DESIGNAND ANALYSIS OF ALGORITHMS

CS 4120/5120 GROWTH FUNCTIONS

AGENDA

- Growth functions
- Asymptotic notations

ORDER OF GROWTH

- Recall
 - Order of growth describes the **rate of growth** in the running time as the input size increases.
- Some running time functions do not grow indefinitely.
- Use **growth functions** to express the bounds (upper and lower) of the running time function.
 - Used in conjunction with an asymptotic notation.

ASYMPTOTIC NOTATIONS

• Asymptotic is a line that approaches a curve but never touches.

- In the world of algorithms, an asymptotic can be another curve.

ASYMPTOTIC EFFICIENCY

• How the running time increases with the size of the input in the limit (asymptotic), as the size of input increases

• Usually, an algorithm that is asymptotically more efficient will be the best choice for all <u>but very</u> <u>small inputs.</u>

• Asymptotic notations help us express that efficiency.

Input size *n*

ASYMPTOTIC NOTATIONS

- Commonly used asymptotic notations
 - The Θ -notation (the big-theta notation)
 - The *O*-notation (the big-oh notation)
 - The Ω -notation (the big-omega notation)

THE @-NOTATION THE BIG-THETA NOTATION

- Formal definition
 - For a given function g(n), we denote by $\Theta(g(n))$ the set of functions $\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$
 - n_0 is the minimum possible value that makes the inequality hold.
- The function g(n) is an asymptotic **tight bound** for f(n).

THE @-NOTATION GRAPHICAL INTERPRETATION

- Graphic example of $f(n) = \Theta(g(n))$
 - f(n) is "sandwiched" by $c_1(g(n))$ and $c_2(g(n))$
 - $-n_0$ is the minimum possible value that makes the inequality hold.
 - Any greater value would also work.

THE @-NOTATION PRACTICE

- Complete the defitinion of Θ -notation.
 - For a given function g(n), we denote by _____ the set of functions

 $\underline{} = \{ \underline{} : \text{ there exist } \underline{} c_1, c_2, \text{ and } \underline{}$

such that ______ for all ______

THE @-NOTATION PRACTICE

• Consider the following asymptotic notations $\frac{1}{2}n^2 - 3n = \Theta(n^2)$. Identify the f(n) and g(n) in the definition.

$$- f(n) =$$

$$- g(n) =$$

THE O-NOTATION THE BIG-OH NOTATION

Formal definition

- For a given function g(n), we denote by O(g(n)) the set of functions $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$
 - n_0 is the minimum possible value that makes the inequality hold.
- We say that g(n) is an asymptotic upper bound for f(n).

THE O-NOTATION GRAPHICAL INTERPRETATION

- Graphic example of f(n) = O(g(n))
 - f(n) is **upper bounded** by g(n) for a sufficiently large n.
 - The value of function f(n) is **on or below** cg(n).
 - Any greater value would also work.

THE O-NOTATION SIDE NOTE

- The O-notation does NOT necessarily mean an asymptotic tight upper bound of a given function.
 - Graphic example
 - f(n) = O(g'(n)), f(n) = O(g(n)),
 - Compared with g(n), g'(n) is a relatively **loose upper bound** of f(n) with a different choice of constant c' and n'_0 .

THE O-NOTATION PRACTICE

• Explain why the statement, "The running time of algorithm A is at least $O(n^2)$," is meaningless.

THE O-NOTATION PRACTICE

• Explain why the statement, "The running time of algorithm A is at least $O(n^2)$," is meaningless.

THE O-NOTATION PRACTICE

- If the running time of algorithm A, denoted by T(n), is $O(n \lg n)$, is $T(n) = O(n^3)$?
 - Understand the problem from a graphical view.

What do c and n_0 look like?

THE O-NOTATION PRACTICE SUMMARY

•	If the running time of algorithm A , denoted by I	$I(n)$, is $U(n \lg n)$, is T	s $U(n \lg n)$, is $T(n) = U(n^3)$?	
	By the definition of O -notation, $T(n) = O(n \lg n)$ m			ľ
	, for all (Inequ			
	c_2 and n_2 such that c_2	, for all	(Inequality #2) .	
	Multiply the inequality #2 byWe have	under the o	under the constraints that	
	(Inequality #3). Combine inequality #3 and #1. We h	nave	_, under the constraints tha	11
	(Inequality #4). We can optimize the	he range of n as $___$	·	
	Let us get rid of the middle-man in inequality #4 and	I simplify the inequality a	s Le	1
	c be, n_0 be Both c and n_0 are	We can re-write	the inequality as	
	for all			
	Therefore based on the definition of the Big-O nota	tion $T(n) = O(n^3)$		

THE Ω-NOTATION THE BIG-OMEGA NOTATION

- Formal definition
 - For a given function g(n), we denote by $\Omega(g(n))$ the set of functions $\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}$
- We say that g(n) is an asymptotic lower bound for f(n).

THE Ω-NOTATION GRAPHICAL INTERPRETATION

- Graphic example of $f(n) = \Omega(g(n))$
 - f(n) is **lower bounded** by g(n) for a sufficiently large n.
 - The value of function f(n) is **on or above** cg(n).
 - $-n_0$ is the minimum possible value that makes the inequality hold.
 - Any greater value would also work.

ASYMPTOTIC NOTATIONS

- Asymptotic **tight** bound (Θ) , **upper** bound (O), and **lower** bound (Ω) .
- Abusing the equal (=) sign
 - When we say f(n) = O(g(n)), we are merely claiming that some constant multiple of g(n) is an asymptotic upper bound of f(n), with no claim about how tight an upper bound it is.
 - Similarly, $f(n) = \Omega(g(n))$ means that g(n) is **an** asymptotic lower bound of f(n),

STANDARD FUNCTIONS EXPONENTIALS

• For all real a > 0, m, and n, we have the following identities

$$-a^0=1$$

$$-a^{1}=a$$

$$-a^{-1}=1/a$$

$$- (a^m)^n = a^{mn}$$

$$- (a^n)^m = a^{nm}$$

$$-a^{m}a^{n}=a^{m+n}$$

STANDARD FUNCTIONS LOGARITHMS

- We shall use the following notations
 - $\lg n = \log_2 n$ (binary logarithm)
 - $-\ln n = \log_e n$ (natural logarithm)
 - $-\lg^k n = (\lg n)^k$ (exponentiation)
 - $\lg \lg n = \lg(\lg n)$ (composition)
- If we hold b > 1 constant, then for n > 0, the function $\log_b n$ is strictly increasing.
- In CS, $\lg n$ is equivalent to $\log_2 n$.

- For all real a > 0, b > 0, c > 0 and n,
 - $-a=b^{\log_b a}$
 - $\log_c(ab) = \log_c a + \log_c b$
 - $-\log_b a^n = n\log_b a$
 - $\log_b(1/a) = -\log_b a$
 - $\log_b a = \frac{\log_c a}{\log_c b}, \log_b a = \frac{1}{\log_a b}$
 - $-a^{\log_b c}=c^{\log_b a}$

STANDARD FUNCTIONS POLYNOMIALS

• Given a nonnegative integer d, a polynomial in n of degree d is a function p(n) of the form

$$p(n) = \sum_{i=0}^{d} a_i n^i$$

where the constants $a_0, a_1, ..., a_d$ are the **coefficients** of the polynomial and $a_d \neq 0$.

- A polynomial is **asymptotically positive** if and only if $a_d > 0$.
- For an asymptotically positive polynomial p(n) of degree d, we have $p(n) = \Theta(n^d)$.

STANDARD FUNCTIONS FLOORS AND CEILINGS

Floors

- For any real number x, we denote the greatest integer less than or equal to x by $\lfloor x \rfloor$.
 - [3.5] = 3, [3] = 3.
- Ceilings
 - For any real number x, we denote the least integer greater than or equal to x by $\lceil x \rceil$.
 - [3.5] = 4, [3] = 3.

- For all real $x, x 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$.
- For any integer n, $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$.
- For any real number $x \ge 0$ and integers a, b > 0,

$$-\left\lceil \frac{\lceil x/a \rceil}{b} \right\rceil = \left\lceil \frac{x}{ab} \right\rceil, \left\lfloor \frac{\lfloor x/a \rfloor}{b} \right\rfloor = \left\lfloor \frac{x}{ab} \right\rfloor.$$

• Both the floor function $f(x) = \lfloor x \rfloor$ and the ceiling function $f(x) = \lceil x \rceil$ are increasing.

STANDARD FUNCTIONS MONOTONICITY

- A function f(n) is monotonically increasing if $m \le n$ implies $f(m) \le f(n)$.
 - A function f(n) is **strictly** increasing if $m \le n$ implies f(m) < f(n).

STANDARD FUNCTIONS MONOTONICITY

- A function f(n) is monotonically decreasing if $m \le n$ implies $f(m) \ge f(n)$.
 - A function f(n) is strictly decreasing if $m \le n$ implies f(m) > f(n).

BOUNDING FUNCTIONS

- When bounding a given function, we focus only on the leading term.
- Any exponential function with a base strictly greater than I grows faster than any polynomial function.
- For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ iff (if and only if) f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- 2^{500} (or any constant number) $< \lg(\lg n)^2 < \lg n < \log_4 n < \log^3 n < \sqrt{n} < 2^{\lg n} < n \cdot \log n < n^2 \lg n < n^2 \lg^5 n < n^3 < 2^n < n!$

STANDARD FUNCTIONS PRACTICE

- A. Rewrite the following expression in the form of one number, or a single exponentiation/logarithm with a possible coefficient.
 - $-8^3 \cdot (2^8)^{1/2}$
 - Hint: $(a^m)^n = a^{mn}$, $a^m a^n = a^{m+n}$
 - $-\log_4 27 \cdot \log_3 4$
 - Hint: $\log_a b = \frac{1}{\log_b a}$, $\log_b a = \frac{\log_c a}{\log_c b}$
 - $-n^{\frac{1}{\log_m n}}$
 - Hint: $log_b a = \frac{1}{log_a b}$, $log_b a^n = n log_b a$

NEXT UP DESIGN TECHNIQUE

• Divide and Conquer

REFERENCE

- https://www.youtube.com/watch?v=SEbzTe0CzT8
- https://www.yourdictionary.com/asymptotic#:~:text=adjective,are%20asymptotic%20to%20eac h%20other.