1.填空题
(1)假如 $A^2 = E$,则 A 的特征值只有。
(2)设 n 阶矩阵 A 的元素全为 1,则 A 的 n 个特征值为。 (3)已知三阶矩阵 A 的特征值为 1,-1,2,则矩阵 $B=2A+E$ (E 为三阶单位阵)的特特征值为。
(4) 若 A 为 n 阶矩阵, $ A \neq 0$, A^* 为 A 的伴随矩阵, E 为 n 阶单位矩阵,若 A 有特
征值 λ ,则 $(A^*)^2+E$ 必有特征值。
(5)设 A 与单位阵 E 相似,则 $A=$ 。
(6)若A与 $\begin{pmatrix} -2 & 0 & 0 \\ 2 & x & 2 \\ 3 & 1 & 1 \end{pmatrix}$ 的特征值-1、2、-2则 $x = \underline{\qquad}$.
2.选择题
(1)下列方阵可对角化的是()
$(A) \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} \qquad (B) \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \qquad (C) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad (D) \begin{pmatrix} 3 & 0 \\ 1 & 3 \end{pmatrix}$
(2) 如果, 则矩阵 $A \subseteq B$ 相似 (A) $ A = B $, (B) $r(A) = r(B)$, (C) $ A - \lambda E = B - \lambda E $,
(D) n 阶矩阵 $A 与 B$ 有相同特征值且 n 个特征值各不相同。
(3)若四阶矩阵 A 和 B 相似, A 的特征值为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, 则行列式 $\left B^{-1} - E\right = ($)
(A) 30 (B) 24 (C) 32 (D) 25
(4)n阶矩阵 A 具有 n 个不同的特征值是 A 与对角矩阵相似的() (A)重分必要条件 (B) 充分而非必要条件 (C)必要而非充分条件 (D)既非充分有非必要条件
(5) λ_1, λ_2 都是 n 阶矩阵 A 的特征值, $\lambda_1 \neq \lambda_2$,且 η_1 与 η_2 分别是 A 对应于 λ_1 与 λ_2
的特征向量,当时, $\eta=k_1\eta_1+k_2\eta_2$ 也为A的特征向量。
(A) $k_1 = 0 \square k_2 = 0$, (B) $k_1 \neq 0 \square k_2 \neq 0$ (C) $k_1 \cdot k_2 \neq 0$
(D) $k_1 \neq 0$ $\overline{\text{min}}k_2 = 0$

3.证明题

(1)若 2 阶方阵满足|A| < 0 , 证明 A 可与对角阵相似。

(2) 若 A是正定阵,则其伴随阵 A^* 也是正定阵。

4.已知
$$\alpha = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
, E 为 3 阶单位矩阵 , $A = E + \alpha \alpha^T$, 求一个正交矩阵 P ,

使得 $P^{-1}AP$ 为对角阵,并写出该对角阵.

5.已知
$$A = A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
有一个特征值为 5,求正交阵 T ,使得

 $T^T A^T A T$ 为对角阵 .

6. 设 A 是正交 矩阵 , $\lambda_1=1,\lambda_2=-1$ 是 A 的特征值 , α,β 是相应于特征值, $\lambda_1=1,\lambda_2=-1$ 的特征向量 , 问 : α 与 β 是否线性相关 , 为什么? α 与 β 是否正交 , 为什么 ?

7. 设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, (1) 求逆矩阵 P , 使 $P^{-1}AP$ 为对角形

- (2) 求正交阵Q, 使 $Q^{-1}AQ$ 为对角形。
- (3) 求Aⁿ