CONTENTS

ix

Pŀ	REFA	СЕ ТО	THE 2015 EDITION	xxi
1	STA	TISTIC	CAL MODELS, GOALS, AND PERFORMANCE CRITERIA	1
	1.1	Data, l	Models, Parameters, and Statistics	1
		1.1.1	Data and Models	1
		1.1.2	Parametrizations and Parameters	6
		1.1.3	Statistics as Functions on the Sample Space	8
		1.1.4	Examples, Regression Models	9
	1.2	Bayes	ian Models	12
	1.3	The D	ecision Theoretic Framework	16
		1.3.1	Components of the Decision Theory Framework	17
		1.3.2	Comparison of Decision Procedures	24
		1.3.3	Bayes and Minimax Criteria	26
	1.4	Predic	tion	32
	1.5	Suffici	ency	41
	1.6	Expon	ential Families	49
		1.6.1	The One-Parameter Case	49
		1.6.2	The Multiparameter Case	53
		1.6.3	Building Exponential Families	56
		1.6.4	Properties of Exponential Families	58
		1.6.5	Conjugate Families of Prior Distributions	62
	1.7	Proble	ems and Complements	66
	1.8	Notes		95
	1.9	Refere	ences	96

4.1

4.2

4.3

4.4

Introduction

X Contents METHODS OF ESTIMATION 99 **Basic Heuristics of Estimation** 99 2.1.1 Minimum Contrast Estimates: Estimating Equations 99 2.1.2 The Plug-In and Extension Principles 102 2.2 Minimum Contrast Estimates and Estimating Equations 107 2.2.1 Least Squares and Weighted Least Squares 107 2.2.2 Maximum Likelihood 114 2.3 Maximum Likelihood in Multiparameter Exponential Families 121 2.4 Algorithmic Issues 127 2.41 The Method of Bisection 127 2.4.2 Coordinate Ascent 129 2.4.3 The Newton-Raphson Algorithm 131 2.4.4 The EM (Expectation/Maximization) Algorithm 133 2.5 **Problems and Complements** 138 2.6 Notes 158 2.7 References 159 MEASURES OF PERFORMANCE 161 161 3 1 Introduction 3.2 **Bayes Procedures** 161 3.3 Minimax Procedures 170 3.4 Unbiased Estimation and Risk Inequalities 176 3.4.1 Unbiased Estimation, Survey Sampling 176 3.4.2 The Information Inequality 179 Nondecision Theoretic Criteria 3.5 188 3.5.1 Computation 188 3.5.2 189 Interpretability 3.5.3 Robustness 190 3.6 **Problems and Complements** 197 3.7 Notes 210 3.8 References 211 TESTING AND CONFIDENCE REGIONS 213

213

223

227

233

Confidence Bounds, Intervals, and Regions

Choosing a Test Statistic: The Neyman-Pearson Lemma

Uniformly Most Powerful Tests and Monotone Likelihood Ratio Models

Contents

	4.5	The Duality Between Confidence Regions and Tests		241
	4.6	6 Uniformly Most Accurate Confidence Bounds		248
	4.7 Frequentist and Bayesian Formulations		ntist and Bayesian Formulations	251
	4.8	Predict	ion Intervals	252
	4.9	Likelih	nood Ratio Procedures	255
4.9.1 Introduction		255		
		4.9.2	Tests for the Mean of a Normal Distribution-Matched Pair Experiments	257
		4.9.3	Tests and Confidence Intervals for the Difference in Means of Two Normal Populations	261
		4.9.4	The Two-Sample Problem with Unequal Variances	264
		4.9.5	Likelihood Ratio Procedures for Bivariate Normal	
			Distributions	266
	4.10	Proble	ms and Complements	269
		Notes		295
	4.12	Refere	nces	295
5	ASY	мрто	TIC APPROXIMATIONS	297
	5.1	Introdu	action: The Meaning and Uses of Asymptotics	297
	5.2 Consistency		tency	301
		5.2.1	Plug-In Estimates and MLEs in Exponential Family Models	301
		5.2.2	Consistency of Minimum Contrast Estimates	304
	5.3	First- a	and Higher-Order Asymptotics: The Delta Method with Applications	306
		5.3.1	The Delta Method for Moments	306
		5.3.2	The Delta Method for In Law Approximations	311
		5.3.3	Asymptotic Normality of the Maximum Likelihood Estimate in Exponential Families	322
	5.4	Asymp	ototic Theory in One Dimension	324
		5.4.1	Estimation: The Multinomial Case	324
		5.4.2	Asymptotic Normality of Minimum Contrast and M -Estimates	327
		5.4.3	Asymptotic Normality and Efficiency of the MLE	331
		5.4.4	Testing	332
		5.4.5	Confidence Bounds	336
	5.5	Asymptotic Behavior and Optimality of the Posterior Distribution		
	5.6	Proble	ms and Complements	345
	5.7	Notes		362
	5.8	Refere	nces	363

xii Contents

6	INF	EREN(CE IN THE MULTIPARAMETER CASE	365
6.1 Inference for Gaussian Linear Models		nce for Gaussian Linear Models	365	
		6.1.1	The Classical Gaussian Linear Model	366
		6.1.2	Estimation	369
		6.1.3	Tests and Confidence Intervals	374
	6.2	Asym	ptotic Estimation Theory in p Dimensions	383
		6.2.1	Estimating Equations	384
		6.2.2	Asymptotic Normality and Efficiency of the MLE	386
		6.2.3	The Posterior Distribution in the Multiparameter Case	391
	6.3	Large	Sample Tests and Confidence Regions	392
		6.3.1	Asymptotic Approximation to the Distribution of the Likelihood Ratio Statistic	392
		6.3.2	Wald's and Rao's Large Sample Tests	398
	6.4	Large	Sample Methods for Discrete Data	400
		6.4.1	Goodness-of-Fit in a Multinomial Model. Pearson's χ^2 Test	401
		6.4.2	Goodness-of-Fit to Composite Multinomial Models. Contingency Tables	403
		6.4.3	Logistic Regression for Binary Responses	408
	6.5		alized Linear Models	411
	6.6		tness Properties and Semiparametric Models	417
	6.7		ems and Complements	422
	6.8	Notes		438
	6.9	Refere	ences	438
A	A RI	EVIEW	OF BASIC PROBABILITY THEORY	441
	A.1	The B	asic Model	441
	A.2	Eleme	ntary Properties of Probability Models	443
			te Probability Models	443
			tional Probability and Independence	444
			ound Experiments	446
		-	ulli and Multinomial Trials, Sampling With and Without Replacemen	t 447
	A.7		pilities on Euclidean Space	448
	A.8		m Variables and Vectors: Transformations	451
	A.9	Indepe	endence of Random Variables and Vectors	453
	A.10	-	xpectation of a Random Variable	454
		Mome	•	456
	A.12	Mome	ent and Cumulant Generating Functions	459

CO	ntents			AIII
	A.13	Some	Classical Discrete and Continuous Distributions	460
	A.14	Modes	s of Convergence of Random Variables and Limit Theorems	466
	A.15	Furthe	er Limit Theorems and Inequalities	468
	A.16	Poisso	on Process	472
	A.17	Notes		474
	A.18	Refere	ences	475
В	ADI	OITION	NAL TOPICS IN PROBABILITY AND ANALYSIS	477
	B.1	Condit	tioning by a Random Variable or Vector	477
		B.1.1	The Discrete Case	477
		B.1.2	Conditional Expectation for Discrete Variables	479
		B.1.3	Properties of Conditional Expected Values	480
		B.1.4	Continuous Variables	482
		B.1.5	Comments on the General Case	484
	B.2	Distrib	oution Theory for Transformations of Random Vectors	485
		B.2.1	The Basic Framework	485
		B.2.2	The Gamma and Beta Distributions	488
	B.3	Distrib	oution Theory for Samples from a Normal Population	491
		B.3.1	The χ^2 , F , and t Distributions	491
		B.3.2	Orthogonal Transformations	494
	B.4	The Bi	ivariate Normal Distribution	497
	B.5	Mome	ents of Random Vectors and Matrices	502
		B.5.1	Basic Properties of Expectations	502
		B.5.2	Properties of Variance	503
	B.6	The M	Iultivariate Normal Distribution	506
		B.6.1	Definition and Density	506
		B.6.2	Basic Properties. Conditional Distributions	508
	B.7	Conve	ergence for Random Vectors: O_P and o_P Notation	511
	B.8	Multiv	variate Calculus	516
	B.9	Conve	xity and Inequalities	518
	B.10	Topics	s in Matrix Theory and Elementary Hilbert Space Theory	519
		B.10.1	Symmetric Matrices	519
		B.10.2	2 Order on Symmetric Matrices	520
		B.10.3	B Elementary Hilbert Space Theory	521
	B.11	Proble	ems and Complements	524
	B.12	Notes		538
	B.13	Refere	ences	539

xiv

C	TABLES	541
	Table I The Standard Normal Distribution	542
	Table I' Auxilliary Table of the Standard Normal Distribution	543
	Table II t Distribution Critical Values	544
	Table III χ^2 Distribution Critical Values	545
	Table IV F Distribution Critical Values	546
IN	DEX	547

Contents

VOLUME II CONTENTS

XV

I	INT	TRODUCTION TO VOLUME II	1
	I.1	Tests of Goodness of Fit and the Brownian Bridge	5
	I.2	Testing Goodness of Fit to Parametric Hypotheses	5
	I.3	Regular Parameters. Minimum Distance Estimates	6
	I.4	Permutation Tests	8
	I.5	Estimation of Irregular Parameters	8
	I.6	Stein and Empirical Bayes Estimation	10
	I.7	Model Selection	11
	I.8	Problems and Complements	15
	I.9	Notes	20
7	TOO	OLS FOR ASYMPTOTIC ANALYSIS	21
	7.1	Weak Convergence in Function Spaces	21
		7.1.1 Stochastic Processes and Weak Convergence	21
		7.1.2 Maximal Inequalities	28
		7.1.3 Empirical Processes on Function Spaces	31
	7.2	The Delta Method in Infinite Dimensional Space	38
		7.2.1 Influence Funtions and the Gâteaux Derivativ	ye 38
		7.2.2 The Quantile Process	47
	7.3	Further Expansions	51
		7.3.1 The von Mises Expansion	51
		7.3.2 The Hoeffding/Analysis of Variance Expansion	on 54
	7.4	Problems and Complements	62
	7.5	Notes	71

xvi Volume II Contents

8	DIST	TRIBU'	TION-FREE, UNBIASED AND EQUIVARIANT PROCEDURES	72
	8.1	Introdu	action	72
	8.2	Similar	rity and Completeness	73
		8.2.1	Testing	73
		8.2.2	Testing Optimality Theory	83
		8.2.3	Estimation	86
	8.3	Invaria	nce, Equivariance and Minimax Procedures	91
		8.3.1	Group Models	91
		8.3.2	Group Models and Decision Theory	93
		8.3.3	Characterizing Invariant Tests	95
		8.3.4	Characterizing Equivariant Estimates	101
		8.3.5	Minimaxity for Tests: Application to Group Models	102
		8.3.6	Minimax Estimation, Admissibility, and Steinian Shrinkage	106
	8.4	Proble	ms and Complements	111
	8.5	Notes		122
9	INFI	ERENC	CE IN SEMIPARAMETRIC MODELS	123
	9.1	ESTIM	MATION IN SEMIPARAMETRIC MODELS	123
		9.1.1	Selected Examples	123
		9.1.2	Regularization. Modified Maximum Likelihood	131
		9.1.3	Other Modified and Approximate Likelihoods	140
		9.1.4	Sieves and Regularization	143
	9.2	Asymp	ototics. Consistency and Asymptotic Normality	149
		9.2.1	A General Consistency Criterion	149
		9.2.2	Asymptotics for Selected Models	151
	9.3	Efficie	ncy in Semiparametric Models	159
	9.4	Tests a	nd Empirical Process Theory	172
	9.5	Asymp	ototic Properties of Likelihoods. Contiguity	177
	9.6	Proble	ms and Complements	189
	9.7	Notes		205
10	MOI	NTE CA	ARLO METHODS	207
	10.1	The Na	ature of Monte Carlo Methods	207
	10.2	Three 1	Basic Monte Carlo Methods	210
		10.2.1	Simple Monte Carlo	211
			_	212
				213

Volume II Contents

	10.3	The Bo	potstrap	215
		10.3.1	Bootstrap Samples and Bias Corrections	216
		10.3.2	Bootstrap Variance and Confidence Bounds	220
		10.3.3	The General i.i.d. Nonparametric Bootstrap	222
		10.3.4	Asymptotic Theory for the Bootstrap	225
		10.3.5	Examples where Efron's Bootstrap Fails. The m out of n Bootstrap	s 230
	10.4	Marko	v Chain Monte Carlo	232
		10.4.1	The Basic MCMC Framework	232
		10.4.2	Metropolis Sampling Algorithms	233
		10.4.3	The Gibbs Samplers	237
		10.4.4	Speed of Convergence of MCMC	241
	10.5	Applic	ations of MCMC to Bayesian and Frequentist Inference	243
	10.6	Proble	ms and Complements	250
	10.7	Notes		256
11	NON	JPA R A 1	METRIC INFERENCE FOR FUNCTIONS OF ONE VARIABLE	E257
		Introdu		257
			lution Kernel Estimates on R	258
			Uniform Local Behavior of Kernel Density Estimates	261
			Global Behavior of Convolution Kernel Estimates	263
			Performance and Bandwidth Choice	264
			Discussion of convolution kernel estimates	265
	11.3	Minim	um Contrast Estimates: Reducing Boundary Bias	266
			rization and Nonlinear Density Estimates	272
		-	Regularization and Roughness Penalties	272
			Sieves. Machine Learning. Log Density Estimation	273
			Nearest Neighbour Density Estimates	276
	11.5		ence Regions	277
			rametric Regression for one Covariate	279
		_	Estimation Principles	279
			Asymptotic Bias and Variance Calculations	282
	11.7		ms and Complements	289
12	PRF	DICTI	ON AND MACHINE LEARNING	299
14		Introdu		299
	12.1		Statistical Approaches to Modeling and Analyzing Multidimen-	<i></i>
		12.1.1	sional data. Sieves	301

xvii

		12.1.2	Machine Learning Approaches	305
		12.1.3	Outline	307
	12.2	Classif	ication and Prediction	307
		12.2.1	Multivariate Density and Regression Estimation	307
		12.2.2	Bayes Rule and Nonparametric Classification	312
		12.2.3	Sieve Methods	314
		12.2.4	Machine Learning Approaches	316
	12.3	Asymp	ototics	324
		12.3.1	Optimal Prediction in Parametric Regression Models	326
		12.3.2	Optimal Rates of Convergence for Estimation and Prediction in Nonparametric Models	329
		12.3.3	The Gaussian White Noise (GWN) Model	338
		12.3.4	Minmax Bounds on IMSE for Subsets of the GWN Model	340
		12.3.5	Sparse Submodels	342
	12.4	Oracle	Inequalities	344
		12.4.1	Stein's Unbiased Risk Estimate	346
		12.4.2	Oracle Inequality for Shrinkage Estimators	347
		12.4.3	Oracle Inequality and Adaptive Minimax Rate for Truncated Estimates	348
		12.4.4	An Oracle Inequality for Classification	350
	12.5	Perform	mance and Tuning via Cross Validation	353
		12.5.1	Cross Validation for Tuning Parameter Choice	354
		12.5.2	Cross Validation for Measuring Performance	358
	12.6	Model	Selection and Dimension Reduction	359
		12.6.1	A Bayesian Criterion for Model Selection	360
		12.6.2	Inference after Model Selection	364
		12.6.3	Dimension Reduction via Principal Component Analysis	366
	12.7	Topics	Untouched and Current Frontiers	367
	12.8	Proble	ms and Complements	371
D			D. SUPPLEMENTS TO TEXT	385
	D.1		ility Results	385
	D.2		ements to Section 7.1	387
	D.3		ment to Section 7.2	390
	D.4		ment to Section 9.2.2	391
	D.5		ement to Section 10.4	392
	D.6	Supple	ment to Section 11.6	397

Vo	olume II Contents	xix
	D.7 Supplement to Section 12.2.2	399
	D.8 Problems and Complements	405
E	SOLUTIONS FOR VOL. II	410
R	423	
SI	438	

This page intentionally left blank