JP-Y-S63-039297

Japanese Utility Model Publication No. S63-039297

Date of Publication: October 17, 1988

Application No. S55-182600

Date of Application: July 1, 1982

Inventors: Yutaka IImura

Applicant: Mitsui Wood Industrial Co., Ltd.
Title of the Invention: BEARING WALL MATERIAL

Claims:

1. A bearing wall material used as underlay material of inner or outer wall of a wooden house, characterized in that subsidiary material having a shearing force of the nailed junction more than said bearing wall material is embedded in a nailed portion of an outer periphery thereof.

Brief Description of Drawings:

Figs. 1 and 2 are perspective views of one embodiment of the present invention, and Fig. 3 is an illustration of an underlay material according to the present invention.

1 ... an underlay material body, 2 ... a subsidiary material,

3 ... a frame material, 4 ... nails.

Note:

If further translation is needed, pleas let us know.

EV 939 520681.4

\$550066151 \$500000 **RECEIVED**

OCT 1 4 2008

JAMES R. CYPHER

6 8 Ö S S. 9 3 \$

⑫実用新案公報(Y2)

昭63 - 39297

@Int_Cl_4

識別記号

庁内整理番号

昭和63年(1988)10月17日 200公告

E 04 C 2/46 7540-2E

(全3頁)

耐力壁材 ❷考案の名称

> 迎実 昭55-182600

開 昭57-106811 砂公

昭55(1980)12月19日 図出

@昭57(1982)7月1日

砂考 案 者 飯 村

東京都江東区東陽2丁目4番14号 三井木材工業株式会社 豊

内

三井木材工業株式会社 60円 頣

東京都江東区東陽2丁目4番14号

弁理士 尾股 行雄 砂代 理

外2名

審査官

山 田 忠夫

実開 昭51-83111(JP,U) 80 参考文献

包実用新案登録請求の範囲

木造住宅の内外壁の下張り材として用いられる 耐力壁材において、外周の釘着部位に、この耐力 壁材本体よりも釘接合せん断耐力の大きな補助材 を埋設したことを特徴とする耐力壁材。

考案の詳細な説明

本考案は、木造住宅の内外壁に用いる耐力壁材 に関し、更に詳しくは地震力や風圧力などの水平 荷重に対して有効な機械的強度を具備した安価な 壁下張り材に関するものである。

一般に木造建築物においては、それに作用する 水平荷重に対して安全かつ有効に抵抗しうるよう に単位骨組あるいは耐力壁を設けるのが通例であ り、特に後者の耐力壁構造をとることが一般的で ある。耐力壁構造の種類としては、筋かいや控柱 15 のような斜材で水平力に抵抗させる構造と、構造 用合板を柱、土台、桁等に釘着する構造があり、 従来の木造住宅では前者の構造のものが大半を占 めていたが、北アメリカより導入された枠組壁工 法住宅などにみられらるように、構造用合板,ハ 20 ードポード,パーテイクルポードといつた木質板 やフレキシブルポード,硅酸カルシウム板及びパ ルブセメント板といつた不燃板を枠組に釘着した 耐力壁構造が建設省告示で認可され、耐力面材を りつつあり、在来木造住宅においても筋かい工法 見なおしの気運が高まりつつある。すなわち、筋

かいを用いる耐力壁を水平力に対して有効に抵抗 させるためには、筋かいと軸組の取合い、特に土 台や桁などへの取付けを十分注意して行う必要が あり、施工が煩雑で、しかも高い技術が要求され 5 るが、施工者の技能レベル低下が著しく所定の目 的を達する施工が困難になりつつあり、筋かい施 工合理化のため各種金物を用いる施工法も開発さ れているものの、施工時の筋かいの割れ発生等の 不良も多いのが現実で、今後は在来木造住宅にお 10 いても耐力面材を軸組に釘着した耐力壁構造が一

般的になるものと推測される。

2

ところで、軸組が枠組に下張り材を釘着した壁 構造に水平力が作用した場合、その力は軸組や釘 接合を介して下張り材に伝達されることになるか ら、その意味では下張り材の変形のしにくさを示 す面内せん断弾性係数は、耐力壁の構造耐力に影 響を及ぼす重要な因子どいえる。ところが実際は どうかというと、軸組や枠組にかかつた水平力が 面材である下張り材に伝達されるのは下張り材の **釘接合の状態に影響される。すなわち下張り材の** 面内剛性は一般的に壁体の面内剛性よりかなり大 きく、釘との接合部がその耐力を支配している。 また、水平荷重を受けた壁体中の面材と軸組材や 枠組材との相互変位は、水平方向にいては下張り 用いる工法が筋かいを用いる工法より一般的にな 25 材の上下が、垂直方向にいては左右がそれぞれ大 きく、従つて各隅角部が最も大きく、隅角部が損 **侮し耐力が低下する結果となってしまう。一例を**

RECEIVED

挙げれば、厚さ 9 mmの構造用合板を下張り材とし て使用した枠組壁工法耐力壁において、構造用合 板のせん断弾性係数を用いて計算した高さ2420 mx、幅1820mの耐力壁を1/100ラジアンの変形を 生ぜしめる水平荷重は6900kgであるが、実際の試 5 験によると、構造用合板のせん断破壊ではなく、 釘接合部の破壊によって1800kgでもって破壊して しまうことが判明した。

本考案者は、上記のような実情を認識した結 果、下張り材保有のせん断性能を充分に生かせ、10 かつ省資源政策にも沿え、安価に提供できる下張 り材を案出する必要性を痛感し、本考案を完成す るに至つたものである。

従つて本考案の目的は、叙上のような要請に答 にある。即ち、この考案の耐力壁材は、木造住宅 の内外壁の下張り材として用いられる耐力壁材に おいて、外周の釘着部位に、この耐力壁材本体よ りも釘接合せん断耐力の大きな補助材を埋設した ことを要旨とする。

以下、図面に基づき本考案の実施例について説 明する。第1図、第2図はそれぞれ実施例の耐力 壁材の実施例を示す。これら実施例は、平板状の 下張り材本体1の外周部の釘着部位に、枠形状で な補助材2を埋設したものであり下張り材の素材 としては、壁体の最大耐力より釘頭貫通力に優れ た合板、ハードボード、及びパーティクルボード といった木質材が適当である。例えば、下張り材 本体 1 が合板の場合には、補助材 2 として合板よ 30 り比重が高く釘せん断性能、特に初期剛性の高い ハードポードやパーテイクルポードが使用でき、 また木質材以外ではフレキシブルポード、硅酸カ ルシウム板等の不燃材やアルミ板や薄板鉄板等の 金属板が使用可能である。下張り材本体 1 がハー 35 ドボードやパーティクルボードの場合は、補助材 2としてフレキシブルポード, 硅酸カルシウム板 等の不燃物やアルミ板、薄板鉄板等の金属板が好 適である。

に短冊状とするものが最も簡単だが、釘着部のみ 面積の大きい連珠状等、適宜変更することもでき る。このような下張り材を得るには、平板状の下 張り材本体の外周部に溝もしくは切欠部を設けて

おいて、その部分に補助材を埋め込み接着接合す るのが一般的である。下張り材本体 1 が合板のよ うな場合には、それを作る過程において補助材を 完全に埋設してもよいし、表面に補助材が露出す るように接着接合してもよい。

実際に施工する場合には、第3図に示すよう に、下張り材の補助材2の部分において、間柱等 の枠材3に釘4や又釘(ステーブル)で釘着すれ ばよい。

本考案の下張り材では、外周部の補助材の釘せ ん断性能は下張り材本体の釘せん断性能より優 れ、それ故下張り材本体の有する優れた面内せん 断性能を十分に生かすことが可能となり、優れた 耐力壁構造が可能となる。例えば、7.5m/m厚 えることのできる新規な耐力壁材を提供すること 15 の合板基材の場合、枠材と合板の相対変位 1 m/ m時の荷重はCN50釘1本あたり40kg、最大荷重 は80kgであるが、同じ7.5m/m厚の合板基材に -3 m/m厚で幅20m/mのハードボードを埋設し た場合には、同じく1m/m相対変位時の荷重は 20 CN50釘1本当たり55kg、最大荷重は110kgと耐 せん断性能は向上する。なお、補助材の幅は、釘 着の容易性より約10m/m以上は必要である。

因に厚さ7.5m/mの構造用合板(従来品)と、 厚さ7.5m/mの構造用合板の外周部に幅20m/ 該下張り材本体 1 よりも釘接合せん断耐力の大き 25 m、厚さ 3 m/mのハードボードを埋設 (接着接 合)した下張り材(本考案品)を枠組壁工法耐力 壁(1820m/m×2420m/mサイズ)として、 CN50釘を用い、外周100m/m間隔、内周200 加一加間隔で釘着した壁体のせん断試験結果は次 表のようになつた。

	せん断変形1/300ラ ジアン時荷重 (kg)	最大耐力 (ky)
従来品	850	2250
本考案品	1050	2400

1000

--

 ∞

9

0

2

5

EV 939

以上の通り、本考案の下張り材だと、下張り材 本体に若干の加工を行うだけで大幅な構造耐力を 得ることが可能になり、省資源に資するほか、本 補助材2の形状は、第1図や第2図に示すよう 40 考案の下張り材を用いることによつて木造建築物 の耐震性、耐風性を著しく向上させることができ るなど、その実益は計り知れないものがある。

図面の簡単な説明

第1図及び第2図は本考案の一実施例を示す斜

5

6

視図、第3図は本考案の下張り材の施工例を示す 説明図である。

1……下張り材本体、2……補助材、3……枠 材、4……釘。

