1. Implementation

a. Which algorithm do you choose in hw3-1?

我使用的是Floyd Warshall algorithm,然後以pthread作平行,因為第k + 1輪的計算會用到第k輪的值,所以要使用barrier等待所有thread完成第k輪的計算。

b. How do you divide your data in hw3-2, hw3-3?

我讓每個block對應到一個Blocked Floyd Warshall algorithm中的block,而在block中每一個thread對應到一個vertex。在Phase 1時只會用到pivot block自己的數值,在Phase 2時會用到Phase 1中計算的pivot block以及自己的數值,而在Phase 3時則需要自己對應到pivot row, pivot col的兩個block的數值。

在hw3-2中,每個GPU block都有全部distance的值,因此只需要在計算時使用對應的block的數值。在hw3-3中,我把Phase 3的block分配給兩個GPU,若總block數量是奇數,則由第二個GPU多拿一個。

c. What's your configuration in hw3-2, hw3-3? And why? hw3-2

	blocking factor	nBlocks	nThreads
Phase 1	32	1	(B, B)
Phase 2	32	rounds	(B, B)
Phase 3	32	(rounds, rounds)	(B, B)

因為將blocking Factor設為32,且所有的block中的thread數量都是B*B,也就是1024,剛好達到cuda的上限,也因此讓每個thread剛好能對應到一個vertex。

因此在Phase 1中只要計算pivot block就只需要一個block,而在Phase 2中需要計算2 * (rounds - 1)個block,因為我讓一個GPU block同時計算row和column上的block,因此我們需要rounds個block,在Phase 3則是計算剩下所有block,也就是(rounds - 1) * (rounds - 1)個block>。因此我們用到rounds個block。

	blocking factor	nBlocks	nThreads
Phase 1	32	1	(B, B)
Phase 2	32	rounds	(B, B)
Phase 3	32	(rounds, split)	(B, B)

與hw3-2類似,但是在Phase 3中,因為要把資料分給兩個GPU,因此一個CPU要用到(split * rounds);

- d. How do you impement the communication in hw3-3?
- e. Briefly describe your implementations

hw3-2

先將讀進的V加上padding而能被B整除

```
V_{padding} = (V \% B == 0) ? V : (V / B + 1) * B;
```

將讀進的資料存為一維陣列Dist, size為V_padding * V_padding, 並將edges讀進並寫進Dist。 接著把Dist複製到device

```
size_t size = sizeof(int) * V_padding * V_padding;
cudaMalloc(&Dist_device, size);
cudaMemcpy(Dist_device, Dist, size, cudaMemcpyHostToDevice);
```

根據V_padding, B算出總共需要的rounds數,並且在rounds內不斷進行Phase 1 -> Phase 2 -> Phase 3,最後算完之後把結果複製回host

```
rounds = ceil(V_padding / B);
dim3 num_threads(B, B), num_blocks_3(rounds, rounds);
for (int round = 0; round < rounds; round++) {
    Phase1<<<1, num_threads>>>(Dist_device, round, V_padding);
    Phase2<<<rounds, num_threads>>>(Dist_device, round, V_padding);
    Phase3<<<num_blocks_3, num_threads>>>(Dist_device, round, V_padding);
}
cudaMemcpy(Dist, Dist_device, size, cudaMemcpyDeviceToHost);
```

在Phase 1中,根據threadIdx, round, B算出要計算的block位置,並用Floyd Warshall algorithm算出結果。

```
int i = threadIdx.y + round * B;
int j = threadIdx.x + round * B;
for (int k = round * B; k < (round + 1) * B; k++) {
   if (d[i * v + k] + d[k * v + j] < d[i * v + j])
      d[i * v + j] = d[i * v + k] + d[k * v + j];</pre>
```

```
__syncthreads();
}
```

在Phase 2中,根據blockldx.y判斷是做row block還是col block並決定i, j,再以Floyd Warshall algorithm算出結果,這裡不用___syncthreads()是因為Phase 2只對Phase 1的結果有dependency。

```
if (blockIdx.x == round) // pivot block
    return;
int i = threadIdx.y + blockIdx.x * B;
int j = threadIdx.x + blockIdx.x * B;
int pivot_i = threadIdx.y + round * B;
int pivot_j = threadIdx.x + round * B;
if (blockIdx.y == 0) // pivot row
    i = pivot_i;
else // pivot column
    j = pivot_j;
for (int k = round * B; k < (round + 1) * B; k++) {
    if (d[i * v + k] + d[k * v + j] < d[i * v + j])
        d[i * v + k] + d[k * v + j];
}</pre>
```

在Phase 3中,根據threadIdx, blockIdx, B算出要計算的block位置,再以Floyd Warshall algorithm算出結果, 這裡不用__syncthreads()是因為Phase 3只對Phase 2的結果有dependency。

hw3-3

在hw3-3中,使用兩個GPU實作,我使用OpenMP實作。因為主要是Phase 3的計算量很大,我在Phase 1, Phase 就使用原本的kernel function,而在Phase 3中,把所有要計算的block分成一半,但在不同round時,會有一些data需要溝通。舉例來說,當3 * 3的problem進行第二輪時,在計算最左上角的block時,會用到它左邊及下面的block的data,而它左邊的block是由另一個thread計算,下面則是上一輪做過的,因此需要複製的是另一個thread的row block。如下圖:


```
int curRow = round * B * V_padding;
if ((round >= offset) && (round < offset + round_split))
    cudaMemcpy(Dist_device[otherid] + curRow, Dist_device[id] + curRow,
sizeof(int) * B * V_padding, cudaMemcpyDeviceToDevice);</pre>
```

2. Profiling Results

使用p11k1作為testcase。

	Min	Max	Avg
occupancy	0.876928	0.87828	0.877548
SM efficiency	99.71%	99.88%	99.87%
shared memory load throughput	2820.5 GB/s	2864.6 GB/s	2835.9 GB/s
shared memory store throughput	117.52 GB/s	119.36 GB/s	118.16 GB/s
global memory load throughput	176.28 GB/s	179.04 GB/s	177.25 GB/s
global memory store throughput	58.759 GB/s	59.680 GB/s	59.082 GB/s

3. Experiment & Analysis

a. System Spec

使用課程提供的hades。

b. Blocking Factor

使用c20.1作為testcase, GOPS為integer instruction除以total time, memory bandwidth為load, store加總。

Figure 1. Computation performance

Global Memory Throughput

Figure 2. Global memory throughput

Figure 3. Shared memory throughput

圖1中可以看出Blocking factor越大越好,圖2可以發現Blocking factor越大時需要access global memory的傳輸量變少,圖3可以發現Blocking factor越大使用shared memory越多。因此我選擇32。

c. Optimization

Figure 4. Performance optimization

圖中可以看出shared memory的優化是最多的。

d. Time Distribution

Figure 4. Time distribution

圖中可以看出最耗時的還是computing,因此若要繼續優化的方向還是往這方面為主,不過越大的testcase可以看到I/O也會是一個負擔,我想這兩方面還有優化空間。

4. Experience & Conclusion

這次作業中我花了非常多的時間,在寫的時候遇到很多麻煩一直上網查資料,在過程中學到了很多東西,但最後還是無法過全部的測資,還是有點遺憾。

我學到最多的是nvprof的使用,它能看到很多程式執行的細節,對於程式開發者有很大的幫助。