Importing Dataset

import pandas as pd

datasets=pd.read_csv("/content/Indian Liver Patient Dataset (ILPD).csv",names=['Age','Gender','Total_Bilirubin','Direct_Bilirubin','Alkaline

datasets

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphatase	Alkaline_Amir
0	65	Female	0.7	0.1	187	
1	62	Male	10.9	5.5	699	
2	62	Male	7.3	4.1	490	
3	58	Male	1.0	0.4	182	
4	72	Male	3.9	2.0	195	
578	60	Male	0.5	0.1	500	
579	40	Male	0.6	0.1	98	
580	52	Male	0.8	0.2	245	
581	31	Male	1.3	0.5	184	
582	38	Male	1.0	0.3	216	
583 rc)WS ×	11 column	IS			>

datasets.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 583 entries, 0 to 582
Pata columns (total 11 columns):

νατα	columns (total II columns):					
#	Column	Non-Null Count	Dtype			
0	Age	583 non-null	int64			
1	Gender	583 non-null	object			
2	Total_Bilirubin	583 non-null	float64			
3	Direct_Bilirubin	583 non-null	float64			
4	Alkaline_Phosphatase	583 non-null	int64			
5	Alkaline_Aminotransferase	583 non-null	int64			
6	Aspartate_Aminotransferase	583 non-null	int64			
7	Total_Proteins	583 non-null	float64			
8	Albumin	583 non-null	float64			
9	Albumin_and_Globulin_Ratio	579 non-null	float64			
10	Dataset	583 non-null	int64			
<pre>dtypes: float64(5), int64(5), object(1)</pre>						
memory usage: 50.2+ KB						

datasets.describe()

Age Total_Bilirubin Direct_Bilirubin Alkaline_Phosphatase Alkaline_Aminotransferase Aspartate_Aminotransferase Total_ count 583.000000 583.000000 583.000000 583.000000 583.000000 583.000000 5 mean 44.746141 3.298799 1.486106 290.576329 80.713551 109.910806 6.209522 2.808498 242.937989 182.620356 288.918529 std 16.189833 4.000000 0.400000 0.100000 63.000000 10.000000 10.000000 min 25% 33.000000 0.800000 0.200000 175.500000 23.000000 25.000000

50% 45.000000 1.000000 0.300000 208.000000 35.000000 42.000000 75% 58.000000 2.600000 1.300000 298.000000 60.500000 87.000000 90.000000 75.000000 19.700000 2110.000000 2000.000000 4929.000000 max

Preprocessing

datasets.isnull().sum()

```
0
Age
Gender
                              0
Total_Bilirubin
                              0
Direct_Bilirubin
Alkaline_Phosphatase
                              0
Alkaline_Aminotransferase
                              0
Aspartate_Aminotransferase
                              0
Total_Proteins
                              0
Albumin
                              0
Albumin_and_Globulin_Ratio
                              4
Dataset
                              0
dtype: int64
```

datasets['Albumin_and_Globulin_Ratio'].fillna(value=datasets['Albumin_and_Globulin_Ratio'].mean(), inplace=True)

datasets.isnull().sum()

0 Age Gender 0 Total_Bilirubin 0 Direct_Bilirubin 0 Alkaline_Phosphatase 0 ${\tt Alkaline_Aminotransferase}$ 0 Aspartate_Aminotransferase Total_Proteins 0 Albumin 0 Albumin_and_Globulin_Ratio 0 Dataset

datasets.info()

dtype: int64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 583 entries, 0 to 582
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype		
0	Age	583 non-null	int64		
1	Gender	583 non-null	object		
2	Total_Bilirubin	583 non-null	float64		
3	Direct_Bilirubin	583 non-null	float64		
4	Alkaline_Phosphatase	583 non-null	int64		
5	Alkaline_Aminotransferase	583 non-null	int64		
6	Aspartate_Aminotransferase	583 non-null	int64		
7	Total_Proteins	583 non-null	float64		
8	Albumin	583 non-null	float64		
9	Albumin_and_Globulin_Ratio	583 non-null	float64		
10	Dataset	583 non-null	int64		
<pre>dtypes: float64(5), int64(5), object(1)</pre>					

datasets.describe()

memory usage: 50.2+ KB

	Age	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphatase	Alkaline_Aminotransferase	Aspartate_Aminotransferase	Total
count	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000	5
mean	44.746141	3.298799	1.486106	290.576329	80.713551	109.910806	
std	16.189833	6.209522	2.808498	242.937989	182.620356	288.918529	
min	4.000000	0.400000	0.100000	63.000000	10.000000	10.000000	
25%	33.000000	0.800000	0.200000	175.500000	23.000000	25.000000	
50%	45.000000	1.000000	0.300000	208.000000	35.000000	42.000000	
75%	58.000000	2.600000	1.300000	298.000000	60.500000	87.000000	
max	90.000000	75.000000	19.700000	2110.000000	2000.000000	4929.000000	
4							•

print(datasets['Dataset'].value_counts())

1 416 2 167

Name: Dataset, dtype: int64

Visualizing each Attribute

```
import matplotlib.pyplot as plt
plot=datasets.drop(['Dataset'],axis=1)
plot.hist(figsize=(15,15), xrot=-45, bins=10)
plt.show()
```


<matplotlib.axes._subplots.AxesSubplot at 0x7ff5ef35ee50>

<matplotlib.axes._subplots.AxesSubplot at 0x7ff5f271f450>

datasets.describe()

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	${\tt Alkaline_Phosphatase}$	${\tt Alkaline_Aminotransferase}$	Aspartate_Aminotransfe
count	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000	583.00
mean	44.746141	0.756432	3.298799	1.486106	290.576329	80.713551	109.91
std	16.189833	0.429603	6.209522	2.808498	242.937989	182.620356	288.91
min	4.000000	0.000000	0.400000	0.100000	63.000000	10.000000	10.00
25%	33.000000	1.000000	0.800000	0.200000	175.500000	23.000000	25.00
50%	45.000000	1.000000	1.000000	0.300000	208.000000	35.000000	42.00
75%	58.000000	1.000000	2.600000	1.300000	298.000000	60.500000	87.00
max	90.000000	1.000000	75.000000	19.700000	2110.000000	2000.000000	4929.00

Outliers

datasets[['Aspartate_Aminotransferase']].boxplot()

datasets = datasets[datasets.Aspartate_Aminotransferase <1000]
datasets.shape</pre>

(577, 11)

Removing Duplicates

Correlation Matrix

x.corr()

	Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphatase	Alkaline_Aminotransferase	Aspa
Age	1.000000	0.053095	0.033594	0.027999	0.096047	-0.065282	
Gender	0.053095	1.000000	0.097594	0.108489	-0.012457	0.086565	
Total_Bilirubin	0.033594	0.097594	1.000000	0.867714	0.178303	0.138926	
Direct_Bilirubin	0.027999	0.108489	0.867714	1.000000	0.208704	0.163306	
Alkaline_Phosphatase	0.096047	-0.012457	0.178303	0.208704	1.000000	0.090631	
Alkaline_Aminotransferase	-0.065282	0.086565	0.138926	0.163306	0.090631	1.000000	
Aspartate_Aminotransferase	-0.028375	0.110416	0.262954	0.292252	0.105105	0.767775	
Total_Proteins	-0.205213	-0.085642	0.001889	0.009725	-0.031360	-0.005786	
Albumin	-0.279131	-0.095494	-0.214703	-0.221637	-0.156434	-0.006130	
Albumin and Globulin Ratio	-0.220544	-0.011801	-0.202318	-0.196155	-0.221363	-0.012539	>

Correlation Heatmap

```
import seaborn as sns
plt.figure(figsize=(30, 30))
sns.heatmap(x.corr(), cbar = True, square = True, annot=True, fmt= '.2f',annot_kws={'size': 15},)
plt.title("correlation")
```

Text(0.5, 1.0, 'correlation')

Scatterplot and Jointplot between different attributes

import seaborn as sns
g = sns.FacetGrid(datasets, col="Gender", row="Dataset", margin_titles=True)
g.map(plt.scatter,"Albumin_and_Globulin_Ratio", "Total_Proteins", edgecolor="w")
plt.subplots_adjust(top=1)

g = sns.FacetGrid(datasets, col="Gender", row="Dataset", margin_titles=True)
g.map(plt.scatter, "Albumin", "Albumin_and_Globulin_Ratio", edgecolor="w")
plt.subplots_adjust(top=1)

g = sns.FacetGrid(datasets, col="Gender", row="Dataset", margin_titles=True)
g.map(plt.scatter, "Direct_Bilirubin", "Total_Bilirubin", edgecolor="w")
plt.subplots_adjust(top=0.9)

sns.jointplot("Direct_Bilirubin", "Total_Bilirubin", data=datasets, kind="reg")

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. Frc FutureWarning <seaborn.axisgrid.JointGrid at 0x7ff5f1a526d0>

 $\label{eq:gender} g = sns.FacetGrid(datasets, col="Gender", row="Dataset", margin_titles=True) \\ g.map(plt.scatter, 'Aspartate_Aminotransferase', 'Alkaline_Aminotransferase', edgecolor="w") \\ plt.subplots_adjust(top=0.9) \\$

sns.jointplot("Aspartate_Aminotransferase","Alkaline_Aminotransferase", data=datasets, kind="reg")

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. Frc FutureWarning <seaborn.axisgrid.JointGrid at 0x7ff5f1431350>

 $\label{eq:general_general} $g = sns.FacetGrid(datasets, col="Gender", row="Dataset", margin_titles=True)$ $g.map(plt.scatter,"Alkaline_Phosphatase", "Alkaline_Aminotransferase" , edgecolor="w") $plt.subplots_adjust(top=0.9)$ $$$

 $g = sns.FacetGrid(datasets, col="Gender", row="Dataset", margin_titles=True)\\ g.map(plt.scatter, "Total_Proteins", "Albumin", edgecolor="w")\\ plt.subplots_adjust(top=0.9)$

sns.jointplot("Total_Proteins", "Albumin", data=datasets, kind="reg")

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. Frc FutureWarning

<seaborn.axisgrid.JointGrid at 0x7ff5ee6e9b50>

g = sns.FacetGrid(datasets, col="Gender", row="Dataset", margin_titles=True)
g.map(plt.scatter, "Albumin", "Albumin_and_Globulin_Ratio", edgecolor="w")
plt.subplots_adjust(top=0.9)

sns.jointplot("Albumin_and_Globulin_Ratio","Albumin", data=datasets, kind="reg")

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. Frc FutureWarning

<seaborn.axisgrid.JointGrid at 0x7ff5ee8a9710>

features__datasets=datasets.drop(['Gender'],axis=1)

features__datasets

	Age	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphatase	${\tt Alkaline_Aminotransferase}$	Aspartate_Aminotransferase	Total_Proteins
0	65	0.7	0.1	187	16	18	6.8
1	62	10.9	5.5	699	64	100	7.5
2	62	7.3	4.1	490	60	68	7.0
3	58	1.0	0.4	182	14	20	6.8
4	72	3.9	2.0	195	27	59	7.3
578	60	0.5	0.1	500	20	34	5.9
579	40	0.6	0.1	98	35	31	6.0
580	52	0.8	0.2	245	48	49	6.4
581	31	1.3	0.5	184	29	32	6.8
582	38	1.0	0.3	216	21	24	7.3
564 rd	ows ×	10 columns					
4)

y = features__datasets['Dataset']

X = features__datasets.drop(['Dataset'], axis=1)

Χ

	Age	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphatase	Alkaline_Aminotransferase	Aspartate_Aminotransferase	Total_Proteins
0	65	0.7	0.1	187	16	18	6.8
1	62	10.9	5.5	699	64	100	7.5
2	62	7.3	4.1	490	60	68	7.0
3	58	1.0	0.4	182	14	20	6.8
4	72	3.9	2.0	195	27	59	7.3
578	60	0.5	0.1	500	20	34	5.9
579	40	0.6	0.1	98	35	31	6.0
580	52	0.8	0.2	245	48	49	6.4
581	31	1.3	0.5	184	29	32	6.8
582	38	1.0	0.3	216	21	24	7.3
564 ro	ws × !	9 columns				_	>

```
0
       1
1
       1
2
       1
       1
578
579
       1
580
       1
581
       1
582
Name: Dataset, Length: 564, dtype: int64
```

Feature Selection

```
from sklearn.feature_selection import mutual_info_classif
# determine the mutual information
mutual_info = mutual_info_classif(X, y)
mutual_info
mutual_info = pd.Series(mutual_info)
mutual_info.index = X.columns
mutual_info.sort_values(ascending=False)
mutual_info.sort_values(ascending=False).plot.bar(figsize=(20, 8))
from sklearn.feature_selection import SelectKBest
sel_five_cols = SelectKBest(mutual_info_classif, k=5)
print(sel_five_cols)
sel_five_cols.fit(X, y)
print(sel_five_cols.get_support())
X=X.drop(['Total_Proteins','Direct_Bilirubin','Aspartate_Aminotransferase','Albumin_and_Globulin_Ratio'],axis=1)
```

SelectKBest(k=5, score_func=<function mutual_info_classif at 0x7ff5fb818290>)

 ${\tt from \ sklearn.metrics \ import \ accuracy_score}$

from sklearn.model_selection import train_test_split

 $from \ sklearn.metrics \ import \ classification_report, confusion_matrix$

from sklearn import linear_model

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)

print (X_train.shape)

print (y_train.shape)

print (X_test.shape)

print (y_test.shape)

(338, 5)

(338,)

(226, 5)

(226,)

Χ

	Age	Total_Bilirubin	Alkaline_Phosphatase	Alkaline_Aminotransferase	Albumin
0	65	0.7	187	16	3.3
1	62	10.9	699	64	3.2
2	62	7.3	490	60	3.3
3	58	1.0	182	14	3.4
4	72	3.9	195	27	2.4
578	60	0.5	500	20	1.6
579	40	0.6	98	35	3.2
580	52	0.8	245	48	3.2
581	31	1.3	184	29	3.4
582	38	1.0	216	21	4.4

564 rows × 5 columns

У

0	1
1	1
2	1

```
578 2
579 1
580 1
581 1
582 2
Name: Dataset, Length: 564, dtype: int64
```

Machine Learning Models

Random Forest

```
from sklearn.svm import SVC, LinearSVC
import numpy as np
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, BaggingClassifier
random_forest = RandomForestClassifier(n_estimators = 10)
random_forest.fit(X_train, y_train)
rf_predicted = random_forest.predict(X_test)
random forest score = round(random forest.score(X train, y train) * 100, 2)
random_forest_score_test = round(random_forest.score(X_test, y_test) * 100, 2)
print('Random Forest Score: \n', random_forest_score)
print('Random Forest Test Score: \n', random_forest_score_test)
print('Accuracy: \n', accuracy_score(y_test,rf_predicted))
print(confusion_matrix(y_test,rf_predicted))
print(classification_report(y_test,rf_predicted))
     Random Forest Score:
      97.34
     Random Forest Test Score:
      70.8
     Accuracy:
      0.7079646017699115
     [[144 15]
      [ 51 16]]
                   precision
                                recall f1-score
                                                   support
                1
                        0.74
                                  0.91
                                            0.81
                                                       159
                2
                        0.52
                                  0.24
                                            0.33
                                                        67
         accuracy
                                            0.71
                                                       226
                        0.63
        macro avg
                                  0.57
                                            0.57
                                                       226
     weighted avg
                        0.67
                                  0.71
                                            0.67
                                                       226
```

Gaussian Naive Bayes

```
import seaborn as sns
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import precision_score
from sklearn.linear_model import Perceptron
gaussian = GaussianNB()
gaussian.fit(X_train, y_train)
gauss_predicted = gaussian.predict(X_test)
gauss_score = round(gaussian.score(X_train, y_train) * 100, 2)
gauss_score_test = round(gaussian.score(X_test, y_test) * 100, 2)
print('Gaussian Score: \n', gauss_score)
print('Gaussian Test Score: \n', gauss_score_test)
print('Accuracy: \ \ \ \ ', \ accuracy\_score(y\_test, \ gauss\_predicted))
print('precision: \n',precision_score(y_test, gauss_predicted))
print(confusion_matrix(y_test,gauss_predicted))
print(classification_report(y_test,gauss_predicted))
gauss_score_precision=precision_score(y_test, gauss_predicted)
sns.heatmap(confusion_matrix(y_test,gauss_predicted),annot=True,fmt="d")
```

weighted avg

```
Gaussian Score:
55.92
Gaussian Test Score:
61.95
Accuracy:
0.6194690265486725
precision:
0.9620253164556962
[[76 83]
[ 3 64]]
              precision
                           recall f1-score
                                              support
           1
                   0.96
                             0.48
                                       0.64
                                                   159
           2
                   0.44
                             0.96
                                       0.60
                                                   67
                                       0.62
   accuracy
                                                   226
  macro avg
                   0.70
                             0.72
                                       0.62
                                                   226
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff5f18e4a50>

0.62

0.63

226

0.81

y_pred_proba = gaussian.predict_proba(X_test)[:,1]

```
from sklearn.metrics import roc_curve, auc, roc_auc_score, confusion_matrix
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba,pos_label=1)
```

```
import matplotlib.pyplot as plt
# Plot the ROC curve
fig = plt.figure(figsize=(8,8))
plt.title('Receiver Operating Characteristic')

# Plot ROC curve
plt.plot(fpr, tpr, label='l1')
plt.legend(loc='lower right')

# Diagonal 45 degree line
plt.plot([0,1],[0,1],'k--')
# Axes limits and labels
plt.xlim([-0.1,1.1])
plt.ylim([-0.1,1.1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


MLP Neural Networks

```
from sklearn.linear_model import SGDClassifier
from sklearn.neural_network import MLPClassifier
neural = MLPClassifier(hidden_layer_sizes=40,
                     activation='relu',
                     solver='adam',
                     alpha=0.001,
                     batch_size='auto',
                     max iter=200,
                     random_state=137,
                     tol=0.0001,
                     early_stopping=False,
                     validation_fraction=0.1,
                     beta_1=0.9,
                     beta_2=0.999,
                     epsilon=1e-08,
                     learning_rate='constant',
                     power_t=0.5,
                     momentum=0.8,
                     nesterovs_momentum=True,
                     shuffle=True,
                     learning_rate_init=0.001)
neural.fit(X_train, y_train)
predicted = neural.predict(X_test)
neural_score = round(neural.score(X_train, y_train) * 100, 2)
mlp_precision_score=precision_score(y_test, predicted)
neural_score_test = round(neural.score(X_test, y_test) * 100, 2)
print('Neural Score: \n', neural_score)
print('Neural Test Score: \n', neural_score_test)
print('Accuracy: \n', accuracy_score(y_test, predicted))
print(confusion_matrix(predicted,y_test))
print(classification_report(y_test,predicted))
     Neural Score:
     72.19
     Neural Test Score:
      71.68
     Accuracy:
      0.7168141592920354
     [[144 49]
      [ 15 18]]
                   precision
                                 recall f1-score
                                                    support
                        0.75
                                  0.91
                                             0.82
                                                        159
                1
                2
                        0.55
                                   0.27
                                             0.36
                                                         67
         accuracy
                                             0.72
                                                        226
```

```
macro avg 0.65 0.59 0.59 226
weighted avg 0.69 0.72 0.68 226
```

SVM

```
from sklearn import svm
from sklearn.metrics import f1_score
Svm = svm.SVC(kernel='rbf')
Svm.fit(X_train,y_train)
svm_yhat = Svm.predict(X_test)
from sklearn.metrics import f1_score
svm_f1 = f1_score(y_test, svm_yhat, average='weighted')
print(svm_f1)
     0.5811056200436732
Random Forest Hypertuning
import numpy as np
n_estimators = [int(x) for x in np.linspace(start = 10, stop = 300, num = 10)]
max_features = ['auto', 'sqrt']
max_depth = [4,6,8,10,20,40,60]
min_samples_split = [2, 5,4,]
min_samples_leaf = [1, 2,5]
bootstrap = [True, False]
param_grid = {'n_estimators': n_estimators,
               'min_samples_leaf': min_samples_leaf,
               'max_depth': max_depth,
               'bootstrap': bootstrap }
rf Model = RandomForestClassifier()
from sklearn.model_selection import GridSearchCV
rf_Grid = GridSearchCV(estimator = rf_Model, param_grid = param_grid, cv = 3, verbose=2, n_jobs = 4)
rf_Grid.fit(X_train, y_train)
     Fitting 3 folds for each of 420 candidates, totalling 1260 fits
     [Parallel(n_jobs=4)]: Using backend LokyBackend with 4 concurrent workers.
     [Parallel(n_jobs=4)]: Done 45 tasks
                                               | elapsed: 8.8s
     [Parallel(n_jobs=4)]: Done 166 tasks
                                                 elapsed:
                                                            35.6s
                                               elapsed: 1.4min elapsed: 2.4min
     [Parallel(n_jobs=4)]: Done 369 tasks
     [Parallel(n_jobs=4)]: Done 652 tasks
     [Parallel(n_jobs=4)]: Done 1017 tasks
                                                | elapsed: 3.5min
     [Parallel(n_jobs=4)]: Done 1260 out of 1260 | elapsed: 4.3min finished
     GridSearchCV(cv=3, error_score=nan,
                  estimator=RandomForestClassifier(bootstrap=True, ccp_alpha=0.0,
                                                    class_weight=None,
                                                    criterion='gini', max_depth=None,
                                                    max_features='auto',
                                                    max_leaf_nodes=None,
                                                    max_samples=None,
                                                    min_impurity_decrease=0.0,
                                                   min_impurity_split=None,
                                                    min_samples_leaf=1,
                                                    min_samples_split=2,
                                                    min_weight_fraction_leaf=0.0,
                                                    n_estimators=100, n_jobs=None,
                                                    oob_score=False,
                                                   random state=None, verbose=0.
                                                   warm_start=False),
                  iid='deprecated', n_jobs=4,
                  param_grid={'bootstrap': [True, False],
                               'max_depth': [4, 6, 8, 10, 20, 40, 60],
                               'min_samples_leaf': [1, 2, 5],
                              'n_estimators': [10, 42, 74, 106, 138, 171, 203, 235,
                                                267, 300]},
                  pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                  scoring=None, verbose=2)
```

```
rf_Grid.best_params_
     {'bootstrap': True, 'max_depth': 4, 'min_samples_leaf': 2, 'n_estimators': 300}
rf_Grid.score(X_train,y_train)
     0.7751479289940828
rf_Grid.score(X_test,y_test)
     0.7035398230088495
y_pred_proba =rf_Grid.predict_proba(X_test)[:,1]
from sklearn.metrics import roc_curve, auc, roc_auc_score, confusion_matrix
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba,pos_label=1)
print(auc(fpr, tpr))
     0.24490753778278423
# Plot the ROC curve
fig = plt.figure(figsize=(8,8))
plt.title('Receiver Operating Characteristic')
# Plot ROC curve
plt.plot(fpr, tpr, label='11')
plt.legend(loc='lower right')
# Diagonal 45 degree line
plt.plot([0,1],[0,1],'k--')
# Axes limits and labels
plt.xlim([-0.1,1.1])
plt.ylim([-0.1,1.1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


from sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(rf_Grid, X_test, y_test)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7ff5ef3c7d90>

SVM Hypertuning

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Import Library of Support Vector Machine model
from sklearn import svm
# Create a Support Vector Classifier
svc = svm.SVC()
# Hyperparameter Optimization
parameters = [
  {'C': [1, 10, 100, 1000], 'kernel': ['linear']},
  {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},
# Run the grid search
grid_obj = GridSearchCV(svc, parameters)
grid_obj = grid_obj.fit(X_train, y_train)
# Set the svc to the best combination of parameters
svc = grid_obj.best_estimator_
# Train the model using the training sets
svc.fit(X_train,y_train)
     SVC(C=1, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
         decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',
         max_iter=-1, probability=False, random_state=None, shrinking=True,
         tol=0.001, verbose=False)
from sklearn import metrics
y_pred = svc.predict(X_test)
acc svm = round( metrics.accuracy score(y test, y pred) * 100, 2 )
{\tt from \ sklearn.metrics \ import \ precision\_score}
svm_predictions=precision_score(y_test, y_pred)
print( 'Test Accuracy of SVM model : ', acc_svm )
     Test Accuracy of SVM model: 70.35
cm_svm = confusion_matrix(y_test,y_pred)
sns.heatmap(cm_svm,cbar=False,annot=True,cmap="Greens",fmt="d")
```

<matplotlib.axes._subplots.AxesSubplot at 0x7ff5ef58f190>

from sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(grid_obj, X_test, y_test)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7ff5ef603a90>

MLP Hypertuning

```
from sklearn.neural_network import MLPClassifier
mlp_gs = MLPClassifier(max_iter=100)
parameter_space = {
    'hidden_layer_sizes': [(10,30,10),(20,)],
    'activation': ['tanh', 'relu', 'logistic'],
    'solver': ['sgd', 'adam'],
    'alpha': [0.0001, 0.05,0.001],
    'learning_rate': ['constant', 'adaptive'],
}
from sklearn.model_selection import GridSearchCV
clf = GridSearchCV(mlp_gs, parameter_space, n_jobs=-1, cv=5)
clf.fit(X_train, y_train) # X is train samples and y is the corresponding labels
     /usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py:571: ConvergenceWarning: Stochastic Optimizer: M
       % self.max_iter, ConvergenceWarning)
     GridSearchCV(cv=5, error_score=nan,
                   estimator=MLPClassifier(activation='relu', alpha=0.0001,
batch_size='auto', beta_1=0.9,
                                            beta_2=0.999, early_stopping=False,
                                            epsilon=1e-08, hidden_layer_sizes=(100,),
                                            learning_rate='constant',
                                            learning_rate_init=0.001, max_fun=15000,
                                            max_iter=100, momentum=0.9,
                                            n_iter_no_change=10,
                                            nesterovs_momentum=True, power_t=0.5,
                                            random state...
                                            validation_fraction=0.1, verbose=False,
                                            warm_start=False),
                   iid='deprecated', n_jobs=-1,
                   param_grid={'activation': ['tanh', 'relu', 'logistic'],
                                'alpha': [0.0001, 0.05, 0.001],
                                'hidden_layer_sizes': [(10, 30, 10), (20,)],
                                'learning_rate': ['constant', 'adaptive'],
                   'solver': ['sgd', 'adam']},
pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                   scoring=None, verbose=0)
```

print('Best parameters found:\n', clf.best_params_)

```
Best parameters found:
                {'activation': 'tanh', 'alpha': 0.001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'sgd'}
means = clf.cv_results_['mean_test_score']
stds = clf.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, clf.cv_results_['params']):
           print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params))
              0.701 (+/-0.036) for {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver
              0.704 (+/-0.036) for {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver
              0.707 (+/-0.035) for {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver 0.701 (+/-0.051) for {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver
              0.707 (+/-0.021) for {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'sgd
             0.704 (+/-0.066) for {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'ada 0.686 (+/-0.039) for {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'sgd 0.707 (+/-0.073) for {'activation': 'tanh', 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'ada
              0.704 (+/-0.044) for {'activation': 'tanh', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver': 0.692 (+/-0.061) for {'activation': 'tanh', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver':
              0.710 (+/-0.014) for {'activation': 'tanh', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver':
             0.689 (+/-0.043) for {'activation': 'tanh', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver': 0.680 (+/-0.084) for {'activation': 'tanh', 'alpha': 0.05, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'sgd'} 0.701 (+/-0.103) for {'activation': 'tanh', 'alpha': 0.05, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'adam'
             0.710 (+/-0.056) for {'activation': 'tanh', 'alpha': 0.05, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'sgd'} 0.704 (+/-0.071) for {'activation': 'tanh', 'alpha': 0.05, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'adam'
             0.713 (+/-0.022) for {'activation': 'tanh', 'alpha': 0.001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver' 0.695 (+/-0.055) for {'activation': 'tanh', 'alpha': 0.001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver' 0.710 (+/-0.021) for {'activation': 'tanh', 'alpha': 0.001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver'
             0.707 (+/-0.069) for {'activation': 'tanh', 'alpha': 0.001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver' 0.686 (+/-0.047) for {'activation': 'tanh', 'alpha': 0.001, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'sgd' 0.695 (+/-0.099) for {'activation': 'tanh', 'alpha': 0.001, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'adam
                                                                                                                                       'alpha': 0.001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'sgd' 'alpha': 0.001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'adam
              0.713 (+/-0.064) for {'activation': 'tanh',
              0.701 (+/-0.062) for {'activation': 'tanh',
                                                                                                                                       'alpha': 0.001, 'hidden_layer_sizes': (20,), learning_rate : adaptive , solver : adam 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver', 'solver'
              0.713 (+/-0.012) for {'activation': 'relu',
              0.698 (+/-0.044) for {'activation': 'relu',
              0.713 (+/-0.012) for {'activation': 'relu',
              0.698 (+/-0.053) for {'activation': 'relu',
                                                                                                                                      'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'sgd 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'ada 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'sgd 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'ada
              0.707 (+/-0.024) for {'activation': 'relu',
              0.698 (+/-0.022) for {'activation': 'relu',
              0.707 (+/-0.021) for {'activation': 'relu',
              0.713 (+/-0.022) for {'activation': 'relu',
              0.713 (+/-0.012) for {'activation': 'relu',
                                                                                                                                       'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver':
             0.701 (+/-0.045) for {'activation': 'relu', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver': 0.710 (+/-0.010) for {'activation': 'relu', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver': 0.713 (+/-0.061) for {'activation': 'relu', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver':
                                                                                                                                       'alpha': 0.05, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'sgd'} 'alpha': 0.05, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'adam' 'alpha': 0.05, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'sgd'}
              0.707 (+/-0.024) for {'activation': 'relu',
              0.707 (+/-0.079) for {'activation': 'relu',
              0.701 (+/-0.011) for {'activation': 'relu',
             0.713 (+/-0.031) for {'activation': 'relu', 'alpha': 0.05, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'adam' 0.713 (+/-0.012) for {'activation': 'relu', 'alpha': 0.001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver' 0.686 (+/-0.039) for {'activation': 'relu', 'alpha': 0.001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver'
             0.713 (+/-0.012) for {'activation': 'relu', 'alpha': 0.001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver' 0.698 (+/-0.031) for {'activation': 'relu', 'alpha': 0.001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'solver'
            0.704 (+/-0.031) for {activation: relu', 'alpha': 0.001, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'sgd' 0.701 (+/-0.047) for {'activation': 'relu', 'alpha': 0.001, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 'adam 0.710 (+/-0.037) for {'activation': 'relu', 'alpha': 0.001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'sgd' 0.701 (+/-0.045) for {'activation': 'relu', 'alpha': 0.001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 'adam 0.713 (+/-0.012) for {'activation': 'logistic', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'so
              0.713 (+/-0.012) for {'activation': 'logistic', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'so
            0.713 (+/-0.012) for { activation': 'logistic', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'so 0.713 (+/-0.012) for { activation': 'logistic', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'adaptive', 'so 0.713 (+/-0.012) for { activation': 'logistic', 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'constant', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.0001, 'hidden_layer_sizes': (20,), 'learning_rate': 'adaptive', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.005, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.005, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'solver': 0.713 (+/-0.012) for { 'activation': 'logistic', 'alpha': 0.05, 'hidden_layer_sizes': (10, 30, 10), 'learning_rate': 'constant', 'so
y_true, y_pred = y_test , clf.predict(X_test)
from sklearn.metrics import classification report
print('Results on the test set:')
print(classification_report(y_true, y_pred))
print(confusion_matrix(y_pred,y_true))
              Results on the test set:
                                                    precision
                                                                                         recall f1-score
                                                                                                                                             support
                                                                   0.76
                                                                                              0.89
                                                                                                                         0.82
                                                                                                                                                        159
                                            1
                                                                   0.55
                                                                                              0.31
                                                                                                                         0.40
                                                                                                                                                           67
                                                                                                                          0.72
                                                                                                                                                        226
                        accuracy
```

226

0.65

macro avg

0.60

```
weighted avg
                        0.70
                                            0.69
                                                       226
     [[142 46]
      [ 17 21]]
y_pred_proba = clf.predict_proba(X_test)[:,1]
from sklearn.metrics import roc_curve, auc, roc_auc_score, confusion_matrix
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba,pos_label=1)
# Plot the ROC curve
fig = plt.figure(figsize=(8,8))
plt.title('Receiver Operating Characteristic')
# Plot ROC curve
plt.plot(fpr, tpr, label='11')
plt.legend(loc='lower right')
# Diagonal 45 degree line
plt.plot([0,1],[0,1],'k--')
# Axes limits and labels
plt.xlim([-0.1,1.1])
plt.ylim([-0.1,1.1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


from sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(clf, X_test, y_test)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7ff5eee8dc10>


```
4/18/24, 6:38 AM
                                                                       liver disease prediction .ipynb - Colab
    import pandas as pd
    ###Model evaluation
    #We can now rank our evaluation of all the models to choose the best one for our problem.
   models = pd.DataFrame({
        'Model': [ 'Random Forest' , 'Gaussian Naive Bayes', 'MLP Neural Networks', 'SVM', 'PSO-SVM'],
        'Accuracy': [ 70,59,70,70.35,76],
        'Precision':[86,44,70,85,95],
        'Specificity<sup>'</sup>:[43,41,44,60,90],
        'sensitivity':[73,94,88,70,92]})
    sns.pairplot(X.iloc[:, :4], height = 6)
    plt.show()
           20.0
           17.5
           12 5
          10.0
    import matplotlib.pyplot as plt
   models.plot.bar(x="Model",figsize=(14,7))
   plt.legend(loc='center left', bbox_to_anchor=(1,0.5))
         <matplotlib.legend.Legend at 0x7f4143442ad0>
          80
          60
                                                                                                                             Accuracy
                                                                                                                              Precision
```



```
import numpy as np
import matplotlib.pyplot as plt
import sys
from sklearn import svm
from mpl_toolkits.mplot3d import axes3d, Axes3D
import pandas as pd
data = pd.read_csv('/content/Indian Liver Patient Dataset (ILPD).csv',names=['Age','Gender','Total_Bilirubin','Direct_Bilirubin','Alkaline_F
len(data)
     583
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
data['Gender']= label_encoder.fit_transform(data['Gender'])
data['Gender'].unique()
data['Albumin_and_Globulin_Ratio'].fillna(value=data['Albumin_and_Globulin_Ratio'].mean(), inplace=True)
data = data.drop_duplicates()
print( data.shape )
data_n = data.copy()
data_n = (data - data.min())/(data.max() - data.min())
print(data_n)
     (570, 11)
               Age
                    {\tt Gender} \quad \dots \quad {\tt Albumin\_and\_Globulin\_Ratio} \quad {\tt Dataset}
          0.709302
                        0.0
                                                                   0.0
                            . . .
          0.674419
                                                        0.176
     1
                        1.0
                                                                   0.0
                            . . .
          0.674419
                                                        0.236
                                                                   9.9
     2
                       1.0 ...
     3
          0.627907
                        1.0
                                                        0.280
                                                                   0.0
                             ...
          0.790698
                       1.0 ...
                                                        0.040
                                                                   0.0
                        . . .
                            ...
     578 0.651163
                       1.0
                                                        0.028
                                                                   1.0
                            ...
     579 0.418605
                       1.0 ...
                                                        0.320
                                                                   0.0
     580 0.558140
                       1.0 ...
                                                        0.280
                                                                   0.0
     581
          0.313953
                        1.0
                                                        0.280
                                                                   0.0
     582 0.395349
                        1.0 ...
                                                        0.480
                                                                   1.0
     [570 rows x 11 columns]
dimensions = 12
data_cn = pd.concat([data_n.shift(i) for i in range(0 + dimensions + 1)], axis = 1)
print(data_cn)
               Age Gender \dots Albumin_and_Globulin_Ratio Dataset
                                                                   NaN
     0
          0.709302
                       0.0
                            . . .
          0.674419
                       1.0
                                                          NaN
                                                                   NaN
     1
                            . . .
          0.674419
                       1.0 ...
                                                          NaN
                                                                   NaN
     2
     3
          0.627907
                       1.0
                                                          NaN
                                                                   NaN
                             ...
          0.790698
                       1.0
                                                          NaN
                                                                   NaN
                            . . .
                            . . .
     578 0.651163
                                                        0.280
                       1.0
                                                                   1.0
                       1.0 ...
     579 0.418605
                                                        0.036
                                                                   0.0
     580 0.558140
                        1.0 ...
                                                        0.288
                                                                   0.0
     581 0.313953
                                                        0.360
                       1.0 ...
                                                                   0.0
     582 0.395349
                       1.0
                                                        0.240
                                                                   0.0
     [570 rows x 143 columns]
```

```
from sklearn.model_selection import train_test_split

x = data_cn.iloc[12:,1:]

Y = data_cn.iloc[12:,0]

x_train, x_val, Y_train, Y_val = train_test_split(x, Y, test_size = 0.4, shuffle = False)

x_val, x_test, Y_val, Y_test = train_test_split(x_val, Y_val, test_size = 0.5, shuffle = False)

print(len(Y_val))
print(len(Y_test))
print(len(Y_test))
print(len(Y_train))
```

```
def pso(n_particles, iterations, dimensions, inertia):
    # Range of SVR's hyperparameters (Particles' search space)
    # C, Epsilon and Gamma
   max_c = 1e4
   min_c = 1e-3
    max_e = 1e-1
   min_e = 1e-8
   max_g = 1e3
   min_g = 1e-3
    # Initializing particles' positions randomly, inside
    # the search space
    x = np.random.rand(n particles, 1)*(max c - min c) + min c
   y = np.random.rand(n_particles, 1)*(max_e - min_e) + min_e
   z = np.random.rand(n_particles, 1)*(max_g - min_g) + min_g
   c = np.concatenate((x,y,z), axis=1)
    # Initializing particles' parameters
    v = np.zeros((n_particles, dimensions))
    c1 = 2
   c_2 = 2
   p_best = np.zeros((n_particles, dimensions))
    p_best_val = np.zeros(n_particles) + sys.maxsize
    g_best = np.zeros(dimensions)
    g_best_val = sys.maxsize
    best_iter = np.zeros(iterations)
    # Initializing regression variables
    p_best_RGS = np.empty((n_particles), dtype = object);
    g_best_RGS = sys.maxsize
    plot(c)
    from sklearn.metrics import mean_squared_error
    for i in range(iterations):
       for j in range(n_particles):
         # Starting Regression
          rgs = svm.SVR(C = c[j][0], epsilon = c[j][1], gamma = c[j][2])
          # Fitting the curve
          rgs.fit(x_train, Y_train)
          Y_predict = rgs.predict(x_val)
          # Using Mean Squared Error to verify prediction accuracy
          mse = mean_squared_error(Y_val, Y_predict)
          # If mse value for that search point, for that particle,
          # is less than its personal best point,
          # replace personal best
          if(mse < p_best_val[j]): # mse < p_best_val[j]</pre>
              # The value below represents the current least Mean Squared Error
              p_best_val[j] = mse
              p_best_RGS[j] = rgs
              # The value below represents the current search coordinates for
              # the particle's current least Mean Squared Error found
              p_best[j] = c[j].copy()
          # Using auxiliar variable to get the index of the
          # particle that found the configuration with the
          # minimum MSE value
          aux = np.argmin(p_best_val)
          if(p_best_val[aux] < g_best_val):</pre>
              # Assigning Particle's current best MSE to the Group's best
              g_best_val = p_best_val[aux]
              # Assigning Particle's current best configuration to the Group's best
              g_best = p_best[aux].copy()
              # Group best regressor:
```

```
# the combination of C, Epsilon and Gamma
          # that computes the best fitting curve
          g_best_RGS = p_best_RGS[aux]
      rand1 = np.random.random()
      rand2 = np.random.random()
      # The variable below influences directly the particle's velocity.
      # It can either make it smaller or bigger.
      w = inertia
      # The equation below represents Particle's velocity, which is
      # the rate of change in its position
      v[j] \, = \, w*v[j] \, + \, c1*(p\_best[j] \, - \, c[j])*rand1 \, + \, c2*(g\_best \, - \, c[j])*rand2
      # Change in the Particle's position
      c[j] = c[j] + v[j]
      \ensuremath{\mathtt{\#}} Below is a series of conditions that stop the particles from
      # leaving the search space
      if(c[j][2] < min_g):
       c[j][2] = min_g
      if(c[j][2] > max_g):
        c[j][2] = max_g
      if(c[j][1] < min_e):
        c[j][1] = min_e
      if(c[j][1] > max_e):
       c[j][1] = max_e
      if(c[j][0] < min_c):</pre>
        c[j][0] = min_c
      if(c[j][0] > max_c):
        c[j][0] = max_c
    # The variable below represents the least Mean Squared Error
    # of the current iteration
    best_iter[i] = g_best_val
    print('Best value iteration # %d = %f\n'\%(i, g_best_val))
# Coordinates found after all the iterations
print('Group Best configuration found: ')
print(g_best)
print('\n')
print('Best Regressor:\n')
print(g_best_RGS)
print('\n')
# Displaying the MSE value variation throughout the iterations
t = range(iterations)
plt.plot(t, best_iter, label='Fitness Value')
plt.legend()
plt.show()
# Displaying Particles' final configuration
plot(c)
# Making the prediction with the best configuration of C, Epsilon and
# Gamma found by the particles
predict_test = g_best_RGS.predict(x_test)
# Displaying actual values and predicted values for
# Group's best configuration found overall
print(color.BOLD + 'Predictions with the Population Best Value found:\n' + color.END)
evaluate(predict_test)
```

```
class color:
  PURPLE = '\033[95m'
   CYAN = '\033[96m'
   DARKCYAN = ' \033[36m'
   BLUE = ' 033[94m']
  GREEN = ' \033[92m']
   YELLOW = ' \033[93m']
   RED = '\033[91m'
   BOLD = ' \033[1m']
   UNDERLINE = ' \033[4m']
   END = '\033[0m'
def plot(some_list):
  ax = Axes3D(plt.figure())
  ax.scatter3D(some_list[:,0], some_list[:,1], some_list[:,2], color = 'r')
  ax.set_xlabel('$C$', fontsize = 20)
  ax.set_ylabel('$\epsilon$', fontsize = 25)
  ax.zaxis.set_rotate_label(False)
  ax.set_zlabel('$\gamma$', fontsize=30, rotation = 0)
  ax.zaxis._axinfo['label']['space_factor'] = 1.0
  plt.show()
  print('\n')
  print('\n')
def evaluate(predictions):
    from sklearn.metrics import mean_squared_error
    import statistics as st
    from sklearn.metrics import accuracy score
    predict_test = predictions
    # To un-normalize the data:
    # Multiply the values by
    # data.to_numpy().max()
    plt.plot(range(len(Y_test)), Y_test, label='Real')
   plt.plot(range(len(predict_test)), predict_test, label='Predicted')
    plt.legend()
    plt.show()
    mse = mean_squared_error(Y_test, predict_test)
    print('\n')
    print('\n')
    print('Mean Squared Error for the Test Set:\t %f' %mse)
    print('\n')
    print('\n')
    print('Predictions Average:\t %f' %((predict_test.sum()/len(predict_test))))
   print('\n')
    print('\n')
    print('Predictions Median:\t %f' %(st.median(predict_test)))
    print('\n')
    print('\n')
pso(120, 100, 3, 1)
```



```
Best value iteration # 0 = 0.036103
     Best value iteration # 1 = 0.036072
     Best value iteration # 2 = 0.036072
     Best value iteration # 3 = 0.036072
     Best value iteration # 4 = 0.036032
     Best value iteration # 5 = 0.036007
     Best value iteration # 6 = 0.036007
     Best value iteration # 7 = 0.036007
     Best value iteration # 8 = 0.036007
     Best value iteration # 9 = 0.036007
     Best value iteration # 10 = 0.036007
     Best value iteration # 11 = 0.036007
     Best value iteration # 12 = 0.036007
     Best value iteration # 13 = 0.036007
     Best value iteration # 14 = 0.036007
     Best value iteration # 15 = 0.036007
     Best value iteration # 16 = 0.036007
     Best value iteration # 17 = 0.036007
pso(120, 100, 3, 0.8)
     Best value iteration # 19 = 0.036007
pso(120, 100, 3, 0.6)
pso(120, 100, 3, 0.2)
     Rest value iteration # 22 = 0 036007
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_val= sc.transform(x_val)
     Best value iteration # 25 = 0.036007
```

```
# Import Library of Support Vector Machine model
from sklearn import svm
from sklearn.model_selection import GridSearchCV
# Create a Support Vector Classifier
pso_svc = svm.SVC()
# Hyperparameter Optimization
parameters ={ 'C': [0.1, 1, 10, 100, 1000],
              'gamma': [1, 0.1, 0.01, 0.001, 0.0001],
              'kernel': ['rbf']}
# Run the grid search
grid_obj = GridSearchCV(svc, parameters)
{\tt grid\_obj = grid\_obj.fit(x\_train, Y\_train)}
# Set the svc to the best combination of parameters
pso_svc = grid_obj.best_estimator_
# Train the model using the training sets
pso_svc.fit(x_train,Y_train)
     SVC(C=100, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
         decision_function_shape='ovr', degree=3, gamma=0.01, kernel='rbf',
         max_iter=-1, probability=False, random_state=None, shrinking=True,
         tol=0.001, verbose=False)
from sklearn import metrics
y_pred = svc.predict(X_test)
acc_svm = round( metrics.accuracy_score(y_test, y_pred) * 100, 2 )
from sklearn.metrics import precision_score
svm_predictions=precision_score(y_test, y_pred)
print( 'Test Accuracy of SVM :',acc_svm )
     Test Accuracy of SVM:76
     Post value iteration # 27 - 0 026007
```

```
import pandas as pd
import numpy as np
import random
import csv
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
liver= pd.read_csv('/content/Indian Liver Patient Dataset (ILPD).csv',names=['Age','Gender','Total_Bilirubin','Direct_Bilirubin','Alkaline_
liver_diseased=liver[liver['Dataset']==1]
liver diseased = pd.get dummies( liver , columns=["Gender"] , drop first=False)
for i in range(583):
    if liver.iloc[i,10]==2:
        liver.iloc[i,10]=0
liver['Dataset'].unique()
liver['Gender'].unique()
for i in range(11):
    print(sum(liver.iloc[:,i].isnull()))
liver['Albumin_and_Globulin_Ratio'].fillna(liver['Albumin_and_Globulin_Ratio'].mean(),inplace=True)
sum(liver['Albumin_and_Globulin_Ratio'].isnull())
for i in range(583):
    if liver.iloc[i,1]=='Male':
        liver.iloc[i,1]=0
    else:
        liver.iloc[i,1]=1
# to perform hyperparameter tuning
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import cross_val_score
# Machine Learning Models
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import roc_curve, auc, roc_auc_score, confusion_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from matplotlib.colors import ListedColormap
from \ sklearn.metrics \ import \ accuracy\_score, \ f1\_score, \ precision\_score, \ recall\_score
# to save the final model on disk
from sklearn.externals import joblib
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(liver.drop('Dataset',axis=1))
scaled_features = scaler.transform(liver.drop('Dataset',axis=1))
liver_scaled = pd.DataFrame(scaled_features,columns=liver.columns[:-1])
X=liver_scaled
y=liver['Dataset']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 42)
rows=X train.shape[0]
columns=X.shape[1]
print("No of rows in training dataset : %s"%rows)
print("No of columns " ,columns)
from sklearn.metrics import classification_report,confusion_matrix
svc_linear = svm.SVC(kernel='linear', C=1)
svc_linear.fit(X_train, y_train)
predicted= svc_linear.predict(X_test)
```

Best value iteration # 71 = 0.036007 Best value iteration # 71 = 0.036007 Best value iteration # 72 = 0.036007 Best value iteration # 72 = 0.036007 Best value iteration # 73 = 0.036007 Best value iteration # 73 = 0.036007 Best value iteration # 74 = 0.036007 Best value iteration # 74 = 0.036007 Best value iteration # 75 = 0.036007 Best value iteration # 75 = 0.036007 Best value iteration # 76 = 0.036007 Best value iteration # 76 = 0.036007 Best value iteration # 77 = 0.036007 Best value iteration # 77 = 0.036007 Best value iteration # 78 = 0.036007 Best value iteration # 78 = 0.036007 Best value iteration # 79 = 0.036007 Best value iteration # 79 = 0.036007 Best value iteration # 80 = 0.036007 Best value iteration # 80 = 0.036007 Best value iteration # 81 = 0.036007 Best value iteration # 81 = 0.036007 Best value iteration # 82 = 0.036007 Best value iteration # 82 = 0.036007 Best value iteration # 83 = 0.036007 Best value iteration # 83 = 0.036007 Best value iteration # 84 = 0.036007 Best value iteration # 84 = 0.036007 Best value iteration # 85 = 0.036007 Best value iteration # 85 = 0.036007 Best value iteration # 86 = 0.036007 Best value iteration # 86 = 0.036007 Best value iteration # 87 = 0.036007 Best value iteration # 87 = 0.036007 Best value iteration # 88 = 0.036007 Best value iteration # 88 = 0.036007 Best value iteration # 89 = 0.036007 Best value iteration # 89 = 0.036007 Best value iteration # 90 = 0.036007 Best value iteration # 90 = 0.036007 Best value iteration # 91 = 0.036007 Best value iteration # 91 = 0.036007

```
pso_acc = accuracy_score(y_test,predicted)
pso_prec = precision_score(y_test,predicted)
pso_rec = recall_score(y_test,predicted)
pso_f1 = f1_score(y_test,predicted)
print("Accuracy using PSO-SVM : " , pso_acc)
print("Precision using PSO-SVM : " , pso_prec)
print("Recall using PSO-SVM : " , pso_rec)
print("F1_Score using PSO-SVM : " , pso_f1)

import random

population_size= rows
dimensions=columns
maxiter=0
fitness=0
weight_matrix=np.random.rand(rows,columns)

mapped_matrix=np.multiply(X_train,weight_matrix)
```