Balaji Rao

201-936-1402 | Hoboken, NJ | brao@stevens.edu

Education

Stevens Institute of Technology, Hoboken, NJ

Ph.D., Systems Engineering

Master of Engineering, Engineering Management

(Expected) December 2025

May 2022

BNM Institute of Technology, Bengaluru, India

Bachelor of Engineering, Electronics and Communication Engineering

October 2020

Profile

Ph.D. candidate specializing in Systems Engineering, with expertise in Large Language Models (LLMs), generative AI, and scalable machine learning solutions. Skilled in building data-driven solutions and leveraging machine learning paradigms to address complex challenges. Demonstrated success in fine-tuning SOTA language models, developing novel algorithms, and optimizing NLP workflows, aligning with applied science roles in generative AI.

Skills

Programming Languages: Python, R, CUDA, C++, HTML/CSS, SQL, Solidity

Frameworks: TensorFlow, PyTorch, scikit-learn, HuggingFace, NumPy, Pandas, NLTK, AWS **Analytical Methods:** Statistical analysis, data visualization, machine learning algorithms (ML)

Experience

Research Assistant - Stevens Institute of Technology

July 2021 - Present

- Mitigating the limitations of probabilistic LLM models by integrating Structured Knowledge, enhancing the generation of coherent and contextually accurate responses.
- Enhancing LLM reasoning for formal verification by developing an automated theorem-proving pipeline in Isabelle/HOL, integrating structured knowledge and reinforcement learning (Pure RL/RLHF) to improve accuracy and reliability in safety-critical domains.
- Built LLM-based AI systems by implementing RL training algorithms with fine-tuned accuracy and format rewards, leading to improved coherence, factual accuracy, and reliability in applications.

Data Science/Data Engineering Intern - Johnson & Johnson

May 2024 - August 2024

- Developed machine learning models to analyze and reduce content fatigue, enhancing healthcare professionals' (HCPs) engagement with promotional emails.
- Implemented a Hidden Markov Model (HMM) for probabilistic predictions of email engagement, utilizing a feature matrix that included temporal data. Integrated use of Gen AI solutions to leverage large language models (LLMs) like Llama-2 to optimize content, improving messaging outcomes.
- Introduced new predictive analytics metrics—Engagement Discrepancy Index and Engagement-Adjusted Error Rate—to provide deeper insights into content fatigue, complementing traditional email engagement metrics.

Selected Projects

Multimodal Financial Time-Series Forecasting with BERT embeddings

December 2024

- Developed a forecasting model by integrating PatchTST and BERT with positional embeddings and multi-head attention to handle temporal dependencies and textual insights.
- Efficiently leveraged both numerical time-series data and text embeddings from financial news and tweets to predict future stock price movements.

Logical Large Language Models for Code Verification using Formal Methods

April 2024

- Developed an LLM training pipeline for generating mathematical proofs in Isabelle/HOL, specifically using Isar for verifying policy code.
- Integrated symbolic and sub-symbolic AI to enhance code reliability through formal verification methods.

Selected Papers

- Anatomy of an AI Economy (IEEE ISSE 2024)
- Identification of Variables Impacting Cascading Failures in Aerospace Systems (CSER 2024)
- A Game Theoretic Approach for Validator Selection in Proof of Stake Blockchains (ICoABCD 2023)