CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

kARNAUGH MAPS

- 2-DIMENSIONAL ARRAY OF CELLS
- $n \text{ VARIABLES} \longrightarrow 2^n \text{ CELLS}$
- REPRESENTING SWITCHING FUNCTIONS
- REPRESENTING SWITCHING EXPRESSIONS
- GRAPHICAL AID IN SIMPLIFYING EXPRESSIONS

Simplifying using K-Map

$$F = x_3 x_2 x'_1 x'_0 + x_3 x_2 x_1 x'_0 + x'_3 x_2 x_1 x'_0 + X'_3 x_2 x'_1 x'_0 + x'_3 x'_2 x_1 x'_0 + x'_3 x'_2 x'_1 x'_0 + x'_$$

Presenting **Product of Sums** using K-Map

F=

Simplifying PRODUCT of SUMs - Examples

F=?

Clicker Question

Which one is the simplest correct expression?

a)
$$F=x_{2}x_{1}x_{0}+x_{2}x_{1}x_{0}$$

b)
$$F=x_2x_1x_0+x_2x_1x_0$$

c)
$$F=x_1+x_0$$

d) $F=x_2+x_1$

none

MINIMAL TWO-LEVEL GATE NETWORK DESIGN: EXAMPLE

Input:
$$x \in \{0, 1, 2, ..., 9\}$$
, coded in BCD as

$$\underline{x} = (x_3, x_2, x_1, x_0), \ x_i \in \{0, 1\}$$

Output: $z \in \{0, 1\}$

Function:
$$z = \begin{cases} 1 & \text{if } x \in \{0, 2, 3, 5, 8\} \\ 0 & \text{otherwise} \end{cases}$$

Gate Level Design

MINIMAL TWO-LEVEL GATE NETWORK DESIGN: EXAMPLE

Input: $x \in \{0, 1, 2, ..., 15\}$

represented in binary code by $\underline{x} = (x_3, x_2, x_1, x_0)$

Output: $z \in \{0, 1\}$

Function:
$$z = \begin{cases} 1 & \text{if} \quad x \in \{0, 1, 3, 5, 7, 11, 12, 13, 14\} \\ 0 & \text{otherwise} \end{cases}$$

Gate Level Design

DESIGN OF MULTIPLE-OUTPUT TWO-LEVEL GATE NETWORKS

SEPARATE NETWORK FOR EACH OUTPUT: NO SHARING

Inputs: $(x_2, x_1, x_0), x_i \in \{0, 1\}$

Output: $z \in \{0, 1, 2, 3\}$

Function: $z = \sum_{i=0}^{2} x_i$

1. THE SWITCHING FUNCTIONS IN TABULAR FORM ARE

x_2	x_1	x_0	z_1	z_0
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

2. THE CORRESPONDING K-MAPS ARE

3. MINIMAL SPs:

$$z_1 = x_2x_1 + x_2x_0 + x_1x_0$$

$$z_0 = x_2'x_1'x_0 + x_2'x_1x_0' + x_2x_1'x_0' + x_2x_1x_0$$

4. MINIMAL PSs:

$$z_{1} = (x_{2} + x_{0})(x_{2} + x_{1})(x_{1} + x_{0})$$

$$z_{0} = (x_{2} + x_{1} + x_{0})(x_{2} + x'_{1} + x'_{0})$$

$$(x'_{2} + x_{1} + x'_{0})(x'_{2} + x'_{1} + x_{0})$$

5. SP AND PS EXPRESSIONS HAVE THE SAME COST

Gate Level Design

$$z_1 = x_2x_1 + x_2x_0 + x_1x_0$$

$$z_0 = x_2'x_1'x_0 + x_2'x_1x_0' + x_2x_1'x_0' + x_2x_1x_0$$

$$z_1 = (x_2 + x_0)(x_2 + x_1)(x_1 + x_0)$$

$$z_0 = (x_2 + x_1 + x_0)(x_2 + x_1' + x_0')$$

$$(x_2' + x_1 + x_0')(x_2' + x_1' + x_0)$$

AND-OR network to NAND network

OR-AND network to NOR network

PROGRAMMABLE LOGIC ARRAY

Clicker Question

Which one is correct?

a)
$$g_0 = d_1 d'_0 + d'_1 d_0$$

b) $g_0 = d_1 d_0$

b)
$$g_0 = d_1 d_0$$

c)
$$g_0 = d_1 d'_0 + d'_1 d'_0$$

d)
$$g_0 = d_1 d_0 + d'_1 d'_0$$

e) none

SEQUENTIAL SYSTEMS

DEFINITION

SYNCHRONOUS AND ASYNCHRONOUS SYSTEMS

Example ODD/EVEN

TIME-BEHAVIOR SPECIFICATION:

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{0, 1\}$

Function: $z(t) = \begin{cases} 1 & \text{if } x(0,t) \text{ contains an even number of } b's \\ 0 & \text{otherwise} \end{cases}$

I/O SEQUENCE:

STATE DESCRIPTION OF ODD/EVEN

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{\text{EVEN, ODD}\}$

Initial state: s(0) = EVEN

Functions: Transition and output functions

$$NS, z(t)$$
 $PS \mid x(t) = a \mid x(t) = b$
EVEN EVEN, 1 ODD, 0
ODD ODD, 0 EVEN, 1

REPRESENTATION OF STATE-TRANSITION AND OUTPUT FUNCTIONS WITH STATE DIAGRAM

Simplified state diagram

What is the state diagram for this example?

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{\text{EVEN, ODD}\}$

Initial state: s(0) = EVEN

Functions: Transition and output functions

$$NS, z(t)$$
 $PS \mid x(t) = a \mid x(t) = b$
EVEN EVEN, 1 ODD, 0
ODD ODD, 0 EVEN, 1

Example: Traffic Light

- Output signals: NSlight, EWlight
- Input signals: NScar, EWcar
- State names: NSgreen, EWgreen (no yellow for now)
- Functionality: want light to change only if car is waiting at red light