Para um projeto de faculdade com foco em demonstrar a ideia (um proof-of-concept), usar apenas o ESP32 é totalmente viável e uma excelente escolha.

A ideia é validar o conceito central de forma simples, barata e eficaz.

Aqui está um guia de como você pode estruturar esse projeto:

1. Escopo Simplificado e Foco da Demonstração

Defina claramente o que seu robô vai demonstrar. Exemplos:

- "Demonstrar a coleta autônoma de um objeto em um ponto A e a entrega no ponto B."
- "Demonstrar a capacidade de se localizar de forma relativa usando sensores de baixo custo."
- "Demonstrar a comunicação com uma 'estação central' simulada para receber ordens de missão."

2. Hardware Viável para o ESP32

- **Controlador:** ESP32 (DevKit C ou similar). Use ambos os núcleos! Um para controle dos motores/sensores e outro para lógica e comunicação.
- Sensores de Navegação (Escolha um ou dois):
 - Seguidor de Linha: A opção mais simples e previsível. Use um array de 3-5 sensores IR para precisão.
 - Encoderes nos Motores: Fundamental para ter uma ideia de quantos centímetros o robô se moveu e quantos graus girou (odometria). Isso permite uma navegação do tipo "dead reckoning".
 - Sensor de Fluxo Óptico (Opcional): Um sensor como o PMW3360 (usado em mouses gamers)
 apontado para o chão pode medir o movimento real com boa precisão, melhorando muito a
 odometria.
 - Câmera Simples (OV2640): Para ler QR Codes colados no chão, que definem pontos específicos (ex: "Ponto de Coleta", "Estação 1").
 - Mantendo os Sensores de Obstáculos: Ultrassônicos e IR para evitar colisões inesperadas durante a missão.

3. Estratégia de Software e Navegação

A chave é abandonar a ideia de SLAM complexo e adotar uma navegação baseada em waypoints e tarefas.

- **Lógica Principal (Máquina de Estados):** Seu código em C++ ou MicroPython será uma máquina de estados finita.
 - o Estado IDLE: Aguardando comando via Wi-Fi.
 - Estado NAVIGATE_TO_A: Executando a sequência para ir ao ponto A (e.g., seguir linha por 2 metros, girar 90° à direita).
 - o Estado PICK_UP: Acionar um atuador (servo motor) para "coletar" o objeto.
 - o Estado NAVIGATE_TO_B: Executando a sequência para ir ao ponto B.
 - o Estado DROP: Liberar o objeto.
- Navegação por Odometria: Use os encoders para saber quanto o robô já andou. Ex: while(distance_measured < 200_cm) { move_forward(); }. Apesar de acumular erro com o tempo, é suficiente para uma demonstração.

- **Comunicação:** Use o Wi-Fi do ESP32 para se conectar a um app simples no seu celular (usando App Inventor, Blynk) ou a um script Python no seu notebook que atue como o "**servidor MES simulado**". O comando pode ser algo como GET /mission?target=station1.
- 4. Exemplo de Funcionamento para a Demonstração
 - 1. **Preparação:** Você cola QR Codes ou define marcas no chão (fita colorida) que o robô possa identificar.
 - 2. Início: O robô inicia e conecta-se ao Wi-Fi.
 - 3. Comando: Você clica um botão no seu celular ("Levar para Estação 1").
 - 4. Execução:
 - o O robô recebe o comando via Wi-Fi.
 - Entra no estado NAVIGATE_TO_STATION1.
 - Segue uma linha no chão por uma distância baseada na odometria.
 - o Identifica um QR Code no chão com a câmera (confirma que chegou no lugar certo).
 - o Aciona um servo motor para liberar a carga em cima de uma plataforma.
 - o Retorna para uma "base" ou emite um sinal sonoro de "missão cumprida".
 - 5. **Demonstração:** Você mostra como o robô recebeu uma ordem digital e executou uma tarefa física de logística de forma autônoma.

Vantagens dessa Abordagem para a Faculdade:

- Custo Extremamente Baixo: Você trabalha com componentes acessíveis.
- **Foco no Problema Central:** Avalia a viabilidade da *ideia de automação*, não se perdendo na complexidade de SLAM.
- Demonstração Clara e Objetiva: Quem assistir entenderá perfeitamente a função do robô.
- **Grande Valor de Aprendizado:** Você lidará com integração de hardware, comunicação wireless, máquinas de estado e controle de motores que são fundamentais para qualquer projeto de robótica.

Conclusão Final:

Vá em frente com o ESP32! Para um projeto de faculdade, a simplicidade é uma virtude. A restrição tecnológica força a criatividade e foca o projeto no que realmente importa: **provar que a ideia é válida**. Você pode perfeitamente demonstrar os princípios da Manufatura Avançada (integração do mundo digital com o físico) mesmo com hardware limitado. Boa sorte com o projeto.

Blocos de construção fundamentais separadamente.

Aqui estão os melhores sites e o que procurar neles:

1. YouTube (A Fonte de Ouro para Projetos Passo a Passo)

O YouTube é inigualável para ver o projeto em ação, entender os desafios e a lógica por trás do código.

Termos de Pesquisa Recomendados (em inglês geralmente traz mais resultados):

- ESP32 line follower robot (Robô seguidor de linha com ESP32)
- ESP32 mobile robot (Robô móvel com ESP32)
- ESP32 robot car with Arduino IDE
- ESP32 Bluetooth robot car (Se quiser controlar via celular)
- ESP32 WiFi robot car (Para a sua ideia de receber comandos)
- ESP32 odometry (Para ver projetos que usam encoders para medir distância)
- ESP32 pick and place robot (Projetos simples de braço robótico que você pode adaptar)
- DIY AGV Arduino (Veículo Guiado Automático faça você mesmo)

Canais Sugeridos para se Inscrever:

- How To Mechatronics: Explica conceitos de forma muito clara, mesmo projetos complexos.
- DroneBot Workshop: Foca muito em ESP32 e Arduino, com tutoriais detalhados.
- Enjoy Mechatronics: Tem projetos práticos de robótica móvel.
- Bitluni's Lab: Para ideias criativas e muitas vezes simplificadas com ESP32.

2. Instructables

Site fantástico para projetos completos, com instruções escritas, listas de materiais e muitas fotos.

- O que procurar: Use os mesmos termos de pesquisa do YouTube.
- **Exemplo prático:** Um projeto de "Smart Warehouse Robot" ou "Arduino Material Handling Robot" pode ser uma mina de ouro para ideias de estrutura mecânica e lógica simples.

3. Hackaday.io

Uma plataforma para projetos de engenharia mais sérios, mas cheia de ideias inovadoras. É ótimo para ver como outras pessoas resolveram problemas específicos.

• O que procurar: Procure por projetos com as tags AGV, ESP32, autonomous robot.

4. GitHub

Aqui você não encontrará muitos vídeos, mas **encontrará o código-fonte e, muitas vezes, fotos do projeto na página** README.md.

• O que procurar: Procure por repositórios com os mesmos termos (esp32 line follower, esp32 robot, autonomous delivery robot). Ver o código de outros é a melhor maneira de aprender a programar a lógica do seu robô.

5. Pinterest

Surpreendentemente bom para encontrar imagens de referência e diagramas de montagem de robôs de todos os tipos. É uma ótima fonte de inspiração para o design mecânico.

• O que procurar: Arduino robot, DIY robot, material handling robot, robot chassis design.

Estratégia de Pesquisa "Mentalidade de Maker":

Como seus resultados exatos serão raros, a chave é **quebrar seu projeto em partes menores** e buscar cada uma:

- 1. **A Base Móvel:** Pesquise por "ESP32 robot car" ou "4WD Arduino car". Você verá centenas de vídeos do chassis, controle de motores e bateria. Este é o primeiro bloco.
- 2. **A Navegação Simples:** Em vez de SLAM, pesquise por "ESP32 line follower". Você verá como usar sensores IR para seguir um caminho pré-definido, que é uma analogia perfeita para um trilho de produção.
- 3. **A Comunicação:** Para o comando via Wi-Fi, pesquise por "ESP32 webserver" ou "ESP32 receive command". Você verá como criar uma página web no ESP32 que, ao clicar em um botão, faz o robô se mover.
- 4. **O Mecanismo de Entrega:** Pesquise por "Arduino servo mechanism" ou "simple robot gripper". Você verá ideias baratas usando servos motores para empurrar, levantar ou soltar um objeto.

Exemplo de um projeto que se encaixa perfeitamente na sua ideia:

Um vídeo de um robô seguidor de linha ESP32 que, ao chegar no final do percurso, aciona um servo para derrubar uma bolinha de gude. Seu projeto é essencialmente isso, mas em escala maior e com uma narrativa de "abastecimento de linha de produção".

Assistir a esses projetos menores vai te dar a confiança e o know-how técnico para juntar todas as peças e criar a sua própria demonstração. Boa sorte e boa montagem!

Exemplos de Imagens:

Vídeos:

https://youtu.be/HkBcWZjxt0E?t=2

https://youtu.be/ejs_4WoeWFc?si=uLIV5B5XQtEhv7Ir

https://youtu.be/NP98aBHPlQg

Referências:

https://delage.com.br/blog/10-tendencias-de-automacao-robotica-em-armazens/

DeepSeek