

Lecture 7-2: Ensemble Learning Bagging

Pilsung Kang
School of Industrial Management Engineering
Korea University

- K-fold data split
 - ✓ Entire data is split into k blocks; each classifier is trained only on different subset of (k-1) blocks

Kim Train bata

X(I)	y(I)	y(1)		X(I)	
X(2)	y(2)	y(2)		X(2)	
X(3)	y(3)	y(3)	= f /	X(3)	1
•	•	•	_ ' (•	
X(k-2)	y(k-2)	y(k-2)		X(k-2)	
X(k-I)	y(k-1)	y(k-I)	_	X(k-I)	
X(k)	y(k)	y(k)		X(k)	

• K-fold data split

X(I)	y(1)	y(1)		X(I)	
X(2)	y(2)	y(2)		X(2)	
X(3)	y(3)	y(3)	= f /	X(3)	1
•	•	•	- 12(•	
X(k-2)	y(k-2)	y(k-2)		X(k-2)	
X(k-1)	y(k-1)	y(k-1)		X(k-1)	_
X(k)	y(k)	y(k)		X(k)	

• K-fold data split

X(I)	y(1)	y(1)		X(I)	
X(2)	y(2)	y(2)		X(2)	
X(3)	y(3)	y(3)	= f /	X(3)	1
•	•	•	– 13(•	
X(k-2)	y(k-2)	y(k-2)		X(t-2)	
X(k-1)	y(k-1)	y(k-1)		X(k-I)	
X(k)	y(k)	y(k)		X(k)	

• K-fold data split

X(I)	y(I)	y(1)	_	X(I)	
X(2)	y(2)	y(2)		X(2)	
X(3)	y(3)	y(3)	_f /	X(3)	1
•	•	•	_, K-1(•	
X(k-2)	y(k-2)	y(k-2)		X(k-2)	
X(k-I)	y(k-1)	y(k-1)		X(k-1)	
X(k)	y(k)	y(k)		X(k)	

도 모델이독립이라고하면

• K-fold data split 항상불이 는 안공길어든다고 했음」

								ı
	X(I)	y(1)		y(H)			X(t)	_
	X(2)	y(2)		y(2)			X(2)	
	X(3)	y(3)		y(3)	= f		X(3)	1
,	•	•	_	•	— ' _K (•	
		•			• •	_	∀	_
	X(k-2)	y(k-2)		y(k-2)			X(k-2)	
	X(k-1)	y(k-1)		y(k-1)			X(k-1)	
	X(k)	y(k)		y(k)			X(k)	

- K-fold data split
 - ✓ Entire data is split into k blocks; each classifier is trained only on different subset of (k-1) blocks
- Final output

$$\hat{y} = \delta \left(f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_{k-1}(\mathbf{x}), f_k(\mathbf{x}) \right)$$

 $\checkmark \delta(\cdot)$: An aggregation function of individual outputs (ex: simple average)

Breiman (1996)

Main Idea

- ✓ Each member of the ensemble is constructed from a different training dataset
- \checkmark Each dataset is generated by sampling from the total N data examples, choosing N items uniformly at random with replacement 복원주철!

✓ Each dataset sample is known as a bootstrap → 테이터의 분단을 배우시킨 (공정적으로)

Priginal Dataset Bootstrap 1 Bootstrap 2 Bootstrap 2

Original Dataset				
χl	yl			
x^2	y ²			
x^3	y ³			
x ⁴	y ⁴			
x ⁵	y ⁵			
x ⁶	y ⁶			
x ⁷	y ⁷			
x ⁸	y 8			
x ⁹	y ⁹			
x ¹⁰	v 10			

Original Dataset

Bootstrap	I
׳	y ³
× ⁶	y ⁶
x^2	y ²
x ¹⁰	y 10
x ⁸	y 8
복원 (x ⁷	y ⁷
x ⁷	y ⁷
x ³	y ³
x ²	y ²
x ⁷	y ⁷
χ', χ^4, χ^5, g	رم ہے

sampling of 51

Bootsti ap Z				
x ⁷	y ⁷			
χ ^l	уl			
x ¹⁰	y ¹⁰			
χ ^l	уl			
x ₈	y 8			
x ⁶	y ⁶			
x^2	y ²			
x ⁶	y ⁶			
× ⁴	y ⁴			
x ⁹	y ⁹			

\uparrow	bootstrap(D)
은이 가실수 있는 (분단를 바꿔움,	ઇશપ X ⁹	y ⁹
+ 아이터를 어욱시 기		y ⁵
하나의 노이스에 광구		y ²
	× ⁴	y ⁴
• • •	x ⁷	y ⁷
	x ²	y ²
	x ⁵	y ⁵
	×10	y 10
	x ⁸	y 8
	x ²	y ²

· Bagging: Bootstrap Aggregating

V Probability that an instance is not included in a bootstrap

 $P = (1 - \frac{1}{N})^{N} \rightarrow 1 \text{ Tim } (1 - \frac{1}{N})^{N} = e^{-1} = 0.368 \rightarrow \text{ Litteral like like}$

Not 일정수준 이상으로 큰 수이면 식3는 Bootstrap 에 (티이상 생플링 1/3 는 Bootstrap 에 O티 샍플ય Out of Bag (OOB)

Sample (n=5)

Bootstrapped Sample (n=5)

Sample (n=5)

Bootstrapped Sample (n=5)

Sample (n=5)

Bootstrapped Sample (n=5)

Y Fits well with the models with lowbias and high variance

+ complex model

ex. DCT, SVM ...

B1	B2	B ₃
[m]	Trn	Trn
1	4	4
M1	M2	М3
4	l l	<u> </u>
0081	00B2	00B3 < valid
		A=

tes १न्ध

· Bagging with Pecision Tree (+ Random Forest) Stage I: Observations Bootstrap Sampling Training Subset 1 Training Subset 2 Training SubsetM Stage II: Model training • ; split nodes • : leaf nodes Stage IL: Model Forecasting Forecast 1 Forecast 3 Forecast 2 Stage 4: Result Forecasting Fore cast

Bagging with Decision Tree

- Result Aggregating
 - √ For classification problem

ार्षिष्ठेनेण हमारा accuracy

Predicted

class label

Result Aggregating

Ensemble

population

Weighted voting (weight/= training accuracy of individual models)

P(y=1) for a

test instance

Weighted voting (weight = training accuracy of individual models)
$$\hat{y}_{Ensemble} = arg \max_{i} \Big(\frac{\sum_{j=1}^{n} (\overline{Trn}Acc_{j}) \cdot \delta(\hat{y}_{j} = i)}{\sum_{j=1}^{n} (\overline{Trn}Acc_{j})}, \quad i \in \{0, 1\} \Big)$$

006	
-Training-	
Accuracy	
0.80	
0.75	
0.88	
0.91	
0.77	- A
0.65	•
0.95	
0.82	
0.78	
0.83	

Model I	0.90	1
Model 2	0.92	1
Model 3	0.87	1
Model 4	0.34	0
Model 5	0.41	0
Model 6	0.84	1
Model 7	0.14	0
Model 8	0.32	0
Model 9	0.98	I
Model 10	0.57	

$$\begin{split} & \underbrace{\frac{\sum_{j=1}^{n}(TrnAcc_{j})\cdot\delta(\hat{y}_{j}=0)}{\sum_{j=1}^{n}(TrnAcc_{j})}}_{A} = 0.424 \\ & \underbrace{\frac{\sum_{j=1}^{n}(TrnAcc_{j})\cdot\delta(\hat{y}_{j}=0)}{\sum_{j=1}^{n}(TrnAcc_{j})}}_{DrB} = 0.576 \end{split}$$

$$\mathcal{L}_{j=1}^{j=1}$$
 \hat{o}_{oob}^{j} $P(Y=1|X_{new}) = \underbrace{\begin{array}{c} 0.80 \pm 0.05 \pm 0.05 \pm 0.08 \pm 0.65 \pm 0.08 \pm 0.83 \\ \hat{y}_{Ensemble} = 1 \end{array}}_{\text{A}}$

- Result Aggregating
 - √ For classification problem
 - Weighted voting (weight = predicted probability for each class)

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\frac{1}{n} \sum_{j=1}^{n} P(y=i), \quad i \in \{0, 1\} \right)$$

Training Accuracy	Ensemble population	P(y=1) for a test instance	Predicted class label	
0.80	Model I	0.90	I	$1 \stackrel{n}{\sum} 7$
0.75	Model 2	0.92	I	$\frac{1}{n}\sum_{j=1}^{n}P(y=0) = 0.375$
0.88	Model 3	0.87	1	j=1
0.91	Model 4	0.34	0	n
0.77	Model 5	0.41	0	$\frac{1}{n}\sum_{j=1}^{n}P(y=1) = 0.625$
0.65	Model 6	0.84	ı	$n \geq 1 (g = 1) = 0.020$
0.95	Model 7	0.14	0	j=1
0.82	Model 8	0.32	0	^ 1
0.78	Model 9	0.98	M 판업	ুদ্দে পুন্তু।০৮০ $\hat{y}_{Ensemble}=1$
0.83	Model 10	0.57		19) में प्र प्रहेष है जामिक हो । १२

• Result Aggregating: Stacking

- the results $\begin{cases}
 X \to f_1(X) \\
 X \to f_2(X)
 \end{cases} = y$ "meta learner" $g(f_1(x), \dots f_B(x))$
- ✓ Use another prediction model to aggregate the results
 - Input: Predictions made by ensemble members
 - Target: Actual true label

- Result Aggregating: Stacking
 - √ The winner of KDD-cup 2015
 - MOOC dropout prediction

Bagging: Algorithm

Algorithm 1 Bagging Input: Required ensemble size TInput: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$ for t = 1 to T do Build a dataset S_t , by sampling N items, randomly with replacement from S. Train a model h_t using S_t , and add it to the ensemble.

end for

For a new testing point (x', y'),

If model outputs are continuous, combine them by averaging.

If model outputs are class labels, combine them by voting.

Bagging: Illustration

16

Aggregation examples

- Out of bag error (OOB Error)
 - ✓ Use the training instances that are not sampled for validation

Bagged Trees vs. Single Tree

