АНСАМБЛІ МОДЕЛЕЙ (ПРОДОВЖЕННЯ)

Ансамбль — набір моделей, які сумісно застосовуються для розв'язання єдиної задачі.

Мета – підвищити якість (точність) рішень

1. Вибір базової моделі

Однорідний ансамбль

Складається з базових моделей **одного типу**, наприклад тільки моделей нейронних мереж або дерев рішень.

Ансамбль з моделей різного типу

Складається з моделей різного типу, наприклад, нейронних мереж, дерев рішень, регресійних моделей тощо.

Перевага – додаткова гнучкість.

Недолік — необхідні додаткові перетворення для узгодження входів і виходів моделей різного типу.

2. Використання навчальної множини

Перевибірка (resampling)

3 початкової навчальної множини формуються декілька підвибірок, кожна з яких використовується для навчання однієї з моделей ансамбля.

Використання єдиної навчальної множини для всіх моделей ансамбля

3. Вибір методу комбінування результатів окремих моделей

- Голосування застосовується в задачах класифікації, для категоріальних цільових змінних. Вибирається клас, виданий більшістю моделей ансамбля.
- **Зважене голосування** кожній моделі ансамбля назначається своя вага, яка відображає рівень довіри до результатів моделі.
- **Середнє значення** застосовується в задачах регресії, для числових цільових змінних.
- **Зважене середнє значення** в задачах регресії аналогічно зваженому голосуванню.

Беггінг (покращуюче об'єднання, bootstrap aggregating)

В основі беггінгу – технологія "збурення та комбінування"

Внесення змін випадкового характеру в навчальні дані і побудова декількох альтернативних моделей на змінених даних з наступним комбінування результатів

- Формування декількох вибірок на основі навчальної множини

- Додавання шуму
- Адаптивне зважування
- Випадковий вибір між конкуруючими вузлами (розбиттями)

Беггінг (bootstrap aggregating - покращуюче об'єднання)

Етапи беггінгу:

- Формування вибірок однакового розміру випадковим чином на основі навчальної множини
- Побудова моделі на основі кожної вибірки
- Комбінування результатів

Бустінг (boosting - підвищення)

Ідея:

- Моделі створюються послідовно. Створення ансамбля починається на основі єдиної навчальної множини.
- Кожна нова модель ансамбля будується на основі результатів раніше побудованих моделей.
- Нові моделі будуються таким чином, щоб вони доповнювали раніше побудовані моделі, виконували ту роботу, яку інші моделі не змогли зробити на попередніх кроках.
- Кожній моделі ансамбля залежно від її точності присвоюється вага.

Бустінг

Недоліки бустінгу:

- Приклади з низькими вагами не потрапляють на наступну ітерацію. Наслідок втрата частини корисної інформації, виродження навчальних вибірок, на основі яких будуються більш пізні моделі.
- Більша схильність до перенавчання в порівнянні з беггінгом.
 Кількість ітерацій має бути якомога меншою без втрати точності.
- Низька прозорість ансамблю моделей для аналітика (недолік властивий і беггінгу).
- Складність інтерпретації результатів (недолік властивий і беггінгу).

випадковий ліс B SCIKIT-LEARN VERSION 0.23

Недоліки дерев рішень

 дерева рішень можуть відновлювати дуже складні закономірності, тому вони <u>схильні до</u> перенавчання

Боротьба з перенавчанням – використання:

- критеріїв зупинок, які вважаються простими і не завжди допомагають,
- стрижки дерев, яка достатньо складна

Недоліки дерев рішень

□ Для навченого ДР, де в кожному листовому вузлі є <u>по одному</u> об'єкту, розділяюча поверхня буде дуже розрізаною — це дуже погано

Перенавчена поверхня

Порівняння розділяючих поверхонь

Порівняння розділяючих поверхонь

Недоліки дерев рішень

- □ вони сильно перенавчаються,
- □ вони <u>дуже нестійкі</u>, сильно змінюються навіть при невеликих змінах у навчальній вибірці.

Другий недолік можна перетворити на їх перевагу за допомогою композиції дерев.

Випадковий ліс (Random Forest)

 Ансамбль дерев прийняття рішень, які навчаються зазвичай методом беггінга або іноді вставки і, як правило, з параметром max_samples рівним розміру навчальної вибірки.

```
class sklearn.ensemble.RandomForestClassifier ()
class sklearn.ensemble.RandomForestRegressor ()
```

o6'εκτiв, default=2,

```
class sklearn.ensemble.RandomForestClassifier ()
n_estimators — число дерев у лісі, default=100
max_depth — максимальна глибина дерева,
default=None — дерево будується, поки всі листи не
стануть чистими або поки всі листи не містять менше
ніж min_samples_split прикладів,
min_samples_split — мінімальна кількість об'єктів,
необхідна для поділу внутрішнього вузла. Можна
задати числом або відсотком від загального числа
```

```
class sklearn.ensemble.RandomForestClassifier ()
criterion — функція, яка вимірює якість розбиття
гілки дерева,
criterion={"gini", "entropy"}, по дефолту – "gini"
min_samples_leaf — мінімальне число об'єктів у
листі. Можна задати числом або відсотком від
загального числа об'єктів, default=1,
min_weight_fraction_leaf — мінімальна зважена доля
від загальної суми ваг по всім вхідним об'єктам
повинна бути в листі, по умовчанню мають однакову
вагу,
max_leaf_nodes — максимальна кількість листів, по
умовчанню немає обмежень,
```

```
class sklearn.ensemble.RandomForestClassifier ()

max_features — число ознак, за якими шукається
poзбиття. Можна вказати:
— конкретне число або відсоток ознак,
— "auto" — всі ознаки,
— «sqrt», тоді max_features=sqrt(n_features) (те саме, що і "auto"),
— "log2", тоді max_features=log2(n_features),
По дефолту "auto".
```

bootstrap — чи застосовувати бустреп для побудови дерева, default= True. Якщо значення False, для побудови кожного дерева використовується весь набір даних.

```
class sklearn.ensemble.RandomForestClassifier ()
```

oob_score — чи використовувати out—of—bag об'єкти для оцінки узагальненої точності accuracy, default=False

n_jobs — кількість задач, які будуть виконуватися
паралельно — кількість ядер для побудови моделі і
прогнозів, default=1,
якщо n_jobs= -1, то будуть використовуватися всі ядра

verbose — вивід логів з побудови дерев, default= 0

max_samples — якщо bootstrap=True, кількість прикладів для відбору з X для навчання кожного базового оцінювача, default=X.shape[0] прикладів. Можна задати числом або відсотком від загального числа прикладів.

class sklearn.ensemble.RandomForestClassifier ()

warm_start — повторно використовує рішення попереднього виклику, використовує вже натреновану модель і додає більше оцінювачів до ансамблю, default= False — навчає весь новий ліс

class_weight — вага кожного класу, по дефолту всі ваги дорівнюють 1. Можна вказати:

- "balanced" ваги класів дорівнюють їх вихідним частинам в навчальній вибірці,
- "balanced_subsample" ваги на кожній підвибірці будуть змінюватися залежно від розподілу класів на цій підвибірці,
- передача списку словників з вагами

Extremely Randomized Trees

ExtraTreesClassifier i ExtraTreesRegressor

- Застосовуються випадкові пороги для кожної ознаки замість пошуку найкращих можливих порогів, як це робиться у звичайних деревах прийняття рішень.
- Має місце більш низька дисперсія при трохи вищому значенні зміщення.
- Вони навчаються набагато швидше, ніж традиційні випадкові ліси.
- ExtraTrees слід використовувати у випадку сильного перенавчання на випадковому лісі або градієнтному бустингу.

Оцінка важливості ознак

- чим вище знаходиться ознака в дереві рішень, тим вона є важливішою в даній задачі,
- □ при кожному розбитті в кожному дереві покращення критерію поділу (індексу Джині) це показник важливості, пов'язаний зі змінною поділу, і накопичується він за всіма деревами лісу окремо для кожної змінної

Оцінка важливості ознак (продовження)

- Ознаки з більшим середнім зменшенням точності важливіші для класифікації /регресії (визначається під час обчислення out-of-bag помилки).
- Середнє зменшення індексу Джині (або помилки mse в задачах регресії) це міра того, як кожна ознака сприяє однорідності вузлів і листів у лісі:
 - значення 0 відповідає повній однорідності,
 - значення 1 повній неоднорідності.
- Ознаки, які призводять до вузлів з більш високою чистотою, мають більш високе зниження індексу Джині.

Оцінка важливості ознак (продовження)

```
>>> from sklearn.datasets import load iris
>>> iris = load iris ()
>>> model = RandomForestClassifier (n estimators=500, n jobs=-1)
>>> model. fit(iris["data"], iris["target"])
>>> for name, score in zip (iris["feature names"], model. feature
importances :
     print (name, score)
sepal length (cm) 0 . 112492250999
sepal width (cm) 0 . 0231192882825
petal length (cm) 0.441030464364
petal width (cm) 0.423357996355
```

Перетворення ознак в багатовимірний простір

RandomTreesEmbedding

- Перетворення набору даних в багатовимірне розріджене його представлення.
- Будуються випадкові дерева, і індекс листа, в якому опинився об'єкт даних, вважаємо за нову ознаку.
- Бінарне кодування якщо в лист потрапив об'єкт, то ставимо 1, якщо не потрапив, то 0.
- Контролювати кількість змінних і ступінь розрідженості такого представлення можна збільшуючи або зменшуючи кількість дерев та їх глибину.

Зміщення і дисперсія для випадкового лісу

```
Tree: 0.0255 (error) = 0.0003 (bias^2) + 0.0152 (var) + 0.0098 (noise)

Bagging(Tree): 0.0196 (error)= 0.0004 (bias^2) + 0.0092(var) + 0.0098 (noise)
```

Зміщення для моделі випадкового лісу таке ж, як і зміщення в окремому дереві $T(x,\Theta(Z))$:

$$Bias = E(x) - E_z f(x) = E(x) - E_z E_{\Theta|Z} T(x, \Theta(Z))$$

Зміщення випадкового лісу зазвичай більше, ніж зміщення «неусіченого» (unprunned) дерева, внаслідок рандомізації і скорочення простору вибірки.

Переваги випадкового лісу

- має високу точність прогнозування, точність порівнянна з бустінгом
- здатний ефективно обробляти дані з великим числом ознак і класів
- рідко перенавчається, але після досягнення певної кількості дерев крива навчання наближається до асимптоти
- практично не чутливий до викидів в даних, оскільки кожне дерево навчається на іншому випадковому піднаборі навчального набору
- не чутливий до будь-яких монотонних перетворювань значень ознак, напр, масштабування, це пов'язано з вибором випадкових підпросторів,

Переваги випадкового лісу (продовження)

- добре працює з пропущеними даними; зберігає гарну точність, навіть якщо велика частина даних пропущена
- можна збалансувати вагу кожного класу на всій вибірці, або на підвибірці кожного дерева
- не вимагає ретельної настройки параметрів
- існують методи оцінювання значущості окремих ознак в моделі
- допускає розпаралелювання, має високу масштабованість

Недоліки випадкового лісу

- схильний до перенавчання на деяких задачах, особливо на зашумлених даних
- працює гірше багатьох лінійних методів, коли у вибірці дуже багато розріджених ознак (напр., тексти)
- більший розмір результуючих моделей: потрібно О (nM) пам'яті для зберігання моделі, де М - число дерев
- не може виконувати екстраполяцію

Недоліки випадкового лісу (продовження)

- для даних, що мають категоріальні змінні з різною кількістю рівнів, випадкові ліси упереджені на користь ознак з великою кількістю рівнів: дерево сильніше підлаштовується саме під такі ознаки, так як на них можна отримати більш високе значення функціоналу, що оптимізується (індекс Джині, приросту інформації)
- якщо дані містять групи корельованих ознак, що мають схожу значущість для міток, то перевага віддається невеликим групам перед великими
- результати випадкового лісу складніше інтерпретувати,
 порівняно з одним деревом.