

Amendment
U.S. Appl. No.: **10/521,089**
Attorney Docket No. **PSA0208749**

AMENDMENTS TO THE CLAIMS

The following listing of claims replaces all prior versions and listings of claims in the application.

Listing of Claims:

1-11. (Canceled)

12. (Previously presented): The method of claim 23, wherein the speed at which the vehicle stabilizes is less than or equal to 30 miles per hour.

13. (Previously presented): The method of claim 23, wherein the speed at which the vehicle stabilizes is less than or equal to 20 miles per hour.

14 -22. (Canceled)

23. (Previously presented): A method for transmitting power to wheels of a motor vehicle with an internal-combustion engine and an electric machine connected to a static energy converter with terminals and at least one power semiconductor, the method comprising:

recuperating and storing kinetic energy of the motor vehicle in a super-capacitor;
shutting down the internal-combustion engine of the motor vehicle when the speed of the motor vehicle stabilizes;

Amendment

U.S. Appl. No.: **10/521,089**

Attorney Docket No. **PSA0208749**

using the stored energy in the super-capacitor to supply power to the wheels when the speed of the vehicle is stabilized; and

controlling voltage at the terminals of the static energy converter in order to keep the voltage substantially constant and near to a maximum value allowed by the at least one power semiconductor of the static energy converter.

24. (Previously presented): A method for transmitting power to wheels of a motor vehicle with an internal-combustion engine and an electric machine connected to a static energy converter with terminals and at least one power semiconductor, the method comprising:

recuperating and storing kinetic energy of the motor vehicle in a super-capacitor;

shutting down the internal-combustion engine of the motor vehicle when the speed of the motor vehicle stabilizes;

using the stored energy in the super-capacitor to supply power to the wheels when the speed of the vehicle is stabilized;

controlling voltage at the terminals of the static energy converter in order to keep the voltage substantially constant and near to a maximum value allowed by the at least one power semiconductor of the static energy converter; and

maintaining the voltage at the terminals of the static energy converter at a reference value U_{ref} , equal to:

$$U_{ref} = \text{MIN}[(U_1 - \lambda \cdot 1) ; \text{MAX}(U_2; (U_3/k))]$$

Amendment

U.S. Appl. No.: **10/521,089**

Attorney Docket No. **PSA0208749**

where: U_1 is a withstand voltage of the power semiconductors;

λ . 1 is an over-voltage at the terminals of the power semiconductors, I being a current passing through the electric machine ;

U_2 is the difference between U_1 and a maximum over-voltage at the terminals of the power semiconductors;

U_3 is the voltage at the terminals of the electric machine; and

k is a constant coefficient referred to as the PWM coefficient (Pulse Width Modulation).

25. (Previously presented): A method for transmitting power to wheels of a motor vehicle with an internal-combustion engine and an electric machine connected to a static energy converter with terminals and at least one power semiconductor, the method comprising:

recuperating and storing kinetic energy of the motor vehicle in a super-capacitor;

shutting down the internal-combustion engine of the motor vehicle when the speed of the motor vehicle stabilizes;

using the stored energy in the super-capacitor to supply power to the wheels when the speed of the vehicle is stabilized;

controlling voltage at the terminals of the static energy converter in order to keep the voltage substantially constant and near to a maximum value allowed by the at least one power semiconductor of the static energy converter; and

keeping the voltage at the terminals of the static energy converter between two limit values,

Amendment

U.S. Appl. No.: **10/521,089**

Attorney Docket No. **PSA0208749**

the first corresponding to U_2 and the second corresponding to $(U_1 - \lambda \cdot I)$, where:

U_1 is a withstand voltage of the power semiconductor;

$\lambda \cdot I$ is an over-voltage at the terminals of the power semiconductors, I being the current passing through the electric machine; and

U_2 is the difference between U_1 and the maximum over-voltage at the semiconductors.

26. (Previously presented): A method for transmitting power to wheels of a motor vehicle with an internal-combustion engine and an electric machine connected to a static energy converter with terminals and at least one power semiconductor, the method comprising:

recuperating and storing kinetic energy of the motor vehicle in a super-capacitor;

shutting down the internal-combustion engine of the motor vehicle when the speed of the motor vehicle stabilizes;

using the stored energy in the super-capacitor to supply power to the wheels when the speed of the vehicle is stabilized;

controlling voltage at the terminals of the static energy converter in order to keep the voltage substantially constant and near to a maximum value allowed by the at least one power semiconductor of the static energy converter; and

maintaining the voltage at the terminals of the static energy converter at a reference value U_{ref} equal to:

$$U_{ref} = \text{MIN}[(U_1 - \lambda \cdot I), \text{MAX}(U_2, (U_3/k))]$$

Amendment

U.S. Appl. No.: **10/521,089**

Attorney Docket No. **PSA0208749**

where: U_1 is a withstand voltage of the power semiconductors;

$\lambda \cdot I$ is an over-voltage at the terminals of the power semiconductors, I being a current passing through the electric machine ;

U_2 is the difference between U_1 and a maximum over-voltage at the terminals of the power semiconductors;

U_3 is the voltage at the terminals of the electric machine; and

k is a constant coefficient referred to as the PWM coefficient (Pulse Width Modulation);

wherein controlling the voltage at the terminals further comprises keeping the voltage at U_2 , that being the difference between U_1 , the withstand voltage of the power semiconductors, and the maximum over-voltage at the terminals of the semiconductors.