GUIÃO DO TRABALHO PRÁTICO

VERSÃO 1.7

INTRODUÇÃO

Neste trabalho pretende-se controlar e supervisionar uma célula da linha de produção flexível que existe no laboratório onde vão decorrer as aulas práticas.

Neste documento são apresentados os <u>requisitos funcionais</u> relativos às aplicações que irão ser desenvolvidas no trabalho.

DESCRIÇÃO GERAL

O trabalho está dividido em duas tarefas distintas, mas interdependentes, que serão <u>executadas em</u> <u>paralelo ao longo do semestre</u>:

- Tarefa 1: desenvolver uma aplicação de controlo da célula utilizando um autómato programável.
- Tarefa 2: desenvolver uma aplicação de supervisão e monitorizarão da célula utilizando uma aplicação SCADA.

ORGANIZAÇÃO DO TRABALHO

O trabalho será efetuado em grupo, cada um com 2 alunos (ambos da mesma turma).

Para cada tarefa definiram-se os seguintes objetivos:

- Aplicação de controlo:
 - o Modelação da aplicação utilizando Grafcet.
 - o Implementação da solução proposta num autómato programável utilizando as linguagens definidas pelo IEC 61131-3.
- Aplicação de monitorização e supervisão:
 - Modelação da estrutura dos sinópticos.
 - o Implementação da solução proposta no SCADA.

DATAS DE ENTREGA

- Grafcet (documento): entrega até 21 de Outubro
- Aplicação de controlo:
 - o Intermédia:
 - a) Controlo completo das peças com, no máximo, 2 operações, uma em cada máquina. Sem avarias. Sem os estados: A_PARAR, SUSPENSÃO e EMERGÊNCIA.
 - b) Prazo: entrega até 23 de Novembro.
 - o Final: entrega até 21 de Dezembro.

- Aplicação de monitorização e supervisão:
 - o Intermédia:
 - a) *Mockup* dos sinóticos (totalmente funcional). Com receita. Sem alarmes, históricos e relatório.
 - b) Prazo: entrega até 23 de Novembro.
 - o Final: entrega até 21 de Dezembro.

A avaliação intermédia será realizada utilizando o emulador do autómato e simulador do kit da fábrica, em offline e sem a presença dos elementos do grupo.

<u>A avaliação final será realizada utilizando o autómato e o kit da fábrica</u>, com a presença dos elementos do grupo e nas semanas subsequentes à entrega em data acordada com o docente das aulas PL.

Em ambos os casos, a avaliação resultará da confrontação do comportamento observado com os requisitos funcionais descritos neste documento.

REQUISITOS DA APLICAÇÃO DE CONTROLO

Nesta parte pretende-se desenvolver uma aplicação de controlo para uma célula da linha de produção. Esta aplicação será executada num autómato, que receberá dados da célula através de sensores e de um leitor de código de barras e que enviará comandos para a célula através de atuadores. Os sensores e os atuadores estarão ligados às cartas de E/S digitais do autómato.

O processo de fabrico consiste no processamento de peças de vários tipos, por um conjunto de máquinas de acordo com uma sequência pré-definida.

Neste trabalho estão disponíveis 2 células: **C1** e **C2** de acordo com a figura seguinte). <u>Cada grupo vai</u> implementar apenas o controlo **de uma única célula**.

Nota: as setas indicam os sentidos positivos associados a cada eixo (XX e YY)

A figura seguinte indica a posição física dos equipamentos (tapetes, máquinas, etc.) e as respetivas mnemónicas (siglas) que serão utilizadas na sua identificação.

CÉLULA C1

A sequência de operações a realizar na célula **C1** são as seguintes:

- 1. As peças chegam à célula a partir do tapete **ST7**.
- 2. A operação de chegada é realizada manualmente por um operador que coloca a peça no tapete **ST7** quando este estiver livre (i.e. sem peça) e parado.
- 3. Um leitor de código de barras identifica a peça que foi colocada no tapete **ST7**. A leitura do código é realizada após a peça ser colocada no tapete.
- 4. O código de barras indica que tipo de operações são realizadas na peça nas diferentes máquinas da célula (ver secção *Identificação das Peças*)
- As peças só podem ser processadas se a máquina estiver livre. Isto é, se esta não estiver a processar, a receber ou a expedir peças.
- 6. A operação de processamento a realizar em cada máquina consiste nos seguintes passos:

- b) Descer a torre das ferramentas até à sua posição inferior (sentido ZZ–).
- c) Ativar a ferramenta durante **TA** (**TB**) segundos na máquina **Ma** ou **Mb**, respetivamente. O valor de TA (TB) é definido na interface do SCADA.
- d) Subir a torre das ferramentas até à sua posição superior (sentido ZZ+).
- e) Recuar o corpo da máquina até à sua posição inicial (sentido XX+).
- 7. Embora as máquinas possuam 3 ferramentas assume-se que estas já têm a ferramenta que necessitam na posição correta. Isto é, não é necessário selecionar qual a ferramenta que se vai utilizar.
- 8. A peças depois de processada deve ser encaminhada para os tapetes **ST1** ou **PT1** (ver secção *Identificação das Peças*). Depois da peça chegar a este tapete, um operador recolhe-a manualmente (i.e. retira-a do tapete).
- g. Durante o processamento das peças podem ocorrer avarias nas máquinas que podem dar origem a peças com defeito (PD). Neste caso as peças são encaminhadas para fora da célula através do tapete ST2 (ver subsecção Comportamento durante as avarias).
- 10. Em cada tapete só pode existir uma peça de cada vez.
- 11. Se o tapete imediatamente seguinte (na sequência de encaminhamento da peça) estiver livre, então a peça deve avançar para esse tapete. Caso contrário, deve aguardar no tapete presente até que o próximo esteja livre

ALARMES

Durante o funcionamento da célula podem ocorrer os seguintes alarmes:

1. Ativação do botão de **Paragem de Emergência** (ver secção *Interface Local*). Neste caso todas as operações que estiverem a ser executadas na célula devem parar num intervalo de tempo que não pode ser superior a 10ms.

- 2. Avaria da máquina Ma. Esta avaria ocorre quando o botão Azul (ver secção Interface Local) for ativado. Quando isto ocorrer a luz Azul (ver Interface Local) deve piscar com uma frequência de 0,5Hz. Neste caso considera-se que a máquina não pode executar operações sobre a peça. A avaria é removida (i.e. reparada) quando o botão Azul for novamente pressionado. Quando isto ocorrer a luz Azul deve ser desligada.
- 3. Ausência de comunicação com o sistema SCADA durante 30s. Neste caso o sistema deve transitar para o estado **A_PARAR** (ver seção *Estados*).

COMPORTAMENTO DURANTE AS AVARIAS

- 1. Quando ocorre uma avaria na máquina **Ma** esta deixa de estar disponível para efetuar operações de processamento. Isto é, se a máquina estiver avariada não pode processar peças.
- 2. Após a avaria da máquina **Ma** esta deve ser colocada na posição de repouso. Isto é, a torre deve estar na parte superior da máquina (sentido **ZZ+**) e o corpo da máquina deve estar recuado (sentido **XX+**).
- 3. Em caso de avaria de **Ma** devem ser adotados os seguintes procedimentos:
 - <u>Chegou uma peça a Mb e Ma está avariada</u>. A máquina deve começar por realizar todas as operações originalmente previstas para Mb. <u>Quando termina estas operações</u> deve verificar as seguintes situações:
 - a) <u>Ma continua avariada e o número de operações a executar em Ma é 1</u>. Neste caso deve ser executada a operação de Ma em Mb (com tempo associado a Ma). A peça não deve ser processada posteriormente em Ma.
 - b) Ma continua avariada e o número de operações a executar em Ma é >1. Neste caso a peça que deve ser considerada com defeito (**PD**).
 - c) <u>Ma já não está avariada</u>. Neste caso não deve realizar nenhuma operação sobre a peça e esta deve continuar na direção de Ma.
 - <u>Chegou uma peça a Ma</u>. Se **Ma** está avariada e há operações a realizar em Ma então a peça deve ser considerada com defeito (**PD**).
- 4. Se a avaria da máquina Ma ocorrer durante o processamento da peça (i.e. durante a ativação da ferramenta) a operação nessa máquina deve cessar de imediato e a peça é considerada com defeito (PD).
- 5. As peças com defeito (PD) devem ser encaminhadas para fora da célula através de ST2. Para colocar a peça fora da célula o tapete rotativo ST2 deve estar alinhado com o tapete ST3 (sentido YY+). Posteriormente, o tapete ST2 deve ser acionado por forma que a peça caia para fora da célula (i.e. para o chão). Assuma que após ativar o tapete a peça demora no máximo 3 segundos a cair para fora do mesmo.

CÉLULA C2

A sequência de operações a realizar na célula C2 são as seguintes:

- 1. As peças chegam à célula a partir do tapete PT3.
- 2. A operação de chegada é realizada manualmente por um operador que coloca a peça no tapete PT3, junto ao sensor situado na posição à esquerda da figura (sentido XX+, junto a PT2), quando este estiver livre (i.e. sem peça) e parado.
- 3. Um leitor de código de barras identifica a peça que foi colocada no tapete **PT3**. A leitura do código é realizada após a peça ser colocada no tapete.
- 4. O código de barras indica que tipo de operações são realizadas na peça nas diferentes máquinas da célula (ver secção Identificação das Peças)
- 5. As peças só podem ser processadas se a máquina estiver livre. Isto é, se esta não estiver a processar, a receber ou a expedir peças.
- 6. A operação de processamento a realizar em cada máquina consiste nos seguintes passos:
 - a) Descer a torre das ferramentas até à sua posição inferior (**ZZ**–).
 - b) Ativar a ferramenta durante **TA** (**TB**) segundos na máquina **Ma** ou **Mb**, respetivamente. O valor de TA (TB) é definido na interface do SCADA.
 - c) Subir a torre das ferramentas até à sua posição superior.
- 7. A peça depois de processada deve ser encaminhada para os tapetes PT8 ou PT10 (ver secção Identificação das Peças). Depois da peça chegar a este tapete um operador recolhe-a manualmente (i.e. retira-a do tapete). No caso do tapete TP10 a peça deve parar no sensor situado na posição à esquerda da figura (sentido XX+, junto a PT9).
- 8. Durante o processamento das peças podem ocorrer avarias nas máquinas que podem dar origem a peças com defeito (**PD**). Neste caso as peças são encaminhadas para fora da célula através do tapete **PT9** (ver subsecção *Comportamento durante as avarias*).
- 9. Em cada tapete só pode existir uma peça de cada vez.
- 10. Se o tapete imediatamente seguinte (na sequência de encaminhamento da peça) estiver livre, então a peça deve avançar para esse tapete. Caso contrário, deve aguardar no tapete presente até que o próximo esteja livre.

ALARMES

Durante o funcionamento da célula podem ocorrer os sequintes alarmes:

 Ativação do botão de Paragem de Emergência (ver secção Interface Local). Neste caso todas as operações que estiverem a ser executadas na célula devem parar num intervalo de tempo que não pode ser superior a 10ms.

- 2. Avaria da máquina Ma. Esta avaria ocorre quando o botão Azul (ver secção Interface Local) for ativado. Quando isto ocorrer a luz Azul (ver Interface Local) deve piscar com uma frequência de 0,5Hz. Neste caso considera-se que a máquina não pode executar operações sobre a peça. A avaria é removida (i.e. reparada) quando o botão Azul for pressionado novamente. Quando isto ocorrer a luz Azul deve ser desligada.
- 3. Ausência de comunicação com o sistema SCADA durante 30s. Neste caso o sistema deve transitar para o estado **A_PARAR** (ver seção *Estados*).

COMPORTAMENTO DURANTE AS AVARIAS

- 1. Quando ocorre uma avaria na máquina **Ma** esta deixa de estar disponível para efetuar operações de processamento. Isto é, se a máquina estiver avariada não pode processar peças.
- 2. Após a avaria da máquina **Ma** esta deve ser colocada na posição de repouso. Isto é, a torre deve estar na parte superior da máquina (**ZZ+**).
- 3. Em caso de avaria de **Ma** devem ser adotados os seguintes procedimentos:
 - A peça chega a PT4 (vinda de PT2). Ma está avariada e o número de operações a executar em Ma é 1. A peça deve ser encaminhada para Mb. Esta máquina deve começar por realizar todas as operações originalmente previstas para Mb. Posteriormente, deve executar a operação de Ma em Mb (com tempo associado a Ma). A peça não deve ser processada posteriormente em Ma.
 - A peça chega a PT4 (vinda de PT2). Ma está avariada e o número de operações a executar em Ma é >1. Neste caso a peça deve ser considerada com defeito (PD).
- 4. Se a avaria da máquina Ma ocorrer durante o processamento da peça (i.e. durante a ativação da ferramenta) a operação nessa máquina deve cessar de imediato e a peça é considerada com defeito (PD).
- 5. As peças com defeito (**PD**) devem ser encaminhadas para fora da célula através de **PT9**. Para colocar a peça fora da célula o tapete rotativo **PT7** deve estar alinhado com o tapete **PT9**. Posteriormente, o tapete **PT9** deve ser acionado por forma que a peça caia para fora da célula (i.e. para o chão). Assuma que após ativar o tapete a peça demora no máximo 3 segundos a cair para fora do mesmo.

IDENTIFICAÇÃO DAS PEÇAS

Cada peça possui um código de barras numérico que indica quais as operações de processamento que têm de ser realizadas sobre peça, bem com a forma como a peça deve ser expedida da célula. O código é constituído por 4 dígitos N1N2N3N4 com a seguinte organização:

- O primeiro dígito (**N1**) toma sempre o valor **O** (zero).
- O segundo dígito (N2) indica quantas operações de processamento têm que ser realizadas na máquina Ma. Pode tomar valor na gama o...2. Se tomar o valor o (zero) significa não é realizada nenhuma operação. Quando toma o valor 1 é realizada uma operação. Quando toma o valor 2 são realizadas duas operações de forma consecutiva. Neste último caso a torre da máquina deve subir após o fim da 1ª operação e descer para iniciar a 2ª operação.
- O terceiro dígito (N3) indica quantas operações de processamento têm que ser realizadas na máquina Mb. A interpretação do respetivo valor é o mesmo da máquina Ma.

- O quarto dígito (N4) indica qual o tapete de saída da peça, tomando os seguintes valores:
 - Célula C1: 1 saída por ST1; 2 saída por PT1
 - Célula C2: 1 saída por PT8; 2 saída por PT10

INTERFACE LOCAL

Cada célula dispõe de uma interface local através da qual o operador pode supervisionar e monitorizar o sistema. Esta interface é composta por dois dispositivos:

• Botoneira (figura em baixo), composta por 6 botões de pressão e 5 indicadores luminosos. Os botões são do tipo Pulse. Isto é, são ativos (True) quando pressionados e ficam inativos (False) quando libertados. A única exceção é o botão de Emergência que é do tipo Latch. Isto é, o botão mantém o seu valor mesmo depois de libertado. Terá que ser ativado de novo para voltar ao seu estado inicial (para desencravar puxe o botão para cima). Todos os botões são ativos ao nível alto (normalmente aberto), com exceção do botão de emergência que é ativo ao nível baixo (normalmente fechado). Os botões e indicadores luminosos estão ligados a cartas de E/S digitais do autómato.

SCADA, que executará uma aplicação que irá permitir ao operador supervisionar e monitorizar o estado do processo (ver secção Requisitos da Aplicação de Supervisão e Monitorização). O SCADA está ligado ao autómato por uma rede de comunicações. Algumas das funcionalidades (ex. botões e indicadores luminosos) existirão em duplicado em ambos os dispositivos. Este aspeto tem que ser tomado em conta durante o desenvolvimento da aplicação de controlo.

ESTADOS DO PROCESSO

O processo, quando inicialmente ativado (ou seja, quando lhe é aplicada a alimentação), arranca no estado <u>PARADO</u> no qual todas as máquinas e tapetes devem estar parados. Neste estado a luz **VERMELHA** deve estar ligada permanentemente se não existirem peças na célula ou a piscar com uma frequência de 0.5Hz, caso existam. O sistema deve permanecer neste estado enquanto existirem peças na célula (assume-se que estas peças serão retiradas manualmente).

Se não existirem peças na célula e o botão **VERDE** for pressionado o sistema transita para o estado **OPERACIONAL**. Neste estado, o processo efetua os procedimentos relativos ao processamento das peças e a luz **VERDE** mantêm-se permanentemente ligada (e as restantes desligadas).

Durante o estado <u>OPERACIONAL</u> o operador poderá solicitar que o sistema seja suspenso premindo o botão **AMARELO**. Neste caso, o sistema deverá passar para o estado <u>SUSPENSO</u>. Neste estado todas as operações na célula (ie. processamento e movimentos) devem cessar de imediato. Neste estado a luz **AMARELA** deverá piscar com uma frequência de o.5Hz (a luz **VERDE** deve manter-se ligada). Quando o operador pressionar de novo o botão **AMARELO** as operações devem retomar a partir do ponto onde foram suspensas, incluindo eventuais temporizações.

Durante o estado <u>OPERACIONAL</u> o operador poderá solicitar que o sistema seja desligado premindo o botão **VERMELHO**. Neste caso, o sistema deverá passar para o estado <u>A PARAR</u>, durante o qual deverá a continuar a processar normalmente as peças que já tenham dado entrada na célula, mas deverá impedir a aceitação de novas peças. Após entrar neste estado se forem colocadas novas peças na entrada da célula, estas não são processadas. Neste estado a luz **VERMELHA** deverá piscar com uma frequência de o.5Hz (a luz **VERDE** deve manter-se ligada). Logo que todas as peças tenham sido processadas e saído da célula o sistema transita para o estado <u>PARADO</u>.

Assume-se que no estado A PARAR o pedido de suspensão é ignorado.

Existe um botão de **EMERGÊNCIA** que deverá ser permanentemente monitorizado (qualquer que seja o estado em que se encontra o processo) de forma a permitir ao operador parar de imediato todas as ações a decorrer na célula no caso de uma situação de emergência. Quando este botão é pressionado, o sistema transita para o estado de **EMERGÊNCIA**. Neste estado, todas as atividades da célula devem estar paradas e todas as luzes devem ser desligadas. Este estado termina quando o botão de **EMERGÊNCIA** é desativado. Quando isto ocorre o sistema deverá transitar para o estado **PARADO**.

INICIALIZAÇÃO DO PROCESSO

Quando o sistema é ligado <u>não é conhecido à partida</u> o estado dos vários equipamentos (ex. tapetes rotativos, tapetes deslizantes, máquinas, etc.), no que diz respeito à sua orientação nos eixos **XX**, **YY** e **ZZ**.

Assim é necessário implementar mecanismos de inicialização dos equipamentos que os coloquem em estados (i.e. localizações) bem definidas. Cada grupo tem a liberdade de escolher a localizações que julgue mais apropriadas.

A inicialização deve ser realizada no estado <u>PARADO</u> e só deve ser executada <u>após estar garantido que não</u> <u>existem peças na célula</u>. Assume-se que a existirem peças na célula, estas estão em posições que podem ser detetadas pelos sensores que existem nos tapetes.

REQUISITOS DA APLICAÇÃO DE SUPERVISÃO E MONITORIZAÇÃO

Pretende-se nesta parte do trabalho desenvolver uma aplicação de supervisão e monitorização da célula utilizando um SCADA.

A aplicação de supervisão será executada num PC (onde reside o SCADA) e irá trocar dados com aplicação de controlo (i.e. autómato ou emulador) por forma a conhecer o estado da célula. A troca de dados realizase através do protocolo de comunicações MODBUS/TCP.

A aplicação deverá suportar as seguintes funcionalidades:

- Sinópticos adequados à supervisão/monitorização do processo que disponibilizem as seguintes informações a um operador do sistema:
 - Estado da célula: PARADO, OPERACIONAL, SUSPENSO, A_PARAR, EMERGÊNCIA
 - Estado dos tapetes: em movimento/rotação/parados.
 - Estado das máquinas: paradas/em processamento.
 - Peças:
 - o Tipo de peça na máquina. Quando a peça estiver localizada no tapete adjacente à máquina, deve ser indicado quantas operações irão ser realizadas nessa máquina.
 - o Localização (tapete / máquina)
 - Movimento das peças entre tapetes.
 - Número de peças processadas ou com defeito (PD).
 - Data e hora atual.
 - Não devem estar presentes menus (na janela do sinótico) não relacionados com a monitorização / supervisão do trabalho.
- 2. Permitir ao operador comandar o processo utilizando botões equivalentes aos da botoneira: Verde e Vermelho.
- 3. Permitir ao operador definir os tempos de processamento das peças nas máquinas (TA e TB). Esta funcionalidade tem que ser implementada através do conceito de Receita. Devem ser criadas 3 receitas:
 - o Receita 1: TA=4s, TB=1s
 - o Receita 2: TA=1s, TB=1s
 - Receita 3: TA=1s, TB=4s
 - As receitas devem ser geridas através da execução de código e não do Recipe Manager que está disponível no Runtime.
 - o Caso o operador não selecione uma receita, considera-se que está ativa a Receita 1.
- 4. Assinalar situações de alarme.
- 5. Manter um registo histórico de todas as ocorrências de alarmes. Deve ser criado:
 - Uma página/log de alarmes (todos os estados).
 - Indicar nas páginas de sinópticos quais os alarmes que estão ativos. Todas as situações de alarme devem ser confirmadas pelo operador.

- 6. Manter um registo histórico:
 - Códigos de barras das peças que entraram na célula.
 - o Devem ser armazenados os seguintes elementos: data / hora /código.
 - Eventos relacionados com as máquinas.
 - o Os eventos são o estado da máquina: parada/a processar/avariada
 - o Devem ser armazenados os seguintes elementos: data / hora /máquina /evento.
- 7. Permitir ao operador gerar um relatório de produção com os seguintes elementos:
 - o Para cada máquina: quantas peças foram processadas.
 - o Quantas avarias ocorreram na máquina Ma.
- 8. Os elementos relacionados com históricos deverão ser armazenados em ficheiros de texto.

FIM