

# Wieloplatformowa przeglądarka obrazów DICOM w C++

### Adam Jędrzejowski

Wydział Elektroniki i Technik Informacyjnych Politechniki Warszawskiej Instytut Radioelektroniki i Technik Multimedialnych Zakład Elektroniki Jądrowej i Medycznej

25 czerwca 2019

# Obrazowe techniki medyczne



- Radiografia RTG
- Tomografia komputerowa CT
- Obrazowanie metodą rezonansu magnetycznego MRI
- Ultrasonografia
- Scyntygrafia
- Tomografia SPECT
- Tomografia PET

### Standard DICOM



Standard DICOM jest odpowiedzią społeczności radiologów, radiofarmaceutów, fizyków medycznych na potrzebę wymiany danych pomiędzy różnymi systemami komputerowymi, przeglądarek obrazów, stacji do przetwarzania i analizowania obrazów medycznych.

Standard DICOM v3 definiuje ujednolicony sposób zapisu i przekazywania danych medycznych reprezentujących lub związanych z obrazami diagnostycznymi w medycynie.

W obecnej chwili standard DICOM definiuje 81 różnych typów badań.

Plik w formacie DICOM przypomina zbiór elementów danych z rekordami. Zbiór nazywa się "Data Set" i składa się z rekordów, które nazywają się "Data Element". Elementy danych są ułożone w postaci listy. Element danych może zawierać w sobie listę elementów danych.

| Nazwa                     | Identyfikator | Typ danych | Opis                        |
|---------------------------|---------------|------------|-----------------------------|
| SpecificCharacterSet      | (0008,0005)   | CS         | Używana specyfikacja        |
| InstitutionName           | (0800,8000)   | LO         | Miejsce wykonywania badania |
| Manufacturer              | (0008,0070)   | LO         | Producent aplikacji         |
| StationName               | (0008,1010)   | SH         | Nazwa urządzenia            |
| PatientID                 | (0010,0020)   | LO         | Identyfikator pacjenta      |
| PatientsName              | (0010,0010)   | PN         | Nazwisko pacjenta           |
| PatientsBirthDate         | (0010,0030)   | DA         | Data urodzin pacjenta       |
| PatientsSex               | (0010,0040)   | CS         | Płeć pacjenta               |
| PatientsAge               | (0010,1010)   | AS         | Wiek pacjenta               |
| BodyPartExamined          | (0018,0015)   | CS         | Badana część ciała          |
| StudyDate                 | (0008,0020)   | DA         | Data badania                |
| PhotometricInterpretation | (0028,0004)   | CS         | Format zapisu obrazu        |
| Rows                      | (0028,0010)   | US         | Wysokość zdjęcia            |
| Columns                   | (0028,0011)   | CS         | Szerokość zdjęcia           |



# Cel pracy i założenia



Celem pracy było zrobienie wielopratformowej przeglądarki obrazów DICOM w C++.

### Wieloplatformowość

Można ją uzyskać na wiele sposobów: wirtualizacje kodu binarnego z pomocą maszyny wirtualnej takiej jak JVM, napisanie w języku skryptowym, których interpretacja kodu jest równoległa z wykonywaniem lub napisanie kodu źródłowego w taki sposób aby była możliwość jego kompilacji na wskazane platformy.

Obsługa systemów

MS Windows, Mac OS, Linux

## Wczytywanie obrazów DICOM

Możliwość wczytania wielu plików w standardzie DICOM i ich przeglądania

# Biblioteki i narzędzia

Wydział Elektroniki i Technik Informacyjnych

**Qt** jest zbiorem bibliotek i narzędzi programistycznych dedykowanych dla języków C++, QML i Java. Qt posiada bibliotekę do tworzenia interfejsu graficznego, oraz wiele innych rozwiązań ułatwiających programowanie obiektowe i zdarzeniowe.

Posiadanych normy: IEC 62304:2015, IEC 61508:2010-3 7.4.4, ISO 9001:2015. Posiada systemy rodzicielstwa i sygnałów. **GDCM** to biblioteka do obsługi standardu DICOM. Posiada możliwość wczytywania plików z dysku jak i z lokalizacji sieciowych oraz wczytywania plików DICOMDIR. Ma wbudowaną dekompresje obrazów i obsługi różnych kodowań tekstu.

CMake to wieloplatformowe narzędzie do automatycznego zarządzania procesem kompilacji programu. Jest to niezależne od kompilatora narzędzie pozwalające napisać jeden plik, z którego można wygenerować odpowiednie pliki budowania dla dowolnej platformy.







# Projekt interfejsu graficznego





# Projekt interfejsu graficznego



POLITECHNIKA WARSZAWSKA

#### Dane pacienta:

- imię i nazwisko
- identyfikator
  data urodzenia i wiek
- opis badania
- opis serii

Litera orientacji

Dane akwizycji badania różnią się w zależności od modalności



Dane szpitala:

- nazwa instytucji
- producent i model urządzenia
- lekarz wykonujący badanie
- operator wykonujący badanie

Litera orientacji i podziałka

Parametry z jakimi jest wyświetlany obraz

Podziałka i litera orientacji



## Budowa obiektowa programu







## Dekoder DICOM



| char*  | 8 <i>b</i> <sub>1</sub>  | 8 <i>b</i> <sub>2</sub> | 8 <i>b</i> <sub>3</sub> | 8 <i>b</i> <sub>4</sub> | 8 <i>b</i> <sub>5</sub> | 8 <i>b</i> <sub>6</sub> | 8 <i>b</i> <sub>7</sub>  | 8 <i>b</i> <sub>8</sub> | 8 <i>b</i> <sub>9</sub>  | 8 <i>b</i> <sub>10</sub> | 8 <i>b</i> <sub>11</sub> | 8 <i>b</i> <sub>12</sub> | 8 <i>b</i> <sub>13</sub> | 8 <i>b</i> <sub>14</sub> | 8 <i>b</i> <sub>15</sub> | 8 <i>b</i> <sub>16</sub> |
|--------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| int8*  | 8 <i>b</i> <sub>1</sub>  | 8 <i>b</i> <sub>2</sub> | 8 <i>b</i> <sub>3</sub> | 8 <i>b</i> <sub>4</sub> | 8 <i>b</i> <sub>5</sub> | 8 <i>b</i> <sub>6</sub> | 8 <i>b</i> <sub>7</sub>  | 8 <i>b</i> <sub>8</sub> | 8 <i>b</i> <sub>9</sub>  | 8 <i>b</i> <sub>10</sub> | 8 <i>b</i> <sub>11</sub> | 8 <i>b</i> <sub>12</sub> | 8 <i>b</i> <sub>13</sub> | 8 <i>b</i> <sub>14</sub> | 8 <i>b</i> <sub>15</sub> | 8 <i>b</i> <sub>16</sub> |
| int16* | $16b_1$ $16b_2$          |                         | $16b_3$ $16b_4$         |                         | $16b_5$ $16b_6$         |                         | 16 <i>b</i> <sub>7</sub> |                         | 16 <i>b</i> <sub>8</sub> |                          |                          |                          |                          |                          |                          |                          |
| int32* | $32b_1$ $32b_2$          |                         |                         |                         |                         |                         |                          | $32b_3$ 3               |                          |                          |                          |                          | 32                       | 2 <i>b</i> <sub>4</sub>  |                          |                          |
| int64* | 64 <i>b</i> <sub>1</sub> |                         |                         |                         |                         |                         | 64 <i>b</i> <sub>2</sub> |                         |                          |                          |                          |                          |                          |                          |                          |                          |

### Okienkowanie







Standard DICOM przewiduje, że wszystkie dane powinny być wyskalowane za pomocą wzoru:

$$OutputUnits = m * SV + b$$

- m wartość z RescaleSlope (0x0028, 0x1053),
- b wartość z RescaleIntercept (0x0028, 0x1052).
- SV stored values wartość woksela z pliku,
- OutputUnits wartość wynikowa.

### Implementacja

$$x_0 = center - width/2$$
  $y_0 = 1.0$   
 $x_1 = center + width/2$   $y_1 = 0.0$ 

$$(OutputUnits - b)/m = SV$$

$$x_0 - = rescaleIntercept$$
  $x_0 / = rescaleSlope$   
 $x_1 - = rescaleIntercept$   $x_1 / = rescaleSlope$ 

$$a = (y_1 - y_0)/(x_1 - x_0)$$
  $b = y_1 - a * x_1$ 

### Tablica LUT

| 8 <i>b</i>   | 12 <i>b</i>   | 16 <i>b</i>   | 32 <i>b</i>     | 64 <i>b</i>             |
|--------------|---------------|---------------|-----------------|-------------------------|
| 768 <i>B</i> | 196 <i>kB</i> | 196 <i>kB</i> | 12, 5 <i>GB</i> | 55 * 10 <sup>6</sup> TB |

# Orientacja pacjenta



### Zapis informacji o orientacji w DICOM

$$\begin{bmatrix} P_X \\ P_Y \\ P_Z \\ 1 \end{bmatrix} = \begin{bmatrix} X_X \Delta_i & Y_X \Delta_j & 0 & S_X \\ X_Y \Delta_i & Y_Y \Delta_j & 0 & S_Z \\ X_Z \Delta_i & Y_Z \Delta_j & 0 & S_Z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ 0 \\ 1 \end{bmatrix}$$

- P koordynaty woksela we współrzędnych obrazu,
- S − trzy wartości z elementu ze znacznikiem Image Position,
- X, Y trzy pierwsze i trzy drugie wartości z Image Orientation,
- i i j oznaczają współrzędne na macierzy obrazu,
- $\bullet$   $\Delta_i$  i  $\Delta_i$  rzeczywista wielkość piksela obrazu w mm.

### Implementacja

 $PatientPosition = imgMatrix * ScenePosition \\ imgMatrix^{-1} * PatientPosition = imgMatrix^{-1} * imgMatrix * ScenePosition \\ imgMatrix^{-1} * PatientPosition = ScenePosition \\ ScenePosition = imgMatrix^{-1} * PatientPosition$ 

- imgMatrix macierz przekształcenia obrazu,
- ScenePosition pozycja na obrazie, która nas interesuje,
- PatientPosition jeden z punktów względem pacjenta.









# Funckje przeglądarki



- Podstawowe operacje na orazie
- Okienkowanie i pseudokolorowanie
- Możliwość wczytania wielu plików i animacji

## Wnioski



przetestowano automatycznie sie kompiluje intefjes jest podobny