Sammanfatning av SI1121 Termodynamik

Yashar Honarmandi

18 oktober 2017

Sammanfattning

Denna samanfattning samlar kanske centrala ekvationer användt i KTH:s kurs SI1121 Termodynamik någon gång. Den inkluderar även lite snygg information om enheter.

Innehåll

1	Enheter	1
2	Konstanter	1
3	Ekvationer	1
	3.1 Allmänna ekvationer	. 2
	3.2 Termodynamikens huvudsatser	. 2
	3.3 Gaser	9

1 Enheter

Enheterna i denna tabell kan vara bra att ha när man ska göra dimensionsanalys.

Storhet	SI-enhet	Uttryck i fundamentala enheter
Kraft	N	$\mathrm{kg}\mathrm{m}\mathrm{s}^{-2}$
Energi	J	$ m kgm^2s^{-2}$
Tryck	Pa	${\rm kg}{\rm m}^{-1}{\rm s}^{-2}$

2 Konstanter

I följande tabell finns konstanter som kommer användas när ekvationer diskuteras.

Konstant	Symbol	Värde
Allmäna gaskonstanten	R	$8.3145\mathrm{JK^{-1}mol^{-1}}$
Avogadros tal	$N_{ m A}$	$6.02214 \times 10^{23} \mathrm{mol}^{-1}$
Boltzmanns konstant	k	$1.38065 \times 10^{-23} \mathrm{JK^{-1}}$

3 Ekvationer

Om inte annat specifieras, kommer alla ekvationer följa symbolkonvention enligt denna tabellen.

Storhet	Symbol
Tryck	p
Volym	V
Temperatur	T
Antal partiklar	N
Antal mol	ν
Inre energi	U
Värme	Q
Arbete	W

3.1 Allmänna ekvationer

Konversion mellan m, ν och N

$$\nu = \frac{m}{M} = \frac{N}{N_{\rm A}}.$$

M är gasens molara massa, massan per mol partiklar. Flera relationer kan härledas vid att använda $R=N_{\rm A}k$.

Täthet

$$\rho = \frac{m}{V}$$

Tätheten av en substans kan även definieras som

$$\rho = \frac{N}{V}.$$

3.2 Termodynamikens huvudsatser

Första huvudsatsen

$$dU = dQ - dW$$

Vid att definiera första huvudsatsen så, definieras arbete gjort på systemet implisitt som positivt. Arbetet ges av

$$dW = -p dV$$

Andra huvudsatsen

$$\mathrm{d}S = \frac{\mathrm{d}Q}{T} \ge 0$$

Likheten gäller för reversibla processer, och olikheten gäller för andra processer.

Tredje huvudsatsen

$$S(T = 0) = 0$$

Potensialer, derivator och annat skit

Inre energiens differensial Vid att kombinera termodynamikens första och andra huvudsats får man

$$dU = T dS - p dV$$

Fri energi

$$F = U - TS$$
$$dF = -S dT - p dV$$

Vid isoterma processer är dW = dF.

Entalpi

$$H = U + pV$$
$$dH = T dS + V dp$$

Fri entalpi

$$G = H - TS$$
$$dG = -S dT + V dp$$

3.3 Gaser

Ideala gaslagen

$$pV = \nu RT = NkT.$$

N är antalet partiklar i gasen och ν är antalet mol partiklar i gasen.

van der Waals' tillståndsekvation

$$p = \frac{NkT}{V - Nb} - a\left(\frac{N}{V}\right)^{2}$$
$$\left(p + \frac{a_{0}}{v^{2}}\right)(v - b_{0}) = RT$$

Dessa är båda ekvivalenta versioner av van der Waals' tillståndsekvation, var man introduserar $a_0=aN_{\rm A}^2,\,b_0=bN_{\rm A}$ och $v=\frac{V}{\nu}.\,a$ innehåller information om växelverkan mellan partiklarna och b innehåller information om partiklarnas volym.

Maxwell-Boltzmann-fördelingen

Partiklarna i en ideal gas har olik fart. Antalet partiklar med en given fart v per volym är fördelad enligt

$$n(v) = Cv^2 e^{-\frac{mv^2}{2kT}},$$

var m är en partikels massa. Vi krävjer att fördelingen är normaliserad, dvs.

$$\int_0^\infty \mathrm{d}v \, n(v) = \frac{N}{V},$$

som ger

$$K = 4\pi n \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}}.$$

Från detta kan man räkna ut en mest sannolik fart v_p , en förväntad fart < v > och en RMS-fart $v_{\rm RMS}$. Dessa är

$$\begin{split} v_{\mathrm{p}} &= \sqrt{\frac{2kT}{m}} \\ \langle v \rangle &= \sqrt{\frac{8kT}{\pi m}} \\ v_{\mathrm{p}} &= \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3kT}{m}}. \end{split}$$

Man kan även räkna ut en medelenergi per partikel, som är

$$\langle E \rangle = \frac{n}{2}kT,$$

var n är antalet kvadratiska frihetsgrader per partikel. För en enatomig ideal gas är det

$$\langle E \rangle = \frac{3kT}{2}.$$

Medelfri väg Medelavståndet mellan två kollisioner i en gas är

$$l = \frac{kT}{p\pi d^2\sqrt{2}} = \frac{1}{n\pi d^2\sqrt{2}}$$

var n är partikeltätheten och d är partiklernas diameter.

Stöttal Stöttalet är antalet partikler som kolliderar med en yta per enhet area och tid, och fås som

$$\nu* = \frac{1}{4}n\left\langle v\right\rangle = \frac{p}{\sqrt{2\pi mkT}}$$

var n är partikeltätheten.