

Modularity

Modularity:

$$Q = \frac{1}{2m} \sum_{ij} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j)$$

 χ_c characteristic variable of partition c

$$Q \propto \sum_{c} \mathsf{Cov}\left(\chi_{c}(t), \chi_{c}(t+1)\right)$$

Projected Markov Chain

Markov Chain

 $\dots, X_{\text{past}}, X_{\text{now}}, X_{\text{future}}, \dots$

Projection

 $\dots, Y_{\text{past}}, Y_{\text{now}}, Y_{\text{future}}, \dots$

where I(X; Y) = H(X) - H(X|Y) is the Mutual Information

M.F. et al, Journal of Complex Networks, cnx055

where I(X; Y) = H(X) - H(X|Y) is the Mutual Information

M.F. et al, Journal of Complex Networks, cnx055

Entrogram: Examples

Non linear communities

Modularity
$$Q \propto \sum_{c} \mathsf{Cov} \left(\chi_{c}(t), \chi_{c}(t+1) \right)$$

Objective function: $I(Y_t, Y_{t-\tau})$

$$\begin{array}{c} \text{DCSBM} \\ I(Y_t;Y_{t-\tau}) \propto -\sum_{rs} e_{rs} \log \frac{e_{rs}}{e_r e_s} \end{array}$$
 In some cases

Example 1: One cycle

How many Partitions?

Example 1: One cycle

How many Partitions?

M. Faccin, CCS 2018 7

Example 2: Two cycles

Example 2: Two cycles

M. Faccin, CCS 2018 8

Example 2: Two cycles

$$\tau = 7$$
 days

$$\tau = 7$$
 days

 $\tau = 700$ days

$$\tau = 7$$
 days

 $\tau = 700$ days

Concluding

- · A information theoretical algorithm for block detection
- · As a plus: same base as (DC)SBM (dynamical interpretion)
- Weighted networks and non-networks (only trajectories)
- Code at: https://github.com/maurofaccin/entropart

Questions?

https://maurofaccin.github.io
mauro.faccin@uclouvain.be

Code at: https://github.com/maurofaccin/entropart