Computational Anatomy Toolbox

Christian Gaser Structural Brain Mapping Group

Departments of Neurology and Psychiatry | Jena University Hospital

Computational Anatomy

Voxel-based morphometry

Structural plasticity

Surface-based morphometry

Aging / Dementia

Voxel-based Morphometry (VBM)

Processing Data

Motivation for Surface-Based Analysis

Advantages of surface-based approaches

- Analysis of additional parameters (cortical thickness, gyrification, fractal dimension, sulcal depth)
- Visualization
- Advantages for spatial registration (analysis in surface space)
- Euclidiar

Filterung

Predefined Regions of Interest

Surface atlases:

- Desikan-Killiany (2005)
- Destrieux (2009)

3D atlases:

- Neuromorphometrics
- Hammers
- LPBA40
- Mori
- AAL
- Hippocampal subfields / amygdala
- Cerebellar lobes (Larsell)

Estimation of Cortical Inickness and Surface

Projection-based Thickness (PBT) - WM distance map

Dahnke et al. Neurolmage 2012

Surface Preprocessing

- Skull-stripping: removal of skull and background
- Segmentation (with bias correction, denoising)
- Filling of subcortical areas
- Partitioning of both hemispheres and removal of cerebellum
- Reconstruction of sulci

Surface-based Coordinate System

Detection of Topology Defects

Spherical projection

Detection of overlaps

Topology Correction: Results

"cut"

"fill"

Topology Correction: Results

Surface-based Registration

Template

Coordinate Transformation

Spherical coordinate system

Cartesian 2D coordinate system

2D-Registration

Source

Non-linear

Registration

1

Template

DARTEL

Iteration 1 - 6

Diffeomorphic Anatomical Registration Through Exponential Lie Algebra

Ashburner & Friston Neurolmage 2007

Registration: Validation

Gyrification Index

Inner contour

Zilles et al., Anat Embryol 1988

Traditional gyrification index Relation between inner and

- Relation between inner ar outer contour of cortex in coronal slices
- relatively stable after 5-7
 years -> sensitive marker
 for neurodevelopmental
 effects

Armstrong et al., Cerebral Cortex 1995

3D-Gyrifizierungsindex

 Relation between inner and outer surface

Sex effects Lüders et al., Neuroimage 2006 Williams Syndrom Gaser et al., Neuroimage 2006 Correlation with IQLüders et al., Cerebral Cortex 2007

Fractal Dimension

Coast line of England (Source: Wikipedia)

0.5

Log (r)

1.5

Fractal Dimension

Fractal Dimension

Folding Measures

gyrification (smoothed 15mm) (absolute mean curvature)

fractal dimension

sulcal depth (smoothed 15mm)

Musicians vs. Non-musicians

PrecG L

HG L

SPC R

Gaser & Schlaug, J Neurosci 2003

Musical Training - Single subject

Juggling and the Brain?

"Juggling will let your brain grow."

Learning and Structural Plasticity

12 volunteers

- 3 months training of a 3-ballcascade
- followed by 3 months with our training

12 controls

no juggling

Draganski et al., Nature 2004

Brain age prediction

BrainAGE score = Predicted age - true age

Example Data: ADNI

25 patients with Alzheimer's Disease (AD)

10 males, 15 females, mean age 75.97±7.1 years; mean MMSE 23.48±2.35

25 healthy control subjects

10 males, 15 females, mean age 77.96±6.41 years; mean MMSE 28.75±1.48

Quality Assurance

ADNI - Gray Matter

Voxel-based Morphometry GM p<0.05 (FEW corrected)

ROI-based Morphometry GM q<0.01 (FDR corrected)

ADNI - White Matter / DBM

Voxel-based Morphometry WM p<0.05 (FEW corrected)

Deformation-based Morphometry p<0.05 (FEW corrected)

ADNI - Cortical Thickness

Surface-based Morphometry p<0.01 (FEW corrected)

ROI-based Morphometry q<0.01 (FDR corrected)

Neonate Data

Average T₁ with 0.3mm Resolution

Individual Development and Aging

Non-Human Primates

Baboon

Gibbon

posteriorcingulate inferiorparietal precentral transversetemporal precuneus superiorfrontal caudalanteriorcingulate fusiform. parsop ercularis superiorparietal lin gual lateraloccipital isthmuscingulate ro stralanteriorcingulate ro stralmiddlefrontal inferiortemporal cuneus medialorbitofrontal paracentral parahippocampal pericalcarine middletemporal parsorbitalis lateralorbitofrontal insula unknown supramarginal parstriangularis postcentral entorhinal

caudalmiddlefrontal

Thanks to

Jena University Hospital

- Katja Franke
- Robert Dahnke
- Igor Nenadic

University of Pennsylvania

Rachel Yotter

Harvard Medical School

Gottfried Schlaug

UCLA

Eileen Lüders

UKE Hamburg

Arne May