Computer Science 294 Lecture 19 Notes

Daniel Raban

March 21, 2023

1 Dictator Testing and PCPPs

1.1 Dictator testing

Recall the setup of property testing: Given a "black box" computing a function f, if we can give it inputs x and see f(x), can we test if f has some property? Or is it far from the class \mathcal{C} of functions with this property? Today, we will look at testing if f is a dictator function.

Definition 1.1. An r-query function tester is a randomized algorithm with black-box axcess to some function f, that:

- chooses (up to) r queries (strings) $x^{(1)}, x^{(2)}, \ldots, x^{(r)}$.
- chooses a predicate $\psi: \{\pm 1\}^r \to \{T, F\}$
- Queries $f(x^{(1)}), f(x^{(2)}), \dots, f(x^{(n)})$ and accepts iff $\psi(f(x^{(1)}), \dots, f(x^{(r)})) = T$.

Let \mathcal{C} be a collection of functions from $\{\pm 1\}^n$ to $\{\pm 1\}$ (e.g. $\mathcal{C} = \{\chi_S\}_{S\subseteq[n]}\}$). We want to test if $f \in \mathcal{C}$.

Example 1.1 (Linearity testing). Let $C = \{\chi_S : S \subseteq [n]\}$. We have seen the BLR test, which is a 3-query local tester for C. We want to

- Pick $x, y \sim \{\pm 1\}^n$ uniformly at random
- Prepare z such that $z_i = x_i y_i$ for $i \in [n]$.
- Accept iff f(x)f(y)f(z) = 1.

We saw that if $\mathbb{P}(\text{tester accepts } f) \geq 1 - \varepsilon$, then f is ε -close to a linear function.

Example 1.2 (Dictator testing). Let $\mathcal{D} = \{x_i : i \in [n]\}$, and recall Arrow's theorem.

• Pick $x, y, z \in \{\pm 1\}^n$ uniformly at random, conditioned on NAE (x_i, y_i, z_i) = True for all $i \in [n]$, where NAE is the "not all equal" function.

• Accept iff NAE(f(x), f(y), f(z)).

Kalai's robust version of Arrow's theorem tells us that

$$\mathbb{P}(\text{tester accepts } f) = \frac{3}{4} - \frac{3}{4} \operatorname{Stab}_{-1/3}(f).$$

Here is a proof of the soundness of this test.

Proposition 1.1. If $\mathbb{P}(tester\ accepts\ f) \geq 1 - \varepsilon$, then $W^1(f) \geq 1 - 4.5\varepsilon$.

Proof. Suppose $\mathbb{P}(\text{tester accepts } f) \geq 1 - \varepsilon$. By Kalai's theorem, we get

$$1 - \varepsilon \leq \frac{3}{4} - \frac{3}{4} \operatorname{Stab}_{-1/3}(f)$$

$$= \frac{3}{4} - \frac{3}{4} \left(W^{0}(f) + \left(-\frac{1}{3} \right) W^{1}(f) + \left(\frac{1}{9} \right) W^{2}(f) + \left(-\frac{1}{27} \right) W^{3}(f) + \cdots \right)$$

$$\leq \frac{3}{4} + \frac{3}{4} \left(\frac{1}{3} W^{1}(f) + \frac{1}{27} W^{3}(f) + \cdots \right)$$

$$\leq \frac{3}{4} + \frac{1}{4} W^{1}(f) + \frac{3}{4} \cdot \frac{1}{27} \underbrace{\left(W^{3}(f) + W^{5}(f) + W^{7}(f) + \cdots \right)}_{\leq 1 - W^{1}(f)}$$

$$\leq \frac{3}{4} + \frac{1}{4} W^{1}(f) + \frac{3}{4} \cdot \frac{1}{27} (1 - W^{1}(f)).$$

Rearranging, we get that

$$1 - \frac{9}{2}\varepsilon \le W^1(f).$$

Now FKN tells us that if $f: \{\pm 1\}^n \to \{\pm 1\}$ has $W^1(f) \geq 1 - \delta$, then f is $O(\delta)$ -close to a dictator or an anti-dictator. This gives a 3-query local test to the class of dictators union anti-dictators with rejection rate $\lambda = \Omega(1)$.

Here is another tester, where the proof does not rely on the FKN result. The idea is to use BLR and Kalai's test.

Theorem 1.1. There exists a 6-local tester for the class of dictators with rejection rate 0.1.

Proof. Apply the BLR test, if it rejects, we reject. If it accepts, then apply Kalai's test and output the result. If

$$\mathbb{P}(\text{combined test accepts}) \geq 1 - 0.1\varepsilon$$
,

then

(1) $\mathbb{P}(BLR \text{ test accepts}) \geq 1 - 0.1\varepsilon$.

- (2) $\mathbb{P}(\text{Kalai test accepts}) \geq 1 0.1\varepsilon$.
- (1) tells us that there exists a set $S^* \subseteq [n]$ such that $\widehat{f}(S^*) \ge 10.2\varepsilon$ iff $\operatorname{dist}(f, \chi_{S^*}) \le 0.1\varepsilon$.
- (2) tells us that $W^1(f) \ge 1 0.45\varepsilon$.

If $|S^*| = 1$, then we're done. Otherwise,

$$1 = \sum_{S} \hat{f}(S)^{2}$$

$$= \sum_{S:|S|=1} \hat{f}(S)^{2} + \sum_{S:|S|\neq 1} \hat{f}(S)^{2}$$

$$\geq 1 - 0.45\varepsilon + \hat{f}(S^{*})^{2}$$

$$\geq 1 - 0.45\varepsilon + (1 - 0.2\varepsilon)^{2}$$

$$\geq 0.5 + 0.8^{2}$$

$$> 1,$$

which is a contradiction.

Can we do dictator testing in 3 queries? Yes! With probability 1/2, apply BLR's test, and with probability 1/2, apply Kalai's test. If $\mathbb{P}(\text{tester accepts } f) \geq 1 - 0.005\varepsilon$, then

$$\mathbb{P}(\text{BLR accepts } f) \ge 1 - 0.1\varepsilon, \qquad \mathbb{P}(\text{Kalai accepts } f) \ge 1 - 0.1\varepsilon.$$

Thus, the previous argument implies that f is ε -close to a dictator.

So we get the following theorem:

Theorem 1.2. There exists a 3-local tester for the class of dictators with rejection rate 0.05.

In general, this gives a trick to reduce the number of queries for a tester.

Theorem 1.3. Let $S \subseteq [n]$, and let $\mathcal{D} = \{\chi_i : i \in S\}$. Then there exists a 3-local testor for \mathcal{D}_S (with rejection rate 0.01).

Proof. Combine BLR, Kalai's test, and a mysterious third test. Here, we will apply them in sequence, but we can always use the trick of picking a test at random to apply.

Suppose f passes BLR and Kalai's test with high probability. Then f is close to some dictator χ_i . We want an input y so that

$$\chi_i(y) = \begin{cases} 1 & i \in S \\ -1 & \text{otherwise.} \end{cases}$$

This equals y_i , so pick $y = 1_S$. Then

$$(1_S)_j = \begin{cases} 1 & j \in S \\ -1 & \text{otherwise} \end{cases}$$

The key idea is to apply LocalCorrect on $\mathbb{1}_S$, so that LocalCorrect $(f, \mathbb{1}_S) = \chi_i(x)$ with probability $1 - O(\varepsilon)$.

1.2 Probabilisticly checkable proofs of proximity

Given a function $f: \{\pm 1\}^n \to \{\pm 1\}$, we can represent it as a very long string. If we let $N = 2^n$, then f can be represented by a string $w \in \{\pm 1\}^N$ (by its truth table). So we can think of property testing in terms of string testing, where we give an index i and receive w_i .

Definition 1.2. $C \subseteq \{\pm 1\}^N$ has an r query, length ℓ **PCPP system (with rejection rate** λ) if there exists an r-local string tester T with black-box access to $(w, \pi) \in \{\pm 1\}^n \times \{\pm 1\}^\ell$ such that

- completeness: If $w \in \mathcal{C}$, there exists $a\pi$ such that T accepts (w, π) with probability 1.
- soundness: If w is ε -far from \mathcal{C} , then for all π^* ,

$$\mathbb{P}(T \text{ rejects } (w, \pi^*)) \geq \lambda \varepsilon.$$

Theorem 1.4 (Long code construction). Every $C \in \{\pm 1\}^N$ has a 3-query PCPP system with proof length 2^{2^N} (and rejection rate $\Omega(1)$).

The idea is to embed every property into a property about dictators. Since we know how to test every property about dictators, we can test any property.

Proof idea. Fix an identification encoding enc : $\{\pm 1\}^N \to [2^N]$.

- A proof $w \in \mathcal{C}$ gives a truth-table π of the dictator function $\chi_{\mathrm{enc}(w)} : \{\pm 1\}^{2^N} \to \{\pm 1\}$.
- The tester checks that π is a dictator function for some χ_i with $\operatorname{enc}^{-1}(i) \in \mathcal{C}$.

This tells us that π is $O(\varepsilon)$ -close to a dictator function $\chi_{\operatorname{enc}(w')}$ for some $w' \in \mathcal{C}$. How do we check that w' = w?

• Pick a random $j \in [N]$. We want to check that $w_j = w'_j$, so we want to design an input $x^{(j)}$ such that $\chi_{\operatorname{enc}(w')}(x^{(j)}) = w'_j$. This is $x_{\operatorname{enc}(w')}^{(j)}$, so for every $y \in \{\pm 1\}^N$, write $x_{\operatorname{enc}(y)}^{(j)} = y_j$.

Theorem 1.5 (PCP(P) theorem, ALMSS, AS, BS, Dinur). Suppose $mcC \subseteq \{\mp 1\}^N$ is given explicitly by a small circuit C of size s: C(w) is true iff $w \in C$. Then C has a 3-query PCPP system with proof length poly(s) [shown by ALMSS, AS]. Moreover, there exists a system with proof length $s(\log s)^{o(1)}$ [shown by BS, Dinur].

Remark 1.1. Is is still open to show that there exists a system with linear proof length.

Next time, we will show the connection between PCPP and hardness of approximation. We will see that MAX-3SAT is NP-Hard to approximate.