Métodos Numéricos Mínimos quadrados (polinómio + modelo linear)

Ana Maria A. C. Rocha

Departamento de Produção e Sistemas

Universidade do Minho

arocha@dps.uminho.pt

Objetivo

Definir um **modelo** $M(x; c_i)$ - expressão matemática - que melhor se ajuste à função dada, f(x), no intervalo [a, b].

Usando a técnica dos mínimos quadrados, pretende-se minimizar a soma dos quadrados dos erros.

• problema discreto:

Dados m pontos

$$x_1 < x_2 < \ldots < x_m$$
 no intervalo $[a, b]$:

minimizar
$$\sum_{i=1}^{m} (f(x_i) - M(x_i; c_i))^2$$

Objetivo

problema contínuo:

Dada f(x)

minimizar
$$\int_a^b (f(x) - M(x; c_i))^2 dx$$

Nota: só vamos considerar problemas discretos, isto é, a função f é dada por um conjunto discreto de valores

$$(x_1, f_1), (x_2, f_2), \ldots, (x_m, f_m).$$

Tipos de modelos

Modelo linear e polinomial,
 define um problema de mínimos quadrados linear

Exemplo:
$$M(x; a_0, a_1, a_2) \equiv p_2(x) = a_0 + a_1x + a_2x^2$$

 Modelo linear e não polinomial, define um problema de mínimos quadrados linear

Exemplo:
$$M(x; c_1, c_2) = c_1 e^{x^2} + c_2 \operatorname{sen}(x)$$

Modelo não linear,
 define um problema de mínimos quadrados não linear

Exemplo:
$$M(x; c_1, c_2) = \ln(c_1 x^2) + e^{c_2 x}$$

1. Modelo <u>linear</u> e polinomial

- **objetivo:** definir polinómio de grau n (completo) $p_n(x)$
- condição única para que o problema seja bem definido:
 m ≥ n + 1, sendo m o número de pontos onde a função é definida e n o grau do polinómio;
- para que o problema seja bem condicionado, isto é, não seja sensível a erros nos dados ou erros de arredondamento nos cálculos, o polinómio $p_n(x)$ deve ser construído, usando sequência de polinómios ortogonais

$$P_0(x), P_1(x), P_2(x), \ldots, P_n(x),$$

na forma

$$p_n(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x) + \cdots + c_n P_n(x).$$

1. Modelo <u>linear</u> e polinomial (cont.)

• Propriedade dos polinómios ortogonais:

$$\sum_{i=1}^{m} P_j(x_i) P_k(x_i) \begin{cases} = 0, & \text{se } j \neq k \\ \neq 0, & \text{se } j = k \end{cases}$$

• Como se constrói o polinómio $p_n(x)$ (completo) ?

a partir dos pontos dados (x_i, f_i) , j = 1, 2, ..., m

determinam-se $P_0(x), \ldots, P_n(x)$ e c_0, \ldots, c_n para formar

$$p_n(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x) + \cdots + c_n P_n(x)$$

Construção do polinómio $p_n(x)$

passo 1: Construir os polinómios ortogonais da sequência de polinómios ortogonais $P_0(x)$, $P_1(x)$, $P_2(x)$, ..., $P_n(x)$ usando a **relação de recorrência**

$$P_{i+1}(x) = (x - B_i) P_i(x) - \mathbb{C}_i P_{i-1}(x), \quad \text{para} \quad i = 0, 1, \dots, n-1$$

em que
$$P_{-1}(x) = 0$$
 e $P_0(x) = 1$,

$$B_i = \frac{\sum_{j=1}^{m} x_j P_i^2(x_j)}{\sum_{j=1}^{m} P_i^2(x_j)},$$
 para todo o i

$$\mathbb{C}_0 = 0$$
 e $\mathbb{C}_i = \frac{\sum_{j=1}^m P_i^2(x_j)}{\sum_{i=1}^m P_{i-1}^2(x_i)}$ para $i > 0$.

Construção do polinómio $p_n(x)$

passo 2: Calcular os coeficientes do polinómio

$$c_0, c_1, c_2, \ldots, c_n$$

sendo

$$c_i = \frac{\sum_{j=1}^m f_j P_i(x_j)}{\sum_{i=1}^m P_i^2(x_j)}, \quad i = 0, 1, \dots, n$$

passo 3: Formar o polinómio pretendido:

$$p_n(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x) + \dots + c_n P_n(x).$$

Exemplos de modelos polinomiais

Construir $p_1(x)$ (número mínimo de pontos, n+1=2)

Se m = 2, $p_1(x)$ é o polinómio interpolador (e é único):

Se m > 2, $p_1(x)$ é o polinómio que melhor ajusta a 'mancha' de pontos:

Exemplos de modelos polinomiais (cont.)

Ajustar $p_1(x)$ considerando os seguintes pontos:

Se só usar 2 pontos

Se usar todos os pontos

Neste caso todos os polinómios $p_1(x)$ são iguais e passam nos pontos de f(x) porque a função é um polinómio de grau 1, o que significa que $\sum_{i=1}^{m} (f_i - p_1(x_i))^2 = 0$.

Exercício 1

A resistência de um certo fio (de uma certa substância), f(x), varia com o diâmetro desse fio, x. A partir de uma experiência registaram-se os seguintes valores:

Xi	1.5			4.0
$f(x_i)$	4.9	3.3	2.0	1.5

Foram sugeridos os seguintes modelos para ajustar os valores de f(x), no sentido dos mínimos quadrados:

- uma reta
- uma parábola
- (a) Calcule a reta.
- (b) Calcule a parábola.
- (c) Estime o valor da resistência de um fio que tem de diâmetro 2.5, através da parábola calculada em b).

 (a) Pretende determinar-se uma reta, que é um polinómio de grau 1 (modelo linear polinomial)

$$p_1(x) = c_0 P_0(x) + c_1 P_1(x)$$

Passo 1: Construir os polinómios ortogonais da sequência de polinómios ortogonais $P_0(x)$ e $P_1(x)$, sabendo que

$$P_0(x) = 1 \text{ e } P_{-1}(x) = 0$$

$$P_1(x) = (x - B_0)P_0(x) - C_0P_{-1}(x) = x - B_0$$

$$B_0 = \frac{\sum_{j=1}^4 x_j P_0^2(x_j)}{\sum_{j=1}^4 P_0^2(x_j)} = \frac{\sum_{j=1}^4 x_j}{\sum_{j=1}^4 P_0^2(x_j)} = \frac{10.5}{4} = 2.625$$

$$P_1(x) = x - 2.625$$

Passo 2: Cálculo dos coeficientes do polinómio c_0 e c_1

$$c_0 = \frac{\sum_{j=1}^4 f_j P_0(x_j)}{\sum_{j=1}^4 P_0^2(x_j)} = \frac{\sum_{j=1}^4 f_j}{\sum_{j=1}^4 P_0^2(x_j)} = \frac{11.7}{4} = 2.925$$

$$c_1 = \frac{\sum_{j=1}^4 f_j P_1(x_j)}{\sum_{j=1}^4 P_1^2(x_j)}$$

Podemos construir uma tabela para auxiliar os cálculos:

$$c_1 = \frac{-4.7625}{3.6875} = -1.291525$$

Passo 3: Construção do polinómio

$$p_1(x) = 2.925 - 1.291525(x - 2.625)$$

(b) Pretende determinar-se uma parábola, polinómio de grau 2 (modelo linear polinomial)

$$p_2(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x)$$

$$p_2(x) = \underbrace{c_0 P_0(x) + c_1 P_1(x)}_{p_1(x)} + c_2 P_2(x)$$

$$p_2(x) = p_1(x) + c_2 P_2(x)$$

Passo 1: Construir o polinómio ortogonal $P_2(x)$

$$P_2(x) = (x - B_1)P_1(x) - C_1P_0(x) = (x - B_1)P_1(x) - C_1$$

$$B_1 = \frac{\sum_{j=1}^4 x_j P_1^2(x_j)}{\sum_{j=1}^4 P_1^2(x_j)}$$

$$C_1 = \frac{\sum_{j=1}^4 P_1^2(x_j)}{\sum_{j=1}^4 P_0^2(x_j)}$$

Podemos construir uma tabela auxiliar:

		x_j	f_j	$P_1(x_j)$	$P_1^2(x_j)$	$x_j P_1^2(x_j)$
Ī		1.5	4.9	-1.125	1.265625	1.898438
		2.0	3.3	-0.625	0.390625	0.78125
		3.0	2.0	0.375	0.140625	0.421875
		4.0	1.5	1.375	1.890625	7.5625
	\sum	10.5	11.7		3.6875	10.664063

$$B_1 = \frac{10.6640625}{3.6875} = 2.891949$$
$$C_1 = \frac{3.6875}{4} = 0.921875$$

$$P_2(x) = (x - 2.891949)(x - 2.625) - 0.921875$$

Passo 2: Cálculo do coeficiente do polinómio c2

$$c_2 = \frac{\sum_{j=1}^4 f_j P_2(x_j)}{\sum_{j=1}^4 P_2^2(x_j)}$$

Continuar a tabela auxiliar:

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline & x_j & f_j & P_1(x_j) & P_1^2(x_j) & x_j P_1^2(x_j) & f_j P_1(x_j) & P_2(x_j) & P_2^2(x_j) \\ \hline & 1.5 & 4.9 & -1.125 & 1.265625 & 1.898438 & -5.5125 & 0.644068 & 0.414824 \\ 2.0 & 3.3 & -0.625 & 0.390625 & 0.78125 & -2.0625 & -0.364407 & 0.132792 \\ 3.0 & 2.0 & 0.375 & 0.140625 & 0.421875 & 0.75 & -0.881356 & 0.776788 \\ 4.0 & 1.5 & 1.375 & 1.890625 & 7.5625 & 2.0625 & 0.601695 & 0.362037 \\ \hline \sum & \textbf{10.5}$ & \textbf{11.7}$ & & \textbf{3.6875} & \textbf{10.664063} & -\textbf{4.7625} & & \textbf{1.686441} \\ \hline \end{array}$$

$$c_2 = \frac{1.093221}{1.686441} = 0.648241$$

Passo 3: Construção do polinómio

$$p_2(x) = 2.925 - 1.291525(x - 2.625) + 0.648241[(x - 2.891949)(x - 2.625) - 0.921875]$$

(c) Pretende-se estimar o valor da resistência quando o diâmetro é 2.5, através da parábola calculada em (b).

Então, é só substituir x = 2.5 no polinómio $p_2(x)$:

$$p_2(2.5) = 2.5206$$

2. Modelo <u>linear</u> mas não polinomial

Forma do modelo:

$$M(x; c_1, \ldots, c_n) = c_1 \Phi_1(x) + c_2 \Phi_2(x) + \cdots + c_n \Phi_n(x)$$

(linear nos coeficientes) em que

$$c_1, c_2, \ldots, c_n$$

são os coeficientes do modelo e

$$\Phi_1(x), \Phi_2(x), \ldots, \Phi_n(x)$$

são funções.

- neste modelo só é preciso determinar os coeficientes, pois as funções $\Phi_i(x)$, $i=1,\ldots,n$ são dadas;
- o número de termos na definição do modelo caracteriza a dimensão do problema - n - este é também o número de coeficientes a determinar;

2. Modelo <u>linear</u> mas não polinomial (cont.)

o condição única para que o problema seja bem definido:

$$m \geq n$$
,

sendo m o número de pontos onde a função é definida e n o número de coeficientes a determinar;

o cálculo dos coeficientes

$$C_1, C_2, \ldots, C_n$$

é feito a partir do sistema das equações normais.

$$M(x; c_1, \ldots, c_n) = c_1 \Phi_1(x) + c_2 \Phi_2(x) + \cdots + c_n \Phi_n(x)$$

No sentido dos mínimos quadrados, o objetivo é encontrar o modelo $M(x; c_1, \ldots, c_n)$ tal que

minimizar
$$S(c_1, c_2, ..., c_n) \equiv \sum_{j=1}^{m} (f_j - M(x_j; c_1, ..., c_n)))^2$$

$$\underset{c_1,...,c_n}{\text{minimizar}} \sum_{j=1}^m \left(f_j - \left(c_1 \Phi_1(x_j) + c_2 \Phi_2(x_j) + \dots + c_n \Phi_n(x_j) \right) \right)^2$$

Como pretendemos calcular c_1, c_2, \ldots, c_n tal que $S(c_1, c_2, \ldots, c_n)$ seja **mínima**, vamos usar o cálculo diferencial, ou seja, derivar $S(c_1, c_2, \ldots, c_n)$ em ordem aos coeficientes e igualar a zero:

$$\frac{\partial S}{\partial c_1} = -2 \sum_{i=1}^m (f_i - c_1 \Phi_1(x_i) - c_2 \Phi_2(x_i) - \dots - c_n \Phi_n(x_i)) \Phi_1(x_i) = 0$$

$$\frac{\partial S}{\partial c_2} = -2 \sum_{j=1}^{m} (f_j - c_1 \Phi_1(x_j) - c_2 \Phi_2(x_j) - \dots - c_n \Phi_n(x_j)) \Phi_2(x_j) = 0$$

• •

$$\frac{\partial S}{\partial c_n} = -2\sum_{i=1}^m \left(f_i - c_1\Phi_1(x_i) - c_2\Phi_2(x_i) - \dots - c_n\Phi_n(x_i)\right)\Phi_n(x_i) = 0$$

ou seja:

$$\sum_{j=1}^{m} f_j \Phi_1(x_j) - \sum_{j=1}^{m} c_1 \Phi_1(x_j) \Phi_1(x_j) - \dots - \sum_{j=1}^{m} c_n \Phi_n(x_j) \Phi_1(x_j) = 0$$

$$\sum_{j=1}^{m} f_j \Phi_2(x_j) - \sum_{j=1}^{m} c_1 \Phi_1(x_j) \Phi_2(x_j) - \dots - \sum_{j=1}^{m} c_n \Phi_n(x_j) \Phi_2(x_j) = 0$$

. . .

$$\sum_{j=1}^{m} f_j \Phi_n(x_j) - \sum_{j=1}^{m} c_1 \Phi_1(x_j) \Phi_n(x_j) - \dots - \sum_{j=1}^{m} c_n \Phi_n(x_j) \Phi_n(x_j) = 0$$

ou ainda

$$c_1 \sum_{j=1}^m \Phi_1^2(x_j) + c_2 \sum_{j=1}^m \Phi_2(x_j) \Phi_1(x_j) + \cdots + c_n \sum_{j=1}^m \Phi_n(x_j) \Phi_1(x_j) = \sum_{j=1}^m f_j \Phi_1(x_j)$$

$$c_1 \sum_{j=1}^m \Phi_1(x_j) \Phi_2(x_j) + c_2 \sum_{j=1}^m \Phi_2^2(x_j) + \cdots + c_n \sum_{j=1}^m \Phi_n(x_j) \Phi_2(x_j) = \sum_{j=1}^m f_j \Phi_2(x_j)$$

٠.

$$c_1 \sum_{j=1}^m \Phi_1(x_j) \Phi_n(x_j) + c_2 \sum_{j=1}^m \Phi_2(x_j) \Phi_n(x_j) + \cdots + c_n \sum_{j=1}^m \Phi_n^2(x_j) = \sum_{j=1}^m f_j \Phi_n(x_j)$$

Este sistema $(n \times n)$ é **linear** nos coeficientes a determinar - c_1, c_2, \ldots, c_n - Na forma matricial \Longrightarrow

<u>A matriz dos coeficientes</u> do sistema das equações normais

$$A = \begin{pmatrix} \sum_{j=1}^{m} \Phi_{1}^{2}(x_{j}) & \sum_{j=1}^{m} \Phi_{2}(x_{j}) \Phi_{1}(x_{j}) & \cdots & \sum_{j=1}^{m} \Phi_{n}(x_{j}) \Phi_{1}(x_{j}) \\ \sum_{j=1}^{m} \Phi_{1}(x_{j}) \Phi_{2}(x_{j}) & \sum_{j=1}^{m} \Phi_{2}^{2}(x_{j}) & \cdots & \sum_{j=1}^{m} \Phi_{n}(x_{j}) \Phi_{2}(x_{j}) \\ \cdots & \cdots & \cdots & \cdots \\ \sum_{j=1}^{m} \Phi_{1}(x_{j}) \Phi_{n}(x_{j}) & \sum_{j=1}^{m} \Phi_{2}(x_{j}) \Phi_{n}(x_{j}) & \cdots & \sum_{j=1}^{m} \Phi_{n}^{2}(x_{j}) \end{pmatrix}$$

O sistema das equações normais

$$A\begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^m f_j \Phi_1(x_j) \\ \sum_{j=1}^m f_j \Phi_2(x_j) \\ \dots \\ \sum_{j=1}^m f_j \Phi_n(x_j) \end{pmatrix}$$

A resolução do sistema linear das equações normais fornece os coeficientes pretendidos c_1, c_2, \ldots, c_n , e deve ser feita por um método direto e estável - **EGPP**.

Passos para calcular o modelo linear não polinomial

Para calcular o modelo na forma:

$$M(x; c_1, ..., c_n) = c_1 \Phi_1(x) + c_2 \Phi_2(x) + \cdots + c_n \Phi_n(x)$$

passo 1: Identificar:

 n (número de termos/número de coeficientes a determinar/dimensão do problema)

$$\Phi_1(x) = \cdots, \quad \Phi_2(x) = \cdots, \quad \cdots, \quad \Phi_n(x) = \cdots$$

Passos para calcular o modelo linear não polinomial

passo 2: Formar o sistema das equações normais - de n equações nas n incógnitas c_1, c_2, \ldots, c_n - na forma matricial

passo 3: Resolver este sistema por EGPP.

passo 4: Formar o modelo pretendido

$$M(x; c_1, \ldots, c_n) = c_1 \Phi_1(x) + c_2 \Phi_2(x) + \cdots + c_n \Phi_n(x)$$

Exercício 1 (cont.)

A resistência de um certo fio (de uma certa substância), f(x), varia com o diâmetro desse fio, x. A partir de uma experiência registaram-se os seguintes valores:

Xi	1.5	2.0	3.0	4.0
$f(x_i)$	4.9	3.3	2.0	1.5

Foram sugeridos os seguintes modelos para ajustar os valores de f(x), no sentido dos mínimos quadrados:

- uma reta
- uma parábola
- o modelo linear: $M(x, c_1, c_2) = \frac{c_1}{x} + c_2 x$
- (a) Calcule a reta.
- (b) Calcule a parábola.
- (c) Calcule o modelo M.
- (d) Qual dos modelos escolheria? Justifique a sua escolha.

(c) Pretende determinar-se um modelo (modelo linear e não polinomial), no sentido dos mínimos quadrados, do tipo

$$M(x; c_1, c_2) = \frac{c_1}{x} + c_2 x$$

Passo 1: n = 2. Identificação das funções Φ_i :

$$\Phi_1(x) = \frac{1}{x}$$

$$\Phi_2(x) = x$$

Passo 2: Construir o sistema de equações normais

$$\left(\begin{array}{ccc} \sum_{i=1}^{4} \Phi_{1}^{2}(x_{j}) & \sum_{i=1}^{4} \Phi_{2}(x_{j}) \Phi_{1}(x_{j}) \\ \sum_{j=1}^{4} \Phi_{1}(x_{j}) \Phi_{2}(x_{j}) & \sum_{j=1}^{4} \Phi_{2}^{2}(x_{j}) \end{array}\right)$$

Construir uma tabela auxiliar

	Xj	fj	$\Phi_1(x_j)$	$\Phi_2(x_j)$	$\Phi_1^2(x_j)$	$\Phi_2^2(x_j)$	$\Phi_1(x_j)\Phi_2(x_j)$	$f_j\Phi_1(x_j)$	$f_j\Phi_2(x_j)$
	1.5	4.9	0.6667	1.5	0.4444	2.25	1.0	3.2667	7.35
	2.0	3.3	0.5	2.0	0.25	4	1.0	1.65	6.6
	3.0	2.0	0.3333	3.0	0.1111	9	1.0	0.6666	6
	4.0	1.5	0.25	4.0	0.0625	16	1.0	0.375	6
\sum					0.8681	31.25	4	5.9583	25.95

Passo 3: Resolver o sistema resultante por EGPP

$$\left(\begin{array}{cc|c} 0.868055 & 4 & 5.958334 \\ 4 & 31.25 & 25.95 \end{array}\right) \Longrightarrow \left\{\begin{array}{c} c_1 = 7.405391 \\ c_2 = -0.117490 \end{array}\right.$$

Passo 4: Construir o modelo

$$M(x) = \frac{7.405391}{x} - 0.117490x$$

(d) Para saber qual dos modelos calculado anteriormente aproxima melhor os dados no sentido dos mínimos quadrados, deve ser calculada a soma do quadrado dos resíduos, para cada modelo (linear polinomial ou linear não polinomial), e selecionar o que tiver menor valor, ou seja,

$$minimizar \sum_{j=1}^{m} (f_j - MODELO_j)^2$$

Em que MODELO é qualquer um dos calculados anteriormente:

$$p_1(x) = 2.925 - 1.291525(x - 2.625)$$

$$p_2(x) = 2.925 - 1.291525(x - 2.625) + 0.648241[(x - 2.891949)(x - 2.625) - 0.648241[(x - 2.891949)(x - 2.625)]$$

$$M(x) = \frac{7.405391}{x} - 0.117490x$$

Construir uma tabela auxiliar

x_j	f_j	$p_1(x_j)$	$p_2(x_j)$	$M(x_j)$	$(f_j-p_1(x_j))^2$	$ (f_j - p_2(x_j))^2$	$(f_j - M(x_j))$
1.5	4.9	4.377966	4.795477	4.760683	0.272519391	0.010924977	0.01940913
2	3.3	3.732203	3.49598	3.4677	0.18679977	0.038408121	0.0281232
3	2	2.440678	1.869347	2.115967	0.19419707	0.017070276	0.01344826
4	1.5	1.149153	1.539196	1.38135	0.123093939	0.001536325	0.01407782
\sum					0.77661017	0.0679397	0.0750585

O modelo que aproxima melhor os dados no sentido dos mínimos quadrados é $p_2(x)$, uma vez que é o que apresenta menor soma do quadrado dos resíduos.