

ALL-OR-NOTHING LAW OF NEURONAL ACTIVATION

(WHY IS IT, THEN, THAT WE SOMETIMES FEEL MORE PAIN OR LESS PAIN?)

ALL-OR-NOTHING LAW OF NEURONAL ACTIVATION

(WHY IS IT, THEN, THAT WE SOMETIMES FEEL MORE PAIN OR LESS PAIN?)

THE PERCEPTRON

 $1 \cdot (-1) + 0.5 \cdot 2 + 0.25 \cdot 8$

OUR PERCEPTRON'S PREDICTION CAN BE WRITTEN IN A SINGLE LINE

$$\hat{y} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

OUR PERCEPTRON'S PREDICTION CAN BE WRITTEN IN A SINGLE LINE

$$\hat{y} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

$$\hat{y} = \text{sign}((-1) \cdot 1 + 2 \cdot 0.5 + 8 \cdot 0.25)$$

= sign(2)
= +1

PERCEPTRON'S CAN HAVE DIFFERENT ACTIVATION FUNCTIONS

$$\hat{y} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Heaviside (step) function

$$\hat{y} = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Sigmoid function

$$\hat{y} = \tanh(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Hyperbolic tangent function

$$\hat{y} = \text{ReLU}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Rectified Linear Unit

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

GRADIENT DESCENT

(WITH 1 POINT)

$$\mathbf{w_{n+1}} \leftarrow \mathbf{w_n} - \eta \nabla_{\mathbf{w}} \mathfrak{L}$$

 w_1

GRADIENT DESCENT

$$\mathbf{w_{n+1}} \leftarrow \mathbf{w_n} - \eta \sum_i \nabla_{\mathbf{w}} \mathfrak{Q}$$

EFFECT OF THE LEARNING RATE (η)

EXAMPLE: STEP ACTIVATION FUNCTION WITH HINGE LOSS

$$\Omega = \max(0; 1 - y\hat{y})$$

$$\hat{y} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

$$\mathbf{w}_{n+1} = \mathbf{w}_{n} - \eta \nabla_{\mathbf{w}} \Omega$$

$$\nabla_{\mathbf{w}}\mathfrak{Q} = y\mathbf{x}$$

••

$$w_{n+1} \leftarrow w_n - \eta y x$$

EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

$$\mathfrak{L} = \max(0; 1 - y\hat{y})$$
$$\hat{y} = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$
$$\mathbf{w}_{n+1} = \mathbf{w}_{n} - \eta \nabla_{\mathbf{w}} \mathfrak{L}$$

$$\nabla_{\mathbf{w}} \mathfrak{L} = y \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}) [\mathbf{1} - \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x})] \mathbf{x}$$

••

$$\mathbf{w_{n+1}} \leftarrow \mathbf{w_n} - \eta y \sigma(\mathbf{w^T} \mathbf{x}) [1 - \sigma(\mathbf{w^T} \mathbf{x})] \mathbf{x}$$

EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

EXAMPLE: LOGISTIC ACTIVATION FUNCTION WITH HINGE LOSS

 $\mathfrak{L} = \max(0; 1 - y\hat{y})$ $\hat{y} = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$

 $\mathbf{w}_{n+1} = \mathbf{w}_n - \eta \nabla_{\mathbf{w}} \mathfrak{Q}$

This tells us about the importance of normalizing the inputs.

 $\nabla_{\mathbf{w}} \mathfrak{L} = y \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}) [\mathbf{1} - \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x})] \mathbf{x}$

 $\mathbf{w_{n+1}} \leftarrow \mathbf{w_n} - \eta y \sigma(\mathbf{w^T x}) [\mathbf{1} - \sigma(\mathbf{w^T x})] \mathbf{x}$

This also offers a nice illustration of the vanishing gradient problem. Why? – and what to do about it?

THE VANISHING GRADIENT PROBLEM

$$\mathbf{w_{n+1}} \leftarrow \mathbf{w_n} - \eta \sum_i \nabla_{\mathbf{w}} \mathfrak{Q}$$

When $\nabla_{\mathbf{w}}\mathfrak{L} \to 0$, learning stops $(\mathbf{w_{n+1}} \approx \mathbf{w_n})$

What can we do about it?

SOLUTIONS TO THE VANISHING GRADIENT PROBLEM

Normalization

Changing the activation function

and other more advanced (or pricy) options...

THE FIRST PERCEPTRON (IBM, 1958)

COMING UP NEXT:

NEURAL NETWORKS

