			-					
Reg. No.								
	NE CONT		AMETINE A	TION	R/FAX	7 2022		
ech (Inte				HON,	IVLA	2023		
		Semester						

B.Tech/ M.Te

21GNH101J - PHILOSOPHY OF ENGINEERING

(For the candidates admitted from the academic year 2022-2023)

Note: (i) (ii)	Part - A should be answered in OMR shover to hall invigilator at the end of 40 th m Part - B and Part - C should be answered	ninute	.	t shoul	d be	han	ded
Time: 3	Hours			Max.	Ma	rks:	75
	$PART - A (20 \times 1 =$	= 20N	(farks)	Marks	BL	со	PO
(d)	Answer ALL Q			1	1	1	1
1.	The earliest Civil Engineer is known	by na	ame	1	1	1	1
	(A) Imhotep	(B)	Babylon				
	(C) Teotihulan	(D)	Saqqara				
	TTI			1	1	1	1
2.	The term engine is derived from	(R)	Latin				
	(A) Greek	` '	Arabic				
	(C) English	(D)	Alabic				
3	Modern ERA is between			1	1	1	1
٥.	(A) 1114 and 1200	(B)	1104 and 1200				
	(C) 1174 and 1200		1074 and 1200				
	(C) 1177 and 1200	()					
4.	The first steam engine was built in			1	1	1	1
	(A) 1947	(B)	1698				
	(C) 1998	(D)	1647				
				1	1	2	1
5.	belongs to the major branch o	of me	etaphysics.	•	-		
	(A) Physiology		Biology			à c	
	(C) Ontology	(D)	Sociology				
6.		epts	depending both on a particular	1	1	2	1
	domain and task						
	(A) Reference		Application				
	(C) Theoretical	(D)	Metaphysical				
7	What happens in the first stage of pro	duct	life cycle?	1	1	2	1
1.	(A) Product development	(R)	Product growth				
	(C) Product maturity		Product decline				
	(C) Floduct maturity		110000000000000000000000000000000000000				
8.	When a product is in its decline stag selling price will be	ge of	its product life cycle, the average	, 1	1	2	1 ,
	(A) Higher	(B)	Average				
	(C) As decided by manufacturer	, ,	Lower				
	(0) 110 0001000 0)	` '					

31MF1/2-21GNH101J Page 1 of 3

9.		is the study of the natural v	vorld a	S 1t 1S	1	2	3	1
	(A)	Engineering	(B)	Social				
		Technology		Science				
	(-)	=	(1)	Belefice				
10	Dec	ion no in moleculate the		1				
IV.	Des	igh as is related to the	concer	otualization stages of making new	1	I	3	1
	-	lucts						
		Activity	(B)	Planning				
-	(C)	Execution	(D)	Epistemology				
11.	Hol	land's theory describes	numbe	er of basic personality types.	1	2	3	1
	(A)	2	(B)					
	(C)	6	(D)					
				_				
12.		focus on ideas		-	1	2	3	1
		Creators	(R)	Helpers				-
	(C)	Thinkers		-				
	(0)		(D)	Doers				
13	The	test your hymothesis ha			,			
13.	(4)	test your hypothesis by	doing	an experiment	1	1	4	1
	(A)	Scientific method						
	(C)	Holland code	(D)	Engineering method				
14.		number of parts are invol	ved in	evaluation phase.	1	I	4	1
	(A)	2	(B)					
	(C)	6	(D)	8				
			. ,	•				
15.	The	final stage of engineering desig	n nroc	ess is	1	1	4	1
	(A)	Define problem	(R)	Pasagrah idang	_		·	
	(C)	Communicate results	(D)	Establish constraints				
	(0)	Communicate resurts	(D)	Establish constraints				
16	The	prototyma aroution is involved:	_	1 0 11 11				
10.	(4)	prototype creation is involved in	n	phase of addie model.	1	1	4	1
		Evaluation phase	(B)	Implementation phase				
	(L)	Development phase	(D)	Design phase				
1 =								
17.		is the most discussed aspec	ct of su	stainability.	1	2	5	1
	(A)	Environment	(B)	Economic				
	(C)	Ethical	(D)	Equity				
			()	1 3				
18.	The .	American Association of Engine	eerino	Societies was established in	1	2	5	1
	(A)	1997		1979	-	~	2	•
		1897	. ,	1889				
	(0)	1057	(D)	1009				
10	Dorre	lonmont which		C				
19.	Deve	applient which meets the n	eeds (1	1	5	1
	comp	promising the ability of future g						
		Sustainability	(B)	Diversity				
	(C)	Equity	(D)	Integrity				
				- 6				
20.		are involved in planning an	d man	aging projects	1	2	5	1
	(A)	Actors.		Teachers				
		Doctors	` '	Engineers				
	` /			Luguitto				

Page 2 of 3

31MF1/2-21GNH101J

	PART – B $(4 \times 10 = 40 \text{ Marks})$ Answer ANY FOUR Questions	Marks	BL	CO	PO
21.	. Explain briefly on non-motivated functions.	10	1	1	1
22.	. Explain reference ontology with regard to application ontology.	10	1	2	1
23.	. What are the four dimensions of engineering? Write short notes on these dimensions.	10	1	3	1
24.	Differentiate between scientific method and engineering design.	10	1	2	1
25.	What do you mean by CDIO engineers in industry? Explain in detail.	10	1	4	1
26.	Mention the professional organizations available for engineers with a detailed note.	10	1	5	1
	PART – C (1 × 15 = 15 Marks) Answer ANY ONE Question	Marks	BL	CQ	PO
27.	What do you mean by product life cycle? Explain its stages in detail.	15	1	2	1
28.	Give detailed notes on RAISEC model.	15	1	2	1
