Lab 3 - Feature Selection and Classification using Python

3.1 Feature Selection Python

Feature Selection

- Removes distracting or noisy features to improve classification accuracy and model build time
- ► Filter Method
 - ▶ information gain
 - ► chi-square test
 - fisher score
 - correlation coefficient
 - variance threshold
 - **...**
- Wrapper methods
 - recursive feature
 - ▶ elimination sequential feature selection algorithms
 - genetic algorithms
 - **...**

- Embedded methods
 - recursive feature
 - ► L1 (LASSO) regularization
 - decision tree
 - **...**

Feature Selection

Sklearn -> feature_selection :

https://scikit-learn.org/stable/modules/feature_selection.html#l1-based-feature-selection

3.2 Classification using Python

Data Frames

- ▶ Way to store data in rectangular grids that can be easily overviewed.
- ► Each row corresponds to values or an instance while each column contains data for a specific variable.
- Pandas
 - ▶ Popular python package for Data Science.
 - ► Offers powerful, expressive and flexible data structures that make data manipulation and analysis easy.
 - ▶ Pandas DataFrame is one such structure.

Pandas DataFrame

- ► Three main components:
 - Data
 - ► Index
 - ▶ Columns
- Can specify the index and column names.
- Index indicates the rows and column names indicate difference in columns.
- ► Can select an index using either .loc or .iloc
 - ▶ df.iloc[row][column] will use the position. .iloc[2] will look for values for dataframe that are at index 2.
 - ▶ df.loc[row][column] will use the label. .loc[2] will look for values for dataframe that have an index labelled 2.

NumPy Arrays

- Provides an efficient storage and better way handling of data for mathematical operations.
- Creates homogeneous n-dimensional arrays. All elements of NumPy array should be of same type.
- Advantages:
 - ▶ Dimensions can be changes at runtime if multiplicity factor produces the same number of elements. Example, 2*5 matrix can be converted to 5*2 and 1*4 into 2*2 by using .reshape() function.
 - ► Can create single dimensional array from any multi-dimensional array using .ravel() function.
 - ► Can perform mathematical operation on array like addition, subtraction, multiplication and division. np.array([1,2,3])*2.
 - ► Can also multiply two numpy arrays. np_array1*np_array2.
 - ► Some inbuilt functions like sum(), min(), max() amongst others.
 - ► Find shape of numpy array using nparray.shape()

NumPy Arrays

- Indexing
 - ▶ a[2:3] retrieves 3rd row and 4th column as the indexing starts at 0.
 - ► a[2,:] returns all columns of the 3rd row.
 - ► a[:,2] returns column 3 for all rows.

Scikit-learn

- Easy and clean Machine Learning library.
- Provides wide selection of supervised and unsupervised learning algorithms.
- ▶ Built on top of several common data and math Python libraries. Hence, can pass numpy arrays and pandas data frames directly to Machine Learning algorithms of scikit.
- Some of the libraries:
 - ► NumPy: Matrices and math operations
 - SciPy: Scientific and technical computing
 - ► Matplotlib: Data visualisation
 - ▶ Pandas: Data handling, manipulation, and analysis.
- ► Focuses on Machine learning and data modelling. Not concerned with loading, handling, manipulation and visualising data.

Scikit-learn

- Some robust algorithms include:
 - ► Regression: Fitting linear and non-linear models
 - ► Clustering: Unsupervised classification
 - ▶ Decision Trees: Tree induction and pruning for both classification and regression tasks
 - Neural Networks
 - ► SVMs
 - Naïve Bayes
 - Ensemble methods
 - ► Feature manipulation
 - Outlier detection
 - ► Model selection and validation

Tasks today

- Access Python either through VM or on your own laptop.
- ▶ Use IDE (PyCharm or Jupyter) for running the scripts.
- Study the code provided and configure the learning algorithms.
- Optional
 - ▶ Identify set of parameters for each learner to tune
 - ► Create a table or graph that shows relationship between classification accuracy with different values of parameter that is tuned.
 - ► For each learner, identify two parameters the accuracy is sensitive to.
 - ▶ Identify a range of values and examine the accuracy of each learner for each value of the parameter.

References

- https://www.datacamp.com/community/tutorials/pandas-tutorial-dataframepython
- ► https://www.tutorialspoint.com/python_pandas/python_pandas_dataframe.htm
- https://pandas.pydata.org/pandas-docs/stable/getting_started/dsintro.html
- https://pandas.pydata.org/pandasdocs/stable/reference/api/pandas.DataFrame.html
- https://www.tutorialspoint.com/numpy/numpy_array_attributes.htm
- https://towardsdatascience.com/a-hitchhiker-guide-to-python-numpy-arrays-9358de570121
- https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
- https://towardsdatascience.com/an-introduction-to-scikit-learn-the-goldstandard-of-python-machine-learning-e2b9238a98ab
- https://scikit-learn.org/stable/

Thank you and Have fun!