DECISION TREE ALGORITHM

Contents:

1.	Introduction(2-3)
	Graphical Representation of Decision Trees
	Terminologies related to Decision Trees
	Why Decision Trees
	How Decision Tree Algorithm works
	Decision Tree Algorithm pseudo code
2.	Implementation of Decision Tree(4)
	Problem Statement
	Data Set Information
	Structure of the Data Set
	Tree Construction performed by Algorithm
3.	Decision Tree Construction (Logic)(5-7)
4.	Summary8

Introduction:

Decision tree is a type of supervised learning algorithm (having a pre-defined target variable) that is mostly used in classification problems. It works for both categorical and continuous input and output variables. In this technique, we split the population or sample into two or more homogeneous sets (or sub-populations) based on **most significant splitter / differentiator** in input variables

Graphical Representation of Decision Trees:

Note: A is parent node of B and C.

Terminologies related to Decision Trees

- 1) Root Node It represents the entire population or sample
- 2) **Splitting** It is process of dividing node into more sub nodes
- 3) **Decision Node** When a sub-node splits into further sub-nodes, then it is called decision node.
- 4) Leaf/Terminal Node Nodes do not split and is the final node
- 5) **Pruning** when we remove sub-nodes of a decision node, the process is called pruning

DECISION TREE ALGORITHM

Why Decision Trees?

Decision Tree Classifier is a supervised learning algorithm used to solve classification and regression problems.

- -Decision trees are powerful and popular tools for classification and prediction.
- -Decision trees represent *rules*, which can be understood by humans and used in knowledge system such as database.

How Decision Tree Algorithm works: (recursive partitioning algorithm)

- 1) Decision tree algorithm tries so solve a problem, by using tree representation.
- 2) Each Internal node of the tree represent an attribute(in our model:Humidity,Outlook,Temperature,etc..) and each leaf node corresponds to class label(in our model: yes/no)

Decision Tree Algorithm Pseudocode:

- 1) Place the best Attribute of the data set at the root of the tree.
- Eg: The important feature of the dataset would be usually sit at the root (in our example Outlook)
- 2) Divide the training examples based on selected attributes using statistical measures
- 3) Repeat step1 and step2 until the leaf node is found (i.e in our model: Yes/No)

Implementation of Decision Tree:

1) Problem Statement:

To predict whether we can play Golf (or) not.

2) Data Set Information:

3) Structure of the Data Set

Windy = TRUE: No (2)

```
> str(Data)
 'data.frame': 14 obs. of 5 variables:
  $ Outlook : Factor w/ 3 levels "Overcast", "Rainy",..: 2 2 1 3 3 3 1 2 2 3 ... $ Temperature: Factor w/ 3 levels "Cool", "Hot", "Mild": 2 2 2 3 1 1 1 3 1 3 ... $ Humidity : Factor w/ 2 levels "High", "Normal": 1 1 1 1 2 2 2 1 2 2 ... $ Windy : Factor w/ 2 levels "FALSE", "TRUE": 1 2 1 1 1 2 2 1 1 1 ...
                    : Factor w/ 2 levels "No", "Yes": 1 1 2 2 2 1 2 1 2 2 ...
  $ Play
4) Tree Construction performed by Algorithm
                                                          Fri Mar 16 12:12:02 2018
C5.0 [Release 2.07 GPL Edition]
Class specified by attribute `outcome'
Read 14 cases (5 attributes) from undefined.data
Decision tree:
Outlook = Overcast: Yes (4)
Outlook = Rainy:
:...Humidity = High: No (3)
     Humidity = Normal: Yes (2)
Outlook = Sunny:
:...Windy = FALSE: Yes (3)
```

Decision Tree Construction:

Step 1: Calculate entropy of the target variable

Step2: Calculate entropy of all attributed w.r.t target variable

Step3: Calcaulate
Information Gain from
Step1 and Step2 to
ecide the tree structure

Step 1: Calculate entropy of the target variable:

Mathematical Formula

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Step2: Calculate entropy of all attributes w.r.t target variable:

$$E(T,X) = \sum_{c \in X} P(c)E(c)$$

		Play Golf		
		Yes	No	
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14

$$\mathbf{E}(\text{PlayGolf, Outlook}) = \mathbf{P}(\text{Sunny})^*\mathbf{E}(3,2) + \mathbf{P}(\text{Overcast})^*\mathbf{E}(4,0) + \mathbf{P}(\text{Rainy})^*\mathbf{E}(2,3)$$

$$= (5/14)^*0.971 + (4/14)^*0.0 + (5/14)^*0.971$$

$$= 0.693$$

Step3: Calculate Information Gain from Step1 and Step2:

Eg of Outlook w.r.t target variable is shown here:

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

$$G(PlayGolf, Outlook) = E(PlayGolf) - E(PlayGolf, Outlook)$$

= 0.940 - 0.693 = 0.247

To calculate Information Gain(Required to split the tree) via Mathematical Formulae and Package

>>The below information gives the logic for calculating attribute importance of outlook w.r.t (target variable)

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

> best_features <- information.gain(Play ~ .,Data,unit = "log2")</pre>

> best_features

	attr_importance
Outlook	0.24674982
Temperature	0.02922257
Humidity	0.15183550
Windy	0.04812703

Similarly,

>>Calculating Information Gain for all attributes w.r.t target variable(Play Golf)

>>Mathematical way of calculating information gain:

		Play Golf	
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3
Gain = 0.247			

		Play Golf		
		Yes	No	
Temp.	Hot	2	2	
	Mild	4	2	
	Cool	3	1	
Gain = 0.029				

		Play Golf	
		Yes	No
Hamidte.	High	3	4
Humidity	Normal	6	1
Gain = 0.152			

		Play Golf	
		Yes	No
M5-d-	False	6	2
Windy	True	3	3
Gain = 0.048			

Importing Libraries directly to calculate information gain:

> best_features attr_importance Outlook 0.24674982 Temperature 0.02922257 Humidity 0.15183550 Windy 0.04812703

Final Tree Construction:

Decision Tree to Decision Rule:

R₁: IF (Outlook=Sunny) AND
(Windy=FALSE) THEN Play=Yes

R₂: IF (Outlook=Sunny) AND
(Windy=TRUE) THEN Play=No

R₃: IF (Outlook=Overcast) THEN
Play=Yes

R₄: IF (Outlook=Rainy) AND
(Humidity=High) THEN Play=No

R₅: IF (Outlook=Rain) AND
(Humidity=Normal) THEN
Play=Yes

DECISION TREE ALGORITHM

Summary:

Once you have decided that Decision tree is the way, then please find the insights of the Algorithm

Flow Chart:

Step 1:- How to find the Root Node

Use Information gain to understand the each attribute information w.r.t target variable and place the attribute with the highest information gain as root node

Step 2:- How to Find the Information Gain

Please apply the entropy(Mathematical Foemulae) to calculate Information Gain.

Gain(T,X) = Entropy(T) - Entropy(T,X)

here,T represent target varaible and X represent features

Step3: Identification of Terminal Node

Based on the information gain value obtained from the above steps, identify the second most highest information gain and place it as the terminal node

Step 4: Predicted Outcome

Recursively iterate the step4 till we obtain the leaf node which would be our predicted target variable!

Step 5:Tree Pruning and optimization for good results

It helps to reduce the size of decision trees by removing sections of the tree to avoid overfitting.