

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1450 Alcassedan, Virginia 22313-1450 www.emplo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/610,961	07/01/2003	Anand A. Kekre	VRT0063US	4162
66429 7550 0560722009 CAMPBELL STEPHENSON LLP 11401 CENTURY OAKS TERRACE			EXAMINER	
			DWIVEDI, MAHESH H	
BLDG. H, SUITE 250 AUSTIN, TX 78758			ART UNIT	PAPER NUMBER
			2168	
			MAIL DATE	DELIVERY MODE
			05/07/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/610,961 KEKRE ET AL. Office Action Summary Examiner Art Unit MAHESH H. DWIVEDI 2168 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 31 March 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1.4-13.15.18-26.30.31 and 33 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1,4-13,15,18-26,30,31 and 33 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on 01 July 2003 is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413) Paper No(s)/Mail Date.

Notice of Draftsperson's Patent Drawing Review (PTO-948)

3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date _

5) Notice of Informal Patent Application

6) Other:

Application/Control Number: 10/610,961 Page 2

Art Unit: 2168

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 3/31/2009 has been entered.

Remarks

 Receipt of applicant's amendment filed on 03/31/2009 is acknowledged. The amendment includes the amending of claims 1, 15, and 33, and the cancellation of the claims 2-3, 14, 16-17, and 27-29, and 32.

Claim Rejections - 35 USC § 112

 The rejections raised in the Office Action mailed on 12/31/2008 have been overcome by Applicant's Amendments received on 03/31/2009.

Claim Rejections - 35 USC § 102

4. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in (1) an application for patent or (2) a patent granted on an application for patent the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States and was published under Article 21(2) of such treaty in the English language.

- Claims 1, 9, 15, 23, and 33 are rejected under 35 U.S.C. 102(e) as being anticipated by Eshel et al. (U.S. PGPUB 2003/0158862).
- 6. Regarding claim 1, Eshel teaches a method comprising:
- A) writing first and second data to first and second data volumes respectively (Paragraphs 127, and 129-131);
- B) wherein the first data volume is a first primary volume (Paragraph 130);
- C) the first data volume is stored on one or more disk drives (Paragraph 52);

Art Unit: 2168

- D) the second data volume is a second primary volume (Paragraph 130);
- E) the second data volume is stored on one or more disk drives (Paragraphs 127 & 130);
- F) the first and second data volumes are unrelated data volumes (Paragraphs 127 & 130):
- G) refreshing the second data volume to the data contents of the first data volume that existed at time T (Paragraphs 127, 130);
- H) wherein refreshing the second data volume comprises overwriting data of the second data volume with data of the first data volume that existed at time T (Paragraphs 127, 130):
- modifying data of the first data volume while the second data volume is being refreshed to the data contents of the first data volume that existed at time T (Paragraph 127); and
- J) modifying data of the first data volume after the second data volume has been refreshed (Paragraph 130).

The examiner notes that **Eshel** teaches "writing first and second data to first and second data volumes respectively" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), "Alternative embodiments maintain the primary and backup file systems within a single processor, thereby obviating the requirement for a network 106" (Paragraph 129), and "Maintenance of the standby file system is facilitated in the exemplary embodiments by maintaining snapshot tags that uniquely identify both the different snapshots that recorded the state of each of the file systems at different times and that identify the set of changes that are generated between two snapshots. The snapshot tags are used to coordinate proper data synchronization between the mirror file system and the active file system when switching the mirror file system from a read only file system to the active read/write file system by ensuring that the latest snapshot is applied after a failure disables the original file system. Once the initial mirror file system becomes the active file system that is used by client processors (i.e., the "new original" file system), snapshots are captured of

Art Unit: 2168

the new original file system and snapshot tags are used to restore the previous original file system, which is now the mirror, to maintain the original file system as the new standby, or mirror, file system" (Paragraph 131). The examiner further notes that Eshel teaches "wherein the first data volume is a first primary volume" as "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "the first data volume is stored on one or more disk drives" as "A file system (e.g. file system 102 of FIG. 1) in the context of this specification includes a computer program that allows other application programs to store and retrieve data on storage devices such as disk drives, non-volatile memory or other data storage devices. A file in the exemplary embodiments is a named data object of arbitrary size. A file system typically allows application programs to create files and to give names to those files, to store or write data into those files, to read data from those files, to delete and to perform other operations on those files. A file structure also defines the organization of data on the storage devices" (Paragraph 52). The examiner further notes that Eshel teaches "the second data volume is a second primary volume" as "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "the second data volume is stored on one or more disk drives" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original

Application/Control Number: 10/610,961 Page 5

Art Unit: 2168

(source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "the first and the second data volumes are unrelated data volumes" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that a "tape" is an external storage device that is initially unrelated to the backup data it stores. Moreover, the examiner further wishes to state that the second file system of Eshel is also initially unrelated to the first file system. The examiner further notes that Eshel teaches "refreshing the second data volume to the data contents of the first data volume that existed at time T" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "wherein refreshing the second data volume comprises overwriting data of the second data volume with data of the first data volume that existed at time T" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "modifying

Art Unit: 2168

data of the first data volume while the second data volume is being refreshed to the data contents of the first data volume that existed at time T" as Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127). The examiner further notes that Eshel teaches "modifying data of the first data volume after the second data volume has been refreshed" as "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system). These embodiments then periodically bring the standby or mirror file system up-to-date by generating new snapshots of the original file system and determining the changes between these new, more recently captured or generated snapshots and the state that was captured by a previous snapshot of the original file system that had been transferred to the mirror file system. The original file system generates a set of changes that are then communicated and applied to the standby file system in order to bring the standby file system up to the state of the new snapshots captured on the original file system. The original file system snapshot and the set of changes that are generated by these file systems contain tags to ensure completeness in the mirror file system by identifying the order of creation or the order in which these set of changes where applied. In this description, the term "restore" indicates a file system has been brought to the state of another file system by processing a dataset that represents an entire snapshot from that other file system. The term "apply" indicates that a file system has been updated to a more recent state of another file system by processing a set of changes that was generated between two snapshots on the other file system" (Paragraph 130).

Regarding claim 9, Eshel further teaches a method comprising:

A) wherein the second data volume is a real or virtual PIT copy of another data volume when the second data volume is refreshed to the data contents of the first data volume (Paragraph 127).

Art Unit: 2168

The examiner further notes that **Eshel** teaches "wherein the second data volume is a real or virtual PIT copy of another data volume when the second data volume is refreshed to the data contents of the first data volume" as Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127).

Regarding claim 15, **Eshel** teaches a computer readable medium comprising:

- A) writing data to a first and second data volume (Paragraphs 127, and 129-131);
- B) wherein the first data volume is a first primary volume (Paragraph 130);
- C) the first data volume is stored on one or more disk drives (Paragraph 52);
- D) the second data volume is a second primary volume (Paragraph 130):
- E) the second data volume is stored on one or more disk drives (Paragraphs 127 & 130);
- F) the first and second data volumes are unrelated data volumes (Paragraphs 127 & 130):
- G) refreshing a second data volume to the data contents of the first data volume that existed at time T (Paragraphs 127, 130);
- H) wherein refreshing the second data volume comprises overwriting data of the second data volume with data of the first data volume that existed at time T (Paragraphs 127, 130);
- wherein the first data volume is unrelated to the second data volume prior to refreshing the second data volume to the data contents of the fists data volume (Paragraphs 127, 130);
- J) modifying data of the first data volume while the second data volume is being refreshed to the data contents of the first data volume that existed at time T (Paragraph 127); and
- K) modifying data of the first data volume after the second data volume has been refreshed (Paragraph 130).

The examiner notes that **Eshel** teaches "writing data to a first and second data volume" as "Another common use of snapshots is to back up a file system to tape

Art Unit: 2168

while allowing continued read/write access to the file system during the backup process" (Paragraph 127), "Alternative embodiments maintain the primary and backup file systems within a single processor, thereby obviating the requirement for a network 106" (Paragraph 129), and "Maintenance of the standby file system is facilitated in the exemplary embodiments by maintaining snapshot tags that uniquely identify both the different snapshots that recorded the state of each of the file systems at different times and that identify the set of changes that are generated between two snapshots. The snapshot tags are used to coordinate proper data synchronization between the mirror file system and the active file system when switching the mirror file system from a read only file system to the active read/write file system by ensuring that the latest snapshot is applied after a failure disables the original file system. Once the initial mirror file system becomes the active file system that is used by client processors (i.e., the "new original" file system), snapshots are captured of the new original file system and snapshot tags are used to restore the previous original file system, which is now the mirror, to maintain the original file system as the new standby, or mirror, file system" (Paragraph 131). The examiner further notes that Eshel teaches "wherein the first data volume is a first primary volume" as "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "the first data volume is stored on one or more disk drives" as "A file system (e.q. file system 102 of FIG. 1) in the context of this specification includes a computer program that allows other application programs to store and retrieve data on storage devices such as disk drives, non-volatile memory or other data storage devices. A file in the exemplary embodiments is a named data object of arbitrary size. A file system typically allows application programs to create files and to give names to those files, to store or write data into those files, to read data from those

Art Unit: 2168

files, to delete and to perform other operations on those files. A file structure also defines the organization of data on the storage devices" (Paragraph 52). The examiner further notes that Eshel teaches "the second data volume is a second primary volume" as "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "the second data volume is stored on one or more disk drives" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "the first and the second data volumes are unrelated data volumes" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that a "tape" is an external storage device that is initially unrelated to the backup data it stores. Moreover, the examiner further wishes to state that the second file system of Eshel is also initially unrelated to the first file system. The examiner further notes that Eshel teaches "the first and second data volumes are contemporaneous primary data volumes" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first

Application/Control Number: 10/610,961 Page 10

Art Unit: 2168

generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner notes that Eshel teaches "refreshing a second data volume to the data contents of the first data volume that existed at time T" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "wherein refreshing the second data volume comprises overwriting data of the second data volume with data of the first data volume that existed at time T" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "wherein the first data volume is unrelated to the second data volume prior to refreshing the second data volume to the data contents of the fists data volume" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that a "tape" is an external storage device that is initially unrelated to the backup data it stores. Moreover, the examiner further wishes to state that the second file system of Eshel is also initially

Art Unit: 2168

unrelated to the first file system. The examiner further notes that Eshel teaches "modifying data of the first data volume while the second data volume is being refreshed to the data contents of the first data volume that existed at time T" as Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127). The examiner further notes that Eshel teaches "modifying data of the first data volume after the second data volume has been refreshed" as "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system). These embodiments then periodically bring the standby or mirror file system up-to-date by generating new snapshots of the original file system and determining the changes between these new, more recently captured or generated snapshots and the state that was captured by a previous snapshot of the original file system that had been transferred to the mirror file system. The original file system generates a set of changes that are then communicated and applied to the standby file system in order to bring the standby file system up to the state of the new snapshots captured on the original file system. The original file system snapshot and the set of changes that are generated by these file systems contain tags to ensure completeness in the mirror file system by identifying the order of creation or the order in which these set of changes where applied. In this description, the term "restore" indicates a file system has been brought to the state of another file system by processing a dataset that represents an entire snapshot from that other file system. The term "apply" indicates that a file system has been updated to a more recent state of another file system by processing a set of changes that was generated between two snapshots on the other file system" (Paragraph 130).

Regarding claim 23, **Eshel** further teaches a computer readable medium comprising:

Art Unit: 2168

A) wherein the second data volume is a real or virtual PIT copy of another data volume when the second data volume is refreshed to the data contents of the first data volume (Paragraph 127).

The examiner further notes that Eshel teaches "wherein the second data volume is a real or virtual PIT copy of another data volume when the second data volume is refreshed to the data contents of the first data volume" as Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127).

Regarding claim 33, Eshel teaches a method comprising:

- A) writing data to first and a second data volumes (Paragraphs 127, and 129-131);
- B) wherein the first data volume is a first primary data volume (Paragraph 130);
- C) the first data volume is stored on one or more disk drives (Paragraph 52):
- D) the second data volume is a second primary data volume (Paragraph 130);
- E) the second data volume is stored on one or more disk drives (Paragraphs 127 & 130);
- F) wherein the first data volume is unrelated to the second data volume in that the second data volume is not a point-in-time copy or a modified point-in-time copy of the first data volume (Paragraphs 127, 130); and
- G) the first data volume is unrelated to the second data volume after the writing (Paragraphs 127, 130);
- H) refreshing the second data volume to the data contents of the first data volume that existed at time T (Paragraphs 127, 130);
- wherein refreshing the second data volume comprises overwriting all data of the second data volume with data of the first data volume that existed at time T (Paragraphs 127, 130);
- J) modifying data of the first data volume while the second data volume is being refreshed to the data contents of the first data volume that existed at time T (Paragraph 127); and

Art Unit: 2168

K) modifying data of the first data volume after the second data volume has been refreshed (Paragraph 130).

The examiner notes that Eshel teaches "writing data to first and a second data volumes" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), "Alternative embodiments maintain the primary and backup file systems within a single processor, thereby obviating the requirement for a network 106" (Paragraph 129), and "Maintenance of the standby file system is facilitated in the exemplary embodiments by maintaining snapshot tags that uniquely identify both the different snapshots that recorded the state of each of the file systems at different times and that identify the set of changes that are generated between two snapshots. The snapshot tags are used to coordinate proper data synchronization between the mirror file system and the active file system when switching the mirror file system from a read only file system to the active read/write file system by ensuring that the latest snapshot is applied after a failure disables the original file system. Once the initial mirror file system becomes the active file system that is used by client processors (i.e., the "new original" file system), snapshots are captured of the new original file system and snapshot tags are used to restore the previous original file system, which is now the mirror, to maintain the original file system as the new standby, or mirror, file system" (Paragraph 131). The examiner further notes that Eshel teaches "wherein the first data volume is a first primary volume" as "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "the first data volume is stored on one or more disk drives" as "A file system (e.g. file system 102 of FIG. 1) in the context of this specification includes a computer program that allows other application programs to store and retrieve data on storage devices such as disk drives, non-volatile memory or other data storage devices.

Art Unit: 2168

A file in the exemplary embodiments is a named data object of arbitrary size. A file system typically allows application programs to create files and to give names to those files, to store or write data into those files, to read data from those files, to delete and to perform other operations on those files. A file structure also defines the organization of data on the storage devices" (Paragraph 52). The examiner further notes that Eshel teaches "the second data volume is a second primary volume" as "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "the second data volume is stored on one or more disk drives" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "the first and second data volumes are contemporaneous primary data volumes" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "wherein the first data volume is unrelated to the second data volume in that the second data volume is not a point-in-time copy or a modified point-in-time copy of the first data volume" as "Another common use of snapshots is to back up a file

Application/Control Number: 10/610,961 Page 15

Art Unit: 2168

system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that a "tape" is an external storage device that is initially unrelated to the backup data it stores. Moreover, the examiner further wishes to state that the second file system of Eshel is also initially unrelated to the first file system. The examiner further notes that Eshel teaches "the first data volume is unrelated to the second data volume after the writing" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that a "tape" is an external storage device that is initially unrelated to the backup data it stores. Moreover, the examiner further wishes to state that the second file system of Eshel is also initially unrelated to the first file system. Furthermore, the examiner wishes to state that the second file system is clearly operable to receive commands before being mirrored to the contents of the first file system. The examiner further notes that Eshel teaches "refreshing the second data volume to the data contents of the first data volume that existed at time T" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "wherein refreshing the second data volume

Application/Control Number: 10/610,961 Page 16

Art Unit: 2168

comprises overwriting all data of the second data volume with data of the first data volume that existed at time T" as "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further notes that Eshel teaches "modifying data of the first data volume while the second data volume is being refreshed to the data contents of the first data volume that existed at time T" as Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127). The examiner further notes that Eshel teaches "modifying data of the first data volume after the second data volume has been refreshed" as "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system). These embodiments then periodically bring the standby or mirror file system up-to-date by generating new snapshots of the original file system and determining the changes between these new, more recently captured or generated snapshots and the state that was captured by a previous snapshot of the original file system that had been transferred to the mirror file system. The original file system generates a set of changes that are then communicated and applied to the standby file system in order to bring the standby file system up to the state of the new snapshots captured on the original file system. The original file system snapshot and the set of changes that are generated by these file systems contain tags to ensure completeness in the mirror file system by identifying the order of creation or the order in which these set of changes where applied. In this description, the term "restore" indicates a file system has been brought to the state of another file system by processing a dataset that represents an entire snapshot from that other file system. The term "apply"

Page 17

Application/Control Number: 10/610,961

Art Unit: 2168

indicates that a file system has been updated to a more recent state of another file system by processing a set of changes that was generated between two snapshots on the other file system" (Paragraph 130).

Claim Rejections - 35 USC § 103

- 7. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 8. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).
- Claims 4-5, 8, 10-12, 18-19, 22, and 24-25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Eshel et al. (U.S. PGPUB 2003/0158862) as applied to claims 1, 9, 15, 23, and 33 above, and in view of Veritas (Article entitled "Veritas Flashsnap Point-in-Time Copy Solutions", dated 06/24/2002).
- Regarding claim 4, Eshel does not explicitly teach a method comprising:
 creating one or more PIT copies of the first data volume prior to refreshing the second data volume to the data contents of the first data volume.

Veritas, however, teaches "creating one or more PIT copies of the first data volume prior to refreshing the second data volume to the data contents of the first data volume" as "1. Create snapshot mirrors: Use vxassist snapstart to create snapshot mirrors of one or more volumes" (Page 10, Section: Implementing Point-in Time Copy Solutions on a Primary Host).

Art Unit: 2168

The examiner notes that it is clear that **Veritas** creates multiple mirrors of primary volumes before refreshing the primary volume onto a secondary volume.

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

Regarding claim 5, **Eshel** does not explicitly teach a method comprising:

A) wherein one of the PIT copies of the first data volume is in a virtual state when the second data volume is refreshed to the data contents of the first data volume.

Veritas, however, teaches "wherein one of the PIT copies of the first data volume is in a virtual state when the second data volume is refreshed to the data contents of the first data volume" as "The presence of the FastResync map means that only those updates that the mirror has missed need to be reapplied to resynchronize it with the volume. A full, and thereby much slower, resynchronization of the mirror form the volume is unnecessary" (Page 7, Section: FastResync of Volume Snapshots).

The examiner notes that it is clear that **Veritas's** snapshot mirrors are virtual in that they contain data stored in the primary volume (see only updated data is migrated to the mirror for resynchronization). The examiner further notes that it is common knowledge that Flashsnap creates virtual point-in-time copies of volumes.

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

Regarding claim 8, Eshel does not explicitly teach a method comprising:

Art Unit: 2168

A) wherein the first data volume is a real or virtual PIT copy of another data volume when the second data volume is refreshed to the data contents of the first data volume.

Veritas, however, teaches "wherein the first data volume is a real or virtual PIT copy of another data volume when the second data volume is refreshed to the data contents of the first data volume" as "1. Create snapshot mirrors: Use vxassist snapstart to create snapshot mirrors of one or more volumes...Use vxassist snapshot to create snapshot volumes from the snapshot mirrors" (Page 10, Section: Implementing Point-in Time Copy Solutions on a Primary Host).

The examiner notes that it is clear that **Veritas** has the snapshot volume refreshed to the state of the snapshot mirror, wherein the snapshot mirror is a point-in-time copy of the volume.

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

Regarding claim 10, Eshel does not explicitly teach a method comprising:

- A) generating first and second maps in memory;
- B) wherein each of the first and second maps comprises a plurality of entries;
- C) wherein each entry of the first map corresponds to a respective memory block that stores data of the first data volume; and
- D) wherein each entry of the second map corresponds to a respective memory block that stores data of the second data volume.

Veritas, however, teaches "generating first and second maps in memory" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section: FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResync of Volume Snapshots), "wherein each of the first and second maps comprises a plurality of entries" as "VxVM uses a FastResync map to keep track of

Art Unit: 2168

which blocks are updated in the volume and in the snapshot" (Page 7, Section:
FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResync of Volume Snapshots), "wherein each entry of the first map corresponds to a respective memory block that stores data of the first data volume" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section:
FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResync of Volume Snapshots), and "wherein each entry of the second map corresponds to a respective memory block that stores data of the second data volume" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section: FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResync of Volume Snapshots).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

Regarding claim 11, **Eshel** does not explicitly teach a method comprising:

A) setting a first bit in each entry of the first map, wherein each first bit of the first map

- is set to indicate its respective memory block stores valid data;

 B) clearing a first bit in each entry of the second map, wherein each first bit of the
- B) clearing a first bit in each entry of the second map, wherein each first bit of the second map is set to indicate its respective memory block stores invalid data.

Veritas, however, teaches "setting a first bit in each entry of the first map, wherein each first bit of the first map is set to indicate its respective memory block stores valid data" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section: FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResync of Volume Snapshots), and "clearing a first

Art Unit: 2168

bit in each entry of the second map, wherein each first bit of the second map is set to indicate its respective memory block stores invalid data" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section: FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResync of Volume Snapshots).

The examiner notes that it is clear that **Veritas's** maps have a plurality of entries and track changes to both the primary volume and the snapshot volume (see "keep track of which blocks are updated in the volume and in the snapshot").

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

Regarding claim 12, **Eshel** does not explicitly teach a method comprising:

A) setting or clearing a second bit in each entry of the second map to indicate that its respective memory block stores data needed for a PIT copy of the second data volume.

Veritas, however, teaches "setting or clearing a second bit in each entry of the second map to indicate that its respective memory block stores data needed for a PIT copy of the second data volume" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section: FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResync of Volume Snapshots).

The examiner notes that it is clear that **Veritas's** maps have a plurality of entries and track changes to both the primary volume and the snapshot volume (see "keep track of which blocks are updated in the volume and in the snapshot").

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in

Art Unit: 2168

resynchronization by applying changes to only the updates a mirror has missed, as noted by **Veritas** (Page 7, Section: FastResync of Volume Snapshots).

Regarding claim 18, **Eshel** does not explicitly teach a computer readable medium comprising:

A) wherein the method further comprises creating one or more PIT copies of the first data volume prior to refreshing the second data volume to the data contents of the first data volume.

Veritas, however, teaches "wherein the method further comprises creating one or more PIT copies of the first data volume prior to refreshing the second data volume to the data contents of the first data volume" as "1. Create snapshot mirrors: Use vxassist snapstart to create snapshot mirrors of one or more volumes" (Page 10, Section: Implementing Point-in Time Copy Solutions on a Primary Host).

The examiner notes that it is clear that **Veritas** creates multiple mirrors of primary volumes before refreshing the primary volume onto a secondary volume.

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

Regarding claim 19, **Eshel** does not explicitly teach a computer readable medium comprising:

A) wherein one of the PIT copies of the first data volume is in a virtual state when the second data volume is refreshed to the data contents of the first data volume.

Veritas, however, teaches "wherein one of the PIT copies of the first data volume is in a virtual state when the second data volume is refreshed to the data contents of the first data volume" as "The presence of the FastResync map means that only those updates that the mirror has missed need to be reapplied to resynchronize it with the volume. A full, and thereby much slower, resynchronization of

Art Unit: 2168

the mirror form the volume is unnecessary" (Page 7, Section: FastResync of Volume Snapshots).

The examiner notes that it is clear that **Veritas's** snapshot mirrors are virtual in that they contain data stored in the primary volume (see only updated data is migrated to the mirror for resynchronization). The examiner further notes that it is common knowledge that Flashsnap creates virtual point-in-time copies of volumes.

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

Regarding claim 22, **Eshel** does not explicitly teach a computer readable medium comprising:

A) wherein the first data volume is a real or virtual PIT copy of another data volume when the second data volume is refreshed to the data contents of the first data volume.

Veritas, however, teaches "wherein the first data volume is a real or virtual PIT copy of another data volume when the second data volume is refreshed to the data contents of the first data volume" as "1. Create snapshot mirrors: Use vxassist snapstart to create snapshot mirrors of one or more volumes...Use vxassist snapshot to create snapshot volumes from the snapshot mirrors" (Page 10, Section: Implementing Point-in Time Copy Solutions on a Primary Host).

The examiner notes that it is clear that **Veritas** has the snapshot volume refreshed to the state of the snapshot mirror, wherein the snapshot mirror is a point-in-time copy of the volume.

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

Application/Control Number: 10/610,961 Page 24

Art Unit: 2168

Regarding claim 24, **Eshel** does not explicitly teach a computer readable medium comprising:

- A) wherein refreshing the second data volume further comprises generating first and second maps in memory;
- B) wherein each of the first and second maps comprises a plurality of entries;
- C) wherein each entry of the first map corresponds to a respective memory block that stores data of the first data volume; and
- D) wherein each entry of the second map corresponds to a respective memory block that stores data of the second data volume.

Veritas, however, teaches "wherein refreshing the second data volume further comprises generating first and second maps in memory" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section: FastResvnc of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResync of Volume Snapshots), "wherein each of the first and second maps comprises a plurality of entries" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section: FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResync of Volume Snapshots), "wherein each entry of the first map corresponds to a respective memory block that stores data of the first data volume" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section: FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResvnc of Volume Snapshots), and "wherein each entry of the second map corresponds to a respective memory block that stores data of the second data volume" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section: FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResvnc of Volume Snapshots).

Art Unit: 2168

The examiner notes that it is clear that **Veritas's** maps have a plurality of entries and track changes to both the primary volume and the snapshot volume (see "keep track of which blocks are updated in the volume and in the snapshot").

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

Regarding claim 25, **Eshel** does not explicitly teach a computer readable medium comprising:

- A) clearing a first bit in each entry of- the first map, wherein each first bit of the first map is set to indicate its respective memory block stores valid data;
- B) setting a first bit in each entry of the second map, wherein each first bit of the second map is set to indicate its respective memory block stores invalid data.

Veritas, however, teaches "clearing a first bit in each entry of- the first map, wherein each first bit of the first map is set to indicate its respective memory block stores valid data" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section: FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResync of Volume Snapshots), and "setting a first bit in each entry of the second map, wherein each first bit of the second map is set to indicate its respective memory block stores invalid data" as "VxVM uses a FastResync map to keep track of which blocks are updated in the volume and in the snapshot" (Page 7, Section: FastResync of Volume Snapshots) and "Non=-Persistent FastResync stores its change maps in memory" (Page 7, Section: FastResync of Volume Snapshots).

The examiner notes that it is clear that **Veritas's** maps have a plurality of entries and track changes to both the primary volume and the snapshot volume (see "keep track of which blocks are updated in the volume and in the snapshot").

Art Unit: 2168

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

- 11. Claims 6-7, 13, 20-21, and 26 are rejected under 35 U.S.C. 103(a) as being unpatentable over Eshel et al. (U.S. PGPUB 2003/0158862) as applied to claims 1, 9, 15, 23, and 33 above, and in view of Veritas (Article entitled "Veritas Flashsnap Point-in-Time Copy Solutions", dated 06/24/2002) as applied to claims 4-5, 8, 10-12, 18-19, 22, and 24-25, and further in view of DeKoning (U.S. Patent 6,691,245).
- 12. Regarding claim 6, **Eshel** and **Veritas** do not explicitly teach a method comprising:

A) further comprising an act of preserving the second data volume, wherein said preserving comprises creating one or more PIT copies of the second data volume prior to refreshing the second data volume to the data contents of the first data volume.

DeKoning, however, teaches "further comprising an act of preserving the second data volume, wherein said preserving comprises creating one or more PIT copies of the second data volume prior to refreshing the second data volume to the data contents of the first data volume" as "An incremental snapshot of the mirrored data is generated on the secondary storage device at the predetermined checkpoint indicated by the checkpoint message...Thus, the incremental snapshot maintains the storage state of the secondary storage device at the predetermined checkpoint" (Column 2, lines 59-67-Column 3, lines 10).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **DeKoning's** would have allowed **Eshel's** and **Veritas's** to improve efficiency in dealing with synchronization through volume preservation, as noted by **DeKoning** (Column 2, lines 1-5).

Regarding claim 7. Eshel does not explicitly teach a method comprising:

Art Unit: 2168

A) wherein one of the PIT copies of the second data volume is in the virtual state when the second data volume is refreshed to the data contents of the first data volume.

Veritas, however, teaches "wherein one of the PIT copies of the second data volume is in the virtual state when the second data volume is refreshed to the data contents of the first data volume" as "1. Create snapshot mirrors: Use vxassist snapstart to create snapshot mirrors of one ore more volumes...Use vxassist snapshot to create snapshot volumes from the snapshot mirrors" (Page 10, Section: Implementing Point-in Time Copy Solutions on a Primary Host).

The examiner notes that it is clear that **Veritas** has the snapshot volume refreshed to the state of the snapshot mirror, wherein the snapshot mirror is a point-in-time copy of the volume.

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

Regarding claim 13, **Eshel** and **Veritas** do not explicitly teach a method comprising:

A) further comprising an act of preserving the second data volume, wherein said preserving comprises creating a PIT copy of the second data volume before or while refreshing the second data volume to the data contents of the first data volume.

DeKoning, however, teaches "further comprising an act of preserving the second data volume, wherein said preserving comprises creating a PIT copy of the second data volume before or while refreshing the second data volume to the data contents of the first data volume" as "An incremental snapshot of the mirrored data is generated on the secondary storage device at the predetermined checkpoint indicated by the checkpoint message...Thus, the incremental snapshot maintains the storage state of the secondary storage device at the predetermined checkpoint" (Column 2, lines 59-67-Column 3, lines 10).

Art Unit: 2168

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **DeKoning's** would have allowed **Eshel's** and **Veritas's** to improve efficiency in dealing with synchronization through volume preservation, as noted by **DeKoning** (Column 2, lines 1-5).

Regarding claim 20, **Eshel** and **Veritas** do not explicitly teach a computer readable medium comprising:

A) further comprising an act of preserving the second data volume, wherein said preserving further comprises creating one or more PIT copies of the second data volume prior to refreshing the second data volume to the data of the first data volume.

DeKoning, however, teaches "wherein said preserving further comprises creating one or more PIT copies of the second data volume prior to refreshing the second data volume to the data of the first data volume" as "An incremental snapshot of the mirrored data is generated on the secondary storage device at the predetermined checkpoint indicated by the checkpoint message...Thus, the incremental snapshot maintains the storage state of the secondary storage device at the predetermined checkpoint" (Column 2, lines 59-67-Column 3, lines 10).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **DeKoning's** would have allowed **Eshel's** and **Veritas's** to improve efficiency in dealing with synchronization through volume preservation, as noted by **DeKoning** (Column 2, lines 1-5).

Regarding claim 21, **Eshel** does not explicitly teach a computer readable medium comprising:

A) wherein one of the PIT copies of the second data volume is in the virtual state when the second data volume is refreshed to the data contents of the first data volume.

Veritas, however, teaches "wherein one of the PIT copies of the second data volume is in the virtual state when the second data volume is refreshed to the

Art Unit: 2168

data contents of the first data volume" as "1. Create snapshot mirrors: Use vxassist snapstart to create snapshot mirrors of one ore more volumes...Use vxassist snapshot to create snapshot volumes from the snapshot mirrors" (Page 10, Section: Implementing Point-in Time Copy Solutions on a Primary Host).

The examiner notes that it is clear that **Veritas** has the snapshot volume refreshed to the state of the snapshot mirror, wherein the snapshot mirror is a point-in-time copy of the volume.

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Veritas's would have allowed Eshel's to provide a method to improve efficiency in resynchronization by applying changes to only the updates a mirror has missed, as noted by Veritas (Page 7, Section: FastResync of Volume Snapshots).

Regarding claim 26, Eshel and Veritas do not explicitly teach a computer readable medium comprising:

A) further comprising an act of preserving the second data volume, wherein said preserving further comprises creating a PIT copy of the second data volume before or while refreshing the second data volume to the data of the first data volume.

DeKoning, however, teaches "further comprising an act of preserving the second data volume, wherein said preserving further comprises creating a PIT copy of the second data volume before or while refreshing the second data volume to the data of the first data volume" as "An incremental snapshot of the mirrored data is generated on the secondary storage device at the predetermined checkpoint indicated by the checkpoint message...Thus, the incremental snapshot maintains the storage state of the secondary storage device at the predetermined checkpoint" (Column 2, lines 59-67-Column 3, lines 10).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **DeKoning's** would have allowed **Eshel's** and **Veritas's** to improve efficiency in dealing

Page 30

Application/Control Number: 10/610.961

Art Unit: 2168

with synchronization through volume preservation, as noted by **DeKoning** (Column 2, lines 1-5).

- 13. Claims 30-31 are rejected under 35 U.S.C. 103(a) as being unpatentable over Eshel et al. (U.S. PGPUB 2003/0158862) as applied to claims 1, 9, 15, 23, and 33 above, and in view of Veritas (Article entitled "Veritas Flashsnap Point-in-Time Copy Solutions", dated 06/24/2002) as applied to claims 4-5, 8, 10-2, 18-19, 22, and 24-25, and further in view of Rand (U.S. PGPUB 2005/0108302).
- 14. Regarding claim 30, Eshel and Veritas do not explicitly teach a method comprising:
- A) further comprising an act of preserving the second data volume, wherein said preserving further comprises creating a PIT copy of the second data volume before or while refreshing the second data volume to the data of the first data volume; and B) wherein, in response to the modifying the second data volume, the second data volume becomes a modified point-in-time copy of the first data volume that existed at time T.

Rand, however, teaches "modifying data of the second data volume while the second data volume is being refreshed to the data contents of the first data volume that existed at time T" as "FIG. 6 depicts in more detail an exemplary process 600 of satisfying read and write requests to primary data volume 112 while the primary data volume 112 is being restored. In step 602, a determination is made as to whether the data storage drive having the primary data volume is active. If the data storage device is not active, then in step 604, the read/write requests to the primary data volume are satisfied using the generated image of the primary data volume. If the data storage device is active, then in step 606, a determination is made as to whether the request is a write request. If the request is a write request, then in step 608 the write request is satisfied by the primary data volume" (Paragraph 35) and "wherein, in response to the modifying the second data volume, the second data volume becomes a modified point-in-time copy of the first data volume that existed at time T" as "FIG. 6 depicts in more detail an exemplary process 600 of satisfying read and write requests to primary data volume 112 while the primary data volume 112 is being

Art Unit: 2168

restored. In step 602, a determination is made as to whether the data storage drive having the primary data volume is active. If the data storage device is not active, then in step 604, the read/write requests to the primary data volume are satisfied using the generated image of the primary data volume. If the data storage device is active, then in step 606, a determination is made as to whether the request is a write request. If the request is a write request, then in step 608 the write request is satisfied by the primary data volume." (Paragraph 35).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Rand's would have allowed Eshel's and Veritas's to allow for read/write requests during restoration of volumes, as noted by Rand (Paragraph 6).

Regarding claim 30, **Eshel** and **Veritas** do not explicitly teach a computer readable medium comprising:

A) further comprising an act of preserving the second data volume, wherein said preserving further comprises creating a PIT copy of the second data volume before or while refreshing the second data volume to the data of the first data volume; and
 B) wherein, in response to the modifying the second data volume, the second data volume becomes a modified point-in-time copy of the first data volume that existed at time T.

Rand, however, teaches "modifying data of the second data volume while the second data volume is being refreshed to the data contents of the first data volume that existed at time T" as "FIG. 6 depicts in more detail an exemplary process 600 of satisfying read and write requests to primary data volume 112 while the primary data volume 112 is being restored. In step 602, a determination is made as to whether the data storage drive having the primary data volume is active. If the data storage device is not active, then in step 604, the read/write requests to the primary data volume are satisfied using the generated image of the primary data volume. If the data storage device is active, then in step 606, a determination is made as to whether the request is a write request. If the request is a write request, then in step 608 the write request is

Art Unit: 2168

satisfied by the primary data volume" (Paragraph 35) and "wherein, in response to the modifying the second data volume, the second data volume becomes a modified point-in-time copy of the first data volume that existed at time T" as "FIG. 6 depicts in more detail an exemplary process 600 of satisfying read and write requests to primary data volume 112 while the primary data volume 112 is being restored. In step 602, a determination is made as to whether the data storage drive having the primary data volume is active. If the data storage device is not active, then in step 604, the read/write requests to the primary data volume are satisfied using the generated image of the primary data volume. If the data storage device is active, then in step 606, a determination is made as to whether the request is a write request. If the request is a write request, then in step 608 the write request is satisfied by the primary data volume" (Paragraph 35).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Rand's would have allowed Eshel's and Veritas's to allow for read/write requests during restoration of volumes, as noted by Rand (Paragraph 6).

Response to Arguments

 Applicant's arguments filed 03/31/2009 have been fully considered but they are not persuasive.

Applicants argue on page 10 that "nothing in Eshel discloses (or renders obvious) "the first data volume is a first primary volume, the first data volume is stored on one or more disk drives". However, the examiner wishes to refer to Paragraphs 55 and 130 of Eshel which state "A file system (e.g. file system 102 of FIG. 1) in the context of this specification includes a computer program that allows other application programs to store and retrieve data on storage devices such as disk drives, non-volatile memory or other data storage devices. A file in the exemplary embodiments is a named data object of arbitrary size. A file system typically allows application programs to create files and to give names to those files, to

Art Unit: 2168

store or write data into those files, to read data from those files, to delete and to perform other operations on those files. A file structure also defines the organization of data on the storage devices" (Paragraph 52) and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further wishes to state that it is clear that the first file system of Eshel is stored on a computer readable medium (i.e., disk drives). A disk drive is simply construed as a storage medium, and it is clear that any file system is stored on such a medium.

Applicants argue on page 10 that "nothing in Eshel discloses (or renders obvious)...the second data volume is a second primary volume, the second data volume is stored on one or more disk drives". However, the examiner wishes to refer to Paragraphs 127 and 130 of Eshel which state "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source) file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further wishes to state that a tape is a second primary volume, and because a disk drive is construed as simply a storage medium, tapes which store file systems teach the claimed second disk drive.

Applicants argue on page 10 that "Eshel's tape clearly does not disclose the claimed "disk drives"". However, the examiner wishes to refer to Paragraphs 127 and 130 of Eshel which state "Another common use of snapshots is to back up a file system to tape while allowing continued read/write access to the file system during the backup process" (Paragraph 127), and "These embodiments of the present invention create a hot standby file system by first generating a snapshot of the original (source)

Art Unit: 2168

file system and transferring the entire data set for that snapshot to a second file system in order to create an identical copy of the original file system (i.e., a mirror file system)" (Paragraph 130). The examiner further wishes to state that a tape is an external storage device and that disk drives are defined to one ordinary skill in the art as storage devices, i.e., exactly what tapes are.

Conclusion

- 16. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.
- U.S. Patent 6,665,815 issued to **Goldstein et al.** on 16 December 2003. The subject matter disclosed therein is pertinent to that of claims 1, 4-13, 15, 18-26, 30-31, and 33 (e.g., methods to spur synchronization via snapshots amongst varied data volumes).
- U.S. Patent 6,611,901 issued to **Micka et al.** on 26 August 2003. The subject matter disclosed therein is pertinent to that of claims 1, 4-13,15, 18-26, 30-31, and 33 (e.g., methods to spur synchronization via snapshots amongst varied data volumes).
- U.S. Patent 6,799,258 issued to **Linde et al.** on 28 September 2004. The subject matter disclosed therein is pertinent to that of claims 1, 4-13, 15, 18-26, 30-31, and 33 (e.g., methods to spur synchronization via snapshots amongst varied data volumes).
- U.S. Patent 5,875,479 issued to **Blount et al.** on 23 February 1999. The subject matter disclosed therein is pertinent to that of claims 1, 4-13, 15, 18-26, 30-31, and 33 (e.g., methods to spur synchronization via snapshots amongst varied data volumes).
- U.S. Patent 6,338,114 issued to **Paulsen et al.** on 08 January 2002. The subject matter disclosed therein is pertinent to that of claims 1, 4-13, 15, 18-26, 30-31, and 33 (e.g., methods to spur synchronization via snapshots amongst varied data volumes).

Article entitled "VERITAS FlashSnap: Using VERITAS FlashSnap to Protect Application Performance and Availability, by: VERITAS, dated 05/14/2002. The subject matter disclosed therein is pertinent to that of claims 1, 4-13, 15, 18-26, 30-31, and 33 (e.g., methods to spur synchronization via snapshots amongst varied data volumes).

Art Unit: 2168

Article entitled "VERITAS FlashSnap: Guidelines for Using VERITAS FlashSnap, by: VERITAS, dated 05/01/2002. The subject matter disclosed therein is pertinent to that of claims 1, 4-13, 15, 18-26, 30-31, and 33 (e.g., methods to spur synchronization via snapshots amongst varied data volumes).

- U.S. Patent 7,085,901 issued to Homma et al. on 01 August 2006. The subject matter disclosed therein is pertinent to that of claims 1, 4-13, 15, 18-26, 30-31, and 33 (e.g., methods to spur synchronization via snapshots amongst varied data volumes).
- U.S. Patent 6,643,671 issued to **Milillo et al.** on 04 November 2003. The subject matter disclosed therein is pertinent to that of claims 1, 4-13, 15, 18-26, 30-31, and 33 (e.g., methods to spur synchronization via snapshots amongst varied data volumes).

Article entitled "Shadow Copied of Shared Folders: Frequently Asked Questions", by: **Microsoft**, dated 03/03/2003. The subject matter disclosed therein is pertinent to that of claims 1, 4-13, 15, 18-26, 30-31, and 33 (e.g., methods to spur synchronization via snapshots amongst varied data volumes).

Contact Information

 Any inquiry concerning this communication or earlier communications from the examiner should be directed to Mahesh Dwivedi whose telephone number is (571) 272-2731. The examiner can normally be reached on Monday to Friday 8:20 am – 4:40 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tim Vo can be reached (571) 272-3642. The fax number for the organization where this application or proceeding is assigned is (571) 273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Application/Control Number: 10/610,961 Page 36

Art Unit: 2168

Patent Examiner Art Unit 2168

May 06, 2009 /Mahesh H Dwivedi/ Examiner, Art Unit 2168

/Tim T. Vo/ Supervisory Patent Examiner, Art Unit 2168