

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE INGENIERÍA LABORATORIO DE HIDRÁULICA DE CANALES

FORMATO 3. AFORO EN ESTRUCTURAS DE DESCARGA

Grupo:	
Equipo #:	
Fecha:	
Maestro:	
Calificación:	

Integrantes	Matricula

Vertedores de cresta delgada						
Tipo de sección		Rectangular	Circular	Triangular	Trapecial	Parabólica
Tirante (h):	m					
Base del área hidráulica (b):	m					
Base vertedor (B):	m					
Altura vertedor (W):	m					
Espejo (T):	m					
Ángulo de pared (૭):	o					
Constante parabólica (a):	-					
Diámetro (D):	m					
Coeficiente de gasto (μ):	-					
Coeficiente de gasto (C):	-					
Gasto cálculado (Q):	m3/s					
Gasto volumétrico(Qv):	m3/s					

a) Rectangular $Q = Cbh^{\frac{3}{2}}$ $C_1 = \frac{2}{3}\sqrt{2g}\,\mu$

 $Q = C\phi D^{\frac{5}{2}} \qquad \phi = 10.12 \left(\frac{h}{D}\right)^{1.975} - 2.66 \left(\frac{h}{D}\right)^{3.78}$ $C = 0.555 + \frac{D}{110h} + 0.041 \left(\frac{h}{D}\right)$

b) Triangular $Q = Ch^{\frac{5}{2}}Tan\left(\frac{\theta}{2}\right)$ $C_2 = \frac{8}{15}\sqrt{2g} \ \mu$

 $Q = C_1 b h^{\frac{3}{2}} + C_2 b h^{\frac{5}{2}} Tan \left(\frac{\theta}{2}\right)$ $C_1 = \frac{2}{3} \sqrt{2g} \mu$ $C_2 = \frac{8}{15} \sqrt{2g} \mu$

d) Parabolico

$Q = Ch^2$
a = 4h
$a = \frac{1}{(T)^2}$
$\mu = \frac{2.658}{\sqrt{2g}} a^{0.012}$
$\sqrt{2g}$
2.088

 $C = \frac{2.088}{a^{0.488}}$

Conclusión:

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE INGENIERÍA LABORATORIO DE HIDRÁULICA DE CANALES

FORMATO 3. AFORO EN ESTRUCTURAS DE DESCARGA

	Vertedor de crest
Datos	
Tirante hidráulico (Y):	m
Longitud de cresta (b):	m
Profundidad de cresta (W):	m
Espesor de cresta (e):	m
Tirante (h):	m
Coeficiente de gasto (μ):	-
Coeficiente de gasto (C):	-
Coeficiente de reducción (ε1):	-
Gasto calculado(Q):	m³/s
Gasto aforo volumetrico (Qν):	m³/s

	Vertedo
Datos	
Tirante hidráulico (y):	m
Carga sobre la cresta (h):	m
Longitud efectiva de cresta (Le):	m
Coeficiente de descarga (C):	m
Gasto calculado (Q):	m³/s
Gasto aforo volumetrico (Qv):	m³/s

	Medid
Datos	
Ancho de garganta (W):	mm
Altura de agua del medidor(H):	mm
Gasto calculado (G):	Lps
Gasto de digital(Q):	Lps

Para un Gasto en Lps				
W (mm)	С	n		
25.4	0.001352	1.55		
50.8	0.002702	1.55		
76.2	0.003965	1.55		
152.4	0.006937	1.58		
228.6	0.013762	1.53		

Conclusión:			

Tabla 2. Coeficientes de gasto para vertedores rectangulares. [6]

Autor	Formula	Límite de aplicación	Observaciones
Hegly (1921)	$\mu = \left[0.6075 - 0.045 \left(\frac{B - b}{B}\right) + \frac{0.0041}{h}\right] x \left[1 + 0.55 \left(\frac{b}{B}\right)^2 \left(\frac{h}{h + w}\right)^2\right]$	0.10 m ≤ h ≤ 0.60 m 0.50 m ≤ b ≤ 2.00 m 0.20 m ≤ w ≤ 1.13 m	El primer límite de aplicación es el más importante. Para h/b> 0.13 tiene mayor precisión que la fórmula SIAS
Sociedad de Ingenieros y Arquitectos Suizos (SIAS)	$\mu = \left[0.578 + 0.037 \left(\frac{b}{B}\right)^2 + \frac{3.615 - 3(\frac{b}{B})^2}{1000h + 1.6}\right] x$ $\left[1 + 0.05 \left(\frac{b}{B}\right)^4 \left(\frac{h}{h + w}\right)^2\right]$	0.025 m ≤ h ≤ 0.80 m b ≤ 0.3B w ≥ 0.30 m h/w ≤ 1 en el caso de contracciones laterales	Para vertedores sin contracción lateral los límites son: 0.025 m ≤ h ≤ 0.80 m 0.30 m ≤ w h/w ≤ 1 Para h/b ≤ 0.13, es más precisa que la de Hegly
Hamilton - Smith	$\mu = 0.616 \left(1 - \frac{b}{10B}\right)$	0.075 m ≤ h ≤ 0.60 m 0.30 m ≤ b 0.30 m ≤ w h ≤ w/2 b ≤ (B-2h), h/b ≤ 0.5	Si B (h + w) < 10bh, se deberá reemplazar en la ecs. 7.5 (Sotelo Á,) el valor de h por h', donde: h' = h + 1.4 (V²/2g) Siendo V = [Q/B(h + w)] la velocidad de llegada.
Francis	$\mu = 0.623 \left[1 - 0.1 n \frac{h}{b} \right] x \left[\left(1 + \frac{V_0^2}{2gh} \right)^{\frac{3}{2}} - \left(\frac{V_0^2}{2gh} \right)^{\frac{3}{2}} \right]$	0.18 m ≤ h ≤ 0.50 m 2.40 m ≤ b ≤ 3.00 m 0.60 m ≤ w ≤ 1.50 m b ≥ 3h	V = Q / (B (h + w)) Siendo V la velocidad de llegada. n = 2 en vertedores con contracción lateral n = 0 en vertedores sin contracciones laterales
Rehbock (1929)	$\mu = \left(0.6035 + 0.0813 \left(\frac{h + 0.0011}{w}\right)\right) \left[1 + \frac{0.0011^{\frac{3}{2}}}{h}\right]$	0.18 m ≤ h ≤ 0.50 m b ≥ 0.3 m w ≥ 0.06 m h/w ≤ 1	Vale sólo para vertedores sin contracciones laterales. Es muy precisa y de las más utilizadas, por su sencillez.

Tabla 3. Coeficientes de gasto para vertedores triangulares. [6]

AUTOR	FÓRMULA	LIMITE DE	OBSERVACIONES
Universidad católica de Chile	$C = \frac{8}{15} \sqrt{2g} \tan \frac{\theta}{2} \mu K$	Vale para 15°≤0≤120° La profundidad W no tiene influencia en el coeficiente de gasto	μ coeficiente experimental que depende de h y θ (según la figura 7.9 Sotelo Ávila), K es otro coeficiente que depende de B/h (según la figura 7.10) y vale 1 si B/h \geq 5 para θ = 90° y si B/h \geq 2.75 para θ = 45°
Gourley y Crimp	$C = \frac{1.32 \tan \frac{\theta}{2}}{h^{0.03}}$	Vale para 0 de 45°, 60° y 90° y para profundidades w grandes	Esta fórmula conduce a la ecuación: $Q = 1.32 tan (\theta / 2) h^{2.48}$
Hegly (1921)	$\mu = \left[0.5812 + \frac{0.00375}{h}\right] x \left\{1 + \left[\frac{h^2}{B(h+w)}\right]\right\}$	Vale para θ = 90° 0.10 m ≤ h ≤ 0.50 m Profundidades W pequeñas	Es de las fórmulas más precisas para vertedores con ángulo en el vértice $\theta = 90^{\circ}$
Barr (1909)	$\mu = 0.565 + \frac{0.0087}{h^{0.5}}$	Vale para θ = 90° con cargas 0.05 m ≤ h ≤ 0.25 m w ≥ 3h B ≥ 8h	El valor medio de μ = 0.593 que resulta de esta fórmula corresponde bastante al resultado de Thompson (1861), y que conduce a la ecuación: $Q = 1.42 \ h^{5/2}$
Koch (1923) Yarmall (1926)	$\mu = 0.58$	Vale para $\theta = 90^{\circ}$ con cargas muy grandes. $W \ge 3h$, $B \ge 8h$	No se limita con precisión el rango de validez.
Hendricks	$\mu = [0.5775 + 0.214h^{1.125}] \left\{ 1 + \left[\frac{h^2}{B(h+w)}^2 \right] \right\}$	Vale para θ = 60° y cargas normales	Es bastante precisa