

Universidade de Brasília

Instituto de Física Física Experimental 1

Relatório 02:

Movimento Retilíneo Uniformemente Variado

Turma 27 Grupo: 02

Anthony Ribeiro Rocha Mat:22/2014840Francisco Ribeiro de Souza Campos Mat:22/2014590Pedro de Lacerda Rangel Mat:24/1027072

> <u>Professor:</u> Jailton Correia Fraga Junior

2 de dezembro de 2024

1 Objetivos

O experimento tem como objetivo analisar o movimento de um carrinho deslizando sobre um trilho de ar horizontal sem atrito, acoplado a um peso suspenso, de modo a estudar as leis fundamentais da cinemática e da dinâmica em sistemas com atrito desprezível conforme sistema apresentado na figura 1. Busca-se determinar os tempos de deslocamento e os intervalos de tempo registrados pelo cronômetro, utilizando dispositivos como eletroímãs e sensores para garantir medições precisas e confiáveis. A partir desses registros, serão calculadas as velocidades instantâneas do carrinho, tomando como base o intervalo de tempo de interrupção do sensor.

Figura 1: Ilustração do Sistema Carrinho + Peso Suspenso

Além disso, o experimento visa verificar a hipótese de que o peso do corpo suspenso é o agente responsável pela aceleração constante do sistema composto pelo carrinho e pelo peso suspenso, explorando a relação direta entre a força gravitacional e a dinâmica do movimento.

Por fim, pretende-se validar que o comportamento observado no sistema pode ser descrito pelas equações do movimento retilíneo uniformemente variado, contribuindo para o entendimento prático e conceitual da interação entre forças e movimentos em sistemas físicos simplificados.

2 Materiais

- 1. 01 trilho de 120cm conectado a uma unidade de fluxo de ar;
- 2. 01 cronômetro digital multifunções com fonte DC 12V;
- 3. 01 sensor fotoelétrico com suporte fixador
- 4. 01 eletroimã com bornes e haste;
- 5. 01 fixador de eletroímã com manípulo;
- 6. 01 chave liga-desliga;
- 7. 01 Y de final de curso com roldana raiada;
- 8. 01 suporte para massas;
- 9. 01 massa de 10g com furo central de diâmetro 2,5mm;
- 10. 01 massa de 20g com furo central de diâmetro 2,5mm;
- 11. 01 pino para carrinho com fixador para eletroímã;
- 12. 01 carrinho para trilho cor preta;
- 13. 01 pino para carrinho para interrupção de sensor;
- 14. 01 pino para carrinho com gancho;

- 15. Cabos de ligação e cabos de força;
- 16. Balança Digital Acculat VT200
- 17. Paquímetro Somet
- 18. Micrômetro Mitutoyo
- 19. Python

3 Introdução

O experimento realizado investiga o comportamento de um sistema composto por um carrinho deslizando em um trilho de ar horizontal sem atrito, conectado a um peso suspenso por meio de um fio inextensível que passa sobre uma polia ideal. A dinâmica do sistema pode ser descrita pelas leis de Newton. Ao aplicar a segunda lei para cada corpo, obtém-se as equações 1 para o carrinho e 2 para o peso suspenso:

$$T = m_1 \cdot a,\tag{1}$$

$$m_2 \cdot g - T = m_2 \cdot a,\tag{2}$$

onde T é a força exercida pelo fio, a é a aceleração do sistema, m_1 é a massa do carrinho e m_2 é a massa do peso suspenso.

Somando essas equações, a aceleração do sistema é dada pela equação 3:

$$a = \frac{m_2 \cdot g}{m_1 + m_2},\tag{3}$$

o que evidencia sua dependência das massas e da aceleração gravitacional. Como a aceleração é constante, espera-se que a cinemática do sistema seja descrita pelas equações de um movimento retilíneo uniformemente variado (MRUV).

O movimento retilíneo uniformemente variado é caracterizado por uma aceleração constante, o que implica que as grandezas cinemáticas podem ser descritas por expressões matemáticas específicas [Resnick e Halliday 2002]. A posição em função do tempo é descrita pela equação 4

$$s(t) = s_0 + v_0 t + \frac{1}{2} a t^2, \tag{4}$$

enquanto a velocidade em função do tempo é dada pela equação 5:

$$v(t) = v_0 + at, (5)$$

onde s_0 e v_0 representam, respectivamente, a posição e a velocidade iniciais. Essas equações permitem relacionar o comportamento do sistema em termos de deslocamento, velocidade e aceleração.

Para aprofundar a análise do sistema, também é necessário compreender o conceito de velocidade instantânea, que é definida como a razão entre o deslocamento infinitesimal e o intervalo de tempo correspondente. Neste experimento, a velocidade instantânea é calculada a partir da razão entre o diâmetro do pino (ΔL) no carrinho, que interrompe o sensor no trilho de ar, e o intervalo de tempo (Δt) correspondente à interrupção do feixe do sensor.

As medições realizadas no experimento incluem as massas do carrinho, do suporte e da massa adicional agregada ao peso suspenso, além do diâmetro do pino do carrinho, utilizado para calcular a velocidade instantânea. Em seguida, utilizando as funções 2 e 3 do cronômetro, foram registrados o tempo de deslocamento (t) e o intervalo de tempo (Δt) para diferentes deslocamentos do carrinho no trilho de ar. Esses deslocamentos foram incrementados linearmente em 10 cm, começando da distância de 10 cm da posição inicial e alcançando até 80 cm.

Finalmente, as velocidades instantâneas foram calculadas e comparadas, permitindo verificar a descrição do movimento como um MRUV e validando a teoria com os dados experimentais.

4 Procedimento e análise de dados

O experimento iniciou-se com a medição das variáveis essenciais para a análise do sistema e do movimento retilíneo uniformemente variado (MRUV). Primeiramente, foram medidas as massas dos componentes do sistema: a massa do carrinho, a massa do suporte e as massas adicionais de aproximadamente 10 e 20 g, as quais seriam agregadas ao peso suspenso, conforme apresentadas na tabela 1.

Massas (g)				
n	Carrinho	Suporte	Adicional 1	Adicional 2
1	221.0	8.2	10.1	20.2
2	221.0	8.1	9.9	20.2
3	221.0	8.1	9.9	20.2
4	221.0	8.1	9.9	20.2
5	221.0	8.1	9.9	20.2

Tabela 1: Tabela das massas

Em seguida, foi determinado o diâmetro do pino fixado no carrinho presente na tabela 2, elemento fundamental para o cálculo da velocidade instantânea, e a posição inicial do sistema presente na tabela 3, definida com base na fixação do carrinho ao eletroímã. Conforme realizado em experimentos anteriores, cada medição foi repetida cinco vezes para permitir a estimativa dos erros experimentais, tanto aleatórios quanto instrumentais, garantindo maior confiabilidade nos resultados.

Di	Diâmetro do pino (cm)			
n	ΔL			
1	0.635			
2	0.635			
3	0.635			
4	0.635			
5	0.635			

Tabela 2: Tabela do diâmetro do pino

Posição	Inicial	S_0	(cm)
	24.1		

Tabela 3: Tabela da Posição Inicial

Após a obtenção das variáveis iniciais, procedeu-se à montagem do sistema experimental, que consistia no carrinho deslizando sobre o trilho de ar, conectado por um fio flexível e inextensível ao peso suspenso. Esse peso suspenso foi acrescido da massa adicional para aumentar a força motriz do sistema.

Figura 2: Imagem do Carrinho fixo ao Eletroímã

Figura 3: Imagem do Peso Suspenso Preso a Polia

Com o sistema devidamente montado, iniciaram-se os registros dos tempos de deslocamento utilizando a função 2 do cronômetro. Posteriormente, foram registrados os intervalos de tempo de interrupção do sensor no trilho de ar, capturados pela função 3 do cronômetro. Ambos os registros estão apresentados na tabela 4.

S (cm)	$\Delta S \text{ (cm)}$	t_1	t_2	t_3	t_4	t_5
.5 (5222)	(****)	Δt_1	Δt_2	Δt_3	Δt_4	Δt_5
94.1	10	0.377	0.376	0.378	0.384	0.372
34.1	10	0.012	0.012	0.012	0.012	0.012
44.1	20	0.536	0.537	0.537	0.537	0.538
44.1	20	0.009	0.009	0.009	0.009	0.009
54.1	30	0.660	0.659	0.659	0.659	0.659
54.1	30	0.007	0.007	0.007	0.007	0.007
64.1	40	0.763	0.764	0.763	0.763	0.762
64.1	40	0.006	0.006	0.006	0.007	0.006
74.1	50	0.852	0.852	0.852	0.852	0.852
74.1	90	0.005	0.005	0.005	0.005	0.005
84.1	60	0.934	0.934	0.934	0.934	0.933
04.1	00	0.005	0.005	0.005	0.005	0.005
94.1	70	1.006	1.004	1.007	1.005	1.014
94.1	70	0.005	0.005	0.005	0.005	0.005
104.1	90	1.080	1.076	1.078	1.076	1.076
104.1	80	0.005	0.005	0.005	0.005	0.005

Tabela 4: Tabela Medidas do Tempo de Deslocamento (t) e do Intervalo de Tempo (Δt) para Diferentes Valores de Deslocamento

Os procedimentos de cronometragem foram realizados sucessivamente, incrementando a posição final do sensor linearmente em passos de 10 cm, até que esse alcançasse 80 cm de distância da posição inicial. Cada etapa do experimento foi executada com rigor, e o processo de cronometragem foi repetido quantas vezes necessário para garantir a precisão e a consistência dos dados obtidos. Com isso, foi concluída a parte prática do experimento, sendo possível proceder com os cálculos e análises teóricas para verificar a validade das equações do MRUV.

Vale-se considerar os erros instrumentais presentes tanto na balança digital quanto no cronômetro como mostra na tabela 5.

Instrumento	Erro instrumental	unidade de medida
Cronômetro	10^{-3}	s
Balança Digital	1	g

Tabela 5: Tabela dos erros instrumentais

Feito o registro das grandezas relevantes para a análise, foi calculada a velocidade instantânea junto com a propagação de medidas e erros presentes. Para isso, foi utilizado o recurso de programação pela linguagem *Python*, visto que sendo as medições as entradas, os passos necessários para a estimativa das densidades poderiam ser baseados apenas nas operações de função e orientação a objeto apresentadas no código a seguir:

```
import math

class medida:
    def __init__(self, x, dx):
        self.x = x
        self.dx = dx

    def __add__(self, outro):
        x = self.x + outro.x
        dx = self.dx + outro.dx
        return medida(x, dx)

    def __sub__(self, outro):
        x = self.x - outro.x
        dx = self.dx + outro.dx
        return medida(x, dx)
```

```
def __mul__(self, outro):
        x = self.x * outro.x
        dx = self.x * outro.dx + outro.x * self.dx
        return medida(x, dx)
    def __truediv__(self, outro):
        x = self.x / outro.x
        dx = (self.dx + self.x / outro.x * outro.dx) / outro.x
        return medida(x, dx)
    def __str__(self):
        return ("\{0:.3f\} \pm \{1:.3f\}").format(self.x, self.dx)
def ler_amostragem(amostra, amostragem, erro_instrumental):
    n = len(amostragem)
    medio = 0
    for valor in amostragem:
        medio += valor
    medio /= n
    desvio = 0
    for valor in amostragem:
        desvio += (valor - medio) ** 2
    desvio /= n * (n - 1)
    desvio = math.sqrt(desvio)
    print(f'### Desvio {amostra} ###')
    print(f'{desvio:.3f}')
    return medida(medio, desvio + erro_instrumental)
# experimento 2
# Tabela 1 - Massas utilizadas
erro_balanca = 1 # g
massa_carrinho = ler_amostragem('massa_carrinho', [221.0, 221.0,
221.0, 221.0, 221.0], erro_balanca)
massa_suporte = ler_amostragem('massa_suporte',[8.2, 8.1, 8.1,
8.1, 8.1], erro_balanca)
massa_adicional_10g = ler_amostragem('massa_adicional_10g',
[10.1, 9.9, 9.9, 9.9], erro_balanca)
massa_adicional_20g = ler_amostragem('massa_adicional_20g',
[20.2, 20.2, 20.2, 20.2], erro_balanca)
massa_adicional = massa_adicional_10g + massa_adicional_20g
# Tabela 2 - Diametro do pino
erro_paquimetro = 0.000005 #m
diametro_pino = ler_amostragem('diametro_pino', [0.00635,
0.00635, 0.00635, 0.00635, 0.00635], erro_paquimetro)
# Tabela 3 - Posicao inicial
erro\_regua = 0.05 \# cm
posicao_inicial = medida(24.1, erro_regua)
posicao_inicial1 = medida(34.1, erro_regua)
posicao_inicial2 = medida(44.1, erro_regua)
posicao_inicial3 = medida(54.1, erro_regua)
posicao_inicial4 = medida(64.1, erro_regua)
```

```
posicao_inicial5 = medida(74.1, erro_regua)
posicao_inicial6 = medida(84.1, erro_regua)
posicao_inicial7 = medida(94.1, erro_regua)
posicao_inicial8 = medida(104.1, erro_regua)
# Tabela 4 - Medidas do tempo de deslocamento (t) e do intervalo
de tempo (dt) para diferentes valores de deslocamento
erro_cronometro = 0.001 # s
\# dx = 10
t_10 = ler_amostragem('t_10', [0.377, 0.376, 0.378, 0.384, 0.372]
, erro_cronometro)
dt_10 = ler_amostragem('dt_10', [0.012, 0.012, 0.012, 0.012,
0.012], erro_cronometro)
# dx = 20
t_20 = ler_amostragem('t_20', [0.536, 0.537, 0.537, 0.537, 0.538],
erro_cronometro)
dt_{20} = ler_{amostragem}('dt_{20}', [0.009, 0.009, 0.009, 0.009,
0.009], erro_cronometro)
# dx = 30
t_30 = ler_amostragem('t_30', [0.660, 0.659, 0.660, 0.659,
0.659], erro_cronometro)
dt_30 = ler_amostragem('dt_30', [0.007, 0.007, 0.007, 0.007]
0.007], erro_cronometro)
\# dx = 40
t_40 = ler_amostragem('t_40', [0.763, 0.764, 0.763, 0.763,
0.762], erro_cronometro)
dt_40 = ler_amostragem('dt_40', [0.006, 0.006, 0.006, 0.007,
0.006], erro_cronometro)
\# dx = 50
t_50 = ler_amostragem('t_50', [0.852, 0.852, 0.852, 0.852, 0.852],
erro_cronometro)
dt_{50} = ler_{amostragem}('dt_{50}', [0.005, 0.006, 0.006, 0.005,
0.006], erro_cronometro)
\# dx = 60
t_{60} = ler_{amostragem}('t_{60}', [0.934, 0.934, 0.933, 0.934, 0.933],
erro_cronometro)
dt_{60} = ler_{amostragem}('dt_{60}', [0.005, 0.005, 0.005, 0.005]
0.005], erro_cronometro)
\# dx = 70
t_70 = ler_amostragem('t_70',[1.006, 1.004, 1.007, 1.005,
1.014], erro_cronometro)
dt_70 = ler_amostragem('dt_70', [0.005, 0.005, 0.005, 0.005,
0.005], erro_cronometro)
# dx = 80
t_80 = ler_amostragem('t_80', [1.080, 1.076, 1.078, 1.076, 1.076],
erro_cronometro)
dt_80 = ler_amostragem('dt_80', [0.005, 0.005, 0.004, 0.005,
0.005], erro_cronometro)
\#dS = 10
ds_10 = medida(10.0, erro_regua)
\#dS = 20
```

```
ds_20 = medida(20.0, erro_regua)
\#dS = 30
ds_30 = medida(30.0, erro_regua)
\#dS = 40
ds_40 = medida(40.0, erro_regua)
\#dS = 50
ds_50 = medida(50.0, erro_regua)
\#dS = 60
ds_60 = medida(60.0, erro_regua)
\#dS = 70
ds_70 = medida(70.0, erro_regua)
\#dS = 80
ds_80 = medida(80.0, erro_regua)
#vi = 10
vi_10 = diametro_pino/dt_10
#vi = 10
vi_20 = diametro_pino/dt_20
#vi = 10
vi_30 = diametro_pino/dt_30
#vi = 10
vi_40 = diametro_pino/dt_40
#vi = 10
vi_50 = diametro_pino/dt_50
#vi = 10
vi_60 = diametro_pino/dt_60
#vi = 10
vi_70 = diametro_pino/dt_70
#vi = 10
vi_80 = diametro_pino/dt_80
print("########")
print("Tabela 1 - Massas utilizadas")
print("\tErro instrumental = {0}g".format(erro_balanca))
print("\tMassa do carrinho = {0}g".format(massa_carrinho))
print("\tMassa do suporte = {0}g".format(massa_suporte))
print("\tMassa adicional = {0}g".format(massa_adicional))
print("#######")
print("Tabela 2 - Diametro do pino")
print("\t \Delta L = \{0\}m".format(diametro_pino))
print("#######")
print("Tabela 3 - Posicao inicial")
print("\tS0 = {0}cm".format(posicao_inicial))
print("#####")
print('|t \pm \Delta t (s)| \Delta S \pm \Delta (\Delta S) (m) |')
print(f'|{t_10}|{ds_10}|')
print(f'|{t_20}|{ds_20}|')
print(f'|{t_30}|{ds_30}|')
```

```
 \begin{array}{c} \text{print}(f'|\{t_40\}|\{ds_40\}|') \\ \text{print}(f'|\{t_50\}|\{ds_50\}|') \\ \text{print}(f'|\{t_60\}|\{ds_60\}|') \\ \text{print}(f'|\{t_70\}|\{ds_70\}|') \\ \text{print}(f'|\{t_80\}|\{ds_80\}|') \\ \text{print}('|\$\#\#\#') \\ \text{print}('|\$m \pm \Delta \$ \ (m)|\Delta \ t \pm \Delta \ (\Delta t)|\Delta \ t \pm \Delta \ (\Delta t)|') \\ \text{print}(f'|\{posicao\_inicial1\}|\{dt_10\}|\{vi_10\}|') \\ \text{print}(f'|\{posicao\_inicial2\}|\{dt_20\}|\{vi_20\}|') \\ \text{print}(f'|\{posicao\_inicial3\}|\{dt_30\}|\{vi_30\}|') \\ \text{print}(f'|\{posicao\_inicial4\}|\{dt_40\}|\{vi_40\}|') \\ \text{print}(f'|\{posicao\_inicial5\}|\{dt_50\}|\{vi_50\}|') \\ \text{print}(f'|\{posicao\_inicial6\}|\{dt_60\}|\{vi_60\}|') \\ \text{print}(f'|\{posicao\_inicial7\}|\{dt_70\}|\{vi_70\}|') \\ \text{print}(f'|\{posicao\_inicial8\}|\{dt_80\}|\{vi_80\}|') \\ \end{array}
```

Embora possa existir falta de familiaridade com a codificação apresentada, as fórmulas utilizadas para as operações foram todas as apresentadas anteriormente.

Com a execução do código, foram geradas como saídas: o erro aleatório (desvio-padrão da média), o valor médio mais o erro experimental das massas, do diâmetro do pino (ΔL) , da posição inicial (S_0) , do tempo de deslocamento (t), do intervalo de tempo (Δt) , das posições do sensor, do intervalo de deslocamento do sensor (ΔS) e, por fim, da velocidade instantânea (V_m) como apresentado no trecho a seguir:

```
### Desvio massa_carrinho ###
0.000
### Desvio massa_suporte ###
0.020
### Desvio massa_adicional_10g ###
0.040
### Desvio massa_adicional_20g ###
0.000
### Desvio diametro_pino ###
0.000
### Desvio t_10 ###
0.002
### Desvio dt_10 ###
0.000
### Desvio t_20 ###
0.000
### Desvio dt_20 ###
0.000
### Desvio t_30 ###
0.000
### Desvio dt_30 ###
0.000
### Desvio t_40 ###
0.000
### Desvio dt_40 ###
0.000
### Desvio t_50 ###
0.000
### Desvio dt_50 ###
```

```
0.000
### Desvio t_60 ###
0.000
### Desvio dt_60 ###
0.000
### Desvio t_70 ###
0.002
### Desvio dt_70 ###
0.000
### Desvio t_80 ###
0.001
### Desvio dt_80 ###
0.000
#########
Tabela 1 - Massas utilizadas
         Erro instrumental = 1g
         Massa do carrinho = 221.000 \pm 1.000g
         Massa do suporte = 8.120 \pm 1.020 \,\mathrm{g}
         Massa adicional = 30.140 \pm 2.040 \,\mathrm{g}
##########
Tabela 2 - Diametro do pino
         \Delta L = 0.006 \pm 0.000 m
#########
Tabela 3 - Posicao inicial
         S0 = 24.100 \pm 0.050 \, cm
######
|t \pm \Delta t (s)| \Delta S \pm \Delta (\Delta S) (m) |
|0.377 \pm 0.003|10.000 \pm 0.050|
|0.537 \pm 0.001|20.000 \pm 0.050|
|0.659 \pm 0.001|30.000 \pm 0.050|
|0.763 \pm 0.001|40.000 \pm 0.050|
|0.852 \pm 0.001|50.000 \pm 0.050|
|0.934 \pm 0.001|60.000 \pm 0.050|
|1.007 \pm 0.003|70.000 \pm 0.050|
|1.077 \pm 0.002|80.000 \pm 0.050|
######
|Sm \pm \Delta S| (m) |\Delta t \pm \Delta (\Delta t)| Vm \pm \Delta V (m/s)
|34.100 \pm 0.050|0.012 \pm 0.001|0.529 \pm 0.045|
|44.100 \pm 0.050|0.009 \pm 0.001|0.706 \pm 0.079|
|54.100 \pm 0.050|0.007 \pm 0.001|0.907 \pm 0.130|
|64.100 \pm 0.050|0.006 \pm 0.001|1.024 \pm 0.199|
|74.100 \pm 0.050|0.006 \pm 0.001|1.134 \pm 0.253|
|84.100 \pm 0.050|0.005 \pm 0.001|1.270 \pm 0.255|
|94.100 \pm 0.050|0.005 \pm 0.001|1.270 \pm 0.255|
|104.100 \pm 0.050|0.005 \pm 0.001|1.323 \pm 0.332|
>>>
```

5 Conclusão

A partir dos dados coletados no experimento, verificou-se que o peso do corpo suspenso é o responsável por gerar a aceleração do sistema composto pelo carrinho e pelo peso suspenso.

Esse comportamento é consistente com o modelo teórico descrito pelas leis da cinemática e da dinâmica newtoniana. Os resultados confirmam que a aceleração do sistema é constante, validando a aplicação das equações do movimento uniformemente variado (MRUV) para descrever o deslocamento do carrinho sobre o trilho de ar sem atrito.

A análise dos intervalos de tempo (t) e dos tempos de interrupção (Δt) forneceu as informações necessárias para o cálculo das velocidades instantâneas em diferentes posições do carrinho. Observou-se que a velocidade escalar do carrinho aumenta linearmente com o tempo, o que é compatível com a expectativa para um sistema submetido a uma força resultante constante.

Esses resultados corroboram a previsão teórica de que o módulo da aceleração é igual para os dois corpos conectados pelo fio, uma vez que o movimento de ambos está condicionado pela mesma força resultante, oriunda da componente gravitacional associada à massa m_2 . A ausência de atrito no trilho de ar e na polia foi fundamental para minimizar forças dissipativas, permitindo que as medições fossem mais representativas de um sistema idealizado.

Portanto, o experimento cumpriu seu objetivo de demonstrar que o peso do corpo suspenso é responsável pela aceleração do sistema, reforçando o conceito de que a cinemática do movimento pode ser descrita pelas equações de MRUV. Além disso, a metodologia aplicada, com o uso de sensores e cronômetros configurados em diferentes funções, mostrou-se eficiente para a coleta de dados e cálculo das grandezas cinemáticas do sistema.

Referências

[Resnick e Halliday 2002]RESNICK, R.; HALLIDAY, D. Física: Vol. i. 5^a. ed. Rio de Janeiro: Livros Técnicos e Científicos Editora (LTC), 2002.