AF4

1) Determinisation:

L'état **Initial** est un état qui possède tous les numéros des états initiaux de l'automate Les états **finaux** sont les états qui ont **au moins un** numéro d'un état final de l'automate

État	а	b
0	0,1	0,2
1	1,3	1
2	2	2,3
3	1	1

2) Automate Fini Complet Deterministe

Pour transformer un AFD en un AFCD il faut ajouter un état "Poubelle" vers qui toutes les transitions manquante des autres états vont pointer

3) Complémentaire

L'automate doit être complet.

Tous les états finaux deviennent non-finaux et inversement.

4) Mirroir

- On inverse les transitions
- États Initiaux => Terminaux
- États Terminaux => Initiaux

5) Union et Inter

Union

	I		II	
	a	b	а	b
1	3 I	2 II	3 I	2 II
2	1 I	3 II	11	3 II
3	2 I	1 II	21	1 II

Inter

	I		II	
	а	b	а	b
1	3 I	2 II	3 I	2 II
2	1	3 II	1 I	3 II
3	2 I	1 II	21	1 II

7) Moore

Minimisation d'un Automate

Etat	1	2	3	4	5	6	7
Groupe	0	0	0	0	0	1	1
Т	1 0	1 0	0 1	0 1	0 1	1 0	1 0

Groupe	0	0	2	2	2	1	1
Т	1 0	1 0	0 1	2 1	2 1	1 2	1 2

Groupe	0	0	3	2	2	1	1	
Т	1 0	1 0	0 1	3 1	2 1	1 2	1 2	

Groupe	0	0	3	2	4	1	1
Т	1 0	1 0	0 1	3 1	2 1	1 4	1 4

8) Mc Naughton et Yamada

Contruire une expression rationnelle à partir d'un automate

Règle de suppression d'un état

Soit 'A' l'automate suivant:

• On ajoute à l'automate un état 'l' initial auquel on ajoute des epsilons transition vers les états initiaux et un état 'F' Final vers qui vont pointer tous les états finaux avec des épsilon transitions

• Suppression de l'état '2'

• Suppression de l'état '0'

• Suppression de l'état '1'

9) Équation

Contruire une expression rationnelle à partir d'un automate

Lemme d'Arden

$$'L = X.L+Y \Longrightarrow L = X^*.Y'$$

$$L0 = a.L0 + a.L1 + \epsilon$$

 $L1 = b.L1 + b.L2$
 $L2 = a.L2 + a.L3$

L3 = b.L3 + b.L0

On ne cherche que les états initiaux. S'il y a plusieurs états initiaux on fera l'union

 $L3 = b^*.(b.L0)'$ Lemme d'Arden

On remplace 'L3' dans 'L2':

$$L2 = a.L2 + a.b^*.(b.L0)$$

Il nous reste donc:

$$L0 = a.L0 + a.L1 + \epsilon$$

 $L1 = b.L1 + b.L2$
 $L2 = a.L2 + a.b*.(b.L0)$

On applique le Lemme d'Arden sur 'L2'

$$L2 = a^*.a.b^*.b.L0 => (Arden)$$

On remplace 'L2' dans 'L1'

$$L0 = a.L0 + a.L1 + \varepsilon$$

 $L1 = b.L1 + b.a^*.a.b^*.b.L0$

On applique le Lemme d'Arden sur 'L1'

```
L1 = b^*.b.a^*.a.b^*.b.L0 => (Arden)

L0 = a.L0 + a.b^*.b.a^*.a.b^*.b.L0 + \epsilon

L0 = (a.+ a.b^*.b.a^*.a.b^*.b).L0 + \epsilon

L0 = (a.+ a.b^*.b.a^*.a.b^*.b)^* => (Arden)
```

10) Résiduel

 $L = b.(a.a)^*.b.a.(b.b)^*.b$

État		Expression
0	L =	b.(a.a)*.b.a.(b.b)*.b
-	(a-1)L =	Ø
1	(b-1)L =	(a.a)*.b.a.(b.b)*.b
2	(ba-1)L =	a.(a.a)*.b.a.(b.b)*.b
3	(bb-1)L =	a.(b.b)*.b
1	(baa-1)L = (b-1)L =	(a.a)*.b.a.(b.b)*.b
-	(bab-1)L =	Ø
4	(bba-1)L =	(b.b)*.b
-	(bbb-1)L =	Ø
-	(bbaa-1)L =	Ø
5	(bbab-1)L =	b.(b.b)*.b + ε
-	(bbaba-1)L =	Ø
4	(bbabb-1)L = (bba-1)L =	(b.b)*.b

11) Thomson

$$(a+b)*b(a+\epsilon)(a+b)*$$

12) Glushkov

Contruire un AF à partir d'une éxpression rationnelle

ex:
$$L = ((a.(a.b)^*.b)+(b+a.a))^*$$

- On remplace chaque lettre par un numéro : L = ((1.(2. 3)*. 4)+(5 + 6. 7))*
- On rempli le tableau au ajoutant la ligne 0 qui sera l'état initial

Lettre	а	b
0	α1,α6	α5
α1	α2	α4
α2	-	α3
α3	α2	α4
α4	α1,α6	α5
α5	α1,α6	α5
α6	α7	-
α7	α1,α6	α5

• On dessine l'automate de la même maniere que pour la determinisation.

13) Monoïde de transition

3	a = aaa	b = aab	aa	bb = bbb = abb = baa	ab	ba = baa = aba	bab
0	1	2	2	2	0	1	0
1	2	0	1	2	2	1	0
2	1	2	2	2	0	1	0

Soit $\{\varepsilon, a, b, aa, bb, ab, ba, bab\}$

14) Critère de cloture

15) Égalité de deux expressions rationnelles

2 methodes:

- Réduire les expressions rationnelles.
- Construire leurs Automates Minimal