Лекция 17. Конечные автоматы. Способы их представления. Схемы из функциональных элементов с задержками и представление конечных автоматов ими.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

Факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Конечный автомат

Конечным автоматом называется набор

$$\mathcal{A} = (A, B, Q, \varphi, \psi, q_*),$$

в котором:

- 1) A -входной алфавит (являющийся конечным непустым множеством),
- 2) B **выходной алфавит** (являющийся конечным непустым множеством),
- 3) Q **множество состояний** (являющееся конечным непустым множеством),
- 4) $\varphi: A \times Q \rightarrow B$ функция выходов,
- 5) $\psi: A \times Q \rightarrow Q$ функция переходов,
- 6) $q_* \in Q$ начальное состояние.

Конечные автоматы

Такие конечные автоматы называются также автоматами с выходом, или автоматами-преобразователями.

Рассматриваются также конечные *автоматы без выхода*, или *автоматы-распознаватели*.

Конечные автоматы

Пример. Конечный автомат:

$$\mathcal{A} = (A, B, Q, \varphi, \psi, q_*),$$

где $A=B=\{0,1\},\ Q=\{0,1,2\},\ q_*=0$ и функции выходов φ и переходов ψ задаются таблицей:

$q \in Q$	$a \in A$	$\varphi(q,a)\in B$	$\psi(q, a) \in Q$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	2
2	0	1	2
2	1	1	2

Функционирование конечного автомата

$$\mathcal{A} = (A, B, Q, \varphi, \psi, q_*)$$

на входном слове $x = x(1)x(2)\dots x(m) \in A^*$ описывается системой канонических уравнений:

$$\begin{cases} y(t) = \varphi(x(t), q(t-1)), & 1 \leqslant t \leqslant m, \\ q(t) = \psi(x(t), q(t-1)), & 1 \leqslant t \leqslant m, \\ q(0) = q_*. \end{cases}$$

При этом говорят, что конечный автомат \mathcal{A} входное слово $x=x(1)x(2)\dots x(m)\in A^*$ преобразует в выходное слово $y=y(1)y(2)\dots y(m)\in B^*.$

Отметим, что длины входного и соответствующего выходного слова равны.

Пример. Рассмотрим функционирование конечного автомата ${\mathcal A}$ из предыдущего примера на слове ${\alpha}=0010\in A^*.$

Пример (продолжение). Итак, $\alpha = 0010$ и $q_* = 0$.

$q \in Q$	$a \in A$	$\varphi(q,a)\in B$	$\psi(q,a)\in Q$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	2
2	0	1	2
2	1	1	2

Получаем:

$$|q_*|0010 = |0|0010 \rightarrow 0|1|010 \rightarrow 00|1|10 \rightarrow 001|2|0 \rightarrow 0011|2|.$$

Значит, конечный автомат ${\cal A}$ входное слово $\alpha=0010\in {\cal A}^*$ преобразует в выходное слово $\beta=0011\in {\cal B}^*.$

Бесконечные слова

Пусть А — конечный алфавит.

Бесконечным словом (или **сверхсловом**) в алфавите A назовем бесконечную последовательность букв этого алфавита.

Множество всех сверхслов в алфавите A обозначим A^{∞} .

Если $\alpha \in A^{\infty}$, то $\alpha(t)$ обозначает t-ю букву сверхслова α , $t=1,2,\ldots$

T. e.
$$\alpha = \alpha(1)\alpha(2)\ldots\alpha(t)\ldots\in A^{\infty}$$
.

Функционирование конечного автомата

$$\mathcal{A} = (A, B, Q, \varphi, \psi, q_*)$$

на входном сверхслове $x = x(1)x(2)\dots x(t)\dots \in A^\infty$ описывается системой канонических уравнений:

$$\left\{ egin{array}{ll} y(t) = arphi(x(t),q(t-1)), & t\geqslant 1, \ q(t) = \psi(x(t),q(t-1)), & t\geqslant 1, \ q(0) = q_*. \end{array}
ight.$$

При этом говорят, что конечный автомат \mathcal{A} входное сверхслово $x \in A^{\infty}$ преобразует в выходное сверхслово $y \in B^{\infty}$.

Отображение, которое осуществляет автомат

Конечный автомат \mathcal{A} каждое сверхслово $x \in A^{\infty}$ преобразует в однозначно определенное сверхслово $y \in B^{\infty}$.

Значит, конечный автомат ${\mathcal A}$ определяет некоторую функцию

$$f_A:A^\infty\to B^\infty$$
,

которую назовем отображением, которое осуществляет автомат \mathcal{A} .

Конечный автомат $\mathcal{A}=(A,B,Q,\varphi,\psi,q_*)$ можно рассматривать как дискретный преобразователь с конечной памятью:

Конечный автомат $\mathcal{A}=(A,B,Q,\varphi,\psi,q_*)$ можно рассматривать как дискретный преобразователь с конечной памятью:

 ${\cal A}$:

Конечный автомат $\mathcal{A} = (A, B, Q, \varphi, \psi, q_*)$ можно рассматривать как дискретный преобразователь с конечной памятью:

A:

Дискретное время: t = 1, 2, ...

Конечный автомат $\mathcal{A} = (A, B, Q, \varphi, \psi, q_*)$ можно рассматривать как дискретный преобразователь с конечной памятью:

$${\cal A}: egin{array}{c} q(t-1) \in Q, \ q(0) = q_* \end{array}$$

Дискретное время: $t = 1, 2, \dots$

Конечный автомат $\mathcal{A}=(A,B,Q,\varphi,\psi,q_*)$ можно рассматривать как дискретный преобразователь с конечной памятью:

Дискретное время: t = 1, 2, ...

Конечный автомат $\mathcal{A}=(A,B,Q,\varphi,\psi,q_*)$ можно рассматривать как дискретный преобразователь с конечной памятью:

Дискретное время: $t=1,2,\ldots$

Конечный автомат $\mathcal{A} = (A, B, Q, \varphi, \psi, q_*)$ можно рассматривать как дискретный преобразователь с конечной памятью:

Дискретное время:

$$t = 1, 2, ...$$

Кроме того,

$$y(1)y(2)...y(t)... = f_A(x(1)x(2)...x(t)...).$$

Автоматная функция

Пусть A и B — конечные алфавиты и

$$f:A^{\infty}\to B^{\infty}$$
.

Функция f называется **автоматной**, если найдется такой конечный автомат

$$\mathcal{A} = (A, B, Q, \varphi, \psi, q_*),$$

что
$$f_{\mathcal{A}} = f$$
.

Пример. Пусть $A=B=\{0,1\}$ и $f:A^\infty o B^\infty$, где

$$f(x) = \begin{cases} 00...0..., & x = 00...0..., \\ 11...1..., & x \neq 00...0.... \end{cases}$$

Покажем от обратного, что функция f не является автоматной.

Предположим, что найдется конечный автомат

$$\mathcal{A} = (A, B, Q, \varphi, \psi, q_*),$$

осуществляющий отображение f.

Пример (продолжение). Рассмотрим t = 1 и пусть x(1) = 0:

A:

$$t = 1$$

$${\cal A}$$
 : $q(0)=q_*$

$$t = 1$$

$$x(1)=0$$
 . : $q(0)=q_*$

$$t = 1$$

$$x(1) = 0$$

$$x(1) = 0$$

$$t = 1$$

$$y(1) = ?$$

Пример (продолжение). Рассмотрим t = 1 и пусть x(1) = 0:

$$egin{aligned} x(1) &= 0 \ &\downarrow x(1)$$

Противоречие: автомат «не знает», как выдать y(1): если все сверхслово x состоит только из нулей, то y(1)=0; а если в x встречается хотя бы одна единица, то y(1)=1.

Значит, f — неавтоматная функция.

Способы представления

Рассмотрим способы представления конечных автоматов и соответствующих автоматных функций.

Канонические уравнения

1. Канонические уравнения.

Конечный автомат $\mathcal{A}=(A,B,Q,arphi,\psi,q_*)$ (и автоматную функцию $f_{\mathcal{A}}$) можно задавать каноническими уравнениями:

$$\left\{ egin{array}{l} y(t)=arphi(x(t),q(t-1)),\ q(t)=\psi(x(t),q(t-1)),\ q(0)=q_*. \end{array}
ight.$$

При этом часто удобно, чтобы в правых частях находились функции алгебры логики.

Для этого элементы множеств A, B, Q кодируют однозначным алфавитным равномерным кодом в алфавите $\{0,1\}$.

А затем переписывают функции $\varphi(t)$, $\psi(t)$ в соответствии с этим кодированием.

Канонические уравнения

Пример. Найдем канонические уравнения конечного автомата $\mathcal A$ из предыдущих примеров: $A=B=\{0,1\},\ Q=\{0,1,2\},$ $q_*=0$ и φ и ψ задаются таблицей:

$q \in Q$	$a \in A$	$\varphi(q,a)\in B$	$\psi(q,a)\in Q$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	2
2	0	1	2
2	1	1	2

Закодируем состояния $q \in Q$, например, так:

$$0 - 00$$
, $1 - 01$, $2 - 10$.

Канонические уравнения

Пример (продолжение). Получаем:

$q_1(t-1)$	$q_2(t-1)$	x(t)	y(t)	$q_1(t)$	$q_2(t)$
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	_	_	-
1	1	1		_	_

Теперь:

$$\begin{cases} y(t) = x(t)q_2(t-1) \lor q_1(t-1), \\ q_1(t) = x(t)q_2(t-1) \lor q_1(t-1), \\ q_2(t) = (\bar{x}(t) \lor \bar{q}_2(t-1)) \cdot \bar{q}_1(t-1), \\ q_1(0) = q_2(0) = 0. \end{cases}$$

2. Диаграмма Мура.

Диаграммой Мура (или **диаграммой переходов**) конечного автомата $\mathcal{A} = (A, B, Q, \varphi, \psi, q_*)$ (и автоматной функции $f_{\mathcal{A}}$) называется ориентированный граф с пометками

$$D_{\mathcal{A}}=(V_{\mathcal{A}},E_{\mathcal{A}}),$$

в котором:

$$V_{\mathcal{A}}=Q$$
,

$$E_{\mathcal{A}} = \{(q, \psi(a, q)) \mid a \in A, q \in Q\},\$$

причем

дуге
$$(q,\psi(a,q))\in E_{\mathcal{A}}$$
 приписана пометка $a(\varphi(a,q))$,

вершина $q_* \in V_{\mathcal{A}}$ помечена звездочкой *.

Пример. Найдем диаграмму Мура конечного автомата $\mathcal A$ из предыдущих примеров: $A=B=\{0,1\},\ Q=\{0,1,2\},\ q_*=0$ и φ и ψ задаются таблицей:

$q \in Q$	$a \in A$	$\varphi(q,a)\in B$	$\psi(q,a)\in Q$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	2
2	0	1	2
2	1	1	2

Пример (продолжение). Итак, $q_* = 0$ и

q	а	φ	ψ	q	а	φ	ψ
0	0	0	1	0	1	0	1
1	0	0	1	1	1	1	2
2	0	1	2	2	1	1	2

Пример (продолжение). Итак, $q_* = 0$ и

q	а	φ	ψ	q	а	φ	ψ
0	0	0	1	0	1	0	1
1	0	0	1	1	1	1	2
2	0	1	2	2	1	1	2

Пример (продолжение). Итак, $q_* = 0$ и

q	а	φ	ψ	q	а	φ	ψ
0	0	0	1	0	1	0	1
1	0	0	1	1	1	1	2
2	0	1	2	2	1	1	2

*

Пример (продолжение). Итак, $q_* = 0$ и

q	а	φ	ψ	q	а	φ	ψ
0	0	0	1	0	1	0	1
1	0	0	1	1	1	1	2
2	0	1	2	2	1	1	2

q	а	φ	ψ	q	а	φ	ψ
0	0	0	1	0	1	0	1
1	0	0	1	1	1	1	2
2	0	1	2	2	1	1	2

q	а	φ	ψ	q	а	φ	ψ
0	0	0	1	0	1	0	1
1	0	0	1	1	1	1	2
2	0	1	2	2	1	1	2

q	а	φ	ψ	q	а	φ	ψ
0	0	0	1	0	1	0	1
1	0	0	1	1	1	1	2
2	0	1	2	2	1	1	2

q	а	φ	ψ	q	а	φ	ψ
0	0	0	1	0	1	0	1
1	0	0	1	1	1	1	2
2	0	1	2	2	1	1	2

Функция единичной задержки

Пусть
$$A=B=\{0,1\}$$
 и $z:A^\infty o B^\infty$, где $z(x(1)x(2)x(3)\dots x(t)\dots)=0$ х $z(1)x(2)\dots x(t-1)\dots$

Она называется функцией единичной задержки.

Содержательно, она приписывает 0 слева к входному слову.

Покажем, что z — автоматная функция.

Функция единичной задержки

Отображение z осуществляется конечным автоматом

$$A = (A, B, Q = \{0, 1\}, \varphi, \psi, q_* = 0),$$

где состояние q=0 означает «в предыдущий момент времени на входе был 0»; состояние q=1 означает «в предыдущий момент времени на входе была 1».

Найдем таблицы функций arphi, ψ и канонические уравнения:

	$q \in Q$	$a \in A$	φ	ψ			
ſ	0	0	0	0			y(t) = q(t-1), q(t) = x(t), q(0) = 0.
	0	1	0	1	и	{	q(t)=x(t),
	1	0	1	0		l	q(0) = 0.
	1	1	1	1			

В первый момент времени всегда выдается 0, поэтому $q_*=0$.

$q\in Q$	$a \in A$	φ	ψ	
0	0	0	0	
0	1	0	1	и
1	0	1	0	
1	1	1	1	

и
$$q_*=0$$

$q \in Q$	$a \in A$	φ	ψ	
0	0	0	0	
0	1	0	1	и $q_* = 0$
1	0	1	0	
1	1	1	1	

$$q = 0$$

$$q=1$$

$a \in A$	φ	$\overline{\psi}$	
0	0	0	
1		1	\mid и $q_*=0$
0	1	0	
1	1	1	
	0 1 0 1	$egin{array}{c cccc} egin{array}{c cccc} eta & \varphi & & \varphi & \\ \hline 0 & 0 & 0 & \\ 1 & 0 & 1 & \\ 1 & 1 & 1 & \\ \end{array}$	$egin{array}{c cccc} a \in A & \varphi & \psi \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ \end{array}$

$$\boxed{ \qquad \qquad q=0 }$$

$$q=1$$

	$q \in Q$	$a \in A$	φ	ψ	
ľ	0	0	0	0	
		1	0	1	$ $ и $q_* = 0$
	1	0	1	0	
	1	1	1	1	

$q \in Q$	$a \in A$	φ	ψ	
0	0	0	0	
0	1	0	1	$ $ и $q_* = 0$
1	0	1	0	
1	1	1	1	

$q \in Q$	$a \in A$	φ	ψ	
0	0	0	0	
0	1	0	1	и $q_* = 0$
1	0	1	0	
1	1	1	1	

$$\begin{array}{c|c} 0(0) & 1(0) & 1(1) \\ \hline & q = 0 & 0(1) & q = 1 \\ \hline \end{array}$$

$q \in Q$	$a \in A$	φ	ψ	
0	0	0	0	
0	1	0	1	и $q_* = 0$
1	0	1	0	
1	1	1	1	

$$q = 0$$
 $q = 0$
 $q = 1$
 $q = 1$

Пример. Пусть $A=B=\{0,1\}$ и $f:A^\infty\to B^\infty$, где

$$f(x(1)x(2)x(3)...x(t)...) = y(1)y(2)...y(t)...,$$

причем

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geqslant 2. \end{cases}$$

Докажем, что f — автоматная функция.

Пример (продолжение). Для доказательства предложим диаграмму Мура функции f, где

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geq 2. \end{cases}$$

Пример (продолжение). Для доказательства предложим диаграмму Мура функции f, где

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geqslant 2. \end{cases}$$

Пример (продолжение). Для доказательства предложим диаграмму Мура функции f, где

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geq 2. \end{cases}$$

Пример (продолжение). Для доказательства предложим диаграмму Мура функции f, где

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geq 2. \end{cases}$$

Пример (продолжение). Для доказательства предложим диаграмму Мура функции f, где

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geq 2. \end{cases}$$

Пример (продолжение). Для доказательства предложим диаграмму Мура функции f, где

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geq 2. \end{cases}$$

Пример (продолжение). Для доказательства предложим диаграмму Мура функции f, где

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geq 2. \end{cases}$$

Пример (продолжение). Для доказательства предложим диаграмму Мура функции f, где

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geqslant 2. \end{cases}$$

Пример (продолжение). Для доказательства предложим диаграмму Мура функции f, где

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geqslant 2. \end{cases}$$

Пример (продолжение). Для доказательства предложим диаграмму Мура функции f, где

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geqslant 2. \end{cases}$$

Пример (продолжение). Для доказательства предложим диаграмму Мура функции f, где

$$y(t) = \begin{cases} 0, & t = 1, \\ x(t-1) \oplus x(t), & t \geqslant 2. \end{cases}$$

Пример (продолжение). Найдем канонические уравнения функции f:

$q_1(t-1)$	$q_2(t-1)$	x(t)	y(t)	$q_1(t)$	$q_2(t)$
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	0	0	1
0	1	1	1	1	1
1	0	0	_	_	_
1	0	1	_	_	_
1	1	0	1	0	1
1	1	1	0	1	1

$$\begin{cases} y(t) = (x(t) \oplus q_1(t-1)) \cdot q_2(t-1), \\ q_1(t) = x(t), \\ q_2(t) = 1, \\ q_1(0) = q_2(0) = 0. \end{cases}$$

Схемой из функциональных элементов с задержками (СФЭЗ)

$$S(x_1(t),...,x_n(t);y_1(t),...,y_m(t))$$

в базисе $B = \{x \& y, x \lor y, \bar{x}\} \cup \{z\}$ называется

- 1) ориентированный граф G = (V, E) с возможными ориентированными циклами, причем в графе G полустепень захода любой его вершины не превосходит двух;
- 2) любая вершина графа G с полустепенью захода, равной нулю, называется входной (или входом) и ей приписывается какая-то входная переменная $x_i(t)$;

- 3) любой вершине графа G с полустепенью захода, равной единице, приписывается либо единичная задержка z, либо отрицание \bar{z} ;
- 4) в любом ориентированном цикле графа G должна быть хотя бы одна вершина с приписанной ей единичной задержкой;
- 5) любой вершине графа G с полустепью захода, равной двум, приписывается либо конъюнкция &, либо дизъюнкция \lor ;
- 6) некоторые (в том числе и входные) вершины графа G называются выходными (или выходами) и им приписываются (различные) выходные переменные $y_1(t),\ldots,y_m(t)$.


```
x(t)
z
-
```


Теорема 17.1. Каждая СФЭЗ

$$S(x_1(t),...,x_n(t);y_1(t),...,y_m(t))$$

осуществляет автоматное отображение входов $x_1(t), \ldots, x_n(t)$ в выходы $y_1(t), \ldots, y_m(t)$.

Доказательство. Рассмотрим граф G = (V, E) СФЭЗ S.

Пусть $v_1, \ldots, v_k \in V$ — все вершины, которым приписана единичная задержка z.

Рассмотрим вершину v_i . В графе G в нее ведет одна дуга из вершины, которую обозначим w_i .

Удалим эту дугу (w_i, v_i) из графа G. Вершине w_i припишем новую выходную переменную $q_i(t)$.

Вершина v_i станет входной, ей припишем новую входную переменную $p_i(t)$.

Заметим, что т. к. в любом ориентированном цикле графа G хотя бы одной вершине была приписана z, выполнив такое преобразование для вершин v_1, \ldots, v_k , мы разорвем все ориентированные циклы.

Доказательство. В итоге получаем СФЭ (без задержек) S'. На ее выходах $y_j(t)$, $q_i(t)$ соответственно вычисляются некоторые функции алгебры логики F_j , $G_i \in P_2$:

$$y_j(t) = F_j(x_1(t), \dots, x_n(t), p_1(t), \dots, p_k(t)), \quad 1 \leq j \leq m,$$

 $q_i(t) = G_i(x_1(t), \dots, x_n(t), p_1(t), \dots, p_k(t)), \quad 1 \leq i \leq k.$

По определению функции единичной задержки верно $p_i(t) = q_i(t-1), \ q_i(0) = 0.$ Поэтому

$$\begin{cases} y_j(t) = F_j(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_k(t-1)), & 1 \leqslant j \leqslant m, \\ q_i(t) = G_i(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_k(t-1)), & \\ q_i(0) = 0, & 1 \leqslant i \leqslant k. \end{cases}$$

Получили канонические уравнения, а значит, отображение — автоматное.

Пример. Найдем автоматную функцию f_S по СФЭЗ S:

Пример. Найдем автоматную функцию f_S по СФЭЗ S:

Получаем канонические уравнения для f_S :

$$\begin{cases} y(t) = \bar{q}_2(t-1), \\ q_1(t) = x(t), \\ q_2(t) = q_1(t-1), \\ q_1(0) = q_2(0) = 0. \end{cases}$$

Теорема 17.2. Каждый конечный автомат $\mathcal{A} = (A, B, Q, \varphi, \psi, q_*)$ может быть представлен $C\Phi \ni 3$ в базисе $\mathcal{B} = \{x \& y, x \lor y, \bar{x}\} \cup \{z\}$ при некотором кодировании элементов из множеств A, B, Q наборами из нулей и единиц.

Доказательство. Пусть |A|=s, |B|=t, |Q|=r.

Закодируем взаимно однозначно:

- 1) элементы множества A наборами $(x_1, x_2, \dots, x_n) \in \{0, 1\}^n$, где $n = \lceil \log_2 s \rceil$;
- 2) элементы множества B наборами $(y_1, y_2, \dots, y_m) \in \{0, 1\}^m$, где $m = \lceil \log_2 t \rceil$;
- 3) элементы множества Q наборами $(q_1,q_2,\ldots,q_k)\in\{0,1\}^k$, где $k=\lceil\log_2r\rceil$, причем начальное состояние q_* закодируем нулевым набором $(0,\ldots,0)$.

Доказательство. Автомат \mathcal{A} можно задать каноническими уравнениями:

$$\begin{cases} y(t) = \varphi(x(t), q(t-1)), \\ q(t) = \psi(x(t), q(t-1)), \\ q(0) = q_*. \end{cases}$$

Перепишем эти уравнения для кодов элементов из множеств A,B,Q. При этом функции φ и ψ преобразуются в наборы функций алгебры логики (F_1,\ldots,F_m) и (G_1,\ldots,G_k) :

$$\begin{cases} y_j(t) = F_j(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_k(t-1)), & 1 \leqslant j \leqslant m, \\ q_i(t) = G_i(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_k(t-1)), & \\ q_i(0) = 0, & 1 \leqslant i \leqslant k. \end{cases}$$

Эту систему канонических уравнений обозначим (1).

Доказательство. Теперь построим СФЭ (без задержек) S' в базисе $B_0 = \{x \& y, x \lor y, \bar{x}\}$, вычисляющую на выходах $y_j(t), q_i(t)$ соответственно функции алгебры логики F_j, G_i :

$$y_j(t) = F_j(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_k(t-1)), \quad 1 \leq j \leq m,$$

 $q_i(t) = G_i(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_k(t-1)), \quad 1 \leq i \leq k.$

Затем соединим в схеме S' выход $q_i(t)$ с входом $q_i(t-1)$ через единичную задержку z для всех $i=1,\ldots,k$.

Получим СФЭЗ S, осуществляющую автоматное отображение в соответствии с каноническими уравнениями (1).

Пример. Найдем СФЭЗ для автоматной функции f, заданной каноническими уравнениями:

$$\begin{cases} y(t) = x(t) \cdot q(t-1), \\ q(t) = x(t), \\ q(0) = 0. \end{cases}$$

Пример. Найдем СФЭЗ для автоматной функции f, заданной каноническими уравнениями:

$$\begin{cases} y(t) = x(t) \cdot q(t-1), \\ q(t) = x(t), \\ q(0) = 0. \end{cases}$$

Получаем СФЭЗ S_f :

Пример. Найдем СФЭЗ для автоматной функции f, заданной каноническими уравнениями:

$$\begin{cases} y(t) = x(t) \cdot q(t-1), \\ q(t) = x(t), \\ q(0) = 0. \end{cases}$$

Получаем СФЭЗ S_f :

$$x(t)$$
 $q(t-1)$
 $y(t)$ $q(t)$

Пример. Найдем СФЭЗ для автоматной функции f, заданной каноническими уравнениями:

$$\begin{cases} y(t) = x(t) \cdot q(t-1), \\ q(t) = x(t), \\ q(0) = 0. \end{cases}$$

Получаем СФЭЗ S_f :

$$x(t)$$
 $q(t-1)$
 $y(t)$ $q(t)$

Задачи для самостоятельного решения

$$1.$$
 Пусть $A=B=\{0,1\}$ и $f:A^\infty o B^\infty$, где $f(x(1)x(2)x(3)\ldots x(t)\ldots)=y(1)y(2)\ldots y(t)\ldots,$

причем y(t) равно t-й цифре после запятой в двоичном представлении числа $\frac{m}{n}$, где $m,n\in\mathbb{N}$.

Покажите, что для каждых $m,n\geqslant 1$ функция f является автоматной.

Задачи для самостоятельного решения

$$2^*$$
. Пусть $A=B=\{0,1\}$ и $f:A^\infty o B^\infty$, где $f(x(1)x(2)x(3)\dots x(t)\dots)=y(1)y(2)\dots y(t)\dots,$

причем y(t)=1, если $t=2^k$ для некоторого числа $k\in\mathbb{N}$, и y(t)=0 в обратном случае.

Докажите, что f не является автоматной функцией.

Литература к лекции

- 1. Алексеев В. Б. Лекции по дискретной математике. М.: Инфра-М, 2012. С. 77–83.
- 2. Марченков С. С. Конечные автоматы. М.: Физматлит, 2008. C. 36–48.
- 3. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. Гл. IV 2.1, 2.13, 2.14.