# ECI2000 network control card hardware manual

Version 1.1

#### Copyright statement



This manual is copyrighted by Shenzhen Technology Co., Ltd. is moving, without the written permission of the positive movement, no person shall be reproduced, translated and copied any content in this manual.

Involving ECI controller software and the introduction of details and routines of each instruction, refer to ZBASIC software manual.

Information contained in this manual is for informational purposes only. Due to improvements in design and function and other reasons, is moving the company reserves the final interpretation of this information! Subject to change without notice!



Debug the machine pay attention to safety! Be sure to design the machine in effective safety and add error handling procedures devices, software, or loss caused by the positive movement has no obligation or responsibility responsible.

## table of Contents

| ECI2000 | network  | control card hardwaremanual   |         | 1             |    |
|---------|----------|-------------------------------|---------|---------------|----|
| The fir | st chapt | er Controlca                  | rdBrief | introduction  | 1  |
| 1.1     | Con      | nection withPut               |         | 1             |    |
| 1.2     | Ins      | tallation andProgram          |         | 2             |    |
| 1.3     | Spe      | cial Productspoint            |         | 2             |    |
| The sec | ond chap | ter Hardware                  |         | TraceState    | 3  |
| 2.1E    | ECI2000  |                               | model:  | specification | 3  |
|         | 2.1.1.   | Order letterinterest:         |         | 3             |    |
| 2.2E    | ECI2000  |                               |         | wiring        | 4  |
|         | 2.2.1    | Power / CAN interface signal: |         | 5             |    |
|         | 2.2.2    | RS232 interface letternumber: |         | 5             |    |
|         | 2.2.3    | Universal input signalnumber: |         | 6             |    |
|         | 2.2.4.   | Enter 0-7:                    |         | 6             |    |
|         | 2.2.5    | Input 8-15:                   |         | 7             |    |
|         | 2.2.6    | Input 16-23:                  |         | 7             |    |
|         | 2.2.7    | Output / IO Powersignal       |         | 7             |    |
|         | 2.2.8    | Axis interface signals:       |         | 8             |    |
|         | 2.2.9    | Wiring partyformula           |         | 9             |    |
| Chapter | III exp  | ansion                        |         | moldPiece     | 10 |
| Chapter | IV Comm  | on                            |         | askquestion   | 10 |
| The fif | th chapt | er Hardware                   |         | SecureDress   | 11 |
| 5.1E    | ECI2000  |                               |         | installation  | 11 |
| 5.2     | Ref      | erence groundline graph       |         | 12            |    |



# Chapter one control card Introduction

ECI is a positive movement technology introduced motion control card network model for short.

ECI2000 series control card supports up to 12-axis linear interpolation, arc interpolation any, space, circular, helical interpolation, electronic cam, electronic gear, follow the synchronization, the virtual axis, robot instructions and the like; optimized network communication protocol real-time motion control.

#### 1.1 Connection Configuration



Typical connection configuration of FIG.

ECI motion control card supports Ethernet network, and communication interface 232 is connected to the computer, the computer's operating instructions received, each extension module can be connected via a CAN summary, thereby extending input and output points or axes of motion

(CAN bus ends and then need 120 ohm resistor).

#### 1.2 Installation and programming



ZDevelop development environment

ECI control card by ZDevelop development environment to debug, ZDevelop is a very convenient programming, compiling, and debugging environment. ZDevelop can establish a connection through the serial port Ethernet controller.

Program should be used VC, VB, VS, C ++ Builder, C #, and other software development. When debugging canZDevelop software while connected to the controller, you need a dynamic library zmotion.dll program is running.

#### 1.3 Features

- Up 12 axis motion control.
- Output Pulse mode: the direction / pulse or double pulse.
- Support encoder position measurement, the handwheel may be configured to input mode.
- Each maximum output pulse frequency axis 10MHz
- by CAN bus, Scales up to 512 isolated input or output port.
- Positive and negative limit axis signal port / port origin signal can be arbitrarily configured as any input port.
- Output maximum output current up 300mA, can directly drive portions

of the electromagnetic valve.

- RS232 interface, Ethernet interface.
- Support up 12 axis linear interpolation, any circular interpolation, helical interpolation.
- Support electronic cam, electronic gear, latched position, following the synchronization, functions of the virtual shaft.
- stand by ZBasic multi-file multi-task programming.

 Encryption means a variety of programs to protect customers' intellectual property.

# **Chapter Hardware Description**

## 2.1 ECI2000 model specifications

|                  | ECI2400                                    | ECI2600                               |
|------------------|--------------------------------------------|---------------------------------------|
| Basic axes       | 4                                          | 6                                     |
| Extend the       | 12                                         | 12                                    |
| maximum number   |                                            |                                       |
| of axes          |                                            |                                       |
| Basic axis type  | Pulse / encoder                            |                                       |
| Internal IO      | 24 + i into an 8 + i (8 with overcurrent p | protection) (i is the number of axes) |
| number           |                                            |                                       |
| The maximum      | 256 into 256                               |                                       |
| number of        |                                            |                                       |
| expansion IO     |                                            |                                       |
| Extended up to   | Road 125 AD, 64 DA Road                    |                                       |
| AD / DA          |                                            |                                       |
| Pulse-digit      | 32                                         |                                       |
| The encoder-     | 32                                         |                                       |
| digit            |                                            |                                       |
| Velocity         | 32                                         |                                       |
| Acceleration     |                                            |                                       |
| digit            |                                            |                                       |
| Maximum pulse    | 10Mhz                                      |                                       |
| rate             |                                            |                                       |
| Each axis motion | 128                                        |                                       |
| buffered data    |                                            |                                       |
| An array of      | 1600                                       |                                       |
| space            |                                            |                                       |
| Program Space    | 4KByte                                     |                                       |
| Flash space      | 128KByte                                   |                                       |
| power input      | 24V DC input (the power consumption        | 10W, no cooling fan), IO24V input.    |
| Communication    | RS232, Ethernet, CAN                       |                                       |
| Interface        |                                            |                                       |
| Dimensions       | 201 * 134mm                                |                                       |

## 2.1.1 Ordering Information:

| model | Specification Description |
|-------|---------------------------|
|       |                           |



| ECI2400 | 4-axis, the movement point, electronic cam, interpolation is not supported.                                                     |
|---------|---------------------------------------------------------------------------------------------------------------------------------|
| ECI2402 | 4-axis, the movement point, electronic cam, linear interpolation.                                                               |
| ECI2406 | 4-axis, the movement point, electronic cam, linear interpolation, arc interpolation.                                            |
| ECI2408 | 4-axis, the movement point, electronic cam, linear interpolation, arc interpolation, interpolation continuous motion, the robot |
|         | instruction.                                                                                                                    |
| ECI2600 | 6-axis, the movement point, electronic cam, interpolation is not supported.                                                     |
| ECI2602 | 6-axis, the movement point, electronic cam, linear interpolation.                                                               |
| ECI2606 | 6-axis, the movement point, electronic cam, linear interpolation, arc interpolation.                                            |
| ECI2608 | 6-axis, the movement point, electronic cam, linear interpolation, arc interpolation, interpolation continuous motion, the robot |
|         | instruction.                                                                                                                    |

#### 2.2 ECI2000 wiring





ECI2000 having up to 6 axes, each axis with a separate encoder, up to 12 virtual axis, the virtual axis may extend out through the extension module.

ECI2000 board 24 comes universal input ports, eight general purpose output,

ECI2000 with an RS232 serial port, an Ethernet interface.

ECI2000 with a CAN bus interface, supports connected by ZCAN protocol extension.

#### 2.2.1 Power / CAN interface signals:

| Pin | name    | Explanation       |
|-----|---------|-------------------|
| No. |         |                   |
| 1   | GND     | An internal power |
|     |         | ground            |
| 2   | CANL    | CAN differential  |
|     |         | data -            |
| 3   | EARTH / | Safety ground /   |
|     | SHIELD  | shield            |
| 4   | CANH    | CAN differential  |
|     |         | data +            |
| 5   | + 24V   | An internal power |
|     |         | source 24V input  |

Please internal power supply 24V and an external IO power source 24V separate power supply, in particular in the field of electromagnetic interference serious cases, must be used two 24V power supply, or a providing two isolated power supply 24V output; when through the serial port connecting the touch screen, a power supply using a touch screen providing an internal power supply 24V.

For communications quality, use shielded twisted pair cable, a ground shield layer, a controller and expansion modules use the same internal power supply.

A plurality of link controllers on the CAN bus, CANH and CANL necessary on both sides of the end most of the controller 120 and then

Ohm resistor.

#### 2.2.2 RS232 interface signals:



| Pin No. | name | Explanation                                             |
|---------|------|---------------------------------------------------------|
| 2       | RXD  | Receiving data pin                                      |
| 3       | TXD  | Send data pin                                           |
| 5       | GND  | Power Ground                                            |
| 9       | DC5V | 5V power supply output, the power supply can be used to |
|         |      | screen text                                             |



Connected to the PC requires a double crossover cable is female.

# 2.2.3 Universal input signals:



## 2.2.4. Input 0-7:

| Pin | name | Explanation        |
|-----|------|--------------------|
| No. |      |                    |
| 1   | EGND | IO power ground    |
| 2   | EGND | IO power ground    |
| 3   | INO  | 0 input (Latch A)  |
| 4   | IN1  | An input (Latch B) |
| 5   | IN2  | Input 2            |
| 6   | IN3  | Input 3            |
| 7   | IN4  | Input 4            |
| 8   | IN5  | Input 5            |
| 9   | IN6  | Input 6            |
| 10  | IN7  | Input 7            |

Input 1 Input 0 and simultaneously the latch having a latch input A and input B function.

## 2.2.5 Input 8-15:

| Pin | name | Explanation     |
|-----|------|-----------------|
| No. |      |                 |
| 1   | EGND | IO power ground |
| 2   | EGND | IO power ground |
| 3   | IN8  | Enter 8         |
| 4   | IN9  | Input 9         |
| 5   | IN10 | Enter 10        |
| 6   | IN11 | Enter 11        |
| 7   | IN12 | Enter 12        |
| 8   | IN13 | Enter 13        |
| 9   | IN14 | Enter 14        |
| 10  | IN15 | Enter 15        |

# 2.2.6 Input 16-23:

| Pin | name | Explanation     |
|-----|------|-----------------|
| No. |      |                 |
| 1   | EGND | IO power ground |
| 2   | EGND | IO power ground |
| 3   | IN16 | Enter 16        |
| 4   | IN17 | Enter 17        |
| 5   | IN18 | Enter 18        |
| 6   | IN19 | Enter 19        |
| 7   | IN20 | Enter 20        |
| 8   | IN21 | Enter 21        |
| 9   | IN22 | Enter 22        |
| 10  | IN23 | Enter 23        |

# 2.2.7 Output / IO power signals:



The output circuit

| Pin | name | Explanation                   |
|-----|------|-------------------------------|
| No. |      |                               |
| 1   | OUT7 | Output 7                      |
| 2   | OUT6 | Output 6                      |
| 3   | OUT5 | Output 5                      |
| 4   | OUT4 | Output 4                      |
| 5   | OUT3 | Output 3                      |
| 6   | OUT2 | Output 2                      |
| 7   | OUT1 | Output 1                      |
| 8   | OUT0 | Output O                      |
| 9   | E24V | IO power supply is, the input |
|     |      | power                         |
| 10  | EGND | IO power ground               |

Please put the case of internal and external IO power supply 24V 24V power supply separately, especially on-site electromagnetic interference serious.

## 2.2.8 Axis interface signals:

Each terminal signal interface with two axes, a 0V and +5V output, can supply 5V encoder. Shaft before use, to configure the shaft by use ATYPE parameters.

! Alarm input shaft and an output enable input and output simultaneously as universal.



ECI2400 only axis 0-3.



| Pin No. | name  | description              |
|---------|-------|--------------------------|
| 1       | PUL + | Differential Pulse +     |
| 2       | DIR + | Direction differential + |
| 3       | GND   | Internal OV              |
| 4       | EA+   | Encoder Phase A +        |
| 5       | EB+   | Encoder Phase B +        |
| 6       | EZ+   | Encoder Z phase +        |

| 7 | ALM (IN24-29) | Alarm Input (requires |
|---|---------------|-----------------------|
|   |               | configuration,        |
|   |               | As a general-purpose  |
|   |               | input)                |

amplification)

#### **2.2.9** Wiring

The portion of the servo drive optical coupling is not isolated, this time must GND and the GND of the drive, the vast majority of the drive encoder not opto-coupler, when connected to the encoder, to be connected to GND.

When connected to the AC servo stepwise manner recommended differentially



connected, anti-interference.

Differential Connection



Single-ended connection



Encoder connection

The vast majority drive encoder interface is not opto-coupler, must GND (0V) connected.

# **Chapter III Expansion Module**

See "ZIO Expansion Card Hardware Manual"

# **Chapter IV Frequently Asked Questions**

| prob                     | Problem-                                                                              |
|--------------------------|---------------------------------------------------------------------------------------|
| lem                      | solving advice                                                                        |
|                          | ATYPE are configured correctly confirm the controller;                                |
| Water dasa not retate    | Checkout input pulse and pulse transmission mode                                      |
| Motor does not rotate.   | driver matches; confirm whether the limit                                             |
|                          | hardware, software limit, ALM signal function; it                                     |
|                          | can be tested, and whether the pulse count was                                        |
|                          | observed with normal testing software;                                                |
|                          | Check whether the program which constantly calls CANCEL stop, the user can be stopped |
|                          | Process re-test.                                                                      |
| The controller work      | Check the connection between the drive and the                                        |
| normally, the pulse sent | motor are correct, of the connections between the                                     |
| out normally, but the    | driver and the controller good contact.                                               |
| motor does not rotate.   | Ensure that the drive is working properly, no alarm                                   |
|                          | occurs.                                                                               |



| The motor may rotate, but not working           | Check deceleration and speed setting exceeds the equipment limit;                              |
|-------------------------------------------------|------------------------------------------------------------------------------------------------|
| properly.                                       | Check the output pulse frequency exceeds a limit drive receiver;                               |
|                                                 | Check controller and the drive is properly grounded,                                           |
|                                                 | interference measures are good; limiting resistor and                                          |
|                                                 | direction pulse signal output terminal optical                                                 |
|                                                 | isolation circuit used is too large, too small                                                 |
|                                                 | operating current.                                                                             |
| It can control the motor, but the motor appears | Drive parameters may be incorrectly set, the drive parameters checked;                         |
| Oscillation or overshoot.                       | Application software acceleration and deceleration time and speed of movement is unreasonable. |

| It can control the motor,   | Origin signal switch is working properly;           |
|-----------------------------|-----------------------------------------------------|
| but the work back           | Origin signal is subject to interference.           |
| Origin positioning allowed. |                                                     |
| Limit signal does not work. | The limit sensor is not working properly;           |
|                             | Limit sensor signal interference;                   |
| Not connected expansion     | Check whether there is an ohmic resistor 120        |
| module, the expansion       | mounted at both ends;                               |
| module                      | Check for a plurality of extension modules use the  |
| Warning lights.             | same's ID.                                          |
| Input signal is not         | Check whether or IO power supply;                   |
| detected                    | Check the signal level is matched with the input    |
|                             | port.                                               |
|                             | Check whether the input ID matches the ID IO board. |
| When the output operation   | Check whether or IO power supply; IO board also for |
| does not respond            | IO supply.                                          |
|                             | Check the output port number matches the ID IO      |
|                             | board.                                              |

# **Chapter V Hardware Installation**

#### 5.1 ECI2000 installation



# 5.2 Referring to FIG wiring



Please put the case of internal and external IO power supply 24V 24V power supply separately, especially on-site electromagnetic interference serious, One of the two 24V power supply, or a power supply provides two isolated output 24V; when the touch screen is connected through a serial port, using an internal power supply 24V is provided a touch screen.