Predicting the FTSO Consensus Price

A Machine Learning Approach

```
Filip Koprivec <sup>1,2,3</sup> Tjaž Eržen* <sup>3</sup> Urban Mežnar <sup>3</sup> October 9, 2023
```

¹JSI

 $^{2}\mathsf{FMF}$

³AFLabs

Ljubljana, Slovenia

External Prices Consensus

Decentralised Approach to Solving the Oracle problem

FTSO: A decentralized approach to solving the oracle problem

Decentralised Approach to Solving the Oracle problem

FTSO: A decentralized approach to solving the oracle problem

Epochs

Epoch every $180 \ \text{seconds}$, reveal $90 \ \text{seconds}$ after the end of the epoch

Outline of the Problem

- Dataset:
 - Past FTSO prices of every coin
 - Current prices on exchanges
- Target: Median of the FTSO providers

Exponential Moving Average (EMA)

$$EMA_t = \alpha \cdot P_t + (1 - \alpha) \cdot EMA_{t-1}$$

Exponential Moving Average (EMA)

$$EMA_t = \alpha \cdot P_t + (1 - \alpha) \cdot EMA_{t-1}$$

Linear Interpolation

$$y = y_1 + \frac{x - x_1}{x_2 - x_1} (y_2 - y_1)$$

Exponential Moving Average (EMA)

$$EMA_t = \alpha \cdot P_t + (1 - \alpha) \cdot EMA_{t-1}$$

Linear Interpolation

$$y = y_1 + \frac{x - x_1}{x_2 - x_1} (y_2 - y_1)$$

Savitzky-Golay Smoothing

Applies a polynomial regression (of degree k) to a window of n points with least squares optimization.

6

Exponential Moving Average (EMA)

$$EMA_t = \alpha \cdot P_t + (1 - \alpha) \cdot EMA_{t-1}$$

Linear Interpolation

$$y = y_1 + \frac{x - x_1}{x_2 - x_1} (y_2 - y_1)$$

Savitzky-Golay Smoothing

Applies a polynomial regression (of degree k) to a window of n points with least squares optimization.

FFT Smoothing

- Apply Fast Fourier Transform to convert to frequency domain.
- Remove high-frequency components.
- Inverse FFT to convert back to time domain.

Prediction mechanism

Quantities involved:

- *m* epochs
- price matrix $E \in \mathbb{R}^{m \times n}$
- ullet Weight contribution vector for each exchange: $oldsymbol{v} \in \mathbb{R}^n$

Prediction mechanism

Quantities involved:

- *m* epochs
- price matrix $E \in \mathbb{R}^{m \times n}$
- Weight contribution vector for each exchange: $\mathbf{v} \in \mathbb{R}^n$

Overdetermined system $\textbf{E} \cdot \textbf{v} = \textbf{p}$

Pseudocode for Prediction Mechanism

Algorithm 1 Prediction Mechanism

- 1: for each exchange do
- 2: **for** each smoothing method **do**
- Define upper and lower range for parameters
- 4: Specify step size
- 5: end for
- 6: end for
- 7: Compute cartesian product of all parameter sets
- 8: for each combination in cartesian product do
- 9: Smooth the data
- 10: Train the model and calculate optimal solution vector \mathbf{v}
- 11: Evaluate accuracy against test data
- 12: end for
- 13: Identify best-performing model configuration

Prediction

Evaluate the performance of our model against the following methods:

- Last seen value method
- Previous epoch value method
- Overdetermined system without smoothings

Training on 160 epochs, validation against subsequent 160 epochs

Last Seen Value Method

Previous Epoch Value Method

Notable mentions: ETH, FIL, DOGE

Training an Overdetermined System Without Data Smoothing

Training an Overdetermined System With Data Smoothing

Notable mentions: XRP, DOGE, BTC, XLM, ADA, ARB

RMSE

Coin	Last Seen	Prev. Ep	No smoth	Smooth
XRP	0.07412964	0.01536945	0.00542317	0.00398449
LTC	0.07412961	0.01536940	0.00735026	0.00401269
XLM	0.00010802	0.00025230	0.00090994	0.00025548
DOGE	0.00004626	0.00001359	0.00000733	0.00000641
ADA	0.00000201	0.00000395	0.00000183	0.00000174
ALGO	0.00011186	0.00000559	0.00000351	0.00000379
BCH	1.47382928	0.00013239	0.00000828	0.00000565
BTC	23.78687273	5.01065648	1.94068887	0.91171693
ETH	1.50008731	0.54618855	0.18091784	0.05930725
FIL	0.00360921	0.00079709	0.00039865	0.00040482
ARB	0.00098386	0.00025156	0.00015229	0.00014042

Further Research Suggestions

- Improvement of low performing coins
- Deep learning approaches towards time series data and combining it with simpler approaches

Selected References

References

- [1] Giulio Caldarelli. "Overview of Blockchain Oracle Research". In: MDPI 14.6 (2022), p. 175.
- [2] Giulio Caldarelli. "Understanding the Blockchain Oracle Problem: A Call for Action". In: 11.11 (2023), p. 509.
- [3] Vasant Dhar. "Data Science and Prediction". In:

 Communications of the ACM 56.12 (2013), pp. 64-73. URL:

 https://dl.acm.org/doi/abs/10.1145/2500499.