Stroke PROGNOSIS

We want to help you build healthy families.

Table of Contents

Our Health Clinic
Introduction
Mission Statement

Methodology
Dataset
Models, Metrics, Tools

Process Workflow

EDA, Data Analysis, Feature
Engineering, ML Model
Training & Evaluation

Results & Conclusion

Business Benefits
Future Opportunities

01. Our Health Clinic

Introduction & Mission Statement

Introduction

Our Health Clinic uses data-driven solutions to help you prevent, and improve outcomes for diabetes and/or related chronic lifestyle conditions such as high blood pressure, hypertension, stroke, heart diseases, obesity and stress control. Delivering personalized care to all groups and demographics: Aim to help you build healthy families!

One such area of use of data-driven solution is Stroke Prognosis using Machine Learning in python, identifying thoseat-risk and reducing their risk of suffering stroke through our help in early intervention and lifestyle behavioural change.

Our Services: Chronic Disease Management, Weight Loss & Health Optimization & Health Screening.

Mission

Build A Machine Learning Model To Predict Stroke As Accurate As Possible.

02. Methodology

Dataset Models, Metrics, Tools

Methodology: Dataset

Methodology: Classification Model

1. Model	2. Metrics	3. Tools
Baseline Model: Logistic Regression Alternative Models: Random Forest, Decision Tree, SVM, K-nearest Neighbors, Naïve Bayes	 Precision, Recall, f1-score Confusion Matrix False Negative: predicted to be a –ve (non-stroke) when he is a potential +ve. 	Scikit-learn, Pandas, NumPy, matplotlib, seaborn, Colab

03. Process Workflow

Process Workflow

Overview

Pandas Profiling Report

Overview Warnings 2 Reproduction Dataset statistics Variable types Number of variables 12 Numeric 4 Number of observations 5110 Categorical Missing cells Boolean 201 Missing cells (%) 0.3% **Duplicate rows** 0 Duplicate rows (%) 0.0% Total size in memory 479.2 KiB Average record size in memory 96.0 B Stroke Pandas **Profiling Report**

```
df_data.info()
# Observation: there are null values in bmi column
```

memory usage: 479.2+ KB

```
Column
                       Non-Null Count Dtvpe
    id
                       5110 non-null int64
    gender
                                       obiect
                       5110 non-null
                                       float64
                       5110 non-null
     age
    hypertension
                       5110 non-null
                                       int64
    heart disease
                       5110 non-null
                                       int64
    ever married
                       5110 non-null
                                       object
    work type
                       5110 non-null
                                       object
    Residence type
                       5110 non-null
                                       obiect
    avg glucose level 5110 non-null
                                      float64
    bmi
                       4909 non-null
                                     float64
                                       object
     smoking status
                       5110 non-null
    stroke
                       5110 non-null
                                       int64
dtypes: float64(3), int64(4), object(5)
```

Warnings

bmi has 201 (3.9%) missing values

id has unique values

df_data.sample(5)											
	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
2202	Male	73.0	0	1	Yes	Govt_job	Rural	70.23	28.1	never smoked	0
1620	Female	66.0	0	0	Yes	Govt_job	Rural	85.52	30.0	never smoked	0
3148	Male	78.0	0	0	Yes	Self-employed	Urban	201.58	30.6	Unknown	0
3101	Female	49.0	0	0	Yes	Private	Urban	105.99	29.8	never smoked	0
4262	Female	12.0	0	0	No	children	Urban	116.06	25.9	Unknown	0

Let's Look At All The Categorical Variables And Their Distribution

Let's Look At All The Categorical Variables And Their Impact On Stroke

Gender: Same likelihood to experience stroke.

Marital Status: Higher proportion of Married experienced stroke. Work Type: Work/Stress associated with stroke.

Let's Look At All The Categorical Variables And Their Impact On Stroke

Residence Type: Same likelihood to experience stroke. Smoking Status:
There is association of smoking to stroke.

Hypertension/Heart Disease:
Higher proportion who
suffered hypertension/heart
disease experienced stroke.

Let's Look at The Continuous Variables and Their Impact On Stroke

Age:
Older patient more likely to
suffer stroke than younger.

Diabetes:
Risk factor for stroke and prediabetic patients have increased risk of stroke.

BMI:
Between 25-35 highest to
suffer stroke. Higher BMI
does not increase stroke risk.

Remove Irrelevant Features

User ID column dropped.

Remove Irrelevant Rows

1 Patient gender 'Other' dropped.

'bmi': Replace Missing Values

Replaced missing values with mean of bmi attribute.

Remove Irrelevant Features

User ID column dropped.

Remove Irrelevant Rows

1 Patient gender 'Other' dropped.

'bmi': Replace Missing Values

Replaced missing values with mean of bmi attribute.

Remaining rows in data
df_data.info()

C+ <class 'pandas.core.frame.DataFrame'>
 Int64Index: 5109 entries, 0 to 5109
 Data columns (total 11 columns):

```
Column
                  Non-Null Count
                                 Dtype
                  5109 non-null
                                 object
gender
                  5109 non-null
                                 float64
age
hypertension
                  5109 non-null
                                 int64
                  5109 non-null
heart disease
                                 int64
ever married
                  5109 non-null
                                 object
work type
                  5109 non-null
                                 object
Residence type
                  5109 non-null
                                 object
avg glucose level 5109 non-null
                                 float64
bmi
                  5109 non-null float64
smoking_status
                  5109 non-null
                                 object
stroke
                  5109 non-null
                                  int64
```

dtypes: float64(3), int64(3), object(5)

memory usage: 479.0+ KB

Use Label Encoder for Features with 2 Classes

hypertension, heart_disease, ever_married, residence_type, stroke, gender

Encode Features with more than2 Classes

work_type, smoking_status

Explore Target Variable 'stroke'Distribution

Moderate Imbalance Class.

```
[19] # limit to numerical data using df.select dtypes()
     # all features converted to numerical
     df num = df.select dtypes(include=['number'])
     df num.nunique()
     gender
                                         104
     age
     hypertension
     heart disease
     ever married
     Residence type
     avg glucose level
                                        3978
     bmi
                                         418
     stroke
     work type Govt job
     work type Never worked
     work type Private
     work_type_Self-employed Moderate
     work_type_children
     smoking status_Unknown
     smoking status formerly smoked
     smoking status never smoked
     smoking status smokes
     dtype: int64
```

Use Label Encoder for Features with 2 Classes

hypertension, heart_disease, ever_married, residence_type, stroke, gender

Encode Features with more than2 Classes

work_type, smoking_status

Explore Target Variable 'stroke'Distribution

Moderate Imbalance Class.

Imbalance Class	Proportion of Minority Class
Mild	20-40% of the data set
Moderate	1-20% of the data set
Extreme	<1% of the data set

```
[26] # To visualize how well balanced the target (dependent variable) is

## this is moderate imbalanced

_ = sns.countplot(x=merged['stroke'])

5000

4000

4000

Moderate

stroke
```

2. Data Analysis & Feature Engineering

- # Feature Engineering: Adding Interaction Terms (Proposed)
- 1. Stress Factor: ever_married + work_type + smoking_status
- 2. Long Term Stress: (ever_married + work_type + smoking_status) * age
- 3. Hypertension coupled with Heart Disease: hypertension * heart_disease
- 4. Diabetes over BMI: (avg_glucose_level + Gender) / bmi
- 5. Gender roles in Marriage: ever_married + Gender

Add features to improve metrics performance

2. Data Analysis & Feature Engineering

- # Feature Engineering: Adding Interaction Terms (Proposed)
- 1. Stress Factor: ever_married + work_type + smoking_status
- 2. Long Term Stress: (ever_married + work_type + smoking_status) * age
- 3. Hypertension coupled with Heart Disease: hypertension * heart_disease
- 4. Diabetes over BMI: (avg_glucose_level + Gender) / bmi
- 5. Gender roles in Marriage: ever_married + Gender

Added features not highly correlated to core features

2. Data Analysis & Feature Engineering

Filter Features by Variance

df.var() Dropped low varian	nce features
gender age hypertension heart_disease ever_married Residence_type avg_glucose_level bmi	0.242647 511.373788 0.087991 0.051114 0.225617 0.249983 2050.731557 59.262825
work type Govt job	0.112081
work_type_Never_worked	0.004288
work_type_Private work_type_Self-employed work_type_children smoking_status_Unknown smoking_status_formerly smoked smoking_status_never smoked smoking_status_smokes stress HypTension_HeartDisease stroke dtype: float64	0.244817 0.134634 0.116410 0.210921 0.143117 0.233231 0.130609 0.593131 0.012372 0.046371

Filter Features by High Correlation

3. Data Transformation

SMOTE

Oversampling imbalance data:

- Create Class balance – 50:50

train_test_split

test_size=0.25, random_state=42

Feature Scaling

Min-Max Scaler

ML Model Training

Hyperparameter tuning using K-fold cross validation via Grid Search

3. Data Transformation

```
Shape of X before SMOTE: (5109, 17)
Shape of X after SMOTE: (9720, 17)
Shape of y after SMOTE: (9720,)

Balance of positive and negative classes (%):

1 50.0
0 50.0

Name: stroke, dtype: float64
```


SMOTE

Oversampling imbalance data:
- Create Class balance – 50:50

train_test_split

test_size=0.25, random_state=42

Feature Scaling

Min-Max Scaler

ML Model Training

Hyperparameter tuning using K-fold cross validation via Grid Search

(No Feature Engineering)

Baseline Model: Logistic Regression (without SMOTE)

Hyperparameter: (max_iter=5000)

Classification report:							
	precision	recall	f1-score	support			
0 1	0.96 0.00	1.00 0.00	0.98 0.00	902 42			
accuracy macro avg weighted avg	0.48 0.91	0.50 0.95	0.95 0.49 0.93	944 944 944			
Confusion Mat array([[900, [42,							

Confusion Matrix

Baseline Model: Logistic Regression (SMOTE)

Hyperparameter: (n_jobs=-1)

Clas	sifi	cation	report:
			p

	precision	recall	f1-score	support
0 1	0.89 0.96	0.96 0.88	0.92 0.92	1215 1215
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	2430 2430 2430

Confusion Matrix: array([[1165, 50], [140, 1075]])

Alternative Model: Random Forest

Hyperparameter: (criterion='entropy', max_depth=15, min_samples_split=3, n_estimators=150, n_jobs=-1)

Classification report:

	precision	recall	f1-score	support
0 1	0.96 0.98	0.98 0.96	0.97 0.97	1215 1215
accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	2430 2430 2430

Confusion Matrix: array([[1195, 20], [44, 1171]])

Alternative Model: Decision Tree

Hyperparameter: (criterion='entropy', max_depth=15, min_samples_split=5, random_state=42)

Classification report:

	precision	recall	f1-score	support
0 1	0.95 0.93	0.93 0.95	0.94 0.94	1215 1215
accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94 0.94	2430 2430 2430

Confusion Matrix: array([[1133, 82], [65, 1150]])

Alternative Model: K-nearest Neighbour Hyperparameter: (n_neighbors=2)

	precision	recall	f1-score	support
0 1	0.96 0.98	0.99 0.96	0.97 0.97	1215 1215
accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	2430 2430 2430

Confusion Matrix: array([[1197, 18], [53, 1162]])

Alternative Model: LinearSVC

Hyperparameter: (C=0.1, max_iter=500)

Classification report:

	precision	recall	f1-score	support
0	0.88	0.97	0.92	1215
1	0.97	0.87	0.92	1215
accuracy			0.92	2430
macro avg	0.92	0.92	0.92	2430
weighted avg	0.92	0.92	0.92	2430

Confusion Matrix: array([[1177, 38], [158, 1057]])

Alternative Model: Mixed Naïve Bayes No hyperparameter tuning

Classification report:									
	precision	recall	f1-score	support					
0	0.87	0.77	0.82	1215					
1	0.79	0.89	0.84	1215					
accuracy macro avg weighted avg	0.83 0.83	0.83 0.83	0.83 0.83 0.83	2430 2430 2430					
Confusion Matrix: array([[936, 279], [139, 1076]])									

Results (No Feature Engineering)

model_metrics.sort_values(by='F1 Score', ascending=False)								
		Model	Training Acc	Testing Acc	Precision	Recall	F1 Score	False Negative
•	1	Random Forest	0.999588	0.973663	0.973847	0.973663	0.973660	44
;	3	K-nearest Neighbors	0.979561	0.970782	0.971173	0.970782	0.970776	53
2	2	Decision Tree	0.988889	0.939506	0.939592	0.939506	0.939503	65
(0	Logistic Regression	0.917695	0.921811	0.924138	0.921811	0.921703	140
4	4	Support Vector Machine	0.919753	0.919342	0.923472	0.919342	0.919144	158
į	5	Mixed Naive Bayes	0.834431	0.827984	0.832397	0.827984	0.827411	139

Feature Importance vs Select KBest

Feature Importance

```
# Feature Selection by SelectKBest
new_features
['gender',
 'age',
                           8 Selected
 'Residence type',
 'avg glucose level',
 'work type Govt job',
 'work_type_Private',
 'work type children',
 'smoking status Unknown',
 'smoking status never smoked',
 'smoking status smokes']
```

SelectKBest(k=11)

Results: Selection #1

All Features			After Selection			n		
		Model	F1 Score	False Negative		Model	F1 Score	False Negative
	1	Random Forest	0.972014	45	1	Random Forest	0.938625	1 (37)
;	3	K-nearest Neighbors	0.970364	54	3	K-nearest Neighbors	0.930837	60
:	2	Decision Tree	0.941555	56	2	Decision Tree	0.909376	72
	0	Logistic Regression	0.920879	141	4	Support Vector Machine	0.847699	166
	4	Support Vector Machine	0.918722	160	0	Logistic Regression	0.844844	178
	5	Mixed Naive Bayes	0.822456	145	5	Mixed Naive Bayes	0.814406	168

Feature Importance with Select KBest

Feature Importance

```
# Feature Selection by SelectKBest(15)
new features
```

```
['gender',
    'age',
    'ever_married',
    'Residence_type',
    'avg_glucose_level',
    'work_type_Govt_job',
    'work_type_Never_worked',
    'work_type_Private',
    'work_type_Self-employed',
    'work_type_children',
    'smoking_status_Unknown',
    'smoking_status_formerly smoked',
    'smoking_status_never smoked',
    'smoking_status_smokes',
    'HypTension_HeartDisease']
```

SelectKBest (k=15)

Results: Selection #2

All Features			After Selection			n	
	Model	F1 Score	False Negative		Model	F1 Score	False Negative
1	Random Forest	0.972014	45	1	Random Forest	0.972015	1 44
3	K-nearest Neighbors	0.970364	54	3	K-nearest Neighbors	0.965839	55
2	Decision Tree	0.941555	56	2	Decision Tree	0.948970	57
0	Logistic Regression	0.920879	141	4	Support Vector Machine	0.924955	145
4	Support Vector Machine	0.918722	160	0	Logistic Regression	0.918011	141
5	Mixed Naive Bayes	0.822456	145	5	Mixed Naive Bayes	0.836018	157

Comparison of Results

Conclusion

Best Model: Random Forest

Feature Selection #2:

```
['gender',
'age',
'Residence_type',
```

'avg_glucose_level',

'work_type_Govt_job',

<mark>'work_type</mark>_Private',

'work_type_Self-employed',

'work_type_children',

<mark>'smoking_status</mark>_Unknown',

'smoking_status_formerly smoked',

'smoking_status_never smoked',

'smoking_status_smokes',

'HypTension_HeartDisease']

Classification report:

	precision	recall	f1-score	support
0	0.96	0.98	0.97	1215
1	0.98	0.96	0.97	1215
accuracy	0.07	0.07	0.97	2430
macro avg	0.97	0.97	0.97	2430
weighted avg	0.97	0.97	0.97	2430

Confusion Matrix: array([[1191, 24], [44, 1171]])

Conclusion

Business Benefits:

With this Model, we can predict if you and your family members would be at risk of suffering stroke.

If identified as a potential positive, we can assist to help you reduce the risk of suffering stroke through our Chronic Disease Management, Weight Loss & Health Optimization programs personalized to suit your schedule and meet your expectation.

Conclusion

Limitations/Future Opportunities:

Features: Not comprehensive

Proposed Dataset to include: Medical history, exercise regimen, lifestyle (alcohol), diet, family medical history, socioeconomic factors, sleep habits, biological samples analysis.

Comprehensive Dataset:

Use to assess progression to other diseases (e.g. diabetes, heart diseases, artery blockage, etc).

The End!

References

- 1. https://www.kaggle.com/fedesoriano/stroke-prediction-dataset
- 2. How to Use StandardScaler and MinMaxScaler Transforms in Python (machinelearningmastery.com)
- 3. https://python-bloggers.com/2020/12/how-to-effortlessly-handle-class-imbalance-with-python-and-smote/
- 4. https://machinelearningmastery.com/feature-selection-with-real-and-ata/
- 5. https://www.stroke.org/en/about-stroke/stroke-risk-factors/additional-factors-that-may-be-linked-to-higher-stroke-risks

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**