Abstract

Some exercises from http://brendanfong.com/programmingcats_files/ps1.pdf

Exercise 2

a) $Ob(\mathcal{C}) = 1, 2$; The sets of morphisms: $\mathcal{C}(1,1), \mathcal{C}(1,2), \mathcal{C}(2,1), \mathcal{C}(2,2)$. The composition rule $f \circ id_1 = id_2 \circ f : 1 \to 2$. The identity morphisms: id_1 and id_2 .

b)Unit: $f \circ id_1 = f$ and $id_2 \circ f = f$. Associative: $f \circ id_1 = id_2 \circ f$.

Exercise 3

If there are no identity morphisms id_c and id_d , then we can't affirm an isomorphism with $g = f^{-1}$, given that we can't prove $g \circ f = id_c$ and $f \circ g = id_d$?

Exercise 4

a) Following associative, but not unity law:

$$1 \stackrel{f}{\underset{q}{\longleftrightarrow}} 2$$

Here if $h = f \circ g$, we have $(f \circ g) \circ h = f \circ (g \circ h) = f$, but since there aren't any identity morphisms unity is not followed.

b)Following unit, but not associative law: Can build free categories where each object has an identity morphism?

Exercise 5

- a) The carrier set is \mathbb{N} , operation or function is + and the identity element 0. Unity is followed as any $n \in \mathbb{N} = n$, when e*n or n*e, given that n+0=n. Associativity follows given that addition is commutative.
- b) Here $\text{List}_{\{0,1\}}$ is the carrier set, concatenation the operation, and empty string [] the identity. Unity is followed given that concatenating an empty string to an initial string s will output the s. Associativity isn't followed? Order of concatenation matters?

c) This is because a monoid is a category that only has one homset. Consider the \mathbb{N} carrier set in a). All morphisms in this monoid are of the type $\mathbb{N} \to \mathbb{N}$, with the corresponding monoid operation and identity element. This is the case for any monoid independent of the triple (M, e, \diamond) .

Exercise 6

- a) $id_{12} = 1$ given that for x * 12 = 12 only x = 1 suffices.
- **b)** If $x: a \to b$ and $y: b \to c$ then $y \circ x: a \to c$ implies that if b is divisible by a and c is divisible by b, then c is divisible by a, which follows given that division is transitive.
- c) If \mathcal{P} would be given by all \mathbb{N} , then the previous arguments wouldn't work because division by 0 is undefined.

Exercise 7

Let

True =
$$\lambda x.(\lambda y.x)$$

False = $\lambda x.(\lambda y.y)$
AND = $\lambda p.(\lambda q.(pq)p)$
OR = $\lambda p.(\lambda q.(pp)q)$

If we have (AND True) False, this will evaluate to

(AND True)False =
$$\lambda p.(\lambda q.(pq)p)$$
(True)(False)
= True False True
= False

For (OR False)True

(OR False)True =
$$\lambda p.(\lambda q.(pp)q)$$
(False)(True)
= False False True
= True

Exercise 8

The Y combinator is defined as follows

$$Y = \lambda f.((\lambda x. f(xx))(\lambda x. f(xx)))$$

Yg will then be computed as

$$Yg = \lambda f.((\lambda x. f(xx))(\lambda x. f(xx)))g$$

$$= \lambda f.(f((\lambda x. f(xx))(\lambda x. f(xx)))g$$

$$= g((\lambda x. g(xx))(\lambda x. g(xx)))$$

$$= g(\underbrace{g((\lambda x. g(xx))(\lambda x. g(xx)))}_{Y g})$$

$$Yg = g(Yg) = g(g(Yg)) = \dots$$