Cutting Boards

Chinese Version Russian Version

Alice gives Bob a board composed of $m \times n$ wooden squares and asks him to find the minimum cost of breaking the board back down into individual 1×1 pieces. To break the board down, Bob must make cuts along its horizontal and vertical lines.

The cost of cutting the whole board down into 1×1 squares is the sum of the cost of each successive cut. Recall that the cost of a cut is multiplied by the number of already-cut segments it crosses through, so each cut is increasingly expensive.

Can you help Bob find the minimum cost?

Input Format

The first line contains a single integer, T, denoting the number of test cases. The subsequent 3T lines describe each test case in 3 lines.

For each test case, the first line has two positive space-separated integers, m and n, detailing the respective height (y) and width (x) of the board.

The second line has m-1 space-separated integers listing the cost, c_{y_j} , of cutting a segment of the board at each respective location from $y_1, y_2, \ldots, y_{m-2}, y_{m-1}$.

The third line has n-1 space-separated integers listing the cost, c_{x_i} , of cutting a segment of the board at each respective location from $x_1, x_2, \ldots, x_{n-2}, x_{n-1}$.

Note: If we were to superimpose the $m \times n$ board on a 2D graph, x_0 , x_n , y_0 , and y_n would all be edges of the board and thus not valid cut lines.

Constraints

$$2 \le m, n \le 1000000$$

$$0 \leq c_{x_i}, c_{y_i} \leq 10^9$$

Output Format

For each of the T test cases, find the minimum cost (MinimumCost) of cutting the board into 1×1 squares and print the value of $MinimumCost \% (10^9 + 7)$.

Sample Input

Input 00

1			
2 2			
2 2 2			
1			

Input 01

```
1
64
21314
412
```

Sample Output

Output 00

4

Output 01

42

Explanation

Sample 00: We have a 2×2 board, with cut costs $c_{y_1} = 2$ and $c_{x_1} = 1$. Our first cut is horizontal at y_1 , because that is the line with the highest cost (2). Our second cut is vertical, at x_1 . Our first cut has a TotalCost of 2, because we are making a cut with cost $c_{y_1} = 2$ across 1 segment (the uncut board). The second cut also has a TotalCost of 2, because we are making a cut of cost $c_{x_1} = 1$ across 2 segments. Thus, our answer is $MinimumCost = ((2 \times 1) + (1 \times 2)) \% (10^9 + 7) = 4$.

Sample 01: Our sequence of cuts is: y_5 , x_1 , y_3 , y_1 , x_3 , y_2 , y_4 and x_2 .

Cut 1: Horizontal with cost $c_{y_5}=4$ across 1 segment. TotalCost=4 imes 1=4 .

Cut 2: Vertical with cost $c_{x_1}=4$ across 2 segments. TotalCost=4 imes 2=8 .

Cut 3: Horizontal with cost $c_{y_3}=3$ across 2 segments. TotalCost=3 imes 2=6 .

Cut 4: Horizontal with cost $c_{y_1}=2$ across 2 segments. TotalCost=2 imes2=4 .

Cut 5: Vertical with cost $c_{x_3}=2$ across 4 segments. TotalCost=2 imes4=8 .

Cut 6: Horizontal with cost $c_{y_2}=1$ across 3 segments. TotalCost=1 imes 3=3 .

Cut 7: Horizontal with cost $c_{y_4}=1$ across 3 segments. TotalCost=1 imes 3=3 .

Cut 8: Vertical with cost $c_{x_2}=1$ across 6 segments. TotalCost=1 imes 6=6 .

When we sum the TotalCost for all minimum cuts, we get 4+8+6+4+8+3+3+6=42. We then print the value of 42% (10^9+7) .