

DIGITAL VLSI DESIGN

Annapurna K YElectronics and Communication Engineering

DIGITAL VLSI DESIGN

Unit 2: Fabrication of MOSFETs & Circuit Design Process

Annapurna K Y

Electronics and Communication Engineering

Complex Logic Circuits

Euler path – Uninterrupted path that traverses each edge of the graph EXACTLY ONCE

Optimal Input (POLY) Ordering

 Common Euler path in BOTH PDN graph and PUN graph gives optimal ordering of POLY input I

pMOS network

Finding a common Euler path in both graphs for n-net and p-net provides a gate ordering that minimizes the number of diffusion breaks and, thus, minimizes the logic- gate layout area. In both cases, the Euler path starts at (x) and ends at (y).

Complex Logic Circuits

Layout with Optimum Gate Ordering

- By using the Euler path approach to re-order the polysilicon lines of the previous chart, we can obtain an optimum layout.
- •Find a Euler path in both the pull-down tree graph and the pull-up tree graph with identical ordering of the inputs.
 - -Euler path: traverses each branch of the graph exactly once!
- •By reordering the input gates as E-D-A-B-C, we can obtain an optimum layout of the given CMOS gate with single actives for both NMOS and PMOS devices (below).

pMOS network

Complex Logic Circuits

Figure 7.23. Full-CMOS implementation of the XOR function.

AOI (AND - OR - INVERT) CMOS Gate

PES UNIVERSITY ONLINE

- •AOI complex CMOS gate can be used to directly implement a sum-of-products Boolean function
- •The pull-down N-tree can be implemented as follows:
 - -Product terms yield series-connected NMOS transistors
 - -Sums are denoted by parallel-connected legs
 - -The complete function must be an inverted representation
- •The pull-up P-tree is derived as the dual of the N-tree

OAI (OR – AND - INVERT) CMOS Gate

- •An Or-And-Invert (OAI) CMOS gate is similar to the AOI gate except that it is an implementation of product-of-sums realization of a function
- •The N-tree is implemented as follows:
 - -Each product term is a set of parallel transistors for each input in the term
 - -All product terms (parallel groups) are put in series
 - -The complete function is again assumed to be an inverted representation
- •The P-tree can be implemented as the dual of the N-tree
- Note: AO and OA gates (non-inverted function representation) can be implemented directly on the P-tree if inverted inputs are available

THANK YOU

Annapurna K Y

Electronics & Communication Engineering

annapurnaky@pes.edu