

Transistors Sec.1

Team	Autumn, 2022	
Module	EE1616 Electronics	
	Workshop	
Class	34092102	
Brunel ID	2161047	
CQUPT ID	2021215069	
Name	Xukang Liu	
Tutor	Zhipeng Wang	

Introduction and aims:

To do some simulates based on Bipolar Junction Triode (BJT).

To determine the transistor's gain and other features from its collector characteristics.

Through this simulation experiment, try to familiar with the characteristics of transistors.

Task description:

- 1. Familiar with the theory which we learned before. Understand the typical collector characteristics for a bipolar transistor.
- 2. Test the characteristic of transistor. I_b and V_{ce} as variable, find the characteristic of the curve. Distinguish between saturation region and amplification region.
- 3. Connect the DC voltage source to collector directly. Draw the circuit diagram and simulate as required. In addition, comments on your results.

Experiment method:

- 1. Review the characteristics and the theorem of transistors. Be sure to understand the saturation region and amplification region.
- 2. Simulate the circuit diagram. Record several groups of data, comments the results. Analysis why is the result like this.

Result and observations:

1. Transistors characteristics testing

1.1

This is the circuit diagram.

1.2

The name of the **voltage source** is V1, in DC sweep, I set the start value is 0, end value is 10 and the increment is 2.

This is the simulate result. The simulation results are

consistent with the theory

1.3

In this part, the power supply is a constant: ${\bf 10V}$. And I need test 3 variables: ${\it I_b,I_c}$ and ${\it V_{ce}}$.

Measure current I_c against I_b .

Measure voltage V_{ce} against I_b .

Finally, I get 3 groups of data.

I_b	I_c	V_{ce}
5uA	0.7779mA	9.92V
15uA	2.4658mA	9.975V
25uA	4.3109mA	9.957V

2. Comments on your results

2.1 Obtain experimental answers to Example questions 1 to 3 for

your transistor (i.e. determine the collector current, the change in

 I_C when V_{ce} is changed from 2 volts to 10 volts and the current gain of the transistor).

(1) What is the collector current Ic when the collector-emitter voltage Vce is 5 volts and the base current Ib is 20 μ A?

 I_c is 1.6211mA.

(2) At $Ib = 20 \mu A$, how much does Ic change when Vce is changed from 2 to 10 volts?

 $\Delta I_c = 1.6987 - 1.5747 = 0.124 \text{mA}$

(3) What are the current gains ($Ic\ Ib=\beta$) at Vce=5 volts, when Ib is 10, 20 and 40 μ A?

 I_b is 10uA, I_c is 769.635uA $\beta = 76.97$

 I_b is 20uA I_c is 1.6211mA $\beta=77.19$

 I_b is 40uA $\ I_c$ is 3.3001mA $\beta=82.50$

Now set Vce to 10 volts and make Ic = 5 mA by varying Ib.

 $I_b = 58.4 \mu A.$

2.3

 I_c decreased from 4.5885mA to 0.

2.4

If the value of V_{ce} below 1V, the fall of I_c becomes rapid

2.5

2.6

 I_c against I_b :

I_b against V_{be} :

2.7

On the premise that the power supply is 5V.

When I_b is $20\mu A$, $I_c = 1.6213mA$ When I_b is $30\mu A$, $I_c = 2.4722mA$

At
$$I_b = 25\mu A$$

$$\frac{\Delta I_c}{\Delta I_b} = \frac{(2.4722 - 1.6213) \times 10^3}{30 - 20} = 85.09 = \beta$$

Conclusion:

In this experiment, I test the characteristic curve of transistor. In the simulation result, I find the saturation region and the amplification region. In addition, I changed some values and simulate the circuit again. This let me know the relationship between I_c , I_b , V_c , V_b .

