Lecture 1 (Math Review)

Avi Herman

9/9/2024

Table of Contents

- Symbols & Notation
- Exponents
 - Properties
- Scientific Notation & E Notation
 - Operations
 - Addition/Subtraction
- Units
 - Conversion example
 - Metric System Prefixes
- Numerical Precision
- Trigonometry
 - Radians vs Degrees
- Proportional Relationships
- Order-of-Magnitude Estimation
- Gravitational Law
 - Proportionality of Force
- Vector Math
 - Vector Notation
 - Vector Addition
 - Scalar Multiplication
 - Dot Product
 - Cross Product
 - Magnitude of a Vector
 - Unit Vector
 - Vector Example

Symbols & Notation

Symbol	Meaning
=	Equals
#	Not equal
\propto	Proportional to
E	Exponent value
	Continued series

Exponents

Exponents (or powers) are shorthand for repeated multiplication. For instance:

- $ullet a^2=a imes a$ ("a squared")
- $a^3 = a imes a imes a$ ("a cubed")
- $a^n = a \times a \times \cdots \times a$ ("n times")

Rules for exponents:

- $a^1 = a$
- $a^0 = 1$
- $a^{-n} = \frac{1}{a^n}$

Example powers of 10:

- $10^6 = 1,000,000$
- $10^{-3} = 0.001$

Properties:

- 1. $a^m \times a^n = a^{m+n}$
- $2. \frac{a^m}{a^n} = a^{m-n}$
- 3. $(a^m)^n = a^{m \times n}$

Scientific Notation & E Notation

Scientific notation simplifies large/small numbers by expressing them as a small number multiplied by a power of 10. For example:

- ullet $3.56 imes10^3$ becomes 3.56E+3
- ullet $7.87 imes10^{-4}$ becomes 7.87E-4

Operations:

• Multiplication: $(2.5 \times 10^3) \times (4.3 \times 10^5) = (2.5 \times 4.3) \times 10^{3+5} = 10.75 \times 10^8 = 1.075 \times 10^9$

• Division: $rac{4.3 imes10^5}{2.5 imes10^3}=rac{4.3}{2.5} imes10^{5-3}=1.72 imes10^2$

Addition/Subtraction:

To add or subtract in scientific notation, first convert all numbers to the same power of 10:

$$\bullet \ 4.3 \times 10^5 - 2.5 \times 10^3 = 4.3 \times 10^5 - 0.025 \times 10^5 = (4.3 - 0.025) \times 10^5 = 4.275 \times 10^5$$

Units

Units are essential for expressing physical quantities, and errors in unit specification lead to significant issues. Common SI units:

ullet Length: $1\,km=10^3\,m$, $1\,cm=10^{-2}\,m$

• Mass: $1\,g = 10^{-3}\,kg$, $1\,mg = 10^{-6}\,kg$

 $\bullet \; \mathsf{Time:} \, 1 \, ns = 10^{-9} \, s$

Conversion example:

To convert 1 cm to nanometers: $1\,cm=10^{-2}\,m=10^7\,nm$

Metric System Prefixes:

• Tera (T): $1\,T=10^{12}$

ullet Giga (G): $1\,G=10^9$

ullet Mega (M): $1\,M=10^6$

- Kilo (k): $1\,k=10^3$

 \bullet Centi (c): $1\,c=10^{-2}$

- Milli (m): $1\,m=10^{-3}$

• Micro (\mu): $1\,\mu=10^{-6}$

• Nano (n): $1 n = 10^{-9}$

• Pico (p): $1 p = 10^{-12}$

Numerical Precision

Precision is critical when dealing with empirical data.

- Significant figures: Only write digits that are meaningful and supported by the measurement's precision.
- ullet Example: The dinosaurs were killed off **about** $6.5 imes10^7$ years ago, not exactly $6.50 imes10^7$ years.

To specify a number with an uncertainty:

ullet Example: 1.364 ± 0.003 implies the true value is between 1.361 and 1.367.

Trigonometry

For a right triangle:

•
$$\sin\phi = \frac{opposite}{hypotenuse}$$

•
$$\cos \phi = \frac{adjacent}{hypotenuse}$$

•
$$\tan \phi = \frac{opposite}{adjacent}$$

Mnemonic: SOH-CAH-TOA

Example:

$$ullet$$
 If $a=4$ cm , $b=3$ cm , and $c=5$ cm , then $\sin\phi=rac{3}{5}=0.6$

Radians vs Degrees:

$$360^\circ=2\pi$$
 radians. Therefore, 1 radian = $rac{360^\circ}{2\pi}pprox 57.296^\circ.$

Proportional Relationships

Relationships between variables often take proportional forms:

- Direct Proportion: $a \propto b$
 - Example: The interest paid on a bank account is directly proportional to the balance.
- Inverse Proportion: $a \propto \frac{1}{b}$
 - o Example: If the length of a guitar string doubles, its frequency is halved.
- Square Proportion: $a \propto b^2$
- Inverse Square Proportion: $a \propto rac{1}{b^2}$

Proportionality can be written as an equation with a constant:

• Example: $f=\frac{C}{\ell}$, where f is frequency, ℓ is string length, and C is a constant depending on string tension and density.

Order-of-Magnitude Estimation

In physics, estimates are often good enough for practical purposes. The goal is to get the **order of magnitude** right, not exact values.

Example: Estimating the number of piano tuners in New York City.

• NYC population = 8 million.

- Estimate: 1 piano for every 100 people $\Rightarrow 80,000$ pianos.
- ullet Each tuner tunes 500 pianos per year $\Rightarrow 160$ tuners needed.

Gravitational Law

Newton's law of universal gravitation: $F = G rac{m_1 m_2}{d^2}$

Where:

- \bullet F is the gravitational force,
- ullet G is the gravitational constant,
- ullet m_1 and m_2 are the masses of the two objects,
- \bullet *d* is the distance between them.

Proportionality of Force:

- Proportional to mass: $F \propto m_1$, $F \propto m_2$.
- Inverse-square relation to distance: $F \propto rac{1}{d^2}.$

Example:

ullet If the Earth-moon distance were halved, the gravitational force would increase by a factor of 4 due to the inverse-square law.

Vector Math

Vectors are quantities that have both magnitude and direction. They are often represented as arrows in a coordinate system.

Vector Notation

- A vector can be written as \mathbf{v} or \vec{v} .
- ullet In component form: $ec{v}=\langle v_x,v_y,v_z
 angle$.

Vector Addition

• To add two vectors, add their corresponding components:

$$ec{u}+ec{v}=\langle u_x+v_x,u_y+v_y,u_z+v_z
angle$$

Scalar Multiplication

• To multiply a vector by a scalar, multiply each component by the scalar:

$$c \cdot \vec{v} = \langle c \cdot v_x, c \cdot v_y, c \cdot v_z \rangle$$

Dot Product

• The dot product of two vectors is a scalar:

$$ec{u}\cdotec{v}=u_xv_x+u_yv_y+u_zv_z$$

Cross Product

• The cross product of two vectors is another vector:

$$ec{u} imesec{v}=\langle u_{y}v_{z}-u_{z}v_{y},u_{z}v_{x}-u_{x}v_{z},u_{x}v_{y}-u_{y}v_{x}
angle$$

Magnitude of a Vector

• The magnitude (or length) of a vector \vec{v} is:

$$|ec{v}|=\sqrt{v_x^2+v_y^2+v_z^2}$$

Unit Vector

• A unit vector has a magnitude of 1 and points in the same direction as the original vector:

$$\hat{v} = rac{ec{v}}{|ec{v}|}$$

Vector Example

ullet Given $ec{a}=\langle 2,3,4
angle$ and $ec{b}=\langle 1,0,-1
angle$:

$$egin{aligned} \circ \ ec{a} + ec{b} = \langle 3, 3, 3
angle \end{aligned}$$

$$\circ~2\cdotec{a}=\langle 4,6,8
angle$$

$$egin{array}{l} \circ ec{a} \cdot ec{b} = 2 \cdot 1 + 3 \cdot 0 + 4 \cdot (-1) = -2 \end{array}$$

$$egin{array}{l} \circ \ ec{a} imes ec{b} = \langle 3 \cdot (-1) - 4 \cdot 0, 4 \cdot 1 - 2 \cdot (-1), 2 \cdot 0 - 3 \cdot 1
angle = \langle -3, 6, -3
angle \end{array}$$

$$|\vec{a}| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29}$$

$$\circ~\hat{a}=rac{ec{a}}{\sqrt{29}}=\langlerac{2}{\sqrt{29}},rac{3}{\sqrt{29}},rac{4}{\sqrt{29}}
angle$$