Correlation

Ling250/450: Data Science for Linguistics
C.M. Downey
Spring 2025

 Measures the strength and direction of a relationship between variables

- Measures the strength and direction of a relationship between variables
- General intuition
 - Positive correlation: as X increases, so does Y
 - Negative correlation: as X increases, Y decreases

- Measures the strength and direction of a relationship between variables
- General intuition
 - Positive correlation: as X increases, so does Y
 - Negative correlation: as X increases, Y decreases
- Correlation is expressed as a coefficient (a number)
 - Most commonly used is Pearson's Correlation Coefficient (written r)
 - Based on another measure called covariance

Visualizing correlation

• The coefficient's range is -1 to +1

- The coefficient's range is -1 to +1
- 0 indicates no correlation

- The coefficient's range is -1 to +1
- 0 indicates no correlation
- The absolute value of the coefficient tells the "exactness", but not the "slope" of the relationship

- The coefficient's range is -1 to +1
- 0 indicates no correlation
- The absolute value of the coefficient tells the "exactness", but not the "slope" of the relationship
- Data can have structure without correlation

$$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2$$

$$Cov(X, Y) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})$$

 Conceptually similar to the variance, but for two variables

$$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2$$

$$Cov(X, Y) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})$$

- Conceptually similar to the variance, but for two variables
 - Like variance, the values are (approximately) squared

$$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2$$

$$Cov(X, Y) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})$$

- Conceptually similar to the variance, but for two variables
 - Like variance, the values are (approximately) squared
 - Also like variance, covariance is not intuitive to think about

$$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2$$

$$Cov(X, Y) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})$$

- Conceptually similar to the variance, but for two variables
 - Like variance, the values are (approximately) squared
 - Also like variance, covariance is not intuitive to think about
 - Essentially: average product of deviation

$$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2$$

$$Cov(X, Y) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})$$

- Conceptually similar to the variance, but for two variables
 - Like variance, the values are (approximately) squared
 - Also like variance, covariance is not intuitive to think about
 - Essentially: average product of deviation
- The covariance has no minimum/ maximum value

$$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2$$

$$Cov(X, Y) = \frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})$$

$$r_{XY} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

- The correlation coefficient (r) is the covariance normalized by the standard deviations
 - "How much is the covariance compared to the standard deviations?"

$$r_{XY} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

- The correlation coefficient (r) is the covariance normalized by the standard deviations
 - "How much is the covariance compared to the standard deviations?"
- Normalization puts the value in the
 - -1 to +1 range

$$r_{XY} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

- The correlation coefficient (r) is the covariance normalized by the standard deviations
 - "How much is the covariance compared to the standard deviations?"
- Normalization puts the value in the
 - -1 to +1 range
- R command: cor(x, y)

$$r_{XY} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Correlation	Strength	Direction
-1.0 to -0.9	Very strong	Negative
-0.9 to -0.7	Strong	Negative
-0.7 to -0.4	Moderate	Negative
-0.4 to -0.2	Weak	Negative
-0.2 to 0	Negligible	Negative
0 to 0.2	Negligible	Positive
0.2 to 0.4	Weak	Positive
0.4 to 0.7	Moderate	Positive
0.7 to 0.9	Strong	Positive
0.9 to 1.0	Very strong	Positive

- Interpreting a coefficient depends heavily on context
 - In some fields/situations, r < 0.95 is considered "weak"
 - In others, r > 0.3 is considered "strong"

Correlation	Strength	Direction
-1.0 to -0.9	Very strong	Negative
-0.9 to -0.7	Strong	Negative
-0.7 to -0.4	Moderate	Negative
-0.4 to -0.2	Weak	Negative
-0.2 to 0	Negligible	Negative
0 to 0.2	Negligible	Positive
0.2 to 0.4	Weak	Positive
0.4 to 0.7	Moderate	Positive
0.7 to 0.9	Strong	Positive
0.9 to 1.0	Very strong	Positive

- Interpreting a coefficient depends heavily on context
 - In some fields/situations, r < 0.95 is considered "weak"
 - In others, r > 0.3 is considered "strong"
- Strong correlation does not mean "statistical significance". It's just a measurement

Correlation	Strength	Direction
-1.0 to -0.9	Very strong	Negative
-0.9 to -0.7	Strong	Negative
-0.7 to -0.4	Moderate	Negative
-0.4 to -0.2	Weak	Negative
-0.2 to 0	Negligible	Negative
0 to 0.2	Negligible	Positive
0.2 to 0.4	Weak	Positive
0.4 to 0.7	Moderate	Positive
0.7 to 0.9	Strong	Positive
0.9 to 1.0	Very strong	Positive

- "Anscombe's quartet" are four datasets with the exact same correlation
 - Shows that correlation does not give all important aspects of the data

- "Anscombe's quartet" are four datasets with the exact same correlation
 - Shows that correlation does not give all important aspects of the data
- Make sure to always use
 visualizations in combination with
 descriptive statistics

- Important: correlation does not imply causation!!!
 - X might cause Y; Y might cause X
 - or neither!
 - Correlation doesn't tell us

- Important: correlation does not imply causation!!!
 - X might cause Y; Y might cause X
 - or neither!
 - Correlation doesn't tell us
- Lots of examples of funny spurious correlations (variables that inexplicably correlate)

- Important: correlation does not imply causation!!!
 - X might cause Y; Y might cause X
 - or neither!
 - Correlation doesn't tell us
- Lots of examples of funny spurious correlations (variables that inexplicably correlate)
- Browse some at this website

Correlation matrix

- If you call cor() on a data frame, it gives the correlation matrix
 - i.e. the correlation between all pairs of variables
 - Note that every variables is perfectly correlated with itself

```
> just_numerical_columns = data.frame(vowels$F1, v
owels$F2, vowels$HEIGHT)
> head(just_numerical_columns)
 vowels.F1 vowels.F2 vowels.HEIGHT
   848.070 1450.96
                               173
   648.318 1126.22
                              173
   259.000 1834.00
                              173
4 578.985 1715.22
                              173
   405.000 1899.00
                              173
   656.600 1414.40
                               173
> cor(just_numerical_columns)
              vowels.F1 vowels.F2 vowels.HEIGHT
vowels.F1
              1.0000000 -0.1488059
                                      -0.1996378
vowels.F2
             -0.1488059 1.0000000
                                      -0.1426429
vowels.HEIGHT -0.1996378 -0.1426429
                                      1.0000000
```