Projeto de Análise de Dados com Pandas

Dados do Titanic analisado com Python 3!

1. Introdução

Nesse projeto iremos investigar os dados que contém informações sobre os passageiros do Titanic, que mostram se cada indivíduo morreu ou sobreviveu. Faremos uma correspondência entre a classe de cada de cada passageiro e sua sobrevivência para explicitar se houve uma preferência a salvar os passageiros das classes mais altas. Também analisaremos a influência de fatores como idade e tarifa paga (ligada à classe no navio) influência a sobrevivência ou não do indivíduo.

Importando as bibliotecas necessárias!

In [6]:

```
%matplotlib inline
from datetime import datetime
# importing modules for data anaylysis
import numpy as np
import pandas as pd

# para fazer graficos
import matplotlib.pyplot as plt
# e para fazer graficos mais bonitos!
import seaborn as sns
```

Vamos começar a análise importando os dados do Titanic!

In [9]:

```
file_ti = 'titanic-data-6.csv'
titanics = pd.read_csv(file_ti)
```

Mostrando as primeiras linhas do arquivo para termos uma ideia dos dados!

In [11]:

```
titanics.head(5)
```

Out[11]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4										>

Analisando as dimensões dos dados!

In [13]:

```
DimX = titanics.shape[0]
DimY = titanics.shape[1]

print("Temos "+ str(DimX) + " linhas no DataFrame do Titanic.")
print("Temos "+ str(DimY) + " colunas no DataFrame do Titanic.")
```

Temos 891 linhas no DataFrame do Titanic. Temos 12 colunas no DataFrame do Titanic.

2. Limpeza de Dados

Vamos ver se há alguma duplicata no dataframe!

In [15]:

```
titanics.duplicated().all()
```

Out[15]:

False

logo não há duplicatas no arquivo!

vamos ter uma ideia dos atributos e valores distintos de cada coluna do dataframe!

In [18]:

```
titanics.nunique()
```

Out[18]:

PassengerId	891
Survived	2
Pclass	3
Name	891
Sex	2
Age	88
SibSp	7
Parch	7
Ticket	681
Fare	248
Cabin	147
Embarked	3
dtype: int64	

3. Análise Exploratória de Dados

PERGUNTA 1

Aqui serão utilizadas funcionalidades do Python para analisar qual o sexo predominante, masculino ou feminino. Igualmente pode-se investigar qual a idade média das pessoas e como ela está distribuída.

In [22]:

```
titanics["Sex"].describe()
```

Out[22]:

count 891
unique 2
top male
freq 577

Name: Sex, dtype: object

Da descrição acima podemos concluir que: Temos 891 entradas, sendo que haviam diversas duplicatas e valores que não eram números só temos dois valores, portanto, "masculino" ou "feminino" o sexo que mais aparece é o masculino, com frequencia 577, logo temos 314 (891-577) do sexo feminino

In [26]:

```
titanics["Age"].describe()
```

Out[26]:

714.000000 count 29.699118 mean std 14.526497 0.420000 min 25% 20.125000 50% 28.000000 38,000000 75% 80.000000 max

Name: Age, dtype: float64

Analisando a idade média vemos que ela é de aproximadamente 30 anos. O desvio padrão da idade media é relativamente grande, correspondendo à aproximadamente metade do valor médio da idade, ou seja, há um perfil bem variado de pessoas. O valor mínimo que corresponde a 0.42 deve ser um recém nascido, e o valor máximo, que corresponde a 80 anos, é uma pessoa bem idosa para a época.

PERGUNTA 2

Com respeito à tarifa paga, como ela está distribuída?

In [35]:

```
all_fare = titanics['Fare']
all_fare.hist()
plt.xticks(rotation=30,size=16)
plt.yticks(size=16)
plt.grid(linestyle="--",color='r')
plt.title('Histograma de tarifa paga',size=28)
plt.xlabel("Tarifa",size=24)
plt.ylabel("Pessoas",size=24)
plt.show()
```


Do gráfico acima vemos que um enorme número de pessoas foram de classe "econômica". Pode-se inferir claramente nesses dados uma distribuição centradas em três valores, mostrando a existencia de três classes. Diminui muito o número de pessoas viajando em primeira e segunda classe!

PERGUNTA 3

Vamos analisar abaixo o caso de sobrevivência, ou não, em função de quanto foi pago o que deve ser indicador se a classe social mais elevada foi previlegiada.

In [23]:

216 184 491 True

Vamos agora fazer um histograma de quantas morreram por classe

In [42]:

```
class_died = titanics[titanics['Survived']==0]['Pclass']
#class_surv= class_surv/class_surv.sum()
class_died.hist( weights =100* np.ones_like(class_died.index)/len(class_died.index)
#locations=bins
#labels = ['1','2','3',]
plt.xticks(rotation=30,size=16)
plt.yticks(size=16)
plt.grid(linestyle="--",color='r')
plt.title('Percentagem de pessoas mortas por Classe',size=28)
plt.xlabel("Classe",size=36)
plt.ylabel("Percentagem (%)",size=28)
plt.show()
```


A partir do histograma acima podemos inferir que muito mais pessoas da terceira classe morreram. Será que as primeiras classes foram previlegiadas em detrimento da terceira classe?

Agora fazemos um histograma dos sobreviventes por classe!

In [46]:

```
class_surv = titanics[titanics['Survived']==1]['Pclass']

class_surv.hist( weights =100* np.ones_like(class_surv.index)/len(class_surv.index)
plt.xticks(rotation=30,size=16)
plt.yticks(size=16)
plt.grid(linestyle="--",color='r')
plt.title('Percentagem de pessoas sobreviventes por Classe',size=28)
plt.xlabel("Classe",size=36)
plt.ylabel("Percentagem (%)",size=28)
plt.show()
```

Percentagem de pessoas sobreviventes por Classe

Podemos notar que a terceira classe teve um número semelhante de sobreviventes do que as classes mais altas. No entanto, há muito mais pessoas da terceira classe, o que vem a mostrar que relativamente ela foi prejudicada.

Vamos analisar agora os sobreviventes com relação à população inicial de cada classe! Assim as coisas ficarão mais claras

In [49]:

/home/vagner/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/d eprecation.py:106: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier in stance. In a future version, a new instance will always be created a nd returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. warnings.warn(message, mplDeprecation, stacklevel=1)

Titanic Accident Survivors by Class

Do gráfico acima podemos concluir que a taxa relativa de sobrevivência da primeira classe é quase três vezes maior que a da terceira classe!!! Ainda, a segunda classe tem uma taxa de sobrevivência aproximadamente duas vezes maior que a terceira classe

SIM! As primeiras classes foram previlegiadas!!!!

Agora analisando com respeito aos que não sobreviveram

In [51]:

```
ages group = titanics[titanics['Survived']==0]
agenotsurv_1=ages_group.query('Pclass==1')['Pclass'].count()/p1
agenotsurv 2=ages group.query('Pclass==2')['Pclass'].count()/p2
agenotsurv 3=ages group.query('Pclass==3')['Pclass'].count()/p3
list ages = [agenotsurv 1,agenotsurv 2,agenotsurv 3]
ages 0 to 80 = pd.Series(list ages, index = ['la Classe', '2a Classe', '3a Classe'])
# plot chart
labels=['1st Class','2nd Class','3rd Class']
#explode=(0,0,.00,.00,.0,.0)
#plt.ylabel=''
plt.figure(figsize=(9,7),dpi=100)
ages_0_to_80.plot(kind='pie', subplots=True,
                  autopct='%1.1f%',
 startangle=135, shadow=False, fontsize=18, labels=labels, legend=True, x='V')
#plt.ylabel=''
plt.title('Titanic Accident Victims by Class', size=20, color='b', weight='bold')
plt.axes().set ylabel(' ')
# plot table
plt.legend(loc='upper left',fontsize=12)
plt.show()
```

/home/vagner/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/d eprecation.py:106: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier in stance. In a future version, a new instance will always be created a nd returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. warnings.warn(message, mplDeprecation, stacklevel=1)

Do gráfico em forma de torta acima é explicitado que as primeiras classes tem taxa relativa de mortalidade muito menor que a terceira classe!

PERGUNTA 4

Com relação aos sobreviventes, como a idade está distribuída?

In [54]:

```
ages group = titanics[titanics['Survived']==1]
ages 10=ages group.query('Age > 0 & Age <10')['Parch'].count()
ages 20=ages group.query('Age > 10 & Age <20')['Parch'].count()
ages 30=ages group.query('Age > 20 & Age <30')['Parch'].count()
ages 40=ages group.query('Age > 30 & Age <40')['Parch'].count()
ages 50=ages group.query('Age > 40 & Age <50')['Parch'].count()
ages 60=ages group.query('Age > 50 ')['Parch'].count()
list ages = [ages 10,ages 20,ages 30,ages 40,ages 50,ages 60]
ages 0 to 80 = pd.Series(list ages, index = ['0-10', '10-20', '20-30', '30-40',
        '40-50', '50-80'])
labels=['0-10','10-20','20-30','30-40',
        '40-50', '50-80']
plt.figure(figsize=(9,7),dpi=100)
ages_0_to_80.plot(kind='pie', subplots=True,
                  autopct='%1.2f%%',
 startangle=90, shadow=False, fontsize=18, labels=labels, legend=True, x='V')
plt.title('Titanic Accident Survivors by Age', size=20, color='b', weight='bold')
plt.axes().set ylabel(' ')
plt.legend(loc='upper left',fontsize=11)
plt.show()
```

/home/vagner/anaconda3/lib/python3.6/site-packages/matplotlib/cbook/d eprecation.py:106: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier in stance. In a future version, a new instance will always be created a nd returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. warnings.warn(message, mplDeprecation, stacklevel=1)

Do gráfico acima fica claro que as pessoas com idade entre 20 a 40 anos, enquanto que as pessoas mais idosas foram defavorecidas!

4. Conclusões

Nesse projeto analisamos os dados de sobreviventes do Titanic e podemos inferir o seguinte:

- havia mais pessoas do sexo masculino do que feminino no Titanic;

com relação à idade das pessoas no Titanic, a média era de 30 anos com uma ampla distribuição de idades ao redor desse valor;

haviam muito mais pessoas na terceira classe do que na primeira classe;

- as pessoas na faixa etária entre 20 e 40 anos foram as que tiveram maior número de sobreviventes, em detrimento das pessoas mais idosas;

a terceira classe teve percentualmente muito maior número de vítimas no aciente do Titanic, ou seja, em especial a primeira classe foi muito favorecida quando tiveram que escolher um grupo de pessoas para salvar do naufrágio do navio. Cabe ressaltar que essa conclusão é relativa à população inicial de cada classe, ou seja, o valor inicial da terceira classe, que é muito maior do que o da primeira classe, não interfere nisso.

Limitações

Nessa análise foram levados em conta os dados de 891 passageiros do titanic, sendo que no total haviam muito mais!

In []:		