

Analysis of Edge Computing Offloading Strategies for Autonomous Mobile Robots

Final Presentation, Master's Thesis

Xiyan Su

June 15, 2023

Supervisor: Robin Dietrich M.Sc.

Examiner: Prof. Dr.-Ing. habil. Alois C. Knoll

AMRs in Warehouse

- Modules running on the AMRs
 - Perception
 - SLAM
 - Path planning
 - Navigation
 - Control
- Problems with AMR's onboard system
 - Limited space
 - High cost for computation devices

Figure: AMRs in warehouse [Int23]

AMRs in Warehouse

- Modules running on the AMRs
 - Perception
 - SLAM
 - Path planning
 - Navigation
 - Control
- Problems with AMR's onboard system
 - o Limited space
 - High cost for computation devices

Figure: AMRs in warehouse [Int23]

Task Offloading

Figure: Robotic computation offloading

Problems

- Why offloading tasks?
 - Reduce onboard resource usage
 - o Improve task performance
- Current problems with task offloading
 - Safety issues -> local computation
 - Real-time execution -> edge computing
- When and how to offload?
 - Dynamic network conditions
 - Onboard resources

Problems

- Why offloading tasks?
 - Reduce onboard resource usage
 - o Improve task performance
- Current problems with task offloading
 - Safety issues -> local computation
 - Real-time execution -> edge computing
- When and how to offload?
 - Dynamic network conditions
 - Onboard resources

Problems

- Why offloading tasks?
 - Reduce onboard resource usage
 - o Improve task performance
- Current problems with task offloading
 - Safety issues -> local computation
 - Real-time execution -> edge computing
- When and how to offload?
 - Dynamic network conditions
 - Onboard resources

Related Work

- Mathematical optimization approaches
 - o Formulates an optimization problem with a computational model
 - Minimizes execution latency and/or energy consumption
- Game-theory approaches
 - Formulate the problem as a game
- Deep reinforcement learning approaches
 - Uses deep RL agent to make offloading decisions -> high inference time

Related Work

- Mathematical optimization approaches
 - o Formulates an optimization problem with a computational model
 - Minimizes execution latency and/or energy consumption
- Game-theory approaches
 - o Formulate the problem as a game
- Deep reinforcement learning approaches
 - Uses deep RL agent to make offloading decisions -> high inference time

Related Work

- Mathematical optimization approaches
 - o Formulates an optimization problem with a computational model
 - Minimizes execution latency and/or energy consumption
- Game-theory approaches
 - o Formulate the problem as a game
- Deep reinforcement learning approaches
 - Uses deep RL agent to make offloading decisions -> high inference time

Robot Perception Offloading

Figure: Robot perception offloading

Offloading Framework

Baseline Strategies

Simulated Scenario

- Environment
 - Industrial warehouse
 - Human and other obstacles
- Robot
 - Equipped with RGB camera
 - Navigation through the scene

Figure: Simulated scenario

Simulated Scenario

- Environment
 - Industrial warehouse
 - Human and other obstacles
- Robot
 - Equipped with RGB camera
 - Navigation through the scene

Figure: Simulated scenario

Metrics

- Task performance
 - Average precision
 - Overall processed frames
 - Perception round-trip time
- Resource usage
 - CPU usage
 - CPU power consumption
 - Bandwidth usage

Metrics

- Task performance
 - Average precision
 - Overall processed frames
 - Perception round-trip time
- Resource usage
 - o CPU usage
 - CPU power consumption
 - o Bandwidth usage

Synchronous Evaluation

Asynchronous Evaluation

- Network bandwidth is the main constraint of edge task performance -> hard to measure during runtime
- Round-trip time as an indicator for network conditions and onboard computation resources
- Balance between network resources and computation resources

- Network bandwidth is the main constraint of edge task performance -> hard to measure during runtime
- Round-trip time as an indicator for network conditions and onboard computation resources
- Balance between network resources and computation resources

- Network bandwidth is the main constraint of edge task performance -> hard to measure during runtime
- Round-trip time as an indicator for network conditions and onboard computation resources
- Balance between network resources and computation resources

Dynamic Offloading Strategy

Results of Dynamic Offloading Strategy

Results of Dynamic Offloading Strategy

- Improved average precision by 13.61% compared to "edge only" strategy and 23.24% compared to "robot only"
- Comparable performance with the offloading strategy with an offloading ratio of 0.5 (best)
- Able to process 80.31% of all frames
- Less CPU usage and CPU power consumption compared to "robot only" strategy

Summary

- Implement an offloading framework and a simulated scenario
- Set up experiments in simulation and on a robotic system
- Design evaluation framework and define metrics
- Evaluate baseline strategies with different network conditions in simulation and on a robotic system
- Develop and implement the dynamic offloading strategy
- Evaluate dynamic offloading strategy against baselines

Future Work

- Offloading decisions used in downstream application
 - o Object detection output used for obstacle avoidance
 - Object detection output used for navigation
 - Resource competition within the onboard system
 - New metrics: safety, efficiency, battery life
- Multi-robot computation offloading
 - Resource competition among multiple robots
 - Centralized offloading decision-making
 - Game-theory approach for decision-making
 - New metrics: joint efficiency

Future Work

- Offloading decisions used in downstream application
 - o Object detection output used for obstacle avoidance
 - Object detection output used for navigation
 - Resource competition within the onboard system
 - New metrics: safety, efficiency, battery life
- Multi-robot computation offloading
 - Resource competition among multiple robots
 - o Centralized offloading decision-making
 - Game-theory approach for decision-making
 - New metrics: joint efficiency

References I

[Int23] Intel. Robotics Technology Solutions. June 2023. URL: https://www.intel.com/content/www/us/en/robotics/overview.html.

Chair of Robotics, Artificial Intelligence and Real-time Systems TUM School of Computation, Information and Technology Technical University of Munich

Q&A

Analysis of Edge Computing Offloading Strategies for Autonomous Mobile Robots

Final Presentation, Master's Thesis

Xiyan Su

June 15, 2023

Supervisor: Robin Dietrich M.Sc.

Examiner: Prof. Dr.-Ing. habil. Alois C. Knoll