

Finding TPMFP in BTD

Ziyang Cher

Defination:

Alogrithm
Overview Algorithm
FMI

FMI CMFI

Finding Time Period-Based Most Frequent Path in Big Trajectory Data¹

Ziyang Chen

Fudan University

13307130148@fudan.edu.cn

December 23, 2014

¹powered by X⊐ATEX

Summary

Finding TPMFP in BTD

Overview

Definatio

Alogrithm
Overview Algorithm
FMI
CMFI
MFP-Search

Overview

2 Properities

3 Definations

- 4 Alogrithm
 - Overview Algorithm
 - Footmark Index
 - Containment-Based Footmark Index
 - MFP-Search

Overview

TPMFP in BTD

Finding

Overview

_ ...

Defination

Alogrithm

Alogrithm
Overview Algorithm
FMI
CMFI

- The main task: find the most frequent(MFP) during user-specified time periods in large-scale historical trajectory data.
- They refer to this query as time period-based MFP(TPMFP).
- Specifically, given a time peroid T, a source v_s and a destination v_d , TPMFP searchs the MFP from v_s to v_d during T.

Overview

TPMFP in BTD

Finding

Overview

Properition

Definatio

Overview Algorithm

FMI CMFI

- None of the previous work can well reflect people's common sense notion which can be described by the following key properties:
 - suffix-optimal
 - length-insensitive
 - bottleneck-free
- The first task is to give a TPMFP definition that satisfies the above three properties.
- The next task is to find TPMFP over huge amount of trajectory data efficiently.(over 11,000,000 trajectories.)

Summary

Finding TPMFP in BTD

Properities

Defination

A1 1.1

Alogrithm
Overview Algorithm
FMI
CMFI
MFP-Search

Overview

2 Properities

- 3 Definations
- 4 Alogrithm
 - Overview Algorithm
 - Footmark Index
 - Containment-Based Footmark Index
 - MFP-Search

Key Properities

Finding TPMFP in BTD

Properities

. . .

Alogrithm

Overview Algorithm

Property (Suffix-Optimal)

Let P^* denote the v_s-v_d MFP. For any vertex $u\in P^*$, the sub-path (suffix) of P^* from u to v_d should be the $u\!-\!v_d$ MFP.

Property (Length-Insensitive)

The length of any path should not be a deciding factor of whether it is the $v_s - v_d$ MFP.

PROPERTY (BOTTLENECK-FREE)

The MFP P^* should not contain infrequent edges(i.e., bottlenecks).

Summary

Finding TPMFP in BTD

Properitie

Definations

Alogrithm

Overview Algorithm FMI CMFI MFP-Search

- Overview
- 2 Properities
- 3 Definations
- 4 Alogrithm
 - Overview Algorithm
 - Footmark Index
 - Containment-Based Footmark Index
 - MFP-Search

Finding TPMFP in BTD

Ziyang Che

Overviev

Definations

Alogrithm
Overview Algorithm
FMI
CMFI

DEFINATION (ROAD NETWORK)

A road network is a directed graph G=(V,E) where V is a set of vertices representing road intersections and E is a set of edges representing road segments.

DEFINATION (PATH)

Given G, an x_1-x_k path is a non-empty graph $P=(V_p,E_p)$ of the form $Vp=x_1,x_2,\ldots,x_k$ and $E_p=(x_1,x_2),\ldots,(x_{k-1},x_k)$ such that P is a sub-graph of G and the x_i are all distinct.

DEFINATION (TRAJECTORY)

Given G, a trajectory Y is a sequence $((x_1,t_1),(x_2,t_2),\ldots,(x_k,t_k))$ such that there exists a path $x_1\to x_2,\to,\ldots,\to x_k$ on G and t_i is a timestamp indicating the time when Y passes x_i .

Finding TPMFP in BTD

Overvie

Definations

Alogrithm
Overview Algorithm

FMI CMFI

DEFINATION (FOOTMARK)

Given $\Omega = (G, \Upsilon, v_s, v_d, T)$ and a trajectory $Y = ((x_1, t_1), \dots, (x_k, t_k)) \in \Upsilon$, if there exists a non-empty sub-trajectory Y' of Y from Y[i] to Y[j] such that:

- $Y'.d = v_d, i.e., Y'[j].v = v_d,$
- $[Y'.t_s, Y'.t_e] \subseteq T, i.e., [Y[i].t, Y[j].t] \subseteq T,$
- $Y[i-1].t \notin T$, if i > 1,

then path Y'.P is the footmark of Y w.r.t. v_d and T , denoted as $\widetilde{Y}(v_d,T)$.

Finding TPMFP in BTD

Zivang Che

Overvie

Properitie

Definations

Alogrithm

Overview Algorithm

CMFI MFP-Search

(c) Footmark graph G_f

Finding TPMFP in **BTD**

Definations

Defination (Edge Frequency)

Given G, $\Upsilon_{(vd,T)}$, and an edge $(u,v) \in G$, the edge frequency F(u,v) is the number of the footmarks in $\Upsilon_{(vd,T)}$ containing(u, v).

Defination (Footmark Graph)

Given G and $\Upsilon_{(vd,T)}$, a footmark graph G_f is a weighted sub-graph of G such that:

- for any edge $(u, v) \in G$, $w_{uv} = F(u, v)$;
- edge $(u, v) \in G_f$, if and only if $(u, v) \in G$ and $w_{uv} > 0$.

Finding TPMFP in BTD

Ziyang Ch

Overviev

Properitie

Definations

Alogrithm

Overview Algorithm FMI

CMFI MFP-Search

DEFINATION (PATH FREQUENCY)

Given G_f , the frequency of path $P(to v_d)$ is a sequence $F(P) = (f_1, ..., f_k)$ where:

- $\{f_i | i \in 1, ..., k\} = \{w_{uv} | (u, v) \in E(P)\},$
- $f_1 \leq f_2 \leq \ldots \leq f_k$.

Finding TPMFP in BTD

· roperier

Definations

Alogrithm
Overview Algorithm
FMI

Defination (More-Frequent-Than Relation)

Given two path frequencies $F(P)=(f_1,\ldots,f_m)$ and $F(P')=(f_1,\ldots,f_n)$ w.r.t. the same G_f , F(P) is more-frequent-than F(P'), denoted as $F(P)\succeq F(P')$, if one of the following statements holds:

- F(P) is a prefix of F(P');
- there exists a $q \in \{1, \ldots, min(m, n)\}$ such that 1) $f_i = f_i$ for all $i \in \{1, \ldots, q-1\}$, if q > 1, and 2) $f_q > f_q$.

Particularly, F(P) is strictly-more-frequent-than F(P'), denoted as $F(P) \succ F(P')$, if $F(P) \succeq F(P')$ and $F(P) \neq F(P')$.

THEOREM

The more-frequent-than relation is a total order.

Problem Statement

Finding TPMFP in BTD

Ziyang Ch

Overviev

Горение

Definations

Alogrithm
Overview Algorithm

FMI CMFI

DEFINATION (MPF)

Given G_f and a v_s-v_d path $P_*\subseteq G_f$, if $F(P_*)\succeq F(P)$ holds for every v_s-v_d path $P\subseteq G_f$, then P_* is the v_s-v_d MFP w.r.t. G_f .

Problem Statement: Given $\Omega=(G,\Upsilon,v_s,v_d,T)$ where Υ is a very large set of historical trajectories, we need to find the TPMFP which is the MFP w.r.t. G_f . Note that G_f is the footmark graph derived from Ω .

Summary

Finding TPMFP in BTD

Definatio

Alogrithm

Overview Algorithm FMI CMFI Overview

2 Properities

- 3 Definations
- 4 Alogrithm
 - Overview Algorithm
 - Footmark Index
 - Containment-Based Footmark Index
 - MFP-Search

Overview Algorithm

Finding TPMFP in BTD

Properitie

Defination

Alogrithm
Overview Algorithm

Overview Algorithm FMI CMFI **Algorithm 1:** Two major steps for the TPMFP query

Input: $\Omega = (G, \Upsilon, v_s, v_d, T)$ Output: the TPMFP w.r.t. Ω begin

- 1 | step 1: build the footmark graph G_f w.r.t. Ω ;
- 2 step 2: find the MFP P^* from v_s to v_d on G_f ;
- 3 return P^* ;

THEOREM

Given $\Omega=(G,\Upsilon,v_s,v_d,T)$, let P_* be the v_s-v_d TPMFP w.r.t. Ω . Then, for every vertex $u\in V(P)$, the sub-path of P_* from u to v_d is the $u-v_d$ TPMFP.

Footmark Index

TPMFP in BTD Zivang Che

Finding

Overviev

Properitie

Alogrithm

Overview Algorithm

FMI

CMFI

They design an index called Footmark Index (FMI):

- Build a $B^+ tree BT_{v_i}$ for each vertex $v_i \in V(G)$
- ullet BT_{v_i} indexes the time of the trajectories reaching v_i and stores the corresponding trajectory id's
- ullet Each leaf entry of BT_{v_i} is of the form $< tid, t_a >$
- Given v_d and T , FMI-Search (v_d,T) returns the id's of all the trajectories in $\Upsilon(v_d,T)$ via searching BT_{v_d}

Footmark Index

Finding TPMFP in BTD

Footmark Index

Finding TPMFP in BTD

Overview

rropenti

Alogrithm

Overview Algorithm

FMI CMFI MFP-Search

```
Algorithm 2: FMI-FG(v_d, T)
```

```
begin
         FG \leftarrow |V(G)| \times |V(G)| matrix with all entries zeros;
         TRID \leftarrow \text{FMI-Search}(v_d, T);
         for each tid \in TRID do
              Y \leftarrow \text{GetTraj}(tid);
              (vid, t) \leftarrow the first element of Y;
 6
              while t \notin T do
                 (vid, t) \leftarrow the next element of Y;
             while vid \neq v_d do
                  (vid', t') \leftarrow the next element of Y;
                  FG[vid][vid'] \leftarrow FG[vid][vid'] + 1;
10
                  (vid, t) \leftarrow (vid', t');
11
12
         return FG:
```


Finding TPMFP in BTD

Ziyang C

Overview

Properitie

A1 1.1

Alogrithm
Overview Algorithm
FMI
CMFI

- FMI incurs $|\Upsilon(v_d, T)|$ page accesses
- Organizing the involved trajectories into different groups
- In each group, the front part of each trajectory Y before reaching v_d (including v_d), denoted as Y_{*-v_d} , is 'contained' by a unique 'dominant' trajectory
- Only need to fetch the 'dominant' trajectory
- They refer to this new index as Containment-Based Footmark Index (CFMI)

Finding TPMFP in BTD

0 10.11.011

Troperitie

A La muith ma

Alogrithm
Overview Algorithm
FMI
CMFI

Defination (v_d -Containment)

For two trajectories Y and Y' in Υ_{v_d} , if $Y_{*-v_d}.P$ is a sub-path of $Y'_{*-v_d}.P$, then Y is v_d -contained by Y'. In particular, if $Y_{*-v_d}.P \neq Y'_{*-v_d}.P$, then Y is stickly v-d-contained by Y'.

Defination (v_d -Dominant)

A trajectory $Y \in \Upsilon_{v_d}$ is v_d -dominant if there exists no $Y' \in v_d$ such that Y is strictly v_d -contained by Y'.

Finding TPMFP in BTD

Ziyang C

Overvie

Properitie

Semidations

Alogrithm
Overview Algorithm
FMI

Specifically, each leaf entry of BT_{v_i} is in the following new form: $< tid, t_s, t_a, did, sloc>$

• CFMI improves the structure of each $B^+ - tree$ in FMI.

ullet Besides, we keep a table v_i-Dom for each BT_{v_i} , in which we record the length of $Y_{*-v_i}.P$ for each v_i -dominant trajectory Y

TPMFP in BTD

Finding

Ziyang Cr

Overvie

Properitie

Definatio

Alogrithm
Overview Algorithm

Overview Algorithm FMI CMFI For each query (v_i, T) , CFMI returns two sets:

- **1** $TRREC = \{(tid, t_s, did, sloc)\}, \text{ which records the information of trajectories in } \Upsilon(v_d, T)$
- ② $DOM = \{(did, len)\}$, which records the did's appeared in TRREC and their corresponding values in $v_i Dom$

Finding TPMFP in BTD

Finding TPMFP in BTD

Properitie

Definations

Alogrithm
Overview Algorithm

Overview Algorithn FMI

CMFI MFP-Search

```
Algorithm 3: CFMI-FG(v_d, T)
```

```
begin
        FG \leftarrow |V| \times |V| matrix with all entries zeros;
        (TRREC, DOM) \leftarrow CFMI-Search(v_d, T);
        DA \leftarrow \emptyset:
        for each (did, len) \in DOM do
 5
            create array DA.did[len] with all entries zeros;
            DA \leftarrow DA \cup DA.did[len];
 6
 7
        for each (tid, t_s, did, sloc) \in TRREC do
 8
            if t_s \notin T then
 9
                Modify-FG(tid);
            else
                DA.did[sloc] \leftarrow DA.did[sloc] + 1;
10
```



```
Finding
TPMFP in
  BTD
```

22

```
for each (did, len) \in DOM do
11
12
             Y \leftarrow \text{GetTraj}(did);
13
             vid \leftarrow the first location of Y.P:
14
             k \leftarrow 1, w \leftarrow 0:
15
             while vid \neq v_d do
                  vid' \leftarrow the next location of Y.P:
16
17
                  if DA.did[k] \neq 0 or w \neq 0 then
                       w \leftarrow w + DA.did[k];
18
                     FG[vid][vid'] \leftarrow FG[vid][vid'] + w;
19
                  k \leftarrow k + 1:
20
                  vid \leftarrow vid';
21
         return FG;
```


Finding TPMFP in BTD

2.,4...6 0...

Overvie

Properitie

Defination

Alogrithm
Overview Algorithm
FMI
CMFI

MFP-Search

LEMMA

Let $u \leadsto v$ denote a path from u to v. Suppose $P^c = v_s \leadsto v_k \leadsto v_k \leadsto v_d$ is a path with cycles on G_f . We have $F(P) \succ F(P^c)$, where P is the resulting path after removing the portion of P^c between consecutive visits to v_k .

LEMMA

Given G_f w.r.t. Ω , there exists an MFP from v_s to v_d that is simple, i.e., has at most $|V_f|-1$ edges.

Finding TPMFP in BTD

, ,

Properiti

Delinations

Alogrithm
Overview Algorithm
FMI
CMFI
MEP-Search

Define '+' as follows:

- If the two inputs are non-decreasing sequences of positive integers, "+" merges them into a non-decreasing sequence. For example: (20) + (5,20) = (5,20,20);
- If one input is \emptyset , then the other input is returned. If both inputs are \emptyset 's, then \emptyset is returned. For example: $\emptyset + (5,20) = (5,20)$;
- If one input is #, then # is returned. For example: # + (5, 20) = #.

Finding TPMFP in BTD

Ziyang Ch

Overvie

Properitie

MFP-Search

Alogrithm
Overview Algorithm
FMI

Let $F^*(v_s, i)$ be the frequency of the v_s - v_d MFP using at most i edges.

LEMMA

Given $G_f = (V_f, E_f)$, if i > 0, then we have

$$F^*(v_s,i) = \max(F^*(v_s,i-1), \max_{(v_s,v) \in E_f} ((w_{v_sv}) + F^*(v,i-1))).$$

Finding TPMFP in BTD

Ziyang Che

Overview

Properitie

Definatio

Alogrithm

Overview Algorithm

FMI CMFI

MFP-Search

```
Algorithm 4: MFP(v_s, G_f = (V_f, E_f))
    begin
        for each u \in V_f do
             if u = v_d then
              u.\xi \leftarrow \emptyset;
 4
             else
 5
              u.\xi \leftarrow \#, u.suc \leftarrow null;
         P^* \leftarrow null:
 6
        if v_s \in V_f then
 8
             for i \leftarrow 1 to |V_f| - 1 do
 9
                  for each edge (u, v) \in E_f do
10
                      if (w_{uv}) + v.\xi \succeq u.\xi then
                        u.\xi \leftarrow (w_{uv}) + v.\xi;
11
12
                           u.suc \leftarrow v;
13
             create P^* by following the successors from v_s to v_d;
14
         return P^*;
```