Past, Present and Future of Time-Dependent Scheduling

Stanisław Gawiejnowicz

Algorithmic Research Group

Adam Mickiewicz University, Poznań, Poland
E-mail: stgawiej@amu.edu.pl

WWW: https://algo.wmi.amu.edu.pl/en/

Scheduling Seminar https://schedulingseminar.com/ May 25th, 2022

Lecture outline

- Introduction
 - Classical scheduling theory
 - Non-classical scheduling theory
 - Variable processing times
- 2 Time-dependent scheduling
 - Origins and main dates
 - Applications
 - Theoretical tools
 - Notation
- Main results
 - Single machine problems
 - Parallel machine problems
 - Dedicated machine problems
 - Summary
- Open problems
 - Single machine problems
 - Parallel machine problems
 - Dedicated machine problems
- Conclusions and References

Introduction: Classical scheduling theory

- There are two domains in scheduling theory today:
 - Classical scheduling theory
 - Non-classical scheduling theory
- Main assumptions of classical scheduling theory:
 - (M1) Each machine is continuously available
 - (M2) Each machine can handle at most one job at a time
 - (M3) Machine speeds are fixed and known in advance
 - (J1) Each job may be performed only by one of machines
 - (J2) Job processing times do not overlap
 - (J3) Job parameters are numbers known in advance
 - (F) The quality of a schedule is measured by a single-valued criterion function

Introduction: Classical scheduling theory

• There are many monographs on classical scheduling theory:

Introduction: Non-classical scheduling theory

- If at least one of assumptions (M1)-(M3), (J1)-(J3) or (F) is not satisfied, we deal with non-classical scheduling theory
- The most of research in non-classical scheduling theory concerns scheduling problems with a modification of the (J3) assumption
- In these problems, jobs have variable processing times
- In the lecture, we will consider scheduling problems with variable job processing times

Introduction: Variable processing times

- Three main models of variable job processing times exist:
 - resource-dependent
 - position-dependent
 - time-dependent
- Resource-dependent job processing times are functions of the amount of allocated resource (Vickson, 1980; Nowicki & Zdrzałka, 1990; Shabtay & Steiner, 2007; Shioura, Shakhlevich & Strusevich, 2018; Błażewicz et al, 2019)
- Position-dependent job processing times are functions of the position of job in schedule (Gawiejnowicz, 1996; Bachman & Janiak, 2004; Biskup, 2008; Agnetis et al, 2014; Strusevich & Rustogi, 2017; Azzouz, Ennigrou & Ben Said, 2018)
- Time-dependent job processing times are functions of the starting time of job (Melnikov & Shafransky, 1980; Gupta & Gupta, 1988; Gawiejnowicz, 1996; Alidaee & Womer, 1999; Cheng, Ding & Lin, 2004; Gawiejnowicz, 2008; Błażewicz et al, 2019; Sedding, 2020; Gawiejnowicz, 2020)

Introduction: Variable processing times

- We will consider scheduling problems with time-dependent job processing times
- Scheduling problems with time-dependent job processing times are called time-dependent scheduling problems
- We will focus on time-dependent scheduling problems with
 - deteriorating jobs, when the job processing times are non-decreasing functions of the job starting times, and
 - shortening jobs, when the job processing times are non-increasing functions of the job starting times
- Remaining assumptions of the problems will be the same as in classical scheduling theory

- 1974–1978 variable job processing times as realizations of random variables (Holloway & Nelson, 1974; Picard & Queyranne, 1978)
- 1979-1980 variable processing times of deteriorating jobs as functions of the job starting times (Melnikov & Shafransky, 1979, 1980) beginning of time-dependent scheduling
- 1984-1995 linearly deteriorating jobs (Tanaev, Gordon & Shafransky, 1984, 1994; Wajs, 1986; Gupta & Gupta, 1988; Browne & Yechiali, 1990; Gawiejnowicz & Pankowska, 1995)
 - 1990 non-linearly deteriorationg jobs (Kunnathur & Gupta, 1990; Alidaee, 1990)
 - 1993 linearly shortening jobs (Ho, Leung & Wei, 1993)


```
1994 – proportionally deteriorating jobs (Mosheiov, 1994)
```

- 1996–2004 the first reviews of time-dependent scheduling (Gawiejnowicz, 1996; Alidaee & Womer, 1999; Cheng, Ding & Lin, 2004)
 - 2001 the first paper on time-dependent scheduling on dedicated machines (Kononov & Gawiejnowicz, 2001)
 - 2003 the first paper on time-dependent scheduling on a machine with limited availability (Wu & Lee, 2003)
 - 2006 the first paper on bi-criterion time-dependent scheduling (Gawiejnowicz, Kurc & Pankowska, 2006)

- 2008 the first monograph on time-dependent scheduling (Gawiejnowicz, 2008)
- 2008 the first paper on two-agent time-dependent scheduling (Liu & Tang, 2008)
- 2009-2014 the first papers on equivalent, conjugate and isomorphic time-dependent scheduling problems (Gawiejnowicz, Kurc & Pankowska, 2009; Gawiejnowicz & Kononov, 2014)
 - 2009 the first paper on time-dependent scheduling with job rejection (Cheng & Sun, 2009)

- 2010–2014 the first papers on time-dependent scheduling with mixed job processing times (Gawiejnowicz & Lin, 2010; Dębczyński & Gawiejnowicz, 2013; Dębczyński, 2014)
- 2016–2020 the first papers on time-dependent scheduling with alterable job processing times (Jaehn & Sedding, 2016; Sedding, 2020)
 - 2016 the first international conference devoted to scheduling problems with variable job processing times (IWDSP 2016)
 - 2020 a new review of time-dependent scheduling (Gawiejnowicz, 2020)
 - 2020 the second monograph on time-dependent scheduling (Gawiejnowicz, 2020)

Time-dependent scheduling: Applications

- Simultaneous repayment of multiple loans (Gupta, Kunnathur & Dandapani, 1987)
- Recognizing of aerial threats (Ho, Leung & Wei, 1993)
- Scheduling maintenance activities (Mosheiov, 1994)
- Planning derusting procedures (Gawiejnowicz, Kurc & Pankowska, 2006)
- Modeling fire-fighting problems (Rachaniotis & Pappis, 2006)
- Modeling health care problems (Wu, Dong & Cheng, 2014; Zhang, Wang & Wang, 2015)
- Transport problems in car production industry (Jaehn & Sedding, 2016; Sedding, 2020)

The most recent list of known applications of time-dependent scheduling is given in monograph Gawiejnowicz, 2020

Time-dependent scheduling: Theoretical tools

- Proof techniques of classical scheduling theory: adjacent job interchange technique, mathematical induction, direct proof, proof by a contradiction
- Priority-generating functions (Tanaev, Gordon & Shafransky, 1994; Strusevich & Rustogi, 2017)
- Methods of minimizing a function on a set of permutations (Strusevich & Rustogi, 2017)
- Signatures (Gawiejnowicz, Kurc & Pankowska, 2002, 2006)
- Matrix methods (Gawiejnowicz 2008, 2020)
- Methods of solving multiplicative problems (Ng, Barketau, Cheng & Kovalyov, 2010)
- Properties of pairs of mutually related scheduling problems (Gawiejnowicz, Kurc & Pankowska, 2009; Gawiejnowicz & Kononov, 2014)
- New methods of NP-completeness proving (Cheng, Shafransky & Ng, 2016)
- Properties of function composition operator (Kawase, Makino & Seimi, 2018)

Time-dependent scheduling: Notation

- Scheduling problems are denoted with the use of three-field notation (Graham, Lawler, Lenstra & Rinnooy Kan, 1979)
- To cover various forms of variable job processing times, a few extensions of the three-field notation were proposed (Agnetis, Billaut, Gawiejnowicz, Pacciarelli & Soukhal, 2014; Gawiejnowicz, 2008; Strusevich & Rustogi, 2017; Błażewicz et al, 2019; Gawiejnowicz, 2020)

Examples of the use of extended three-field notation

- $1|p_j = b_j(a+bt)|f_{\text{max}} a$ single machine problem with proportional-linear processing times and criterion f_{max}
- $P2|p_j = b_j t| \sum C_j$ two parallel-identical machine problem with proportional processing times and criterion $\sum C_j$
- $O2|p_{ij} = a_{ij} + b_{ij}t|C_{\max}$ two open shop problem with linear processing times and criterion C_{\max}

Theorem (Mosheiov, 1994)

(a) Problem $1|p_j = b_j t|C_{\text{max}}$ is solvable in O(n) time,

$$C_{\mathsf{max}}(\sigma) = t_0 \prod_{j=1}^n \left(1 + b_{[j]}
ight)$$

and it does not depend on schedule σ .

- (b) Problem $1|p_j = b_j t|L_{\text{max}}$ is solvable in $O(n \log n)$ time by scheduling job in non-decreasing order of job due dates (EDD order).
- (c) Problem $1|p_j = b_j t|f_{\text{max}}$ is solvable in $O(n^2)$ time by scheduling jobs using modified Lawler's algorithm.

Theorem (Mosheiov, 1994)

(a) Problem $1|p_j = b_j t| \sum C_j$ is solvable in $O(n \log n)$ time by scheduling job in non-decreasing order of job deterioration rates (SDR order) and

$$\sum C_j(\sigma) = t_0 \sum_{j=1}^n \prod_{k=1}^j \left(1 + b_{[k]}\right).$$

- (b) Problem $1|p_j = b_j t| \sum w_j C_j$ is solvable in $O(n \log n)$ time by scheduling jobs in non-decreasing order of ratios $\frac{b_j}{w_i(1+b_i)}$.
- (c) Problem $1|p_j = b_j t| \sum U_j$ is solvable in $O(n \log n)$ time by scheduling job using modified Moore's algorithm.

Main results: Single machine: Proportional-linear job processing times

Theorem (Kononov, 1998)

(a) Problem $1|p_i = b_i(a+bt)|C_{\max}$ is solvable in O(n) time,

$$C_{\mathsf{max}}(\sigma) = \left(t_0 + \frac{\mathsf{a}}{\mathsf{b}}\right) \prod_{j=1}^n \left(1 + b_{[j]} \mathsf{b}\right) - \frac{\mathsf{a}}{\mathsf{b}}$$

does not depend on schedule σ .

- (b) Problem $1|p_j = b_j(a+bt)|L_{\max}$ is solvable in $O(n \log n)$ time by scheduling jobs in the EDD order.
- (c) Problem $1|p_j = b_j(a+bt)|f_{\text{max}}$ is solvable in $O(n^2)$ time by scheduling jobs using modified Lawler's algorithm.

Main results: Single machine: Proportional-linear job processing times

Theorem (Strusevich & Rustogi, 2017)

(a) Problem $1|p_j = b_j(a+bt)| \sum C_j$ is solvable in $O(n \log n)$ time by scheduling jobs in the SDR order and

$$\sum C_j(\sigma) = \left(t_0 + \frac{a}{b}\right) \sum_{j=1}^n \prod_{k=1}^j \left(1 + b_{[k]}b\right) - \frac{na}{b}.$$

- (b) If a=1, then problem $1|p_j=b_j(a+bt)|\sum w_jC_j$ is solvable in $O(n\log n)$ time by scheduling job in non-increasing order of ratios $\frac{w_j(1+b_jb)}{b_jb}$.
- (c) If a=1 and b=0, then problem $1|p_j=b_j(a+bt)|\sum T_j$ is weakly NP-hard.
- (d) Problem $1|p_j = b_j(a+bt)| \sum U_j$ is solvable in $O(n \log n)$ time by scheduling job using modified Moore's algorithm.

Theorem (Wajs, 1986; Gupta & Gupta, 1988; Tanaev, Gordon & Shafransky, 1994; Gawiejnowicz & Pankowska, 1995)

Problem $1|p_j=a_j+b_jt|C_{\max}$ is solvable in $O(n\log n)$ time by scheduling jobs in non-increasing order of ratios $\frac{b_j}{a_j}$ and

$$C_{\mathsf{max}}(\sigma) = \sum_{j=1}^n a_{[j]} \prod_{k=j+1}^n (1+b_{[k]}) + t_0 \prod_{j=1}^n (1+b_{[j]}).$$

Theorem (Tanaev, Gordon & Shafransky, 1994; Gawiejnowicz, 2008; Gordon, Potts, Strusevich & Whitehead, 2008)

Problem $1|p_j=a_j+b_jt,\delta|C_{\max}$ is solvable in at most $O(n^2)$ time, provided that precedence constraints δ are in the form of chains, a tree or a series-parallel digraph.

- If in problem $1|p_j = a_j + b_j t|C_{\max}$ we replace C_{\max} with $\sum C_j$, the time complexity of the new problem, $1|p_j = a_j + b_j t|\sum C_j$, is unknown even if $a_j = 1$ for all j
- For a given b, job completion times for problem $1|p_j = 1 + b_j t| \sum C_j$ are as follows:

$$C_{[0]} = 1, C_{[j]} = C_{[j-1]} + p_j(C_{[j-1]}) = 1 + \beta_{[j]}C_{[j-1]},$$
(1)

where $\beta_{[j]} = 1 + b_{[j]}$ for $1 \leqslant j \leqslant n$

• Recurrence formulae (1) can be rewritten in matrix form:

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ -\beta_1 & 1 & \dots & 0 & 0 \\ 0 & -\beta_2 & \dots & 0 & 0 \\ \vdots & & \dots & & \vdots \\ 0 & 0 & \dots & -\beta_n & 1 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} (2)$$

- Matrix Eq. (2) can be rewritten as A(b)C(b) = d(1), where $d(1) = [1, \dots, 1]^{\top} \in \mathbb{R}^{n+1}$, $C(b) = [C_0, \dots, C_n]^{\top} \in \mathbb{R}^{n+1}$
- The determinant det(A(b)) = 1 and hence the inverse $A^{-1}(b)$ to the matrix A(b) exists,

$$A^{-1}(a) = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ \beta_1 & 1 & \dots & 0 & 0 \\ \beta_1\beta_2 & \beta_2 & \dots & 0 & 0 \\ \beta_1\beta_2\beta_3 & \beta_2\beta_3 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ \beta_1\beta_2\dots\beta_n & \beta_2\beta_3\dots\beta_n & \dots & \beta_n & 1 \end{pmatrix}$$

- Knowing $A^{-1}(b)$, we can find the components $C_i(b)$ of the vector $C(b) = A^{-1}(b)d(1)$
- Expressing a time-dependent scheduling problem in a matrix form is called matrix approach and it was introduced by Gawiejnowicz, Kurc & Pankowska, 2002

- $\sum C_j$ and C_{\max} criteria are two limit cases of norm $\|C(b)\|_p$
- The norm is very-well known in optimization theory, but seems to be unexplored in scheduling theory

Definition

Given any $p \ge 1$, the I_p -norm of vector $x \in \mathbb{R}^n$ is as follows:

$$||x||_{p} = \begin{cases} \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}, & 1 \leq p < +\infty, \\ \max_{1 \leq i \leq n} \{|x_{i}|\}, & p = +\infty \end{cases}$$

- It is easy to note that $\sum C_i \equiv I_1$ and $C_{\sf max} \equiv I_{\infty}$
- An interesting question is how the I_{p} norm behaves for 1

- Let A(b) denote the matrix composed of coefficients of recurrence equations, which specify job completion times C_j for a given schedule for problem $1|p_j=1+b_jt|\sum C_j$, defined by vector $b=(b_0,b_1,\ldots,b_n)$, $j=0,1,\ldots,n$
- Then, if we replace criteria C_{\max} and $\sum C_j$ by appropriate norm I_p , $1 \le p \le +\infty$, there holds the following result

Theorem (Gawiejnowicz & Kurc, 2015)

If A(b)C(b)=d is a matrix equation defining schedule b for an instance of problem $1|p_j=1+b_jt|\|C(b)\|_p$, then

$$\log \|C(b)\|_{p} \leqslant \frac{1}{p} \log \|C(b)\|_{1} + \left(1 - \frac{1}{p}\right) \log \|C(b)\|_{\infty}.$$

• Other properties of problem $1|p_j = 1 + b_j t| ||C(b)||_p$ are discussed by Gawiejnowicz & Kurc, 2015

Theorem (Kononov, 1997; Bachman & Janiak, 2000)

- (a1) Problem $1|p_j=a_j+b_jt|L_{\max}$ is weakly NP-hard, even if only one coefficient $a_k\neq 0$ for some $1\leqslant k\leqslant n$, and due dates of all jobs with $a_j=0,\,j\neq k$, are equal.
- (a2) Problem $1|p_j = a_j + b_j t|L_{max}$ is weakly NP-hard, even if only two distinct due dates exist.
 - (b) Problem $1|p_j = a_j + b_j t|f_{max}$ is weakly NP-hard.

Theorem (Bachman, Janiak & Kovalyov, 2002)

- (a) Problem $1|p_j = a_j + b_j t| \sum w_j C_j$ is weakly NP-hard.
- (b) Problem $1|p_j = a_j + b_j t| \sum U_j$ is weakly NP-hard.
- (c) Problem $1|p_j = a_j + b_j t| \sum T_j$ is weakly NP-hard.

Theorem (Gawiejnowicz, 1997; Melnikov & Shafransky, 1980; Strusevich & Rustogi, 2017)

- (a) If $f(t) \ge 0$ for $t \ge t_0$ and f(t) is non-decreasing, then problem $1|p_j = a_j + f(t)|C_{\max}$ is solvable in $O(n \log n)$ time by scheduling jobs in non-decreasing order of basic job processing times a_j (SPT order).
- (b) If $f(t) \ge 0$ for $t \ge t_0$ and f(t) is non-decreasing, then problem $1|p_j = a_j + f(t)| \sum C_j$ is solvable in $O(n \log n)$ time by scheduling jobs in the SPT order.

Theorem (Kononov, 1998)

If f(t) is a convex (concave) function for $t \ge 0$, $f(t_0) > 0$, and if $t_1 + b_j f(t_1) \le t_2 + b_j f(t_2)$ for all $t_2 > t_1 \ge t_0$ and all jobs, then

- (a) problem $1|p_j = b_j f(t)|C_{\text{max}}$ is solvable in $O(n \log n)$ time by scheduling jobs in non-decreasing (non-increasing) order of coefficients b_i ;
- (b) problem $1|p_j = b_j f(t)|L_{\max}$ is solvable in $O(n \log n)$ time by scheduling jobs in non-decreasing (non-increasing) order of sums $b_i + d_i$.

Theorem (Kononov, 1996, 1997; Mosheiov, 1998)

- (a) Problem $P2|p_j = b_j t|C_{max}$ is weakly NP-hard.
- (b) Problem $P|p_j = b_j t|C_{\text{max}}$ is strongly NP-hard.

Theorem (Cheng & Sun, 2007)

(a) If $t_0 = 1$ and $b_j \in (0,1]$, then for the LS algorithm applied to problem $P2|p_j = b_j t|C_{\max}$ there holds inequality

$$\frac{C_{\max}(LS)}{C_{\max}(OPT)} \leqslant \sqrt{2}.$$

(b) If $t_0=1$ and $b_j\in(0,\alpha]$, where $0<\alpha\leqslant 1$, then for the LS algorithm applied to problem $Pm|p_j=b_jt|C_{\max}$ there holds inequality

$$\frac{C_{\max}(LS)}{C_{\max}(OPT)} \leqslant 2^{\frac{m-1}{m}}.$$

Theorem (Cheng, Wang & He, 2009)

If $t_0 = 1$, then for the LS and LDR algorithms applied to problem $Pm|p_j = b_j t|C_{\max}$ there hold inequalities:

$$\frac{\log C_{\max}(LS)}{\log C_{\max}(OPT)} \leqslant 2 - \frac{1}{m}$$

and

$$\frac{\log \mathit{C}_{\mathsf{max}}(\mathit{LDR})}{\log \mathit{C}_{\mathsf{max}}(\mathit{OPT})} \leqslant \frac{4}{3} - \frac{1}{3m}.$$

- The latter results show significant similarity to well-known results of classical scheduling theory
- Some authors (Cheng & Ding, 2000; Cheng, Ding & Lin, 2004; Gawiejnowicz, Kurc & Pankowska, 2006) observed that there exist pairs of time-dependent scheduling problems which have similar properties
- One group of these similarities, for proportional case, may be explained with the use of the notion of isomorphic scheduling problems (Gawiejnowicz & Kononov, 2014)
- Before we introduce this notion, we need a few definitions

Definition (Gawiejnowicz & Kononov, 2014)

Let I_{Π} , $\sigma = (s_1, \ldots, s_k, C_1, \ldots, C_k, \mu_1, \ldots, \mu_k)$ and $f_{\Pi}(C_1, \ldots, C_k)$ denote an instance of an optimization problem Π , a feasible solution to the instance and the value of its criterion function, respectively.

Problem Π_1 is said to be (γ, θ) -reducible to problem Π_2 if there exist two strictly increasing continuous functions, $\gamma : \mathbb{R}_+ \to \mathbb{R}_+$ and $\theta : \mathbb{R}_+ \to \mathbb{R}_+$, such that the following two conditions hold:

- 1) for any instance I_{Π_1} of problem Π_1 there exists an instance I_{Π_2} of problem Π_2 such that function γ transforms any feasible solution σ of instance I_{Π_1} into feasible solution $\sigma_d = (\gamma(s_1), \ldots, \gamma(s_k), \gamma(C_1), \ldots, \gamma(C_k), \mu_1, \ldots, \mu_k)$ of instance I_{Π_2} , and for any feasible solution $\tau_d = (s'_1, \ldots, s'_k, C'_1, \ldots, C'_k, \mu'_1, \mu'_2, \ldots, \mu'_k)$ of instance I_{Π_2} solution $\tau = (\gamma^{-1}(s'_1), \ldots, \gamma^{-1}(s'_k), \gamma^{-1}(C'_1), \ldots, \gamma^{-1}(C'_k), \mu'_1, \ldots, \mu'_k)$ is a feasible solution of instance I_{Π_1} ;
- 2) for any feasible solution σ of instance I_{Π_1} criterion functions f_{Π_1} and f_{Π_2} satisfy equality $f_{\Pi_2}(\gamma(C_1), \ldots, \gamma(C_k)) = \theta(f_{\Pi_1}(C_1, \ldots, C_k))$.

Definition (Gawiejnowicz & Kononov, 2014)

Let I_{Π} and σ denote an instance of a decision problem Π and a feasible solution to I_{Π} , respectively. Problem Π_1 is said to be γ -reducible to problem Π_2 if there exists a strictly increasing continuous function $\gamma: \mathbb{R}_+ \to \mathbb{R}_+$ such that for any instance I_{Π_1} of problem Π_1 there exists an instance I_{Π_2} of problem Π_2 such that function γ transforms any feasible solution σ of instance I_{Π_1} into feasible solution σ_d of instance I_{Π_2} , and for any feasible solution τ_d of instance I_{Π_2} solution τ is a feasible solution of instance I_{Π_1} .

Property (Gawiejnowicz & Kononov, 2014)

If problem Π_1 is (γ, θ) -reducible $(\gamma$ -reducible) to problem Π_2 , then problem Π_2 is $(\gamma^{-1}, \theta^{-1})$ -reducible $(\gamma^{-1}$ -reducible) to problem Π_1 .

Definition (Gawiejnowicz & Kononov, 2014)

 (γ, θ) -reducible or γ -reducible scheduling problems are called *isomorphic problems*.

Lemma (Gawiejnowicz & Kononov, 2014)

Let problem Π_2 be (γ,θ) -reducible to problem Π_1 . Then if schedule $\sigma^\star = (s_1^\star,\ldots,s_k^\star,\,C_1^\star,\ldots,C_k^\star,\mu_1^\star,\ldots,\mu_k^\star)$ is optimal for instance I_{Π_1} of problem Π_1 , then schedule $\sigma_d^\star = (\gamma(s_1^\star),\ldots,\gamma(s_k^\star),\,\gamma(C_1^\star),\ldots,\gamma(C_k^\star),\mu_1^\star,\ldots,\mu_k^\star)$ is optimal for instance I_{Π_2} of problem Π_2 and vice versa.

Theorem (Chen, 1996; Kononov, 1997; Ji & Cheng, 2009)

- (a) Problem $P2|p_j = b_j t| \sum C_j$ is weakly NP-hard.
- (b) Problem $P|p_j = b_j t| \sum C_j$ is strongly NP-hard.

Theorem (Chen, 1996)

For the SDR algorithm applied to problem $P2|p_j=b_jt|\sum C_j$ there holds inequality

$$\frac{\sum C_j(SDR)}{\sum C_j(OPT)} \leqslant \max\left\{\frac{1+b_n}{1+b_1}, \frac{2}{n-1} + \frac{(1+b_1)(1+b_n)}{1+b_2}\right\}.$$

• Let $GP||C_{max}$ denote a generic scheduling problem with fixed job processing times

Theorem (Gawiejnowicz & Kononov, 2014)

Problem $GP||C_{\max}$ is (γ, θ) -reducible to problem $GP|p_j = b_j(a+bt)|C_{\max}$ with $\gamma = \theta = 2^{\times} - \frac{a}{b}$.

Theorem (Gawiejnowicz & Kononov, 2014)

Let A be an approximation algorithm for problem $GP||C_{max}$ such that

$$\frac{C_{\max}(A)}{C_{\max}(OPT)}\leqslant r_A<+\infty.$$

Then for approximation algorithm \bar{A} for problem $GP|p_j=b_j(a+bt)|C_{\max}$ there holds inequality

$$\frac{\log(\mathit{C}_{\mathsf{max}}(\mathit{A}) + \frac{a}{\mathit{b}})}{\log(\mathit{C}_{\mathsf{max}}(\mathit{OPT}) + \frac{a}{\mathit{b}})} = \frac{\mathit{C}_{\mathsf{max}}(\mathit{A})}{\mathit{C}_{\mathsf{max}}(\mathit{OPT})}.$$

Theorem (Kononov, 1996; Mosheiov, 2002)

Problem $F2|p_{ij} = b_{ij}t|C_{\text{max}}$ is solvable in $O(n \log n)$ using modified Johnson's algorithm.

Theorem (Kononov, 1996; Mosheiov, 2002; Thörnblad & Patriksson, 2011)

- (a) Problem $F3|p_{ij} = b_{ij}t|C_{max}$ is strongly NP-hard.
- (b) For problem $F3|p_{ij}=b_{ij}t$, $b_{i1}=b_{i3}=b|C_{\max}$ does not exist a polynomial-time approximation algorithm with a constant worst-case ratio, unless P=NP.

Theorem (Kononov, 1996; Mosheiov, 2002)

Problem $O2|p_{ij} = b_{ij}t|C_{max}$ is solvable in O(n) time by scheduling jobs using modified Gonzalez-Sahni's algorithm.

 Recently, applying the notion of isomorphic problems, there has been shown the following result

Theorem (Gawiejnowicz & Kolińska, 2020)

Problem $O2|p_{ij} = b_{ij}t|C_{\max}$ is solvable in O(n) time by scheduling jobs using LADR rule.

Main results: Dedicated machines: Proportional job processing times

Theorem (Kononov, 1996; Kononov & Gawiejnowicz, 2001)

- (a) Problem $O3|p_{ij} = b_{ij}t|C_{max}$ is weakly NP-hard.
- (b) Problem $O3|p_{ij} = b_{ij}t$, $b_{3j} = b|C_{max}$ is weakly NP-hard.

Theorem (Mosheiov, 2002)

Problem $J2|p_{ij} = b_{ij}t|C_{\text{max}}$ is weakly NP-hard.

Main results: Dedicated machines: Linear job processing times

Theorem (Kononov & Gawiejnowicz, 2001)

- (a) Problem $F2|p_{ij} = a_{ij} + b_{ij}t|C_{max}$ is strongly NP-hard.
- (b) Problem $O2|p_{ij} = a_{ij} + b_{ij}t|C_{max}$ is weakly NP-hard.

Theorem (Kononov & Gawiejnowicz, 2001)

- (a) Problem $F2|p_{ij} = a_{ij} + b_{ij}t| \sum C_j$ is strongly NP-hard.
- (b) Problem $O2|p_{ij} = a_{ij} + b_{ij}t| \sum C_i$ is weakly NP-hard.

Main results: Summary

- Exact algorithms (Kunnathur & Gupta, 1990; Kovalyov & van de Velde, 1998; Wu & Lee, 2006; Lee, Wu & Chung, 2008; Ouazene & Yalaoui, 2018)
- Approximation algorithms and approximation schemes (Hsieh & Bricker, 1997; Kovalyov & Kubiak, 1998; Woeginger, 2000; Ji & Cheng, 2009; Halman, 2020)
- Heuristic algorithms (Alidaee, 1990; Mosheiov, 1991, 1996;
 Hsu & Lin, 2003; Gawiejnowicz, Kurc & Pankowska, 2006)
- Meta-heuristic algorithms (Hindi & Mhlanga, 2001; Wu, Lee & Shiau, 2007; Gawiejnowicz & Suwalski, 2014; Lu, Liu, Pei, Thai & Pardalos, 2018)

Main results: Summary

- Time-dependent scheduling on machines with limited availability (Wu & Lee, 2003; Ji, He & Cheng, 2006; Gawiejnowicz, 2007; Gawiejnowicz & Kononov, 2010; Ji & Cheng, 2010)
- Two-criteria time-dependent scheduling (Gawiejnowicz, Kurc & Pankowska, 2006; Cheng, Tadikamalla, Shang & Zhang, 2014, 2015)
- Two-agent time-dependent scheduling (Liu & Tang, 2008; Liu, Yi & Zhou, 2011; Gawiejnowicz & Suwalski, 2014)
- Time-dependent scheduling with job rejection (Cheng & Sun, 2009; Li & Zhao, 2015)
- Time-dependent scheduling games (Li, Liu & Li, 2014; Chen, Lin, Tan & Yan, 2017)

Main results: Summary

- Equivalent time-dependent scheduling problems (Gawiejnowicz, Kurc & Pankowska, 2009)
- Conjugate time-dependent scheduling problems (Gawiejnowicz, Kurc & Pankowska, 2009)
- Mixed problems of time-dependent scheduling (Gawiejnowicz & Lin, 2010; Dębczyński & Gawiejnowicz, 2013; Dębczyński, 2014)
- Isomorphic scheduling problems (Gawiejnowicz & Kononov, 2014; Gawiejnowicz & Kolińska)

- Problem $1|p_j = 1 + b_j t| \sum C_j$ is the most important open single machine time-dependent scheduling problem
- In the problem, a set of n+1 jobs J_0, J_1, \ldots, J_n has to be executed on a single machine
- The processing time of job J_j at time t equals $p_j(t) = 1 + b_j t$, where t denotes the starting time of job J_j and $b_j > 0$ is deterioration rate of the job
- The criterion of schedule optimality is $\sum_{j=0}^{n} C_{[j]}$, where

$$\begin{array}{rcl} C_{[0]} & = & 1 \\ C_{[1]} & = & \beta_{[1]} \, C_{[0]} + 1 \\ \vdots & & \vdots \\ C_{[n]} & = & \beta_{[n]} \, C_{[n-1]} + 1 \end{array}$$

and
$$\beta_{[i]} := 1 + b_{[i]}$$
 for $1 \leqslant i \leqslant n$

- Research on problem $1|p_j=1+b_jt|\sum C_j$ was initiated by Mosheiov (1991) who formulated it and proved the main its properties
- A special case of the problem, $1|p_j = b_j t| \sum C_j$, is solvable in $O(n \log n)$ time (Mosheiov, 1994)
- Gawiejnowicz et al (2006) proposed for problem $1|p_j=1+b_jt|\sum C_j$ two greedy algorithms, based on signatures
- Ocetkiewicz (2010) proposed for a special case of problem $1|p_j = 1 + b_j t| \sum C_j$ approximation scheme (FPTAS)
- Gawiejnowicz & Kurc (2015) generalized results by Mosheiov (1991) to case of I_p norm
- Gawiejnowicz & Kurc (2020) gave a new upper bound on the power of the set of all possible optimal schedules for problem $1|p_j=1+b_jt|\sum C_j$

- An instance of $1|p_j=1+b_jt|\sum C_j$ may be identified with sequence $b=(b_0,b_1,\ldots,b_n)$ and any rearrangement of b may be identified with a schedule for the problem
- The total completion time for problem $1|p_j = 1 + b_j t| \sum C_j$ and schedule σ can be computed using the formula

$$\sum C_j(\sigma) = \sum_{i=1}^n \sum_{j=1}^i \prod_{k=j+1}^n \beta_{[k]} + t_0 \sum_{i=1}^n \prod_{j=1}^n \beta_{[j]},$$

• The above formula is a special case of the formula for $\sum w_j C_j(\sigma)$ for problem $1|p_j=a_j+b_jt|\sum w_j C_j$,

$$\sum w_j C_j(\sigma) = \sum_{i=1}^n w_{[i]} \sum_{j=1}^i a_{[j]} \prod_{k=j+1}^n \beta_{[k]} + t_0 \sum_{i=1}^n w_{[i]} \prod_{j=1}^n \beta_{[j]}.$$

• Problem $1|p_j = a_j + b_j t| \sum w_j C_j$ is weakly NP-hard, while problem $1|p_i = 1 + b_i t| \sum C_i$ is open

The largest job property (Mosheiov, 1991)

In an optimal schedule for problem $1|p_j=1+b_jt|\sum C_j$ first is scheduled job with the largest deterioration rate.

The symmetry property (Mosheiov, 1991)

If $b=(b_0,b_1,\ldots,b_n)$ is an optimal schedule for problem $1|p_j=1+b_jt|\sum C_j$, then also $\bar{b}=(b_0,b_n,\ldots,b_1)$ is optimal.

Definition

A schedule is V-shaped, if jobs are ordered non-increasingly (non-decreasingly), when the jobs are before the job (after the job) with the smallest deterioration rate.

Theorem (necessary condition no. 1, Mosheiov, 1991)

An optimal schedule for problem $1|p_j=1+b_jt|\sum C_j$ is V-shaped.

- For problem $1|p_j = 1 + b_j t| \sum C_j$ was proposed (Gawiejnowicz, Kurc & Pankowska, 2002, 2006) a greedy algorithm, based on properties of functions $S^-(\beta)$ and $S^+(\beta)$ of sequence $\beta = (\beta_1, \beta_2, \dots, \beta_n)$ of coefficients $\beta_j := 1 + b_j$
- Let $\bar{\beta} = (\beta_n, \beta_{n-1}, \dots, \beta_1)$ denote the sequence of job deterioration rates ordered reversely compared to β and

$$F(\beta) = \sum_{j=1}^{n} \sum_{i=1}^{j} \prod_{k=j}^{j} \beta_k,$$

$$M(\beta) = 1 + \sum_{i=1}^{n} \prod_{k=i}^{n} \beta_k.$$

• Then the functions, signatures, are defined as follows:

$$S^{-}(\beta) = M(\bar{\beta}) - M(\beta) = \sum_{i=1}^{n} \prod_{j=1}^{i} \beta_{j} - \sum_{i=1}^{n} \prod_{j=i}^{n} \beta_{j},$$

$$S^+(\beta) = M(\bar{\beta}) + M(\beta),$$

• Let $(\beta^1|\beta^2|\beta^3)$ and B denote the sequence consisting of sequences β^1 , β^2 and β^3 (in that order) and the product of all β_j , respectively

 The main properties of signatures are described by the following lemma

Lemat (Gawiejnowicz, Kurc & Pankowska, 2006)

For a given sequence β and numbers a>1, b>1, there hold equalities:

- (a) $F(a|\beta|b) = F(\beta) + aM(\bar{\beta}) + bM(\beta) + aBb$,
- (b) $F(b|\beta|a) = F(\beta) + bM(\bar{\beta}) + aM(\beta) + aBb$,
- (c) $F(a|\beta|b) F(b|\beta|a) = (a-b)S^{-}(\beta)$,
- (d) $F(a|\beta|b) + F(b|\beta|a) = (a+b)S^{+}(\beta) + 2(F(\beta) + aBb)$.

Theorem (Gawiejnowicz, Kurc & Pankowska, 2006)

(a) For a given sequence β and numbers $a>1,\ b>1,$ there holds equivalence

$$F(a|\beta|b) \leqslant F(b|\beta|a) \text{ iff } (a-b)S^{-}(\beta) \leqslant 0.$$

Moreover, a similar equivalence holds if symbol ' \leqslant ' will be replaced with symbol ' \geqslant '.

(b) Let sequence $\beta = (\beta_1, \beta_2, \ldots, \beta_n)$ be ordered non-decreasingly, let $u = (u_1, u_2, \ldots, u_{k-1})$ be a V-shaped schedule consisting of the first $k \geqslant 1$ elements β , let $a = \beta_k > 1$, $b = \beta_{k+1} > 1$, where 1 < k < n, and let $a \leqslant b$. Then

if
$$S^-(u) \geqslant 0$$
, then $F(a|u|b) \leqslant F(b|u|a)$.

Moreover, a similar implication holds, if in the above inequality symbol ' \geqslant ' will be replaced with symbol ' \leqslant ', and symbol ' \leqslant ' will be replaced with symbol ' \geqslant '.

• Based on this theorem, the following greedy algorithm for problem $1|p_i = 1 + b_i t| \sum C_i$ can be formulated


```
Step 1. { Initialization }
   Create b^{\prime} = (b_{[1]}, b_{[2]}, \dots, b_{[n]}, b_{[0]}) by sorting b in non-decreasing order
Step 2. { Main loop }
   If n is odd then
       begin
           u := (b_{[1]})
           for i := 2 to n-1 step 2 do
               if S^-(u) \leq 0 then u := (b_{[i+1]}|u|b_{[i]})
               else u := (b_{[i]}|u|b_{[i+1]})
       end
   else { n is even }
       begin
           u := (b_{[1]}, b_{[2]})
           for i := 3 to n-1 step 2 do
               if S^-(u) \leq 0 then u := (b_{[i+1]}|u|b_{[i]})
               else u := (b_{[i]}|u|b_{[i+1]})
       end
Step 3. { Final sequence }
   return (b_{[0]}|u)
```

Effectiveness of the greedy algorithm for $1|p_j=1+(1+j)t|\sum C_j$

n	OPT	GA	Mosheiov's H_1	Mosheiov's H ₂
3	14	*	*	*
4	51	*	*	0.078431372549
5	221	*	0.004524886878	0.072398190045
6	1,162	*	0.002581755594	0.048192771084
7	7,386	*	0.002301651774	0.034118602762
8	55,207	*	0.001104932346	0.027605194993
9	473,945	*	0.000730042515	0.019799765796
10	4,580,090	*	0.000360691602	0.014409323834
11	49,097,362	*	0.000212516510	0.011143164881
12	577,329,127	*	0.000120697184	0.008978497286
13	7,382,689,709	*	0.000077018407	0.007387560110
14	101,952,444,582	*	0.000050799302	0.006206066040
15	1,511,666,077,882	*	0.000035594077	0.005301824889
16	23,947,081,624,255	*	0.000025806657	0.004588409164
17	403,593,295,119,129	*	0.000019304148	0.004012957606
18	7,209,715,929,612,834	*	0.000014771383	0.003541247187
19	136,066,769,455,072,000	*	0.000011521732	0.003149219157
_20	2,705,070,072,148,870,000	*	0.000009131012	0.002819572095

Let

$$\Delta_k(r,q) = \sum_{i=1}^{q-k-1} \prod_{j=i}^{q-k-1} \beta_j - \sum_{i=q-k+1}^{q-1} \prod_{j=q-k+1}^i \beta_j - \frac{1}{a_q} \sum_{i=q+1}^n \prod_{j=q-k+1}^i \beta_j$$

and

$$\nabla_k(r,q) = \frac{1}{a_r} \sum_{i=1}^{r-1} \prod_{j=i}^{r+k-1} \beta_j + \sum_{i=r+1}^{r+k-1} \prod_{j=i}^{r+k-1} \beta_j - \sum_{i=r+k+1}^{n} \prod_{j=r+k+1}^{i} \beta_j,$$

where $1 \leqslant r < q \leqslant n$ i $k = 1, 2, \dots, q - r$.

Theorem (necessary condition no. 2, Gawiejnowicz & Kurc, 2020)

Let $b = (b_1, b_2, \ldots, b_n)$ be an optimal schedule for problem $1|p_j = 1 + b_j t| \sum C_j$. Then (i) b is V-shaped, the smallest element in b is b_m , where 1 < m < n, and hold the following inequalities (ii)

$$\Delta_1(m-1, m+1) = \sum_{j=1}^{m-1} \prod_{k=j}^{m-1} \beta_k - \sum_{i=m+2}^n \prod_{k=m+2}^i \beta_k \geqslant 0,$$

$$\nabla_1(m-1,m+1) = \sum_{i=1}^{m-2} \prod_{k=i}^{m-2} \beta_k - \sum_{i=m+1}^n \prod_{k=m+1}^i \beta_k \leqslant 0.$$

- Let $V_I(b)$ and $V_{II}(b)$ denote the sets of schedules which satisfy the necessary condition no. 1 and no. 2, respectively
- Let 1 < u < v, where $u = \min \{b_i : i = 1, 2, ..., n\}$ and $v = \max \{b_i : i = 1, 2, ..., n\}$
- Let $d_n = n imes rac{\log u}{\log u + \log v}$, $g_n = 1 + n imes rac{\log v}{\log u + \log v}$
- Let $D:=\{k\in\mathbb{N}: d_n< k< g_n, 1< k< n\}$ and let $V_D(b)$ denote the set of all V-shaped schedules which can be generated from sequence b, provided that $b_m\in D$

Theorem (Gawiejnowicz & Kurc, 2020)

Let
$$c(n) = \sqrt{\frac{2}{\pi n}} \ 2^n \left(1 + O\left(\frac{1}{n}\right)\right)$$
. Then

$$|V_{II}(b)| \leq |V_D(b)| \leq \left(1 + \frac{\log v - \log u}{\log v + \log u}n\right) \times c(n)$$

and, if v is sufficiently close to u,

$$|V_D(b)|\geqslant c(n).$$

- The time complexity of single machine problems of scheduling proportional and linear jobs with arbitrary precedence constraints is unknown
- The following two problems are the main candidates to study:
 - $1|p_j = b_j t, prec|\sum w_j C_j$,
 - $1|p_j = a_j + b_j t$, $prec|C_{max}$
- Establishing the status of time complexity of the second of these problems will allow to establish the status of time complexity of problem $1|p_j=a_j-b_jt, prec|\sum w_jC_j$ using the notion of conjugated time-dependent scheduling problems (Gawiejnowicz, Kurc & Pankowska, 2009)

Definition

Problem $1|p_j = h_j + \gamma_j t| \sum v_j C_j$ is conjugated to problem $1|p_j = b_j + \alpha_j t| \sum w_j C_j$, if for any schedule σ for problem $1|p_j = b_j + \alpha_j t| \sum w_j C_j$ there exists schedule $\varrho \equiv ((h_i, g_i, v_i))_{i=1}^n$ for problem $1|p_j = h_j + \gamma_j t| \sum v_j C_j$ such that there holds the equality

$$C_{\max}(\sigma)C_{\max}(\varrho) + \sum_{j=0}^{n} w_j h_j = \sum_{j=0}^{n} w_j C_j(\sigma) + \sum_{j=0}^{n} v_j C_j(\varrho),$$

where $C_0(\varrho) := h_0$, $g_j = 1 + \gamma_j$, $h_j \geqslant 0$, $v_j \geqslant 0$, $C_j(\varrho) = g_j C_{j-1}(\varrho) + h_j$ for $1 \leqslant j \leqslant n$.

Theorem (Gawiejnowicz, Kurc & Pankowska, 2009)

Let $B_j = \frac{b_j}{1+b_j}$ and $a_j > -1$ for all j. Then problems $1|p_j = a_j - B_j t| \sum w_j C_j$ and $1|p_j = w_j + b_j t| \sum a_j C_j$ are conjugated.

- A separate group of pairs of problems constitute those related to the notion of equivalent time-dependent scheduling problems (Gawiejnowicz, Kurc & Pankowska, 2009)
- The notion uses a general transformation of an arbitrary instance of an *initial problem* into an instance of a transformed problem
- The initial problem is a time-dependent scheduling problem with the total weighted starting time criterion
- The transformed problem is a time-dependent scheduling problem with a similar criterion but with other job processing times and job weights

Theorem (Gawiejnowicz, Kurc & Pankowska, 2009)

Let $\beta_j = 1 + b_j$ for all j. Then the following pairs of problems are equivalent:

(a)
$$1|p_j = b_j t| \sum \beta_j C_j i 1|p_j = 1 + b_j (1+t)|C_{\text{max}}$$

(b)
$$1|p_j = a_j + bt| \sum C_j i 1|p_j = 1 + bt| \sum a_j C_j$$

(c)
$$1|p_i = bt|\sum a_i C_i$$
 i $1|p_i = a_i + bt|C_{\text{max}}$

Open problems: Parallel machines

- Interesting candidates to study are the following two parallel-machine time-dependent scheduling problems with non-linear job processing times:
 - $\bullet \ Pm|p_j = a_j + f(t)|C_{\mathsf{max}}$
 - $Pm|p_j = b_j f(t)|\sum_{i=1}^{n} C_j$
- We know that if $f(t) \ge 0$ for $t \ge t_0$ and f(t) is non-decreasing, then there is an optimal schedule for the first problem, where jobs are scheduled in the SPT order (Gawiejnowicz, 2020)
- We also know that the first problem is polynomially solvable for m = 1 (Gawiejnowicz, 1997)
- The second problem is polynomially solvable for m = 1 and convex or concave functions (Kononov, 1998)
- It seems that appropriate choice of conditions on f(t) may lead to polynomial solvability of these problems

Open problems: Dedicated machines

- Good candidates for study are the following time-dependent scheduling problems on two dedicated machines:
 - $F2|p_{ij} = b_{ij}t| \sum_{i} C_{i}$ • $O2|p_{ij} = b_{ij}t| \sum_{i} C_{i}$
- Counterparts of the problems with fixed processing times are NP-hard (Garey, Johnson & Sethi, 1976; Achugbue & Chin, 1982)
- Establishing of time complexity of these problems is a challenge in view of their multiplicative nature
- It seems that useful would be the consideration of well-chosen special cases, e.g. similar ones to those for problem $1|p_j=a_j+b_jt|\sum w_jC_j+\theta L_{\max} \text{ (Gawiejnowicz \& Suwalski, 2014)}$

Conclusions

- We presented the subject, main ideas and the place of time-dependent scheduling in non-classical scheduling theory
- We gave a brief description of main research directions in time-dependent scheduling
- We described the most important results of time-dependent scheduling
- Finally, we sketched the present status of research on several open time-dependent scheduling problems

References

- As it is today, the literature on time-dependent scheduling counts ca. 350 positions
- Majority of these positions, ca. 90%, were published in JCR journals
- Ca. 60% of references concerns time-dependent scheduling on a single machine
- Ca. 25% of references concerns time-dependent scheduling on parallel machines
- Finally, ca. 15% of references concerns time-dependent scheduling on dedicated machines

References: Monographs

- S. Gawiejnowicz, Time-Dependent Scheduling, Springer, 2008, 377pp.
- S. Gawiejnowicz, Models and Algorithms of Time-Dependent Scheduling, Springer, 2020, 538pp.

References: Chapters

- A. Agnetis, J-C. Billaut, S. Gawiejnowicz, D. Pacciarelli,
 A. Soukhal, Multi-Agent Scheduling, Springer, 2014, 271pp.
- V.A. Strusevich, K. Rustogi, Scheduling with Times-Changing Effects and Rate-Modifying Activities, Springer, 2017, 455pp.
- J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, M. Sterna,
 J. Węglarz, Handbook on Scheduling, Springer, 2019, 833pp.

• Some other monographs also include bibliographic remarks on time-dependent scheduling literature (see, e.g., Pinedo, 2016)

References: Reviews

- S. Gawiejnowicz, Brief survey of continuous models of scheduling, Foundations of Computing and Decision Sciences, 21 (1996), 81–100.
- B. Alidaee, N.K. Womer, Scheduling with time-dependent processing times: review and extensions, Journal of the Operational Research Society, 50 (1999), 711-720.
- T.C-E. Cheng, Q. Ding, B.M-T. Lin, A concise survey of scheduling with time-dependent processing times, European Journal of Operational Research, 152 (2004), 1–13.
- S. Gawiejnowicz, A review of four decades of time-dependent scheduling: main results, new topics, and open problems, Journal of Scheduling, 23 (2020), 3–47.

References: IWDSP

International Workshop on Dynamic Scheduling Problems is a series of workshops focused on non-classical scheduling problems

- IWDSP 2016 https://iwdsp2016.wmi.amu.edu.pl
- IWDSP 2018 https://iwdsp2018.wmi.amu.edu.pl
- IWDSP 2021 https://iwdsp2021.wmi.amu.edu.pl

• The next IWDSP is planned in June 2023 in Switzerland

Past, present and future of time-dependent scheduling

Though it is hard to predict the future, it seems that due to the attractiveness of research topics, interesting open problems and numerous applications, time-dependent scheduling will remain one of main domains in non-classical scheduling theory

Thank you for your attention!

