Numerical Mathematics for Engineering II Assignment 9

Theoretical exercises: submit to exercise class on January 17th or 18th, 2017. Programming exercises: upload to ISIS until Friday 18:00, January 19th, 2017.

1. Exercise: Inner products and hat-functions

6 points

Let $\Omega = (-10, 10) \subset \mathbb{R}$. Recall that $L^2(\Omega)$ is the space of all functions $u: \Omega \to \mathbb{R}$ which satisfy

$$||u||_{L^2(\Omega)} = \left(\int_{\Omega} |u(x)|^2 dx\right)^{\frac{1}{2}} < \infty.$$

It is equipped with the inner product

$$\langle u, v \rangle_{L^2(\Omega)} = \int_{\Omega} u(x)v(x) dx, \quad u, v \in L^2(\Omega),$$

and norm $||u||_{L^2(\Omega)} = \sqrt{\langle u, u \rangle_{L^2(\Omega)}}$. Furthermore, let $a: H^1(\Omega) \times H^1(\Omega) \to \mathbb{R}$ be the bilinear form, defined for weakly differentiable mappings u, v by

$$a(u, v) = \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, \mathrm{d}x.$$

Let $\varphi \colon \mathbb{R} \to \mathbb{R}$ be the function $\varphi(x) = 0$ for $|x| \ge 1$, $\varphi(x) = x + 1$ for $x \in [-1, 0]$ and $\varphi(x) = 1 - x$ for $x \in [0, 1]$. For h > 0 and $n \in \mathbb{Z}$, let $\varphi_n^h(x) := \varphi(h^{-1}x - n)$.

- a) Draw by hand the functions $\varphi_n^{0.25}$, $n=1,\ldots,4$, in the same graph.
- **b)** Determine the weak derivative of $\varphi_1^{0.5}$.
- c) Compute the terms $\langle \varphi_m^h, \varphi_n^h \rangle_{L^2(\Omega)}$ and $a(\varphi_m^h, \varphi_n^h)$ as functions of h, m, n. Formulate the $\mathbb{R}^{N \times N}$ matrices $M_{ij} = \langle \varphi_i^h, \varphi_j^h \rangle_{L^2(\Omega)}$ and $S_{ij} = a(\varphi_i^h, \varphi_j^h), i, j = 1, \dots, N$.
- d) Prove that $a(\cdot,\cdot)$ is an inner product on the space $C_0^1(\bar{\Omega})$ consisting of $C^1(\bar{\Omega})$ functions u with u(x) = 0 on $\partial\Omega$. Show that it is not an inner product on $C^1(\bar{\Omega})$.

For $\Omega = (0,1)$ consider the boundary value problem

$$\begin{cases}
-u''(x) = -e^x, & x \in \Omega, \\
u(0) = 0, u'(1) = -1.
\end{cases}$$
(1)

Let $P^N(\bar{\Omega})$ be the space of all N-th order polynomials on [0,1]. The monomials $\psi_n(x) = x^n$, $n \in \{0,\ldots,N\}$, form a basis of this space. We want to approximate the solution u in the space $P^N(\bar{\Omega})$. For this we take $U_N = \sum_{n=1}^N \xi_n \psi_n$, where $\xi_1,\ldots,\xi_N \in \mathbb{R}$. Due to the boundary condition u(0) = 0 we do not have the constant basis function ψ_0 in the sum.

- a) Find the exact solution to (1).
- **b)** Use integration by parts to derive the variational formulation of (1) containing only the first derivative of u. Take care of the inhomogeneous Neumann boundary condition.
- c) Formulate the Galerkin equation for the approximation of u in $P^N(\bar{\Omega})$ using the formulation obtained in (b). From this derive a linear system of equations in order to determine the coefficients $\xi_1, \ldots, \xi_N \in \mathbb{R}$.
- d) Write a function coeff = a09e02getpoly(N) that returns the vector coeff containing the coefficients ξ_1, \ldots, ξ_N .
- e) Write a script a09e02error.py that plots the error in a loglog-plot for some different values of N.
- f) Explain from a numerical linear algebra perspective why the polynomial Galerkin approximation is not favorable (one sentence).

3. Exercise: Equivalence to a minimization problem

3 points

Let $A \in \mathbb{R}^{N \times N}$ be a symmetric and positive definite matrix and $b \in \mathbb{R}^N$ be arbitrary. Show that finding the solution $x \in \mathbb{R}^N$ to Ax = b is equivalent to determining the minimizer $x \in \mathbb{R}^N$ of the expression $J(x) = \frac{1}{2}x^TAx - b^Tx$.

total sum: 19 points