Кодирование информации

- Кодирование это процесс преобразования сигналов или знаков одной знаковой системы в знаки другой знаковой системы, для использования, хранения, передачи или обработки.
- Кодирование это выражение данных одного типа через данные другого типа.

- Процесс обратного восстановления информации из закодированного вида называется декодированием.
- **КОД** набор символов, которому приписан некоторый смысл. Код является знаковой системой, которая содержит конечное число символов: буквы алфавита, цифры, знаки препинания, знаки математических операций и т.д.

- Разновидностью кодирования является шифрование.
- ШИФР это код, значение и правила использования которого известно ограниченному кругу лиц.

Шифр

```
A .-
           и ..
                       P .-.
                                   ш ----
           Й •---
Б -•••
                       C ...
                                   Щ --•-
           K -•-
                       Т -
B •--
                                   ъ .----
Г --•
           Л •-••
                      У ..-
                                   Ы ----
Д -••
           M --
                      Φ ••-•
                                   Ь -••-
E •
           H -•
                      X ....
                                   3 .....
ж •••-
                       Ц ----
           0 ---
                                   Ю ...-
3 --••
            П •--•
                       4 ---•
                                   Я •-•-
```

Буква	Α	Б	В	Г	Д	Е	Ë	ж	3	И	Й
Номер	1	2	3	4	5	6	7	8	9	10	11
Буква	к	Л	М	Н	0	П	P.	С	Т	У	Φ
Номер	12	13	14	15	16	17	18	19	20	21	22
Буква	Х	Ц	Ч	Щ	Щ	Ь	ΡÏ	ъ	Э	Ю	Я
Номер	23	24	25	26	27	28	29	30	31	32	33

- Необходимость кодирования информации, с которой имеет дело человек, возникла задолго до появления компьютеров.
- Речь, азбука и цифры есть не что иное, как система кодирования мыслей, речевых звуков и числовой информации.

- Информация редко используется человеком в чистом виде, она всегда как-то представлена - формализована или закодирована.
- Одна и та же информация может быть представлена в разных формах, а одни и те же символы нести разную смысловую нагрузку.
- Информация передается от источника к приемнику в виде сигналов (знаков), которые могут иметь разную физическую природу.

- Знаки одного функционального назначения формируют язык.
- Язык это знаковая система представления информации.
- Общение на языках это процесс передачи информации в знаковой форме.
- Алфавит это конечный набор знаков (символов), из которых конструируются сообщения.

- Не всякая информация может быть представлена с помощью знаков (запахи, вкусовые и осязательные ощущения). Такую информацию называют образной информацией.
- К образной относится также информация, воспринимаемая зрением и слухом: шум ветра, пение птиц, картины природы, живопись.

Этапы кодирования информации

- 1. Определение объема информации, подлежащей кодированию
- 2. Классификация и систематизация информации
- 3. Выбор системы кодирования и разработка кодовых обозначений
- 4. Непосредственное кодирование

Системы счисления

- Для машинной обработки информации ее необходимо представить в какой либо системе счисления.
- Системой счисления называют совокупность приемов наименования и записи чисел с помощью цифр.
- Символы (цифры), выбранные для представления чисел называются базисными.
- Виды систем счисления: позиционные и непозиционные.

Двоичная система счисления

- Двоичный (цифровой) код [binary number code] код, основанный на двоичной системе счисления [binary number system], использующей для представления буквенно-цифровых и других символов наборы комбинаций цифр 1 и 0.
- В двоичной системе счисления всего две цифры, называемые двоичными (binary digits).
- Сокращение этого наименования привело к появлению термина bit (бит), ставшего названием разряда двоичного числа.

Двоичная система счисления

Кодирование целых и действительных чисел

Существуют два основных формата представления чисел в памяти компьютера:

- целые числа
- действительные числа

Кодирование целых и действительных чисел

- В процессе кодирования целых чисел от 0 до 255 достаточно использовать 8 разрядов двоичного кода (8 бит). Применение 16 бит позволяет закодировать целые числа от 0 до 65 535, а с помощью 24 бит более 16,5 миллионов различных значений.
- Для того чтобы закодировать действительные числа, применяют 80-битное кодирование. В этом случае число предварительно преобразовывают в нормализованную форму, например:

$$3,1427926 = 0,31427926*101;$$

 $500\ 000 = 0,5*106.$

Кодирование текстовой информации

- Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111).
- Двоичный код каждого символа занимает 1 байт памяти ЭВМ.
- Этот код является порядковым номером символа.

Символы	Количество символов
Русский язык (буквы строчные и заглавные)	33+33
Английский язык (буквы строчные и заглавные)	26+26
Цифры от 0 до 9	10
Знаки (препинания, различные скобки, и т.д.)	27
итого:	155

Кодирование текстовой информации

- Для кодирования символов одного языка (например, русского или английского) достаточно 7 бит (128 символов). Для кодирования двух языков национального и английского (международного) требуется 8 бит (256 символов), при этом еще и останутся свободные коды.
- Присвоение символу конкретного кода это соглашение, которое фиксируется в кодовой таблице.

Кодировка ASCII

• Для кодирования текстовой информации принят международный стандарт ASCII (American Standard Code for Information Interchange).

00		40	^	0.4	_	- 00	_				
	пробел	48	0	64	@	80	Р	96		112	р
33	!	49	1	65	Α	81	Q	97	a	113	q
34		50	2	66	В	82	R	98	b	114	r
35	. #	51	3	67	С	83	S	99	С	115	S
36	\$.	52	4	68	D	84	Т	100	d	116	t
37	%	53	5	69	E	85	U	101	е	117	u
38	&	54	6	70	F	86	V	102	f	118	V
39	•	55	7	71	G	87	W	103	g	119	w
40	(,	56	8	72	H.	88	X	104	h	120	X
41)	57	9	73	i	89	Υ	105	İ	121	У
42	*	58	:	74	J	90	Z	106	j	122	Ž
43	+	59	;	75	K	91	[107	k	123	{
44	,	60	<	76	L	92	Ĭ	108	. 1	124	Ì
45	-	61	=	77	M	93	j	109	m	125	}
46		62	>	78	Ν	94	^	110	n	126	~
47	/	63	?	79	0	95	_	111	0	127	

• Windows-1251 — введена компанией Microsoft для программных продуктов этой компании в России.

128 Ђ	144 ħ	160	176 °	192 A	208 P	224 a	240 p
129 É	145 '	161 Ў	177 ±	193 Б	209 C	225 б	241 c
130 ,	146 '	162 ў	178	194 B	210 T	226 в	242 т
131 ŕ	147 "	163 J	179 i	195 Г	211 У	227 г	243 y
132 "	148 "	164 ¤	180 г	196 Д	212 Ф	228 д	244 ф
133	149 •	165 ľ	181 μ	197 E	213 X	229 e	245 x
134 †	150 -	166	182 1	198 Ж	214 Ц	230 ж	246 ц
135 ‡	151	167 §	183 ·	199 3	215 4	231 з	247 ч
136	152	168 Ë	184 ë	200 И	216 Ш	232 и	248 ш
137 ‰	153 ™	169 ©	185 №	201 Й	217 Щ	233 й	249 щ
138 Љ	154 љ	170 €	186 €	202 K	218 Ъ	234 K	250 ъ
139 🔞	155 →	171 «	187 »	203 Л	219 Ы	235 л	251 ы
140 Њ	156 њ	172 -	188 j	204 M	220 Ь	236 м	252 ь
141 K	157 K	173 -	189 S	205 H	221 3	237 н	253 э
142 Ћ	158 ħ	174 ®	190 s	206 O	222 IO	238 o	254 ю
143 U	159 u	175 Ï	191 ï	207 П	223 Я	239 п	255 я

• КОИ-8 (Код Обмена Информацией, восьмизначный) - другая популярная кодировка русского алфавита.

100	4.4.4. !!!	100	470 1	100			
128	144	160 -	176 -	192 ю	208 п	224 Ю.	240 П
129	145 🎇	161 Ë	177 }	193 a	209 я	225 A	241 Я
130 г	146	162 -	178	194 б	210 p	226 Б	242 P
131 7	147	163 ë	179 Ë	195 ц	211 c	227 Ц	243 C
132 L	148 -	164 ເ	180 -	196 д	212 т	228 Д	244 T
133 🗓	149 •	165 r	181 -	197 e	213 y	229 E	245 У
134	. 150 √	166 -	182 -	198 ф	214 ж	230 Ф	246 Ж
135	151 ≈	167 7	183 T	199 г	215 в	231 Г	247 B
136 —	152 ≤	168 7	184 🛨	200 x	216 ь	232 X	248 Ь
137 ⊥	153 ≽	169 ^L	185 -	201 и	217 ы	-233 И	249 Ы
138 +	154	170 L	186 ⊥	202 й	218 з	234 Й	250 3
139 💻	155 J	171 L	187 ┸	203 к	219 ш	235 K	251 Ш
140 🕳	156 °	172	188 +	204 л	220 э	236 Л	252 Э
141	157 ²	173 -	189 +	205 м	221 щ	237 M	253 Щ
142	158 ·	174 -	190 🕂	206 н	222 ч	238 H	254 4
143	159 ÷	175 -	191 ë	207 o	223 ъ	239 O	255 Ъ

• ISO (International Standard Organization - Международный институт стандартизации) - стандарт кодирования символов русского языка.

	160	176 A	192 P	208 a	224 p	240 Nº
	161 Ë	177 Б	193 C	209 б	225 c	241 ë
	162 Ђ	178 B	194 T	210 в	226 т	242 ђ
	163 É	179 °F	195 У	211 г	227 y	243 ŕ
	164 €	180 Д	196 Ф	212 д	228 ф	244 €
	165 S	181 E	197 X	213 e	229 x	245 s
1	166 I	182 Ж	198 Ц	214 ж	230 ц	246 i
В <i>ISO</i> не определены	167 Î	183 3	199 4	215 з	231 ч	247 ï
1	168 J	184 И	200 Ш	216 и	232 ш	248 j
	169 Љ	185 Й	201 Щ	217 й	233 щ	249 љ
	170 Њ	186 K	202 Ъ	218 K	234 ъ	250 њ
	171 Ђ	187 Л	203 Ы	219 л	235 ы	251 ħ
	172 K	188 M	204 Ь	220 м	236 ь	252 k
	173 -	189 H	205 Э	221 н	237 э	253 §
	174 Ў	190 O	206 Ю	222 o	238 ю	254 ў
	175 Ų	191 ∏	207 Я	223 п	239 я	255 y

 Порядок размещения символов алфавита в кодовых таблицах отличается. Поэтому тексты, созданные в одной кодировке, могут неправильно отображаться в другой.

Погиб поэт! - невольник чести -Пал, оклеветанный молвой, С свинцом в груди и жаждой мести, Поникнув гордой головой!.. Не вынесла душа поэта Позора мелочных обид, Восстал он против мнений света Один, как прежде… и убит! Убит!.. К чему теперь рыданья, Пустых похвал ненужный хор И жалкий лепет оправданья? Судьбы свершился приговор! Не вы ль сперва так злобно гнали Его свободный, смелый дар И для потехи раздували Чуть затаившийся пожар? Что ж? веселитесь... Он мучений Последних вынести не мог: Угас, как светоч, дивный гений, Увял торжественный венок.

онцха онщр! ≈ мебнкэмхй веярх ≈ оЮК, НЙКЕБЕРЮММШИ ЛНКБНИ, я ЯБХМЖНЛ Б ЦПСДХ Х ФЮФДНИ ЛЕЯРХ, онмхимсь цнпдни цнкньни!.. мЕ БШМЕЯКЮ ДСЬЮ ОНЩРЮ оНГНПЮ ЛЕКНВМШУ НАХД, бняярюк нм опнрхб лмемхи яберю нДХМ, ЙЮЙ ОПЕФ $ДЕ^{J}$ X САХР! сАХР!.. й ВЕЛС РЕОЕПЭ ПШДЮМЭЪ, оСЯРШУ ОНУБЮК МЕМСФМШИ УНП х ФЮКЙХИ КЕОЕР НОПЮБДЮМЭЪ? яСДЭАШ ЯБЕПЬХКЯЪ ОПХЦНБНП! мЕ БШ КЭ ЯОЕПБЮ РЮЙ ГКНАМН ЦМЮКХ еЦН ЯБНАНДМШИ, ЯЛЕКШИ ДЮП х ДКЪ ОНРЕУХ ПЮГДСБЮКХ всрэ гюрюхььхияь онфюп? вРН Ф? БЕЯЕКХРЕЯЭ НМ ЛСВЕМХИ онякедмху бшмеярх ме лнц: сцюя, йюй ябернв, дхбмши цемхи, сБЪК РНПФЕЯРБЕММШИ БЕМНЙ.

- Ограниченный набор кодов (256) создает трудности для разработчиков единой системы кодирования текстовой информации.
- Вследствие этого было предложено кодировать символы не 8-разрядными двоичными числами, а числами с большим разрядом, что вызвало расширение диапазона возможных значений кодов.
- Система 16-разрядного кодирования символов называется универсальной UNICODE. Шестнадцать разрядов позволяет обеспечить уникальные коды для 65536 символов, что вполне достаточно для размещения в одной таблице символов большинства языков.

Кодирование графической информации

- Под компьютерной (машинной) графикой понимается совокупность методов и приемов преобразования при помощи ЭВМ данных в графическое представление.
- Различают три вида компьютерной графики:
 - 1. Растровая
 - 2. Векторная
 - 3. Фрактальная.

Растровая графика

- Растровая графика способ кодирования изображения, при котором оно представляется в виде матрицы элементов (bitmap).
- Элементы матрицы называются пиксель (pixels) сокращение от picture elements, что в переводе означает "элемент изображения".
- Компьютер запоминает цвета всех пикселей подряд в определенном порядке. Поэтому растровые изображения требуют для хранения большой объем памяти компьютера.

Способы кодирования графической информации

- При рассмотрении черно-белого графического изображения с помощью увеличительного стекла заметно, что в его состав входит несколько мельчайших точек, образующих характерный узор (или растр).
- Линейные координаты и индивидуальные свойства каждой из точек изображения можно выразить с помощью целых чисел.
- Общеизвестным стандартом считается приведение черно-белых иллюстраций в форме комбинации точек с 256 градациями серого цвета, т.е. для кодирования яркости любой точки необходимы 8-разрядные двоичные числа.

Способы кодирования графической информации

- Кроме размера изображения, важной характеристикой является количество цветов закодированных в файле.
- Цвет каждого пиксела кодируется определенным числом бит, эта характеристика называется глубиной цвета.

Способы кодирования графической информации

- Если для кодировки отвести лишь один бит, то каждый пиксел может быть либо белым (значение 1), либо черным (значение 0). Такое изображение называют монохромным (monochrome).
- 8 бит 256 различных цветов или оттенков серого цвета (полутоновое).
- 16 бит 65 536 различных цветов (High Color)
- 24 бита 224=16 777 216 различных цветов и оттенков (True Color)

1-битное изображение

RGB

- В основу кодирования цветных графических изображений положен принцип разложения произвольного цвета на основные составляющие, в качестве которых применяются три основных цвета: красный (Red), зеленый (Green) и синий (Blue).
- На практике принимается, что любой цвет, который воспринимает человеческий глаз, можно получить с помощью механической комбинации этих трех цветов. Такая система кодирования называется RGB (по первым буквам основных цветов).
- При применении 24 двоичных разрядов для кодирования цветной графики такой режим носит название полноцветного (True Color).

RGB

CMYK

- Каждый из основных цветов сопоставляется с цветом, дополняющим основной цвет до белого. Для любого из основных цветов дополнительным будет являться цвет, который образован суммой пары остальных основных цветов. Среди дополнительных цветов можно выделить голубой (Cyan), пурпурный (Magenta) и желтый (Yellow).
- Принцип разложения произвольного цвета на составляющие компоненты используется не только для основных цветов, но и для дополнительных, т.е. любой цвет можно представить в виде суммы голубой, пурпурной и желтой составляющей.

CMYK

- Этот метод кодирования цвета применяется в полиграфии, но там используется еще и четвертая краска— черная (Black), поэтому эта система кодирования обозначается четырьмя буквами — СМҮК. Для представления цветной графики в этой системе применяется 32 двоичных разряда.
- Данный режим также носит название полноцветного.

CMYK

24-битное изображение (палитра RGB)

16-битное изображение

Форматы графических изображений

- Windows BitMap (.BMP) формат файлов растровых рисунков, разработанный Microsoft. Главным достоинством является его простота и, как следствие, поддержка всеми без исключения программами, работающими с графикой. Хранит информацию о каждой точке без использования алгоритмов сжатия.
- Graphics Interchange Format (.GIF) формат файлов разработанный CompuServe Inc. Чаще всего применяется для размещения рисунков в Интернете. К достоинствам формата можно отнести возможность создания рисунков с прозрачным фоном (transparency) и анимацией. Предусмотрен метод сжатия без потерь LZW.

Форматы графических изображений

- Portable Network Graphics (.PNG) использует метод сжатия без потерь LZW, позволяющий достичь высокой степени сжатия (не хуже GIF). Примерно в 2 раза компактнее BMP. Имеет возможность через строчного вывода для быстрой черновой прорисовки изображения.
- Joint Photographic Experts Group JPEG (JPG) позволяет добиться наивысшей степени сжатия и минимальный размер выходного файла.
- TIFF (.TIF) позволяет сохранять изображения любой глубины цвета с использованием как модели RGB, так и CMYK.

Растровая графика

- Растровые изображения выглядят вполне реалистично. Это связано со свойствами человеческого глаза: он приспособлен для восприятия реального мира как огромного набора дискретных элементов, образующих предметы.
- + Легко управлять выводом изображения на устройства представляющие изображения в виде совокупности точек принтеры, фотонаборные автоматы.

Растровая графика

- Большой объем памяти требуемый для хранения изображения хорошего качества.
- Трудности редактирования изображений.

- В отличии от растровой графики, в векторной графике изображения строятся с помощью математических описаний объектов (геометрических фигур или линий, кроме того оно обычно многослойно).
- Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнений линий, дуг, окружностей и т. д.) и располагается в своем собственном слое.

Все объекты имеют атрибуты (свойства).

К этим свойствам относятся:

- форма линии: ее толщина, цвет;
- характер линии (сплошная, пунктирная и т. п.).

- Объекты могут группироваться в слои с общими характеристиками.
- Количество цветов, в отличии от растровой графики, на размер файла практически не влияет.
- Файлы векторной графики способны содержать растровые изображения в качестве одного из типов объектов.

Основные графические примитивы:

- Точка (задается двумя числами х,у)
- Прямая линия (описывается уравнением y=kx+b)
- Отрезок прямой (координаты начала и конца отрезка)
- Кривая второго порядка
- Кривая третьего порядка
- Кривые Безье

- + Объекты векторного изображения, в отличии от растровой графики, изменяют свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость).
- + Векторная графика позволяет редактировать отдельные части рисунка, не оказывая влияния на остальные (в растровых изображениях пришлось бы редактировать каждый пиксель).
- + Векторные изображения, не содержащие растровых объектов, занимают в памяти компьютера относительно небольшое место

- Рисунки часто выглядят достаточно искусственно, так как основным компонентом векторного рисунка является прямая линия, а она в природе встречается достаточно редко.
- Возможны проблемы при печати сложных рисунков на отдельных типах принтеров из-за того что не все команды могут ими правильно интерпретироваться.

Фрактальная графика

- Фрактальная графика, как и векторная вычисляемая, но отличается от нее тем, что никакие объекты в памяти компьютера не хранятся.
- Изображение строится по уравнению (или по системе уравнений), поэтому ничего, кроме формулы, хранить не надо. Изменив коэффициенты в уравнении, можно получить совершенно другую картину.

Кодирование звуковой информации

- Звук это волна с непрерывно меняющейся амплитудой и частотой.
- Чем больше амплитуда, тем громче звук
- Чем больше частота, тем больше тон
- Частоту измеряют в Герцах. 1Гц это одно колебание в секунду.

Качество звука

- Самое низкое качество получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 бит и записи звуковой дорожки в один канал (моно).
- Высокое качество получается при частоте дискретизации 48000 раз в секунду, глубине дискретизации 16 бит и записи звуковой дорожки в два канала (стерео).

Кодирование звуковой информации

- В настоящий момент не существует единой стандартной системы кодирования звуковой информации.
- Поэтому множество различных компаний, которые работают в области кодирования звуковой информации, создали свои собственные корпоративные стандарты для звуковой информации.
- Но среди этих корпоративных стандартов выделяются два основных направления.

Метод FM (Frequency Modulation)

- В основу метода FM положено утверждение о том, что теоретически любой сложный звук может быть представлен в виде разложения на последовательность простейших гармонических сигналов разных частот.
- Каждый из этих гармонических сигналов представляет собой правильную синусоиду и поэтому может быть описан числовыми параметрами и закодирован.
- Звуковые сигналы образуют непрерывный спектр, т.е. являются аналоговыми, поэтому их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняется с помощью специальных устройств — аналого-цифровых преобразователей

Метод FM (Frequency Modulation)

 Обратное преобразование, которое необходимо для воспроизведения звука, закодированного числовым кодом, производится с помощью цифроаналоговых преобразователей.

Метод таблично-волнового синтеза (Wave-Table)

- Основная идея метода таблично-волнового синтеза (Wave-Table)
 состоит в том, что в заранее подготовленных таблицах находятся
 образцы звуков для множества различных музыкальных
 инструментов.
- Данные звуковые образцы носят название сэмплов. Числовые коды, которые заложены в сэмпле, выражают такие его характеристики, как:
 - тип инструмента,
 - номер его модели,
 - высоту тона,
 - продолжительность и интенсивность звука,
 - динамику его изменения,
 - некоторые компоненты среды, в которой наблюдается звучание, и другие параметры, характеризующие особенности звучания.

Метод таблично-волнового синтеза (Wave-Table)

 Поскольку для образцов применяются реальные звуки, то качество закодированной звуковой информации получается очень высоким и приближается к звучанию реальных музыкальных инструментов, что в большей степени соответствует нынешнему уровню развития современной компьютерной техники

Форматы звуковых файлов

- WAVE (.wav) звуковой формат, который не обеспечивает достаточно хорошего сжатия
- MPEG-3 (.mp3) Используя для оцифровки музыкальных записей. При кодировании применяется психоакустическая компрессия, при которой из мелодии удаляются звуки, плохо воспринимаемые человеческим ухом.
- MIDI (.mid) цифровой интерфейс музыкальных инструментов (Musical Instrument Digital Interface). Интерфейс MIDI представляет собой протокол передачи музыкальных нот и мелодий. Т.е. в файле хранятся описания высоты и длительности звучания музыкальных инструментов. MIDI-файлы занимают меньший объём (единица звукового звучания в секунду), чем эквивалентные файлы оцифрованного звука.

Кодирование видео

- Аналоговое видео является самым ранним методом передачи видеосигнала. Композитное аналоговое видео комбинирует все видео компоненты (яркость, цвет, синхронизацию и т.д.) в один сигнал. Из-за объединения этих элементов в одном сигнале качество композитного видео далеко от совершенства.
- Цифровое видео множество технологий записи, обработки, передачи, хранения и воспроизведения визуального или аудиовизуального материала в цифровом представлении.

Кодирование видео

 Основное отличие цифрового видео от аналогового видео в том, что видеосигналы кодируются и передаются в виде последовательности бит. Цифровое видео может распространяться на различных видеоносителях, посредством цифровых видеоинтерфейсов в виде потока или файлов.

Форматы хранения видеоинформации

- Digital Video (DV) формат, разработанный для цифровых видеокамер и видеомагнитофонов. Сигнал компонентный, метод сжатия MJPEG с коэффициентом 5:1.
- CD AVI (Audio Video Interleave чередование аудио и видео) -позволяет одновременно хранить изображение и звук. При записи в этом формате используются несколько различных форматов сжатия (компрессии) видеоизображения: Microsoft Video 1 (8- и 16-битный цвет). Motion JPEG, Microsoft RLE (8-битный цвет), Indeo и т.д.

Форматы хранения видеоинформации

MPEG (Motion JPEG)(.mpg, .mpeg, .dat)- формат для записи и воспроизведения видео разработанный группой экспертов по движущимся изображениям (MPEG - Moving Picture Expert Group).
 Имеет собственный алгоритм компрессии, основанный на кодировании изменений ключевых кадров. Среди производных форматов известен MPEG-2 и MPEG-4.