

An Agent based Approach to (Mathematical) Reasoning

Christoph Benzmüller

joint work with **Mateja Jamnik, Manfred Kerber, and Volker Sorge**

Fachbereich Informatik, Universität des Saarlandes School of Computer Science, The University of Birmingham

with thanks to: Alan Bundy, Michael Fisher, Andreas Franke, Malte Hübner, Andrew Ireland, Jürgen Zimmer

ARW/AISB'01, The University of York, March 23th 2001

Cognitive Perspective

To solve complex problems in mathematics or engineering

- different specialists may have to bring in their expertise and cooperate
- a communication language is required

A single mathematician

- possesses a large repertoire of specialised reasoning and problem solving techniques
- uses experience and intuition to flexibly combine them in an appropriate way

What is the best architecture for mathematical reasoning systems?

an agent based architecture?

Existing Systems

- heterogeneous
- different niches

Existing Systems

- heterogeneous
- different niches
- system networks:MATHWEB, PROSPER
- communication problem
- inflexible applications

How to realise a flexible interplay?

Flexible Integration

HO- and FO-ATP

Higher Order ATP with LEO

 C_1 : favourite-numbers($\lambda x \cdot \text{odd}(x) \wedge \text{square}(x)$)
unifies (semantically) with

 C_2 : $\neg favourite-numbers(\lambda x_\bullet square(x) \land (square(x) \Rightarrow odd(x)))$

iff the following set of first order clauses can be contradicted

First Order ATP with OTTER

 $\mathsf{square}(N)$ $\neg \mathsf{odd}(N) \lor \neg \mathsf{square}(N)$ $\mathsf{odd}(N) \lor \neg \mathsf{square}(N)$

HO- and FO-ATP

fn = **favourite-numbers**

o = odd

s = square

$$C_2: \neg \mathsf{fn}(\lambda x \cdot \mathsf{s}(x) \wedge (\mathsf{s}(x) \Rightarrow \mathsf{o}(x)))$$

$$\begin{array}{c|c} \operatorname{fn}(\lambda x \cdot o(x) \wedge \operatorname{s}(x)) & / \\ \vdots & ? \\ \operatorname{fn}(\lambda x \cdot \operatorname{s}(x) \wedge (\operatorname{s}(x) \Rightarrow o(x))) \end{array}$$

HO- and FO-ATP

HO- and FO-ATP

Ω ants

Agent based Theorem Prover

Main Components:

- ΩMEGA-System (Saarbrücken); ΩMEGA's proof data structure PDS
- ΩANTS blackboard architecture
- MATHWEB-System developed in Saarbrücken
- Various external systems integrated to Ω MEGA
- Translation modules like
 - TRAMP (FO resolution ⇒ ND)
 - SAPPER (CAS \Longrightarrow ND)
- Calculus NIC (Carnegie Mellon University) for efficient natural deduction proof search

Agent based Theorem Prover

Agent based Theorem Prover

Theorem Prover

Theorem Prover

Blackboard Architecture

Task:

Which commands (rules, tactics, external systems) are promising in the current proof state?

$\overline{ARW/AISB'01}$

Ω ANTS

$$\begin{array}{c} \forall x \text{.} \, \mathsf{fn}(x) \\ \mathsf{fn}(N) \Rightarrow \mathsf{o}(N) \wedge \mathsf{s}(N) \\ \mathsf{o}(N) \\ \mathsf{s}(N) \\ \vdots \\ \mathsf{o}(N) \wedge \mathsf{s}(N) \end{array}$$

$$\frac{\texttt{Left:} A \quad \texttt{Right:} B}{\texttt{Conj:} A \land B} \ \land \texttt{E}$$

$$\frac{\operatorname{Ant}: A \quad \operatorname{Imp}: B \Rightarrow C}{\operatorname{Succ}: C} \quad \operatorname{mp-mod}_{(A \to B)}$$

∧E-Agent-1

search for: Conj

required:

excluded: Left,Right

∧E-Agent-2

search for: Conj
required: Lef
excluded: Right

mp-mod-Agent-1

search for: Succ, Imp

required:

excluded: Ant

$$\frac{\text{Left:} A \quad \text{Right:} B}{\text{Coni:} O(N) \land S(N)} \land I$$

$$\frac{\text{Ant:}A \quad \text{Imp:} \textbf{fn}(N) \Rightarrow \textbf{o}(N) \land \textbf{s}(N)}{\text{Succ:} \textbf{o}(N) \land \textbf{s}(N)} \quad \underset{\textbf{(}A \rightarrow B\textbf{)}}{\text{mp-mod}}$$

ARW/AISB'01

MANTS

$$\begin{array}{c} \forall x \text{.} \, \mathsf{fn}(x) \\ \mathsf{fn}(N) \Rightarrow \mathsf{o}(N) \wedge \mathsf{s}(N) \\ \mathsf{o}(N) \\ \mathsf{s}(N) \\ \vdots \ ? \\ \mathsf{o}(N) \wedge \mathsf{s}(N) \end{array}$$

 $\frac{\texttt{Left:} A \quad \texttt{Right:} B}{\texttt{Conj:} \bullet(N) \land \bullet(N)} \land \texttt{E}$

$$\frac{ \text{Ant:} A \quad \text{Imp:} \textbf{fn}(N) \Rightarrow \textbf{o}(N) \land \textbf{s}(N) }{ \text{Succ:} \textbf{o}(N) \land \textbf{s}(N) } \text{ mp-mod}_{\textbf{(}A \rightarrow B\textbf{)}}$$

∧E-Agent-2

search for: Left required: Conj

excluded:

∧E-Agent-3

search for: Right required: Conj excluded:

mp-mod-Agent-2

search for: Ant required: Succ

excluded:

$$rac{ extsf{Left:o}(N) \quad extsf{Right:s}(N)}{ extsf{Conj:o}(N) \wedge extsf{s}(N)} \ \wedge extsf{E}$$

$$\frac{\texttt{Left:o}(N) \ \texttt{Right:s}(N)}{\texttt{Conj:o}(N) \land \textbf{s}(N)} \land \texttt{E} \qquad \frac{\texttt{Ant:} \forall x_{\bullet} \, \textbf{fn}(x) \ \texttt{Imp:fn}(N) \Rightarrow \textbf{o}(N) \land \textbf{s}(N)}{\texttt{Succ:o}(N) \land \textbf{s}(N)} \ \underset{\textbf{(}A \rightarrow B\textbf{)}}{\texttt{mp-mod}}$$

Various Further Aspects

Declarative agent specification language

uniform way to define new agents run-time modifiability of agent societies

Attempt to a formal semantics

mapping agent declarations to simply typed λ -calculus some properties of agents and agent societies can be modelled

Self-evaluation of agents

knowledge about their own performance this knowledge is broadcasted via the blackboards explicit resource reasoning on informed layer

Resource Adapted Behaviour

Selection clock speed:

determines resource computation time ct for the agents

• ct high automatic proof by single ATP

• ct medium cooperative proof

• ct low (unsuccessful) attack at ND level

First experiments (resource adaptivity in interactive sessions)

agents decide to get inactive/active wrt varying clock speed

Example Classes

Ex1 higher order ATP and first order ATP

$$\forall x, y, z_{\bullet} (x = y \cup z) \Leftrightarrow (y \subseteq x \land z \subseteq x \land \forall v_{\bullet} (y \subseteq v \land z \subseteq v) \Rightarrow (x \subseteq v))$$

Ex2 ND based TP, propositional ATP, and model generation

$$\forall x \cdot \forall y \cdot \forall z \cdot ((x \cup y) \cap z) = (x \cap z) \cup (y \cap z)$$

$$\forall x \cdot \forall y \cdot \forall z \cdot ((x \cup y) \cup z) = (x \cap z) \cup (y \cap z)$$

10000 Examples

988 valid / 9012 invalid

Ex3 computer algebra systems and higher order ATP

$$\{x|x > gcd(10,8) \land x < lcm(10,8)\} = \{x|x < 40\} \cap \{x|x > 2\}$$

Ex4 ND and tactical based TP, first-order ATP

$$\dots$$
 group-definition-1 $\dots \Leftrightarrow \dots$ group-definition-2 \dots

Ex2: ND, PL-ATP, model generation

Conc. $\vdash \forall x \cdot \forall y \cdot \forall z \cdot ((x \cup y) \cap z) = (x \cap z) \cup (y \cap z)$

(Forall-I L1)

. . .

L3.
$$\vdash ((X \cup Y) \cap Z) = (X \cap Z) \cup (Y \cap Z)$$

(Set-Ext L4)

L4.
$$\vdash \forall e \cdot e \in ((X \cup Y) \cap Z) \leftrightarrow e \in (X \cap Z) \cup (Y \cap Z)$$

(Forall-I L5)

L5.
$$\vdash E \in ((X \cup Y) \cap Z) \leftrightarrow E \in (X \cap Z) \cup (Y \cap Z)$$

(Def L6)

• • •

L8.
$$\vdash \frac{((E \in X \lor E \in Y) \land E \in Z) \leftrightarrow}{((E \in X \land E \in Z) \lor (E \in Y \land E \in Z))}$$

(OTTER)

Ex2: ND, PL-ATP, model generation

Conc. $\vdash \forall x \mid \forall y \mid \forall z \mid ((x \cup y) \cup z) = (x \cap z) \cup (y \cap z)$

(Forall-I L1)

. . .

L3.
$$\vdash ((X \cup Y) \cup Z) = (X \cap Z) \cup (Y \cap Z)$$
 (Set-Ext L4)

L4.
$$\vdash \forall e \cdot e \in ((X \cup Y) \cup Z) \leftrightarrow e \in (X \cap Z) \cup (Y \cap Z)$$
 (Forall-I L5)

L5.
$$\vdash E \in ((X \cup Y) \cup Z) \leftrightarrow E \in (X \cap Z) \cup (Y \cap Z)$$
 (Def L6)

. . .

L8.
$$\vdash \frac{((E \in X \lor E \in Y) \lor E \in Z) \leftrightarrow}{((E \in X \land E \in Z) \lor (E \in Y \land E \in Z))}$$
 (SATCHMO)

Counter Model: $G \in Z \land G \notin X \land G \notin Y$

Ex3: ND based TP, CAS and HO-ATP

$$\{x|x > \gcd(10,8) \land x < lcm(10,8)\} = \{x|x < 40\} \cap \{x|x > 2\}$$

Conc.
$$\vdash^{(\lambda x_{\blacksquare} \, x \, > \, gcd(10,8) \, \wedge \, x \, < \, lcm(10,8)) \, = \\ (\lambda x_{\blacksquare} \, x \, < \, 40) \, \cap \, (\lambda x_{\blacksquare} \, x \, > \, 2)$$
 (CAS L1)
$$\vdash^{(\lambda x_{\blacksquare} \, x \, > \, 2 \, \wedge \, x \, < \, 40) \, = \, (\lambda x_{\blacksquare} \, x \, < \, 40) \, \cap \, (\lambda x_{\blacksquare} \, x \, > \, 2) }$$
 (Def L3)
$$\vdash^{(\lambda x_{\blacksquare} \, x \, > \, 2 \, \wedge \, x \, < \, 40) \, = \, (\lambda x_{\blacksquare} \, x \, < \, 40 \, \wedge \, x \, > \, 2) }$$
 (LEO)

Related Work

- Overview of parallel & distributed theorem proving [Bonacina 2000]
- TECHS approach [Denzinger and Fuchs 1999]

heterogeneous first-order systems, filtered exchange of clauses no higher-order systems and no CAS no explicit proof object no user orientation

- Open approach to concurrent theorem proving [Fisher 1997]
- Multi agent proof-planning [Fisher and Ireland 1998]
- Agent planning architectures, e.g. [Wilkins and Myers 1998]
- ... agent based architectures ...

Conclusion

Agent based architecture

application to mathematical reasoning (HO)
with heterogeneous external systems
flexible integration of new agents
cooperation & competition
supports automation and interaction
abstract inferences & low level ND inferences
resource adapted & adaptive

Typical applications

domains where different specialist systems are required higher-order examples with first-oder subtasks exploration of new domains

Architecture not restricted to theorem proving

central proof object \longrightarrow knowledge base proof rules, tactics, external systems \longrightarrow production rules

Problems and Future Work

Long-term goals

solving the communication problem choice of interlingua between agents adding or-parallelism full integration with proof planning critical (reflecting) agents dynamic clustering of agents experiment: iterated learning of tactics/methods

Short-term goals

employ counterexample information for early backtracking counterexamples by Venn diagrams various technical problems (copying of PDS)

