2019 Spring COM526000 Deep Learning - Homework 2

Deep learning Model: Deep Neural Network

105061210 楊雅婷

Problems

1. Classification:

i. DNN: number of hidden layers = 2, hidden unit = [60, 30], epochs = 1000, learning rate = 0.001, batch size = 128

ii. Model performance:

DNN classification_report:					
precision		recall	call f1-score		support
_				_	
1	0.91	0.96	0.93	3	93
2	0.99	1.00	1.00	0	250
3	0.98	0.96	0.9	97	113
4	0.93	0.91	0.9	2	110
5	0.98	0.98	0.9	98	283
6	1.00	0.99	1.00	0	252
micro avg	0.98	0.9	98	0.98	1101
macro avg	0.97	7 0.	97	0.97	1101
weighted avg	0.9	8 0	.98	0.98	1101

iii. Different optimizers:

Gradient descent : learning rate = 0.001

Adagrad: learning rate = 0.01

觀察調了幾次參數的結果下來:

loss: Gradient descent > Adagrad > Adam

Accuracy: Adam > Adagrad > Gradient descent

Gradient descent 就是傳統上最直觀的optimizer方法,每次更新參數的 learning rate都是固定的;Adagrad則是讓learning rate隨著參數調整的幅度而 改變(更新的總距離增多,學習速率也跟著變慢);可以看出Adam的效果較好,這可能是因為Adam會依據計算梯度的一階估計和二階估計來為不同 參數設計獨特的 learning rate。

iv. PCA:

v. t-SNE:

vi. 在PCA降維(數據標準化 -> 建立共變異數矩陣 -> SVD得到特徵值和特徵向量 -> 由大至小選k個特徵值和特徵向量 -> 將原本的數據投影到新的特徵向量上)後,由於這裡的k=2,也就是只選擇了最重要的兩個特徵,所以我們只能保證最重要的兩個特徵相近的數據應該會聚集在一起,卻是直

接捨棄了其他可供判別的特徵,亦不能保證這兩個特徵不相近的數據會被分開;在t-SNE降維(高維數據用高斯分佈近似,低維數據用t分佈近似 -> 用KL距離算相似度 -> Gradient descent求最佳解)後,能使數據的分佈在高維和低維的空間中盡可能接近,保留了數據在高維度空間中的距離資訊,雖然要花較多時間,卻可以更好的維持數據的差異性。