Lecture 18 – 晶体管放大

器-part3

Chapter 7 from Microelectronic Circuits Text by Sedra and Smith Oxford Publishing

- 1. 这些都是小信号分析的情况;
- 2. 要逐渐习惯于从电路中某一点,向左、向右,或向上、向下看的阻抗
- 3. 计算输出阻抗时,输入信号 v_i 置零,所以图中的ac地,有可能是真正的 ac地,也有可能是 v_i输入端
- 4. ① 从 G 端向 MOS 管看的阻抗始终为∞; 【因为有SiO₂绝缘, i_G=0】
- 5. ②G和S都接地时,从D端向MOS管看的阻抗为r_o; 【因为信号都是从 G或S端输入的(改变 v_{GS}),所以从D端向MOS管看阻抗时,均为计算 电路的输出阻抗;计算输出阻抗时输入信号v;要置零;所以②既适用于 CS(S接地, v_i接G),也适用于CG(G接地, v_i接S)】
- 6. ③ G 端接地,从 S 端向MOS管看的阻抗为 1/g 【与 D 端所接的负载无关; CG的输入阻抗,或CD,v_i接G时,从S看向MOS管的输出阻抗】
- 7. ④ Source degeneration 结构的主要作用: 大幅提高输出阻抗→更接近于 理想电流源,提高的增量为S端串接的电阻R_S放大(1+g_mr_o)倍;也可 以看成 CG 结构(考虑信号源内阻时)的输出阻抗值

1. Diode-connected 结构(G和D直接相连),小信号分析时等效为阻值 1/gm 的电阻;

- 1. 输出阻抗: D 端到 ac 地的总电阻(向下看为 r_o 到地,向上看为 R_D 到地)
- 2. 增益: -g_m× (D端到 ac 地的总电阻)
- 3. 输入阻抗: ∞

$$A_{v} = -g_{m}(R_{D} \parallel r_{O})$$

$$R_{in} = \infty$$

$$R_{out} = R_D \parallel r_O$$

- 1. 输出阻抗: D端到 ac 地的总电阻 (向下看为 source degeneration 结构,到 ac 地的电阻为 r。+(1+gmr。)Rs,向上看为 RD到地)
 - 2. 增益:

$$A_v = -\frac{D端到ac地的总电阻}{\frac{1}{g_m} + R_S}$$

 $= -\frac{\text{res tied from "D" to ac GND}}{\frac{1}{a_m} + \text{res tied from "S" to ac GND}}$

3. 输入阻抗: ~

FORD

培养电路直觉的Building Blocks

- 1. 输出阻抗:D端到 ac 地的总电阻 ①考虑信号源内阻R_s【向下看与 source degeneration 结构一致,到 ac 地的电阻为 r_o+(1+g_mr_o) R_s】 ②不考虑信号源内阻R_s【向下看 到 ac 地的电阻为 r_o】
- ③向上看均为 R_D到地)
- 2. 增益:
- ①考虑信号源内阻Rs

$$A_v = rac{D$$
端到ac地的总电阻 $rac{1}{g_m} + R_S$

- ②不考虑信号源内阻R_s,即从X 点到 V_{out} 的电压增益 g_m×(D端到 ac 地的总电阻)
- 3. 输入阻抗:<mark>1/g</mark>m

$$A_{v} = \frac{R_{D}}{\frac{1}{g_{m}} + R_{S}}$$

$$R_{in} = \frac{1}{g_{m}}$$

$$R_{out} = \left[(1 + g_{m} r_{O}) R_{S} + r_{O} \right] \square R_{D}$$

1. 输出阻抗,向上看为 1/g_m || r_o,向下看为R_L

- 2. 输入阻抗,无穷大
- 3. 增益,可看成是S端的分压,V_{in}和S之间是电阻1/g_m,S和地之间是电阻 R_i||r_o

$$A_{V} = \frac{r_{O} \parallel R_{L}}{\frac{1}{g_{m}} + r_{O} \parallel R_{L}}$$

$$R_{in} = \infty$$

$$R_{out} = \frac{1}{g_{m}} \parallel r_{O} \parallel R_{L}$$

 V_{DD}

 V_{DD}

CS

CS Deg

 $A_{v} = \frac{R_{D}}{\frac{1}{g_{m}} + R_{S}}$ $R_{in} = \frac{1}{g_{m}}$ $R_{out} = \left[\left(1 + g_{m} r_{O} \right) R_{S} + r_{O} \right] \square R_{D}$

CG

 $A_{V} = \frac{r_{O} \parallel R_{L}}{\frac{1}{g_{m}} + r_{O} \parallel R_{L}}$ $R_{in} = \infty$

 $R_{out} = \frac{1}{g_m} || r_O || R_L$

CD

 $A_{v} = -g_{m} \left(R_{D} \parallel r_{O} \right)$ $R_{in} = \infty$

 $A_{v} = -\frac{R_{D}}{\frac{1}{g_{m}} + R_{S}}$ $R_{in} = \infty$ $R_{out} = \left[(1 + g_{m}r_{O})R_{S} + r_{O} \right] \square R_{D}$ $R_{out} = R_D \parallel r_O$ 提供增益 牺牲增益,获得更 大的输出电阻 -级或多级

输入电阻可适配 更好的高频特性

Voltage Buffer 可驱动小电阻

综合实例(I)

(b)

(a)
$$A_{v} = -g_{m1} \left(\frac{1}{g_{m3}} \| r_{O1} \| r_{O2} \| r_{O3} \right)$$

$$R_{out} = \frac{1}{g_{m3}} \| r_{O1} \| r_{O2} \| r_{O3}$$

综合实例(Ⅱ)

$$A_{v} = -\frac{r_{O2}}{\frac{1}{g_{m1}} + \frac{1}{g_{m3}}} || r_{O3}$$

综合实例Ⅲ

$$A_{v_{-}CS} = -g_{m1} [(1 + g_{m2}r_{O2})R_S + r_{O2}] || r_{O1}$$

$$A_{v_{-}CG} = \frac{r_{O1}}{\frac{1}{g_{m2}} + R_{S}}$$

■ 同样的电路拓扑结构,若输入接在不同的地方,结果 是完全不一样的

FORD ERSITY PRESS

综合实例 (IV)

- 方法1: 左边用戴维南定理替代;
- 方法2: 级联计算

综合实例 (V)

$$\frac{v_{out2}}{v_{in}} = -\frac{\frac{1}{g_{m3}} \| r_{O3} \| r_{O4}}{\frac{1}{g_{m2}} \| r_{O2} + \frac{1}{g_{m1}}}$$

$$\frac{v_{out1}}{v_{in}} = \frac{\frac{1}{g_{m2}}||r_{O2}|}{\frac{1}{g_{m2}}||r_{O2} + \frac{1}{g_{m1}}|}$$

- 1. 计算输出阻抗时,输入信号 v_i 置零,所以图中的ac地,有可能是真正的 ac地,也有可能是 v_i 输入端
- 2. 从B端看进去, E的电阻折算到B需乘以(1+β); 从E端看进去, B的电阻折 算到E需除以(1+β)
- 3. ① r_π 或者 r_e(1+β) ② r_o
- 4. ③B的ac可以是真正的ac地(CB输入电阻),也可以是v_i(CC输出电阻)
- 5. ④当B接有电阻R_B时,R_B除以(1+β)折算到E
- 6. ⑤从B看输入电阻, R_F乘以(1+β)折算到B
- 7. ⑥信号可以从B输入(发射极退化),也可以从E输入(CB,R_F可视为信号 源内阻);用混合π模型考虑,E到地的电阻是R_F和r_π并联
- 8. Emitter degeneration 结构的主要作用: 大幅提高输出阻抗 > 更接近于理 想电流源,提高的增量为 E 端串接的电阻 R_F | | r_m 放大(1+g_mr_o)倍

三极管放大电路总结

- 三种组态具有不同的特性→各有各的用途;
- CE和CB具有较大的电压增益,而射极跟随具有单位电压增益;
- CE是最常见的放大器结构;
- CB的输入阻抗具有1/g_m特性,适合于设计成50欧姆输入阻抗,因此在射频电路中有广泛应用;
- 射极跟随因具有较大输入阻抗、较小输出阻抗、单位 电压增益等特性,往往作为Buffer使用;

在理解的基础上熟记(CE)

FORD STTY PRESS

在理解的基础上熟记(CB)

Input Applied to Emitter

$$A_{v} = g_{m}(r_{O} \parallel R_{C})$$

$$R_{in} = \frac{1}{g_{m}}$$

$$R_{out} = r_{O} \parallel R_{C}$$

$$A_{v} \approx \frac{R_{C}}{R_{E} + \frac{R_{B}}{\beta + 1} + \frac{1}{g_{m}}}$$

B折算到E

 R_{B}

在理解的基础上熟记 (射极跟随)

B折算到E

E折算到B

综合实例I

$$\frac{v_{out}}{v_{in}} = -\frac{R_2 \| R_C}{\frac{R_1 \| R_S}{\beta + 1} + \frac{1}{g_m} + R_E} \cdot \frac{R_1}{R_1 + R_S}$$

通过X点级联,Q₁的输入电阻很大,与R₁并联时,可以 忽略

综合实例Ⅱ

$$\frac{v_{out}}{v_{in}} = -\frac{R_C}{\frac{R_S \parallel R_1}{\beta + 1} + \frac{1}{g_m} + R_2} \cdot \frac{R_1}{R_1 + R_S}$$

Assuming $V_A = \infty$, compute the voltage gain and input impedance of the circuit shown in Fig. 5.99(a).

Figure 5.99 (a) Example of CE stage, (b) simplified circuit.

Solution The circuit resembles a CE stage (why?) degenerated by the impedance seen at the emitter of Q_2 , R_{eq} . Recall from Fig. 5.75 that

$$R_{eq} = \frac{R_1}{\beta + 1} + \frac{1}{g_{m2}}. (5.347)$$

The simplified model in Fig. 5.99(b) thus yields

$$A_v = \frac{-R_C}{\frac{1}{g_{m1}} + R_{eq}} \tag{5.348}$$

$$=\frac{-R_C}{\frac{1}{g_{m1}} + \frac{R_1}{\beta + 1} + \frac{1}{g_{m2}}}. (5.349)$$

The input impedance is also obtained from Fig. 5.75:

$$R_{in} = r_{\pi 1} + (\beta + 1)R_{eq} \tag{5.350}$$

$$= r_{\pi 1} + R_1 + r_{\pi 2}. \tag{5.351}$$

综合实例IV

$$A_{v} = \frac{R_{C} \parallel R_{1}}{R_{S} + \frac{1}{g_{m}}}$$

$$R_{in} = \frac{1}{\beta + 1} \left[\left(\frac{R_S}{\beta + 1} + \frac{1}{g_{m2}} \right) || R_E \right] + \frac{1}{g_{m1}}$$

综合实例 VI

$$R_{out} = \left(\frac{R_{S} \| R_{1}}{\beta + 1} + \frac{1}{g_{m}}\right) \| R_{E} \| R_{2} \| r_{O}\right)$$

XFORD IVERSITY PRESS

综合实例VII

$$R_{in} = r_{\pi 3} + (\beta + 1) \left(R_E + \frac{R_{B1}}{\beta + 1} + \frac{1}{g_{m2}} \right)$$

$$R_{out} = R_C + \frac{R_{B2}}{\beta + 1} + \frac{1}{g_{m3}}$$

$$A_v = -\frac{R_C + \frac{R_{B2}}{\beta + 1} + \frac{1}{g_{m1}}}{\frac{R_{B1}}{\beta + 1} + \frac{1}{g_{m2}} + \frac{1}{g_{m3}} + R_E}$$

偏置电路方案1,直接固定V_{GS}

Biasing by Fixing V_{GS}

Figure 7.47 (a) Biasing the MOSFET with a constant V_{GS} generated from V_{DD} using a voltage divider (R_{G1}, R_{G2}) ; (b) the use of fixed bias (constant V_{GS}) can result in a large variability in the value of I_D . Devices 1 and 2 represent extremes among units of the same type.

偏置电路方案2,引入源极退化电阻,负反馈提高稳定性

可有效降低工艺、温度变化的影响(I_D变化较小)

Figure 7.48 Biasing using a fixed voltage at the gate, V_Q , and a resistance in the source lead, R_s : (a) basic arrangement; (b) reduced variability in I_D ; (c) practical implementation using a single supply; (d) coupling of a signal source to the gate using a capacitor C_{Cl} ; (e) practical implementation using two supplies.

It is required to design the circuit of Fig. 7.48(c) to establish a dc drain current $I_D=0.5$ mA. The MOSFET is specified to have $V_t=1$ V and $k_n'W/L=1$ mA/V². For simplicity, neglect the channel-length modulation effect (i.e., assume $\lambda=0$). Use a power-supply $V_{DD}=15$ V. Calculate the percentage change in the value of I_D obtained when the MOSFET is replaced with another unit having the same $k_n'W/L$ but $V_t=1.5$ V. —般直流分析时不考虑沟道调制效应

①为了使输出有最大可能的摆幅,一般设置V_D为V_{DD}的2/3, V_S为V_{DD}的1/3

$$R_D = \frac{V_{DD} - V_D}{I_D} = \frac{15 - 10}{0.5} = 10 \text{ k}\Omega$$

 $R_S = \frac{V_S}{R_S} = \frac{5}{0.5} = 10 \text{ k}\Omega$

(2)

$$I_D = \frac{1}{2} k'_n(W/L) V_{OV}^2 \implies V_{GS} = 2 \text{ V}$$

It is required to design the circuit of Fig. 7.48(c) to establish a dc drain current $I_D = 0.5$ mA. The MOSFET is specified to have $V_t = 1$ V and $k_n'W/L = 1$ mA/V². For simplicity, neglect the channel-length modulation effect (i.e., assume $\lambda = 0$). Use a power-supply $V_{DD} = 15$ V. Calculate the percentage change in the value of I_D obtained when the MOSFET is replaced with another unit having the same $k_n'W/L$ but $V_t = 1.5$ V. —般直流分析时不考虑沟道调制效应

如果 V_t = 1.5 V

$$I_D = \frac{1}{2} \times 1 \times (V_{GS} - 1.5)^2$$

$$V_G = V_{GS} + I_D R_S$$

$$7 = V_{GS} + 10I_D$$

$$\Delta I_D = 0.455 - 0.5 = -0.045 \text{ mA}$$

$$\frac{-0.045}{0.5} \times 100 = -9\% \text{ change.}$$

偏置电路方案3,自偏置:G和D连接一个较大电阻

- M1 始终处于饱和区;
- R_G上面没有电压降

$$I_{\scriptscriptstyle D}R_{\scriptscriptstyle D} + V_{\scriptscriptstyle GS} + R_{\scriptscriptstyle S}I_{\scriptscriptstyle D} = V_{\scriptscriptstyle DD}$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} [V_{DD} - (R_S + R_D)I_D - V_{TH}]^2$$

$$(R_S + R_D)^2 I_D^2 - 2 \left[(V_{DD} - V_{TH})(R_S + R_D) + \frac{1}{\mu_n C_{ox} \frac{W}{L}} \right] I_D + (V_{DD} - V_{TH})^2 = 0.$$

Calculate the drain current of M_1 in Fig. 7.3 if $\mu_n C_{ox} = 100 \,\mu\text{A/V}^2$, $V_{TH} = 0.5 \,\text{V}$, and $\lambda = 0$. What value of R_D is necessary to reduce I_D by a factor of two?

Figure 7.3 Example of self-biased MOS stage.

Solution Equation (7.31) gives

$$I_D = 556 \,\mu\text{A}.$$
 (7.32)

To reduce I_D to 278 μ A, we solve Eq. (7.31) for R_D :

$$R_D = 2.867 \,\mathrm{k}\Omega. \tag{7.33}$$

偏置电路方案4,恒流源确定I_D:集成电路中常用的偏置方案

Figure 5.55 (a) Biasing the MOSFET using a constant-current source I. (b) Implementation of the constant-current source I using a current mirror.

电流源

(a) 电流源到地

(b) 电流源从V_{DD}下拉

- $V_b \longrightarrow M_1$ X(d)
- 工作在饱和区时,MOSFET 可以当做一个电流源;
- 思考:为何(c)和(d)不能当做电流源? V_{cs}不固定

偏置电路方案1,直接固定 VBE 或 IB

I_c受工艺、温度偏差的 影响较大,不是好的偏 置方案

Figure 7.51 Two obvious schemes for biasing the BJT: (a) by fixing V_{BE} ; (b) by fixing I_{B} . Both result in wide variations in I_{C} and hence in V_{CE} and therefore are considered to be "bad." Neither scheme is recommended.

偏置电路方案2,引入射极退化电阻,负反馈提高稳定性

①I_c (I_E) 由 I_B和 β 决定,为了减小β的影响:

 $V_{BB}\gg V_{BE}$ $R_{E}\gg rac{R_{B}}{eta+1}$

②为了使输出有较大的摆幅、 V_{BB} 一般 设置为 V_{CC} 的1/3、 V_{C} 一般设置为 V_{CC} 的2/3 ③ I_{B} 对 V_{B} 的影响要尽可能小 $\rightarrow R_{1}R_{2}$ 上的 电流要比 I_{B} 大得多,一般选 I_{E} to $0.1I_{E}$

Figure 7.52 Classical biasing for BJTs using a single power supply: (a) circuit; (b) circuit with the voltage divider supplying the base replaced with its Thévenin equivalent.

We wish to design the bias network of the amplifier in Fig. 7.52 to establish a current $I_E = 1$ mA using a power supply $V_{CC} = +12$ V. The transistor is specified to have a nominal β value of 100.

①根据三分之一设计规则

$$V_B = +4 \text{ V}$$

 $V_E = 4 - V_{BE} \simeq 3.3 \text{ V}$
 $R_E = \frac{V_E}{I_E} = \frac{3.3}{1} = 3.3 \text{ k}\Omega$

②根据R₁R₂电流设计规则

$$0.1I_E = 0.1 \times 1 = 0.1 \text{ mA}$$

$$R_1 + R_2 = \frac{12}{0.1} = 120 \,\mathrm{k}\Omega$$

$$\frac{R_2}{R_1 + R_2} V_{CC} = 4 \text{ V}$$

 $R_2 = 40 \text{ k}\Omega \text{ and } R_1 = 80 \text{ k}\Omega$

③重新计算I_E,发现与设计值相比偏小了,可以通过减小R_E回到设计值

$$I_E = \frac{4 - 0.7}{3.3(\,\mathrm{k}\Omega) + \frac{(80\,\|\,40)(\,\mathrm{k}\Omega)}{101}} = 0.93\,\mathrm{mA}$$

原因是R_{BB}折算到E极后与 R_E相比并非明显可忽略 We wish to design the bias network of the amplifier in Fig. 7.52 to establish a current $I_E = 1$ mA using a power supply $V_{CC} = +12$ V. The transistor is specified to have a nominal β value of 100.

④也可以重新选择R₁R₂设计规则,选择流过它们的电流为I_E,此时

$$R_1 + R_2 = \frac{12}{1} = 12 \text{ k}\Omega$$

$$\frac{R_2}{R_1 + R_2} V_{CC} = 4 \text{ V}$$

$$R_1 = 8 \text{ k}\Omega \text{ and } R_2 = 4 \text{ k}\Omega$$

(5)计算R_C

$$I_E = \frac{4 - 0.7}{3.3 + 0.027} = 0.99 \approx 1 \text{ mA}$$

Finally, the value of R_C can be determined from

$$R_C = \frac{12 - V_C}{I_C}$$

Substituting $I_C = \alpha I_E = 0.99 \times 1 = 0.99 \text{ mA} \simeq 1 \text{ mA}$ results, for both designs, in

$$R_C = \frac{12-8}{1} = 4 \,\mathrm{k}\Omega$$

双电源供电情况

$$I_E = \frac{V_{EE} - V_{BE}}{R_E + R_B/(\beta + 1)}$$

Figure 7.53 Biasing the BJT using two power supplies. Resistor R_B is needed only if the signal is to be capacitively coupled to the base. Otherwise, the base can be connected directly to ground, or to a grounded signal source, resulting in almost total β -independence of the bias current.

偏置电路方案3,自偏置:B和C连接一个较大电阻

$$V_{CC} = I_E R_C + I_B R_B + V_{BE}$$
 为了降低对β的敏感度,
$$I_E = \frac{V_{CC} - V_{BE}}{R_C + R_B/(\beta + 1)}$$
 为了降低对β的敏感度,
$$R_B/(\beta + 1) \ll R_C$$

$$I_E = \frac{V_{CC} - V_{BE}}{R_C + R_B/(\beta + 1)}$$

为了降低对β的敏感度,选择

$$R_B/(\beta+1)\ll R_C$$

Figure 7.54 (a) A common-emitter transistor amplifier biased by a feedback resistor R_B . (b) Analysis of the circuit in (a).

偏置电路方案4,恒流源确定Ic:集成电路中常用的偏置方案

■ 也可通过在E极接一恒流源来偏置,此时 V_{BE}, I_BR_B都有偏置恒流源决定,与供电电压V_{CC}无关.

完整PCB级电路分析 (偏置 电路 + 小信号放大电路)

错误的输入连接

■ 因为麦克风的阻抗很小,使得Q₁的B极经由一小电阻到地,导致B极电压很小,从而不能正确偏置Q₁

使用耦合电容

- DC: 电容将偏置网络与麦克风相隔离;
- AC(交流小信号): 电容相当于短路,麦克风直接与 放大电路相连;

错误的输出连接

■ 因为喇叭由螺线管(电感)构成,所以当其直接接到 Q₁的C端时,将使C端短路,从而使三极管工作在深饱和区;

改进?

怎么解决? 我们需要一个输入阻抗较大、输出阻抗较低的Buffer

依旧没有增益:因为喇叭的输入阻抗很小,导致整体的电压增益很小;

错误的偏置网络

■ E到GND没有直流通路

■ 仍有问题。小信号分析时,输入信号被短路到GND;

合适的偏置网络

分级计算,v_{in}→X→v_{out}

$$R_{in} = \frac{1}{g_m} || R_E$$

$$\frac{v_{out}}{v_{in}} = \frac{R_E}{R_E + (1 + g_m R_E) R_S} g_m R_C$$

$$\frac{\frac{1}{g_m}||R_E}{\frac{1}{g_m}||R_E + R_S} \cdot g_m R_C$$

RE导致输入阻抗的降低

■ R_F分流了部分电流到GND(这部分电流是浪费掉的)

如何获得Vb

- 电阻分压: 但降低了增益;
- 为了解决这个问题,可以在B极并联一电容C_B

$$A_{v} \approx \frac{R_{C}}{R_{E} + \frac{R_{B}}{\beta + 1} + \frac{1}{g_{m}}}$$

- 为了使R_E分流较小,需使R_E >> 1/g_m.
- R_1 、 R_2 分压获得 V_b ,需保证流经 R_1 、 R_2 的电流远大于 I_B ;
- 电容如何选择? 其折算到E之后的阻抗需远小于 1/g_m.

$$\frac{1}{\beta+1}\left|\frac{1}{C_B\omega}\right| = \frac{1}{20}\frac{1}{g_m}$$

Figure 7.55 (a) A common-source amplifier using the classical biasing arrangement of Fig. 7.48(c). (b) Circuit for determining the bias point. (c) Equivalent circuit and analysis.

Figure 7.56 (a) A common-emitter amplifier using the classical biasing arrangement of Fig. 7.52(a). (b) Equivalent circuit and analysis.

射极退化

旁路电容<mark>只旁路部分反馈电阻</mark>, 在小信号分析时,是射极退化结 构

(a)

$$R_{\text{in}} = R_{B1} \| R_{B2} \| (\beta + 1) (r_e + R_e)$$

= $R_{B1} \| R_{B2} \| [r_{\pi} + (\beta + 1) R_e]$

$$G_v = -\frac{R_{\rm m}}{R_{\rm in} + R_{\rm sig}} \ \times \ \alpha \ \frac{(R_C \| R_L)}{r_e + R_e}$$

$$= -\alpha \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} \frac{R_C \| R_L}{r_e + R_e}$$

Figure 7.57 (a) A common-emitter amplifier with an unbiased emitter resistance R_{c} . (b) The amplifier small-signal model and analysis.

(b)

$$G_v = \alpha \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} \frac{R_C \| R_L}{r_e} = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} g_m(R_C \| R_L)$$

(a)

射极跟随

55

 $R_{\text{out}} = r_o \|R_E\| \left[r_e + \frac{R_B \|R_{\text{sig}}}{\beta + 1} \right]$

$$G_v \equiv \frac{v_o}{v_{\text{sig}}} = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} \; \frac{(R_E \| \, r_o \| \, R_L)}{r_e + (R_E \| \, r_o \| \, R_L)}$$

频率响应

信号频率较低时,隔直电容和旁路电容不能做理想化处理,会引起增益降低

Figure 7.60 Sketch of the magnitude of the gain of a CE (Fig. 7.56) or CS (Fig. 7.55) amplifier versus frequency. The graph delineates the three frequency bands relevant to frequency-response determination.

作业

D7.36 The bias arrangement of Fig. 7.55 is to be used for a common-base amplifier. Design the circuit to establish a dc emitter current of 1 mA and provide the highest possible voltage gain while allowing for a signal swing at the collector of ± 2 V. Use +10-V and -5-V power supplies.

Ans. $R_B = 0$; $R_E = 4.3 \text{ k}\Omega$; $R_C = 8.4 \text{ k}\Omega$

作业

Design the bias circuit in Fig.7.57(b) for the CS amplifier of Fig. 7.57(a). Assume the MOSFET is specified to have $V_t = 1 \text{ V}$, $k_n = 4 \text{ mA/V}^2$, and $V_A = 100 \text{ V}$. Neglecting the Early effect, design for $I_D = 0.5 \text{ mA}$, $V_S = 3.5 \text{ V}$, and $V_D = 6 \text{ V}$ using a power-supply $V_{DD} = 15 \text{ V}$. Specify the values of R_S and R_D . If a current of 2 μ A is used in the voltage divider, specify the values of R_{G1} and R_{G2} . Give the values of the MOSFET parameters g_m and r_o at the bias point.

Ans. $R_S = 7 \text{ k}\Omega$; $R_D = 18 \text{ k}\Omega$; $R_{G1} = 5 \text{ M}\Omega$; $R_{G2} = 2.5 \text{ M}\Omega$; $g_m = 2 \text{ mA/V}$; $r_o = 200 \text{ k}\Omega$

(b)

 $V_{DD} (0 V)$ $R_{G1} = V_{DD}$ $R_{G1} = V_{DD}$ $R_{G1} = V_{DD}$ $R_{G1} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G1} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G3} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G3} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G3} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G3} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G5} = V_{DD}$ $R_{G5} = V_{DD}$ $R_{G5} = V_{DD}$ $R_{G6} = V_{DD}$ $R_{G7} = V_{DD}$ $R_{G8} = V_{DD}$ $R_{G9} = V_{DD}$ $R_{G9} = V_{DD}$ $R_{G1} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G3} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G6} = V_{DD}$ $R_{G8} = V_{DD}$ $R_{G9} = V_{DD}$ $R_{G1} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G1} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G3} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G1} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G3} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G3} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G5} = V_{DD}$ $R_{G2} = V_{DD}$ $R_{G3} = V_{DD}$ $R_{G4} = V_{DD}$ $R_{G5} = V_{D$

(a)

Design the CB amplifier of Fig. 7.60(a) to provide an input resistance $R_{\rm in}$ that matches the source resistance of a cable with a characteristic resistance of 50 Ω . Assume that $R_E \gg r_e$. The available power supplies are ± 5 V and $R_L = 8$ k Ω . Design for a dc collector voltage $V_C = +1$ V. Specify the values of R_C and R_E . What is the overall voltage gain? If $v_{\rm sig}$ is a sine wave with a peak amplitude of 10 mV, what is the peak amplitude of the output voltage? Let $\alpha \simeq 1$.

Ans. $R_C = 8 \text{ k}\Omega$; $R_E = 8.6 \text{ k}\Omega$; 40 V/V; 0.4 V

D7.45 Design the emitter follower of Fig. 7.61(a) to operate at a dc emitter current $I_E = 1$ mA. Allow a dc voltage drop across R_B of 1 V. The available power supplies are ± 5 V, $\beta = 100$, $V_{BE} = 0.7$ V, and $V_A = 100$ V. Specify the values required for R_B and R_E . If $R_{\text{sig}} = 50$ k Ω and $R_L = 1$ k Ω , find R_{in} , v_i/v_{sig} , v_o/v_i , G_v , and R_{out} . (*Note*: In the bias design, neglect the Early effect.)

Ans. $R_B = 100 \text{ k}\Omega$; $R_E = 3.3 \text{ k}\Omega$; 44.3 k Ω ; 0.469 V/V; 0.968 V/V; 0.454 V/V; 320 Ω

