Sketching with Hardware

08: Electronics 03 (Digital Electronics)

Analog vs Digital

Pros and Cons of Digital Signals

- Clearly defined either there is voltage or not
- Less prone to errors and noise
- Can be saved and reproduced easily

But:

- Less information than analog "original"
- Digital components are more complex

Pulse Width Modulation (PWM)

Digital "simulation" of analog signal

$$U = U_{HIGH} * \frac{t_1}{T}$$

- Signal is HIGH for a certain part (t_1) of the time interval T and LOW for the remaining time
- Net voltage over T corresponds to the HIGH voltage times the ratio of t₁ to T

Serial Data Transfer

- The Arduino Micro has two serial ports:
 - **Serial** communicats with the computer via USB
 - Serial1 uses the pins RX (receive) and TX (transceive) to communicate with connected devices
- Activity over serial ports is indicated by two LEDs (RX and TX)
- The baudrate has to be defined beforehand and has to match between the devices
 - Arduino: Serial.begin(baudrate);
 - **PC:** Dropdown menu of Serial Monitor

Inter-Integrated Circuit (I²C)

- Bidirectional, serial data bus using the Master/Slave model
- Multiple slaves can be connected to one master
- Requires two lines:
 - Serial Clock (SCL): Controls transfer rate by alternating between HIGH and LOW
 - Serial Data (SDA): Transfers data (one bit per clock cycle)
- The first transferred byte defines receiver an direction

Serial Peripheral Interface (SPI)

- Synchronous, serial data bus using the Master/Slave model
- Three common lines:
 - SCLK (Serial Clock)
 - MISO (Master in, Slave out)
 - MOSI (Master out, Slave in)
- One SS (Slave Select) line from the Master to each Slave
- Once a Slave is selected by the Master (by setting its SS to LOW), it "listens" on MOSI and answers over MISO

9