SF2520 — Applied numerical methods

Lecture 2

Numerical methods for ODE Error analysis, Adaptivity

Olof Runborg
Numerical analysis
Department of Mathematics, KTH

2023-08-31

Today's lecture

- Numerical methods for ODEs
 - Local truncation error
 - Error analysis one-step methods
 - Adaptive methods

Numerical methods for ODE

Introduce discrete points in time,

$$t_n = nh$$
, $h \ll 1$,

where h is a (small) time step, and approximations

$$u_n \approx y(t_n)$$
.

Different time stepping methods for y' = f(t, y),

2 Implicit Euler:
$$u_{n+1} = u_n + hf(t_{n+1}, u_{n+1}),$$

3 Trapezoidal method:
$$u_{n+1} = u_n + \frac{1}{2}h(f(t_n, u_n) + f(t_{n+1}, u_{n+1}))$$

1 Heun's method:
$$u_{n+1} = u_n + \frac{1}{2}h\Big(f(t_n, u_n) + f(t_{n+1}, u_n + hf(t_n, u_n))\Big)$$

1 Midpoint method:
$$u_{n+1} = u_{n-1} + 2hf(t_n, u_n)$$
,

- Methods (1,4,5) explicit and (2,3) implicit.
- (1,2,3,4) one-step methods and (5) a multistep method.

ODE – implicit methods

- In an implicit method u_{n+1} is an argument of f, and an equation (in general nonlinear) must be solved in each step.
- Example: Implicit Euler for linear system $\mathbf{y}' = A\mathbf{y} + \mathbf{g}(t)$

$$\mathbf{u}_{n+1} = \mathbf{u}_n + h \Big[A \mathbf{u}_{n+1} + \mathbf{g}(t_{n+1}) \Big] \quad \Rightarrow \quad (I - hA) \mathbf{u}_{n+1} = \mathbf{u}_n + h \mathbf{g}(t_{n+1})$$

Solve linear system of eqs. in each step. (/ is the identity matrix.)

• Example: Implicit Euler for general nonlinear ODE $\mathbf{y}' = \mathbf{F}(t, \mathbf{y})$

$$u_{n+1} = u_n + hF(t_{n+1}, u_{n+1})$$

Solve $G(\mathbf{u}) = 0$ where

$$G(\boldsymbol{u}) = \boldsymbol{u} - h\boldsymbol{F}(t_{n+1}, \boldsymbol{u}) - \boldsymbol{u}_n.$$

Set $\boldsymbol{u}_{n+1} = \boldsymbol{u}^* = \text{solution}$.

• Use e.g. Newton's method to solve G(u) = 0, with start value u_n . Gives two levels of iterations: time stepping (outer) and Newton (inner).

One-step methods

The general form of a one-step method is

$$u_{n+1} = u_n + h\phi(h, t_n, u_n, u_{n+1}), \qquad u_0 = y_0,$$

where ϕ depends on f.

- If ϕ does not depend on u_{n+1} the method is explicit.
- Examples:
 - Explicit Euler:

$$\phi(h,t_n,u_n,u_{n+1})=f(t_n,u_n)$$

Implicit Euler:

$$\phi(h, t_n, u_n, u_{n+1}) = f(t_n + h, u_{n+1})$$

Heun's method:

$$\phi(h, t_n, u_n, u_{n+1}) = \frac{1}{2} \Big(f(t_n, u_n) + f(t_n + h, u_n + hf(t_n, u_n)) \Big)$$

Numerical errors

Introduce the (global) error e_n in step n

$$e_n := u_n - y(t_n).$$

- For convergence we want $\lim_{h\to 0} e_n \to 0$. (Note: e_n , u_n and t_n depend on h.)
- More precisely: Consider the solution in a fixed interval $t \in [0, T]$. If we use h = T/N, i.e. N time steps, then we want to bound

such that C does not depend on h and $p \ge 1$.

(Note: N, e_n and t_n depend on h.)

 When this holds the method has order of accuracy p. Higher p means faster convergence.

(Order of accuracy is a central general concept. See notes if you need to catch up on this.)

• Error estimates typically also hold pointwise for the methods:

$$e_n \approx C(t_n)h^p$$
,

where *C* depends on the (fixed) time $t_n = nh$.

Numerical errors – examples

Example

We solve the ODE

$$y' = \sin(y) - y^2 + \cos(2\pi t), \qquad y(0) = 1,$$

in the interval $t \in [0, 2]$ using Explicit Euler and the Trapezoidal method with time steps h = 0.2, 0.1, 0.05, 0.025, i.e. N=10, 20, 40, 80.

- Matlab examples.
- Empirically we get order of accuracy p = 1 for Explicit Euler and p = 2 for the Trapezoidal method.

Error analysis

- Consider the result of a numerical ODE method.
- Want to analyze how the global error $e_n = u_n y(t_n)$ depends on h for $0 \le t_n \le T$.
- Each step produces new errors which accumulate. In general e_n increases with n.

8/24

• Define the local truncation error (LTE) ℓ_n as the residual when the exact solution is entered into the method. For one-step methods:

$$y(t_{n+1}) = \underbrace{y(t_n) + h\phi(h, t_n, y(t_n), y(t_{n+1}))}_{\text{Method with exact solution}} + \underbrace{\ell_{n+1}}_{\text{LTE}}$$

- LTE approximates the new error made in a step.
- Note: $e_0 = 0$ and $\ell_1 = e_1$.

Local truncation error (LTE) $\ell_n(h)$ defined as

$$y(t_{n+1}) = y(t_n) + h\phi(h, t_n, y(t_n), y(t_{n+1})) + \ell_{n+1}(h)$$

2023-08-31

9/24

Convenient concept since:

- Fairly straightforward to derive an expression and bound for $\ell_n(h)$, using Taylor expansion of exact solution y around $t = t_n$.
- ② One can show that the sum of $\ell_n(h)$ is of the same order (in h) as global error e_n .

Local truncation error, estimate

• Fairly straightforward to derive an expression and bound for $\ell_n(h)$, using Taylor expansion of exact solution y around $t = t_n$.

Example (Explicit Euler)

Definition

$$y(t_{n+1}) = y(t_n) + hf(t_n, y(t_n)) + \ell_{n+1}(h).$$

Since y' = f for exact solution,

$$y(t_{n+1}) = y(t_n) + hy'(t_n) + \ell_{n+1}(h).$$

Hence, $\ell_{n+1}(h)$ is the remainder term in one step Taylor expansion,

$$\ell_{n+1}(h) = \frac{1}{2}h^2y''(\xi), \qquad \xi \in (t_n, t_{n+1}).$$

Therefore, with $M := \max_{0 \le t \le T} |y''(t)|/2$ (independent of h)

$$|\ell_n(h)| \leq Mh^2, \qquad 0 \leq nh \leq T.$$

• Similarly one can derive $|\ell_n(h)| \leq M'h^3$ for the trapezoidal method.

Local to global error

② One can show that the sum of $\ell_n(h)$ is of the same order (in h) as global error e_n .

Implies that global error is one order less than local error.

Intuition:

- Suppose $|\ell_n| = O(h^{p+1})$.
- ℓ_n is (approximately) the error in one step.
- Then

$$|e_n| \sim \sum_{k=0}^n |\ell_k| \sim \sum_{k=0}^{t_n/h} h^{p+1} \sim \frac{1}{h} h^{p+1} = O(h^p)$$

• I.e. we take O(1/h) steps where, in the worst case, $O(h^{p+1})$ errors accumulate, to $O(h^p)$.

Error estimates for one-step methods

Theorem (Global error, one-step methods)

Suppose the differential equation is approximated by the one-step method

$$u_{n+1} = u_n + h\phi(h, t_n, u_n, u_{n+1}), \qquad u_0 = y_0, \qquad 0 \le n \le N_h,$$

where $N_h h = T$. If

1 ϕ is Lipschitz in both u_n and u_{n+1} , for $h \in [0, h_0]$ and $t_n \in [0, T]$, uniformly,

$$|\phi(h, t_n, u_n, u_{n+1}) - \phi(h, t_n, v_n, v_{n+1})| \le L(|u_n - v_n| + |u_{n+1} - v_{n+1}|),$$

2 Local truncation error satisfies

$$\max_{0 \le n \le N_h} |\ell_n(h)| \le Mh^{p+1}, \qquad \textit{(M independent of h),}$$

Then,

$$\max_{0 \le n \le N_h} |e_n| \le Ch^p$$
, (C independent of h).

Error estimates for one-step methods

- Global error is one order less than local error in h.
- LTE estimate done by Taylor expansion of *y* as above.
- One-step methods always convergent if they are *consistent*, i.e. when order $p \ge 1$.
- For multi-step methods this is not true. Additional stability conditions needed to ensure convergence.
- Lipschitz condition on ϕ almost always follows from requirement that f is Lipschitz (to ensure unique solutions of ODE). Recall, e.g. that

$$\phi(h, t_n, u_n, u_{n+1}) = \frac{1}{2} \Big(f(t_n, u_n) + f(t_n + h, u_n + hf(t_n, u_n)) \Big)$$

for Heun's method. In particular, all one-step methods mentioned in this course are convergent.

One can also show that a constant C independent of h exists such that

 $|e_n| \leq C \sum_{k=1}^n |\ell_k(h)|.$

Error estimates for one-step methods

Notes: Proof of theorem for Explicit Euler, i.e. the case $\phi = f$.

We showed

$$|e_n| \leq Ch$$
, $C = MTe^{LT}$.

- C is an increasing function of L, M, T.
- As a intermediate step we also showed

$$|e_n| \leq e^{LT} \sum_{k=1}^n |\ell_k|.$$

 Here e^{LT} is typically large. However, estimate is pessimistic and not sharp for stable ODEs, and absolutely stable schemes.

Error estimates for stable one-step methods

Better estimates when the ODE is stable, e.g. the scalar ODE

$$\frac{dy}{dt}=f(y), \qquad \frac{\partial f}{\partial y}<0,$$

or the system

$$\frac{d\mathbf{y}}{dt} = A\mathbf{y} + \mathbf{g}(t),$$
 Real $(\lambda_j) < 0$ for all eigenvalues λ_j of A .

• Then, if the scheme is absolutely stable the constant e^{LT} replaced by 1,

$$|e_n| \le \sum_{k=1}^n |\ell_k|$$
, (sum of local errors bounds the global error).

• Explicit schemes typically require $h < h_{\text{stab}}$ for some *stability limit* h_{stab} .

Example: $y' = -\lambda y + g$ for $\lambda > 0$

In this case $f_y = -\lambda < 0$ and if $h\lambda < 1$,

$$|e_n + h[f(u_n) - f(y(t_n))]| = |(1 - h\lambda)e_n| = (1 + hL)|e_n|, L = -\lambda,$$

and effectively, L<0, so $e^{LT}\leq 1$, ho<1 and $|e_n|\leq \sum_{k=1}^n |\ell_k|$. (In fact $h\lambda<2$ is enough!)

Choosing time step h

Time step must resolve variations in the solution

16/24

• Well resolved ≈ small local truncation error (LTE). Ex. (Explicit Euler):

$$\ell_n(h) \approx \frac{h^2}{2} y''(t_n) \Rightarrow h \text{ must be small if } y''(t) \text{ is large.}$$

Small LTE gives small global error for stable schemes, since

$$|e_n| \le \sum_{k=1}^n |\ell_k(h)|$$
 $(\ell_k(h) \text{ depends on } h \text{ and exact solution } y)$

- Global error \leq TOL, will require $h \leq h_{acc}$ for some h_{acc} , which in addition to TOL, (only) depends on exact solution (via the LTE).
- However, we also need stability, $h < h_{\text{stab}}$. A difficulty for stiff problems, where $h_{\text{stab}} \ll h_{\text{acc}}$. (More later!)

Adaptive methods

- So far we have used a constant time step h. Not always efficient.
- Consider the following solution y(t):

- The fast variations in the middle would require us to use a small h throughout the computation if we had a constant h.
- Increases computational costs, without reducing the error (much).
- In adaptive methods the time step h is changed continuously based on the solution itself, to optimize the cost to achieve a preset error tolerance.
- Much fewer steps and less expensive.

Adaptive methods, general strategy

Let the time step in step n be h_n . General strategy is based on the estimate

$$|e_n| \leq \sum_{k=1}^n |\ell_k(h_k)|,$$

i.e. the sum of local errors gives a bound for the global error.

- **1** Decide on a tolerance TOL for the global error e_n .
- ② In each step, estimate local error $\ell_n(h_n)$ for the current h_n .
- **3** Decrease h_n if $|\ell_n(h_n)| > TOL \cdot h_n/T$ (and redo the step).
 - Increase h_n if $|\ell_n(h_n)| \leq TOL \cdot h_n/T$. (Here T is final time).

The goal is to choose h_n such that $|\ell_n(h_n)| \approx TOL \cdot h_n/T$ in each step. Then

$$|e_n| \leq \sum_{k=0}^n |\ell_k(h_k)| pprox rac{TOL}{T} \sum_{k=0}^n h_k = rac{TOL}{T} t_n \leq TOL.$$

- Many methods leave out the T dependence.
- Some methods simply keep local error constant, $|\ell_n| \approx TOL$.

Estimating the local error

② In each step, estimate local error ℓ_n for the current h_n .

Strategies for estimating LTE:

(1) Compute approximation if $y(t_{n+1})$ using h and h/2 (two steps). The difference approximates the local error:

$$|\ell_{n+1}| \sim |u_{n+1,h} - u_{n+1,h/2}|.$$

(Typically requires two function evaluations since two steps.)

(2) Compute approximation of $y(t_{n+1})$ using two different methods with different orders of accuracy p and q. The difference approximates the local error:

$$|\ell_{n+1}| \sim |u_{n+1,p} - u_{n+1,q}|.$$

(Can be done with few extra function evaluations.)

Note: In practice the most accuracte computed value is always used, eventhough the error estimate is done for the least accurate value.

Adjusting the time step

- **3** Decrease h_n if $|\ell_n(h_n)| > TOL \cdot h_n/T$ (and redo the step).
 - Increase h_n if $|\ell_n(h_n)| \leq TOL \cdot h_n/T$.

Strategies for decreasing/increasing $h_n o ilde{h}_n$

- (1) Halve/double h_n . I.e. $\tilde{h}_n = h_n/2$ or $\tilde{h}_n = 2h_n$.
- (2) Exploit the fact that order of accuracy p is known and that $\ell_n(h) \approx c_n h^{p+1}$. Choose \tilde{h}_n such that

$$TOL \cdot \tilde{h}_n/T = \ell_n(\tilde{h}_n) \approx \underbrace{\frac{\ell_n(h_n)}{h_n^{p+1}}}_{\approx c_n} \tilde{h}_n^{p+1} \quad \Rightarrow \quad \tilde{h}_n = \left(\frac{TOL \cdot h_n^{p+1}}{\ell_n(h_n)T}\right)^{\frac{1}{p}}.$$

(Typically some added constraints on min/max \tilde{h}_n and max change of h_n also included.)

(3) More advanced methods based on control theory.

Matlab for systems of equations $\mathbf{y}' = \mathbf{F}(t, \mathbf{y})$

```
>> [t,Y] = ode45(F, [0 T], Y0);
```

Arguments and output:

- t=[t0,t1,..., tN]^T
 column vector with discrete time points,
- Y matrix containing solution
 Component p at time t (n) is Y (n, p).
 Alternatively: u_{n-1} is the row Y (n, :).
- F
 ODE right hand side F(t, y),
 Matlab-function which returns a column vector
- [0 T] time interval
- Y0 initial data y₀, a column vector

Matlab, cont.

- Other ODE solvers include:
 - ode23
 - ode23s (for stiff ODE)
 - ode113 (high order multi-step method)
- Matlab ODE solvers (including ode45) are adaptive. To control the error one specifies an absolute and a relative tolerance AbsTol and RelTol. (I.e., not a step size or the number of steps.)
- The solvers try to reduce the error below max(AbsTol,RelTol*norm(Y))) if Y is the solution.
- Default tolerances are
 - RelTol = 10^{-3}
 - AbsTol = 10^{-6}
- To adjust the tolerances, use the odeset command as follows:

```
>> options = odeset('RelTol',1e-5,'AbsTol',1e-8);
>> [t, Y] = ode45(F, [0 T], Y0, options);
```

Absolute stability

Example

Want to approximate solution to

$$y' = -25y, y(0) = 1.$$

Exact solution is $y(t) = e^{-25t}$.

- Computer tests: Explicit and Implicit Euler.
- Results:
 - Explicit Euler useless for fixed h = 0.1. (Error $\to \infty$ when $n \to \infty$.)
 - Implicit Euler gives an ok solution for the same h = 0.1.
 - Both methods are convergent as $h \to 0$.
 - Explicit Euler \approx Implicit Euler for h = 0.01.
- Need to distinguish this "good" and "bad" behaviour of convergent methods ⇒ absolute stability concept.

Absolute stability and explicit/implicit methods

- Explicit methods (Expl. Euler, Heun, ...)

 Stability limit for time step $h \le h_{\text{stab}}$. Unstable for $h > h_{\text{stab}}$, where h_{stab} depends on both method and problem.
- Computer example.
- Implicit Methods (Impl. Euler, Trapezoidal method, ...)
 - No stability limit. Stable for all time steps h > 0.
 - More expensive time stepping. In every step an equation must be solved in general, often numerically.
- Stiff problems
 - Stability limit \ll accuracy requirement, i.e. $h_{\rm stab} \ll h_{\rm acc}$.
 - Explicit methods require excessively small h. Implicit methods accurate enough also for $h \gg h_{\rm stab}$. Conditions are:

```
explicit method: h \le h_{\text{stab}} \ll h_{\text{acc}}, implicit method: h \le h_{\text{acc}}.
```

- Implicit methods better: more expensive per time step, but can use fewer steps.
- Adaptive explicit methods do not work well.
- Computer example.