```
אלגברה: תהא \Omega קבוצה אזי \mathcal{F}\subseteq 2^\Omega המקיימת
                                                                                                                                              \Omega \in \mathcal{F} \bullet
                                                                                                                            \forall E \in \mathcal{F}.E^{\mathcal{C}} \in \mathcal{F} \bullet
                                                                                              .
| או פית מתקיים E\subset\mathcal{F} לכל •
                                                                                                               .\emptyset \in \mathcal{F} אלגברה אזי \mathcal{F} אלגברה
                                                                         A \cap E \in \mathcal{F} אזי אזי E \subseteq \mathcal{F} אלגברה ותהא אזי למה: תהא
                                                                                        המקיימת \mathcal{F} \subset 2^\Omega אזי קבוצה \Omega המקיימת \sigma
                                                                                                                                              \Omega \in \mathcal{F} \bullet
                                                                                                                            \forall E \in \mathcal{F}.E^{\mathcal{C}} \in \mathcal{F} \bullet
                                                                                         |E \in \mathcal{F} בת מנייה מתקיים E \subset \mathcal{F} לכל
                                                                                                           .\emptyset\in\mathcal{F} אזי אזי \sigma אלגברה אזי למה: תהא
                                                                A \cap E \in \mathcal{F} אזי אזי E \subseteq \mathcal{F} בת מנייה אזי \sigma
                                                                   \Omega משפט: תהא \mathcal F הינה מעל \Omega אזי אלגברה מעל \sigma
.\mu\left(\bigcup_{i=1}^nB_i\right)=\sum_{i=1}^n\mu\left(B_i\right) מתקיים B_1\dots B_n\in\mathcal{A}לכל לכל המקיימת \mu:A\to\mathbb{R} פונקציה אדטיבית: פונקציה \mu:A\to\mathbb{R}
                                                              . אדטיבית \mu:\mathcal{F} 	o [0,\infty] אזי אלגברה תהא \mathcal{F} אדטיבית.
                                          מתקיים \{B_i\}_{i=1}^\infty\subseteq \mathcal{A} מתקיים המקיימת לכל \mu:A	o\mathbb{R} מתקיים פונקציה \sigma
                                                                                                                      .\mu\left(\bigcup_{i=1}^{\infty}B_{i}\right)=\sum_{i=1}^{\infty}\mu\left(B_{i}\right)
                                                  \sigma אדטיבית. \sigma \mu:\mathcal{F} \to [0,\infty] מידה על \sigma אלגברה: תהא \sigma אלגברה אזי
                                                                                    (\Omega,\mathcal{F}) אזי \Omega אזי מרחב מדיד: תהא \sigma אלגברה מעל
                                                                                E\in\mathcal{F} אזי \Omega אזי \sigma־אלגברה מעל מדידה: תהא
                                                      \mu\left(\emptyset
ight)=0 אזי \exists E\in\mathcal{F}.\mu\left(E
ight)<0 אמיימת \mathcal{F} המקיימת \mu מידה על
                                                                                . אדטיבית \mu אזי \mathcal{F} אזי מעל \sigma־אלגברה מעל מידה מעל מידה מעל
                                                  \mu\left(A\right)\leq\mu\left(B\right) אזי A\subseteq B עבורן A,B\in\mathcal{F} אזי מידה ותהיינה
                                                                   סדרת קבוצות מונוטונית: תהא \mathcal{A} קבוצה ותהא \mathcal{A}:\mathbb{N} 
ightarrow \mathcal{A} אזי
                                                                                       \forall n \in \mathbb{N}. A_n \subseteq A_{n+1} :שונוטונית עולה חלש
                                                                                     .\forall n\in\mathbb{N}.A_{n+1}\subseteq A_n יורדת חלש: •
                                                         \sup{(A)}=\bigcup_{i=0}^\infty A_iאזי אזי A:\mathbb{N}\to\mathcal{A} ותהא קבוצה תהא \mathcal{A}
                                \inf(A)=\bigcap_{i=0}^\infty A_iאזי A:\mathbb{N}\to\mathcal{A} אחוו ההא \mathcal{A} קבוצה ותהא קבוצה ותהא A:\mathbb{N}\to\mathcal{A} אזי וווה גבול עליון: תהא A:\mathbb{N}\to\mathcal{A} הבול עליון: תהא A:\mathbb{N}\to\mathcal{A} קבוצה ותהא A:\mathbb{N}\to\mathcal{A} אזי אוי וווה א
                                .\liminf_{n	o\infty}A_n=\bigcup_{n=0}^\infty\bigcap_{i=n}^\infty A_i אזי A:\mathbb{N}	o\mathcal{A} קבוצה ותהא \mathcal{A} קבוצה ותהא איי
\lim_{n \to \infty} A_n = \liminf_{n \to \infty} A_n אזי א \liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n עבורה א A: \mathbb{N} \to \mathcal{A} אזי א וווווא אזי א הבול: תהא A: \mathbb{N} \to \mathcal{A}
  \lim_{n	o\infty}\mu\left(A_n
ight)=\mu\left(B
ight) אזי \lim_{n	o\infty}A_n=B עבורה A:\mathbb{N}	o\mathcal{F} ותהא \mathcal{F} ותהא מידה מעל \sigma־אלגברה מעל מידה מעל
                                  (\Omega,\mathcal{F},\mu) אזי \mathcal{F} אזי \mu מרחב מידה: תהא \mathcal{F} אלגברה\sigma-אלגברה מעל
                      \mathbb{P}\left(\Omega
ight)=1 המקיימת \mathbb{P}:\mathcal{F}	o[0,\infty] היז מידה מעל \Omega אזי מידה הסתברות: תהא \sigma
                                                                מרחב הסתברות: מרחב מידה (\Omega,\mathcal{F},\mu) עבורו מידת הסתברות:
                                                                                \Omega מרחב התוצאות: יהי (\Omega,\mathcal{F},\mathbb{P}) מרחב הסתברות אזי
```

 $E\in\mathcal{F}$ יהי מאורע: יהי ($\Omega,\mathcal{F},\mathbb{P}$) מרחב הסתברות מאורע

 \mathcal{F} אזי אזי הסתברות מרחב $(\Omega,\mathcal{F},\mathbb{P})$ יהי מרחב המאורעות:

 $A+b\subseteq (0,1]$ באשר $b\in (0,1]$ ולכל $A\subseteq (0,1]$ עבורו לכל עבורו לכל $A\subseteq (0,1]$ אינווריאנטיות להזזות: מרחב הסתברות $\mathbb{P}\left(A
ight)=\mathbb{P}\left(A+b
ight)$ מתקיים

. טענה: לכל מרחב אינווריאנטיות להזזות ($(0,1]\,,2^{(0,1]},\mathbb{P})$ לא מתקיימת אינווריאנטיות להזזות לכל

 $. \forall x \in A. \exists \varepsilon > 0. \ (x - \varepsilon, x + \varepsilon) \subseteq A$ עבורה $A \subseteq \mathbb{R}$

. פתוחה A^C עבורה $A\subset\mathbb{R}$ פתוחה קבוצה סגורה:

 $.\Omega$ מעל σ הינה הינה הינה $\bigcap_{i\in I}F_i$ אזי מעל מעל האגבראות "אלגברה מעל $\sigma\left\{F_i\right\}_{i\in I}$ היינה ישענה: תהיינה

אזי הפתוחות אזי המכילות את המכילות מעל $\mathbb R$ כל ה σ ־אלגבראות כל ה $\{F_i\}_{i\in I}$ תהיינה מעל מעל בורלית מעל "כל המכילות מעל המכילות מעל הפתוחות מעל המכילות מעל המכילות מעל המכילות מעל המכילות מעל הפתוחות אזי $\mathfrak{B}_{\mathbb{R}} = \bigcap_{i \in I} F_i$

 $B\in\mathfrak{B}_{\mathbb{R}}$:קבוצה בורלית

 \mathbb{R} טענה: σ ־אלגברה בורלית הינה σ ־אלגברה מעל

 $\mathfrak{B}_{\mathbb{R}}\subseteq\mathcal{F}$ אזי הפתוחות הפתוחות אזי המכילה את כל הקבוצות מעל σ

A טענה: תהא G קבוצה תהא G הינה מעל G ותהא אזי ותהא $A\subseteq \Omega$ ותהא מעל G הינה G

 $\mathfrak{B}_{(0,1]}=\{B\cap(0,1]\mid B\in\mathfrak{B}_{\mathbb{R}}\}: (0,1]$ אלגברה בורלית מעל בורלית מעל המעל מידת לבג: תהא אזי $B\in\mathfrak{B}$ אזי $B\in\mathfrak{B}$ איזי מידת לבג: תהא

. מרחב הסתברות אינווריאנטי להזזות מרחב $\left(\left(0,1\right],\mathfrak{B}_{\left(0,1\right]},\lambda\right)$

 $\mathcal T$ את חמכילות מעל מעל מוצרת: תהא מוצרת: תהא $\mathcal T\subseteq 2^\Omega$ ותהיינה תהא קבוצה תהא מוצרת: תהא $\mathcal T\subseteq 2^\Omega$ $.\sigma\left(\mathcal{T}
ight)=igcap_{i\in I}F_{i}$ אזי

 \mathcal{T} אזי $\sigma(\mathcal{T})$ אזי $\sigma(\mathcal{T})$ אזי $\mathcal{T}\subseteq 2^\Omega$ ו σ ־אלגברה הנוצרת: תהא

נסמן lpha+1 נסמן, אכל סודר עוקב $\mathcal{F}_0=T\cup\{\emptyset,\Omega\}$ נסמן $\mathcal{T}\subseteq 2^\Omega$ נסמן תהא Ω קבוצה ותהא

$$\mathcal{F}_{\alpha+1} = \mathcal{F}_{\alpha} \cup \left\{ A^{\mathcal{C}} \mid A \in \mathcal{F}_{\alpha} \right\} \cup \left\{ \bigcap_{n=1}^{\infty} A_n \mid A_n \in \mathcal{F}_{\alpha} \right\}$$

ולכל סודר גבול λ נסמן

$$\mathcal{F}_{\lambda} = \bigcup_{\alpha < \lambda} \mathcal{F}_{\alpha}$$

. באשר בן מניה הסודר הגבולי הקטן באשר $\sigma\left(\mathcal{T}\right)=\mathcal{F}_{\omega_{1}}$ אזי אזי בל באשר $\sigma\left(\mathcal{T}\right)=\mathcal{F}_{\omega_{1}}$

 $orall A\in orall A$ אזי $orall A\in \mathcal T.\omega\in A\iff \kappa\in A$ עבורן $\omega,\kappa\in\Omega$ ויהיו $\mathcal T\subseteq 2^\Omega$ אזי קבוצה תהא $.\sigma(\mathcal{T}).\omega \in A \iff \kappa \in A$