Amanpreet Singh

 \blacksquare amanpreet.singh@stonybrook.edu

**** +1 631-312-2565

EDUCATION

Stony Brook University

Master's in Computer Science: GPA: 3.97

Stony Brook, NY

2019 - 2021

 $\circ~$ Thesis: Sequence Labeling for Network File System Specifications

Advised by: Prof. Niranjan Balasubramanian

o Courses: Natural Language Processing, Machine Learning, Data Science, Probability & Statistics

University of Mumbai

Mumbai, India

Bachelor of Engineering in Information Technology; First Class with Distinction (72.9%)

2011 - 2015

o Courses: Data Structures & Algorithms, Artificial Intelligence, Discrete Mathematics, Databases

Research Interests

Common Sense Reasoning, Natural Language Generation, and Explainability of models

TPUBLICATIONS

- Singh, A., & Balasubramanian, N. (2020), "Open4Business (O4B): An Open Access Dataset for Summarizing Business Documents", Workshop on Dataset Curation and Security NeurIPS 2020
- Nayak, A., Acharya, N., **Singh, A.**, Sakhapara, A., & Geleda, B.(2015), "Visualization of Mechanics Problems based on Natural Language Processing", *International Journal of Computer Applications*, 116(14)

▲ Projects

- NER for system specifications: Dataset annotation using Brat and code sequence classification in network file system specification documents by fine-tuning pre-trained language models. The language model itself is first fine-tuned on a manually scraped corpus for better domain adaptability. The lack of a large training set for the end task is a challenge.
- Startup Acquisition Prediction: Implementation and evaluation of different ensemble methods including anomaly detection, Naive Bayes and random forest on highly imbalanced data to predict whether a startup will be acquired.
- Toxic Online Comments: Multi-label toxicity detection in Wikipedia Comments and transfer learning effectiveness of the classifier on Twitter dataset. Analyzed the results of stacked LSTM/GRU against BERT and distilBERT models.
- Long Documents Classification: Parsing and multi-class categorization of documents with over 10k tokens using Bag of words, Tf-Idf, Doc2Vec and Attention based Neural models.
- Chess Player Ratings: Predicting the Elo rating of a chess player from the moves sequence. Efforts involved EDA and feature engineering using Pandas and Matplotlib; as well as modeling with Linear Regression and Random Forest.
- Physical: A text to scene generation system to visualize Physics problems with Stanford NLP, Java3D and Blender.

EXPERIENCE

SS&C Intralinks
Waltham, MA

Machine Learning Engineer Intern (NLP)

May 2020 - Dec 2020

- Abstractive Summarization: Deep learning and REST service based business document summarizer:
 - 1. Curated and published a dataset of 18k open access business articles with their abstracts as summaries.
 - 2. Improved ROUGE score of SOTA models like BART and T5 by more than 10 points via fine-tuning.
 - 3. Built a custom encoder-decoder for T5 model to compress large inputs and avoid memory constraints.
 - 4. Adapted existing seq2seq model to ONNX quantization format reducing size by 75% and inference time by 30%.
 - 5. Flask based service to return raw abstractive summary with highlighted essential parts of a PDF.

J.P. Morgan Chase & Co.

Mumbai, India

Senior Software Development Engineer

Feb 2018 - Aug 2019

- NLP Query Service: An interactive system to resolve user queries that uses a model trained on the CRF classifier from StanfordCore NLP and returns the nearest possible solution from an existing knowledge base.
- Trader Analytics: Introduced statistical enhancements in the core application such as absolute and percent variance, market share and standard deviation of historical stock prices to aid in trading decisions.
- Real-Time Pricing: Developed a component using Spring, JMS and TDD principles that approximates real-time market risk using live prices; and publishes out the result. It helped retire a legacy system saving the firm ~\$250k.

- Risk Management System: Worked extensively on the core app used by traders for visualizing and hedging risk;
 - 1. Optimized the data feed using LMax Disruptor, a low latency Java queue for upto 20% faster trades processing.
 - 2. Framework to validate critical live market data results which reduced manual testing effort by 90%.
 - 3. Mechanism to switch from a MongoDB replica set to standalone instance in the event of a data center failure.

TECHNICAL SKILLS

- Languages: Python, Java, Unix Shell Scripting, SQL, MATLAB
- Frameworks: PyTorch, TensorFlow, HuggingFace(Contributor), Pandas, NumPy, Scikit-Learn, Spring, Swagger
- Databases: Sybase ASE, MongoDB, MySQL

TEACHING

Stony Brook University

Stony Brook, NY

Aug 2019 - May 2020

Teaching Assistant

CSE 214 Data Structures in Java

CSE 354 Natural Language Processing

CSE 416 Software Engineering

K.J. Somaiya College of Engineering

Mumbai, India

Mar 2019

Seminar on benefits of using Spring and SpringBoot frameworks for client-server apps for undergrad juniors.

CrossNibble Technologies

Mumbai, India

Technical Instructor

Guest Lecturer

Mar 2015 - July 2015

Course Designer and instructor for hands-on Java programming for a class of 25 undergrads.

REFERENCES

• Niranjan Balasubramanian, Ph.D.

Assistant Professor Stony Brook University, NY niranjan@cs.stonybrook.edu

• Prakash Kanchinadam

Sr. Director, Engineering SS&C Intralinks, MA pkanchinadam@intralinks.com