

Phase reconstruction of spectrograms based on a model of repeated audio events

Paul MAGRON, Roland BADEAU, Bertrand DAVID

Institut Mines-Télécom - Télécom ParisTech - CNRS LTCI - Paris, France

IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), October 18th - 21st, 2015

Introduction

Problem

Many audio source separation techniques act on spectrogram-like representations in the Time-Frequency (TF) domain.

- We need to reconstruct the phase to synthesize time-domain signals.
- Issues appear when sources overlap in the TF domain.
- Most approaches do not use a phase model of repeated audio events.

Our approach:

- Exploiting a phase model of repeated audio events.
- Defining a complex mixture model which includes this phase model.
- Application to source separation.

Phase model of repeated audio events

Main concept

- x: time-domain source that is activated M times.
- X(f,t): STFT of x with hop size S, with $f \in [0; F-1]$ and $t \in \mathbb{Z}$.
- The corresponding onset frames begin at $t_m S$, $m \in [0; M-1]$.

Key idea: $X(f, t_m)$ and $X(f, t_0)$ are the Fourier transforms of two signals approximately equal up to a gain factor $\rho(m) \in \mathbb{R}_+$ and a delay of $\eta(m) \in \mathbb{R}$ samples:

$$X(f, t_m) \approx X(f, t_0) \rho e^{i\lambda(m)f}, \text{ with } \lambda(m) = \frac{2\pi\eta(m)}{F}.$$
 (1)

Phase model:

$$\angle X(f, t_m) = \phi(f, t_m) \approx \underbrace{\psi(f)}_{\text{phase within an onset frame}} \approx \underbrace{\psi(f)}_{\text{reference phase}} + \underbrace{\lambda(m)f}_{\text{offset}}. \tag{2}$$

Example

Two occurrences of the same piano note with different nuances.

 \rightarrow Phase difference between onset frames.

 \rightarrow Accuracy of the phase model.

Mixture model

- $X \in \mathbb{C}^{F \times T}$ is a mixture of K sources X^k ,
- $Y \in \mathbb{C}^{F \times M}$ is a submatrix of X corresponding to the onset frames:

$$Y(f,m) = X(f,t_m) = \sum_{k=1}^{K} A^k(f,t_m) e^{i\phi^k(f,t_m)}.$$
 (3)

• Complex mixture with phase model:

$$\hat{Y}(f,m) = \sum_{k=1}^{K} A^{k}(f,t_{m})e^{i\psi^{k}(f)}e^{i\lambda^{k}(m)f}.$$
(4)

Reduction of the dimensionality of the data: K(F + M) < KFM.

Parameters estimation

Minimization of a cost function:

• Strict:

$$C_s = \sum_{f,m} \left| Y(f,m) - \sum_{k=1}^K A^k(f,t_m) e^{i\psi^k(f)} e^{i\lambda^k(m)f} \right|^2.$$
 (5)

• Relaxed:

$$C_{r} = \sum_{f,m} \left| Y(f,m) - \sum_{k=1}^{K} A^{k}(f,t_{m}) e^{i\phi^{k}(f,t_{m})} \right|^{2} + \sigma \sum_{f,m,k} A^{k}(f,t_{m})^{2} \left| e^{i\phi^{k}(f,t_{m})} - e^{i\psi^{k}(f)} e^{i\lambda^{k}(m)f} \right|^{2}, \quad (6)$$

 σ : prior weight which promotes the phase constraint. $\partial_{\psi} \mathcal{C}$ (resp. $\partial_{\phi} \mathcal{C}$)= 0 \rightarrow Estimation of ψ (resp. ϕ). Adaptation of the ESPRIT algorithm \rightarrow Estimation of λ .

Experimental results

Onset phase estimation

- Mixtures of two sources: model-built data and piano notes with different nuances. Magnitude values A^k are assumed to be known.
- Comparison with the traditional Wiener filtering approach.
- Estimation error: $\frac{1}{K} \sum_{k} ||Y^k \hat{Y}^k||$.

Model-built data: the strict algorithm outperforms Wiener filtering. Realistic data: slightly better phase estimation with the relaxed algorithm. Drawback: it requires that σ be carefully chosen.

Source separation

RePU (Repeating Phase & Unwrapping): onset phase estimation with the relaxed algorithm ($\sigma = 0.2$) and linear unwrapping over time [1]. Separation quality measured with the Signal to Distortion, Interference and Artifact Ratios (SDR, SIR and SAR).

Dataset	Method	SDR	SIR	SAR
Synthetic sinusoids	Wiener	29.3	20.8	58.6
(without TF overlap)	RePU	3.2	9.6	26.1
Synthetic sinusoids	Wiener	10.5	7.9	20.9
(with TF overlap)	RePU	3.2	8.8	25.2
MIDI audio excerpt	Wiener	-2.3	-20.6	20.8
(bass, guitar and piano)	${ m RePU}$	-3.2	-16.7	11.6

- Without TF overlap: superiority of Wiener over RePU (expected).
- With TF overlap: RePU leads to an increase in interference and (sometimes) artifact rejection.
 - \rightarrow Potential of a phase model of repeated audio events for separating overlapping sources in the TF domain.

Future research

- Refine the phase model: complex signals, different nuances.
- Phase correlations between frequency channels within an onset frame.
- Joint estimation of magnitude and phase: combine RePU and NMF models in a complex NMF framework.

References:

[1] P. Magron, R. Badeau and B. David, Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration, EUSIPCO, 2015.