# Л. Н. ТРОФИМОВА, А. В. ЕРОШЕНКО

# ОСНОВЫ ПРОГРАММИРОВАНИЯ НА ЯЗЫКЕ С++

ЧАСТЬ 2

Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Омский государственный университет путей сообщения

Л. Н. Трофимова, А. В. Ерошенко

### ОСНОВЫ ПРОГРАММИРОВАНИЯ НА ЯЗЫКЕ С++

## Часть 2

Утверждено методическим советом университета в качестве учебно-методического пособия к выполнению лабораторных работ и самостоятельной работы по дисциплине «Информатика»

УДК 004. 432 (075.8) ББК 22. 183. 492я73 Т76

**Основы программирования на языке** C++: Учебно-методическое пособие к выполнению лабораторных работ и самостоятельной работы по дисциплине «Информатика». Часть 2 / Л. Н. Трофимова, А. В. Ерошенко; Омский гос. ун-т путей сообщения. Омск, 2017. 26 с.

В учебно-методическом пособии представлены основы программирования на языке С++. Рассматриваются вопросы разработки различных видов циклического алгоритма. Приводятся практические рекомендации для решения задач на применение циклической структуры.

Предназначено для студентов первого курса Института автоматики, телекоммуникаций и информационных технологий всех специальностей очной и заочной форм обучения.

Библиогр.: 2 назв. Табл. 4. Рис. 7.

Рецензенты: канд. физ.-мат. наук, доцент А. А. Романова; канд. техн. наук, доцент А. Г. Малютин.

© Омский гос. университет путей сообщения, 2017

# ОГЛАВЛЕНИЕ

| Введение.                                                      | 5  |
|----------------------------------------------------------------|----|
| Лабораторная работа 5. Программирование циклических структур   | 6  |
| 5.1. Понятие циклического алгоритма                            | 6  |
| 5.2. Цикл с предусловием                                       | 6  |
| 5.3. Цикл с постусловием.                                      | 7  |
| 5.4. Цикл с заданным числом повторений                         | 8  |
| 5.5. Задание                                                   | 10 |
| Лабораторная работа 6. Цикл накопления суммы. Цикл накопления  | Я  |
| произведения                                                   | 11 |
| 6.1. Цикл накопления суммы                                     | 11 |
| 6.2. Цикл накопления произведения                              | 12 |
| 6.3. Задание                                                   | 13 |
| Лабораторная работа 7. Цикл со счетчиком. Цикл с разветвлением | 15 |
| 7.1. Цикл со счетчиком                                         | 15 |
| 7.2. Цикл с разветвлением                                      | 16 |
| 7.3. Задания                                                   | 18 |
| Лабораторная работа 8. Вложенные циклы                         | 22 |
| 8.1. Понятие вложенных циклов                                  | 22 |
| 8.2. Задания                                                   | 23 |
| Библиографический список.                                      | 25 |

### ВВЕДЕНИЕ

Учебно-методическое пособие посвящено одному из важнейших разделов информатики – программированию на языке C++.

Учебно-методическое пособие составлено в соответствии с рабочей программой дисциплины «Информатика», предназначено для студентов первого курса, изучающих программирование, и содержит материал к выполнению лабораторных работ и самостоятельной работы по дисциплине «Информатика».

Цель пособия — ознакомить студентов с основами программирования циклических структур на языке С++, являющемся наиболее употребительным в настоящее время и отражающим тенденции в современном программировании, научить творческому подходу к решению поставленной задачи.

Во второй части учебного пособия представлены четыре лабораторные работы, в которых рассматриваются вопросы реализации различных видов циклической структуры.

Каждая лабораторная работа включает в себя теоретические сведения, примеры решения задач с использованием циклического вычислительного алгоритма и пояснения к ним, задания для аудиторной и самостоятельной работы.

### Лабораторная работа 5

### ПРОГРАММИРОВАНИЕ ЦИКЛИЧЕСКИХ СТРУКТУР

Цель работы: изучение особенностей разработки алгоритмов циклической структуры, освоение приема обработки данных.

### 5.1. Понятие циклического алгоритма

*Циклом* называют алгоритмическую конструкцию, в которой некая идущая подряд группа действий (шагов) алгоритма может выполняться несколько раз в зависимости от входных данных или условия задачи. Группа повторяющихся действий на каждом шагу цикла называется *телом цикла*, изменяющаяся в цикле величина – *переменной цикла* [1].

Существуют два основных вида циклического алгоритма: цикл с известным числом повторений (*арифметический цикл*), в котором явно задаются переменная цикла, ее начальное и конечное значения, шаг изменения, и цикл с неизвестным числом повторений (*итерационный цикл*), в котором переменная цикла может быть явно не задана.

Любой цикл состоит из трех частей: начала, проверки, тела.

Начало — всегда первая часть цикла, главная ее функция — подготовить цикл, т. е. назначить начальные значения всем переменным, которые изменяются в цикле.

Проверка – вторая часть цикла – определяет момент выхода из цикла и содержит зависящее от переменных условие, которое может выполняться или не выполняться.

Тело цикла – действия, повторяемые в цикле для различных значений переменных цикла.

### 5.2. Цикл с предусловием

Оператор *while* создает в программе цикл, который будет повторять последовательность операторов до тех пор, пока условие в начале цикла остается истинным. Такую организацию цикла называют *циклом с предусловием*, его лучше использовать в том случае, когда неизвестно число повторений. Сначала проверяется *условие*, и если оно истинно, то выполняются операторы в скобках. Дойдя до закрывающейся скобки, компилятор передает управление в начало

цикла, и все повторяется вновь [2]. Оператор *while* имеет следующий синтаксис:

```
while (условие)
{
    // тело цикла;
}
```

Пример. Два числа — a и b — вводятся с клавиатуры. Требуется увеличивать значения a с шагом изменения  $\Delta a$ , равным единице, и выводить их до тех пор, пока выполняется условие:  $a \le b$ . В этом примере заранее неизвестно число повторений, которое зависит от входных данных, поэтому целесообразно использовать цикл с предусловием. Графическая схема алгоритма данного примера приведена на рис. 5.1.

Программа для данного условия имеет вид:



Рис. 5.1. Графическая схема алгоритма

```
#include "stdafx.h"
#include <iostream>
#include <math.h>
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{
    double a, b;
    cin>>a>>b;
    while(a <= b)
    {
        cout << a << " ";
        a = a + 1;
    }
    return 0;
}</pre>
```

# 5.3. Цикл с постусловием

Кроме цикла с предусловием существует другой вид итерационного цикла —  $\mu$ икл с постусловием, в котором сначала выполняется тело цикла, а условие продолжения проверяется потом, что гарантирует выполнение операторов цикла по крайней мере один раз.

```
Оператор do... while имеет следующий синтаксис:
      do
       //операторы тела цикла;
      while (условие);
      Пример. Вывести значения переменной x от 1 до 2, шаг изменения x
равен 0,2.
      Программа по заданному условию:
      #include "stdafx.h"
      #include<iostream>
      using namespace std;
     int _tmain(int argc, _TCHAR* argv[])
            double x = 1:
            cout << "x=":
            do
            {
                 cout << x << \t ' ; //вывод переменной <math>x в строку
                 x += 0.2;
            while(x \le 2);
            return 0;
```

# 5.4. Цикл с заданным числом повторений

*Цикл с заданным числом повторений* состоит из ключевого слова *for* и пары круглых скобок, содержащих три оператора, которые отделяются друг от друга точкой с запятой. В начале выполнения цикла значение переменной (*параметр цикла*) устанавливается равным начальному значению. При каждом проходе цикла параметр увеличивается на величину шага. Когда параметр достигнет значения, большего конечного значения, цикл завершается и выполняются следующие за ним операторы. Графическая схема алгоритма (ГСА) организации цикла с заданным числом повторений приведена на рис. 5.2.

Цикл с заданным числом повторений имеет следующий синтаксис:



Рис. 5.2. ГСА цикл с заданным числом повторений



Рис. 5.3. ГСА

вычисления функции у

```
for (начальное значение; конечное значение; шаг)
   // тело цикла;
```

Пример. Вычислить значение функции  $y = a \cdot \sin^2 bx$  при  $x \in [-\pi; \pi]$ ;  $\Delta x = \pi / 6$ ; a = 0.62; b = 0.98, вывести переменные х и у в два столбца.

ГСА данного примера приведена на рис. 5.3.

```
Программа для данного условия:
```

```
#include "stdafx.h"
#include<iostream>
#include<math.h>
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{
      double x, y, a = 0.62, b, Pi;
      b = 0.98;
      Pi = 3.14159;
     for(x = -Pi; x \le Pi; x = x + Pi/6)
            y = a * pow(sin(b * x), 2);
            cout<<x<<" "<<y<<\n';
      return 0;
```

Цикл for можно заменить эквивалентным ему циклом while: начальное значение параметра цикла;

```
while(условие)
     тело цикла;
     приращение параметра цикла;
```

# **5.5.** Задание

Задание 1. Составьте ГСА и программу табулирования функции по заданному условию в соответствии со своим вариантом (табл. 5.1), применяя циклы с предусловием, постусловием, параметром.

Таблица 5.1 Исходные функции

| Вариант | Функция                                          | Исходные<br>данные   | Диапазон и шаг<br>изменения аргумента |
|---------|--------------------------------------------------|----------------------|---------------------------------------|
| 1       | 2                                                | 3                    | 4                                     |
| 1       | $b = 1 + \frac{z^2}{3 + \frac{z^2}{5}}$          | _                    | $0 \le z \le 5$ $\Delta z = 0.5$      |
| 2       | $a = \left  x^x - \sqrt[3]{\frac{y}{x}} \right $ | y = 0.03             | $ 1 \le x \le 4 \\ \Delta x = 0,5 $   |
| 3       | $a = \sqrt{x^2 + b} - b^2 \sin^3 x$              | b = 0.13             | $0 \le x \le 2$ $\Delta x = 0,25$     |
| 4       | $w = x^3 \operatorname{tg}^2(x+b)^2$             | b = 0.03             | $0 \le x \le 1$ $\Delta x = 0,1$      |
| 5       | $s = \frac{a}{\sqrt{x+b}} + tg^2 x$              | a = 1,1<br>b = 0,02  | $0 \le x \le 1$ $\Delta x = 0,1$      |
| 6       | $t = \frac{bx^2 - a}{e^{ax} - 1}$                | a = 0.17<br>b = 1.15 | $2 \le x \le 4$ $\Delta x = 0,25$     |
| 7       | $y = b\sin(at^2\cos 2t)$                         | a = 2,25<br>b = -7,8 | $0 \le t \le 2$ $\Delta t = 0,1$      |
| 8       | $z = m\cos(bt\sin t)$                            | b = 3.7<br>m = -0.5  | $0.1 \le t \le 0.9$ $\Delta t = 0.15$ |
| 9       | $y = b \operatorname{tg}^2 x + \ln^2 (a + x^2)$  | a = 1,5<br>b = -7,1  | $0.3 \le x \le 1$ $\Delta x = 0.1$    |

| 1  | 2                                            | 3        | 4                                      |
|----|----------------------------------------------|----------|----------------------------------------|
| 10 | $f = \ln(a^2 + x^2) + \sin^2 x$              | a = 0.25 | $ 1 \le x \le 2 \\ \Delta x = 0,1 $    |
| 11 | $r = \sqrt{ax\sin 2x} + e^{-2x}$             | a = 1,79 | $ 1 \le x \le 2 \\ \Delta x = 0.05 $   |
| 12 | $f = \frac{\sin x}{\sqrt{1 + m^2 \sin^2 x}}$ | m = 1,5  | $ 1,5 \le x \le 4 \\ \Delta x = 0,25 $ |

Лабораторная работа 6

## ЦИКЛ НАКОПЛЕНИЯ СУММЫ. ЦИКЛ НАКОПЛЕНИЯ ПРОИЗВЕДЕНИЯ

Цель работы: изучение особенностей разработки алгоритмов циклической структуры, освоение приема обработки данных.

### 6.1. Цикл накопления суммы

Стандартной задачей на применение циклической структуры является накопление суммы. Например, для заданного натурального числа N необходимо вычислить сумму:  $\sum_{i=1}^{N} \frac{1}{i} = \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{N}$ . Подсчет суммы осуществляется следующим образом. Начальное значение суммы S принимается равным нулю. K начальному значению суммы прибавляется первое слагаемое, в результате получается:  $s = s + \frac{1}{1}$ . Затем K полученной сумме прибавляется второе слагаемое K т. д. Процесс последовательного сложения продолжается до тех пор, пока не будет прибавлено последнее слагаемое. В компьютере накопление суммы реализуется K в виде формулы: K е K г. K г. K е K г. K в виде формулы: K е K г. K г. K е K г. K е K г. K е K г. K в виде формулы: K е K г. K е K е K г. K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е K е

Программа реализации рассмотренного примера имеет вид:



Рис. 6.1. ГСА цикла накопления суммы

### 6.2. Цикл накопления произведения

Аналогично циклу накопления суммы (см. подразд. 6.1) происходит цикл накопления произведения. В компьютере накопление произведения реализуется в виде формулы:  $P = P * a_i$ , где  $a_i$  – *текущий множитель*; переменная P, стоящая в левой части равенства, – *текущее значение произведения*; переменная P, стоящая в правой части равенства, – *предыдущее значение произведения*. По умолчанию начальное значение произведения равно единице.

```
\Pi р и м е р. Вычислить: \prod_{i=1}^{10} \left(1 + \frac{1}{i+2}\right).
```

Программа реализации заданной функции:

```
#include "stdafx.h"
#include<iostream>
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{
    double p = 1;
    int i;
    for( i = 1; i <= 10; i++)</pre>
```

```
{ p *= 1 + 1./(i + 2); } cout << "p=" << p << \n'; return 0; }
```

# **6.3.** Задание

Задание 1. Составьте ГСА и программу вычисления значения переменной по заданному условию в соответствии со своим вариантом (табл. 6.1).

Таблица 6.1 Функции для вычисления

| Вариант | Функция                                                                                                    | Исходные данные   | Ответ                  |
|---------|------------------------------------------------------------------------------------------------------------|-------------------|------------------------|
| 1       | 2                                                                                                          | 3                 | 4                      |
| 1       | $z = \sum_{k=5}^{20} \frac{\lg(kx)^3}{\sqrt{1 + \ln k}}$                                                   | <i>x</i> = 9      | $z = -8,57 \cdot 10^3$ |
| 2       | $c = \prod_{i=1}^{10} \frac{\sin(2+i)i}{2}$                                                                |                   | c = 7,929              |
| 3       | $V = \frac{40x \sum_{j=0}^{5} \sqrt{j^2 + \cos 6j}}{a^2 + 5}$ $A = \prod_{j=0}^{20} \sqrt{\sin xL + L/15}$ | $x = 9; \ a = 12$ | V = 40,53              |
| 4       | $A = \prod_{l=5}^{20} \sqrt{\sin xL + L/15}$                                                               | x = 11            | A = 0,528              |
| 5       | $F = \sum_{i=4}^{20} \frac{\sin(2i+i)}{\cos 2i}$                                                           |                   | F = 16,3               |
| 6       | $R = 4x^2 + \prod_{l=3}^{15} \left[ \frac{\ln xL}{10000} + \frac{1}{\text{tg}x} \right]$                   | x = 10            | R = 680,537            |
| 7       | $Z = \prod_{i=1}^{15} \frac{\text{tg}(5/i) \cdot 2}{5\cos(i-10x)}$                                         | x = 0,57          | Z = 0.044              |
| 8       | $V = \sum_{i=4}^{20} \frac{1 + \sqrt{ \ln x }}{\cos 2i}$                                                   | x = 10            | V = 8,697              |

Продолжение табл. 6.1

| 1  | 2                                                                             | 3             | 4                 |
|----|-------------------------------------------------------------------------------|---------------|-------------------|
| 9  | $V = \sum_{i=4}^{20} \frac{1 + \sqrt{ \ln(x) }}{\cos(2i)}$                    | x = 2         | V = 6,32          |
| 10 | $P = 5x \sum_{i=1}^{30} \frac{\sin(2i+7) \cdot x}{2i-1}$                      | <i>x</i> = 2  | P = 3,611         |
| 11 | $V = \prod_{j=0}^{7} \sqrt[3]{x + \sqrt{ \cos j }}$                           | <i>x</i> = 4  | V = 66,21         |
| 12 | $H = \cos(b) \sum_{k=0}^{8} \frac{b}{e^{\sqrt{k}}}$                           | <i>b</i> = 9  | H = -18,422       |
| 13 | $S = \sum_{j=3}^{10} \sqrt[3]{\frac{j + \cos b}{\sqrt{b}}}$                   | <i>b</i> = 9  | S = 9,634         |
| 14 | $K = \prod_{j=3}^{7} \sqrt[3]{x + \sqrt{ \sin(j+5) }}$                        | <i>x</i> = 3  | K = 9,33          |
| 15 | $G = b \sum_{i=3}^{9} \ln \left( \frac{e^{-1}}{i + \cos \sqrt{i}} \right)$    | <i>b</i> = 7  | G = -128,081      |
| 16 | $K = \sum_{p=2}^{9} \frac{\arccos(p+3)^2}{g}$                                 | <i>g</i> = 4  | K = -15,731       |
| 17 | $M = \prod_{f=3}^{10} \frac{\sin(n^2 - 5)}{\cos(7 - n^2)}$                    | n = 2,5       | M = 8,007         |
| 18 | $W = \sum_{p=5}^{15} \left(\frac{q-5}{25}\right)^4 \cdot \sin(q)^2 + \cos(q)$ | x = 2         | W = -0.91         |
| 19 | $A = \sum_{r=2}^{10} \frac{\cos(x^3) - 4}{5}$                                 | <i>x</i> = 7  | A = -8,719        |
| 20 | $F = \prod_{d=10}^{19} \frac{i^2 + \cos i}{i^4}$                              | i = -1        | F = 75,173        |
| 21 | $L = tg(k^3) \sum_{j=1}^{7} \frac{\sin(25 - k)}{ k ^2}$                       | k = -2        | <i>L</i> = 11,38  |
| 22 | $Y = \sum_{i=1}^{20} \frac{\sin(ix)}{x^2} + 80$                               | <i>x</i> = 10 | <i>Y</i> = 79,995 |

| 1  | 2                                                            | 3             | 4          |
|----|--------------------------------------------------------------|---------------|------------|
| 23 | $M = \prod_{v=3}^{15} \frac{10 - 2x^{-2}}{v + \cos(x)}$      | x = 4         | U = 46,11  |
| 24 | $T = \frac{\prod_{\nu=1}^{15} e^{\sqrt{ \cos(\nu) }}}{140x}$ | <i>x</i> = 12 | T = 35,479 |

Лабораторная работа 7

## ЦИКЛ СО СЧЕТЧИКОМ. ЦИКЛ С РАЗВЕТВЛЕНИЕМ

Цель работы: изучение особенностей решения задач реализации цикла со счетчиком, циклической структуры с ветвлением.

#### 7.1. Цикл со счетчиком

При решении некоторых задач возникает необходимость вычисления каких-либо значений.

Пример. В компьютер последовательно вводятся десять натуральных чисел. Определить, сколько среди этих чисел, больших 10.

Для решения этой задачи необходимо ввести переменную (*счетчик*), с помощью которой считается количество чисел, удовлетворяющих заданному условию. Начальное значение счетчика равно нулю. ГСА цикла со счетчиком приведена на рис. 7.1, программа, соответствующая этому алгоритму, имеет вид:

```
#include "stdafx.h"
#include<iostream>
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{
    int k, i;
    double x;
    k = 0;
```

```
for(i = 1; i <= 10; i++) { cin>>x; if(x > 10) k++; } cout<<"k="<< k<< \n'; return 0;
```



Рис. 7.1. ГСА цикла со счетчиком

### 7.2. Цикл с разветвлением

Если внутри цикла в зависимости от значения параметра цикла функция вычисляется по разным формулам, то целесообразно применять цикл с разветвлением.

Пример 1. Вычислить значение функции  $y = \begin{cases} bx - \ln x & \text{при } bx < 1; \\ bx + \ln x & \text{при } bx \ge 1, \end{cases}$  если b = 1,5, аргумент  $x \in [0,1;1]$ ,  $\Delta x = 0,1$ . Схема алгоритма цикла с разветвлением приведена на рис. 7.2.

```
Программа имеет вид:
#include "stdafx.h"
#include<iostream>
#include<math.h>
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
      double b,x,y;
      b = 1.5;
     for(x = 0.1; x \le 1; x = x + 0.1)
            if(b * x < 1)
                  y = b * x - log(x);
            else
                  y = b * x + log(x);
            cout<<"x="<<x<<" "<<"y="<<y<<\n';
      return 0;
}
                                 Начало
                                 Bвод b
                              x = 0,1; 1; 0,1
                      Да
                                              Нет
                                 bx < 1
                y = bx - \ln x
                                              y = bx + \ln x
                                Вывод у
                                 Конец
```

Рис. 7.2. ГСА цикла с разветвлением

Пример 2. Вычислить значение функции:

```
y = \begin{cases} x & \text{при} \quad 0 \leq x < 4; \\ 4 & \text{при} \quad 4 \leq x < 8; \\ 12 - x & \text{при} \quad 8 \leq x \leq 12, \quad \text{если} \quad x \in [0; 12], \, \Delta x = 0,5. \end{cases}
Программа имеет вид:
#include "stdafx.h"
#include<iostream>
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
        double y, x;
        for (x = 0; x \le 12; x += 0.5)
                 if(x < 4)
                         y = x;
                 else if(x < 8)
                         y = 4;
                 else
                         y=12-x;
                 cout<<"x="<<x<<"y="<<y<<\n';
        return 0;
```

### 7.3. Задания

x при условии, что на каждом интервале переменная должна принимать десять значений. Составьте ГСА и программу на языке C++ по заданному условию в соответствии со своим вариантом (табл. 7.1).

Таблица 7.1 Функции для табулирования

| Вариант | Функция                                                                                                                                                                                                                                                |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | 2                                                                                                                                                                                                                                                      |
| 1       | $y = \begin{cases} 1,5\cos x,^2 & x < 0; \\ \arccos x - \sqrt{1 - 0,3x^3}, & 0 \le x \le 1,  \Delta x = 0,1; \\ \frac{x+1}{x^2+1}e^x, & x > 1 \end{cases}$                                                                                             |
| 2       | $y = \begin{cases} 2\cos\left(x - \frac{\pi}{2}\right), & x < 0,5; \\ 2x - 3\ln x - 3, & 0,5 \le x \le 0,6, & \Delta x = 0,01; \\ 1 + \frac{x^2}{3 + 0,2x^2}, & x > 0,6 \end{cases}$                                                                   |
| 3       | $y = \begin{cases} \frac{1}{\pi} (\sin^2 x - \sin x^3), & x < \frac{\pi}{2}; \\ x^2 - 5\sin x, & \frac{\pi}{2} \le x \le \pi, & \Delta x = \frac{\pi}{16}; \\ \lg^2 x - \ln \frac{x}{2}, & x > \pi \end{cases}$                                        |
| 4       | $y = \begin{cases} \frac{\cos^3 x + \ln(0.5x)}{x^5 - x + 1}, & x < 0.618; \\ e^x - x - 1.25, & 0.618 \le x \le 0.668, & \Delta x = 0.005; \\ \frac{3}{\sqrt{x^3 + \sqrt{x^2 + 1}}}, & x > 0.668 \end{cases}$                                           |
| 5       | $y = \begin{cases} \frac{\left(e^{x} + e^{2x}\right)}{\sqrt[3]{x^{2} + x}}, & x < 2, & a = 0,7; \\ x - \sqrt{9 + x} + x^{2} - 4, & 2 \le x \le 3, & \Delta x = 0,1; \\ \frac{e^{x + a} -  x^{3} - 3 }{\sqrt[5]{(x^{2} + x)^{2}}}, & x > 3 \end{cases}$ |

Продолжение табл. 7.1

| 1  | 2                                                                                                                                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | $y = \begin{cases} \sqrt{x^2 + \sqrt{x^4 + 1}}, & x < 2, 2, & a = 0, 42; \\ x - 1, 25 \ln x - 1, 25, & 2, 2 \le x \le 2, 4, & \Delta x = 0, 02; \\ \lg x - \sqrt[3]{ax^2}, & x > 2, 4 \end{cases}$                           |
|    |                                                                                                                                                                                                                              |
| 7  | $y = \begin{cases} \cot x - x^5, & x < 0.4; \\ \sin x - 2x + 0.45, & 0.4 \le x \le 0.5,  \Delta x = 0.01; \\ \sqrt[3]{x^4 + \sqrt{\frac{x+1}{x^2 + 1}}}, & x > 0.5 \end{cases}$                                              |
|    | $ \sqrt{x^{2} + 1}, \qquad x > 0,5 $ $ \sqrt{e^{x} + x^{2} + 1}, \qquad x \le -0,5; $ $ y = \begin{cases} \sqrt{e^{x} + x^{2} + 1}, & x \le -0,5; \\ \arcsin(2x) - x^{2}, & -0,5 < x \le 0, & \Delta x = 0,05; \end{cases} $ |
| 8  | $y = \begin{cases} \arcsin(2x) - x^2, & -0.5 < x \le 0, & \Delta x = 0.05; \\ \lg^2 x - \ln x, & x > 0 \end{cases}$                                                                                                          |
|    | $e^{x^3} - \sqrt{ \ln(0.5x^2) + 1 }, \qquad x < 0, \qquad a = 0.42;$                                                                                                                                                         |
| 9  | $y = \begin{cases} e^x - 10x, & 0 \le x \le 1, & \Delta x = 0,1; \\ \frac{\operatorname{tg}(a+x)}{ \sin^2 x }, & x > 1 \end{cases}$                                                                                          |
|    | $e^{x^3} + \sqrt{x + \sqrt{x^2 + 1}}, \qquad x < 1;$                                                                                                                                                                         |
| 10 | $y = \begin{cases} 0.1x^2 - x \ln x, & 1 \le x \le 2, & \Delta x = 0.1; \\ \sqrt{e^x + x - 1}, & x > 2 \end{cases}$                                                                                                          |
|    | $\sqrt{e^x + x - 1}, \qquad x > 2$                                                                                                                                                                                           |
| 11 | $y = \begin{cases} \cos^3 x^2 + \ln^2  x+1 , & x < 0.5; \\ \sin x - x + 0.09, & 0.5 \le x \le 1,  \Delta x = 0.05; \\ e^{\sqrt{x}} + \frac{x+4}{x+2} & x > 1 \end{cases}$                                                    |
|    | $e^{\sqrt{x}} + \frac{x+4}{x+2} \qquad x > 1$                                                                                                                                                                                |

| 1  |                                                                          | 2                |                    |
|----|--------------------------------------------------------------------------|------------------|--------------------|
|    | $\int \pi x^2 - 2$ ,                                                     | x < 0;           |                    |
| 12 | $y = \left\{ e^x - e^{-x} - 1 \right.,$                                  | $0 \le x \le 1,$ | $\Delta x = 0.15;$ |
|    | $y = \begin{cases} e^x - e^{-x} - 1, \\ \lg(x + 7\sqrt{x}), \end{cases}$ | <i>x</i> > 1     |                    |

Задание 2. Составьте программу по заданному условию в соответствии со своим вариантом.

- 1. Выведите на экран четные числа в диапазоне от 10 до 100, расположив их по убыванию. Вычислите для этих чисел среднее арифметическое значение.
- 2. Выведите на экран и подсчитайте количество чисел, кратных четырем, в диапазоне от 25 до 80, расположив их по возрастанию. Вычислите для этих чисел среднее арифметическое значение.
- 3. Для произвольных пяти чисел, введенных с клавиатуры, вычислите среднее геометрическое значение.
- 4. Подсчитайте количество чисел, кратных пяти, в диапазоне от 103 до 567.
- 5. Для произвольных пяти чисел, введенных с клавиатуры, вычислите сумму остатков от деления этих чисел на три.
- 6. Подсчитайте количество нечетных чисел среди произвольных десяти чисел, введенных с клавиатуры.
- 7. Вычислите количество и сумму чисел, кратных 25, в диапазоне от 983 до 1150.
- 8. Вычислите количество и произведение чисел, кратных трем, в диапазоне от 7 до 46.
- 9. Выведите на экран числа, кратные четырем, в диапазоне от 230 до 297, расположив их по убыванию, и укажите их количество.
- 10. В диапазоне от 1000 до 2000 найдите минимальное число, кратное 46, и максимальное число, кратное 26.
- 11. Вычислите сумму квадратов всех нечетных чисел в диапазоне от 42 до 73.
- 12. Подсчитайте произведение квадратов пяти произвольных чисел, введенных с клавиатуры.

- 13. В диапазоне от 15 до 167 найдите максимальное и минимальное числа, кратные 14.
- 14. Найдите сумму чисел, кратных трем, среди произвольных 10 чисел, введенных с клавиатуры.
- 15. Вычислите сумму и количество отрицательных чисел среди произвольных 10 чисел, введенных с клавиатуры.

## Лабораторная работа 8

## вложенные циклы

Цель работы: изучение особенностей формирования алгоритмов с вложенными пиклами.

### 8.1. Понятие вложенных циклов

В практике алгоритмизации часто встречаются задачи, при решении которых необходимо проектировать алгоритмы с несколькими циклами. Если в теле цикла содержится один или несколько других циклов, то такие циклы называют вложенными.

Цикл, содержащий в себе другой цикл, называют *внешним*, а цикл, содержащийся в теле другого цикла, — *внутренним*.

Выполняются вложенные циклы следующим образом. Сначала при фиксированных начальных значениях переменных внешнего цикла полностью выполнится внутренний цикл и его переменные последовательно примут все свои значения. Затем переменные внешнего цикла примут следующие значения и, если условие окончания внешнего цикла не будет достигнуто, снова полностью выполнится внутренний цикл и его переменные опять «пробегут» все свои значения, и так до тех пор, пока не выполнится условие окончания внешнего цикла.

Пример. Составить алгоритм и программу вычисления значений функции  $y = a \sin^2 bx$  при  $x \in [-\pi; \pi], \ \Delta x = \frac{\pi}{6}, \ a \in [2,5;3,5], \ \Delta a = 0,5, \ b = 0,68.$ 

ГСА вычисления заданной функции представлена на рис. 8.1.

Программа вычисления заданной функции:



Рис. 8.1. ГСА вычисления значений функции

## 8.2. Задания

Задание 1. Составьте ГСА и программу вложенных циклов по заданному условию в соответствии со своим вариантом (табл. 8.1).

Таблица 8.1 Функции для вычисления

| Вариант | Функция                          | Диапазон изменения<br>аргументов          | Шаг изменения аргументов             |
|---------|----------------------------------|-------------------------------------------|--------------------------------------|
| 1       | 2                                | 3                                         | 4                                    |
| 1       | $y = \frac{a\sin^2 x}{\sqrt{a}}$ | $-\pi/2 \le x \le \pi/2$ $2 \le a \le 10$ | $\Delta x = \pi/10$ $\Delta a = 1$   |
| 2       | $z = \frac{\cos 2x}{b^2}$        | $0 \le x \le \pi$ $2 \le b \le 4$         | $\Delta x = \pi/10$ $\Delta b = 0.2$ |

Окончание табл. 8.1

| 1  | 2                                       | 3                                                                | 4                                    |
|----|-----------------------------------------|------------------------------------------------------------------|--------------------------------------|
| 3  | $y = \frac{ \sin x  +  \cos x }{a^2}$   | $0 \le x \le \pi$<br>$1 \le a \le 4$                             | $\Delta x = \pi/10$ $\Delta a = 0,5$ |
| 4  | $z = \frac{ \sin x  -  \cos x }{\ln a}$ | $-\pi \le x \le \pi$<br>$1,5 \le a \le 2$                        | $\Delta x = \pi/10$ $\Delta a = 0,1$ |
| 5  | $t = \sin 2x + \cos ax$                 | $0 \le x \le \pi$ $3 \le a \le 3,5$                              | $\Delta x = \pi/10$ $\Delta a = 0,1$ |
| 6  | $z = \sin x + \cos bx$                  | $0 \le x \le \pi$<br>$2 \le b \le 3$                             | $\Delta x = \pi/10$ $\Delta b = 0,1$ |
| 7  | $y = \sqrt{x^2 + a}$                    | $-1 \le x \le 1$<br>$1 \le a \le 2$                              | $\Delta x = 0,2$ $\Delta a = 0,2$    |
| 8  | $z = \frac{c}{1+x^2}$                   | $-1 \le x \le 1$ $10 \le c \le 20$                               | $\Delta x = 0.3$ $\Delta c = 5$      |
| 9  | $t = x \cos cx$                         | $-1 \le x \le 1$<br>$2 \le c \le 3$                              | $\Delta x = 0.25$ $\Delta c = 0.25$  |
| 10 | $y = x^2 e^{- ax }$                     | $ \begin{array}{c} -1 \le x \le 2 \\ 1 \le a \le 5 \end{array} $ | $\Delta x = 0.2$ $\Delta a = 0.6$    |
| 11 | $y = a\sin 2x + 1$                      | $-\pi \le x \le \pi/2$<br>$2 \le a \le 4$                        | $\Delta x = \pi/20$ $\Delta a = 0,5$ |
| 12 | $z = \frac{\cos ax}{e^2}$               | $-\pi \le x \le \pi$<br>$2 \le a \le 4$                          | $\Delta x = \pi/10$ $\Delta a = 0,1$ |

Задание 2. Составьте программу по заданному условию согласно своему варианту.

Выведите на печать таблицу умножения для чисел:

- 1) a и b, если a принимает значения всех четных чисел третьего десятка, b значения  $\{1; 2,5; 3,1; 4;7\}$ .
- 2) k и p, если k принимает значения всех нечетных чисел второго десятка, p значения  $\{2,6; 2; 1; 1,4; 5; 3,5\}$ .
- 3) c и d, если c принимает значения всех четных чисел четвертого десятка, d значения  $\{0,3;\,0,9;\,1;\,1,1;\,2;\,2,35\}.$

- 4) i и j, если i принимает значения всех нечетных чисел третьего десятка, j значения  $\{1; 0,45; 0,7; 2\}$ .
- 5) w и q, если w принимает значения всех чисел первого десятка с шагом  $\Delta w = 1,5; q$  значения  $\{2; 3,5; 4,1; 5,7\}.$
- 6) t и y, если t принимает значения всех нечетных чисел четвертого десятка, y – значения  $\{2; 1,45; 1,7; 3\}$ .
- 7) p и s, если p принимает значения всех четных чисел второго десятка, s значения  $\{3; 1,5; 1,4; 3,1; 5,2\}$ .
- 8) g и h, если g принимает значения всех четных чисел пятого десятка, h значения  $\{23; 4,5; 3,4; 2,1; 10,2\}$ .
- 9) b и n, если b принимает значения всех четных чисел седьмого десятка, n значения  $\{2; 4,2; 6,7; 8,9; 9,2\}$ .
- 10) q и d, если q принимает значения всех нечетных чисел восьмого десятка, d значения  $\{1; 1,2; 1,7; 1,9; 2,2\}$ .
- 11) a и b, если a принимает значения всех четных чисел восьмого десятка, b значения  $\{1; 2,6; 3,2; 5;7\}$ .
- 12) k и p, если k принимает значения всех нечетных чисел седьмого десятка, p значения  $\{1,6; 3; 1,5; 1,4; 5; 4,5\}$ .

# Библиографический список

- 1. Либерти Д. Освой самостоятельно С++ за 21 день/ Д. Либерти. М.: Вильямс, 2015. 784 с.
- 2. Подбельский В. В. Язык С++/ В. В. Подбельский. М.: Финансы и статистика, 2014. 560 с.

#### Учебное издание

# ТРОФИМОВА Людмила Николаевна, ЕРОШЕНКО Александра Викторовна

#### ОСНОВЫ ПРОГРАММИРОВАНИЯ НА ЯЗЫКЕ С++

#### Часть 2

Учебно-методическое пособие

\_\_\_\_\_

Редактор Н. А. Майорова

\*\*\*

Подписано в печать 25.12.2017. Формат  $60 \times 84^{1/16}$ . Офсетная печать. Бумага офсетная. Усл. печ. л. 1,6. Уч.-изд. л. 1,7. Тираж 75 экз. Заказ .

\*\*

Редакционно-издательский отдел ОмГУПСа Типография ОмГУПСа

\*

644046, г. Омск, пр. Маркса, 35