AL/	2023(2024)/01/S-I						
	9 6ම්කම් ආච්රිණි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]						
Sen Dep Sen	இ ලංකා විශාල දෙපාර්තමේන්තුව ලි ලංකා විශාල දෙපාර ලික්ක් දෙපාර ලික						
	கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2023(2024) General Certificate of Education (Adv. Level) Examination, 2023(2024)						
ା	හාතික විදනව I பளதிகவியல் I hysics I						
CC	උපදෙස් :						
	ලකුණු කරන්න. ගුණක තෝතු භාවිතයට ඉඩ දෙනු නොලැබේ. $(g=10~{ m m~s^{-2}})$						
1.	ඉලෙක්ටුෝන චෝල්ට් (eV) (1) ශක්තියේ ඒකකයකි. (2) ක්ෂමතාවයේ ඒකකයකි. (3) ආරෝපණයේ ඒකකයකි. (4) චෝල්ටීයතාවයේ ඒකකයකි. (5) බලයේ ඒකකයකි.						
2.	ඒකාකාර ගෝලීය M සහ m ස්කන්ධ දෙකක කේන්දු අතර දුර r වේ. ස්කන්ධ දෙකේ ගුරුත්වාකර්ෂණ විභව ශක්තිය කුමක් ද? $ (1) \ \frac{GMm}{r} \qquad (2) \ -\frac{GMm}{r} \qquad (3) \ \frac{GMm}{r^2} \qquad (4) \ -\frac{GMm}{r^2} \qquad (5) \ \frac{GM}{r} $						
3.	හරකෙක් කරත්තයක් ඇදගෙන යන විට හරකාගේ ඉදිරි චලිතය සඳහා පාදක වන බලය කුමක් ද? (1) හරකා කරත්තය මත යොදන බලය (2) කරත්තය හරකා මත යොදන බලය (3) හරකා පොළොව මත යොදන බලය (4) පොළොව හරකා මත යොදන බලය (5) කරත්තය පොළොව මත යොදන බලය						
4.	විශාලත්ව 9m සහ 6 mවූ විස්ථාපන දෙකක් එකතු කිරීමෙන් ලබාගත හැකි සම්පුයුක්ත විස්ථාපනයක් වන්නේ, (1) 1 m. (2) 2 m. (3) 4 m. (4) 16 m. (5) 20 m.						
5.	අන්වායාම තරංග පුදර්ශනය නොකරන්නේ (1) පරාවර්තනයයි. (2) වර්තනයයි. (3) නිරෝධනයයි. (4) විවර්තනයයි. (5) ධුැවණයයි.						
6.	කෘෂ්ණ වස්තුවක නිරපේක්ෂ උෂ්ණත්වය දෙගුණයකින් ඉහළ දැමූ විට කෘෂ්ණ වස්තුවේ ඒකක වර්ගඵලයකින් ඒකක කාලයකදී විකිරණය වන ශක්තිය (1) දෙගුණයකින් වැඩිවේ. (2) හතර ගුණයකින් වැඩිවේ. (3) අට ගුණයකින් වැඩිවේ. (4) දහසය ගුණයකින් වැඩිවේ. (5) තිස්දෙක ගුණයකින් වැඩිවේ.						
7.	සංඛ්‍යාංක පරිපථවල ටුාන්සිස්ටර භාවිත වන විට ඒවා කි්යාක්මක වන්නේ (1) සකි්ය කලාපයේ ය. (2) බිඳවැටීමේ කලාපයේ ය. (3) ඓඛ්‍ය කලාපයේ ය. (4) සන්තෘප්ත කලාපයේ ය. (5) සන්තෘප්ත සහ කපාහැරෙන කලාපවල ය.						
8.	නියුවෝනයක (n) ක්වාක් සංයුතිය කුමක් ද? (1) uud (2) udd (3) uuu (4) $\overline{u}\overline{u}\overline{u}$ (5) $\overline{d}\overline{d}\overline{d}$						

 $oldsymbol{9}$. පරිපූර්ණ වායුවක, දී ඇති ස්කන්ධයක පීඩනය නියතව තබා ගතහොත්, නිරජෙක්ෂ උෂ්ණත්වය T සමග එහි ඝනත්වය ho හි විචලනය වඩාත්ම හොඳින් නිරූපණය වන්නේ,

10. තාපගතික කියාවලි තුනක් පහත දී ඇත,

- (A) සමෝෂ්ණ කිුයාවලියක්
- (B) නියත පරිමා කිුයාවලියක්
- (C) නියත පීඩන කිුයාවලියක්

පරිපූර්ණ වායුවකට ලබා දෙන **මුළු** තාප ශක්තියම වායුව මගින් කරන ලද කාර්යය බවට පත් කළ හැක්කේ,

- (1) (A) මගින් පමණකි.
- (2) (B) මගින් පමණකි.
- (3) (C) මගින් පමණකි.
- (4) (A) සහ (C) මගින් පමණකි.
- (5) (A), (B) සහ (C) සියල්ල මගිනි.

11. සන්නායක සමාන්තර තහඩු දෙකක විදුපුත් විභව පිළිවෙළින් $-10\,\mathrm{V}$ සහ $30\,\mathrm{V}$ වේ. තහඩු අතර පරතරය $2\,\mathrm{cm}$ නම් තහඩු අතර පවතින විදාපුත් ක්ෂේතු තීවුතාවය කොපමණ ද?

- (1) 1000 V m^{-1}
- (2) 1500 V m^{-1} (3) 2000 V m^{-1}
- (4) 3000 V m^{-1} (5) 4000 V m^{-1}

12. පහත කුමක් විදයුත් ක්ෂේතු රේඛා පිළිබඳ සතා නොවන්නේ ද?

- (1) ක්ෂේතු රේඛා ධන ආරෝපණවලින් පටන් ගෙන ඍණ ආරෝපණ මත නතර වේ.
- (2) තනි ධන ආරෝපණයක් පැවතුනහොත් ක්ෂේතු රේධා අනන්තයේදී නතර වේ.
- (3) ක්ෂේතු රේඛා දෙකක් කිසි විටක එකිනෙක කැපී යා නොහැක.
- (4) ස්ථිති විදපුත් ක්ෂේතු රේඛා සංවෘත පුඩු සාදයි.
- (5) විදාුත් ක්ෂේතුයක රටාව නිරූපණය කිරීමට යොදා ගන්නා ක්ෂේතු රේඛා මනඃකල්පිත රේඛා වේ.

 ${f 13}$. තීවුතාව I_1 වන ධ්වනි පුභවයක් එක්තරා ලක්ෂායකදී ඇති කරන ධ්වනි තීවුතා මට්ටම ${f 90\,dB}$ වේ. තීවුතාව I_2 වන වෙනත් ධ්වනි පුභවයක් එම ලක්ෂායේම $40\,\mathrm{dB}$ ක ධ්වනි තීවුතා මට්ටමක් ඇති කරයි. පුභව දෙකේම සිට ලක්ෂායට ඇත්තේ එකම දුරකි. $rac{I_1}{I_2}$ අනුපාතය කොපමණ ද?

- (1) 5
- (2) 50
- $(4) 10^2$
- $(5) 10^5$

14. ලෝහයක පුකා**ශ** විදාුුත් දේහලිය සංඛානතය $f_{\hat{0}}$ වේ. සංඛානතය $4f_{\hat{0}}$ වන ආලෝකය ලෝහය මත පතනය වන විට නිකුත් වන පුකාශ ඉලෙක්ටුෝනවල උපරිම චාලක ශක්තිය කුමක් ද?

- (1) hf_0
- (2) $2hf_0$
- (3) $3hf_0$
- (4) $4hf_0$
- $(5) 5hf_0$

15. නාභීය දුර $20~{
m cm}$ වන උත්තල කාචයක් සහ නාභීය දුර $5~{
m cm}$ වන අවතල කාචයක් ඒවා අතර පරතරය d වන පරිදි එකම අක්ෂයේ තබා ඇත. උත්තල කාචය මත පතනය වන ඒකවර්ණ සමාන්තර ආලෝක කදම්බයක් අවතල කාචයෙන් සමාන්තර කදම්බයක් ලෙස නික්ම යයි නම් d දූර කොපමණ ද?

- (1) 25 cm
- (2) 20 cm
- (3) 15 cm
- (4) 10 cm
- (5) 5 cm

[තුන්වෑනි පිටුව බලන්න.

 $oldsymbol{16}$. ස්කන්ධය m වන X ටොලිය සහ ස්කන්ධය M වන Y ටොලිය සුමට තිරස් පෘෂ්ඨයක් මත සරල රේබාවක් ඔස්සේ එකම දිශාවට චලිත වේ. X ටොලියේ වේගය Y ටොලියේ වේගය මෙන් දෙගුණයකි. ටොලි දෙක එකට ගැටුණු පසු ඒවා පොදු පුවේගයකින් එක්ව ගමන් ගනී. ගැටුම නිසා Y ටොලියේ වේ**ග**ය 20% කින් වැඩි වූයේ නම් $rac{M}{m}$ අනුපාතය කොපමණ ද?

- (1) 5
- (2) 4
- (3) 3
- (4) 2
- (5) 1

17 තිරසට $60^{
m o}$ ක කෝණයකින් බෝලයක් ඉහළට පුක්ෂේපණය කරනු ලැබේ. පුක්ෂේපණමෙය් ආරම්භක චාලක ශක්තිය K නම් එහි උපරිම උසේදී බෝලයේ චාලක ශක්තිය කොපමණ වේ ද? (වාත පුතිරෝධය නොසලකා හරින්න.)

- (1) K
- $(3) \quad \frac{K}{3} \qquad \qquad (4) \quad \frac{K}{4}$
- (5) 0

 $oldsymbol{18}$. දිග L සහ විෂ්කම්භය d වන කම්බියකින් සාදා ඇති ගිල්ලුම් තාපකයකින් දෙන ලද ජල ස්කන්ධයක උෂ්ණත්වය $40\,^\circ\mathrm{C}$ ් කින් නැංවීමට මිනිත්තු 4 ක කාලයක් ගත වේ. එම දුවායෙන් සාදන ලද එහෙත් දිග 2L සහ විෂ්කම්භය 2d වන කම්බියකින් සාදා ඇති වෙනත් ගිල්ලුම් තාපකයක් මගින් ඒ හා සමාන ජල පුමාණයක උෂ්ණත්වය $40\,{}^{\circ}\mathrm{C}$ කින් නැංවීමට කොපමණ කාලයක් ගත වේ ද? (පරිසරයට වන තාප හාතිය නොසලකා හරින්න.)

- (1) 0.5 min
- (2) 1 min
- (3) 1.5 min
- (4) 2 min
- (5) 8 min

19. පෘථිවිය සූර්යයා වටා අරය r_1 වන වෘත්තාකාර පථයක v_1 වේගයකින් පරිභුමණය වන බව හා අඟහරු ගුහණ සූර්යයා වටා අරය r_2 වන වෘත්තාකාර පථයක v_2 වේගයකින් පරිභුමණය වන බව උපකල්පනය කරන්න.

 $\frac{r_1}{v_0}$ අනුපාතය කුමක් ද?

- (2) $\frac{r_2}{r_1}$ (3) $\sqrt{\frac{r_2}{r_1}}$ (4) $\sqrt{\frac{r_1}{r_2}}$ (5) $\frac{r_2^2}{r^2}$

 ${f 20}$. පුතිබිම්බ දූර (${\it V}$) සමග උත්තල කාචයක් මගින් සෑදෙන තාත්ත්වික පුතිබිම්බවල රේබීය විශාලනයේ (${\it m}$) විචලනය වඩාත්ම හොඳින් නිරූපණය වන්නේ,

21. ධාරාවක් රැගෙන යන දිගු පරිණාලිකාවක අක්ෂය ඔස්සේ u පුවේගයකින් මෙුා්ටෝනයක් පුක්ෂේපණය කරනු ලැබුවේ නම්,

- (1) අක්ෂය ඔස්සේ පුෝටෝනය ත්වරණය වේ.
- (2) අක්ෂය ඔස්සේ පුෝටෝනය මන්දනය වේ.
- (3) අක්ෂය වටා පුෝටෝනයේ පථය වෘත්තාකාර වේ.
- (4) අක්ෂය වටා පෝටෝනයේ පථය සර්පිලාකාර වේ.
- (5) අක්ෂය ඔස්සේ පුෝටෝනය v පුවේගයෙන් දිගටම චලිත වේ.

[හතරවැනි පිටුව බලන්න.

22.	ඒකාකාර අර්ධ වෘත්තාකාර තුනී තහඩුවක් රූපයේ පෙන්වයි. එහි ගුරුත්ව ළ කේන්දුයේ පිහිටීමට වඩාත්ම ඉඩ ඇති ලක්ෂාය වනුයේ,
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$(4) D \qquad (5) E \qquad \qquad \underbrace{ \qquad \qquad }_{A}$
23	රූපයේ පෙන්වා ඇති පරිදි ධාරාවක් රැගෙන යන ඍජු කම්බියක දෙපැත්තේ A සහ B සන්නායක වෘත්තාකාර පුඩු දෙකක් කම්බිය හා සමග එකම තලයක තබා ඇත. කම්බියේ ගලන ධාරාව (I) විශාලක්වයෙන් අඩු වන විට පුඩුවල පුේරණය වන ධාරාව
	(1) A හි දක්ෂිණාවර්ත සහ B හි දක්ෂිණාවර්ත වේ. (2) A හි වාමාවර්ත සහ B හි දක්ෂිණාවර්ත වේ. (3) A හි දක්ෂිණාවර්ත සහ B හි වාමාවර්ත වේ. (4) A හි වාමාවර්ත සහ B හි වාමාවර්ත වේ. (5) පුඩු දෙකේම ඉනා වේ.
24.	දක්ෂිණාවර්ත දිශාවට භුමණය වන කතුරු ඔංචිල්ලාවක් රූපයේ පෙන්වයි. X හි පිහිටුවා ඇති ශබ්ද විකාශන යන්තුයක් මගින් f_0 නියත සංඛාහතයකින් යුත් ධ්වනි තරංග අනවරතව පිට කරයි. කතුරු ඔංචිල්ලාවේ සිටින මිනිසෙකු P,Q,R සහ S යන පිහිටුම් ෂසුකරන විට ඔහුට ඇසෙන ධ්වනියේ තාරතාව පිළිබඳව පහත පුකාශ සලකා බලන්න. (A) මිනිසා Q සහ S ස්ථානවල ස්ථානගත වන විට පුකෘති තාරතාව ඇසේ. (B) මිනිසා P ලක්ෂායේ ස්ථානගත වන විට උච්චතම තාරතාව ඇසේ. (C) මිනිසා R ලක්ෂායේ ස්ථානගත වන විට අවම තාරතාව ඇසේ.
	ඉහත පුකාශ අතුරෙන්,
	(1) (A) පමණක් සතා වේ. (2) (A) සහ (B) පමණක් සතා වේ. (3) (A) සහ (C) පමණක් සතා වේ. (4) (B) සහ (C) පමණක් සතා වේ. (5) (A), (B) සහ (C) යන සියල්ලම සතා වේ.
25.	වුම්බක ක්ෂේතුයක තබා ඇති ධාරාවක් රැගෙන යන කම්බියක් මත කිුිිියාකරන වුම්බක බලයේ විශාලත්වය පිළිබඳ පහත පුකාශ සලකා බලන්න.
	(A) එය කම්බියේ දිග මත රඳා පවතී.(B) එය කම්බිය නවා ඇති හැඩය මත රඳා පවතී.(C) එය කම්බියේ හරස්කඩ වර්¢ාඵලය මත රඳා පවතී.
	ඉහත පුකාශ අතුරෙන්,
	(1) (A) පමණක් සතා වේ. (2) (A) සහ (B) පමණක් සතා වේ. (3) (A) සහ (C) පමණක් සතා වේ. (4) (B) සහ (C) පමණක් සතා වේ. (5) (A), (B) සහ (C) යන සියල්ලම සතා වේ.
26	
20.	අභාවත්තර අරය a සහ දි $m e$ l වන තිරස් නළයක් හරහා Δp පීඩන අන්තරයකට යටත්ව ගලන දුස්සුාවිතා $Ca^n \Lambda p$
	සංගුණකය η වන දුවයක වේගය ν , $\nu = \frac{Ca^n \Delta p}{\eta l}$ ලෙස ලිවිය හැක. මෙහි C යනු මාන නොමැති නියතයකි. n හි අගය කොපමණ ද?
	(1) $\frac{1}{2}$ (2) 1 (3) 2 (4) 3 (5) 4
27.	වාතේ මිනුම් පටියක් $20~^{\circ}$ C ක උෂ්ණත්වයකදී කුමාංකනය කොට ඇත. ශිෂපයෙක් $40~^{\circ}$ C දී දිගක් මැනීම සඳහා මෙම මිනුම් පටිය භාවිත කරයි. මිනුම් පටියෙන් ඔහු කියවන අගය $50\cdot00\mathrm{m}$ වේ. දිගෙහි සතා අගය කොපමණ ද? වාතේවල රේඛීය පුසාරණතාව $2\times10^{-5}~^{\circ}$ C $^{-1}$ වේ.
	(1) 49·96 m (2) 49·98 m (3) 50·02 m (4) 50·04 m (5) 50·06 m

- 28. ඝනත්වය ho වන අසම්පීඩාඃ, දුස්සුාවි නොවන තරලයක් අභෲන්තර අරය r වන තිරස් නළයක් හරහා ගලා ගොස් අභාවන්තර අරය $rac{r}{2}$ වන නළයේ පටු කොටසකට පිවිසේ. නළයේ පළල් කොටසේදී තරලයේ පීඩනය සහ පුවේගය පිළිවෙළින් P_0 සහ v_0 නම් නළයේ පටු කොටසේදී තරලයේ පීඩනය කුමක් ද?
 - (1) $\frac{P_0}{4}$
- (2) $\frac{P_0}{2}$

- (3) $P_0 \frac{1}{2}\rho v_0^2$ (4) $P_0 \frac{3}{2}\rho v_0^2$ (5) $P_0 \frac{15}{2}\rho v_0^2$
- 29. එක එකෙහි පුතිරෝධය R වන පුතිරෝධක දහයක් රූපයේ පෙන්වා ඇති පරිදි සම්බන්ධ කොට ඇත. AB අගු අතර පුතිරෝධය $50~\mathrm{k}\Omega$ නම් R හි අගය කොපමණ ද?
 - (1) $12k\Omega$
- (2) $15k\Omega$
- (3) $18k\Omega$

- (4) $24k\Omega$
- (5) $36k\Omega$

 $oldsymbol{30}$. සමපාද P පිස්මයක් තුළ ඒකවර්ණ ආලෝක කිරණයක් Dඅවම අපගමනයකට බඳුන් වේ. එවැනි P,Q සහ R සර්වසම පුස්ම තුනක් රූපයේ පෙන්වා ඇති අයුරින් තබා ඇත. පුස්ම සංයුක්තය හරහා කිරණය ගමන් කළ පසු එහි මුළු අපගමනය කොපමණ ද?

- (1) $\frac{D}{3}$
- (2) $\frac{D}{2}$
- (3) D

- (4) 2D
- (5) 3D
- 31. වර්ග මධානා අගය 200 V වන සයිනාකාර පුතාහවර්ත වෝල්ටීයතාවක් පූර්ණ තරංග සෘජුකාරක පරිපථයකට සපයනු ලැබේ. ඍජුකාරකයේ ඇති එක් එක් දියෝඩයේ ඉදිරි නැඹුරු වෝල්ටීයතාව $0.7\,\mathrm{V}$ වේ. ඍජුකරණය වූ වෝල්ටීයතාවයේ උච්ච අභය කොපමණ ද? ($\sqrt{2} = 1.4$ ලෙස ගන්න.)
 - (1) 141.5 V
- (2) 142·2 V
- (3) 277·2 V
- (4) 278·6 V
- (5) 280·0 V
- 32. මේසයකට ඉහළින් 1 m උසක සිට පිං-පොං බෝලයක් අත හරිනු ලැබේ. සෑම අනුයාත පොළා පැනීමකදීම එකම පුමාණයකින් බෝලයේ චාලක ශක්තිය හානි වේ. පිං-පොං බෝලයේ පුවේගය (
 u) – කාලය (t) වඩාත්ම හොඳින් නිරූපණය වන්නේ,

「හයවැනි පිටුව බලන්න.

33. සමාන්තර සන්නායක තහඩු දෙකක් හරහා චෝල්ටීයතාවක් යොදා ඇත. ස්කන්ධ පිළිවෙළින් 2m සහ m වන X සහ Y ආරෝපිත බිඳිති දෙකක් රූපයේ පෙන්වා ඇති අයුරින් තහඩු අතර නිසලව ඇත. X සහ Y අතර ඇති අන්තර් කිුයාව නොසලකා හරින්න. තහඩු දෙක එකිනෙකට සමීප කරන විට

- (1) X සහ Y සමතුලිතතාවයේම පවතී.
- (2) X සහ Y සමාන ත්වරණයෙන් පහළට වැටේ.
- (3) X සහ Y සමාන ත්වරණයෙන් ඉහළට නගී.
- (4) Y ට වඩා වැඩි ත්වරණයකින් X ඉහළට නගී.
- (5) Yට වඩා වැඩි ත්වරණයකින් X පහළට වැටේ.
- ${f 34.}$ පටු නළයක දෙකෙළවරෙහි A සහ B සබත් බුබුළු දෙකක් පිහිටුවා ඇත. ආරම්භයේදී නළය මැද ඇති කරාමය වසා ඇති අතර A බුබුලේ අරය B හි අරයට වඩා අඩු ය. ඊට පසු කරාමය විවෘත කර බුබුළු නොකැඩී පද්ධතිය සමතුලිතතාවය කරා ළඟා වීමට ඉඩ හරිනු ලැබේ. බුබුළුවල අවසාන අරයන් $(R_{
 m A}\,,\,R_{
 m B})$ සහ අවසාන පරිමා $(V_{
 m A},V_{
 m B})$ අතර සම්බන්ධය කුමක් ද?

	අවසාන අරයන්	අවසාන පරිමා
(1)	$R_{\rm A} < R_{\rm B}$	$V_{\rm A} < V_{\rm B}$
(2)	$R_{\rm A} < R_{\rm B}$	$V_{\rm A} = V_{\rm B}$
(3)	$R_{\rm A} = R_{\rm B}$	$V_{\rm A} = V_{\rm B}$
(4)	$R_{\rm A} > R_{\rm B}$	$V_{\rm A} < V_{\rm B}$
(5)	$R_{\rm A} = R_{\rm B}$	$V_{\rm A} < V_{\rm B}$

- 35. එක්තරා T උෂ්ණත්වයකදී දෙකෙළවර විවෘත නළයක් $400\,\mathrm{Hz}$ සංඛuාතයකින් අනුනාද වේ. උෂ්ණත්වය T හිදී ට වඩා ධ්වති වේගය 2% ක් අඩු දිනයකදී මෙම නළය අනුනාද වන සංඛාාතය කොපමණ වේ ද?
 - (1) 384 Hz
- (2) 392 Hz
- (3) 396 Hz
- (4) 408 Hz
- (5) 416 Hz
- 36. හොඳින් අවුරා ඇති එකම සන්නායක දුවායකින් සාදා ඇති සමාන l දිහැති දඬු තුනක් සම්බන්ධ කොට රූපයේ පෙන්වා ඇති ABසංයුක්ත දණ්ඩක් සාදා ඇත. දඬුවල හරස්කඩ අරයන් පිළිවෙළින් $4{:}2{:}1$ අනුපාතයේ ඇත. දණ්ඩේ A කෙළවරේ සිට B කෙළවර දක්වා තාපය ගලයි. අනවරත අවස්ථාවේදී සංයුක්ත දණ්ඩ ඔස්සේ තාපය ගලා යෑමේ ශීඝුතාවය $\left(rac{Q}{t}
 ight)$ වඩාත්ම හොඳින් නිරූපණය වන්නේ,

[හත්වැනි පිටුව බලන්න.

 $oldsymbol{37}$. නොසලකා හැරිය හැකි ස්කන්ධයක් ඇති එක එකෙහි ආරම්භක දිග Lසහ හරස්කඩ වර්ගඵලය A වන යං මාපාංක Y_1 සහ Y_2 වන දුවායන්ගෙන් සාදන ලද දඬු දෙකක් ශේුණිගත ලෙස සම්බන්ධ කොට සංයුක්ත දණ්ඩක් සාදා ඇත. රූපයේ පෙන්වා ඇති පරිදි සංයුක්ත දණ්ඩේ එක් කෙළවරක් දෘඪ සිවිලිමකට ස්ථීර ලෙස සවිකොට ඇත. ඝනත්වය eta වන දුවෳයකින් සාදන ලද පරිමාව Vවන ගෝලයක් දණ්ඩේ නිදහස් කෙළවරට සම්බන්ධ කොට ගෝලය සම්පූර්ණයෙන්ම ඝනත්වය ho (eta >
ho) වන දුවයක ගිල්වනු ලැබේ. සංයුක්ත දණ්ඩේ ඇතිවන දිගෙහි වෙනස කුමක් ද?

- (2) $\frac{V(\beta \rho)gL}{A} \left(\frac{1}{Y_1} \frac{1}{Y_2}\right)$
- (3) $\frac{A}{V(\beta \rho)gL} \left(\frac{1}{Y_1} + \frac{1}{Y_2} \right)$

(4) $\frac{A}{V(\beta-\rho)gL}(Y_1-Y_2)$

(1) $\frac{V(\beta - \rho)gL}{A} \left(\frac{1}{Y_1} + \frac{1}{Y_2} \right)$

- (5) $\frac{V(\beta-\rho)gL}{A}(Y_1+Y_2)$
- 38. එකක් උඩ එකක් තබා ඇති ඝනකම් පාරදෘශා සමාන්තර තහඩු හතරක් රුපමය් පෙන්වා ඇත. තහඩු සාදා ඇති දුවෳයන්ගේ වර්තනාංක පිළිවෙළින් n_1,n_2,n_3 සහ n_4 වේ. පළමු කහඩුවේ සහ දෙවන තහඩුවේ අතුරු මුහුණතේදී ඒකවර්ණ ආලෝක කිරණයක් පෙන්වා ඇති පරිදි hetaපතන කෝණයකින් පතිත වේ. කිරණය තුන්වන සහ හතරවන තහඩුවල අතුරු මුහුණත ඔස්සේ යෑමට නම් heta ට තිබිය යුතු අගය කුමක් ද?

 $(1) \quad \theta = \sin^{-1} \left(\frac{n_4}{n_1} \right)$

- $(2) \quad \theta = \sin^{-1} \left(\frac{n_3 n_4}{n_4} \right)$
- (3) $\theta = \sin^{-1}\left(\frac{n_2 n_4}{n_1}\right)$

- $(4) \quad \theta = \sin^{-1}\left(\frac{n_2 n_3 n_4}{n_1}\right)$
- (5) $\theta = \sin^{-1} \left(\frac{n_3 n_4}{n_1 n_2} \right)$
- ${f 39}$. රූපයේ පෙන්වා ඇති පරිදි ධාරණාව පිළිවෙළින් ${f 3}\,\mu{f F}$ සහ ${f 6}\,\mu{f F}$ වන ධාරිතුක දෙකක් ${f 9}\,{f V}$ බැටරියක් සමග ශේණිගතව සම්බන්ධ කොට ඇත. අනවරත අවස්ථාවට ළඟා වූ පසු $3\,\mu F$ ධාරිතුකය හරහා වෝල්ටීයතාව, එහි රැස් වී ඇති ආරෝපණය සහ ගබඩා වී ඇති ශක්තිය කොපමණ ද?

වෝල්3ීයතාව (V)	ආරෝපණය (μC)	ශක්තිය (µJ)
3 // ///	W . 9 e	V 😑 27 🕡
3	9	54
3	18	108
6	18	27
6	18	54

- 40. පෙන්වා ඇති පරිපථයේ ඇති කෝෂයේ අභාන්තර පුතිරෝධය නොගිණිය හැක. කෝෂය හරහා ගලන ධාරාව කොපමණ ද?
 - (1) 0.5 A
- (2) 1·0 A
- (3) 1.2 A

- (4) 1·5 A
- (5) 2.0 A

[අවවැනි පිටුව බලන්න.

- 41. රූපයේ පෙන්වා ඇති පරිදි සැහැල්ලු දුන්තකින් සම්බන්ධ කොට ඇති A සහ B සර්වසම කුට්ටි දෙකක් තත්තුවක් ආධාරයෙන් සිවිලිමක එල්ලා ඇත. ආරම්භයේදී පද්ධතිය නිශ්චලතාවයේ ඇති අතර ඊට පසු තන්තුව හදිසියේ කැඩේ. තන්තුව කැඩී මොහොතකට පසු ඉහළින් ඇති A කුට්ටියේ පහළ දිශාවට ඇති ත්වරණය කුමක් වේ ද?
 - (1) 0
- (3) g

- (4) $\sqrt{2}g$
- (5) 2g

- 42. උස h වන සිරස් බඳුනක y උසකට ජලය අඩංගුව ඇත. ඉහළින් බැලූ විට බඳුනෙන් හරි අඩක් ජලයෙන් පිරී ඇති බව නිරීක්ෂණය වේ. ජලයේ වර්තනාංකය $\frac{4}{3}$ කි. y හි අගය කුමක් ද?
 - (1) $\frac{1}{4}h$
- (2) $\frac{1}{3}h$
- (3) $\frac{1}{2}h$
- (4) $\frac{4}{7}h$
- (5) $\frac{3}{4}h$
- 43. රූපයේ පෙන්වා ඇති පරිපථය සලකා බලන්න. 12 V බැටරියට අභාාන්තර පුතිරෝධයක් නැත. විචලා පුතිරෝධකයේ පුතිරෝධය $R,\,0$ සිට $100\,\Omega$ දක්වා වෙනස් කළ හැක. A සහ B ලක්ෂා අතර විභව අන්තරය මැනීම සඳහා පරිපූර්ණ මැද-බිංදු චෝල්ට්මීටරයක් භාවිත කරයි. R සම $oldsymbol{e}$ වෝල්ට්මීටර කියවීම V හි විචලනය වඩාත්ම හොඳින් නිරූපණය වනුයේ,

[නවවැනි පිටුව බලන්න.

- 44. පෙන්වා ඇති පද්ධතියේ අවිතනා සැහැල්ලූ තන්තුවකින් සම්බන්ධ කොට ඇති එක එකෙහි ස්කන්ධය M වූ සමාන ස්කන්ධ **ඉදක ඒකකාර පුවේගයකින් චලනය වේ. කප්පිය සැහැල්ලු සහ** ඝර්ෂණයෙන් තොර වේ. ආනත තලය සහ M ස්කන්ධය අතර ගතික ඝර්ෂණ සංගුණකය වනුයේ
 - (1) $\tan \theta$
- (2) $1 \sin \theta$
- (3) $1 \sin \theta$ $\cos \theta$

- $\sin \theta 1$

- 45 ස්කන්ධය $1200\,\mathrm{kg}$ වන මෝටර් රථයක් $22\,\mathrm{kW}$ එන්ජින් ක්ෂමතාවකින් තිරස් ඍජු පාරක් ඔස්සේ $20\,\mathrm{m\,s^{-1}}$ නියත වේගයකින් ගමන් කරයි. සර්වසම එහෙත් ති්රසට 3° කෝණයකින් ආනත වූ ඍජු පාරක එම වේගයෙන්ම ඉහළට නැගීමට මෝටර් රථයේ එන්ජිමේ ක්ෂමතාව කොපමණ විය යුතු ද? $(\pi=3$ ලෙස ගන්න. රේඩියනවලින් මැනෙන කුඩා heta කෝණ සඳහා $\sin heta= heta$ ලෙස ගන්න)
 - (1) 25 kW
- (2) 34 kW
- (3) 35 kW
- (4) 42 kW
- (5) 47 kW
- 46 පහත දී ඇති සතානා වගුව මගින් නිරූපණය කරන පරිපථය කුමක් ද?

A	В	F
0	0	1
0	1	0
1	0	1
1	1	0

- 47. රූපයේ පෙන්වා ඇති පරිදි, පැක්තක දිග $0.05~\mathrm{m}$ වූ සමපාද තිුකෝණාකාර සන්නායක පුඩුවක් $\nu=0.5\,\mathrm{m\,s^{-1}}$ ඒකාකාර පුවේගයෙන් සුාව ඝනත්වය $B=0\cdot 1$ T වූ ඒකාකාර චුම්බක ක්ෂේතුයක් පවතින පුදේශයක් පසුකර යයි. පුඩුව ක්ෂේතුයට ඇතුළු වන විට පුඩුව තුළ පුේරණය වන **උපරිම** වි.ගා. බලයේ විශාලත්වය සහ ධාරාවේ දිශාව වනුයේ කුමක් ද?
 - (1) 2.5 mV, වාමාවර්ත
 - (2) 2.5 mV, දක්ෂිණාවර්ත
 - (3) 0.5 mV, වාමාවර්ත
 - (4) 0·5 mV, දක්ෂිණාවර්ත
 - (5) 0.25 mV, දක්ෂිණාවර්ත

[දසවැනි පිටුව බලන්න.

 $oldsymbol{48}$. රුප $oldsymbol{e}$ ේ පෙන්වා ඇත්තේ I ධාරාවක් රැගෙන යන සන්නායක කම්බියකි. කම්බියට එහි දිග ඔස්සේ විචලනය වන අරයක් සහිත ඒකාකාර නොවූ වෘත්තාකාර හරස්කඩ වර්ගඵලයක් ඇත. කම්බියේ වම් කෙළවරේ සිට මනින x දිග සමග කම්බියේ ඉලෙක්ටුෝනවල ප්ලාවිත පුවේගය $oldsymbol{v}_d$ හි විචලනය වඩාත්ම භොඳින් නිරූපණය වන්නේ,

- $oldsymbol{49}$. අරය a වන කුඩා සන්නායක ගෝලයක් දුස්සුාවී දුවයක් තුළ නිසලතාවයේ සිට පහළට වැටේ. ගෝලය එහි ආන්ත පුවේගය ලබා ගත් විට දුස්සුාවී බලය මගින් කෙරෙන කාර්යය කිරීමේ ශීසුතාවය සමානුපාතික වන්නේ,
 - (1) a⁵ ට ය.
- (2) a⁴ 0 cs.
- (3) $a^3 \, \partial \, \omega$. (4) $a^2 \, \partial \, \omega$.
- (5) a a a.
- ${f 50}$. සිවිලිමක එල්ලා ඇති ස්කන්ධය M වන ඝර්ෂණයෙන් තොර විශේෂයෙන් සාදන ලද තනි කප්පියක්, අරයන් r සහ $rac{r}{2}$ වන කොටස් දෙකකින් සමන්විත වේ. රූපයේ පෙන්වා ඇති පරිදි සැහැල්ලු අවිතනා තන්තු දෙකක් කප්පියේ එක් එක් කොටස වටා මතා ඇති අතර ඒවායේ නිදහස් කෙළවරට එක එකෙහි ස්කන්ධය M වූ කුට්ටි දෙකක් එල්ලා ඇත. අක්ෂය වටා කප්පියේ මුළු අවස්ථිති ඝූර්ණය $I,\,I=rac{3}{A}\,Mr^2$ මගින් දෙනු ලැබේ. කුට්ටි නිසලතාවයේ සිට මුදා හැරිය විට කප්පියේ කෝණික ත්වරණය කුමක් ද?

- (1) 0 (2) $\frac{g}{2r}$ (3) $\frac{g}{3r}$

- (4) $\frac{g}{4r}$ (5) $\frac{g}{5r}$