Time Series

Time Series is a sequence of real values measuring some variable over time, usually at uniform intervals.

In Multivariate Time Series the goal is to study multiple variables that change over time.

Time Series Profiling

- Dimensionality number of elements in the sequence;
- Granularity time interval between each element;
- Components time series can be decomposed in its components:
 - **Trend** general variation over time;
 - **Seasonal** periodic variation over time \geq 1 year;
 - Cyclical periodic variation over time < 1 year;
 - Residual/Noise irregularities and fluctuation that occur along time, are random, have a short length and are non-repetitive;
- Stationarity a time series is stationary if its statistical properties (mean, variance, covariance) do not change over time;
 - There is **no trend or seasonality**;
 - The easiest way to check for stationarity is to plot the data and check for trends or seasonality;
 - The Augmented Dickey-Fuller (ADF) test is a statistical test for stationarity;
 - * $p-value \le 0.05$ the time series is **stationary**;
 - * p value > 0.05 the time series is **not stationary**;

Distance Measures between Time Series

- We need to compare the values observed in every instant of time, which can be done by viewing each series as a point in \mathbb{R}^n , where n is the number of observations;
 - Then, we can use the **Euclidean distance** to compare the series;

Some of these **time distortions** are particularly relevant:

- Vertical Offset Translation series present similar behavior, but with different vertical offsets;
- Horizontal Offset Translation- series present similar behavior, but with different time lags;
- Amplitude Scaling series present similar behavior, but with different amplitudes;
- Linear Trend series present similar behavior, but with different linear trends:
- Noise series present similar behavior, but with different noise levels.

Dynamic Time Warping (DTW)

- Distance measure that allows for time distortions;
- Recursively computes the optimal alignment between two time series;
- Uses Euclidean distance as a local distance measure;
- $DTW_{\text{distance}} = \frac{1}{N} min(\sqrt{\sum_{n=1}^{N} (x_i y_i)^2});$
- Construct a matrix M of size $N \times M$, where N and M are the number of points in the two time series;

$$- M_{i,j} = (x_i - y_j)^2 + \min(M_{i-1,j}, M_{i,j-1}, M_{i-1,j-1});$$

- $DTW_{\text{distance}} = \sqrt{M_{N,M}}.$

Time Series Transformation

- ullet Sliding Window start at the beginning of the time series, apply a function to the first k points, then move the window one step forward and repeat the process, until there are no more points in the time series;
- Moving Average average of the values in the window;

- Used to **smooth** the time series;
- Applying average in sliding window approach;
- Exponential Moving Average weighted average of the values in the window, where the weights decrease exponentially as we move back in time;
- Normalization addresses the amplitude scaling problem; the goal is to scale the values of the time series to a fixed range, usually [0,1] or [-1,1];
- Trend Removal Compute the straight line that best fits the original time series and then subtract the former from the latter (the result is a time series with no trend);
- **Differencing** Compute the difference between consecutive values of the time series (the result is a time series with no trend and no seasonality);
- **Segmentation** Split the time series into segments and then apply a function to each segment;
 - Piecewise Aggregate Approximation (PAA) split the time series into k segments and then compute the average of each segment; fast, simple and intuitive;
 - Symbolic Aggregate Approximation (SAX) split the time series into k segments and then map each segment to a symbol, based on the average of the segment; linear time to compute; fewer bits to encode symbols;
 - Singular Value Decomposition (SVD) represent a time series as a linear composition of eigen waves;
 - Discrete Fourier Transform (DFT) represent a time series as a linear composition of sine and cosine waves;
 - Discrete Wavelet Transform (DWT) represent a time series as a linear composition of wavelets - functions that cut the sequence into different frequency components.