RESEARCH

2

Esmraldi: Efficient methods for the fusion of Mass Spectrometry and Magnetic Resonance images

Florent Grélard^{1,2*}, David ⁷Legland^{1,2}, Mathieu Fanuel^{1,2}, Bastien Arnaud^{1,2}, Loïc Foucat^{1,2} and Hélène Rogniaux^{1,2}

Abstract

Background: Mass Spectrometry Imaging (MSI) is a family of acquisition techniques producing images of the distribution of molecules in a sample, without any prior tagging of the molecules. This makes it a very interesting technique for exploratory research. However, the images are difficult to analyze because they are extremely large, and their content does not necessarily reflect the shape of the object of interest. Conversely, Magnetic Resonance Imaging (MRI) scans reflect the anatomy of the tissue. MRI also provides complementary information to MSI, such as the content and distribution of water.

Results: We propose a new workflow to merge the information from 2D MALDI–MSI and MRI images. Our workflow can be applied to large MSI datasets in a limited amount of time. Moreover, the workflow is fully automated and based on deterministic methods which ensures the reproducibility of the results. Our methods were evaluated and compared with state-of-the-art methods. Results show that the images are combined precisely and in a time-efficient manner.

Conclusion: Our workflow reveals molecules which co-localize with water in biological images. It can be applied on any MSI and MRI datasets which satisfy a few conditions: same regions of the shape enclosed in the images and similar intensity distributions.

Keywords: Image fusion; Image processing; Image registration; Spectra processing; Mass Spectrometry Imaging; Magnetic Resonance Imaging

*Correspondence:

florent.grelard@inrae.fr

¹ UR BIA, INRAE, F-44316,

Nantes, France

² BIBS facility, INRAE, F-44316, Nantes, France

Full list of author information is available at the end of the article

26 27

10

11

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

²⁸Background

25

The identification of molecules in metabolic pathways is essential for the physiolog
10 ical understanding of an organism. For instance, the growth of plant tissues is the result of various metabolic reactions. These reactions involve hundreds of molecules and depend on the water activity in localized regions of the plant (Joyce et al., 2002). In particular, the variations of the water viscosity across different stages of 33

Grélard et al. Page 2 of 19

¹ development is often responsible for the changes in tissue morphology (Robinson ¹
$^2\mathrm{et}$ al., 2000). In the wheat grain, water has a strong impact on the developmental 2
$^3\mathrm{stages},$ and on the functional properties for milling and baking in the mature grain. 3
$^4\mathrm{Cell}$ walls are believed to be key actors in water diffusion and distribution, similarly 4
$^5{\rm to}$ the observations made for barley grains (Pielot et al., 2015). However, a clear 5
$^6\mathrm{correlation}$ between cell wall structures and water distribution has never been es^{-6}
$^7\mathrm{tablished}.$ We seek to identify the chemical structures of cell wall molecules which^7
$^{8} \rm{correlate}$ spatially with the distribution of water.
9 This investigation can be led through image fusion, understood here as the joint 9
analysis of images from two imaging techniques.
On one hand, Matrix Assisted Laser Desorption Ionization – Mass Spectrometry 11
12 Imaging (MALDI–MSI) is an acquisition technique which produces ion images, 12
$^{13}{\rm that}$ is to say images of ionized molecules on the surface of a tissue. This acquisition 13
$^{14}{\rm technique}$ is increasingly popular, with applications ranging from clinical research 14
$^{15}($ Schöne et al., 2013), forensics (Francese, 2019), to plant biology (Boughton et al., 15
16 2015). Molecules are not tagged prior to the acquisition, which makes this technique
$^{17}\mathrm{extremely}$ relevant for exploratory research. However, the dimensionality of the 17
18 image data is very high: hundreds of ions, that is to say charged molecules, are 18
¹⁹ detected. Moreover, their distribution does not necessarily reflect the anatomical ¹⁹
structures in the tissue.
On the other hand, Magnetic Resonance Imaging (MRI) images highlight the 21
22 structural organization of a tissue. The intensity in the images reflects the proton 22
23 density, which is essentially correlated to the amount of water. The difference in 23
nature between the two imaging techniques makes it difficult to analyze the images ²⁴
$_{\rm pointly}^{25}$ jointly. Indeed, even though the pixel resolution is similar, the embedded objects $_{\rm pointly}^{25}$
26 do not strictly have the same geometrical shape. In fact, MRI is performed from 26
27 the whole object while MSI operates from thin sections. In addition, several steps 27
28 in MSI are required for tissue preparation, which induce local tissue deformations 28
29 and shrinkage. We propose a new workflow which addresses these discrepancies in 29
order to merge the information from both images. This workflow ultimately makes it 30
possible to identify molecules from MALDI–MS images whose distribution correlates ³¹
with the distribution of water in MRI. We show one application of this workflow on 32
wheat grain images.

Grélard et al. Page 3 of 19

¹ Fusion approaches for MSI combine other imaging modalities to supplement the ¹
² information given by MALDI–MS images. Buchberger et al. (2017) describe a typ- ²
$^3\mathrm{ical}$ workflow for the fusion of MALDI–MS images: (1) image pre-processing, (2) 3
4 segmentation, (3) co-registration, (4) joint data analysis: correlation, prediction. In 4
$^5{\rm the}$ following, we describe the steps which are shared by fusion workflows, regard- 5
$^6\mathrm{less}$ of the modalities chosen in combination with MS images. The $\mathit{pre-processing}^6$
7 step usually involves reducing the amount of data in the MS images. $Segmenta$ - 7
8tion consists in extracting the object of interest in the images from each modality. 8
$^9\mathrm{In}$ MS images, ion images enclose different, yet complementary information. The 9
$^{10}{\rm object}$ of interest is generally segmented by using several carefully selected ion im- 10
$^{11}{\rm ages.}\ Registration$ methods align images from different modalities by estimating the 11
$^{12}\mathrm{transformation}$ which ensures the best matching between the images. The local de- 12
$^{13}\mathrm{formations}$ in MS images can be compensated by deformable registration methods, 13
$^{14}\mathrm{such}$ as a grid of B-spline control points (Patterson et al., 2018). Finally, the images 14
$^{15}\mathrm{from}$ both modalities are analyzed jointly. For instance, the molecular distribution in 15
$^{16}\mathrm{MS}$ images can be mapped in higher resolution images (Van de Plas et al., 2015), or 16
$^{17}{\rm the}$ localization of molecules can be found in labelled anatomical regions (Verbeeck 17
¹⁸ et al., 2014).
19 Recent methods have been proposed to merge the information between MSI and 19
$^{20}\mathrm{MRI}$ images. Verbeeck et al. (2017) build a brain at las by co-registering MSI and 20
$^{21}\mathrm{MRI}$ images. First, the brain in the MS image is segmented by extracting a representation
22
22 tative image. This image corresponds to a manually selected score image from the 22
tative image. This image corresponds to a manually selected score image from the ²³ Principal Component Analysis (PCA) decomposition of the MS image. Then, the ²³
²³ Principal Component Analysis (PCA) decomposition of the MS image. Then, the ²³
²³ Principal Component Analysis (PCA) decomposition of the MS image. Then, the ²³ representative image is registered onto the MRI image using a deformable method. ²⁴
²³ Principal Component Analysis (PCA) decomposition of the MS image. Then, the ²³ ²⁴ representative image is registered onto the MRI image using a deformable method. ²⁴ ²⁵ Abdelmoula et al. (2019) combine MRI and MSI data in order to identify the ²⁵
²³ Principal Component Analysis (PCA) decomposition of the MS image. Then, the ²³ ²⁴ representative image is registered onto the MRI image using a deformable method. ²⁴ ²⁵ Abdelmoula et al. (2019) combine MRI and MSI data in order to identify the ²⁵ ²⁶ molecular distribution in different cell compartments. The shape is segmented in ²⁶
²³ Principal Component Analysis (PCA) decomposition of the MS image. Then, the ²³ ²⁴ representative image is registered onto the MRI image using a deformable method. ²⁴ ²⁵ Abdelmoula et al. (2019) combine MRI and MSI data in order to identify the ²⁵ ²⁶ molecular distribution in different cell compartments. The shape is segmented in ²⁶ ²⁷ the MALDI–MS image by a hierarchical version of the t-SNE algorithm, which ²⁷
²³ Principal Component Analysis (PCA) decomposition of the MS image. Then, the ²³ ²⁴ representative image is registered onto the MRI image using a deformable method. ²⁴ ²⁵ Abdelmoula et al. (2019) combine MRI and MSI data in order to identify the ²⁵ ²⁶ molecular distribution in different cell compartments. The shape is segmented in ²⁶ ²⁷ the MALDI–MS image by a hierarchical version of the t-SNE algorithm, which ²⁷ ²⁸ builds different levels of detail across several ion images. This segmented shape is ²⁸
²³ Principal Component Analysis (PCA) decomposition of the MS image. Then, the ²³ ²⁴ representative image is registered onto the MRI image using a deformable method. ²⁴ ²⁵ Abdelmoula et al. (2019) combine MRI and MSI data in order to identify the ²⁵ ²⁶ molecular distribution in different cell compartments. The shape is segmented in ²⁶ ²⁷ the MALDI–MS image by a hierarchical version of the t-SNE algorithm, which ²⁷ ²⁸ builds different levels of detail across several ion images. This segmented shape is ²⁸ ²⁹ registered onto the MRI image with a deformable registration method. Correspon- ²⁹
²³ Principal Component Analysis (PCA) decomposition of the MS image. Then, the ²³ ²⁴ representative image is registered onto the MRI image using a deformable method. ²⁴ ²⁵ Abdelmoula et al. (2019) combine MRI and MSI data in order to identify the ²⁵ ²⁶ molecular distribution in different cell compartments. The shape is segmented in ²⁶ ²⁷ the MALDI–MS image by a hierarchical version of the t-SNE algorithm, which ²⁷ ²⁸ builds different levels of detail across several ion images. This segmented shape is ²⁸ ²⁹ registered onto the MRI image with a deformable registration method. Correspon- ²⁹ ³⁰ dences with the MRI are established visually. Both these methods use manual steps, ³⁰

Grélard et al. Page 4 of 19

¹ the wheat grain (see Fig. 1). We select and propose efficient methods, which do not ¹
$^2\mathrm{require}$ manual steps. First, the grain is segmented in both images. The MRI image^2
$^3\mathrm{is}$ denoised with an algorithm specifically suited for these images. The temporal 3
$^4\mathrm{dimension}$ of the MRI image is reduced and a simple thresholding scheme allows to 4
$^5{\rm segment}$ the grain. The MALDI–MS image is reduced in its spectral dimension by 5
$^{6}\mathrm{a}$ new peak detection algorithm. Then, the grain is segmented by region growing on 6
$^7\mathrm{a}$ subset of representative, non-noisy images. We propose a new measure to identify 7
$^8{\rm this}$ subset. Secondly, the segmented shape from the MALDI–MS image is registered 8
$^9\mathrm{onto}$ the segmented shape in the MRI image. An initial linear registration method is 9
$^{10}\mathrm{used},$ and allows for a global alignment of the shapes. However, this registration step 10
$^{11}\mathrm{does}$ not compensate for the local geometrical deformations induced by the sample 11
$^{12}\mathrm{preparation}$ in MALDI–MSI. Thus, the first linear registration step is followed by a^{12}
$^{13}\mathrm{deformable}$ registration step. Thirdly, we find spatial correlations between the water 13
$^{14}\mathrm{distribution}$ in MRI images and the ion images from MALDI–MSI. This is achieved 14
$^{15}\mathrm{by}$ finding proximities between the MRI image and the ion images in MSI in the 15
$^{16}\mathrm{space}$ of components generated by matrix factorization techniques. This workflow is 16
$^{17}\mathrm{validated}$ by an extensive evaluation with comparisons to state-of-the-art methods. 17
18
₁₉ Methods
$_{20}\mathrm{In}$ this section, we introduce a new workflow for the fusion of 2D MALDI–MS and $_{20}$
₂₁ MRI images.
22 Image acquisition
Whole wheat grains (Triticum aestivum L. cv Recital, 250 degree celsius per day 23
after flowering) are imaged in MRI without sample preparation. Proton density
25 images are obtained using multi-slice multi-gradient echo pulse sequence. This se-
quence produces images of decreasing signal intensity over several discrete time
steps, called echoes (see Fig. 2). Here, eight echoes are obtained, starting at time
t=1.26 ms and spaced apart by one millisecond. The signal decreases over time ²⁸
following a negative exponential function. The resulting image is a four dimensional ²⁹
stack (3D + echo time) of size $100 \times 100 \times 14 \times 8$ pixels. The transverse 2D slices have
a pixel size of 50 μ m, and a slice thickness of 0.5 mm. Various instrumental bias,
such as magnetic field inhomogeneities, induce noisy intensities in the image with
Rician distribution.

Grélard et al. Page 5 of 19

The same wheat grains are imaged in MALDI-MSI. The sample preparation is
2 described in Fanuel et al. (2018); first, the tissue is sectioned in several transverse 2
$^3{\rm slices},$ then the tissue is digested by specific enzymes, and the MALDI–MS matrix is 3
$^4\mathrm{sprayed}$ onto the sample. Images are acquired using a rapiFlex TissueTyper MALDI- 4
$^5\mathrm{MS}$ spectrometer (Bruker, Daltonics, Bremen). Molecule ionization is done by a^5
$^6355~\mathrm{nm}$ laser operating at 10 kHz (BIA-BIBS platform). The resulting MALDI–MS 6
$^7\mathrm{image}$ is an hyperspectral image, that is to say a three dimensional datacube with 7
$^8{\rm two}$ spatial dimensions (image height and width) and a spectral dimension (see Fig. 8
93). Molecules on the spectral dimension are characterized by their mass-to-charge 9
$^{10}(m/z)$ ratio. Each pixel corresponds to a spectrum, and encloses the molecular 1
11 distribution at this position. The image size is $152\times138\times65000$ pixels (width, height, 1
¹² number of points in a spectrum). The pixel size is 25 μm , and the spectral resolution ¹
¹³ is 0.017. The space between consecutive slices is 80 μm .
The steps of the proposed workflow are detailed in the following sections, with an
emphasis on the new proposed methods and their efficiency.
16 1
17 Pre-processing of MRI images
The MRI images are denoised using a non-local means method specifically suited to the control of
₂₀ for the removal of Rician noise (Wiest-Daesslé et al., 2008). This method replaces a ₂
$_{21} \mathrm{pixel}$ value by the average intensity in the image, weighted by the intensity similarity $_2$
22 to the target pixel.
The 3D density image, that is to say the image at time $t=0$, is estimated by fitting ²
24 a mono-exponential function on the signal intensities. This function is adjusted by 2
25 non-negative least squares regression, with the Levenberg–Marquardt algorithm. 2
The intensities between the grain and the background are clearly separated. Thus, ²
$^{27}\mathrm{a}$ simple thresholding scheme is used for the segmentation of the wheat grain. The 2
$^{28}\mathrm{outer}$ structure of the wheat grain, called pericarp, is not visible on MS images. It 2
$^{29} \mathrm{is}$ removed from the segmented image by applying a morphological opening for the 2
30 subsequent registration step (see Fig. 4), with the radius of the structuring element 3
³¹ set to 2 pixels (Soille, 2004).
Finally, a 2D transverse slice $(x-y \text{ plane})$ is chosen in the 3D density image to
match the 2D MALDI-MS image. It is chosen as the MRI slice that is the closest.

Grélard et al. Page 6 of 19

to the analyzed MALDI-MS slice along the z-axis, and is found by utilizing the	91
² resolution and the slice thickness of both images.	2
3	3
₄ Pre-processing of MALDI–MS images	4
$_5\mathrm{The}$ spectral dimension in the MALDI–MS image is reduced using peak detection	1 ₅
eand peak alignment.	6
⁷ Spectra processing MALDI-MS images mainly contain non relevant information	,
$^{8}\mathrm{due}$ to the large amount of points associated with noise in the spectral dimension	8
9 Peak detection consists in identifying local maxima in the spectra whose intensity	_
is above the signal noise. Ideally, the peak detection methods must be complete	
that is to say they identify all true peaks across all spectra; specific, that is to say	
they contain no false positives; and efficient. Yang et al. (2009) compare existing	12 S
13 methods for peak detection in MS images, and conclude the continuous wavele	13
14 transformation achieves the best trade-off between completeness and specificity	14
However, the computation time is prohibitive as the number of points increases.	15
We propose a complete and efficient peak detection method, based on the <i>promi</i>	16 -
17 $nence$ of the peaks relative to the signal noise (Kirmse and de Ferranti, 2017). The	17 e
prominence of a peak is defined as the height of this peak relative to the height	18
of the neighbouring peaks. This measure discards local maxima which come from	19 1
irregularities in the signal. Let $y(x)$ be a spectrum, P the set of local maxima y	,
$p = (x_p, y_p) \in P$ a peak, w the half-length of a window, and $m_p = (x_m, y_m) \in P$	21
the peak such that m_p is the closest peak to p with $y_m \geq y_p$ for $x \in [-w,w]$. 22
If $x_m \neq x_p$, the prominence of p is the vertical distance between p and the local	.l ²³
minimum between p and m_p , else the prominence is equal to y_p .	24
We define the <i>local prominence</i> as the ratio between the prominence and the	25 e
estimated local noise in the signal. This local measure is specifically suited to peak	26 (
detection for varying peak intensities across the m/z -axis. In practice, all spectra	
28 are considered individually. The local noise is estimated as the median of absolute	28
deviations in a window. First, local maxima are extracted and constitute an initia	1 ²⁹
set of peaks. Then, this set is refined by selecting peaks whose local prominence	30
values are above a given noise threshold.	31
Small m/z variations are observed for the same molecule at different pixel local	32
tions, due to instrumental instabilities and sample preparation imprecisions (irreg	

Grélard et al. Page 7 of 19

¹ularities in the tissue flatness). Peak alignment consists in mapping the previously ¹ ²detected peaks to a common m/z value, in order to facilitate spectrum comparison.² ³Here, peaks are aligned by matching peaks to detected peaks in the mean spectrum³ ⁴(Alexandrov, 2012). ₆Segmentation After peak detection and alignment, selected ion images do not nec-₆ 7essarily reflect the shape of the embedded object (see Fig. 5). Moreover, ion images 7 8 might highlight different parts of the wheat grain. Thus, a complete segmentation 8 90f the wheat grain is obtained by region growing on a subset of relevant images,9 10that is to say images where parts of the wheat grain are apparent. 11 First, we extract a subset of relevant ion images. Alexandrov and Bartels (2013)₁₁ 12introduce a new measure called spatial chaos, which quantifies abrupt intensity 12 13 variations in an image. This measure characterizes how points with high intensity 13 14 values are spread, using various binarized versions of the image. The spatial chaos 14 15 values are generally low for relevant ion images, and high for noisy images. This 15 16does not hold for noisy images with intensity artefacts (see Fig. 5a), and when the 16 ₁₇variance noise is low (see Fig. 5b). 17 Our method is adapted to discard these images and builds on the approach pro-18 19posed by Alexandrov and Bartels (2013). We define a new measure, called spatial 19 20coherence. Our measure considers the area of the largest connected component in 20 21different binarized versions of the image. In the following, the intensities of each ion21 ₂₂image are normalized between 0 and 255. Let I be an ion image, t a threshold, T_{22} ₂₃a set of thresholds, $B_t(I)$ a binarized version of I obtained with t, C(B) the set of c_{23} ₂₄connected components in B, then the spatial coherence S(I) is defined as: 25 $S(I) = \min_{t \in T} \max_{c \in C(B_t(I))} |c|$ 26

In practice, we choose T as a set of thresholds defined by the following quantiles of intensity values: [0.6, 0.7, 0.8, 0.9]. The spatial coherence values are low for noisy images, and high for relevant images. A subset of relevant ion images is obtained by selecting images whose spatial coherence values are above a given threshold.

Second, a region growing procedure is applied on the subset of relevant ion images. The initial seed point is chosen as the point with the highest intensity in the subset.

An initial segmented shape is obtained by applying the region growing procedure.

Grélard et al. Page 8 of 19

on the ion image containing the seed point. This segmented shape is refined incre-
2 mentally by iterating over each ion image, and ultimately captures the shape of the 2
³ wheat grain (see Fig. 6). The pixel intensities in the segmented shape correspond ³
⁴ to the average intensities in the subset of relevant images.
5
⁶ Registration ⁶
$^7\mathrm{At}$ this stage, both segmented shapes in MALDI–MS and MRI images can be 7
$^8\mathrm{matched}.$ Registration methods aim at finding the transformation which best aligns 8
$^9\mathrm{two}$ objects. The transformation parameters are estimated by optimizing a metric 9
$^{10}\mathrm{which}$ quantifies the similarity between both images. This metric can be based on 10
11 intensity values, or the geometrical shape of the objects. In the following, we are 11
$^{12}\mathrm{interested}$ in automatic methods to register the segmented wheat grain in $\mathrm{MALDI-}^{12}$
$^{13}\mathrm{MSI}$ with respect to its counterpart in MRI. First, we globally align the objects with 13
$^{14}\mathrm{a}$ linear registration method using an affine transform. Then, we use a deformable 14
$^{15}\mathrm{registration}$ method to compensate for the local geometrical deformations induced 16
$^{16}\mathrm{by}$ sample preparation in MALDI–MSI (see Section Image acquisition). We choose 16
$^{17}\mathrm{the}$ MR image as the reference image because it encloses the non-deformed shape. 17
$^{18}\mathrm{The}$ resulting deformed MS image is thus easier to interpret biologically because 18
¹⁹ molecules are distributed across anatomical regions of the tissue.
Regarding the linear registration method, the affine transformation involves trans- 20
21 lation, rotation and scaling and is initialized by aligning both centers of the objects 21
$^{22}\mathrm{using}$ moments. Both images have a bimodal intensity distribution. Thus, we choose
23 the mutual information for the similarity metric, which is a measure estimating the
24 statistical dependence between the intensity distributions of both images. This met- 24
ric is optimized by a regular gradient descent optimization algorithm.
The quality of a deformable registration method is determined by the shape re-
$^{\rm 27}$ semblance and the intensity fidelity between the two images, after registration. De- $^{\rm 27}$
formable registration methods can be classified into different categories depending
on the parametrization of the model (Zikic et al., 2010). Parametric methods, such
as B-spline free form deformations (FFD), involve a transformation with a small 30
31 number of parameters. However, it is difficult to choose an adequate number of 31
32 parameters to obtain a good compromise between shape resemblance and intensity
fidelity. On the other hand, non-parametric methods, often referred to as variational

Grélard et al. Page 9 of 19

methods, map each pixel in the image to a displacement vector. Modersitzki (2009)
$^2\mathrm{describes}$ variational methods as the minimization of a functional involving two^2
$^3\mathrm{terms}\colon (\mathrm{a})$ external forces: the similarity metric, and (b) internal forces: the regular- 3
$^4\mathrm{ization}$ term. The minimization of the similarity metric brings similar pixels close to 4
5 one another, whereas that of the regularization term avoids local irregularities in the 5
$^6\mathrm{vector}$ field. This is particularly important in regions where the intensity difference 6
$^7\mathrm{between}$ both images is null or low. We choose the sum of squared differences as the 7
$^8\mathrm{metric}$ because both images of the wheat grain have similar intensities. In a more 8
$^9\mathrm{traditional}$ multimodal case, the mutual information metric is more suited because 9
¹⁰ intensities do not necessarily match. Moreover, we choose the elastic regularization ¹⁰
$^{11}\mathrm{strategy}$ because its parameters μ and λ grant a fine control over the rigidity of 12
12 the material, which is necessary to preserve the internal shape of the object (Broit, 12
¹³ 1981).
¹⁴ Finally, the estimated affine and deformable transformations are applied to the ¹⁴
¹⁵ MALDI–MSI datacube, that is to say to each individual ion image. For both reg-
16 istration steps, the intensities are obtained by nearest-neighbor interpolation, so as 16
¹⁷ to not create extraneous intensities in the ion images.
18
¹⁹ Joint statistical analysis
20 We aim at finding the molecules in MALDI–MSI ion images whose distribution 20
21 correlates with the water distribution in MRI, and identify groups of molecules who
share the same distribution pattern. Ovchinnikova et al. (2020) evaluated several
23 measures to identify spatial correlations between pairs of images. For measures
24 requiring no machine learning, the cosine distance yielded the closest results to 24
25 those obtained by experts. However, the complexity is quadratic when searching for 25
²⁶ groups of similar ion images.
We opt for a matrix-factorization approach. Statistical analysis is achieved in ²⁷
three steps: (a) matrix factorization of the MALDI–MS image, (b) projection of the
density MRI image in the reduced space produced by matrix factorization and $\left(c\right)^{20}$
30 selection of the MALDI–MS ion images which are closest to the MRI image in this 30
space.
The intensities of each indivual ion image are normalized on a $0-255$ range.
The MALDI-MSI datacube is reshaped into a two-dimensional matrix where the

Grélard et al. Page 10 of 19

¹ rows correspond to pixels and the columns to mass-to-charge ratios, that is to ¹
$^2\mathrm{say}$ molecules. Siy et al. (2008) evaluate several matrix factorization techniques in^2
$^3{\rm the~context}$ of MALDI–MS images : Principal Component Analysis (PCA), ${\rm Non-}^3$
$^4\mathrm{Negative}$ Matrix Factorization (NMF), Independent Component Analysis (ICA). 4
$^5\mathrm{These}$ methods produce two smaller matrices with a fixed number of components 5
$^6\mathrm{and}$ whose product is an approximation of the original matrix. One matrix $\mathrm{encloses}^6$
$^{7}\mathrm{component}$ images, that is to say the contribution of each pixel in the components, 7
$^8\mathrm{and}$ the second matrix corresponds to the contribution of molecules in the compo- 8
$^{9} \mathrm{nents.}$ Both ICA and NMF produce component images with less noise than PCA. 9
10 We choose NMF because its non-negativity constraint makes it possible to interpret 10
¹¹ the component images more easily.
12
3Results
$_4{\rm In}$ this section, the efficiency of our workflow is shown by comparison to state-of-the- $_{14}$
$_{5}\mathrm{art}$ methods, using wheat grain images as an example. Additional information about $_{15}$
$_{16} \mathrm{input}$ files, parameters, and result reproducibility is available in the Availability of $_{16}$
7data and materials Section.
Peak detection
Our peak detection algorithm is compared to the method based on continuous of
wavelet transformation (CWT), which Yang et al. (2009) found to give the most 20
complete results, with the lowest amount of false positive peaks. Both methods are
compared using synthetic simulated data and real data. The synthetic simulated
dataset is a MALDI–MS image containing a hundred spectra, where theoretical
peaks are known (Morris et al., 2005). The real dataset is a subset of a hundred 24
pixels of the MALDI–MS image of the wheat grain. The spectra were annotated 25
manually and produce a subset of theoretical peaks.
For both CWT and our algorithm, the parameters were set such that the totality
of theoretical peaks were identified with as few false positive peaks as possible. The
efficiency of our method is assessed by two metrics: (a) the completion time t per
spectrum, in milliseconds (b) the precision p , i.e. the ratio between the number of
theoretical peaks with respect to the number of detected peaks.
The results are presented in Table 1. Our method has lower precision values $(9.68\%)^{32}$
and 11.2% vs. 13.0% and 14.8% for the synthetic and real dataset, respectively),

Grélard et al. Page 11 of 19

1			р	t (ms)	1
_	Combbatia	CWT	0.130	1200	
2	Synthetic	Ours	0.0968	19	2
3	Deel	CWT	0.148	8600	3
	Real	Ours	0.112	47	
4					

 $_5$ Table 1 Precision p and computation time t per spectrum (in milliseconds) for peaks detected on synthetic and real data, using our algorithms (Ours) and continuous wavelet transformation $_5$ CWT). CWT is not suited to large MALDI-MS images because of its computation time.

7

⁸which means our method yields slightly more false positive results. In practice, 18^8 ⁹supplementary peaks are detected on average by our method. This is negligible with ⁹ ¹⁰regard to the average number of detected peaks (n = 600). The computation time ¹⁰ ¹¹per spectrum for our method is much lower, which makes it the best candidate for ¹¹ ¹²large MSI datasets.

13

14

¹⁴Segmentation

¹⁵Our segmentation method is assessed by analyzing the images extracted in the ¹⁵ ¹⁶relevant set, and quantifying how much each image in the relevant set adds to the ¹⁶ final segmentation.

The segmented objects are compared by estimating the correlation between the ¹⁸ curvature distributions of the object contours. The curvature is estimated locally at ¹⁹ each point of the object contour using the Voronoi Covariance Measure (VCM, Cuel ²⁰ et al. (2014)). The VCM is a covariance measure of Voronoi cells located around ²¹ the target point. This measure is linked to the curvature, since Voronoi cells are ²² restricted in areas with extreme curvature values, and are elongated in flat areas. ²³ The curvature distributions of the MSI and MRI images are compared by computing ²⁴ the Spearman correlation coefficient.

Our method is compared to the spatial chaos method (see Section Pre-processing of MALDI-MS images). For both methods, we assess whether the shapes in the segmented MS and MR images are similar. We compare the distributions of curvature values on the shape boundary between the MR image and the segmented MS image. First, the curvature values are estimated using the Voronoi Covariance Measure (VCM) estimator (Cuel et al., 2014). Then, the curvature distributions are compared using the Spearman correlation coefficient (Spearman, 1904), which measures the strength of a monotonic relationship between two distributions. The

Grélard et al. Page 12 of 19

¹threshold on either the spatial coherence or the spatial chaos measures are chosen ¹ ²such that the Spearman correlation coefficient is the highest, that is to say the ² ³shapes in the segmented MS and MR images are most similar.

The curvature distributions follow the same trend (see Fig. 7). The Spearman correlation coefficient (Spearman, 1904) for the final segmentation is 0.540 with our measure, and 0.438 for the spatial chaos. This discrepancy is due to the number of ion images found and used by each method: 31 images for our measure versus mages for the spatial chaos measure. The spatial chaos approach misses several relevant ion images, which results in an incomplete segmented image. Thus, our method provides a segmentation which is more precise.

11 12

Registration

The registration approach is evaluated by quantifying the similarity between the $_{14}$ $_{15}$ pixel intensities of the original and the registered MALDI–MS image. This is $_{16}$ achieved by computing the mutual information m_I . Moreover, various metrics are $_{16}$ $_{17}$ used to measure the shape resemblance between the MRI and registered images. $_{17}$ $_{18}$ The segmented images are binarized, and three metrics are used: (a) the precision $_{18}$ $_{19}p$, i.e. the ratio between the number of common pixels and the number of pixels $_{19}$ $_{20}$ in the MALDI–MS image, (b) the recall r, i.e. the ratio between the number of $_{20}$ $_{21}$ common pixels and the number of pixels in the MRI image and (c) the F-measure $_{21}$ $_{22}F = 2 \cdot \frac{p \times r}{p+r}$.

The registration method was evaluated by comparison with a free form defor-23 $_{24}$ mation model (FFD) consisting in a grid of B-spline control points. Two sets of $_{24}$ $_{25}$ parameters were used to obtain the best F values (FFD₁) on one hand, and the $_{25}$ $_{26}$ best m_I values (FFD₂) on the other hand.

21_						_27
		p	r	F	m_I	
28	Affine	0.876	0.890	0.883	0.994	28
29	Affine + Variational	0.951	0.975	0.963	0.454	29
23	$Affine + FFD_1$	0.940	0.984	0.961	0.419	23
30	$Affine + FFD_2$	0.871	0.958	0.912	0.471	30

 $^{^{31}}$ Table 2 Registration metrics for the evaluation of the used method (affine + variational) by 31 $_{32}$ comparison to the free form deformation model with two sets of parameters (FFD₁ and FFD₂): $_{32}$ precision p, recall r, F-measure, and mutual information m_I . The variational method offers the 33 best compromise between intensity fidelity and shape similarity.

Grélard et al. Page 13 of 19

1 The results are presented in Table 2 and Figure 8. Our method gives the best F^{-1}
$^2\mathrm{measure}~(0.963)$ by comparison to the FFD method. The intensities before and after 2
3 registration are close, with a mutual information value of 0.454 bits. By contrast, 3
4 the registered image with FFD $_1$ is less similar in shape (96.1%), and very different in 4
$^5\mathrm{terms}$ of intensities (see Fig. 8d). The registered image with FFD_2 is more faithful 5
6 in terms of intensities, but the shape is not as precise (see Fig. 8e). Indeed, the 6
$^7\mathrm{deformation}$ of the variational method is more homogeneous than the one obtained 7
8 with FFD ₁ , and more precise in terms of vector orientations than the one obtained 8
9 with FFD $_2$ (see Fig. 9). The selected method offers the best compromise between 9
Ointensity fidelity and shape resemblance.
.1
.2
Joint statistical analysis
4We choose the number of components for NMF such that the coefficient of determi-12
₅ nation R^2 is greater than 0.95. Spatial correlations were evaluated by comparison to $_{15}$
6those found by the cosine distance, which was shown to be the most precise measure 16
7(see Section Joint statistical analysis). Each ion image was ranked according to its 17
$_{8}$ similarity to the MRI image. On average, ion rankings deviate from the rankings $_{18}$
$_{90}$ btained by the cosine distance by 2.9%. Thus, our method provides similar results. $_{15}$
20 NMF yields several component images which highlight specific regions in the 20
21 wheat grain (see Fig. 10). The contribution matrix showed ions assigned to ara- 21
22 binoxylans (i.e. polysaccharides) with low degrees of polymerization were located in 22
23 the grain lobes (see Fig. 10a), feruloylated arabinoxylans (i.e. arabinoxylans with
24 ferulic acid residues) were in the posterior outer layers of the wheat grain (see 24
25 Fig. 10 b), and arabinoxylans with various degrees of polymerization and without
26 chemical modification were observed in the center of the grain (see Fig. 10c). The
²⁷ distribution of feruloylated arabinoxylans in posterior areas of the grain was previ- ²⁷
²⁸ ously observed in the literature (Veličković et al., 2014).
Spatial correlations are established with the projection of the MRI image onto
the reduced space produced by NMF. The projected image is formed by a linear
combination of the NMF component images. We aim at quantifying the amount
of lost information induced by the projection. The average absolute difference in
33. intensities between the original MRI image and the projected image is only about

Grélard et al. Page 14 of 19

¹ 4.2% (see Fig. 11). Thus, the projection in the NMF space preserves the intensities ¹
² of the original image.
3 Both these results support the relevance of the selected matrix factorization ap- 3
⁴ proach.
5 $$ The molecules which correlate the most with the distribution of water are arabi- 5
$^6\mathrm{noxylans}$ with low degrees of polymerization and an acetyl group. These molecules 6
$^7\mathrm{are}$ distributed mainly in the lobes of the grain (see Fig. 12). We suspect that the^7
$^8 \rm acetylation$ of a rabinoxylans renders the cell wall network better able to uptake $\rm wa-^8$
$^9\mathrm{ter}$ by changing the hydrophobicity properties of the polysaccharides, as hinted in 9
$^{10}\mathrm{Gille}$ and Pauly (2012). Thus, the joint analysis of MSI and MRI images identified 10
$^{11}{\rm acetylated}$ arabinoxylans as new candidates likely to contribute to the absorption 11
¹² of water in the developing grain.
13
Discussion 14
L5 Applicability 15
$_{16}{\rm The~proposed}$ workflow is particularly suited for exploratory research. The present $_{16}$
$_{17}\mathrm{study}$ allows for the discovery of new candidates involved in the uptake and dis- $_{17}$
$_{18}\mathrm{tribution}$ of water in the wheat grain. The workflow does not depend on the case_{18}
$_{19}\mathrm{study}$ and can be applied on any dataset which satisfy two main conditions. First, $_{19}$
$_{20} \mathrm{our}$ segmentation approach relies on the hypothesis that the object has the same $_{20}$
$_{21}$ overall shape, or contain similar features in both images. Second, our registration $_{21}$
$_{22}$ and statistical analysis methods make the assumption that the intensity distribu- $_{22}$
$_{23}$ tion is comparable between MRI images and at least one ion image in MSI. These $_{23}$
broad conditions make our workflow applicable to a large number of MSI and MRI_{24}
es ^{images} .
Our workflow can be reused in combination with other modalities. MSI and ${\rm flu}\textsubscript{-}_{26}$
$_{27} \rm orescence$ microscopy can be merged in order to discover molecular partners of $_{27}$
$_{28} {\rm fluorescent}$ proteins, such as the study led in Jones et al. (2020). On another note, $_{28}$
$_{29}\mathrm{MSI}$ and Raman spectroscopy images can be analyzed jointly to identify $\mathrm{specific}_{29}$
$_{30}$ regions in the sample (Ryabchykov et al., 2018).
Research prospects
Registration methods aim at matching two ore more images by finding correspon-
dences between images. However, correspondences do not always exist in specific

Grélard et al. Page 15 of 19

¹areas of the images. For instance, the signal might be extremely low in certains ¹ ²areas of the tissue in MS images. In our case, the pericarp of the wheat grain is ² ³apparent in MRI images but absent from MS images. We alleviated this problem by ³ ⁴discarding the pericarp during the segmentation of the MRI image. We are currently ⁴ ⁵working on finding missing correspondences automatically during the registration. ⁵ ⁶This can be done by building probabilistic correspondence maps (Krüger et al., ⁶ ⁷2020) or using geometrical constraints (Chen et al., 2015). Our workflow processes 2D MALDI-MS images. In the future, several images will be imaged, providing a 3D representation of the molecule distribution across the sample. Three-dimensional extensions of our methods need to be considered. Regarding the segmentation procedure, the spatial coherence measure is independent of the dimensionality, and a 3D region growing procedure can be used. The variational registration method of Modersitzki (2009) is suited to 3D images. In order to perform the joint statistical analysis in 3D, multiblock methods, such as multiple co-inertia analysis (Meng et al., 2014), can be used. 16 17 18 Conclusions 18

19In this article, we have proposed a new workflow for the fusion of MRI and MSI19
20images which involves precise and efficient methods. There are two main challenges20
21using MALDI-MS images in an image fusion task. First, these images enclose a21
22large amount of data. Secondly, tissue preparation induces local sample deforma-22
23tions. The selected and proposed methods are specifically suited to address these23
24problems. In particular, we proposed a new peak detection method which achieves24
25fast computation while being complete. Our new segmentation approach utilizes25
26the information contained in numerous ion images, which provides a complete and26
27precise segmented MALDI-MS image. The selected registration approach compen-27
28sates for local irregularities. Finally, the spatial correlations are established by a28
29dimension reduction technique which limits data loss. We validated each step of our29
30workflow by a quantitative evaluation involving comparison with state-of-the-art30
31methods. Our workflow provides accurate results across all steps, which demon-31
32strates its relevance in an image fusion task involving MSI.

33

Grélard et al. Page 16 of 19

¹ List of abbreviations	1
	2
CWT Continuous Wavelet Transform. FFD Free-form deformation model.	3
MALDI Matrix Assisted Laser Desorption Ionization.	Ü
MRI Magnetic Resonance Imaging.	4
5 MSI Mass Spectrometry Imaging.	5
NMF Non-negative Matrix Factorization.	
6 VCM Voronoi Covariance Measure.	6
7	7
8Declarations	8
Ethics approval and consent to participate 9	9
Not applicable.	9
10	10
11Consent for publication	11
Not applicable. 12	12
¹³ Availability of data and materials	13
14The synthetic dataset used for peak selection is available at :	14
https://bioinformatics.mdanderson.org/public-datasets/. The other datasets used and analysed during the \$c\$ study are available from the corresponding author on reasonable request.	current 15
16 The source code and documentation with examples are available online at https://github.com/fgrelard/Esmraldi Please refer to the "User guide – Parameter setting" additional file online for a practical guide on the usage of the set of the	
10 11	18
19 Competing interests	19
²⁰ The authors declare that they have no competing interests.	20
	0.1
21	21
22 ^{Funding}	22
This work received the financial support of the Région Pays-de-la-Loire through the Biogenouest annual call for ²³ projects (project number 1753–34000779). The funding body was involved in the approval of the initial design of	
the study. 24	24
25	25
Authors' contributions	25
26The images were acquired by BA, MF, HR, and LF. Methods were chosen, selected and proposed by FG and The worflow was validated and results were interpreted by all authors. The article was written by FG and pr 27 by all authors.	
28	28
29Acknowledgements	20
The authors would like to thank Camille Alvarado (INRAE UR1268 BIA, Nantes, France) for the tissue	29
30 subsectioning required for MALDI-MS sample preparation. The authors also thank Anne–Laure Chateigner- 31Fabienne Guillon and Luc Saulnier (INRAE UR1268 BIA, Nantes, France) for their valued biological interpre	
the results.	
32	32
Author details 33 1 UR BIA. INRAE. F-44316. Nantes. France. ² BIBS facility. INRAE. F-44316. Nantes. France.	33
UR DIA INKAE E-44310 Nantes France - BIBS facility INKAE E-44316 Nantes France	

Grélard et al. Page 17 of 19

References	1
2Abdelmoula, W.M., Regan, M.S., Lopez, B.G.C., Randall, E.C., et al.: Automatic 3d Nonlinear Registration of Mass	32
Spectrometry Imaging and Magnetic Resonance Imaging Data. Analytical Chemistry 91 (9), 6206–6216 (2019). doi:10.1021/acs.analchem.9b00854. Accessed 2019-06-13	3
4Alexandrov, T.: MALDI IMS: statistical data analysis and current computational challenges. BMC Bioinformatics 13(S16) (2012). doi:10.1186/1471-2105-13-s16-s11	4
⁵ Alexandrov, T., Bartels, A.: Testing for presence of known and unknown molecules in imaging mass spectrometry.	5
Boughton, B.A., Thinagaran, D., Sarabia, D., Bacic, A., Roessner, U.: Mass spectrometry imaging for plant biology:	6
7 a review. Phytochemistry Reviews 15 (3), 445–488 (2015). doi:10.1007/s11101-015-9440-2 Broit, C.: Optimal registration of deformed images. PhD thesis, USA (1981). AAI8207933	7
⁸ Buchberger, A.R., DeLaney, K., Johnson, J., Li, L.: Mass spectrometry imaging: A review of emerging advancements	8
Chen, K., Derksen, A., Heldmann, S., Hallmann, M., Berkels, B.: Deformable image registration with automatic non-correspondence detection. In: Lecture Notes in Computer Science, pp. 360–371. Springer, Heidelberg (2015).	
doi:10.1007/978-3-319-18461-6_29. https://doi.org/10.1007%2F978-3-319-18461-6_29 Cuel, L., Lachaud, JO., Thibert, B.: Voronoi-based geometry estimator for 3d digital surfaces. In: Advanced	11
12 Information Systems Engineering, pp. 134–149. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09955-2_12. https://doi.org/10.1007/978-3-319-09955-2_12	12
Fanuel, M., Ropartz, D., Guillon, F., Saulnier, L., Rogniaux, H.: Distribution of cell wall hemicelluloses in the wheat grain endosperm: a 3d perspective. Planta 248(6), 1505–1513 (2018). doi:10.1007/s00425-018-2980-0	14
Francese, S.: Criminal profiling through MALDI MS based technologies – breaking barriers towards border-free forensic science. Australian Journal of Forensic Sciences 51 (6), 623–635 (2019).	15
doi:10.1080/00450618.2018.1561949 Gille, S., Pauly, M.: O-acetylation of plant cell wall polysaccharides. Frontiers in Plant Science 3 (2012).	16
17 doi:10.3389/fpls.2012.00012	17
Jones, M.A., Cho, S.H., Patterson, N.H., de Plas, R.V., et al.: Discovering new lipidomic features using cell type specific fluorophore expression to provide spatial and biological specificity in a multimodal workflow with MALDI	18
19 IMS (2020). doi:10.26434/chemrxiv.9853856 Joyce, D.C., Hockings, P.D., Mazucco, R.A., Shorter, A.J.: 1h-nuclear magnetic resonance imaging of ripening	19
kensington pride mango fruit. Functional Plant Biology 29 (7), 873 (2002). doi:10.1071/pp01150	20
Physical Geography: Earth and Environment 41 (6), 788–802 (2017). doi:10.1177/0309133317738163	21
 Krüger, J., Schultz, S., Handels, H., Ehrhardt, J.: Registration with probabilistic correspondences — accurate and robust registration for pathological and inhomogeneous medical data. Computer Vision and Image Understanding 	22
190 , 102839 (2020). doi:10.1016/j.cviu.2019.102839	
datasets. BMC Bioinformatics 15 (1), 162 (2014). doi:10.1186/1471-2105-15-162. Accessed 2019-07-31	25
DUILLI DA USA (2000)	26
Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., Kobayashi, R.: Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 21 (9), 1764–1775	27
28 (2005). doi:10.1093/bioinformatics/bti254 Ovchinnikova, K., Stuart, L., Rakhlin, A., Nikolenko, S., Alexandrov, T.: ColocML: machine learning quantifies	28
- · · · · · · · · · · · · · · · · · · ·	29
doi:10.1093/bioinformatics/btaa085 Patterson, N.H., Tuck, M., de Plas, R.V., Caprioli, R.M.: Advanced registration and analysis of MALDI IMS	30
measurements through autofluorescence microscopy. Analytical Chemistry 90 (21), 12395–12403 (2018).	31
doi:10.1021/acs.analchem.8b02884 32 Pielot, R., Kohl, S., Manz, B., Rutten, T., <i>et al.</i> : Hormone-mediated growth dynamics of the barley pericarp as	32
	33

Grélard et al. Page 18 of 19

6927–6943 (2015). doi:10.1093/jxb/erv397	1
2Robinson, A., Clark, C.J., Clemens, J.: Using 1h magnetic resonance imaging and complementary analytical	2
techniques to characterize developmental changes in the zantedeschia spreng. tuber. Journal of Experimental	
³ Botany 51 (353), 2009–2020 (2000). doi:10.1093/jexbot/51.353.2009	3
Ryabchykov, O., Popp, J., Bocklitz, T.: Fusion of MALDI spectrometric imaging and raman spectroscopic data for the analysis of biological samples. Frontiers in Chemistry 6 (2018). doi:10.3389/fchem.2018.00257	or 4
5Schöne, C., Höfler, H., Walch, A.: MALDI IMS in cancer research: Combining proteomic profiling and histologica	J 5
evaluation. Clinical Biochemistry 46(6), 539–545 (2013). doi:10.1016/j.clinbiochem.2013.01.018	
⁶ Siy, P.W., Moffitt, R.A., Parry, R.M., Chen, Y., et al.: Matrix factorization techniques for analysis of imaging ma	ss 6
7 spectrometry data. In: 8th IEEE BIBE (2008). doi:10.1109/bibe.2008.4696797.	7
https://doi.org/10.1109%2Fbibe.2008.4696797	8
⁸ Soille, P.: Morphological Image Analysis. Springer, Heidelberg (2004). doi:10.1007/978-3-662-05088-0.	
9 https://doi.org/10.1007%2F978-3-662-05088-0	9
Spearman, C.: The proof and measurement of association between two things. The American Journal of Psychologous 100 (3/4), 441 (1904). doi:10.2307/1422689	ogy 10
Van de Plas, R., Yang, J., Spraggins, J., Caprioli, R.M.: Image fusion of mass spectrometry and microscopy: a	11
multimodality paradigm for molecular tissue mapping. Nature Methods 12(4), 366–372 (2015).	
12 doi:10.1038/nmeth.3296	12
Veličković, D., Ropartz, D., Guillon, F., Saulnier, L., Rogniaux, H.: New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI msi. Journ	13 nal
of Experimental Botany 65 (8), 2079–2091 (2014). doi:10.1093/jxb/eru065	14
Verbeeck, N., Yang, J., De Moor, B., Caprioli, R.M., et al.: Automated anatomical interpretation of ion distribution	
in tissue: Linking imaging mass spectrometry to curated atlases. Analytical Chemistry 86 (18), 8974–8982	15
(2014). doi:10.1021/ac502838t. PMID: 25153352. https://doi.org/10.1021/ac502838t	16
Verbeeck, N., Spraggins, J.M., Murphy, M.J.M., Wang, Hd., Deutch, A.Y., Caprioli, R.M., de Plas, R.V.:	
Connecting imaging mass spectrometry and magnetic resonance imaging-based anatomical atlases for automa-	ted ¹⁷
anatomical interpretation and differential analysis. BBA - Proteins and Proteomics 1865 (7), 967–977 (2017). doi:10.1016/j.bbapap.2017.02.016	18
19Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S.P., Barillot, C.: Rician Noise Removal by Non-Local Means	19
Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI. In: MICCAI 2008 vol. 5242, pp. 171–1720 Springer, Heidelberg (2008). doi:10.1007/978-3-540-85990-1_21.	79. 20
21 http://link.springer.com/10.1007/978-3-540-85990-1_21 Accessed 2019-05-10	0.4
Yang, C., He, Z., Yu, W.: Comparison of public peak detection algorithms for MALDI mass spectrometry data	21
22 analysis. BMC Bioinformatics 10 (1) (2009). doi:10.1186/1471-2105-10-4	22
Zikic, D., Kamen, A., Navab, N.: Unifying characterization of deformable registration methods based on the	23
inherent parametrization. In: Biomedical Image Registration, pp. 161–172. Springer, Heidelberg (2010).	20
24 doi:10.1007/978-3-642-14366-3_15. https://doi.org/10.1007%2F978-3-642-14366-3_15	24
²⁵ Figures	25
26	26
Figure 1 Overview of the proposed workflow. Steps for the fusion the fusion of (a) MRI (top	
row) and MALDI-MS (bottom row) images of a wheat grain. (b) The first step consists in	27
extracting a representative shape through image reduction and segmentation. (c) The segmented	28
shape in MALDI-MS is registered onto the MRI shape. This step involves linear and deformable	20
registration methods. (d) Joint correlative analysis of the images: selection of the ion images in	29
MALDI-MS which exhibit a similar spatial distribution as the distribution of water in MRI.	30
31	31
32	32
33	33

Grélard et al. Page 19 of 19

Figure 2 MRI images obtained at different echoes. (a) first echo (b) second echo and (c) third echo. The intensity is decreasing over time following an exponential function. Figure 3 MALDI-MS image: 3D datacube, or hyperspectral image. A spectrum (in red) is associated to each pixel and describes the molecular content at this position. Each molecule is associated to an ion image, and is characterized by its mass-to-charge ratio (m/z) and relative ion intensity. Figure 4 Segmentation of MRI images. (a) Original MRI image and (b) resulting segmented image. The pericarp (outer structure) of the wheat grain is removed in the segmented grain so as to compare MRI and MALDI-MS images more easily. Figure 5 Examples of MALDI-MS images exhibiting differences in intensities for different mass-to-charge ratios. (a) 432.92, (b) 476.28 and (c) 611.33. (a) Image resulting from an 12 artefact: high signal detected outside of the sample. (b) Noisy image. (c) Spatially coherent image. 13 Figure 6 Segmentation method for MS images. Refinement of a segmented shape by region 14 growing on a subset of relevant ion images. (a) Initial ion image and (b) associated segmented 15 shape obtained by region growing. (c) Complete segmentation obtained by applying the region growing procedure on the full subset of images. 16 Figure 7 Validation of the segmentation approach. Curvature values are computed on the 18 contours of the (a) MR image, and MALDI-MS segmented images using (b) our method and (c) 19 the spatial chaos measure. The values range from low (flat areas, in blue) to high (salient points, in red). The values are close in all images, but the spatial chaos measure yields high curvature 20 values in the posterior part of the tissue (circled in red) which are low for the MR image. This reflects a slightly incomplete segmentation in the case of the spatial chaos measure. Figure 8 Registration of the MALDI-MSI image onto the MRI image. Registration of the segmented MALDI-MS image onto the (a) denoised MRI image: (b) linear registration followed 24 by (c) the variational method of Modersitzki (2009) or (d-e) free form deformation models with two different parameters (FFD1 and FFD2). (e) The circled area (in red) shows a difference in shape compared to the MRI image. 26 Figure 9 Vector fields obtained by deformable registration methods. The vectors correspond to the displacements applied to the MS image to match the MR image, obtained by : (a) the variational method of Modersitzki (2009) or free form deformation models with two different parameters (b) FFD_1 (c) FFD_2 . The vector field resulting from the variational method is more homogeneous than that of FFD_1 and more precise than that of FFD_2 . Figure 10 Component images and molecule distribution. Selected component images resulting 32 32 from NMF, exhibiting different molecule distributions across the wheat grain: (a) lobes, (b) outer layers, (c) transfer cells.

Grélard et al. Page 20 of 19

1		1
2		2
3		3
4		4
5		5
6		6
7		7
8	Figure 11 Projection of the MRI image in the NMF reduced space. Difference between (a) the	8
9	original MRI image and the (b) MRI image projected in the NMF space and obtained by linear combination of the component images. Both images have similar intensities. The NMF does not	9
10	result in major information loss.	10
11		11
12		12
13		13
14		14
15		15
16		16
17		17
18		18
19		19
20		20
21		21
22		22
23		23
24		24
25	Figure 12 Example of strong spatial correlations between MRI and MSI. Example of a close	25
26	spatial correlation between (a) the MRI image and (b) the MALDI–MS ion image of $\it m/z$ 785.30,	26
27	corresponding to an arabinoxylan with a degree of polymerization of 5 with two acetyl groups.	27
28		28
29		29
30		30
31		31
32		32
33		33