CS201

MATHEMATICS FOR COMPUTER SCIENCE I

LECTURE 7

Counting Problems

- How many subsets does a finite set have?
- How many mappings exist from finite set A to finite set B?
 - ► One-to-one mappings?
 - Onto mappings?
 - ► Bijections?
- How many bijections h exist from finite set A to A such that $h(a) \neq a$ for all $a \in A$?

Counting Problems

- Given 15 Red, 20 Blue, and 12 Green balls, how many sets can be formed by picking 3 Red, 10 Blue, and 5 Green balls:
 - ▶ When balls of a color are identical?
 - ▶ When balls of a color are all distinct?
- Given 10 Red and 20 Blue beads, how many distinct necklaces can be made from them?

Counting Problems

- Assume we are given unlimited numbers of Red, Blue, and Green balls. Balls of a color are identical.
- How many different sets can be formed containing n balls?
- In how many ways positive integer n can partitioned as a sum of smaller numbers?
 - Six ways of partitioning 5 are:

$$5 = 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 2 = 1 + 2 + 2 = 1 + 1 + 3 = 2 + 3 = 1 + 4$$

• Consider the following algorithm for sorting *n* numbers:

```
merge-sort(Array A, size n) {
   if (|A| <= 1)
      return;
   Let m = |A|/2;
   merge-sort(A, m);
   merge-sort(A+m, n-m);
   merge(A, A+m);
}</pre>
```

- merge takes two sorted arrays of numbers and merges then in a single sorted array
- ▶ It takes *cn* steps when *c* is a constant and *n* is the sum of the sizes of input arrays.

Independent Events

- Suppose there are n variables: $x_1, x_2, ..., x_n$.
- Variable x_i can take m_i possible values.
- A configuration is (v_1, v_2, \dots, v_n) where v_i is the value taken by x_i .
- We wish to count the total number of configurations.
- Further suppose that the event of x_i taking value v_i is independent of x_j taking value v_j for every $i \neq j$ and all values v_i and v_j .
- Viewing each x_i as a random variable, we can state above property as:

$$Pr[x_i = v_i \& x_j = v_j] = Pr[x_i = v_i] \cdot Pr[x_j = v_j]$$

for all $i \neq j$, v_i and v_j .

• In this settings, the total number of configurations equals the product of numbers of values x_i 's can take, that is $\prod_{i=1}^n m_i$.

Manindra Agrawal CS201: Lecture 7 8/16

INDEPENDENT EVENTS: EXAMPLES

- How many subsets does a finite set have?
 - ▶ Let A be a finite set with |A| = n.
 - ▶ Define *n* variables $x_1, x_2, ..., x_n$ with each x_i taking value 0 or 1.
 - \blacktriangleright Variable x_i represents *i*th element of A.
 - A configuration of these variables represents a subset of A: $x_i = 0$ means ith element is not in the subset, otherwise it is.
 - ▶ The total number of configurations equals the number of subsets of *A*.
 - ▶ Since the events are independent, this number is 2^n .

Manindra Agrawal CS201: Lecture 7 9/16

INDEPENDENT EVENTS: EXAMPLES

- How many mappings exist from finite set A to finite set B?
 - ▶ Let |A| = n and |B| = m.
 - ▶ Define *n* variables $x_1, x_2, ..., x_n$ with each x_i taking values from set B.
 - ▶ Variable x_i represents mapping of ith element of A.
 - A configuration of these variables represents a mapping of A to B: x_i denotes the element of B that the ith element of A is mapped to.
 - ► The total number of configurations equals the number of mappings of A to B.
 - Since the events are independent, this number is m^n .

Number of one-to-one mappings

- How many one-to-one mappings exist from finite set A to finite set B?
 - ▶ Let |A| = n and |B| = m.
 - ▶ Define *n* variables $x_1, x_2, ..., x_n$ with each x_i taking values from set B.
 - ▶ Variable x_i represents mapping of *i*th element of A.
 - ▶ A configuration of these variables represents a mapping of A to B: x_i denotes the element of B that the ith element of A is mapped to.
 - ► The total number of configurations representing one-to-one mappings equals the number of mappings of *A* to *B*.
 - ▶ The events are now not independent: if $x_i = c \in B$, then no other x_j can be equal to c.

PERMUTATIONS

- How many total orderings exist on a set of m elements?
 - ▶ First element of ordering can be any of the *m* elements of the set.
 - ▶ Second element can be all elements except the one that is already at first place, so m-1 possibilities.
 - ▶ Third element has m-2 possibilities, and so on.
 - ► The total number of orderings is, therefore, m!.

COMBINATIONS

- How many ways exist to select n elements from a set A of m elements?
 - If n > m, the number is obviously 0.
 - ▶ Otherwise, order elements of set *A* and pick first *n* elements.
 - ▶ This gives m! ways, however, there are many repetitions.
 - ▶ Ordering within first n and last m n elements is irrelevant.
 - ► Hence, dividing m! by n! and (m-n)! gives the number of ways:

$$\binom{m}{n} = \frac{m!}{n!(m-n)!}.$$

• $\binom{m}{n}$ is also written as mC_n .

Example: Number of one-to-one mappings

- How many one-to-one mappings exist from finite set A to finite set B?
 - ▶ Let |A| = n and |B| = m.
 - ▶ If n > m, there cannot be any one-to-one mapping from A to B.
 - ▶ If n < m, a one-to-one mapping maps n elements of A to some nelements of B.
 - ▶ The number of ways of selecting n elements of B equals $\binom{m}{n}$.
 - ► After selection, order these elements (in n! ways) and map ith element of A to ith element of this ordering.
 - \triangleright Thus, total number of one-to-one mappings from A to B equals

$$\binom{m}{n} \cdot n! = \frac{m!}{(m-n)!}.$$

▶ This number also written as ${}^{m}P_{n}$.

Example: Number of bijections

- How many bijections exist between finite sets A and B?
 - ▶ If $|A| \neq |B|$, there is no bijection.
 - ▶ Otherwise, let |A| = |B| = n, and order elements of B.
 - ▶ Map *i*th element of *A* to *i*th element of *B* in the ordering.
 - ▶ This shows the number of bijections to be n!.