Algebra III (Doble grado Informática-Matemáticas)

Relación 3.

Ejercicio 1. Para $n=3,~8,~10,~14,~16,~18,~20,~30,~50,~calcular,~us and o la función <math>\varphi$ de Euler, el grado $[\mathbb{Q}(z_n):\mathbb{Q}]$.

Ejercicio 2. Calcular Φ_n , para n = 3, 8, 10, 14, 16, 18, 20, 30, 50.

Ejercicio 3. Sea $n \geq 3$ un natural impar.

- (1) Probar que $z_n = z_{2n}^2$. (2) Argumentar que $\mathbb{Q}(z_n) = \mathbb{Q}(z_{2n})$.

(1) Determinar todos los $n \ge 2$ tales que $\varphi(n) = 2$. Ejercicio 4.

(2) Determinar los cuerpos ciclotómicos que son extensiones de grado dos de Q.

Ejercicio 5. Describir el grupo de Galois $G(\mathbb{Q}(z_6)/\mathbb{Q})$ y el retículo de subcuerpos de $\mathbb{Q}(z_6)$ Ejercicio 6. $Sea\ z=z_5$.

- (1) Determina el polinomio Φ_5 y muestra una base de la extensión $\mathbb{Q}(z)/\mathbb{Q}$.
- (2) Expresa en función la base $(z+z^4) + (z^2+z^3)$ y $(z+z^4)(z^2+z^3)$.
- (3) Argumenta que $z + z^4$ y $z^2 + z^3$ son las raíces del polinomio $x^2 + x 1$.
- (4) Argumenta las siguientes igualdades : $z + z^4 = 2\cos\frac{2\pi}{5}$, $z^2 + z^3 = 2\cos\frac{4\pi}{5}$.
- (5) Argumenta las siguientes igualdades: $\cos \frac{2\pi}{5} = \frac{-1+\sqrt{5}}{4}$, $\cos \frac{4\pi}{5} = \frac{-1-\sqrt{5}}{4}$.
- (6) Describe el grupo $G(\mathbb{Q}(z)/\mathbb{Q})$ y prueba que es cíclico.
- (7) Describe el retículo de subgrupos de $G(\mathbb{Q}(z)/\mathbb{Q})$.
- (8) Describe el retículo de subcuerpos de $\mathbb{Q}(z)$.

Ejercicio 7. Sea n > 2 y $z = z_n$ la raíz n-ésima primitiva de la unidad.

- (1) Observando que $(z + \bar{z}) = 2\cos\frac{2\pi}{n}$, probar que z y \bar{z} son las raíces del polinomio $x^{2} - 2\cos\frac{2\pi}{n}x + 1 \in \mathbb{R}[x].$ (2) Argumentar que $\mathbb{Q}(\cos\frac{2\pi}{n}) \leq \mathbb{Q}(z)$, pero $\mathbb{Q}(\cos\frac{2\pi}{n}) \neq \mathbb{Q}(z)$.
- (3) Probar que $Irr(z, \mathbb{Q}(\cos\frac{2\pi}{n})) = x^2 2\cos\frac{2\pi}{n}x + 1$ y que $[\mathbb{Q}(z): \mathbb{Q}(\cos\frac{2\pi}{n})] = 2$.
- (4) Probar que $\left[\mathbb{Q}(\cos\frac{2\pi}{n}):\mathbb{Q}\right]=\varphi(n)/2$ y que el polinomio $Irr(\cos\frac{2\pi}{n},\mathbb{Q})$ es de grado $\varphi(n)/2$.

Ejercicio 8. $Sea\ z=z_7$.

- (1) Determinar Φ_7 .
- (2) Describir el grupo $G(\mathbb{Q}(z)/\mathbb{Q})$, probar que es cíclico, y describir su retículo de sub-
- (3) Sea $\alpha = z + z^2 + z^4$. Calcular α^2 , expresando el resultado en función de la base de $\mathbb{Q}(z)$, y probar que α es raíz del polinomio $x^2 + x + 2$.
- (4) Determinar el subcuerpo fijo bajo el subgrupo cíclico de orden 3 de $G(\mathbb{Q}(z)/\mathbb{Q})$.
- (5) Probar que subgrupo cíclico de orden 2 de $G(\mathbb{Q}(z)/\mathbb{Q})$ está generado por el automorfismo de conjugación compleja : $a + bi \mapsto a - bi$.
- (6) Observando que $z + \bar{z}$ pertenece al subcuerpo fijo bajo el subgrupo de orden 2 de $G(\mathbb{Q}(z)/\mathbb{Q})$, argumentar que ese subcuerpo fijo es $\mathbb{Q}(\cos\frac{2\pi}{2})$.
- (7) Describir el retículo de subcuerpos de $\mathbb{Q}(z)$.