Esercizi del corso

Analisi Matematica - Mod. 1

Primo semestre 2024/2025

Foglio 2: Funzioni elementari

Esercizio 1 (Grafico di funzioni)	
Fare gli esercizi 1-6 delle slides (pagine 31-35)	
Esercizio 2 (Funzioni composte e periodiche)	
(a) Siano f e g due funzioni, entrambe crescenti o decre la funzione composta $f \circ g$ è crescente.	scenti. Si dimostri che allora anche
(b) Siano f e g due funzioni, entrambe crescenti. Si dimos	tri che allora anche $f+g$ è crescente.
(c) Siano f e g due funzioni, entrambe crescenti. Si ti crescente.	rovi un esempio in cui $f \cdot g$ non è
(d) Siano f e g due funzioni, entrambe periodiche con periodicità delle funzioni $h_1 = f + g$, $h_2 = f \cdot g$, $h_3 = g \cdot g$	
Esercizio 3 (Dominio di funzioni)	
Si trovi il dominio delle funzioni seguenti:	
(a) $f(x) = \log_2(x^2 + 1) + \log_5(x + 2)$	S: $x \in]-2, -1[\cup]1, +\infty[$
(b) $f(x) = \log_x(x)$	S: $x \in]0,1[\ \cup\]1,+\infty[$
(c) $f(x) = \log_2\left(\log_{\frac{1}{2}}x\right)$	S: $x \in]0,1[$
(d) $f(x) = \log_a \left(\frac{x}{x-1}\right)$	S: $x \in]-\infty, 0[\cup]1, +\infty[$
Esercizio 4 (Proprietà dei logaritmi)	
(a) Verificare che $(\log_a b) \cdot (\log_b c) \cdot (\log_c a) = 1$, precisando sui numeri a, b, c .	o quali sono le condizioni da imporre
(b) Verificare che per ogni $b>0$ vale $\log_a b = \log_{\sqrt{a}} b + \log_a b$	$\log_{\frac{1}{a}}b.$

Esercizio 5 (Disequazioni).....

Risolvere le disequazioni seguenti:

(a)
$$\left(\frac{1}{4}\right)^x < 64$$
 $S: x \in]-2, +\infty[$

(b)
$$\frac{35}{2} \left(\frac{1}{5}\right)^{2x} > 0.7 \cdot 5^x$$
 $S: x \in \left] -\infty, \frac{2}{3} \right]$

(c)
$$9\left(\frac{2}{3}\right)^x + 2 + 4\left(\frac{2}{3}\right)^{-x} \le 0$$
 $S:\emptyset$

(d)
$$\log(x+5) - \log(4-x) + \log(3x-1) > \log(3x-1) - \log(x+4)$$
 $S: x \in \left[\frac{1}{3}, 4\right[$

(e)
$$\frac{1}{2}\log(-x^2+2x) < \log x$$
 $S: x \in]1,2[$

(f)
$$\log\left(2 + \frac{1}{x}\right) - \log\left(2 - \frac{1}{x}\right) < \log(2x + 1) - \log(1 - 2x)$$
 $S: \emptyset$

(g)
$$2\log_{\sqrt{3}}(1-x) - \log_{\sqrt{3}}(3-x) < 2$$

$$S: x \in \left] \frac{-1-\sqrt{33}}{2}, 1 \right[$$

(h)
$$3\log_5(x-4) > \frac{6}{\log_5(x-4)+1}$$
 $S: x \in \left] \frac{101}{25}, \frac{21}{5} \right[\cup]9, +\infty[$