COL215 DIGITAL LOGIC AND SYSTEM DESIGN

Combinational Logic Minimization,

Combinational Modules

01 August 2017

Lecture Outline

- SoP, PoS forms
- Nand, Nor forms
- Minimization using Karnaugh maps
- Some combinational logic modules
- Lab exercise 2

Canonical SoP form

These are "min terms"

a	b	С	d	У
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
a 0 0 0 0 0 0 1 1 1 1 1 1	1	C 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1	0	y 0 1 1 0 1 1 0 0 1 1 1 1
1	1	1	1	1

Canonical POS form


```
y' = a'b'c'd' + a'b c'd' + a b'c'd' + a b'c'd

y = (a + b + c + d) \cdot (a + b' + c + d)

\cdot (a' + b + c + d) \cdot (a' + b + c + d')
```

These are "max terms".

a	b	С	d	У
0	0	0	0	0
0	0	0	1	1
0 0 0	0	1	0	1
0	0	1	1	1
0	1	0	0	0 1 1 1 0
0	0 1 1 1 1 1 1	0 0 1 1 0 0 1 1	1	1 1 1
0	1	1	0	1
0	1	1	1	1
1	\cap	0	0	0
1	0	0	1	0
1 1 1 1 1	0	0 1 1 0 0	1	1
1	0 0 1	1	1 0 1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0 1 1 1 1 1
1	1	1	1	1

SoP/PoS to Nand-Nand / Nor-Nor

SoP/PoS to Nand-Nand / Nor-Nor

а	b	С	d	У
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	Λ	1	1	1
0	1	0	1	0
0	1 1 1 1	0	1	1
0	1	1 1 0	0	1
0	1	1	1	1
0	0	0	0 1 0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

а	b	С	d	У
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	1 0	0	0
0	1	U	1	1
0 0 1	1 1 0	1 1 0	1 0 1 0	
0	1	1	1	1 1
1	0	0	0	0
1	0	0		0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

а	b	С	d	У
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	1 0	0	0
0	1 1 1	()	1	1
0	1	1 1	1 0 1	1 1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Multiplexer / Selector

y = e.(
$$(s_1'. s_0'. x_0) + (s_1'. s_0. x_1)$$

+ $(s_1. s_0'. x_2) + (s_1. s_0. x_3)$)

4:1 mux

е	S_1	s_0	У
0	_	-	0
1	0	0	x_0
1	0	1	x ₁
1	1	0	X ₂
1	1	1	X ₃

Multiplexer / Selector

y = e.(
$$(s_1'. s_0'. x_0) + (s_1'. s_0. x_1)$$

+ $(s_1. s_0'. x_2) + (s_1. s_0. x_3)$)

4:1 mux

е	S_1	s_0	У
0	-	-	0
1	0	0	\mathbf{x}_{0}
1	0	1	x ₁
1	1	0	X ₂
1	1	1	X ₃

De-multiplexer

 $y_3 = e . s_1 . s_0 . x$

1:4 de-mux

е	S_1	s_0	y ₃	y ₂	y ₁	y ₀
0	-		0	0	0	0
1	0	0	0	0	0	X
1	0	1	0	0	X	0
1	1	0	0	X	0	0
1	1	1	X	0	0	0

Decoder

$$y_0 = s_1'. s_0'$$
 $y_1 = s_1'. s_0$
 $y_2 = s_1. s_0'$
 $y_3 = s_1. s_0$

2:4 decoder

$s_1 s_0$	y ₃	y ₂	y ₁	y ₀
0 0	0	0	0	1
0 1	0	0	1	0
1 0	0	1	0	0
1 1	1	0	0	0

Decoder

$$y_0 = s_1'. s_0'$$
 $y_1 = s_1'. s_0$
 $y_2 = s_1. s_0'$
 $y_3 = s_1. s_0$

2:4 decoder

$s_1 s_0$	y ₃	y ₂	y ₁	y ₀
0 0	0	0	0	1
0 1	0	0	1	0
1 0	0	1	0	0
1 1	1	0	0	0

Encoder

4 input encoder

X ₃	X ₂	X ₁	x_0	S_1	s_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

$$s_0 = (x_3' . x_2' . x_1 . x_0') + (x_3 . x_2' . x_1' . x_0')$$

 $s_1 = (x_3' . x_2 . x_1' . x_0') + (x_3 . x_2' . x_1' . x_0')$

Priority encoder

$$e = x_3 + x_2 + x_1 + x_0$$

 $s_0 = (x_3' \cdot x_2' \cdot x_1) + (x_3)$
 $s_1 = (x_3' \cdot x_2) + (x_3)$

4 input priority encoder

X ₃	X ₂	X ₁	\mathbf{x}_0	е	S ₁	s_0
0	0	0	0	0		-
0	0	0	1	1	0	0
0	0	1	-	1	0	1
0	1		-	1	1	0
1	-	-	-	1	1	1

Lab exercise 2: 3-Port Switch

Lab exercise 2: 3-Port Switch

