Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (currently amended) A method of reducing an organic compound, the method comprising subjecting the organic compound to <u>a yeast-water paste of</u> a yeast mediated reduction in the presence of an amount of water that is sufficient for enzymes to be hydrated and but insufficient to provide a visible separate water layer wherein the reduction is conducted in the absence of any additional solvents, and wherein a water-to-yeast ratio is up to 1.5 ml/g.

2-3. (canceled)

- 4. (currently amended) The method of claim [[3]]1, wherein the water-to-yeast ratio is between 0.2 ml/g and 1.5 ml/g.
- 5. (original) The method of claim 4, wherein the water-to-yeast ratio is between 0.8 and 1.2 ml/g of yeast.
- 6. (original) The method of claim 1, wherein the reduction is conducted in the presence of water in an amount of 44% w/w to 55% w/w based on the weight of yeast.
- 7. (original) The method of claim 1, wherein the proportion of yeast to organic compound is from 0.1 gram of yeast per mmol of organic compound, up to 50 grams of yeast per mmol of organic compound.
- 8. (original) The method of claim 7, wherein the proportion of yeast to organic compound is 0.8 to 20 g/mmol.
- 9. (original) The method of claim 1, wherein the reaction is carried out in non-fermenting conditions at temperatures between 0 to 50°C.

- 10. (original) The method of claims 1, wherein the reaction is carried out at room temperature.
- 11. (original) The method of claim 1, wherein the reaction is conducted at atmospheric pressure.
- 12. (previously presented) The method of claim 1, wherein the method comprises the steps of contacting the organic compound with the yeast and water in the absence of any additional solvents to form a mixture, leaving the mixture for sufficient time for the reaction to take place, adding an organic solvent to the mixture to dissolve a product of the reaction into the organic solvent, and conducting a solid/liquid separation to separate the product of the reaction from the yeast.
- 13. (original) The method of claim 12, further comprising evaporating the solvent to isolate the product of the reaction.
- 14. (original) The method of claim 1, wherein the organic compound is selected from the group consisting of ketones, alkenes, alkynes, aldehydes, imines and hydroxamines.
- 15. (original) The method of claim 1, wherein the organic compound is a compound selected from the group consisting of β -keto amides, β -keto esters, enol ethers, activated ketones and conjugated alkenes.
- 16. (withdrawn) The method of claim 1, wherein the organic compound is a compound of Formula I, II, or III:

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_2
 R_5
 R_5
 R_7
 R_7

in which:

 R_1 is an optionally substituted aryl group;

 R_2 , R_3 , R_5 and R_6 are H or optionally substituted $C_1 - C_6$ alkyl;

 R_4 is an optionally substituted $C_1 - C_6$ alkoxy, aryloxy, amino, optionally substituted di-(C_1 – C_6 alkyl)amino, optionally substituted alkarylamino, optionally substituted $C_1 - C_6$ alkylamino, optionally substituted cyclic amino, such as pyrrolidino, piperidino, imidazolidinyl, piperazinyl, morpholinyl, C_{1-6} alkylpyrrolidino or C_{1-6} alkylpiperidino; and

R₇ is cyano; nitro; halo; OH; NH₂; C₁₋₆ alkyl substituted by OH, halo, amine, or C₁₋₆ alkylamino.

- 17. (withdrawn) The method of claim 16, wherein R_1 is substituted or unsubstituted phenyl or 2-thienyl.
- 18. (withdrawn) The method of claim 17, wherein the phenyl group contains one or more substituents selected from the group consisting of hydroxy, methyl, methoxy, hydroxymethyl and trifluoromethyl.
- 19. (withdrawn) The method of claim 16, wherein R_2 is H, and R_3 is either H, methyl or ethyl.
- 20. (withdrawn) The method of claim 16, wherein the compound is a compound of Formula (I), and R_4 is selected from the group consisting of methoxy, ethoxy, C_{1-6} alkylamino, NH_2 , and $di(C_1-C_6alkyl)$ amino.
- 21. (withdrawn) The method of claim 16, wherein the compound is a compound of Formula (II), and R_5 and R_6 are each H.
- 22. (withdrawn) The method of claims 16, wherein the compound is a compound of Formula (III), and R_7 is cyano, alkylhalo or C_{1-6} alkylamino.

- 23. (original) The method of claim 16, wherein the compound is precursor for the synthesis of a pharmaceutical selected from the group consisting of fluoxetine, tomoxetine, duloxetine, nisoxetine, epinephrine, norepinephrine, ethylnorepinephrine, isoproterenol, isoetharine, metaproterenol, terbytaline, metaproterenol, phenylephrine, ritodrine, prenalterol, methoxamine, albuterol or a derivative thereof, salmeterol, ephedrine and phenylpropanolamine and the method further comprises the step of converting the precursor into the pharmaceutical.
- 24. (withdrawn) The method of claim 1, wherein the organic compound is a compound of Formula IV:

$$R_8$$
 R_{10}
 R_{11}
 R_{10}

wherein:

R₈ is an optionally substituted aromatic group;

 R_9 , R_{10} and R_{11} are each independently selected from H, hydroxy, $C_{1\text{-}6}$ alkoxy, mercapto, $C_{1\text{-}6}$ alkylthio, amino, $C_{1\text{-}6}$ alkylamino, di($C_{1\text{-}6}$ alkyl)amino, carboxy, $C_{1\text{-}6}$ alkoxycarbonyl, $C_{1\text{-}6}$ aryloxycarbonyl, carbamoyl, $C_{1\text{-}6}$ alkylcarbamoyl, di- $C_{1\text{-}6}$ alkylcarbamoyl, $C_{1\text{-}6}$ alkylcarbamoyl, $C_{1\text{-}6}$ alkylsulphonyl, arylsulphonyl, $C_{1\text{-}6}$ alkylaminosulphonyl, di($C_{1\text{-}6}$ alkyl)aminosulphonyl, nitro, cyano, cyano- $C_{1\text{-}6}$ alkyl, hydroxy $C_{1\text{-}6}$ alkyl, amino- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkanoylamino, $C_{1\text{-}6}$ alkoxycarbonylamino, $C_{1\text{-}6}$ alkanoyloxy, $C_{1\text{-}6}$ alkyl, halo, halo $C_{1\text{-}6}$ alkyl, or halo $C_{1\text{-}6}$ alkoxy, alkoximino, hydroximino, and alkylimino.

25. (withdrawn) The method of claim 24, wherein one of R_9 , R_{10} and R_{11} is not H.

- 26. (withdrawn) The method of claim 24, wherein the group R_8 is selected from the group consisting of phenyl, substituted phenyl, napthyl and substituted napthyl.
- 27. (withdrawn) The method of claim 24, wherein R_{10} and R_{11} are each H, and R_9 is carboxy or C_{1-6} alkoxycarbonyl.
- 28. (withdrawn) The method of claim 24, wherein R_9 is H or hydroxy, one of R_{10} and R_{11} is selected from C_{1-6} alkyl, and the other of R_{10} and R_{11} is selected from the group consisting of C_{1-6} alkoxycarbonyl, C_{1-6} aryloxycarbonyl, carbamoyl, C_{1-6} alkylcarbamoyl, di- C_{1-6} alkylcarbamoyl, C_{1-6} cycloalkylcarbamoyl and nitro.
- 29. (withdrawn) The method of claim 24, wherein R_9 is hydroxy, one of R_{10} and R_{11} is selected from H and C_{1-6} alkyl, and the other of R_{10} and R_{11} is selected from the group consisting of cyano, C_{1-6} alkoxycarbonyl, C_{1-6} aryloxycarbonyl, carbamoyl, C_{1-6} alkylcarbamoyl, and C_{1-6} cycloalkylcarbamoyl.
- 30. (withdrawn) The method of claim 25, wherein the compound of Formula (IV) is a precursor for the synthesis of a pharmaceutical selected from the group consisting of fluoxetine, tomoxetine, duloxetine, nisoxetine, epinephrine, norepinephrine, ethylnorepinephrine, isoproterenol, isoetharine, metaproterenol, terbytaline, metaproterenol, phenylephrine, ritodrine, prenalterol, methoxamine, albuterol or a derivative thereof, salmeterol, ephedrine and phenylpropanolamine, amphetamine or a derivative thereof, hydroxyamphetamine, methamphetamine, benzphetamine, fenfluramine, propylhexedrine, ibuprofen, naproxen, alminoprofen, fenoprofen, flurbiprofen, indoprofen, ketoprofen and suprofen, the method further comprising the step of converting the precursor into the pharmaceutical.
- 31. (previously presented) A method of synthesising a pharmaceutical compound comprising the step of subjecting a precursor to a yeast mediated reduction wherein the reduction is conducted in the absence of a solvent other than water; and converting the product of the reduction reaction into the pharmaceutical compound.

- 32. (original) The method of claim 31, wherein the pharmaceutical compound is a sympathomimetic amine, an ethyl amine, a propylamine or a propionic acid.
- 33. (original) The method of claim 32, wherein the pharmaceutical compound is an arylethylamine, an arylpropylamine, or a propionic acid with a 2-aryl substitution.
 - 34. (withdrawn) A product produced by the method of claim 1.
- 35. (new) The method of claim 1, wherein the organic compound and the yeast-water paste forms a moist pliable yeast.
- 36. (new) The method of claim 1, wherein the method avoids biphasic extractions before the step of adding the organic solvent to the mixture.
- 37. (new) The method of claim 1, wherein the yeast mediated reduction is carried out in non-fermenting conditions.