Summary of "Random features for large-scale kernel machines" by Ali Rahimi and Benjamin Recht

Summary by Ryan Farell

Contents

1	Full Citation	1
2	Paper Summary	1
3	Concept Review	2
	3.1 Kernel Trick	2
	3.2 Bochner's Theorem	2
	3.3 Random Fourier Features	2
	3.4 Hoeffding's Inequality	3

1 Full Citation

Ali Rahimi and Benjamin Recht. "Random features for large-scale kernel machines". In: Advances in neural information processing systems 20 (2007)

2 Paper Summary

- Dual Representation of Gaussian Processes: A stationary Gaussian process *GP* is considered, which can be characterized in two equivalent forms:
 - Spatial Domain Representation: Through its covariance function $K(\mathbf{x}, \mathbf{y})$, where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, describing correlations in the spatial or input domain.
 - Frequency Domain Representation: Via its power spectral density $S(\omega)$ in the frequency domain ω .

The paper focuses on utilizing the power spectral representation to approximate the kernel function.

- Kernel Trick and Positive Definite Functions: For a positive definite function $k(\mathbf{x}, \mathbf{y})$, an inner product and a lifting function ϕ are defined such that $k(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$.
- Randomized Feature Map: The paper proposes an explicit mapping of data to a lower-dimensional Euclidean space using a randomized feature map $\mathbf{z} \colon \mathbb{R}^d \to \mathbb{R}^D$, aiming to approximate the kernel evaluation:

$$k(\mathbf{x}, \mathbf{y}) \approx \mathbf{z}(\mathbf{x})^T \mathbf{z}(\mathbf{y}).$$

- **Dimensionality Reduction**: Unlike the lifting ϕ , the proposed map **z** is low-dimensional, facilitating the use of fast linear learning methods to approximate the outcomes of nonlinear kernel machines.
- Approximation of Shift-Invariant Kernels: Random Fourier Features (RFF) uniformly approximate shift-invariant kernels $k(\mathbf{x} \mathbf{y})$ within an error bound ϵ using only $D = O\left(\frac{d}{\epsilon^2}\log\frac{1}{\epsilon^2}\right)$ dimensions.

3 Concept Review

Kernel Trick 3.1

The kernel trick is a method used in machine learning to enable algorithms that depend only on the inner product between pairs of input points to operate in a higher-dimensional feature space without explicitly computing the coordinates in that space. It utilizes the property that any positive definite function $k(\mathbf{x}, \mathbf{y})$, where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, defines an inner product in some feature space. This feature space is associated with a lifting function ϕ , such that the inner product between the transformed data points is given by $\langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle =$ $k(\mathbf{x}, \mathbf{y})$. This approach allows algorithms to operate in this implicitly defined feature space without directly computing the high-dimensional representations of the data. The kernel matrix, which consists of the kernel function k applied to all pairs of data points, becomes a central component of such algorithms, representing the inner products in the feature space.

3.2 Bochner's Theorem

Theorem 3.1 (Bochner's Theorem). A continuous kernel $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y})$ on \mathbb{R}^d is positive definite if and only if $k(\tau)$ is the Fourier transform of a non-negative measure.

3.3 Random Fourier Features

Bochner's Theorem tells us that

$$k(\boldsymbol{\tau}) = \int_{\mathbb{R}^D} S(\boldsymbol{\omega}) e^{i\boldsymbol{\omega}^{\top} \boldsymbol{\tau}} d\boldsymbol{\omega}, \quad S(\boldsymbol{\omega}) = \frac{1}{2\pi} \int_{\mathbb{R}^D} k(\boldsymbol{\tau}) e^{-i\boldsymbol{\omega}^{\top} \boldsymbol{\tau}} d\boldsymbol{\tau}$$

where $k(\tau)$ is the shift-invariant kernel and $S(\omega)$ is its power spectral density. The relation between the power spectrum and a probability distribution is given by

$$S(\boldsymbol{\omega}) = k(\mathbf{0})p_S(\boldsymbol{\omega}) = \sigma_0^2 p_S(\boldsymbol{\omega}).$$

Defining $\zeta_{\omega}(\mathbf{x}) = e^{i\omega^{\top}\mathbf{x}}$, we have

$$k(\tau) = k(\mathbf{x} - \mathbf{y})$$

$$= \int_{\mathbb{R}^d} S(\omega) e^{i\omega^{\top}(\mathbf{x} - \mathbf{y})} d\omega$$

$$= \sigma_0^2 \int_{\mathbb{R}^d} p(\omega) e^{i\omega^{\top}(\mathbf{x} - \mathbf{y})} d\omega$$

$$= \sigma_0^2 E_{\omega} \left[\zeta_{\omega}(\mathbf{x}) \zeta_{\omega}(\mathbf{y})^* \right]$$

so $\sigma_0^2 \zeta_{\omega}(\mathbf{x}) \zeta_{\omega}(\mathbf{y})^*$ is an unbiased estimate of $k(\mathbf{x}, \mathbf{y})$ when ω is drawn from p_S . To obtain a real-valued random feature for k, note that both the probability distribution $p(\omega)$ and the kernel $k(\tau)$ are real, so the integrand $e^{i\omega^{\top}(\mathbf{x}-\mathbf{y})}$ may be replaced with $\cos(\omega^{\top}(\mathbf{x}-\mathbf{y}))$. Defining $\mathbf{z}_{\omega}(\mathbf{x}) =$ $[\cos(\boldsymbol{\omega}^{\top}\mathbf{x}), \sin(\boldsymbol{\omega}^{\top}\mathbf{x})]^{\top}$ gives a real-valued mapping that satisfies the condition $E[\mathbf{z}_{\boldsymbol{\omega}}(\mathbf{x})^{\top}\mathbf{z}_{\boldsymbol{\omega}}(\mathbf{y})] = k(\mathbf{x}, \mathbf{y}),$ since

$$\mathbf{z}_{\omega}(\mathbf{x})^{\top}\mathbf{z}_{\omega}(\mathbf{y}) = \cos(\omega x)\cos(\omega y) + \sin(\omega x)\sin(\omega y)$$
$$= \cos(\omega^{\top}(\mathbf{x} - \mathbf{y})).$$

We can lower the variance of $\mathbf{z}_{\omega}(\mathbf{x})^{\top}\mathbf{z}_{\omega}(\mathbf{y})$ by concatenating D randomly chosen \mathbf{z}_{ω} into a column vector \mathbf{z}

and normalizing each component by \sqrt{D} . The inner product of points is

$$\mathbf{z}(\mathbf{x})^{\top}\mathbf{z}(\mathbf{y}) = \frac{1}{D} \left[\cos(\omega_1^T \mathbf{x}), \dots \cos(\omega_D^T \mathbf{x}), \sin(\omega_1^T \mathbf{x}), \dots \sin(\omega_D^T \mathbf{x}) \right]$$
$$\left[\cos(\omega_1^T \mathbf{y}), \dots \cos(\omega_D^T \mathbf{y}), \sin(\omega_1^T \mathbf{y}), \dots \sin(\omega_D^T \mathbf{y}) \right]^T$$
$$= \frac{1}{D} \sum_{k=1}^{D} \cos(\omega_k^T (\mathbf{x} - \mathbf{y}))$$

Since $\mathbf{z}_{\boldsymbol{\omega}}(\mathbf{x})^{\top} z_{\boldsymbol{\omega}}(\mathbf{y})$ is bounded between -1 and 1, for a fixed pair of points \mathbf{x} and \mathbf{y} , Hoeffding's inequality guarantees exponentially fast convergence in D between $\mathbf{z}(\mathbf{x})^{\top} \mathbf{z}(\mathbf{y})$ and $k(\mathbf{x}, \mathbf{y})$:

$$\Pr\left[\left|\mathbf{z}(\mathbf{x})^{\top}\mathbf{z}(\mathbf{y}) - k(\mathbf{x}, \mathbf{y})\right| \ge \epsilon\right] \le 2\exp\left(-\frac{D\epsilon^2}{2}\right).$$

Algorithm 1 Random Fourier Feature (RFF) Algorithm

Require: A positive definite shift-invariant kernel $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y})$.

Ensure: A randomized feature map $\mathbf{z}(\mathbf{x}) : \mathbb{R}^d \to \mathbb{R}^{2D}$ so that $\mathbf{z}(\mathbf{x})^\top \mathbf{z}(\mathbf{y}) \approx k(\mathbf{x} - \mathbf{y})$.

- 1: Compute the Fourier transform S of the kernel k: $S(\boldsymbol{\omega}) = \frac{1}{2\pi} \int_{\mathbb{R}^D} k(\boldsymbol{\tau}) e^{-i\boldsymbol{\omega}^{\top} \boldsymbol{\tau}} d\boldsymbol{\tau}$.
- 2: Compute the propability p_S of the power spectrum $p_S = \frac{1}{\sigma_o^2} S(\boldsymbol{\omega})$.
- 3: Draw D iid samples $\boldsymbol{\omega}_1, \dots, \boldsymbol{\omega}_D \in \mathbb{R}^d$ from p_S .
- 4: Let $\mathbf{z}(\mathbf{x}) = \frac{1}{\sqrt{D}} \left[\cos(\boldsymbol{\omega}_1^{\top} \mathbf{x}), \dots \cos(\boldsymbol{\omega}_D^{\top} \mathbf{x}), \sin(\boldsymbol{\omega}_1^{\top} \mathbf{x}), \dots \sin(\boldsymbol{\omega}_D^{\top} \mathbf{x}) \right]^{\top}$.

3.4 Hoeffding's Inequality

Given independent random variables X_1, X_2, \ldots, X_n where each X_i takes values in $[a_i, b_i]$, let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ be their average and let $E[\bar{X}] = \mu$ be the expected value of the average. Then, for any t > 0, Hoeffding's inequality states that

$$P(|\bar{X} - \mu| \ge t) \le 2 \exp\left(-\frac{2n^2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right).$$