Learning from Aggregate Observations

Yivan Zhang^{1, 2}, Nontawat Charoenphakdee^{1, 2}, Zhenguo Wu¹, Masashi Sugiyama^{2, 1} ¹The University of Tokyo, ²RIKEN

Introduction

Motivation scarcity of individual labels Schuessler (1999), Zhou (2004, 2018)

- Expensive: video annotation; semantic segmentation
- Privacy sensitive: census, medical or public health data analysis
- Intrinsically unavailable: drug activity prediction; remote sensing

supervision given to **sets of instances**

Task to predict labels of individual instances

Related work

- Multiple Instance Learning (MIL) zhou (2004) and Learning from Label Proportions (LLP) Kück+ (2005): only for binary classification
- Classification via pairwise similarity Hsu+ (2019): our special case

Our contribution

- A general probabilistic framework for aggregate observations for classification and regression problems
- A simple method applicable to any differentiable models such as deep neural networks and gradient boosting machines
- Theoretical justification based on the concept of consistency up to an equivalence relation

Examples					
Learning from	Aggregate Observation $Y = T(Z_{1:K})$				
similarity/dissimilarity ($K = 2$)	if Z_1 and Z_2 are the same or not				
triplet comparison $(K = 3)$	if $d(Z_1, Z_2)$ is smaller than $d(Z_1, Z_3)$, where $d(\cdot, \cdot)$ is a similarity measure between classes				
multiple instance $(K \ge 2)$	if $Z_{1:K}$ contains positive instances $(C=2)$				
mean/sum $(K \ge 2)$	the arithmetic mean or the sum of $Z_{1:K}$				
difference/rank ($K=2$)	the difference $Z_1 - Z_2$, or the relative order $Z_1 > Z_2$				
$\min/\max (K \ge 2)$	the smallest/largest value in $Z_{1:K}$				
uncoupled data $(K \ge 2)$	randomly permuted $Z_{1:K}$				

input feature $X \in \mathcal{X}$ true target $Z \in \mathcal{Z}$ aggregate observation $Y \in \mathcal{Y}$ aggregate function $T: \mathbb{Z}^K \mapsto \mathcal{Y}$, i.e., $Y = T(Z_{1:K})$

Proposed Method

Aggregate observation assumption

True targets contain all information to predict the aggregate observation.

$$p(Y|X_{1:K}, Z_{1:K}) = p(Y|Z_{1:K})$$

Independent observations assumption

True targets are mutually independent in sets.

This assumption may be violated in real-world applications.

$$p(Z_{1:K}|X_{1:K}) = \prod_{i=1}^{K} p(Z_i|X_i)$$

Joint probability factorization

$$p(X_{1:K}, Z_{1:K}, Y) = p(Y|Z_{1:K}) \prod_{i=1}^{K} p(Z_i|X_i) p(X_i)$$

Marginalization over Z

- Classification: summation → always analytically calculable
- Regression: depending on the aggregate function and distribution

$$p(Y|X_{1:K}) = \int_{\mathcal{Z}^K} \delta_{T(z_{1:K})}(Y) \prod_{i=1}^K p(z_i|X_i) \, dz_{1:K} = \underset{\substack{z_i \sim p(Z_i|X_i) \\ i=1,\dots,K}}{\mathbb{E}} \left[\delta_{T(Z_{1:K})}(Y) \right]$$

Log-likelihood of Y

$$\ell_N(W) = \frac{1}{N} \sum_{i=1}^{N} \log p(y^{(i)} | x_{1:K}^{(i)}; W)$$

Realizations

Pairwise Similarity Hsu+ (2019) **Triplet Comparison** $Y = T_{\text{tri}}(Z_1, Z_2, Z_3) = [d(Z_1, Z_2) < d(Z_1, Z_3)]$ $Y = T_{\text{sim}}(Z_1, Z_2) = [Z_1 = Z_2]$ $p(Y = 1) = \sum_{\substack{d(i,j) < d(i,k) \\ i,j,k \in \{1,...,C\}}} p(Z_1 = i)p(Z_2 = j)p(Z_3 = k)$ Mean Observation Rank Observation

Other distributions:

Poisson - count data Cauchy - robust regression Gumbel - extreme value

Consistency up to an Equivalence Relation

Aggregate observations may not contain all information about individuals. How much individual information is learned from aggregate observations?

Definition 3 (Equivalence). An equivalence relation \sim on $\mathcal W$ induced by the likelihood is defined according to $W \sim W' \iff \ell(W) = \ell(W')$. The equivalence class of W is denoted by [W]. Partially identifiable model: equivalent parameters → equal likelihood

Definition 4 (Consistency up to \sim). An estimator \widehat{W}_N is said to be *consistent up to an equivalence* relation \sim , if $d(\widehat{W}_N, [W_0]) \xrightarrow{p} 0$ as $N \to \infty$, where $d(W, [W_0]) = \inf_{W_0' \in [W_0]} d(W, W_0')$. An estimator that converges to a value that is equivalent to the true one

Examples:

- Classification via pairwise similarity/triplet comparison is at most consistent up to a permutation
- Regression via mean observation is consistent
- Regression via rank observation is consistent up to an additive constant

If the estimator is only consistent up to an equivalence relation:

- Obtain only partial information about individual labels
- Incorporate easier-to-obtain **side information** about data
- Combine other sources of strong/weak supervision

Experiments

- Classification via pairwise similarity and triplet comparison on MNIST/Fashion-MNIST/Kuzushiji-MNIST datasets (CNN models)
- Evaluation: optimal permutation + accuracy Hsu+ (2019)

Dataset	Unsupervised	P	airwise Simila	Triplet Comparison			Supervised	
		Siamese	Contrastive	Ours/Hsu+	Tuplet	Triplet	Ours	-
MNIST	52.30 (1.15)	85.82 (24.86)	98.45 (0.11)	98.84 (0.10)	18.42 (1.08)	22.77 (9.38)	$94.94 \\ (3.68)$	99.04 (0.08)
Fashion-MNIST	50.94	62.86	88.49	90.59	21.98	27.27	81.49	91.97
Kuzushiji-MNIST	$(3.28) \\ 40.22$	$(17.97) \\ 61.30$	$(0.28) \\ 89.65$	$(0.26) \\ 93.45$	$(0.72) \\ 16.00$	(12.82) 20.39	$(0.94) \\ 81.94$	$(0.24) \\ 94.47$
,	(0.01)	(17.41)	(0.19)	(0.32)	(0.27)	(2.03)	(4.59)	(0.21)

- Regression via mean observation and rank observation on UCI datasets (linear regression & gradient boosting machines)
- Evaluation: optimal constant shift + MSE → error variance

Dataset	Mean Observation			Rank Observation				Supervised		
	Baseline Ou		ırs	RankNet	RankNet, Gumbel		Ours, Gaussian			
	LR	GBM	LR	GBM	LR	GBM	LR	GBM	LR	GBM
abalone	7.91	7.89	5.27	4.80	5.81	10.66	5.30	5.04	5.00	4.74
	(0.4)	(0.5)	(0.4)	(0.3)	(0.4)	(0.7)	(0.3)	(0.5)	(0.3)	(0.4)
airfoil	38.57	$\hat{2}8.65$	23.59	4.63	$\hat{3}7.1\hat{5}$	$\dot{47.46}$	27.95	6.18	22.59	3.84
	(2.0)	(2.5)	(1.8)	(0.9)	(1.8)	(3.7)	(1.1)	(1.0)	(1.9)	(0.5)
auto-mpg	$\hat{4}1.59$	36.31	14.61	9.53	27.26	$\hat{6}5.3\hat{9}$	17.34	9.97	$\hat{1}1.7\hat{3}$	7.91
	(5.7)	(1.9)	(3.2)	(2.4)	(4.0)	(7.4)	(2.0)	(2.0)	(2.3)	(1.6)
concrete	198.51	172.35	$1\dot{1}5.06$	31.84	244.06	268.86	233.93	38.11	111.92	24.80
	(12.8)	(15.2)	(10.1)	(3.0)	(17.1)	(26.5)	(20.0)	(5.4)	(6.4)	(5.7)
housing	67.40	52.23	27.54	14.85	52.51	93.07	44.40	23.49	29.66	13.12
	(20.8)	(6.0)	(6.8)	(3.0)	(10.8)	(8.1)	(13.4)	(6.9)	(6.1)	(3.7)
power-plant	172.64	170.10	20.73	12.82	163.64	294.07	44.82	26.06	$\hat{2}1.17$	11.84
	(7.1)	(3.4)	(0.8)	(0.6)	(4.8)	(4.9)	(6.1)	(2.5)	(1.0)	(0.9)

References

Alexander A Schuessler. "Ecological inference." Proceedings of the National Academy of Sciences, 96.19: 10578–10581, 1999. Zhi-Hua Zhou. "Multi-instance learning: A survey." Nanjing University, Tech. Rep, 2004.

Hendrik Kück and Nando de Freitas. "Learning about individuals from group statistics." Proceedings of the Twenty-First Conference

Zhi-Hua Zhou. "A brief introduction to weakly supervised learning." National Science Review, 5.1: 44–53, 2018.

Yen-Chang Hsu, Zhaoyang Lv, Joel Schlosser, Phillip Odom, and Zsolt Kira. "Multi-class classification without multi-class labels." In International Conference on Learning Representations, 2019.