Real DL examples, from colleagues and us

Computer vision intro

- 1) Red Blood Cells classification
- 2) Micro-bead tracking
- 3) Bacteria semantic segmentation

Computer Vision - possible tasks

classification "cat"

classification +
localization
class + bounding box

Bicycle Background

Person

Semantic segmentation each pixel : class

Important points

- 1. Your images should be normalized:
 - Average intensity equals to 0
 - Standard deviation equals to 1

Original

Transformed

image = image - mean(image)
image = image/std(image)

Important points

- 1. Your images should be normalized:
 - Average intensity equals to 0
 - Standard deviation equals to 1
- 2. Your set of images should be <u>as representative and diverse as possible</u>

Variation in :

- Density of cells
- Different focal planes
- Light intensity
- · etc.

Good generalization!

1) Red Blood Cells classification

Good images

In-focus image of RBC with a properly defined contour (red)

Poor quality images that need to be discarded from the analysis

Red Blood Cells classification - ConvNet classifier

Type of data: png RGB images resize to 85x85 and normalized
Size of the training set: 956 good images / 2000 bad images
Size of the validation/testing sets: 319 good images / 667 bad images

1) Red Blood Cells classification -

Transfer learning

Output

VGG16 already trained on millions of images for many classes

Transfer learning: change or reset only the last "dense classifier", keep the rest fixed, and retrain on your images

1) Red Blood Cells classification -

Transfer learning

Epochs

10

Epochs

Fully convolutional

This type of neural network architecture has many advantages:

- Simple to implement
- Faster
- Less heavy on memory since no fully connected layers
- No restriction on the size of the input images
- The output image is already segmented

UNET

Badrinarayanan et al. IEEE 2016 Noh et al. ArXiv 2015 Ronnerberger et al. ArXiv 2015

Fully conv. application - denoising

Fully conv. application - denoising

https://github.com/CSBDeep/CSBDeep - Weigert et al. 2017. Content-aware image restoration: pushing the limits of fluorescence microscopy

2) Tracking of microbeads

2) Tracking of microbeads

2) Tracking of microbeads
Convolutional Net : not really good

2) Tracking of microbeads - Hybrid Unet + "classical"

2) Tracking of microbeads - Hybrid Unet + "classical"

3) Semantic segmentation of bacteria images

3) Semantic segmentation of bacteria images

First training set : <u>start SIMPLE</u>

200x200 pixels

- Small images BUT large enough to have entire cells
- Use pre-existing tools to create the labeled images (llastik, LabKit, Imaris, etc.)

- First training set : <u>start SIMPLE</u>
- Choose carefully your classes

2 classes: background (0) & cells (1)

- First training set : <u>start SIMPLE</u>
- Choose carefully your classes

2 classes: background (0) & cells (1)

3 classes: background (0) & cell contour (1) & cell body (2)

- First training set : <u>start SIMPLE</u>
- Choose carefully your classes
- Use a SOLID BASELINE for the model: Unet

3) Semantic segmentation - Evaluation of the model

 After the training, metrics are available to evaluate the performance of your network (Accuracy, IoU, etc.).

Unet training:

- mean accuracy: 72.9%
- mean IoU: 61.8%

3) Semantic segmentation - Evaluation of the model

 After the training, metrics are available to evaluate the performance of your network (Accuracy, IoU, etc.).

Unet training:

- mean accuracy: 72.9%

mean IoU : 61.8%

Confusion matrix:

	Background	Cell body	Cell contour
Background	94.9%	0.96%	4.14%
Cell body	2%	93.4%	4.6%
Cell contour	15.8%	24.1%	60.1%

3) Semantic segmentation - Evaluation of the model

 After the training, metrics are available to evaluate the performance of your network (Accuracy, IoU, etc.).

Unet training:

- mean accuracy: 72.9%

- mean IoU: 61.8%

- After the training, metrics are available to evaluate the performance of your network (Accuracy, IoU, etc.).
- Fine-tune the parameters of your network :
 - size of the filters
 - number of layers
 - optimizer
 - batch size
 - o etc.

"Quick" and easy gain of a few percent of accuracy

- After the training, metrics are available to evaluate the performance of your network (Accuracy, IoU, etc.).
- Fine-tune the parameters of your network
- Image augmentation :
 - horizontal and vertical flip
 - o add synthetic/real noise
 - add out of focus images to the data

- After the training, metrics are available to evaluate the performance of your network (Accuracy, IoU, etc.).
- Fine-tune the parameters of your network
- Image augmentation :
 - horizontal and vertical flip
 - o add synthetic/real noise
 - add out of focus images to the data

Helped improved the generalization of the network

- After the training, metrics are available to evaluate the performance of your network (Accuracy, IoU, etc.).
- Fine-tune the parameters of your network
- Image augmentation
- Combine multiple training together :

3) Semantic segmentation - Add useful information

Unet with 5 classes:

- background (0)
- Myxo body (1) and contour (2)
- Coli body (3) and contour (4)

3) Semantic segmentation - Add useful information

- Create two separate networks :
 - one for cell segmentation
 - one for cell differentiation

Improved the differentiation but not enough

- Add more images → too much work
- Add fluorescence images

Coli fluorescence

3) Semantic segmentation - Take home messages

- Always start with simple data and a solid baseline
- II. Setup your **own evaluation strategy**:
 - build a test set representative of your problem
 - choose the right performance indicators for your problem

III. Know your data:

- your training set should be as representative as possible of your data
- double/triple check for errors