Clase 15 Regresión lineal Diplomado en Análisis de datos con R para la acuicultura.

Dr. José A. Gallardo y Dra. María Angélica Rueda. jose.gallardo@pucv.cl | Pontificia Universidad Católica de Valparaíso

06 November 2021

PLAN DE LA CLASE

1.- Introducción

- Regresión lineal ¿Qué es y para qué sirve?
- Correlación v/s causalidad.
- Repaso ecuación de regresión lineal.
- Repaso betas y causalidad.
- Interpretación Regresión lineal con R.
- Evaluación de supuestos.

2.- Práctica con R y Rstudio cloud

- Realizar análisis de regresión lineal.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato pdf.

INTRODUCCIÓN REGRESIÓN LINEAL

Herramienta estadística que permite determinar si existe una relación (asociación) entre una variable predictora (independiente) y la variable respuesta (dependiente).

Nivel del mar en función del tiempo. Fuente: epa.gov

REGRESIÓN LINEAL: PREDICCIÓN.

La ecuación de la regresión permite, bajo ciertos supuestos, predecir el valor de una variable respuesta "y" a partir de una o más variable predictoras "x".

CORRELACIÓN NO IMPLICA CAUSALIDAD

¿Si dejamos de tomar helados disminuirá el nivel del mar? ¿Qué factor "z" puede explicar la correlación entre consumo de helados y nivel del mar?

REGRESIÓN LINEAL CAUSALIDAD

Calentamiento global Fuente: climate.gov

REGRESIÓN LINEAL: BETAS

Betas miden la influencia del intercepto y la pendiente sobre la variable Y.

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

 $\beta_0 = \text{Intercepto} = \text{valor que toma "y" cuando x} = 0.$

 $\beta_1 = \text{Pendiente} = \text{Cambio promedio de "y" cuando "x" cambia en una unidad.}$

LINEA DE REGRESIÓN.

Línea de regresión: Corresponde a los valores "ajustados" o estimados de "y" en función de "x". Se calcula con los estimadores de *mínimos cuadrados* de $\beta_0 y \beta_1$

RESIDUOS Y MÉTODOS DE MÍNIMOS CUADRADOS

COCIENTE DE DETERMINACIÓN

 R^2 mide la proporción de la variación muestral de "y" que es explicada por x (varía entre 0-1). Se calcula como el cuadrado del coeficiente de correlación de pearson.

 R_{ajust}^2 nos dice qué porcentaje de la variación de la variable dependiente es explicado por la o las variables independientes de manera conjunta.

$$R_{ajust}^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

donde:

n = tamaño de la muestra

p = cantidad de variables predictoras en el modelo

PRUEBAS DE HIPÓTESIS

Prueba de hipótesis del coeficiente de regresión y el intercepto Tipo de prueba: Prueba de t – student

La hipótesis nula en ambos casos es que los coeficiente (β_0) y (β_1) son iguales a 0, es decir sin asociación entre las variables.

$$H_0: \beta_0 = 0 \text{ y } H_0: \beta_1 = 0$$

Prueba de hipótesis del modelo completo Tipo de prueba:

Prueba de F.

La hipótesis nula es que los coeficientes son iguales a 0.

$$H_0: \beta_j = 0 ; j = 1, 2, ..., k$$

REGRESIÓN LINEAL CON R: COEFICIENTES

Coeficientes

Est	imate Std.	Error t val	lue Pr(>
Intercepto -3.3	18 0.162		54 <2e-16 ***
CO2 0.0	099 0.000		7 <2e-16 ***

REGRESIÓN LINEAL CON R: PRUEBA DE F

Anova de la regresión.

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
CO2_ppm	1	4.1525733	4.1525733	469.5292	0
Residuals	57	0.5041149	0.0088441	NA	NA

EXTRAER INFORMACIÓN DE LA REGRESIÓN LINEAL

```
summary(reg$residuals)
        Min. 1st Qu. Median
                                       Mean
                                               3rd Qu.
##
## -0.1931891 -0.0752495 0.0001668 0.0000000 0.0792104
summary(reg)$sigma
## [1] 0.09404319
summary(reg)$r.squared
## [1] 0.8917439
summary(reg)$adj.r.squared
```

[1] 0.8898447

PREDICCIÓN LINEAL DEL NIVEL DEL MAR

Predicción de la anomalía próximos años

```
## fit lwr upr
## 1 0.8997967 0.8422796 0.9573139
## 2 0.9994129 0.9334513 1.0653745
## 3 1.0990291 1.0244426 1.1736155
```

PREDICCIÓN LINEAL FUERA DEL RANGO OBSERVADO

Predicción de aumeto de temperatura con 10 veces mas CO2 que ahora.

¿Por qué esta predicción es inadecuada?

```
## fit lwr upr
## 1 37.65816 34.20395 41.11237
## 2 38.65432 35.10819 42.20046
## 3 39.65049 36.01242 43.28855
```

SUPUESTOS DE LA REGRESIÓN LINEAL SIMPLE

¿Cuales son los supuestos?
 Independencia.
 Linealidad entre variable independiente y dependiente.
 Homocedasticidad.
 Normalidad.

¿Por qué son importantes?
 Para validar el resultado obtenido.
 En caso de incumplimiento se pueden transformar datos o elaborar otros modelos (Regresión logística).

INDEPENDENCIA: MÉTODO GRÁFICO

```
plot(reg$residuals)
abline(h=0, col="red")
```


LINEALIDAD: MÉTODO GRÁFICO

plot(reg, which=1)

INDEPENDENCIA: DURBIN WATSON

 H_0 : No existe autocorrelación entre los datos (lo que deseamos).

 H_0 : Existe autocorrelación entre los datos.

Dado que p < 0.05 se rechaza independencia.

```
# durbin watson test
durbinWatsonTest(reg)
```

```
## lag Autocorrelation D-W Statistic p-value
## 1 0.2338696 1.501215 0.048
## Alternative hypothesis: rho != 0
```

HOMOGENEIDAD DE VARIANZAS: MÉTODO GRÁFICO

H₀: σ₁² = σ₂² **H**_A: σ₁² ≠ σ₂²

plot(reg, which=3)

HOMOGENEIDAD DE VARIANZAS: PRUEBAS ESTADÍSTICAS

 $\ensuremath{p} > .05,$ No tenemos eviencias para rechazar que nuestros datos son homocedasticos.

```
ncvTest(reg) # library(car)
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.1563339, Df = 1, p = 0.69255
bptest(reg) # library(lmtest)
##
##
    studentized Breusch-Pagan test
##
## data: reg
## BP = 0.34329, df = 1, p-value = 0.5579
```

NORMALIDAD: GRÁFICO DE CUANTILES

qqPlot(reg) # library(car)

[1] 18 40

VALORES ATÌPICOS

plot(reg, which=4)

PRÁCTICA ANÁLISIS DE DATOS

- Guía de trabajo práctico disponible en drive y Rstudio.cloud.
 Clase_15
- El trabajo práctico se realiza en Rstudio.cloud.
 Guía 15 Regresión lineal

RESUMEN DE LA CLASE

- Elaborar hipótesis para una regresión lineal
- Realizar análisis de regresión lineal simple
- Interpretar coeficientes y realizar predicciones
- Evaluar supuestos de los análisis de regresión