РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

Дисциплина: Методы машинного обучения

Студент: Бармина Ольга Константиновна

Группа: НФИбд-01-19

Москва 2022

▼ Вариант №2

Текст задания:

- 1. Загрузите из набора данных "diamonds" следующие признаки: features/depth, features/z, price
- 2. Определите признак с минимальным квантилем уровня 0.9 и постройте гистограмму значений признака.
- 3. Для признака, имеющего минимальное стандартное отклонение, постройте и визуализируйте эмперическую плотность распределения.
- 4. Вычислите матрицу корреляции признаков и для пары признаков с наиболее низкой корреляцией постройте диаграмму рассеяния.

Решение:

df.head()

	features/depth	features/z	price
0	60.599998	4.23	6546.0
1	62.099998	3.71	3030.0
2	61.700001	3.27	1915.0
3	64.000000	4.64	6936.0
4	62.200001	2.76	646.0

выведем таблицу значений 0.9 квантиля для оставшихся признаков df.quantile(0.9)

features/depth 63.299999
features/z 4.520000
price 9821.000000
Name: 0.9, dtype: float64

найдем минимальное из этих значений df.quantile(0.9).min()

4.519999980926514

найдем название признака с минимальным значением квантиля 0.9 minq = df.quantile(0.9).idxmin(axis=0) print(minq)

features/z

построим гистрограмму этого признака df[minq].plot.hist(bins=30, title='Гистограмма признака с минимальным квантилем уровня 0.9

<matplotlib.axes._subplots.AxesSubplot at 0x7fcebd81ce50>

выведем таблицу стандартного отклонения для каждого признака

df.std()

features/depth 1.432655 features/z 0.705719 price 3989.432861

dtype: float32

найдем минимальное их них df.std().min()

0.7057189345359802

найдем названия признака с минимальным стандартным отклонением mins = df.std().idxmin(axis=0) print(mins)

features/z

построим эмпирическую плотность распределения df[mins].plot.hist(color='yellow', edgecolor='black', bins=30, density=True);

вычислим матрицу корреляции признаков df.corr()

	features/depth	features/z	price	
features/depth	1.000000	0.094924	-0.010647	
features/z	0.094924	1.000000	0.861249	
price	-0.010647	0.861249	1.000000	

найдем минимальное значение, для этого сначала найдем минимум по строкам, а затем из них df.corr().min().min()

видим, что минимальная корреляция между признаками price и features/depth

-0.010647408001393435

строим диаграмму рассеивания для этих признаков df.plot.scatter('price','features/depth',title='Диаграмма рассеяния признаков price и feat

<matplotlib.axes._subplots.AxesSubplot at 0x7fce99b9e810>

✓ 0 сек. выполнено в 14:18

X