Digital Image basic operations

Interpolation & Neighbourhood

- Using known data to estimate values at unknown locations
- Nearest neighbor
- Bilinear
- Bicubic

Bilinear Interpolation

$$I(x,y) = \alpha x + b y + c x y + d$$

$$f(R_1) = \frac{\varkappa_2 - \varkappa}{\varkappa_2 - \varkappa_1} Q_{11} + \frac{\varkappa - \varkappa_1}{\varkappa_2 - \varkappa_1} Q_{21}$$

$$f(R_2) = \frac{\varkappa_2 - \varkappa}{\varkappa_2 - \varkappa_1} \varphi_{12} + \frac{\varkappa_2 - \varkappa_1}{\varkappa_2 - \varkappa_1} \varphi_{22}$$

Vertical

$$f(P) = \frac{y_2 - y}{y_2 - y_1} f(R_1) + \frac{y_2 - y_1}{y_2 - y_1} f(R_2)$$

$$Z(x,y) = \alpha x + b y + c x y + d$$

Neighbourhood

Neighbors of pixels

	(x-1,y)		
(x,y-1)	Р	(x,y+1)	
	(x+1,y)		

4-neighbors of p:

$$N_4(p) = \begin{cases} (x-1,y) \\ (x+1,y) \\ (x,y-1) \\ (x,y+1) \end{cases}$$

(x-1,y-1)		(x-1,y+1)	
	p		
(x+1,y-1)		(x+1,y+1)	

Diagonal neighbors of p:

$$N_D(p) = \begin{cases} (x-1,y-1) \\ (x+1,y-1) \\ (x-1,y+1) \\ (x+1,y+1) \end{cases}$$

(x-1,y-1)	(x-1,y)	(x-1,y+1)	
(x,y-1)	p	(x,y+1)	
(x+1,y-1)	(x+1,y)	(x+1,y+1)	

8-neighbors of p:

$$N_{8}(p) = \begin{cases} (x-1,y-1) \\ (x,y-1) \\ (x+1,y-1) \\ (x-1,y) \\ (x+1,y) \\ (x-1,y+1) \\ (x,y+1) \\ (x+1,y+1) \end{cases}$$