Real Time Systems, January 2024

<u>Dashboard</u> / My courses / <u>RTSJAN2024</u> / <u>15 January</u> - <u>21 January</u> / <u>Write a C program to create n processes - Problem 3</u>

Write a C program to create n processes - Problem 3

Opened: Monday, 22 January 2024, 9:00 AM **Due:** Friday, 2 February 2024, 11:59 PM

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: $\mathbf{a_n}\mathbf{x^n} + \mathbf{a_{n-1}}\mathbf{x^{n-1}} + \mathbf{a_{n-2}}\mathbf{x^{n-2}} + \cdots + \mathbf{a_2}\mathbf{x^2} + \mathbf{a_1}\mathbf{x} + \mathbf{a_0}$ where $\mathbf{a_n}$, $\mathbf{a_{n-1}}$, $\mathbf{a_{n-2}}$, \cdots $\mathbf{a_2}$, $\mathbf{a_1}$, $\mathbf{a_0}$ are real numbers. Example: $3x^4 - 2x^2 + 5x + 1$ is a polynomial of degree 4.

Write a complete C program that reads a polynomial of degree \mathbf{n} through command line arguments. That is, when the program is executed as "./a.out \mathbf{v} a_n a_{n-1}, a_{n-2}, ... a₂ a₁ a₀", it uses "*int argc*" and "char *argv[]" to read a_n, a_{n-1}, a_{n-2}, ... a₂, a₁, a₀ and the value of x (say, v) for which the polynomial is to be evaluated.

The program then creates n+1 child processes P_0 , P_1 , P_2 , ..., P_n such that P_i , $1 \le i \le n$, evaluates the i^{th} term of the polynomial. That is P_0 evaluates $a_n v^n$, P_1 evaluates $a_{n-1} v^{n-1}$, and so on. P_n , in addition to evaluating the nth term (a₀), also prints the value of the whole polynomial for v.

Please note that your program should be well-documented and properly indented for easy reading!

Submission status

Attempt number	This is attempt 1.	
Submission status	Submitted for grading	
Grading status	Not graded	
Time remaining	Assignment was submitted 3 days early	
Last modified	Tuesday, 30 January 2024, 11:30 PM	
Online text	+ (355 words)	
	// for proper linking	
	// gcc program3.c -o a.out -lm	
	#include <stdio.h></stdio.h>	
	#include <stdlib.h></stdlib.h>	
	#include <unistd.h></unistd.h>	
	#include <sys wait.h=""></sys>	
	#include	
File submissions	program3.c 30) January 2024, 11:29 PM

ubmission omments	Comme	nts (0)				
■ Write a C p	ogram to create n	processes - Prob	lem 2			
✓ Write a C p Jump to	ogram to create n	processes - Prob	lem 2			

You are logged in as 2023CSM011 SOUVIK_BANDYOPADHYAY (Log out) Reset user tour on this page RTSJAN2024

Data retention summary Get the mobile app