Neural architectures for dependency parsing

Marco Kuhlmann

Department of Computer and Information Science

Learning problems in dependency parsing

• Learning a greedy transition-based dependency parser amounts to learning the transition classifier.

Chen and Manning (2014), Kiperwasser and Goldberg (2016)

 Learning an arc-factored graph-based dependency parser amounts to learning the arc scores.

Kiperwasser and Goldberg (2016), Dozat and Manning (2017)

Chen and Manning (2014)

- Pre-neural transition classifiers relied on linear models with hand-crafted combination features.
- C&M propose to replace the linear model with a two-layer feedforward network (FNN).
- The standard choice for the transfer function is the rectified linear unit (ReLU).

C&M use the cube function, $f(x) = x^3$.

feedforward neural network

Features

• C&M embed the top 3 words on the stack and buffer, as well as certain descendants of the top words on the stack.

```
word embedding dimension = 50
```

• In addition to word embeddings, they also use embeddings for part-of-speech tags and dependency labels.

```
tag embedding dimension = label embedding dimension = 50
```

• The resulting input dimension of the FNN is 2400.

Training

- To train their parser, C&M minimise the standard cross-entropy loss, plus an L2 regularisation term.
- To generate training examples for the transition classifier, they use the static oracle for the arc-standard algorithm.

can be generated off-line

Parsing accuracy

	UAS	LAS
Baseline, transition-based	89.4	87.3
Baseline, graph-based	90.7	87.6
Chen and Manning (2014)	91.8	89.6
Weiss et al. (2015)	93.2	91.2

Parsing accuracy on the test set of the Penn Treebank + conversion to Stanford dependencies

Kiperwasser and Goldberg (2016)

- The neural parser of C&M learns useful feature combinations, but the need to carefully design the core features remains.
- K&G propose to use a minimal set of core features based on contextualised embeddings obtained from a Bi-LSTM.
 - Bi-LSTM is trained with the rest of the parser.
- They show that this approach gives state-of-the-art accuracy both for transition-based and for graph-based parsing.

Features and training (transition-based parser)

• For their transition-based parser, K&G embed the top 3 words on the stack, as well as the first word in the buffer.

```
word embedding dimension = 100, tag embedding dimension = 25
```

• In contrast to C&M, they use a dynamic oracle, so they cannot generate training examples in an off-line fashion.

Features and training (graph-based parser)

• For their graph-based parser, K&G embed the head and dependent of each arc.

word embedding dimension = 100, tag embedding dimension = 25

• The training objective is to maximise the margin between the score of the gold tree y^* and the highest-scoring incorrect tree y:

$$L(\boldsymbol{\theta}) = \max(0, 1 + \max_{y \neq y^*} \operatorname{score}(x, y) - \operatorname{score}(x, y^*))$$

Parsing accuracy

	UAS	LAS
Chen and Manning (2014)	91.8	89.6
Weiss et al. (2015)	93.2	91.2
K & G (2016), graph-based	93.0	90.9
K & G (2016), transition-based	93.6	91.5

Parsing accuracy on the test set of the Penn Treebank + conversion to Stanford dependencies

Dozat and Manning (2017)

• Based on the context-dependent embeddings, two FNNs create specialised representations of each word as a head/dependent:

$$h_i = \text{FNN}_h(v_i)$$
 $d_i = \text{FNN}_d(v_i)$

• These specialised representations are then scored via a bilinear layer with weight tensor *U* and bias vector *b*:

$$score(x, i \rightarrow j) = \mathbf{h}_i \mathbf{U} \mathbf{d}_j^{\mathsf{T}} + (\mathbf{h}_i \mathbf{b})^{\mathsf{T}}$$

Parsing accuracy

	UAS	LAS
Chen and Manning (2014)	91.8	89.6
K & G (2016), graph-based	93.0	90.9
K & G (2016), transition-based	93.6	91.5
Dozat and Manning (2017)	95.7	94.1

Parsing accuracy on the test set of the Penn Treebank + conversion to Stanford dependencies