Семинар 8

Функциональные последовательности

Рассмотрим последовательность функций: $\{f_n(x)\}$, где $x \in X$. При каждом $x \in X$ это числовая последовательность. Она может иметь предел, который будет зависеть от x.

О. Функциональная последовательность $\{f_n(x)\}$ сходится *поточечно* на множестве X к функции f(x), если она сходится к ней в каждой точке этого множества:

$$\lim_{n \to \infty} f_n(x) = f(x) \ \forall x \in X,$$

T. e.
$$\forall x \in X, \forall \varepsilon > 0 \ \exists N = N(\varepsilon, x): \forall n > N \ |f(x) - f_n(x)| < \varepsilon$$
.

О. Функциональная последовательность $\{f_n(x)\}$ сходится равномерно на множестве X к функции f(x) ($f_n(x) \Rightarrow f(x)$ на X), если

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \forall n > N, \ \forall x \in X \ |f(x) - f_n(x)| < \varepsilon.$$

равномерная сходимость

Отличие от поточечной сходимости в том, что при равномерной сходимости число N не зависит от x, т. е. все функции $f_n(x)$ при $n > N(\varepsilon)$ лежат в некотором ε-коридоре на всём множестве X.

Если нет равномерной сходимости, то загнать все функции $f_n(x)$, начиная с некоторого номера $N(\varepsilon)$, в один и тот же ε -коридор сразу на всём множестве X нельзя.

Если последовательность $\{f_n(x)\}$ сходится равномерно к функции f(x) на множестве X, то она сходится к функции f(x) поточечно на множестве X. Обратное неверно.

Т. Если все функции $f_n(x)$ непрерывны (по x) на X и $f_n(x) \rightrightarrows f(x)$ на X, то и функция f(x) непрерывна на X.

Непосредственно из определения равномерной сходимости следует

Практический критерий равномерной сходимости функциональной последовательности.

$$f_n(x)
ightharpoonup f(x)$$
 на $X \iff \lim_{n
ightharpoonup \infty} arepsilon_n = 0$, где $arepsilon_n = \sup_{x \in X} |f_n(x) - f(x)|$.

Замечание. Обратите внимание на порядок действий: надо сначала взять супремум по x, а затем перейти к пределу при $n \to \infty$.

Пример 1. Исследовать на равномерную сходимость: $f_n(x) = e^{-nx}, x \in (0,1).$

- 1) Найдём предел последовательности:
- $f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} e^{-nx} = 0, x \in (0, 1).$
 - 2) Найдём ε_n :

$$\varepsilon_n = \sup_{x \in X} |f_n(x) - f(x)| = \sup_{x \in (0,1)} |e^{-nx} - 0| = 1.$$
3) $\lim_{n \to \infty} \varepsilon_n = 1 \Rightarrow$ нет равномерной сходимости.

Ответ: сходится к f(x) = 0 неравномерно.

Пример 2. Исследовать на равномерную сходимость: $f_n(x) = \frac{nx^2}{1+nx}, x \ge 0.$

$$f(x) = \lim_{n \to \infty} \frac{nx^2}{1 + nx} = \lim_{n \to \infty} \frac{x^2}{\frac{1}{n} + x} = x, x \ge 0.$$

$$\varepsilon_n = \sup_{x \ge 0} \left| \frac{nx^2}{1 + nx} - x \right| = \sup_{x \ge 0} \left| \frac{nx^2 - x - nx^2}{1 + nx} \right| = \sup_{x \ge 0} \frac{x}{1 + nx}.$$

Пусть $g(x) = \frac{x}{1+nx}$.

Построим график функции g(x) при $x \ge 0$:

$$g'(x) = \frac{1 + nx - xn}{(1 + nx)^2} > 0, \qquad g(0) = 0,$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{x}{1 + nx} = \lim_{x \to +\infty} \frac{1}{\frac{1}{x} + n} = \frac{1}{n}.$$

T. e. функция g(x) монотонно возрастает от зна-

чения g(0)=0 до $\frac{1}{n}$ на бесконечности. Тогда из графика видно, что $\varepsilon_n=\sup_{x\geq 0}\frac{x}{1+nx}=\frac{1}{n}$.

 $\lim \varepsilon_n = 0 \Rightarrow$ равномерная сходимость.

Ответ: сходится к f(x) = x равномерно.

О. Функциональная последовательность $\{f_n(x)\}$ сходится в среднем к функции f(x) на отрезке [a,b], если $\lim_{n\to\infty} \int_a^b [f_n(x)-f(x)]^2 dx = 0$.

поточечная сходимость ← равномерная сходимость ⇒ сходимость в среднем

Последовательность может сходиться в среднем на [a, b], но не сходиться ни в одной точке отрезка (см. пример у Ильина, Позняка). Также последовательность может сходиться поточечно на [a, b], но не сходиться в среднем на [a, b] (см. следующий пример).

Пример 3 (дополнительный). Исследовать поточечную сходимость и сходимость в среднем последовательности $f_n(x) = nx^n \cdot \sqrt{1-x}$ к f(x) = 0 на [0,1]. $\lim_{\substack{n \to \infty \\ b}} f_n(x) = \lim_{\substack{n \to \infty \\ b}} nx^n \cdot \sqrt{1-x} = 0 = f(x), \ x \in [0,1] \Rightarrow \text{есть поточечная сходимость.}$

$$\int_{a}^{b} [f_{n}(x) - f(x)]^{2} dx = \int_{0}^{1} n^{2} x^{2n} (1 - x) dx = n^{2} \int_{0}^{1} (x^{2n} - x^{2n+1}) dx =$$

$$= n^{2} \left(\frac{x^{2n+1}}{2n+1} - \frac{x^{2n+2}}{2n+2} \right) \Big|_{0}^{1} = n^{2} \left(\frac{1}{2n+1} - \frac{1}{2n+2} \right) = \frac{n^{2}}{(2n+1)(2n+2)}.$$

 $\lim_{n\to\infty} \int_a^b [f_n(x) - f(x)]^2 dx = \lim_{n\to\infty} \frac{n^2}{(2n+1)(2n+2)} = \lim_{n\to\infty} \frac{1}{\left(2+\frac{1}{n}\right)\left(2+\frac{2}{n}\right)} = \frac{1}{4} \neq 0 \Rightarrow \text{ нет сходимости в}$ среднем.

Ответ: сходится поточечно, но не в среднем.

Замечание: полученный результат доказывает, что $f_n(x) = nx^n \cdot \sqrt{1-x}$ сходится к f(x) = 0 неравномерно на [0, 1] (иначе из равномерной сходимости следовала бы сходимость в среднем).

Функциональные ряды

Рассмотрим ряд: $\sum_{n=1}^{\infty} a_n(x)$, где $x \in X$ — параметр. При каждом $x \in X$ это числовой ряд. **О.** Функциональный ряд $\sum_{n=1}^{\infty} a_n(x)$ *сходится равномерно* на множестве X, если последовательность его частичных сумм сходится равномерно на множестве X, т. е. $S_N(x) \rightrightarrows S(x)$

Необходимое условие равномерной сходимости. Если ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на X, то $a_n(x) \rightrightarrows 0$ на X.

Пример 4 (Демидович № 2767 б). Исследовать на равномерную сходимость: $\sum_{n=1}^{\infty} x^n$, $x \in (-1, 1)$.

В каждой точке $x \in (-1, 1)$ ряд сходится (геом. прогрес-

Проверим необходимое условие равномерной сходимости ряда: $a_n(x) \Rightarrow 0$ на (-1,1).

$$\lim_{n\to\infty} a_n(x) = \lim_{n\to\infty} x^n = 0, x \in (-1,1).$$

$$\varepsilon_n = \sup_{x\in(-1,1)} |a_n(x) - 0| = \sup_{x\in(-1,1)} |x^n| = \sup_{x\in(-1,1)} |x|^n = 1.$$

$$\lim_{n\to\infty} \varepsilon_n = 1 \Rightarrow a_n(x) \text{ сходится к 0 неравномерно.}$$

Тогда необходимое условие равномерной сходимости ряда не выполнено, значит, он сходится неравномерно.

Ответ: сходится неравномерно.

Признак Вейерштрасса. Если $|a_n(x)| \le c_n \ \forall x \in X$ и мажорантный *числовой* ряд $\sum_{n=1}^{\infty} c_n$ сходится, то функциональный ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится абсолютно и равномерно на X.

3амечание: числа c_n не должны зависеть от x, т. е. $\sum_{n=1}^{\infty} c_n$ — обязательно *числовой* ряд, а не функциональный.

Замечание: поскольку признак Вейерштрасса даёт абсолютную сходимость, не получится его применить для условно сходящегося ряда. Для условно сходящихся рядов есть признак Дирихле (см. далее).

Пример 5. Исследовать на равномерную сходимость: $\sum_{n=1}^{\infty} \frac{\sqrt{n}x}{1+n^4x^2}$, $x \in \mathbb{R}$.

Чтобы применить признак Вейерштрасса, надо замажорировать наш ряд каким-нибудь сходящимся числовым рядом. Рассмотрим $a_n(x) = \frac{\sqrt{n}x}{1+n^4x^2}$. Исследуем поведение этой функции на всей числовой оси.

функции на всеи числовой оси.
$$a'_n(x) = \frac{\sqrt{n}(1 + n^4x^2) - \sqrt{n}x \cdot 2n^4x}{(1 + n^4x^2)^2} = \frac{\sqrt{n}(1 - n^4x^2)}{(1 + n^4x^2)^2}.$$

$$a'_n(x) = 0 \text{ при } x = \pm \frac{1}{n}$$

$$y = a_n(x)$$

$$a'_n(x) = 0 \text{ при } x = \pm \frac{1}{n}$$

$$y = a_n(x)$$

$$\frac{1}{2n^{3/2}}$$

$$0$$

$$1$$

$$x$$

 $\frac{1}{2n^{3/2}}$ $y = a_n(x)$ $a_n'(x) = 0 \text{ при } x = \pm \frac{1}{n^2}.$ $a_n\left(\pm \frac{1}{n^2}\right) = \pm \frac{1}{2n^{3/2}}.$ Кроме того, $a_n(0) = 0$, $a_n(x) \to 0$ при $x \to \infty$, $a_n(x) \to$

$$|a_n(x)| \le \frac{1}{2n^{3/2}} \, \forall x \in \mathbb{R}.$$

Мажорантный числовой ряд $\sum_{n=1}^{\infty} \frac{1}{2n^{3/2}}$ сходится, поэтому ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится абсолютно и равномерно на \mathbb{R} (по признаку Вейерштрасса).

Ответ: сходится равномерно.

Признак Дирихле. Рассмотрим ряд $\sum_{n=1}^{\infty} a_n(x) b_n(x)$. Пусть

- 1) $\exists C: |\sum_{n=1}^{N} a_n(x)| \le C \ \forall N, \forall x \in X,$
- 2) $\{b_n(x)\}$ монотонная последовательность (по n) при каждом фиксированном $x \in X$ и $b_n(x) \rightrightarrows 0$ на X.

Тогда ряд $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ сходится равномерно на X.

Замечание 1: число C не должно зависеть ни от N, ни от x.

Замечание 2: не стоит применять признак Дирихле для абсолютно сходящегося ряда. В этом случае более удобен признак Вейерштрасса.

Пример 6. Исследовать на равномерную сходимость: $\sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt{n+x}}$, $x \in (\alpha, 2\pi - \alpha)$, где α фиксированный параметр, $0 < \alpha < \pi$.

Признак Вейерштрасса тут не поможет, т. к. мажорантный числовой ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+\alpha}}$ будет расходиться.

Будем использовать признак Дирихле.

Пусть
$$a_n(x) = \sin nx$$
, $b_n(x) = \frac{1}{\sqrt{n+x}}$.

1)
$$|\sum_{n=1}^{N} a_n(x)| = |\sum_{n=1}^{N} \sin nx| \le \frac{1}{|\sin \frac{x}{2}|} < \frac{1}{\sin \frac{\alpha}{2}} \quad \forall N,$$

$$\forall x \in (\alpha, 2\pi - \alpha),$$

т. к.
$$\sin \frac{x}{2} > \sin \frac{\alpha}{2}$$
 при $x \in (\alpha, 2\pi - \alpha)$.

2) $b_n(x) = \frac{1}{\sqrt{n+x}}$ монотонно убывает по n при каж-

дом фиксированном $x \in (\alpha, 2\pi - \alpha)$.

Докажем, что $b_n(x) \rightrightarrows 0$ на $(\alpha, 2\pi - \alpha)$.

Докажем, что
$$b_n(x) \rightrightarrows 0$$
 на $(\alpha, 2\pi - \alpha)$.
Во-первых, $\lim_{n \to \infty} b_n(x) = \lim_{n \to \infty} \frac{1}{\sqrt{n+x}} = 0 \ \forall x$. Далее,
$$\varepsilon_n = \sup_{x \in (\alpha, 2\pi - \alpha)} |b_n(x) - 0| = \sup_{x \in (\alpha, 2\pi - \alpha)} \frac{1}{\sqrt{n+x}} = \frac{1}{\sqrt{n+\alpha}}.$$
Тогда $\lim_{n \to \infty} \varepsilon_n = 0 \Rightarrow b_n(x) \rightrightarrows 0$ на $(\alpha, 2\pi - \alpha)$.

Таким образом, ряд $\sum_{n=1}^{\infty} a_n(x) b_n(x)$ сходится равномерно на $(\alpha, 2\pi - \alpha)$ (по признаку Дирихле).

Ответ: сходится равномерно.

ДЗ 8. Исследовать на равномерную сходимость на [0, 1]:

1)
$$f_n(x) = \frac{1}{1+nx}$$
,
2) $f_n(x) = n^2 x e^{-n^2 x^2}$,
3) $f_n(x) = \frac{x}{1+n^2 x^2}$.

2)
$$f_n(x) = n^2 x e^{-n^2 x^2}$$

3)
$$f_n(x) = \frac{x}{1 + n^2 x^2}$$

Исследовать поточечную сходимость и сходимость в среднем последовательности $f_n(x) = x^n \cdot \sqrt{1-x}$ к f(x) = 0 на [0, 1].

Демидович 1997 г. (2003 г.) № 2768.1 (2768 б), 2774 (а,в,ж,к), 2775а, 2779.

Дополнительный материал

О. Функциональная последовательность $\{f_n(x)\}$ равномерно ограничена на множестве X, если

$$\exists C: |f_n(x)| \leq C \ \forall n, \forall x \in X.$$

Замечание: число C не должно зависеть ни от n, ни от x.

Например: $f_n(x) = x^n$ равномерно ограничена на [0,1]: $|x^n| \le 1 \ \forall n, \ \forall x \in [0,1]$; не является равномерно ограниченной на [1, 2].

Признак Абеля. Рассмотрим ряд $\sum_{n=1}^{\infty} a_n(x)b_n(x)$. Пусть

- 1) ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на X,
- 2) $\{b_n(x)\}$ монотонная последовательность (по n) при каждом фиксированном $x \in X$ и последовательность $\{b_n(x)\}$ равномерно ограничена на X.

Тогда ряд $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ сходится равномерно на X.

О. Функциональная последовательность $\{f_n(x)\}$ равноственно непрерывна на множестве X, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \colon \forall x', x'' \in X, |x' - x''| < \delta \Rightarrow |f_n(x') - f_n(x'')| < \varepsilon \ \forall n.$$

Например: $f_n(x) = \frac{x}{n}$ равностепенно непрерывна на [0, 1]. Если взять $\delta = \varepsilon$, то

$$|f_n(x') - f_n(x'')| = \left| \frac{x'}{n} - \frac{x''}{n} \right| = \left| \frac{x' - x''}{n} \right| < \frac{\delta}{n} = \frac{\varepsilon}{n} \le \varepsilon \ \forall n.$$

 $f_n(x)=nx$ не является равностепенно непрерывной на [0,1]: $|f_n(x')-f_n(x'')|=|n(x'-x'')|$, при $x'\neq x''$ всегда можно подобрать n, такое что $|n(x'-x'')| > \varepsilon$.

Т. (Арцела). Если функциональная последовательность $\{f_n(x)\}$ равномерно ограничена и равностепенно непрерывна на отрезке [a, b], то из неё можно выделить подпоследовательность, равномерно сходящуюся на отрезке [a, b].

Замечание: теорема также справедлива, если заменить отрезок [a, b] на произвольное замкнутое ограниченное множество.