WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/10, 15/62, 15/56, 9/24, 9/42, C12O 1/68

A2

(11) International Publication Number:

WO 97/43409

(43) International Publication Date: 20 November 1997 (20.11.97)

(21) International Application Number:

PCT/DK97/00216

(22) International Filing Date:

12 May 1997 (12.05.97)

(30) Priority Data:

0562/96

10 May 1996 (10.05.96)

DK

(71) Applicant (for all designated States except US): NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsværd (DK).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DALBØGE, Henrik [DK/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK). DIDERICHSEN, Børge [DK/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK). SAN-DAL, Thomas [DK/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK). KAUPPINEN. Sakari [FI/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK).
- (74) Common Representative: NOVO NORDISK A/S; Novo Allé, DK-2880 Bagsværd (DK).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ. TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHOD OF PROVIDING NOVEL DNA SEQUENCES

(57) Abstract

The present invention relates to a method of providing novel DNA sequences encoding a polypeptide with an activity of interest, comprising the following steps: i) PCR amplification of said DNA with PCR primers with homology to (a) known gene(s) encoding a polypeptide with an activity of interest, ii) linking the obtained PCR product to a 5' structural gene sequence and a 3' structural gene sequence, iii) expressing said resulting hybrid DNA sequence, iv) screening for hybrid DNA sequences encoding a polypeptide with said activity of interest or related activity, v) isolating the hybrid DNA sequence identified in step iv). Further, the invention also relates novel DNA sequences provided according to the method of the invention and polypeptides with an activity of interest encoded by said novel DNA sequences of the invention.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Fin land	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
l .		GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BE BF	Belgium Burkina Faso	GR	Greece	,,,,,	Republic of Macedonia	TR	Turkey
		HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BG	Bulgaria	1E	Ireland	MN	Mongolia	UA	Ukraine
BJ	Benin	IL	Israel	MR	Mauritania	UG	Uganda
BR	Brazil	-	Iceland	MW	Malawi	US	United States of America
BY	Belarus	15		MX	Mexico	UZ	Uzbekistan
CA	Canada	IT	Italy	NE	Niger	VN	Viet Nam
CF	Central African Republic	JP	Japan	NL NL	Netherlands	YU	Yugoslavia
CG	Congo	KE	Kenya	NO		zw	Zimbabwe
CII	Switzerland	KG	Kyrgyzstan		Norway	211	2
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	P1.	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
C7.	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Ll	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SĒ	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Title: Method of providing novel DNA sequences

FIELD OF THE INVENTION

The present invention relates to a method of providing novel DNA sequences encoding a polypeptide with an activity of interest, novel DNA sequences provided according to the method of the invention, polypeptides with an activity of interest encoded by novel DNA sequences of the invention.

BACKGROUND OF THE INVENTION

The advent of recombinant DNA techniques has made it possible to select single protein components with interesting properties and produce them on a large scale. This represents an improvement over the previously employed production process using microorganisms isolated from nature and producing a mixture of proteins which would either be used as such or separated after the production step.

Since the traditional methods were rather time-consuming, more rapid and less cumbersome methods were developed.

A such technique is described in WO 93/11249 (Novo Nordisk 20 A/S).

The method described in WO 93/11249 comprises the steps of:

- a) cloning, in suitable vectors, a DNA library from an organism suspected of producing one or more proteins of interest;
- b) transforming suitable yeast host cells with said vectors;
- 25 c) culturing the host cells under suitable conditions to express any protein of interest encoding by a clone in the DNA library; and
 - d) screening for positive clones by determining any activity of a protein expressed in step c).
- According to this method it is necessary to prepare a DNA library, comprising complete genes encoding polypeptides with activities of interest. Such a library has traditionally been made on mRNA isolated from micro-organisms which has been cultivated and isolated.
- As it is only possible with known methods to cultivate about 2% of the microorganisms known today (i.e. cultivable microorganisms), genes encoding polypeptides from a huge number of

microorganisms (i.e. un-cultivable microorganisms) are generally difficult to identify and clone on the basis of screening technologies used today, such as the above mentioned.

5 SUMMARY OF THE INVENTION

It is the object of the present invention to provide a method for providing a novel DNA sequence encoding a polypeptide with an activity of interest from micro-organisms without having to cultivate and isolate said micro-organisms.

- 10 In the first aspect the invention relates to a method of providing novel DNA sequences encoding a polypeptide with an activity of interest, comprising the following steps:
 - i) PCR amplification of said DNA with PCR primers with homology to (a) known gene(s) encoding a polypeptide with an activity of
- 15 interest,
 - ii) linking the obtained PCR product to a 5' structural gene sequence and a 3' structural gene sequence,
 - iii) expressing said resulting hybrid DNA sequence,
- iv) screening for hybrid DNA sequences encoding a polypeptide 20 with said activity of interest or related activity,
 - v) isolating the hybrid DNA sequence identified in step iv)

Further, the invention also relates novel DNA sequences provided according to the method of the invention and polypeptides with an activity of interest encoded by said novel 25 DNA sequences of the invention.

BRIEF DESCRIPTION OF THE DRAWING

Figure 1 shows the cloning strategy of novel hybrid enzyme sequences.

- 30 a is an exact N-terminal consensus primer
 - arc is the reverse and complement primer to a
 - b is a degenerated homologous N-terminal primer
 - c is a degenerated homologous C-terminal primer
 - d is an exact C-terminal consensus primer
- 35 d_{rc} is a reverse and complement of d
 - f is an exact reverse and complement C-terminal primer extended with a sequence which includes a SalI restriction recognition site.

e is an exact N-terminal primer extended with a sequence which includes an EcoRI restriction recognition site.

1. (in figure 1)

PCR with primers ab and cd to amplify unknown core genes with 5 an activity of interest.

PCR with primers $\,$ e and $\,$ arc $\,$ to obtain the N-terminal part of the known gene.

PCR with primers $d_{\mbox{\scriptsize rc}}$ and f to obtain the C-terminal part of the known gene.

10 2. (in figure 1)

SOE-PCR with primers e and f to link the unknown core gene sequence with the known N- and C-terminal gene sequences and introduction of EcoRI and SalI restriction recognition sites.

3. Restriction enzyme digestion followed by ligation of the 15 novel sequence into an expression vector and transformation into a host cell. Screening of clones expressing the produced gene product with the activity of interest.

Figure 2 shows a part of an alignment of prokaryote xylanases belonging to glycosyl hydrolases family 11.

Figure 3 shows an alignment of the translated DNA sequences of Pulpzyme® (SEQ ID NO 2) and the novel gene sequence found in soil, respectively.

Figure 4 shows a schematically a novel hybrid gene provided according to the invention. Part A and Part C are the known 25 sequences linked to the unknown Part B.

Using Pulpzyme® (SEQ ID NO 1) as the starting sequence:

"1" indicated the first nucleotide of the novel hybrid gene provided according to the invention, "433" and "631" the start and end of the part constituted by the unknown gene sequence

30 and "741" the last nucleotide of the novel hybrid gene sequence.

DEFINITIONS

Prior to discussing this invention in further detail, the following terms will first be defined.

"Homology of DNA sequences or polynucleotides" In the present context the degree of DNA sequence homology is determined as the degree of identity between two sequences indicating a derivation of the first sequence from the second. The homology may suitably be determined by means of computer programs known in the art, such as GAP provided in the GCG program package (Program 10 Manual for the Wisconsin Package, "Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-453).

"Homologous": The term "homologous" means that one single15 stranded nucleic acid sequence may hybridize to a complementary
single-stranded nucleic acid sequence. The degree of hybridization may depend on a number of factors including the amount of
identity between the sequences and the hybridization conditions
such as temperature and salt concentration as discussed later
20 (vide infra).

Using the computer program GAP (vide supra) with the following settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, it is in the present context believed that two DNA sequences will be able to 125 hybridize (using low stringency hybridization conditions as defined below) if they mutually exhibit a degree of identity preferably of at least 70%, more preferably at least 80%, and even more preferably at least 85%.

"heterologous": If two or more DNA sequences mutually 30 exhibit a degree of identity which is less than above specified, they are in the present context said to be "heterologous".

"Hybridization:" Suitable experimental conditions for determining if two or more DNA sequences of interest do hybridize or not is herein defined as hybridization at low stringency as described in detail below.

A suitable experimental low stringency hybridization protocol between two DNA sequences of interest involves presoaking of a filter containing the DNA fragments to hybridize in 5 x SSC (Sodium chloride/Sodium citrate, Sambrook et al. 1989) for 10 min, and prehybridization of the filter in a solution of 5 x SSC, 5 x Denhardt's solution (Sambrook et al. 1989), 0.5 % SDS and 100 μg/ml of denatured sonicated salmon 5 sperm DNA (Sambrook et al. 1989), followed by hybridization in the same solution containing a concentration of 10ng/ml of a random-primed (Feinberg, A. P. and Vogelstein, B. (1983) Anal. Biochem. 132:6-13), ³²P-dCTP-labeled (specific activity > 1 x 10⁹ cpm/μg) probe (DNA sequence) for 12 hours at ca. 45°C. 10 The filter is then washed twice for 30 minutes in 2 x SSC, 0.5 % SDS at least 50°C, more preferably at least 55°C, and even more preferably at least 60°C (high stringency).

Molecules to which the oligonucleotide probe hybridizes under these conditions are detected using a x-ray film.

"Alignment": The term "alignment" used herein in connection 15 with a alignment of a number of DNA and/or amino acid sequences means that the sequences of interest is aligned in order to identify mutual/common sequences of homology/identity between the sequences of interest. This procedure is used to identify common 20 "conserved regions" (vide infra), between sequences interest. An alignment may suitably be determined by means of computer programs known in the art, such as ClusterW or PILEUP provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer 25 Group, 575 Science Drive, Madison, Wisconsin, 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-453).

"Conserved regions:" The term "conserved region" used herein in connection with a "conserved region" between DNA and/or amino acid sequences of interest means a mutual common sequence region of the sequences of interest, wherein there is a relatively high degree of sequence identity between the sequences of interest. In the present context a conserved region is preferably at least 10 base pairs (bp)/ 3 amino acids(a.a), more preferably at least 20 bp/ 7 a.a., and even more preferably at least 30 bp/ 10 a.a..

Using the computer program GAP (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer

Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-453) (vide supra) with the following settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3, the degree of DNA sequence identity within the conserved region is preferably of at least 80%, more preferably at least 85%, more preferably at least 90%, and even more preferably at least 95%.

"Sequence overlap extension PCR reaction (SOE-PCR)": The term 10 "SOE-PCR" is a standard PCR reaction protocol known in the art, and is in the present context defined and performed according to standard protocols defined in the art ("PCR A practical approach" IRL Press, (1991)).

"primer": The term "primer" used herein especially in connection with a PCR reaction is an oligonucleotide (especially a "PCR-primer") defined and constructed according to general standard specification known in the art ("PCR A practical approach" IRL Press, (1991)).

"A primer directed to a sequence:" The term "a primer 20 directed to a sequence" means that the primer (preferably to be used in a PCR reaction) is constructed so it exhibits at least 80% degree of sequence identity to the sequence part of interest, more preferably at least 90% degree of sequence identity to the sequence part of interest, which said primer consequently is "directed to". The primer is designed in order to specifically anneal at the region at a given temperature it is directed towards. Especially identity at the 3' end of the primer is essential for the function of the polymerase, i.e. the ability of a polymerase to extend the annealed primer.

"Polypeptide" Polymers of amino acids sometimes referred to as protein. The sequence of amino acids determines the folded conformation that the polypeptide assumes, and this in turn determines biological properties such as activity. Some polypeptides consist of a single polypeptide chain (monomeric), whilst other comprise several associated polypeptides (multime-

ric). All enzymes and antibodies are polypeptides.

"Enzyme" A protein capable of catalysing chemical reactions. Specific types of enzymes are a) hydrolases

f-a (33

including amylases, cellulases and other carbohydrases, proteases, and lipases, b) oxidoreductases, c) Ligases, d) Lyases, e) Isomerases, f) Transferases, etc. Of specific interest in relation to the present invention are enzymes used in detergents, such as proteases, lipases, cellulases, amylases, etc.

"known sequence" is the term used for the DNA sequences of which the full length sequence has been sequenced or at least the sequence of one conserved regions is known.

- "unknown sequence" is the term used for the DNA sequences amplified directly from uncultivated micro-organisms comprised in e.g. a soil sample used as the starting materia. "Full length DNA sequence" means a structural gene sequence encoding a complete polypeptide with an activity of interest.
- "un-cultivated" means that the micro-organism comprising the unknown DNA sequence need not be isolated (i.e. to provide a population comprising only identical micro-organisms) before amplification (e.g. by PCR).

The term "an activity of interest" means any activity for 20 which screening methods is known.

The term "un-cultivable micro-organisms" defined micro-organisms which can not be cultivated according to methods know in the art.

The term "DNA" should be interpreted as also covering other 25 polynucleotide sequences including RNA.

The term "linking" sequences means effecting a covalent binding of DNA sequences.

The term "hybrid sequences" means sequences of different origin merged together into one sequence.

The term "structural gene sequence" means a DNA sequence coding for a polypeptide with an activity.

The term "natural occurring DNA" means DNA, which has not been subjected to biological or biochemical mutagenesis. By biological mutagenesis is meant "in vivo" mutagenesis, i.e.

propagation under controlled conditions in a living organism, such as a "mutator" strain, in order to create genetic diversity. By biochemical mutagenesis is meant "in vitro" mutagenesis, such as error-prone PCR, oligonucleotide directed

site-specific or random mutagenesis etc.

DETAILED DESCRIPTION OF THE INVENTION

It is the object of the present invention to provide a method 5 for providing novel DNA sequences encoding polypeptides with an activity of interest from micro-organisms without having to cultivate said micro-organisms.

The inventors of the present invention have found that PCR-screening using primers designed on the basis of known homologous region, such as conserved regions, can be used for providing novel DNA sequences. Despite the fact that known homologous regions, such as conserved regions, are used for primer designing a vast number of unknown DNA sequences have been provided. This will be described in the following and illustrated in the Examples.

The DNA sequences provided are full length hybrid structural gene sequences encoding complete polypeptides with an activity of interest made up of one unknown sequence and one or two known sequences.

According to the invention it is essential to identify at least two homologous regions, such as conserved regions, in known gene sequences with the activity of interest. One or two selected known structural gene sequence(s) is(are) used as templates (i.e. as starting sequence(s)) for finding and constructing novel DNA structural gene sequences with an activity of interest.

Said homologous regions, such as conserved regions, can be identified by alignment of polypeptides with the activity of interest and may e.g. be made by the computer program ClustalW or other similar programs available on the market.

30

One known structural gene as the starting sequence

In the case of using one known structural gene sequence as the starting sequence it will typically be comprised in a plasmid or vector or the like. A part of the sequence between the two identified homologous regions, such as conserved regions, are deleted to avoid contamination by the wild-type structural gene.

The known DNA sequence, with the homologous regions, such as conserved regions, placed at the ends, are linked to an unknown

DNA sequence amplified directly or indirectly from a sample comprising micro-organisms.

The identified homologous regions, such as conserved regions, must have a suitable distance from each other, such as 10 or more 5 base pairs in between. It is preferred to use homologous regions, such as conserved regions, placed in each end of the known structural full length gene.

However, if knowledge about a specific function (e.g. active site) of a domain (i.e. part of the structural gene sequence) is available it may be advantageous to used conserved regions placed in proximity of and on each side said domain as basis for the PCR amplification to provide novel DNA sequences according to the invention which will be described below in details.

15 Two known genes as starting sequences

In the case of using two known structural genes as the stating sequences at least one homologous region, such as conserved region, should be identified in each of the two sequences within the polypeptide coding region.

- In both case (i.e. one or two known genes as starting sequences) the homologous regions, such as conserve regions, should preferably be situated at each end of the structural gene(s) (i.e. the sequences encoding the N-terminal end (i.e. named Part A on figure 4) and the C-terminal end, respectively (i.e. named Part C on figure 4) of the known part of the hybrid polypeptide
 - In the first aspect the invention relates to a method for providing novel DNA sequences encoding polypeptides with an activity of interest comprises the following steps:
- 30 i) PCR amplification of said DNA with PCR primers with homology to (a) known gene(s) encoding a polypeptide with an activity of interest,
 - ii) linking the obtained PCR product to a 5' structural gene sequence and a 3' structural gene sequence,
- 35 iii) expressing said resulting hybrid DNA sequence,
 - iv) screening for hybrid DNA sequences encoding a polypeptide with said activity of interest or related activity,

v) isolating the hybrid DNA sequence identified in step iv)

In step i) the part between the corresponding homologous regions, such as conserved regions, of the unknown structural gene are amplified.

In an embodiment the PCR amplification in step i) is performed using naturally occurring DNA or RNA as template.

In anither embodiment the micro-organism has not been subjected to "in vitro" selection.

The PCR amplification may be performed on a sample containing 10 DNA or RNA from un-isolated micro-organisms. According to the invention no prior knowledge about the unknown sequence is required.

In an embodiment of the invention said 5' and 3' structural gene sequences originate from two different known structural gene sequences encoding polypeptides having the same activity or related activity.

The 5' structural gene sequence and the 3' structural gene sequence may also originate from the same known structural gene encoding a polypeptide with the activity of interest or from two different known structural gene sequences encoding polypeptides having different activities. In the latter case it is preferred that at least one of the starting sequences originates from a known structural gene sequence encoding a polypeptide with the activity of interest.

In a preferred embodiment of the method of the invention the known structural gene is situated in a plasmid or a vector. In said case the method comprises the following steps:

- i) PCR amplification of DNA from micro-organisms with PCR primers being homologous to conserved regions of
- 30 a known gene encoding a polypeptide with an activity of interest,
 - cloning the obtained PCR product into a gene encoding a polypeptide having said activity of interest, where said gene is not identical to the gene from which the PCR product is obtained, which gene is situated in an expression vector,
 - iii) transforming said expression vector into a suitable
 host cell,

- iiia) culturing said host cell under suitable conditions,
- iv) screening for clones comprising a DNA sequence originated from the PCR amplification in step i) encoding a polypeptide with said activity of interest or a related activity,
- v) isolating the DNA sequence identified in step iv).

According to this embodiment one known structural gene sequence is used as the starting sequence. It is to be understood that the PCR product obtained in step i) is cloned into a known 10 gene where a part of the DNA sequence, between the conserved regions, is deleted (i.e. cut out) or in an other way substituted with the PCR product. The deleted part of the known gene comprised in the vector may have any suitable size, typically between 10 and 5000 bp, such as from between 10 to 3000 bp.

A general problem is that, when amplifying DNA sequences encoding polypeptides with an activity by PCR, the obtained PCR product (i.e. being a part of an unknown gene) does not normally encode a polypeptide with the desired activity of interest.

Therefore, according to the invention the complete full length 20 structural gene, encoding a functional polypeptide, is provided by cloning (i.e. by substituting) the PCR product of the unknown structural gene into the known gene situated on the expression vector.

It should be emphasised that the DNA mentioned in step i), to 25 be PCR amplified, need not to comprise a complete gene encoding a functional polypeptide. This is advantageous as only a smaller region of the DNA of the micro-organism(s) in question need to be amplified.

The novel DNA sequences obtained according to the invention 30 consist of the PCR product merged or linked into the known gene, having a number of nucleotides between the conserved regions deleted. The PCR product is inserted into the known gene between the two ends of the cut open vector by overlapping homologous regions of about 10 to 200 bp at each end of the vector.

The resulting novel hybrid DNA sequences constitute complete full length genes comprising the PCR product and encodes a polypeptide with the activity of interest.

It is to be understood that it is not absolutely necessary to delete a part of the known gene sequence. However, if a part of the known gene sequence is not deleted re-ligation results in that the wild-type activity of the known gene is regained and thus give a high number of wild-type background clones, which would make the screening procedure more time consuming and cumbersome.

The PCR amplification in step i) can be performed on both cultivable and uncultivable micro-organisms by directly or 10 indirectly amplification of DNA from the genomic material of the micro-organisms in the environment (i.e. directly or indirectly from the sample taken).

The micro-organisms

- The micro-organisms from which the unknown DNA sequences are derived may be micro-organisms which cannot today be cultivated. This is possible as the DNA sequences can be amplified by PCR without the need first to cultivate and isolate the micro-organisms comprising the unknown DNA sequence(s).
- 20 It is however to be understood that the method of the invention can also be used for providing novel DNA sequences derived from micro-organisms which can be cultivated.

Therefore the method of the invention can be performed on both cultivable and un-cultivable organisms as the micro-organisms in question do not, according to the method of the invention, need to be cultivated and isolated from, e.g. the soil sample, comprising micro-organisms.

Starting material

cultivable micro-organisms.

- The starting material, i.e. the sample comprising microorganisms with the target unknown DNA sequences, may for instance
 be an environmental samples of plant or soil material, animal or
 insect dung, insect gut, animal stomach, a marine sample of sea
 or lake water, sewage, waste water, etc., comprising one or, as
 in most case, a vast number of different cultivable and/or un-
 - If the genomic material of the micro-organisms are readily accessible the PCR amplification may be performed directly on the

sample. In other cases a pre-purification and isolation procedure of the genomic material is needed.

Smalla et al. (1993), J. Appl. Bacteriol 74, p. 78-85; Smalla et al. (1993), FEMS Microbiol Ecol 13, p. 47-58, describes how to 5 extract DNA directly from micro-organisms in the environment (i.e. the sample).

Borneman et al. (1996), Applied and Environmental Microbiology, 1935-1943, describes a method for extracting DNA from soils.

10 A commercially available kit for isolating DNA from environmental samples, such as e.g. soils, can be purchased from BIO 101 under the tradename FastDNA® SPIN Kit.

SeamlessTM Cloning kit (cataloge no. Stratagene 214400) is a commercial kit suitable for cloning of any DNA fragment into any 15 desired location e.g. a vector, without the limitation of naturally occurring restriction sites.

PCR amplification of DNA and/or RNA of micro-organisms in the environment is described by Erlich, (1989), PCR Technology. Principles and Applications for DNA Amplification, New 20 York/London, Stockton Press; Pillai, et al., (1991), Appl.

Environ. Microbiol, 58, p. 2712-2722)

Other methods for PCR amplifying microbial DNA directly from a sample is described in Molecular Microbial Ecology Manual, (1995), Edited by Akkermans et al.. A suitable method for microbial DNA from soil samples is described by Jan Dirk van Elsas et al., (1995), Molecular Microbial Ecology Manual 2.7.2, p. 1-10.

Stein et al., (1996), J. Bacteriol., Vol. 178, No. 2, p. 591-599, describes a method for isolating DNA from un-cultivated prokaryotic micro-organisms and cloning DNA fragments therefrom.

The PCR primers being homologous to conserved regions of the known gene encoding a polypeptide with an activity of interest are synthesized according to standard methods known in the art (see for instance EP 684 313 from Hoffmann-La Roche AG) on the basis of knowledge to conserved regions in the polypeptide with the activity of interest.

Said PCR primers may be identical to at least a part of the conserved regions of the known gene. However, said primers may advantageously be synthisized to differ in one or more positions.

Further, a number of different PCR primers homologous to the 5 conserved regions may be used at the same time in step i) of the method of the invention.

The cultivable or uncultivable micro-organisms may be both prokaryotic organisms such as bacteria, or eukaryotic organisms including algae, fungi and protozoa.

Examples of un-cultivable organisms include, without being limited thereto, extremophiles and plantonic marine organisms etc.

The group of cultivable organisms include bacteria, fungal organisms, such as filamentous fungi or yeasts.

In the case of using DNA from cultivable organisms the PCR 15 amplification in step i) may be performed on one or more polynucleotides comprised in a vector, plasmid or the like, such as on a cDNA library.

Specific examples of "an activity of interest" include enzyma-20 tic activity and anti-microbial activity.

In a preferred embodiment of the invention the activity of interest is an enzymatic activity, such as an activity selected from the group comprising of phosphatases oxidoreductases (E.C. 1), transferases (E.C. 2); hydrolases (E.C. 3), such as esterases

- 25 (E.C. 3.1), in particular lipases and phytase; glucosidases (E.C. 3.2), in particular xylanase, cellulases, hemicellulases, and amylase, such as peptidases (E.C. 3.4), in particular proteases; lyases (E.C. 4); isomerases (E.C. 5); ligases (E.C. 6).
- The host cell used in step iii) may be any suitable cell which 30 can express the gene encoding the polypeptide with the activity of interest. The host cells may for instance be a yeast, such as Saccharomyces, in particular strain of cerevisiae, or a bacteria, such as a strain of Bacillus, in 35 particular of Bacillus subtilis, or a strain Escherichia coli.

Clones found to comprise a DNA sequence originated from the PCR amplification in step i) may be screened for any activity of interest. Examples of such activities include enzymatic activity,

anti-microbial activity or biological activities.

The polypeptide with the activity of interest may then be tested for a desired performance under specific conditions and/or in combination with e.g. chemical compounds or agent. In the case 5 where the polypeptide is an enzyme e.g. the wash performance, textile dyeing, hair dyeing or bleaching properties, effect in feed or food may be assayed to identify polypeptides with a desired property.

10 Identification of conserved regions of prokaryote xylanases

Figure 2 shows an alignment of prokaryote xylanases from the family 11 of glycosyl hydrolases (B. Henrissat, Biochem J, 280:309-316 (1991)). There are several region where the amino acids are identical or almost identical, i.e. conserved regions.

Examples of homologous regions or conserved regions in prokaryotic xylanases from family 11 of glycosyl hydrolases (B. Henrissat, (1991), Biochem J 280:309-316) are the sequence "DGGTYDIY" (SEQ ID NO 3) position 145-152, "EGYQSSG" (SEQ ID NO. 4) position 200-206 in the upper polypeptide shown in figure 2.

Based on e.g. said regions degenerated PCR primers can be designed. These degenerated PCR primers can amplify unknown DNA sequences coding for polypeptides (i.e. referred to as PCR products below) which are homologous to the known polypeptide(s) in question (i.e. SEQ ID NO 2) flanked by the conserved regions.

The PCR products obtained can be cloned into a plasmid and sequenced to check if they contain conserved regions and are homologous to the known structural gene sequence(s).

A homologous PCR product is however not a guarantee that the sequence code for a part of a polypeptide having the desired activity of interest.

Therefore, according to the method of the invention one or more steps selecting DNA sequences encoding polypeptides having the activity of interest follow the construction of the novel hybrid DNA sequences.

The unknown DNA sequences

When method of the invention is performed on DNA from samples of uncultivated organisms it is advantageous to screen 5 for gene products with the activity of interest.

A suitable method for doing this is to link the PCR products with a 5' sequence upstream the first conserved region DNA sequence and the 3' sequence downstream the second consensus, respectively, from the known gene sequence.

The product of the unknown gene sequence linked to an N-terminal and C-terminal part of a known gene product is then screened for the activity of interest.

The N-terminal and C-terminal parts can originate from the same gene product but it is not a prerequisite for activity.

15 The N-terminal and C-terminal parts may also originate from different gene products as long as they originate from the same polypeptide family e.g. the same glycosyl hydrolases.

A method to link the unknown gene sequence with the known sequences is to clone the PCR product into a known gene, 20 encoding a polypeptide having the activity of interest, which have had the sequences between the conserved regions removed.

Another method is merging the PCR product, the N-terminal part and the C-terminal part by SOE-PCR (splicing by overlap extension PCR) e.g. as shown in figure 1 and described in detail in Example 1. Other methods known in the art may also be used.

In a second aspect the invention relates to a novel DNA sequence provided by the method of the invention and the polypeptide encoded by said novel DNA sequence.

MATERIALS AND METHODS

Pulpzyme® is a xylanase derived from Bacillus sp. AC13, NCIMB No. 40482. and is described in WO 94/01532 from Novo Nordisk A/S AZCL Birch xylan (MegaZyme, Australia).

35 Plasmids:

30

The Aspergillus expression vector pHD414 is a derivative of the plasmid p775 (described in EP 238 023). The construction of

SUBSTITUTE SHEET (RULE 26)

pHD414 is further described in WO 93/11249.

The 43 kD EG V endoglucanase cDNA from H. insolens (disclosed in WO 91/17243) is cloned into pHD414 in such a way that the endoglucanase gene is transcribed from the TAKA-promoter. The resulting plasmid is named pCaHj418.

Kits

QIAquick PCR Purification Kit Protocol

Taq deoxy terminal cycle sequencing kit (Perkin Elmer, USA)

10 AmpliTaq Gold polymerase (Perkin-Elmer, USA)

Micro-organisms

Bacteria

electromax DH10B E. coli cells (GIBCO BRL)

15

Fungal micro-organisms:

Cylindrocarpon sp.: Isolated from marine sample, the Bahamas

Classification: Ascomycota, Pyrenomycetes, Hypocreales

20 unclassified

Fusarium anguioides Sherbakoff IFO 4467

Classification: Ascomycota, Pyrenomycetes, Hypocreales, Hypocreaceae

Gliocladium catenulatum Gillman & Abbott CBS 227.48

25 Classification: Ascomycota, Pyrenomycetes, Hypocreales, Hypocreae

Humicola nigrescens Omvik CBS 819.73

Classification: Ascomycota, Pyrenomycetes, Sordariales, (fam. unclassified)

30 Trichothecium roseum IFO 5372

Plates

LB-ampicillin plates: 10 g Bacto-tryptone, 5 g Bacto yeast extract, 10 g NaCl, in 1 litre water, 2% agar 0.1% AZCL Birch 35 xylan, 50 microg/ml ampicillin.

Equipment

Applied Biosystems 373A automated sequencer

PCR Amplification

All Polymerase Chain Reactions is carried out under stan-5 dard conditions as recommended by Perkin-Elmer using AmpliTaq Gold polymerase.

Isolation of Environmental DNA

DNA is isolated from an environmental sample using FastDNA® 10 SPIN Kit for Soil according to the manufacture's instructions.

Methods used in Example 3

Strains and growth conditions

The fungal strains listed above, were streaked on PDA plates containing 0.5 % Avicel, and examined under a microscope to avoid obvious mistakes and contaminations. The strains were cultivated in shake flasks (125 rpm and 26 °C) containing 30ml PD medium (to initiate the growth) and 150ml of BA growth medium for cellulase induction.

The production of cellulases in culture supernatants (typically after 3, 5, 7 and 9 days of growth) was assayed using 0.1 % AZCl-HE-cellulose in a plate assay at pH 3, pH 7 and pH 10. The mycelia were harvested and stored at - 80°C.

25 Preparation of RNase-free glassware, tips and solutions

All glassware used in RNA isolations were baked at + 250°C for at least 12 hours. Eppendorf tubes, pipet tips and plastic columns were treated in 0.1 % diethylpyrocarbonate (DEPC) in EtOH for 12 hours, and autoclaved. All buffers and water 30 (except Tris-containing buffers) were treated with 0.1 % DEPC for 12 hours at 37°C, and autoclaved.

Extraction of total RNA

The total RNA was prepared by extraction with guanidinium 35 thiocyanate followed by ultracentrifugation through a 5.7 M CsCl cushion [Chirgwin, (1979) Biochemistry 18, 5294-5299] using the following modifications. The frozen mycelia was ground in liquid N2 to fine powder with a mortar and a pestle,

followed by grinding in a precooled coffee mill, and immediately suspended in 5 vols of RNA extraction buffer (4 M GuSCN, 0.5 % Na-laurylsarcosine, 25 mM Na-citrate, pH 7.0, 0.1 M Bmercaptoethanol). The mixture was stirred for 30 min. at RT° 5 and centrifuged (20 min., 10 000 rpm, Beckman) to pellet the cell debris. The supernatant was collected, carefully layered onto a 5.7 M CsCl cushion (5.7 M CsCl, 0.1 M EDTA, pH 7.5, 0.1 % DEPC; autoclaved prior to use) using 26.5 ml supernatant per 12.0 ml CsCl cushion, and centrifuged to obtain the total RNA 10 (Beckman, SW 28 rotor, 25 000 rpm, RT°, 24h). After centrifugation the supernatant was carefully removed and the bottom of the tube containing the RNA pellet was cut off and rinsed with 70 % EtOH. The total RNA pellet was transferred into an Eppendorf tube, suspended in 500 μ l TE, pH 7.6 (if difficult, heat 15 occasionally for 5 min at 65 °C), phenol extracted and precipitated with ethanol for 12 h at -20°C (2.5 vols EtOH, 0.1 vol 3M NaAc, pH 5.2). The RNA was collected by centrifugation, washed in 70 % EtOH, and resuspended in a minimum volume of DEPC-DIW. The RNA concentration was determined by measuring OD 260/280.

20

Isolation of poly(A)+RNA

The poly(A)+ RNAs were isolated by oligo(dT)-cellulose affinity chromatography [Aviv, (1972), Proc. Natl. Acad. Sci. U.S.A. 69, 1408-1412]. Typically, 0.2 g of oligo(dT) cellulose 25 (Boehringer Mannheim, Germany) was preswollen in 10 ml of 1 \times column loading buffer (20 mM Tris-Cl, pH 7.6, 0.5 M NaCl, 1 mM EDTA, 0.1 % SDS), loaded onto a DEPC-treated, plugged plastic column (Poly Prep Chromatography Column, Bio Rad), and equilibrated with 20 ml 1 x loading buffer. The total RNA (1-2 mg)30 was heated at 65 °C for 8 min., quenched on ice for 5 min, and after addition of 1 vol 2 x column loading buffer to the RNA sample loaded onto the column. The eluate was collected and reloaded 2-3 times by heating the sample as above and quenching on ice prior to each loading. The oligo(dT) column was washed 35 with 10 vols of 1 \times loading buffer, then with 3 vols of medium salt buffer (20 mM Tris-Cl, pH 7.6, 0.1 M NaCl, 1 mM EDTA, 0.1 % SDS), followed by elution of the poly(A)+ RNA with 3 vols of elution buffer (10 mM Tris-Cl, pH 7.6, 1 mM EDTA, 0.05% SDS)

preheated to + 65 °C, by collecting 500 μ l fractions. The OD260 was read for each collected fraction, and the mRNA containing fractions were pooled and ethanol precipitated at -20°C for 12 h. The poly(A)+ RNA was collected by centrifugation, resuspended in DEPC-DIW and stored in 5-10 μ g aliquots at -80 °C.

cDNA synthesis

First strand synthesis

Double-stranded cDNA was synthesized from 5 μ g of poly(A)+ 10 RNA by the RNase H method (Gubler et al. (1983) Gene 25, 263-269; Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual, 2 Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York) using the hair-pin modification. The poly(A)+RNA (5 μ g in 5 μ l of DEPC-treated water) was heated at 70°C for 8 15 min. in a pre-siliconized, RNase-free Eppendorph tube, quenched on ice, and combined in a final volume of 50 μ l with reverse transcriptase buffer (50 mM Tris-Cl, pH 8.3, 75 mM KCl, 3 mM MgCl2, 10 mM DTT, Bethesda Research Laboratories) containing 1 mM of dATP, dGTP and dTTP, and 0.5 mM of 5-methyl-dCTP 20 (Pharmacia), 40 units of human placental ribonuclease inhibitor (RNasin, Promega), 1.45 μ g of oligo(dT)18- Not I primer (Pharmacia) and 1000 units of SuperScript II RNase H- reverse transcriptase (Bethesda Research Laboratories). First-strand cDNA was synthesized by incubating the reaction mixture at 45 25 °C for 1 h. After synthesis, the mRNA:cDNA hybrid mixture was gel filtrated through a MicroSpin S-400 HR (Pharmacia) spin column according to the manufacturer's instructions.

Second strand synthesis

After the gel filtration, the hybrids were diluted in 250 μl of second strand buffer (20 mM Tris-Cl, pH 7.4, 90 mM KCl, 4.6 mM MgCl2, 10 mM (NH4)2SO4, 0.16 mM βNAD+) containing 200 μM of each dNTP, 60 units of E. coli DNA polymerase I (Pharmacia), 5.25 units of RNase H (Promega) and 15 units of E. coli DNA li-35 gase (Boehringer Mannheim). Second strand cDNA synthesis was performed by incubating the reaction tube at 16°C for 2 h, and an additional 15 min at 25°C. The reaction was stopped by addition of EDTA to 20 mM final concentration followed by phenol

and chloroform extractions.

Mung bean nuclease treatment

The double-stranded (ds) cDNA was ethanol precipitated at -20°C for 12 hours by addition of 2 vols of 96% EtOH, 0.2 vol 10 5 M NH4Ac, recovered by centrifugation, washed in 70% EtOH, dried (SpeedVac), and resuspended in 30 µl of Mung bean nuclease buffer (30 mM NaAc, pH 4.6, 300 mM NaCl, 1 mM ZnSO4, 0.35 mM DTT, 2 % glycerol) containing 25 units of Mung bean nuclease (Pharmacia). The single-stranded hair-pin DNA was clipped by incubating the reaction at 30°C for 30 min, followed by addition of 70 µl 10 mM Tris-Cl, pH 7.5, 1 mM EDTA, phenol extraction, and ethanol precipitation with 2 vols of 96% EtOH and 0.1 vol 3M NaAc, pH 5.2 on ice for 30 min.

15 Blunt-ending with T4 DNA polymerase

The ds cDNAs were recovered by centrifugation (20 000 rpm, 30 min.), and blunt-ended with T4 DNA polymerase in 30 µl of T4 DNA polymerase buffer (20 mM Tris-acetate, pH 7.9, 10 mM MgAc, 50 mM KAc, 1 mM DTT) containing 0.5 mM each dNTP and 5 units of 20 T4 DNA polymerase (New England Biolabs) by incubating the reaction mixture at +16°C for 1 hour. The reaction was stopped by addition of EDTA to 20 mM final concentration, followed by phenol and chloroform extractions and ethanol precipitation for 12 h at -20°C by adding 2 vols of 96% EtOH and 0.1 vol of 3M 25 NaAc, pH 5.2.

Adaptor ligation, Not I digestion and size selection

After the fill-in reaction the cDNAs were recovered by centrifugation as above, washed in 70% EtOH, and the DNA pellet 30 was dried in SpeedVac. The cDNA pellet was resuspended in 25 μ l of ligation buffer (30 mM Tris-Cl, pH 7.8, 10 mM MgCl2, 10 mM DTT, 0.5 mM ATP) containing 2.5 μ g non-palindromic BstXI adaptors (1 μ g/ μ l, Invitrogen) and 30 units of T4 ligase (Promega) by incubating the reaction mix at +16°C for 12 h. The reaction 35 was stopped by heating at + 65°C for 20 min, and then on ice for 5 min. The adapted cDNA was digested with Not I restriction enzyme by addition of 20 μ l autoclaved water, 5 μ l of 10 x Not I restriction enzyme buffer (New England Biolabs) and 50 units

of Not I (New England Biolabs), followed by incubation for 2.5 hours at +37°C. The reaction was stopped by heating the sample at +65°C for 10 min. The cDNAs were size-fractionated by agarose gel electrophoresis on a 0.8% SeaPlaque GTG low melting 5 temperature agarose gel (FMC) in 1 x TBE (in autoclaved water) to separate unligated adaptors and small cDNAs. The gel was run for 12 hours at 15 V, the cDNA was size-selected with a cut-off at 0.7 kb by cutting out the lower part of the agarose gel, and the cDNA was concentrated by running the gel backwards until it 10 appeared as a compressed band on the gel. The cDNA (in agarose) was cut out from the gel; and the agarose was melted at 65°C in a 2 ml Biopure Eppendorph tube (Eppendorph). The sample was treated with agarase by adding 0.1 vol of 10 x agarase buffer (New England Biolabs) and 2 units per 100 μ l molten agarose to 15 the sample, followed by incubation at 45°C for 1.5 h. The cDNA sample was phenol and chloroform extracted, and precipitated by addition of 2 vols of 96 % EtOH and 0.1 vol of 3M NaAc, pH 5.2 at - 20°C for 12 h.

20 EXAMPLES

Example 1

Providing novel DNA sequences encoding polypeptide with xylanase activity

Novel sequences with xylanase activity were provided ac-25 cording to the method of the invention using the glycosyl hydrolase family 11 xylanase derived from Bacillus sp. (SEQ ID No 1) as the known structural gene sequence.

Identification of conserved regions by alignment

An amino acid sequence alignment of ten family 11 xylanases revealed at least 3 conserved sequences. Two of these conserved sequences are used to design appropriate PCR primers for amplification of unknown DNA sequences.

The first conserved sequence shown in SEQ ID No. 3 i.e. 35 "DGGTYDIY" corresponding to position 433-456 in SEQ ID NO 1.

The second conserved sequence shown in SEQ 4, i.e. "EGYQSSG" corresponding to position 631-651 in SEQ ID NO 1.

PCR amplification of the known and unknown partial structural gene sequences

Initially the N-terminal end (i.e. Part A) and the C-terminal (i.e. Part C) of the known xylanase gene, in which the 5 unknown sequence (i.e. Part B) is to be inserted, were amplified by PCR (see figure 4)

Part A was PCR amplified using the two primers (i.e. primer e and primer a_{rc}) and as DNA template a plasmid carrying the known xylanase gene (i.e. SEQ ID NO 1).

Primer e (shown in SEQ ID NO 5 and figure 1) is an exact N-terminal primer extended with a sequence which included an EcoRI restriction recognition site.

Primer a_{rc} (shown in SEQ ID NO 6 and figure 1) is a reverse and complement sequence primer of position 411-432 in SEQ ID NO 15 1.

Part C was PCR amplified using the two primers (i.e. primer f and primer $d_{\rm rc}$) mentioned below and as DNA template a plasmid carrying the known xylanase gene.

Primer f is an exact reverse and complement C-terminal pri-20 mer extended with a sequence which having a SalI restriction recognition site is shown in SEQ ID No. 7.

Primer d_{rc} (SEQ ID NO 8) was designed on the basis of position 651-672 in SEQ ID No. 1.

Part B was PCR amplified using two primers (i.e. primer ab 25 and primer cd) and as DNA template DNA purified from a soil sample using the FastDNA® SPIN Kit.

Primer ab (SEQ ID NO 9) has the exact sequence of position 411-432 in SEQ ID 1 extended with degenerated xylanase consensus sequence covering position 433-452 in SEQ ID NO 1

Primer cd (SEQ ID NO: 10) has the exact reverse and complement sequence of position 672-651 in SEQ ID NO 1 extended with degenerated xylanase consensus sequence covering position 650-631 in SEQ ID NO 1.

The N-terminal part of the known xylanase gene (Part A) was 35 PCR amplified for 9 min. at 94°C followed by 30 cycles (45 second at 94°C, 45 seconds at 50°C and 1 min. at 72°C) and finally for 7 min. at 72°C. This gave a PCR product of approx. 450 bp.

The C-terminal part (Part C) of the known xylanase gene was PCR amplified for 9 min. at 94°C followed by 30 cycles (45 seconds at 94°C, 45 seconds at 50°C and 1 min. at 72°C) and finally for 7 min. at 72°C. This gave a PCR product of approx. 5 100 bp.

The unknown sequences (Part B) was PCR amplified for 9 min. at 94°C followed by 40 cycles(45 seconds at 94°C, 45 seconds at 50°C and 1 min. at 72°C) and finally for 7 min. at 72°C. This gave a PCR product of approx. 260 bp.

The PCR products mentioned above were carefully purify to avoid remains of template DNA which can produce false positive bands in the following SOE-PCR where the products are joined together to form hybrid sequences.

15 Construction of hybrid sequences

Hybrid sequences containing the N- and C-terminal parts of the known xylanase gene with core part of unknown genes was constructed by splicing by overlap extension PCR (SOE-PCR).

Equal molar amounts of Part A, Part B and Part C PCR pro-20 ducts were mixed and PCR amplified under standard conditions except that the reaction was started without any primers.

The reaction started with 9 min. at 94°C followed by 4 cycles (45 seconds at 94°C, 45 seconds at 50°C, 1 min. at 72°C), then primers e and f (SEQ ID No. 5 and 7, respectively)

25 were added, followed by 25 cycles (45 seconds at 94°C, 45 seconds at 50°C, 1 min. at 72°C) and finally 7 min. at 72°C. This gave a SOE-PCR product of the expected size of approx. 770 bp.

30 Cloning of the hybrids

The SOE-PCR product was purified using the QIAquick PCR Purification Kit Protocol and digested overnight with EcoRI and SalI according to the manufacturers recommendation. The digested product was then ligated into an E. coli expression vector overnight at 16°C (in this case a vector where the hybrid gene is under control of a temperature sensitive lamda repressor promoter).

The ligation mixture was transformed into electromax DH10B E. coli cells (GIBCO BRL) and plated on LB-ampicillin plates containing 0.1% AZCL Birch xylan. After induction of the promoter (by increasing the temperature to 42°C) xylanase positive 5 colonies were identified as colonies surrounded by a blue halo.

Plasmid DNA was isolated from positive *E. coli* colonies using standard procedures and sequenced with the Tag deoxy terminal cycle sequencing kit (Perkin Elmer, USA) using an Applied Biosystems 373A automated sequencer according to the manufacturers instructions.

The sequence of a positive clone is shown in SEQ ID NO 11 and the corresponding protein sequence is shown in SEQ ID NO 12.

An alignment of the known xylanase sequence (SEQ ID NO 2) and the novel DNA sequence provided according to the method of the invention can be seen in Figure 3. As can be seen the two protein sequences differs between the two identified conserved regions (i.e. SEQ ID NO 3 and SEQ ID NO 4, respectively).

20 Example 2

Efficiency of the method of the invention

Degenerated primers were designed on the basis of conserved regions identified by alignment of a number of family 5 cellulases and family 10 and 11 xylanases found on the Internet in ExPASy under Prosite (Dictionary of protein sites and patterns).

PCR amplification of a number of unknown structural gene sequences from soil and cow rumen samples were performed with various degenerated primers covering identified conserved re30 gion sequences to show how effective the method of the invention is.

The PCR products were cloned into the vector pcRtmII, provided with the original TA cloning kit from Invitrogen. Said vector provides the possibility to make blue-white screening, 35 the white colonies were selected and the inserts were sequenced.

When editing the Sequence Listing below all sequences outside the two EcoRI sites in the polylinker were removed.

Therefore all sequences have a small additional part of the polylinker (i.e. from the EcoRI site to the TT overhang) in both ends of the sequences. These extensions are "GAATTCGGCT" and "AAGCCG".

- 1. PCR primers were designed on the basis of identified conserved regions #1 GWNLGN and #2 (E/D)HLIFE of cellulases from the glycosyl hydrolase family 5 aiming to provide novel sequences with cellulase activity.
- SEQ ID NO 13 and 14 show the sequences obtained from a soil 10 sample. SEQ ID NO 15 and 16 show the sequences obtained from a cow rumen sample.
- 2. PCR primers were designed on the basis of identified conserved regions #1 GWNLGN and #3 RA(S/T)GGNN of cellulases from the glycosyl hydrolase family 5 aiming to provide novel 15 sequences with cellulase activity.
 - SEQ ID NO 17 to 19 show the sequences obtained from a cow rumen sample.
- 3. PCR primers were designed on the basis of identified conserved regions #2 (E/D)HLIFE and #3 RA(S/T)GGNN of cellula-20 ses from the glycosyl hydrolase family 5 aiming to provide novel sequences with cellulase activity.
 - SEQ ID NO 20 to 22 show the sequences obtained from a cow rumen sample.
- 4. PCR primers were designed on the basis of identified 25 conserved regions #4 HTLVWH and #5 WDVVNE of xylanases from the glycosyl hydrolase family 10 aiming to provide novel sequences with xylanase activity.
 - SEQ ID NO 23 to 28 show the sequences obtained from a cow rumen sample.
- 5. PCR primers were designed on the basis of the identified conserved regions #4 HTLVWH and #6 (F/Y)(I/Y)NDYN of xylanases from the glycosyl hydrolase family 10 aiming to provide novel sequences with xylanase activity.
- SEQ ID NO 29 to 33 show the sequences obtained from a cow rumen 35 sample.
 - 6. PCR primers were designed on the basis of the identified conserved regions #5 WDVVNE and #6 (F/Y)(I/Y)NDYN of xylanases from the glycosyl hydrolase family 10 aiming to provide novel

sequences with xylanase activity.

SEQ ID NO 34 to 36 show the sequences obtained from a soil sample. SEQ ID NO 37 to 45 show the sequences obtained from a cow rumen sample

7. PCR primers were designed on the basis of the identified conserved regions #8 DGGTYDIY and #9 EGYQSSG of xylanases from the glycosyl hydrolase family 11 aiming to provide novel sequences with xylanase activity.

SEQ ID NO 46 to 49 show the sequences obtained from a soil 10 sample. SEQ ID NO 50 to 54 show the sequences obtained from a cow rumen sample.

60 clones with inserts were sequenced and resulted in 43 different sequences all encoding either a part of a cellulase or a part of a xylanase. Only 2 of the 43 sequences were 15 similar to sequence found in the sequence databases Genbank.

SEQ ID NO 49 was found to be similar to Xylanase A from Bacillus pumilus. SEQ ID NO 42 was found to be similar to a xylanase from Prevotella ruminicola.

20 Example 3

Construction of novel hybrid DNA sequences encoding polypeptides with endoglucanase activity

Novel hybrid DNA sequences with endoglucanase activity were provided by first identifying two conserved regions common for the following family 45 cellulases (see WO 96/29397): Humicola insolens EGV (disclosed in WO 91/17243), Fusarium oxysporum EGV (Sheppard et al., Gene (1994), Vol. 15, pp.163-167), Thielavia terrestris, Myceliophthora thermophila, and Acremonium sp (disclosed in WO 96/29397).

The amino acid sequence alignment revealed two conserved region.

The first conserved region "Thr Arg Tyr Trp Asp Cys Cys Lys Pro/Thr" shown in SEQ ID NO 57 corresponds to position 6 to 14 of SEQ ID NO 55 showing the *Humicola insolens* EG V 43 KDa 35 endoglucanase.

The second conserved region "Trp Arg Phe/Tyr Asp Trp Phe" shown in SEQ ID NO 58 corresponding to positions 169 to 198 of SEQ ID NO 55 showing the Humicola insolens EGV 43 KDa

endoglucanase.

Two degenerate, deoxyinosine-containing oligonucleotide primers (sense; primer s and antisense; primer as) were constructed) for PCR amplification of unknown gene sequences. The deoxyinosines are depicted by an I in the primer sequences.

Primers s and primer as are shown in SEQ ID No. 59 and 60 respectively.

The Humicola insolens EG V structural gene sequence (SEQ ID NO 55) was used as the known DNA sequence. A number of fungal 10 DNA sequences mentioned below were used as the unknown sequences.

PCR cloning of the family 45 cellulase core region and the linker/CBD of Humicola insolens EG V.

Approximately 10 to 20 ng of double-stranded, cellulase-induced cDNA from Humicola nigrescens, Cylindrocarpon sp., Fusarium anguioides, Gliocladium catenulatum, and Trichothecium roseum prepared, as described above in the Material and Methods section were, PCR amplified in Expand buffer (Boehringer Mann-leim, Germany) containing 200 μM each dNTP and 200 pmol of each degenerate Primer s (SEQ ID NO 59) and Primer as (SEQ ID NO 60) a DNA thermal cycler (Perkin-Elmer, Cetus, USA) and 2.6 units of Expand High Fidelity polymerase (Boehringer Mannheim, Germany). 30 cycles of PCR were performed using a cycle profile of denaturation at 94°C for 1 min, annealing at 55°C for 2 min, and extension at 72°C for 3 min, followed by extension at 72°C for 5 min.

The PCR fragment coding for the linker/CBD of H. insolens EGV was generated in Expand buffer (Boehringer Mannheim, Ger-30 many) containing 200 µM each dNTP using 100 ng of the pCaHj418 template, 200 pmol forward primer 1 (SEQ ID NO 61), 200 pmol reverse primer 1 (SEQ ID NO 62). 30 cycles of PCR were performed as above.

35 Construction of hybrid genes using splicing by overlap extension (SOE)

The PCR products were electrophoresed in 0.7 % agarose gels (SeaKem, FMC), the fragments of interest were excised from the

gel and recovered by Qiagen gel extraction kit (Qiagen, USA) according to the manufacturer's instructions. The recombinant hybrid genes were generated by combining the overlapping PCR fragments from above (ca. 50 ng of each template) in Expand 5 buffer (Boehringer Mannheim, Germany) containing 200 µM each dNTP in the SOE reaction. Two cycles of PCR were performed using a cycle profile of denaturation at 94°C for 1 min, annealing at 50 C for 2 min, and extension at 72°C for 3 min, the reaction was stopped, 250 pmol of each end-primer: forward 10 primer 2 (SEQ ID NO 63) encoding the TAKA-amylase signal sequence from A. oryzae, reverse primer 2 (SEQ ID NO 64) was added to the reaction mixture, and an additional 30 cycles of PCR were performed using a cycle profile of denaturation at 94°C for 1 min, annealing at 55 °C for 2 min, and extension at 72°C 15 for 3 min.

Construction of the expression cassettes and heterologous expression in Aspergillus oryzae

The PCR-generated, recombinant fragments were electropho-20 resed in 0.7 % agarose gels (SeaKem, FMC), the fragments were excised from the gel and recovered by Qiagen gel extraction kit (Qiagen, USA) according to the manufacturer's instructions. The DNA fragments were digested to completion with BamHI and XbaI, and ligated into BamHI/XbaI-cleaved pHD414 vector. Co-transfor-25 mation of A. oryzae was carried out as described in Christensen et al. (1988), Bio/Technology 6, 1419-1422. The AmdS+ transformants were screened for cellulase activity using 0.1 % AZCl-HEcellulose in a plate assay as described above. The cellulaseproducing transformants were purified twice through conidial 30 spores, cultivated in 250 ml shake flasks, and the amount of secreted cellulase was estimated by SDS-PAGE, Western blot analysis and the activity assay as described earlier (Kauppinen et al. (1995), J. Biol. Chem. 270, 27172-27178;; Kofod et al. (1994), J. Biol. Chem. 269, 29182-29189; Christgau 35 al,(1994), Biochem. Mol. Biol. Int. 33, 917 - 925).

Nucleotide sequence analysis

The nucleotide sequences of the novel hybrid gene fusions were determined from both strands by the dideoxy chain-termination method (Sanger et al., (1977), Proc. Natl. Acad. Sci. U.S.A. 74, 5463-5467), using 500 ng template, the Tag deoxy-terminal cycle sequencing kit (Perkin-Elmer, USA), fluorescent labeled terminators and 5 pmol of synthetic oligonucleotide primers. Analysis of the sequence data was performed according to Devereux et al., 1984 (Devereux et al., (1984), Nucleic Acids Res. 12, 387-395).

The provided novel hybrid DNS sequences an the deduced protein sequences are shown in SEQ ID NO 65 to 74.

SEQ ID NO 65 shows the hybrid gene construct comprising the family 45 cellulase core region from Humicola nigrescens and the linker/CBD of Humicola insolens EG V. SEQ. ID No 66 shows the deduced amino acid sequence of the hybrid gene construct.

SEQ ID NO 67 shows the hybrid gene construct comprising the family 45 cellulase core region from *Cylindrocarpon* sp. and the linker/CBD of *Humicola insolens* EG V. SEQ ID NO 68 shown the deduced amino acid sequence of the hybrid gene construct.

SEQ ID NO shows the hybrid gene construct comprising the family 45 cellulase core region from Fusarium anguioides and the linker/CBD of Humicola insolens EG V. SEQ ID NO 70 shows the deduced amino acid sequence of the hybrid gene construct.

SEQ ID NO 71 shows the hybrid gene construct comprising the 25 family 45 cellulase core region from Gliocladium catenulatum and the linker/CBD of Humicola insolens EG V. SEQ ID NO 72 shows the deduced amino acid sequence of the hybrid gene construct:

SEQ ID NO 73 shows the novel gene construct comprising the 30 family 45 cellulase core region from Trichothecium roseum and the linker/CBD of Humicola insolens EG V. SEQ ID NO 74 shows the deduced amino acid sequence of the hybrid gene construct.

SEQUENCE LISTING

	(1)			PLIC			ī:											
5		(-	· (A) N B) S	IAME:	Nov	o No	rdis	sk A	's								
			(C) C	:YTI	Bag	svae	erd	•									
10			(F) F	POSTA	L CC	DE (ZIP)	: DK	-288	30							
10		422	(G) 1 H) 1	ELEF	AX:	+45	4449	325	6								
		1	,		· Or	2500	EHCE	· 3 : /	4	for	pro	vidi	.ng r	ove	. DNA	seq.	uences	
15		(iv	(MPUT A) M	EDIU	M TY	PE:	Flor	py d	lisk								
			(B) C	OMPU PERA	TER: TING	IBM SYS	PC TEM:	COMP PC-	atib DOS/	MS-E	os						
			(D) S	OFTW	ARE:	Pat	entI	n Re	leas	e #1	.0,	Vers	ion	#1.3	0 (E	PO)	
20	(2)	INF	ORMA	TION	FOR	SEQ HARA	ID CTER	NO: ISTI	1: CS:									
			(Ã) L B) T	ENGT	H: 7	47 b	ase	pair	8								
25			(C) S	TRAN	DEDN	ESS:	sin	gle									
		(ii (vi) MO	LÉCU IGIN	LE T	YPE:	DNA	(ge	nomi	c)								
			(TRAI			lus	sp.	AC13	, NO	IMB	No.	4048	2			
30		((A) N B) L	AME /	KEY:	CDS	47										
		(xi) SÈ	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0: 1	:						
35	ATG Met	AGA	CAA Gln	AAG Lvs	AAA	TTG	ACG	TTC	ATT	TTA	GCC	TTT	TTA	GTT	TGT	TTT		48
	1	9	J 1	5 ,5	5	Dea	1111	Pne	iie	10	ATA	Phe	Leu	Val	Cys 15	Phe		
	GCA	CTA	ACC	TTA	CCT	GCA	GAA	ATA	ATT	CAG	GCA	CAA	ATC	GTC	ACC	GAC		96
40				20	110	ura	GIU	116	25	GIN	Ala	GIN	Ile	Val 30	Thr	Asp		
	AAT Asn	TCC	ATT	GGC	AAC	CAC	GAT	GGC	TAT	GAT	TAT	GAA	TTT	TGG	AAA	GAT		144
45			35	,	11.511	1113	vəħ	40	Tyr	Asp	туг	GIU	Phe 45	Trp	Lys	Asp		
	AGC Ser	GGT	GGC Glv	TCT	GGG	ACA	ATG	ATT	CTC	AAT	CAT	GGC	GGT	ACG	TTC	AGT		192
		50	o z y	501	Gly	1111	55	TIE	Leu	Asn	HIS	Gly 60	Gly	Thr	Phe	Ser		
50	GCC	CAA	TGG	AAC	AAT	GTT	AAC	AAC	ATA	TTA	TTC	CGT	AAA	GGT	AAA	AAA		240
	65	01 11	11.5	VOII	VPII	70	Asn	Asn	TTE	Leu	Phe 75	Arg	Lys	Gly	Lys	Eys 80		
55	TTC	AAT	GAA	ACA	CAA	ACA	CAC	CAA	CAA	GTT	GGT	AAC	ATG	TCC	ATA	AAC		288
,,,	FIIE	ASII	GIU	inr	85 85	Thr	HIS	GIn	Gln	Val 90	Gly	Asn	Met	Ser	Ile 95	Asn		
	TAT	GGC	GCA	AAC	TTC	CAG	CCA	AAC	GGA	AAT	GCG	TAT	TTA	TGC	GTC	TAT		336
60	lyr	GIÀ	ATA	100	Phe	Gln	Pro	Asn	Gly 105	Asn	Ala	Tyr	Leu	Cys 110	Val	Tyr		
	GGT	TGG	ACT	GTT	GAC	CCT	CTT	GTC	GAA	TAT	TAT	ATT	GTC	GAT	AGT	TGG		384
6 F	GIÀ	rrp	115	val	Asp	Pro	Leu	Val 120	Glu	Tyr	Tyr	Ile	Val 125	Asp	Ser	Trp		•
65	GGC	AAC	TGG	CGT	CCA	CCA	GGG	GCA	ACG	CCT	AAG	GGA	3.00	ATC	ACT	СТТ		432
	Gly	Asn 130	Trp	Arg	Pro	Pro	Gly 135	Ala	Thr	Pro	Lys	Gly 140	Thr	Ile	Thr	Val	•	732

	GAT Asp 145	GGA Gly	GGA Gly	ACA Thr	Tyr :	GAT Asp 150	ATC Ile	TAT Tyr	GAA Glu	ACT Thr	CTT Leu 155	AGA Arg	GTC Val	TAA Asn	CAG Gln	CCC Pro 160	480
5	TCC Ser	ATT Ile	AAG Lys	GGG Gly	ATT (Ile) 165	GCC Ala	ACA Thr	TTT Phe	AAA Lys	CAA Gln 170	TAT Tyr	TGG Trp	AGT Ser	GTC Val	CGA Arg 175	AGA Arg	528
10	TCG Ser	AAA Lys	CGC Arg	ACG Thr 180	AGT Ser	GGC Gly	ACA Thr	ATT Ile	TCT Ser 185	GTC Val	AGC Ser	AAC Asn	CAC His	TTT Phe 190	AGA Arg	GCG Ala	576
15				TTA Leu													624
20	ACT Thr	GTA Val 210	GAA Glu	GGC Gly	TAT Tyr	CAA Gln	AGT Ser 215	AGC Ser	GGA Gly	AGT Ser	GCT Ala	AAT Asn 220	GTA Val	TAT Tyr	AGC Ser	AAT Asn	672
20	ACA Thr 225	Leu	AGA Arg	ATT Ile	AAC Asn	GGT Gly 230	AAC Asn	CCT Pro	CTC Leu	TCA Ser	ACT Thr 235	Ile	AGT Ser	AAT Asn	GAC Asp	AAG Lys 240	720
25				CTA Leu													747
30	(2)	INF	(i) (. (TION SEQUI A) LI B) T	ENCE ENGTI YPE:	CHAI i: 2: ami:	RACT 49 au no a	ERIS' mino cid	TICS								
35		(xi) MO	LÉCU: QUEN	CE DI	PE: ESCR	pro IPTI	tein ON:	SEQ								
40	1	_		Lys	5					10	•			٠	15		
45	Asn			20 Gly					25 Tyr	i				3C Trp)	Asp	
7,5		- Gl ₃			Gly	Thr		. Ile	Le	ı Asr			Gly		r Phe	e Ser	
50	Ala 65		n Tr) Asn	Asn	Val		a Asr	ı Ile	e Le	1 Phe 7		g Lys	Gly	y Lys	E Lys 80	
55		e Ası	n Gli	ı Thr	Gln 85		His	Glr	ı Gl	n Va:		y Ası	n Met	: Se	r Ile 9!	e Asn	
-	Ту	r Gl	y Ala	100		Glr	n Pro) Ası	1 Gl		n Al	а Ту:	r Le	1 Cy:		l Tyr	
60)	-	11	5				120	0				12	5		r Trp	
	G1	y As 13		p Ar	g Pro	Pro	0 Gl		a Th	r Pr	o Ly	s Gl 14		r Il	e Th	r Val	
6	5 As 14	-	y Gl	y Th	r Tyı	15		е Ту	r Gl	u Th	r Le 15		g Va	l As	n Gl	n Pro 160	
	Se	r Il	e Ly	s Gl	y Ile 16		a Th	r Ph	e Ly	s Gl 17	n Ty	r Tr	p Se	r Va	1 Ar	g Arg	

```
Ser Lys Arg Thr Ser Gly Thr Ile Ser Val Ser Asn His Phe Arg Ala
 5 Trp Glu Asn Leu Gly Met Asn Met Gly Lys Met Tyr Glu Val Ala Leu
                                  200
                                                        205
    Thr Val Glu Gly Tyr Gln Ser Ser Gly Ser Ala Asn Val Tyr Ser Asn
10
    Thr Leu Arg Ile Asn Gly Asn Pro Leu Ser Thr Ile Ser Asn Asp Lys
    Ser Ile Thr Leu Asp Lys Asn Asn *
15
                     245
    (2) INFORMATION FOR SEQ ID NO: 3:
         (i) SEQUENCE CHARACTERISTICS:
20
               (A) LENGTH: 8 amino acids
               (B) TYPE: amino acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: other nucleic acid
25
              (A) DESCRIPTION: /desc = "Conserved region"
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
         Asp Gly Gly Thr Tyr Asp Ile Tyr
30
    (2) INFORMATION FOR SEQ ID NO: 4:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 7 amino acids (B) TYPE: amino acid
35
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: other nucleic acid
40
             (A) DESCRIPTION: /desc = "Conserved region"
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
       Glu Gly Tyr Gln Ser Ser Gly
45
    (2) INFORMATION FOR SEQ ID NO: 5:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 29 base pairs
              (B) TYPE: nucleic acid (C) STRANDEDNESS: single
50
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: other nucleic acid
              (A) DESCRIPTION: /desc = "Primer e"
            (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
55
   GCGAATTCAT GAGACAAAAG AAATTGACG
                                                                          29
    (2) INFORMATION FOR SEQ ID NO: 6:
         (i) SEQUENCE CHARACTERISTICS:
60
              (A) LENGTH: 22 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: other nucleic acid
              (A) DESCRIPTION: /desc = "Primer arc "
65
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
   AACAGTGATG GTTCCCTTAG GC
```

5 10	(2) INFORMATION FOR SEQ ID NO: 7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Primer f" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:
	CTAGAGTCGA CTTAATTGTT TTTATCTAGA G 31
	(2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
20	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Primer d _{rc} " (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:
25	AACAGTGATG GTTCCCTTAG GC 22
30	(2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
35	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Primer ab " (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:
	GCCTAAGGGA ACCATCACTG TTGAYGGXGG XACXTAYGAY AT 42
40	(Y=C or T, X= 25% A and 75% Inosin)
45	(2) INFORMATION FOR SEQ ID NO: 10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
50	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Primer cd " (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
	AATGCTATAT ACATTAGCAC TTCCXSWXSW YTGGTAXCCY TC 42
55	(S=G or C, W=A or T, Y=C or T, X= 25% A and 75% Inosin)
60	(2) INFORMATION FOR SEQ ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 747 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
65	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: hybrid DNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1747
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

	ATG Met 1	AGA Arg	CAA Gln	AAG Lys	AAA Lys 5	TTG Leu	ACG Thr	TTC Phe	ATT	TTA Leu 10	GCC Ala	TTT	TTA Leu	GTT Val	TGT Cys 15	TTT Phe	48
5	GCA Ala	CTA Leu	ACC Thr	TTA Leu 20	CCT Pro	GCA Ala	GAA Glu	ATA Ile	ATT Ile 25	CAG Gln	GCA Ala	CAA Gln	ATC Ile	GTC Val 30	ACC Thr	GAC Asp	96
10	AAT Asn	TCC Ser	ATT Ile 35	GGC Gly	AAC Asn	CAC His	GAT Asp	GGC Gly 40	TAT Tyr	GAT Asp	TAT Tyr	GAA Glu	TTT Phe 45	TGG Trp	AAA Lys	GAT Asp	144
15	AGC Ser	GGT Gly 50	GGC	TCT Ser	GGG	ACA Thr	ATG Met 55	ATT Ile	CTC Leu	AAT Asn	CAT His	GGC Gly 60	GGT Gly	ACG Thr	TTC Phe	AGT Ser	192
20	GCC Ala 65	CAA Gln	TGG Trp	AAC Asn	AAT Asn	GTT Val 70	AAC Asn	AAC Asn	ATA Ile	TTA Leu	TTC Phe 75	CGT Arg	AAA Lys	GGT Gly	AAA Lys	AAA Lys 80	240
	TTC Phe	TAA neA	GAA Glu	ACA Thr	CAA Gln 85	ACA Thr	CAC	CAA Gln	CAA Gln	GTT Val 90	GGT Gly	AAC Asn	ATG Met	TCC Ser	ATA Ile 95	AAC Asn	288
25	TAT Tyr	GGC Gly	GCA Ala	AAC Asn 100	TTC Phe	CAG Gln	CCA Pro	AAC Asn	GGA Gly 105	AAT Asn	GCG Ala	TAT Tyr	TTA Leu	TGC Cys 110	GTC Val	TAT Tyr	336
30	GGT Gly	TGG Trp	ACT Thr 115	GTT Val	GAC Asp	CCT Pro	CTT Leu	GTC Val 120	GAA Glu	TAT Tyr	TAT Tyr	ATT Ile	GTC Val 125	GAT Asp	AGT Ser	TGG Trp	384
35	GGC GJ.y	AAC Asn 130	TGG Trp	CGT Arg	CCA Pro	CCA Pro	GGG Gly 135	GCA Ala	ACG Thr	CCT Pro	AAG Lys	GGA Gly 140	ACC Thr	ATC Ile	ACT Thr	GTT Val	432
40	GAC Asp 145	GGG Gly	GGG Gly	ACG Thr	TAT Tyr	GAT Asp 150	ATC Ile	TAC Tyr	AAG Lys	CAC His	CAA Gln 155	CAG Gln	GTC Val	AAT Asn	CAG Gln	CCA Pro 160	480
	TCT Ser	ATT Ile	CAG Gln	GGC Gly	ACC Thr 165	GCC Ala	ACC Thr	TTC Phe	AAT Asn	CAG Gln 170	TAC Tyr	TGG Trp	TCG Ser	ATT Ile	CGA Arg 175	CAG Gln	528
45	AGC Ser	AAG Lys	CGG Arg	ACC Thr 180	AGC Ser	GGC Gly	ACT Thr	GTC Val	ACT Thr 185	ACG Thr	GCA Ala	AAC Asn	CAC His	TTT Phe 190	TAA Asn	GCC Ala	576
50	TGG Trp	GCT Ala	GCT Ala 195	CTT Leu	GGC Gly	ATG Met	TAA Asn	ATG Met 200	GGT Gly	GCA Ala	TTC Phe	AAT Asn	TAC Tyr 205	CAG Gln	ATC Ile	CTC Leu	624
55	GTT Val	ACT Thr 210	GAG Glu	GGC Gly	TAC Tyr	CAA Gln	TCT Ser 215	ACC Thr	GGA Gly	AGT Ser	GCT Ala	AAT Asn 220	GTA Val	TAT Tyr	AGC Ser	AAT Asn	672
60	ACA Thr 225	CTA Leu	AGA Arg	ATT Ile	AAC Asn	GGT Gly 230	AAC Asn	CCT Pro	CTC Leu	TCA Ser	ACT Thr 235	ATT Ile	AGT Ser	AAT Asn	GAC Asp	AAG Lys 240	720
	AGC Ser	ATA Ile	ACT Thr	CTA Leu	GAT Asp 245	Lys	AAC Asn	AAT Asn	TAA *					•			747

(2) INFORMATION FOR SEQ ID NO: 12:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 249 amino acids
(B) TYPE: amino acid

	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12: 5 Met Arg Gln Lys Lys Leu Thr Phe Ile Leu Ala Phe Leu Val Cys Phe																
5	Met 1	Arg	Gln	Lys	Lys 5	Leu	Thr	Phe	Ile	Leu 10	Ala	Phe	Leu	Val	Cys 15	Phe	
	Ala	Leu	Thr	Leu 20	Pro	Ala	Glu	Ile	île 25	Ģln	Ala	Gln	Ile	Val 30	Thr	Asp	
10	Asn	Ser	Ile 35	Gly	Asn	His	qaA	Gly 40	Tyr	qaA	Tyr	Glu	Phe 45	Trp	Lys	Asp	
15	Ser	Gly 50	Gly	Ser	Gly	Thr	Met 55	Ile	Leu	Asn	His	Gly 60	Gly	Thr	Phe	Ser	
•	Ala 65	Gln	Trp	Asn	Asn	Val	Asn	Asn	Ilé	Leu	Phe 75	Arg	Lys	Gly.	Lys	Lys 80	
20	Phe	Asn	Glu	Thr	Gln 85	Thr	His	Gln	Gln	Val 90	Gly	Asn	Met	Ser	Ile 95	Asn	•
25	Tyr	Gly	Ala	Asn 100	Phe	Gln	Pro	Asn	Gly 105	Asn	Ala	Tyr	Leu	Cys 110	Val	Tyr	
25	Gly	Trp	Thr 115	Val	Asp	Pro	Leu	Val 120	Glu	Tyr	Tyr	Ile	Val 125	Asp	Ser	Trp	
30	Gly	Asn 130	Trp	Arg	Pro	Pro	Gly 135	Ala	Thr	Pro	Lys	Gly 140		Ile	Thr	·Val	•
	Asp 145	.Gly	Gly	Thr	Tyr	Asp 150	Ile	Tyr	Lys	His	Gln 155		Val	Asn	Gln	Pro 160	
35	Ser	Ile	Gln	Gly	Thr 165		Thr	Phe	Asn :	Gln 170		Trp	Ser	Ile	Arg 175	Gln	•
	Ser	Lys	Arg	Thr 180		Gly	Thr	Val	Thr 185		Ala	Asn	His	Phe 190		, Ala,	
40	Trp	Ala	Ala 195		Gly	Met	Asn	Met 200		Ala	· Phe	. Asn	Tyr 205		lle	Leu	
45	Val	Thr 210		Gly	Tyr	Gln	Ser 215		Gly	Ser	Ala	220		Tyr	Ser	Asn	
	Thr 225		Arg	Ile	Asn					Ser			Ser	Asn	Asp	240	
50	Ser	: Ile	Thr	Leu	Asp 245	Lys	Ası	Asr	i * : .	•	•						
55		INI (:		EQUEI (A) I (B) I	ICE (LENG! IYPE:	R SECTHARA TH: 4 : nuc	CTE 109 1 clei	RIST: Dase C ac:	CS: pai: id	cs							
60)	iv	i) M(i) S(i) S((D) 'OLEC'	COPO ULE '	LOGY: TYPE: C NAI	: li: : Hyl ME:	near brid NS1/	DNA 9		NO:	13:					
65	GG TC TG	CCGT GACG ATGG ACGG	CCGT GCAT GCCC TCTG	GAG CAA GGA GCC	CGCC AGCG CTAT GACA	TAC (TCC (ACC)	GAGA GGCT ATTA TGTA	CCGC TCAA ACCC TGTC	CT G CT T GG C AT G	GGGC; TGTT; GTTG; ATCA	AATC CGCA ATGG ACAT	C CG T TC C GA C CA	TCAC: CCGT: GAGT: CTGG:	CACC GGCG CGAG GACG	AAG TGG' AAG' CGG	ATCAAAG GCTATGT ICCAACA IGGTGAA CTGGATC AGCCAGA	120 180 240 300 360

```
TCGCCGACCA TTTCAAAGCT ACTCCGACCA CCTCATCTTC GAAAAGCCG
                                                                        409
   (2) INFORMATION FOR SEQ ID NO: 14:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 408 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: Hybrid DNA
10
        (vi) SCIENTIFIC NAME: NS1/12
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:
   AATTCGGCTT GGGTGGAATC TGGGGGAACAC TCTGGAAGCC TGCGGCGGGA TCAAATGCAG
                                                                         60
15 TTCCGTGCGC GATTTCGAGA CGGCTTGGGG CAACCCCGTC ACGACCAAGG CCATGATCGA
                                                                        120
   CGGCGTCAAG GCGGCCGGCT TCAGGTCCAT ACGCATCCCC GTCGCCTGGT CGAACCTGAT
                                                                        180
   GGGACCTAAG CCCGACTACA CTATCAATAA GAAGCTGATG GCACGAGTCG AGCAGGTCGC
   CCGGTACGGC CTCGACAACG ACATGTACGT CATCATCAAC ATTCACTGGG ACGCGGCTGG
   ATCCACCGCT TCTCCACCGA CTACAACGAA ATGCATGARG AATTACAAGG CGGTGTGGGG
                                                                        360
20 CCAGGTAGCC GACCATTTCA AGGGCTACTC CGACCACCTC ATCTTCGA
                                                                        408
   (2) INFORMATION FOR SEQ ID NO: 15:
       (i) SEQUENCE CHARACTERISTICS:
25
              (A) LENGTH: 416 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: Hybrid DNA
30
        (vi) SCIENTIFIC NAME: KN1/9
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:
   AATTCGGCTT CTCGAAGATG AGGTGGTCGG AGTAGCCTTT GAAATGGTCG GCGATCTGGC
   TCCAGACCGC CTTATACTTC TTCATGCTTT CGTCGTAGTT GGTGGGGAAT TTAGTGATCC
35 AGCCGCCGTC CCAGTGGATG TTGATCATGA CATACATGTT GTCGGCCAGA CCGTAATTCA
                                                                       180
   CCACTTCCTC GACTCTCGCC ATCAACGCCG GGTTAATGGT ATAGTCCGGG CCCATCATGT
   TGGACCACGC CACGGGAATG CGAACAAAGT TGAAGCCGGA CGCTTTGATG CCGTCGAACA
                                                                        300
   TAGCCTTGGT GGTGACGGGA TTGCCCCAGG CGGTCTCGTA GGCGCTCACG GACGGCCCTT
                                                                        360
   GATCCAGTC TCCGGTAGCA TCCAACGTGT TCCCCARATT CCACCCAAGC CGAATT
                                                                        416
40
    (2) INFORMATION FOR SEQ ID NO: 16:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 490 base pairs
45
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: Hybrid DNA
        (vi) SCIENTIFIC NAME: KM1/2
50
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:
   GGTCTGAAAT AAAACTAGTC AAAACTAGCC AAAACTAGTC AGGCTAGTCA GAACCAGTTA 120
   GCACAATCGT AAAAACTAAA AGTATGAGCG ACGGCAATTT CAACCGCGCC CTCCTGCCGA 180
55 AGAACGAACT CTCTGCAGGA CTCAGGGCTG GCAAAGCACA GATGCGCACC AAGGCTGAAA 240 CAGGCGTTGG AGACTGTACT CGACNAATAC TTCCCCTCTG CCGACATGTC GCTCCGAAAC 300
   GCAATCCACG AACGATCCTC CAACTCTTAC AACAGTAGGA CAAAGGTGAA ACGTATTTAA 360
   TTATGCTTCC TGAATTNTCA TTAACACNAT GCCTGTGTGG CACCCATCCG CGTNTTCAAT 420
   GGTGTTCACC AGGGCATCCT TTACTCATCC CACAGGTTAA GCAANTGGCC AAANAACACC 480
60 GTCCGGCTTC
    (2) INFORMATION FOR SEQ ID NO: 17:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 492 base pairs
65
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: Hybrid DNA
        (vi) SCIENTIFIC NAME: KN2/2
```

CCACCGGCGG

GCCGTACGCA

180

CTGGTGTTTT

CTATAAAGCC

GCCACCTTCG

ATCAACAACT

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17: AATTCGGCTT GTTGTTGCCG CCGGTGGTGC GGACCACGTC AATAAAAGTC TGGTTGTAAG AATTCTGCAC AGCCAGATTC TCAGGCTCGG GCTTGCCCCA GTTATCGCGC AGGTGAACCT 120 CGTTAGTACC AGCAAAGGCT ACGCGGTAGT CGTAGTTGGC AAACTCGCTG GCGATATTCA 180 GCCACAGCAG GGCGAGTTTC TGGTTGTTCT CGTCCTTGTA CTGATAGGTA GGACRACCCT 240 CCAGCCACTT GTCGTGATGC GTATTGATGA TGACTTTTAG GTCATTCTCG AAGCACCARC 300 CCACAACCTC TTTGATACGT GCCAGCCAAG CCTTGTCAAT GCTCATGGCA ACGGGATTGG 360 TGATGTTGCA CTGCCACCGG AMSGGAATGC GGATGGCGTT RAAAC:TGCA TCCTTGACTG 420 10 CCTTGATAAC TTTTTTGTTA CAACGGGATT GCCCCATGCC GTCTCACCCT TAATACTGTT 480 CTCATACATC CG (2) INFORMATION FOR SEQ ID NO: 18: (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 574 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 20 (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM2/5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18: AATTCGGCTT GTTGTTGCCG CCGGTGGTAC GGATGGTGTT CACCACCAAC TGGTTCCACT 60 TTTATACTGC TTACCGCCAT CGGTACGGTT 120 25 CGTTGAGGGT TGCGCCCCAT CCCCAGCCGC GACTCGAATA TTGAAGGCTT 180 GCCCTTGTCC CGTCCTGAAT CTCGTTGAAC TGAGGAATTC CGGCAATCTG TTTCCANGTT TTCTCAATAC GGTTCTTGAT GTTGCTGTTG GTCGTTGAAT TGTTGGCAGC GCCCTTAATG TCAACCAGTA CTCATCGTGA TGCATGTTCA GGATNACNTT 300 CAGTCCGGCA CTTCGGCCCA CTCCACATTC TGCCTGACTT CTGCTATGTA TTTAGCATCT 420 GTGCTGGCAC 30 ATCCCCATTC CAAATGTTTC TGGTANTTGC CCATGTTACC CGANACTTAN AACGTTTTTA NGTTTGTTAA AAACCGCAAA GGCTTGGCAT TTCCAATATC CCANTGGGGA 480 CAAATCCNCC 540 ACCNAACNTC NCACCONGCC GGTACAAATG GTNCCCCNTT TCCCCCAACC NCNGGGGGCC GTTACNATTG NATCNAACCG GTAC 35 (2) INFORMATION FOR SEQ ID NO: 19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 520 base pairs (B) TYPE: nucleic acid -40 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM2/6 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19: 45 60 GTTGTTGCCG CCGGTGGTTC TCACGGTGGT GACGAAGCTC TGAGCATANC AATTCGGCTT GTTGTAGGCC GATGTGGCTA TGGCTTCGTT GTACCTGCCG GTAGCGGCAA 120 TGTTGATGGC TCGAAGAGCA 180 ACACCAGGAG CTCAAGGGAT CCAGCATCTC GTTGAAGCTC AGGATGCGAA AATTCCTGTG CTATCTGCTG TCATANCGGG AGCGCTGTCC CCACAGACGT GCAGTCCCGG 50 AGCGGTTCAN CGCGTATTTG TCCTCGGANG CCTTGATCCA CNACTTGAAA CNANTTGCTG 300 TGTCGTGGTG AACGTTGAAT NATGCAGTAC AAGCCCTGGT CTAGGANACT 360 TCTGCGCCCG ATCACCACTT CATGCACGCG GGCCATCCAC GCCNCATCCA CNTTGCCGGC GCTGTCCATN 420 ACTTCATGGC CCACGGATGG CACCAAACCC GGATCTTTNT CNTCCTGAAN 480 TTGTTATACC AACAANGGGT GGTGGGATAT TAACCCAACA GGTCCGAAGA 55 (2) INFORMATION FOR SEQ ID NO: 20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 194 base pairs 60 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM3/2 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20: 65 TTTTTGAGGG 60 GAGCACCTGA CTACAACGAG ATGCTCGACA AGTATGACTC AATTCGGCTT AGGCTATAAC GCTACAGACG CCGCCGATGC 120

ATGCCCAGAG CTTCGTCAAC

GACGCTCGGC

CAACAACAAG CCG

194

5	(2) INFORMATION FOR SEQ ID NO: 21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 160 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM3/8 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
L5	AATTCGGCTT GAGCACTTGA TTTTCGAGGC CTACAACGAG ATGCTCGATG CCCAGAGCTC GTGGAACTTT GCCCAGACCA GCACAGCCTA TGATGCTATC AACAACTATG CCCAAAGCTT CGTCAACATT GTTCGTACCA GCGGCGGCAA CAACAAGCCG 160	60 120
20	(2) INFORMATION FOR SEQ ID NO: 22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 193 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM3/9 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
30-	CTGGTGCTTC GCCTCGTTTG CAGCGCAGGG CAGTTACAAT GCCACCATCG CGCGTTCGGC	60 120 180
35	(2) INFORMATION FOR SEQ ID NO: 23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 166 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
•0	(ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
45	AATTCGGCTT CAYACGCTGG TGTGGCACTC TCAGATCGGT CGTTGGATGA CTGCCGAGGG TACAACCAAG GAGCAGTTCT ATGCTCGTAT GAAGAACCAT ATCCAGGCTA TCGTTACTCG TTACAAGGAT GTGGTGTACT GCTGGGACGT CGTCAACGAG AAGCCG 166	60 120
50	(2) INFORMATION FOR SEQ ID NO: 24: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 178 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
55	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/2 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
50	AATTCGGCTT CTCGTTAACG ACGTCCCAGG CATCGATCTT ACCGCAGAAA TGGCCGGCTA CCGTCTCTAT GTAACTGCGC ATGGTCTCAA CCATCTCATC GTGGCTCTTG GGAGTGCCGT CAGCGTGGTT GAAAAAGAAA TCGGGAGTCT GATTGTGCCA CACCAGCGTA TGAAGCCG 178	60 120
55	(2) INFORMATION FOR SEQ ID NO: 25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 181 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/4 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
5	AATTCGGCTT CAYACGCTGG TGTGGCACTC GCAGGCACCC GACTGGTGGT TTACCAACGG CTATGCTGCC AGCCCTGTCT CAAAGGAAGT GCTGAAAGAG CGGCTCATCA AGCATATTAA GACCGTTGTT GGCCATTCA AGGGCCAAGT CTTTGGCTGG GACGTCGTCA ACGARAAGCC 180 G	60 120
10		
	(2) INFORMATION FOR SEQ ID NO: 26: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 199 base pairs	
15	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/7 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
25	AATTCGGCTT CATACGTTGG TGTGGCACAA TCAGACGCCG GCCTGGTTCT TCCGCAGGGG CTACCACACGAG AACCTGCCTC TGGCGACCG CGAGACCATG CTGGCGAGGC TGGAGAGCTA ATGTGCAGGA CATTATCCC GGGATCGTCT ACGCCTGGGA CGTCGTCAAC GAGAAGCCG GAGAAGCCG CGAGACCATG CGGATCGTCT ACGCCTGGGA 199	60 120 180
30	(2) INFORMATION FOR SEQ ID NO: 27: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 185 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
35	(C) STRANDEDNESS: SINGLE (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/8 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
40	AATTCGGCTT GGCACGGACA GACGCCGCAG TGGTTCTTCT ACGAGAACTA TAATACTTCA GGAAAACTTG CAAGCAGGGA AACGATGCTG GCAAGAATGG GAAACTATAT TAANGGCGTG CTTGGCTTCG TGCAGGACAA TTATCCCGGC GTCATCTATG CGTGGGACGT TGTCAACGAG 180 AACCG	60 120
45	(2) INFORMATION FOR SEQ ID NO: 28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 208 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM4/9 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
55	ATCTGCAGAA ATTCGGCTTC TCGTTAACGA CGTCCCATGC ATAGATGACA CCCGGATATT CACTCTGGAT AAAACCAAGC ACACCCTTTA TATAATTTTC AAGTCTGGCA AGCATGGTCT CTCTGTCGGT ATAGGGAAAT GACTCGTTAT AGTGCTCACA GAAAAACCAC TTCGGTGTCT GATTGTGCCA CACCAGCGTA TGAAGCCG 208	60 120 180
60	(2) INFORMATION FOR SEQ ID NO: 29: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 310 base pairs (B) TYPE: nucleic acid	
65	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM5/1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	

5	143111M101	60 120 180 240
10	(2) INFORMATION FOR SEQ ID NO: 30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 384 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
15	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM5/2 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
	TGCCGTCATT GTAACCCGGC TCACGGGCGC CGCCTGCACC ACGCGTACGC GCATCGCTGT CGGAGATACA CTCGTTGCAG ACGTCGTARG CGTANARGTT CAGCGTCNGA TAGTTGTTCT 24 TGTACATTGC AAMCATATTG TCAATGTANC YCTTGANGCG CTGGTTCATG ACAGTGGANT 300	60 120 180 0
30	(2) INFORMATION FOR SEQ ID NO: 31: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 354 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA	
35	(vi) SCIENTIFIC NAME: KM5/4 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
40	AAACTATATC CGGGATGTCA TGCGGCATGT GAATACCTGT TTCCCCGGTG TGGTCTACAC	60 120 180 240
45	(2) INFORMATION FOR SEQ ID NO: 32: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 374 base pairs (B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM5/5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
55		60 120 180 0
60		360
65	(2) INFORMATION FOR SEQ ID NO: 33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 376 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

```
(ii) MOLECULE TYPE: Hybrid DNA
         (vi) SCIENTIFIC NAME: KM5/6
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:
 5 AATTCGGCTT CATACGCTGG TGTGGCACAG CCAGACTCCC GAGTGGTTCT TCAAGGAGGA
     CTTCGACGAG
                 AAGAAGGATT
                              ACGTTTCTCC CGAAAAGATG AAGAAGCGTA TGGAGAACTA
    CATCAAGAGC TTCTTCACAA CACTTACAGA GCTCTATCCC GACGTTGACT TCTATGCCTG 180
CGACGTTGTA AACGANGCAT GGACAGACGA CGGAAAGCCC CGTGAGGCAG GTCACTGTTC 240
    ACAGTCCAAC AACTACGGCG CTTCCGACTG GGTTGCTGTA TTCGGCGACA ACTCATTCAT 300
10 CGACTACGCT TTCGAGTATG CAAGAAAGTA TGCTCCCGAN GGCTGCAAGC TCTACTACAA
    CGACTACAAC AAGCCG
    (2) INFORMATION FOR SEQ ID NO: 34:
          (i) SEQUENCE CHARACTERISTICS:
15
                (A) LENGTH: 166 base pairs
                (B) TYPE: nucleic acid (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: Hybrid DNA
20
         (vi) SCIENTIFIC NAME: NS6/3
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:
    AATTCGGCTT TGGGATGTGG TGAACGAGGC CTTCAACGAA GACGGTTCAC GGCGCAGCGA CGTTTTCCAG AATGTGCTCG GCAACGGCTA TATCGAGCAG GCATTCAGGA CCGCGCGTGC
   GGCTGACCCC AATGCCAAAC TGTGCTACAA CGACTACAAC AAGCCG
    (2) INFORMATION FOR SEQ ID NO: 35:
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 151 base pairs (B) TYPE: nucleic acid
30
                (C) STRANDEDNESS: single
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: Hybrid DNA
         (vi) SCIENTIFIC NAME: NS6/5
35
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:
    AATTCGGCTT GTTGTAGTCG TTGTTGAACA GGCGGGTGGT TGGGTCTACC TCATGAGCAA GTTGATACCA GTGCACAACA GCATCGAGGC CGCCGAGGGC ATCATAAACC TCGTGGTTAT
    CTACCGGCTC GTTCACCACA TCCCAAAGCC G
40
    (2) INFORMATION FOR SEQ ID NO: 36:
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 166 base pairs
                (B) TYPE: nucleic acid .
                (C) STRANDEDNESS: single
45
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: Hybrid DNA
         (vi) SCIENTIFIC NAME: NS6/13
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:
50
    AATTCGGCTT GTTGTAGTCG TTGTAGCACA GTTTGGCATT GGGATCTGTA ACCCGTGCAG
CTTTGAATGC CTCTTCAATA TAGCTATTGC CAATCAGCCG TTGGAAGATT GAGGCACGCC
                                                                                      60
                                                                                      120
    GTGAGCCATT GTCTTCGAAG GCCTCATTCA CCACATCCCA AAGCCG
                                                                                166
55 (2) INFORMATION FOR SEQ ID NO: 37:
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 250 base pairs
                (B) TYPE: nucleic acid
                (C) STRANDEDNESS: single
60
                (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: Hybrid DNA
         (vi) SCIENTIFIC NAME: NS6A/1
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:
65 AATTCGGCTT GTTGTAGTCG TTGWTGMAGA GTTTTACATC TTTTGGACCA TATTTGCGAG
    CCAGACGACA GGCCTGACGG ACGTAGTCGA TATCACCCAG
                                                          ATAGTCCTGC
                                                                        CAGTAGAAAT
                                                                                      120
                 CACATCCCAT GTGGCATCTG GATTACCATT AGGATTATAC
    TATCGCCGCC
                                                                        TTAGCAGAGT
                                                                                      180
    GTTGTAATAA
                 GTAGTTGCCT
                                            CACCACCACC
                               TGTCCGTCAT
                                                         AGAGATCGCC
                                                                        TCRTTCACCA 240
    CATCCCAAAG
```

```
(2) INFORMATION FOR SEQ ID NO: 38:
         (i) SEQUENCE CHARACTERISTICS:
 5
               (A) LENGTH: 247 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: Hybrid DNA
        (vi) SCIENTIFIC NAME: KM6A/4
10
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:
    AATTCGGCTT
                TGGGAYGTGG
                             TGAAYGAGGC GATAGAGCTT AACGACAAGA CCGAAACCGG
                                                                                  60
    ACTTCGTAAT
                TCATACTGGT
                            ATCAAATAAT CGGTGACGAT
                                                       TTCATATATT
                                                                    ACGCATTTCG
                                                                                 120
   CTATGCATAT
                GACGCAAGAG AGGAACTGTG CGTTAAATAT GCGGCCGAGT
    CCCTTCGGAC AAAGAAGCGC TTAAAGCCAT CCGCCCCGCT TTCTGCAACA ACGACTACAA 240
                                                                    ACGGCATTGA
                                                                                 180
    CAAGCCG
    (2) INFORMATION FOR SEQ ID NO: 39:
20
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 238 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: Hybrid DNA
25
        (vi) SCIENTIFIC NAME: KM6A/S
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:
    AATTCGGCTT TGGGATGTGG TGAACGAGGC TATCTCGGGT GGCGACAGTG ACGGCGACGG
30 TTACTACGAC CTCCAGCATT CCGAGGGCTA TAAGAACGGC ACTTGGGATG TAGGCGGCGA 120 TGCCTTCTAC TGGCAGGACT ACATGGGCGA CCTGGATTAC GTRCGTCAGG CTTGCCGACT 18
    GGCCCGCAAA TACGGCCCTG AGGATGTGAA GCTYTKCATC AACGACTACA ACAAGCCG
    (2) INFORMATION FOR SEQ ID NO: 40:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 226 base pairs
              (B) TYPE: nucleic acid
             (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: Hybrid DNA
40
        (vi) SCIENTIFIC NAME: KM6A/7
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:
   AATTCGGCTT GTTGTAGTCG TTGATGCACA ACAGGGCATT GGGGTCGGCC TCACGGGCAA
   ACTCGAAAGC TTTGGCAATG AACTCGTCGC CGCAGAGTTT GTAATGACGA CTCTCACGAT AGGGGCTGGG AGCCTGACCT GGACGGCGTC CGAAACCGCC AAAGCCACCA AAGCCACCAA
45 ACTCGAAAGC
                                                                                 120
    AGCCGCCACC GTCGGAAATG GCCTCGTTCA CTACATCCCA AAGCCG
50 (2) INFORMATION FOR SEQ ID NO: 41:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 205 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
55
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: Hybrid DNA
        (vi) SCIENTIFIC NAME: KM6B/1
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:
60 ATCTGCAGAA ATTCGGCTTT GGGACGTGGT GAACGAGGCT ATGGCCGACG
                                                                  ACGTTCGCCG
                                                                                  60
   CTCGCCCTGG
                AACCCGAATC
                            CGTCGCCTTA
                                         CCGCAACTCG AAACTCTATC AGTTGTGCGG
                                                                                 120
               ATCGCTAAAG CATTCCAATT
   TGATGAGTTC
                                         CGCCCGTGAG GCCGACCCGA
                                                                   ACGCACAATT
                                                                                 180
   GTGCATCAAC GACTACAACA AGCCG
    (2) INFORMATION FOR SEQ ID NO: 42:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 235 base pairs
```

(B) TYPE: nucleic acid

5	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM6B/2 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
10	AATTCGGCTT GTTGTAGTCG TTGATGAAGA GCTTCATATC CTGTGGACCA TACTTGCGAG CCAGCTTAAC GGCAGTACGA ACATAGTCGA TATCGCCCAG ATAATCCTGC CAGAAGAAGC TCTCGGTTGC AGCCTTTCT GGATCTTCCT GATCCTTCAG GTGCTGCAAA GCCATATACGC CCTCAGCATC GGCATGTCCG CTTGAGAGTG CCTCGTTCAC CACATCCCAA AGCCG. 235	60 120 180
15 20		
25	AATTCGGCTT GTTGTAGTCG TTGATGAANA GTTTCAAGTC TTCCGGGTTG CCCTTGAAGT GCTTGCGCC ACTCTTAACC GCGGTACGCA CGTATTCGAN GTCGCCCATA TCGTCCTGCC AAAAGAANAG CCATTCTGCA CTGAAGTCGG GTCGGTGTTG CGGCTACTGT TGTGCTGAAN GGGATAATTG CCCTGCCCAT CGTTGCCGCC GCCAGANATA CCTCGTTCAC ACGTCCCAAA 240 GCCG 244	60 120 180
30	(2) INFORMATION FOR SEQ ID NO: 44: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
40	AAATTCGGCT TGTTGTAGTC GTTGATGTAC AGGACCGGGG CTTTGCCGTA CTTGGCGCAA GCCTCTGTTG CATAGGCGAA TGCAGCATCA ACCCAGTCTT TGGTGCTCGG GTAATAATTG CCCCAGACAA AGTCGTTGGC AGATGCTCCC TGGGTGCGGA ATGCCCCGCC GGCACCGTCT GCAAAGGTCT CGTTCACCAC GTCCCAAAGC CG	60 120 180
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM6B/5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
55	AATTCGGCTT GTTGTAGTCG TTGTAGAACA GACCTGCATT AGGATCAGCC TCGTGAGCAA ACTGGAATGC CTTGAGGATG AACTCGTCAC CGCAGAGCTG ATAAGCGGTT GACTGACGGA ATGACTGCTC GTAAGGAACA TCGGGGTTGT TGCCGTCGCT CATTGCCTCG TTTACCACGT CCCAAAGCCG 190	60 120 180
60	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA	
65	<pre>(vi) SCIENTIFIC NAME: NS8/1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:</pre>	
	AATTCGGCTT GACGGGGGA CGTAYGAYAT CTACGAGACC ACCGCTACA ACGAACCCTC CATCATCGGC ACCGCCACCT TCAACCAGTA CTGGAGCGTG CGCCACTCCA GGCGCACCGG	120

	CGGCACCATC ACCACCGGCA ACCACTTCGA CGCCTGGGCC AGCCACGGCA TGAACCTGGG CACCTTCAAC TACCAGATCC TGGCCACCGA RGGCTACCAA TSCTSCGGAA GCCG 234	180
5	(2) INFORMATION FOR SEQ ID NO: 47: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 234 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: NS8/6 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
15	AATTCGGCTT GACGGGGRA CGTACGACAT CTACGAGCAC CAGCAAGTCA ACCAGCCCTC CATCCAAGGC ACTGCGACCT TCAACCAGTA CTGGTCCATC CGCCAGAGCA AGCGTTCCAG CGGCACTGTG ACCACTGCA ACCACTTCAA TGCTTGGGCC AAGTTGGGAA TGAACCTGGG CAACTTCAAC TACCAGATTG TTTCCACTGA RGGCTACCAG WCCTSCGGAA GCCG 234	60 120 180
20	(2) INFORMATION FOR SEQ ID NO: 48: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 234 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: NS8/11 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	1 e
30	AATTCGGCTT GACGGGGGG CGTATGATAT CTACAAGCAC CAACAGGTCA ATCAGCCATC TATTCAGGGC ACCGCCACCT TCAATCAGTA CTGGTCGATT CGACAGAGCA AGCGGACCAG CGGCACTGTC ACTACGGCAA ACCACTTTAA TGCCTGGGCT GCTCTTGGCA TGAATATGGG TGCATTCAAT TACCAGATCC TCGTTACTGA GGGCTACCAA TCTACCGGAA GCCG 234	60 120 180
35	(2) INFORMATION FOR SEQ ID NO: 49: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 213 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: NS8/12 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
45	AATTCGGCTT GACGGGGGG CGTACGACAT TTATGAAACA ACCCGTGTCA ATCAGCCTTC CATTATCGGG ATCGCAACCT TCAAGCAATA TTGGAGTGTA CGTCAAACGA AACGTACAAG CGGAACGGC TCCGTCAGTG CGCATTTTAG AAAATGGGAA AGCTTAGGGA TGCCAATGGG GAAAATGTAT GAAACGGCAT TTACTGTAAG CCG 213	60 120 180
50	·	
ce	(2) INFORMATION FOR SEQ ID NO: 50: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 196 base pairs (B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Hybrid DNA (vi) SCIENTIFIC NAME: KM8A/1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
60	AATTCGGCTT TGGGACGTGG TGAATGAGGC AATGGCAGAC AATGTTCGTC CTAACCCGTG GAATCCCAAC CCCTCGCCCT ACCGTGACTC CCGCCACTAC AAATTGTGCG GCGACGAGTT CATCGCCAAG GCATTCCAAT TCGCAAGGGA AGCCGACCCG AAGGCACAAT TGTTCAACAA	60 120 180
65	CGACTACAAC AAGCCG 196	
-	(2) INFORMATION FOR SEQ ID NO: 51: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 211 base pairs	
	-	

```
(B) TYPE: nucleic acid
                   (C) STRANDEDNESS: single
                   (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: Hybrid DNA
           (vi) SCIENTIFIC NAME: KM8A/3
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:
AATTCGGCTT GTTGTAGTCG TTGATGCACA GGACCGGGGC TTTGCCGTAC TTGGCGCAAG CCTCTGTTGC ATAGGCGAAT GCAGCATCAA CCCAGTCTTT GGTGCTCGGG TAATAATTGC GCCAAACAAA GTCGTTGGCA GATGCTCCCT GGGTGCGGAA TGCCCCGCCG GCACCGTCTG
                                                                                                          60
                                                                                                         120
                                                                                                         180
     CAAAGGTCTC GTTCACCACG TCCCAAAGCC G
     (2) INFORMATION FOR SEQ ID NO: 52:
         (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 240 base pairs
(B) TYPE: puch
15
                   (B) TYPE: nucleic acid
                   (C) STRANDEDNESS: single
       (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: Hybrid DNA
(vi) SCIENTIFIC NAME: KM8B/7
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:
AATTCGGCTT GACGGGGGA CGTACGACAT CTACAAGACC ACCAGATACG AACAGCCCTC 60
TATCGACGGC ACACAGACCT TCGACCAGTA CTGGAGGGTA AGACAGTCCA AGCCACAGGG 120
25 CGAGGGCAAG AAGATAGAAG GTACTATCTC AGTGTCCAAG CACTTCGATG CGTGGAAAAA 180
     GTGCGGCCTT GAGCTCGGAA ATATGTATGA AGTANCTCTT ACTATCGAAG GGCTAAGCCG 240
     (2) INFORMATION FOR SEQ ID NO: 53:
            (i) SEQUENCE CHARACTERISTICS:
30
                   (A) LENGTH: 229 base pairs
                   (B) TYPE: nucleic acid
                   (C) STRANDEDNESS: single
                   (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: Hybrid DNA.
35
           (vi) · SCIENTIFIC NAME: KM8A/9 ·
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:
AATTCCCGGA GGTTTGGCAG CCTTCAATAG TAAGAGCAGC TTCATACATT AATCCTAATT 60
TCATTCCTTT GCTTGTCCAA GCTTTGAAGT GGTCACTTAC AGAAATAGTT CCACTAGTTT 120
40 TTTTTTCAGT TCTGACACTC CAGAATTGTT TAAATGTAGC AGTACCATCA ATTGAAGGTT 180
     GATTAATTCT GTCAGTGGTA TANATATCAT ACGTCCCCCC ATCAAGCCG
     (2) INFORMATION FOR SEQ ID NO: 54:
       (1) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 234 base pairs
                   (B) TYPE: nucleic acid
                   (C) STRANDEDNESS: single
                   (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: Hybrid DNA
           (vi) SCIENTIFIC NAME: KM8B/10 .
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:
50
AATTCGGCTT GACGGGGGA CGTACGACAT ATACGAGACT ACTCGTTACA ACCAGCCTTC 60
AATCGAAGGC AACACTACTT TCCAGCAGTA CTGGAGCGTT CGTACATCCA AGCGCACCAG 120
55 CGGTACCATT TCCGTATCCG AGCACTTTAA GGCTTGGGAA CGCATGGGTA TGAGATGCGG 180
AAACCTTTAT GAGACTGCTT TAACTGTTGA GGGCTACCAN ACCACCGGAA GCCG 234
     (2) INFORMATION FOR SEQ ID NO:55:
            (i) SEQUENCE CHARACTERISTICS:
60
                   (A) LENGTH: 1060 base pairs
                   (B) TYPE: nucleic acid
                   (C) STRANDEDNESS: single (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: cDNA
65
           (iii) HYPOTHETICAL: NO
            (vi) ORIGINAL SOURCE:
                   (A) ORGANISM: Humicola insolens
                   (B) STRAIN: DSM 1800
            (ix) FEATURE:
```

5			x) F: (; x) F: (;	A) N. B) L EATU A) N. B) L EATU A) N. B) L B) L B) L B) L	OCAT RE: AME/: OCAT RE: AME/:	ION: KEY: ION: KEY:	sig 10.	.927 _pep .72										
10	GGA:		i) Si AG A' M	EQUE:	NCE I	DESC CC T	RIPT CC C	ION: CC C'	TC C	TC C	NO:5 CG T	CC G	CC G la V	al V	TG G al A 10	CC la		48
15	GCC Ala	CTG Leu	CCG Pro	GTG Val -5	TTG Leu	GCC Ala	CTT Leu	GCC Ala	GCT Ala 1	GAT Asp	GGC Gly	AGG Arg	TCC Ser 5	ACC Thr	CGC Arg	TAC Tyr		96
20	TGG Trp	GAC Asp 10	TGC Cys	TGC Cys	AAG Lys	CCT	TCG Ser 15	TGC Cys	GGC Gly	TGG Trp	GCC Ala	AAG Lys 20	AAG Lys	GCT Ala	CCC Pro	GTG Val		144
25	AAC Asn 25	CAG Gln	CCT Pro	GTC Val	TTT Phe	TCC Ser 30	CAa	AAC Asn	GCC Ala	AAC Asn	TTC Phe 35	CAG Gln	CGT Arg	ATC Ile	ACG Thr	GAC Asp 40		192
30	TTC Phe	GAC Asp	GCC Ala	AAG Lys	TCC Ser 45	GGC Gly	TGC	GAG Glu	CCG Pro	GGC Gly 50	GGT Gly	GTC Val	GCC Ala	TAC Tyr	TCG Ser 55	TGC Cys		240
	GCC Ala	GAC Asp	CAG Gln	ACC Thr 60	CCA Pro	TGG Trp	GCT Ala	GTG Val	AAC Asn 65	GAC Asp	GAC Asp	TTC Phe	GCG Ala	CTC Leu 70	GGT Gly	TTT Phe		288
35	GCT Ala	GCC Ala	ACC Thr 75	TCT Ser	ATT	GCC Ala	GGC Gly	AGC Ser 80	AAT Asņ	GAG Glu	GCG Ala	GGC Gly	TGG Trp 85	TGC Cys	Cya	GCC Ala	•	336
40	TGC Cys	TAC Tyr 90	GAG Glu	CTC Leu	ACC Thr	TTC Phe	ACA Thr 95	TCC Ser	GGT Gly	CCT Pro	GTT Val	GCT Ala 100	GGC Gly	AAG Lys	AAG Lys	ATG Met		384
45	105	vai	Gin	Ser	Thr	Ser 110	Thr	Gly	Gly	Asp	CTT Leu 115	Gly	Ser	Asn	His	Phe 120		432
50	Asp	Leu	Asn	Ile	Pro 125	Gly	Gly	Gly	Val	Gly 130	ATC Ile	Phe	Asp	Gly	Cys 135	Thr		480
	CCC Pro	CAG Gln	TTC Phe	GGC Gly 140	GGT Gly	CTG Leu	CCC Pro	GGC Gly	CAG Gln 145	CGC Arg	TAC Tyr	GGC Gly	GGC Gly	ATC Ile 150	TCG Ser	TCC Ser		528
55	CGC Arg	AAC Asn	GAG Glu 155	TGC Cys	GAT Asp	CGG Arg	TTC Phe	CCC Pro 160	GAC Asp	GCC Ala	CTC Leu	AAG Lys	CCC Pro 165	GGC Gly	TGC Cys	TAC Tyr		576
60	TGG Trp	CGC Arg 170	TTC Phe	GAC. Asp	TGG	TTC Phe	AAG Lys 175	AAC Asn	GCC Ala	GAC Asp	AAT Asn	CCG Pro 180	AGC Ser	TTC Phe	AGC Ser	TTC Phe		624
65	185	GIN	vai	GIN	Cys	190	Ala	Glu	Leu	Val	GCT Ala 195	Arg	Thr	Gly	Cys	Arg 200		672
	CGC Arg	AAC Asn	GAC Asp	GAC Asp	GGC Gly 205	AAC Asn	TTC Phe	CCT Pro	Ala	GTC Val 210	CAG Gln	ATC Ile	CCC Pro	TCC Ser	AGC Ser	AGC Ser		720

5			Ser							AGC Ser							768
J		Thr								CCT Pro							816
10	ACT Thr									GGC Gly							864
15	ACC Thr 265									ACG Thr							912
20	CAT His			Leu	TAGA 285	CGCP	GG (CAGO	TTG?	AG GG	CCTT	ACTO	GTC	GCCG	CAA		964
	CGAA	ATGA	CA C	TCCC	AATC	A CI	GTAT	TAGI	TC	rtgt <i>p</i>	CAT	AATI	TCGT	CA T	ccci	CCAGG	1024
25	GATI	CTCA	CA T	TAAAT	'GCAA	T GA	AGGAZ	CAAT	GA(STAC							1060
30	(2)	•	(i) (ii)	SEQU (A) (B) (D) MOLE	ENCE LEN TYP TOP CULE	CHA IGTH: PE: 6 POLOGE TYI	ARAC: 309 amino 3Y: 3 PE: 1	o ac: linea prote	STIC: ino a id ar ein	S: acids EQ II	*	:56:					
35		Arg -20	Ser	Ser	Pro	Leu ·	Leu -15	Pro	șer	Ala	Val	Val -10	Ala	Ala	Leu	Pro -	•
40	Val -5	Leu	Ala	Leu	Ala	Ala 1	Asp	Gly	Arg	Ser . 5	Thr	Arg	Tyr	Trp	Asp 10	Cys	-
•	Cys	Lys	Pro	Ser 15	Сув	Gly	Trp	Ala	Lys 20	Lys	Ala	Pro	Val	Asn 25	Gln	Pro	
45			30					35		Arg	•		40		Ī		
	Lys	Ser 45	GIÀ	Cya	Glu	Pro	50 GLY		Val	Ala	Tyr	Ser 55		Ala	Asp	Gln	
50	Thr 60		Trp	Ala	Val	Asn 65	-	Asp	Phe	Ala	Leu 70	_	Phe	Ala	Ala	Thr 75	
55		Ile	Ala	Gly	Ser 80	Asn	Glu	Ala	Gly	Trp 85		Сув	Ala	Cys	Туг 90		
J J		Thr	Phe	Thr 95	Ser	Gly	Pro	Val	100	Glý	Lys	Lys	Met	Val 105		Gln	
60		Thr	Ser 110		Gly	Gly	. Yet	115		y Ser	Asn	His	Phe 120	_	Leu	Asn	
		125	,		_		130)		a yab		135					
65	Gly 140	-	Leu	Pro	Gly	Glr 145		Tyr	Gly	y Gly	Ile 150		Ser	Arg	Asn	155	
	Суя	Asp	Arg	Phe	Pro 160		Ala	a Leu	Ly:	9 Pro		Сув	Tyr	Trp	Arc 170	Phe	

```
Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg Gln Val
 5 Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg Arg Asn Asp
                                195 . .
   Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Ser Thr Ser Ser
                            210
   Pro Val Asn Gln Pro Thr Ser Thr Ser Thr Thr Ser Thr Ser Thr Thr
   Ser Ser Pro Pro Val Gln Pro Thr Thr Pro Ser Gly Cys Thr Ala Glu
15
                    240
   Arg Trp Ala Gln Cys Gly Gly Asn Gly Trp Ser Gly Cys Thr Thr Cys
                                     260 ...
                                            20 Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His Gln Cys
            270
                                275
   Leu
25
    (2) INFORMATION FOR SEQ ID NO: 57:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 9 amino acids
              (B) TYPE: amino acid
              (C) STRANDEDNESS: single (D) TOPOLOGY: linear
30
        (ii) MOLECULE TYPE: other nucleic acid
              (A) DESCRIPTION: /desc = "Conserved region"
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:
35
   Thr Arg Tyr Trp Asp Cys Cys Lys Pro/Thr 1
40 (2) INFORMATION FOR SEQ ID NO: 58:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 6 amino acids
              (B) TYPE: amino acid
              (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
45
        (ii) MOLECULE TYPE: other nucleic acid
              (A) DESCRIPTION: /desc = "Conserved region"
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:
50 Trp Arg Phe/Tyr Asp Trp Phe
   (2) INFORMATION FOR SEQ ID NO: 59:
         (i) SEQUENCE CHARACTERISTICS:
55
              (A) LENGTH: 41 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: other nucleic acid
              (A) DESCRIPTION: /desc = "Primer s"
60
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:
   GCTGATGGCA GGTCCACIA/CG ITAC/TTGGGAC/T TGC/TTGC/TAAA/GA/C C
   (2) INFORMATION FOR SEQ ID NO: 60:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 29 base pairs
              (B) TYPE: nucleic acid
```

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Primer as"	:
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
		:
	GTCGGCGTTC TTA/GAACCAA/GT CA/GA/TAICG/TCC	29
	(2) INFORMATION FOR SEQ ID NO: 61:	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 24 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	•
15	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "forward primer 1"	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	Production of the second
	TGGTTC/TAAGA ACGCCGACAA TCCG	- 24.
	TOGITC/TANGA ACGCCGACAA TCCG	24
20	and the second of the second o	*1 * ·
	(2) INFORMATION FOR SEQ ID No: 62:	
	(i) SEQUENCE CHARACTERISTICS:	•
	(A) LENGTH: 30 base pairs	
	(B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: single	8
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "reverse primer 1" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
30	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	•
30	GCTCTAGAGC CTGCGTCTAC AGGCACTGAT	30
	(2) INFORMATION FOR SEQ ID NO: 63:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 93 base pairs	
	(B) TYPE: nucleic acid	•
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	•
40	(ii) MOLECULE TYPE: other nucleic acid	
40	(A) DESCRIPTION: /desc = "forward primer 2"	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
	COCCUMENCAL MEMBERS TO THE COMMENT OF THE COCCUMENT OF TH	*
	CGGGATCCCA TTTATGATGG TCGCGTGGTG GTCTCTATTT CTGTACGGCC	
45	TTCAGGTCGC GGCACCTGCT TTCGCTGCTG ATGGCAGGTC CAC	93
	(2) INFORMATION FOR CHO ID NO. 64.	
	(2) INFORMATION FOR SEQ ID NO: 64: (i) SEQUENCE CHARACTERISTICS:	ee 1,
	(A) LENGTH: 30 base pairs	
50	(B) TYPE: nucleic acid	
-	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	•
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "reverse primer 2"	:
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
	GCTCTAGAGC CTGCGTCTAC AGGCACTGAT	30
60	(2) INFORMATION FOR SEQ ID NO: 65:	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 922 base pairs	~
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
65	(D) TOPOLOGY: linear	
	(II) NOT BOUT B BUDD, bulkered DATA	

	•	(B) NA) LO	ME/K CATI	ON: 1	92										
5	(xi)	SEÇ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NC): 65	:					
_											CTG Leu					48
10											TCC Ser					96
15											AAG Lys					144
20											CGC Arg 60					192
25											TTC Phe					240
23	 										TAC Tyr		_			288
30											TGC Cys					336
35											AAG Lys					384
40		Thr									AAC Asn 140					432
45	 Met										GGC				CAG Gln 160	480
45			Leu	Ala	Gly	Gln	Arg	Tyr	Gly	Gly	GTC Val	Ser	Ser	Arg	Ser	528
50	 _			Phe					Lys		GGC Gly				CGC Arg	576
55			Phe					Asn					Phe		CAG Gln	624
60		Сув										Cys			AAC Asn	672
	Asp					Ala					Ser				AGC Ser 240	720
65					Pro					Thr					ACC	768

5	ACC Thr	TCG Ser	AGC Ser	CCG Pro 260	CCA Pro	GTC Val	CAG Gln	CCT Pro	ACG Thr 265	ACT	CCC Pro	AGC Ser	GGC Gly	TGC Cys 270	ACT Thr	GCT Ala	816
J	GAG Glu	AGG Arg	TGG Trp 275	GCT Ala	CAG Gln	TGĊ Cys	GGC Gly	GGC Gly 280	AAT Asn	GGC Gly	TGG Trp	AGC Ser	GGG Gly 285	TGC Cys	ACC Thr	ACC Thr	864
10	TGC Cys	GTC Val 290	GCT Ala	GC	AGC Ser	ACT Thr	TGC Cys 295	ACG Thr	AAG Lys	ATT Ile	AAT Asn	GAC Asp 300	TGG Trp	TAC Tyr	CAT His	CAG Gln	912
15	TGC Cys 305		TAG *	A													922
20	(2)	(ii)	(i) (i) (i) (i) (i) MOI	FION SEQUI A) LE B) TY D) TO D) TO DUENO	ENCE ENGTH PE: OPOLO LE TY	CHAI i: 30 amir OGY: (PE:	RACTE 07 am no ac line prot	ERIST mino cid ear cein	TICS: acid	is '): 2:		•		•	:	
	Pro	Phe	Met	Met	Val	Ala	Trp	Trp	Ser	Leu 10	Phe	Leu	Tyr	Gly	Leu 15	Gln	
30	Val	Ala	Ala	Pro	Ala	Phe	Ala	Ala	Asp 25		Arg	Ser	Thr	Arg 30		Trp	
	Asp	Cys	Cys 35	Lys	Pro	Ser	Cys	Ser 40		Pro	Gly	Lys	Ala 45		Val	Asn	
35	Gln	Pro 50	Val	Tyr	Ala	Arg	Asn 55	Ala	Asn	Phe	Gln	Arg 60		Thr	Asp	Pro	
40	Asn 65	Ala	Lys	Ser	Gly	Cys 70	Asp	Gly	Gly	Ser	Ala 75	Phe	Ser	Cys	Ala	Asp 80	
	Gln	Thr	Pro	Trp	Ala 85	Val	Ser	Asp	Asp	Phe 90	Ala	Tyr	Gİy	Phe	Aľa 95	Ala	
45	Thr	Ala	Leu	Ala 100	Gly	Gln	Ser	Glu	Ser 105	Ser	Trp	Сув	Сув	Ala 110	Cys	Tyr	
50	G1u	Leu	Thr 115	Phe	Thr	Ser	Gly	Pro 120	Val	Ala	Gly	Lys	Lys 125	Met	Ala	Val	
50	Gln	Ser 130	Thr	Ser	Thr	Gly	Gly 135	Asp	Leu	Gly	Ser	Asn 140	His	Phe	Asp	Leu	
55	Asn 145	Met	Pro	Gly	Gly	Gly 150	Val	Gly	Ile	Phe	Asp 155	Gly	Cys	Ser	Pro	Gln 160	
	Val	Gly	Gly	Leu	Ala 165	Gly	Gln	Arg	Tyr	Gly 170	Gly	Val	Ser	Ser	Arg 175	Ser	
60	Glu	Cys	Asp	Ser 180	Phe	Pro	Ala	Ala	Leu 185	Lys	Pro	Gly	Cys	Tyr 190		Arg	
c =	Tyr	Asp	Trp 195	Phe	Lys	Asn	Ala	Asp 200	Asn	Pro	Ser	Phe	Ser 205	Phe	Arg	Gln	
65	Val	Gln 210	Cys	Pro	Ala	Glu	Leu 215	Val	Ala	Arg	Thr	Gly 220	Cys	Arg	Arg	Asn	
	Asp	qaA	Glv	Asn	Phe	Pro	Ala	Val	Gln	Tle	Pro.	Se=	50=	60=	Th	5	

	22	5				23	0				23	5				240)
	Se:	r Pr	o Va	l As	n Gl 24	n Pr	o Thi	r Se	r Th	r Se 25	r Th	r Th	r Se	r Th	ır Se	r Thr	•
		r Se	r Se	r Pr	o Pr	o Va	l Glr	n Pro	0 Th: 26	r Th 5	r Pr	o Se	r Gl	у Су 27		r Ala	
10	Gl:	a Ar	7 Tr	p Ala	a Gl	n Cy:	s Gl	7 Gly 28	y Ası O	n Gl	y Tr	p Se	r G1 28	у Су 5	s Th	r Thr	
	Суя	3 Va:	l Ala	a Gl	y Se	r Thi	Cys 295	Th:	r Lys	s Il	e As	n As 30	p Tr	р Ту	r Hi	s Gln	
15	305		1 *						•								
20	•	INI (i	L) SI	EQUE! (A) ! (B) ! (C) !	NCE (LENGT TYPE: STRAN	R SECHARA TH: 9 This nucleon IDEDN LOGY:	CTER 22 b leic ESS:	IST) ase aci sir	CS: pair id	:s							
25		(i)	.) MC () FE ()	OLECU EATUR (A) N (B) I	JLE 1 RE: NAME/ LOCAT	YPE: KEY: ION:	CDN CDS 29	A 22									
30		CA T ro P	TT A	ATG A let M	TG G let V	5	CG T la T	GG T rp T	GG T	CT (TA T eu F 10	TT C	.eu 1	yr (3ly I	Leu 15	46
35	•				20			ura	. via	25	i GTĀ	Arg	Ser	Thr	30		94
40	•	•	•	35	2,0		261	Cys	40	Trp	GIY	Asp	Lys	Ala 45	Ser	GTC Val	142
45			50			22	Cys	55	гЛя	ASN	Asp	Asn	Pro 60	Ile	Ser	GAC	190
	GCC Ala	AAC Asn 65	GCC Ala	GTG Val	AGC Ser	GGT Gly	TGC Cys 70	AAC Asn	GGC Gly	GGC Gly	ACT Thr	TCC Ser 75	TAC	ACC Thr	TGC Cys	AGC Ser	238
50	AAC Asn 80	AAC Asn	TCC Ser	CCG Pro	TGG Trp	GCT Ala 85	GTC Val	AAC Asn	GAC Asp	AAC Asn	CTC Leu 90	GCC Ala	TAT Tyr	GGC Gly	TTT Phe	GCC Ala 95	286
55	GCT Ala	ACC Thr	AAG Lys	CTC Leu	TCT Ser 100	GGA Gly	GGC Gly	TCC Ser	GAG Glu	TCC Ser 105	AGC Ser	TGG Trp	TGC Cys	TGT Cys	GCT Ala 110	TGC Cys	334
60	-			115	••	ACG Thr	****	GIŞ	120	val	гÀв	GIĀ	Lys	Thr 125	Met	Val	382
65			130			ACC Thr	JLY	135	vsħ	Leu	GIŸ	Glu	Asn 140	His	Phe	Asp	430
	CTC Leu	CAG Gln 145	ATG Met	CCC Pro	GGC Gly	GGC Gly	GGT Gly 150	GTC Val	GGC Gly	ATC Ile	TTT Phe	GAC	GGC Gly	TGC Cys	AGC Ser	TCC Ser	478

		526
5	CAG TGG GGT GGC CTC GGC GGT GCT CAG TAC GGC GGC ATC TCG TCG CGA Gln Trp Gly Gly Leu Gly Gly Ala Gln Tyr Gly Gly Ile Ser Ser Arg 160 175	526
	AGC GAC TGC GAC AGC TTC CCC GAG CTG CTC AAG GAC GGC TGC TAC TGG Ser Asp Cys Asp Ser Phe Pro Glu Leu Leu Lys Asp Gly Cys Tyr Trp 180 185 190	574
10	CGC TAC GAC TGG TTC AAG AAC GCC GAC AAT CCG AGC TTC AGC TTC CGT Arg Tyr Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg 195	622
15	CAG GTC CAG TGC CCA GCC GAG CTC GTC GCT CGC ACC GGA TGC CGC CGC Gln Val Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg Arg 210	670
20	AAC GAC GAC GGC AAC TTC CCT GCC GTC CAG ATC CCC TCC AGC AGC ACC ABn Asp Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Thr 225	718
25	AGC TCT CCG GTC AAC CAG CCT ACC AGC ACC AGC ACC ACC TCC Ser Ser Pro Val Asn Gln Pro Thr Ser Thr Ser Thr Thr Ser Thr Ser 240	766
	ACC ACC TCG AGC CCG CCA GTC CAG CCT ACG ACT CCC AGC GGC TGC ACT Thr Thr Ser Ser Pro Pro Val Gln Pro Thr Thr Pro Ser Gly Cys Thr 260 265 270	814
30	GCT GAG AGG TGG GCT CAG TGC GGC GGC AAT GGC TGG AGC GGC TGC ACC Ala Glu Arg Trp Ala Gln Cys Gly Gly Asn Gly Trp Ser Gly Cys Thr 285	862
35	5 ACC TGC GTC GCT GGC AGC ACT TGC ACG AAG ATT AAT GAC TGG TAC CAT Thr Cys Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His 290 295 300	910
40	CAG TGC CTG TAG O Gln Cys Leu * 305	922
4!	(2) INFORMATION FOR SEQ ID NO: 68: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 307 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	<i>1</i> 5
. 5	(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68: O Pro Phe Met Met Val Ala Trp Trp Ser Leu Phe Leu Tyr Gly Leu Gln	. •
5	Val Ala Ala Pro Ala Phe Ala Ala Asp Gly Arg Ser Thr Arg Tyr Trp	7.1
	Asp Cys Cys Lys Pro Ser Cys Ser Trp Gly Asp Lys Ala Ser Val Ser 40	. •
6	Asn Ala Val Ser Gly Cys Asn Gly Gly Thr Ser Tyr Thr Cys Ser Asn 80	
•	65 70 75 65 Asn Ser Pro Trp Ala Val Asn Asp Asn Leu Ala Tyr Gly Phe Ala Ala	Ŷ
	Thr Lys Leu Ser Gly Gly Ser Glu Ser Ser Trp Cys Cys Ala Cys Tyr	

				100	٠				105					110)		
5		Leu	Thr 115	Phe	Thr	Thr	Gly	Pro 120	Val	Lys	Gly	Lys	Thr 125	Met	. Val	Val	
J		Ser 130	Thr	Asn	Thr	Gly	Gly 135	Asp	Leu	Gly	Glu	Asn 140		Phe	Asp	Leu	
10	Gln 145	Met	Pro	Gly	Gly	Gly 150	Val	Gly	Ile	Phe	Asp 155	Gly	Cys	Ser	Ser	Gln 160	
	Trp	Gly	Gly	Leu	Gly 165	Gly	Ala	Gln	Tyr	Gly 170	Gly	Ile	Ser	Ser	Arg 175	Ser	
15	Asp	Сув	Asp	Ser 180	Phe	Pro	Glu	Leu	Leu 185	ГЛа	Asp	Gly	Сув	Tyr 190		Arg	
20	Tyr	Asp	Trp 195	Phe	Lys	Asn	Ala	Авр 200	Asn	Pro	Ser	Phe	Ser 205	Phe	Arg	Gln	
	Val	Gln 210	Суз	Pro	Ala	Glu	Leu 215	Val	Ala	Arg	Thr	Gly 220	Сув	Arg	Arg	Asn	
25	Asp 225	Asp	Gly	Asn	Phe	Pro 230	Ala	Val	Gln	Ile	Pro 235	Ser	Ser	Ser	Thr	Ser 240	Ì
					245				•	250		Thr			255		`,
30	Thr	Ser	Ser	Pro 260	Pro	Val	Gln	Pro	Thr 265	Thr	Pro	Ser	Gly	Cys 270	Thr	Ala	,
35			2/3					280				Ser	285				7
	CÀa	Val 290	Ala	Gly	Ser	Thr	Cys 295	Thr	Lys	Ile	Asn	Asp 300	Trp	Tyr	His	Gln	.*
40	Cys 305	Leu	*										-				
45	(2)	INFO (i)	SEÇ ()	rion Quenc A) Le	CE CH ENGTH	IARAC I: 92	TERI 8 ba	STIC	S:	3							
45		/44	1)	3) TY C) SI C) TO	RANI POLC	EDNE GY:	ESS: line	sing ear	l le								
50		(ix)) FE <i>l</i> (<i>l</i> (E	LECUI ATURE A) NA B) LO QUENO	: ME/K CATI	EY:	CDS	8	Fo 1	'D No							
	CCA																
55	Pro 1	Phe	Met	Met	Val 5	Ala	Trp	Trp	TCT Ser	Leu 10	TTT Phe	CTG Leu	TAC Tyr	GLY	CTT Leu 15	CAG Gln	4.8
60	GTC Val	GCG Ala	GCA Ala	CCT Pro 20	GCT Ala	TTC Phe	GCT Ala	GCT Ala	GAT Asp 25	GGC Gly	AGG Arg	TCC Ser	ACG Thr	AGG Arg 30	TAC Tyr	TGG Trp	96
65	GAT Asp	TGC Cys	TGC Cys 35	AAG Lys	CCC Pro	TCT Ser	TGC Cys	TCT Ser 40	TGG Trp	G14 GCC	GGA Gly	AAG Lys	GCT Ala 45	GCT Ala	GTC Val	AGC Ser	144
.,	GCC Ala	CCT Pro 50	GCT Ala	TTG Leu	ACC Thr	TGT Cys	GAC Asp 55	AAG Lys	AAG Lys	GAC Asp	AAC Asn	CCC Pro	ATC Ile	TCA Ser	AAC Asn	CTG Leu	192

	AAC (Asn) 65	GCT Ala	GTC Val	AAC Asn	GGT Gly	TGT Cys 70	GAG (Glu	GGT Gly	GGT Gly	GGT Gly	TCT Ser 75	GCC Ala	TTC Phe	GCC Ala	TGC Cys	ACC Thr 80		240
5	AAC Asn	TAC Tyr	TCT Ser	CCT Pro	TGG Trp 85	Ala .	Val	TAA naA	GAC Asp	AAC Asn 90	CTT	GCC Ala	TAC Tyr	Gly GGC	TTC Phe 95	GCT Ala		288
LO	GCA Ala	ACC Thr	AAG Lys	CTT Leu 100	GCC Ala	GGT Gly	GGC Gly	TCC Ser	GAG Glu 105	GGT Gly	AGC Ser	TGG Trp	TGC Cys	TGT Cys 110	GCT Ala	CAa		336
15	TAC Tyr	Ala	Leu 115	ACC Thr	TTC Phe	ACC Thr	ACC Thr	GGT Gly 120	CCC Pro	GTC Val	AAG Lys	GGT Gly	AAG Lys 125	ACC Thr	ATG Met	GTC Val		384
	Val	CAG	TCC Ser	ACC Thr	AAC Asn	Thr	GGA Gly 135	GGC Gly	GAC Asp	CTC Leu	GGT Gly	GAC Asp 140	AAC Asn	CAC His	TTC Phe	GAT	:	432
20	CTT Leu 145	ATG Met	ATG Met	CCT Pro	GGT Gly	GGC Gly 150	GGT Gly	GTT Val	GGA Gly	ATC	TTC Phe 155	GAC Asp	GGT Gly	TGC	ACT Thr	TCT Ser 160		480
25	CAG Gln	TTC Phe	GGC Gly	AAG Lys	GCT Ala 165	CTC Leu	GGT Gly	GCT Gly	GCC Ala	CAG Gln 170	TAC	GGT Gly	GJY	ATC Ile	Ser 175	TCC Ser		528
30	CGA Arg	AGC Ser	GAG Glu	TGC Cys 180		AGC Ser	TTC Phe	CCT Pro	GAG Glu 185	ACT	CTC Leu	Lya	GAC Asp	GGT Gly 190	TGC	CAT		576
35	TGG Trp	CGC	TTC Phe 195	Asp	TGG Trp	TTC Phe	AAG Lys	AAC Asn 200	Ala	GAC Asp	AAT Asn	CCG Pro	AGC Ser 205	Phe	AGC Ser	TTC Phe		624
	CGT Arg	CAG Gln 210	Val	CAG Glr	TGC Cys	CCA Pro	GCC Ala 215	GAG Glu	CTC Leu	GTC Val	GCT Ala	CGC Arg 220	Thr	GGA Gly	TGC	CGC		672
40	CGC Arg 225	Asr	GAC	GAC Asi	Gly	AAC Asn 3230	Phe	CCT Pro	Ala	Val	CAC Glr 235	ılle	CCC Pro	TCC Ser	AGC Ser	AGC Ser 240		720
45	ACC Thr	AGC Ser	TCI Ser	CCC Pro	G GTC O Val 245	L Asr	C CAG	CCI Pro	C ACC	Ser 250	Thi	C AGO	C ACC	C ACC	Ser 255	ACC Thr		768
50	TCC	ACC Thi	C ACC	TCC Se:	r Se	c ccc	CCF Pro	A GTO Val	CAC L Glr 265) Pro	r Acc	G AC	r CCC	270	GL	C TGC / Cys		816
55	Thi	GC'	GAG G1: -27:	u Ar	G TG g Tr	p Ala	r CAC a Gli	TGC n Cyr 280	s Gly	y Gl	y As	T GG n Gl	C TGG Y Tr 28	p Se	C GGG r Gly	C TGC		864
	Th:	C AC Th 29	r Cy	C GT s Va	C GC	T GG a Gl	y Se	C AC r Th	T TG	C AC	G AA r Ly	G AT s Il 30	e As	T GA	C TGG P Tr	G TAC p Tyr		912
60	CA	s Gl	G TG n Cy		G TA	G A												928

⁽²⁾ INFORMATION FOR SEQ ID NO: 70:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 309 amino acids

(B) TYPE: amino acid

٠		(i.	i) M	(D) (OLECI	JLE ?	TYPE:	pro	oteir	n		*					
5	Pro	Pho	e Me	EQUE: t Met	Va]	l Ala	Tri	Tr	SEQ P Ser	ID 1 Let	ı Phe	0: Leu	туі	r Gly	/ Let	
	۷a	L Ala	a Ala	a Pro 20	Ala	a Phe	e Ala	Ala	a Asp 25	Gly	/ Arg	Ser	The	Arg		r Tr
10	Asp	Су:	3 Cy:	s Lys	Pro	Ser	. CAa	Ser 40	Trp	Gly	Gly	Lys	Ala 45	a Ala	. Val	l Ser
15				a Leu			33					60	•			
		•		l Asn		. , 0					/5					80
20				Pro	•					90					95	
				Leu 100					103					110		
25								120					125			
30				Thr		•	. 100				•	140				
				Pro							122			•		160
35				Lys	100					1/0					175	
				Cys 180					103		•			190		•
40								200		•	•		205		•	
45				Gln			213					220				
				Asp		230					235					240
50			-	Pro					. •	250				•	255	
				Ser 260				•	205					270		
55				Arg				200					285			
60	Thr	Thr 290	Суз	Val	Ala	Gly	Ser 295	Thr	Cys	Thr	Lys	Ile 300	Asn	Asp	Trp	Tyr
	His	Gln	Cys	Leu	*											

- (2) INFORMATION FOR SEQ ID NO: 71:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 915 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

		(ii) (ix)	FEA	ECUL	:													
5	(:	xi)	(B) NA) LO IENCE	CATI	ON:1	91	5 : SE	Q ID	NO:	71:							
	ATG Met 1	Met	GTC Val	GCG Ala	TGG Trp	TGG '	TCT Ser	CTA Leu	TTT Phe	CTG ' Leu 10:	Tyr	GGC Gly	CTT Leu	CAG ' Gln	GTC Val 15	GCG Ala	48	
10	GCA Ala	CCT Pro	GCT Ala	TTC Phe 20	GCT Ala	GCT Ala	GAT Asp	GGC Gly	AGG Arg 25	TCC Ser	ACG Thr	AGG Arg	TAT Tyr	TGG Trp 30	GAT Asp	Cys	96	
15	TGC Cys	AAG Lys	CCG Pro 35	TCA Ser	TGT Cys	GCT Ala	TGG Trp	TCC Ser 40	GGC Gly	AAG Lys	GCC Ala	TCA Ser	GTG Val 45	TCA Ser	TCT Ser	CCC Pro	144	
20	GTG Val	CGA Arg 50	ACC Thr	TGT Cys	GAC Asp	GCA Ala	AAC Asn 55	AAC Asn	TCG Ser	CCG Pro	CTG Leu	TCC Ser 60	GAC Asp	GTC Val	GAC Asp	GCA Ala	192	
25	AAG Lys 65	AGT Ser	GCG Ala	TGC Cys	GAT Asp	GGA Gly 70	GGC Gly	GTT Val	GCT Ala	TAC Tyr	ACT Thr 75	TGT	TCA Ser	AAC Asn	AAC Asn	GCG Ala 80	240	
	CCT Pro	TGG Trp	GCT Ala	GTT Val	AAC Asn 85	GAT Asp	AAC Asn	CTC Leu	TCT Ser	TAT Tyr 90	GGT Gly	TTĊ Phe	GCG Ala	GCC Ala	ACA Thr .95	Ala	288	
30	ATC Ile	AAT Asn	GGC	GGC Gly 100	AGC Ser	GAG Glu	TCT Ser	AGC Ser	TGG Trp 105	TGC Cys	TGT Cys	GCA Ala	TGC Cys	TAC Tyr 110	AAG Lys	TTG Leu	336	
35	ACT Thr	TTC Phe	ACG Thr	Ser	GGA Gly	CCT Pro	GCT Ala	TCT Ser 120	GGA Gly	AAG Lys	GTC Val	ATG Met	GTC Val 125	GTT Val	CAA Gln	TCA Ser	384	
40	ACC	AAC Asn 130	Thr	GGG Gly	TAC Tyr	GAT Asp	CTC Leu 135	TCT Ser	AAC Asn	AAC Asn	CAC His	TTT Phe 140	GAC Asp	ATT Ile	CTT Leu	ATG Met	432	
45	Pro	Gly	GGC Gly	GGT Gly	GTT Val	GGA Gly 150	Ala	TTC Phe	GAC Asp	GGC Gly	TGC Cys 155	TCT Ser	AGG Arg	CAG Gln	TAC Tyr	GGC Gly 160	480	
	Ser	ATC Ile	c cci	r GGG	GAG Glu 165	Arg	TAT	GGG Gly	GGT	GTC Val 170	Thr	TCA Ser	AGG Arg	GAC Asp	CAA Glr 175	TGC Cys	. 528	
50	GAC	Gl	n Met	G CCA	Ser	GCA Ala	CTC Leu	AAG Lys	CAG Gln 185	Gly	Cya	TAT Tyr	TGG	CGC Arc	Phe	GAT Asp	576	
55	TGC Tr	TT:	C AA	G AAG	g GCC	GAC A Asp	TAA C	CCC Pro 200	Ser	TTC Phe	AGC Ser	TTC Phe	C CGT Arg 205	g Gl	G GT(C CAG L Gln	624	
60	TG() Cy:	C CC B Pr 21	o Al	C GAG a Gli	G CTO	C GTO	C GC1 L Ala 215	Arq	C ACC	GGF Gly	TGC Cys	C CGC 5 Arg 220	J Ar	C AAG g As	C GAG	C GAC p Asp	672	
65	GG G1: 5 22	y As	C TT n Ph	c cc e Pr	T GC	C GTO a Va 23	l Gl	a ATO	c cc	C TCC	Ser 23!	r Se	C AC	c AG r Se	C TC r Se	T CCG r Pro 240	720	
	GT Va	C AA l As	C CA	G CC n Pr	T AC o Th 24	r Se	C AC	C AG	C AC	C ACC	r Se	C AC	C TC r Se	C AC r Th	C AC	C TCG r Ser 5	768	ļ

5		C CC	G CC	A GT(D Va: 260	T 0 T	G CC	T ACC	G ACT	CC Pro 26	o se	C GGG	C TG Y Cy	C AC	T GC r Al 27	a Gl	G AGG u Arg	816
			279	5	J (11)	, G.,	, vei	280)	o se	r Gly	у Су	28:	r Th:	r Cy	C GTC s Val	864
10	GCT Ala	GG(Gl) 290	,	C ACT	TGC Cys	ACC Thr	295	116	AA?	GA(TGC Tri	TA: Ty:	r Hi:	CAC Gli	G TG n Cy	C CTG s Leu	912
15	TAG																915
20	(2)	INE	(i) (SEQU	JENCE LENGT YPE:	CHA H: 3 ami	RACT 105 a .no a	NO: ERIS mino cid	TICS	: .ds							
25		ix)	.) MC .) SE	LECU QUEN	ILE T	YPE: ESCR	pro IPTI	tein ON:	SEQ								
	_				•					10	,				15		
30	Ala	Pro	Ala	Phe 20	Ala	Ala	Asp	Gly	Arg 25	Ser	Thr	Arg	Tyr	Trp 30		Сув	
35	. Cys	Lys	Pro 35	Ser	Сув	Ala	Trp	Ser 40	Gly	Lys	Ala	Ser	Val 45		Ser	Pro	
	Val	Arg 50	Thr	Суз	Asp	Ala	Asn 55	Asn	Ser	Pro	Leu	Ser 60	Asp	Val	Asp	Ala	
40	Lys 65	Ser	Ala	Суз	Asp	Gly 70	Gly	Val	Ala	Tyr	Thr 75	Cys	Ser	Asn	Asn	Ala 80	
	Pro	Trp	Ala	Val	Asn 85	Asp	Asn	Leu	Ser	Tyr 90	Gly	Phe	Ala	Ala	Thr 95	Ala	
45	Ile	Asn	Gly	Gly 100	Ser	Glu	Ser	Ser	Trp 105	Cys	Cys	Ala	Cys	Tyr 110	Lys	Leu	
50	Thr	Phe	Thr 115	Ser	Gly	Pro	Ala	Ser 120	Gly	Lys	Val	Met	Val 125	Val	Gln	Ser	
							100	Ser				140					
55	Pro 145	Gly	Gly	Gly	Val	Gly 150	Ala	Phe	Asp	Gly	Cys 155	Ser	Arg	Gln	Tyr	Gly 160	
	Ser	Ile	Pro	Gly	Glu 165	Arg	Tyr	Gly	Gly	Val 170	Thr	Ser	Arg	Asp	Gln 175	Cys	
60	Asp	Gln	Met	Pro 180	Ser	Ala	Leu	Lys	Gln 185	Gly	Cys	Tyr	Trp	Arg 190	Phe	Asp	
65	Trp	Phe	Lys 195	Asn	Ala	Asp	Asn	Pro 200	Ser	Phe	Ser	Phe	Arg 205	Gln	Val	Gln	
- •	Суз	Pro 210	Ala	Glu	Leu	Val	Ala 215	Arg	Thr	Gly	Cys	Arg 220	Arg	Asn	Asp	Asp	
	Gly	Asn	Phe	Pro	Ala	Val	Gln	Ile	Pro	Ser	Ser	Ser	Thr	Ser	Ser	Pro	

	225 -				2	230			•	:	235	-				240		
	Val 7	Asn (Gln		Thr S 245	Ser (Thr S	Ser :	2	250					255	Ser		
5	Ser 1	Pro		Val (260	Gln, I	Pro '	Thr 1			Ser (Arg		
10	Trp ·		Gln 275	Сув	Gly (3ly i	Asn C	31y (280	Trp 8	Ser (Gly (Cys .	Thr '	Thr	Сув	Val		
-	Ala	Gly 290	Ser	Thr (• :	295 ·	Ile i	Asn 1	qa/	Trp '	Tyr 300	His	Gln	Cys	Leu		
15	* 305								;	•					•		 	
20	, ,	INFO	SEQ (A	ION UENC) LE	E CH. NGTH PE:	SEQ ARAC : 92 nucl	ID NO TERI: 5 ba: eic	o: 7 STIC se p acid	3: S: airs		3	i ti	i tu		e			
25			MOI FEA) ST) TO .ECUL .TURE .) NA	POLO E TY :	GY: PE:	line cDNA	ar .	Te						~ .			
30	c cc	A TI	(E SEÇ TA	I) LO QUENC TG AT	CATI E DE G GT t Va	ON:2 SCRI	92 PTIO G TG	5 N: S G TG	G TC	T CT	A TT u Ph	T CI	G TA	 C GC	sc c	rT eu		46
35	CAG Gln	GTC Val	GCG Ala	GCA Ala	CCT Pro 20	GCT Ala	TTC Phe	GCT Ala	GCT Ala	GAT Asp 25	GGC Gly	AGG Arg	Ser	Thr	CGG Arg 30	Tyr		94
40	TGG Trp	GAT Asp	Cys	TGT Cys 35	AAG Lys	CCC Pro	AGC Ser	TGC Cys	Ser 40	Trp	Pro	qeA	Lys	Ala 45	Pro	Val		142
45	Gly	TCC Ser	CCC Pro 50	GTA Val	GGC Gly	ACC Thr	TGC Cys	GAC Asp 55	GCC	GGC	AAC:	"AGC	CCC Pro 60	CTC	GGC	GAC		190
	Pro		Ala	AAG Lys														238
50	AAC	Tyr	CAG	CCG	TGG Trp	Ala	Val	Asn	GAC Asp	Gln	CTG Leu 90	Ala	TAC Tyr	GGC	TTC Phe	GCG Ala	ı	286
55				ATC Ile		Gly										Cys		334
60	TAC Tyr	AAG Lys	CTC Lev	ACC Thr	Phe	ACC Thr	Asp	GGC	CCG Pro 120	GCC Ala	TCG Ser	GGC	AAG Lys	ACC Thr 125	Met	ATC	; ;	382
65	Val	CAG Glr	TCC Ser 130	ACC Thr	AAĆ Asn	ACG Thr	GGC Gly	GGC Gly 135	Asp	CTG Leu	TCC Ser	GAC Asp	AAC Asn 140	His	TTO Phe	C GAG Asj	Ç P	430
	CTG Leu	CTC Lev	ıIle	ccc Pro	GGC Gly	Gly	GGC Gly 150	Val	GGC Gly	ATC	TTC	GAC Asp 155	Gly	TGC Cys	C ACC	C TCC r Se:	c r	478

	CAG Gln 160	TAC Tyr	GGC Gly	CAG Gln	GCC Ala	CTG Leu 165	CCC Pro	GGC	GCC Ala	CAG Gln	TAC Tyr 170	GJY GGC	GGC Gly	GTC Val	AGC Ser	TCC Ser 175	526
5	CGC Arg	GCC Ala	GAG Glu	TGC Cys	GAC Asp 180	CAG Gln	ATG Met	CCC Pro	GAG Glu	GCC Ala 185	ATC Ile	AAG Lys	GCC Ala	GGC Gly	TGC Cys 190	CAG Gln	574
10	TGG Trp	CGC Arg	TAC Tyr	GAT Asp 195	TGG Trp	TTT Phe	AAG Lys	AAC Asn	GCC Ala 200	GAC Asp	AAT Asn	CCG Pro	AGC Ser	TTC Phe 205	AGC Ser	TTC Phe	622
15	CGT Arg	CAG Gln	GTC Val 210	CAG Gln	TGC Cys	CCA Pro	GCC Ala	GAG Glu 215	CTC Leu	GTC Val	GCT Ala	CGC Arg	ACC Thr 220	GGA Gly	TGC Cys	CGC Arg	670
20	CGC Arg	AAC Asn 225	GAC Asp	GAC Asp	GGC Gly	AAC Asn	TTC Phe 230	CCT Pro	GCC Ala	GTC Val	CAG Gln	ATC Ile 235	CCC Pro	TCC Ser	AGC	AGC Ser	718
25	ACC Thr 240	AGC Ser	TCT Ser	CCG Pro	GTC Val	AAC Asn 245	CAG Gln	CCT Pro	ACC Thr	AGC Ser	ACC Thr 250	AGC Ser	ACC Thr	ACG Thr	TCC Ser	ACC Thr 255	766
25	TCC Ser	ACC Thr	ACC Thr	TCG Ser	AGC Ser 260	Pro	CCA Pro	GTC Val	CAG Gln	CCT Pro 265	ACG Thr	ACT Thr	CCC Pro	AGC Ser	GGC Gly 270	Cys	· 814
30	ACT Thr	GCT Ala	GAG Glu	AGG Arg 275	Trp	GCT Ala	CAG Gln	TGC Cys	GGC Gly 280	Gly	AAT	GGC Gly	TGG Trp	AGC Ser 285	GGC	TGC	862
35	ACC Thr	ACC	TGC Cys 290	Val	GCT Ala	GGC	AGC Ser	ACT Thr 295	Cya	ACG Thr	AAG Lya	ATT Ile	AAT Asn 300	Asp	TGG Trp	TAC	910
40		_	TGC Cys	_					-					<u>-</u> *			925
45	, ,	(i :)) (L) MC	SEQUA) I B) I D) I	ENCE ENGT YPE: OPOI JLE	CHA H: 3 ami LOGY:	RACI 08 a .no a : lir	ERIS umino icid near oteir	TICS aci	.ab						,	
50		Phe	L) SE e Met								Phe		Туг	Gly	Leu 15	ı Gln	
55		L Ala	a Ala	a Pro	_	a Phe	e Ala	a Ala	A Ast		/ Arq	, Ser	Thr	Arç		Trp	
	Ası	, Су:	s Cys		s Pro	o Se	r Cyi	3 Se1		Pro	Ası	Lys	Ala 49		val	l Gly	
60) Se	r Pr	_	l Gl	y Th:	r Cy	s Ası		a Gly	y Ası	n Sei	Pro 60		ı Gly	y Asi	Pro	
65	6		a Lys	s Se	r Gl	y Cy 7		u Gl	y Gly	y Pro	Se:		t. Thi	Cys	s Ala	Asn 80	
00		r Gl	n Pro	o Tr	p Al B	_	l As	n Asj	p Gl	n Lei	-	а Ту	r Gl	y Phe	a Ala	a Ala 5	
	Th	r Al	a Ile	e As	n Gl	y Gl	y Th	r Gl	u As	p Se:	r Tr	р Су	з Су	s Ala	а Су	s Tyr	

Gln Cys Leu * 40 305

									•	~						
				100					105					110		
5	Lys	Leu	Thr 115	Phe	Thr	Asp	Gly	Pro 120	Ala	Ṣer	Gly	Lys	Thr 125	Met	Ile	Val
•	Gln	Ser 130	Thr	Asn	Thr	Gly	Gly 135	Asp	Leu	Ser	Asp	Asn 140	His	Phe	qaA	Leu
10	Leu 145	Ile	Pro	Gly	Gly _.	Gly 150	Val	.Gly	Ile	Phe	Asp 155	Gly	Сув	Thr	Ser	Gln 160
	Tyr	Gly	Gln	Ala	Leu 165	Pro	Gly	Ala	Gln	Tyr 170	Gly	Gly	Val	Ser	Ser 175	Arg
15	Ala	Glu	Сув	Asp 180	Gln	Met	Pro	Glu	Ala 185	.Ile	Lys	Ala	Gly	Cys 190	Gln	Trp
20	Arg	Tyr	Asp 195	Trp	Phe	rae.	Asn	Ala 200	Asp	Asn	Pro	Ser	Phe 205	Ser	Phe	Arg
	Gln	Val 210	Gln	Cys	Pro	Ala	Glu 215	Leu	Val	Ala	Arg	Thr 220	Gly	Суз	Arg	Arg
25	Asn 225	Asp	Asp	Gly	Asn	Phe 230	Pro	Ala	Val	Gln	Ile 235	Pro	Ser	Ser	Ser	Thr 240
	Ser	Ser	Pro	Val	Asn 245	Gln	Pro	Thr	Ser	Thr 250	Ser	Thr	Thr	Ser	Thr 255	Ser
30	Thr	Thr	Ser	Ser 260	Pro	Pro	Val	Gln	Pro 265	Thr	Thr	Pro	Ser	Gly 270	Сув	Thr
35	Ala	Glu	Arg 275	Trp	Ala	Gln	Сув	Gly 280	Gly	Asn	Gly	Trp	Ser 285	Gly	Сув	Thr
, ,	Thr	Cys 290	Val	Ala	Gly	Ser	Thr 295	Cys	Thr	Lys	Ile	Asn 300	Asp	Trp	Tyr	His

PATENT CLAIMS

- 1. A method for providing a novel DNA sequence encoding a polypeptide from a micro-organism with an activity of interest 5 comprises the following steps:
 - i) PCR amplification of said DNA with PCR primers with homology to (a) known gene(s) encoding a polypeptide with an activity of i nterest,
- ii) linking the obtained PCR product to a 5' structural gene 10 sequence and a 3' structural gene sequence,
 - iii) expressing said resulting hybrid DNA sequence,
 - iv) screening for hybrid DNA sequences encoding a polypeptide with said activity of interest or related activity,
 - v) isolating the hybrid DNA sequence identified in step iv)

15

- 2. The method according to claim 1 wherein the PCR primers in step i) have homology to conserved regions in (a) known structural gene(s) or the polypeptide(s) thereof.
- 20 3. The method according to claim 1 wherein the PCR primers in step i) are degenerated on the basis of conserved regions in (a) known gene(s).
- 4. The method according to any of claims 1 to 3 wherein the PCR 25 amplification in step i) is performed using naturally occurring DNA as template.
 - 5. The method according to any of claims 1 to 3 wherein the microorganism has not been subjected to "in vitro" selection.

- 6. The method according to any of claims 1 to 5 wherein the PCR amplification in step i) is performed on a sample containing DNA from an un-isolated microorganism.
- 35 7. The method according to any of claims 1 to 6 wherein the 5' and 3' structural gene sequences originate from two different structural genes encoding polypeptides having the same activity.

3.0

- 8. The method according to any of claims 1 to 7 wherein the 5' structural gene sequence and the 3' structural gene sequence originate from the same structural gene sequence.
- 9. The method according to any of claims 1 to 8 wherein the 5' structural gene sequence and the 3' structural gene sequence originate from two different structural gene sequences encoding polypeptides having different activities.
- 10. The method according to any of claims 1 to 9 comprising the following steps:
- i) PCR amplification of DNA from micro-organisms with PCR primers being homologous to conserved regions of a known gene encoding a polypeptide with an activity of interest.
- cloning the obtained PCR product into a gene encoding a polypeptide having the activity of interest, where said gene is not identical to the gene from which the PCR product is obtained, which gene is situated in an expression vector,
 - transforming said expression vector into a suitable host cell,
 - iiia) culturing said host cell under suitable conditions,
- screening for clones comprising a DNA sequence originated from the PCR amplification in step i) encoding a polypeptide with said activity of interest or related activity,
 - v) isolating the DNA sequence identified in step iv).
 - 11. The method according to claims 1 to 10, wherein the microorganism from which DNA is to be PCR amplified in step i) is a prokaryote or an eukaryote.
- 35 12. The method according to any of claims 1 to 11, wherein the PCR amplification in step i) is performed on DNA from an uncultivable organism.

E

P.

- 13. The method according to claim 12, wherein the un-cultivable organism is an algae, a fungi or a protozoa.
- 5 14. The method according to claims 12 and 13, wherein said uncultivable organism is from the group of extremophiles and plantonic marine organisms.
- 15. The method according to any of claims 1 to 11, wherein the 10 PCR amplification in step i) is performed on DNA from a cultivable organism.
- 16. The method according to claim 15, wherein said cultivable organism is selected from the group of bacteria, fungal 15 organisms, such as filamentous fungi or yeasts.
- 17. The method according to claim 16, wherein said PCR amplification in step i) is performed on one or more polynucleotides comprised in a vector, plasmid or the like, such as on a cDNA library from cultivable organisms.
 - 18. The method according any of claims 1 to 17, wherein said activity of interest is an enzymatic activity.
 - 25 19. The method according to claim 18, wherein said enzyme activity is selected from the group comprising phosphatases oxidoreductases, transferases, hydrolases, such as esterases, in particular lipases and phytases, such as glucosidases, in particular xylanases, cellulases, hemicellulases, and amylases,
 - 30 such as peptidases, in particular proteases, lyases, isomerases and ligases.
 - 20. The method according to any of claims 10 to 19, wherein said host cell mentioned under iii) of claim 10 is a micro-organism, 35 preferably a yeast or a bacteria.
 - 21. The method according to claim 20, wherein said host cell is a yeast such as a strain of Saccharomyces, in particular

Saccharomyces cerevisiae.

- 22. The method according to claim 20, wherein said host cell is a bacteria such as a strain of Bacillus, in particular of Bacillus subtilis, or a strain Escherichia coli.
 - 23. The method according to any of claims 1 to 22, wherein the clones/hybrid DNA sequences mentioned in step iv), are screened for enzymatic activity.

- 24. The method according to claim 23, wherein the screened clones/hybrid DNA sequences are tested for wash performance.
- 25. A novel DNA sequence provided according to any of the method 15 claims 1 to 24.
 - 26. A polypeptide with an activity of interest encoded by a DNA sequence of claim 25.

SUBSTITUTE SHEET (RULE 26)

Figure 2

PULPNS8-11 PULPZYME_L	1	The same of the sa	
PULPNS8-11	34		66
PULPZYME_L	34		66
PULPNS8-11	67	WNN VNN LLFRKGKKFNETO-THOOVGNMS LNYGA	
PULPZYME_L	67	WNN VNN LLFRKGKKFNETO-THOOVGNMS LNYGA	
PULPNS8-11	100	NEOPNGNAYLOVYGWTVDPLVEYXEVDSWGNWR	132
PULPZYME_L	100	NEOPNGNAYLOVYGWTVDPLVEYXEVDSWGNWR	132
PULPNS8-11	133	PPGATPKGTLEVDGGTYDLYKHQOVNOPSING	165
PULPZYME_L	133		165
PULPNS8-11	166	ATENOYWS I ROSKRESGTVTT ANHENAWA AMEM	198
PULPZYME_L	166	ATEKOYWS VRRSKRESGT I SVSNHERAWENLEM	198
PULPNS8-11	199	NMGAFNYQIEVTEGYOSTGSANVYSNTLRINGN	231
PULPZYME_L	199	NMGKMYEVALTVEGYOSSGSANVYSNTERENGN	231
PULPNS8-11	232	PLSTISNOKSITLOKNN	248
PULPZYME_L	232	PLSTISNOKSITLOKNN	248

Figure 3

4/4

part A part B part C

1 433 631 748

Figure 4

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/10, 15/62, 15/56, 9/24, 9/42, C12Q 1/68

(11) International Publication Number: **A3**

WO 97/43409

(43) International Publication Date: 20 November 1997 (20.11.97)

(21) International Application Number:

PCT/DK97/00216

(22) International Filing Date:

12 May 1997 (12.05.97)

(30) Priority Data:

0562/96

10 May 1996 (10.05.96)

DK

(71) Applicant (for all designated States except US): NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsværd (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DALBØGE, Henrik [DK/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK), DIDERICHSEN, Børge [DK/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK). SAN-DAL, Thomas [DK/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK). KAUPPINEN, Sakari [FI/DK]; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK).

(74) Common Representative: NOVO NORDISK A/S; Novo Allé, DK-2880 Bagsværd (DK).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD,

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 26 February 1998 (26.02.98)

(54) Title: METHOD OF PROVIDING NOVEL DNA SEQUENCES

(57) Abstract

The present invention relates to a method of providing novel DNA sequences encoding a polypeptide with an activity of interest, comprising the following steps: i) PCR amplification of said DNA with PCR primers with homology to (a) known gene(s) encoding a polypeptide with an activity of interest, ii) linking the obtained PCR product to a 5' structural gene sequence and a 3' structural gene sequence, iii) expressing said resulting hybrid DNA sequence, iv) screening for hybrid DNA sequences encoding a polypeptide with said activity of interest or related activity, v) isolating the hybrid DNA sequence identified in step iv). Further, the invention also relates novel DNA sequences provided according to the method of the invention and polypeptides with an activity of interest encoded by said novel DNA sequences of the invention.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland .	LT	Lithuania	SK	Slovakia
AT	Austria	. FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB .	United Kingdom	MC "	Monaco	TD ·	'Chad
BA	Bosnia and Herzegovina .	GE ··	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH ·	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Treland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israei	MR	Mauritania	UG	Uganda
BY	Belarus	IS	[celand	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH:	Switzerland	KG 、	Kyrgyzstan.	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia ·	SG	Singapore		
ł					•		

rcT/DK 97/00216

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/10 C12N15/62 C1201/68

C12N15/56

C12N9/24

C12N9/42

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{lll} \mbox{Minimum documentation searched (classification system followed by classification symbols)} \\ \mbox{IPC 6} & \mbox{C12N} & \mbox{C12Q} \\ \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 368 684 A (MEDICAL RES COUNCIL) 16 May 1990 see the whole document	1,2,4,8, 10,11, 20,25,26
X	SARANTOPOULOS S ET AL: "A METHOD FOR LINKING VL AND VH REGIONS GENES THAT ALLOWS BULK TRANSFER BETWEEN VECTORS FOR USE IN GENERATING POLYCLONAL IgG LIBRARIES" JOURNAL OF IMMUNOLOGY, vol. 152, no. 11, 1 June 1994, pages 5344-5351, XP002031702 see the whole document	1,2,4,8, 10,11, 20,25,26
	· · · /	

* Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance.	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention
citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but	cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *8* document member of the same patent family
later than the pnority date claimed Date of the actual completion of theinternational search	Date of mailing of the international search report
18 December 1997	22/01/1998
Name and mailing address of the ISA	Authonzed officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epoint, Fay: (-31-70) 340-3016	Hornig, H

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

rnational Application No PCT/DK-97/00216

ategory *	Citation of document; with indication where appropriate, of the relevant passages	Relevant to claim No
(WO 91 17244 A (NOVONORDISK AS) 14 November 1991	1-4, 8-11, 18-20, 22,25,26
	see page 18, line 19 - page 29, line 18; figures 9,10	
Α .	WO 93 11249 A (NOVONORDISK AS) 10 June 1993 cited in the application	1-26
	see the whole document	
A	B. HENRISSAT ET AL.: "A classification of glycosyl hydrolyses based on amino acid	1-26
	sequence similarities" BIOCHEM. J.,	
	vol. 280, 1991, THE BIOCHEM. SOCIETY, LONDON, UK,	
	pages 309-316, XP002050142 cited in the application see the whole document	
A	WO 91 17243 A (NOVONORDISK AS) 14 November 1991 cited in the application	1-26
	see the whole document	
A	WO 94 07998 A (NOVONORDISK AS ;SCHUELEIN MARTIN (DK); FREDHOLM HENRIK (DK); HJORT) 14 April 1994 see the whole document	1-26
Α	 K. SMALLA ET AL.: "Rapid DNA extraction	1-26
	protocol from soil for polymerase chain reaction" J. APPLIED BACTERIOL., vol. 74, no. 1, 1993, BLACKWELL SCIENTIFIC PUB., OXFORD, GB,	
	pages 78-85, XP000574302 cited in the application see the whole document	
A	J.L. STEIN ET AL.: "Characterization of	1-26
	uncultivated procaryotes: Isolation and analysis of a 40-kilobase-pair genome fragment from a plaktonic marine archaeon" J. BACTERIOL., vol. 178, no. 3, February 1996, AM. SOC. MICROBIOL.,BALTIMORE,US;,	
	pages 591-599, XP002050143 cited in the application see the whole document	

FCT/DK 97/00216

	BLION) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
P,A	WO 96 29397 A (NOVONORDISK AS ;SCHUELEIN MARTIN (DK); ANDERSEN LENE NONBOE (DK);) 26 September 1996 cited in the application see the whole document	1-26	
	·		

information on patent family members

PCT/DK 97/00216

			JK 377 00210
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0368684 A	16-05-90	AU 634186 B AU 4520189 A CA 2002868 A DE 68913658 D DE 68913658 T DK 164790 A ES 2052027 T WO 9005144 A JP 3502801 T	18-02-93 28-05-90 11-05-90 14-04-94 08-09-94 07-09-90 01-07-94 17-05-90 27-06-91
WO 9117244 A	14-11-91	AT 150788 T AU 652153 B AU 7791091 A DE 69125371 D DE 69125371 T EP 0531315 A ES 2100229 T US 5457046 A US 5686593 A	15-04-97 18-08-94 27-11-91 30-04-97 14-08-97 17-03-93 16-06-97 10-10-95 11-11-97
WO 9311249 A	10-06-93	BR 9206866 A EP 0618974 A FI 942644 A JP 8504560 T MX 9206979 A	21-11-95 12-10-94 03-06-94 21-05-96 01-07-93
WO 9117243 A	14-11-91	AT 118545 T AU 639570 B AU 7887491 A CA 2082279 A DE 69107455 D DE 69107455 T EP 0531372 A ES 2068586 T JP 5509223 T	15-03-95 29-07-93 27-11-91 10-11-91 23-03-95 12-10-95 17-03-93 16-04-95 22-12-93
WO 9407998 A	14-04-94	EP 0663950 A FI 951629 A JP 8501692 T MX 9306229 A	26-07-95 05-04-95 27-02-96 31-05-94

Information on patent family members

ernational Application No
PCT/DK 97/00216

	1		
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9629397 A	26-09-96	AU 4939496 A	08-10-96

