

本专科课程考试试题 参考答案及评分标准

开课单位:	数学科学学院	学生所在学院:
TT (未 上 1)/:	なりーーーーーーー	J

(2014 ~2015 年春季季学期)

	力课早型:	数子科子子风 于工川工于风		- W. Do W
	课程编号	C17000104015 学分/学时	5/90	试卷 ■A卷 □B卷
1	77.11.5			■公共课 □基础课 □专业课
	课程名称	线性代数与概率统计1	课程类别	
	专业/年级	理工 专业 年级	修读方式	■必修 □选修
	出题教师	许 成	考试方式	■闭卷 □开卷 □其它

(共24分,每小题3分);

$$5: \begin{bmatrix} 5 & -1 \\ -3 & 2 \end{bmatrix}$$

7:
$$\frac{1}{\sqrt{3}}(-1,1,1)^T$$

5:
$$\begin{bmatrix} 5 & -1 \\ -3 & 2 \end{bmatrix}$$
 6. 3; 7: $\frac{1}{\sqrt{3}}(-1,1,1)^T$; 8: $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}$

二: 本题共 7 分

$$A^{-1} = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}; \quad X = \begin{bmatrix} 3 & -5 \\ -5 & 9 \end{bmatrix}$$

三: (共7分)

1. 极大无关组
$$\alpha_1, \alpha_2$$
:
$$\begin{bmatrix} 1 & 0 & -11 & 17 \\ 0 & 1 & 5 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

2. 用极大无关组线性表出其他向量: $\alpha_3 = -11\alpha_1 + 5\alpha_2$; $\alpha_4 = 17\alpha_1 - 7\alpha_2$

四: (共7分)

1: 写出对应的初等变换;

$$\begin{bmatrix} 1 & 0 & -3/2 & 3/4 & 5/4 \\ 0 & 1 & -3/2 & -7/4 & -1/4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

2: 通解: $c_1(3/2,3/2,1,0)^T + c_2(-3/4,7/4,0,1)^T + (5/4,-1/4,0,0)^T$

五: (5 %) 用反证法,只要证明方程组: (E-BA)X=0 只有零解即可。

六: (共24分,每小题3分)

5. 5; 6. 0.78; 7:
$$f(x,y) = \frac{1}{4}e^{-y}$$
; 8: $np + npq$ 或者 $np(2-p)$

七: (共7分)

1.
$$1 = \int_{0}^{2} kx dx = 2k \implies k = \frac{1}{2}$$
; 2. $F(x) = \begin{cases} 0, & x < 0; \\ \frac{1}{4}x^{2}, & 0 \le x \le 2; \\ 1, & x > 2 \end{cases}$ 3. $p = F(1) - F(-1) = \frac{1}{4}$

$$1.EX = 0; EY = 0; EXY = 0$$

$$2.DX = 1, DY = 1, COV(X, Y) = 0, \rho_{XY} = 0$$

九: (共6分)

$$P(V > 100) = P(\sum_{k=1}^{20} V_k > 100) = P(\frac{\sum_{k=1}^{20} V_k - 20E(V_k)}{\sqrt{20D(V_k)}} > 0) = \frac{1}{2}$$

十: (6分)

$$f(x,y) = \begin{cases} \frac{1}{1-x}, 0 < x < 1, 0 < y < 1; \\ 0, \text{ 其他} \end{cases} : f_r(y) = \begin{cases} -\ln(1-y), 0 < y < 1; \\ 0, \text{ 其他} \end{cases}$$