

SISTEMAS DE COORDENADAS ORTOGONALES

Vector posición

EIIIBA

 $\mathbf{F} = F_{\hat{\rho}} \hat{\rho} + F_{\hat{\rho}}$

$$\mathbf{F} = F_{\rho} \hat{\rho} + F_z \hat{\mathbf{z}}$$
Cilíndrico

 $\hat{\mathbf{F}} = F_{r} \hat{\mathbf{r}}$

Esférico

Sistemas de coordenadas

SUSTITUCIONES PARA TRANSFORMAR CAMPOS ESCALARES

	A coordenadas cartesianas	A coordenadas	A coordenadas
		cilíndricas	esféricas
De	x = x	$x = \rho \cos(\phi)$	$x = r \sin(\theta) \cos(\phi)$
coordenada	y = y	$y = \rho \sin(\phi)$	$y = r \sin(\theta) \sin(\phi)$
s cartesianas	z = z	z = z	$z = r\cos(\theta)$
De	$\rho = \sqrt{x^2 + y^2}$	$\rho = \rho$	$\rho = r \sin(\theta)$
coordenada	• •	$\phi = \phi$	$\phi = \phi$
s cilíndricas	$\phi = tan^{-1}(y/x)$	z = z	$z = r \cos(\theta)$
	z = z		2 1005(0)
De coordenada	$r = \sqrt{x^2 + y^2 + z^2}$	$r = \sqrt{\rho^2 + z^2}$	r = r
s esféricas	$\phi = tan^{-1}(y/x)$	$\phi = \phi$	$\phi = \phi$
	$\theta = \cos^{-1}\left(z/\sqrt{x^2 + y^2 + z^2}\right)$	$\theta = tan^{-1}(\rho/z)$	$\theta = \theta$

DIFERENCIALES DE LONGITUD

			Abo.	
SP.	Sistema de coordenadas	Coordenada que varía sobre la trayectoria	JBP dl	$d\vec{l}$
	Cartesianas	х	dx	$\hat{x} dx$
		У	dy	ŷ dy
		z	dz	$\hat{z} dz$
	Cilíndricas	ρ	d ho	$\hat{ ho} d ho$
		ϕ	$ ho \ d\phi$	$\hat{ ho} d ho$ $\hat{\phi} ho d\phi$
		z	dz	$\hat{z} dz$
	Esféricas	r	dr	r̂dr
		ϕ	$r \sin(\theta) d\phi$	$\hat{\phi} r \sin(\theta) d\phi$
		θ	rd heta	$\hat{\phi}$ r sin (θ) d ϕ $\hat{\theta}$ rd θ

2

EILIBA

DIFERENCIALES DE ÁREA

Sistema de coordenadas	Coordenada que se mantiene constante sobre la superficie	dS	dŜ
Cartesianas	x	dy dz	$\hat{x} dy dz$
	у	dx dz	$\hat{y} dx dz$
	z	dx dy	$\hat{z} dx dy$
Cilíndricas	ρ	$\rho d\phi dz$	$\hat{\rho} \rho d\phi dz$
	ϕ	$d\rho dz$	$\hat{\phi} d\rho dz$
	z.	$ ho d\phi d ho$	$\hat{z}\rho d\phi d\rho$
Esféricas	r	$r^2 \sin(\theta) d\theta d\phi$	$\hat{r} r^2 \sin(\theta) d\theta d\phi$
	ϕ	$r d\theta dr$	$\hat{\phi} r d\theta dr$
	θ	$r\sin(heta)dr\;d\phi$	$\hat{\theta}r \sin(\theta) dr d\phi$

DIFERENCIALES DE VOLUMEN

5-4				
7	Sistema de coordenadas	.0	Diferencial de volumen	
	Cartesiano	(1/2)	dV = dx dy dz	
	Cilíndrico	×	$dV = \rho \ d\rho \ d\phi \ dz$	
	Esférico		$dV = r^2 \sin(\theta) dr d\phi d\theta$	

3

EIIIBA

TRANSFORMACIÓN DE VECTORES UNITARIOS (VERSORES)

FIUBA

	A coordenadas cartesianas	A coordenadas cilíndricas
De coordenadas cartesianas		$\hat{x} = \hat{\rho}\cos\phi - \hat{\phi}\sin\phi$
Cartesianas		$\hat{y} = \hat{\rho} \sin \phi + \hat{\phi} \cos \phi$
		\hat{z} \hat{z}
De coordenadas	$\hat{\rho} = \hat{x}\cos(\phi) + \hat{y}\sin(\phi)$	
cilíndricas	$\hat{\phi} = -\hat{x}\sin(\phi) + \hat{y}\cos(\phi)$	
	$\hat{z} = \hat{z}$	

	A coordenadas cartesianas	A coordenadas esféricas
De		$\hat{x} = \hat{r}\sin(\theta)\cos(\phi) + \hat{\theta}\cos(\theta)\cos(\phi)$
coordenadas cartesianas		$-\hat{\phi}\sin(\phi)$
		$\hat{y} = \hat{r}\sin(\theta)\sin(\phi) + \hat{\theta}\cos(\theta)\sin(\phi)$
		$+\hat{\phi}\cos(\phi)$
~		$\hat{z} = \hat{r}\cos(\theta) - \hat{\theta}\sin(\theta)$
De	$\hat{r} = \hat{x}\sin(\theta)\cos(\phi) + \hat{y}\sin(\theta)\sin(\phi)$	
coordenadas esféricas	$+ \hat{z}\cos(\theta)$ $\hat{\theta} = \hat{x}\cos(\theta)\cos(\phi) + \hat{y}\cos(\theta)\sin(\phi)$	
Ostorious	$\hat{\theta} = \hat{x}\cos(\theta)\cos(\phi) + \hat{y}\cos(\theta)\sin(\phi)$	
	$-\hat{z}\sin(\theta)$	
	$\hat{\phi} = -\hat{x}\sin(\phi) + \hat{y}\cos(\phi)$	

		A coordenadas cilíndricas	A coordenadas esféricas
De	coordenadas		$\rho = \hat{r}\sin(\theta) + \hat{\theta}\cos(\theta)$
cilíndricas			$\hat{\phi}=\hat{\phi}$
			$\hat{z} = \hat{r}\cos(\theta) - \hat{\theta}\sin(\theta)$
De coordena	das esféricas	$\hat{r} = \hat{\rho} \sin(\theta) + \hat{z} \cos(\theta)$	
		$\hat{\theta} = \hat{\rho}\cos(\theta) - \hat{z}\sin(\theta)$	
		$\hat{\phi}=\hat{\phi}$	

Fórmulas del gradiente en distintos sistemas de coordenadas

Cartesianas:
$$\vec{\nabla}g(\vec{r}) = \left(\frac{\partial g(\vec{r})}{\partial x}, \frac{\partial g(\vec{r})}{\partial y}, \frac{\partial g(\vec{r})}{\partial z}\right) = \frac{\partial g(\vec{r})}{\partial x} \; \bar{e}_x + \frac{\partial g(\vec{r})}{\partial y} \; \bar{e}_y + \frac{\partial g(\vec{r})}{\partial z} \; \bar{e}_z$$

Cilíndricas:
$$\vec{\nabla}g(\vec{r}) = \frac{\partial g(\vec{r})}{\partial \rho} \vec{e}_{\rho} + \frac{1}{\rho} \frac{\partial g(\vec{r})}{\partial \phi} \vec{e}_{\phi} + \frac{\partial g(\vec{r})}{\partial z} \vec{e}_{z}$$

Esféricas:
$$\vec{\nabla}g(\vec{r}) = \frac{\partial g(\vec{r})}{\partial r} \vec{e}_r + \frac{1}{r \operatorname{sen} \theta} \frac{\partial g(\vec{r})}{\partial \phi} \vec{e}_{\phi} + \frac{1}{r} \frac{\partial g(\vec{r})}{\partial \theta} \vec{e}_{\theta}$$

Fórmulas de la divergencia en distintos sistemas de coordenadas

Cartesianas:
$$\vec{\nabla} \bullet \vec{F}(\vec{r}) = \frac{\partial}{\partial x} F_x(\vec{r}) + \frac{\partial}{\partial y} F_y(\vec{r}) + \frac{\partial}{\partial z} F_z(\vec{r})$$

Cilíndricas:
$$\vec{\nabla} \bullet \vec{F}(\vec{r}) = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left[\rho F_{\rho}(\vec{r}) \right] + \frac{1}{\rho} \frac{\partial}{\partial \phi} F_{\phi}(\vec{r}) + \frac{\partial}{\partial z} F_{z}(\vec{r})$$

Esféricas:
$$\vec{\nabla} \bullet \vec{F}(\vec{r}) = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 F_r(\vec{r}) \right] + \frac{1}{r \operatorname{sen} \vartheta} \frac{\partial}{\partial \phi} F_{\phi}(\vec{r}) + \frac{1}{r \operatorname{sen} \vartheta} \frac{\partial}{\partial \vartheta} \left[\operatorname{sen} \vartheta F_{\vartheta}(\vec{r}) \right]$$

Fórmulas del rotor en distintos sistemas de coordenadas

Cartesianas:

$$\vec{\nabla} \times \vec{F}(\vec{r}) = \left\{ \left[\frac{\partial F_z(\vec{r})}{\partial y} - \frac{\partial F_y(\vec{r})}{\partial z} \right] \vec{e}_x + \left[\frac{\partial F_x(\vec{r})}{\partial z} - \frac{\partial F_z(\vec{r})}{\partial x} \right] \vec{e}_y + \left[\frac{\partial F_y(\vec{r})}{\partial x} - \frac{\partial F_x(\vec{r})}{\partial y} \right] \vec{e}_z \right\}$$

Cilíndricas:

$$\vec{\nabla} \times \vec{F}(\vec{r}) = \left\{ \left[\frac{1}{\rho} \frac{\partial F_z(\vec{r})}{\partial \phi} - \frac{\partial F_\phi(\vec{r})}{\partial z} \right] \vec{e}_\rho + \left[\frac{\partial F_\rho(\vec{r})}{\partial z} - \frac{\partial F_z(\vec{r})}{\partial \rho} \right] \vec{e}_\phi + \frac{1}{\rho} \left[\frac{\partial \left[\rho F_\phi(\vec{r}) \right]}{\partial \rho} - \frac{\partial F_\rho(\vec{r})}{\partial \phi} \right] \vec{e}_z \right\}$$

Esféricas:

$$\begin{split} \vec{\nabla} \times \vec{F} \Big(\vec{r} \Big) &= \left\{ \frac{1}{r \, sen \, \mathcal{G}} \left[\frac{\partial \left[F_{\phi} (\vec{r}) \, sen \, \mathcal{G} \right]}{\partial \, \mathcal{G}} - \frac{\partial F_{\mathcal{G}} (\vec{r})}{\partial \, \phi} \right] \vec{e}_{\, r} + \frac{1}{r} \left[\frac{\partial \left[r \, F_{\mathcal{G}} (\vec{r}) \right]}{\partial r} - \frac{\partial F_{r} (\vec{r})}{\partial \, \mathcal{G}} \right] \vec{e}_{\, \phi} + \frac{1}{r} \left[\frac{1}{sen \, \mathcal{G}} \frac{\partial F_{r} (\vec{r})}{\partial \, \phi} - \frac{\partial \left[r \, F_{\phi} (\vec{r}) \right]}{\partial r} \right] \vec{e}_{\, \mathcal{G}} \right\} \end{split}$$