Controlling the Transition of Hidden States for Neural Machine Translation

Zaixiang Zheng Shujian Huang* Xin-Yu Dai Jiajun Chen

Oct 26, 2018

Outline

- Introduction
- 2 Our Approach
- 3 Experiment
- Conclusion

Outline

- Introduction
- 2 Our Approach
- 3 Experiment
- 4 Conclusion

Neural Machine Translation

- Neural network-based methods show a promising trend in machine translation
- ► Generally, a neural machine translation (NMT) system adopts an encoder-decoder architecture with attention mechanism to model translating process

Recurrent Neural Network (RNN) based NMT

RNN-based NMT models with attention are widely deployed that deserves further study.

- ► Bi-directional encoder
- ► Uni-directional (left-to-right) decoder
- Encoder and decoder are bridged by attention

In this work, we focus on the RNN-based NMT model, especially its decoder part.

Recurrent Neural Network (RNN) based NMT

The NMT model

- ▶ is fed with a source sentence: $\langle x_1, ... x_i, ... \rangle \rightarrow \langle \boldsymbol{h}_1, ... \boldsymbol{h}_i, ... \rangle$
- ▶ does some magics with decoder hidden states step by step

$$s_t = f(s_{t-1}, y_{t-1}),$$
 (1)

$$\mathbf{s}_0 = \mathsf{summary}(\mathbf{h}).$$
 (2)

• finally throws out a translated sentence: $\mathbf{s} \to \langle y_1, ... y_t, ... \rangle$

$$y_t = \operatorname{softmax}(g(s_t)).$$
 (3)

Recurrent Neural Network (RNN) based NMT

The NMT model

- ▶ is fed with a source sentence: $\langle x_1, ...x_i, ... \rangle \rightarrow \langle \boldsymbol{h}_1, ...\boldsymbol{h}_i, ... \rangle$
- ▶ does some **magics** with decoder **hidden states** step by step

$$\mathbf{s}_t = f(\mathbf{s}_{t-1}, y_{t-1}), \tag{1}$$

$$\mathbf{s}_0 = \mathsf{summary}(\mathbf{h}).$$
 (2)

▶ finally throws out a translated sentence: $\mathbf{s} \rightarrow \langle y_1, ... y_t, ... \rangle$

$$y_t = \operatorname{softmax}(g(\mathbf{s}_t)).$$
 (3)

We may ask..

What happens inside this so-called "black box"?
Why and how does it work?

▶ If we could peep into the contents of the hidden states, we would get some inspirations

- ▶ If we could peep into the contents of the hidden states, we would get some inspirations
 - ► The contents of the hidden representations are predictive of several surface, syntactic and semantic attributes (sentence length, tense, etc) (Conneau et al., 2018)

- ▶ If we could peep into the contents of the hidden states, we would get some inspirations
 - ► The contents of the hidden representations are predictive of several surface, syntactic and semantic attributes (sentence length, tense, etc) (Conneau et al., 2018)
 - ► In each decoding step, the decoder hidden state is able to predict the rest untranslated Bag-of-Words (Weng et al., 2017)

- ► If we could peep into the contents of the hidden states, we would get some inspirations
 - ► The contents of the hidden representations are predictive of several surface, syntactic and semantic attributes (sentence length, tense, etc) (Conneau et al., 2018)
 - ▶ In each decoding step, the decoder hidden state is able to predict the rest untranslated Bag-of-Words (Weng et al., 2017)
 - ► The decoder hidden states should model past, present and future translation contents, which are varied according to the translation process (Zheng et al., 2018)

We first conducted a preliminary probing experiment to explore the contents of the hidden states. We applied Bag-of-Word (BoW) predictions (Weng et al., 2017) on decoder hidden states.

we first trained an RNN-based NMT model

- we first trained an RNN-based NMT model
- we built two word predictors (Weng et al., 2017) on the top of each decoder hidden states of the trained model to predict the BoW of forward and backward directions, respectively

- we first trained an RNN-based NMT model
- we built two word predictors (Weng et al., 2017) on the top of each decoder hidden states of the trained model to predict the BoW of forward and backward directions, respectively
- we trained the word predictors while fixed all the parameters of the original NMT model

- we first trained an RNN-based NMT model
- we built two word predictors (Weng et al., 2017) on the top of each decoder hidden states of the trained model to predict the BoW of forward and backward directions, respectively
- we trained the word predictors while fixed all the parameters of the original NMT model
- ▶ we wanted to validate if the hidden states store the translated and untranslated BoW, extending the observations of Weng et al. (2017)

Bag-of-Word (BoW) Predictions

$$\mathit{acc}_\mathit{fw} = \frac{1}{T} \sum_{1}^{T} \sum_{w \in top_{(T-t-1)}(P_t)} \frac{1(w \in y_{>(t+1)})}{T - t - 1}$$

	Acc.	ppl
Forward pred.	71%	5.1
Backward pred.	78%	4.6

Table 1: Statistics of BoW predictions.

Figure 1: Illustration of BoW pred.

Bag-of-Word (BoW) Predictions

$$\mathit{acc}_{\mathit{fw}} = \frac{1}{T} \sum_{1}^{T} \sum_{w \in \mathit{top}_{(T-t-1)}(P_t)} \frac{1(w \in \mathit{y}_{>(t+1)})}{T - t - 1}$$

	Acc.	ppl
Forward pred.	71%	5.1
Backward pred.	78%	4.6

Table 1: Statistics of BoW predictions.

Figure 1: Illustration of BoW pred.

Each hidden state stores its backward directional contents (translated words) and forward directional contents (untranslated words).

- ► Each hidden state stores *span-level* information of the complete translations.
- ▶ The changed factor is the transitions of the hidden states.

- ► Each hidden state stores *span-level* information of the complete translations.
- ▶ The changed factor is the transitions of the hidden states.

We suggest that

► The translations vary at different timesteps in accordance with the hidden states' transitions.

- ► Each hidden state stores *span-level* information of the complete translations.
- ▶ The changed factor is the transitions of the hidden states.

We suggest that

- ► The translations vary at different timesteps in accordance with the hidden states' transitions.
- ► The transitions play an important role in the RNN-based decoder, updating the span-level information of each hidden state.

- ► Each hidden state stores *span-level* information of the complete translations.
- ▶ The changed factor is the transitions of the hidden states.

We suggest that

- ► The translations vary at different timesteps in accordance with the hidden states' transitions.
- ► The transitions play an important role in the RNN-based decoder, updating the span-level information of each hidden state.
- ► The difference between two hidden states should represent lexicon-level information of the current translation.

What Can We Do with It?

- ► The transitions of the hidden states play a important role in RNN-based decoder
- ► Regular MLE training does not guide the transition directly

What Can We Do with It?

- ► The transitions of the hidden states play a important role in RNN-based decoder
- ► Regular MLE training does not guide the transition directly

So, we probably need

An explicit supervision to control the transition

Outline

- Introduction
- 2 Our Approach
- 3 Experiment
- 4 Conclusion

For clarity, let us take $\{s_{t-1}, s_t\}$ and y_t for example.

• we denote Δs_t as the increment produced by the transition from s_{t-1} to s_t .

For clarity, let us take $\{s_{t-1}, s_t\}$ and y_t for example.

- ightharpoonup we denote Δs_t as the increment produced by the transition from s_{t-1} to s_t .
- ▶ the transition of two successive decoder hidden states should be predictive of the translation at current timestep.
 - $ightharpoonup \Delta s_t pprox y_t$

For clarity, let us take $\{s_{t-1}, s_t\}$ and y_t for example.

- we denote Δs_t as the increment produced by the transition from s_{t-1} to s_t .
- ▶ the transition of two successive decoder hidden states should be predictive of the translation at current timestep.
 - $ightharpoonup \Delta s_t \approx y_t$
 - we introduce a predictive constraint:

$$q(y_t|\Delta s_t) = \operatorname{softmax}(\boldsymbol{E}(y_t)^{\top} \boldsymbol{W} \operatorname{tanh}(\Delta s_t)),$$
 (4)

where \boldsymbol{W} is a learned matrix.

$$q(y_t|\Delta s_t) = \operatorname{softmax} (\boldsymbol{E}(y_t)^{\top} \boldsymbol{W} \operatorname{tanh}(\Delta s_t))$$

Figure 2: Illustration of proposed approach. Dotted lines denote the way to obtain the increment and predictive constraint.

Zheng et al. (NJU) CWMT 2018 Oct 26, 2018 14 / 25

How to Model the Transition Δs_t ?

- ► Algebraic Subtraction
 - ► A general assumption: the decoding states form a shared latent representation space,
 - Get Δs_t by an algebraic subtraction

$$\Delta s_t = s_t - s_{t-1} \tag{5}$$

How to Model the Transition Δs_t ?

- ► Algebraic Subtraction
 - ► A general assumption: the decoding states form a shared latent representation space,
 - Get Δs_t by an algebraic subtraction

$$\Delta s_t = s_t - s_{t-1} \tag{5}$$

- Parametric Subtraction
 - ► Apply the subtraction in a parametric manner
 - ▶ The subtrahend and minuend are first mapped by separate linear transformations U_1 and U_2 , respectively

$$\Delta s_t = \boldsymbol{U}_1 s_t - \boldsymbol{U}_2 s_{t-1} \tag{6}$$

Training

Give a training dataset $\{[\mathbf{x}^{(\mathbf{m})}, \mathbf{y}^{(\mathbf{m})}]\}_{m=1}^{M}$, we learn our model as follow:

► Sentence-level predictive constraint of the transitions

$$q_{\gamma}(\mathbf{y}) = \sum_{t}^{T} q(y_{t}|\mathbf{\Delta s}_{t})$$

► Training objective

$$\mathcal{L}(\theta, \gamma) = \frac{1}{M} \sum_{m=1}^{M} \log P_{\theta}(\mathbf{y^{(m)}}|\mathbf{x^{(m)}}) + \log q_{\gamma}(\mathbf{y^{(m)}})$$
(7)

Inference

- $ightharpoonup \Delta s_t$ is supposed to predict y_t ,
- ▶ Use $P(y_t|y_{< t}) + q(y_t|\Delta s_t)$ instead of $P(y_t|y_{< t})$ as the search score in testing phase

Zheng et al. (NJU)

Inference

- ▶ Δs_t is supposed to predict y_t ,
- ▶ Use $P(y_t|y_{< t}) + q(y_t|\Delta s_t)$ instead of $P(y_t|y_{< t})$ as the search score in testing phase

This *re-scoring* strategy ensures the consistence of the objective of training and inference.

Outline

- Introduction
- Our Approach
- 3 Experiment
- 4 Conclusion

Settings

- Dataset
 - ► Chinese→ English (Zh-En): NIST corpus, 1.6m
 - ► German ↔ English (De-En & En-De): WMT2017 news translation task, 5.8m
- BPE for De-En and En-De.
- 30K vocabularies for Zh-En.
- Filter long sentence whose lengths are large than 80,
- ▶ 512-dims word embedding, 1024-dims hidden state,
- Use Adam with learning rate annealing for optimization.

Results on Zh-En

Model	MT03	MT04	MT05	Avg.	Δ
RNNSEARCH	37.95	40.80	36.06	38.27	-
Algebraic Subtraction	38.66	40.93	37.00	38.86	+0.59
Parametric Subtraction	39.07	41.23	37.35	39.22	+0.95
Algebraic Subtraction $+$ Re-scoring	39.53	41.88	37.40	39.60	+1.33
$Parametric\ Subtraction\ +\ Re ext{-scoring}$	39.95	42.53	38.17	40.22	+1.95

Results on Zh-En

Model	MT03	MT04	MT05	Avg.	Δ
RNNSEARCH	37.95	40.80	36.06	38.27	-
Algebraic Subtraction	38.66	40.93	37.00	38.86	+0.59
Parametric Subtraction	39.07	41.23	37.35	39.22	+0.95
Algebraic Subtraction $+$ Re-scoring	39.53	41.88	37.40	39.60	+1.33
$Parametric\ Subtraction\ +\ Re-scoring$	39.95	42.53	38.17	40.22	+1.95
RNNSEARCH (BPE 32K)	40.59	41.65	37.73	40.00	-
$Parametric\ Subtraction\ +\ Re-scoring$	41.43	43.50	39.83	41.59	+1.60

Table 2: Case-insensitive BLEU on Zh-En translation task.

Results on Zh-En

Model	MT03	MT04	MT05	Avg.	Δ
RNNSEARCH	37.95	40.80	36.06	38.27	-
Algebraic Subtraction	38.66	40.93	37.00	38.86	+0.59
Parametric Subtraction	39.07	41.23	37.35	39.22	+0.95
Algebraic Subtraction $+$ Re-scoring	39.53	41.88	37.40	39.60	+1.33
$Parametric\ Subtraction\ +\ Re ext{-scoring}$	39.95	42.53	38.17	40.22	+1.95
RNNSEARCH (BPE 32K)	40.59	41.65	37.73	40.00	-
$Parametric\ Subtraction\ +\ Re ext{-scoring}$	41.43	43.50	39.83	41.59	+1.60

Table 2: Case-insensitive BLEU on Zh-En translation task.

Observations:

- ► Constraint on the transitions is effective
- Parametric constraint is better
- ▶ Re-scoring is useful and cheap to boost the performance

Results on De-En and En-De

Model	De-En		En-De	
Model	Dev	Test	Dev	Test
RNNSEARCH	32.0	27.8	28.3	23.3
Parametric Subtraction	32.2	28.7	29.6	23.6
${\it Parametric Subtraction} + {\it re-scoring}$	32.9	29.1	30.6	24.1

Table 3: Case-sensitive BLEU on De-En and En-De Translation Tasks.

Results on De-En and En-De

Model		De-En		En-De	
Model	Dev	Test	Dev	Test	
RNNSEARCH	32.0	27.8	28.3	23.3	
Parametric Subtraction	32.2	28.7	29.6	23.6	
Parametric Subtraction + re-scoring	32.9	29.1	30.6	24.1	

Table 3: Case-sensitive BLEU on De-En and En-De Translation Tasks.

Observations:

- Our approach is effective across various language pairs,
- Our approach works well consistently on both words and sub-words (BPE) scenarios.

Analysis on Parameters and Speeds

Model	#Parameter	Speed		
Widdel	#1 arameter	Testing		
RNNSEARCH	80M	42.59	2.05	
Algebraic Subtraction	80.5M	37.91	2.03	
Parametric Subtraction	82.5M	36.50	2.00	
$Parametric\ Subtraction\ +\ re-ordering$	82.5M	36.55	1.72	

Table 4: Statistics of parameters, training and testing speeds (sentences per second). **Note that** if we don't use re-scoring strategy, the newly added parameters will never be used in testing phase. i.e., it uses the same amount of parameters as the original NMT.

Analysis on Parameters and Speeds

Model	#Parameter	Speed		
Model	#Farameter	Training	Testing	
RNNSEARCH	80M	42.59	2.05	
Algebraic Subtraction	80.5M	37.91	2.03	
Parametric Subtraction	82.5M	36.50	2.00	
$Parametric\ Subtraction\ +\ re-ordering$	82.5M	36.55	1.72	

Table 4: Statistics of parameters, training and testing speeds (sentences per second). **Note that** if we don't use re-scoring strategy, the newly added parameters will never be used in testing phase. i.e., it uses the same amount of parameters as the original NMT.

Observations:

- Little increase of parameters
- ▶ Re-scoring strategy only lowers the testing speed slightly

Outline

- Introduction
- Our Approach
- 3 Experiment
- Conclusion

In this paper, we propose to explicitly control the transition of the decoder hidden states.

- We introduce two variants to model the transitions of the decoder hidden states
- ► We empirically show the effectiveness of our approach in diverse language pairs

In this paper, we propose to explicitly control the transition of the decoder hidden states.

- We introduce two variants to model the transitions of the decoder hidden states
- ► We empirically show the effectiveness of our approach in diverse language pairs

Discussions

In this paper, we propose to explicitly control the transition of the decoder hidden states.

- We introduce two variants to model the transitions of the decoder hidden states
- ► We empirically show the effectiveness of our approach in diverse language pairs

Discussions

Probing methods could help us to explore what's inside the deep representations

▶ The better we understand the model, the more inspirations we would find.

In this paper, we propose to explicitly control the transition of the decoder hidden states.

- We introduce two variants to model the transitions of the decoder hidden states
- ► We empirically show the effectiveness of our approach in diverse language pairs

Discussions

Probing methods could help us to explore what's inside the deep representations

▶ The better we understand the model, the more inspirations we would find.

Simply applying re-scoring in testing helps a lot

► A better score function for the search-based decoding would be useful, which deserves further investigations.

Zheng et al. (NJU) CWMT 2018 Oct 26, 2018 24 / 25

Thanks!

- Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni. 2018. What you can cram into a single vector: Probing sentence embeddings for linguistic properties.
- Rongxiang Weng, Shujian Huang, Zaixiang Zheng, Xin-Yu Dai, and Jiajun Chen. 2017. Neural machine translation with word predictions. In *EMNLP 2017*.
- Zaixiang Zheng, Hao Zhou, Shujian Huang, Lili Mou, Xinyu Dai, Jiajun Chen, and Zhaopeng Tu. 2018. Modeling past and future for neural machine translation. *TACL*, 6:145–157.