

Licenciatura em Engenharia Informática

MATEMÁTICA DISCRETA

15 de abril de 2023 Teste

Aluno no Nome

- A duração da prova é de 1 hora + 15 minutos de tolerância.
- É permitida a consulta do formulário da U.C.. Não é permitida a consulta de quaisquer dispositivos eletrónicos.
- Todos os cálculos que efetuar e todas as conclusões que obtiver terão de ser devidamente justificados.
- Resolva a prova em 4 grupos de folhas separadas, como é indicado ao longo do enunciado.
- 1. Considere os conjuntos $A = \{\{1,3\},1,3\}$ e $B = \{1,3,5,7\}$. Determine:
 - a) (1 val.) $A \setminus B$.
 - b) (1 val.) $A \cap \mathcal{P}(A)$.
- 2. (1 val.) Definem-se os seguintes predicados:
 - $F(x): x \in do sexo feminino$
 - $S(x): x \in \text{estudante}$
 - B(x,y): x sabe o nome de y

Considere a afirmação: A Joana sabe o nome de todas as alunas. Indique, sem justificar, qual a proposição que traduz esta afirmação:

- a) $\forall x (B(Joana, x) \Rightarrow F(x) \lor S(x))$
- b) $\forall x ((F(x) \land S(x)) \Rightarrow B(Joana, x))$
- c) $\exists x ((F(x) \land S(x)) \Rightarrow B(Joana, x))$
- d) $\forall x (F(x) \lor S(x) \lor \sim B(Joana, x))$
- e) Nenhuma das anteriores.

****** Folha 2 *******

3. (4 val.) Utilizando unicamente as propriedades das operações lógicas, verifique se a proposição composta

$$\Big[\big[(p \Rightarrow \sim q) \vee (p \vee q) \big] \wedge \big[\sim p \wedge (p \Rightarrow \sim q) \big] \Big] \Rightarrow q$$

é logicamente equivalente à proposição composta $q \vee p$. Justifique a sua resposta e indique as propriedades usadas na simplificação da proposição.

****** Folha 3 *******

4. Considere os conjuntos $A = \{-2, -1, 0, 1, 2\}$ e $B = \{0, 1, 2\}$, a relação R em A e a relação S de A para B, definidas, respetivamente, por

$$S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

- a) (1.5 val.) Apresente a relação R por extensão.
- b) (1.5 val.) Verifique se R é uma relação de equivalência, justificando convenientemente a sua resposta.
- c) (1.5 val.) Represente a matriz da menor relação de equivalência, \hat{R} , que contém R.
- d) (1.5 val.) Escreva a matriz T representativa da relação $S \circ R$.

- 5. (3 val.) Usando as regras de inferência (e indicando-as) e considerando as permissas: $\begin{cases} p \wedge q \\ p \Rightarrow \sim (q \wedge r) \\ s \Rightarrow r \end{cases}$ prove $\sim s$.
- 6. (4 val.) Usando o Princípio de Indução Matemática, mostre que, para todo o número natural,

$$\sum_{i=1}^{n} i5^{i} = \frac{5}{16}[(4n-1)5^{n} + 1].$$