Classifications of exact structures and Cohen-Macaulay-finite algebras

Haruhisa Enomoto

In this talk, I will discuss a classification of exact structures on a given additive category and its application, based on [1]. Exact categories, in the sense of Quillen, have been playing an important role in the representation theory of algebras. In general, an additive category has many exact structures. Recently, Rump [3] showed that every additive category has the largest exact structures, but no general description of exact structures was known. We give an explicit description of all exact structures on a given additive category \mathcal{E} by using particular modules over \mathcal{E} (equivalently, modules over the Auslander algebra of \mathcal{E}).

Let k be a field. For simplicity, all algebras are assumed to be finite dimensional over k. To this end, the following condition for simple modules plays an indispensable role.

Definition 1. Let Γ be an algebra and S a simple Γ -module. We say that S satisfies the 2-regular condition if the following conditions are satisfied.

- (1) The projective dimension of S is equal to 2.
- (2) $\operatorname{Ext}_{\underline{\Gamma}}^{i}(S,\Gamma) = 0$ for i = 0, 1.
- (3) $\operatorname{Ext}_{\Gamma}^{2}(S,\Gamma)$ is simple $\Gamma^{\operatorname{op}}$ -module.

Surprisingly, the following shows that categorical notion (exact structures) is deeply related to homological condition (2-regular conditions). Also this can be seen as a classification of exact categories with finitely many indecomposables.

Theorem 2. Let \mathcal{E} be an idempotent complete Hom-finite additive k-category with finitely many indecomposables, and let Γ be its Auslander algebra. Then there exists a bijection between the following two classes.

- (1) Exact structures on \mathcal{E} .
- (2) Sets of simple Γ -modules satisfying the 2-regular condition.
- (3) Sets of dotted arrows in the translation quiver $Q(\Gamma)$ associated with Γ .

As an application, we give the Auslander-type correspondence for Cohen-Macaulay-finite Iwanaga-Gorenstein algebras. We say that an algebra Λ is Iwanaga-Gorenstein if the left and right injective dimension of Γ itself is finite. For such an algebra Λ , a finitely generated Γ -module X is called Cohen-Macaulay if $\operatorname{Ext}_{\Lambda}^{i}(X,\Lambda)=0$ for all i>0. We say that an Iwanaga-Gorenstein algebra is Cohen-Macaulay-finite (CM-finite) if there exist finitely many Cohen-Macaulay modules up to isomorphism. By using the previous theorem and the results in [2], we proved the following.

Theorem 3. There exists a bijection between the following two classes.

- (1) Morita-equivalence classes of CM-finite Iwanaga-Gorenstein algebras.
- (2) Equivalence classes of pairs (Γ, X) , where Γ is an algebra with finite global dimension and X is a union of stable τ -orbits in the translation quiver $Q(\Gamma)$.

Moreover, we give an explicit method to construct a CM-finite algebra from the pair (Γ, X) . This gives a systematic method to construct CM-finite Iwanaga-Gorenstein algebras, and all such algebras are obtained in this way. Thus our result reduces the classification problem of CM-finite Iwanaga-Gorenstein algebras to that of algebras with finite global dimension.

References

- [1] H. Enomoto, Classifications of exact structures and Cohen-Macaulay-finite algebras, arXiv:1705.02163.
- [2] H. Enomoto, Classifying exact categories via Wakamatsu tilting, J. Algebra 485 (2017), 1-44.
- [3] W. Rump, On the maximal exact structure on an additive category, Fund. Math. 214 (2011), no. 1, 77–87.

Graduate School of Mathematics

NAGOYA UNIVERSITY

Frocho, Chikusaku, Nagoya 464-8602 Japan

Email: m16009t@math.nagoya-u.ac.jp