Change point detection in mobile advertising

Nina Golyandina, Kliment Merzlyakov

Saint Petersburg State University Mathematical faculty Applied statistics department

> Saint Petersburg 2018

Content

- Change point detection
 - What is change point detection?
 - Real world examples of change point detection
 - Reasons to detect change points
- Change point detection techniques
- Airpush cases
 - Fraud elimination
 - Trend extraction
 - Smart alerts

What is change point detection?

- Change point point in time series where some significant change occurred
- Change point detection group of methods to find change points in time series

Types of change points

- Trend change
- Mean change
- Variance change
- Single point change
- Period change
- Structure change

Change point examples

Common graph

Common graph with trend

Change point examples

Common graph without trend

Common graph periodic frequency

Mean change

Variance change

Trend change

Point change

Structure change

Reasons to detect change points

- Searching issues in historical data
- Reacting on changes quickly
- Extracting trend more accurately

Airpush cases. Fraud elimination

- Apps minutely requests data
- Red flag: strong pattern.
- Can be a automated bots behind pattern

Clean application

Fraud application

Airpush cases. Fraud elimination

- Goal: to be able to find such apps automatically
- We can reach this goal using frequency analysis

The framework can be described as follows:

- Apply logarithm to time series to stabilyze amplitude
- Remove trend (low frequent part) from time series
- Apply Fourier transform to time series
- Estimate the distribution of periodogram values
- Compare distributions of each application with a distribution of white noise (which is exponential) using Kullback-Leibler divergence
- $oldsymbol{0}$ If divergence > threshold, then application is marked as suspicious

Clean application

Fraud application

Clean application

Fraud application

Clean application

Fraud application

Airpush cases. Fraud elimination 5. Compare distributions

• Clean app score: 0.09

• Fraud app score: 1.87