

Alignment Progress, Startup Alignment, and Comparison with Optical Alignment

Jim Pivarski, Alexei Safonov, Károly Banicz*

Texas A&M University, *FermiLab

23 February, 2008

- for analysis:
 - ▶ Procedure for aligning with large datasets (10/100 pb⁻¹)
 - All the necessary software tools
 - Full systematics studies
- for commissioning:
 - Procedure that uses minimal collisions data
 - Tests with real data
 - Procedures for integration with optical alignment
- for validation:
 - Monitoring plots
 - Comparison with optical alignment

- ▶ Baseline procedure is stable and has been for some time
 - Based on the HIP algorithm
 - Aligns one station at a time (from the inside out)
- ► Hierarchial structure of the code matches system design
 - ▶ Fast alignment of large structures (\sim 1000 muons)
 - Built-in support for constraints from prior knowledge, photogrammetry, optical system
 - ▶ Possible to combine measurements from different sources
- Optimization of parameters is in progress for faster convergence and better accuracy
 - Track-fitting parameters (APEs) tuned for each station
 - Intelligent track selection to supress strongly scattering tracks
 - Optimized track-fitting to better use structure of the detector and material distribution (pending tests)

Long-term alignment procedure Jim Pivarski

 100 pb^{-1} simulation results Illustration of improvements ("intelligent track selection")

Each line is a station's resolution as a function of iteration Improved alignment reaches 300 μ m for inner stations (which drive momentum resolution)

Commissioning & early alignment Jim Pivarski 5/16 become primary focus (and subject for this talk)

- ► Can't accurately align all chambers with limited statistics
- ▶ But can quickly align large structures if internal alignment is known from other sources
- ► Track-based candidates:
 - beam-halo perfect for endcap
 - cosmics for barrel
- Optical very useful for cross-checks and filling in gaps
 - e.g. z alignment, to which beam-halo is insensitive

Outline

- 1. Procedures for endcap alignment without any (many) collisions
- 2. How to test these procedures with cosmic rays
- Procedures and tools for comparison and integration with optical alignment
- 4. Status of software tools

Motivation...

Jim Pivarski 6/16

$$\sigma_{\rm absolute} = \sqrt{\sigma_{\rm relative~chambers}^2 + \sigma_{\rm ring}^2}$$

With well-aligned chambers in a ring, we can very quickly establish full absolute alignment

- ▶ With \sim 1 mm chamber misalignments, x-y 0.6 mm, z 3 mm, ϕ_z 0.1 mrad
- ▶ Tracker misalignment is negligible for such large solid angles

- ▶ Beam-halo through overlap regions (no ME1/3)
- ▶ Minimal track propagation, measure x, y, ϕ_y , ϕ_z
- Beam-halo rate hard to predict
- With sufficient rate, good for layer alignment
- Chambers are aligned relative to one another within each ring

Few-collisions alignment

- ▶ Align rings relative to tracker with 1000 GlobalMuons
- Compliments beam-halo for a complete alignment

beam-halo alignment

wheel/ring alignment

Beam-halo: Károly Banicz

Jim Pivarski 9/16

- ▶ 6600 tracks/sec \times 0.02 in overlap = 130 Hz $\stackrel{\times}{.}$ 100
- ▶ 2 hours \times 130 Hz = 1 million muons \to 100's of μ m resolution (if we're off by \times 100, 2 hours \to 8 days...)
- ▶ Steeply falling function of energy and radius (better for ring 1)

Beam-halo procedure

Jim Pivarski 10/16

- ▶ Uses the same framework, reconfigured for local alignments
- ► Tightly refit tracks to even-numbered chambers in a station, loosely fit to odd-numbered to get local extrapolation from even to odd
- ► Alternate and repeat

▶ Repeat process with layers when enough tracks are available

- Beam-halo
 - Beginning with single-beam in June
 - Rate estimates are high but uncertain: naïve worst case \sim 8 days
 - Continue to collect beam-halo during normal data-taking
- Start-up wheel/ring
 - Beginning with first collisions in July(?)
 - ► ≤ 4 days

"First month" integrated luminosity ramp-up

Bunches	Luminosity (cm^{-2}/s)	Time for 1000 muons (W, Z)
1×1	10^{27}	— 4.1 years
43×43	3.8×10^{29}	4.0 days
43×43	1.7×10^{30}	21 hours
43×43	$6.1 imes 10^{30}$	5.9 hours
156×156	$1.1 imes 10^{31}$	3.3 hours
156×156	$5.6 imes 10^{31}$	39 minutes
156×156	$1.1 imes 10^{32}$	20 minutes

Beam-halo procedure

▶ Run beam-halo procedure on horizontal MTCC cosmic rays

GlobalMuon procedures (wheel/ring and chamber-level)

- April CRAFT cosmic ray run includes full tracker
- ▶ Select near-IP muons: \sim 1 million through barrel wheel 0 \sim 10,000 in ME1/3 (which has no overlap hits for beam-halo)

Need beam-halo, cosmic ray MC, MTCC reprocessed in 2_0_0 , HLT paths and AlCa streams for real beam-halo and cosmic rays

- Beam-halo and SLM lines both measure x
- SLM lines can also measure z
- Caveats
 - Beam-halo and optical must both work in the same ring coordinates
 - Track-based measures strips and wires, optical measures the box: must know layer positions relative to alignment pins

Suggested procedure:

- 1. Measure SLM lines underground at 4T, full COCOA fit
- 2. Propagate to averaged layer position through layer measurements
- 3. Constrain track-based ring positions to be the same as COCOA
- 4. Align chambers within rings with beam-halo, compare x
- 5. If it agrees, apply z measurement to ring $(z, \phi_x, \text{ and } \phi_y)$

Optical measurements: 1000 muons

- ▶ Transfer lines, Z sensors measure outer ring in 6 d.o.f.
- So does GlobalMuon alignment
- ► GlobalMuon alignment puts rings into tracker coordinates
- ▶ Tests full link system down to tracker in 6 d.o.f.

Relevant measurements for comparison

- MTCC SLM measurements for beam-halo MTCC test
- Barrel measurements during CRAFT GlobalMuon test in April
- ▶ SLM measurements during beam-halo data-taking in June
- ▶ Transfer line, Z sensor, link system measurements during start-up collisions in July
- Integration of layer positions with SLM measurements
- Output in CSCSurveyRcd format (to apply ring constraints)

Software status

Jim Pivarski 15/16

- ▶ Parallelized 10/100 pb⁻¹ procedure
- ► Added CSCRing as an alignable structure
- ▶ DB ↔ human-editable files and plots (monitoring)
- ► Tool for setting arbitary patterns of hit weights (APEs)
- lacktriangle Improved track cut and alternate refitter for upcoming tests \surd
- Mechanism for setting global coordinate system
- ▶ HLT paths and AlCa streams for beam-halo, cosmics
- Beam-halo and cosmic MC production cfg

Procedure status

- ▶ 10/100 pb⁻¹ GlobalMuons: baseline working, can be optimized further, studied in more detail
- Cosmic ray version of high-lumi GlobalMuons: need MC
- ▶ Beam-halo: procedure designed, needs to be implemented
- ▶ 1000 muon ring alignment: easy adaptation of GlobalMuon

- Several different projects in parallel
 - ▶ Big alignments: relevant for physics reach
 - ▶ Little alignments: initial geometry without many collisions
 - Comparisons with optical: for commissioning, validation, dependence on time
- ▶ All alignments tested in cosmic rays before any LHC beam (even single-beam)
- Special alignment datasets need to be collected: Making sure the data paths exist
- Making sure all the software is written and submitted on time

Suggested alignment scenarios Jim Pivarski 17/16

0 pb^{-1}	beam-halo	plus c	ptical
---------------------	-----------	--------	--------

	X	y	Z	φ_{X}	$\varphi_{\mathbf{y}}$	φ_{z}
C	700 μ m	2 mm	3 mm	3 mrad	0.8 mrad	0.65 mrad
R	200 μ m	200 μ m	230 μ m	0.08 mrad	0.08 mrad	0.03 mrad

1 pb⁻¹ beam-halo plus GlobalMuon ring

	X	y	Z	ϕ_{X}	$\phi_{m{y}}$	$\phi_{oldsymbol{z}}$
C	700 μ m	2 mm	3 mm	3 mrad	0.8 mrad	0.65 mrad
R	600 μ m	600 μ m	3 mm	1 mrad	1 mrad	0.1 mrad

10 and 100 pb⁻¹ track-based (without improvements)

	X	y	Z	φ_{X}	$\varphi_{m{y}}$	φ_{Z}
C	700 μ m	2 mm	3 mm	3 mrad	0.8 mrad	0.65 mrad

Alignment record types

Jim Pivarski 18/16

CSCAlignmentRcd	CSCSurveyRcd	OpticalAlignments	
x, y, z	x, y, z	x, y, z	
$\phi_{X},\ \phi_{y},\ \phi_{z}$ (non-standard Z-Y-X Euler angles)	$lpha$, eta , γ (standard Z-X-Z Euler angles)	three angles	
one entry for each chamber and each layer	one entry for each endcap, disk, ring, chamber, and layer	one entry per?	
3×3 covariance matrix for positions	6×6 covariance matrix for positions and angles	diagonal error matrix for positions and angles additional informa- tion about optical system	