Business and the Environment

Life Cycle Assessment

Magali Delmas UCLA

What is a Product Life Cycle?

What is Life Cycle Assessment (LCA)?

An LCA evaluates the total environmental impacts of a product over it's entire production (and/or consumption) chain, allowing for a comprehensive comparison of alternative ways of meeting human needs and economic functions.

Who benefits from a Life Cycle Assessment?

Product Development & Research & Development

Complying & Developing Products

Marketing & Sales

Communicate Competitive Edge

Supply Chain Management & Procurement

Evaluating Suppliers

Executive Level & Strategic Management

Avoid Risks, Lead Strategically

LCA for product improvement

- Polyester blouse life-cycle energy requirements
 - Production 18%
 - •Use 82%
 - •Disposal < 1%
- Energy requirements of use stage could be reduced by more than 90% by switching to cold water wash and line dry instead of warm water and drying in dyer

Planning an LCA project

- Define product under study and its alternatives
 - What is its function?
 - •What is an appropriate functional unit?
- Choose system boundaries
 - What inputs and outputs will be studied?
 - How will data be collected?

The Functional Unit

Functional Unit Ambiguity

Functional unit	12-oz aluminum cans	16-oz. Glass bottle	1-liter PET bottle
12-oz of soft drink	1	1.25	2.7
One container	1	1	1 .

The Functional Unit

- Example: paper versus Plastic grocery bags
- Function : to carry groceries

Functional unit: could be a defined volume of groceries—one plastic bag does not hold the same volume of groceries as a paper bag

System boundaries

System boundaries

- Processes are excluded in order to keep the life-cycle inventory manageable
- For example in the production of ethylene
 - •oil has to be extracted, this oil is transported by a tanker, steel is needed to construct the tanker, and the raw materials needed to produce this steel have to be extracted....
- •Should the production of capital good be excluded?

Incandescent, fluorescent and LED light bul

- Incandescent bulbs require more energy to operate
- •Fluorescent bulbs provide light by causing mercury to fluoresce. Risk of mercury release during disposal
 - Mercury is a trace contaminant in coal and when coal is burned to generate electricity, some mercury is released to the atmosphere
- •Issue of which bulb is better depends on the boundary of the system chosen.
- •LEDs? Lead, arsenic see **EST**

Paper or Plastic

Grocery Bag: Paper or Plastic?

Paper vs Plastic Air Emissions

Paper vs Plastic Air Emissions

1 paper bag = 2 plastic bags

Paper vs Plastic Energy Use

Steps of LCA

1. Goal and Scope

- Functional Unit
- System Boundaries

2. Inventory Analysis

- Data collection phase of a Life Cycle Assessment
- Quantify the environmental inputs and outputs

3. Impact Assessment

Evaluating how significant the impacts are (health, biodiversity etc...)

4. Interpretation

- Identifying significant issues and limitations

1) Inventory Data must be combined with effect data before conclusions can be drawn

 Air Emission for production of 1Kg of Polyethylene and Glass:

Emissions (Kg)	Polyethylene	Glass
Co2 (carbon dioxide)	1.8	0.49
Nox (nitrogen oxide)	0.0011	16
So2 (sulfur dioxide)	0.00099	0.0027
CO (carbon monoxide)	0.00067	0.000057

2) Life Cycle Impact Assessment

Possible impact categories

- Smog formation
- Human carcinogenicity
- Aquatic toxicity
- Terrestrial toxicity
- Global warming
- Acidification
- Stratospheric ozone depletion
- •How to aggregate these impact categories?
- •How to assign weights?

Steps for Life Cycle Impact Assessment

- •1. Selection and definition of impact categories
- Classification
 - Assigning LC Inventory results to the impact categories (e.g. CO2 emissions to global warming)
- •3. Characterization
 - Modeling LC Inventory impacts within impact categories using science-based conversion factors (e.g. modeling the potential impact of CO2 and methane on global warming)
- •4. Normalization
 - •Expressing potential impacts in ways that can be compared (e.g. comparing the global warming of CO2 and methane for the two options. Finding a reference value)

6. Weighting

Emphasizing the most important potential impacts

The Environmental Product Strategies (EPS) system

- Environmental indices are multiplied by the appropriate quantity of raw material used or emissions released to arrive at Environmental Load Units (ELUs), which can then be added together to arrive at an overall ELU
- Valuation based on impact on health that is measured as a \$ amount based on willingness- to-pay surveys
- Provide a \$ amount on negative externality

See <u>About the EPS impact assessment method</u>
The EPS 2015 impact assessment method - An overview

EPS - Environmental Priority Strategies in Product Design

EPS is a tool for calculation of a product's environmental damage cost during its life cycle.

The calculation is made by means of a price list on the environmental damage costs for different materials and processes. The price list is developed as shown in 1-3 below.

NB: The data in the price lists are aimed for learning purposes and must not be used for certifications or comparative assertions.

Other methods

- Critical volumes
 - Emissions are weighted based on legal limits and are aggregated within each environmental medium (air, water, soil)
- Distance to target
 - Valuation based on target values for emission flows set in the Dutch national environmental plan
- Ecological scarcities
 - Valuation based on flows of emission and resources relative to the ability of the environment to assimilate the flows or the extent of resources available

Beyond LCA: Functional unit & System boundaries

Functional Unit 4 oz. (quarter pound, 0.113 kg) uncooked burger patty delivered to retail outlets

Nutritional comparison BB patty and 80/20 beef

	4 oz. BB patty	4 oz. 80/20 beef (USDA, 2015)	
Protein (g)	20	19	
Iron (DV)	25%	12%	
Saturated fat(g)	5	9	
Cholesterol (mg)	0	80	
Total fat (g)	22	23	
Calories	290	287	

System boundaries: upstream ingredient and raw material supply (including farm production of agricultural crops), processing and packaging operations, cold storage, distribution to point of sale, and disposal of packaging materials. (Retail not included)

BEYOND BURGER®

BEEF BURGER

1/4 LB US BEEF BURGER

99% LESS WATER

93% LESS LAND

90% FEWER GHGE

46% LESS ENERGY

Impossible burger

IMPACT CATEGORY	UNIT	IMPOSSIBLE™ BURGER	BEEF BURGER	DIFFERENCE
Aquatic Eutrophication Potential	g PO4-eq	1.3	15.1	-92%
Global Warming Potential	kg CO2-eq	3.5	30.6	-89%
Land Occupation*	m2.y	2.5	62.0	-96%
Water Consumption	liters	106.8	850.1	-87%

^{*}Land occupation is reported at an LCI level. Based on best available LCA-related information on food production, in accordance with ISO 14044 standard

https://impossiblefoods.com/sustainable-food/burger-life-cycle-assessment-2019

Beyond Meat

- LCA used for marketing purposes
- Watch video:
- https://www.youtube.com/watch?v=m97qZrpfHX8

- Regenerative grazing is a management practice that accounts for the optimal resting time of the land to prevent overgrazing and allow regeneration of degraded land.
- White Oak Pastures (WOP) practices regenerative grazing to regenerate degraded cropland and convert it to permanent pasture
 - + Here, we've assessed the carbon footprint of beef from WOP and made comparisons to evidence about the carbon footprint of conventional US beef.

CARBON FOOTPRINT EVALUATION OF REGENERATIVE GRAZING AT WHITE OAK PASTURES

RESULTS PRESENTATION

Prepared for:

MARIKO THORBECKE
Sustainability Consultant ma
riko.thorbecke@quantis-intl.c
om

JON DETTLING
Global Director, Services +
Innovation
jon.dettling@quantis-intl.com

Carbon footprint breakdown per kg of White Oak Pastures' beef

in cow-calf stage

Life-Cycle Assessment of a cup of Nespresso Expressed in % CO₃eq per cup (Quantis, LCA 2013)

Lifecycle of a Starbucks Breakfast Blend K-Cup

Circularit¹

Raw Materials

The primary raw materials used as the basis for the fabrication of the K-Cup are corn, crude oil, and natural gases for making plastic, wood for making coffee filters, Bauxite Ore for making Aluminum, and coffee beans for producing coffee grounds. These materials were acquired either through the use of farming or excavation. Both methods utilize human labor, energy from fossil fuels, chemical energy, and heavy use of mechanical construction and farming equipment. The use of other raw materials like water, sunlight, and resources for making fertilizers, pesticides, and solutions to decompose Earth for excavation, are integral in the overall manufacture of the product.

Energy Embodied

Many different types of energies are used throughout the life cycle of the K-Cup. Raw materials are converted to secondary materials through the use of intentional chemical reactions, often times these chemical reactions are prompted by the use of mechanical or thermal energy. The raw materials are converted into usable primary materials, which are then converted into secondary materials, which are then reformed and assembled to create a final product. Various melting, bonding, purification, and assembling processes involve the use of specialized machines and heating elements. Many of these operations are energized by electricity, in addition human labor is another notable source of energy.

A More Sustainable Solution

The K-Cup requires the use of a lot of non-renewable resources. Green Mountain Coffee Growers, the owner of the K-Cup patent, is in the process of manufacturing a K-Cup that is more environmentally friendly while still giving you the full benefits of K-Cup brewing. They seek to achieve this goal by manufacturing a K-Cup where the plastic is made entirely out of PLA. PLA is a plastic produced from corn which makes it recyclable. The plastic in the K-Cup is currently 19% PLA. If a K-Cup can be created that is 100% PLA plastic then it will transform the product into a guilt free way to get your morning brew.

Final Product

The K-Cup is a self contained brewing system designed specifically for Keurig Brewers. The small cup has four main components, the smooth plastic shell, the crêped paper coffee filter, the Starbucks Breakfast Blend coffee grounds located in the coffee filter, and finally the aluminum lid that seals the cylindrical container. The K-Cup is used once to brew a single serving of coffee and then the cup may be disposed of.

Waste and Emissions

Only two elements of the K-Cup are recyclable, the aluminum lid and the coffee filter. The lid can be recycled with aluminum products and the filter can be recycled with paper products. The plastic shell, the most significant component of the K-Cup structure, cannot be recycled. There is some controversy over the pros and cons of this K-Cup technology because so much of the product does ultimately end up in a landfill upon disposal. Other production processes throughout the life cycle also create waste, for example Bauxite conversion to Aluminum releases red mud through the filtration process of solid and metallic oxide-bearing impurities. Runoff sediment is one of the largest, and often over-loxed, cases of water waste and cannot be re-used because of water contamination from pesticides.

The Life Cycle of a Jean

http://store.levi.com/waterless/

THE LIFECYCLE OF A LEVI'S 501 JEAN

http://levistrauss.com/wp-content/uploads/2015/03/Fact-Sheet-for-LCA-

Product life cycle Assessment (LCA) study: <u>Levi Strauss Co</u>

Illustrations kenneth @ buddha jeans 2013 buddhajeans.com

Illustrations kenneth @ buddha Jeans 2013 buddhajeans.com

THE LIFE CYCLE OF **LEVI'S® JEANS**

AS A COMPANY, WE WORK HARD TO BUILD SUSTAINABILITY INTO EVERYTHING WE DO. THAT'S WHY WE ARE WORKING TO REDUCE WATER, CHEMICALS, AND ENERGY USAGE AT EVERY STAGE OF THE LIFE OF OUR JEANS.

Growing cotton takes a lot of water. We joined the Better Cotton initiative to reduce water and chemicals while supporting farmers and healthy soil.

2. FABRIC PRODUCTION

As a supporter of NRDC's Responsible Sourcing Initiative, we're working with textile mills to reduce water, chemicals, and energy usage.

LESS WATER IN YOUR LEVIS → THE WATER<LESS COLLECTION REDUCES THE WATER CONSUMPTION BY AN AVERAGE OF 28% AND UP TO 96% FOR SOME NEW PRODUCTS IN THE LINE.

→ WATER<LESS JEANS WILL HELP LEVI'S® SAVE 16 MILLION LITERS OF WATER IN SPRING 2011.

→ IF EVERYONE WHO PURCHASES A PAIR OF WATER-LESS JEANS, WASHES THEM ONCE EVERY 2 WEEKS (INSTEAD OF ONCE A WEEK) WE'LL COLLECTIVELY SAVE 858,400,000 LITERS OF WATER A YEAR

We were the first apparel company to require manufacturers to protect water quality and restrict the use of harmful chemicals - ensuring water leaving factories is cleaner than when it comes in.

4. WATER<LESS JEANS

An average pair of our jeans uses 42 liters of water to get a worn-in look. Our Water<Less jeans have the same great style but a lot less water - as little as 1.5 liters for some leans.

5. TRANSPORTATION & DISTRIBUTION

We measure our greenhouse gas emissions in an effort to make the most significant reduction to our global carbon footprint.

6. CONSUMER USE

Most of the environmental impacts of our jeans occur after you take them home. Reduce the impact of your leans by up to 50% by washing in cold water and line-drying. Save more than 500 liters of water a year by washing them every other week instead of once a week.

7. RECYCLING

"A Care Tag for Our Planet" is a reminder to extend the life of your jeans by donating them to Goodwill® when you're finished with them,

8. END OF LIFE & REBIRTH

Old jeans can be used as building materials, We used 25,500 pairs of jeans to create recycled denim insulation for our SF headquarters.

VISIT LEVI.COM TO SEE HOW WE'RE FINDING WAYS TO CARE FOR OUR PLANET

cussion Levi & Patagonia

https:// www.youtube.com/watch? v=YSLpONKlECs

Process based LCA structure

BUT There are complete life cycle phases associated with each of the input items for a coffee maker as well

Economic Input-Output Analysis

- Developed by Wassily Leontief (Nobel Prize in 1973)
- "General interdependency" model: quantifies the interrelationships among sectors of an economic system
- Identifies the direct and indirect economic inputs of purchases
- Creates a picture of a regional economy describing flows to and from industries
- Can be extended to environmental and energy analysis

Input-Output method

- An input/ouput table quantifies the transactions between sectors of an economy
- Input-output model divides entire economy into distinct sectors
 - Set of large tables or matrices with 480 rows and 480 columns
- Each sector represented by one row and one column
- •Economic input-output model is linear. That means a \$100 purchase from a sector would be ten times greater than a \$10 purchase from same sector
 - If you buy 1 kg of a product from a sector for \$10 then buying 10 kg would cost \$100

Economic Input-Output Life Cycle Assessment (EIO-LCA)

- To produce a product in one sector, inputs from many different other sectors are required
 - To make cheese: need \$x of transportation, \$y of dairy production, \$z electricity
- Each sector has environmental sector impacts per output, tabulated,
 - eg., 20kg CO2eq/\$ dairy production output
- The overall environmental impact for a product or service:

Impact/product = Σ (sector inputs in \$ needed to make the product) x (the sector impact/\$)

The Boundary Issue

- Process-Based LCA: include all direct processes for evaluating a single product
 - •for making electricity must choose carefully the boundary of processes included, e.g. is coal transportation included?
 - Sometimes the boundary to choose is not clear
- In EIO-LCA, the boundary is by definition the entire economy, recognizing interrelationships among industrial sectors
- •In EIO LCA, the products described by a sector are representing an **average** product not a specific one

Data Sources in EIO-LCA

Data	Source
Economic input-output matrix	U.S. Dept. of Commerce
Electricity consumption	U.S. Dept. of Commerce
Fuel use	U.S. Dept. of Commerce
Toxic chemical emissions (TRI)	U.S. EPA's TRI database
Conventional air pollutant emissions	U.S. EPA's AIRS database

Example of using EIO-LCA

- As defined by US Department of Commerce, The Vehicle and other Transportation Equipment Industry contains the Automobile manufacturing sector
- We will trace through production of \$1 million of automobiles manufactured in 2002.
- www.eiolca.net

EIOLCA tool

Steps to use EIO-LCA

Total economic output of \$1 million automobile manufacturing

	Total Economic		
Sector	\$mill ↑		
Total for all sectors	2.71		
Automobile Manufacturing	0.849		
Motor vehicle parts manufacturing	0.506		
Light Truck and Utility Vehicle Manufacturing	0.15		
Wholesale trade	0.124		
Management of companies and enterprises	0.108		
Iron and steel mills	0.038		
Semiconductor and related device manufacturing	0.026		
Truck transportation	0.025		
Other plastics product manufacturing	0.021		
Power generation and supply	0.02		

Need cars to make cars

Service sectors also

represent

ed

Top 10 sectors only presented here. Download excel file: 428 sectors

Total conventional air pollutants output of \$1 million automobile manufacturing

A lot of iron and steel required for automobiles

Some sectors which would have not shown up in traditional process band LCA results

	CO	NH3	NOx	PM10	PM2.5	SO2	VOC
Sector	t	t	t	t	t	t	t
Total for all sectors	2.52	0.119	1.46	0.478	0.196	1.47	0.757
Iron and steel mills	0.538	0.002	0.081	0.022	0.018	0.06	0.018
Alumina refining and primary aluminum production	0.29	0	0.013	0.009	0.006	0.092	0.004
Truck transportation	0.2	0	0.211	0.06	0.011	0.004	0.022
Motor vehicle parts manufacturing	0.178	0.001	0.032	0.007	0.005	0.017	0.047
Carbon black manufacturing	0.124	0	0.01	0.002	0.001	0.066	0.003
Natural gas distribution	0.083	0	0.004	0	0	0.001	0.004
Iron, steel pipe and tube manufacturing from purchased steel	0.077	0	0.011	0.004	0.003	0.009	0.005
Commercial and industrial machinery and equipment rental and leasing	0.067	0	0.001	0	0	0	0.005
Wholesale trade	0.062	0	0.061	0.017	0.003	0.004	0.033
Household goods repair and maintenance	0.053	0	0	0	0	0	0.004

Headline represent emissions of CO, NH3, NOx, PM10, PM2.5, SO2, VOC from each sector

> Top 10 sectors only presented here

Necessity of EIO-LCA

- Process-based LCA are time consuming
- EIO-LCA may be used as a quick approximation tool

 Hypothesis- each \$ of production or TJ of product uses the same amount of energy and resources and results in the

Sector		Automobil	Shoes
	rs	es	
Air pollutants per \$1M (metric tons)	6.2	15	13
Air pollutants per TJ of petroleum (metric tons)	4.0	4.3	4.0
Toxic discharges per \$1M (metric tons)	32	2.0	1.1
Toxic discharges per TL of	2 1	0.50	2 E

Source: Modified from Hendrickson et al (2006)

Toxic discharges per TJ of 2.1 0.59 3.5 Large ranges across sectors. Service sectors cannot be estimated by this. The approximations are not a good replacement for a thorough life cycle assessment. However, it is a quick and easy tool to understand some of the underlying life cycle impacts

Process model

Detailed analysis of specific processes

Product comparisons

Identify process improvements

EIO-LCA

Boundary is defined as the entire economy

Economy-wide, system LCA

Publicly available data

Reproducible results

Subjective boundary selection

Lack of comprehensive data in many cases

Time and cost intensive

Proprietary data

Uncertainty

Aggregated level of data

Identification of process improvements are difficult

Imports treated as United States products

Uncertainty

Limited non-United States data

Product use and end-of-life options not included

3) Life-cycle improvement and analysis

er products company illustrative GHG emissions profile

cal company illustrative GHG emissions profile

Greatest GHG impact from the use of products.

They may focus on methods or products that enable consumers to reduce

Greatest GHG impact from the production and distribution of their products.

They may choose to work to improve their manufacturing and transportation

Where to focus the eff processes to reduce GHG emissions.

- Allows us to focus on the most significant environmental impacts as we develop and evaluate sustainability programs and policies
- Informs product decisions to reduce the environmental impact from design, materials, and manufacturing
- Supports engagement with external stakeholders to reduce the impact of materials and consumer care

See resulting environmental impact information from our first 11 products here. For more detailed information about our product assessments, download our study.

Levi's® 501® Original Jeans – Rinse Run

Levi's® 501® Original Jeans – Dark Stonewash

Levi's® 501® Original Jeans – Medium Stonewash

Levi's® 501® Original Jeans – Light Stonewash

Slim Straight 514™ Jeans – Indigo Wash

Slim Straight 514™ Jeans – Tumbled Rigid

Regular Straight 505° Jeans -Range (less water)

Regular Straight 505° Jeans - Range

Slim Straight 514™ Jeans - Rigid Tank

Regular Straight 505° Jeans – House Cat

Regular Straight 505® Jeans -Steel (less water)

REGULAR STRAIGHT 505® JEANS

RANGE (LESS WATER) (PC9 00505-2765)

IMPACT CATEGORY	QUANTITY		The same	
GLOBAL WARMING POTENTIAL	16 Kg CO2 - equivalents			
ENERGY USE	190 Megajoules	Ų-		
RENEWABLE ENERGY	13%			
WATER USE	5.9 Cubic meters	里流		
LAND OCCUPATION	6.6 Square meter x year			
QUALIFIED SUSTAINABLY GROWN FIBER	0%			
PRIMARY WASTE	0.10 Kg			
MATERIALS EFFICIENCY	87%			
RECYCLED CONTENT	1%			
EUTROPHICATION	0.004 Kg Phosphorous - equivalents			
LAND TRANSFORMATION	0.002 Square meters		X	

Combining LCA and Lifecycle Cost Analysis (LCC)

- Which modifiable process or product design variable with the system provide the greatest combined economic and environmental advantage?
- •What are the incremental costs of environmental improvement for each option, and which provides the greatest environmental improvement per \$?
- How low must the investment cost be for a particular environmental improvement to become cost effective?

McDonald's Clamshell or quilt-wrap?

	Polystyrene clamshell	Quilt-wrap	
Recycling	Problematic	No recycling	
Cost	2 to 2.5 cents/sandwich	1.5 to 2 cents/sandwich	
PR	Bad	Good	
Landfill space	High	25% less than polystyrene	
Atmospheric emissions	13.8 lbs/sandwich	9.7 lbs/sandwich	
Waterborne wastes	2.5 lbs/sandwich	1.4 lbs/sandwich	

Uses of Life Cycle Studies

- Product comparison
- Strategic Planning/ DfE
- Public Sector Uses/ Eco-labels
- Marketing

Softwares

- EPA website
 - http://www.epa.gov/ORD/NRMRL/Icaccess/ resources.htm#Software
- GaBi
 - http://www.gabi-software.com/
- Simapro
 - http://www.pre.nl/default.htm

Conclusion

- LCA examine the environmental impact of a process or product
- •Important uses: DfE, Eco labels, Differentiation strategy
- Number of difficulties. In particular, impacts may be difficult to evaluate and compare
- Important to combine LCA with LCC

Principles of Governance

Setting Purpose
Governance Body Composition
Material issues impacting stakeholders
Anti-corruption
Protected ethics advice and reporting
mechanisms
Integrating risk and opportunity into
business process

WEF

Core

Metric

S

People

Diversity and inclusion (%)
Pay equality (%)
Wage level (%)
Risks for incidents of child, forced or compulsory labour
Health and safety (%)
Training provided (#, \$)

Planet

Greenhouse Gas Emissions
TCFD Implementation
Land use and ecological sensitivity
Water consumption and withdrawal in
water-stressed areas

Prosperity

Absolute number and rate of employment
Economic Contribution
Financial investment contribution
Total R&D expenses
Total tax paid

Setting purpose: Company's stated purpose by which a business proposes solutions to economic, environmental and social issues

Governance body composition: Composition of the highest governance body and its committees

Material issues impacting stakeholders: Topics material to stakeholders and the company, how topics were identified, and how stakeholders were engaged

Anti-corruption: Anti-corruption training, number/nature of incidents, and initiatives/stakeholder engagement to combat corruption

Protected ethics advice and reporting mechanisms: Internal/external mechanisms to seek advice and report concerns about

Internal/external mechanisms to seek advice and report concerns about ethical/lawful behavior

Integrating risk and opportunity into business process: Principal ESG risks facing the company specifically (including material economic, environmental and social issues, including climate change and data stewardship), appetite of risks, change in risks over time, and response to changes

Diversity and inclusion (%): Percent of employees per employee category (age group, gender, and other indicators of diversity)

Pay equality (%): Basic salary/remuneration for each employee category by significant locations of operation for priority areas of equality

Wage level (%): Ratio of the standard entry level wage by gender compared to the local minimum wage and the ratio of the annual total compensation of the CEO to the median of the annual total compensation of its employees, except CEO

Risk of incidents of child, forced or compulsory labour: Operations and suppliers with significant risk of incidents of child, forced or compulsory labor

Health & safety (%): Number, rate, and type of fatalities and work-related injuries; Workers' access to non-occupation medical and healthcare services (including scope of access)

Training provided (#, \$): Average hours of training by gender and employee category; cost of training/development per full time employee

GHG emissions: For all relevant GHGs, report in (tCO2e) GHG Protocol Scope 1 and 2 emissions, and estimate/report material upstream and downstream (GHG Protocol Scope 3) emissions where material

Task Force on Climate Related Financial Disclosures

Implementation: Fully implement TCFD recommendations, or if necessary, disclose timeline for implementation and commitment to set GHG standards in line with Paris Agreement goals

Land use and ecological sensitivity: Number and area of sites owned, leased, or managed in or adjacent to protected and/or Key Biodiversity Areas (KBA)

Water consumption and withdrawal in water stressed areas: Report for operation where material, mega liters of water consumed and the percentage of each in regions with high or extremely high baseline water stress. Additionally, estimate and report for full value chain.

Absolute number and rate of employment: Number and rate of new hires and employee turnover by age group, gender, other indicators of diversity and region

Economic contribution:

- 1) Direct economic value generated and distributed (EVG&D),
- 2) Financial assistance received from the government

Financial investment contribution: 1) Capital expenditures minus depreciation, 2) share buybacks plus dividend payments

Total R&D expenses (\$): Costs related to R&D

Total tax paid: Total global tax borne by the company, including corporate income taxes, property taxes, non-creditable value-added tax (VAT) and other sales taxes, employer-paid payroll taxes, and other taxes that constitute costs to the company, by category of taxes

Additional Slides

Example:

Transactions Table forms the basis for the I-O

Model

Sectors of our economy purchasing and producing our stuff

	Purch	asing	Final	Total		
Processin g Sectors	Agricultu re	Forest Produc ts	Manufacturi ng	Deman d	Outpu	
Agricultur e Forest Products Manufactu ring	8 7 4	4 9 2	4 5 4	20 11 24	36 32 34	
Value Added Imports	11 6	15 2	13 8		39 16	
Tot	added is inc		ad in 3/1	55	157	

Demand from households. government, export.

Can also be explained as demand of goods not used to produce other goods

Out

production including labor earnings Eq- compensation, taxes

15Source: Eric McConnell 2014 **J**

presentation

Total economic output of \$1 million automobile manufacturing

Need cars to make cars

Service sectors also represent ed

	Total Economi c	Total Value Added	Employee Comp VA	Net Tax VA	Profits VA	Direct Economic	Direct Economic
Sector	\$mill ↑	\$mill	\$mill	\$mill	\$mill	\$mill	%
Total for all sectors	2.71	0.971	0.56	0.042	0.368	1.74	64.2
Automobile Manufacturing	0.849	0.21	0.073	0.002	0.135	0.849	100
Motor vehicle parts manufacturing	0.506	0.15	0.114	0.003	0.033	0.446	88.1
Light Truck and Utility Vehicle Manufacturing	0.15	0.031	0.013	0	0.018	0.15	99.9
Wholesale trade	0.124	0.086	0.047	0.02	0.019	0.057	46.1
Management of companies and enterprises	0.108	0.067	0.056	0.002	0.009	0.033	30.9
Iron and steel mills	0.038	0.01	0.008	0	0.003	0	1.6
Semiconductor and related device manufacturing	0.026	0.012	0.005	0	0.007	0.014	54.7
Truck transportation	0.025	0.011	0.008	0	0.003	0.009	34.2
Other plastics product manufacturing	0.021	0.008	0.006	0	0.002	0.01	48.5
Power generation and supply	0.02	_{0.014} Top	10 spe gtou rs on	nly p <u>øes⊛⊅</u> nted	her _{e.0} pown	loadϋ6 9 l file	: 428 .69 ctors

Total GHG output of \$1 million automobile manufacturing

	Total	CO2 Fossil	CO2 Process	CH4	N20	HFC/PFCs
Sector	t CO2e	t CO2e	t CO2e	t CO2e	t CO2e	t CO2e
Total for all sectors	563	412	81.4	41.9	13	14.5
Power generation and supply	180	177	0	0.488	1.1	1.14
Iron and steel mills	108	40.7	66.5	0.657	0	0
Truck transportation	24.1	24.1	0	0	0	0
Oil and gas extraction	20.4	5.75	3.74	10.9	0	0
Cattle ranching and farming	12.4	0.815	0	7.07	4.55	0
Other basic organic chemical manufacturing	11.3	10.1	0	0	1.16	0
Petroleum refineries	11.1	11.1	0	0.035	0	0
Motor vehicle parts manufacturing	10.9	10.9	0	0	0	0
Automobile Manufacturing	10.8	10.8	0	0	0	0
Alumina refining and primary aluminum production	10.7	2.42	3.79	0	0	4.46

Most sectors contributing to GHG emissions are intuitive. But some like cattle ranching and farming contributing to total GHG emissions are not intuitive

Total energy output of \$1 million automobile manufacturing

Sector	Total Energy	Coal	NatGas	Petrol	Bio/Waste	NonFossElec
	TJ	TJ	TJ	TJ	TJ	TJ
Total for all sectors	8.33	2.56	2.63	1.29	0.435	1.41
Power generation and supply	2.19	1.6	0.467	0.078	0	0.051
Iron and steel mills	1.25	0.743	0.341	0.012	0.005	0.151
Motor vehicle parts manufacturing	0.46	0.005	0.19	0.014	0.024	0.228
Automobile Manufacturing	0.381	0.004	0.19	0.013	0.04	0.133
Truck transportation	0.327	0	0	0.324	0	0.003
Other basic organic chemical manufacturing	0.259	0.032	0.099	0.036	0.078	0.014
Petroleum refineries	0.187	0	0.05	0.121	0.009	0.007
Alumina refining and primary aluminum production	0.172	0	0.046	0.001	0.004	0.12
Plastics material and resin manufacturing	0.169	0.007	0.088	0.037	0.018	0.019
Paperboard Mills	0.161	0.015	0.033	0.007	0.095	0.011

Headlines
represent the total
energy used by
each sector from
coal, natural gas,
petrol,
biomass/waste
and non fossil fuel
sources

Total hazardous waste generated from \$1 million automobile manufacturing

	Haz Waste Gen
Sector	st
Total for all sectors	416000
Other basic organic chemical manufacturing	107000
Motor vehicle parts manufacturing	106000
Iron and steel mills	49500
Petroleum refineries	41900
Semiconductor and related device manufacturing	21400
Plastics material and resin manufacturing	20400
Automobile Manufacturing	13400
Wholesale trade	11200
Coating, engraving, heat treating and allied activities	7000
Waste management and remediation services	5820

Some service sectors such as wholesale trade show up in the hazardous waste generation.

Total toxic releases output of \$1 million automobile manufacturing

	Fugitive	Stack	Total Air	Surface Water	U'ground Water	Land	OffSIte	POTW Metal	POTW Nonmetal
Sector	kg	kg	kg	kg	kg	kg	kg	kg	kg
Total for all sectors	27.7	151	178	25.8	22.4	357	162	1.79	46.9
Automobile Manufacturing	4.73	44	48.7	0.009	0	0.026	2.63	0.314	7.96
Other basic organic chemical manufacturing	2.52	3.97	6.48	3.02	7.64	0.14	1.01	0.035	10.7
Motor vehicle parts manufacturing	1.87	9.57	11.4	0.024	0	0.375	11.2	0.364	3.34
Iron and steel mills	1.46	1.21	2.67	11.4	0.198	10.8	77.5	0.004	0.485
Alumina refining and primary aluminum production	1.32	3.89	5.21	0.633	1.64	2.44	3.63	0.021	2.1
Plastics material and resin manufacturing	1.14	2.53	3.67	0.255	1.48	0.021	0.247	0.002	2.1
Light Truck and Utility Vehicle Manufacturing	0.856	7.95	8.81	0.002	0	0.005	0.475	0.057	1.44
Ferrous metal foundaries	0.814	0.961	1.77	0.042	0	3.23	10.3	0.054	0.051
Metal can, box, and other container manufacturing	0.692	1.41	2.11	0	0	0	0.008	0	0.011
Synthetic rubber manufacturing	0.567	1.01	1.58	0.08	0.251	0	0.079	0	0.023

Total water withdrawals of \$1 million automobile manufacturing

Sector	Water Withdrawal s		
	kGal		
Total for all sectors	8900		
Power generation and supply	5120		
Paint and coating manufacturing	868		
Cotton farming	775		
Grain farming	745		
Iron and steel mills	157		
Paperboard Mills	126		
Cattle ranching and farming	115		
Gold, silver, and other metal ore mining	105		
Motor vehicle parts manufacturing	80.8		
Other basic organic chemical manufacturing	78.2		

Total movement of inputs/freight of \$1 million automobile manufacturing via various modes

	Air	Oil Pipe	Gas Pipe	Rail	Truck	Water	Intl Air	Intl Water	Total
Sector	ton- km	ton- km	ton-km	ton-km	ton-km	ton-km	ton-km	ton-km	ton-km
Total for all sectors	5260	53600	45300	1220000	663000	96600	8230	1600000	3690000
Leather and hide tanning and finishing	2730	0	0	45.1	5530	0	738	935	9980
Automobile Manufacturing	562	0	0	829000	231000	445	359	249000	1310000
Motor vehicle parts manufacturing	467	0	0	103000	108000	28.6	2740	111000	325000
Other leather and allied product manufacturing	280	0	0	8.39	352	0	107	3260	4010
Other basic organic chemical manufacturing	123	0	0	9720	3060	2470	40.8	21000	36400
Iron and steel mills	66.8	0	0	41300	51600	11100	48.4	201000	305000
Paint and coating manufacturing	57.5	0	0	1760	4940	29.5	7.25	242	7040
Semiconductor and related device manufacturing	48.8	0	0	150	629	0	171	68.9	1070

Total land use from all sectors from \$1 million automobile manufacturing

Cachan	Land Use
Sector	1000 x ha (kha)
Total for all sectors	0.065
Cattle ranching and farming	0.021
Logging	0.014
Automobile Manufacturing	0.01
Forest nurseries, forest products, and timber tracts	0.01
All other crop farming	0.002
Grain farming	0.001
Light Truck and Utility Vehicle Manufacturing	0.001
Cotton farming	0.001
Truck transportation	0
Oilseed farming	0

TRACI impacts from all sectors from \$1 million automobile manufacturing

	Glob War m	Acidif Air	HH Crit Air	Eutro Air	Eutro Water	OzoneDe p	Smog Air	EcoTox (low)	HH Cancer (low)	HH NonCanc er (low)	EcoTox (high)	HH Cancer (high)	HH NonCanc er (high)
Sector	kg CO2 e	kg SO2e	kg PM10e	kg Ne	kg Ne	kg CFC- 11e	kg O3e	kg 2,4D	kg benzene eq	kg toluene eq	kg 2,4D	kg benzene	kg toluene
Total for all	_									_		eq	eq
sectors	00	2880	892	79	0.305	0.562	39200	50.9	106	76200	52.9	707	1090000
Power generation and supply	1800 00	1030	205	15.1	0.003	0	8310	2.09	3.06	1720	2.1	9.16	9060
Iron and steel mills	1080 00	127	46.5	3.75	0.058	0	2090	1.41	11.3	12500	1.66	12.4	13300
Truck transportati on	2410 0	172	73.8	9.42	0	0	5330	0	0	0	0	0	0
Oil and gas extraction	2040 0	32.3	1.97	1.67	0	0	1130	0	0	0	0	0	0
Cattle ranching and farming	1240 0	81.8	15	5.08	0	0	62.4	0	0	0	0	0	0
Other basic organic chemical manufacturi	1210 0	44.6	9.21	1.26	0.044	0.088	715	0.058	1.02	127	0.199	4.72	312
Motor vehicle parts manufacturi ng	1160 0	44.2	14	1.54	0	0.026	968	4.45	2.14	1680	4.59	7.44	16300
Petroleum refineries	1120 0	26.7	5.58	0.493	0.009	0.001	282	0.028	0.309	74.2	0.038	0.84	89.1
Automobile Manufacturi ng		38	11.4	1.23	0	0	1490	0.202	0.53	75.9	0.207	6.37	161
Alumina refining and primary aluminum production	1070 0	105	28.8	0.629	0.013	0.12	341	0.137	0.934	311	0.151	19.6	11900

Life-Cycle Assessment of a cup of Nespresso Expressed in % CO₃eq per cup (Quantis, LCA 2013)

The Life Cycle of a Jean

http://store.levi.com/waterless/

THE LIFECYCLE OF A LEVI'S 501 JEAN

http://levistrauss.com/wp-content/uploads/2015/03/Fact-Sheet-for-LCA-

Product life cycle Assessment (LCA) study: <u>Levi Strauss Co</u>

Illustrations kenneth @ buddha jeans 2013 buddhajeans.com

illustrations kenneth @ buddha jeans 2013 buddhajeans.com

THE LIFE CYCLE OF **LEVI'S® JEANS**

AS A COMPANY, WE WORK HARD TO BUILD SUSTAINABILITY INTO EVERYTHING WE DO. THAT'S WHY WE ARE WORKING TO REDUCE WATER, CHEMICALS, AND ENERGY USAGE AT EVERY STAGE OF THE LIFE OF OUR JEANS.

Growing cotton takes a lot of water. We joined the Better Cotton initiative to reduce water and chemicals while supporting farmers and healthy soil.

2. FABRIC PRODUCTION

As a supporter of NRDC's Responsible Sourcing Initiative, we're working with textile mills to reduce water, chemicals, and energy usage.

LESS WATER IN YOUR LEVIS → THE WATER<LESS COLLECTION REDUCES THE WATER CONSUMPTION BY AN AVERAGE OF 28% AND UP TO 96% FOR SOME NEW PRODUCTS IN THE LINE.

→ WATER<LESS JEANS WILL HELP LEVI'S® SAVE 16 MILLION LITERS OF WATER IN SPRING 2011.

→ IF EVERYONE WHO PURCHASES A PAIR OF WATER-LESS JEANS, WASHESTHEM ONCE EVERY 2 WEEKS (INSTEAD OF ONCE A WEEK) WE'LL COLLECTIVELY SAVE 858,400,000 LITERS OF WATER A YEAR

3. GARMENT MANUFACTURING

We were the first apparel company to require manufacturers to protect water quality and restrict the use of harmful chemicals - ensuring water leaving factories is cleaner than when it comes in.

4. WATER<LESS JEANS

An average pair of our jeans uses 42 liters of water to get a worn-in look. Our Water<Less jeans have the same great style but a lot less water - as little as 1.5 liters for some leans.

5. TRANSPORTATION & DISTRIBUTION

We measure our greenhouse gas emissions in an effort to make the most significant reduction to our global carbon footprint.

6. CONSUMER USE

Most of the environmental impacts of our jeans occur after you take them home. Reduce the impact of your leans by up to 50% by washing in cold water and line-drying. Save more than 500 liters of water a year by washing them every other week instead of once a week.

7. RECYCLING

"A Care Tag for Our Planet" is a reminder to extend the life of your jeans by donating them to Goodwill® when you're finished with them,

8. END OF LIFE & REBIRTH

Old jeans can be used as building materials, We used 25,500 pairs of jeans to create recycled denim insulation for our SF headquarters.

VISIT LEVI.COM TO SEE HOW WE'RE FINDING WAYS TO CARE FOR OUR PLANET

cussion Levi & Patagonia

https:// www.youtube.com/watch? v=YSLpONKlECs

Lifecycle of a Starbucks Breakfast Blend K-Cup

Circularit¹

Raw Materials

The primary raw materials used as the basis for the fabrication of the K-Cup are corn, crude oil, and natural gases for making plastic, wood for making coffee filters, Bauxite Ore for making Aluminum, and coffee beans for producing coffee grounds. These materials were acquired either through the use of farming or excavation. Both methods utilize human labor, energy from fossil fuels, chemical energy, and heavy use of mechanical construction and farming equipment. The use of other raw materials like water, sunlight, and resources for making fertilizers, pesticides, and solutions to decompose Earth for excavation, are integral in the overall manufacture of the product.

Energy Embodied

Many different types of energies are used throughout the life cycle of the K-Cup. Raw materials are converted to secondary materials through the use of intentional chemical reactions, often times these chemical reactions are prompted by the use of mechanical or thermal energy. The raw materials are converted into usable primary materials, which are then converted into secondary materials, which are then reformed and assembled to create a final product. Various melting, bonding, purification, and assembling processes involve the use of specialized machines and heating elements. Many of these operations are energized by electricity, in addition human labor is another notable source of energy.

A More Sustainable Solution

The K-Cup requires the use of a lot of non-renewable resources. Green Mountain Coffee Growers, the owner of the K-Cup patent, is in the process of manufacturing a K-Cup that is more environmentally friendly while still giving you the full benefits of K-Cup brewing. They seek to achieve this goal by manufacturing a K-Cup where the plastic is made entirely out of PLA. PLA is a plastic produced from corn which makes it recyclable. The plastic in the K-Cup is currently 19% PLA. If a K-Cup can be created that is 100% PLA plastic then it will transform the product into a guilt free way to get your morning brew.

Final Product

The K-Cup is a self contained brewing system designed specifically for Keurig Brewers. The small cup has four main components, the smooth plastic shell, the créped paper coffee filter, the Starbucks Breakfast Blend coffee grounds located in the coffee filter, and finally the aluminum lid that seast the cylindrical container. The K-Cup is used once to brew a single serving of coffee and then the cup may be disposed of.

Waste and Emissions

Only two elements of the K-Cup are recyclable, the aluminum lid and the coffee filter. The lid can be recycled with aluminum products and the filter can be recycled with paper products. The plastic shell, the most significant component of the K-Cup structure, cannot be recycled. There is some controversy over the pros and cons of this K-Cup technology because so much of the product does ultimately end up in a landfill upon disposal. Other production processes throughout the life cycle also create waste, for example Bauxite conversion to Aluminum releases red mud through the filtration process of solid and metallic oxide-bearing impurities. Runoff sediment is one of the largest, and often over-looked, cases of water waste and cannot be re-used because of water contamination from pesticides.

