example ## : single stencil (simple)

example #2: simple channel

example #3: complex stencil (with boundary condition: zero padding)

es jacobian 2D:

outlind = 7. (in lini-17 + in lini+17 + inli-1,i)

+ inli+1,i)

3/4	134/34
3/4	14/4/3/4
2	3/2

(I)

B_TOP * PADDED_* WHY Zeros

(I) for dimy rows:

B-LETT: O

din X : read channel

B_RIGHT: 0

(II)

B_BOTTOM* PAPPED X with seros

outliff = { ?. (in [i-1,j] + in [i+1,j])

shift register buffer size: 7

T

1		1		
-	7.0	0 2	01	3.0
1	2.0	15.0	7 8	30
12	7.0	Pa	3.	0
		V		

$$\frac{1}{12}(\frac{3}{0} + 4.0) = 2.0$$

W

$$\frac{1}{2} \left(\frac{7.0 |6.0|5.0|4.0|8.0|7.0}{4} \right)$$

$$\frac{1}{2} \left(\frac{3}{0} + 5.0 \right) = 2.5$$

		1/21
1.0	2.0	130
1.0	5.0	60
7.0	8.0	9.0

$$\frac{h_0/60/5.0/4.0/3.0}{9}$$

$$\frac{1}{2} \cdot (0+6.0) = 3.0$$

5.0/	6.0	
.0/	9.0	
	20/	-/-

$$\frac{7}{2} \cdot (1.0 + 7.0) = 4.0$$

11.0	12.6	3.0
9.0	5.0	6.0
20	20	20

4246

(1 + 2+ 125) is

7. (1+2+25)

5. (2+6-4) =

0)		*		
9	73	2			
9	7.0	0.6			
6	1.0	7.0			
2	5	2.0			
)	(3)	5.			
0	10	1.01			
	0	0	,		

$$\frac{7}{2} \cdot (3.0 + 9.0) = 6.0$$

VI

$$\frac{1}{90} | \frac{3.0}{2.0} | \frac{3.0}{2.0} | \frac{3.0}{2.0} |$$

$$\frac{1}{2} (4.0 + 0) = 2.0$$

$$\frac{1}{2} \cdot (\frac{3}{5.0} + 0) = 2.5$$

IX

(1) (3) 9 9 9 (3) (+) PPP 4 P (5) (6) (7) (3) 4

0.6 0.8 0.6

