模电实验报告 实验九 有源滤波器

模电实验报告

实验内容: 有源滤波器

院系: 电子与信息工程学院 学号: 22309080 审批:

专业: 通信工程 实验人: 梁倍铭 日期: 2023 年 12 月 13 日

一、实验目的

1. 了解由集成运放组成的有源滤波电路。

2. 掌握测量有源滤波器幅频特性的方法。

3. 学习设计滤波电路。

二、原理简介

1. 滤波器的传输函数

由 RC 元件与运算放大器组成的滤波器称为 RC 有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。滤波器可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通、高通、带通与带阻等四种滤波器,它们的幅频特性如图 9-1 所示。

图 9-1

2. 有源滤波电路

(a) 低通滤波器

低通滤波电路如图 9-2 所示,其性能参数为通带放大倍数为:

$$A_{up} = 1 + \frac{R_F}{R_1}$$

通带截止频率:

$$f_0 = \frac{1}{2\pi RC}$$

等效品质因素:

$$Q = \frac{1}{3 - A_{up}}$$

图 9-2

3. 高通滤波器

高通滤波电路如图 4-1-7-3 所示, 其性能参数表达式同低通滤波器。

图 9-3

4. 带通滤波器

带通滤波电路如图 4-1-7-4 所示, 其性能参数为中心频率:

$$f_0 = \frac{1}{2\pi RC}$$

$$A_{uo} = 1 + \frac{R_F}{R_1}Q = \frac{1}{3 - A_{uo}}$$

通带宽度:

$$B = (2 - \frac{R_F}{R_1} f_0)$$

三、实验内容和步骤

1. 低通滤波器

实验电路如图 9-2 所示,RF 分别取 2K、10K,测出测量输入信号 Ui=lV、频率 f 在 4Hz 800Hz 范围变化时的 Vo 值,表格自拟。测量结果如表 1 和表 2

仿真和测量结果如下:由于预习时截止频率计算有误,所以导致拟表格时数据点没有取好,

频率 (Hz)	4	10	20	30	50	100	150	180	200	300	400	600	800
仿真 $V_o(V)$	1.195	1.185	1.15	1.095	0.93	0.51	0.28	0.2055	0.171	0.08	0.0465	0.02075	0.0117
实验 $V_o(V)$	1.21	1.21	1.15	1.08	0.92	0.488	0.265	0.193	0.164	0.075	0.0428	0.021	0.131

表 1 低通滤波器 R_F 取 2k 时的 V_o

	1													
频率 (Hz)	4	10	20	30	50	100	150	180	200	300	400	600	800	
仿真 V _o (V)	2	2.015	2.06	2.125	2.28	1.43	0.625	0.422	0.337	0.1445	0.08	0.035	0.0197	
实验 <i>V_o</i> (V)	2.1	2.11	2.12	2.25	2.49	1.47	0.618	0.414	0.332	0.142	0.0762	0.0354	0.0201	

表 2 低通滤波器 R_F 取 10k 时的 V_o

实验时发现问题, 所以及时改正, 补充表格如下

频率 (Hz)	60	70	80	90
仿真 V _o (V)	0.84	0.75	0.66	0.58
实验 <i>V_o</i> (V)	0.82	0.69	0.65	0.56

表 3 低通滤波器 R_F 取 2k 时的 V_o 续表

频率 (Hz)	60	70	80	90
仿真 V _o (V)	2.3	2.2	1.975	1.171
实验 V _o (V)	2.32	2.21	2.08	1.715

表 4 低通滤波器 R_F 取 10k 时的 V_o 续表

将所得到的结果在 matlab 上用曲线拟合得到低通滤波器的幅频特性曲线,如图 9-5

图 9-5

图 9-6

2. 高通滤波器

实验电路如图 9-3 所示,测出测量输入信号 Vi=IV、频率 f 在 400Hz 10Hz 范围变化时的 Vo 值,表格自拟。测量和实验数据如表 5 和表 6 所示 将所得到的结果在 matlab 上用曲线拟合得到低通滤波器的幅频特性曲线,如图 9-6

频率 (Hz)	400	350	300	250	200	160	100	90	80	70	60	50	20	10
仿真 <i>V_o</i> (V)	1.17	1.16	1.15	1.125	1.08	1.025	0.815	0.75	0.67	0.58	0.479	0.371	0.073	0.01885
实验 $V_o(V)$	1.17	1.165	1.145	1.12	1.09	1.02	0.815	0.75	0.66	0.59	0.48	0.366	0.073	0.196

表 3 高通滤波器 R_F 取 2k 时的 V_o

值

	频率 (Hz)	400	350	300	250	200	160	100	90	80	70	60	50	20	10
,	仿真 <i>V_o</i> (V)	2.035	2.05	2.065	2.095	2.145	2.21	2.28	2.195	2.01	1.71	1.315	0.91	0.131	0.032
	实验 $V_o(V)$	2.13	2.13	2.18	2.23	2.3	2.39	2.6	2.2	2	1.73	1.33	1.035	1.141	0.0354

表 4 高通滤波器 R_F 取 10k 时的 V_o 值

3. 带通滤波器

实验电路如图 9-4 所示,测出测量输入信号 Vi=IV、频率 f 在 10Hz - 400Hz 范围变化时的 Vo 值,表格自拟。仿真和实验结果如表 7 所示 将所得到的结果在 matlab 上用曲线拟合得到低

频率 (E	(z)	10	20	50	100	120	150	160	180	200	250	300	350	400
仿真 V _o	(V)	0.126	0.253	0.66	1.44	1.735	1.985	2	1.94	1.805	1.45	1.175	0.99	0.85
实验 V_o	(V)	0.1245	0.258	0.675	1.49	1.81	2.01	2.02	1.93	1.78	1.39	1.15	0.95	0.815

表 7 带通滤波器 V。值

通滤波器的幅频特性曲线,如图 9-7

图 9-7

四、实验器材

1、实验箱2、数字万用表3、函数信号发生器4、交流毫伏表5、双踪示波器

五、实验总结与思考

1. 关于表格的设计

本次实验需要自己设计表格,一开始预习时只是随意地取点,并且预习时截止频率计算 出错,导致取点时不够准确,在实验过程中发现了这个问题,及时进行了修正。得到的教训 是以后取点应该先读懂实验原理,根据定量分析找到转折点,要在转折点附近多取点。 模电实验报告 实验九 有源滤波器

2. 关于实验误差分析

从表格上的数据来看,前面两个实验 100k 是测得的输出电压普遍偏高,原因是没有用万用表进行校准,只是直接将实验板上标定 10k 的滑动变阻器旋至最大,这可能导致了很大的误差,因为 20k 适用万用表校准过的,所以误差相对较小。

从最后拟合的图像来看 100k 的仿真和实验结果相差较大,可能也是前面提到的结果导致的。

3. 实验思考题

(a) 某同学在调试图 9-2 时,输入频率为 1kHz 的信号,发现输出电压远低于输入电压,他认为电路存在故障,此结论是否正确?

不正确,因为该电路是低通滤波器,根据幅频特性曲线,频率到达 1kHz 时,输出电压很小

(b) 高通滤波器的幅频特性,为什么在频率很高时,其电压放大倍数会随频率升高而下降? 高通滤波器通常包含电容器元件。在高频情况下,电容器的阻抗会减小,导致它们对信号的阻抗减小,从而使得更多的信号绕过滤波器而不是通过它,导致输出电压放大倍数降低。