

Atomarität einer Transaktion Konsistenz und Dauerhaftigkeit der DB

- Wer soll sich um die Atomarität von Transaktionen sowie die Konsistenz und die Dauerhaftigkeit der Datenbank kümmern?
 - Sie als Anwender eines DBS sollen beim Verwenden von SQL-Anweisungen darauf achten, dass eine Transaktion atomar bleibt, und die Markierungen (BOT/EOT) entsprechend setzen.
 - BOT: Begin of Transaction (bei Oracle nur implizit)
 - Erstellen der Verbindung zu einer Datenbank
 - Die erste ausführbare SQL-Anweisung nach EOT
 - EOT: End of Transaction (bei Oracle explizit und implizit)

Mag. Tumfart Johannes 1

Transaktionen und Sperren

Transaktionsverwaltung

- Transaktion
 - Logische Verarbeitungseinheit von DB-Aktionen, d.h. eine Serie von SQL-Anweisungen, die als eine Einheit betrachtet werden.
- Ziel der Transaktionsverwaltung
 - Durch die von einer Transaktion ausgeführten Operationen wird die DB von einem konsistenten Zustand in einen anderen überführt.
- Eigenschaften (Forderung) der Transaktion (ACID)
 - Atomicity Transaktion soll atomar (nicht zerlegbar) sein. (alles oder nichts).
 - Consistency Transaktion soll eine DB von einem konsistenten Zustand zum nächsten führen. (Während der Transaktion sind Inkonsistenzen erlaubt.)
 - Isolation Parallel ausgeführte Transaktionen dürfen sich
 - nicht beeinflussen. (Jede hat die DB für sich allein.)
 - Durability Änderungen erfolgreicher Transaktionen müssen äußere Einflüsse überleben.

Transaktionssteuerung in Oracle: Syntax von COMMIT und ROLLBACK

COMMIT

- bedeutet "Transaktion wird erfolgreich beendet."
- Macht alle Änderungen innerhalb dieser Transaktion persistent.
- gibt alle von der Transaktion gesperrten Ressourcen frei.
 - Achtung!
 Vor und nach jedem DDL-Satz (create, alter, drop) führt
 Oracle ein implizites Commit aus.

ROLLBACK

- bedeutet "Transaktion wird erfolglos beendet (abgebrochen)."
- setzt alle Änderungen innerhalb dieser Transaktion zurück.
- gibt alle von der Transaktion gesperrten Ressourcen frei.
 - Bei Abbruch der Verbindung, Netzstörung, Systemfehler bzw. Programmabsturz führt Oracle ein implizites Rollback aus.

Mag. Tumfart Johannes 3

Transaktionen und Sperren

Transaktionssteuerung in Oracle: Syntax der SAVEPOINT-Anweisung

SAVEPOINT savepoint name

- setzt einen Punkt innerhalb einer Transaktion, bis zu dem ein Rollback durchgeführt werden kann.
- ROLLBACK TO savepoint name
 - Setzt alle Änderungen, die seit dem Savepoint savepoint_name durchgeführt worden sind, zurück (Teilweises Zurücksetzen einer Transaktion)

Achtung

- Das Rollback zu einem Savepoint (das teilweise Zurücksetzen) beinhaltet kein Commit der Transaktion.
- Es können mehrere Savepoints innerhalb einer Transaktion gesetzt werden.

Sperrverfahren in Oracle

- Manuelle und Automatische Sperre
 - Objekte können manuell gesperrt werden. (LOCK TABLE)
 - Bei einigen SQL-Anweisungen werden die betreffenden Objekte automatisch gesperrt.
 - DML-Sperren
 - DDL-Sperren
- Gültigkeit einer Sperre
 - Eine manuelle Sperre wird aufgehoben:
 - bei einem impliziten bzw. expliziten COMMIT
 - bei einem impliziten bzw. expliziten ROLLBACK
 - bei einem ROLLBACK TO Savepoint vor der Sperre-Anweisung.
 - Eine automatische Sperre wird mit dem Ausführung der betreffenden SQL-Anweisung aufgehoben.
- Voraussetzung vor dem Sperren
 - Ein Benutzer kann nur eigene Tabellen/Views oder solche, worauf er Privilegien hat, sperren.

Mag. Tumfart Johannes 7

Transaktionen und Sperren

Sperrverfahren: Syntax der LOCK TABLE Anweisung

- LOCK TABLE [schema.]table_name|view_name
 IN lockmode MODE [NOWAIT]
- lockmode
 - Wann verwendet man den Modus?
 - Was dürfen andere während der Sperre machen?
 - SHARE [Gut bei Queries. Lesekonsistenz garantiert.]
 - Andere Transaktionen können die Tabelle lesen.
 - Andere können sie im Share-Modus sperren. (share, row share)
 - Andere können sie im Exclusive-Modus nicht sperren.
 - Andere können sie nicht ändern.
 - EXCLUSIVE [Mächtig bei allen Arten Änderungen.]
 - Andere Transaktionen können die Tabelle lesen.
 - Andere können sie im Share-Modus nicht sperren.
 - Andere können sie im Exclusive-Modus nicht sperren.
 - Andere können sie nicht ändern.

Sperrverfahren: Syntax der LOCK TABLE Anweisung (Forts.)

lockmode

- ROW SHARE [Vorsorglich vor Zeilenänderung.]
 - Andere Transaktionen können die Tabelle lesen.
 - Andere können sie im Share-Modus sperren.
 - Andere können sie im Exclusive-Modus nicht sperren.
 - Andere können einzelne Zeilen im Exclusive-Modus sperren und ändern.
- ROW EXCLUSIVE [Bei einer Zeilenänderung]
 - Andere Transaktionen können die Tabelle lesen.
 - Andere können sie im Share-Modus nicht sperren.
 - Andere können sie im Exclusive-Modus nicht sperren.
 - Andere können einzelne Zeile im Exclusive-Modus sperren und ändern.
 - Beim UPDATE, INSERT, DELETE wird die Tabelle automatisch im Row-Exclusive-Modus gesperrt.
 - Row Exclusive kann parallel gewährt werden.

Mag. Tumfart Johannes 9

Transaktionen und Sperren

Sperrverfahren: Syntax der LOCK TABLE Anweisung (Forts.)

lockmode

- SHARE ROW EXCLUSIVE [Bei einer Zeilenänderung]
 - Andere Transaktionen können die Tabelle lesen.
 - Andere können sie im Share-Modus nicht sperren.
 - Andere können sie im Exclusive-Modus nicht sperren.
 - Andere können einzelne Zeilen im Exclusive-Modus <u>nicht</u> sperren und ändern.
 - Share Row Exclusive kann nicht parallel gewährt werden.
- NOWAIT Option
 - Ohne NOWAIT-Option wartet Oracle auf die Freigabe des spezifizierten Objektes.
 - Mit der NOWAIT-Option wartet Oracle nicht auf die Freigabe von gesperrten Objekten, sondern gibt sofort mit einer Fehlermeldung auf, die LOCK TABLE-Anweisung durchzuführen.

Verträglichkeit verschiedener Sperrenmodi

T2	ROW SHARE	ROW EXCLUSIVE	SHARE	SHARE ROW EXCLUSIVE	EXCLUSIVE
ROW SHARE	zulässig	zulässig	zulässig	zulässig	-
ROW EXCLUSIVE	zulässig	zulässig	ı	-	ı
SHARE	zulässig	-	zulässig	-	-
SHARE ROW EXCLUSIVE	zulässig	-	ı	-	-
EXCLUSIVE	-	-	-	-	-

Mag. Tumfart Johannes 11

Transaktionen und Sperren

Automatische Sperre

DML-Sperren

- Bei einer DML-Anweisung (insert, update, delete, select ... for update, lock table) wird die Tabelle so gesperrt, dass keine DDL-Anweisung (alter, drop ...), die zu Konflikten mit der Transaktion führen würde, möglich ist.
- Bei einer DML-Anweisung (insert, update, delete, select ... for update) werden die betreffenden Zeilen so gesperrt, dass keiner sie modifizieren kann. (Row Exclusive Sperre)

DDL-Sperren

- Während ein Schemaobjekt von einer DDL-Anweisung bearbeitet bzw. referenziert wird, wird es so gesperrt, dass keine andere DDL-Anweisung es modifizieren bzw. referenzieren kann.
- SELECT ... FOR UPDATE
 - SELECT-Anweisung mit FOR UPDATE-Option sperrt die ausgewählten Zeilen exklusiv (wie eine UPDATE-Anweisung aber ohne die Daten zu ändern). Änderungen der Zeilen können danach erfolgen.

Lesekonsistenz auf Transaktionsebene (transaction-level read consistency) kann folgendermaßen erreicht werden.

T1		T2		
LOCK TABLE konten IN SHARE MODE;		INSERT impliziert Anforderung zu Row-Exclusive-Sperre.		
SELECT * FROM konten;				
		INSER	Γ INTO konten VALUES ();	
SELECT * FROM k	onten;			
COMMIT;	Sperrfreigabe		Warten auf Sperrfreigabe	
			Ausführung von INSERT.	
		COMM	IIT;	

Mag. Tumfart Johannes 13

- Wenn zwei oder mehr Benutzer auf Daten warten, die sie gegenseitig gesperrt haben, müssen sie ewig warten. (Dead Lock)
- Oracle erkennt den Deadlock automatisch und löst ihn durch Zurückrollen der Anweisung.

TI	T2			
LOCK TABLE konten	LOCK TABLE kunden			
IN SHARE MODE;	IN SHARE MODE;			
LOCK TABLE kunden	LOCK TABLE konten			
IN EXCLUSIVE MODE;	IN EXCLUSIVE MODE;			
Warten auf	Warten auf			
Sperrfreigabe	Sperrfreigabe			
+	+			
Systemeingriff zur Erkennung und Auflösung eines Deadlocks				

Mag. Tumfart Johannes 15