UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 Listado 14 (Vectores, Rectas y Planos en \mathbb{R}^3)

- 1. Sabiendo que $\vec{u} \cdot (\vec{v} \times \vec{w}) = 1$ determine:
 - a) $(\vec{v} \times \vec{w}) \cdot \vec{u}$.
 - b) $\vec{w} \cdot (\vec{v} \times \vec{u})$.
- 2. Encuentre un vector que tenga norma 3 y que sea perpendicular a (1, -4, 0) y (2, 0, -7).
- 3. Sean $\vec{u} = (0, 1, -1), \vec{v} = (0, 2, 1) \text{ y } \vec{w} = (-2, 1, 1).$ (En Práctica)
 - a) Calcule $2\vec{u} \cdot \vec{v}$, $-\vec{v} \times \vec{u}$, $\vec{u} \cdot (\vec{v} \times \vec{w})$.
 - b) Encuentre un vector $\vec{x} \in \mathbb{R}^3$ (si existe) tal que,
 - i) sea perpendicular a \vec{u} y \vec{v} ,
 - ii) $\|\vec{x} \vec{u}\| = \|\vec{x} \vec{v}\| \text{ y } \|\vec{x}\| = 1$,
 - iii) sea paralelo al vector $\vec{u} \vec{v}$ y perpendicular a $-\vec{w}$.
- 4. Sean $\vec{a} = (1, -1, \alpha)$ y $\vec{b} = (-2, -\alpha, 4)$ dos vectores en \mathbb{R}^3 con $\alpha \in \mathbb{R}$. Determine un valor de α (si existe) tal que:

(En Práctica)

- i) \vec{a} es paralelo a \vec{b} ,
- ii) \vec{a} es perpendicular a \vec{b} ,
- iii) La proyección de \vec{b} sobre \vec{a} sea (-6, -12, 12,).
- 5. Sean $\vec{u}=(-2,1,-2)$ y $\vec{v}=(1,-2,1)$ dos vectores en \mathbb{R}^3 . Encuentre un vector $\vec{w}=\vec{u}+\lambda\vec{v},\ \lambda\in\mathbb{R}$, tal que $\|\vec{w}\|$ tenga el menor valor posible.

(En Práctica)

6. Determine el lugar geométrico de los vectores que forman un ángulo de 30 grados con el vector $(1,0,\sqrt{3})$. ¿Existe alguno de la forma $(\alpha,8,\sqrt{3}\alpha)$, con $\alpha \in \mathbb{R}$? Determínelo(s).

- 7. Determine un vector $\vec{x} = (x_1, x_2, x_3)$ tal que $||\vec{x}|| = 4$ y los ángulos directores con respecto a los ejes X y Z sean 30 y 45 grados respectivamente.
- 8. Sean $\vec{x}, \vec{y}, \vec{z}$ tres vectores cualesquiera en \mathbb{R}^3 . Pruebe que:

(En Práctica i), ii) y iii))

- i) $\|\vec{x} + \vec{y}\|^2 + \|\vec{x} \vec{y}\|^2 = 2(\|\vec{x}\|^2 + \|\vec{y}\|^2),$
- ii) $\|\vec{x} + \vec{y}\| = \|\vec{x} \vec{y}\| \iff \vec{x} \cdot \vec{y} = 0$,
- iii) $\|\vec{x} + \vec{y}\| = \|\vec{x}\| + \|\vec{y}\| \Longleftrightarrow \vec{x} = \lambda \vec{y}, \ \lambda > 0,$
- iv) $(\vec{x} \times \vec{y}) \cdot \vec{z} = \vec{x} \cdot (\vec{y} \times \vec{w}),$
- v) $(\vec{x} \times \vec{y}) \times \vec{z} + (\vec{y} \times \vec{z}) \times \vec{x} + (\vec{z} \times \vec{x}) \times \vec{y} = 0.$
- 9. Pruebe que si $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ tal que \vec{b} y \vec{c} son perpendiculares y $\alpha \in \mathbb{R}$. Pruebe que si $\vec{a} \cdot \vec{b} \neq 0$, entonces $\vec{x} = \frac{\vec{a} \times \vec{c} + \alpha \vec{b}}{\vec{a} \cdot \vec{b}}$ satisface las ecuaciones: $\vec{x} \cdot \vec{a} = \alpha$ y $\vec{x} \times \vec{b} = \vec{c}$. (En Práctica)
- 10. Determine el área del triángulo cuyo vértices son los puntos $(1,0,-1),\ (2,-2,3)$ y (7,-2,4).
- 11. Sean $\vec{a}=(0,-1,2),\,\vec{b}=(2,0,3)$ y $\vec{c}=(-1,0,-2)$ tres vectores en $\mathbb{R}^3.$ Pruebe que:

$$(\vec{x} \cdot \vec{a} = 0) \wedge (\vec{x} \cdot \vec{b} = 0) \wedge (\vec{x} \cdot \vec{c} = 0) \Longrightarrow \vec{x} = (0, 0, 0).$$

(En Práctica)

- 12. Calcule el área del cuadrilatero cuyos vértices son los vectores: (9, 10, 1), (1, 3, 2), (2, 8, 6) y (31, 21, -10). Encuentre también su centro de masa.
- 13. Sean $\vec{a}=(0,-1,2),\, \vec{b}=(2,0,3)$ y $\vec{c}=(-1,0,-2)$ tres vectores en $\mathbb{R}^3.$ Pruebe que:

$$(\vec{x}\cdot\vec{a}=0) \ \wedge \ (\vec{x}\cdot\vec{b}=0) \ \wedge \ (\vec{x}\cdot\vec{c}=0) \Longrightarrow \ \vec{x}=(0,0,0).$$

(En Práctica)

14. Demuestre que el volumen de la pirámide cuyos vértices son los vectores (0,0,0), \vec{u} , \vec{v} y \vec{w} es: $\frac{1}{6}|\vec{u}\cdot(\vec{v}\times\vec{w})|$. Indicación, use que el volumen de cualquier pirámide es igual a un tercio de su base por su altura.