Random projection to dimention reduction of large scale data

Siamak Dehbod

Supervisor Dr. Adel Mohammadpour Advisor Dr. Hadi Zare

Amirkabir University of Technology

January 20, 2019

- 1 Indroduction
- 2 Stable Random Projection
- 3 Data & Implementation
- 4 Results

Random projection to dimention reduction of large scale data

Indroduction

Indroduction

Random projection to dimention reduction of large scale data

Indroduction

Masive Data

Masive Data

Large Scale Data

- more dimensions than records (D > n)
- unable to compute A^TA and using PCA
- online/stream calculation
- unable to store whole data
- covariance is not finite

└─ Indroduction └─ Masive Data

Big Data

- Volume
- Velocity
- Variety

Heavy tail data

- Common in real data like market data, rare events are more probable than normal distribution
- Random variable *X* with right side heavy-tail distribution:

$$P(X > x) \sim cx^{-\alpha}, x \to \infty$$

Random projection to dimention reduction of large scale data

Indroduction

☐ Dimention Reduction

Dimention Reduction

Random Coordinate Sampling

Pros:

- Simplicity *O*(*nk*)
- Flexability for estimating various summary statistics

Cons:

- Not accurate for losing rare events
- Not suitable for sparse data

Principal components analysis

Figure 1:

Principal components analysis

Figure 2:

Random projection to dimention reduction of large scale data

Indroduction

Clustring

Clustring

Indroduction

Clustering

Figure 3: Clustering

```
Indroduction
Clustring
```

k-means

Non-hierarchical clustering method minimize within-cluster sum of squares

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2 = \arg\min_{\mathbf{S}} \sum_{i=1}^{k} |S_i| \operatorname{Var} S_i$$

Adjusted Rand Index

$$\frac{a+b}{a+b+c+d}$$

Adjusted Rand Index

$Class \setminus Cluster$					
u_1	n ₁₁	n_{12}		n_{1C}	n _{1.}
u_2	n ₂₁	n_{22}		n_{2C}	n _{2.}
:	:	:	٠	n _{1C} n _{2C} : n _{RC}	
u _R	n _{R1}	n_{R2}		n_{RC}	n _{R.}
Sums	n _{.1}	n _{.2}		n _{.C}	$n_{\cdot \cdot} = n$

Adjusted Rand Index

$$\frac{\sum_{i,j} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{n_{i}}{2} \sum_{j} \binom{n_{.j}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{n_{i}}{2} + \sum_{j} \binom{n_{.j}}{2}\right] - \left[\sum_{i} \binom{n_{i}}{2} \sum_{j} \binom{n_{.j}}{2}\right] / \binom{n}{2}}$$
(1)

Random projection to dimention reduction of large scale data

Indroduction
Clustring

 C_{ϵ}

$$C_e = 100(ARI_d - ARI_p)$$

$$(d < p)$$

Random projection to dimention reduction of large scale data

Indroduction

Applications

Applications

Indroduction

__ Applications

Distances

$$a = u_1^T u_2 = \sum_{i=1}^D u_{1,i} u_{2,i}$$
 (2)

$$d_{(\alpha)} = \sum_{i=1}^{D} |u_1 - u_2|^{\alpha}$$
 (3)

Distances

$$A^TA: O(n^2D)$$

$$O(n^2\hat{f})$$

Indroduction

Database Query Optimization

joins and execution plan

Sub-linear Nearest Neighbor Searching

$$egin{aligned} O(nD) &
ightarrow O(nk) \ (lpha > 1) I_lpha &
ightarrow O(n^\gamma) (\gamma < 1) \end{aligned}$$

Stable Random Projection

Stable Random Projection

Random projection to dimention reduction of large scale data

Stable Random Projection

Stable Distribution

Stable Distribution

Stable Random Projection

Stable Distribution

Stable Distribution

Figure 4: Stable distribution

Stable Distribution

Stable Distribution

$$X_1 + X_2 + \cdots + X_n = ^d c_n X + d_n$$

Gaussian/normal:

$$f(x) = (2\pi)^{1/2} \exp(-x^2/2)$$

Cauchy:

$$f(x) = 1/(\pi(1+x^2))$$

Stable Distribution

Stable Normal N(0,1)

Figure 5: Normal $\alpha = 2$

Stable Distribution

Stable $\alpha = 1.5$

Figure 6: $\alpha = 1.5$

Stable $\alpha = 0.75$

Figure 7: $\alpha = 0.75$

Random projection to dimention reduction of large scale data

Stable Random Projection

Stable Random Projection

Stable Random Projection

Stable Random Projection

Stable Random Projection

Stable Random Projection

Figure 8:

Stable Random Projection

Stable Random Projection

Johnson-Lindenstrauss Lemma:

$$k = O\left(\frac{\log n}{\epsilon^2}\right)$$
$$l_2: 1 \pm \epsilon$$

Statistical estimation problem

$$v_{1,j} \sim S\left(\alpha, \sum_{i=1}^{D} |u_{1,i}|^{\alpha}\right), \quad v_{2,j} \sim S\left(\alpha, \sum_{i=1}^{D} |u_{2,i}|^{\alpha}\right),$$
 (4)

$$x_j = v_{1,j} - v_{2,j} \sim S\left(\alpha, d_{(\alpha)} = \sum_{i=1}^{D} |u_{1,i} - u_{2,i}|^{\alpha}\right).$$
 (5)

Stable Random Projection

Couchy Random Projection

$$d = \sum_{i=1}^{D} |u_{1,i} - u_{2,i}|$$

Stable Random Projection

Very Sparse Random Projection

$$\{-1, 0, 1\}$$

$$\left\{\frac{1}{2s},1-\frac{1}{s},\frac{1}{2s}\right\}$$

$$O(Dk) \rightarrow O(Dk/s)$$

Stable Random Projection

I_{α} Random Projection

$$d_{(\alpha)} = \sum_{i=1}^{D} |u_{1,i} - u_{2,i}|^{\alpha}$$

Random projection to dimention reduction of large scale data

Data & Implementation

Data & Implementation

Data summary

Dataset	n	D	N _{class}
Thyroid	215	5	3
Iris	150	4	3
Diabetes	145	3	3
Swiss Banknotes	200	6	2
Seeds	210	7	3
Mice Protein Expression	1080	77	8
Crabs	200	6	2

Random projection to dimention reduction of large scale data

Results

Results

 C_{ϵ}

$$C_e = 100(ARI_d - ARI_p)$$
$$(d < p)$$

Random projection to dimention reduction of large scale data Results

Normal
$$\alpha = 2, d = 2$$

 \square Normal $\alpha = 2, d = 2$

Tabel $\alpha = 2, d = 2$

Dataset	ARI_p	ARI_d	C_e
Thyroid	0.58	0.40	-18
Iris	0.62	0.47	-15
Diabetes	0.38	0.36	-2
Swiss Banknotes	0.85	0.39	-46
Seeds	0.77	0.45	-33
Mice Protein Expression	0.13	0.07	-7
Crabs	0.05	0.04	0
· · · · · · · · · · · · · · · · · · ·			

```
Results
```

 \square Normal $\alpha = 2, d = 2$

Histogram 2 peak


```
Results
```

 \square Normal $\alpha = 2, d = 2$

Hisogram undefined


```
Results
```

 \square Normal $\alpha = 2, d = 2$

Hisogram efficient

Random projection to dimention reduction of large scale data Results

Normal
$$\alpha = 2, d = 3$$

 \square Normal $\alpha = 2, d = 3$

Tabel $\alpha = 2, d = 3$

Dataset	ARI_p	ARI_d	C_e
Thyroid	0.58	0.43	-15
Iris	0.62	0.54	-8
Diabetes	0.38	0.38	0
Swiss Banknotes	0.85	0.47	-37
Seeds	0.77	0.53	-24
Mice Protein Expression	0.13	0.08	-5
Crabs	0.05	0.05	0
····			

Random projection to dimention reduction of large scale data

Results

Cauchy $\alpha = 1, d = 2$

Cauchy
$$\alpha = 1, d = 2$$

 \square Cauchy $\alpha = 1, d = 2$

Tabel $\alpha = 1, d = 2$

Dataset	ARI_p	ARI_d	C_e
Thyroid	0.58	0.36	-23
Iris	0.62	0.51	-11
Diabetes	0.38	0.33	-5
Swiss Banknotes	0.85	0.40	-44
Seeds	0.77	0.45	-32
Mice Protein Expression	0.13	0.06	-7
Crabs	0.05	0.05	0

Random projection to dimention reduction of large scale data

Results

Cauchy
$$\alpha = 1, d = 3$$

 \square Cauchy $\alpha = 1, d = 3$

Tabel $\alpha = 1, d = 3$

Dataset	ARI_p	ARI_d	C_e
Thyroid	0.58	0.37	-22
Iris	0.62	0.54	-8
Diabetes	0.38	0.35	-3
Swiss Banknotes	0.85	0.43	-41
Seeds	0.77	0.47	-30
Mice Protein Expression	0.13	0.07	-7
Crabs	0.05	0.05	0

Random projection to dimention reduction of large scale data Results

$$ightharpoonup$$
Sparse $s = 2, d = 2$

Sparse
$$s = 2, d = 2$$

Tabel s = 2, d = 2

Dataset	ARI_p	ARI_d	C_e
Thyroid	0.58	0.40	-18
Iris	0.62	0.49	-13
Diabetes	0.38	0.35	-3
Swiss Banknotes	0.85	0.40	-44
Seeds	0.77	0.45	-33
Mice Protein Expression	0.13	0.06	-7
Crabs	0.05	0.05	0

Random projection to dimention reduction of large scale data Results

$$ightharpoonup$$
Sparse $s = 2, d = 3$

Sparse
$$s = 2, d = 3$$

Tabel s = 2, d = 3

Dataset	ARI_p	ARI_d	Ce
Thyroid	0.58	0.44	-14
Iris	0.62	0.54	-8
Diabetes	0.38	0.37	-1
Swiss Banknotes	0.85	0.49	-36
Seeds	0.77	0.53	-24
Mice Protein Expression	0.13	0.08	-5
Crabs	0.05	0.05	0

Random projection to dimention reduction of large scale data Results

$$C_e$$
 versus α for $d=2$

$$C_e$$
 versus α for $d=2$

```
Results
```

 C_e versus α for d=2

Normal is better

 C_e versus α for d=2

Cauchy is better

 L_{C_e} versus α for d=2

$0 < \alpha < 1$ is better

Swiss Banknotes Ce vs. α

Random projection to dimention reduction of large scale data Results

$$C_e$$
 versus α for $d=3$

$$C_e$$
 versus α for $d=3$

 C_e versus α for d=3

Normal is better

 C_e versus α for d=3

Cauchy is better

 C_e versus α for d=3

$0 < \alpha < 1$ is better

 C_e versus s in Sparse for d=2

 C_e versus s in Sparse for d=2

 C_e versus c in Sparse for d=2

MPE

 C_e versus s in Sparse for d=3

 C_e versus s in Sparse for d=3

 C_e versus s in Sparse for d=3

Seeds

Random projection to dimention reduction of large scale data Results

 \Box Comparision d=2

Dataset	$\mathrm{RP}_{\alpha=2}$	$\mathrm{RP}_{\alpha=1}$	$RP_{s=2}$	Cov.	ρ_s	ρ'	η_p	SCV_2	$FSCV_1$	SCV_1
Thyroid	-18	-23	-18	-10	35	30	-6	36	37	37
Iris	-15	-11	-13	1	3	3	0	0	0	0
Diabetes	-2	-5	-3	0	22	33	8	4	38	4
Banknotes	-46	-44	-44	0	0	-97	-71	-93	0	-15
Seeds	-33	-32	-33	-14	0	-14	2	2	0	2
MPE	-7	-7	-7	-11	-11	-19	-6	-13	-19	-10
Crabs	0	0	0	2	1	-1	0	-1	1	-2

Figure 9: d = 2

Random projection to dimention reduction of large scale data Results

 \Box Comparision d = 3

Dataset	$RP_{\alpha=2}$	$RP_{\alpha=1}$	$RP_{s=2}$	Cov.	ρ_s	ρ'	η_p	SCV_2	$FSCV_1$	SCV_1
Thyroid	-15	-22	-14	-12	3	-6	5	4	2	4
Iris	-8	-8	-8	0	2	1	0	3	-1	3
Banknotes	-37	-41	-36	0	-5	0	-88	0	-24	0
Seeds	-24	-30	-24	1	0	-1	0	-26	-15	-15
MPE	-5	-7	-5	-9	-8	-12	-4	-8	-7	-8
Crabs	0	0	0	-1	0	1	0	1	-1	2

Figure 10: d = 3

Random projection to dimention reduction of large scale data

Results

7??

تعریف ۷ X بردار تصادفی پایدار با پارامترهای α و اندازه طیفی Γ ، X بردار تصادفی پایدار با پارامترهای α و اندازه ی طیفی η_p معیار وابستگی η_p برای $\eta_p = \eta_p\left(X_i, X_j\right) = \parallel \gamma^{\alpha}\left(u_i, u_j\right) - \gamma_{\perp}^{\alpha}\left(u_i, u_j\right) \parallel_{L_p, \mathrm{d}\boldsymbol{u}}$ (۳) $\eta_p = \eta_p\left(X_i, X_j\right) = \parallel \gamma^{\alpha}\left(u_i, u_j\right) - \gamma_{\perp}^{\alpha}\left(u_i, u_j\right) \parallel_{L_p, \mathrm{d}\boldsymbol{u}}$ (۳) تابع مقیاس تصویر توزیع پایدار دو متغیره با مولفه های مستقل

Figure 11:

تعریف ۸

 Γ_{XY} بردار تصادفی پایدار با پارامتر اندازه طیفی (X,Y)

$$\rho_{s}\left(X,Y\right) = \left(\int_{\mathbb{S}^{\mathsf{T}}} \left(\Gamma_{XY}\left(\boldsymbol{u}\right) - \Gamma_{\perp}\left(\boldsymbol{u}\right)\right)^{\mathsf{T}} d\boldsymbol{u}\right)^{\mathsf{T}/\mathsf{T}} \tag{9}$$

که در آن $\Gamma_{\!\!\perp}$ اندازه طیفی بردار پایدار با متغیرهای مستقل

Figure 12:

معیار وابستگی هم پراکنشی متقارن
$$SCV_1=rac{[X_1,X_7]_lpha+[X_7,X_1]_lpha}{7}.$$

Figure 13:

معيار وابستگى هم پراكنشى متقارن

$$\kappa_{\alpha}(X_{i},X_{j}) = \left\{ \begin{array}{ll} sign([X_{i},X_{j}]_{\alpha}), & sign([X_{i},X_{j}]_{\alpha}) = sign([X_{j},X_{i}]_{\alpha}), \\ -1, & sign([X_{i},X_{j}]_{\alpha}) = -sign([X_{j},X_{i}]_{\alpha}). \end{array} \right.$$

 $SCV_{\tau}(X_i, X_j) = \kappa_{\alpha}(X_i, X_j) |[X_i, X_j] [X_i, X_j]|^{\frac{1}{\tau}} \quad i, j = 1, \dots, p,$

Figure 14: