Chapter 3 Solutions From "Book of Abstract Algebra" by Charles C. Pinter December 7, 2020

A. Examples of Abelian Groups

1. Let $G = \mathbb{R}$, and let * be the binary operation on G defined by

$$x * y = x + y + k$$

for all $x, y \in G$ and where k is a fixed constant.

Proposition. The set G, with the operation *, is an abelian group.

Proof. To prove the set G, with the operation *, is an abelian group we must show that * is commutative, associative and that G has an identity element and inverses.

To prove that * is associative let x and y be arbitrary elements of G. Then

$$x * y = x + y + k$$

and

$$y * x = y + x + k = x + y + k.$$

Since the two results are the same, the operation * is commutative.

Now let x, y, and z be arbitrary elements of G. Then

$$x * (y * z) = x * (y + z + k)$$

= $x + (y + z + k) + k$
= $x + y + z + 2k$

and

$$(x * y) * z = (x + y + k) * z$$

= $(x + y + k) + z + k$
= $x + y + z + 2k$.

Since the two results are the same, the operation * is associative.

The identity element for G is -k because

$$x * -k = x + (-k) + k = x$$

and

$$-k * x = -k + x + k = x.$$

Finally, we see that the inverse with respect to * is -x - 2k because

$$x * x^{-1} = x + (-x - 2k) + k = x - x - 2k = -k$$

and

$$x^{-1} * x = (-x - 2k) + x + k = -x - 2k + x + k = -k$$

Therefore, we conclude that the set G, with the operation *, is an abelian group.

2. Let $G = \{x \in \mathbb{R} : x \neq 0\}$, and let * be the binary operation on G defined by

$$x * y = \frac{xy}{2} \tag{1}$$

for all $x, y \in G$.

Proposition. The set G, with the operation *, is an abelian group.

Proof. To prove the set G, with the operation *, is an abelian group we must show that * is commutative, associative and that G has an identity element and inverses.

To prove that * is associative let x and y be arbitrary elements of G. Then

$$x * y = \frac{xy}{2}$$

and

$$y * x = \frac{xy}{2} = \frac{yx}{2}.$$

Since the two results are the same, the operation * is commutative.

Now let x, y, and z be arbitrary elements of G. Then

$$x * (y * z) = x * \frac{yz}{2} = \frac{\frac{xyz}{2}}{2} = \frac{xyz}{4}$$

and

$$(x*y)*z = \frac{xy}{2}*z = \frac{\frac{xyz}{2}}{2} = \frac{xyz}{4}$$

Since the two results are the same, the operation * is associative.

The identity element for G is 2 because

$$x * 2 = \frac{x^2}{2} = x$$

and

$$2 * x = \frac{2x}{2} = x.$$

Finally we see that $\frac{4}{x}$ is the inverse of the operation * because

$$x * \frac{4}{x} = \frac{\frac{4x}{x}}{2} = \frac{4}{2} = 2$$

and

$$\frac{4}{x} * x = \frac{\frac{4x}{x}}{2} = \frac{4}{2}.$$

Therefore, we conclude that the set G, with the operation *, is an abelian group.

3. Let $G = \{x \in \mathbb{R} : x \neq -1\}$, and let * be the binary operation on G defined by

$$x * y = x + y + xy \tag{2}$$

for all $x, y \in G$.

Proposition. The set G, with the operation *, is an abelian group.

Proof. To prove the set G, with the operation *, is an abelian group we must show that * is commutative, associative and that G has an identity element and inverses.

To prove that * is associative let x and y be arbitrary elements of G. Then

$$x * y = x + y + xy$$

and

$$y * x = y + x + yx = x + y + xy$$

Since the two results are the same, the operation * is commutative.

Now let x, y, and z be arbitrary elements of G. Then

$$x * (y * z) = x * (y + z + yz)$$

= $x + (y + z + yz) = x + (y + z + yz) + x(y + z + yz)$
= $x + y + z + xy + xz + yz + xyz$

and

$$(x*y)*z = (x + y + xy)*z$$

= $(x + y + xy) + z + (x + y + xy)z$
= $x + y + z + xy + xz + yz + xyz$

Since the two results are the same, the operation * is associative.

The identity element for G is 0 because

$$x * 0 = x + 0 + x \cdot 0 = x$$

and

$$0 * x = 0 + x + 0 \cdot x = x$$
.

Finally we see that $-\frac{x}{1+x}$ is the inverse of the operation * because

$$x * \left(-\frac{x}{1+x}\right) = x + \left(-\frac{x}{1+x}\right) + x \cdot \left(-\frac{x}{1+x}\right)$$
$$= \frac{x + x^2 - x + x^2}{1+x} = 0$$

and

$$\left(-\frac{x}{1+x}\right) * x = \left(-\frac{x}{1+x}\right) + x + \left(-\frac{x^2}{1+x}\right)$$
$$= \frac{x+x^2-x-x^2}{1+x} = 0$$

Therefore, we conclude that the set G, with the operation *, is an abelian group.

4. Let $G = \{x \in \mathbb{R} : -1 < x < 1\}$, and let * be the binary operation on G defined by

$$x * y = \frac{x+y}{xy+1} \tag{3}$$

for all $x, y \in G$.

Proposition. The set G, with the operation *, is an abelian group.

Proof. To prove the set G, with the operation *, is an abelian group we must show that * is commutative, associative and that G has an identity element and inverses.

To prove that * is associative let x and y be arbitrary elements of G. Then

$$x * y = \frac{x+y}{xy+1}$$

and

$$y * x = \frac{y+x}{yx+1} = \frac{x+y}{xy+1}$$

Since the two results are the same, the operation * is commutative.

Now let x, y, and z be arbitrary elements of G. Then

$$x * (y * z) = x * \frac{y + z}{yz + 1}$$

$$= \frac{x + \frac{y + z}{yz + 1}}{\frac{y + z}{yz + 1} + 1}$$

$$= x + y + z + xy + xz + yz + xyz + 1$$

and

$$(x*y)*z = \frac{x+y}{xy+1}*z$$

$$= \frac{\frac{x+y}{xy+1} + z}{\frac{x+y}{xy+1}z + 1}$$

$$= x + y + z + xy + xz + yz + xyz + 1$$

Since the two results are the same, the operation * is associative.

The identity element for G is 0 because

$$x * 0 = \frac{x+0}{x \cdot 0 + 1} = \frac{x}{1} = x$$

and

$$0 * x = \frac{0+x}{0 \cdot x + 1} = \frac{x}{1} = x$$

Finally we see that -x is the inverse of the operation * because

$$x * -x = \frac{x - x}{x \cdot -x + 1} = \frac{0}{-x^2 + 1} = 0$$

and

$$-x * x = \frac{-x+x}{-x \cdot x + 1} = \frac{0}{-x^2 + 1} = 0$$

Therefore, we conclude that the set G, with the operation *, is an abelian group.

B. Groups on the Set $\mathbb{R} \times \mathbb{R}$

1. Let (a,b)*(c,d)=(ad+bc,bd) be a binary operation * on the set $G=\{(x,y)\in\mathbb{R}\times\mathbb{R}:y\neq 0\}$

(a)

Proposition. The set G, with the operation *, is a group.

Proof. To prove the set G, with the operation *, is a group we must show that * is associative and that G has an identity element and inverses.

To prove that * is associative let a, b, c and d be arbitrary elements of G. Then

$$(a,b)*((c,d)*(e,f)) = (a,b)*(cf+de,df) = (a \cdot df + b \cdot (cf+de), b \cdot df)$$

= $(adf+bcf+bde,bdf)$

and

$$((a,b)*(c,d))*(e,f) = (ad + bc,bd)*(e,f) = ((ad + bc) \cdot f + bd \cdot e,bd \cdot f)$$

= $(adf + bcf + bde,bdf)$

Since the two results are the same, the operation * is associative.

The identity element for G is (0,1) because

$$(a,b)*(0,1) = (a+0,b) = (a,b)$$

and

$$(0,1)*(a,b) = (0+a,b) = (a,b)$$

Finally we see that $(\frac{-a}{b^2}, \frac{1}{b})$ is the inverse of the operation * because

$$(a,b)*\left(-\frac{a}{b^2},\frac{1}{b}\right) = \left(a \cdot \frac{1}{b} + b \cdot -\frac{a}{b^2}, b \cdot \frac{1}{b}\right) = \left(\frac{ab}{b^2} - \frac{ab}{b^2}, 1\right) = (0,1)$$

and

$$\left(-\frac{a}{b^2}, \frac{1}{b}\right) * (a, b) = \left(-\frac{a}{b^2} \cdot b + \frac{a}{b}, \frac{1}{b} \cdot b\right) = \left(-\frac{ab}{b^2} + \frac{ab}{b^2}, 1\right) = (0, 1)$$

Therefore, we conclude that the set G, with the operation *, is a group.

(b)

Proposition. The set G, with the operation *, is an abelian group.

Proof. To prove the set G, with the operation *, is an abelian group we must show that * is commutative, associative and that G has an identity element and inverses. In part (a), we have already shown that the operation * is associative and that G has an identity element and inverses. Therefore we must show that the operation * is commutative.

To prove that * is commutative let a and b be arbitrary elements of G. Then

$$(a,b)*(c,d) = (ad + bc,bd)$$

and

$$(c,d)*(a,b) = (cb+da,db) = (ad+bc,bd)$$

Since the two results are the same, the operation * is commutative.

Therefore, we conclude that the set G, with the operation *, is an abelian group. \Box

2. Let (a,b)*(c,d)=(ac,bc+d) be a binary operation * on the set $G=\{(x,y)\in\mathbb{R}\times\mathbb{R}:x\neq 0\}$

(a)

Proposition. The set G, with the operation *, is a group.

Proof. To prove the set G, with the operation *, is a group we must show that * is associative and that G has an identity element and inverses.

To prove that * is associative let a, b, c and d be arbitrary elements of G. Then

$$(a,b)*((c,d)*(e,f)) = (a,b)*(ce,de+f) = (a \cdot ce,b \cdot ce+de+f)$$

= $(ace,bce+de+f)$

and

$$((a,b)*(c,d))*(e,f) = (ac,bc+d)*(e,f) = (ac \cdot e,(bc+d) \cdot e + f)$$
$$= (ace,bce+de+f)$$

Since the two results are the same, the operation * is associative.

The identity element for G is (1,0) because

$$(a,b)*(1,0) = (a \cdot 1, b \cdot 1 + 0) = (a,b)$$

and

$$(1,0)*(a,b) = (1 \cdot a, 0 \cdot a + b) = (a,b)$$

Finally we see that $(\frac{1}{a}, \frac{-b}{a})$ is the inverse of the operation * because

$$(a,b) * \left(\frac{1}{a}, -\frac{b}{a}\right) = \left(a \cdot \frac{1}{a}, \frac{b}{a} + \left(-\frac{b}{a}\right)\right) = (1,0)$$

and

$$\left(\frac{1}{a}, -\frac{b}{a}\right)*(a,b) = \left(\frac{1}{a}\cdot a, -\frac{b}{a}\cdot a + b\right) = (1,-b+b) = (1,0)$$

Therefore, we conclude that the set G, with the operation *, is a group.

(b)

Proposition. The set G, with the operation *, is not an abelian group.

Proof. To prove that the set G, with the operation *, is not an abelian group we must show that the operation * is not commutative.

Let a, b, c and d be arbitrary elements of G. Then

$$(a,b)*(c,d) = (ac,bc+d)$$
 (4)

and

$$(c,d)*(a,b) = (ca,da+b)$$
 (5)

Since the two results are not the same, the operation * is not commutative.

Therefore, we conclude that the set G, with the operation *, is not an abelian group. \Box

3. Let (a,b)*(c,d)=(ac,bc+d) be a binary operation * on the set $G=\{(x,y)\in\mathbb{R}\times\mathbb{R}\}$

(a)

Proposition. The set G, with the operation *, is not a group.

Proof. For the set G with the operation * to be a group, all elements in G must have an inverse with respect to the operation *. We have shown in problem 2 that the inverse of the operation * defined by (a,b)*(c,d)=(ac,bc+d) is $(\frac{1}{a},\frac{-b}{a})$. If we let (x,y)=(0,y) then we see that the inverse is not defined and it follows that not every element in G has an inverse with respect to the operation *. Therefore, the set G, with the operation *, is not a group.

(b)

Proposition. The set G, with the operation *, is not an abelian group.

Proof. To be an abelian group, the set G with the operation * must be a group and the operation * must be commutative. We have shown in part (a) that the set G with the operation * is not a group. Therefore, the set G with the operation * is also not an abelian group.

4. Let (a,b)*(c,d)=(ac-bd,ad+bc) be a binary operation * on the set $G=\{(x,y)\in\mathbb{R}\times\mathbb{R}\}$ with the origin deleted.

(a)

Proposition. The set G, with the operation *, is a group.

Proof. To prove the set G, with the operation *, is a group we must show that * is associative and that G has an identity element and inverses.

To prove that * is associative let a, b, c and d be arbitrary elements of G. Then

$$(a,b) * ((c,d) * (e,f)) = (a,b) * (ce - df, cf + de)$$

= $(a \cdot (ce - df) - b \cdot (cf + de), a \cdot (cf + de) + (ce - df) \cdot b)$
= $(ace - adf - bcf - bde, acf + ade + bce - bdf)$

and

$$((a,b)*(c,d))*(e,f) = (ac - bd, ad + bc) * (e,f)$$

$$= ((ac - bd) \cdot e - (ad + bc) \cdot f, (ac - bd) \cdot f + (ad + bc) \cdot e)$$

$$= (ace - adf - bcf - bde, acf + ade + bce - bdf)$$

The identity element for G is (1,0) because

$$(a,b)*(1,0) = (a-0,0+b) = (a,b)$$

and

$$(1,0)*(a,b) = (a-0,b+0) = (a,b)$$

Finally we see that $\left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right)$ is the inverse of the operation * because

$$(a,b) * \left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right) = \left(a \cdot \frac{a}{a^2 + b^2} - b \cdot \frac{-b}{a^2 + b^2}, a \cdot \frac{-b}{a^2 + b^2} + b \cdot \frac{a}{a^2 + b^2}\right)$$
$$= (1,0)$$

and

$$\left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right) * (a, b) = \left(\frac{a}{a^2 + b^2} \cdot a - \left(-\frac{b}{a^2 + b^2} \cdot b\right), \frac{a}{a^2 + b^2} \cdot b + \left(-\frac{b}{a^2 + b^2} \cdot a\right)\right) = (1, 0)$$

Therefore, we conclude that the set G, with the operation *, is a group.

(b)

Proposition. The set G, with the operation *, is an abelian group.

Proof. To prove the set G, with the operation *, is an abelian group we must show that * is commutative, associative and that G has an identity element and inverses. In part (a), we have already shown that the operation * is associative and that G has an identity element and inverses. Therefore we must show that the operation * is commutative.

To prove that * is commutative let a, b, c, and d be arbitrary elements of G. Then

$$(a,b)*(c,d) = (ac - bd, ad + bc)$$

and

$$(c,d)*(a,b) = (ca - db, cb + da) = (ac - bd, ad + bc)$$

Since the two results are the same, the operation * is commutative.

Therefore, we conclude that the set G, with the operation *, is an abelian group. \Box

5. No, the operation * in exercise 4, defined as (a,b)*(c,d)=(ac-bd,ad+bc), on the set $\mathbb{R}\times\mathbb{R}$ is not a group because not every element in $\mathbb{R}\times\mathbb{R}$ has an inverse with respect to the operation *. From the solution to exercise 4 we know that the inverse with respect to * is $(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})$ and we see that the inverse for (0,0) is not defined. Therefore, the operation * on the set $\mathbb{R}\times\mathbb{R}$ is not a group.

C. Groups of Subsets of a Set

The symmetric difference of any two sets A and B is defined as

$$A + B = (A - B) \cup (B - A)$$

The operation + defined as above is commutative because A + B = B + A. This operation is also associative so that A + (B + C) = (A + B) + C.

If D is a set, then the power set of D is the set P_D of all the subsets of D. That is,

$$P_D = \{A : A \subseteq D\}$$

The operation + is to be regarded as an operation on P_D .

1.

Proposition. The identity element with respect to the operation + on the set P_D is \varnothing .

Proof. To prove that \varnothing is the identity element with respect to the operation +, let A be an arbitrary element of P_D . Then

$$A + \varnothing = (A - \varnothing) \cup (\varnothing - A) = A \cup A = A$$

and

$$\varnothing + A = (\varnothing - A) \cup (A - \varnothing) = A \cup A = A$$

Therefore, we conclude that \varnothing is the identity element with respect to the operation +.

2.

Proposition. Every subset A of D has an inverse with respect to +, which is A.

Proof. Let A be an arbitrary element of D. Then we see that A is the inverse of A with respect to + because

$$A+A=(A-A)\cup(A-A)=\varnothing\cup\varnothing=\varnothing$$

and

$$A+A=(A-A)\cup(A-A)=\varnothing\cup\varnothing=\varnothing$$

Therefore, \varnothing is the inverse of A with respect to + on D.

3.

(a) If D is the three element set $\{a, b, c\}$ then $P_D = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$.

(b) The operation table for $\langle P_D, + \rangle$ is