Corrigé exam Stats déc 21

Exo 1:

Soit T un estimateur pour un paramètre θ .

1. Rappeler la définition du biais b(T) et de l'erreur ou risque quadratique $R_{\theta}(T)$.

Biais : $b(T) = E(T) - \theta$

Risque quadratique : $R_{\theta}(T) = E((T - \theta)^2) = Var(T) + (b(T))^2$

2. Pourquoi entre deux estimateurs sans biais, doit-on choisir celui qui a la plus petite variance ?

Dans ce cas, Risque quadratique=variance. On prend celui qui a le plus petit risque quadratique (erreur quadratique moyenne).

3. Rappeler ce qu'est la région critique W et donner un exemple où :

$$W = \left\{ Y < C_1 \text{ ou } Y > C_2 \right\}.$$

Il faut penser à un test bilatéral, par exemple : $\begin{cases} (H_0) & \mu = \mu_0 \\ (H_1) & \mu \neq \mu_0 \end{cases}$

Exo 2:

Soit X une variable aléatoire qui suit la loi uniforme sur un intervalle $[0,\theta]$ où θ est un paramètre positif inconnu.

On rappelle que la densité de X est données par : $f_X(x) = \begin{cases} \frac{1}{\theta} & \text{si } x \in [0, \theta] \\ 0 & \text{sinon} \end{cases}$

On dispose de (X_1, \ldots, X_n) un n-échantillon de X. On note \overline{X} la moyenne empirique de X.

1. Montrer que
$$E(X) = \frac{\theta}{2}$$
 et que $Var(X) = \frac{\theta^2}{12}$.

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) \, dx = \int_0^{\theta} \frac{x}{\theta} dx = \frac{\theta}{2}.$$

$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx = \int_0^{\theta} \frac{x^2}{\theta} dx = \frac{\theta^2}{3}.$$

$$Var(X) = E(X^2) - (E(X))^2 = \frac{\theta^2}{3} - \frac{\theta^2}{4} = \frac{\theta^2}{12}$$

On sait que $T_1=2\overline{X}$ est un estimateur sans biais et convergent de θ .

Soit $T_2 = \max(X_1, \dots, X_n)$ un deuxième estimateur de θ .

On admet que
$$E(T_2) = \frac{n}{n+1}\theta$$
 et que $Var(T_2) = \frac{n}{(n+2)(n+1)^2}\theta^2$.

2. Calculer le biais et le risque quadratique de T_2 .

$$b(T_2) = E(T_2) - \theta = \frac{n}{n+1}\theta - \theta = \frac{-\theta}{n+1}$$

$$R_{\theta}(T_2) = Var(T_2) + b(T_2)^2 = \frac{n}{(n+2)(n+1)^2}\theta^2 + \frac{\theta^2}{(n+1)^2} = \frac{(2n+2)\theta^2}{(n+2)(n+1)^2} = \frac{2\theta^2}{(n+2)(n+1)^2}$$

3. Soit $T_3 = \frac{n+1}{n}T_2$. Déterminer son biais et son risque quadratique.

$$E(T_3) = \frac{n+1}{n}E(T_2) = \theta \implies b(T_3) = 0.$$

$$R_{\theta}(T_3) = Var(T_3) = \left(\frac{n+1}{n}\right)^2 Var(T_2) = \frac{\theta^2}{n(n+2)}$$

4. Entre ces trois estimateurs et pour n assez grand, lequel donnera la meilleure estimation de θ et sans biais ?

$$T_1$$
 et T_3 sont les seuls sans biais, et $R_{\theta}(T_1) = Var(T_1) = Var(2\overline{X}) = 4\frac{Var(X)}{n} = \frac{4\theta^2}{12n}$.

Alors que
$$R_{\theta}(T_3) = \frac{\theta^2}{n(n+2)}$$
.

Pour n assez grand, ce sera T_3 qui aura le plus petit risque quadratique.

C'est donc T_3 qu'il faut choisir, celui qui converge le plus vite.

Exo 3:

On suppose que le poids, à la naissance, d'un bébé est une variable aléatoire de moyenne μ et de variance σ^2 .

1. Dans un hôpital parisien, on a relevé les poids de $n_1=105$ bébés nés d'une mère primipare(qui accouche pour la première fois) et on a trouvé une moyenne empirique $\overline{x}=3.41$ kg et un écart-type $s^*=0.505$ kg.

Donner un intervalle de confiance à 95% pour μ .

$$n_1 > 30 \stackrel{TCL}{\Longrightarrow} Z = \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \sim N(0, 1)$$
. Mais σ est inconnu remplacé par S^* .

On doit passer la la loi de Student à 104 d.d.l. qui est confondue avec la loi normale standard. Finalement on va partir de la valeur t=1.96 correspondant à (-t < Z < t) = 0.95.

Ce qui nous donne l'IDC:

$$[a,b] = \left[\overline{x} - t \frac{s^*}{\sqrt{n_1}}; \ \overline{x} + t \frac{s^*}{\sqrt{n_1}}\right] = [3.31; 3.51]$$

2. Même question pour un échantillon de $n_2=95$ mères multipares(qui ont déjà accouché) qui a donné $\overline{x}=3.197$ kg et $s^*=0.458$ kg.

Le même raisonnement donne l'IDC suivant :

$$[a,b] = \left[\overline{x} - t \frac{s^*}{\sqrt{n_2}}; \overline{x} + t \frac{s^*}{\sqrt{n_2}}\right] = [3.10; 3.29]$$

Exo 4:

On admet que la consommation d'oxygène d'une personne, exprimée en ml/kg/min, est une variable gaussienne vérifiant :

$$X \sim N(\mu, \sigma^2)$$

La valeur normale de la moyenne est $\mu = \mu_0 = 25$.

On veut tester si des patients atteints de la maladie de Parkinson voient leur consommation baisser et tomber à $\mu=\mu_1=20$ et s'il faut donc les oxygéner. On utilise pour cela un échantillon de taille n=15.

1. Enoncer les 2 hypothèses et expliciter les risques de 1ère et de 2ème espèce.

$$\begin{cases} (H_0) & \mu = \mu_0 = 25 \\ (H_1) & \mu = \mu_1 = 20 \end{cases}$$

Risque de 1ère espèce : α = Proba. de valider (H_1) à tort = Proba. de décider d'oxygéner les patients alors qu'ils n'en ont pas besoin.

Risque de 2ème espèce : β = Proba. de valider (H_0) à tort = Proba. de ne pas oxygéner les patients alors qu'ils en ont besoin.

2. Quelle sera la variable de décision et quelle sera la loi utilisée si on sait que $\sigma^2=36$.

Variable de décision : moyenne empirique \overline{X}

$$X$$
 gaussienne $\implies Z = \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \sim N(0, 1)$

3. Faire une représentation graphique montrant la région critique et les risques de 1ère et 2ème espèce.

Région critique : $W = {\overline{X} < C}$

4. Déterminer le seuil de décision pour un risque de $\alpha = 5\%$.

$$\alpha = 0.05 = P_{(H_0)}(\overline{X} < C) = P_{(H_0)}\left(\frac{\overline{X} - \mu}{\sigma}\sqrt{n} < \frac{C - \mu}{\sigma}\sqrt{n}\right)$$

$$\alpha = 0.05 = P \left(Z < \frac{C - \mu_0}{\sigma} \sqrt{n} \right)$$

La table des fractiles de N(0, 1) donne :

$$\frac{C - \mu_0}{\sigma} \sqrt{n} = -1.6449 \implies C = \mu_0 - 1.6449 \frac{\sigma}{\sqrt{n}} = 25 - 1.6449 \frac{6}{\sqrt{15}}$$

$$C = 22.45$$

5. Un échantillon de n=15 personnes malades a donné la valeur $\overline{x}=23.1$ Doit-on prendre la décision de les oxygéner ?

 $\overline{x} = 23.1 > C \implies$ On valide (H_0) . Il n'y a pas de raison d'oxygéner ces patients.

6. Question bonus:

Retrouver la décision précédente en calculant la p-valeur.

$$\begin{aligned} & \text{P-valeur} = P_{(H_0)}(\overline{X} < \overline{x} \;) = P\bigg(\frac{\overline{X} - \mu_0}{\sigma}\sqrt{n} \leqslant \frac{\overline{x} - \mu_0}{\sigma}\sqrt{n}\bigg) = P\bigg(Z \leqslant \frac{23.1 - 25}{6}\sqrt{15}\bigg) \\ & \text{P-valeur} = F_Z(-1.22) = 1 - F_Z(1.22) = 1 - 0.88877 = 0.11123 \\ & \text{P-valeur} > \alpha \quad \Longrightarrow \text{ On valide } (H_0). \end{aligned}$$

Exo 5:

La distribution X du nombre d'enfants par famille en France peut être résumée par la loi discrète suivante :

Nombre d'enfants k	0	1	2	3	4	≥ 5
P(X=k)	0.15	0.2	0.3	0.2	0.1	0.05

Nous avons relevé le nombre d'enfants dans n=900 familles belges et souhaitons savoir si la répartition est équivalente.

- ➤ Quel est le nom du test à effectuer, et quelles sont les hypothèses ? Test d'adéquation d'un échantillon à une variable discrète.
 - (H_0) L'échantillon suit la loi indiquée
 - $\left\{ (H_1) \right\}$ L'échantillon ne suit pas la loi indiquée
 - $\iff \begin{cases} (H_0) & \text{La distribution du nbre d'enfants en Belgique est la même qu'en France} \\ (H_1) & \text{La distribution du nbre d'enfants en Belgique est différente de celle en France} \end{cases}$
- > Compléter le tableau suivant permettant de répondre à la question précédente.

On multiplie les probabilités des modalités apr l'effectif total n = 900.

Ensuite on calcule la distance à l'aide de la formule :
$$\frac{(n_{obs} - n_{th})^2}{n_{th}}$$

Nombre d'enfants k	0	1	2	3	4	≥ 5
Effectif observé n_{obs}	151	197	240	161	110	41
Effectif théorique n_{th}	135	180	270	180	90	45
Distance	1.90	1.61	3.33	2.01	4.44	0.36

 \gt Donner la formule permettant de calculer la distance totale ainsi que la loi suivie sous (H_0) .

$$D_n = \sum_{i=1}^{6} \frac{(n_{obs,i} - n_{th,i})^2}{n_{th,i}}.$$

Sous (H_0) , D_n suit la loi du khi2 à 6-1=5 d.d.l. (nombre de modalités retenues moins 1).

- > Donner la conclusion de ce test avec un risque de $\alpha=5\%$ puis avec $\alpha=1\%$. La table du khi2 à 5 d.d.l. donne : $C_1=11.70$ pour $\alpha=5\%$ et $C_2=15.09$ pour $\alpha=1\%$ La distance trouvée est de $D_n=13.64$.
 - \succ Au risque $\alpha=5\%$, $D_n>C\implies$ On valide (H_1) : la distribution des nombres d'enfants par famille n'est pas la même en France qu'en Belgique.
 - > Au risque $\alpha = 1\%$, $D_n < C \implies$ On valide (H_0) : la distribution des nombres d'enfants par famille est la même en France qu'en Belgique.