Announcements

- Weekly Reading Assignment: Chapter 6 (CLRS)
- Homework #3 is due on Thursday, October 6, 2005
- Extra help session next Thursday,
 September 29, 2005

Heapsort

- Heapsort (Chapter 6)
 - Data Structure
 - Maintain the Heap Property
 - Build a Heap
 - Heapsort Algorithm
 - Priority Queue

Heap Data Structure

- Construct in $\Theta(n)$ time
- Extract maximum element in $\Theta(\lg n)$ time
- Leads to $\Theta(n \lg n)$ sorting algorithm:
 - Build heap
 - Repeatedly extract largest remaining element (constructing sorted list from back to front)
- Heaps useful for other purposes too

M. C. Lin

Properties

- Conceptually a complete binary tree
- Stored as an array
- Heap Property: for every node i other than the root,

$$A[\operatorname{Parent}(i)] \geq A[i]$$

Algorithms maintain heap property as data is added/removed

Array Viewed as Binary Tree

Last row filled from left to right

Figure 7.1 A heap viewed as (a) a binary tree and (b) an array. The number within the circle at each node in the tree is the value stored at that node. The number next to a node is the corresponding index in the array.

Basic Operations

- Parent(i)return [i/2]
- Left(i)return 2i
- Right(i)return 2i+1

Height

- Height of a node in a tree: the number of edges on the longest simple downward path from the node to a leaf
- Height of a tree: the height of the root
- Height of the tree for a heap: $\Theta(\lg n)$
 - Basic operations on a heap run in $O(\lg n)$ time

Maintaining Heap Property

Figure 7.2 The action of HEAPIFY(A, 2), where heap-size[A] = 10. (a) The initial configuration of the heap, with A[2] at node i = 2 violating the heap property since it is not larger than both children. The heap property is restored for node 2 in (b) by exchanging A[2] with A[4], which destroys the heap property for node 4. The recursive call HEAPIFY(A, 4) now sets i = 4. After swapping A[4] with A[9], as shown in (c), node 4 is fixed up, and the recursive call HEAPIFY(A, 9) yields no further change to the data structure.

Heapify (A, i)

- 1. $l \leftarrow left(i)$
- 2. $r \leftarrow \text{right}(i)$
- 3. if $l \le heap\text{-}size[A]$ and A[l] > A[i]
- 4. then $largest \leftarrow l$
- 5. else $largest \leftarrow i$
- 6. if $r \leq heap\text{-}size[A]$ and A[r] > A[largest]
- 7. then $largest \leftarrow r$
- 8. if $largest \neq i$
- 9. then exchange $A[i] \leftrightarrow A[largest]$
- 10. Heapify(A, largest)

Running Time for Heapify(A, i)

1.
$$l \leftarrow left(i)$$

2.
$$r \leftarrow \text{right}(i)$$

3. if
$$l \le heap\text{-}size[A]$$
 and $A[l] > A[i]$

- 4. then $largest \leftarrow l$
- 5. else $largest \leftarrow i$

6. if
$$r \le heap\text{-}size[A]$$
 and $A[r] > A[largest]$

- 7. then $largest \leftarrow r$
- 8. if $largest \neq i$
- 9. then exchange $A[i] \leftrightarrow A[largest]$

10. Heapify
$$(A, largest)$$

$$T(i) =$$

$$\Theta(1)$$
 +

T(largest)

Running Time for Heapify(A, n)

- So, $T(n) = T(largest) + \Theta(1)$
- Also, $largest \le 2n/3$ (worst case occurs when the last row of tree is exactly half full)
- $T(n) \le T(2n/3) + \Theta(1) \Longrightarrow T(n) = O(\lg n)$
- Alternately, Heapify takes O(h) where h
 is the height of the node where Heapify
 is applied

Build-Heap(A)

- 1. heap-size $[A] \leftarrow length[A]$
- 2. for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3. do Heapify(A, i)

Running Time

- The time required by Heapify on a node of height h is O(h)
- Express the total cost of Build-Heap as

$$\sum_{h=0 \text{ to lg} n} \left\lceil n \ / \ 2^{h+1} \right\rceil O(h) = O(n \sum_{h=0 \text{ to lg} n} h / 2^h)$$
 And,
$$\sum_{h=0 \text{ to } \infty} h / 2^h = (1/2) \ / \ (1-1/2)^2 = 2$$
 Therefore,
$$O(n \sum_{h=0 \text{ to lg} n} h / 2^h) = O(n)$$

Can build a heap from an unordered array in linear time

Heapsort (A)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2
- 3. do exchange $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] $\leftarrow heap$ -size[A] 1
- 5. Heapify(A, 1)

Algorithm Analysis

- In-place
- Not Stable
- Build-Heap takes O(n) and each of the n-1 calls to Heapify takes time $O(\lg n)$.
- Therefore, $\overline{T(n)} = O(n \lg n)$

Priority Queues

- A data structure for maintaining a set S of elements, each with an associated value called a key.
- Applications: scheduling jobs on a shared computer, prioritizing events to be processed based on their predicted time of occurrence.
- Heap can be used to implement a priority queue.

Basic Operations

• Insert(S, x) - inserts the element x into the set S, i.e. $S \rightarrow S \cup \{x\}$

 Maximum(S) - returns the element of S with the largest key

 Extract-Max(S) - removes and returns the element of S with the largest key

Heap-Extract-Max(A)

- 1. if heap-size[A] < 1
- 2. then error "heap underflow"
- 3. $max \leftarrow A[1]$
- **4.** $A[1] \leftarrow A[heap-size[A]]$
- 5. heap-size[A] $\leftarrow heap$ -size[A] 1
- 6. Heapify(A, 1)
- 7. return max

Heap-Insert(A, key)

- 1. heap-size $[A] \leftarrow heap$ -size[A] + 1
- **2.** $i \leftarrow heap\text{-}size[A]$
- 3. while i > 1 and A[Parent(i)] < key
- 4. $do A[i] \leftarrow A[Parent(i)]$
- 5. $i \leftarrow \text{Parent}(i)$
- **6.** $A[i] \leftarrow key$

Running Time

- Running time of Heap-Extract-Max is $O(\lg n)$.
 - Performs only a constant amount of work on top of Heapify, which takes $O(\lg n)$ time
- Running time of Heap-Insert is $O(\lg n)$.
 - The path traced from the new leaf to the root has length $O(\lg n)$.

Examples

Figure 7.5 The operation of HEAP-INSERT. (a) The heap of Figure 7.4(a) before we insert a node with key 15. (b) A new leaf is added to the tree. (c) Values on the path from the new leaf to the root are copied down until a place for the key 15 is found. (d) The key 15 is inserted.