Sets

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\} \quad \text{(natural numbers)} \tag{1}$$

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \quad \text{(integers)} \tag{2}$$

$$\mathbb{Q} = \left\{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\right\} \quad \text{(rational numbers)} \tag{3}$$

$$\mathbb{R} = \text{real numbers} \tag{4}$$

$$\mathbb{C} = \text{complex numbers} \tag{5}$$

Identity:	$p \wedge T \equiv p, p \vee F \equiv p$
Negation:	$p \vee \neg p \equiv T, p \wedge \neg p \equiv F$
Double negation:	$\neg(\neg p) \equiv p$
Idempotent:	$p \wedge p \equiv p, p \vee p \equiv p$
Universal bound:	$p\vee T\equiv T, p\wedge F\equiv F$
De Morgan:	$\neg (p \lor q) \equiv \neg p \land \neg q,$
	$\neg(n \land a) = \neg n \lor \neg a$

Absorption: $p \lor (p \land q) \equiv p$, $p \land (p \lor q) \equiv p$ Negations of T and F: $\neg T \equiv F$, $\neg F \equiv T$

Logical Form and Logical Equivalences

Notation	Name	Read as	
\sim or \neg	Negation	not	
\wedge	Conjunction	and	
\vee	Disjunction	or	
\rightarrow	Conditional	implies / ifthen	
\leftrightarrow	Biconditional	if and only if	

p	q	$p \wedge q$	$p \vee q$	$\neg p$	$p \to q$	$p \leftrightarrow q$
Т	Τ	Τ	Τ	F	Τ	Τ
${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{T}	${ m T}$	\mathbf{F}
\mathbf{F}	F	\mathbf{F}	\mathbf{F}	\mathbf{T}	${ m T}$	${ m T}$

Statements: true or false but not both.

Tautology: always true (T). Contradiction: always false (F).

Commutative: $p \land q \equiv q \land p$, $p \lor q \equiv q \lor p$ Associative: $(p \land q) \land r \equiv p \land (q \land r)$, $(p \lor q) \lor r \equiv p \lor (q \lor r)$ Distributive: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$, $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Conditional Statements

$$p \to q \equiv \neg p \lor q$$

$$\neg (p \to q) \equiv p \land \neg q$$
 Contrapositive: $p \to q \equiv \neg q \to \neg p$ Converse: $q \to p$ Inverse: $\neg p \to \neg q$

"p only if q " $\equiv p \to q \equiv \neg q \to \neg p$

"p if q " $\equiv q \to p$

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

r sufficient for s : $r \to s$

$$r$$
 necessary for s : $s \to r \equiv \neg r \to \neg s$

r necessary and sufficient for s: $r \leftrightarrow s$

Quantified Statements

Universal: $\forall x \in D, Q(x)$ — true if Q(x) is true for every x in D.

Existential: $\exists x \in D$ such that Q(x) — true if Q(x) is true for at least one x in D. **Negations:**

$$\neg(\forall x \in D, Q(x)) \equiv \exists x \in D \text{ such that } \neg Q(x)$$
$$\neg(\exists x \in D \text{ such that } Q(x)) \equiv \forall x \in D, \neg Q(x)$$
$$\neg(\forall x, P(x) \to Q(x)) \equiv \exists x \text{ such that } P(x) \land \neg Q(x)$$

Methods of Proof

Direct Proof Techniques:

- Direct proof: Assume hypothesis, derive conclusion
- Proof by exhaustion: Check all possible cases
- **Proof by cases**: Divide into exhaustive, mutually exclusive cases
- **Element method**: For sets, take arbitrary element and show property holds

Indirect Proof Techniques:

- **Proof by contradiction**: Assume negation of conclusion, derive contradiction
- **Proof by contraposition**: To prove $p \to q$, prove $\neg q \to \neg p$
- Counterexample: Find one example where universal statement fails

Valid Inference Rules:

Rule	Form
Modus ponens	$p \to q, p \vdash q$
Modus tollens	$p \to q, \neg q \vdash \neg p$
Generalization	$p \vdash p \lor q$
Specialization	$p \wedge q \vdash p$
Conjunction	$p,q \vdash p \land q$
Disjunctive syllogism	$p \vee q, \neg q \vdash p$
Hypothetical syllogism	$p \to q, q \to r \vdash p \to r$
Proof by cases	$p \vee q, p \rightarrow r, q \rightarrow r \vdash r$

Fallacies: Converse error $(p \to q, q \not\vdash p)$, Inverse error $(p \to q, \neg p \not\vdash \neg q)$

Mathematical Induction

Standard Induction: To prove P(n) for all $n \ge a$:

- 1. Base case: Prove P(a)
- 2. Inductive step: Prove $\forall k \geq a, P(k) \Rightarrow P(k+1)$

Strong Induction: To prove P(n) for all $n \ge a$:

- 1. Base cases: Prove $P(a), P(a+1), \dots, P(b)$ for some $b \ge a$
- 2. Inductive step: If P(i) holds for all $a \le i \le k$ (where $k \ge b$), then P(k+1) holds

Elementary Number Theory

Basic Definitions:

• Even: n = 2k for some integer k

• Odd: n = 2k + 1 for some integer k

• Prime: n > 1 and only positive divisors are 1 and n

• Composite: n > 1 and n = ab with 1 < a, b < n

• Rational: $r = \frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$

Parity Facts:

- Even \pm even = even; odd \pm odd = even; even \pm odd = odd
- Even \times any = even; odd \times odd = odd

Divisibility: $d \mid n \iff \exists k \in \mathbb{Z} \text{ such that } n = dk \text{ Prop- Complex Numbers}$ erties:

- If $a \mid b$ and $b \mid c$, then $a \mid c$ (transitivity)
- If $a \mid b$ and $a \mid c$, then $a \mid (bx + cy)$ for any $x, y \in \mathbb{Z}$

Division Algorithm & Special Functions

Quotient-Remainder Theorem: For all $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+, \exists \text{ unique } q, r \in \mathbb{Z}$:

$$n = dq + r$$
 and $0 \le r \le d$

Notation: q = n div d (quotient), $r = n \mod d$ (remainder) **Key Formulas:**

Absolute Value:
$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Properties: $-|x| \le x \le |x|, |-x| = |x|, |x+y| \le |x| + |y|$

Floor & Ceiling:

- Floor: |x| = n where $n \le x < n+1$ (largest integer < x
- Ceiling: [x] = n where $n-1 < x \le n$ (smallest integer > x)

Important Theorems & Formulas

Binomial Theorem:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Factorization: $p^{n} - q^{n} = (p - q)(p^{n-1} + p^{n-2}q + \dots + q^{n-1})$

Key Results:

- $\sqrt{2}$ is irrational
- There are infinitely many prime numbers
- Fundamental Theorem of Arithmetic: Every integer > 1 has unique prime factorization

Definition: z = a + bi where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$. a = Re(z) (real part), b = Im(z) (imaginary part)

Basic Operations: For z = a + bi and w = c + di:

$$z + w = (a + c) + (b + d)i$$

$$z \cdot w = (ac - bd) + (ad + bc)i$$

$$\bar{z} = a - bi \quad \text{(complex conjugate)}$$

$$|z| = \sqrt{a^2 + b^2} \quad \text{(modulus)}$$

$$z \cdot \bar{z} = |z|^2 = a^2 + b^2$$

Polar Form: $z = r(\cos\theta + i\sin\theta) = re^{i\theta}$ where r = |z| and $\theta = \arg(z)$

- Euler's Formula: $e^{i\theta} = \cos\theta + i\sin\theta$
- De Moivre's Theorem: $(re^{i\theta})^n = r^n e^{in\theta} =$ $r^n(\cos(n\theta) + i\sin(n\theta))$
- nth Roots: $z^{1/n} = r^{1/n} e^{i(\theta+2\pi k)/n}$ for k = $0, 1, \ldots, n-1$

Useful Properties:

- \bullet $\overline{z+w} = \overline{z} + \overline{w}$, $\overline{z\cdot w} = \overline{z} \cdot \overline{w}$
- $|z \cdot w| = |z| \cdot |w|, |z/w| = |z|/|w| \text{ (for } w \neq 0)$
- $z^{-1} = \frac{\bar{z}}{|z|^2}$ (for $z \neq 0$)

Set Theory

Operations (relative to universe U):

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

$$A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$$

$$A - B = \{x \in U \mid x \in A \text{ and } x \notin A\} = A \cap B^{c}$$

$$A^{c} = \{x \in U \mid x \notin A\}$$

Properties:

- $A \cap B \subseteq A \subseteq A \cup B$
- $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$ (transitivity)
- $A \subseteq B \iff A \cap B = A \iff A \cup B = B$
- $\emptyset \subseteq A$ for all sets A

Partition: Non-empty sets $\{A_1, \ldots, A_n\}$ partition A if: $A = A_1 \cup \cdots \cup A_n$ and $A_i \cap A_j = \emptyset$ for $i \neq j$. Power set: $\mathcal{P}(A) = \{S \mid S \subseteq A\}, |\mathcal{P}(A)| = 2^{|A|}$ Cartesian product: $A \times B = \{(a, b) \mid a \in A, b \in B\}$

Relations

A relation R from A to B is a subset of $A \times B$. Write $xRy \iff (x,y) \in R$. Inverse: $R^{-1} = \{(y,x) \in B \times A\}$ $(x,y) \in R$ Composition: If $R \subseteq A \times B$ and $S \subseteq B \times C$:

 $S \circ R = \{(a,c) \in A \times C \mid \exists b \in B : (a,b) \in R \text{ and } (b,c) \in S\}$

Properties on set A:

- Reflexive: $\forall x \in A, (x, x) \in R$
- Symmetric: $\forall x, y \in A, (x, y) \in R \Rightarrow (y, x) \in R$
- Transitive: $\forall x, y, z \in A, ((x, y) \in R \land (y, z) \in R) \Rightarrow$ $(x,z)\in R$

Equivalence relation: Reflexive, symmetric, and transitive. Transitive closure R^t of R:

- R^t is transitive
- \bullet $R \subseteq R^t$
- If S is transitive and $R \subseteq S$, then $R^t \subseteq S$ (minimality)