1 Drehimpulsalgebra

(a) Beweisen Sie die nachfolgenden Kommutatoren mit der bekannten Kommutatorrelation von x und p.

$$[L_z, x] = i\hbar y$$
 $[L_z, y] = -i\hbar x$ $[L_z, z] = 0$ $[L_z, p_x] = i\hbar p_y$ $[L_z, p_y] = -i\hbar p_x$ $[L_z, p_z] = 0$

- (b) Nutzen Sie diese Kommutatoren um zu zeigen, dass $[L_x, L_y] = i\hbar L_y$
- (c) Berechnen Sie die Kommutatoren von $[L_z, r^2]$ und $[L_z, p^2]$
- (d) Zeigen Sie das der Hamiltonoperator $H = \frac{p^2}{2m} + V$ mit allen drei Komponenten des Drehimpulses kommutiert, vorrausgesetzt V ist ein Zentralpotential $(V(\vec{r}) = V(r))$

2 Dreidimensionale SG - sphärischer Potentialtopf

Ein Teilchen der Masse m bewege sich in einem radialsymmetrischen Potential der From

$$V(r) = \begin{cases} 0 & r > r_0 \\ -V_0 & r < r_0 \end{cases}$$

Es sei $V_0 > 0$. In dieser Aufgabe sollen die Wellenfunktionen der gebundenen Zustände gesucht werden.

- \rightarrow Stellen Sie die SG für die Bereiche $r < r_0$ und $r > r_0$ in Kugelkoordinaten auf.
- \rightarrow Aufgrund der Lösung von Aufgabe 1d wissen wir, dass H und L gemeinsame Eigenfunktionen haben. Nutzen Sie dies durch einen Seperationsansatz für $\psi(r, \theta, \phi)$ aus und bestimmen Sie die radiale Schrödingergleichung.
- \rightarrow Für den Rest der Aufgabe kann l=0 angenommen werden. Bestimmen Sie die Wellenfunktionen dieses Zusandes
- \rightarrow Wie lauten die Randbedingungen an die Wellenfunktion?
- → Leiten Sie aus den Randbedingungen die Form der Wellengleichung und eine Bedingung, aus der die Energien der Bindung gewonnen werden können, her.
- → Normieren Sie die Wellenfunktion

3 Elektron im Magnetfeld

- (a) Gegeben sei ein ruhendes Elektron, welches sich im normierten Eigenzustand des Operators S_y mit Eigenwert $\frac{\hbar}{2}$ befindet. Bestimmen Sie die Eigenwerte und Eigenvekoren des Operators S_y und drücken Sie den Zustand, in dem sich das Elektron befindet, durch die Eigenzustände $|\pm\rangle$ von σ_z aus.
- (b) Betrachten Sie nun den Fall, dass sich das Elektron in einem konstanten magnetsichen Feld B befindet, welches in z-Rtg. zeigt, d.h. der zugehörige Hamilton- Operator hat die Form

$$H = -\mu_b B S_z$$

Die zeitliche Entwicklung des Zustandes ist gegeben durch

$$|\psi(t)\rangle = a(t) |+\rangle + b(t) |-\rangle$$

Berechnen Sie die Zeitabhängigkeit: a(t), b(t)

(c) Wie groß ist die Wahrscheinlichkeit, das Elektron nach der Zeit t im Zustand $|+\rangle$ zu finden? Wann befindet sich das Elektron in dem Eigenzustand mit Eigenwert $-\frac{\hbar}{2}$ bzgl. des Operator S_y (Spinflip)?

4 Spinmessung

Ein Elektron befinde sich in dem Spinzustand

$$\chi = A \left(\begin{array}{c} 1 - 2i \\ 2 \end{array} \right)$$

- (a) Bestimmen Sie die Konstante A, sodass χ normiert ist
- (b) Messen Sie S_z bei diesem Elektron. Welche Werte würden Sie erhalten? Wie groß ist die Wahrscheinlichkeit für jeden dieser Werte? Was ist der Erwartungswert von S_z ?
- (c) Messen Sie S_x bei diesem Elektron. Welche Werte würden Sie erhalten? Wie groß ist die Wahrscheinlichkeit für jeden dieser Werte? Was ist der Erwartungswert von S_x ?
- (d) Messen Sie S_y bei diesem Elektron. Welche Werte würden Sie erhalten? Wie groß ist die Wahrscheinlichkeit für jeden dieser Werte? Was ist der Erwartungswert von S_y ?

5 Kopplung von Drehimpulsen

- (a) Wenden Sie S_- auf den Zustand $\mid s=1, m=0 \rangle$ von zwei gekoppelten Spins an und zeigen Sie, dass $\sqrt{2}\hbar \mid 1, -1 \rangle$ folgt.
- (b) Wenden Sie S_{\pm} auf den singlett Zustand $\mid 0,0 \rangle$ an und zeigen Sie, dass es keine weiteren Singlett Zustände s=0 gibt.
- (c) Zeigen Sie, dass | 11 \rangle und | 1 1 \rangle Eigenzustände von S^2 mit den erwarteten Eigenzuständen sind.