

Институт компьютерный наука и технологии (ИКНТ)

Студент:

Эспинола Ривера, Хольгер Элиас

4 March, 2024

Руковадитель: Заборовский Владимир Сергеевич

Contents

- Theoretical basis of X-AI
- SHAP algorithm
- Problem Statement
- Models and Experiments with X-AI
- Results and Discussion

Theoretical basis of X-AI

DEFINITIONS

- Explainable AI (X-AI) is a set of techniques that help interpret and demystify the black-box machine learning models, which needs explainability.
- X-AI provides the visibility under the hood how ML algorithms operates at each stage of solution life cycle.
- X-AI is a methodology that allows to users comprehend how ML algorithms take decisions (interpretability) and why (explainability).

X-Al and building of robust Al-systems

X-AI

Types of Explanation Models

Techniques applied after Techniques for model training for models that are models that are inherently typically more transparent Post hoc ← Intrinsic complex Techniques that Techniques that are dependent on – Model-agnostic -- are independent Model-specific the model of the model Techniques to understand the Global . Local Techniques to model prediction understand the for a specific global effects of example the input features on the model prediction

Dilemma interpretabilitypredictability tradeoff

SHAP Algorithm

SHAP

SHAP (Shapley Additive Explanations) is a game theory model-agnostic approach to explain the predictions generated by machine learning models.

SHAP is based on **Shapley Values**, used to determine the contribution of each player in a cooperative game.

Consider a team of Kaggle competition conformed by Alice, Bob and Charlie, how can make fair distribution of prize money according player contributions?

Given N players with coalition of S players with v(s) as the total value generated of these S players, the marginal contribution of player i is given by:

Value accumulated without participation of player i

Where:

values

$$\varphi(i) = \sum_{S \subseteq N/i} \frac{|S|! (|N| - |S| - 1)!}{|N|!} (v(S \cup \{i\}) - v(S))$$
Sharpley

Value accumulated including player i

Consider the contribution values for all possible combinations of players.

Players	Point Values (V)
Alice	10
Bob	20
Charlie	25
Alice and Bob	40
Alice and Charlie	30
Bob and Charlie	50
Alice, Bob and Charlie	90

Order	Scenario	Contribution V
A, B, C	{A}	V(A) = 10
A, C, B	{A}	V(A) = 10
В, А, С	{A, B}	V(A, B) - V(B) = 40 - 20 = 20
С, А, В	{A, C}	V(A, C) – V(C) = 30 – 25= 5
В, С, А	{A, B, C}	V(A, B, C) - V(B, C) = 90 - 50 = 40
С, В, А	{A, B, C}	V(A, B, C) - V(B, C) = 90 - 50 = 40
Ф(А)	A marg. contribution	$\frac{1}{6}(10+10+20+5+40+40) = 20.83$

Order	Scenario	Contribution V
В, А, С	{B}	V(B) = 20
В, С, А	{B}	V(A) = 20
A, B, C	{A, B}	V(A, B) - V(A) = 40 - 10 = 30
С, В, А	{B, C}	V(B, C) – V(C) = 50 – 25= 25
А, С, В	{A, B, C}	V(A, B, C) - V(A, C) = 90 - 30 = 60
C, A, B	{A, B, C}	V(A, B, C) - V(A, C) = 90 - 30 = 60
Ф(А)	A marg. contribution	$\frac{1}{6}(20 + 20 + 30 + 25 + 60 + 60)$ = 35.83

Order	Scenario	Contribution V
C, A, B	{C}	V(C) = 25
С, В, А	{C}	V(C) = 25
A, C, B	{A, C}	V(A, C) - V(A) = 30 - 10 = 20
В, С, А	{B, C}	V(B, C) - V(B) = 50 - 20 = 30
A, B, C	{A, B, C}	V(A, B, C) - V(A, B) = 90 - 40 = 50
В, А, С	{A, B, C}	V(A, B, C) - V(A, B) = 90 - 40 = 50
Ф(А)	A marg. contribution	$\frac{1}{6}(25 + 25 + 20 + 30 + 50 + 50)$ = 33.34

Finally, level of contribution of each player:

Ф(А)	Ф(В)	Ф(С)	TOTAL
20.83	35.83	33.34	90
23.14%	39.82%	37.04%	100%

Players Contribution according Sharpley values

Shapley Values in context of ML

Shapley values in ML helps to understand the collective contribution of each feature toward the outcome predicted by ML models.

14

SHAP Algorithms

SHAP Explainer: based on Shapley

sampling values

Kernel-SHAP: based on LIME

approach

Linear SHAP: for linear models

Tree SHAP: for trees and tree-ensembles

Deep SHAP: for deep learning models

Problem Statement

Problem

Task 1: X-AI with SHAP applied to Generated Clusters data

The original data set consists of several clusters generated by different linear laws.

Necessary:

- a) For each point in the test sample, determine the vector of feature importances.
- b) Cluster the resulting importance vectors.
- c) Determine the law by which each of the clusters is generated.

Dataset

Dataset consists in 2 subsets:

Train set: 1125 samples

Test set: 375 samples

	f0	f1	f2	f3	f4	у
0	1.7005	1.3531	1.2401	2.0728	1.6070	1.6064
1	0.7965	0.7256	0.5263	0.7339	0.8046	0.7234
2	2.8373	2.2479	3.0573	2.9302	2.8407	2.3597
3	3.0394	2.8822	2.4963	2.6470	2.7702	2.8105
4	2.0894	1.2275	1.9977	1.8091	1.1260	1.8924

Dataset have 5 independent variables: f0, f1, f2, f3, f4 [float datatype] Dataset have 1 real dependent variable: y [float datatype]

Task:

Build and train regressor model to using SHAP algorithm, explain the impact of features in predictions

Methodology

Models and Experiments with X-AI

XGBoost Regressor Architecture

XGBoost train and hyperparameter tuning

```
import xgboost as xgb
from sklearn.model selection import GridSearchCV
# define grid hyperparameters
xgb params = {
    "n_estimators": range(100, 500, 100),
    "learning_rate": [1e-3, 0.01, 0.05, 0.1],
    "max depth": range(8, 32, 8),
    "subsample": [0.8, 0.9],
    "colsample bytree": [0.8, 0.9]
# define XGBoost regressor with hyperparameter tuning
xgb_grid = GridSearchCV(estimator = xgb.XGBRegressor(),
                        param grid = xgb params,
                        cv = 5,
                        scoring = "r2",
                        verbose = True,
                        n jobs = -1
# fit the model
xgb_grid.fit(x_train, y_train)
```

Best model

Parameters	Best values
n_estimators	400
learning_rate	0.1
max_depth	8
subsample	0.8
colsample_bytree	0.8

Disk: 1290 KB

Model Inference

Train R^2 score	Test R^2 score
99.93%	99.95%

XGBoost with SHAP for Global explanations

XGBoost with SHAP for Global explanations

XGBoost with SHAP for Global explanations

XGBoost with SHAP for Local explanations

XGBoost with SHAP for Local explanations

Waterfall plots

LightGBM Regressor Architecture

Grow trees by level (deep)-wise Level-wise tree growth Grow trees by leafwise (best-first) **LightGBM grows trees leaf-wise** instead of level-wise! Leaf-wise tree growth

LightGBM train and hyperparameter tuning

```
import lightgbm as lgbm
from sklearn.model selection import GridSearchCV
# define grid hyperparameters
lgbm params = {
    "max depth": range(8, 32, 8),
    "num leaves": range(30, 80, 10),
    "learning rate": [1e-3, 0.01, 0.05, 0.1],
    "bagging_fraction": [0.7, 0.8, 0.9]
# define the LightGBM regressor
lgbm grid = GridSearchCV(estimator = lgbm.LGBMRegressor(),
                         param_grid = lgbm_params,
                         cv = 5.
                         scoring = "r2",
                         verbose = False,
                         n jobs = -1
# fit the model
lgbm grid.fit(x train, y train)
```

Best model

Parameters	Best values
max_depth	24
num_leaves	30
learning_rate	0.1
bagging_fraction	0.7

Disk: 279 KB

Model Inference

Train R^2 score	Test R^2 score
99.96%	99.97%

LightGBM with SHAP for Global explanations

LightGBM with SHAP for Global explanations

LightGBM with SHAP for Global explanations

LightGBM with SHAP for Local explanations

LightGBM with SHAP for Local explanations

Waterfall plots

Clusterization of SHAP values with K-means

Number of clusters = 3; Dimensionality reduction to 3D: considering features **f0**, **f1** and **f3**

Clusterization for XGBoost SHAP values

KMeans Clustering of SHAP Values

Clusterization for LightGBM SHAP values

KMeans Clustering of SHAP Values

References

- [1] Masís, S. (2021). Interpretable Machine Learning with Python: Learn to build interpretable high-performance models with hands-on real-world examples. Packt Publishing Ltd.
- [2] Bhattacharya, A. (2022). Applied Machine Learning Explainability Techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more. Packt Publishing Ltd.
- [3] Thampi, A. (2022). Interpretable AI: Building explainable machine learning systems. Simon and Schuster.
- [4] Munn, M., & Pitman, D. (2022). Explainable AI for Practitioners. "O'Reilly Media, Inc.".
- [5] Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.

Thank you for your attention!

Эспинола Ривера, Хольгер Элиас

espinolarivera.h@edu.spbstu.ru

holtech94@gmail.ru