Chapitre 30

Déterminant

30	Déterminant
	30.4 Exemple
	30.11Détermination d'une application n-linéaire sur une base
	30.18 Caractérisation par les transpositions
	30.19Une forme alternée change de signe par transposition
	30.21Image d'une famille liée par une forme alternée
	30.22Forme n -linéaire d'un espace de dimension n
	30.25Exemple
	30.26Description du déterminant par les coordonnées
	30.28Effet d'un changement de base sur le déterminant

30.4 Exemple

Exemple 30.4

On considrée l'application :

$$\delta: \mathbb{K}^2 \times \mathbb{K}^2 \to \mathbb{K}; ((a,b),(c,d)) \mapsto ad - bc$$

Montrer que cette application est bien 2-linéaire.

$$\begin{split} \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix} + \lambda \begin{pmatrix} c' \\ d' \end{pmatrix}\right) &= \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c + \lambda c' \\ d + \lambda d' \end{pmatrix}\right) \\ &= a(d + \lambda d') - b(c + \lambda c') \\ &= ad - bc + \lambda (ad' - bc') \\ &= \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix}\right) + \lambda \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c' \\ d' \end{pmatrix}\right) \end{split}$$

30.11 Détermination d'une application n-linéaire sur une base

Propostion 30.11

Soit pour tout $i \in [1, n]$, $(e_{i,j})_{1 \le j \le d}$ une base de E_i et pour tout $(j_1, \ldots, j_n) \in [1, d_1] \times \cdots \times [1, d_n]$, $f_i, \ldots, f_n \in F$.

Alors il existe une unique application n-linéaire $f: E_1 \times \cdots \times E_n \to F$ telle que :

$$\forall (j_1, \dots, j_n) \in [1, d_1] \times \dots \times [1, d_n], \varphi(e_{1,j_1}, \dots, e_{n,j_n}) = f_{j_1, \dots, j_n}$$

Si $(e_{i,j})_{1 \leq j \leq d}$ est une base de E_i alors $((e_{1,2},0,\ldots,0,\ldots,e_{1,d},0,\ldots,0),\ldots,(0,\ldots,0,e_{n,1},\ldots,(0,\ldots,0,e_{n,d})))$ est une base de $E_1 \times \cdots \times E_n$. (22.16), théorème de rigidité.

30.18 Caractérisation par les transpositions

Lemme 30 18

Pour qu'une forme f soit antisymétrique, il faut et il suffit que l'échange de deux variables quelconques provoque un changement de signe.

Par hypothèse, si τ est une transposition alors $\varphi(x_{\tau_1}, \dots, x_{\tau_n}) = -\varepsilon(\tau)(x_1, \dots, x_n)$. Soit $\sigma \in S_n$. On écrit $\sigma = \tau_1 \circ \dots \circ \tau_k$ avec τ_i des transpositions. Alors:

$$\varphi(x_{\sigma_1}, \dots, x_{\sigma_n}) = \varphi(x_{\tau_1 \circ \dots \circ \tau_k(1)}, \dots, x_{\tau_1 \circ \dots \circ \tau_k(n)})$$

$$= \varepsilon(\tau_1) \varphi(x_{\tau_2 \circ \dots \circ \tau_k(1)}, \dots, x_{\tau_2 \circ \dots \circ \tau_k(n)})$$

$$= \varepsilon(\tau_1 \circ \dots \circ \tau_k) \varphi(x_1, \dots, x_n)$$

$$= \varepsilon(\sigma) \varphi(x_1, \dots, x_n)$$

30.19 Une forme alternée change de signe par transposition

Lemme 30.19

Soit φ une forme alternée. Alors pour tout $(x_1,\ldots,x_n)\in E^n$ et tout $(i,j)\in [1,n]^2$ avec $i\neq j$:

$$\varphi(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n) = -\varphi(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n)$$

Cela revient à dire que pour toute transposition $\tau \in S_n$, on a :

$$\varphi(x_1,\ldots,x_n) = -\varepsilon(\tau)\varphi(x_{\tau_1},\ldots,x_{\tau_n})$$

Réciproquement, si cette condition est satisfaite et si \mathbb{K} n'est pas de caractéristique 2, alors φ est alternée.

Soit φ alternée.

Soit $(x_1,\ldots,x_n)\in E^n$.

$$0 = \varphi(x_1, \dots, x_i + x_j, \dots, x_j + x_i, \dots, x_n)$$

$$= \varphi(x_1, \dots, x_i, \dots, x_i, \dots, x_n)$$

$$+ \varphi(x_1, \dots, x_j, \dots, x_j, \dots, x_n)$$

$$+ \varphi(x_1, \dots, x_j, \dots, x_i, \dots, x_n)$$

$$+ \varphi(x_1, \dots, x_j, \dots, x_i, \dots, x_n)$$

$$= \varphi(x_1, \dots, x_j, \dots, x_n) + \varphi(x_1, \dots, x_j, \dots, x_i, \dots, x_n)$$

On suppose que $\operatorname{carac}(\mathbb{K}) \neq 2$.

On a:

$$\varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n) = \varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)$$
 (antisymétrie)

 ${\bf Donc}:$

$$2\varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)=0$$

Donc:

$$\varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)=0$$

30.21 Image d'une famille liée par une forme alternée

Propostion 30.21

Soit (x_1,\ldots,x_n) une famille liée et φ une forme alternée. Alors :

$$\varphi(x_1,\ldots,x_n)=0$$

Si (x_1, \ldots, x_n) est liée, alors on peut écrire par exemple :

$$x_1 = \sum_{i=2}^{n} \lambda_i x_i$$

Donc:

$$\varphi(x_1, \dots, x_n) = \varphi\left(\sum_{i=2}^n \lambda_i x_i, x_2, \dots x_n\right)$$
$$= \sum_{i=2}^n \lambda_i \varphi(x_i, x_2, \dots, x_n)$$

30.22 Forme n-linéaire d'un espace de dimension n

Théorème 30.22

Soit E un espace vectoriel de dimension n non nulle et (e_1, \ldots, e_n) une base de E.

- 1. Il existe une unique forme *n*-linéaire φ sur E telle que $\varphi(e_1,\ldots,e_n)=1$.
- 2. Cette forme n-linéaire est entièrement décrite sur les vecteurs de la base par :

$$\begin{cases} \varphi(e_{i_1},\dots,e_{i_n}) = 0 & \text{s'il existe } j \neq k \text{ tel que } i_j = i_k \\ \varphi(e_{\sigma(1)},\dots,e_{\sigma(n)}) = \varepsilon(\sigma) & \text{où } \sigma \in \mathcal{S}_n \end{cases}$$

3. Toute autre forme n-linéaire alternée sur E est de la forme $\lambda \varphi$, où $\lambda \in \mathbb{K}$.

1, 2

On utilise le théorème de rigidité des applications n-linéaires (30.11) en fixant l'image de chaque $(e_{i_1}, \ldots, e_{i_n})$ avec $(i_1, \ldots, i_n) \in [1, n]^n$.

$$\begin{split} & - \varphi(e_{i_1}, \dots, e_{i_n}) = 0 \text{ s'il existe } i_j - i_k \text{ avec } j \neq k. \\ & - \varphi(\underbrace{e_{\sigma(1)}, \dots, e_{\sigma(n)}}_{(i_1, \dots, i_n) \text{ fournit alors une permutation } \sigma \in \mathcal{S}_n}) = \varepsilon(\sigma) \times \underbrace{1}_{\varphi(e_1, \dots, e_n)}. \end{split}$$

Le théorème nous fournit l'existence de la forme alternée et l'unicité.

Soit ψ une forme *n*-linéaire alternée. On pose $\lambda = \psi(e_1, \dots, e_n)$.

- si $\lambda=0$, par alternance (et anitsymétrie) on a $\psi(e_{i_1},\ldots,e_{i_n})=0$ pour tout i_1,\ldots,i_n .
 - Par rigidité, $\psi = 0 = 0 \times \varphi$.
- si $\lambda \neq 0$, alors $\frac{1}{\lambda}\psi(1,\ldots,e_n) = 1$. Par unicité $(1), \frac{1}{\lambda}\psi = \varphi$. Donc $\psi = \lambda \varphi$.

30.25 Exemple

Exemple 30.25

On considère $E = \mathbb{R}^2$, muni de sa base canonique $e = (e_1, e_2) = ((1, 0), (0, 1))$. Soit $((a, b), (c, d)) \in E^2$. Montrer que :

$$\det_e((a,b),(c,d)) = ad - bc$$

$$e = ((1,0), (0,1)).$$

 $((a,b), (c,d)) \in (E)^2.$

$$\begin{aligned} \det_e((a,b),(c,d)) &= \det_e(ae_1 + be_2,ce_1 + de_2) \\ &= ac \times \det_e(e_1,e_1) + ad \times \det_e(e_1,e_2) + bc \times \det_e(e_2,e_1) + bd \times \det_e(e_2,e_2) \\ &= ad \times \det_e(e_1,e_2) - bc \times \det_e(e_1,e_2) \\ &= (ad - bc) \end{aligned}$$

30.26 Description du déterminant par les coordonnées

Théorème 30.26

Soit E un espace vectoriel de dimension n non nulle et $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E. Soit (x_1, \ldots, x_n) une famille d'éléments de E, dont les coordonnées sont :

$$\forall j \in [1, n], x_j = \sum_{i=1}^n a_{i,j} e_i \quad \text{donc} \quad \text{Mat}_{\mathcal{B}}(x_j) = \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{n,j} \end{pmatrix}$$

On a alors:

$$\det_{\mathcal{B}}(x_1,\ldots,x_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1),1} \cdots a_{\sigma(n),n} = \sum_{\tau \in \mathcal{S}_n} \varepsilon(\tau) a_{1,\tau(1)} \cdots a_{n,\tau(n)}$$

$$\begin{split} \det_{\mathcal{B}}(x_1,\dots,x_n) &= \det_{\mathcal{B}} \left(\sum_{i=1}^n a_{i_1,1} e_{i_1},\dots,\sum_{i=1}^n a_{i_n,n} e_{i_n} \right) \\ &= \sum_{i_1=1}^n \dots \sum_{i_n=1}^n a_{i_1,1} \dots a_{i_n,n} \det_{\mathcal{B}}(e_{i_1},\dots,e_{i_n}) \text{ (multilinéarité)} \\ &= \sum_{\{i_1,\dots,i_n\} = [\![1,n]\!]} a_{i_1,1} \dots a_{i_n,n} \det_{\mathcal{B}}(e_{i_1},\dots,e_{i_n}) \text{ (alternance)} \\ &= \sum_{\sigma \in \mathcal{S}_n} a_{\sigma(1),1} \dots a_{\sigma(n),n} \underbrace{\det_{\mathcal{B}}(e_{\sigma(1)},\dots,e_{\sigma(n)})}_{=\varepsilon(\sigma)} \text{ (reformulation)} \\ &= \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{1,\sigma^{-1}(1)} \dots a_{n,\sigma^{-1}(n)} \\ &= \sum_{\tau \in \mathcal{S}} \varepsilon(\tau) a_{1,\tau(1)} \dots a_{n,\tau(n)} \end{split}$$

30.28 Effet d'un changement de base sur le déterminant

Propostion 30.28

Soit \mathcal{B} et \mathcal{B}' deux bases de E. Alors :

$$\det_{\mathcal{B}} = \det_{\mathcal{B}}(\mathcal{B}') \times \det_{\mathcal{B}'}$$

D'après le corollaire (30.27), on écrit :

$$\det_{\mathcal{B}'} = \lambda \det_{\mathcal{B}} \, \operatorname{avec} \, \lambda \in \mathbb{K}$$

En particulier:

$$\det_{\mathcal{B}'}(\mathcal{B}) = \lambda \det_{\mathcal{B}}(\mathcal{B}) = \lambda$$