ADVANCED ANALYSIS OF ALGORITHMS CPS 5440

UNIT 6: SORTING IN LINEAR TIME: COUNTING SORT, RADIX SORT, AND BUCKET SORT.

- Merge sort:
 - Divide-and-conquer:
 - Split array in half
 - Recursively sort sub-arrays
 - Linear-time merge step
 - Pro's:
 - $O(n \lg n)$ worst case asymptotically optimal for comparison sorts
 - Stable sort algorithm
 - Con's:
 - Doesn't sort in place

- Heap sort:
 - Uses the very useful heap data structure
 - Complete binary tree
 - Heap property: parent key > children's keys
 - Pro's:
 - $O(n \lg n)$ worst case asymptotically optimal for comparison sorts
 - Sorts in place
 - Con's:
 - Fair amount of shuffling memory around
 - Not stable

- Quick sort:
 - Divide-and-conquer:
 - Partition array into two sub-arrays, recursively sort
 - All of first sub-array < all of second sub-array</p>
 - Pro's:
 - $O(n \lg n)$ average case
 - Sorts in place
 - Fast in practice (why?)
 - Con's:
 - Not stable
 - $O(n^2)$ worst case
 - Naïve implementation: worst case on sorted input
 - Good partitioning makes this very unlikely.

- Insertion sort:
 - Pro's:
 - Easy to code
 - Fast on small inputs (less than ~50 elements)
 - Fast on nearly-sorted inputs
 - Con's:
 - $O(n^2)$ worst case
 - $O(n^2)$ average case
 - $O(n^2)$ reverse-sorted case

DECISION TREE

ullet Any comparison algorithm can be viewed as a tree of all possible comparisons and their outcomes, and resulting answers, for any particular n

LOWER BOUNDS FOR SEARCHING

Draw the decision tree for binary search on a sorted list of six elements.

n = 6 and key = x2 x:L[5]x:L[1]x:L[2](x:L[6]x: L[4]x < L[1]L[1] < x < L[2]L[2] < x < L[3]L[3] < x < L[4]

L[4] < x < L[5]

L[5] < x < L[6]

x > L[6]

LOWER BOUNDS FOR SEARCHING

SEARCHING LOWER BOUND

- To find any leaf (i.e., possible solution including the optimal one), the height of tree comparisons must be performed
- Searching lower bound:
 - Finding a given item among them in comparison model requires $\Omega(\lg n)$
- Proof: Decision tree is binary and must have $\geq n$ leaves, one for each answer
 - $2^h \ge n$
 - \Rightarrow height $\geq \lg n$

LOWER BOUNDS FOR SORTING

Draw the decision tree for insertion sort

SORTING LOWER BOUND

- Since there are n! permutations of n elements, each permutation representing a distinct sorted order, the tree must have at least n! leaves.
- Since a binary tree of height h has no more than 2^h leaves, we have
 - $2^h \ge n!$
 - $ightharpoonup height <math>\geq \lg(n!)$

SORTING LOWER BOUND

- $h \ge \lg(n!)$
- $= \lg(n (n-1)(n-2)(n-3) \dots 1)$
- $= \lg(n) + \lg(n-1) + \lg(n-2) + \lg(n-3) + \dots + \lg(2) + \lg(1)$
- $\sum_{i=1}^{n} \lg(i)$
- $\ge \sum_{i=\frac{n}{2}}^{n} \lg(i)$
- $\ge \sum_{i=\frac{n}{2}}^{n} \lg(i)$
- $= \sum_{i=\frac{n}{2}}^{n} \lg(\frac{n}{2})$
- $= \sum_{i=\frac{n}{2}}^{n} \lg(n) 1$
- $= \frac{n}{2} \lg n \frac{n}{2}$
- $\Omega(n \lg n)$

NON-COMPARISON BASED SORTING

- Many times we have restrictions on our keys
 - Deck of cards: Ace→King and four suites
 - Social Security Numbers
 - Employee ID's
- We will examine three algorithms which under certain conditions can run in O(n) time.
 - Counting sort
 - Radix sort
 - Bucket sort

COUNTING SORT.

COUNTING SORT

- Depends on assumption about the numbers being sorted
 - Assume numbers are in the range 0..k
- The idea is: for each input element x to count how many elements are less than x, and use this information to place x to the right place in the output sequence
- The algorithm:
 - Input: A[1..n], where $A[j] \in \{1, 2, 3, ..., k\}$
 - Output: B[1..n], sorted (not sorted in place)
 - Also: C[0...k], for auxiliary storage

COUNTING SORT

```
CountingSort(A, B, k)
   let C [0..k] be a new array
   for i=0 to k
        C[i] = 0;
   for j=1 to n
        C[A[j]] += 1;
   // C[i] now contains the number of elements equal to i
   for i=1 to k
        C[i] = C[i] + C[i-1];
   // C[i] contains the number of elements less than or equal to i
   for j=n downto 1
11
        B[C[A[j]]] = A[j];
        C[A[j]] -= 1;
12
```

	1	2	3	4	5	6	7	8
Α	2	5	3	0	2	3	0	3

 $k \in \{0, ..., 5\}$

let C[0..k] be a new array

	0	1	2	3	4	5
С						

for j=1 to n
 C[A[j]] += 1;

 1
 2
 3
 4
 5
 6
 7
 8

 A
 2
 5
 3
 0
 2
 3
 0
 3

		0	1	2	3	4	5
j = 1	С	0	0	I	0	0	0
j = 2	С	0	0	I	0	0	I
j = 3	С	0	0	I	T	0	I
j = 4	С	I	0	I	I	0	I
j = 5	С	I	0	2	I	0	I
<i>j</i> = 6	С	I	0	2	2	0	I
<i>j</i> = 7	С	2	0	2	2	0	I
j = 8	С	2	0	2	3	0	I

		0	1	2	3	4	5
	С	2	0	2	3	0	I
i = 1	С	2	2	2	3	0	I
i = 2	С	2	2	4	3	0	I
i = 3	С	2	2	4	7	0	I
i = 4	С	2	2	4	7	7	I
i = 5	С	2	2	4	7	7	8

- B[C[A[j]]] = A[j];11. 12. C[A[j]] -= 1;
- j = 8
- j = 7
- i = 6В
- j = 5В
- j = 4
- j = 3
- i = 1

	1	2	3	4	5	6	7	8
Α	2	5	3	0	2	3	0	3
	0		1	2	3		4	5
С	2		2	4	7		7	8

- 2 |
- 5
- +0
- 5 4
 - 3 2

COUNTING SORT

```
CountingSort(A, B, k)
   let C[0..k] be a new array
   for i=0 to k
                                                           Takes time O(k)
        C[i] = 0;
   for j=1 to n
                                                           Takes time O(n)
        C[A[j]] += 1;
   // C[i] now contains the number of elements equal to i
   for i=1 to k
        C[i] = C[i] + C[i-1];
   // C[i] contains the number of elements less than or equal to i
   for j=n down to 1-
                                                          What is the running time?
                                                                  O(n+k)
        B[C[A[j]]] = A[j];
11
        C[A[j]] -= 1;
12
```

COUNTING SORT

- Total time: O(n + k)
 - Works well if k = O(n) or k = O(1)
- This sorting is stable.
 - A sorting algorithm is **stable** when numbers with the same values appear in the output array in the same order as they do in the input array.

COUNTING SORT REVIEW

- **Assumption:** input taken from **small** set of **numbers** of size k
- Basic idea:
 - Count number of elements less than you for each element.
 - This gives the position of that number similar to selection sort.
- Pro's:
 - Fast / Stable
 - Asymptotically fast O(n + k)
 - Simple to code
- Con's:
 - Doesn't sort in place.
 - Elements must be integers.
 - Requires O(n+k) extra storage.

RADIX SORT.

RADIX SORT

- Sort on the Least Significant Digit, then the second LSD, etc.
- RadixSort(A, d)
 for i=1 to d
 StableSort(A) on digit i

RADIX SORT EXAMPLE

- \Box The operation of radix sort on a list of seven 3-digit numbers.
- The leftmost column is the input.
- \Box The remaining columns show the list after successive sorts on increasingly significant digit positions;
- ☐ Shading indicates the digit position sorted on to produce each list from the previous one.

RADIX SORT CORRECTNESS

- Sketch of an inductive proof of correctness (induction on the number of passes):
 - Assume lower-order digits $\{j: j < i\}$ are sorted
 - \blacksquare Show that sorting next digit i leaves array correctly sorted
 - If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
 - If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

RADIX SORT

- What sort is used to sort on digits?
- Counting sort is the obvious choice:
 - Sort n numbers on digits that range from 1...b
 - Time: O(n + b)
 - b: base (e.g., base 10)
- Each pass over n numbers with d digits takes time O(n+b), so total time O(dn+db)
 - $d = \#digits = lg_b k + 1$
 - When d is constant and k = O(n), takes O(n) time

RADIX SORT

- O(dn+db)
- $= O\left((n+b)lg_b k\right)$
- (n+b) to be minimized $\Rightarrow b = \Theta(n)$
- $\Rightarrow O\left((n+n)lg_nk\right)$
- When k is polynomial on $n \Rightarrow O\left((n+n)lg_nn^c\right) = O\left(n\right)$

RADIX SORT REVIEW

- **Assumption:** input has d digits ranging from 0 to k
- Basic idea:
 - Sort elements by digit, starting with the least significant
 - Use a stable sort (like counting sort) for each stage
- Pros:
 - Asymptotically fast (i.e., O(n)) when d is constant and k = O(n)
 - Simple to code
- Con's:
 - Doesn't sort in place
 - Not a good choice for floating point numbers or arbitrary strings.

BUCKET SORT.

BUCKET SORT

lacktriangle Assumption: input elements distributed uniformly over some known range, e.g., [0,1), so all elements in A are greater than or equal to 0 but less than 1.

BUCKET SORT

Bucket-Sort(A, x, y)

- I. divide interval [x, y) into n equal-sized subintervals (buckets)
- 2. distribute the *n* input keys into the buckets
- 3. sort the numbers in each bucket (e.g., with insertion sort)
- 4. scan the (sorted) buckets in order and produce output array

Running time of bucket sort: O(n) expected time

- Step 1: O(1) for each interval = O(n) time total.
- Step 2: O(n) time.
- Step 3: The expected number of elements in each bucket is O(1), so total is O(n)
- Step 4: O(n) time to scan the n buckets containing a total of n input elements

BUCKET SORT EXAMPLE

Figure 8.4 The operation of BUCKET-SORT. (a) The input array A[1..10]. (b) The array B[0..9] of sorted lists (buckets) after line 5 of the algorithm. Bucket i holds values in the half-open interval [i/10, (i+1)/10). The sorted output consists of a concatenation in order of the lists $B[0], B[1], \ldots, B[9]$.

BUCKET SORT REVIEW

- Assumption: input is uniformly distributed across a range
- Basic idea:
 - Partition the range into a fixed number of buckets.
 - Toss each element into its appropriate bucket.
 - Sort each bucket.
- Pro's:
 - Fast
 - Asymptotically fast (i.e., O(n) when distribution is uniform)
 - Simple to code
 - Good for a rough sort.
- Con's:
 - Doesn't sort in place

SUMMARY OF LINEAR SORTING

	worst-case	average-case	best-case	in place
Counting Sort	O(n + k)	O(n + k)	O(n + k)	no
Radix Sort	O(d(n + k'))	O(d(n + k'))	O(d(n + k'))	no
Bucket Sort	O(n)	O(n)	O(n)	no

Counting sort assumes input elements are in range [0,1,2,...,k] and uses array indexing to count the number of occurrences of each value.

Radix sort assumes each integer consists of d digits, and each digit is in range [1,2,...,k'].

Bucket sort requires advance knowledge of input distribution (sorts n numbers uniformly distributed in range in O(n) time).

QUESTIONS/ANSWERS

