TD₀

Vanoise Express – Sujet

E3A - PSI - 2014.

Présentation

Le téléphérique Vanoise Express relie les domaines skiables de La Plagne et Les Arcs.

Dans ce qui suit, on désire respecter les critères suivants du cahier des charges partiel :

C1-02
C2-04

Exigences	Critère	Niveau
Contrôler l'énergie	Ecart statique en vitesse en présence d'une perturbation échelon	$\varepsilon_s = 0$
	Ecart de traînage (ou écart dynamique) en vitesse en l'absence de perturbations	$\varepsilon_{v} = 0$
	Marge de phase	<i>M</i> φ ≥ 45°
	Pulsation de coupure en boucle ouverte (pulsation pour laquelle le gain en boucle ouverte vaut 0dB)	$\omega_{0dB} \ge 1 rd / s$

Modélisation du moteur à courant continu

Hypothèses et données :

- ▶ on suppose les conditions initiales nulles;
- ▶ les deux moteurs sont et fonctionnent de manière parfaitement identique;
- ► L = 0.59 mH inductance d'un moteur;
- $R = 0.0386 \Omega$ résistance interne d'un moteur;
- ► $f = 6 \,\mathrm{Nm\,s/rad}$ coefficient de frottement visqueux équivalent ramené sur l'axe des moteurs;
- ► $J = 800 \text{ kg m}^2$ moment d'inertie total des pièces en rotation, ramené sur l'axe des moteurs;
- $ightharpoonup c_m(t) = k_T i(t)$ avec $k_T = 5.67$ Nm/A (constante de couple d'un moteur);
- $e(t) = k_E \omega_m(t)$ avec $k_T = 5.77 \,\text{Vs/rad}$ (constante électrique d'un moteur)
- équations de la dynamique : $2c_m(t) c_r(t) = J \frac{\mathrm{d}\omega_m(t)}{\mathrm{d}t} + f\omega_m(t)$;
- ► loi des mailles : $u(t) e(t) = Ri(t) + L \frac{di(t)}{dt}$.

Question 1 Le schéma-blocs de la double motorisation étant fourni ci-après, déterminez les fonctions de transfert $G_1(p)$, $G_2(p)$, $G_3(p)$ et $G_4(p)$ écrites dans le domaine de Laplace.

Question 2 $\Omega_m(p)$ peut se mettre sous la forme : $\Omega_m(p) = F_1(p)U(p) - F_2(p)C_r(p)$. Exprimer les fonctions $F_1(p)$ et $F_2(p)$ en fonction de $G_1(p)$, $G_2(p)$, $G_3(p)$ et $G_4(p)$.

On donne les résultats d'une simulation réalisée sur l'ensemble de la motorisation, constituée des deux moteurs à courant continu :

- ▶ i(t) intensité traversant un moteur;
- ▶ e(t) force contre électromotrice d'un moteur;
- $\omega_m(t)$ vitesse de rotation d'un moteur;
- $c_m(t)$ couple d'un seul moteur;
- c_r(t) couple de perturbation engendré par le poids du téléphérique dans une pente et par l'action du vent, ramené sur l'axe des moteurs.

FIGURE 1 – Réponse en vitesse à un échelon de tension u(t) d'amplitude 100 V.

FIGURE 2 – Réponse en vitesse à un échelon de couple de perturbation $c_r(t)$ d'amplitude $1000\,\mathrm{N}$ m.

- 1. la première courbe représente la réponse en vitesse à un échelon de tension u(t) d'amplitude 100 V (le couple de perturbation $c_r(t)$ est nul);
- 2. la seconde courbe représente la réponse en vitesse à un échelon de couple de perturbation $c_r(t)$ d'amplitude $1000 \,\mathrm{N}$ m (la tension u(t) est nulle).

Question 3 Choisissez et justifiez un modèle d'identification de ces fonctions (premier ordre, second ordre etc...). Déterminez numériquement les deux fonctions $F_1(p)$ et $F_2(p)$ par identification.

En faisant l'approximation que les deux fonctions $F_1(p)$ et $F_2(p)$ ont sensiblement le même dénominateur, le schéma-blocs ci-dessus peut se mettre sous la forme suivante :

Question 4 Donnez la valeur numérique des trois constantes *B*, *D* et *T*.

La motorisation modélisée ci-dessus est insérée dans une boucle d'asservissement de vitesse.

- ▶ La consigne de vitesse $v_c(t)$ est donnée en entrée. Elle est convertie en une tension $\rho_c(t)$ avec le gain F.
- ▶ Une génératrice tachymétrique de gain $\mu = 0.716 \, \text{V} \, \text{s/rad}$ transforme la vitesse de rotation $\omega_m(t)$ du moteur en une tension $\rho_m(t)$.
- ▶ Un correcteur de fonction de transfert C(p) corrige la différence $\varepsilon(t) = \rho_c(t) \rho_m(t)$ et l'envoie à un amplificateur de gain A, qui alimente les deux moteurs électriques.
- ▶ La vitesse de rotation des moteurs $\omega_m(t)$ est transformée en vitesse du téléphérique v(t) avec le gain $E=0.1\,\mathrm{m}$ (réducteur et rayon de la poulie).

Question 5 Déterminez l'expression du gain F pour que $\varepsilon(t)=0$ entraı̂ne $v_{\varepsilon}(t)=v(t)$. Faire une application numérique.

Par transformation du schéma-blocs, le système est mis en retour unitaire. On obtient le résultat ci-dessous :

Les coefficients E et F calculés précédemment sont intégrés dans les nouveaux coefficients A' et G. Pour la suite, on continuera avec les valeurs suivantes : $A' \cdot B = 3 \cdot 10^4 \text{ sN}$; $G = 6 \cdot 10^{-5} \text{ m/(sNm)}$ et T = 0.47 s.

On se propose de tester successivement 3 correcteurs, et de retenir celui qui permet de respecter le cahier des charges.

Utilisation d'un correcteur proportionnel

$$C(p) = C_0 = 1.$$

Question 6 Justifiez en quelques mots que le système est stable avec ce correcteur.

Question 7 On suppose $C_r(p) = 0$. Calculez en fonction de C_0 , A', B, G et V_0 l'expression de l'écart statique en suivi de consigne ε'_s engendré par une consigne en échelon d'amplitude $V_0 = 12 \, \text{m/s}$. Faire l'application numérique.

On suppose $V_c(p) = 0$.

Question 8 Calculez en fonction de C_0 , A', B, G et C_{r0} l'expression de l'écart statique en régulation ε_s'' engendré par une perturbation en échelon d'amplitude $C_{r0} = -7270 \,\mathrm{Nm}$ qui modéliserait la descente des Arcs. Faire l'application numérique.

Question 9 Faire également une application numérique si $C_{r0} = 7460 \,\mathrm{Nm}$ qui modéliserait la montée vers La Plagne.

Question 10 Donnez numériquement l'écart statique total $\varepsilon_s = \varepsilon_s' + \varepsilon_s''$ dans les deux cas suivants : descente des Arcs et montée vers La Plagne.

Question 11 Existe-t-il une valeur réaliste de C_0 pour laquelle le critère « Écart statique en vitesse en présence d'une perturbation échelon » serait vérifié? Justifiez.

Utilisation d'un correcteur intégral

On choisit maintenant le correcteur $C(p) = \frac{C_i}{p}$.

Question 12 Donnez l'expression de la fonction de transfert en boucle ouverte du système, notée FTBO(p). Faire l'application numérique pour $C_i = 1$.

Question 13 Tracez le diagramme asymptotique de Bode de FTBO(p). Tracez également l'allure des courbes.

Question 14 Quelles valeurs numériques de C_i permettent de respecter le critère de « Marge de phase » du cahier des charges?

Question 15 Ces valeurs numériques de C_i permettent-elles de respecter le critère de « Pulsation de coupure en boucle ouverte » du cahier des charges ? Justifiez.

Question 16 On suppose Cr(p)=0. Calculez numériquement l'écart statique en suivi de consigne ε'_s engendré par une consigne en échelon d'amplitude $V_0=12 \,\mathrm{m/s}$.

Question 17 On suppose $V_c(p) = 0$. Calculez numériquement l'écart statique en régulation ε_s'' engendré par une perturbation échelon d'amplitude $C_{r0} = -7270 \,\mathrm{N}\,\mathrm{m}$ qui modéliserait la descente des « Arcs ».

Question 18 Donnez numériquement l'écart statique total $\varepsilon_s = \varepsilon_s' + \varepsilon_s''$. Le critère « Écart statique en vitesse en présence d'une perturbations échelon » est-il vérifié? Justifiez.

On suppose $C_r(p) = 0$.

Question 19 Calculez l'expression de l'écart de traînage ε_v engendré par une consigne en rampe unitaire. Existe-t-il une valeur de réaliste qui permette de vérifier le critère « Écart de traînage (ou écart dynamique) en vitesse en l'absence de perturbations »? Justifiez.

Utilisation d'un double correcteur intégral et d'un correcteur à avance de phase

On décide d'utiliser le correcteur $C(p) = C_a(p) \frac{1}{p^2}$, produit de la fonction $C_a(p) = K \frac{1 + a\tau p}{1 + \tau p}$ avec a > 1 (correcteur dont la fonction est d'ajouter de la phase) et d'un double intégrateur. On donne en fin de document réponse le diagramme de Bode de la fonction $H(p) = \frac{A'BG}{p^2(1 + Tp)}$, qui est la fonction de transfert en boucle ouverte du système sans $C_a(p)$ (c'est-à-dire pour $C_a(p) = 1$).

Question 20 Montrez que le système n'est pas stable sans la fonction $C_a(p)$?

La fonction $C_a(p)$ va nous permettre de stabiliser le système et de respecter les critères de « Marge de phase » et de « Pulsation de coupure en boucle ouverte ». Pour cela, il faut suivre la démarche suivante.

Question 21 Combien de degrés de phase faut-il ajouter à la pulsation 1 rad/s pour obtenir une phase de -135° ?

Question 22 Tracez en fonction de a, τ et K les diagrammes asymptotiques de Bode (amplitude et phase) du correcteur $C_a(p) = K \frac{1 + a\tau p}{1 + \tau p}$ avec a>1. Précisez clairement les amplitudes ou les phases de toutes les asymptotes horizontales en fonction des différents paramètres. Précisez de même les pulsations des points particuliers.

Question 23 La phase maximum φ_{\max} ajoutée par $C_a(p)$ peut être calculée par la formule : $\sin \varphi_{\max} = \frac{a-1}{a+1}$. Calculez numériquement a pour obtenir la remontée de phase déterminée sur le diagramme de Bode précédemment.

Pour cette question, on pourra utiliser les propriétés de symétrie de la courbe de phase.

Question 24 Donnez l'expression en fonction de a et τ de la pulsation ω pour laquelle la courbe de phase atteint son maximum.

Question 25 En déduire la valeur numérique de τ pour que φ_{\max} soit ajoutée à la pulsation 1 rad/s.

Question 26 Calculez numériquement la valeur à donner à *K* pour respecter les critères de « Marge de phase » et de « Pulsation de coupure en boucle ouverte » du cahier des charges? Précisez la démarche utilisée.

Question 27 Les critères « Écart statique en vitesse en présence d'une perturbation échelon » et « Écart de traînage (ou écart dynamique) en vitesse en l'absence de perturbations » sont-ils vérifiés ? Justifiez.

Question 28 Ce correcteur permet-il de vérifier les critères du cahier des charges? Justifiez.

Éléments de correction

1.
$$G_1(p) = \frac{1}{R + Lv}$$
, $G_2(p) = k_T$, $G_3(p) = \frac{1}{f + Iv}$, $G_1(p) = k_E$.

1.
$$G_1(p) = \frac{1}{R + Lp}$$
, $G_2(p) = k_T$, $G_3(p) = \frac{1}{f + Jp}$, $G_1(p) = k_E$.
2. $F_1(p) = \frac{2G_1(p)G_2(p)G_3(p)}{1 + 2G_1(p)G_2(p)G_3(p)G_4(p)}$ et $F_2(p) = G_1(p)$

$$\frac{G_3(p)}{1 + 2G_1(p)G_2(p)G_3(p)G_4(p)}$$

$$\frac{1 + 2G_1(p)G_2(p)G_3(p)G_4(p)}{1 + 2G_1(p)G_2(p)G_3(p)G_4(p)}.$$
3. $F_1(p) = \frac{0,1725}{1 + 0,47p}$ et $F_2(p) = \frac{5,8 \cdot 10^{-4}}{1 + 0,47p}$.

4. $B = 297,4 \text{ N m V}^{-1}$, $D = 5,8.10^{-4} \text{ rad.s}^{-1} \text{Nm et } T = 0,47 \text{ s.}$

4.
$$B = 297.4 \,\mathrm{N \, m \, V^{-1}}$$
, $D = 5.8.10^{-4} \,\mathrm{rad.s^{-1}}$ Nm et $T = 0.47 \,\mathrm{s}$

5.
$$F = \frac{\mu}{F} = 7.16 \,\mathrm{V \, s \, m^{-1}}$$

4.
$$B = 297.4 \text{ N m V}^{-1}$$
, $D = 5, 8.10^{-4} \text{ rad.s}^{-1} \text{Nm et } I = 5$. $F = \frac{\mu}{E} = 7,16 \text{ V s m}^{-1}$
6. FTBO d'ordre 1 bouclé. Le système est stable.
7. FTBO de classe $0 \varepsilon_S' = \frac{V_0}{1 + C_0 A' BG} = 4,286 \text{ m s}^{-1}$.
8. $\varepsilon_S'' = -0,156 \text{ m s}^{-1} - \text{à vérifier.}$

8.
$$\varepsilon_c'' = -0.156 \,\mathrm{m \, s^{-1}} - \text{à vérifier}.$$

9.
$$\varepsilon_s'' = 0.160 \,\mathrm{m \, s^{-1}}$$

8.
$$\varepsilon_S'' = -0.156 \,\mathrm{m \, s^{-1}} - \mathrm{a} \, \mathrm{v\'erifier}.$$

9. $\varepsilon_S'' = 0.160 \,\mathrm{m \, s^{-1}}.$
10. $\varepsilon_S' = 4.13 \,\mathrm{m \, s^{-1}}, \, \varepsilon_S' = 4.46 \,\mathrm{m \, s^{-1}}.$
11. C_0 infini

11.
$$\tilde{C_0}$$
 infini

12. FTBO(
$$p$$
) = $\frac{1,8}{p(1+0,47p)}$

14.
$$\omega_{0 dB} \le 2,13 \text{ rad s}^{-1} \text{ et } C_i \le 1,67.$$

16. FTBO de classe 1
$$\varepsilon_S' = 0$$
.

17. Intégrateur en amont de la perturbation
$$\varepsilon_S'' = 0$$
.

19.
$$\varepsilon_v = \frac{1}{C_i A' B G}$$

23.
$$a = 32, 16$$

23.
$$a = 32, 16$$

24. $\omega = \frac{1}{\sqrt{\tau a \tau}}$

25.
$$\tau = 0.176 \,\mathrm{s}$$

26.
$$K = 0, 109$$