••• Q-1, Variation of longitudinal force and moment coefficients •••

Problem

Plot the variation of longitudinal force and moment coefficients with angle of attack, velocity, and control surface deflections for all cases.

PROCEDURE

- Step 1: Find the values of $C_L \& C_{My}$ for any one Angle of Attack.
- Step 2: Repeat step 1 for different elevator deflections.
- Step 3: Collect all the data for different deflections.
- Step 4: Plot "Cm v/s δe ".

MATLAB code

(1) Body alone case

```
>> main projectile.m
```

```
clear all
close all
close all
clc

Initial_conditions_projectile

dummy1 = [];

for i = 1:1:3
    k = wind_tunnel_data_projectile(i);
    q = head(i);
    conversion_projectile;
end

plot_projectile

>> Initial_conditions_projectile.m
```

% Geometric data S = 0.009677; % 1 = 0.111; 1 = 0.884;

```
span = 0.111;
b = 0; % Beta is 0 degree
% Balance center location(m)
x = -0.24915;
y = 0;
z = 0;
v1 = 40; % m/s
v2 = 50; % m/s
v3 = 60; % m/s
v = [v1, v2, v3];
q1 = 974.329545; % Dynamic head [in kg/m*s2]
q2 = 1499.272727; % Dynamic head
q3 = 2172.920455; % Dynamic head
head = [q1, q2, q3];
g = 9.81;
>> wind tunnel data projectile.m
%% 6680_Bomb Model-II_Body Alone
function k = wind_tunnel_data_projectile(int)
switch int
  case 1 % 6680_Bomb Model-II_Body Alone (1-3)
k = [-9.9479170.002673]
                          -0.006420
                                        0.005058
                                                      -0.001114
                                                                   0.000491
0.000003;
  -8.052083 0.002539
                          -0.004903
                                        0.004606
                                                      -0.000981
                                                                   0.000274
0.000041;
  -6.052083 0.002434
                          -0.003329
                                        0.003960
                                                      -0.000981
                                                                   0.000253
0.000068;
  -4.062500 0.002377
                           -0.001724
                                        0.003177
                                                      -0.000968
                                                                   0.000107
0.000071;
                           -0.000170
  -2.052083 0.002325
                                        0.002245
                                                      -0.000885
                                                                   0.000153
0.000090;
  -0.052083 0.002249
                           0.001322
                                        0.001340
                                                      -0.000831
                                                                   0.000072
0.000128;
  0.052083
                                        0.001344
             0.002201
                          0.001334
                                                      -0.000864
                                                                   0.000120
0.000131;
  1.947917
             0.002324
                           0.002779
                                        0.000499
                                                      -0.000783
                                                                   0.000108
0.000153;
```

3.947917

0.000158;

0.002385

0.004320

-0.000380

-0.000745

-0.000003

5.947917	0.002458	0.005940	-0.001250	-0.000692	-0.000010	_
0.000191;	0.002.20	0.0027.10	0.00120	0.00002	0.000010	
7.947917	0.002611	0.007523	-0.001939	-0.000602	-0.000087	_
0.000206;						
9.947917	0.002765	0.009013	-0.002427	-0.000612	-0.000136	_
0.000233;						
11.947917	0.002850	0.010588	-0.002839	-0.000578	-0.000102	_
0.000257;						
13.947917	0.002862	0.012207	-0.003176	-0.000626	-0.000078	_
0.000250;	0.002002	0.010,	0.002170	0.000020	0.000076	
15.937500	0.002895	0.013871	-0.003436	-0.000631	-0.000056	_
0.000280;	0.002075	0.013071	0.005 150	0.000031	0.000020	
17.937500	0.002860	0.015556	-0.003610	-0.000583	-0.000413	_
0.000303;	0.002000	0.013330	0.005010	0.000303	0.000113	
19.947917	0.002808	0.017221	-0.003662	-0.000535	-0.000676	_
0.000332;	0.002000	0.017221	0.003002	0.000333	0.000070	
21.947917	0.002689	0.018903	-0.003702	-0.000579	-0.000642	
0.000360;	0.002089	0.016903	-0.003702	-0.000379	-0.000042	-
23.947917	0.002521	0.020650	-0.003677	-0.000634	-0.000730	
0.000392;	0.002321	0.020030	-0.003077	-0.000034	-0.000730	-
25.947917	0.002204	0.022447	-0.003645	-0.000538	-0.001077	
	0.002294	0.022447	-0.003043	-0.000338	-0.001077	-
0.000409];						
case 2						
k = [-9.947917	7 0 004587	-0.010519	0.006953	-0.001412	0.000946	_
0.000015;	, 0.00 .20 ,	0.010219	0.000,22	0.001.12	0.0007.0	
-8.052083	0.004404	-0.008223	0.006295	-0.001239	0.000592	_
0.000048;	0.001101	0.000223	0.0002/3	0.001237	0.000372	
-6.052083	0.00421	-0.005792	0.005321	-0.001273	0.000473	_
0.000069;	0.00421	0.003172	0.003321	0.001273	0.000473	
,	0.004093	-0.003315	0.004037	-0.001198	0.000382	_
0.000141;	7.00-1073	0.003313	0.004037	0.001170	0.000302	
-2.052083	0.004003	-0.000914	0.002615	-0.001125	0.000283	_
0.000183;	0.004003	-0.000714	0.002013	-0.001123	0.000283	_
-0.052083	0.003968	0.001367	0.001249	-0.000983	0.000286	
0.000204;	0.003908	0.001307	0.001249	-0.000963	0.000280	-
0.052083	0.00389	0.001442	0.00119	-0.001057	0.000316	
0.0032083	0.00369	0.001442	0.00119	-0.001037	0.000310	-
1.947917	0.004016	0.00368	-0.000143	-0.000923	0.000177	
	0.004016	0.00308	-0.000143	-0.000923	0.000177	-
0.000222;	0.004006	0.006062	0.001522	0.000003	0.000107	
3.947917	0.004096	0.006063	-0.001533	-0.000902	0.000197	-
0.000269;	0.004177	0.000541	0.000056	0.000050	0.000120	
5.947917	0.004177	0.008541	-0.002856	-0.000859	0.000128	-
0.000303;	0.004250	0.010016	0.000001	0.000755	0.00005	
7.947917	0.004368	0.010913	-0.003881	-0.000755	-0.00002	-
0.000341;	0.004707	0.010225	0.001707	0.000 ==:	0.00015	
9.947917	0.004593	0.013239	-0.004599	-0.000664	-0.000136	-
0.000388;						

11.947917 0.000397;	0.004712	0.015682	-0.005213	-0.000669	-0.000025	-
13.947917 0.000445;	0.004752	0.018147	-0.005713	-0.000716	0.000002	-
15.9375 0.000474;	0.004759	0.020667	-0.006095	-0.000655	-0.000346	-
17.9375 0.000543;	0.004694	0.023277	-0.006399	-0.000509	-0.000902	-
19.947917 0.000597;	0.004571	0.025917	-0.006611	-0.000528	-0.001019	-
21.947917 0.000622;	0.00437	0.028594	-0.006665	-0.000663	-0.001004	-
23.947917 0.000684;	0.004114	0.031377	-0.006636	-0.000697	-0.00117	-
25.947917 0.00073];	0.003761	0.034218	-0.00653	-0.000258	-0.002047	-
case 3						
k = [-9.94791° 0.000105;	70.006916	-0.015706	0.009377	-0.001872	0.00138	-
-8.052083 0.000155;	0.006651	-0.012341	0.008425	-0.001672	0.00104	-
-6.052083 0.000195;	0.006393	-0.008838	0.006984	-0.001653	0.000856	-
-4.0625 0.00023;	0.00624	-0.005337	0.005156	-0.001549	0.000713	-
-2.0625 0.000284;	0.00616	-0.001847	0.003104	-0.001436	0.000613	-
-0.052083 0.000336;	0.006067	0.001535	0.00105	-0.001293	0.000493	-
0.052083 0.000463;	0.006014	0.00155	0.00096	-0.001306	0.000575	-
1.947917 0.000381;	0.006095	0.004862	-0.000972	-0.001223	0.000523	-
3.947917 0.000439;	0.006189	0.00831	-0.002973	-0.001107	0.000492	-
5.9375 0.000466;	0.006286	0.011904	-0.004877	-0.00101	0.000424	-
7.947917 0.000525;	0.006565	0.015344	-0.006404	-0.000883	0.000258	-
9.947917 0.000568;	0.006871	0.018639	-0.007381	-0.000782	0.000164	-
11.947917 0.000631;	0.006984	0.022162	-0.008318	-0.000734	0.00016	-
13.947917 0.000673;	0.007035	0.025766	-0.009044	-0.000795	-0.000042	-
15.9375 0.000759;	0.007042	0.029433	-0.009589	-0.0007	-0.000477	-

```
17.9375
               0.006945
                           0.033266
                                         -0.010124
                                                      -0.000538
                                                                    -0.001151
0.000813;
  19.947917 0.006745
                           0.037188
                                         -0.010493
                                                      -0.000556
                                                                    -0.001314
0.00087;
  21.947917 0.006498
                           0.041137
                                         -0.010671
                                                      -0.000674
                                                                    -0.001308
0.000959;
  23.9375
               0.006105
                           0.045155
                                         -0.010599
                                                      -0.00088
                                                                    -0.001188
0.001035;
                             0.049182
  25.947917 0.00557
                                        -0.010379
                                                      -0.000121
                                                                    -0.00244
0.001125];
end
end
>> conversion projectile.m
%% Conversion from Voltage signal to kg
CM = [63.080043 \ 0.144499]
                           -0.206795
                                         1.35426
                                                         1.630051
                                                                    4.275882;
   -0.123649 150.309342
                           0.592082
                                         -0.725847
                                                      0.030856
                                                                    0.393628;
   0.024098 -0.689773
                           151.831777
                                        0.096597
                                                      -0.571799
                                                                    -4.414537;
   0.152944 -2.334107
                           0.037781
                                         77.595997
                                                      0.445712
                                                                    5.841784;
   -0.00603 0.114642
                           -0.574072
                                         -0.0658
                                                        79.176337
                                                                    0.322466;
   0.047415  0.466131
                           0.099431
                                        0.208017
                                                      0.190935
                                                                    44.877349];
NW = [-0.001023; 0.001298; 0.001474; -0.000501; -0.000191; -0.000147];
a2 = k(:,2)';
a3 = k(:,3)';
a4 = k(:,4)';
```

% Each column indicates the values of [Af; N1; N2; S1; S2; Rm] for 20

a5 = k(:,5)'; a6 = k(:,6)';a7 = k(:,7)';

 $dummy_A = [];$

A = dummy_A; different AOA

calc_projectile

for i = 1:1:20

end

a = [a2; a3; a4; a5; a6; a7];

A = CM*[a(:,i) - NW];

dummy_A = [dummy_A, A];

```
>> calc_projectile.m
CL_dummy = [];
CD_dummy = [];
CM_dummy = [];
alpha_dummy = [];
for i = 1:1:20
              x = 0.45; % The CG is varied from 0.45 to -0.45 to find NP of configuration
       alpha = k(i,1);
       alpha_dummy = [alpha_dummy, alpha];
       Af = A(1,i);
       N1 = A(2,i);
       N2 = A(3,i);
       S1 = A(4,i);
       S2 = A(5,i);
       Rm = A(6,i);
       [Ax, Sf, Nf, Rm, Pm, Ym] = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (S1 + S2)*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (N1 + N2)*g; Rm*g; (N1 - S4)*g = [Af*g; (N1 + S2)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; Rm*g; (N1 + S4)*g = [Af*g; (N1 + S4)*g; R
N2)*0.065*g; (S1 - S2)*0.065*g];
       Ax = Af*g;
       Sf = (S1 + S2)*g;
       Nf = (N1 + N2)*g;
       Rm = Rm*g;
       Pm = (N1 - N2)*0.065*g;
       Ym = (S1 - S2)*0.065*g;
       % [fx, fy, fz, mx, my, mz] = [-Ax; Sf; -Nf; Rm; Pm; Ym];
       fx = Ax;
       fy = Sf;
       fz = Nf;
       mx = Rm;
       my = Pm;
       mz = Ym;
       F = [-1,0,0,0,0,0; 0,1,0,0,0,0; 0,0,-1,0,0,0; 0,-z,y,1,0,0; z,0,-x,0,1,0; -y,x,0,0,0,1] * [fx; fy; fz; ]
mx; my; mz];
       Fx = F(1);
       Fy = F(2);
       Fz = F(3);
       Mx = F(4);
       My = F(5);
       Mz = F(6);
% Cf = (1/(q*S))*(-1)*[Fx; Fy; Fz];
       Cf = (1/(q*S))*[Fx; Fy; Fz];
       Cfx = Cf(1);
```

```
Cfy = Cf(2);
  Cfz = Cf(3);
    Cm = (1/(q*S*l))*(-1)*[Mx; My; Mz];
  Cm = (1/(q*S*l))*(-1)*[Mx; My; Mz];
  Cmx = Cm(1);
  Cmy = Cm(2);
  Cmz = Cm(3);
  C = [sind(alpha), 0, -cosd(alpha); -cosd(alpha), 0, -sind(alpha); 0, cosd(alpha), 0]*[Cfx;
Cfy; Cfz];
  CL_dummy = [CL_dummy, C(1)];
  CD_dummy = [CD_dummy, C(2)];
  CM_{dummy} = [CM_{dummy}, Cm(2)];
  x = x - 0.045;
end
dummy = [CL_dummy;CD_dummy;CM_dummy]
data_collect_projectile
>> data_collect_projectile.m
dummy1 = [dummy1, dummy];
>> plot projectile
   figure(1)
  figure('Name','6680_Bomb Model-II_Body Alone','NumberTitle','off');
  subplot(3,1,1)
  plot(alpha_dummy,dummy1(1,1:20),'|-b')
  hold on
  plot(alpha_dummy,dummy1(1,21:40),'o-g')
  hold on
  plot(alpha_dummy,dummy1(1,41:60),'.-k')
  hold off
  grid on
  title({'Bomb Model-II Body Alone', 'C L vs α'})
  ylabel('C_L')
  legend(\{v = 40 \text{ m/s'}, v = 50 \text{ m/s'}, v = 60 \text{ m/s'}\},'Location','northwest')
%
    figure(2)
  subplot(3,1,2)
  plot(alpha_dummy,dummy1(2,1:20),'|-b')
  hold on
  plot(alpha_dummy,dummy1(2,21:40),'o-g')
```

```
hold on
  plot(alpha_dummy,dummy1(2,41:60),'.-k')
  hold off
  grid on
  title('C_D vs α')
  ylabel('C_D')
  legend(\{'v = 40 \text{ m/s'}, 'v = 50 \text{ m/s'}, 'v = 60 \text{ m/s'}\}, 'Location', 'northwest'\}
     figure(3)
%
  subplot(3,1,3)
  plot(alpha_dummy,dummy1(3,1:20),'|-b')
  hold on
  plot(alpha_dummy,dummy1(3,21:40),'o-g')
  hold on
  plot(alpha_dummy,dummy1(3,41:60),'.-k')
  hold off
  grid on
  title('C_M vs α')
  xlabel('\alpha (deg)')
  ylabel('C_M')
  legend(\{v = 40 \text{ m/s'}, v = 50 \text{ m/s'}, v = 60 \text{ m/s'}\},'Location','southwest')
```

Output Plot

Variation of CL, CD and Cm with α for body alone configuration

(2) Body + Tail fin

- The MATLAB code is similar as shown for Body alone configuration, Only No wind data, Wind tunnel data and dynamic head will change for Body + Tail Fin configuration.

Output Plot

Variation of CL, CD and Cm with for body with Tail fin configuration

(3) Body + Nose fin + Tail fin

- Only No wind data, Wind tunnel data and dynamic head will change for Body + Nose fin + Tail Fin configuration.

Output Plot

Variation of CL, CD and Cm with for body + Nose fin + Tail fin configuration