Machine Learning CSI-7-MAL

enrico.grisan@lsbu.ac.uk

Week 4 tutorial

Same as last week but:

 Using Logistic Regression to predict amyloid positivity from demographic, cognitive and MRI data.

Using validation

Available data

Data are 702 (a subset of) patients extracted from the ADNI initiative database

(https://adni.loni.usc.edu/) and used for the The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) grand challenge

https://tadpole.grand-challenge.org/

Available data

Data contains:

- Patient code (PTID)
- Target variables: PET amyloid SUVR, and amyloid positive/negative
- Age, gender, education, diagnosis
- Apoe4 genetic alleles presence (0,1,2)
- Cognitive test scores (CD-RSB, Adas11, Adas13, MMSE, Ravlt, FAQ)
- Volumes of brain region computes from baseline brain MRI

Load the data in Python

```
import csv
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import KFold
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import precision score
from sklearn.metrics import recall score
from sklearn.metrics import accuracy score
import matplotlib.pyplot as plt
filename='ADNI_Tadpole_data_tutorial.xlsx'
data df=pd.read excel(filename)
data df.head()
```

Extract target variable and data

```
y_target = data_df['Amyloid status']
x_data=data_df.drop(['PTID','SUVR','Amyloid status'],axis=1)
```

Building the ApoE classifier

```
age=data_df['AGE'].to_numpy()
gender=data_df['GENDER '].to_numpy()
edu=data_df['EDUCATION'].to_numpy()
apoe=data_df['ApoE4'].to_numpy()
y=data_df['Amyloid status']
logit=-0.027*age-0.165*gender+0.080*edu+2.42*apoe+0.659
api=np.exp(logit)/(1+np.exp(logit))
```

Evaluating the ApoE classifier

```
from sklearn.metrics import roc_curve, auc, roc_auc_score
from sklearn.metrics import accuracy_score

print('AUC: {:.4f}'.format(roc_auc_score(y,api)))
print('Accuracy: {:.4f}'.format(accuracy_score(y,api>0.6)))

cm = confusion_matrix(y, api>0.6)
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()
plt.show()
```

Ex 1

 Go on the SciKit Learn web page: https://scikit-learn.org/stable/

Look for documentation on

Logistic Regression

- Using the same variables as the ApoE classifier, retrain it and check the values of the estimated coefficient.
- What is the AUC and accuracy of the obtained classifier with a train-test split when evaluated on the training set?
- What is the AUC and accuracy of the obtained classifier with a train-test split when evaluated on the test set?

Import Logistic Regression

```
import csv
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import KFold
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import precision_score
from sklearn.metrics import recall score
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
```

Prepare the validation

```
import csv
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import precision_score
from sklearn.metrics import recall score
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
```

Prepare the validation

data df.head()

```
import csv
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import KFold
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.metrics import precision score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
filename='ADNI_Tadpole_data_tutorial.xlsx'
data_df=pd.read_excel(filename)
```

Split train and test

```
y_target = data_df['Amyloid status']
x_data=data_df[['AGE','GENDER ','EDUCATION','ApoE4']]

X_train, X_test, y_train, y_test = train_test_split(x_data, y_target, test_size=0.25)
```

Random split the input data and corresponding labels into two subsets.

Ratio of the split is 75% in the training set and 25% (0.25) in the test set

Using logistic regression

```
y_target = data_df['Amyloid status']
x_data=data_df[['AGE','GENDER ','EDUCATION','ApoE4']]

X_train, X_test, y_train, y_test = train_test_split(x_data, y_target, test_size=0.25)

clf = LogisticRegression(penalty='none', class_weight='none',max_iter=10000, solver='saga')
clf.fit(X_train, y_train)
y_hat = clf.predict(X_test)
p_hat = clf.predict_proba(X_test)
```

- 1) Prepare the classifier (look in the help for options!)
- 2) Fit the classifier on the *training data*
- 3) Predict the classes y_hat on the *test data*
- 4) Predict the logistic scores p_hat on the *test data*

Cross validation

Go on the SciKit Learn web page:

https://scikit-learn.org/stable/

Look for documentation on

Cross validation: 3.1. Cross-validation:

evaluating estimator performance — scikit-

learn 1.3.1 documentation

Look for documentation on:

Kfold function

cross val score function

Homework

Build a logistic classifier using all available variables

 What is the AUC and accuracy of the obtained classifier with a train-test split?

 What is the mean AUC and mean accuracy when running a 10-fold cross validation?