РЕШЕНИЕ СИСТЕМ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ ИТЕРАЦИОННЫМИ МЕТОДАМИ

Отчет по лабораторной работе должен содержать следующие материалы по каждой задаче:1) постановка задачи; 2) необходимый теоретический материал; 3) **тестовый** пример и результат вычислительного эксперимента по тесту; 4) решение поставленной задачи; 5) анализ полученных результатов; 6) графический материал (если необходимо); 7) тексты программ.

Теоретический материал к данной теме содержится в [1, глава 6], [2, часть 2, глава 2], [1, глава 7].

Варианты к задачам 4.1-4.5 даны в ПРИЛОЖЕНИИ 4.А

Варианты заданий к задачам 5.1-5.6 даны в ПРИЛОЖЕНИИ 5.А.

Часть 1: Решение систем нелинейных уравнений

Задача 4.1. Найти с точностью $\mathcal{E} = 10^{-6}$ все корни системы нелинейных уравнений $f_1(x_1,x_2) = 0,$

 $f_2(x_1, x_2) = 0,$

используя метод Ньютона для системы нелинейных уравнений.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Используя встроенные функции, локализовать корни системы уравнений графически.
- 2. Написать программу-функцию, вычисляющую корень системы двух нелинейных уравнений по методу Ньютона с точностью є. Предусмотреть подсчет количества итераций. Для решения соответствующей системы линейных алгебраических уравнений использовать встроенную функцию.
- 3. Используя написанную программу, вычислить все корни заданной системы с точностью є.
- 4. Используя встроенные функции, найти все корни системы с точностью є. Сравнить с результатами, полученнными в п. 3.

УКАЗАНИЕ. В п. 1 привести уравнения системы к виду $x_2 = g_i(x_1)$ (либо $x_1 = g_i(x_2)$), i=1,2

Задача 4.2. Локализовать корни системы уравнений

$$f_1(x_1, x_2, \alpha) = 0,$$

 $f_2(x_1, x_2, \alpha) = 0$

при трех значениях параметра α . Уточнить их с точностью $\varepsilon = 10^{-5}$, используя упрощенный метод Ньютона для решения системы нелинейных уравнений.

Задача 4.3. Найти с точностью $\varepsilon = 10^{-6}$ корень системы нелинейных уравнений $f_1(x_1,x_2) = 0,$

$$f_2(x_1, x_2) = 0,$$

используя метод простой итерации для системы нелинейных уравнений. Проверить выполнение достаточного условия сходимости метода (использовать норму $||\cdot||_{\infty}$).

Задача 4.4. Плоская однородная пластина имеет форму геометрической фигуры, образованной пересечением двух кривых второго порядка. Определить площадь фигуры.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Составить уравнения заданных кривых второго порядка.
- 2. На одном чертеже построить графики заданных кривых. По чертежу определить форму пластины.
- 3. С помощью построенного чертежа локализовать координаты точек пересечения кривых.
- 4. Используя функцию, составленную при решении задачи 4.1, вычислить координаты точек пересечения кривых с точностью $\varepsilon = 10^{-6}$.
- 5. Вычислить площадь пластины.

Задача 4.5. Даны координаты точек P_i , i=1, 2, 3 и уравнение поверхности S в пространстве R^3 . Определить ближайшую к поверхности точку и наиболее удаленную от поверхности точку. Построить на одном чертеже точечный график поверхности S и заданные точки P_i .

УКАЗАНИЯ. 1) Под расстоянием между точками $Q(x_1,x_2,x_3)\,$ и $P(x_1^0,x_2^0,x_3^0)\,$ в пространстве R^3

понимается величина
$$ho(Q,P) = \sqrt{\sum_{o=1}^3 \Bigl(x_j - x_j^0\Bigr)^2}$$
 . Поэтому для решения задачи следует составить

целевую функцию
$$H(x_1,x_2,x_3) = \sum_{o=1}^3 \left(x_j - x_j^0\right)^2$$
 и минимизировать ее с помощью метода Ньютона при

условии принадлежности точки поверхности S.

- 2) Условие принадлежности точки указанной поверхности S легко учесть, если ввести обобщенные координаты на этой поверхности (см. $\Pi P U J O \mathcal{K} E H U E 4. C$).
- 3) При выборе начального приближения следует учесть, что все координаты заданных точек P_i , i=1, 2, 3, положительны.

Часть 2: Решение систем линейных уравнений

Задача 5.1. Дана система уравнений Ax=b. Найти решение системы с помощью метода Гаусса. Выполнить 10 итераций по методу Зейделя. Принимая решение, полученное с помощью метода Гаусса за точное, найти величину абсолютной погрешности итерационного решения.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Задать матрицу системы A и вектор правой части b. Найти решение системы Ax=b с помощью метода Γ аусса.
- 2. Преобразовать систему Ax=b к виду x=Bx+c, удобному для итераций. Проверить выполнение достаточного условия сходимости итерационных методов $||B||_{\infty} < 1$.
- 3. Написать программу-функцию **zeid**, решающую систему уравнений с помощью метода Зейделя, выполнить 10 итераций по методу Зейделя; взять любое начальное приближение. Принимая решение, полученное в п. 1 за точное, найти величину абсолютной погрешности итерационного решения (использовать норму $||\cdot||_{\infty}$).
- 4. Взять другое начальное приближение. Объяснить полученные результаты.
- Задача 5.2. Для системы уравнений Ax=b из задачи 5.1 найти решение по методу Зейделя с точностью $\varepsilon=10^{-6}$, взяв любое начальное приближение. Для этого модифицировать функцию **zeid**, написанную для задачи 5.1 так, чтобы решение вычислялось с заданной точностью ε . Предусмотреть подсчет количества итераций, потребовавшихся для достижения точности ε .
- **Задача 5.3.** Для системы уравнений Ax=b из **задачи 5.1** выполнить 10 итераций по методу простой итерации. Оценить абсолютную погрешность полученного решения теоретически. Найти реальную величину абсолютной погрешности, приняв за точное решение решение, полученное с помощью встроенной функции. Объяснить результаты.
- Задача 5.4. Дана система уравнений x=Bx+c, где B=B(t), t=-1,-0.8,...,0.8,1 параметр. Построить график (или гистограмму) зависимости нормы $||B||_{\infty}$ от параметра t. По графику определить, при каких перечисленных выше значениях t выполнено достаточное условие сходимости итерационных методов. Найти решение системы x=Bx+c с точностью $\mathcal{E}=10^{-5}$ для наибольшего значения параметра t, при котором выполнено условие сходимости.
- Задача 5.5. Дана система уравнений Ax=b, где A симметричная положительно определенная матрица. Найти решение системы с точностью $\mathcal{E}=10^{-5}$ с помощью метода релаксации (для этого модифицировать функцию zeid из задачи 5.2, реализующую метод Зейделя). Определить экспериментально параметр релаксации ω , при котором точность \mathcal{E} достигается при наименьшем числе итераций. Построить график зависимости числа итераций от параметра релаксации.

УКАЗАНИЕ. Параметр релаксации ω следует задавать из условия сходимости метода: $\omega \in (0,2)$. Например: ω =0.2, 0.4, ..., 1.8.

Задача 5.6. Дана система уравнений Ax=b, где A – симметричная положительно определенная разреженная* матрица размерности $n \times n$. Методом Зейделя найти решение системы с точностью $\mathcal{E}=10^{-9}$. Определить число итераций, потребовавшихся для достижения заданной точности.

УКАЗАНИЕ. Компактное хранение элементов матрицы A в памяти ЭВМ организовать с использованием одномерных массивов.

ПРИЛОЖЕНИЕ 4.А.

Схема вариантов к лабораторной работе Часть 1

N	Выполняемые задачи	N	Выполняемые задачи	N	Выполняемые задачи
1	4.1.1, 4.2.1	11	4.1.11, 4.4.4	21	4.1.21, 4.2.4
2	4.1.2, 4.3.1	12	4.1.12, 4.5.4	22	4.1.22, 4.3.4
3	4.1.3, 4.4.1	13	4.1.13, 4.4.5	23	4.1.23, 4.4.8
4	4.1.4, 4.5.1	14	4.1.14, 4.5.5	24	4.1.24, 4.5.8
5	4.1.5, 4.2.2	15	4.1.15, 4.4.6	25	4.1.25, 4.2.5
6	4.1.6, 4.3.2	16	4.1.16, 4.5.6	26	4.1.26, 4.3.5
7	4.1.7, 4.4.2	17	4.1.17, 4.3.3	27	4.1.27, 4.4.9
8	4.1.8, 4.5.2	18	4.1.18, 4.3.3	28	4.1.28, 4.5.9
9	4.1.9, 4.4.3	19	4.1.19, 4.4.7	29	4.1.29, 4.4.10
10	4.1.10, 4.5.3	20	4.1.20, 4.5.7	30	4.1.30, 4.5.10

Таблица к задаче 4.1

N	Система	N	Система
	уравнений		уравнений
4.1.1	$\sin(x_1 + x_2) - x_2 - 1.2 = 0$	4.1.16	$\sin(0.5x_1 + x_2) - 1.2x_1 - 1 = 0$
	$2x_1 + \cos x_2 - 2 = 0$		$x_1^2 + x_2^2 - 1 = 0$
4.1.2	$\cos(x_1 - 1) + x_2 - 0.5 = 0$	4.1.17	$\tan(x_1 x_2 + 0.3) - x_1^2 = 0$
	$\sin x_1 + 2x_2 - 2 = 0$		$0.9x_1^2 + 2x_2^2 - 1 = 0$
4.1.3	$\sin x_1 + 2x_2 - 2 = 0$	4.1.18	$\sin(x_1 + x_2) - 1.3x_1 - 1 = 0$
	$\cos x_1 + x_2 - 1.5 = 0$		$x_1^2 + 0.2x_2^2 - 1 = 0$
4.1.4	$\cos x_1 + x_2 - 1.5 = 0$	4.1.19	$\tan(x_1 x_2) - x_1^2 = 0$
	$2x_1 - \sin(x_2 - 0.5) - 1 = 0$		$0.8x_1^2 + 2x_2^2 - 1 = 0$
4.1.5	$\sin(x_1 + 1.5) - x_2 + 2.9 = 0$	4.1.20	$\sin(x_1 + x_2) - 1.5x_1 - 0.1 = 0$
	$\cos(x_2 - 2) + x_1 = 0$		$3x_1^2 + x_2^2 - 1 = 0$
4.1.6	$\cos(x_1 + 0.5) + x_2 - 0.8 = 0$	4.1.21	$\tan(x_1 x_2) - x_1^2 = 0$
	$\sin x_2 - 2x_1 - 1.6 = 0$		$0.7x_1^2 + 2x_2^2 - 1 = 0$

_

^{*} Определение разреженных матриц дано в ПРИЛОЖЕНИИ 5.С.

4.1.7	$\sin(x_1 - 1) + x_2 - 0.1 = 0$	4.1.22	$\sin(x_1 + x_2) - 1.2x_1 - 0.1 = 0$
	$x_1 - \sin(x_2 + 1) - 0.8 = 0$		$x_1^2 + x_2^2 - 1 = 0$
4.1.8	$\cos(x_1 + x_2) + 2x_2 = 0$	4.1.23	$\tan(x_1x_2 + 0.2) - x_1^2 = 0$
	$x_1 + \sin x_2 - 0.6 = 0$		$0.6x_1^2 + 2x_2^2 - 1 = 0$
4.1.9	$\cos(x_1 + 0.5) - x_2 - 2 = 0$	4.1.24	$\sin(x_1 + x_2) - x_1 + 0.1 = 0$
	$\sin x_2 - 2x_1 - 1 = 0$		$x_2 - \cos(3x_1) + 0.1 = 0$
4.1.10	$\sin(x_1 + x_2) - x_2 - 1.5 = 0$	4.1.25	$\cos(x_1 + 0.5) + x_2 - 1 = 0$
	$x_1 + \cos(x_2 - 0.5) - 0.5 = 0$		$\sin x_2 - 2x_1 - 2 = 0$
4.1.11	$\sin(x_2+1) - x_1 - 1.2 = 0$	4.1.26	$\cos(x_2 - 2) + x_1 = 0$
	$2x_1^2 + x_2 - 2 = 0$		$\sin(x_1 + 0.5) - x_2 + 2.9 = 0$
4.1.12	$\cos(x_2 - 1) + x_1 - 0.5 = 0$	4.1.27	$\sin(x_1 - 1) + x_2 - 1.5 = 0$
	$x_2 - \cos x_1 - 3 = 0$		$x_1 - \sin(x_2 - 1) - 1 = 0$
4.1.13	$\tan(x_1x_2 + 0.4) - x_1^2 = 0$	4.1.28	$\sin(x_2 + 1) - x_1 - 1 = 0$
	$0.6x_1^2 + 2x_2^2 - 1 = 0$		$2x_2 + \cos x_1 - 0.5 = 0$
4.1.14	$\sin(x_1 + x_2) - 1.6x_1 - 1 = 0$	4.1.29	$\cos(x_2 - 1) + x_1 - 0.8 = 0$
	$x_1^2 + x_2^2 - 1 = 0$		$x_2 - \cos x_1 - 2 = 0$
4.1.15	$\tan(x_1x_2 + 0.1) - x_1^2 = 0$	4.1.30	$\cos(x_1 - 1) + x_2 - 1 = 0$
	$x_1^2 + 2x_2^2 - 1 = 0$		$\sin x_2 + 2x_1 - 1.6 = 0$

Таблица к задаче 4.2

			7 1.2
N	$f_1(x_1, x_2, \alpha)$	$f_2(x_1, x_2, \alpha)$	α
4.2.1	$x_1^2 - x_2 + \alpha$	$-x_1 + x_2^2 + \alpha$	-2, 0, 1
4.2.2	$x_1^2 - x_2 + \alpha$	$-x_1 + x_2^2 + \alpha$	2, 0.25, -0.25
4.2.3	$\sin(x_2) - x_1 - 0.2\alpha$	$3x_1^2 - x_2 - \alpha$	0.5, -1, 3
4.2.4	$x_1 - x_2^3 + 0.5\alpha$	$\cos(2x_1) - x_2 - \alpha$	0, 1, -0.5
4.2.5	$\sin(\alpha x_2) - x_1 - x_2^2$	$\cos(x_1) - x_2 - \alpha$	0.2 , 3, 2.5

Таблица к задаче 4.3

N	$f_1(x_1, x_2)$	$f_2(x_1, x_2)$
4.3.1	$0.7x_1 - (\sin x_2)/3 - 2$	$1.1x_1 + 2x_2 - \sin(x_1/5) + 1$

4.3.2	$x_1 - 0.3x_2 - 0.25\cos x_1 - 7.5$	$-0.05x_1 - x_2 + 0.5\sin x_1$
4.3.3	$x_1x_2 + 0.3x_1 - 0.1$	$5x_2 + \cos x_1 - 1$
4.3.4	$x_1 - \sin x_2 - \cos x_2 + 0.8$	$x_2 - 0.01\sin x_1^2 - 02x_1$
4.3.5	$\tan x_1 + x_2 + 7$	$x_1 + \cos 2x_2 + 1$

Таблица к задаче 4.4

N	Уравнение кривой 1	Вид кривой 2	F_1	F_2	a
4.4.1	$x^2/36 + y^2/4 = 1$	эллипс	(-2.6, -0.6)	(2.6, 4.6)	$3\sqrt{2}$
4.4.2	_ " _	эллипс	(-2.3, 6.6)	(1.3, -0.6)	$2\sqrt{5}$
4.4.3	- " -	гипербола	(-3.1, -0.3)	(1.1, -1.7)	1
4.4.4	_ " _	гипербола	(0.0, -3.0)	(2.0, 2.0)	1.2
4.4.5	$x^2/36 - y^2/4 = -1$	эллипс	(-2.3, 6.6)	(1.3, -0.6)	$2\sqrt{5}$
4.4.6	- " -	эллипс	(-3.7,-0.8)	(5.7, 3.8)	5.6
N	Уравнение кривой 1	Вид кривой 2	F	Директ	гриса
4.4.7	$x^2/36 + y^2/4 = 1$	парабола	(0, 1.0)	x+2y+3.25=0	
4.4.8	- · · -		(-2.0, -3.0)	x+2y+8.5=0	
4.4.9	$x^2/16 - y^2/4 = -1$	_ " _	(-2.0, -4.0)	x+2y+11=0	
4.4.10	- " -	- " -	(0, -1.0)	-x+2y-2=0	

Таблица к задаче 4.5

Для вариантов 4.5.*N*, где *N* – четное, поверхность *S* задается уравнением:
$$\left(\frac{x_1}{a_1}\right)^2 + \left(\frac{x_2}{a_2}\right)^2 + \left(\frac{x_3}{a_3}\right)^2 = 1$$
,

$$a_1 = 8.5 - N*0.25$$
 где $a_2 = 2.3 + N*0.3$. $a_3 = 4 + N*0.1$

Для вариантов 4.5.N, где N – нечетное, поверхность S задается уравнением: $\frac{x_1^2}{a_1} + \frac{x_2^2}{a_2} = 2x_3$,

где
$$a_1 = 8.5 - N * 0.25$$
$$a_2 = 2.3 + N * 0.3$$

N	Координаты точки P_1	Координаты точки $\ P_2$	Координаты точки P_3
4.5.1	(16.5, 5.2, 11.597)	(8.75, 4.777, 8.697)	(15.469, 2.815, 5.125)
4.5.2	(16, 5.8, 11.879)	(8.485, 5.328, 8.91)	(15, 3.139, 5.25)
4.5.3	(15.5, 6.4, 12.162)	(8.22, 5.879, 9.122)	(14.531, 3.464, 5.375)
4.5.4	(15, 7, 12.445)	(7.955, 6.43, 9.334)	(14.062, 3.789, 5.5)
4.5.5	(14.5, 7.6, 12.728)	(7.69, 6.981, 9.546)	(13.594, 4.114, 5.625)
4.5.6	(14, 8.2, 13.011)	(7.425, 7.532, 9.758)	(13.125, 4.438, 5.75)
4.5.7	(13.5, 8.8, 13.294)	(7.159, 8.083, 9.97)	(12.656, 4.763, 5.875)

4.5.8	(13, 9.4, 13.576)	(6.894, 8.634, 10.182)	(12.187, 5.088, 6)
4.5.9	(12.5, 10, 13.859)	(6.629, 9.186, 10.394)	(11.719, 5.413, 6.125)
4.5.10	(12, 10.6, 14.142)	(6.364, 9.737, 10.607)	(11.25, 5.737, 6.25)

ПРИЛОЖЕНИЕ 4.С

Обобщенные координаты на эллипсоиде $\left(\frac{x_1}{a_1}\right)^2 + \left(\frac{x_2}{a_2}\right)^2 + \left(\frac{x_3}{a_3}\right)^2 = 1$ вводятся следующим образом:

$$x_1 = a_1 \cdot \sin(\phi) \cdot \sin(\theta)$$

$$x_2 = a_2 \cdot \cos(\phi) \cdot \sin(\theta)$$
.

$$x_3 = a_3 \cdot \cos(\phi)$$

Обобщенные координаты на эллиптическом параболоиде $\frac{{x_1}^2}{a_1} + \frac{{x_2}^2}{a_2} = 2x_3$ вводятся следующим образом:

$$x_1 = \sqrt{a_1} \cdot u \cdot \cos(\theta)$$

$$x_2 = \sqrt{a_2} \cdot u \cdot \sin(\theta)$$

$$x_3 = 0.5 \cdot u^2$$

ПРИЛОЖЕНИЕ 5.А.

Схема вариантов к лабораторной работе Часть 2

N	Выполняемые задачи	N	Выполняемые задачи	N	Выполняемые задачи
1	5.1.1, 5.4.1,	11	5.1.11, 5.4.5,	21	5.1.21, 5.2,
2	5.1.2, 5.2,	12	5.1.12, 5.4.6,	22	5.1.22, 5.3,
3	5.1.3, 5.3,	13	5.1.13, 5.4.7,	23	5.1.23, 5.5.6,
4	5.1.4, 5.5.1,	14	5.1.14, 5.4.8,	24	5.1.24, 5.4.12,
5	5.1.5, 5.4.2,	15	5.1.15, 5.2,	25	5.1.25, 5.4.13,
6	5.1.6, 5.2,	16	5.1.16, 5.3,	26	5.1.26, 5.4.14,
7	5.1.7, 5.3,	17	5.1.17, 5.5.3,	27	5.1.27, 5.4.15,
8	5.1.8, 5.5.1,	18	5.1.18, 5.4.9,	28	5.1.28, 5.4.16,
9	5.1.9, 5.4.3,	19	5.1.19, 5.4.10,	29	5.1.29, 5.3,
10	5.1.10, 5.4.4,	20	5.1.20, 5.4.11,	30	5.1.30, 5.2,

Таблица к задаче 5.1

Варианты 5.1.N-5.1.15+N , N=1,2...15 имеют одну и ту же матрицу A и отличаются векторами правых частей.

N			Α	L		b	N	b
5.1.1	79.2	0	35	19.8	24	86	5.1.16	-468.1
	39.6	85	0	19.8	25	55		122.3
	19.8	-15	45	0	10	77		-257.2
	49.5	18	20	89.1	0	5		-223.6
	9.9	15	20	-49.5	95	-64		35.9
5.1.2	29.7	2	0	19.8	2	26.2	5.1.17	29.2
	9.9	-21	0	-9.9	1	-41.1		99.9
	-9.9	11	29	6.6	1	97.4		-174.7

	9.9 7.5 2 -19.8 0	99.8		75.05
	-49.5 -1 23 9.9 84	27.1		-185.9
5.1.3	89.1 29 0 59.4 0	260.2	5.1.18	200.5
	39.6 -84 0 -39.6 4	-313.2		-64.4
	-29.7 31 86 19.8 3	293.3		-95.1
	49.5 39 8 -99 0	-212.4		-40.7
	-59.4 0 24 13.2 98	230.8		12.6
5.1.4	39.6 0 17.5 9.9 12	38.5	5.1.19	-34.35
	79.2 120 0 39.6 0	38.8		-530
	19.8 -21 46 0 5	93.7		102.1
	49.5 19 19 89.1 0	43		-286.5
	9.9 25 10 -39.6 85	-49.7		101.3
5.1.5	99 28 0 69.3 0	40.2	5.1.20	-58.7
	49.5 -94 3 -29.7 10	91.5		-156.9
	39.6 24 -96 -29.7 0	93.4		-405.5
	29.7 24 23 79.2 0	84.7		239.6
	69.3 0 21 -3.3 -98	-1.5		-306.5
5.1.6	7.92 3.36 -2.24 1.98	-1.956	5.1.21	14.556
	-13.86 18.20 0 3.96	62.8		-100.54
	-2.97 0.20 4.80 0	-4.16		-1.27
	5.94 0 -10.60 16.83	48.31		-71.31
5.1.7	4.95 1.12 2.9 0.66	-3.41	5.1.22	-31.024
	8.91 19.9 -4.0 6.93	50.33		-37.81
	-2.97 2.2 -5.8 0	19.49		28.58
	5.94 1.3 10.5 17.82	-45.88		9.32
5.1.8	118.8 -14 -5 -89.1	-92.5	5.1.23	451.5
	-59.4 194 5 128.7	-340.1		-1158.3
	148.5 12 -310 148.5	-898		5700
	0 18.5 90 -108.9	184.1		-2060.7
5.1.9	118.8 -14 -5 -89.1	444.5	5.1.24	943
	-14.85 -20 -5 0	-41.05		-80.7
	297 16 320 0	-635		2602.8
	0 6 -30 -36.3	209.3		1.1
5.1.10	49.5 12.52 16.12 19.80	-92.98	5.1.25	-51.176
	0 27.1 1.64 23.76	25.46		101.46
	12.87 11.52 40 -14.85	-26.76		-178.846
	0 4.32 0.12 6.27	-1.15		14.084
5.1.11	3.96 -1.5 0 -0.99 -1.4 0	32.83	5.1.26	11.95
	3.96 18.3 1.6 6.93 4.3 1.5	91.31		-64.89
	0 4.6 -13 4.29 -1.4 2.3 3.96 0.4	29.91		-38.57
	0 5.94 1.5 0	98.8		-23.82
	5.94 3.1 3.4 0.99 14.4 0.9	56.97		-84.83
5 1 10	-2.97 -1.2 0.8 4.95 -2.7 12.7	37.92	£ 1.07	30.35
5.1.12	9.9 3.0 4.0 0 1.3 1.5	-73.34	5.1.27	72.45
	1.98 9.8 0.8 5.94 0.42 -0.6	-37.456		77.48
	3.96 -4.8 19.7 9.9 0.72 0.3	-126.316		31.33
	1.98 1.2 1.1 6.93 0.81 -1.2	-82.528		10.03
	9.9 -7.5 2.1 -9.9 29.5 0	96.66 7.41		-78.74 64.22
7 1 12	-2.97 -1.2 0.8 4.95 2.7 12.7	7.41	5 1 20	64.22
5.1.13	2.97 0.4 0.3 1.98 0 0.1	4.69	5.1.28	-10.45
	0.99 4.9 0.4 2.97 0.2 -0.3	12.18		-8.28 4.48
	0 -1.8 6.6 3.3 0.6 0.8 4.95 1.6 1.2 8.91 0.8 0.3	-3.64 21.05		4.48
		21.05 0.42		-26.93 11.82
	9.9 1.4 2.4 5.94 3.2 23.3	-13.91		38.84

5.1.14	5.94 0.	8 0.6	-3.96	.2 0.3	3	11.44	5.1.29	22.08
	2.97 6.	4 0	-2.97	.2 0.2	2	-54.75		29.99
	2.97 3.	5 8.7	1.98 0	.2 0		-4.64		38.7
	4.95 1.	6 1.2	-8.91 0	.8 0.3	}	20.47		37.19
	-0.99 2.	5 1.1	-3.96	0.4		-95.86		36.74
	5.94 1.	4 2.4	0 3	.2 13		26.92		67.34
5.1.15	0.33	0.1	0.1 0	0.02	0.1	1.620	5.1.30	0.94
	0.99	4.9	0.4 2.97	0.21	-0.3	23.365		18.68
	1.32	-1.6	6.6 3.3	0.24	0.1	-14.010		12.50
	1.98	1.2	1.1 6.93	0.81	-1.2	18.955		5.56
	1.98	-1.5	0.4 -1.98	6.1	0	24.880		-10.28
	0.99	0.4	0.3 1.65	0.9	4.3	-1.500		12.29

Таблица к задаче 5.4

N	B(t)	c	N	B(t)	c
5.4.1	0.2 0.3 -0.1	1	5.4.9	0.2 0.3 -0.1	1
	0.1 $-0.25 \cos(0.5\pi t)$	2		0.1 -0.25 0.3	2
	$\sin(10\pi t)$ 0.1 0.3	1		$0.2 \qquad \sin(2\pi t) \qquad 0.3$	1
5.4.2	0.2 0.3 - 0.1	1	5.4.10	0.2 0.3 -0.1	1
	$\cos(6\pi t)$ -0.25 0.3	2		$\cos(2\pi t)$ -0.25 0.3	2
	$0.2 \qquad \sin(10\pi t) \qquad 0.3$	1		0.2 0.1 0.3	1
5.4.3	0.2 0.3 $\sin(3\pi t)$	1	5.4.11	$-0.2 \cos(3t) 0.1 0.3$	0
	0.1 -0.25 0.3	2		0.1 0.11 0.4 -0.05	1
	0.2 0.1 0.3	1		0.3 0.1 0.2 0.1	2
				0.2 -0.12 0.1 0.09	3

- 4 4	(0.)	_	5 4 4 2	0.0 0.1 0.0
5.4.4	$-0.2 \cos(3t) = 0.1 = 0.3$	0	5.4.12	-0.2 0.15 0.1 0.3 0
	0.1 0.11 0.4 -0.05	1		$0.1 0.11 0.4 \sin(5t)$
	0.3 0.1 $\sin(3t) + \cos(2t)$ 0.1	2		$\begin{bmatrix} 0.3 & 0.1 & 0.2 & 0.1 & 2 \end{bmatrix}$
	0.2 -0.12 0.1 0.09	3		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5.4.5	$\sin(t)$ 0.15 0.1 0.3	0	5.4.13	$\sin(t)$ 0.15 0.1 0.3 0
	$0.1 \sin(t) 0.4 -0.05$	1		0.1 0.11 0.4 -0.05
	0.3 0.1 $\sin(t)$ 0.1	2		0.3 0.1 0.2 0.1
	` '	2		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0.2 -0.12 0.1 $\sin(t)$	3		
5.4.6	0.01 0.12 0.5 -0.1	3	5.4.14	0.01 0.12 0.5 -0.1 3
	-0.1 -0.15 -0.01 -0.4	2		$\begin{bmatrix} -0.1 & -0.15 & -0.01 & t^2 - 1.5t \end{bmatrix}$
	0.15 0 t - 0.5 0.2	1		$\begin{bmatrix} 0.15 & 0 & t & 0.2 & 1 \end{bmatrix}$
	0 -0.1 0.25 0.1	0		0 -0.1 0.25 0.1
5.4.7	2t 0.12 0.5 -0.1	3	5.4.15	0.01 0.12 0.5 -0.1 3
	-0.1 -0.15 -0.01 -0.4	2		-0.1 -0.15 -0.01 -0.4 2
	0.15 0 0.3 0.2	1		$0.15 t^2 0.3 0.2 1$
	0 -0.1 0.25 0.1	0		0 -0.1 0.25 0.1
5.4.8	0.01 0.12 0.5 -0.1	3	5.4.16	0.01 -0.1 0.12 <i>t</i> 0.2 1
	-0.1 t -0.01 -0.4	2		0.1 0.08 -0.09 0 0.2 1
	0.15 0 2t 0.2	1		t 0.15 -0.06 0.1 0 0
	0 -0.1 0.25 0.1	0		0.3 0.1 -0.01 0.2 -0.2
				0.01 0.07 -0.1 0 0.1 3

Таблица к задаче 5.5

N	A	b	N	A	b
5.5.1	3.5 -1 0.9 0.2 0.1	1	5.5.2	3.2 0.3 0.9 -0.7 1.1	1
	-1 7.3 2 0.3 2	2		0.3 8.1 1.8 -2 0.8	0
	0.9 2 4.9 -0.1 0.2	3		0.9 1.8 4.1 -0.1 0.2	3.2
	0.2 0.3 -0.1 5 1.2	4		-0.7 -2 -0.1 3.6 -0.6	-2
	0.1 2 0.2 1.2 7	5		1.1 0.8 0.2 -0.6 4	-3
5.5.3	8.2 1.2 2.1 0.1 -0.1	0.1	5.5.4	5.7 2.1 -0.2 -1.1	0.1
	1.2 8.1 2.5 -1.3 0.2	6		2.1 4.6 -1.2 0.1	-0.9
	2.1 2.5 10.2 -1.7 0.3	3.2		-0.2 -1.2 4.5 -0.3	0.5
	0.1 -1.3 -1.7 9.6 1.6	0.2		-1.1 0.1 -0.3 4.7	1.1
	-0.1 0.2 0.3 1.6 3.5	-0.7			
5.5.5	7.8 0.7 -2.1 -2.4	2	5.5.6	2.9 0.4 0.3 1.8	2.2
	0.7 3 0.3 0.9	4		0.4 4.9 0.4 2.8	-8.3
	-2.1 0.3 4.7 -1.2	2.6		0.3 0.4 6.6 4.6	1.6
	-2.4 0.9 -1.2 5.1	-0.8		1.8 2.8 4.6 9.6	7.1

Таблица к задаче 5.6

			ица к задаче 5.0
N	n	A	b
5.6.1	50	на главной диагонали элементы равны 218, на первой наддиагонали элементы равны 38, на 4 наддиагонали элементы равны 8, на 9 наддиагонали элементы равны 3.	$b_i = i \cdot e^{\frac{18}{i}}$
5.6.2	35	на главной диагонали элементы равны 220, на первой наддиагонали элементы равны 22, на 4 наддиагонали равны 2.	$b_i = i \cdot e^{\frac{22}{i}} \cos\left(\frac{11}{i}\right)$
5.6.3	40	на главной диагонали элементы равны 150, на первой наддиагонали элементы равны 33, на 5 наддиагонали элементы равны 17, на 6 наддиагонали равны 2, на 8 наддиагонали равны 1	$b_i = i \cdot e^{\frac{10}{i}}$
5.6.4	50	на главной диагонали элементы равны 100, на первой наддиагонали элементы равны 27, на 3 наддиагонали элементы равны 15, на 7 наддиагонали элементы равны 1.	$b_i = i \cdot e^{\frac{10}{i}} \cos\left(\frac{9}{i}\right)$
5.6.5	40	на главной диагонали элементы равны 195, на первой наддиагонали элементы равны 27, на 4 наддиагонали элементы равны 13, на 9 наддиагонали равны 1.	$b_i = i \cdot e^{\frac{10}{i}}$
5.6.6	50	на главной диагонали элементы равны 114, на второй наддиагонали элементы равны 31, на 3 наддиагонали элементы равны 2	$b_i = i \cdot e^{\frac{18}{i}}$
5.6.7	35	на главной диагонали элементы равны 120, на первой наддиагонали элементы равны 2, на 6 наддиагонали равны -2.	$b_i = i \cdot e^{\frac{11}{i}} \sin\left(\frac{11}{i}\right)$
5.6.8	40	на главной диагонали элементы равны 450, на первой наддиагонали элементы равны 55, на 7 наддиагонали элементы равны 7, на 8 наддиагонали равны 2	$b_i = i^2 \cdot e^{\frac{5}{i}}$

ПРИЛОЖЕНИЕ 5.С

Матрицы, в которых большинство элементов равно нулю, называются *разреженными*. Будем говорить, что элементы матрицы $a_{11}, a_{22}, a_{33}, ..., a_{nn}$ - образуют главную диагональ; элементы матрицы

$$a_{1k}, a_{2k+1}, a_{3k+2}, ..., a_{n,n-k+1}$$
 образуют (k-1)-ую наддиагональ; элементы

$$a_{k,1}, a_{k+1,2}, a_{k+2,3}, ..., a_{n-k+1,n}$$
 образуют (k-1)-ую поддиагональ.

Пример. Ниже представлены две матрицы: матрица A - трехдиагональная матрица размера 5х5, элементы главной диагонали равны 10, элементы первой наддиагонали равны 3, элементы первой поддиагонали равны - 1;

матрица В - симметричная матрица размера 5x5, на главной диагонали которой все элементы равны 10, на второй наддиагонали элементы равны 5, а на третьей наддиагонали элементы равны 2.

$$A \stackrel{?}{:-} \begin{bmatrix} 10 & 3 & 0 & 0 & 0 \\ -1 & 10 & 3 & 0 & 0 \\ 0 & -1 & 10 & 3 & 0 \\ 0 & 0 & -1 & 10 & 3 \\ 0 & 0 & 0 & -1 & 10 \end{bmatrix} \qquad B := \begin{bmatrix} 10 & 0 & 5 & 2 & 0 \\ 0 & 10 & 0 & 5 & 2 \\ 5 & 0 & 10 & 0 & 5 \\ 2 & 5 & 0 & 10 & 0 \\ 0 & 2 & 5 & 0 & 10 \end{bmatrix}$$

ЛИТЕРАТУРА

- **1.** Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.
- 2. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.