MATH 202, Fall 202	3
In class work 16	

Name:	
Row and Seat:	

"The place to improve the world is first in one's own heart and head and hands, and then work outward from there."

ROBERT M. PIRSIG In class work **16** has questions **1** through **3** with a total of **7** points. Turn in your work

- In class work **16** has questions **1** through **3** with a total of **7** points. Turn in your work at the end of class *on paper*. This assignment is due *Tuesday 24 October 13:20*.
 - 1. Define a function F by $F(x) = \frac{\ln(x)}{\left(\frac{4}{3}\right)^x}$.
- (a) Use Desmos to graph y = F(x) for $2 \le x \le 15$. Reproduce the graph here. Based on the graph, what is your guess for the numeric value of $\lim_{x \to \infty} \frac{\ln(x)}{\left(\frac{4}{3}\right)^x}$?

(b) Use Desmos to graph $y = \frac{F(x+1)}{F(x)}$ for $2 \le x \le 15$. Reproduce the graph here. Based on the graph, what is your guess for the numeric value of $\lim_{x \to \infty} \frac{F(x+1)}{F(x)}$?

1 (c) Use the l'Hôpital rule to find the numeric value of $\lim_{x\to\infty} \frac{F(x+1)}{F(x)}$.

1 (d) Use the *ratio test* to determine if the series $\sum_{k=2}^{\infty} F(k)$ converges or diverges.

- 2. Use the $ratio\ test$ to determine if each series converges or diverges.
- 1 (a) $\sum_{k=0}^{\infty} \frac{2^k}{3^k + 8}$

1 (b)
$$\sum_{k=0}^{\infty} \frac{((k)!)^3}{(3k)!} 14^k$$

 $\overline{1}$ 3. Find the numeric value of the $\lim_{k\to\infty}\frac{((k)!)^3}{(3k)!}14^k$. Justify your answer.