Applications of the Definite Integral

If y = f(x) is a continuous function on $a \le x \le b$ and F(x) is an antiderivative of f(x) and may be denoted by

$$\int f(x)dx = F(x) + C \text{ , where } C \text{ is some constant.}$$
 (1)

The definite integral of f(x) on the interval (a,b) is

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
(2)

The definite integrals have a lot of applications in geometry and physics such as area under a curve, area between curves, volume, arc length, surface area, moment and work.

1. Area Under a Curve

If y = f(x) is a non-negative and continuous function on $a \le x \le b$ as shown in figure 1

 $A = \int_a^b y \, dx .$

Area under the curve of y = f(x)

from x = a to x = b as shown here is

Figure 1

If we want to find the area covered by the curves of x = g(y) where $g(y) \ge 0$, y - axis, y = c and y = d as shown in Figure 2, we partition the area into n small parts, all parts' widths are denoted by $\Delta y_1, \Delta y_2, \ldots, \Delta y_n$ and each length is x = g(y).

Consider the i^{th} partition.

Area $\Delta A_i \approx x \cdot \Delta y_i = \text{width} \times \text{length}$.

Then,
$$A \approx \sum_{i=1}^{n} \Delta A_i = \sum_{i=1}^{n} (x \cdot \Delta y_i)$$
.

If $n \to \infty$ (or $\Delta y_i \to 0$), we have

$$A = \lim_{\Delta y_i \to 0} \sum_{i=1}^n (x \cdot \Delta y_i) = \int_c^d x \, dy.$$

Summary Area under a curve

1. Area covered by the curves of y = f(x) where

$$f(x) \ge 0$$
, x-axis, $x = a$, and $x = b$ is

$$A = \int_{a}^{b} y \, dx \ . \tag{3}$$

2. Area covered by the curves of x = g(y) where

$$g(y) \ge 0$$
, $y - axis$, $y = c$ and $y = d$ is

$$A = \int_{c}^{d} x \, dy. \tag{4}$$

Example 1 Compute the area covered by $y = x^2$, the x-axis, x = 2 and x = 4.

Solution

Partition along the x – axis

$$\Delta A_i = y \cdot \Delta x_i$$

$$A = \int_2^4 y \, dx$$

$$= \int_2^4 x^2 \, dx = \left[\frac{x^3}{3} \right]_2^4$$

$$= \frac{4}{3} - \frac{2}{3}^3 = \frac{64}{3} - \frac{8}{3} = \frac{56}{3}$$

$$= 18\frac{2}{3} \quad \text{unit}^3.$$

Example 2 Find the area covered by $y = x^3$, x = -1, x = 2 and the x-axis.

Solution

Remark The area is a non-negative value, but the definite integral may be negative. So, we may write the area as $A = \left| \int_a^b f(x) \, dx \right|$.

If we integrate along the x-axis, the definite integral is positive when the graph is above x-axis and negative when the graph is below x-axis. For example, as in example 2,

$$\int_{-1}^{2} y \, dx = \int_{-1}^{2} x^3 \, dx = \left[\frac{x^4}{4} \right]_{x=-1}^{x=2} = \left[\frac{2^4}{4} - \frac{(-1)^4}{4} \right] = 4 - \frac{1}{4} = 3\frac{3}{4}.$$

It is the area under the curve above x-axis from 0 to 2 minus the area below the x-axis from -1 to 0.

To find the total area of under the curve of y = f(x), $a \le x \le b$ as shown here

Figure 5

Total area

$$A = |A_1| + |A_2| + |A_3| + |A_4|$$

$$= \left| \int_a^c f(x) dx \right| + \left| \int_c^d f(x) dx \right| + \left| \int_d^e f(x) dx \right| + \left| \int_e^b f(x) dx \right|.$$

- 1. Analogously, if we integrate along the y-axis, the definite integral is positive when the graph is on the right and negative when the graph is on the left of the y-axis.
- 2. If a graph is symmetric, we can integrate just one part and multiply by number of symmetries as shown in example 3.

Example 3 Compute the area covered by |x| + |y| = a.

Solution By definition of absolute value

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}, \text{ we have}$$
Figure 6
$$|x| + |y| = a \rightarrow \begin{cases} x + y = a & \text{when } x \ge 0 \text{ and } y \ge 0 \\ x - y = a & \text{when } x \ge 0 \text{ and } y < 0 \\ -x + y = a & \text{when } x < 0 \text{ and } y \ge 0 \\ -x - y = a & \text{when } x < 0 \text{ and } y < 0 \end{cases}.$$

As we can see, this graph is symmetric about the origin. So we can just find the area in the first Quadrant, called it A_1 . The total area is then four times A_1 .

Consider A_1 If partition along the y -axis,

$$\Delta A_1 = x \cdot \Delta y \quad \text{where} \quad x = a - y.$$

$$A_1 = \int_0^a (a - y) \, dy = \left[ay - \frac{y^2}{2} \right]_{y=0}^{y=a}$$

$$= a^2 - \frac{a^2}{2} = \frac{a^2}{2}.$$

Finally, we obtain

$$A = 4A_1 = \frac{4a^2}{2} = 2a^2 \text{ unit}^3$$
.

2. Area Between Curves

2.1 Rectangular Form

If $y_1 = f(x)$ and $y_2 = g(x)$ are continuous functions such that $y_2 \ge y_1$ for $a \le x \le b$, we may compute the areas between these two curves y_1 , y_2 from x = a and x = b as shown below.

Figure 7

Partition the area into small n parts with widths $\Delta x_1, \Delta x_2, \ldots, \Delta x_n$.

Let ΔA_i = the area of the i^{th} partition.

Then $\Delta A_i \approx (y_2 - y_1) \cdot \Delta x_i = \text{width} \times \text{length}$

Thus, the total area

$$A \approx \sum_{i=1}^{n} \Delta A_i \approx \sum_{i=1}^{n} (y_2 - y_1) \cdot \Delta x_i$$

If $\Delta x_i \to 0$, the length $(y_2 - y_1)$ of the interval (x_{i-1}, x_i) will approach $(y_2 - y_1)$ at x_{i-1} and x_i . Thus, the approximation is closer and closer to the exact area. Therefore,

$$A = \lim_{\substack{\Delta x_i \to 0 \\ n \to \infty}} \sum_{i=1}^{n} \Delta A_i = \lim_{\substack{\Delta x_i \to 0 \\ n \to \infty}} \sum_{i=1}^{n} (y_2 - y_1) \Delta x_i = \int_{a}^{b} (y_2 - y_1) dx.$$

This formula is always valid if $y_2 > y_1$. The above or below x-axis locations do not matter. Here are some examples.

Note If $y_2 \ge y_1$, y_2 is always above y_1 .

Summary If $y_1 = f(x)$ and $y_2 = g(x)$ are continuous functions such that $y_2 \ge y_1$ for $a \le x \le b$, then the area covered by the curves y_1 and y_2 from x = a to x = b is

$$A = \int_{a}^{b} (y_2 - y_1) dx = \int_{a}^{b} (g(x) - f(x)) dx.$$
 (5)

Analogously if $g_1(y)$ and $g_2(y)$ are continuous function such that $g_2(y) \ge g_1(y)$ for $c \le y \le d$, we may compute the area covered by $x_1 = g_1(y)$, $x_2 = g_2(y)$ from y = c to y = d. For $x_2 > x_1$ as shown in three figures below, we partition along the y-axis to n parts with widths $\Delta y_1, \Delta y_2, \ldots, \Delta y_n$.

Area of the i^{th} partition is

$$\Delta A_i \approx (x_2 - x_1) \cdot \Delta y_i = \text{length} \times \text{width}$$
.

Thus, the total area

$$A = \lim_{\substack{\Delta y_i \to 0 \\ (n \to \infty)}} \sum_{i=1}^n \Delta A_i = \lim_{\substack{\Delta y_i \to 0 \\ (n \to \infty)}} \sum_{i=1}^n (x_2 - x_1) \Delta y_i = \int_c^d (x_2 - x_1) dy.$$

Figure 10

Figure 11

Figure 12

If $x_1 = g_1(y)$ and $x_2 = g_2(y)$ are continuous functions such that $x_2 \ge x_1$ for $c \le y \le d$, then the area covered by $x_1, x_2, y = c$ and y = d is

$$A = \int_{c}^{d} (x_2 - x_1) dy = \int_{c}^{d} (g_2(y) - g_1(y)) dy.$$
 (6)

Example 4 Compute the area covered by $x^2 = y$, $x^2 = 4y$ and the line x = 2.

Approach 1 Partition along the x-axis.

Then
$$\Delta A = (y_2 - y_1) \cdot \Delta x$$

where $y_2 = x^2$ and $y_1 = \frac{x^2}{4}$.

$$A = \int_0^2 (y_2 - y_1) dx = \int_0^2 \left(x^2 - \frac{x^2}{4}\right) dx$$

$$= \frac{3}{4} \int_0^2 x^2 dx = \frac{3}{4} \left[\frac{x^3}{3}\right]_{x=0}^{x=2} = 2.$$

Approach 2 Partition along the y-axis: there are 2 parts.

$$\Delta A_1 = (x_2 - x_1) \Delta y$$

where $x_2 = \sqrt{4y}$ and $x_1 = \sqrt{y}$.

 A_2 : y from $1 \rightarrow 4$, we have

$$\Delta A_1 = (x_2 - x_1) \Delta y \quad \text{where} \quad x_2 = 2 \text{ and } x_1 = \sqrt{y} .$$

$$A_2 = \int_1^4 (x_2 - x_1) dy = \int_1^4 (2 - \sqrt{y}) dy$$

$$= \left[2y - \frac{2}{3}y^{3/2} \right]_{y=1}^{y=4} = \frac{4}{3} .$$

Therefore,

$$A = A_1 + A_2 = \frac{2}{3} + \frac{4}{3} = 2$$
.

No matter which approach you choose, the correct answer is always the same.

Example5 Compute the area covered by $y^2 = 2x$ and x - y = 4.

Solution

Compute the area covered by $y = -x^2 - 2x + 3$, its tangent line at (2,-5) and the y-axis.

Solution Consider $y = -x^2 - 2x + 3 = -(x^2 + 2x + 1) + 4$.

 $y-4=-(x+1)^2$ is a parabolic curve having a vertex at (-1, 4). This curve has the y-intercept as (0, 3) and has the x-intercept at x=-3, and x=1.

Consider $\frac{dy}{dx}=-2x-2$.

The slope of the tangent line at (2, -5) is -2(2)-2 = -6.

The equation of this tangent line can be found by $y - y_1 = m(x - x_1)$.

Here, we have $y_1 = -5$, $x_1 = 2$, m = -6.

So, y-(-5) = -6(x-2). That is, we have the equation of the tangent line of this parabola at (2, -5) is y = 7 - 6x.

If partition on x-axis,

$$\Delta A = (y_2 - y_1) \Delta x$$

where $y_2 = 7 - 6x$ and $y_1 = -x^2 - 2x + 3$.

Then,
$$A = \int_{0}^{2} \left[(7-6x) - (-x^{2} - 2x + 3) \right] dx$$
$$= \int_{0}^{2} \left[4 - 4x + x^{2} \right] dx = \frac{8}{3}.$$

Exercise 1

Compute each area covered by the following graphs

1.
$$x - axis$$
, $y = 2x - x^2$

2.
$$y - axis$$
, $x = y^2 - y^3$

3.
$$y^2 = x$$
, $x = 4$

4.
$$y = 2x - x^2$$
, $y = -3$

5.
$$y = x^2, y = x$$

6.
$$x = 3y - y^2$$
, $x + y = 3$

7.
$$y = x^4 - 2x^2$$
, $y = 2x^2$

8. First part of
$$y = \sin x$$

9.
$$y - axis$$
, $y^2 - 4x - 4 = 0$

10. Ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

11.
$$x = y^2$$
, $x = y$

12.
$$y^2 = 8x$$
, $x^2 = 4y$

13.
$$x^2 - 5x + y = 0$$
, $y = x$

14.
$$y^2 = 9x$$
, $y^2 = x^3$

15.
$$y = x^2$$
, $y = x$, $y = 2x$

16.
$$y^2 = 4x$$
, $2x - y - 4 = 0$

17.
$$y = x^3 - 4x$$
, $x - axis$

18.
$$x+2y=2$$
, $y-x=1$, $2x+y=7$

19.
$$x^2y = x^2 - 4$$
, x -axis, $x = 2$ and $x = 4$

20.
$$y = 6x + x^2 - x^3$$
, $x - axis$

21.
$$f(x) = \begin{cases} x^2, & x \le 2 \\ -x+6, & x > 2 \end{cases}$$
 from $x = 0$ and $x = 3$

22.
$$y = x(x-3)(x+3)$$
, $y = -5x$

23.
$$y=x^2$$
, $y=8-x^2$ and $y=4x+12$

24.
$$x=0$$
, $x=2$, $y=2^x$ and $y=2x-x^2$

25.
$$x = -2y^2$$
, $x = 1 - 3y^2$

26.
$$y=x+1$$
, $y=\cos x$ and the x-axis (largest region)

27. One loop of
$$y^2 = (x-1)(x-2)^2$$

28.
$$y=x^2-2x+2$$
, its tangent line at the point $M(3, 5)$, the y-axis

29.
$$\sqrt{x} + \sqrt{y} = 1$$
 and $x + y = 1$

30. $y=x^2$, y=4 This area is divided into 2 equal parts by the line y=c. Evaluate the value of c.

31.
$$x^2 = 4y$$
, $y = \frac{8}{x^2 + 4}$

32. One loop of
$$y^2 = (x-1)^2$$

33.
$$y^2 = 4x$$
, $x^2 = 4y$ and $x^2 + y^2 = 5$ where $x \ge 0$, $y \ge 0$

34. Hypocycloid:
$$x^{2/3} + y^{2/3} = a^{2/3}$$

35.
$$y^3 = x^2$$
 the cord connecting (-1, 1) and (8, 4)

36.
$$y^2 = x^2 (1 - x^2)$$

37.
$$xy = 4$$
, $y = x$, $x = 5$ and $x = \sqrt{-y}$

Answer 1

- 1. $\frac{4}{3}$
- 4.
- 7. $\frac{128}{15}$
- 10. πab
- 13. $\frac{32}{3}$
- 16.
- 19. 1 (Figure 17)

- 2. $\frac{1}{12}$
- 5. $\frac{1}{6}$
- 8. 2
- 11. $\frac{1}{6}$
- 14. $\frac{24\sqrt{3}}{5}$
- 17. 8
- 20. $\frac{253}{12}$ (Figure 18)

3. $\frac{32}{3}$ 6. $\frac{4}{3}$ 9. $\frac{8}{3}$

12. $\frac{16}{3}$

15. $\frac{7}{6}$

18.

- 21. $\frac{37}{6}$
- 27. $\frac{8}{15}$
- 30. $\frac{32}{3}$, $c = \sqrt[3]{16}$

- 22. 8
- 25. $\frac{4}{3}$

- 28. 9
- 29. $\frac{1}{3}$

23. 64

26. $\frac{3}{2}$

31. $2\pi - \frac{4}{3}$ (Figure 19)

32.
$$\frac{8}{15}$$
 (Figure 20)

33.
$$\frac{2}{3} + \frac{5}{2}\sin^{-1}\frac{3}{5}$$

34.
$$\frac{3}{8}\pi a^2$$

36.
$$\frac{4}{3}$$

37.
$$4(\ln 5 - \ln 2) + \frac{131}{3}$$