| 2013학년도 1학 | 학 과                               |     | 감-  | 독교수확인 |  |
|------------|-----------------------------------|-----|-----|-------|--|
| 과 목 명      | 일반수학 1                            | 학 번 |     |       |  |
| 출제교수명      | 공 동                               | 교수명 | 분 반 |       |  |
| 시 험 일 시    | 2013년 06월 17일<br>(오전 10:00-11:40) | 성 명 |     | 점 수   |  |

| 1번 - 10번은 단답형 문제(각 5점 만점)입니다.               | 풀이과 |
|---------------------------------------------|-----|
| 정은 쓸 필요 없고 답만 쓰면 됩니다.                       |     |
| 1. 주어진 식 $tan^{-1}2 + tan^{-1}3$ 의 값을 구하여라. |     |

3. 적분 $\int_{1}^{e} (\ln x)^{3} dx$ 의 값을 구하여라.

2. 적분 $\int_0^{\pi} \sin x \sqrt{1 + \cos^2 x} \, dx$ 의 값을 구하여라.

답:

4. 부정적분  $\int \tan^3 x \ln(\sec x) dx$ 을 구하여라.

답:

답:

| 2013학년도 13 | 학 과                               |     | 감 <del>.</del> | 독교수확인 |  |
|------------|-----------------------------------|-----|----------------|-------|--|
| 과 목 명      | 일반수학 1                            | 학 번 |                |       |  |
| 출제교수명      | 공 동                               | 교수명 | 분 반            |       |  |
| 시 험 일 시    | 2013년 06월 17일<br>(오전 10:00-11:40) | 성 명 |                | 점 수   |  |

| 5. 임의의 실수 $p$ 에 | 대하여, 급수 $\sum_{n=1}^{\infty} n^p \ln n$ 이 | 수렴할 | 7. 可介 $\sum_{n=2}^{\infty} (-1)^n \frac{1}{n \ln n} $ 의 | 절대수렴, | 조건수렴, | 발산을 |
|-----------------|-------------------------------------------|-----|---------------------------------------------------------|-------|-------|-----|
| p의 조건과 발산할      | p의 조건을 각각 구하여라                            |     | 판정하여라.                                                  |       |       |     |

답:

6. 적분  $\int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} \frac{1}{\sin x + \tan x} dx$ 의 값을 구하여라.

답:

8. 함수  $f(x) = \frac{1}{3+x-x^2}$ 의 변수 x에 대한 멱급수 전개식에서  $x^3$ 의 계수를 구하여라.

답:

답:

| 2013학년도 13 | 학 과                            |     | 감-  | 독교수확인 |  |
|------------|--------------------------------|-----|-----|-------|--|
| 과 목 명      | 일반수학 1                         | 학 번 |     |       |  |
| 출제교수명      | 공 동                            | 교수명 | 분 반 |       |  |
| 시 험 일 시    | 2013년 06월 17일 (오전 10:00-11:40) | 성 명 |     | 점 수   |  |

9. 특이적분  $\int_0^\infty \frac{1}{x^3+1} dx$  의 수렴, 발산을 조사하고, 수렴하면 그 값을 구하여라.

11번~15번은 서술형 문제(각 10점 만점)입니다. 풀이과 정을 모두 서술하여야 합니다.

11. 중심이 O이고 중심각이  $\theta$ 인부채꼴이 있다.  $A(\theta)$ 가 현PR과호PR 사이의 영역이라 하고  $B(\theta)$ 를 삼각형 PQR의 넓이라고 할 때  $\lim_{\theta \to 0} \frac{A(\theta)}{B(\theta)}$ 를 구하여라. 0



답:

10. 급수  $\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$  의 수렴구간을 구하여라.

답:

| 2013학년도 1학   | 학 과                               |     | 감-  | 독교수확인 |  |
|--------------|-----------------------------------|-----|-----|-------|--|
| 과 목 명 일반수학 1 |                                   | 학 번 |     |       |  |
| 출제교수명        | 공 동                               | 교수명 | 분 반 |       |  |
| 시 험 일 시      | 2013년 06월 17일<br>(오전 10:00-11:40) | 성 명 |     | 점 수   |  |

| 12. | 극한값 | lim tan | $\frac{-1}{x^8}$ | P(x) = | $\frac{2}{3} \stackrel{\circ}{=}$ | 만족하는  | 최소차 | 13. | 부정적· | 분 $\int$ | $\frac{2x}{\sqrt{x^2 + 2x + 26}}$ | dx을 | 구하여라. |  |
|-----|-----|---------|------------------|--------|-----------------------------------|-------|-----|-----|------|----------|-----------------------------------|-----|-------|--|
|     |     |         |                  |        |                                   | 구하여라. |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |
|     |     |         |                  |        |                                   |       |     |     |      |          |                                   |     |       |  |

| 2013학년도 15 | 학 과                               |     | 감-  | 독교수확인 |  |
|------------|-----------------------------------|-----|-----|-------|--|
| 과 목 명      | 일반수학 1                            | 학 번 |     |       |  |
| 출제교수명      | 공 동                               | 교수명 | 분 반 |       |  |
| 시 험 일 시    | 2013년 06월 17일<br>(오전 10:00-11:40) | 성 명 |     | 점 수   |  |

| 지 임 될 지<br>-<br>- 부두신 ln(n) < 1     | (오전 10:00-11:40)                                                           | (n) (n:자여                           | 15. 개구간 (-2,2) 에서 정의된 함수                                                                                                                                           |
|-------------------------------------|----------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sum_{n=1}^{\infty} \frac{1}{n^2}$ | 급수의 수렴 및 발산을 된 $\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right).$ | , , , , , , , , , , , , , , , , , , | [15. 개구간 $(-2,2)$ 에서 정의된 함수 $f(x) = \int_0^x \frac{t}{(t+2)(t+3)} dt$ 의 매클로린 급수가 $\sum_{n=0}^\infty a_n x^n$ 일 때, 무한급수 $\sum_{n=1}^\infty (-1)^n n a_n$ 을 값을 구하여라. |
|                                     |                                                                            |                                     |                                                                                                                                                                    |
|                                     |                                                                            |                                     |                                                                                                                                                                    |
|                                     |                                                                            |                                     |                                                                                                                                                                    |
|                                     |                                                                            |                                     |                                                                                                                                                                    |
|                                     |                                                                            |                                     |                                                                                                                                                                    |
|                                     |                                                                            |                                     |                                                                                                                                                                    |
|                                     |                                                                            |                                     |                                                                                                                                                                    |
|                                     |                                                                            |                                     |                                                                                                                                                                    |
|                                     |                                                                            |                                     |                                                                                                                                                                    |