Ecrit réparti n°1: vendredi 19 octobre 2018

Durée: 1 h 30 - Sans document ni téléphone, avec calculatrice autorisée

Le sujet comporte 4 exercices

Exercice 1:

On considère le circuit électrique monophasé de la Figure 1. Les valeurs numériques sont les suivantes :

 $\underline{U} = 100 V$

 $R = 10 \Omega$

 $L\omega = 10 \Omega$

 $\frac{1}{C\omega} = 10 \Omega$

- 1. Calculer les grandeurs suivantes :
 - a. Impédance de l'ensemble R//C
 - b. Courant <u>I</u>
 - c. Tension \underline{U}_1

- d. Tension \underline{U}_2
- e. Courant <u>I</u>1
- f. Courant <u>I</u>2
- 2. Tracer les diagrammes de Fresnel des tensions et des courants.
- 3. Calculer <u>S</u>, la puissance apparente complexe délivrée par le générateur. En déduire *P*, la puissance active, *Q* la puissance réactive, *S* la puissance apparente et *FP* le facteur de puissance.

Exercice 2:

On considère le circuit électrique de la

Figure 2, alimenté par un générateur de tension triphasé équilibré sens direct $(\underline{U}_{12}, \underline{U}_{23}, \underline{U}_{31})$. On note U, la valeur efficace des tensions $\underline{U}_{12}, \underline{U}_{23}$ et \underline{U}_{31} .

- 1. La Figure 3 représente le générateur $(\underline{V}_1, \underline{V}_2, \underline{V}_3)$ étoile équivalent au générateur $(\underline{U}_{12}, \underline{U}_{23}, \underline{U}_{31})$. On note V, la valeur efficace des tensions $\underline{V}_1, \underline{V}_2$ et V_3 .
 - a. Représenter $(\underline{U}_{12}, \underline{U}_{23}, \underline{U}_{31})$ et $(\underline{V}_1, \underline{V}_2, \underline{V}_3)$ dans le plan complexe.
 - b. Donner la valeur de l'angle $(\underline{V_1}, \underline{U_1}_2)$.
 - c. Exprimer V en fonction de U.

Figure 2

Figure 3

- 2. On note respectivement *I* et *J*, les valeurs efficaces des courants de ligne et de phase.
 - a. Donner les relations entre $(\underline{I}_1, \underline{I}_2, \underline{I}_3)$ et (J_{12}, J_{23}, J_{31})
 - b. Donner la valeur de l'angle $(\widehat{I_1}, \widehat{J_{31}})$.
 - c. Donner la relation entre *I* et *J*.
- 3. La charge est constituée de trois impédances $\underline{Z} = Z.e^{j\varphi}$ montées en étoile. Déterminer les grandeurs suivantes, exprimées en fonction de U, Z et φ .
 - d. *I*, valeur efficace du courant de ligne
 - e. J, valeur efficace du courant de phase
 - f. P, Q et S, puissances active, réactive et apparente délivrées par le générateur

Exercice 3:

Un générateur triphasé 230/400 V 50 Hz alimente une charge équibrée. La puissance active totale fournie par le générateur et le courant de ligne valent respectivement P = 9 kW et I = 20 A.

- 1. Calculer le facteur de puissance de la charge, supposée inductive.
- 2. Proposer et définir complètement un système qui permet d'imposer un facteur de puissance égal à 0,9. Préciser les caractéristiques des composants à utiliser. Que vaut alors le courant de ligne ?

Exercice 4:

La Figure 4 donne le schéma de principe d'un certain convertisseur de puissance.

Figure 4

- a. Quelle est la fonction de ce convertisseur ? Justifier votre réponse (quelques mots bien choisis suffisent). Donner des exemples d'utilisation de ce type de convertisseur.
- b. Rappeler les définitions d'un signal alternatif et d'un signal continu.
- c. Qu'est-ce qu'une cellule de commutation ? Repérer les cellules de commutation du convertisseur.
- d. A quoi servent les composants L et C?
- e. Représenter la caractéristique tension-courant d'une diode idéale, et indiquer quelles sont les conditions de passage d'un état à l'autre.