sort 16.10.17, 2:23

```
In [2]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   %pylab inline
```

Populating the interactive namespace from numpy and matplotlib

$$M = \frac{N}{P}$$

Out[3]:

	Т	N	М	Р
0	0.001247	10000	10000	1
1	0.077731	1010000	1010000	1
2	0.133625	2010000	2010000	1
3	0.207314	3010000	3010000	1
4	0.272096	4010000	4010000	1

А у стандартной сотрировки по-прежнему возьмем лучший результат.

Out[4]:

	Т	N
90	0.000613	10000
61	0.061280	1010000
92	0.127809	2010000
3	0.186800	3010000
124	0.250233	4010000

sort 16.10.17, 2:23

```
In [5]: plt.figure(figsize=(15, 10))

for p in [1, 2, 4, 8, 16]:
        plt.plot(parallel[parallel['P'] == p]['N'], np.array(parallel[parallel])

# plt.scatter(parallel[parallel['P'] == p]['N'], parallel[parallel]

plt.plot(qsort['N'], np.array(qsort['T']), alpha=1, label='QSort')

# plt.scatter(qsort['N'], qsort['T'], label='QSort')

plt.title('T(N)', y=1.03, fontsize=22)

plt.xlabel('N', fontsize=16)

plt.legend(fontsize=16)

plt.legend(fontsize=12)

plt.grid()

plt.show()
```

