Path Logics for Querying Graphs

combining expressiveness and efficiency

Diego Figueira CNRS, LaBRI France

Semantic web / RDF / social networks / ...

Unions, inverse

"All the pairs (u,v) that can reach some node z in the same number of steps"

What about testing for relations on the paths?

- $\bullet |\pi_i| = |\pi_j|$
- π_i is a **prefix** of π_j
- π_i is a subsequence of π_j
- π_i is a factor of π_j
- $\pi_i = \pi_j$ projected onto A

Motivations from: entity resolution, semantic associations, crime detection,...

What about testing for relations on the paths?

CRPQ(S) =
$$\frac{CRPQ +}{\text{tests } R(\pi_{i_1,...,}\pi_{i_n}), R \in S}$$

S: Class of well-behaved word relations...

CRPQ(S)

CRPQ

 π_I : (ab)* c

 π_2 : (ac)*

 π_3 : a c*

 $R(\pi_1, \pi_2), R \in S$

relations

 $R \subseteq \mathbb{A}^* \times \mathbb{A}^*$

REG₂ regular

RAT₂
rational

a b a b c b b

prefix, equal, equal length, ...

suffix, infix, projection, subsequence, ...

$$CRPQ(S) = \begin{cases} CRPQ + \\ tests R(\pi_{i_1,...,}\pi_{i_n}), R \in S \end{cases}$$

CRPQ(REC) NP/NL complexity

Can this be extended?

CRPQ(REG) PSPACE/NL complexity

CRPQ(RAT) undecidable

Related to the Intersection Problem:

Given relations $R_1,...,R_n$, whether $R_1 \cap \cdots \cap R_n \neq \emptyset$

intersection problem

R, S: classes of binary relations

input: $R \in R$, $S \in S$

output: $R \cap S = \emptyset$?

it has been studied...

REG \cap RAT = \emptyset ? already undecidable

 $(u_{i_1} \dots u_{i_n}, v_{i_1} \dots v_{i_n})$ • • • PCP

...but what about •

 $u \sqsubseteq \iota$

subsequence

subsequence...?

real world relations?

suffix...?

subword...?

Can we extend CRPQ beyond REG relations?

Language	Data complexity	Combined complexity
CRPQ(REG _k)	NL	PSPACE
CRPQ(RAT _k)	Undecidable	Undecidable
$CRPQ(REG_k + suffix)$	Undecidable	Undecidable
$CRPQ(REG_k + factor)$	Undecidable	Undecidable
CRPQ(REG _k + subsequence)	non-elementary	non-PR
CRPQ(suffix)	NL	PSPACE
CRPQ(factor)	PSPACE	PSPACE
CRPQ(subsequene)	PSPACE	NEXPTIME

Can we extend CRPQ beyond REG relations?

Proposed alternative: approximate RAT through REG + counters

How?

- 1) take a an NFA
- 2) add counters
- 3) use it to read *k*-tuples of words

2 tapes over $\mathbb{A} \approx 1$ tape over $\mathbb{A} \times \{1,2\}$

control word

$$\begin{bmatrix}
1 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 \\
2 & 1 & 2 & 1 & 2 & 2 & 1 & 2
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
a & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
a & b & a & b & b & a & b & b & a
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 &$$

Eg:

Approximate with regular relations that can count patterns

$$\mathbf{R} = \left\{ \begin{array}{c} (\mathcal{U}, \mathcal{U}) & \text{# of times (ab)*c appears in } \mathbf{u} \\ = \\ 2 \cdot \text{# of times c*b appears in } \mathbf{v} \end{array} \right\}$$

More than just counting letters

Instead of regular languages...

 $Rel(L) = \{ [S] | S \in REG(A \times \{1,2\}) \text{ is } L\text{-controlled} \}$

...use automata with counting

Evaluation of CRPQ with counting is feasible

PSPACE in combined complexity
NL in data complexity

Parikh Automata* [Klaedtke & Rueß]

dimension

NFA with **n** counters $c_1,...,c_n$ and a semilinear set $S\subseteq\mathbb{N}^n$

$$(A,Q,q_0,\delta,H,n,S)$$

Transitions of δ : $(q,a,(x_1,...,x_n),q') \in Q \times A \times \mathbb{N}^n \times Q$ Run:

counters can only be incremented

• Initial configuration: $(q_0,(0,...,0)) \in Q \times \mathbb{N}^n$

$$(q,x) \xrightarrow{(q,a,y,p)} (p,(x+y))$$

• Acceptance: last configuration in F×S

* Many equivalent definitions (eg. reversal-bounded counter systems)

Parikh Automata

Eg:
$$L_{ba=ca} = \left\{ w \mid \begin{array}{l} \text{number of } a \text{'s after a } b \\ = \\ \text{number of } a \text{'s after a } c \end{array} \right\}$$

Parikh Automaton $A = (A, Q, q_0, \delta, F, 2, \{(k,k) \mid k \in \mathbb{N}\})$

- dimension 2 (2 counters)
- increment c1 whenever we see "ba"
- increment c₂ whenever we see "ca"
- F=Q
- Semilinear set assures that counters must be equal to accept a word

Parikh Automata

Decidable

non-emptiness, membership

Closed under

intersection,union,(inverse) homomorphisms,concatenation

(not complementation/iteration)

 $Rel^{PA}(L) = \{ [S] \mid S \in PA(A \times \{1,2\}) \text{ is } L\text{-controlled} \}$

Eg:

relations

Theorem: Evaluation of CRPQ(REGPA) is

PSPACE in combined complexity

NL in data complexity

Proof ingredients:

• Intersection problem for Parikh Automata

Given PA's $A_1,...,A_n$, is $L(A_1) \cap \cdots \cap L(A_n) \neq \emptyset$? is PSPACE-complete

• Intersection closure for REGPA

For all $R,S \in REG^{PA}$, $R \cap S \in REG^{PA}$ it suffices to intersect the automata representing them

• Closure under product of REGPA

Theorem: Evaluation of CRPQ^{PA} (no relations) is

NP in combined complexity

NL in data complexity

Approximating rational relations

 $u \sim_{\mathbf{k}} v$ are **k-similar** iff for all w with $|w| \leq \mathbf{k}$, they have the same number of appearances of w (as factor) (as subsequence)

Given $R \in RAT$,

 $\mathbf{R}_{\mathbf{k}} = \{(\mathbf{u},\mathbf{v}) \mid u \sim_{\mathbf{k}} u', v \sim_{\mathbf{k}} v', (u', v') \in \mathbf{R}\} \in \mathbf{REG}^{\mathbf{PA}}$

Alternative: Syntactic restrictions

E.g.

Theorem: Evaluation of acyclic-CRPQ(RAT^{PA}) is

PSPACE in combined complexity

NL in data complexity

 π_1 : (ab)* c $R(\pi_1, \pi_3)$ Maximum cardinality of $S(\pi_3, \pi_2)$

eomponent π3: a c

E.g. If also fixed join size: NP combined complexity

acyclic

If also fixed PA dimension and unary representation:
PTIME combined complexity

Conclusion

Counting does not increase complexity

Avoid the curse of of rational relations

Approximating by regular relations with counting

Or staying away from cycles in path relations

Thank you