Department of Mechanical Engineering Faculty of Engineering and Technology, Jadavpur University

Curriculum and Syllabus for Bachelor of Engineering in Mechanical Engineering (BME) Programme

Programme Educational Objectives (PEOs):

Mechanical Engineering Graduates will be able to

PEO1: model, analyze and design mechanical processes and systems;

PEO2: take active role in the management of mechanical and allied systems;

PEO3: effectively participate in core and inter-disciplinary higher studies;

PEO4: work effectively as a leader or as a member of team in project execution;

PEO5: engage in ethical practice and lifelong learning and adapt to evolving professional challenges.

Programme Outcomes (POs):

Engineering Graduates will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Specific Outcomes (PSOs):

Mechanical Engineering Graduates will be able to

PSO1: Hands on Training: work on, experiment with, control and manage machines, devices and mechanical systems.

PSO2: Real life problem solving: apply domain knowledge, mechanical engineering skill and allied soft skills towards solving real life industrial and research problems through curricular and co-curricular activities.

PSO3: Social outreach: identify and provide acceptable technological solutions to community specific problems through curricular, co-curricular and extracurricular activities.

Department of Mechanical Engineering

Faculty of Engineering and Technology, Jadavpur University

Curriculum for Bachelor of Engineering in Mechanical Engineering (BME): UG Engineering Programme (4 Year)

1st Year 1st Semester

Course Code	Course name	Category	Туре	Contact L- T-P	Credit	Marks
ME(M2)/BS/B/MATH/T/111	Mathematics – I	BS	Basic	3-0-0	3	100
ME(M2)/BS/B/Ph/T/112	Physics	BS	Basic	3-0-0	3	100
ME(M2)/ES/B/ET/T/113	Electronics	ES	Basic	3-0-0	3	100
ME(M2)/ES/B/EE/T/114	Basic Electrical Engineering	ES	Basic	3-0-0	3	100
ME(M2)/ES/B/T/115	Engineering Mechanics: Statics	ES	Basic	3-0-0	3	100
ME(M2)/HS/B/HUM/T/116	Humanities and Sociology	HS	Basic	3-0-0	3	100
ME(M2)/ES/B/S/111	Engineering Drawing (Drawing board mode)	ES	Basic	0-0-3	1.5	100
ME(M2)/ES/B/S/112	Workshop Practice – I	ES	Basic	0-0-3	1.5	100
	Total			18-0-6	21	800

1st Year 2nd Semester

Course code	Course name	Category	Туре	Contact L- T-P	Credit	Marks
ME(M2)/BS/B/MATH/T/121	Mathematics – II	BS	Basic	3-0-0	3	100
ME(M2)/PC/B/EE /T/122	Electrical Machines	BS	Basic	3-0-0	3	100
ME(M2)/PC/B/T/123	Strength of Materials	PC	Basic	3-0-0	3	100
ME(M2)/ES/B/T/124	Fluid Mechanics – I	ES	Basic	3-0-0	3	100
ME(M2)/ES/B/T/125	Thermodynamics	ES	Basic	3-0-0	3	100
ME(M2)/ES/B/S/121	Descriptive Geometry and Surface Development	ES	Basic	0-0-3	1.5	100
ME(M2)/ES/B/S/122	Computer Programming	ES	Basic	0-0-3	1.5	100
ME(M2)/ES/B/S/123	Workshop Practice – II	ES	Basic	0-0-3	1.5	100

ME(M2)/ES/B/EE&ET/S/124	Electrical Technology Lab	ES	Basic	0-0-3	1.5	100
MC/TS/P101	Technical Communicative English & Soft Skill	MC	Basic	0-0-3	0	0
Total				15-0-12	21	900

1st Year 2nd Semester

Course code	Course name	Category	Туре	Contact L-T-P	Credit	Marks
ME(M2)/BS/B/MATH/T/211	Mathematics – III	BS	Basic	3-0-0	3	100
ME(M2)/PC/B/T/212	Engineering Dynamics	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/213	Fluid Mechanics – II	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/214	Heat Transfer	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/215	Material Science and Engineering	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/S/211	Computer Aided Drafting	PC	Basic	0-0-3	1.5	100
ME(M2)/PC/B/S/212	Machine Drawing – I (Drawing board mode)	PC	Basic	0-0-3	1.5	100
ME(M2)/PC/B/S/213	Electrical Technology Lab.(II)	PC	Basic	0-0-3	1.5	100
ME(M2)/BS/B/S/214	Numerical Analysis	BS	Basic	0-0-3	1.5	100
Total				15-0-12	21	900

2nd Year 2nd Semester

Course code	Course name	Category	Туре	Contact L-T-P	Credit	Marks
ME(M2)/BS/B/MATH/T/221	Mathematics – IV	BS	Basic	3-0-0	3	100
ME(M2)/PC/B/T/222	Fluid Machinery – I	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/223	Advanced Engineering Mechanics	PC	Basic	3-0-0	3	100

ME(M2)/PC/B/T/224	Kinematic Analysis and Synthesis	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/225	Design of Machine Elements – I	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/226	Manufacturing Processes	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/S/221	Machine Drawing – II (Computer Terminal Mode)	PC	Basic	0-0-3	1.5	100
ME(M2)/PC/B/S/222	Fluid Mechanics Lab	ES	Basic	0-0-3	1.5	100
ME(M2)/PC/B/S/223	Heat Power Lab. – I (Thermo. & Heat Transfer)	PC	Basic	0-0-2	1	100
ME(M2)/PC/B/S/224	Applied Mechanics Lab. – I	PC	Basic	0-0-2	1	100
ME(M2)/PC/B/S/225	Workshop Practice – III	PC	Basic	0-0-3	1.5	100
Total				18-0-13	24.5	1100

3rd Year 1st Semester

Course code	Course name	Category	Туре	Contact L-T-P	Credit	Marks
ME(M2)/PC/B/T/311	Fluid Machinery – II	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/312	Dynamics of Machines	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/313	Internal Combustion Engine	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/314	Design of Machine Elements – II	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/315	Machining Technology and Metrology	PC	Basic	3-0-0	3	100
ME(M2)/PE/B/T/316	Basic Professional Elective – I	PE	Basic	3-0-0	3	100
ME(M2)/PC/B/S/311	Workshop Practice – IVA	PC	Basic	0-0-3	1.5	100
ME(M2)/PC/B/S/312	Metrology and Metallography Lab. A	PC	Basic	0-0-2	1	100
ME(M2)/PC/B/S/313	Applied Mechanics Lab. – II	PC	Basic	0-0-2	1	100
ME(M2)/PR/B/S/314	Minor Project	PS	Basic	0-0-3	1.5	100
	Total			18-0-10	23	900

	Basic Professional Elective – I ME(M2)/PE/B/T/316					
A.	Introduction To Finite Element Method					
B.	Optimization Techniques For Engineering Design					
C.	Vehicle Dynamics And Automotive Suspension System					
D.	Numerical Heat Transfer					
E.	Solar Energy					
F.	Elements Of Computational Fluid Dynamics					
G.	Mechanical Measurement And Industrial Statistics					
H.	Mathematical Method for Engineers					
I.	Introduction to Composite Structures					

3^{rd} Year 2^{nd} Semester

Course code	Course name	Category	Туре	Contact L-T-P	Credit	Marks
ME(M2)/PC/B/T/321	Energy Conversion System	PC	Basic	3-0-0	3	100
ME(M2)/H/B/T/322	Industrial Management	Н	Hons	3-0-0	3	100
ME(M2)/PC/B/T/323	Design of Machine Elements – III	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/324	Electrohydraulic Control Systems	PC	Basic	3-0-0	3	100
ME(M2)/PE/B/T/325	Basic Professional Elective – II	PE	Basic	3-0-0	3	100
ME(M2)/PC/B/TS/326	Measurement & Instrumentation	PC	Basic	2-0-2	3	100
ME(M2)/PC/B/S/321	Workshop Practice – IVB	PC	Basic	0-0-3	1.5	100
ME(M2)/PC/B/S/322	Metrology and Metallography Lab. B	PC	Basic	0-0-2	1	100

ME(M2)/PC/B/S/323	Machine Design Sessional	PC	Basic	0-0-3	1.5	100
ME(M2)/PC/B/S/324	Fluid Machinery Lab.	PC	Basic	0-0-3	1.5	100
Total				17-0-13	23.5	1000

	Basic Professional Elective – II ME(M2)/PE/B/T/325						
A.	Mechanical Vibration Analysis						
B.	Dynamics And Control Of Electromechanical Systems						
C.	Principles Of Engineering Tribology						
D.	Extended Surface Heat Transfer						
E.	Energy Conservation And Management						
F.	Combustion Engineering						
G.	Aerodynamics						
H.	Advanced Production Processes						
I.	Quantity Production Methods						
J.	Laser Machining Process						

4th Year 1st Semester

Course code	Course name	Category	Туре	Contact L- T-P	Credit	Marks
ME(M2)/PC/B/T/411	Design of Machine Elements – IV	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/412	Refrigeration and Air Conditioning	PC	Basic	3-0-0	3	100
ME(M2)/PC/B/T/413	Metal Cutting and Machine Tools	PC	Basic	3-0-0	3	100

	Total			21-0-11	26.5	1000
ME(M2)/PR/B/S/414	Project (Major)	PS	Basic	0-0-3	1.5	100
ME(M2)/PR/B/S/413	Colloquium	PS	Basic	0-0-3	1.5	100
ME(M2)/PC/B/S/412	Heat Power Lab. – II (Devices)	PC	Basic	0-0-2	1	100
ME(M2)/PS/B/S/411	Workshop Practice VA	PS	Basic	0-0-3	1.5	100
ME(M2)/PE/H/T/416	Hons Professional Elective – III NOT specialization specific	PE	Hons	4-0-0	4	100
ME(M2)/PE/H/T/415	Hons Professional Elective – II	PE	Hons	4-0-0	4	100
ME(M2)/PE/H/T/414	Hons Professional Elective – I	PE	Hons	4-0-0	4	100

	Hons Professional Elective – I ME(M2)/PE/H/T/414
A.	Finite Element Method For Nonstructural Applications
B.	Theory Of Pressure Vessels
C.	Plastics, Polymers, Composites And Ceramics Materials
D.	Advanced Heat Transfer
E.	Steam Turbine
F.	Advanced Automotive Engines
G.	Introduction To Turbulent Fluid Flow
H.	Theory Of Metal Forming
I.	Production Systems And Controls
J.	Design of Thermal systems
K.	Gas Turbines
L.	Thermal Turbo Machines

	Hons Professional Elective – II ME(M2)/PE/H/T/415
A.	Elements Of Fracture Mechanics
В.	Design Methodology For Fracture, Fatigue And Creep
C.	Dynamics Of Thermal Systems
D.	Steam Generators
E.	Bio-Heat Transfer
F.	Hydro, Wind And Wave Power
G.	Total Quality Management And Six Sigma

	Hons Professional Elective – III ME(M2)/PE/H/T/416
A.	Mathematical Methods in
	Mechanical Engineering
B.	Hybrid and Electric Vehicles
C.	Continuum Mechanics
D.	Mechatronics
E.	Sustainable Engineering
F.	Atmospheric Fluid Dynamics
G.	Reliability in Engineering Design
H.	Experimental methods and Data
	analysis

4th Year 2nd Semester

Course code	Course name	Category	Туре	Contact L-T-P	Credit	Marks
ME(M2)/HS/B/T/421	Engineering Economics and Costing	HS	Basic	3-0-0	3	100
ME(M2)/PC/B/T/422	Material Handling	PC	Basic	3-0-0	3	100
	Basic Open Elective – I	OE	Basic	3-0-0	3	100
ME(M2)/PE/H/T/424	Hons Professional Elective – IV	PE	Hons	4-0-0	4	100
ME(M2)/PS/B/S/421	Workshop Practice – VB	PS	Basic	0-0-3	1.5	100
ME(M2)/PC/B/S/422	Machine Elements Lab	PC	Basic	0-0-2	1	100
ME(M2)/PR/B/S/423	Project (Major)	PS	Basic	0-0-3	1.5	100
ME(M2)/PC/H/S/424	Advanced Laboratory and Simulation	PC	Hons	0-2-4	4	100
	Total			13-0-12	24	800

	Hons Professional Elective – IV ME(M2)/PE/H/T/424
A.	Finite Elements For Dynamics And Non-Linearity
B.	Reliability and Quality Engineering Design
C.	Robotics
D.	Introduction To Nonlinear Oscillations
E.	Advanced Thermodynamics
F.	Advanced Power Generation
G.	Nuclear Power Engineering
H.	Introduction To Modern Control Theory
I.	Maintenance And Safety Engineering

Department of Mechanical Engineering Faculty of Engineering and Technology, Jadavpur University Bachelor of Engineering Mechanical Engineering (BME) Programme (4 Year)

Syllabus

1st Year 1st Semester

Course Code: ME(M	(2)/BS/B/N	//ATH	/T/111			C	Course Name: Mathematics - I										
Credits: 3						C	ontact	Hour	s/Wee	k (L-T	T-P): 3-	0-0	Fı	ıll Mar	ks: 100)	
Category of Course:	BS					N	ature	of Cou	ırse: T	'heore	tical						
Course	Module	1															
content/Syllabus:	Different				_									Marks			
	Sequenc converge only); S Maclaur Concavi	ence; C Success in's the	Compa sive o corem	rison differe *; Exp	test; I entiat oansid	O'Ale ion; on of e	mbert' Rolle' elemen	s rations the tary for	test a orem*	nd Cau ; Me	ichy's an va	root (s lue th	stateme neorem	nt and s; Tay	their ap lor's	plication theorem	ns *;
	Different	-	-	_	-									(Marks	: 20)	
	Limit; C								al der	ivative	s; Part	ial der	ivative				.'s
		orem on homogeneous functions; Implicit Functions; Jacobian; Taylor's theorem*, Maxima; Minima d Lagrange's method of undetermined multipliers.														na	
	* Proof 1	roof not required.															
	Module	odule 2															
	Integral (tegral Calculus: (Marks: 50)															
		iemann integration (Definition and properties); Fundamental theorem of integral calculus; First Mean															
	value the			_					_				-				
	function										me and	surfac	e areas	s of sol	ids of r	evolutio	n;
	Numeric		_		_				n's 1/3	rule.							
Course	The stud									1.	. ,	C			c · c	,	
Outcomes (COs):	CO1: Co	mpren	end I	aylor	's the	orem,	Taylo	or's se	ries, i	ndeter	minate	forms	, conve	ergence	of inf	nite ser	ıes
(COs).	(K1)	4:		4		.4.4.		.:4		:c	C	(IZ	2)				
	CO2: Es																
	CO3 De								mum-	variau	ie fulic	tions ((K1)				
	CO4. Ex	_			-	-			والمبالية	a (V2)							
	CO5: De							_		, ,		umaria	ral into	aration	c (K 2)		
CO-PO Mapping:	COU. Es						PO6							<u> </u>	PSO2	PSO3	Γ
CO-1 O Mapping.	CO1	3	2	1	101	100	100	107	100	10)	1010	1011	1012	1501	1502	1505	
	CO2	3	2	1			1	-			-	-					-
	CO2	3	2	1				-			-	-					-
							1	1									
	CO4	3	2	1													
	CO5	3	2	1													
1	CO6	3	2	1													

Course Code: ME(M2)/BS/B/Ph/T/112	Course Name: Physics	
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: BS	Nature of Course: Theoretical	

Course	1.	Si	mple	Harm	onic r	notio	ı, free	vibra	tion, c	lampe	d and	forced	vibrati	on, res	onance	. Wave	motion	,
content/Syllabus:	Sup	perpositi	ion pr	incipl	e, pha	se vel	ocity	and gr	roup v	elocit	y. (4)							
	2.	M	lotion	of flu	iid, B	ernou	lli's tl	neoren	n, Poi	seuille	's equ	ation 1	for the	flow o	f liqui	d throu	gh narro	эw
	tub	e, motic	on of a	body	throu	ıgh vi	scous	mediu	ım, St	oke's	law. (4)						
	3.	O	vervie	w of	Coulo	mb's	law, (Gauss'	s law,	diele	ctric p	olariza	tion, D	isplace	ement \	Vector,	Overvie	ew
	of l	BiotSav	art lav	v and	ampe	re's ci	rcuita	ıl law.	(4)									
	4.	Ti cuits.	ime-v	arying	g field	l, Far	ady's	law o	f elec	tromaş	gnetic	induct	tion, Ti	ransien	t pheno	omena	in elect	ric
	(Se	ries L-F	R, Seri	es C-l	R). (4)												
	5.															g's		
	the	heorem, electromagnetic boundary conditions, reflection and refraction. (10)																
	6.																ue	
	to s	to single slit and plane diffraction grating, Polarization of light waves, Polarization by reflection, Brewster's															r's	
	law	law. (9) Ways particle duality, de Broglie ways and uncertainity principle. Concept of ways function and																
	7.	Wave particle duality, de Broglie waves and uncertainity principle, Concept of wave function and ts physical interpretation. Normalization. I-D Schrodinger equation -1-D (infinite) potential well. (7)														nd		
		•								odinge	er equ	ation -	l-D (in	finite)	potenti	al well	. (7)	
Course Outcomes		e studen																
(COs):	_	1: Defii																
		O2: Des										_	_	,	2)			
		O3: Des						_			_	-					2)	
		04: Des					_	-				nt situa	ations 1	n electi	ric circ	uits (K	2)	
		O5: Def O6: Def					-		•	•		nol Co	hradin	70# 00H	otion (V1)		
CO-PO Mapping:		Oo. Dei						PO6						_	PSO1		PSO3	
CO-1 O Wapping.		CO1	3	2	1	104	100	- 00		100	10)	1010	1011	1012	1501	1502	1505	
		CO2	3	2	1													
		CO2	3	2	1													
		CO4	3	2														
				2	1													
		CO5	3	2	1													
		CO6	3	2	1													

Course Code: ME(M	12)/ES/B/ET/T/113	Course Name: Electronics						
Credits: 3		Contact Hours/Week (L-T-P): 3-0-0 Full Marks: 100						
Category of Course:	ES	Nature of Course: Theoretical						
Category of Course: Course content/Syllabus:	Review of the basics of semiconde characteristics; Rectifier and filted periods) Junction transistors (NPN and Periods) transistors; Their Input and out characteristics; Their Input and out characteristics; Their Input and out characteristics. Common gain and power gain, Transistor Introduction to JFET and MOSFET General theory of feedback, neg feedback, Requirement for oscillateristics.	uctor physics; N and P- type semiconductor er circuits; Zener diodes, its V-I character NP types); Symbolic representation of the aracteristics; DC load line, determination of base, common emitter and common collect s as amplifiers, small signal analysis of	ese transistors; Biasing of Q-point and application of tor configurations; Voltage BJT circuits (12 periods) ington connection Positive ods)					
	non-inverting amplifiers, adders, s Combinational digital circuits; Lo implementations, (4 periods)	rcuits, Operational amplifiers and its application ubtractors, integrators etc. (4 periods) ogic systems and basic logic gates, truth taled circuits, flip-flops, clock pulses. (2 Period	able of each gate and their					

Course	Т	he stude	nts of	the co	ourse	shoul	d be a	ble to									
Outcomes	C	O1: Rec	all of	the ba	asics o	of sem	icond	luctor	physi	cs (K	1)						
(COs):	C	O2: Des	scribe	the pr	incipl	es of	basic	electro	onic c	ompo	nents	and sys	stems (K1)			
	C	O3: Illu	Illustrate basic electronic circuits (K2)														
	C	O4: App	: Apply the principles of basic electronics to simple cases (K3)														
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3	1													
		CO2	3	2													
		CO3	2	3	1												
		CO4	2	3	1												

Course Code: ME(M	2)/ES	S/B/EE/	T/114				Coı	Course Name: Basic Electrical Engineering											
Credits: 3							Coı	ntact F	lours/	Week	(L-T-	P): 3-0	-0	Fu	ıll Mar	ks: 100			
Category of Course:	ES						Nat	ure of	Cour	se: Th	eoreti	cal							
Course	DC	circuits	s: Sup	erposi	tion tl	heore	m, Ki	rchoff	's Lav	vs and	Thev	enin's	theore	m, Max	imum	power	transfei	,	
content/Syllabus:	app	lication	s; delt	a-star	and s	star-de	elta tra	ansfor	matio	ns. (6	Lectu	res)							
	Ele	ctromag	gnetisr	n: Rev	view o	of mag	gnetic	flux,	force (on cur	rent ca	rrying	condu	ctors, F	leming	g's righ	t hand r	ule	
	and	Lenz's	law. (3 lect	ures)														
	Ma	gnetic o	circuit	: MM	F, Fl	ux, re	luctai	nce, B	-H lo	op, H	ystere	sis and	l eddy	curren	t loss;	Magne	etic circ	uit	
	ana	lysis wi	th an	air ga _l	o. (6 l	ecture	es)												
		ernating																	
		k factor																	
		se circu																	
		j operator, resistance, reactance and impedance, power and reactive volt-ampere. (10 lectures) Electr Measurements: Measurement of resistance and inductance by using bridges, Principle of operation																	
	moving coil and moving iron type instruments; DC and AC ammeters and v																		
		and frequency meter, DC and AC Power measurement, Introduction to error analysis (6 lectures)														.01			
		oductio															vices 1	ike	
	pho	todiode	s, pho	to-vo	ltaic c	ell (8	lectu	res)						•					
	In	troducti	on to	Power	r syste	em co	mpon	ents, S	Switch	nes, re	lays aı	nd circ	uit brea	akers (4	lectur	es)			
Course	Tł	ne stude	nts of	the co	ourse	shoul	d be a	ble to											
Outcomes	C	O1: Des	cribe	the pr	incipl	es of	electr	ical ci	rcuits	and m	neasur	ements	(K1)						
(COs):	C	O2: Rev	iew tł	ne bas	ics of	Elect	roma	gnetis	m (K2	2)									
		O3: Inte	-						-										
		O4: Ехр																	
	C	05: Арр									_				1	_		_	
CO-PO Mapping:			PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
		CO1	3	2															
		CO2	3	2															
		CO3	3	2															
		CO4	3	2	1														
		CO5	2	3	1											1			
	1			<u> </u>		<u> </u>		<u> </u>	1		1	1	1	1	1	1	1	Щ	

Course Code: ME(M	2)/ES/B/T/115	Course Name: Engineering Mechanics: Sta	tics							
Credits: 3		Contact Hours/Week (L-T-P): 3-0-0 Full Marks: 100								
Category of Course:	ES	Nature of Course: Theoretical								
Course	Application of vector algebra for various kinds of force system; equivalent force system. Equilibrium of									

content/Syllabus:

Application of vector algebra for various kinds of force system; equivalent force system. Equilibrium of rigid bodies under two-dimensional and three-dimensional force systems: concept of free body diagrams; equilibrium problems for trusses, frames, cables. Simple problems of dry friction; application of dry friction in engineering configuration like wedges, square threaded screw, flexible belt and pulley. Properties of surface—centroids of simple and composite plane figures; Pappus theorem and its application; area moment of inertia of simple and composite plane figures, product moment of inertia for area of plane figures; parallel axes theorem; rotation of axes. Principle of virtual work for rigid bodies in static equilibrium.

Course	С	O1: Des	: Describe various force systems (coplanar and spatial) and its resultants in relation with engineering														
Outcomes	co	onfigura	tions.														
(COs):	C	O2: Des	scribe	the co	ncept	s to s	olve s	imple	engin	eering	g prob	lems re	lated to	static	equilib	rium.	
	C	O3: Sol	ve pro	blems	s relat	ed to	simpl	e frict	ion an	d mac	hine f	riction					
	C	O4: Sol	Solve problems related to properties of surfaces.														
CO-PO Mapping:			PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
		CO1	3	3													
		CO2	002 3 3														
		CO3	203 2 3														
		CO4	04 2 3 1														

Course Code: ME(M2)/HS/B/HUM/T/116	Course Name: Humanities and Sociolog	у
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: HS	Nature of Course: Theoretical	·

Course

1. Evolution of science and technology [5L]

content/Syllabus:

Readings:

'The prehistory of science and technology studies' in Sismondo, Sergio, *An Introduction to Science and Technology Studies*, Wiley Blackwell. Second Edition)

'The Kuhnian revolution' in Sismondo, Sergio, *An Introduction to Science and Technology Studies*, Wiley Blackwell, Second Edition)

2. Civilization and approaches in society and

technology [8L] Readings:

'Indigenous Medicine and Medical Science' in P K Bose, *Health and Society in Bengal*, Sage. 'Introduction: Science as a Reason of State' in Ashis Nandy, (ed.) *Science, Hegemony and Violence A Requiem For Modernity*

3. Science and technology revolution [4L]

Readings:

'Industrial Revolution and Scientific and Technological Progress' Rainer Fremdling

Emergence of industrial society [6L] Readings:

'The Industrial Revolution' in Eric Hobsbawm. The Age of Revolution 1789-1848

5. Development of occupation and profession

[4L] Readings:

'Technological change and life on the job' in Volti R, *Society And Technological Change*, World Publishers, 6th edition)

'Occupations and society' in Watson T, *Sociology, Work and Industry* Fourth edition, Routledge Gendering of Technology

Feminism Confronts Technology by Judy Wajcman

6. Post-industrial society [10L] Readings:

'Post-industrial society' in Webstar Frank, *Theories of the information society*, Routledge, third edition, 2006

'What is an information society' in Webstar Frank, *Theories of the information society*, Routledge, third edition, 2006)

'Network society' in Webstar Frank, *Theories of the information society*, Routledge, third edition, 2006) 'Information and post modernity' in Webstar Frank, *Theories of the information society*, Routledge, third edition, 2006)

Consumer society

Peter Corrigan, The Sociology of Consumption: An Introduction, 1997. Chapters 1 and 2.

Consumption practices of youth: Fashion, Dressing, and Tattooing.

Ecology GhoshAshish, Technology and Environment

S. Erkman, Industrial Ecology :an historical view

Smart City

R H Holland, Critical Interventions into the Corporate Smart City, Cambridge Journal of Regions, *Economy and Society*, 2015, 8, 61-77

Chapters -'A Comprehensive View of the 21st century City: Smartnessas Technologies and Innovation in Urban Contexts' and 'Rethinking Learning in the Smart City: Innovating Through Involvement, Inclusivity, and Interactivities with Emerging Technologies' in Gil-Garcia, Pardo, Nam (eds.). Smarter as the New Urban Agenda: A Comprehensive View of the 21st Century City.

N. Jayaram, Revisiting the City: The Relevance of Urban Sociology Today. Springer

Course	The stude	The students of the course should be able to –													
Outcomes	CO1: Tra	ace the	histo	rical d	levelo	pmen	t of sc	eience	and te	echnol	ogy.				
(COs):	CO2: An	alyze	divers	e soci	etal a	pproa	ches to	o integ	grating	g scien	ce and	techno	ology.		
	CO3: Ev	aluate	signif	icant	revolu	itions	in sci	ence a	and tec	hnolo	gy.				
	CO4: Ex	4: Examine the socio-economic transformations associated with the emergence of industrial society.													
CO-PO Mapping:		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3													
	CO1						3	1	1		1		1		
	CO2	CO2 3 1 2 1 2													
	CO3	CO3 3 1 1 1 1 1													
	CO4	CO4 3 1 2 1 2 2													

Course Code: ME(M	ME(M2)/ES/B/S/111						Course Name: Engineering Drawing (Drawing Board Mode)										
Credits: 1.5						C	ontact	Hour	s/Wee	k (L-7	Γ-P): 0-	-0-3	F	full Ma	rks: 10	0	
Category of Course:	ES					N	ature (of Co	urse: S	essior	nal		•				
Course	Introducti	ion and	d uses	of dr	awing	ginstr	umen	ts, Dit	ferent	types	of line	s, IS co	onventi	ons (B	IS SP4	6: 2003)	,
content/Syllabus:	Engineeri	ing Le	tering	g, Hor	ne as	signm	ent (3	hours	s)								
	Standard	praction	ces ar	nd pri	nciple	s of	dimen	sionir	ig. Co	ncept	of scal	le, use	of diag	gonal s	cale an	d scale	of
	chord, Ho	ome as	signm	nent (3 hou	rs)											
	Geometri	cal Co	onstru	ctions	s: Re	gular	polyg	ons,	conic	sectio	ns, spi	rals, S	ine Cu	ırve, Ir	volute	s, Rolli	ng
	Curves, F	Home a	ıssign	ment	(3 ho	urs)											
	Principles	s of or	thogra	aphic	proje	ction:	plane	s of p	rojecti	on (pi	rincipal	l & aux	iliary).	, object	& vie	wer, line	es
	of project																
	Orthograp	phic pr	ojecti	ion dr	awing	of si	mple o	object	s: pris	ms, py	ramids	s & sph	ere wit	h and v	vithout	auxilia	У
	views. (6	hours))														
	Orthograp							•		ts wit	h and v	vithout	auxilia	ıry viev	vs. (3 h	ours)	
		rthographic projection of machine parts (3 hours)															
		ometric projection: Isometric scale, Isometric drawings (6 hours)															
		hird view development. (6 hours)															
	Sectional																
Course	The stude																
Outcomes	CO1: Exp		_			_	eering	g drav	ving w	ith ref	erence	to Mec	hanical	l Engin	eering	and Indi	an
(COs):	Standard	,			,	. ,											
	CO2: Cor												c ·				
	CO3: App	ply the	conc	epts o	of orth	ograp	ohic pi	ojecti	on to	draw p	orincipa	al view	s of sir	nple en	gineer	ng	
	objects.	A 2)															
	(K3, S2, A2) CO4: Apply the concepts of sectional views and isometric projection for simple engineering objects. (K3,																
	S2, A2)																
CO-PO Mapping:	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3																
co i o mapping.	CO1	3					1		1	-	1	1		1			
	CO2	3	1				1	1	1	1	1	ļ -		2			
	CO3	3	2				1	1	1	1	1			2			
	CO3	3					1	1	1	1							
	C04	3	2				1		1	1	1			2			

Course Code: ME(M	(2)/ES/B/S/112	Course Name: Workshop Practice - I							
Credits: 1.5		Contact Hours/Week (L-T-P): 0-0-3	Full Marks: 100						
Category of Course:	ES	Nature of Course: Sessional							
Course	Introduction to types of Indian woo	bods used for engineering purposes and carpenter's tools;							
content/Syllabus:	use of wood working machines; m	naking of selected joinery; Introduction to di	fferent phenomena arising						
	out of shrinkage of castings and pattern maker's rule; making of wooden patterns from supplied drawings								
	and samples of patterns; making of core boxes.								

Course	The stud	e students should be able to														
Outcomes	CO1: R	ecogniz	e the	usage	of dif	feren	t tools	and p	roces	ses in	carpent	try and	patterr	n makir	ng (K1,	
(COs):	A1). CC	2: Des	cribe 1	the red	quired	meth	ods to	form	differ	ent ty	pe of jo	oints. (1	K2) CC)3: Acc	complis	sh
	assigned	l jobs v	vithin	stipul	ated ti	ime. (S3).									
	CO4: A	Adapt themselves in the workshop environment (A4, S4)														
CO-PO Mapping:		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
	CO1	3	2	1										1		
	CO2	CO2 3 2 1 1														
	CO3	CO3 1 1 1 1 3 1 2 1														
	CO4	CO4 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														

1st Year 2nd Semester

Course Code: ME(M	2)/BS/B/MATH/T/121 Course Name: Mathematics - II Contact Hours/Week (L-T-P): 3-0-0 Full Marks: 100																	
Credits: 3							Cont	act H	ours/V	Veek ((L-T-I	P): 3-0-	-0	Fu	ll Mark	ks: 100)	
Category of Course:	BS						Natu	re of (Course	e: The	oretic	al						
Course	Linear	r Alge	bra:	(Mar	ks: 25	5)												
content/Syllabus:	Matrix	x Deter	rminaı	nt; Inv	erse	of a s	quare	matri	x;El	ement	ary ro	w and	colum	n oper	ations;	Echel	on fo	rm;
	rank c	of a m	atrix;	Solu	tion c	f a s	ystem	of li	near o	equati	ons; (Cramei	's rule	e; matr	ix inv	ersion	meth	od.
	Charac	cteristi	c equa	ations	; Eige	envalı	ues an	d Eige	envec	tors; (Cayley	-Hami	lton th	eorem	Geon	netry	of Th	ree
	Dimer	nsions	: (Ma	rks:1	5)													
	Cartes	sian co	-ordir	ates	in thr	ee di	mensi	ons; I	Direct	ion co	sines	; Angl	e betw	een tw	o line	s; Equ	ation	oh
	planes	and S	Straigh	nt line	s; Sk	ew li	nes; S	hortes	t dist	ance l	etwee	en ske	w lines	s; Con	lition o	of co-	planar	ity;
	Standa	ard equ	ation	of spl	neres.													
	Vector	_		•														
	Basics	s of vec	ctor al	gebra	; Dot	and C	cross p	roduc	ts of t	wo ve	ctors;	Produ	cts of the	hree or	more v	ector	s; Vol	ume
	of tetra	ahedro	n; Wo	ork do	ne; M	Iomei	nt; An	gular	Veloc	ity.								
	Vector	ector Calculus: (Marks:50)																
		Vector functions of a scalar variable; Limit; Continuity and Derivative of vector functions; Applications																
	to med																	
	Gradie		_					_			_			_			_	
	Green												-	-		_		
	and B		al of	space	curve	e; Sei	rret-Fr	enet 1	ormu	lae; N	Iorma	l plane	; Rect	ifying	plane	and o	scillat	ing
	plane.																	
Course	The st																	
Outcomes	CO1: S									-	-							
(COs):	CO2: 1										-	•	(1)					
	CO3: 1	Interpr	et bas	ics of	vecto	or alg	ebra a	nd vec	ctor ca	alculu	s (K2))						
	CO4: A													_				
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSC)3
	1	CO1	3	2	1	1												
		CO2	3	2	1	1								1				
	 	CO3	3	2	1	1								<u> </u>				
		CO4	3	2	1	1								1				-
		CO4	3	4	1	1												

Course Code: ME(M2)/PC/B/EE /T/122	Course Name: Electrical Machines	
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: BS	Nature of Course: Theoretical	

Course	Direct cu	Direct current machines : Operating principle of DC generator and motor, Construction and winding, Ring wound armature, commutator, lap and wave winding, emf equation, armature reaction, Losses in DC												ing			
content/Syllabus:	wound ar	mature	e, con	ımuta	tor, l	ap an	d way	e wi	nding,	emf	equatio	n, arn	nature	reactio	n, Los	ses in I	OC
	machines	and e	efficie	ncy o	letern	ninati	on by	brak	e, Sw	inburi	ne and	Hopk	inson	metho	ds. Sp	eed-torc	que
	characteri	stics of	f DC 1	notor	s, star	ting a	nd spe	eed co	ntrol b	y rhe	ostats a	nd thy	ristors.	Testin	g and s	election	of
	DC machi	nes (1	0 lecti	ares)													
	Single ph	lingle phase transformer: Principle of operation, types of transformers, construction, emf equation,														on,	
	equivalent	equivalent circuits, phasor diagram, losses and efficiency, open circuit and short circuit tests, auto														uto	
	transform	er (8 L	ecture	es)													
	Three phase circuits: Introduction to 3-phase systems, relationship between line and phase voltages in														in		
	star conr	star connected and delta connected systems, measurement of power in 3-phase systems. Introduction to														to	
	3phase t	3phase transformer. Two-wattmeter method for star connection and delta connection, Three-wattmeter														eter	
	method f	method for 3-phase 4-wire circuit, Energy meter (4 Lectures)															
	Synchro	ynchronous machines: Production of rotating magnetic field; concept of synchronous speed,														ed,	
	Synchron	Synchronous motors and generators (8 Lectures)															
	Induction	Induction machines : Principle of operation of 3-phase induction machine, Single phase induction motors,														ors,	
	slip, Star	ting ar	nd spe	ed co	ntrol	of 3-p	hase i	nduct	ion mo	otor, T	esting	(10 Pe	riods)	•			
Course	The stud	ents of	f the c	ourse	shoul	ld be	able to)									
Outcomes	CO1: Re	call th	e prin	ciples	of el	ectric	al circ	uits a	nd me	asuren	nents (K1)					
(COs):	CO2: De	scribe	the o	perati	ng pri	nciple	es of d	liffere	nt type	es of c	ircuits	and ele	ectrical	l machi	nes (K	2)	
	CO3: Se			•		-			• •							,	
	CO4: Ar		• •						-								
CO-PO Mapping:	00.1111													PSO1	PSO2	PSO3	T
CO-1 O Mapping.	CO1	3	2	100	104	100	100	107	100	10)	1010	1011	1012	1501	1502	1000	-
	CO1																
	CO2 3 2																
	CO3	1	3	2													
	CO4	2	3	2													

Course Code: ME(M	(2)/PC/B/T	/PC/B/T/123						Name	e: Strei	ngth o	f Mate	rials					
Credits: 3						C	ontact	t Hou	s/Wee	k (L-	Γ-P): 3	-0-0	I	Full Ma	arks: 10	00	
Category of Course:	PC					N	lature	of Co	urse: 7	Theore	tical						
Course	Uni-axia	l stres	s field	l inclu	isive (of sta	tically	indet	ermina	ate sys	stems a	nd the	rmal st	ress pr	oblems	s. Relati	ion
content/Syllabus:	between	engin	eering	cons	tants.	Tors	ion of	circu	lar sha	afts; c	lose-co	iled he	elical s	prings.	. Shear	force a	ınd
	bending			_							_						_
	and twist	_					_					in thin	-walled	l pressi	ure ves	sels. Pla	ine
		ss problems; Mohr's circle for stress. Buckling of columns. : Solve simple engineering problems under uniaxial, torsional and bending loading. (K2)															
Course	CO1: So	1: Solve simple engineering problems under uniaxial, torsional and bending loading. (K2)															
Outcomes	CO2: Ap	O2: Apply the concepts to approach general engineering problems for biaxial stress field. (K2)															
(COs):	CO3: Ap	ply th	e con	cepts 1	o app	roach	engir	neerin	g prob	lems 1	elated	to bucl	kling of	f colun	nns. (K	2)	
	CO4: De	fine th	ne fun	damei	ntal m	ateria	ıl beha	vior o	of engi	neerir	ig mate	rials. (K1)				
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	2	1													
	CO2	CO2 3 2 1 1 1 1 1															
	CO3	3	2	1			1								1		
	CO4	CO4 3 1 1															

Course Code: ME(M2)/ES/B/T/124	Course Name: Fluid Mechanics - I	
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: ES	Nature of Course: Theoretical	

Course	Definitio	n of	fluid,	con	tinuu	m h	ypoth	esis,	differ	ent	proper	ties o	f fluid	d, cla	assificat	ion (lil	ke
content/Syllabus:	Newtonia	n/nonN	lewtoi	nian, i	deal/r	eal et	c.). (2	hrs.)									
	Fluid Sta	tics: pr	essure	at a	point	, Paso	cal's l	aw, v	ariatio	n of	pressur	e with	in a sta	tic flu	ıid – eq	uation c	of
	hydrostat	ic pres	sure d	istribu	ition,	varia	tion c	of pro	perties	in st	atic at	mosphe	ere; me	asurer	nent of	pressure	э;
	hydrostat	ic thrus	t on p	lane a	and cu	ırved	surfac	ces; b	uoyan	cy, sta	ability	of subr	nerged	and fl	oating b	odies. (5
	hrs.)																
	Fluid Ki																
	accelerat																
	unsteady flow, uniform and non-uniform flow, one- two and three dimensional flow, rotational and irrotational flow, laminar and turbulent flow; stream line, streak line and path line; stream filament and																
	stream tube; principle of conservation of mass – equation of continuity for a stream tube and for unsteady																
	three dimensional flow; deformation of a fluid particle – linear and angular deformation and rotation; vortex motion; relative equilibrium of fluids. (8 hrs.)																
	Fluid Dynamics: principle of conservation of linear momentum, Euler's equation of motion along a stream																
		and for unsteady three dimensional flow; derivation of Bernoulli's equation and physical significance															
	of different terms; applications of Bernoulli's equation in flow measurement devices: stagnation tube, pi																
	tube, venturi meter, orifice meter, triangular and rectangular weir. (7 hrs.)																
	Applicati						_		_				ation; a	nalysi	is of for	ce exerte	ed
	by a fluid	stream	on a	solid l	bound	lary –	jet im	pinge	ment,	thrus	t on pip	e bend	s etc. (2	2 hrs.)			
	Principle	Principle of Conservation of Angular Momentum and its application. Steady Flow Energy Equation and its														its	
	application	application.(2 hrs.) Characteristics of Laminar and Turbulent Flow: Reynolds experiment, critical Reynolds number; laminar															
	Characte	istics o	f Lam	inar a	nd Tu	ırbule	nt Flo	w: Re	ynold	s expe	eriment	t, critic	al Reyn	olds n	umber;	laminar	
	flow thro									-			•				
	Flow Th	rough (Closed	l Con	duits:	Darcy	y Weis	sbach	equati	on, fr	iction f	actor o	f closed	cond	uits, flov	v throug	h
	noncirc	ılar duc	ts, Mo	ody's	diag	ram a	nd its	use; m	inor lo	osses -	– at sud	lden ex	pansior	ı, at su	dden co	ntraction	n,
	at bends	, at val	ves an	d fitti	ngs et	c; ana	alysis	of sin	ıple pi	pe ne	twork p	oroblen	ns. (6 h	rs.)			
	Free Su	face Fl	ow: fl	ow in	open	chanr	nel, Ch	nezy's	equat	ion, N	I anning	g's equa	ation, e	conom	nical cro	ss sectio	n,
	specific	energy	, hydr	aulic j	jump.	(5 hr	s.)										
Course	The stud	lents of	the co	ourse	shoul	d be a	ble to	_									
Outcomes	Outcomes CO1: Classify fluids and flows based on properties and kinematic conditions. (K2)																
(COs):	CO2: D	evelop	the go	vernii	ng equ	uation	s for f	fluids	at rest	and i	n motio	on. (K3)				
	CO3: So	olve hy	drosta	tic and	d flow	prob	lems	related	l to sir	mple s	systems	s and de	evices.	(K3)			
	CO4: R	elate go	vernii	ng equ	ation	s with	the o	perati	on of	meası	ıremen	t devic	es. (K4)			
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	1														
	CO2	3	2	1	1			t									
	CO3	2	3	2	1	1		1				1					
	CO4	3	2	1													
L	1 1	-	-		1					-	1	1	1		1	L	——

Course Code: ME(M2)/ES/B/T/125	Course Name: Thermodynamics	
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: ES	Nature of Course: Theoretical	

Course	In	Introduction: Microscopic and Macroscopic viewpoints in thermodynamics. Fundamental concepts of System, Control volume, State, Property, Equilibrium, Processes. Etc. 2 Hours																
content/Syllabus:	Sys	tem, C	ontrol	volur	ne, St	ate, P	roper	ty, Equ	ıilibri	um, P	rocess	es. Etc				2 Ho	ırs	
	Tł	ne Zero	th law	of th	ermo	lynan	nics: T	Therm	al equ	ilibriu	m. Te	mperat	ure. Pr	inciple	of the	rmome	ry.	
	Inte	ernation	nal pra	ctical	temp	eratur	e scal	e.								2 Ho	ırs	
	Er	nergy: I	Differe	ent en	ergy f	orms-	-store	d ener	gy, er	ergies	in tra	nsition	(Heat	& Wor	k). Def	initions	i.	
																2 Ho	ırs	
																	nd vapo	
																	odynam	
	-	operty mpress						Real g Hour	-	Equa	tions (of state	. Com	pressib	ility fa	ctor. G	eneralis	ed
										v of th	nermo	dvnam	ics for	systen	ns Co	rollarie	s. Intern	าลใ
																	s, Proce	
				1 0							•			•			econd la	
			-									•		•	-		tems-He	
																	efficienc	
																	uivalen	
		of Kelvin Planck and Clausius statements of the second law of thermodynamics. Corollaries. Entropy. Reversibility and Irreversibility. Problems. Mollier Chart and its use. Second law analysis of control																
	volume. Entropy generation. Reversible work. Availability. Irreversibility. 10 Hours Thermodynamic																	
																	on. Joul	
		nompso						-							T	1		
	Dev	velopm	ent of	prope	erty da	ata in	graph	ical ar	ıd tab	ular fo	rm.					4 Ho	ırs	
	Bas	ic The	rmody	namio	Cycl	les: Po	ower (cycles	(Gas	and va	apor) a	and Ref	frigerat	tion cy	cles.	5 Ho	ırs	
Course	Tł	ne stude	ents of	the c	ourse	shoul	ld be a	able to)									
Outcomes	C	01: De	fine th	ermo	dynan	nic sy	stem	and re	lated	termin	ologie	es (K1)						
(COs):	C	O2: Inte	erpret	the fu	ndam	ental	laws	and pr	incipl	es (K2	2)							
	C	Э3: Ар	ply lav	ws and	d prin	ciples	of th	ermod	ynam	ics for	simp	le engi	neering	g systei	ms (K3	5)		
	C	04: An					•											
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1	3						1									
		CO2	3	2														
		CO3	2	3	1											1		
	CO4 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															1		

on of points and lines, and	Contact Hours/Week (L-T-P): 0-0-3 Nature of Course: Sessional escriptive Geometry: points, lines, surfaces d their projections on principal and auxiliar rojections. Methods of finding true shape of d	y planes. Relation of the
on of points and lines, and the axes and the planes of pr	escriptive Geometry: points, lines, surfaces d their projections on principal and auxiliar	y planes. Relation of the
on of points and lines, and the axes and the planes of pr	d their projections on principal and auxiliar	y planes. Relation of the
ion method & Auxiliary viewing the true shape of a planation of the Relations (perpoint, line and plane. (3 house to a line with curved so and definition of Trace of of planes. To determine the method of trace. (6 hours) are Development of simple of (6 hours) are development of objects curved.	ne. (3 hours) pendicular distance, foot of perpendicular, angurs) surfaces: a cylinder, cone and sphere, (3 hours f points and lines, Trace of different types of le line of intersection and the angle between the objects (both right angled and oblique): cylind atting each other, Intersection of different surface.	ent types of lines. (3 hours) gle, line of intersection etc.) s) lines: (3 hours) e edge views of two planes ders, prisms, pyramids and faces. (6 hours)
	ion method & Auxiliary viewing the true shape of a planation of the Relations (perpoint, line and plane. (3 hout ction of a line with curved pt and definition of Trace of planes. To determine the method of trace. (6 hours) the Development of simple of (6 hours) the development of objects curved.	ion method & Auxiliary view method of finding the true shape of different ning the true shape of a plane. (3 hours) nation of the Relations (perpendicular distance, foot of perpendicular, and point, line and plane. (3 hours) ction of a line with curved surfaces: a cylinder, cone and sphere, (3 hours) pt and definition of Trace of points and lines, Trace of different types of of planes. To determine the line of intersection and the angle between the method of trace. (6 hours) the Development of simple objects (both right angled and oblique): cylinder.

Course	Student	idents of the course should be able to															
Outcomes	CO1: II	lustrate	the p	orojec	tion c	of poin	nts, lii	nes an	d plan	es on	princip	oal and	auxili	ary pla	nes fol	lowing	the
(COs):	concept	of eng	ineeri	ng dra	awing	. (K2,	A2, S	S3)									
	CO2: D	emons	trate d	liffere	nt me	thods	to det	ermin	e true	length	s of lin	es and	true sh	apes of	fplanes	s. (K3, S	33)
	CO3: D	etermi	ne the	relati	ions a	mong	point	, line	and pl	anes c	ombin	ing the	know	ledge o	of true l	length a	ınd
	true sha	pe. (K	4, S4)														
	CO4: S	how th	e trace	es of 1	ines a	nd pla	anes. (K3, S	3, A2)								
	CO5: I	D evelop	surfa	aces o	of dif	ferent	objec	cts su	ch as	simple	e objec	cts, int	ersection	on of o	lifferer	nt surfac	ces,
	transitio	nsition pieces with maximum utilization of surface, etc. (K3, S4, A4)															
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	1									1		2			
	CO2	2	1									1		3			
	CO3	CO3 3 2 1 2															
	CO4	3	1									1		2			
	CO5	05 2 2 1 1 3 2															

Course Code: ME(I	M2)/ES	S/B/S/	/122				C	ourse	Name	e: Con	puter	Progra	mming	2					
Credits: 1.5							C	ontac	t Hou	:s/Wee	k (L-	Γ-P): 0	-0-3]	Full Ma	arks: 10	00		
Category of Course	: ES						N	lature	of Co	urse: S	Session	nal							
Course	Intr	oduct	ion:	Histor	y of	Com	puting	g, Eve	olutio	n of 1	Progra	ımming	g Lang	guages,	Com	pilers,	Interpr	eter	
content/Syllabus:	Alg	orithr	ns and	d Flov	vchart	s, Str	ucture	of a	C Prog	gram		[3[13 h]						
	_					• 1				-						Assign			
	Stat	temen	its, O	perato	rs, O	perato	or Pre	ceden	ce, E	kpressi	on Ev	valuatio	on, Ty	pe Cor	iversio	n in E	xpression	ons,	
	Typ	e Cas	sting;																
	Cons	ole I/	O: Re	ading	and V	Vritin	g diff	erent (data ty	pes						[203	h]		
	Cor	ntrol S	Statem	ents:	Select	tion S	tatem	ents (i	f, swi	tch-ca	se), L	oop Sta	itemen	ts (for,	while,	do-whi	ile), Jur	np	
	State	tatements (return, goto, break, exit, continue)													[2🗆3	h]			
	Arra	ys and	l Strir	ıgs: Si	ngle l	Dimer	nsion	Array	s, Doi	ıble Di	imens	ion Arı	ays, St	rings		[203	h]		
	Functions: General Form							•					•	_	Parame	eter Pas	ssing		
	Mecl	chanisms, Command Line Arguments													[2□3 h]				
	File 1	[/O: Iı	ntrodu	ction	to Fil	File, File reading and writing [1\subseteq 3 h]													
								•		s, Uni	ons					[103	-		
Course								able to											
Outcomes	CO	1: De	scribe	the v	arious	parts	and o	organi	zation	of ha	rdware	e and s	oftware	e comp	onents	of mod	dern dig	gital	
(COs):	con	nputer	rs.			-		•						•					
	CO	2: Co	nstruc	t flow	chart	s for s	imple	probl	lems.										
	CO	3: Ac	quire	funda	menta	l con	cepts	about	high l	evel p	rogran	nming	langua	ges.					
	CO	4: Use	e gene	eral pr	ogran	nming	gprinc	iples	to bui	ld cod	es to s	olve si	mple p	roblem	ıs				
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
		CO1	3				1								2				
		CO2	3	2	1										1			1	
		CO3	3	2			3				1				1			-	
					2										2			1	
		CO4 2 2 2 3 2																	

Course Code: ME(M	(2)/ES/B/S/123	Course Name: Workshop Practice - II							
Credits: 1.5		Contact Hours/Week (L-T-P): 0-0-3	Full Marks: 100						
Category of Course:	ES	Nature of Course: Sessional							
Course content/Syllabus:	chipping, filing, sawing, drilling; us Introduction to and practice of dif	es, measuring instruments etc.; marking of se of taps and dies; pipe fittings and plumbin fferent welding processes- gas, SMAW, That atting and its application; soldering, brazing	ng. IG, MIG, SAW, resistance						

Course Outcomes	The	studen	udents of the course should be able to – Recognise the tools and techniques of fitting and welding (K2, A1)														
(COs):	CO ₁	: Reco	gnise	the to	ols an	d tecl	nnique	es of f	itting	and w	elding	(K2, A)	A 1)				
	CO ₂	: Trans	slate b	asic c	oncep	ots of	fitting	for re	eplicat	ting si	mple 6	enginee	ring co	ompone	ent (K2	2, S1)	
	CO3	3: Trans	slate b	asic c	oncep	ots of	arc w	elding	for jo	oining	simpl	e engin	eering	compo	nents ((K2, S2)
	CC	04: Des	cribe	differ	ent co	mmo	nly us	ed me	thods	of we	lding	and the	ir appl	icabilit	ty (K2,	A1)	
	CC	5: Recognise some sources of welding defects and remedies to overcome them. (K2, A1)															
CO-PO Mapping:		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3															
		CO1 3 2 1															
		CO2	3	1						2	2				2	1	
		CO3 3 1															
		CO4	3						2		1						
		CO5 3 2 1 1 1 1 1															

Course Code: ME((M2)/ES/I	B/EE&	ET/S	/124		(Course	Nam	e: Elec	ctrical	Techn	ology	Lab			
Credits: 1.5						(Contac	t Hou	rs/We	ek (L-	T-P): ()-0-3	Full N	Marks:	100	
Category of Course	e: ES					1	Vature	of Co	ourse:	Sessio	nal					
Course	Recalib	ation	of am	meter	and v	oltme	eter									
content/Syllabus:	Measure	ement	of Res	sistano	ce of	variou	ıs elec	trical	equip	ment						
	Behavio	r of R	L, R-	C and	R-L	C cir	cuit w	ith A	C and I	DC su	pply					
	Charact	eristics	of A	C seri	es &	parall	el Cir	cuit								
	Power &	Powe	er fact	or cha	aracte	ristics	of Fl	uores	cent La	amp						
 -	Voltage	and po	ower o	charac	terist	ics of	a ceil	ing fa	n							
	Verifica	tion of	Thev	enin's	The	orem (& Ma	ximun	n Pow	er Tra	nsfer T	heorer	n			
	Study of	f DC a	nd AC	C Mac	hines											
	Coil cor	nectio	ns &	rating	s of s	ingle	phase	transf	ormer							
	Introduc	tion, a	rrear	and as	ssignr	nent										
Course	The stud	e students of the course should be able to –														
Outcomes	CO1: Id	•				-	-			-)			
(COs):	CO2: Se			-	_											
	CO3: C	_			bject	ive o	f the	expe	riment	and	Relate	that v	vith th	e acqu	ired th	eoretica
	knowled	_														
	CO4: D				•		_				its and	other o	levices	(K2, S)	(2) CO	5:
	Interpre										2010	2011	2012	2001	200	bass
CO-PO					PO4	PO5	PO6	PO7	PO8		PO10	POII	PO12		PSO2	PSO3
Mapping:	CO1	3	2	1						2				3		
<u> </u>	CO2	1	3	2						2				3		
<u> </u>	CO3	1	3	2						2				2		
	CO4	1	2	3						2				3	2	
	CO5	1	1	2	3				1	2		1	1	2		

Course Code: MC/TS/P101	Course Name: Technical Communicative En	glish & Soft Skill
Credits: 0	Contact Hours/Week (L-T-P): 0-0-3	Full Marks: 0
Category of Course: MC	Nature of Course: Sessional	

Course	I. UND	ERSTA	ANDI	NG C	COM	MUN	ICAT	TON								
content/Syllabus:	Meaning of	of Com	munio	cation	ı											
	The Com	nunica	tion P	roces	s/Bas	ic Ele	ments	of C	ommu	nicatio	on (Sen	der, M	essage,	, Recei	ver, Ch	annel)
	Purpose/In	mporta	nce of	Com	muni	cation	1									
	Channels	of Con	nmuni	cation	ı (Up	ward,	Down	nward	, Hori	zontal	/Latera	l, Diag	onal/S _l	oiral)		
	Different	Forms	of Co	mmuı	nicati	on (V	erbal	and N	on-ve	rbal, Iı	nterper	sonal, l	Intrape	rsonal,	Extrap	ersonal)
	Barriers to Effective Communication and their Possible Remedies II. SPOKEN COMMUNICATION															
	II. SPOI	KEN C	OMN	1UNI	CAT	ION										
	Non-verba	al Com	munio	cation	(Boo	dy La	nguag	e, Par	ralingu	istic f	eatures	s, Prox	emics/S	Space 1	Distanc	e, Haptics
	Dynamics of Professional Presentations (Individual and Group)															
	Group Dis	scussio	ns													
	Job Interv	iews														
	III. LIST	ENIN(G SKI	LLS												
	Types of 1	Listenii	ng													
	Implications of Effective Listening Barriers to Effective Listening															
	Barriers to	Effect	tive L	isteni	ng											
	Effective	Listeni	ng Str	ategie	es											
	IV. WRITTEN COMMUNICATION The Art of Condensation – Steps to Effective Precis Writing															
	The Art of	f Conde	ensati	on – S	Steps	to Ef	fective	Prec	is Wri	ting						
	Job Application Letters and Resumes Writing a Report															
	Writing a	Report														
	Writing a	Techni	cal Pr	oposa	al											
	Planning l	busines	s mes	sages	(Ema	ail, M	emo,	Notice	e, Age	nda, N	I inutes	, Circu	lars)			
Course Outcomes	The stude	nts of t	he cou	ırse s	hould	be at	ole to									
(COs):	CO1: Con	nply ba	sic fo	rm of	com	munic	ation	throu	gh dev	elopm	ent of	positiv	e perso	nal att	itude. (A2)
	CO2: Pro	esent ef	ffectiv	ely ir	ı grou	ıp dis	cussio	ns an	d mocl	k inter	views.	(A2)				
	CO3: Re	create	report	s in d	iffere	nt for	ms lik	e first	draft,	final o	draft, p	lanning	g busine	ess mes	ssages.	(S2) CO4
							n thro	ough	motiva	ational	speec	hes, ef	fective	presei	ntation	skills and
	positive															
	CO5: Re	spond	to disc	cussic	on thr	ough	effect	ive lis	tening	. (A2)						
						1				1			T	1		1
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1						1			2	3		2			1
	CO2									2	3	2	2			2
	CO3						1	1		2	3	2	2	2		2
	CO4									2	3	2	2			3
	CO5									2	3	2	3			2

2nd Year 1st Semester

Course Code: ME(M2)/BS/B/MATH/T/211	Course Name: Mathematics III						
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100					
Category of Course: BS	Nature of Course: Theoretical						

Course Advanced Linear Algebra (Marks: 50) content/Syllabus: Vector space, subspace, Basis and Dimension; Linear transformation; Representation of linear transformation by matrices; Linear functional; Dual space; Transpose of a linear transformation; Diagonalization, Symmetric and orthogonal matrices, Invariant subspaces; Cyclic subspaces; Annihilators; Cyclic decomposition; Rational form; Jordan canonical form; Inner product spaces; Gram-Schmidt orghogonalization; Adjoints of linear operators; Unitary and Normal operators. Ordinary Differential Equation (ODE) and Series Solution: (Marks:30) First order exact differential equation and first order linear differential equation; Second and higher order linear differential equations with constant coefficients; Euler and Cauchy equation; Method of variation of parameters; Ordinary point and regular singularity of a second order linear differential equation; Series solutions; Solution of legendre and Bessel's equations; Generating functions; Recurrence relations and their Orthogonal properties Partial Differential Equation (PDE): (Marks:20) First order PDE; Lagrange method; Second order PDE with constant coefficients and their classifications to Elliptic, Parabolic and Hyperbolic type. Solution of PDE by method of separation of variables; Solution of one dimensional wave and diffusion equation; Laplace equation of two dimensions. The students of the course should be able to -Course Outcomes CO1: Define vector space and its associated concepts (COs): CO2: Solve various linear algebra transformations, diagonalization, Gram-Schmidt orthogonalization problems CO3: Solve complex linear algebra problems CO4: Develop solutions of differential equations associated to complex systems CO5: Construct a PDE for a given physical problem CO6: Solve partial differential equations associated with complex systems PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO-PO Mapping: CO₁ 2 3 1 CO₂ 3 2 1 CO₃ 3 2 1 CO₄ 3 2 1 **CO5** 3 2 1 **CO6** 3 2 1

Course Code: ME(M	ourse Code: ME(M2)/PC/B/T/212 redits: 3						Co	urse N	Vame:	Engin	eering	Dyna	mics					
Credits: 3	edits: 3 tegory of Course: PC								Hours	/Week	(L-T	P): 3-0)-()	Fı	ull Mar	ks: 100)	
Category of Course: 1	PC						Na	ture o	f Cou	rse: Th	neoreti	cal						
Course content/Syllabus:	La wo Int	ordinate w for re ork-ener roduction	e system ectiline gy and on to to ous m	ms, co ear and d imp the dy ethod	onstra d two oulse- onamic s. Equ	ined radimed radimed in the contract of the co	motion ension entum the syns of	n of co al mor in pa stems plane	nnect tion o article of pa motio	ed part f a par dynar articles n of ri	ticles. ticle i mics. Kine	Kinetion differ Impact Ematics odies i	es of parent control of parent of the	article, ordinat articles plane	applicate system. Centrol motio	ation of ems, pr al force n of a	n different f Newto inciples are motion rigid books of work	n's of on. ody
Course Outcomes (COs):	CC Ex pri		nembe e princ (K2) dersta	r the ciples	princi of pla	ples one kir	of kinnetics	emation of par	ticle u	sing N	ewtor	in two	work-	energy	and in		(K1) CC nomenti	
CO-PO Mapping:								PO6	_				PO11	PO12	PSO1	PSO2	PSO3	
		CO1	3	1										1				
		CO2 3 2 CO3 3 2 CO3																
		CO4	3	2	3	1										1		

Course Code: ME(M2)/PC/B/T/213	Course Name: Fluid Mechanics - II	
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100

Category of Course: PC Nature of Course: Theoretical Course Basic concept of turbulence and turbulent flow. (1 hrs.) content/Syllabus: Equation of motion for viscous flow – 2D laminar flow between flat parallel plates & annulus (2 hrs.) Boundary Layer Theory: concept of boundary layer, boundary layer thickness, displacement thickness, momentum thickness, growth of boundary layer; Prandtl's boundary layer equations, Von Karman's momentum integral equation for a boundary layer, skin friction drag coefficient for laminar and turbulent boundary layer, hydraulically smooth and rough surfaces; boundary layer in pipe flow, friction velocity; separation of boundary layer, form drag, method of drag reduction; lift and drag on submerged bodies, aerofoils, stalling of aerofoils.(10 hrs.) Compressible Flow: review of thermodynamic principles for perfect gases, adiabatic and isentropic relations; steady flow energy equation; speed of propagation of a small disturbance through a compressible fluid, sonic velocity, Mach number, Mach cone and Mach wave; isentropic flow, stagnation properties of a compressible flow, isentropic pressure, temperature and density ratios; compressibility correction factor in the measurement of air speed; area - velocity relationship for compressible flow through a variable area duct, mass flow rate through a duct, critical condition and choking; flow through convergent-divergent nozzle, over expansion and under expansion, performance of propulsive nozzles; normal shock, normal shock relations, wave drag.(10 hrs.) Ideal Fluid Flow: rotation of a fluid particle, vorticity, rotational and irrotational motion; velocity potential function, circulation, stream function, flownet; governing equation for two dimensional irrotational motion, simple two dimensional irrotational flows like uniform flow, plane source, plane sink etc; superimposition of simple irrotational flows, combination of a source and a sink, combination of uniform flow and a source(Rankine half body), combination of a uniform flow and a source-sink pair (Rankine oval), doublet and its strength, superimposition of an uniform flow and a doublet (flow past a stationary cylinder); vortex motion –free and forced vortex, strength of a vortex; combination of a uniform flow, a doublet and a free vortex (flow over a rotating cylinder), Magnus effect, Kutta-Joukowski's theorem.(12 Dimensional analysis and Buckingham Pi theorem; similarity and model studies. (3 hrs.) Unsteady flow - water hammer. Course The students of the course should be able to Outcomes CO1: Describe boundary layer flow, turbulent flow, compressible flow, ideal flow and unsteady flow. (COs): CO2: Develop the governing equations for different types of flow. (K3) CO3: Analyse different flow models with practical implications. (K4) CO4: Solve problems for different types of flows. (K3) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PSO2 PSO3 CO-PO Mapping: CO₁ 3 2 1 CO₂ 3 2 1 1 CO₃ 2 3 1 1 CO₄ 2 3 2

Course Code: ME(M2)/PC/B/T/214	Course Name: Heat Transfer	
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: PC	Nature of Course: Theoretical	

Course

Introduction: Modes of heat transfer.

content/Syllabus:

Conduction: Fourier law of heat conduction for isotropic material. Thermal conductivity. Derivation of general heat conduction equation. Non- dimensionalisation - thermal diffusivity and Fourier number. Types of boundary conditions. Solution of steady one dimensional conduction problem with and without heat generation. Analogy with electrical circuits. Critical thickness of insulation. Fins-rectangular and pin fins. Fin effectiveness and efficiency. Lumped parameter approach and significance of time constant. Biot number. Solution of 1-D transient heat conduction equation without generation using product solution.

10 Hours

Radiation: Physical mechanism of thermal radiation. Laws of radiation. Definition of black body, emissive power. Radiation intensity. Reflectivity. Transmissivity. Irradiation, radiosity. Radiation view factor and its properties. Radiation exchange between black bodies Concept of grey-diffuse-isotropic surface. Exchange between GDI surfaces by radiation network method. Radiation shielding. 8Hours

Course Outcomes (COs):	M n tll dd CC 11 H ee CC CC CC CC CC	Momentu ondimen hickness imensio Correlati 5 Hours	im ar nsiona by ir nal so ons-fo hanger ness-N ents of dersta velop rmulat	nd end quantegra blution or ced of the centre of the centr	ntities I methodorouse e fund odolog blems oractic	equals. Scale hod. No Coue ction: Theat of for I should amen gies for associal probability.	tion le ana Natura ette a for ex excha neat e ld be tal lav or ana ciated oblem	in twilysis and con- nd Poternal ngers. xchan able to ws and lyzing to diffs of st	o-dim for flowection vection iseuil and in Intro- gers, 1 o I meclos different eady a	ension ow over n-effe le flo nterna duction rating nanisn rent m mode and un	ns. Ner flatect of ext. Co. I flows not be and single governodes extended the steady of the steady o	on-dim -plate. couplin oncept s. Natur MTD a zing. 4 erning of heat transfe y state I	ension Veloci g on the of deveral conversed and its conversed thours various transfers. (K5)	alisation ty and the conservation weetion correction s heat ter. (K3)	on and therma servation and over a over a on fact	signitial bound on equivalent develor vertical or. Four modes	coefficier ficance adary lay ation. O oped flo al flatpla aling fact	of yer one w.
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1	3	2					1									
		CO2	3	2	2													
		CO3	2	3	1	1										2		
		CO4	2	3	2		1											
		CO5	3	3	2											2		ı

Course Code: ME(M2)/PC/B/T/215	Course Name: Material Science and Engine	eering					
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100					
Category of Course: PC	Nature of Course: Theoretical						

Course content/Syllabus:

Structure: Crystal structure of materials, crystal systems, unit cells and space lattices, miller indices of planes and directions, packing geometry in metallic, ionic and covalent solids. Imperfections in crystalline solids and their role in influencing various properties.

Diffusion: Fick's laws and application of diffusion in sintering, doping of semiconductors and surface hardening of metals.

Mechanical Properties: stress-strain diagrams of metallic, modulus of elasticity, yield strength, tensile strength, toughness, elongation, plastic deformation, viscoelasticity, hardness, impact strength, creep, fatigue, ductile and brittle fracture.

Electronic Properties: Concept of energy band diagram for materials – conductors, semiconductors and insulators, electrical conductivity effect of temperature on conductivity, intrinsic and extrinsic semiconductors, dielectric properties.

Metals and Alloys: Solid solutions, solubility limit, phase rule, binary phase diagrams, intermediate phases,

intermetallic compounds, iron-iron carbide phase diagram, heat treatment of steels; cold and hot working of metals; recovery, recrystallization and grain growth; microstreture, properties and applications of ferrous and non-ferrous alloys.

Ceramics: Structure, properties, processing and applications of traditional and advanced ceramics. **Polymers:** Classification, polymerization, structure and properties, additives for polymer products, processing and applications.

Composites: Powder Metallurgy; Properties and applications of various composites.

Introduction to Advanced Materials and Tools: Smart materials, exhibiting ferroelectric, piezoelectric, optoelectric, nanomaterials, synthesis, properties and applications, biomaterials, superalloys, shape memory alloys. Materials characterization techniques.

Environmental Degradation: Corrosion and oxidation of materials, prevention.

Course	The s	tudents	of the c	ourse	shoul	d be a	ble to	1									
Outcomes	CO1:	Identif	y mater	rials a	nd ma	terial	proce	ssing	echno	logies	used fo	or diffe	erent en	gineer	ing app	lication	s.
(COs):	(K2)																
	CO2:	Interp	et the v	arious	struc	tures	and pi	roperti	es of 1	materi	als, ma	terial c	haracte	rizatio	n techn	iques.	
	(K2)																
	, ,	Solve	numeri	cal pro	blem	s relat	ed to	materi	als, pr	operti	es and	process	ses. (K	3)			
		CO3: Solve numerical problems related to materials, properties and processes. (K3) CO4: Analyze various structures of materials to investigate the structure –property correlation for various															
		engineering applications. (K4)															
	_	Identif				ateria	l degr	adatio	n and	techni	aues fo	r preve	ention o	of degra	adation.	(K2)	
CO-PO Mapping:			1 PO2								+						П
	CO)1 3				1											1
	CO)2 3				2											1
	CO		3			1								2			-
						1								4			-
	CO4 3 2 1 2																
	CO	5 3					1	2									

Course Code: ME(M	(2)/F	PC/B/S/	211				С	ourse l	Name	: Com	puter	Aided 1	Draftin	g				
Credits: 1.5							C	ontact	Hour	s/Wee	k (L-7	T-P): 0-	0-3	F	full Ma	rks: 10	0	
Category of Course:	PC						N	ature o	of Cou	ırse: S	essior	al						
Course	In	troducti	on to	a con	nputer	aideo	d draf	ting so	oftwar	e, Bas	ic con	nmands	s of 2D	drafti	ng, Dra	afting a	ssignme	ent
content/Syllabus:	(9	hours).																
	Co	oncept o	of Lay	er, L	ayout,	Mod	lel spa	ace, Pa	aper s	pace,	Viewp	ort, Cı	reation	and us	se of te	emplate	, Drafti	ng
	as	signmei	nt (12	hours).													
	Di	mensio	ning, l	Block	s, Att	ribute	s, Ac	cessing	g inter	nal an	d exte	rnal da	tabase	files, I	Orafting	g assign	ments (12
	ho	urs).																
	Iso	ometric	drawi	ng us	ing is	o-plaı	nes, D	rafting	g assig	gnmen	t (9 ho	ours).						
Course	Th	ne stude	nts of	the co	ourse	shoul	d be a	ble to	_									
Outcomes			: Identify the basic 2D drafting tools (drawing and editing) and toolbars in drafting software. (K1,															
(COs):	A.		1. Identify the basic 2D drawing tools (drawing and editing) and tooloats in drawing software. (K1,															
	S1	′																
		O2: Inte	-	he co	ncept	of lay	yer, aı	nd of n	nodel	space	and p	aper sp	ace in	conjun	ction v	vith vie	wport.	
		2, A2,																
												_				•	2, A2, S	,
			_	_	ering	draw	ing o	f simp	le ma	chine	comp	onents	up to	its pap	er prin	tout wi	th prop	er
		ale. (K3													~~			
G0 D0 14	C	O5: Cor														DC CA	DG O 2	
CO-PO Mapping:			POI	PO2		PO4		PO6	PO7			PO10	POII	PO12		PSO2	PSO3	
		CO1			1		3	1		1	2	1			2			
		CO2			1		3	1		1	2	1			2			
		CO3			1		3			1	1	1			1			
		CO4 2 2 3 1 1 2 2 2																
		CO5	2		1		3	1		1	2	2			2			

Course Code: ME(N	12)/PC/B/S/212	Course Name: Machine Drawing – I (Draw	ring Board Mode)
Credits: 1.5		Contact Hours/Week (L-T-P): 0-0-3	Full Marks: 100
Category of Course:	PC	Nature of Course: Sessional	
Course	Screw threads, Screwed fastenings	s - Nuts, Bolts, Set screws, Foundation bolts	etc. (2x3 hours) Rivetted
content/Syllabus:	joints and welded joints (2x3 hours	s)	
	Keys, Cotter joint/ Knuckle joint/	Pipe joints (2x3 hours)	
	Pulleys (2x3 hours)		
	Shaft coupling: Rigid/ Flanged/ Fl	exible (2x3hours)	
	Stuffing box (2x3hours)		

Course	The stud	lents o	f the c	course	shou	ld be	able to)								
Outcomes	CO1: De	O1: Describe the functions, uses and appropriate materials of different machine elements. (K2) O2: Apply the knowledge of engineering drawing for machine drawing. (K3)														
(COs):	CO2: Ap	ply th	ne kno	wledg	ge of e	ngine	ering	drawi	ng for	mach	ine dra	wing.	(K3)			
	CO3: De	O3: Develop detailed drawing of machine components. (A4, S4)														
	CO4: De	04: Develop assembly drawing of machine components. (A4, S4)														
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3										1				
	CO2	3	1	1								1				
	CO3	3	1	2							1	1		2	1	
	CO4															

Course Code: ME(M	12)/PC	C/B/S/2	13				Co	urse N	ame:	Electri	ical Te	chnolo	gy Lal	b. (- II))		
Credits: 1.5							Coı	ntact F	Hours/	Week	(L-T-	P): 0-0	-3	Fu	ll Marl	ks: 100	
Category of Course:	PC						Nat	ture of	Cour	se: Se	ssiona	l					
Course	Det	erminat	ion of	phase	e sequ	ience	of a t	hree p	hase A	AC sup	ply						
content/Syllabus:	Stu	dy of di	fferen	t char	acteri	stics o	of a D	C Ger	nerato	r							
	Para	allel op	eration	of si	ngle p	hase	transf	ormer	S								
	Stu	dy of lo	ad per	forma	ance o	of DC	Serie	s Moto	or								
	Star	ting an	d spee	d con	trol o	f a DO	C Shu	nt Mo	tor								
	Syn	chroniz	ation	and V	-curv	e of S	Synch	ronous	Mac	hine							
	Ope	en Circu	ıit & S	Short (Circui	t chai	racteri	istics o	of a si	ngle Pl	hase tı	ansfor	mer St	tudy			
	of n	notor co	ontrol	eleme	ents												
	Det	erminat	rmination of parameters of a 3-phase slip ring induction motor														
	Loa	d characteristics of 3-phase Induction motor															
	Intr	oductio	duction, arrear and assignment														
Course	Th	ne stude	nts of	the co	ourse	shoul	d be a	ble to	_								
Outcomes	CO	D1: Idei	ntify tl	ne ins	trume	nts re	quire	d to pe	erform	the ex	kperin	ent (K	1, S1)				
(COs):	C	D2: Sele	ect the	range	e/ratin	gs of	the ir	strum	ents i	dentifi	ed (K	2, S1)					
	CO	O3: Cor	nprehe	end th	e obje	ective	of the	expe	rimen	t and F	Relate	that wi	th the a	acquire	d theor	etical k	nowledg
	(K	(3, S2)															
	CO	04: Dev	elop t	he cir	cuit d	uly co	onnec	ting se	elected	l instru	ument	s and o	ther de	evices (K2, S2	2)	
	CO	O5: Inte															
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3	2	1						2				3		
		CO2	1	3	2						2				3		
		CO3 1 3 2 2 2 2															
		CO4 1 2 3 2 3 2 3 2															
		CO5	1	1	2	3				1	2		1	1	2		
		005	1	1	4	٦				1	4		T	1			

Course Code: ME(M2)/BS/B/S/214	Course Name: Numerical Analysis	
Credits: 1.5	Contact Hours/Week (L-T-P): 0-0-3	Full Marks: 100
Category of Course: BS	Nature of Course: Sessional	

Course	Numerio	cal An	alysis	and it	s imp	lemer	ntation	throu	igh co	mpute	r progi	rammin	ıg:								
content/Syllabus:	Approxin	nations	s and I	Errors	assoc	ciated	with 1	numer	ical m	ethod	S.				[1🗆3	h]					
	Solution	of no	n-line	ar equ	ation	s:															
	Bisectio	n metl	nod, N	ewtor	ı-Rap	hson	metho	d.							[2🗆3 ł] Solution					
	of linear	r simul	taneoi	ıs equ	ation	s:															
	Direct n	nethod	s: Gau	iss-Jo	rdan e	elimin	ation,	matri	x inve	rsion	using (Gauss-J	ordan	elimina	ation						
															[203	h]					
	Iterative i	method	ls: Jac	obi's	meth	od									[1🗆3	h]					
		Methods for interpolation: Newton's forward difference formula. Newton's backward difference formu																			
	Newton	Newton's forward difference formula, Newton's backward difference formula																			
		Surve fitting:														h]					
		Curve fitting:																			
		ethod of least squared error Methods for differentiation and Integration:														h]					
						_			1/1	1	1/ /	1 1:00		c i							
	-					-		s forw	ard/ba	ckwai	rd/cent	ral diff	erence	nce formulae.							
	Trapezoi						d.								[2🗆3	hJ					
	Solution			-			1.5		**	and	1 4th				5200	1.3					
	Euler's m								Kutta	2 nd an	d 4 ¹¹¹ 01	rder for	mulae		[2🗆3	hJ					
Course Outcomes	CO1: So		_	•				•	41 . 1			.	11								
(COs):	CO2: So CO3: So					_				•			•								
(003).	CO3: 30		-			_	-				ıy willi	аррис	ations.								
CO-PO Mapping:	CO4. D					,					PO10	PO11	PO12	PSO1	PSO2	PSO3					
CO-1 O Mapping.	CO1														1502	1500					
		CO2 3 2 2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2																			
	CO3														1						
	CO4	2	2	2		3	1	1		2			1	3	1						
	004					3							1	,	1						

2nd Year 2nd Semester

Course Code: ME(M	(12)/E	BS/B/M	ATH/7	Γ/221			Co	urse N	Vame:	Mathe	ematic	s - IV						
Credits: 3							Co	ntact]	Hours	/Week	(L-T	-P): 3-()-0	F	ull Ma	rks: 100)	
Category of Course:	BS						Na	ture o	f Cou	rse: Tł	neoret	ical						
Course	Pr	obability	y and S	Statist	ics											(Mar	ks : 50)	
content/Syllabus:	Dε	efinition	of pro	babili	ity; Co	onditi	onal p	robab	ility a	nd ind	epend	ence; E	Bayes' 1	theorer	n; Stati	istical d	lata: mea	an,
	me	edian, n	node,	stand	ard d	eviati	on; R	andor	n var	iables;	Disc	rete an	nd Cor	itinuou	s distr	ibution	; Poisso	on,
	No	ormal ar	nd Bin	omial	distr	ibutic	on; Co	rrelati	ion ar	id Reg	ressic	n; Exp	ectatio	n and	Varian	nce; Ch	ebyshef	f's
	ine	equality.																
	Fo	urier sei	ries an	d Inte	egral T	ransi	forms	:								(Ma	rks:50)	
	Fo	urier sei	ries; P	eriodi	c fund	ctions	; Trig	onom	etric s	eries o	of sine	and co	sines;	Euler's	s formi	ıla; Ev	en and o	dd
	fui	nctions;	Diric	hlet's	cond	itions	; Hal	f rang	e sind	e and	cosine	e series	s; Fou	rier tra	nsform	n, defin	itions a	nd
	pro	operties;	perties; Inverse Fourier transform; Convolution; Laplace transform, properties; Inverse Laplace															
	tra	nsform; Convolution; Z transform and properties.																
Course Outcomes	Th	ne studer	nts of	the co	urse s	hould	l be al	ole to	_									
(COs):	CO	D1: Defi	ne pro	babil	ity, co	nditio	onal p	robab	ility, i	ndepe	ndenc	e of eve	ents					
	CO	D2: Com	nprehe	nd Ba	iyes' t	heore	em an	d prob	abilit	y distri	bution	n functi	ions					
	_	CO3: Ex			•			_						ce				
		CO4: Dis	-			_				-								
									-		nsforn	n Z -tra	nsforn	ns and	their v	arious 1	oropertie	es
CO-PO Mapping:		CO5: Describe Laplace transforms, inverse Laplace transform, Z-transforms and their various properties PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3																
CO-1 O Mapping.		CO1				104	1 03	100	107	100	10)	1 010	1 011	1012	1501	1502	1505	-
		CO1	3	2	1													-
		CO2	3	2	1													
		CO3	3	2	1													

	CO4	3	2	1						
	CO5	3	2	1						

Course Code: ME(M	[2)/]	PC/B/T/	222				Co	ourse l	Name	: Fluid	Mach	ninery -	- I					
Credits: 3							Co	ontact	Hours	s/Wee	k (L-T	T-P): 3-	0-0	F	ull Ma	rks: 10	0	
Category of Course:	PC						N	ature o	of Cou	ırse: T	heore	tical						
Course content/Syllabus:	In Co ca ar tu ef pr Jet	troduction onstruct ompress using, di ad turbir rbomack ficiencie oppellers propuls priopuls	ional for. Raffuser, he equalities, es for and vion de Displace	Featudial, a runneations Velocopump vindm vices,	res: axial a er and Euty d exity d exity d s, fan ills, S Anal t Pun	Incorand made inleter hear ingrains and Slipstrysis on the corange in the corange	mpres nixed for guide d, Ber ms for l turbit ream a of thru Recipr	sible flow ty e vane moulli radia nes. and act st and	and ype m ype m e. Prin equat l and tuator other g and	compraction, Raxial (25 disc the performance)	ressibles; Impof Endotor value flow in hrs.)	e flovoulse and ergy Transvork armachin Special	mac nd reac ransfer ad effic es, Bla l Devi	chines, etion turn, Euler ciency fade twices: Ar	Pumparbines; one differ incost. Differ allysis	, Turb Impell mension ompress ferent lof of flow	ines and er, volumal pund sible flo neads and through (5 hr	nd ite np ow nd gh
Course Outcomes (COs):	C	for reciprocating pump, Air vessel. (9 hrs.) The students of the course should be able to- CO1: Classify different types of fluid machines. (K2) CO2: Explain the operations of fluid machines and associated devices. (K2) CO3: Develop equations for discharge/velocity and head/pressure from first principles. (K3)																
		04: App	-	-			_		•		-			•	•		ines. (K	(3)
CO-PO Mapping:		11												PO12				
		CO1	3	1														1
		CO2	3	1														
		CO3	2	3	1													
		CO4	2	3	2													

Course Code: ME(M	12)/PC/B/T	/223				C	ourse	Name	: Adva	anced	Engine	ering l	Mechar	nics			
Credits: 3						C	ontact	Hour	s/Wee	k (L-7	T-P): 3-	-0-0	F	ull Ma	rks: 10	0	
Category of Course:	PC					N	ature (of Cou	ırse: T	'heore	tical						
Course content/Syllabus:	Strain A indeterm dimension kinetics of in three-o	inate l n; Eul of rigio	beams er's ai d bodi	s. Enengles.	ergy 1 Mass vario	metho s mon us for	ds; C nent o ms; E	astigl f iner uler's	iano's tia of 1	theor	ems. k oodies	Kinema and its	tics of	rigid rties; tl	bodies ree-di	in thr mensior	ree
Course Outcomes (COs):	CO1: Ex CO2: Co CO3: Un CO4: Ap																
CO-PO Mapping:	CO1 CO2 CO3 CO4 CO5	CO2 3 2 CO3 3 CO4 3 3 3 2 CO4 2 CO4 3 CO4 2 CO4															

Course Code: ME(M2	2)/PC/B/T/224	Course Name: Kinematic Analysis and Syntl	hesis
Credits: 3		Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: F	PC	Nature of Course: Theoretical	
Course	Introduction to kinematics of mad	chines, mechanism and structure, kinematic	e pairs; sis; 4-bar linkage
content/Syllabus:	mechanism, kinematic inversion and	d Grashof's criteria, degree of freedom. (6 pe	ds)

Analysis of planar kinematic devices: Velocity analysis of linkages (graphical methods: resolution and composition, instantaneous axis and relative velocity) Acceleration analysis of linkages (graphical and analytical methods), Kennedy's theorem. (10 pds) Linkage: drag link mechanism, automobile steering mechanism, slider-crank mechanism, swinging block mechanism, oscillating arm quick return mechanism, isosceles linkage, elliptic trammel, toggle mechanism, straight line mechanism, pantograph, universal joint, etc. Geneva wheel mechanism, intermittent motion from continuous motion. (4 pds) Gears: Fundamental laws of gearing, types of gears - involute and cycloidal; spur, helical, bevel and worm gears; rack and pinion, gear nomenclature, interference and undercutting - minimum number of teeth, backlash, velocity of sliding. Gear trains: simple, epicyclical, epicyclical bevel gear trains, train value; applications: automobile transmission and others. (10 pds)Cam drive: plate and cylindrical, inline and offset – displacement, velocity and acceleration diagram, different cam displacement functions and cam profiles, analytical approach to design of different types of cams. (6 pds) Syntheses: movability of linkages - Grubler's criterion, type and number syntheses, minimum number of binary linkages in a constrained mechanism, maximum number of hinges on a link, graphical and analytical methods of syntheses, (Freudenstein equation, Chebysev spacing, approximate syntheses. (6 pds) Course The students of the course should be able to-Outcomes CO1: Describe various types of mechanisms and linkages along with different kinematic parameters (K2) (COs): CO2: Compute analytically kinematic parameters associated with planar kinematic mechanisms and devices (K3) CO3: Construct graphically displacement, velocity and acceleration diagrams for planar kinematic mechanisms and devices (K3) CO4: Explain the fundamental laws, working principles, applications and kinematic design aspects of various mechanisms and drives (K2) CO5: Apply kinematic principles to synthesize mechanisms by graphical and analytical methods (K3) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO-PO Mapping: CO₁ 3 CO₂ 2 3 1 1 CO₃ 2 3 1 1 1 **CO4** 3 1 CO₅ 3 2 3 1 2 1

Course Code: ME(M2)/PC/B/T/225	Course Name: Design of Machine Elemen	ts - I
Credits: 3		Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course	e: PC	Nature of Course: Theoretical	
Course	Introduction to design, Design philo	osophy	(2 pds)
content/Syllabus:	Basic Design Considerations		(3 pds)
	Review of common engineering m	naterials for their compositions, properties an	nd applications including
	heat treatment and alloying for imp	rovement of properties.	(5 pds)
	Review of stress analysis for static	loading- axial, bending, torsion loads and c	combined effect, stress
	concentration, Factor of safety		(3pds) Theories
	of failure for static loading		(3 pds)
	Case Studies: Design of mechanical	joints (cotter joint / knuckle joint/ universal	l joint). (4 pds)
	Manufacturing aspects of design –	Manufacturing processes (casting, forming,	, machining, welding etc.)
	Fits and tolerance, surface roughnes	SS	(3 pds)
	Design of shaft including ASME Co	ode	(2 pds)
	Design for Stability - Buckling anal	ysis	(2 pds)
	Design for fatigue loading- S-N cu	rve, Design for finite and infinite life consid	dering effect of mean stress,
	Cumulative fatigue damage, Strain	life equation for LCF and HCF, Case studies	s. (10 pds)
	Application of concept of fracture a	nd creep in design	(05 pds)

Course	The	stude	ents of	f the c	ourse	shoul	ld be a	able to)-									
Outcomes	CO	1: Dis	scuss (design	philo	sophi	es, m	ethodo	ologie	s and	basic	design	consid	eration	s (K2)			
(COs):	CO	2: De	scribe	prop	erties	and co	ompo	sitions	of co	mmor	n engi	neering	mater	ials (K	2)			
	CO	3: Ap	ply t	heorie	es of	failur	e and	conc	ept o	f facto	or of	safety	to sol	ve des	ign pro	oblems	of sim	ıple
	med	chanic	cal cor	mpone	ents ar	nd joi	nts ba	sed or	stres	s anal	ysis (I	(3)						
	CO	4: Sol	ve sha	aft de	sign p	roblei	ms ba	sed on	statio	desig	n prin	ciples	and Co	des (K	3)			
	CO	5: Ap	ply fa	tigue	failure	e theo	ries fo	or sim	ple an	d com	plex o	lesign _l	probler	ns (K3))			
	CO	6: Recognize the role of practical aspects of manufacturing, stability, fracture and creep in real-life																
	des	ign (K2)																
CO-PO Mapping:		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3																
		CO1	3		1			1	1	1								
		CO2	3	2	1													
		CO3	3	2	1													
	(CO4 3 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																
	(CO5																
	C	06	3 1															

Course Code: ME(M	(12)/PC	/B/T/22	26			Cou	ırse N	ame:	Manu	ıfactuı	ring P	rocesso	es				
Credits: 3						Cor	ntact H	Hours/	/Weel	(L-T	`-P): 3	-0-0		Full	Marks	s: 100	
Category of Course:	PC					Nat	ure of	Cour	se: Tl	heoret	ical						
Course	1.	Intro	oducti	on to	Manu	factu	ring P	roces	S								
content/Syllabus:	2.		•								_						making; furnaces;
		ial casti											iii aiiu	11501, 1	nctai n	iciting	rurnaces,
	3.					_			•		-		nd for	oino di	es: dies	: draw	ing, deep
			_				_					~ ~	•				s working
		Defect			_		6,		,,		6,		6,	P		··, r	
	4.					_	esses:	class	ificati	ons; g	gas we	elding;	flame	cutting	g; elect	ric arc	welding-
		ry of he	at gen	eratio	n, po	wer so	ource	select	ion, a	rc stru	ıcture	, arc ch	aracte	ristic e	tc.; met	al trans	sfer in arc
		-				- 1							_		_		ng, MIG,
		G, CO2 –MIG, FCAW, other welding processes like ESW, EBW, PAW, USW, Explosion Welding, ction stir welding etc.: welding consumables: characteristics of weldments: welding defects and															
		ction stir welding etc.; welding consumables; characteristics of weldments; welding defects and pection; welding of non-traditional welding materials; Introduction to newer processes of welding;															
		ering ar											ion to	newer	proces	sses of	weiding;
	5.												o' proc	esses –	like ste	ereo litl	nography,
		, FDM,				_		_					F				<i>6</i> F <i>J</i> ,
Course Outcomes		student						•									
(COs):	CO1	: Identi	fy cor	venti	onal a	and m	odern	manı	ıfactu	ring p	roces	ses and	l their	capabil	ities. (1	K2)	
	CO2	: Categ	orize	proce	sses a	ccord	ing to	proce	ess pa	ramet	ers. (l	K4)					
	CO3	: Descr	ibe di	fferen	t prac	tical	aspect	ts of n	nanuf	acturi	ng pro	ocesses	. (K2)				
	CO4	: Analy	ze rea	ıl life	probl	ems v	vith re	feren	ce to	theore	tical o	concep	ts. (K4	4)			
CO-PO Mapping:		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3															
		CO1	3	2													
		CO2		3										1			
		CO3		2	3									1			
		CO4	2	3		1											
]			_				j]					

Course Code: ME(M2)/PC/B/S/221	Course Name: Machine Drawing - II (Co	omputer terminal Mode)
Credits: 1.5		Contact Hours/Week (L-T-P): 0-0-3	Full Marks: 100
Category of Course	e: PC	Nature of Course: Sessional	
Course	Tool head of a shaping machine		(2x3 hours)
content/Syllabus:	Engine parts: Eccentric, Piston, Cro	oss head and Connecting rod	(5x3 hours)
	Plummer block		(2x3 hours)
	Valves: Steam stop valve, Anyone	e of safety, relief and non-return valves	(5x3 hours)

Course	The stud	lents o	f the c	course	will l	be abl	e to:									
Outcomes	CO1: De	escribe	the f	unctio	ns, us	es an	d appr	opriat	e mate	erial o	f variou	ıs mac	hine co	mpone	ents. (K	2).
(COs):	CO2: A ₁	oply th	e kno	wledg	ge of e	ngine	ering	drawi	ng usi	ng dra	fting so	oftware	e. (K3)			
	CO3: Co	onstruc	et deta	iled p	art dr	awing	s of v	arious	mach	ine co	mpone	nts usi	ng draf	ting so	ftware.	(K5, S4)
	CO4: De	4: Develop assembly drawings of various machine components using drafting software. (K5, S4)														
CO-PO Mapping:		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
	CO1	3													1	
	CO2	3	2			3							2	1		
	CO3	3	3	2		3				1				2	3	
	CO4	3	3	2	1	3				1				2	3	

Course Code: ME(M2	2)/PC/B/S/2	222				Co	urse N	Vame:	Fluid	Mech	anics L	aborat	ory			
Credits: 1.5						Co	ntact 1	Hours	/Week	(L-T	-P): 0-()-3	Fı	ıll Mar	ks: 100	
Category of Course: E	ES					Na	ture o	f Cou	rse: Se	ession	al					
Course	Exp.1. Re	ynold	s Expe	erime	nt [La	mina	/Turb	ulent]	and I	Detern	nination	of Fr	ction I	Factor	Exp.2.	
content/Syllabus:	Calibratio	n of V	'-Note	h												
	Exp.3. Ca	librati	on of	Orific	emete	er and	Rotar	neter								
	Exp.4. Sto	kes L	aw													
	Exp.5 Me	tacent	ric He	ight												
	Exp.6. Ax	isymn	netric	Jet												
Course Outcomes	The stude	nts of	the co	urse v	vill be	e able	to:									
(COs):	CO1: Ext	Extract primary variables from measurements. (A4)														
	CO2: Esti	2: Estimate different flow parameters and non-dimensional numbers and their relations. (K2) 3: Verify different laws of fluid mechanics through experiments. (A5)														
	CO3: Ve	rify di	ifferer	nt law	s of fl	uid m	echan	ics th	rough	experi	ments.	(A5)				
	CO4: Ch	aracte	erize d	iffere	nt typ	es of	flow th	hroug	h visua	alizati	on and	measu	rement	. (A5)		
	CO5: Ca	librate	eflow	and p	ressu	re me	asurer	nent d	levices	s. (S3)						
	CO6: Pro	epare (experi	menta	ıl repo	orts. (1	K3)									
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	1	3	1						2	1			1		
	CO2 3 2 1 1															
	CO3 3 2 2 1 1															
	CO4	2	3	1						2	1			1		
	CO5	2	3	1						2	1			1		
	CO6	1	3			1			2	1	2			1		

Course Code: ME(M	(2)/PC/E	3/S/223	Course Name: Heat Power Laboratory – I (Thermodynamics and Heat
			Transfer Laboratory)	
Credits: 1			Contact Hours/Week (L-T-P): 0-0-2	Full Marks: 100
Category of Course:	PC		Nature of Course: Sessional	
Course	1.	Determination of dryness	fraction of steam	
content/Syllabus:	2.	Determination of critical	pressure ratio for an orifice	
	3.	Measurement of temperat	ture by different methods	
	4.	Determination of thermal	conductivity by Guarded Hot Plate method	
	5.	Determination thermal co	onductivity of insulating powder	
	6.	Determination of thermal	conductivity of metal rod	
	7.	Heat transfer from a pin f	īn	
	8.	Natural convection from	vertical cylinder	
	9.	Determination of Emissiv	rity of metal disc	
Course	The st	udents of the course should	be able to	
Outcomes	CO1:	Observe phenomena related	to thermodynamics and heat transfer. (A1)	
(COs):	CO2:	Examine the experimental da	ata. (K2, A2)	
	CO3:	Improve the concept through	n experiments. (K3, A4)	
	CO4:	Verify principles of thermod	ynamics and heat transfer. (K4, A5)	

CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	1						1	2						
	CO2	2	3			1			1	2						
	CO3	2	3	1						2						
	CO4	2	3	1	1						1					

2)/PC/B/S	/224				Co	ourse l	Name	: Appl	ied M	echanio	es Lab	oratory	– I			
					Co	ontact	Hours	s/Weel	k (L-T	C-P): 0-	0-2	F	ull Ma	rks: 10	0	
PC					N	ature o	of Cou	ırse: S	ession	al						
Experime	ents on	Stren	gth o	f Mat	erials	and E	ngine	ering N	Mecha	nics (D	eform	able bo	dy med	chanics	and rig	id
body med	chanics	s)														
A.	Experi	ments	relate	ed to	funda	menta	l mecl	hanica	l prop	erties l	ike ten	sile tes	t, torsi	on test,	bending	g
	test etc	: .														
							nal pr	operti	es of e	enginee	ering co	ompone	ents lik	e flywl	neel (ma	iss
					_					. 1.1		1. cc	1			
								• •			_			nıques.		
	· · · · · · · · · · · · · · · · · · ·															
The stude	students of the course should be able to –															
CO1: Ex	perime	ent the	e basi	c con	cepts	of Me	chani	cs (Ri	gid B	ody an	d Defo	ormable	e Body) throu	gh simp	ole
laborator	y tests.	. (K3,	A2)													
CO2: Int	erpret 1	the me	echani	ical b	ehavio	or of e	ngine	ering r	nateri	als thro	ough si	mple la	borato	ry tests	. (K2,	
A2)	_						_	_			_	_		-		
CO3: De	velop a	a com	prehe	nsive	idea c	n data	a colle	ection,	analy	sis and	preser	ntation.	(K3, A	(2)		
CO4: Re	cogniz	e the	experi	ment	al erro	ors ass	ociate	d with	labor	atory to	ests. (F	(2)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3					1			1							
CO2	3					1			1							
CO3	+	3						2	2	2						
CO4		_						-	1 -	-	ĺ	l				i
	Experime body med A. B. C. D. The stude CO1: Ex laborator CO2: Into A2) CO3: De CO4: Rec	Experiments on body mechanics A. Experiments of test etc. B. Experiments of Correl D. Preliments of CO1: Experiments of CO2: Interpret to A2) CO3: Develop a CO4: Recogniz PO1 CO1 3 CO2 3	Experiments on Strends body mechanics) A. Experiments test etc. B. Experiments moment of it C. Correlation D. Preliminary The students of the correlation of the c	Experiments on Strength or body mechanics) A. Experiments relatives test. B. Experiments relatives moment of inertian of inertian of the course of the course of the course of the students of the course of the course of the students of the course of the students of the course of the cours	Experiments on Strength of Matebody mechanics) A. Experiments related to test etc. B. Experiments related to moment of inertia), sprice. Correlation between van D. Preliminary concepts of The students of the course should CO1: Experiment the basic concludational laboratory tests. (K3, A2) CO2: Interpret the mechanical bear A2) CO3: Develop a comprehensive CO4: Recognize the experiments PO1 PO2 PO3 PO4 CO1 3 CO2 3	Experiments on Strength of Materials body mechanics) A. Experiments related to fundatest etc. B. Experiments related to configure moment of inertial, spring etc. C. Correlation between various D. Preliminary concepts of experiments related to configure moment of inertial, spring etc. C. Correlation between various D. Preliminary concepts of experiments of the course should be a CO1: Experiment the basic concepts laboratory tests. (K3, A2) CO2: Interpret the mechanical behavior A2) CO3: Develop a comprehensive idea of CO4: Recognize the experimental error CO4: Recognize the experimental err	Experiments on Strength of Materials and Experiments on Strength of Materials and Experiments related to fundamental test etc. B. Experiments related to configuration moment of inertial, spring etc. C. Correlation between various mechan D. Preliminary concepts of experiments about the students of the course should be able to CO1: Experiment the basic concepts of Melaboratory tests. (K3, A2) CO2: Interpret the mechanical behavior of exact A2) CO3: Develop a comprehensive idea on data CO4: Recognize the experimental errors assembly a complete side of the course should be able to CO1: Interpret the mechanical behavior of exact A2) CO3: Develop a comprehensive idea on data CO4: Recognize the experimental errors assembly a couple of the course should be able to CO1: Interpret the mechanical behavior of exact A2) CO3: Develop a comprehensive idea on data CO4: Recognize the experimental errors assembly a couple of the course should be able to CO1: Interpret the mechanical behavior of exact A2)	Experiments on Strength of Materials and Engineer body mechanics) A. Experiments related to fundamental mechanics etc. B. Experiments related to configurational property moment of inertial, spring etc. C. Correlation between various mechanical D. Preliminary concepts of experimental error. The students of the course should be able to — CO1: Experiment the basic concepts of Mechanical behavior yests. (K3, A2) CO2: Interpret the mechanical behavior of engineer A2) CO3: Develop a comprehensive idea on data collection of the experimental errors associated and the collection of the collecti	Contact Hours/Weel PC Nature of Course: Sexperiments on Strength of Materials and Engineering Mody mechanics) A. Experiments related to fundamental mechanica test etc. B. Experiments related to configurational propertion moment of inertial, spring etc. C. Correlation between various mechanical propertion moment of the course should be able to — CO1: Experiment the basic concepts of Mechanics (Rilaboratory tests. (K3, A2) CO2: Interpret the mechanical behavior of engineering roughly accompanied to the course should be able to — CO4: Recognize the experimental errors associated with polypoid polyp	Contact Hours/Week (L-TPC) Rature of Course: Session Experiments on Strength of Materials and Engineering Mechalody mechanics) A. Experiments related to fundamental mechanical properties etc. B. Experiments related to configurational properties of emoment of inertia), spring etc. C. Correlation between various mechanical properties to D. Preliminary concepts of experimental errors associated. The students of the course should be able to — CO1: Experiment the basic concepts of Mechanics (Rigid B laboratory tests. (K3, A2) CO2: Interpret the mechanical behavior of engineering materi A2) CO3: Develop a comprehensive idea on data collection, analy CO4: Recognize the experimental errors associated with laboratory and possible p	Contact Hours/Week (L-T-P): 0-PC Nature of Course: Sessional Experiments on Strength of Materials and Engineering Mechanics (Engineering) A. Experiments related to fundamental mechanical properties I test etc. B. Experiments related to configurational properties of engineer moment of inertia), spring etc. C. Correlation between various mechanical properties tested the D. Preliminary concepts of experimental errors associated with The students of the course should be able to — CO1: Experiment the basic concepts of Mechanics (Rigid Body and laboratory tests. (K3, A2) CO2: Interpret the mechanical behavior of engineering materials through the course of the experimental errors associated with laboratory to the course of the experimental errors associated with laboratory to the course of the experimental errors associated with laboratory to the course of the experimental errors associated with laboratory to the course of the experimental errors associated with laboratory to the course of the experimental errors associated with laboratory to the course of the experimental errors associated with laboratory to the course of the experimental errors associated with laboratory to the course of the experimental errors associated with laboratory to the course of the experimental errors associated with laboratory to the course of the experimental errors associated with laboratory to the course of the	Contact Hours/Week (L-T-P): 0-0-2 PC Nature of Course: Sessional Experiments on Strength of Materials and Engineering Mechanics (Deform body mechanics) A. Experiments related to fundamental mechanical properties like ten test etc. B. Experiments related to configurational properties of engineering commoment of inertia), spring etc. C. Correlation between various mechanical properties tested through D. Preliminary concepts of experimental errors associated with mechanical through the students of the course should be able to — CO1: Experiment the basic concepts of Mechanics (Rigid Body and Defolaboratory tests. (K3, A2) CO2: Interpret the mechanical behavior of engineering materials through si A2) CO3: Develop a comprehensive idea on data collection, analysis and preser CO4: Recognize the experimental errors associated with laboratory tests. (FO) The PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 CO1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contact Hours/Week (L-T-P): 0-0-2 Repertments on Strength of Materials and Engineering Mechanics (Deformable by body mechanics) A. Experiments related to fundamental mechanical properties like tensile test etc. B. Experiments related to configurational properties of engineering component moment of inertia), spring etc. C. Correlation between various mechanical properties tested through difference D. Preliminary concepts of experimental errors associated with mechanical threat students of the course should be able to— CO1: Experiment the basic concepts of Mechanics (Rigid Body and Deformable laboratory tests. (K3, A2) CO2: Interpret the mechanical behavior of engineering materials through simple lated. CO3: Develop a comprehensive idea on data collection, analysis and presentation. CO4: Recognize the experimental errors associated with laboratory tests. (K2) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contact Hours/Week (L-T-P): 0-0-2 Full Ma PC Nature of Course: Sessional Experiments on Strength of Materials and Engineering Mechanics (Deformable body mechanics) A. Experiments related to fundamental mechanical properties like tensile test, torsic test etc. B. Experiments related to configurational properties of engineering components lik moment of inertia), spring etc. C. Correlation between various mechanical properties tested through different techn D. Preliminary concepts of experimental errors associated with mechanical testing. The students of the course should be able to — CO1: Experiment the basic concepts of Mechanics (Rigid Body and Deformable Body laboratory tests. (K3, A2) CO2: Interpret the mechanical behavior of engineering materials through simple laborato A2) CO3: Develop a comprehensive idea on data collection, analysis and presentation. (K3, A2) CO4: Recognize the experimental errors associated with laboratory tests. (K2) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 CO1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contact Hours/Week (L-T-P): 0-0-2 Full Marks: 100 Experiments on Strength of Materials and Engineering Mechanics (Deformable body mechanics body mechanics) A. Experiments related to fundamental mechanical properties like tensile test, torsion test, test etc. B. Experiments related to configurational properties of engineering components like flywh moment of inertia), spring etc. C. Correlation between various mechanical properties tested through different techniques. D. Preliminary concepts of experimental errors associated with mechanical testing. The students of the course should be able to — CO1: Experiment the basic concepts of Mechanics (Rigid Body and Deformable Body) throu laboratory tests. (K3, A2) CO2: Interpret the mechanical behavior of engineering materials through simple laboratory tests A2) CO3: Develop a comprehensive idea on data collection, analysis and presentation. (K3, A2) CO4: Recognize the experimental errors associated with laboratory tests. (K2) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contact Hours/Week (L-T-P): 0-0-2 Full Marks: 100 PC Nature of Course: Sessional Experiments on Strength of Materials and Engineering Mechanics (Deformable body mechanics and rig body mechanics) A. Experiments related to fundamental mechanical properties like tensile test, torsion test, bending test etc. B. Experiments related to configurational properties of engineering components like flywheel (mamoment of inertia), spring etc. C. Correlation between various mechanical properties tested through different techniques. D. Preliminary concepts of experimental errors associated with mechanical testing. The students of the course should be able to — CO1: Experiment the basic concepts of Mechanics (Rigid Body and Deformable Body) through simple laboratory tests. (K3, A2) CO2: Interpret the mechanical behavior of engineering materials through simple laboratory tests. (K2, A2) CO3: Develop a comprehensive idea on data collection, analysis and presentation. (K3, A2) CO4: Recognize the experimental errors associated with laboratory tests. (K2) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Course Code: ME(M2	2)/P	C/B/S/2	25				Co	urse N	ame:	Works	shop P	ractice	- III					
Credits: 1.5							Co	ntact F	lours/	Week	(L-T-	P): 0-0	-3	Fu	ıll Mar	ks: 100		
Category of Course: P	C						Na	ture of	Cour	se: Se	ssiona	1						
Course content/Syllabus:	dı In m lil	orging: lawing of troduction oulds by the permemonstrates.	out, up ion to y using neabil	settin moule g selectity, r	g, nec ding p cted p noistu	king bractic atternate co	etc.; i ce – p c's; in ontent	ntrodu repara troduc t, shu	ction tion o tion to tter i	to forg f mou melti	ge wel lding ng an	ding. sand ai d pouri	nd use	of mou	ılder's xperim	tools; 1	naking nd testi	of ng
Course Outcomes (COs):	C C C	he stude O1: Rec O2: Exp O3: Per O4: Der	cogniso blain the form t	e varione pro	ous to pertie	ols ares of r	nd acc nould opera	essori ing sa tions l	nds. (l ike dr	K2) awing	out, u	psettin	g, necl	king etc	C	1	s. (K2)	
CO-PO Mapping:				PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO10	PO11	PO12	-	PSO2	PSO3	П
		CO1	3								1	2			1			-
		CO2	3					2		1	2	1			3			-
		CO4	3					1		1	2	1			3			1

3rd Year 1st Semester

Course Code: ME(M	(2)/PC/B/T/	311				C	ourse l	Name	: Fluid	Mach	ninery-	II					
Credits: 3						C	ontact	Hour	s/Wee	k (L-T	`-P): 3-	0-0	F	ull Ma	rks: 10	0	
Category of Course:	PC					N	ature o	of Cou	ırse: T	heoret	ical						
Course	Fluid Cou	apling	and '	Гогqи	e con	verte	- Woı	king	Princi	ple.	(1 h	rs) Ana	alysis c	of axial	flow 1	nachine	es:
content/Syllabus:	Introducti	on to	isolat	ed ae	rofoil	and	cascac	le the	ory-Cl	L and	CD fo	or blad	e desig	n, blac	le nom	enclatu	re,
	degree of	reacti	on, st	alling.	. (4	hrs)											
	Performano					-										(4 h	
	Turbines-	Franc	is, Ka	plan a	ınd Pe	elton v	wheel-	opera	ting cl	naracte	eristics	and M	Iuschel	curves	s, Gove	rning of	f
	Turbines.															(6 h	
	Dimensio	nal an	alysis	for f	luid n	nachir	nery: I	Dimen	sionle	ss qua	ntities	and th	eir use	in desi	gn, sel	ection a	ınd
	testing.	`	3 hrs)														
	Cavitation												,				-
	and turbir	•				-										_	_
		res etc., Bend guide vanes and flow straightener. (6 hrs) Interaction of pumps and Turbines are tems: Series and Parallel operation of Pumps, Performance and selection of Pumps for different system acteristics. Surging in Pipelines and method of control															
		acteristics, Surging in Pipelines and method of control.														ns	
	characteri															`	
									rtace v	ortice	s, bası	c geon	netry ar	id dime	ensions	. (4 hrs)
Course	The stude																
Outcomes	CO1: Exp		-				-	_	-				_				
(COs):	CO2: Des					_					•		ine syst	tems.			
	CO3: Sele					_						-					
	CO4: An	alyse	the p	erforn	nance	char	acteris	stics o	of diff	erent	types a	and ar	rangem	ents p	ump ai	nd turb	ine
	systems.						_										
	CO5: Det												1	1	T	1	_
CO-PO Mapping:				PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	1														
	CO2	3	1														
	CO3	2	2	3													
	CO4	2	3	2													1
	CO5	2	3	1													1
	I I	1	<u> </u>	<u> </u>	<u> </u>	 _ _ _ _ _ _ _ _ 	1	1	I.	ı	l	1	1	I	<u> </u>	I	ш

Course Code: ME(M	2)/P	C/B/T/3	12				Cou	ırse Na	ame: I	Dynan	nics of	Mach	ines			•		
Credits: 3							Con	tact H	ours/	Week	(L-T-	P): 3-0	-0	Ful	ll Mark	s: 100		
Category of Course:	PC						Nat	ure of	Cours	se: The	eoretic	cal						
Course content/Syllabus:	go deg for	ndy of dy vernors, gree-of-f rce and grees-of-	gyroso reedor displac	cope, n syst	balan em w it trai	cing of tith ap asmis	of reci plicat sibility	procation to	ting a rotati ration	nd rota ng unb meas	ating in a salance our ing	masses e, whir instru	. Free a ling of ments.	and for shaft – Natura	ced vit - critica ıl freqi	oration al speed uency	of sing l of sha	le ft,
Course Outcomes (COs):	CC	e studen 01: Intro OOF mod	duce tl	ne me	chani	cs of	vibrat	ion an	d to i					_	chanica	ıl syste	m using	g a
	o C C li C	CO2: Proutput of a coar Under CO4: Acque ke in-line CO5: Under CO6: Acque o underst	an inte derstat uire the e, radi lerstan uire th	ernal content the known al, V-d the ne fun	combue math wledgengin basic dame	nstion hemat ge of r e, etc mech ntal k	enginical the rotatire. anics nowle	neories ng bala of gyr edge of	s of Fl ancing	ywhee and e	el anal ngine tion a	ysis in force b	recipro palancii pplicat	ocating ng for v	engine ⁄arious	types o	of engir	nes
CO-PO Mapping:		CO1	PO1 3	PO2 3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	-

CO2	3	3	3	1					1	
CO3	3								2	
CO4	3	2	2						2	
CO5	3	2							2	
CO6	3	2							2	

Course Code: ME(M	(2)/PC/B/T/	313				Co	urse l	Name:	Interi	nal Co	mbusti	on Eng	gine				
Credits: 3						Co	ntact	Hours	s/Weel	(L-T	-P): 3-	0-0	F	ull Ma	rks: 10)	
Category of Course:	PC					Na	iture c	of Cou	rse: T	heoret	ical		•				
Course	Introduc	tion: F	rincip	ole of	worki	ng, S	I and	CI eng	gines, '	Two-s	troke a	ınd Fo	ır-strok	e engi	nes, Co	mpone	nts
content/Syllabus:	of I.C. En	gine. 2	2Hour	rs													
	Cycles: A	nalysi	s of a	ir stan	dard	cycles	s (Otto	o, Die	sel, Du	ıal), fu	ıel-air	cycles	and act	ual cyc	ele. 3H	ours	
	Fuels: R				•									_			
	characteri				_			-		_						_	
	(liquid, ga		-	_		, CNO	3, Bio	gas et	c.), Ai	r requ	iremei	ıt, Ana	lysis o	f comb	ustion	product	ts,
	HHV and Fuel Intr					Comb		Ai	f., 1	matia m		mant I	Vanlein	~ ~	ا ماست	malroia	o.f
	a simple of																
	5Hours																
	Fuel Intr									fuel i	njectio	n syste	ms, Wo	orking	princip	le, Engi	ine
	requireme		•	-	-					_					_		
	Ignition:																
		bustion: Theories of normal and abnormal combustion in SI &CI engine, parameters influencing bustion, prevention of abnormal combustion in SI &CI engine. Types of combustion chamber inciple of combustion chamber design in SI &CI engine. 5Hours														ıg	
		oustion, prevention of abnormal combustion in SI &CI engine. Types of combustion chamber neiple of combustion chamber design in SI &CI engine. 5Hours															
		• • • • • • • • • • • • • • • • • • • •														ng	
	of two str				_	_	_	•		•	_	_		_	_	_	_
	pumps. 31	Hours															
	Lubricati	ion: Pi	rincipl	le of 1	ubrica	ation,	prope	rties o	of lubr	icating	g oil, lu	bricati	on syst	ems. 2	Hours		
	Cooling:	Princi	ple of	cooli	ng, aiı	r & w	ater c	ooling	syste	ms. 11	Hour						
	Performa			_			-								es of		
	dynamom				•					_	_	metho	ds. 5H	ours			
	Pollutant							•									
	Recent D	evelop	ment	s of E	Engin	es: Ho	CCI e	ngines	s, Wan	kel en	gines,	Hybric	l vehicl	le engi	nes. 2H	lours	
Course	The stude																
Outcomes	CO1: Des		-		•			•	•								
(COs):	CO2: App	•			-		l princ	ciples	for an	alyzin	g engii	ne com	ponent	s.			
	CO3: Ana	•	-	-													
	CO4: For							•						- ~~.	- ~		\perp
CO-PO Mapping:			PO2	PO3	PO4	PO5		PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	1				2	2									↓
	CO2	2	3	1			2	2]
	CO3	2	3	2			2	2							1		
	CO4	1	2	3	2		2	2							2		

Course Code: ME(M2	2)/PC/B/T/314	Course Name: Design of Machine Elements	- II
Credits: 3		Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: F	PC	Nature of Course: Theoretical	
Course	Design of - Screw joints / bolted joi	nts, Transmission screws, Riveted joints and	welded joints (12pds)
content/Syllabus:	Design of shaft coupling (rigid and	flexible) (4 pds)	
	Clutches: Use of clutch, Classificati	on of clutches based on actuating method, op	erating principle, coupling
	method, Description of friction clu	tch, automatic type disc clutch, hydraulical	lly operated multiple disc
	clutch, mechanically operated clutch	n release mechanism, Actuating force and frie	ctional torque equation

	based o	n unifo	rm pre	essure	and u	nifor	m wea	r, fric	tion m	aterial	, Simpl	le calcı	ılation	of heat	release	rate, C	one
	clutch,	centrifi	ıgal cl	utch,	proble	ems (7pds).										
	Brakes:	Band	Brake	, shor	t shoe	e brak	e, sel	f-ener	gizing	and c	le-ener	gizing	brake,	long s	hoe dru	ım brak	e –
	pressure	distri	oution	, force	e and	torqu	e anal	ysis e	tc. (6p	ds).							
	Belt dri	ve: De	sign o	f belt	(Flat	Belt a	nd V-	Belt)	and p	ulley (5 pds).						
	Chain c		• •	rolle	r chai	n- co	nstruc	tions,	polyg	onal e	effect,	Design	of cha	ain dri	ve, sele	ection fr	om
Course	The stu	dents o	f the c	ourse	shou	ld be	able to	o:									
Outcomes	CO1: D																and
(COs):	chain d	in drives.															
	CO2: A	in drives. 2: Apply the basic concepts to design various machine elements viz. joints, brakes, clutches, belt															and
	chain d																
	CO3: S	olve si	mple p	roble	ms re	lated	to var	ious n	nachin	e elem	ents.						
	CO4: A	pply tl	ne prir	ciple	s of d	esign	to sol	ve co	mplex	real l	ife pro	blems	involv	ing var	ious de	sign co	des
	and star	dards.															
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3		1			1										
	CO2	1	3	2													
	CO3	1	2	3		1				1							
	CO4	1	2	1	3				1						2		

Course Code: ME(M	[2)/	PC/B/	Γ/315				Co	ourse l	Name	Mach	ining	Techno	ology a	nd Met	trology			\neg
Credits: 3							Co	ontact	Hours	s/Weel	(L-T	'-P): 3-0	0-0	Fu	ıll Mar	ks: 100		
Category of Course:	PC						N	ature o	of Cou	rse: Tl	heoret	ical		·				
Course	N	l achini	ng- Ma	achinii	ng pri	nciple	s, mot	ions re	equire	d and c	chief e	lement	s in ma	chining	g; basic	idea of	machi	ne
content/Syllabus:	to	ool; cla	ssifica	tion/ ty	ypes o	of mac	hine t	ools.										
	m ta de	nilling nechani nper tur	machir sms; b ning, t index	ne, bro pasic a hread ing ar	oachin and au cuttin nd ele	g mad ixiliar ig, gea ement	chine, y mot ar cutt ary id	and g tions, ing, he lea ab	rindin types, elical	g mac speci millin	hine- fication g etc.;	their in ons and estima	nporta application of	nt cons cations/ f machi	truction opera ning ti	nal feat tions, i me; job	machino cures an ncludin holdin finishin	ıd ıg ıg
	C	utting	tools -	Mater	ials o	f cutti	ng too	ols, ele	menta	ary ide	a of to	ool geo	metry,	tool we	ear etc.			
	Iı	ntroduc	tion to	the p	rincip	les an	d app	licatio	ns of	non-co	onven	tional 1	nachin	ing pro	cesses	; emerg	ing are	as
	ir	n mach	machining technology. rface quality- Waviness, roughness, surface integrity; influence of surface unevenness on performance															
			rface quality- Waviness, roughness, surface integrity; influence of surface unevenness on performance														ce	
	0	f mach	nachined components.															
	a	conom	rface quality- Waviness, roughness, surface integrity; influence of surface unevenness on performance machined components. etrology- Machining accuracy, various types of error, the concepts of maximum attainable accuracy and phomically feasible accuracy, the factors affecting accuracy; principles of measuring and gauging; curacy, precision and sensitivity of measuring instruments; line and end standards of measurement; hits, fits and tolerances; plug and snap gauges; limit gauges- Taylor's principle; comparators;															
						-	_			_			-	-	-		ement of	
				_		_		-	-								f surfac	
	ro	oughne	ss- the	vario	ıs par	amete	rs and	l meas	ureme	ent prin	nciples	s; intro	duction	to lase	er metr	ology.		
Course	T	he stud	lents o	f the c	ourse	shoul	d be a	ble to	_									
Outcomes	C	O1: O	utline t	he bas	sic pri	nciple	s of n	nachin	ing te	chnolo	gy.							
(COs):	C	O2: D	escribe	differ	ent m	achin	e tools	s and r	elated	l opera	tions.							
					_							_			cuttin	g tools.		
					-	-						ing pro						
					_			•	•				machir	ned con	nponen	ts.		
	C	O6: A												1	1		г	
CO-PO Mapping:				PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1	3															

1

CO2

CO3

3

CO4	3				1				
CO5	3			1	2				
CO6	3			1					

12)/.	PC/B/S	5/311			Cou	rse N	ame: V	Vorks	hop Pr	actice	IVA						
					Con	tact H	lours/V	Week	(L-T-F): 0-0	-3		Full N	larks:	100		
PC					Natı	ure of	Cours	e: Ses	sional								
ma abo Ex a la	achines, milling machines, grinding machines; machine shop work involving different operations by using ove mentioned machines through making of jobs. Apperiments on: Study of the speed structure of a lathe, study of apron mechanism and calibration of feeds in athe. Budy and grinding of various cutting tools.													ng			
CC ma CC op	tudy and grinding of various cutting tools. he students of the course should be able to O1: Discuss different types of machine tools like lathes, drilling machines, shaping machines, planning machines, slotting machines, milling machines, grinding machines. O2: Perform different machining operations on Lathe to manufacture a pin including thread cutting perations. O3: Perform different machining operations on Lathe to manufacture a lathe center.																
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3											-						
	PC Int ma ab Exx a 1 Stn CC op CC CC	Introduct machines above me Experime a lathe. Study and CO1: Dismachines CO2: Pe operation CO3: Per CO4: Cal	Introduction to machines, milliabove mentione Experiments on a lathe. Study and grind The students of CO1: Discuss of machines, slotti CO2: Perform operations. CO3: Perform operations. CO4: Calibrate PO1 CO1 3 CO2 2 CO3 2	Introduction to mach machines, milling ma above mentioned mac Experiments on: Study a lathe. Study and grinding of The students of the conformachines, slotting machines, slotting machines, cod: Perform different operations. CO3: Perform different CO4: Calibrate the performachines of the conformachines of the conformachines, slotting machines, slotting m	Introduction to machine to machines, milling machines above mentioned machines. Experiments on: Study of to a lathe. Study and grinding of varied. The students of the course CO1: Discuss different type machines, slotting machines. CO2: Perform different machines. CO3: Perform different machines. CO4: Calibrate the perform. PO1 PO2 PO3 CO1 3 1 CO2 2 1 CO3 2 1 CO3 2 1 CO3 2 1 CO3 CO1 CO3 CO3	Introduction to machine tools - machines, milling machines, grin above mentioned machines throu Experiments on: Study of the spe a lathe. Study and grinding of various cu The students of the course should CO1: Discuss different types of machines, slotting machines, mil CO2: Perform different machin operations. CO3: Perform different machini CO4: Calibrate the performance PO1 PO2 PO3 PO4 CO1 3 1 CO2 2 1 CO3 2 1	Contact Hone PC Nature of Introduction to machine tools - lather machines, milling machines, grinding above mentioned machines through machines on: Study of the speed stralathe. Study and grinding of various cutting to The students of the course should be all CO1: Discuss different types of machines, slotting machines, milling in CO2: Perform different machining operations. CO3: Perform different machining operations. CO4: Calibrate the performance of approximate the performance of approx	Introduction to machine tools - lathes, drill machines, milling machines, grinding machine above mentioned machines through making a Experiments on: Study of the speed structure a lathe. Study and grinding of various cutting tools. The students of the course should be able to CO1: Discuss different types of machine to machines, slotting machines, milling machine CO2: Perform different machining operation coperations. CO3: Perform different machining operation CO4: Calibrate the performance of apron me PO1 PO2 PO3 PO4 PO5 PO6	Contact Hours/Week PC Nature of Course: Ses Introduction to machine tools - lathes, drilling machines, milling machines, grinding machines; mabove mentioned machines through making of jobs Experiments on: Study of the speed structure of a lathe. Study and grinding of various cutting tools. The students of the course should be able to CO1: Discuss different types of machine tools lil machines, slotting machines, milling machines, gri CO2: Perform different machining operations or operations. CO3: Perform different machining operations on L CO4: Calibrate the performance of apron mechanistics PO1 PO2 PO3 PO4 PO5 PO6 PO7 CO1 3 1 CO2 2 1 2 CO3 2 1 2	Contact Hours/Week (L-T-PPC) Nature of Course: Sessional Introduction to machine tools - lathes, drilling machines machines, milling machines, grinding machines; machine above mentioned machines through making of jobs. Experiments on: Study of the speed structure of a lathe, stalathe. Study and grinding of various cutting tools. The students of the course should be able to CO1: Discuss different types of machine tools like lath machines, slotting machines, milling machines, grinding CO2: Perform different machining operations on Lathe to CO4: Calibrate the performance of apron mechanism, speed PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 CO1 3 1 CO2 2 1 2 2 CO3 2 1 CO3 2 2 CO3 2 CO3	Contact Hours/Week (L-T-P): 0-0-PC Nature of Course: Sessional Introduction to machine tools - lathes, drilling machines, sha machines, milling machines, grinding machines; machine shop above mentioned machines through making of jobs. Experiments on: Study of the speed structure of a lathe, study of a lathe. Study and grinding of various cutting tools. The students of the course should be able to CO1: Discuss different types of machine tools like lathes, drimachines, slotting machines, milling machines, grinding machine CO2: Perform different machining operations on Lathe to operations. CO3: Perform different machining operations on Lathe to manu CO4: Calibrate the performance of apron mechanism, speed structure of a pronounce of a pronounce of pronounce o	Contact Hours/Week (L-T-P): 0-0-3 PC Nature of Course: Sessional Introduction to machine tools - lathes, drilling machines, shaping machines, milling machines, grinding machines; machine shop work in above mentioned machines through making of jobs. Experiments on: Study of the speed structure of a lathe, study of apron a lathe. Study and grinding of various cutting tools. The students of the course should be able to CO1: Discuss different types of machine tools like lathes, drilling machines, slotting machines, milling machines, grinding machines. CO2: Perform different machining operations on Lathe to manufacture co4: Calibrate the performance of apron mechanism, speed structure. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 CO1 3 1 2 2 2 1 1 2 2 2 1 1 1 2 2 1 2 1 1 1 1 2 1 1 2 1 1 2 1	Contact Hours/Week (L-T-P): 0-0-3 PC Nature of Course: Sessional Introduction to machine tools - lathes, drilling machines, shaping machine machines, milling machines, grinding machines; machine shop work involvin above mentioned machines through making of jobs. Experiments on: Study of the speed structure of a lathe, study of apron mecha a lathe. Study and grinding of various cutting tools. The students of the course should be able to CO1: Discuss different types of machine tools like lathes, drilling machines machines, slotting machines, milling machines, grinding machines. CO2: Perform different machining operations on Lathe to manufacture a operations. CO3: Perform different machining operations on Lathe to manufacture a lathe CO4: Calibrate the performance of apron mechanism, speed structure and fee PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 CO1 3 1	Contact Hours/Week (L-T-P): 0-0-3 Full Mature of Course: Sessional Introduction to machine tools - lathes, drilling machines, shaping machines, plan machines, milling machines, grinding machines; machine shop work involving difference above mentioned machines through making of jobs. Experiments on: Study of the speed structure of a lathe, study of apron mechanism at a lathe. Study and grinding of various cutting tools. The students of the course should be able to CO1: Discuss different types of machine tools like lathes, drilling machines, shapmachines, slotting machines, milling machines, grinding machines. CO2: Perform different machining operations on Lathe to manufacture a pin it operations. CO3: Perform different machining operations on Lathe to manufacture a lathe center CO4: Calibrate the performance of apron mechanism, speed structure and feed of a local point of the course of apron mechanism, speed structure and feed of a local point of the course of apron mechanism, speed structure and feed of a local point	Contact Hours/Week (L-T-P): 0-0-3 Full Marks: PC Nature of Course: Sessional Introduction to machine tools - lathes, drilling machines, shaping machines, planning machines, milling machines, grinding machines; machine shop work involving different op above mentioned machines through making of jobs. Experiments on: Study of the speed structure of a lathe, study of apron mechanism and califa lathe. Study and grinding of various cutting tools. The students of the course should be able to CO1: Discuss different types of machine tools like lathes, drilling machines, shaping machines, slotting machines, milling machines, grinding machines. CO2: Perform different machining operations on Lathe to manufacture a pin including operations. CO3: Perform different machining operations on Lathe to manufacture a lathe center. CO4: Calibrate the performance of apron mechanism, speed structure and feed of a lathe. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 CO1 3 1	Contact Hours/Week (L-T-P): 0-0-3 Full Marks: 100 PC Nature of Course: Sessional Introduction to machine tools - lathes, drilling machines, shaping machines, planning machines machines, milling machines, grinding machines; machine shop work involving different operations above mentioned machines through making of jobs. Experiments on: Study of the speed structure of a lathe, study of apron mechanism and calibration of a lathe. Study and grinding of various cutting tools. The students of the course should be able to CO1: Discuss different types of machine tools like lathes, drilling machines, shaping machines, machines, slotting machines, milling machines, grinding machines. CO2: Perform different machining operations on Lathe to manufacture a pin including three operations. CO3: Perform different machining operations on Lathe to manufacture a lathe center. CO4: Calibrate the performance of apron mechanism, speed structure and feed of a lathe. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 3 1 2 2 1 2 2 1 2 1 3 3 CO3 2 1 1 2 2 2 1 3 3 CO3 2 1 2 2 1 3 3 3 CO3 2 1 1 2 2 2 1 3 3 3 CO3 2 1 1 2 2 2 1 3 3 3 CO3 2 1 1 2 2 2 1 3 3 3 CO3 2 1 1 2 2 2 1 3 3 3 CO3 2 1 1 3 3 CO3 2 1 1 3 CO3 2	Contact Hours/Week (L-T-P): 0-0-3 Full Marks: 100 PC Nature of Course: Sessional Introduction to machine tools - lathes, drilling machines, shaping machines, planning machines, slotting machines, milling machines, grinding machines; machine shop work involving different operations by using above mentioned machines through making of jobs. Experiments on: Study of the speed structure of a lathe, study of apron mechanism and calibration of feeds a lathe. Study and grinding of various cutting tools. The students of the course should be able to CO1: Discuss different types of machine tools like lathes, drilling machines, shaping machines, planni machines, slotting machines, milling machines, grinding machines. CO2: Perform different machining operations on Lathe to manufacture a pin including thread cutti operations. CO3: Perform different machining operations on Lathe to manufacture a lathe center. CO4: Calibrate the performance of apron mechanism, speed structure and feed of a lathe. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 3 1

Course Code: ME(N	/12)/PC/B/	S/312				Cours	e Nam	e: Me	trolog	y and l	Metallo	graphy	Lab. A	A		
Credits: 1.0					(Conta	ct Hou	ırs/We	ek (L-	T-P):	0-0-2		Full M	larks: 1	00	
Category of Course	PC					Nature	e of Co	ourse:	Sessio	nal						
Course content/Syllabus:	Metrolo Study a length, of eccei Use of o instrum inspecti Metallo samples study. F	nd use diamet ntricity compa- ent; M on; Co ograph repara f micr	of slip ter, tap tr, concernator, leasur oncept aration ation at ostruc	o gauge entrice Optica ement of pro o: Stude n of sp nd stu	ges; Cod angleity and flat, to of docess of dy of mile	alibrate le by 1 d esting Proficience Prof	tion of means mation lomete ility. urgica r study (hard	differ of differ of err, Tooments I microy of mures of ened);	ent me ferent fors. ol make of Th oscope icrostr cast in Study	easurir measu ers' m read a e and o cucture on; St	icrosco ther acc; Mour udy of	pe and ar; Co-	and gants and surface ncept of specin tructure of weld-	uges; M gauges e rough of quali t treatm nen for e mild s ed spec	Measure s; Meas ness me ity con nent of c metallo teel (an	rement; ement of urement easuring trol and different ographic nealed); Study of
Course Outcomes (COs):	The stur CO1: D CO2: P CO3: B CO4: R CO5: C standard	escribe erform uild sp ecogni alibrat	e a me moun pecime ize the	tallur ting o ens for opera	gical if specent metal	micros imen llogra of diff	scope a for me phic e erent r	and of tallog xamin netrol	raphic ations ogical	study. instru	ments.				·	oratory.
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
11 0	CO1	3				2								2	1	
	CO2	2			-					1				3	1	
	CO2															
		4												3	2	
	CO4									1				3	2	

Course Code: ME(l	M2)/	PC/B/S/	313				С	ourse l	Name	: Appl	ied M	echani	cs Lab	oratory	- II			
Credits: 1.0							С	ontact	Hour	s/Wee	k (L-7	Γ-P): 0-	0-2	F	full Ma	rks: 10	0	
Category of Course	: PC						N	ature o	of Cou	ırse: S	ession	nal						
Course	E	xperime	nts o	n Stre	ength	of M	I ateri	als, E	ngine	ering	Mech	anics,	Dynan	nics of	Mach	ines, '	Vibratio	n.
content/Syllabus:	m	Determination of the hardness of various engineering materials, Determination of the moment of inertia of nechanical components like connecting rod, disc, etc., Strain measurement using strain gauges, Bucking est of columns; and related experiments.																
Course	T	he stude	e students of the course should be able to –															
Outcomes	C	O1: Experiment the basic concepts of Mechanics (Rigid Body and Deformable Body), Dynamics of																
(COs):	M	I achines	and v	ibrati	on thr	ough	simpl	le labo	ratory	tests.								
	C	O2: Inte	erpret	the me	echan	ical b	ehavi	or of e	ngine	ering 1	materi	als thro	ough si	mple la	aborato	ry tests	3.	
	C	O3: Dev	velop a	a com	prehe	nsive	idea (on data	a colle	ection,	analy	sis and	preser	ntation.				
	C	O4: Rec	ogniz	e the	- experi	ment	al erro	ors ass	ociate	d with	ı laboı	atory t	ests.					
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1 3 1 1 1																	
					1			1			1							
		CO2	3					1			1							
		CO2	3	3				1		2	2	2						

Course Code: MEM	E(N	/12)/PR/	B/S/31	14			C	ourse	Name	e: Min	or Pro	ject					•
Credits: 1.5		_					C	ontact	Hou	rs/Wee	ek (L-'	Γ-P): 0	-0-3		Full M	arks: 10	00
Category of Course:	PS						N	lature	of Co	urse: S	Sessio	nal					
Course content/Syllabus:	to tl	Heat Po opic won ne respe	wer/Fluld be ctive s	luid N from superv	Aecha list o visors	nics/N f topi and §	Machi cs off give a	ne De ered b prese	sign/ by the entatio	Applion departs on of the departs of	ed Me tment he wo	echanic . Stude rk don	s/ Prod nts hav	duction we to su ont of a	. Spec abmit a a speci	ific cho a projectalization	v include pice of the et report to on specific superviso
			valuation board. For each project, distribution of marks will be: 50 marks to be evaluated by the supervisor and 50 marks to be evaluated by the specialization specific evaluation board.														
Course Outcomes (COs):		and 50 marks to be evaluated by the specialization specific evaluation board. The students of the course should be able to - CO1. Appreciate the primary aspects of an engineering project work CO2: Extrapolate the understanding of engineering knowledge to formulate and execute a project CO3: Collate the results obtained and objectively analyze the information/knowledge CO4: Compile a comprehensive scientific document															
CO-PO Mapping:	+	CO5. Dis						PO6			_		PO11	PO12	PSO1	PSO2	PSO3
CO-1 O Mapping.		CO1	3	3	2	2	105	100	107	1	2	1010	3	1	1501	1	1505
												3	1	2	2		
					3	2	2				2	2	2	1	2	2	
		CO4	2	1	2	1						3	2	1	2		
		CO5	3							2	1	3	1	3		2	

3rd Year 2nd Semester

CO5

Course Code: ME(M2)/PC/B/T/321	Course Name: Energy Conversion System	
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: PC	Nature of Course: Theoretical	

Course	Vapour' I	Power	Cycle	s:										41	hours	
content/Syllabus:	General l	ayout	of a st	eam p	ower	plant,	Effect	of op	erating	g varia	bles on	Rehea	t and R	egener	ative Ra	ankine
	cycles, C	ogenei	ation.	4												
	Boilers:													15	5hours	
	(i) In	ntroduc	ction:	Classi	ficatio	on (on	differ	ent ba	sis). M	Iountii	ngs and	Acces	sories.	4		
	(ii) C	oal an	d com	bustio	n: Co	al ana	lysis. (Comb	ustion	calcul	ations b	ooth ma	ass and	energy	balanc	e.
	Heating v	values,	losses	s in bo	ilers a	and its	effici	ency.	4							
	(iii) T	ypes o	f coal	feedir	ng and	l firing	g meth	ods in	pf boi	iler.	4					
		ntroduc		-				1								
	(vii) Aux	iliary l	neating	g surfa	aces: S	Super	heater	. Re-h	eater.	Econo	mizer.	Air pre	-heater	. 2		
	Steam tur	bine:												12	2hours	
	(i) Nozzl	es: Typ	pes, flo	ow thr	ough	nozzle	es. No	zzle e	fficien	cy.	4					
	(iii) Clas Work do					nes. Ii	mpulse	turbi	ne: Flo	ow thro	ough in	npulse	blading	. Veloc	city diag	gram.
	(iv) Mul					essure	comp	oundi	ing and	l veloc	city con	npound	ling.	2		
	(v) Imp	_	-		-		•		_		•	-	_	gram.D	egree o	f
	reaction.l	Parson	s Turb	ine.	2	2										
	(vi) Principles of turbine governing. 1															
	(vii) Diff	erent l	osses	in turb	ine. E	Blade (erosio	1.	1							
	Nuclear	Power	Plan	ts: Ty	pes of	react	ors, w	orking	gprinci	iple of	nuclea	r plant	s, comp	arison	with the	ermal
	plants, Ind	ia's nu	ıclear	power	prog	ramme	e.					4hou	rs			
	Condens	er: Cl	assific	ation.	Elem	ents o	f cond	ensing	g plant	.Powe	r plant	conder	isers Ai	r leaka	ge-effe	ct and
	removal.											2hours	8			
	Power p	lant ec	onom	ics: L	oad c	urve. l	Load f	actor.	Utiliza	ation f	actor et	c. Fixe	d and v	ariable	operati	ing
	cost.															
	Principle of			_							_	2hou			_	
	Renewal									-						
	types, bas		King p	orincip	oies oi	wina	, soiar	pnoto	voitai			ar theri	mai. inc	iia's rei	newabie	e power
	programm		41		1 1.1	1 1.	1. 4.				hours					
Course Outcomes	The stude								.1			1 .	(17.2)			
(COs):	CO1: Co				•	•				-			(K3)			
	CO2: Illu			_			•	•		•			(17.4)			
	CO3: An			_			_				_	-				
GO DO M	CO4: Ex											-		D CC 4	paga	DG G A
CO-PO Mapping:				PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		PSO1	PSO2	PSO3
	CO1	3	2										1		2	
	CO2	3	2	2			1	1					1		1	
	CO3	2	3	2			1	2					1		2	
	CO4	3	1	1			1	2					1		1	

Course Code: ME(M2)/H/B/T/322	Course Name: Industrial Management	
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: H	Nature of Course: Theoretical	

Course Introduction: Concepts of Management and Industrial Management; Development of management thoughts content/Syllabus: and ideas – Contribution of Taylor and others; System concepts in management [3 Hrs] Organization: Organization structure, various types, organization principles - unity of command, responsibility, authority, span of control, structural balance, communication, division of labour, etc. [3 Hrs] Types of Production – Plant location and plant layout (various types) [2 Hrs] Materials Management - Inventory - types, different cost, EOQ and EPQ models, Basic ideas of MRP and MRP II, purchasing functions, vendor rating etc., ABC analysis, Basic ideas of supply chain management Forecasting - Factors affecting demand, Types of forecasts and forecasting techniques, Time series analysis and various qualitative and quantitative forecasting techniques, forecasting errors [3 Hrs] Scheduling – Gantt chart, network scheduling – PERT, CPM, crashing [3 Hrs] Linear Programming – Fundamentals, formulations, various variables, graphical solutions etc., Sequencing - simple cases, introduction to transportation models [3 Hrs] Quality Control and Inspection – Concept of quality, quality control and inspection, Acceptance sampling - OC curve, control charts, Introduction to ISO 9000 standards, Total quality management, quality circle, brainstorming, fishbone diagram, Pareto analysis [4 Hrs] Work Study – Work measurement, time study, motion study, method study, job evaluation, merit rating [2 Hrsl Queuing Theory – Basic concept and a simple model [2 Hrs] Maintenance Management - Types of maintenance, replacement models, bath tub curve, terotechnology and some fundamentals of safety management [2 Hrs] Break Even Analysis – Some basic ideas and applications [2 Hrs] Reliability Analysis and Risk Management - Basic concepts, hazard rate, reliability functions, MTTF [2 Basic ideas of Agile Manufacturing, Lean manufacturing, Flexible manufacturing and group technology, Ergonomics Course Outcomes The students of the course should be able to (COs): CO1: Classify various principles and functions of management. CO2: Solve different problems related to management of production planning and control systems. CO3: Apply various optimization tools to solve general production management problems. CO4: Analyse the fundamental management concepts in some advanced manufacturing systems. CO5: Illustrate different problems related to risk and reliability management.

CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3		1			2		2	1		2				
	CO2	2	2	1	1	1	1	1				3				
	CO3	2	3	1			1				1	1				
	CO4			3	2	1	1		2			1				
	COF	2	2	1	1	1	2	1			1	2			1	

Course Name: Design of Machine Elements - III

Course Code: ME(M2)/PC/B/T/323

12)/1 6/13/13/13	Course I turne. Design of tracinine Elements	
	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
PC	Nature of Course: Theoretical	
Helical springs, types of ends for e	xtension and compression spring, spring ma	terial, set removal. Design
for static and dynamic loading, Fac	tor of safety, problems. Critical frequency of	f helical spring, surge and
governing equation. Leaf spring: Mu	ulti leaf spring, graduated leaf spring, load-de	eflection equation, nipping,
preloading, problems (13 pds)		
Design of gear drive: Spur Gear –I	ntroduction, Modes of Gear tooth failure, Be	eam Strength of gear tooth
and Lewis Equation, Lewis Form	Factor, Service Factor, Dynamic load, Buck	tingham Equation, Spott's
Equation, Error on gear tooth and C	Grade of Gear Manufacturing, Wear Strength	, Derivation of load Stress
Factor, Buckingham Equation for W	Vear, problems (8 pds)	
Helical Gear-Type of helical gears, v	virtual no. of teeth, Minimum Face width, For	ce analysis, Beam Strength,
Dynamic load, Wear Strength, prob	lems (4pds)	
Bevel Gear: Force analysis, Formati	ve no. of teeth, Beam Strength, Dynamic load	l, Wear Strength, problems.
(2 pds)		
	PC Helical springs, types of ends for end for static and dynamic loading, Factor, Buckingham Equation, Lewis Form Defactor, Buckingham Equation for Whelical Gear-Type of helical gears, V Dynamic load, Wear Strength, prob Bevel Gear: Force analysis, Formati	Contact Hours/Week (L-T-P): 3-0-0 PC Nature of Course: Theoretical Helical springs, types of ends for extension and compression spring, spring ma for static and dynamic loading, Factor of safety, problems. Critical frequency o governing equation. Leaf spring: Multi leaf spring, graduated leaf spring, load-depreloading, problems (13 pds) Design of gear drive: Spur Gear –Introduction, Modes of Gear tooth failure, Be and Lewis Equation, Lewis Form Factor, Service Factor, Dynamic load, Buck Equation, Error on gear tooth and Grade of Gear Manufacturing, Wear Strength Factor, Buckingham Equation for Wear, problems (8 pds) Helical Gear-Type of helical gears, virtual no. of teeth, Minimum Face width, For Dynamic load, Wear Strength, problems (4pds) Bevel Gear: Force analysis, Formative no. of teeth, Beam Strength, Dynamic load

	Worm g	ears: U	Jses, d	lrawba	ack, se	elf loc	king a	arrang	ement	, centi	e dista	nce cal	culatio	n, forc	e analy	sis, fricti	on
	in worm	gear,	efficie	ency,	selecti	ion of	mate	rial, p	roblen	ıs (3 p	ds)						
	Introduc	ction to	gear	desig	n usin	g cod	e. (2 p	ds)									
	Pressure	vesse	ls: Th	in and	l thick	cylir	iders:	Princi	ipal str	esses,	design	of thi	ckness	based	on failı	ire criter	ia
	and end	condi	tions A	Autofi	ettage	e: pre-	-stress	ing b	y plast	ic def	ormatio	on, wir	e wind	ling, co	mpoun	d cylind	er
	(8 pds)																
Course	The stud	ne students of the course should be able to															
Outcomes	CO1: A	O1: Apply the knowledge of working principles and basic concepts to design different types of springs.															
(COs):	(K3)	K3)															
	CO2: C	CO2: Classify different types of gears according to their uses and applications. (K2)															
	CO3: A	CO3: Apply design methodologies for different types of gears considering Dynamic load and Wear															
	Strength	ı. (K3)															
	CO4: D	esign p	ressu	re ves	sels u	sing b	asic p	rincip	les an	d indu	strial c	odes. (K5)				
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	3	2			1								1		
	CO2	3					1								1		
	CO3 3 3 3 1 2																
	CO4	3	3	3	1				2						2		

Course Code: ME(M	12)/PC/B/T/324	Course Name: Electrohydraulic Control System	ns
Credits: 3		Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course:	PC	Nature of Course: Theoretical	
Course	Introduction: (7L+2T)		
content/Syllabus:		oices of System Fluids. Applications and Cor	
		and Electro pneumatic Systems. Basic Comp	•
	1 1	alve, actuator, line, connector, filter, heat ex hydraulic systems through circuit diagrams. O	0 1
	-	grams and schematics with symbols.	pen Loop and Closed Loop
	_	s with Working principles and Modelling: (16L+	4T)
	· · · · · · · · · · · · · · · · · · ·	s and Actuators – Classification, Schematic an	*
	with Working Descriptions, S	Simplified Modelling of pump and actuator.	,
	Valves - Flow, Pressure and	d Direction Control Valves, Schematic and Sy	mbolic Representation with
	Working Descriptions, Simpl	ified Modelling of flow-pressure characteristics	and flow forces.
	Solenoids and Permanent-M	lagnet Motors - Schematic and Symbolic Rep	presentations with Working
	Descriptions, Simplified Mod	lelling.	
		ies - Electrical Resistance, Magnetic Reluctance	
		s. Electrical Inductance and Capacitance, Capacit	ance of Compressible Fluid
	Volume.		7.1 G G
	•	Frictional Nonlinearities, Magnetic Hysteresis, V	Valve flow Characteristics –
	flow gain, pressure gain, leak	age, urresnoid. ectrohydraulic Servo-actuation System with Pro	moutional Valvas and Caura
	valves	ectionydraune servo-actuation system with Fig	oportional valves and Servo
	Linear Control Analysis: (8L-	⊥3T)	
		agrams and Laplace Transform, Block Diagram	Reduction Poles Zeros
		Characteristic Polynomial. On-off and Feedb	
	-	ntrollers. Time-Domain Response – Proportion	-
	Actuation, Speed of Respons	se, Steady-State Error and Overshoot. System S	stability and Routh-Hurwitz
	Criterion.		
		-Gain plot, Gain margin and Phase margin.	
Course Outcomes	The students of the course she		
(COs):	_	ents, applications and advantages of electrohydra	-
	-	lels of components and dynamic models of syste	ms.
		and time domain responses of simple systems.	
		of open-loop and closed loop controls.	
	CO5: Design simple controlle	ers for some basic electrohydraulic systems.	

CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	2													
	CO2	3	2	2												
	CO3	2	2	3		1									1	
	CO4	3	2	1												
	CO5	2	2	3	2	1									1	

Course Code: ME(M2)/PC/B/TS/326	Course Name: Measurement & Instrument	ntation
Credits: 3	Contact Hours/Week (L-T-P): 2-0-2	Full Marks: 100
Category of Course: PC	Nature of Course: Theoretical	

Course

THEORY: 2×14 (weeks) = 28 periods

content/Syllabus:

Introduction-

- •Application and importance of mechanical measurement systems and instrumentation
- •Functional elements of an instrument.
- •Active Passive transducers.
- •Analog/digital mode of operation.
- •Null/deflection methods of measurement.
- •Generalized I/O configuration of measurement systems. 3 periods Methods of correction of

interfering and modifying inputs. 2 periods Static characteristics:

- •Static sensitivity. Linearity, Threshold, noise floor, Resolution, Hysteresis Dead space, Span, Scale readability
 - •Basic statistics.
 - •Static calibration Uncertainty analysis.
 - •Least square calibration curve. 6 periods **Loading effects**. 2 periods **Dynamic characteristics**:
 - •Generalized mathematical model,
 - •Operational and sinusoidal transfer functions.
 - •Zero order instrument.
 - •First order instrument: Step, Ramp response of first order instruments.
 - •Second order instruments: Step, Ramp response of second order instruments.
 - •Logarithmic plotting of frequency response curves. 8 periods **Different**

instruments/measurement systems:

•Principles for measurement of Displacement/Strain/Acceleration, Force/Pressure, Flow,

Temperature. 6periods

Introduction to Signal conditioning and Data acquisition systems 3 periods

LABORATORY: 14 (weeks)

Measurement of the following physical variables with suitable instruments/measurement systems:

- Geometric sizes
- •Displacement/velocity/acceleration
- •Force/pressure
- •Flow
- •Temperature

highlighting the following measurement principles:

- •Functional elements of an instrument, I/O configuration
- •Methods of correction of interfering and modifying inputs
- •Static characteristics
- Loading effects
- •Dynamic characteristics

Signal conditioning and Data acquisition systems

Course Outcomes	T	The students of the course should be able to – CO1: Understand the application and significance of mechanical measurement systems and															
(COs):	C	O1: Un	dersta	nd the	appli	cation	and s	signifi	cance	of me	chanic	al mea	sureme	nt syste	ms and	l	
	iı	nstrumei	ntatio	n. (K2)												
	C	O2: Ap	ply ba	sic sta	atistica	al met	hods t	to anal	lyse ar	nd inte	rpret r	neasure	ed data.	(K3)			
	C	O3: An	alyse	the sta	atic an	d dyn	amic (charac	teristi	cs of r	neasur	ement	systems	s and ev	valuate	loading	g
	e	ffects.															
	()	K4)															
	C	O4: De	04: Develop and utilize generalized mathematical models for measurement systems. (K5)														
	C	O5: Apply principles for measuring displacement, strain, force, pressure, flow, and temperature using															
	V	various instruments and systems. (K3)															
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3					2									
		CO2	2	3							2				3		
		CO3 2 3 1 2 3 3 1 3 3 3 1 3 3 1 3 1 3 1 3															
		CO4	2	2	2												
		CO5	CO5 3 3 2 2 2 3 3														

Course Code: ME(M2	2)/P	PC/B/S/3	321			Cou	Course Name: Workshop Practice IVB										
Credits: 1.5						Con	tact F	Iours/	Week	(L-T-I	P): 0-0	-3	Fu	ll Mark	s: 100		
Category of Course:	PC	,				Na	ture o	of Cou	rse: Se	ession	al						
Course content/Syllabus:	m us E in	nachines sing abo experiment and a lathe	s, milli ove me ents on	ing m entione : Stud	achine ed ma ly of t	es, gri chines he spe	inding s throu eed str	mach igh ma ructure	nines; aking	machi of job	ine sho s.	op wor	k invol	lving d	ifferent	operat	slotting ions by of feeds
Course Outcomes (COs):	T C C	Study and grinding of various cutting tools. The students of the course should be able to — CO1: Perform different operations in lathe and milling machine on a gear blank. CO2: Perform different operations on a slotting machine to produce keyway in the gear. CO3: Perform different operations in shaping machine to complete a V-Block. CO4: Interpret various cutting tool geometry.															
CO-PO Mapping:		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3															
		CO1 2 1 2 2 3 3 3 1 1 1 1 2 1 1 1 3 1 1 1 1															
		CO2	1	1				2			2	1			3		
		CO3	2	1				2			2	1			3	2	
		CO4	CO4 3 2 1 1 1 2 1														

Course Code: ME(M	(2)/PC/B/S/322	Course Name: Metrology and Metallograph	ıy Lab. B				
Credits: 1		Contact Hours/Week (L-T-P): 0-0-2	Full Marks: 100				
Category of Course:	PC	Nature of Course: Sessional					
Course content/Syllabus:	Metrology Lab.: Introduction to Study and use of slip gauges; Calib length, diameter, taper and angle b of eccentricity, concentricity and e Use of comparator, Optical flat, Pr instrument; Measurement of differ inspection; Concept of process cap Metallography Lab: Study of met	ofilometer, Tool makers' microscope and sur erent elements of Thread and Gear; Conce	d gauges; Measurement of and gauges; Measurement face roughness measuring pt of quality control and Heat treatment of different				
		microstructures of cast iron; Study of microstructure mild steel (annealed)					
	1	eel (hardened); Study of microstructure of w	-				
	microstructure of powder metallur	allurgy specimen; Study of electroless coated substrate.					

Course	The students	The students of the course should be able to													
Outcomes	CO1: Relate	the proper	ty-micr	ostruc	ture c	orrela	tion of	f cast	iron.						
(COs):	CO2: Recog	nize mici	ostructi	ires o	of dif	ferent	speci	mens	like 1	mild s	teel, w	elded	specin	nen, po	wder
	metallurgy sp	ecimen, e	lectrole	ss coa	ited sp	ecime	en.								
	CO3: Assess	3: Assess the attributes of complex shapes as in gear and thread													
	CO4: Assess	4: Assess the attributes of surface topography of machined surfaces													
CO-PO Mapping:	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3													
	CO1 3							1				2	1		
	CO2 3							1				2	1		
	CO3							1				3	2		
	CO4	CO4 1 3 2													

Course Code: ME(N	Course Code: ME(M2)/PC/B/S/323					C	ourse	Name:	Mach	nine D	esign S	Session	al				
Credits: 1.5						C	ontact	Hours	s/Weel	k (L-T	-P): 0-	0-3		Full l	Marks:	100	
Category of Courses	PC					N	ature (of Cou	rse: S	ession	al						
Course content/Syllabus:	in e e E E E E E E E E E E E E E E E E E	Introduction to Solid Modeling: Advantages and Applications, 3-D modeling software, Present status in industry, Familiarization with modeling software, User interface, Menus and tools, Model tree, Work environment and File management (3 pds) Sketching: 2-D Sketching, Sketching entities and relations, Editing sketches (3 pds) Basic Part Modeling: Extrude, Revolve, Hole feature, Fillet, Chamfer, Mirror (6 pds) Advanced Part Modeling: Datum/Reference plane and axis, Pattern (Rectangular and Circular), Sweep, Helical sweep, Advanced sweep features, Rib, Draft, Shell feature (9 pds) Assembly: Assembly interface, Inserting components in assembly, Constraints/Mating features, Interference detection, Sectional view, Exploded view (9 pds) Detailed Drawing from Model/Assembly: Drafting overview, Adding drawing views, Dimensioning, Bill of materials and tables (3 pds) Advanced Topics: Static stress analysis of simple machine components, Motion analysis of simple mechanisms, Demonstration of 3D printing of simple machine components (9 pds) Students should be able to -															
Course Outcomes (COs):							nhv a	dvanta	oes ar	nd ann	licatio	ns of so	olid mo	deling			
	CCC	CO1: Describe the basic philosophy, advantages and applications of solid modeling CO2: Apply solid modeling concepts and commands to model simple machine parts CO3: Construct complex machine parts with the help of advanced solid modeling commands CO4: Construct assemblies of different machine parts using appropriate Constraints/Mating features CO5: Develop 2D engineering drawings from Models and Assembly CO6: Analyze simple design problems from the point of view of stress or motion															
CO-PO Mapping:						_		PO6					PO11		PSO1	PSO2	PSO3
		CO1	2		1		2				1			1	2		
		CO2	2				3				1				3		
		CO3	2	1	1		3				1				3		
		CO4	2	1	1		3				1			1	3	1	
		CO5	2				3				1			1	3	1	
	CO6 2 1 2						3				1				3	1	

Course Code: ME(N	M2)/PC/B/S/324	Course Name: Fluid Machinery Lab.						
Credits: 1.5		Contact Hours/Week (L-T-P): 0-0-3	Full Marks: 100					
Category of Course	: PC	Nature of Course: Sessional						
Course content/Syllabus:	Study of cavitation – characteristic Study of oil-hydraulic system inc control valve, flow control valve, s system. Study of the characteristics of sub Study of supersonic wind tunnel to	luding the characteristics of fluid power of tudy of the characteristics of fluid control comerged jet. echnique. Determination of pressure distribution	components such as pressure ircuit using pneumatics servo					
	Application of analogy technique	in fluid mechanics.						

Course	Th	The students of the course should be able to														
Outcomes	CC	01: Fo	llow o	perati	ons o	f samj	ple in	dustry	-grade	e devic	es.					
(COs):	CC	02: Ex	tract p	rimar	y vari	ables	from	meast	ireme	nts and	d catal	ogue ii	nforma	tion.		
	CC	03: De	termiı	ne per	forma	nce c	haracı	teristic	s for	hydrau	ılic m	achines	S.			
	CC	04: Op	erate	fluid s	systen	ns wit	h acce	essorie	s for	condu	cting 6	experin	nents.			
	CO	O5: Prepare experimental reports.														
CO-PO Mapping: PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3																
		CO1	3	2	1						2	1			1	
		CO2	2	3							2	1			1	
		CO3	2	3	2						2	1			1	
		CO4	2	3	2		2				2	1			1	
		CO5	2	3			2			2	1	2			1	

4th Year 1st Semester

Course Code: ME(M2	ourse Code: ME(M2)/PC/B/T/411 redits: 3						urse N	Vame:	Desig	n of N	1achine	e Elem	ents - I	V			
Credits: 3						Co	ntact]	Hours	/Week	(L-T	-P): 3-()-0	Fı	ull Mar	ks: 100)	
Category of Course: I	PC					Na	ture o	f Cou	rse: Tł	neoreti	ical						
Course	Design of	rotors	Shaf	ts and	axles	with	bearir	ng mo	unting	s, Hig	h-spee	d rotor	-consta	nt thicl	eness a	nd varia	ble
content/Syllabus:	thickness,	limit s	speed	analy	sis, in	terfer	ence f	its in	rotors	(5 pds	s)						
	Rolling co	ntact	bearir	igs Ty	ypes,	static	load	capaci	ity-Str	ibeck	equatio	on, dyr	namic 1	oad ca	pacity,	equival	ent
	load, load-	-life re	lation	, bear	ing li	fe sele	ection	, load	factor	s. (3 p	ds)						
	Bearing se	election	n fron	n Mar	ufact	urer's	catal	ogues,	, select	tion of	f taper i	roller b	earing	(2 pds)	Desig	gn	
	for cyclic	load a	nd spe	ed (2	pds),												
	Bearing re	liabili	ty, luł	ricati	on, m	ounti	ngs (2	pds)									
	Sliding co	ntact b	earin	gs: Lu	ıbrica	nt pro	pertie	s, type	es of lu	ıbricat	ions, P	etroff	equatio	n, Strib	eck cu	rve (2 p	ds)
	Tower exp	erime	nt, Hy	drod	ynami	c the	ory, Pı	ressur	e deve	lopme	nt, Rey	ynold's	s equati	ion (4 p	ds)		
	Long and	short b	earin	g theo	ory, fi	nite b	earing	solut	ion, R	aimon	di-Boy	d Cha	rts (2 p	ds) Des	sign		
	of hydrody				_		, .										
	-	rdrostatic bearings –circular stepped thrust bearing (2 pds)															
		esign optimization: Concept and applications of optimization in design, Algorithm for single variable															
	(Bracketin						_					gradier	it based	d and d	irect se	arch), a	nd
		onstrained optimization, Concept of evolutionary algorithm (10)															
	System de																
Course Outcomes	The stude														(TTO) (C	0.0	
(COs):	CO1: App	•				•			S Code	e for d	esign c	of high	speed	rotors.	(K3) C	O2:	
	Explain th										1 1				•	1 .	
	CO3: As					•	•	irodyn	iamic .	journa	u and	thrust	bearing	gs, nya	rostatio	bearin	ıgs,
	squeeze 1	•			_	,		. •		1	(17.4)						
	CO4: Ap	-		-		-		•		_	. (K4)						
CO DO M	CO5: De	_	_	_	•			PO7			DO10	DO11	DO 12	DCO1	DCO2	DCO2	_
CO-PO Mapping:						POS		PO7		PO9	POIU	POII	PO12	PSOI		PSO3	
	CO1	2	2	3	1		1		1						1		
	CO2	3	2														
	CO3	2	2	3											1		
	CO4	3	1	1		1		1					1				
	CO5	3	3	2	1		2		1						2	1	

Course Code: ME(M2)/PC/B/T/412	Course Name: Refrigeration and Air Condit	tioning
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100

Category of Course: PC Nature of Course: Theoretical Course Introduction: Concepts of Refrigeration and Air-conditioning. Unit of refrigeration, Reversed Carnot content/Syllabus: cycle. 2Hours Simple Vapour Compression Refrigeration System (Simple VCRS): Modifications in reversed Carnot cycle with vapour as a refrigerant, Vapour compression cycle on p-h and T-s diagrams. Cycles with subcooling and superheating, their effects; Effect of changes in evaporator pressure and condenser pressure on the performance of a simple VCRS, Dry compression and wet compression of refrigerant, Actual Vapour Compression Cycle 4Hours Multi pressure System: Multistage or compound compression with intercooler, flash gas removal and flash intercooler, multi-evaporator systems with individual and multiple expansion valves, cascade system 3Hours Refrigerants: Classification, nomenclature, desirable properties- Ozone depletion potential (ODP) and global warming issues 1Hours EquipmentsAnd Control: Major Refrigeration Equipment - Compressors: Types; reciprocating, rotary & centrifugal, volumetric efficiency, Condensers: types used in refrigeration systems; Evaporators: expansion devices: capillary tubes and thermostatic expansion valves. 6Hours Basic definitions and principles related to Psychometry; Properties of moist air, temperature and humidity measuring instruments, Psychometric Charts & their uses; Heating, cooling, heating & humidification, cooling & dehumidification, cooling & humidification processes. Adiabatic saturation, By-pass factor, Sensible Heat Factors. 6Hours Heat Load estimation: Heat gain by solar radiation, Sol-Air temperature, Heat transfer through building structure, Summer air conditioning and winter air-conditioning, Estimation of the cooling capacity of the system. 4Hours Air-conditioning systems and equipment: window air conditioners & split air conditioners, Central air conditioning system: chillers, air handling units, cooling towers and cooling coils. 5Hours Air Refrigeration System (ARS): open-air and dense-air system, limitations of Bell- Coleman refrigerator. COP determination, actual air-refrigeration cycle, Bootstrap, Regenerative air refrigeration systems. 3Hours Vapour Absorption Refrigeration System (VARS): Advantages of VARS over VCRS. Working principle of simple VARS, practical VARS. Limitations of VARS, maximum COP of a VARS, Lithium bromidewater System; Aqua-ammonia systems, Solar energy based refrigeration systems 4Hours Other Refrigeration Systems: Basic idea of Thermoelectric refrigeration system; Steam-jet (vapour-jet) refrigeration system, Vortex tube. 1Hours Course The students of the course should be able to Outcomes CO1: Understand the associated laws of thermodynamics and thermodynamic mixture properties with (COs): refrigeration and psychometric systems. (K2) CO2: Describe refrigeration cycles, components, refrigerants and psychrometric processes. (K1) CO3: Apply engineering concepts and principles on refrigerator and air-conditioning system components. (K3)CO4: Analyze component and system performances. (K4) CO5: Formulate design and operation at subcomponent levels. (K5) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 CO-PO Mapping: PSO₂ PSO₃ CO₁ 3 2 CO₂ 3 CO₃ 2 3 2 **CO4** 2 2 2 **CO5** 3 2 2

Course Code: ME(M2)/PC/B/T/413	Course Name: Metal Cutting and Machine Tools							
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100						
Category of Course: PC	Nature of Course: Theoretical							

Course	Theo	ry of n	netal c	utting	g: too	l geor	netry,	speci	ificati	on, co	nvers	ion and	d selec	tion; ba	asic me	echanis	ms and
content/Syllabus:																	p edge;
					_	-					_		-				pects of
			_	d theo	ory of	friction	on and	l actio	n of n	netal c	cutting	fluids	, tool v	vear and	d tool l	ife; ecc	onomics
		achinin	_					_									
								•	-								ction to
	•		nd ele	etrie o	drives	; desi	gn of	gear	boxes	s for s	speed	and fe	ed cha	nges; r	igidity	and v	ibration
	analy		. 1	. ,						· 11	c 1			1' '		1	1.
																	nachine
		otions, types of NC systems, MCU and other components, NC part programming- manual and compute sisted; engineering analysis; CNC, DNC.														omputer	
		Assisted; engineering analysis; CNC, DNC. Basic concepts of open loop, closed loop and adaptive control systems.															
Course		he students of the course should be able to –															
Outcomes		CO1: Identify cutting tool nomenclature, represent and correlate in different reference systems.															
(COs):	CO2:	: Analy	se too	l wear	r mecl	hanist	ns, pa	ramet	ers or	tool i	life an	d econ	omics	of mac	hining.		
	CO3:	Explai	in prin	ciples	s and	mecha	anics	of me	tal cut	ting.							
	CO4:	Apply	desig	n aspe	ects o	f som	e elen	nents (of mad	chine	tools						
	CO5:	Descri	ibe the	oper	ation	of nui	merica	al con	trol m	achin	e tools	S					
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3	2													
	-	CO2	3	2	1				2				2			2	
	-	CO3	3	3	2	2										2	
		CO4	3	3	3											2	
	•	CO5	3	2	2		2									2	

Course Code: ME(N	/12)/I	PS/B/S/4	111				Co	urse N	Jame:	Work	shop l	Practice	e - VA					
Credits: 1.5		•					Co	ntact l	Hours	/Week	(L-T	-P): 0-()-3	F	ull Mar	ks: 100)	
Category of Course:	PS						Na	ture o	f Cou	rse: Se	essiona	al						
Course	M	anufacti	uring/	makiı	ng the	comp	onent	ts of a	comp	lete eq	uipme	ent / dev	vice/ m	achine	tool, li	ke recij	orocatin	g
content/Syllabus:	pι	mp / dr	illing	machi	ne/ C	entrif	ugal p	oump/	some	other	– fitti	ng, ma	chining	g, assei	nbly w	ork and	d testing	5.
	Ez	kperime	nts in	metal	cuttin	g: stu	dy of	chip f	ormat	ion m	echani	ism and	d influe	ence of	variou	s paran	neters o	n
	sh	ear angl	e; det	ermina	ation o	of for	ce, ter	nperat	ure, to	ool life	e etc.							
	A	lignmen	t test	of ma	chine	tools	, othe	r expe	rimer	nts on	machi	ne too	1 /macl	hining	(study	of mad	chine to	ol
	rig	gidity&	vibrat	ion etc	c.).													
	St	udy and operation of gear generating machines, auto-screw machine, broaching machine, cylindrical													al			
	gr	nding machine, CNC lathe; Introduction to machining center etc.; study of non-conventional machining. etc. students of the course should be able to —																
Course	Tl	ne stude	nts of	the co	urse s	hould	l be al	ole to -	_									
Outcomes	C	O1: Perf	orm a	ccepta	ince a	nd ali	gnme	nt test	s of m	nachine	e tools	S.						
(COs):	C	O2: Inte	rpret c	hip fo	rmati	on me	echani	ism an	d rela	ted ted	chnica	l paran	neters.					
	C	Э3: Exp	lain th	e elen	nentai	ry fun	ctioni	ng of	an aut	to-scre	w cut	ting ma	achine.					
	C	O4: Org	anize	the ste	ps lea	ading	to fab	ricatio	on of r	ecipro	cating	gpump	compo	onents.				
CO-PO Mapping:		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3																
		CO1 2 3 1 2 1 2 1																
		CO2	CO2 3 2 2 1															
		CO3	3				2				1	2			1			
		CO4	2	1							2	1			3	1		

Course Code: ME(M2)/PC/B/S/412	Course Name: Heat Power LabII (Devices)
Credits: 1	Contact Hours/Week (L-T-P): 0-0-2	Full Marks: 100
Category of Course: PC	Nature of Course: Sessional	

Course	1. Parall	el flov	//coun	ter flo	ow he	at exc	hange	r									
content/Syllabus:	2. Cross	flow h	eat ex	chan	ger												
	3. Refrig	geratio	n labo	ratory	unit (
	4. Air co	nditio	ning la	abora	tory u	nit											
	5. Steam	turbir	ne														
	6. Study	of boi	ler														
	7. Valve	timing	g diag	ram o	f I.C.	engin	ie										
	8. Perfor	mance	test o	of I.C.	. engi	ne											
Course	The stud	students of the course should be able to –															
Outcomes	CO1: Ol	1: Observe phenomena related to thermal devices															
(COs):	CO2: Ex	amine	the ex	xperii	nenta	l data											
	CO3: In	prove	the co	oncep	t throu	ıgh ex	kperim	ents									
	CO4: Ve	erify p	rincipl	les of	differ	ent th	ermal	devic	es								
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	G04	-	-							<u> </u>							
	CO1	3	1						1	2							
	CO2	2	3			1			1	2							
	CO3	2	3	1						2							
	CO4	2	3	1	1						1				1		

Course Code: ME(M	2)/	PR/B/S	/413				C	ourse	Name	e: Coll	oquiu	m						
Credits: 1.5							C	ontac	t Hou	:s/Wee	k (L-	Γ-P): 0	-0-3]	Full Ma	arks: 10	00	
Category of Course:	PS						N	lature	of Co	urse: S	Session	nal						
Course content/Syllabus:	2 ta	ach stud 000 wor alks on t	rds on hose to	four e	engine in the	ering class	topic accor	s assig	gned b	y the directi	class t	eachers the clas	s, and v	will be ner, and	require l will h	ed to givave to p	ve conc participa	ise ate
	a	s that of	practi	ical w	ork. T	here	will b	e no v	vritter	exam	inatio	n for th	is cou	rse.				
Course	T	ne students of the course should be able to																
Outcomes	C	CO1: Acquaint themselves towards a given domain of engineering topics.																
(COs):	C	O2: Co	mpose	e techi	nical r	eport	on gi	ven ei	nginee	ring to	pics.							
	C	O3: De	fend tl	he rep	ort of	their	work	befor	e a tec	chnical	l forur	n.						
	C	O4: Pra	ctice i	intera	ctive/	group	discu	ssion	on giv	en en	gineer	ing and	lassoc	iated to	pics.			
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1 1 2 2 2 2 3 1																
		CO2 1 2 2 2 3 2 1																
		CO3		2			1	2	2			3	2					
		CO4		2				2	2		3		2				1	

Course Code: ME(N	/12)/PR/B/S/414	Course Name: Project (Major)								
Credits: 1.5		Contact Hours/Week (L-T-P): 0-0-3	Full Marks: 100							
Category of Course:	PS	Nature of Course: Sessional								
Course	Each student has to work on a sing	le topic with the same supervisor for 2 seme	esters. In contrast to the major							
content/Syllabus:	project the work needs to be more	extensive. Specialization topics broadly inc	clude -							
	Heat Power/Fluid Mechanics/Machine Design/ Applied Mechanics/ Production. Specific choice of the									
	topic would be from list of topics offered by the department. Students have to submit a project report to									
	the respective supervisors and give a presentation of the work done in front of a specialization specific									
	-	ester. For each semester, distribution of ma								
	evaluated by the supervisor and 50	marks to be evaluated by the specialization	n specific evaluation board.							
Course	The students of the course should	be able to								
Outcomes	CO1. Conceptualize and organize	the planning of a proposed engineering pro	ject							
(COs):	CO2: Execute the steps required for	or realization of the project								
	CO3: Collate the results obtained and objectively analyze the information/knowledge									
	CO4: Compile a comprehensive scientific document									
	CO5. Display grasp of the chosen	topic including the fundamentals and future	e scope							

CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	3	2	2				1	2		3	1		1	
	CO2	2	2	2	2	1				2	1	3	1	2	2	
	CO3	2	2	3	2	2				2	2	2	1	2	2	
	CO4	2	1	2	1						3	2	1	2		
	CO5	3							2	1	3	1	3		2	

4^{th} Year 2^{nd} Semester

Course Code: ME(M2)/HS/B/T/	421				Co	urse N	Vame:	Engin	eering	Econo	omics a	and Co	sting			
Credits: 3						Co	ntact]	Hours	/Week	(L-T-	P): 3-()-0	Fı	ıll Mar	ks: 100)	
Category of Course: H	IS					Na	ture o	f Cou	rse: Th	neoreti	cal						
Course	Introducti	on: en	gineer	ring e	cono	my aı	nd its	impo	rtance,	want	activi	ty – sa	atisfact	ion of	wants.	Resou	rce
content/Syllabus:	planning	and dis	tribut	ion in	econ	omic	systen	ns – L	aissez	•							
	Factors of	f produ	uction	the o	conce	pt of	optim	um, la	aws of	returi	n; dem	and - e	elasticit	ty of d	emand	– dema	and
	estimatio	n mark	et rese	earch;	supp	ly and	l indus	strial c	costs.								
	Money-va	alue of	mone	y; qua	antity	theor	y; infl	ation	and de	flatio	1.						
	Banking:	role of	com	nercia	al ban	ks; cr	edit a	nd its	impor	tance i	in indu	strial f	unction	ning –	source	of finai	nce;
	Reserve b	ank of	India	and i	ts fun	ctions	S.										
	Business		gemen	t and	lorga	anisat	ion: p	roprie	etorshi	p, pai	tnersh	ip and	joint-	stock	compa	ny – t	heir
	formation																
	Finance	and m	anage	ment:	elem	ents c	of taxa	tion, i	nsuran	ce. bu	siness	combi	nations	, basic	princir	oles of	
	managei							, -		, , , ,				,	FF		
	Industria	dustrial record-keeping: double entry system, journal, ledger, trial balance, cash book, preparation of a accounts – trading, profit and loss account, balance sheet, simple study of balance.														of	
	final acc	nal accounts – trading, profit and loss account, balance sheet, simple study of balance.															
	Industria	ndustrial costs: classification – material cost control, labour cost control and overhead cost control;															
	deprecia	adustrial costs: classification – material cost control, labour cost control and overhead cost control; epreciation and replacement studies.															
	Financia	l contr	ol: rat	io ana	alysis	and t	heir in	terpre	tation	for in	dustria	l contro	ol; bud	getary	control		
	Value ar	nalysis	and p	roject	evalı	ation	: pay l	back,	DCF, 1	IRR.							
Course	The stud	lents o	f the c	ourse	shoul	ld be	able to)									
Outcomes	CO1: In	terpret	the ba	asic d	ynami	cs of	econo	mic fo	orces t	oth m	icro ar	nd mac	ro.				
(COs):	CO2: In							_									
	CO3: So																
	CO4: E	_										, form	s of bu	isiness	organi	zation	and
	various t	• •							-	-							
	CO5: De														L		
CO-PO Mapping:	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3																
	CO1	3	1		2 1												
	CO2	2	3	2									1				
	CO3	2	3				1		1				1				
	CO4	3					1						1				
	CO5	2	3						1				2				

Course Code: ME(M2)/PC/B/T/422	Course Name: Material Handling	
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: PC	Nature of Course: Theoretical	

Course	Definitio	n of n	nateria	ıl han	dling,	class	ificati	on of	materi	als, bu	ılk loa	d, unit	oad, tł	neir cha	racteri	stics	
content/Syllabus:	Classific	ation o	of med	chanic	cal ha	ndling	g equi	pment	, diffe	rent ty	pes of	elevato	rs and	lowere	ers for l	nandling	g
	materials	in bu	lk and	l unit	loads	, their	work	ing pr	inciple	es and	estima	tion of	handli	ng cap	acity.		
	Belt conv	veyors	and t	heir c	onstr	uction	ı, capa	city a	nd pov	ver re	quirem	ents, of	her co	nveyor	s loke a	apron, st	teel
	plate																
	and slat o	convey	yors, f	light	and so	crew o	convey	ors, v	/ibratii	ng and	oscilla	ating tr	ough c	onveyo	rs – es	timation	ı of
	handling	capac	ity an	d pov	ver re	quirei	nent,	Auton	natic f	eeding	device	es for e	levato	rs and c	convey	ors.	
	Gravity of	Gravity chutes and gravity roller runways accessories of gravity roller conveyors viz. humper, stacker and gadget, live rollers, pneumatic and hydraulic methods of conveying, monorails, and blast furnace hoists.															and
	Loading/	oading/unloading and operation of railway wagons, motor trucks and fork lift trucks. Wire ropes, pulley locks, crab winch, grabs and lifting magnets, different types of cranes.															ley
		clocks, crab winch, grabs and lifting magnets, different types of cranes. Definition and types of robots – basic concept, working principle and application of robotics, manipulators.															
		Definition and types of robots – basic concept, working principle and application of robotics, manipulators.															
		automation, Automated Guided Vehicles (AGVs) and application, Automated production and transfer															fer
~	lines.																
Course								-					44.00	_			
Outcomes	CO1: De			•			-			_							
(COs):	CO2: Cla	•				_											,
	CO3: Ill		diffe	erent	Mate	rial E	landlii	ng Eq	uıpme	nt acc	cording	to the	eir prii	ıcıples	of ope	eration a	and
	application		1.1	C	.11		54	C			1	4 .					
GO DO M	CO4: An								,				DO12	DCO1	DCO2	DCO2	1
CO-PO Mapping:				PO3	PO4	PO5	PO6	PO7	PO8	PO9	POIU	POII	PO12	PSO1	PSO2	PSO3	
	CO1	3	2														
	CO2		3														
	CO3	3	2	1													
	CO4	2	3		1												

Course Code: ME(M	12)/PS	S/B/S/42	21				Cou	rse Na	ame: V	Works	hop Pi	ractice	- VB					
Credits: 1.5							Con	tact H	ours/	Week	(L-T-I	P): 0-0-	-3	Ful	ll Mark	s: 100		
Category of Course:	PS						Nat	ure of	Cours	se: Ses	sional							
Course	[Sy	llabus c	ommo	n with	n Wor	kshop	Prac	tice -	VA]									
content/Syllabus:		nufactur	_	7	_	-			-	-	-							_
	Г	np / dril	_					-				-	_		•			_
	-	eriment					•	•				sm and	l influe	nce of	variou	s parar	neters o	on
	she	ar angle	; deter	minat	ion of	force	e, tem	peratu	re, to	ol life	etc.							
	Ali	gnment	test o	f mac	hine t	tools,	other	expe	rimen	ts on	machi	ne tool	/macl	nining	(study	of mad	chine to	ool
	rigi	dity& vibration etc.).																
	Stu	dy and operation of gear generating machines, auto-screw machine, broaching machine, cylindrical nding machine, CNC lathe; Introduction to machining center etc.; study of non-conventional machining.																
	grin	nding ma	achine	, CNC	C lathe	e; Intr	oduct	ion to	mach	ining	center	etc.; st	udy of	non-co	onventi	ional m	achinir	ıg.
Course	Tł	ne stude	nts of	the co	urse s	should	d be a	ble to	_									
Outcomes	C	O1: Perf	orm a	ccepta	ince a	nd ali	ignme	nt test	s of n	nachin	e tools	S.						
(COs):	C	O2: Inte	rpret c	hip fo	rmati	on m	echan	ism ar	id rela	ited te	chnica	l paran	neters.					
	C	O3: Ехр	lain th	e eler	nentai	ry fun	ctioni	ing of	an au	to-scre	w cut	ting ma	achine.					
	C	O4: Org	anize	the ste	ps lea	ading	to fab	ricatio	on of 1	ecipro	ocating	g pump	compo	onents.				
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1 2 3 1 2 1 2 1																
		CO2	3				2				2	2			1			1
		CO3	3				2				1	2			1			1
		CO4	2	1			-				2	1			3	1		-
		CO4	4	1	l					1	4	T	ĺ		3	1		1

Course Code: ME(M	I2)/PC/B/S/422	Course Name: Machine Elements Lab	
Credits: 1		Contact Hours/Week (L-T-P): 0-0-2	Full Marks: 100
Category of Course:	PC	Nature of Course: Sessional	
Course content/Syllabus:		ic: Critical speed of a rotor, Natural frequent of hydrostatic & hydrodynamic journal bear rement.	-

Course	Tl	he stude	ents of	the c	ourse	shoul	ld be	able to)									
Outcomes	C	O1: Exp	plain 1	netho	ds an	d proc	cedure	es of e	xperii	nents	for stu	dying	proper	ties and	l perfo	rmance	of vari	ous
(COs):	ty	pes of 1	machi	ne ele	ments	(roto	rs, be	ams, t	earin	gs etc.)							
	C	O2: Co	nduct	exper	iment	s of v	arious	stypes	s of m	achine	elem	ents (ro	otors, b	eams,	bearing	gs etc.)	CO3:	
	Pı	esent tl	he exp	erime	ntal c	bserv	ations	with	figure	es and	tables							
	C	04: Ve	04: Verify theoretical predictions with experimentally obtained parameters.															
	C	O5: Exp	25: Explain variations observed between theoretical predictions and experimental results. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3															
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1	3	2														
		CO2	1								2	1			3			
		CO3	1				1			1		3						
		CO4 3 2																
		CO5	3	2						1			1					

Course Code: ME(M	I 2)/	PR/B/S	/423 [Conti	nuatio	n froi	m Course Name: Project (Major) [Continuation from previous semester]											
ME(M2)/PR/B/S/414	4]																	
Credits: 1.5							C	Contac	t Hou	rs/Wee	ek (L-'	T-P): 0	-0-3	I	Full Ma	arks: 10	00	
Category of Course:	PS						N	lature	of Co	urse: S	Sessio	nal						
Course	Е	ach stud	dent ha	as to v	vork o	n a si	ngle t	opic w	ith th	e same	supe	rvisor f	or 2 se	mesters	s. In co	ntrast to	the ma	ijor
content/Syllabus:	p	roject th	ne wor	k nee	ds to l	be mo	re ex	tensive	e. Spe	cializa	ition to	opics b	roadly	include	e -			
	Н	leat Pov	wer/Fl	uid M	[echar	nics/N	I achi	ne De	sign/	Applie	ed Me	chanics	s/ Prod	luction.	Speci	fic cho	ice of t	he
	to	pic wo	uld be	from	list o	f topi	cs of	fered b	y the	depar	tment	. Stude	nts hav	ve to su	ıbmit a	projec	t report	to
	tł	ne respe	ctive	superv	visors	and g	give a	prese	entatio	n of t	he wo	rk don	e in fr	ont of a	a speci	alizatio	n speci	fic
	e	valuatio	n boa	rd afte	er eve	ry se	meste	r. For	each	semes	ter, di	istributi	on of	marks	will be	: 50 m	arks to	be
	e	evaluated by the supervisor and 50 marks to be evaluated by the specialization specific evaluation board															d.	
Course	T	The students of the course should be able to																
Outcomes	C	O1. Co	nceptu	ıalize	and o	rganiz	ze the	plann	ing of	a pro	posed	engine	ering p	project				
(COs):	C	O2: Ex	ecute 1	the ste	ps re	quired	l for r	ealiza	tion o	f the p	roject							
	C	O3: Co	llate tl	he resi	ults ol	btaine	ed and	objec	tively	analy	ze the	inform	nation/	knowle	dge			
	C	O4: Co	mpile	a con	prehe	ensive	scie	ntific c	locum	ent								
	C	O5. Dis	splay g	grasp (of the	chose	en top	ic inc	luding	the fu	ındam	entals a	and fut	ure sco	pe			
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1	3	3	2	2				1	2		3	1		1		
		CO2	2	2	2	2	1				2	1	3	1	2	2		
		CO3	2	2	3	2	2				2	2	2	1	2	2		
		CO4	2	1	2	1						3	2	1	2			
		CO5	3							2	1	3	1	3		2		

Course Code: ME(M	(2)/PC/H/S/424	Course Name: Advanced Laboratory and Simulation							
Credits: 4		Contact Hours/Week (L-T-P): 0-2-4	Full Marks: 100						
Category of Course:	PC	Nature of Course: Theory + Sessional							
Course content/Syllabus:	ANY 1 module need to be selected Module 1 1. Simulation of Dynamic systems a. Inverted Pendulum: i. Derivation of	·							

- ii. Governing equations in state vector form
- iii. Pole placement technique
- iv. Measurement of rotation
- v. Relevant Actuation techniques
- vi. P, PD and PID control
- vii. Pole placement technique
- viii. Simulation using SIMULINK/XCOS ix. Experiments with available setup in Dynamics Laboratory
- b. Natural frequency and Mode shapes of beams:
 - i. Equations of beam as a continuous system
 - ii. Finite Element formulation
 - iii. Study of finite element programme for beam vibration
 - iv. Sensors and actuators for beam vibration
 - v. FFT & FRF
 - vi. Obtaining natural frequency and mode shapes from FRF from simulated beam models vii. Experiments preferably using modal analysis software
- 2. Simulation of quasi-static and Impulse tests using Linear/Nonlinear FEM:
 - a. Simulation of necking in a tensile test.
 - i. Material nonlinearity.
 - ii. Geometric nonlinearity. iii. Load application. iv.

Simulation of nonlinear systems.

v. Convergence. vi.

Post-processing.

- b. Simulation of Izod/Charpy tests.
 - i. Material nonlinearity.
 - ii. Geometric nonlinearity. iii. Load application. iv.

Simulation of nonlinear systems.

v. Convergence. vi.

Post-processing.

c. Stress analysis of Composite structures etc.

Module 2

Four topics among the following list of topics need to be completed by the student.

- Theory of plate/shell Related theory, simulation, experiment
- Bending of beams Related theory, simulation, experiment
- Natural frequency/vibration Related theory, simulation, experiment
- Material properties: Tensile testing Related theory, simulation, experiment
- Material properties: Fatigue/Fracture behaviour Related theory, simulation, experiment
- Tribological testing Related theory, simulation, experiment
- Computer Aided Design Related theory, simulation, modelling, testing
- Robotics Related theory, simulation, experiment
- Synthesis of Mechanisms Related theory, simulation, experiment
- Optimization in Design Related theory and simulation
- Contact of Solids Related theory and simulation

Module 3

Tutorial classes and demonstration of CFD techniques using CFS (Commercial Flow Solver) such as FLUENT etc. with the objective of the following:

- a. How to impart geometry of a particular flow process and the grid size or number of grids related with the particular geometry; How to impart the related boundary conditions, Run the CFD and getting the required results; Post processing of those results as well as plotting the velocity, pressure etc. profiles, getting streamlines/stream trace, iso-profiles etc. Derivation of some particular variables. (Total 4 hrs)
- b. Analyses of flow through circular pipe for the laminar flow and axi-symmetric boundary conditions considering: A. With or without impartation of swirl at the inlet B. Visualization of the flow through a sudden expansion (3 hrs.)
- Demonstration and visualization of the two-phase flow through 2-D rectangular geometry using

LEVELSET/V.O.F. method etc. (3 hrs.) d. Marked assignment problems on CFD modeling techniques using commercial software packages, namely: The Backward-Facing Step (BFS) flows; The Lid-driven cavity problem. e. Advanced Laboratory: Performance test of a positive displacement pump using pc based control and data acquisition system. Pump testing facility using variable frequency drive (VFD), proportional
solenoid valve for loading, pressure and flow sensors, pc based control of the experiment through LabView

software. 2 hr tutorial (T)+ 4 hr practical (P) Pre-requisites: Mechanical measurement and instrumentation, Fluid Machinery, Electro hydraulic control systems f. Advanced Simulation1: Modelling and Simulation of performance of a simple valve controlled electro hydraulic system or a generic 1st order or 2nd order system using PID control. (Matlab/Simulink platform). Block diagram/transfer function modelling in Simulink, Understanding of effects of different gains in system performance, how to produce results in graphical form using Matlab. 2 hr tutorial (T)+4 hr practical (P) Pre-requisite: Electro hydraulic control systems g. Advanced Simulation2: Hydraulic system design using Automation Studio. Automation Studio, virtual system design. 2 hr tutorial (T)+ 4 hr practical (P) Pre-requisite: Electro hydraulic control systems It should be also mentioned here that this is an exhaustive list. Depending on the availability of facility and to fit the time frame, the items to be covered in a particular academic session will be decided by the specialisation before the start of the course. Module 4 Laboratory scale studies and simulation of advanced problems of thermal engineering. Module 5 Theory -- Basics of simulation, discrete and continuous system simulation etc. (a) Laboratory - Statistical analysis, forecasting, queuing systems, inventory models, reliability models, quality control, surface engineering etc. The students of the course should be able to -Course Outcomes CO1: Understand the experimental methods and procedures to test various mechanical phenomena. (COs): CO2: Conduct experiments to determine different mechanical parameters. CO3: Comprehend the concept of modelling and simulation of different mechanical phenomena. CO4: Apply basic principles of modelling and simulation to various mechanical systems. CO5: Verify experimentally obtained/simulation generated results against theoretical/analytical values. CO6: Analyze the errors associated with experiments and simulations. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 **PO9** PO10 PO11 PO12 PS01 PS02 PS03 **CO-PO Mapping:** CO₁ CO₂ 1 1 3 2 2 3 CO3 2 1 3 1 1 3 1 3 CO4 2 2 3 3 3 1 2 2 2 CO₅ 2 1 1 1 1 1 2 **CO6** 3 1 3

Elective Courses

3rd Year 1st Semester: Basic Professional Elective I

Course Code: ME	(M2)/PE/B/T/316A	Course Name: Introduction to Finite Element Method							
Credits: 3		Contact Hours/Week (L-T-P): 3-0-0 Full Marks: 100							
Category of Cours	e: Basic Professional Elective I	Nature of Course: Theoretical							
Course content/Syllabus:	beam and three-dimensional beam Rayleigh Ritz method, virtual work m beam elements using interpolation Castigliano's theorem and interpolatelements, introduction to thermal street finite element package. Plane stress isoparametric formulation in one and	stiffness matrix of spring assemblage, plane element, introduction to variational calculation, interpolation function, derivation of function, derivation of nodal equivalention functions, third point specification follows, examples using MATLAB/FORTRAN problem, CST, axi-symmetric problem with two dimensions, quadrilateral isoparant elements, Kirchoff's plate bending element a	alus, stationary principles, stiffness matrix of truss and int loads on beams using or three-dimensional beam programs and commercial ith axi-symmetric loading, metric elements, numerical						

Course	The students of the course should be able to – CO1: Describe the variational and weighted residual methods in finite element analysis using onedimensional															
Outcomes (COs):	CO1: D	escribe	e the va	ariatio	nal and	weigh	ted res	idual n	nethod	s in fin	ite elen	nent an	alysis ı	ısing o	nedime	nsional
	element	ts.														
	CO2: A	pply fi	inite el	ement	metho	d in di	screte s	structui	ral pro	blems	(truss a	nd bea	ms).			
	CO3: A	CO3: Apply finite element method in plane stress, plane strain and axisymmetric problems using constant														
	strain tr	train triangles, and isoparametric quadrilaterals and triangles.														
	CO4: A	O4: Apply finite element method in thin plate problems.														
CO-PO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Mapping:	CO1	3	1	1	1											
	CO2	1	3	2	1	2								1	1	
	CO3	1	3	2	1	2								1	1	
	CO4	CO4 1 3 2 1 2 1 1 1														

Course Code: ME(I	M2)/PE/E	B/T/316	6B		(Course	Name	Optin	nizatio	n Tech	niques	for En	gineeri	ing Des	sign	
Credits: 3					(Contac	t Hours	s/Weel	(L-T-	P): 3-0)-()		Full N	Aarks:	100	
Category of Course	: Basic P	rofessi	onal El	lective	I	Nature	of Cou	rse: T	heoreti	cal						
Course content/Syllabus:	Introdu and tec Non-lin Optimi method Optimi Gradie Constr function Evolut Differe Applic	Introduction: Historical development, Engg. Application, Statement and Problem definition, Classification and techniques of optimization, Classical optimization techniques. Non-linear programming: Introduction, Formation of N.L.P Optimization methods for single variable: region elimination methods, bracketing methods, Interpolation methods. Optimization methods for multiple variable: Direct search methods, random search, simplex method Gradient based method- Steepest descent method, Conjugate gradient method, Quasi-Newton method et Constrained optimization: Introduction, Direct method, Complex method. Indirect method: Penals function method etc. Evolutionary algorithms: Quadratic Programming, Genetic Algorithm, Particle swarm optimization (PSC Differential Evolution. Simulated annealing. Application of evolutionary algorithms and comparative study. Optimum design of Mechanisms, structural components and mechanical systems. The students of the course should be able to - CO1:														olation ethod, od etc. enalty
Course Outcomes (COs):		idents of the National Illustrate implementations of the Disting	of the of L.P. for the of the	course or optir optimis e evolu e optir	should nisatio ation a tionary nisatio	l be able on in de algorith y algori n algor	le to - sign. ms for ithms f	CO1: uncon or opti	straine misatie	ed and on prob	constra olems. ptimisa	ined o	ptimisa	s.		
CO-PO Mapping:		T .	1	_ <u> </u>	-		1	1	PO8				PO12			1
11 6	CO1	3	2	2	2											
	CO2	3	2	2	2										2	
	CO3	3	2	2	2										3	
	CO4 3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2															
	CO5	3	3		1										2	2
	COS	3	3	2	1										4	4

Course Code: ME(M2)/PE/B/T/316C	Course Name: Vehicle Dynamics And Automotive Suspension Systematics (September 2017)							
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100						
Category of Course: Basic Professional Elective I	Nature of Course: Theoretical							

Course	Stabilit	y of V	ehicles	S												
content/Syllabus:	Load d	•			on a c	urved t	rack ar	nd on a	slope.	Weigh	nt transf	er duri	ng acc	eleratio	on and b	raking
	over tu	rning a	and slic	ding. R	igid v	ehicle -	stabil	ity and	equat	ions of	motion	1.				
	Tyre															
	Relativ															
	angle, o	corneri	ing for	ce. Ov	er stee	r, unde	r steer	, stead	y state	corne	ring. Ef	fect of	cambo	er angle	e and c	amber
	Suspen	sion														
	Type o															
		Spring mass frequency, choice of suspension spring rate, Calculation of effective spring rate. Wheel ho and wheel wobble. Hydraulic dampers and choice of damper characteristics. Roll axis and vehicle under														
		and wheel wobble. Hydraulic dampers and choice of damper characteristics. Roll axis and vehicle unde the action of side forces.														
		Suspension system design, quarter car, half car and full car modeling. Overview of passive, semi-active and														
		Suspension system design, quarter car, nair car and full car modeling. Overview of passive, semi-active and active suspension system and simulation software used in industry.														
Course Outcomes	The stu	The students of the course should be able to –														
(COs):	CO1: A	Assess	the sta	bility a	ınd loa	d distri	ibution	of a v	ehicle	under	differer	nt cond	itions			
	CO2: E	Evaluat	e tyre	perfori	mance	and dy	namics	S.								
	CO3: U	Jnders:	tand th	e basic	princ	iples re	lated t	o diffe	rent ty	pes of	suspen	sion sy	stems			
	CO4: A	Apply 1	nodeli	ng and	simul	ation te	echniqu	ies for	design	of sus	spensio	n syste	ms			
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	3												2	
	CO2	3	3	2											2	
	CO3	3	3													
	CO4	3	3	3		3								1		

Course Code: ME(M2)/PE/B/T/316D	Course Name: Numerical Heat Transfer	
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: Basic Professional Elective I	Nature of Course: Theoretical	

Course content/Syllabus:

Introduction: Basics of heat transfer & fluid flow, Mathematical description of fluid flow and heat transfer: conservation equations for mass, momentum, energy, General structure of conservation equations.4**Hours**

Turbulence modelling: Reynolds-averaged Navier–Stokes equations and classical turbulence models: mixing length model, k–ε model. 3**Hours**

Discretization techniques: Classification of partial differential equations (PDE) and their physical behaviour, finite difference methods: Taylor-Series Expansion, Evaluation of First and Second order derivatives, Truncation Error; Control volume formulations. 5**Hours**

Modelling of diffusion problems using finite volume method: One dimensional steady state diffusion problems; discretization technique. Solution methodology for linear and non-linear problems: Point-bypoint iteration, TDMA. Two and three dimensional discretization,

Discretization of unsteady diffusion problems: Explicit, Implicit and Crank Nicolson's algorithm, Stability of solutions. 7**Hours**

Implementation of boundary conditions

Inlet, Outlet, Wall, Symmetry and Periodic or cyclic boundary condition 2 Hours

Modelling of convection-diffusion problems: One dimensional convection-diffusion problem: Central difference scheme. Discretization based on analytical approach (exponential scheme). Hybrid and power law discretization techniques, Higher order schemes (QUICK algorithm). 5**Hours**

Flow modelling: Discretization of incompressible flow equations, Pressure based algorithm: SIMPLE, SIMPLER etc. 5**Hours**

Methods for dealing with complex geometries: Body-fitted co-ordinate grids for complex geometries, Cartesian vs. curvilinear grids, Unstructured grids 2 **Hours**

CFD analysis process: Setting and solving a physical problem- steps, Errors and uncertainty, Verification and validation. 4**Hours Case studies** 3**Hours**

Course Outcomes	The stud	ne students of the course should be able to – O1: Comprehend the basics and mathematical description of fluid flow and heat transfer															
(COs):	CO1: Co	mpreh	end tl	he bas	sics ar	nd ma	thema	tical d	lescrip	otion o	f fluid	flow a	nd heat	transfe	er		
	CO2: Ap	ply fi	nite d	liffere	ence a	and fin	nite v	olume	discr	etizati	on tec	hnique	s to he	at tran	sfer a	nd fluid	flow
	problems	S.															
	CO3: Int	erpret	the ef	fect o	f diff	erent 1	bound	ary co	nditio	ns.							
	CO4: Ir	O4: Implement computational fluid dynamics (CFD) analysis for physical problems with an understanding															
	of valid	validation, errors and uncertainty.															
	CO5: I	O5: Illustrate different methods for dealing with complex geometries.															
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3											1				1
	CO2	3	2	2	1												
	CO3	3															
	CO4	3	2	2	2								1				
	CO5	3	1	1	1												

Course Code: ME(N	/12)/PE/E	B/T/316	бE		(Course	Name	: Solar	Energ	у						
Credits: 3					(Contac	t Hour	s/Weel	k (L-T-	P): 3-()-()		Full N	Aarks:	100	
Category of Courses	Basic P	rofessi	onal E	lective	I	Nature	of Cou	ırse: T	heoreti	cal						
Course	1. Sun	Earth (Geome	try. 3	hours											
content/Syllabus:	2. Fund	dament	als of	Solar I	Radiati	on. 5 h	ours									
	3. Flat	Plate (Collect	ors, m	aterials	& cor	nstructi	ion. 2 l	ours							
	4. The	rmal ar	alysis	of FP0	C-8											
	5. Perf	ormano	ce testi	ng of l	FPC. 4	hours										
	6. Con	centrat	ing col	llectors	s & Ev	acuate	d Tube	Colle	ctors. 6	hours						
	7. Eco															
		3. Storage of Solar Energy. 2 hours 2. Status of solar energy in India & World. 2 hours														
	9. Stati	2. Status of solar energy in India & World. 2 hours The students of the course should be able to –														
Course Outcomes																
(COs):					_			geome	try, so	lar rad	liation	fundai	nentals	, and	the pri	nciples
	govern															
	CO2: A															
	Evalua				ability	of sola	ar enei	rgy sys	stems,	ıncludı	ng sto	rage te	chniqu	es, and	i assess	their
	enviror		-		atotua	and fut	uro tro	nds of	color o	norozz	in India	Dr 1110	واطبيناط	0		
CO-PO Mapping:	CO4. I	, <u> </u>	1	1	1	1	1	PO7	1				PO12		PSO2	PSO3
CO-1 O Mapping.	CO1	3	102	103	104	103	100	107	100	10)	1010	1011	1012	1501	1502	1505
	CO1															
	CO2	CO2 3 3 2														
	CO3 3 3 3 3 2 2															
	CO4	3	3				2	3							2	3

Course Code: ME(M2)/PE/B/T/316F	Course Name: Elements of Computational Fluid	Dynamics
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: Basic Professional Elective I	Nature of Course: Theoretical	

Course	Introduc														•	
content/Syllabus:	classific				rious 1	nethod	ls to s	solve 1	PDE r	numeri	cally a	long v	vith th	eir ad	vantage	es and
	disadva	_		*			T	1: 00		. •	(EDE		. 10			.•
	FDM ar		•								•					
	Truncat unstead															
	and C-N	-			CHSIOH	ai iicai	Condu	CHOIL	quano	ns. Co	nverge	100, 00	115151011	cy, cap	Jiicit, ii	приси
	Upwind				convec	tive te	rms an	nd its s	ignific	ance. T	ranspo	rtive a	nd cons	servati	ve pror	erties.
	Upwind	-		_					_		-					
	convect							U		C		1				
	Stream	functio	n-vort	icity ap	proacl	n: Deri	vation	of strea	am fun	ction a	nd vort	icity ed	quation	s; deriv	ation p	ressure
	Poisson	equati	on. Ap	plicati	ion 2-3	proble	ems an	d Com	puter A	Assigni	ment. (4 hrs)				
	Solution	of NS	equat	ions: S	SMAC	metho	d for s	taggere	ed grid	: Predi	ctor - C	Correct	or step,	discre	tization	of N-
	S and c															
	wall, sl									_				•		
	unstead															
	implicit implicit															
	under-re															
	Comput					8-1	8	1)					
	Errors a		_			al resu	lts: Dif	fusion	and di	spersic	n error	s, Stab	ility of	1D and	l 2D dit	fusion
	equation			-						-			•			
	indepen	dence,	initial	condi	tion de	pender	nce. (21	nrs)		•			•	•		
Course Outcomes	The stud	dents o	f the c	ourse s	should	be able	e to:									
(COs):	CO1: U	ndersta	and the	basic	govern	ning eq	uation	s for fl	uid flo	w and	associa	ted tra	nsport	phenor	nena C	O2:
	Constru	ct num	erical	model	for sol	lving f	low eq	uations	with a	a presc	ribed s	et of b	oundary	y condi	itions.	
	CO3: A	pply fi	nite di	fferenc	ce and	finite v	olume	discre	tizatio	n techr	niques t	o fluid	flow p	roblem	ıs.	
	CO4: I	mplem	ent co	mputa	tional f	luid dy	namic	s (CFI) anal	ysis for	physic	al prob	olems w	ith an	unders	tanding
	of vali															
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	3													
	CO2	3	3			2										
	CO3	3	3	2		3								2	1	
	CO4	3	3		1	3								2	1	
			1													

Course Code: ME(M	(2)/PE/B/T/	316G				Cou	rse Na	ame: N	Mecha	nical N	Measur	ement	and Inc	lustrial	Statist	ics
Credits: 3						Con	tact H	ours/\	Week	(L-T-F	P): 3-0-	0	Fu	ll Mar	ks: 100	
Category of Course:	Basic Profe	essiona	l Elec	tive I		Nati	ure of	Cours	e: The	eoretic	al					
Course	Mechanic	al Mea	asuren	nent: N	Aeasu	remen	t of di	splace	ment,	veloci	ty, acc	eleratio	n, forc	e, strai	n, temp	erature,
content/Syllabus:	pressure,	flow, s	shock,	vibrat	tion ar	nd sou	nd.									
	Industrial	Statis	stics:	Statist	tical o	listrib	utions	and	their	applic	ations	to en	gineeri	ng and	d mana	gement
	problems	;														
	testing of	hypo	thesis;	z, t,	χ2 (c	hi-squ	are) a	nd F	test	; least	– squ	are me	ethods;	failur	e statis	ics and
	reliability	iability engineering; stochastic problems in engineering and management.														
	Analysis	nalysis of basic experiment and their designs; factorial experiments; randomized block design; Latin												ı; Latin		
	square de	sign; o	rthogo	onal la	tin sq	uare; c	ptimi	zation	using	Tagu	chi met	hods a	nd desi	gn of e	experim	ent.
	Markovia	n and	non-N	Iarkov	ian pr	ocesse	es; Poi	sson p	roces	ses an	d diffus	sion pr	ocesses			
Course	The stude	nts of	the co	urse s	hould	be abl	e to:									
Outcomes	CO1: Inte	-			-											
(COs):	CO2: Em				_								_			
	CO3: App	•			•		•						_	_	_	ement.
	CO4: Cor	T .				ī	,	1		1	T		T	1	T -	
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	1													
	CO2	1	2	3											1	

	CO3	2	2	3	1					1	
	CO4	2	3		1					2	

Course Code: ME(M	2)/PE/B/T	/316H				Cou	ırse Na	ame: N	Mathe	matica	l Meth	od for l	Engine	ers		
Credits: 3						Cor	ntact H	lours/\	Week	(L-T-l	P): 3-0-	0	Fu	ıll Mar	ks: 100)
Category of Course:	Basic Prof	essiona	l Elec	tive I		Nat	ure of	Cours	e: The	eoretic	al		<u> </u>			
Course	Module				ations	; ordi	nary a	nd pai	rtial d	ifferer	ntial eq	uations	(linea	r and i	non-lin	ear) and
content/Syllabus:	their app	licatior	ıs in eı	nginee	ring.											
	Module 2	2: Integ	ral tra	nsforn	ns (La	place.	, Z- an	d Fou	rier) a	nd its	applica	ations				
	Module 3	3: Intro	ductio	n to va	ariatio	nal ca	lculus	and it	ts simj	ple ap	plicatio	ns in n	nechan	ics.		
	Module 4	4: Finit	e diffe	rence	metho	od; fin	ite vol	ume;	finite	eleme	nt meth	ods.				
	Module 5	5: Num	erical	(RK2	and R	K4) n	nethod	ls for o	liffere	ntial e	equatio	ns (IVF	P).			
	Module 6	6: Corr	elation	and r	egress	sion a	nalysis	; mult	ivaria	te ana	lysis.					
	Module 7	7: Intro	ductio	n to co	ontinu	ous pi	robabi	lity di	stribut	ion.						
	Module 8	3: Intro	ductio	n to sa	amplii	ng the	ory.									
	Module 9	ule 9: Index numbers; CLI and its various measures.														
	Module 1	lule 10: Introduction to time series data, its various components, time series analysis.														
Course	The stude	ents of	the co	urse sl	hould	be ab	le to:									
Outcomes	CO1: De	monstr	ate pro	oficien	cy in	apply	ing dif	ferent	ial equ	uation	s, integ	ral trar	nsforms	and n	umeric	al
(COs):	methods	to solv	e engi	neerin	g prol	blems	involv	ing bo	oth lin	ear an	d non-	linear s	ystems	•		
	CO2: Uti	lize fir	ite dif	ferenc	e, fin	ite vol	ume, a	and fir	ite ele	ement	method	ds to ar	nalyze a	and sol	ve	
	engineeri	ng pro	blems													
	CO3: into	erpret o	lata us	ing co	rrelat	ion, re	gressi	on, m	ıltivar	iate a	nalysis,	contin	uous p	robabil	lity	
	distributi	ons, an	d time	series	s anal	ysis										
	CO4: Ap	1 0														
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	2			2										
	CO2	3	2												1	
	CO3	3	2												1	
	CO4	3	3		1										1	

Course Code: ME(M2	2)/PE/B/T/2	316I				Cour	se Nar	ne: In	troduc	tion to	o Comp	osite S	tructur	es		
Credits: 3						Conta	act Ho	urs/W	eek (I	T-P)	: 3-0-0		Full	Mark	s: 100	
Category of Course: B	Basic Profe	ssional	Electi	ve I		Natu	re of C	Course	: Theo	retica	1					
Course content/Syllabus:		te mate criteri s; Macrain rela	erials; on; M romeci ations,	Macro licrom hanica Resul	omechan lechan l Beha tant fo	anical ical I avior o orce a	Behavi Behavi of a Land and mo	vior of ior of amina ments	f Lam Lam te: Cla ; Bend	na: In ina: I assical ling o	troduct Determi Lamir f Comp	ion, Stantion atted Places	ress-str of sti late the Beams	rain rel ffness eory (C and pla	ations, of con	Biaxial nposite Lamina
Course Outcomes (COs):	The stud CO1: Cla CO2: Ar CO3: Di CO4: A ₁	ress-strain relations, Resultant force and moments; Bending of Composite Beams and plates; Failure of omposite Materials: Introduction to different failure theories, Environmental Effects. the students of the course should be able to: O1: Classify composite materials based on their constituents and structures O2: Analyze the techniques and processes involved in manufacturing composite materials. O3: Differentiate between macro-mechanical and micromechanical behaviors of laminated structures. O4: Apply different failure theories to analyze the failure mechanisms of composite materials under arious loading conditions.														
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	2	1													
	CO2	3	2	2											2	
	CO3	2														
	CO4	3	2												2	

$\underline{3^{rd}}\underline{Year}\ \underline{2^{nd}}\underline{Semester}$: Basic Professional Elective II

Course Code: ME(M	2)/PE/B/T/	/325A				Cou	ırse Na	ame: N	/lecha	nical `	Vibratio	on Ana	lysis			
Credits: 3						Cor	tact H	ours/\	Week ((L-T-l	P): 3-0-	0	Fu	ıll Mar	ks: 100)
Category of Course:	Basic Profe	essiona	ıl Elec	tive II	[Nat	ure of	Cours	e: The	oretic	al					
Course	Revision															
content/Syllabus:	without d															
	whirling															
	vibration		-	-		-				-		-	_	_		
	of numer		-		_							-				
	measurin	_		-					_	-		-		•		
	Determin				-	•			-		_			•		
	eigenvalu	-				-					-					
	of multi-	_			-		_			_			-		_	
		ndition; mode superposition method. Free vibration of one-dimensional continuous system – transverse														
		bration of string, axial vibration of bar, torsional vibration of circular shaft, transverse vibration of lerBernoulli's beam. Rayleigh Ritz method. Introduction to vibration control, passive and active														
														-	ve and	active
C .	vibration							contro	oi iaws	s, exa	mpie oi	ı sımpı	e syste	ms.		
Course	The stude							c c				c				
Outcomes	CO1: Pre		-			-	_			•						g0.
(COs):	CO2: Sol		-				_	_			-		_			
	Construct	t equat	ions o	f moti	on of a	multı	-degre	es-of-	freedo	om sys	tem to	find its	natura	I freque	ency an	d mode
	shape.	11			c	1.1.1		C C				c		.•		
	CO4: Pre						_			•		_			-~	
CO-PO Mapping:				PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	2	2													
	CO2	3	2												2	
	CO3	3	2													
	CO4	3	2													

Course Code: ME(M2	2)/P	PE/B/T/32	25B				Cours	se Nar	ne: Dy	ynami	cs And	d Contr	ol Of E	Electro	mechar	nical Sy	stems
Credits: 3							Conta	act Ho	urs/W	eek (I	L-T-P)	: 3-0-0		Full	Marks	s: 100	
Category of Course: H	Basi	c Profes	sional	Electi	ve II		Natur	re of C	Course	: Theo	retica	1					
Course content/Syllabus:	Dy Dy Ha co: act	vnamics of	of election of election of election of election of the election of the election of the election of ele	trical fectrom iple. I ion fo n collo	netwo nechan Piezoe r trans ocated r. Ma	rks, K nical s electric sducer actua gnetic	irchof system e syste rs, Ha tor-ser levita	f's lavas, concerns, permitter in the contraction of the contraction o	vs, La nstitut piezoe n's pri piezoe of a si	grange ive re electric nciple electric ingle 1	e's equelation mate, pieze lami	ation a for the crial, troelectronates.	nd Har ransduc ansduc ic bear Active	milton' cers, I cers – m actual	s princ Lagrang single ator, la assive	iple. ge's ec and m minar dampin	quation, nultiple, sensor, ng with
Course Outcomes (COs):	CC	magnetic bearings. Magnetic suspension of rigid and flexible rotors. The students of the course should be able to — CO1: Analyze the dynamics of mechanical systems using Lagrange's equations and Hamilton's principle CO2: Analyze electrical networks using dynamic principles CO3: Evaluate dynamics of electromechanical and piezoelectric systems															
	C	CO4: Expusio	olain t	he pri	nciple	es of 1	magne		-			•		magne	tic bea	rings,	and the
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3	3	3											1	
		CO2	3	3	3											1	
		CO3	3	3	3											2	
		CO4	3	3												1	

Course Code: ME(M2)/PE/B/T/325C	Course Name: Principles Of Engineering Tri	bology
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100

Category of Course:	Basic	Prof	ession	al Ele	ective	II	N	lature	of Co	urse: [Theore	tical						
Course	Engi	ineer	ing Su	ırface	s; Pro	pertie	s and	Meas	ureme	nt, Su	rface (Contac	t Adhe	sion, n	nodels,	indices	s, adhesi	ve
content/Syllabus:	surfa	ace c	ontact	. Frict	tion, c	rigin,	theor	ies, c	ompor	ents,	measu	rement	, frictio	on beha	avior o	f materi	ials. We	ar,
	origi	in, ty	pes -	adhes	ive, a	brasi	ve, co	rrosiv	e, fat	igue, e	erosio	n etc.,	measu	rement	theor	ies, del	laminati	on
	theo	ry, w	ear d	ebris a	analys	is, fe	rrogra	phy,	wear b	ehavi	or of r	nateria	ls. The	rmal C	Conside	rations	in Slidi	ng
	Con	tact,	meas	ureme	ent of	flash	temp	eratu	re, mo	deling	g. Sur	face E	nginee	ring –t	reatme	nts and	l coating	gs.
	-				-									•	•		ıydrosta	
								_	•			_				•	rodynan	
					-			_		ındary	Lub	ricatio	n –m	etal v	vorking	g, Bio	tribolog	gy.
	Nan	otrib	ology	-con	cept, i	neasu	reme	nt tool	ls.									
Course	The	stude	tudents of the course should be able to –															
Outcomes	CO1	: De	Describe the tribological principles for reduction of friction and wear.															
(COs):	CO2	2: Ap	ply th	e tribo	ologic	al pri	nciple	s for	impro	ving n	nachin	e effici	ency.					
	CO3	: Ide	ntify	prope	r lubri	ication	n metl	hods a	and sur	rface e	engine	ering te	echniqu	ies.				
	CO4	: Ex	plain 1	the as	pects	of bio	-tribo	logy a	and na	notrib	ology.							
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	C	01	3					1	2									
	C	O2	2	2	3													
	C	О3	3		2				1							1		
	C	O4	3					2	1								1	

Course Code: ME(M	2)/	PE/B/T	/325D				C	ourse	Name	: Exte	nded	Surface	Heat	Transfe	er			
Credits: 3							C	ontact	Hou	:s/Wee	k (L-	Γ-P): 3	-0-0		Full M	Iarks: 1	00	
Category of Course:	Ba	sic Prof	ession	al Ele	ctive	II	N	ature	of Co	urse: T	heore	tical						
Course		1.	Analy	sis of	exter	ided s	surfac	ces (10	6 hrs)									
content/Syllabus:]	Heat to	ransfe	r and	mathe	ematio	cal pri	nciple	es								
]	Fins w	ith co	nvect	ion. S	Simpli	fied c	onstra	ints.								
]	Fins w	ith co	nvect	ion. R	Real co	onstra	ints.									
]	Fins w	ith ra	diatio	n.												
]	Fin op	timiza	ation:	Calcu	ılus o	f varia	tion,	derivat	tive te	chniqu	e, sing	le and	multi-c	onstrai	nts	
]	Finite	differ	ences	. Stea	dy sta	te Fin	ite dif	ferenc	es. Uı	ısteady	state.					
		2.																
		3.	3. Circumferential fin: Bessel functions, equivalent annulus method, sector method. (5 hrs)															
		4.																
		5.	Differ	ent a	nalyti	ical te	echnic	ques t	o solv	e non-	-linea	r fin eo	quation	ns. (6 h	ırs)			
Course	T	he stude	ents of	the c	ourse	shoul	ld be a	able to	· —									
Outcomes		O1: Ap							_	_		-						
(COs):		O2: Op								ly and	unste	ady sta	te cond	litions,	and m	ultiple	constrai	ints
		O3: De	_					_										
	C	O4: Sol				_					•		•			,	1	
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1	3	3	3													
		CO2	3	3	3	2										2		
		CO3	3	3	3											1		
		CO4	3	3	3	2										2		

Course Code: ME(N	M2)/PE/B/T/325E	Course Name: Energy Conservation and	Management
Credits: 3		Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course	Basic Professional Elective II	Nature of Course: Theoretical	
Course	Energy-Economics-Environment:	General Overview and Interlinks 02	
content/Syllabus:	Energy Conservation in Thermal U	Jtilities: 10	
	i) Energy Cascading and 'T	otal Energy' Concept ii)	
	Boilers		

	iii)	Furn	aces i	v) Ste	eam												
	Sys	stems															
	Differer	nt Indi	ustrial	Wast	e Hea	t Rec	overy	Syste	ns: 14								
	Industri	al Ins	ulatio	n: 02													
	Energy	Conse	ervatio	on in I	Lightii	ng Sy	stems:	: 02									
	Energy	Storag	ge: 04														ļ
	Econon	mics of Energy Conservation: 04															
	Energy	ty Management and Audit: 06															
Course	The stu	students of the course should be able to –															
Outcomes	CO 1: U	Inders	stand 1	erspe	ctives	and	need o	of ener	gy coi	nserva	ition ar	ıd man	ageme	nt			
(COs):	CO2: A	nalyz	e ener	gy co	nserva	ition i	n ther	mal u	tilities	and o	ther de	vices					
	CO3: A	ssess	perfor	manc	e and	econo	omic f	easibi	lity of	energ	y cons	ervatio	n in de	evices			
	CO4: A																
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	2				3	2	1				1			2	
	CO2	3				2							1			2	
	CO3	3					3	2	2				1		2	2	
	CO4	3	2				3	2	2				1			2	

	110	CO3	3					3	2	2				1		2	2	
		CO4	3	2				3	2	2				1			2	
Course Code: ME(N	12)/I	PE/B/	T/3251	F			(Course	Nam	e: Coı	nbust	ion En	gineeri	ng				
Credits: 3							(Contac	ct Hou	rs/We	ek (L	-T-P):	3-0-0		Full	Marks	100	
Category of Course:	Bas	sic Pro	fessio	nal El	ective	e II	1	Nature	of Co	ourse:	Theo	retical						
Course	1.	INT	ΓROD	UCTI	ON: I	Defini	tion, 1	need, a	applica	ation,	classi	fication	n etc. o	f com	oustion	systen	1S.	
content/Syllabus:	2.	RE	VIEW	: The	rmody	ynami	cs (1	st& 2	and la	w for	pure,	non-re	eacting	(mixt	ure) an	d reac	ting sys	stems;
				-				-		_	-	_	ion et ics; He			vation	Equati	ions (
	3.	MA	SS T	RANS	FER:	Pick'	s law	of dif	fusion	; deriv	vation	of spe	cies co	onserv	ation e	quation	, soluti	on for
		Stef	fan pro	oblem	& dro	oplet e	evapo	ration	; mass	trans	fer as	an ana	logy to	heat t	ransfer			
	4.	CH	EMIC	AL K	INET	ICS:	Classi	ficatio	on (ho	moger	neous/	hetero	geneou	ıs; exp	losive/	non-ex	plosive	;
																	on; ord	
																	eaction:	
																	ep cherosion li	
															etic dat)81011 11.	mus,
	5.							_				_					eat Tra	ansfer
] .												_		nodyna		cat 11t	morer,
	6.										-		_		•		ed Ana	alvsis.
	0.																ons and	
			-					-				-			-		e veloc	
			kness			-							,					
	7.	LA	MINA	R DI	FFUS	ION	FLA	МЕ:. 1	non-re	acting	& r	eacting	lamin	ar jet	Burke	Schu	mann F	Flame:
		assı	umptio	ons, si	implif	icatio	n and	solut	ion o	f mass	s, spe	cies, n	noment	um &	energ	y equa	tion wi	th the
		bou	ındary	condi	tions;	deter	minat	ion of	tempe	erature	& ma	ass-frac	ction di	istribu	tion as	well as	flame h	neight;
	8.	DR	OPLE	T EV	APOI	RATI	ON &	COM	IBUS	TION	: assu	mption	ıs, sim	plifica	tion an	d solu	tion of	mass,

numbers, evaporation/burning rate constant. droplet life-time etc.

carbon burning rate, flame standoff ratio. flame temperature, expression for transfer numbers etc. for the two models.

species & energy equation with the boundary conditions; determination of temperature & massfraction distribution, mass evaporation rate, flame stand-off ratio, flame temperature, expression for transfer

SOLID COMBUSTION: Introduction to different features of solid combustion; One-film model: Twofilm model: Assumptions, simplification and solution of species & energy equation with the boundary conditions for the two models; determination of temperature & mass-fraction distribution,

10. INTRODUCTION TO ADVANCED PROBLEMS: Ignition; spray combustion; finite rate chemistry; fuel vapour accumulation; laminar/turbulent flow situations etc.

Course	The stu	dents	of the	cours	e shou	ıld be	able t	to –									
Outcomes	CO1: E	escrib	e ther	mody	namic	s rela	ted to	comb	ustion	١.							
(COs):	CO2: E	xplain	the f	undan	nental	princ	iples o	of con	bustic	on.							
	CO3: A	apply l	aws a	nd pri	nciple	es to s	imple	comb	ustion	syste	ms.						
	CO4: A	nalys	e real	life co	ombus	tion p	roblei	ms.									
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	1														
	CO2	3	2	1													
	CO3	2	3	1													
	CO4	1	3	2	1	1	1	2							1		

Course Code: ME(M	(2)/PE/B/	Γ/3250	G				Cours	e Nan	ne: Ae	rodyn	amics						
Credits: 3							Conta	ct Ho	urs/W	eek (L	-T-P):	3-0-0		Full	Marks:	100	
Category of Course:	Basic Pro	fessio	nal El	ective	e II		Natur	e of C	ourse:	Theo	retical						
Course	Introduc																
content/Syllabus:	Kinema		f gas	flow:	equa	ation	of mo	otion,	circul	ation,	Stoke	s theo	ry, stre	eam fu	nction	and vel	ocity
	potentia																
	Vortex										-						
	Helmbo																
	transfor aerofoil							•				_					e of
	Thin ae:			_							•						
	Drag on													tion an	d stalli	ng; bou	ndary
	layer co	ntrol a	and its	effec	ct.												
	Effects	of con	npress	ibility	y: Pra	ndtl (Glauer	t rule;	shock	wave	s on w	ings ar	nd bodi	es; effe	ect of sv	weep on	two
	dimensi	onal v	vings.														
	Applica				_		•			_		bomac	chine b	lades, s	streaml	ining ve	hicle
	structur	es, red	lucing	wind	l-load	on bu	uilding	gs and	struct	ures e	tc.						
Course	The stud																
Outcomes	CO1: D				-			•									
(COs):	CO2: D	_						aerofo	il fron	n theo	ries of	potenti	ial flow	and v	ortex m	otion.	
	CO3: E			•													
	CO4: A								•					L	L	L	1
CO-PO Mapping:			PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	1														
	CO2	2	3	1													
	CO3	3	1														
	CO4	2	3	2		2											
	CO5	2	2	3		2								1			

Course Code: ME(M	12)/PE/B/T/325H	Course Name: Advanced Production Proces	sses
Credits: 3		Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course:	Basic Professional Elective II	Nature of Course: Theoretical	
Course	Basic principles of automation app	olied to drives and controls.	
content/Syllabus:	Introduction to Numerical Control	, Adaptive Control, Mechatronics.	
	responses, mechanism and analysi Hybridprocesses.	ses – AJM, USM, ECM, CHM, EDM, EBM, Is, effect on material, applications, economics tes like stereolithography, SLS, and other products	s and selection of process;
	Introduction to Micro and Nano m		Jedded.

Course	Th	e studer	nts of t	the co	urse s	hould	l be al	ole to:									
Outcomes	CC	01: Clas	sify di	ifferei	nt con	trol s	ystem	s appl	ied to	mater	ial rer	noval r	nachin	es.			
(COs):	CC	02: Desc	cribe t	he op	eratio	n of d	iffere	nt mac	chines	used	in No	n-Trad	itional	Machir	ning pro	ocesses	
	CC	33: Investigate mechanics controlling the responses of different Non-Traditional Machining processes.															
	CC	04: Outl	4: Outline the generative manufacturing processes.														
	CC	05: Outl	ine the	e mici	ro and	l nano	manı	ıfactu	ring.								
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3	1													
		CO2	3		1												
		CO3			2	3											
		CO4	3	1													
		CO5	3	1													

Course Code: ME(M	12)/PE	E/B/T/32	25I				Cou	rse Na	me: Ç	Quantit	y Pro	duction	Metho	ods			
Credits: 3							Con	tact H	ours/V	Week (L-T-F	P): 3-0-	0	Fu	ıll Marl	ks: 100	
Category of Course:	Basic	Profess	sional	Electi	ve II		Natu	ire of	Cours	e: The	oretic	al					
Course content/Syllabus:	instr inte	tem of p ruments rchange and fix	for m ability	ass pr	roduct	ion a	nd de	sign o	f gaug	ges, M	achine	e tools	for ma	iss pro	duction		
	Fact Plas	tors affe stic work design p -casting	ecting i king of orincip	mass t f meta les, ty	tool production to the product	roduc ging, of f pres	ts, dif drop f ses, a	ferent forging	types g, beno ories a	of die ding, f nd atta	design formin	gn pring g, emb nts, sel	ciples o ossing ection	of dies and dr of pres	and purawing of sees.	operati	
		oowder i			nt pro	ductio	on me	thods.			-			_			
Course Outcomes (COs):	CC	e studer D1: Expoduction	olain c							role	of tol	erances	s, fits	and st	andard	ization	in mas
	CC	02: Expl 03: Desi 04: App 05: Und	ign jig ly prir	s and	fixtur s of pl	es cor astic	nsider worki	ing ec	onom metal:	ic prin s, inclu	ciples	forging	, bend	ing, an		ing ope	erations
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	2														
		CO2	2													2	
		CO3	3	2	2											2	
		CO4	3	3	2											2	
		CO5	2														

Course Code: ME(M2)/PE/B/T/325J	Course Name: Laser Machining Process	
Credits: 3	Contact Hours/Week (L-T-P): 3-0-0	Full Marks: 100
Category of Course: Basic Professional Elective II	Nature of Course: Theoretical	

Course	Basic Laser principles:	
content/Syllabus:	Light waves, EM spectrum, Wave and particle nature of light, polarized and unpolarised light, electrons	on
	photons energy levels;	
	Theory of laser: Population inversion, Spectrum vs emission and stimulated emission, Amplication gas	in,
	lasing conditions, pumping schemes, resonant cavity;	
	Properties of laser light: Coherence monochromaticity, brightness, directivity;	
	Output characteristics: Output modes, Beam diameters and divergence, CW beams, Pulsed beam, Ul short pulses;	tra
	Modified laser output: Wave length selectivity tuning, Non-linear wavelength changes, Raman	
	shifting, Switches, Mode locking, Cavity dumping, Amplication. Types of Lasers:	
	He-Ne laser, CO2, Argon – ion lasers, Nd- YAG laser, Excimer laser, Semiconductor laser and others.	
	Fundamental of Optics:	
	Geometrical Optics: Reflection, Refraction Lens, Focal length.	
	Physical Optics: Diffraction, Polarisation, and Interference.	
	Optical Components: High Power Optics, Laser Mirrors, Lens, Defects, Filters and coating, Reflecti	ve
	optics.	
	Interaction of high power laser beams with materials:	
	Material and laser parameters, Uniform condition, irradiance Model, Energy balance approximation	n,
	heating with melting, material removal, heating with vaporization, Keyhole welding; Laser machining	ıg
	system:	
	Beam delivery system, Mirrors, Beam splitters, Focussing lens, Laser Head, Fibre optic coupling, Laser	
	workstation.	
	High power laser applications:	
	Surface hardening, welding, cutting, drilling, marking and alloy cladding.	
Course	The students of the course should be able to –	
Outcomes	CO1: Explain the basic principles of lasers, including the nature of light waves, electron photon energian	gy
(COs):	levels, population inversion, and lasing conditions	
	CO2: Assess the properties of laser light and various output characteristics	
	CO3: Apply knowledge of different laser types and optics	
	CO4: Describe the interaction of high-power laser beams with materials CO5:	
	Design laser machining system	_
CO-PO Mapping:	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3	
	CO1 3	
	CO2 3 1	
	CO3 3 2 1 2 2	1
	CO4 2	1
	CO5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	11

$\underline{\mathbf{4}^{th}}\underline{\mathbf{Year}}\,\underline{\mathbf{1}^{st}}\underline{\mathbf{Semester: Honours\ Professional\ Elective\ I}}$

Course Code: ME(M	(2)/PE/H/T/414A	Course Name: Finite Element Method For No	onstructural Applications
Credits: 4		Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100
Category of Course:	Honours Professional Elective I	Nature of Course: Theoretical	
Course content/Syllabus:	order partial differential equations equation for simple one-dimension	leigh Ritz method. Classification of problems, linear self-adjoint operators, obtaining fur al cases, Method of weighted residuals, One flow. General field problems, equilibrium problems.	nctional from differential dimensional problems of
	techniques, examples from heat magnetic fields, torsion etc. Eiger variational principle and weighted equation. Propagation problems	element equations using variational princip transfer, two dimensional fluid flow, two avalue problems – Helmholtz equation, finite residual techniques, examples from one-dimen time dependent field problems, finite element and time-integration. Use of commercial paced dimagnetic field problems.	dimensional electric and e element equations using assional elasticity and wave ment equations, transient

Course	Th	e studei	nts of	the co	urse s	should	l be al	ole to:									
Outcomes	CC	01: Con	struct	finite	eleme	ent eq	uatior	s for	non-st	ructur	al pro	blems t	from go	overnin	g diffe	rential	equations
(COs):	usi	ing varia	ational	l calcu	ılus a	nd we	ighted	d resid	lual m	ethod							
	CC	02: App	oly fin	ite ele	ement	meth	od to	solve	e the	equilit	orium	equation	ons (in	one a	nd two	dimer	sions) of
	no	nstructu	ral pro	oblem	ıs.												
	CC	03: Con	struct	the fir	nite el	lemen	t equa	tions	for eig	genval	ue pro	blems	for no	n-struc	tural ap	plicati	ons.
	CC	04: Solv	e prop	oagati	on pro	oblem	s in n	on-str	uctura	ıl appl	ication	ns using	g finite	eleme	nt meth	od.	
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3	3													
		CO2	3	2		2										1	
		CO3	3	2													
		CO4	3	3	2	2	3									2	

Course Code: ME(M	2)/P	E/H/T/4	114B				Co	urse N	Jame:	Theor	ry Of l	Pressur	e Vess	els			
Credits: 4							Co	ntact l	Hours	/Week	(L-T	-P): 4-0	0-0	I	Full Ma	arks: 10	0
Category of Course:	Hon	ours Pro	ofessio	onal E	lectiv	e I	Na	ture o	f Cou	rse: Tl	neoreti	ical					
Course	Int	roductio	on to p	ressu	re ves	sels-	Fired	and u	nfired	vesse	ls.					[2]	
content/Syllabus:	Ve	ssel Me	chanic	cs - T	hick a	and th	nin cy	lindric	al ves	ssel, T	hick &	kamp;	Thin S	pherica	al vesse	el, Anal	lysis wit
	the	help of	vario	us fail	lure th	neorie	es.	[6]									
	De	sign of	cylind	rical d	&	; sph	erical	vessel	, head	ls (her	nisphe	erical, t	orisph	erical,	elliptic	al, coni	cal, flat)
	wit	h the he	elp of	ASMI	E equa	ation.										[5]	
	De	sign of	thin c	ylindr	ical v	essel	under	exteri	nal pre	essure.	•					[2]	
	Th	ermal A	nalysi	is of C	Cylind	rical	vesse	ls, and	Sphe	rical v	essel.					[5]	
	Au	tofretta	ge ana	lysis	of thi	n and	thick	cylind	lrical	vessel						[7]	
		sign of			,	_				-						[8]	
		_							_		ervice	s, high	tempe	rature	service	s and c	orrosive
		vices. D							ateria	ls.					[4] Intro	duction
		fabricati											[3]				
Course		e studer															
Outcomes		1: Anal	•			•						_					
(COs):						-	nerica	l vesse	els, in	cludin	g the	selecti	on and	l applic	ation o	of diffe	rent hea
		es, utili	_														
								tofretta	age an	alysis	of cyl	indrica	al and s	spherica	al vesse	els to as	sess the
		forman														_	
			_		ipport	t syste	ems su	ich as	saddl	es, ski	rts, le	gs, and	lugs, c	conside	ring sti	ructural	stability
	and	d load d			200	DO 4	DO 5	DO (DO	200	7000	DO 10	2011	2012	D 0.0.1	DG O A	DG G 2
CO-PO Mapping:						PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3	2	2											2	
		CO2	3	3	3	1			3							2	
		CO3	3	2	2											2	
		CO4	3	3	2	2										2	

Course Code: ME(M2)/PE/H/T/414C	Course Name: Plastics, Polymers, Composites Ar	nd Ceramics Materials
Credits: 4	Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100
Category of Course: Honours Professional Elective I	Nature of Course: Theoretical	

	1						_										
		Plastics and Polymers: Introduction, structure of plastics, polymer materials, plastics available to the designer, selection of plastics. General properties of plastics and polymers, visco-elastic behavior of plastics short term testing of plastics, long term testing of plastics, design methods for plastics using deformation data, mathematical models of visco-elastic behavior, intermittent loading, deformation behavior or reinforced plastic. (10 pds)															
-		_		-			-	-	-		-						-
						of v	isco-€	elastic	beha	vior,	intern	nittent	loadin	g, defe	ormatio	on beh	avior of
	rein	forced p	lastic.	$(10 \mathrm{p}$	ods)												
		-									_	_					omposite
																	ties and
	appl	lications	. Poly	mer]	Matri	x Cor	nposi	tes: Po	olyme	r Mat	rices,	Proces	sing T	echniq	ues, G	lass Re	inforced
	Con	nposite,	Carbo	n Fib	er Co	mpos	ites; N	Metal 1	Matrix	c Com	posite	s: Met	al Matı	rices, P	rocessi	ing Tec	hniques,
	Inte	rfacial (Contro	ls, Di	scont	inuou	sly R	einfor	ced C	ompo	sites,	Fiber (Compo	sites;	Fabrica	ation p	ocesses.
	Rule	es of m	ixture	s, Hal	pin-T	sai e	quatio	ns for	effec	ctive r	nodul	i of a	continu	ious fil	bre-rei	nforced	lamina.
	Stre	ss-strair	n relati	onshi	p of a	cont	inuou	s fibre	-reinf	orced	lamin	a; The	ories o	f failur	e for co	ontinuo	us fibre-
	rein	forced la	amina	: max	imum	stress	s, max	kimum	ı straiı	n, Tsai	-Hill	and Ts	ai-Wu	criteria	;		
	Me	echanical testing of composites. Analysis of composite laminates with classical lamination theory. (22 ls)															
	pd	ds)															
	1 -	eramics Materials: Introduction; Ceramic Raw Materials, Ceramic Matrix Composites: Ceramic Matrices															
		rocessing Techniques, Alumina Matrix Composites, Glass Matrix Composites; Crystal															,
		Structure and defects; Structure of glasses; Phase diagrams and phase transformation; Colloidal Properties:-Particle size and shape, Surface properties, Flocculation and Deflocculation, Rheology, Drain															
																	chanics,
	Ex	trusion,	Pressi	ing, Ir	njectio	n Mo	lding	, Dryi	ng; Aj	plicat	ions.	(10 pds	s)	•			
Course	_	e studer		_	•			•					,				
Outcomes		01: Expl								ics and	l Poly	mers.					
(COs):)2: Desc					•				•		astics				
,)3: Und								_				c			
)4: Und															
								•								6.0	٠,
												_			ialysis	of Com	posites.
	CC	06: Core															L
CO-PO Mapping:				PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3	2													
		CO2	2	2											2		
		CO3	3	2					2								
		CO4	3		2				2								1
		CO5	2	3	3	2									2		
		CO6	3	2													

Course Code: ME(M2)/PE/H/T/414D	Course Name: Advanced Heat Transfer	
Credits: 4	Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100
Category of Course: Honours Professional Elective I	Nature of Course: Theoretical	

Course content/Syllabus:	Conduction threediment Orthogonal transfer. Some conduction boundaries Introduction Radiation enclosures convection Turbulent	nsional curvillatingle and varies. Separ to heat to contain the contains a separate contains.	heat condinear coordinated that it is a transfer: Transfer: ning absorts	luctio rdinate phase ermo- ariable r in hu Radiorbing	n equies. He lag no physices. An internal intern	ations, eat com- nodels, cal pro- nalytic bodies in gas emitti	heat duction. External External me a. 13 H ses and me	conduction equal condextended es. Pathods lours and vapaged and condextended established e	action action surfac rtial li in non our. Co inte	equati- for ani- ce heat umping a-linear das rad raction	ons in sotropic transf system heat contains a final of radion system of radions.	differe c mate er for ms. Co onduct and rad diation	nt coor rials. N multidi induction ion pro- liation with o	dinate on-Fou mension with blems. heat tra	systems. urier heat onal heat moving ansfer in tion and	
	layer heat analogy be	rbulent Forced Convective Heat Transfer: Momentum and energy equations, turbulent boundary er heat transfer, mixing length concept, Turbulent Prandtl number. Turbulence model − K- € model, alogy between heat and momentum transfer −Reynolds, Colburn, Prandtl turbulent flow in a tube, high red flows. 7 Hours														
		d flows. 7 Hours se Change: Boiling: Pool boiling, Boiling regimes and the boiling curve, Heat transfer correlations in														
	pool boilir	se Change: Boiling: Pool boiling, Boiling regimes and the boiling curve, Heat transfer correlations in l boiling, Film boiling, Scale analysis, Flow boiling. Indensation: Physical Mechanisms, Laminar film on a vertical Surface, Heat transfer correlations for														
	Condensa															
	film conde	ensation	. 9 Hours													
	Numerica conduction control vo consistenc Algorithm	n proble lume fo y of nur	ems –Disormulation merical m	cretizan, stea ethod	ation ady or s. Sol	schem ne din ution o	nes – nensic of sim	expliconal conultane	it, Cr onvect ous al	ank Ni ion an gebraic	icolson d diffu c equat	and for and for any silication in the silication	ully im roblem ri-Diag	plicit s s. Stab	schemes, ility and	
Course	The studer	nts of th	e course s	should	l be al	ole to -	_									
Outcomes	CO1: Solv	e heat c	onduction	n equa	ations	for sir	nple g	geome	tries a	pplyin	g appro	priate	bounda	ry con	ditions.	
(COs):	CO2: Ana															
	CO3: Asse	ess radia	ation heat	transf	fer in	enclos	ures v	with at	sorbii	ng and	emittir	ng med	ia.			
	CO4: Ana	lyze pha	ase chang	e heat	trans	fer.										
CO-PO Mapping:		PO1 P	O2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	2 2	1										2		
	CO2	3	3 2	1		1					1			2		
	CO3	3	3 2											2		
	CO4	3	3 2											2		

Course Code: ME(M	12)/PE/H/T/414E	Course Name: Steam Turbine									
Credits: 4		Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100								
Category of Course:	Honours Professional Elective I	Nature of Course: Theoretical									
Course	Ideal and actual expansion of stea	am through nozzle, critical pressure ratio, ma	aximum rate of discharge,								
content/Syllabus:	under expansion and over expans	sion in nozzle. Nozzle efficiency & veloci	ity coefficient of nozzles.								
	Supersaturated flow through nozzle	e. 4 Hours									
	Flow through simple impulse turb	bine blading, velocity diagram, blade efficier	ncy, Gross stage efficiency,								
	net stage efficiency, optimum vel	velocity ratio. Degree of admission. 3 Hours									
	Multistaging or compounding of	impulse turbine, velocity compounding, press	sure compounding, velocity								
	and pressure compounding . 6Ho	urs									
	Reheat factor, internal efficiency,	y, state point locus etc. in relation to steam turbine. 4 Hours									
		e, velocity diagram, Degree of reaction, blade height, stage efficien									
	optimum velocity ratio, axial thru										
	Comparisons of impulse & reaction	on turbine, Losses in turbines, Partial admissi-	on loss, gland leakage loss								
	etc. 3 Hours										
	Blades in turbine: Material, manuf	nufacturing, labyrinth packing, fixing and cooling, Erosion of turbine blades									
	turning gear, barring gear. 6Hour	ours									
	Turbine bearing and lubrication, I	Principle of turbine governing. 6 Hours									
	Constructional details and descri	ption of steam turbine components in brief,	KWU set, LMW set with								
	stages. 6 Hours										

Course	Th	e studer	nts of	the co	ourse s	should	l be al	ole to	_								
Outcomes	CC	01: Den	onstr	ate pr	oficie	ncy in	anal	zing	steam	expar	ision t	hrough	nozzle	es, incl	ading c	ritical _I	oressure
(COs):	rat	ios, disc	charge	rates	, and	efficie	ency p	arame	eters.								
	CC	02: Und	erstan	d the	princi	iples o	of imp	ulse a	nd rea	action	turbin	es, inc	luding	flow cl	naracte	ristics,	velocity
	dia	agrams,	degre	e of re	eactio	n, bla	de eff	icienc	ies,								
	CC	03: Ana	lyze n	nultist	taging	and c	compo	oundin	g tech	nnique	s in st	eam tu	rbines				
	CC	04: Evaluate design aspects of turbine blades, including materials, manufacturing processes, cooling															
	me	ethods, and erosion prevention techniques.															
	CC	D5: Exp	lore to	urbine	com	ponen	ıts, be	aring	syster	ns, lu	bricati	on met	thods,	govern	ing pri	nciples	of stea
	tur	bines.															
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3	3	2											2	
		CO2	3														
		CO3	3	3	2											1	
		CO4	3	3	3	1										2	
		CO5	2														

Course Code: ME(M	2)/PE/H/T/	414F				Co	urse N	Vame:	Advai	nced A	Automo	tive E	ngines				
Credits: 4	<i></i>					_					P): 4-0			full Ma	rks: 10	0	_
Category of Course:	Honours Pr	ofessio	nal E	lectiv	e I	_			rse: Th								
Course	Problems	of carl	oureto	r base	ed eng	gines (1 Peri	iod)									
content/Syllabus:	Injection	system	s in S	I eng	ines,	Basic	Class	ificati	ons lil	ce thro	ottle bo	dy inj	ection,	Port fu	iel inje	ction a	nd
	direct inje	ection s	ysten	ıs, Th	eir ad	vanta	ges an	d disa	dvanta	ages (2	2 Perio	ds)					
	Fuel inject														ı. Calcı	ılation	of
	basic inje		me ar	id nec	essity	of su	bsequ	ent co	orrectio	on fact	tors, N	umeric	al prob	lems			
	(3 Period														0.0 1		
	Introducti		_			ıt (EC	:U); C	ienera	tion of	the c	ontrol	signal	tor ope	eration	of fuel	ınjectio	on
	system in	_						1 .	.,.		т.	1				,.	
	Problems						_	_								-	
	-	tem, Study of the different methods of generation of input signals, its subsequent processing and the ail role of EeU (8 to 10 periods) neration of pollutants and Pollution control systems; Measurement of pollutants; oxygen lambda senor														iC	
		neration of pollutants and Pollution control systems; Measurement of pollutants; oxygen lambda senor														r	
		d feed back control in PFI engines. (12 Periods)															
		take and exhaust systems; Helmholtz resonator, inertial charging and wave charging in engines, brief														ef	
		ke and exhaust systems; Helmholtz resonator, inertial charging and wave charging in engines, brief oduction to earn-less engines and variable valve lift technology, numerical problems (8 periods)															
	Introduct	ion to t	urbul	ence;	its ge	nerati	on an	d dec	ay; Sp	ecial 1	flow pr	oblem	s in co	mbusti	on chai	nbers o	of
	modern S																
Course	The stude																
Outcomes	CO1: Ana	-											_				
(COs):	CO2: Coi	-	njecti	on sys	stems	in SI	engin	es and	l evalu	ate the	eir adv	antage	s, disad	vantag	es, and		
	application							.1		,		c ·	. 1				
	CO3: Ana	-	-		-			-	_			_	_	3.			
	CO4: Exp				-	_							-		1	4	
	CO5: Coi CO6: Un																CI
	engines.	ucistai	id tile	gene	Tanoi	Ι 01 ι	urourc	nec a	iiu its	шра	ct III c	Omous	tion ci	iamoci	5 OI III	ouciii	31
CO-PO Mapping:	- I I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	П
	CO1	2	2														1
	CO2 2 1 1 1																
	CO3	3	2												2		$\left \cdot \right $
	CO4	3	2												2		1
	CO5	3	3					3							2	2	1
	CO6	2	2														

Credits: 4							Co	ntact l	Hours	/Week	(L-T	-P): 4-0)-()]	Full M	arks: 10	00
Category of Course:	Honour	rs Pro	fessio	onal E	lectiv	e I	Na	iture o	f Cou	rse: Tl	neoret	ical					
Course	Introd	luction	n to	turbul	ent fl	ow, (Chara	cteristi	cs of	turbul	lent fl	ow, La	minar	turbul	ent tra	nsition,	Origin o
content/Syllabus:	Turbu	ılence	, Wal	ll bou	nded	Turbu	ılence	and f	ree tui	bulen	ce. (4	Hours)					
	Classi	ificati	on of	Turb	ulenc	e, Iso	tropic	and a	nisotr	opic T	urbul	ence, T	ime M	lean m	otion a	nd Flu	ctuations,
	_				•	les, T	ime s	cales a	and K	olmog	orov s	scales,	Intens	ity of T	Turbule	ence an	d Degree
	of Tu		,		,												
			_	-								-			_		ylindrical
					_	_		_	uation	s, Rey	nolds	Stress	es, Sig	nificar	nce of	Reynol	ds stress,
	The co	-		•		-				0 1	c	•.		••	1		. 1
				•	•							_					Boundary
		•						•					•	mversa	ıı veio	city pro	ofile on a
	_	at plate, rectangular duct and circular pipes and friction factors. (8 Hours) ne concept of vorticity dynamics, Energy producing Large eddies and dissipative eddies, vortex stretching,															
		he concept of vorticity dynamics, Energy producing Large eddies and dissipative eddies, vortex stretching, oncept of energy cascading, Kolmogorov Energy spectrum. (4 Hours)															
		oncept of energy cascading, Kolmogorov Energy spectrum. (4 Hours) eveloping and Fully Developed Turbulent Flow in a pipe for Moderate Reynolds Number, variation of															
	frictio			•		-			1 10 W	ın a ı	лрс к)1 1 1100	crute 1	Cynon	us i tui	noci, v	ununon
							,		th Hv	nothes	sis Tl	ne eddy	visco	sity m	odel '	The tw	o equatio
									•	-		f mode		•			o equatio
Course	The st																
Outcomes	CO1:	Assoc	ciate	conce	pts fr	om F	luid N	1 echar	nics to	turbu	lent tr	anspor	pheno	mena.			
(COs):	CO2:	Comp	pute t	urbul	ence p	oaram	eters	for dif	ferent	flow	config	guration	ıs.				
	CO3:	Cons	truct	theore	etical	mode	ls for	simple	e engi	neerin	ıg prol	olems.					
	CO4:	Analy	yze c	omple	x trai	isport	phen	omena	invo	lving t	urbul	ence.					
CO-PO Mapping:]	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	C	01	3	1													
	C	CO2 2 3 1															
	C	О3	3	2	2		1								+	+	
	l		2	3	2	1	2								+	-	
		J-1						J									

Course Code: ME(M	(2)/PE	E/H/T/4	414H				Co	urse N	Vame:	Theor	y Of 1	Metal I	Formin	g				
Credits: 4							Co	ntact l	Hours	/Week	(L-T	-P): 4-0)-0	I	Full Ma	arks: 10	00	
Category of Course:	Hono	ours Pro	ofessio	onal E	lectiv	e I	Na	ture o	f Cou	rse: Tł	neoret	ical						
Course	Intr	oductio	on; St	ructur	e of n	netals	; Stre	ss and	strair	n analy	ysis; F	undam	entals	of plas	tic def	ormatio	n; Basi	C
content/Syllabus:	theo	ory of	plasti	city,	yield	crite	ria of	meta	ls; de	termir	ation	of wo	rking	load in	n plast	ic defe	rmation	ι.
	Intr	oductio	on to	metal	form	ing; r	netho	ds of	solutio	on of	formiı	ng prob	olems;	Mecha	nics of	f metal	formin	3
	pro	cesses, e.g. rolling, forging, drawing, extrusion, bending etc.																
	Fric	ction and lubrication in metal forming processes; Defects in metal working.																
Course	The	e students of the course should be able to:																
Outcomes	CO	1: Exp	lain tl	neory	of pla	sticit	y, yiel	ld crite	eria an	nd calc	ulate	workin	g load	in plas	tic defo	ormatio	n.	
(COs):	CO	2: Der	nonsti	ate m	echan	nics of	vario	ous me	tal for	rming	proce	sses.						
	CO	3: Uno	lerstaı	nd eff	ects o	f frict	ion ar	ıd lubı	ricatio	n in m	etal fo	orming	and id	entify	defects	in met	al	
	wor	king.																
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1	3	2			2											
		CO2	3	2	2											2		
		CO3	2					2										

Course Code: ME(M2)/PE/H/T/414I	Course Name: Production Systems And Contr	ols
Credits: 4	Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100
Category of Course: Honours Professional Elective I	Nature of Course: Theoretical	

Course	Intro	duction	:														
content/Syllabus:	Prod	uction	and p	roduc	ction	syste	m; M	odels	of p	roduct	ion s	stems,	, plann	ing, a	nalysis	and c	ontrol o
	prodi	uction s	ystem	is, pro	ducti	on co	ntrol i	nform	ation	syster	n; Inte	grated	produ	ction co	ontrol s	ystems	
	Fore	casting:															
	Long	and sh	ort ter	m for	ecasti	ng me	ethods	s; time	-serie	s pred	iction	; growt	h analy	sis by	expone	ntial sn	noothing
	Fore	cast err	or ana	lysis;	the B	ox-Je	nkins	appro	ach; I	Delphi	Tech	nique.					
	Aggr	egate p	lannir	ng and	l mast	er sch	neduli	ng:									
	Diffe	erent ap	proacl	hes to	aggre	egate	plann	ing; pa	arame	tric ap	proac	h to pr	oductio	n plan	ning; o	ptimiza	tion
	appro	oaches	to agg	regate	plan	ning;	Deseg	gregat	ion to	a mas	ter scl	nedule.					
	Sequ	ence an	d sch	edulin	ıg:	_											
	Sequ	encing tasks on processors; Job-shop scheduling; The line balancing problem; Line balance; project															
		duling by network techniques; scheduling with resource constraints;															
	Ma	npower Planning and Behavioral Science; Control and Reliability of Production Systems: Quality															
	assı	rance; Inspection and acceptance sampling; control charts; system reliability. Case study.															
Course	The	studen	ts of t	he co	urse s	hould	be at	ole to:									
Outcomes	CO	1: Unde	erstand	d diffe	erent i	model	ls of p	roduc	tion s	ystem	s, incl	uding p	olannin	g, anal	ysis, ar	d conti	ol
(COs):	med	chanism	ıs.														
	CO	2: Appl	y fore	castir	ig tecl	hniqu	es lik	e the E	3ox-Je	enkins	appro	ach an	d Delp	hi Tecl	nnique.		
	CO	3: Con	nprehe	end va	arious	appi	roache	es to	aggre	gate p	lannii	ng, inc	luding	param	etric a	nd opt	imizatio
	met	hods.															
	CO	4: Appl	y sequ	uencir	ng and	l sche	dulin	g tech	niques	s to op	timize	produ	ction p	rocess	es, incl	uding j	ob-shop
	sch	eduling															
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	2	1													
		CO2	3	3							1		1	1		1	
		CO3	2	2		1					<u> </u>			<u> </u>			
		CO4	2	2		1					1		2	1		1	
		50.		_												-	

Course Code: ME(M2)/PE/H/T/414J						Co	Course Name: Design of Thermal systems												
Credits: 4 Contact Ho									Hours	/Week	ek (L-T-P): 4-0-0 Full Marks: 100						0		
Category of Course: Honours Professional Elective I								Nature of Course: Theoretical											
Course	Introduction to Thermal System Design												(2)						
content/Syllabus:	Basic Considerations in Design														(2)				
	Mathematical Modeling of Thermal Systems														(6)				
	Numerical Modeling and Simulation														(5)				
	Thermal System Design from Thermodynamic Considerations														(4)				
	Sys	System Simulation and System Identification													(5)				
	Formulation for Optimal Design; Lagrange Multipliers; Search Methods													(4)					
	Ge	ometric	, Dyna	amic a	ınd Li	near l	Progra	ammir	ıg						(3)				
	Int	Introduction to use of soft computing in Thermal System Design and Optimization												ization		(8)			
Course	The students of the course should be able to –																		
Outcomes	CC	1: Asso	ciate	funda	menta	ıl prir	ciples	s of th	ermod	lynam	ics, fl	uid me	chanic	s and h	eat trar	sfer fo	r therm		
(COs):	systems.																		
	CO2: Apply different numerical techniques to practical thermal systems.																		
	CO3: Analyse thermal systems through mathematical modelling.																		
	CC	CO4: Formulate design statements for practical thermal systems.																	
CO5: Assess application of optimization tech																			
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
		CO1	3	2															
		CO2	2	3	1														
		CO3	1	3	2	2	2												
		CO4	1	2	3	2	2		1							1			

Course Code: ME(M2)/PE/H/T/414K						Cou	Course Name: Gas Turbines										
Credits: 4					Con	Contact Hours/Week (L-T-P): 4-0-0 Full Marks: 100											
Category of Course: Honours Professional Elective I						Natı	Nature of Course: Theoretical										
Course content/Syllabus:	Idea heat exch (4 po Rev Use effic Ana Cen num rotat Axia flow axia Gas Axia	Ideal cycle analysis for gas turbine including the effects of perfect inter- cooling, ideal reheating and ideal heat exchanger. Comparison between ideal and actual cycles including effects of pressure drop in heat exchanger, isentropic efficiencies of compressor and turbine and changes in composition of working fluid (4 periods) Review of small stage efficiency and stagnation quantities (2 periods) Use of Gas turbines in air craft propulsion systems: Momentum thrust and pressure thrust; propulsion efficiency; analysis of subsonic and supersonic intakes, analysis of subsonic and supersonic exhaust nozzles, Analysis of turbo-jet, turbo-fan and turbo prop engines; introduction to Ram jet engines (10 periods) Centrifugal compressor, energy for compression, slip factor, power input factor, inlet pre-whirl, Mach number at the inlet of diffuser, Non-dimensional quantities and compressor characteristics; surge line and rotating stall. (8 periods) Axial flow compressor, energy for compression, work done factor, Degree of reaction, three dimensional flow, review of radial equilibrium theory and free vortex design, losses in compressor, blade nomenclature, axial flow compressor characteristics (8 periods) Gas turbine combustion chambers, types, pressure drop (4 periods) Axial flow turbines, work done per stage, flow coefficient, blade loading co-efficient and degree of reaction, nozzle loss co-efficient, free vortex design and constant nozzle angle design, characteristics (6 periods) Prediction of performance of gas turbine plant as a whole unit (2 periods)															
Course		e studer															
Outcomes		CO1: Understand the basic thermodynamic gas cycles of gas turbine.															
(COs):		CO2: Examine working principles and characteristics of different types of compressors and turbines.															
		CO3: Describe the combustion mechanisms in gas turbine engine. CO4: Analyze the performance of gas turbine.															
CO DO Manning	CC)4: Ana	-				PO5			DO8	DO0	PO10	DO11	DO12	DSO1	PSO2	DSO2
CO-PO Mapping:		CO1	2	POZ	PO3	PO4	PU5	PO0	PO/	rus	PO9	POIU	POII	POIZ	PSO1	PSU2	1505
		CO2	3								1			1			+
				-													
		CO3	3	2	2						1	1		1	1		
		CO4	3	3	3	2											
Course Code: ME(M2)/PE/H/T/414L												ırbo Ma					
Credits: 1							Co	ntact 1	Hours	Magl	- (T T	-P)· //-()_()	1	7u11 M	rke 10	10

Credits: 4		Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100									
Category of Course	: Honours Professional Elective I	Nature of Course: Theoretical										
Course	Basic Concepts of Turbo Mack	hines: Classification of Turbo Machines, Basic Laws and Governing										
content/Syllabus:	Equations, Efficiencies. (4hrs)											
	Blade Theory: Aero-Foil Section, Drag and Lift, Cascade. (4hrs)											
	Centrifugal Compressors and Fans: Components and Description, Velocity Diagrams, Slip Factor, Stage											
	Pressure Rise and Loading Coefficient, Degree of Reaction, Diffuser, Centrifugal Compressor											
	Characteristics. (6hrs)											
	Axial Flow Compressors and Fans: Working Principle, Velocity Triangles for an Axial Flow											
	Compressor Stage, Energy Transfer or Stage Work, Stage Loading (or) Pressure Coefficient, Reaction											
	Ratio, Review of radial equilibrium theory and free vortex design, Axial flow compressor characteristics.											
	(8hrs)											
	Axial Flow Steam and Gas Turbines: Velocity Triangles for an Axial Flow Turbines, Stage Work and											
	Diagram Efficiency, Stator (Nozzle) and Rotar Losses, Compounding (or) Staging, The Reaction Turbine,											
	Stage Efficiency of Reaction Turbine, Impulse Turbines Versus Reaction Turbines. (10 hrs)											
	Radial Flow Gas and Steam Turbines: Velocity Diagrams, Stage Efficiencies Velocity, Degree of											

Reaction, Triangles and Stage Work. (8hrs)

Course	Th	e studer	nts of	the co	urse s	hould	l be al	ole to	-									
Outcomes	CC	01: Dem	onstra	ate un	dersta	nding	of co	mpres	ssible	flow t	urbom	achine	s, inclu	ıding c	lassific	ation, t	ypes, a	nd
(COs):	ba	sic therr	nodyn	amic	princi	ples.												
	CC	D2: App	oly dia	mensi	onal a	analys	sis tec	chniqu	es to	evalu	ate pe	erform	ance p	aramet	ers and	l effici	encies	of
	tur	bomach	ine st	ages.		-		_			_		_					
	CC	03: Anal	lyse st	age ve	elocity	/ trian	gles a	nd ent	halpy	-entro	py dia	grams	to asse	ss perfo	ormanc	e chara	cteristic	es
	CC	04: Dev	elop d	lesign	parai	meter	s to e	nhanc	e perf	orman	ice and	d mini	mize lo	osses ir	turbo	machin	e stage	s.
	CC	D5: Eval	luate e	effecti	venes	s of d	liffere	nt turl	ooma	chine o	config	uration	is and	design	strateg	ies in a	chievin	ıg
	de	sired pe	5: Evaluate effectiveness of different turbomachine configurations and design strategies in achieving ired performance objectives. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3															
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1	3	3														1
		CO2	3	3		2												1
		CO3																
		CO4	3	3	2	1										2		1
				_	4	1										4		4
		CO5	2	2	1	1										1		

4th Year 1st Semester: Honours Professional Elective II

Course Code: ME(M	2)/PE/H/	Γ/415A				Co	urse N	Vame:	Eleme	ents O	f Fract	ure Me	chanic	s			
Credits: 4						Co	ntact 1	Hours	/Week	(L-T	-P): 4-0)-0	I	Full Ma	arks: 10	00	
Category of Course: 1	Honours :	Professi	onal E	lectiv	e II	Na	ture o	f Cou	rse: Th	eoreti	ical		•				
Course	1.	Backgr	ound	of the	subje	ct, re	view c	of stre	ss, stra	in, de	format	ion and	l failur	e. [4 cl	asses]		
content/Syllabus:	2.	Theore	tical c	ohesi	ve stre	ength,	Effec	t of di	scontir	nuity o	n fract	ure stre	ength, '	Various	source	es of cra	cks,
	Griffith	s criteri	a and i	its lim	itatio	ns, Oı	wan's	corre	ction.	[4 clas	sses]						
	3.	O,			train (energ	y relea	ise rat	e, criti	cal str	ain ene	rgy rel	ease ra	te for f	ixed gr	ip and f	ixed
	load cor		-	-													
	4.					-				•				-		, Geom	-
	paramet					_	_		on st	ress i	ntensit	y facto	ors, int	errelati	on bet	ween st	ress
	approac					_		_									
	5. fracture															plane st	
	toughen		iess, p	or object	iiis as	ssocia	ieu w	iui ci	ack u	р ріа	sucity,	K-Cu	IVE DE	114 101	and C	iack ai	iest,
	mechan		trinsic	and e	xtrins	sic. [6	classe	es]									
	6.	Evolut	ion of	Frac	ture t	oughr	ness e	valuat	ion, e	ffect o	of geor	metry,	tempe	rature	and str	ain rate	e on
	fracture	behavi	or and	d on	Ducti	le-bri	ttle tr	ansitio	n ten	perat	ure, R	elation	betwe	en pla	ne stra	ain frac	ture
	_	eture behavior and on Ductile-brittle transition temperature, Relation between plane strain fracture ghness and CVN, Indentation method and other techniques to measure toughness. [6 classes] Modes and models of fracture in metals: steps of micro-void formation and coalescence, ceramics and															
		Modes and models of fracture in metals: steps of micro-void formation and coalescence, ceramics and															
	polyme																
Course		idents o															
Outcomes		Describe			-					3.6		T1 .	D1				
(COs):		Apply b		•							hanics,	Elasto	o-Plasti	ic Frac	ture M	echanic	s to
		ate and										C 1 C	,•	1.6	. ,		
		Relate st				•						of defo	ormatio	n and i	racture	. .	
		Analyse												£ £.4:			
		Deduce to dentify		•		_	_	•		_		sic con	cepts o	n rangi	ie.		
CO-PO Mapping:	CO0. 1									0 1	•	DO11	DO12	PSO1	DSO2	DSO3	Т
CO-PO Mapping:	CO				104	103	100	107	100	109	1010	1011	F O12	1301	1302	1303	- 1
	CO		2	2		1	-										↓
	CO	_	3	3													
	CO			2	2			1							2		
	CO			2				2							2		
	CO	3	3	2				2							2		
	CO	2	3		2									2	2		

Credits: 4						(Contac	t Hou	rs/Wee	k (L-	Γ-P): 4	-0-0		Full M	1arks: 1	.00	
Category of Course:	Honour	s Profes	sional	Electi	ive II	N	Vature	of Co	urse: ไ	Theore	tical						
Course	Revie	w of Fai	lure th	eories	S												
content/Syllabus:	Conce	pt and s	ignific	ance	of frac	cture	mecha	nics t	heory	(LEFN	Л & El	PFM).					
	Fractu	re parai	neters	applio	cable i	in des	sign										
	Fractu	re tougl	nness t	esting													
	Comp	utationa	l Fract	ure M	Iechai	nics											
	KIc ba	sed des	ign, C'	TOD	desigi	ı curv	e, duc	tility	instabi	lity ar	alyses	, EPRI	metho	d, R6 r	nethod	, practic	al
	consid	erations	s, Failu	ire ass	essm	ent di	agram	, Prob	abilist	ic Fra	cture n	nechan	ics.				
	Fatigu	e: Failu	re Med	chanis	m, De	esign	Metho	ds: St	ress ba	ased (S	S-N Cu	rve), S	Strain b	ased (s	train - l	life), Cr	ack
	growt	ı (Paris	law), l	Dama	ge tol	erant.											
	Creep	eep: Failure mechanism, Creep curve, Design methods based on creep failure.															
Course		e students of the course should be able to –															
Outcomes		e students of the course should be able to – 11: Explain the concepts and significance of Linear Elastic Fracture Mechanics (LEFM) and															
(COs):		Plastic					,										
		Analyse		-	-												
			_								_	h to de	velop o	damage	-tolera	nt desig	ns
	CO4:	Evaluat								•			1		_		
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO	1 3	2												2		
	CO	2 3	2												2		
	CO	3 3	3	3	2										2		
	CO	4 3	2	2	1										2		

Course Code: ME(M	12)/PE/H/T/415C	Course Name: Dynamics Of Thermal Syster	ns
Credits: 4		Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100
Category of Course:	Honours Professional Elective II	Nature of Course: Theoretical	
Course	Introduction to Thermal Systems		2
content/Syllabus:	Mathematical Modeling of Therma	al Systems	4
	Examples of Mathematical Models	s of Thermal Systems	4
	State Space Models for Thermal S	ystems; Linearisation	2
	Dynamic Simulation of Linear The	ermal Systems	4
	Stability Analysis of Fixed Points	in State Space; Phase Plots	2
	Bifurcation Analysis of Fixed Poir	nts	2
	Stability of Limit Cycles; Floquet	Theory; Monodromy Matrix; Poincare Map	3
	Bifurcation Analysis of Limit Cyc	les	1
	Lyapunov Exponents		2
	Introduction to Chaos		1
	Nonlinear Time Series Analysis; T	ime Delay Phase Plots; Embedding Dimensio	n 3
	Characterization of Time Delay Ph	nase Plots; Lyapunov Exponents; Correlation I	Dimension; Kolmogorov
	Entropy; Recurrence Analysis		6
	Case Studies: Examples of Chaotic	c Thermal Systems	3
Course	The students of the course should	be able to —	
Outcomes	CO1: Develop mathematical mode	els of thermal systems	
(COs):	CO2: Conduct dynamic simulation	ns of linear thermal systems	
	CO3: Analyze the stability of syste	ems using state space methods and phase plots	
	CO4: Apply nonlinear time series	analysis techniques to thermal systems	
CO-PO Mapping:	PO1 PO2 PO3 PO4 PO	O5 PO6 PO7 PO8 PO9 PO10 PO11 PO12	PSO1 PSO2 PSO3
	CO1 3 3 3 1		
	CO2 3 2 2 2	2	2
	CO3 3 2		1
	CO4 3 3 2 1		1

Course Code: ME(M	2)/PE/H/T	7/415D)			C	Course	Name	e: Stea	m Gei	nerator	S					
Credits: 4						C	Contact	t Hou	rs/Wee	k (L-	Γ-P): 4	-0-0		Full N	Aarks: 1	100	
Category of Course:	Honours P	rofess	ional	Electi	ve II	N	lature	of Co	urse: T	heore	tical						
Course	Layout o	f a typ	ical p	ulveri	ized c	oal fii	red po	wer b	oiler p	lant. (2 Perio	ods)					
content/Syllabus:	Natural of head, hy circuit, of points, p. (12 period High preboilers. (Fluid dyn (8 period Introduct vertical the Mineral street, p. 12 period Introduct vertical the high present the highest product vertical the highest period the highest product vertical the highest product	circular draulid circular resence ods) ssure la ferio amic dis) tion to ube ur	tion be character to character to character to character to character to character to character the character to character the character than the character that the character than the character than the character than the	ased racteritagnate team is, Typots of so	boiler strics ion a in the best of straightflow; c conditions	e, analof cloud down cooling the flow nuclein dittion	ysis or osed covered come on come or c	f closed irculation of the closed irculation o	ed looption loottion loot compits eff n furnate flow , sub-cat flux	p hydropops, olex circular regions, olex circular regions are regions of the cooled and it	odyna determ rcuits circul gion, ty rs, arra boilin s impli	mic sy ination and deation, repical langemeng, satucations	of opeterming remedia ayout of the of b rated b	perating parting action (all measurements) and measurements poorling, periods;	g point of their sures. ern highin the f	of simple operation operat	ple ing ıre
Course	The stud	ents of	f the c	ourse	shoul	ld be	able to) -									
Outcomes	CO1: De	scribe	stean	n gene	erators	s, con	nponer	nts, co	mbust	ion pr	ocess						
(COs):	CO2: Ap	ply en	ginee	ring c	oncep	ots and	d princ	ciples	on ste	am ge	nerato	comp	onents				
	CO3: An	alyse	comp	onent	and s	ystem	n perfo	rman	ces								
	CO4: Fo																
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	2															
	CO2	CO2 3 2															
	CO3	3	3												2		1
	CO4	3	3	2	1										2		

Course Code: ME(M2)/PE/H/T/415E	Course Name: Bio-Heat Transfer	
Credits: 4	Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100
Category of Course: Honours Professional Elective II	Nature of Course: Theoretical	

Course

content/Syllabus:

1. Bioheat transfer and thermal heating for tumour treatment (10hrs)

Background of Hyperthermia treatment

Pennes' and other bioheat transfer equations

Benefits of Hyperthermia over chemotherapy

2. Development of non-Fourier bioheat models (10hrs)

Importance of finite energy propagation in living tissues

Single-phase-lag (SPL) bioheat model

Dual-phase-lag (DPL) bioheat model

Essentiality of thermal relaxation time in thermal therapy

3. Local thermal non-equilibrium (LTNE) approach in bioheat transfer (8hrs)

Comparison of LTNE and LTE modelling

Selection of porous media (Volume average theory) in energy equations of bioheat transfer

Formulation of governing differential equation based on LTNE approach Impact

of relaxation time lags on LTNE modelling

4. Multi-layered modelling bioheat transfer (8hrs)

Selection of different skin layers of tissue

The Composite Bioheat Problem

Influence of external heat flux on multi-layered tissue

Development of analytical and numerical solution of thermal response in tissues

5. Quantitative Models of Thermal Damage to Cells and Tissues (5hrs)

Reaction Rates and Temperature

Thermal Denaturation of Proteins

Selection of statistical models for prediction of thermal damage

Course	The stu	idents	of the	cours	e sho	uld be	able	to – C	O1:								
Outcomes	Descril	be the	conce	pt of l	oiohea	at tran	sfer.										
(COs):	CO2: I	Develo	p mod	lels fo	r bioh	neat tr	ansfer										
	CO3: A	Assess	local	therm	al nor	ı-equi	libriuı	n (LT	NE) a	pproa	ch in b	ioheat	transfe	r.			
	CO4: A	Apprais	se mul	lti-lay	ered r	nodel	ling of	f bioh	eat tra	nsfer.							
	CO5: A	Apply o	quanti	tative	mode	els to	detern	nine th	nermal	dama	ge to c	ells an	d tissue	es.			
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3		1	1		1						1				
	CO2	3	2	1	1								1				
	CO3	3	1	1									1				
	CO4	3	2	1	1								1				
	CO5	3	2	1	1		1						1				

Course Code: ME(M	2)/	PE/H/T	T/415F	7			Co	ourse N	Vame:	Hydro	o, Wir	nd And	Wave	Power				
Credits: 4							Co	ontact	Hours	/Week	(L-T	-P): 4-	0-0]	Full Ma	arks: 10	00	
Category of Course:	Но	nours I	Profess	sional	Electi	ve II	Na	ature o	f Cou	rse: Tł	neoret	ical						
Course	Н	[ydropc	wer –	hydro	opowe	r pote	ntial i	n Indi	a and	in the	world	d. Wat	er pow	er esti	mate fr	om stre	eam flo	w
content/Syllabus:	da	ata, hy	drogra	phs, r	nass c	urve;	water	ways	- can	al and	l pens	tock;	genera	l arran	gement	of hyd	dropow	er
						_			urbine	s – de	termi	nation	of imp	ortant	dimen	sion - s	selectio	n,
	-	erforma	-		_													
		-	-				-	• •			-			acterist	ics; pu	mp-sto	rage-pla	ant
		econon				_			_									
	A	tmospl	neric o	circula	tion:	wind	speed	varia	tion a	nd flo	ow pa	tterns;	estim	ation o	f wind	energ	y, ener	gy
	C	onversi	on me	thods	– win	dmill,	air tu	rbines.										
	Е	nergy b	oalance	e of th	e envi	ronme	ent and	l ocear	ı; tidal	l wave	s and	ocean	current	ts, tidal	cycles	; harnes	ssing ti	dal
	aı	nd ocea	ocean energy; low head water turbines.															
Course	T	he stud	e students of the course should be able to:															
Outcomes	C	O1: De	escribe	scope	e of no	ncon	ventio	nal ene	ergy p	otentia	al.							
(COs):	C	O2: Ex	plain	the ba	sic pri	nciple	es of h	ydro, v	wind a	ınd wa	ve po	wer an	d conv	ersion	method	lologie	s.	
	C	:O3: Co	mpute	e powe	er fron	n hydi	o, wii	nd and	wave	power	r syste	ems.						
		-			c prin	ciples	of po	wer ge	nerati	on in s	solutio	ns con	nprisin	g of ne	cessary	comp	onents	of
	di	ifferent	syste									•	•					
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1	2					1	3									
		CO2														1		
		CO3	2	3	1													1
		CO4	2	2	3													

Course Code: ME(M2)/PE/H/T/415G	Course Name: Total Quality Management A	nd Six Sigma
Credits: 4	Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100
Category of Course: Honours Professional Elective II	Nature of Course: Theoretical	

Course	I	ntrodu	ction															
content/Syllabus:	SO B C L E C C	ervice of arriers Custome eaderslempower	to TO er com hip, Serment ous pro	, Basic QM, Q plaints Strateg , Tear	c conc Quality s, and ic qu n and impro	epts of state Custo ality	of TQN ements mer re plann work,	M, TQ s, Cus etentioning, Qual	tomer n, Cos Quali	focus focus sts of c ty Co	ork, Cos, Cus quality ouncil	ontributioner TQM s, En	orient Prince aployee and Re	of Demation, ciples e invo	ing, Ju Custon olveme Perforn	ran and ner sat	oduct and Crosby isfaction otivation appraisa	y, n, n,
		electior QM T			_	~ T												
	m C T S	The several polication of the several polica	the seven traditional tools of quality, New management tools, Six sigma: Concepts, Methodology, oplications to manufacturing, service sector including IT, Bench marking, Reason to bench mark, Bench arking process, FMEA, Stages, Types TQM Tools & Techniques II control Charts, Process Capability, Concepts of Six Sigma, Quality Function Development (QFD), aguchi quality loss function, TPM, Concepts, improvement needs, Performance measures Quality systems eed for ISO 9000, ISO 9001-2008, Quality System - Elements, Documentation, Quality Auditing - QS 2000 - ISO 14000 - Concepts, Requirements and Benefits – TQM Implementation in manufacturing and ervice sectors the students of the course should be able to –															
Course	Т	he stud	lents o	f the c	ourse	shoul	d be al	ble to	_									
Outcomes	C	:O1: De	escribe	Qual	ity as l	key to	survi	ving to	ough c	ompet	ition.							
(COs):		O2: In		•	•			•										
		O3: III		•	• •	•												
	C	:O4: Di												ISO 90			DG O.A	_
CO-PO Mapping:		201		PO2	PO3	PO4	PO5		PO7	PO8	PO9	POIO	POII	PO12	PSOI	PSO2		
		CO1	3	_				2									1	
		CO2	3	3									3			1	1	
		CO3	3										2					_
		CO4	3	2									2			2		
	1		1				1			1				1	1	1		

4th Year 1st Semester: Honours Professional Elective III (Not Specialization Specific)

Course Code: ME(N	M2)/PE/H/T/416A	Course Name: Mathematical Methods in Mo	echanical Engineering
Credits: 4		Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100
Category of Course:	Honours Professional Elective III	Nature of Course: Theoretical	
Course	Module 1:		
content/Syllabus:	Eigen value and vectors of a matri	x and its application in problems of principal	stress/strain; in 3-d stress
	distribution, mass moment of inert	ia of rigid bodies Module 2 :	
	Multiple integrals (double and trip)	le) and its application in finding mass moment	of inertia of rigid bodies;
	area moment of inertia of 3-d shell	elements Module 3:	
	Vector calculus: divergence, curl,	grad and its application in engineering proble	ms
	Module 4:		
	Fourier series, Laplace transforma	tions etc and its application in engineering pro	oblems
	Module 5:		
	Probability distributions, hypothes	is testing, and its application in engineering p	roblems
	Module 6:		
	Simple linear regression and correl	lation, least square methods, test of significance	ce, prediction and residual
	analysis, ANOVA, and its applicat	tion Module 7 :	
	Multiple regression, matrix approa	ich and multicollinearity, and its application in	n engineering problems
	Module 8:		
	Multivariate analysis, PCA and FA	A, and its application in engineering problems	

Course	The stu	dents	of the	cours	e sho	uld be	e able	to –									
Outcomes	CO1: S	olve 3	D stre	ess dis	stribut	tion, p	orincip	al str	ess/stra	ain, m	ass mo	ment c	of inerti	ia etc. t	hrough	Eigen	value
(COs):	analysis	S.															
	CO2: C	omput	te mo	ment o	of iner	tia of	rigid	odies	and s	hell el	ements	by em	ploying	g multij	ple inte	grals. C	:O3:
	Apply o	concep	ots of	vecto	calcu	ılus, F	Fourie	r serie	s and	Lapla	ce trans	sforma	tions to	engin	eering _l	problem	ıs.
	CO4: U	Inderst	and p	robab	ility d	istrib	utions	and h	ypothe	esis te	sting in	the co	ntext of	f applic	ation to	engine	ering
	problen	ns.															
	CO5: I	llustra	te the	conc	epts a	and a	pplica	tion o	f simp	ole reg	gressio	n and	correla	tion, le	east squ	iare me	ethod,
	ANOV	OVA and multiple regression.															
	CO6: E	6: Employ multivariate analysis in solving engineering problems.															
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	3	2									1				•
	CO2	3	2	2									1				•
	CO3	3	3	2									1				
	CO4	3	3	2	1								1				
	CO5	3	3	2									1				•
	CO6	3	2	2	1								1				

Course Code: ME(M2	2)/PE/H/T/416B	Course Name: Hybri	d and Electric	Vehicles											
Credits: 4	C	Contact Hours/Week	(L-T-P): 4-0-	-0	Full Ma	rks: 100)								
Category of Course: I	Honours Professional Elective III N	Vature of Course: Th	eoretical												
Course	Part 1 [29 Hours]														
content/Syllabus:	1. Review of Internal Combustion	Engines, convention	nal vehicles, i	ssues and c	hallenge	s, Impo	ortance of								
	alternative vehicles and fuels. [5	hours]													
	2. Fundamentals of Vehicle Propuls	sion and Braking, V	ehicle Transm	nission, Con	ponents	– gear	s,								
	differential, clutch, brakes etc.	[10 Hours]													
	3. Electric vehicles [EVs]: Introduct	tion, Components, la	yout, vehicle	mechanics -	-Roadw	ay fund	lamentals,								
	vehicle kinetics, Dynamics of ve	hicle motion - Prop	ılsion System	Design. [5	Hours]										
	4. Hybrid Electric Vehicles [HEVs]	: Introduction, type:	s – series, para	allel and ser	ies, para	llel con	figuration								
	– Design – Drive train, sizing of	components. [4 Ho	ırs]												
	5. Batteries: Basics – Types, Para		-	_		_									
	Discharge, Depth of Discharge,	Technical character	stics, Propert	ies of Batte	ries [5 H	[ours] I	Part 2 [23								
	Hours]														
	6. Electric Propulsion unit: Introd		-	•											
	Electric drives used in HEV/EVs		-												
				_		_									
		heir principle of operation and performance, Induction motors, their configurations and optimization or HEV/EVs, Induction motor drives, their control and applications in EV/HEVs., Permanent magne notors, their configurations and optimization, Permanent magnet motor drives,													
	their control and applications	_				nfiguro	tions and								
	optimization, Switch reluctance					_									
	7. Fuel Cells: Fundamentals, comp		-												
	8. Energy Storage: Introduction	* *				_									
	Battery based energy storage ar	••	•	•											
	Capacitor based energy storage	•				-	-								
	Hybridization of different energ														
	9. Sizing the drive system: Match														
	Sizing the propulsion motor, si		tronics, selec	ting the ene	ergy stor	age tec	chnology,								
	Communications, supporting su														
Course	The students of the course should be														
Outcomes	CO1: Define fundamental of vehicle														
(COs):	CO2: Define basic of hybrid electric														
	CO3: Apply the concepts to underst														
	CO4: Define the fundamental of fue			·		La	L I								
CO-PO Mapping:	PO1 PO2 PO3 PO4 PO	95 PO6 PO7 PO8	PO9 PO10	PO11 PO12	PSO1	PSO2	PSO3								
	CO1 3 1														

	CO2	2	3	1							
	CO3	2	3	2						1	
	CO4	1	2	3	2					2	

Course Code: ME(M	2)/	PE/H/T/	416C				Co	urse N	Vame:	Conti	num N	Mechar	nics				
Credits: 4							Co	ntact	Hours	/Week	(L-T	-P): 4-	0-0]	Full Ma	arks: 10	00
Category of Course:	Но	nours Pr	ofessio	onal E	Electiv	e III	Na	ture o	f Cou	rse: Tl	heoret	ical					
Course	1	. Introd	luction	ı to V	ector	space	and 7	Γensor	s.								
content/Syllabus:	2	. Kiner	natics-	-Lagr	angiar	n and	Euler	ian de	scripti	ions. S	train t	ensors	. rate o	f defor	mation		
	3	. Balan	ice La	ws- T	ranspo	ort the	eorem	s, Cor	serva	tion of	f mass	, LMB	and A	MB. C	auchy's	stress	tensor.
	4	. Linea	r(ized) Elas	ticity:	Tors	ion, B	endin	g, Pre	ssure v	vessel	s etc.					
	5	. Frame	e indif	feren	ce.												
	6	. Introd	luction	ı to H	ypere	lastic	ity an	d othe	r mate	erial no	online	arities.					
	7	. Fluid	Mech	anics-	- Hydı	rostat	ics, Id	eal flo	w, La	minar	Boun	dary la	yer.				
	8	. Basic	Therr	nodyı	namic	s.											
Course	T	he stude															
Outcomes	C	O1: Con	e students of the course should be able to – 1: Comprehend the concepts of Lagrangian and Eulerian measures of strains.														
(COs):	C	O2: App	ly the	conce	epts o	f bala	nce la	ws, st	ress m	neasur	es.						
	C	O3: Und	lerstan	d the	funda	ment	als of	linear	elasti	city.							
	C	O4: App	ly the	conce	epts of	f cont	inuun	n mecl	nanics	in the	conte	ext of n	nateria	l nonlii	nearitie	s.	
	C	O5: App	ly the	funda	ament	als in	the fi	eld of	non-s	tructu	ral ph	ysics.					
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
		CO1	3	2													
		CO2	2	2													
		CO3	3														
		CO4	3	2	2											1	
		CO5	3	2	2											1	

Course Code: ME(M	12)/PE/H/T	/416D				Co	urse N	Vame:	Mech	atroni	cs					
Credits: 4						Co	ntact	Hours	/Week	(L-T	-P): 4-	0-0]	Full Ma	arks: 10	00
Category of Course:	Honours P	rofessi	onal E	lectiv	e III	Na	ture o	f Cou	rse: Tł	neoret	ical					
Course	Integration	on of e	lectro	mech	anical	syste	ms, n	nechar	nical s	tructu	re, sen	sor, ac	tuator,	compu	iter mo	onitoring,
content/Syllabus:	control.	Modell	ing of	sens	or, stı	ain, f	orce,	positio	on, vel	locity,	accele	eration	etc, m	neasure	ment, r	eview of
	earlier co	oncepts	. Mod	delling	g of a	ctuate	or, ma	gnetic	e actua	ator, p	oiezoel	ectric a	actuato	r, D.C.	motor	, stepper
	motor etc	c. Com	puter i	interfa	acing	of ser	isor ar	nd acti	uator,	power	ampli	fier an	d actua	itor dev	ices. N	Iodelling
	and simu			•		•			-						_	
	NI/DSPA			•			_			Mon	itoring	and	control	using	PC b	ased and
Course	The stude	edded microcontrollers. Laboratory experiments. students of the course should be able to – : Develop models of electromechanical systems with sensors and actuators.														
Outcomes	CO1: De	velop r	nodels	s of el	lectro	mecha	nical	systen	ns witl	h sens	ors and	l actua	tors.			
(COs):	CO2: Dis	scuss th	e prin	ciple	of me	easure	ment (of vari	ious pl	hysica	l quan	ities.				
	CO3: Dis	scuss p	rincip	les of	opera	ition c	of a fev	w spec	cific ac	ctuato	s.					
	CO4: Dis	scuss si	mulat	ion ar	nd imp	oleme	ntatio	n of re	al-life	syste	ms.					
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	3	3	2											2	
	CO2	2														
	CO3	2														
	CO4	3	2	2	1										3	

Course Code: ME(M2)/PE/H/T/416E	Course Name: Sustainable Engineering	
Credits: 4	Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100
Category of Course: Honours Professional Elective III	Nature of Course: Theoretical	

Course Preamble: Global resources and its classification. Human well-being and its interdependence with the content/Syllabus: global and local resources and eco systems. Technology and industry: Industrial revolution and progress of human civilization. Economic growth. Human comfort. Improved living standards. Resource consumption. Waste generation. Environmental degradation. Local and global impacts. Long term vulnerability. Sustainable development: Background and concept development. Pillars of sustainability. Global and local issues of sustainable development. Conflicting interests and challenges. Reasons of unsustainability: Economics and the environment; business and the environment; engineering and the environment; society (including politics), injustice and the environment. Sustainability/unsustainability assessment: Challenges and limitations. Different footprints assessments. Material and energy flows. Exergy and Energy analysis. Life cycle impact assessment. Need for planning for long term sustainability. Need for sustainable engineering. Future pathway for sustainability: concept of sustainable design of processes and products; ecosystem and engineering; circular economy and industrial symbiosis; techno-economics-ecology studies; policies and regulations towards better sustainability; corporate and social responsibility; social awareness and acceptability; multi-criteria optimization for sustainable path determination A few case studies with suitable examples. The students of the course will be able to -Course Outcomes CO1: Recall limitations of conventional engineering (COs): CO2: Understand the concept and relevance of sustainable development CO3: Analyze unsustainability of conventional engineering CO4: Apply the knowledge for better sustainable products and services PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PSO2 PSO3 CO-PO Mapping: CO₁ 2 2 CO₂ 2 3 2 2 2 2 CO₃ 2 2 **CO4** 2 2 2 2 1 2

Course Code: ME(M	I2)/PE/H/T	7/416F				Co	urse l	Name:	Atmo	spheri	ic Fluic	l Dyna	mics				
Credits: 4						Co	ntact	Hours	/Weel	k (L-T	-P): 4-	0-0]	Full Ma	arks: 10	00	
Category of Course:	Honours P	rofessi	onal E	lectiv	e III	Na	ture c	f Cou	rse: T	heoret	ical						
Course	General				_					_	-			_		_	
content/Syllabus:	inversion													_			•
	of the a											•	•				
	Atmosph			•	•	_	_	-			•		_		-		
	atmosphe								-								
	similarity	_					•	ıs; ba	SIC SC	aling o	conside	erations	s; winc	l tunne	l sımul	ations	tc
	-	spheric flows; wind tunnel testing. tudents of the course should be able to:															
Course	The stud	spheric flows; wind tunnel testing. tudents of the course should be able to: Describe the general structure and elements of atmosphere and meteorology															
Outcomes	CO1: De	scribe t	he ge	neral s	struct	ure ar	ıd elei	nents	of atm	osphe	re and	meteor	rology				
(COs):	CO2: An	alyze t	he con	cept a	and et	ffects	of atn	osphe	eric bo	oundar	y layer						
	CO3: An	alyze t	he effe	ects of	f wind	d on s	moke	disper	rsion a	ınd air	polluti	ion					
	CO4: Ide	entify th	ne non	-dime	ensior	nal pai	amete	ers des	cribin	g atmo	ospheri	c flow	s throu	gh sim	ilarity a	analysis	,
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3					2	2									
	CO2	3	2												1		
	CO3	3					2	2							1		
	CO4	3	2														

Course Code: ME(M2)/PE/H/T/416G	Course Name: Reliability in Engineering Desi	gn
Credits: 4	Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100
Category of Course: Honours Professional Elective III	Nature of Course: Theoretical	

Course	Basic conc	ept of	reliab	ility,	Impo	rtance	of re	liabili	ty in d	lesign,	Introd	luction	to ma	themati	cal stat	istic an	ıd
content/Syllabus:	statistical o	listrib	ution	theore	em. E	Bath T	ub C	urve.	Reliat	oility	measur	es: Re	liabilit	y func	tion, R	eliabilit	ty
	model (exp	onent	ial, no	ormal,	, Wei	bul), Haz	zard n	nodel	and p	roduct	life, e	stimati	on of l	nazard	function	n.
	Static relia	bility	mode!	ls: ser	ries, p	aralle	l, con	nbined	l P	robabi	listic d	lesign:	metho	dology	, streng	th stres	SS
	distribution	, relia	bility	and s	afety	factor	s, reli	ability	y boun	ds in	design.	Desig	n failu	re mod	e and o	criticali	ty
	analysis A	ccelera	ated 1	ife te	sting	Coml	oinatio	on of	rando	m var	iables,	Interf	erence	theory	and r	eliabilit	ty
	computatio	n for v	arious	s types	s of st	atistic	al stre	ss and	l streng	gth dis	tributio	on. Rel	iability	design	examp	les Tim	ne
	dependent	reliabi	lity m	odels	addre	essing	dama	ge, cy	clic da	amage	. Relia	bility e	estimati	ion for	expone	ntial an	ıd
	Weibul di	stribut	ion.	Relia	bility	allo	cation	, reli	ability	opti	mizatio	on in	design	n. Pro	gnostic	s healt	th
	manageme	nt and	healtl	n mon	itorin	g.											
Course	The stude	students of the course should be able to: : Grasp the fundamental principles of reliability, including definitions, metrics and the significance															
Outcomes	CO1: Gra	: Grasp the fundamental principles of reliability, including definitions, metrics and the significance															of
(COs):	reliability	1: Grasp the fundamental principles of reliability, including definitions, metrics and the significance ability in engineering design															
	CO2: App	: Grasp the fundamental principles of reliability, including definitions, metrics and the significance															ng
	design.																
	CO3: De	velop	skills	in o	design	ning a	and e	valuat	ing re	liable	syste	ms, er	nployiı	ng tech	nniques	such	as
	probabilis	tic des	sign m	ethod	lologi	es, re	liabilit	y allo	cation	and s	afety fa	actors a	analysi	s.			
	CO4: Imp	lemen	t adva	anced	reliab	oility t	echnic	ques.									
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3													2		
	CO2	3	2	2	1												
	CO3	3	3	2	2		2								2		
	CO4	3	1												2		

Course Code: ME(M	12)/PE/H/T/	416H				Co	ourse l	Name:	Expe	riment	tal Me	thods a	nd Dat	a analy	sis	
Credits: 4						Co	ontact	Hours	/Weel	(L-T	-P): 4-	0-0		Full Ma	arks: 10	00
Category of Course:	Honours Pr	ofessio	onal E	lectiv	e III	Na	ature o	of Cou	rse: Tl	heoret	ical					
Course	Introduct	tion:														
content/Syllabus:	Strategy	of exp	erime	ntatio	n, Pr	rincip	les an	d gui	deline	s for	design	ing ex	perime	ents, Ex	xperime	ental data
	acquisitio	n techr	niques	S												
	Analysis	of Exp	erim	ental l	Data	:										
	General of	conside	eratio	ns in	data	anal	ysis,	Cause	s and	types	s of e	experin	nental	errors,	Error	analysis,
	Uncertain	ty anal	ysis a	and pr	ropag	ation	of uno	certair	ıty, Te	est of	goodn	ess of	fit Bas	ic Stat	istical	Methods
	for Data	Analys	sis:													
	Probabilit	y distri	ibutio	ns, Sa	mplii	ng and	d samp	oling d	listribu	itions,	Testi	ng of h	ypothe	sis, Ana	alysis o	f variance
	Design of	Expe	rimer	ıts:												
	Factorial	experi	ments	s, Tw	o-lev	el fac	ctorial	desig	gns, T	wo-le	vel fr	actiona	l facto	rial de	signs,	Factorial
	designs w	ith hig	her le	evels, l	Block	cing a	nd cor	nfound	ling of	f facto	rial de	signs,	Randoi	nized t	olock de	esign and
	-			_	, Rob	oust d	esign	and o	rthogo	onal a	rrays l	Regres	sion A	nalysis	and I	Response
		experimental designs, Robust design and orthogonal arrays Regression Analysis and Response ace Methodology eling using multiple regression, Hypothesis testing and confidence interval estimation in multiple														
	_	_		-	_	sion,	Hypot	hesis	testing	g and	confid	dence i	nterval	estima	ation ir	n multiple
	regression		_													
	Modeling	_							of ste	epest :	ascent	, First o	order aı	nd seco	nd orde	er models,
	Experime															
Course	The stude															
Outcomes	CO1: Ap		_		_		es fo	r desi	gning	expe	riment	s with	appro	priate	data a	cquisition
(COs):	technique															
	CO2: Con					•	•		.1				,			
	CO3: Util	•		•			-	_		is, ny	potnes	is testi	ng and	analys	1S Of V	ariance to
	analyze ex	-														
	CO4: Util								_		_		DO10	DCO4	pgo.a	DG G A
CO-PO Mapping:				PO3	PO4	PO5	PO6	PO7	PO8	PO9	LO10	POII	PO12	PSO1	PSO2	PSO3
	CO1	3	2													
	CO2	3	3													
	CO3	3	2		2										2	

CO4	3	2	2	2					2	

$\underline{4^{th}}\underline{Year}\,\underline{2^{nd}}\,\underline{Semester};\underline{Honours}\,\underline{Professional}\,\,\underline{Elective}\,\,\underline{IV}$

Course Code: ME(M2	2)/PE/H/7	Γ/424A				C	Course	Name	e: Fini	te Ele	ments l	For Dy	namics	And N	lon-Lir	nearity	
Credits: 4						C	Contac	t Hou	rs/We	ek (L-	T-P): 4	-0-0		Full M	Iarks: 1	100	
Category of Course: H	Honours I	Profess	ional	Electi	ive IV	' N	Vature	of Co	urse: [Theore	etical						
Course	Dynami	prob	lems	in ela	sticit	y, dei	rivatio	n of	mass	matrix	using	virtua	ıl work	metho	od and	Hamilt	on's
content/Syllabus:	principle					-							-		_		
	eigenve							-			-		_				
	techniqu																
	mode sy																
	introduc																
	procedu				_				-			-		ng, ba	r, bear	n and _l	plate
	elements								tress s	tiffeni	ng and	its use	S.				
Course Outcomes	The stud																
(COs):		•		• •		analys	sis for	struct	ural p	roblen	ns with	engine	eering a	applica	tion an	d conse	quent
	use of fi																
		finite element software. Explain vibration of thick plates, shells (as assembly of flat plates) and solid models using finite elemen														ment	
	method.																
	CO3: C	Comput	e buc	kling	load a	and ce	ntrifu	gal sti	ffenin	g effec	ets as ap	plied t	o rotati	ing mad	chines 1	using va	rious
	structu	ral eler	nents.														
	CO4: C	Compu	te har	monic	stead	dy sta	te resp	onse,	transi	ent res	sponse,	non-h	armoni	c respo	onse (us	sing Fou	ırier
	series)	and rai	ndom	respo	nse (t	o for	ced ex	citatio	n and	base 6	excitati	on pro	blems)	of stru	ctures.		
	CO5:	Unders	tand	matei	rial a	nd ge	eometr	ic no	nlinea	rity a	long v	vith a	few sp	pecial	topics	in struc	ctural
	mechai	nics				_				-			_		_		
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	1	1	1												
	CO2	2	3	2	2	1								1	2		
	CO3	2	3	2	2	2								1	2		
	CO4	2	3	2	2	2								1	2		
														1	-		
	CO5	3	2	1	1												

	CO4	4	3	4										1	4		
	CO5	3	2	1	1												
Course Code: ME(M2	2)/PE/H/	T/424	В				Cours	e Nan	ne: Rel	iabilit	y and	Quality	/ Engin	eering			
Credits: 4							Conta	ct Hou	ırs/We	ek (L	-T-P):	4-0-0		Full	Marks:	100	
Category of Course: I	Honours	Profe	ssiona	l Elec	tive I	V	Nature	e of C	ourse:	Theor	etical						
Course	Basic co	oncep	t of re	liabil	ity, In	nport	ance of	reliat	oility i	n desig	gn, Inti	roducti	on to n	nathem	atical s	statistic	and
content/Syllabus:	statistic	al dist	tributi	on the	eorem	١.											
	Basic re	eliabil	lity pr	incipl	es, S	ingle	probal	oility,	Load-	streng	th inte	eraction	n, Bath	Tub c	urve, l	Non-cor	ıstant
	failure r	rate, I	ntrodu	ction	to sir	nple	Weibul	l plot.									
	Introduc	ction 1	to reli	ability	func	tion,	Structu	ıre fur	ctions	, relia	bility o	of syste	ems of	indepe	ndent c	compone	ents,
	bounds	on the	e relia	bility	funct	ion,	the incl	usion	exclus	ion m	ethod,	the int	ersectio	on metl	nod.		
	Replace						_		-	_						_	
	system					•	-			•			-				
	Introduc		-	•			-				•			-	_		
	curve, s	-	_	-	-				_		_		ol char	t consti	ruction	, inspec	tion
	problem								_				4 4		. 1 1.6	::4:	
	Reliabil	-		_		_		_			_	епавш	ty met	ities at	ia dei	iiitions,	TISK
	assessm		•					•		•		.:		:4:1	1:4		4:
	Reliabili reliabili																
	maintai	•						_				•			•		
	case stu		iy, ac	,1511 11	OIII II		4111UU1111	.,, 10g	istic st	*PPOIT	anarys	,13, 1110	cycle C	osung,	1151.00	ost Couri	,

Course The students of the course should be able to -CO1: Explain the basic concepts of reliability, fundamental statistical distributions relevant to reliability Outcomes (COs): and its importance in design CO2: Apply basic reliability principles to analyze and predict system reliability CO3: Analyze the reliability of systems with independent components using structure functions, reliability bounds, inclusion-exclusion methods and intersection methods CO4: Evaluate effective maintenance, replacement and inspection policies, including lifetime and failure rate analysis, preventive and group replacement strategies, and control limit rules CO5: Implement reliability principles in the design and development phases of design to ensure robust product development and lifecycle management. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO-PO Mapping: **CO1** 3 CO2 3 2 2 2 CO₃ 3 2 1 1 1 1 CO4 3 2 1 1 1 CO5 2 2 1 2 1

Course Code: ME(M	12)/PE/H/T	/42 <mark>4C</mark>							e: Rob								
Credits: 4						C	ontac	t Hou	rs/Wee	ek (L-'	T-P): 4	-0-0		Full M	1arks: 1	100	
Category of Course:	Honours P	rofess	ional	Electi	ive IV	N	lature	of Co	urse: 🛚	Γheore	etical						
Course	1.	Robot	defin	ition,	classi	fication	on, an	atomy	, degre	ees of	freedo	m, chai	acteris	tics, ro	le in au	tomatio	n and
content/Syllabus:	social iss	ues. (2	2 pds)														
	2.	Robot	arm	kineı	matics	: trai	nsforn	nation	matri	ces, I	Denavi	t-Harte	nberg	represe	entation	n in fo	rward
	kinemati	cs, inv	erse k	kinem	atics s	solutio	on of 1	obots	. (6 pd	ls)							
																ntial mo	
	of a rob			-						evelo	pment	of dy	namic	equation	ons for	multi	DOF
	manipula		_	_	_			_				~					
					-			-		-			-		-	ice traje	ctory
	planning			_		-	•		•			•					
		Actua	tors: a	ectuati	ing sy	stems	, hydr	aulic	and pn	ieuma	tic dev	ices, el	ectric r	notors	(DC, A	C, Brus	shless
	DC,) (2 m	da)													
		yo, Stepper). (3 pds) Sensors and Vision Systems: position sensors, velocity sensors, acceleration sensors, force a															o and
		Sensors and Vision Systems: position sensors, velocity sensors, acceleration sensors, force ressure sensors, torque sensors, light & infrared sensors, touch and tactile sensors, proximity sensors															
	Vision			-		_				,015, 10	Jucii ai	ia tacti	110 30113	015, pr	OXIIIIt	5011301	3 Cic
		-		_	_	-	_			ontrol,	Fuzzii	ication	ı, Defu	zzifica	tion, F	uzzy log	gic ir
	robotics					•		,	,	ĺ			,		,	,	_
	8.	Indust	trial a	pplica	tions	of rob	ots. (.	3 pds)									
Course	The stu																
Outcomes	CO1: E	xplain	the re	ole of	robot	ic aut	omati	on in	social	conte	ĸt.						
(COs):	CO2: E	xplain	robo	t arm	kinem	atics	includ	ling fo	orward	l and i	nverse	kinem	atics.				
	CO3: A	nalyze	e kine	matic	s, diff	erenti	al mo	tion a	nd dyr	namics	s of mu	lti DO	F robot	tic man	ipulato	rs.	
	CO4: A	nalyze	e joint	space	e and	Carte	sian s _l	pace t	rajecto	ories o	f robot	ic man	ipulato	rs.			
	CO5: A	ssess	the us	e of a	ctuato	ors, se	nsors,	visio	n syste	em and	d contr	ol for r	obotic	system	s.		
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	2					2										1
	CO2	CO2 3 1													1		
	CO3	3	2	2			1								1		1
	CO4	3	2	1			1								1		1
	CO5	2	2	-	-		-		-						1		1
	1 005	4	4												1		

Course Code: ME(M2)/PE/H/T/424D	Course Name: Introduction To Nonlinear Oscillations								
Credits: 4	Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100							
Category of Course: Honours Professional Elective IV	Nature of Course: Theoretical								

Course	Overvie	w of 1	inear	vibra	tion,	Introd	luction	ı to n	online	ar osc	illation	, Exam	ples of	nonlin	earities	in vibr	ation
content/Syllabus:	and con	nmonl	y obse	erved	nonli	near p	heno	mena;	Sourc	ces and	d types	of non	linearit	y. (04)			
	Develop	ment	of no	nlinea	ar gov	ernin	g equa	ation (of mot	ion of	Mecha	nical s	ystems	. (03)			
	Qualitat	ive an	alysis	: Intr	oduct	ion to	phase	e plan	e, Tra	jectori	es and	Separa	trices,	Concep	ot of eq	uilibriu	m
	and stab	ility i	n non	linear	syste	ems, S	study o	of equ	ilibriu	ım poi	nts and	stabili	ty. (05))			
	Graphic	al An	alysis	: Met	hod o	f Isoc	lines,	Liena	rds m	ethod.	(02)						
	Quantit	ative a	nalys	is: Fr	ee vib	ratio	of co	onserv	ative	SDoF	system	with n	onlinea	ar resto	ring for	ce, Exa	act
	method										•		•				
	Free vib											ng and	self-su	stained	system	ıs, Van	der
		ol's oscillator and Van der Pol equation, Limit cycles. (06) Jonlinear forced vibration analysis, Jump phenomena, Multiple response, Superharmonic and Subharmonic esponse. (06)															
																	nonic
		sponse. (06)															
		arametrically excited systems, Mathieu equation, Hill equation, Strutt diagram, Stability Analysis, yapunov stability criteria. (04)															
		Lyapunov stability criteria. (04)															
Course		CO1. Describe fundamental knowledge (Sources, types, examples, differences with linear systems etc.) regarding nonlinear oscillations. (K2)															etc.)
Outcomes (COs):	_	_				•	,	4		.1	.14			1	1		72\
(COs).	CO2. D CO3. A		_	_							•		ing run	aamen	tai conc	epts. (r	(3)
	CO3. A	•		•	-						•	, ,	hical) t	o nonli	near fra	e and f	orced
	vibratio									рголі	mate ai	ia grap	ilicai) t	O HOIIII	iicai iic	c and n	orccu
	CO5. E									ained a	oscillat	ions li	mit cvc	les im	nn nhei	nomeno	m
	sub- and								1 5650	arrica (Joennac	, , ,		ies, jui	np pne	101110110	,,,
CO-PO Mapping:									PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	3	1										1				1
	CO2	3	3	2	1												
	CO3	3	1	1	_	1	+										1
	CO4	3	3	3	2	1	1					1					1
	CO5	3	1	1	2	1	1										1
	1 003	3	1	1	4												

Course Code: ME(N	//2)/PE/H/T/424E	Course Name: Advanced Thermodynamics									
Credits: 4		Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100								
Category of Course:	Honours Professional Elective IV	Nature of Course: Theoretical									
Course	CLASSICAL THERMODYNAMI	ICS									
content/Syllabus:	Introduction. Definitions. 1hr										
	The Zeroth law of thermodynamics	nics and related topics. 2hrs									
	The First law of thermodynamics f	or system and its corollaries. 1hr									
	The Second law of thermodynamic	es for system and its corollaries. 3hrs Exerg	gy								
	for system. 2										
	System to control volume transition	n: Mass, Energy, Entropy and exergy balar	nce equations. 2hrs								
	Thermodynamic property relations	hips. Development of property tables and o	charts for pure substances.								
	Residual properties. 3hrs										
	Equations of state. Corresponding	ng state correlations. 4hrs									
		as mixture. Fugacity and Fugacity coefficient. The ideal solution. Activ									
	coefficient and excess properties. I	erties. Real binary mixtures. Phase diagrams for binary systems. Vapour-Li									

	equilibrium calculations. Chemical reaction stoichiometry, property changes of reaction.														
	ChemicalReaction-Equilibrium calculations. 8hrs														
	STATISTICAL THERMODYNAMICS														
	Review of combinatory and probability theorems. 2hrs														
	Molecular model. Collisions with a stationary wall. Pressure of a gas. Absolute temperature. Collisions with														
	a moving wall. The Clausius equation of state. The van der Waals equation of state. 3hrs														
	The distribution of molecular velocities. Evaluation of distribution constants. The error function. The														
	ergy distribution function. Molecular beams. Experimental verification of Maxwell velocity distribution. the principle of equipartition of energy. Classical theory of specific heats. Specific heats of a solid. 3 hrs. appears the property phonogeness. Moon free path. Distribution of free paths. Coefficient of viscosity. Thermal														
	unsport phenomena: Mean free path. Distribution of free paths. Coefficient of viscosity. Thermal aductivity. Coefficient of diffusion. Electrical conductivity. 3 hrs														
	Maxwell-Boltzmann statistics: Phase space. Macrostates and microstates. Thermodynamic probability.														
	Entropy and probability. The mono atomic ideal gas. The barometric equation. The principle of														
	equipartition of energy. Theory of Para magnetism.3 hrs														
Course	The students of the course should be able to –														
Outcomes	CO1: Demonstrate understanding of the fundamental laws of thermodynamics														
(COs):	CO2: Solve complex problems in classical thermodynamics by applying principles of thermodynamics														
	CO3: Apply concepts of exergy, thermodynamic property relationships and equations of state to evaluate														
	systems and control volumes														
	CO4: Analyze phase diagrams, vapor-liquid equilibrium, and chemical reaction equilibria														
	CO5: Assess statistical thermodynamics principles, including molecular velocity distributions, transport														
	phenomena and Maxwell-Boltzmann statistics														
CO-PO Mapping:	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
	CO1 3														
	CO2 3 3 2 1														
	CO3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														
	CO4 3 2 2 2														
	CO5 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														

Course Code: ME(M	12)/PE/H/T/424F	Course Name: Ad	vanced Pow	er Gener	ation								
Credits: 4		Contact Hours/We	ek (L-T-P):	4-0-0		Full M	larks: 1	100					
Category of Course:	Honours Professional Elective IV	Nature of Course:	Theoretical										
Course content/Syllabus:	Demand and supply of electric pow of conventional power plants and		-			_							
	solutions. 05												
	Limitations of conventional plants 02	and future develop	nent trends.	Identific	ation o	f goals	and co	onstrain	ıts.				
	Combined power plant. Develops sulfur fuel. Supplementary firing plants. 08			•	-				_				
	Cogeneration -definition, advantages and limitations. Different schemes. Performance evaluation. 02												
	Environmental impact of power plants. Possible options. Different fluidized bed systems. 04 Gasification of coal. Advantages and constraints. Different options and development directions. Integral												
	gasification of coal. Advantages a gasification combined cycle (IGC		-		-			_					
	and limitations. Different schemes		_	Jinoustic	ni caro	on cap	iuic - a	auvanta	ges				
	Supercritical power plants. Therm	•	-										
	Fuel cells. Large scale fuel cell int limitations. 04	egrated hybrid powe	r and cogen	eration p	lants. S	cheme	s, adva	antages	and				
	Membrane separation of gases and	l future trends of hyl	orid systems	includin	g renev	wable.	04						
Course	The students of the course should	be able to –											
Outcomes	CO1: Review of conventional power plants and operation.												
(COs):	CO2: Define the principle of com		d performar	ice evalu	ation.								
	CO3: Define cogeneration and flu	•											
	CO4: Apply the concepts to integr				1	ı		1					
CO-PO Mapping:	PO1 PO2 PO3 PO4 PO	O5 PO6 PO7 PO8	PO9 PO10	PO11	PO12	PSO1	PSO2	PSO3					

CO	1	3	1								
CO	2	3	2	1							
CO	3	2	3	1							
CO	1	1	3	2	1	1					

Course Code: ME(M2	2)/P	E/H/T/4	424G				Co	urse N	Vame:	Nucle	ar Pov	wer En	gineeri	ng				
Credits: 4							Co	ntact]	Hours	/Week	(L-T	-P): 4-0)-()	F	Full Ma	arks: 10	00	
Category of Course: H	Ion	ours Pro	ofessio	onal E	lectiv	e IV	Na	ture o	f Cou	rse: Th	eoreti	ical						
Course content/Syllabus:		luclear i nergy fi					•		_				-				ır Fissic	on,
content by naous.		5 lecture		331011,	CHan	Teact	1011, 1	icuti 01	CHCI	5y, 111	Cilliai	neutro	ii, i tuc	icai civ	333 300	tion		
	R p d	Reactor theory, neutron diffusion equation, boundary condition, extrapolation distance, diffusion froint source, diffusion length, infinite plate source, slowing down, scattering, Average logarithmic ene ecrement, moderating ratio, Criticality, Buckling. Reactors of various shapes. Multiplication factor. Neutron lifetime. Homogeneous and heterogeneous system, Critical mass, Thermal utilization factor. Heavy water versus natural water moderator. Reflected reactor. (14 lectures) Delay neutron, Positive and negative reactivity, Prompt-critical condition, Poisoning. (5 lectures) Control of reactors, Control rods, Nuclear materials and fuels, coolants, moderator, shielding (6 lectures)															nic ener on fact	rgy
		Delay neutron, Positive and negative reactivity, Prompt-critical condition, Poisoning. (5 lectures)																
		•				_			•	-					-			es)
		hermal													•	· ·		
Course	T	he stude	ents w	ill be	able t	o:												
Outcomes	C	O1: Inte	erpret	the w	orkin	g prin	ciples	of Re	actor	Physic	es							
(COs):	C	O2: An	alyse	differe	ent co	mpon	ents o	of a nu	clear	reacto	r							
	C	O3: Ex	plain a	ınd di	fferen	tiate	variou	ıs kind	l of nu	ıclear	power	plants						
	C	:O4: Su										_						
CO-PO Mapping:			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
		CO1	3	2					1									
		CO2 3 3 2 1													1			
		CO3	3	2					2							1	1	1
		CO4	3					3	3	3						2	2	

Course Code: ME(M	12)/PE/H/T/424H	Course Name: Introduction To Modern Con-	trol Theory							
Credits: 4		Contact Hours/Week (L-T-P): 4-0-0	Full Marks: 100							
Category of Course:	Honours Professional Elective IV	Nature of Course: Theoretical								
Course	STATE SPACE ANALYSIS AN	D DESIGN - Introduction, state space mod	els of SISO and MIMO							
content/Syllabus:	T =	r suspension systems using quarter car and								
	1 *	natrices and stability, solution of state equation - by Laplace Trans								
		ate variable feedback and pole placement. [10	-							
		EMS - Common nonlinear behaviour of mech	•							
		points, constructing phase portraits, phase pla	•							
	1 *	, concepts of stability, feedback linearization								
		- output linearization of SISO and MIMO s								
		as and Lyapunov functions, Lyapunov Stabil								
		ility, graphical representation, Lyapunov's the	eorems, stability analysis							
	of linear systems, nonlinear system		(1 (V(C() 1 1 1 1 1 1							
		ntroduction, concept of variable structure cor								
		function, reachability condition, properties of								
	_	de control (SMC) for an electrohydraulic ac	•							
		ificial neural networks and its basic mathemat								
		g and training, neural control – direct and indirect; crisp sets and fuzzy								
		l approximate reasoning, fuzzy knowledge and rule bases, fuzzification								
	_	on – Mamdani's and TSK methods, fuzzy modelling and control, application								
	of fuzzy and neural controllers for	or some active car suspension systems and e	lectrohydraulic actuation							
	systems. [12 HRS]									

Course	The	stude	ents of	f the c	ourse	shou	ld be	able to) –									
Outcomes	CO1	: Co	nstruc	t state	e-spac	e mo	dels S	ISO a	nd MI	MO n	nechar	ical sy	stems.					
(COs):	CO2	: An	alyse	& sol	ve sta	te-spa	ace eq	uation	s of N	1IMO	mech	anical	system	S.				
	CO3	: Ide	ntify	differe	ent no	nline	ar beh	avior	of me	chanic	al sys	tems; a	ipply a	nd anal	lyze dit	fferent	techniqu	ues
	of no	onlin	ear co	ntrol	syster	ns												
	CO4	: De	escrib	e fea	tures	of V	SC a	and s	liding	mode	e con	trol; d	esign	1st an	d 2nd	order	SMC	for
	elect	etrohydraulic actuation systems.																
	CO5	95: Describe features of neural networks and fuzzy logic control; design neural and fuzzy logic																
	cont	ontrollers for electrohydraulic actuation systems.																
CO-PO Mapping:		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3																
	C	01	3															
	C	O2	3	3	2	2										2		
	C	О3	3	3	2			2								2		
	C	O4	3	2	3			1								1		
	C	O5	3	2	3			1								1		

Course Code: ME(M2)/PE/H/T/4	424I				Co	urse N	Vame:	Maint	tenanc	e And	Safety	Engine	eering			
Credits: 4						Co	ntact]	Hours	/Week	(L-T	-P): 4-()-()		Full Ma	arks: 10	00	
Category of Course: H	Ionours Pr	ofessio	nal E	lective	e IV	Na	ture o	f Cou	rse: Tl	neoret	ical						
Course	Part I: M	ainten	ance	Engir	neerii	ng											
content/Syllabus:																	
	Introduct	tion, B	ackgr	ound,	Obje	ctives	, Maii	ntenar	nce in	21st C	entury,	Maint	enance	Mathe	matics	,	
	Maintena		_														
	Centered					•									-		-
	in maint		, Mai	ntena	nce c	osting	g, Sof	tware	maint	enanc	e, Mai	ntainal	oility a	nalysis	Part	II: Safe	ety
	Enginee	_															
		ent safety design, Risk Assessment, HAZOP Techniques, Human factors, Maintenance for safety element, Mechanical Safety, Environmental safety															ety
	-	ovement, Mechanical Safety, Environmental safety students of the course should be able to – CO1:															
Course) – C	O1:								
Outcomes	Discuss 6																
(COs):	CO2: De				-		-	-									
	CO3: Di				_	relat	ed to 1	mainte	enance	mana	igemen	t and c	ontrol,	, includ	ing dep	oartmen	t
	functions		_														
	CO4: Illu												T		1	T	
CO-PO Mapping:		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	2	1				1					2					
	CO2	3	1				2								1	2	
	CO3	CO3 3 2 1 1 2 1															
	CO4	2	1				2					1	2				