ОТВЕТЫ

Задача 1.4

x_i	15	16	17	18	19	20	21	22	23	24	25
n_i	1	2	4	5	6	10	13	7	6	4	2
$n_i^{\text{нак}}$	1	3	7	12	18	28	41	48	54	58	60
W_i	1	2	4	5	6	10	13	7	6	4	2
VV i	60	60	60	60	60	60	60	60	60	60	60

Задача 1.5

$$h = 8$$

$x_{i-1}-x_i$	[85–93)	[93–101)	[101–109)	[109–117)
n_i	9	14	36	28
$x_{i-1}-x_i$	[117–125)	[125–133)	[133–141)	[141–145]

Кумулятивный ряд имеет вид:

$x_{i-1} - x_i$	[85–93)	[93–101)	[101–109)	[109–117)
n_i^{max}	9	23	59	87
$x_{i-1}-x_i$	[117–125)	[125–133)	[133–141)	[141–145]
n_i^{Hak}	102	112	114	117

Задача 2.3

$$\overline{x}_{\text{B}} = 81,71; \text{ Me}(X) = 81,89; \text{ Mo}(X) = 83,84; D_{\text{B}} = 25,87; \sigma_{\text{B}} = 5,1;$$

 $\overline{A} = 0,196; \overline{E} = -0,52.$

Задача 2.4

$$\overline{x}_{B} = 32.9;$$
 $D_{B} = 688.7;$ $\sigma_{B} = 26.2;$ $\overline{A} = 0.99;$ $\overline{E} = 0.957;$ $Mo = 7.22;$ $Me = 24.7.$

Задача 3.4

a)
$$\overline{x}_B = 81,71;$$
 $D_H = 26,23;$
6) $\overline{A} = 0,196;$ $\overline{E} = -0,52.$

Задача 3.5

a)
$$\overline{x}_B = 73,16$$
; $D_M = 305,83$;

б)
$$x_{\rm B} = 73,22;$$
 $D_{\rm M} = 314,14.$

Задача 4.6

A)
$$2,134 < a < 2,298$$
;

$$0,363 < \sigma < 0,481;$$

$$β$$
 2,1868 < a < 2,906; $0,056$ < $σ$ < 0,083.

$$0,056 < \sigma < 0,083$$
.

Задача 4.7

$$n = 79$$
.

Задача 4.8

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

- 1. Найти методом произведений:
- а) выборочную среднюю;
- б) выборочную дисперсию;
- в) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты x_i , а во второй соответствующие частоты n_i количественного признака X).

	105	110	115	120	125	120	125
x_i	105	110	115	120	125	130	135
n_i	4	6	10	40	20	12	8
x_i	12,5	13	13,5	14	14,5	15	15,5
n_i	5	15	40	25	8	4	3
x_i	10,2	10,9	11,6	12,3	13	13,7	14,4
n_i	8	10	60	12	5	3	2
x_i	45	50	55	60	65	70	75
n_i	4	6	10	40	20	12	8
x_i	110	115	120	125	130	135	140
n_i	5	10	30	25	15	10	5
x_i	12,4	16,4	20,4	24,4	28,4	32,4	36,4
n_i	5	15	40	25	8	4	3
x_i	26	32	38	44	50	56	62
n_i	5	15	40	25	8	4	3
x_i	10,6	15,6	20,6	25,6	30,6	35,6	40,6
n_i	8	10	60	12	5	3	2

x_i	100	110	120	130	140	150	160
n_i	4	6	10	40	20	12	8

x_i	130	140	150	160	170	180	190
n_i	5	10	30	25	15	10	5

2. Найти доверительные интервалы для оценки математического ожидания a нормального распределения c надежностью $\gamma=0.95$, зная выборочную среднюю $\overline{x}_{\rm B}$, объем выборки n и среднее квадратическое отклонение σ .

$\overline{x}_{\text{B}} = 75,17$	$\sigma = 6$	n = 36
$\overline{x}_{\text{B}} = 75,16$	$\sigma = 7$	n = 49
$\overline{x}_{\scriptscriptstyle\rm B} = 75,15$	Q = 8	n = 64
$\overline{x}_{\text{B}} = 75,14$	$\sigma = 9$	n = 81
$\overline{x}_{\scriptscriptstyle\rm B} = 75,13$	$\sigma = 10$	n = 100
$\overline{x}_{\scriptscriptstyle\rm B} = 75,12$	$\sigma = 11$	n = 121
$\overline{x}_{\scriptscriptstyle\rm B} = 75,11$	$\sigma = 12$	n = 144
$\overline{x}_{\scriptscriptstyle\rm B} = 75,10$	$\sigma = 13$	n = 169
$\overline{x}_{\scriptscriptstyle \rm B} = 75,09$	$\sigma = 14$	n = 196
$\overline{x}_{\scriptscriptstyle\rm B} = 75,08$	$\sigma = 15$	n = 225

- 3. а) Найти доверительный интервал для оценки неизвестного математического ожидания a с заданной надежностью γ при известных n и σ ;
- б) Найти доверительный интервал по известным n, γ , S, неизвестны a и σ .

a)
$$\sigma = 2$$
, $\bar{x}_{B} = 6.3$, $\gamma = 0.99$, $n = 50$;

6)
$$S = 1.8$$
, $\overline{x}_{R} = 17.2$, $n = 16$, $\gamma = 0.99$;

a)
$$\sigma = 3$$
, $\bar{x}_{p} = 6.1$, $\gamma = 0.999$, $n = 100$;

б)
$$S = 2.4$$
, $\overline{x}_{B} = 14.28$, $n = 9$, $\gamma = 0.95$;

a)
$$\sigma = 3$$
, $\bar{x}_{\rm B} = 7.3$, $\gamma = 0.99$, $n = 100$;

6)
$$S = 5.3$$
, $\overline{x}_B = 19.2$, $n = 20$, $\gamma = 0.95$;

a)
$$\sigma = 5$$
, $\overline{x}_{R} = 9.2$, $\gamma = 0.999$, $n = 50$;

6)
$$S = 3.7$$
, $\bar{x}_{p} = 8.3$, $n = 16$, $\gamma = 0.99$;

a)
$$\sigma = 7$$
, $\bar{x}_p = 8.2$, $\gamma = 0.999$, $n = 80$;

6)
$$S = 2.95$$
, $\overline{x}_p = 6.14$, $n = 12$, $\gamma = 0.99$;

a)
$$\sigma = 4$$
, $\bar{x}_n = 5.7$, $\gamma = 0.99$, $n = 100$;

6)
$$S = 2.95$$
, $\overline{x}_p = 8.31$, $n = 16$, $\gamma = 0.95$;

a)
$$\sigma = 9$$
, $\bar{x}_p = 20,11$, $\gamma = 0.999$, $n = 81$;

6)
$$S = 3.14$$
, $\overline{x}_{R} = 7.34$, $n = 16$, $\gamma = 0.95$;

a)
$$\sigma = 5$$
, $\overline{x}_{p} = 11,11$, $\gamma = 0.999$, $n = 64$;

6)
$$S = 4.7$$
, $\overline{x}_{B} = 39.14$, $n = 16$, $\gamma = 0.999$;

a)
$$\sigma = 5$$
, $\bar{x}_{p} = 5.11$, $\gamma = 0.99$, $n = 10$;

б)
$$S = 3.4$$
, $\overline{x}_p = 13.12$, $n = 10$, $\gamma = 0.99$;

a)
$$\sigma = 5$$
, $\overline{x}_{R} = 3.14$, $\gamma = 0.99$, $n = 81$;

б)
$$S = 3.5$$
, $\overline{x}_{R} = 17.28$, $n = 14$, $\gamma = 0.99$.

ЛИТЕРАТУРА

- 1. Гмурман, В. Е. Руководство к решению задач по теории вероятностей и математической статистике: учебное пособие / В. Е. Гмурман. М., 1999.
- 2. Кремер, Н. Ш. Теория вероятностей и математическая статистика: учеб. для вузов / Н. Ш. Кремер. М., 2001.
- 3. Станишевская, Л. В. Математическая статистика / Л. В. Станишевская, Ю. Н. Черторицкий. Минск, 2006.

ПРИЛОЖЕНИЕ

Таблица П1

Значения функции Гаусса
$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

x	0	1	2	3	4	5	6	7	8	9
0,0	0,3989	3989	3989	3988	3986	3084	3982	3980	3977	3973
0,1	3970	3965	3961	3956	3951	3945	3939	3932	3025	3918
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0,3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
0,4	3683	3668	3652	3637	3621	3605	3589	3572	3555	3538
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0,7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0,8	2897	2874	2850	2827	2804	2780	2756	2732	2709	2685
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
1,0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957
1,7	0940	0925	0909	0893	0878	0863	0846	0833	0818	0804
1,8	0790	0775	0761	0748	0734	0721	0707	0694	0681	0669
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551
2,0	0,0540	0529	0519	0508	0498	0488	0478	0468	0459	0449
2,1	0440	0431	0422	0413	0404	0396	0387	0379	0371	0363
2,2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180

Окончание табл. П1

x	0	1	2	3	4	5	6	7	8	9
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139
2,6	0136	0132	0129	0126	0122	0119	0116	0113	0110	0107
2,7	0104	0101	0099	0096	0093	0091	0088	0086	0084	0081
2,8	0079	0077	0075	0073	0071	0069	0067	0065	0063	0061
2,9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046
3,0	0,0044	0043	0042	0040	0039	0038	0037	0036	0035	0034
3,1	0033	0032	0032	0030	0029	0028	0027	0026	0025	0025
3,2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018
3,3	0017	0017	0012	0016	0015	0015	0014	0014	0013	0013
3,4	0012	0012	0010	0011	0011	0010	0010	0010	0009	0009
3,5	0009	0008	8000	0008	0008	0007	0007	0007	0007	0006
3,6	0006	0006	0006	0005	0005	0005	0005	0005	0005	0004
3,7	0004	0004	0004	0004	0004	0004	0003	0003	0003	0003
3,8	0003	0003	0003	0003	0003	0002	0002	0002	0002	0002
3,9	0002	0002	0002	0002	0002	0002	0002	0002	0001	0001

Таблица П2

Значения функции Лапласа
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt$$

x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
0,00	0,0000	0,08	0,0319	0,16	0,0636	0,24	0,0948
0,01	0,0040	0,09	0,0359	0,17	0,0675	0,25	0,0987
0,02	0,0080	0,10	0,0398	0,18	0,0714	0,26	0,1026
0,03	0,0120	0,11	0,0438	0,19	0,0753	0,27	0,1064
0,04	0,0160	0,12	0,0478	0,20	0,0793	0,28	0,1103
0,05	0,0199	0,13	0,0517	0,21	0,0832	0,29	0,1141
0,06	0,0239	0,14	0,0557	0,22	0,0871	0,30	0,1179
0,07	0,0279	0,15	0,0596	0,23	0,0910	0,31	0,1217

Продолжение табл. П2

x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	х	$\Phi(x)$
0,32	0,1255	0,62	0,2324	0,92	0,3212	1,22	0,3883
0,33	0,1293	0,63	0,2357	0,93	0,3238	1,23	0,3907
0,34	0,1331	0,64	0,2389	0,94	0,3264	1,24	0,3925
0,35	0,1368	0,65	0,2422	0,95	0,3289	1,25	0,3944
0,36	0,1406	0,66	0,2454	0,96	0,3315	1,26	0,3962
0,37	0,1443	0,67	0,2486	0,97	0,3340	1,27	0,3980
0,38	0,1480	0,68	0,2517	0,98	0,3365	1,28	0,3997
0,39	0,1517	0,69	0,2549	0,99	0,3389	1,29	0,4015
0,40	0,1554	0,70	0,2580	1,00	0,3413	1,30	0,4032
0,41	0,1591	0,71	0,2611	1,01	0,3438	1,31	0,4049
0,42	0,1628	0,72	0,2642	1,02	0,3461	1,32	0,4066
0,43	0,1664	0,73	0,2673	1,03	0,3485	1,33	0,4082
0,44	0,1700	0,74	0,2703	1,04	0,3508	1,34	0,4099
0,45	0,1736	0,75	0,2734	1,05	0,3531	1,35	0,4115
0,46	0,1772	0,76	0,2764	1,06	0,3554	1,36	0,4131
0,47	0,1808	0,77	0,2794	1,07	0,3577	1,37	0,4147
0,48	0,1844	0,78	0,2823	1,08	0,3599	1,38	0,4162
0,49	0,1879	0,79	0,2852	1,09	0,3621	1,39	0,4177
0,50	0,1915	0,80	0,2881	1,10	0,3643	1,40	0,4192
0,51	0,1950	0,81	0,2910	1,11	0,3665	1,41	0,4207
0,52	0,1985	0,82	0,2939	1,12	0,3686	1,42	0,4222
0,53	0,2019	0,83	0,2967	1,13	0,3708	1,43	0,4236
0,54	0,2054	0,84	0,2995	1,14	0,3729	1,44	0,4251
0,55	0,2088	0,85	0,3023	1,15	0,3749	1,45	0,4265
0,56	0,2123	0,86	0,3051	1,16	0,3770	1,46	0,4279
0,57	0,2157	0,87	0,3078	1,17	0,3790	1,47	0,4292
0,58	0,2190	0,88	0,3106	1,18	0,3810	1,48	0,4306
0,59	0,2224	0,89	0,3133	1,19	0,3830	1,49	0,4319
0,60	0,2257	0,90	0,3159	1,20	0,3849	1,50	0,4332
0,61	0,2291	0,91	0,3186	1,21	0,3869	1,51	0,4345

Окончание табл. П2

x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	х	$\Phi(x)$
1,52	0,4357	1,79	0,4633	2,12	0,4830	2,66	0,4961
1,53	0,4370	1,80	0,4641	2,14	0,4838	2,68	0,4963
1,54	0,4382	1,81	0,4649	2,16	0,4846	2,70	0,4965
1,55	0,4394	1,82	0,4656	2,18	0,4854	2,72	0,4967
1,56	0,4406	1,83	0,4664	2,20	0,4861	2,74	0,4969
1,57	0,4418	1,84	0,4671	2,22	0,4868	2,76	0,4971
1,58	0,4429	1,85	0,4678	2,24	0,4875	2,78	0,4973
1,59	0,4441	1,86	0,4686	2,26	0,4881	2,80	0,4974
1,60	0,4452	1,87	0,4693	2,28	0,4887	2,82	0,4976
1,61	0,4463	1,88	0,4699	2,30	0,4893	2,84	0,4977
1,62	0.4474	1,89	0,4706	2,32	0,4898	2,86	0,4979
1,63	0,4484	1,90	0,4713	2,34	0,4904	2,88	0,4980
1,64	0,4495	1,91	0,4719	2,36	0,4909	2,90	0,4981
1,65	0,4505	1,92	0,4726	2,38	0,4913	2,92	0,4982
1,66	0,4515	1,93	0,4732	2,40	0,4918	2,94	0,4984
1,67	0,4525	1,94	0,4738	2,42	0,4922	2,96	0,4985
1,68	0,4535	1,95	0,4744	2,44	0,4927	2,98	0,4986
1,69	0,4545	1,96	0,4750	2,46	0,4931	3,00	0,49865
1,70	0,4554	1,97	0,4756	2,48	0,4934	3,20	0,49931
1,71	0,4564	1,98	0,4761	2,50	0,4938	3,40	0,49966
1,72	0,4573	1,99	0,4767	2,52	0,4941	3,60	0,499841
1,73	0,4582	2,00	0,4772	2,54	0,4945	3,80	0,499928
1,74	0,4591	2,02	0,4783	2,56	0,4948	4,00	0,499968
1,75	0,4599	2,04	0,4793	2,58	0,4951	4,50	0,499997
1,76	0,4608	2,06	0,4803	2,60	0,4953	5,00	0,499997
1,77	0,4616	2,08	0,4812	2,62	0,4956		
1,78	0,4625	2,10	0,4821	2,64	0,4959		

Таблица ПЗ

Значения функции
$$t_{\gamma,\,n}:\overline{x}_{_{
m B}}-t_{\gamma,\,n}\,rac{S}{\sqrt{n}}< a<\overline{x}_{_{
m B}}+t_{\gamma,\,n}\,rac{S}{\sqrt{n}}$$

n/y	0,95	0,99	0,999	n/y	0,95	0,99	0,999
5	2,78	4,60	8,61	20	2,093	2,861	3,883
6	2,57	4,03	6,86	25	2,064	2,797	3,745
7	2,45	3,71	5,96	30	2,045	2,756	3,659
8	2,37	3,50	5,41	35	2,032	2,720	3,600
9	2,31	3,36	5,04	40	2,023	2,708	3,558
10	2,26	3,25	4,78	45	2,016	2,692	3,527
11	2,23	3,17	4,59	50	2,009	2,679	3,502
12	2,20	3,11	4,44	60	2,001	2,662	3,464
13	2,18	3,06	4,32	70	1,996	2,649	3,439
14	2,16	3,01	4,22	80	1,991	2,640	3,418
15	2,15	2,98	4,14	90	1,987	2,633	3,403
16	2,13	2,95	4,07	100	1,984	2,627	3,392
17	2,12	2,92	4,02	120	1,980	2,617	3,374
18	2,11	2,90	3,97	8	1,960	2,576	3,291
19	2,10	2,88	3,92				

 $\label{eq:2.1}$ Значения коэффициентов q_1 и q_2 ; $q_1 S < \sigma < q_2 S$

n	0,99		0,98		0,95		0,90	
	q_1	q_2	q_1	q_2	q_1	q_2	q_1	q_2
1	0,356	15,0	0,388	79,8	0,446	31,9	0,510	15,9
2	0,434	14,1	0,466	9,97	0,521	6,28	0,578	4,40
3	0,483	6,47	0,514	5,11	0,566	3,73	0,620	2,92
4	0,519	4,39	0,549	3,67	0,599	2,87	0,649	2,37
5	0,546	3,48	0,576	3,00	0,624	2,45	0,672	2,090
6	0,569	2,98	0,597	2,62	0,644	2,202	0,690	1,916

n	0,99		0,98		0,95		0,90	
	q_1	q_2	q_1	q_2	q_1	q_2	q_1	q_2
7	0,588	2,66	0,616	2,377	0,661	2,035	0,705	1,797
8	0,604	2,440	0,631	2,205	0,675	1,916	0,718	1,711
9	0,618	2,277	0,644	2,076	0,688	1,826	0,729	1,645
10	0,630	2,154	0,656	1,977	0,699	1,755	0,739	1,593
11	0,641	2,056	0,667	1,898	0,708	1,698	0,748	1,550
12	0,651	1,976	0,676	1,833	0,717	1,651	0,755	1,515
13	0,660	1,910	0,685	1,779	0,725	1,611	0,762	1,485
14	0,669	1,854	0,693	1,733	0,732	1,577	0,769	1,460
15	0,676	1,806	0,700	1,694	0,739	1,548	0,775	1,437
16	0,683	1,764	0,707	1,659	0,745	1,522	0,780	1,418
17	0,690	1,727	0,713	1,629	0,750	1,499	0,785	1,400
18	0,696	1,695	0,719	1,602	0,756	1,479	0,790	1,385
19	0,702	1,668	0,725	1,578	0,760	1,460	0,794	1,370
20	0,707	1,640	0,730	1,556	0,765	1,414	0,798	1,358
21	0,712	1,617	0,734	1,536	0,769	1,429	0,802	1,346
23	0,722	1,576	0,743	1,502	0,777	1,402	0,809	1,326
24	0,726	1,558	0,747	1,487	0,781	1,391	0,812	1,316
25	0,730	1,541	0,751	1,473	0,784	1,380	0,815	1,308
26	0,734	1,526	0,755	1,460	0,788	1,371	0,818	1,300
27	0,737	1,512	0,758	1,448	0,791	1,361	0,820	1,293
29	0,744	1,487	0,765	1,426	0,796	1,344	0,825	1,279
30	0,748	1,475	0,768	1,417	0,799	1,337	0,828	1,274
40	0,774	1,390	0,792	1,344	0,821	1,279	0,847	1,228
50	0,793	1,336	0,810	1,297	0,837	1,243	0,861	1,199
60	0,808	1,299	0,824	1,265	0,849	1,217	0,871	1,179
70	0,820	1,272	0,835	1,241	0,858	1,198	0,879	1,163
80	0,829	1,250	0,844	1,222	0,866	1,183	0,886	1,151
90	0,838	1,233	0,852	1,207	0,873	1,171	0,892	1,141
100	0,845	1,219	0,858	1,195	0,878	1,161	0,897	1,133
200	0,887	1,15	0,897	1,13	0,912	1,11	0,925	1,09

ЕРОШЕВСКАЯ Вера Ивановна **ЕРОШЕВСКАЯ** Елена Леонидовна **МИНЧЕНКОВА** Лариса Павловна

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Методическое пособие

В 2 частях

Часть 1

Редактор В. О. Кутас Компьютерная верстка Н. А. Школьниковой

Подписано в печать 30.05.2013. Формат $60\times84^{-1}/_{16}$. Бумага офсетная. Ризография. Усл. печ. л. 2,85. Уч.-изд. л. 2,23. Тираж 50. Заказ 1373.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ № 02330/0494349 от 16.03.2009. Пр. Независимости, 65. 220013, г. Минск.