سیستم های عامل

نيم سال اول سال 96–1395

آرمان سپهر

كتاب مرجع

- A. Silberschatz, P. B. Galvin, and G. Gagne, Operating Systems Concepts, 9th edition, Wiley, 2013.
- Chapter 1 to 14

سرفصل مطالب درس

- $(2 ext{ o } 1 ext{ o } 1 ext{ o } 1$ كليات سيستم عامل $(2 ext{ o } 1 e$
 - مدیریت پردازه (فصل های 3 تا 7)
 - پردازه ها و نخ ها
- برنامه ریزی و همگام سازی پردازه ها
 - مديريت بن بست
 - مدیریت حافظه (فصل های 8 و 9)
 - مديريت حافظه اصلى
 - مدیریت حافظه مجازی
- مدیریت دستگاه های جانبی (فصل های 10 تا 13)
 - ساختار دستگاه های جانبی
 - مديريت فايل
 - زیر سیستم ورودی-خروجی
 - محافظت (فصل 14)
 - مطالعه موردی سیستم عامل ها

شيوه ارزيابي

■ آزمون میانی(1 آذر ماه) 6 نمره

■ آزمون پایانی 6 نمره

آزمون های کوتاهآزمون های کوتاه

تمرین و پروژهتمرین و پروژه

دستياران آموزشى:

- نیما نجف زاده najafzadeh@ce.sharif.edu
 - میلاد برزگر
 - خانم خادم الشريعه

سیستم عامل چیست؟

- یک برنامه که بین کاربر کامپیوتر و سخت افزار کامپیوتر قرار می گیرد.
 - اهداف سیستم های عامل
 - اجرای ساده تر برنامه ها
 - سادگی استفاده از کامپیوتر
 - افزایش بهره وری کامپیوتر
 - اگر سیستم عامل وجود نداشت برنامه ها چگونه اجرا میشدند؟

معمارى كامپيوتر

- یک سامانه کامپیوتری را می توان به چهار بخش تقسیم نمود.
 - سخت افزار (منابع سخت افزاری)
 - ﴿ پردازنده، حافظه، دستگاه های ورودی خروجی
 - سيستم عامل
- برای کنترل و هماهنگی استفاده از سخت افزارها برای کاربران و برنامه های
 کاربردی مختلف.
 - برنامه های کاربردی (شیوه اسفاده از منابع مختلف جهت مسائل کاربر)
 - ﴿ ویرایشگر متون، کامپیایلرها، مرورگر وب؛ مدیریت پایگاه داده هاو ...
 - کاربران
 - ﴿ انسان، ماشین و کامپیوترهای دیگر

چهار مولفه اصلی کامپیوتر

سیستم عامل چه کاری را انجام می دهد؟

- عملکرد سیستم عامل وابسته به نگاهی است که به سیستم عامل داریم
 - كاربران سادگى استفاده و كارايى خوب مى خواهند
 - بهره وری منابع مهم نیست.
- کامپیوترهایی که کاربران زیادی دارند (mainframe or minicomputer) می خواهند همه کاربران راضی باشند
- کاربران سیستم های شخصی منابع اختصاصی دارند و از منابع سرورها استفاده می کنند.
 - کامپیوترهای موبایل برای مصرف باتری و استفاده آسان طراحی شده اند
 - برخی از کامپیوترها واسطه کاربری ساده دارند یا اصلا ندارند.

تعريف سيستم عامل

- سیستم عامل یک تخصیص دهنده منابع است.
 - همه منابع را مدیریت می کند
- تناقض های بین درخواست های مختلف را جهت بهبود کارایی و استفاده عادلانه برطرف
 می کند
 - سیستم عامل یک برنامه کنترلی است
 - سیستم عامل اجرای برنامه ها را کنترل و از ایجاد خطا و استفاده نامناسب کامپیوتر جلوگیری می کند.
 - هیچ تعریفی که بصورت عمومی پذیرفته شده باشد وجود ندارد.
 - هرآنچه که سازنده بعنوان بسته سیستم عامل می فروشد.
 - یک بخش از سیستم عامل که همیشه اجرا می شود را هسته سیستم عامل می گویند.

آغاز به کار کامپیوتر

- یک برنامه در زمان روشن شدن کامپیوتر در حافظه قرار می گیرد.
- این برنامه معمولا در حافظه فقط خواندنی مانند ROM یا EPROM ذخیره می شود و عموما با نام firmware شناخته می شود.
 - سامانه مقدار دهی اولیه شده
 - سیستم عامل بارگذاری شده و اجرای آن آغاز می گردد.

سازمان کامپیوتر

فعالیت یک سامانه کامپیوتری

- دستگاه های ورودی و خروجی بصورت همروند اجرا می شوند.(چرا باید همروند اجرا شوند؟)
 - هر کنترل کننده ورودی خروجی مسئولیت کنترل یک نوع دستگاه را دارد.
 - هر دستگاه حافظه محلی دارد
- پردازنده داده ها را به / از حافظه از/ به بافر دستگاه منتقل نموده و به دستگاه اعلام آغاز فعالیت می کند
 - دستگاه از بافرخود برای عملیات استفاده می کند
 - پس از پایان عملیات یک وقفه تولید می شود.

- یک وقفه چیست؟ چرا به یک وقفه نیاز داریم؟
- در صورتی که هیچ وقفه ای رخ ندهد، پردازه دستورات را به ترتیب اجرا مینماید.

عملكرد وقفه

- وقفه سبب می شود تا کنترل به روتین سرویس وقفه منتقل شود (ISR)
 - معمولا از طریق جدول نشانی وقفه و یا نشانی ثابت
 - نشانی قبل از کنترل ذخیره می شود.
 - روتین اجرا شده و سپس کنترل به نشانی قبلی بر می گردد
- یک trap یا exception یک وقفه نرم افزاری است که در هنگام وجود خطا و .یا درخواست کاربر تولید می شود مانند تقسیم بر صفر
 - سیستم عامل معمولا کارهایش را با وقفه انجام می دهد.

- شيوه تشخيص وقفه
- سرکشی (pooling)
 - نشانی های ثبت

ساختار حافظه

معماری سیستم های کامپیوتری

- بیشتر سیستم ها دارای یک پردازنده عمومی هستند
- بسیاری سیستم ها از پردازنده های خاص استفاده می کنند
 - افزایش استفاده از سیتم های چند پردازنده ای
 - برتری این سیستم ها
 - ﴿ افزایش گذردهی
 - ▶ مقیاس پذیری اقتصادی
 - ◄ افزایش قابلیت اطمینان
 - انواع سیستم های چند پردازنده ای
- ← نامتقارن (Asymmetric Multiprocessing) : هر پردازنده برای کار مشخصی در نظر گرفته می شود
- ♦ متقارن (Symmetric Multiprocessing) هر پردازنده می تواند همه کار انجام دهد.

سیستم های چند پردازنده ای متقارن و چند هسته ای

cache

memory

cache

سیستم های خوشه (Cluster)

سازمان سیستم های کامپیوتری

- برای بهبود کارایی از مدل چند برنامه ای استفاده می شود
- یک کاربر نمی تواند پردازنده و دستگاه های ورودی و خروجی را به کار بگیرد
 - چندبرنامه ای کارها (job) را برای اجرا سازمان دهی می کند
 - زیرمجموعه ای از کاها وارد حافظه می شود
 - برنامه ریز یک کار را برای اجرا انتخاب می کند
- زمانی که یک کار نیاز به ورودی-خروجی دارد سیستم عامل کار دیگر را برای اجرا انتخاب می کند.
- سیستم های اشتراک زمانی (Timesharing (multitasking)) زمان تعویض پردازنده سریعتر است به گونه ای که کاربر می پندارد یک کامپیوتر کامل در اختیار او قرار دارد.

0	
Ü	operating system
	job 1
	job 2
	job 3
NΔ	job 4

512M

عملكرد سيستم عامل

- مبتنی بر وقفه (وقفه های نرم افزاری و سخت افزاری)
 - دو مد کاری متفاوت (Dual-mode)
 - مد هسته و مد کاربر
- کنترل توسط سخت افزار با یک بیت (Mode bit)
- برخی از دستورا در مد هسته قابل اجرا هستند (دستورات privileged)

مدیریت پردازه ها

- به یک برنامه در حال / آماده اجرا یک پردازه می گویند.
 - **پردازه برای اجرا به منابع زیر نیاز دارد**
 - پردازنده، حافظه، فایل و ...
 - داده اولیه
 - در پایان اجرا می بایست منابع آزاد شوند.
 - یک پردازه ممکن است دارای چندین نخ باشد
 - یک سیستم دارای چندین پردازه است
 - فعالیت های بخش مدیریت پردازه
 - ایجاد و حذف پردازه ها
 - تعلیق و فعال سازی پردازه ها
 - همگام سازی پردازها
 - ارتباط بین پردازه ها
 - پوشش مسئله بن بست

مديريت حافظه

- برای اجرای یک برنامه همه بخش های دستورهای آن باید درون حافظه باشد
 - برای اجرای یک برنامه همه یا بخشی از داده آن باید درون حافظه باشد
- مدیریت حافظه مشخص می کند که چه چیزیر در چه زمانی در حافظه قرارگیرد.
 - مديريت حافظه
 - افزایش بهره وری سیستم
 - برخی از فعالیت های بخش مدیریت حافظه
 - تشخیص زمان ورود یا خروج یک بخش از حافظه
 - تخصیص و آزاد سازی حافظه

مدیریت دستگاه های ذخیره سازی

- دید یکسان و مستقل از فیزیک دستگاه برای ذخیره سازی
 - انتزاع ویژگی های فیزیکی با مفهوم فایل
 - کنترل هر محیط ذخیره سازی
 - مديريت سيستم فايل
 - معماری سیستم فایل و دایرکتوری
 - كنترل دسترسى به فايل
 - فعالیت های سیستم عامل
 - حذف و ایجاد فایل و دایرکتوری
 - پردازش فایل و دایرکتوری
 - نگاشت فایل و دایرکتوری به دستگاه ذخیره سازی

زیر سیستم ورودی-خروجی

- یکی از اهداف سیستم عامل پنهان سازی دستگاه های سخت افزاری از کاربر است.
 - این زیر بخش پاسخگوی موارد زیر است.
 - مدیریت حافظه برای دستگاه های ورودی-خروجی
 - واسطه راه انداز (Driver)
 - راه انداز دستگاه ها

امنیت و محافظت

- امنیت (Security): دفاع سیستم در مقابل حمله های درونی و بیرونی
- محافظت (Protection): هر سازکاری که دسترسی پردازنده و کاربر را به منابع سیستم کنترل نماید.

مجازی سازی

