Autómatas de Pila (pushdown automata)

Alan Reyes-Figueroa Teoría de la Computación

(Aula 18) 26.septiembre.2022

Definición
Movimientos de un PDA
Lenguaje de un PDA
PDAs Determinísticos

Autómatas de Pila

- Un autómata de pila (PDA) es el equivalente a una gramática libre de contexto CFG.
- Sólo los autómatas de pila no deterministas definen todos los lenguajes libres del contexto.
- □ La versión determinística modela parsers.
 - □ La mayoría de lenguajes de programación son definidos por un PDA determinista.

Intuición: Autómatas

- Un PDA se puede pensar como un ϵ -NFA con la propiedad adicional de que puede manipular una pila (stack).
- Los movimientos de un PDA se determinan por:
 - 1. El estado actual (de su "NFA"),
 - 2. El símbolo de entrada actual ($\delta \epsilon$), y
 - 3. El símbolo actual en el topo de la pila.

Intuición: Autómatas

- Siendo no deterministas, los autómatas de pila pueden "elegir" la siguiente movida.
- En cada elección, el PDA puede:
 - 1. Cambiar de estado, y, además
 - 2. Reemplazar el símbolo top de la pila por una secuencia de cero o más símbolos.
 - □ Cero símbolos = "pop".
 - Más símbols = secuencia de varios "push".

Formalismo de un PDA

- Un PDA se describe mediante una estructura $A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, donde:
 - 1. Un conjunto finito de *estados* (Q).
 - 2. Un *alfabeto de entrada* (Σ) .
 - 3. Un alfabeto de pila (Γ) .
 - 4. Una *función de transición* (δ).
 - 5. Un *estado inicial* $(q_0 \in Q)$.
 - 6. Un *símbolo inicial* $(Z_0 \in \Gamma)$.
 - 7. Un conjunto de *estados finales* ($F \subseteq Q$).

Convenciones

- □ a, b, ... son símbolos de entrada.
 - □ Tomar en cuenta que también admitimos como válido el símbolo de entrada ε.
- □ ..., X, Y, Z son símbolos de pila.
- ..., w, x, y, z denotan cadenas de símbolos de entradas.
- $\square \alpha$, β , ... denotan cadenas de símbolos de pila.

La Función de Transición

- □ Ahora δ: $Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma^*$. La función tomas tres argumentos:
 - 1. Un estado q \in Q.
 - 2. Un símbolo de entrada a, el cual puede ser un símbolo de Σ , o ser ϵ .
 - 3. Un símbolo de pila $Z \in \Gamma$.
- δ (q, a, Z) denota el conjunto de cero o más acciones de la forma (p, α).
 - \square p \in Q; $\alpha \in \Gamma^*$ cadena de símbolos pila.

Acciones de un PDA

- Si $\delta(q, a, Z)$ contiene (p, α) entre sus acciones, entonces una de las cosas que el PDA puede hacer en el estado q, con símbolo de entrada a, y Z en el top de la pila es:
 - 1. Cambiar del estado q al estado p.
 - 2. Remover a del input (a podría ser ε).
 - 3. Reemplazar Z en el top de la pila por la cadena α .

Ejemplo: PDA

- □ Vamos a diseñar un PDA para aceptar las cadenas {0ⁿ1ⁿ: n ≥ 1}.
- Estados:
 - q = estado inicial. Estaremos en el estado q si sólo hemos visto 0s hasta ahora.
 - p = alcanzamos este estado si hemos visto al menos un 1, y procedemos si los inputs sólo son 1s.
 - □ f = estado final, de aceptación.

Ejemplo: PDA

- □ Símbolos de entrada (inputs):
 - □ {0, 1}.
- □ Símbolos de pila (stack):
 - $\square Z_0$ = símbolo inicial. También marca el fondo de la pila, de forma que podemos contar el mismo número de 1s que de 0s.
 - X = marcador. Se usa para contar el número de 0s en la cadena de entrada.

Ejemplo: PDA

Las transiciones:

- $\square \delta(q, 0, Z_0) = \{(q, XZ_0)\}.$
- $\Box \delta(q, 0, X) = \{(q, XX)\}.$

Estas reglas hacen que se agregue una X a la pila, cada vez que se lee un 0 en la entrada.

- □ $\delta(q, 1, X) = \{(p, \epsilon)\}.$ Al leer un 1, vamos al estado p, y se hace pop de una X.
- \square $\delta(p, 1, X) = \{(p, \epsilon)\}$. Pop de una X por cada 1.
- \square $\delta(p, \epsilon, Z_0) = \{(f, Z_0)\}$. Aceptar al final.

Descripciones Instantáneas

- Formalizamos las figuras anteriores bajo el concepto de descripción instantánea (ID).
- Una ID es una tripla (q, w, α), donde:
 - 1. q es el estado actual.
 - 2. w es el input remanente.
 - 3. α es el contenido de la pila (top to bottom).

Relación "Goes-To"

Denotamos por

$$I + J$$

cuando la descripción I puede convertirse en la descripción J en un movimiento.

- Formalmente, $(q, aw, X\alpha) \vdash (p, w, \beta\alpha)$ para w, α , si $\delta(q, a, X)$ contiene la acción (p, β) .
- □ Extendemos + a +*, "cero o más movidas" por:
 - ☐ Base: I +* I.
 - □ Inducción: Si I +* J y J + K, entonces I +* K.

Ejemplo: "Goes-To"

Usamos el PDA del ejemplo anterior. Tenemos:

```
(q, 000111, Z_0) \vdash (q, 00111, XZ_0) 
\vdash (q, 0111, XXZ_0) 
\vdash (q, 111, XXXZ_0) 
\vdash (p, 11, XXZ_0) 
\vdash (p, 1, XZ_0) 
\vdash (p, \epsilon, Z_0) 
\vdash (f, \epsilon, Z_0)
```

- □ Así, (q, 000111, Z_0) +* (f, ϵ , Z_0).
- ☐ Ejercicio: ¿Cómo quedaría si el input fuese 0001111?

Respuesta

Legal ya que un PDA puede usar ϵ input, aún si el input no cambia.

- Observe que la última descripción no se mueve.
- □ 0001111 no es aceptada, ya que el input no es completamente consumido.

Autómatas finitos y PDAs

- □ Hemos representado los movimientos de un autómata finito mediante una función de transición extendida δ, que no menciona al input remanente.
- Podemos representar con una notación similar a los PDAs, en donde el estado del autómata se reemplaza por una combinación estado-stack, como en los diagramas anteriores.

Autómatas finitos y PDAs

- Similarmente, podemos representar un autómata finito con la notación de las descripciones ID.
 - □ Sólo hay que quitar el componente stack.
- □ ¿Por qué la diferencia? (Mi teoría):
- Los FA tienden a modelos protocolos, con inputs indefinidamente largos.
- □ Los PDA modelan *parsers* (analizadores sintácticos) que proces un programa.

Lenguaje de un PDA

- La manera usual de definir el lenguaje de un autómata de pila es mediante estados finales.
- Si P es un autómata de pila, entonces L(P) es el conjunto de cadenas w ε Σ, tales que (q_0, w, Z_0) +* (f, ε, α) , para algún estado final f ε F, y cualquier α .

Lenguaje de un PDA

- Otra manera de definir el lenguaje generado por un PDA es mediante el concepto de stack vacío.
- \square Si P es un autómata de pila, entonces N(P) es el conjunto de cadenas $w \in \Sigma$, tales que

 $(q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon)$ para cualquier estado q.

Equivalencia L(P) = N(P)

- 1. Si L = L(P), entonces existe otro autómata de pila P' tal que L = N(P').
- 2. Si L = N(P), entonces existe otro autómata de pila P" tal que L = L(P'').

Prueba: $L(P) \rightarrow N(P')$ (Idea)

- P' simulará a P.
- Si P acepta, P' tendrá su stack vacío.
- P' debe evitar vaciar su stack accidentalmente, así que se usa un símbolo especial (bottom-marker) para detectar el caso en el que P vacía su pila sin aceptar.

Prueba: $L(P) \rightarrow N(P')$

- P' posee todos los estados, símbolos y movidas de P, más:
 - 1. Un símbolo stack X₀, usado para guardar el final del stack de vacíos accidentales.
 - 2. Un nuevo estado inicial s, y un nuevo estado "erase" e.
 - 3. $\delta(s, \varepsilon, X_0) = \{(q_0, Z_0X_0)\}$. (Inicia P)
 - 4. $\delta(f, \varepsilon, X) = \delta(e, \varepsilon, X) = \{(e, \varepsilon)\}$ para cualquier estado final f de P, y para todo símbolo stack X.

Prueba: $N(P) \rightarrow L(P'')$ (Idea)

- P" simulará a P.
- P" posee un símbolo especial (bottommarker) para detectar aquellos casos donde P vacía su stack.
- En ese caso, P" acepta.

Prueba: $N(P) \rightarrow L(P'')$

- P" posee todos los estados, símbolos y movidas de P, más:
 - Un símbolo stack X₀, usado para guardar el final del stack.
 - 2. Un nuevos estado inicial s, y un nuevo estado final f.
 - 3. $\delta(s, \epsilon, X_0) = \{(q_0, Z_0X_0)\}.$ (Inicia P)
 - 4. $\delta(q, \epsilon, X_0) = \{(f, \epsilon)\}$ para todo $q \in P$.

PDAs Deterministas

- □ Para un PDA ser determinista, debe existir a lo sumo una elección de movida en cada combinación (q,a,X), (estado q, input a, símbolo stack X).
- Además, no debe haber una elección entre un input de Σ, y la cadena ε.
 - □ Formalmente, $\delta(q, a, X)$ y $\delta(q, \epsilon, X)$ no pueden ser ambos no-vacíos.