## Работа 3.5.1

# Изучение плазмы газового разряда в неоне.

#### Малиновский Владимир

galqiwi@galqiwi.ru

**Цель работы:** Исследование кривых намагничивания ферромагнетиков с помощью баллистического гальванометра.

**В работе используются:** генератор тока с блоком питания, тороид, соленоид, баллистический гальванометр с осветителем и шкалой, амперметры, магазин сопротивлений, лабораторный автотрансформатор (ЛАТР), разделительный трансформатор.

### Теория

#### Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля  ${\bf E}$  и плотности  $\rho$  электрического заряда

$$\mathrm{div}\;\mathbf{E}=4\pi\rho,$$

а с учётом сферической симметрии и  $\mathbf{E} = -\mathrm{grad}\ \varphi$ :

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении  $\frac{e \varphi}{k T_e} \ll 1$  получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где  $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$  – paduyc Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды  $\sigma=nex$ , поле от которых будет придавать электронам ускорение:

$$n$$
 электронов, сме-  
 $n \sigma = nex$ , поле от  $\frac{E}{1}$ 

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. (5)$$

#### Одиночный зонд

При внесении в плазму уединённого проводника — зонда — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где  $\langle v_e \rangle$  и  $\langle v_i \rangle$  — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому  $I_{i0} \ll I_{e0}$ . Зонд будет заряжаться до некоторого равновестного напряжения  $-U_f$  — nлаванощего nотенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал  $U_3$  на зонд и снимать значение зондового тока  $I_3$ . Максимальное значение тока  $I_{e\text{H}}$  – электронный ток насыщения, а минимальное  $I_{i\text{H}}$  – ионный ток насыщения. Значение из эмпирической формулы Бомона:



$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}. (7)$$

#### Двойной зонд

Двойной зонд – система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая  $U_f$ . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$
  
$$U_2 = -U_f + \Delta U_2.$$

Между зондами  $U=U_2-U_1=\Delta U_2-\Delta U_1$ . Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left( 1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ( $I_1 = -I_2 = I$ ):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left( 1 - \frac{I}{I_{\text{iff}}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left( 1 + \frac{I}{I_{\text{iff}}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой



$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
 (11)

Из этой формулы можно найти формулу для  $T_e$ : для U=0 мы найдём  $I_{i\mathrm{H}}$ , продифференцируем в точке U=0 и с учётом th  $\alpha \approx \alpha$  при малых  $\alpha$  и  $A\to 0$  получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
 (12)

## Описание установки



Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и  $\emph{геттерный}$  узел — стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка ( $\emph{геттер}$ ). Трубка наполнена изотопом неона <sup>2</sup>2Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя  $\Pi_1$  подключается через балластный резистор  $R_6$  ( $\approx 450$  кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром  $A_1$ , а падение напряжения на разрядной трубке – цифровым вольтметром  $V_1$ , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом  $(R_1 + R_2)/R_2 = 10$ .

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель  $\Pi_2$  позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром  $V_2$ . Для измерения зондового тока используется мультиметр  $A_2$ .

### Ход работы

Измеряем напряжение зажигания в лампе:  $U_{\text{заж}} = 20.4 \pm 0.2 \text{ B}.$ 

С помощью вольтметра  $V_1$  и амперметра  $A_1$  снимаем BAX разряда  $U_1 = f(I_p)$  для тока в диапазоне  $0.5 \div 5$  мА (см. Таблица 1). Построим график:



Вольт-амперная характеристика разряда.

<написать рпо максимальное сопротивление>

С помощью вольтмертра  $V_2$  и амперметра  $A_2$  снимем BAX двойного зонда  $I_2=f(U_2)$  при фиксированного токе разряда  $I_p$  в трубке в диапозоне  $-25\div 25$  В, процессе измерений меняя полярность зонда при нулевом токе. Измерения проведём для  $I_p=5$  мА,  $I_p=3$  мА и  $I_p=1.5$  мА.

Используя МНК, найдем коэффициенты в формуле тока через двойной зонд от напряжения:

$$I = I_{in} th(BU) + AU$$
.

Из него вычислим  $I_i n$  и  $kT_e$ , используя формулу

$$B = \frac{e}{2kT_e}.$$

Также найдем концентрацию ионов  $n_e$  из формулы  $I_{in}=0.4n_eeS\sqrt{\frac{2kT_e}{m_i}}$ , дебаевский радиус  $r_D$ , число электронов в дебаевской сфере  $N_D$  и степень ионизации плазмы  $\alpha$ .

| $I_{in}$ , мк $A$ | $T_e$ , эВ      | $n_e, 10^{16} \text{ m}^{-3}$ | $\omega_p,10^{25} \mathrm{pag/c}$ | $N_D, 10^5$ | $\alpha, 10^{-7}$ |
|-------------------|-----------------|-------------------------------|-----------------------------------|-------------|-------------------|
| $105.4 \pm 0.2$   | $4.97 \pm 0.06$ | $7.64 \pm 0.09$               | $4.32 \pm 0.05$                   | $26 \pm 1$  | $3.16 \pm 0.04$   |
| $47.9 \pm 0.1$    | $3.73 \pm 0.06$ | $3.73 \pm 0.06$               | $5.97 \pm 0.09$                   | $36 \pm 1$  | $1.66 \pm 0.03$   |
| $24.41 \pm 0.02$  | $3.68 \pm 0.06$ | $2.06 \pm 0.03$               | $8.34 \pm 0.13$                   | $50 \pm 1$  | $0.85 \pm 0.01$   |



Вольт-амперная характеристика разряда.

# Вывод

В данном эксперименте проводилось изучение ВАХ плазменного разряда и двойного зонда, находящегося в ней. Все зависимости имеют вид, предсказанный теорией, а полученные результаты совпадают с табличными.