## Fitting a Kaplan-Meier estimator

SURVIVAL ANALYSIS IN PYTHON



**Shae Wang**Senior Data Scientist



#### What is the Kaplan-Meier estimator?

A non-parametric statistic that estimates the survival function of time-to-event data.

- Also known as
  - the product-limit estimator
  - the K-M estimator
- Non-parametric: constructs a survival curve from collected data and does not assume underlying distribution

#### The mathematical intuition

#### **Definitions:**

- $t_i$ : a duration time
- $d_i$ : number of events that happened at time  $t_i$
- $n_i$ : number of individuals known to have survived up to time  $t_i$

Survival function S(t) is estimated with:

$$S(t) = \prod_{i:t_i \leq t} \left(1 - rac{d_i}{n_i}
ight)$$

## Why is it called the product-limit estimator?

Suppose we have events at 3 times: 1, 2, 3

Survival rate for t=2:

$$S(t=2)=\left(1-rac{d_1}{n_1}
ight)*\left(1-rac{d_2}{n_2}
ight)$$

Survival rate for t=3:

$$S(t=3) = S(t=2) * \left(1 - \frac{d_3}{n_3}\right)$$

The survival rate at time t is equal to the product of the percentage chance of surviving at time t and each prior time.

#### Assumptions to keep in mind

- Unambiguous events: the event of interest happens at a clearly specified time.
- Survival probabilities are comparable in all subjects: individuals' survival probabilities do
  not depend on when they entered the study.
- Censorship is non-informative: censored observations have the same survival prospects as observations that continue to be followed.

#### Kaplan-Meier estimator with lifelines

```
from lifelines import KaplanMeierFitter
```

KaplanMeierFitter: a class of the lifelines library

```
kmf = KaplanMeierFitter()
kmf.fit(durations, event_observed)
```



#### The mortgage problem example

DataFrame name: mortgage\_df

| id  | duration | paid_off |
|-----|----------|----------|
| 1   | 25       | 0        |
| 2   | 17       | 1        |
| 3   | 5        | 0        |
| ••• | •••      | •••      |
| 100 | 30       | 1        |

#### The mortgage problem example

DataFrame name: mortgage\_df

| id  | duration | paid_off |
|-----|----------|----------|
| 1   | 25       | 0        |
| 2   | 17       | 1        |
| 3   | 5        | 0        |
| ••• | •••      | •••      |
| 100 | 30       | 1        |

from lifelines import KaplanMeierFitter

```
<lifelines.KaplanMeierFitter:"KM_estimate",
fitted with 100 total observations,
18 right-censored observations>
```

#### Using the Kaplan-Meier estimator

What is the median length of an outstanding mortgage?

```
print(mortgage_kmf.median_survival_time_)
```

```
4.0
```

What is the probability of a mortgage being outstanding every year after initiation?

```
print(mortgage_kmf.survival_function_)
```

```
KM_estimate
timeline
0.0     1.000000
1.0     0.983267
2.0     0.950933
3.0     0.892328
```



#### Using the Kaplan-Meier estimator

What is the probability that a mortgage is not paid off by year 34 after initiation?

mortgage\_kmf.predict(34)

0.037998



#### **Benefits and limitations**

#### **Benefits**

- Intuitive interpretation of survival probabilities.
- Flexible to use on any time-to-event data.
- Usually the first model to attempt on timeto-event data.

#### Limitations

- Survival curve is not smooth.
- If 50% of more of the data is censored,
   .median\_survival\_time\_ cannot be calculated.
- Not effective for analyzing the effect of covariates on the survival function.

# Let's practice!

SURVIVAL ANALYSIS IN PYTHON



# Visualizing your Kaplan-Meier model

SURVIVAL ANALYSIS IN PYTHON



**Shae Wang**Senior Data Scientist



Toy data with n=5:

| duration | observed |
|----------|----------|
| 2        | 1        |
| 5        | 0        |
| 3        | 1        |
| 5        | 1        |
| 2        | 0        |

**Step 1:** Arrange data in increasing order. If tied, censored data comes after uncensored data.

Step 3: For each 
$$t_i$$
, multiply  $\left(1-\frac{d_i}{n_i}\right)$  with  $\left(1-\frac{d_{i-1}}{n_{i-1}}\right)$ ,  $\left(1-\frac{d_{i-2}}{n_{i-2}}\right)$ , ...,  $\left(1-\frac{d_0}{n_0}\right)$ 

**Step 1:** Arrange durations in increasing order. If tied, censored data comes after uncensored data.

| duration |  |  |
|----------|--|--|
| 2        |  |  |
| 5+       |  |  |
| 3        |  |  |
| 5        |  |  |
| 2+       |  |  |

Use "+" sign to denote censored data: 2, 5+, 3, 5, 2+

**Step 1:** Arrange durations in increasing order. If tied, censored data comes after uncensored data.

 $t_i$ 

2, 2+

3

5, 5+

**Step 2:** For each  $t_i$ , calculate  $d_i$ ,  $n_i$ , and  $\left(1-rac{d_i}{n_i}
ight)$ 

 $t_i$ 

2, 2+

3

5, 5+

| $t_i$ | $d_i$ |
|-------|-------|
| 2, 2+ | 1     |
| 3     | 1     |
| 5, 5+ | 1     |

| $t_i$ | $d_i$ | $n_i$ |
|-------|-------|-------|
| 2, 2+ | 1     | 5     |
| 3     | 1     | 3     |
| 5, 5+ | 1     | 2     |

| $t_i$ | $d_i$ | $n_i$ | $\left(1-rac{d_i}{n_i} ight)$ |
|-------|-------|-------|--------------------------------|
| 2, 2+ | 1     | 5     | 4/5                            |
| 3     | 1     | 3     | 2/3                            |
| 5, 5+ | 1     | 2     | 1/2                            |

Step 3: For each  $t_i$ , multiply  $\left(1-rac{d_i}{n_i}
ight)$  with  $\left(1-rac{d_{i-1}}{n_{i-1}}
ight)$ ,  $\left(1-rac{d_{i-2}}{n_{i-2}}
ight)$ , ...,  $\left(1-rac{d_0}{n_0}
ight)$ 

| $t_i$ | $d_i$ | $n_i$ | $\left(1-rac{d_i}{n_i} ight)$ | $S(t_i)$               |
|-------|-------|-------|--------------------------------|------------------------|
| 2, 2+ | 1     | 5     | 4/5                            | 4/5 = 0.8              |
| 3     | 1     | 3     | 2/3                            | 4/5 · 2/3 = 0.53       |
| 5, 5+ | 1     | 2     | 1/2                            | 4/5 · 2/3 · 1/2 = 0.27 |

| $t_i$ | $d_i$ | $n_i$ | $\left(1-rac{d_i}{n_i} ight)$ | $S(t_i)$ |
|-------|-------|-------|--------------------------------|----------|
| 2, 2+ | 1     | 5     | 4/5                            | 0.8      |
| 3     | 1     | 3     | 2/3                            | 0.53     |
| 5, 5+ | 1     | 2     | 1/2                            | 0.27     |



#### Interpreting the survival curve



- The survival probabilities at each time between 0 and 5.
- Common misconception: If the curve goes to 0, no subjects survived.
- The curve will drop to zero if the last observation is not censored (true event duration is known).

#### Plotting the Kaplan-Meier survival curve

```
from lifelines import KaplanMeierFitter
import matplotlib.pyplot as plt

kmf = KaplanMeierFitter()
kmf.fit(durations, event_observed)

kmf.survival_function_.plot()
plt.show()
```



#### The mortgage problem example

DataFrame name: mortgage\_df

| id  | duration | paid_off |
|-----|----------|----------|
| 1   | 25       | 0        |
| 2   | 17       | 1        |
| 3   | 5        | 0        |
| ••• | •••      | •••      |
| 100 | 30       | 1        |

```
from lifelines import KaplanMeierFitter
from matplotlib import pyplot as plt
```

```
mortgage_kmf.survival_function_.plot()
```

#### The mortgage problem example

plt.show()





#### Survival curve confidence interval

```
mortgage_kmf.plot_survival_function()
plt.show()
```





#### Why is the confidence interval useful?

- A way to quantify how uncertain we are about each point estimate of survival probabilities
- A wide confidence interval means we are less certain, often due to small sample size
- A narrow confidence interval means we are more certain, often due to large sample size



## Ways to plot the Kaplan-Meier survival curve

Plot survival function point estimates as a continuous line.

```
kmf.survival_function_.plot()
plt.show()
```



Plot survival function as a stepped line without the confidence interval.

```
kmf.plot(ci_show=False)
plt.show()
```



## Ways to plot the Kaplan-Meier survival curve

Plot survival function as a stepped line with the confidence interval.

```
kmf.plot()
plt.show()
```



Another way...

```
kmf.plot_survival_function()
plt.show()
```

# Let's practice!

SURVIVAL ANALYSIS IN PYTHON



# Applying survival analysis to groups

SURVIVAL ANALYSIS IN PYTHON



**Shae Wang**Senior Data Scientist



#### The mortgage problem

DataFrame name: mortgage\_df

| id  | property type | duration | paid_off |
|-----|---------------|----------|----------|
| 1   | house         | 25       | 0        |
| 2   | apartment     | 17       | 1        |
| 3   | apartment     | 5        | 0        |
| ••• | •••           | •••      | •••      |
| 100 | house         | 30       | 1        |

Property type: the type of home that's financed by the mortgage (either house or apartment)

Is there a difference in time to payoff for house versus apartment mortgages?

#### Comparing groups' survival distributions

We are often interested in assessing whether there are differences in survival (or event/survival probabilities) among different groups of subjects.

- Dimensional attributes about the subjects
  - i.e. different types of mortgages, different brands of tires
- Different experiment groups
  - i.e. treatment versus control groups
- Different values for the same dimensional attribute
  - i.e. high versus low income households

#### Types of survival group comparisons

- 1. Are any point estimates or survival statistics different?
- Compare two groups' survival probabilities at a specific time
- Compare total proportion of survived subjects across two groups

#### Types of survival group comparisons

- 2. Are the underlying distributions different?
- Requires formal hypothesis testing



### Types of survival group comparisons

- 3. How much does an attribute affect survival?
- Requires regression-based modeling frameworks

### Visualizing group differences

Fitting a Kaplan-Meier survival function to each group and visualize their survival curves sideby-side.

#### **Benefits:**

- Simple and straight-forward to use and interpret.
- Non-parametric means it is more flexible for different types of survival distributions.
- Useful illustrative tool for demonstrating differences in survival functions.

### Identifying the groups

DataFrame name: mortgage\_df

| id  | property type | duration | paid_off |
|-----|---------------|----------|----------|
| 1   | house         | 25       | 0        |
| 2   | apartment     | 17       | 1        |
| 3   | apartment     | 5        | 0        |
| ••• | •••           | •••      | •••      |
| 100 | house         | 30       | 1        |

Create a Boolean mask for each group.

```
house = (mortgage_df["property_type"]=="house")
apt = (mortgage_df["property_type"]=="apartment")
```

If there are only 2 groups, only 1 mask is necessary. The other group could be referenced using negation.

### Fitting and plotting survival curves

Create one figure and instantiate a KaplanMeierFitter class.

```
ax = plt.subplot(111)
mortgage_kmf = KaplanMeierFitter()
```

Fit mortgage\_kmf to the house group and plot on the figure ax.

### Fitting and plotting survival curves

Fit mortgage\_kmf to the apartment group and plot on the figure ax .



### Visualizing side-by-side

plt.show()





## Interpreting groups' survival curves



- Apartment mortgages seem to be paid off faster than house mortgages on average.
- At any given duration, a higher proportion of users pay off apartment mortgages than house mortgages.

Note: if the confidence intervals overlap at some points, it's less likely that there's a real difference between the curves.

# Let's practice!

SURVIVAL ANALYSIS IN PYTHON



## The log-rank test

SURVIVAL ANALYSIS IN PYTHON



Shae Wang
Senior Data Scientist



### Hypothesis testing

- A method of statistical inference
- Null hypothesis  $H_0$ : e.g. California and Nevada residents have the same average income.
- Alternative hypothesis  $H_1$ : e.g. California and Nevada residents have different average income.
- P-value: what's the likelihood that the data would've occurred if the null hypothesis were true?



### Log-rank hypothesis testing

ullet Compares survival probabilities  $S_i$  between groups at each time t

$$H_0:S_A(t)=S_B(t)$$

$$H_1:S_A(t)
eq S_B(t)$$

• P-value: if  $S_A(t)=S_B(t)$ , what's the probability of our data occurring?

### Multiple survival curves



### Running the log-rank test

```
from lifelines.statistics import logrank_test
logrank_test(durations_A, durations_B, event_observed_A, event_observed_B)
```

- .print\_summary()
- .p\_value
- .test\_statistic

### Log-rank test example

Does the program change when babies start speaking?

```
t.head(2)
```

```
      id
      duration
      observed

      0
      1
      12
      0

      1
      4
      6
      1
```

```
c.head(2)
```

```
      id
      duration
      observed

      0
      0
      11
      1

      1
      2
      14
      0
```

```
lrt = logrank_test(
    durations_A = t['duration'],
    durations_B = c['duration'],
    event_observed_A = t['observed'],
    event_observed_B = c['observed'])
```

```
lrt.print_summary()
```

```
<lifelines.StatisticalResult: logrank_test>
  null_distribution = chi squared

degrees_of_freedom = 1
        test_name = logrank_test

test_statistic    p -log2(p)
        0.09 0.77     0.38
```

### Keep in mind...

- Log-rank test is a non-parametric hypothesis test
- When using lifelines, data must be right-censored (i.e. subject 3)
- Censorship must be non-informative
- For a log-rank test between n>2 groups, use pairwise\_logrank\_test() or multivariate\_logrank\_test()



# Let's practice!

SURVIVAL ANALYSIS IN PYTHON

