R³: 5- or 6-membered cycloalkyl radical in which up to three carbon atoms are optionally substituted by C₁-C₄-alkyl groups and one or two ring carbon atoms are optionally substituted by direct attachment of oxygen of an oxygen containing functional group or a tertiary nitrogen atom substituted by two C₁-C₄-alkyl groups;

a C_1 - C_4 -alkyl radical in which one hydrogen atom of the radical is substituted by a 5- or 6-membered cycloalkyl radical in which up to three ring carbon atoms are optionally substituted by C_1 - C_4 -alkyl groups and one or two ring carbon atoms are optionally substituted by direct attachment of oxygen of an oxygen containing functional group or a tertiary nitrogen atom substituted by two C_1 - C_4 -alkyl groups; or

a C₁-C₄-alkyl radical substituted by a pyrrolidone group or a morpholine group, wherein bonding of the two heterocyclic groups to the alkyl radical occurs through the ring nitrogen atom of each group;

diisocyanates of the formula (V)

In which the radicals R¹, R², R⁴ and R⁵ may have the following meanings:

 R^1 , R^2 , R^4 : the meaning indicated for R^1 in formula (I),

R⁵: 2 of the total of 4 radicals are hydrogen and the other two radicals are a radical of the formula (VI)

2