Mathematics for Machine Learning - Questions and Solutions

Edwin Fennell

Note - I'm not going to write out the questions here since they are very, very inefficiently posed and no way am I going to TeX all of that.

- **2.1** a. In order to show that this constitutes a group, we need to show four things:
 - Closure if $a, b \in \mathbb{R}$ then clearly $ab + a + b \in \mathbb{R}$. Now, suppose that ab + a + b = -1. This rearranges to

$$a(b+1) = -(b+1)$$

or

$$(a+1)(b+1) = 0$$

Therefore if neither a nor b is equal to -1, a * b also cannot be equal to -1, and therefore * is a valid group operation on $\mathbb{R}\setminus\{-1\}$.

• Identity - our identity is 0 since for any $a \in \mathbb{R} \setminus \{-1\}$ we have

$$a * 0 = a \cdot 0 + 0 + a = a$$

• Inverse - given a fixed $a \in \mathbb{R} \setminus \{-1\}$ we want to solve for x in the following:

$$a * x = ax + x + a = 0$$

we rearrange to get

$$x = \frac{-a}{a+1}$$

Therefore all elements in $\mathbb{R}\setminus\{-1\}$ have inverses under *

• Associativity - we consider the respective values of (a*b)*c and a*(b*c) for arbitrary $a,b,c\in\mathbb{R}\setminus\{-1\}$:

$$(a*b)*c = (a*b)c + a*b + c = abc + ac + bc + ab + a + b + c$$

$$(a*(b*c) = a(b*c) + b*c + a = abc + ac + bc + ab + a + b + c$$

and so we have associativity.

Now we need to show that the resulting group is Abelian, but this is clear from the definition of * being completely symmetric in its two operands.

b. Conveniently, from our proof of associativity we know immediately that

$$3 * x * x = 3x^{2} + 3x + 3x + x^{2} + x + x + 3 = 4x^{2} + 8x + 3$$

Therefore we need to solve $4x^2 + 8x + 3 = 15$, or rather

$$4x^{2} + 8x - 12 = 4(x^{2} + 2x - 3) = 4(x + 3)(x - 1) + 0$$

From this we see that the solutions are exactly x = 1, x = -3

2.2 a. We need to show the four group axioms:

- Closure By definiton of \oplus the result of its application is a congruence class mod n. (Well-posedness is another matter but that isn't asked for here).
- Identity the identity is $\bar{0}$ since

$$\forall a \in \mathbb{Z}, \bar{a} \oplus \bar{0} = \overline{(a+0)} = \bar{a}$$

• Inverses - the inverse of \bar{a} for any $a \in \mathbb{Z}$ is $\overline{-a}$:

$$\forall a \in \mathbb{Z}, \bar{a} \oplus \overline{-a} = \overline{(a-a)} = \bar{0}$$

• Associativity - we have

$$\forall a, b, c \in \mathbb{Z}, (\bar{a} \oplus \bar{b}) \oplus \bar{c} = \overline{(a+b)} \oplus \bar{c} = \overline{a+b+c}$$

and also

$$\forall a,b,c \in \mathbb{Z}, \bar{a} \oplus (\bar{b} \oplus \bar{c}) = \overline{a} \oplus \overline{(b+c)} = \overline{a+b+c}$$

and so we have associativity. Assuming that the operator \oplus is well-defined, this more or less comes down to "addition is associative".

Therefore (\mathbb{Z}_n, \oplus) is indeed a group.

- b. I'm not going to write out the multiplication table for $\mathbb{Z}_5\setminus\{\overline{0}\}$. I will show that this is a group when I prove the general case in part d of this question. Assuming that it is a group, it is clearly Abelian from the symmetric nature of \otimes .
- c. Again, I'll use the result from part d. 8 is composite so this is not a group.
- d. Suppose that n is composite. Then $\exists \ a,b \text{ s.t. } 1 < a,b < n \text{ and } a \cdot b = n$. Therefore we have

$$\overline{a}\otimes\overline{b}=\overline{n}=\overline{0}$$

Therefore $\mathbb{Z}_n \setminus \{\overline{0}\}$ is not a group since it fails the requirement of closure. Now, if n is instead prime, then $\mathbb{Z}_n \setminus \{\overline{0}\}$ is a group - we will show this by verifying the group axioms.

П

• Closure - suppose that $a, b \in \mathbb{Z} \setminus \{\overline{0}\}$. Now, suppose that

$$ab \equiv 0 \mod n$$

Then ab = kn for some $k \in \mathbb{Z}$. Since n is prime, a and n are coprime, and therefore by Bezout's theorem, $\exists u, v \in \mathbb{Z}$ s.t.

$$ua + vn = 1$$

Therefore

$$b = b \cdot 1 = b(ua + vn) = ab \cdot u + bvn = (uk + bv)n$$

and so we find that b is a multiple of n. This is a contradiction since $b \in \mathbb{Z} \setminus \{\overline{0}\}$. Therefore $ab \not\equiv 0 \mod n$ and we have

$$\overline{a}, \overline{b} \neq \overline{0} \implies \overline{ab} \neq \overline{0}$$

and so we have closure

- Identity the identity is trivially $\overline{1}$
- Inverse for any $\overline{a} \neq \overline{0}$ we have that a and n are coprime. By Bezout's theorem we know that $\exists u, v \in \mathbb{Z}$ s.t.

$$ua+vn=1$$

Therefore

$$\overline{a} \otimes \overline{u} = \overline{au} = \overline{(1 - vn)} = \overline{1}$$

and so we have constructed an inverse for \overline{a}

• Associativity - exactly the same proof as in part a. Essentially "multiplication is associative".

Therefore (\mathbb{Z}_n, \otimes) is indeed a group.