Problem N-373 ($C_6H_{11}CI$). The deuterium-decoupled 60 MHz 1H NMR spectrum of **A** at -12.6 $^{\circ}C$ is shown below. Clearly assign peaks to H_1 , H_c and H_t , and mark the distances corresponding to J values assuming an AMX analysis of the spectrum. Briefly tell how you made the assignments (digitized hard copy spectra from Hoefner, Lesko, Binsch *Org. Magn. Reson.* **1978**, *11*, 179).

The low-temperature NMR spectrum of $\bf A$ is shown below. Clearly indicate assignments and explain the multiplicities observed.

NOTE: Chemical shift scale may not be exact.

Problem N-373 ($C_6H_{11}CI$). The deuterium-decoupled 60 MHz 1H NMR spectrum of **A** at -12.6 $^{\circ}C$ is shown below. Clearly assign peaks to H_1 , H_c and H_t , and mark the distances corresponding to J values assuming an AMX analysis of the spectrum. Briefly tell how you made the assignments (digitized hard copy spectra from Hoefner, Lesko, Binsch *Org. Magn. Reson.* **1978**, *11*, 179).

At -12.6 °C ring inversion of chlorocyclohexane is fast on the NMR time scale, so one set of averaged signals is seen.

The low-temperature NMR spectrum of **A** is shown below. Clearly indicate assignments and explain the multiplicities observed.

At -76 °C the ring inversion of chlorocyclohexane has become slow on the NMR time scale, so distinct signals are seen for the axial and equatorial conformations, with the characteristic small ${}^3J_{\text{eq-eq}}$ and ${}^3J_{\text{ax-eq}}$, and the large ${}^3J_{\text{ax-ax}}$.