NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

SOLAR HEATING AND DOMESTIC HOT WATER SYSTEM INSTALLED AT KANSAS CITY FIRE STATION, KANSAS CITY, MISSOURI - Final Report

Prepared from documents furnished by

City of Kansas City, Missouri City Hall, 414 East 12th Street Kansas City, Missouri 64152

Under DOE Contract EX-76-C-01-2373

Monitored by

National Aeronautics and Space Administration George C. Marshall Space Flight Center, Alabama 35812

For the U.S. Department of Energy

(NASA-CR-161513) SOLAR HEATING AND DOMESTIC HOT WATER SYSTEM INSTALLED AT KANSAS CITY, FIRE STATIONS, KANSAS CITY, MISSOURI Final Report (City of Kansas City, Mo.) 170 p
HC A12/MF A01 CSCL 10A G3/44

N80-30895

Unclas 28498

U.S. Department of Energy

Solar Energy

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	1
II.	SUMMARY OF PROJECT INFORMATION	2
	A. General Information B. Meteorological Data C. Solar Energy System	2
III.	DESCRIPTION OF THE SOLAR HEATED FIRE STATION	4
	Photograph 1 View of Solaron Collectors Photograph 2 Front View Kansas City Fire Station # 24 Photograph 3 Solaron Control Boxes Photograph 4 Hot Water Heater Storage Tank Area Photograph 5 Solar System Ducting/Air Handler # Photograph 6 Apparatus Room Heat Distribution Ductwork	7 8 9 3.10
IV.	DESCRIPTION OF THE SOLAR HEATING SYSTEM	12
	A. Solar Collector. B. Storage System. C. Air Handling Systems. D. Solar Hot Water Heating. E. Automatic Control System. F. Auxiliary Heating Systems. G. Data Acquisition System. H. Modes of Operation.	12 12 12 12 13
	Figure 1 Schematic Drawing of Solar Heating System	16 17 18 19
v.	HISTORICAL NARRATIVE OF THE PROJECT	21
VI.	DESCRIPTION OF THE DATA ACQUISITION SYSTEM	23
	Table 2 Instrumentation for Kansas City Fire Station	25
	A. Climatological B. Collector C. Thermal Storage D. Domestic Hot Water E. Space Heating F. Building/Load	25 25 25 25

TABLE OF CONTENTS (Con't)

			Page
VII.		TS OF THE FIRE STATION #24 SOLAR HEATING	27
	A. B.	Estimated Costs	
APPENDIC	ES		
	A -	BUILDING DRAWINGS	29
	В -	AS BUILT DRAWINGS OF THE SOLAR HEATING SYSTEM	42
	C -	WIRING DIAGRAMS OF THE SOLAR HEATING SYSTEM	45
	D -	SEQUENCE OF OPERATIONS OF THE SOLAR HEATING SYSTEM.	47
	E -	MAINTENANCE INSTRUCTIONS FOR THE SOLAR HEATING SYSTEM	51
	F -	SUBCONTRACTORS ASSOCIATED WITH THE SOLAR HEATING PROJECT	.53
	G -	ACCEPTANCE TEST OF THE SOLAR HEATING SYSTEM.	.55
	н -	SYSTEM INSTALLATION AND CHECKOUT PROBLEMS	.68
	I -	PRODUCT LITERATURE FOR COMPONENTS OF THE SOLAR HEATING SYSTEM	.71
		Electric Unit Heaters	.82 .84 .85
		Solar Panels And System	.91 .103 .125 .131

I. INTRODUCTION

Fire Station 24 is a 3 bay fire station located in the central portion of Kansas City, Missouri; however, the original design for this project was for a different site and for a 2 bay station. For this semi-rural site the City retained Midgley Shaughnessy Fickel and Scott Architects to provide architectural services.

Towards the end of completing the contract documents for this station, the Gas Company notified the City that it would cost them approximately \$35,000 to have a gas line installed to service the site. The City began looking at alternate energy sources and through the initiation and encouragement of Cleve Humbert, Assistant City Architect in charge of Maintenance, solar energy became a viable option to be investigated.

The most important criteria that the architects looked for in a solar system was simplicity and reliability. It was determined that an air system met the requirement better than a liquid system and that the Solaron Corporations experience and quality product gave them an edge over other companies. In November of 1975 a response was submitted to PON 1 requesting funding for a solar heating system. In April of 1976 the City was notitied the proposal was one of 34 proposals selected. Preliminary design was started in October 1976 and construction documents completed in March 1977. In June 1977 City requested approval from DOE to relocate the fire station to 22nd and Hardesty. The revised drawings were completed and released for bids in September 1977. In December the City awarded a contract for construction and construction started in February 1978. The building was occupied by the City in April of 1979.

II. SUMMARY OF PROJECT INFORMATION

A. General Information

Owner: City of Kansas City, Missouri

Contractor: D.F. Cahill Construction Co.

4721 Denver Avenue

Kansas City, Missouri 64130

Cperational Date: August, 1979

Building:

Type: Fire Station

Area: 8,800 sq. ft.

Location: 22nd & Hardesty, Kansas City, Missouri

B. <u>Meteorological Data</u>

Latitude: 290 N

Ciimate Data:	Winter	Summer
Avg. temp. (OF)	41.0	71.7
Avg. insolation (ly/d)	298	545
Degree days (heating):	4711	

C. Solar Energy System

Application: Heating, 47%; hot water, 75%

Collector:

Type: Air cooled, flat plate

Area: 2808 sq. ft.

Manufacturer: Solaron Corporation

Denver, Colorado 80222

Storage:

Type: 1/2-inch diameter rock

Capacity: 1,428 cu. ft.

Auxilliary/Back-up System:

Heat pumps and resistance heating (operations area)

Resistance heaters (apparatus bay)

Electric heater (water)

III. DESCRIPTION OF THE SOLAR HEATED FIRE STATION

The fire station consists of two basic areas. The operations area (which is also air conditioned) occupied by the firemen, and the apparatus bay occupied by the fire equipment. The operations area contains 2,800 sq. feet and the apparatus bay 6,000 sq. feet. A winter design temperature of 50° was established for the apparatus bay and 70° for the operations.

The solar energy system is based on a prototype model which has been in continuous successful operation since 1957. There are three arrays of collectors, two mounted on the roof and one large array attached to the building. There are a total of 144 factory assembled modules 36 in. by 78 in. Each module has double tempered glass covers and a sheet absorber, with an air duct below the permanent black absorber surface.

The solar collectors were designed as an intergral part of the apparatus bay. East and west screen walls were used to eliminate the awkward profile created by the three rows of roof mounted collectors. The fire station architect has been awarded a certificate of design excellence by the Midwest Concrete Industry Association for his conceptual development.

The extent of collector shading caused by the screen walls was measured at Kansas State University with equipment capable of providing sunpath and solar angle information relative to radiant energy and shading calculations. From these measurements, it was established that throughout the entire heating season between the hours of 10:00 a.m. and 3:00 p.m., the maximum shading was 1.5 per cent and between the hours of 9:00 a.m. and 4:00 p.m., the maximum shading was 7.6 per cent.

The solar heating hardware installation was met with few difficulties.

Adapting the collectors and related equipment to the building structure

was carefully engineered during the development of construction plans. Other than a few sealant failures that allowed storm water to enter the building through the roof collectors, the installation has proved satisfactory. Vandalism has occurred in that collector glass has been broken. Replacement was readily effected as the glass panels are of standard manufacture.

Due to the hybrid temperature control installation, the facility users have experienced occasional difficulty in setting room thermostats which control three sources of heat i.e., solar heat, heat pump operation and direct resistance electrical duct heaters. Future solar heating installations should provide for single unit temperature control without regard to setting of multiple thermostats in each room or zone.

Floor plans and building details can be found in Appendix A.

View of Solaron Collectors

ORIGINAL PAGE IS OF POOR QUALITY

Front View Kansas City Fire Station #24

Solaron Control Boxes

Hot Water Heater Storage Tank Area

Solar System Ducting/Air Handler #3

Apparatus Room Heat Distribution Ductwork

ORIGINAL PAGE IS OF POOR QUALITY

IV. DESCRIPTION OF THE SOLAR HEATING SYSTEM

A. Solar Collector

- 1. There are 3 separate arrays of collectors. Two of these arrays are mounted on the roof and consist of 24 collectors each. One large array extends from the roof to the ground forming the south wall of the apparatus bay. This array consists of 96 collectors.
- 2. Total No. of Collectors: 144
 Total Sq. Ft. of Collectors: 2,808 sq. ft.

B. Storage System

- Space Heating Storage consists of an insulated reinforced concrete box 35'-4" long x 8'-7" wide x 8'-3-1/2" high containing 71.5 tons of 1/2" diameter crushed limestone.
- Hot water storage consists of 1 120 gallon glass lined steel tank.

C. <u>Air Handling Systems</u>

- 1. A.H.U. #1 (5600 CFM): moves air through collectors and storage.
- 2. A.H.U. #2 (4200 CFM): moves air AHU #1 to operations area.
- 3. A.H.U. #3 moves air from AHU #1 to the apparatus bay.

D. Solar Hot Water Heating

An air-water heat exchanger built into the ductwork preheats
water for two 120 gallon electric water heaters. Water is
stored in one 120 gallon tank.

E. Automatic Control System

1. Thermostats and other temperature sensing devices automatically regulate the water pump, air handling units, and the motorized dampers used to operate the system.

F. Auxiliary Heating Systems

- 1. The operations area has three split system heat pumps with auxiliary electric resistance heaters.
- The apparatus bay has four 30 KW electric unit heaters.

G. Data Acquisition System

Fifty-Five sensors located throughout the installation provide data on parameters such as air flow, air temperature, water temperature and sunlight striking the collector. These data are automatically stored on tape and sent daily to a data processing center for reduction, evaluation, printing and distribution. This monitoring subsystem will provide answers to such key questions as system efficiency and reliability, operating costs and approximate fuel savings.

H. Modes of Operation

The system has six modes of operation.

- 1. Heating the building with hot air from the collector.
- 2. Storing heat by drawing heat from the collector through the rock box.
- 3. Heating the building with heat stored in the rock box.
- 4. Heating water by drawing air from the collector past heat exchange coils and back to the collector. In this mode the building and the rock box are bypassed. Water heating also occurs during modes (1),(2) and (3).
- 5. Heating with the heat pumps. When the heating requirements of the building are more than can be supplied by the solar heating system, the auxiliary heat pumps automatically come on and provide the needed heat.

6. Heating with electric resistance. When the heat pumps can no longer provide the heating required, the auxiliary resistance heaters come on.

A schematic of the heating system and the six (6) modes of operation are shown in figures 1 - 6. Dashed lines indicate air flow.

Further details of the solar heating system, including as-built drawing and diagrams, a description of hardware, a detailed sequence of operations, and maintenance instructions are found in Appendixes 8 - E.

FIGURE 1 SCHEMATIC DRAWING OF SOLAR HEATING SYSTEM

1401			MD - 3		L							
MODE #	9		MD -4				200			6-0	B-4	
	I-OM	MD-2	MD · 5	9-QW	80-1	BD-2	900	0-1	.1	2-0	8-5	
HEATING EDOM COLLEGE										,	9-8	
SOLITION COLLECTOR	0	0	0	0	c	c	,	(Г	T	
		1		,	,	>	د	ی	8	8	Š	

FIGURE 2

FIGURE 3

FIGURE 4

MODE #5 and 6	MD-1	MD-2	MD -3 MD -4 MD -5	MD-6	1- Q8	BD -2	BD -3 BD -4 BD -5	D-1	B-1	B-2 B-3	8 4 8 5
AUXILLARY HEATING	၁	ပ	ပ	С	S	၁	0	၁	OFF	OFF	No

FIGURE 5

MODE #4	MD-1	MD-2	MD -3 MD -5	MD-6	BD-1	BD-2	BD-2 BD-4 BD-5)-Q	B-1	B-2 B-3	8-5 8-6
SUMMER HOT WATER HEATING	J	ပ	c	C	С	Э	0	0	NO	OFF OFF	OFF

FIGURE 6

V. HISTORICAL NARRATIVE OF THE PROJECT

In June of 1976 a contract was awarded to the City by ERDA. The following is a summary of the sequence of events:

A. Design

- Preliminary Design of the fire station and solar system started in September and was finished in October.
- 2. Preliminary Design Review was held on October 20, 1976. As a result of the preliminary design review the City decided to investigate adding the capability of providing demestic hot water heating utilizing the solar system.
- e. Construction documents were started in September 1976 and completed in March 1977.
- 4. Final Design Review was held on March 8, 1977.
- 5. The City did not release the drawings for bidding due to a reevaluation of their priorities within the Fire Department.
- 6. In June 1977 the City asked ERDA for permission to relocate the fire station to another site with the stipulation that the solar system would remain basically unchanged. ERDA granted this request and new construction drawings were started.
- 7. The revised construction documents were completed and released for bidding the 1st of September.
- 8. The City awarded a contract for construction in January 1978/
- 9. Construction was delayed two months due to weather conditions. By the 1st week in May the footings and foundation walls were poured.
- 10. Collectors arrived in May and were stored in a warehouse.
- 11. Structural steel was set in place during July and August.
- 12. The storage box was completed with the exception of the insulated wood lid in October.

- 13. Collectors were installed during November.
- 14. During January and February 1979 completion of the solar system was delayed due to the discovery that the rocks as installed did not meet the sizes as specified.

Approximately 75% of the rock that was installed was 3/8" to 1/2" in diameter in lieu of 3/4" which was specified. After recalculating the static pressure and the contractor agreeing to install larger motors on the fans authorization was given to complete the solar system.

15. In May 1979 the building was completed. However, through the summer months final adjustments were made to the solar system with the acceptance test taking place in July.

VI. DESCRIPTION OF THE DATA ACQUISITION SYSTEM

In order to obtain information necessary for evaluation of the performance and operation of the solar heating system throughout the year, 55 sensors were installed within the system. These sensors were furnished by the government and installed at government expense in accordance with the document, "SHC-1006, August 3, 1976; Instrumentation Installation Guidelines for the National Solar Heating and Cooling Demonstration Program." In Table 2, each sensor is listed by a code designation and by the parameter measured. The number sequence in the code indicates the data groups in accordance with the following table:

Number Sequence	Data Group
001 to 099	climatological
100 to 199	collector
200 to 299	thermal storage
300 to 399	domestic hot water
400 to 299	space heating
500 to 599	space couling
600 to 699	building/load

Each sensor provides data to a Site Data Acquisition Subsystem (SDAS) every 5 minutes around the clock. The SDAS digitizes the data and stores it on tape. Once a day the data is sent by telephone to a Central Data Processing Facility where it is reduced. Monthly reports are prepared, one of which is sent to the City of Kansas City, Missouri.

The monitoring system will permit the government to determine the following kinds of information:

- * Savings in convencional energy resulting from the use of solar energy for heating and/or cooling.
- * Portion of the total heating and/or cooling load supplied by the solar energy.
- * Efficiency of the system in converting solar radiation into useful thermal energy.

* Thermal performance and reliability of major subsystems or components over the demonstration, period.

Table 2 describes each sensor in terms of its general location and the parameter that is being measured. The specific location of each sensor can be found in the as-built drawing of the system found in Section IV Figure 1 Schematic Drawing of Solar Heating System.

TABLE 2

INSTRUMENTATION FOR KANSAS CITY FIRE STATION DATA ACQUISITION SYSTEM

Des	ignation	Measurement
A.	Climatological	
	I 001 T 001	Solar flux Outside ambient temperature
В.	Collector	
	T 100 T 150 T 101 T 151 T 102 W 100 W 101 EP 101	Collector inlet temp Collector array outlet temp Rock storage bed inlet temp Rock storage bed outlet temp Collector absorber temp Collector array inlet flow Collector array outlet flow Air handler unit 1 power
c.	Thermal Storage	
	T 201 T 202 T 203	Rock storage temperature - top Rock storage temperature - middle Rock storage temperature - bottom
D.	Domestic Hot Water	
	T 300 T 350 T 301 T 351 T 303 T 352 T 353 W 300 W 301 W 302 EP 300 EP 301	Temp inlet HW preheat coil Temp outlet preheat coil City water temp Temp outlet preheat tank Temp inlet to DHW tanks 1 & 2 Temp outlet DHW tank 1 Temp outlet DHW tank 2 DHW preheat loop flow DHW demand flow DHW mixing flow HW heater power DHW 1 & 2 HW circulating pump power
E.	Space Heating	
	T 450 T 400 W 400 EP 410 EP 401 EP 412 EP 413 EP 414	Temp return air Temp outlet heat load Personnel area heating flow Aux heating panel power Air handler unit 2 power Heat pump resistance heat 1 Heat pump resistance heat 2 Heat pump resistance heat 3 Outdoor unit 1

EP 408	Outdoor unit 2
EP 416	Unit HTR 1 power
EP 417	Unit HTR 2 power
EP 418	Unit HTR 3 power
EP 419	Unit HTR 4 power
EP 409	्राधtdoor unit 3 power
EP 405	Air handler unit 3 power

F. Building/Load

T 600	Operations PM ambient temp
T 601	Apparatus PM ambient temp
T 602	Supply temp heat pump F1
T 652	Return temp heat pump Fl
T 603	Supply temp heat pump F2
T 653	Return temp heat pump F2
T 604	Supply temp heat pump F3
T 654	Return temp heat pump F3
T 655	Return temp apparatus RM
T 605	Supply temp apparatus RM
W 602	Heat pump F1 outlet flow
W 603	Heat pump F2 outlet flow
W 604	Heat pump F3 outlet flow
W 605	Apparatus RM flow

VII. COSTS OF THE FIRE STATION #24 SOLAR HEATING SYSTEM

Given in Table 3 are the estimated and the actual costs of the various phases of the project.

Overall, the construction costs were \$130,369. This figure is \$18,710 or about 16.76% more than the original estimates. Most of the additional cost was for general construction cost, and can be attributed to the lack of detailed drawings and lack of experience to draw on in forming the original estimate.

Costs were shared by the federal government and the city government.

The Department of Energy provided 88.48% of the total costs associated with the solar heating system. Thus, of the total amount of \$174,372, the Department of Energy paid \$154,282 and the City of Kansas City, Missouri, \$20,090. The difference in the two sets of cost data (construction and total) is made up of architects fees, instrumentation cost, travel cost and miscellaneous city personnel costs.

The contract was modified twice to cover cost increases. In May 1978, the dollar amount was increased by \$18,710 (government share, 60.24%) to cover additional costs associated with the construction of the solar heating system. In July 1978, the contract was increased by \$13,526 (government share, 100%) to cover costs associated with the Site Data Acquisition Subsystem. The City is grateful to the Department of Energy for its willingness to bear these additional costs.

TABLE 3

COST OF THE FIRE STATION 24 SOLAR HEATING SYSTEM

CON	STRUCTION	ESTIMATE	ACTUAL
a.	Solar Equipment 1. 96 A units 2. 48 C units 3. Hold down hardware cap strips and butyl seals	22,390 10,857 4,328	
	4. Controls	6,958 5,000	
	5. Field Supervision and testing	49,533	59,195
b.	Solar panel installation 1. 144 panels	8,640	8,950
c.	Rock Storage	4,320	4,556
d.	Solar Equipment Freight Charges	1,404	included in item a
e.	Mechanical Provisions 1. Lined ductwork 2. Fans (2 in original - 3 in final)	11,232 5,608	12,849 4,590
f.	General Construction 1. Concrete fndn. and slap 2. Supporting Roof Structure 3. Vertical enclosure wall const. 4. Sheet metal flashing Misc. (steel stair, excavating)	2,700 6,000 3,300 800	7,778.03 16,250.96 in above 2,700 1,650
g.	Subtotal	93,537	118,518.99
h.	Contractor's Overhead & Profit	7,371	11,850
i.	Construction Contingency	3,380	
j.	Escalation of costs to 7/77	7,371	~
k.	Total Construction	111,659	130,368.99
	Difference		+ 18,709.99

APPENDIX A

BUILDING DRAWINGS

A-1 A-2 A-3 A-4 A-5 A-6 A-7 ME-1 M-1 M-2 E-1 E-2

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

FOLDOUT FRANCE 2

FOLDOLI TRAME

AG

CONDUIT IN CEILING CONSTRUCTION

CONDUIT IN FLOOR OR WALL CONSTRUCTION

FIR MIRE IN CONDUIT UNLESS NOTED

OTHERWISE, SIZE CONDUIT PER THE

LATEST N.E.C.

GROUND WIRE IN CONDUIT

SOUND SYSTEM CABLE IN CONDUIT

O CEILING LIGHT OUTLET
HO WALL BRACKET LIGHT OUTLET

FAUDRESCENT LIGHTING FIXTURE

GROUNDING TYPE DUPLEX CONVENIENCE RECEPTACLE.

FLUSH FLOOR DUPLEX CONVENIENCE REC-EPTACLE

GROUNDING TYPE DUPLEX CONVENIENCE RECEPTACLE WITH MEATHERPROOF COVER.

WALL MOUNTED TELEPHONE OUTLET

EXIT LIGH

O JUNCTION BOX

HO VOLUME CONTROL

CEILING MOUNTED SPEAKER

HO WALL MOUNTED SPEAKER. WEATHERPROOF

D-8 ALARM BELL

GARAGE DOOR PUSHBUTTON STATION

HO CLOCK HANGER OUTLET & CLOCK

→ ELECTRIC THERMOSTAT. CENTERLINE
5°-0° ABOVE FLOOR.

HT T.V. ANTENNA OUTLET

DISCONNECT SWITCH OR MOTOR CONTROL

6 MOTOR OUTLET

SINGLE POLE MALL SWITCH

TWO POLE WALL SWITCH

THREE WAY WALL SWITCH

MANUAL MOTOR STARTING SMITCH MITH THERMAL OVERLOADS & PILOT LIGHT. SCHEDULE OF LIGHTING FIXTURES

TYPE	DESCRIPTION	NO. A. TYPE LAMPS	TYPE LENS MOUNTING MANUFACTURER & NO.		MANUFACTURER & NO.	EQUITYAL ENT	
A .	TEOPRESCENT GRID TROFFER 2*x2* REGISED ALUMINUM DOOR	2-F40U CW	PEISMATIC ACRYLIC (.125)	RECESSED	WILLIAMS #5262-RSA	MESTEMBADARE METALUX CRESCENT PRODENTEAL	
'	FLUORESCENT METAL SIDE 7"x2" REGRESS ALUMINUM DOOR	2-F40U CW	PRISMATIC ACRYLIC (.125)	SURFACE	WILLIAMS #1262-RKA	reality sa	
¢	LINEAR TELCRESCENT	1-F40 ·	ACRYLIC (,125)	SURFACE	PRIDENTIAL P-1271-42-RS (DITELING BALLAST)	ivei):	
D	FLUCRESCENT METAL DE 2ºx4º REGRESSED ALIINEM DOOR	4-F40 CN	PRISMATIC ACRYLIC (.125)	SURFACE	WILLIAMS MIZZ4-RKA		
ŧ	FLUORESCENT INDUSTRAL 15% UPLIGHT	4-*40 SN	1	JOISTS	NTLL IANS #8325/RA- 82/ED-82	411	
F	FLUORESCENT INDUSTRAL 15% UPLIGHT	2-F40 CN		BIM OF JOISTS	WILLIAMS #8322/RA- 82/ED-82		
6	FLUORESCENT STREP -3"	1-+30 CM		SURFACE	WILLIAMS #7510		
H	FLUOKESCENT STRIP -4"	1-F40 CW	•	SURFACE	WILLIAMS #7520		
J	ENCLOSED & GASKETED STRIP LIGHT - 4	1-F40 CM	WHI TE ACRYLIC	SURFACE	PRUDENTIAL #P-5101-48- RS-MP		
K	36" DOME FLUORESCEN	4-F30 CN	MHITE ACRYLIC	RECESSED	PRUDENTIAL #P-2934- 36-RS	LIGHTOLIER	
L	UPDENCABINET LIGHT	1-F20 CM	PRISMATIC	SURFACE	STERLING #324	SOLO	
*	PORCELAIN LAMPHOLDER PULL-CHAIN	1-754 A-19		SURFACE	GENERAL ELECTRIC #GE5750-7	LEVITON	
N.	ANGLE INCANDESCENT REFLECTOR	1-150W 2-21	-	RE:ARCH. ABOLITE #AF-200		HUBBELL	
Р	WALK LIGHT	1-40W 1-10	LOCVER	RECESSED	MOLDCAST #V362		
R	BLDG FLOODLIGHT	1-175W MERC.DX	CLEAR GLASS	AR RE*ARCH SEPCO #5000-30120 175H-120		GEN*L ELECT.	
s	BOLLARD-BLACK FINISH	1-100M MERC, -DX	WHITE LEXAN A LOUVER	SEE DTL.	ARCH, AREA LTG. #ALS-170-1FG-100MV-LX		
T	SHOWER LIGHT	1-100W A-19	MHITE	RECESSED	PERFECTLITE #FLS-75	MARCO	
U	SIGN / IGHT 100°Hx20°V	1-175W PERCDX	CLEAR GLASS	SEE DTL. SEPCO #5000-20100		GEN'L ELECT.	
٧	PARKING LOT LUMINAIRE	1-420N HPS.	CLEAR GLASS	POLE SEE DTL.	KIM PIA/EKG-111 (TYPE 111) PTRS-25A	GARDCO	
x	ENTT LIGHT	2-20M 165	RECV STELLIL	CEILING	PRESCOLITE #75211	MCPHILBEN MARCO	

TYPE 'S'

TYPE 'U'

TYPE 'V'

LIGHTING FIXTURE BASE DETAILS

CONTRACTOR SMALL CHECK SAMERAGES AND WESTER AND AMERITECTURAL CHECK SAMERAGES AND WESTER AND ASSESSMENT ASSESSMENT AND ASSESSMENT ASSE

Kansas City Fire Station No.24, 2039 Hardesty, Kansas City, Missouri

EOLDOUT FRAME

NIF.

mittino. O

PLUMBING RISER DIAGRAM

LULDOUT FRAME

UMBING RISER DIAGRAM

EQUIPMENT CURB

ELEVATION OF INDOOR UNITS

ELECTRICAL RISER DIAGRAM

SCHEDULE - MAIN DISTRIBUTION PANEL "M".

CIRC.	DESIGNATION	OR EN	APS RUMBING	TYPE	TRIP	BER.	SIZE WIRE & COMBUIT
1	HEAT PURP SYS. #1-0/TROOM JAIT		21	1879	40	•	3-404. IN 3/4"C.
2	HEAT PUT SYS. #2-HEATER CIRC. #1		41	-	40	,	3-100
,	MAT POP SYS. 12-MATER CIRC. 22		24	***		*	3-60 14°C.
•	MEAT PUP SYS. #2-18000 UNIT		2.6	**	20	*	2-4124
5	MEAT PURP SYS. #2-OUTBOOK UNIT		21	-	*		3-900 III 3/4°C.
	HEAT PURP SYS. #3-HEATER CIRC. #1		40	ned	70	29	2-00u
,	HEAT PURP STS. 13-HEATER CIRC. 12		20	***	•		2-636 IN 14°C.
	HEAT PURP SYS. #3-INDOOR UNIT		2.4	HFB	20	27	2-#12W.
,	HEAT PUMP SYS. #3-OUTDOOR URIT		12	HFB	30	*	2-0100. IN 1/2*C.
10	UNIT HEATER #1	30	63	1173	125	,	3-610 IN 14°C.
11	(ALLY HEATER OF	30	63	1673	125	39	3-610 IN 14"C.
12	UNIT HEATER #3	30	83	HFS	125	y	3-41W IN 16*C.
13	UNIT HEATER AN	30	63	-	125	•	3-614 IR 16*C.
14	PAMELHOARD "Y"		67.6	***	100		4-630 IN 16*C.
15	MOSE DRYER		27	-	50		2-000 IN 3/4"C.
16	MMELENARO "5"			1878	60		4-664, IR 1°C.
17	SMCE			**			
10	PIEX		L	***		,	
19	SPACE			**3	1	,	

PANEL TO BE 800A, M.L.O. RATED 50,000 A.L.C. FOR 120/100V. 30 41-35091CE.

SCHEL HOUNTING	VOLTAGE	MAIN SIZE	20 AMP SINGLE POLE CIRC.BER.	70 AMP 2 POLE	90 AMP 7 POLI	20 AM 3 POLE	40 AMP 3 POLE	1 POLE	100 AMP 3 POLE	POR FUT.	
		PHASE	TYPE	CIRC. #	CIRC. #	C18C#	CIRC #	01504	CIRC#	CIRC #	BKRS.
L	SURFACE	120/208V.	40GA, M.L.O.	#1 THRU #24 INCL. 6 27	30,34	26				31	6
	SURFACE	120/208V	10GA. H.L.D.				5.	3	1		9.
t	SURFACE	129/208V 3 6.4 k	225A. M.L.O.	#1 THRU #18 INCL.						20	3
5	SURFACE	120/208V	100A.	2,4,6			1,3,5			20.	1.

201, 1959, 3917

FOLDOUT FRAME

THE PROPERTY CHANGE

Midgley Shaughnessy Fickel and Scott Architects Inc. 720 West 9th Street Kansas City, Mesourl 64106

ORIGINAL PAGE IS
OF POOR QUALITY

SILENT WATCH SYSTEM

51206 5027A

MUBBELL #1222-PLC
HUBBELL #1222-PLC
HUBBELL #1222-PLC

APP. PM.
MEETING R

APP. ROOM

GWATCH STATION

ACONTACTOR STATE OF S

FOLDOUT FRAME

E2

APPENDIX B

AS BUILT DRAWINGS OF THE

SOLAR HEATING SYSTEM

SE-1 SE-2

CASCEDING PACE BLACK NOT VILLED

Kansas City Fire Station No. 24, 2039 Hardesty, Kansas City, Missouri

ORIGINAL PAGE IS OF POOR QUALITY

EOLDOUT ERAME

Midgley Shaughnessy Fickel and Scott Architects Inc /20 West 9th Street Kansas City, Missouri 64105

APPENDIX C
WIRING DIAGRAM
OF THE
SOLAR SPACE HEATING
AND
DHW SYSTEM
SKT-1

APPENDIX D
SEQUENCE OF
OPERATIONS OF THE
SOLAR HEATING SYSTEM

SOLARON CONTROL PANEL HCO116 WITH HCO022 OR HCO023 THERMOSTAT AND HCO04 SUB-BASE

SEQUENCE OF OPERATION

- I. SOLAR ENERGY AVAILABLE when 40° F ($^{+}7^{\circ}$ F) differential is achieved between sensors Tco (in collector) and Tci (in return air duct see specific plans), the following events take place:
 - A. Storing Heat Room thermostat not calling for heat.
 - 1. Differential thermostat in Solaron controller will activate "COLL" (collector) relay.
 - a. MD1 (motorized damper) will be energized and powered open to allow air to flow to the inlet of the solar air handler blower (BWR), which is energized at the same time.
 - b. HWP (hot water pump) is also energized at this time if the Tw sensor (aquastat on water storage tank) is not satisfied (i.e. tank is less than 140°F).
 - c. MD2 (motorized damper) will be energized and powered closed to prevent air from flowing to the auxiliary heating unit.
 - B. First Stage Heating is called for by your thermostat W₁ & R_H and sub-base system switch is set on "Auto" or "Heat".
 - 1. "H1" (first stage solar heating) relay is energized.
 - a. "G" and "R" (fan auxiliary furnace) are energized, bringing on the heat pump indoor fan.
 - b. MD3 circuit is energized, closing the damper from its fully open position to its partially open or fully closed position (field balancing required).
 - c. MD2 opens as power through N.C. contacts in relay "HI" are interrupted.
 - d. Relay contacts close circuit to Ts sensor which is still in an open circuit via the "COLL" relay contacts position.
 - *C. Second Stage Heating is called for by room T-stat. First stage is still "made". If solar heat is available (i.e. "COLL" relay energized) when "H2" relay is energized, solar system will store heat while heat pump provides space heat.
 - 1. "H2" (second stage auxiliary heat) relay is energized, completing the following circuits:
- © Copyright 1977

Solaron Corporation, Denver, Colorado

a. MD2 is powered closed.

1

- b. MD3 is unpowered opens full.
- c. "Rc" circuit is completed to "Y" bringing on compressor in heat pump.
- d. "Rc" circuit to "G" is still made keeping on auxiliary indoor unit blower.
- e. " R_c " circuit to "R3" is completed. No additional auxiliary relays are energized at this time.
- D. Third Stage Heating is called for by second room T-stat (or outdoor thermostat). "R3" circuit to "W3" is completed, bringing on resistance electric heating elements in the indoor auxiliary unit ("R" to "W1" circuit and "R" to W2 circuit in HC0116 are "made").
- "Emergency Heat" (to be used only if directed to do so by your service repairman, in the unlikely event of a heat pump malfunction). When the sub-base switch is put in this position the "Emergency Heat" relay will be energized.

The "EA" relay will complete the circuit between "R" and "E" allowing the indoor auxiliary unit to bring on the electric resistance heat when there is a call for heat from the heat pump (H2 energized).

- II. SOLAR ENERGY NOT AVAILABLE. When differentia? between Tco and Tci drops to 25°F (-5°F) or less, the following takes place:
 - A. "COLL" relay de-energized.
 - 1. HWP de-energized, pump off.
 - 2. BWR de-energized, solar blower off.
 - 3. MD1 de-energized and closed.
 - 4. MD2 de-energized and open.
 - B. <u>Circuit completed to Ts sensor</u> if "H1" relay is still energized. If Ts sensor is above 90°F set point, system will heat space from heat storage unit. If Ts sensor is below 90°F set point circuit will be completed to "H2" relay and bring on the auxiliary heating unit without the need for the second stage of the T-stat to make.
- III. S'b-base Switch Modes.
 - A. Fan "On-Auto".
 - 1. "Auto" position will permit auxiliary indoor unit fan to cycle on and off to meet the heating demands of the system.
- © Copyright 1977

- 2. "On" position will allow the auxiliary indoor un't fan to run constantly and allow MD3 (by-pass) damper to open fully, except when first stage heating is required.
- B. Thermostat calling for Cooling (Summer Operation) System switch on "Auto" or "Cool".

**1. First stage cooling:

- a. "Rc" circuit to "Y1" is "made", on heating/cooling thermostat energizing reversing valve in outdoor unit (for units with reversing valve energized for cooling).
- b. "Rc" to "G" made; "R" to "G" made in HC0116 panel, brings on heat pump indoor unit fan.
- 2. Second stage cooling.

"R" to "Y" contacts close. Compressor circuit is energized to provide cooling.

NOTES

* Heat Pump Systems with reversing valve energized for heating can generally be wired as follows:

HCO116 Terminal Strip	Heat Pump Terminal Strip Ecuivalent
Y	W ₁
W	W ₂
0	Ϋ́

**Heat pumps where the reversing valve is <u>not</u> energized for cooling use only <u>one</u> stage of cooling.

DOMESTIC WATER HEATING

Switch "Winter" Position

Domestic water will be preheated anytime the system is storing heat or heating from collector.

Switch "Summer" Position

Domestic water will be preheated whenever enough solar energy is available to activate the system. When the stored water temperature reaches the set point of Tw sensor (about 140° F) the system will shut-down until the stored water temperature drops about 10° F.

© Copyright 1977 Solaron Corporation, Denver, Colorado

APPENDIX E

MAINTENANCE INSTRUCTIONS

FOR THE

SOLAR HEATING SYSTEM

MAINTENANCE INSTRUCTIONS

The following items should be performed semi-annually:

- Inspect V-belt and sheaves for wear, check belt tension.
- 2. Inspect damper linkage.
- 3. Clean or replace filters (more frequent if required)
- 4. Oil pump motor with #20 non-deteryint oil do not over lubricate.
- 5. Oil AHU blower motor with #20 non-detergent oil do not over lubricate.
- 6. All thermostats in the operations area must be placed in either the "heat" or "cool" position appropriate for the season. (If the thermostats are placed in the "auto" position, an undesirable condition can occur in which the solar system is attempting to heat while the A/C is trying to cool if the temperature levers are "jammed together").
- 7. Slide gate (D-1) is removed for summer operation. The gate is replaced for heating season operation.
- 8. Switch (summer/winter) on the solaron control box must be placed in the appropriate position for the desired operation of the system.
- 9. "Walk through" A total system examination should be conducted at the beginning and at the end of each heating season to determine condition of the following:
 - 1. Damage to collector glazing
 - 2. Water in the collectors due to precipitation leaks
 - 3. Physical damage to thermal insulation of duct work
 - Cleanliness of collector glazing Clean if necessary, with mild soap and water solutions using soft window brush and rinse well
 - 5. DHW leaks under the storage tank, hot water heaters and the heat exchanger.

APPENDIX F
SUBCONTRACTORS
ASSOCIATED WITH THE
SOLAR HEATING PROJECT

SUBCONTRACTORS ASSOCIATED WITH THE CONSTRUCTION OF THE SOLAR HEATING SYSTEM

Solar	Solaron, Inc. 300 Galleria Tower 720 South Colorado Boulevard Denver, Colorado 80222
General	D.F. Cahill Construction Co. 4721 Denver Kansas City, Missouri 64130
HVAC	Environmental Mechanical Contractors Inc. 11700 West 85th Street Lenexa, Kansas 66214
Electrical	Wachter Electric Co. 3027 McGee Trafficway Kansas City, Missouri 64108
	General HVAC

APPENDIX G

ACCEPTANCE TEST

OF THE

SOLAR HEATING SYSTEM

FIRE STATION 24 ACCEPTANCE TEST PLAN

A visual inspection shall be made to assure ducting functionally conforms to the plans. Manual dampers D-1 and motor driven dampers D-2 and D-3 should be closed. Space thermostat heat anticipators shall be set with first stage at 0.10 amp and second stage at 0.10 amp. Set thermostat so there is no call for heat. "Summer-Winter" switch on control panel shall be placed in the "Winter" position. System power shall be turned on. If solar energy is sufficient to activate the ΔT controller the AHU fan and water pump will start and run in the storing heat mode. (If solar energy is not available disconnect Too lead to simulate). Static pressure and temperature shall be measured in the collector inlet and outlet udcts and at the heat storage inlet and outlet ducts. The collector ΔP will be used to estimate the flow and the fan speed will be adjusted accordingly if required. Fan motor amperage shall be measured.

The space thermostat shall be set to make the first stage of heating. This will reposition the dampers shifting the solar heated air into the building space. Static pressures, temperatures and amperage shall be measured in this mode.

Jumpering Tco terminals (or opening Tci) will simulate no solar energy available at the collector. The system will then go into the heat from storage mode. Static pressures, temperatures and amperage will be recorded. Adjusting the set point of Ts upward to the air temperature out ot storage will simulate the storage temperature dropping to the normal set point of 90° F. When Ts switches the solar AHU will stop and the unit heaters will start and maintain the set point of the first stage of the thermostat. Ts shall then be reset down to place sytem back in the heating from storage mode. Increasing the set point of the space thermostat to make the second stage of heating simulates a further drop in space temperature indicating the heat taken from storage is insufficient to offset the building heat loss. This will shut down the solar AHU and start the unit heaters.

Jumper shall be removed from Tco.

"Summer" operation for preheating water shall be tested by removing manual damper D-1 to by-pass the heat storage unit and placing the "Summer-Winter" switch in the "Summer" position. Static pressures, air temperatures and amperage shall be recorded. The aquastat, Tw, shall be reset down so that the set point is below the water temperature (if water temperature is below the minimum set point a lead can be disconnected). This will simulate the water temperature rising to the set point and will stop the pump and AHU fan.

ACCEPTANCE TEST PLAN DATA SHEET FOR FIRE STATION 24

1. Visual inspection Ductwork configuration () A. Placement of dampers (B. Ductwork connections (D. Insulation () 2. Heating from collectors (Winter) A.H.U. #1 operating () A. Synchronous operation of water pump () C. A.H.U. #2 operating () Space thermostats operating () A.H.U. #3 operating () 3. Heating hot water (Winter) A.H.U. #1 pump operating () Lower temp setting on storage to verify pump will shut off () A.H.U. #1 continues to operate () Heating from storage mode (Winter) 4. Motorized damper #1 closed () A. A.H.U. #1 off (В. C. A.H.U. #2 on (A.H.U. #3 on () 5. Heat pumps Heat pump operating when stor. temp adjusted () Storing heat (Winter) A.H.U. #1 operating () Motorized damper #1 open () Heating from collector (Summer) A.H.U. #1 operating () A. Pump operating (4 В. Damper #1 open ()

() means approved

FORM TAB 11-76

©Copyright, NEBB 1976

ORIGINAL PAGE IS OF POOR QUALITY

RECIANGULAR DUCT PITOT TUBE TEST REPORT

	DUCT					R	EQUIRE	0				AC	TUAL		
SIZE	s	Q. FT		FP	м		CF	м		_ FPM.			_CFM_		
				(S	EE REV	ERSE SI	DE FOR	INSTRU	CTIONS						
POSITION	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	135	.13	.11	.12	.136	.1									
2	,13	.12	.12	,115	<i>i</i> ++	1				AH	4 -	1	1		
3	.11		.12							/	15	× 3		4.2	2 -5
4	3358	334	347	1337	1388	1246			23	20	UP	. 4.	25	- 9	86
5 <			13,9	24										1	C =n
f	.075	.1	,125	·1.	.072	ککھ	.02	.02	.02						
2	.042	.02	.045	108	.04	.63	.04	.04	,033		A	14-	1	8	
3	.01	.01	,025	,04	.03	,025	025	.039	,03			54 x	18	6.	75_
9	773	744	899	1066	837	755	667	719	662	-	794	UP	6,	15:	53
10					i.							100		111	C.Fm
17	045	.04	1034	-04	,04	.05					4 H H	1			
2	.048	042	.039	,044	.048	.05		3	4 ×1	3	FAN	2	4	, 25	_
3	-04	.04	.037	.046	.05	.0%			83	90	P.	4,2	5 =	3.5	64
VELOCITY SUB-TOTALS	842	808	766	,833	35 g	924						200			
DEMARKS.		`	*			,									N. Ji
REMARKS: The re	adi	-61-0	we	re -	Cal	an.	w	il	مينجد.	1	as	01	fa	n	un
ne is		8						11	-11			4 .			,
0 a	502	fa	n ~	un	nin	7	مسدم	diffe		n	e 4.61	Lie	1 L)- 1 · d	المناه
1	. 1	<i>;</i>	Time.		٠٠٠.				0	ارار	24.		6	100	in
to us		,		1			ria	بمعين	100	7.	0	7	τ. ξ	,	
		,	_			_									

NATIONAL ENVIRONMENTAL BALANCING CUREAU

REPORT NOT VALID UNLESS STAMPED WITH NEBB CURRENT CERTIFICATION SEAL

59

SYSTEM/UNIT.

NE BB

PITOT TUBE TEST REPORT

ROJECTOCATION/	ZONE _	*	H 7 -	3		ACTL	JAL AII	RTEM	Р			DUC	T S.P.		-
	DUCT			1.			REQUIRE	,		1		ACT	TUAL	- Jana	
31ZE	50	Q. FT		FP	м		CF	м		_ FPM_			CFM_		
				(5	EE REV	ERSES	IDE FOR	INSTRU	CTIONS	15.00		7,00			195
POSITION	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1052	,039	, <i>28</i> 3	.093			Li I								
2	.063	054	101	.118			Ens	TS	ie s	اعرم	,	z	4 x	4 +	104
3	059	.102	.14	.081			-		1130		1.9	2	3	25	-99
4			*	113	0				1 167	6.4	.2.7	.h	W-	-	m
5					_		-	- 67	. 115	1.4	£ 164	12.8	· E.	167	
6															
1	.091	.131	.17	.171											
2		.138					wes	T SK		216	40	0, 2,	3=49	77	
3	.086													4	
4										7	ital	-	m	75	76
11				21	64						1.5				
12													-		
13												,			
VELOCITY SUB-TOTALS															

TEST DATE READINGS BY	
-----------------------	--

FORM TAB 11-76 © Copyright, NEBB 1976 NATIONAL ENVIRONMENTAL BALANCING BUREAU REPORT NOT VALID UNLESS STAMPED WITH NEBB CURRENT CERTIFICATION SEAL

PAGE _____ OF ____

AIR APPARATUS TEST REPORT

PROJECT			SYSTEM/UNIT			
ADDRESS			LOCATION		-	
	NIT DATA	40 1 8 9,000	M	OTOR LATA		
Make & Model No.	Laten Con	r 21	Make & Frame	MARATA	IN MS	
Type & Size	C.HB		Motor H.P.	2.	V di pelipagni	
Arrangement & Class			Volts, Phase, Cycles	200-3-	60 .	
Discharge			Full Load Amps	6.8	t million in	
Sheave Size & Make	43/8 B	Edularia a	Sheave Size & Make	334 1	Crisis S	
Sheave Bore Size	43/8 R	19.5	Sheave Bore Size	7/6		
No. Belts, Make & Size		er offerm	Sheave Center's Dist.	20 1/2		
Sura III as						
TEST DATA	DESIGN	ACTUAL	TEST DATA	DESIGN	ACTUAL	
Total CFM			Discharge S.P.			
Total S.P.			Suction S.P.		· FI	
Fan RPM		1350	Reheat Coil S.P. Drop			
Motor B.H.P.			Cooling Coil S.P. Drop			
Out. Air CFM			Preheat Coil S.P. Drop		5 m 2 m	
Ret. Air CFM			Filter S.P. Drop			
Motor RPM			Vortex Damper Posit.			
Motor Volts TTZ. TZ-Ta.		2.20	Out Air Damper Posit	1	100	

REMARKS:

Motor Amps-T1, T2, T3

TEST DATE	READINGS BY	CERTIFIED BY

Ret. Air Damper Posit.

UN	NIT DATA		MC	TOR LATA	
Make & Model No.	THE PARTY	1, 11	Make & Frame	/	. 145
Type & Size	1. 1		Motor H.P.	240	
Arrangement & Class			Volts, Phase, Cycles	200 volts	3 pt 40
Discharge	7.5	TO MICHAEL	Full Load Amps	6. Dam	40
Sheave Size & Make			Sheave Size & Make		. 50
Sheave Bore Size		A 1 - 1 - 1	Sheave Bore Size	7/8	In ephasing
No. Belts, Make & Size	1 7	A 1.3/17	Sheave Center's Dist.	23 1/2	A Carolinean
TEST DATA	DESIGN	ACTUAL	TEST DATA	DESIGN	ACTUAL
TEST ,DATA	DESIGN	ACTUAL	TEST DATA	DESIGN	ACTUAL
	DESIGN	ACTUAL		DESIGN	ACTUAL
TEST ,DATA Total CFM Total S.P.	DESIGN	ACTUAL	TEST DATA Discharge S.P. Suction S.P.	DESIGN	ACTUAL
Total CFM	DESIGN	ACTUAL	Discharge S.P.	DESIGN	ACTUAL
Total CFM Total S.P. Fan RPM	DESIGN	ACTUAL	Discharge S.P. Suction S.P.	DESIGN	ACTUAL
Total CFM Total S.P. Fan RPM	DESIGN	ACTUAL	Discharge S.P. Suction S.P. Reheat Coil S.P. Drop	DESIGN	ACTUAL
Total CFM Total S.P. Fan RPM Motor B.H.P.	DESIGN	ACTUAL	Discharge S.P. Suction S.P. Reheat Coil S.P. Drop Cooling Coil S.P. Drop	DESIGN	ACTUAL
Total CFM Total S.P. Fan RPM Motor B.H.P. Out. Air CFM	DESIGN	ACTUAL	Discharge S.P. Suction S.P. Reheat Coil S.P. Drop Cooling Coil S.P. Drop Preheat Coil S.P. Drop	DESIGN	ACTUAL
Total CFM Total S.P. Fan RPM Motor B.H.P. Out. Air CFM Ret. Air CFM	DESIGN	200 west	Discharge S.P. Suction S.P. Reheat Coil S.P. Drop Cooling Coil S.P. Drop Preheat Coil S.P. Drop Filter S.P. Drop	DESIGN	ACTUAL

'EST DATE_____ READINGS BY_____ CERTIFIED BY_____

PROJECT 4	SYSTEMUNIT PHU
ADDRESS	LOCATION
UNIT DATA	MOTOR DATA

U	NIT DATA
Make & Model No.	me quay LHDING
Type & Size	7
Arrangement & Class	
Discharge	
Sheave Size & Make	11 Brown 19 8 K115
Sheave Bore Size	1 1/2
No. Belts, Make & Size	1 Beomeriue ALL

M	OTOR DATA
Make & Frame	BALDOR 1827
Motor H.P.	5
Volts, Phase, Cycles	200 3 60
Full Load Amps	10
Sheave Size & Make	Grown Inc 53/4
Sheave Bore Size	1 1/8
Sheave Center's Dist.	21.5/8

TEST DATA	DESIGN	ACTUAL
Total CFM		
Total S.P.		i -
Fon RPM		810
Motor B.H.P.		
Out. Air CFM		
Ret. Air CFM		
Motor RPM		
Motor Volts TT2-T2-T3-		2.00
Motor Amps-T1,T2,T3		6.5

TEST DATA	DESIGN	ACTUAL
Discharge S.P.		
Suction S.P.		
Reheat Coil S.P. Drop		
Cooling Coil S.P. Drop		
Preheat Coil S.P. Drop	V	
Filter S.P. Drop		
Vortex Damper Posit.		
Out. Air Damper Posit.		
Ret. Air Damper Posit.		i

REMARKS:

ORICINAL PAGE IS OF POOR QUALITY

TEST DATE	READINGS BY	CENTIFIED BY
-----------	-------------	--------------

AIR OUTLET TEST REPORT

ADDRESS.

PROJECT 4, 1 21 syste	M Hat Dungs
-----------------------	-------------

OUTLET MANUFACTURER .

AREA	_	Ou	TLET		DES	IGN	E ₁ 111	PRELIMINARY			FII	NAL	REMARKS
SERVED	NO.	TYPE	SIZE	AK	CFM	VEL.	VEL.	VEL.	VEL.	VEL.	VEL.	CFM	HEMARKS
TDI - :	,	TAG	12412	.49	400	Luil.	7.			2000		479.	
Day Ron	li .	"	"	,,	160		900					940	
/	3	"	.,,	*,	320		255					424	
	1	11	719	.274	165	. F	943		100			225	
	15	TDC			290		1 02					477	
	6	TDC.	615				-11.			1,000		59	
D 2					1750							1800	1190%
	1	TDG	1212	.49	240	•	125	-				3015	
	S		12 4 15		240		666					27.1-	11 11 11 11
	3	TIC		• • •	305		647					317	
	-1	TDe.	9.9	.274	130	λ	566					150	
	5	27/	36x13	134	215		163					218	
	6	roc	6×6	125	85		505					162	
	7	5200	18412	9/5	140		1675					154	
	8	271		.7/8			220					1.53	
703					1500						<u> </u>	1752	11770
	1	TDC	919	2.74	245		8 7				İ	177-	
	2	111	• • •		245		5 (*					237	
	3	٠٠.	"		265		1343					3-79	
	1	,.	"	٠,	255		1- 9.3					350	
					1552							: 03	1130/0
Ι,											<u></u>		
,			ν.										
	1-												

REMARKS:

Taken with cook on

ORIGINAL PAGE IS OF POOR QUALITY

TEST DATE	READINGS BY	64	,	 CERTIFIED BY	 	
		04				

ADDRESS ...

0

PROJECT	.5, 5,	1	1	SYSTEM	
	10 1	100			

OUTLET MANUFACTURER _

AREA		ou	TLET		DES	IGN		PRELIM	INARY	-1	FIN	AL	REMARKS
SERVED	NO.	TYPE	SIZE	AK	CFM	VEL.	VEL.	VEL.	VEL.	VEL.	VEL.	CFM	HEMARKS
EF I	137	CALL	1'						R.Y		1-1	PI	
	1	23	11.712	45	230								
	2		846	.117	100					0	-5	1.45	
	3	n	"	"	",			- 48					Lug.
S A	4	11	11	"	55					100		117	13.19
6. 124	5	11	t:	11	80								
	6	-1	11	,1	25							1	
202710	7	11	12710	.324	300								
mater	DAY	_	1	5		-		-					
We	silin	May	se	Fr	T48	. 2							
	4	0	1		, ,					3 4		110	7 1
	Bold	115	-										
			dage	60	1								
		7		1	7								
1		1											
			1									<u> </u>	
٠.													
			-										
	1	2.7			b.								

REMARKS:

O

MARKS: Not working

TEST DATE	READINGS BY	
	65	PAGE

F.S.24 ID #3 UNIT DATA ID # Z Bryant Bryants

R.P.m 1078

Amp 2.4

Direct Drive

Volt 200

PH-1 60 H2
HP . 32

FLA 3.5 DV 208/230

model 5200 42 BP

AMP 2.9

Direct Drive

Volt 200

PH-1 60HZ

HP-15

FLA4,5 DV,208/230

MS-15/208 048BP

RPM 987
AMP 5"G

DIRECT DRIVE
VOLT 200
PH-1 60H2

HP

ORIGINAL PAGE IS OF POOR QUALITY

=1A 5.0 DV 208/2.30 MODEY 520B060BP 66 Associated Engineering Consultants Inc. 20 West 9th St. Kansas City, Mo. 64105 816-474-5450

September 20, 1979

Midgley Shaughnessy Fickel and Scott Architects 20 West 9th Street Kansas City, Missouri 64105

Attn: Mr. Mike Shaughnessy

RE: K.C. Fire Station No. 24

Gentlemen:

We have reviewed the air balance report submitted for this project and it appears fan numbers 2 and 3 need rpm adjustment to comply with design criteria. Fan no. 2, which serves distribution to operations area units, should be speeded up such that circulated air is plus or minus 5% of 4300 cfm design in lieu of 3560 cfm which is only 82% of design. Motor amp readings included in report indicate this should be possible without changing motor, however motor sheeves may have to be replaced. Fan no. 3, which serves apparatus bay only could be left as is without detrimentally affecting this or other systems operation, however air quantity being supplied, 7575 cfm is approximately 150% of design.

Fan no. I serving the solar loop is circulating 7% more air than as designed or the diffence between 5000 and 5360 cfm, but this should be satisfactory.

The indoor units nos. 1, 2, and 3 are all delivering more air than design, from 13 to 19% which should not pose any particular problem. There is quite a disparity between the four outlets served by unit no. 3, but all these outlets are in the same room. If these outlets are unusually disturbing to the occupants with regard to noise they should be adjusted but otherwise can remain as is and should function satisfactorily concerning heating or cooling.

Please contact us if you have any questions.

Sincerely.

DAD:j1j

APPENDIX H
SYSTEM INSTALLATION
AND
CHECKOUT PROBLEMS

SYSTEM INSTALLATION AND CHECKOUT PROBLEMS

A continuing problem with the instrumentation installation was rainwater seepage into the area where the SDAS was located. The water on the floor made it difficult and dangerous to check out the instrumentation wiring. After various methods had been tried to overcome the seepage problem, it was finally solved primarily by elevating and recontouring the soil outside the wall and installing drain tile at the base of the wall. This was achieved just prior to completion of the Acceptance Testing.

Changes in the instrumentation contractor's personnel after the initiation of this work at the fire station contributed to a major problem of wiring errors between the junction box, transformers, and the SDAS. As with all relatively new developments such as solar energy, much of the technology is conveyed verbally. Consequently, when there is a personnel change, some loss of system understanding is to be expected. The wiring problems were resolved with the assistance of an instrumentation engineer from the Marshall Space Flight Center.

During the acceptance testing, it was noted that one of the collectors had a broken inner glass. The glass was subsequently supplied by the collector system vendor and installed by the city.

The system evaluation test determined that one motor-driven damper was the wrong type. Item should have been spring loaded to shut after power was removed but it was electrically driven in both directions. Device was replaced by proper configuration after the acceptance test.

During the system operational airflow measurements, it was discovered that AH#2 was flowing about 82 percent of the design requirement. The adjustable pulley was changed to give the required system design speed. Additionally, the airflow rate of AH#3 exceeded the design requirements; however, because of the smaller than recommended pebble size in the rock box, it was decided to leave the flow rate at the higher level.

Considerable difficulty has been experienced with fire personnel changing the thermostat settings which causes the control system to bypass the solar heat and go into the heat pump or the electrical heat strip mode. This, of course, plays havoc with system efficiency as determined by the data system. Some thought has been given to placing "locks" on the thermostat to prevent changes to the selected temperature levels. A more expensive change would be to replace the thermostats with the type that would use available solar heat before the auxiliary heat system would be energized.

Some minor insulation discrepancies were noted during the "walk through". The water pipes near the hot water heat exchanger and near the water heaters had not been insulated. This was accomplished at a later date. The "walk through" showed that the overall mechanical work was excellent including duct work placement and insulation workmanship. The solar system was deemed operational and functionally acceptable in September 1979.

APPENDIX I PRODUCT LITERATURE FOR COMPONENTS OF THE SOLAR HEATING SYSTEM

BULLETIN ATO

ORIGINAL PAGE IS OF POOR QUALITY

C BRABCH

Electric
Electric
Heaters

© Brasch Mfg. Co., In

applications

For complete or supplementary heating of entryways, storerooms, kitchens, garages, shipping rooms, warehouses, factories, hangers, power generating plants, pump houses and stores.

Eliminates piping, valves, traps, freezeups, water leaks, vagrant heat waste, vents, stacks, gas piping and pilot lights.

construction details

- HEAVY DUTY CONSTRUCTION—cabinets are made of heavy gauge welded domestic steel for durability and trouble-free operation.
- 2. MOUNT!NG—recessed welded fasteners on top and back of housing for threaded rod-type hangers are standard. Optional swivel-type combination wall or ceiling mounting brackets allow up to 180° adjustment of discharge air direction. All models are suitable for either horizontal or vertical airflow.
- SUPPLY CONNECTION—single connection eliminates separate fan motor circuit.
- 4. MOTOR—fan motors have built-in automatic reset thermal overload protection. Heaters with motors 1/4 hp or greater have permanently lubricated ball bearings. Motor is ventilated with unheated air.
- PLATE FIN ELEMENTS—rugged, copper plated steel tubular elements are brazed to multiple fins for extra strength and maximum heat dissipation. Fins

are protected against corrosion by high temperature paint. Automatic reset thermal cutout protects heater elements from overheating.

- SERVICE COMPARTMENT hinged service door allows easy access to line terminais, contactors, fuses and transformers.
- FAN dynamically balanced aluminum fan. Drawthrough design assures even air distribution over elements and uniform outlet temperatures.
- LOUVERS—each louver is adjustable for positive control of discharge air.
- HOUSING—contemporary styling, heavy gauge steel.
 Tough, durable neutral grey, baked enamel finish resists corrosion and assures long life, even in fume laden industrial atmospheres.
- THERMOSTAT—optional built-in thermostat for 1 or 2 stage control with knob adjustment.

ORIGINAL PAGE IS OF POOR QUALITY

energy savers

THERMOSTATIC FAN SWITCH — built into each 5 KW and larger unit, dissipates residual heat to recirculate ambient air until temperature drops to 90F.

TWO STEP CONTROL — provides smaller KW steps for finer control and less operating cost (standard on many models).

NIGHT SETBACK THERMOSTAT — conserves energy with separate temperature settings for day-time comfort and nighttime economy (remote horizontal mounting).

built-in controls

MAGNETIC CONTROL CONTACTOR — disconnecting break contactors provided as standard unless heater is single phase and operated by load-carrying thermostat.

SUBCIRCUIT FUSING—when heater ampacity exceeds 48 amps, built-in subcircuit fuses are supplied to meet Paragraph 424-22 of the 1975 NEC.

FAN DELAY – dissipates all residual heat from elements and recirculates entering ambient air until temperature drops to 90F for maximum energy conservation. Provided in 5 KW units and larger.

MOTOR OVERCURRENT PROTECTION — motor fusing is built-in for unit heaters over 40 amperes when the motor is greater than 1/8 HP. All units incorporating a stepdown transformer to drive the fan motor have built-in transformer primary fusing.

CONTROL THERMOSTAT – optional built-in or wall mounted thermostat kits to achieve best area comfort level. Built-in thermostat eliminates control wiring and is adjustable from the front of the heater. (see page 8).

CONTROL TRANSFORMER— Optional 24V control transformer available on all units (see Fig. 4).

FIGURE 2: 240V, Single Phase, 2.5 KW Circuit Diagram

FIGURE 3: 480V, Single Phase, 10 KW Circuit Diagram

240 V, Three Phase, 40 KW Circuit Diagram FIGURE 4: with optional 24 V control.

TABLE 2: SPECIFICATIONS

TABLE	1: Ď	IMEN	SION	S (inc	hes)	
HEATER KW	A	В	С	D (min)	E (min)	F (min)
2.5-20	22	17	151/2	6	6	4
25-50	27	21	221/4	6	12	4

ul listing

BTU Electric Unit Heaters are UL Listed under File No. E 61887.

how to order

Specify:

- 1. Model Number
- 2. Voltage, Phase and KW
- 3. Accessories (see page 8)
 - A. Mounting Bracket
 - B. Thermostat
 - C. Other

MODEL NO. ##				ELE	CTRIC	AL (60	Hz)			
BTU-			HEA	TER	191	C Land	-	MOT	OR	26.5
	KW	BTUH	VOLTS	PHASE	AMPS	STEPS	VOLTS	PHASE	RPM	HP
2.5-2081	2.5	8550	208	1	12	1	208	1	1550	1/10
2.5-2401	2.5	8550	240	1	10	1	240	1	1550	1/10
2.5-2771	2.5	8550	277	1	9	1	120	1	1550	1/10
5-2081	5	17100	208	1	24	1	208	1	1550	1/10
5-2401	5	17100	240	1	21	1	240	1	1550	1/10
5-2771	5	17100	27?	1	18	1	120	1	1550	1/10
7.5-2081	7.5	25650	208	1	36	1	208	1	1550	1/10
7.5-2401	7.5	25650	240	1	31	1	240	1	1550	1/10
7.5-2771	7.5	25650	277	1	27	1	120	1	1550	1/10
10-2081	10	34200	208	1	48	1	208	1	1550	1/10
10-2401	10	34200	240	1	42	1	240	1	1550	1/10
10-2771	10	34200	277	1	36	1	120	1	1550	1/10
5-2083	5	17100	208	3	14	1	208	1	1550	1/10
5-2403	5	17100	240	3	12	1	240	1	1550	1/10
5-4803	5	17100	480	3	6	1	120	1	1550	1/10
5-6003	5	17100	600	3	5	1	120	1	1550	1/10
7.5-2083	7.5	25650	208	3	21	1	208	1	1550	1/10
7.5-2403	7.5	25650	240	3	18	1	240	1	1550	1/10
7.5-4803	7.5	25650	480	3	9	1	120	1	1550	1/10
7.5-6003	7.5	25650	600	3	7	1	120	1	1550	1/10
10-2083	10	34200	208	3	28	1	208	1	1550	1/10
10-2403	10	34200	240	. 3	24	1	240	1	1550	1/10
10-4803	10	34200	480	3	12	1	120	1	1550	1/10
10-6003 *	10	34200	600	3	10	1	120	1	1550	1/10
2.5-2083	12.5	42750	208	3	35	1	208	1	1550	1/4
2.5-2403	12.5	42750	240	3	30	1	240	1	1550	1/4
2.5-4803	12.5	42750	480	3	15	1	120	1	1550	1/4
2.5-6003*	12.5	42750	600	3	12	1	120	1	1550	1/4
15-2083	15	51300	208	3	42	1	208	1	1550	1/4
15-2403	15	51300	240	3	36	1	240	1	1550	1/4
15-4803	15	51300	480	3	18	1	120	1	1550	1/4
15-6003*	15	51300	600	3	14	1	120	1	1550	1/4
20-2083	20	68400	208	3	56	2	208	1	1550	1/4
20-2403	20	68400	240	3	48	1	240	1	1550	1/4
20-4803	20	68400	430	3	24	1	120	1	1550	1/4
20-6003	20	68400	600	3	19	1	120	1	1550	1/4
25-2083	25	85500	208	3	69	2	208	1	1550	1/4
25-2463	25	85500	240	3	60	2	240	1	1950	1/4
25-4803	25	85500	480	3	30	1	120	1	1550	1/4
25-6003	25	85500	600	3	24	1	120	1	1550	1/4
30-2083	30	102600	208	3	83	2	208	1	1550	1/4
30-2403	30	102600	240	3	72	2	240	1	1550	1/4
30-4803	30	102600	480	3	36	1	120	1	1550	1/4
30-6003.	30	102600	600	3	29	1	120	!!	1550	1/4
40-2083	37.5	128250	208	3	104	2	208	1	1550	1/4
40-2403	40	136800	240	3	96	2	240	1	1550	1/4
40-4803	40	136800	480	3	48	1	120	1	1550	1/4
40-6003	40	136800	600	3	37	1	120	1	1550	1/4
50-2083	50	171000	208	3	139	2	208	1	1550	1/4
50-2403	50	171000	240	3	120	2	240	1	1550	1/4
50-4803	50	171000	480	3	60	2	120	1	1550	1/4
50-6003	50	171000	600	_3_	48	2	120	1	1550	1/4

*SPECIAL ORDER ONLY

[†] Throw is the distance air moves until its velocity reduces to 50 fpm.

^{††}Based on 60C ratings

tttAll units, except 2.5 KW, are optionally available with 2 steps for energy savings (see Page 8). 75

	AL.		AIRFL	OW		ST		UILT-IN CO	NTROL	RECOMM	TING	WEIGHT		FIELD	RECOMMENDED †† FIELD SUPPLY WIRES	
_	FAN. DIA. (IN.)	CFM 0 70°F.	OUTLET VEL-FPM	TEMP. RISE-°F.	THROW (FT.)	NEC FUSES	CONTACTORS	TRANSFORMER	CONTROL	HORIZONTAL DISCHARGE	VERTICAL DISCHARGE (FT.)	LBS.	KGMS.	COPPER AWG/MCM	ALUMINUM AWG/MCM	
4	12	500	605	16	18	0	0	NO	208	8	10	50	23	2-#12	2-#10	
150	12	500	605	16	18		0	NO	240	8	10	50	23	2-#14	2-#12	
園	12	500	605	16	18	10	0	YES	277	8	10	63	29	2-#14	2-#12	
Haron	12	500	625	32	18	0	0	NO	208	8	10	50	23	2-#10	2-# 6	
	12	500	625	32	18	0	0	NO	240	8	10	50	23	2-#10	2.# 8	
	12	500	625	32	18	0	0	YES	277	8	10	63	29	2-#10	2-#10	
190	112	870	1 1075	To 273	26	100	CHEST SECTION.	NO	208	10	14	51	23	2-# 6	2-# 4	
100	12	870	1075	27	26	0	13	NO	240	10	14	51	23	2-# 6	2-# 4	
184	12	870	1075	27	26	0		YES	120	10	14	64	25	2-#8	2.# 6	
103	12	870	1090	3U	26	10	September 111	NO	208	19	14	60	27	2-# 6	2-# 2	
	12	870	1090	36	26	0	1	NO	240	10	14	60	27	2-# 6	2.# 4	
	12	870	1090	36	26	0	1	YES	120	10	14	72	33	2-# 6	2-# 4	
¥700	and the same of th	CONTRACTOR STATE		and the same of	A COLUMN TO SERVE		NEWSTRANSFEE	NO		The second control of	Commission Commission II	and the second		and the second second	and the same of the same of	
19	12	500	625	32	18	0	125	NO	208	8	10	51	23	3-#12	3-#10	
	12	500	625	32	18	0	STATE OF	YES	240	8	10	51	23	3-#12	3-#10	
1	12	500	625	32	18	0	提門權位		120	1 1 1	10	64	29	3-#14	3-#12	
2.13	12	500	625	32	18	0	Chick Street	YES	120	8	10	64	29	3-#14	3-#12	
	12	870	1075	27	26	0	1	NO	208	10	14	51	23	3-#10	3-# 6	
	12	870	1075	27	26	0	1 1	NO	240	10	14	51	23	3-#10	3-#10	
	12	870	1075	27	26	0	1	YES	120	10	14	64	29	3-#14	3-#12	
	12	870	1075	27	26	0	1	YES	120	10	14	64	29	3-#14	3-#12	
13.75	12	870	1090	36	26	0		NO	208	10	14	60	27	3-# 8	3-# 6	
	12	870	1090	36	26	0	北京的關係	NO	240	10	14	60	27	3-# 8	3-# 6	
3.4	12	870	1030	36	26	0	19645163	YES	120	10	14	72	33	3-#12	3-#10	
4	12	870	1090	36	26	0	HALL TOWN	YES	120	10	14	72	33	3-#14	3-#12	
	12	1250	1560	32	33	0	1	NO	208	11	21	61	28	3-# 6	3-# 4	
	12	1250	1560	32	33	0	1	NO	240	11	21	61	28	3-# 8	3-# 6	
	12	1250	1560	32	33	0	1	YES	120	11	21	73	33	3-#12	3-#10	
	12	1250	1560	32	33	0	1	YES	120	11	21	73	33	3-#14	3-#12	
153	12	1250	1575	38	33	1 0	RESERVE	NO NO	208	2 11	21	61	28	3-#6	3-# 4	
	12	1250	1575	38	33	0	1601	NO	240	111	21	61	28	3-#6	3.# 4	
193	12	1250	1575	38	33	0	190 318074	YES	120	11	21	73	33	3-#10	3-#10	
爱	12	1250	1575	38	33	0	100	YES	120	11	21	73	33	3-#12	3-#10	
OKO	12	1250	1615	51	33	6	2	NO	208	11	21	64	29	3-# 3	3-# 2	
	12	1250	1615	51	33	0	1	NO	240	11	21	61	28	3-# 4	3-# 3	
	12	1250	1615	51	33	0	1	YES	120	11	21	73	33	3-# 8	3-# 6	
	12	1250	1615	51	33	0	1	YES	120	11	21	73	33	3-#10	3-#10	
10	16	2050	1440	39	44	6	2	NO NO	208	13	26	104	47	3-# 2	3-# 0	
100	16	2050	1440	39	44	6	2	NO	240	13	26	104	47	3-# 3	3-# 2	
99	16	2050	1440	39	44	0	131	YES	120	13	26	114	52	3-# 8	3-# 6	
- 19	16	2050	1440	39	44	0	100	YES	120	13	26	114	52	3-#10	3-# 8	
	16	2050	1455	46	44	6	2	NO	208	13	26	120	55	3-# 2	3-# 0	
	16	2050	1455	46	44	6	2	NO	240	13	26	120	55	3-# 2	3-# 0	
	16	2050	1455	46	44	ő	l i	YES	120	13	26	130	59	3-# 6	3-# 4	
	16	2050	1455	46	44	l ŏ	i	YES	120	13	26	130		3-# 8	3.# 6	
750	116	2050	1490	58	44	9	TO ELECTRON	NO	208	13	26	122		3-# 0	3-#00	
1	16	2050	1500	62	44	8	3	NO	240	13	26	120		3.#1	3-# 0	
	16	2050	1500	62	44	0	130	YES	120	13	26	130		3-# 4	3-# 3	
	16	2050	1500	62	44	0	2.186	YES	120	13	26	130		3-# 6	3-# 4	
			1540	77	44			NO					58	3-#00	3-#0000	
	16	2050				12	4		208	13	26	127				
	16	2050	1540	77	44	9	3	NO VES	240	13	26	122		3-#00	3-#000	
	16	2050	1540	77	44	6	2	YES	120	13	26	133		3-# 3	3-# 1	
	16	2050	1540	77	44	10		YES	120	13	26	133	60	3-# 4	3.# 3	

TABLE 4:	TEMPERATURE	CONTROL	KITS
----------	-------------	---------	------

CATALOG NUMBER	DESCRIPTION
TK-1	Integral Thermostat Kit, 1 Stage Heating (SPST, 24-277V) shipped separately as kit
TK-1FM	Same as TK-1, except factory mounted
TK-2	Integral Thermostat Kit, 1 Stage Heating, (DPST, 24-277V) use where full line break is required, shipped separately as kit
TK-2FM	Same as TK-2, except Factory Mounted
TK-3	Integral Thermostat Kit, 2 Stage Heating (S-SPST, 24-277V) shipped separately as kit
TK-3FM	Same as TK-3, except Factory Mounted
TK-4	Wall Thermostat Kit, 1 Stage Heating (SPST, 24-277V)
TK-5	Wall Thermostat Kit, 1 Stage Heating (DPST, 24-277V) use where local codes require a full line break
TK-6	TK-6 Wall Thermostat Kit, 2 Stage Heating, Auto/On and Heat/off/Cool Switches on subbase (2-SPST, 24V only)
TK-8	Wall Thermostat Kit, 1 Stage Heating, 1 Cooling (2-SPST, 24-240V)
TK-9	Subbase for TK-8, Fan/Off/Auto Switch
TK-10	Wall Thermostat, 2 Stages Heating (2-SPST, 24-240V)
TK-11	Summer/Winter Switch Kit, (SPST, 24-277V) shipped separately as kit
TK-11FM	Same as TK-11, except Factory Mountad
TK-12	Wall Thermostat Kit, Night Setback with 24 Hour Timer, 1 Stage Heating (SPST, 24V only), does not require separate power supply
Suffix-24	24V Control With Contactor if Required (add suffix to unit catalog number)
Suffix-2S	Two Step Operation in lieu of single step (add suffix to unit catalog . umber)
Suffix-MR	Manual Reset Thermal cutout (add suffix to unit catalog number)
Suffix-RC	Remote Control Panel, UL Listed, surface mounted (consuit factory) (add suffix to unit catalog number)

TABLE 5: DIFFUSER KITS

CATALOG NUMBER	DESCRIPTION	
CD-1	Diffuser Kit, Cone type for vertical discharge (2.5-20 KW)	
CD-2	Diffuser Kit, Cone type for vertical discharge (25-50 KW)	
LD-1	Diffuser Kit, Four-Way Louvers (2.5-20 KW)	
LD-2	Diffuser Kit, Four-Way Louvers (25-50 KW)	

TABLE 6: MOUNTING HARDWARE KITS

CATALOG NUMBER	DESCRIPTION
WB-1	Wall Mount Assembly Kit (for horizontal discharge) wall and swivel brackets
SB-1	Swivel Bracket Kit (for ceiling mounting, horizontal discharge)
TR-1	Rod Hanger Kit, Four, 1/2-13 x 24 (for horizontal or vertical discharge)

TABLE 3: AIR DISTRIBUTION PATTERNS (VERTICAL DISCHARGE)

APPROXIMATE MOUNTING HEIGHT AND FLOOR COVERAGE (FEET)

Note: Height is based upon optimum floor coverage with 50 fpm velocity four feet above the floor. Specific boundary pattern is dependent upon obstacles, drafts and mounting arrangements. Drawings are not to scale.

sample specification

- Furnish and install Brasch UL Listed unit heaters with voltage, phase, number of steps, heating and air delivery capacities as scheduled. Threaded mounting holes shall be provided and each unit shall be universally suitable for vertical or horizontal mounting.
- 2. Unit heater shall be draw-thru design to provide uniform temperature across heater element and forced air cooling of motor with ambient air.
- Heater elements shall be corrosion protected, plate fin type with elements brazed to common fins for maximum strength and heat transfer. Contactor(s) shall provide disconnecting line break. Automatic reset thermal cutout for each element assembly shall provide protection from overtemperature.
- 4. All motors shall have permanently lubricated bearings, built-in thermal protection and shall be completely enclosed. Motors ¼ HP and greater shall have ball bearings. Separate motor supply circuits shall not be required.
- All units to have single supply circuit with fuses as required by NEC for element and motor protection.
- 6. Fans shall be aluminum, directly connected to the fan motor. Units 5 KW and larger shall have thermal fan delay to remove residual heat from heater cabinet and recirculate ambient air until temperature drops to 90F for maximum energy savings. All metal surfaces of the cabinet shall be protected by baked epoxy finish.
- 7. Brackets shall be furnished for wall (or ceiling) mounting where shown on heating schedule.
- 8. Individually adjustable louvers shall be furnished to direct discharge air as desired. (Optional: Downflow diffusers shall be provided where shown on schedule. Specify: Cone type, or four-way adjustable louver.
- Thermostat shall be provided where shown on schedule, to match number of heater control steps. (Specify: Built-in or remote room thermostat.)
- 10. Other options provided shall include:
 - A. 24V Transformer
 - B. Two Step Control
 - C. Summer/Winter Switch for Ventilation Only
 - D. Main Disconnect Switch (Remote)
 - E. Heating/Cooling Thermostat with Fan Switch Subbase
- 11. Manufacturer shall provide one year guarantee against defects in workmanship or material.

mounting arrangements

Any Brasch unit heater can be mounted in either a horizontal or vertical discharge position:

HORIZONTAL DISCHARGE-heaters can be mounted norizontally using four 1/2-13NC threaded rods (provided by others) or the optional swivel and wall mounting brackets. The swivel bracket allows heater to be rotated to face various directions and can be ordered separately for use as a ceiling bracket. The wall mounting bracket provides minimum spacing required for the heater in all directions. A 1-8NC threaded bolt with locknut attaches the swivel bracket to the wall bracket. The wall mounting bracket attaches to the wall using four SAE Grade 5, 1/2-13NC bolts and nuts. Bolts and nuts are provided as part of the wall mount and swivel bracket kits.

TABLE 7: MOUNTING DIMENSIONS								
HEATER KW	н	1	K	L	M	w	W ¹	Ä
2.5-20	261/4	26	7	9	5	17	-	15
25-50	351/4	31	7	9	5	-	221/2	16

VERTICAL DISCHARGE - heaters are mounted vertically using four 1/2-13NC threaded steel rods (provided by others). Four threaded holes on top of the heater are provided with internal stops to prevent excessive insertion of rods. Additional mounting hardware, if required, is supplied by the installer.

FIGURE 9: Vertical Discharge

application tips

LIMITATIONS-Unit heaters should not be used in potentially explosive atmospheres, nor should they be located where obstructions might block air inlet, motor cooling vents or discharge.

APPLICATIONS-larger rooms require multiunit installations; arrange units to provide perimeter air circulation.

To prevent air stratification, the total CFM capacity of all units should circulate the room air volume at least three times per hour.

Unit heaters should be located so their airstreams wipe exposed walls without blowing directly at them. In multiple unit heater installations, it is good practice to locate units so each unit supports the airstream of another, thus setting up a circulatory air movement within

ORIGINAL PAGE IS

OF POOR less than the throw of one heater nor more than twice its throw; for throw data, see page 5. For interior spaces and for high bay areas, additional unit heaters mounted vertically can be used. In warehouse type applications, where maintaining minimum temperatures is the basic requirement, one or more large unit heaters can be used in order to reduce initial installation expense.

FIGURE 11

Small rooms can be heated by one unit heater. Where two walls are exposed, heater should be mounted as shown. For individual spaces, total heating capacity is calculated in the conventional way, using formulas in the ASHRAE Guide.

When heating capacity for a pedestrian entryway is unknown, a rule of thumb of 4000 watts per door can be used.

Unit heaters are frequently used to combat cold air inrush when loading dock doors are opened. For such applications, one or more units should be arranged to blow warm air across the opening, not toward it.

other Brasch products

HOT WATER BOILERS – provide hot water for space heating in commercial, industrial and institutional buildings. Recommended for supplying hot water to coils located in hazardous locations, Also used for process applications in industrial plants. UL Listed with ratings to 3600 KW. Ask for Bulletin A120.

STEAM BOILERS – provide steam for space heating in commercial, industrial and institutional buildings or steam for humidification, sterilization and incustrial process applications. UL Listed with ratings to 3000 KW, high or low pressure. Ask for Bulletin A124.

ELECTRIC DUCT HEATERS – custom designed for warm air space heating applications in commercial, industrial and institutional buildings, manufactured in unlimited sizes and capacities. Heaters are UL Listed for zero clearance and meet UL and NEC requirements. Ask for Bulletin A102.

ELECTRICAL ENCLOSURES—manufactured to NEMA 1, 3R, 4 and 12 requirements in industry—standard or custom sizes. Available with baked-on epoxy or primer finish. Ask for Bulletin A115.

REMOTE CONTROL PANELS — custom designed, ULListed, used for the control of Electroduct heating coils and many other types of electric heating equipment. The combination of Brasch panels with Brasch heaters assures you of one-source responsibility and a fully coordinated, prewired, factory tested electric heating package. Ask for Bulletin A105.

STORAGE WATER HEATERS—provide domestic hot water. Standard heaters are available in capacities up to 4000 gallons and 990 KW with lined vessels. Ask for Bulletin A125.

ELECTRIC BASEBOARD HEATERS—provide economical supplementary heat, 187 or 250 watts per lineal foot. UL Listed and NEMA constructed units combine aesthetics with efficiency and strength for comfort heating. Ask for Bulletin

guarantee

BRASCH MANUFACTURING COMPANY, INC. guarantees all electrical components, cabinet and heating elements against defects in material and work manship for a period of one year from date of purchase. Should any evidence of defects in material or work manship occur during the guarantee period, Brasch Manufacturing Company, Inc. will repair or replace the part at its own discretion without charge. Brasch Manufacturing Company, Inc. shall not be held responsible for any field charges in connection with the removal or replacement of allegedly defective equipment, nor for incidental or consequential damage. Parts being returned to the factory must arrive prepaid and upon prior approval by the Company.

MANUFACTURING COMPANY, INC. 11880 DORSETT ROAD • (314) 291-0440 MARYLAND HEIGHTS, MISSOURI 63043

CIRCULATORS - Nos. 110, 111, 112, 113, 117B & 120

Specifications

O Flanges

C

- **2** Body
- 1 Impeller
- Mechanical Seals
- 6 Motor
- 3 Drive Coupling
- Bearings
 - 3 Shaft

Maximum operating temperature Maximum working pressure

Interchangeable 34", 1", 114" or 112" for all sizes except 2" and No. 117B. Cast Iron or Bronze 1 Cast Iron or Bronzo! Note No. 1178 furnished in 1" Bronze with Sweat connections only Dynetrically balanced, closed type except No. 110 and No. 117B which are open type

Carbon & Ceramic

Selected for quietness, Rubber Mounted, Overload Protected

Smooth, safe flexible steel spring type

Large Porous Bronze

Stainless steel super finished

240F

100 PSI, 117B/125 PSI UN110

#600-TAX-4 Allen Bradley manual motor starter, 115V

(1) For fresh water circulation, specify brune construction

ORIGINAL PAGE IS OF POOR QUALITY

Purpose

Designed to circulate (pump) heated or chilled water, quietly and speedily, in Hydronic Systems for all residences and small commercial establishments. May also be used for zoning large installations and in bronze for fresh water service.

Features

- Quiet operation
- Motor Rubber Mounted, Overload Protected
- One piece, cast impellers for longer life
- Leak-proof mechanical seal two piece type, easily replaced
- Stainless steel shaft hardened and ground
- Smooth, safe drive coupling
- Easily serviced with ordinary tools
- Porous bronze bearings
- Permits the use of small size piping

Operation

- Supplies heat almost instantly upon a call for heat from the room Thermostal. When the Thermostat is satisfied, the circulator stops and no more heat is delivered to the rooms.
- 2 When used in conjunction With a Taco Flochek and Water Heater, the same boiler which provides the heating, also supplies domestic hot water all year 'round for kitchen, bath and laundry.
- 3 For house heating, circulators are available in cast iron construction. For domestic or fresh water circulation, specify bronze construction.

Sizes & Dimensions

١	PRODUCT Number (1)		FLANGE	MOTOR (2)		DIMENSIONS - INCHES				APPROX
0	URRENT(1)	OLD	SIZE	600-AC-1 PH (2)	RPM	^	•	с	D	LBS
Ī	UN110	нс	%", 1", 1%", 1%"	1/12HP-115V	1725	14%	12%	81/2	6%	21
	111	HDH	%", 1", 1%", 1%"	1/8 HP-115V	1725	15%	13%	10%	81/3	26
•	`112 ⁽³⁾		¼", 1", 1¼",4%"	1/3 HP-115V	3450	16%	14%	914	7%	28
	113		5", 1", 15", 15"	1/8HP 115V	1/25	16	13%	10%	8%	27
	117B ⁽⁴⁾		I" Sweat	1/12HP 115V	1725	1536	1312	11.	44.	22
	120	HC 20	2"	1/n HP 115V	1/25	17%	14',	13%	11	46

LA CONTROL Valve Only

1510.7 Mixing Value

#5 400 (3) inlets (1) outlets. TempControl thermostatic controller with swivel action check stops, removable cartridge with strainer, stainless steel piston and liquid fill thermal motor with bellows mounted out of water. Standard rough chrome finish.

Models 5-200 through 5-700 have integral check stops (illustrated)

Model No.	Inlets	Outlet
5-200	*4"	34"
5-400	*4	1
5-500	1	11/4
5-700	114	11/2
5-900	11/2	11/2
5-1000	11/2	2

Modifications

For use in photographic or x-ray work – available as 5-200-1 or Suffix 1

5-400-1

Suffix P Polish chrome highlight finish

Suttix W Wall mounting bracket

uffix RC Spare cartridge - recommended for

non-interrupted service

Models 5-900 and 5 1000 have separa e check stops

ORIGINAL PAGE IS OF POOR QUALITY

Physical Dimensions

Model No.	A	В	С	D	E
5-200	614"	5%"	176"	2%"	2"
5-400 '	61/4	6%	1116	21/10	2%
5-500	8	6%	156	21/0	31/0
700	8	6%	146	21/0	31/9
-900	12	71/2	2%	_	34
1000	12	71/2	2%	_	34

5-200 thru 5-700

ORIGINAL PAGE IS OF POOR QUALITY

finter phinaps times

Tested and Certified under A.S.S.E. Standard 1013

C.S.A. Certified through 1

CONSTRUCTION OF BASIC VALVE (GATE VALVES AND STRAINER NOT SHOWN)

DIRECTION OF NORMAL FLOW

Patent No. 3,636,968 and other Patents Pending

No. 900 Series

Reduced Pressure Principle Backflow Preventer

Watts No. 900 Series provides the complete concept in cross connection control for the protection of potable water and it is a unique patented design meeting the specifications of A.S.S.E. Standard 1013 for reduced pressure principle backflow preventers. Also, accepted by U.S. Public Health Service.

Beyond its size, weight, and cost advantages, the No. 900 Series offer many other advantages of value to anyone concerned with efficient cross connection control such as design simplicity, low flow resistance, quiet operation, simplified installation, and servicing.

The No. 900 assembly is the only backflow preventer furnished complete with strainer, test cocks, and gete valves. Its compact, well-balanced, practical design now brings complete protection to thousands of installations which were not economically possible before such realistic considerations were proven and available.

- Union Connections
- · Steinless steel internal parts
- Standardly furnished with on body strainer
- Maximum flow at low pressure drop
- · Compact size for ease of installation
- Maximum total of 10 parts required for complete service
- · Patented double seated First Check Valve

BIZES	DI	MENSION	TOTAL WEIGHT	VENT		
(In.)	A		C	D	(Lbs.)	(in.)
3/4	12 Va	83/8	4 1/4	41/8	20	1
1	203/4	91/2	43/4	43/4	22	1
1 1/4	22 1/4	103/4	5 1/2	5 1/4	24	1
1 1/2	30	12	6 1/4	53/4	56	2
2	32	133/4	7	63/4	64	2

Maximum Supply Pressure 175 lbs.

No. 900 ished complete with geto valvos, strainer and test cocks, as shown

FOR LARGER SIZES, SEE PAGE 12

ptional Parallel Installations using smaller sizes

Optional installation of Series 900 Backflow Preventers is the use of two or more smaller size devices piped in parallel to serve a larger supply pipe main. This type of installation is employed whenever it is vital to maintain a continuous supply of water and where interruptions for testing and servicing would be unacceptable or undesirable. It also has the advantage of providing a total capacity provided by a single larger valve and permits testing or servicing of an individual valve without shutting down the complete line.

For a two-valve installation, the total capacity of the devices should equal or exceed that required by the system.

The number of devices and sizes used in parallel should be determined by the engineer's judgement based on the operating conditions of a specific installation.

for 21/2" Main Line

RECOMMENDATION:

Install two size 1½" No. 900 to provide a total flow up to 260 GPM. This exceeds the required testing capacity for a single 2½" backflow preventer, based on applicable standards referred to.

for 3" Main Line

RECOMMENDATION:

Install two size 2" No. 800 to provide a total flow up to 350 GPM. This excepts ORIGINAL PAGE IS the required testing capacity for a single OF POOR QUALITY. 3" backflow prevenier, based on appli OF POOR QUALITY cable standards referred to.

NO. 900 Capacity

NO. 900

SIZES 1%", 2"

OPENING PRESSURE

Size of Device	flated Flow	Maximum Allowabla Frasura Loss at Rated Flow	Actual Capacity Watts No. 900
% "	30 GPM	20 PSI	35
1"	50 GPM	18 PSI	55
14"	75 GPM	18 PSI	75
1%"	100 GPM	16 PSI	130
2"	160 GPM	16 PSI	175
•2%"	225 GPM	16 PSI	225+
• 3"	320 GPM	15 PSI	320+
4"	500 GPM	14 PSI	540
• 6"	1,000 GPM	14 PSI	1,000+

*Available in mid 1975.

Table shows flow that an approved device must deliver based on maximum allowable pressure drops shown. These performance requirements are specified in the University of Southern California "Manual of Cross Connection Control" and A.S.E. Standard 1013.

Watts valves have been tested under those provisions and equal or exceed these performance requirements as shown

Reduced Pressure Principle Backflow Preventer

FEATURING "SWING OUT SERVICE"*

These fear larger sizes of the No. 900 are designed with a Swing Out Access Door which exposes the 1st check valve assembly for quick simplified servicing. Also, the 2nd check valve is easily accessible. All seats are removable.

本をはないない でんしん

,x

Watts larger size No. 900 Series backflow preventers have the same basic design features as sizes %" - 2" described on page 10, except they are constructed with a swing out service door as described above. They are furnished with bronze or iron body construction, internal water ways epoxy coated (FDA approved), stainless steel and brass internal parts, and flange bolts, and durable, tight-seating rubber check valve assemblies. Is furnished complete with test cocks and available with and without gate valves. No. 900 Series is suitable for supply pressure up to 175 psi and for water temperature up to 110°F.

	Size	Material	Weight
-	2%"	Bronze	210 lbs.
	3"	Bronze	240 lbs.
	4"	Iron	571 lbs.
	4"	Bronze	514 lbs.
	6"	tron	1,120 lba.

· Stainless steel internal parts

- . Standardly furnished with O.S. & Y. gate valves.
- . Swing out access door for service simplicity
- · Patented double seated first check valve for added safety
- Relief part for maximum back pressure and back-siphonique venting

Designed to equal or exceed the requirements of A.S.S.E. Standard AWWA Standard C-506 and U.S.C. Foundation for Cross Count Control Standard for reduced pressure principle backflow preventions.

- . Furnished with flanged connections
- · Ball valve construction test cocks
- · Removable first check value seat
- Unrighter reprovable second check valve assembly module

191/2" 271/2" = 19

tNOTE: Sizes 21/2" and 3" available mid - 1975.

No. TK-9 Backflow Preventer Test Kit

The Watts No. TK-9 Backflow Preventer Test Kit is a compact portable testing device especially made for testing all Reduced Pressure Principle Backflow Prevention Devices. The TK-9 is easily connected to any RPZ device enabling accurate testing of "zone" differential pressure, relief valve opening differential, fouled check valves or similar problems that visual inspections cannot locate. The unit is encased in a rugged carrying case for easy handling and accessibility.

SPECIFICATIONS

- Maximum working pressure 300 psi
- . 16" securing strap.
- Maximum working temperature 210 f
- Gauge > 0.10 psid with ½2% accuracy, full scale
- . Hoses (3) 3' with "5" female threaded emplers
- Adaptives (3) "Throughod adaptives, (4) "husbrings, (5) is bushings.
- Majeture resistent to true tion golde
- Case—shock prostent modeled plastic with special direct base in set that
 comblex multiple compliatment conditions on. for tool—accessories or

CRANE. SIVE MONITOR ELECTRIC GLASSLINED WATER HEATERS

The attractively styled glass-lined SILVER MONITOR ELEC-TRIC will deliver an abundant supply of clean, piping hot water throughout years of economical trouble-free service. Its quiet operation and no vent design make it perfect for locating in kitchens, rumpus rooms, finished rooms and the like. Check these advantages.

ECONOMY IN OPERATION!

- Immersed HEATING ELE-MENTS transfer heat directly into water for maximum efficiency.
- FIBERGLASS INSULATION forms a positive heat barrier
 . . . saves fuel!
- COMPACT DESIGN takes less space, enables low-cost installation.

DEPENDABLE LONG-LIFE PERFORMANCE!

- The finest in GLASS LINING for superior tank life and water cleanliness.
- Magnesium ANODE ROD protects tank interior against corrosion.
- Snap-on THERMOSTAT automatically controls water temperature . . . assures continuous trouble-free service.
- UL LISTED All models comply with safety specifications outlined in Underwriters' Laboratories, Inc. Standards for Safety, UL174.
- SUPER STRENGTH TANKS provide long life and that important margin of safety.

CRANE IIVE MODITOS ELECTRIC GLASSLINED WATER HEATERS

■ GLASSLINED YANKS The complete inner surface of every tank is lined with an extra thick coating of vitrified glass, permanently bonded under intense heat (1600°F.) to insure clean, rust-free water throughout a longer tank life.

■ SPECIAL ECO (Energy Cut-Off) FEA-TURE A special UL listed, factory installed heat sensitive device cuts off ALL power to beater should tank water temperature—Jach 210°F.

■ ANODE ROD Extruded magnesium rod suspended in the tank protects your heater against corrosion.

■ HIGHLY EFFICIENT THREADED EL-EMENTS Immersion type heating elements put all heat directly into water for greater efficiency. Pressure sealed to prevent leaking.

■ WELDED STEEL COUPLINGS No internal threads to cause nipple leaks.

■ T. 4 P. VALVE OPENING Separate 34" N.P.T. opening provided for installation of Temperature-Pressure relief valve. Maximum Hydrostatic Working Pressure 150 PSI.

■ TRIPLE TESTED TANKS Each tank is carefully tested three times during manufacture.

■ FIBERGLASS INSULATION An extra dense blanket of non-settling fiberglass surrounds tank and keeps heat loss to minimum — saves fuel.

■ SET AND FORGET THERMOSTAT CONTROL Once the thermostat is properly set, you get a constant supply of hot water at your desired temperature.

■ UL LISTED All models comply with Safety Specifications outlined in Underwriters' Laboratories, Inc. Standards for Safety, UL174.

ORIGINAL PAGE IN OF POOR QUALITY

In keeping with our pol-

icy of continuous prod-

uct improvements, we

reserve the right to make

minor changes without

prior notice.

4" WATER INLETS & OUTLETS

5 Year Lmt. Warranty Model	10 Year Lmt. Warranty Model	Туре	Wattage Maximum 240V AC	Recovery G.P.H. Based On 240V	Cap.	In Inch	Dimensions In Inches		Ship.
No."	No.	Element	208V AC	Max.	Gals.	Hgt	Diam.	Lbs.	
C5-30-1RS7	C10-30-1RS7	Single	6,000	24.6	30	371/2	20	100	
C5-30-2RS7	C10 30 2RS7	Double	9.000	36.9	30	371/2	20	100	
C5-42-1RS7	C10-42 1RS7	Single	6.00C	24.6	42	47:/2	20	115	
C5-42-2RS7	C10 42-2RS7	Double	12 000	49.2	42	471/2	20	120	
C5-52-1RS7	C10 52 1RS7	Single	6,000	24.6	52	501/2	22	150	
C5-52-2RS7	C10-52-2RS7	Double	12,000	49.2	52	501/2	22	150	
C5-66-2RS7	C10 66 2RS7	Double	12.000*	49.2	66	521/4	24	180	
C5-82-2RS7	C10 82 2RS7	Double	12,000	49.2	82	581/2	24	215	
C5-100-2RS7	C10-100-2RS7	Double	12,000*	49.2	100	573/4	28	300	
C5-120-2RS7	C10-120-2HS7	Double	12,000	49.2	120	53	28	315	

10-Year models include additional Anodic Protection Full terms of Limited Warranty may be found in this catalog

Maximum wallages shown here are evallable when specified.

*(Double element wattages are based on simultaneous operation and must be specified—otherwise heater elements are wired to operate independently in an interlocking circuit.) All wattages must conform to local cedes and utility requirements. Should maximum permissible wattages in your area be less than above, recovery can be determined at the rate of 4.7 c.m.b. per 1000 watta input.

CRANE

SOLAR PANELS
AND
SYSTEM

PRECEDING PAGE BLANK NOT FILMED

INDUSTRIAL

Space Heating / Domestic Water Heating Make-Up Air Heating / Process Water Heating

COMMERCIAL

Space Heating / Domestic Water Heating Ventilation Air Heating

RESIDENTIAL Forced Air Space Heating

Forced Air Space Heating / Pool Water Heating

ORIGINAL PAGE IS TN-1 POOR QUALITY 13.25/So RECTIONS NOTED RESUBNIT

Solar Energy System

Solar ARR heating systems produce in than liquid solar systems. An indepen side air and liquid solar systems at Colorado Stat University states: "... the air system eperated . the air sys ger during the day then the I collected 36 percent more heat." "This is a concer of stratified heat storage in the pubble bed for the air system and nearly uniform temperature in the water storage tank of the liquid system." This is described in terms of the solar system performance equation on pe four of this brochure.

The SOLARON AIR COLLECTOR offers S

- 10 Year performence warrant
- · Safe, reliable and virtually m

- Freedom from damage by freezing or b
 Absence of pipes which can corrode an
 Requires no antifreeze or stagnation po
- · Approved by HUO and ERDA for Federa projects.

R-MANUFACTURER

Solaron's business is the pre energy. We design, menufacture and n terms for industrial, commercial, ag drying and residential buildings. The heart of our siths air-type solar collector, a design based on over rch and development by Dr. George LDI. years research and development To contact the nearest Solarise de BUYLINE.

covering all aspects of solar system or architectural requirements and economics. Co Solaron for a copy of the design technical personnel are available applications.

The Solar Air Heating System

The Solaron solar heating system is marketed throughout the U.S. by local distributors and dealers who are well established in the HVAC industry. The Solaron distributors maintain a complete stock of Solaron equipment. The distributors, who also handle major brands of heating and air conditioning equipment, work with dealers who are HVAC installing contractors. The Solaron dealers are established and reliable contractors who are familiar with installing heating equipment and associated ductwork. Both the distributors and dealers are thoroughly trained by

Solaron in all aspects of solar heating, design, equipment application and installation. Solaron engineers and field servicemen support the distributors and dealers as required, and provide on site assistance.

The Solaron collector, air handle; and controller and necessary ductwork is installed by the HVAC contractor. The general contractor usually builds the heat storage container. The system is then tested through all of the operating modes and thoroughly checked for proper operation.

OP-OVERALL PRODUCT, IN PLACE

SYSTEM OPERATION

HEATING FROM COLLECTOR Air, the circulating heat transfer medium is drawn through the collector where it is normally heated to about 120-150°F. When the space requires heat, the solar heated air is drawn through the air handling unit in which motorized dampers are automatically opened to direct the hot air to the space. The air then returns to the collector where it is again heated and the cycle repeats itself.

STORING HEAT When the space temperature is satisfied the automatic control system diverts the air into the heastorage unit where the heat is absorbed by the pebble bed. The air returns to the collector where it is heated and this cycle is repeated.

HEATING FROM STORAGE At night or on cloudy days when solar energy is unavailable and when heat is needed in the space, the automatic control system directs the building return air into the bottom of the heat storage unit, up through the pebbles where the air is heated, through the air handling unit and into the space. When the solar heated air does not maintain the space thermostat setting, the automatic control turns on the auxiliary heater to add to the required heat.

SUMMER WATER HEATING In the summer, when some heating is not required, air is drawn through the collector where it is heated and then through the water heat exchanger coil. The solar heated air transfers its heat to the water which is being circulated through the coil and the air is then returned back to the collector inlet.

TYPICAL COLLECTOR ARRAYS

SOLARON DOMESTIC WATER HEATING SYSTEM

@ 2 CFMFTF (3 CFMFTF)

The Solaron Domestic Water Heater System involves a very simple operating cycle. Solar energy is collected by the south facing collector 1. Air is circulated by the heat exchange unit 2 where the solar energy is transferred to the water being circulated by the domestic water circulating pump 5. Solar heated water is continuously circulated into the storage tank 3 as long as the Solaron control unit indicates that solar energy is available at the collectors 1 and until tank temperature in the storage tank 3 reaches 160 degrees F. When hot water is required water is drawn from the conventional domestic hois water heater 4 and preheated water is drawn from the storage tank 3 into the conventional domestic water heater.

MAY BY DESCRIPTION

A drawing of a typical installation is shown to the left. The collectors can be grouped as shown or in any of the configurations shown on page 2, Typical Collector Arrays. Due to the Solaron internal manifolding technique (i.e. air flow from one panel to another internally) the external duct connections are minimized as shown above (i.e. one inlet and one outlet for 8 panels, 156 ft.²). This technique reduces field labor and leads to an economical installation.

CONTACT SOLARON TO OBTAIN SYSTEM SCHEMATICS SHOWING HOW TO COMBINE SOLAR HEATING WITH:

- · Heating & air conditioning
- Heat pumps
- · V.A.V. systems
- Multiple zones
- Process water heating
- Make-up air heating
- Process air htg-drying
- · Swim pool water htg.
- Industrial & agricultural heating

Double Glazed Panel (Tempered Glass) Absorber Plate Air Channel Amnifold Area Note: Air flows thru the channels benasth the absorber plate Panel Dimensions 3 ° ° ° W x 6 ° 6 ° L x 7 % ° H

SOLARON COLLECTOR PANEL DETAILS (patents applied for)

The Solaron solar collector is an advanced type of an air heating, flat plate collector. Our exclusive internal manifolding allows tha Solaron collector to be completely modular. Factory preassembled collector panels are plugged into each other with a minimum of installation time. Air inlets and outlets are field cut into each collector array as required. The Solaron solar collector is designed for installation on any structurally sound surface, such as a roof, wall or specially made supports.

The Solaron solar collector has the following general construction characteristics:

Absorber: 28 gauge steel with porcelain enamel coating.

Glazing: Two 1/6" sealed special low iron tempered glass panels with a long life EPDM perimeter gasket. Glass plate can be easily removed for service or replacement.

Pan: 20 gauge steel, fully insulated with 3¾" fiberglass batt. Paintod external surfaces.

Connection Ports: Unique flange configuration permits tight air seal automatically as modules are installed.

Cap Strip: Painted steel designed to provide weather seal between panels.

PERBLE-BED PEN TO A SELT

The use of pebbles in the heat storage unit is particularly effective with an air circulating solar heating system. The pebble bed maintains a steep temperature stratification (i.e. hot on top and cold on the bottom). This allows air to be provided at the highest available temperature to the heated space from the top of the pebble bed. It also allows air to return from the bottom of the bed to the collector at essentially room temperature. This ensures maximum efficiency of solar heat collection and delivery.

The heat storage unit must be built and installed by the local contractor to Solaron standard drawings and specifications. Contact Solaron for a copy of these specs.

 Domestic Water Preheat Coil located in end of unit	Damper MD 1	Hot air from collectors
		To Rock Box Damper MD 2
 A.H. Unit Shelf has 5 pre-cut openings with 2 access panels installed (D × D).	/A ,	Supply Air to Standby Unit

		Air Handling Unit (in.)				mpers	å	C.F.M. Range at 1.2" S.P.	
Model No.	A	B	C	CD	E	F	G		
AU-0400	20	18	42	14	16	16	8	300 to 1400	
AU-0500	24	22	51	18	20	20	10	1200 to 2400	

AIR H. IDLING UNIT

Solaron provides a standard factory preassembled air handling unit, including a blower, and motor driven dampers. A separate damper pair is furnished for mounting in the duct system, (i.e. backdraft dampers).

A typical installation for the air handling unit, near the auxiliary heater and heat storage, is shown in the General System Description (upper left). The air handler can be mounted either vertically or horizontally, and with proper orientation and clearance to receive all connecting ducts without interference.

SOLARON AUTOMATIC

The automatic temperature control unit is included as part of the Solaron system. The controller handles all of the operational modes which are shown in the schematics on page 2. The controller operates the solar side of the system and ties into a 2-stage thermostat to provide solar and/or auxiliary heat to the space as required. The standard controller can be modified (with Solaron hardware) to combine with heat pumps or other types of auxiliary heating systems. Solaron can provide technical assistance to design special controllers for large projects or special applications.

SOLAR SYSTEM PERFORMANCE COMPARISON

Comparison of various types of solar heating systems can only be done properly if the entire solar system is evaluated over an entire heating season. Collector efficiency is an instantaneous point in time measurement and is not a valid parameter to evaluate the solar system performance. The ideal situation for a solar system is to keep the fluid inlet temperature to the collector as low as possible and have a high usuable temperature for space heating. Therefore, the ideal solar system has heat stratified in the storage unit. An air solar system using rocks as the thermal storage provides this stratification. Therefore, the inlet temperature to an air collector is typically 70°F where the liquid collector injet temperature is 130°F.

$$Q_{A_{C}} = F_{n}[\bar{H}_{1} \tau \alpha - U_{L}(T_{1} - T_{a})] = BTU Ft.^{2} Day$$

$$| qains | | losses |$$

Two collectors of similar construction can be compared using the performance equation. When the average collector inlet temperature (Ti) is used, the liquid systems produce almost the same heat output as the air system

AIR:
$$Q_{ij} = 0.69[(300) (0.75) - (0.8) (70^{\circ} - 40^{\circ})] = 139 \frac{BTU}{Ft^{2} Day}$$

LIQUID: $Q_{ij} = 0.90[(300) (0.75) - (0.8) (130^{\circ} - 40^{\circ})] = 138 \frac{BTU}{Ft^{2} Da}$

However this is still an instantaneous point in time measurement which doesn't take into account the fact that the air system will rypically collect for longer periods of time and therefore deliver more total heat output. When these systems are evaluated over an entire season, the results are as reported by the C.S.U. report #C00-Because of the stratification, the temperature of the air returning to the collector from the bottom of storage is always near room temperature. Thus, the air collector can deliver useful heat from early morning to late afternoon the liquid system starts up later in the morning and shuts off earlier in the afternoon Therefore, when system performance is evaluated over an entire season it shows that AIR solar systems actually produce more usable energy than liquid systems. The C.S.U. tests report that the air solar system delivered considerably more heat output than the same sized liquid system right next to it.

* Ref. Hottel, H.C. and Woertz, B.B. A.S.M.E. Transactions 61, 91, 1942 Performance of Flat Plate Solar-Heat Collectors

PRELIMINARY SIZING CRITERIA

- 1 Solar Collector Area. The collector area can be determined by using the Solaron Conversion Factors shown to the right. The design heat loss is divided by the S.C.F to get ft2 of collector. Recommendations - Annual fuel savings for space heating should equal 30% to 70%. Annual fuel savings for applications with a more uniform load throughout the year can be higher than 70%.
- 2 Air Flow Rate 2 SCFM to 3 SCFM per ft2 of solar collector area. Contact Solaron for special applications such as make-up air heating, outside air heating for drying or industrial or agricultural process heating
- 3 Heat Storage Size 12 to 34 ft3 rock per ft2 of solar collector area Rock size 34" to 112" diameter.

SELECTION EXAMPLE

Given that A commercial building with a design heat loss 136 800 BTU HR, the location is Denver, Colorado and the desired annual fuel savings is 50%

- 1 Collector Area (Design heat loss) (S C F.) 136 800 (171) 800 ft2 collector
- 2 FLOW Rate (2 SCFM per ft²) (Collector Area) (2) (800) 1600 SCFM
- 3 Heat Storage Unit (12 ft3 rock per ft2) . (Collector Area) (12) - (800) 400 ft3 rock

CORRECTIONS FOR NON/OPTIMUM CONDITIONS

Example Project at 40 N Latitude 500 ft2 Collector

- 1. If Orientation is 20 to the West: The relative collector area required to provide the same annual fuel savings as a system at due South is approximately 1.04 times the calculated collector area (1 04) - (500) 520 ft²
- 2. The optimum collector tilt would be 45 to 55 (ie L . 5 to L . 15)
 - If the collectors were at a tilt of 35 (i.e. L. 5) the relative collector area required would be 1 03 · 515ff: If both conditions exist (i.e. 20. West & 35 tilt) the correction would be (1.04) (1 03) (500) 535 6 ft²

SOLARON CONVERSION FACTORS

Solar collector area (design heat loss BTU) = (S C F) - Ft2

	Location	Design	Fuel	Fuel Savings/yr.		
	Location	100	30%	50%	70%	
Az	Phoenix	45"	556	293	177	
Ar	Little Rock	55	232	112	68	
Ca	Davis	40	240	113	60	
	Los Angeles	30	421	218	130	
	San Francisco	33.	258	127	70	
Co Fl	Denver	70°	315	171	104	
Ga	Gainesville	55°	458 297	150	153	
ld	Atlanta Boise	60	205	99	52	
10	Lemont	70"	167	83	47	
in	-	64"	154	71	40	
2.71	Indianapolis Ames	77"	195	97	56	
la .		63"	304		96	
Ks	Dodge City		-	158	-	
Ky	Lexington	60.	267	106	60 84	
La	o Orleans	35"		139		
Me	Portland	70	191	97	55	
Md	Silver Hill	55°	191	97	55	
Ma	Boston	70"	157	80	42	
Mı	East Lansing	70°	119	54	29	
Mn	St Cloud	95"	187	108	63	
Mo	Columbia	70	230	114	60	
MI	Great Falls	86	265	129	74	
Ne	Lincoln	70"	225	110	65	
Nv	Las Vegas	50"	433	216	135	
NJ	Seabrook	55"	160	74	45	
N M	Albuquerque	60-	387	209	124	
NY	Albany N Y C	70° 55°	160 138	80 67	59 39	
N C	Raleigh	55°	283	141	87	
N D	Bismark	89	226	111	63	
Oh.	Cleveland	63"	127	58	29	
un	Columbus	63	141	67	35	
Ok	Oklahoma City	60"	319	159	96	
Or.	Medford	55"	171	80	54	
Pa	State College	64"	140	66	35	
H I	Newport	59"	169	87	50	
SC	Charleston	40"	313	160	101	
SD	Rapid City	76"	266	137	81	
In	Nashville	60"	215	103	60	
Tx	ft Worth	50"	350	194	118	
	Midland	55"	416	211	126	
131	Salt Lake City	70	237	120	63	
Va	Mt Weather	60°	177	90	51	
Wa	Seattle Spokane	55° 70°	168 170	62 85	27 60	
Was	hington D C	51"	149	80	44	
W	Madison	80"	142	72	38	
w	Lander	82"	329	171	105	
Mon		80"	119	56	27	
	ento	70	177	59	32	

Heating and Air Conditioning Systems Installation Standards for One and two Family Owellings and Multifamily Housing Including Solar." The Better Heating & Cooling Bureau, SMACNA, Third Edition, Feb. 1977. Reprinted by permission

Reprinted by permission

1 SOLARON CORPORATION 300 GALLERIA TOWER 720 SOUTH COLORADO BLVD. **DENVER, CO 80222**

c Copyright 1977 SOLARON CORPORATION

(303) 759-0101

TECHNICAL DATA Series 2000 Air Type Solar Collector

PATENTS PENDING

The Solaron series 2000 the plate air collector represents the most acvaratechnology and manufacturing to the available today in the solar hearing to The collector is based on ever thirty year research and testing and has preven the efficient, reliable and maintainance free

The collectors are someletely factory a assembled to minimize field installation and assure uniform quality and performant The exclusive port and manifold sy allows the collectors to be simply butted i gether and boited in place. No field tittle are required between collectors

The Solaron series 2000 collector is un versal in application. Substantial energy savings can be realized in commercial. I dustrial and residential applications such a

- MAKEUP AND FORCED AIR HEATING
- . HYDRONIC SPACE HEATING
- · DOMESTIC HOT WATER HEATING
- PROCESS HOT WATER APPLICATIONS
- PROCESS HOT AIR DRYING APPLICA TIONS

The Solaron System can be used where ap plication temperatures can be satisfied directly by the collectors as well as whare the collectors are used to preheat au water for high temperature applications.

The Solaron series 2000 collector confer to the interim performance standards esta lished by the Energy Research and Develoment Administration for solar collectors These standards include:

- RESISTANCE TO HAIL, WIND FLUTTER ING AND WIND LOAD.
- FREEDOM FROM FREEZING, CORROL SION, AND OUTGASSING.
- · RESISTANCE TO THERMAL AND SOLAR DEGRADATION.
- · CONFORMITY TO NATIONAL SAFETY AND FIRE CODES.

EATURES

- a Science applications through the use of a high hydronic applications through the use of a high planty, air to reason heat exchanger. Since the support uses as the Transfer medium, costly list and, mainterpasse, and well are reduced of

- Attractive appearance allows for architecturally pleasing applications, including construction of entire roofs and well sections with milar panels.

 The very preasses all includes insulation, manifolding and piszing or alliminate field assembly.

 Simple installation system includes all hold down hardware and cap strip necessary for a complete installation, Perimeter Stabling, typically field measured is provided by the builder.

CONSTRUCTION

he series 2000 collector module, designed for high etclarics and ease of installation, is constructed of the

- N 24 usuge steel, fully insulated with 3-3/4" fiber pless but. Paintell external surfaces
- ER PLATES Two 1/6" hermetically seated upon a low iron tempered glass panels with long life new-press perimeter gaskets. Plates can be sasily ro-moved for service or realisament.
- CABER 26 gauge steel with baked on high absor-bancy ceramic snamel coating.
- CAP STRIP Painted steel. Designed to assure weather seal between modules.
- CONNECTION PORTS Unique flange configuration permits tight air seal automatically as modules are installed.

PERFORMANCE

- EFFICIENCY collector efficiency is as high as 64.5% as a function of outlet minus ambient temperature over solar insolation, Where Tout - Tamb 80 at 120° and insolation equals 300 BTU's for hour per squere foot, a typical operating environment, the Solaron series 2000 collector afficiency exceeds that of flat plate liquid type collector.
- REFLECTANCE the total reflectance of the absorb surface averages only about 5%
- COVER TRANSMITTANCE the transmittance of the two plate, low iron tempered glass cover is 80 percent from a 0 to 48 degree angle of solar incidence.
- HEAT DELIVERY-the excellent heat delivery characteristics of the Solaron series 2000 collector are shown on Figure 3.

The Solaron series 2000 collector is flexible in application. The modules can be installed on a roof section, wall section or free standing roof frame.

The collectors are installed as shown in the mounting system details above. Return and supply air is provided by simply installing a standard starting collar on the bottom of the collector anywhere within the 29" × 36" manifold area, thus cellars can easily be located to clear roof trusses or wall studs. Perimeter flashing is field measured and installed to complete the system.

Other product information:

COLLECTOR WEIGHT - 186 pounds
INSTALLED DIMENSIONS - 36" × 78", center to center
PORT NET FREE AREA - 26.7 square inches each
PORT END CAPS - provided by Seleron as required

E—Effect of collector till on total system performance for a typical installation at 35° N latitude (J. D. Balcornb, J. C. Hedstrom, B. 7. Rogers "Dusign Considerations of Air Cooled Collector/Rock-Bin Storage Sole: Heating Systems," presented at 1975 ISES Los Angeles Meeting, Aug. 1975)

^{*}Measured in accordance with NBS IR-74-535 "Methods of Testing for Rating Solar Collectors Based On Thermal Performance"

ORIGINAL PAGE

The Solaron series 2000 solar collector can be installed in either a horizontal or vertical position. Installation can be efficiently accomplished by a two-man crew. No special tools or installation techniques are required.

The optimal air flow rate through the collector is 2 SCFM/ft.2. The design static pressure is 0.23" when the collectors are ducted as shown above.

On a special order basis, Solaron can provide collectors with precut manifold openings and manifold ports omitted where specified to further reduce field installation time.

Solaron Corporation provides mechanical engineering and field services to assist the local engineer and HVAC contractor in design and installation.

For additional information on the Solaron collector and related Air Handling and Automatic Control systems, contact Solaron Corporation Marketing Services.

Phone 303 / 289-5971 SOLARON CORPORATION / 4850 OLIVE STREET / COMMERCE CITY, COLORADO 80022

VERTICAL

SPECIFICATIONS:

SIZE - MAX DIMENSIONS ARE 36 × 24 . IF LARGER SIZE IS REQ'D. IT IS TO BE A MULTIPLE DAMPER INSTALL ATION.

BLADE - COATED FABRIC MATERIAL

FRAME-EXTRUDED ALUMINUM (TO BE SEALED AIRTIGHT IN DUCT)

Approx. press. drop at design NOTE: flow rate is 0.10 w.g.

HORIZONTAL

NOTE: Horiz damper must be installed with air flow UP

CFM		SIONS-	MO	DEL 2.	MAX FACE VELOCITY
RANGE	Α	В	VERT	HORIZ	(FPM)
350/560	12	12	DV 12	DH 32	600
550/900	20	12	DV 20	DH 40	600
900/1350	28	12	DV 28	DH 48	650
1350/-900	26	16	DASE	DH 46	650

SELECTION EXAMPLE:

500 FT.2 COLLECTOR GIVEN:

> BD-1 IS IN HCRIZ. R/A DUCT

BD-2 IS IN VERT. DUCT

GOING UP TO COLLECTOR

SELECTION:

WITH A FLOW RATE OF 2 CFM PER FT.2 TOTAL = 1000 CFM

SELECT DV28/DH48

SOLARON BACK-DRAFT DAMPER

specifications subject to change without notice

SOLARON CORPORATION 303/759-0101 720 S. COLORADO BLVD. DENVER, COLORADO 80222 3-77

SOLARON COLLECTOR
HARDWARE
COMPONENTS

CAP STRIP CS 0033 CAP STRIP CS 0075 TEE COVER PLATE CS 002T **CROSS** COVER PLATE CS OOZX **ELBOW COVER** PLATE CSOOZL -FIELD DRILLED -HOLD-DOWN BOLTS W/ WASHER & TINNERMAN Ø 0____ FAO 110, 111 & 115

HOLD-DOWN (BRACKET) FAO 330 & 331 (EXTERIOR) HOLD-DOWN (PLATE) FAO 220 & 221 (INTERIOR) SCREWS BRACKETS CAP STRIP FAO 440 & 441 END CAP FAO 550 & 551 SEALANT/ ROLLS PERIMETER FLASHING GBO 70 50' ROLL SILICONE PORT **GASKETS** GB0 160

102

EXHAUST FANS AND AIR DISTRIBUTION EQUIPMENT

PROJECT: FIRE STATION No. 24 LOCATION: KANSAS CITY, MISSOURI

ARCHITECT: MIDGLEY, SHAUGHNESSY, FICKEL & S

ENGINEERS: AEC INC.

SUB. CONTR: TRUOG & NICHOLS, INC.

EQUIPMENT SCHEDULE

ROOF EXHAUSTERS (EF-1 & 2)

PENN LC Dynafans, low contour type, aluminum housing, with 115/60/1 motors, adjustable V-belt drive and disconnect switch.

- 1 EF-1: LC-16A, 1/4 H.P., single speed, with 115 volt motor operated back-draft damper; 1050 cfm @ .375" S.P., 870 RPM.
- 1 EF-2: LC-16A, 1/3 H.P., two speed, with gravity backdraft damper, and hinged sub-base; 900 cfm @ .5" S.P., 950 RPM. - Meh conty responsible for co /20V.

WALL EXHAUSTERS (EF-3 & 4) 2 - PEERLESS Model PVH-18 direct drive with 1/2 H.P., 115/60/1 motor, aluminum fan blade, wire inlet guard, and 20 x 20 RUSKIN BD2A2 back-draft damper (front flange frame); Capacity: 3825 CFm @ .375" S.P.

CONTROLS

3 - (EF-1,3 & 4) C-H 9101H92 flush manual starters with overload protection, pilot light and stainless steel flush plate.

1 - (EF-2) C-H 9106H14, flush 2 speed starter, with overload protection on both speeds, pilot light and stainless steel flush plate.

CURBS & EQUIPMENT SUPPORTS

2 - PATE PC-5A, with 2" raised cant, 23.5" square 0.D. (EF-1 & 2)

6 - PATE ES-5A, with 2" raised cant, 42" long. + not need by ch. order

LOUVERS & DAMPERS - RUSKIN MFG. CO.

2 - 60 x 24 L-5, galv. with 1/2" mesh , 16 ga. galv. birdscreen on rear, channel frame.

BACK-DRAFT DAMPER

NMS non-metallic, steel channel frame. $1 - 15 \times 14.$ 2 - 24 x 18.

MANUAL DAMPERS

3 - 10 x 10 MD-35-OBC, with extended shaft for

FIRE DAMPERS - Horinontal

IBD2 - A frame, UL, 212° fusible link... 2 - 26 x 16. 2 - 26 x 20. 1 - 17 x 1 $1 - 17 \times 16$.

AIR DISTRIBUTION EQUIPMENT - TITUS PRODUCTS

SD: TDC-S1, #25 white finish, with AG-95 damper.

 $2 - 6 \times 6$, 1S. $4 - 9 \times 9$, 3A. $1 - 9 \times 9$, 2G.

 $1 - 9 \times 9$, 4A. $2 - 12 \times 12$, 2S. $3 - 12 \times 12$, 4A.

 $1 - 12 \times 12$, 1S. $1 - 12 \times 12$, 2G.

SR: 272-RS-5, #25 white finish.

4 - 22 x 8. 1 - 26 x 12. 2 - 18 x 12.

> ORIGINAL PAGE IS OF POOR QUALITY

RG: 25-UL, #25 white finish.

1 - 10 x 10. 1 - 12 x 12. 1 - 16 x 16. 1 - 18 x 12.

1 - 24 x 20. 1 - 26 x 26. 1 - 48 x 36.

ER: 25-RI-5, #05 white finish.

1 - 12 x 12. 1 - 12 x 10. 2 - 8 x 6.

AER: 4-FL-5, #25 white finish. 3 - 8 x 6.

OG: 4-FL, 7/25 white finish. 3 - 10 x 10.

EXTRACTORS: AC-45

#2 operator: 2 - 8 x 6. #1 operator: 2 - 22 x 8. 1 - 11 x 6. 1 - 14 x 6. 2 - 14 x 7. 2 - 8 x 8.

Submitted By: Triangle Sales, Inc. P.O. BOX 159

Sharmee Mission, Konsas, 66201

ORIGINAL PAGE IS

SHOP DRAWING REVIEW Midgley Shaughnessy Fickel and Scott Architects Inc. 20 West 9th Street Kansas City, Missouri 64105 Review is for general compliance with contract documents, Sole responsibility for the incise of dimensions, details, quantities and the dimension and erection shall remain with the Commissions. No E apple Elector Make Corre Land Nated Amend and Resubmit Rejected · See Remarks Date.

PENN LOW CONTOUR DYNAFAN (BELT DRIVE)

Quan.	Unit No.	CFM	SP	FAN R	RPM HP	CHARACTERISTIC	Tag
1	LC-16A LC-16A	1050 900	•375" •5"	870 950	1/4	115/60/1 115/60/1	EF-1 EF-2

EF-1 with 115 volt motor operated back-draft damper. EF-2 with gravity backdraft damper and hinged sub-base.

Both units with adjustable V-belt drive and disconnect switch.

DAMPERS :-

MATERIAL: - aluminum housing.

ORIGINAL PAGE IS OF POOR QUALITY

Dimensio	nal Tab	le	4			ALL DIMENSIO				
UNIT NO.	12A	14A	16A	20 A	24 A	30 A	40A	48 A*	54 A*	* 72A*
L	30 x 34	30 × 34	37 × 45	37 × 45	43 × 55	48 × 64	54 x 76	75 × 84	80 × 114	98 × 120
Н	16	16	18	19 1/2	19.1/2	23	26	33	36	36
† E	20 1/2	211/2	25	28 1/2	33 1/2	39 1/2	441/2	58 1/2	63 1/2	79
R.	12	13	16 1/2	20	25	31	36	50	55	66

OUTSIDE DIMENSION OF CURB SHOULD BE I" TO 15" LESS THAN "E" DIMENSION DEPENDING ON THICKNESS OF FLASHING MATERIAL.

PROJECT	Fire Station #24	ENGINEER	AEC Inc.		
LOCATION	Kansas City, Mo.	CONTRACTOR			
ARCHITECT	Midgley, Shaughnessy, Fi	ickel & ScSUB-CONTR.	Traog & Nichols , Inc.		
DWG. NO.		DVD	PENN VENTILATOR CO., Inc.		
RE V		1013	11TH STREET AND ALLEGHENV AVENUE PHILADELPHIA, PENNSYLVANIA, U.S.A. 19140		

THIS PRINT AND DRAWING REPRESENTS THE DESIGN AND PROPERTY OF PENN VENTILATOR CO., INC. IT IS UNLAWFUL TO COPY, REPRODUCE, OR USE THIS DRAWING FOR ANY PURPOSE OTHER THAN INTENDED BY THE COMPANY, PLATE 112

FORM LC - 609 - R6

DIRECT DRIVE EXHAUST FANS

MODEL	DIA.	٨	В	С	A	Е
PVL-8	8	13	11-3/4	6	8-3/4	4/8
PVL- 10	10	13	11-3/4	6-7/8	10-1/2	5/8
PVL-12	12	20	18	6-7/8	12-1/2	1
PVL- 16	16	20	18	6-7/8	16-1/2	1
PVL-12S	12	20	18	6-7/8	12-1/2	1
PVL- 16S	16	20	18	6-7/8	16-1/2	1

MODEL NO.	MODEL NO.	BLADE DI A.	A	В	с	D	E	F	G
PVM-16	PVH- 16	16	24	22-1/8	10-1/4	16-3/4	1	2-7/16	••
PVM-18	PVH- 18	18	26	24-1/5	11-3/16	18-3/4	1	2-3/4	••
PVM- 20	PVH- 20	20	28	26-1/8	12-5/8	20-3/4	1	3	
PVM- 24	PVH- 24	24	34	31-3/4	13-3/4	24-3/4	1	3-5/8	12

14-3/4

ELECTRICAL DIVISION H. K. PORTER COMPANY, INC.

PVM- 30

PVH- 30

WARREN WORKS

37-5/8

1401 W Market Street Warren Ohio 44485 12161 399 3651

107

30-3/4

3-3/4

DRAWING NUMBER

900-00-5006-5

NO. BD2-1275 Replaces BD2-1075

BACKDRAFT DAMPER

Aluminum

TYPE DDETAS BD2/A2

STANDARD CONSTRUCTION

FRAME: 6063T5 extruded aluminum .090" wall thickness. Mitered corners.

LINKAGE: 1/8" x 1/2" aluminum tiebars concealed in frame.

MAXIMUM SIZE:

Single section - 40"w x 48"h Assembly of sections - size unlimited.

MINIMUM SIZE: 6"w x 6"h **TEMPERATURE LIMITS:** -40°F to +200°F

FINISH: MIII

(Spot velocities up to 1500 fpm)

BLADES: 025 ormed aluminum with extruded vinyl edge ceals.

BEARINGS: Valox

(Spot velocities up to 2500 fpm)

BLADES: 6063T5 extruded aluminum .050" wall thickness with extruded vinyl edge seals.

BEARINGS: "Cycoloy 800"

Note: When used in fan discharge ap-

FEATURES

BACKDRAFT PROTECTION:

Low leakage:

Less than 12 CFM/sq. ft. at 1/2" w.g.

WEATHER RESISTANT:

Blades overlap frame.

QUIET OPERATING:

Non metalic blade to blade seal.

APPEARANCE:

Good looking contemporary styling.

HORIZONTAL MOUNT - AIR FLOW UP (Not available in air flow down)

*Unit furnished approx. 1/4" smaller than given 'opening' dimensions.

TYPE **OPENING DIMENSION** MOUNTING QUAN. TYPE FRAME A* в. 1, 2 or 3 VERT. HORIZ BD2A2 20 20

JOB

LOCATION

CONTRACTOR

RUSKIN Mfg. Co.

P.O. Box 129

Grandview, Mo. 64030 © RUSKIN MFG. CO. 1975

the pacesetter in quality prefab roof products

pate®

standard construction

curbs

Heavy ga. galvanized steel, unitized, full mitered corners, all seams welded, 1½" thick rigid fiberglass insulation, wood nailer strip. All curbs are internally reinforced in larger size dimensions. On B style curbs overhang is ½" unless otherwise specified.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
the pate co			
the pate co	J TK	a	πy

2625 south 21st avenue • broadview, illinois 60153 312 • 681-1920

p. o. no customer _	Truog & Nichols, Inc.
project	Fire Station #24
location _	K.C.Mo.
architect _	Midgley, Sahughnessy, Fickel & Scott AEC Inc.

pate no _

ship date _

the pacesetter in quality prefab roof products

the pate company

2625 south 21st avenue • broadview, illinois 60153 312 • 681-1920

pate® equipment supports

standard construction

18 ga. galvanized steel, unitized construction with integral base plate, continuous welded corner seams, wood nailer, counterflashing with lag screws. Internally re-inforced to conform with pate load bearing factors.

On B style supports, standard wood nailer has 1" overhang unless otherwise specified.

project Fire Station #24

location K.C.Mo.

architect AEC Inc.

ship date.

SPEC NO. L235—877 Replaces L235—1275

LOUVER

TYPES L2-L3-L5

STANDARD CONSTRUCTION

FRAME: 20 ga. galvanized 4" steel channel with ½" inverted flanges. (Illustrated below as Frame Construction No. 1)

SCREEN: 19 gage galvanized 1/2" mesh in removable frame

FINISH: Mill galvanized BLADES: 20 ga. galvanized

steel L2 — Chevron Type on 2½"

centers (approx.) L3 - J Type on 4" centers

(approx.) and 45° angle L5 — K Type on 4" centers (approx.) and 45° angle

MINIMUM SIZE: 12"w x 12"h

MAXIMUM SIZE:

Single section 96"w x 120"h or 120"w x 96"h Assembly of sections — size unlimited.

FRAME CONSTRUCTION

FEATURES

EXCELLENT WEATHER PRO-TECTION at lowest cost.

APPEARANCE: Symmetrical design with level accurately spaced blades blends well with all types of architecture

VARIATIONS

(at additional cost)

FRAME DEPTH: 2" through 8" (4" standard)

SPECIAL MATERIALS: Aluminum, Stainless Steel, Copper. Heavier gage materials.

BLADES: Material gage, spacing, and angle.

SCREENS: Many variations available.

FINISH: Enamel

Baked Enamel Epoxy Prime Coat

ORIGINAL PAGE IS OF POOR QUALITY

SCREEN ON REAR

NOTE: Screen adds approx.
1/2" to depth.

*Unit furnished approx. ¼" smaller than given "opening" dimensions.

	TYPE		DIME	NSIONS		FRAME	SCREEN	
QUAN.		A*	в•	C 4" Std.	D			
2	L <u>-</u> 5	60	24			1	1/2" me:	h, 16 ga. galv.
							birdscr	en on rear.
							7	

JOB

LOCATION

CONTRACTOR

RUSKIN Mfg. Co.

P.O. Box 129

Grandview, Mo. 64030
© RUSKIN MFG. CO. 1977

NO. NMS-1275 Replaces NMS-275

BACKDRAFT DAMPER (Non Metallic)

TYPE NMS

STANDARD CONSTRUCTION

FRAME:

16 gage Steel.

BLADES:

Vinyl laminated Nylon in Galv. "U" clamp riveted to frame.

1.

REAR GRILL: Flattened expanded Metal.

FINISH:

Rust inhibitor coating.

NOTE:

Damper will be fabricated in 2 or more sections when width or height exceeds 24".

Max. velocity 1,200 FPM

NMS Not Recommended when exposed to temp. below 40° F.

Minimum size - 6" x 4"

NOTE! DO NOT USE FOR FAN DISCHARGE.

VERTICAL DAMPER

FEATURES

BLADES: Exceptionally strong &

tear resistance. Virtually Inert-is unaffected by mildew or

rot.

Fire resistant—self ex-tinguishing. Will not support combustion. Waterproof-does not absorb moisture. Resist most oils, chemicals &

grease. Temperature range:

40°F to 190°F.

SUPER-SENSITIVE ACTION: Opens on slightest movement of air.

QUIET: No metallic noises.

SEALS EASILY: For the best back draft protection.

NO MECHANICAL PIVOTS: Means long dependable operations.

OVER 60% FREE AREA.

DAMPER HEIGHT							
OVER 6" TO SINCL. 12"	2						
13" TO & INCL. 20"	3						
21" TOB INCL. 24"	4"						

HORIZONTAL DAMPER

*Unit furnished approx. X" smaller than given 'opening' dimensions.

QUAN.		SI	ZE	SPECIF	Y MTG.	
	TYPE	A-WIDE	B-HIGH	VERT.	HORIZ.	
1	NMS	15	14			
	"	24	18	,		
						_
						\perp
						<u> </u>
			1	-		-
				-		
				-		\vdash

JOB

LOCATION

CONTRACTOR

RUSKIN Mfg. Co.

P.O. Box 129

84030 Grandview, Mo.

© RUSKIN MFG. CO. 1975

STANDARD CONSTRUCTION

FRAME: 3½" x 7/8" 18 ga. galv. steel

BLADES: 6" width 18 ga. galv. steel on approx. 6" centers.

LINKAGE: Concealed in frame.

BEARINGS: Cycoloy 800.

AXLES: 1/2" Hex

CONTROL SHAFT: 3" x 3/8" sq. plated

stee

MAXIMUM SIZE: 48"w x 46"h

MINIMUM SIZE: OB-6"w x 11"h (2 blades) PB-6"w x 8"h (1 blade)

For sizes larger than maximum or smaller than minimum, use Model

*Unit furnished approx. ¼" smaller than given "opening" dimensions.

FEATURES

STEEL CONSTRUCTION: "INTER-LOCKING DESIGN" Entire unit locked together without bolts, screws, or rivets to shake loose.

BEARINGS: "Cycoloy 800," non stick and non corrosive, assures long life and ease of operation.

LINKAGE Shake proof. Low maintenance

AXLES: Positively locked to blade. No screws or welds used, will not shake loose.

FRAME CORNERS: Internally braced to reduce racking.

CUSTOM TAILORED: To fit any size opening.

Standard construction only available.

NOTE:

For proper operation all dampers must be installed square & free from racking.

OF POOR QUALITY

	DIME	NSIONS	
TYPE	Α*	В*	1
MD-35-0BC	10	10	w/ extended shaft for quadrant.
		+	
	TYPE	Α*	A* B*

RUSKIN Mfg. Co.

JOB

CONTRACTOR

P.O. Box 129

LOCATION

Grandview, Mo. 64030 © RUSKIN MFG. CO. 1975

SPEC NO. IBD2—577 Replaces IBD2—1076 FIRE DAMPER CURTAIN TYPE INTERLOCKING BLADE

TYPE IBD2

STANDARD CONSTRUCTION

FRAME: 41/2" galvanized steel channel.

CLADES: Interlocking type galvanized steel.

ENCLOSURES: 18 gage steel (Types B, C, CO, & CR). FINISH: Mill galvanized.

FUSIBLE LINK: 212°F Standard. 160°F available at no additional cost.

MOUNTING: Vertical or Hori-

zontal.

VERTICAL

MOUNT

FEATURES

Standard model includes 1½ hour UL Fire Damper Label. Approved for use in Fire Partitions with ratings up to 2 hours.

Meets all UL and NFPA requirements for PRIMARY FIRE DAMPERS.

Gravity operated for Vertical Installation. Available with closure springs and latches for horizontal installation.

NOTE: For overall Frame Dim. on type B, C, CR, & CO see appropriate IBD2 Spec. sheet.

TYPE A & B will be furnished approx. 1/4" less than given duct dims. TYPE C's will be furnished approx. 1/8" less than given duct dims.

QUAN.	MODEL	SI	ZE	DUCT DIAM.		1	YPI	E		FUSE	MTG.		UL	
	MODEL	A-WIDE	B-HIGH		A	В	С	CR	СО	TEMP	٧	н	0.	
2	IBD2	26	16		Х					212		X	Х	
2	**	26	20		Х					"		Х	Х	
1	"	17	16		.Х					"		Χ	X	
1	"	16	11		X					"		Х	Х	
,													i i	

JOB

LOCATION

CONTRACTOR

RUSKIN Mfg. Co.

P.O. Box 129

Grandview, Mo. 64030 © RUSKIN MFG. CO. 1977

TITUS

SUBMITTAL SHEET

MODEL TDC CEILING DIFFUSER

TITUS MANUFACTURING CORPORATION

3-75

LITHO IN U.S.A.

WATERLOO, IOWA 50704

Submittel B-83-2

Rev. C

FINISH:

25

(W-1) BAKED OFF-WHITE ENAMEL (STD. FOR STEEL)

BAKED ALUMITINT ENAMEL (ALTERNATE STD. FOR STEEL) (STD. FOR ALUMINUM)

(FRAME TYPES 2, 3, & 4 ONLY)
NOTE: WHEN MODULE SIZE IS MORE THAN
3" LARGER THAN DUCT SIZE, THE DIFFUSER
WILL BE MOUNTED IN A MODULE SIZE PANEL
AS SHOWN IN ABOVE PICTURE,

TITUS

SUBMITTAL SHEET

MODEL AG-95 Opposed Blade Damper for TDC, TXS and TXR

TITUS MANUFACTURING CORPORATION

WATERLOO, IOWA 50704

12.74

LITHO IN U.S.A.

Submittel B-128-1 REV E

ENVIRONMENTAL ELEMENTS CORPORATION

TITUS° PRODUCTS

SUBMITTAL SHEET

Supply Registers

(STEL) Core Styles 271 & 272

- Model 271-RL-5 One set of AIRFOIL LOUVERS parallel to long dimension and individually adjustable to any degree of deflection in the tical plane.
- Model 271-RS-5 One set of AIRFOIL LOUVERS parallel to short dimension and individually adjustable to any degree of deflection in the horizontal plane.

LOUVERS: One set of individually adjustable
AIRFOIL louvers Extruded aluminum —
solid section.

LOUVER DEPTH: 4". Assures positive air de-

DAMPER: pposed Blade. Opposed acting blades are always parallel to short dimension and operated by standard screwdriver.

FINISH: Baked Aluminum Enamel.

GASKET: Polyurethane Foam

SIZES: Stocked in many standard sizes. Any

size made to order. BORDER: Cold Rolled Steel

LOUVERS: Two sets of individually adjustable Airfoll louvers. Extruded aluminum solid section.

LOUVER DEPTH: %" Assures positive air deflection.

DAMPER: Opposed blade, Screwdriver operated from face of register

Model 272-RL-5 Two sets of AIRFOIL LOU-VERS. Front set parallel to long dimension and Individually adjustable to any degree of deflection in vertical plane. Second set parallel to short dimension and individually adjustable to any degree of deflection in the horizontal plane.

Model 272-RS-5 Two sets of AIRFOIL LOU-VERS. Front set parallel to short dimension and individually adjustable to any degree of deflection in horizontal plane. Second set parallel to long dimension and individually adjustable to any degree of deflection in vertical plane.

BORDER: cold-rolled steel. FINISH: Baked Aluminum Enamel. GASKET: Polyurethane Foam

ENVIRONMENTAL ELEMENTS CORPORATION

TITUS PRODUCTS Dallas, Texas

SUBMITTAL SHEET

Steel Return Grilles

TITUS MANUFACTURING CORPORATION

1-74 ORIGINAL PAGE IS

OF POOR QUALITY

Litho In U.S.A.

WATERLOO, IOWA 50704

Submittal C-35-4

SUBMITTAL SHEET

Steel Return Registers

MODEL 23-RL5

Features one set of fixed blades parallel to long dimension and an attached opposed blade damper.

Model 13-RL5

bove except 0°

MODEL 23-RS5

Features one set of fixed blades parallel to short dimension and an attached opposed blade damper.

☐ Model 13-RS5

Same as above except 0° deflection.

Countersunk screw holes for No. 8 SMS per factory Standard.

Finish: Baked Aluminum Enamel.

MODEL 25-RL5

Border -- 20 Gage

Blades - 22 Gage

Features one set of fixed blades partition to long dimension and an attached opposed blade damper.

Model 15-RL5

Same as above except 0° deflection.

Border - 20 Gage Blades - 22 Gage

MODEL 25-RS5

Features one set of fixed biades parallel to short dimension and an attached opposed blade damper.

☐ Model 15-RSS

Same as above except 0° deflection.

Countersunk screw holes for No. 8 SMS per factory Standard.

☐ MODEL 30-GL5

Features one set of fixed blades parallel to long dimension and an attached opposed blade damper.

☐ Model 33-GL5

ame as above except 30°

deflection 6 1/2" blade specing ☐ Model 34-GL5

Same as above except 45 deflection

& 1/2" blade spacing

☐ MODEL 30-GS5

Features one set of fixed blades parallel to short dimension and an attached opposed blade damper.

Model 33-GS5

Same as above except 30° deflection

& 1/2" blade spacing

☐ Model 34-GS5

Same as above except 45° deflection

& 1/2" blade spacing

Finist aked Aluminum Enamel. Borders - 16 Gage Blades - 14 Gage

Countersunk screw holes for No. 8 SMS per factory Standard.

Support Bars on 6" Cent

FACE

FOOR

MODEL 8-F5

Features a steel perforated plate mounted in an extruded alumnium frame and an attached opposed blade damper. Finish: 25-(W-1) Baked Off-White Enamel.

Countersunk screw holes for No. 8 SMS per factor factory Standard.

TITUS MANUFACTURING CORPORATION

Litte In U.S.A.

WATERLOO, IOWA 50704

Submittal C-35-5

TITUS

SUBMITTAL SHEET

Aluminum Return Registers

TITUS MANUFACTURING CORPORATION

Litho In U.S.A.

WATERLOO, IOWA 50704

2-74

Submittal C 45 5

SUBMITTAL SHEET

Aluminum Return Grilles

☐ MODEL 3-FL

Features one set of fixed blades parallel to long dimension. 45° deflection

☐ MODEL 3-FS

Features one set of fixed lades parallel to short dimension. 45° deflection

☐ Model 56-FS ☐ Model-56-FL

Same as above except 0° ome as above except 0°

deflection.

Finish: Baked Alumitint Enamel.

Countersunk screw holes for No. 8 SMS per factory Standard.

MODEL 4-FL

Features one set of fixed blades parallel to long dimension. 45° deflection

☐ Model 55-FL

Same as above except 0° deflection.

☐ MODEL 4-FS

Features one set of fixed blades parallel to short dimension. 45° deflection

☐ Model 55-FS

Same as above except 0° deflection.

Finish: Baked Alumitint Enamel.

Countersunk screw holes for No. 8 SMS per factory Standard.

☐ MODEL 50-F

Features 1/2 x 1/2 x 1/2 fabricated aluminum louvers. Provides maximum free area with minimum see-thru.

Finish: Baked Alumitint Enamel.

Countersunk screw holes for No. 8 SMS per factory Standard.

1/2 x 1/2 x 1 Aluminum

MODEL 10-F

Features 1 x 1 x 1 fabricated aluminum louvers. Provides maximum free area with minimum see-thru.

Finish: Baked Alumitint Enamel.

Countersunk screw in les for No. 8 SMS per factor Standard.

TITUS MANUFACTURING CORPORATION

D = LISTED DUCT SIZE

Litho In U.S.A.

WATERLOO, IOWA 50704

1-74

122

Submittal C-45-4

TITUS

SUBMITTAL SHEET

Model AG-45 & AG-225 AIR VOLUME EXTRACTOR AND CONTROLLER

AG-45 — TURNING VANES ON 1" CENTERS

AG-225 - TURNING VAMES ON 2" CENTERS

Gang-operated blades are fully adjustable from wide open to completely closed positions to control air direction and volume. Provides even air distribution to diffuser face.

Factory assembled, installs with 2 screws. Three types of operators available. . . . SEE REVERSE SIDE.

TITUS MANUFACTURING CORPORATION

WATERLOO, IOWA 50704

Submittal E-33-1

OPERATORS

No. 1

MANUAL ADJUSTING LEVER furnished at no extra cost if specified.

No. 2

Adaptor for regulator control for operation from a knob located at ceiling.

D-NOMINAL OPENING

No. 3

Key operated mechanism for operation through face of grille. Full adjustment possible without removing face of grille.

TITUS MANUFACTURING CORPORATION

WATERLOO, IOWA 50704

Submittal E-33-1 Rev. B AIR HANDLING
UNIT #2 AND #3

LOREN COOK COMPANY

SPRINGFIELD, MISSOURI

BEREA, OHIO

TN - 3

SPECIFICATION SHEET

JOB Fire Station #24							DATE 1/27/78 PAGE OF														
Kansas City, MO								CUSTOMERS ORDER NO. 17589													
ARCHITECT								ENGINEER													
APPROVED BY								APPROVED BY													
CONTRACTOR Truog Nichols																					
APPROVED BY Kansas City, MO								Springfield MO													
									61 14												
QTY.	OTY, MARK CATALOG		UNIT TYPE	MTR. HP	FAN RPM	РН	сч	VOLT	СҒМ	SP	nnect Switc	Screen	natic Louve	ized Louve	Belt Guard Vib Base	Base	g hang	e Inle			
												Disco	Bird	Auton	Motor	Bel	Vib	Jdc	Van		
1	AHU-2	21СН		СН	2	1380	3	60	208	4300	11/2					Х	Х		х		
,	AHU-3	24CV		cv	32	1270	3	60	208	5000	翠					х		х			
									1	* 1.											
										_	آه ڙو ا ن			H	4	4	\dashv	4			
			OIT	7 4550	DIMED	DATE	9	13/2	8	· ·	the Inc.	100			-	4	4	4	1		
				ENGIN CONS	EERING ULIANTS, PONATED (NO EXCE	PTIONS	TAKEN ONS NO		VIEW	Architect ouri 64155	J. E						1			
			Ŏ	11100	er enarcu Z	REJECTL	Wn W	200741		SE SE	00 18 00	9.0			-		S	4			
			NOTE	REVI	EW DOES	NOT I	ELIE	VE TH	E CON	- 2	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		į.			=	17		#	_	
			RORS	DR DE	OM ANY HATIONS OR FOI	FROM T	HE (ONTR	ACT RE	DRAW	t Karssa City, N		1				See Lic	. ,			
,					WORK C					SHOP	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				į.	1	jected -	in in			
											23 Val.	re-car		1	,			-		_	
١ -		<u> </u>			L	1 7705	1			- resulted	add a C att	_	L	NUT	TV	DE				_	

NOTES:

ORIGINAL PAGE IS
OF POOR QUALITY

[F.VI-40-A

LOREN COOK COMPANY

SPRINGFIELD, MISSOURI

BEREA, OHIO

TYPE CH- CENTRIFUGAL BLOWERS SINGLE WIDTH-SINGLE INLET

CLASSI

CLASS II

AHU-2

DIMENSION DATA

Size	A Dia. I.D.	"B"I.D,	"C"I.D.	 D	E	F	G	্ৰ	J	κ.	K-1	L	м	2	Shaft Size	Mat'l.	Wt.	Shipping Wt. Lbs.
12	12-5/8	11-1/8	10-3/4	18-7/8	9-1/16	25-1/4	13-3/4	18	19-7/16	1-1/2	1-1/2	3-5/8	13-3/8	17	3/4	.081	33	60
15	15-5/8	13-3/4	13-1/2	24.5/8	12-1/4	31-3/8	17	20 3/4	21 1/4	1-1/2	1-1/2	3-5/8	17	18-3/4	3/4	.081	37	115
18	18-5/8	16-1/2	16-1/4	29-5/16	14-1/9	38-11/16	21-1/2	23.1/2	30-3/8	1-1/2	1-1/2	3-5/8	20	21-1/2	1-1/4	.090	100	196
21	22	19-1/4	18-7/8	34	16-5/16	45-1/16	25	25 1/8	35 5/16	1.1/2	1 1/2	3-5/8	22-7/8	25	1-1/4	.090	132	242
24	25	22	21-1/2	33-3/4	18 9/16	42-15/18	20	22 3/4	31-13/15	1.1/2	1-1/2	3-5/8	25.7/8	27-3/4	1-1/4	.100	157	284
27	28	24-3/4	24-1/4	43·5/B	20-13/16	48-3/15	22-1/4	32.1.4	35 11/16	1-1/2	1-3/4	4-1/4	29	31-3/4	1-7/16	.100	198	363
30	31	27-1/2	27	47-3/16	21-15/16	53 1/16	24 3 3	35 1 2	39-3 16	1.1/2	1-3/4	4-1/4	31	35	1-7/16	.125	258	441
36	37	33	32-3/8	56-1/2	26-3/16	63-1/8	28-3/4	41	46 7/16	1-1/2	1-3/4	4-5/16	37	40-1/2	1-15/16	.190	416	686
.42	43	38-1/2	37-3/4	66-1/16	30-11/16	73-1/4	33-1/8	43 3/8	53-13/16	2	1-3/4	4-5/16	43-1/2	43-3/8	2-3/16	.190	625	965
48	49	44	43-1/8	75-1/2	35-1/16	83-5/16	37-1/2	31 7/4	61-1/8	2	1-3/4	4-5/16	49-1/2	48-3/4	2-7/16	.190	840	1250

 $ORIGINAL\ PAGE\ IS$ $OF\ POOR\ QUALITY$

REVISED DRAWING 1/11/72

CH-1-A

TYPE CH- CENTRIFUGAL BLOWERS ENGINEERING DATA

Note: Please specify rotation & Discharge on approved submittals

DRIVE ARRANGEMENTS FOR CENTRIFUGAL FANS

Crist.	a	R	H	S	T
12	24	32	18	14	6
15	27-1/4	36-3/4	20-3/4	16	6-1/2
13	29	43-1/2	23-1/2	20	5-1/2
.31	31-5/8	49-1/3	26-1/8	23	5-1/2
144	34-1/2	53-3/4	28-3/4	25	5-3/4
7	38-3'4	: 58	32-3/4	25-1/4	6
11	41-3/4	61	35-1/2	25:1/2	6-1/4
25	48-1/4	58-3/4	41	27-3/4	7-1/4
42	55-7/8	76-7/8	46-3/8	30-1/2	9-1/2
63	51-1/4	83-3/4	51-3/4	32	9-1/2

OF POOR QUALITY

ARR. 1 SWSI Standard For belt drive. Wheel overhung, two bearings. ARR. 9 SWSI Optional For belt drive Wheel outhung. Two bearings with prime mover outside base MOTOR BASE ASSEMBLY

ARR. 9 MAXIMUM 25 H.P.

100	77	my						and the same of the same of		
UNIT	12	15	18	21	24	27	30	36	42	48
D	20-1/4	26-3/8	30-1/2	35-1/2	40-3/9	45-1/2	50-1/2	60-5/8	70-3/4	81
0	8-3.4	1 11	13.1/4	15-3/8	17-1/2	19-3/4	21-7/8	26-1/4	30.5/8	35-1/8
E	11-1/2	1 14-3/3	1 1/-1/-	20-1/8	22-7/8	25-3/4	28-5/8	34-3/8	40-1/8	45-7/8
F	22-1 2	20	23.3/8	41-3.8	44	49-1/4	53-1/8	63-1/8	73-3/8	83-3/8
P	8.3/4	12	1 11:1/8	153'6	18-5/8	20-7/8	22	26-1/4	30-3/4	35-1/8
G	13	1 :7	111/2	25	25-3/8	28-3/8	31-1/8	36-7/8	42.5/8	48-1/4

NOO	JBI A	AST	-	0-4
IWOD	100	16	2	E
		++		1
		11	_A	Y

UNIT	12	19	19	21	24	27	30	36	42	48
D	20-1/-1	25.3/4	1-0.1/2	35 1/2	40-3/8	45-1/2	50-1/2	60-5/8	70-3/4	81
0	8-3-4	111	11.1/4	15-3 8	17-1/2	19-3/4	21-7/8	26-1/4	30-5/8	35-1/8
E	11-1/2	14.3	177174	20-1/3	22-7/8	25-3/4	28-5/8	34-3/8	40-1/8	45-7/8
F	23-7/8	29-11.	13'4	1 42-3/4	40-1/4	45-1/8	49-5/8	59-1/8	68-1/2	73
P	10-1/3	1 77.576	15 1/4	17-3/4	20-1/4	22.7/8	25-1/4	30-3/8	35-3/8	40-1/2
G	13-3/4	133	2: 1/2	25	20	22-1/4	24-3/8	28-3/4	33-1/8	37-1/2

BOTTOM	, [
BOTTOM HORIZONTAL	- D
F	
1 6	

UNIT	12	1 15	1 10	21	24	27	30	36	42	48
D	13-7/8	21.	3/8	34.1/8	38-7/8	43-3/4	47-1/4	56-5/8	66-1/8	75-5/8
0	10-1/8	12 5 6	:11.1/4	17 3/4	20-1/4	22.7/8	25-1/4	30-3/8	35-3/8	40-1/2
E	8-3/4	112	14-1,8	16-3/8	18-5/8	20-7/8	22	26-1/4	30-3/4	35-1/3
F	22 1/3	16	3/ 3/2	40-3/8	42.7/8	48-1/8	53	63-1/8	73-1/4	83-3/8
P	8 3/4	111	,3 : 4	, 1138	17-1/2	19-3/4	21-7/8	26-1/4	30-5/8	35-1/8
G	13-3/4	1 17	121.1.2	1 25	25-3/8	28-3/8	31-1/8	36-7/8	42-5/8	48-1/4

H-RADIUS

UNIT SIZE	12	15	18	21	24	27	30	36	42	48
H RADIUS	15-3/4	21.5 8	23-1/2	27-1/8	31-5/8	34-1/2	37-3/8	44-1/2	52-1/4	59-3/8

SPECIFICATION DATA

ORIGINAL PAGE IS

OF POOR QUALITY: Cluminum back plate having an integral hub. Housing assembly will be supported on cast aluminum legs as shown on the drawing.

Furnish and install Cook type CH (SWSI) centrifugal blow in aid of design. Fan Housing shall be all aluminum of the gauga scene to with the manufacturer for the size unit specified. Housing will be always throughout with the spun aluminum venturi injet bolten to the housing for access to the wheel, Blower wheel shaft will be stair loss than

Split ring mounting bracket shall be an integral part of the blower to comit the blower housing to be rotated into any desired position (360 degree rotation) by loosening four bolts located at the support brackets to properly line up the discharge with the existing duct work.

Each unit shall be licensed by AMCA to bear the certified rating seal. Fan speed and horsepower shall be as shown on the drawing.

CERTIFIED

15

Loren Cook Company certifies that the Type C. floor shown herein have been tested, and rated, in accessing the applicable AMCA Standard Test to the Ratings Program and are licensed to that the self-battes Seal, Pertgimage shown in for the Suite High. The Ride R Certified History.

The Type CII blever shows here has been tween the Care, an Standards the Care, an Standards When

LOREN COOK COMPANY

SPRINGFIELD, MISSOURI

BEREA, OHIO

INLET VANE DAMPER

FOR CH,DCH-3,TSC,TDSC 12-48 18-73

A	HU-	2
	1111	7
	1011	

5	SIZE	A	В	С	E	F	G	TR
1	2	12-5/8	1%	9	8	7/16	14-1/8	2.18
1	5	15-5/8	11/4	9	8	7/16	17-1/8	3.33
1	8	18-5/8	1%	9	8*	7/16	20-7/8	4.73
. 3	21	22	2	9	8	7/16	24-1/4	6.58
1	24	25	2	9	16	7/16	27-1/4	8.52
1	27	28	2	9	16	7/16	30-1/4	10.69
3	30	31	2	9	16	7/16	33-1/4	13.10
3	33	34	2	9	16	7/16	36-1/4	15.38
3	36	37	2	9	16	7/16	39-1/4	17.67
4	12	43	2	10	16	7/16	45-1/4	25.21
1	18	49	2	10	16	7/16	51-1/4	32.74
	54	58	2	10	16	7/16	60	45.87
1	50	64	2	10	16	7/16	66	55.85
(66	70	2	11	16	7/16	72	66.82
1	73	77	2	12	16	7/16	79	80.35

Note: Custom Plotted Performance Data for Inlet Vane Damper Equipped Fans may be obtained upon request. Please state fan type, size, arrangement, desired point of operation (S.P. & C.F.M.) or Fan R.P.M. when custom 1.V.D./Fan plots are requested.

Torque Requirement: TR = 2.5 in. lb./sq. ft.

STD. CONSTRUCTION

Frame .125 Alum., Hub .125 Alum., Blades .100 Alum., Axles % Dia. Alum., Blade - Axle - Bearings - Thrust Washers - St'l Steel, Operator Ring 5/16 Dia. Zinc Plated Steel, Operator Linkage St'l Steel.

EXAMPLE: 80% of wide open capacity Inlet damper setting: 53*—8HP: 72% wide open 8HP

LOREN COOK COMPANY

SPRINGFIELD, MISSOURI

BEREA. OHIO

TYPE CV STRAIGHT THRU CENTRIFUGAL BLOWER CENTRI-VANE BELT DRIVE

DIMENSION CHART

	Cat. No.	A	В	С	D	E	*F Max.	G	н	Wheel Dia.	Gauge of Aluminum
	12CV	12	17-1/8	19-1/4	9.3/4	1-1/4	11-1/4	12-3/4	14-1/8	15-9/16	
	16CV	16	21.9/16	24.7/8	12-1/2	1-1/4	11-1/4	16-3/4	18-9/16	20-15/16	
	20CV	20	26-3/8	30-1/2	15-1/2	1-1/4	13-1/4	20-7/8	22-3/8	26-1/4	
.AHU-3 ****	24CV	24	31-1/4	36-3/4	18-1/2	1-1/2	13-1/4	25	27-1/4	31-9/16	.100
. ,,,,,	28CV	28	36	42-1/4	21-1/4	1.1/2	15-1/2	29	32	36-7/8	
	32CV	32	40-7/8	48	24-1/4	1-1/2	15-1/2	33	36-7/8	42-3/16	See No. of
	36CV	36	44-1/4	53.5/8	27	1.1/2	15-1/2	37	40-1/4	47-1/2	

*Will vary with motor size

HEAT PUMPS

OF POOR QUALITY

JOB: FIRE STATION NO. 24

CONTRACTOR: TRUOG-NICHOLS, INC.

ENGINEER: ASSOCIATED ENGINEERING CONSULTANTS

ORIGINAL PAGE IS OF POOR QUALITY

EQUIPMENT: SYSTEM NO. 1 (Bryant)

519A-060 Indoor Section 541B-057 Outdoor Section 520B-060 Blower Package

301499-425 Supplemental Heat Package

SYSTEM NO. 2 (Bryant)

519A-048 Indoor Section 541B-047 Outdoor Section 520B-048 Blower Package 301499-424 Supplemental Heat Package

SYSTEM NO. 3 (Bryant)

519A-042 Indoor Section 541B-041 Outdoor Section 520B-042 Blower Package 301499-405 Supplemental Heat Package

BY: SAN TAKEN

MAKE CORRECTIONS NOTED

MAKE CORRECTIONS NOTED

AMEND AND RESUBMIT

REJECTED - SEE REMARKS

NOTE: REVIEW DOES NOT RELIEVE THE CONTRACTOR FROM ANY RESPONSIBILITY FOR ERRORS OR DEVIATIONS FROM THE CONTRACT REQUIREMENT OR FOR ANY DEFICIENCIES OF EQUIPMENT, WORK OR MATERIALS.

EVIEW bott Architects Inc. issoeri 54105	a with control documents. Is of documents, details, Interior and election shall				By
SHOP DRAWING REVIEW Stagenessy Fickel and Scott Architects Inc.	Review is the contraction of the contraction of deuments. Sale topics and the contraction of december shalls, details, december on the contraction of the contraction with the Contraction of the contraction with the contraction of the contrac	☐ No Ecceptions Turen Make Corrections Noted	Amend and Resubmit	S	Date

/MCC & 52OB/BP

Modular fan coils are available in 36,000-, 42,000-, 48,000-, and 60,000-Btuh nominal sizes. Electric heater packages range in nominal capacity from 8 to 30 KW. Heaters are available with either standard overcurrent protection or disconnecting circuit breakers. The fused and circuit breaker models provide overcurrent protection for both the heaters and the blower motor.

pump or conventional air conditioning installations. Modular fan-coil components can be used in upflow,

horizontal, or downflow installations.

The versatility of the modular fan-coil components permits installation in a multitude of applications. Fan-coil sections are constructed of heavy-duty steel, with an attractive baked-enamel malibu-beige exterior. All cabinets are fully insulated for thermal and accounting

FEATURES

519A/MCC DESIGN—Coils are computer-designed to provide optimum heat transfer during heating and cooling. Refrigerant and condensate connections are

Bryant

Air Conditioning

Indianapolis, Indiana La Puente California made on front of units for ease of installation. Flare refrigerant connections provide quick, leak-proof connections with matching refrigerant tube sets. Primary and secondary drain connections permit either vertical or horizontal applications.

CHECK-FLO-RATER—The 519A/MCC Coil includes the unique Check-Flo-Rater refrigerant inetering device which eliminates potential serviceability requirements of check valves and expansion devices used in conventional heat pump fan coils. Because it is external, the Check-Flo-Rater is readily serviceable. For added reliability, a liquid-tube strainer assures clean, unrestricted operation.

520B/BP DESIGN—The blower package includes a permanent, washable air filter and filter rack. High-static, multispeed, direct-drive PSC blower motors provide proper air performance during heating and cooling. The

motor is mounted on rubber isolators to prevent vibration and sound transmission.

ELECTRIC HEAT PACKAGES—Either disconnecting circuit breaker models or standard heater packages are available in all KW ratings. A low-voltage terminal block simplifies installation. The use of simplified low-voltage wiring systems increases the reliability of the field electrical hookup. Sequencers permit incremental energization and deenergization of the heating elements.

ACCESSORIES

Optional outdoor thermostats are available to energize incrementally the heating elements as a function of outdoor temperature. A uniquely designed automatic changeover room thermostat, with emergency heat switch and light, is available for the heat pump application of these modular fan coils. Optional return air pienums simplify their installation.

A77141

DIMENSIONS WHEN ASSEMBLED (In Inches)

Size 541B/SHP Used With	520B/BP Size	519A/MCC Size	Heater KW	Total Height*	Total Weight
028 & 034	042	036	8 thru 25	47-13/16	142
041	042	042	8 thru 25	54-7/16	146
37 047	048	048	10 thru 30	51-5/16	157
057	060	060	10 thru 30	51-5/16	1€8

Add 5/8 in. when installed in downflow position. Dimensions include filter section supplied with Model 520B/BP Blower Section.

SPECIFICATIONS

MODEL	519A036MCC	- 519AG42MCC	& VSIBADASMCC	519AGEOMCC
PERFORMANCE DATA				mar Set
Rated Cooling Capacity Bluh (Nominal)	36,000	42,000	48,000	60,000
Static Pressure Drop — Wet Coil*	0.25	C.24	0.32	0.46
Ft ³ /Min (Nominal)	1200	1400	1600	2000
COIL DATA AND REFRIGERANT				7
Coil Area (Sq Ft)	2.5	3.8	3.8	4.0
Rows Deep & Fins per Inch	3 & 13	3813	3 & 13	4 & 12
Metering Device	Check-Flo-Rater	Check-Flo-Rater	Check-Flo-Rater	Check-Flo-Rater
Refrigerant	R-22	R-22	R-22	R-22
Liquid-Tube Connection	3/8 Flare	3/8 Flare	3/8 Flare	3/8 Flare
Vapor-Tube Connection	3/4 Flare	3/4 Flare	3/4 Flare	3/4 Flare
Condensate Drain Conn - Prim & Sec	3/4 FPT	3/4 FPT	3/4 FPT	3/4 FPT
OPTIONAL EQUIPMENT	1.			
Check-Flo-Rater Piston	300498-202	_		_
Swivel Ells Liquid/Vapor Tubes	IBN1616R/IBN2424R	IBN1616R/IBN2424R	IBN1616R/IBN2424R	IBN1616R/IBN2424F

*See coil static pressure drop table.

相邻

SPECIFICATIONS

	or Lourion 110		
MODEL	\$ 5208042BP	5208048BP	62050508P
BLOWER AND FILTER			,
Motor — Type — HP — Speeds — Full Load Amps	PSC-1/2-4-3.5	PSC-3/4-4-4.5	PSC-1-3-50
Blower Wheel - Width x Diameter	8 x 10	10 x 10	9 x 12
Nominal Ft3/Min @ 240 Volts - ESP Inches wc*	1400-0.8	1600-0.9	2000-1.4
Blower Watts @ High Speed and Nominal Ft3/Min	650	750	1000
Filter - Permanent Washable	20 x 20-3/4 x 1	21 x 24-1/4 x 1	21 x 24-1/4 x 1
OPTIONAL EQUIPMENT			
Return Air Plenum	302153-101	302153-102	302153-102

[.] With filter, no heater.

SPECIFICATIONS

1 3

#1#2V

		OF ECIT I	CA 11011	' /				~
SIZE	8KW	10KW	15KW	20KW	25KW	MAGS	30KW	30KW
ELECTRICAL								
Unit Voltage - Phase	208/240-1	208/240-1	208/240-1	208/240-1	208/240-1	208/240-3	208/240-1	208/240-3
Operating Voltage Range	187/253	187/253	187/253	187/253	187/253	187/253	187/253	187/253
Heater-Nominal KW @ 240 volts	8	10	15	20	25	25	30	30
Heater Full Load Amps	28.9/33.3	36.1/41.6	54.2/62.5	72.2/83.3	90.3/104.2	52.2/60.2	108.4/125.0	62.3/72.2
	Pow	er Supply - He	ater and Blower					
With 520B042BP - Ampacity	40/45	49/56	72/82	95/108	117/135	70/80	_	-
Max Overcurrent Protection	40/50	50/60	80/90	100/110	125/150	70/80		-
Minimum Wire Size AWG*	6/€	6/4	3/2	2/21	11/01	4/3	_	-
With 520B048BP - Ampacity	-	50/58	73/84	96/110	119/136	71/81	141/162	84/95
Max Overcurrent Protection	_	60/60	80/90	100/110	125/150	80/90	150/175	90/100
Minimum Wire Size AWG*	_	6/4	3/2	1/21	11/01	3/2	01/001	2/1
With 520B060BP - Ampacity	_	51/58	74/84	97/110	119/137	72/82	142/163	84/97
Max Overcurrent Protection	_	60/60	80/90	100/110	125/150	80/90	150/175	90/100
Minimum Wire Size AWG*.	-	6/4	3/2	1/2+	11/01	3/2	01/001	2/1
CONTROLS								*
Transformer 208/230-24-Volt 60-VA	Std	Std	Std	Std	Std	Std	Std	Std
Blower Relay	Std	Std	Std	Std	Std	Std	Std	Std
Sequencer	Std	Std	Std	Std	Std	Std	Std	Std
Limit Switches	Std	Std	Std	Std	Std	Std	Std	Std
Fuse Block and Fuses/Circuit Breakers	_	_	Std	Std	Std	Std	Std	Std
Low-Voltage Terminal Strip	Std	Std	Std	Std	Std	Std	Std	Std
OPTIONAL EQUIPMENT								
Combustible Floor Base: - Tune .	302152-101	302152-101	302152-101	302152-101	302152-101	302152 101	302152-101	302152 0

*Use copper wire only. If other than 60°C copper wire is used, size can be determined from unit ampacity given in above table applicable table of National Electric Code. Wire size must not create a voltage drop between service panel and unit in excess of 2% of unit rated voltage.

NOTE: Circuit breakers of disconnect models are UL listed as disconnects for heater and blower when approved combinations are installed

When used with Model 541B028SHP Outdoor Unit.

^{*} Use 75°C copper wire

[#]Required for downflow applications.

519A/MCC COMBINATIONS AND ADAPTER REQUIREMENTS*

Furnace	Furnace	5	19A/MCC COIL SIZE	& CASING WIDTH (I	n.)
Size	Width (In.)	036	042	048	060
		21	21	24-1/2	24-1/2
UPFLOW GAS FURNA	CES				
036080†	14-3/16	F/A		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
036100	17-1/2	X			
042100	17-1/2	X	X	August Manager and Company	
048100	21	Match	Match	X	
036125	21	Match	Match	X	_
048125	21	Match	Match	X	
060125	21		Match	X	X‡
048150	24-1/2	F/A	F/A	Match	Match‡
060150	24-1/2		F/A	Match	Match‡
060175	31-1/2	-	F/A	V	V‡
060200	31-1/2	-		V	V‡
520B/BP BLOWER PA	CKAGE-UPFLOW, DOV	WNFLOW, AND HORI	ZONTAL		
042	21	Match	Match	1 - 1 - 1 - 1	
048	24-1/2	-		Match	
060	24-1/2				Match
ELECTRIC FURNACE	-UPFLOW, DOWNFLOW	, AND HORIZONTAL			
042	17-1/2	Υ	Y	DE EN - NUMBER	
048	24-1/2	X	X	Match	_
060	24-1/2		X	Match	Match‡

*See table below for letters V, X, and Y used in above table.

†Standard furnace only. For 036080-size deluxe furnace, refer to 036100 furnace size information in this table.

‡The 519A060MCC coil has a high static air pressure drop. Before using it with a gas or electric furnace, check total static pressure drop of coil, ductwork, and the air handling capability of the furnace. (The 060-size blower package is specifically designed for use with the 519A060MCC.)

F/A Field-fabricated adapter required.

-Combination not recommended

Kit Model	Kit P/N*	Description
V	76579-4A	Adapter
X	78036-2A	Side Support
Y	301479-702	Adapter

*Ordering number.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

UNIT MUST BE INSTALLED IN ACCORDANCE
WITH INSTALLATION INSTRUCTIONS

AIR DELIVERY-5208/BP BLOWER WITH 519A/MCC COIL, HEATER, AND FILTER INSTALLED*

Model	Biower	Application				Exter	nal Sta	tic Pres	-Bure-	External Static Pressure-Inches wo	WC										
	Speed		0.1	-	0.2	2	0.3	-	0.0	-	0.5	H	9.0	_	0.7		0.8	0	0.9	1.0	•
			208V 230V	_	208V 23	2	208V	230V	208V 230V	-	208V 2	230V 20	208V 230V	OV 208V	V 230V	/ 208V	230V	208V	230V	208V	2307
		Heating	1	1	1	1	1 205	1310	1140	1240 1	1070	1165 10	000 1090	90 940	0 1020	0 870	945	800	870	-	800
	High	Cooling	í	1	1	1	1155	1255	1100	1195	1035 11	125 8	975 10	060 920	1000	3 355	930	971	860	1	790
520B042BP/		Heating	1220 1325	1325	1170 1270	-	1110	1205	1040	1130	965 10	1050	892 9	970 805	5 875	- 9	-	1	1	1	1
519A036MCC	Medium	Cooling	1180	1180 1280	1127	1225	1065	1160	1010	1100	940 10	020	875 9	950 790	0 860	- 0	1	1	1	1	1
		Heating	1070	1070 1165 1030	1030	Ξ	982	1070	925	1005	845		- 8	830 -	-	1	-	1	1	1	1
	Low	Cooling	1050	1140	1010	1100	. 096	1045	006	980	830	902	- 8	825 -	1	1	1	1	1	ı	1
		Heating	1380	1500	1315	1430	1250	1360	1	1290	- 12	1225		-	-	-	-	-	-	-	1
520B042BP/	High	Cooling	1325	1325 1440	1270	1380	1210	1315	1	1250	- 11	185	_		-	1	1	1	1	1	1
519A042MCC		Heating	1250 1360	1360	1205	1310	1	1250	1	-	-	_	1	1	1	-	-	1	1	1	1
	Medium	Cooling	1225	1225 1330 1175 12	1175		1	1220	1	1	-	_	_	-	1	1	ı	1	1	-	1
		Heating	1	1820 1663	1663	_	1 280	1675	1520	1600 1		1510 13	1355 14	1425 -	-	1	1	1	1	_	-
520B048BP/	High	Cooling	-	1725	1725 1575	1660	1510	1590	1445	1520 1	1370 14	1440 12	1290 13	1360 -	-	1	1	1	-	-	1
519A048MCC		Heating	1625	1710	1560	1640	1490	1570	1415	1490 1	1330 14	1400	1	1	1	1	-	1	1	1	1
	Medium	Cooling	1550	1630	1470	1545	1425	1500	1355	1425 1	1270 13	1340	-	-	1	1	1	1	1	ı	1
		Heating	-	-	-	-	-	-	-	1	- 23	2300 20	2095 2275	75 2015	5 2190	1930	2100	1850	2010	1755	1910
	High	Cooling	-	1	1	-	1	1	1	1	- 21	2190 18	1940 2110	10 1865	5 2030	11795	1950	1720	1870	1630	1770
520B060BP/	Medium	Heating	1	1	2060 22	40	2024	2200	_	2150 1	$\overline{}$	2090 18	1870 2030	30 1785	5 1940	1740	1890	1665	1810	ı	1730
519A060MCC		Cooling	!	1	1780 21	2150	1930	2100	1885	2050 1	1830 18	1990 17	775 19	1930 1720	0 1870	1655	1800	1585	1725	1	1650
	Low	Heating	1730	1730 1880 1720 1	1720	870	1 200 1	1850	1665	1810	- 17	1775	- 17	1725 -	1	1	1	1	ı	1	ı
		$\overline{}$	1700	1700 1850 1685 18	1685	330	1655	1800	1610	1760	- 1	710	- 16	1665 -	1	1	1	ı	1	1	1

NOTES:

OF POOR QUALITY
PAGE 18

AIR DELIVERY - 520B/BP BLOWER WITH HEATER AND FILTER INSTALLED*

Model	Blower				External	nal Sta	Static Pres	-Banke	sure-inches wo	3 WC									ı		
	Speed	0.	-	0.5	2	0.3	3	ò	_	O	0.5	9.0	-	0.7		0.6		0.0		1.0	
		208V 230V	230V	208V 23	230V	208V	230V	208V	230V	208V	230V	208V	230V	208V	230V	208V	230V	208V 2	300	08V	30
	High	1470	1600	1425	1550	1365	1485	1300	1415	1220	1325	1135	1235	1	1150	1	1	1	1	1	1
520B042BP	Medium	1305	1420	1275	1385	1230	1335	1175	1275	ı	1200	-	1	1	1	1	1	ı	1	1	1
	Low	1120	1215	1095	1190	1065	1155	1	1	1	1	i	ı	1	1	1	1	1	1	1	1
	High	1940	2040	1870	1970	1800	1895	1720	1810	1635	1720	1	1625	1	1	1	1	1	1	1	1
520B048BP	Medium	1780	1875	1735	1825	1670	1760	1595	1680	1510	1590	-	ı	1	1	1	1	1	1	1	1
	Low	1	1600	1	1555	1	ı	ı	1	1	1	1	-	1	1	1	1	1	1	1	1
	High	-	1	1	1	1	1	2400	2610	2330	2530	2295	2495	2160	2350	2110	5580	1960	130 1	840	8
520B060BP	Medium	2190 2380	2380	2155 23	40	2110	2290	2060	2240	2000	2175	1941	2110	1870	2030	1795	1950	1715 1	865 1	630	200
	Low	1750	1900	1740 18	1890	1715	1865	1690	1835	1650	1795	1605	1745	1550	1685	1	1610	1	1	1	1

*Static pressure drop of factory-supplied air filter is 0.13 in. wc.

SUPPLEMENTAL HEATER DATA

Size 5208/8P	Heater		Nominal K	W@ 240 V	olts	Supplementa	I Heater Btuh*	Factory-Supplied
Used With	P/N	Total	fist Bank	2nd Bank	3rd Bank	208V	230V	Overcurrent Protection
042	301499-401	8	8	-	-	20,500	25,100	
042	301499-402	10	10	_	_	25,600	31,300	
042	301499-403	15	10	5_	-	38,400	47,000	Fuse
042	301499-404	20	10	(0)	-	51,300	62,700	Fuse
	COLUMN TO STATE OF	-25		18		04,100	78,400	Tuoo
042	301499-4061	8	8		_	20,500	25,100	Cir Brk
042	301499-4071	10	10			25,600	31,300	Cir Brk
042	301499-408	15	10	5		38,400	47,000	Cir Brk
042	301499-409	20	10	10	-	51,300	62,700	Cir Brk
042	301499-410	25	15	10	-	64,100	78,400	Cir Brk
042, 048, & 060	301499-41111	25	15	10	1112	64,100	78,400	Fuse
048 & 060	301499-4121	30	20	10		76,900	94,000	Fuse
048 & 060	301499-421	10	10	-	_	25,600	31,300	
048 & 030	301499-422	15	10	5	-	38,400	47,000	Fuse
048 8 060	301499-423	20	10	10	-	51,300	62,700	Fuse
-040400	-001498-424	25	13	+		84,100	78,400	Tues
DARA CEO	201400-125	-00	10	10	10	76,000	94,000	Fuse
048 & 060	301499-4261	10	10	_	-	25,600	31,300	Cir Brk
048 & 060	301499-4271	15	10	5	_	38,400	47,000	Cir Brk
048 & 060	301499-4281	20	10	10	-	51,300	62,700	Cir Brk
048 & 060	301499-4291	25	15	10	_	64,100	78,400	Cir Brk
048 & 060	301499-4301	30	10	10	10	76,900	94,000	Cir Brk

^{*}Bigh does not include blower motor heat. It is included in the heat pump performance chart of outdoor unit Product Data Sheet. If used in conventional heating application, add blower motor heat: Btuh - watts x 3.413 (watts from specification table).

Special order only. Consult factory for required lead time.

† Voltage, frequency, and phase of these heaters is 208/240-60-3; all others are 208/240-60-1.

The first in dist. Posset to expect
TIC PRESSURE DROP (Inches wc)

519A/MCC					Airflow (Ft3/Min)			
Size	Application*	800	1000	1200	1400	1600	1800	2000	2200
036	Heating	0.07	0.12	0.18	0.25	0.33		I	-
	Cooling	0.09	0.17	0.25	0.35	0.49	_	_	_
042	Heating	_	0.08	0.13	0.17	0.22	0.28	4 =	_
	Cooling	_	0.10	0.17	0.24	0.32	0.42	- 1	-
048	Heating		_	0.13	0.17	0.22	0.28	0.34	_
V	Cooling	_	_	0.17	0.24	0.32	0.42	0.52	
060	Heating		_	_	0.15	0.21	0.25	0.30	0.36
	Cooling		_	-	0.25	0.30	0.37	0.46	0.55

^{*}Heating-Dry Coil; Cooling-Wet Coil

DIMENSIONS (In Inches)

Biower Size	A
042	21
048 and 060	24

Return Air Plenum

PRIGINAL PAGE IS OF POOR QUALITY

A77164

SPLIT-SYSTEM HEAT PUMP UNITS Model 541B/SHP

OF Bridge Ar

The 541B/SHP Outdoor Sections of split-system heat pumps, are designed for quiet, reliable heating during the winter, and cooling during the summer. These heat pump systems provide economy of operation through energy conservation. The energy utilization efficiency of these heat pump systems during the heating season, is in many areas, more than double that of conventional electric space heating equipment. These units recover heat for indoor comfort from outdoor air during the heating season and, by automatically reversing the refrigerant system, remove indoor heat and excess humidity during the cooling season. All models have an ARI-certified cooling energy efficiency of 7.0 Btuh/Watt or better, with heating coefficiency of performance of 2.6 or better and 1.5 or better, respectively, at the 47°F and 17°F outdoor temperature rating points. The COP for all the units is 1.0 or better at 5°F outdoor temperature.

FEATURES

COMPRESSOR—Designed specifically for heat pump duty, with high energy efficiency during heating and cooling operation. Each compressor is hermetically sealed against contamination to assure long life and trouble-free performance. They are internally sprung and externally mounted on rubber isolators for quiet, vibration-free operation. Continuous, reliable operation can be achieved down to 40°F. All models include a discharge-tube muffler to prevent sound transmission of the compressor pulsations to the indoors or outdoors.

BUILT-IN RELIABILITY COMPONENTS—Include a suction-tube accumulator that keeps liquid refrigerant from reaching the compressor; low-pressure switch that stops the compressor if refrigerant charge is lost; a crankcase heater to keep the compressor oil warm and free of refrigerant for maximum lubricity; compressor relief valve for high-pressure protection; and compressor quick-start components to assure reliable operation of the units during brownout conditions and low outdeor temperatures.

WEATHER-PROTECTIVE CABINET—The low-profile design of the 541B/SHP units, with the pleasing malibubeige and jade exterior, blends in well with plants and shrubbery. Galvanized steel, coated with a layer of zinc phosphate to which a coat of alkyd melamine enamel is applied and baked on, is used throughout. This provides a hard, smooth finish that lasts for many years. All screws on the cabinet exterior are stainless steel for a durable, rust-free, quality appearance.

bryant

Bryant

Air Conditioning

Indianapolis Indiana La Puente California unit design—All units are equipped with totally enclosed fan motors for greater reliability under rain and snow conditions. The large, wraparound coil is designed for optimum heat transfer during heating and cooling. The vertical air discharge carries the sound and air up and away from adjacent patio areas and foliage. Sufficient space is provided between rows of composite coils so they can be cleaned with a common garden hose. A divider panel is installed between the compressor and coil section so that the unit can be checked and serviced while operating.

EXTERNAL SERVICE VALVES—Both brass refrigerant service valves are externally located so that refrigerant tube connections can be made quickly and easily. Each valve has a service port for ease of checking operating refrigerant pressures. The valves are designed for flare refrigerant tube connections.

HEAT-SAVING REVERSING VALVE—The operation of the reversing valve is designed so that when the room thermostat is satisfied, the reversing valve locks the hot refrigerant in the indoor coil. With the room thermostat set for continuous blower operation, this locked-in heat will be distributed through the living area after the outdoor unit has shut down—for additional energy conservation and reduced electrical bills.

TIME/TEMPERATURE DEFROST—The defrost cycle is initiated by a time/temperature control to clear the coil of frost and ice. The cycle is started only if the defrost thermostat senses ice buildup on the outdoor coil. After a few minutes, the control automatically returns the unit to the heating cycle.

UNIQUE CHECK-FLO-RATER—The refrigerant metering for the outdoor and indoor units is done with the unique CHECK-FLO-RATER which eliminates the potential servicability requirements of check valves and expansion devices used in conventional heat pumps. For added reliability, a liquid-tube strainer assures clean unrestricted operation.

ACCESSORIES

A uniquely designed automatic changeover room thermostat, with emergency heat switch and light, is available for this line of heat pumps. Only the first bank of supplemental electric heaters is circuited through the second-stage heat anticipator to assure that the current flow always matches the anticipator setting. This minimizes the room temperature swing. Because of the simplified low-voltage circuitry, only the 30-KW units require an emergency heat relay to obtain the emergency heat function.

The outdoor thermostat kit includes a mounting bracket and thermostat for systems with 12- through 25-KW supplemental electric heaters. The thermostat, which mounts inside the Model 541B/SHP, is easily wired to the nearby low-voltage terminal board. An additional outdoor thermostat kit is available with a thermostat and emergency heat relay for use with systems having 30-KW supplemental electric heat.

A convenient unit mounting base kit is available to raise the 541B/SHP 8 inches above ground level. This kit is ideal for installation in areas where the snow level normally does not exceed 2 inches.

Clearance Requirements (In Inches)

Bottom of unit to ground or
normal snow level 6
Inlet air (both sides and coil
end)12
Discharge air (top) 48
Service Clearance
(compressor end)30
NOTE: Unit can be installed
with 6 in. clearance on LH side
(facing control end of unit) when 24-in, clearance is main-
tained from RH side and coil
end.

DIMENSIONS (In Inches)

Size	A	В	C	D	E	F	G	Н	Ship. Wt
021	32-3/4	22-1/4	19-5/16	13-7/16	15-9/16	5-3/4	3/8	5/8	160
028	32-3/4	22-1/4	19-5/16	13-7/16	15-9/16	5-3/4	3/8	3/4	165
034	32-3/4	22-1/4	25-5/16	18-3/4	21-1/4	5-3/4	3/8	3/4	190
041	42	30	25-5/16	18-3/4	21-1/4	6	3/8	3/4	260
047	42	30	25-5/16	18-3/4	21-1/4	6	3/8	3/4	275
057	42	30	31-5/16	24	26-5/16	6	3/8	3/4	295

CERTIFICATION APPLIES ONLY WHEN USED WITH PROPER COMPONENTS AS DESIGNATED BY MANUFACTURER

SPECIFICATIONS

MODEL	541B021SHP		54180	285HP		В	41B034S	HP 9H
SERIES	A			A			A	
ELECTRICAL								
Unit Volts-Hertz-Phase	208-230-60-1			30-60-1		20	08-230-60	
Operating Voltage Range	197-253		197	-253			197-253	
Unit Ampacity for Wire Sizing	16.2			1.3			28.6	
Min Wire Size (60°Copper) (AWG)°	12			0			10	FRIED I
Max Branch Circuit Fuse Size (Amps)	25			10	100		45	
Total Unit Amps	13.2			7.3			23.1	
Compressor Rated Load Amps	11.9			3.0			21.8	
Locked Rotor Amps	65			2			88	
Fan Motor	1/6 HP, PSC			P, PSC	100	0.00	/6 HP, PS	С
Full Load Amps	1.3		- 1	.3			1.3	
PERFORMANCE DATA								
ARI Sound Rating Number†	19	-		9			19	
517B/HPFC	024	030	036	-	-	036	-	-
519A/MCC	_	-	_	036	036	-	036	036
520B/BP	-	-	-	042	-	-	042	-
Rated Heating Capacity - 47°F‡	21,000		28,500			34,500	34,500	34,000
Watts	2400		3200	3150		3950	3900	3850
COP	2.6	2.6	2.6	2.7	2.7	2.6	2.6	2.6
Rated Heating Capacity - 17°F‡	10,000				13,500	19,000	19,000	18,500
Watts	1900		2600			3200	3150	3100
COP	1.5	1.6	1.6	1.6	1.6	1.7	1.8	1.8
Rated Cooling Capacity (Btuh)‡	18,500				25,500		32,000	32,500
Watts	2550	3550	3650	3600	3550	4500	4450	4400
EER	7.3	7.0	7.0	7.1	7.2	7.1	7.2	7.4
COMPRESSOR & REFRIGERANT								
Compressor	Hermetic			netic			Hermetic	
High-Pressure Protection (IPRV)	Std			td			Std	
Compressor Motor Protection	Sit			td			Std	
Refrigerant Charge-Type & Amount**	R-22 & 0s-5 oz	R	-22 & 5	lbs-10 (oz	R-2	2 & 6 lbs-1	2 oz
OUTDOOR COIL & FAN								
Coil Face Area (Sq Ft)	7.9		7	.9			10.6	
Rows & Fins Per Inch	2 & 20		28	20			2 & 20	
Fan Diameter & No. of Blades	18&4		18	8 4			18 & 4	
Rated Airflow (Ft ³ /Min)‡	2100		21	00			2200	
Liquid-Tube Connection	3/8 Flare		3/81	Flare			3/8 Flare	
Vapor-Tube Connection	5/8 Flare		3/41	Flare			3/4 Flare	
STANDARD EQUIPMENT								
Heat-Saving Reversing Valve	Std		S	td			Std	
Defrost Control (time/temp)	Std		S	td			Std	
Accumulator	Std		S	td			Std	and a
Crankcase Heater	Std		S	td			Std	
Liquid-Tube Strainer	Std		S	td			Std	Parameter Comment
Totally Enclosed Outdoor Fan Motor	Std		S	td			Std	
Low-Pressure Switch	Std	Designation of the		td			Std	
Check-Flo-Rater	Std		S	td			Std	
Discharge-Tube Muffler	Std		S	td			Std	
Compressor Quick-Start Components	Std		S	td			Std	
Brass Refrigerant Service Valves	Std		S	td			Std	
Outdoor Coil Grille Guard	Std			td			Std	
Compressor Vibration Isolators	Std		S	td			Std	
OPTIONAL EQUIPMENT								
Unit Mounting Base	301392-701		30139	2-701			01392-70	
Room Thermostat w/Emergency Heat Switch	34427DP99			7DP99		3	34427DP9	9
Room Thermostat w/Manual Changeover Switch	34427DP87			7DP87			4427DP8	
High-Pressure Switch	301619-701		30161	9-701		3	01619-70)1
Quick-Start Capacitor-Relay Kit	301593-701			3-701		3	01593-70)1
						2	01399-70	11
2-Way Flow Filter-Drier-Liquid-Tube	301399-701		30139	9-701		3	01399-70	/ 1
	301399-701	+		1D12				
Filter-Drier-Vapor-Tube	301399-701 54871D12	+	5487	1D12			54871D13	3
	301399-701		5487 30138			3		3

^{*}If other than 60°C copper wire is used, size can be determined from unit ampacity given in above table and applicable table of National Electric Code. Wire size selected must have current capacity not less than that of copper wire specified and must not create a voltage drop between service panel and unit in excess of 2% of unit rated voltage.

ORIGINAL PAGE IS OF POOR QUALITY

[†]Rated in accordance with ARI Standard 270-75.

[‡]Rated in accordance with ARI Standard 240-76.

^{**}The factory refrigerant charge is sufficient for systems requiring up to 30 ft of innercornecting tubing. For tubing lengths greater than 30 ft see Installation Instructions for additional refrigerant requirements.

SPECIFICATIONS

MODEL	43	541B0	MISH		#2	641B	0478HI		14	541B	0578H	
SERIES ELECTRICAL			<u> </u>				Α				A	
Unit Volts & Phase	208 &	208 &	230 &	230 &	208 &	208 8	230 &	230 &	208 &	208 8	1230 &	2308
Olin Volta d 1 made	1.	3/	1	3	1.	3	1	3	1.	3	1	3
Operating Voltage Range	187	229	207	-253	187	229		-253	187	-229	207	7-253
Unit Ampacity for Wire Sizing	32.7	19.7	29.9	18.1	36.5			20.0	41.0	24.6	37.3	22.5
Min Wire Size (60°Copper) (AWG)†	8	12	10	12	8	10	8	12	6	10	8	10
Max Branch Circuit Fuse Size (Amps)	60	35	50	30	60	35	60	35	70	40	60	35
Total Unit Amps			24.3	14.9	29.6	18.0	27.0	16.4	33.3	20.2		18.5
Compressor Rated Load Amps	109	14.2	22.3 94	12.9			25.0 106	14.4	31.0 175		28.0 150	16.2 98
Locked Rotor Amps Fan Motor	109	79	P. PSC		120		IP, PSC		1/5		IP, PSC	
Full Load Amps			2.0				2.0				2.3	
PERFORMANCE DATA												
ARI Sound Rating Number‡			9	alum i		Y	19				19	
519A/MCC	04		0	42		48	0	48		60		060
520B/BP	04			_		48				60		-
Rated Heating Capacity - 47°F**		000		000		000		000		000		,000
Watts		00		00		200		00		000		300
COP		6		2.6		.7		.8		.6		2.6
Rated Heating Capacity - 17°F°*		000		000		000		500		000		,000
Watts COP		00 .8		.8		.8		.8		.8		100 1.8
Rated Cooling Capacity (Btuh)**		000		000		000		000		000		,000
Watts	56			000		000		300		000		200
EER	7			.1		.3		.4		.2		7.5
COMPRESSOR & REFRIGERANT	-			-								
Compressor		Her	metic			Her	metic				metic	
High-Pressure Protection (IPRV)			itd				Std				Std	
Compressor Motor Protection			itd				Std				Std	
Refrigerant Charge - Type & Amount†	R-	22 & 6	lbs-14	oz	R		lbs-4		R-	-22 & 8	lbs-1	4 oz
OUTDOOR COIL & FAN				-	-		-		_		-	- 10
Coil Face Area (Sq Ft)			1.4				1.4				4.3	
Rows & Fins Per Inch Fan Diameter & No. of Blades	-		8 4		_		8 20				8 20 2 8 3	
Rated Airflow (Ft ³ /Min)**	-		00				700				500	-
Liquid-Tube Connection			Flare				Flare				Flare	-
Vapor-Tube Connection			Flare	1			Flare				Flare	-
STANDARD EQUIPMENT							College College			-		
Heat-Saving Reversing Valve			itd				Std				Std	
Defrost Control (time/temp)			td				Std				Std	
Accumulator			itd				Std				Std	
Crankcase Heater			itd				Std				Std	2.75 7
Liquid-Tube Strainer			td				Std				Std	W 6 17
Totally Enclosed Outdoor Fan Motor			td				Std				Std	
Low-Pressure Switch	_		itd itd				Std				Std Std	
Discharge-Tube Muffler			itd				Std				Std	
Compressor	_		itd				Std				Std	
Brass Refrigerant Service Valves			itd				Std				Std	
Outdoor Coil Grille Guard			itd				Std				Std	
Compressor Vibration Isolators			itd				Std				Std	
- OPTIONAL EQUIPMENT		,					-					
Unit Mounting Base			92-702				92-702			3013	92-702	
Room Thermostat w/Emergency Heat Switch			7DP99				7DP99				7DP99	
Room Thermostat w/Manual Changeover Switch	1		7DP87				7DP87				7DP87	
High-Pressure Switch			19-701				19-701				19-701	
2-Way Flow Filter-Drier - Liquid Tube			99-701				99-701 71D14		-		99-701	
Filter-Drier Vapor Tube Outdoor Thermostat and Mtg Bracket	_		1D14 30-701				80-701		-		71D14 80-701	
Second Outdoor Thermostat and		30130	30-701		_	3103	00-701		-	3013	00-701	
Emergency Heat Relay‡‡			_			3013	80-702			3013	80-702	,
COMPROTEC*		3016	00-701				00-701				00-701	
Swivel Ells - Liquid/Vapor Tubes	IBN	1616R	/IBN24	24R	IBN		/IBN24		IBN		R/IBN24	
Vapor Tube Adapter 3/4 Flare												
x 1-1/8 Tube (Pkg of 6)			_			3018	92-704			3018	92-704	

^{*}Special order unit-consult factory for lead time required.

[†] If other than 60°C copper wire is used, size can be determined from unit ampacity given in above table and applicable table of National Electric Code. Wire size selected must have current capacity not less than that of copper wire specified and must not create a voltage drop between service panel and unit in excess of 2% of unit rated voltage.

‡Rated in accordance with ARI Standard 270-75.

**Rated in accordance with ARI Standard 240-76.

^{††}The factory refrigerant charge is sufficient for systems requiring up to 30 ft of innerconnecting tubing. For tubing lengths greater than 30 ft see installation instructions for additional refrigerant requirements.

‡‡Required only for systems with 30-KW supplemental heat.

HEAT PUMP HEATING PERFORMANCE

		0218HP	100	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	028SH	the second of the second		0285H	1000		0345H	
Outdoor Ambient*F	Heating Bluh	KW	СОР	Heating Btuh	KW	COP	Heating Btuh	KW	COP	Heating Btuh	KW	COF
62	29,300	2.7	3.2	36,800	3.4	3.2	38,200	3.5	3.2	43,900	4.3	3.0
57	26,300	2.6	3.0	33,500	3.3	3.0	34,800	3.4	3.0	40,700	4.2	2.8
52	23,500	2.5	2.8	30,400	3.2	2.8	31,500	3.3	2.8	37,600	4.0	2.7
47	21,000	2.4	2.6	27,500	3.1	2.6	28,500	3.2	2.6	34,500	3.9	2.6
42	18,700	2.3	2.4	24,700	3.0	2.4	25,600	3.1	2.4	31,600	3.8	2.4
37	16,600	2.2	2.2	22,100	2.9	2.2	22,900	2.9	2.2	28,800	3.7	2.3
32	14,700	2.1	2.0	19,700	2.7	2.1	20,400	2.8	2.1	26,100	3.5	2.1
27	12,900	2.0	1.9	17,500	2.7	1.9	18,100	2.7	1.9	23,600	3.4	2.0
22	11,400	1.9	1.7	15,400	2.6	1.7	16,000	2.7	1.7	21,200	3.3	1.9
17	10,000	1.9	1.5	13,500	2.5	1.6	14,000	2.6	1.6	19,000	3.2	1.7
12	8.800	1.8	1.4	11,800	2.4	1.4	12,200	2.5	1.4	16,900	3.0	1.6
7	7,700	1.7	1.3	10,300	2.3	1.3	10,600	2.4	1.3	14,900	2.9	1.5
2	6,700	1.7	1.1	8,900	2.2	1.2	9,200	2.3	1.2	13,200	2.8	1.4
-3	5,900	1.6	1.0	7,600	2.1	1.0	7.900	2.2	1.0	11,600	2.7	1.3
-8	5,200	1.6	0.9	6,500	2.0	0.9	6,800	2.1	0.9	10,200	2.5	1.2
-13	4,600	1.5	0.8	5,600	1.9	0.8	5,900	2.0	0.8	9,000	2.4	1.1
-18	4.000	1.5	0.8	4,900	1.8	0.8	5,100	1.9	0.8	8.000	2.3	1.0
-23	3,500	1.5	0.7	4,300	1.7	0.7	4,500	1.9	0.7	7,200	2.2	0.9
-28	3,100	1.4	0.6	3,800	1.7	0.7	4,100	1.8	0.7	6.700	2.0	0.9

A Comment	519A	028SHF 036MC 08042BI	C/	519A	034SHP 036MC 08042BF	C/	519/	041SHP 042MC 0B042BF	C/ #3	519/	3047SHF A048MC 0B048BF	C/ -
Outdoor Ambient*F	Heating Btuh	KW	COP	Heating Btuh	KW	COP	Heating Btuh	KW	СОР	Heating Btuh	KW	СОР
62	38,200	3.4	3.2	43,900	4.2	3.0	55,400	5.6	2.9	62,500	6.1	3.0
57	34,800	3.3	3.0	40,700	4.1	2.9	50,700	5.3	2.8	57,500	5.7	2.9
52	31,500	3.2	2.8	37,600	4.0	2.7	46,200	5.0	2.7	52,600	5.4	2.8
47	28,500	3.1	2.7	34,500	3.9	2.6	42,000	4.8	2.6	48,000	5.2	2.7
42	25,600	3.0	2.5	31,600	3.7	2.5	38,000	4.5	2.4	43,600	4.9	2.6
37	22,900	2.9	2.3	28,800	3.6	2.3	34,300	4.3	2.3	39,400	4.7	2.4
32	20,400	2.8	2.1	26,100	3.5	2.2	30,900	4.1	2.2	35,400	4.5	2.3
27	18,100	2.7	1.9	23,600	3.4	2.0	27,700	3.9	2.1	31,700	4.3	2.1
22	16,000	2.6	1.8	21,200	3.2	1.9	24,700	3.7	1.9	28,200	4.2	2.0
17	14,000	2.5	1.6	19,000	3.1	1.8	22,000	3.6	1.8	25,000	4.1	1.8
12	12,200	2.4	1.5	16,900	3.0	1.6	19,600	3.4	1.7	22,100	3.9	1.6
7	10,600	2.3	1.3	14,900	2.9	1.5	17,300	3.3	1.5	19,400	3.8	1.5
2	9,200	2.2	1.2	13,200	2.7	1.4	15,300	3.2	1.4	17,000	3.7	1.3
-3	7,900	2.1	1.1	11,600	2.6	1.3	13,500	3.1	1.3	14,900	3.6	1.2
-8	6,800	2.1	0.9	10,200	2.5	1.2	11,900	3.0	1.1	13,100	3.5	1.1
-13	5,900	2.0	0.9	9,000	2.4	1.1	10,600	3.0	1.0	11,500	3.5	1.0
-18	5,100	1.9	0.8	8,000	2.2	1.0	9,500	3.0	0.9	10,300	3.4	0.9
-23	4,500	1.8	0.7	7,200	2.1	0.9	8,500	2.9	0.8	9,400	3.3	0.8
-28	4,100	1.7	0.7	6,700	2.0	0.9	7,800	2.9	0.8	8,700	3.2	0.8

		028SHF	The second secon		034SHF	-		041SHF	100	100000000000000000000000000000000000000	3047SHF A048MC	
Outdoor Ambient°F	Heating Btuh	KW	СОР	Heating Btuh	KW	СОР	Heating Btuh	KW	СОР	Heating Btuh	KW	COF
62	37,600	3.3	3.3	43,000	4.2	3.0	54,300	5.5	2.9	64,000	5.7	3.3
57	34,200	3.2	3.1	39,900	4.1	2.9	50,000	5.2	2.8	58,400	5.5	3.1
52	31,000	3.1	2.9	36,900	3.9	2.7	45,900	4.9	2.7	53,000	5.3	2.9
47	28,000	3.0	2.7	34,000	3.8	2.6	42,000	4.7	2.6	48,000	5.1	2.8
. 42	25,100	2.9	2.5	31,100	3.7	2.4	38,200	4.4	2.5	43,300	4.8	2.6
37	22,400	2.8	2.3	28,400	3.6	2.3	34,600	4.2	2.4	38,900	4.7	2.4
32	19.900	. 2.7	2.1	25,700	3.4	2.2	31,200	4.0	2.3	34,900	4.5	2.3
27	17,600	2.6	2.0	23,200	3.3	2.0	27,900	3.8	2.1	31,100	4.3	2.1
22	15,500	2.5	1.8	20,800	3.2	1.9	24,900	3.6	2.0	27,600	4.1	1.9
17	13,500	2.4	1.6	18,500	3.1	1.8	22,000	3.5	1.8	24,500	4.0	1.6
12	11,800	2.3	1.5	16,400	2.9	1.6	19,400	3.3	1.7	21,600	3.8	1.6
7	10,200	2.2	1.3	14,500	2.8	1.5	17,000	3.2	1.5	19,000	3.7	1.5
2	8,700	2.1	1.2	12,700	2.7	1.4	14,800	3.1	1.4	16,700	3.5	1.4
-3	7,500	2.0	1.1	11,100	2.6	1.2	12,900	3.0	1.2	14,700	3.4	1.2
-8	6,400	2.0	0.9	9,700	2.4	1.1	11,200	2.9	1.1	13,100	3.3	1.1
-13	5,500	1.9	0.8	8,400	2.3	1.1	9,800	2.9	1.0	11,600	3.2	1.0
-18	4.800	1.8	0.8	7,500	2.2	1.0	8,700	2.8	0.9	10,500	3.2	0.9
-23	4,300	1.7	0.7	6,700	2.1	0.9	7,800	2.8	0.8	9,700	3.1	0.9
-28	3,900	1.6	0.7	6,200	1.9	0.9	7,200	2.8	0.7	9,100	3.0	0.9

NOTES:

1. The Btuh heating capacity values shown are net "integrated" values from which the defrost effect has been subtracted. The Btuh heating from supplemental heaters should be added to these values to obtain total system capacity.

2. The KW values include the compressor, outdoor fan motor, and indoor blower motor. The KW from supplemental heaters should be added to these values to obtain total system KW.

3. See the Heating Performance Correction Factors Table for Ft3/Min and indoor coil entering air temperature adjustments.

HEAT PUMP HEATING PERFORMANCE

#1	519A0	57SHP 60MC 3060BF	C/		57SHP 060MC	
Outdoor Ambient*F	Heating Btuh	KW	СОР	Heating Btuh	KW	СОР
62	73,600	7.3	2.9	70,700	6.9	3.0
57	68,200	7.1	2.8	65,600	6.7	2.9
52	63,000	6.8	2.7	60,700	6.5	2.7
47	58,000	6.6	2.6	56,000	6.3	2.6
42	53,100	6.3	2.4	51,400	6.1	2.5
37	48,500	6.1	2.3	46,900	5.9	2.3
32	44,100	5.9	2.2	42,700	5.7	2.2
27	39,800	5.7	2.0	38,600	5.5	2.1
22	35,800	5.4	1.9	34,700	5.3	1.9
17	32,000	5.3	1.8	31,000	5.1	1.8
12	28,500	5.1	1.6	27,600	4.9	1.6
7	25,200	4.9	1.5	24,300	4.7	1.5
2	22,100	4.8	1.4	21,300	4.5	1.4
-3	19,300	4.6	1.2	18,500	4.2	1.3
-8	16,800	4.5	1.1	16,000	4.0	1.1
-13	14,500	4.4	1.0	13,700	3.8	1.0
-18	12,600	4.3	0.9	11,700	3.6	0.9
-23	10,900	4.2	0.8	10,000	3.4	0.8
-28	9,500	4.1	0.7	8,500	3.2	0.8

HEATING PERFORMANCE CORRECTION FACTORS

Indoor Coil Ft3/Min	Correction	n Factors
per 12,000 Btuh of ARI Cooling Capacity	Capacity	Power
400	0.98	0.99
450	1.00	1.00
500	1.02	1.01
Indoor Coil Entering Air Temp °F (DB)		
65	1.02	0.99
70	1.00	1.00
75	0.98	1.01

NOTES:

- The Btuh heating capacity values shown are net "integrated" values from which the defrost effect has been subtracted. The Btuh heating from supplemental heaters should be added to these values to obtain total system capacity.
- these values to obtain total system capacity.

 The KW values include the compressor, outdoor fan motor, and indoor blower motor. The KW from supplemental heaters should be added to these values to obtain total system KW.
- See the Heating Performance Correction Factors Table for Ft³/Min and indoor coil entering air temperature adjustments.

HEAT PUMP REFRIGERANT TUBING KITS*

Kit P/N	For Use With	Length	Tub	OD	Flare	Conn	Ship.
	541B/SHP Size	(Feet)	Liquid	Vapor	Liquid	Vapor	Wt
301376-301	021	10	3/8	5/8	3/8	5/8	8
301376-302		20	3/8	5/8	3/8	5/8	12
301376-304		30	3/8	5/8	3/8	5/8	17
301376-305		40	3/8	5/8	3/8	5/8	22
301376-306		50	3/8	5/8	3/8	5/8	26
301376-307	028 and 034	10	3/8	3/4	3/8	3/4	9
301376-308		23	3/8	3/4	3/8	3/4	14
301376-310		30	3/8	3/4	3/8	3/4	20
301376-311		40	3/8	3/4	3/8	3/4	26
301376-312		50	3/8	3/4	3/8	3/4	32
301376-313	041	10	3/8	7/8	3/8	3/4	11
301376-314		20	3/8	7/8	3/8	3/4	17
301376-316		30	3/8	7/8	3/8	3/4	24
301376-317		40	3/8	7/8	3/8	3/4	30
301376-318	7	50	3/8	7/8	3/8	3/4	37
301376-319	047 and 057	30	3/8	1-1/8	3/8	3/4	42
301376-320		40	3/8	1-1/8	3/8	3/4	50
301376-321	7	50	3/8	1-1/8	3/8	3/4	60

NOTE: The vapor tube insulation is 1/2 inch thick and the R value is 2.0.

^{*}These tubing kits are vapor charged. Refer to Model 541B/SHP Installation Instructions for additional refrigerant requirements.

Indo				Laborate Contract	GUTD		L ENTER!	NG AIR T		TURE F			
Cell	Alc	-	85			95			105	100 00 100		115	i Lan
that	*	ME	pacity Ituh	Total System	ME	pacity Ituh	Total System	ME	apacity Stuh	Total System		epecity Stuh	System
Pt3/Min	EWB	Total	Sens	KW	Total	Sens	KW	Total	Sens	KW	Total	Sens	KW
- Design	action!	Decree 6	541		Outdoor		With 5178	BO24HPF	C Indoor	Section		Mary The	100
600	71	20.9	11.5	2.6	19.4	11.0	2.7	18.1	10.5	2.8	16.7	10.1	2.9
600	67	19.3	13.8	2.4	18.0	13.3	2.5	16.7	12.8	2.6	15.4	12.4	2.7
600	63	17.7	16.0	2.2	16.5	15.5	2.3	15.2	15.1	2.4	14.0	14.0	2.5
600	59	15.9	15.9	2.0	14.7	14.7	2.0	13.5	13.5	2.1	12.3	12.3	2.2
700	71	21.5	12.3	2.7	19.9	11.7	2.7	18.6	11.3	2.9	17.1	10.8	3.0
700	67	19.9	14.9	2.5	18.5	14.4	2.6	17.2	13.9	2.7	15.8	13.5	2.8
700	63	18.2	17.5	2.3	16.9	16.9	2.3	15.7	15.7	2.4	14.3	14.3	2.5
700	59	16.3	16.3	2.0	15.1	15.1	2.1	13.9	13.9	2.2	12.6	12.6	2.3
800	71	22.0	13.0	2.7	20.4	12.5	2.8	19.0	12.0	2.9	17.4	11.5	3.0
800	67	20.4	16.0	2.5	18.9	15.4	2.6	17.6	15.0	2.7	16.1	14.5	2.8
800	63	18.6	18.6	2.3	17.3	17.3	2.4	16.0	16.0	2.5	14.6	14.6	2.6
800	59	16.7	16.7	2.1	15.4	15.4	2.1	14.1	14.1	2.2	12.8	12.8	2.3
		180285	IP Outdo	or Section	With 51	78030H	PFC 5178	036HPF	C 519A	36MCC/5	20B042	RP or	2.0
							C Indoor S		0,0100	0001110075	200042	Dr, 01	
800	71	28.2	15.6	3.5	26.6	15.0	3.7	24.9	14.4	3.8	23.1	13.8	4.0
800	67	26.5	18.9	3.2	24.7	18.2	3.4	23.1	17.6	3.6	21.5	17.0	3.7
800	63	24.6	22.1	2.9	22.7	21.3	3.1	21.2	20.7	3.3	19.6	19.€	3.4
800	59	22.5	22.5	2.5	20.4	20.4	2.8	18.9	18.9	2.9	17.4	17.4	3.4
100C	71	29.2	17.1	3.6	27.5	16.6	3.9	25.8	16.0				
1000	67	27.4	21.1	3.4		20.5				4.0	23.9	15.4	4.1
					25.7		3.6	24.0	19.9	3.7	22.2	19.3	3.8
1000	63	25.5	25.0	3.0	23.6	23.6	3.3	21.9	21.9	3.4	20.3	20.3	3.5
1000	59	23.3	23.3	2.7	21.1	21.1	2.9	19.5	19.5	3.0	18.0	18.0	3.1
1200	71	28.9	18.6	3.8	28.3	18.1	4.0	26.4	17.5	4.1	24.5	16.9	4.2
1200	67	28.1	23.2	3.5	26.3	22.5	3.7	24.6	21.9	3.8	22.7	21.3	3.9
1200	63	26.1	26.1	3.1	24.2	24.2	3.4	22.5	22.5	3.5	20.8	20.8	3.6
1200	59	23.8	23.8	2.8 HPFC, dedu	21.6	21.6	30	20.0	20.0	3.1	18.4	18.4	3.2
54	1B034		ioor Sect							r 519A03			
1000	71	35.6	19.3	4.5	33.8	18.7	4.6	31.9	18.0	4.8	30.1	17.4	4.9
1000	67	33.3	23.3	4.1	31.6	22.7	4.3	29.8	22.0	4.4	28.0	21.3	4.5
1000	63	30.8	27.1	3.7	29.1	26.4	3.9	27.4	25.7	4.0	25.7	25.1	4.1
1000	59	28.1	28.1	3.3	26.4	26.4	3.4	24.7	24.7	3.6	23.1	23.1	3.7
1200	71	36.7	20.8	4.6	34.8	20.2	4.8	32.8	19.5	4.9	30.9	18.9	5.0
1200	67	34.3	25.4	4.3	32.5	24.8	4.4	30.6	24.1	4.5	28.8	23.4	4.7
1200	63	31.7	29.9	3.9	30.0	29.2	4.0	28.2	28.2	4.1	26.4	26.4	4.3
1200	59	28.9	28.9	3.4	27.1	27.1	3.6	25.4	25.4	3.7	23.7	23.7	3.8
1400	71	37.5	22.2	4.7	35,5	21.5	4.9	33.5	20.9	5.0	31.5	20.2	5,1
1400	67	35.1	27.4	4.4	33.2	26.7	4.5	31.2	26.0	4.6	29.4	25.3	4.8
1400	63	32.4	32.4	4.0	30.6	30.6	4.1	28.8	28.8	4.2	27.0	27.0	4.4
1400	59	29.4	29.4	3.5	27.7	27.7	3.6	25.9	25.9	3.8	24.2	24.2	3.9
NOTE:	When u	sed with 5	517B036H	IPFC, add	0.1 KW an	d deduct	0.5 MBtuh;				7 7	L. A. Ulita	
with 51	PA036M	ICC/520B	042BP, d	educt 0.5 N	/Btuh		4 4 4 4	of Marie		and the same	Harris L.	70	60
43.536	0.147	418041	SHP Out	wor Seeth	on With 5	19A042	MCC/520E	3042BP	or 519AC	42MCC In	door Sec	tion	- 5
1200	71	43.5	23.5	5.6	40.8	22.5	5.8	37.8	21.5	6.0	34.9	20.5	6.2
1200	67	40.6	28.2	5.2	38.0	27.2	5.3	35.3	26.2	5.6	32.5	25.2	5.8
1200	63	37.4	32.7	4.7	35.0	31.8	4.9	32.4	30.7	5.1	29.8	29.7	5.3
1200	59	33.8	33.8	4.2	31.7	31.7	4.3	29.2	29.2	4.5	26.7	26.7	4.7
1400	71	44.7	25.0	5.8	41.8	24.0	5.9	38.7	23.0	6.2	35.7	22.0	6.4
1400	87	41.7	30.3	5.3	39.0	29.4	5.5	36.1	28.3	5.7	33.2	27.3	5.9
1400	63	38.4	35.5	4.9	35.9	34.5	50	33.2	33.2	5.2	30.5	30.5	5.4
1400	59	34.7	34.7	4.3	32.4	32.4	4.5	29.8	29.8	4.6	27.3	27.3	4.8
1600	71	45.6	26.4	5.9	42.6	25.4	6.1	39.5	24.4	6.3	36.3	23.4	6.5
1600	67	42.6	32.3	5.5	39.8	31.3	5.6	36.8	30.3	5.8	33.8	29.2	6.0
1800	63	39.2	38.1	6.0	36.6	36.6	5.1	33.8	33.8	5.3		31.0	5.5
1600	59	35.4	35.4	4.4	33.0	33.0	4.5	30.4	30.4	4.7	31.0	27.7	4.9
1000	- 08	33.4			042BP, ad			30.4	30,4	4.7	27.7	21.1	4.9

1. Total and sensible capacities are net capacities. Blower motor heat has been subtracted.
2. Sensible capacities shown are based on 80°F entering air at the indoor coil. For sensible capacities at other than 80°F, deduct 835 Btuh per 1000 Ft³/Min of indoor coil air for each degree below 80°F, or add 835 Btuh per 1000 Ft³/Min of indoor coil air per degree above 80°F.

3. Detailed cooling capacities are based on indoor and outdoor unit at the same elevation and connected by 30 feet of tubing. If other than 30 feet of tubing is used and/or indoor unit is located above outdoor unit, a slight variation in capacity may occur.

4. Unit KW is total of indoor and outdoor unit KW's.

DETAILED COOLING CAPACITIES

Indo					OUTE		IL ENTERI	NG AIN		TURE P			-
Coll	Air	No.	85 apacity	Total	Net A	95 epacity	Total	Not C	105 epacity	Total	Net C	115 apacity	Total
Sec. 1	°F		tuh	System		Stuh	System		Stuh	System		tuh	System
Ft ³ /Min	EWB	Total	'sens	KW	Total	Sens	KW		Sens	KW	Total	Sens	KW
	5	41B047	SHP Out	oor Section	n With 5	19A048	MCC/520E	048BP	or 519A0	48MCC In	door Sec	tion ?	~
1400	7:	47.7	26.0	5.9	45.1	25.1	6.1	42.9	24.4	6.3	39.6	23.3	6.6
1400	67	44.6	31.4	5.5	42.1	30.5	5.7	39.9	29.7	5.9	36.9	28.6	6.1
1400	63	41.2	36.6	5.0	38.8	35.7	5.2	36.6	34.8	5.4	33.9	33.7	5.6
1400	59	37.5	37.5	4.4	35.2	35.2	4.6	32.9	32.9	4.8	30.4	30.4	5.0
1600	71	48.8	27.4	6.1	46.1	26.5	6.3	43.7	25.8	6.5	40.4	24.7	6.7
1600	67	45.6	33.4	5.6	43.0	32.5	5.8	40.7	31.7	6.0	37.6	30.6	6.2
1600	63	42.1	39.2	5.1	39.7	38.2	5.3	37.4	37.3	5.5	34.5	34.5	5.7
1600	59	38.3	38.3	4.5	35.9	35.9	4.7	33.5	33.5	4.9	30.9	30.9	5.1
1800	71	49.6	28.7	6.2	46.8	27.8	6.4	44.4	27.1	6.6	41.0	26.0	6.8
1800	67	46.3	35.3	5.7	43.7	34.4	5.9	41.4	33.5	6.1	38.2	32.4	6.3
1800	63	42.8	41.6	5.2	40.3	40.3	5.4	38.0	38.0	5.6	35.0	35.0	5.8
1800	59	38.9	38.9	4.6	36.4	36.4	4.8	34.1	34.1	5.0	31.4	31.4	5.1
NOTE:	When u	sed with	519A048	MCC/520B	048BP, a	dd 0.1 KW					A STATE OF		
			54	1B0578HP	Outdoor	Section	With 519A	060MCC	Indoor 8	Section	ABTER		
1600	71	61.0	32.0	7.5	57.9	30.9	7.8	54.7	29.8	8.0	51.8	28.8	8.3
1600	67	57.0	38.2	6.9	54.0	37.1	7.2	51.0	35.9	7.5	48.1	34.8	7.7
1600	63	52.8	44.2	6.3	49.8	42.9	6.6	46.9	41.8	6.8	44.0	40.6	7.1
1600	59	48.1	48.1	5.6	45.2	45.2	5.9	42.4	42.4	6.1	39.4	39.4	6.3
1800	71	62.2	33.4	7.7	59.0	32.4	8.0	55.7	31.2	8.2	52.7	30.2	8.5
1800	67	58.1	40.3	7.1	55.0	39.2	7.4	51.9	38.0	7.6	49.0	36.9	7.9
1800	63	53.8	46.9	6.5	50.8	45.7	6.7	47.8	44.5	6.9	44.9	43.3	7.2
1800	59	49.0	49.0	5.8	46.0	46.0	6.0	43.1	43.1	6.2	40.1	40.1	6.4
2000	71	63.2	34.9	7.8	59.9	33.8	8.1	56.6	32.7	8.3	53.5	31.7	8.6
2000	67	59.0	42.3	7.2	55.9	41.2	7.5	52.7	40.9	7.7	49.7	38.9	8.0
2000	63	54.6	49.5	6.6	51.5	48.3	6.8	48.5	47.1	7.1	45.5	45.5	7.3
2000	59	49.7	49.7	5.9	46.7	46.7	6.1	43.7	43.7	6.3	40.7	40.7	5.5
			541B057	SHP Outde	oor Sect	ion With	519A060M	CC/520	SCOOBP I	ndoor Sect	ion	7	
1800	71	60.3	32.8	7.7	57.2	31.7	8.0	54.0	30.7	8.3	51.17	29.7	8.6
1800	67	56.3	39.6	7.1	53.4	38.5	7.4	50.3	37.4	7.7	47.5	36.4	7.9
1800	63	52.1	46.2	6.5	49.2	45.0	6.7	46.3	43.9	7.0	43.5	42.8	7.3
1800	59	47.5	47.5	5.8	44.6	44.6	6.0	41.8	41.8	6.2	38.9	38.9	6.5
2000	71	61.2	34.2	7.9	58.1	33.2	8.1	54.8	32.1	8.4	51.9	31.1	8.7
2000	67	57.2	41.7	7.3	54.2	40.5	7.5	51.1	39.4	7.8	48.2	38.4	8.1
2000	63	53.0	48.8	6.6	50.0	47.6	6.9	47.0	46.5	7.1	44.1	44.1	7.4
2000	59	48.2	48.2	5.9	45.2	45.2	6.1	42.4	42.4	6.3	39.4	39.4	6.6
2200	71	62.0	35.6	8.0	58.9	34.5	8.3	55.5	33.5	8.5	52.5	32.5	8.8
2200	67	58.0	13.6	7.4	54.9	42.5	7.6	51.8	41.4	7.9	48.8	40.3	8.2
2200	63	53.7	51.3	6.7	50.6	50.2	7.0	47.6	47.6	7.2	44.7	44.7	7.5
2200	59	48.8	48.8	6.0	45.8	45.8	6.2	42.9	42.9	6.4	39.9	39.9	6.7

1. Total and sensible capacities are net capacities. Blower motor heat has been subtracted.

2. Sensible capacities shown are based on 80°F entering air at the indoor coil. For sensible capacities at other than 80°F, deduct 835 Btuh per 1000 Ft3/Min of indoor coil air for each degree below 80°F, or add 835 Btuh per 1000 Ft3/Min of indoor coil air per degree above 80°F.

3. Detailed cooling capacities are based on indoor and outdoor unit at the same elevation and connected by 30 feet of tubing. If other than 30 feet of tubing is used and/or indoor unit is located above outdoor unit, a slight variation in capacity may occur.

4. Unit KW is total of indoor and outdoor unit KW's.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

UNIT MUST BE INSTALLED IN ACCORDANCE WITH INSTALLATION INSTRUCTIONS AIR HANDLING
UNIT #1

ORIGINAL PAGE IS
OF POOR QUALITY

MFEUA) MOBER NUMBER 010 SWH1202	Associated Engineering Consultants Oldo Tac arr. w Oldo SWH1202 21 10.	aring orr. UM	UMIT MODEL NUMBER CE FACE FACE VEL.		ARRANGT DISCLAR		Por	-17584 -17584 1 Comp LL26 r DATE X FC X FC X FC TATE EN	25926 17584 1 Component 256 FOR APPRIL DATE BOT. FYPE CFA X F.C. 68900 X F.C. 68900 D.B. W.B. D.B. W.B.	8 WAS WAS WAS VEUGET 2 (600 2 (600 2 1714 174 0.8. W.B.	3/2/78 FOR RECORD AAS AAS ANING ANE. PRECORD AND ANING		HWL HWL HWL LSL, MSL-HORIZ LWL, MWL LSL, WSL-VERT LYG LHD VERT LHA HORIZ LHA NORIZ LHA	++++++++++++++++++++++++++++++++++++++	118 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N 1 55	55. 66 WOTOR DATA WOTOR DATA TOLITICE X X X X X X X X X X X X X X X X X X X			4 00 M 00 1
ACCESSORY ARRANGEMENT OLO OLO OLO OLD COIL MIX. BOX HERA FILTERS FILTERS FOR POSITION CODE: 18 - in avxiliary coil section; 21 - 1st coil in state in a st	43-3/8 43-3/8 hr ton Hee	3.78 PERVAY	AY VIBRATI	WULT SONE TYPE SONE SONE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SET NUMBER TOR	PAMPIER SHAPER	ITEM # HTG. COIL CLG. COIL COIL COIL COIL COIL COIL COIL TOTAL TOTAL		AIR FRICTION NOTES, Unit furnished with combinat starter/disconnect with H-O-auxiliary contact.	NO LOS ASSESSEDANCES OF THE PROPERTY OF THE PR	Works auxi	Unit fu	urnis r/dis	Worts, Unit furnished with starter/disconnect, auxiliary contact.		## ## ## ## ## ## ## ## ## ## ## ## ##	To-A Co-Secon	ion magnet A switch a	to t	Si di	A L

ORIGINAL PAGE IS OF POOR QUALITY

ASSOCIATED

BY. CONSCILLANTS.

CONSULLANTS.

CONSULLANTS.

CONSULLANTS.

CONSULLANTS.

MAKE CORRECTIONS TAKEN

AMEND AND RESUBBRIT

AMEND AND RESUBBRIT

RESPONSIBILITY FOR ERTRACTOR FPOY ANY RESPONSIBILITY FOR ERCORS OR DEVIATIONS FROM THE CONTRACT RECORS OR DEVIATIONS FROM THE CONTRACT RECOURSEMENT OR FOR ANY DEFICIENCIES OF
COURSEMENT, WORK OR MATERIALS.

Midgley Shaughnessy Fickel and Scett Architects Inc.

SHOP DRAWING REVIEW

20 West 9th Street Kanaes City, Misseuri 64166

A Make Corrections Noted

No E cotto :

Rejected · See Remarks

Date - 10.7.

☐ Amend and Resubmit

MEQUAY-PERFEX INC.

P.O. BOX 1551, MINNEAPOLIS, MINNESOTA 55440

SEASONVENT

CENTRAL STATION HEATING AND VENTILATING UNITS HORIZONTAL DRAW THRU

CERTIFIED DRAWING 281184Y

TYPE LHD

McQuay certifies that it will furnish equip drawing and specifications, and subject to its published warranty. Purchaser's approval of this drawing significs that the equipment is accept-

able under the provisions of the job specification hereon by any person whomsoever is subject to acceptance by McQuay at its home office.

GENERAL SPECIFICATIONS

CABINET - GALVANIZED STEEL STRUCTURAL FRAME AND PANELS. ACCESS DOORS AND REMOVABLE PANELS PROVIDE COMPLETE ACCESSIBILITY TO INTERIOR.

FANS - GALVANIZED STEEL DYNAMICALLY BALANCED.
BLADES RIVETED TO RIMS AND CENTER PLATE. CAST IRON HUBS. IRON HUES.
HOUSINGS - GALVANIZED STEEL, DIE FORMED WITH SPOT WELDED SEAMS.
SHAFTS - SOLID HIGH CARBON STEEL SIZED SO THAT THE OPERATING SPEED IS WELL BELGW THE FIRST CRITICAL

SPEED SHEAVES - MACHINED CAST IRON, "V" GROOVE TYPE, KEY SEATED TO SHAFT.
MOTOR MOUNT - ADJUSTABLE FOR VARYING BELT TEN-SION.

BEARINGS - SELF ALIGNING, BALL TYPE WITH GREASE FITTINGS AND EXTENDED LUBE LINES.

BELT GUARDS - GALVANIZED STEEL WITH FAN SHAFT TACHOMETER OPENING.

NOTE:

1. MOUNTING HOLE DATA:
UNIT SIZES 103-228:
5/8 V.C. TAPPED TOP OR BOTTOM
UNIT SIZES 237-164:
3/4 DIA. BOTTOM ONLY
2. UNIT SIZE 130-228 ARE SUITABLE FOR INVERTED MOUNT-

3. FOR CEILING SUSPENSION, UNIT SIZES 237-164 MUST BE PLATFORM MOUNTED.

4. UNIT SIZES 237-164 WITH NO'S. 5, 6, 7 OR 8 FAN DISCHARGES REQUIRE SQUARED BLOWER SECTIONS. FOR SQUARED BLOWER SECTIONS ADD "Q" TO "D", "L" AND "M" DIMENSIONS.

5. "X" DIMENSION IS FOUND BY ADDING DIMENSION OF THE OPTIONAL SECTIONS USED PLUS 10-1/4" THRU UNIT SIZE 217 AND 10-3/4" THRU UNIT SIZE 164. INCLUDE 1/8" FOR GASKETING WHERE SECTIONS BOLT TOGETHER. IF 3 OR 4 ROW COIL USED 22 3-1/2" TO THESE DIMENSIONS.

CABINETS WITH OPTIONAL A.F. FAN WHEELS UNIT SIZES 214, 217, 222, 228, 237

	214	217	222	228	237
G	29%	29%	35%	35%	43%
н	231/4	231/4	28%	28%	35%
K	24%	31%	301/4	421/4	393/

CABINET WITH TWO F.C. FAN WHEELS UNIT SIZES 206, 209, 214, 217, 222, 228 & 237

PHYSICAL DIMENSIONS (Inches)

UNIT	A	В	C.	D	E	F	,G	н	J	K	r.	M	P	Q	R	S	T	U	٧	w
103	34	22%	61/2	213/4	2%	21/8	1134	101/4	61/2	111/6	28%	161/8	281/2	_	23/4	_	15	171/2	29%	1
104	40	25%	61/2	243/4	2%	21/8	121/4	131/2	61/2	13%	31%	191/8	341/2	-	23/4	-	15	201/2	35 1/8	1
106	50	29	61/2	28	2%	21/8	171/4	15%	61/2	16%	34%	22%	441/2	_	23/4		16	23%	45%	1
206	69	223/4	61/2	2134	2%	21/8	131/8	10%	61/2	131/4	28%	161/8	631/2	-	23/4	161/4	18	171/2	64%	1
108	48	37%	61/2	36¾	2%	21/8	211/8	19%	8	13%	43%	311/8	421/2	-	23/4	_	18	321/2	43%	1
209	83	25¾	61/2	24%	2%	21/8	17%	15%	61/2	15	31%	191/8	771/2		23/4	181/4	18	201/2	78%	1
111	63	37%	- 61/2	36%	2%	2%	231/4	21%	8	19%	43%	311/6	571/2	-	23/4	_	18	321/2	58%	1
214	78	373/4	61/2	36%	2%	21/8	19	17%	8	10	43%	311/8	721/2	-	23/4	20	21	321/2	73%	1
217	93	37%	61/2	36%	2%	2%	21%	19%	8	123/4	43%	311/8	871/2	_	23/4	25%	21	321/2	88%	1
222	97	443/4	7	43%	2%	2%	231/4	21%	9	12%	50%	381/8	911/2	-	23/4	251/4	21	391/2	921/8	1
228	120	44%	7	43%	2%	2%	281/4	261/2	9	15%	50%	381/8	1141/2	_	23/4	313/4	23	391/2	115%	1
237	1221/6	61%	7	45%	3%	3%	311/2	28¾	111/2	151/8	523/4	391/2	117%	11%	21/8	29	25	511/4	1151/2	1
141	1221/8	69%	7	591/8	3%	3%	46%	431/4	111/2	37%	661/4	53	117%	61/2	21/8		25	591/2	1151/2	11/2
150	1221/8	79%	7	66%	3%	3%	511/2	471/4	111/2	35%	73¾	601/2	117%	8¾	21/8	_	25	691/4	1151/2	11/2
164	1221/6	97%	7	72%	3%	3%	56%	52%	111/2	32%	793/4	661/2	117%	20%	21/8	-	25	871/4	1151/2	11/2

*Add 31/2 inches for 3 or 4-row coils.

ACCESSORIES

FACE AND BYPASS DAMPER SECTIONS

DIMENSIONS

NOTE: WHEN SECTIONS ARE BOLTED TOGETHER ADD 1/8" FOR GASKETING.

UNIT													DI	MENSI	I) SNC	nches)												
SIZE	A	В	Cı	Cz	Eı	E	F	G	н	J	K	P§	R	S	I.	Uı	U ₂	V,	V ₂	V ₃	V.	V ₅	V.	Yı	Y ₂	Y,	Y.	Y
103	34	21%	61/5	10	6%	71%	6	121/4	251/8	61/4	4%	281/5	21	33%	251/2	30%	291/4	17%	181/4	171/2	171/8	171/2	181/4	15%	221/4	18	19	N.
104	40	24%	61/2	10	8	81/6	6%	12%	31%	61/4	4%	341/2	211/6	391/4	201/2	36%	351/2	20	211/4	201/2	201/4	201/2	211/4	15%	23	18	19	14.7
106	50	271/4	614	10	9	91/4	71/4	12%	41%	61/4	4%	441/2	231/2	49%	22	46%	45%	231/8	241/2	231/4	23	231/4	241/2	1514	271/4	18	2254	34.
206	69	21%	614	10	6%	71/4	6	12%	60%	61/4	4%	631/2	21	68%	201/4	65%	64 1/4	17%	181/4	171/2	17%	171/2	181/4	15%	221/2	18	1915	14,
108	48	36%	61/2	10	9	11	9%	18%	391/4	61/4	4%	421/5	273/4	47%	251/5	44%	43%	321/2	331/4	321/2	30%	321/2	331/4	21%	331/2	18	26	14,7
209	83	24%	61/2	10	8	81/6	6%	121/4	74%	61/4	4%	771/5	213%	82%	23	79%	78%	20	211/4	201/2	201/8	201/2	211/4	15%	23	18	19	7.
111	63	361/4	61/2	10	9	11	9%	181/4	54%	614	4%	571/2	271/4	62%	251/2	59%	58%	321/2	331/4	321/2	30%	321/2	331/4	21%	331/2	18	26	231
214	78	36%	61/2	10	9	11	9%	181/4	691/4	61/4	4%	721/2	2714	77%	251/2	74%	73%	321/2	331/4	321/2	301%	321/5	331/4	21%	331/2	18	26	731
217	93	36%	61/2	10	9	11	91/4	18%	841/4	61/4	4%	871/2	271/4	92%	251/2	89%	881/4	321/2	331/4	321/2	30%	321/2	331/4	21%	331/2	18	26	53,
222	97	43%	7	101/2	81/4	131/4	111/4	241/4	881/4	71/4	51%	911/2	321/4	96%	23	93%	921/4	401/8	401/4	391/2	371/4	391/2	331/4	271/2	321/2	18	23	13
228	120	43%	7	101/2	81/4	131/	111/4	241/4	1111%	71/4	5%	1141/2	321/4	119%	23	116%	115%	401/8	401/4	391/2	371/4	391/2	140%	271/2	3214	18	23	121
237	119%	551/4	7	101/2	10	18	151/6	31 %	1121/8	71/4	5%	1173%	40	110%	28	1151/41	116%1	501/8	51%	521/5	501/4	511/4	521/2	351/4	39%	18	22%	13
141	119%	631/8	7	101/2	9%	1914	161/4	39%	112%	71/4	5%	11734	43	110%	231/2	1151/41	116%‡	601/8	60	60%	57	591/2	60%	43	471/2	19°*	21%	7.0
150	119%	731/4	7	101/2	10	211/2	20	39%	112%	71/4	5%	117%	48%	1101/4	28	1151/4†	116%‡	701/4	691/4	701/2	67%	691/4	701/2	43	471/2	2214	2515	15
164	119%	911/8	7	10%	10	27%	24%	47%	1121/4	71/4	5%	11734	59	110%	27	115%†	116%1	851/4	8734	881/2	86%	871/4	881/2	51	551/5	27%	27%	

*Maximum Clearance required for filter removal, N.A. - Not Available. Mounting holes are available on the bottom only on Unit Sizes 237 thru 164. fAdd 1% * for flat filter.

\$Subtract 11/4 * for heating section.

UNIT ARRANGEMENTS LEFT HAND AIR INTAKE SHOWN RIGHT HAND OPPOSITE SQUARED BLOWER SECTION UNIT SIZES 103 THRU 164 UNIT SIZE 237 THRU 164 H101 H201 H103 BASIC +H251 H141 *H173 •H175 H261 H165 H161 •H193 ₽H191 +H192 FAB.P. H182 H185 SECTI BASIC UNIT BASIC UNIT W/ACCESS BASIC UNIT W/PREHEAT BASIC UNIT BASIC UNIT W/PREHEAT *ARRANGEMENT NO. FOR RIGHT HAND AIR INTAKE.

NOTE: FOR OVERALL UNIT LENGTH ADD DIMENSIONS OF ACCESSORIES NOT DIMENSION.

UNIT							DIMENS	SIONS (inches)					
SIZE	L	Li*	Lz	Li	L	Ls	L.	L,	Le	ro.	Lio	Ln.	Liz	Lis
103	2816	35	351/4	60	361/4	541/2	43	6114	-	-	-	-	-	-
104	31%	38	391/2	641/4	39%	57%	451/4	6414	-	-	-	-	-	-
106	34%	41%	43%	6814	431/4	62	501/2	68%	-	-	-	-	-	-
206	28%	35	351/4	60	36%	541/2	43	611/6	-	-	-	-	-	-
108	43%	50	521/2	771/4	541/2	72%	611/6	791/4	-	-	-	-	-	-
209	311/4	38	391/2	641/4	39%	57%	461/4	64%	-	-	-	-	_	-
111	431/6	50	521/2	771/4	541/2	72%	611/6	791/4	-	-	-	-	-	-
214	43%	50	521/2	771/4	541/2	72%	611/6	791/4	-	-	-	-	-	-
217	431/4	50	521/2	771/4	541/2	72%	611/6	791/4	-	-	-	-	-	-
222	50%	58	5914	841/2	64%	821/1	711/2	89%	-	-	-	-	-	-
228	50%	58	591/4	841/2	64%	821/2	711/2	89%	-	-	-	-	-	-
237	521/4	59%	623%	8814	70%	89	78	961/6	641/2	71%	74%	9934	82%	891/4
141	6614	7314	76	102%	8514	10514	921/4	112%	72%	79%	821/2	109%	921/4	99%
150	73%	80%	83%	114	95%	118%	1021/	12514	821/2	89%	92%	12234	10414	1111/4
164	79%	86%	89%	1241/2	10714	135	114%	1421/6	1001/2	107%	110%	1451/4	1281/4	1351/4

ACCESSORY ARRANGEMENTS

						89	78	961/4	641/2	71%	74%		82%	891/4		
			76 14 83%	102%		1051/4	92%	112%	721/4	791/4 891/4	821/2 921/4		921/4	99%	0)	Dr.
	The second second second						-	1421/6					1281/4	135%	On	UGINA .
	* ADD 31/2		EACH :												-4.	RIGINAL P. POOR QU
	FILTER SECTIONLY	ON			WITH	DAMPE	ne	FILT	ER SEC	TION A	ND MIXI	NG BOX				
-	ONLY	-	B00	-	WITH	COO	1	-	000	+	E	00	T	FO FO		G00
MIXING BOX ONLY						1013		[]].	Ţ•
AT FILTER	A		81			C1.	þ]				F)].	61.
NGULAR FILTER							Ь	1) }		N. V.	>		5	,]•	64'
EAVY DUTY FILTER	A5'			. 1	CVN	C5'-)		D5.	þ	\\ \\	5.	1	F5*		3

Replace asterisk with a "O" for no filters, "1" for throwaway filters, "2" for cleanable filters or "3" for cleanable high velocity filter.

BOOK WAR	FILTER DATA												
UNIT	FLAT		ANGULAR		HEAVY DUTY								
SIZE	QUANTITY	AREA	QUANTITY	AREA	QUANTITY	AREA							
103	2-16 × 20 × 2	4.4	2-16 × 25 × 2	5.6	-	-							
104	2-20 × 20 × 2	5.6	4-16 × 20 × 2	8.9	-	-							
106	3-16 × 25 × 2	8.4	6-16 × 20 × 2	13.3	-								
206	3-20 x 20 x 2	8.3	6-16 × 20 × 2	13.3		_							
108	2-16 × 20 × 2	-	THE PARTY OF THE P	-		-							
100	2-16 x 25 x 2	10.0	6-16 × 25 × 2	16.7	-	-							
209	4-20 × 20 × 2	11.1	8-16 × 20 × 2	17.8	8-20 × 20 × 2	22.2							
111	6-16 × 20 × 2	13.3	6-20 × 25 × 2	20.8	9-20 x 20 x 2	25.0							
	6-16 x 25 x 2	16.7	4-16 x 25 x 2	-	-	-							
214	-	-	4-20 × 25 × 2	24.9	9-20 × 25 × 2	31.2							
	4-16 x 20 x 2	20.0	8-20 × 25 × 2	27.8	9-20 × 20 × 2								
217	4-16 x 25 x 2	_	-	-	6-16 × 20 × 2	38.3							
222	12-16 × 20 × 2	26.7	12-16 × 25 × 2	33.4	24-16 × 20 × 2	53.3							
228	12-20 × 20 × 2	33.4	12-20 × 25 × 2	41.8	24-20 × 20 × 2	66.6							
237	12-20 x 25 x 2	41.6	16-20 × 25 × 2	55.5	24-20 × 25 × 2	83.3							
141	18-20 × 20 × 2	50.2	24-20 × 20 × 2	66.7	36-20 × 20 × 2	100.0							
150	12-20 × 25 × 2	-	-	-	-	-							
150	6-20 × 20 × 2	58.4	24-20 x 25 x 2	83.2	36-20 × 25 × 2	125.0							
144	6-20 × 25 × 2	-	_	-	_	-							
164	18-20 × 20 × 2	70.6	30-20 × 25 × 2	104.0	36-20 x 25 x 2	125.0							

VIBRATION ISOLATORS

RUBBER-IN-SHEAR HANGER TYPE "RH"

SPRING HANGER TYPE "SH"

ENGIONE					1	SOLATORS					
ENSIONS	BP	CP1	CP2	RP1	RP2	RP3	RP4	RH2	RH3	RH4	SH
A	-	-	-	-	-	-	-	1 %	2	2	4 %
С	5	6 1/2	9 ¼	2 %	3	4 %	5	%	3/4	1	3/4
D	%	%	%	11/32	11/32	%6	%6	-	-	-	_
*H	3 %	5	5 1/4	1	1 %	1 %	1%	4 1/2	5 %	8	7
L	5 %	7 %	10 ¼	3	3 %	5 %	6 1/4	3	3 %	4 %	3 %
T	1/2	*	%	1/4	. 4	1/4	74	-	-	-	_
W	2 1/6	2 3/4	2 %	1 %	2 %	3 1/4	4	2 1/4	3 ¼	4	3

^{*}OPERATING HEIGHT.

ISOLATOR LOCATIONS

WITHOUT	ACCESSORIES
WITHOUT	ALLESSURIES

_A T	OR LOCA	TIONS			Op.	RIGINAL PAGE IS
	2	1			6	QUALITY 18
	FAN		COIL	ACC		4
	1	3			5	

WITH ACCESSORIES
153#U.S. GOVERNMENT PRINTING OFFICE 1980-640-247/86