

Total Killed and Injured in Accident - Gender Count

⊽ Filters applied: **States-Uts-State-UT:** Total

♥ Filters applied. States_IIts_State_IIT. Total

We see that the most Killed/Injured gender is Male

Average No. of Males Killed

5.91k

Average No. of Males Injured

13.26k

Average No. of Females Killed

1.48k

Average No. of Females Injured

3.89k

No. of People Killed - Both Genders, Statewise

From the **Map** and the Colors, we can see that **West Bengal** and **Maharashtra** have the highest count of people **killed**

Age Groups Killed - Both Male and Female Combined

We see that the **most killed Age Group** is **45-60 Years** Old, but the 25-35 Years and 35-45 Years Age Groups are very close

Top 5 States with most Killed People

Overspeeding is the major cause of accidents and deaths, and it is leading by a very large number

We see that the **Top 5** states with the **most** number of **killed** people are West Bengal(2.93K), Maharashtra(2.85K), Karnataka(1.88K), Uttar Pradesh(1.77K),

Andhra Pradesh(1.72K)

Overspeeding

Let's take **Overspeeding** as a measure. We see the **state-wise** count of how many accidents happened, how many people were killed, grievously injured and had only a minor injury. Similarly, we can also see **other reasons** such as Drunken Driving, Driving on the Wrong Side etc. through the use of **filters**

Correlation between Sunny/Clear Weather and Two Wheeler Accidents

This is a **Scatter Plot** showing the correlation between **Sunny/Clear** Weather and **Two Wheeler** Accidents. There seems to be a slight **positive correlation** between these two since we can see that pattern that if the number of accidents in sunny/clear accidents increases, then Two wheeler accidents also increase.

Fatalities vs Injuries

⊽ Filters applied: States-Uts-State-UT: NOT Total

This is a diverging bar chart which shows the difference between the number of persons killed and the sum of persons grievously injured and minorly injured for each state. A positive value shows that more killed than injuries, and a negative value shows more injuries than killed.

-State-UT	Severity
arat	
ataka .66k	
rala .11k	Grievously Injured 169.49k
rashtra .92k	
Pradesh 57k	Killed 64.69k
Pradesh	
Pradesh 67k	Minor Injured
sthan	214.82k
l Nadu 23k	

⊽ Filters applied: **States-Uts-State-UT:** NOT Total

This **Sankey Chart** shows which **Accident severity** is most common among each states/UT. We can see here for example that in Tamil Nadu, Minor Injured is more common than the other two, while in Karnataka, Grievously Injured is more common than the other two.

Impact of Weather in Accidents

This is the impact of **Weather** across each state causing accidents. **Sunny** weather has caused the most accidents overall.

Fatality Rates (percentage of fatalities out of total accidents)

⊽ Filters applied: **States-Uts-State-UT:** NOT Total

Fatality Rate is the conversion of accidents into deaths. We can see the Fatality Rate across the states. **Mizoram** has the **highest** Fatality Rate, so we can understand that in Mizoram, **77.42%** of accidents end up in deaths.

⊽ Filters applied: States-Uts-State-UT: NOT Total

Traffic Light Signal: Number of Accidents

9,719

Persons Killed

2,839

Grievously Injured

4,227

This is one example of **Traffic Control Type** Across states. We have **Traffic Light Signal** taken here, and this Tree Map shows the impact of Traffic Light Signal for each state in sorted order. We also have **KPI**s which show the number of accidents, number of people killed, people grievously injured

⊽ Filters applied: States-Uts-State-UT: NOT Total

Police Controlled: Number of Accidents

10,425

Persons Killed

3,501

Grievously Injured

5,324

This is another example of a **TreeMap** in which we have taken **Police Controlled** Traffic Control Type, and we see similar results here

Here, we see the Vehicle Contribution towards Accidents. The vehicle with the most accidents is Two Wheelers

This is the **Road Users** killed and the Vehicle distribution. Here also we can see that the highest contributing vehicle is **Two Wheeler**

This Line Chart shows the Age groups that were killed state-wise. Here too it looks like the age group of 45-60 Years will be the maximum, agreeing with our previous story

This chart shows the distribution of **Traffic Control Types** in which accidents occurred. We see that **Others** was the most occurring control type, meaning that there are many other factors affecting the incidents