Computación molecular sin memoria basada en ADN

Problemas de generación de permutaciones y camino hamiltoniano

Sergio Rodríguez Calvo, Septiembre 2017.

Computación Bioinspirada (MULCIA), Universidad de Sevilla.

ADN

Computación Molecular

- Tubo de ensayo contiene una solución con cadenas simples de ADN (oligos).
- Automatización de procesos sobre los tubos que realizan operaciones abstractas, tales como, medir, sumar, etc.
- Necesario un modelado y representación del problema adecuado para este tipo de computación.

Operaciones con moléculas de ADN

Algunos ejemplos de operaciones son:

- Desnaturalización: separar doble hebra calentando solución hasta un rango de 85°C - 95°C.
- Extracción: extraer de un tubo todas las moléculas que contienen una determinada subcadena, utilizando el método de las sondas metálicas.
- Cortar cadenas: uso de enzimas endonucleasas que cortan cadenas (simples o dobles) por cualquier sitio.

Modelo débil de Amos

- Tubo de ensayo con un multiconjunto finito de cadenas con alfabeto {A,C,G,T}.
- Operaciones en el modelo débil de Amos (primitivas) son:

```
o Quitar(T,{s1,...,sn}) .
```

- copiar(T,{T1,...,Tn}) .
- o Unión({T1,...,Tn}) .
- ∘ Selección(T).

Problema de la generación de permutaciones

• Permutación:

• Problema: dado un numero natural n mayor o igual que 2, generar todas las permutaciones de orden n.

Diseño molecular

- Alfabeto (pi,cj) para todo i,j entre [1,n].
- Dado un tubo de entrada T0 que contiene todas las posibles sucesiones:

```
PARA j = 1 hasta n - 1 HACER:
    copiar(T0,{T1,...,Tn})
    PARA i = 1 hasta n HACER:
        quitar(Ti, {})
    union({T1,...,Tn}, T0)
DEVOLVER T0
```

Verificación formal

Problema del camino hamiltoniano

Diseño molecular

- Alfabeto (pi,cj) para todo i,j entre [1,n].
- Dado un tubo de entrada T0 que contiene todas las posibles sucesiones:

```
PARA i = 1 hasta n - 1 HACER:
   T0 = quitar(T0, {})
DEVOLVER seleccionar(T0)
```

Verificación formal

Gracias

