AUTRES APPLICATIONS

Analyse de systèmes défaillants

Détection de défauts pour le diagnostic des machines asynchrones.

- la simulation à base d'algorithmes concurrents pour la détéction de défauts;
- Environnement DEVSimPy est utilisé pour valider les concepts théoriques.
- La validation est effectuée dans le cadre de diagnostic de pannes dans les moteurs d'éoliennes.

Analyse de systèmes defaillants

Modélisation et Simulation de pannes Avec DEVSIMPy

$$\begin{cases} v_{cs}(t) &= r_{s}.i_{cs} + L.\frac{d}{dt}i_{sr} - \frac{L_{cs}}{2} \left[\frac{d}{dt}i_{br} + \frac{d}{dt}i_{cs} \right] + L_{cs}\frac{d}{dt} \left[i_{cr}.\cos(\theta_{r}(t)) + i_{br}.\cos(\theta_{r}(t) + \frac{2t}{2}) - i_{cr}.\cos(\theta_{r}(t) - \frac{2t}{3}) \right] \\ v_{cs}(t) &= r_{s}.i_{cs} + L.\frac{d}{dt}i_{br} - \frac{L_{cs}}{2} \left[\frac{d}{dt}i_{cr} + \frac{d}{dt}i_{cs} \right] + L_{cs}\frac{d}{dt} \left[i_{cr}.\cos(\theta_{r}(t)) + \frac{2t}{3} + i_{dr}.\cos(\theta_{r}(t)) - i_{cr}.\cos(\theta_{r}(t) - \frac{2t}{3}) \right] \\ v_{cs}(t) &= r_{s}.i_{cs} + L.\frac{d}{dt}i_{cs} - \frac{L_{cs}}{2} \left[\frac{d}{dt}i_{br} + \frac{d}{dt}i_{cr} \right] + L_{cs}\frac{d}{dt} \left[i_{ar}.\cos(\theta_{r}(t) + \frac{2t}{3}) + i_{br}.\cos(\theta_{r}(t) - \frac{2t}{3}) + i_{cr}.\cos(\theta_{r}(t)) \right] \\ v_{cr}(t) &= r_{r}.i_{ar} + L.\frac{d}{dt}i_{rr} - \frac{L_{cr}}{2} \left[\frac{d}{dt}i_{br} + \frac{d}{dt}i_{cr} \right] + L_{cs}\frac{d}{dt} \left[i_{ar}.\cos(\theta_{r}(t)) + i_{br}.\cos(\theta_{r}(t) - \frac{2t}{3}) + i_{cr}.\cos(\theta_{r}(t) + \frac{2t}{3}) \right] \\ v_{dr}(t) &= r_{r}.i_{ar} + L.\frac{d}{dt}i_{rr} - \frac{L_{cr}}{2} \left[\frac{d}{dt}i_{rr} + \frac{d}{dt}i_{rr} \right] + L_{cs}\frac{d}{dt} \left[i_{ar}.\cos(\theta_{r}(t) + \frac{2t}{3}) + i_{br}.\cos(\theta_{r}(t) + \frac{2t}{3}) + i_{cr}.\cos(\theta_{r}(t) - \frac{2t}{3}) \right] \\ v_{dr}(t) &= r_{r}.i_{cr} + L_{r}\frac{d}{dt}i_{rr} - \frac{L_{cr}}{2} \left[\frac{d}{dt}i_{rr} + \frac{d}{dt}i_{rr} \right] + L_{cs}\frac{d}{dt} \left[i_{ar}.\cos(\theta_{r}(t) - \frac{2t}{3}) + i_{br}.\cos(\theta_{r}(t) + \frac{2t}{3}) + i_{cr}.\cos(\theta_{r}(t) - \frac{2t}{3}) \right] \\ U_{dr}(t) &= r_{r}.i_{cr} + L_{r}\frac{d}{dt}i_{rr} - \frac{L_{cr}}{2} \left[\frac{d}{dt}i_{rr} + \frac{d}{dt}i_{rr} \right] + L_{cs}\frac{d}{dt} \left[i_{ar}.\cos(\theta_{r}(t) - \frac{2t}{3}) + i_{cr}.\cos(\theta_{r}(t) + \frac{2t}{3}) + i_{cr}.\cos(\theta_{r}(t) - \frac{2t}{3}) \right] \\ U_{dr}(t) &= r_{r}.i_{cr} + L_{r}\frac{d}{dt}i_{rr} - \frac{d}{dt}i_{rr} + \frac{d}{dt}i_{rr} \right] + L_{cs}\frac{d}{dt} \left[i_{ar}.\cos(\theta_{r}(t) - \frac{2t}{3}) + i_{cr}.\cos(\theta_{r}(t) + \frac{2t}{3}) + i_{cr}.\cos(\theta_{r}(t) - \frac{2t}{3}) \right] \\ U_{dr}(t) &= r_{r}.i_{cr} + L_{r}\frac{d}{dt}i_{rr} - \frac{d}{dt}i_{rr} + \frac{d}{dt}i_{rr} \right] + L_{cs}\frac{d}{dt} \left[i_{ar}.\cos(\theta_{r}(t) - \frac{2t}{3}) + i_{cr}.\cos(\theta_{r}(t) - \frac{2t}{3}) \right] \\ U_{dr}(t) &= r_{r}.i_{cr} + L_{r}\frac{d}{dt}i_{rr} + \frac{d}{dt}i_{rr} \right] + L_{cs}\frac{d}{dt}i_{rr} + L_{r}\frac{d}{dt}i_{rr} + L_{r}\frac{d}{dt}i_{rr} + L_{r}\frac{d}{dt}i_{rr} \right]$$

Modélisation mathématique

Folienne

Système non-linéaire

Analyse de systèmes mythologiques

Claude Levi-Strauss a développé dès 1955 une méthode d'analyse des mythes. Cette méthode repose sur le concept de pensée mythique par comparaison avec la pensée scientifique. Selon l'approche définie par Claude Levi-Strauss ces mythes sont liés les uns aux autres suivant un ensemble de transformations qui permettent de générer un mythe à partir d'un mythe déjà généré. Nous proposons dans le cadre de ce travail de définir un logiciel d'aide à l'analyse des mythes à partir de la méthode d'anthropologie structurale de C. Levi-Strauss.

Analyse de systèmes mythologiques

L'analyse logicielle des mythes repose donc sur les 4 parties suivantes :

- Modélisation d'un mythe à partir de la notion de mythèmes
- Génération d'un nouveau mythe à partir d'un mythe initial par simulation DEVS
- Analyse d'un mythe donné à partir de la notion de codes
- Visualisation d'un mythe donné grâce au le couplage entre la modélisation et la simulation de systèmes et l'utilisation de Google Map API

Dynamic variable structures

Implementation of the Dynamic Variable Structure simulation in DEVSimPy based on :

- . Supervisor concept (Giambiasi and al.)
- . Methods: Addmodel, addlink, etc.. (Hu and al.)

Myth Generation

Code analysis

	н	В	С	D
tectle	Januar	avoid-Hand-life	Januar	have-soft-life
dfactory	Januar	do small lunumascible	Jaunar	do not singli mitrid
gestatory	Јация	do not eat haman Restr	Јавиан	eat animal flesh
auditory	Jaquar	hear-Lond-Call	Januar	hear-faint-call

Spatialization

Context

Visualization on a GIS (Google Map/Earth)

Manipulation of kml files

 Library of atomic models allowing the generation of kml files and the visualization in Google Map/Earth

Contrat Société EDL (logiciels medicaux)

Objectifs: Aide aux test d'interfaces Web

Il développer des concepts et outils d'aide à la génération de test pour des applications Web dédiées à la gestion de dossiers médicaux.

- Dans le cadre de ce contrat : définir des concepts et outils d'aide à la génération de ces tests afin d'automatiser la génération de test pour des application Web.
- Pour cela : développement d'une approche qui couple la modélisation et la simulation (M&S) à événements discrets utilisation du formalisme DEVS et un outil de mis en œuvre de tests pour vérifier des sites Web.

Pour cela : développement d'une approche qui couple la modélisation et la simulation (M&S) à événements discrets - utilisation du formalisme DEVS - et outils de mis en œuvre de tests pour vérifier des sites Web.

- Utilisation du logiciel DEVSimPY développé au SPE –
- Utilisation de Selenium et de RobotFramework

