BEST AVAILABLE COPY

Amendment to Claims

This listing of Claims will replace all prior versions and listings of claims in this Application.

Listing of Claims

- Claim 1. (CURRENTLY AMENDED) A memory array layer for use in a 3D RRAM comprising, on a silicon substrate having peripheral circuitry thereon:
 - a first layer of silicon oxide, deposited and planarized;
- a bottom electrode formed of a material taken from the group of materials consisting of Pt, PtRhO_x, PtIrO_x and TiN/Pt;
- a second oxide layer having a thickness of at least 1.5X that of the thickness of the bottom electrode, deposited and plainarized planarized to a level where at the bottom electrode is exposed;

 a layer of memory resistor material;
 - a layer of Si₃N₄;
- a third oxide layer having a thickness of about 1.5X of that of the memory resistor material; CMPd to expose the memory resistor surface;
- a top electrode formed of a material taken from the group of materials consisting of Pt, $PtRhO_x$, $PtIrO_x$ and TiN/Pt; and
 - a covering oxide layer.
- Claim 2. (ORIGINAL) The memory array layer of claim 1 wherein said first layer of silicon oxide has a thickness of between about 100 nm to 1000 nm; wherein said memory resistor material has a thickness of between about 20 nm to 150 nm; said Si₃N₄ layer has a thickness of between about 10 nm to 30 nm; and wherein said third oxide layer has a thickness of
- Page 3 Response to Office Action under 37 C.F.R. § 1.111 for Serial No. 10/720,890

BEST AVAILABLE COPY

about 1.5X of that of the memory resistor material.

- Claim 3. (ORIGINAL) The memory array layer of claim 1 wherein said bottom electrode and said top electrode have, for an electrode taken from the group of electrodes formed of Pt, PtRhO_x, and PtIrO_x, a thickness of between about 50 nm to 300 nm, or for a bi-layer TiN/Pt, a thickness of between about 10nm to 200nm of TiN and between about 10 nm to 100 nm of Pt.
- Claim 4. (WITHDRAWN) A method of programming a 3D RRAM comprising:
 selecting a memory cell to be written to;
 applying a high voltage programming pulse to a first related bit line;
 applying a low voltage programming pulse to a second related bit line;
 floating the associated word line;
 Biasing all other word lines with half-programming pulse voltages; and
 biasing all non-selected bit lines to the ground potential.
- Claim 5. (WITHDRAWN) The method of claim 4 wherein reading a memory cell includes

applying a small voltage to the word lines of the non-selected bits to enhance the line voltage difference between the first related bit line and the second related bit line; and applying a read voltage to the word line associated with the selected memory cell and detecting the voltage difference between the first related bit line and the second related bit line.

Page 4 Response to Office Action under 37 C.F.R. § 1.111 for Serial No. 10/720,890

BEST AVAILABLE COPY

Claim 6. (WITHDRAWN) A method of programming a 3D RRAM comprising:

selecting a memory cell to be written to;

applying a low voltage programming pulse to a first memory resistor in the

memory cell;

applying a high voltage programming pulse to a second memory resistor in the

memory cell;

setting the selected word line to ground potential;

biasing all other word lines are biased to 0.5 V_P;

biasing a first related bit line with a negative programming pulse, having a pulse

amplitude of -V_P;

biasing a second related bit line with a positive programming pulse, having

amplitude of +V_P; and

pulsing all non-selected memory resistors with a programming voltage of between

 $0V_p$ and $0.5 V_p$.

Claim 7. (WITHDRAWN) The method of claim 4 wherein reading a memory cell

includes

applying a small voltage to the non-selected word lines to enhance the line

voltage difference between the first related bit line and the second related bit line; and

applying a read voltage to the word line associated with the selected

memory cell and detecting the voltage difference between the first related bit line and the second

related bit line.

Page 5 Response to Office Action under 37 C.F.R. § 1.111 for Serial No. 10/720,890