

<u>Unit 1 Linear Classifiers and</u>
<u>Course</u> > <u>Generalizations (2 weeks)</u>

Lecture 2. Linear Classifier and

> <u>Perceptron</u>

> 4. Linear Separation

4. Linear Separation Linear Separation

Linear separation

Definition:

Training examples $S_n = \{(x^{(i)}, y^{(i)}\}), i = 1, ..., n\}$ are linearly separable if there exists a parameter vector $\hat{\theta}$ and offset parameter $\hat{\theta}_0$ such i = 1, ..., n.

So the set of linear classifiers is inherently constrained.

the sign of this, would agree with the corresponding label y.

So if there is a linear classifier

in the set that would correctly classify those training points,

then the training points are said to be linearly separable.

And we've already seen cases where that linear separation

does not succeed.

So the set of linear classifiers is inherently constrained.

3:29 / 3:29

▶ 1.25x

40

×

cc

13/21

End of transcript. Skip to the start.

Video

<u>Download video file</u>

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

Given θ and θ_0 , a **linear classifier** $h: X \to \{-1,0,+1\}$ is a function that outputs +1 if $\theta \cdot x + \theta_0$ is positive, 0 if it is zero, and -1 if it is negative. In other words, $h(x) = \text{sign}(\theta \cdot x + \theta_0)$.

Basics 1

1/1 point (graded)

As described in the lecture above, h is a linear classifier which is defined by the boundary $\theta \cdot x = 0$ (where theta is a vector perpendicular to the plane.) The ith training data is $(x^{(i)}, y^{(i)})$, where $x^{(i)}$ is a vector and $y^{(i)}$ is a scalar quantity. If θ is a vector of the same dimension as $x^{(i)}$, what are $y^{(i)}$ and $\text{sign}(\theta \cdot x^{(i)})$ respectively?

- lacksquare output of the classifier h, label
- label, dimension of the feature vector
- label, distance of the point from the linear classifier
- ullet label, output of the classifier h imes ullet

Solution:

By definition, $y^{(i)}$ is the la $ heta \cdot x^{(i)}$).	abel of $x^{(i)}$. Also, by the definition of a linear classifier $h\left(x ight)=$ sign($ heta\cdot x^{(i)}$), the output of h is given by sign(
Submit You have us	sed 1 of 2 attempts
• Answers are display	red within the problem
Basics 2	
/1 point (graded) for the i th training data ((x^i,y^i) , what values can $y^{(i)}$ take, conventionally (in the context of linear classifiers)? Choose all those apply.
● -1 ◆	
□ 0	
□ +10	
✓	
olution:	
y the convention of line	ar classification, because $y^{(i)}$ is a label, it can take -1 or $+1$. Note that 0 is not a possible value.
Submit You have us	sed 1 of 3 attempts
• Answers are display	ved within the problem
Basics 3	
/1 point (graded) or the i th training data ((x^i,y^i) , what values can $sign\left(heta\cdot x^{(i)} ight)$ take? Choose all those apply.
№ 0 ✔	
□ +10	
✓	
olution:	
By definition the $sign\left(heta ight1,0,1$.	\cdot $x^{(i)}$ $)$ function can only take one of $0,-1,+1$ as its value. Remember that a linear classifier outputs one of
Submit You have us	sed 1 of 3 attempts
Answers are display	ved within the problem
When the Product	is Positive

1/1 point (graded)

When does $y^{(i)}\left(heta\cdot x^{(i)} ight)>0$ happen? Choose all those apply.
$ extbf{Y}^{(i)} > 0$ and $ heta \cdot x^{(i)} > 0$ 🗸
$\square \ \ y^{(i)} < 0$ and $ heta \cdot x^{(i)} > 0$
$\square \ \ y^{(i)} > 0$ and $ heta \cdot x^{(i)} < 0$
$lacksquare y^{(i)} < 0$ and $ heta \cdot x^{(i)} < 0$ 🗸
Solution:
$y^{(i)}\left(heta\cdot x^{(i)} ight)>0$ is true if and only if $y^{(i)}$ and $(heta\cdot x^{(i)})$ are both positive both negative. In other words, they have the same sign.
Submit You have used 1 of 3 attempts
Answers are displayed within the problem
Intuitive Meanings of Positive Product
1/1 point (graded) What is the intuitive meaning of $y^{(i)}$ $(heta \cdot x^{(i)}) > 0$?
$ullet$ x^i label and classified result match 🗸
\circ x^i label and classified result do not match
$ullet$ x^i is on the boundary of the classifier
training error is positive
Solution: $y^{(i)}\left(\theta\cdot x^{(i)} ight)>0$ is true if and only if $y^{(i)}$ and $(\theta\cdot x^{(i)})$ are both positive both negative. In other words, they have the same sign.
Submit You have used 1 of 2 attempts
Answers are displayed within the problem
Intuitive Meanings of Negative Product
1/1 point (graded) What is the intuitive meaning of $y^{(i)}$ $(heta \cdot x^{(i)}) < 0$?
$^{\circ} \; x^i$ label and classified result match
$lacktriangledown$ $=$ x^i label and classified result do not match \checkmark
$igcup x^i$ is on the boundary of the classifier

training error is negative

Solution:

 $y^{(i)}\left(heta\cdot x^{(i)}
ight)<0$ is true if and only if $y^{(i)}$ and $(heta\cdot x^{(i)})$ have different signs.

Submit

You have used 1 of 1 attempt

• Answers are displayed within the problem

Linear Separation 1

1/1 point (graded)

Of the following, which is linearly separable? Choose all those apply.

Solution:

Linearly separable data can be separated with + labels on one side of the line and - labels on the other side, by some line on the plane.

inear Separation 2		
/1 point (graded) set of Training examples is illustrated nearly separable?	d in the table below, with the classified result by some linear classifie	er h and the label $y^i.$ Is it
	$h\left(x^{i} ight) \;\; y^{i}$	
	example 1 -1 -1	
	example 2 1 1	
	example 3 1 1	
	example 4 -1 -1	
	example 5 -1 -1	
● yes ✔		
o no		
olution:		
	ssifier can perfectly separate the data. The provided classifier $h\left(x ight)$	classifies all the given points
olution: or linearly separable data, a linear clas orrectly.	ssifier can perfectly separate the data. The provided classifier $h\left(x ight)$	classifies all the given points
or linearly separable data, a linear clas orrectly.		classifies all the given points
or linearly separable data, a linear clas		classifies all the given points
or linearly separable data, a linear classorrectly. Submit You have used 1 of 1 atten	mpt	classifies all the given points
or linearly separable data, a linear classorrectly. Submit You have used 1 of 1 atten	mpt	classifies all the given points
or linearly separable data, a linear classorrectly. Submit You have used 1 of 1 atten	mpt	classifies all the given points
or linearly separable data, a linear classorrectly. Submit You have used 1 of 1 atten	mpt	classifies all the given points