☞ Fonction logarithme 4

On considère la fonction suivante définie sur]0; $+\infty$ [:

$$g(x) = 3x + 9 - 4\ln(x)$$

- 1. Calculer la limite de g en 0^+
- **2.** Calculer la limite de g en $+\infty$
- 3. Calculer la dérivée de g.
- **4.** Déterminer le signe de g'(x).
- **5.** En déduire le tableau de variation de g(x).
- **6.** En déduire le nombre de solutions de g(x) = 0.

Logarithme TG

Correction:

1. On sait que:

$$\lim_{x \to 0^{+}} 3x + 9 = +9$$

$$\lim_{x \to 0^{+}} 4\ln(x) = -\infty \quad \text{par propriété du cours}$$

$$\text{donc } \lim_{x \to 0^{+}} 3x + 9 - 4\ln(x) = +\infty$$

2.

$$\lim_{x\to +\infty} 3x + 9 = +\infty$$

$$\lim_{x\to +\infty} 4x \ln(x) = +\infty \quad \text{par propriété du cours}$$
 donc
$$\lim_{x\to +\infty} 3x + 9 - 4\ln(x) = +\infty \quad \text{par prépondérance de } x$$

3.

$$g'(x) = 3 - 4 \times \frac{1}{x}$$
$$= \frac{3x - 4}{x}$$

4.

$$g'(x) \ge 0 \Leftrightarrow x \ge \frac{c}{a}$$

5. On a:

x	0		$\frac{c}{a}$		+∞
g'(x)		-	0	+	
g(x)		+∞ <u>13</u> +	$4\ln\left(\frac{4}{3}\right)$)	+∞

6. On a:

$$g\left(\frac{4}{3}\right) \approx 14.150728289807$$

Par conséquent, comme g est continue, on en déduit que la fonction ne s'annule pas.