江西师范大学 2013 年全日制硕士研究生入学考试试题

(A 卷)

专业:	081200 计算机科	学与技术	科目: .	数据结构与	程序	设计
注: 考 无效。	生答题时,请写在考点下	发的答题纸上,写	在本试	题纸或其他答题	[纸上	的一律
		(本试题共计 7	页)	-		
一、单项选择题(每小题 2 分,共 20 分)						
	将数据结构形式定义为二 上()	元组(K , R), 其中	K 是	数据元素的有限	集合	,则 R
A	. 操作的有限集合	В.	映象的	有限集合		
C	. 类型的有限集合	D.	关系的	有限集合		
2. 以下算法的时间复杂度为()						
void fun(int n)						
{ in	ıt i=1;					
while (i<=n)						
	i=i*2;					
re	eturn ;					
}						100
A.	O(n) B.	$O(log_2n)$	C. O	$(nlog_2n)$	D.	$O(n^2)$
2. 在长度为 n 的顺序表中删除第 i 个元素(1≤i≤n)时,元素移动的次数为 ()						
A.	n-i+1 B.	i	C. n-	i	D.	i+1
3. 若要在单链表中的结点* p 之后插入一个结点* s ,则应执行的语句是()						
A.	s->next=p->next; p->next	t=s; B.	p->nex	t=s; s->next=p->	•next	;
C .	p->next=s->next; s->next	=p; D.	s->nex	t=p; p->next=s->	>next	;
4. 操作系统为实现函数嵌套调用的管理,通常需要设立一个存储区,记录函数调用						
转移的	的断点,该存储区的逻辑组	结构是()				
A.	栈 B. 队列	C.	树	D.	图	
5. 对	于一棵具有 n 个结点,度	[为4的树来说,()			
Α.	树的高度至多是 n-3	В.	树的高	度至多是 n-4		
С.	第 i 层至多有 4 (i-1) 个	节点 D.	至少在	某一层上正好有	14个	节点
6 下	列一叉树中, 不平衡的二	▽				

- . n 个顶点的强连通图中至少含有(
 - A. n-1 条有向边

B. n条有向边

- C. n (n-1) /2 条有向边
- D. n (n-1) 条有向边
- . 已知一个有向图如下所示,则从顶点 a 出发进行深度优先遍历,不可能得到的 DFS 序列为 ()

)

A. adbefc

B. adcefb

C. adcbfe

D. adefbc

- . 用某种排序方法对关键字序列(25,84,21,47,15,27,68,35,20)进行排序时,序列的变化情况如下:
 - 20, 15, 21, 25, 47, 27, 68, 35, 84
 - 15, 20, 21, 25, 35, 27, 47, 68, 84
 - 15, 20, 21, 25, 27, 35, 47, 68, 84

则所采用的排序方法是()

- A. 选择排序
- B. 希尔排序
- C. 归并排序
- D. 快速排序
- 0. 在最好和最坏情况下的时间复杂度均为 O(nlog₂n)且稳定的排序方法是()
 - A. 快速排序
- B. 堆排序
- C. 归并排序
- D. 基数排序

二、填空题(每小题2分,共20分)

- 1、数据的逻辑结构在计算机存储器内的表示,称为数据的____。
- 2、已知在结点个数大于1的单循环链表中,指针 p 指向表中某个结点,则下列程序 段执行结束时,指针 q 指向结点*p 的______结点。

q=p;

while(q->next!=p) q=q->next;

第2页,共7页

- 3. 假设 S 和 X 分别表示进栈和出栈操作,由输入序列"ABC"得到输出序列"BCA" 的操作序列为 SSXSXX,则由"a*b+c"得到"ab*c+"的操作序列为 。
- 4. 如图所示的有向无环图可以排出_____种不同的拓扑序列。

- 5. 假设一个 6 阶的下三角矩阵 B 按列优先顺序压缩存储在一维数组 A 中,其中 A[0] 存储矩阵的第一个元素 b_{11} ,则 A[14]存储的元素是_____。
- 6. 在含 100 个结点的完全二叉树中,叶子结点的个数为。
- 7. 在无向图中, 若从顶点 a 到顶点 b 存在_____,则称 a 与 b 之间是连通的。
- 8. 对 Prim 算法和 Kruskal 算法, _________算法适合求边稀疏的网的最小生成树。
- 10. 在有序表(12, 24, 36, 48, 60, 72, 84)中二分查找关键字 72 时所需进行的 关键字比较次数为___。

三、程序填空与程序分析题(每小题 6 分, 共 24 分)

1. 函数 getprime()的功能是将 2 到 100 之间的所有素数存入数组 a, 并返回所存入的素数个数, main()函数中调用该函数输出所有素数。请将程序补充完整。

```
#include <stdio.h>
 #include <math.h>
int getprime(int a[])
    int i=0,n,j,k;
     for (n=2;n<100;n++)
         k=(int)sqrt(n);
         for (j=2;j<=k;j++)
              if (n\%j == 0)
         if (j>k)
    }
    return i;
int main()
    int a[100],i,k;
          (3)
                       //函数调用
    for (i=0;i<k;i++)
```

```
printf("%5d",a[i]);
    }
2. 字符串采用带头结点的单链表存储, 其结构定义如下:
typedef char datatype;
typedef struct node{
    datatype data;
    struct node * next;
} listnode;
typedef listnode* linklist;
    函数 index(t,s) 的功能是求子串 s 在主串 t 中的第一次出现的起始位置,如果 s
不在 t 中,则返回 NULL,请将程序补充完整。
iinklist index(linklist t,linklist s)
linklist p,q,r,pre;
int succ=0;
pre=t;
p=t->next;
while (p && !succ)
{ r=p;
                /*r 指示主串 t 当前比较的位置*/
              /*q 指示子串 s 当前比较的位置*/
 q=s->next;
      (4)
while (succ && q && r)
 if(r->data==q->data)
       ___(5)
          q=q->next;
   else succ=0;
 pre=p;
 p=p->next;
if (succ)
          (6)
  else return NULL;
希尔排序(shell)过程可表示如下,请将其补充完整。
nclude <stdio.h>
oid shellsort(int a[], int length)
```

第4页,共7页

int i,j,d,x;
d=length/2;

```
while(____(7)
      for(i=d;i<length;i++)
               x=a[i];
               j=i-d;
              while(j \ge 0 & x \le a[j])
                { (8);
                     j=j-d;
                       (9)
                d=d/2;
            }
    }
    int main()
        int a[10],i;
        for (i=0;i<10;i++)
            scanf("%d",a+i);
        shellsort(a,10);
        for (i=0;i<10;i++)
            printf("%4d",*(a+i));
    }
4. 二叉树链式存储结构及栈结构定义如下:
   typedef char datatype;
                                     /*二叉树结点定义*/
   typedef struct node
    { datatype data;
     struct node *lchild,*rchild;
     }bintnode;
   typedef bintnode *bintree;
                                      /*栈结构定义*/
   typedef struct stack
         { bintree data[100];
                                      /*栈顶指示*/
            int top;
         } seqstack;
```

阅读下列函数 fun,并回答问题:

- (1) t 为指向根结点的指针。写出执行函数调用 fun(t)的输出结果。
- (2) 说明函数 fun 的功能。

四、解答题 (每小题 10 分, 共 40 分)

- 1. 已知一棵二叉树的前序与中序序列分别为 ABDCEGHFI 和 DBAGHECFI。
 - (1) 画出此二叉树;
 - (2) 写出该二叉树的后序遍历结果。
- 2. 序列 {12, 18, 33, 29, 35, 92, 88, 36} 是否构成大根堆(最大堆),如不够成,请画出对其进行堆排序时建立大根堆的过程示意图。
- 3. 假设通信电文使用的字符集为{a,b,c,d,e,f,g},字符的哈夫曼编码依次为: 0110, 10, 110, 111, 00, 0111 和 010。

- (1)请根据哈夫曼编码画出此哈夫曼树,并在叶子结点中标注相应字符;
- (2)若这些字符在电文中出现的频度分别为: 3, 35, 13, 15, 20, 5和9, 求该哈夫曼树的带权路径长度。
- 4. 已知某带权连通图如下图所示,用普里姆(prim)算法从顶点 A 开始求最小生成树。试按照最小生成树算法分步聚给出构造过程。

五、算法与程序设计题(第 1、2 题每小题 14 分,第 3 小题 18 分,共 46 分)

答题要求:

- ①描述算法的基本设计思想;
- ②给出每个算法所需的数据结构定义;
- ③根据设计思想和实现步骤,采用用 $\mathbb C$ 语言写出对应的算法程序,关键之处请给出简要注释。
- 1. 已知集合采用带头结点的单链表存储,请设计算法函数,求两个单链表表示的集合的交集,并将结果用一个新的单链表保存并返回。
- 2. 二叉树采用二叉链表存储结构,采用递归程序实现以下函数:
- (1) 求二叉树的高度函数 int high(bintree t);
- (2) 求二叉树的叶子结点个数函数 int leaf(bintree t);
- (3) 返回二叉树的后序遍历的第一个结点地址函数 bintree succlast(bintree t);
- 3. 给定一个有向图, 试编写程序实现:
 - (1) 创建该图的邻接表(出边表)表示;
 - (2) 输出该图中出度最大的结点值。

第7页,共7页