$ADVANCED\ OPERATING \ SYSTEMS$

OS objectives
Mode of operation
Components
Architecture
Linux
Windows XP

What Is an Operating System?

- Computer = set of able resources
 - processor(s), memory, I/O & communication devices
- OS
 - enables use of resources
 - manages resources
- resources not limited to hardware
- shift from:
 - pure efficient use of resources
 to
 - enhance user experience

Mode of operation

Kernel:

- substance, core, center, essence, gist, heart, heart and soul, inwardness, marrow, meat, nub, pith, sum, nittygritty
- pieces of software that perform OS tasks

has privileged access to resources

Terminology

- kernel mode or kernel space
- user mode or user space
- system call:
 - user mode program invokes kernel mode functionality

Operating System Components

- Processor scheduler
- Memory manager
- I/O manager
- Interprocess communication manager
- File system manager

Operating System Architectures

- Operating systems tend to be complex
 - Provide many services
 - Support variety of hardware and software
 - Operating system architectures help manage this complexity
 - Organize operating system components
 - Specify privilege with which each component executes

$\begin{array}{c} Operating & \text{monolithic} \\ System & \text{layered} \\ Architectures & \text{micro-kernel} \end{array}$

- distributed

Monolithic Architecture

- Monolithic operating system
 - Every component contained in kernel
 - direct communication among all elements
 - highly efficient
 - Problems:
 - complexity
 - new devices, emerging technologies
 - enabling, protection

Monolithic Architecture

Layered Architecture

- Groups components that perform similar functions into layers
- Each layer
 communicates only
 with adjacent layer
- System calls might pass through many layers before completion

Layered Architecture

Microkernel Architecture

- Microkernel
 - provides only small number of services
 - attempt to keep kernel small and scalable
- High degree of modularity
 - Extensible, portable and scalable
- Increased level of inter-module communication

Microkernel Architecture

Distributed Operating Systems

- Network operating system
 - Runs on one computer but allows its processes to access remote resources
- Distributed operating system
 - Single OS manages resources on more than one computer

Distributed Operating Systems

Linux Kernel Architecture

- Monolithic kernel:
 - Contains modular components
 - Process management
 - Interprocess communication
 - Memory management
 - File system management
 - VFS: provides a single file system interface
 - I/O management
 - Networking

Linux Kernel Architecture

Loadable Kernel Modules

- Enables code to be loaded on demand
 - Reduces the kernel's memory footprint
 - Kmod: a kernel subsystem that manages modules without user intervention
 - Determines module dependencies and loads and unloads them on demand
 - Problem: kernel and module versions

Windows XP Kernel Architecture

- Modified microkernel
 - has layers
 - has modular components within layer
 - Microkernel
 - Basic system mechanisms
 - Thread scheduling, interrupt dispatching, etc.
 - Abstracts hardware specifics that differ between architectures

Windows XP Kernel Architecture

Windows XP Kernel Architecture

- Executive
 - main operating system subsystems
- Environment subsystems
 - Provide a specific computing environment for user-mode processes:
 - Examples: Win₃₂, SFU, WOW64