Placement Chance Prediction Using Machine Learning

Problem Statement

To develop a machine learning-based system that predicts the **likelihood of student placement** based on their academic performance, skills, and other relevant features. The goal is to assist students in understanding their preparedness for campus placements and identify areas of improvement.

Research Objectives

- 1. Build a regression model to predict the **placement chance** of a student.
- 2. Evaluate the model performance and continuously improve it.
- 3. Use both linear and ensemble models to compare results.
- 4. Deploy an interactive Streamlit-based web app for easy access and use.

Hypothesis

- **H_o** (Null Hypothesis): Student features (CGPA, Programming Skill, Communication Skill, etc.) have **no significant effect** on placement chance.
- H₁ (Alternate Hypothesis): These features significantly affect placement chances.

■ Data Overview

Initially, a **small synthetic dataset** was created manually with minimal data points including the following features:

- CGPA
- ProgrammingSkill
- CommunicationSkill
- AptitudeScore
- MockTestScore
- ExtraCurricular
- InternshipCount
- ProjectCount

Target variable:

• PlacementChance (ranged from 0 to 1)

Fhase 1: Initial Experiment with Linear Regression

Model: LinearRegression()

Results:

• R² Score: -1.1956

• **MSE:** 0.1043

• **RMSE:** 0.3229

• MAE: 0.2573

X Interpretation:

- The model performed worse than baseline average prediction.
- R² < 0 suggests the model lacks the predictive capability.
- The dataset was too small and lacked diversity.

Phase 2: Improved Dataset + Better Model

Actions Taken:

- Expanded dataset with more records.
- Cleaned data and scaled features.
- Switched to **RandomForestRegressor** for better performance.

Results (Random Forest Regressor):

• R² Score: 0.6701

• MSE: 0.0032

• **RMSE**: 0.0565

• MAE: 0.0444

Interpretation:

- Much better fit and reduced error.
- Predictions closely matched actual placement chances.
- The model is **ready for deployment**.

Streamlit App Highlights

- User inputs: sliders and dropdowns for academic and skill scores.
- Real-time prediction of placement chance.
- Visual and animated feedback:

Fair Chance: Motivational animation

Low Chance: Encouragement to improve skills

Final Findings

- Model performance improved significantly with increased dataset size and a better model (Random Forest).
- Academic scores and skills have a strong influence on placement chances.
- Linear regression is too simplistic for this problem.
- Ensemble models like RandomForest offer robustness and better generalization.

Recommendations

- Expand the dataset with real-world placement records (if available).
- Include features like domain knowledge, resume score, soft skills.
- Apply **hyperparameter tuning** for further boosting accuracy.
- Deploy the Streamlit app with animations on a cloud platform.
- Use **feature importance** scores to guide student improvement areas.

Summary Table

Phase Model		R² Score	MAE RMS	Dataset Size	Comments
1	Linear Regression	-1.19	0.2573 0.322	9 Small	Poor performance due to low data
2	RandomForest Regressor	0.6701	0.0444 0.056	5 Expanded	Great improvement and reliable model

Prepared by: Vishwanath Kulal

Tools used: Python, Scikit-Learn, Streamlit, Pandas, Seaborn

Models: Linear Regression, Random Forest, XGBoost