#### RÉPUBLIQUE DU CAMEROUN

REPUBLIC OF CAMEROON
Peace – Work - Fatherland

### Université de Dschang

University of Dschang

Scholae Thesaurus Dschangensis Ibi Cordum

BP 96, Dschang (Cameroun) – Tél./Fax (237) 233 45 13 81 Website: <a href="http://www.univ-dschang.org">http://www.univ-dschang.org</a>.

E-mail: udsrectorat@univ-dschang.org



### Institut Universitaire de Technologie Fotso Victor de Bandjoun

FOTSO VICTOR UNIVERSITY INSTITUTE OF TECHNOLOGY

### Département de Génie Electrique Departement of Electrical Engineering

BP 134, Bandjoun – Tél./Fax (237) 699 31 61 30 / 670 64 23 92 Website: <a href="http://www.univ-dschang.org/iutfv/">http://www.univ-dschang.org/iutfv/</a>

E-mail: iutfv-bandjoun@univ-dschang.org

N° / /UDs/IUT-FV/D/DGE

# TRAVAUX DIRIGES N°3: CIRCUITS LINEAIRES DUT GE1: A

### **DISTANCE EN CONFINEMENT**

## Exercice 1:



## Exercice 2:

On souhaite alimenter une charge résistive (200  $\Omega$  <  $R_{\rm C}$  < 500  $\Omega$ ) sous 5 volts. On ne possède qu'une alimentation E de 10 volts.

 Afin de disposer d'une tension de 5 volts, on procède de la façon suivante :

Calculer  $V_{\rm charge}$ pour  $R_{\rm c}=500~\Omega$ , puis  $R_{\rm c}=200~\Omega$ . Conclure.



2. On modifie le montage de la façon suivante :



On suppose l'A.L.I. parfait  $(I^+ = I^- = 0)$ 

- a) Donner la valeur à  $R_2$  de façon à obtenir  $V^+ = 5$  volts.
- b) L'A.L.I. fonctionne-t-il en linéaire ou en comparateur ?
- c) Déduire alors la relation entre V+ et V-.
- d) Déterminer la valeur de V-. Déduire V<sub>charge</sub>.
- e) La valeur de  $V_{\rm charge}$  dépend-elle de la valeur de la charge  $R_{\rm c}$  ?

## Exercice 3:

