AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1.(original) A method for RNA or polypeptide synthesis from a DNA template comprising the steps of
 - a) providing a cell-free system enabling RNA or polypeptide synthesis from a DNA template, said DNA template comprising a promoter with at least one UP element;
 - b) recovering said synthesized RNA or polypeptide;

characterized in that the concentration of α subunit of RNA polymerase, but not of other subunits, is increased in said cell-free system, comparing to its natural concentration existing in the cell-free system.

- 2. (original) The method according to Claim 1, wherein said system enabling RNA or polypeptide synthesis from a DNA template is a cell-free system comprising a bacterial cellfree extract.
- 2, wherein the promoter on the DNA template includes sequence from the argC gene promoter of Bacillus stearothermophilus, preferably, the sequence from nucleotide 89 to +1 when the latter is the first nucleotide in mRNA of the argC gene.

- (currently amended) The method according to Claim 2 [[or 3]], wherein said cell-free system further comprises purified thermostable RNA polymerase holoenzyme.
- 5. (original) The method according to Claim 4, wherein said thermostable RNA polymerase holoenzyme is from *Thermus* thermophilus.
- 6. (currently amended) The method according to any of Claims 2 to 5 Claim 2, wherein the concentration of α subunit of RNA polymerase is increased by adding purified α subunit of RNA polymerase to the bacterial cell-free extract.
- 7. (original) The method according to Claim 6, wherein said purified α subunit is added to a final concentration comprised between 15 $\mu g/ml$ and 200 $\mu g/ml$.
- 8. (currently amended) The method according to Claim 6 [[or 7]], wherein the cell-free extracts is prepared from cells overexpressing a gene encoding α subunit of RNA polymerase.
- 9. (original) A method for the production of a protein from a DNA template in a cell-free system characterized in that it comprises the steps of
 - a) providing in a reaction mixture, a bacterial cell-free system enabling the coupling of in vitro transcription of a specific gene from a DNA template, and the corresponding protein synthesis;
 - b) adding to the reaction mixture the DNA template encoding the desired protein and purified α subunit of the RNA-polymerase; and,
 - c) optionally, adding a thermostable RNA polymerase,
 - d) recovering the produced protein.

- 10. (original) The method according to Claim 9, wherein said added thermostable RNA polymerase is from T. thermophilus.
- 11. (currently amended) The method according to Claim 9 [[or 10]], wherein said purified α subunit is added to a final concentration comprised between 15 μ g/ml and 200 μ g/ml.
- 12. (currently amended) The method according to any of Claims—9 to 11 Claim 9, wherein a DNA-binding regulatory protein is further added to the reaction mixture at step (b).
- 13. (currently amended) The method according to any of Claims 9 to 12 Claim 9, wherein said DNA template comprises an amplification product of an Open Reading Frame encoding the desired protein.
- 14. (currently amended) The method according to [[Claim13]]

 Claim 13, wherein said DNA template further comprises an additional DNA fragment, which is at least 3 bp long, preferably longer than 100 bp and more preferably longer than 200 bp, located immediately downstream the stop codon of said Open Reading Frame.
- 15. (original) The method according to Claim 13, wherein said DNA template further comprises an additional DNA fragment containing a transcriptional terminator.
- 16. (original) The method according to Claim 13, wherein said transcriptional terminator is the T7 phage transcriptional terminator.
- 17. (original) A reaction mixture for cell-free protein synthesis characterized in that it is prepared from cells which overexpress the gene encoding α subunit of the RNA polymerase.

- 18. (original) A reaction mixture for cell-free protein synthesis characterized in that it comprises a bacterial cell-free extract and an amount of purified α subunit of RNA polymerase.
- 19. (currently amended) The reaction mixture of Claim 17 [[or 18]], wherein said purified or overexpressed α subunit of RNA polymerase is at a concentration comprised between 15 μ g/ml and 200 μ g/ml in the reaction mixture.
- 20. (currently amended) The reaction mixture of any of Claims 17 to 19 Claim 17, characterized in that it further comprises a DNA template comprising a gene encoding a protein of interest under the control of a promoter with at least one UP element.
- 21. (original) The reaction mixture according to Claim 17, characterized in that it further comprises a DNA-binding regulatory protein.
- 22. (original) A kit for cell-free RNA and/or protein synthesis characterized in that it comprises the following components:
 - a) a cell-free extract, preferably E. coli S30 cell-free extract;
 - b) purified α subunit of RNA polymerase;
 - c) optionally, appropriate buffers and compounds for carrying out in vitro transcription and/or translation reaction;
 - d) optionally, amino acid mixture lacking one amino acid.

- 23. (original) A kit for cell-free RNA and/or protein synthesis characterized in that it comprises the following components:
 - a) a cell-free extract, preferably E. coli S30 cell-free extract, wherein said cell-free extract is obtained from cells overexpressing subunit of RNA polymerase;
 - b) optionally, appropriate buffers and compounds for carrying out in vitro transcription and/or translation reaction;
 - c) optionally, amino acid mixture lacking one amino acid.
- 24. (currently amended) The kit according to Claim 22 [[or 23]], wherein said purified or overexpressed α subunit is from $E.\ coli$ strains.
- 25. (currently amended) Use of a \underline{A} purified α subunit of RNA polymerase for enhancing protein synthesis in a cell-free system.
- 26. (currently amended) The [[use]] purified α subunit of RNA polymerase according to Claim 25, wherein said purified α subunit of RNA polymerase is added in a cell-free system at a concentration comprised between 15 μ g/ml and 200 μ g/ml.
- 27. (currently amended) The [[use]] purified α subunit of RNA polymerase according to Claim 26, wherein said purified α subunit of RNA polymerase is added in a cell-free system together with a thermostable RNA polymerase holoenzyme, preferably of T. thermophilus.

Insert the table "ANNEX 1" as it appears on the following attached sheet.

ANNEX 1: Sequence of the ompF gene promoter used in the experiment described in D1

gatcatcctg ttacggaata ttacattgca acatttacgc gcaaaaacta atccgcattc ttattgcgga ttagttttt cttagctaat agcacaattt tcatactatt ttttggcatt ctggatgtct gaaagaagat tttgtgccag gtcgataaag tttccatcag aaacaaaatt tccgtttagt taatttaaat ataaggaaat catataaata gattaaaatt gctgtaaata tcatcacgtc tctatggaaa tatgacggtg ttcacaaagt tccttaaatt ttacttttgg ttacatattt tttctttttg aaaccaaatc tttatctttg tagcactttc acggtagcga

aacgttagtt tgaatggaaa gatgcctgca gacacataaa gacaccaaac tctcatcaat

agttccgtaa atttttattg acagaactta ttgacggcag tggcaggtgt cataaaaaa accatgaggg taataaataa tg