Επαναλήπτες και Ακολουθίες

Επαναλήπτες

- Ένας επαναλήπτης (iterator) αποτελεί αφαίρεση
 της διαδικασίας σάρωσης μιας συλλογής
 στοιχείων
- Έχει εναν δρομέα (cursor) που στέκεται μεταξύ
 δύο στοιχείων της λίστας, ή πριν από το πρώτο ή μετά το τελέυταίο στοιχείο
- Μέθοδοι του ΑΤΔ επαναλήπτη:
 - hasNext(): επιστρέφει true όσο η λίστα δεν είναι κενή και ο δρομέας δεν βρίσκεται μετά από το τελευταίο στοιχείο
 - next(): επιστρέφει το επόμενο στοιχείο
- Επεκτείνει την έννοια της θέσης προσθέτοντας
 δυνατότητα σάρωσης
- Υλοποίηση με πίνακα ή απλά συνδεδεμένη λίστα

Κλάσεις Επαναληπτών

- Ένας επαναλήπτης τυπικά συνδέεται με μια άλλη δομή
 δεδομένων, που μπορεί να υλοποιήσει τον ΑΤΔ επανάληψης
- Μπορούμε να επεκτείνουμε τους ΑΤΔ στοίβας, ουράς ,
 διανύσματος. Λίστας και ακολουθίας με την μέθοδο:
 - Iterator<E> iterator(): επιστρέφει εναν επαναλήπτη στα στοιχεία
 - Στην Java, κλάσεις με αυτή τη μέθοδο επεκτείνουν Iterable<E>
- Δύο έννοιες του επαναλήπτη:
 - snapshot: παγώνει τα περιεχόμενα της δομής δεδομένων σε συγκεκριμένη χρονική στιγμή
 - dynamic: ακολουθεί αλλαγές στη δομή δεδομένων
 - Στη Java: ἐνας επαναλήπτης θα αποτύχει (και θα δώσει εξαίρεση)
 αν η συλλογή αλλάξει απρόσμενα

Η Επανάληψη For-Each

- Η Java υποστηρίζει έναν απλό τρόπο σάρωσης
 των στοιχείων μιας επαναλήψιμης κλάσης:
 - for (type name: expression)
 loop_body
 - Για παράδειγμα:

```
List<Integer> values;
```

int sum=0

for (Integer i : values)

sum += i; // boxing/unboxing allows this

Υλοποίηση Επαναληπτών

- Βασισμένη σε πίνακες
 - ο πίνακας Α από στοιχεία
 - ο δείκτης i που έχει τιμή τον δρομέα
- Βασισμένη σε συνδεδεμένη λίστα
 - διπλά συνδεδεμένη λίστα L που αποθηκεύει τα στοιχεία, με φρουρό την κεφαλή και το τέλος
 - δείκτης ρ στον κόμβο που περιέχει το τελευταίο στοιχείο που επιστρέφεται (ή την κεφαλή αν αυτός είναι ένας νέος επαναλήπτης).
- Μπορούμε να προσθέσουμε μεθόδους στους ΑΤΔ μας που επιστρέφουν επαναλήψιμα αντικείμενα, έτσι που να μπορούμε να χρησιμοποιήσουμε την επανάληψη for-each στα περιχόμενά τους

Επαναλήπτες Λίστας στην Java

- Η Java χρησιμοποιεί τον ΑΤΔ ListIterator για τις βασισμένες σε κόμβο λίστες.
- Ο επαναλήπτης αυτός περιλαμβάνει τις παρακάτω μεθόδους:
 - add(e): προσθήκη του e στην παρούσα θέση του δρομέα
 - hasNext(): true αν υπάρχει στοιχείο μετά τον δρομέα
 - hasPrevious: true αν υπάρχει στοιχείο πριν τον δρομέα
 - previous(): επιστρέφει το στοιχείο e πριν το δρομέα και μετακινεί το δρομέα πριν το e
 - next(): επιστρέφει το στοιχείο e μετά τον δρομέα και μετακινεί το δρομέα μετά το e
 - set(e): αντικαθιστά που επέσρεψε η τελευταία next ή previous
 πράξη με το e
 - remove(): διαγράφει το στοιχείο που επέστρεψε η τελευταία next ή previous μέθοδος

ΑΤΔ ακολουθίας

- Ο ΑΤΔ Sequence είναι η
 ένωση των ΑΤΔ Πίνακα
 Λίστας και Λίστας Κόμβων
- Η προσπέλαση στα στοιχεία γίνεται με
 - Δείκτη, ή
 - Θέση
- Πρωταρχικές μέθοδοι :
 - size(), isEmpty()
- Μέθοδοι που βασίζονται σε λίστες πίνακες :
 - get(i), set(i, o), add(i, o),
 remove(i)

- Μέθοδοι που βασίζονται σε λίστα:
 - first(), last(), prev(p),
 next(p), replace(p, o),
 addBefore(p, o),
 addAfter(p, o),
 addFirst(o),
 addLast(o), remove(p)
- Μέθοδοι γεφύρωσης:
 - atIndex(i), indexOf(p)

Εφαρμογές των ακολουθιών

- Ο ΑΤΔ ακολουθίας είναι μια βασική, γενικού σκοπού, δομή δεδομένων για αποθήκευση μιας διατεταγμένης σειράς στοιχείων
- Αμεσες Εφαρμογές:
 - Αντικαθιστά στοίβα, ουρά, διάνυσμα, ή λίστα
 - μικρές βάσεις δεδομένων (πχ., βιβλίο διευθύνσεων)
- Έμμεσες εφαρμογές:
 - Ανάπτυξη πιο πολύπλοκων δομών δεδομένων

Υλοποίηση Συνδεδεμένης Λίστας

- Μια διπλά συνδεδεμένη λίστα
 υποστηρίζει μια λογική υλοποίηση του
 ΑΤΔ ακολουθίας
- Οι κόμβοι υλοποιούν θέση και αποθηκεύουν:
 - στοιχείο

© 2010 Goodrich, Tamassia

- σύνδεσμο στον προηγούμενο κόμβο
- σύνδεσμο στον επόμενο κόμβο
- Ειδικοί κόμβοι αρχής και τέλους

Οι μέθοδοι που βασίζονται στη θέση τρέχουν σε σταθερό χρόνο

Οι μέθοδοι που βασίζονται σε δείκτη απαιτούν αναζήτηση από την αρχή προς ή το τέλος ενώ καταγράφουν τους δείκτες• Επομένως τρέχουν σε γραμμικό χρόνο

9

Επαναλήπτες και Ακολουθίες

Υλοποίηση Βασισμένη σε Πίνακες

- Χρησιμοποιούμε ένα κυκλικό πίνακα για αποθήκευση των θέσεων
- Ένα αντικείμενο θέσης αποθηκεύει:
 - Στοιχείο
 - Δείκτη
- \Box Οι δείκτες f και lκαταχωρούν την πρώτη και την **Τελευταία θέση** © 2010 Goodrich, Tamassia

Σύγκριση Υλοποιήσεων ακολουθιών

Πράξη	Πίνακας	Λίστα
size, isEmpty	1	1
atIndex, indexOf, get	1	n
first, last, prev, next		1
set(p,e)	1	1
set(i,e)	1	n
add, remove(i)	n	n
addFirst, addLast	1	1
addAfter, addBefore	n	
remove(p)	n	1