INE5607 – Organização e Arquitetura de Computadores

Unidade Central de Processamento

Aula XX: Multiprocessadores, multicomputadores, processadores e plataformas modernas

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

Sumário

- Classificação de computadores
- Multiprocessadores
- Multicomputadores
- Taxonomia de Flynn
- MIPS
- Computação heterogênea
- Supercomputadores
- Considerações finais

CLASSIFICAÇÃO DE COMPUTADORES

- Qual a importância de classificações?
 - Identificar os critérios de classificação
 - Analisar todas possibilidades
 - Características semelhantes, soluções semelhantes
 - Evitar repetição de trabalho

- Exemplos de classificações
 - Classificação segundo o compartilhamento de memória
 - Taxonomia de Flynn

- Memória pode ser
 - Compartilhada vs Não compartilhada
 - Os processadores compartilham um espaço de endereçamento?
 - Importante para programação
 - Centralizada vs Distribuída
 - A memória está em um lugar só ou dividida?

- Multiprocessadores
 - Todos os processadores acessam uma memória compartilhada
 - Comunicação através da memória
 - Variáveis compartilhadas

- Multicomputadores
 - Cada processador endereça sua memória local
 - Comunicação por troca de mensagens
 - Dados precisam ser mandados ou pedidos

MULTIPROCESSADORES

- Ideia
 - Máquina com múltiplos processadores
 - Originalmente sockets diferentes

- Exemplo de multiprocessador atual
 - -Multicore!
 - CMP: Chip Multiprocessing

Α	Α	В	В
Α		В	
		В	В
Α	Α	В	
Α	Α		
		В	В
Α	Α		В

- Duas formas de organizar a memória
 - Memória centralizada
 - UMA
 - Memória distribuída
 - NUMA

UMA

- Uniform Memory Access
- Memória centralizada
- Acessos levam o mesmo tempo
 - Latência e largura de banda padrão para todos

NUMA

- -Nonuniform Memory Access
- Memória distribuída
- Tempo de acesso depende se memória local ou remota

Menor contenção

Exemplo MC NUMA: AMD Opteron 6174

Questão

- Sua empresa desenvolve um simulador de tinta descolando da parede.
- A simulação sequencial leva 100 segundos.
- −95% do código é paralelizável.
- Quanto tempo levaria a aplicação executando em quatro núcleos?

Questão

- Sua empresa desenvolve um simulador de tinta descolando da parede.
- A simulação sequencial leva 100 segundos.
- −95% do código é paralelizável.
- Quanto tempo levaria a aplicação executando em quatro núcleos?
 - T(4) = T(1)*(0.05 + 0.95/4)
 - T(4) = 100*(0.05 + 0.95/4) = 5 + 95/4 = 5+23.75
 - T(4) = 28,75 s

- Questão
 - Duas opções de máquina para a empresa
 - Máquina UMA com 4 núcleos
 - Máquina NUMA com 4 núcleos
 - Acesso à memória 3x mais rápido
 - Metade dos acessos à memória são remotos e têm latência 4x maior do que os acessos locais
 - –40% do tempo de simulação é passado em acessos à memória
 - Qual a melhor opção?

Questão

- -T(UMA) = 28,75 s
 - Acesso à memória 3x mais rápido
 - Metade dos acessos à memória são remotos e têm latência 4x maior do que os acessos locais
 - 40% do tempo de simulação em memória
- -T(NUMA) = 28,75*(0,6 + 0,4*(local+remoto)/3)
 - local = 0,5 (50%), remoto = 0,5*4 (latência)
- -T(NUMA) = 28,75*(0,6 + 0,4*2,5/3)
- -T(NUMA) = 28,75*0,93 = 26,83 s

MULTICOMPUTADORES

- Ideia
 - Múltiplos computadores trabalhando em conjunto
 - Poder de processamento maior do que apenas um computador
 - Alguns problemas são complexos demais para se resolver em um desktop apenas

NORMA

- -NO Remote Memory Access
- Computadores inteiros replicados
 - Cada um com sua própria memória independente
- Comunicação via troca de mensagens

- Diferentes sabores de multicomputadores
 - Network of workstations
 - -Clusters
 - Grids
 - -Cloud
 - Computação voluntária

- NOW
 - Network of Workstations
 - Computadores de trabalho interligados
 - Rede de interconexão tradicional
 - Baixo custo

Cluster

- Agregados de computadores
 - Como NOW, mas para alto desempenho
 - Rede padrão ou de baixa latência
 - Componentes redundantes ou não
 - Lâminas ou não

- Grid
 - Computação em grade
 - Máquina composta por componentes distribuídos
 - Clusters em diferentes cidades, por exemplo
 - Domínios diferentes, controle não centralizado
 - Interfaces e protocolos padrão para comunicação

- Exemplo: *Grid'5000
 Grid'5000
 Grade francesa

 - Composta de clusters
 - Mais de 7000 núcleos

- Cloud
 - -Similar a computação em grade
 - Recursos são utilizados sob demanda

- Pagos segundo o uso
- Recursos são virtualizados
- Paralelo com a rede elétrica
 - É utilizado sem se preocupar ou entender

- Computação voluntária
 - Disponibilização de recursos de computação pessoais para projetos
 - Uso de ciclos ociosos
 - -Interconexão pela Internet

http://folding.stanford.edu/

TAXONOMIA DE FLYNN

- Michael J. Flynn
 - -Some Computer Organizations and Their Effectiveness

- IEEE Transactions on Computers, 1972.
- Classificação baseada nos fluxos de instruções e dados

	Single Data (SD)	Multiple Data (MD)
Single Instruction (SI)	SISD	SIMD
Multiple Instructions (MI)	MISD	MIMD

- SISD
 - -Single Instruction, Single Data
- Presente em arquiteturas convencionais
 - Máquinas de von Neumann tradicionais
 - -Um núcleo, processadores mais antigos

- MISD
 - Multiple Instructions, Single Data
- Classe vazia, sem implementação
 - Discussão sobre dataflow

- SIMD
 - -Single Instruction, Multiple Data
- Execução síncrona
 - Processadores gráficos, arquiteturas Array
 - Processamento de matrizes, imagens, etc.

- MIMD
 - Multiple Instructions,Multiple Data
- Vários programas trabalhando sobre vários dados
 - Execução assíncrona
 - Grande gama de máquinas

MIPS

• MIPS32

- Exemplo usado na disciplina até o momento
- Livros Hennessy & Patterson
- Mais do que um exemplo didático!

MIPS Technologies

- Inicialmente MIPS Computer Systems
- Fabricação dos próprios chips
- Licença da ISA
- Exemplos de produtos usando MIPS

- Blu-ray players
- Roteadores
- Telefones

-Comprada em 2013 por Imagination **Technologies Imagination**

- Warrior 16400
 - -Superescalar
 - 2-issue in order
 - -OU Multithreaded
 - SMT
 - Multicore
 - Instruções SIMD

http://www.extremetech.com/computing/189190-imaginations-warrior-cpu-breathes-new-life-into-mips-will-attack-arm-on-multiple-fronts

- Warrior 16400
 - Superescalar
 - 2-issue in order
 - -OU Multithreaded
 - SMT
 - Multicore
 - Instruções SIMD

http://www.extremetech.com/computing/189190-imaginations-warrior-cpu-breathes-new-life-into-mips-will-attack-arm-on-multiple-fronts

MIPS em tablet

 http://arstechnica.co m/gadgets/2015/03/i maginationtechnologies-wantsto-take-mipsmainstream-withfirefox-os-tablet/

COMPUTAÇÃO HETEROGÊNEA

- Computação heterogênea ou híbrida ou processadores assimétricos ou ...
 - Combinação de diferentes processadores
 - CPUs
 - GPUs
 - DSPs
 - ASICs
 - FPGAs
 - •

- Processadores/núcleos em dois grupos
 - Para tarefas sequenciais
 - Inicialização, controle
 - Para tarefas paralelas
 - Number crunching

- Por quê misturar processadores?
- Exemplo c/ Amdahl!
 - Dois tipos de núcleos possíveis
 - Núcleo fraco, área = 1
 - Núcleo forte, 2x desempenho do núcleo fraco, área = 10
 - Aplicação 90% paralela
 - Qual o melhor processador para o problema com uma área = 100?
 - Speedup comparado ao uso de 1 núcleo fraco

- Processador homogêneo fraco
 - -100 núcleos fracos
 - -Speedup = 1/(0,1 + 0,9/100) = 9,17
- Processador homogêneo forte
 - -10 núcleos fortes
 - -Speedup = 1/((0,1+0,9/10)/2) = 10,53
- Processador heterogêneo
 - -90 núcleos fracos, 1 núcleo forte
 - -Speedup = 1/(0,1/2 + 0,9/90) = 16,67

- Exemplo: Processador Cell
 - -1 núcleo de propósito geral
 - -8 núcleos SIMD
 - Pode servir como acelerador para outros processadores

- Exemplo: AMD APU
 - Accelerated Processing Units
 - Combinação de CPU e GPU
 - A10-7850: 4 núcleos CPU, 8 GPU

- Exemplo de acelerador
 - Nvidia CUDA
 - -GTX 980
 - Arq. Maxwell
 - Setembro 2014

http://www.geforce.com/whats-new/articles/maxwell-architecture-gtx-980-970

- GTX 980
 - -2048 CUDA Cores
 - SIMT Single Instruction, Multiple Threads
 - Com Interleaved Multithreading
 - Organizados em 20 "multiprocessadores"
 - Cache compartilhada em um MP
 - Promete 5 TFLOPS de desempenho com 165W
 - TFLOPS: Tera (10¹²) Operações de ponto flutuante por segundo
 - -Serve de acelerador para uma CPU

- Exemplo: Nvidia Tegra 4
 - -System on Chip
 - Nvidia Project Shield, Microsoft Surface 2, etc.
 - Processador ARM Cortex-A15 MPCore
 - 4 núcleos + 1 de suporte
 - -GPU da Nvidia
 - 72 núcleos (CUDA Cores)

Quatro núcleos + um de suporte

- Intel Xeon Phi
 - Tema de casa ;)

SUPERCOMPUTADORES

- Máquinas milionárias
 - -Alto desempenho
 - Milhões de núcleos
 - -Grande memória
 - -Grande armazenamento
 - Redes de interconexão rápidas
 - Tudo que o dinheiro consegue comprar...

- Quais são os computadores de maior desempenho no mundo?
 - -Top500.org
 - Iniciado em 1993

- Benchmark Linpack
 - Resolve sistema denso de equações lineares
 - Pode ser otimizado para a máquina
 - Possui métrica para comparação
- Atualizado duas vezes por ano
 - Em junho na ISC, em novembro na SC

- Top500
 - Última lista: junho 2015
 - -1º lugar Tianhe-2
 - 3 milhões de núcleos, 33,8 PFLOPS

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
0	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5- 2692 12C 2 200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660

- Top500
 - Distribuiçãode empresas
 - Treemapbaseado nodesempenhoatingido
 - Junho 2014

- Top500
 - Uso de aceleradores
 - Treemapbaseado nodesempenhoatingido
 - Junho 2014

- Top500
 - Núcleos por socket
 - Treemapbaseado nodesempenhoatingido
 - Junho 2014

CONSIDERAÇÕES FINAIS

Considerações finais

 Classificação de computadores segundo a memória

Multiprocessadores

- Memória compartilhada
- Comunicação em variáveis compartilhadas

Multicomputadores

- Memória não compartilhada
- Comunicação via troca de mensagens

Considerações finais

- Unidade Central de Processamento
 - Desempenho
 - Monociclo
 - Multiciclo
 - Pipeline
 - -Superescalar
 - Multithread
 - Multicore

— ...

Considerações finais

- Lições
 - Máquinas são praticamente todas paralelas
 - Vocês já sabem programar paralelo?
 - Processadores complexos
 - Aceleradores, SIMD, Assimétricos ...
 - Quem conhece as arquiteturas consegue extrair o desempenho

INE5607 – Organização e Arquitetura de Computadores

Unidade Central de Processamento

Aula XX: Multiprocessadores, multicomputadores, processadores e plataformas modernas

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

