⊠d: shake whäd/iptelhjaketel loT (/id/intel/)

Explore (/tag/type-id/)

Rudglis (/account/gopro)

Classes NEW! (/classes/)

(/tag/type-id/category-technology/channel-arduino/) Arduino (/tag/type-id/category-technology/channel-arduino/)

(/tag/type-id/category-craft/channel-knitting-and-crocheting/) Yarn (/tag/type-id/category-craft/channel-knitting-and-crocheting/)

(/tag/type-id/category-workshop/channel-lighting/) Lighting (/tag/type-id/category-workshop/channel-lighting/)

WARNING: Some people try to build this with an optocoupler with zerocrossing coz 'that is better' right? Some are even told in electronics shops it is better to use such an optocoupler. WRONG. This will only work with a random fire optocoupler: NOT igniting at zerocrossing is the principle of this dimmer.

Switching an AC load with an Arduino is rather simpel: either a mechanical relay or a solid state relay with an optically isolated Triac. (I say Arduino, but if you use an 8051 or PIC16F877A microcontroller, there is stuff for you too here.)

It becomes a bit more tricky if one wants to dim a mains AC lamp with an arduino: just limiting the current through e.g. a transistor is not really possible due to the large power the transistor then will need to dissipate, resulting in much heat and it is also not efficient from an energy use point of view.

Phase cutting

//fila/EOZNIVI/ZHQCV/COTK/)

One way of doing it is through phase control with a Triac: the Triac then is fully opened, but only during a part of the sinus AC wave. This is called leading edge cutting.

One could let an Arduino just open the Triac for a number of microseconds, but that has the problem that it is unpredictable during what part of the sinus wave the triac opens and therefore the dimming level is unpredictable. One needs a reference point in the sinus wave.

420 favorites

License:

I Made it! (/member/diy_bloke/) Follow 376

> (/member/diy_bloke/) Bio: I am a physician by trade. After a career in the pharmeceutical world I decided to take it a bit slower and do things I ... More » (/member/diy_bloke/)

More by diy_bloke:

(/id/BruteForce-

Codefinding-for-Infrared-RGB-LEDstrip/)

Pins-of-the-ESP8266-01/)

BMP180-to-the-ESP8266/)

For that a zero crossing detector is necessary. This is a circuit that tells the Arduino (or another micro controller) when the sinus-wave goes through zero and therefore gives a defined point on that sinus wave.

Opening the Triac after a number of microseconds delay starting from the zero crossing therefore gives a predictable level of dimming.

Pulse Skip Modulation

Another way of doing this is by Pulse Skip Modulation. With PSM, one or more full cycles (sinuswaves) are transferred to the load and then one or more cycles are not. Though effective, it is not a good way to dim lights as there is a chance for flickering. Though it might be tempting, in PSM one should always allow a full sinuswave to be passed to the load, not a half sinus as in that case the load will be fed factually from DC which is not a good thing for most AC loads. The difference between leading edge cutting and PSM is mainly in the software: in both cases one will need a circuit that detects the zero crossing and that can control a triac.

A circuit that can do this is easy to build: The zero crossing is directly derived from the rectified mains AC lines - via an optocoupler of course- and gives a signal every time the wave goes through zero. Because the sine wave first goes through double phased rectification, the zero-crossing signal is given regardless whether the sinus wave goes up through zero or down through zero. This signal then can be used to trigger an interrupt in the Arduino.

PWM dimming

PWM dimming, as in LEDs is not done frequently with AC loads for a number of reasons. It is possible though. Check this instructable to see how (http://www.instructables.com/id/AC-PWINDIPSING) asses! >> (/classes/?utm_medium=cta&utm_source=banner)

+ Collection

I Made it!

Favorite

≰€ Share **▼**

Ardennoticentwolled lightedininher galvanic separation between the diy Andkingasideefithingseand angthingcrengestaghoitha เกล้าจะโกกปัญละ wheldacrocontrollers/) not understand 'galvanic separation' it means 'no metal connections' thus ---> opto-volupiters. #Ufjdf Volundo Introlled Light ding at Vanic set paration, this you should not build this.

The circuit pictured here does just that. The mains 220Volt voltage is led through two 30k resistors to a bridge rectifier that gives a double phased rectified signal to a 4N25 opto-coupler. The LED in this opto-coupler thus goes low with a frequency of 100Hz and the signal on the collector is going high with a frequency of 100Hz, in line with the sinusoid wave on the mains net. The signal of the 4N25 is fed to an interrupt pin in the Arduino (or other microprocessor). The interrupt routine feeds a signal of a specific length to one of the I/O pins. The I/O pin signal goes back to our circuit and opens the LED and a MOC3021, that triggers the Opto-Thyristor briefly. The LED in series with the MOC3021 indicates if there is any current going through the MOC3021. Mind you though that in dimming operation that light will not be very visible because it is very short lasting. Should you chose to use the triac switch for continuous use, the LED will light up clearly.

Mind you that only regular incandescent lamps are truly suitable for dimming. It will work with a halogen lamp as well, but it will shorten the life span of the halogen lamp. It will not work with any cfl lamps, unless they are specifically stated to be suited for a dimmer. The same goes for LED lamps

If you are interested in an AC dimmer such as this but you do not want to try building it yourself, there is a somewhat similar dimmer available at www.inmojo.com (http://www.inmojo.com), however, that is a 110 Volt 60Hz version (but adaptable for 220 50Hz), that has been out of stock for a while. You will also find a schedule here

(http://fleck.rullz.lv/acdimmer/ac_dimmer_220V_circuit.png).

NOTE! It is possible that depending on the LED that is used, the steering signal

just does not cut it and you may end up with a lamp that just flickers rather than being smoothly regulated. Replacing the LED with a wire bridge will cure that. The LED is not really necessary. increase the 220 ohm resistor to 470 then

STOP: This circuit is attached to a 110-220 Voltage. Do not build this if you are not confident about what you are doing. Unplug it before coming even close to the PCB. The cooling plate of the Triac is attached to the mains. Do not touch it while in operation. Put it in a proper enclosure/container.

WAIT: Let me just add a stronger warning here: This circuit is safe if it is built and implemented only by people who know what they are doing. If you have no clue or if you are doubting about what you do, chances are you are going to be DEAD!DO NOT TOUCH WHEN IT IS CONNECTED TO THE GRID

Materials

Zerocrossing

4N25 (http://www.dickbest.nl/index.php?_a=viewProd&productId=5009) €0.25 or

H11AA1 or IL250, IL251, IL252, LTV814 (see text in the next step)

Resistor 10k (http://www.dickbest.nl/index.php?_a=viewProd&productId=4784)

€0.10

bridge rectifier 400 Volt (http://www.dickbest.nl/index.php?

a=viewProd&productId=2828) €0.30

2x 30 k resistor 1/2 Watt ((http://www.dickbest.nl/index.php?

_a=viewProd&productId=8846)resistors will probably dissipate 400mW max

!!! (/id/Arduino-controlled-light-dimmer-The-circuit/)

15 Steps

I Made it!

Favorite

≰ Share ▼

Arduino controlled light dimmer by 5.1 Volt Zenerdiode (optional)

diy_bloke (/member/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)

LED (http://www.dickbest.nl/index.php?_a=viewCat&catid=326) (Note: you can replace the LED with a wire bridge as the LED may sometimes cause the lamp to flicker rather than to regulate smoothly) MOC3021 (http://www.dickbest.nl/index.php? a=viewProd&productId=1416) If you chose another type, make sure it has NO zero-crossing detection, I can't stress this enough DO NOT use e.g. a MOC3042 Resistor 220 Ohm (http://www.dickbest.nl/index.php? a=viewProd&productId=4503)€0.10 (I actually used a 330 Ohm and that worked fine) Resistor 470 Ohm-1k (http://www.dickbest.nl/index.php?_a=viewCat&catId=313) (I ended up using a 560 Ohm and that worked well) TRIAC TIC206 (http://www.dickbest.nl/index.php? a=viewProd&productId=673) €1.20 or BR136 (http://www.dickbest.nl/index.php? a=viewProd&productId=1601) €0.50 1 connector (http://www.eoo-bv.nl/index.php? a=viewProd&productId=13612) €0.20

Other

Piece of PCB 6x3cm electric wiring

That is about €3 in parts

Machine Learning & MATLAB

Solve Common Technical Challenges. Download The Paper To Learn How. mathworks.com/Machine-Learning

Step 1: Arduino controlled light dimmer: The PCB

You will find two pictures for the PCB: my first one, that I leave here for documentation purposes and a slightly altered new one. The difference is that I left out the zenerdiode as it is not really necessary and I gave the LED itś own (1k) resistor: it is no longer in series with the Optocoupler, that now has a 470 Ohm resistor. I made the PCB via direct toner transfer and then etched it in a hydrochloric acid/Hydrogenperoxide bath. There are plenty of instructables telling how to do that. You can use the attached print design to do the same. Populating the print is quite straightforward. I used IC feet for the opto-couplers and the bridge rectifier.

Download the print here

(https://dl.dropboxusercontent.com/u/52513692/acDimmer new.fzz).

Note: You need Fritzing for this. For the direct toner transfer, the printed side of the printed pdf file, goes directly against the copper layer for transfer. Once it is transferred, you will be looking at the ink from the other side and thus see the text normal again. I made slight alterations in the PCB: I removed the zenerdiode and the LED is no longer in series with the optocoupler.

I used a TIC206. That can deliver 4 amperes. Keep in mind though that the copper tracks of the PCB will not be able to withstand 4 Amperes. For any serious load, solder a piece of copper installation wire on the tracks leading from the TRIAC to the connectors and on the track between the two connectors.

In case it is not clear what the inputs are: from top to bottom on the second picture:

+5Volts

Interrupt signal (going to D2 on arduino)
Triac signal (coming from D3 on Arduino)
Ground

NOTE:

If you have an H11AA1or IL 250, 251 or 252 opto-coupler then you do not need the bridge rectifier. These have two anti-parellel diodes and thus can handle AC. It is pin compatible with the 4N25, just pop it in and solder 2 wire-bridges between R5 and + and R7 and -. The LTV814 is not pincompatible

Step 2: A word on inductive loads: theory

The presented circuit is suited for pure resistive loads such as incandescent lamps.

Should you want to use it for inductive loads, then a snubber circuit is necessary. The figure shows the modifications for use with Inductive loads. Mind you, this is not something I tried as I just wanted to dim lamps, but it is based on examples and theory available on the internet. You would have to adapt the provided PCB

The top figure shows the circuit as is, for dimming a lamp. It is in all its simplicity just a resistor to trigger the gate via the diac in the optocoupler. The value of 1k may be changed as discussed in the text before.

The bottom figure gives an omnipresent circuit for use in inductive loads.

It consists of an additional resistor and capacitor. The gate current is below 15mA. If you are using a less sensitive triac to control the inductive load, reduce the resistor from $2.4k\Omega$ to $1.2k\Omega$, providing more current to drive the triac and increase the capacitor to 200nF. This snubber circuit is there to protect the triac from the high voltage generated from an inductive load. The feedback may cause some problem for non-inductive load. The small leakage can be significant enough to turn on small load (for example a lamp).

There are other snubber circuits, e.g. a resistor and capacitor in series directly over the load

Step 3: The software, a bit of theory

If you could care less about the theory, but just want the software, go to the next step

The way to use an AC dimmer/fader is quite simple once you understand the basics:

In AC the power fed to the lamp is directly related to the total surface of the sinuswave, the lamp can be regulated by only allowing a predictable part of that sinuswave to flow through the lamp.

As such we need a reference point on that sinus from where we calculate when the lamp has to be switched on.

The easiest reference point to use is the so called 'zero crossing': the moment that the light goes through zero.

After each zero crossing there is one full half of the sinuswave available to send through the lamp.

So what the software needs to do is to detect the zerocrossing, and then wait for a set amount of time on that sinuswave to switch on the TRIAC.

There are 2 major grid frequencies (http://www.school-for-champions.com/science/ac world volt freq list.htm)

in the world: 50Hz in Europe and most of Asia and Africa and 60 Hz in the America's (and parts of the Caribean). There are 2 major voltages in the world: 110-120V and 220-240V but they are not important for the mathematics here

For ease of use I will take the 50Hz frequency as an example:

50Hz is 50 waves per second.

Each sinuswave thus takes 1000ms/50=20ms (miliseconds)

As there are 2 sinuspeaks in a wave that means that after every zero detection there is a 10ms period that we can regulate.

Should we ignite the lamp directly at the beginning of that period, the lamp will receive full power, should we do it at the end of that 10ms period the lamp will receive no ower and should we do it halfway, the lamp will receive half power. As we are using TRIACs, what the software needs to do is to wait for the zero point at the sinuscurve, take note of that and then wait a specified amount of time within that 10ms period to send a pulse to the TRIAC.

If it sends that pulse at 5ms, the lamp will only burn at half power.

In the Circuit, the zero detection is done by the biphase optocoupler and is available as the X-signal on the board.

There are basically 2 ways for a microcontroller to detect that signal:

1-a continuous 'polling' of the Zero Crossing pin

2-using an interrupt to tell the program that there was a zero crossing
The main difference between the two is that in 'polling' everytime the computer
goes through it's main loop it needs to check the pin. If your program is busy
doing a lot of other things, it might be too late in checking the zero crossing pin,
while when using an interrupt, it does not matter what the program is busy with.

The interrupt is sort of 'tapping it on the shoulder' saying "Hey look, something came up that you need to attend to NOW heck out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)

And entinozero prepailed higher dimning am peeds to wait for a specified

diy anakuntrefitingananalakenie witebcontriner TRAGeype-id/category-technology/channel-microcontrollers/)

Again, both these methods have their pro's and con's. The 'wait' command ('delay' in Arduino language) literally let's the computer wait for the required time and it cant do anything else in the mean time. if the lamp is burning at low power by letting the computer wait say 9ms, that means that every 10ms the computer is told to wait 9ms: ergo it will be idle 90% of the time. That is fine if your controller is only used to control the lamp, but if it needs to do other stuff then little time is left.

Using a timer interrupt solves that. Basically what that does is that the program tells the timer: "Hey, I just heard we have a zero crossing, I got to do something else, but you just wait 4.5ms and then switch on the Triac" So the program goes on it's merry way and 4.5ms (as an example) after it was given notice there was a 0-crossing, the timer switches on the TRIAC.

Polling: (note this is a rough example for illustration of polling, obviously it needs some enhancement)

```
int AC_LOAD=3; // We use pin 3 to ignite the TRIAC
int state; // integer to store the status of the zero crossing
void setup()
pinMode(AC_LOAD, OUTPUT);// Set AC Load pin as output
}
void loop()
state=digitalRead(AC_LOAD);
if (state=1) {
delayMicroseconds(5000); // =5 ms=half power
digitalWrite(AC_LOAD, HIGH); // triac firing
```

Interrupt driven:

To use an interrupt, first we need to set that up. On the Arduino that is as follows:

```
void setup()
{
 pinMode(AC_LOAD, OUTPUT);// Set AC Load pin as output
 attachInterrupt(0, zero_crosss_int, RISING); // Choose the zero cross interrup
t # from the table above
```

What this says is that the interrupt is attached to interrupt 0, it goes to a function called "zero crosss int" and it reacts to a rising flank on the pin.

Check out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)

In the Zero cross int function that the program jumps to after the interrupt we

determine the time we need to wait before firing the TRIAC. We will also add a **Arguino Controlled light dimmer** by bit of functionality. We don't just want one level set that the lamp burns on, we diy_bloke (/member/diy_bloke/) in microcontrollers // tag/type-id/category-technology/channel-microcontrollers/) are going to add some functionality to regulate the light level in steps.

For the total data ve singular then build not be the standard of the standard

every step is 10ms/128 = 10000us/128=75us (in fact it is 78, but i get to that later). The total dimtime then is calculated from 75x(1 to 128). The number

Favorite

I Made it!

≰ Share ▼

between 1-128, which determines our level of dimming, we assign to the variable integer 'dimming'

```
void zero_crosss_int() // function to be fired at the zero crossing to dim the 1
ight
 int dimtime = (75*dimming);
                                // For 60Hz =>65
 delayMicroseconds(dimtime);
                                // Off cycle
                               // triac firing
 digitalWrite(AC_LOAD, HIGH);
 delayMicroseconds(10);
                                // triac On propagation delay (for 60Hz use 8.3
3)
 digitalWrite(AC_LOAD, LOW);
                                // triac Off
```

What happens here is that the program first calculates the dimtime (=time to wait before the triac is fired)

It then waits that amount of time, subsequently waits that amount of time and fires the Triac. The Triac will switch off again at the following zero crossing, but we are going to already write a low on the TRIAC pin to avoid accidental ignition in the next cycle. We need to wait a bit however to know for sure the TRIAC is on, so we wait 10us. Now (10000-10)/128 is still 78 but i found 75 to work well. Feel free to use 78 though.

The only thing then left to do in the main program is to set the level at which we want the lamp to burn:

```
void loop() {
 for (int i=5; i <= 128; i++){
   dimming=i;
   delay(10);
```

What happens here is a simple loop that regulates the lamp up in a 128 steps. I have chosen not to start at 1 but at 5 because at that level there could be some timing issues that could cause the lamp to flicker.

The above program is only an example of how to control the lamp, obviously you want to add some other functionality rather than just have a lamp go up and down in brightness.

Using a timer:

If you want your program to be time efficient you will need to use an interrupt for the zero-crossing detection and a timer to determine the amount of time to wait. Roughly a program would look as follows:

Initialize

Set up the various constants and variables you need and include the libraries used (such as the TimerOne Library)

Setup

Setp the pins and the 2 interrupts

The zero-crosssing interrupt points to a function and so does the timer interrupt

Zero-cross functie

Check out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)

Set a boolean indicating if a zero cross has occurred

Arduino controlled light dimmer by

diy Timer (funation/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)

If we regulate the brightness again in 128 steps, then the timer function is set up to be called when ever the time of a step has passed (e.g. 75us) and then

checks if the number of steps passed is equal to the number of steps passed in that I Made it! Favorite is the case, the Triac is switched on

≰ Share ▼

Step 4: Arduino controlled light dimmer: The software

As discussed in the previous theoretical page, the software is fairly easy.

If you want to develop your own software all you need to do is:

Wait for the zerocrossing

Wait a specific time between 0 and 9090 microseconds (9090=10.000-10) switch on yr TRIAC

Wait for about 10us (that is the time you need to make sure the TRIAC is on) switch off yr TRIAC (in fact, you only remove the triggersignal to the TRIAC, the TRIAC will stay on till the next zerocrossing)

I just briefly sketch the flow of the program that I used:

(make sure you read the 'NOTE' below)

The zero X-ing signal generates an interrupt.

At 50Hz that interrupt is every 10ms or 10.000uS

At 60Hz that interrupt is every 8.333 ms or 8333 uS

The interrupt routine then switches on the Triac after a specific time. That time is set in the main program loop.

As the program varies the dimming from Full to Off in 128 steps (that is just a choice that was made, could be 100 steps as well), at 50 Hz we need the steps to be 75 uS and at 60Hz they need to be 65 uS

It works as follows:

The interrupt function"zero_crosss_int" gets called every time a zero-crossing is detected, which is 100times/second. It's only function is to set the time that the Triac is switched on to the value of the variable 'dimming'

In the main loop of the program the actual value of that variable is set

Check out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner) Arduing controlled light dimmer by diy_blgkedkmematqtfdix_blakedbin migrpep_ntrallers/yltag/tynecid/cetaegry_ntechnology/ghangel-microcontrollers/) Down!99dww.i.i.## (/id/Anduino-controlled-light-dimmer-The-circuit/) 15 Steps + Collection I Made it! Favorite Share ▼ Adapted by DIY_bloke License: Creative Commons Attribution Share-Alike 3.0 License. Attach the Zero cross pin of the module to Arduino External Interrupt pin Select the correct Interrupt # from the below table (the Pin numbers are digital pins, NOT physical pins: digital pin 2 [INT0]=physical pin 4 and digital pin 3 [INT1]= physical pin 5) check: http://www.in mojo.com (http://www.inmojo.com) Pin | Interrrupt # | Arduino Platform 2 | 0 | All -But it is INT1 on the Leonardo | 1 All -But it is INTO on the Leonardo 18 | 5 | Arduino Mega Only 19 1 4 | Arduino Mega Only 20 | Arduino Mega Only

About the software: theoretically in the loop you could let variable 'i' start from '0'. However, since the timing in the interrupt is a bit of an approximation using '0' (fully on) could screw up the timing a bit. the same goes for 128 (Full off) though that seems to be less critical. Wether '5' or perhaps '1' is the limit for your set up is a matter of trying, your range may go from e.g. 2 to 126 instead of 0-128. If anybody has a more precise way to set up the timing in the interrupt I'd be happy to hear it.

I Anduina Maga Only

Ofcourse it is not necessary to work with interrupts. It is also possible to keep polling the zero crossing pin for going to 0.

Though the software works with an interrupt to determine the moment of zero

crosssing, it is still not so efficient because the time (dimtime) we need to wait after the zero crossing before the triac is fired is literally spent 'waiting' in the zero cross interrupt function.

It would be more efficient to set a timer interrupt to fire at the right moment so in the mean time the arduino can do something else. Such a program can be found in step

NOTE

Let me just reiterate the above statement: This program is a demo of how you can control the dimmer. It is NOT and efficient program as it spends most of its time waiting. It is therefore NOT the most suitable to combine with other tasks of the processor. If you need a more efficient program use a timer instead of delay

Step 5: Arduino Controlled Lightdimmer: The Software II

I found another piece of Software that allows controlling the lamp via the serial port. It triggers on the falling edge of the zero-crossing signal, so the timing is a bit different.

I have not tested it myself yet, but I see reasons why it should not work: as far as i can see it doesnt receive the number typed in the serial port but it receives the ascii value of each digit that is typed, so a '0' will be seen as 48

```
int AC_pin = 3;//Pin to OptoTriac
    byte dim = 0; //Initial brightness level ស្គ្រាខ្ទេសស្វែមួលរួកគ្នស្ស ស្គ្រាន់ស្គ្ (/classes/?utm_medium=cta&utm_source=banner)
Arduino controlled light dimmer by
diy_bloker//mpen/ber/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)
      attachIntenrupt(0, light, FALLING);//When arduino Pin 2 is FALLING from HIGH
     ည္ပ်ံလူမှာ ျပန္တာများ ျပန္တာများ မေရာက္ခရုပ္သည့္ပြဲမှာ Controlled-light-dimmer-The-circuit/)
                                                                       15 Steps
    }
                                                                         + Collection
                                                                                             I Made it!
                                                                                                           Favorite

Share ▼

    void light() {
      if (Serial.available()) {
        dim = Serial.read();
        if (dim < 1) {
          //Turn TRIAC completely OFF if dim is \theta
          digitalWrite(AC_pin, LOW);
        if (dim > 254) { //Turn TRIAC completely ON if dim is 255
          digitalWrite(AC_pin, HIGH);
      }
      if (dim > 0 && dim < 255) {
        //Dimming part, if dim is not 0 and not 255
        do] __M; cnococondc/2/*/255 dim\\
```

Just a note: The above software is not mine. I think it is better to keep the check of the serial port out of the interrupt. Also the 500uS delay before the TRIAC is switched OFF is maybe a bit long.

Even more software here (http://wiki.dxarts.washington.edu/groups/general/wiki/4dd69/AC_Dimmer_Circuit.html)

Step 6: Arduino controlled light dimmer: The software III

```
// To calculate freqStep you divide the length of one full half-wave of the power
   cycle (in microseconds) by the number of brightness steps.
   (1000000 uS / 120 Hz) / 128 brightness steps = 65 uS / brightness step
// 1000000 us / 120 Hz = 8333 uS, length of one half-wave.
void setup() {
                                                             // Begin setup
  pinMode(AC_pin, OUTPUT);
                                                             // Set the Triac pin as output
  attachInterrupt(0, zero_cross_detect, RISING);
                                                            // Attach an Interupt to Pin 2
  Timer1.initialize(freqStep);
                                                             // Initialize TimerOne library
  Timer1.attachInterrupt(dim_check, freqStep);
  // Use the TimerOne Library to attach an interrupt
// to the function we use to check to see if it is
// the right time to fire the triac. This function
  // will now run every freqStep in microseconds.
void zero_cross_detect() {
                                  //fila/ELII LIOSILI IVOGQENI/\
```

The code below uses the timer function rather than a delay and has been confirmed to work on the Leonardo as well

Check out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)

Arduino controlled light dimmer by

diy_bloke (/member/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)

Step 7: Software To set level using up and down buttons

Below a code to set the light level with up and down buttons. It uses a timer that checks for the time necessary to trigger the TRIAC, rather than wait in a delay loop

```
AC Light Control
Uses up and down buttons to set levels
makes use of a timer interrupt to set the level of dimming
#include <TimerOne.h>
                             // Avaiable from http://www.arduino.cc/playgrou
nd/Code/Timer1
volatile int i=0;
                              // Variable to use as a counter of dimming step
s. It is volatile since it is passed between interrupts
volatile boolean zero_cross=0; // Flag to indicate we have crossed zero
                             // Output to Opto Triac
int AC_pin = 3;
                             // first button at pin 4
int buton1 = 4;
int buton2 = 5;
                              // second button at pin 5
int dim2 = 0;
                              // led control
int dim = 128;
                              // Dimming level (0-128) 0 = on, 128 = 0ff
int pas = 8;
                              // step for count;
int freqStep = 75;
                              // This is the delay-per-brightness step in mic
roseconds. It allows for 128 steps
                              // If using 60 Hz grid frequency set this to 65
void setup() { // Begin setup
 Serial.begin(9600);
 pinMode(buton1, INPUT); // set buton1 pin as input
  minMada/hutana TNDUT\. // sat hutana min as innut
```

Step 8: More interrupt driven Software

Check out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)

Arduino controlled light dimmer by

diy_bloke (/member/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)

Step 9: Arduino controlled lightdimmer: result & expansion

3 channels

This circuit can also be used for an RGB mixer, albeit you need two additional TRIAC circuits. You could use this circuit+PCB

(http://www.instructables.com/id/Small-Triac-Switch/) in duplo for that, but make sure you use a random cycle opto-coupler suah as the MOC3021. Do not use a zerocrossing Opto-coupler such as the MOC3041.

I now made a 3 channel lbble (http://www.instructables.com/id/3-channel-

Dimmerfader-for-Arduino-or-other-microco/)

Check out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)
The zero-crossing circuit is ofcourse only needed once.

Perhaps this is still something for tradition (call it Old fashioned): x-mas tree

Arighting controlled light dimmer Hang 3 different color lamp strings

diy hoke (member/diy bloke) in microcontrollers (/tag/type-id/category/tachnology/channel-microcontrollers/)

Step 10: 8051 Controlled lightdimmer: Software

crossings or count the number of zerocriossings within a set time.

//fila/EVU34DVUMAMEOREI/\

Obviously, one can use the 8051 microcontroller series as well to control the dimmer.

As I dont have an 8051 development system anymore, I cannot test any code, but should you want to develop this for an 8051, the following example may be of help:

```
//
    //Controlling AC with a 8051
    //Untested Code
    //Compiles with MicroC Pro for 8051
    int dimming;
    int x;
    int i;
    void ex0_isr(void) iv IVT_ADDR_EX0 ilevel 0 ics ICS_AUTO {
    /*=======*/
    int dimtime=(75*dimming);
    //delay_us(dimtime);
   P0=0xFF; // sets entire PORT 0 high, can also cys out new classes! >> (/classes/?utm_medium=cta&utm_source=banner)
    delay_us(10); //propagationdelay
Arduino controlled light dimmer by
diy bloke (/member/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)
   void delay(int maal){
   Download
   for (x=1; x< | maal; x++) {</pre>
                                                                15 Steps
    delay_us(75); // 65 for 60Hz
                                                                  + Collection
                                                                                   I Made it!
                                                                                                Favorite
                                                                                                             ≰ Share ▼
   }
  I cannot garantee this code to work as I have no way of testing it. Should
  anybody try it and have results I would be glad to hear it.
  An application note describing a fan control according to the same principle, can
  be found here
  (http://www.8051projects.net/files/public/1294751952 20897 FT43643 a.c fan
```

Step 11: PIC Controlled lightdimmer: The software

_speed_control.pdf).

If you want to use this circuit with a PIC microcontroller, the software in this link may help you get further:

http://www.edaboard.com/thread265546.html (http://www.edaboard.com/thread265546.html)

A good article on zero crossing detection with a PIC can be found here: (/classes/?utm_medium=cta&utm_source=banner)

nttp://tahmidmc.blogspot.nl/2012/10/zero-crossing-...

Ifuling controlled light dimmer by
(http://tahmidmc.blogspot.nl/2012/10/zero-crossing-detection-withbloke (/member/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)
pic16f877a.html)

The Writer Syed annual Manbub gives a basic program that detects the zero

crossing and then triggers the LED with a delay of 20ms.

+ Collection

I Made it!

Favorite

≰€ Share ▼

Although I never worked with PIC's before and am no crack on C programming. I decided to see if i could build on his program and make it possible to vary the light intensity, rather than just give it one value (the 20ms delay).

I soon found out that the delay_ms and delay_us functions in C, are a bit tricky, namely that they don't accept a variable. The delay time needs to be known at the time of compilation as it is hard coded. I saw some complicated workarounds, but I thought a simpler solution would be to make a function that gives a 75 uS delay (make that 65 for 60Hz) and call that with a parameter determining how often that delay is looped.

The maximum number of times the delay is looped is 128. That is because I have randomly chosen that the light should be dimmed in 128 steps (with 0 being full on and 128 being off).

A warning though: I have no PIC programmer and I am not planning (yet) to go into pics, happy as I am with the Atmega and Attiny series. Therefore I cannot test the program. I can only say that it compiles without problems, and if you want to use the circuit on a PIC, it will help you get started. You can also find full projects, including a program, here

(http://www.datelec.fr/secteur/Lamp%20dimmer%20PIC12C508%20DS40171A. pdf) and here, including an IR remote (http://www.module.ro/ir.html)and here (http://pcbheaven.com/circuitpages/PIC_DCV_Controlled_AC_Dimmer/)

//Programmer: DIY Bloke

//Strongly based on a 0-X program from Syed Tahmid Mahbub

//Compiler: mikroC PRO for PIC v4.60

//Target PIC: PIC16F877A

//Program for phase angle control

//zero crossing signal on pin 33 RB0/INT

//gating signal to MOC3021 via 220-470R from pin 19 RD0/PSP0

```
//X-tal 4 MHz
  unsigned char FlagReg;
  int x;
  int maal;
  int dimming=20;// '20' is just an example. Dimming should contain a
  // value between 0 and 128 and can be taken from e.g. a
  // variable resistor or LDR or a value coming out of a program
  sbit ZC at FlagReg.B0;
  void interrupt(){
  if (INTCON.INTF){ //INTF flag raised, so external interrupt occured
  INTCON.INTF = 0;
  }
  }
  void delay(int maal){
  for (x=1; x< maal; x++) {
  delay us(75); // 65 for 60Hz
  }
  }
  void main() {
  PORTB = 0;
  TRISB = 0x01; //RB0 input for interrupt
  PORTA = 0:
  ADCON1 = 7; //Disable ADC
  TRISA = 0xFF; //Make all PORTA inputs Check out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)
  PORTD = 0;
Ardvino controlled light dimmer by
diy_ploke () member diy_bloke i i microcontrollers () taglitype digaegory-technology/channel-microcontrollers/)
  INTCON.INTF = 0; //clear interrupt flag
  IN POON ANTE #11(/in/emable-extended-inter-time-traction)
                                                               15 Steps
  INTCON.GIE = 1; //enable global interrupt
                                                                  + Collection
                                                                                   I Made it!
                                                                                                Favorite
                                                                                                             ≰ Share ▼
  while (1){
  if (ZC){ //zero crossing occurred
  delay(dimming); // '20' is an example
  PORTD.B0 = 1; //Send a pulse
  delay_us(250);
  PORTD.B0 = 0;
  ZC = 0;
  }
  }
  }
```

Step 12: Problems

If for whatever reason the circuit you built neet working, netwer these is placed in the circuit you built neet working, netwer these is placed in the circuit you built neet working, netwer these is placed in the circuit you built neet working, netwer these is placed in the circuit you built neet working, netwer these is placed in the circuit you built neet working, netwer these is placed in the circuit you built neet working, netwer these is placed in the circuit you built neet working.

15 Steps

Favorite

I Made it!

≰€ Share ▼

Arduino controlled light dimmer by

(/id/Arduino-controlled-light-dimmer-The-circuit/)

diy_bloke (/member/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)
There are mainly 3 things that can happen:

1-The lamp is flickering

This is probably the most common problem you can encounter and there maybe several reasons for it e.g.

-a 'dirty' powersupply.

Download

If your powersupply gives off a lot of extra spikes, these can be present on the 0X signal pin and mess up the clean Zero crossing signals. Try another powersupply.

-'timing' problems

using an optocoupler gives a precise zero-crossing signal, but it is not extremely narrow. The pulse width of this circuit (at 50Hz) is typically around 600us (0.6ms) which sounds fast enough. The problem is that at 50Hz each half cycle takes only 10ms (8.33ms at 60Hz), so the pulse width is over 5% of the total period. This is why most dimmers can only claim a range of 10%-90% - the zero crossing pulse lasts too long to allow more range. The solution is to avoid regulating all the way down or all the way up. Also increasing or sometimes decreasing the step-value (the number 75 for 50Hz and 65 for 60Hz) may cure that.

2-The lamp is constantly on

This might be a software or a hardware problem and the easiest way to sort that out is to make sure the microcontroller is not connected to the circuit. If the lamp is still on there are grossly 4 possibilities:

- -You somehow fucked up the circuit, check if it is indeed OK and that everything is connected to where it should be connected.
- -The MOC3021 is somehow receiving a positive input, make sure there are no stray drops of solder shorting things that shouldn't be shorted. Short the input and ground wire and see if the lamp stays off.
- -The MOC3021 is short circuited at the high voltage end. Remove the MOC3021 from its socket and see what happens: if yr lamp stays off there is likely

something wrong with yr MOC3021. If your lamp stays on, you probably have a faulty TRIAC

-You have a faulty TRIAC. As described above. Yet, check the gate resistor if it really has the correct value, just to make sure

3-The lamp is constantly off

As this may also be a software or hardware problem, first see what hapens with the arduino disconnected.

Connect the input to a plus 5Volt supply and measure the voltage on the primary side of the optocoupler (YOUR CIRCUIT SHOULD NOT BE CONNECTED TO THE MAINS). If that is a couple of volts, connect your circuit to the mains and see what happens. If the lamp switches on there is a problem with the input signal. If it stays off, you may have a faulty optocoupler, a faulty TRIAC or your circuit somehow is not connected to the mains. Another possibility is that the voltage drop over the LED is preventing the optocoupler to open, especially when you are using say 3.3 V as a driving voltage. Make sure you have an LED with a low voltage drop or replace it by a wire bridge.

A piece of code that can help you test the Triac circuit is to add the following into

the setup

void setup()
{
pinMode(AC_LOAD, OUTPUT); // Set the AC Load as output
for (int i=0; i < 10; i++) {
digitalWrite(AC_LOAD, HIGH); // triac firing
delay(1000);
digitalWrite(AC_LOAD, LOW); // triac OffCheck out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)
delay(1000);

+ Collection

I Made it!

Favorite

≰€ Share **▼**

Arduino controlled light dimmer by

diy}bloke (/member/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)

From all the people that contacted me about problems of the circuit not working, the most common fault was: faulty wiring: a chip put upside down, a solder joint not good, a wire not connected right.

Step 13: The gate resistor: a bit of theory

When cruyising the internet for Triac switches, you may have come across a large diversion in the value of the gate resistor value. My choice usually is to take the lowest value that will still protect the gate and the optocoupler. Reader Mali Lagunas did some research in the theory behind the criteria to choose the value of the gate resistor. Which i will copy below:

The resistor when placed in this circuit, will have two main effects:

- a) It will limit/provide the current going into the gate of the triac (I_{GT})
- b) It will cause the voltage to drop when the triac is on (V_R)

The lowest value this resistor may have (for 220 V AC) is R=220*sqrt(2)/I_{TMS}, where I_{TMS} is the maximum peak current allowed in the photocoupler's phototriac. These are surge values, thus they are transient and account for a limit before breakdown. Therefore in your circuit R would be R=220*sqrt(2)/1=311.12 or 330 ohms, since the MOC3021's I_{TMS}=1A. This is consistent with I_{GM} which is the peak gate current of the TIC206. In your schematic you use 1K which would limit the current to 311mA.

This "surge" case may take place only when a pulse is received by the phototriac and it is able to conduct I_{GT}, and of course for a line value of

220*sqrt(2). Charge will then accumulate in the triac's gate until V_{GT} gets build up and the triac gets activated.

In quadrant I, (V_{GT} and A1 are more positive than A2) in order for sufficient charge to build up and V_{GT} in the main triac to bee reached, the voltage across the triac must equal V_R+V_{TM}+V_{GT} Of course V_R=I_{GT}*R . Commonly, V_{TM}+V_{GT} will both account for approximately 3V (datasheet). At the same time, the resistor must provide sufficient current to the Triac's gate, let's say a minimum of 25 mA (sensitivity of the Triac), thus

V_{triac}= 330ohms*25mA+1.3V+1.1V=10.65V and V_{triac}= 1k-ohms*25mA+1.3V+1.1V=27.4V (the value in your circuit)

Which is the voltage needed to activate the triac. Therefore, the smaller the resistor the less voltage is required to switch on the main triac. What goes on afterwards is mainly that there is a voltage drop across A1 and A2 and therefore the phototriac voltage and current will drop causing turn-off state (of the phototriac). The main triac will be kept switched on if the holding current I_H is respected. When the load current is below I_H, the main triac is switched off until a pulse from the photodiode is emitted again in order to polarize V_{GT} and build the required charge in the next cycle. Q1 and Q3 are the quadrants for this setup.

Step 14: Dimming: A bit of Theoryeck out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)

≰€ Share **▼**

A Just as a background to this instructable: There are various types of dimmers.

A duno Controlled light dimmer by
What is presented here is a phase-controlled (aka 'phase-cut') leading edge
diy bloke (Imember/diy_bloke) in microcontrollers (Itag/type-id/category-technology/channel-microcontrollers/)
(aka "forward phase")TRIAC dimmer.

Leading Edge Dimmers

In this type the dimmer actually cuts parts off the beginning of the singlewave.

This is the most widely used type of dimmer as it is ver suitable for TRIACs.

After all, A Triac is easy to switch on and it will switch off by itself once there is a

Trailing Edge Dimmers

Also known as 'reverse phase control' dimmers. A trailing edge dimmer is a considerably more complex circuit. The simple circuitry that is common with leading edge types can no longer be used, because most TRIACs cannot be turned off. Gate turn-off (GTO) TRIACs exist, but are far more expensive and less common in the relatively small sizes needed for lighting. To be able to implement a trailing edge dimmer, the switching device must turn on as the AC waveform passes through zero, using a circuit called a zero-crossing detector. After a predetermined time set by the control, the switching device is turned off, and the remaining part of the waveform is not used by the load.

zero crossing because the current drops below the gate hold current

Trailing edge dimmers commonly use a MOSFET, as these require almost no control current and are rugged and reliable. They are also relatively cheap and readily available at voltage ratings suitable for mains operation. Another option is to use an IGBT (insulated gate bipolar transistor), which combines the advantages of both MOSFET and bipolar transistor. These are generally more expensive than MOSFETs. Again, the waveform is ideal, and it is obvious from the actual waveform shown in Figure 9 that there is a significant deviation - especially at full power. This is caused because some of the applied voltage will always be lost because the complex electronics require some voltage to operate.

Most trailing edge dimmers have another useful function - at least when used with incandescent lamps. The circuitry is designed to provide a 'soft start', increasing the voltage to the lamp relatively slowly. With incandescent lamps,

this almost eliminates 'thermal shock' - that brief period at switch-on where the lamp draws around 10 times the normal operating current. Thermal shock is responsible for most early lamp failures - it is rare indeed for any incandescent lamp to fail while it's on. Failure is almost always at the moment the switch is turned on. By including the soft-start feature lamp life is increased.

Step 15: Zero Crossing: a bit of theory

Though I described the zerocrossing already, I will spend some more words on it.

With the 'bridge and opto-coupler' circuit that I used in this project, the principle is very clear: A mains AC voltage passes through 2 resistors of 33k and is rectified by the diode bridge.

This rectification results in a pulsating DC voltage that keeps the optocoupler open, keeping the zerocrossing signal LOW till the voltage drops to 'zero' at

what point the optocoupler will not be in conduction anymore and the zerocrossing signal is pulled high, untill the voltage rises again enough to send the optocoupler into conduction again, resulting in the zerocrossing pin going

The 'quality' of that zerocrossing pulse is of course depending on a number of factors but mainly on the speed of the optocoupler, the value of the collector resistor, but not in the least on the value of the two resistors in the mains line.

If that value is too low, your optocoupler will burn out, but if it is too high, the voltage at which there still is enough current going through the optocoupler to keep it conducting becomes higher and higher. That means that if the resistor value is too high, the switching of the optocoupler will happen higher on the rising and descending flank of the sin wave, resulting in a wide zerocrossing signal, that starts way before the actual zerocrossing until way after the zerocrossing.

Ergo: The resistor value should be as low as possible. In practice however I found the 2x 33k to be a good value, leading to a pulse starting abt 200uS before the actual zerocrossing. That is very acceptable. The current through the 4N25 is approximately 3.33 mA. Surely we could take that up a notch, but it isn't necessary. With these values the idle use of this circuit is an estimated 0.7 Watts

The same actually goes for the circuit with the H11AA1. The advantage of the H11AA1 is that one doesn't need a diode bridge as it has two antiparallel diodes. The same goes for the IL250 series or the LTV814

One can reach the same effect with two regular optocouplers such as the 4N25, as the figure shows or with a dual optocoupler.

I also provided a circuit in which the width of the zerocrossing pulse can be classes! >> (/classes/?utm_medium=cta&utm_source=banner) regulated.

As said before, the width of the Zerocrossing signal determines how far before Arduing controlled ight dingmenter. Ideally, if you know how wide diy bloke zerocrossing signal determines how far before with the distribution of the Zerocrossing signal determines how far before Arduing Signal in Si

Suppose your signal is 600uS wide and suppose that is a evenly divided timing. Then you know that your interrupt is generated some 300uS before the actual Zerocrossing. You could wait that period after each interrupt to get a collection

≰€ Share **▼**

re 🔻

Zerocrossing. You could wait that period after each interrupt to get a more precise handling of the zerocrossing

Hello,

2 days ago

I want to dim a 12v halogen lamp. I have a dimmable halogen psu, but I have to drive it with a TRIAC, from what I understood.

Is this circuit suitable for my needs?

joshsim2566 (/member/joshsim2566) made it!

5 days ago

Reply

here is my schematic, after i double check the coding and circuit, the lamp still glow at 100%, i dont know what is happening here, my component is 4n26, moc3021, Triac bt136 and bridge rectifier. You know what is happening here? Please help me

(https://cdn.instructables.com/FQO/E5JZ/IVO3LZM5/FQOE5JZIVO3LZM5.LARGE.jpg)

Check out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)

≰€ Share **▼**

Favorite

(https://cdn.instructables.com/FE8/33PA/IVO3LZM6/FE833PAIVO3LZM6.LARGE.jpg)

Arduino controlled light dimmer by

diy_bloke (/member/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)

diy_bloke (/member/diy_bloke) (author) ➤ joshsim2566 (/member/joshsim2566)

(/id/Arduino-controlled-light-dimmer-The-circuit/) 15 Steps ago circuit looks OK. I am not sure if I asked before but did you try the original dimmer demo from the instructable? did that work

properly? That would be very helpful to see if the problem is in yr software or your hardware

joshsim2566 (/member/joshsim2566) ▶ diy_bloke (/member/diy_bloke)

Reply

I see , but I have try the original dimmer code already , I just saw the light flickering .

3 days ago

diy_bloke (/member/diy_bloke) (author) → joshsim2566 (/member/joshsim2566)

well that strongly suggest indeed that the problem is in your hardware. I cannot see anything wrong with yr circuit. When you tried the original program, did you include the LCD that I see in your schedule? Or was it just the program without any additions? Could you recheck all connections and soldering joints?

JeremieF1 (/member/JeremieF1)

4 days ago

Renly

Thanks for sharing! I have two questions related to your schematics.

Can I simply omit the bridge rectifier and still use a 4N25? The internal diode would block negative signal, and I would think software can handle it (especially as I plan to do only bursts of full-waves, not chopping them at a higher frequency).

Also why do you use two 30K resistors where only one 60K would seem to be enough? Thanks again :)

diy_bloke (/member/diy_bloke) (author) ▶ JeremieF1 (/member/JeremieF1)

4 days ago Reply you would only have one phase and therefore you wouldnt have a zerocross, just a signal that lingers at zero for half of the cycle time.

You can use 1 60k but it would need to be of the double wattage that the 30k resistors are. That is one reason, The other is that by using 2 resistors the full 220 signal would be kept out of the PCB as much as possible

JeremieF1 (/member/JeremieF1) ▶ diy bloke (/member/diy bloke)

Reply

Got it, thanks for your reply:)

4 days ago

The raising edge would trigger an interrupt at the beginning of each cycle then (and it is no more a zerocross indeed!).

diy bloke (/member/diy bloke) (author) ▶ JeremieF1 (/member/JeremieF1)

3 days ago Well ofcourse the signal doesnt need to go through zero ofcourse, just be low enough to open the 4n25 and if you trigger on the rising or falling flank you would still get an interrupt, but you would only get an interrupt for half of the cycle

alzomor (/member/alzomor)

6 days ago

Reply

What about false zero cross triggering ode out our may classes (إليام المرابطة المر phases?

+ Collection

Arduino controlled light dimmer by

diy_bloke (/member/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)

diy bloke (/member/diy bloke) (author) ▶ alzomor (/member/alzomor)

(/id/Arduino-controlled-light-dimmer-The-circuit/) 15 Steps

I do not understand what you are exactly asking

6 davs ago

I Made it!

Favorite

≰€ Share ▼

alzomor (/member/alzomor) ▶ diy_bloke (/member/diy_bloke) 6 days ago

When using several channels of the same circuit to dim several loads and each load is at different value.

In this case when you fire the Triac it will introduce some noise on the mains.

This noise may be false detected as a Zero cross by the zero cross circuit, and case flicker.

Did you face such problem before?

diy_bloke (/member/diy_bloke) (author) ▶ alzomor (/member/alzomor)

no I didnt have any of those problems. It is important though to have a clean PSU as the grid is full of noise whether Triac induced or not. Anyway, I never had any problem

joshsim2566 (/member/joshsim2566)

6 days ago

Reply

Can i have a code for up down button control light dimmer?

diy_bloke (/member/diy_bloke) (author) ▶ joshsim2566 (/member/joshsim2566)

i have sent you already when i first received your email. ⁶ days ago check yr spam folder maybe. but will also send again

joshsim2566 (/member/joshsim2566) ▶ diy bloke (/member/diy bloke)

Reply

5 days ago

I receive it already..thanks:)

diy_bloke (/member/diy_bloke) (author) ▶ joshsim2566 (/member/joshsim2566)

6 days ago turns out i sent it to you on the 14th. 5 days ago. I just resent it

joshsim2566 (/member/joshsim2566)

8 days ago

Reply

This is my email: joshuasamuel@klt.edu.my

I see, this is the problem i need to fix it, my final year project is to use the button to dim the light bulb, and i also use the LCD display to display the dim level. But after i power on the supply, the bulb only glow 100%, the circuit connection is right, so i guess is the code problem (T.T). I hope you can help me.

I still waiting for you to send me the original code. Thanks:)

CristianW4 (/member/CristianW4)

10 days ago

can I use just one "bridge + 4N25 circuit part" to get the zero cross for supply the arduino, and then use separate MOC3021+TIC206 circuit part for dimming each light? or its necesary the whole circuit for each light?

Check out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)

Ardaino controlled light dimmer by CristianW4 (/member/CristianW4)

9 days ago Reply dip_blocke (/membey/diy_chloke/edroine controllers/)

if you want more lights would not hered to copy the MOC3021+ Triac part. have a look at my 3 lamp dimmer (http://www.instructables.com/id/3channel-Dimmerfader-for-Arduino-or-other-microco/). + Collection

I Made it!

Favorite

≰€ Share **▼**

karlcs (/member/karlcs)

10 days ago

Hello! Im a student and I have basic knowledge of electronics and the arduino. I was thinking if it would be possible if I add sensors while using this circuit for dimming. Particularly, pir sensor and photodiode. Moreover, i wanted to also add bluetooth module for additional manual control of the led bulb. Is it possible or is it too much for the arduino to handle? I have lots or questions for this project because its very nice and i want to add more features. thank you. kudos also to your very detailed instructable

diy_bloke (/member/diy_bloke) (author) ▶ karlcs (/member/karlcs)

Reply

9 days ago

it is not too much to handle for the arduino, but just know that the first program is a demo program that spends most of its time in a delay loop. If you want to do something else you need to replace he delays with some sort of timer function. Also in writing yr program keep in mind that there is an interrupt 100 times a second

joshsim2566 (/member/joshsim2566)

16 days ago

Reply

after i used the code for up down button, the light is constantly on 100%, what is happening here?

yould be beneficial to people if I added some codes besides the basic program. But it is a long time since I tested that specific program as I didnt want to use any buttons. Now it is very well possible that in putting the code on this webpage something went wrong. I took a quick look and it seemed OK, but If you p, me your email address (or leave it in the comments if ok with you. I will send you the original code. That however also has an LCD section in it but you can just ignore that.

joshsim2566 (/member/joshsim2566) ▶ diy_bloke (/member/diy_bloke)

Reply

This is my email: joshuasamuel@klt.edu.my

14 days ago

I see, this is the problem i need to fix it, my final year project is to use the button to dim the light bulb, and i also use the LCD display to display the dim level. But after i power on the supply, the bulb only glow 100%, the circuit connection is right, so i guess is the code problem (T.T) . I hope you can help me. Thanks

Zaragesh (/member/Zaragesh)

15 days ago

Reply

Hi to everyone,

I built this circuit because I was interested like many in controlling a 230 V AC Motor Fan

First built for simple loads like a light bulb worked well and than for complex loads (inductive) like a motor. So I used the circuit with the snubber. Works well for i think 10 minutes than it starts to burn;). Better said the 180 Ohm Resistor in the snubber circuit is to small and the cattle file of the snubber circuit is to small and the cattle file of the snubber circuit is to small and the cattle file of the snubber vet but i will keep it up to date and try a different

Arduin & Controlled light dimmer by

diy_bloke (/membey/diy_eliber) an mcrosontrollers (rag/type-ommend) heatsink for the Triac rocontrollers/)

And I used an analogPin instead of the digital interrupt (got problems with it do

Download known what works wall a viligned alload Pine-circuit/)

то окора

+ Collection

I Made it!

♥ Favorite

≰€ Share **▼**

So I will make an update in the next few weeks for the snubber.

Depending on the load yes a heatsink is advisable.

Anyway great circuit:)

diy_bloke (/member/diy_bloke) (author) ▶ Zaragesh (/member/Zaragesh)

sh) Reply

14 days ago

thanks

IKS

Snubber circuits indeed need to be able to deal with the spikes going through them.

I am surprised you had to resort to the analog pin, you must have changed the program then as there is no interrupt on the analog pin, but ofcourse polling is always possible

thorstent3 (/member/thorstent3)

18 days ago

Reply

What is the minimum load on this dimmer?

I have a parallel set of 4 dimmable led bulbs (5.5 Watts max each, 230V AC), will that work ?

diy_bloke (/member/diy_bloke) (author) ▶ thorstent3 (/member/thorstent3)

the minimum load I tried was 40 watt and that was
without problem. whether you can dim LED lamps largely depends on the
LED lamp. Many dimmable lamps need dedicated dimmers, but if these
are LED lamps that are for what is called a 'traditional' dimmer you have a
good chance of it working

අයන්ම (/member/අයන්ම)

a month ago

Reply

I made this for five bulbs . but there is a flickering. flicker rate is not constant, flicker rate change with the time and its looks periodic. its increase with time and then decrease. then flickering stop, after about 1 second its start flicker again. can you please tell me the problem. its not the number of bulbs i have used, even with one bulb there is flickering . i changed the resister values from 33k to 16.5k, detect zero cross using a 12v transformer, replace optocouplers. changed the 4n25 pull up resister from 10k to another value. nothing helps. flickering rate and pattern remaining same . can you please help me. thank you for this great instructable .

diy bloke (/member/diy bloke) (author) ▶ අයන්ම (/member/අයන්ම)

Reply

a month ago

අයන්ම

(http://www.instructables.com/member/%E0%B6%85%E0%B6%BA%E0%B6%B1%E0%B7%8A%E0%B6%B8) I am not sure if you saw my 3 channel light dimmer, but that is just for your

information.

There can be various reasons for flickering: software and hardware, so lets see where the problem is. I presume you have juist built the triac

What happens if you ignore the 4 channels and just use one and use my demo program? What happens then?

Flickering coz of hardware is usually because of a dirty psu. What happens if you feed your microcontroller from a battery?

I presume you used the 16.5k to get a smaller pulse, but apparently that was not the solution. Though hecknows contraction assessed the plaise of the transformer is of importance.

Arduino controlled flights dimmerting range? Is there also flickering if you

circuit 5 times and the zerocross one time.

diy_bloke (/membe**\/witte_bbke\/all\/antivotom\phileke\/\plagrtypsa\//allegory-technology/channel-microcontrollers/**)

Download

Disconnect your microcontroller and put 5 volt on the entrance of your circuit. Do you have flickering too?

Anyway.. try that and try also feeding the microcontroller with a battery

I Made it!

Favorite

⋠ Share ▼

| |=

DamithP1 (/member/DamithP1) ▶ diy_bloke (/member/diy_bloke)

Reply

"Disconnect your microcontroller and put 5 volt on the entrance a month ago of your circuit. Do you have flickering too?" I didnt understand this. What do you mean by entrance

diy_bloke (/member/diy_bloke) (author) ▶ DamithP1 (/member/DamithP1)

the entrance is where you would normally put the output of the arduino

a month ago

Reply

 $\textbf{DamithP1 (/member/DamithP1)} \hspace{0.1in} \bullet \hspace{0.1in} \textbf{diy_bloke (/member/diy_bloke)}$

Reply

i tested it with your sample code ,which does not use the timer $^{25\ days\ ago}$ interrupts. it worked fine without flicker. flicker is only visible with the timer interrupt code, please help me to solve this problem, thank you.

diy_bloke (/member/diy_bloke) (author) ▶ DamithP1 (/member/DamithP1)

Are you using an Arduino? which one?

24 days ago

Reply

DamithP1 (/member/DamithP1) ▶ diy_bloke (/member/diy_bloke)

Reply

diy_bloke (/member/diy_bloke) (author) ▶ DamithP1 (/member/DamithP1)

22 days ago Reply The Timer program as you can see in the legenda is not made by me, but it sounds as if somehow your timing is abit off. Now there are two timer programs I think, in which step is the one you are using?

I am just going to make sure the timer is working correct

DamithP1 (/member/DamithP1) ▶ diy bloke (/member/diy bloke)

Reply

22 days ago Yes.i think the problem lies with intenal and external inturrupts. When we use both in same sketch it doesnt work well. Thats may be the reason when we use delay for dimming, the flickering doesnt apper. I have increased the number of brighness steps for 320. I called the ISR with 30microseconds delays and the flickering reduced to almot zero. To reduce the time concumed for ISR i used Direct port manipulation insted of digitalWrite and pinMode.

diy_bloke (/member/diy_bloke) (author) ▶ DamithP1 (/member/DamithP1)

ok so you did change rhe sketch, then not much use i $\,^{21\mbox{ days}}$ ago Reply check the one here. Direct port manipuation is good, makes it less portable but not really a problem for dedicated project. Make sure you dont make the interrupt routines too long our new classes! >> (/classes/?utm_medium=cta&utm_source=banner)

Arduing controlled light dimmer by DamithP1 (/member/DamithP1) diy bloke (/member/diy bloke) Reply diy_bloke (/member/diy_bloke) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/) 19 days ago

Download

l sloved the problem completely. Thanks for the help ∰ (/id/Arduino-controlled-light-dimmer-The-circuit/)

+ Collection

+ Made it! Favorite **≰**€ Share ▼

diy_bloke (/member/diy_bloke) (author) ▶ DamithP1 (/member/DamithP1)

great, good to hear

18 days ago Reply

DamithP1 (/member/DamithP1) ▶ diy_bloke (/member/diy_bloke)

Reply

22 days ago

Mr. Bloke. Did you run the circuit with the timer inturrupt code.

And did it work smoothly? .

DamithP1 (/member/DamithP1) ▶ diy_bloke (/member/diy_bloke)

Reply

a month ago Thank you verymuch for the responce and yes, i saw your3 bulb example. But i didnt do it that way. I just use your timer interrupt code and copy- paste it 5 times.added 5 variables for zero cross detect ,5 for dim and anothre 5 for i. As you said i added 5 triacs and one zerocrossing detector. That is not the problem. I only used your code and the diagram. But the problem is same. As i said the flickering is periodic. It has a pattern. I powered arduino from the laptop usb.the Flickering can be obsrerved about 70% below the brightness. It depends on the wattage of the bulb. When use 25 w bulb it can obseved from about 70%.when the bulb is 75w there is no flicker obsrved untill about 50%,40%. . When the bulb in full brightness- no flicker.

I am not sure if making 5 copies of the timer interrupt code will work flawlessly.

what happens if you just use my demo code with ONE lamp.

Also try the code I supplied with the 3 channel circuit and please send me yr code so I can check

DamithP1 (/member/DamithP1) ▶ diy bloke (/member/diy bloke)

Reply

I used your sample code from the begining. Result is the same.flickring pattren is same. And i used only one lamp. a month ago

diy_bloke (/member/diy_bloke) (author) > DamithP1 (/member/DamithP1)

did you do the other things I suggested earlier? and if

Reply

ScottM348 (/member/ScottM348)

yes what was the outcome

21 days ago

Reply

I noticed some flickering when I was using this with a onewire temperature sensor. From what I can tell, the rise time on my zero crossing detector output is slow (milli seconds) which is causing the interrupt to fire multiple times on a single rise when there's some noise. In my case the noise was a pin changing at high frequency controlling a one wire sensor.

I put a schmitt trigger on the Check out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner) zero crossing detector output and it all works well now. Has anyone else seen this? What should the rise time of the zero crossing detector be?

Arduin decens trooked metal voling inversignit causing the slow rise.

diy_bloke (/member/diy_bloke/) in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)

III (/id/Arduino-controlled-light-dimmer-The-circuit/) 15 Steps ▶ diy_bloke (/member/diy_bloke) (author) ▶ ScottM348 (/member/ScottM348)

12168/19511918

Favorite

≰€ Share **▼**

That is good to know. The quality of the zerocross pulse is depending on the 33k resistors. If they are smaller in value the pulse will rise faster and be thinner. I am sure it is possible to calculate the width of the pulse, but I didnt. The full period is 10msec and I do recall on measurement the pulse was less than a milisec. Yet, in interrupt terms that still can be huge.

I never encountered any problems, but noise on the powerline (or probably any other line) can cause flickering. A good start is a good quality PSU with good decoupling.

Adding a fast schmitt-trigger is definitely an option too in certain cases

Alexhills (/member/Alexhills)

a month ago

Reply

Reply I Made it!

I cant make it to work. I have done the circuit 5 times now from scratch and it still wont work. I uploaded sketches 1 and 2, and I changed the pins in case my arduino doesnt work properly. The first time i did the circuit my lamp just flickered, now it doesnt even turn on. What could i possibly be doing wrong?I dont have an oscilloscope to see the wave in detail. Also i use a bridge GBU 6K(800 V, 6A).

diy_bloke (/member/diy_bloke) (author) ▶ Alexhills (/member/Alexhills)

Reply

a month ago

alex, that is too bad. I have build it I think 10 times and it worked every time. In fact, there cant be much wrong with it. As the outcome between yr first build and your last build is different, somehow it must be a hardware problem. Are you using the same components at every build?

Are you sure you make the right connection, please recheck. How do you

build it? on pertinax or breadboard. What happens if you disconnect the arduino and just put 5 Volt on the entrance of the circuit and then plug it into the mains?

Puzzles

■ More Comments

FFATURED CHANNELS

Laser Cutting

Space

Homesteading

I Made it!

Favorite

≰ Share ▼

3D Printing

Sewing

(/tag/type-(/tag/type-(/tag/type-(/tag/type-(/tag/type-(/tag/type-(/tag/type-(/tag/type-(/tag/typeid/categoryid/categoryid/categoryid/keywordid/categoryid/categoryid/keywordid/categoryid/categoryworkshop/channel-craft/channelkitchen%20hacks/?play/channelworkshop/channel-astronomy/? home/channel- technology/channebraft/channelsort=FAVORITES) puzzles/hout deser-cutting/) sort=FAVORITES/homesteading/) 3D-Printing/) dworking/) sewing/) Newsietter Join 2 million + to receive instant Who We Are (/about/) DIY inspiration in your inbox. Advertise (/advertise/) Contact (/about/contact.jsp) enter email I'm in! Jobs (/community/Positions-available-at-Instructables/) Help (/id/how-to-write-a-great-instructable/) **Find Us** Resources
Check out our new classes! >> (/classes/?utm_medium=cta&utm_source=banner) Facebook (http://www.facebook.com/instructables) For Teachers (/teachers/) Artists in Residence (/air) Arduino controlled light dimmer by Gift Premium Account (/account/give?sourcea=footer)
dy_bloke threework history bloke in microcontrollers (/tag/type-id/category-technology/channel-microcontrollers/)
Pinterest (http://www.pinterest.com/instructables)

Pinterest (http://www.pinterest.com/instructables)

Sitemap (/sitemap/)

+ Collection

Terms of Service (http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=21959721) |

Privacy Statement (http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=21292079) |

Legal Notices & Trademarks (http://usa.autodesk.com/legal-notices-trademarks/) | Mobile Site (http://www.instructables.com)

(http://usa.autodesk.com/adsk/servlet/pc/index?id=20781545&siteID=123112)

© 2016 Autodesk, Inc.

۵

Woodworking

Paper

Pinterest (http://www.pinterest.com/instructables)

Kitchen Hacks