ECE 490: Problem Set 2

Due: Tuesday February 14 through Gradescope by 11 AM

Reading: Lecture Notes 4-7; Secs 1.2 – 1.4 of text.

1. [Convexity of Compositions]

(a) Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is convex, and $g: \mathbb{R} \to \mathbb{R}$ is convex and non-decreasing. Prove that the composition of g and f is convex, i.e., show that for all $x, y \in \mathbb{R}^n$ and $\alpha \in [0, 1]$

$$g(f(\alpha x + (1 - \alpha)y)) \le \alpha g(f(x)) + (1 - \alpha)g(f(y)).$$

- (b) Give an example of $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$, which are both convex, such that the composition $g(f(\cdot))$ is not convex.
- (c) (3 pts) Let Q be an $n \times n$ symmetric PSD matrix, and β be a positive scalar. Then prove that the function $h: \mathbb{R}^n \to \mathbb{R}$ defined by

$$h(x) = e^{\beta x^{\top} Q x}$$

is convex.

2. [Armijo's Rule]

Consider the problem of minimizing the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined as:

$$f(x) = f(x_1, x_2) = 4x_1^2 + x_2^4$$

using steepest descent with Armijo's Rule, with parameters $\tilde{\alpha} = 1$, $\sigma = 0.2$, and $\beta = 0.3$. Find α_k if $x_k = (1,0) \equiv [1\ 0]^\top$.

3. [Lipschitz Function]

Consider $f: \mathbb{R}^n \to \mathbb{R}$. Show that if

$$\|\nabla f(x)\| < L, \ \forall x \in \mathbb{R}^n$$

then f is Lipschitz with Lipschitz constant L.

4. [Convergence of Gradient Descent with Constant Step-Size]

Consider minimizing the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = |x|^3$$
.

Note that f is twice continuously differentiable, with $\nabla f(x) = 3x|x|$, and $\nabla^2 f(x) = 6|x|$.

Suppose we run steepest descent on this function with constant step-size $\alpha = 1/3$, i.e.,

$$x_{k+1} = x_k - \frac{\nabla f(x_k)}{3} = x_k (1 - |x_k|)$$

with starting point x_0 .

- (a) Establish that f has a unique minimum $x^* = 0$.
- (b) Show that if $|x_0| < 2$, then the sequence $\{|x_k|\}$ is convergent (as $k \to \infty$).
- (c) Now show that if $|x_0| < 2$, then x_k converges to 0, as $k \to \infty$, i.e., that

$$\lim_{k \to \infty} x_k = \lim_{k \to \infty} |x_k| = 0.$$

Hint: Suppose that $|x_k|$ converges to c > 0, and establish a contradiction.

5. [Convergence with Varying Step Size]

Consider if $f: \mathbb{R} \to \mathbb{R}$ defined by:

$$f(x) = \frac{2}{3}|x|^3 + \frac{1}{2}x^2$$

Suppose we use the steepest descent method with step size

$$\alpha_k = \frac{1}{k+1}.$$

Show that if $|x_0| \ge 1$, then $|x_k| \ge k+1$ for all $k \ge 1$, i.e., the method diverges.

Hint: Use mathematical induction.

6. [Strong Convexity]

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable and strongly convex, i.e.,

$$\nabla^2 f(x) \succeq mI, \ \forall x \in \mathbb{R}^n.$$

Let x^* be the global minimum of f. Show that

$$||x - x^*|| \le \frac{||\nabla f(x)||}{m}, \ \forall x \in \mathbb{R}^n.$$

Hint: You may want to start with the relation:

$$\nabla f(y) = \nabla f(x) + \int_0^1 \nabla^2 f(x + t(y - x))(y - x)dt$$

and exploit the fact that $\nabla f(x^*) = 0$.

7. [Condition Number]

Consider $f: \mathbb{R}^n \to \mathbb{R}$ defined as

$$f(x) = \frac{1}{2}x^{\top}Q(\epsilon)x + b(\epsilon)^{\top}x + c(\epsilon)$$

where

$$Q(\epsilon) = \begin{bmatrix} 1 & \epsilon \\ \epsilon & 1 \end{bmatrix}, \quad b(\epsilon) = \begin{bmatrix} 1+\epsilon \\ 1-\epsilon \end{bmatrix}, \quad c(\epsilon) = \epsilon^2.$$

- (a) Find the condition number of the Hessian of f for $\epsilon \in (0,1)$.
- (b) What happens to the condition number as $\epsilon \to 0$ and $\epsilon \to 1$?