Assignment Project Exam Help Probabilistic Inequalities - I

https://powcoder.com

Assignment Project Exam Help Markov and Chebyshev Inequalities Markov and Chebyshev Inequalities

https://powcoder.com

Moeffding's Inequality

Markov Inequality

Assignment Project Exam Help

Theorem Let X be to the stive month of the fer com have

$$P(X\geqslant a)\leqslant rac{E(X)}{a}$$
.

 $P(X \ge a) \le \frac{E(X)}{a}$.
Add WeChat powcoder

Proof in the discrete case

Suppose that

Assignment Project Exam Help

where $x_1 < x_2 < \cdots < x_n$. Suppose further that

https://powcoder.com

Then
$$P(X \geqslant a) = p_{k+1} + \cdots + p_n$$
.

Since

Add WeChat powcoder
$$\geq x_{1}p_{1} + \cdots + x_{k}p_{k} + x_{k+1}p_{k+1} + \cdots + x_{n}p_{n}$$

$$\geq x_{k+1}p_{k+1} + \cdots + x_{n}p_{n} \geq a(p_{k+1} + \cdots + p_{n})$$

$$= aP(X \geq a),$$

we obtain Markov Inequality.

Chebyshev Inequality

Assignment Project Exam Help

```
Recall that the variance of a random variable X is the number var(X) = E[(X - E(X))^2]. Equivalently, var(X) = E(X^2) - (E(X))^2. Theorem 1 POWCOGET. COM
```

We have

Proof

Ansis 18:nment Project Exam Help $P(Y \ge a^2) \le \frac{E(Y)}{a^2}.$

This amounts to: //powcoder.com
$$P((X-E(X))^2 \geqslant a^2) \leqslant \frac{E((X-E(X))^2)}{a^2}.$$

This is equated WeChat powcoder $P(|X - E(X)| \ge a) \le \frac{var(X)}{a^2}$,

$$P(|X - E(X)| \geqslant a) \leqslant \frac{var(X)}{a^2}$$

which is the Chebyshev's Inequality.

The probability distribution of a binomial variable:

Example

If X is a binomial variable,

Assignment Project Exam, Help

we have

https://poweoder.com

which can be written also as

Add We Chat pow coder

Since the distribution is symmetric relative to np this is equivalent to

$$P(X > np + a) \leqslant \frac{npq}{2a^2}$$
 and $P(X < np - a) \leqslant \frac{npq}{2a^2}$.

Assignment Project Exam Help

Let L be the function defined as

https://poweoder.com

We have $L(x) \leqslant \frac{x^2}{8}$ for $x \geqslant 0$.

Proof

We need to show that $f(x) = \frac{x^2}{8} - L(x) \ge 0$. Since L(0) = 0 we have **Assignment Project Exam Help**

https://powcoderexcom

=
$$\frac{x}{4} - p + 1 + \frac{pe^{x}}{1 - p + pe^{x}}$$

Add We hat powcoder

= $\frac{(1 - p - pe^{x})^{2}}{4(1 - p + pe^{x})^{2}}$.

Note that $f''(x) \geqslant 0$ and f'(0) = 0.

Proof (cont'd)

Assignment Project Exam Help

```
Therefore f'(x) is increasing and f'(x) \ge 0 for f'(x) \ge 0. Since f'(x) \ge 0, which we need to prove.
```

Assignment Project Exam Help

Let X be a random variable that takes values in the interval [a, b] such that E[X] = 0. Then, for every $\lambda > 0$ we have $E[e^{\lambda X}] \leq e^{\frac{\lambda^2(b-a)^2}{8}}$.

Proof

Airssignitientex Priojecte Extrem t Help $f(x) \leq (1-t)f(a) + tf(b).$

For $t = \frac{\lambda}{1000} = \frac{1000}{1000}$ we/have $e^{\lambda x} < \frac{b-x}{1000} e^{\lambda x} = e^{\lambda x} = e^{\lambda x} = e^{\lambda x}$ Applying the expectation $\frac{\lambda}{1000} = \frac{\lambda}{1000} =$

$$\mathbf{Add}^{E(e^{\lambda X})} = \underbrace{\mathbf{C}^{h}_{b-a}^{e^{\lambda a}} + \underbrace{\mathbf{E}(X) - a}_{b-a} e^{\lambda b}}_{\mathbf{E}^{h}_{a}} \underbrace{\mathbf{C}^{h}_{b-a}^{e^{\lambda a}} + \underbrace{\mathbf{E}(X) - a}_{b-a} e^{\lambda b}}_{\mathbf{E}^{h}_{a}} \underbrace{\mathbf{C}^{h}_{a}}_{\mathbf{E}^{h}_{a}} \underbrace{\mathbf{C}^{h}_{a}$$

because E(X) = 0.

Proof (cont'd)

If
$$h = \lambda(b-a)$$
, $p = \frac{-a}{b-a}$ and $L(h) = -hp + \log(1-p+pe^h)$, then Assignment Project Exam Help

$$e^{L(h)} = e^{-hp}(1-p+pe^h)$$

https://powcoder.com

$$= \frac{b}{b-a}e^{\lambda a} - \frac{a}{a-b}e^{\lambda b}.$$

This implies $\frac{dd}{b}$ We Chat powcoder $\frac{b}{b-a}e^{\lambda a}-\frac{a}{b-a}e^{\lambda b}=e^{L(h)}\leqslant e^{\frac{\lambda^2(b-a)^2}{8}}$

$$\frac{b}{b-a}e^{\lambda a} - \frac{a}{b-a}e^{\lambda b} = e^{L(h)} \leqslant e^{\frac{\lambda^2(b-a)^2}{8}}$$

because we have shown that $L(h) \leqslant \frac{h^2}{8} = \frac{\lambda^2 (b-a)^2}{8}$. This gives the desired inequality.

Hoeffding's Theorem

Assignment Project Exam Help

https://powerder.com

Assume that

$$P(|\tilde{Z} - \mu| > \epsilon) \leqslant 2e^{-\frac{2m\epsilon^2}{(b-a)^2}}.$$

Proof

Let
$$X_i = Z_i - E(Z_i) = Z_i - \mu$$
 and $\tilde{X} = \frac{1}{m} \sum_{i=1}^{m} X_i$.

Assorbiging the Property Exam Help thus,

and

$$P(|\tilde{Z} - \mu| > \epsilon) = P(|\tilde{X}| > \epsilon)$$

= $P(\tilde{X} > \epsilon) + P(\tilde{X} < -\epsilon).$

Proof (cont'd)

Aessignment Purple that Exam Help $P(X \ge \epsilon) = P(e^{\lambda X} \ge e^{\lambda \epsilon})$. By Markov Inequality,

https://powcoder.com

Since X_1, \ldots, X_m are independent, we have

Proof (cont'd)

By Lemma 2, for every i we have

Assignment, Project Exam Help

Therefore, $\frac{\text{https://powcoder.com}}{P(\tilde{X} \geqslant \epsilon) \leqslant e^{-\lambda \epsilon} \prod_{i=1}^{K} e^{\frac{\lambda}{8m^2}} = e^{-\lambda \epsilon} e^{\frac{\lambda^2(b-3)^2}{8m}}. }$

Choosing Add We Chat powcoder

$$P(\tilde{X} \geqslant \epsilon) \leqslant e^{-\frac{2m\epsilon^2}{(b-a)^2}}.$$

The same arguments applied to $-\tilde{X}$ yield $P(\tilde{X} \leqslant -\epsilon) \leqslant e^{-\frac{2m\epsilon^2}{(b-a)^2}}$.

Assignment Project Exam Help By applying the union property of probabilities we have

 $https://powere_{2e}^{P(|\tilde{X}|>\epsilon)} = \underset{(b-s)^2}{P(\tilde{X}>\epsilon)} + \underset{(b-s)^2}{P(\tilde{X}<-\epsilon)}$

A special case of Hoeffding's Theorem

Assignment Project Exam Help

Theorem

Let X_1, \ldots, X_m be m independent and identially distributed Bernoulli random validates of $P(X_1, \ldots, X_m)$ be the binomial variable indicating the total number of successes, so E[S] = pm. For $\epsilon \in [0,1]$ we have:

Add-WeChat.powcoder

Assignment Project Exam Help $\epsilon > 0$, a = 0, and b = 1 we have

https://powcoder.com

or

Thus,
$$\begin{array}{c} P(|S-mp|>m\epsilon)\leqslant 2e^{-2m\epsilon^2},\\ We Chat \ powcoder\\ P((S>m(p+\epsilon))\vee (S< m(p-\epsilon))\leqslant 2e^{-2m\epsilon^2}. \end{array}$$

Assignment Project Exam Help amounts to

and [

https://powcoder.com $P(S > m(p + \epsilon)) \leq e^{-2m\epsilon^2},$ $P(S < m(p - \epsilon)) \leq e^{-2m\epsilon^2}.$