The Integrated Blosphere Simulator (IBIS) Version 2-- Overview and Philosophy

Center for Sustainability and the Global Environment, Institute for Environmental Studies University of Wisconsin, Madison

Life before IBIS

3 different classes of models:

- Land surface models (SVATs): BATS, SiB, LSX, LSM, etc.
- Biogeography models: BIOME, MAPPS, etc.
- Terrestrial biogeochemistry models: TEM, CENTURY, CASA, BGC, DEMETER, etc.

Past Model Characteristics

- Land surface models -- fixed vegetation, limited biogeochemistry
- Biogeography models -- limited energy & water balance, limited biogeochemistry
- Biogeochemistry models -- fixed vegetation, limited energy & water balance

Can we build one model that integrates all these different processes and more?

IBIS global terrestrial ecosystem model Links Processes Across Different Time Scales

"Fast" responses

- Land surface processes: fluxes of energy, water, momentum
- Canopy physiology: photosynthesis, respiration

"Medium" processes

Vegetation phenology: leafout, senescence, dormancy

"Slow" processes

- Vegetation growth (transient vegetation dynamics)
- Above & below-ground carbon & nitrogen cycling

Integrated Biosphere Simulator (IBIS)-2

Center for Sustainability and the Global Environment, Institute for Environmental Studies University of Wisconsin, Madison

Figure 2

- Canopy physics:
 - Solar & Infrared radiative transfer
 - Two-stream approximation
 - Diffusive & turbulent fluxes of heat and water vapor through canopy and soils (including soil ice)
 - Wind speeds through the canopy
- Soil physics
 - Water, ice (Richard's equation)
 - Darcy's Law for vertical water flux

- Canopy physiology:
 - Mechanistic photosynthesis (Farquhar et al. 1980)
 - Light and water limitations
 - Semi-mechanistic stomatal conductance (Ball & Berry)
 - Coupled photosynthesis-stomatal conductance model (Collatz et al. 1991)
 - => coupled flow of carbon & water
 - Canopy scaling (APAR within canopy for net assimilation)

- Canopy phenology:
 - Budburst and litterfall of winter-deciduous plants based on climatic limits, constraints, accumulated GDD
 - Drought deciduous plants respond to net canopy carbon budget

- Vegetation Dynamics:
 - 12 Plant Functional Types (PFTs)
 - 8 in upper canopy (trees)
 - 4 in lower canopy (shrubs and cool/warm grasses)
 - Compete for light & water
 - LAI Shading radiation; root profiles
 - Competition is a consequence of the annual carbon balance
 - Geographic distribution
 - Cold tolerance limits, growing degree-day requirements, and minimum chilling requirements

Description of IBIS-2 Plant Functional Types (PFTs)

Table 1.

Trees	m	b	$V_{m,15}$	$T_{\min}(^{\circ}\mathrm{C})$	$T_{\min}(^{\circ}\mathrm{C})$	GDD_5	σ , m ² kg ⁻¹	$a_{ m leaf}$	$a_{ m root}$	$a_{ ext{stem}}$	$ au_{ ext{leaf}}$ years	$ au_{ m root}$ years	$ au_{ ext{stem}}$ years
Tropical broadleaf evergreen	10.0	0.01	65.0	> 0.0			25.0	0.30	0.20	0.50	1.00	1.0	25.0
Tropical broadleaf drought-deciduous	10.0	0.01	65.0	> 0.0			25.0	0.30	0.20	0.50	1.00	1.0	25.0
Temperate broadleaf evergreen	10.0	0.01	40.0	> -10.0	< 0.0		25.0	0.30	0.20	0.50	1.00	1.0	25.0
Temperate conifer evergreen	6.0	0.01	30.0	> -45.0	< 0.0	> 1200	12.5	0.30	0.40	0.30	2.00	1.0	50.0
Temperate broadleaf cold-deciduous	10.0	0.01	30.0	> -45.0	< 0.0	> 1200	25.0	0.30	0.20	0.50	1.00	1.0	50.0
Boreal conifer evergreen	6.0	0.01	25.0	> -57.5	< -45.0*	> 350	12.5	0.30	0.40	0.30	2.50	1.0	100.0
Boreal broadleaf cold-deciduous	10.0	0.01	30.0	> -57.5	< -45.0*	> 350	25.0	0.30	0.20	0.50	1.00	1.0	100.0
Boreal conifer cold-deciduous	10.0	0.01	30.0		< -45.0*	> 350	25.0	0.30	0.20	0.50	1.00	1.0	100.0
Shrubs and Grasses	m	b	$V_{m,15}$	T _w (°C)		GDD_0	σ, m² kg ⁻¹	$a_{ m leaf}$	$a_{ m root}$	$a_{ m stem}$	τ _{leaf} years	$ au_{ m root}$ years	$ au_{ ext{stem}}$ years
Evergreen shrub	9.0	0.01	27.5			> 100	12.5	0.45	0.40	0.15	1.50	1.0	5.0
Cold-deciduous shrub	9.0	0.01	27.5			> 100	25.0	0.45	0.35	0.20	1.00	1.0	5.0
Cool grass	9.0	0.01	25.0			> 100	20.0	0.45	0.55	0.00	1.50	1.0	n /a
Warm grass	4.0	0.04	15.0	> 22.0		> 100	20.0	0.45	0.55	0.00	1.25	1.0	n /a

- Soil biogeochemistry.
 - CENTURY-like model
 - Active microbial pool
 - Daily timestep

IBIS Soil Biogeochemistry Submodel

C Mineralized/CO₂ Released N Immobilized/Mineralized

Litterfall for natural vegetation Spread evenly (daily) across entire year

Figure 3

Litter Pools (above and belowground)

Turnover ~ days to weeks (k value)

DPM - decomposable plant material ($C/N \sim 6$)

SPM - Structural plant material ($C/N \sim 100$)

RPM - Resistant (lignin) plant material ($C/N \sim 150$)

Microbial Biomass (labile)

Turnover ~ weeks - months (k value)

 $C/N \sim 8-10$

Slow C Pools (POM/NOM)

Turnover ~ 10-20 years (k value)

 $C/N \sim 10-12$

Passive C Pools (stabilized/recalcitrant)

Turnover ~ 100s-1000s of years (k value)

 $C/N \sim 10-12$

A few other notes about the biogeochemistry model...

- Numerical acceleration is needed to establish equilibrium of C and N pools
- K values (decomposition constants) are modified by soil temperature (Lloyd & Taylor, 1994) and moisture (Linn and Doran, 1984); which influence microbial activity
 - Aboveground litter pool surface layer
 - All other soil C pools by weighted average soil temperature and moisture (by root profile)
- We do not explicitly simulate soil C & N as a function of soil layer
- Current leaching values of DOC are more of a "fudge" so that C does not build up exponentially in soils
- Classes of microbes are not simulated; they are assumed to all behave similarly to soil T and moisture regardless of biome type

IBIS Implementation

- Offline and coupled modes (GCM)
 - Requires temperature, wind speed, radiation, humidity, precip
- Hourly time step (normally)
- Climate data daily or monthly mean, gridded values
 - Climatology (30-yr average climate: 1981-2010)
 - Inter-annual variability (CRU: 1901-2007)
 - 0.5 degree resolution local to global scale
 - 8km x 8km resolution with ZedX daily climate dataset (1948-2007)
 - Weather generator used to get daily/sub-daily values
- Soil data (texture) as function of depth (IGBP Global STATSGO -US) - lookup table for properties
- Mode: cold-start, dynamic vegetation, fixed vegetation
- Coupling to THMB (terrestrial hydrology model with biogeochemistry

Examples of IBIS-2 Model Output

 From Kucharik et al., 2000 published in Global Biogeochemical Cycles

Present-day Climate - IBIS Simulated Potential Vegetation

Plate 4c. Simulated Vegetation Types

From Kucharik et al., 2000 Global Biogeochemical Cycles

Plate 2a. Simulated NPP

Plate 2b. Observed NPP

Plate 6d. Simulated Total Litter Carbon

(Aboveground and Fine Root)

From Kucharik et al., 2000 Global Biogeochemical Cycles

Time in Litter and Soil Carbon

Figure 6

Plate 7a. Simulated Microbial Biomass Carbon

Plate 7b. Simulated Total Soil Carbon Respiration (Fine Root and Microbial)

IBIS-2 Annual Average Global Quantities for Contemporary Biosphere 1965-1994

Table 4.													
Biome	Area, ¹ 10 ⁶ km ²	GPP, kg C m ⁻² yr ⁻¹	NPP, kg C m ⁻² yr ⁻¹	LAI, m² m ⁻²	Biomass, kg C m ⁻²	FRB, kg C m ⁻²	τ _{veg} , years	Litter, kg C m	SOM, ² kg C m ⁻²	τ _{som} , years	MB, kg C m	Soil CO ₂ kg C m ⁻² yr ⁻¹	kg C m ⁻² yr ⁻¹
Tropical evergreen forest	19.30	1.89	0.90	6.8	9.1	0.18	10.0	0.60	9.5	11.2	0.20	1.15	0.037
Tropical deciduous forest	7.70	1.23	0.57	4.2	5.4	0.11	9.4	0.42	7.9	11.4	0.12	0.70	0.053
Temperate broadleaf evergreen forest	7.20	1.57	0.83	6.2	8.2	0.16	9.8	0.88	13.8	16.5	0.24	0.96	0.051
Temperate needleleaf evergreen forest	3.29	1.14	0.57	4.3	5.9	0.20	10.5	0.59	11.0	24.3	0.20	0.71	0.037
Temperate deciduous forest	9.67	1.14	0.62	4.6	8.3	0.16	13.5	0.81	13.7	23.1	0.21	0.66	0.049
Boreal evergreen forest	14.50	0.66	0.37	3.3	5.5	0.13	15.1	0.81	19.4	54.0	0.14	0.38	0.028
Boreal deciduous forest	6.80	0.55	0.33	2.7	6.2	0.08	18.5	1.33	24.4	80.5	0.12	0.29	0.026
Evergreen/deciduous mixed forest	4.23	0.91	0.48	3.8	7.6	0.14	15.8	0.89	13.4	35.8	0.17	0.50	0.039
Savanna	5.34	0.93	0.35	3.3	2.4	0.13	6.7	0.29	6.5	20.3	0.12	0.61	-0.016
Grassland/steppe	21.20	0.76	0.24	2.8	0.4	0.13	1.8	0.08	7.6	32.3	0.10	0.53	-0.005
Dense shrubland	1.50	0.44	0.22	2.2	0.9	0.08	4.2	0.41	7.2	37.8	0.09	0.27	0.025
Open shrubland	6.02	0.17	0.05	0.7	0.3	0.03	7.3	0.08	1.8	57.1	0.03	0.15	-0.040
Tundra	6.24	0.39	0.21	2.3	0.3	0.10	1.5	0.75	30.1	138.6	0.10	0.24	0.018
Desert	18.80	0.02	0.001	0.1	0.04	0.004	38.4	0.01	0.4	398.2	0.006	0.022	-0.013
Polar Desert/Rock/ice	0.83	0.02	0.02	0.2	0.03	0.007	1.7	0.11	5.5	143.1	0.007	0.017	0.002
Global Average		0.87	0.41	3.4	4.2	0.15	13.4	0.49	10.6	89.6	0.13	0.53	0.0174
	$10^6 \mathrm{km^2}$	Gt C yr ⁻¹	Gt C yr ⁻¹		Gt C	Gt C		Gt C	Gt C		Gt C	Gt C yr ⁻¹	Gt C yr ⁻¹
Global Total	132.6 ¹	114.7	54.3		557.4	15.2		65.0	1408.1		16.7	70.2	2.3

¹We note that Greenland, part of the Canadian Archipelago and Antarctica are not included in IBIS simulations.

What has IBIS-2 given us?

- An ecosystem modeling tool
 - Dynamic Global Ecosystem Model (DGEM)
- Capability to simulate vegetation competition - structure - function
- Global Water Balance
- Global Carbon Balance

