ARITHMÉTIQUE DANS Z

1. NOTIONS ÉLÉMENTAIRES

1.1. Sous-groupe de Z

Тне́опѐме 1.1.0.1. —

Tout sous-groupe de \mathbf{Z} est de la forme $a\mathbf{Z}$ avec $a \in \mathbf{Z}$.

DÉMONSTRATION 1.1.0.1. —

Soit G un sous-groupe de Z. Si G est réduit à $\{0\}$ alors G = 0Z.

Sinon, soit $x=|x|\in G$ l'élément minimal de G non nul (qui existe puisque $G\subset \mathbf{Z}$). $x\mathbf{Z}\subset G$ puisque G est un groupe.

Soit $y \in G$. Par division euclidienne, il existe un unique couple $(a,b) \in \mathbf{Z} \times \{0,1,\ldots,x-1\}$ tel que y=ax+b. On a $y-ax \in G$ mais aussi $y-ax=b \in G$. Or b < x donc b=0 et donc $y \in x\mathbf{Z}$.

On notera $x\mathbf{Z} = \mathbf{x}$.

1.2. pgcd et ppcm

DÉFINITION 1.2.0.1. —

Soient $a, b \in \mathbf{Z}$. On dit de manière équivalente :

$$a \mid b \iff \mathbf{b} \subset \mathbf{a} \iff \exists c \in \mathbf{Z}, a = cb.$$

Définition 1.2.0.2. —

Soient $a, b \in \mathbf{Z}$.

On a que a+b est un sous-groupe de \mathbf{Z} de la forme d avec $d \in \mathbf{Z}$. On note $\operatorname{pgcd}(a,b) = d$.

 $\boldsymbol{a} \cap \boldsymbol{b}$ est un sous-groupe de \mathbf{Z} de la forme \boldsymbol{m} avec $m \in \mathbf{N}$. On note ppcm(a,b) = m.

Proposition 1.2.0.1. —

Soient $a, b \in \mathbf{Z}$. On a les propositions suivantes :

- 1. $\operatorname{pgcd}(a, b) = d \iff (\forall x \in \mathbf{Z}, x \mid a \text{ et } x \mid b \iff x \mid d);$
- 2. $\operatorname{ppcm}(a, b) = m \iff (\forall x \in \mathbf{Z}, a \mid x \text{ et } b \mid x \iff m \mid x).$

DÉMONSTRATION 1.2.0.2. —

Soient $a, b \in \mathbf{Z}$.

- 1. Soit $x \in \mathbf{Z}$. $x \mid a \text{ et } x \mid b \iff \mathbf{a} \subset \mathbf{x} \text{ et } \mathbf{b} \subset \mathbf{x} \iff \mathbf{a} + \mathbf{b} \subset \mathbf{x} \iff x \mid \operatorname{pgcd}(a,b)$.
- 2. Soit $x \in \mathbf{Z}$. $a \mid x \text{ et } b \mid x \iff \mathbf{x} \subset \mathbf{a} \text{ et } \mathbf{x} \subset \mathbf{b} \iff \mathbf{x} \subset \mathbf{a} \cap \mathbf{b} \iff \operatorname{ppcm}(a,b) \mid x$.

Théorème 1.2.0.2 (Identité de Bezout). —

Si $a, b \in \mathbf{Z}$ alors il existe $u, v \in \mathbf{Z}$ tels que $au + bv = \operatorname{pgcd}(a, b)$.

En particulier, si a et b sont premiers entre eux alors au + bv = 1.

2. NOTIONS MODULAIRES

2.1. Passage au quotient

DÉFINITION 2.1.0.3. —

Soit $a \in \mathbf{Z}$, \mathbf{Z}/a est le sous-ensemble de \mathbf{Z} obtenu par le quotient de la relation d'équivalence $\cdot \mid \cdot$ de \mathbf{Z} par a.

Si $x \in \mathbf{Z}$ alors \overline{x} est la classe d'équivalence de x dans \mathbf{Z}/a .

Si $\bar{x} = \bar{y} \in \mathbf{Z}/a$ alors pour x, y des représentants de leurs classes respectives :

$$x = y + ua$$

avec $u \in \mathbf{Z}$.

Proposition 2.1.0.2. —

Soit
$$a \in \mathbb{N}$$
, $\mathbb{Z}/a = \{\overline{0}, \overline{1}, \dots, \overline{a-1}\}$.

On étend naturellement les opérations sur \mathbb{Z} à \mathbb{Z}/a .

Théorème 2.1.0.3. —

 \mathbf{Z}/p est un groupe si, et seulement si, p est premier.

DÉMONSTRATION 2.1.0.3. —

Soit p premier et $\overline{x} \in \mathbf{Z}/p$. Soit x un représentant de \overline{x} dans \mathbf{Z} .

- 1. Soit x est nul et c'est l'élément neutre d'inverse lui-même ;
- 2. Soit x est non nul et on a

$$x = ap$$

avec $a \in \mathbf{Z}^*$.

$$-ap = (-1)ap$$

 ${\rm et\ donc}$