Using Trees: Spatial Trees and Searches

(slides based on those of Han-Wei Shen and also of MIT CS Lab)

Motivation

- Sorting objects front to back to rendering
- Nearest-Neighbor Searches
- Correspondence Searching in Range Image Registration
- What's Wrong with Brute Force?

Sorting Objects

Fundamental operation for rendering synthetic scenes

What should be rendered at each pixel: the cube or the plane?

Answer: whichever is in front

Correspondence Searching in Range Image Registration:

Range Image Registration

Correspondence Searching in Range Image Registration:

Range Image Registration (cont.)

Correspondence Searching in Range Image Registration:

Correspondence Search

Nearest-Neighbor Searches in Matching

Images from http://avalon.viewpoint.com/

Why Bother?

- ◆ O(N) vs. O(log N)
- Nearest-neighbor searches
 - Range Image Registration
 - High-dimensional feature-based object/image matching
- Ray-object intersections
 - Range Image Registration
 - Ray tracing
- Volumetric object representations

Options

- Bottom-up approach:
 - Bounding Volume Hierarchy
 - "put objects into groups"
- Top-down approach:
 - Spatial Subdivision
 - "partition space into chunks"

Bounding Volume Hierarchies

- Starting with each individual object (e.g., polygon, point, object, etc.), build a tree bottom-up
 - Note: top-down approaches also possible
- Each node in the tree has a bounding box ("volume") that encloses the geometry in the entire subtree
- The actual data is contained in the leaf node

Spatial Subdivision

Spatial Subdivision

Spatial Trees and Searches

Uniform Subdivision

Octrees in 3D/Quadtrees in 2D

Octrees in 3D/Quadtrees in 2D

k-D Trees

Binary Space Partitioning (BSP) Trees

- A generalization:
 - Can we just split space recursively and arbitrarily?
 - Yes the smarts are in knowing what the recursive split is but that is application dependent

Binary Space Partitioning (BSP) Trees

For Further Information...

- Foley, van Dam, Feiner, Hughes. Computer Graphics: Principles and Practice. Addison-Wesley. 2nd Ed. 1992. (newer edition available too)
 - Uniform Subdivision
 - Octrees
 - BSP Trees
 - Intersection tests
- ◆ Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. "An Algorithm for Finding Best Matches in Logarithmic Expected Time." ACM Transaction on Mathematical Software, 3(3):209–226, September 1977.
 - k-D Trees
- Michael Abrash. Michael Abrash's Graphics Programming Black Book.
 - BSP Trees