Dynamic Causal Modelling for M/EEG: introduction

J. Daunizeau

Motivation, Brain and Behaviour group, ICM, Paris, France

Overview

- 1 DCM: introduction
- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

Overview

- 1 DCM: introduction
- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

from functional segregation to functional integration

localizing brain activity: functional segregation

effective connectivity analysis: functional integration

 u_1

 $u_1 X u_2$

« Where, in the brain, did my experimental manipulation have an effect? »

« How did my experimental manipulation propagate through the network? »

DCM: evolution and observation mappings

inputs

DCM: a parametric statistical approach

DCM: model structure

$$\begin{cases} y = g(x, \varphi) + \varepsilon \\ \dot{x} = f(x, u, \theta) \end{cases}$$

likelihood
$$\Rightarrow p(y|\theta,\varphi,m)$$

• DCM: Bayesian inference

parameter estimate:

$$\hat{\theta} = E[\theta | y, m]$$

$$p(y|m) = \int p(y|\theta,\varphi,m) p(\theta|m) p(\varphi|m) d\varphi d\theta$$

DCM for EEG-MEG: auditory mismatch negativity

sequence of auditory stimuli

standard condition (S)

deviant condition (D)

t ~ 200 ms

S-D: **reorganisation** of the connectivity structure

Overview

- 1 DCM: introduction
- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

dealing with feedback loops

1D linear dynamical system

Ordinary Differential Equation (ODE): $\dot{x} = a \times x$

fixed point = stable

fixed point = unstable

1D linear dynamical system: input history effects

Impact of inputs on the system:

$$\dot{x} = u - a \times x$$

2D linear dynamical system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

2D linear dynamical system: states' correlation structure

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Dynamical systems theory summary

- Motivation: modelling reciprocal influences (feedback loops)
- Linear dynamical systems can be described in terms of their impulse response
- Dynamical repertoire depend on the system's dimension (and nonlinearities):
 - D>0: fixed points
 - D>1: spirals
 - D>1: limit cycles (e.g., action potentials)
 - D>2: metastability (e.g., winnerless competition)

Overview

- 1 DCM: introduction
- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

DCM for M/EEG: systems of neural populations

DCM for M/EEG: from micro- to meso-scale

 $x_{i}(t)$: post-synaptic potential of j^{th} neuron within its ensemble

$$\frac{1}{N-1} \sum_{j' \neq j} H\left(x_{j'}(t) - \theta\right) \xrightarrow{N \to \infty} \int H\left(x(t) - \theta\right) p\left(x(t)\right) dx$$

$$\approx S\left(\mu\right) \text{ mean-field firing rate}$$

mean membrane depolarization μ (mV)

DCM for M/EEG: synaptic dynamics

$\begin{cases} \dot{\mu}_1 = \mu_2 \\ \dot{\mu}_2 = \kappa_{i/e}^2 S(\bullet) - 2\kappa_{i/e} \mu_2 - \kappa_{i/e}^2 \mu_1 \end{cases}$

post-synaptic potential

DCM for M/EEG: intrinsic connections within the cortical column

Overview

- 1 DCM: introduction
- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

Observation mappings

DCM for M/EEG: the electromagnetic forward problem

$$\mathbf{y}(t) = \sum_{i} \mathbf{L}^{(i)} \sum_{j} \beta_{j} \mu^{(ij)}(t)$$

forward and inverse problems

Bayesian paradigm

deriving the likelihood function

$$y = f(\theta)$$

$$y = f(\theta)$$
 e.g., GLM: $f(\theta) = X\theta$

- But data is noisy: $y = f(\theta) + \varepsilon$

$$y = f(\theta) + \varepsilon$$

- Assume noise/residuals is 'small':

$$p(\varepsilon) \propto \exp\left(-\frac{1}{2\sigma^2}\varepsilon^2\right)$$

→ Distribution of data, *given fixed parameters*:

$$p(y|\theta) \propto \exp\left(-\frac{1}{2\sigma^2}(y-f(\theta))^2\right)$$

Bayesian paradigm

the likelihood function of an alpha kernel

$$p(y|\theta,m)$$

holding the parameters fixed

$$p(y|\theta,m)$$
 holding the data fixed

Bayesian paradigm

likelihood, priors and the model evidence

Likelihood: $p(y|\theta,m)$

Prior: $p(\theta|m)$

Bayes rule: $p(\theta|y,m) = \frac{p(y|\theta,m) p(\theta|m)}{p(y|m)}$

type, role and impact of priors

- Types of priors:
 - ✓ Explicit priors on model parameters (e.g., connection strengths)
 - ✓ Implicit priors on model functional form (e.g., system dynamics)
 - ✓ Choice of "interesting" data features (e.g., ERP vs phase data)
- Role of priors (on model parameters):
 - ✓ Resolving the *ill-posedness* of the inverse problem
 - ✓ Avoiding overfitting (cf. generalization error)
- Impact of priors:
 - ✓ On parameter posterior distributions (cf. "shrinkage to the mean" effect)
 - ✓ On model evidence (cf. "Occam's razor")
 - ✓ On free-energy landscape (cf. Laplace approximation)

model comparison

Principle of parsimony:

« plurality should not be assumed without necessity »

Model evidence:

$$p(y|m) = \int p(y|\theta,m)p(\theta|m)d\theta$$

"Occam's razor":

the variational Bayesian approach

$$\ln p(y|m) = \left\langle \ln p(\vartheta, y|m) \right\rangle_{q} + S(q) + D_{KL}(q(\vartheta); p(\vartheta|y, m))$$
free energy: functional of q

mean-field: approximate marginal posterior distributions: $\left\{q\left(artheta_{\!\scriptscriptstyle 1}
ight),q\left(artheta_{\!\scriptscriptstyle 2}
ight)
ight\}$

DCM: key model parameters

 $(\theta_{21}, \theta_{32}, \theta_{13})$ state-state coupling

 θ_3^u input-state coupling

 θ_{13}^u input-dependent modulatory effect

model comparison for group studies

fixed effect

assume all subjects correspond to the same model

random effect

assume different subjects might correspond to different models

Overview

- 1 DCM: introduction
- 2 Dynamical systems theory
- 3 Neural states dynamics
- 4 Bayesian inference
- 5 Conclusion

Conclusion

back to the auditory mismatch negativity

sequence of auditory stimuli

standard condition (S)

deviant condition (D)

t ~ 200 ms

S-D: reorganisation

Conclusion

DCM for M/EEG: variants

second-order mean-field DCM

DCM for steady-state responses

- DCM for induced responses
- DCM for phase coupling

Conclusions

- Objectives of a DCM study
 - Compare candidate interpretations of an effect of interest
 - Assess micro- and/or meso-scopic mechanisms ("mathematical microscope")
 - **–** ...

Assumptions

- Biophysical/neurophysiological (e.g., neural ensemble dynamics...)
- Statistical (e.g., Gaussian residuals...)
- Algorithmic (e.g., ODE integration scheme, VB,...)

Limitations

- Robustness to violations of assumptions
 - → Family inference, validity analysis,...
- Reliability of statistical inference
 - → Parameter recovery and/or confusion analysis
- Interpretation

References

Moran et al., 2013: Neural masses and fiels in dynamic causal modelling. Frontiers in Computational Neuroscience 7.

Daunizeau et al., 2011: Dynamic Causal Modelling: a critical review of the biophysical and statistical foundations. Neuroimage, 58: 312-322.

Stephan et al., 2009: Bayesian model selection for group studies. Neuroimage 46: 1004-1017.

Daunizeau et al., 2009: Dynamic Causal Modelling of distributed electromagnetic responses. Neuroimage, 47: 590-601.

David et al., 2008: Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation. PloS Biol. 6: e315.

Marreiros et al., 2008: Population dynamics: variance and the sigmoid activation function. Neuroimage, 42: 147-157.

Friston et al., 2007: Variational Free Energy and the Laplace approximation. Neuroimage, 34: 220-234.

Sporns O., 2007: Brain connectivity. Scholarpedia 2(10): 1695.

David O., 2006: Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage, 30: 1255-1272.

Kiebel et al., 2005: Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. Neuroimage 30: 1273-1284.

Friston et al., 2003: Dynamic Causal Modelling. Neuroimage 19: 1273-1302.

Many thanks to:

Karl J. Friston (UCL, London, UK) Will D. Penny (UCL, London, UK) Klaas E. Stephan (UZH, Zurich, Switzerland) Stefan Kiebel (MPI, Leipzig, Germany)