current == target:
              return True
         if current not in visited:
              visited.append(current)
              neighbours = graph[current]
              for neighbour in neighbours:
                  add_node(to_visit, neighbour)
    return False
```

Breadth First Search

- Add to end, pop from front
- Queue

current = A
to_visit = {B, C, D}

current = B
to_visit = {C, D, E, F, G}

current = C
to_visit = {D, E, F, G}

Depth First Search

- Add to front, pop from front
- Stack

current = A
to_visit = {B, C, D}

current = B
to_visit = {E, F, G, C, D}

Programming Exercise

NetworkX

Creating graphs

```
import networkx as nx
G = nx.Graph()
G.add_node(1)
G.add_nodes_from([2, 3])
G.add_edge(1, 2)
```

Properties

```
>>> G.degree[1]
>>> G.degree[2] # the graph is undirected
>>> G.number_of_nodes()
3
```

Programming Exercise

Advanced Graph Algorithm

Topological Sort

- Creates an ordering of the vertices in a directed graph
- Before a vertex appears all of its ancestors
 - A node v's ancestor is any node that appears before v in any path

Topological Sort example

- What chapter must one begin their reading with?
- Does the relative order of chapters2 and 3 matter?
- Does the relative order of chapters4 and 10 matter?

Topological Sort: Kahn's Algorithm

- While there are still nodes left to process:
 - Initialize a queue
 - For all nodes with in-degree 0:
 - Add node to queue
 - Remove all edges from that node
 - Mark those nodes as processed

Programming Exercise

Recap

- Learned what graphs are
- Learned about properties of graphs, and how to calculate them
- Learned about how to search graphs
- Used networkx to implement the above
- Discussed an advanced graph algorithm

Q&A