Towards the full reconstruction of neutraltriggered recoil jets in Au+Au Collisions

Derek Anderson
Texas Heavy-Ion Symposium
November 10th, 2017

Energy-Loss and Neutral Triggers

- Jets are powerful probes of the hot dense medium of heavy ion collisions:
 - » Produced early in collision by hardscattered partons
 - » Described perturbatively
- Jet-Quenching: energy loss by gluon radiation
 - » Partons lose energy as they traverse QGP
 - » Depends on E_0 , L, C_A/C_F , \hat{q} , α_S , etc...
 - » Can measure by comparing AuAu-collisions to pp-collisions
- In particular, jets opposite direct photons may provide a promising probe of energy loss

Picture credit: Jonah Bernhard

- O Direct photon (γ^{dir}): photon scattered from energetic partons
 - » Doesn't strongly interact with medium so (to leading order)

$$E_T^{\gamma} \approx E_T^{parton}(t_0)$$

- » Powerful way to measure energy loss
 - PRL 77, 231 (1996)
- \circ Comparison of jets opposite γ^{dir} to those opposite energetic π^0 might illuminate path length and color factor dependence...
 - » Path Length:
 - Energetic π^0 biased towards surface emission
 - γ^{dir} has no such bias
 - » Color Factor:
 - γ^{dir} mostly opposite quark jets ($C_F = 4/3$)
 - π^0 mostly opposite gluon jets ($C_A = 3$)
 - > PRD 72, 014014 (2005)
- $\circ~$ On average, jets opposite γ^{dir} should lose less energy than those opposite π^0

The STAR Experiment

- Located at the Relativistic Heavy Ion Collider (RHIC):
 - » collides Au-nuclei up to $\sqrt{s_{NN}}=200~{
 m GeV}$
 - » pp-collisions used as baseline
- As a jet detector:
 - » Time Projection Chamber (TPC)
 - Measures charged particles
 - » Barrel Electro-Magnetic Calorimeter (BEMC)
 - Identifies electromagnetic clusters (neutral particles)
 - » Both cover $\varphi = 2\pi, \eta = \pm 1$

- Barrel Shower Maximum Detector (BSMD):
 - » Allows for spatial imaging in BEMC
- Energetic π^0 and γ^{dir} discriminated via Transverse Shower Profile (TSP):

Transverse Shower Profile (TSP):
$$TSP = \frac{E_{cluster}}{\sum_{i} E_{i}^{strip} r_{i}^{1.5}}$$

- » $E_{cluster}$ is total energy of cluster
- » E_i^{strip} is energy of ith strip
- » r_i is distance from strip to center of cluster
- Split triggers into a sample of nearly pure π^0 and a sample with enhanced fraction of γ^{dir} (γ^{rich})
 - » $N^{\gamma^{dir}}/N^{\gamma^{rich}} \sim 40\%$ (p+p)
 - » $N^{\gamma^{dir}}/N^{\gamma^{rich}} \sim 70\%$ (Au+Au)

arXiv:1512.08782v1 [nucl-ex]

Recent STAR Results

- \circ Recent γ^{dir} , π^0 -hadron correlation measured by STAR:
 - » Look for collisions with energetic γ^{dir} , π^0 and measure yield of charged hadrons on away side:

$$|\Delta \varphi - \pi| < 1.4$$

» Nuclear Modification Factor:

$$I_{AA}(x) = \frac{Y^{Au+Au}(x)}{Y^{p+p}(x)}$$

- \circ Suppression expected to differ between γ^{dir} -hadrons and π^0 -hadrons
 - » NOT seen within uncertainties
- \circ For γ^{dir} -hadrons...
 - » Lower p_T^{assoc} less suppressed than higher p_T^{assoc}

$$\Delta arphi = arphi_{assoc} - arphi_{trig} \ z_T = rac{p_T^{assoc}}{p_T^{trig}}$$

O Qin: PRC 80, 054909 (2009)

o ZOWW: PRL 103, 032302 (2009)

- PHENIX reported:
 - » $I_{AA}^{\gamma^{dir}} > 1$ for low z_T and large angles
 - » Expected if energy is redistributed in jet
- $\circ~$ Comparing yields within $\pm 35^{\circ}$ and $\pm 80^{\circ}$ in STAR
 - » Low z_T and large angle enhancement seen **only** in π^0 trigger
- For fixed $z_T \in (0.1, 0.4)$:
 - » STAR: $p_T^{trig} \in (12, 20) \Rightarrow p_T^{assoc} \in (1.2, 8)$
 - » **PHENIX:** $p_T^{trig} \in (5,9) \Rightarrow p_T^{assoc} \in (0.5,3.6)$
- \Rightarrow Both results consistent with picture of lost energy being recovered at low p_T (< 2 GeV/c) independent of trigger p_T

$$\xi \equiv \ln \frac{1}{z_T}$$

- \circ Lost energy being recovered below fixed p_T rather than fixed z_T consistent with measurement of jet-hadron correlations by STAR
 - » Observed enhancement in Au+Au of away-side particles with $p_T < 2$ GeV/c
 - » PRL 112, 122301 (2014)
- \circ There has been considerable theoretical activity following the γ^{dir} , π^0 -hadron measurement
 - » A recent paper by Chen et al attributes this effect to medium excitations
 - » arXiv:1704.03648 [nucl-th]
- \circ However, the non-observation of the differences between γ^{dir} and π^0 suppressions demonstrates need for more precise methods

Jet Reconstruction

- Jets defined operationally:
 - » Particles clustered into jets via an algorithm
 - anti- k_T
 - -R = 0.3, 0.5 (0.7?)
 - $-p_T^{cst} > 0.2 \text{ GeV/c}$
 - » Clustering done with FastJet
 - arXiv:1111.6097v1 [hep-ph]
- \circ Recoil Jets: any jet satisfying $\left|\Delta \varphi^{jet} \pi \right| < \pi/4$
- Semi-inclusively measure recoil jets:
 - 1) Select collisions with high energy γ^{dir} (or π^0)
 - 2) Cluster charged **and** neutral constituents into jets ("full" jets) using **anti-** k_T
 - Gives much more precise measurement of E^{jet} than just charged constituents ("charged" jets)
 - 3) Count all recoil jets

- o **Below:** Pythia generated recoil jets (γ^{dir} trigger)
 - » Difference between full and charged jets

- Numerous sources of background and distortion:
 - a) Jet reconstruction
 - Split jets, combinatorial jets, etc.
 - b) Underlying event
 - Diffuse radiation not related to the hard scatter
 - Beam remnants, multi-parton interactions, etc.
 - c) Heavy-ion background
 - Collective flow, etc.
 - d) Detector effects
 - Limited resolution, finite acceptance, etc.
- Similar measurement of semi-inclusive hadron-jet correlations by STAR utilizes these correction schemes:
 - a) Regularized unfolding:
 - Detector effects
 - Heavy-ion background
 - Underlying event
 - b) Mixed event:
 - Underlying event
 - Jet reconstruction
 - » PRC 96, 024905 (2017)

Particle level

Jet Reconstruction

Underlying Event

Heavy-Ion Background

Detector Effects

Detector Level

O Mixed Event:

- » Create pseudo-event from randomly selected tracks
 - Randomly select 1 track per real event
 - Add it to the Mixed Event
 - Use only events with same centrality, evt. plane, vtx. zposition
- » Very good description of combinatorial background

Au+Au charged hadron-triggered jet spectrum compared to mixed-event spectrum

PRC 96, 024905 (2017)

- Off-axis cone: interesting to compare to mixed event distribution
 - » Select jets falling in these regions:

$$\Delta \varphi^{jet} \in (\pi/4, \pi/2)$$

 $\Delta \varphi^{jet} \in (3\pi/2, 7\pi/4)$

- » Possible way to extract large-angle correlations...
- Off-axis yield normalized to:

$$\frac{\left\langle N_{OA}^{jet}\right\rangle - \left\langle N_{RE}^{jet}\right\rangle}{\left\langle N_{OA}^{jet}\right\rangle}$$

- » N_{OA}^{jet} is the no. of jets in off-axis region
- » N_{RE}^{jet} is the no. of recoil jets in acceptance
- Currently investigating...

Summary

- Jets opposite neutral triggers may provide a powerful probe of in-medium energy loss
 - » Comparison of jets opposite γ^{dir} to those opposite energetic π^0 may shed light on pathlength and color factor dependence
- \circ **No** difference in suppression observed **within kinematic range** between charged hadrons opposite γ^{dir} to those opposite energetic π^0
- \circ Comparisons to PHENIX data and jet-hadron correlations point to energy being recovered at low momentum ($p_T^{assoc} < 2 \text{ GeV/c}$)
 - » Points to need for more precise techniques
 - » e.g. full jet reconstruction

Thank You!

Backup

Unfolding:

- » True spectrum is distorted by background and detector
- » Create a response matrix to map true spectrum onto measured spectrum

$$M_j = R_{ij}T_i$$

- » R_{ii} calculated by:
 - a) Simulate collisions (e.g. Pythia)
 - b) Apply "smearing" (e.g. Geant and/or embedding into data)
 - c) Match jets before smearing to corresponding jets after smearing
 - Effect of HI background determined by embedding Pythia events in Au+Au events
- » True spectrum then given by:

$$R_{ij}^{-1}M_j=T_i$$

- Unfolding is "regularized" to account for error bars and the steeply falling spectrum...
 - » Bayesian Method: R_{ij}^{-1} is guessed based on given prior using Baye's Theorem, and then iteratively tweaked.
 - Must specify no. of iterations
 - » SVD Method: R_{ij}^{-1} computed indirectly via Singular-Value Decomposition.
 - Must specify no. of terms to keep during SVD
- Unfolding done with RooUnfold
 - » arXiv:1105.1160v1 [physics.data-an]

» Example response matrix for charged jets