Faculty of Engineering University of Jaffna, Sri Lanka MC1020 Mathematics

Assignment - 04

1. Identify the relationship between set $A = \{1, 2, 3\}$ and set $B = \{2, 3, 4\}$?

- (a) A is a proper subset of B (c) A is a superset of B
- (b) A is not a subset of B
- (d) A is a subset of B

2. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{4, 5, 6, 7\}$. Find $n(A \cup B)$?

- (a) 5
- (b) 6
- (c) 7
- (d) 8

Duration: 90 Minutes

3. If $A = \{x \mid x \text{ is a prime number less than } 10\}$ and $B = \{x \mid x \text{ is an } 10\}$ even number less than 10} then find the set $(A \cap B)$?

(a) $\{2, 3, 5, 7\}$

(c) {}

(b) $\{2,4,6,8\}$

 $(d) \{2\}$

4. If A, B are two sets then the notation $A \oplus B$ is defined by

- (a) $(A B) \cup (B A)$
- (c) $(A B) \cup (B + A)$
- (b) $(A B) \cap (B A)$
- (d) $(A B) \cap (B + A)$

5. Find the conjugate of $\frac{3+2i}{2-i}$

(a) $\frac{4}{5} - \frac{7}{5}i$

(c) $-\frac{4}{5} - \frac{7}{5}i$

(b) $\frac{4}{5} + \frac{7}{5}i$

(d) $-\frac{4}{5} + \frac{7}{5}i$

6. $(\sin \theta + i \cos \theta)^n$ is equal to

- (a) $\cos n\theta + i \sin n\theta$
- (c) $\cos n(\frac{\pi}{2} \theta) + i \sin n(\frac{\pi}{2} \theta)$
- (b) $\sin n\theta + i\cos n\theta$
- (d) None of the above

7. If $Z_1 = 1 - i$ and $Z_2 = i$ then find $\operatorname{Re}\left(\frac{\bar{Z}_1 \cdot Z_2}{Z_1}\right)$

(a) 1

(c) 0

(b) -1

(d) 2

8.	The locus represented by $ Z-1 = Z+i $ is	
	 (a) a circle of radius 1 (b) an ellipse with foci at (1,0) & (0,-1) (c) a straight line through the origin (d) a circle on the line joining (1,0),(0,1) as diameter 	
9.	Let $f(x) = x $ is a function, identify the type of critical point at $x = 0$,	
	(a) a minimum(b) a maximum	(c) point of inflection(d) neither minimum or maximum
10.	0. Let $f: R \to R$, $f(x) = \sqrt{x^2 - 3x + 2}$. Find the domain of $f(x)$	
	(a) $(-\infty, 1] \cup [2, \infty)$ (b) $(-\infty, 1) \cup (2, \infty)$	(c) $(-\infty, -3] \cup [3, \infty]$ (d) $(-\infty, -3] \cup (3, \infty)$
11.	I) $f(x) = x^2$ where $f: \mathbb{N} \to \mathbb{N}$ II) $f(x) = x + 1$ where $f: \mathbb{Z} \to \mathbb{Z}$ Based on statements I and II, select the correct answer, (a) I is injective and II is surjective (b) both are injective and surjective	
	(c) both are injective	
	(d) I is surjective and II is injective	
12.	Find the linear approximation of the parabola $f(x) = x^2$ at the point $x = 1$.	
	(a) $x^2 + 1$	(c) $2x - 1$
	(b) $2x + 1$	(d) $2x + 2$
13.	Let f be a continuous function on the closed interval $[-3,6]$. If $f(-3)=-1$ and $f(6)=3$, then the Intermediate value theorem guarantees that	
	(a) $f(0) = 0$	
	(b) $f(c) = 1$ for at least one c between -3 and 6 . (c) $f(c) = 0$ for at least one c between -1 and 3 . (d) $-1 \le f(x) \le 3$ for all x between -3 and 6 .	

- 14. Given that $f(x,y) = \frac{x+y}{1-xy}$; x = 2u v and y = 4u 2v, find the value of $\frac{\partial f}{\partial u}$ at u=2 and v=3
 - (a) 18
- (b) -12
- (c) 9
- (d) 12

- 15. Evaluate the $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$.
 - (a) -1

(c) 1

(b) 0

- (d) the limit does not exist
- 16. Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).
 - (a) z = 2x 4y 3
- (c) z = 4x + 2y 3
- (b) z = 4x 2y + 3
- (d) None of the above.
- 17. Find the shortest distance from the point (1,0,-2) to the plane x + 2y + z = 4.
 - (a) $\frac{5\sqrt{6}}{6}$ (b) $\frac{5\sqrt{3}}{2}$ (c) $\frac{6\sqrt{5}}{6}$ (d) $\frac{6\sqrt{5}}{5}$

- 18. A plane π has equation ax + by + z = d. The points A(2, -1, 2), B(4, -4, 2), C(5, -6, 3)lie on π . Find the values of a, b, d?
 - (a) a = 2, b = 3, d = 6
- (c) a = 3, b = 2, d = 6
- (b) a = 3, b = 2, d = 8
- (d) a = 2, b = 3, d = 4
- 19. Find the equation of the plane passing through A(4,2,0), B(3,1,1) and C(4,-1,1).
 - (a) 2x + y + z = 8

- (c) 2x + 2y + 3z = 8
- (b) 2x + y + 3z = 10
- (d) 2x + y + 3z = 10
- 20. Find the equation of the line which goes through (4, -2, -7) and which is parallel to both 2x - 5y - 2z = 8, and x + 3y - 3z = 12.

 - (a) $l \equiv \begin{pmatrix} 4 \\ -2 \\ -7 \end{pmatrix} + \lambda \begin{pmatrix} 21 \\ 4 \\ 11 \end{pmatrix}$ (c) $l \equiv \begin{pmatrix} 4 \\ -2 \\ -7 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix}$
 - (b) $l \equiv \begin{pmatrix} 4 \\ -2 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -5 \\ 2 \end{pmatrix}$ (d) $l \equiv \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 21 \\ 4 \\ 11 \end{pmatrix}$

- 21. Find the directional derivative of the function f(x,y) = xy at point P(0,-2) in the direction of $v = \frac{1}{2}i + \frac{\sqrt{3}}{2}j$
 - (a) 1
- (b) -2
- (c) -1
- (d) 0
- 22. For what values of x does the series $\sum_{n=0}^{\infty} \frac{1}{4^n} (x-1)^{2n}$ converges
 - (a) -2 < x < 2

(c) -3 < x < 1

(b) -1 < x < 3

- (d) x < 3
- 23. Choose the suitable the condition for the convergent of the series, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$
 - (a) $b_{n+1} < b_n \& \lim_{n \to \infty} b_n = 0$ (c) $b_{n+1} = b_n \& \lim_{n \to \infty} b_n = 0$
 - (b) $b_{n+1} > b_n \& \lim_{n \to \infty} b_n = 0$
- (d) none of these
- 24. Find the interval of convergence for the function $\frac{x^3}{x+2}$, using power series representation.
 - (a) (-1,1)

(c) (-2,2)

(b) (0,2)

- (d) (-2,0)
- 25. Find the coefficient of x^n in the Taylor polynomial of degree n $n \geq 2$ for $f(x) = \sqrt{1+x}$ about x = 0

 - (a) $\frac{(-1)^n \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1)}{2^n n!}$ (c) $\frac{(-1)^{n+1} \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-3)}{2^n}$
 - (b) $\frac{(-1)^n \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-1)}{2^n}$ (d) $\frac{(-1)^{n+1} \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-3)}{2^n n!}$