	42233057 蒋一杨
	1\(\frac{1}{2}
	- Re a -
	1.0) Student + take > course
	course section (section 为 多多文体集)
	(2) student (student-id, -··)
	course (course_id ,)
	take (student-id, course-id, grade)
	section (course_id, sec_id, semester, year,)
	sec-coul course-id, sec-id, semester, year,)
	名关系模式 星主码 用下划 线 划出
	2. 设关系模式为 R(A,B)
	悔况一:依赖函数为A→B,此时A为超幅B、满足BCNF条件
	情况=: 依賴函数为B-)A. 的时 B为超码, 满足BCNF条件
	情况=:依赖函数为B→A,约时B为超码,满足BCNF条件 (A→A,B→B) 情况=: 平R依赖逊数, 此时满足BCNF条件.
	3. 关系模式 YUA,B,C,D,E). 佐殿 函数 A→BC,BC→E,CD→AB
	解心判断台函数依赖是否满足BCNF
	DA→BC: ★:A→BC → AT BBCE -AT BBCK BCNF
	②BC>E, \$BG+=BCE -: BCK为超超,BC>E语背BCNF
	③ CD→AB: CD→AB→BC→E : {CD3+=ABCDE: CD为EBGG, CD→ABGBEBCNE
	12) 长依切据 A-182 进行分解 A-184
	ORI(A,B,C): 黄函数依赖: A>BC 此时 A为超码, 满足 BCNF
	②Re(A,D,E): 为平凡依赖西极 : 满足BCNF
	但此时函数依赖并不保持、磨换一种分解方式
_	

13). 依据 BC→ E 进行分解.		
②R.[A,B,C,D): 函数依頼、A→BC、CD→AB A→BC: A→BC w时A不为 超石号、A→BC造習 BCNF CD→AB: CD→AB→BC ::{CD3 [†] =AB cD :: CD为超码、CD→AB 满足 BCNF ③ 性-步体据 A→BC 車双す R. 进行分解 I°Ps1 (A, B,C): 函数依束を、A→BC、此时A为超石号、满足 BCNF 2°Ps2 (A,D): 均为平凡依赖、满足 BCNF ·结定上:分解后为(R1(B,C,E)、主码(B,C)、函数依赖、BC→E R2 [A,B,C)、主码A, 函数依赖、A→BC R3 (A,D)	13).依据BC=E进行分解.	
A→BC: A→BC 如盼A不为超码,A→BC造習 BCNF CD→AB: CD→AB→BC :[CD3+=AB CD :: CD为超码,CD→AB 满足 BCNF ③ 进-传传招 A→BC 由又中 B. 进行分制3 I°B1 (A, B, C): 函数依束 A→BC . 如町A为超码,满足 BCNF 2°B2 (A, D): 均为甲R 依赖 . 满足 BCNF ·综上:分解后为 (R11B, C, E), 主码 (B, C) . 函数依赖 . B C→E R2 [A, B, C), 主码A, 函数依赖 . A→BC R3 (A, D)	DPI(B, C, E): 函数依赖;BC>E 此时民为超码,BC>E满足BCNF	
CD-AB: CD-AB > BC :: [CD3 ⁺ = AB CD :: CD为超码, CD-AB 满足 BCNF ③ 进-货依据 A > BC 由 R + B: 进行分解写 I ^P D-1 (A, B, C): 函数依束, A > BC, 此时 A为超石层, 满足 BCNF 2 ^P B-2 (A, D): 均为平凡依赖, 满足 BCNF ·结定上:分解后为 (P.1B, C, E), 主码 [B, C), 函数依赖, B C > E R2 [A, B, C), 生码A, 函数依赖, A > BC P3 (A, D)	②R.[A,B,C,D): 画藝佐鞭、A→BC,CD→AB	
③ 进-步依据 A > B L 由 又 t B 进行分解写 1° P 1 (A, B, C): 函数依乘 , A > B C , 此时 A 放起 石 B , 满 E B C N F 2° P 2 (A, D): 均 为 P R 依赖 , 满 E B C N F · 经上:分解后为 (R, I B, C, E) , 主码 (B, C) , 函数依赖 , B C > E R 2 (A, B, C) , 主码A , 函数依赖 , A > B C R 3 (A, D)	A→BC: A → BC WOODAR为超码, A→BC造了BCNF	
1°P21(A,B,C): 函数依頼, A→BC, 此时形起码, 满足BCNF 2°P22(A,D): 均为甲R 依頼、 满足BCNF 二综上:分解后为(R11B,C,E), 主码(B,C), 函数依頼, BC→E P2[A,B,C), 主码A, 函数依赖, A→BC R3(A,D)	CD-JAB: CD-JAB-J BC :: (CD3+ =ABCD :: CD为超码, CD-JAB满足BC	NF
2°R2(A,D): 均为甲凡依赖,满足BCNF ∴综上:分解后为(R,1B,C,E),主码(B,C),函数依赖,BC→E R2(A,B,C),主码A,函数依赖,A→BC R3(A,D)	③进-步依据A→BC · 及对 B. 进行分解	
·综上:分解后为(R,1B,c,E),主码(B,c),函数依赖,BC→E R2(A,B,C),主码A,函数依赖,A→BC R3(A,D)	I'B1 (A,B,C): 函数依赖, A>BC, 此时和超码,满足BCNF	
R2[A,B,C),主码A,函数依赖,A→BC R3(A,D)	2°R22(A,D): 均为甲R 依赖 满足BCNF	
Rola,D)	·综上分解后为(R,1B,c,E),主码(B,c),函数依赖,BC→E	
	R2(A,B,C),主码A,函数依赖,A→BC	
$P_2MR_3 = (A \cdot B, C_1 P) \qquad P_2MR_3MR_4 = (A \cdot B, C, D, E)$	Ra(A,D)	
	R2MR3 = (A,B,C,D) R2MB,MP1 = (A,B,C,D,E)	