ESAME ELABORAZIONE SEGNALI BIOMEDICI - ESERCITAZIONE MATLAB

Anno Accademico 2022/2023 - PRIMO APPELLO

NOME:	COGNOME:	
NUMERO MATRICOLA:		POSTAZIONE PC #:

Si consideri il segnale TEST01.mat, contenente il tracciato di un **ECG** (unità di misura mV) acquisito alla frequenza di Fc=500Hz e definito su una griglia temporale in cui il primo campione viene associato al tempo t=0 secondi.

PARTE 1 – COSTRUZIONE DEL SEGNALE DI INGRESSO (2pt)

Dalla registrazione originale si estraggano gli N=1000 elementi, a partire dal tempo di acquisizione t=0.5 secondi. Associare tale vettore di elementi al vettore segnale_originale, e definire un nuovo vettore time, rappresentante la griglia temporale di tale segnale. Dato il segnale_originale, calcolare i valori associati alla media del segnale e al suo range max e minimo e completare la seguente tabella

VARIABILE	RISPOSTA	UNITÀ DI MISURA
Numero di campioni	1000	n/a
segnale_originale		
Durata temporale del	1.998	s
segnale_originale		
Intervallo temporale	[0.5, 2.4998]	S
[tstart,tend] del		
segnale_originale		
Media del segnale_originale	0.0612	mV
Minimo del segnale_originale	-0.1550	mV
Massimo del segnale_originale	0.89	mV

PARTE 2 - FILTRAGGIO (2pt)

Progettare un filtro passa basso con due poli di modulo 0.95 alla frequenza di taglio di 5 Hz, uno zero nell'origine e uno zero sul cerchio di raggio unitario alla frequenza di 0 Hz. Imporre al filtro un guadagno G=0.1. Calcolare la variabile segnale_filtrato rappresentante l'uscita del filtro applicato alla variabile segnale_originale.

VARIABILE	RISPOSTA	UNITÀ DI MISURA
Numero di campioni	1000	n/a
segnale_filtrato		
Durata temporale del	1.998	S
segnale_filtrato		
Intervallo temporale	[0.5, 2.4998]	S
[tstart,tend] del segnale_filtrato	-	

PARTE 3 – ANALISI SPETTRALE (2pt)

Dati il segnale_originale e il segnale_filtrato utilizzare il metodo del Peridiogramma per calcolare la densità spettrale di potenza dei due segnali. Calcolare la densità spettrale di potenza media dei due segnali nell'intervallo di frequenza 0-10Hz e completare la seguente tabella

	RISPOSTA	UNITÀ DI MISURA
Densità spettrale di potenza media segnale originale	0.419	mV ² /Hz

FILE DA CONSEGNARE

- FILE SCRIPT Cognome_Nome_Matricola_ESAME.m contenente lo script utilizzato per risolvere esame
- FILE FIGURA (1pt) Cognome_Nome_Matricola_SEGNALE.fig che confronta in un unico plot il segnale_orginale (plot in colore blu) con il segnale_filtrato (plot in colore rosso)
- FILE FIGURA (1pt) Cognome_Nome_Matricola_FILTRO.fig che riporta il digramma poli/zeri del filtro
- FILE FIGURA (1pt) Cognome_Nome_Matricola_SPETTRO.fig che confronta su un unico plot il peridiogramma del segnale originale (plot in colore blu) e del segnale_filtrato (plot in colore rosso)
- FILE MATLAB (3pt) Cognome_Nome_Matricola_RISULTATI.mat che riporta le seguenti variabili:
 - o segnale_originale: vettore 1-D che rappresenta il segnale originale
 - o segnale filtrato: vettore 1-D che rappresenta il segnale filtrato
 - o time: vettore 1-D che rappresenta i tempi del segnale originale e filtrato
 - o z: vettore 1-D che rappresenta gli zeri del filtro
 - o p: vettore 1-D che rappresenta i poli del filtro
 - modulo: vettore 1-D che rappresenta il modulo del filtro nell'intervallo di frequenze [0 250 Hz] definito su N=2048 punti
 - fase: vettore 1-D che rappresenta la fase del filtro nell'intervallo di frequenze [0 250 Hz] definito su N=2048 punti ed espressa in gradi