UNIT 3: PERMUTATION AND COMBINATION

FORMULA SHEET

- Fundamental principle of counting: If an event can occur in m different ways, following which another event can occur in n different ways, then the total number of occurrence of the events in the given order is $m \times n$.
- The number of permutations of n different things taken r at a time, where repetition is not allowed, is denoted by nP_r and is given by ${}^nP_r = \frac{n!}{(n-r)!}$ where $0 \le r \le n$.
- $n!=1\times2\times3\times\cdots\times n$
- $n! = n \times (n-1)!$
- The number of permutations of n different things, taken r at a time, where repetition is allowed, is n^r .
- The number of permutations of n objects taken all at a time, where p_1 objects are of first kind, p_2 objects are of the second kind, ..., p_k objects are of the kth kind and rest, if any, are all different is $\frac{n!}{p_1!p_2!p_3!\cdots p_k!}$
- The number of combinations of n different things taken r at a time, denoted by nC_r , is given by ${}^nC_r = \frac{n!}{r!(n-r)!}$, $0 \le r \le n$.
- $\bullet \quad {^{n}C_{r}} + {^{n}C_{r-1}} = {^{n+1}C_{r}}$