Zadanie 7 Lista 4

Piotr Popis, 245162

December 4, 2019

1 Treść

Czy język tych słów nad alfabetem $\{1,2,3,4\}$, które mają tyle samo symboli 1 co 2 i tyle samo symboli 3 co 4 jest bezkontekstowy?

2 Rozwiązanie

Załóżmy, że język L jest bezkontekstowy. Wtedy skorzystamy z lematu o pompowaniu: Istnieje stała n taka, że jeśli $z \in L \land |z| \ge n$ oraz

$$z = uwvxy$$
, gdzie $|vw| \ge 1 \land |vwx| \le n$

to wtedy

$$z = uw^i vx^i y \in L$$
, dla każdego $i \in N \cup \{0\}$

Niech n będzie dowolną liczbą naturalną.

Rozważmy słowo $z=1^n3^n2^n4^n$ oczywiście $z\in L$, bo $|z|_1=|z|_2=|z|_3=|z|_4=n$ oraz $|z|=4n\geq n$ teraz przyjmijmy, że |v|=k-1 i rozważmy możliwe postaci vwx

2.1 $vwx = 1^+$

Dla i = 0 mamy sprzeczność, bo $|z_1|_1 = n - k - |x| \neq n = |z_1|_2$, analogicznie dla pozostałych przypadków postaci m^+ , gdzie m $\epsilon \{2,3,4\}$

$2.2 vwx = 1^+3^+$

Teraz jeśli $v=1^+$ to dla i = 0 $z_2 \not\in L$, bo $|z_1|_1=n-k-|x|_1\neq n=|z_1|_2$, a jeśli $v=1^+3^+$ to dla i = 0 $z_3 \not\in L$, bo $|z_1|_1=n-k-|x|_1\neq n=|z_3|_2$ Analogicznie dla pozostałych przypadków $vwx=3^+2^+$ oraz $vwx=2^+4^+$

3 Wniosek

Doprowadziliśmy do sprzeczności zatem L nie jest językiem bezkontekstowym.