BEST AVAILABLE COPY

1)Normal Ovary 2) Tumor 3) Normal Ovary 4) Tumor

AVIHPDY SIPHPCY IIRHPQY SFRHPGY	300 NTTSCHILGW PGQNCTVSGW TGTKCLISGW PGTTCTVSGW	350 MLCAGDEKYG MVCAGSSK.G MFCVGFLEGG MLCAGIPDSK	
SSQEQSSVVR GPEQEIPVVQ GNEQFINAAK AQRIKASK PHGLGLGVQA	PLERDCSA SLADHCTQ SLPTAPPA RLPSRCEP	. TPGQITQN . YPGQITDG . YPGKITSN . YKDLLENS DFYGNQIKPK	
LGKHNLRQRE LGDHSLQNKD LGEHNIEVLE LGSDTLGDRR VFAGAVAQAS	AKLSELIQPL ASLGSKVKPI AVINARVSTI ARLSSMVKKV LPLTEYIQPV	LVSREECEHA IFPQKKCEDA VLSQAKCEAS LISPQDCTKV IISNDVCNGA	1 0 m 4 h
PNLQVF PKYTVR SRIQVR NEYTVH ERNRVLSRWR	DIMLL RLARP DLMLL QLRDQ DIMLI KLSSR DLMLV KLNSQ	PDTIQCAYIH PDTLNCAEVK PDELQCLDAP PSDLMCVDVK AGVLQEARVP	SEQ ID No. SEQ ID No. SEQ ID No. SEQ ID No.
PRIMER WVLTAAHC KK WVVTAAHC KK WVVSAGHC YK WVLTAAHC KM	251 DAASHDQ NSSDVEDHNH DRKTLNN STQTHVN RDPNSEENSN	301 GKTADGDF GTVTSPRENF GNTASSGADY GTTTSPDVTF	KDSCQ GDSGG ADTCQ GDSGG KDSCQ GDSGG KNACN GDSGG IDACQ GDSGG
201 Prom Tadg14 Try1 Scce Heps	Prom Tadg14 Try1 Scce Heps	Prom Tadg14 Try1 Scce Heps	Prom Tadg14 Try1 Scce Heps

Fig. 2

-	CTGTAGCAGGCAGAGCTTACCAAGTCTCTCCGAACTCAAATGGAAGAAATACCTTATGAA	60
6]		120
121		180
181		240
241		
301		
361		
421		
481		
	MGRPRAA	-
541	CCAAGACGTGGAT,GTTCCTGCTCTTGCTGGGGGGGGCCTGGGCAGGACACTCCAGGGCAC	600
	KTWMFLLLLGGAWAGH <u>SRAO</u>	_
601	AGGAGGACAAGGTGCTGGGGGGTCATGAGTGCCAACCCCATTCGCAGCCTTGGCAGGCGG	660
	E D K V L G G H E C Q P H S Q P W Q A A	_
661	CCTTGTTCCAGGGCCAGCAACTACTCTGTGGCGGTGTCCTTGTAGGTGGCAACTGGGTCC	720
	L F Q G Q Q L L C G G V L V G G N W V L	-
721	TTACAGCTGCCCACTGTAAAAAACCGAAATACACAGTACGCCTGGGAGACCACAGCCTAC	780
	TAAH+CKKPKYTVRLGDHSLQ	-
781	AGAATAAAGATGGCCCAGAGCAAGAAATACCTGTGGTTCAGTCCATCCCACACCCCTGCT	340
	N K D G P E Q E I P <u>V V Q S I</u> P H P C Y	-
841	ACAACAGCAGCGATGTGGAGGACCACAACCATGATCTGATGCTTCTTCAACTGCGTGACC	900
	NSSDVEDHNHD+LMLLQLRDQ	-
901	AGGCAT CCCT CCCT # 101 G/4/GCCC/T C/100 F CCCT CCCT CCCT CCCT C/100 F CCCT CCCT CCCT CCCT CCCT CCCT CCCT	960
	ASLGSKVKPISLADHCTQPG	-
961	GCCMGM161 GG. 1666 1 G161 G161 G161 G161 G161	1020
	Q K C T V S G W G T V T S P R E N F P D	
1021	10.101010101010101010101010101010101010	080
	T L N C A E V K I F P Q K K C E D A Y P	
1081		140
	G Q I T D G M V C A G S S K G A (D) T C Q	200
1141	AGGGCGATTCTGGAGGCCCCCTGGTGTGTGATGGTGCACTCCAGGGCATCACATCCTGGG	.200
		260
1201		. 200
1261	S D P C G R S D K P (G) V Y T N I C R Y L TGGACTGGATCAAGAAGATCATAGGCAGCAAGGGCTGATTCTAGGATAAGCACTAGATCT	320
1261	D W I K K I I G S K G * SEQ ID No. 6	.520
1321	CCCTTAATAAACTCACGGAATTC SEQ ID No. 7	
1321	CCCTIANTANCTCACGONATTC SEQ ID NO. 7	
' 1	= Kozak's Consensus sequence	
	·	
	+ = Conserved amino acids of catalytic triad H, D, S	
ſ	NSS = Possible N - linked glycosylation site	
•	—— = Poly - adenylation signal	
	· · · · · · · · · · · · · · · · · · ·	
ì	= Conserved nt of catalytic triad	
	= aa required for formation of an oxyanion hole for catalytic activity	•
FL	LL = Secretion signal sequence	

	•	•	; •	• •	
1027	CAGAACAAGTGTG	AGAGAGCCTATCO	AGGGAAGATCA	CCGAGGGCATGGT	1076
1056	CAGAAGAAGTGTG	AGGATGCTTACCC	GGGGCAGATCA	CAGATGGCATGGT	1105
1077	CTGTGCTGGCAGC	AGCAATGGAGCTG	ACACGTGCCAG	GGTGACTCAGGAG	1126
1106	CTGTGCAGGCAGC	AGCAAAGGGGCTG	ACACGTGCCAG	GGCGATTCTGGAG	1155
1127	GCCCTCTGGTGTG	CGACGGGATGCTC	CAGGGCATCAC	CTCATGGGGCTCA	1176
1156	GCCCCTGGTGTG	TGATGGTGCACTC	CAGGGCATCAC	ATCCTGGGGCTCA	1205
1177	GACCCCTGTGGGA	ACCCGAGAAACC	TGGAGTCTACA	CCAAAATCTGCCG	1226
1206	GACCCCTGTGGGAC	GTCCGACAAACC	TGGCGTCTATA	CCAACATCTGCCG	1255
	CTACACTACCTGG?				275
1256	CTACCTGGACTGGA	TCAAGAAGATCA'	TAGGCAGCAAG	GGCTGATTCTAG 1	304

Neur SEQ ID No. 8 T14 SEQ ID No. 9

adg14 1 MGRPRPRAAKTWMFLLLLGGAWAGHSRAQEDKVLGGHECQPHSQPWQAAL 5	50
europ 1 MGRPPPCAIQPWILLLLFMGAWAGLTRAQGSKILEGRECIPHSQPWQAAL 5	50
	LOO
51 FQGERLICGGVLVGDRWVLTAAHCKKQKYSVRLGDHSLQSRDQPEQEIQV 1	100
101 VQSIPHPCYNSSDVEDHNHDLMLLQLRDQASLGSKVKPISLADHCTQPGQ 1	.50
101 AQSIQHPCYNNSNPEDHSHDIMLIRLQNSANLGDKVKPVQLANLCPKVGQ 1	.50
	00
151 KCIISGWGTVTSPQENFPNTLNCAEVKIYSQNKCERAYPGKITEGMVCAG 2	00
201 SSKGADTCQGDSGGPLVCDGALQGITSWGSDPCGRSDKPGVYTNICRYLD 2	50
201 SSNGADTCQGDSGGPLVCDGMLQGITSWGSDPCGKPEKPGVYTKICRYTT 2	50
251 WIKKIIGSKG 260 SEQ ID No. 7	
251 WIKKTMONED 260 SEQ ID No. 10	

Fig. 8

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:			
☐ BLACK BORDERS			
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES			
☐ FADED TEXT OR DRAWING	•		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	,		
☐ SKEWED/SLANTED IMAGES	<i>*</i>		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS			
☐ GRAY SCALE DOCUMENTS			
☐ LINES OR MARKS ON ORIGINAL DOCUMENT			
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QU	JALITY		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.