Distribuované systémy Počítačové siete

RNDr. Jaroslav Janáček KI FMFI UK

Klasifikácia sietí

- podľa rozsahu (veľkosti)
 - Personal Area Networks (PAN)
 - veľmi malé vzdialenosti (≈10m)
 - Local Area Networks (LAN)
 - malé vzdialenosti, budova, príp. komplex budov
 - Metropolitan Area Networks (MAN)
 - väčšie územia napr. mesto
 - Wide Area Networks (WAN)
 - veľké geografické územia

WAN

Klasifikácia sietí

- podľa typu komunikačných liniek
 - point-to-point
 - spojené sú 2 zariadenia
 - napr. klasické spojenie cez telefónnu linku
 - broadcast zdieľané médium
 - niekoľko zariadení je pripojených k spoločnému zdieľanému médiu
 - všetky zariadenia "počujú", čo sa vyšle z niektorého z nich
 - napr. Ethernet

Klasifikácia sietí

- podľa typu komunikačného média
 - pevné (wired)
 - medené káble
 - optické vlákna
 - bezdrôtové (wireless)
 - rádiové
 - WiFi, Bluetooth, GSM, GPRS/EDGE, UMTS (3G)
 - satelitné
 - svetelné
 - IRDA, laserové

Bezdrôtové siete

• použitie

- mobilní používatelia
- ťažko prístupné miesta
- dočasné siete

problémy

- vplyv prostredia, počasia
- vzájomné ovplyvňovanie sa
- zahltenie pásma
- bezpečnosť

Spájanie sietí

- internetwork (internet) množina navzájom prepojených sietí
 - siete sa spájajú prostredníctvom brán (gateways)
- Internet (s veľkým I)
 - konkrétny celosvetový internet

Adresácia v sieťach

- jednotlivé zariadenia v sieťach sú identifikované adresami
 - unicasting
 - posielanie jednému zariadeniu
 - broadcasting
 - posielanie informácie všetkým zariadeniam v sieti (resp. jej časti)
 - multicasting
 - posielanie informácie určitej skupine zariadení v sieti

Topológia siete

star - hviezda

ring – kruh

Kľúčové problémy návrhu sietí

- identifikácia zariadení adresovanie
- pravidlá komunikácie
 - simplex, half duplex, full duplex
- detekcia a oprava chýb
- problém rýchleho odosielateľa a pomalého prijímateľa
- poradie správ
- obmedzené dĺžky správ
- smerovanie (routing)
- multiplexing, demultiplexing

Vrstvový model

Vrstvy, služby, rozhrania (interface), protokoly

- vrstva N poskytuje služby vrstve N+1
- vrstva N s vrstvami N+1 a N-1 komunikuje prostredníctvom rozhrania (interface)
- vrtsva N s vrtsvou N na inom zariadení komunikuje použitím súboru pravidiel – protokolu príslušnej vrstvy

Rozdelenie služieb

- connection-oriented
 - vytvára sa spojenie, funguje ako "rúra"
- connection-less
 - prenášajú sa samostatné balíky dát pakety
- reliable (spoľahlivé)
 - doručenie je garantované (alebo sa oznámi chyba)
- unreliable (nespol'ahlivé)
 - doručenie nie je garantované

- physical layer (fyzická vrstva)
 - prenos bitov cez komunikačný kanál
 - parametre káblov, konektorov, signálov
 - káble, konektory, časť sieťových kariet, modemy
- data link layer (linková vrstva)
 - prenos rámcov (frames) medzi "susednými" zariadeniami
 - pri sieťach typu broadcast riešenie prístupu k médiu
 - časť sieťových kariet, ovládače sieťových kariet

- network layer (sieťová vrstva)
 - prenos paketov medzi ľubovoľnými uzlami siete
 - smerovanie (routing), riešenie preplnenia siete
 - smerom nahor poskytuje ilúziu siete prepojenej spôsobom každý s každým
- transport layer (transportná vrstva)
 - komunikácia medzi procesmi na koncových zariadeniach
 - rozdeľovanie správ na pakety a ich skladanie

- session layer (relačná vrstva)
 - riadenie dialógu, synchronizácia
- presentation layer (prezentačná vrstva)
 - konverzia formátov údajov
- application layer (aplikačná vrstva)
 - aplikačné protokoly

Tok dát v OSI

Actual data transmission path

TCP/IP model

TCP/IP model

- internet layer
 - protokol IP connection-less, unreliable
 - prenos paketov medzi ľubovoľnými dvoma uzlami siete
 - zabezpečuje smerovanie (routing)
- host to network layer
 - zabezpečuje možnosť posielať IP pakety medzi susednými zariadeniami

TCP/IP model

- transport layer
 - protokoly
 - TCP connection-oriented, reliable
 - UDP connection-less, unreliable
 - poskytuje služby aplikačnej vrstve
- application layer
 - rôzne aplikačné protokoly HTTP, FTP, telnet, ssh, SMTP, POP3, ...

- fyzická a data-link vrstva
- sieť typu broadcast, technológia CSMA/CD
- adresy 48 bitov
 - časť identifikuje výrobcu
 - multicasting
 - broadcasting FF:FF:FF:FF:FF
 - každý frame obsahuje adresu cieľa a zdroja
- 10Mbps, 100Mbps (fast), 1Gbps (gigabit)
- logická topológia: bus

- Carrier Sense
 - kontroluje sa, či je kanál voľný nikto nevysiela
- Multiple Access
 - keď je nejaký čas ticho, ktorákoľvek stanica môže začať vysielať
- Collision Detection
 - ak začnú 2 naraz, nastane kolízia, prestanú vysielať a počkajú náhodný čas

- 10BASE5 thick Ethernet
 - hrubý (žltý) koaxiálny kábel
 - 1 cm priemer, 50Ω , na koncoch 50Ω terminátory
 - do 500m, 100 zariadení

- pripájanie cez externý transciever AUI káblom

(do 50m)

- fyzická topológia: bus

- 10BASE2 thin Ethernet
 - tenký koaxiálny kábel RG 58
 - 0.5 cm priemer, 50Ω, na koncoch 50 Ω terminátory
 - do 185m, 30 zariadení
 - pripájanie cez T-konektor

fyzická topológia: bus

- 10BASE-T twisted pair (krútená dvojlinka)
 - netienený TP kábel kategórie 3, používa 2 páry
 - do 100m, point-to-point
 - pripájanie konektorom RJ-45
 - fyzická topológia: star, v strede hub/switch

- 10BASE-FL
 - 2 optické vlákna
 - do 2km, point-to-point
 - fyzická topológia: star, v strede hub/switch

Fast Ethernet

- 100BASE-TX
 - twisted pair kat. 5, používa 2 páry, 100m, p-to-p
- 100BASE-FX
 - 2 optické vlákna, 412m, p-to-p
- 100BASE-T4
 - twisted pair kat. 3, používa 4 páry, 100m, p-to-p
- fyzická topológia: star, v strede hub/switch

Gigabit Ethernet

- 1000BASE-T
 - twisted pair kat. 5, používa 4 páry, 100m, p-to-p
- 1000BASE-SX, 1000BASE-LX
 - optické vlákna
- fyzická topológia: star, v strede hub/switch

Rozširovanie Ethernetu

- fyzická vrstva
 - repeater, hub 1 kolízna doména
 - 10Mbps: max. 4, max. 5 segmentov
 - 100Mbs: max. 1 hub triedy I alebo 2 huby triedy II
- linková vrstva
 - bridge, switch
 - rozpoznáva ethernetové adresy a posiela rámce kam treba
 - umožňuje full-duplex, multi-speed

- CSMA/CA
 - Carrier Sense Multiple Access with Collision Avoidance
 - po tichu čaká náhodný čas
- potvrdzuje príjem rámca na linkovej vrstve
- rovnaké adresy ako Ethernet
 - ľahká integrácia

- 802.11b
 - 11Mbps, 2.4GHz, 13 kanálov
- 802.11g
 - 54Mbps, 2.4GHz, 13 kanálov
- 802.11a
 - 54Mbps, 5GHz

- BSS (basic service set)
 - množina staníc v dosahu tvoriacich spolu základnú bunku siete
 - napr. AP (access point) a niekoľko staníc
- ESS (extended service set)
 - množina BSS tvoriacich jednu sieť na linkovej vrstve
 - jednotlivé BSS sa môžu prekrývať
 - ESSID = identifikátor ESS

- infraštruktúrny režim
 - AP (access point, prístupový bod)
 - stanica sa asociuje k AP
 - zabezpečuje prenos rámcov medzi asociovanými stanicami a DS
 - DS (distribučný systém)
 - prepája AP tvoriace jednu ESS (extended service set)
 - umožňuje roaming medzi BSS
 - portál
 - prepája ESS s inou sieťou

- ad-hoc režim (IBSS, Independent BSS)
 - niekoľko staníc tvoriacich sieť
 - nemá prístup k DS
 - nepotrebuje AP

Sieťová vrstva v TCP/IP

- protokol IP connection-less, unreliable
- prenos IP paketov medzi ľubovoľnými dvoma počítačmi (zariadeniami)
- fragmentácia paketov
- adresy 4B čísla (1.2.3.4)
- časť adresy určuje sieť, druhá časť konkrétny uzol (host – počítač, zariadenie)

Triedy IP adries

- 1.x.x.x 126.x.x.x A
 - 7 bitov sieť, 24 bitov host
- 128.x.x.x 191.x.x.x B
 - 14 bitov sieť, 16 bitov host
- 192.x.x.x 223.x.x.x C
 - 21 bitov sieť, 8 bitov host
- 224.x.x.x 239.x.x.x D multicast
- 240.x.x.x 255.x.x.x E vyhradené

Classless Inter-domain Routing

- zapĺňanie adresného priestoru
 - neefektívne prideľovanie A/B/C
- maska
 - určuje, ktoré bity tvoria adresu siete
 - súvislý blok 1, súvislý blok 0
 - 255.255.0.0 = 16 bitov
 - 255.255.255.128 = 25 bitov
 - 255.192.0.0 = 10 bitov

Špeciálne IP adresy

- adresa siete
 - host = 0...0
 - slúži ako identifikátor siete
 - "neznáma" adresa
- broadcast
 - host = 1...1
 - broadcast pre určenú sieť

Špeciálne IP adresy

- 127.0.0.0/255.0.0.0
 - loopback, lokálny počítač
- 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8
 - pre súkromné siete nesmú sa dostať do Internetu
- 255.255.255.255
 - broadcast na lokálnej sieti
- 0.0.0.0
 - "neznáma" adresa (napr. zdroj pri BOOTP/DHCP)

Príklady IP adries

- 158.195.18.0/255.255.255.0 (24)
 - adresy 158.195.18.1 158.195.18.254
 - broadcast: 158.195.18.255
- 158.195.16.0/255.255.254.0 (23)
 - adresy 158.195.16.1 158.195.17.254
 - broadcast: 158.195.17.255
- 158.195.22.0/255.255.255.128 (25)
 - adresy 158.195.22.1 158.195.22.126
 - broadcast: 158.195.22.127

IP paket

- hlavička (20 až 60 B)
 - adresa odosielateľa a cieľa
 - dĺžka paketu, transportný protokol
 - time to live, fragmentačné údaje
 - kontrolný súčet hlavičky
- max. veľkosť teoreticky 65536 B
- každé IP zariadenie musí byť schopné spracovať aspoň 576 B IP paket
- umožňuje fragmentáciu paketov

Routovanie IP

- router počítač alebo špeciálny HW s aspoň dvoma sieťovými interfejsmi/linkami
 - pre každý sieťový interfejs
 - IP adresa
 - maska siete
- routovacia tabuľka
 - adresa, maska, ďalší router, sieťový interfejs/linka
 - vyberie sa vždy najšpecifickejšia položka

Príklad routovacej tabuľky

- IP: 158.195.18.222, maska: 255.255.255.0
 - 158.195.18.0/255.255.255.0 eth0
 - 127.0.0.0/255.0.0.0 lo
 - 0.0.0.0/0.0.0.0 158.195.18.209 eth0

Router:

- IP1:158.195.18.209, maska: 255.255.255.0
- IP2: 158.195.17.163, maska: 255.255.254.0
 - 158.195.18.0/255.255.255.0 eth0
 - 158.195.16.0/255.255.254.0 eth1
 - 127.0.0.0/255.0.0.0 lo
 - 0.0.0.0/0.0.0.0 158.195.16.208 eth1

Address Resolution Protocol

- IP pracuje s IP paketmi a IP adresami
- linková vrstva pri broadcast médiu potrebuje často iné adresy (napr. Ethernet)
- ARP rieši preklad IP adresy na fyzickú (linkovú adresu)
 - vyšle broadcast "Kto má IP a.b.c.d?"
 - zariadenie s IP a.b.c.d odpovie:
 "IP a.b.c.d má zariadenie x:y:z:p:q:s"

Internet Control Message Protocol

- ICMP
- diagnostika a spracovanie chýb
 - ping
 - destination unreachable
 - redirect
 - TTL exceeded

— ...

Transportná vrstva TCP/IP

- protokoly
 - TCP (Transmission Control Protocol)
 - connection-oriented, reliable
 - UDP (User Datagram Protocol)
 - connection-less, unreliable
- poskytuje služby aplikačnej vrstve
- adresy navyše číslo portu
 - jednoznačná identifikácia spojenia = IP adresa + port jednej strany a IP adresa + port druhej strany

User Datagram Protocol

- unreliable, connection-less služba
- hlavička
 - zdrojový a cieľový port
 - veľkosť
 - kontrolný súčet (hlavička aj dáta)

Transmission Control Protocol

- reliable, connection-oriented služba
- hlavička
 - zdrojový a cieľový port
 - sekvenčné číslo, potvrdzovacie číslo a veľkosť okna
 - príznaky, kontrolný súčet, ...
- každý paket sa potvrdzuje
- keď nepríde potvrdenie, paket sa pošle znova

TCP – Sliding Window

```
\rightarrow [S=0. W=1000. F=SYN. L=0]
← [S=0, A=1, W=1000, F=SYN+ACK, L=0]
                                                (okno=1-1000)
\rightarrow [S=1, A=1, W=1000, F=ACK, L=0]
\rightarrow [S=1, A=1, W=1000, F=ACK, L=500]
← [S=1, A=501, W=1000, F=ACK, L=0]
                                                (okno=501-1500)
\rightarrow [S=501, A=1, W=1000, F=ACK, L=500]
\rightarrow [S=1001, A=1, W=1000, F=ACK, L=500]
                                                (vyčerpali sme okno)
← [S=1, A=1501, W=500, F=ACK, L=0]
                                                (okno=1501-2000)
→ [S=1501, A=1, W=1000, F=ACK, L=500]
← [S=1, A=2001, W=0, F=ACK, L=0]
                                                (prázdne okno – stop)
\rightarrow [S=2001, A=1, W=1000, F=ACK, L=1]
                                                (pokus)
← [S=1, A=2001, W=0, F=ACK, L=0]
                                                (prázdne okno – stop)
← [S=1, A=2001, W=1000, F=ACK, L=0]
                                                (okno=2001-3000)
\rightarrow [S=2001, A=1, W=1000, F=ACK+FIN, L=500]
← [S=1, A=2502, W=1000, F=ACK+FIN, L=0]
\rightarrow [S=2502, A=2, W=1000, F=ACK, L=0]
```

Transmission Control Protocol

- vytvorenie spojenia
 - A pošle B paket s príznakom SYN
 - B pošle A paket s príznakmi SYN a ACK
 - A pošle B paket s príznakom ACK
- ukončenie spojenia
 - A pošle B paket s príznakmi FIN a ACK
 - B pošle A paket s príznakmi FIN a ACK
 - A pošle B paket s príznakom ACK

- umožňuje komunikáciu zo siete so súkromnými adresami
- source NAT (SNAT)
 - zdroj spojenia má súkromnú adresu
- destination NAT (DNAT)
 - cieľ spojenia má súkromnú adresu
 - používa sa na sprístupnenie služby poskytovanej serverom so súkromnou adresou

- router
 - si udržiava tabuľku "spojení"
 - adresa a port zdroja a cieľa,
 - protokol
 - preložená (vlastná) adresa a port
 - pri odosielaní prvého paketu spojenia von
 - prepíše adresu zdroja na preloženú
 - prepíše port zdroja na vlastný (voľný)
 - zapíše spojenie do tabuľky

- router
 - pri odosielaní ďalšieho paketu spojenia von
 - nájde spojenie v tabuľke
 - prepíše adresu a port zdroja podľa tabuľky
 - pri prijatí paketu zvonku
 - nájde spojenie v tabuľke
 - prepíše adresu a port cieľa podľa tabuľky

DNAT

- pri prijatí paketu zvonka na určenú verejnú adresu a port
 - ak je spojenie v tabuľke, prepíše cieľ podľa tabuľky
 - inak prepíše cieľ podľa konfigurácie a spojenie zapíše do tabuľky
- pri odosielaní paketu von
 - nájde spojenie v tabuľke
 - prepíše zdroj podľa tabuľky

- Ako dlho držať spojenie v tabuľke?
 - TCP dá sa využiť sledovanie stavu spojenia
 - UDP timeout
 - väčší timeout pre prúd UDP prúd (stream)
- Problémy s aplikačnými protokolmi
 - ak aplikačný protokol používa IP adresy a čísla portov
 - potreba podporných modulov pre udržiavanie tabuľky spojení a príp. prepisovanie dát aplikačnej vrstvy
 - napr. FTP

Aplikačná vrstva TCP/IP

- Rôzne aplikačné protokoly využívajúce TCP alebo UDP
 - WWW: HTTP TCP/80, HTTPS TCP/443
 - FTP TCP/21, TCP/20
 - telnet TCP/23
 - ssh TCP/22
 - odosielanie e-mailov: SMTP TCP/25
 - čítanie e-mailov: POP3 TCP/110, IMAP TCP/143
 - DNS UDP/53, TCP/53

Domain Name System (DNS)

- IP adresy sa ľuďom zle pamätajú
- DNS najväčšia distribuovaná databáza na prevod medzi doménovými menami a IP adresami
- doménové meno:
 - meno.doména_n.doména_n-1.doména_1
 - nič nehovorí o fyzickom umiestnení počítača
 - domény 1. (najvyššej úrovne)
 - generické: com, org, net, edu, gov, mil, int, biz, info, pro
 - podľa krajín: sk, cz, at, pl, hu, de, uk, ...
- informácie poskytujú DNS servery

Domain Name System

Domain Name System

- Rôzne typy záznamov
 - A IP adresa
 - CNAME alias
 - MX mail exchanger kam sa majú doručovať e-maily
 - NS IP adresa DNS servera pre poddoménu
 - SOA základné informácie o doméne
 - PTR používa sa pri opačnom vyhľadávaní
- A, MX a NS môže byť pre jedno meno aj viac

Domain Name System

- Ako pre danú IP adresu nájsť doménové meno?
- DNS je organizovaný podľa domén
 - prehľadanie celého stromu by trvalo veľmi dlho
- Adresu a.b.c.d vyhľadáme ako záznam typu PTR pre d.c.b.a.in-addr.arpa.
- Informácie na prevod mena na IP a naopak sú nezávislé, preto nemusia vždy súhlasiť.

Bezpečnostné problémy v sieťach

- dôvernosť
- integrita a autentickosť
- dostupnosť
- autentifikácia
 - používateľov
 - systémov
- riadenie prístupu

Bezpečnostné mechanizmy

- fyzická ochrana prístupu
- kryptografia
 - šifrovanie
 - symetrické (DES, 3DES, AES, ...)
 - asymetrické (PKI) (RSA, ...)
 - digitálny podpis (RSA, DSS, ...)
 - hašovacie funkcie s kľúčom (HMAC-SHA1, HMAC MD5, ...)
- organizačné opatrenia

Problém distribúcie kľúčov

- symetrická kryptografia
 - potreba zdieľaného tajného kľúča
 - algoritmy (napr. Diffie-Hellman) na výpočet zdieľaného tajného kľúča
 - potreba vzájomnej autentifikácie na vylúčenie Man-In-the-Middle útoku
 - generovanie kľúča jednou stranou a bezpečný prenos druhej strane
- asymetrická kryptografia
 - distribúcia verejných kľúčov
 - certifikáty

Bezpečnosť na fyzickej vrstve

- fyzická ochrana káblov a sieťových komponentov
- separácia sietí na fyzickej vrstve
- často nefunguje proti vnútornému nepriateľovi
 - keď sa viem dostať k počítaču, viem sa dostať ku káblu
 - použiteľné v kombinácii s organizačnými opatreniami

Bezpečnosť na linkovej vrstve

- nekryptografická
 - VLAN (virtual LAN)
 - separácia sietí na linkovej vrstve
 - riadenie prístupu k portu
 - na báze linkovej adresy
 - IEEE 802.1X
- kryptografická
 - šifrovanie, kontrola autentickosti, autentifikácia
 - známe vo WiFi svete
 - WEP, WPA, WPA2

VLAN (IEEE 802.1Q)

- rozdelenie Ethernetu na logické (virtuálne) siete
- VLAN ID (VID) 12 bitov (1 4094)
- príslušnosť rámca k VLAN
 - tagged frame podľa údaja v hlavičke
 - untagged frame podľa portu (PVID)
- switch
 - pre každý port: Port VID (PVID), množina VID
 - pošle rámec len na porty danej VLAN (Egress filtering)
 - môže filtrovať rámce z VLAN, do ktorej zdrojový port nepatrí (Ingress filtering)

Bezpečnosť na sieťovej vrstve

firewall

- filtrácia komunikácie riadenie prístupu
- stateless vs. statefull, NAT
- deny vs. allow by default

VPN

- šifrovanie, kontrola autentickosti, riadenie prístupu
- IPSec (AH, ESP)
- OpenVPN (IP/L2 over UDP/TCP)

– ...

IPSec

- ochrana dôvernosti a/alebo integrity na sieťovej vrstve
- AH (Authentication header)
 - ochrana integrity IP hlavičky a obsahu
- ESP (Encapsulating Security Payload)
 - ochrana integrity a/alebo dôvernosti obsahu
- tunelový mód
 - obsahom je celý IP paket
- transportný mód

IPSec

- správa bezpečnostných asociásií
 - Internet Security Association and Key Management Protocol (ISAKMP)
 - protokol pre automatický manažment bezpečnostných asociácií a kľúčov
 - Internet Key Exchange Protocol (IKE)
 - protokol pre výmenu kľúčov založený na asymetrickej kryprografii (Diffie-Hellman)
 - vzájomná autentifikácia účastníkov výmeny
 - PKI alebo pre-shared secret

Bezpečnosť na transportnej vrstve

- SSL (Secure Socket Layer), TLS (Transport Layer Security)
 - medzi transportnou a aplikačnou vrstvou
 - zabezpečuje autentifikáciu servera a (voliteľne) klienta
 - X.509 certifikáty
 - zabezpečuje vzájomné dohodnutie kľúča
 - šifrovanie, kontrola integrity a autentickosti prenášaných dát
 - treba zabezpečiť bezpečnú distribúciu cert. CA

Bezpečnosť na aplikačnej vrstve

- end-to-end security
- e-mail
 - PGP, S/MIME
- vzdialené prihlasovanie
 - ssh
- autentifikácia používateľov v aplikáciach
 - heslá, jednorazové heslá, SMS-kódy, ...

Bezpečnosť elektronickej pošty

- správa elektronickej pošty = pohľadnica písaná na stroji
 - môže čítať každý, kto ju cestou vidí
 - nemožno dôverovať informácii o odosielateľovi
 - nemožno dôverovať obsahu
- riešenie
 - dôvernosť šifrovanie
 - integrita a autentickosť elektronický podpis

Bezpečnosť elektronickej pošty

- PGP (Pretty Good Privacy)
 - treba zabezpečiť bezpečnú distribúciu verejných kľúčov
 - vzájomná dôvera používateľov a podpisovanie kľúčov
- S/MIME (Secure Multipurpose Internet Mail Extensions)
 - použitie X.509 certifikátov
 - treba zabezpečiť bezpečnú distribúciu cert. CA

Bezpečnosť elektronickej pošty

- komunikácia so serverom
 - SMTP odosielanie pošty
 - POP3, IMAP čítanie pošty
 - nechránia komunikáciu
 - heslá sú ľahko odhaliteľné
- riešenie
 - SSL, TLS
 - SMTPS, POP3S, IMAPS

Bezpečnosť webu

protokol HTTP

- nezabezpečuje ochranu komunikácie
- ktokoľvek môže vidieť to, čo vidím ja
- ktokoľvek môže vidieť, čo odosielam
 - heslá, osobné údaje
- ktokoľvek môže zmeniť to, čo vidím
- ktokoľvek môže zmeniť to, čo odosielam

Bezpečnosť webu

- riešenie
 - SSL, TLS HTTPS
- problémy
 - bezpečná distribúcia certifikátu CA
 - kontrola mena servera v certifikáte
 - SSLv2 (zakázať)
 - pripúšťa aj slabé šifry
 - ignorovanie upozornení browsera

Bezpečnosť vzdialeného prihlasovania

- telnet
 - žiadna ochrana
- ssh
 - šifrovanie, kontrola integrity, autentifikácia servera
 - umožňuje tunelovať ďalšie spojenia
 - napr. X11, VNC, SMTP, POP3, IMAP
 - treba zabezpečiť bezpečnú distribúciu verejných kľúčov serverov
 - neveriť slepo verejnému kľúču servera
 - openssh (UNIX, Linux, Cygwin), PuTTY (Windows)

Bezpečnosť ftp

- protokol FTP
 - nezabezpečuje žiadnu ochranu
 - heslá, prenášané dáta
 - má problémy so stateless firewallmi
 - statefull firewally musia podporovať ftp
- scp, sftp
 - náhrady využívajúce ssh
 - openssh, PuTTY, WinSCP (Windows)