1. (a)
$$f(x) = \frac{1}{2}x^{T}Ax + b^{T}x$$
 $\forall f(x) = Ax + b$

(b) $f(x) = g(h(x))$
 $\forall f(x) = g(h(x))$
 $= g'(h(x)) \forall h(x)$

(c) $\forall^{2}f(x) = \forall (Ax + b)$
 $= A$

(d) $\forall f(x) = \forall g(a^{T}x) \forall (a^{T}x)$
 $= g'(a^{T}x) \forall (a^{T}x)$
 $= g'(a^{T}x) \Rightarrow (a^{T}x) \Rightarrow$

2. (a) symmetric:
$$A^{T} = (2 e^{T})^{T} = X e^{T} = A$$
.
 $x^{T}Ax = x^{T}e^{T}x = x^{T}e(x^{T}e)^{T} = (x^{T}e)^{T} \geqslant 0$ PSD
(b) $Ax = 0$, $x e^{T}x = 0$. z is non-zero vector
 $e^{T}x = 0$, e

]An" An" ... An")] = [xin" xru" ... xnu"]
=. An" = x; n".

n" 75 eigen vector of A.