

ELETRICIDADE

THALES PRINI FRANCHI

AGENDA

- Associação Paralela de Resistores.
- Divisor de Corrente.
- Lei de Kirchhoff para as Correntes.
- Associação Mista de Resistores.

Paralela

Características:

- Tensão é igual em todos os componentes.
- Corrente divide proporcionalmente entre os componentes

Condutância (Siemens=S)

$$\frac{1}{R_{EQ}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$$

$$G = \frac{1}{R}$$

a) Dois resistores em paralelo

$$R_{EQ} = \frac{R_1.R_2}{R_1 + R_2}$$

b) Vários resistores em paralelo iguais

$$R_{EQ} = \frac{R}{N}$$

Paralela

Divisor de Corrente:

$$I_1 = \frac{I.R_{EQ}}{R_1}$$

$$I_2 = \frac{I.R_{EQ}}{R_2}$$

Paralela - Exemplos

1. Sabendo-se que a corrente total do circuito é 6A. Determine: (a) a tensão da fonte V, (b) a corrente e a potência no resistor de 4Ω e a corrente e (c) a potência no resistor de 8Ω .

a) 16V; b) 4A, 64W; c) 2A, 32W

2. Sabendo-se que a corrente total do circuito é 5A. Determine: (a) a tensão e a potência da fonte V, (b) a corrente e a potência no resistor de 6Ω , (c) a corrente e a potência no resistor de 24Ω e (d)) a corrente e a potência no resistor de 48Ω .

- a) 21,8V 108,81W; b) 3,63A, 79,2W; c) 0,91A, 19,8W; d) 0,45A, 9,81W
- **3.** (Boylestad Exemplo 6.19, pág 138) Dado o circuito abaixo determine o valor das correntes nos resistores R_1 e R_2 sabendo-se que a corrente total do circuito é 12A.

8A e 4A

LEI DE KIRCHHOFF PARA AS CORRENTES

"A somatória das correntes que chegam em um nó é igual a somatória das correntes que saem desse nó"

$$\sum I_{CHEGAM} = \sum I_{SAEM}$$

$$I_1 + I_2 = I_3 + I_4 + I_5$$

5. (Boylestad – Exemplo 6.20, pág 138) No circuito abaixo determine o valor do resistor R_1 .

Misto

6. No circuito da figura ao lado determine: (a) a tensão no resistor de $2k\Omega$, (b), a corrente no resistor de $6k\Omega$, (c) a potência no resistor de $12k\Omega$ e (d) a corrente e a potência da fonte.

a) 8V; b) 2,67mA; c) 21,3mW; d) 4mA e 0,96W

7. (Boylestad – Exemplo 7.2, pág 160) Dado o circuito abaixo, determine o valor das correntes e tensões em cada resistor.

Resistor 1: 8V; 10A

Resistor 2 e 3: 2V; 0,5A

Resistor 4: 0,5V; 1A

Resistor 5: 1,5V; 1A

Misto

- 8. (Boylestad Exercício 10, pág 182) Dado o circuito abaixo, determine:
 - a) As correntes total e no resistor R₆.
 - b) As tensões no resistores R₁ e R₅.
 - c) A potência no resistor R₅.

- a) 2 mA
- b) R1: 28V; R5: 7,2V
- c) 8,64 mW

ELTRICIDADE

BIBLIOGRAFIAS

BIBLIOGRAFIAS

BIBLIOGRAFIA BÁSICA

GUSSOW, Milton. Eletricidade básica. São Paulo, SP: McGraw-Hill, 1985. 564 p. (Coleção Shaum). ISBN 00745018287. ALEXANDER, C. K.; SADIKU, M. N. O. Fundamentos de Circuitos Elétricos, Ed. McGraw-Hill, 2008. MARIOTTO, Paulo Antônio. Análise de circuitos elétricos. São Paulo, SP: Prentice-Hall, 2003. 378 p. ISBN 8587918060.

BIBLIOGRAFIA COMPLEMENTAR

IRWIN, J. David; NELMS, R. Mark. Análise básica de circuitos para engenharia. Rio de Janeiro, RJ: LTC, 2000. ROBBINS, Allan H.; MILLER, Wilhelm C. Análise de circuitos. São Paulo, SP: Cengage Learning, 2010.

BOYLESTAD, R. L. Introdução à Análise de Circuitos, Ed. Prentice Hall, 2004.

HAYT, Jr., William H., KEMMERLY, Jack E., DURBIN, Steven M. Análise de Circuitos em Engenharia, 8th edição. AMGH, 01/2014. [Minha Biblioteca]. recurso online.

THOMAS, Roland E. Análise e projeto de circuitos elétricos lineares. 6. Porto Alegre Bookman 2011 1 recurso online.