6 Матричные разложения - II

6.1 Спектральное разложение

Def. 1. Разложением Жордана матрицы $A \in Mat_{\mathbb{C}}(n)$ называется представление данной матрицы в виде произведения:

$$A = P \cdot J \cdot P^{-1},$$

где P - невырожденная матрица, состоящая из собственных и присоединенных векторов матрицы A и $J=diag\{J_1,J_2,\ldots,J_m\}$ - матрица, состоящая из жордановых клеток:

$$J_s = \begin{bmatrix} \lambda_s & 1 & 0 & \dots & 0 \\ 0 & \lambda_s & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_s \end{bmatrix}, \quad \lambda_s \in spec(A).$$

Nb. 1. Разложение Жордана существует для любой квадратной матрицы А.

Def. 2. Спектральным разложением матрицы $A \in Mat_{\mathbb{C}}(\mathfrak{n})$ называется представление данной матрицы в виде произведения:

$$A = Q \cdot D \cdot Q^{-1},$$

где $D=diag\{\lambda_1,\lambda_2,\dots,\lambda_m\}$ - диагональная матрица с собственными значениями матрицы A и Q - матрица из собственных векторов A.

Th. 6.1. (Достаточное условие) Матрица $A \in Mat_{\mathbb{C}}(n)$ диагонализуема, если она является нормальной матрицей, то есть:

$$A^{\dagger} \cdot A = A \cdot A^{\dagger}, \quad A^{\dagger} = \overline{A}^{T}.$$

Доказательство. Пусть $x \neq 0$ - собственный вектор матрицы A, отвечающий собственному значению $\lambda \in \mathbb{C}$. Тогда x - собсвтенный вектор A^{\dagger} , отвечающий собственному значению $\overline{\lambda}$. Осталось показать, что $\langle x \rangle_{\mathbb{C}}^{\perp}$ - также инвариантное подпространство A. Действительно пусть $y \neq 0$ и $y \in \langle x \rangle_{\mathbb{C}}^{\perp}$, то есть $\langle x, y \rangle = 0$, тогда

$$\langle x, Ay \rangle = \langle A^{\dagger}x, y \rangle = \lambda \langle x, y \rangle = 0.$$

Ех. 1. Важные частные случаи нормальных матриц:

ullet эрмитовская (симметричная): $A^\dagger=A,\quad A^\intercal=A$:

$$\operatorname{spec}(A) \subset \mathbb{R}, \quad Q^{\dagger} \cdot Q = I.$$

• унитарная (ортогональная): $A^{\dagger} = A^{-1}$, $A^{\mathsf{T}} = A^{-1}$:

$$\lambda \in spec(A) \Rightarrow |\lambda| = 1, \quad \ Q^{\dagger} \cdot Q = I.$$

Th. 6.2. (Вейля) Пусть A u $\widetilde{A} = A + V$ - симметричные матрицы, причем $\{\lambda_j\}_{j=1}^n$ u $\{\widetilde{\lambda}_j\}_{j=1}^n$ - спектры A u \widetilde{A} соответственно. Тогда:

$$\forall i \in \overline{1,n} \quad \exists \, j \in \overline{1,n} : \quad |\widetilde{\lambda}_i - \lambda_j| \leqslant \|V\|_2.$$

 Δ оказательство. Пусть $A=Q\cdot D\cdot Q^\mathsf{T}$ - спектральное разложение матрицы $A,\,W=Q^\mathsf{T}\cdot V\cdot Q$ и M=D+W тогда

$$\widetilde{A} = Q \cdot (D + W) \cdot Q^{\mathsf{T}} = Q \cdot M \cdot Q^{\mathsf{T}}.$$

Оценим спектр матрицы М. Пусть $x \in \mathbb{R}^n$, ||x|| = 1, тогда:

$$\begin{split} \boldsymbol{x}^T \boldsymbol{M} \boldsymbol{x} &= \sum_{i=1}^n \lambda_i \boldsymbol{x}_i^2 + \boldsymbol{x}^T \boldsymbol{W} \boldsymbol{x}, \\ \min_i \lambda_i + \min_{\|\boldsymbol{x}\|=1} \boldsymbol{x}^T \boldsymbol{W} \boldsymbol{x} \leqslant \boldsymbol{x}^T \boldsymbol{M} \boldsymbol{x} \leqslant \max_i \lambda_i + \max_{\|\boldsymbol{x}\|=1} \boldsymbol{x}^T \boldsymbol{W} \boldsymbol{x}. \end{split}$$

Кроме того, имеет место сравнение:

$$|x^{\mathsf{T}}Wx| \leq ||W||_2 = ||V||_2$$

и тогда

$$\mathbf{x}^{\mathsf{T}} \mathbf{M} \mathbf{x} \in [\min_{i} \lambda_{i} - \|\mathbf{V}\|_{2}, \max_{i} \lambda_{i} + \|\mathbf{V}\|_{2}].$$

Ex. 2. (Контр-пример) В качестве примера неустойчивости задачи разложения Жордана, рассмотрим матрицы:

$$A = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, \quad \widetilde{A} = \begin{bmatrix} \lambda & 1 \\ \varepsilon & \lambda \end{bmatrix}.$$

Видно, что $\operatorname{spec}(A) = \{\lambda\}$, найдем $\operatorname{spec}(\widetilde{A})$:

$$\label{eq:determinant} \text{det}(A-\mu I) = 0 \quad \Rightarrow \quad \mu = \lambda \pm \sqrt{\epsilon}.$$

6.2 Сингулярное разложение

 $\mathit{Nb}.\ 2.\ \Pi$ усть $A\in Mat_{\mathbb{R}}(m,n)$ - произвольная прямоугольная $m\times n$ матрица ранга r=rank(A).

Def. 3. Сингулярным разложением матрицы A называется представление матрицы A в форме произведения:

$$A = U \cdot \Sigma \cdot V^{\mathsf{T}},$$

где $U \in Mat_{\mathbb{R}}(m)$, $V \in Mat_{\mathbb{R}}(n)$ - ортогональные матрицы соответствующих рназмеров и $\Sigma \in Mat_{\mathbb{R}}(m,n)$ - прямоугольная $m \times n$ матрица с сингулярными значениями $\{\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r\}$.

Тһ. 6.3. Сингулярное разложение существует всегда.

Доказательство. Рассмотрим симметричную матрицу $B = A^{\mathsf{T}} \cdot A$ и ее спектральное разложение:

$$B = A^T \cdot A = V \cdot \Lambda \cdot V^T$$
, $\Lambda = diag\{\lambda_1, \dots, \lambda_m\}$, $\lambda_i \ge 0 \quad \forall i \in \overline{1, m}$.

Определим сингулярные числа матрицы А:

$$\sigma_i = \sqrt{\lambda_i} \geqslant 0.$$

Формируем матрицу $\Sigma \in Mat_{\mathbb{R}}(\mathfrak{m},\mathfrak{n})$ по следующему правилу:

$$\Sigma_{i,j} = 0$$
, $\Sigma_{i,i} = \sigma_i$, $i = 1, ..., r$.

Сформируем матрицу U, пусть

$$A \cdot V = A \cdot \begin{bmatrix} v_1, v_2, &, v_n \end{bmatrix} = \begin{bmatrix} Av_1, Av_2, \cdot, Av_n \end{bmatrix}.$$

Далее, положим $u_i = A \nu_i / \sigma_i$, тогда $A \nu_i = \sigma_i u_i$, $\|u_i\| = 1$. Для i > r возьмем такие u_i , чтобы дополнить набор $\{u_1, \ldots, u_r\}$ до ортонормированного базиса в \mathbb{R}^m . Тогда матрица U получается следующим образом:

$$U = [u_1, u_2, \dots, u_m] \in Mat_{\mathbb{R}}(m), \quad U^T \cdot U = I.$$

Ех. 3. Пример сингулярного разложения матрицы:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/\sqrt{2} & 1/2 \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1/2 & -1/\sqrt{2} & 1/2 \end{bmatrix} \cdot \begin{bmatrix} \sqrt{3+\sqrt{5}} & 0 \\ 0 & \sqrt{3-\sqrt{5}} \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

6.3 Скелетное разложение

 $\mathit{Nb.}$ 3. Пусть снова $A \in \mathit{Mat}_{\mathbb{R}}(m,n)$ - произвольная матрица ранга $r = \mathit{rank}(A)$.

Def. 4. Скелетным разложением матрицы A называется представление матрицы A в виде следующего произведения:

$$A = C \cdot U \cdot R$$
,

где $C \in Mat_{\mathbb{R}}(m,k)$ - матрица, составленная из $k \geqslant r$ столбцов матрицы A, $R \in Mat_{\mathbb{R}}(l,n)$ - матрица, составленная из $l \geqslant r$ строк матрицы A и $U \in Mat_{\mathbb{R}}(k,l)$ - матрица коэффициентов.

Тһ. 6.4. Скелетное разложение существует всегда.

 \mathcal{A} оказательство. Пусть r=rank(A), тогда существует множество индексов $J=\{j_1,j_2,\ldots,j_r\}$, таких что набор столбцов $\{a_{j_1},a_{j_2},\ldots,a_{j_r}\}$ - линейно независимый и образует базис оболочки столбцов матрицы A. Введем обозначение:

$$C=A_{:,J}=\left[\alpha_{j_1},\alpha_{j_2},\ldots,\alpha_{j_r}\right]\in Mat_{\mathbb{R}}(m,r).$$

Аналогично, существует множество индексов $I = \{i_1, i_2, \dots, i_r\}$, таких что набор строк $\{b_{i_1}, b_{i_2}, \dots, b_{i_r}\}$ - линейно независим и образует базис оболочки строк матрицы A. Введем обозначение:

$$R = A_{I,:} = [b_{i_1}, b_{i_2}, \dots, b_{i_r}]^T \in Mat_{\mathbb{R}}(r, n).$$

Пусть $A_{I,J} \in Mat_{\mathbb{R}}(r)$ - матрица, находящаяся на пересечении строк I и столбцов J. Данная матрица имеет ранг r и, значит, обратима. Пусть далее $A=C\cdot Z$, тогда

$$A_{I,:} = C_{I,:} \cdot Z$$

но $A_{I,:} = R, C_{I,:} = A_{I,I}$, и значит:

$$R = A_{I,J} \cdot Z \quad \Rightarrow \quad Z = A_{I,J}^{-1} \cdot R,$$

откуда сразу следует, что $U = A_{\mathrm{I},\mathrm{I}}^{-1}$.

Ех. 4. Пример скелетного разложения:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}.$$

Ex. 5. Рассмотрим матрицу оценок студентов по проектам. Необходимо аппроксимировать A представлением вида $\widetilde{A} = CUR$, где C и R состоят из запданных подмножеств строк и столбцов матрицы A соответственно:

$$A = \begin{bmatrix} 5 & 3 & 4 & 4 \\ 3 & 1 & 2 & 3 \\ 4 & 3 & 4 & 3 \\ 3 & 3 & 1 & 5 \\ 1 & 5 & 5 & 2 \end{bmatrix}, \quad C = A_{:,\{1,3\}} \quad R = A_{\{1,5\},:}$$

Имеем:

$$C = \begin{bmatrix} 5 & 4 \\ 3 & 2 \\ 4 & 4 \\ 3 & 1 \\ 1 & 5 \end{bmatrix}, \quad R = \begin{bmatrix} 5 & 3 & 4 & 4 \\ 1 & 5 & 5 & 2 \end{bmatrix}, \quad A_{I,J} = \begin{bmatrix} 5 & 4 \\ 1 & 5 \end{bmatrix}.$$

Определим матрицу Ц:

$$U = A_{I,J}^{-1} = \frac{1}{5 \cdot 5 - 1 \cdot 4} \begin{bmatrix} 5 & -4 \\ -1 & 5 \end{bmatrix} = \frac{1}{21} \begin{bmatrix} 5 & -4 \\ -1 & 5 \end{bmatrix}.$$

Тогда аппроксимация исходной матрицы:

$$\widetilde{A} = CUR = \begin{bmatrix} 5 & 3 & 4 & 4 \\ 3 & 29/21 & 2 & 16/7 \\ 4 & 68/21 & 4 & 24/7 \\ 3 & 1/3 & 1 & 2 \\ 1 & 5 & 5 & 2 \end{bmatrix}.$$