Obliczenia naukowe Sprawozdanie

Mateusz Laskowski 21.10.2018

1. Zadanie 1

1.1. Opis problemu

Wyznaczyć iteracyjnie epsilon maszynowy, liczbę eta oraz liczbę MAX dla wszystkich dostępnych typów zmiennopozycyjnych Float16, Float32, Float64 oraz porównać zwracane dane do odpowiednich funkcji w języku Julia (eps(), nextfloat(), realmax()).

1.2. Rozwiązanie problemu

Wzory algorytmów

1.2.1. Epsilon maszynowy

```
macheps = 1.0
while (1.0 + macheps / 2.0 > 1.0)
macheps = macheps / 2.0
end
```

1.2.2. Liczba eta

```
eta = 1.0

while (eta > 0.0)

if (eta / 2.0 == 0.0)

break

else

eta = eta / 2.0

end

end
```

1.2.3. Liczba MAX

1.3. Wyniki

Typ liczb	Epsilon maszynowy iteracyjnie	Wynik funkcji eps()	Liczba eta iteracyjnie	Wynik funkcji nextfloat()	Liczba MAX iteracyjnie	Wynik funkcji realmax()
Float16	0.00097656	0.000977	6.0e-8	6.0e-8	6.55e4	6.55e4
Float32	1.1920929e-7	1.1920929e-7	1.0e-45	1.0e-45	3.4028235e3 8	3.4028235e3 8
Float64	2.220446049 250313e-16	2.220446049 250313e-16	5.0e-324	5.0e-324	1.797693134 8623157e308	1.797693134 8623157e308

W pliku nagłówkowym float.h języka C zawarte są takie dane na temat liczb zmiennoprzecinkowych:

Epsilon maszynowy

Float32: 1.19209290e-07F

Float64: 2.2204460492503131e-16

Liczba MAX

Float32: 3.402823e+38

Float64: 1.797693e+308

2. Zadanie 2

2.1. Opis problemu

Sprawdzić eksperymentalnie w języku Julia słuszność twierdzenia Kahan'a, które stwierdza, że epsilon maszynowy można wyznaczyć z pomocą poniżej podanego wzoru:

macheps =
$$3 \times (4 \div 3 - 1) - 1$$

2.2. Rozwiązanie problemu

Użycie powyższego wzoru dla typów zmiennopozycyjnych standardu IEEE 754

2.3. Wyniki

Typ zmiennopozycyjny	Epsilon maszynowy wg wzoru
Float16	-0.000977
Float32	1.1920929e-7
Float64	-2.220446049250313e-16

2.4. Wnioski

Aktualne komputery nie są w stanie dokładnie przechowywać liczb rzeczywistych, gdzie w tym wypadku taką liczbą jest 4/3, ponieważ przechowuje te liczby w systemie dwójkowym i dlatego musi zaokrąglić otrzymany wynik musi zaokrąglić z pewną dokładnością co prowadzi do niedokładnego obliczenia.

3. Zadanie 3

3.1. Opis problemu

Sprawdzić eksperymentalnie w języku Julia, czy liczby zmiennopozycyjne w arytmetyce **Float64** są równomiernie rozmieszczone w danych zakresach. Zakresy: [1, 2], [1/2, 1], [2, 4].

3.2. Rozwiązanie problemu

Wzór algorytmu

```
\begin{array}{lll} p1 = 1.0 & \# \ początek \ zakresu \\ p2 = 2.0 & \# \ koniec \ zakresu \\ delta = nextfloat(p1) - p1 & \# \ odstęp \ między \ p1, \ a \ następnikiem \ p1 \\ k = 1.0 & & \\ x = 1.0 & & \\ while \ (x <= b) & & \\ & x = x + k * \ delta & & \\ & if \ (x - prevfloat(x) \ != \ delta) & & \\ & print(x - prevfloat(x)) & & \\ & end & & \\ & k = k + 1.0 & & \\ & end & & \\ \end{array}
```

Dany algorytm nie pokazywał gęstości danych przedziałów lecz różnicę pomiędzy deltami. Gęstość można było wyznaczyć za pomocą funkcji **bits(x)**, gdzie argumentem owej funkcji były właśnie początkowa i końcowa liczba z naszych zakresów.

3.3. Wyniki

julia > bits(Float64(1.0))

3.4. Wnioski

Po eksperymentowaniu z funkcją **bits()**, doszedłem do takich oto wniosków:

Zakres	Gęstość liczb
[1, 2]	2^{-52}
[1/2, 1]	2 ⁻⁵³
[2, 4]	2 ⁻⁵¹

Gęstość liczb zmiennoprzecinkowych w arytmetyce **Float64 zmniejsza się** wraz ze wzrostem liczb, poprzez coraz to mniejszą precyzję.

4. Zadanie 4

4.1. Opis problemu

Znaleźć eksperymentalnie w arytmetyce **Float64** zgodnej ze standardem **IEEE 754** liczbę zmiennopozycyjną x w przedziale 1 < x < 2 taką, że spełnia poniższe warunki:

$$x * \left(\frac{1}{x}\right) \neq 1$$
 tj. $fl\left(xfl\left(\frac{1}{x}\right)\right) \neq 1$

Znajdź najmniejszą taką liczbę.

4.2. Rozwiązanie problemu

Wzór algorytmu

```
x = nextfloat(1.0)
eta = nextfloat(1.0) - 1.0
while (fl(x * fl(1 / x) == 1)
x = x + eta
end
```

Aby znaleźć najmniejszą liczbę wystarczy pod x podstawić najmniejszą liczbę zmiennopozycyjną **Float64**, którą można wyznaczyć za pomocą funkcji **realmin()**.

4.3. Wyniki

Liczba zmiennopozycyjna x w przedziale 1 < x < 2 z wcześniej podanym warunkiem: x = 1.000000057228997 Najmniejsza liczba x = 2.225073985845947e-308

5. Zadanie 5

5.1. Opis problemu

Napisać program w języku Julia realizujący następujący eksperyment obliczania iloczynu skalarnego dwóch wektorów:

```
x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]
y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]
```

- (a) "w przód" $\sum_{i=1}^n x_i y_i$
- (b) "w tył" $\sum_{i=n}^{1} x_i y_i$
- (c) Suma wszystkich częściowych iloczynów skalarnych zaczynając od **największego** do **najmniejszego** wyniku częściowego
- (d) Suma wszystkich częściowych iloczynów skalarnych zaczynając od **najmniejszego** do **największego** wyniku częściowego

5.2. Rozwiązanie problemu

Zliczyłem wszystkie iloczyny skalarne podanych wektorów.

W algorytmach (a) i (b) dodałem elementy tablicy z wynikami częściowych iloczynów skalarnych odpowiednio w kolejności w tablicy.

W algorytmie (c) i (d) posortowałem oraz zsumowałem elementy tablicy z wynikami częściowymi jak w opisie problemu Ad.5.1.

5.3. Wyniki

Typ liczb	"w przód"	"w tył"	(c)	(d)
Float32	-0.4999443	-0.4543457	-0.5	-0.5
Float64	1.0251881368296672e-10	-1.5643308870494366e-10	0.0	0.0

5.4. Wnioski

Najdokładniejszy jest sposób "w tył", ponieważ był najbliżej wyrażenia $-1.00657107000000_{10} - 11$. Przy dodawaniu liczb od największej do najmniejszej i na odwrót występuje **zjawisko pochłonięcia** mniejszej liczby przez większą!

6. Zadanie 6

6.1. Opis problemu

Policzyć w języku Julia w arytmetyce **Float64** dla $x=8^{-1},8^{-2},8^{-3},...$ wartości następujących funkcji:

$$f(x) = \sqrt{x^2 + 1} - 1$$

$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

6.2. Rozwiązanie problemu

Wzór algorytmu

```
 i = 1 \\ f = 0.0 \\ g = 0.0 \\  while (i < 180) \\  x = (1 / 8)^n i \\  f = sqrt(x^2 + 1.0) - 1.0 \\  g = x^2 / sqrt(x^2 + 1.0) + 1.0 \\  print(f) \\  print(g) \\  i = i + 1 \\ end  # funkcja g(x)
```

6.3. Wyniki

```
x = 1.250000e-01
f(x=8^{-1}) = 0.0077822185373186414
g(x=8^{-1}) = 0.0077822185373187065
x = 1.562500e-02
f(x=8^{-2}) = 0.00012206286282867573
g(x=8^{-2}) = 0.00012206286282875901
x = 1.953125e-03
f(x=8^{-3}) = 1.9073468138230965e-6
g(x=8^{-3}) = 1.907346813826566e-6
x = 2.441406e-04
f(x=8^{-4}) = 2.9802321943606103e-8
g(x=8^{-4}) = 2.9802321943606116e-8
x = 3.051758e-05
f(x=8^{-5}) = 4.656612873077393e-10
g(x=8^{-5}) = 4.6566128719931904e-10
x = 3.814697e-06
f(x=8^{-6}) = 7.275957614183426e-12
g(x=8^{-6}) = 7.275957614156956e-12
x = 4.768372e-07
f(x=8^-7) = 1.1368683772161603e-13
g(x=8^{-7}) = 1.1368683772160957e-13
x = 5.960464e-08
f(x=8^{-8}) = 1.7763568394002505e-15
g(x=8^{-8}) = 1.7763568394002489e-15
x = 7.450581e-09
f(x=8^-9) = 0.0
g(x=8^{-9}) = 2.7755575615628914e-17
x = 9.313226e-10
f(x=8^{-10}) = 0.0
g(x=8^{-10}) = 4.336808689942018e-19
x = 1.164153e-10
f(x=8^{-11}) = 0.0
g(x=8^{-11}) = 6.776263578034403e-21
```

... x = 1.138052e-159 $f(x=8^{-}176) = 0.0$ $g(x=8^{-}176) = 6.4758e-319$ x = 1.422566e-160 $f(x=8^{-}177) = 0.0$ $g(x=8^{-}177) = 1.012e-320$ x = 1.778207e-161 $f(x=8^{-}178) = 0.0$ $g(x=8^{-}178) = 1.6e-322$ x = 2.222759e-162 $f(x=8^{-}179) = 0.0$ $g(x=8^{-}179) = 0.0$ $g(x=8^{-}179) = 0.0$

6.4. Wnioski

Patrząc na wyniki **Ad.6.3**, można zauważyć, że funkcja f(x) jest mniej dokładna, ponieważ podczas obliczeń dochodzi do redukcji **cyfr znaczących**. Dużo lepiej sobie radzi funkcja g(x), gdzie dopiero przy $x=8^{-179}$ ma wartość 0.0.

7. Zadanie 7

7.1. Opis problemu

W języku Julia w arytmetyce **Float64** użyć wzoru na przybliżoną wartość pochodnej $f(x) = \sin x + \cos 3x$ w punkcie $x_0 = 1$ oraz błędów $\left|f'(x_0) - \widetilde{f}'(x_0)\right|$ dla $h = 2^{-n}$ (n = 0, 1, 2, ..., 54).

Wzór do obliczania przybliżonej wartości pochodnej

$$f'(x_0)\approx \widetilde{f}'(x_0)=\frac{f(x_0+h)-f(x_0)}{h}$$

7.2. Rozwiązanie problemu

Funkcja pochodnaP(x, h)

function pochodnaP(x, h) return $(\sin(x + h) + \cos(3.0 * (x + h)) - \sin(x) + \cos(3.0 * x)) / h$ end

Funkcja blad(x, w)

function blad(x, w) $\text{return abs}((\cos(x) - 3.0 * \cos(3.0 * x)) - w)$ end

Wzór algorytmu

```
n = 0
wynik = 0.0
while (n <= 54)
    h = 1.0 / (2.0^n)
    wynik = pochodnaP(1.0, h);
    print(wynik)
    print(blad(x, wynik))
    n = n +1
end</pre>
```

7.3. Wyniki

```
h = 2^-0
h = 1.0 \mid | \sim f'(x) = 2.0179892252685967
1 + h = 2.0
f'(x) = 0.11694228168853815
Błąd = 1.9010469435800585
h = 2^{-1}
h = 0.5 \mid \mid ^{r}(x) = 1.0837422107583725
1 + h = 1.5
f'(x) = 0.11694228168853815
Błąd = 0.9667999290698344
h = 2^-2
h = 0.25 \mid \mid \ ^{c}f'(x) = 0.7225113091862211
1 + h = 1.25
f'(x) = 0.11694228168853815
Błąd = 3.3444071258271275e14
h = 2^{-52}
h = 2.220446049250313e-16 \mid | \sim f'(x) = 6.688814251654259e14
f'(x) = 0.11694228168853815
Błąd = 6.688814251654258e14
h = 2^{-53}
h = 1.1102230246251565e-16 \mid | \sim f'(x) = 1.3377628503308518e15
1 + h = 1.0
f'(x) = 0.11694228168853815
Błąd = 1.3377628503308518e15
h = 5.551115123125783e-17 \mid | \sim f'(x) = 2.675525700661704e15
1 + h = 1.0
f'(x) = 0.11694228168853815
Błąd = 2.675525700661704e15
```

7.4. Wnioski

Błąd na samym początku przy przybliżeniu niestety nie został zniwelowany pomimo zmniejszającego się h. Jeżeli już raz pojawi się błąd w obliczeniach zmiennopozycyjnych to jest on zawarty do końca obliczeń. Można zauważyć, że przy 1 + h wartości znaczące zostały zaokrąglone, gdzie już przy samym końcu h zniwelowało do 0.