Atividade 3 - Respostas

Questão 1.a - Elabore e interprete o teste do qui-quadrado de independência para verificar se há associação estatisticamente significativa entre o turno escolar e a percepção dos pais quanto à qualidade do ensino. Utilize um nível de significância de 5%.

A análise de dados pode ser utilizada para investigar a associação entre o turno escolar (matutino, vespertino ou noturno) e a percepção dos pais quanto à qualidade do ensino (boa, regular ou ruim) por meio do teste do qui-quadrado de independência.

Este teste é uma ferramenta estatística que permite verificar se há uma relação estatisticamente significativa entre duas ou mais variáveis de classificação.

O teste do qui-quadrado de independência formula as seguintes hipóteses:

- Hipótese Nula (H0): As variáveis "turno escolar" e "percepção dos pais sobre a qualidade do ensino" são independentes, ou seja, não há associação estatisticamente significativa entre elas.
- **Hipótese Alternativa (H1)**: As variáveis não são independentes (estão associadas), ou seja, há uma associação estatisticamente significativa entre as variáveis "turno escolar" e "percepção dos pais sobre a qualidade do ensino".

A tabela de contingência com os resultados da pesquisa realizada com 300 responsáveis por estudantes da rede pública é a apresentada abaixo:

Turno / Percepção	Boa	Regular	Ruim	Total
Matutino	50	30	20	100
Vespertino	40	35	25	100
Noturno	30	20	50	100
Total	120	85	95	300

As células internas da tabela representam as frequências observadas. O teste compara essas frequências observadas com as frequências esperadas, que seriam os valores esperados caso não houvesse associação entre as variáveis. As frequências esperadas são calculadas pela fórmula: (Total da linha x Total da coluna) / Total de observações.

A interpretação é baseada no p-valor comparado ao nível de significância (α) estabelecido, que neste caso é de 5% (0.05). O teste de significância, por exemplo, é determinado pela comparação do p-valor com o nível de significância. Se o p-valor for menor que o nível de significância, a hipótese nula é rejeitada.

Para os dados fornecidos, o R calculou o valor da estatística de qui-quadrado e o p-valor correspondente, além dos graus de liberdade. No caso, para uma tabela de contingência R x C, os graus de liberdade são (R-1) x (C-1).

O cálculo do teste do qui-quadrado utilizando um nível de significância de 5% e do p-valor pode ser verificado no script1.R (em anexo).

O valor do p-valor de 4.115756e-05 foi extraído da execução do script1.R. Como o p-valor é menor que 0.05, então rejeitamos a hipótese nula (H0). Isso significa que há evidências estatísticas suficientes para concluir que existe uma associação significativa entre o turno escolar e a percepção dos pais sobre a qualidade do ensino. Em outras palavras, a percepção da qualidade do ensino depende do turno em que o estudante está matriculado.

Questão 1.b - Calcule o coeficiente de contingência e interprete seu valor à luz da força da associação entre as variáveis.

Para calcular o coeficiente de contingência e interpretar seu valor à luz da força da associação entre as variáveis "turno escolar" e "percepção dos pais sobre a qualidade do ensino" foram utilizados os dados da tabela de contingência fornecida e a linguagem R.

O coeficiente de contingência de Pearson (**C**) e o coeficiente de contingência corrigido de *Tschuprow* (**T**) são medidas da força da associação entre o turno escolar e a percepção dos pais quanto à qualidade do ensino.

O **C** é uma medida de associação utilizada para variáveis qualitativas. Ele quantifica o grau de relacionamento, associação ou dependência entre as classificações em uma tabela de contingência. O **C** varia de 0 a um valor máximo que depende do número de linhas e colunas da tabela, mas que nunca atinge 1. Quanto maior o **C**, maior o grau de associação entre as variáveis. Já o **T**, que pode atingir o valor máximo de 1, se o número de linhas for igual ao número de colunas e houver uma dependência total.

O valor do **C** de 0,28 e **T** de 0,41 foram extraídos da execução do script1.R (em anexo). O coeficiente C de *Pearson* indica uma associação fraca a moderada entre as variáveis. Já o coeficiente T de *Tschuprow* permite comparações melhores, indicando a existência de uma associação moderada entre as variáveis, sugerindo que há uma relação relevante entre o turno e a percepção dos pais.

Questão 1.c - Com base nos resultados obtidos, discuta como essas informações podem subsidiar políticas públicas voltadas para a melhoria da qualidade do ensino nos diferentes turnos escolares.

Os resultados obtidos evidenciam uma associação estatisticamente significativa entre o turno escolar e a percepção dos pais quanto à qualidade do ensino, com destaque para a maior insatisfação no turno noturno. Essas informações podem subsidiar políticas públicas ao direcionar esforços para identificar e corrigir desigualdades estruturais, pedagógicas e de gestão específicas de cada turno, promovendo ações mais eficazes e direcionadas. Investimentos em formação docente, recursos pedagógicos, infraestrutura e acompanhamento educacional no turno noturno, por exemplo, podem melhorar a percepção e, consequentemente, a qualidade do ensino oferecido, promovendo maior equidade no sistema educacional.

Questão 2.a - Construa um gráfico de dispersão com os dados apresentados. Qual o tipo de associação (positiva, negativa ou inexistente) parece estar presente entre as variáveis?

Um gráfico de dispersão é uma ferramenta gráfica utilizada para apresentar a relação entre duas variáveis quantitativas. A visualização dos pontos no gráfico permite identificar o tipo de associação entre elas: positiva (pontos tendem a subir da esquerda para a direita), negativa (pontos tendem a descer da esquerda para a direita) ou inexistente (sem padrão aparente).

O gráfico de dispersão apresentado abaixo foi obtido a partir da execução do script2.R (em anexo).

Ao observar o gráfico de dispersão, percebe-se que, à medida que o "Número de Ônibus por 1.000 Habitantes" aumenta (movendo-se para a direita no eixo X), o "Tempo Médio de Deslocamento Diário (min)" tende a diminuir (movendo-se para baixo no eixo Y). Isso sugere uma associação negativa entre as variáveis. Ou seja, cidades com mais ônibus por habitante tendem a ter um tempo médio de deslocamento menor.

Questão 2.b - Calcule o coeficiente de correlação linear de Pearson entre o número de ônibus por habitante e o tempo médio de deslocamento. Interprete o valor obtido.

O coeficiente de correlação linear de *Pearson* é uma medida estatística que quantifica a força e a direção da relação linear entre duas variáveis quantitativas. O valor varia de -1 a 1, onde:

- Um valor próximo de 1 indica uma forte correlação linear positiva.
- Um valor próximo de -1 indica uma forte correlação linear negativa.
- Um valor próximo de 0 indica uma correlação linear fraca ou inexistente.

O valor do coeficiente de correlação linear de *Pearson* foi obtido por meio da execução do script2.R (em anexo), resultando no valor de -0,99.

Questão 2.c - Discuta de que forma os resultados encontrados podem orientar a formulação de políticas públicas para melhorar a mobilidade urbana nas cidades analisadas.

Os resultados encontrados, que demonstram uma associação linear negativa muito forte entre o número de ônibus por habitante e o tempo médio de deslocamento, fornecem uma base robusta para a formulação de políticas públicas de mobilidade urbana, alinhando-se ao objetivo do departamento de avaliar a relação entre a oferta de transporte coletivo e a redução no tempo de deslocamento. Essa evidência sugere que cidades com maior oferta de ônibus tendem a apresentar um tempo médio de deslocamento significativamente menor, indicando a importância de priorizar investimentos na expansão e otimização do transporte público coletivo. Ao utilizar esses dados, o departamento pode subsidiar decisões estratégicas e justificar a alocação de recursos escassos em ações que visam diretamente a melhoria da mobilidade urbana e a eficiência do gasto público, com base em evidências que minimizam erros e otimizam processos.

Anexo

script1.R

```
R R
# instalando o pacote vcd
# install.packages("vcd")
# carregando o pacote vcd
library(vcd)
# informando o valor do nível de significância utilizado
nivel_significancia <- 0.05
# informando a tabela de contingência
dados <- matrix(c(50, 30, 20, 40, 35, 25, 30, 20, 50),
                nrow = 3, byrow = TRUE,
                dimnames = list(Turno = c("Matutino", "Vespertino", "Noturno"),
                             Percepcao = c("Boa", "Regular", "Ruim")))
# calculando o teste do qui-quadrado
teste_qui_quadrado <- chisq.test(dados, correct = FALSE);</pre>
# calculando o coeficiente de contingência C
assoc_stats <- assocstats(dados)</pre>
coef_C <- assoc_stats$contingency</pre>
# calculando o coeficiente de contingência T
\# T = sqrt(X2 / n * sqrt( (r-1) * (s-1) ) )
coef_T <- sqrt((teste_qui_quadrado$statistic) /</pre>
                sum(dados) * sqrt((nrow(dados) - 1) * (ncol(dados) - 1)))
# avaliando o p-valor
if (teste_qui_quadrado$p.value < nivel_significancia) {</pre>
    cat("Rejeita-se a hipótese nula (H0).\n")
} else {
    cat("Não rejeita-se a hipótese nula (H0).\n")
}
#exibindo os coeficientes C e T
cat("Coeficiente de Contingência C = ", round(coef_C, 3), "\n")
cat("Coeficiente de contingência T = ", round(coef_T, 2), "\n")
```

script2.R

```
R R
# instalando o pacote
# install.packages("ggplot2")
# carregando o pacote ggplot2
library(ggplot2)
# criando um dataframe com a base de ddos fornecida
cidades <- c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J")
onibus \leftarrow c(0.8, 1.2, 0.5, 1.0, 1.4, 0.6, 1.3, 0.9, 1.1, 0.7)
tempos \leftarrow c(54, 46, 60, 50, 43, 58, 44, 52, 48, 56)
dados <- data.frame(Cidades = cidades,</pre>
                    Onibus = onibus,
                    Tempos = tempos)
# construindo o gráfico de dispersão
grafico_dispersao \leftarrow ggplot(dados, aes(x = Onibus, y = Tempos)) +
                     geom_point(color = "darkblue", size = 2) +
                      labs(title = "Gráfico de Dispersão",
                           x = "Número de Ônibus por 1.000 Habitantes",
                           y = "Tempo Médio de Deslocamento Diário (min)") +
                     theme_minimal() +
                     theme(plot.title = element_text(hjust = 0.5))
# exibindo o gráfico de dispersão
grafico_dispersao
# calculando o coeficiente de correlação linear de Pearson
correlacao_pearson <- cor(dados$Onibus, dados$Tempos, method = "pearson")</pre>
# exibindo o coeficiente de correlação linear de Pearson
cat("Coeficiente de correlação linear de Pearson: ",
    round(correlacao_pearson, 3), "\n")
```