

PATENT APPLICATION

REDUCING CPU OVERHEAD IN THE FORWARDING PROCESS

Inventors: Hon Wah Chin
3281 Greer Road
Palo Alto, California 94303
Citizenship: United States

Assignee: Cisco Technology, Inc.
170 West Tasman Drive
San Jose, California 95134-1706

A corporation of California

Prepared by:

BEYER & WEAVER, LLP
P.O. Box 61059
Palo Alto, CA 94306
Telephone (650) 493-2100

**REDUCING CPU OVERHEAD IN THE
FORWARDING PROCESS**

5

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to packet forwarding. More particularly, the present invention relates to forwarding packets through manipulating multiple queues of packets.

2. Description of the Related Art

Routers are commonly used to forward packets within a network. Routers typically include a CPU, a memory, and a plurality of inbound and outbound ports. Typically, data is received at an inbound port as a packet. When a packet is received at an inbound port, it is ultimately filtered or forwarded via an outbound port.

FIG. 1 is a block diagram illustrating a conventional router 102. Rather than sending each packet as it is received at an inbound port 104-1, 104-2, packets are typically stored in a single inbound queue 106-1, 106-2 via a hardware inbound interface, or "controller," associated with the corresponding inbound port 104-1, 104-2. When the CPU wakes up, it obtains a packet from the inbound queue 104-1, 104-2 classifies, and transfers the packet to a hardware outbound interface, or "controller." The hardware outbound interface then stores the packet in an outbound queue 108-1, 108-2 associated with an outbound port 110-1, 110-2. Transferring may be accomplished through

moving the packet or simply modifying a pointer to the packet. The outbound interface then forwards the packet. Typically, this is performed for each packet.

In order to send each packet stored in the inbound queue, the packets must be transferred to the appropriate outbound queue. Often, each peripheral interface is designed for use with a particular protocol (e.g., Ethernet) and therefore a particular representation, or data structure. Thus, the inbound interface and the outbound interface often have incompatible data structures. By way of example, queue descriptions for the inbound interface and the outbound interface often have different formats. Thus, the CPU must translate the packets stored in the inbound queue to an outbound representation compatible with the outbound interface. The packet is then transferred to an outbound queue associated with an outbound port. Accordingly, it would be desirable if the inbound interface and the outbound interface could be designed to provide compatible data structures, thereby facilitating the transfer of data between the inbound and the outbound controller.

Inbound controllers typically store packets as they are received in a single inbound queue. FIG. 2 is a block diagram illustrating a router having a conventional inbound and outbound controller. As shown, data 202 is received by an inbound controller 204. The inbound controller 204 then stores this data 202 (e.g., packet) in memory 206 in an inbound queue 208. The inbound queue 208 includes a plurality of queue entries 210 corresponding to a plurality of packets. By way of example, each one of the plurality of packets may be stored in a packet buffer 212. In order to forward each packet stored in the inbound queue 208, the CPU must transfer each entry 210 in the inbound queue 208 to an outbound queue 214 associated with an outbound controller 216. The outbound queue 214 similarly includes a plurality of queue entries 218 corresponding to a plurality of packets. Thus, an entry 210 in the inbound queue 208 may be transferred to the outbound queue 214 through modifying a pointer to a packet buffer 220 associated with an entry being transferred.

Since each packet is individually transferred from the inbound controller to the outbound controller, this produces a substantial burden on the CPU and a low packet per second forwarding rate. By way of example, each queue entry in both the inbound and the outbound queues may include a packet descriptor and a pointer to a packet buffer that holds data for the packet. Thus, transferring a single packet may require that a pointer to the transferred packet be added to the outbound queue as well as removed from the inbound queue. In addition, any packet descriptors must similarly be transferred. Since the transfer of each packet requires that several steps be performed, the burden on the CPU is substantial. Thus, it would be desirable if an inbound interface for a router could be designed which would reduce this burden on the CPU while maximizing the packet per second forwarding rate. Accordingly, it would be beneficial if entire queues could be transferred between the inbound controller and the outbound controller rather than individual packets, thereby increasing the throughput of a router.

Classification of packets similarly increases the burden on the CPU. While inbound controllers and outbound controllers are typically implemented in hardware, classification of packets is typically performed in software. Thus, numerous CPU cycles are commonly dedicated to such classification. Accordingly, it would be beneficial if an inbound interface could be implemented in hardware such that each inbound packet were sorted into an inbound queue corresponding sorting criteria such as the source address and the destination address of the packet.

Once each packet is sent by the outbound controller, the CPU often deallocates the corresponding packet buffer. Thus, this deallocation is typically performed for each packet individually. However, it would be beneficial if the memory could be deallocated and reused in a more efficient manner. Accordingly, it would be desirable if an outbound interface for a router could be designed which would reduce the number of CPU cycles dedicated to the deallocation of these buffers.

In addition to dedicating numerous CPU cycles to transferring packets between an inbound controller and an outbound controller, classifying packets, and deallocating packet buffers associated with the packets, these packet buffers typically consume a considerable amount of memory. A packet buffer is typically preallocated for each entry in an inbound queue. Since all of these packet buffers may not be utilized consistently, a portion of these dedicated buffers often remain unused. Accordingly, it would be desirable to reduce the amount of memory required and therefore the production costs associated with each router.

SUMMARY OF THE INVENTION

The present invention provides methods and apparatus for transferring a queue of packets from an inbound port to an outbound port within a router. This is accomplished through providing an inbound controller and an outbound controller which are controlled by a CPU. In this manner, a plurality of packets may be simultaneously transferred between the inbound controller and the outbound controller, thereby reducing CPU overhead in the forwarding process.

According to one aspect of the invention, a router includes an inbound controller. The router includes a plurality of inbound ports and a plurality of outbound ports, a memory, and a CPU. The inbound controller is adapted for receiving an inbound packet at one of the plurality of inbound ports. A plurality of inbound queues are provided for one of the plurality of inbound ports. An inbound packet is then received at the one of the plurality of inbound ports. A classifier classifies the inbound packet in a selected one of the plurality of inbound queues according to packet sorting criteria. The inbound packet is then stored in the selected one of the plurality of inbound queues. The inbound controller is capable of determining when one of the plurality of inbound queues is ready to be moved to an outbound queue which is capable of storing a multiplicity of inbound queues.

According to another aspect of the invention, an outbound controller is provided. The outbound controller is adapted for forwarding packets at one of the plurality of outbound ports of a router. At least one outbound queue is provided for one of the plurality of outbound ports which is capable of storing a plurality of inbound queues. The outbound controller is capable of receiving a notification to handle an inbound queue storing a plurality of packets. The inbound queue is then transferred to an outbound queue. By way of example, the outbound controller may include an outbound classifier that classifies the inbound queue in one of a plurality of outbound queues.

According to yet another aspect of the invention, the present invention may be implemented in an encryption system. The encryption system includes an inbound controller adapted for receiving an inbound packet. A first classifier is coupled to the inbound controller and adapted for classifying and storing the inbound packet in an inbound queue. An outbound controller is adapted for receiving the inbound queue. In addition, an encryption box is coupled to the outbound controller. The encryption box is adapted for encrypting the inbound queue to provide an encrypted inbound queue to the outbound controller for transmission. In addition, the outbound controller may include a second classifier that classifies the encrypted inbound queue in an outbound queue. The outbound controller may then transmit data stored in the outbound queue.

A CPU controls the inbound controller and the outbound controller. Thus, through combining software and hardware modules, the present invention provides efficient and accurate packet forwarding. Hardware may be utilized to provide speed where global knowledge is not required. By way of example, a hardware classifier may provide an increased forwarding rate. At the same time, software provides global knowledge and intelligence in forwarding decisions to increase the efficiency of the forwarding process.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a conventional router.

5 FIG. 2 is a block diagram illustrating a router having a conventional inbound and outbound controller.

FIG. 3 is a block diagram illustrating a router according to one embodiment of the invention.

10 FIG. 4 is a block diagram illustrating an exemplary data structure that may be used for each inbound queue according to one embodiment of the invention.

FIG. 5 is a block diagram illustrating a system including an inbound controller and an outbound controller according to one embodiment of the invention.

15 FIG. 6 is a flow diagram illustrating a method for implementing an inbound controller according to one embodiment of the present invention.

FIG. 7 is a flow diagram illustrating the method for classifying inbound packets of FIG. 6 according to one embodiment of the present invention.

20 FIG. 8 is a diagram illustrating an exemplary address table that may be used to classify each packet according to one embodiment of the invention.

FIG. 9 is a flow diagram illustrating the method of storing an inbound packet in an inbound queue of FIG. 6 according to one embodiment of the invention.

25 FIG. 10 is a flow diagram illustrating the method of determining whether one of the plurality of inbound queues is ready to be moved to an outbound queue, shown in FIG. 6, according to one embodiment of the invention.

FIG. 11 is a flow diagram illustrating one method for operation of the CPU in response to the inbound controller according to one embodiment of the invention.

5 FIG. 12 is a flow diagram illustrating a method for implementing an outbound controller according to one embodiment of the invention

FIG. 13 is a flow diagram illustrating the method for transferring the inbound queue to an outbound queue, shown in FIG. 12, according to one embodiment of the invention.

FIG. 14 is a flow diagram illustrating the method for transmitting packets of FIG. 12 according to one embodiment of the invention.

FIG. 15 is a flow diagram illustrating one method for operation of the CPU in response to the outbound controller according to one embodiment of the invention.

FIG. 16 is a block diagram illustrating a conventional encryption system.

FIG. 17 is a block diagram illustrating an encryption system according to one embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

5 In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be obvious, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order not to unnecessarily obscure the present invention.

An invention is described herein that reduces the burden on the CPU and therefore increases the packet per second forwarding rate within a router. This is accomplished through providing an inbound controller and an outbound controller which store packets in compatible formats such that a set of packets (e.g., queue of packets) may be transferred between the inbound controller and the outbound controller. In accordance with one embodiment, the present invention provides multiple inbound queues associated with each inbound port. Each of these inbound queues corresponds to a set of packet sorting criteria (e.g., destination address and/or priority). The inbound interface then sorts inbound packets received at an inbound port into one of these inbound queues according to packet sorting data associated with the packet sorting criteria. By way of example, the destination address of the packet as well as the priority of the packet may be obtained and utilized to select the appropriate inbound queue. An outbound queue is provided for each outbound port. The CPU may then transfer each inbound queue to the outbound queue corresponding to the inbound queue classification (e.g., destination address of the packet) such the inbound queues are sorted according to the priority of the inbound queue.

20 Referring now to FIG. 3, a block diagram of a router according to one embodiment of the invention is illustrated. As shown, a plurality of inbound queues 302, 304 are provided for each inbound port 306 and an outbound

queue 308 is provided for each outbound port 310. The inbound 302, 304 and 5
outbound 308 queues are stored in memory 312 such that the inbound queues
302, 304 are accessible to an inbound controller 314 and the outbound queues
308 are accessible to an outbound controller 316. The inbound queues 302,
304 are created such that they permit classification of inbound packets
corresponding to packet sorting criteria. By way of example, the packet sorting
criteria may include the source address of the inbound packet, the destination
address of the inbound packet, the priority of the packet, and/or other criteria.
Each inbound queue includes a plurality of queue entries 318, each of which
10 correspond to a single packet. By way of example, each queue entry may
include a packet descriptor and a pointer to a packet buffer that holds data for
the packet. The packet descriptors may be pre-allocated while the packet
buffers may be obtained from a free pool of available memory. In order to
forward each packet, the CPU transfers each inbound queue 302, 304 to the
outbound controller 316. The outbound controller 316 then stores the inbound
queue in an entry 320 in the appropriate outbound queue 308. By way of
example, the outbound controller 316 may have an internal pointer to each
15 outbound queue 308. Thus, the outbound queue 308 includes a plurality of
queue entries 320 corresponding to a set of inbound queues. By way of
example, the outbound queue may include a first-in-first-out (FIFO) of inbound
queue headers with pointers to the transferred inbound queues. Although one
20 outbound queue 308 is shown for each outbound port 310, multiple outbound
queues may be provided.

Various data structures may be utilized in the implementation of the
25 inbound and the outbound queues. One exemplary data structure that may be
used for each inbound queue according to one embodiment of the invention is
illustrated in FIG. 4. As shown, each queue 402 may contain a queue header
404 that includes a number of packets 406 in the queue and a queue length 408
(e.g., number of aggregate bytes in the queue). The queue header 404 may
30 further include a maximum number of queue entries that may be stored in the
queue, or amount of memory allocated for packet headers (not shown to

5 simplify illustration). The information stored in the queue header 404 may be used by the inbound controller to determine when each inbound queue will be transferred to the outbound controller. By way of example, when an inbound queue reaches a specified number of packets or contains a specified number of bytes, the inbound queue may be transferred from the inbound controller to the 10 outbound controller. Thus, this queue header 404 may be ignored by the outbound controller. Alternatively, the queue header 404 for an inbound queue may further include a queue ID corresponding to the appropriate outbound queue (not shown to simplify illustration). Each entry in the queue 15 402 may include a packet header 410, or descriptor, which includes a packet length 412 (e.g., number of bytes in the packet) as well as a status bit 414. A similar status bit may be implemented in the queue header 404 to indicate the status of an entire queue (not shown to simplify illustration). By way of example, the status bit 414 may indicate that a packet, or queue, is valid, invalid, or sent. Each queue entry may further include a pointer to packet data 20 416. The inbound and outbound queues may be implemented as linked lists, arrays or other data structures that may be utilized to store a set of packets.

25 Each inbound queue may be transferred to the outbound controller through the assertion of an interrupt. Once transferred, the inbound queue will be stored in the appropriate outbound queue by an outbound controller. Thus, each outbound queue may contain a set of pointers to the inbound queues received by the outbound controller.

30 Various configurations in which the inbound and the outbound controller may be implemented are possible. By way of example, one inbound controller and one outbound controller may be provided for the entire router.

35 Alternatively, as shown in FIG. 5, the present invention may include one inbound controller for each inbound port and one outbound controller for each outbound port. A packet stream may be received by a media access controller (MAC) 502 where the present invention is implemented in a broadcast network. In addition, an inbound controller 504 is shown to include a classifier 506 to

5 permit classification of packets in an appropriate inbound queue. However, the classifier 506 may be implemented separately from the inbound controller 504. A memory 508 is provided for use by the inbound controller 504 and an
10 outbound controller 512. In addition, a CPU 510 is provided which supervises the inbound controller 504 and the outbound controller 512. The memory 508 may store compatible representations of the inbound queues and the outbound queues, as well as pools of available memory, for use by the inbound controller 504 and the outbound controller 512. Thus, the outbound controller 512 may store each inbound queue received from the inbound controller in an entry in the appropriate outbound queue. The outbound controller 512 may then transmit packets stored in the outbound queue. Thus, a packet stream is provided to the corresponding outbound port.

15 One method for implementing an inbound controller according to one embodiment of the present invention is illustrated in FIG. 6. As described above, a plurality of inbound queues are provided for one of the plurality of inbound ports. At step 602, an inbound packet is received at the one of the plurality of inbound ports. The inbound packet is then classified in a selected one of the plurality of inbound queues according to packet sorting criteria at step 604. By way of example, the inbound packet (e.g., packet header) may include a source address and a destination address. Thus, the packet sorting criteria may include the source address and the destination address of the inbound packet, as well as other sorting criteria. The inbound packet is then stored in the selected one of the plurality of inbound queues at step 606. In addition, the queue header may be updated to reflect the current number of
20 packets and bytes stored within the inbound queue. Next, it is determined whether one of the plurality of inbound queues is ready to be moved to an outbound queue at step 608. By way of example, it is determined whether to wake up the CPU. Rather than wake up the CPU upon receiving each packet, the CPU is woken up at various intervals. If it is determined to wake up the
25 CPU at step 610, an interrupt is asserted at step 612 to signal when one of the plurality of inbound queues is ready to be moved by the CPU to an outbound
30 queue.

queue. If it is not determined to wake up the CPU at step 610, the inbound controller receives the next inbound packet at step 602. Although the inbound controller is described as being implemented for a single port, the inbound controller may be implemented for multiple ports or an entire router.

5 In order to transfer each inbound queue to the appropriate outbound queue, each packet must be classified in the appropriate inbound queue. FIG. 7 is a flow diagram illustrating the method for classifying inbound packets 604 of FIG. 6 according to one embodiment of the present invention. Each inbound packet may be sorted according to various sorting criteria. At step 702, inbound packet sorting criteria are selected to permit each inbound packet to be classified in one of the inbound queues. The packet sorting criteria may include the source address of the inbound packet, the destination address of the inbound packet, the priority of the packet (e.g., session ID), the IP address of the packet, and/or other criteria such as information which may be obtained from the packet. Next, at step 704, packet sorting data associated with the packet sorting criteria is obtained for the inbound packet being sorted. By way of example, the destination address of the inbound packet may be obtained. Next, at step 706, the inbound packet is sorted into one of the inbound queues according to the packet sorting data. By way of example, an address table including each inbound queue may be provided that includes the packet sorting data associated with each queue. Thus, the inbound packet may be classified upon locating the relevant packet sorting data in the address table. By way of example, a classified inbound packet may be associated with an inbound queue through storing a queue ID of the inbound queue in the inbound packet (e.g., packet header). While classification of packets may be performed for various purposes, such classification is typically performed in software. Accordingly, in one embodiment of the invention, the classifier is implemented in hardware to maximize the packet per second forwarding rate.

10

15

20

25

30

As described above, one method for classification of inbound packets is through the use of one or more address tables. FIG. 8 is a diagram illustrating

an exemplary address table that may be used to classify each packet according to one embodiment of the invention. A separate classifier and address table may be provided for each port. In addition, software may be provided which allows the CPU to create the address tables required by each classifier.

5 An exemplary address table 802 may include a destination address 804 or outbound port number of the packet, a priority 806 of the packet, and a queue ID 808 corresponding to an inbound queue. The inbound queue classification will further correspond to an outbound queue. By way of example, the queue ID of the corresponding outbound queue may be stored in the queue header of each inbound queue. Thus, the outbound queue may be implicit in the inbound queue in which each packet is classified. As described above, packet classification may be accomplished through the use of a different address table for each port, as shown. Alternatively, a single global address table may be used.

10 15 In order to optimize the use of available memory, a free pool of available memory buffers may be maintained rather than pre-allocating memory. By way of example, this free pool may be implemented through the use of a linked list, array, or other data structure compatible with the inbound queues and the outbound queues. Moreover, multiple free pools may be utilized to recycle 20 available packet buffers, packet descriptors, or queue descriptors.

Prior to storing each classified packet in the appropriate inbound queue, memory may be allocated from one or more free pools of available memory. FIG. 9 is a flow diagram illustrating the method of storing an inbound packet in an inbound queue 606 of FIG. 6 according to one embodiment of the invention. At step 902, an available packet buffer may be obtained from a free pool of 25 available packet buffers. Thus, memory may be obtained to permit storage of the inbound packet. The inbound packet is then stored in the available packet buffer at step 904. The packet buffer containing the inbound packet is then stored in the inbound queue at step 906. By way of example, a pointer to the

packet buffer containing the inbound packet may be stored in the inbound queue.

Rather than wake up the CPU upon receiving each packet, the CPU is woken up at various intervals. FIG. 10 illustrates the method of determining whether to wake up the CPU 608 of FIG. 6 according to one embodiment of the invention. At step 1002, it is determined whether the number of packets in any one of the inbound queues exceeds a maximum number of packets. By way of example, a maximum number of packets may be specified for each inbound queue. As yet another example, a single global maximum number of packets may be specified for the inbound queues. If the maximum number of packets is exceeded, it has been determined to wake up the CPU at step 1004. However, if the maximum number of packets has not been exceeded, it is next determined whether the length of any one of the inbound queues (e.g., number of aggregate bytes within the queue) exceeds a maximum queue length at step 1006. If the maximum queue length is exceeded, it has been determined to wake up the CPU at step 1008. However, if the maximum queue length has not been exceeded, it is next determined whether the free pool of memory has been depleted at step 1010. By way of example, a desired minimum amount of available memory may be specified to indicate depletion of one or more free pools of memory. If the free pool has been depleted, it has been determined to wake up the CPU at step 1012. However, if the free pool has not been depleted, it is next determined whether a maximum time limit (e.g., 0.5 milliseconds) has been exceeded at step 1014. In instances where network traffic is slow, inbound queues will fill slowly and a large portion of the free pool may remain available. Therefore, the maximum time limit sets a minimum forwarding rate in instances where inbound traffic is at a minimum. The above determinations may be made separately or in combination to determine whether to wake up the CPU through the assertion of an interrupt. Moreover, these determinations are exemplary, and therefore further determinations may be made.

Upon the assertion of an interrupt, the CPU may transfer an inbound queue to an outbound controller or outbound queue associated with an outbound port. FIG. 11 illustrates one method for operation of the CPU in response to the inbound controller according to one embodiment of the invention. At step 1102, an inbound queue may be obtained from the inbound controller. The obtained inbound queue may then transferred to the outbound controller at step 1104. A new inbound queue may then be provided to the inbound controller as a replacement for the obtained inbound queue at step 1106. This new inbound queue may be obtained from the outbound controller, as will be further described below, or may be obtained from a free pool of available memory. Moreover, the CPU may not need to act to provide this replacement queue when inbound and outbound traffic are balanced, since a new queue will automatically be made available as packets are forwarded through each port. In this manner, the CPU transfers a queue of packets from the inbound controller to the outbound controller.

The outbound controller stores each received inbound queue in an outbound queue and selectively transmits packets stored in the outbound queue. FIG. 12 is a flow diagram illustrating one method for implementing an outbound controller according to one embodiment of the invention. A notification may be received from the CPU to handle an inbound queue at step 1202. As described above, the outbound controller may be implemented for one of the plurality of outbound ports. Moreover, an outbound queue associated with the one of the plurality of outbound ports is provided. The outbound queue is configured such that it is capable of storing a plurality of inbound queues. By way of example, the outbound queue may include a plurality of entries capable of storing pointers to each one of the plurality of inbound queues. The inbound queue is then transferred to the outbound queue at step 1204. Packets stored in each inbound queue of the outbound queue may then be transmitted at step 1206. Although the outbound controller is described as providing one outbound queue for a single port, multiple outbound queues may be provided. Moreover,

although described as being implemented for a single port, the outbound controller may be implemented for multiple ports or an entire router.

When an inbound queue is received by the outbound controller, the outbound controller transfers the inbound queue to an outbound queue. FIG. 13 is a flow diagram illustrating the method for transferring the inbound queue to an outbound queue 1204 of FIG. 12 according to one embodiment of the invention. Since one outbound queue may be provided for each outbound port and associated outbound controller, each inbound queue may be stored in the outbound queue according to a priority order. Thus, a priority of the inbound queue may be ascertained at step 1302. By way of example, a priority of the inbound queue may be provided in the queue header for the inbound queue. As yet another example, the priority of the inbound queue may be provided in the corresponding address table. The inbound queue may then be transferred to the outbound queue according to the priority of the inbound queue at step 1304. Moreover, since multiple outbound queues may be provided, the appropriate outbound queue may be determined from an address table such as that illustrated in FIG. 8.

The outbound controller may selectively transmit packets as well as deallocate memory previously used by the transmitted packets. FIG. 14 is a flow diagram illustrating the method for transmitting packets 1206 of FIG. 12 according to one embodiment of the invention. Since the inbound queues may be stored in the outbound queue according to the priority of the inbound queues, the packets in each inbound queue may be transmitted consecutively. Prior to transmitting these packets or during transmission, data may be selectively released at step 1400. The packet buffers associated with this data may similarly be released and made available for use (e.g., returned to a free pool of buffers). By way of example, selected packets or an entire inbound queue may be tagged as sent or invalid to maximize the throughput of the router. This technique may be utilized to accommodate for a high level of traffic where the number of packets being sent is excessive. Moreover, where there is

an unacceptable delay during packet transmission (e.g., voice transmission), these packets or queues of packets may be beneficially discarded. Similarly, this technique may be beneficial where the amount of free memory available for use by the inbound and/or the outbound controller is diminishing. Thus, the 5 outbound controller may selectively transmit packets based upon the priority of the packets. By way of example, packets may be prioritized in a plurality of queues, each of the plurality of queues having a different priority.

10 Packets may be transmitted for each inbound queue in the outbound queue. Thus, a next inbound queue in the outbound queue may be obtained at step 1402. A next packet from the obtained inbound queue may then be obtained at step 1404. A status bit of the packet may then be checked at step 1406. If the status bit indicates that the packet is valid at step 1408, the status bit may be set to sent or invalid at step 1410. The packet may then be sent at step 1412. However, if the status bit of the packet indicates that the packet is invalid, a next packet may be obtained at step 1404.

15 After the packet is sent, it is determined whether there are more packets in the inbound queue at step 1414. If there are more packets, a next packet may be obtained from the inbound queue at step 1404. However, if there are no packets remaining in the inbound queue, memory (e.g., packet buffers) in the inbound queue may be released at step 1416. By way of example, the entire inbound queue may be released. Alternatively, all invalid and/or sent packet buffers may be released. The empty inbound queue may therefore be made available for use at step 1416. By way of example, the released packet buffers 20 may be stored in a free pool of available packet buffers. Moreover, the empty inbound queue may be used as a new inbound queue by the inbound controller. As yet another example, the empty inbound queue may be used by the 25 outbound controller during bi-directional (e.g., full duplex) operation. In addition, this newly available inbound queue may be stored in a separate entity having a data structure (e.g., linked list) compatible with the free pool of available memory, as well as the inbound and outbound queues. The CPU may

5 therefore reuse the memory for each inbound queue rather than recovering each available packet buffer individually. Since memory may be reused by the inbound controller and the outbound controller, the CPU may dedicate a majority of the transfer operations performed to the transmission of packets
10 rather than the transfer of free buffers. Each inbound queue that remains in the outbound queue may then be processed at step 1418.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
95

FIG. 17 is a block diagram illustrating an encryption system according to one embodiment of the invention. As described above, a separate inbound controller may be provided for each inbound port and a separate outbound controller may be provided for each outbound port. As shown, an inbound controller 1702 is provided for an inbound port. As packets are received by the inbound controller 1702, they may be classified and stored in the appropriate inbound queue by inbound classifier 1704. CPU 1706 may then transfer entire inbound queues stored in memory 1708 to outbound controller 1710 which is coupled to encryption box 1712. Thus, the encryption box 1712 may encrypt each queue rather than separate packets. The encryption box 1712 may then store each encrypted queue in the corresponding inbound queue or compatible data structure. Since the packets have been classified in appropriate inbound queues, encryption keys may therefore be distinguished. Since encryption may vary according to source address, destination address, and other factors, the outbound controller 1712 may classify each inbound queue in multiple outbound queues. In this manner, each receiving service may ascertain the status of encryption of each queue. The outbound controller 1712 may classify each inbound queue in the appropriate outbound queue through the use of a separate outbound classifier 1714. Thus, a separate classifier may be provided for each controller or port. Alternatively, the outbound queue classification may be made implicit through storing an outbound queue ID in the inbound queue header by the inbound classifier 1704. Accordingly, since encryption is performed for each queue rather than on a per packet basis, CPU overhead is reduced. In addition to being implemented in encryption systems, the present invention may be used in various systems such as data compression and decompression systems.

The present invention reduces CPU overhead in the forwarding process. This is accomplished through transferring sets of packets, or queues of packets, between an inbound controller and an outbound controller. Thus, one transfer operation may be performed for a set of packets rather than a set of operations for one packet. Moreover, operations utilized to de-allocate packets may be

similarly reduced. Accordingly, CPU overhead is reduced, increasing the packet per second forwarding rate.

In addition to reducing CPU overhead, memory utilization is minimized through the allocation of packet buffers by the inbound controller. Since the packet buffers are de-allocated upon transmission, memory is efficiently utilized. As a result, the amount of memory required and production costs associated with each router are minimized.

Through combining software and hardware modules, the present invention provides efficient and accurate packet forwarding. Hardware is efficient, but typically does not provide global knowledge. Thus hardware may be utilized to provide speed where global knowledge is not required. By way of example, a hardware classifier may provide an increased forwarding rate. At the same time, software provides global knowledge and intelligence in forwarding decisions to increase the efficiency of the forwarding process. By way of example, where a particular outbound port is congested, a queue may be discarded by the CPU.

The invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, magnetic tape, and optical data storage devices.

Although illustrative embodiments and applications of this invention are shown and described herein, many variations and modifications are possible which remain within the concept, scope, and spirit of the invention, and these variations would become clear to those of ordinary skill in the art after perusal of this application. For instance, the present invention is described as utilizing a single outbound queue for each outbound port. However, it should be understood that the present invention is not limited to this arrangement, but

instead would equally apply regardless of the number of outbound queues provided per port. Also, the invention is described as providing a single inbound controller for each inbound port. Similarly, the invention is described as providing a single outbound controller for each outbound port. This is not a requirement of the present invention and therefore, other arrangements for the inbound and outbound controllers would still fall within the scope of the invention. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

5

10

600600-00275700