Visualizations

April 15, 2021

```
[1]: # Drive mount for dataset and result save access
from google.colab import drive
drive.mount('/content/drive',force_remount=True)
%cd /content/drive/MyDrive/nimbronet_final/
```

Mounted at /content/drive
/content/drive/MyDrive/nimbronet_final

```
[2]: import argparse
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision import transforms
from utils.dataloader import (
    blobDataset,
    SegDataset,
    blob_dataloader,
    segmentation_dataloader,
)
from utils.model import nimbrRoNet2
from utils.metrics import metrics
from utils.losses import losses
from torchsummary import summary
```

Using cache found in /root/.cache/torch/hub/pytorch_vision_v0.6.0

0.1 Dataloader and Model Initialization

```
blob_dir = '/content/drive/MyDrive/Nimbronet/data/blob/'
seg_dir = '/content/drive/MyDrive/Nimbronet/data/segmentation/'
transfs = transforms.Compose(
        Γ
            transforms.Resize((480, 640)),
            transforms.ToTensor(),
        ]
    )
# Initializing the detection and segmentation dataloaders
_, _, testbdataloader, len_blob = blob_dataloader(blob_dir, transfs, args)
_, _, testsdataloader, len_seg = segmentation_dataloader(seg_dir, transfs, args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Device used: ", device)
nnet2 = nimbrRoNet2()
nnet2 = nnet2.to(device)
nnet2.load_state_dict(torch.load('/content/drive/MyDrive/Nimbronet/
→Final_model_300.pt')) #loading pretrained model weights
summary(nnet2, (3, 480, 640))
```

Device used: cuda
Using cache found in /root/.cache/torch/hub/pytorch_vision_v0.6.0

Layer (type) Output Shape Param # ______ [-1, 64, 240, 320] Conv2d-1 9,408 [-1, 64, 240, 320] 128 BatchNorm2d-2 [-1, 64, 240, 320] ReLU-3 0 MaxPool2d-4 [-1, 64, 120, 160] 0 Conv2d-5 [-1, 64, 120, 160] 36,864 BatchNorm2d-6 [-1, 64, 120, 160]128 ReLU-7 [-1, 64, 120, 160] 0 Conv2d-8 [-1, 64, 120, 160] 36,864 BatchNorm2d-9 [-1, 64, 120, 160] 128 [-1, 64, 120, 160] ReLU-10 0 BasicBlock-11 [-1, 64, 120, 160]0 [-1, 64, 120, 160] Conv2d-12 36,864 BatchNorm2d-13 [-1, 64, 120, 160] 128 ReLU-14 [-1, 64, 120, 160] 0 Conv2d-15 [-1, 64, 120, 160] 36,864 BatchNorm2d-16 [-1, 64, 120, 160] 128 ReLU-17 [-1, 64, 120, 160]0

BasicBlock-18	[-1, 64, 120, 160]	0
Conv2d-19	[-1, 128, 60, 80]	
BatchNorm2d-20	[-1, 128, 60, 80]	
ReLU-21	[-1, 128, 60, 80]	
Conv2d-22	[-1, 128, 60, 80]	
BatchNorm2d-23	[-1, 128, 60, 80]	
Conv2d-24	[-1, 128, 60, 80]	
BatchNorm2d-25	[-1, 128, 60, 80]	=
ReLU-26	[-1, 128, 60, 80]	
BasicBlock-27	[-1, 128, 60, 80]	
Conv2d-28	[-1, 128, 60, 80]	
BatchNorm2d-29	[-1, 128, 60, 80]	•
ReLU-30	[-1, 128, 60, 80]	
Conv2d-31	[-1, 128, 60, 80]	
BatchNorm2d-32	[-1, 128, 60, 80]	
ReLU-33	[-1, 128, 60, 80]	
BasicBlock-34	[-1, 128, 60, 80]	
Conv2d-35	[-1, 256, 30, 40]	
BatchNorm2d-36	[-1, 256, 30, 40]	
ReLU-37	[-1, 256, 30, 40]	
Conv2d-38	[-1, 256, 30, 40]	
BatchNorm2d-39	[-1, 256, 30, 40]	
Conv2d-40	[-1, 256, 30, 40]	
BatchNorm2d-41	[-1, 256, 30, 40]	
ReLU-42	[-1, 256, 30, 40]	
BasicBlock-43	[-1, 256, 30, 40]	
Conv2d-44	[-1, 256, 30, 40]	
BatchNorm2d-45	[-1, 256, 30, 40]	
ReLU-46	[-1, 256, 30, 40]	
Conv2d-47	[-1, 256, 30, 40]	
BatchNorm2d-48	[-1, 256, 30, 40]	
ReLU-49	[-1, 256, 30, 40]	
BasicBlock-50	[-1, 256, 30, 40]	0
Conv2d-51	[-1, 512, 15, 20]	
BatchNorm2d-52	[-1, 512, 15, 20]	
ReLU-53	[-1, 512, 15, 20]	=
Conv2d-54	[-1, 512, 15, 20]	
BatchNorm2d-55	[-1, 512, 15, 20]	
Conv2d-56	[-1, 512, 15, 20]	=
BatchNorm2d-57	[-1, 512, 15, 20]	•
ReLU-58	[-1, 512, 15, 20]	•
BasicBlock-59	[-1, 512, 15, 20]	
Conv2d-60	[-1, 512, 15, 20]	
BatchNorm2d-61	[-1, 512, 15, 20] [-1, 512, 15, 20]	
ReLU-62	[-1, 512, 15, 20] [-1, 512, 15, 20]	
Conv2d-63	[-1, 512, 15, 20]	
BatchNorm2d-64	[-1, 512, 15, 20] [-1, 512, 15, 20]	
ReLU-65	[-1, 512, 15, 20] [-1, 512, 15, 20]	
rero_00	[1, 512, 15, 20]	U

Conv2d-67 [-1, 128, 120, 160] 8,192 Conv2d-68 [-1, 256, 60, 80] 32,768 Conv2d-69 [-1, 256, 30, 40] 65,536
Conv2d=60 [-1 256 30 40] 65 536
$\frac{1}{1}$
ConvTranspose2d-70 [-1, 256, 30, 40] 524,288
ReLU-71 [-1, 512, 30, 40]
BatchNorm2d-72 [-1, 512, 30, 40] 1,024
ConvTranspose2d-73 [-1, 256, 60, 80] 524,288
ReLU-74 [-1, 512, 60, 80]
BatchNorm2d-75 [-1, 512, 60, 80] 1,024
ConvTranspose2d-76 [-1, 128, 120, 160] 262,144
ReLU-77 [-1, 256, 120, 160]
BatchNorm2d-78 [-1, 256, 120, 160] 512
Conv2d-79 [-1, 3, 120, 160] 768
Conv2d-80 [-1, 3, 120, 160] 768

Total params: 12,597,824 Trainable params: 12,597,824 Non-trainable params: 0

Input size (MB): 3.52

Forward/backward pass size (MB): 568.07

Params size (MB): 48.06

Estimated Total Size (MB): 619.64

0.2 Detection dataset samples

```
[25]: f, axarr = plt.subplots(4,2, figsize=(10., 10.))
    axarr[0,0].title.set_text('Input Image')
    axarr[0,1].title.set_text('Target Detection Output')

for idx, data in enumerate(testbdataloader):
    image, target = data[0][0], data[1][0]

    image = transforms.ToPILImage()(image)
    target = transforms.ToPILImage()(target)

    axarr[idx,0].imshow(image)
    axarr[idx,0].axis('off')

    axarr[idx,1].imshow(target)
    axarr[idx,1].axis('off')

if idx == 3:
    break
```

Input Image

Target Detection Output

0.3 Segmentation dataset samples

```
[24]: f, axarr = plt.subplots(4,2, figsize=(10., 10.))
    axarr[0,0].title.set_text('Input Image')
    axarr[0,1].title.set_text('Target Segmentation Output')

for idx, data in enumerate(testsdataloader):
    image, target = data[0][0], data[1][0]

    image = transforms.ToPILImage()(image)
    # target = transforms.ToPILImage()(target)

    axarr[idx,0].imshow(image)
    axarr[idx,0].axis('off')

    axarr[idx,1].imshow(target,cmap='gray')
    axarr[idx,1].axis('off')

    if idx == 3:
        break
    plt.show()
```

Input Image

Target Segmentation Output

0.4 Network output visualization

```
[18]: f, axarr = plt.subplots(4,3, figsize=(10., 10.))
    axarr[0,0].title.set_text('Input Image')
    axarr[0,1].title.set_text('Segmentation output')
    axarr[0,2].title.set_text('Detection Output')
```

```
for idx, data in enumerate(testsdataloader):
  image, target = data[0], data[1]
  seg_pred,blob_pred = nnet2(image.to(device))
 image = transforms.ToPILImage()(image[0])
 blob_pred = torch.transpose(blob_pred,1,2)
 blob_pred = torch.transpose(blob_pred,2,3)
 blob_pred = blob_pred.squeeze().detach().cpu().numpy()
 seg_pred = torch.argmax(seg_pred,1,keepdim=True).squeeze().detach().cpu()
 axarr[idx,0].imshow(image)
 axarr[idx,0].axis('off')
 axarr[idx,1].imshow(seg_pred, cmap='gray')
 axarr[idx,1].axis('off')
 axarr[idx,2].imshow(np.clip(blob_pred,0,1))
 axarr[idx,2].axis('off')
 if idx == 3:
   break
plt.savefig('results_all.pdf',bbox_inches='tight')
plt.show()
```

