热量 比热容(二)

日期:	时间:	姓名:
Date:	Time:	Name:

初露锋芒

中	午	
海水	很凉	
沙子	很烫	

傍晚沙子变凉了海水很暖和

学习目标

- 1. 掌握物体吸收(放出)热量的计算公式,并会进行简单的热量计算
- 2. 掌握热平衡的概念和有关计算

&

重难点

- 1. 掌握热量的简单计算(考试要求 B; 出题频率高)
- 2. 掌握热平衡状态和热平衡有关计算(考试要求 B; 出题频率高)

**************************************	4.3.6				
—,	-、热量、比热容				
	1、物体温度改变的多少常常表示为	,即	或	,物体温度改	0变时吸收或放
	出的热量由物质的、、	和		这三个因素的乘积	决定,与物体
	、、的高低无关。				
		a (X)	6)	مه	
	2、物体吸收(放出)热量的计算公式: Q。	- Mi.c.	Ly	181	
	2 、物体吸收(放出)热量的计算公式: Q_{α} 物体吸放出热量的计算公式: $Q_{\alpha} = $, \mathbf{L} , \mathbf{L} , \mathbf{L} , \mathbf{L}	(4)	_,其中 Q _吸 表	を示	,Q _並 表示
	, 单位是, t表	示,	t ₀ 表示	,单位	
	,单位是,	m 表示		, 单位是	,Δt 表示
	,单位是				_
(公式只适用于物体	降温)物体吸	收或放出热量	量的计算,对有物	态变化的过程
	1-在 (选填"适"或"不适")用。				
=,	二、热平衡				
	1、热平衡: 指在 人 的条件下, 高	高温物体放出的	的热量と	、 低温物体吸收的	热量。
	~				
	2、由热平衡定义可知:在热平衡状态下,	两个物体的最后 5000000000000000000000000000000000000	言温度七月	不再进行 支は	因此热平衡
	的唯一标志是	程中,低温物	体吸收的热量	为 ,高温物	- 体放出热量为
				, , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	,如果没有热量损失则:	= (X30X			
((2)(2)				
म्हरी	枝繁叶茂				
ž				•	
_,	- 、热量、比热容	T	ka < \	约	
	知识点一:热量、比热容计算		1=1		
	【例 1】 C知 C 個 > C 图 , 温度相同, 质量相	等的铜块和铅块	央,它们吸收 木	目同热量后,将它们]互相接触,则
	(B)				
	A. 热量由铜块传给铅块		量由铅块传给铂		
	C. 铅块和铜块之间不发生热传递	D. 缺少	少条件,无法硕	角定	
	YOK TEST				
	【例 2】质量一定的水,温度从 20℃升高到	50℃时,吸收的	的热量为 Q; 这	这些水温度从 80℃降	峰低到 50℃时 ,
	放出的热量为。				

【例 3】质量是 0.5kg 的铝壶里装了 2kg 水, 初温为 20℃, 如果它们吸收了 265.2×10³J 的热量, 温度升 高到多少摄氏度? (铝的比热为 0.88×10³J/ (kg. ℃))

Q.Z= OFFIRT DIOR -C28. W/28. Dt + Cx-Mx: of = 10°C+30°C=50°C

人七=30~~

265-2×10]=088×103×05×2+4-2×13×2×21

【例 4】在标准大气压下,质量为 1kg,初温为 42℃的水吸收 2.52×105J 的热量后,其温度升高多少℃? 末温是多少℃?

热量计算公式: $Q=cm\Delta t$, 比热容的定义式: $c=Q/m\Delta t$, 计算过程 中需区分近似的表达方式:升高了(升高到),降低了(降低到)等。还 需注意一些常识,一个标准大气压下,沸水的温度为 100℃之类的。

二、热平衡

知识点一: 热平衡计算

【例 1】使 20g 冰温度从-10℃升高到 0℃,但未熔成水,需要多少热量?如果这些热量是由度从 5℃降低 到 0℃的水来供给的,需要多少克 5℃的水? (c_冰=2.l×10³J/(kg. ℃)

Q= Cyk-Mx at = 21 x03 x0.02 x 10= 420 J

420] = 4,2x0 xMxx5 = Mx=0.02kg

【例 2】把质量为 4kg 的冷水与 3kg、80℃的热水混合后的温度为 40℃,若不计热量损失,求冷水的温度是多少?(c_* =4.2×10³J/(kg . ℃))

【例 3】为了测量某种液体的比热容,把质量为 100g 的铜块从沸腾的水中取出(标准大气压下),迅速投入质量为 100g,温度为 10℃的待测液体中,混合后的共同温度是 25℃。若不计热量损失,求这种液体的比热容为多少(铜的比热容 $c_{ij}=0.4\times10^3 J/(kg\cdot ℃))?$

【例 4】空气能热水器是通过吸收空气中的热量来制造热水的"热量搬运"装置。其工作原理是:空气能热水器在工作时,吸收空气中的能量 Q,消耗的电能为 W,通过热交换使水吸收的热量为 Q_∞,即 Q_∞=Q+W,所以它的热效率(即 Q_∞/W 的值)可以达到 300%~500%。已知某型号空气能热水器的热效率为 400%,电功率为 1400W,当用此热水器将 100kg 的水从 15℃加热到 55℃时(水的比热容为 4.2×10³J/(kg \cdot ℃),干木柴的热值为 1.2×10^7 J/kg)。

求:(1)水吸收的热量;

- (2) 水吸收的热量相当于完全燃烧多少千克的干木柴所释放的热量;
- (3) 空气能热水器完成上述加热过程所用的时间。

【例 5】物体 A、B 质量相等,把它们加热到相同的温度,然后分别放入等量同温的水中,A 使水温升高 10℃, B 使水温升高 20℃, 设 A、B 的比热分别为 c_A 和 c_B, 则 (**/** _ _) A. $c_B = c_A$ B. $c_B=2c_A$ C. $c_B > 2c_A$ D. $c_A < c_B < 2c_A$ 热平衡方程: $Q_w = Q_{\dot{u}}$,计算过程中需找出两个或多个相平衡的过程, 通过热量计算公式: $Q=cm\Delta t$, 分别求出 Q_{w} 、 Q_{b} , 求解相关物理量 (如 测定比热容)。 随堂检测 1、有大小相同的实心铝球和空心铝球,吸收相同的热量后, C. 升高温度相同 A. 实心球 B. 空心球 D. 无法判断 2、甲、乙两物体质量相等,温度相同,把甲投入一杯热水中,平衡后水温降低10℃,取出甲(不计热量和水 的损失),再把乙投入杯中,平稳后水温又降低了10℃,由此可知 B. 甲的比热容比乙/ A. 甲的比热容比乙大 D. 无法比较比热容大小 C. 甲的比热容与乙相等 .p= CAM sta

3、甲、乙两物体的质量相等,如果甲物体的温度降低 15 \mathbb{C} , 乙物体的温度降低 10 \mathbb{C} , 这时甲放出的热量是乙放热的 2 倍,由此可知 物体的比热大,这两种物体比热之比 $\mathbf{c}_{\mathbb{H}}:\mathbf{c}_{\mathbb{Z}}=$

A. 120℃

B. 100℃

C. 75℃

D. 55°C

时间/min

12、小红在学习了"比热容"的有关知识后,知道单位质量的不同物质在升高相同温度时,所吸收的热量不同, 为了描述物质的这种性质,引入了一个新的物理量——比热容,于是她又想到晶体在熔化时,温度虽然保持不 变,但需要吸收热量,那么单位质量的不同晶体熔化时所吸收的热量是否相同呢?带着这个疑问,小红在实验 室利用电热器加热,完成了冰的熔化实验,并描绘出冰的温度随加热时间变化的关系图线如图所示。

实验时,冰的质量为 0.5kg,相同时间冰n水吸收的热量相同。水的比热容为 $4.2 \times 10^3 J/(kg \cdot C)$

- (1) 根据图线, 你能得到的一条信息是: \
- (3) 计算出冰的比热容;

(4) 若规定"质量为 1kg 的某种晶体物质在完全熔化时所吸收的热量叫做该物质的熔化热",根据图中所给的

信息, 计算出冰的熔化热λ。

某小组同学先做如下实验

在甲、乙两只完全相同的烧杯中分别放入 100g 和 200g 的温水,实验时让它们自然冷却,并利用温度计和计时 器测量水温随时间变化的情况。记录数据分别如表一、表二所示。(设甲、乙两杯水每分钟放出的热量相等。) $=100\sigma$

 11 -08									
时间/min	0	2	4	6	8	10	12	14	16
温度/℃	36	35	34	33	32	31	30	30	30
降低温度/℃	0	1	2	3	4 -	5	6	6	6

300

表二 m2=200g

时间/min	0	4	(8)	12	16	20	24	28	32	36
温度/℃	36	35	34	33	32	31	30	29	28	28
降低温度/℃	0	1	2	3	4	5	6	7	8	8

- (1) 分析比较表一和表二中数据可知,实验时,两杯水所处环境的温度是

二中的数据及相关条件,还可得出的初步结论

瓜熟蒂落

1、在铝壶中放入 3kg 温度是 20℃的水,将它加热至 100℃,所需的热量(c_{\star} =4.2× 10^{3} J/(kg . \mathbb{C}))(

A. 等于 1.008×10⁶J

B. 大于 1.008×10⁶J

C. 小于 1.008×10⁶J

- D. 条件不足无法确定
- 2、给一定质量的水加热,其温度与时间的关系如图中 a 图线所示。若其他条件不变,仅将水的质量增加,则 温度(°C) 温度与时间的关系图线正确的是 ()

B. b

D. d

- 3、甲、乙两个物体质量相等, 若它们的比热容之比为2:1, 升高的温度之比为2:1, 则甲、乙两个物体吸收的 热量之比为()
 - A. 1:1
- B. 1:2
- C. 1:4
- D. 4:1
- 4、质量相同的两个物质由于吸热而升温,若它们的比热之比为1:2,升高的温度之比为3:2,则它们吸收的热 量之比为)
 - A. 3:4
- B. 4:3
- C. 1:3 D. 3:1
- 5、一冰块先后经历了以下三个过程: ①-10℃的冰到 0℃的冰,吸收热量 Q_1 ; ②0℃的冰变为 10℃的水,吸收 热量 Q_2 ; ③10℃的水到 20℃的水,吸收热量 Q_3 。已知冰和水的比热容分别为 c_{**} 、 c_{**} ,且 c_{**} < c_{**} ,在整个过 程中总质量保持不变,则 (
 - A. $Q_1 > Q_2 > Q_3$

B. $Q_1 < Q_2 < Q_3$

C. $Q_1 < Q_3 < Q_2$

- D. $Q_1 < Q_2 = Q_3$
- 6、用两个相同的电热器给质量同为 2kg 的物质甲和水加热,它们的温度随时间的变化关系如图所示,据此判 断甲物质 10min 吸收的热量为 ()(水的比热容 $c=4.2\times10^3$ J/(kg . ℃)
 - A. 5.04×10^{5} J
- B. $4.2 \times 10^5 \text{J}$
- C. $2.52 \times 10^5 \text{J}$
- D. 条件不足,不能计算

7、将质量相同的甲、	乙、丙三块金属加热到相同的	温度后,放到上表面平	·整的冰块上。经过·	一定时间后,冰
块形状基本不再变化时	†的情形如图所示。则三块金属	属的比热容 c _Ψ 、c _Z 、c	_两 大小相比 ()
A. c _甲 最大	B. c z最大	. P	乙丙	
C. c _两 最大	D. $c_{\mu}=c_{Z}=c_{\overline{\mu}}$		W W	
8、砂石的比热容为0	.92×10³J/(kg.℃),它表示。	质量为的砂石	,温度每升高1℃戶	所吸收的热量为
,当质量	量为 30kg 的砂石放出 8.28×104.	J的热量后,其温度将P	备低。	
	济安全、节能环保的太阳能热。 月45℃,在这一过程中水吸收的			水 30kg,经过阳
10、分别向洗澡盆放力水各多少千克? (不讨	《时,已知冷水为 20℃,热水溢 十热损失)	为 80℃,想得到 40℃的	う温水 120kg ,应该分	分别放冷水和热
	E的铜块和一个铅块吸收相同的 C _{∈=} =0.13×10³J/(kg·℃))	灼热量后,升高的温度 之	之比为 4:3,求这铅:	块的质量。(C

12、每到夏收季节,高淳农村大量农作物秸秆在田间被随意焚烧,这不仅造成资源浪费、环境污染,而且极易引发火灾等。为解决这一问题,现已研制出利用秸秆生产的节能环保型燃料——秆浆煤。若燃烧秆浆煤(热值为 $2.4\times10^7 J/kg$),使 50kg、20℃的水温度升高到 80℃。

求:(1)水需要吸收的热量。

(2) 如果秆浆煤燃烧释放的热量有30%被水吸收,需要完全燃烧多少千克秆浆煤。

13、在野外施工中,需要使质量 m=4.20kg 的铝合金物体升温。除了保温瓶中尚存有温度 t=90.0℃的 1.200kg 的热水外,无其他热源。试提出一个操作方案,能利用这些热水使构件从温度 t₀=10.0℃升温到 66.0℃以上(含 66.0℃),并通过计算验证你的方案。已知铝合金的比热容 c=0.880×10³J(kg \cdot ℃) $^{-1}$,水的比热容 c₀=4.20× 10³J(kg \cdot ℃) $^{-1}$,不计向周围环境散失的热量。

14、在一个标准大气压下,质量为 1kg,初温为 80℃的水吸收 1.26×10⁵J 热量后,其温度升高到多少? 若这些热量被 5kg 的铜块吸收,则铜块升高的温度是多少℃?(c_{π} =4.2×10³J/(kg•℃), c_{η} =0.39×10³J/(kg · ℃),最后结果保留一位小数)

能力提升

- 1、如图所示甲、乙两球完全相同,分别浸没在水和水银的同一深度内,甲、乙两球是用同一种特殊材料制作的:当温度稍微升高时,球的体积会变大,如果开始水和水银的温度相同,且两液体温度同时缓缓地升高同一值,则 (""" "" "" ""
 - A. 甲球吸收的热量较多
- B. 乙球吸收的热量较多
- C. 两球吸收的热量相等
- D. 无法确定

2、有甲、乙、丙三种液体,比热容依次为 2×10^3 J/(kg \bullet °C)、 3.32×10^3 J/(kg \bullet °C)和 2.436×10^3 J/(kg \bullet °C); 质量依次为 0.2 kg、0.3 kg 和 0.4 kg;初温依次为 80 °C、50 °C 和 10 °C。求三种液体混合后的最终温度,不计热损失。

- 3、在一搅拌机的容器内装有质量 m 为 0.5 千克的水,把水加热到 70℃后让其在室温下自动冷却。其温度随时间变化的关系如图所示。现开动电动搅拌机对该冷却的水不停地搅拌,电动机的功率为 900 瓦,其做的功有 80%转化为水的内能。若不考虑容器的内能变化,已知水的比热容是求:
 - (1) 不考虑室温下的自动冷却,搅拌机每秒钟能使水温上升多少℃?
 - (2) 在考虑室温的自动冷却的情况下,水最终的温度是多少℃?

- 4、将一杯热水倒入盛有冷水的容器中,冷水的温度升高了 10℃,再向容器内倒入一杯相同质量和温度的热水,容器中的水温又升高了 6℃。如果继续向容器中倒入一杯同样的热水,则容器中的水温会升高 ()
 - A. 5℃
- B. 4℃
- C. 3℃
- D. 2℃