Efficient Linear Sketching

- CountSketch [CW'13] can be applied to a matrix A in $\mathsf{nnz}(A)$ time

• Ahle et al., '20 give a sketch S that can be applied to $(A^{\otimes p})^{\sf T}$ to obtain $S(A^{\otimes p})^{\sf T}$ in $O(p \cdot \mathsf{nnz}(A))$ time

 Properties of sketches that we need to solve a problem Constructing sketches that can be applied quickly to the input

Large parts of my work:

Efficient Linear Sketching

- CountSketch [CW'13] can be applied to a matrix A in nnz(A) time
- Ahle et al., '20 give a sketch S that can be applied to $(A^{\otimes p})^{\mathsf{T}}$ to obtain $S(A^{\otimes p})^{\mathsf{T}}$ in $O(p \cdot \mathsf{nnz}(A))$ time
- Large parts of my work:
 - Properties of sketches that we need to solve a problem
 - Constructing sketches that can be applied quickly to the input

Coresets

- A weighted subset of points
 - Representative of the whole dataset for given problem
 - Usually constructed via importance sampling