

Instructor: 盧子彬

Group 7 Team members: 余奇祐、黃慶杰

- A Data Introduction and management
- Support Vector Machine (SVM)
 - Modeling
 - Comparisons
 - Results
- Classification And Regression Tree (CART)
 - Modeling
 - Comparisons
 - Results
- **D** Conclusion and Discussion

Data Introduction

Introduction

Variables

- Amount of the given credit (individual consumer and his/her family)
- Gender (1 = male; 2 = female)
- Education (1 = graduate school; 2 = university; 3 = high school; 4 = others)
- Marital status (1 = married; 2 = single; 3 = others)
- Age (year)

Basic information

Introduction

Data Management

Variables

- The repayment status from April to September in 2005
 - → sum positive months
- Amount of bill statement from April to September in 2005
 - → max amount of bill statement
- Amount paid from April to September in 2005
 - → max amount paid

Recoded variables

Variables

- The repayment status from April to September in 2005
- Amount of bill statement from April to September in 2005
- Amount paid from April to September in 2005

PC 1

Introduction

Data Management

Data Set A

Basic
Information

Basic
Variables

Basic
Variables

PC 1

Compare two datasets:

- Data set A (recoded variables)
- Data set B (PC 1)
- Compare four kernels:
 - Linear
 - Polynomial
 - Radial
 - Sigmoid

10-fold cross-validation accuracy rate

SVM with a polynomial Kernel visualization

Loading.....

SVM with a polynomial Kernel visualization

Created by: Udi Aharoni

SVM – Comparisons

10-fold cross-validation accuracy rate

- Data set A is better than Data set B.
- Sigmoid performed worst.

	Linear	Polynomial	Radial	Sigmoid
Data set A	80.37%	80.34%	80.39%	71.73%
Data set B	77.88%	77.88%	77.88%	65.69%

SVM – Comparisons

Running time

Linear spent the least time.

	Linear	Polynomial	Radial	Sigmoid
Data set A	8.29 mins	10.67 mins	29.89 mins	10.11 mins
Data set B	3.44 mins	1.39 hours	25.14 mins	12.89 mins

SVM - Results

Based on the 10-fold cross-validation accuracy rate and running time, **SVM with linear kernel** applying to **Data set A** may be preferable.

CART – Modeling

- 1. Compare two datasets:
 - Data set A (recoded variables)
 - Data set B (PC 1)

 \sim

3. 10-fold cross-validation accuracy rate

- Tree: minbucket = 100 and maxdepth = 5
- Random forest: number of tree = 500
 and number of variable = 3

CART – Comparisons

10-fold cross-validation accuracy rate

- Data set A is better than Data set B.
- Tree is better than random forest.

	Tree	Random forest
Data set A	80.46%	79.98%
Data set B	77.88%	76.35%

CART – Comparisons

Running time

Tree computed faster than random forest.

	Tree	Random forest
Data set A	5.33 secs	3.47 mins
Data set B	1.38 secs	3.14 mins

CART - Results

• The repayment status (recoded) CART model with Data set A is informative.

The third split performed poor.

Conclusion

Origin data: 77.88% (No) versus 22.12 (Yes)

SVM with linear kernel for Data set A: 80.37%

CART for Data set A: 80.46%

Depends on user!

- Data typing error
- Lack of other features
- Another classification approach

Final Discussion

Introduction SVM CART Conclusion

• • • • • • • • • • • • •