

Leveraging Federated Learning, Matrix Factorization, and Neural Models for Privacy-Preserving Personalization

Navya Manjari Uppaluri Faculty of Computer Science, Dalhousie University nv574116@dal.ca

The Movie Recommendation Paradox

- **Problem:** Too much content, not enough clarity
- Challenge: Platforms collect two very different types of feedback:
 - Explicit: Ratings, reviews accurate but sparse
 - **Implicit:** Clicks, watch time abundant but noisy
- Result: Users face endless scrolling without confident decisions

PAEDD 6th April 2025 2

Motivation

- •Data Privacy Concern: Centralized recommenders collect and store sensitive user data
- •Federated Learning (FL): Train models without centralizing raw data
- •Goal: Build a privacy-preserving movie recommender with minimal accuracy loss
- •Approach: Combine FL with neural networks to learn rich user—item patterns
- •Benchmark: Evaluate on MovieLens-1M, a widely used dataset in recommender research

PAEDD 6th April 2025 3

The Core Challenge

- •Combine rich but sparse and abundant but noisy data
- •Preserve user privacy while improving personalization
- •Handle cold-start and data heterogeneity in a real-world scenario

Our Solution: Federated + Feature-Fused Architecture

- Federated Learning Layer:
- Keeps raw user data local
- Aggregates model weights (FedAvg Adam)
- Feature Fusion Layer:
- Uses user demographics (age, gender, occupation)
- Uses movie metadata (genres)
- Model Components:
- Baselines (Popularity, User-Avg)
- Matrix Factorization (SVD)
- Neural Embedding Models

Dataset Overview (MovieLens-1M)

•6,040 users, 3,883 movies, 1M+ ratings

•Demographics: Age, gender, occupation

•18 genres, ratings from 1939 onwards

•Dataset sparsity: 95.8%

•Pre-processing:

• Sequencing movie IDs & ratings

• Encoding genres, occupation, gender, age

• Creating non-IID partitions for clients

Name	Statistics
Number of users	6040
Number of movies	4052
Number of reviews	1000209
Click/browse	6976551
Review	354016
Favorites	72604
Like	244740
Total user actions	7647911
Dataset sparsity	0.958

EDA Highlights

- •Ratings distribution: Skewed towards higher ratings (bias towards liked movies)
- •Genre popularity: Top genres are Drama, Comedy, Action
- •Sparsity: ~95% of user—item matrix is empty
- •Active users dominate dataset, tail users have few ratings

Baseline Models

•Popularity-Based Prediction: Recommend highest-rated items globally

•User-Average Prediction: Predict user's average rating for unseen items

•Cold-Start Evaluation: Test on users/items with no prior interactions

•Performance:

Popularity MAE: 0.7788User Avg MAE: 0.8234

Feature Ablation Test

- •Purpose: Measure impact of removing features
- •Observations:
- Removing popularity feature → MAE ↑
- Removing user-avg feature → MAE ↑
- No features \rightarrow MAE very high (\sim 3.58)
- •Conclusion: Each feature contributes significantly

Advanced Models

•SVD Matrix Factorization

•Learns latent user/item factors

•MAE: 0.6850

•KNN Collaborative Filtering

•User-based MAE: 0.7713

•Item-based MAE: 0.7794

•Top-K Ranking Metrics

•Recall@10: 0.6398

•NDCG@10: 0.8709

Neural Model Architecture

- Inputs:
 - User ID and Movie ID embeddings
 - Encoded genres, occupations, age, and gender
- Hidden Layers:
 - $-256 \rightarrow 128 \rightarrow 1$ units
- Activation: ReLU
- **Regularization:** Dropout
- Output: Predicted rating

Model Architecture – FFNN

- Framework: PyTorch FeedForward Neural Network (FFNN)
- Embedding Layers:
 - User IDs
 - Each of 4 movie IDs in the sequence
- Forward Pass:
 - Concatenate embeddings
 - Flatten → Linear → ReLU → Dropout → Linear
- Output: Probability distribution across all movie IDs
- Loss Function: CrossEntropyLoss
- Optimizer: Adam
- Training: 10 epochs

PAEDD - 6th April 2025 12

Federated Learning Setup & Aggregation Logic

- Dataset Split: User IDs divided into 10 clients
- Local Training:
 - Each client trains a local copy of the FFNN
 - Fixed number of local epochs
- Aggregation Logic (FedAvg):
 - Server collects model weights from all clients
 - Averages parameters (weights)
 - Updates global model
- Advantages:
 - User data remains local
 - Improved personalization
 - Reduced risk of data breaches

PAEDD - 6th April 2025 13

Evaluation Metrics

•Metrics Used:

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R² Score
- Mean Absolute Percentage Error (MAPE)

•Evaluation conducted:

- On individual client models
- On final global model (after aggregation)

Experimental Results

- •Federated Feed-Forward NN (10 clients):
 - •Best MAE: 0.8378
 - $-R^2 \sim 0.13$
- •SVD outperforms KNN in MAE
- •Top-K ranking:
 - •SVD Recall@10 ~ 0.64
 - •NDCG@10 ~ 0.87

PAEDD - 6th April 2025 - 15

Results & Comparisons

Client Wise Performance table

Client	MAE	MAPE	R ²	MSE	RMSE
1	0.861271	34.193677	0.121443	1.110641	1.053869
2	0.844557	33.979844	0.128833	1.083926	1.041118
3	0.838203	34.173737	0.130822	1.078016	1.038275
4	0.843004	34.873277	0.123515	1.094560	1.046212
5	0.837860	35.227289	0.118945	1.099636	1.048635
6	0.856534	33.510565	0.120854	1.095998	1.046899
7	0.850350	33.967662	0.122866	1.093216	1.045570
8	0.844025	34.068765	0.130675	1.085979	1.042103
9	0.858443	33.897860	0.112239	1.105887	1.051612
10	0.845914	34.077291	0.127015	1.088638	1.043378

PAEDD 6th April 2025 16

Personalized Case Study

- •Example User: ID 1841
- •Top 5 Recommendations:
- Babe (1995)
- Pulp Fiction (1994)
- Shawshank Redemption (1994)
- •Matches user's highly rated genres

PAEDD - 6th April 2025 - 17

Key Technical Contributions

•Privacy-Preserving FL

• No raw data sharing

•Feature Fusion

• Metadata + Ratings

•Robust Evaluation

• MAE, Recall@10, NDCG@10, Ablation

Challenges Faced

- **Data Imbalance:** Some clients have fewer samples
- Synchronization: Ensuring consistent training configurations across clients
- Resource Constraints: No deployment or parallelism used

PAEDD 6th April 2025 19

Conclusion

- •Successfully combined FL, MF, and deep models
- •Improved personalization while **preserving privacy**
- •Strong results on MovieLens-1M
- •Applicable to other domains beyond movies

PAEDD - 6th April 2025 20

Limitations & Future Work

•Limitations

- Cold start problem for new users or items
- Assumes static user preferences over time
- Limited interpretability of deep learning models

•Future Enhancements

- Integrate temporal modeling (RNN / Transformer) for evolving preferences
- Apply multi-modal fusion (e.g., text, images) for richer recommendations
- Develop explainable AI methods for transparent decision-making

References

- •Harper, F. M., & Konstan, J. A. (2016). MovieLens 1M Dataset. GroupLens Research Project.
- •McMahan, B., et al. (2017). Communication-efficient learning of deep networks from decentralized data. In AISTATS.
- •Ammad-Ud-Din, M., et al. (2019). Federated collaborative filtering for privacy-preserving personalized recommendation systems. arXiv:1901.09888.
- •Li, L., et al. (2020). A review of applications in federated learning. Computers & Industrial Engineering, 149, 106795.
- •Kairouz, P., et al. (2021). Advances and open problems in federated learning. Foundations and Trends in Machine Learning, 14(1–2), 1–210.

PAEDD — 6th April 2025 22

