FAESA CENTRO UNIVERSITÁRIO CURSO DE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

GUILHERME NOGUEIRA DESSAUNE DE OLIVEIRA
LUANA AMY NAKASUGA
LUIZ GUILHERME MACHADO ZORTÉA
MATHEUS SILVA HERCULINO
RENATO ARCHANJO RABELLO

ANÁLISE DO ALGORITMO DE REGRESSAO LOGÍSITICA EM DADOS DO "CHALLENGER" DO ANO DE 2020 DE LEAGUE OF LEGENDS NO SERVIDOR SUL COREANO

VITÓRIA

GUILHERME NOGUEIRA DESSAUNE DE OLIVEIRA LUANA AMY NAKASUGA LUIZ GUILHERME MACHADO ZORTÉA MATHEUS SILVA HERCULINO RENATO ARCHANJO RABELLO

GERENCIAMENTO DE ANIMAIS

Trabalho apresentado a disciplina Projeto de Computação Integrada III, dos cursos de Ciência da Computação, Sistemas de Informação e Tecnologia em Análise e Desenvolvimento de Sistemas, sob orientação do prof. **Howard Cruz Roatti**.

VÍTÓRIA

2023

SELEÇÃO DO MODELO ESCOLHIDO E JUSTIFICATIVA PARA AS ESCOLHAS

Foi selecionado o modelo de regressão linear por estarmos lidando com uma variável dependente binária, que é Win ou Loss (Vitória ou Derrota). Assim acontece a modelagem direta da probabilidade de vitória baseando nos diferentes atributos apresentados.

BREVE EXPLICACAO SOBRE O FUNCIONAMENTO DO MODELO ESCOLHIDO

Regressão Logística é um modelo de classificação que também faz previsões ou estimativas de um evento acontecer. Usado quando a variável de resposta é binária/categórica, ou seja, apresenta apenas dois resultados possíveis, como 'sim' ou não', 0 ou 1. Durante o processo de aprendizado, os parâmetros do modelo são adaptados para otimizar a compatibilidade com os dados existentes. Após o treinamento, o modelo pode ser aplicado para prever a classificação de novos dados, com base em um limite de probabilidade estabelecido.

DESENVOLVIMENTO DO MODELO

Nosso código realiza uma análise de dados e modelagem usando regressão logística. Primeiramente importamos as bibliotecas SQLAlchemy, NumPy, Pandas, Matplotlib, e os módulos para pré-processamento e avaliação de modelos do Scikit-learn.

É feita uma conexão a um banco de dados Postgres para obter os dados a serem trataos e analizados.

Os dados dos DataFrames são combinados através da mesclagem de acordo com as colunas 'gameld' e 'teamld', resultando em um novo DataFrame chamado df_combined. Informações sobre as colunas e tipos de dados dos DataFrames são exibidas utilizando o atributo info().

Uma nova coluna chamada 'win' é adicionada ao DataFrame df_combined e inicialmente preenchida com zeros. Os valores da coluna 'win' são atualizados para 1 nos índices correspondentes onde as colunas 'teamld' e 'gameld' do DataFrame df_combined coincidem com as do DataFrame dim_ganhador.

Algumas colunas categóricas do DataFrame df_combined são codificadas utilizando LabelEncoder, transformando as variáveis categóricas em valores numéricos. Essas colunas são 'gameld', 'firstBlood', 'firstTower', 'firstInhibitor', 'firstBaron', 'firstDragon' e 'firstRiftHerald'.

As colunas do DataFrame df_combined são convertidas para o tipo string para evitar possíveis problemas durante a análise.

Os dados são divididos em conjuntos de treinamento e teste, sendo 70% dos dados usados para treinamento e 30% para teste. As variáveis de destino são

separadas em target_train e target_test correspondentes aos dados de treinamento e teste, respectivamente.

É criado um modelo de regressão logística com base no algoritmo LogisticRegression do Scikit-learn. O modelo é treinado utilizando os dados de treinamento. Em seguida, são feitas previsões utilizando os dados de teste.

A matriz de confusão é calculada utilizando a função confusion_matrix e exibida na forma de uma matriz. Em seguida, é plotado um gráfico da matriz de confusão utilizando a biblioteca Matplotlib.

Diversas métricas de avaliação do modelo são calculadas, incluindo acurácia, precisão, revocação e medida F1. Essas métricas fornecem informações sobre o desempenho do modelo.

Por fim, é plotada a curva ROC (Receiver Operating Characteristic), que representa a taxa de verdadeiros positivos em função da taxa de falsos positivos. A área sob a curva ROC (AUC) também é calculada, fornecendo uma medida da qualidade geral do modelo.

CONCLUSÃO

O objetivo do nosso modelo foi alcançado, porém, apenas em um nível superficial. Apesar dos resultados apresentados, ele não se aplica adequadamente à realidade de uma partida dentro do jogo.

Em primeiro lugar, é importante ressaltar que o jogo é dinâmico, mas o modelo foi treinado considerando a partida como um fato único. Isso limita sua capacidade de análise e previsão.

Além disso, o modelo se baseia exclusivamente em dados públicos coletados durante o ano de 2020. No entanto, devido a todas as atualizações que ocorreram desde então, esses dados se tornam irrelevantes para as partidas atuais.

Para tornarmos o modelo mais relevante, podemos fazer algumas adições:

- -Utilizar os dados para identificar a probabilidade de uma partida ser uma vitória ou derrota na perspectiva de cada jogador.
- -Atualizar a base de dados do programa sempre que um elemento relevante for adicionado ou removido do jogo.
- -Considerar cada evento em uma partida como um dado individual, permitindo que sejam analisados com base nesses eventos.