3. Estimación puntual: métodos de estimación

- 1. Halle un estimador de los parámetros correspondientes a una distribución Gamma, $G(\alpha, p)$, a partir del método de los momentos y basándose en una muestra aleatoria simple de tamaño n.
- 2. Una variable aleatoria sigue una distribución uniforme en el intervalo (α, β) . Estime mediante el método de los momentos a la función paramétrica $\theta = \alpha \beta$.
- 3. La función de densidad de una variable aleatoria *X* es:

$$f(x, \theta) = (\theta + 1) x^{\theta} \mathbb{1}_{[0,1]}(x)$$

A partir de una muestra aleatoria simple de tamaño n, determine un estimador de θ utilizando:

- a) El método de los momentos.
- b) El método de la máxima verosimilitud.
- 4. El número de glóbulos blancos en muestras de sangre procedentes de personas sanas, sigue una distribución de Poisson de parámetro λ . Tomando muestras de sangre de 10 personas sanas, se observó que 8 de ellas contenían al menos un glóbulo blanco. Halle la estimación máximo-verosímil de λ .
- 5. Demuestre que, si θ^* es el estimador máximo-verosímil de un parámetro $\theta \in \Theta$, siendo Θ un intervalo abierto de \mathbb{R} , entonces, si g es una función real de variable real, cuyo dominio incluye a Θ , a la vez que derivable con derivada no nula en Θ , entonces si $\beta = g(\theta)$ resulta que $\beta^* = g(\theta^*)$ es el estimador máximo-verosímil de β . Aplique esta propiedad para demostrar que:
 - a) $S_n = \sqrt{\frac{1}{n}\sum_{i=1}^n (X_i \mu_0)^2}$ es el estimador máximo-verosímil de σ en poblaciones normales con $\mu = \mu_0$ conocida, hallando primero el correspondiente estimador máximo-verosímil de σ^2 .
 - b) $\frac{X(n)}{2}$ es el estimador máximo-verosímil del valor medio de una distribución uniforme $\mathcal{U}(0,\beta)$, hallando primero el estimador máximo-verosímil de β .
- 6. Considere una muestra aleatoria simple de tamaño n, $X_1,...,X_n$, correspondiente a una variable aleatoria absolutamente continua X con densidad de probabilidad:

$$f(x) = 2 \theta^{-2} x \mathbb{1}_{[0,\theta]}(x)$$
 $\theta > 0$

Halle la función de verosimilitud así como el estimador máximo-verosímil de θ . Deduzca un estimador de θ insesgado y compárelo con

$$S = \frac{3}{2} \, \overline{X}_n$$

7. Sea $X_1,...,X_n$ una muestra aleatoria simple de tamaño n de una variable aleatoria X con función de densidad

$$f(x;\theta) = 2\theta \ x \ \exp(-\theta x^2) \ \mathbb{1}_{(0,\infty)}(x)$$

 $con \theta > 0$.

- *a*) Calcule el estimador de θ por el método de los momentos y determine su distribución.
- b) Calcule el estimador de θ por el método de la máxima verosimilitud. Calcula su sesgo. ¿Cuál es su distribución? ¿Cuál es su distribución asintótica?
- 8. Una determinada clase de condensador, en condiciones normales, tiene una vida no inferior a 1200 horas. Pasadas dichas horas, el tiempo de vida restante del condensador sigue sigue una distribución exponencial con densidad

$$f(x, \theta) = \theta e^{-\theta x} \mathbb{1}_{(0,\infty)}(x)$$

Se desea estimar θ . Por razones prácticas sólo se registraran las duraciones de los condensadores hasta un máximo de 24 horas después de haber funcionado 1200 horas. De una muestra de n=30 condensadores que ya habían funcionado 1200 horas, se obtuvieron los siguientes resultados:

- a) 9 dejaron de funcionar durante las primeras 24 horas; las duraciones de funcionamiento fueron 21,55; 22,74; 17,65; 9,42; 1,78; 6,15; 2,50; 3,45 y 23,97 horas.
- b) 21 continuaban funcionando después de 24 horas, momento que concluyó el experimento. Halle la estimación máximo-verosímil de θ y la vida media de un condensador.
- 9. En familias de tres hijos, la probabilidad de que un hijo tenga una determinada característica A es igual a *p* . A partir de una muestra de 100 familias de de tres hijos, se han obtenido las siguientes frecuencias:

nº hijos con A	0	1	2	3
frecuencia	84	15	1	0

Estime el parámetro p.

10. Consideremos una muestra aleatoria simple de tamaño n, X_1, \ldots, X_n correspondiente a una variable aleatoria X con distribución Binomial B(3,p) condicionada a valores positivos, ya que el valor X=0 no puede presentarse por motivos experimentales. Halle la estimación máximo-verosímil de p a partir de una muestra de tamaño n=100, y que ha presentado las siguientes frecuencias:

X	1	2	3
frecuencia	30	52	18

11. El tiempo de vida de los individuos de una determinada especie de seres vivos es una variable aleatoria con función de densidad:

$$f(t, \alpha) = \frac{1}{\alpha} e^{-\frac{t}{\alpha}} \mathbb{1}_{(0,\alpha)}(t)$$

Halle la estimación máximo-verosímil de α sabiendo que para una muestra de tamaño n=100 cuando T=1 hay 82 individuos vivos.

- 12. Dada una muestra aleatoria simple de tamaño n de una variable aleatoria con distribución Log-normal de parámetros (μ , σ^2) (es decir, $\ln X$ sigue una distribución normal $N(\mu, \sigma^2)$).
 - a) Demuestre que si σ^2 es conocido el estimador máximo-verosímil de μ es:

$$\mu^* = \frac{1}{n} \left(\sum_{i=1}^n \ln x_i \right)$$

Halle el estimador máximo-verosímil de E(X).

- b) Si μ es conocida, halle el estimador máximo-verosímil de σ^2 .
- c) Halle el estimador máximo-verosímil de $\theta = (\mu, \sigma^2)$.
- 13. Sea X una variable aleatoria con distribución uniforme en el intervalo (a,b), $\sim U(a,a+b)$. Determine, en muestras de tamaño n, los estimadores de a y b por el método de los momentos.
- 14. Dada una muestra de tamaño n de una variable aleatoria con función de densidad

$$f(x;\theta) = \frac{\theta}{(1+x)^{(1+\theta)}}, \qquad x > 0$$

Determine el estimador de θ por el método de los momentos. Suponga que $\theta > 1$.

- 15. Dada una muestra aleatoria simple de tamaño n de una variable aleatoria con distribución Binomial de parámetros k y p. Determine los estimadores de k y p por el método de los momentos.
- 16. Sea X una variable aleatoria con distribución uniforme $U(-\theta,\theta)$. Considere una muestra de tamaño n de X para estimar θ . ¿Que estimador de θ se obtendrá aplicando el método de los momentos?
- 17. Calcule el estimador máximo-verosímil de θ para muestras de tamaño n de la variable aleatoria X con función de densidad $f(x;\theta) = \theta(1-x)^{\theta-1}$, 0 < x < 1.
- 18. Un zoólogo estudia el gen que determina el tamaño de las manchas en las alas de las mariposas de la especie *Callimorpha dominula*. Se trata de un gen autosómico del que se conocen dos alelos A y a, presentes en la población en proporción p y 1-p respectivamente. De acuerdo con la ley de Hardy-Weinberg, que supone apareamiento al azar, así como ausencia de selección natural y

mutaciones, las proporciones poblacionales de los tres posibles genotipos para este gen AA, Aa y aa son p^2 , 2p(1-p) y $(1-p)^2$ respectivamente. Halle el estimador máximo-verosímil de p y la estimación de p a partir de los siguientes datos:

Genotipo	AA	Aa	aa
Frecuencia	1469	138	5

- 19. Halle la estimación del parámetro λ de una distribución de Poisson, con la única información de que en una muestra de tamaño n hay r observaciones iguales a cero.
- 20. Estime, a partir del método de máxima-verosimilitud y para muestras de tamaño n, la probabilidad $P(X \ge 1)$ donde X es una variable aleatoria con distribución exponencial de parámetro α . ¿Cuál es la distribución asintótica del estimador máximo-verosímil del parámetro α ?
- 21. Con el objetivo de estimar un número desconocido, N, de peces de un lago se capturan M peces, se marcan y se devuelven al lago. Al cabo de unos pocos días se capturan n peces y se observa que hay m peces marcados. Halle el estimador máximo-verosímil de N bajo el supuesto simplificador de que las capturas se han realizado con reemplazamiento.
- 22. Suponga que en el lanzamiento de cierta moneda desconocemos la probabilidad de obtener cara, θ . Se realiza n veces el experimento consistente en lanzar dicha moneda hasta obtener la primera cara, anotando, en cada repetición, el número de cruces obtenidas antes de obtener la primera cara.
 - a) Halle el estimador de θ por el método de los momentos.
 - b) Halle el estimador de θ por el método de máxima-verosimilitud.
 - c) Determine la distribución asintótica del estimador máximo-verosímil.
- 23. La variable aleatoria *X* tiene la función de densidad siguiente:

$$f(x;\theta) = \theta \exp(-\theta x) \mathbb{1}_{(0,\infty)}(x)$$

El parámetro θ toma valores en el conjunto $\{1,2,3\}$. Si en una muestra de tamaño 5 hemos obtenido tres valores entre 0,003 y 0,06 y dos valores más grandes que 0,5. Con esta información, ¿cuál valor del parámetro corresponde a la estimación máximo-verosímil del mismo?

24. Halle el estimador del máximo-verosímil de p_1, \ldots, p_k de una distribución multinomial. Considere que dispone de una muestra de tamaño N con las frecuencias n_1, \ldots, n_k de las k clases, respectivamente.