Estimating Policy Barriers to Trade

Brendan Cooley

Political Economy Graduate Colloquium

6 December 2018

Free and Fair?

The United States must, at long last, be treated fairly on Trade. If we charge a country ZERO to sell their goods, and they charge us 25, 50 or even 100 percent to sell ours, it is UNFAIR and can no longer be tolerated. That is not Free or Fair Trade, it is Stupid Trade!

10:51 AM - 2 Jun 2018

- Free: Foreign firms enjoy same market access conditions as domestic competitors
- Fair: Barriers that do exist affect all trade partners symmetrically

Free and Fair?

The United States must, at long last, be treated fairly on Trade. If we charge a country ZERO to sell their goods, and they charge us 25, 50 or even 100 percent to sell ours, it is UNFAIR and can no longer be tolerated. That is not Free or Fair Trade, it is Stupid Trade!

10:51 AM - 2 Jun 2018

- Free: Foreign firms enjoy same market access conditions as domestic competitors
- Fair: Barriers that do exist affect all trade partners symmetrically

Free and Fair?

The United States must, at long last, be treated fairly on Trade. If we charge a country ZERO to sell their goods, and they charge us 25, 50 or even 100 percent to sell ours, it is UNFAIR and can no longer be tolerated. That is not Free or Fair Trade, it is Stupid Trade!

10:51 AM - 2 Jun 2018

- Free: Foreign firms enjoy same market access conditions as domestic competitors
- Fair: Barriers that do exist affect all trade partners symmetrically

The Tariff System (GATT/WTO)

- Free? Applied tariff rates are low, ~5% on average (Baldwin 2016)
- Fair? WTO members (vast majority of world economy) commit to principle of non-discrimination (Most Favored Nation)

Varieties of Barriers

Direct

- Tariffs
- Non-Tariff Measures (NTMs)
 - Price controls, quotas, health and safety regulations, technical barriers
 - Edward D. Mansfield and Busch (1995), Lee and Swagel (1997),
 Gawande and Hansen (1999), Kono (2006), Rickard (2012), Maggi,
 Mrázová, and Neary (2018)

Indirect (Behind-the-Border)

- Government procurement
 - Evenett and Hoekman (2004), Kono and Rickard (2014)
- Subsidies
- Excise taxes
- Regulations

Effective Discrimination: Target trade-disorting instruments to disproportionately affect disfavored trading partners.

 E.g. high agricultural duties by developed countries disproportionately harm developing countries

Varieties of Barriers

Direct

- Tariffs
- Non-Tariff Measures (NTMs)
 - Price controls, quotas, health and safety regulations, technical barriers
 - Edward D. Mansfield and Busch (1995), Lee and Swagel (1997),
 Gawande and Hansen (1999), Kono (2006), Rickard (2012), Maggi,
 Mrázová, and Neary (2018)

Indirect (Behind-the-Border)

- Government procurement
 - Evenett and Hoekman (2004), Kono and Rickard (2014)
- Subsidies
- Excise taxes
- Regulations

Effective Discrimination: Target trade-disorting instruments to disproportionately affect disfavored trading partners.

 E.g. high agricultural duties by developed countries disproportionately harm developing countries

Varieties of Barriers

Direct

- Tariffs
- Non-Tariff Measures (NTMs)
 - Price controls, quotas, health and safety regulations, technical barriers
 - Edward D. Mansfield and Busch (1995), Lee and Swagel (1997),
 Gawande and Hansen (1999), Kono (2006), Rickard (2012), Maggi,
 Mrázová, and Neary (2018)

Indirect (Behind-the-Border)

- Government procurement
 - Evenett and Hoekman (2004), Kono and Rickard (2014)
- Subsidies
- Excise taxes
- Regulations

Effective Discrimination: Target trade-disorting instruments to disproportionately affect disfavored trading partners.

 E.g. high agricultural duties by developed countries disproportionately harm developing countries

Trade Costs: Policy distortions and transportation costs to access market *i* in excess of those faced by firms in country *i*

Overview

- Build model of international economy subject to trade costs (Eaton and Kortum 2002)
- Derive structural relationship linking trade costs to price levels, trade flows, market shares of home producers
 - Anderson and Van Wincoop (2003), Waugh (2010), Simonovska and Waugh (2014), Sposi (2015), Waugh and Ravikumar (2016)
- Decompose trade costs into economic (transportation costs) and political (policy barriers) components
- 4. Model transportation costs, combine with data on variables in (2) to separately estimate magnitude of policy barriers

Trade Costs: Policy distortions and transportation costs to access market *i* in excess of those faced by firms in country *i*

Overview

- 1. Build model of international economy subject to trade costs (Eaton and Kortum 2002)
- Derive structural relationship linking trade costs to price levels, trade flows, market shares of home producers
 - Anderson and Van Wincoop (2003), Waugh (2010), Simonovska and Waugh (2014), Sposi (2015), Waugh and Ravikumar (2016)
- Decompose trade costs into economic (transportation costs) and political (policy barriers) components
- 4. Model transportation costs, combine with data on variables in (2) to separately estimate magnitude of policy barriers

Trade Costs: Policy distortions and transportation costs to access market i in excess of those faced by firms in country i

Overview

- 1. Build model of international economy subject to trade costs (Eaton and Kortum 2002)
- 2. Derive structural relationship linking trade costs to price levels, trade flows, market shares of home producers
 - Anderson and Van Wincoop (2003), Waugh (2010), Simonovska and Waugh (2014), Sposi (2015), Waugh and Ravikumar (2016)
- Decompose trade costs into economic (transportation costs) and political (policy barriers) components
- 4. Model transportation costs, combine with data on variables in (2) to separately estimate magnitude of policy barriers

Trade Costs: Policy distortions and transportation costs to access market *i* in excess of those faced by firms in country *i*

Overview

- 1. Build model of international economy subject to trade costs (Eaton and Kortum 2002)
- 2. Derive structural relationship linking trade costs to price levels, trade flows, market shares of home producers
 - Anderson and Van Wincoop (2003), Waugh (2010), Simonovska and Waugh (2014), Sposi (2015), Waugh and Ravikumar (2016)
- 3. Decompose trade costs into economic (transportation costs) and political (policy barriers) components
- 4. Model transportation costs, combine with data on variables in (2) to separately estimate magnitude of policy barriers

Trade Costs: Policy distortions and transportation costs to access market *i* in excess of those faced by firms in country *i*

Overview

- 1. Build model of international economy subject to trade costs (Eaton and Kortum 2002)
- 2. Derive structural relationship linking trade costs to price levels, trade flows, market shares of home producers
 - Anderson and Van Wincoop (2003), Waugh (2010), Simonovska and Waugh (2014), Sposi (2015), Waugh and Ravikumar (2016)
- 3. Decompose trade costs into economic (transportation costs) and political (policy barriers) components
- 4. Model transportation costs, combine with data on variables in (2) to separately estimate magnitude of policy barriers

Trade Costs: Policy distortions and transportation costs to access market *i* in excess of those faced by firms in country *i*

Overview

- 1. Build model of international economy subject to trade costs (Eaton and Kortum 2002)
- 2. Derive structural relationship linking trade costs to price levels, trade flows, market shares of home producers
 - Anderson and Van Wincoop (2003), Waugh (2010), Simonovska and Waugh (2014), Sposi (2015), Waugh and Ravikumar (2016)
- 3. Decompose trade costs into economic (transportation costs) and political (policy barriers) components
- 4. Model transportation costs, combine with data on variables in (2) to separately estimate magnitude of policy barriers

Adjacent Literatures

- Indices of Trade Openness
 - Sachs and Warner (1995), Anderson and Neary (1996), Kee, Nicita, and Olarreaga (2009)
- Political Economy of Protectionism
 - Goldberg and Maggi (1999), Edward D Mansfield, Milner, and Rosendorff (2000), Milner and Kubota (2005), Tavares (2008), Kono (2009), Gawande, Krishna, and Olarreaga (2009), Betz (2017), Kim (2017)
- Bargaining and International Institutions
 - Hirschman (1945), Pollins (1989), Gowa and Mansfield (1993), Milner (1997), Bagwell and Staiger (1999), Maggi (1999), Steinberg (2002), Davis (2006), Aghion, Antràs, and Helpman (2007), Head, Mayer, and Ries (2010), Antràs and Padró i Miquel (2011), Dube, Kaplan, and Naidu (2011), Berger et al. (2013), Ossa (2014), Carnegie (2014), Bagwell, Staiger, and Yurukoglu (2018)

Adjacent Literatures

- Indices of Trade Openness
 - Sachs and Warner (1995), Anderson and Neary (1996), Kee, Nicita, and Olarreaga (2009)
- Political Economy of Protectionism
 - Goldberg and Maggi (1999), Edward D Mansfield, Milner, and Rosendorff (2000), Milner and Kubota (2005), Tavares (2008), Kono (2009), Gawande, Krishna, and Olarreaga (2009), Betz (2017), Kim (2017)
- Bargaining and International Institutions
 - Hirschman (1945), Pollins (1989), Gowa and Mansfield (1993), Milner (1997), Bagwell and Staiger (1999), Maggi (1999), Steinberg (2002), Davis (2006), Aghion, Antràs, and Helpman (2007), Head, Mayer, and Ries (2010), Antràs and Padró i Miquel (2011), Dube, Kaplan, and Naidu (2011), Berger et al. (2013), Ossa (2014), Carnegie (2014), Bagwell, Staiger, and Yurukoglu (2018)

Adjacent Literatures

- Indices of Trade Openness
 - Sachs and Warner (1995), Anderson and Neary (1996), Kee, Nicita, and Olarreaga (2009)
- Political Economy of Protectionism
 - Goldberg and Maggi (1999), Edward D Mansfield, Milner, and Rosendorff (2000), Milner and Kubota (2005), Tavares (2008), Kono (2009), Gawande, Krishna, and Olarreaga (2009), Betz (2017), Kim (2017)
- Bargaining and International Institutions
 - Hirschman (1945), Pollins (1989), Gowa and Mansfield (1993), Milner (1997), Bagwell and Staiger (1999), Maggi (1999), Steinberg (2002), Davis (2006), Aghion, Antràs, and Helpman (2007), Head, Mayer, and Ries (2010), Antràs and Padró i Miquel (2011), Dube, Kaplan, and Naidu (2011), Berger et al. (2013), Ossa (2014), Carnegie (2014), Bagwell, Staiger, and Yurukoglu (2018)

Bottom Line

Bottom Line

Bottom Line

Model

Model Intuition

- *N* countries $i \in \{1, ..., N\}$ with representative consumers
 - Value C-D mixture of tradable goods and nontradable services
 - Earn wage w_i for every unit of labor endowment L_i supplied
- Competitive economy, stochastic technology
 - Production requires labor and bundle of intermediate inputs

Structural Relationship

$$d_{ij} = \left(\frac{\lambda_{ij}}{\lambda_{jj}}\right)^{-\frac{1}{\theta}} \frac{P_i}{P_j} \tag{1}$$

- d_{ii} trade costs
- λ_{ii} share of j's producers in i's market for tradables
- λ_{jj} share of j's producers in home market for tradables
- P_i price level of tradables
- θ trade elasticity

Model Intuition

- *N* countries $i \in \{1, ..., N\}$ with representative consumers
 - Value C-D mixture of tradable goods and nontradable services
 - Earn wage w_i for every unit of labor endowment L_i supplied
- Competitive economy, stochastic technology
 - Production requires labor and bundle of intermediate inputs

Structural Relationship

$$d_{ij} = \left(\frac{\lambda_{ij}}{\lambda_{jj}}\right)^{-\frac{1}{\theta}} \frac{P_i}{P_j} \tag{1}$$

- d_{ij} trade costs
- λ_{ij} share of j's producers in i's market for tradables
- λ_{jj} share of j's producers in home market for tradables
- \bullet P_i price level of tradables
- θ trade elasticity

Model Intuition

- *N* countries $i \in \{1, ..., N\}$ with representative consumers
 - Value C-D mixture of tradable goods and nontradable services
 - Earn wage w_i for every unit of labor endowment L_i supplied
- Competitive economy, stochastic technology
 - Production requires labor and bundle of intermediate inputs

Structural Relationship

$$d_{ij} = \left(\frac{\lambda_{ij}}{\lambda_{jj}}\right)^{-\frac{1}{\theta}} \frac{P_i}{P_j} \tag{1}$$

- d_{ij} trade costs
- λ_{ij} share of j's producers in i's market for tradables
- ullet λ_{ii} share of j's producers in home market for tradables
- P_i price level of tradables
- θ trade elasticity

Consumer's Problem

$$\max \quad Q_i^{\alpha_i} S_i^{1-\alpha_i}$$
subject to
$$P_i Q_i + P_i^s S_i \le w_i L_i$$
(2)

CES Preferences over Tradable Varieties

$$Q_{i} = \left(\int_{[0,1]} q_{i}(\omega)^{\frac{\sigma-1}{\sigma}} d\omega \right)^{\frac{\sigma}{\sigma-1}}$$
(3)

Tradable Price Index

$$P_i = \left(\int_{[0,1]} p_i(\omega)^{1-\sigma}\right)^{\frac{\epsilon}{1-\sigma}} \tag{4}$$

$$E_i^q = \alpha_i I_i + D_i = P_i Q_i^*$$

Consumer's Problem

$$\max \quad Q_i^{\alpha_i} S_i^{1-\alpha_i}$$
 subject to
$$P_i Q_i + P_i^s S_i \le w_i L_i$$
 (2)

CES Preferences over Tradable Varieties

$$Q_{i} = \left(\int_{[0,1]} q_{i}(\omega)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}} \tag{3}$$

Tradable Price Index

$$P_i = \left(\int_{[0,1]} p_i(\omega)^{1-\sigma}\right)^{\frac{\epsilon}{1-\sigma}} \tag{4}$$

$$E_i^q = \alpha_i I_i + D_i = P_i Q_i^r$$

Consumer's Problem

$$\max \quad Q_i^{\alpha_i} S_i^{1-\alpha_i}$$
 subject to
$$P_i Q_i + P_i^s S_i \le w_i L_i$$
 (2)

CES Preferences over Tradable Varieties

$$Q_{i} = \left(\int_{[0,1]} q_{i}(\omega)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}} \tag{3}$$

Tradable Price Index

$$P_i = \left(\int_{[0,1]} p_i(\omega)^{1-\sigma}\right)^{\frac{1}{1-\sigma}} \tag{4}$$

$$E_i^q = \alpha_i I_i + D_i = P_i Q_i^r$$

Consumer's Problem

$$\max \quad Q_i^{\alpha_i} S_i^{1-\alpha_i}$$
 subject to
$$P_i Q_i + P_i^s S_i \le w_i L_i$$
 (2)

CES Preferences over Tradable Varieties

$$Q_{i} = \left(\int_{[0,1]} q_{i}(\omega)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}} \tag{3}$$

Tradable Price Index

$$P_i = \left(\int_{[0,1]} p_i(\omega)^{1-\sigma}\right)^{\frac{1}{1-\sigma}} \tag{4}$$

$$E_i^q = \alpha_i I_i + D_i = P_i Q_i^*$$

Costs

$$c_i = w_i^{1-\beta} P_i^{\beta} \tag{5}$$

- w_i cost of labor
- P_i cost of composite intermediate good
 - equivalent to composite consumption good

$$E_i^{\times} = \beta X_i$$

Local Prices

$$p_{ii}(\omega) = \frac{c_i}{z_i(\omega)} \tag{6}$$

$$F_i(z) = \Pr\left\{z_i(\omega) \le z\right\} = \exp\left\{-T_i z^{-\theta}\right\} \tag{7}$$

Costs

$$c_i = w_i^{1-\beta} P_i^{\beta} \tag{5}$$

- w_i cost of labor
- P_i cost of composite intermediate good
 - · equivalent to composite consumption good

$$E_i^{\mathsf{x}} = \beta X_i$$

Local Prices

$$p_{ii}(\omega) = \frac{c_i}{z_i(\omega)} \tag{6}$$

$$F_i(z) = \Pr\left\{z_i(\omega) \le z\right\} = \exp\left\{-T_i z^{-\theta}\right\} \tag{7}$$

Costs

$$c_i = w_i^{1-\beta} P_i^{\beta} \tag{5}$$

- w_i cost of labor
- P_i cost of composite intermediate good
 - equivalent to composite consumption good

$$E_i^x = \beta X_i$$

Local Prices

$$p_{ii}(\omega) = \frac{c_i}{z_i(\omega)} \tag{6}$$

$$F_i(z) = \Pr\{z_i(\omega) \le z\} = \exp\{-T_i z^{-\theta}\}$$
 (7)

Costs

$$c_i = w_i^{1-\beta} P_i^{\beta} \tag{5}$$

- w_i cost of labor
- P_i cost of composite intermediate good
 - equivalent to composite consumption good

$$E_i^{\times} = \beta X_i$$

Local Prices

$$p_{ii}(\omega) = \frac{c_i}{z_i(\omega)} \tag{6}$$

$$F_i(z) = \Pr\left\{z_i(\omega) \le z\right\} = \exp\left\{-T_i z^{-\theta}\right\} \tag{7}$$

Trade Costs

$$p_{ji}(\omega) = d_{ji}p_{ii}(\omega)$$
 $d_{ij} = \rho_j\delta_{ij} au_{ij}$ (8) $au_{ij} = 1 \implies \text{no policy distortion}$ $p_i^\star(\omega) = \min_{j \in \{1, \dots, N\}} \{p_{ij}\}$

Trade Costs

$$p_{ji}(\omega) = d_{ji}p_{ii}(\omega)$$
 $d_{ij} =
ho_j\delta_{ij} au_{ij}$ (8) $au_{ij} = 1 \implies ext{no policy distortion}$ $ho_i^*(\omega) = \min_{i \in I} \min_{M_i} \{p_{ij}\}$

Trade Costs

$$ho_{ji}(\omega) = d_{ji}
ho_{ii}(\omega)$$
 $d_{ij} =
ho_j \delta_{ij} au_{ij}$ (8) $au_{ij} = 1 \implies ext{no policy distortion}$ $ho_i^\star(\omega) = \min_{j \in \{1, \dots, N\}} \{
ho_{ij} \}$

Equilibrium

Total Expenditure on Tradables

$$X_i = \underbrace{E_i^q + E_i^x}_{E_i} - D_i \tag{9}$$

Trade Shares

$$\Omega_{ij}^{*} = \left\{ \omega \in [0, 1] \mid p_{ij}(\omega) \leq \min_{k \neq j} \left\{ p_{ik} \right\} \right\}$$

$$\lambda_{ij}(\mathbf{w}) = \frac{1}{E_i} \int_{\Omega_{ii}^{*}} p_{ij}(\omega) q_i\left(p_{ij}(\omega)\right) d\omega \tag{10}$$

Market Clearing

$$X_i = \sum_{i=1}^{N} \lambda_{ji}(\mathbf{w}) E_j \tag{11}$$

Definition: An *international equilibrium* is a vector of wages w such that Equations 9, 10, and 11 hold for all $i \in \{1, ..., N\}$.

Equilibrium

Total Expenditure on Tradables

$$X_i = \underbrace{E_i^q + E_i^{\times}}_{E_i} - D_i \tag{9}$$

Trade Shares

$$\Omega_{ij}^{\star} = \left\{ \omega \in [0,1] \mid p_{ij}(\omega) \leq \min_{k \neq j} \left\{ p_{ik}
ight\}
ight\}$$

$$\lambda_{ij}(\mathbf{w}) = \frac{1}{E_i} \int_{\Omega_{ij}^*} p_{ij}(\omega) q_i(p_{ij}(\omega)) d\omega$$
 (10)

Market Clearing

$$X_i = \sum_{j=1}^{N} \lambda_{ji}(\mathbf{w}) E_j \tag{11}$$

Definition: An *international equilibrium* is a vector of wages w such that Equations 9, 10, and 11 hold for all $i \in \{1, ..., N\}$.

Equilibrium

Total Expenditure on Tradables

$$X_i = \underbrace{E_i^q + E_i^x}_{E_i} - D_i \tag{9}$$

Trade Shares

$$\Omega_{ij}^{\star} = \left\{ \omega \in [0,1] \mid p_{ij}(\omega) \leq \min_{k \neq j} \left\{ p_{ik} \right\} \right\}$$

$$\lambda_{ij}(\mathbf{w}) = \frac{1}{E_i} \int_{\Omega_{ii}^*} p_{ij}(\omega) q_i(p_{ij}(\omega)) d\omega$$
 (10)

Market Clearing

$$X_i = \sum_{j=1}^{N} \lambda_{ji}(\mathbf{w}) E_j \tag{11}$$

Definition: An *international equilibrium* is a vector of wages \mathbf{w} such that Equations 9, 10, and 11 hold for all $i \in \{1, ..., N\}$.

Equilibrium

Total Expenditure on Tradables

$$X_i = \underbrace{E_i^q + E_i^{\times}}_{E_i} - D_i \tag{9}$$

Trade Shares

$$\Omega_{ij}^{\star} = \left\{ \omega \in [0,1] \mid p_{ij}(\omega) \leq \min_{k \neq j} \left\{ p_{ik} \right\} \right\}$$

$$\lambda_{ij}(\mathbf{w}) = \frac{1}{E_i} \int_{\Omega_{ii}^*} p_{ij}(\omega) q_i(p_{ij}(\omega)) d\omega$$
 (10)

Market Clearing

$$X_i = \sum_{j=1}^N \lambda_{ji}(\mathbf{w}) E_j \tag{11}$$

Definition: An *international equilibrium* is a vector of wages \mathbf{w} such that Equations 9, 10, and 11 hold for all $i \in \{1, ..., N\}$.

Isolating Policy Barriers (I)

Trade Shares (w/ Frechet)

$$\lambda_{ij}(\boldsymbol{w}) = \frac{T_{j} \left(d_{ij} w_{j}^{1-\beta} P_{j}^{\beta} \right)^{-\theta}}{\sum_{j} T_{j} \left(d_{ij} w_{j}^{1-\beta} P_{j}^{\beta} \right)^{-\theta}}$$

$$= \frac{T_{j} \left(\underbrace{\rho_{j} \delta_{ij} \tau_{ij}}_{d_{ij}} w_{j}^{1-\beta} P_{j}^{\beta} \right)^{-\theta}}{\frac{1}{\gamma} P_{i}^{-\theta}}$$

In Differences

$$\frac{\lambda_{ij}}{\lambda_{jj}} = \left(\underbrace{\delta_{ij}\tau_{ij}\frac{P_j}{P_i}}_{\text{observables}}\right)^{-\theta}$$

Isolating Policy Barriers (I)

Trade Shares (w/ Frechet)

$$\lambda_{ij}(\boldsymbol{w}) = \frac{T_{j} \left(d_{ij} w_{j}^{1-\beta} P_{j}^{\beta} \right)^{-\theta}}{\sum_{j} T_{j} \left(d_{ij} w_{j}^{1-\beta} P_{j}^{\beta} \right)^{-\theta}}$$

$$= \frac{T_{j} \left(\underbrace{\rho_{j} \delta_{ij} \tau_{ij}}_{d_{ij}} w_{j}^{1-\beta} P_{j}^{\beta} \right)^{-\theta}}{\frac{1}{\gamma} P_{i}^{-\theta}}$$

In Differences

$$\frac{\lambda_{ij}}{\lambda_{jj}} = \left(\underbrace{\delta_{ij}\tau_{ij}\frac{P_j}{P_i}}_{\text{observables}}\right)^{-6}$$

Isolating Policy Barriers (II)

$$\tau_{ij} = \left(\frac{\lambda_{ij}}{\lambda_{jj}}\right)^{-\frac{1}{\theta}} \frac{P_i}{P_j} \underbrace{\frac{1}{\delta_{ij}}}_{\text{freight cost correction}}$$
(12)

Calibration

Prices (I)

Data

- International Comparison Program (World Bank)
- M tradable expenditure categories $m \in \{1, ..., M\}$ Empirical Categories

$$P_i = \sum_{m=1}^M e_i^m P_i^m$$

Expenditure on Tradables

$$lpha_i = rac{1}{I_i} \sum_{m=1}^M \mathrm{e}_i^m$$
 $E_i = \underbrace{I_i + eta X_i}_{\mathrm{gross consumption}} - \underbrace{(1 - lpha_i)I_i}_{\mathrm{services even}}$

Home Expenditure

$$\lambda_{jj} = E_j \left(1 - \sum_{i \neq j} \lambda_{ji} \right)$$

Prices (I)

Data

- International Comparison Program (World Bank)
- M tradable expenditure categories $m \in \{1,...,M\}$ Empirical Categories

$$P_i = \sum_{m=1}^M e_i^m P_i^m$$

Expenditure on Tradables

$$lpha_i = rac{1}{I_i} \sum_{m=1}^M e_i^m$$
 $E_i = \underbrace{I_i + eta X_i}_{ ext{gross consumption}} - \underbrace{(1 - lpha_i)I_i}_{ ext{services exp.}}$

Home Expenditure

$$\lambda_{jj} = E_j \left(1 - \sum_{i \neq j} \lambda_{ji} \right)$$

Prices (I)

Data

- International Comparison Program (World Bank)
- M tradable expenditure categories $m \in \{1,...,M\}$ Empirical Categories

$$P_i = \sum_{m=1}^M e_i^m P_i^m$$

Expenditure on Tradables

$$\alpha_i = \frac{1}{I_i} \sum_{m=1}^{M} e_i^m$$

$$E_i = \underbrace{I_i + \beta X_i}_{\text{gross consumption}} - \underbrace{(1 - \alpha_i)I_i}_{\text{services exp.}}$$

Home Expenditure

$$\lambda_{jj} = E_j \left(1 - \sum_{i \neq j} \lambda_{ji} \right)$$

Prices (II)

Freight Costs (I)

$$\delta_{ij}: {m Z}_{ij}
ightarrow \hat{\delta_{ij}}$$

Data

- Transportation Mode Shares
 - United States, Japan, European Union, Brazil
- Freight Costs
 - United States Census Bureau
 - OECD Maritime Transport Costs
- Geographic Covariates (Z_{ij})
 - Sea Distance
 - Population-weighted great circle distance
 - Island indicators
 - Contiguity

Freight Costs (I)

$$\delta_{ij}: {\it Z}_{ij}
ightarrow \hat{\delta_{ij}}$$

Data

- Transportation Mode Shares
 - United States, Japan, European Union, Brazil
- Freight Costs
 - United States Census Bureau
 - OECD Maritime Transport Costs
- Geographic Covariates (Z_{ij})
 - Sea Distance
 - Population-weighted great circle distance
 - Island indicators
 - Contiguity

Freight Costs (II)

Isolating Policy Barriers (Again)

$$\tau_{ij} = \left(\frac{\lambda_{ij}}{\lambda_{jj}}\right)^{-\frac{1}{\theta}} \frac{P_i}{P_j} \underbrace{\frac{1}{\delta_{ij}(\mathbf{Z}_{ij})}}_{\text{freight cost correction}}$$
(13)

- 25 countries, representing 91 percent of world GDP.
 - Rest of World as aggregate outside economy
- $\theta = 5$

Isolating Policy Barriers (Again)

$$\tau_{ij} = \left(\frac{\lambda_{ij}}{\lambda_{jj}}\right)^{-\frac{1}{\theta}} \frac{P_i}{P_j} \underbrace{\frac{1}{\delta_{ij}(\mathbf{Z}_{ij})}}_{\text{freight cost correction}}$$
(13)

- 25 countries, representing 91 percent of world GDP.
 - Rest of World as aggregate outside economy
- θ = 5

Results

Magnitude of Policy Barriers

• Free? Average policy barrier equivalent to 284 percent import tariff $(\tau = 3.84)$

Distribution of Policy Barriers

• Fair? Within-country standard deviation of τ_{ij} is 1.72

Trade Restrictiveness and Market Access (I)

Trade Restrictiveness Index

$$\mathsf{TRI}_{i} = \frac{1}{\sum_{j \neq i} E_{j}} \sum_{i \neq i} \tau_{ij} E_{j} \tag{14}$$

Market Access Index

$$MAI_{j} = \frac{1}{\sum_{i \neq j} E_{i}} \sum_{i \neq j} \tau_{ij} E_{i}$$
 (15)

Trade Restrictiveness and Market Access (I)

Trade Restrictiveness Index

$$\mathsf{TRI}_{i} = \frac{1}{\sum_{j \neq i} E_{j}} \sum_{i \neq i} \tau_{ij} E_{j} \tag{14}$$

Market Access Index

$$\mathsf{MAI}_{j} = \frac{1}{\sum_{i \neq j} E_{i}} \sum_{i \neq j} \tau_{ij} E_{i} \tag{15}$$

Trade Restrictiveness and Market Access (II)

Market Access Barriers

Correlates of Policy Barriers

	Dependent variable:
	Structural Policy Barrier
Tariffs	2.886***
	(0.875)
PTAs	-0.706***
	(0.133)
Core NTM	-0.285
	(0.440)
Health/Safety NTM	-0.160
, ,	(0.351)
Other NTM	-0.241
	(0.691)
Importer Fixed Effects	✓
Exporter Fixed Effects	√
Observations	506
R ²	0.781
Note:	*p<0.1: **p<0.05: ***p<0.01

U.S. Barriers and Market Access

Measurement Matters

Conclusion

State Capacity and Protectionism

- Tariffs as "second-best" solution to revenue-raising problem facing low-capacity governments
 - Acemoglu (2005), Rodrik (2008), and Queralt (2015)
- Developing (more autocratic) world not necessarily more "welfare-concious" than developed counterparts
 - Milner and Kubota (2005), Gawande, Krishna, and Olarreaga (2009);
 Gawande, Krishna, and Olarreaga (2015)

Development and Trade Discrimination

- Growth causally linked to market access conditions abroad (Romalis 2007)
- Lack of market access by developing countries may hinder development prospects
 - Redding and Venables (2004), Romalis (2007), Waugh (2010)

International trading system neither free nor fair – and developing world bears brunt of inequality

Conclusion

State Capacity and Protectionism

- Tariffs as "second-best" solution to revenue-raising problem facing low-capacity governments
 - Acemoglu (2005), Rodrik (2008), and Queralt (2015)
- Developing (more autocratic) world not necessarily more "welfare-concious" than developed counterparts
 - Milner and Kubota (2005), Gawande, Krishna, and Olarreaga (2009);
 Gawande, Krishna, and Olarreaga (2015)

Development and Trade Discrimination

- Growth causally linked to market access conditions abroad (Romalis 2007)
- Lack of market access by developing countries may hinder development prospects
 - Redding and Venables (2004), Romalis (2007), Waugh (2010)

International trading system neither free nor fair – and developing world bears brunt of inequality

Conclusion

State Capacity and Protectionism

- Tariffs as "second-best" solution to revenue-raising problem facing low-capacity governments
 - Acemoglu (2005), Rodrik (2008), and Queralt (2015)
- Developing (more autocratic) world not necessarily more "welfare-concious" than developed counterparts
 - Milner and Kubota (2005), Gawande, Krishna, and Olarreaga (2009);
 Gawande, Krishna, and Olarreaga (2015)

Development and Trade Discrimination

- Growth causally linked to market access conditions abroad (Romalis 2007)
- Lack of market access by developing countries may hinder development prospects
 - Redding and Venables (2004), Romalis (2007), Waugh (2010)

International trading system neither free nor fair – and developing world bears brunt of inequality

Table of Contents

Introduction

Model

Calibration

Results

Backup

Freight Cost Model

- Products $m \in \{1, ..., M\}$
- Transportation modes $k \in \{1, ..., K\}$
- ζ_{ij}^{mk} share of product m transported by mode k

Mode and Cost Functions

$$g: \{\boldsymbol{Z}_{ij}, d^m\} \rightarrow \delta_{ij}^{mk}$$

 $h: \{\boldsymbol{Z}_{ii}, d^m\} \rightarrow \zeta_{ii}^{mk}$

Aggregate Freight Costs

$$\hat{\delta}_{ij}\left(\boldsymbol{Z}_{ij},\boldsymbol{d}_{ij}\right) = \frac{1}{X_{ij}} \sum_{m=1}^{M} X_{ij}^{m} \sum_{k=1}^{K} g\left(\boldsymbol{Z}_{ij},d^{m}\right) h\left(\boldsymbol{Z}_{ij},d^{m}\right)$$

Tradable Expenditure Categories

Expenditure Category	Tradable?
Food and non-alcoholic beverages	√
Alcoholic beverages and tobacco	✓
Clothing and footwear	✓
Housing, water, electricity, gas and other fuels	
Furnishings, household equipment and household maintenance	\checkmark
Health	
Transport	\checkmark
Communication	\checkmark
Recreation and culture	\checkmark
Education	
Restaurants and hotels	
Miscellaneous goods and services	
Net purchases from abroad	
Collective consumption expenditure by government	
Machinery and equipment	\checkmark
Construction	
Other products	
Changes in inventories and valuables	
Balance of exports and imports	

