《系统工程导论》第四次作业 黑箱建模2

20170111010 杜澍浛 自71

题目1

试说明:病态线性回归问题中,显著性检验是否需要?如果需要,是在自变量降维去线性之前,还是之后,还是前后都检验?给出理由。

【答】病态线性回归问题中需要显著性检验。

显著性检验描述的是回归模型的有效性,而数据间"是否存在线性关系"这一问题无论病态与否都存在。因此在病态线性回归问题中仍然需要显著性检验。

显著性检验应该在自变量降维去线性之后进行。以F检验为例,要求各变量之间线性无关,对于病态问题,这需要通过降维来实现。此外降维前XX^T接近奇异矩阵,可能会导致得到"变量是间不存在线性关系"这样的检验结果,但实际上如果把病态问题中的冗余变量去除,剩余变量的线性度可能比较好,能够通过显著性检验。因此应该在自变量降维去线性之后进行显著性检验。

题目2

在前一次作业的基础上,使用python或者matlab编程实现多元线性回归要求:

- 1. 实现函数linear regression(Y, X, alpha)
- 2. 输入为列向量因变量Y, 自变量矩阵X; 显著性水平alpha;
- 3. 能够自适应地进行多元、病态回归(特征值阈值自定)
- 4. 打印出显著性检验结果、回归直线方程和置信区间
- 5. 完成作业报告,显著性水平取 0.05

观测号	x1	x2	х3	x4	у
1	149.3	4.2	80.3	108.1	15.9
2	161.2	4.1	72.9	114.8	16.4
3	171.5	3.1	45.6	123.2	19.0
4	175.5	3.1	50.2	126.9	19.1
5	180.8	1.1	68.8	132.0	18.88
6	190.7	2.2	88.5	137.7	20.4
7	202.1	2.1	87.0	146.0	22.7
8	212.4	5.6	96.9	154.1	26.5
9	226.1	5.0	84.9	162.3	28.1
10	231.9	5.1	60.7	164.3	27.6
11	239.0	0.7	70.4	167.6	26.3

最终结果如下(阈值设为0.1):

此问题是病态线性回归问题, 需要从4维降至3维 F=125. 43203, Fa=4. 53368, F>Fa, 即存在线性关系 回归方程: y = -9. 15145 + 0. 07297x1 + 0. 59856x2 + 0. 00187x3 + 0. 10548x4 置信区间为(y-1. 24832, y+1. 24832)

其中 XX^T 分解得到的 Λ 为:

	1	2	3	4
1	0.0236	0	0	0
2	0	8.4507	0	0
3	0	0	12.3501	0
4	0	0	0	23.1756

可见最小的特征值 0.0236 显著小于另外几个特征值并且接近 0,需要降维,和最终结果吻合。

下面介绍解答步骤:

(1) 规范化自变量、因变量

依据下面两个公式对自变量和因变量进行规范化:

$$\overline{x}_i(t) = \frac{x_i(t) - e(x_i)}{\sqrt{\delta^2(x_i)}}$$

$$\overline{y}_{l}(t) = \frac{y(t) - e(y)}{\sqrt{\delta^{2}(y)}}$$

其中 $e(x_i)$ 和e(y)分别为 x_i 和y的均值, $\delta^2(x_i)$ 和 $\delta^2(y)$ 分别为 x_i 和y的方差。

(2) 判断问题是否病态

将规范化后的数据整理为:

$$Y = [y(1) ... y(N)]_{1 \times N}, X = [x(1) ... x(N)]_{n \times N}$$

分解 $XX^T = Q\Lambda Q^T$, 其中 $\Lambda = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$, λ_i 为 XX^T 的特征值。

将特征值按从大到小的顺序排列,设定阈值 ε ,根据 $\frac{\sum_{i=m+1}^{n}\lambda_{i}}{\sum_{i=1}^{n}\lambda_{i}}$ 是否小于 ε 来确定m,我设定的 ε 为 0. 1.

(3) 降维处理

若上一步说明了需要降维处理,则将 XX^T 从大到小的特征值所对应的特征向量也排好:

$$Q = [q(1), q(2), ..., q(n)]$$

选出较大的m个特征值对应的特征向量组成:

$$Q_m = [q(1), q(2), ..., q(m)]$$

然后得到:

$$(ZZ^{T})^{-1} = \begin{bmatrix} 1/\lambda_{1} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & 1/\lambda_{m} \end{bmatrix}$$

(4) 病态回归方程求解

利用下面的公式求解相关参数:

$$\hat{d} = (ZZ^T)^{-1}ZY^T = (ZZ^T)^{-1}Q_m^TXY^T$$

$$\hat{c} = Q_m\hat{d}$$

$$v \approx \hat{c}^T x$$

(5) 还原

将求得的参数代入原方程即可得到最终参数:

$$\frac{y(t) - e(y)}{\sqrt{\delta^2(y)}} = \sum \hat{c} \frac{x_i(t) - e(x_i)}{\sqrt{\delta^2(x_i)}}$$

$$\hat{b} = \delta(y) \sum_{i=1}^{n} \frac{c_i}{\delta x_i}, a = e(y) - \delta(y) \sum_{i=1}^{n} \frac{e(x_i)}{\delta(x_i)}$$

(6) 显著性检验

利用下面的公式计算F:

$$F = \frac{(N - n - 1)ESS}{nRSS}$$

参照上一次作业,仍然利用finv函数计算Fa,然后通过比较两者的大小判

断是否接受原假设。

(7) 预测精度

利用下面的公式计算 S_δ :

$$S_{\delta} = \sqrt{\frac{RSS}{N - n - 1}}$$

参照上一次作业,仍然利用norminv函数计算 $Z_{\alpha/2}$.