

Mathematik I

Vorlesung 4 - Zahlsysteme

Prof. Dr. Sandra Eisenreich

02. November 2023

Hochschule Landshut

Motivation

Das Zahlsystem, in dem wir gewöhnlich rechnen, ist das 10-er System. Das heißt, eine Zahl 12345 ist zu lesen als:

$$12345 = 5 \cdot 1 + 4 \cdot 10 + 3 \cdot 100 + 2 \cdot 1000 + 1 \cdot 10.000$$
$$= 5 \cdot 10^{0} + 4 \cdot 10^{1} + 3 \cdot 10^{2} + 2 \cdot 10^{3} + 1 \cdot 10^{4}$$

Manchmal ist es aber nicht ideal, im 10-er System zu bleiben. Zum Beispiel wenn man mit Sekunden und Minuten rechnet (dann ist man im 60-er System!), oder eben wenn man mit Computern zu tun hat: ein Bit hat nur zwei Zuständen: 1 oder 0. Deswegen braucht man für Computer das **Binärsystem** (=Zahlsystem mit Basis 2): So kann man zum Beispiel die Zahl $(21)_{10}$ (so schreiben wir eine Zahl im 10-er System, wenn wir Unklarheiten vermeiden wollen) schreiben als Summe von 2-er Potenzen $(1,2,4,8,16,32,64,128,\ldots)$:

$$(21)_{10} = ?$$

1

Anwendungen in der Informatik

Folgende Zahlsysteme sind überall in der Informatik anzutreffen:

- Binärsystem für Bits und Bytes: Basis 2
- Hexadezimalsystem für effizientere Speicherung: Basis 16; Der Grund für die Verwendung
 des Hexadezimalsystems ist, dass man 4 Stellen im Binärsystem zu einer einzigen Stelle im
 Hexadezimalsystem zusammenfassen kann und so statt 4 Stellen nur eine Stelle
 abspeichern muss.

Außerdem: Die Umrechnungen von einem Zahlsystemen in ein anderes folgt einem festen Algorithmus. Wir lernen hier also quasi etwas Algorithmik.

Natürliche Zahlen

Satz

(Darstellung natürlicher Zahlen) Sei $b \in \mathbb{N} > 1$ eine natürliche Zahl (b heißt Basis). Dann lasst sich jede natürliche Zahl n in eindeutiger Form schreiben als

$$n = a_0 \cdot b^0 + a_1 \cdot b^1 + \ldots + a_m \cdot b^m$$

mit $n \in \mathbb{N}$ und $a_i \in \{0, \dots, b-1\}a_m \neq 0$. Die $a_i's$ sind die **Ziffern** im Zahlensystem mit **Basis** b. Man schreibt $n = a_0 + a_1 \cdot b + a_m \cdot b^m = (a_m \dots a_1 a_0)_b$.

Achtung: Die Ziffern in einem Zahlensystem mit Basis b haben Zimmer zwischen 0 und b-1! lst $b \ge 10$, dann kann auch eine zweistellige Zahl eine Ziffer sein.

Beispiele: → Mitschrift

Beweis. → Mitschrift

Definition

Das Zahlensystem mit Basis 2 nennt man **Binärsystem**, und das Zahlensystem mit Basis 16 das **Hexadezimalsystem**. In letzterem kürzt man die Ziffern $10, 11, 12, \ldots, 16$ ab mit $A = 10, B = 11, C = 12, \ldots, F = 15$ (weil es verwirrend ist, wenn eine einzelne Ziffer eine zweistellige Zahl ist, wie bereits angemerkt). Das Hexadezimalsystem eignet sich sehr gut, um Folgen von Bits (verwendet in der Digitaltechnik) darzustellen.

Rechenregel

Wie berechnet man für gebenes $n \in \mathbb{N}$ die Darstellung $n = (a_m \dots a_1 a_0)_b$? Fortgesetzte Division mit Rest:

$$(a_m b^m + \dots + a_1 \cdot b^1 + a_0) : b = (a_m b^{m-1} + \dots + a_1) \text{ Rest } a_0$$

$$(a_m b^{m-1} + \dots + a_1) : b = a_m b^{m-2} + \dots + a_2 \text{ Rest } a_1$$

$$\vdots$$

$$(a_m b + a_{m-1}) : b = a_m \text{ Rest } a_{m-1}$$

$$a_m : b = 0 \text{ Rest } a_m$$

Beispiele: → Mitschrift