GraviTrax® - Bahnen bauen und Bauanleitungen verfassen

Einleitung

Wenn Du diese Beschreibung liest, hast Du sicher schon einen GraviTrax® Baukasten oder mindestens schon einmal davon gehört. Der Aufbau ist mit den Grundplatten, den sechseckigen Steinen, den Schienen und anderen Elementen leicht und schnell zu machen und Du freust Dich über jede funktionierende Bahn.

Bei den vielen Möglichkeiten, aus den vielen Teilen Bahnen zu bauen, ist es fast unmöglich, sich den Aufbau zu merken, um die gleiche Bahn später noch einmal zu bauen.

Es gibt eine App von Ravensburger, mit der Du solche Bahnen erstellen und dann abspeichern kannst. Diese Bahnen können dann zentral zu einem Rechner geschickt werden, von wo sich dann Deine Freunde die Bauanleitungen abholen können. Dazu brauchst Du aber die App und musst Dich an dem zentralen Rechner anmelden. Es geht aber auch einfacher und wenn Du willst, sogar ganz ohne App nur mit Bleistift und Papier.

Im folgenden wird Dir gezeigt, wie Du Deine gebauten Bahnen aufschreiben kannst, um sie später wieder nachbauen zu können. Natürlich kannst Du lange Sätze schreiben, zum Beispiel: "Nimm eine Grundplatte, lege sie so hin, dass die linke obere Ecke grün ist. Dann stecke einen grauen Stein in das zweite obere grüne Feld... ". Das dauert sicher sehr lange und ist nicht besonders praktisch. Daher wird hier vorgeschlagen, wie Du mit möglichst wenig Buchstaben und Zahlen aufschreiben kannst, wie Deine Murmelbahnen gebaut werden.

Dazu wird in den folgenden Kapiteln nach und nach beschrieben, wie die vielen Teile von GraviTrax® in eine Bauanleitung eingefügt werden können. Das ist viel Text, damit Du auch wirklich verstehst, wie alles gemeint ist.

Wenn Du dann später nur noch einmal nachsehen willst, wie bestimmte Teile notiert werden, musst Du nicht wieder den ganzen Text durchlesen. Im Anhang ist in Tabellen und Bildern noch einmal kurz zusammengefasst, wie die Regeln zum Aufschreiben der Bauanleitungen sind.

Beim Aufschreiben kann es immer mal passieren, dass Du Fehler machst. Daher ist es sehr nützlich, wenn Du Deine Bauanleitung von einem Computer überprüfen lässt. Zu dieser Anleitung gibt es ein Programm, was nachschaut, ob Du alle Teile richtig aufgeschrieben hast und ob Steine und Schienen zusammenpassen. Dann wird aus Deiner Anleitung auch noch ein Bild erstellt, wie die Bahn aussieht, falls sie richtig notiert wurde. Sonst meldet das Programm, wo Du Fehler gemacht hast. Anhand des Bildes kannst Du dann sehen, ob Du die Bahn richtig aufgeschrieben hast. Das Programm ist aber wie schon gesagt nicht unbedingt erforderlich,

Wo Du das Programm herbekommst und wie Du es installieren kannst, steht in einem späteren Abschnitt. Es ist in der Sprache Perl geschrieben und läuft auf Computern mit Windows, Linux und MacOSX. Mit dem Programm kannst Du noch viel mehr machen als hier gesagt, aber auch dazu später mehr. Jetzt geht es erst mal los.

Grundplatten und Positionen auf diesen Platten

Es sollen ja möglichst wenige Zeichen verwendet werden, um Bahnen aufzuschreiben. Daher wird jedes Teil von GraviTrax® mit nur einem oder zwei Zeichen notiert. Damit Du Dir die Zeichen merken kannst, wurden sie so gewählt, dass entweder ein Buchstabe aus dem englischen Namen des Teils verwendet wird oder das Zeichen bildlich an das Teil erinnert. Für die Grundplatte wurde der Unterstrich _ gewählt.

Da Du viele Grundplatten zusammenstecken kannst, gibst Du zuerst an, welche der Platten gerade beschrieben werden soll. Du platzierst die erste Grundplatte und legst sie links oben hin. Das grüne Feld muss in der linken oberen Ecke sein. Da die Platte die erste Reihe und die erste Spalte bildet, schreibst Du

_ 1 1

Legst Du rechts daneben weitere Platten, so schreibe dafür _ 1 2, _ 1 3 und so weiter. Fängst Du unter der ersten Reihe eine weitere an, so heißen diese Platten dann _2 1, _ 2 2 und so weiter. Die erste Zahl gibt also die Reihe an, die zweite die Spalte.

Nachdem Du nun aufschreiben kannst, auf welcher Grundplatte Du dich gerade befindest, willst Du ja auch Teile darauf stecken. Wie aber notierst Du, wohin die Teile kommen? Schaue dazu bitte auf eine Grundplatte (Bild rechts). Sie hat 6 Spalten mit sechseckigen Aussparungen. In der ersten, dritten und fünften Spalte gibt es 5 Möglichkeiten, ein Teil zu stecken, in den anderen nur vier.

Wie bei den Grundplatten nummerierst Du auch hier wieder die Positionen. Die erste Position oben links heißt 1,1 da schreibst Du einfach 11. Darunter die ist dann Position 21 und rechts neben 11 etwas nach unten versetzt findest Du Position 12.

Wenn Du zwei Grundplatten untereinander anordnest, wird aus den halben Sechsecken in Reihe 2, 4 und 6 jeweils ein komplettes Sechseck, auf das auch Teile gesteckt werden können. Diese Positionen heißen dann 52, 54 und 56 in der oberen Grundplatte. Wenn Du willst, kannst Du die Positionen auch 02, 04 und 06 in der unteren Grundplatte nennen, darfst dabei aber nicht die Null weglassen, da eine Position immer aus Zeile (hier die Null) und Spalte besteht.

Nun hast Du den wichtigsten Teil, die Benennung von Positionen auf den Grundplatten schon gelernt. Wenn Du zwei Grundplatten nebeneinander legst und auf der zweiten Grundplatte in der fünften Spalte das dritte Feld von oben aufschreiben willst, geht das mit

```
# Ein Beispiel
_ 1 2 # das ist die zweite Grundplatte in der ersten Reihe
35 # das ist in der fünften Spalte das dritte Feld von oben
```

Hier siehst Du auch, dass Du beim Aufschreiben beliebigen Text dazu schreiben kannst, der für Dich eine Hilfe zum Verstehen ist, aber sonst nicht weiter beachtet werden muss. Alles, was nach dem Zeichen # bis zum Zeilenende steht, sind solche Bemerkungen. Weil auf vielen Zeilen nur wenige Zeichen stehen, könntest Du statt jedes Mal eine neue Zeile zu beginnen, die Beschreibungen auch durch ein Semikolon trennen. Das wird aber schnell unübersichtlich und sollte daher nicht benutzt werden.

In einem Kapitel weiter unten wird auch noch beschrieben, wie Du die Positionen noch anders aufschreiben kannst, wenn die Bahnen nicht riesengroß sind. Statt der Nummerierung von Grundplatten werden dann alle Zeilen und Spalten fortlaufend gezählt. Damit sparst Du ein paar Zeilen in der Beschreibung, musst aber beim Aufschreiben mehr aufpassen, um die Zeilen- und Spaltennummer richtig aufzuschreiben. Nun kann es losgehen, eine Bahn aufzuschreiben.

Höhensteine

Damit die Kugeln richtig Schwung bekommen, werden sie aus einer bestimmten Höhe gestartet. Höhensteine erlauben Dir, andere Elemente von GraviTrax® über der Grundplatte anzuordnen. Im Starterset sind graue und halb so hohe schwarze Höhensteine enthalten. Es gibt auch ein "Starterset vertikal" in dem noch andere Höhensteine enthalten sind. Diese werden erst in einem späteren Abschnitt beschrieben.

Die grauen Höhensteine bekommen das Zeichen 1, die schwarzen halbhohen das Zeichen +. Daher kann auch gesagt werden, ein grauer Stein ist eine **Höheneinheit** hoch, ein schwarzer nur eine halbe. Höhensteine kannst Du übereinander stapeln. Dazu schreibst Du einfach die zu stapelnden Steine hintereinander, zum Beispiel +1+1. Das ist ein schönes Muster aus abwechselnd einem schwarzen und grauen Stein. Für eine Bahn ist es aber egal, wie die Höhe zustande kommt. Du hättest auch nur 3 graue und keinen schwarzen Stein nehmen können, denn 111 ergibt die gleiche Höhe. Da sehr oft solche Steine benutzt werden, kannst Du die Höhensteine zusammenzählen und stattdessen die Summe hinschreiben. So wird aus +1+1 eine 3, falls Du nicht auf das schöne Muster Wert legst. Hast Du aber noch einen halben Höhenstein mehr, zum Beispiel 111+, dann musst Du auch 3+ schreiben.

Wie sollst Du nun aber eine Höhe von 12 Steinen aufschreiben? 12 heißt ja 1 Höhenstein und noch zwei, das

sind nur 3. Du kannst 12 Einsen hintereinander schreiben oder auch Ziffern, die zusammen 12 ergeben, also für 12 Höhensteine schreibst Du 93 oder 66 oder auch 9111.

Jetzt kannst Du im obigen Beispiel notieren, wohin Du die zwei großen und zwei kleinen Höhensteine legen willst. Dazu kommt zuerst die Position (35) und danach die Höhensteine (+1+1 oder 3):

```
# Höhensteine platzieren
_ 1 2 # die zweite Grundplatte rechts neben der ersten
35 3 # 3 Höhensteine auf das Feld in der dritte Reihe und fünften Spalte
```

Nachdem Du nun weißt, wo und wie hoch Du Bausteine anordnen kannst, geht es daran, die Bahnen zu entwerfen

Grundelemente (sechseckige Steine)

Im Starterset sind mehrere sechseckige Steine und Verbindungsschienen enthalten. Los geht es mit den Steinen. Jedem der verschiedenen Steine wird ein **Großbuchstabe** zugeordnet. Die offenen Basissteine erhalten keinen Buchstaben, da sie erst mit einem grünen Einsatz zu einem Ziel, Freifall, Fänger oder Splash werden. Die Zuordnung siehst Du in der Tabelle.

Zeichen	Stein	Bemerkung
Α	Start	A steht für Änfang
Z	Ziel	
С	Kurve	C für Englisch "curve"
X	Kreuzung	Das Bild einer Kreuzung
Υ	2 in 1	Das Bild von zwei Bahnen in eine
W	3 in 1	So ähnlich wie Y es kommen oben 3 Bahnen an
S	Weiche	Der gleiche Stein wie Y, aber mit grüner Wippe (für Englisch "switch")
M	Gaußkanone	Arbeitet magnetisch, daher M
V	Wirbel	Kugel kreiselt, fällt dann nach unten, daher V
D	Freifall	D für Englisch "drop"
G	Fänger	Das Gegenstück zum Freifall oder Wirbel
Р	Splash	S ist schon vergeben, daher wurde der zweite Buchstabe P gewählt

Weitere Steine aus Erweiterungskästen werden später behandelt. Eine Aufzählung aller derzeit bekannten Elemente findest Du in der Tabelle im Anhang.

Für die meisten Steine ist es nicht egal, wie sie orientiert sind. Schau Dir zum Beispiel einen Kurvenstein an. Je nachdem, wie Du ihn drehst, gibt es eine andere Bahn. Damit eine Bahn fehlerfrei nachgebaut werden kann, solltest Du also für jeden Stein aus der Tabelle oben angeben, wie er liegen soll. Das wird mit den Buchstaben a, b, c, d, e und f gemacht. Die Verwendung der Buchstaben siehst Du im Bild unten. Die linke Spalte zeigt Steine mit der Orientierung a. Die Orientierung a ist so gewählt, dass (fast immer) an der oberen Kante eine Kugel den Stein verlassen kann. Wo das nicht so ist (zum Beispiel bei der Weiche), wird das extra erwähnt. Am besten siehst Du die Orientierung am Freifall. Bei Orientierung a kann die Kugel nur nach oben laufen. Drehst Du die Steine ausgehend von dieser Orientierung weiter im Uhrzeigersinn, erhältst Du die Orientierung b und so weiter.

Du siehst auch dass für den Stein 2 in 1 und die Weiche das gleiche Bild gilt. Bei 2 in 1 verlässt die Kugel den Stein, wo die beiden Bahnen zusammen kommen, bei der Weiche ist es genau umgekehrt, da kommt dort die Kugel an. Das ist eine Abweichung von der oben erwähnten Regel.

Bei der Weiche kann es wichtig sein, in welcher Stellung die Wippe steht. Das kannst Du bei der Beschreibung des Steins angeben, indem Du ein + oder – zwischen das S für Weiche und den Buchstaben für die Orientierung schreibst. Das + zeigt an, dass die Wippe im Uhrzeigersinn gedreht wurde. Bei Orientierung a des Steins zeigt das schmale Ende der Wippe dann nach links. Die Drehung der Wippe in die andere Richtung wird dann mit dem Zeichen – notiert. Du schreibst dann also zum Beispiel S+b oder S-b statt nur Sb.

Für einige Steine haben manche Orientierungen das gleiche Bild. So sieht für einen Basisstein die Orientierung **a**, **c** und **e** gleich aus. Du kannst dann eine der Orientierungen auswählen. Bei einigen anderen Steinen, auf die das Bild mit dem geraden Stein passt, ist die Orientierung aber wichtig. So schießt die Gaußkanone mit Orientierung **a** nach oben, mit Orientierung **d** nach unten. Damit kannst Du nun auf der Grundplatte oder auf Höhensteinen Steine platzieren.

Eine Kurve auf den Höhensteinen im Beispiel oben sieht dann so aus:

```
\# Ein Stein auf Grundplatte 1,2 Feld 35 \_ 1 2 _35 3Cf \# drei Höhensteine und darauf ein Kurvenstein
```

Nun sollen noch weitere Steine auf insgesamt 4 Grundplatten angeordnet werden. Kannst Du folgende Anordnung nachbauen?

```
# Ein Beispiel mit 4 Grundplatten
_ 1 1  # links oben
43 5Ac  # Start
55 3Cf
_ 2 1  # links unten
35 3Cf
_ 1 2  # rechts oben (leer, die Zeile kannst Du auch weglassen)
_ 2 2  # rechts unten
```

```
13 Ce
14 Cf
24 Zb # Ziel
```

Das sieht schon fast wie eine Bahn aus. Beim Startstein hätte statt Orientierung **c** auch **a** stehen können. Da von dort nur eine Kugel nach rechts unten loslaufen wird, sieht das **c** ein wenig schöner aus, aber **a** wäre genau so richtig gewesen. Nun fehlen noch die Schienen zwischen den Steinen. Wie das geht, steht im nächsten Abschnitt

Verbindungselemente (Schienen und andere Elemente)

Wenn Du das vorige Beispiel nachgebaut hast, kannst Du leicht erkennen, welche Verbindungselemente noch gebraucht werden. Im Starterset sind drei Sorten von Schienen, kurze, mittlere und lange. Dazu kommt noch die Zielleiter, die ähnlich wie die Schienen in einen sechseckigen Stein eingehängt wird. Alle Verbindungselemente erhalten als Abkürzung **Kleinbuchstaben**. Folgende Zuordnung wurde gewählt:

∠eichen	Element	Bemerkung
S	kurze Schiene	S für Englisch "short"
m	mittel lange Schiene	
I	lange Schiene	Das ist der Kleinbuchstabe "el", nicht der Großbuchstabe I
е	Zielleiter	Endpunkt für Kugeln

Es gibt noch viele weitere Verbindungselemente, die in Zusatzkästen enthalten sind. Diese werden später besprochen. Eine Aufzählung aller derzeit bekannten Elemente findest Du in der Tabelle im Anhang

Willst Du nun beschreiben, welche zwei Steine eine Schiene verbinden soll, wählst Du zuerst den Stein aus, von dem die Schiene startet. Dann gibst Du die Art der Schiene (zum Beispiel s für die kurze Schiene) an. Nun musst Du noch sagen, in welche Richtung die Schiene zeigt. Wie bei der Orientierung der Steine wählst Du wieder die Buchstaben a bis f. Mit a ist die Richtung nach oben gemeint, b bedeutet rechts oben, c rechts unten, d nach unten, e nach links unten und f nach links oben.

Damit besteht die Beschreibung eines Verbindungselements aus zwei Buchstaben, der Art der Schiene und die Richtung. Diese zwei Zeichen werden an die Beschreibung des Steins angehängt, von dem die Schiene ausgeht. Da von jedem Stein bis zu drei Schienen ausgehen können, dürfen auch bis zu drei solcher Buchstabenkombinationen folgen.

Da eine Schiene (bis auf die Zielleiter) immer zwei Steine verbindet, ist es egal, welchen Stein Du für die Beschreibung der Schiene wählst. Aber je nach Stein ist die Richtung dann genau entgegengesetzt. Nun kennst Du alle Regeln, um das vorige Beispiel zu vervollständigen. Es sieht dann so aus:

```
# Track A aus dem Bauplanheft vom Starterset
_ 1 1  # links oben
43 5Ac sc # Start
55 3Cf md
_ 2 1  # links unten
35 3Cf lb
_ 2 2  # rechts unten
13 Ce
14 Cf
24 Zb  # Ziel
```

Auf der rechten oberen Grundplatte sind keine Steine, daher wurde die Zeile _ 1 2 aus dem vorigen Beispiel weggelassen. Mit dem vorhin erwähnten Programm wird aus dieser Beschreibung das Bild unten erzeugt::

Hier kannst Du schön erkennen, wie die Bahn der Kugel von A nach Z verläuft. Mit diesem Programm kannst Du Dir auch eine Bauanleitung erstellen. Aus dem Beispiel oben entsteht dann folgender Text:

Anleitung für Bahn A mit 2x2 Bodenplatten Auf Platte 1,1 Pos 43 5 x Höhenstein groß, Start Orientierung (c) Auf Platte 1,1 Pos 55 3 x Höhenstein groß, Kurve Orientierung (f) Auf Platte 2,1 Pos 35 3 x Höhenstein groß, Kurve Orientierung Auf Platte 2,2 Pos 13 Kurve Orientierung Auf Platte 2,2 Pos 14 Kurve Orientierung (f) Auf Platte 2,2 Pos 24 Ziel Orientierung (b) Von Platte 1,1 Pos 43 nach Platte 1,1 Pos 55 Schiene kurz Richtung (c) Von Platte 2,1 Pos 35 nach Platte 2,2 Pos 13 Schiene lang Richtung (b) Von Platte 1,1 Pos 55 nach Platte 2,1 Pos 35 Schiene mittel Richtung ↓ (d)

Egal, in welcher Reihenfolge Du die Steine und Schienen notiert hast, werden zuerst die Steine auf der ersten Platte benannt, dann weiter auf den Platten 2,1 darunter bis zur letzten Platte. Wenn die Steine alle aufgebaut sind, kannst Du die Schienen darauf legen, daher kommen diese Angaben zum Schluss.

Bis auf die transparente Ebene sind nun alle Teile aus dem Starterset beschrieben. Das kommt jetzt.

Transparente Ebenen

Betrachte bitte folgendes Bild. Hier ist in hellblau eine transparente Ebene mit Mittelpunkt auf Position 33 gezeichnet. Die Ebene ist so weit nach links und nach oben gerückt, wie es geht, damit sie nicht über die Grundplatte ragt. Wenn Du Steine auf die transparente Ebene legst, musst Du als Position genau die im Bild zu sehenden Nummern verwenden, also in der oberen Reihe die 13, dann kommt etwas darunter die 12 und 14 und so weiter. Die transparente Ebene selbst erhält das Zeichen ^. Wie üblich, musst Du angeben, wo die Ebene liegt, in dem Bild oben also auf Position 33. Die Höhe der Ebene wird aus den darunter liegenden Höhensteinen berechnet und muss daher nicht notiert werden.


```
_ 1 2 # auf dieser Platte befindet sich der Mittelpunkt der transparenten Ebene
21 5 # 5 Höhensteine und sonst nichts weiter
25 5
53 5
33 ^ # der Mittelpunkt der transparenten Ebene über den 5 Höhensteinen
```

Alles was nach der Zeile mit dem ^ kommt, gehört auf die transparente Ebene. Willst Du weiter Steine auf Grundplatten legen, muss wieder eine Zeile mit Unterstrich (Zeichen _) folgen. Daher stehen die Zeilen mit den Höhensteinen vor der Zeile mit dem ^. Willst Du nun auf die transparente Ebene wieder Höhensteine und eine zweite transparente Ebene legen, sieht die Zeile mit der zweiten Ebene genau so aus wie die vorige, da der Mittelpunkt der gleiche ist. Auch der Mittelpunkt der zweiten Ebene ist die Position auf der Grundplatte, nicht die Position auf der ersten Ebene!

```
_ 1 2 # die Grundplatte
21 5 # je 5 Höhensteine auf die Grundplatte
25 5
53 5
33 ^ # der Mittelpunkt der ersten transparenten Ebene
21 5 # je 5 Höhensteine auf die transparente Ebene
25 5
53 5
33 Ga # und noch ein Fänger in der Mitte
33 ^ # das ist nun die zweite Ebene
33 V # hier liegt ein Wirbel in der Mitte
```

Die transparente Ebene ist übrigens genau so hoch, wie ein schwarzer, also halbhoher Höhenstein. Um neben der ersten transparenten Ebene eine Kurve in gleicher Höhe zu haben, brauchst Du daher im obigen Beispiel nicht nur 5 Höhensteine, sondern einen halben mehr, also zum Beispiel

11 5+Cb # eine Kurve genau so hoch wie ein Stein auf der 1. transparenten Ebene

Die Zeile für die transparente Ebene sieht sehr ähnlich wie die anderen Zeilen aus. Damit Du leichter den Anfang einer transparenten Ebene wiederfindest, kannst Du zusätzlich noch eine Zeile mit dem Wort **Ebene** und einer Nummer einfügen, die anzeigt, dass jetzt auf der aktuellen Grundplatte eine transparente Ebene mit darauf befindlichen Teilen beschrieben wird. Jede transparente Ebene erhält eine neue Nummer. Mit so einer Zeile muss dann die Zeile für die transparente Ebene (^) nicht sofort danach folgen. Dadurch kannst Du die Zeilen

zum Beispiel nach der Position auf dieser Ebene ordnen, was ohne die Ebenenzeile nicht immer möglich ist.

Die Verwendung von Ebenenzeilen hat noch einen anderen Vorteil. Wenn Du mit dem erwähnten Programm eine Bauanleitung erstellst, wird auch immer die Nummer der Ebene mit genannt. Du findest dann die Stellen in der Beschreibung oben viel leichter, die zu einer bestimmten Ebene gehören.

Mit jeder Zeile, die das Zeichen _ enthält,wechselst Du wieder auf die Grundplatten. Auch das kannst Du stärker hervorheben, indem Du vor eine solche Zeile **Ebene 0** einfügst. Du könntest also schreiben:

```
_ 1 2 # die Grundplatte
21 5 # je 5 Höhensteine auf die Grundplatte
25 5
53 5
Ebene 1
21 5 # nach Position sortiert
25 5
33 ^ # der Mittelpunkt der ersten transparenten Ebene
33 Ga # und noch ein Fänger in der Mitte
53 5
Ebene 2
33 ^ # das ist nun die zweite Ebene
33 V # hier liegt ein Wirbel in der Mitte
Ebene 0
# nun bist Du wieder auf Grundplatte 1 2
```

Im Starterset Speed ist eine neue kleinere transparente Ebene enthalten. Sie erhält das Symbol =. Wird sie wieder so weit links und oben wie möglich platziert, kommt die Mitte auf Position 22 und die anderen möglichen Positionen kann man dem Bild rechts entnehmen. Alles weitere in diesem Abschnitt gesagte gilt auch für die kleine transparente Ebene. Im folgenden ist die Notation für Ebenen noch einmal zusammengefasst.

11		13		15	
	12		14		16
21		23		25	
	22		24		26
31		33		35	
	32		34		36
41		43		45	
	42		44		46
51		53		55	

Zeichen	Ebene	Bemerkung
_	Grundplatte	Oben links ist ein grünes Sechseck
٨	Transparente Ebene	Mitte auf Position 33
=	Kleine transparente Ebene	Mitte auf Position 22

Bis jetzt kannst Du noch nicht notieren, wie viele Kugeln Du brauchst und wo sie starten sollen. Das wird im folgenden Abschnitt beschrieben.

Kugeln

Normalerweise wirst Du die Kugeln vom Start losschicken. Wie viele Kugeln Du brauchst, siehst Du auch sehr einfach daran, ob von dort nur eine oder mehrere Bahnen möglich sind. Aber vielleicht willst Du beschreiben, welche Farbe die Kugeln haben, die bei Start loslaufen sollen, oder die in die Gaußkanone geladen werden sollen. Dafür fügst Du zu dem Stein, auf dem die Kugeln liegen sollen, noch weitere Zeichen an.

Die Kugeln werden mit dem Zeichen o (kleines o) aufgeschrieben, danach kannst Du noch eine Farbe – R für rot, G für grün, B für blau und S für silber – wählen und eine Platzierung auf dem Stein (a ist wieder oben, dann kommt im Uhrzeigersinn b bis f) angeben. Auf manchen Steinen darfst Du bis zu 3 Kugeln platzieren, im Spinner bis zu 6 und im Lift noch viel mehr.

Für den Start im vorigen Beispiel könntest Du also schreiben

34 5Ac sc oRc # Startstein mit roter Kugel rechts unten

Das Aufschreiben der Kugeln ist freiwillig, und wenn Du es machst, ist nur das o (kleines o) wichtig, Du kannst

Farbe **RGBS** oder Platzierung **abcdef** auch weglassen. Dort wo Kugeln notwendig sind, wird automatisch die richtige Zahl von Kugeln mit der Farbe Silber hinzugefügt, falls Du keine Angaben gemacht hast. Du kannst auch vor dem o die Zahl gleichartiger Kugeln angeben, zum Beispiel 3oS für 3 silberne Kugeln.

Um kompliziertere Bahnen zu bauen und weitere neue Teile zu verwenden, benötigst Du weitere Regeln, die in den folgenden Abschnitten erläutert werden. Vorher kommt noch ein Abschnitt, wie Du die Positionen auch anders schreiben kannst, wenn die Bahnen klein genug sind. Ob Du diese Schreibweise benutzen willst, darfst Du selbst entscheiden.

Andere Positionsangaben für kleine Bahnen

Für die Positionen von Steinen werden immer zwei Zeichen benutzt. Anstatt bei jeder Grundplatte wieder mit der Position 11 zu beginnen, könntest Du auch die Positionen durchgehend benennen. Mit Ziffern 1 bis 9 kommst Du aber nicht sehr weit. Wenn Du die Buchstaben a bis z dazunimmst, kannst Du horizontal und vertikal schon eine ziemlich große Bahn beschreiben. Da dann schon klar ist, dass in der ersten Reihe Position 11 bis 16 auf der ersten Grundplatte sind und 17 bis 1c auf der Platte daneben, werden alle Zeilen mit dem _ weggelassen. Dann sieht die Bahn A aus dem Bauplanheft so aus:

```
43 5Ac sc oc
55 3Cf md
85 3Cf lb
69 Ce
6a Cf
7a Zb
```

Das ist etwas kürzer als vorher, dafür siehst Du vielleicht nicht so schnell, wo das Feld **6a** ist. Du könntest unter die Grundplatten Papier legen und in die Löcher der Grundplatten die Positionen schreiben, damit Du nicht immer abzählen musst, wo das Feld gerade ist. Auch für die transparenten Ebenen musst Du dann diese so nummerierten Positionen, benutzen. Du darfst auch hier die transparenten Ebenen mit einer Zeile **Ebene** beschreiben. So eine transparente Ebene auf Platte 1, 2 mit einem Kurvenstein kann dann so aussehen:

```
Ebene 1
19 Ca # Kurvenstein auf der transparenten Ebene ganz oben
39 ^ # eine transparente Ebene auf Position 39, das ist auf Platte 1,2
```

Damit Du nach den Zeilen für transparente Ebenen wieder Elemente auf den Grundplatten beschreiben kannst, musst Du eine Zeile mit **Ebene 0** einfügen, da Du ja keine Zeilen mit _ verwendest. Du kannst dadurch zuerst die Elemente auf den transparenten Ebenen und dann erst auf den Grundplatten notieren.

Erweiterungen

Für GraviTrax® erscheinen immer wieder neue Erweiterungen, die neue Steine, Schienen und andere Elemente enthalten können. Für viele dieser Erweiterungen müssen nur neue Zeichen vergeben werden, damit Du sie genau so aufschreiben kannst, wie in den vorigen Abschnitten gezeigt. Für die Steine aus dem Starterset wurden schon 12 Großbuchstaben verwendet, auf Dauer reichen die 26 Buchstaben für alle Erweiterungssteine nicht. Daher gibt es als neue Regel, dass ein Stein auch mit zwei Zeichen benannt werden kann. Dabei muss das erste Zeichen ein x, y oder z sein. Vorerst wird y und z aber noch nicht gebraucht.

Bei manchen Erweiterungen sind mehr Angaben nötig, um alles genau zu beschreiben. Das hast Du schon an der Weiche (S) gesehen, denn es kann wichtig sein, in welcher Stellung sich die grüne Wippe befindet. All diese Angaben werden wie schon weiter oben für die Weiche erläutert zwischen das Zeichen für den Stein und das Zeichen für die Orientierung geschrieben. Wo das wichtig ist, wird im folgenden beschrieben.

Flip, Hammer, Jumper, Kaskade, Katapult, Tiptube, Vulkan, Looping, Transfer, Spinner, Dipper und Flextube

Die Erweiterungen bestehen jeweils aus einem Stein, nur bei Transfer sind es bis zu drei. Die Orientierung **a** ist dadurch gegeben, dass dort die Kugel nach oben läuft. Vulkan und Dipper machen eine Ausnahme, dort ist Orientierung **a** diejenige, wo die Kugel von oben ankommt und den Vulkan auslöst bzw. nach unten weitergegeben wird. Für den Spinner kann eine Orientierung angegeben werden, falls nicht alle 6 Kugeln benutzt werden. Beim Dipper gibt es ein bewegliches Teil ähnlich wie bei der Weiche. Je nach Stellung wird die Kugel in unterschiedliche Richtungen gelenkt. Wie bei der Weiche wird die Stellung der Wippe als Detail mit + oder – notiert. Folgende Buchstaben werden für die Erweiterungen benutzt:

Zeichen	Stein	Bemerkung
F	Flip	
Н	Hammer	
J	Jumper	
K	Kaskade	
xK	Katapult	Ähnlich zu Kaskade, funktioniert mit Gummi statt mit Kugelgewichten
хT	Tiptube	Das ist ein Stein, für den zwei Zeichen geschrieben werden müssen
N	Vulkan	Beachte die Orientierung
Q	Looping	Das Q sieht ein wenig wie ein Looping aus
xR	Transfer	
хD	Dipper	Die Stellung der Wippe ist + (im Uhrzeigersinn gedreht) oder -
xS	Spinner	Die Orientierung muss nicht angegeben werden

Für die Tiptube kann es vorkommen, dass sich beim Start bereits Kugeln in der Tiptube befinden. Das kannst Du wie im Abschnitt Kugeln beschrieben vermerken. Eine Bahn, die ein Katapult enthält, verhält sich je nach Spannung des Gummis, der mit der Zeit altert, unterschiedlich. Deshalb kann es vorkommen, dass so eine Bahn nicht immer funktioniert.

Seilbahn

Die Seilbahn besteht aus dem Startstein, der die Seilbahn auslöst, dem Zielstein, auf dem eine Kugel liegen muss und der Schiene. Die Orientierung der Steine ist wieder durch die Laufrichtung der Kugel gegeben. Für Start, Schiene und Ziel verwendest Du:

Zeichen	Element	Bemerkung
xA	Seilbahn Start	Alle Teile der Seilbahn werden mit zwei Zeichen notiert
xZ	Seilbahn Ziel	
xa	Seilbahn Schien	ne

Erweiterung Tunnel

Die Erweiterung Tunnel bringt mehrere neue Steine und Schienen mit. Tunnelkurve und Tunnelweiche funktionieren genau so wie Kurve und Weiche, der gerade und vertikale Tunnel ist neu. Der vertikale Tunnel ist eine Schiene, denn er wird wie eine normale Schiene in einen Stein eingehängt und verbindet zwei Steine. Damit die Anleitung funktioniert, muss der vertikale Tunnel beim oberen Stein notiert werden, da er auch dort eingehängt wird. Das gleiche gilt für die gebogene Schiene (die auch Bernoulli Schiene genannt wird). Weiterhin gibt es noch zwei Schienen mit Loch. Durch das Loch kann eine Kugel fallen, die dann in einem Auffangkorb landet. Der Auffangkorb wird auf eine andere Schiene gesteckt. Das ist eine Position wie für einen Stein. Daher wird für den Auffangkorb auch ein Großbuchstabe gewählt. Alle Elemente aus der Erweiterung Tunnel und ihre Abkürzungen siehst Du in der folgenden Tabelle:

Zeichen	Element	Bemerkung
T	Tunnelkurve	
U	Tunnelweiche	Die Wippe kann nicht entfernt werden, daher kein 2 in 1 Tunnel
1	Tunnel gerade	Der Großbuchstabe I, nicht der Kleinbuchstabe "el"

0	Auffangkorb	Der Großbuchstabe O, nicht die Null
t	Tunnel vertikal	Hängt am oberen Stein!
u	Lochschiene nach oben gebogen	Konvex
V	Lochschiene nach unten gebogen	Konkav
b	Bernoulli Schiene	Es gibt im vertikalen Starterset weitere gebogene Schienen

Bei der Tunnelweiche musst Du genau hinschauen, wo die Kugel hineinläuft, das ist wie bei der normalen Weiche wichtig für die Orientierung des Steins. Da die Wippe verdeckt ist, siehst Du es schwerer als bei der normalen Weiche. Auch für die Tunnelweiche kannst Du wie bei der normalen Weiche ein + oder – für die Anfangsposition der Wippe angeben.

Beim Auffangkorb darfst Du nur die Position angeben, keine Höhe und keine Richtung, denn das ist schon durch die Schiene festgelegt, auf der sich der Korb befindet.

Flextube

Diese Erweiterung bringt neben Höhensteinen nur ein neues Element, die Flextube. Das ist eine Röhre sehr ähnlich zum vertikalen Tunnel. Daher erhält die Flextube auch das Symbol xt. Im Gegensatz zum vertikalen Tunnel ist die Richtung der auslaufenden Kugel frei wählbar. Daher musst Du die Richtung der auslaufenden Kugel (a. f) als Detail zwischen das xt und die Orientierung schreiben. Wie auch bei Schienen ist die Orientierung diejenige, wo die Flextube eingehängt wird. Im Beispiel

23 6Cb xtfd

hängt die Flextube an einer Kurve mit Orientierung b, die Flextube ist an der engen Kurve eingehängt (zeigt nach unten) und die Kugel läuft in Richtung f aus der Flextube.

Zeicher	n Element	Bemerkung
xt	Flextube	Die Richtung der auslaufenden Kugel wird als Detail notiert

Erweiterung Brücken

Mit der Erweiterung Brücken kommt ein neuer Stein, auf den als Gewicht zwei Kugeln gelegt werden. Auf der Seite, wo die Kugel den Stein verlässt, werden Teile für eine Fallbrücke angesteckt. Am besten funktioniert die Fallbrücke mit 4 Teilen, es sind aber auch zwei oder mehr als vier möglich. Die Fallbrücke ist wie eine Schiene, denn sie lässt die Kugeln von einem Brückenstein zu einem anderen Stein rollen. Damit eine Verbindung zu einem anderen Stein möglich ist, muss die Zahl der Fallbrückenteile gerade sein. Folgende Zeichen werden für die Teile aus diesem Erweiterungskasten verwendet:

Zeichen	Element	Bemerkung
хB	Brückenstein mit Fallbrücke	Mit 4 Fallbrückenteilen, sonst muss deren Zahl angegeben werden
xb	Fallbrückenelement	Wird nicht zur Notation einer Bahn benutzt
g	Schiene extralang	Das ist ein kleines o, keine Null
q	Schiene langsam	Hier rollt die Kugel langsam, ruhig (Englisch "quiet")

Die Fallbrücke hängt immer am Brückenstein, daher wird die Fallbrücke nicht extra als Schiene notiert. Stattdessen schreibst Du die Zahl der Brückenteile direkt nach **xB** und vor das Zeichen für die Orientierung des Brückensteins. Bei 4 Teilen kannst Du die Zahl auch weglassen. Obwohl **xb** nicht in einer Beschreibung von Bahnen vorkommt, wird es benutzt um zu zählen, wie viele Fallbrückenelemente gebraucht werden und um zu prüfen, ob Du genügend solche Teile hast. Das wird später noch einmal erläutert. Ein Beispiel sieht dann so aus:

22 xB6c # ein Brückenstein auf Position 22 mit 6 Teilen für eine Fallbrücke

Die Brücke kann dann nur in ausgeklapptem Zustand benutzt werden, da sonst die Kugel nicht rollen kann.

Trampolin

In der Erweiterung Trampolin findest Du neben den Steinen mit der elastischen Matte noch zwei schräge Winkelsteine. An das Trampolin passen keine Schienen, dafür kannst Du neben normalen Höhensteinen noch ein oder zwei Winkel unter das Trampolin legen. Sie können bewirken, dass die Kugel das Trampolin in leicht geänderter Richtung verlässt. Die Winkelsteine haben eine hohe und eine niedrige Kante. Daher ist für die Winkelsteine die Orientierung wieder wichtig. Bei der Orientierung a ist die hohe Seite oben. Wie bei anderen Erweiterungen werden die Winkelsteine als Zusatzangabe direkt hinter das Symbol R geschrieben. Der Trampolinstein selbst braucht keine Angabe zur Orientierung, für die Winkelsteine ist nur die Orientierung wichtig. Daher reicht es, hinter das R einfach die Orientierung der Winkelsteine zu schreiben, wenn Du welche verwendest. Eine Beispielzeile für ein Trampolin mit zwei Winkelsteinen könnte so aussehen:

43 2R rb rb # Trampolin auf zwei Höhensteinen und zwei Winkelsteinen Wie weit die Kugeln springen, die auf ein Trampolin treffen, musst Du ausprobieren. Es kann sein, dass die Matten mit der Zeit weniger elastisch werden oder die Steine unterschiedlich hergestellt wurden. Daher funktionieren Bahnen mit einem Trampolin nicht immer wie beschrieben. Die Zeichen für Trampolin und Winkelstein sind

Zeichen	Element	Bemerkung
R	Trampolin	Hier wird keine Orientierung gebraucht
r	Winkelstein	Wird nicht in den Bahnbeschreibungen verwendet

Spirale

Die Spirale ist ein Stein, den Du wie gewohnt platzieren kannst. Die Höhe kannst Du selbst bestimmen, indem Du mehr oder weniger Kurventeile in der Spirale verwendest. Es geht auch ganz ohne Kurventeile. Mit jedem Kurventeil ändert sich die Richtung, aus der die Kugel ankommen kann, wenn der Kugelauslauf gleich bleibt. Die Orientierung der Spirale ist durch die Richtung der auslaufenden Kugel festgelegt. Als Symbol für die Spirale wird xH gewählt (für Englisch Helix). Jedes grüne Teil (mindestens zwei, Anfang und Ende sind erforderlich) ist eine halbe Höheneinheit hoch. Die gesamte Höhe der Spirale und damit auch die Richtung, aus der die Kugel in die Spirale läuft, ist durch die Zahl der grünen Teile bestimmt. Diese Zahl musst Du als Zusatzinformation zwischen das Symbol xH und das Zeichen für die Orientierung der Spirale schreiben, also zum Beispiel xH4b. Wenn Du nichts angibst, wird angenommen, dass Du nur zwei grüne Teile verwendest.

Zeichen	Element	Bemerkung
хH	Spirale	
h	Spirale Kurve	Wird nicht in den Bahnbeschreibungen verwendet
i	Spirale Start	Wird nicht in den Bahnbeschreibungen verwendet
j	Spirale Auslauf	Wird nicht in den Bahnbeschreibungen verwendet

Lift

Der Lift ist ähnlich variabel wie die Spirale. Er wird mit den Zeichen xF notiert. Auch beim Lift kannst Du die Höhe wählen, indem Du eine unterschiedliche Zahl an durchsichtigen Teilen verwendest. Es müssen mindestens zwei sein, da Start und Auslauf der Kugel immer verwendet werden. Anders als bei der Spirale ist die Richtung der ankommenden Kugel hier frei wählbar. Daher wird als Zusatz nicht nur die Zahl der durchsichtigen Teile, sondern auch die Richtung der ankommenden Kugel aufgeschrieben. Die Richtung a bedeutet, dass die Kugel von oben kommt. Ein Beispiel für einen Lift mit 4 durchsichtigen Elementen ist xF4ad. Wird nichts angegeben, heißt es, dass 4 Elemente verwendet wurden und der Kugeleinlauf entgegengesetzt zum Auslauf ist. Die minimale Höhe zwischen Kugeleinlauf und Auslauf sind 3 und eine halbe Höheneinheit. Mit jeder Röhre kommen 4 Höheneinheiten hinzu.

Zeichen	Element	Bemerkung
xF	Lift	
f	Lift Kurve	Wird nicht in den Bahnbeschreibungen verwendet
xi	Lift Start	Wird nicht in den Bahnbeschreibungen verwendet
хj	Lift Auslauf	Wird nicht in den Bahnbeschreibungen verwendet

Mixer

Der Mixer ist ein Stein, der ähnlich symmetrisch wie der Startstein ist. Er wird mit **xM** notiert. Es gibt nur zwei Orientierungen, die sich unterscheiden. Die Besonderheit ist der grüne Stein, der je nach Stellung festlegt, wohin die Kugel rollt. Wenn Du willst, kannst Du die Richtung der auslaufenden Kugel als Zusatzangabe zwischen **xM** und die Orientierung des Mixers schreiben. Für die Orientierung **a**, **c** und **e** des Mixers sind nur die Richtungen **a**, **c** oder **e** möglich, für **b**, **d** und **f** die anderen drei Richtungen.

Splitter

Der Splitter ist ein Stein, der je nach Stellung der drehbaren grünen Klappe die Kugel in eine oder die entgegengesetzte Richtung lenkt. Daher entscheidet die Stellung der Klappe, in welche Richtung die Kugel läuft. Oben am Stein können genau wie bei der Kreuzung bis zu vier Schienen verbunden werden. Die Orientierung ist daher genau so festgelegt wie für eine Kreuzung. Bei Orientierung a zeigt die grüne Klappe nach oben leicht nach rechts. Damit brauchst Du keine zusätzliche Angabe, wie die Klappe am Anfang steht. Der Splitter erhält das Symbol xV, wobei das V andeuten soll, dass die Kugel ähnlich wie beim Wirbel nach unten fällt.

Starterset und Erweiterungsset vertikal

Diese beiden Baukästen bringen eine Menge neuer Teile mit. Im Starterset vertikal sind viele Teile enthalten, die schon beschrieben sind. Neu sind gebogene kurze Schienen, die Du nur dort vorfindest. Weiterhin gibt es Säulen, das sind Höhenelemente, die Du übereinander stapeln kannst. Sie haben aber auch noch Aussparungen zum Einhängen von durchsichtigen Wänden. Da diese Wände immer zwei Säulen verbinden, werden sie wie Schienen mit Kleinbuchstaben bezeichnet. Schließlich gibt es noch Balkone und Doppelbalkone. Balkone werden in die transparenten Wände eingehängt, um darauf normale Steine zu platzieren. Daher werden sie wie die Doppelbalkone, auf die Du auch weitere Höhenelemente oder Steine legen kannst, behandelt. Wie diese vielen Elemente mit wenigen Buchstaben beschrieben werden, wird jetzt gezeigt. Zuerst kommt die Tabelle mit den neuen Teilen und den dazu gehörenden Symbolen.

Zeichen	Element	Bemerkung
L	Säule	7 Höheneinheiten
xL	Tunnelsäule	Säule mit Loch in der Mitte
В	Balkon	Wird in einer Wand eingehängt
E	Doppelbalkon	Kommt auf ein Höhenelement
XS	Kurze Wand	Mit 10 + 10 Aussparungen zum Einhängen von Balkonen
xm	Mittellange Wand	Mit 10 + 13 + 10 Aussparungen
xl	Lange Wand	Mit 10 +13 +13 +10 Aussparungen
а	Kurze Bernoullischiene	Wie die gebogene Schiene b, nur kürzer
С	Schiene gebogen minus	Gebogene Schiene, Bahn macht Drehung entgegen Uhrzeigersinn
d	Schiene gebogen plus	Gebogene Schiene. Wenn oben eingehängt, geht die Bahn nach rechts

Wenn Du die Schienen a, c und d verwendest, musst Du sie wie schon bei der gebogenen Bernoullischiene (b) zu dem Stein schreiben, der höher ist, weil dann der untere Stein schon existiert. Alle drei Schienen sind kurze gebogene Schienen. Bei den Schienen mit dem Zusatz plus oder Minus läuft die Kugel nicht gerade nach unten sondern macht noch eine Biegung im (plus) oder entgegen dem (minus) Uhrzeigersinn. Die Biegung wäre genau andersherum, wenn Du die Schiene zum unteren Stein schreibst. Daher ist diese Regel bei gebogenen Schienen besonders wichtig.

gebogene Schienen b,c, a und d

Höhenelemente

Schwieriger wird es bei Säule, Tunnelsäule und Doppelbalkon. Das sind Höhenelemente, die beliebig übereinander gestapelt werden können, auch gemischt mit den grauen und schwarzen Höhensteinen. Daher werden sie an der gleichen Stelle notiert, wo auch die anderen Höhenangaben stehen. Säulen sind so hoch wie 7 graue Höhensteine, ein Doppelbalkon ist so hoch wie ein schwarzer Höhenstein.

Bisher wurden für Höhenelemente keine Orientierungen gebraucht. Das ist für einige neue Steine aber anders.

Da die Tunnelsäule ein Loch hat, ist hier die Orientierung wichtig. Wie bei vielen anderen geraden Elementen sieht Orientierung **a** und **d** gleich aus, ebenso **b** und **e** oder **c** und **f**. Beim Doppelbalkon ist es einfach, die Orientierung wird durch die Richtung des Balkons festgelegt, dabei ist **a** wie immer die Orientierung nach oben.

Die einfachen Balkone sind auch Höhenelemente, können aber nicht übereinander gestapelt werden, sondern werden in eine transparente Wand eingehängt. Wie das notiert werden muss, wird weiter unten beschrieben. Weil das schon relativ komplizierte Regeln sind, kommt nun ein Beispiel zur Notierung der Höhenelemente auf Position 23, wobei hier alle Steine die Orientierung a haben, für die eine Orientierung gebraucht wird:

```
23 LEa2Ca # eine Säule, ein Doppelbalkon, 2 Höhensteine und eine Kurve gestapelt
23 xLaEa2Ca # wie vorher, statt Säule eine Tunnelsäule
23 1L4Ca # In einer Höhe von 1+7+4=12 eine Kurve (Säule ist 7 graue Steine hoch)
23 93Ca # In einer Höhe von 9+3=12 wieder eine Kurve, egal mit welchen Steinen
```

Auf den überstehende Teil des Doppelbalkons kannst Du Steine legen, ebenso auf die Balkone, die in eine Wand eingehängt werden. Wie das notiert wird, kommt später. Jetzt soll erst noch erklärt werden, wie die Wände zu notieren sind.

Wände

Wände verbinden wie eine Schiene zwei Steine, und zwar nur Säulen oder Tunnelsäulen. Daher müssten sie genau so wie Schienen hinter den Stein geschrieben werden, an dem sie hängen. Da die Säulen aber Höhenelemente sind, auf dem andere Steine liegen können, kann es an einer Säule bis zu 3 Wände geben und zusätzlich an dem Stein oben drauf noch einmal bis zu 3 Schienen. Daher können an solchen Positionen bis zu 6 Schienen vorkommen.

Wenn wie im obigen Beispiel an einer Position mehrere Säulen übereinander stehen, muss eine Wand nicht direkt über der Grundplatte eingehängt werden, sondern kann auch weiter oben sein. Das beschreibst Du als Zusatz zum Namen der Wand, indem Du die Wände nummerierst und zwischen das Symbol für die Wand und den Buchstaben für die Orientierung schreibst. Eine Wand direkt über der Grundplatte bekommt immer die Nummer 1 (und kann weggelassen werden). Eine Wand, die in Säule 2 (und 3) eingehängt wird, erhält die Nummer 2, auch wenn sich darunter keine Wand befindet und auch, wenn zwischen der ersten und zweiten Säule eine transparente Ebene liegt. Es wird immer von ganz unten gezählt. Dazu ein Beispiel:

13 LLLLCc xl1b xl2b # vier Säulen übereinander, darin zwei Wände eingehängt

Nun wird es noch schwieriger. Du musst ja irgendwie noch Balkone und Doppelbalkone beschreiben

Doppelbalkon

Ein Doppelbalkon erstreckt sich über zwei Felder der Grundplatte. Beide Felder müssen beschrieben werden. Ein Teil des Doppelbalkons wurde ja schon bei den gestapelten Höhenelemente notiert (siehe oben). Der überstehende Teil vom Doppelbalkon befindet sich genau über einem Loch der Grundplatte. Diese Feldangabe kommt in eine neue Zeile. Dann folgt nochmals das Zeichen (E) für den Doppelbalkon und die Richtung, die schon bei den gestapelten Höhenelementen angegeben wurde. Die Feldangabe muss sich immer auf die Grundplatte beziehen, auch wenn der Doppelbalkon über einer transparenten Ebene liegt. Wenn Du gerade eine transparente Ebene beschreibst, musst Du für den Doppelbalkon wieder mit einer Zeile

Ebene 0

auf die Grundplatte umschalten. Nach der erneuten Richtungsangabe für den Doppelbalkon kommt nun erst die Beschreibung, was auf den Doppelbalkon gelegt wird. Wie immer kommen zuerst Höhensteine, falls welche darauf liegen, dann ein anderer Stein zum Abschluss. Natürlich darfst Du zu dem Stein auch wie üblich Schienen notieren. Das könnte so aussehen:

13 LLEdLLCc xl1b xl2b # vier Säulen übereinander, dazwischen ein Doppelbalkon

23 Ed+Cf md # Doppelbalkon mit schwarzem Höhenstein und Kurve mit einer Schiene

Es kann vorkommen, dass Du mehr als einen Doppelbalkon übereinander anordnen willst. Dann machst Du es so wie schon in ähnlichen Situationen. Der unterste Balkon wird in der zweiten Zeile für einen Doppelbalkon mit 1 nummeriert und die Zahl als Detail nach E und vor die Orientierung gesetzt. Das ist auch der Grund, warum die Orientierung noch einmal aufgeschrieben werden muss, weil eine Zahl sonst entweder diese Nummer oder auch ein Höhenelement bedeuten könnte. Die einfachen Balkone werden ähnlich kompliziert notiert.

Einfache Balkone

Die einfachen Balkone werden in eine Wand eingehängt. Auch sie befinden sich dann über einem Loch der Grundplatte. Daher gilt auch hier das gleiche wie oben, Du musst immer die Position der Grundplatte verwenden, auch wenn sich das Loch über einer transparenten Ebene befindet. Nun hast Du schon mal die Position des Balkons. Danach musst Du sagen, in welche Aussparung der Balkon eingehängt wurde. Die Aussparungen werden von unten nach oben nummeriert. Wo es 13 Löcher gibt, geht es von 1 bis 9, dann kommt a,b,c,d. Bei 10 Aussparungen gibt es die Positionen 6, 7 und 8 nicht, Du zählst also von unten von 1 bis 5, dann kommt 9 bis d. Danach notierst Du das B für Balkon. Als nächstes musst Du aufschreiben, in welcher Richtung der Balkon eingehängt wird. Die Richtungen a bis f kannst Du im Bild weiter vorn oder auch im Anhang sehen. Die Richtung a ist nicht genau nach oben sondern geht etwas nach oben rechts. Wie gewohnt sind die anderen Richtungen im Uhrzeigersinn benannt. Nun kommt endlich wie beim Doppelbalkon die Beschreibung, was sich auf dem Balkon befindet.

Nur wenn sich mehrere Wände an einer Position übereinander befinden und in die gleiche Richtung zeigen, muss für die Balkone gesagt werden, in welche Wand sie eingehängt werden, weil sonst nicht klar ist, welche Wand gemeint ist. Dazu schreibst Du die gleiche Nummer wie bei der Wand, also die Säulennummer, auch als Detail zur Beschreibung des Balkons. Weil das so kompliziert ist, kommt hier ein Beispiel:

```
35 LLLLCc xl1d xl3d xs2c # vier Säulen übereinander, darin drei Wände eingehängt
54 dB1b1Cb # Balkon in der ersten Wand in Loch 13, mit Kurve darauf
54 5B1bCe af # Balkon in der ersten Wand in Loch 5 mit Kurve darauf
44 1B3b1+Ca aa # Balkon in der Wand darüber in Loch 1, mit 3 Steinen
26 3Be # Balkon in der kurzen Wand, nur mit Loch und Richtung
```

Da eine Wand so hoch ist wie zwei Säulen, kann die zweite Wand in der gleichen Richtung erst in Säule 3 gehängt werden, daher gibt es im Beispiel oben keine Wand mit der Nummer 2 in Richtung b, aber eine in Richtung e. In Richtung e ist nur eine Wand, deshalb muss hier keine Zahl als Detail für den Balkon eingefügt werden.

Damit sind alle Regeln für die bisher (Ende 2020) bekannten Teile beschrieben. Die verstreuten Informationen findest Du noch einmal zusammengefasst im Anhang. Wie Du siehst, werden die Regeln immer komplizierter, je mehr und kompliziertere Teile es gibt. Aber auch bei den Vorschlägen für Bahnen, die im Beiheft zum vertikalen Starterset zu finden sind, werden bis zu 11 Bilder gebraucht, um zu zeigen, wie Bahnen gebaut werden.

Die Aufzeichnung einer Bahn

Wenn Du eine funktionierende Bahn hast, die Du aufschreiben willst, ist es eine gute Methode, die Bahn nach und nach abzubauen und dabei zu notieren was Du gerade abbaust.

Damit Du auch später noch weißt, was die vielen Buchstaben und Zahlen bedeuten, schreibst Du erst einmal auf, wie Du die Bahn nennen willst. Dann willst Du vielleicht später einmal wissen, wann Du die Bahn gebaut hast. Dazu kannst Du in eine neue Zeile "Datum: …" schreiben. Wie Du das Datum genau schreibst, ist egal. Hast Du vor, Deine Bahnen mit anderen auszutauschen, solltest Du auch noch "Name: …" ergänzen. Wenn Du noch mehr Text aufschreiben willst, fängst Du solche Zeilen mit einem # an, das bedeutet, dass in solchen Zeilen keine Teile der Bahn nach den vorher beschriebenen Regeln stehen.

Der Anfang von Deiner Beschreibung könnte also so aussehen:

Track A aus dem Bauplanheft vom Starterset

Datum: 24. Dezember 2020 Name: Melanie Müller

Jetzt fängt die Beschreibung der Bahn an

Wenn Du transparente Ebenen benutzt, fängst Du mit der oberen Ebene an. Zuerst schreibst Du, auf welcher Grundplatte (_)sich der Mittelpunkt der transparenten Ebene befindet, dann kommt die Zeile mit dem ^, das die Ebene beschreibt. Notiere dann den ersten Stein mit seiner Höhe und den Schienen, die von diesem Stein abgehen. Dann räumst Du diese Schienen und danach den Stein ab. So verfährst Du, bis die Ebene leer ist und machst mit der nächsten Ebene weiter. Sind nur noch Steine auf der Grundfläche übrig, schreibst Du zuerst eine Zeile mit der Position der Platte auf (_), von der Du Steine abräumen willst. Dann verfahre wie mit den transparenten Ebenen. Du kannst immer wieder zwischen den Grundplatten wechseln, indem Du _ Zeilen einfügst. Wenn auch die Grundfläche leer ist, sollte die Bahn korrekt notiert sein. Natürlich kannst Du auch umgekehrt vorgehen und beim Aufbau mitschreiben, welche Teile Du jeweils zur Bahn hinzufügst.

Meine GraviTrax® Baukästen

Welche GraviTrax® Baukästen Du hast, kannst Du auch aufschreiben. Das ist in Verbindung mit dem erwähnten Programm nützlich. Wenn Du eine Anleitung für eine Bahn hast, kann das Programm zählen, welche Teile Du wie viel mal brauchst, um die Bahn zu bauen. Dann kann das Programm prüfen, ob die Teile in deinen Baukästen für diese Bahn reichen. Die Namen der Baukästen lauten wie folgt:

Starter Sets	Erweiterungssets		Actionsteine	
Starter Set	Bauen	Seilbahn	Trampolin	Spirale
XXL Starter Set	Trax	Transfer	Kaskade	Mixer
Starter Set vertikal	Tunnel	Jumper	Looping	Splitter
Starter Set Speed	Lift	Flip	Gaußkanone	Spinner
	Brücken	Tiptube	Hammer	Dipper
	Erweiterung vertikal	Vulkan	Katapult	Flextube

Du kannst in die erste Zeile Deinen Namen schreiben, falls Du auch von anderen weißt, was für Baukästen sie haben und schauen willst, welche Bahnen sie mit ihren Teilen bauen können. Danach notierst Du Zeile für Zeile, wie viele Baukästen Du von welcher Sorte hast, zuerst die Zahl, dann den Namen. Es muss natürlich mindestens ein Starter Set dabei sein. Du kannst sogar einzelne Teile dazu schreiben, dazu verwendest Du die Symbole, nicht die Namen der Teile. Wenn Du ein Teil verloren hast oder es kaputt ist, zum Beispiel ein Kurvenstein, trägst Du es mit einem Minuszeichen ein. Deine Liste könnte so aussehen:

Melanie Müller 2 Starter Set 1 Hammer

1 Spirale

3 s # 3 kurze Schienen mehr -1 C # ein Kurvenstein fehlt

Wenn Du für mehrere Personen solche Listen hast und diese mit dem schon mehrfach erwähnten Programm speichern willst, wird angenommen, dass die erste Liste, die gespeichert wird, Deine Baukästen enthält. Für die Steine Lift, Spirale und Fallbrücke werden Teile gebraucht, bei denen es nur auf deren Zahl ankommt und für die bis jetzt kein Kurzzeichen festgelegt wurde. Für den Bau der Bahnen ist es aber wichtig zu wissen, wie viele die-

ser Teile vorhanden sind. Daher werden auch für diese Elemente Symbole verwendet. Wenn Du Bahnen baust, kann es vorkommen, dass die Höhensteine knapp werden. Da es Anleitungen gibt, wie Du selbst Säulen bauen kannst, hast Du vielleicht schon welche und willst auch vermerken, wie viele Du mit welcher Höhe hast. Dafür kannst Du die Ziffern 3 bis 9 verwenden, die ja bis jetzt nur als Höhe, nicht aber für einen Stein verwendet werden. Im Bild siehst Du einen solchen Stein mit Höhe 7 und schwarzem Höhenstein als Abschluss. Das Sechseck unten ist ein ausgestanztes Teil aus der Grundplatte, das genau in einen Höhenstein passt.

Hier ist die Tabelle der bisher nicht benannten Teile, die nicht in Bauanleitungen für Bahnen verwendet wird.

Zeichen	Element	Bemerkung
xG	Basissteine für Einätze	Nur für Zahl der eigenen Elemente
h	Spirale Kurvenelement	
i	Spirale Kugeleinlauf	Wird immer einmal gebraucht, an der Spirale oben
j	Spirale Kugelauslauf	An der Spirale unten
f	Lift Mittelteil Röhre	
xi	Lift Kugeleinlauf	Am Lift unten
хj	Lift Kugelauslauf	Das obere Ende des Lifts
xb	Fallbrückenelement	Mindestens zwei für die Verbindung zwischen zwei Steinen
3 . 9	Selbstbau Säule	Höhe 3 9, mit angehängtem + eine halbe Höhe mehr

Software zur Aufzeichnung der Bahnen

Das obige Konzept wurde in einem Perl-Programm implementiert. Neben einem Standard-Perl sind das Datenbankmodul DBD :: SQLite, SVG und für die Unterstützung der Mehrsprachigkeit das Modul Locale::Maketext::Lexicon nötig. Beim Installieren der Module werden dann weitere perl Module mit installiert, zum Beispiel DBI. Wenn svg Dateien in png konvertiert werden sollen, kann das mit dem beigefügten svg_to_png erfolgen, was das Modul Image::LibRSVG erfordert. Die Unterstützung anderer Datenbanken als sqlite3 ist derzeit nicht geplant. Während des ersten Aufrufs von gravi wird eine .gravi.db sqlite3-Datei im Home-Verzeichnis des Benutzers erstellt. Wenn Anweisungen für den Bau einer Bahn angezeigt werden, kann danach eine SVG-Bilddatei (Webbrowser haben die beste Darstellung) erstellt werden.

Installation unter Linux

Ein installiertes perl vorausgesetzt gibt es bei der Installation keine Besonderheiten. Das neueste Game-MarbleRun-xy.tar.gz wird heruntergeladen (xy ist die Versionsnummer), ausgepackt und in das neue Verzeichnis wird gewechselt. Danach erfolgt die übliche Prozedur zum Installieren von perl Modulen:

```
tar xf Game-MarbleRun-xy.tar.gz
cd Game-MarbleRun-xy
perl Makefile.PL
make
make test
make install
```

Das Programm kann auch im Homedirectory installiert werden, wenn Du das Perl Modul local::lib benutzt. Wie das geht, ist an vielen Stellen im Internet zu finden, zum Beispiel hier:https://metacpan.org/pod/local::lib

Installation unter Windows

Die Installation unter Windows setzt ein funktionierendes Strawberry-Perl (https://strawberryperl.com/) voraus. Beim Installieren von Strawberry perl muss die Sicherheitswarnung ignoriert werden. Wenn Strawberry perl installiert ist, öffnest Du die Eingabeaufforderung. Danach musst Du einige benötigte perl Module nachinstallieren und die weiteren Befehle ähnlich wie bei Linux eingeben. DBD::SQLite sollte bei Stawberry Perl schon dabei sein, dann bewirkt der cpan Befehl nichts. Es ist unbekannt, ob die Installation mit perl von ActiveState funktioniert, aber wenn Strawberry-Perl installiert ist, darf nicht gleichzeitig ActiveState Perl auch installiert sein, sonst funktionieren die folgenden Befehle nicht.

```
cpan install DBD::SQLite
cpan install SVG
cpan install Locale::Maketext::Lexicon
tar xf MarbleRun-xy.tar.gz
```

Mit dem letzten Befehl wurde ein neues Verzeichnis angelegt. In dieses Verzeichnis musst Du nun gehen

```
cd Game-MarbleRun-xy
```

und dann dort die folgenden Befehle ausführen.

```
perl Makefile.PL
gmake
gmake test
gmake install
```

Da Du die Eingabeaufforderung (das Programm cmd) oder ein anderes Windows Terminalprogramm (die Power Shell oder das Windows Terminal) benutzen musst, werden die Zeichen dort normalerweise mit Windows Kodierung ausgegeben. Da das Programm gravi aber Unicode Zeichen verwendet, würden einige Sonderzeichen falsch dargestellt. Daher wird im Programm die aktive Codepage auf Unicode (65001) geändert und am Ende des Programms wieder zurückgesetzt. Da normalerweise eine Schriftart eingestellt ist,wo einige Unicode Zeichen fehlen, sollte die Schriftart für die Eingabeaufforderung geändert werden. Dazu klickst Du mit der rechten Maustaste auf die obere Leiste des Programms.

Im Menü, was sich dann öffnet, wählst Du den Reiter Schriftart. Dort kannst Du entweder die Schrift "DejaVu Sans Mono" oder "Source Code Pro" wählen. Nur diese beiden Schriften stellen alle verwendeten Sonderzeichen korrekt dar. Diese Einstellung musst Du nur einmal vornehmen, Windows merkt sich Deine Wahl der Schrift.

Benutzung des Programms

Nach der Installation kannst Du das Programm gravi aufrufen. Das machst Du unter Linux in einem Terminalfenster und unter Windows in der Eingabeaufforderung.

Zu Beginn kommt aber erst noch ein Hinweis. Alle Namen der Teile und Baukästen werden mit ihren englischen Namen in der Datenbank gespeichert. Das Programm wurde so geschrieben,dass immer auch die englischen Namen akzeptiert werden, wo das wichtig ist. Das gilt auch in den Dateien mit den gespeicherten Bahnen. Du kannst dort zum Beispiel Level statt Ebene verwenden, Date statt Datum,Author statt Autor und Source statt Quelle. Auch anstelle von J für Ja bei Fragen kann das englische Y für Yes benutzt werden.

Beim allerersten Aufruf von gravi, wenn noch keine Datenbank angelegt wurde, kannst Du wählen, ob eine Bahn als Beispiel gespeichert werden soll. In dem Fall wird diese Bahn als erste Bahn gespeichert und gleich danach wird die Bauanleitung ausgegeben. Willst Du ein Bild dieser Bahn erhalten, musst du bei der Frage nach einem Dateinamen etwas angeben, zum Beispiel demo. Dann wird eine Datei demo. svg erzeugt, die das Bild der Bahn enthält. Diese Datei kannst Du dann mit einem Programm anschauen, was SVG Dateien versteht. Das sind zum Beispiel Web Browser wie Firefox, Chrome oder auch Microsoft Edge.

Fehlermeldungen und andere Texte, die das Programm ausgibt, sind in Englisch programmiert und werden erst durch eine Datei mit Übersetzungen ins Deutsche umgewandelt. Siehst Du also irgendwo englische Texte, wurde die Übersetzung vergessen. Du kannst aber auch probeweise die **Sprache umstellen**. Mit der Option -1 en wird das Programm auf englisch umgestellt, also

```
gravi -l en
```

Das Programm ist die Zentrale für alle Funktionen rund um Deine Murmelbahnen. Zuerst kannst Du die Liste Deiner Baukästen speichern. Das ist nicht unbedingt notwendig, hat aber viele Vorteile. So kannst Du sehen, ob deine Teile für den Bau einer bestimmten Bahn reichen oder welche Teile Dir dazu fehlen. Ohne Deine Liste wird angenommen, dass Du nur ein Starterset hast.

Die Eingabe Deiner Liste der Baukästen geht mit

```
gravi -a Datei_mit_der Liste
```

Genau so kannst Du Deine eigenen notierten **Bahnen speichern**. Falls Du noch keine hast, kannst Du auch die mitgelieferten Bahnen im Unterverzeichnis runs speichern. Das geht mit einem Aufruf für alle Dateien im Verzeichnis runs

```
gravi -a runs
```

Damit hast Du eine ganze Menge Bahnen gespeichert. Hast Du eine neue Bahn aufgeschrieben, solltest Du erst einmal die **Bahn prüfen**, ob es noch Fehler gibt, ohne die Bahn gleich zu speichern. Das machst Du mit

```
gravi -an meine_neue_Bahn
```

Wenn nur eine Bahn geprüft wird, kannst Du Dir auch das Bild der Bahn ausgeben lassen und Du kannst sehen, wo vielleicht eine Schiene fehlt oder ein Stein die falsche Orientierung hat.

Ist die **Bahn** doch aus Versehen (in der sqlite Datenbank .gravi.db in Deinem Home Directory) gespeichert, kannst Du sie **überschreiben**, indem Du die geänderte Bahn (wieder mit -a) eingibst. Denke aber bitte daran, dass mit einer neuen Datumszeile oder auch mit geändertem Autor, Name oder Quelle es eine neue Bahn wird. Dann kannst Du die alte Bahn auch **löschen**:

```
gravi -d
```

Danach fordert Dich das Programm auf, die Nummer der Bahn anzugeben, die Du löschen willst. Rufst Du das Programm ohne weitere Parameter auf, erhältst Du eine **Übersicht der gespeicherten Bahnen**:

gravi

```
Liste der in der Datenbank registrierten Kugelbahnen
```

```
Nr OK x*y*z Name (Quelle)

1  J 2x2x0 Bahn A (Bauplanheft)
2  J 2x2x0 Bahn B (Bauplanheft)
3  J 2x2x0 Bahn C (Bauplanheft)
4  J 2x2x0 Bahn D (Bauplanheft)
5  J 2x2x1 Bahn E (Bauplanheft)
6  J 2x2x1 Bahn F (Bauplanheft)
...
14  N 2x2x1 Bahn E vertical (Vertical Construction plan booklet)
Zeige die Bauanleitung für eine Kugelbahn an:
```

Gibst Du nun nichts weiter ein (Enter), dann wird das Programm beendet. Wenn Du aber durch die Eingabe einer Nummer eine Bahn auswählst, wird die **Beschreibung der Bahn** angezeigt. Gibst Du eine 1 für Bahn Nummer 1 an, sieht das so aus:

```
Anleitung für Bahn A mit 2x2 Bodenplatten
Bitte gib einen Dateinamen ein (oder ENTER ohne SVG)
```

Bitte wähle eine Nummer aus obiger Liste

Nun kannst Du noch wählen, ob Du ein **Bild der Bahn** (vereinfachte Ansicht von oben) erzeugen willst, oder nur die Bauanleitung sehen willst. Das Bild wurde bereits weiter oben gezeigt, sodass es hier nicht noch einmal abgebildet wird. Je nachdem, wo Du das Bild betrachtest, können die Texte leicht verrutscht sein. Das liegt an der fehlenden Unterstützung einiger SVG Elemente in den meisten Bildbetrachtern. Die Webbrowser zeigen die SVG's normalerweise korrekt an. Wenn das stört, kann das Programm gravi geändert werden. Das ist dokumentiert (siehe Programmdetails).

Rund um die Grundplatten werden im Bild die horizontalen und vertikalen Koordinaten angegeben, damit Du

schnell ermitteln kannst, wo sich ein Feld mit angegebener Position befindet. Die Positionen können auch innerhalb der Grundplatte auf freien Positionen ausgegeben werden, dazu musst Du beim Aufruf von gravi die Option -f (für das Füllen der freien Felder) angeben.

Die Ausgabe des Programms Bahn 1 sieht etwas anders aus als oben gezeigt:

```
Auf Pos 43 5 x Höhenstein groß, Start Orientierung
                                                       (c)
Auf Pos 55 3 x Höhenstein groß, Kurve Orientierung
                                                       (f)
Auf Pos 85 3 x Höhenstein groß, Kurve Orientierung
                                                       (f)
Auf Pos 69 Kurve Orientierung
                                 (e)
Auf Pos 6a Kurve Orientierung
                                 (f)
Auf Pos 7a Ziel Orientierung
                                (b)
Von Pos 43 nach Pos 55 Schiene kurz Richtung
Von Pos 55 nach Pos 85 Schiene mittel Richtung ↓ (d)
Von Pos 85 nach Pos 69 Schiene lang Richtung
                                                (b)
```

Das ist die auch schon erwähnte **andere Angabe der Positionen**, wo die Positionen von 1..9a..z angegeben werden. Dadurch wird der Text etwas kürzer, da jetzt ja nicht mehr gesagt werden muss, auf welcher Grundplatte sich ein Stein befindet. Für die Beschreibung mit den Grundplatten musst Du die Option -r angeben, das bedeutet, die Positionen sind relativ zur oberen linken Ecke der jeweiligen Grundplatte, also:

```
gravi -r
```

Im Beispiel oben steht nach der Bahn mit der Nummer 14 ein N, das heißt, dass Du nicht alle Teile hast, um die Bahn zu bauen. Welche Teile das sind, erfährst Du, wenn Du beim Aufruf von gravi noch die Option -v (für Englisch **verbose**, geschwätzig) angibst, also

```
gravi -v 14
```

Willst Du nur die Teile sehen und nicht die Bauanleitung für die Bahn, kannst Du noch die Option -q (für Englisch **quiet**, still) verwenden. Dann wird die Bauanleitung nicht gezeigt: Mit dieser Option wird aber immer noch ausgegeben, was Du zu Beginn eines Kugellaufs beachten musst, zum Beispiel Kanone laden oder Hammer richtig stellen. Das ist nützlich, wenn die Bahn richtig funktionieren soll.

```
gravi -qv 14
```

Hast Du eine Erweiterung mit einer extralangen langsamen Schiene und willst wissen, in welchen Bahnen sie verwendet wird, hilft Dir das Programm auch bei der **Suche**. Das Symbol für die Schiene ist g. Du schreibst nun

```
gravi q
```

Dann werden die gewünschten Bahnen angezeigt:

```
Liste der in der Datenbank registrierten Kugelbahnen

Nr OK x*y*z Name (Quelle)

16 J 2x2x1 Lift Bahn (Wolfgang)

34 J 2x2x0 Bahn 6a unfolding bridges (Wolfgang)

Zeige die Bauanleitung für eine Kugelbahn an:

Bitte wähle eine Nummer aus obiger Liste
```

Du kannst auch noch anders Bahnen auswählen. Als Kriterien sind neben der Nummer der Bahn und der schon vorgestellten Möglichkeit, ein in der Bahn benutztes Element anzugeben, auch noch eine Zeichenkette möglich, die im Bahnnamen vorkommt, oder auch ein OK für Bahnen ohne fehlende Elemente. Durch Komma getrennte Kriterien müssen alle, durch Leerzeichen getrennte können erfüllt sein.

Wenn Du die langsame Schiene nicht hast und wissen willst, in welchem Erweiterungskasten sie vorkommt kannst Du Dir erst mal die **Namen aller bisher bekannten Kästen** anzeigen lassen:

gravi -s

Um auch die darin befindlichen Teile anzuzeigen, schreibst Du

gravi -sv

und kannst aus der langen Liste sehen, dass diese Schiene aus der Erweiterung "Brücken kommt. Gibst Du beim Aufruf mit -s Kastennummern oder einen Teil des Namens an, werden nur die Teile aus den entsprechenden Kästen ausgegeben, wie Du im folgenden Beispiel siehst:

gravi -s Brücken,10

8 Brücken

12 x Brückenelement 3 x Schiene kurz 3 x Brückenstein 2 x Schiene langsam 2 x Schiene extralang 2 x Schiene mittel

1 x Schiene lang

10 Hammer

3 x Schiene kurz 2 x Schiene mittel 1 x Schiene lang

1 x Hammer

Hast Du einmal die **Liste der Abkürzungen** für die Steine und Schienen nicht zur Hand, kannst Du Dir das auch schnell anzeigen lassen.

gravi -e

Bist Du Dir nicht mehr sicher, ob Du alle Deine Erweiterungskästen registriert hast, kannst Du mit

gravi -i

nachschauen.

Was mit dem Programm noch alles möglich ist, erfährst Du im Hilfetext

gravi -h

Da werden auch die oben beschriebenen Funktionen erwähnt. Bist Du nun neugierig geworden und willst Details wissen, wie das Programm intern funktioniert oder willst sogar bei der Verbesserung des Programms mithelfen, ist der nächste Abschnitt für Dich. Ansonsten ist die Beschreibung hier zu Ende

Programmdetails

Das Programm wurde in perl 5 geschrieben. Nahezu jede Version sollte benutzbar sein. Das Programm funktioniert sowohl unter Linux als auch unter Windows. Die Bahnen werden in einer sqlite Datenbank gespeichert, wobei nur an einer Stelle ein sqlite spezifische Befehl verwendet wird. Wegen der geringen Datenmenge ist sqlite sicher optimal. Eine Anpassung an eine andere Datenbank sollte aber leicht möglich sein.

Das Programm gravi verwendet das neu entwickelte perl Modul Game::MarbleRun und Untermodule

Details zu den verwendeten perl Modulen erhältst Du wie in perl üblich mit

perldoc Game::MarbleRun

perldoc Game::MarbleRun::Store und

perldoc Game::MarbleRun::Draw

Der Speicherort für die SQLite Datenbank kann beim Aufruf von new geändert werden, ebenso ist eine Korrektur der oben erwähnten Text Verschiebung an dieser Stelle möglich. Das ist in Game::MarbleRun beschrieben.

Das Programm gibt standardmäßig Texte in der eingestellten Sprache aus, das wird durch Übersetzungsdateien de.po, fr.po usw. realisiert. Wenn es die Dateien nicht oder nur unvollständig gibt, wird auf Englisch ausgewichen. Für Deutsch ist die Übersetzung komplett, für Französisch gibt es nur die meisten Bausteine in der Übersetzung. Nach der Installation des Programms kann eine neue .po Datei durch den Aufruf

```
make_gravi_po_file -l lang
```

erzeugt werden, wobei lang entweder eine Abkürzung für eine Sprache wie z.B. fr, es, hu usw. ist oder auch ein Dialekt wie en_GB oder en_US oder auch ein Dialekt mit Angabe der Kodierung, wie z.B. de_DE.UTF-8.

Ein weiteres mitgeliefertes Programm svg to png kann aus den SVG Bildern png Dateien erstellen.

Es ist geplant, das Programm auf github weiter zu entwickeln. Details werden zu geeigneter Zeit auf der ganz am Ende dieses Dokumentes erwähnten Webseite bekanntgegeben.

Kommentare, Anregungen, Fehlermeldungen, Verbesserungswünsche oder sogar Korrekturen des Programms und Übersetzungen in andere Sprachen kannst Du gern an mich schreiben: wp.friebel@gmail.com

Anhang

Tabelle aller verwendeten Elemente und deren Abkürzungen

Abkürzung ⊼ = o	Element Bodenplatte Transparente Ebene Kleine Transparente Ebene Kugel	Detail / Bemerkung Nummer der Bodenplatte: Zeile Spalte Position des Mittelpunkts, keine Orientierung Position des Mittelpunkts, keine Orientierung Farbe RGB, Richtung a-f
+ 1 2 3	Höhenstein klein Höhenstein groß Höhenstein x 2 Höhenstein x 3	Nicht sinnvoll Nur für Zahl der eigenen Elemente
4 5 6 7	Höhenstein x 4 Höhenstein x 5 Höhenstein x 6 Höhenstein x 7	Nur für Zahl der eigenen Elemente Nur für Zahl der eigenen Elemente Nur für Zahl der eigenen Elemente Nur für Zahl der eigenen Elemente
8 9 A B	Höhenstein x 8 Höhenstein x 9 Start Balkon	Nur für Zahl der eigenen Elemente Nur für Zahl der eigenen Elemente Kugelangabe
C D E F G	Kurve Freifall Doppelbalkon Flip Fänger	Balkonnummer,E, Steinbeschreibung
H I J K	Hammer Tunnel gerade Jumper Kaskade	
L M N O	Säule Gaußkanone Vulkan Auffangkorb	Kugelangabe Kugelangabe Keine Hohenangabe, keine Orientierung
P Q R S T	Splash Looping Trampolin Weiche Tunnelkurve	Kugelangabe Detail: Orientierung von Winkelsteinen Weichenstellung + oder -
U V W X	Tunnelweiche Wirbel 3 in 1 Kreuzung	Weichenstellung + oder -
Y Z xA xB	2 in 1 Ziel Seilbahn Start Brückenstein	Kugelangabe Zahl der Brückenelemente (gerade Zahl)
xD xF xG xH xK	Dipper Lift Basissteine für Einätze Spirale Katapult	Hebelstellung (+ oder -) Zahl der durchsichtigen Elemente (2 oder mehr) Nur für Zahl der eigenen Elemente Zahl der grünen Elemente (2 oder mehr)
xK xL xM	Tunnelsäule Mixer	Detail:Richtung der auslaufenden Kugel

Transfer xR Spinner Kugelangabe xS Tiptube Kugelangabe χT

Splitter χV

χZ Seilbahn Ende

Schiene gebogen kurz а b Schiene gebogen С Schiene gebogen minus d Schiene gebogen plus

Zielleiter е f Lift Röhre

Schiene extralang

g Spirale Kurve Nur für Zahl der eigenen Elemente h i Spirale Start Nur für Zahl der eigenen Elemente Spirale Auslauf Nur für Zahl der eigenen Elemente j

Nur für Zahl der eigenen Elemente

Schiene lang Т Schiene mittel m Schiene langsam q

Winkelstein Nur als Detail zu R r

s Schiene kurz t Tunnel vertikal Lochschiene konkav u Lochschiene konvex ٧ Seilbahnschiene хa

Brückenelement Nur für Zahl der eigenen Elemente xb Lift Kugeleinlauf Nur für Zahl der eigenen Elemente χi Nur für Zahl der eigenen Elemente хj Lift Kugelauslauf

Sowohl als Schiene als auch Stein mit Position χl Wand lang Wand mittel Wandnummer, Höhe des Balkons 1-9,a-c, xm

Wand kurz dann B, dann Steinbeschreibung XS Flextube Richtung der auslaufenden Kugel хt

Orientierung von Elementen

Quellen im Internet

Derzeit befindet sich die gesamte Dokumentation und die Software auf https://www.zeuthen.desy.de/~friebel/gravitemp/. Es ist geplant, die Software auf github zu stellen.