Adam Kapelner

Stat 422/722 at The Wharton School of the University of Pennsylvania

January 31 & February 1, 2017

I want to explain the coin example from last class in the context of likelihood. Imagine you flip a coin three times and get heads, heads, tails; thus, $y_1 = 1, y_2 = 1, y_3 = 0$. There is a true probability of heads called θ . We don't know it

What is the probability of the data? We employ the mass / density function:

$$\mathbb{P}(Y_1 = y_1, Y_2 = y_2, Y_3 = y_3; \theta) = \prod_{i=1}^{3} \mathbb{P}(Y_i = y_i; \theta) =$$

I want to explain the coin example from last class in the context of likelihood. Imagine you flip a coin three times and get heads, heads, tails; thus, $y_1 = 1, y_2 = 1, y_3 = 0$. There is a true probability of heads called θ . We don't know it.

What is the probability of the data? We employ the mass / density function:

$$\mathbb{P}(Y_1 = y_1, Y_2 = y_2, Y_3 = y_3; \theta) = \prod_{i=1}^{3} \mathbb{P}(Y_i = y_i; \theta) = \prod_{i=1}^{3} \theta^{y_i} (1 - \theta)^{1 - y_i}$$

I want to explain the coin example from last class in the context of likelihood. Imagine you flip a coin three times and get heads, heads, tails; thus, $y_1 = 1, y_2 = 1, y_3 = 0$. There is a true probability of heads called θ . We don't know it

What is the probability of the data? We employ the mass / density function:

$$\mathbb{P}(Y_1 = y_1, Y_2 = y_2, Y_3 = y_3; \theta) = \prod_{i=1}^{3} \mathbb{P}(Y_i = y_i; \theta) = \prod_{i=1}^{3} \theta^{y_i} (1 - \theta)^{1 - y_i}$$

$$= \left(\theta^{(1)} (1 - \theta)^{1 - (1)}\right) \left(\theta^{(1)} (1 - \theta)^{1 - (1)}\right) \left(\theta^{(0)} (1 - \theta)^{1 - (0)}\right)$$

I want to explain the coin example from last class in the context of likelihood. Imagine you flip a coin three times and get heads, heads, tails; thus, $y_1 = 1, y_2 = 1, y_3 = 0$. There is a true probability of heads called θ . We don't know it.

What is the probability of the data? We employ the mass / density function:

$$\mathbb{P}(Y_1 = y_1, Y_2 = y_2, Y_3 = y_3; \theta) = \prod_{i=1}^{3} \mathbb{P}(Y_i = y_i; \theta) = \prod_{i=1}^{3} \theta^{y_i} (1 - \theta)^{1 - y_i}$$

$$= \left(\theta^{(1)} (1 - \theta)^{1 - (1)}\right) \left(\theta^{(1)} (1 - \theta)^{1 - (1)}\right) \left(\theta^{(0)} (1 - \theta)^{1 - (0)}\right)$$

$$= \theta^2 (1 - \theta)$$

And now we can calculate the probability of seeing the data assuming θ . Assume $\theta = 0.5$ then,

$$\mathbb{P}(Y_1 = 1, Y_2 = 1, Y_3 = 0; \theta = 0.5) = 0.5^2(1 - 0.5) =$$

I want to explain the coin example from last class in the context of likelihood. Imagine you flip a coin three times and get heads, heads, tails; thus, $y_1 = 1, y_2 = 1, y_3 = 0$. There is a true probability of heads called θ . We don't know it.

What is the probability of the data? We employ the mass / density function:

$$\mathbb{P}(Y_1 = y_1, Y_2 = y_2, Y_3 = y_3; \theta) = \prod_{i=1}^{3} \mathbb{P}(Y_i = y_i; \theta) = \prod_{i=1}^{3} \theta^{y_i} (1 - \theta)^{1 - y_i}$$

$$= \left(\theta^{(1)} (1 - \theta)^{1 - (1)}\right) \left(\theta^{(1)} (1 - \theta)^{1 - (1)}\right) \left(\theta^{(0)} (1 - \theta)^{1 - (0)}\right)$$

$$= \theta^2 (1 - \theta)$$

And now we can calculate the probability of seeing the data assuming θ . Assume $\theta = 0.5$ then,

$$\mathbb{P}(Y_1 = 1, Y_2 = 1, Y_3 = 0; \theta = 0.5) = 0.5^2(1 - 0.5) = 0.125$$

Now we ask the inverse question.

Now we ask the inverse question. If we saw this data $y_1 = 1$, $y_2 = 1$, $y_3 = 0$, what is the most likely model? Equivalently, what is the most likely value of θ ?

Now we ask the inverse question. If we saw this data $y_1 = 1$, $y_2 = 1$, $y_3 = 0$, what is the most likely model? Equivalently, what is the most likely value of θ ? We first write down the likelihood function which it's easy because it's the same as the mass / density function

$$\mathcal{L}(\theta; Y_1 = 1, Y_2 = 1, Y_3 = 0) =$$

Now we ask the inverse question. If we saw this data $y_1 = 1$, $y_2 = 1$, $y_3 = 0$, what is the most likely model? Equivalently, what is the most likely value of θ ? We first write down the likelihood function which it's easy because it's the same as the mass / density function

$$\mathcal{L}(\theta; Y_1 = 1, Y_2 = 1, Y_3 = 0) = \mathbb{P}(Y_1 = 1, Y_2 = 1, Y_3 = 0; \theta) = 0$$

Now we ask the inverse question. If we saw this data $y_1 = 1$, $y_2 = 1$, $y_3 = 0$, what is the most likely model? Equivalently, what is the most likely value of θ ? We first write down the likelihood function which it's easy because it's the same as the mass / density function

$$\mathcal{L}(\theta; Y_1 = 1, Y_2 = 1, Y_3 = 0) = \mathbb{P}(Y_1 = 1, Y_2 = 1, Y_3 = 0; \theta) = \theta^2(1 - \theta)$$

And now we pick the value of θ which maximizes the likelihood.

Now we ask the inverse question. If we saw this data $y_1 = 1$, $y_2 = 1$, $y_3 = 0$, what is the most likely model? Equivalently, what is the most likely value of θ ? We first write down the likelihood function which it's easy because it's the same as the mass / density function

$$\mathcal{L}(\theta; Y_1 = 1, Y_2 = 1, Y_3 = 0) = \mathbb{P}(Y_1 = 1, Y_2 = 1, Y_3 = 0; \theta) = \theta^2(1 - \theta)$$

And now we pick the value of θ which maximizes the likelihood,

$$\hat{\theta} := \mathop{\arg\max}_{\theta \in \Theta} \ \left\{ \mathcal{L} \left(\theta; x \right) \right\}$$

How?

Now we ask the inverse question. If we saw this data $y_1 = 1$, $y_2 = 1$, $y_3 = 0$, what is the most likely model? Equivalently, what is the most likely value of θ ? We first write down the likelihood function which it's easy because it's the same as the mass / density function

$$\mathcal{L}(\theta; Y_1 = 1, Y_2 = 1, Y_3 = 0) = \mathbb{P}(Y_1 = 1, Y_2 = 1, Y_3 = 0; \theta) = \theta^2(1 - \theta)$$

And now we pick the value of θ which maximizes the likelihood,

$$\hat{\theta} := \mathop{\arg\max}_{\theta \in \Theta} \ \left\{ \mathcal{L} \left(\theta; x \right) \right\}$$

How? Calculus 101: we take the derivative, set it equal to zero and solve for θ :

$$\frac{d}{d\theta}\left[\theta^2(1-\theta)\right] =$$

Now we ask the inverse question. If we saw this data $y_1 = 1$, $y_2 = 1$, $y_3 = 0$, what is the most likely model? Equivalently, what is the most likely value of θ ? We first write down the likelihood function which it's easy because it's the same as the mass / density function

$$\mathcal{L}(\theta; Y_1 = 1, Y_2 = 1, Y_3 = 0) = \mathbb{P}(Y_1 = 1, Y_2 = 1, Y_3 = 0; \theta) = \theta^2(1 - \theta)$$

And now we pick the value of θ which maximizes the likelihood,

$$\hat{\theta} := \mathop{\arg\max}_{\theta \in \Theta} \ \left\{ \mathcal{L} \left(\theta; x \right) \right\}$$

How? Calculus 101: we take the derivative, set it equal to zero and solve for θ :

$$\frac{d}{d\theta}\left[\theta^2(1-\theta)\right] = \frac{d}{d\theta}\left[\theta^2-\theta^3\right] =$$

Now we ask the inverse question. If we saw this data $y_1 = 1$, $y_2 = 1$, $y_3 = 0$, what is the most likely model? Equivalently, what is the most likely value of θ ? We first write down the likelihood function which it's easy because it's the same as the mass / density function

$$\mathcal{L}(\theta; Y_1 = 1, Y_2 = 1, Y_3 = 0) = \mathbb{P}(Y_1 = 1, Y_2 = 1, Y_3 = 0; \theta) = \theta^2(1 - \theta)$$

And now we pick the value of θ which maximizes the likelihood,

$$\hat{\theta} := \underset{\theta \in \Theta}{\operatorname{arg\,max}} \ \{\mathcal{L}(\theta; x)\}$$

How? Calculus 101: we take the derivative, set it equal to zero and solve for θ :

$$\frac{d}{d\theta} \left[\theta^2 (1 - \theta) \right] = \frac{d}{d\theta} \left[\theta^2 - \theta^3 \right] = 2\theta - 3\theta^2$$

and set it equal to zero:

$$0 = 2\theta - 3\theta^2 = \theta(2 - 3\theta) \Rightarrow 0 = 2 - 3\theta \Rightarrow \hat{\theta}_{\text{MLE}} = \frac{2}{3}$$

Now we ask the inverse question. If we saw this data $y_1 = 1$, $y_2 = 1$, $y_3 = 0$, what is the most likely model? Equivalently, what is the most likely value of θ ? We first write down the likelihood function which it's easy because it's the same as the mass / density function

$$\mathcal{L}(\theta; Y_1 = 1, Y_2 = 1, Y_3 = 0) = \mathbb{P}(Y_1 = 1, Y_2 = 1, Y_3 = 0; \theta) = \theta^2(1 - \theta)$$

And now we pick the value of θ which maximizes the likelihood,

$$\hat{\theta} := \mathop{\arg\max}_{\theta \in \Theta} \ \left\{ \mathcal{L} \left(\theta; x \right) \right\}$$

How? Calculus 101: we take the derivative, set it equal to zero and solve for θ :

$$\frac{d}{d\theta} \left[\theta^2 (1 - \theta) \right] = \frac{d}{d\theta} \left[\theta^2 - \theta^3 \right] = 2\theta - 3\theta^2$$

and set it equal to zero:

$$0 = 2\theta - 3\theta^2 = \theta(2 - 3\theta) \Rightarrow 0 = 2 - 3\theta \Rightarrow \hat{\theta}_{\text{MLE}} = \frac{2}{3}$$

i.e. the most likely model for this data is a weighted coin with probability of heads of 2/3.

Extrapolation

Data driven approaches are all focused on accuracy during **interpolation** (estimation within a known range). **Extrapolation** (estimation outside of a known range) brings trouble.

Extrapolation

Data driven approaches are all focused on accuracy during **interpolation** (estimation within a known range). **Extrapolation** (estimation outside of a known range) brings trouble.

Extrapolation

Data driven approaches are all focused on accuracy during **interpolation** (estimation within a known range). **Extrapolation** (estimation outside of a known range) brings trouble.

It is important to ask the question for a new observation x^* if it is within the space of x's in the historical data. (Hardly anyone does this when p > 2... but you should)!

Reconciliation of These Silly Cartoons

Reconciliation of These Silly Cartoons

Be aware that extrapolation methods of different algorithms differ considerably! [R Demo]

We spoke a lot about featurization i.e. selecting the columns in the dataframe (these are the predictors to measure). Once we did this, we can then go out and sample observations and then measure each for their predictor values.

We spoke a lot about featurization i.e. selecting the columns in the dataframe (these are the predictors to measure). Once we did this, we can then go out and sample observations and then measure each for their predictor values.

But we didn't speak at all about selecting the observations themselves (assuming you have some modicum of control of selecting your data). Two things to consider:

Dataframe Design

We spoke a lot about featurization i.e. selecting the columns in the dataframe (these are the predictors to measure). Once we did this, we can then go out and sample observations and then measure each for their predictor values.

But we didn't speak at all about selecting the observations themselves (assuming you have some modicum of control of selecting your data). Two things to consider:

• Generalizability refers to the ability of the model to generalize, or be externally valid when considering new observations. This comes down to sampling observations from the same population as your new data you wish to predict (pretty obvious). Sometimes difficult in practice!

Dataframe Design

We spoke a lot about featurization i.e. selecting the columns in the dataframe (these are the predictors to measure). Once we did this, we can then go out and sample observations and then measure each for their predictor values.

But we didn't speak at all about selecting the observations themselves (assuming you have some modicum of control of selecting your data). Two things to consider:

• Generalizability refers to the ability of the model to generalize, or be externally valid when considering new observations. This comes down to sampling observations from the same population as your new data you wish to predict (pretty obvious). Sometimes difficult in practice! Extrapolation??

Dataframe Design

We spoke a lot about featurization i.e. selecting the columns in the dataframe (these are the predictors to measure). Once we did this, we can then go out and sample observations and then measure each for their predictor values.

But we didn't speak at all about selecting the observations themselves (assuming you have some modicum of control of selecting your data). Two things to consider:

- Generalizability refers to the ability of the model to generalize, or be externally valid when considering new observations. This comes down to sampling observations from the same population as your new data you wish to predict (pretty obvious). Sometimes difficult in practice! Extrapolation??
- Optimal Design

Dataframe Design

We spoke a lot about featurization i.e. selecting the columns in the dataframe (these are the predictors to measure). Once we did this, we can then go out and sample observations and then measure each for their predictor values.

But we didn't speak at all about selecting the observations themselves (assuming you have some modicum of control of selecting your data). Two things to consider:

- Generalizability refers to the ability of the model to generalize, or be externally valid when considering new observations. This comes down to sampling observations from the same population as your new data you wish to predict (pretty obvious). Sometimes difficult in practice! Extrapolation??
- Optimal Design

What to measure? ✓

Dataframe Design

We spoke a lot about featurization i.e. selecting the columns in the dataframe (these are the predictors to measure). Once we did this, we can then go out and sample observations and then measure each for their predictor values.

But we didn't speak at all about selecting the observations themselves (assuming you have some modicum of control of selecting your data). Two things to consider:

- Generalizability refers to the ability of the model to generalize, or be externally valid when considering new observations. This comes down to sampling observations from the same population as your new data you wish to predict (pretty obvious). Sometimes difficult in practice! Extrapolation??
- Optimal Design

What to measure? \checkmark Who to measure it on???

Question: assume (a) OLS with p = 1 and

Question: assume (a) OLS with p = 1 and (b) we only care about inference for β_1 (intercept inessential) and

Question: assume (a) OLS with p = 1 and (b) we only care about inference for β_1 (intercept inessential) and (c) we are at liberty to sample any x values live in their set \mathbb{X} e.g. $\in [x_m, x_M]$. What should these n values of x be?

Let $x_m = 0$, $x_M = 1$ and n = 10. The best inference for β_1 means

Question: assume (a) OLS with p = 1 and (b) we only care about inference for β_1 (intercept inessential) and (c) we are at liberty to sample any x values live in their set \mathbb{X} e.g. $\in [x_m, x_M]$. What should these n values of x be?

Let $x_m=0$, $x_M=1$ and n=10. The best inference for eta_1 means ... $\mathbb{S}\mathsf{E}\left[\hat{eta}_1
ight]$ is minimum (since unbiasedness is guaranteed since we are using minimum SSE estimation). Design strategies for the x's:

Question: assume (a) OLS with p = 1 and (b) we only care about inference for β_1 (intercept inessential) and (c) we are at liberty to sample any x values live in their set \mathbb{X} e.g. $\in [x_m, x_M]$. What should these n values of x be?

Let $x_m = 0$, $x_M = 1$ and n = 10. The best inference for β_1 means ... $\mathbb{S}\mathsf{E}\left[\hat{eta}_1
ight]$ is minimum (since unbiasedness is guaranteed since we are using minimum SSE estimation). Design strategies for the x's:

Random sampling

Question: assume (a) OLS with p = 1 and (b) we only care about inference for β_1 (intercept inessential) and (c) we are at liberty to sample any x values live in their set \mathbb{X} e.g. $\in [x_m, x_M]$. What should these n values of x be?

Let $x_m = 0$, $x_M = 1$ and n = 10. The best inference for β_1 means ... $\mathbb{S}\mathsf{E}\left[\hat{eta}_1
ight]$ is minimum (since unbiasedness is guaranteed since we are using minimum SSE estimation). Design strategies for the x's:

- Random sampling
- ② Uniform spacing: $\{0, 0.111, 0.222, \dots, 0.999\}$

Question: assume (a) OLS with p = 1 and (b) we only care about inference for β_1 (intercept inessential) and (c) we are at liberty to sample any x values live in their set \mathbb{X} e.g. $\in [x_m, x_M]$. What should these n values of x be?

Let $x_m = 0$, $x_M = 1$ and n = 10. The best inference for β_1 means ... $\mathbb{S}\mathsf{E}\left[\hat{eta}_1
ight]$ is minimum (since unbiasedness is guaranteed since we are using minimum SSE estimation). Design strategies for the x's:

- Random sampling
- ② Uniform spacing: $\{0, 0.111, 0.222, \dots, 0.999\}$
- Something else?

[R demo]

Optimal Design: Split Between Extremes

Recall the formula from Stat 102 / 613:

$$\mathbb{SE}\left[\hat{\beta}_{1}\right] = \sqrt{\frac{\textit{MSE}}{(n-1)s_{x}^{2}}} = \frac{\textit{RMSE}}{\sqrt{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}}$$

How can we make this small?

Recall the formula from Stat 102 / 613:

$$\mathbb{SE}\left[\hat{\beta}_1\right] = \sqrt{\frac{\textit{MSE}}{(n-1)s_x^2}} = \frac{\textit{RMSE}}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

How can we make this small?

 \bigcirc Maximize n (duh) ... so we'll assume n is fixed by a budget constraint so now what?

Recall the formula from Stat 102 / 613:

$$\mathbb{SE}\left[\hat{\beta}_{1}\right] = \sqrt{\frac{\textit{MSE}}{(n-1)s_{x}^{2}}} = \frac{\textit{RMSE}}{\sqrt{\sum_{i=1}^{n}\left(x_{i} - \bar{x}\right)^{2}}}$$

- \bigcirc Maximize n (duh) ... so we'll assume n is fixed by a budget constraint so now what?
- Minimize the numerator. RMSE i.e. minimize the MSE i.e. minimize SSE. Can we do this?

Recall the formula from Stat 102 / 613:

$$\mathbb{SE}\left[\hat{\beta}_{1}\right] = \sqrt{\frac{\textit{MSE}}{(n-1)s_{x}^{2}}} = \frac{\textit{RMSE}}{\sqrt{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}}$$

- \bigcirc Maximize n (duh) ... so we'll assume n is fixed by a budget constraint so now what?
- Minimize the numerator. RMSE i.e. minimize the MSE i.e. minimize SSE. Can we do this? Yes by picking the closest $\hat{\beta}_1$ to β_1 (which we already do).

Recall the formula from Stat 102 / 613:

$$\mathbb{SE}\left[\hat{\beta}_{1}\right] = \sqrt{\frac{MSE}{(n-1)s_{x}^{2}}} = \frac{RMSE}{\sqrt{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}}$$

- \bigcirc Maximize n (duh) ... so we'll assume n is fixed by a budget constraint so now what?
- Minimize the numerator, RMSE i.e. minimize the MSE i.e. minimize SSE. Can we do this? Yes by picking the closest $\hat{\beta}_1$ to β_1 (which we already do).
- Maximize the denominator $(n-1)s_x^2$. Since n is already maximized, we can pick x_1, \ldots, x_n to maximize s_x^2 , the sample variance of the predictor. How?

Recall the formula from Stat 102 / 613:

$$\mathbb{SE}\left[\hat{\beta}_{1}\right] = \sqrt{\frac{\textit{MSE}}{(n-1)s_{x}^{2}}} = \frac{\textit{RMSE}}{\sqrt{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}}$$

- \bigcirc Maximize n (duh) ... so we'll assume n is fixed by a budget constraint so now what?
- Minimize the numerator, RMSE i.e. minimize the MSE i.e. minimize SSE. Can we do this? Yes by picking the closest $\hat{\beta}_1$ to β_1 (which we already do).
- Maximize the denominator $(n-1)s_x^2$. Since n is already maximized, we can pick x_1, \ldots, x_n to maximize s_x^2 , the sample variance of the predictor. How? Put half of the x's at x_m and the other half at x_M thereby

Recall the formula from Stat 102 / 613:

$$\mathbb{SE}\left[\hat{\beta}_{1}\right] = \sqrt{\frac{\textit{MSE}}{(n-1)s_{x}^{2}}} = \frac{\textit{RMSE}}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}}$$

- \bigcirc Maximize n (duh) ... so we'll assume n is fixed by a budget constraint so now what?
- Minimize the numerator, RMSE i.e. minimize the MSE i.e. minimize SSE. Can we do this? Yes by picking the closest $\hat{\beta}_1$ to β_1 (which we already do).
- Maximize the denominator $(n-1)s_x^2$. Since n is already maximized, we can pick x_1, \ldots, x_n to maximize s_x^2 , the sample variance of the predictor. How? Put half of the x's at x_m and the other half at x_M thereby maximizing the distance from the v'e to Predictive Analytics Lecture 3

Recall the formula from Stat 102 / 613:

$$\mathbb{SE}\left[\hat{\beta}_{1}\right] = \sqrt{\frac{\textit{MSE}}{(n-1)s_{x}^{2}}} = \frac{\textit{RMSE}}{\sqrt{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}}$$

- \bigcirc Maximize n (duh) ... so we'll assume n is fixed by a budget constraint so now what?
- Minimize the numerator, RMSE i.e. minimize the MSE i.e. minimize SSE. Can we do this? Yes by picking the closest $\hat{\beta}_1$ to β_1 (which we already do).
- Maximize the denominator $(n-1)s_x^2$. Since n is already maximized, we can pick x_1, \ldots, x_n to maximize s_x^2 , the sample variance of the predictor. How? Put half of the x's at x_m and the other half at x_M thereby maximizing the distance from the v's to Fredictive Analytics Lecture 3

We seek the best linear approximation of f(x) which is $\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$. We pick the **x**'s to give us the best linear approximation. What criteria? JMP gives two ways:

$$\bullet \ \, \mathsf{Note:} \, \, \mathbb{V}\mathsf{ar}\left[\hat{\beta}_{0},\hat{\beta}_{1},\ldots,\hat{\beta}_{p}\right] = \sigma^{2}\left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}$$

We seek the best linear approximation of f(x) which is $\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$. We pick the x's to give us the best linear approximation. What criteria? JMP gives two ways:

(Design)

D-optimality: maximize $|X^TX|$ — this minimizes the variance-covariance among the parameter estimates.

We seek the best linear approximation of f(x) which is $\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$. We pick the x's to give us the best linear approximation. What criteria? JMP gives two ways:

- D-optimality: maximize $|X^TX|$ — this minimizes the variance-covariance among the parameter estimates.
- ② Note: $Var \left[\hat{Y}_1, \dots, \hat{Y}_n \right] = \sigma^2 \boldsymbol{X} \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T$

We seek the best linear approximation of f(x) which is $\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$. We pick the x's to give us the best linear approximation. What criteria? JMP gives two ways:

- D-optimality: maximize $|X^TX|$ — this minimizes the variance-covariance among the parameter estimates.
- ② Note: $Var \left[\hat{Y}_1, \dots, \hat{Y}_n \right] = \sigma^2 \boldsymbol{X} \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T$ I-optimality: minimize the average prediction variance over the design space. I'm unsure how JMP defined "design space".

[R Demo]

We seek the best linear approximation of f(x) which is $\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$. We pick the **x**'s to give us the best linear approximation. What criteria? JMP gives two ways:

- D-optimality: maximize $|X^TX|$ — this minimizes the variance-covariance among the parameter estimates.
- ② Note: $Var \left[\hat{Y}_1, \dots, \hat{Y}_n \right] = \sigma^2 \boldsymbol{X} \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T$ I-optimality: minimize the average prediction variance over the design space. I'm unsure how JMP defined "design space".

[R Demo] What did we learn?

We seek the best linear approximation of f(x) which is $\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$. We pick the **x**'s to give us the best linear approximation. What criteria? JMP gives two ways:

- *D*-optimality: maximize $|X^TX|$ — this minimizes the variance-covariance among the parameter estimates.
- ② Note: $Var \left[\hat{Y}_1, \dots, \hat{Y}_n \right] = \sigma^2 \boldsymbol{X} \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T$ I-optimality: minimize the average prediction variance over the design space. I'm unsure how JMP defined "design space".

[R Demo] What did we learn? For linear models with no polynomials or interactions, keep the observations as close to the minimimums and maximums as possible. For linear models with polynomials and interactions (more non-parametric than parametric).

We seek the best linear approximation of f(x) which is $\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$. We pick the **x**'s to give us the best linear approximation. What criteria? JMP gives two ways:

- *D*-optimality: maximize $|X^TX|$ — this minimizes the variance-covariance among the parameter estimates.
- ② Note: $Var \left[\hat{Y}_1, \dots, \hat{Y}_n \right] = \sigma^2 \boldsymbol{X} \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T$ I-optimality: minimize the average prediction variance over the design space. I'm unsure how JMP defined "design space".

[R Demo] What did we learn? For linear models with no polynomials or interactions, keep the observations as close to the minimimums and maximums as possible. For linear models with polynomials and interactions (more non-parametric than parametric), keep most towards the minimums and maximums and some in the center of the input space.

Previously the response y was continuous and via the OLS assumptions we obtained the statistical model,

$$Y \stackrel{\textit{ind}}{\sim} \mathcal{N}\left(\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p, \sigma^2\right)$$

If the response y is categorical, can we still use this?

Modeling Categorical Responses

Previously the response y was continuous and via the OLS assumptions we obtained the statistical model,

$$Y \stackrel{ind}{\sim} \mathcal{N}\left(\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p, \sigma^2\right)$$

If the response y is categorical, can we still use this? No... the only elements in the support of the r.v. Y are the levels only. [JMP Churn Dataframe

Previously the response y was continuous and via the OLS assumptions we obtained the statistical model,

Design

$$Y \stackrel{ind}{\sim} \mathcal{N}\left(\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p, \sigma^2\right)$$

If the response y is categorical, can we still use this? No... the only elements in the support of the r.v. Y are the levels only. [JMP Churn Dataframe

First, assume Y is binary i.e. zero or one. The model (AKA "classifier") we use is...

Previously the response y was continuous and via the OLS assumptions we obtained the statistical model,

Design

$$Y \stackrel{ind}{\sim} \mathcal{N}\left(\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p, \sigma^2\right)$$

If the response y is categorical, can we still use this? No... the only elements in the support of the r.v. Y are the levels only. [JMP Churn Dataframe

First, assume Y is binary i.e. zero or one. The model (AKA "classifier") we use is...

$$Y \sim \text{Bernoulli}(f(x_1, \ldots, x_p))$$

since $\mathbb{E}[Y \mid x_1, \dots, x_p] = f(x_1, \dots, x_p)$, then f is still the conditional expectation function like before except now it varies only within

Previously the response y was continuous and via the OLS assumptions we obtained the statistical model,

Design

$$Y \stackrel{ind}{\sim} \mathcal{N}\left(\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p, \sigma^2\right)$$

If the response y is categorical, can we still use this? No... the only elements in the support of the r.v. Y are the levels only. [JMP Churn Dataframe

First, assume Y is binary i.e. zero or one. The model (AKA "classifier") we use is...

$$Y \sim \text{Bernoulli}(f(x_1, \ldots, x_p))$$

since $\mathbb{E}[Y \mid x_1, \dots, x_p] = f(x_1, \dots, x_p)$, then f is still the conditional expectation function like before except now it varies only within [0,1] and it is the same as

Previously the response y was continuous and via the OLS assumptions we obtained the statistical model,

Design

$$Y \stackrel{ind}{\sim} \mathcal{N}\left(\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p, \sigma^2\right)$$

If the response y is categorical, can we still use this? No... the only elements in the support of the r.v. Y are the levels only. [JMP Churn Dataframe

First, assume Y is binary i.e. zero or one. The model (AKA "classifier") we use is...

$$Y \sim \text{Bernoulli}(f(x_1, \ldots, x_p))$$

since $\mathbb{E}[Y \mid x_1, \dots, x_p] = f(x_1, \dots, x_p)$, then f is still the conditional expectation function like before except now it varies only within [0,1] and it is the same as $\mathbb{P}(Y=1\mid x_1,\ldots,x_p)$.

Linear f(x)?

We can model f(x) as the simple linear function but this returns values smaller than 0 and larger than 1 and thus it cannot be the conditional expectation function! Why?

We can model f(x) as the simple linear function but this returns values smaller than 0 and larger than 1 and thus it cannot be the conditional expectation function! Why? Lines with nonzero slope vary between $(-\infty, +\infty)$.

Linear f(x)?

Design

We can model f(x) as the simple linear function but this returns values smaller than 0 and larger than 1 and thus it cannot be the conditional expectation function! Why? Lines with nonzero slope vary between $(-\infty, +\infty)$.

We need a "link function" to connect the linear function to the restricted support of the response:

$$\lambda(f_{\mathbb{R}}(x_1,\ldots,x_p))=f(x_1,\ldots,x_p)$$

And the parametric assumption would be

$$\lambda(s_{\mathbb{R}}(x_1,\ldots,x_p;\theta_1,\ldots,\theta_\ell))=s(x_1,\ldots,x_p;\theta_1,\ldots,\theta_\ell)$$

And assuming a linear form of $s_{\mathbb{R}}$,

Linear f(x)?

Design

We can model f(x) as the simple linear function but this returns values smaller than 0 and larger than 1 and thus it cannot be the conditional expectation function! Why? Lines with nonzero slope vary between $(-\infty, +\infty)$.

We need a "link function" to connect the linear function to the restricted support of the response:

$$\lambda(f_{\mathbb{R}}(x_1,\ldots,x_p))=f(x_1,\ldots,x_p)$$

And the parametric assumption would be

$$\lambda(s_{\mathbb{R}}(x_1,\ldots,x_p;\theta_1,\ldots,\theta_\ell))=s(x_1,\ldots,x_p;\theta_1,\ldots,\theta_\ell)$$

And assuming a linear form of $s_{\mathbb{R}}$,

$$\lambda(\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p) = ?$$

Choice of λ ?

We just need $\lambda: \mathbb{R} \to [0,1]$. There are infinite λ 's to choose from... but I've only seen three used:

Choice of λ ?

We just need $\lambda: \mathbb{R} \to [0,1]$. There are infinite λ 's to choose from... but I've only seen three used:

Design

1 Logistic link: $\lambda(w) = \frac{e^w}{1+e^w}$ (most common)

Choice of λ ?

We just need $\lambda: \mathbb{R} \to [0,1]$. There are infinite λ 's to choose from... but I've only seen three used:

Design

- **1** Logistic link: $\lambda(w) = \frac{e^w}{1+e^w}$ (most common)
- 2 Inverse normal (probit) link: $\lambda(w) = \Phi^{-1}(w)$ where Φ is the normal CDF function (somewhat common)

Choice of λ ?

We just need $\lambda: \mathbb{R} \to [0,1]$. There are infinite λ 's to choose from... but I've only seen three used:

Design

- **1** Logistic link: $\lambda(w) = \frac{e^w}{1+e^w}$ (most common)
- 2 Inverse normal (probit) link: $\lambda(w) = \Phi^{-1}(w)$ where Φ is the normal CDF function (somewhat common)
- **3** Complementary Log-log (cloglog) link: $\lambda(w) = \ln(-\ln(w))$ (rare!)

We just need $\lambda: \mathbb{R} \to [0,1]$. There are infinite λ 's to choose from... but I've only seen three used:

Design

- **1** Logistic link: $\lambda(w) = \frac{e^w}{1+e^w}$ (most common)
- 2 Inverse normal (probit) link: $\lambda(w) = \Phi^{-1}(w)$ where Φ is the normal CDF function (somewhat common)
- **3** Complementary Log-log (cloglog) link: $\lambda(w) = \ln(-\ln(w))$ (rare!)

Herein, we focus on the logistic link. First, short detour. Define $p:=\mathbb{P}(Y=1)$. We can think about probability in another way:

$$odds(Y = 1) := \frac{p}{1 - p}$$

So if odds of an event is 4 ("4:1"), what is p?

Choice of λ ?

We just need $\lambda: \mathbb{R} \to [0,1]$. There are infinite λ 's to choose from... but I've only seen three used:

Design

- **1** Logistic link: $\lambda(w) = \frac{e^w}{1+e^w}$ (most common)
- 2 Inverse normal (probit) link: $\lambda(w) = \Phi^{-1}(w)$ where Φ is the normal CDF function (somewhat common)
- **3** Complementary Log-log (cloglog) link: $\lambda(w) = \ln(-\ln(w))$ (rare!)

Herein, we focus on the logistic link. First, short detour. Define $p := \mathbb{P}(Y = 1)$. We can think about probability in another way:

$$odds(Y=1) := \frac{p}{1-p}$$

So if odds of an event is 4 ("4:1"), what is p? This means that the probability of the event happening is four times more likely than the complement happening. Or... of 4+1 trials, 4 will be a yes (on average). What is the range of the odds function?

Choice of λ ?

We just need $\lambda: \mathbb{R} \to [0,1]$. There are infinite λ 's to choose from... but I've only seen three used:

Design

- **1** Logistic link: $\lambda(w) = \frac{e^w}{1+e^w}$ (most common)
- 2 Inverse normal (probit) link: $\lambda(w) = \Phi^{-1}(w)$ where Φ is the normal CDF function (somewhat common)
- **3** Complementary Log-log (cloglog) link: $\lambda(w) = \ln(-\ln(w))$ (rare!)

Herein, we focus on the logistic link. First, short detour. Define $p := \mathbb{P}(Y = 1)$. We can think about probability in another way:

$$odds(Y=1) := \frac{p}{1-p}$$

So if odds of an event is 4 ("4:1"), what is p? This means that the probability of the event happening is four times more likely than the complement happening. Or... of 4+1 trials, 4 will be a yes (on average). What is the range of the odds function? $[0,\infty)$.

Now let's take the log odds (called the logit function):

$$logit(Y = 1) := ln(odds(Y = 1)) = ln(\frac{p}{1-p})$$

What is the range of the logit function?

Now let's take the log odds (called the logit function):

$$logit(Y = 1) := ln(odds(Y = 1)) = ln\left(\frac{p}{1-p}\right)$$

What is the range of the logit function? All of \mathbb{R} . Hence, we can now set this equal to our

(Logistic Regression)

Now let's take the log odds (called the logit function):

$$logit(Y = 1) := ln(odds(Y = 1)) = ln\left(\frac{p}{1-p}\right)$$

What is the range of the logit function? All of $\mathbb R$. Hence, we can now set this equal to our $s_{\mathbb{R}}$ function. In the linear modeling context,

$$s_{\mathbb{R}} = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p = logit(Y = 1) = ln\left(\frac{p}{1-p}\right)$$

Now let's take the log odds (called the logit function):

$$logit(Y = 1) := ln(odds(Y = 1)) = ln\left(\frac{p}{1-p}\right)$$

What is the range of the logit function? All of \mathbb{R} . Hence, we can now set this equal to our $s_{\mathbb{R}}$ function. In the linear modeling context,

$$s_{\mathbb{R}} = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p = logit(Y = 1) = ln\left(\frac{p}{1-p}\right)$$

Thus, a change in the linear model becomes a linear change in log-odds.

$$e^{\beta_0+\beta_1x_1+\ldots+\beta_px_p} = \frac{p}{1-p}$$

Now let's take the log odds (called the logit function):

$$logit(Y = 1) := ln(odds(Y = 1)) = ln\left(\frac{p}{1-p}\right)$$

What is the range of the logit function? All of \mathbb{R} . Hence, we can now set this equal to our $s_{\mathbb{R}}$ function. In the linear modeling context,

$$s_{\mathbb{R}} = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p = logit(Y = 1) = ln\left(\frac{p}{1-p}\right)$$

Thus, a change in the linear model becomes a linear change in log-odds.

$$e^{\beta_0+\beta_1x_1+\ldots+\beta_px_p} = \frac{p}{1-p}$$
$$(1-p)e^{\beta_0+\beta_1x_1+\ldots+\beta_px_p} = p$$

Why Logistic Link is Interpretable

Now let's take the log odds (called the logit function):

$$logit(Y = 1) := ln(odds(Y = 1)) = ln\left(\frac{p}{1-p}\right)$$

What is the range of the logit function? All of $\mathbb R$. Hence, we can now set this equal to our $s_{\mathbb{R}}$ function. In the linear modeling context,

$$s_{\mathbb{R}} = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p = logit(Y = 1) = ln\left(\frac{p}{1-p}\right)$$

Thus, a change in the linear model becomes a linear change in log-odds.

$$\begin{array}{lcl} e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{p}x_{p}} & = & \frac{p}{1-p} \\ (1-p)e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{p}x_{p}} & = & p \\ e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{p}x_{p}} & = & p+pe^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{p}x_{p}} \end{array}$$

Why Logistic Link is Interpretable

Now let's take the log odds (called the logit function):

$$logit(Y = 1) := ln(odds(Y = 1)) = ln\left(\frac{p}{1-p}\right)$$

What is the range of the logit function? All of \mathbb{R} . Hence, we can now set this equal to our $s_{\mathbb{R}}$ function. In the linear modeling context,

$$s_{\mathbb{R}} = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p = logit(Y = 1) = ln\left(\frac{p}{1-p}\right)$$

Thus, a change in the linear model becomes a linear change in log-odds.

$$\begin{array}{rcl} e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}} & = & \frac{\rho}{1-\rho} \\ (1-\rho)e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}} & = & \rho \\ e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}} & = & \rho + \rho e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}} \\ p & = & \frac{e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}}}{1+e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}}} = \lambda(\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}) \end{array}$$

Why Logistic Link is Interpretable

Now let's take the log odds (called the logit function):

Design

$$logit(Y = 1) := ln(odds(Y = 1)) = ln\left(\frac{p}{1-p}\right)$$

What is the range of the logit function? All of $\mathbb R$. Hence, we can now set this equal to our $s_{\mathbb{R}}$ function. In the linear modeling context,

$$s_{\mathbb{R}} = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p = logit(Y = 1) = ln\left(\frac{p}{1-p}\right)$$

Thus, a change in the linear model becomes a linear change in log-odds.

$$\begin{array}{rcl} e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}} & = & \frac{p}{1-p} \\ (1-p)e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}} & = & p \\ e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}} & = & p + pe^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}} \\ p & = & \frac{e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}}}{1+e^{\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}}} = \lambda(\beta_{0}+\beta_{1}x_{1}+\ldots+\beta_{\rho}x_{\rho}) \end{array}$$

This is (I would say) the most interpretable link function situation we've got.

The Logistic Function (an "S" Shape)

A model fit would mean we estimate $\left\{\hat{eta}_0,\hat{eta}_1,\ldots,\hat{eta}_{\it p}
ight\}$.

A model fit would mean we estimate $\{\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p\}$. We initially did this estimation for regression (continuous y) by ...

Max. Likelihood Review

A model fit would mean we estimate $\{\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p\}$. We initially did this estimation for regression (continuous y) by ... defining a loss function, SSE, and finding the optimal solution via calculus. What do we do now??

Likelihood to the rescue. First the "logistic regression assumptions"

Independence among observations. Thus,

A model fit would mean we estimate $\left\{\hat{eta}_0,\hat{eta}_1,\ldots,\hat{eta}_p\right\}$. We initially did this estimation for regression (continuous y) by ... defining a loss function, SSE, and finding the optimal solution via calculus. What do we do now??

Likelihood to the rescue. First the "logistic regression assumptions"

Independence among observations. Thus,

$$\mathbb{P}(Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n \mid X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) \\
= \prod_{i=1}^{n} \mathbb{P}(Y_i = y_i \mid X_1 = x_i)$$

Bernoulli Model. Thus,

A model fit would mean we estimate $\{\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p\}$. We initially did this estimation for regression (continuous y) by ... defining a loss function, SSE, and finding the optimal solution via calculus. What do we do now??

Likelihood to the rescue. First the "logistic regression assumptions"

Independence among observations. Thus,

$$\mathbb{P}(Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n \mid X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

$$= \prod_{i=1}^n \mathbb{P}(Y_i = y_i \mid X_1 = x_i)$$

Bernoulli Model. Thus,

$$=\prod_{i=1}^n p^{y_i} (1-p)^{1-y_i}$$

A model fit would mean we estimate $\left\{\hat{eta}_0,\hat{eta}_1,\ldots,\hat{eta}_p\right\}$. We initially did this estimation for regression (continuous y) by ... defining a loss function, SSE, and finding the optimal solution via calculus. What do we do now??

Likelihood to the rescue. First the "logistic regression assumptions"

Independence among observations. Thus,

$$\mathbb{P}(Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n \mid X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) \\
= \prod_{i=1}^{n} \mathbb{P}(Y_i = y_i \mid X_1 = x_i)$$

Bernoulli Model. Thus,

$$= \prod_{i=1}^{n} p^{y_i} (1-p)^{1-y_i}$$

Stinear Logistic conditional expectation. Thus,

Maximum Likelihood Estimates

$$= \prod_{i=1}^{n} \left(\frac{e^{\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p}}}{1 + e^{\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p}}} \right)^{y_{i}} \left(1 - \frac{e^{\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p}}}{1 + e^{\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p}}} \right)^{1 - y_{i}}$$

$$= \mathcal{L} \left(\beta_{0}, \beta_{1}, \dots, \beta_{p}; \mathbf{x}_{1}, \dots, \mathbf{x}_{n} \right)$$

This does not have a simple, closed form solution.

Maximum Likelihood Estimates

$$= \prod_{i=1}^{n} \left(\frac{e^{\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p}}}{1 + e^{\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p}}} \right)^{y_{i}} \left(1 - \frac{e^{\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p}}}{1 + e^{\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p}}} \right)^{1 - y_{i}}$$

$$= \mathcal{L} \left(\beta_{0}, \beta_{1}, \dots, \beta_{p}; \mathbf{x}_{1}, \dots, \mathbf{x}_{n} \right)$$

This does not have a simple, closed form solution. The computer iterates numerically using gradient methods. It usually uses the $ln(\cdot)$ of above, since it's (1) numerically more stable and (2) the expression is easier to work with. When it "converges" on the values of the parameters that maximize the above, these are shipped to you as $\left\{\hat{eta}_0,\hat{eta}_1,\ldots,\hat{eta}_p
ight\}$. This is called "running a logistic regression". The above looks complicated but it is instant on a modern computer for most real-world datasets.

Max. Likelihood Review

Prediction with Logistic Regression

Recall that predictions in linear regression were easy:

$$\hat{y} = \hat{y}(x^*) = \hat{\beta}_0 + \hat{\beta}_1 x_1^* + \ldots + \hat{\beta}_p x_p^*$$

Recall that predictions in linear regression were easy:

$$\hat{y} = \hat{y}(\mathbf{x}^*) = \hat{\beta}_0 + \hat{\beta}_1 x_1^* + \ldots + \hat{\beta}_p x_p^*$$

How do we use a logistic regression model to predict with new data x^* ?

Recall that predictions in linear regression were easy:

$$\hat{y} = \hat{y}(\mathbf{x}^*) = \hat{\beta}_0 + \hat{\beta}_1 x_1^* + \ldots + \hat{\beta}_p x_p^*$$

How do we use a logistic regression model to predict with new data x^* ?

$$\hat{p} = \hat{p}(x^*) =$$

Recall that predictions in linear regression were easy:

$$\hat{y} = \hat{y}(x^*) = \hat{\beta}_0 + \hat{\beta}_1 x_1^* + \ldots + \hat{\beta}_p x_p^*$$

How do we use a logistic regression model to predict with new data x^* ?

$$\hat{\rho} = \hat{\rho}(\mathbf{x}^*) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p}}$$

Note the predictions are for the conditional expectation function, the probability itself, the estimated expected probability. However, you may actually wish to predict the response, the 1 or the 0. What to do?

Recall that predictions in linear regression were easy:

$$\hat{y} = \hat{y}(x^*) = \hat{\beta}_0 + \hat{\beta}_1 x_1^* + \ldots + \hat{\beta}_p x_p^*$$

How do we use a logistic regression model to predict with new data x^* ?

$$\hat{\rho} = \hat{\rho}(\mathbf{x}^*) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_1 + \dots + \hat{\beta}_p \mathbf{x}_p}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_1 + \dots + \hat{\beta}_p \mathbf{x}_p}}$$

Note the predictions are for the conditional expectation function, the probability itself, the estimated expected probability. However, you may actually wish to predict the response, the 1 or the 0. What to do?

You can create a classification rule which allows you to make a decision about the response based on the probability. What is the most intuitive classification rule?

Recall that predictions in linear regression were easy:

$$\hat{y} = \hat{y}(\mathbf{x}^*) = \hat{\beta}_0 + \hat{\beta}_1 x_1^* + \ldots + \hat{\beta}_p x_p^*$$

How do we use a logistic regression model to predict with new data x^* ?

$$\hat{\rho} = \hat{\rho}(\mathbf{x}^*) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_1 + \dots + \hat{\beta}_p \mathbf{x}_p}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_1 + \dots + \hat{\beta}_p \mathbf{x}_p}}$$

Note the predictions are for the conditional expectation function, the probability itself, the **estimated expected probability**. However, you may actually wish to predict the response, the 1 or the 0. What to do?

You can create a **classification rule** which allows you to make a decision about the response based on the probability. What is the most intuitive classification rule?

$$\hat{y} = \mathbb{1}_{\hat{\rho} > 0.5} :=$$

Recall that predictions in linear regression were easy:

$$\hat{y} = \hat{y}(x^*) = \hat{\beta}_0 + \hat{\beta}_1 x_1^* + \ldots + \hat{\beta}_p x_p^*$$

How do we use a logistic regression model to predict with new data x^* ?

$$\hat{\rho} = \hat{\rho}(\mathbf{x}^*) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_1 + \dots + \hat{\beta}_p \mathbf{x}_p}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_1 + \dots + \hat{\beta}_p \mathbf{x}_p}}$$

Note the predictions are for the conditional expectation function, the probability itself, the estimated expected probability. However, you may actually wish to predict the response, the 1 or the 0. What to do?

You can create a classification rule which allows you to make a decision about the response based on the probability. What is the most intuitive classification rule?

 $\hat{y} = \mathbb{1}_{\hat{\rho} \ge 0.5} := \begin{cases} 1 & \text{if} & \hat{\rho} \ge 0.5 \\ 0 & \text{if} & \hat{\rho} < 0.5 \end{cases}$

AKA the "most likely criterion".

Recall that predictions in linear regression were easy:

$$\hat{y} = \hat{y}(x^*) = \hat{\beta}_0 + \hat{\beta}_1 x_1^* + \ldots + \hat{\beta}_p x_p^*$$

How do we use a logistic regression model to predict with new data x^* ?

$$\hat{
ho} = \hat{
ho}(x^*) = rac{e^{\hat{eta}_0 + \hat{eta}_1 x_1 + \dots + \hat{eta}_{
ho} x_{
ho}}}{1 + e^{\hat{eta}_0 + \hat{eta}_1 x_1 + \dots + \hat{eta}_{
ho} x_{
ho}}}$$

Note the predictions are for the conditional expectation function, the probability itself, the estimated expected probability. However, you may actually wish to predict the response, the 1 or the 0. What to do?

You can create a classification rule which allows you to make a decision about the response based on the probability. What is the most intuitive classification rule?

 $\hat{y} = \mathbb{1}_{\hat{\rho} \ge 0.5} := \begin{cases} 1 & \text{if} & \hat{\rho} \ge 0.5 \\ 0 & \text{if} & \hat{\rho} < 0.5 \end{cases}$

AKA the "most likely criterion". We will return to prediction and evaluation of predictive performance later but first... inference.

Recall in OLS regression, gaussian (normal) theory directly gave us *t*-tests and *F*-tests. Under the logistic regression assumptions, we have no such analogous theory! However, we can make use of the ...

Recall in OLS regression, gaussian (normal) theory directly gave us *t*-tests and *F*-tests. Under the logistic regression assumptions, we have no such analogous theory! However, we can make use of the ... likelihood ratio test.

Recall in OLS regression, gaussian (normal) theory directly gave us t-tests and F-tests. Under the logistic regression assumptions, we have no such analogous theory! However, we can make use of the ... likelihood ratio test. Recall:

$$LR := \max_{\theta \in \Theta} \mathcal{L}\left(\theta; x\right) / \max_{\theta \in \Theta_R} \mathcal{L}\left(\theta; x\right)$$

Let's now do a "whole model" / "global" / "omnibus" test:

Recall in OLS regression, gaussian (normal) theory directly gave us t-tests and F-tests. Under the logistic regression assumptions, we have no such analogous theory! However, we can make use of the ... likelihood ratio test. Recall:

$$LR := \max_{\theta \in \Theta} \mathcal{L}\left(\theta; x\right) / \max_{\theta \in \Theta_R} \mathcal{L}\left(\theta; x\right)$$

Let's now do a "whole model" / "global" / "omnibus" test:

$${\it H}_0: eta_1=0, eta_2=0, \ldots, eta_{\it p}=0, \quad {\it H}_{\it a}:$$
 at least one is non-zero

So Θ would be the space of all $\beta_0, \beta_1, \ldots, \beta_p$ and Θ_R will restrict the space to only β_0 with zeroes for all other "slope" parameters.

$$LR = \frac{\max\limits_{\beta_0,\beta_1,\ldots,\beta_p} \mathcal{L}\left(\beta_0,\beta_1,\ldots,\beta_p;y_1,\ldots,y_n,x_1,\ldots,x_n\right)}{\max\limits_{\beta_0} \mathcal{L}\left(\beta_0,\beta_1=0,\ldots,\beta_p=0;y_1,\ldots,y_n,x_1,\ldots,x_n\right)}$$

Recall in OLS regression, gaussian (normal) theory directly gave us t-tests and F-tests. Under the logistic regression assumptions, we have no such analogous theory! However, we can make use of the ... likelihood ratio test. Recall:

$$LR := \max_{\theta \in \Theta} \mathcal{L}(\theta; x) / \max_{\theta \in \Theta_R} \mathcal{L}(\theta; x)$$

Let's now do a "whole model" / "global" / "omnibus" test:

Design

$$H_0: eta_1=0, eta_2=0, \ldots, eta_p=0, \quad H_a:$$
 at least one is non-zero

So Θ would be the space of all $\beta_0, \beta_1, \ldots, \beta_p$ and Θ_R will restrict the space to only β_0 with zeroes for all other "slope" parameters.

$$LR = \frac{\max\limits_{\beta_0,\beta_1,\ldots,\beta_p} \mathcal{L}(\beta_0,\beta_1,\ldots,\beta_p;y_1,\ldots,y_n,x_1,\ldots,x_n)}{\max\limits_{\beta_0} \mathcal{L}(\beta_0,\beta_1=0,\ldots,\beta_p=0;y_1,\ldots,y_n,x_1,\ldots,x_n)}$$

So on top the computer iterates to find $\left\{\hat{eta}_0,\hat{eta}_1,\ldots,\hat{eta}_p
ight\}$, plugs it in and computes the likelihood and on the bottom the computer independently iterates to find $\left\{\hat{eta}_{0}
ight\}$, plugs it in and computes the likelihood, then together, the LR.

Partial Tests in Logistic Regression

We then look at $Q=2\ln(LR)$ and compare it to the appropriate χ^2 distribution. Here, since we've dropped p parameters / degrees of freedom, we look at the critical $\chi^2_{p,\alpha}$ value.

We then look at $Q=2\ln{(LR)}$ and compare it to the appropriate χ^2 distribution. Here, since we've dropped p parameters / degrees of freedom, we look at the critical $\chi^2_{p,\alpha}$ value.

Design

Let's say we want to test something like:

$$H_0: \beta_1 = 0 \& \beta_2 = 0$$
, $H_a:$ at least one is non-zero

We can again use the likelihood ratio test:

$$\mathit{LR} = \frac{\underset{\beta_{0},\beta_{1},\ldots,\beta_{p}}{\text{max}} \mathcal{L}\left(\beta_{0},\beta_{1},\ldots,\beta_{p};y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}{\underset{\beta_{0},\beta_{3},\ldots,\beta_{p}}{\text{max}} \mathcal{L}\left(\beta_{0},\beta_{1}=0,\beta_{2}=0,\beta_{3},\ldots,\beta_{p}=0;y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}$$

Partial Tests in Logistic Regression

We then look at $Q=2\ln{(LR)}$ and compare it to the appropriate χ^2 distribution. Here, since we've dropped p parameters / degrees of freedom, we look at the critical $\chi^2_{p,\alpha}$ value.

Design

Let's say we want to test something like:

$$H_0: \beta_1 = 0 \& \beta_2 = 0$$
, $H_a:$ at least one is non-zero

We can again use the likelihood ratio test:

$$LR = \frac{\underset{\beta_{\mathbf{0}},\beta_{\mathbf{1}},\ldots,\beta_{p}}{\max} \mathcal{L}\left(\beta_{0},\beta_{1},\ldots,\beta_{p};y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}{\underset{\beta_{\mathbf{0}},\beta_{\mathbf{3}},\ldots,\beta_{p}}{\max} \mathcal{L}\left(\beta_{0},\beta_{1}=0,\beta_{2}=0,\beta_{3},\ldots,\beta_{p}=0;y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}$$

We then look at $Q=2\ln{(LR)}$ and compare it to the appropriate χ^2 distribution. Here, since we've dropped 2 parameters / degrees of freedom, we look at the critical $\chi^2_{2,\alpha}$ value.

Let's say we want to test an individual slope coefficient:

$$H_0: \beta_j = 0, \quad H_a: \beta_j \neq 0$$

(a la the "partial-F test"). We can again use the likelihood ratio test:

$$\mathit{LR} = \frac{\max\limits_{\beta_0,\beta_1,\ldots,\beta_p} \mathcal{L}\left(\beta_0,\beta_1,\ldots,\beta_p;y_1,\ldots,y_n,x_1,\ldots,x_n\right)}{\max\limits_{\beta_0,\beta_1,\ldots,\beta_{j-1},\beta_{j+1},\ldots,\beta_p} \mathcal{L}\left(\beta_0,\beta_1,\ldots,\beta_{j-1},\beta_j=0,\beta_{j+1},\ldots\beta_p;y_1,\ldots,y_n,x_1,\ldots,x_n\right)}$$

Let's say we want to test an individual slope coefficient:

Design

$$H_0: \beta_j = 0, \quad H_a: \beta_j \neq 0$$

(a la the "partial-F test"). We can again use the likelihood ratio test:

$$LR = \frac{\max\limits_{\beta_{0},\beta_{1},\ldots,\beta_{p}} \mathcal{L}\left(\beta_{0},\beta_{1},\ldots,\beta_{p};y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}{\max\limits_{\beta_{0},\beta_{1},\ldots,\beta_{j-1},\beta_{j+1},\ldots,\beta_{p}} \mathcal{L}\left(\beta_{0},\beta_{1},\ldots,\beta_{j-1},\beta_{j}=0,\beta_{j+1},\ldots\beta_{p};y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}$$

We then look at $Q=2\ln{(LR)}$ and compare it to the appropriate χ^2 distribution. Here, since we've dropped 1 parameter / degrees of freedom; thus we look at the critical $\chi^2_{1,\alpha}$ value.

Let's say we want to test an individual slope coefficient:

Design

$$H_0: \beta_j = 0, \quad H_a: \beta_j \neq 0$$

(a la the "partial-F test"). We can again use the likelihood ratio test:

$$LR = \frac{\max\limits_{\beta_{0},\beta_{1},\ldots,\beta_{p}} \mathcal{L}\left(\beta_{0},\beta_{1},\ldots,\beta_{p};y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}{\max\limits_{\beta_{0},\beta_{1},\ldots,\beta_{j-1},\beta_{j+1},\ldots,\beta_{p}} \mathcal{L}\left(\beta_{0},\beta_{1},\ldots,\beta_{j-1},\beta_{j}=0,\beta_{j+1},\ldots\beta_{p};y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}$$

We then look at $Q=2\ln{(LR)}$ and compare it to the appropriate χ^2 distribution. Here, since we've dropped 1 parameter / degrees of freedom; thus we look at the critical $\chi^2_{1,\alpha}$ value.

There is something special about a χ^2 r.v. with one degree of freedom.

Let's say we want to test an individual slope coefficient:

Design

$$H_0: \beta_j = 0, \quad H_a: \beta_j \neq 0$$

(a la the "partial-F test"). We can again use the likelihood ratio test:

$$LR = \frac{\max\limits_{\beta_{\mathbf{0}},\beta_{1},\ldots,\beta_{p}} \mathcal{L}\left(\beta_{0},\beta_{1},\ldots,\beta_{p};y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}{\max\limits_{\beta_{\mathbf{0}},\beta_{1},\ldots,\beta_{j-1},\beta_{j+1},\ldots\beta_{p}} \mathcal{L}\left(\beta_{0},\beta_{1},\ldots,\beta_{j-1},\beta_{j}=0,\beta_{j+1},\ldots\beta_{p};y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}$$

We then look at $Q=2\ln{(LR)}$ and compare it to the appropriate χ^2 distribution. Here, since we've dropped 1 parameter / degrees of freedom; thus we look at the critical $\chi^2_{1,\alpha}$ value.

There is something special about a χ^2 r.v. with one degree of freedom. Note this cool fact from probability theory: $Q \sim \chi_{\scriptscriptstyle 1}^2 \Rightarrow$

Let's say we want to test an individual slope coefficient:

Design

$$H_0: \beta_j = 0, \quad H_a: \beta_j \neq 0$$

(a la the "partial-F test"). We can again use the likelihood ratio test:

$$LR = \frac{\max\limits_{\beta_{\mathbf{0}},\beta_{1},\ldots,\beta_{p}} \mathcal{L}\left(\beta_{0},\beta_{1},\ldots,\beta_{p};y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}{\max\limits_{\beta_{\mathbf{0}},\beta_{1},\ldots,\beta_{j-1},\beta_{j+1},\ldots,\beta_{p}} \mathcal{L}\left(\beta_{0},\beta_{1},\ldots,\beta_{j-1},\beta_{j}=0,\beta_{j+1},\ldots\beta_{p};y_{1},\ldots,y_{n},x_{1},\ldots,x_{n}\right)}$$

We then look at $Q=2\ln{(LR)}$ and compare it to the appropriate χ^2 distribution. Here, since we've dropped 1 parameter / degrees of freedom; thus we look at the critical $\chi^2_{1,\alpha}$ value.

There is something special about a χ^2 r.v. with one degree of freedom. Note this cool fact from probability theory: $Q \sim \chi_1^2 \Rightarrow \sqrt{Q} \sim \mathcal{N}(0, 1)$ i.e. a "z-score". This is how JMP produces standard errors for logistic regression coefficients.

Telecom Company Churn Example

In marketing lingo, "churn" refers to a customer canceling their service. Studies suggest that it costs 5-10x more to acquire a new customer than to retain an old customer. Thus, predicting churn is of major interest!

Telecom Company Churn Example

In marketing lingo, "churn" refers to a customer canceling their service. Studies suggest that it costs 5-10x more to acquire a new customer than to retain an old customer. Thus, predicting churn is of major interest!

Here's a dataset from a telecom company (likely it's churn on Verizon / AT&T / T-Mobile /Sprint's cell-phone plan). We have 7,043 customers with 20 features. This is likely a nearly-mindless dump!! Churn is defined to be a complete cancellation of services in the next month period. Since we are predicting churn, define y=1 to be churn, so the \hat{p} 's are estimates of probability of churning (this just makes everything easier to understand).

Telecom Company Churn Example

In marketing lingo, "churn" refers to a customer canceling their service. Studies suggest that it costs 5-10x more to acquire a new customer than to retain an old customer. Thus, predicting churn is of major interest!

Here's a dataset from a telecom company (likely it's churn on Verizon / AT&T / T-Mobile /Sprint's cell-phone plan). We have 7,043 customers with 20 features. This is likely a nearly-mindless dump!! Churn is defined to be a complete cancellation of services in the next month period. Since we are predicting churn, define y=1 to be churn, so the \hat{p} 's are estimates of probability of churning (this just makes everything easier to understand).

We begin just trying to model y: churn vs. x: tenure (the number of months customer is currently subscribed for). What do you think the relationship will be i.e. what is the sign of $\partial/\partial x[f(x)]$ generally speaking?

[JMP demo]

[JMP demo] Which likelihood numbers are "best"? Highest likelihoods are good which means highest log likelihoods which means *smallest* negative log likelihoods.... yup it's confusing.

[JMP demo] Which likelihood numbers are "best"? Highest likelihoods are good which means highest log likelihoods which means smallest negative log likelihoods.... yup it's confusing. Here's what JMP did:

$$Q = 2 \ln(LR) = 2 \left(\ell \left(\hat{\theta}; x \right) - \ell \left(\hat{\theta}_R; x \right) \right)$$

= 2 (-(3595.9341) - -(4075.0729))
= 2 (479.1389) = 958.2778

and $\chi^2_{1.5\%} = \text{qchisq}(.95, 1) = 3.84$. So this passes the test (comfortably). We reject H_0 and conclude that the model is linearly useful.

[JMP demo] Which likelihood numbers are "best"? Highest likelihoods are good which means highest log likelihoods which means *smallest* negative log likelihoods.... yup it's confusing. Here's what JMP did:

$$Q = 2 \ln(LR) = 2 \left(\ell(\hat{\theta}; x) - \ell(\hat{\theta}_R; x) \right)$$

= 2 (-(3595.9341) - -(4075.0729))
= 2 (479.1389) = 958.2778

and $\chi^2_{1,5\%} = \text{qchisq(.95, 1)} = 3.84$. So this passes the test (comfortably). We reject H_0 and conclude that the model is linearly useful. ALSO: equivalent to a test of one variable. We reject H_0 and conclude tenure has a linear effect on the log-odds of churn.

[JMP demo] Which likelihood numbers are "best"? Highest likelihoods are good which means highest log likelihoods which means smallest negative log likelihoods.... yup it's confusing. Here's what JMP did:

$$Q = 2 \ln(LR) = 2 \left(\ell(\hat{\theta}; x) - \ell(\hat{\theta}_R; x) \right)$$

= 2 (-(3595.9341) - -(4075.0729))
= 2 (479.1389) = 958.2778

and $\chi^2_{1.5\%} = \text{qchisq}(.95, 1) = 3.84$. So this passes the test (comfortably). We reject H_0 and conclude that the model is linearly useful. ALSO: equivalent to a test of one variable. We reject H_0 and conclude tenure has a linear effect on the log-odds of churn.

Also note that $LR = 1.22 \times 10^{208}$ but $e^{-3595.9341} = 0$ i.e. it's less than the smallest number a computer can represent (without special handling). Numbers are cool things... and logs are pretty powerful.

Basic Predictions I

Predict estimated expected probability of churn for someone who has 1 month of tenure

Basic Predictions I

Predict estimated expected probability of churn for someone who has 1 month of tenure

$$\hat{\rho} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \times 1}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \times 1}} = \frac{e^{0.0273 + (-0.0288)(1)}}{1 + e^{0.0273 + (-0.0288)(1)}} = \frac{0.9985}{1.9985} = 0.500$$

How about 2 months of tenure?

Basic Predictions I

Predict estimated expected probability of churn for someone who has 1 month of tenure

$$\hat{\rho} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \times 1}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \times 1}} = \frac{e^{0.0273 + (-0.0288)(1)}}{1 + e^{0.0273 + (-0.0288)(1)}} = \frac{0.9985}{1.9985} = 0.500$$

How about 2 months of tenure?

$$\hat{\rho} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_1}} = \frac{e^{0.0273 + (-0.0288)(2)}}{1 + e^{0.0273 + (-0.0288)(2)}} = \frac{0.9702}{1.9702} = 0.492$$

i.e. a difference in about 0.8% as measured on a probability scale.

Basic Predictions II

Predict estimated expected probability of churn for someone who has 100 month of tenure

Basic Predictions II

Predict estimated expected probability of churn for someone who has 100 month of tenure

$$\hat{\rho} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \times 1}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \times 1}} = \frac{e^{0.0273 + (-0.0288)(100)}}{1 + e^{0.0273 + (-0.0288)(100)}} = 0.055$$

How about 101 months of tenure?

Design

Basic Predictions II

Predict estimated expected probability of churn for someone who has 100 month of tenure

$$\hat{\rho} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \times 1}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \times 1}} = \frac{e^{0.0273 + (-0.0288)(100)}}{1 + e^{0.0273 + (-0.0288)(100)}} = 0.055$$

How about 101 months of tenure?

$$\hat{\rho} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \times_1}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \times_1}} = \frac{e^{0.0273 + (-0.0288)(101)}}{1 + e^{0.0273 + (-0.0288)(101)}} = 0.053$$

i.e. a difference in about 0.2% as measured on a probability scale (i.e. a 4x difference from before). But isn't the model supposedly to be linear??

The Logistic Function

A move of one unit in x when $x\approx 0$ is a much bigger move than one unit in x when $x\approx 3$

Parameter Standard Error

To add to the confusion... JMP prefers to calculate parameter estimates and standard error via the Wald test, which is similar to the likelihood ratio test. Thus, $761.00 \neq 958.28$ but, remarkably, they are about the same conceptually – both large and significant.

Max. Likelihood Review

Parameter Standard Error

(Logistic Regression)

To add to the confusion... JMP prefers to calculate parameter estimates and standard error via the Wald test, which is similar to the likelihood ratio test. Thus, $761.00 \neq 958.28$ but, remarkably, they are about the same conceptually – both large and significant. The standard errors.

$$\underbrace{Q=z^2}_{\substack{\text{fact from} \\ \text{probability} \\ \text{theory}}} = \left(\frac{\hat{\beta}_1}{s_{\hat{\beta}_1}}\right)^2 \Rightarrow s_{\hat{\beta}_1} = \frac{\left|\hat{\beta}_1\right|}{\sqrt{Q}}$$

Parameter Standard Error

To add to the confusion... JMP prefers to calculate parameter estimates and standard error via the Wald test, which is similar to the likelihood ratio test. Thus, $761.00 \neq 958.28$ but, remarkably, they are about the same conceptually – both large and significant. The standard errors.

$$\underbrace{Q=z^2}_{\substack{\text{fact from} \\ \text{probability} \\ \text{theory}}} = \left(\frac{\hat{\beta}_1}{s_{\hat{\beta}_1}}\right)^2 \Rightarrow s_{\hat{\beta}_1} = \frac{\left|\hat{\beta}_1\right|}{\sqrt{Q}}$$

are expectedly about the same

$$s_{\hat{\beta}_1} = \frac{|-0.0387682|}{\sqrt{761.00}} = 0.0014$$
 (via the Wald test) $s_{\hat{\beta}_1} = \frac{|-0.0387682|}{\sqrt{058.28}} = 0.0013$ (via the LR test)

Now let's use all variables. Questions:

• Which variable(s) should we leave out?

Now let's use all variables. Questions:

 Which variable(s) should we leave out? customerID — no causal mechanism.

- Which variable(s) should we leave out? customerID no causal mechanism.
- Why are we getting biased estimates and zeroes?

- Which variable(s) should we leave out? customerID no causal mechanism.
- Why are we getting biased estimates and zeroes? Perfect multicollinearity.

- Which variable(s) should we leave out? customerID no causal mechanism.
- Why are we getting biased estimates and zeroes? Perfect multicollinearity. Solution?

- Which variable(s) should we leave out? customerID no causal mechanism.
- Why are we getting biased estimates and zeroes? Perfect multicollinearity. Solution? Kill columns until you don't get the error anymore. Turns out 6 have to be removed.

Realistic Predictors Illustration (updated)

- Which variable(s) should we leave out? customerID no causal mechanism.
- Why are we getting biased estimates and zeroes? Perfect multicollinearity.
- Are all these variables "significant"?

- Which variable(s) should we leave out? customerID no causal mechanism.
- Why are we getting biased estimates and zeroes? Perfect multicollinearity.
- Are all these variables "significant"? No. And further, after a Bonferroni correction, we "lose" two. Are they for sure insignificant?

- Which variable(s) should we leave out? customerID no causal mechanism.
- Why are we getting biased estimates and zeroes? Perfect multicollinearity.
- Are all these variables "significant"? No. And further, after a
 Bonferroni correction, we "lose" two. Are they for sure insignificant?
 No, maybe we didn't have enough power to detect them... [review power concept]
- Do the coefficients sign / size make sense intuitively?

- Which variable(s) should we leave out? customerID no causal mechanism
- Why are we getting biased estimates and zeroes? Perfect multicollinearity.
- Are all these variables "significant"? No. And further, after a Bonferroni correction, we "lose" two. Are they for sure insignificant? No, maybe we didn't have enough power to detect them... [review power concept]
- Do the coefficients sign / size make sense intuitively? Yes?
- Which of the "driving" variables are not able to be manipulated?

- Which variable(s) should we leave out? customerID no causal mechanism.
- Why are we getting biased estimates and zeroes? Perfect multicollinearity.
- Are all these variables "significant"? No. And further, after a Bonferroni correction, we "lose" two. Are they for sure insignificant? No, maybe we didn't have enough power to detect them... [review power concept]
- Do the coefficients sign / size make sense intuitively? Yes?
- Which of the "driving" variables are not able to be manipulated?
 Senior citizen, total charges (?)

- Which variable(s) should we leave out? customerID no causal mechanism
- Why are we getting biased estimates and zeroes? Perfect multicollinearity.
- Are all these variables "significant"? No. And further, after a Bonferroni correction, we "lose" two. Are they for sure insignificant? No, maybe we didn't have enough power to detect them... [review power concept]
- Do the coefficients sign / size make sense intuitively? Yes?
- Which of the "driving" variables are not able to be manipulated?
 Senior citizen, total charges (?)
- Should you (the manager) try to incentivize electronic checks?

- Which variable(s) should we leave out? customerID no causal mechanism
- Why are we getting biased estimates and zeroes? Perfect multicollinearity.
- Are all these variables "significant"? No. And further, after a Bonferroni correction, we "lose" two. Are they for sure insignificant? No, maybe we didn't have enough power to detect them... [review power concept]
- Do the coefficients sign / size make sense intuitively? Yes?
- Which of the "driving" variables are not able to be manipulated? Senior citizen, total charges (?)
- Should you (the manager) try to incentivize electronic checks? Paperless billing?

- Which variable(s) should we leave out? customerID no causal mechanism
- Why are we getting biased estimates and zeroes? Perfect multicollinearity.
- Are all these variables "significant"? No. And further, after a Bonferroni correction, we "lose" two. Are they for sure insignificant? No, maybe we didn't have enough power to detect them... [review power concept]
- Do the coefficients sign / size make sense intuitively? Yes?
- Which of the "driving" variables are not able to be manipulated? Senior citizen, total charges (?)
- Should you (the manager) try to incentivize electronic checks? Paperless billing? Dropping multiple phone lines?

- Which variable(s) should we leave out? customerID no causal mechanism.
- Why are we getting biased estimates and zeroes? Perfect multicollinearity.
- Are all these variables "significant"? No. And further, after a Bonferroni correction, we "lose" two. Are they for sure insignificant? No, maybe we didn't have enough power to detect them... [review power concept]
- Do the coefficients sign / size make sense intuitively? Yes?
- Which of the "driving" variables are not able to be manipulated?
 Senior citizen, total charges (?)
- Should you (the manager) try to incentivize electronic checks?
 Paperless billing? Dropping multiple phone lines? You can try these things if you have nothing to lose, but remember, they are not guaranteed to be causal! And they may backfire!! (Can you think of

Remember Where you At!!

Many, many measures reported by JMP that we generally don't use:

Many, many measures reported by JMP that we generally don't use:

- $R^2(U)$
- Generalized R²
- Mean Negative Log probability
- "RMSE"
- Mean Absolute Deviation

Many, many measures reported by JMP that we generally don't use:

- $R^2(U)$
- Generalized R²
- Mean Negative Log probability
- "RMSE"
- Mean Absolute Deviation

And ones that we do use:

 AICc / BIC (for something a little bit different... we will come back to this in a couple of lectures)

Many, many measures reported by JMP that we generally don't use:

- $R^2(U)$
- Generalized R²
- Mean Negative Log probability
- "RMSE"
- Mean Absolute Deviation

And ones that we do use:

- AICc / BIC (for something a little bit different... we will come back to this in a couple of lectures)
- Misclassification Rate

Many, many measures reported by JMP that we generally don't use:

 \bullet $R^2(U)$

Max. Likelihood Review

- Generalized R²
- Mean Negative Log probability
- "RMSE"
- Mean Absolute Deviation

And ones that we do use:

- AICc / BIC (for something a little bit different... we will come back to this in a couple of lectures)
- Misclassification Rate

We now cover evaluating classification models in general (not only in the context of logistic regression models specifically).

Recall that ... you can create a classification rule which allows you to make a decision about the response based on the probability. The most intuitive classification rule is:

Recall that ... you can create a classification rule which allows you to make a decision about the response based on the probability. The most intuitive classification rule is:

$$\hat{y} = \mathbb{1}_{\hat{\rho} \geq 0.5} :=$$

Recall that ... you can create a classification rule which allows you to make a decision about the response based on the probability. The most intuitive classification rule is:

$$\hat{y} = \mathbb{1}_{\hat{\rho} \ge 0.5} := egin{cases} 1 & \text{if} & \hat{\rho} \ge 0.5 \\ 0 & \text{if} & \hat{\rho} < 0.5 \end{cases}$$

In regression, you examined functions of the residuals $e_i := y_i - \hat{y}_i$ to assess model fit. What is an analogous residual here?

Max. Likelihood Review

Probability Predictions ⇒ **Level Predictions**

Recall that ... you can create a classification rule which allows you to make a decision about the response based on the probability. The most intuitive classification rule is:

$$\hat{y} = \mathbb{1}_{\hat{
ho} \ge 0.5} := egin{cases} 1 & ext{if} & \hat{
ho} \ge 0.5 \\ 0 & ext{if} & \hat{
ho} < 0.5 \end{cases}$$

In regression, you examined functions of the residuals $e_i := y_i - \hat{y}_i$ to assess model fit. What is an analagous residual here? There are four residuals, two representing errors. The best way to see them is to create the confusion matrix:

		\hat{y} (decision)			
		1	0		
y (truth)	1	true positive (TP)	false negative (FN)		
	0	false positive (FP)	true negative (TN)		

Why do "correlations rock" here??

Recall that ... you can create a classification rule which allows you to make a decision about the response based on the probability. The most intuitive classification rule is:

$$\hat{y} = \mathbb{1}_{\hat{\rho} \ge 0.5} := egin{cases} 1 & \text{if} & \hat{\rho} \ge 0.5 \\ 0 & \text{if} & \hat{\rho} < 0.5 \end{cases}$$

In regression, you examined functions of the residuals $e_i := y_i - \hat{y}_i$ to assess model fit. What is an analagous residual here? There are four residuals, two representing errors. The best way to see them is to create the confusion matrix:

		\hat{y} (decision)			
		1	0		
y (truth)	1	true positive (TP)	false negative (FN)		
	0	false positive (FP)	true negative (TN)		

Why do "correlations rock" here?? We are purely evaluating predictive performance... no inferential claims!

Confusion Matrix for Churn Model

JMP gives us the matrix [JMP],

JMP gives us the matrix [JMP], but they don't annotate it well. Here are some numbers I like to see:

		 	>		Model
		1	0	Totals	Errors
	1	TP = 1012	FN = 857	P = 1869	FNR = 45.9%
У	0	FP = 531	TN = 4632	N = 5163	FPR = 10.2%
	Totals	$\hat{P} = 1543$	$\hat{N} = 5489$	n = 7032	
	Use errors	FDR = 34.3%	FOR = 15.6%		ME = 19.7%

There are other metrics commonly reported

- Sensitivity = Recall = $\frac{TP}{TP+FN} = \frac{TP}{P}$, the proportion of positives successfully recovered (large value = good model), 54.9% above
- Specificity = $\frac{TN}{TN+FP} = \frac{TN}{N}$, the proportion of negatives successfully recovered (large value = good model), 89.8% above

Misclassification Error

Already... what is one broad, general metric to evaluate the model?

Misclassification Error

Already... what is one broad, general metric to evaluate the model? Misclassification error cost function (or Accuracy):

$$ME := \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{y_i \neq \hat{y}_i}$$
 $ACC := 1 - ME = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{y_i = \hat{y}_i}$

This essentially treats both types of errors (the FN's and the FP's) equally (more on this later).

Production Classifier Flowchart

There's a Ton of Metrics...

From wikipedia...

Others (from above) commonly used:

• False Discovery Rate (FDR) = $\frac{FP}{TP+FP} = \frac{FP}{\hat{P}}$, the proportion of negatives of those predicted to be positive (small value = good model)

There's a Ton of Metrics...

From wikipedia...

		Predicted co	ndition		
	Total population	Predicted Condition positive	Predicted Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
True	condition positive	True positive	False Negative (Type II error)	True positive rate (TPR), Sensitivity, Recall, probability of detection = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$
condition	condition negative	False Positive (Type I error)	True negative	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	True negative rate (TNR), Specificity $(SPC) = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$
	Accuracy (ACC) =	$\begin{aligned} & \text{Positive predictive value (PPV),} \\ & \text{Precision} = \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}} \end{aligned}$	$= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio (DOR) = $\frac{LR+}{IR-}$
	$\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	False discovery rate (FDR) $= \frac{\sum \text{False positive}}{\sum \text{Test outcome positive}}$	Negative predictive value (NPV) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	Diagnosii: odus (BOR) = LR-

Others (from above) commonly used:

- False Discovery Rate (FDR) = $\frac{FP}{TP+FP} = \frac{FP}{P}$, the proportion of negatives of those predicted to be positive (small value = good model)
- False Omission Rate (FOR) = $\frac{FN}{TN+FN} = \frac{FN}{\hat{N}}$, the proportion of postives of those predicted to be negative (small value = good model)

There's a Ton of Metrics...

From wikipedia...

Others (from above) commonly used:

- False Discovery Rate (FDR) = $\frac{FP}{TP+FP} = \frac{FP}{\hat{P}}$, the proportion of negatives of those predicted to be positive (small value = good model)
- False Omission Rate (FOR) = $\frac{FN}{TN+FN} = \frac{FN}{\hat{N}}$, the proportion of postives of those predicted to be negative (small value = good model)
- Precision = Positive Predictive Value (PPV) = 1 FDR = $\frac{TP}{TP+FP}$, the proportion of positives of those predicted to be positive (large value = good model)

Recall the classification rule $\hat{y} = \mathbb{1}_{\hat{p}>0.5}$. Using 0.5 is a principled default but we can use any rule $p_0 \in (0,1)$:

$$\hat{y} = \mathbb{1}_{\hat{\rho} \geq \rho_0} :=$$

Recall the classification rule $\hat{y} = \mathbb{1}_{\hat{p} > 0.5}$. Using 0.5 is a principled default but we can use any rule $p_0 \in (0,1)$:

$$\hat{y} = \mathbb{1}_{\hat{p} \ge p_0} := \begin{cases} 1 & \text{if} \quad \hat{p} \ge p_0 \\ 0 & \text{if} \quad \hat{p} < p_0 \end{cases}$$

What happens when we change the p_0 threshold? If $p_0 \uparrow$

Recall the classification rule $\hat{y} = \mathbb{1}_{\hat{p} > 0.5}$. Using 0.5 is a principled default but we can use any rule $p_0 \in (0,1)$:

$$\hat{y} = \mathbb{1}_{\hat{\rho} \ge p_0} := egin{cases} 1 & \text{if} & \hat{\rho} \ge p_0 \\ 0 & \text{if} & \hat{\rho} < p_0 \end{cases}$$

What happens when we change the p_0 threshold? If $p_0 \uparrow \Rightarrow \hat{P} \downarrow$ and \hat{N}

Recall the classification rule $\hat{y} = \mathbb{1}_{\hat{p} > 0.5}$. Using 0.5 is a principled default but we can use any rule $p_0 \in (0,1)$:

$$\hat{y} = \mathbb{1}_{\hat{\rho} \geq p_0} := egin{cases} 1 & ext{if} & \hat{
ho} \geq p_0 \\ 0 & ext{if} & \hat{
ho} < p_0 \end{cases}$$

What happens when we change the p_0 threshold? If $p_0 \uparrow \Rightarrow \hat{P} \downarrow$ and $\hat{N} \uparrow$ If $p_0 \downarrow \Rightarrow \hat{P}$

Recall the classification rule $\hat{y} = \mathbb{1}_{\hat{p} > 0.5}$. Using 0.5 is a principled default but we can use any rule $p_0 \in (0,1)$:

$$\hat{y} = \mathbb{1}_{\hat{p} \ge p_0} := egin{cases} 1 & ext{if} & \hat{p} \ge p_0 \\ 0 & ext{if} & \hat{p} < p_0 \end{cases}$$

What happens when we change the p_0 threshold? If $p_0 \uparrow \Rightarrow \hat{P} \downarrow$ and $\hat{N} \uparrow$. If $p_0 \downarrow \Rightarrow \hat{P} \uparrow$ and \hat{N}

Design

Recall the classification rule $\hat{y} = \mathbb{1}_{\hat{p} > 0.5}$. Using 0.5 is a principled default but we can use any rule $p_0 \in (0,1)$:

$$\hat{y} = \mathbb{1}_{\hat{\rho} \ge p_0} := egin{cases} 1 & \text{if} & \hat{\rho} \ge p_0 \\ 0 & \text{if} & \hat{\rho} < p_0 \end{cases}$$

What happens when we change the p_0 threshold? If $p_0 \uparrow \Rightarrow \hat{P} \downarrow$ and $\hat{N} \uparrow$. If $p_0 \downarrow \Rightarrow \hat{P} \uparrow$ and $\hat{N} \downarrow$. Changing p_0 changes the column totals and obviously creates a whole new confusion matrix.

So now it's simple, vary p_0 and pick the best model according to your cost / error / loss function (the ME at the moment). Let's just do every p_0 !

Receiver-Operator Characteristic Table

ROC T	able						
			Sens-				
Prob	1-Specificity	Sensitivity	(1-Spec)	True Pos	True Neg	False Pos	False Neg
	0.0000	0.0000	0.0000	0	5163	0	186
0.8117	0.0000	0.0005	0.0005	1	5163	0	186
0.8104	0.0000	0.0011	0.0011	2	5163	0	186
0.8093	0.0000	0.0016	0.0016	3	5163	0	186
0.8092	0.0000	0.0021	0.0021	4	5163	0	186
0.8090	0.0000	0.0027	0.0027	5	5163	0	186
0.8085	0.0000	0.0032	0.0032	6	5163	0	186
0.8083	0.0000	0.0037	0.0037	7	5163	0	186
0.8082	0.0000	0.0043	0.0043	8	5163	0	186
0.8079	0.0000	0.0048	0.0048	9	5163	0	186
0.8079	0.0000	0.0054	0.0054	10	5163	0	185
0.8077	0.0000	0.0059	0.0059	11	5163	0	185
0.8076	0.0002	0.0059	0.0057	11	5162	1	185
0.8072	0.0002	0.0064	0.0062	12	5162	1	185
0.8065	0.0002	0.0070	0.0068	13	5162	1	185
0.8064	0.0002	0.0075	0.0073	14	5162	1	185
0.8061	0.0002	0.0080	0.0078	15	5162	1	185

Here, Prob is what we denoted p_0 . "Best model" is not defined here by highest ACC (lowest ME), it's determined by highest specificity + sensitivity or equivalently, the highest sensitivity - (1 - specificity). JMP indicates that row with a \star . This is an arbitrary metric, but is a good default.

This is graphical illustration of the table. Each dot represents the sensitivity-specificity tradeoff for each p_0 .

This is graphical illustration of the table. Each dot represents the sensitivity-specificity tradeoff for each p_0 . The starred row of maximum sensitivity + specificity is indicated here by a yellow tangent line.

This is graphical illustration of the table. Each dot represents the sensitivity-specificity tradeoff for each p_0 . The starred row of maximum sensitivity + specificity is indicated here by a yellow tangent line. I drew the diagonal line to indicate predictive performance that is expected "by chance". Why?

This is graphical illustration of the table. Each dot represents the sensitivity-specificity tradeoff for each p_0 . The starred row of maximum sensitivity + specificity is indicated here by a yellow tangent line. I drew the diagonal line to indicate predictive performance that is expected "by chance". Why? Also, are there other ROC variants?

This is graphical illustration of the table. Each dot represents the sensitivity-specificity tradeoff for each p_0 . The starred row of maximum sensitivity + specificity is indicated here by a yellow tangent line. I drew the diagonal line to indicate predictive performance that is expected "by chance". Why? Also, are there other ROC variants? Yes (HW?).

If you built a model by chance the "area under the curve" (or to the right of the curve) on the graph would be ...

If you built a model by chance the "area under the curve" (or to the right of the curve) on the graph would be ... 0.5 since the graph is a unit square. Under the ROC curve itself (or to its right) is an area ...

If you built a model by chance the "area under the curve" (or to the right of the curve) on the graph would be ... 0.5 since the graph is a unit square. Under the ROC curve itself (or to its right) is an area ... greater than 0.5. Here, it's 0.844.

If you built a model by chance the "area under the curve" (or to the right of the curve) on the graph would be ... 0.5 since the graph is a unit square. Under the ROC curve itself (or to its right) is an area ... greater than 0.5. Here, it's 0.844. This metric is called AUC and is widely used as a metric to assess performance of all possible classifiers in this set of models together, it is a composite metric unlike *ME* or anything derived from an individual confusion table.

If you built a model by chance the "area under the curve" (or to the right of the curve) on the graph would be ... 0.5 since the graph is a unit square. Under the ROC curve itself (or to its right) is an area ... greater than 0.5. Here, it's 0.844. This metric is called AUC and is widely used as a metric to assess performance of all possible classifiers in this set of models together, it is a composite metric unlike *ME* or anything derived from an individual confusion table.

AUC is nice to evaluate overall performance of all possible models... but at the end of the day...

If you built a model by chance the "area under the curve" (or to the right of the curve) on the graph would be ... 0.5 since the graph is a unit square. Under the ROC curve itself (or to its right) is an area ... greater than 0.5. Here, it's 0.844. This metric is called AUC and is widely used as a metric to assess performance of all possible classifiers in this set of models together, it is a composite metric unlike ME or anything derived from an individual confusion table

AUC is nice to evaluate overall performance of all possible models... but at the end of the day... you ship **ONE** model!

If you built a model by chance the "area under the curve" (or to the right of the curve) on the graph would be ... 0.5 since the graph is a unit square. Under the ROC curve itself (or to its right) is an area ... greater than 0.5. Here, it's 0.844. This metric is called AUC and is widely used as a metric to assess performance of all possible classifiers in this set of models together, it is a composite metric unlike *ME* or anything derived from an individual confusion table

AUC is nice to evaluate overall performance of all possible models... but at the end of the day... you ship **ONE** model! So we still need a means of evaluating our one model from one confusion table.

Churn Example Where $p_0 = 0.10$

Churn Example Where $p_0 = 0.10$

	$p_0 = 0.5$	ز	Ŷ		Model
		1	0	Totals	Errors
	1	TP = 1012	FN = 857	P = 1869	FNR = 45.9%
У	0	FP = 531	TN = 4632	N = 5163	FPR = 10.2%
	Totals	$\hat{P} = 1543$	$\hat{N} = 5489$	n = 7032	
	Use errors	FDR = 34.3%	FOR = 15.6%		ME = 19.7%

Churn Example Where $p_0 = 0.10$

	$p_0 = 0.5$	ŷ			Model
		1	0	Totals	Errors
	1	TP = 1012	FN = 857	P = 1869	FNR = 45.9%
У	0	FP = 531	TN = 4632	N = 5163	FPR = 10.2%
	Totals	$\hat{P} = 1543$	$\hat{N} = 5489$	n = 7032	
	Use errors	FDR = 34.3%	FOR = 15.6%		ME = 19.7%

	$p_0 = 0.1$	ŷ			Model
		1	0	Totals	Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
У	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

	$p_0 = 0.5$	ز	ŷ		Model
		1	0	Totals	Errors
	1	TP = 1012	FN = 857	P = 1869	FNR = 45.9%
У	0	FP = 531	TN = 4632	N = 5163	FPR = 10.2%
	Totals	$\hat{P} = 1543$	$\hat{N} = 5489$	n = 7032	
	Use errors	FDR = 34.3%	FOR = 15.6%		ME = 19.7%

	$p_0 = 0.1$	ŷ			Model
		1	0	Totals	Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
У	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

Which numbers did not change?

	$p_0 = 0.5$	ز	ŷ		Model
		1	0	Totals	Errors
	1	TP = 1012	FN = 857	P = 1869	FNR = 45.9%
У	0	FP = 531	TN = 4632	N = 5163	FPR = 10.2%
	Totals	$\hat{P} = 1543$	$\hat{N} = 5489$	n = 7032	
	Use errors	FDR = 34.3%	FOR = 15.6%		ME = 19.7%

	$p_0 = 0.1$	ŷ			Model
		1	0	Totals	Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
У	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

Which numbers did not change? n, P and N. Why?

Max. Likelihood Review

	$p_0 = 0.5$	ز	ŷ		Model
		1	0	Totals	Errors
	1	TP = 1012	FN = 857	P = 1869	FNR = 45.9%
У	0	FP = 531	TN = 4632	N = 5163	FPR = 10.2%
-	Totals	$\hat{P} = 1543$	$\hat{N} = 5489$	n = 7032	
	Use errors	FDR = 34.3%	FOR = 15.6%		ME = 19.7%

	$p_0 = 0.1$	ŷ			Model
		1	0	Totals	Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
У	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

Which numbers did not change? n, P and N. Why? These are fixed according to the dataframe. All other numbers changed! What happend to our first means of evaluation, the Misclassification Error?

	$p_0 = 0.5$	ز	ŷ		Model
		1	0	Totals	Errors
	1	TP = 1012	FN = 857	P = 1869	FNR = 45.9%
У	0	FP = 531	TN = 4632	N = 5163	FPR = 10.2%
	Totals	$\hat{P} = 1543$	$\hat{N} = 5489$	n = 7032	
	Use errors	FDR = 34.3%	FOR = 15.6%		ME = 19.7%

	$p_0 = 0.1$	ŷ			Model
		1	0	Totals	Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
У	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

Which numbers did not change? n, P and N. Why? These are fixed according to the dataframe. All other numbers changed! What happend to our first means of evaluation, the Misclassification Error? It increased from $19.7\% \rightarrow 39.3\%$. So isn't this a worse model??

	$p_0 = 0.5$	ŷ			Model
		1	0	Totals	Errors
	1	TP = 1012	FN = 857	P = 1869	FNR = 45.9%
У	0	FP = 531	TN = 4632	N = 5163	FPR = 10.2%
	Totals	$\hat{P} = 1543$	$\hat{N} = 5489$	n = 7032	
	Use errors	FDR = 34.3%	FOR = 15.6%		ME = 19.7%

	$p_0 = 0.1$	ŷ			Model
		1	0	Totals	Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
У	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

Which numbers did not change? n, P and N. Why? These are fixed according to the dataframe. All other numbers changed! What happend to our first means of evaluation, the Misclassification Error? It increased from $19.7\% \rightarrow 39.3\%$. So isn't this a worse model??

Not necessarily... It depends on what your goal is!

These are always two types of errors but the costs are not always the same.

	$p_0 = 0.1$	ŷ	ŷ		Model
		1	0	Totals	Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
У	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

Imagine we really are the Telecom business manager. It costs 5-10x more to acquire a new customer than to engage a customer who is likely to churn. So you give an incentive package to those who are predicted to churn.

These are always two types of errors but the costs are not always the same.

	$p_0 = 0.1$	ŷ	ŷ		Model
		1	0	Totals	Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
У	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

Imagine we really are the Telecom business manager. It costs 5-10x more to acquire a new customer than to engage a customer who is likely to churn. So you give an incentive package to those who are predicted to churn. Which of the two types of errors specifically is *very* costly?

These are always two types of errors but the costs are not always the same.

	$p_0 = 0.1$) ŷ			Model
		1	0	Totals	Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
У	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

Imagine we really are the Telecom business manager. It costs 5-10x more to acquire a new customer than to engage a customer who is likely to churn. So you give an incentive package to those who are predicted to churn. Which of the two types of errors specifically is *very* costly? The *FN*. Who are they?

These are always two types of errors but the costs are not always the same.

	$p_0 = 0.1$) ŷ		Model		
		1	0	Totals	Errors	
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%	
у	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%	
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032		
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%	

Imagine we really are the Telecom business manager. It costs 5-10x more to acquire a new customer than to engage a customer who is likely to churn. So you give an incentive package to those who are predicted to churn. Which of the two types of errors specifically is *very* costly? The *FN*. Who are they? These are those who you said were not going to churn *and they did!* Cost?

These are always two types of errors but the costs are not always the same.

	$p_0 = 0.1$) ŷ			Model
		1	0	Totals	Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
У	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

Imagine we really are the Telecom business manager. It costs 5-10x more to acquire a new customer than to engage a customer who is likely to churn. So you give an incentive package to those who are predicted to churn. Which of the two types of errors specifically is *very* costly? The *FN*. Who are they? These are those who you said were not going to churn *and they did!* Cost? You need to acquire a new customer! The other type of error is less costly, the *FP*. Who are they?

These are always two types of errors but the costs are not always the same.

	$p_0 = 0.1$) ŷ			Model
		1	0	Totals	Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
У	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

Imagine we really are the Telecom business manager. It costs 5-10x more to acquire a new customer than to engage a customer who is likely to churn. So you give an incentive package to those who are predicted to churn. Which of the two types of errors specifically is *very* costly? The *FN*. Who are they? These are those who you said were not going to churn *and they did!* Cost? You need to acquire a new customer! The other type of error is less costly, the *FP*. Who are they? These are the people you thought were going to churn and did not. Cost?

These are always two types of errors but the costs are not always the same.

	$p_0 = 0.1$	ŷ		Totals	Model Errors
	1	TP = 1772	FN = 97	P = 1869	FNR = 5.1%
V	1				
,	0	FP = 2669	TN = 2494	N = 5163	FPR = 51.6%
	Totals	$\hat{P} = 4441$	$\hat{N} = 2591$	n = 7032	
	Use errors	FDR = 60.1%	FOR = 3.7%		ME = 39.3%

Imagine we really are the Telecom business manager. It costs 5-10x more to acquire a new customer than to engage a customer who is likely to churn. So you give an incentive package to those who are predicted to churn. Which of the two types of errors specifically is *very* costly? The *FN*. Who are they? These are those who you said were not going to churn *and they did!* Cost? You need to acquire a new customer! The other type of error is less costly, the *FP*. Who are they? These are the people you thought were going to churn and did not. Cost? Whatever the incentive package is.

Weighted Misclassification Error

We now define two costs: (1)

Weighted Misclassification Error

We now define two costs: (1) the cost of the FP denoted c_{FP} and

Weighted Misclassification Error

We now define two costs: (1) the cost of the FP denoted c_{FP} and (2) the cost of the FN denoted c_{FN} .

We now define two costs: (1) the cost of the FP denoted c_{FP} and (2) the cost of the FN denoted c_{FN} . We then define the weighted misclassification error evaluation metric:

$$ME_w := \frac{1}{n} \sum_{i=1}^{n} c_{FP} \mathbb{1}_{y_i = 0 \& \hat{y} = 1} + c_{FN} \mathbb{1}_{y_i = 1 \& \hat{y}_i = 0}$$

We now define two costs: (1) the cost of the FP denoted c_{FP} and (2) the cost of the FN denoted c_{FN} . We then define the weighted misclassification error evaluation metric:

$$ME_w := \frac{1}{n} \sum_{i=1}^{n} c_{FP} \mathbb{1}_{y_i = 0 \& \hat{y} = 1} + c_{FN} \mathbb{1}_{y_i = 1 \& \hat{y}_i = 0}$$

We now vary p_0 to locate the model that optimizes this error to be minimum.

Minimum Weighted Misclassification Error

Let's assume that $c_{FN} = \$1000$ and $c_{FP} = \$100$ just for the example's sake. Note: this is a **cost ratio** of 10:1.

	Prob	TP	TN	FP	FN	COST
1	0.8117	1	5163	0	1868	1868000
2	0.8104	2	5163	0	1867	1867000
3	0.8093	3	5163	0	1866	1866000
4	0.8092	4	5163	0	1865	1865000
5	0.8090	5	5163	0	1864	1864000
6	0.8085	6	5163	0	1863	1863000
7	0.8083	7	5163	0	1862	1862000
8	0.8082	8	5163	0	1861	1861000
9	0.8079	9	5163	0	1860	1860000

We now calculate the cost and find the minimum model (i.e. the p_0 to ship). [JMP]

Minimum Weighted Misclassification Error

Let's assume that $c_{FN} = \$1000$ and $c_{FP} = \$100$ just for the example's sake. Note: this is a **cost ratio** of 10:1.

	Prob	TP	TN	FP	FN	COST
1	0.8117	1	5163	0	1868	1868000
2	0.8104	2	5163	0	1867	1867000
3	0.8093	3	5163	0	1866	1866000
4	0.8092	4	5163	0	1865	1865000
5	0.8090	5	5163	0	1864	1864000
6	0.8085	6	5163	0	1863	1863000
7	0.8083	7	5163	0	1862	1862000
8	0.8082	8	5163	0	1861	1861000
9	0.8079	9	5163	0	1860	1860000

We now calculate the cost and find the minimum model (i.e. the p_0 to ship). [JMP] Or alternatively, we can select the model with the closest $FN/FP \approx 10:1$ to match the stakeholder preference of the desired cost ratio. Why would this be good?

Expected Value Calculation

You can also imagine assignment of both costs and benefits:

	$p_0 = 0.1$	ز ا	ŷ
		1	0
	1	bTP	CFN
У	0	c_{FP}	b_{TN}

Expected Value Calculation

You can also imagine assignment of both costs and benefits:

$$\begin{array}{c|cccc} p_0 = 0.1 & & \hat{y} & \\ & 1 & 0 \\ \hline y & 1 & b_{TP} & c_{FN} \\ 0 & c_{FP} & b_{TN} \end{array}$$

and then use the confusion matrix to estimate probabilities:

$$\begin{array}{c|cccc} p_0 = 0.1 & & \hat{y} \\ & 1 & 0 \\ \hline y & 1 & 25.1\% & 1.3\% \\ 0 & 40.0\% & 35.5\% \end{array}$$

You can also imagine assignment of both costs and benefits:

and then use the confusion matrix to estimate probabilities:

$$\begin{array}{c|cccc} p_0 = 0.1 & \hat{y} & & & \\ & 1 & 0 & & \\ \hline y & 1 & 25.1\% & 1.3\% & \\ 0 & 40.0\% & 35.5\% & & \\ \end{array}$$

The expected value would be?

Max. Likelihood Review

$$\mathbb{E}[T] = p_{TP} \times b_{TP} + p_{TN} \times b_{TN} + p_{FP} \times c_{FP} + p_{FN} \times c_{FN}$$

$$\approx \hat{p}_{TP} \times b_{TP} + \hat{p}_{TN} \times b_{TN} + \hat{p}_{FP} \times c_{FP} + \hat{p}_{FN} \times c_{FN}$$

Highest expected value model is shipped (ex. from Provost & Fawcett, 2013).

\hat{p} 's as Ordinal Values

One final point... If we were on a mission to find the top m churners. What would we do?

$\hat{\rho}$'s as Ordinal Values

One final point... If we were on a mission to find the top m churners. What would we do? Sort the \hat{p} 's and return the top m.