Algorithms with Adaptive Learning Rates

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics

- Importance of Optimization in machine learning
- 1. How learning differs from optimization
- 2. Challenges in neural network optimization
- 3. Basic Optimization Algorithms
- 4. Parameter initialization strategies
- 5. Algorithms with adaptive learning rates
 - 1. AdaGrad
 - 2. RMSProp
 - 3. Adam
 - 4. Choosing the right optimization algorithm
- 6. Approximate second-order methods
- 7. Optimization strategies and meta-algorithms

Learning Rate is Crucial

- Learning rate: most difficult hyperparam to set
- It significantly affects model performance
- Cost is highly sensitive to some directions in parameter space and insensitive to others
 - Momentum helps but introduces another hyperparameter
 - Is there another way?
 - If direction of sensitivity is axis aligned, separate learning rate for each parameter and adjust them throughput learning

Heuristic Approaches

- Delta-bar-delta Algorithm
 - Applicable to only full batch optimization
 - Method:
 - If partial derivative of the loss wrt to a parameter remains the same sign, the learning rate should increase
 - If that partial derivative changes sign, the learning rate should decrease
- Recent Incremental mini-batch methods
 - To adapt learning rates of model parameters
 - 1. AdaGrad
 - 2. RMSProp
 - 3. Adam

AdaGrad

- Individually adapts learning rates of all params
 - By scaling them inversely proportional to the sum of the historical squared values of the gradient
- The AdaGrad Algorithm:

```
Require: Global learning rate \epsilon
Require: Initial parameter \theta
Require: Small constant \delta, perhaps 10^{-7}, for numerical stability
Initialize gradient accumulation variable r=0
while stopping criterion not met do
Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\} with corresponding targets y^{(i)}.
Compute gradient: g \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)}; \theta), y^{(i)})
Accumulate squared gradient: r \leftarrow r + g \odot g
Compute update: \Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot g. (Division and square root applied element-wise)
Apply update: \theta \leftarrow \theta + \Delta \theta
end while
```

RMSProp

- Modifies AdaGrad for a nonconvex setting
 - Change gradient accumulation into exponentially weighted moving average
 - Converges rapidly when applied to convex function

The RMSProp Algorithm

end while

```
Require: Global learning rate \epsilon, decay rate \rho.

Require: Initial parameter \boldsymbol{\theta}

Require: Small constant \delta, usually 10^{-6}, used to stabilize division by small numbers.

Initialize accumulation variables \boldsymbol{r}=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)})

Accumulate squared gradient: \boldsymbol{r} \leftarrow \rho \boldsymbol{r} + (1-\rho)\boldsymbol{g} \odot \boldsymbol{g}

Compute parameter update: \Delta \boldsymbol{\theta} = -\frac{\epsilon}{\sqrt{\delta+\boldsymbol{r}}} \odot \boldsymbol{g}. (\frac{1}{\sqrt{\delta+\boldsymbol{r}}} applied element-wise) Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}
```

RMSProp combined with Nesterov

Algorithm: RMSProp with Nesterov momentum

Require: Global learning rate ϵ , decay rate ρ , momentum coefficient α .

Require: Initial parameter $\boldsymbol{\theta}$, initial velocity \boldsymbol{v} .

Initialize accumulation variable r=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute interim update: $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)})$

Accumulate gradient: $r \leftarrow \rho r + (1 - \rho) g \odot g$

Compute velocity update: $\mathbf{v} \leftarrow \alpha \mathbf{v} - \frac{\epsilon}{\sqrt{r}} \odot \mathbf{g}$. $(\frac{1}{\sqrt{r}} \text{ applied element-wise})$

Apply update: $\theta \leftarrow \theta + v$

end while

RMSProp is popular

- RMSProp is an effective practical optimization algorithm
- Go-to optimization method for deep learning practitioners

Adam: Adaptive Moments

- Yet another adaptive learning rate optimization algorithm
- Variant of RMSProp with momentum
- Generally robust to the choice of hyperparameters

The Adam Optimizer

The Adam Algorithm

Require: Step size ϵ (Suggested default: 0.001) **Require:** Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1). (Suggested defaults: 0.9 and 0.999 respectively) **Require:** Small constant δ used for numerical stabilization. (Suggested default: 10^{-8} **Require:** Initial parameters θ Initialize 1st and 2nd moment variables s = 0, r = 0Initialize time step t=0while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$. Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ $t \leftarrow t + 1$ Update biased first moment estimate: $\mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 - \rho_1) \mathbf{g}$ Update biased second moment estimate: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$ Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_i^t}$ Correct bias in second moment: $\hat{r} \leftarrow \frac{\bar{r}}{1-\rho_2^t}$ Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ (operations applied element-wise) Apply update: $\theta \leftarrow \theta + \Delta \theta$ end while

Choosing the Right Optimizer

- We have discussed several methods of optimizing deep models by adapting the learning rate for each model parameter
- Which algorithm to choose?
 - There is no consensus
- Most popular algorithms actively in use:
 - SGD, SGD with momentum, RMSProp, RMSProp with momentum, AdaDelta and Adam
 - Choice depends on user's familiarity with algorithm