

Camera

Multimedia Techniques & Applications Yu-Ting Wu

(this slides are borrowed from Prof. Yung-Yu Chuang)

Outline

- Overview and fundamentals
- Color imaging
- Camera image processing
- Computational cameras

Outline

- Overview and fundamentals
- Color imaging
- Camera image processing
- Computational cameras

Camera Trial

Put a piece of film in front of an object

Pinhole Camera

Add a barrier to block off most of the rays

- It reduces blurring
- The pinhole is known as the aperture
- The image is inverted

Shrinking the Aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effect

Shrinking the Aperture (cont.)

Adding a Lens

Lenses

Thin lens equation:
$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

Thin Lens Formula

$$y'/y = D'/D$$

Thin Lens Formula (cont.)

Thin Lens Formula (cont.)

$$\frac{1}{D'} + \frac{1}{D} = \frac{1}{f}$$

Adding a Lens (cont.)

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- Other points are projected to a "circle of confusion" in the image

Zoom Lens

Nikon 28-200mm zoom lens.

Focal Length in Practice

24mm

50mm

135mm

Problems with Lens

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviation is most noticeable for rays that pass through the edge of the lens

Problems with Lens (cont.)

Correcting radial distortion

Problems with Lens (cont.)

Vignetting

Problems with Lens (cont.)

Vignetting

Goldman & Chen, ICCV 2005

Chromatic Aberration

Lens has different refractive indices for different wavelengths.

Special lens systems using two or more pieces of glass with different refractive indexes can reduce or eliminate this problem.

Exposure

- Exposure = aperture + shutter speed
 - Aperture of diameter D restricts the range of rays (aperture may be on either side of the lens)
 - Shutter speed is the amount of time that light is allowed to pass through the aperture

Exposure (cont.)

Aperture (in f stop)

Shutter speed (in fraction of a second)

Effect of Shutter Speeds

Slow shutter speed → more light, but more motion blur

Faster shutter speed freezes motion

1/125 sec.

1/250 sec.

1/500 sec.

1/1000 sec.

Effect of Shutter Speeds (cont.)

Light trail

Aperture

 Aperture is the diameter of the lens opening, usually specified by f-stop, f/D, a fraction of the focal length

- When a change in f-stop occurs, the light is either doubled or cut in half.
- Lower f-stop, more light (larger lens opening)
- Higher f-stop, less light (smaller lens opening)

Depth of Field

- Changing the aperture size affects the depth of field
 - A smaller aperture increases the range in which the object is approximately in focus

Depth of Field (cont.)

- Changing the aperture size affects the depth of field
 - A smaller aperture increases the range in which the object is approximately in focus

Depth of Field (cont.)

Aperture and Shutter Speed

 The same exposure is obtained with an exposure twice as long and an aperture area half as big

Aperture and Shutter Speed (cont.)

- Assume we know how much light we need
- We have the choice of an infinity of shutter speed/aperture pairs

- What will guide our choice of a shutter speed?
 - Freeze motion vs. motion blur, camera shake
- What will guide our choice of an aperture?
 - Depth of field, the diffraction limit

Exposure and Metering

- The camera metering system measures how bright the scene is
- In aperture priority mode, the photographer sets the aperture, the camera sets the shutter speed
- In shutter-speed priority mode, the photographers set the shutter speed and the camera deduces the aperture
- In program mode, the camera decides both exposure and shutter speed
- In manual mode, the user decides everything (but can get feedback)

Exposure and Metering (cont.)

Aperture priority

- Direct depth of field control
- Cons: can require impossible shutter speed (e.g., with f/1.4 for a bright scene)

Shutter speed priority

- Direct motion blur control
- Cons: can require impossible aperture (e.g., when requesting a 1/1000 speed for a dark scene)

Program

Almost no control, but no need for neurons

Manual

Full control, but takes more time and thinking

Sensitivity

- Third variable for exposure
- Linear effect (200 ISO needs half the light as 100 ISO)
- Digital photography: trade sensitivity for noise

Demo

https://camerasim.com/camerasim-free-web-app/

Film Camera

Digital Camera

- A digital camera replaces film with a sensor array
- Each cell in the array is a light-sensitive diode that converts photons to electrons

CCD v.s. CMOS

- CCD is less susceptible to noise (special process, higher fill factor)
- CMOS is more flexible, less expensive (standard process), less power consumption

CCD

CMOS

SLR (Single-Lens Reflex)

- Reflex (R in SLR) means that we see through the same lens used to take the image.
- Not the case for compact cameras

SLR View Finder

Outline

- Overview and fundamentals
- Color imaging
- Camera image processing
- Computational cameras

Color

- So far, we've only talked about monochrome sensors.
 Color imaging has been implemented in several ways:
 - Field sequential
 - Multi-chip
 - Color filter array
 - X3 sensor

Field Sequential

Field Sequential (cont.)

Field Sequential (cont.)

Prokudin-Gorskii (early 1900's)

lantern projector

http://www.loc.gov/exhibits/empire/

Prokudin-Gorskii (early 1900's)

Multi-chip

Color Filter Array

Color filter arrays (CFAs) / color filter mosaics

R	G	В	G
R	G	В	G
R	G	В	G
R	G	В	G

Ye	G	Су	G
Ye	G	Су	G
Ye	G	Су	G
Ye	G	Су	G

Stripes

G	Mg	G	Mg	
Су	Ye	Су	Ye	
Mg	G	Mg	G	
Су	Ye	Су	Ye	

 R
 G
 R
 G

 G
 B
 G
 B

 R
 G
 R
 G

 G
 B
 G
 B

Kodak DCS620x

Color Filter Array (cont.)

• Color filter arrays (CFAs) / color filter mosaics

Bayer's Pattern

Demosaicking CFA

bilinear interpolation

$$G_{44} = (G_{34} + G_{43} + G_{45} + G_{54})/4$$

$$R_{44} = (R_{33} + R_{35} + R_{53} + R_{55})/4$$

linear interpolation

R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	B	G	В	G	B	G
21	22	23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	B	G	В	G	B	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57
G	B	G	B	G	B	G
61	62	63	64	65	66	67
R	G	R	G	R	G	R
71	72	73	74	75	76	<i>7</i> 7

Constant hue-based interpolation (Cok)

Hue: (R/G, B/G)

Interpolate G first

$$R_{44} = \mathbf{G}_{44} \frac{R_{33}}{\mathbf{G}_{33}} + \frac{R_{35}}{\mathbf{G}_{35}} + \frac{R_{53}}{\mathbf{G}_{53}} + \frac{R_{55}}{\mathbf{G}_{55}}$$

$$B_{33} = \mathbf{G}_{33} \frac{B_{22}}{\mathbf{G}_{22}} + \frac{B_{24}}{\mathbf{G}_{24}} + \frac{B_{42}}{\mathbf{G}_{42}} + \frac{B_{44}}{\mathbf{G}_{44}}$$

R 11	G 12	R 13	14	R 15	G 16	R 17
G 21	B 22	G 23	H 24	G 25	B 26	G 27
R 31	G 32	R 33	G 34	R 35	G 36	R 37
	ñ	Û	Ť	Ω	ñ	
41	B 42	43	1 14	45	B 46	47
			1 44 (i 54			47 R 57
41 R 51 G	G 52 B 62	43 R 53 G 63		45 R 55 G 65	G 56 B 66	

Gradient-based interpolation (LaRoche-Prescott)

1. Interpolation on G

$$\alpha = abs[(B_{42} + B_{46})/2 - B_{44}]$$

$$\beta = abs[(B_{24} + B_{64})/2 - B_{44}]$$

$$\mathbf{G}_{44} = \begin{cases} \frac{G_{43} + G_{45}}{2} & \text{if } \alpha < \beta \\ \frac{G_{34} + G_{54}}{2} & \text{if } \alpha > \beta. \\ \frac{G_{43} + G_{45} + G_{34} + G_{54}}{4} & \text{if } \alpha = \beta \end{cases}$$

R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	B	G	B	G	B	G
21	22	23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	B	G	B	G	B	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57
G	B	G	B	G	B	G
61	62	63	64	65	66	67
R	G	R	G	R	G	R
71	72	73	74	75	76	77

Gradient-based interpolation (LaRoche-Prescott)

2. Interpolation of color differences

$$R_{34} = \frac{(R_{33} - \mathbf{G}_{33}) + (R_{35} - \mathbf{G}_{35})}{2} + G_{34},$$

$$\begin{split} R_{34} &= \frac{(R_{33} - \mathbf{G}_{33}) + (R_{35} - \mathbf{G}_{35})}{2} + G_{34} \,, \\ R_{43} &= \frac{(R_{33} - \mathbf{G}_{33}) + (R_{35} - \mathbf{G}_{35})}{2} + G_{43} \,, \end{split}$$

$$R_{44} = \frac{(R_{33} - \mathbf{G}_{33}) + (R_{35} - \mathbf{G}_{35}) + (R_{53} - \mathbf{G}_{53}) + (R_{55} - \mathbf{G}_{55})}{4} + G_{44}.$$

Deep learning approach

Foveon X3 sensor

- light penetrates to different depths for different wavelengths
- Multilayer CMOS sensor gets 3 different spectral sensitivities

Color Filter Array

Mosaic Capture

X3 Technology

Foveon X3 sensor

Camera with X3

Sigma SD10, SD9

Polaroid X530

Sigma SD9 vs Canon D30

Outline

- Overview and fundamentals
- Color imaging
- Camera image processing
- Computational cameras

White Balance

warmer +3

automatic white balance

White Balance (cont.)

Color Constancy

What color is the dress?

Color Constancy (cont.)

Human Vision is Complex

Outline

- Overview and fundamentals
- Color imaging
- Computational cameras

Computational Cameras

Light-field Camera

Light-field Camera (cont.)

RGB-D Camera

RGB-D Camera

Egocentric (First-Person) Vision

Input: Egocentric video of the camera wearer's day

Output: Storyboard summary of important people and objects

References

- http://www.howstuffworks.com/digital-camera.htm
- http://electronics.howstuffworks.com/autofocus.htm
- Ramanath, Snyder, Bilbro, and Sander. <u>Demosaicking Methods</u> for Bayer Color Arrays, Journal of Electronic Imaging, 11(3), pp306-315.
- Rajeev Ramanath, Wesley E. Snyder, Youngjun Yoo, Mark S. Drew, <u>Color Image Processing Pipeline in Digital Still Cameras</u>, IEEE Signal Processing Magazine Special Issue on Color Image Processing, vol. 22, no. 1, pp. 34-43, 2005.
- http://www.worldatwar.org/photos/whitebalance/index.mhtml
- http://www.100fps.com/

