DSA [02/28/2024] (BASICALLY) Xn) - REASONABLE ASSUMPTIONS FOUSE COSE ONLY LOOKS AT 2 ITEM (ALT. BENCHMARK) A DECISION THEE THAT SORTS "" ELEMENTS HAS HEIGHT LEAST nlogn DITEMS - HOW MANY WAYS TO SORT THEM? abc 3 ITEMS - a,b,c: bac 600 6691 b>c b:c b, c] DECISION TREE /THE GRETICAL BEST WHY SORTING ROUTINGS ARE O(n)20

```
COUNTING SORT
- ALL , ELEMENTS ARE IN RANGE O ... K IF
           MPOT RESULT
 COUNTINGSORT (array A, array B, range K) { =
     new orraz C[K+1] = {0.3;
                               FINIT COUNTING ARRAY
     for (i=D; i < A. Length; i+t)
                                COUNT FREQUENCY
                                OF VALUES
                                - ACCUMULATE COUNT . .
                                TRANSLATE TO POSITION
       C[i]+= C[i-1];
      C[A[i]]--i
                                    (RANGE OF VALUES)
                                   PREVIOUS CALCULATION
  2: INIT COUNTING ARRAY
  3-4: COUNT # OF TIMES ELEMENT APPEARS
   5-6: ACCUMULATE THE COWNTS -> TRANSLATES COUNTS
  . INTO POSITIONS.
   -10; PLACE VALUES INTO PROPER PLACE BY (ADMGE OF VAL) PREV. CA
                           PRESERVES OF DER
                        CASE OF A
         (BY COMMON IMPLEMENTATION)
   STABLE
                           NOT STABLE
   BUBBIE
                           HEAP SORT
   INSERTION
                           QUICK SORT
   BUCKET/RADIX
   COUNTING
  MERGE
```

DSA [02/28/2024] EAST TO MOST SIG! MUST USE STABLE SOET! - DIGITS IN num = 1 , i z = d ; i++) USE AN O(n) STABLE SORT TO SET ARRAY A ELEM BY ITS ATIJ INTO BUCKET B[A[]] JIN SIZE FOR (= 0; i=n; i++) SORT BLIJ WITH INSCRITION SORT (A, n, d) { (HYBRID) d; itt) E to ith DOIT FROM LSO TOMSO CONTS, TENS, 0(9) [for(i=0,j=10,j+t). IN OUR CASE

, ,	۸.	,	٠		•																	
DŞ	Η.	,			,																	
									EX	A no	PL	E							•	•		
	RAT				EFT		JE.	1 .	C .	.,,	, ,							•				
	0	1 = 3	3	· le	= 3																	
								1		7			1	/	1							
	1	03	Z	.02	2	22	10	Z]	10	1	21	3		(J).	S	ORT	9	3.4	. 1	2	PLAT
BACKETS (10	2 .			- 1										
BUCKETS V.	,	,						22	2.			21.										
7	0			- 1	01			20	2		-	103	5				_					
1	0	namoi			1			2														
1000.	,																					
VEJ ?	· A	1	01.	20	02.	22:	2,	102	١ ر ٢	03	, 21	37									•	
. ;	. "				. /		٦.					-										
1200					. 11)'3							, .									
BUCKET .	E) 5	DRI		. 7	. 10				٠.													
. 5	1.0	3																				
. ,	.7	05																				
./.	funites	01			21	3.		• •	22	2												
.(.		G.							2				3									
1																						
/	A	EIC	01	, 20	02	, !(20	, 1	0	5, 2	21-	3,	22	2								
. / .				,.																		
					10:	3 .		. 2	22	2												
/					10	1			20	2.												
. /	denne					THEORIGAN &	٠		2				3	-								
	٠	•		• ,		٠																
. \.		· ·		1 . 10		103			7	12		7.7	·				-		e l	=-11	= 1	
. 7.	7. 1	7.1		: / '	. '.	. '	1.		1.	? -			1								•	
		,																				
																					,	
, ,	,																					
	,	,																				
	,			, ,																		
	,		. ,																			
, ,	,	,					,			•			•			•						
, ,		,						•		,					•							
							,			,		•									•	
				,		,										,						
	,	, ,	,	,	,	,		,		,	,		,									
	,	,	,	,	,				,													
30																						

5000, 2000, 2000, 1000 E ENTRIES FILES -> GET TIMES RUN WITH CONSTANT -> GET TIMES CONSTANT SHOULD BG < OR = RAW? PER SECOND YOU DON'T NEED ENTRIES COMPARE CONSTANTS! SIZE/TIME COPST . . 5:25 . . ENTRIES SEC NIOP. 1001 NO CONST (RAW) VS SIZE/TIME (WITH CONS RUN. EACH CON