Data Science and Big Data Summer Term 2017

5 - Document Deduplication

electronic submission: June 21, 2017, 14:25 (strict)

Sergey Kuptsov (sergeykuptsovde@gmail.com)

1. Implementation + Dataset [40 points]

Create a set $\{D_1, \ldots, D_{100}\}$ of documents generated as follows:

- Let D_1 be a random string of length 1000 bytes.
- Let D_i ($1 < i \le 100$) be a string obtained from D_1 by replacing k_i random characters in D_1 by random values between $0, \ldots, 255$, and by swapping l_i random character pairs in D_1 . The parameters k_i and l_i should increase with i, i.e., with increasing i we add more amount of noise to D_1 .

Implement the algorithm computing the sketch matrix M_s for $\{D_1, \ldots, D_{100}\}$ as presented in the lecture. Use characters as shingles and Rabin's fingerprints for representing q-shingles with N=16 (cf. Slide 11). You can use any irreducible polynomial P(x) fixed in advance (i.e., you don't need to implement an algorithm generating random irreducible polynomials). To get an irreducible polynomial, you can use e.g. the website

http://zenfact.sourceforge.net/PIPS/polyformind.html

(Set "Characteristic of the field" to 2 and "First extension" to 16.)

2. Presentation of your results [20 points]

For at least 10 different values of q, calculate the Jaccard similarity between D_1 and D_i in M for $i=2,\ldots,100$, as well as their similarity in M_s obtained by minhashing (see, also, Slide 24). Use 100 minhash functions (i.e., M_s will have 100 rows). Present your results in the exercise class.

Some technical remarks:

- Make sure to comment the code!
- Programming languages should be one of the following: Python (recommended), C++, C, or Java. If you want to use any other language please contact your tutor!

 \bullet Please send sources + compiled version with subject Big~Data~Exercise~5 by

June 21st, 14:25

(i.e., before lecture start) to your tutor. In the email please give (i) your **group number**, (ii) the **names** of the group members who contributed to the solution, as well as (iii) the **programming language** you used.