Introduction to programming in R and Python by Natalia Kazakova and Andrey Yakovenko

Project 1

Hide

install.packages("stringi", dependencies=TRUE, INSTALL_opts = c('--no-lock'))

Hide

install.packages("stringr", dependencies=TRUE, INSTALL_opts = c('--no-lock'))

Hide

install.packages("tidyverse")

Hide

library(tidyverse)

1-2-3. Find a dataset, download it and load the data into R

We will study the species repartition and weight of animals caught in plots in our study area. The dataset is stored as a comma separated value (CSV) file. Each row holds information for a single animal, and the columns represent:

record_id - Unique id for the observation month - month of observation day - day of observation year - year of observation plot_id - ID of a particular plot species_id - 2-letter code sex - sex of animal ("M", "F") hindfoot_length - length of the hindfoot in mm weight - weight of the animal in grams genus - genus of animal species - species of animal taxa - some taxon, e.g. Rodent, Reptile, Bird, Rabbit plot_type - type of plot

Before the work, we need to check and change (if necessary) our working directory:

Hide

[1] "/Users/19820585/Desktop"

getwd()

Hide

setwd('/Users/19820585/Documents/hse/Introduction to programming in R and Python')

Hide

surveys <- read.csv("/Users/19820585/Documents/hse/Introduction to programming in R and Python/portal_data_joined.csv")

Let's check the top of this data frame:

	record_id <int></int>		year <int><int></int></int>	-	species_id <chr></chr>	 <chr></chr>	hindfoot_length <int></int>	weight <int></int>			
1	1	7	16 1977	2	NL	M	32	NA			
2	72	8	19 1977	2	NL	М	31	NA			
3	224	9	13 1977	2	NL		NA	NA			
4	266	10	16 1977	2	NL		NA	NA			
5	349	11	12 1977	2	NL		NA	NA			
6	363	11	12 1977	2	NL		NA	NA			
6 rows 1-10 of 13 columns											

... and size:

Hide

dim(surveys)

[1] 34786 13

Let's inspect the structure of a data frame with the function str():

Hide

str(surveys)

```
'data.frame':
            34786 obs. of 13 variables:
$ record id
              : int 1 72 224 266 349 363 435 506 588 661 ...
$ month
             : int 7 8 9 10 11 11 12 1 2 3 ...
$ day
              : int 16 19 13 16 12 12 10 8 18 11 ...
$ year
             $ plot id
             : int 2 2 2 2 2 2 2 2 2 2 ...
                    "NL" "NL" "NL" "NL" ...
$ species_id
              : chr
              : chr "M" "M" "" ...
$ hindfoot length: int 32 31 NA NA NA NA NA NA NA NA NA ...
            : int NA NA NA NA NA NA NA 218 NA ...
$ weight
$ genus
             : chr "Neotoma" "Neotoma" "Neotoma" ...
             : chr "albigula" "albigula" "albigula" "albigula" ...
$ species
             : chr "Rodent" "Rodent" "Rodent" ...
$ taxa
              : chr "Control" "Control" "Control" ...
$ plot type
```

Moreover, it can be useful to check summary statistics for each column:

Hide

```
summary(surveys)
```

record_id	month	day	year	plot_id	s
pecies_id	sex				
Min. : 1	Min. : 1.000	Min. : 1.0	Min. :1977	Min. : 1.00	Le
ngth:34786	Length:34786				
1st Qu.: 8964	1st Qu.: 4.000	1st Qu.: 9.0	1st Qu.:1984	1st Qu.: 5.00	Cl
ass :character	Class :character				
Median :17762	Median : 6.000	Median :16.0	Median :1990	Median :11.00	Мо
de :character	Mode :character				
Mean :17804	Mean : 6.474	Mean :16.1	Mean :1990	Mean :11.34	
3rd Qu.:26655	3rd Qu.:10.000	3rd Qu.:23.0	3rd Qu.:1997	3rd Qu.:17.00	
Max. :35548	Max. :12.000	Max. :31.0	Max. :2002	Max. :24.00	
hindfoot_length	weight	genus	species	ta	xa
plot_type					
Min. : 2.00	Min. : 4.00	Length:34786	Length:347	786 Length	:347
86 Length:	34786				
1st Qu.:21.00	1st Qu.: 20.00	Class :charact	er Class:cha	aracter Class	:cha
racter Class:	character				
Median :32.00	Median : 37.00	Mode :charact	er Mode :cha	aracter Mode	:cha
racter Mode :	character				
Mean :29.29	Mean : 42.67				
3rd Qu.:36.00	3rd Qu.: 48.00				
Max. :70.00	Max. :280.00				
NA's :3348	NA's :2503				

4. Pick the variables that you think can be relevant for your analysis. Copy these variables into a separate dataset

We decided to drop two variables from our dataset - taxon and type of plot:

5. Check that all R data types actually match the data (e.g. no numbers are stored as characters). If there are, convert the data to the relevant types

Hide

```
str(surveys new)
'data.frame':
             34786 obs. of 11 variables:
 $ record id
               : int 1 72 224 266 349 363 435 506 588 661 ...
 $ month
               : int
                     7 8 9 10 11 11 12 1 2 3 ...
                     16 19 13 16 12 12 10 8 18 11 ...
$ day
               : int
                     : int
$ year
                     2 2 2 2 2 2 2 2 2 2 ...
 $ plot id
               : int
$ species_id
                     "NL" "NL" "NL" "NL" ...
               : chr
               : chr "M" "M" "" ...
$ hindfoot_length: int 32 31 NA NA NA NA NA NA NA NA NA ...
$ weight
               : int NA NA NA NA NA NA NA 218 NA ...
               : chr
                     "Neotoma" "Neotoma" "Neotoma" ...
 $ genus
                     "albigula" "albigula" "albigula" ...
               : chr
 $ species
```

It looks fine

6. In this dataset, check if there are any missing data. If there are, clean your data by removing the observations where data are missing

Let's start by removing observations of animals for which weight and hindfoot_length are missing, or the sex has not been determined:

Because we are interested in plotting how species abundances have changed through time, we are also going to remove observations for rare species (i.e., that have been observed less than 50 times). We will do this in two steps: first, we are going to create a data set that counts how often each species has been observed, and filter out the rare species. Second, we will extract only the observations for these more common species:

Let's check our new data frame:

Hide

```
dim(surveys_complete)

[1] 30521 11
```

7. After cleaning the dataset, save your result for further analysis to the RDS format

Also, we will save it to the CSV format

Hide

write_csv(surveys_complete, path = "/Users/19820585/Documents/hse/Introduction to
programming in R and Python//surveys_complete.csv")

Project 3

Hide

install.packages("ggfortify")

Hide

library(ggfortify)

a. A histogram and a density plot of some numeric (ratio or interval scale (**)) variables. These plots show us the distribution of weight within our data set.

Hide

ggplot(data=surveys_complete, aes(x=weight))+geom_histogram(color = "blue", fill =
"pink")

`stat bin()` using `bins = 30`. Pick better value with `binwidth`.

b. A bar and a pie chart for some factor variables (if you do not have factor variables in your dataset, take some numeric variables and convert them to factors)

head(df_pie2)

df_pie
albigula baileyi eremicus flavus fulvescens hispidus
1046 2808 1200 1471 73 128

Pie Chart of Species

c. Box (or violin) plots for some numeric variables Here we can see box plots, that reflect animals' weight within their species.

