UFPE/CIn – ENGENHARIA DA COMPUTAÇÃO

IF672 – AED 2018.2 – 2^a CHAMADA PROFESSOR: GUSTAVO CARVALHO

NOME:

{1,5 pt.} Seja A um array ordenado crescentemente com n inteiros, escreva um código não-recursivo de busca binária em A: bool binSearch(int[] A, int n, int k); retorne true se k estiver em A; false, caso contrário.
 Resposta: Abaixo, o código de binSearch.

Algoritmo: bool binSearch(int[] A, int n, int k)

```
\begin{array}{ll} \mathbf{1} & l \leftarrow 0; \\ \mathbf{2} & r \leftarrow n-1; \\ \mathbf{3} & \mathbf{while} \ l \leq r \ \mathbf{do} \\ \mathbf{4} & m \leftarrow \lfloor (l+r)/2 \rfloor; \\ \mathbf{5} & \mathbf{if} \ k = A[m] \ \mathbf{then} \ \mathbf{return} \ true; \\ \mathbf{6} & \mathbf{else} \ \mathbf{if} \ k < A[m] \ \mathbf{then} \ r \leftarrow m-1; \\ \mathbf{7} & \mathbf{else} \ l \leftarrow m+1; \\ \mathbf{8} & \mathbf{return} \ false; \end{array}
```

2. {1,5 pt.} Seja G um grafo com n nós (uma matriz de adjacências, onde 0/1: ausência/presença de aresta), escreva um código para: void bfs (int[][] G, int n). Este código deve percorrer todos os nós do grafo em largura. Resposta: Abaixo, o código de bfs e da função auxiliar bfs_aux.

Algoritmo: void bfs(int[][] G, int n)

```
1 for i \leftarrow 0 to n-1 do v[i] \leftarrow false;
2 for i \leftarrow 0 to n-1 do
3 | if \neg v[i] then bfs\_aux(G, n, i, v);
```

Algoritmo: void bfs_aux(int[][] G, int n, int i, bool[] v)

```
\begin{array}{cccc} \mathbf{1} & q \leftarrow create\_queue(); \\ \mathbf{2} & enqueue(q,i); \\ \mathbf{3} & v[i] \leftarrow true; \\ \mathbf{4} & \mathbf{while} \ length(q) > 0 \ \mathbf{do} \\ \mathbf{5} & & i \leftarrow dequeue(q); \\ \mathbf{6} & & \mathbf{for} \ j \leftarrow 0 \ \mathbf{to} \ n-1 \ \mathbf{do} \\ \mathbf{7} & & & \mathbf{if} \ G[i][j] = 1 \ \land \neg \ v[j] \ \mathbf{then} \\ \mathbf{8} & & & & v[j] \leftarrow true; \\ \mathbf{9} & & & enqueue(q,j); \end{array}
```

3. {2,0 pt.} Seja uma tabela hash com 6 posições, $h(k) = k - (6 * \lfloor k/6 \rfloor)$ a função hash (/ denota a divisão entre números reais), resolução de colisões baseada em *quadratic probing* conforme $p(k,i) = \frac{i^2+i}{2}$, mostre o passo-a-passo da inserção dos valores (nesta ordem): 8, 4, 2, -16, 16, e 5. Desenhe uma nova tabela após cada inserção. Exiba seus cálculos de h(k) e p(k,i).

Resposta:

0	1	2	3	4	5
		8			
		8		4	
		8	2	4	
		8	2	4	-16
	16	8	2	4	-16
5	16	8	2	4	-16

Cálculos:

•
$$h(8) = 8 - (6 * |8/6|) = 2$$

•
$$h(4) = 4 - (6 * |4/6|) = 4$$

•
$$h(2) = 2 - (6 * \lfloor 2/6 \rfloor) = 2$$

- Resolvendo colisão por *quadratic probing*: tentativa 1: $p(k,1) = \frac{1^2+1}{2} = 1$ nova posição: $(h(2) + p(k,1)) \mod 6 = 3$

•
$$h(-16) = -16 - (6 * \lfloor -16/6 \rfloor) = 2$$

- Resolvendo colisão por *quadratic probing*: tentativa 1: $p(k,1) = \frac{1^2+1}{2} = 1$ nova posição: (h(-16) + p(k,1)) mod 6 = 3 tentativa 2: $p(k,2) = \frac{2^2+2}{2} = 3$ nova posição: (h(-16) + p(k,2)) mod 6 = 5

•
$$h(16) = 16 - (6 * \lfloor 16/6 \rfloor) = 4$$

- Resolvendo colisão por *quadratic probing*: tentativa 1: $p(k,1) = \frac{1^2+1}{2} = 1$ nova posição: $(h(16) + p(k,1)) \mod 6 = 5$ tentativa 2: $p(k,2) = \frac{2^2+2}{2} = 3$ nova posição: $(h(16) + p(k,2)) \mod 6 = 1$

•
$$h(5) = 5 - (6 * \lfloor 5/6 \rfloor) = 5$$

- Resolvendo colisão por *quadratic probing*: tentativa 1: $p(k,1)=\frac{1^2+1}{2}=1$ nova posição: (h(5)+p(k,1)) mod 6=0

Comentários:

- A primeira linha da tabela representa os índices do array;
- A segunda linha da tabela representa a tabela sem nenhum valor;
- Uma nova linha é criada para cada inserção.
- 4. {1,5 pt.} Considerando uma árvore AVL inicialmente vazia, mostre o passoa-passo da inserção dos valores (nesta ordem): 9, 2, 15, 18, 20, 19, 17, e 16. Desenhe uma nova árvore após cada inserção. Escreva *rotação X em Y*, onde *Y* representa a raiz da sub-árvore rotacionada e X ∈ {L, R, LR, RL}, caso uma rotação tenha ocorrido durante a inserção.

Resposta:

Inserindo 9:

9

Inserindo 2:

9 $2 \times$

Inserindo 15:

9 2 15

Inserindo 18:

Inserindo 20 (rotação L em 15):

Inserindo 19 (rotação L em 9):

Inserindo 17:

Inserindo 16 (rotação RL em 15):

5. {2,0 pt.} Considerando o algoritmo de Dijkstra (usando uma heap), e o grafo ao lado, calcule os menores caminhos a partir do nó B. Mostre a evolução do array de distâncias (inicialmente, com ∞ para todos os nós exceto B) e da heap como um array (inicialmente, só com o par (B,0)) após a visita de cada nó do grafo.

Resposta: A seguir, resposta da questão – evolução abaixo:

Inicialmente:

	A	B	C	D	E
Dist.	∞	0	∞	∞	∞
	0	1	2	2 3	_
Heap	-	(B,0)) -	- -	-

Após visitar B:

	A	B	C	D	E
Dist.	4	0	∞	6	∞
	0	1 1		2	3
Heap	-	(A,4)		(D,6) -

Após visitar A:

	A	B	C	D	E	_
Dist.	4	0	17	5	\propto)
	0	1	-	2		3
Heap		(D,	,5)	(C,1	7)	(D,6)

Após visitar D:

	A	B	C	D	E
Dist.	4	0	17	5	∞

	0	1	2	3
Heap	_	(D,6)	(C,17)	_

Após visitar C:

	A	B	<u>C</u>	D	E
Dist.	4	0	17	5	∞
	0	1	2	3	
Heap	_	_	-	_	

6. {1,5 pt.} Considerando uma mochila com capacidade de 5 kg, e os itens (peso, valor): $i_1 = (1,6), i_2 = (2,10), i_3 = (3,12)$, encontre o subconjunto de itens mais valioso que cabe na mochila. Só existe uma unidade de cada item e não é possível dividir um item. Use programação dinâmica (bottom-up) e apresente a matriz (item \times capacidade) construída na busca.

Resposta: O subconjunto mais valioso que cabe na mochila é: $v_2 + v_3 = 22$.

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	6	6	6	6
2	0	6	10	16	16	16
3	0	6	10	16	18	22