

Final Capstone - Harvard and Duke Forests environmental growing conditions

Project goals:

- 1. Combine 3 datasets into 1
- 2. Predict difference between Duke and Harvard forests
- 3. Model the relationship between air temperature and PAR
- 4. Use classification models to predict treatment changes
- 5. Use Random Forest to predict Tree Species with treatments ('Only for Harvard forest')
- 6. PCA model of the dataset how is it related or different
- 7. Time series modeling of Air temperature and photosynthetically active radiation

Features Used

year: year

month: month

day: day of month time: hour of day

chamber: chamber number (1-12)

treatment: light treatment G: chamber in open gap

S: chamber under closed canopy

warming: warming treatment

3: 3 degrees C

5: 5 degrees C

A: ambient

C: control

AT: air temperature (unit: celsius / missing

value: NA)

Q: photosynthetically active radiation (unit: micromolePerMeterSquaredPerSecond /

missing value: NA)

Rh: relative humidity (%) (unit:

dimensionless / missing value: NA)

SM: volumetric water content (fractional) (unit: dimensionless / missing value: NA)

ST: soil temperature at 5cm depth (unit:

celsius / missing value: NA)

Exploratory data analysis

Exploratory data analysis

Relationship of Q (PAR) and AT (air temperature) use mean

Linear regression result for predicting Q (PAR)

MAE: 9.414691248821327e-14 MSE: 1.059597967892863e-26

RMSE: 1.0293677515314257e-13

Coeffecient

AT -0.210 Rh 1.210

Does the light treatment have an effect?

```
X = HfDf.ix[:, 'chamber':'ST'].drop(columns=['treatment'])
y = HfDf['treatment']
```

Logistic regression

precis	ion r	ecall	f1-sc	ore su	ipport	
0 0.	.53	0.84		35 37		
1 0.	.51	0.18	0.2	27 34	1922	
micro avg	0.52	0	.52	0.52	712122	
macro avg	0.52	2 (0.51	0.46	712122	2
weighted avg	0.5	52	0.52	0.47	71212	2

Random forest

Trainin	g set	sco	ore: 0).97	549	998	326	559	68	13	
Test se	et scc	re:	0.83	802	219	969	925	16			
	pre	cisi	on	rec	all	f1-	sco	re	sυ	ıppor	t
	•										
	0	8.0	3	0.8	37	0	.85		112	174	
	1	8.0	35	0.8	31	0	.83		103	3621	
micro	o avg		0.84	1	0.8	34	().84	1	2157	795
macr	o av	g	0.8	4	0	.84		0.8	4	215	79

0.84 0.84 0.84 215795

weighted avg

Training set score: 0.44117259224341254

Test set score: 0.42928410011512386 precision recall f1-score support

```
0.00
acba
        0.00
               0.00
                               680
       0.53
               0.86
                      0.66
                             56089
acru
                      0.01
acsa
        0.30
               0.01
                              1438
                      0.00
        0.00
               0.00
                              154
acun
       0.20
              0.20
                      0.20
                              3090
beal
       0.17
              0.05
                      0.08
                              6651
bele
bepa
        0.18
               0.20
                      0.19
                              7270
        0.29
                      0.39
                              10244
beun
               0.61
cagl
       0.00
              0.00
                      0.00
              0.00
                     0.00
                              633
fagr
       0.00
                      0.04
       0.20
              0.02
                              1171
      0.00
              0.00
                     0.00
             0.02
                     0.04
                            3102
      0.00
             0.00
                     0.00
                       0.00
                              1218
        0.00
                       0.00
        0.00
                0.00
        0.00
               0.00
                       0.00
mavi
                      0.00
                              1587
        0.00
               0.00
                      0.00
                              214
       0.00
              0.00
       0.34
              0.01
                     0.03
                             4206
       0.40
                     0.17
                            13903
              0.11
       0.00
              0.00
                     0.00
                             1051
       0.31
              0.15
                      0.20
                              3816
                      0.00
       0.00
               0.00
                      0.01
prse
       0.08
                              268
                      0.15
                              8629
qual
       0.15
              0.14
qufa
       0.00
              0.00
                      0.00
                              215
                      0.00
                              544
guni
       0.00
              0.00
                      0.00
        0.00
               0.00
                              118
quph
                      0.08
                              7326
       0.31
               0.05
                       0.00
                              775
quun
        0.00
               0.00
        0.00
               0.00
                       0.00
                               338
quve
                       0.00
        0.00
               0.00
        0.00
```

micro avg 0.43 0.43 0.43 140718 macro avg 0.11 0.07 0.07 14071 weighted avg 0.35 0.43 0.35 1407

Predictive species at Harvard forest

```
X = df.ix[:, 'year':'ST'].drop(columns=['treatment', 'warming'])
Y = df['Species']
```

acru: Acer rubrum, red maple - 0.66

beal: Betula alleghaniensis, yellow birch - 0.20

bepa: Betula papyrifera, paper birch - 0.19

pist: Pinus strobus, white pine - 0.17

piun: Pinus spp, ambiguous pine - 0.20

qual: Quercus alba, white oak - 0.15

Unsupervised - PCA

Time series modeling

ARIMA Model Results

ARTMA(0 1 1) Log Likelihood

D.AT No. Observations:

Dep. Variable:

Model .

75%

max

dtype: float64

0.502

30.875

Method: Date: Time: Sample:	css-mle S.D. of innovation Sat, 22 Jun 2019 AIC 18:53:15 BIC 1 HQIC			5 1.793 5637230.285 5637266.757 5637240.187		Model: Method: Date: Time: Sample:		ARMA(0, 1)		Log Likelihood S.D. of innovations AIC BIC		2375560.27 5.72 4751126.54 4751161.13 4751136.17	
	coef	std err	Z	P> z	[0.025	0.975]		coef	std err	Z	P> z	[0.025	0.975
const ma.L1.D.A		0.002 0.001	-0.005 139.441 Roots	0.996 0.000	-0.003 0.104	0.003 0.107	const ma.L1.AT	17.3824 0.7580	0.012 0.000	1495.864 1550.674 Roots	0.000 0.000	17.360 0.757	17.40 0.75
:======	Real		ginary	Modulu		Frequency		Real		maginary	Modulus	,	Frequency
MA.1	-9.5067	+0	.0000j	9.506	57	0.5000	MA.1	-1.3192		+0.0000j	1.3192		0.5000
count 14 mean std min 25%	Description 407176.000 -0.000 1.793 -26.401 -0.613				3000000		mean std min 25% 50%	768.000 -0.000 5.727 -33.442 -3.506 0.393					
50%	-0.043						75%	3.774					

1407176

-2818612 143

ARMA Model Results

AT No. Observations:

750768

Den. Variable:

31,440

max

dtype: float64

Conclusion

- There is not enough difference between closed and open canopy
- Linear relationship between photosynthesis and air temperature
 - Insights into timing of blooming
 - Phenology
 - How plants may respond to warming conditions in the future
- Random forest Harvard forest tree species
 - Give insights into how these species may respond to increased warming
 - Changes in forest resstructing
 - Ranges in ecological ranges of tree species
- Not enough time to make in depth prediction from time series
 - Max temp is much higher in DF than HF
 - Sample size
 - Future work (will continue studies)