Relaxation of vibrational levels $H_2O(002, 101, 200)$:

effect of new rate constants on the H_2O vibrational level

populations and ro-vibrational spectra

in the mesosphere and lower thermosphere

R.O. Manuilova¹, A.G. Feofilov², A.A. Kutepov^{3,4}, and V. A. Yankovsky¹

- 1 Saint-Petersburg State University, Faculty of Physics, Russia
- 2 Ecole Polytechnique, Dynamic Meteorology Laboratory, Paris, France
 - 3 The Catholic University of America, Washington DC, USA
 - 4 NASA Goddard Space Flight Center, Greenbelt, MD, USA

Model of vibrational kinetics of the H₂O molecule

Breakdown of the Local Thermodynamic Equilibrium (non-LTE) for H_2O vibrational levels.

Simulation for mid-latitude conditions (June 23, 2002, lon = 39.6°N, lat = 256.2°): a) vibrational temperatures of H_2O levels; b) contributions of different transitions to 6.3 μ m SABER channel. The fundamental band (010–000 transition) dominates the signal at all altitudes with admixture (up to 20%) of the first hot band transition (020–010) at 60–100 km. The dashed line on Fig. b demonstrates the indirect contributions of the upper levels since they pump the 010 and 020 levels through a series of V–V and V–T exchanges as well as through radiative transitions.

Motivation

- Main processes of vibrational energy exchange in atmospheric H₂O:
 - 1) $H_2O(v_1;v_2;v_3) + O_2(0) \leftrightarrow H_2O(v_1;v_2-1;v_3) + O_2(1)$
 - 2) $H_2O(v_1;v_2;v_3) + M \leftrightarrow H_2O(v_1;v_2-1;v_3) + M$
 - 3) $H_2O(v_1;v_2;v_3) + M \leftrightarrow H_2O(v_1-1;v_2+2;v_3) + M$
 - 4) $H_2O(v_1;v_2;v_3) + M \leftrightarrow H_2O(v_1;v_2+2;v_3-1) + M$
- The rate constants for 3) and 4) are known only for $(001,100 \rightarrow 020)$.
- We have estimated ([Barnes et al., 2004]) the rate constants of processes 3) and 4) for the upper vibrational levels: **4 times larger** than currently used (!)
- What is the effect of new rate constants on the $H_2O(v_1;v_2;v_3)$ and atm. spectra?

Atmospheric models used in the study

Analysis approach

- ALI-ARMS non-LTE research code [Kutepov et al., 1998; Gusev and Kutepov, 2003; Feofilov and Kutepov, 2012]
- Calculating the H₂O(v₁,v₂,v₃) populations at all height using the "standard" and updated rate coefficients
- Estimating limb radiances in the MLT

Sensitivity of vibrational level populations: T_{vib}

Sensitivity of vibrational level populations: ratios

Integrated limb radiances for 6.3, 2.7, 1.9, 1.4 µm bands

Sensitivity of limb radiance at 90 km

Sensitivity of limb radiance at 50 km

Safe and unsafe microwindows

Conclusions and outlook

- The effect of new rate constants on the H_2O vibrational level populations and on the atmospheric spectra in the MLT is significant, the T_{vib} increase for the v_2 =2,3,4 levels reaches 40K at heights > 80km.
- The effect for the 6.3 µm band and, therefore, for the MLT energetics is small, while the 2.7, 1.9, 1.4 µm bands are sensitive to this quenching rate (30–70% change in the limb radiance integrated in a whole band).
- "Safe" and "unsafe" microwindows have been defined for the H₂O retrievals.
- New experimental and theoretical estimations of rate constants for the collisional transitions from the upper vibrational levels of H₂O molecule are necessary to reduce the number of unsafe microwindows.