# Summary Mini Test 5

March 27, 2023 12:29

# 18.1 Graphs

A graph *G* is made of a non-empty set *V* of vertices (nodes) together with a set *E* of edges

Each edge in *S* is an unordered pair  $\{u, v\} \subseteq V$  with  $u \neq v$  We write G = (V, E)

Note:

- Loops aren't allowed so  $\{u, u\} = \{u\}$  is not a pair
- Parallel edges  $\{\{u, v\}, \{u, v\}\} = \{\{u, v\}\}$  aren't allowed

Graphs without loops and parallel edges are simple, so we're only going to be working with simple graphs

# + Terminology

- **Adjacent:** u is adjacent to v if  $\{u, v\}$  is an edge
- **Incident:** An edge *e* is incident to *u* if one of the two endpoints of *e* is *u*
- **Degree:** The degree of a vertex  $v \in V$  is the number of edges incident to v

#### + Theorems

- ► Handshaking Lemma:  $\sum_{v \in V} \deg(v) = 2|E|$
- *G* has an even number of vertices with an odd degree

## 18.2 Paths

A path is a sequence of distinct vertices  $v_0, ..., v_l$  such that  $\{v_i, v_{i+1}\} \in E$  for  $0 \le i < l$ 

It can also be described as l-1 edges  $\{v_0,v_1\},\ldots,\{v_{l-1},v_l\}$  The vertices  $v_0$  and  $v_l$  are the endpoints of the path and l it its length

If  $\exists$  a path with endpoints  $v, w \in V$ , then v and w are connected If all vertex-pairs are connected, then the graph is connected

## 20.1 Cycles

A cycle is a sequence of vertices  $v_0, v_1, ..., v_{l-1}, v_0$  such that:

- $v_0, v_1, ..., v_{l-1}$  is a path
- $\{v_0, v_1\}, \{v_1, v_2\}, \dots, \{v_{l-1}, v_0\}$  are distinct edges

The length of this cycle is l

Cycles of length 0, 1 or 2 are not allowed by this definition

#### 20.2 Walks

- ▶ A walk is a path where we allow repeated vertices
- ▶ A closed walk is a cycle where we allow repeated vertices

# 20.2 Families of Graphs

## 20.2.1 Complete Graphs $K_n$ for $n \ge 1$

K<sub>2</sub> K<sub>3</sub> K<sub>4</sub> K<sub>5</sub> K<sub>6</sub>

Every pair of vertices is connected by a unique edge Each vertex is connected to n-1 other vertices

Number of edges:  $|E| = \frac{n(n-1)}{2} = O(n^2)$ 

## 20.2.2 Cycles $C_n$ for $n \ge 3$



The whole graph is a single cycle with n vertices, the graph makes a closed chain

## 20.2.3 $(m \times n)$ -grids for $n \ge m \ge 1$



## 20.3 Subgraphs

*H* is a subgraph of *G*, denoted  $H \subseteq G$ , is a graph H = (V', E'), where  $V' \subseteq V$  and  $E' \subseteq E$ 

#### 20.4 Connected Components

A connected component of *G* is a subgraph consisting of:

- All vertices that are connected to a given vertex
- · Together with all edges incident to them

#### 20.4 Forests, Trees and Leaves

- Forest: A forest is a graph that has no cycle
- Tree: A tree is a connected forest
- Leaf: A leaf in a forest is a vertex of degree 1

#### + Theorems

- For G = (V, E) and n = |V|, m = |E|. If G is a forest, then n > m and G has n m connected components
- For G = (V, E), a tree, then n = |V| = |E| + 1 = m + 1

#### 20.5 Spanning Trees

A spanning tree of a connected graph G is a subgraph of G that includes all vertices of G that is a tree