

Universidade do Sul de Santa Catarina Curso de Ciência da Computação

Modelos Evolucionários e Tratamento de Incertezas

Semestre Letivo: 2019/2

Professor: Max (<u>max.pereira@unisul.br</u>)

AVALIAÇÃO I

Questões.

- 1. **(0,5)** Suponha que desejamos otimizar um parâmetro inteiro no intervalo -10 a 10. Quantos *bits* devemos usar no nosso cromossomo?
- 2. **(1,0)** Por que precisamos do operador de *crossover*? Por que não fazer um algoritmo genético que use apenas a mutação?
- 3. **(0.5)** A taxa de mutação associada a um algoritmo evolucionário deve ser alta ou baixa? Justifique.
- 4. (1,0) Conhecer o modelo significa conhecer como o sistema funciona. Com base nessa afirmação e simplificando os tipos de problemas em otimização, modelagem e simulação, construa diagramas (entrada, modelo e saída) identificando os componentes para cada tipo de problema.
- 5. **(1.5)** Utilizando o cromossomo abaixo aplique o operador de mutação para uma representação de permutação, conforme solicitado:

2	3	1	4	6	5

- a) Swap
- b) Inserção

6. **(1.5)** Com base nos dois cromossomos abaixo aplique o operador de *crossover*, utilizando o método *cut-and-crossfill*. Ponto de corte = 3

Indivíduo 1: 5, 6, 8, 1, 9, 7, 2, 3, 4 Indivíduo 2: 4, 5, 1, 9, 3, 2, 7, 8, 6

- 7. **(1,0)** Quantos indivíduos o esquema abaixo representa. Γ ={a,b,c, d, e, f, *} ab**fe*c
- 8. **(1.5)** A tabela a seguir apresenta os indivíduos (representações usando árvores) e suas respectivas alturas e valor de avaliação. Supondo que a altura máxima definida seja 3, recalcule os valores de avaliação aplicando a técnica de <u>pressão pela parcimônia</u>.

Indivíduo (representação)	Altura (h)	Fitness (avaliação)	Nova avaliação
1	4	23,9	
2	3	22	
3	5	25,5	
4	5	30,8	
5	2	21,0	

$$\begin{cases} c = 1, h \le h \max \\ c = \frac{1}{(h-1)}, h \ge h \max \end{cases}$$

9. **(1.5)** Seja a população e suas respectivas avaliações dadas pela tabela a seguir. Calcule quantos indivíduos contendo o esquema 1*0** devem estar presentes na próxima geração.

Indivíduo	Avaliação
01101	170
11000	570
01000	65
10011	360

PENSE!

Nota 9,5	PUNDIUS CO SEE SEE SEE THE
	22 Son
**************************************	otimistado a la intensa o esta de constante de constante de suma de constante de co
	Incorreto! 5 bits.
	MAP = 23 ! 455 = 2364 T = 5,68, 19,7,2,34 Vicando ut mo casshi 2 = 4,5,1,6,8,9,7,2,3,2,7 2 = 4,5,2,6,8,9,7,2,3,2,7 (7-1) = 216 squemos (7-1) = 216 squemos
	3 January 1 1/2 1/25 20) / 1 = 291, 25 X= (170 + 570 + 65 + 360) / 1 = 291, 25 X= (170 + 570 + 65 + 360) / 1 = 291, 25 X= (170 + 570 + 65 + 360) / 1 = 291, 25 X= (170 + 570 + 65 + 360) / 1 = 291, 25 X= (170 + 570 + 65 + 360) / 1 = 291, 25 X= (170 + 570 + 65 + 360) / 1 = 291, 25 X= (170 + 570 + 65 + 360) / 1 = 291, 25 NOVE LABOR NOVE LABOR Simulation of the second of t