

MARKING GUIDELINE

NATIONAL CERTIFICATE FITTING AND MACHINING THEORY N2 9 APRIL 2021

This marking guideline consists of 9 pages.

3.1.3

3.1.4

FITTING AND MACHINING THEORY N2

SECTION A

QUESTION 1: OCCUPATIONAL SAFETY

NOTE: Candidates need answer only QUESTION 1.1 or QUESTION 1.2.

1.1 1.1.1 False 112 False 1.1.3 True 1.1.4 True 1.1.5 False (5×1) [5] **OR** 1.2. 1.2.1 True 1.2.2 False 1.2.3 True 1.2.4 False 1.2.5 True (5×1) [5] **QUESTION 2:** COUPLINGS 2.1 2.1.1 Metal disc coupling 2.1.2 Flexible couplings Floating disc 2.1.3 (3×1) (3) 2.2 2.2.1 Permanent coupling 2.2.2 Flexible coupling 2.2.3 Self-aligning coupling (3×1) (3)[6] **QUESTION 3: LIMITS AND FITS** 3.1 3.1.1 Push fit – parts will move relative to each other when slight hand pressure is applied to move the two parts. 3.1.2 Running fit – The two mating parts fit into each other smoothly but not loosely.

Copyright reserved Please turn over

one part tightly into the other.

Sliding fit – The two parts slide freely relative to each other.

Press fit – Pressure is applied mechanically or hydraulically to fit the

 (4×1)

(4)

FITTING AND MACHINING THEORY N2

3.2	3.2.1	Bilateral tolerance – The limits of a dimension are on both sides of the basic size.			
	3.2.2	Unilateral tolerance –The limits of a dimension are only on one side of the basic size.			
	3.2.3	High limit – Is the maximum permissible size allowed relative to the basic size of the work-piece.			
		(3 × 1)	(3) [7]		
QUESTI	ON 4: B	EARINGS			
4.1	ContantBearingFlattenDifferen	nsufficient lubrication Contamination in the bearing Searing slipping in the housing or on the shaft Flattened roller or ball Different sizes of rollers or balls Indentation of races (Any 3 × 1)			
4.2	 (Any 3 × 1) They cannot be repaired They are noisy in operation at high speeds 				
	 Less capacity to withstand shock High initial costs 				
	9	(Any 2 × 1)	(2) [5]		
QUESTI	ON 5: LI	UBRICATION AND VALVES			
5.1	5.1.1 Rubbing speed – It is the speed at which a shaft turns inside a bearing.				
	5.1.2	Adhesion – It is the ability a substance has to cling to another material or substance.			
	5.1.3	Viscosity – The speed of flow or resistance to flow or thickness of the liquid.			
		(3 × 1)	(3)		
5.2	When the pressure in a system exceeds the spring tension of the valve, ✓ the valve opens and allows fluid to flow. ✓ When the pressure drops below the spring tension, the valve closes ✓ and stops the flow of fluid.				

FITTING AND MACHINING THEORY N2

QUESTION 6: PACKING, STUFFING BOXES, JOINTS AND WATER PIPE SYSTEMS

- To prevent heat loss due to radiation
 - To prevent or minimise condensation in the pipelines
 - To minimise hammer shocks in the system
 - To have more accurate gauge readings
 - To prevent water entering reciprocating machines
 - Saves energy
 - Prevents water pipes from freezing in winter

(Any 5 × 1)

(5)

- 6.2Bell-and-spigot
 - Welded
 - Soldered or brazed
 - Screwed (threaded)
 - Flanged
 - Butt-and-strap
 - Fillet welding

 $(Any 4 \times 1)$

(4) [9]

QUESTION 7: PUMPS

- 7.1 7.1.1 A Piston pump
 - B Plunger pump

(2)

7.1.2 Reciprocating pumps

(1)

7.1.3 Positive displacement

(1)

- 7.2 To slow the liquid down
 - To increase the pressure energy
 - To prevent overloading of the impeller motor

(Any 2 × 1)

(2) [6]

QUESTION 8: COMPRESSORS

- 8.1 Air filter It prevents dust and foreign matter in the air from entering the cylinder.
- 8.2 High pressure cylinder It compresses the air to the required pressure.
- 8.3 Drain valve It is used to drain all the water in the air receiver.
- 8.4 Cotter It tightens up the bearing holes as wear takes place between the bearing halves and the crank.

 (4×1) [4]

-5-FITTING AND MACHINING THEORY N2

QUESTION 9: V-BELTS, GEAR DRIVES, CHAIN DRIVES AND REDUCTION GEARBOXES

9.1	The main another.	function of a V-belt is to transfer driving motion from	one shaft to	(1)
9.2	9.2.1	Arc of contact – It is the portion of the pulley that is in the V-belt along its circumference.	contact with	
	9.2.2	Driven pulley – It is the pulley that is attached to the w the machine.	orking part of	
			(2 × 1)	(2)
9.3	TheyThey	are expensive to manufacture are not repairable require constant lubrication Irive and driven shafts need to be close together		
		thing goes wrong, slippage does not occur to prevent o	lamage to the (Any 3 × 1)	(3)
9.4	9.4.1	To transmit power from one shaft to another when between shafts is too large to use gears.	the distance	
	9.4.2	Used when positive transmission is desired (i.e., no sl	ippage). (2 × 1)	(2)
9.5	 They are relatively noisy Wear causes elongation of the chain The sprockets need replacing due to wear They have speed limitations They break without warning (Any 2 ×1) 		(Any 2 ×1)	(2)
9.6		re bearings are lubricated with grease. k bearings for wear by listening for excessive noise.		(2) [12]

TOTAL SECTION A:

60

-6-FITTING AND MACHINING THEORY N2

SECTION B

NOTE: Candidates need answer only TWO of the following questions

QUESTION 10: HYDRAULICS AND PNEUMATICS

10.1	10.1.1	C		
	10.1.2	A		
	10.1.3	E		
	10.1.4	В		
	10.1.5	D		
			(5 × 1)	(5)
10.2	10.2.1	Double acting cylinder or cylinder		
	10 2 2	Chring looded non-return value or non-return value		

10.2.2 Spring loaded non-return valve or non-return valve
10.2.3 Throttle valve
10.2.4 Sequence valve
10.2.5 Air receiver

 $(5 \times 1) \qquad (5)$

10.3

HYDRAULIC SYSTEM	PNEUMATIC SYSTEM
Uses hydraulic oil	Uses air
Uses a pump to generate power	Uses a compressor to generate
	power
Closed circuit - oil returns to the	Open circuit – air is released to the
tank	atmosphere
Higher system pressure	Lower system pressure
Slower operation	Faster operation
Minimum power loss	Power loss occurs over long
	distances
Higher operating costs	Lower operating costs
Self-lubricating	Requires lubrication

 $(Any 3 \times 2)$ (6)

10.4 Positive displacement pumps are used in hydraulics. (1)

10.5 • Power transmission

Lubrication

• Cooling (3) [20]

QUESTION 11: CENTRE LATHES

- 11.1 Plain or solid mandrels
 - Cone mandrels
 - Screw mandrels
 - **Expanding mandrels** (4)
- 11.2 Only external tapers can be turned
 - Due to centres being misaligned, uneven wear takes place on the centres and centre holes

11.3
$$S = \pi DN$$

$$N = \frac{S}{\pi D}$$

$$=\frac{45}{\pi\times0.085} \quad \checkmark$$

 $N = 168.517 \ r/min \checkmark$

$$L = f \times N \times t$$
$$= 0.8 \times 168.517 \times 5 \checkmark$$

$$L = 674.068 \, mm \, \checkmark$$

 $Set-over = \frac{D-d}{2} \times \frac{length\ of\ workpiece}{length\ of\ taper}$ 11.4 11.4.1

$$=\frac{95-60}{2}\times\frac{500}{330}$$

$$= 17.5 \times 1.52$$

$$Set - over = 26.515 \,\mathrm{mm} \,\checkmark \tag{2}$$

11.4.2

$$\tan \frac{\theta}{2} = \frac{X}{L}$$

$$\tan \frac{\theta}{2} = \frac{17.5}{330}$$

$$\tan \frac{\theta}{2} = 0.053 \checkmark$$

$$\theta = tan^{-1} 0.053 \times 2 \checkmark$$

$$\theta = 6.068^{\circ}$$

$$\theta = 6^{\circ} \, 04' \, \checkmark \tag{3}$$

(2)

(4)

-8-FITTING AND MACHINING THEORY N2

- 11.5 Material type
 - Tooling required
 - Dwell time
 - Stock length
 - Coolant application
 - Cutting speed
 - Information from a drawing
 - Operating sequence
 - Sizes according to dimensioning sizes

(Any 5 × 1) (5) **[20]**

QUESTION 12: MILLING MACHINES AND SURFACE GRINDERS

- 12.1 12.1.1 Dovetail cutter Is used to manufacture dovetail slides that are used on various machines.
 - 12.1.2 Slotting cutter It is used only for cutting slots, grooves and keyways.
 - 12.1.3 End mill cutter It is used for milling slots, cutting profiles and facing narrow surfaces.
 - 12.1.4 Slot drill It is used to cut keyways and blind slots

 $(4 \times 1) \qquad (4)$

- It prevents the continuous forming of shavings
 - It reduces chattering
 - It helps in the removal of shavings
 - It gives a better cutting action
 - It is more economical in terms of power consumption
 - It allows an easier flow of coolant
 - It improves the finish on the work-piece

 $(Any 3 \times 1)$ (3)

12.3 Indexing =
$$\frac{N}{9^{\circ}}$$

$$= \frac{37}{9} \checkmark$$

$$= 4 \frac{1}{9}$$

$$= 4 \left[\frac{1}{9} \times \frac{2}{2}\right] \checkmark$$

$$= 4 \frac{2}{18} \checkmark$$

Indexing

= 4 full turns of the crank handle \checkmark and 2 holes in a 18 hole plate \checkmark

=4) and 2 notes in a 10 note place (5)

12.4
$$D = \frac{90}{1000}$$

 $D = 0.09 \, m$

 $S = \pi DN$

$$N = \frac{S}{\pi D} \checkmark$$
$$= \frac{23}{\pi \times 0.09} \checkmark$$

$$N = 81.346 \, r/min \, \checkmark \tag{3}$$

- 12.5 12.5.1 Grit size It is the actual size of the abrasive particles on a grinding wheel.
 - 12.5.2 Grade It is the hardness of the wheel or the strength of the bond holding the abrasive particles in place.
 - 12.5.3 Structure It is the spacing of the grit in the wheel. (3×1) (3)
- Use coarser grit wheels
 - Use an open structure wheel
 - Use a softer grade wheel
 - Increase work speed

 $(Any 2 \times 1)$ (2)

[20]

TOTAL SECTION B: 40
GRAND TOTAL: 100