UNIVERSIDADE FEDERAL DE ALAGOAS Instituto de Computação Bacharelado em Ciência da Computação

Gramática LL(1) da Linguagem Linkin Park

Hellena Almeida Canuto João Vitor Santos Tavares

Maceió - AL, 27/02/2022

	2
Analisador implementado	3
Gramática LL(1)	3

Analisador implementado

O analisador sintático implementado foi o analisador descendente LL(1) preditivo recursivo.

Gramática LL(1)

```
S = DeclaracaoFunção S | Declaracaold S | ε
DeclaraçãoId = FunctionType Id ';'
Vartype = 'Int' | 'Empty' | 'Float' | 'Bool' | 'Char' | 'Str'
LId = Id Atribuição Id LL
Id_LL = ',' Id Atribuição Id LL | ε
Atribuição = '=' CE | ε
Declaração = 'Function' FunctionType IdOuMain '(' DeclaraçãoConstante ')'
Bloco
IdOuMain = 'id' | 'Main'
IdChamadaFunção = 'id' IdChamadaFunção LL
IdChamadaFunção_LL = '(' ParâmetrosFunção ')' | [' AE']' | &
ParâmetrosFunção = CE ParâmetrosFunção LL | ε
ParâmetrosFunção_LL = ',' CE ParâmetrosFunção LL | ε
DeclaraçãoConstante = Vartype 'id' Vector DeclaraçãoConstante LL | ε
DeclaraçãoConstante_LL = ',' Tipo 'id' Vector DeclaraçãoConstante LL
VetTipo = '[' AE ']' | ε
Bloco = '{' Instrução '}'
Instrução = Declaraçãold Instrução | Cmd Instrução |Instrução LL ';' Instrução |
'Back' Back ';' | ε
Instrução_LL = 'id' ParamAtr
ParamAtr = '(' ParâmetrosFunção ')'| '=' CE |Atr | '[' AE ']' '=' CE |Atr
IAtr = ',' Id '=' CE IAtr| \varepsilon
Id = 'id' ArrayOpt
Back = CE \mid \epsilon
Cmd = 'Print' '(' 'CTE_STR' PrintParâmetros ')' ';'| 'Scan' '(' Scan ')' ';' |'CmdWhile' '('
BE ')' Bloco | 'CmdIf' '(' BE ')' Bloco CmdIf LL
PrintParâmetros = ',' CE PrintParâmetros | ε
Scan = 'id' Vector Scan LL
Scan_LL = ',' 'id' Vector Scan_LL | ε
For = '(' 'Int' 'id' '=' AE ',' AE ForStep')' Bloco
ForStep = ',' AE \mid \epsilon
CmdIf_LL = 'RW ELSE' Instrução | ε
CE = CF CE
```

```
BE = BT BE
```

CE_LL = 'OP_CONCAT' CF CE_LL | ε

BE_LL = 'OP_OR' BT BE_LL | ε

BT = BF BT LL

 $BT_LL = 'OP_AND' BF BT_LL | \epsilon$

BF = 'OP NOT' BF | AR BF LL

BF_LL = 'OP_GREATER' AR BF_LL | 'OP_LESS' AR BF_LL | OP_EQUALG' AR BF_LL | 'OP_EQUALL' AR BF_LL | ϵ

AR = AT AR LL

 $AR_{LL} = OP_{EQUALDIFF'}$ AE AR_LL | OP_NOT' AE AR_LL | ϵ

AE = AT AE LL

AE_LL = 'OP_SUM' AT AE | 'OP_SUB' AT AE_LL | ε

AT = AP AT LL

AT_LL = 'OP_MUL' AP AT_LL | 'OP_DIV' AP AT_LL | &

AP = AF AP LL

AP_LL = 'OP MOD' AF AP | ε

AF = '(' CE ')' | 'OP_SUB' AF | 'BOOL_VALUE' | 'CTE_CHAR'| 'CTE_FLOAT' |
'CTE_INT' | 'CTE_STR'