Big-O notation

$$1) \quad n^2 + n = O(n^2).$$

Sol :- Let
$$f(n) = n^2 + n$$
 and $g(n) = n^2$

$$0 \le f(n) \le C \cdot g(n)$$
 [Big-O definition/condition]

Now, we know that :-

when
$$n \ge 1$$
, $n^2 \in n^2 \longrightarrow 0$
and $n \le n^2 \longrightarrow 0$

$$0 \leq n^2 + n \leq 2 \cdot n^2$$

$$0 \leq f(n) \leq c \cdot g(n)$$

where,
$$f(n) = n^2 + n$$
, $g(n) = n^2$ and $c = 2$.

We can take
$$n_0 = 1$$
 (as for $n \ge 1$, (1) and (2)

Big-D notation Prove the following: 1) N3+4N2 = D(N2). son: Let f(n) = n3+4n2 and g(n)= n2 We need to show that there exists (>0 and no>0, such that 0 < c. g(n) < f(n) [Big - 1 definition/ condition) Now, we know that :when $n \ge 0$, $n^3 \le n^3 + 4n^2$ Also, when $N \ge 1$, $n^2 \le n^3$ So, by (1) and (2), we get, $0 \leq v_{5} \leq v_{3} \leq v_{3} + Av_{5}$ $\Rightarrow 0 \leq T(\mathbf{v}_{5}) \leq v_{3} + \lambda v_{5}$ Which is of the form $0 < c \cdot d(v) < f(v)$ where, $f(n) = n^3 + 4n^2$ and $g(n) = n^2$ and c = 1We can take no=1 (as for no=1, 1) and 2 are satisfied) So, for (=1, no=1, we have

 $\frac{\left(N_{3}+4V_{5}=1\right)\left(N_{5}\right)\left(H_{5}\right)\left(H_{5}\right)}{\left(H_{5}\right)\left(H_{5}\right)}$

$2) n^2 + n = \mathcal{L}(n^2)$
12:- Let $f(n) = n^2 + n$ and $g(n) = n^2$
We need to show that these exists coo and noon sucht
0 < C. g(n) < f(n) [Big-N definition/condition]
Now, we know that
when n > 0, n2 < n2+n -> 1)
From (), it is clear that
$0 \leqslant \underline{1}(n^2) \leqslant n^2 + n$
which is of the form
$0 \leq c \cdot g(u) \leq f(u)$
where $f(n) = n^2 + n$, $g(n) = n^2$ and $c = 1$.
We can take $n_o = 1$ (as for $n \ge 1$, (1) is satisfied)
So, for $c=1$, $N_o=1$, we have $ \sqrt{(n^2)} \left(\text{Hence proved} \right) $
Tozon - D (n2) (Hence proved)

0 notation

We need to show that there exists $c_1 > 0, c_2 > 0 \text{ and } n_0 > 0, \text{ such that}$ $0 \le c_1 g(n) \le f(n) \le c_2 g(n) (\Theta) \text{ definition/}$ condition

O notation

2)
$$n^2 + 5n + 7 = \Theta(n^2)$$

We need to show that is-

I)
$$n^2 + 5n + 7 = O(n^2)$$

when
$$n \ge 1$$
; $n^2 \le n^2 \longrightarrow (1)$
when $n \ge 1$; $5n \le 5n^2 \longrightarrow (2)$
when $n \ge 1$; $7 \le 7n^2 \longrightarrow (3)$

$$n^2 + 5n47 \leq 13 \cdot n^2$$

which is of the form

$$0 \leq f(u) \leq c \cdot g(u)$$

where
$$f(n) = n^2 + 5n + 7$$
,
 $g(n) = n^2$ and $c = 13$

$$m n^2 + 5n + 7 = SL(n^2)$$

$$\Rightarrow$$
 $0 \leqslant n^2 \leqslant n^2 + 5n + 7$

$$\Rightarrow$$
 $0 \leqslant T(v_3) \leqslant v_5 + 2v + 3$

$$0 \leq c \cdot g(n) \leq f(n)$$

where
$$f(n) = n^2 + S_n + 7$$
,

$$g(n) = n^2$$
 and $c = 1$

We can take
$$n_0 = 1$$
 (as for $n_0 = 1$, 0 , 0 , 0 and 0)