

Walmart Sales Prediction

A sales forecasting using machine learning

- Suraj Kumar Prajapati

Machine Learning

What is Machine Learning?

Machine Learning is subset of artificial intelligence that mainly concerned with the development of algorithms which allows a computer from a past experiences on their own.

What are the fields where machine learning is used?

Currently weather prediction, climate change detection, disease detection and recommendation etc. are the various fields where machine learning found very useful.

Most of the businesses are also using Machine Learning as Detection fraud transactions, Customer segmentation and churn prediction etc.

Sales Prediction is also a business task, can be done using machine learning.

Identification of Business Problem

Sales forecasting is process of prediction how much revenue a company will generate within a timeframe.

Identification of Data

To create a sales forecasting model, I use dataset (6435×8) of USA based walmart stores for the time period of 2010 - 2012.

The sales data available for **45 store** of walmart. There are the features of **CPI** (**Cumulative Price Index**), **Unemployment** which consider the economic condition of the areas.

For a store sales the **temperature** and **fuel price** also make impact to the purchasing value of the stores.

Predicted **sales** are weekly and there is a holiday column which shows the **holidays** in a week.

Follow the link for dataset - <u>Kaggle Link of Dataset</u>

Roadmap

Data Exploration

Explore data to check the present abnormalities

Preprocessing

Do preprocessing to make data for model training

Models

Using various scikit learn models to make predictions

Evaluation

Evaluate the output of the model and make improvements

Preprocessing of Data

Train - Test Split

Dataset

Out of all observations 80% are used to train the model and 20% is used to test the model.

Training Dataset

It has 4760 observation and used for training purpose

Test Dataset

It has 1191 observations and used to test the model performance

Input Features

There is total 68 features used as an input to the model after preprocessing

Target Feature

It is the weekly sales of the corresponding store

Machine Learning Models

Tried various models out of which Linear Regression and XGBoost model gives the best accuracy on train and test both dataset.

Linear Regression

- It is a linear approach for modelling the relationship between scalar response and one or more variables.
- It creates n-1 dimensional plane using n dimensional dataset which fit the given distribution.
- At the end the optimal weights corresponding to the features are used to predict the values.
- Accuracy : Training : 93% Testing : 92%

XG Boost Regressor

- It is a ensemble learning based model which creates a strong regression model using number of weak models.
- Firstly it built a base model on the training data.
- Then second model is build, which tries to correct the error present in the first model.
- Accuracy : Training 96% Testing - 91%

Vs

Evaluation

Due to robustness of the XGBoost model, choosed xgboost regressor as optimal model for the prediction

Experiments and Adjustment

Thank You