calculate forward and inverse kinematics of a robot with 3rd DOF

Forward kinematics

Ouestion:

Given:

- Link lengths: L1, L2, L3
- Joint angles: **θ1**, **θ2**, **θ3**

Unknown:

• The position of the end effector in Cartesian coordinates (x, y, z).

Answer:

$$z = 0$$

Inverse kinematics

Question:

Given:

- The position of the end effector in Cartesian coordinates: (x,y,z)
 - Link lengths: L1, L2, L3

Unknown:

• The joint angles: θ 1, θ 2, θ 3

Answer:

thata1= $\arctan(y/x)$

theta2= $arccos((r^2-L1^2-L2^2)/(2L1L2))$

theta3= ϕ -theta2

where $r = sqrt\{x^2 + y^2\}$ and $\phi = arctan(y/x) - arctan((L2sin(theta2))/L1+L2cos(theta2))$