第四章功和能

§ 4-1 功

力对空间的累积一功,用A表示了

一 功 功的计算

1、直线运动中恒力的功

$$A = F\Delta r \cos\theta = \vec{F} \cdot \Delta \vec{r}$$

注意:

功是标量,但有正有负,正负由3决定:

$$0 \le \vartheta \le 90^0$$
 $A > \theta$;

$$\vartheta = 90^0$$
 $A = \theta;$

$$90^{\circ} < \vartheta \le 180^{\circ}$$
 $A < \theta$.

2、变力的功

元功:
$$dA = \vec{F} \cdot d\vec{r}$$

$$= F \left| d\vec{r} \right| \cos \theta$$

质点由a运动到b,力F所作的总功:

$$A = \int dA = \int_a^b \vec{F} \cdot d\vec{r} = \int_a^b F |d\vec{r}| \cos \theta$$

质点由a运动到b,力F所作的总功为力F沿路径 ℓ 的线积分。 功是过程量

二、合力的功 = 分力的功的代数和

$$A = \int \left(\sum \vec{F}_i\right) \cdot d\vec{r} = \sum \int \vec{F}_i \cdot d\vec{r} = \sum_i A_i$$

- ◆ 功是过程量,与参考系有关
- ◆ 功的单位为焦耳J

三、功率: 功对时间的变换率 (力做功的快慢)

$$P = \frac{dA}{dt} = \frac{\vec{F} \cdot d\vec{r}}{dt} = \vec{F} \cdot \vec{v}$$

- 已知功率可求功: $A = \int_{t_1}^{t_2} Pdt$
- ◆ 功率的单位为瓦特W

四、一对力的功(作用力与反作用力)

 m_1 、 m_2 组成一个封闭系统

$$dA = \vec{F}_{12} \cdot d\vec{r}_1 + \vec{F}_{21} \cdot d\vec{r}_2$$

$$\therefore \vec{F}_{12} = -\vec{F}_{21}$$

- $\therefore dA = \vec{F}_{21} \cdot (d\vec{r}_2 d\vec{r}_1) = \vec{F}_{21} \cdot d(\vec{r}_2 \vec{r}_1)$

总功
$$A = \int dA = \int_a^b \vec{F}_{21} \cdot d\vec{r}_{21}$$

总功 $A = \int dA = \int_a^b \vec{F}_{21} \cdot d\vec{r}_{21}$ 一对力做的总功,只与力及二质点相 对价格相关 与会长系的选择工头 对位移相关,与参考系的选择无关

方法。常假设其中一个质点不动,如假设m1不动,则

$$dA = \vec{F}_{21} \cdot d\vec{r}_{21} = \vec{F} \cdot d\vec{r}$$

例题 万有引力的功: m 在 M 的引力场沿其椭圆轨道由 r_a 移到 r_b 。求: 引力对 m 所作的功。

$$A = -\int_{r_a}^{r_b} G \frac{Mm}{r^2} dr = -GMm(\frac{1}{r_a} - \frac{1}{r_b})$$

$$|d\vec{r}|\cos\phi = dr$$

万有引力做功只与初末位置相关,与 具体路径无关,这种力称为保守力, 重力、弹簧弹力等都是保守力。

§ 4-2 动能定理

一、质点的动能定理

元功:
$$dA = \vec{F} \cdot d\vec{r} = F \cos \theta |d\vec{r}| = F_t |d\vec{r}| = mdv \frac{|d\vec{r}|}{dt}$$

$$= mvdv = d(\frac{1}{2}mv^2)$$

表示: 合外力在元位移做的功等于质点动能的微增量

经历一段距离,合外力做的功:

$$A = \int_{a}^{b} \vec{F} \cdot d\vec{r} = \int_{E_{ka}}^{E_{kb}} dE_{k} = E_{kb} - E_{ka}$$
 质点动能定理的积分形式

◆质点动能定理

$$A = E_{\rm kb} - E_{\rm ka}$$

表示: 合外力对质点所作的功, 等于质点动能的增量

- 1、功和动能都与参考系有关;动能定理仅适用于惯性系;
- 2、功和能的单位都是焦耳,但功是过程量,动能是状态量(也称态函数)。

动能定理的启示: 功是能量变化的一种量度

二、质点系的动能定理

◆ 对第 i 个质点,有:

$$A_{h_i} + A_{h_i} = E_{ki2} - E_{ki1}$$

外力功 内力功

◆对质点系,有:

$$\sum_{i} A_{\beta \mid i} + \sum_{i} A_{\beta \mid i} = \sum_{i} E_{ki2} - \sum_{i} E_{ki1}$$

$$A_{\text{h}} + A_{\text{h}} = E_{\text{k2}} - E_{\text{k1}}$$
 质点系的动能定理

表示: 所有外力与内力对质点系所做功 之和等于质点系动能的增量。

内力可以改 变质点系的动能

例题:如图,一链条长为1,质量为m,放在光滑的水平桌面,一端下垂,下垂段长为a,设链条在重力作用下开始下滑,求链条全部离开桌面时的速度。

例题。如图,质量为 m_B 的木板静止在光滑的桌面上,质量为 m_A 的物体放在B的一端,现给A一初速度 v_0 使其在B上滑动,AB间的滑动摩擦系数为 μ ,设 $m_A=m_B$,且A滑到B的另一端时A、B恰好具有相同的速度,求B板的长度及B板走过的距离。

§ 4-3 势能

一保守力与非保守力

1) 万有引力做功

$$A = -\int_{r_a}^{r_b} G \frac{m_1 m_2}{r^2} dr = -G m_1 m_2 \left(\frac{1}{r_a} - \frac{1}{r_b} \right)$$

万有引力做功只与初末位置相关,与具体路径无关。万有引力是**保守力**。

2) 重力做功

元功:
$$dA = mg |d\vec{r}| \cos \theta$$

= $-mgdh$

质点从a经c到b重力所做的功:

$$A_{acb} = \int dA = \int_{h_a}^{h_b} -mgdh$$
$$= mg(h_a - h_b)$$

重力做功只与始末相对位置有关。而与具体路径无关

质点从a经d到b重力所做的功: $A_{adb} = A_{acb}$

且:
$$A_{bda} = -A_{adb}$$

所以经过任一闭合路径acbda, 重力所做的功为零。 重力为保守力

3) 弹性力做功

弹性力: $\vec{F} = -k\vec{x}$

元功: $dA = \vec{F} \cdot d\vec{x} = -kxdx$

振子从 X_a 运动到 X_b ,弹力所做的功:

$$A = \int dA = \int_{x_a}^{x_b} -kx dx = \frac{1}{2} kx_a^2 - \frac{1}{2} kx_b^2$$

弹性力做功也与路径无关,只与始末态位置有关。弹性力也是保守力。

保守力和非保守力

保守力: 力做功与路径无关, 仅取决于系统的始末状态的相对位置。

保守力沿任一闭合路径做功等于零。

$$\oint_{S} \vec{F}_{\text{R}} \cdot d\vec{l} = 0$$

即保守力的环流(环路积分)等于零。

非保守力: 力所做的功与路径有关. (如摩擦力做功)

$$\oint_{S} \vec{F}_{\text{\#R}} \cdot d\vec{l} \neq 0$$

二勢能

势能 E_p :与物体间相对位置(位形)有关的能量

重力的功

$$A = mgh_a - mgh_b$$

引力的功

$$A = (-G\frac{m_1 m_2}{r_a}) - (-G\frac{m_1 m_2}{r_b})$$

弹力的功

$$A = \frac{1}{2}kx_a^2 - \frac{1}{2}kx_b^2$$

$$A_{ab} = \int_{a}^{b} \vec{F}_{R} \cdot d\vec{r}$$

$$= E_{pa} - E_{pb}$$

$$= -(E_{pb} - E_{pa})$$

保守力做的功等于系统 势能的减少(或势能增 量的负值)

 $A_{ab} > 0$,系统势能减小 $A_{ab} < 0$,系统势能增加

◆ 保守力的功是系统势能变换的量度

◆ 势能是一种相互作用能,势能是属于系统的

◆ 非保守力没有相互的势能

三 势能的计算

$$A_{ab} = \int_{a}^{b} \vec{F}_{R} \cdot d\vec{r} = E_{pa} - E_{pb}$$

势能具有相对性, 其大小与势能零点的选取有关

设势能定义式中b点的势能为零, $E_{pb}=0$

则a点的势能为:

$$E_{pa} = \int_{a}^{(0)} \vec{F}_{\text{R}} \cdot d\vec{r} = A_{ab}$$

空间某点 r 的势能等于由该点到势能零点保守力所做的功。

1、重力势能

$$E_p(r) = \int_r^{r_0} \vec{F}_{\text{Re}} \cdot d\vec{r}$$

$$E_p(h) = -\int_h^{h_0} mgdh = mgh - mgh_0$$

令 $h_0 = 0$ 处势能为零,则重力势能表示为:

$$E_p(h) = mgh$$

重力势能曲线:

2、弹性势能

$$E_p(x) = -\int_x^{x_0} kx dx = \frac{1}{2}kx^2 - \frac{1}{2}kx_0^2$$

$$E_p(x) = \frac{1}{2}kx^2$$

弹性势能曲线:

3、引力势能

$$E_{p}(r) = -\int_{r}^{r_{0}} \frac{Gm_{1}m_{2}}{r^{2}} dr = \left(-\frac{Gm_{1}m_{2}}{r}\right) - \left(-\frac{Gm_{1}m_{2}}{r_{0}}\right)$$

令 $r_0 \rightarrow \infty$ 处势能为零,则弹性势能表示为:

$$E_p(r) = -\frac{Gm_1m_2}{r}$$

引力势能曲线:

机械能守恒 § 4-4

一、质点系的功能原理

由质点系的动能定理:

$$A_{\text{A}} + A_{\text{B}} = E_{k2} - E_{k1}$$

$$A_{\text{B}} = A_{\text{B}} + A_{\text{B}}$$

$$A_{\text{B}} = A_{\text{B}} + A_{\text{B}}$$

$$A_{\text{B}} = E_{p1} - E_{p2}$$

$$A_{\text{A}} + A_{\text{B}} = E_{k2} + E_{p2} - (E_{k1} + E_{p1})$$

机械能:
$$E = E_k + E_p$$
 $A_h + A_{hather} = E_2 - E_1$

$$A_{\text{ph}} + A_{\text{ph}} = E_2 - E_1$$

质点系的<mark>功能原理</mark>。外力和非保守内力做功之和等 于质点系机械能的增量

二、机械能守恒定律

由质点系的功能原理:

$$A_{\text{ph}} + A_{\text{phik}} = E_2 - E_1$$

当
$$A_{\text{外}} + A_{\text{內非保}} = 0$$
 时,有 $E_2 = E_1$

机械能守恒定律:只有保守内力作功的情况下。 系统的机械能保持不变

三、能量守恒定律

一个孤立系统经历任何变化过程时,系统所有能量的总和保持不变。

例1、轻弹簧下端固定在地面,上端连接一质量为m的木板,静止不动,如图,一质量为mo的弹性小球从距木板h高度处以水平速度vo平抛,落在木板上与木板发生弹性碰撞,设木板没有左右摆动,求碰后弹簧对地面的最大作用力。

例2、(4.22)在光滑的水平桌面上,有一劲度系数为k的轻弹簧,一端固定于O点,另一端联结一质量为 m_1 的木块,处于静止状态。一质量为 m_2 的子弹,以速度 v_0 沿与弹簧垂直的方向射入木块,与之一起运动,当木块运动由A点运动到B点时,弹簧长度由原长 l_0 变为l,求B点木块速度v和方位角 θ 。

例3、A、B粒子之间有万有引力作用,B固定不动,A从远处以初速率 v_0 按图示轨道运动,A、B之间的最近距离为d,求A在离B最近点时的速率v和B的质量。

以下对功的几种说法正确的是:()

- A. 保守力做正功时,系统内相应的势能增加;
- B. 质点运动经一闭合路径,保守力对质点做的功为零;
- C. 作用力和反作用力所做功的代数和一定为零;
- D. 合外力做功等于质点系动能的增量。

一质点在二恒力共同作用下,位移为 $\Delta r = 3i + 8j$ (SI); 在此过程中,动能增加了 24J,已知其中一恒力 $F_1 = 10i - 3j$ (SI),则另一恒力 F_2 所作的功为。

一人造地球卫星绕地球作椭圆运动,近地点为A,远地点为B。A、B 两点距地心分别为 r_1 和 r_2 。设卫星质量为m,地球质量为M,万有引力常量为G,则卫星在A、B 两点的动能之差 E_{kB} $-E_{kA}$ =

已知地球的质量为 M, 半径为 R。一质量为 m 的物体, 处在离地心 3R 的高度。以地球和物体为系统, 若 取 地 面 为 势 能 零 点 , 则 系 统 的 引 力 势 能

 $E_{\rm p} =$

人造地球卫星绕地球作椭圆轨道运动,地球在椭圆的一个焦点上。卫星对地心的角动量为L,卫星与地球组成的系统的机械能为E,则(

A. L 守恒, E 守恒;

B. L守恒, E不守恒;

C. L 不守恒, E 守恒;

D. L不守恒, E不守恒。