Tables for supersymmetry.

Bruno Le Floch, Princeton University, September 11, 2017.

bruno Le Floch, Princeton	UΠ	iversity, september 11, 2017.
1 Special functions	1	Pure supersymmetric Yang-Mills (SYM
Multiple gamma function		$6.6 \text{ 3d } \mathcal{N} = 4$
Plethystic exponential		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
q-Pochhammer symbol		
q-gamma (or basic gamma) function Modular form		$6.8 \text{ 1d } \mathcal{N} = 4$
Dedekind eta function		$6.9 \text{ 1d } \mathcal{N} = 2$
Theta functions		NLSM
Eisenstein series		7 Other theories
Elliptic gamma function		7.1 Two-dimensional CFT
2 Lie algebras and groups	1	Virasoro algebra
2.1 Lie algebras	1	N = 1 super-Virasoro algebra
Complex simple Lie algebras		$\mathcal{N}=2$ super-Virasoro algebra $SW(3/2,2)$ super-Virasoro algebra
Roots and Weyl group		bc and beta-gamma systems
Real simple Lie algebras Accidental isomorphisms		Liouville CFT
Accidental isomorphisms ADE classification		Minimal model
2.2 Lie groups	2	Unitary minimal model
Basics	2	7.2 Chern–Simons
Compact connected Lie groups		7.3 Supergravity and strings
Real simple Lie groups		String actions
Classical Lie groups		Pure supergravities M-theory
Accidental isomorphisms		Branes
Homotopy		7.4 Integrable models
2.3 Simple Lie superalgebras	3	Relativistic quantum Toda chain
Classical Lie superalgebras Real forms of Lie superalgebras		7.5 Localization results
Some isomorphisms		$3d \mathcal{N} = 2$
2.4 Lie supergroups	3	8 Manifolds
	0	8.1 Riemannian geometry
2.5 Representations of Lie		
(super)algebras/groups	3	8.2 Types of manifolds:
3 Spinors	3	G-structures, holonomy Structure group
Clifford algebra		Integrability
Charge conjugation		Holonomy group
Reduced spinors		Spin structures
Flavour symmetries		Symmetric spaces
Products of spinor representations		K3 surfaces
4 Supersymmetry algebras	4	Yau's theorem 9 Dualities
Poincaré algebra Super-Poincaré algebra		
Example: M-theory algebra		9.1 Field theory dualities
Superconformal algebras		9.2 4d $\mathcal{N} = 1$ dualities
Dimensional reduction		9.3 String theory dualities
Explicit supersymmetry algebras		10 Misc
Supersymmetry on symmetric curved		10.1Physics of gauge theories
spaces Supermultiplets	5	Phases characterized by potential
5 Supermultiplets	-	10.2Homology and cohomology
$5.1 \text{ Spin} \leq 1 \text{ supermultiplets}$	5	Complex projective space
For 16 supercharges For 8 supercharges		10.3Homotopy groups π_n
For 4 supercharges		Basic properties
For 2 supercharges		Quotient
5.2 Other supermultiplets	5	Long exact sequence for a fiber bundle
6 Supersymmetric gauge	0	Homotopy groups of spheres
	=	Topological groups have abelian $\pi_1(G)$
theories	5	10.4Kähler 4-manifolds K3 surfaces
6.1 Maximal super Yang–Mills	5	Examples of K3 surfaces
Data Lorentzian		Non-simply connected
$6.2 \text{ 5d } \mathcal{N} = 1 \text{ SCFTs}$	5	Gravitational instantons
		ALE hyperKähler 4-manifolds
$6.3 \text{ 4d } \mathcal{N} = 4$	5	10.5Some algebraic constructions
$6.4 \text{ 4d } \mathcal{N} = 2$	5	Reduction of a Lie (super)algebra
(G, G') Argyres-Douglas theories	-	S-expansion of a Lie (super)algebra Color (super)algebra
$6.5 \text{ 4d } \mathcal{N} = 1$	5	I
Superpotential term Wess-Zumino model		10.6Other Fuzzy spaces
diffino model		1 - and operation

1 Special functions

Multiple gamma function. For $a_i \in \mathbb{C}$ with $\operatorname{Re} a_i > 0$, $\Gamma_N(x|\vec{a}) = \prod_{\vec{n}}^{\operatorname{reg.}} (x + \vec{n} \cdot \vec{a})^{-1} = \exp(\partial_s \sum_{\vec{n}} (x + \vec{n} \cdot \vec{a})^{-s}|_{s=0})$, where $\vec{n} \in \mathbb{Z}_{\geq 0}^N$. Here, we zeta-regularized the product; the sum is analytically continued from $\operatorname{Re} s > N$. The meromorphic $x \mapsto \Gamma_N(x|\vec{a})$ has no zero and poles at $x = -\vec{n} \cdot \vec{a}$ (simple poles for generic \vec{a}). $\Gamma_0(x|) = 1/x$, $\Gamma_1(x|a) = a^{x/a-1/2}\Gamma(x/a)/\sqrt{2\pi}$, $\Gamma_N(x|\vec{a}) = \Gamma_{N-1}(x|a_1,\ldots,a_{N-1})\Gamma_N(x+a_N|\vec{a})$ and it is invariant under permutations of \vec{a} .

Plethystic exponential. Let $\mathbf{m} \subset R[[x_1,\ldots,x_n]]$ be series with no constant term over a ring R. Then plexp: $\mathbf{m} \to 1+\mathbf{m}$ obeys $\operatorname{plexp}[x_i^p] = 1/(1-x_i^p)$, $\operatorname{plexp}[f+g] = \operatorname{plexp}[f]\operatorname{plexp}[g]$ and $\operatorname{plexp}[\lambda f] = \operatorname{plexp}[f]^{\lambda}$ for $\lambda \in R$. It maps an index of single-particle states f(x) to that of multiparticle states $\operatorname{plexp} f(x) = \exp \sum_{k \geq 1} \frac{1}{k} f(x_1^k, \ldots, x_n^k)$.

q-Pochhammer $(a;q)_{\infty} = \operatorname{plexp} \frac{-a}{1-q} = \prod_{k=0}^{\infty} (1-aq^k)$ and finite version $(a;q)_n = (a;q)_{\infty}/(aq^n;q)_{\infty}$. Products are often denoted $(a_1,\ldots,a_N;q)_n = (a_1;q)_n\cdots(a_N;q)_n$. Properties: $(a;q)_{-n}(q/a;q)_n = (-q/a)^nq^{n(n-1)/2}$ and q-binomial theorem $(ax;q)_{\infty}/(x;q)_{\infty} = \sum_{n=0}^{\infty} x^n(a;q)_n/(q;q)_n$.

q-gamma (or basic gamma) function for |q| < 1, $\Gamma_q(x) = (1-q)^{1-x}(q;q)_{\infty}/(q^x;q)_{\infty}$ obeys $\Gamma_q(x+1) = \frac{1-q^x}{1-q}\Gamma_q(x)$ and $\Gamma_q(x) \xrightarrow{q\to 1} \Gamma(x)$. It has simple poles at $x \in \mathbb{Z}_{\leq 0}$ and no zero.

Modular form of weight k: holomorphic on $\mathbf{H} = \{\operatorname{Im} \tau > 0\}$ and as $\tau \to i\infty$ and obeys $f(\frac{a\tau + b}{c\tau + d}) = (c\tau + d)^k f(\tau)$.

Dedekind eta function: $\eta(\tau) = q^{1/24}(q;q)_{\infty}$ for $q = e^{2\pi i \tau}$. $\Delta = \eta^{24}$ is a modular form of weight 12.

Theta functions: q-theta $\theta(z;q) = (z;q)_{\infty} (q/z;q)_{\infty}$ obeys $\theta(z;q) = \theta(q/z;q) = -z\theta(1/z;q)$. Variant $\theta_1(z;q) = \theta_1(\tau|u) = iz^{-1/2}q^{1/12}\eta(\tau)\theta(z;q) = -iz^{1/2}q^{1/8}(q;q)_{\infty}(qz;q)_{\infty}(\frac{1}{z};q)_{\infty}$ with $z = e^{2\pi iu}$.

Eisenstein series $(k \ge 1)$ $E_{2k} = 1 + \frac{2}{\zeta(1-2k)} \sum_{n=1}^{\infty} n^{2k-1} \frac{q^n}{1-q^n}$ obeys $E_{2k}(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^{2k} E_{2k}(\tau) + \frac{6}{\pi i} c(c\tau+d) \delta_{k=1}$. For $k \ge 2$ it is a modular form and $E_{2k} = \frac{1}{2\zeta(2k)} \sum_{0 \ne \lambda \in \mathbb{Z} + \tau \mathbb{Z}} \lambda^{-2k}$.

Elliptic gamma function $\Gamma(z;p,q) = \operatorname{plexp} \frac{z-pq/z}{(1-p)(1-q)} = \prod_{m=0}^{\infty} \prod_{n=0}^{\infty} (1-p^{m+1}q^{m+1}z^{-1})/(1-p^mq^nz)$. Obeys $\Gamma(z;p,q) = \Gamma(z;q,p) = 1/\Gamma(pq/z;p,q)$ and $\Gamma(pz;p,q) = \theta(z;q)\Gamma(z;p,q)$ and $\Gamma(z;0,q) = 1/(z;q)_{\infty}$.

2 Lie algebras and groups (dimension $< \infty$)

2.1 Lie algebras

Complex simple Lie algebras. Infinite series $\mathfrak{a}_{n\geq 1}$, $\mathfrak{b}_{n\geq 1}$, $\mathfrak{c}_{n\geq 1}$, $\mathfrak{d}_{n\geq 2}$ with $\mathfrak{a}_1=\mathfrak{b}_1=\mathfrak{c}_1$, $\mathfrak{b}_2=\mathfrak{c}_2$, $\mathfrak{d}_2=\mathfrak{a}_1\oplus\mathfrak{a}_1$, $\mathfrak{d}_3=\mathfrak{a}_3$. Five exceptions with dimensions $\begin{vmatrix} \mathfrak{e}_6 & \mathfrak{e}_7 & \mathfrak{e}_8 & \mathfrak{f}_4 & \mathfrak{g}_2 \\ 78 & 133 & 248 & 52 & 14 \end{vmatrix}$.

Type	Dimension	Lie algebra
\mathfrak{a}_n \mathfrak{b}_n \mathfrak{c}_n \mathfrak{d}_n	n(n+2) $n(2n+1)$ $n(2n+1)$ $n(2n-1)$	$\begin{array}{l} \mathfrak{sl}(n+1,\mathbb{C}) = \{\text{traceless}\} \\ \mathfrak{so}(2n+1,\mathbb{C}) = \{\text{antisymmetric}\} \\ \mathfrak{sp}(2n,\mathbb{C}) = \left\{ \left(\begin{smallmatrix} 0 & \mathbb{1}_n \\ -\mathbb{1}_n & 0 \end{smallmatrix} \right) \times \text{symmetric} \right\} \\ \mathfrak{so}(2n,\mathbb{C}) = \{\text{antisymmetric}\} \end{array}$

Roots and Weyl group. The Weyl group has $\prod_i d_i$ elements where d_i are degrees of fundamental invariants. (Below, $\mathbb{1}_i$ denotes the *i*-th unit vector in \mathbb{Z}^n and $1 \leq i \neq j \leq n$.)

 \mathfrak{a}_{n-1} : (note shifted rank) roots $\mathbb{1}_i - \mathbb{1}_j$, simple roots $\mathbb{1}_i - \mathbb{1}_{i+1}$. The Weyl group S_n permutes the $\mathbb{1}_i$. Fundamental invariants: $x_1^k + \cdots + x_n^k$ for $2 \le k \le n$.

 \mathfrak{b}_n : roots $\pm \mathbb{1}_i$ and $\pm \mathbb{1}_i \pm \mathbb{1}_j$, simple roots $\mathbb{1}_i - \mathbb{1}_{i+1}$ and $\mathbb{1}_n$. The Weyl group $\{\pm 1\}^n \rtimes S_n$ permutes and changes signs of the $\mathbb{1}_i$. Fundamental invariants: $x_1^{2k} + \cdots + x_n^{2k}$ for $2 \leq 2k \leq 2n$.

 \mathfrak{c}_n : roots $\pm 2\mathbb{1}_i$ and $\pm \mathbb{1}_i \pm \mathbb{1}_j$, simple roots $\mathbb{1}_i - \mathbb{1}_{i+1}$ and $2\mathbb{1}_n$. Same Weyl group and invariants as \mathfrak{b}_n .

 \mathfrak{d}_n : roots $\pm \mathbb{1}_i \pm \mathbb{1}_j$, simple roots $\mathbb{1}_i - \mathbb{1}_{i+1}$ and $\mathbb{1}_{n-1} + \mathbb{1}_n$. The Weyl group $\{\pm 1\}^{n-1} \rtimes S_n$ permutes the $\mathbb{1}_i$ and changes an even number of signs. Fundamental invariants $x_1 \cdots x_n$ and $x_1^{2k} + \cdots + x_n^{2k}$ for $2 \leq 2k \leq 2n - 2$.

 \mathfrak{e}_8 : $\{\pm \mathbb{1}_i \pm \mathbb{1}_j\} \cup \{\frac{1}{2} \sum_{k=1}^8 \epsilon_k \mathbb{1}_k \mid \epsilon_k = \pm 1, \prod_{k=1}^8 \epsilon_k = -1\},$ simple roots $\mathbb{1}_i - \mathbb{1}_{i+1}$ and $\frac{1}{2} (-\mathbb{1}_1 - \dots - \mathbb{1}_5 + \mathbb{1}_6 + \mathbb{1}_7 + \mathbb{1}_8).$ The $2^{14} 3^5 5^2 7 = 696729600$ -element Weyl group is $O_8^+(\mathbb{F}_2)$. Degrees of invariants are $\{d_i\} = \{2, 8, 12, 14, 18, 20, 24, 30\},$ with mnemonic 1 + (primes from 7 to 29).

 \mathfrak{e}_7 : roots $\sum_{i=1}^8 a_i \mathbb{1}_i$ of \mathfrak{e}_8 with $a_1 = \sum_{i=2}^8 a_i$, simple roots are those of \mathfrak{e}_8 except $\mathbb{1}_1 - \mathbb{1}_2$. The $2^{10} \times 3^4 \times 5 \times 7 = 2903040$ -element Weyl group is $\mathbb{Z}_2 \times \mathrm{PSp}_6(\mathbb{F}_2)$. Degrees of invariants are $\{d_i\} = \{2, 6, 8, 10, 12, 14, 18\}$.

 \mathfrak{e}_6 : roots $\sum_{i=1}^8 a_i \mathbb{1}_i$ of \mathfrak{e}_8 with $a_1 = a_2$ and $\sum_{i=3}^8 a_i = 0$, no moduli (Arnold) hence of $\mathcal{N} = 2$ minimal models (c < 3), The $2^7 3^4 5 = 51840$ -element Weyl group is $Aut(PSp_4(\mathbb{F}_3))$. type,... Degrees of invariants are $\{d_i\} = \{2, 5, 6, 8, 9, 12\}.$

 f_4 : roots $\pm 1_i$, $\pm 1_i \pm 1_j$, $\frac{1}{2}(\pm 1_1 \pm 1_2 \pm 1_3 \pm 1_4)$, simple roots $\mathbb{1}_1 - \mathbb{1}_2$, $\mathbb{1}_2 - \mathbb{1}_3$, $\mathbb{1}_3$, $-\frac{1}{2}(\mathbb{1}_1 + \mathbb{1}_2 + \mathbb{1}_3 + \mathbb{1}_4)$. It has an

1152-element Weyl group and $\{d_i\} = \{2, 6, 8, 12\}.$ \mathfrak{g}_2 : 12 roots $e^{2\pi i k/6}, e^{2\pi i (2k+1)/12}\sqrt{3} \in \mathbb{C}$ for $0 \le k < 6$, simple roots 1 and $e^{5\pi i/6}\sqrt{3}$. The 12-element Weyl group is the dihedral group D_6 , and $\{d_i\} = \{2, 6\}$.

The Coxeter number $h(\mathfrak{g}) = (\dim \mathfrak{g} / \operatorname{rank} \mathfrak{g}) - 1$ is the largest d_i . A Coxeter element is the product of all simple reflections, in any order. Its eigenvalues $e^{2\pi i(d_i-1)/h}$ come in conjugate pairs.

A real simple Lie algebra is a complex algebra (see above) or a real form of it. Let $\mathfrak{sp}(m,n) = \mathfrak{usp}(2m,2n) = \mathfrak{u}(m,n,\mathbb{H}),$ $\mathfrak{su}^*(2n) = \mathfrak{sl}(n,\mathbb{H}) = \{ \operatorname{Re} \operatorname{Tr} M = 0 \text{ in } \mathfrak{gl}(n,\mathbb{H}) \} \simeq \mathfrak{gl}(n,\mathbb{H})/\mathbb{R},$ $\mathfrak{so}^*(2n) = \mathfrak{o}(n, \mathbb{H})$. A Lie algebra is called compact if it exponentiates to a compact Lie group. In $\mathfrak{e}_{r(s)}$, s is the number of (non-compact) - (compact) generators.

	Real form		Max compa	act subalge	bra	Range
$\mathfrak{sl}(n,\mathbb{C})$	$\mathfrak{su}(n)$ $\mathfrak{sl}(n,\mathbb{R})$ $\mathfrak{su}(n-p,\mathfrak{su}^*(n))$	p)	compact $\mathfrak{so}(n)$ $\mathfrak{su}(n-p)$ $\mathfrak{usp}(n)$	$)\oplus \mathfrak{su}(p)\oplus$	$\mathfrak{u}(1)$	0 $n even$
$\mathfrak{so}(n,\mathbb{C})$	$\mathfrak{so}(n)$ $\mathfrak{so}(p,n-s\mathfrak{o}^*(n))$	p)	compact $\mathfrak{so}(p) \oplus \mathfrak{s}$ $\mathfrak{u}(n/2)$	$\mathfrak{o}(n-p)$		0 n even
$\mathfrak{sp}(2n,\mathbb{C})$	$\mathfrak{so}(p,n-\mathfrak{so}^*(n))$ $\mathfrak{usp}(2n)$ $\mathfrak{sp}(2n,\mathbb{R})$ $\mathfrak{usp}(2n-\mathfrak{sp}(2n-$	2p, 2p)	compact $\mathfrak{u}(n)$ $\mathfrak{usp}(2n -$	$(2p) \oplus \mathfrak{usp}($	(2p)	0
	$\mathfrak{e}_{6(-78)}$ $\mathfrak{e}_{6(-26)}$ $\mathfrak{e}_{6(-14)}$	compact \mathfrak{f}_4 $\mathfrak{so}(10)$	et $\oplus \mathfrak{so}(2)$	¢ _{8(−248)} ¢ _{8(−24)} ¢ ₈₍₈₎	$\mathfrak{e}_7 \oplus \mathfrak{so}(16$	$\mathfrak{su}(2)$
_	¢ ₆₍₂₎ ¢ ₆₍₆₎	$\mathfrak{su}(6) \oplus \mathfrak{su}(2)$ $\mathfrak{usp}(8)$		$\mathfrak{g}_{2(-14)}$ $\mathfrak{g}_{2(2)}$	compact $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$	
	$\mathfrak{e}_{7(-133)}$ $\mathfrak{e}_{7(-25)}$ $\mathfrak{e}_{7(-5)}$ $\mathfrak{e}_{7(7)}$	compact $\mathfrak{so}_6 \oplus \mathfrak{so}_9$ $\mathfrak{so}_{(12)} \oplus \mathfrak{su}_{(8)}$	(2)	$f_{4(-52)}$ $f_{4(-20)}$ $f_{4(4)}$	$\begin{array}{c} \text{compact} \\ \mathfrak{so}(9) \\ \mathfrak{usp}(6) \oplus \mathfrak{su}(2) \end{array}$	

Accidental isomorphisms.

$$\begin{array}{lll} \mathfrak{so}(2)=\mathfrak{u}(1), & \mathfrak{so}(1,1)=\mathbb{R} & \mathfrak{so}(4,1)=\mathfrak{usp}(2,2) \\ \mathfrak{so}(3)=\mathfrak{su}(2)=\mathfrak{su}^*(2)=\mathfrak{usp}(2) & \mathfrak{so}(3,2)=\mathfrak{sp}(4,\mathbb{R}) \\ \mathfrak{so}(2,1)=\mathfrak{su}(1,1)=\mathfrak{sl}(2,\mathbb{R})=\mathfrak{sp}(2,\mathbb{R}) & \mathfrak{so}(6)=\mathfrak{su}(4) \\ \mathfrak{so}(4)=\mathfrak{su}(2)\oplus\mathfrak{su}(2) & \mathfrak{so}(5,1)=\mathfrak{su}^*(4) \\ \mathfrak{so}(3,1)=\mathfrak{sl}(2,\mathbb{C})=\mathfrak{sp}(2,\mathbb{C}) & \mathfrak{so}(4,2)=\mathfrak{su}(2,2) \\ \mathfrak{so}(2,2)=\mathfrak{sl}(2,\mathbb{R})\oplus\mathfrak{sl}(2,\mathbb{R}) & \mathfrak{so}(3,3)=\mathfrak{sl}(4,\mathbb{R}) \\ \mathfrak{so}^*(4)=\mathfrak{sl}(2,\mathbb{R})\oplus\mathfrak{su}(2) & \mathfrak{so}^*(6)=\mathfrak{su}(3,1) \\ \mathfrak{so}(5)=\mathfrak{usp}(4) & \mathfrak{so}^*(8)=\mathfrak{so}(6,2) \end{array}$$

ADE classification of symmetric matrices with eigenvalues in (-2,2) and $\mathbb{Z}_{>0}$ entries (adjacency matrices of ADE diagrams), of simply laced simple Lie algebras, of binary polyhedral groups Γ (discrete subgroups of SU(2)) and du Val singularities $\mathbb{C}^2/\Gamma \simeq (\text{zeros of Kleinian polynomial})$, of integers $1 \le p \le q \le r$ with 1/p + 1/q + 1/r > 1, of singularities with

simple roots are those of \mathfrak{e}_8 except $\mathbb{1}_1 - \mathbb{1}_2$ and $\mathbb{1}_2 - \mathbb{1}_3$. of $\mathcal{N} = 0$ unitary minimal models (c < 1), of quivers of finite

\mathfrak{g}	(p,q,r)	Kleinian polynomial
\mathfrak{a}_k	(1,q,1+k-q)	$w^2 + x^2 + y^{k+1}$
\mathfrak{d}_k	(2,2,k-2)	$w^2 + x^2y + y^{k-1}$
\mathfrak{e}_6	(2, 3, 3)	$w^2 + x^3 + y^4$
\mathfrak{e}_7	(2, 3, 4)	$w^2 + x^3 + xy^3$
\mathfrak{e}_8	(2, 3, 5)	$w^2 + x^3 + y^5$

2.2 Lie groups

Basics. The identity component G_0 is a normal subgroup: G/G_0 is the group of components. The maximal compact subgroup K is unique up to conjugation.

Every compact connected Lie group K is a quotient of $\mathrm{U}(1)^n \times \prod_{i=1}^m K_i$ by a finite subgroup Γ of its center, where K_i are simple, compact, simply-connected, connected. Then $\pi_1(K)/\mathbb{Z}^n \simeq \Gamma$ for some embedding $\mathbb{Z}^n \hookrightarrow \pi_1(K)$, and the center of K is $Z(K) = (U(1)^n \times \prod_{i=1}^m Z(K_i))/\Gamma$.

Center of all such K_i : $Z(SU(n)) = \mathbb{Z}_n$, $Z(USp(2n)) = \mathbb{Z}_2$, $Z(\operatorname{Spin}(n \geq 3)) = (\mathbb{Z}_2 \text{ for } n \text{ odd}, \mathbb{Z}_4 \text{ for } n/2 \text{ odd}, \mathbb{Z}_2^2 \text{ otherwise}),$ $Z(\mathcal{E}_{6(-78)}) = \mathbb{Z}_3, \ Z(\mathcal{E}_{7(-133)}) = \mathbb{Z}_2, \text{ while } \mathcal{E}_{8(-248)}, \ \mathcal{F}_{4(-52)},$ $G_{2(-14)}$ have no center.

Named quotients: $SO(n) = Spin(n)/\mathbb{Z}_2$ and PG = G/Z(G)for G = SU, USp, SO (also U, GL, SL). The other two quotients $\operatorname{Spin}(4n)/\mathbb{Z}_2$ have no name.

Real simple Lie groups are the simply-connected G (classified by simple Lie algebras) and their quotients by a subgroup $\Gamma \subset Z(G)$. One has $Z(G/\Gamma) = Z(G)/\Gamma$ and $\pi_1(G/\Gamma) = \Gamma$. All G/Γ are covers of the center-free $G_{\rm cf} = G/Z(G)$, and are classified by quotients of $\pi_1(G_{cf}) = \pi_1(K)$ where $K \subset G_{cf}$ is the maximal compact subgroup.

For each real simple Lie algebra \mathfrak{g} , we write: $G_{\rm cf}$ as a quotient of its algebraic universal cover G_{alg} (largest embeddable in $GL(N < \infty)$) by the algebraic π_1 ; the (topological) π_1 ; the real rank r_{Re} ; and K. Below, $\iota(l) = (1 \text{ for } l \text{ odd}, 2 \text{ otherwise}),$ p+q=n with $p,q\geq 1$, and 2k=n when n is even. For $\mathfrak{sl}(2)$ use SU(2) = Sp(2), $SL(2, \mathbb{R}) = Sp(2, \mathbb{R})$, $SL(2, \mathbb{C}) = Sp(2, \mathbb{C})$.

$\widetilde{G}_{ m alg}/\pi_1^{ m alg}(G_{ m cf})$	K	π_1	r_{Re}
$\widehat{\mathfrak{S}}_{\Lambda}^{\mathrm{SU}(n)/\mathbb{Z}_{n}} \operatorname{SL}(n,\mathbb{R})/\mathbb{Z}_{\iota(n)}$	$SU(n)/\mathbb{Z}_n$ $PSpin(n)^{\ddagger \S}$	\mathbb{Z}_n $Z(\operatorname{Spin}(n))^{\ddagger \S}$	$0 \\ n-1$
$\operatorname{SU}(p,q)/\mathbb{Z}_{p+q}$	$\frac{\mathrm{SU}(p) \times \mathrm{SU}(q) \times \mathrm{U}(1)}{\mathbb{Z}_{pq/\gcd(p,q)}}$	1) =	n(p,q)
$\operatorname{SU}^*(2k)/\mathbb{Z}_2$ $\operatorname{SL}(n,\mathbb{C})/\mathbb{Z}_n$	$USp(2k)/\mathbb{Z}_2$ $SU(n)/\mathbb{Z}_n$	$\mathbb{Z}_2 \ \mathbb{Z}_n$	k-1 $n-1$
$ \overline{\widehat{\mathfrak{S}}} \operatorname{PSpin}(n)^{\ddagger} $	PSpin(n)	$Z(\operatorname{Spin}(n))^{\ddagger}$	
$\overset{\wedge}{\mathfrak{S}} \operatorname{PSpin}(p,q)^{\ddagger}$ $\overset{\mathfrak{S}}{\mathfrak{S}} \operatorname{SO}^{*}(2k)/\mathbb{Z}_{2}$	$\frac{\mathrm{SO}(p) \times \mathrm{SO}(q)}{\mathbb{Z}_2 \text{ if } p, \ q \text{ even}} \\ \mathrm{U}(k)/\mathbb{Z}_2$	Γ^{\parallel} mi $\mathbb{Z}_{\iota(k)} imes \mathbb{Z}$	
$\operatorname{PSpin}(n,\mathbb{C})$	PSpin(n)	$Z(\operatorname{Spin}(n))^{\ddagger}$	
$\widehat{\bowtie} \operatorname{USp}(2n)/\mathbb{Z}_2$ $\wedge \operatorname{ISp}(2n,\mathbb{R})/\mathbb{Z}_2$	$USp(2n)/\mathbb{Z}_2$ $U(n)/\mathbb{Z}_2$	$\mathbb{Z}_2 \ \mathbb{Z}_{\iota(n)} imes \mathbb{Z}$	$0 \\ n$
$\operatorname{\mathfrak{S}}$ USp $(2p,2q)/\mathbb{Z}_2$	$\frac{\text{USp}(2p) \times \text{USp}(2q)}{\mathbb{Z}_2}$	` /	n(p,q)
$\mathfrak{F} \operatorname{Sp}(2n,\mathbb{C})/\mathbb{Z}_2$	$USp(2n)/\mathbb{Z}_2$	\mathbb{Z}_2	n

[‡] For $r + s \ge 3$, PSpin(r, s) = Spin(r, s)/Z(Spin(r, s)) and $Z(\operatorname{Spin}(r,s)) = (\mathbb{Z}_2 \text{ if } r \text{ or } s \text{ odd}, \mathbb{Z}_4 \text{ if } \frac{r+s}{2} \text{ odd}, \text{ else } \mathbb{Z}_2^2).$

[§] Exception: for n = 2, $K = SO(2)/\mathbb{Z}_2$ and $\pi_1 = \mathbb{Z}$.

$$\P \ K \ni \overline{(A,B,\lambda)} \mapsto \begin{pmatrix} \lambda^{q/(p+q)} A & 0 \\ 0 & \lambda^{-p/(p+q)} B \end{pmatrix} \in \mathrm{PSU}(p,q).$$

 $\Gamma = \pi_1(SO(p)) \times \pi_1(SO(q))$ for p or q odd (each factor is \mathbb{Z}_2 except $\pi_1(SO(1)) = 0$ and $\pi_1(SO(2)) = \mathbb{Z}$); otherwise $\Gamma \subset \pi_1(SO(p)/\mathbb{Z}_2) \times \pi_1(SO(q)/\mathbb{Z}_2)$ consists of (γ_p, γ_q) such that both or neither γ is in the corresponding $\pi_1(SO) \subset \pi_1(SO/\mathbb{Z}_2)$.

	$\widetilde{G}_{ m alg}/\pi_1^{ m alg}(G_{ m cf})$	K	π_1	$r_{ m Re}$
	$\widetilde{\mathrm{E}}_{6(-78)}/\mathbb{Z}_3$	$= E_{6(-78)}$	\mathbb{Z}_3	0
ed.		$F_{4(-52)}$	1	2
\mathbf{st}	$\widetilde{\mathrm{E}}_{6(-14)}/\mathbb{Z}$	$Spin(10) \times U(1)/?$	\mathbb{Z}	2
tr	$\widetilde{\mathrm{E}}_{6(2)}/\mathbb{Z}_{6}$	$(SU(6)/\mathbb{Z}_6) \times SU(2)$	\mathbb{Z}_6	4
þe	$\widetilde{\mathrm{E}}_{6(6)}/\mathbb{Z}_2$	$USp(8)/\mathbb{Z}_2$	\mathbb{Z}_2	6
ot]	$\widetilde{\mathrm{E}}_{6}^{\mathbb{C}}/\mathbb{Z}_{3}$	$E_{6(-78)}$	\mathbb{Z}_3	6
d n	$\widetilde{\mathrm{E}}_{7(-133)}/\mathbb{Z}_2$	$= E_{7(-133)}$	\mathbb{Z}_2	0
oul	$\widetilde{\mathrm{E}}_{7(-25)}/\mathbb{Z}$	$E_{6(-78)} \times U(1)/?$	\mathbb{Z}	3
$_{ m spc}$	$\widetilde{\mathrm{E}}_{7(-5)}/\mathbb{Z}_2^2$	$\operatorname{Spin}(12) \times \operatorname{SU}(2)/\mathbb{Z}_2^2$	\mathbb{Z}_2^2	4
le	$\widetilde{\mathrm{E}}_{7(7)}/\mathbb{Z}_4$	$SU(8)/\mathbb{Z}_4$	\mathbb{Z}_4	7
$_{\mathrm{tab}}$	$\widetilde{\mathrm{E}}_{7}^{\mathbb{C}}/\mathbb{Z}_{2}$	$E_{7(-133)}$	\mathbb{Z}_2	7
$\dot{\mathbf{s}}$	$E_{8(-248)}$	$\underset{\sim}{\text{E}}_{8(-248)}$	1	0
t.	$\widetilde{\mathrm{E}}_{8(-24)}/\mathbb{Z}_2$	$\widetilde{\mathrm{E}}_{7(-133)} \times \mathrm{SU}(2)/\mathbb{Z}_2$	\mathbb{Z}_2	4
i.	$\widetilde{\mathrm{E}}_{8(8)}/\mathbb{Z}_2$	$SO(16)/\mathbb{Z}_2$	\mathbb{Z}_2	8
sdn	$\mathrm{E}_8^{\mathbb{C}}$	$E_{8(-248)}$	1	8
Discrete groups in this table should not be trusted	$ \begin{array}{c} F_{4(-52)} \\ \widetilde{F}_{4(-20)}/\mathbb{Z}_2 \\ \widetilde{F}_{4(4)} \\ F^{\mathbb{C}} \end{array} $	$F_{4(-52)}$	1	0
ē	$\widetilde{\mathrm{F}}_{4(-20)}/\mathbb{Z}_2$	$\operatorname{Spin}(9)/\mathbb{Z}_2$	\mathbb{Z}_2	1
ret	$F_{4(4)}$	$USp(6) \times SU(2)/\mathbb{Z}_2$	\mathbb{Z}_2	4
isc	$F_4^{\mathbb{C}^*}$	$F_{4(-52)}$	1	4
П	$G_{2(-14)}$	$G_{2(-14)}$	1	0
	$G_{2(2)}/\mathbb{Z}_2$	$SU(2) \times SU(2)/\mathbb{Z}_2$	\mathbb{Z}_2	4
	$\mathrm{G}_2^{\mathbb{C}^{^{\!$	$G_{2(-14)}$	1	4

Classical Lie groups $\pi_0(O(p,q)) = \pi_0(O(p)) \times \pi_0(O(q))$ is \mathbb{Z}_2^2 for $p, q \ge 1$; the identity component $SO_+(p,q)$ has a double cover Spin(p,q).

Accidental isomorphisms (low-rank real reductive Lie groups) $\mathbb{R}/\mathbb{Z} = \mathrm{U}(1); \, \mathrm{SU}(2) = \mathrm{Spin}(3) \twoheadrightarrow \mathrm{SO}(3); \dots$

Homotopy. Any connected Lie group is homeomorphic to its maximal compact subgroup K times a Euclidean space \mathbb{R}^p . All $\pi_{j\geq 1}(K)$ are abelian and finitely generated, $\pi_2(K)=0$, $\pi_3(K)=\mathbb{Z}^m$ where m counts simple factors in a finite cover $\mathrm{U}(1)^n\times\prod_{i=1}^m K_i \twoheadrightarrow K$, and $\pi_j(K)=\prod_{i=1}^m \pi_j(K_i)$ for $j\geq 2$.

For any G there exists $\prod_{i=1}^{\operatorname{rank} G} S^{2d_i-1} \to G$ which induces isomorphisms of rational (i.e., torsion-free part of) homotopy/cohomology groups where d_i are the degrees of fundamental invariants. For compact simple K,

Group $(2d_i - 1)$	E_6 3, 9, 11, 15, 17, 23
A_n 3, 5,, $2n + 1$ B_n , C_n 3, 7,, $4n - 1$ D_n 3, 7,, $4n - 5$, $2n - 1$	$E_7 \ 3, 11, 15, 19, 23, 27, 35 \\ E_8 \ 3, 15, 23, 27, 35, 39, 47, 59 \\ F_4 \ 3, 11, 15, 23 \\ G_2 \ 3, 11$

 $\pi_{j\geq 2}(G)$ has a factor \mathbb{Z} for each S^j above, and some torsion. Explicitly, $\pi_j(\mathrm{SU}(n))$ is \mathbb{Z} for odd j<2n, 0 for even j<2n, and is pure torsion for $j\geq 2n$. Similarly, $\pi_{j<4n+2}(\mathrm{USp}(2n))$ is \mathbb{Z} for $j\equiv 3,7 \bmod 8$, \mathbb{Z}_2 for $j\equiv 4,5 \bmod 8$, and 0 otherwise.

2.3 Simple Lie superalgebras

Classical Lie superalgebras: the bosonic algebra acts on the fermionic generators in a completely reducible representation. This excludes Cartan-type superalgebras $\mathfrak{w}(n)$, $\mathfrak{s}(n)$, $\tilde{\mathfrak{s}}(n)$ and $\mathfrak{h}(n)$. In this table, $m,n\geq 1$ and we do not list purely bosonic Lie algebras. The factor $\mathbb C$ of $\mathfrak{sl}(m|n)$ must be removed if m=n.

	Bosonic algebra	Fermionic repr.
$\mathfrak{sl}(m n)$	$\mathfrak{sl}(m,\mathbb{C})\oplus\mathfrak{sl}(n,\mathbb{C})\oplus\mathbb{C}$	$(m,\overline{n})\oplus (\overline{m},n)$
$\mathfrak{osp}(m 2n)$	$\mathfrak{so}(m,\mathbb{C})\oplus\mathfrak{sp}(2n,\mathbb{R})$	(m,2n)
$\mathfrak{d}(2,1,lpha)$	$\mathfrak{sl}(2,\mathbb{C})^3$	(2, 2, 2)
$\mathfrak{f}(4)$	$\mathfrak{so}(7,\mathbb{C})\oplus\mathfrak{sl}(2,\mathbb{C})$	(8,2)
$\mathfrak{g}(3)$	$\mathfrak{g}_2\oplus\mathfrak{sl}(2,\mathbb{C})$	(7,2)
$\mathfrak{p}(m)$	$\mathfrak{sl}(m+1,\mathbb{C})$	$\mathrm{sym} \oplus (\mathrm{antisym})^*$
$\mathfrak{q}(m)$	$\mathfrak{sl}(m+1,\mathbb{C})$	adjoint

Real forms of Lie superalgebras, starting from their compact form (p=q=0). $\mathfrak{p}(m)$ has no compact form. Here, $m, n \geq 1, 0 \leq p \leq m/2, 0 \leq q \leq n/2$. The forms \mathfrak{su}^* , \mathfrak{osp}^* , \mathfrak{q}^* only exist for even rank; \mathfrak{sl}' only if m=n.

Real form	Bosonic algebra
	$\begin{array}{c} \mathfrak{su}(m-p,p) \oplus \mathfrak{su}(n-q,q) \oplus \mathfrak{u}(1)^{\ddagger} \\ \mathfrak{sl}(m,\mathbb{R}) \oplus \mathfrak{sl}(n,\mathbb{R}) \oplus \mathfrak{so}(1,1)^{\ddagger} \\ \mathfrak{sl}(n,\mathbb{C}) \\ \mathfrak{su}^*(m) \oplus \mathfrak{su}^*(n) \oplus \mathfrak{so}(1,1)^{\ddagger} \end{array}$
$ \mathfrak{osp}(m-p,p 2n) \\ \mathfrak{osp}^*(m 2n-2q,2q) \ (m-p,p 2n) $	$\mathfrak{so}(m-p,p)\oplus\mathfrak{sp}(2n,\mathbb{R}) \ ext{a even)} \ \ \mathfrak{so}^*(m)\oplus\mathfrak{usp}(2n-2q,2q)$
$\mathfrak{d}^p(2,1,\alpha)$ §	$\mathfrak{so}(4-p,p)\oplus\mathfrak{sl}(2,\mathbb{R})\ (p=0,1,2)$
$\mathfrak{f}^p(4) \text{ for } p = 0, 3$ $\mathfrak{f}^p(4) \text{ for } p = 1, 2$	$\mathfrak{so}(7-p,p)\oplus\mathfrak{sl}(2,\mathbb{R})$ $\mathfrak{so}(7-p,p)\oplus\mathfrak{su}(2)$
$\mathfrak{g}_s(3) \text{ for } s = -14, 2$	$\mathfrak{g}_{2(s)}\oplus\mathfrak{sl}(2,\mathbb{R})$
$\mathfrak{p}(m)$	$\mathfrak{sl}(m+1,\mathbb{R})$
$\begin{array}{c c} & \mathfrak{uq}(m-p,p) \\ \mathfrak{q}(m) & \\ \mathfrak{q}^*(m) & (m \text{ odd}) \end{array}$	$\mathfrak{su}(m+1-p,p)$ $\mathfrak{sl}(m+1,\mathbb{R})$ $\mathfrak{su}^*(m+1)$

- [‡] For m = n, $\mathfrak{u}(1)$ and $\mathfrak{so}(1,1)$ factors are absent. Additionally, one can project down to a single bosonic factor.
- § The three $\mathfrak{sl}(2)$ bosonic factors of $\mathfrak{d}(2,1,\alpha)$ appear with weights 1, α and $-1-\alpha$ in fermion anticommutators. For \mathfrak{d}^0 and \mathfrak{d}^2 , α is real. For \mathfrak{d}^1 , $\alpha=1+ia$ with a real.

Some isomorphisms: $\mathfrak{su}(1,1|1) = \mathfrak{sl}(2|1) = \mathfrak{osp}(2|2)$ and $\mathfrak{su}(2|1) = \mathfrak{osp}^*(2|2,0)$ and $\mathfrak{d}^p(2,1,\alpha=1) = \mathfrak{osp}(4-p,p|2)$ and $\mathfrak{osp}(6,2|4) = \mathfrak{osp}^*(8|4)$.

2.4 Lie supergroups

2.5 Representations of Lie (super)algebras/groups

3 Spinors

Clifford algebra. Let h_{ab} be diagonal with s '+1' and t '-1', and d=s+t. The Clifford algebra $\{\Gamma_a,\Gamma_b\}=2h_{ab}$ has real dimension 2^d and is isomorphic to a matrix algebra $M_{2^\#}(\bullet)$ with

$s - t \mod 8$	0	1	2	3	4	5	6	7
• is	\mathbb{R}	$\mathbb{R}\oplus\mathbb{R}$	\mathbb{R}	\mathbb{C}	\mathbb{H}	$\mathbb{H}\oplus\mathbb{H}$	\mathbb{H}	\mathbb{C}

Charge conjugation. $(-\eta)\Gamma_a^T = \mathcal{C}\Gamma_a\mathcal{C}^{-1}$ are conjugate for $\eta = \pm 1$ because they obey the same algebra. Get $\mathcal{C}^T = -\varepsilon\mathcal{C}$ with $\varepsilon = \pm 1$ by transposing twice. Let $\Gamma^{(n)} = \Gamma_{a_1...a_n}$. Using $\left(\mathcal{C}\Gamma^{(n)}\right)^T = -\epsilon(-)^{n(n-1)/2}(-\eta)^n\mathcal{C}\Gamma^{(n)}$ find which $n \mod 4$ give symmetric $\mathcal{C}\Gamma^{(n)}$. The sum of $\binom{d}{n}$ must be $2^{\lfloor d/2 \rfloor}(2^{\lfloor d/2 \rfloor}+1)/2$. This fixes ϵ, η . Odd d require $\eta = (-1)^{d(d+1)/2}$ to preserve $\Gamma^{(d)}$. Even d allow two choices of signs: consult the rows $d \pm 1$.

$d \bmod 8$	n	ϵ	η
$ \begin{array}{c} 0\langle 1\\2\langle 3\\4\langle 5\\6\langle 7\end{array} $	0, 1 1, 2 2, 3 0, 3	$-1 \\ +1 \\ +1 \\ -1$	$ \begin{array}{r} -1 \\ +1 \\ -1 \\ +1 \end{array} $

Reduced spinors. $M_{ab} \in \mathfrak{so}(s,t)$ acts as $\gamma_a \gamma_b$ on representations of the Clifford algebra. But the $2^{\lceil d/2 \rceil}$ -dimensional representation is not irreducible as a representation of $\mathfrak{so}(s,t)$.

In even d, Weyl (or chiral) spinors $\Gamma^{(d)}\lambda=\pm\lambda$ have $2^{d/2-1}$ real components. Let B be defined by $\Gamma_a^*=-\eta(-1)^tB\Gamma_aB^{-1}$. Majorana spinors $\lambda^*=B\lambda$ exist for $s-t\equiv 0,\pm 1,\pm 2$ mod 8; the case $s-t\equiv \pm 2$ requires $\eta=\mp(-1)^{d/2}$. When $s-t\equiv 3,4,5,$ a set of 2n spinors can be symplectic Majorana: $(\lambda^I)^*=B\Omega_{IJ}\lambda^J$ for $\Omega=((0,\mathbb{1}_n);(-\mathbb{1}_n,0))$. (Symplectic) Majorana–Weyl spinors exist for $s-t\equiv 0,4$ mod 8. The table also includes the real dimension of the minimal spinor.

$d t \equiv$	≣ 0	1	2	$3 \bmod 4$
1 (D 2) M	1	M 1		
$2 (W 2) M^{-}$	2	MW 1	M^+ 2	
3 (D 4) s	4	M = 2	M = 2	s 4
4 (W 4) sW	4	M^+ 4	MW 2	M^- 4
5 (D 8) s	8	s 8	M = 4	M = 4
$6 \text{ (W 8) } \text{M}^{+}$	8	sW = 8	M^{-} 8	MW = 4
7 (D 16) M	8	s 16	s 16	M = 8
8 (W16) MW	8	M^{-} 16	sW = 16	M^{+} 16
9 (D 32) M	16	M 16	s = 32	s 32
$10 \text{ (W32) } \text{M}^-$	32	MW 16	M^{+} 32	sW 32
11 (D 64) s	64	M = 32	M = 32	s 64
12 (W64) sW	64	M^{+} 64	MW 32	M^{-} 64

Flavour symmetries of N minimal spinors. This is also the R-symmetry of the N-extended superalgebra. For (symplectic) Majorana Weyl spinors, specify $N=(N_L,N_R)$ left/right-handed.

$$\begin{array}{l} \mathbf{M} & \begin{cases} \mathfrak{u}(N) & \text{if } d \text{ even} \\ \mathfrak{so}(N) & \text{if } d \text{ odd} \end{cases} \\ \mathbf{MW: so}(N_L) \times \mathfrak{so}(N_R) \\ \mathbf{s} & : \mathfrak{usp}(2N) \\ \mathbf{sW} & : \mathfrak{usp}(2N_L) \times \mathfrak{usp}(2N_R) \end{cases}$$

E.g., Lorentzian 6d (2,0) has $\mathfrak{usp}(4) \times \mathfrak{usp}(0)$ R-symmetry.

Products of spinor representations. For odd d=2m+1, let \mathcal{S} be a spinor representation of complex dimension 2^m . The symmetric product $S^2\mathcal{S}$ consists of k-forms with $k\equiv m \mod 4$. Since k-forms and (d-k)-forms are the same representation, other descriptions can be given. For the antisymmetric product $\bigwedge^2 \mathcal{S}$, take $k\equiv m-1 \mod 4$. See the list of forms in the table.

$\frac{d}{\dim_{\mathbb{C}} \mathcal{S}}$	_	3 2	-	7 8	9 16	11 32
$S^2 S$ $\bigwedge^2 S$	0	1 0	2 0,1	0, 3 $1, 2$	0, 1, 4 2, 3	1, 2, 5 $0, 3, 4$

For even d=2m, let \mathcal{S}_{\pm} be the Weyl spinor representations of complex dimension 2^{m-1} . The tensor product $\mathcal{S}_{+}\otimes\mathcal{S}_{-}$ consists of (m-1-2j)-forms for $0 \leq j \leq (m-1)/2$. The symmetric products $S^2\mathcal{S}_{\pm}$ decompose into the (anti)-self-dual m-forms and (m-4j)-forms for $0 < j \leq m/4$. The antisymmetric products $\bigwedge^2 \mathcal{S}_{\pm}$ decompose into (m-2-4j)-forms for $0 \leq j \leq (m-2)/4$.

\overline{d}	2	4	6	8	10	12
$\dim_{\mathbb{C}}\mathcal{S}_{\pm}$	1	2	4	8	16	32
$S^2 S_{\pm}$	1^{\dagger}	2^{\dagger}	3^{\dagger}	$0,4^{\dagger}$	$1,5^{\dagger}$	$2,6^{\dagger}$
$igwedge^2 \mathcal{S}_\pm$		0	1	2	3	0, 4
$\mathcal{S}_+ \otimes \mathcal{S}$	0	1	0, 2	1, 3	0, 2, 4	1, 3, 5

Note that $S^2(\mathcal{S}_+ \oplus \mathcal{S}_-) = S^2\mathcal{S}_+ \oplus (\mathcal{S}_+ \otimes \mathcal{S}_-) \oplus S^2\mathcal{S}_-$

$$\bigwedge^{2}(\mathcal{S}_{+}\oplus\mathcal{S}_{-})=\bigwedge^{2}\mathcal{S}_{+}\oplus(\mathcal{S}_{+}\otimes\mathcal{S}_{-})\oplus\bigwedge^{2}\mathcal{S}_{-}$$

4 Supersymmetry algebras

The Poincaré algebra is $\mathbb{R}^{s,t} \rtimes \mathfrak{so}(s,t)$, the semi-direct product of translations by rotations. Namely, $[P_a, P_b] = 0$, $[M_{ab}, P_c] = 2ih_{c[a}P_{b]}$, and $[M_{ab}, M^{cd}] = 4ih_{[a}^{[c}M_{b]}^{d]}$.

Super-Poincaré algebra. Add supercharges in some spinor representation Q of the Poincaré algebra (so $[P_a,Q]=0$). Their anticommutator transforms in the representation S^2Q and should include the one-form P. Depending on s,t they can include other k-forms Z, called central charges because [P,Z]=[Z,Z]=0. The super-Poincaré algebra is $((\mathbb{R}^{s,t}\times Z).Q)\times(\mathfrak{so}(s,t)\times R)$, where the R-symmetry acts on Q. This Lie superalgebra is graded: $\operatorname{gr}(\mathbb{R}^{s,t}\times Z)=-2$, $\operatorname{gr}(Q)=-1$, and $\operatorname{gr}(\mathfrak{so}(s,t)\times R)=0$. The supertranslations consist of $(\mathbb{R}^{s,t}\times Z).Q$.

Example: M-theory algebra. d=10+1 super-Poincaré algebra with Q= Majorana. Since S^2Q has 1, 2, and 5-forms, there are 2-form and 5-form central charges $Z_{(2)}$ and $Z_{(5)}$ (under which M2 and M5 branes are charged):

$$\{Q_{\alpha}, Q_{\beta}\} = (\gamma^{M} C)_{\alpha\beta} P_{M} + \frac{1}{2} (\gamma_{MN} C)_{\alpha\beta} Z_{(2)}^{MN} + \frac{1}{5!} (\gamma_{MNPQR} C)_{\alpha\beta} Z_{(5)}^{MNPQR}$$

Altogether the M-theory algebra is $\mathfrak{osp}(1|32)$.

Superconformal algebras are the same as super AdS_{d+1} . The bosonic part is $\mathfrak{so}(d,2)$ and R-symmetries. As a supermatrix: $\begin{pmatrix} \mathfrak{so}(d,2) & Q+S \\ Q-S & R \end{pmatrix}$ or $\mathfrak{so}(d,2) \leftrightarrow R$. Note that $\{Q,S\}$ contains R. For d=2, the finite conformal algebra is $\mathfrak{so}(2,2)=\mathfrak{so}(2,1)\oplus\mathfrak{so}(2,1)$, sum of two d=1 algebras, so the superalgebra is sum of two d=1 superalgebras.

d	Superalgebra	R-symmetries	#Q+#S
1	$\mathfrak{osp}(N 2)$	$\mathfrak{o}(N)$	2N
	$\mathfrak{su}(N 1,1)$	$\mathfrak{su}(N) \oplus \mathfrak{u}(1)$ for $N \neq 2$	4N
	$\mathfrak{su}(2 1,1)$	$\mathfrak{su}(2)$	8
	$\mathfrak{osp}(4^* 2N)$	$\mathfrak{su}(2) \oplus \mathfrak{usp}(2N)$	8N
	$\mathfrak{g}(3)$	\mathfrak{g}_2	14
	$f^{0}(4)$	$\mathfrak{so}(7)$	16
	$\mathfrak{d}^0(2,1,\alpha)$	$\mathfrak{su}(2) \oplus \mathfrak{su}(2)$	8
3	$\mathfrak{osp}(N 4)$	$\mathfrak{so}(N)$	4N
4	$\mathfrak{su}(2,2 N)$	$\mathfrak{su}(N) \oplus \mathfrak{u}(1) \text{ for } N \neq 4$	8N
	$\mathfrak{su}(2,2 4)$	$\mathfrak{su}(4)$	32
5	$f^2(4)$	$\mathfrak{su}(2)$	16
6	$\mathfrak{osp}(8^* N)$	$\mathfrak{usp}(N)$ (N even)	8N

Dimensional reduction of Euclidean/Lorentzian supersymmetry algebras. $10d \mathcal{N} = 1 \rightarrow 6d \mathcal{N} = (1,1)$ or $(2,0)? \rightarrow 5d \mathcal{N} = 2 \rightarrow 4d \mathcal{N} = 4 \rightarrow 3d \mathcal{N} = 8$. Also $6d \mathcal{N} = (1,0) \rightarrow 5d \mathcal{N} = 1 \rightarrow 4d \mathcal{N} = 2 \rightarrow 3d \mathcal{N} = 4 \rightarrow 2d \mathcal{N} = (4,4)$. Also $4d \mathcal{N} = 1 \rightarrow 3d \mathcal{N} = 2 \rightarrow 2d \mathcal{N} = (2,2)$.

Explicit supersymmetry algebras 4d $\mathcal{N}=2$ $\{Q_{\alpha}^{A}, \overline{Q}_{\dot{\alpha}}^{B}\}=\epsilon^{AB}P_{\alpha\dot{\alpha}}$

Supersymmetry on symmetric curved spaces $4d \mathcal{N} = 2$ supersymmetry on S^4 is $\mathfrak{osp}(2|4)$. $2d \mathcal{N} = (2,2)$ supersymmetry on S^2 is $\mathfrak{osp}(2|2)$.

5 Supermultiplets

5.1 Spin ≤ 1 supermultiplets

For 16 supercharges, there is only the vector.

For 8 supercharges, vector and hyper.

For 4 supercharges, vector, chiral, linear multiplets.

For 2 supercharges, vector, chiral, linear, Fermi, ...

5.2 Other supermultiplets

6d $\mathcal{N}=(1,0)$ tensor multiplet (contains one scalar), reduces to 4d $\mathcal{N}=2$ vector.

6d $\mathcal{N}=(1,0)$ supergravity multiplet, reduces to 4d $\mathcal{N}=2$ supergravity multiplet and two vectors.

6 Supersymmetric gauge theories

A gauge group is a compact reductive Lie group G such as $(SU(3) \times SU(2) \times U(1))/\mathbb{Z}_6$. Gauge couplings are one real parameter per simple factor in \mathfrak{g} .

6.1 Maximal super Yang-Mills

Data: gauge group.

Lorentzian 10d $\mathcal{N}=1$ SYM is anomalous unless the gauge group is abelian. Its dimensional reductions are anomaly-free and have one gauge field, 10-d scalars and \mathcal{N} (symplectic or Majorana, and Weyl or not) spinors. The Lagrangian's R-symmetry Spin(10-d) is contained in the automorphism group of the superalgebra (they coincide for $d \geq 5$).

dim.	\mathcal{N} spinors	autom. \supset R-sym.
10d	(1,0) MW	
9d	1 M	
8d	1 M	U(1) = Spin(2)
7d	1 s	USp(2) = Spin(3)
6d	(1,1) sW	$USp(2)^2 = Spin(4)$
5d	$2 \mathrm{s}$	USp(4) = Spin(5)
4d	4 M	$U(4) \supset Spin(6)$
3d	8 M	$Spin(8) \supset Spin(7)$
2d	(8,8) MW	$\operatorname{Spin}(8)^2 \supset \operatorname{Spin}(8)$
1d	16 M	$Spin(16) \supset Spin(9)$

6.2 5d $\mathcal{N} = 1$ SCFTs

built from 5-brane diagrams or UV fixed point of gauge theory. SU(2) SYM with $N_f \leq 7$ fundamental hypermultiplets has $\mathrm{SO}(2N_f) \times \mathrm{U}(1)_T \subset \mathrm{E}_{N_f+1}$ flavor symmetry enhancement. For $N_f = 0$, non-trivial " θ " in $\pi_4(\mathrm{SU}(2)) = \mathbb{Z}_2$ gives the \widetilde{E}_1 theory with $\mathrm{U}(1)_T$ symmetry only.

6.3 4d $\mathcal{N} = 4$

Data: gauge group, and for each simple fact a gauge coupling and theta angle: $\tau = \theta/(2\pi) + 4\pi i/g^2$.

6.4 4d $\mathcal{N} = 2$

Data: gauge group, representation for half-hypermultiplets.

There can be no continuous flavor symmetry enhancement.

The theory on $\mathbb{R}^4_{\epsilon_1,0}$ (Nekrasov–Shatashvili limit) \leftrightarrow quantum integrable system with Planck constant ϵ_1 .

Coulomb moduli \leftrightarrow action variables.

Supersymmetric vacua \leftrightarrow eigenstates.

Lift to $\mathbb{R}^4 \times S^1$ gives K-theoretic Nekrasov partition function. The 5d theory \leftrightarrow relativistic version of the integrable system.

(G, G') Argyres–Douglas theories (with G and G' among A_k , D_k , $E_{6,7,8}$) are engineered as IIB strings on three-fold singularity $f_G(x_1, x_2) + f_{G'}(x_3, x_4) = 0$ where $f_{A_k}(x, y) = x^2 + y^{k+1}$ etc. (see page 2).

6.5 4d $\mathcal{N} = 1$

Superpotential term $\int \mathrm{d}^2\theta\,W$ gives a potential for scalars and Yukawa-type interactions. W is holomorphic in chiral fields and in couplings seen as background fields. Example: the kinetic term $\mathrm{Im}\int\mathrm{d}^2\theta[\tau W_\alpha^2]$ of an abelian gauge field: W_α^2 is a chiral field.

Wess-Zumino model: chiral multiplet ϕ with $W = m\phi^2 + g\phi^3$.

Pure supersymmetric Yang–Mills (SYM) classically has $U(1)_R$ symmetry, broken by instantons to \mathbb{Z}_{2h} with $h = C_2(\text{adj})$. It confines, is mass-gapped, and has $C_2(A)$ vacua associated to breaking \mathbb{Z}_{2h} to \mathbb{Z}_2 by gaugino condensation $\langle \lambda \lambda \rangle$. Witten index $\text{Tr}(-1)^F = h$.

6.6 3d $\mathcal{N} = 4$

Gauge group G and finite-dimensional symplectic representation $\mathbb M$ of G.

6.7 3d $\mathcal{N} = 2$

Data: gauge group G, quantized trace on \mathfrak{g} for the Chern–Simons term, representation V of G for chiral multiplets, G-invariant superpotential (may break R-symmetry).

6.8 1d $\mathcal{N} = 4$

Data: gauge group G, representation V of G for chiral multiplets. Gauge couplings, FI parameters, superpotential W. Flavour Wilson line, twisted and real masses $v, m_1 + im_2, m_3 \in$ \mathfrak{g}_F that commute.

R-symmetry: SU(2), times U(1) if W has charge 2. Mixing with flavour symmetries not fixed by superconformal algebra.

6.9 1d $\mathcal{N} = 2$

Discrete data: gauge group G, chiral multiplets in a representation V of G, Wilson line in a unitary representation $M = M_0 \oplus$ M_1 of \mathfrak{g} , flavour symmetry group $G_F \subseteq U(V) \times U(M_0) \times U(M_1)$ commuting with G. Gauge anomaly cancellation: $M \otimes \det^{1/2} V$ must be a representation of G.

Continuous data: gauge couplings, FI parameters, flavor Wilson line and real mass $v, \sigma \in \mathfrak{g}_F$ that commute, \mathfrak{g} -equivariant holomorphic odd map $Q: V \to \text{End } M$ with $Q^2 = 0$ describing how supercharges act on M.

Special case: Fermi multiplets in representation V_f of G with G-equivariant holomorphic maps $E: V \to V_f$ and $J: V \to V_f^{\vee}$ obeying $J \cdot E = 0$ are equivalent to Wilson line in $M = \wedge V_f \otimes \det^{-1/2} V_f$ with $Q = E \wedge + J \perp$.

R-symmetry: U(1) if $Q: V \to \text{End } M$ has charge 1. Mixing with flavour symmetries not fixed by superconformal algebra.

NLSM Chiral multiplet: scalar ϕ in a Kähler target X and fermion in holomorphic bundle ϕ^*T_X . Wilson line depends on a complex of vector bundles \mathcal{F} . Fermi multiplet takes values in a holomorphic vector bundle \mathcal{E} with hermitian metric, equivalent to Wilson line with $\mathcal{F} = \det^{-1/2} \mathcal{E} \otimes \wedge \mathcal{E}$. Anomaly cancellation: $\sqrt{K_X} \otimes \wedge T_X \otimes \det^{-1/2} \mathcal{E} \otimes \wedge \mathcal{E} \otimes \mathcal{F}$ is a well-defined vector bundle on X.

7 Other theories

7.1 Two-dimensional conformal field theories

Virasoro algebra $[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}$ where $m \in \mathbb{Z}$. Adjoint $L_n^{\dagger} = L_{-n}$ and $c^{\dagger} = c$.

 $\mathcal{N}=1$ super-Virasoro algebra additionally $[L_m,G_r]=$ $(m/2 - r)G_{m+r}$ and $\{G_r, G_s\} = 2L_{r+s} + \frac{c}{3}(r^2 - 1/4)\delta_{r+s,0}$ where either $r \in \mathbb{Z}$ (Ramond algebra) or $r \in \mathbb{Z} + 1/2$ (Neveu-Schwarz algebra). Adjoint $G_r^{\dagger} = G_{-r}$.

 $\mathcal{N}=2$ super-Virasoro algebra $[L_m,J_n]=-nJ_{m+n},$ $[J_m, J_n] = \frac{c}{3} m \delta_{m+n,0}, [L_m, G_r^{\pm}] = (m/2 - r) G_{m+r}^{\pm},$ $[J_m, G_r^{\pm}] = \pm G_{m+r}^{\pm}, \{G_r^+, G_s^+\} = \{G_r^-, G_s^-\} = 0,$ $\{G_r^+, G_s^-\} = L_{r+s} + \frac{1}{2}(r-s)J_{r+s} + \frac{c}{6}(r^2 - 1/4)\delta_{r+s,0}.$ Adjoint $L_m^{\dagger} = L_{-m}$, $J_m^{\dagger} = J_{-m}$, $(G_r^{\pm})^{\dagger} = G_{-r}^{\mp}$, $c^{\dagger} = c$. The algebras with $r \in \mathbb{Z}$ (Ramond) or $r \in \mathbb{Z} + 1/2$ (Neveu–Schwarz) are isomorphic under spectral shift $\alpha_{\pm 1/2}$ where $\alpha_{\eta}(L_n) =$ $L_n + \eta J_n + \frac{c}{6}\eta^2 \delta_{n,0}, \ \alpha_{\eta}(J_n) = J_n + \frac{c}{3}\eta \delta_n, \ \alpha_{\eta}(G_r^{\pm}) = G_{r\pm\eta}^{\pm}$. Another automorphism is $G_r^+ \leftrightarrow G_r^-, J_m \mapsto -J_m - \frac{c}{3}\delta_{m,0}$. We get a $\mathbb{Z} \times \mathbb{Z}_2$ automorphism group.

SW(3/2,2) super-Virasoro algebra has L, G, W, U

bc system, $\beta\gamma$ system

Liouville CFT has $c = 1 + 6(b + 1/b)^2$ and primary operators with $h(\alpha) = \alpha(b+1/b-\alpha)$ for "momentum" $\alpha \in \frac{1}{2}(b+1/b)+i\mathbb{R}$.

Minimal model $\mathcal{M}_{p,q}$ for p > q coprime is a quotient of $b = i\sqrt{p/q}$ Liouville CFT. It has $c = 1 - \frac{6(p-q)^2}{pq}$ and primary operators with $h_{r,s} = \frac{(ps-qr)^2 - (p-q)^2}{4pq}$ for 0 < r < p and 0 < s < q; no degeneracy besides $h_{r,s} = h_{p-r,q-s}$. Example: Ising model $\mathcal{M}_{4,3}$, tricritical Ising model $\mathcal{M}_{5,4}$, Yang-Lee singularity $\mathcal{M}_{5,2}$.

Unitary minimal model $\mathcal{M}_{k+2,k+1}$ is coset $\frac{\hat{\mathfrak{su}}(2)_{k-1} \times \hat{\mathfrak{su}}(2)_1}{\hat{\mathfrak{su}}(2)_k}$

7.2 Chern-Simons

Chern–Simons (2m-1)-form $m \operatorname{Tr} \left(A \int_0^1 \mathrm{d}t (t dA + t^2 A^2)^{m-1} \right)$.

7.3 Supergravity and strings

String actions Polyakov action $L_P = \lambda^{mn} [(\partial_m X)(\partial_n X) [g_{mn}] + \frac{1}{\alpha'}\sqrt{-g}$. Using equations of motion get Nambu-Goto action $L_{\text{NG}} = \frac{1}{\alpha'} \sqrt{-\det[(\partial_m X)(\partial_n X)]}$ or Brink–di Veccia–Howe–Deser–Zumino action $L_{\text{BdVHDZ}} = \frac{1}{2\alpha'} \sqrt{-g} [g^{mn}(\partial_m X)(\partial_n X) - g^{mn}(\partial_m X)(\partial_n X)]$ (d-2)] with d=2 the world-sheet dimension

Pure supergravities in 4 < d < 11. Gravity is topological in d=3. The maximum number of supercharges Q=32 forbids d > 11. A priori, all Q = 4k are possible. Focus on 32, 16, 8, 4.

d	Q = 32	16	8	4
11	√			
	IIB IIA	I		
10	(2,0) (1,1)	(1,0)		
9	\checkmark	\checkmark		
8	\checkmark	\checkmark		
7	\checkmark	\checkmark		
6	(2, 2)	(2,0)(1,1)	(1,0)	
5	\checkmark	\checkmark	\checkmark	
4	N = 8	N = 4	N = 2	N = 1

M-theory has as its low-energy limit 11d supergravity, which has two $\frac{1}{2}$ -BPS membrane solutions (with 16 Killing spinors): M2-brane $ds^2 = \Lambda^4 dx^2 + \frac{dy^2}{\Lambda^2}$ with $\Lambda = (1 + \frac{c_2 N_2 l^6}{|y|^6})^{-1/6}$, and M5-brane $ds^2 = \Lambda dx^2 + dy^2 / \Lambda^2$ with $\Lambda = (1 + \frac{c_5 N_5 l^3}{|y|^3})^{-1/3}$, where $x \in \mathbb{R}^{p,1}$ and $y \in \mathbb{R}^{10-p}$. In the near horizon $y \to 0$ these become $AdS_4 \times S^7$ and $AdS_7 \times S^4$ with 32 Killing spinors.

Branes IIA strings: D0, F1 (strings), D2, D4, O4 $^{\pm}$, $\widetilde{O4}^{\dagger}$ NS5, D6, D8 (wall), O8 (wall), etc.. IIB strings: D(-1), F1 (strings), D1, D3, (p,q) 5-branes (includes D5 and NS5), O5 $^{\pm}$, $\widetilde{O5}^+$, D7, O7 $^{\pm}$, ON⁰, etc.. M-theory: M2, M5, OM5, M9.

7.4 Integrable models

Relativistic quantum Toda chain. $H = \sum_{n=1}^{N} (\cos(2\eta \hat{p}_n) +$ $g^2\cos(\eta\hat{p}_n+\eta\hat{p}_{n+1})e^{x_{n+1}-x_n}$). Its non-relativistic limit is $\eta\to 0$ imaginary with $g/(i\eta\sqrt{2}) = c$ fixed.

7.5 Localization results 3d $\mathcal{N}=2$: $Z=\int_{\mathfrak{t}}\mathrm{d}u\, \frac{\prod_{\alpha\,\mathrm{root}}(2\,\mathrm{sinh}(\alpha u/2))^2}{\prod_{w\in\mathcal{R}}\cosh(wu/2)}\mathrm{e}^{\mathrm{i}k\,\mathrm{Tr}\,u^2/(4\pi)}.$

Manifolds

Riemannian geometry

Types of manifolds: G-structures, holonomy

Structure group. A G-structure on a manifold X (with $n = \dim_{\mathbb{R}} X$) is a G-subbundle of the $GL(n, \mathbb{R})$ -principal bundle GL(TX) of tangent frames, namely a global section of GL(TX)/G.

A manifold is oriented if it has a $GL^+(n,\mathbb{R}) = \{\det > 0\}$ structure. Similar definitions for Riemannian manifolds etc.:

G-structure	Manifold type	Other characterization [‡]
	v -	Symmetric metric $g > 0$ $\mathbb{C} \subset TX$ (i.e., $J^2 = -1$) Non-degenerate $\omega \in \Omega^2 X$ Two compatible $(g, J, \omega)^\S$
$U^*(n/2)$ USp(n/2)US	(2) Almost quatern Almost hypercomp Sp(2)Almost quatern Almost hyperHerm	$\operatorname{lex}^{\P} J_1, J_2, J_3 \subset TX$ $\operatorname{lion-Hermitian}(g, \mathbb{H}, \omega_{1,2,3})$

[‡] All sections are global. For instance an almost complex structure is a global section J of End TX with $J^2 = -1$.

§ Any two of (g,J,ω) fix the third by $\omega_{ik}=J_i{}^jg_{jk}$ if they are compatible: $J_i{}^jJ_l{}^k\omega_{jk}=\omega_{il}$ or $J_i{}^jJ_l{}^kg_{jk}=g_{il}$ namely ω or g is J-invariant, or $\omega_{ij}g^{jk}\omega_{kl}=-g_{il}$. In a basis $e^\beta,\bar{e}^{\bar{\gamma}}$ (= $\mathrm{d}z^\beta,\mathrm{d}\bar{z}^{\bar{\gamma}}$ for Hermitian manifolds) of (1,0) and (0,1) forms, $\omega=\frac{i}{2}h_{\beta\bar{\gamma}}\,e^\beta\wedge\bar{e}^{\bar{\gamma}}$ and $g=\frac{1}{2}h_{\beta\bar{\gamma}}(e^\beta\otimes\bar{e}^{\bar{\gamma}}+\bar{e}^{\bar{\gamma}}\otimes e^\beta)$.

On an almost complex manifold, (p,q)-forms are wedge products $\Omega^{(p,q)}X = \bigwedge^p (\Omega^{(1,0)}X) \wedge \bigwedge^q (\Omega^{(0,1)}X)$ where J acts by $\pm i$ on $\Omega^1X = \Omega^{(1,0)}X \oplus \Omega^{(0,1)}X$. The exterior derivative is $d = d^{2,-1} + d^{1,0} + d^{0,1} + d^{-1,2}$ with $d^{i,j} : \Omega^{(p,q)} \to \Omega^{(p+i,q+j)}$. Dolbeault differential operators are $\partial = d^{1,0}$ and $\overline{\partial} = d^{0,1}$.

An almost symplectic 2m-manifold admits the volume form $\omega^m/m!$. On an almost Hermitian manifold X it is equal to the Riemannian volume form and belongs to $\Omega^{(m,m)}X$.

¶ While almost quaternionic manifolds have a 3d subbundle of End TX locally spanned by J_1, J_2, J_3 with $J_i^2 = J_1 J_2 J_3 = -1$, almost hypercomplex manifolds require J_1, J_2, J_3 to be global.

Integrability. A G-structure is k-integrable (resp. integrable) near $x \in X$ if it can be trivialized to order k (resp. all orders) in a neighborhood of x. We automatically have 0-integrability.

Any Riemannian structure is 1-integrable thanks to Riemann normal coordinates. Integrability is equivalent to the Riemann curvature vanishing.

An almost complex structure is complex if (equivalently) it is integrable; it is 1-integrable; it has a vanishing Nijenhuis tensor $N_J: \bigwedge^2 X \to TX$ defined on vector fields u, v by the Lie brackets $N_J(u, v) = -J^2[u, v] + J[Ju, v] + J[u, Jv] - [Ju, Jv]$; the Lie bracket of (1,0) vector fields is a (1,0) vector field; $d = \partial + \overline{\partial}$ namely $d^{2,-1} = 0 = d^{-1,2}$; or $\overline{\partial}^2 = 0$.

A symplectic structure is an integrable almost symplectic structure. Equivalently, it is 1-integrable: $d\omega=0$. Altogether,

(Almost) quaternionic/quaternionHermitian/quaternionKähler and (almost) hypercomplex/hyperHermitian/hyperKähler manifolds are defined by replacing J by a 3d subbundle of End TX or by global sections J_1, J_2, J_3 as in the table of G-structures. ‡ Since $GL(n, \mathbb{R})/O(n)$ is contractible, any manifold admits (non-canonically) an O(n)-structure, namely a smooth choice

of which frames are orthonormal, i.e., a Riemannian metric g. Similarly $\mathrm{GL}(n/2,\mathbb{C})/\mathrm{U}(n/2)$ is contractible so almost complex manifolds admit almost Hermitian structures.

§ An almost Hermitian manifold is Kähler if (equivalently) its U(n/2)-structure is 1-integrable; $d\omega = 0$ and $N_J = 0$; $\nabla \omega = 0$; $\nabla J = 0$; or the holonomy group is in U(n/2). Locally, $\omega = i\partial \bar{\partial} \rho$ for some real-valued Kähler potentials ρ , and ω is invariant under Kähler transformations $\rho \to \rho + f(z) + \bar{f}(\bar{z})$.

The holonomy group at $x \in X$ of a connection ∇ on a bundle $E \to X$ is the group of symmetries of E_x arising from parallel transport along closed curves based at x.

For Riemannian manifolds X the holonomy group is defined as that of the Levi-Civita connection on the tangent bundle. It is a subgroup of $\mathcal{O}(n)$ (or $\mathcal{SO}(n)$ for X orientable) since parallel transport preserves orthogonality $(\nabla g = 0)$.

If the holonomy group acts reducibly on the tangent space then X is locally (globally if X is geodesically complete) a product. Simply connected X that are locally neither products nor symmetric spaces (we give a list later) can have the following special holonomy subgroups of SO(n) (Berger's theorem)

Holonomy	Manifold type	$\dim_{\mathbb{R}}$
$\mathrm{U}(m)$ $\mathrm{SU}(m)$	Kähler Calabi–Yau CY _m	2m $2m$
$\frac{\left(\mathrm{USp}(2k)\times\mathrm{USp}(2)\right)/\mathbb{Z}_2}{\left(\mathrm{USp}(2k)\right)}$	quaternionic Kähler hyperKähler	$\frac{4k}{4k}$
$\frac{\operatorname{Spin}(7)}{\operatorname{G}_2}$	Spin(7) manifold G_2 manifold	8 7

Note that $U(m) \supset SU(m) \supset USp(m)$ implies that all hyperKähler manifolds are Calabi–Yau and thus Kähler. In general, quaternionic-Kähler manifolds are not Kähler.

A Calabi–Yau manifold is a Kähler manifold such that (equivalently) some Kähler metric has global holonomy group in $\mathrm{SU}(m)$; the structure group can be reduced to $\mathrm{SU}(m)$; or the holomorphic canonical bundle is trivial i.e., there exists a nowhere vanishing holomorphic top-form. A weaker set of equivalent conditions

todo: here

For simply connected manifolds, the conditions above are equivalent to the following (always equivalent) conditions on X: some Kähler metric has local holonomy group in SU(m); some Kähler metric has vanishing Ricci curvature; the first real Chern class vanishes; a positive power of the holomorphic canonical bundle is trivial; X has a finite cover with trivial holomorphic canonical bundle; X has a finite cover equal to the product of a torus and a simply connected manifold with trivial holomorphic canonical bundle.

Spin structures todo: see http://mathoverflow.net/questions/220502/

Symmetric spaces todo: list missing

K3 surfaces are the only CY_2 : they have holonomy SU(2).

Yau's theorem. Fix a complex structure on a compact complex manifold X of $\dim_{\mathbb{C}} X > 1$ and vanishing real first Chern class. Any real class $H^{1,1}(X,\mathbb{C})$ of positive norm contains a unique Kähler form whose metric is Ricci flat.

(from Wikipedia on Calabi conjecture: "The Calabi conjecture states that a compact Khler manifold has a unique Khler

metric in the same class whose Ricci form is any given 2-form representing the first Chern class.")

Dualities

9.1 Field theory dualities

2d $\mathcal{N} = (0, 2)$ Gadde-Gukov-Putrov triality (IR).

2
d $\mathcal{N}=(2,2)$ mirror symmetry of Calabi–Yau sigma models (exact).

2d $\mathcal{N} = (2, 2)$ Hori-Tong (SU), Hori (Sp. SO groups), plus adjoint (ADE-type and $(2,2)^*$ -like) dualities (IR).

2d $\mathcal{N} = (2, 2)$ Hori-Vafa/Hori-Kapustin duality of gauged linear sigma models and Landau-Ginzburg models (IR).

3d Chern-Simons level-rank duality.

3d $\mathcal{N}=2$ Aharony, Giveon-Kutasov, Aharony-Fleischer dualities (IR).

3d $\mathcal{N}=2$ and $\mathcal{N}=4$ mirror symmetry exchanging Coulomb and Higgs branches (IR).

 $4d \mathcal{N} = 1$ Seiberg, Kutasov-Schwimmer, Brodie, Intriligator-Pouliot, Argyres-Intriligator-Leigh-Strassler, Klebanov cascade, Intriligator–Leigh–Strassler, duality (IR).

S-duality of 4d $\mathcal{N}=2$ gauge theories (exact).

S-duality of 4d $\mathcal{N} = 4$ SYM (exact).

9.2 4d $\mathcal{N} = 1$ dualities

Seiberg: $SU(N_c)$, $N_f \square$, $N_f \overline{\square} \Leftrightarrow SU(N_f - N_c)$, $N_f \square$, $N_f \overline{\square}$, N_f^2 free, with W = MQQ.

Seiberg: $SO(N_c)$, $N_f \square \Leftrightarrow SO(N_f - N_c + 4)$, $N_f \square$, #? free, W = ?

Seiberg: USp $(2N_c)$, $2N_f\square \Leftrightarrow USp(2N_f-2N_c-4)$, $2N_f\square$, #? free, W = ?

These three cases are self-dual when $C(R_{\text{chirals}}) = 2C(\text{adj})$, namely $N_f = 2N_c$, $N_f = 2(N_c - 2)$ and $N_f = 2(N_c + 1)$ respectively; adding an adjoint gives $\mathcal{N} = 2$ SCFTs.

String theory dualities

In this table "type IIA" etc. refer to string theories not supergravities

F-theory on K3	$\Leftrightarrow E_8 \times E_8$ heterotic on T^2
M-theory on K3	\Leftrightarrow heterotic or type I on T^3
Type IIA on K3	\Leftrightarrow heterotic or type I on T^4
M-theory on G ₂ -manifolds ¹	\Leftrightarrow heterotic or type I on CY_3
M-theory on $K3^2$	\Leftrightarrow type IIA on T^3/\mathbb{Z}_2

10 Misc

Physics of gauge theories

Phases characterized by potential V(R) (up to a constant) between quarks at distance R: Coulomb 1/R, free electric $1/(R\log(R\Lambda))$, free magnetic $\log(R\Lambda)/R$, Higgs (constant), confining σR .

10.2 Homology and cohomology

 $H_k(\mathbb{CP}^n, M) = M$ for 0 < k < 2n even, else 0.

10.3 Homotopy groups π_n

Basic properties. $\pi_0(X,x)$ is the set of connected components. $\pi_1(X,x)$ is the fundamental group. For k > 1, $\pi_k(X,x)$ only depends on the connected component of x. $\alpha_1,\alpha_2,\alpha_3\in H^2(X,\mathbb{R})$ such that there is no two-cycle Σ such $\pi_k(X \times Y, (x, y)) = \pi_k(X, x) \times \pi_k(Y, y).$

Quotient. If G acts on connected simply-connected X then $\pi_1(X/G) = \pi_0(G)$ (= G for G discrete).

Long exact sequence for a fiber bundle $F \hookrightarrow E \twoheadrightarrow B$: for base-points $b_0 \in B$ and $e_0 = f_0 \in F = p^{-1}(b_0) \subset E$, $\cdots \to \pi_{i+1}(B) \to \pi_i(F) \to \pi_i(E) \to \pi_i(B) \to \cdots \to \pi_0(E)$ is exact, namely each image equals the next kernel (inverse image of the constant map).

Homotopy groups of spheres are finite except $\pi_n(S^n) = \mathbb{Z}$ and $\pi_{4n-1}(S^{2n}) = \mathbb{Z} \times \text{finite.}$ For $k < n, \pi_k(S^n) = 0$, and $\pi_{n+k}(S^n)$ is independent of n for $n \ge k+2$. All $\pi_k(S^0) = 0$, $\pi_k(S^1) = 0 \text{ for } k \neq 1, \text{ and } \pi_k(S^3) = \pi_k(S^2) \text{ for } k \neq 2.$

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8
S^0	0	0	0	0	0	0	0	0
S^1	\mathbb{Z}	0	0	0	0	0	0	0
S^2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2
S^3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2
S^4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$	\mathbb{Z}_2^2
S^5	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}^-

 $\pi_1(\mathbb{RP}^n) = \mathbb{Z}_2 \text{ for } n \geq 2 \text{ and } \pi_k(\mathbb{RP}^n) = \pi_k(S^n) \text{ for } k \geq 2.$ $\pi_1(\mathbb{CP}^n) = 0, \, \pi_2(\mathbb{CP}^n) = \mathbb{Z}, \, \pi_k(\mathbb{CP}^n) = \pi_k(S^{2n+1}) \text{ for } k \geq 3.$

Topological groups have abelian $\pi_1(G)$. Proofs. 1. The multiplication in G (point-wise) and concatenation of loops are two compatible group structures, hence (by Eckmann-Hilton theorem) coincide and are commutative. 2. Explicitly, for $\alpha_1, \alpha_2 \in \pi_1(G)$ loops, $(t_1, t_2) \mapsto \alpha_1(t_1)\alpha_2(t_2) \in G$ is a homotopy between $\alpha_1 \star \alpha_2$ (concatenation) along bottom and right edges, $\alpha_1 \cdot \alpha_2$ (point-wise multiplication) along the diagonal, and $\alpha_2 \star \alpha_1$ along left and top edges.

10.4 Kähler 4-manifolds

K3 surfaces are (the only besides T^4) compact complex surfaces of trivial canonical bundle. They have $h^{1,0} = 0$ (in contrast to T^4 which has todo: value). Their first Chern class $c_1 \in H^2(X,\mathbb{Z})$ thus vanishes. By Yau's theorem there exists a Ricci flat metric, whose holonomy is then SU(2) = USp(2) by Berger's classification. K3 surfaces are thus Calabi-Yau (CY₂) and hyperKähler (hK₄). Their moduli space is connected and they are all diffeomorphic.

Examples of K3 surfaces. Quartic hypersurface in \mathbb{P}^4 . Kummer surface namely resolution of T^4/\mathbb{Z}_2 .

Non-simply connected Ricci-flat Kähler manifolds may fail to be CY_n when the restricted holonomy group is SU(n) but the global holonomy group is disconnected. For example an Enriques surface $K3/\mathbb{Z}_2$ has a non-trivial canonical bundle.

A gravitational instanton is a metric with (anti-)self-dual curvature. A simply-connected Riemannian 4-manifold is hyperKähler if and only if it is a gravitational instanton. Compact hK_4 are K3 and T^4 . Non-compact hK_4 are asymptotically locally Euclidean (ALE) spaces asymptotic to \mathbb{H}/Γ for a finite subgroup $\Gamma < \text{USp}(2)$. Many such ALE spaces are local resolutions of orbifold singularities of K3 surfaces.

ALE hyperKähler 4-manifolds X are diffeomorphic to the minimal resolution of \mathbb{H}/Γ for some finite $\Gamma \subset SU(2)$. The metric is fixed (up to isometry) by cohomology classes that $\Sigma \cdot \Sigma = -2$ and all $\alpha_i(\Sigma) = 0$.

todo: Taub-NUT spaces, multi-Taub-NUT spaces, Eguchi-Hanson spaces, Gibbons-Hawking multicenter spaces. Write metric. todo: Non-explicitly: Atiyah-Hitchin space (moduli space of two SU(2) 't Hooft-Polyakov monopoles in 4d).

todo: The only compact CY_2 are T^4 and K3 surfaces.

todo: The only compact hypercomplex 4-manifolds are T^4 , K3 surfaces, and the Hopf surface $((\mathbb{H} \setminus 0)/(q^{\mathbb{Z}})$ for a quaternion |q| > 1; it is diffeomorphic to $S^3 \times S^1$).

10.5 Some algebraic constructions

Reduction of a Lie (super)algebra \mathfrak{g} . If $\mathfrak{g} = V_1 \oplus V_2$ with $[V_1, V_2] \subseteq V_2$ then the bracket of \mathfrak{g} restricted and projected to V_1 defines a Lie (super)algebra.

S-expansion of a Lie (super)algebra \mathfrak{g} by an abelian multiplicative semigroup S: Lie (super)algebra $\mathfrak{g} \times S$ with bracket $[(x,\alpha),(y,\beta)]=([x,y],\alpha\beta)$. If $S=S_1\cup S_2$ with $S_1S_2\subseteq S_2$ (in particular if there is a zero element $0_S=0_S\alpha=\alpha 0_S$) then by reduction we get a Lie (super)algebra structure on $\mathfrak{g} \times S_1$.

A color (super)algebra is a graded vector space with a bracket such that (for X, Y, Z with definite grading) $\operatorname{gr}[X, Y] = \operatorname{gr} X + \operatorname{gr} Y$ and $[X, Y] = -(-1)^{(\operatorname{gr} X, \operatorname{gr} Y)}[Y, X]$ and $[X, [Y, Z]](-1)^{(\operatorname{gr} Z, \operatorname{gr} X)} + [Y, [Z, X]](-1)^{(\operatorname{gr} X, \operatorname{gr} Y)} + [Z, [X, Y]](-1)^{(\operatorname{gr} Y, \operatorname{gr} Z)} = 0$, where (\bullet, \bullet) is some bilinear mapping into $\mathbb{C}/(2\mathbb{Z})$.

10.6 Other

A fuzzy space is d Hermitian matrices X^a ("coordinates") acting on some Hilbert space H. The dispersion of $\psi \in H$ is $\delta_{\psi} = \sum_{a} (\langle \psi | (X^a)^2 | \psi \rangle - \langle \psi | X^a | \psi \rangle^2)$.

^[1] Tools for supersymmetry by Antoine Van Proeyen

^[2] Various Wikipedia articles.

^[3] Various ncatlab.org articles.