MA5206 GRADUATE ANALYSIS II OUTLINE

NOTATION AND REVIEW

A. Vector spaces

All vector spaces considered in this course will be over the real field \mathbb{R} or the complex field \mathbb{C} . The symbol \mathbb{K} is often used to refer to either of these fields.

Let A and B be subsets of a vector space E and let $\alpha \in \mathbb{K}$. The sets A + B and αA are defined by

$$A + B = \{a + b : a \in A, b \in B\}, \qquad \alpha A = \{\alpha a : a \in A\}.$$

We also let A - B = A + (-1)B. If $x \in E$, then $\{x\} + B$ is also written as x + B.

A subset C of a vector space is **convex** if $\alpha x + (1 - \alpha)y \in C$ for all $x, y \in C$ and all $\alpha \in [0, 1]$. Let A be a subset of a vector space. The **convex hull** of A is the set co A consisting of all points of the form $\sum_{k=1}^{n} a_k x_k$, where $n \in \mathbb{N}$, $x_k \in A$, $a_k \geq 0$ and $\sum_{k=1}^{n} a_k = 1$. The convex hull of A is the smallest convex set containing A.

Let X and Y be vector spaces over the same field (\mathbb{R} or \mathbb{C}). The **direct** sum or product vector space of X and Y is the vector space

$$X \oplus Y = \{(x, y) : x \in X, y \in Y\}$$

with the operations

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \ \alpha(x, y) = (\alpha x, \alpha y).$$

Suppose that Y is a vector subspace of a vector space X. Define an equivalence relation \sim on X by $x \sim y$ if and only if $x-y \in Y$. The equivalence classes are precisely the sets x+Y, where $x \in X$. Note that this representation is not unique, i.e., there may be distinct x and y such that x+Y=y+Y. The **quotient vector space** X/Y is defined as follows. The elements (points) of X/Y are the equivalence classes of \sim . If $x+Y,y+Y \in X/Y$ and $\alpha \in \mathbb{K}$, define

$$(x + Y) + (y + Y) = (x + y) + Y,$$
 $\alpha(x + Y) = \alpha x + Y.$

These operations are well defined (independent of the representation of the equivalence classes) and X/Y is a vector space under these operations.

B. Metric spaces

A **metric space** is a pair (X, d) where X is a nonempty set and $d: X \times X \to \mathbb{R}$ is a function such that

- (1) $d(x,y) \ge 0$ for all $x, y \in X$;
- (2) d(x,y) = 0 if and only if x = y;
- (3) d(x,y) = d(y,x) for all $x, y \in X$;
- (4) $d(x,z) \leq d(x,y) + d(y,z)$ for all $x, y, z \in X$.

For example, \mathbb{K} can be given the **standard metric** d(x,y) = |x-y| for all $x,y \in \mathbb{K}$. A sequence $(x_k)_{k=1}^{\infty}$ in a metric space (X,d) is **convergent** if there exists $x \in X$ such that $\lim_{k\to\infty} d(x_k,x) = 0$. The sequence is **Cauchy** if for any $\varepsilon > 0$, there exists $k_0 \in \mathbb{N}$ such that $d(x_j,x_k) < \varepsilon$ for all $j,k \geq k_0$. (X,d) is **complete** if every Cauchy sequence in X is convergent.

A metric space is a special case of a *topological space*, which will be discussed below.

1. A CRASH COURSE ON GENERAL TOPOLOGY

A topology on a set X is a collection \mathcal{T} of subsets of X such that

- (1) $\emptyset, X \in \mathcal{T}$;
- (2) $U \cap V \in \mathcal{T}$ if $U, V \in \mathcal{T}$;
- (3) $\cup_{\alpha} U_{\alpha} \in \mathcal{T}$ if (U_{α}) is any collection of sets in \mathcal{T} .

Elements of the topology \mathcal{T} are called **open sets** in X. A **closed set** in X is a set W such that its complement W^c is open. A **topological space** is a set X together with a topology \mathcal{T} on X. A topological space (X,\mathcal{T}) is **Hausdorff** if for every pair of distinct points x and y in X, there are open sets U, V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Let A be a set in a topological space X. The **interior of** A, denoted by int A, is the union of all open subsets of A. The **closure of** A, denoted by \overline{A} , is the intersection of all closed sets in X containing A. \overline{A} is a closed set.

Proposition 1. Let (X, \mathcal{T}) be a topological space.

- (1) The sets \emptyset and X are closed.
- (2) If F_1, \ldots, F_n are closed sets in X, then $F_1 \cup \cdots \cup F_n$ is a closed set,
- (3) If F_{α} is a closed set for each α , then $\cap F_{\alpha}$ is a closed set.
- (4) For any subset A of X, a point $x \in \overline{A}$ if and only if for any open set U containing $x, U \cap A \neq \emptyset$.

A basis for a topology \mathcal{T} on a set X is a subset \mathcal{B} of \mathcal{T} such that for all $x \in X$ and all $U \in \mathcal{T}$ with $x \in U$, there exists $B \in \mathcal{B}$ such that $x \in B \subseteq U$.

Proposition 2. Suppose that \mathcal{B} is a collection of subsets of X such that (i) every $x \in X$ is contained in some set $U \in \mathcal{B}$, (ii) for all $x \in X$ and all $U, V \in \mathcal{B}$ such that $x \in U \cap V$, there exists $W \in \mathcal{B}$ with $x \in W \subseteq U \cap V$. Let \mathcal{T} be the collection of all arbitrary unions of members of \mathcal{B} . (Including the empty set, which is taken to be the union of an empty collection.) Then \mathcal{T} is a topology on X and \mathcal{B} is a basis for \mathcal{T} . Moreover, \mathcal{T} is the only topology on X that has \mathcal{B} as a basis.

Remark. Proposition 2 says that any basis generates only one topology. However, a topology may have more than one basis.

As an example, let us specify a basis for the topology on a metric space. Let (X,d) be a metric space. If $x \in X$ and r > 0, the **ball** centered at x with radius r is the set

$$B(x,r) = \{ y \in X : d(x,y) < r \}.$$

The set \mathcal{B} of all balls in X is a basis for a topology on X (Check!), called the **metric topology**. The metric topology on a metric space is Hausdorff.

1.1. Subspace topology. Let (X, \mathcal{T}) be a topological space and let Y be a subset of X. Then

$$\mathcal{T}_Y = \{U \cap Y : U \in \mathcal{T}\}$$

is a topology on Y (Check!), called the **subspace topology** on Y.

Proposition 3. Let (X, \mathcal{T}) be a topological space and let Y be a subset of X. A subset F of Y is closed in the subspace topology if and only if there is a closed set H in X such that $F = H \cap Y$.

1.2. **Product topology.** Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two topological spaces. Define a basis for a topology on $X \times Y$ by $\mathcal{B} = \{U \times V : U \in \mathcal{T}_1, V \in \mathcal{T}_2\}$ (Check!). The topology generated by \mathcal{B} is called the **product topology** on $X \times Y$.

Let $(X_{\alpha}, \mathcal{T}_{\alpha})_{\alpha \in I}$ be a collection of topological spaces. Take X to be the Cartesian product $X = \prod_{\alpha \in I} X_{\alpha}$. Thus $X = \{(x_{\alpha})_{\alpha \in I} : x_{\alpha} \in X_{\alpha} \text{ for all } \alpha\}$. If J is a finite subset of I and U_{α} is a set in \mathcal{T}_{α} for each $\alpha \in J$, let

$$\prod_{\alpha \in J} U_{\alpha} = \{ (x_{\alpha})_{\alpha \in I} \in X : x_{\alpha} \in U_{\alpha} \text{ for all } \alpha \in J \}.$$

The collection of all such sets is a basis for a topology on X (Check!), called the **product topology**. The product topology is Hausdorff if each $(X_{\alpha}, \mathcal{T}_{\alpha})$ is Hausdorff.

1.3. Quotient topology. Let (X, \mathcal{T}) be a topological space and let $q: X \to Y$ be a surjective map from X onto a set Y. Define

$$\mathcal{T}_Y = \{ U \subseteq Y : q^{-1}(U) \in \mathcal{T} \}.$$

Then \mathcal{T}_Y is a topology on Y called the **quotient topology** (induced by q).

1.4. **Continuous functions.** Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be topological spaces. A function $f: X \to Y$ is said to be **continuous** at a point $x_0 \in X$ if for any open set V in Y containing $f(x_0)$, there exists an open set U in X containing x_0 such that $f(U) \subseteq V$. f is continuous on X if it is continuous at every point in X.

Proposition 4. If \mathcal{T}_1 and \mathcal{T}_2 are metric topologies generated by metrics d_1 and d_2 respectively, then f is continuous at x_0 if and only if $(f(x_n))_{n=1}^{\infty}$ converges to $f(x_0)$ for every sequence $(x_n)_{n=1}^{\infty}$ in X that converges to x_0 .

Theorem 5. Let $f: X \to Y$ be a function from a topological space (X, \mathcal{T}_1) to a topological space (Y, \mathcal{T}_2) . The following are equivalent.

- (1) f is continuous on X.
- (2) $f^{-1}(V)$ is open for every open set V in Y.
- (3) $f^{-1}(W)$ is closed for every closed set W in Y.

Proposition 6. Let (X, \mathcal{T}) be a topological space and let $(Y_{\alpha}, \mathcal{T}_{\alpha})$, $\alpha \in I$, be topological spaces. Set $Y = \prod_{\alpha \in I} Y_{\alpha}$ and let \mathcal{T}' be the product topology on Y. For each $\beta \in I$, let $\pi_{\beta} : Y \to Y_{\beta}$ be the map $\pi_{\beta}((y_{\alpha})) = y_{\beta}$. A function $f: X \to Y$ is continuous if and only if $\pi_{\beta} \circ f$ is continuous for each $\beta \in I$.

Proposition 7. Let (X, \mathcal{T}) be a topological space and let $q: X \to Y$ be a surjective map from X onto a set Y. Let \mathcal{T}_Y be the quotient topology induced by q. For any topological space (Z, \mathcal{T}_Z) , a function $f: Y \to Z$ is continuous if and only if $f \circ q$ is continuous from X to Z.

1.5. Compact spaces. Let (X, \mathcal{T}) be a topological space. A subset K of X is compact if given any collection of open sets \mathcal{U} in X such that $K \subseteq \bigcup_{U \in \mathcal{U}} U$, there are finitely many sets $U_1, \ldots, U_k \in \mathcal{U}$ such that $K \subseteq U_1 \cup \cdots \cup U_k$.

Proposition 8. Let (X, \mathcal{T}) be a Hausdorff topological space. If K is a compact subset of X, then K is closed.

The following result is well known.

Theorem 9. Let (X, d) be a metric space and let K be a subset of X. The following are equivalent.

- (1) K is compact in the metric topology.
- (2) Every sequence in K has a subsequence that converges to an element of K.
- (3) K is complete and totally bounded.

Recall that a subset K of a metric space X is **totally bounded** if for any $\varepsilon > 0$, there exist finitely many points x_1, \ldots, x_n in X (or, equivalently, in K) such that $K \subseteq \bigcup_{i=1}^n B(x_i, \varepsilon)$.

Theorem 10. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be topological spaces. If K is a compact subset of X and $f: X \to Y$ is continuous, then the image f(K) is compact.

Corollary 11. (Extreme value theorem) Let (X, \mathcal{T}_1) be a topological space. If K is a compact subset of X and $f: X \to \mathbb{R}$ is continuous, then there exist $x_1, x_2 \in K$ such that $f(x_1) \leq f(x) \leq f(x_2)$ for all $x \in K$.

The following theorem is an important result in general topology. We assume it without proof.

Theorem 12. (Tychonoff's Theorem) Let $(X_{\alpha}, \mathcal{T}_{\alpha})_{\alpha \in I}$ be a collection of compact topological spaces. Then the product space $\prod_{\alpha \in I} X_{\alpha}$ is compact in the product topology.

2. Normed spaces and inner product spaces

It is well known that on \mathbb{R}^n or \mathbb{C}^n , one can define an inner product and the length (or norm) of a vector, as follows:

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k \overline{y_k}$$
 and $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{k=1}^{n} |x_k|^2}$,

where $x = (x_k)_{k=1}^n$ and $y = (y_k)_{k=1}^n$. We wish to generalize these notions to any vector space.

Definition 13. Let X be a vector space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . An inner **product** on X is a function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$ that satisfies the following properties.

- (1) $\langle x, x \rangle \geq 0$ for all $x \in X$,
- (2) $\langle x, x \rangle = 0$ if and only if x = 0,
- (3) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in X$,
- (4) $\langle \alpha x + y, z \rangle = \alpha \langle x, z \rangle + \langle y, z \rangle$ for all $\alpha \in \mathbb{K}$ and all $x, y, z \in X$.

A vector space together with an inner product defined on it is called an inner product space.

Example 14. (1) \mathbb{R}^n or \mathbb{C}^n are inner product spaces with the inner product defined above.

(2) Let (Ω, Σ, μ) be a measure space. Define $\langle \cdot, \cdot \rangle : L^2(\Omega, \Sigma, \mu) \times L^2(\Omega, \Sigma, \mu) \to \mathbb{K}$ by

$$\langle f,g\rangle = \int f\overline{g}\,d\mu \text{ for all } f,g\in L^2(\Omega,\Sigma,\mu).$$

 $\langle \cdot, \cdot \rangle$ satisfies properties (1), (3) and (4) in Definition 13. However, $\langle f, f \rangle = 0$ only implies that f = 0 a.e. It is customary to adopt the convention that two functions in $L^2(\Omega, \Sigma, \mu)$ are treated as the same element if f = g a.e. In particular, f = 0 a.e. means that f is the 0 element in $L^2(\Omega, \Sigma, \mu)$. Then condition (2) in Definition 13 is satisfied as well.

- (3) Take (Ω, Σ, μ) be the set $\{1, \ldots, n\}$ with the counting measure. Then $L^2(\Omega, \Sigma, \mu)$ with the inner product in (2) coincides with \mathbb{R}^n or \mathbb{C}^n with the inner product in (1).
- (4) Take (Ω, Σ, μ) to be \mathbb{N} with the counting measure. $L^2(\Omega, \Sigma, \mu)$ is usually called ℓ^2 in this case. The inner product defined in (2), when applied to ℓ^2 , is given by

$$\langle x, y \rangle = \sum_{k=1}^{\infty} x_k \overline{y_k},$$

where $x = (x_k)_{k=1}^{\infty}, y = (y_k)_{k=1}^{\infty}$ are elements in ℓ^2 .

All examples above are essentially of the same kind: L^2 . We will see later on that this is not a coincidence.

Definition 15. Let X be a vector space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . A norm on X is a function $\|\cdot\|: X \times X \to \mathbb{R}$ that satisfies the following properties.

- (1) $||x|| \ge 0$ for all $x \in X$,
- (2) ||x|| = 0 if and only if x = 0,
- (3) (Homogeneity) $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{K}$ and all $x \in X$,
- (4) (Triangle inequality) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

A vector space together with a norm defined on it is called a **normed space**.

Example 16. (1) Let (Ω, Σ, μ) be a measure space and let $1 \leq p \leq \infty$. Consider the space $L^p(\Omega, \Sigma, \mu)$, where once again two functions that are equal a.e. are treated as the same element in $L^p(\Omega, \Sigma, \mu)$. Define

$$\|\cdot\|_p: L^p(\Omega, \Sigma, \mu) \to \mathbb{R} \ by \|f\|_p = (\int |f|^p d\mu)^{1/p}, 1 \le p < \infty$$

or $||f||_{\infty} = essential supremum of |f|$. Then $||\cdot||_p$ is a norm on $L^p(\Omega, \Sigma, \mu)$. (The triangle inequality is Minkowski's inequality).

(2) If (Ω, Σ, μ) is the set $\{1, \ldots, n\}$ with the counting measure, then $L^p(\Omega, \Sigma, \mu)$ is also denoted as $\ell^p(n)$. Thus $\ell^p(n)$ is the vector space \mathbb{R}^n or \mathbb{C}^n endowed with the p-norm

$$||x|| = (\sum_{k=1}^{n} |x_k|^p)^{1/p} \text{ or } \max_{k} |x_k| \text{ for } p = \infty, \text{ if } x = (x_k)_{k=1}^m.$$

- (3) If (Ω, Σ, μ) is the set \mathbb{N} with the counting measure, then $L^p(\Omega, \Sigma, \mu)$ is usually denoted by ℓ^p .
- (4) Let K be a compact Hausdorff topological space and let C(K) be the space of all scalar valued (i.e., real or complex valued) functions on K. Then C(K) is a normed space with the norm

$$||f|| = \sup_{t \in K} |f(t)|.$$

Proposition 17. (Cauchy-Schwarz inequality) Let X be an inner product space. For any $x, y \in X$,

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle.$$

Example 18. Let X be an inner product space with inner product $\langle \cdot, \cdot \rangle$. Then the equation $||x|| = \sqrt{\langle x, x \rangle}$ defines a norm on X.

Example 18 tells us that every inner product space is a normed space. In turn, every normed space is a metric space.

Proposition 19. Let X be a normed space with norm $\|\cdot\|$. Define $d: X \times X \to \mathbb{R}$ by $d(x,y) = \|x-y\|$. Then d is a metric on X.

Thus we have the inclusions

inner product spaces \subseteq normed spaces \subseteq metric spaces.

If a normed space is complete with respect to the metric generated by the norm, then it is called a **Banach space**. If an inner product space is

complete with respect to the metric generated by the norm generated by the inner product, then it is called a **Hilbert space**. Similar to the inclusions above, we have

Hilbert spaces \subseteq Banach spaces \subseteq complete metric spaces.

- **Example 20.** (1) If $1 \le p \le \infty$ and (Ω, Σ, μ) is a measure space, then $L^p(\Omega, \Sigma, \mu)$ is a Banach space. This follows from the Riesz-Fischer Theorem.
 - (2) In particular, $L^2(\Omega, \Sigma, \mu)$ is a Hilbert space.
 - (3) The space C(K) from Example 16(4) is a Banach space. (Check!)
- 2.1. Subspaces, direct sums and quotient spaces. It is possible to construct new inner product spaces/normed spaces from existing ones. We describe here two basic constructions.

Proposition 21. (Subspaces) Let X be an inner product space (respectively, a normed space) and let Y be a vector subspace of X. Then Y is an inner product space (respectively, a normed space) with the inner product (respectively, norm) inherited from X.

Let X be a Hilbert space (respectively, a Banach space) and let Y be a subspace of X. Then Y (as a subspace of X) is a Hilbert space (respectively, a Banach space) if and only if it is a closed set in X.

Example 22. Let $X = \ell^{\infty}$, the space of all bounded scalar sequences with the sup-norm $||x|| = \sup_k |x_k|$, where $x = (x_k)_{k=1}^{\infty}$. Then X is a Banach space

- (1) Define c to be the subspace of X consisting of all $x = (x_k)_{k=1}^{\infty}$ such that $\lim_k x_k$ exists (in \mathbb{K}). Then c is a closed subspace of X and hence it is also a Banach space.
- (2) Define c_0 to be the subspace of X consisting of all $x = (x_k)_{k=1}^{\infty}$ such that $\lim_k x_k = 0$. Then c_0 is a closed subspace of c and also of X. Hence it is also a Banach space.
- (3) Define c_{00} to be the subspace of X consisting of all $x = (x_k)_{k=1}^{\infty}$ such that the set $\{k : x_k \neq 0\}$ is finite. Then c_{00} is <u>not</u> a closed subspace of X and hence it is <u>not</u> a Banach space.

Proposition 23. (Direct sums) Let X and Y be normed spaces and let $1 \le p \le \infty$. Then $X \oplus_p Y$ is the vector space direct sum

$$X \oplus Y = \{(x, y) : x \in X, y \in Y\}$$

with the norm

$$\|(x,y)\| = (\|x\|^p + \|y\|^p)^{1/p} \text{ or } \max\{\|x\|,\|y\|\} \text{ if } p = \infty.$$

 $X \oplus_p Y$ is a Banach space if and only if both X and Y are Banach spaces.

Proposition 24. (Quotient spaces) Let X be a normed space and let Y be a <u>closed</u> subspace of X. Define $\|\cdot\|_{X/Y}$ on the quotient vector space X/Y

 $(see\ part\ A\ of\ "Notation\ and\ Review")\ by$

$$\|x+Y\|_{X/Y} = \inf\{\|x+y\| : y \in Y\}.$$

Then $\|\cdot\|_{X/Y}$ defines a norm on X/Y. It is called the **quotient norm**. If X is a Banach space, then X/Y is also a Banach space under the quotient norm.

3. Bounded linear operators

Let X and Y be normed spaces. We characterize the continuous linear operators $T: X \to Y$. We will also define a norm on the space of L(X,Y) all continuous linear operators from X into Y.

Proposition 25. Let X and Y be normed spaces and let $T: X \to Y$ be a linear operator. Then the following are equivalent.

- (1) T is continuous on X,
- (2) T is continuous at 0,
- (3) There exists $C \in \mathbb{R}$ such that $||Tx|| \leq C||x||$ for all $x \in X$.

A linear operator T that satisfies condition (3) of Proposition 25 is called a **bounded linear operator**. Thus a bounded linear operator between normed spaces is the same as a continuous linear operator between normed spaces.

Definition 26. Let X and Y be normed spaces. A linear operator $T: X \to Y$ is called an **isomorphism** if T is a bijection and both T and T^{-1} are continuous. If $T: X \to Y$ is an isomorphism from X onto a subspace Z of Y, we say that T is an **into isomorphism** from X into Y. X and Y are said to be **isomorphic** if there is an isomorphism T from X onto Y.

Corollary 27. Let X and Y be normed spaces and let $T: X \to Y$ be a linear operator. Then T is an into isomorphism if and only if there are constants $0 < c \le C < \infty$ so that

$$c||x|| \le ||Tx|| \le C||x||$$
 for all $x \in X$.

Definition 28. Let X and Y be normed spaces. A linear operator $T: X \to Y$ is called an **into isometry** if ||Tx|| = ||x|| for all $x \in X$. X and Y are said to be **isometric** if there is an isometry T from X onto Y.

Example 29. Let c_0 and c be the Banach spaces given in Example 22. Define a map $T: c_0 \to c$ by

$$Tx = (x_1 + x_{k+1})_{k=1}^{\infty}, \text{ where } x = (x_k)_{k=1}^{\infty}.$$

Then T is an isomorphism from c_0 onto c. Thus c_0 and c are isomorphic. T is not an isometry. In fact, c_0 and c are not isometric, i.e., there is no isometry that maps c_0 onto c.

Proposition 30. (Operator norm) Let X and Y be normed spaces. Denote by L(X,Y) the space of all bounded linear operators from X to Y. For any $T \in L(X,Y)$, let

$$||T|| = \sup_{\|x\| \le 1} ||Tx||.$$

This defines a norm on L(X,Y), called the **operator norm**. If Y is a Banach space, then L(X,Y) is complete with respect to the operator norm and thus is a Banach space.

The operator norm can also be expressed in the following ways.

$$||T|| = \sup_{||x|| < 1} ||Tx|| = \sup_{||x|| = 1} ||Tx||.$$

For any $T \in L(X,Y)$ and any $x \in X$, we have $||Tx|| \le ||T|| \, ||x||$.

Example 31. The supremum in the definition of the operator norm: $||T|| = \sup_{\|x\| \le 1} ||Tx||$ cannot be replaced by a maximum in general. That is, the supremum may not be attained. Consider the operator $T: c_0 \to \mathbb{K}$ defined by $Tx = \sum_{k=1}^{\infty} \frac{x_k}{2^k}$, where $x = (x_k)_{k=1}^{\infty}$. Then $T \in L(c_0, \mathbb{K})$, ||T|| = 1 and ||Tx|| < 1 for all $x \in c_0$ with $||x|| \le 1$.

A subset Z of a normed space X is **dense** if the closure of Z, \overline{Z} , is X.

Proposition 32. Let X be a normed space, Y be a Banach space and let Z be a dense subspace of X. Suppose that $S:Z\to Y$ is a bounded linear operator. There is a unique bounded linear operator $T:X\to Y$ such that $S=T_{|Z}$. Furthermore, ||T||=||S||. If S is an isometry, then so is T.

Example 33. Consider the complex Hilbert space $L^2(\mathbb{R})$, where \mathbb{R} is endowed with Lebesgue measure. Recall that the Schwartz class S is the space of all C^{∞} functions f on \mathbb{R} such that $\sup |x^k f^{(j)}(x)| < \infty$ for all $k \in \mathbb{N}$ and all $j \in \mathbb{N} \cup \{0\}$. We may regard S as a subspace of $L^2(\mathbb{R})$. In particular S contains $C_c^{\infty}(\mathbb{R})$, the space of all C^{∞} functions with compact support, which is dense in $L^2(\mathbb{R})$. Hence S is dense in $L^2(\mathbb{R})$.

For $f \in \mathcal{S}$, define the Fourier transform \hat{f} by

$$\widehat{f}(x) = \int f(y)e^{-ixy} d\lambda(y).$$

Then $\hat{f} \in \mathcal{S}$. The map $S: \mathcal{S} \to \mathcal{S} \subseteq L^2(\mathbb{R}, \frac{\lambda}{2\pi})$ given by $Sf = \hat{f}$ is an isometry from \mathcal{S} (with the L^2 -norm) into $L^2(\mathbb{R}, \frac{\lambda}{2\pi})$. By Proposition 32, S extends uniquely to an isometry $T: L^2(\mathbb{R}) \to L^2(\mathbb{R}, \frac{\lambda}{2\pi})$. Furthermore, T maps $L^2(\mathbb{R})$ onto $L^2(\mathbb{R}, \frac{\lambda}{2\pi})$. For any $f \in L^2(\mathbb{R})$, we call Tf the Fourier transform of f.

Remark. It is clear that the Fourier transform defines a bounded linear operator of norm ≤ 1 from $L^1(\mathbb{R})$ to $L^\infty(\mathbb{R},\frac{\lambda}{2\pi})$. Example 33 shows that it also defines a bounded linear operator of norm 1 from $L^2(\mathbb{R})$ to $L^2(\mathbb{R},\frac{\lambda}{2\pi})$. Using an interpolation method, it is possible to show that the Fourier transform defines a bounded linear operator of norm 1 from $L^p(\mathbb{R})$ into $L^q(\mathbb{R},\frac{\lambda}{2\pi})$, where 1 and <math>q = p/(p-1). This result is called the Hausdorff-Young inequality. The Hausdorff-Young inequality cannot be extended to the range 2 .

Every metric space X has a *completion*; that is, a complete metric space Y containing X as a dense subspace. The same is true for normed and inner product spaces.

Proposition 34. (Completion) Let X be a normed space (respectively, an inner product space). There is a Banach space (respectively, Hilbert space) Y so that X is isometric to a dense subspace of Y. If Z is another completion of X, then Y and Z are isometric.

4. Finite dimensional normed spaces

A finite dimensional normed space is a normed space that is finite dimensional as a vector space.

Theorem 35. (1) Let X be an n-dimensional normed space, where $n \in \mathbb{N}$. Then X is isomorphic to $\ell^1(n)$.

- (2) Any two n-dimensional normed spaces are isomorphic.
- (3) Let X be a finite dimensional normed space and let Y be any normed space. Then any linear operator $T: X \to Y$ is bounded.
- (4) Let Y be a finite dimensional subspace of a normed space X. Then Y is closed in X.

Example 36. Suppose that $1 \le p < q \le \infty$. The formal identity $I : \ell^p(n) \to \ell^q(n)$ is an isomorphism. For any $x \in \ell^p(n)$,

$$n^{\frac{1}{q} - \frac{1}{p}} ||x||_p \le ||Ix||_q \le ||x||_p.$$

Let X be a normed space. The set $B_X = \{x \in X : ||x|| \le 1\}$ is called the (closed unit) ball of X.

Theorem 37. Let X be a normed space. Then X is finite dimensional if and only if B_X is compact (with respect to the metric generated by the norm).

Thought question. From Theorem 37, if X is an infinite dimensional normed space, then there is a sequence $(x_k)_{k=1}^{\infty}$ in B_X with no convergent subsequence. Produce such sequences in $\ell^p, L^p[0,1], 1 \le p \le \infty$, and C[0,1].

5. Hilbert space

Proposition 38. (Parallelogram Law) Let X be an inner product space. Then

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$
 for all $x, y \in X$.

Example 39. Consider the space $L^p(\Omega, \Sigma, \mu)$, where $p \neq 2$ and $L^p(\Omega, \Sigma, \mu)$ is at least 2-dimensional. Then the p-norm $\|\cdot\|_p$ fails the Parallelogram Law and hence $L^p(\Omega, \Sigma, \mu)$ cannot be an inner product space with any inner product.

Proposition 40. (Polarization identity) Let X be an inner product space. For any $x, y \in X$,

$$\langle x, y \rangle = \begin{cases} \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) & \text{for real scalars} \\ \frac{1}{4} \sum_{k=1}^4 i^k \|x + i^k y\|^2 & \text{for complex scalars.} \end{cases}$$

Let X be an inner product space. Two vectors $x, y \in X$ are said to be **orthogonal**, written $x \perp y$, if $\langle x, y \rangle = 0$. A set of vectors A is orthogonal if $x \perp y$ whenever, $x, y \in A$ and $x \neq y$. A set of vectors A is **orthonormal** if it is orthogonal and ||x|| = 1 for all $x \in A$.

Proposition 41. Let A be an orthogonal set in an inner product space X such that $x \neq 0$ for all $x \in A$. Then A is linearly independent in X.

Proposition 42. (Gram-Schmidt process) Let $\{x_1, \ldots, x_n\}$ be a linearly independent set of vectors in an inner product space X. There is an orthonormal set $\{e_1, \ldots, e_n\}$ in X such that $\operatorname{span}\{x_1, \ldots, x_k\} = \operatorname{span}\{e_1, \ldots e_k\}$ for all $1 \leq k \leq n$.

Corollary 43. Every finite dimensional inner product space has an orthonormal basis, i.e., a basis (in the vector space sense) that is an orthonormal set. Every finite dimensional inner product space X is isometric to $\ell^2(n)$, where n is the dimension of X.

Lemma 44. Let $\{e_1, \ldots, e_n\}$ be an orthonormal set in an inner product space X. For any $x \in X$ and any scalars a_1, \ldots, a_n ,

$$||x - \sum_{k=1}^{n} a_k e_k||^2 = ||x||^2 - 2\operatorname{Re}(\sum_{k=1}^{n} \overline{a_k}\langle x, e_k \rangle) + \sum_{k=1}^{n} |a_k|^2.$$

Proposition 45. (Bessel's inequality) Let $(e_{\gamma})_{\gamma \in \Gamma}$ be an orthonormal set in an inner product space X. For any $x \in X$,

$$\sum_{\gamma \in \Gamma} |\langle x, e_{\gamma} \rangle|^2 \le ||x||^2$$

Here the sum on the left is defined to be $\sup_F \sum_{\gamma \in F} |\langle x, e_{\gamma} \rangle|^2$, with the supremum taken over all finite subsets F of Γ .

If S is a subset of a metric space X and $x \in X$, then the distance from x to set S is

$$d(x,S) = \inf\{d(x,y) : y \in S\}.$$

Proposition 46. (Nearest point) Let C be a closed convex set in a Hilbert space X and let $x \in X$. There is a unique point $u \in C$ such that ||x - u|| = d(x, C).

Proposition 47. Let Y be a finite dimensional subspace of a Hilbert space X. Suppose that $\{e_1, \ldots, e_k\}$ is an orthonormal basis for Y. For any $x \in X$,

$$||x - \sum_{k=1}^{n} \langle x, e_k \rangle e_k|| = d(x, Y).$$

Proposition 48. (Orthogonal complement and orthogonal decomposition) Let Y be a closed subspace of a Hilbert space X. Define

$$Y^{\perp} = \{ x \in X : x \perp y \text{ for all } y \in Y \}.$$

Then Y^{\perp} is a closed subspace of X, called the **orthogonal complement** of Y. For any $x \in X$, there is a unique representation x = y + z with $y \in Y$ and $z \in Y^{\perp}$.

Theorem 49. (Riesz Representation Theorem) Let X be a Hilbert space and let f be a bounded linear functional on X, i.e., f is a bounded linear operator from X to \mathbb{K} . There is a unique $y \in X$ such that

$$f(x) = \langle x, y \rangle$$
 for all $x \in X$.

Corollary 50. (Hilbert adjoint operator) Let X be a Hilbert space and let T be a bounded linear operator from X to itself. There is a unique bounded linear operator $T^*: X \to X$ so that

$$\langle T^*x, y \rangle = \langle x, Ty \rangle \text{ for all } x, y \in X.$$

Moreover, $||T^*|| = ||T||$.

Corollary 51. (Lax-Milgram) Let X be a Hilbert space and let $B: X \times X \to \mathbb{K}$ be a function that satisfies the following conditions.

(1) (Sesquilinear form) For all $x, y, z \in X$ and any $\alpha \in \mathbb{K}$,

$$B(\alpha x + y, z) = \alpha B(x, z) + B(y, z)$$
 and $B(x, \alpha y + z) = \overline{\alpha} B(x, y) + B(x, z)$.

(2) There is a constant $C < \infty$ so that

$$|B(x,y)| \le C||x|| ||y|| \text{ for all } x,y \in X.$$

(3) There is a constant c > 0 so that

$$|B(x,x)| \ge c||x||^2$$
 for all $x \in X$.

Then there is an isomorphism from T from X onto X so that

$$B(x,y) = \langle Tx, y \rangle \text{ for all } x, y \in X.$$

For any bounded linear functional f on X, there is a unique $y \in X$ such that f(x) = B(x,y) for all $x \in X$. Moreover, $||y|| \leq \frac{||f||}{c}$.

Theorem 52. (Characterization of orthonormal basis in Hilbert space) Let X be a Hilbert space and let $(e_{\gamma})_{\gamma \in \Gamma}$ be an orthonormal set in X. The following are equivalent.

- (1) For any $x \in X$, $\sum_{\gamma \in \Gamma} \langle x, e_{\gamma} \rangle e_{\gamma}$ converges to x, in the sense that for any $\varepsilon > 0$, there exists a finite set $F_0 \subseteq \Gamma$ so that
- $\|\sum_{\gamma\in F}\langle x,e_{\gamma}\rangle e_{\gamma}-x\|<\varepsilon \text{ for any finite set }F\text{ such that }F_{0}\subseteq F\subseteq \Gamma,$
- (2) span $\{e_{\gamma} : \gamma \in \Gamma\}$ is dense in X,
- (3) If $x \in X$ and $x \perp e_{\gamma}$ for all $\gamma \in \Gamma$, then x = 0,
- (4) (Parseval's identity) For any $x \in X$, $||x||^2 = \sum_{\gamma \in \Gamma} |\langle x, e_{\gamma} \rangle|^2$.

If an orthonormal set $(e_{\gamma})_{\gamma \in \Gamma}$ satisfies any of the equivalent conditions of Theorem 52, it is said to be an **orthonormal basis** of X.

Caution. If X is an infinite dimensional Hilbert space, then an orthonormal basis of X is not a basis of X in the vector space sense. Specifically, an orthonormal basis of X does not span X if X is an infinite dimensional Hilbert space.

Proposition 53. Every Hilbert space has an orthonormal basis.

If Γ is an arbitrary set, let $\ell^2(\Gamma)$ be the L^2 space on Γ with respect to the counting measure.

Corollary 54. Let X be a Hilbert space and let $(e_{\gamma})_{\gamma \in \Gamma}$ be an orthonormal basis for X. Then the linear operator $T: X \to \ell^2(\Gamma)$ defined by $Tx = (\langle x, e_{\gamma} \rangle)_{\gamma \in \Gamma}$ is an isometry from X onto $\ell^2(\Gamma)$.

6. Hahn-Banach Theorem

Definition 55. Let X be a real vector space. A function $p: X \to \mathbb{R}$ is called a sublinear functional if $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$, and $p(\alpha x) = \alpha p(x)$ for all $0 \le \alpha \in \mathbb{R}$ and all $x \in X$.

Lemma 56. Let X be a real vector space and let $p: X \to \mathbb{R}$ be a sublinear functional on X. Suppose that Y is a vector subspace of X and $g: Y \to \mathbb{R}$ is a linear functional such that $g(y) \le p(y)$ for all $y \in Y$. If $u \in X$, then there exists a linear functional $f: \operatorname{span}(Y \cup \{u\}) \to \mathbb{R}$ such that f(y) = g(y) for all $y \in Y$ and that $f(x) \le p(x)$ for all $x \in \operatorname{span}(Y \cup \{u\})$.

Proposition 57. (General Hahn-Banach extension theorem) Let X be a real vector space and let $p: X \to \mathbb{R}$ be a sublinear functional on X. Suppose that Y is a vector subspace of X and $g: Y \to \mathbb{R}$ is a linear functional such that $g(y) \leq p(y)$ for all $y \in Y$. Then there exists a linear functional $f: X \to \mathbb{R}$ such that f(y) = g(y) for all $y \in Y$ and that $f(x) \leq p(x)$ for all $x \in X$.

Definition 58. Let X be a normed space. The space $L(X, \mathbb{K})$ (the space of all bounded linear functionals) is called the dual space of X and is denoted by X'. (In many books, the symbol X^* is also used.) It is a Banach space under the operator norm

$$||f|| = \sup_{\|x\| \le 1} |f(x)| \text{ for all } f \in X'.$$

Theorem 59. (Hahn-Banach extension theorem for normed spaces) Let $(X, \|\cdot\|)$ be a normed space and let Y be a subspace of X. If $g \in Y'$, then there exists $f \in X'$ such that f(y) = g(y) for all $y \in Y$ and that $\|f\| = \|g\|$.

In the final equation of the theorem, ||f|| refers to the norm of f in X' and ||g|| refers to the norm of g in Y'.

Corollary 60. Let Y be a closed subspace of a normed space X and let $x \in X \setminus Y$. There exists $f \in X'$ of norm 1 such that f(x) = ||x||.

Corollary 61. Let Y be a subspace of a normed space X. Suppose that the only $f \in X'$ such that f(y) = 0 for all $y \in Y$ is the 0 functional. Then Y is dense in X.

Proposition 62. (Adjoint operator) Let X and Y be normed spaces and let $T: X \to Y$ be a bounded linear operator. For each $g \in Y'$, define $f_g: X \to \mathbb{K}$ by $f_g(x) = g(Tx)$. Then $f_g \in X'$. The map $T': Y' \to X'$ defined by $T'g = f_g$ is a bounded linear operator from Y' to X'. It is called the adjoint of T. Thus

$$(T'g)(x) = g(Tx)$$
 for all $x \in X$ and all $g \in Y'$.

Furthermore, ||T'|| = ||T||.

Proposition 63. (Duality between subspaces and quotients) Let X be a normed space and let Y be a closed subspace.

6. Hahn-Banach Theorem

Definition 55. Let X be a real vector space. A function $p: X \to \mathbb{R}$ is called a sublinear functional if $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$, and $p(\alpha x) = \alpha p(x)$ for all $0 \le \alpha \in \mathbb{R}$ and all $x \in X$.

Lemma 56. Let X be a real vector space and let $p: X \to \mathbb{R}$ be a sublinear functional on X. Suppose that Y is a vector subspace of X and $g: Y \to \mathbb{R}$ is a linear functional such that $g(y) \le p(y)$ for all $y \in Y$. If $u \in X$, then there exists a linear functional $f: \operatorname{span}(Y \cup \{u\}) \to \mathbb{R}$ such that f(y) = g(y) for all $y \in Y$ and that $f(x) \le p(x)$ for all $x \in \operatorname{span}(Y \cup \{u\})$.

Proposition 57. (General Hahn-Banach extension theorem) Let X be a real vector space and let $p: X \to \mathbb{R}$ be a sublinear functional on X. Suppose that Y is a vector subspace of X and $g: Y \to \mathbb{R}$ is a linear functional such that $g(y) \leq p(y)$ for all $y \in Y$. Then there exists a linear functional $f: X \to \mathbb{R}$ such that f(y) = g(y) for all $y \in Y$ and that $f(x) \leq p(x)$ for all $x \in X$.

Definition 58. Let X be a normed space. The space $L(X, \mathbb{K})$ (the space of all bounded linear functionals) is called the dual space of X and is denoted by X'. (In many books, the symbol X^* is also used.) It is a Banach space under the operator norm

$$||f|| = \sup_{\|x\| \le 1} |f(x)| \text{ for all } f \in X'.$$

Theorem 59. (Hahn-Banach extension theorem for normed spaces) Let $(X, \|\cdot\|)$ be a normed space and let Y be a subspace of X. If $g \in Y'$, then there exists $f \in X'$ such that f(y) = g(y) for all $y \in Y$ and that $\|f\| = \|g\|$.

In the final equation of the theorem, ||f|| refers to the norm of f in X' and ||g|| refers to the norm of g in Y'.

Corollary 60. Let Y be a closed subspace of a normed space X and let $x \in X \setminus Y$. There exists $f \in X'$ of norm 1 such that f(y) = 0 for all $y \in Y$ and that f(x) = d(x, Y).

Corollary 61. Let Y be a subspace of a normed space X. Suppose that the only $f \in X'$ such that f(y) = 0 for all $y \in Y$ is the 0 functional. Then Y is dense in X.

Proposition 62. (Adjoint operator) Let X and Y be normed spaces and let $T: X \to Y$ be a bounded linear operator. For each $g \in Y'$, define $f_g: X \to \mathbb{K}$ by $f_g(x) = g(Tx)$. Then $f_g \in X'$. The map $T': Y' \to X'$ defined by $T'g = f_g$ is a bounded linear operator from Y' to X'. It is called the adjoint of T. Thus

$$(T'g)(x) = g(Tx) \text{ for all } x \in X \text{ and all } g \in Y'.$$

Furthermore, ||T'|| = ||T||.

Proposition 63. (Duality between subspaces and quotients) Let X be a normed space and let Y be a closed subspace.

- (1) Let $q: X \to X/Y$ be the quotient map given by q(x) = x + Y. Then the adjoint q' is an isometry from (X/Y)' into X'.
- (2) Let $i: Y \to X$ be the inclusion map i(y) = y. Set

$$Z = \ker i' = \{ f \in X' : i'(f) = 0 \}.$$

Then Z is a closed subspace of X'. Let $Q: X' \to X'/Z$ be the quotient map Qf = f + Z. There is an isometry j from X'/Z onto Y' such that $i' = j \circ Q$. In particular, Y' is isometric to a quotient space of X'.

Let X be a normed space. Since X' is also a normed space (in fact, a Banach space), it has a dual X'' = (X')'. X'' is the space of bounded linear functionals on X'.

Proposition 64. (Canonical embedding of X in X") Let X be a normed space. For each $x \in X$, define

$$F_x: X' \to \mathbb{K} \ by \ F_x(f) = f(x).$$

Then $F_x \in X''$. Moreover, the map $J: X \to X''$ defined by $Jx = F_x$ is an isometry from X into X''.

The map J_X is called the **canonical embedding of** X **into** X''. A normed space X is **reflexive** if J_X maps X onto X''.

Proposition 65. Let X and Y be normed spaces and let $T: X \to Y$ be a bounded linear map. Denote the canonical embeddings from X into X'' and Y into Y'' by J_X and J_Y respectively. Then $J_YT = T''J_X$.

Proposition 66. (1) Any finite dimensional normed space is reflexive.

- (2) If X is a reflexive normed space, then X is complete and hence a Banach space.
- (3) A normed space is reflexive if and only if all of its closed subspaces are reflexive.
- (4) Let X and Y be isomorphic normed spaces. Then either both X and Y are reflexive or neither one is reflexive.
- (5) A Banach space X is reflexive if and only if X' is reflexive.

Proposition 67. The spaces c_0 and ℓ^1 are not reflexive.

Proposition 68. Let (Ω, Σ, μ) be a measure space. Both $L^1(\Omega, \Sigma, \mu)$ and $L^{\infty}(\Omega, \Sigma, \mu)$ are nonreflexive unless finite dimensional.

Proposition 69. Let K be an infinite compact Hausdorff space. Then C(K) is not reflexive.

Proposition 70. Any Hilbert space is a reflexive Banach space.

We will return to consider the reflexivity of L^p spaces for 1 .

Example 78. It is known that if $f \in L^1(\mathbb{R})$ with respect to Lebesgue measure, then the Fourier transform

$$\widehat{f}(x) = \int f(y)e^{-ixy} d\lambda(y)$$

is a continuous function on $\mathbb R$ such that $\lim_{|x|\to\infty}\widehat f(x)=0$. However: There exists a continuous function g on $\mathbb R$ with $\lim_{|x|\to\infty}g(x)=0$ so that g is not the Fourier transform of any function in $L^1(\mathbb R)$.

8. Weak and weak* topologies. Locally convex spaces. Separation theorems.

Proposition 79. (Weak and weak* topologies) Let X be a normed space with dual space X'.

(1) Let I be a finite subset of X', $x \in X$ and r > 0. Define

$$B_I(x,r) = \{ y \in X : |f(x) - f(y)| < r \text{ for all } f \in I \}.$$

Then the family

$$\mathcal{B} = \{B_I(x,r) : I \text{ is a finite subset of } X', x \in X, r > 0\}$$

is a basis for a topology on X, called the **weak topology**.

(2) Let I be a finite subset of X, $f \in X'$ and r > 0. Define

$$B_I(f,r) = \{ g \in X' : |f(x) - g(x)| < r \text{ for all } x \in I \}.$$

Then the family

$$\mathcal{B} = \{B_I(f,r) : I \text{ is a finite subset of } X, f \in X', r > 0\}$$

is a basis for a topology on X', called the **weak* topology**.

It is easy to check that every weakly open set in X is norm open and every weak* open set in X' is norm open. I will denote the weak topology on X by w and the weak* topology on X' by w^* . These topologies are locally convex vector topologies in the following sense.

Definition 80. Let X be a vector space and let \mathcal{T} be a topology on X. \mathcal{T} is a vector topology and (X, \mathcal{T}) is a topological vector space (TVS) if the maps

$$+: X \times X \to X, +(x,y) = x + y \text{ and} : \mathbb{K} \times X \to X, \cdot (\alpha,x) = \alpha x$$

are continuous. Here, X is given the topology \mathcal{T} , \mathbb{K} is given the norm topology, and $X \times X$ and $\mathbb{K} \times X$ are given the respective product topologies. A vector topology \mathcal{T} is locally convex if for any $x \in X$ and any $U \in \mathcal{T}$ with $x \in U$, there exists a convex set $V \in \mathcal{T}$ such that $x \in V \subseteq U$. If \mathcal{T} is a locally convex vector topology on X, we say that (X, \mathcal{T}) is a locally convex topological vector space (LCTVS).

Proposition 81. Let X be a normed space. Then (X, w) and (X', w^*) are locally convex topological vector spaces. Both topologies are Hausdorff.

Proposition 82. Let X be a normed space.

- (1) (X, w)' = X', i.e., a linear functional f on X is norm continuous if and only if it is continuous with respect to the weak topology.
- (2) $(X', w^*)' = X$, i.e., a linear functional F on X' is continuous with respect to the weak* topology if and only if there exists (unique) $x \in X$ such that F(f) = f(x) for all $f \in X'$.

Proposition 83. Let X and Y be normed spaces. Suppose that $T: X \to Y$ is a bounded linear operator. Then T is continuous with respect to the weak topologies on X and Y respectively.

The following geometric versions of the Hahn-Banach Theorem are extremely useful. We will see some applications shortly.

Theorem 84. (First separation theorem) Let A and B be disjoint, nonempty, convex sets in a TVS X. Suppose that A is open. Then there exist $f \in X'$ and $\gamma \in \mathbb{R}$ such that

$$\operatorname{Re} f(x) < \gamma \leq \operatorname{Re} f(y)$$
 for all $x \in A$ and all $y \in B$.

Theorem 85. (Second separation theorem) Let A and B be disjoint, nonempty, convex sets in an LCTVS X. Suppose that A is compact and B is closed. Then there exist $f \in X'$ and $\gamma_1, \gamma_2 \in \mathbb{R}$ such that

$$\operatorname{Re} f(x) \leq \gamma_1 < \gamma_2 \leq \operatorname{Re} f(y)$$
 for all $x \in A$ and all $y \in B$.

Theorem 86. (Mazur) Let X be normed space and let C be a convex subset of X. Then the norm closure of C and the weak closure of C coincide.

Corollary 87. Let X be a normed space and let (x_k) be a sequence in X. Suppose that there exists $x_0 \in X$ so that $\lim_{k\to\infty} f(x_k) = f(x_0)$ for all $f \in X'$. Then there is a sequence (y_k) in $\operatorname{co}\{x_k : k \in \mathbb{N}\}$ so that $\lim_{k\to\infty} y_k = x_0$ in norm.

Example 88. Let $X = L^2[0, 2\pi]$. Fix a sequence (c_k) in \mathbb{R} so that $\lim c_k = \infty$. Set $g_k(x) = e^{ic_k x}$, $k \in \mathbb{N}$. Then $g_k \in X$. For any $f \in L^2[0, 2\pi]$, extend it to a function on \mathbb{R} be defining it to be 0 outside the interval $[0, 2\pi]$. Then we may regard f as a function in $L^2(\mathbb{R})$. The value of its Fourier transform at c_k is

$$\widehat{f}(c_k) = \int_0^{2\pi} f(y)e^{-ic_k y} d\lambda(y) = \int f\overline{g_k} d\lambda = \langle f, g_k \rangle,$$

where the last inner product is the standard inner product on $L^2[0,\pi]$. Since $L^2[0,2\pi]$ is a Hilbert space, by the Riesz Representation Theorem (Theorem 49), any $F \in X'$ is determined by some function $f \in L^2[0,2\pi]$ so that

$$F(h) = \langle h, f \rangle \text{ for all } h \in L^2[0, 2\pi].$$

Then

$$F(g_k) = \langle g_k, f \rangle = \overline{\widehat{f}(c_k)} \to 0$$
 by the Riemann-Lebesgue Lemma.

By Corollary 87, there is a sequence (h_k) in $\operatorname{co}\{g_k: k \in \mathbb{N}\}$ such that $||h_k||_2 \to 0$.

Remark. If c_k 's are taken to be integers (diverging to ∞), then (g_k) is a bounded orthogonal sequence. So the averages $\frac{1}{n}\sum_{k=1}^n g_k$ converge to 0 in $L^2[0,2\pi]$.

It is an important observation that the weak and weak* topologies are manifestations of certain product topologies.

Proposition 89. Let X be a normed space.

- (1) The map $i_X: X \to \mathbb{K}^{X'}$ defined by $i_X(x) = (f(x))_{f \in X'}$ is injective. If X is given the weak topology and $\mathbb{K}^{X'}$ is given the product topology, then $i_X: X \to i_X(X)$ is a continuous function with a continuous inverse.
- (2) The map $j_{X'}: X' \to \mathbb{K}^X$ defined by $j_{X'}(f) = (f(x))_{x \in X}$ is injective. If X' is given the weak* topology and \mathbb{K}^X is given the product topology, then $j_{X'}: X' \to j_{X'}(X')$ is a continuous function with a continuous inverse.

Theorem 90. (Banach-Alaoglu) Let X be a normed space. Then $B_{X'}$ is compact in the weak* topology.

Theorem 91. (Gantmacher) Let X be a normed space and let $J: X \to X''$ be the canonical embedding. (See Proposition 64.) Then the closure of $J(B_X)$ in the weak* topology on X'' (generated by X') is equal to $B_{X''}$.

The next result should be compared with Theorem 37.

Theorem 92. Let X be a normed space. Then X is reflexive if and only if B_X is compact in the weak topology.

9. Radon-Nikodym Theorem and the dual of L^p

Let (Ω, Σ, μ) be a finite measure space and let $1 \leq p < \infty$. Set q = p/(p-1) $(q = \infty \text{ if } p = 1)$. The main point of this section is to show that the dual space of $L^p(\Omega, \Sigma, \mu)$ can be represented as the space $L^q(\Omega, \Sigma, \mu)$. The main tool needed is the Radon-Nikodym Theorem. Let Σ be a σ -algebra of subsets of a set Ω and let μ, ν be measures defined on Σ . We say that ν is **absolutely continuous with respect to** μ if $\nu(E) = 0$ for all $E \in \Sigma$ with $\mu(E) = 0$.

Theorem 93. (Radon-Nikodym Theorem) Let μ and ν be finite measures defined on a σ -algebra Σ of subsets of Ω . Assume that ν is absolutely continuous with respect to μ . Then there exists a nonnegative Σ -measurable function f such that $\nu(E) = \int_E f \, d\mu$ for all $E \in \Sigma$. Moreover, f is uniquely determined up to equality μ -a.e.

Suppose that $\mathbb{K} = \mathbb{R}$. A functional $F \in (L^p(\Omega, \Sigma, \mu))'$ is said to be **positive** if $F(f) \geq 0$ for any $f \in L^p(\Omega, \Sigma, \mu)$ such that $f \geq 0$ μ -a.e.

Lemma 94. Suppose that $\mathbb{K} = \mathbb{R}$ and that $F \in (L^p(\Omega, \Sigma, \mu))'$. There exists a positive $G \in (L^p(\Omega, \Sigma, \mu))'$ such that both G - F and G + F are positive. G can be chosen so that ||G|| = ||F||.

Theorem 95. (The dual of L^p) Let (Ω, Σ, μ) be a finite measure space. Suppose that $1 \leq p < \infty$ and q = p/(p-1) $(1/0 = \infty)$. Any $g \in L^q(\Omega, \Sigma, \mu)$ determines a bounded linear functional F_g on $L^p(\Omega, \Sigma, \mu)$ by $F_g(f) = \int fg \, d\mu$. Moreover, $||F_g|| = ||g||_q$. Conversely, for any $F \in (L^p(\Omega, \Sigma, \mu))'$, there is a unique $g \in L^q(\Omega, \Sigma, \mu)$ such that $F = F_g$. The map $T : g \mapsto F_g$ is an isometry from $L^q(\Omega, \Sigma, \mu)$ onto $(L^p(\Omega, \Sigma, \mu))'$.

Corollary 96. (Reflexivity of L^p) Let (Ω, Σ, μ) be a finite measure space and let $1 . Then <math>L^p(\Omega, \Sigma, \mu)$ is a reflexive Banach space.

Remark. Theorem 93 continues to hold if μ and ν are only assumed to be σ -finite. Theorem 95 and Corollary 96 hold for all measure spaces if 1 . If <math>p = 1, Theorem 95 still holds if (Ω, Σ, μ) is σ -finite. Theorem 95 never holds if $p = \infty$ and $L^{\infty}(\Omega, \Sigma, \mu)$ is infinite dimensional.

10. The space
$$C(K)$$

In this section, we study the space C(K) as a Banach space, where K is a compact Hausdoff topological space. Recall that the norm on C(K) is the sup-norm: $||f|| = \sup_{t \in K} |f(t)|$. For notational convenience, I will assume that $\mathbb{K} = \mathbb{R}$ in this section.

Let \mathcal{B} denote the Borel sets in K, i.e, the smallest σ -algebra generated by the open sets in K. A measure defined on the measurable space (K, \mathcal{B}) is called a **Borel measure**. A Borel measure μ is **regular** if for every $E \in \mathcal{B}$,

$$\mu(E) = \sup\{\mu(F) : F \subseteq E, F \text{ compact}\} = \inf\{\mu(O) : E \subseteq O, O \text{ open}\}.$$

Proposition 97. Let μ_1 and μ_2 be regular Borel measures on (K, \mathcal{B}) . Define

$$F: C(K) \to \mathbb{R} \ by \ F(f) = \int f \, d\mu_1 - \int f \, d\mu_2.$$

Then $F \in (C(K))'$ and $||F|| \le \mu_1(K) + \mu_2(K)$.

A functional $F \in C(K)'$ is said to be **positive** if $F(f) \ge 0$ for any $f \in C(K)$ with $f \ge 0$.

Lemma 98. Let $F \in C(K)'$. There is a positive $G \in C(K)'$ such that G - F and G + F are both positive. G can be chosen so that ||F|| = ||G||.

Theorem 99. Let $F \in C(K)'$ be a positive functional. There is a unique regular Borel measure on (K, \mathcal{B}) so that

$$F(f) = \int f d\mu \text{ for all } f \in C(K).$$

Moreover, $||F|| = \mu(K)$.

If H is a general element of C(K)', there is a unique pair of regular Borel measures (μ_1, μ_2) on (K, \mathcal{B}) so that $||H|| = \mu_1(K) + \mu_2(K)$ and that

$$H(f) = \int f d\mu_1 - \int f d\mu_2 \text{ for all } f \in C(K).$$

We give several applications of Theorem 99 below. Recall that two topological spaces V and W are **homeomorphic** if there is a continuous bijection $h: V \to W$ so that h^{-1} is also continuous.

Proposition 100. For each $t \in K$, define $\delta_t : C(K) \to \mathbb{R}$ by $\delta_t(f) = f(t)$. Then $\delta_t \in C(K)'$ and $\|\delta_t\| = 1$.

Give the set $S = \{\delta_t : t \in K\}$ the weak* topology (as a subset of C(K)'). The function $h : K \to S$ defined by $h(t) = \delta_t$ is a homeomorphism. $B_{C(K)'}$ is the weak*-closure of the convex hull $co\{\pm \delta_t : t \in K\}$.

A normed space is said to be **separable** if it contains a countable dense subset.

Theorem 101. Let K be a compact Hausdorff topological space. The space C(K) is separable if and only if the topology on K is given by a metric.

Let Δ be the Cantor set. We will use the following result from the theory of metric spaces.

Theorem 102. Let K be a compact metric space. There is a continuous function π from Δ onto K.

Theorem 103. $(C(\Delta))$ as a universal separable Banach space) Let X be a separable Banach space. Then X is isometric to a subspace of $C(\Delta)$.

Let X be a Banach space. An element $x \in B_X$ is an **extreme point** of B_X if $x = \frac{y+z}{2}$, $y, z \in B_X$ implies that y = z = x.

Theorem 104. (Banach-Stone Theorem) Let K and L be compact Hausdorff spaces. Then C(K) is isometric to C(L) if and only if K and L are homeomorphic.

11. Compact operators. Spectral theorem of compact self-adjoint operators on Hilbert space.

Let X and Y be normed spaces. A linear map $T: X \to Y$ is **compact** if $\overline{TB_X}$ is a compact set in Y. A compact map is always bounded. (Verify!) The set of compact linear maps from X to Y is denoted by K(X,Y). A bounded linear operator $T: X \to Y$, where X and Y are normed spaces, is a **finite rank** operator if range T is finite dimensional.

Proposition 105. Let X and Y be normed spaces. Any finite rank operator $T \in L(X,Y)$ is compact.

K(X,Y) has the following properties which are similar to those of an "ideal" in the sense of abstract algebra.

Proposition 106. Let W, X, Y and Z be normed spaces.

- (1) If $T, S \in K(X, Y)$ and $\alpha \in \mathbb{K}$, then $\alpha T + S \in K(X, Y)$.
- (2) If $T \in K(X,Y)$, $R \in L(Y,Z)$, $S \in L(W,X)$, then $RT \in K(X,Z)$ and $TS \in K(W,Y)$.

Proposition 107. Let X be a normed space and let Y be a Banach space. Let (T_n) be a sequence in K(X,Y) and suppose that $\lim_{n\to\infty} ||T_n - T|| = 0$ for some bounded linear map $T \in L(X,Y)$. Then $T \in K(X,Y)$.

Theorem 108. (Schauder) Let $T: X \to Y$ be a bounded linear map between Banach spaces X and Y. Then T is compact if and only if T' is compact.

Let X be a Banach space. Denote the identity operator on X by $I: X \to X$.

Proposition 109. Let X be a Banach space and let $K: X \to X$ be a compact linear map. If $\ker(I - K) \neq \{0\}$, then I - K cannot be surjective.

Let Y be a closed subspace of a Banach space X. Y is said to have **finite** codimension in X if X/Y is finite dimensional. In this case, $\dim(X/Y)$ is called the codimension of Y in X and is denoted by $\operatorname{codim} Y$.

Theorem 110. (Fredholm alternative) Let X be a Banach space and let $K: X \to X$ be a compact linear map. Define T = I - K, where I is the identity map on X.

- (1) The kernel of T, $\ker T = \{x \in X : Tx = 0\}$, is a finite dimensional subspace of X.
- (2) The range of T, range $T = \{Tx : x \in X\}$, is a closed subspace of X with finite codimension.
- (3) The kernel of T' is a finite dimensional subspace of X'.
- (4) The range of T' is a closed subspace of X' with finite codimension.
- (5) A vector x belongs to range T if and only if f(x) = 0 for all $f \in \ker T'$.
- (6) $\dim \ker T = \operatorname{codim} \operatorname{range} T = \dim \ker T' = \operatorname{codim} \operatorname{range} T'$.

Definition 111. Let X be a Banach space and let $T: X \to X$ be a bounded linear map. A scalar λ is in the **spectrum of** T, $\sigma(T)$, if $\lambda I - T$ does

not have an inverse in L(X). An **eigenvalue** of T is a scalar λ such that $\ker(\lambda I - T) \neq \{0\}$. The subspace $\ker(\lambda I - T)$ is called the **eigenspace** of T corresponding to λ . We denote it by X_{λ} .

Theorem 112. Let X be a Banach space and $K: X \to X$ a compact linear map.

- (1) $\sigma(K) = \sigma(K')$.
- (2) If λ is a nonzero number in $\sigma(K)$, then λ is an eigenvalue of K and and eigenvalue of K'.
- (3) The spectrum of K is either a finite set or of the form $\{\lambda_n : n \in \mathbb{N}\} \cup \{0\}$ for a sequence (λ_n) that converges to 0. If X is infinite dimensional, $0 \in \sigma(K)$.
- 11.1. Compact operators on Hilbert space. Spectral theorem. Let X be a Hilbert space and let T be a bounded linear operator on X. Recall from Corollary 50 that the Hilbert adjoint operator T^* is the bounded linear operator on X determined by the equation

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$

for all $x, y \in X$. Moreover, $||T^*|| = ||T||$.

<u>Caution</u>. A Hilbert space X may be regarded as a Banach space. Then any bounded linear operator on X also has a Banach adjoint T'. (See Proposition 62.) The Banach and Hilbert adjoints act on different spaces, so they cannot be equal.

Proposition 113. Let S and T be bounded linear operators on a Hilbert space X and let α be a scalar. Then

- $(1) ||T|| = ||T^*||,$
- (2) $(S+T)^* = S^* + T^*$,
- (3) $(\alpha T)^* = \overline{\alpha} T^*$,
- (4) $(ST)^* = T^*S^*$,
- (5) $T^{**} = T$.

Definition 114. Let X be a Hilbert space. An bounded linear operator $T: X \to X$ is said to be **self-adjoint** if $T^* = T$.

Definition 115. A linear map $P: X \to X$ on a Hilbert space X is an **orthogonal projection** if there is a closed subspace Y of X so that Py = y for all $y \in Y$ and Pz = 0 for all $z \in Y^{\perp}$.

Proposition 116. Let X be a Hilbert space. Every closed subspace Y is the range of an orthogonal projection. A bounded linear map $P: X \to X$ is an orthogonal projection if and only if $P^2 = P$ and $P^* = P$.

Proposition 117. Let T be a bounded self-adjoint operator on a Hilbert space X. Then

(1) Any eigenvalue of T is a real number.

- (2) If λ and μ are distinct eigenvalues of T, then $X_{\lambda} \perp X_{\mu}$, i.e., $\langle x, y \rangle = 0$ if $x \in X_{\lambda}$ and $y \in X_{\mu}$.
- (3) If λ is an eigenvalue of T and P_{λ} denotes the orthogonal projection onto X_{λ} , then $TP_{\lambda} = P_{\lambda}T$.
- $(4) ||T|| = \sup\{|\langle Tx, x \rangle| : ||x|| \le 1\}.$
- (5) Either ||T|| or -||T|| belongs to $\sigma(T)$.

Theorem 118. (Spectral theorem for compact self-adjoint operators) Let T be a compact self-adjoint operator on a Hilbert space X.

- (1) The spectrum of T is either a finite set or of the form $\{\lambda_n : n \in \mathbb{N}\} \cup \{0\}$ for a real sequence (λ_n) that converges to 0. If X is infinite dimensional, $0 \in \sigma(T)$.
- (2) Each $\lambda \in \sigma(T) \setminus \{0\}$ is an eigenvalue of T. Denote the orthogonal projection onto the eigenspace $\ker(\lambda I T)$ by P_{λ} .
- (3) $T = \sum_{\lambda \in \sigma(T) \setminus \{0\}} \lambda P_{\lambda}$, where the sum converges in operator norm.

If $\sigma(T)$ is a finite set, then the sum in (3) has only finitely many terms and convergence does not come into play. If $\sigma(T)$ is an infinite set, then $\sigma(T) \setminus \{0\}$ is an infinite sequence (λ_n) that converges to 0. Then the sum in (3) is defined to be $\sum_{n=1}^{\infty} \lambda_n P_{\lambda_n}$.