Inference by Enumeration

- Obvious problems:
- Worst-case time complexity O(dⁿ)
- Space complexity O(dⁿ) to store the joint distribution

The Product Rule

 Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y) \qquad \longleftrightarrow \qquad P(x|y) = \frac{P(x,y)}{P(y)}$$

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Example:

M

P(W)

(M)
(D,
P

0.9

san

ns

wet

rain

dry

rain

wet

0.2

rain

+				
	sun	sun	rain	rain
1	wet	dry	wet	dry

The Chain Rule

• More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, ..., x_n) = \prod_{i} P(x_i | x_1 ..., x_{i-1})$$

Why is this always true?