

AD-A209 699

(2)

OFFICE OF NAVAL RESEARCH  
Research Contract N00014-87-K-0014  
R&T Code 413a001

Technical Report No. 19

A BOLT-ON DEPOSITION SOURCE FOR  
ULTRA-HIGH-VACUUM GROWTH OF INTERMETALLIC COMPOUND FILMS

by

David K. Shuh, Young K. Kim and R. Stanley Williams

To be published  
in  
*J. Vacuum Science & Technology*

SPTIC  
SELECTED  
JUN 22 1989  
CS H

University of California, Los Angeles  
Department of Chemistry & Biochemistry and Solid State Science Center  
Los Angeles, CA 90024-1569

July 1, 1989

Reproduction in whole or part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale;  
its distribution is unlimited

89 6 21 023

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

## REPORT DOCUMENTATION PAGE

| 1a REPORT SECURITY CLASSIFICATION<br>UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                 |                                            | 1b RESTRICTIVE MARKINGS<br>N/A                                                                                                                                          |                           |                    |                                                                                                                                                                                                                                        |         |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|
| 2a SECURITY CLASSIFICATION AUTHORITY<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 3. DISTRIBUTION/AVAILABILITY OF REPORT<br>Approved for public release;<br>distribution unlimited                                                                        |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 2b DECLASSIFICATION/DOWNGRADING SCHEDULE<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                                                                                                                                                         |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 4 PERFORMING ORGANIZATION REPORT NUMBER(S)<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                 |                                            | 5 MONITORING ORGANIZATION REPORT NUMBER(S)                                                                                                                              |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 6a NAME OF PERFORMING ORGANIZATION<br>The Regents of the<br>University of California                                                                                                                                                                                                                                                                                                                                                              | 6b OFFICE SYMBOL<br>(If applicable)        | 7a NAME OF MONITORING ORGANIZATION<br>1) ONR Pasadena - Administrative<br>2) ONR Alexandria - Technical                                                                 |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 6c ADDRESS (City, State, and ZIP Code)<br>Office of Contracts & Grants Administration<br>U C L A, 405 Hilgard Avenue<br>Los Angeles, CA 90024                                                                                                                                                                                                                                                                                                     |                                            | 7b ADDRESS (City, State, and ZIP Code)<br>1) 1030 E. Green Street, Pasadena, CA 91106<br>2) 800 N. Quincy St., Arlington, VA 22217-5000                                 |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 8a NAME OF FUNDING/SPONSORING<br>ORGANIZATION<br>Office of Naval Research                                                                                                                                                                                                                                                                                                                                                                         | 8b OFFICE SYMBOL<br>(If applicable)<br>ONR | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER<br>N00014-87-K-0014                                                                                                      |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 8c ADDRESS (City, State, and ZIP Code)<br>800 N. Quincy Street, 614A:DHP<br>Arlington, VA 22217-5000                                                                                                                                                                                                                                                                                                                                              |                                            | 10 SOURCE OF FUNDING NUMBERS<br><table border="1"> <tr> <th>PROGRAM ELEMENT NO</th> <th>PROJECT NO</th> <th>TASK NO</th> <th>WORK UNIT ACCESSION NO</th> </tr> </table> |                           | PROGRAM ELEMENT NO | PROJECT NO                                                                                                                                                                                                                             | TASK NO | WORK UNIT ACCESSION NO |
| PROGRAM ELEMENT NO                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT NO                                 | TASK NO                                                                                                                                                                 | WORK UNIT ACCESSION NO    |                    |                                                                                                                                                                                                                                        |         |                        |
| 11 TITLE (Include Security Classification)<br>UNCLASSIFIED: Shop Note: A bolt-on deposition source for ultra-high-vacuum growth<br>of intermetallic compound films                                                                                                                                                                                                                                                                                |                                            |                                                                                                                                                                         |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 12 PERSONAL AUTHOR(S) David K. Shuh, Young K. Kim and R. Stanley Williams                                                                                                                                                                                                                                                                                                                                                                         |                                            |                                                                                                                                                                         |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 13a TYPE OF REPORT<br>Tech. Rept. #19                                                                                                                                                                                                                                                                                                                                                                                                             | 13b TIME COVERED<br>FROM 1988 TO 1989      | 14 DATE OF REPORT (Year, Month, Day)<br>20 June 1989                                                                                                                    | 15 PAGE COUNT<br>8        |                    |                                                                                                                                                                                                                                        |         |                        |
| 16 SUPPLEMENTARY NOTATION                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                                                                                                                                                                         |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 17. COSATI CODES<br><table border="1"> <tr> <th>FIELD</th> <th>GROUP</th> <th>SUB-GROUP</th> </tr> </table>                                                                                                                                                                                                                                                                                                                                       |                                            | FIELD                                                                                                                                                                   | GROUP                     | SUB-GROUP          | 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)<br>thin-film growth, transition metals, low vapor pressure, deposition pressure, material evaporation, stoichiometry control, single-crystal epitaxy. |         |                        |
| FIELD                                                                                                                                                                                                                                                                                                                                                                                                                                             | GROUP                                      | SUB-GROUP                                                                                                                                                               |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 19. ABSTRACT (Continue on reverse if necessary and identify by block number)<br><br>An eight-inch ConFlat® flange assembly with both an electron-beam evaporator and a Knudsen cell has been constructed to deposit intermetallic compounds containing transition and group-III metals with specific phase composition. Initial depositions of thin films using this design have shown excellent epitaxy with the desired compound stoichiometry. |                                            |                                                                                                                                                                         |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT<br><input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS                                                                                                                                                                                                                                                                  |                                            | 21. ABSTRACT SECURITY CLASSIFICATION<br>UNCLASSIFIED                                                                                                                    |                           |                    |                                                                                                                                                                                                                                        |         |                        |
| 22a NAME OF RESPONSIBLE INDIVIDUAL<br>R. Stanley Williams                                                                                                                                                                                                                                                                                                                                                                                         |                                            | 22b TELEPHONE (Include Area Code)<br>(213) 825-8818                                                                                                                     | 22c OFFICE SYMBOL<br>UCLA |                    |                                                                                                                                                                                                                                        |         |                        |

**Shop Note: A Bolt-on Deposition Source For Ultra-High Vacuum  
Growth of Intermetallic Compound Films**

David K. Shuh, Young K. Kim, and R. Stanley Williams  
Department of Chemistry and Biochemistry  
and Solid State Science Center, UCLA,  
Los Angeles, CA 90024-1569 USA

An eight-inch ConFlat® flange assembly with both an electron beam evaporator and a Knudsen cell has been constructed to deposit intermetallic compounds containing transition and group III metals with specific phase composition. Initial depositions of thin films using this design have shown excellent epitaxy with the desired compound stoichiometry.

Thin film growth of many intermetallic compounds by molecular beam epitaxy (MBE) techniques is complicated by several factors: the low vapor pressure of transition metals, which requires the use of an electron beam evaporator, the need for precise control of the deposition fluxes to achieve the desired stoichiometry, and the physical constraints of ultra-high vacuum (UHV) chambers. An UHV compatible intermetallic film evaporator (IFE) was designed and fabricated to satisfy these requirements. The compact size of the IFE allows it to be integrated with existing UHV chambers that have an eight-inch ConFlat® flange with line-of-sight to the sample.

The basic design of the IFE employs a modified Thermionics Laboratories Inc. (TLI)<sup>1</sup> water-cooled, rod-fed 3 kW electron beam evaporator and a standard Knudsen cell source, both mounted on a single eight-inch UHV flange. The electron beam evaporator is used for vaporizing species with very high melting points, such as Co, and the Knudsen cell is for lower melting point species, such as Ga or In. The schematic of the IFE is shown in Figure 1. The evaporator utilizes high-purity metal rods of 3/16" diameter, which are available from several commercial suppliers, for evaporation stock, and can be used for several depositions before requiring a chamber vent. The evaporator was modified by replacing the flat boss used for the double sided evaporator seal with a fine-threaded

|               |                                     |
|---------------|-------------------------------------|
| For           |                                     |
| ed            | <input checked="" type="checkbox"/> |
| on            | <input type="checkbox"/>            |
| on/           |                                     |
| Quality Codes |                                     |
| DIST          | Avail and/or<br>Special             |
| A-1           |                                     |

4  
SPECTRUM

nut that improves sealing reliability and prevents twisting of the electrical feedthroughs on the evaporator head.

The port accommodating the Knudsen cell assembly is 1.6 inches from the centerline of the 8-inch flange and is set at 11° with respect to a perpendicular to the IFE flange face. The Knudsen cell is mounted on a custom designed 2.75-inch ConFlat® flange that has two mini-nipples; one for a rotary motion drive to operate a shutter and one for a four-pin electrical feedthrough for heater power and a thermocouple. The Knudsen cell assembly was constructed from two pressed BN crucibles.<sup>2</sup> The heat source is constructed of approximately 1 m of 0.25 mm Ta wire wrapped around a threaded 3 cc source crucible, which is snugly inserted into a larger crucible for thermal insulation. The resulting assembly is then heat shielded with Ta foil, mounted on two rods that are tapped into the flange face, and thoroughly degassed under vacuum before use with the IFE apparatus. Typical operating conditions to obtain a crucible temperature of 1000°C are 20 dc volts and 2 amps, with source flux stabilization within 20 minutes.

The integral liquid nitrogen cryoshroud fully encloses both evaporation sources and has a beam containment shield that prevents cross contamination of source materials. The shield also limits the forward and peripheral fields of view of the line-of-sight evaporators. This allows the IFE to operate in chambers that contain sensitive analytical optics. The two source shutters make

determination of both flux rates simple, since they isolate each source from a quartz crystal monitor that can be moved into the actual growth position. Alignment of the sources is straightforward since they share the same vertical focal plane and focal point (in our case the distance from the IFE flange face to the sample is 9.65 inches).

Operation of the IFE in a chamber designed for ultraviolet photoelectron spectroscopy (UPS) with a base pressure of  $4 \times 10^{-9}$  Torr yields typical deposition pressures of  $1 \times 10^{-7}$  Torr. Rates of material evaporation from the electron beam evaporator are variable and depend on material and applied power<sup>1</sup>. Initial characterization of CoGa intermetallic films grown on GaAs(001) substrates with the IFE show excellent stoichiometry control and single crystal epitaxy<sup>3</sup>.

#### **ACKNOWLEDGEMENTS**

This work was supported by the State of California MICRO program and Hughes Aircraft. The authors wish to thank TLI for production of the IFE.

## **REFERENCES**

1. Thermionics Laboratories Inc., P.O. Box 3711, Hayward, CA.  
94540.
2. The R. D. Mathis Co., P.O. Box 6187, Long Beach, CA 90806.
3. Young K. Kim and R. Stanley Williams, to be published.

Figure 1. Schematic of the IFE apparatus and flange layout.

- A) Custom 2.75-inch flange for Knudsen cell
- B) Standard eight-inch ConFlat® flange
- C) Knudsen cell source shutter
- D) Beam containment shield
- E) Electron beam evaporator shutter
- F) Electron beam evaporator head assembly
- G) Cryoshroud
- H) Rotary feedthrough
- I) Double sealing flange assembly
- J) Water cooling lines for electron beam heater
- K) Knudsen cell electrical feedthroughs
- L) Cryoshroud coolant feedthroughs
- M) Electron beam evaporator electrical feedthrough
- N) Knudsen cell 2.75-inch port
- O) Electron beam evaporator assembly mounted on a 2.75-inch port





**ABSTRACTS DISTRIBUTION LIST, SOLID STATE & SURFACE CHEMISTRY**

**TECHNICAL REPORT DISTRIBUTION LIST - GENERAL**

|                                                                                                                                        |                                                                                                                 |                                                                                                                  |                                                                                                           |                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| <b>Dr. J. Balteschweiler</b><br>Department of Chemistry<br>Chemistry & Chem. Engg.<br>Calif. Inst. of Technology<br>Pasadena, CA 91125 | <b>Dr. John Eyler</b><br>Department of Chemistry<br>University of Florida<br>Gainesville, FL 32611              | <b>Dr. R. E. Smalley</b><br>Department of Chemistry<br>Rice University, Box 1892<br>Houston, TX 77251            | <b>Dr. N. Winograd</b><br>Chemistry Dept.<br>Case Western Res. Univ.<br>University Park, PA 16802         | Office of Naval Research<br>Chemistry Div., Code 1113<br>800 N. Quincy Avenue<br>Arlington, VA 22217-5000             |
| <b>Dr. Paul G. Barbara</b><br>Department of Chemistry<br>University of Minnesota<br>Minneapolis, MN 55455-0431                         | <b>Dr. James F. Garvey</b><br>Department of Chemistry<br>State University of New York<br>Buffalo, NY 14214      | <b>Dr. Sylvia M. Johnson</b><br>SRI International<br>333 Ravenswood Avenue<br>Menlo Park, CA 94025               | <b>Dr. A. Wold</b><br>Chemistry Dept.<br>Brown University<br>Providence, RI 02912                         | Chief of Naval Research<br>Code 800<br>800 N. Quincy Street<br>Arlington, VA 22217-5000                               |
| <b>Dr. Duncan W. Brown</b><br>Adv. Technology Mats., Inc.<br>520-B Danbury Road<br>New Milford, CT 06776                               | <b>Dr. T.F. George</b><br>Chemistry/Physics Deps.<br>State University of New York<br>Buffalo, NY 14260          | <b>Dr. Z.H. Kafafi</b><br>Optical Sci. Div., Code 6511<br>Naval Research Laboratory<br>Washington, DC 20375-5000 | <b>Dr. G.A. Somorjai</b><br>Chemistry Dept.<br>University of California<br>Berkeley, CA 94720             | Commanding Officer<br>Naval Ocean Systems Center<br>Attn: Dr. Bernard F. Dona                                         |
| <b>Dr. S. Brachenstein</b><br>Department of Chemistry<br>State University of NY<br>Buffalo, NY 14214                                   | <b>Dr. Arnold Green</b><br>Quantum Surface Dynamics Br.<br>Naval Weapons Cr., Code 3817<br>China Lake, CA 93555 | <b>Dr. G.B. Stringfellow</b><br>Mats Science & Engineering<br>University of Utah<br>Salt Lake City, UT 84112     | <b>Dr. John T. Yates</b><br>Chemistry Dept.<br>University of Pittsburgh<br>Pittsburgh, PA 15260           | Dr. Richard W. Drisko<br>Naval Civil Engineering Lab<br>Code 1, 52<br>Port Hueneme, CA 93043                          |
| <b>Dr. J. Butler</b><br>Naval Research Laboratory<br>Code 6115<br>Washington, DC 20375-5000                                            | <b>Dr. R. Hammes</b><br>IBM Watson Research Center<br>PO Box 218<br>Yorktown Heights, NY 10598                  | <b>Dr. Galen D. Stucky</b><br>Chemistry Dept.<br>University of California<br>Santa Barbara, CA 93106             | <b>Dr. E. Yeager</b><br>Chemistry Dept.<br>Case Western Reserve Univ.<br>Cleveland, OH 44106              | Defense Tech. Information Ctr<br>Building 5<br>Cameron Station<br>Alexandria, VA 22314                                |
| <b>Dr. R.P.H. Chang</b><br>Mats. Science & Engineering<br>Northwestern University<br>Evanston, IL 60208                                | <b>Dr. Paul K. Hansma</b><br>Department of Physics<br>University of California<br>Santa Barbara, CA 93106       | <b>Dr. H. Tachikawa</b><br>Chemistry Dept.<br>Michigan State University<br>Jackson, MI 39217                     | <b>Dr. W. Unell</b><br>Surface Science & Technol. Lab<br>University of Maine<br>Orono, ME 04469           | David Taylor Research Center<br>Attn: Dr. Eugene C. Fischer<br>Applied Chemistry Division<br>Annapolis, MD 21402-5067 |
| <b>Dr. Paul A. Christian</b><br>Adv. Chem. Technol. Fed. Systems<br>Eastman Kodak Company<br>Rochester, NY 14650-2136                  | <b>Dr. C.B. Harris</b><br>Chemistry Dept.<br>University of California<br>Berkeley, CA 94720                     | <b>Dr. D. Ramaker</b><br>Chemistry Dept.<br>Cornell University<br>Berkely, CA 94720                              | <b>Dr. R.P. Van Duyne</b><br>Chemistry Dept.,<br>Northwestern University<br>Evanston, IL 60201            | Dr. James S. Murray<br>Chemistry Div., Code 6100<br>Naval Research Laboratory<br>Washington, DC 20375-5000            |
| <b>Dr. Richard Colton</b><br>Code 6170<br>Naval Research Laboratory<br>Washington, DC 20375-5000                                       | <b>Dr. R. Reeves</b><br>Chemistry Dept.<br>Rensselaer Polytech Inst.<br>Troy, NY 12181                          | <b>Dr. A. Reisman</b><br>Microelectronics Center<br>Research Triangle Park<br>No. Carolina, 27709                | <b>Dr. David M. Walba</b><br>Chemistry Department<br>University of Colorado<br>Boulder, CO 80309-0215     | Dr. David Nelson<br>Office of Naval Res. Code 413<br>800 N. Quincy Street<br>Arlington, VA 22217-5000                 |
| <b>Dr. J.E. Demuth</b><br>IBM Watson Research Center<br>PO Box 218<br>Yorktown Heights, NY 10598                                       | <b>Dr. J.C. Hemminger</b><br>Chemistry Dept.<br>University of California<br>Irvine, CA 92717                    | <b>Dr. G. Rubloff</b><br>IBM Watson Research Ctr.<br>PO Box 218<br>Yorktown Hts., NY 10598                       | <b>Dr. J.H. Weaver</b><br>Chemical Engg. & Mtls. Sci.<br>University of Minnesota<br>Minneapolis, MN 55455 | Dr. Ronald L. Atkins<br>Chemistry Div., Code 385<br>Naval Weapons Center<br>China Lake, CA 93555-6001                 |
| <b>Dr. F.J. DiSalvo</b><br>Department of Chemistry<br>Cornell University<br>Ithaca, NY 14853                                           | <b>Dr. Roald Hoffmann</b><br>Chemistry Dept.<br>Cornell University<br>Ithaca, NY 14853                          | <b>Dr. L. Ingerman</b><br>Chemistry Dept.<br>Rensselaer Polytech Inst.<br>Troy, NY 12181                         | <b>Dr. Richard J. Saykally</b><br>Chemistry Department<br>University of California<br>Berkeley, CA 94720  | Dr. Bernadette Eichinger<br>Naval Ships Systems Eng. Station<br>Philadelphia, PA 19112                                |
| <b>Dr. A.B. Ellis</b><br>Department of Chemistry<br>University of Wisconsin<br>Madison, WI 53706                                       | <b>Dr. E.A. Irene</b><br>Chemistry Dept.<br>Univ. of North Carolina<br>Chapel Hill, NC 27514                    | <b>Dr. Robert W. Shaw</b><br>US Army Research Office<br>Box 12211<br>Res. Triangle Park, NC 27709                | <b>Dr. B.R. Weiner</b><br>Department of Chemistry<br>University of Puerto Rico<br>Rio Piedras, PR 00931   | David Taylor Research Station<br>Attn: Dr. H. H. Singer<br>Code 283<br>Annapolis, MD 21402-5067                       |
| <b>Dr. M.A. El-Sayed</b><br>Chemistry Department<br>University of California<br>Los Angeles, 90024-1569                                | <b>Dr. S. Sibener</b><br>James Franck Institute<br>University of Chicago<br>Chicago, IL 60637                   | <b>Dr. Robert L. Whetten</b><br>Chemistry Department<br>University of California<br>Los Angeles, CA 90024        | <b>Dr. R. Stanley Williams</b><br>Dept. of Chemistry<br>University of California<br>Los Angeles, CA 90024 | Dr. Sachio Yamamoto<br>Naval Ocean Systems Center<br>Code 52<br>San Diego, CA 91232                                   |