

Электрокапиллярные явления

Шамарина Екатерина, Б06-903 Хомутов Андрей, Б06-903 Φ БМ Φ , 2021

Цели работы

- 1. Исследование зависимости поверхностного натяжения на границе ртуть-раствор электролита от электрического потенциала.
- 2. Определение потенциала нулевого заряда и емкости двойного электрического слоя на поверхности ртутного электрода в растворе; оценка параметров плотной части д.э.с.
- 3. Исследование влияния природы электролита на потенциал нулевого заряда и величину максимального натяжения.

1 Практическая часть

1.1 Исследование электрокапиллярной кривой

Исследование электрокапиллярной кривой на ртути проводилось с помощью измерения краевого угла смачивания декана на поверхности ртути в водном растворе 0.1M NaF по трёхэлектродной схеме.

После нанесения капли декана(5мкл) на пов-ть ртути была проведена тренировка капли. (Потенциал ртутного электрода от 300 до –1300 мВ относительно хлорсеребряного электрода в циклическом режиме со скоростью развертки 50 мВ/с.)

Произведены измерения краевого угла смачивания от величины потенциала ртутного электрода. (Резты в Табл.1.) Далее из уравнения Юнга получены значения поверхностного натяжения на границе вода-ртуть.

$$\sigma_{\text{BD}} = \sigma_{\text{JD}} + \sigma_{\text{JB}} cos\theta$$

По полученным данным построен график зависимости $\sigma(E)$. ПНЗ может быть определён напрямую из графика(тчк максимума) : $\varphi_0 \simeq -400 mV$. Также м.б.определён из аппроксимации кривой второй или четвёртой степенью:

$$\begin{split} \sigma_2 &= -8.06 \cdot 10^{-5} E^2 - 0.069 E + 409 \Rightarrow \varphi_{02} = -428 mV \\ \sigma_4 &= 1.64 \cdot 10^{-11} E^4 + 4.96 \cdot 10^{-8} E^3 - 4.47 \cdot 10^{-5} E^2 - 0.0705 E + 405 \Rightarrow \varphi_{04} = -483 mV \end{split}$$

Если представить двойной слой в виде плоского конденсатора, то его удельную ёмкость в ПНЗ можно найти по формуле: $C_s = -\frac{d^2\sigma}{dE^2} \bigg|_{q=0}$

$$C_2 \simeq 16 \frac{\mathrm{MK}\Phi}{\mathrm{cm}^2} \ C_4 \simeq 18 \frac{\mathrm{MK}\Phi}{\mathrm{cm}^2}$$

По полученной ёмкости можно оценить расстояние между обкладками конденсатора: $d=\frac{\epsilon\epsilon_0}{C_s}=\frac{4\cdot 8.85\cdot 10^{-12}\frac{\Phi}{\rm M}}{0.17\frac{\Phi}{...2}}\simeq 2.1~{\rm \AA}$

Соотнесём оценку с теориями Гельмгольца и Гуи-Чапмена строения двойного электрического слоя.

Гельмгольц) $C_{\text{пл}} = \frac{\epsilon\epsilon_0}{r}$, где r - радиус гидратированного иона, может быть найден из модели Стокса: $r = \frac{1}{6\pi\eta b} = \frac{eF}{6\pi\eta\lambda^0} = 1.63\text{Å}$ для Na^+ и 1.48Å для F^{-1} Оба этих значения меньше оценочных 2.1 Å. ДЭС удовлетворял бы приближению Гельмгольца, если бы $\epsilon \simeq 2.9$.

 $^{^{-1}\}lambda_{Na}=50.28\cdot 10^{-4}$ и $\lambda_{F}=55.4\cdot 10^{-4}\frac{m^{2}}{\Omega mol}$ соотв, Сухотин А.М. Справочник по электрохимии

Таблица 1: Результаты измерений

,		
E, mV	θ, deg	$\sigma, mN/m$
-1300	106.2	360.7715
-1201	95.2	370.3777
-1102	77.1	386.3858
-1002	60.8	399.8808
-900.6	50.2	407.6456
-802	33.8	417.3802
-702	29.6	419.3442
-601	25.5	421.0318
-503	24.8	421.2967
-404	22.4	422.1518
-302	24.4	421.4449
-202	29.7	419.3002
-102	39.2	414.5222
0	49.6	408.0541
102	62.0	398.9430
199	78.6	385.0805
298	84.6	379.7995
399	88.4	376.4240

Рис. 1: Электрокапиллярная кривая

Гуи-Чапмен)
$$C_d = \sqrt{C_\infty} \sqrt{\frac{2\epsilon\epsilon_0 F^2}{RT}} ch\left(\frac{zF\varphi}{2RT}\right) \simeq \sqrt{C_\infty} \sqrt{\frac{2\epsilon\epsilon_0 F^2}{RT}} \simeq 73 \frac{\text{мк}\Phi}{\text{см}^2}$$

Гуи-Чапмен) $C_d = \sqrt{C_\infty} \sqrt{\frac{2\epsilon\epsilon_0 F^2}{RT}} ch\left(\frac{zF\varphi}{2RT}\right) \simeq \sqrt{C_\infty} \sqrt{\frac{2\epsilon\epsilon_0 F^2}{RT}} \simeq 73 \frac{{}_{\rm MK}\Phi}{{}_{\rm CM}^2}$ Тогда воспользуемся моделью Штерна: $C_{\rm пл} = \frac{C \cdot C_d}{C_d - C} \simeq 22 \frac{{}_{\rm KK}\Phi}{{}_{\rm CM}^2}$. В этом случае $d \simeq 1.59~{}_{\rm A}^{\rm A}$ что хорошо согласуется с радиусами гидратированных ионов и, соответственно, толщиной ДЭС в модели Гельмгольца.

Исследование поляризуемости Hg-электрода 1.2

Измерения проводились при концентрации NaF = 0.1 M. Сначала была снята ЦВАХ рабочего электрода в диапазоне от -2.3 до 0.3 В. Потенциал разрыва цепи составил около 70 мВ, с течением времени он дрейфовал.

Рис. 2: ЦВАХ ртутного эл-да

Затем ртутный электрод был выдержан при потенциале -2.3 В относительно вспомогательного хлорсеребряного в течении 3 минут. При этом происходит восстановление натрия с переходом его в ртуть. Потенциал разрыва цепи установился на значении -2027 мВ

Было проведено измерение ЦВАХ ртути в диапазоне потенциалов от -2.3 до -1.8 В и от -2.1 до 0.3 В относительно хлорсеребряного электрода сравнения.

Видно, что получившаяся "батарейка" разряжается до определенного момента, пока весь натрий не перейдет из амальгамы в окисленную форму (при этом можно наблюдать бурное выделение водорода), затем ЦВАХ возвращается к первоначальному и снова можно наблюдать область поляризуемости.

4

Рис. 3: ЦВАХ обработанного Hg эл-да (I)

Рис. 4: ЦВАХ обработанного Hg эл-да (II)

2 Выводы

- 1. С помощью электрокапиллярной кривой измерен пнз ртути в растворе 0.1M NaF: -428мB (по аппроксимации полиномом 2 степени) (отн. нас. XC электрода). Справочное значение: -428мB.
- 2. Оценена ёмкость ДЭС. Оценка удовлетворяет модели Штерна.
- 3. Была изменена поляризуемость (на обратимость) ртутного электрода, путем растворения в нем натрия, затем поляризуемость была восстановлена, после переведения натрия обратно в раствор