热力学统计物理第一章作业

- **1.1** 试求理想气体的体胀系数 α , 压强系数 β 和等温压缩系数 κ_T .
- **1.3** 在 0°C 和 1 p_n 下, 测得一铜块的体胀系数和等温压缩系数分别为 $\alpha = 4.85 \times 10^{-5} \text{ K}^{-1}$ 和 $\kappa_T = 7.8 \times 10^{-7} p_n^{-1}$. α 和 κ_T 可近似看作常量. 今 使铜块加热至 10°C. 问:
 - (a) 压强要增加多少 p_n 才能使铜块的体积维持不变?
 - (b) 若压强增加100 pn, 铜块的体积改变多少?
- **1.4** 简单固体和液体的体胀系数 α 和等温压缩系数 κ_T 数值都很小, 在一定温度范围内可以把它们看作常数. 试证明简单固体和液体的物态方程可以近似为

$$V(T, p) = V_0(T_0, 0) [1 + \alpha (T - T_0) - \kappa_T p]$$

1.8 满足 $pV^n = C(常量)$ 的过程称多方过程, 其中常数 n 称为多方指数. 试证明: 理想气体在多方过程中的热容量 C_n 为

$$C_n = \frac{n - \gamma}{n - 1} C_V$$

- **1.17** 温度为0°C的1 kg水与温度为100°C的恒温热源接触后, 水温达到100°C. 试分别求水和热源的熵变以及整个系统的总熵变. 欲使整个系统的熵保持不变, 应如何使水温从0°C升至100°C? 已知水的比热容为 $4.18\,\mathrm{J}\,\mathrm{g}^{-1}\,\mathrm{K}^{-1}$.
- **1.21** 物体的初温 T_1 高于热源的温度 T_2 . 有一热机在此物体与热源之间工作, 直到将物体的温度降低到 T_2 为止. 若热机从物体吸收的热量为 Q, 试根据熵增加原理证明, 此热机所能输出的最大功为

$$W_{\text{max}} = Q - T_2(S_1 - S_2)$$

其中 $S_1 - S_2$ 是物体的熵减少量.