Министерство образования и науки Республики Казахстан Некомерческое АО «Алматинский университет энергетики и связи» Институт систем управления и информационных технологий Кафедра «Автоматизация и управление»

Силлабус дисциплины

MSSUK 2218 – МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ, СЕРТИФИКАЦИЯ И УПРАВЛЕНИЕ КАЧЕСТВОМ

специальности 5В070200 - «Автоматизация и управления»

Курс	2
Семестр	, 4
Всего кредитов	5
Всего кредитов ECTS	5
Общее количество часов	150
из них аудиторных:	
лекции	15
лабораторные занятия	. 30
CPO	100
в том числе СРСП	15
Расчетно-графические работы Экзамен	3

Силлабус составила профессор, к.т.н. Хан Светлана Гурьевна на основании рабочей программы дисциплины.

Силлабус рассмотрен и одобрен на заседании кафедры «Автоматизация и управление» от 20.12.2018 года, протокол № 5.

Заведующий кафедрой ______ Федоренко И.А.

Силлабус рассмотрен и утвержден на заседании учебно-методической комиссии ИСУИТ (протокол № 4 от «11» января 2019 года).

1 Преподаватель:

Хан Светлана Гурьевна – к.т.н., профессор АУЭС, каб. Д406.

Контакты: 8(727)292-30-72, khansvetlana@rambler.ru

2 Время и место проведения аудиторных занятий курса указано в расписании учебных занятий, **график консультаций СРСП** размещен на досках объявлений ИСУИТ (Д409) и кафедры «Автоматизация и управление» (Д406).

3 Характеристика учебной дисциплины

- 3.1 Цель дисциплины формирование у студентов минимума знаний в области стандартизации, сертификации и метрологии, позволяющих в дальнейшем молодому специалисту совершенствоваться, самостоятельно принимать технические решения на международном, региональном национальном уровнях, a также навыков применения практических основ курса при конструировании оборудования и приборов, расчете погрешностей средств измерений, суммарных погрешностей измерительных каналов; разработке стандартов и расчете их эффективности.
- **3.2 Задачи дисциплины** изучение условий измерений, методов оценки и контроля метрологических и точностных характеристик; основ национальной системы технического регулирования.

3.3 Описание дисциплины

Дисциплина предназначена для студентов специальности 5В070200 — «Автоматизация и управление», является базовой, выборочный компонент (БВК) и относится к модулю МАУ08- «Метрологическое обеспечение».

Одним из основных условий вступления Республики Казахстан во Всемирную торговую организацию (ВТО) является гармонизация национальной системы стандартизации, сертификации и метрологии с международными правилами. Современным специалистам необходимы достаточные знания в этой области для того, чтобы творчески использовать зарубежный опыт, принимать новые прогрессивные решения, позволяющие производить качественную конкурентоспособную продукцию.

Дисциплина ставит целью ознакомить студентов с основными методами измерений, теорией погрешностей и методиками расчета погрешностей прямых и косвенных измерений и основами технического регулирования.

По окончании курса "Метрология, стандартизация, сертификация и управление качеством" студент должен

иметь представление:

- о видах и методах измерений,
- о классификации средств измерений и метрологических характеристиках средств измерений;
- о сущности и содержании стандартизации, сертификации и управлении качеством;

знать:

- методы практической организации и проведения работ по стандартизации, сертификации и управлению качеством;
 - классификацию видов и методов измерений;
 - основные метрологические характеристики средств измерений;

- классификацию погрешностей измерений и средств измерений;
- методы обработки результатов измерений;

уметь:

- грамотно проводить измерения и рассчитывать погрешности измерений;
 - правильно производить обработку одно- и многократных измерений;
- обращаться и применять на практике стандарты: ГСИ, ГСС, ЕСДП, ЕСКД и другие нормативные документы, руководствоваться ими при решении технических вопросов производства.
- **3.4 Пререквизиты**: Теория вероятности и математическая статистика, Математическая обработка результатов, Информационно-коммуникационные технологии, Физика I, Физика II.
- **3.5 Постреквизиты**: Технологические измерения и приборы, (Технические средства измерений), Основы сбора и передачи информации, Прикладная теория информации.

4. Структура и содержание дисциплины

4.1 Теоретическая подготовка (15 час.)

№ темы	Тема (модули, разделы)	Номер
JUL TOMBI	теми (модули, риздели)	источника
1	Введение. Метрология — научная основа Государственной системы обеспечения единства измерений (ГСИ). Физическая величина. Системы единиц физических величин. Из истории создания единиц физических величин - 1 часа.	Конспект, Л.1,2,3,5,7
2	Основное уравнение измерений. Классификация измерений. Методы измерений – 2 часа.	Конспект, Л.1,2,3,5,7
3	Погрешности измерений. Классификация. Случайные погрешности. Вероятностное описание результатов и погрешностей измерений. Систематические погрешности. Обнаружение и исключение — 3 часа.	Конспект, Л.1,2,3,5,7
4	Основные сведения о средствах измерений. Основные метрологические характеристики средств измерений 2 часа.	Конспект, Л.1,2,3,5,7
5	Государственная система стандартизации (ГСС). Сущность стандартизации и ее роль в развитии техники и управления качеством продукции. Определение терминов: стандартизация, НТД, стандарт, ТУ, объекты стандартизации, категорий и виды стандартов. Органы и службы стандартизации, головные и базовые организации по стандартизации. – 2 часа.	Конспект, Л.1,2,3,5,7
6	Концепция национальной системы стандартизации. Международная стандартизация. Структуры и функции международных организаций по метрологии и стандартизации: МОЗМ, ИСО, МЭК и ОКК. Стандартизация в Содружестве Независимых Государств (СНГ) 2 часа.	Конспект, Л.1,2,3,5,7
7	Сущность и содержание сертификации. Основные термины и понятия, Закон «О защите прав потребителей». Закон «О сертификации». Принципы, правила и порядок проведения сертификации продукции. Схемы сертификации. Органы по	Конспект, Л.1,2,3,5,7

	сертификации и испытательные лаборатории. Знаки	
	соответствия. – 2 часа.	
	Сертификация систем качества. Основы квалиметрии. –	Конспект,
8	2 часа.	Л.1,2,3,5,7,
		Л.1,2,3,5,7, 10,11,15,16

Примечание: - темы, обозначенные знаком *), читаются студентам заочного обучения, остальные темы изучаются ими в рамках СРС.

4.2 Практическая подготовка

4.2.1 Примерный перечень лабораторных работ (30 час.)

№ темы	Тема	Номер и раздел
	2 3 3 3 4	источника
	Лабораторная работа №1. «Стандартная обработка	5,6,7,8
1	результатов прямых измерений с многократными	- , - , - , -
	наблюдениями» (4 часа).	
2	Лабораторная работа №2. «Имитационное моделирование	5,6,7,8
	погрешностей канала измерения температуры» (4 часа).	- , - , - , -
	Лабораторная работа № 3. «Исследование способов	5,6,7,8
3	уменьшения погрешностей канала измерения температуры»	- 9 - 9 - 9 -
	(4 часа).	
4	Лабораторная работа №4. «Изучение основных и	5,6,7,8
	дополнительных погрешностей средств измерений» (4 часа).	- 9 - 9 - 9 -
5	Лабораторная работа №5. «Поверка и градуировка	5,6,7,8
<i>J</i>	технических термометров» (4 часа).	- 9 - 9 - 9 -
	Лабораторная работа №6. «Обработка результатов прямых	5,6,7.8
6	измерений с многократными наблюдениями при наличии	- , - ,
	грубых погрешностей» (4 часа).	
7	Лабораторная работа №7. «Поверка и испытание	5,6,7,8
	нормирующего преобразователя термо-ЭДС методом	, , ,
	однократных измерений» (2 часа).	
8	Лабораторная работа №8. «Поверка и испытание	5,6,7,8
	нормирующего преобразователя термосопротивления	, , , , -
	методом многократных измерений» (2 часа).	
9	Лабораторная работа №9. «Обработка результатов прямых и	5,6,7,8
7	косвенных однократных измерений» (2 часа).	- , - , - , -

4.3 Расчетно-графические работы*

Расчетно-графическая работа № 1. Стандартная методика статистической обработки результатов многократных измерений.

Расчетно-графическая работа № 2. Оценка погрешностей результатов прямых и косвенных измерений.

Расчетно-графическая работа № 3. Оптимизация параметров объектов стандартизации.

Варианты индивидуальных заданий приведены в [6].

4.4 Тематика СРО (100 час.)

4.4.1 Основы метрологической деятельности Республики Казахстан.

Государственная метрологическая служба в РК. Структура и функции метрологической службы предприятия. Организация работ по метрологии в Республике Казахстан.

4.4.2 Метрология в зарубежных странах, международные и региональные организации по метрологии.

Метрология в странах Западной Европы. Метрология в странах Восточной Европы и СНГ.

4.4.3 Международные организации законодательной метрологии.

Международная организация мер и весов. Международная организация законодательной метрологии.

- 4.4.4 Государственная система стандартизации Республики Казахстан Служба стандартизации в РК. Структура и функции службы стандартизации. Кодирование информации о товаре. Применение EAN европейской системы кодирования в Казахстане.
- 4.4.5 Международная и региональная сертификации.

Деятельность ИСО в области сертификации. Международная система сертификации электротехнических изделий. Сертификация в ЕС. Сертификация в СНГ.

4.4.6 Основные правила сертификации импортируемой продукции в Казахстане. Признание зарубежных сертификатов. Порядок ввоза товаров, подлежащих обязательной сертификации.

5 Перечень вопросов для промежуточного и итогового контроля

- 1. Роль дисциплины в подготовке инженеров по автоматизации. Связь дисциплины с другими общенаучными и специальными дисциплинами.
- 2. Единство измерений. Роль Закона «Об обеспечении единства измерений».
- 3. Метрология научная основа ГСИ.
- 4. Законодательная метрология.
- 5. Фундаментальная метрология.
- 6. Прикладная метрология.
- 7. Измерения. Основной закон измерения.
- 8. Объекты измерения, размерность.
- 9. Физическая величина. Истинное и действительное значение физической величины.
- 10. Международная система единиц физических величин.
- 11. Средства измерений. Классификация СИ.
- 12. Унифицированные средства измерений.
- 13. Эталоны, их классификация.
- 14. Основные характеристики законов распределения случайных наблюдений.
- 15. Оценки основных характеристик законов распределения случайных наблюдений.
- 16. Основные метрологические характеристики СИ. Их классификация.
- 17. Класс точности и допускаемые погрешности.
- 18. Основная и дополнительная погрешности.
- 19. Абсолютная, относительная и приведенная погрешности измерительных приборов. Формулы, определения.
- 20. Абсолютная погрешность измерительных преобразователей. Формулы, определения.
- 21. Относительная погрешность измерительных преобразователей. Формулы, определения.
- 22. Приведенная погрешность измерительных преобразователей. Формулы, определения.
- 23. Статические характеристики СИ.
- 24. Чувствительность. Порог чувствительности СИ.
- 25. Основные методы измерений. Классификация.
- 26. Виды измерений. Классификация.
- 27. Погрешности измерений. Классификация.
- 28. Случайные погрешности. Определение, оценка.
- 29. Вероятностные оценки случайной погрешности результата измерений.
- 30. Систематические погрешности. Определение. Классификация.
- 31. Систематические погрешности. Общие приемы их исключения.
- 32. Оценка и учет погрешностей при точных измерениях. Аксиома случайности и аксиома распределения.
- 33. Оценка точности результата наблюдений. Оценка точности результата измерения.
- 34. Оценка и учет погрешностей при технических измерениях.

- 35. Обработка результатов однократных прямых измерений.
- 36. Обработка результатов косвенных измерений.
- 37. Методика статистической обработки результатов многократных прямых измерений.
- 38. Стандартизация. Цели стандартизации. Объект и области стандартизации.
- 39. Нормативные документы по стандартизации, рекомендованные ИСО/МЭК.
- 40. Стандарт. Виды стандартов.
- 41. Нормативные документы по стандартизации, установленные в РК.
- 42. Международные организации по стандартизации.
- 43. Органы по стандартизации в РК.
- 44. Основы подтверждения соответствия. Основные термины и понятия.
- 45. Добровольная и обязательная стандартизация.
- 46. Технический регламент.
- 47. Подтверждение соответствия в РК. Правовые основы.
- 48. Порядок проведения сертификации.
- 49. Управление качеством: методы определения показателей качества.
- 50. Управление качеством: Основы квалиметрии. Термины и определения.
- 51. Показатели качества.
- 52. Методика оценки суммарной погрешности измерительного канала.
- 53. Формы представления результатов измерений. Правила округления результата измерения.

6 Информация по оценке достижений студентов

6.1 Система оценивания

Уровень достижений по программе курса оценивается по шкале итоговых оценок, принятой в кредитной технологии обучения (таблица 1).

Таблица 1. Балльно-рейтинговая буквенная система оценки учета учебных достижений, обучающихся с переводом их в традиционную шкалу оценок и ECTS

Оценка по буквенной	Цифровой	Баллы (%-ное	Оценка по традиционной
системе	эквивалент	содержание)	системе
A	4,0	95-100	Отлично
A-	3,67	90-94	Отлично
B+	3,33	85-89	Хорошо
В	3,0	80-84	Хорошо
В-	2,67	75-79	Хорошо
C+	2,33	70-74	Хорошо
C	2,0	65-69	Удовлетворительно
C-	1,67	60-64	Удовлетворительно
D+	1,33	55-59	Удовлетворительно
	1,0	50-54	Удовлетворительно
D-	,		
FX	0,5	25-49	Неудовлетворительно
F	0	0-24	Неудовлетворительно

Оценка рейтинга допуска (РД) накапливается Вами в течение семестра. Каждый вид учебной работы оценивается по 100-балльной шкале и включается в среднюю оценку текущего контроля (Ср) с учетом весового коэффициента в соответствие с таблицей 2.

Таблица 2 - Рейтинг допуска. Значимость каждого вида работ

Параметр	Весовой коэффициент
Выполнение лабораторного практикума	0,5

Выполнение СРО и посещение СРСП	0,1
Расчетно-графические работы	3x0,1
Посещение лекционных занятий	0,1
Средняя оценка текущего контроля (Ср)	1,0

Рубежный контроль проводится 2 раза в семестр (P1 и P2) и оценивается преподавателем по 100 – балльной шкале каждый.

Рейтинг допуска рассчитывается информационной системой PLATONUS по формуле:

$$PII = \frac{P1 + P2}{2} \times 0.2 + Cp \times 0.8$$
.

Студент может быть не допущен к сдаче экзамена при условии что: Ср<50% либо РД<50%.

Итоговая оценка по дисциплине выводится, как И = 0.6PД+0.4Э,

где Э – оценка на экзамене.

6.2 Политика выставления баллов

Максимальные оценочные баллы проставляются при условии ритмичного выполнения и высокого качества работы. Оценочные баллы тестирования и посещения лекционных занятий проставляются в зависимости от числа правильных ответов и числа пропущенных лекций.

6.3 Перевод оценок при организации академической мобильности обучающихся университета

Перевод оценок по ECTS (Европейская система трансферта (перевода) и накопления кредитов) в балльно-рейтинговую буквенную систему оценки учебных достижений обучающихся РК и обратно осуществляется согласно таблице 3.

Таблица 3 - Перевод оценок балльно-рейтинговой буквенной системы РК в оценки по ECTS

Оценка по буквенной системе	Цифровой эквивалент баллов	%-ное содержание	Оценка по традиционной системе	Оценка по ECTS
A	4,0	95-100	— Отпично	
A-	3,67	90-94		A
B+	3,33	85-89	Хорошо	В
В	3,0	80-84	Vanavia	
B-	2,67	75-79	75-79 Хорошо	
C+	2,33	70-74	Хорошо	
С	2,0	65-69		
C-	1,67	60-64	Удовлетворительно	D
D+	1,33	55-59		
D	1,0	50-54	Удовлетворительно	E
F	0	0-49	Неудовлетворительно	FX, F

7 Политика курса:

- не опаздывать и не пропускать занятия;
- внимательно отслеживать предлагаемый преподавателем сценарий занятия, активно участвуя в нем;
- отрабатывать лабораторные занятия, пропущенные по уважительным причинам (при наличии допуска из деканата);
- курсовую работу для защиты представлять не позже, чем в предпоследнюю неделю семестра:
- самостоятельно заниматься в библиотеке и дома.

8 Нормы академической этики:

- дисциплинированность;
- воспитанность;
- доброжелательность;
- честность;
- ответственность;
- работа в аудитории с отключенными сотовыми телефонами.

Конфликтные ситуации должны открыто обсуждаться в учебных группах с преподавателем, эдвайзером, а при неразрешимости конфликта доводиться до сотрудников деканата.

9 Список литературы

Основная:

- 1 Метрология, стандартизация и сертификация в энергетике. / под ред. А.Зайцева. М., 2009.
- 2 Тартаковский Д.Ф., Ястребов А.С. Метрология, стандартизация и технические средства измерений. М.: Высшая школа, 2008.
- 3 Герасимова Е.Б. Метрология, стандартизация и сертификация. М., 2008.
- 4 Дубовой Н.Д. Основы метрологии, стандартизации, сертификации.-М., 2008.
- 5 Хан С.Г. Метрология, измерения и техническое регулирование. Учебное пособие. –Алматы: АИЭС, 2009.
- 6 Хан С.Г. Метрология, стандартизация, сертификация и управление качеством. Методические указания по выполнению расчетно-графических работ для студентов всех форм обучения специальности 5В070200 Автоматизация и управление.- Алматы: АУЭС, 2015.- 43 с.
- 7 Хан С.Г. Метрология, стандартизация, сертификация и управление качеством. Конспект лекций (для студентов всех форм обучения специальности 5В070200 Автоматизация и управление). Алматы: АУЭС, 2015.- 56 с.
- 8 Хан С.Г. Метрология, стандартизация, сертификация и управление качеством. Методические указания по выполнению лабораторных работ для студентов специальности 5В070200 Автоматизация и управление.- Алматы: АУЭС, 2015.- 66 с.

Дополнительная:

- 9 Батоврин В.К. Lab View: практикум по основам измерительных технологий. ДМК пресс М. 2005г.
- 10 Лифиц И.М. Стандартизация, метрология и сертификация. М., 2008.
- 11 Крылова Г.Д. Основы стандартизации, сертификации, метрологии: Учебник для вузов. 2-ое изд., перераб. и доп. М.:ЮНИТИ-ДАНА, 2001.
- 12 Аубакиров Г.О. Практикум по метрологии, стандартизации и управлению качеством: Учебное пособие для вузов. Алма-Ата, 1992.
- 13 Преображенский В.П. Теплотехнические измерения и приборы: учебник для вузов по специальности «Автоматизация теплоэнергетических процессов». М.: Энергия, 1978.
- 14 Новицкий П.В., Заграф И.А. Оценка погрешностей результатов измерений. Л.: Энергоатомиздат, 1991.
 - 15 Закон РК «О техническом регулировании», Астана, 2004.
 - 16 Закон РК «Об обеспечении единства измерений», Астана, 2000.