2_1. Testarea staționarității unei serii de timp.

Analiza Seriilor de Timp

Considerăm seria **Produsul Intern Brut** (PIB). Datele observate au frecvență trimestrială (total 88 observații).

Seria PIB se găsește în fișierul serie PIB.wf1 (workfile in Eviews).

1. Analizăm graficului seriei de timp PIB

Un prim pas în analiza oricărei serii de timp este de a privi graficul valorilor observate în raport cu timpul.

Figura 1. Graficul seriei de timp PIB.

Prima impresie pe care o obținem din grafic este că seria are o tendință crescătoare. Se observă că media, varianța și autocovarianțele nu par a fi invariante în raport cu timpul. Seria este nestaționară.

2. Testarea staționarității seriei de timp, pe baza corelogramei

Un test simplu al staționarității seriei este bazat pe funcția de autocorelație (ACF).

Graficul funcției de autocorelație în raport cu decalajul k, se numește corelogramă.

Mai jos avem corelograma seriei cu date trimestriale privind PIB-ul , realizată în EViews.

Cum interpretăm corelograma? Observăm că începe cu valori foarte mari (0,969 la lag-ul 1) și scade treptat. Chiar la lag-ul 14, coeficientul de autocorelație are o valoare destul de mare (0,5). Acest tip de corelogramă reprezintă un indiciu că seria este nestaționară. Deci, pentru serii nestaționare coeficienții de autocorelație scad foarte încet.

Bartlett a arătat că, dacă o serie de timp este pur aleatoare, coeficienții de autocorelație de selecție sunt aproximativ normal distribuiți, cu media 0 și varianța 1/n, unde n este volumul selecției. Rezultă $\hat{\rho}_k \sim N(0,1/n)$ și $se(\hat{\rho}_k) = 1/\sqrt{n}$.

Consecințe:

- Un interval de încredere 95% pentru ρ_k are forma $(-1.96/\sqrt{n}~;+1.96/\sqrt{n})$ sau $(-2/\sqrt{n}~;+2/\sqrt{n})$.
- 95% din valorile coeficienților de autocorelație se află in intervalul $(-1.96/\sqrt{n}; +1.96/\sqrt{n})$.

În exemplul dat, deoarece n=88, varianța lui $\hat{\rho}_k$ este 1/88, iar eroarea standard este $\sqrt{1/88} = 0,1066$. Intervalul de încredere 95% pentru orice ρ_k va fi $\pm 1,96(0,1066) = \pm 0,2089$. Astfel, dacă un $\hat{\rho}_k$ se află în intervalul (-0,2089;0,2089), nu respingem ipoteza că ρ_k real este zero. Dacă $\hat{\rho}_k$ se află în afara intervalului (-0,2089;0,2089), atunci putem respinge ipoteza că ρ_k real este zero. Intervalul de încredere 95% este marcat prin două linii punctate.

Correlogram of PIB							
Date: 02/15/20 Time: 15:38 Sample: 1995Q1 2016Q4 Included observations: 88							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	0.901 0.866 0.830 0.791 0.752 0.713 0.675 0.638 0.601 0.565 0.532 0.500 0.468 0.437 0.405 0.374 0.313 0.279 0.246	0.969 -0.058 -0.024 -0.024 -0.062 -0.029 -0.024 -0.009 -0.010 -0.012 -0.012 -0.001 -0.001 -0.005 -0.038 -0.017 -0.066 -0.019 -0.019	85.462 166.02 241.72 312.39 378.10 438.57 493.85 544.11 568.77 631.12 668.33 701.65 731.56 758.29 782.02 803.03 821.35 837.24 850.79 862.17 871.39 878.65 884.22	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	
· - -	i li	24		-0.018	888.31	0.000	

Ne uităm la coloanele AC, PAC, Q-stat și Prob. Din coloana AC se observă că toți coeficienții $\hat{\rho}_k$ până la decalajul 23 sunt semnificativi statistic, adică sunt statistic diferiți de 0. Limitele din grafic aproximează două erori standard. Valoarea la lag-ul 5 este 0,830 > 0,7. Seria PIB este nestaționară.

Testarea ipotezei că mai mulți coeficienți de autocorelație sunt zero

În multe aplicații cu date financiare se testează dacă mai mulți coeficienți de autocorelație sunt simultan egali cu zero.

$$H_0$$
: toti $\rho_k = 0$ sau $\rho_1 = \rho_2 = \dots = \rho_m = 0$ (seria este staționară)

 H_1 : exista $\rho_k \neq 0$ (seria este nestaționară)

Se folosește statistica Ljung-Box (calculată în EViews), care are o distribuție χ^2 cu m grade de libertate, m fiind lungimea decalajului.

$$Q = Q_{LB} = n(n+2)\sum_{k=1}^{m} \left(\frac{\hat{\rho}_{k}^{2}}{n-k}\right) \sim \chi_{m}^{2}.$$

Dacă $Q < \chi^2_{crt} \Rightarrow$ acceptăm $H_0 \Rightarrow$ seria este staționară.

Dacă $Q > \chi^2_{crt} \Rightarrow$ respingem $H_0 \Rightarrow$ seria este nestaționară.

Dacă presupunem că m=12, observăm Q(12)=701,65 iar Prob(Q(12))=0,0000.

Pentru seria de date PIB, statistica Q bazată pe 24 de decalaje are valoarea 888, deci este semnificativ diferită de 0. Probabilitatea de a obține o astfel de valoare χ^2 este 0,000. Acceptăm H₁. Deci concluzia finală, bazată pe corelogramă, este că seria de timp **PIB este nestaționară**.

3. Testul pentru staționaritate sau pentru o rădăcină egală cu 1 (Unit Root Test) Testul ADF (Augmented Dickey-Fuller Unit Root Test)

 H_0 : seria PIB are rădăcină unitară și este nestaționară

 H_1 : seria PIB este staționară

Pentru a aplica **testul Augmented Dickey-Fuller** se dă dublu clic pe **numele seriei**, apoi se selectează **View/Unit Root Test** și se aleg diferite opțiuni. **Test for unit root in**: *level*, *1st difference*, *2nd difference*. **Include in test equation**: *Intercept*, *Trend and Intercept*, *None*.

Dacă $t_{calc} < t_{crt} \implies t_{calc} \in R_C \implies$ respingem H_0 și acceptăm $H_1 \implies$ seria este staționară.

Dacă $t_{calc} > t_{crt} \implies t_{calc} \notin R_C \implies$ acceptăm $H_0 \implies$ seria este nestaționară.

Testul Augmented Dickey Fuller ține seama și de posibilitatea ca erorile ε_t să nu fie zgomot alb.

C, maxlag=11	1-Statistic -0.547205 -3.508326 -2.895512 -2.584952	Prob.* 0.8756			
	-0.547205 -3.508326 -2.895512				
	-3.508326 -2.895512	0.8756			
	-2.895512				
Augmented Dickey-Fuller Test Equation Dependent Variable: D(PIB) Method: Least Squares Date: 02/15/20 Time: 15:30 Sample (adjusted): 1995Q3 2016Q4 Included observations: 86 after adjustments					
Std. Error	t-Statistic	Prob.			
0.006038 0.103506 23.65025	-0.547205 3.088807 1.214321	0.5857 0.0027 0.2281			
23.03023	3 S.D. dependent var 35.937 6 Akaike info criterion 9.9488 9 Schwarz criterion 10.034				
	Adjusted R-squared 0.083173 S.D. dependent var 35.9379 S.E. of regression 34.41096 Akaike info criterion 9.94888				

Am folosit modelul cu Exogenous: Constant. ∉

4.855544

0.010134

Durbin-Watson stat

Prima parte din output oferă informații despre tipul testului, variabilele exogene, lungimea de lag folosită, valoarea testului, valorile critice asociate nivelurilor de semnificație de 1%, 5%, 10% și P-value. Pentru scopul nostru este importantă statistica t (τ =tau) a variabilei PIB_{t-1}.

2.040544

Ipoteza nulă este că există o rădăcină unitară. Pentru modelul nostru, valorile critice sunt −3,508326, −2,895512 şi −2,584952, corespunzătoare nivelurilor de semnificație de 1%, 5% şi 10%. Valoarea calculată pentru **t**-Statistic este −0,547205, care este mai mare decât valorile critice.

Rezultă $t_{calc} \notin R_C$. Acceptăm H_0 , aceea că există o rădăcină unitară, deci seria PIB este nestaționară.

A doua parte din output arată ecuația pe care Eviews a folosit-o pentru a calcula statistica ADF. Ecuația folosită este: $\Delta y_t = \mu + \delta y_{t-1} + \alpha \Delta y_{t-1} + u_t$ sau $\Delta PIB_t = \mu + \delta PIB_{t-1} + \alpha \Delta PIB + u_t$

Ecuația estimată este:

F-statistic Prob(F-statistic)

$$\Delta \hat{P}IB_t = 28,7190 - 0,0033 PIB_{t-1} + 0,3197 \Delta PIB_{t-1}$$

 $t = [1,2143] [-0,5472] [3,0888]$

Procedura de testare a staționarității

- Se începe cu modelul fără intercept şi fără trend. Verificăm ambele autocorelații (statisticile DW şi ADF). Dacă DW≈2, atunci testul este de încrederere şi nu există autocorelație în reziduuri. Dacă statistica ADF este mai mică decât valoarea critică negativă, atunci seria este staționară.
- 2) Dacă DW nu este aproape de 2, se selectează modelul cu intercept...
- 3) Dacă DW nu este totuși aproape de 2, se selectează modelul cu intercept și trend...
- 4) Dacă statistica ADF este mai mare decăt valoarea critică negativă, atunci seria este nestaționară. Diferențiem seria și testăm staționaritatea seriei diferențiate.

4. Seria de timp PIB devine serie staționară după aplicarea operatorului de diferențiere

Pentru a aplica operatorul de diferențiere, în EViews scriem: series DPIB=D(PIB)

Pentru seria transformată realizăm graficul și comparăm graficul seriei PIB cu cel al seriei DPIB. Seria diferențiată, DPIB nu mai prezintă trend.

 H_0 : seria **D(PIB)** are rădăcină unitară și este **nestaționară**

 H_1 : seria **D(PIB)** este **staționară**

<u> </u>						
Augmente	Augmented Dickey-Fuller Unit Root Test on D(PIB)					
Null Hypothesis: D(PIB) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=11)						
			t-Statistic	Prob.*		
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level		-6.630339 -3.508326 -2.895512 -2.584952	0.0000		
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(PIB,2) Method: Least Squares Date: 02/15/20 Time: 15:35 Sample (adjusted): 1995Q3 2016Q4 Included observations: 86 after adjustments						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
D(PIB(-1)) C	-0.682762 16.00498	0.102975 4.396717		0.0000 0.0005		

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(PIB(-1))	-0.682762	0.102975	-6.630339	0.0000
c	16.00498	4.396717	3.640211	0.0005
R-squared	0.343552	Mean depend	ient var	0.206977
Adjusted R-squared	0.335737	S.D. depende	ent var	42.04441
S.E. of regression	34.26717	Akaike info cr	iterion	9.929234
Sum squared resid	98636.06	Schwarz crite	rion	9.986311
Log likelihood	-424.9570	Hannan-Quir	ın criter.	9.952205
F-statistic	43.96140	Durbin-Watso	on stat	2.034425
Prob(F-statistic)	0.000000			

Fig. Seria D(PIB). Exogenous: Constant.

Am aplicat testul ADF seriei diferențiate și am obținut următoarele rezultate:

$$\Delta^2 PIB_t = 16,00498 - 0,682762 \cdot \Delta PIB_{t-1}$$

 $t = [3,640211] [-6,630339]$

Pentru modelul nostru, valoarea calculată pentru **t-**Statistic este -6,630339, care este mai mică decât valorile critice.

Rezultă $t_{calc} \in R_C$. Respingem H_0 , că există o rădăcină unitară. Acceptăm H_1 , deci seria diferențiată, **DPIB**, este o serie staționară.

Augmante	ed Dioleou Fullo	r Unit Doot T	act on DID				
Augmented Dickey-Fuller Unit Root Test on PIB							
Null Hypothesis: PIB has a unit root Exogenous: Constant, Linear Trend							
Lag Length: 1 (Automatic - based on SIC, maxlag=11)							
			t-Statistic	Prob.*			
Augmented Dickey-Fulle	er test statistic		-2.215287	0.4749			
Test critical values:	1% level		-4.068290				
	5% level		-3.462912				
	10% level		-3.157836				
*MacKinnon (1996) one-sided p-values.							
Augmented Dickey-Fuller Test Equation							
Dependent Variable: D(I	PIB)						
Method: Least Squares							
Date: 02/15/20 Time: 1							
Sample (adjusted): 199							
Included observations: 8	36 after adjustm	nents					
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
PIB(-1)	-0.078661	0.035508	-2.215287	0.0295			
D(PIB(-1))	0.355794	0.102691	3.464708	0.0008			
C	234.9729	98.58764		0.0195			
@TREND("1995Q1")	1.892199	0.879168	2.152260	0.0343			

Fig: Seria PIB. Exogenous: Constant, Linear Trend

t-Statistic = $-2,215287$
Rezultă $t_{calc} \notin R_C \implies \text{Acceptăm H}_0$
seria PIB este nestaționară

Augmented Dickey-Fuller Unit Root Test on D(PIB)							
Null Hypothesis: D(FIB) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxiag=11)							
			t-Statistic	Prob.*			
Augmented Dickey-Fuller test statistic							
*Mackinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(P18,0) Method: Least Squares Date: 02/15/20 Time: 15.43 Sample (adjusted): 1995/3 2016/04 Included observations: 86 after adjustments							
Variable	Coefficient	Std. Error	1-Statistic	Prob.			
D(PIB(-1)) C @TREND(*1995Q1*)	-0.682459 17.25493 -0.028246	0.103584 7.965990 0.149731	2.166074	0.000 0.033 0.850			

Fig: Seria D(PIB). Exogenous: Constant, Linear Trend

t-Statistic = -6,588446Rezultă $t_{calc} \in R_C \implies \text{Respingem H}_0$ seria diferentiata D(PIB) este staționară

Problemă...: Pentru un eșantion de 200 observații asupra seriei stationare y_t am obținut informațiile alăturate. Testați ipoteza că primii 4 coeficienți de autocorelație sunt simultan nuli.

Correlogram of MA2_2						
Date: 03/05/17 Time: 16:37 Sample: 1 200 Included observations: 198						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		6 7 8 9	-0.060 0.077 -0.073 0.090 -0.130 0.105 -0.070 -0.047	-0.062 0.077 0.128 0.004 0.039 -0.100 -0.024 -0.003	59.804 72.830 73.552 74.768 75.861 77.533 81.057 83.369 84.396 84.864 85.268 85.292	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 H_0 : $\rho_1 = \rho_2 = \rho_3 = \rho_4$ (seria este staționară)

 H_1 : exista $\rho_i \neq 0$, pentru $i \in [1,2,3,4]$ (seria este nestaționară).

Folosim statistica Ljung-Box (calculată și în EViews):

$$Q(4) = n(n+2)\sum_{k=1}^{4} \left(\frac{\hat{\rho}_k^2}{n-k}\right) \sim \chi_4^2.$$

Dacă $Q(4) < \chi_4^2$ sau Prob> $\alpha \Rightarrow$ acceptăm $H_0 \Rightarrow$ seria este staționară.

Dacă $Q(4) > \chi_4^2 \implies \text{Prob} < \alpha \text{ respingem } H_0 \implies \text{seria este nestaționară.}$

Din corelograma seriei observăm valoarea statisticii Q și probabilitatea asociată.

Q-Stat=74,768 iar Prob(Q)=0,000

Deoarece Prob(Q)=0,000<0,05 respingem H₀ și acceptăm H₁, adică există autocorelare.

Simulare Serii de timp Nestaționare

Seria staționară:

- Media oscilează în jurul unei valori constante pe termen lung Varianța este constantă în timp **Seria nestaționară**: ◆ Nu există o medie pe termen lung la care seria să revină
- ♦ Varianța nu este constantă în timp şi se apropie de infinit când timpul merge spre infinit. Şocurile vor persista la infinit

Tipuri de nestaționaritate

- ♦ nestaționaritate stochastică $y_t = \mu + y_{t-1} + \varepsilon_t$
- nestaționaritate deterministă $y_t = \alpha + \beta t + \varepsilon_t$, Am simulat 4 serii în Eviews

$$z_t = 0.67 z_{t-1} + \varepsilon_t$$
 (serie staționară) $x_t = x_{t-1} + \varepsilon_t$ (mersul aleator fără drift)

$$y_t = 0.3 + \beta t + \varepsilon_t$$
 $w_t = 0.4 + w_{t-1} + \varepsilon_t$ (mers aleator cu drift)

Am folosit următoarele comenzi:

smpl @first @first, genr y=0, genr x=0 genr z=0 genr w=0 smpl @first+1 @last genr z=0.67*z(-1)+nrnd genr x=x(-1)+nrnd genr y=0.3+@trend+nrnd genr w=0.4+w(-1)+nrnd smpl @first @last plot x plot z

Pentru a aplica **testul Dickey-Fuller** se dă dublu clic pe **numele seriei**, apoi se selectează **View/Unit Root Test** și se aleg diferite opțiuni.

Augmented Dickey-Fuller Unit Root Test on Z					
Null Hypothesis: Z ha Exogenous: Constant Lag Length: 0 (Autom		XLAG=17)			
		t-Statistic	Prob.*		
Augmented Dickey-Fr Test critical values:	uller test statistic 1% level 5% level 10% level	-10.06971 -3.443228 -2.867112 -2.569800	0.0000		

Seria Z este staționară (acceptăm $\overline{H_1}$)

Augmented Dickey-Fuller Unit Root Test on X						
Null Hypothesis: X has a unit root Exogenous: Constant Lag Length: 0 (Automatic based or	n SIC, MAXLAG=17)					
	t-Statistic Prob.*					
Augmented Dickey-Fuller test stat	istic -1.603486 0.4800					
Test critical values: 1% level	-3.443228					
5% level	-2.867112					
10% level	-2.569800					

Seria X este nestaționară (acceptăm H₀)

Aug	gmented Dickey-Fuller	Unit Root Test on Y	
Null Hypothesis: Y has Exogenous: Constant, Lag Length: 0 (Automa		xlag=17)	
		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-22.91928	0.0000
Test critical values:	1% level	-3.976554	_
	5% level	-3.418852	
	10% level	-3.131965	

Null Hypothesis: W ha Exogenous: Constant, Lag Length: 0 (Automa	Linear Trend	ıxlag=17)	
		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-3.392700	0.0535
Test critical values:	1% level	-3.976554	
	5% level	-3.418852	
	10% level	-3.131965	

Augmented Dickey-Fuller Unit Root Test on W