Biophysics

Bidisha Sinha

Fun read:

Cell biology numbers. https://bionumbers.hms.harvard.edu/search.aspx (to check BNID)

What is Life?

Em Purcell: Life at low Reynold's number

Syllabus

- Heat as a form of energy: Concept of free energy; free energy transduction; order/disorder in biology; forces and energies
- · Molecular interactions: Physical basis and implications in biology
- Dimensions and Units: Dimensional analysis; biomolecules dimensions, arrangements, internal energies
- Special properties of water: Importance in biology
- Overview of structures inside cells: Dimensions, crowding, basic functioning principles, timescales of cellular processes; energies/forces inside live cells. Modes of information transfer;
- Distributions in nature: Origin, implications

Biophysics

Using Physics to understand Biology

Biology?

Life?

Physical Laws in Biological systems??

Physical Laws in other systems??

WHERE DO WE START FROM??????

...Classwork 1

What makes us??

Table 2.1 Elements in the Human Body			
Element	Symbol	Percentage of Body Mass (including water)	
Oxygen	О	65.0%)
Carbon	С	18.5%	96.3%
Hydrogen	Н	9.5%	96.3%
Nitrogen	Ν	3.3%)
Calcium	Ca	1.5%	1
Phosphorus	Р	1.0%	
Potassium	K	0.4%	
Sulfur	S	0.3%	3.7%
Sodium	Na	0.2%	
Chlorine	Cl	0.2%	
Magnesium	Mg	0.1%	1

Trace elements (less than 0.01% of mass): Boron (B), chromium (Cr), cobalt (Co), copper (Cu), fluorine (F), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), silicon (Si), tin (Sn), vanadium (V), zinc (Zn)

© 2011 Pearson Education, Inc.

Where was that made?

What makes us??

Figure 1-11 Lehninger Principles of Biochemistry, Sixth Edition 02/08/23 © 2013 W. H. Freeman and Company

What makes us??

02/08/23

Figure 1.1 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Synthetic life

Peering Over the Fortress That Is the Mighty Cell http://www.nytimes.com/2010/06/01/science/01angi.html?pagewanted=all&_r=0

June 2010

https://www.ted.com/talks/craig_venter_unveils_synthetic_life

- •A bag of chemicals?
- •What's so special?
- •How do we understand/explain the net behaviour of this bag 02/08/23

When the Venter team inserted the synthetic version of the Mycoplasma
mycoides genome into the cellular housing of the Mycoplasma
capricolum bacterium, the newcomer took full advantage of the resident cytoplasmic wares.

Measuring: New methods to see/measure better

Biophysics

Molecules Structures Cells Populations Networks

02/08/23

Modelling:

$$P_{\text{open}} = \frac{1}{e^{a_a(V_{50}-V)/kT} + 1}$$

$$\frac{1.0}{e^{a_a(V_{50}-V)/kT} + 1}$$
0.5
Potential (mV)

Looks different than F⊕ma

CHARGED ROD ELASTIC ROD RANDOM WALK Figure 1.5 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Take a macromolecule

..or a patch of membrane

Figure 1.6 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

02/08/23

Figure 1.7 Physical Biology of the Cell, 2ed (6 Garand Science 2013)

Take a cell

Figure 1.8 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 1.9 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Solution

The Spring in biology

02/08/23

Figure 1.12 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

The role of estimates

02/08/23

Figure 1.14 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Different sizes

Figure 2.19: Yeast cell size distribution. Distribution of cell volumes measured for wild-type yeast cells. (Adapted from P. Jorgensen et al., *Science* 297:395, 2002.)

Figure 2.16: Cartoons of several different types of cells all referenced to the standard *E. coli* ruler. (A) The protist *Giardia lamblia*, (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *E. coli* ruler. (A) The protist *Giardia lamblia*, (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *E. coli* ruler. (A) The protist *Giardia lamblia*, (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *E. coli* ruler. (A) The protist *Giardia lamblia*, (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *E. coli* ruler. (A) The protist *Giardia lamblia*, (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *E. coli* ruler. (A) The protist *Giardia lamblia*, (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *E. coli* ruler. (A) The protist *Giardia lamblia*, (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *E. coli* ruler. (A) The protist *Giardia lamblia*, (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *E. coli* ruler. (A) The protist *Giardia lamblia*, (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *E. coli* ruler. (A) The protist *Giardia lamblia*, (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *E. coli* ruler. (A) The protist *Giardia lamblia* (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *E. coli* ruler. (A) The protist *Giardia lamblia* (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *Giardia lamblia* (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *Giardia lamblia* (B) a plant cell, (C) a budding yeast cell, (D) a set in the standard *Giardia lamblia* (B) a set in the standard *Giardia la*

Physical Biology of the Cell

Figure 2.4 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Importance of Making ESTIMATES

A. Concentration, pH, interparticle distances

Most abundant molecule in us?

Approximate concentration of water (Molarity)?

Distance between water molecules?