Computational Quantum Physics

Week 9

Due on Week 10

Exercise 1: Ising Model

Consider N spin-1/2 particles on a one-dimensional lattice, described by the Hamiltonian

$$\hat{H} = \lambda \sum_{i}^{N} \sigma_{z}^{i} + \sum_{i}^{N-1} \sigma_{x}^{i+1} \sigma_{x}^{i},$$

where σ 's are the Pauli matrices and λ is the interaction strength.

- (a) Write a program that computes the $2^N \times 2^N$ matrix representation of the Hamiltonian \hat{H} for different N.
- (b) Diagonalize H for different $N=1,\ldots,N_{max}$ and $\lambda\in[0:3].$ How big is N_{max} you can reach?
- (c) Plot the first k levels as a function of λ for different N. Comment the spectrum.