《嵌入式系统》 (第八讲)

厦门大学信息学院软件工程系 曾文华 2024年10月29日

第8章 文件系统

• 8.1 嵌入式文件系统简介

· 8.2 嵌入式Linux文件系统框架

· 8.3 JFFS2嵌入式文件系统

• 8.4 根文件系统

8.1 嵌入式文件系统简介

• 8.1.1 Linux文件系统简介

- 每个操作系统使用的文件系统并不相同,例如,Windows 98 以前的微软操作系统使用 FAT(FAT16)文件系统,Windows 2000 以后的版本使用 NTFS 文件系统,而 Linux 的正统文件系统是 Ext2
 - FAT: File Allocation Table,文件配置表
 - FAT16使用了16位的空间来表示每个扇区(Sector)配置文件的情形,故称之为FAT16
 - · NTFS: New Technology File System,新技术文件系统
 - Ext2: second Extended file system,第二代扩展文件系统

FAT32是从FAT和FAT16发展而来的,优点是稳定性和兼容性好,能充分兼容Win9X及以前版本,且维护方便。缺点是安全性差,单个文件也只能支持最大4GB。

exFAT的意思是扩展FAT,即扩展文件分配表。是微软在2006年引入的文件系统,解决了其前身FAT32文件系统不支持4G及其更大文件的问题,在exFAT文件系统中单个文件的最大容量可以达到16 EB。

Linux支持的常见文件系统

文件系 统	描述
Ext	Linux 中最早的文件系统,由于在性能和兼容性上具有很多缺陷,现在已经很少使用
Ext2	是 Ext 文件系统的升级版本,Red Hat Linux 7.2 版本以前的系统默认都是 Ext2 文件系统。于 1993 年发布,支持最大 16TB 的分区和最大 2TB 的文件(1TB=1024GB=1024x1024KB)
Ext3	是 Ext2 文件系统的升级版本,最大的区别就是带日志功能,以便在系统突然停止时提高文件系统的可靠性。支持最大 16TB 的分区和最大 2TB 的文件
Ext4	是 Ext3 文件系统的升级版。Ext4 在性能、伸缩性和可靠性方面进行了大量改进。Ext4 的变化可以说是翻天覆地的,比如向下兼容 Ext3、最大 1EB 文件系统和 16TB 文件、无限数量子目录、Extents 连续数据块 概念、多块分配、延迟分配、持久预分配、快速 FSCK、日志校验、无日志模式、在线碎片整理、inode 增强、默认启用 barrier 等。它是 CentOS 6.3 的默认文件系统
xfs	被业界称为最先进、最具有可升级性的文件系统技术,由 SGI 公司设计,目前最新的 CentOS 7 版本默认使用的就是此文件系统。
swap	swap 是 Linux 中用于交换分区的文件系统(类似于 Windows 中的虚拟内存),当内存不够用时,使用交换分区暂时替代内存。一般大小为内存的 2 倍,但是不要超过 2GB。它是 Linux 的必需分区
NFS	NFS 是网络文件系统(Network File System)的缩写,是用来实现不同主机之间文件共享的一种网络服务,本地主机可以通过挂载的方式使用远程共享的资源
iso9660	光盘的标准文件系统。Linux 要想使用光盘,必须支持 iso9660 文件系统
fat	就是 Windows 下的 fatl6 文件系统,在 Linux 中识别为 fat
vfat	就是 Windows 下的 fat32 文件系统,在 Linux 中识别为 vfat。支持最大 32GB 的分区和最大 4GB 的文件
NTFS	就是 Windows 下的 NTFS 文件系统,不过 Linux 默认是不能识别 NTFS 文件系统的,如果需要识别,则需要重新编译内核才能支持。它比 fat32 文件系统更加安全,速度更快,支持最大 2TB 的分区和最大 64GB 的文件
ufs	Sun 公司的操作系统 Solaris 和 SunOS 所采用的文件系统
proc	Linux 中基于内存的虚拟文件系统,用来管理内存存储目录 /proc
sysfs	和 proc 一样,也是基于内存的虚拟文件系统,用来管理内存存储目录 /sysfs
tmpfs	也是一种基于内存的虚拟文件系统,不过也可以使用 swap 交换分区

- 通常情况下,文件系统会将文件的实际内容和属性分开存放:
 - 文件的属性保存在 inode 中(i 节点)中,每个 inode 都有自己的编号。每个文件各占用一个 inode。不仅如此,inode 中还记录着文件数据所在 block 块的编号。
 - 文件的实际内容保存在 block 中(数据块),每个 block 都有属于自己的编号。当文件太大时,可能会占用多个 block 块。
 - 另外,还有一个 super block(超级块)用于记录整个文件系统的整体信息,包括 inode 和 block的总量、已经使用量和剩余量,以及文件系统的格式和相关信息等。

假设某文件的权限和属性信息存放到 inode 4号位置,这个 inode 记录了实际存储文件数据的 block 号有 4 个,分别为 2、7、13、15

• 8.1.2 嵌入式文件系统简介

- 1、嵌入式操作系统的文件系统的设计目标
 - ① 使用简单方便
 - ② 安全可靠
 - ③ 实时响应
 - ④ 接口标注的开放性和可移植性
 - ⑤ 可伸展性和可配置性
 - ⑥ 开放的体系结构
 - ⑦ 资源有效性
 - ⑧ 功能完整性
 - ⑨ 热插拔
 - ⑩ 支持多种文件类型

- 2、一些流行的嵌入式文件系统

· QNX嵌入式操作系统:

QNX是一种商用的遵从POSIX规范的类Unix实时操作系统,目标市场主要是面向嵌入式系统

- ① POSIX文件系统: Portable Operating System Interface of UNIX,可移植操作系统接口
- ② SMB文件系统: Server Message Block,服务器报文块协议
- ③ FAT文件系统: File Allocation Table,文件分配表
- ④ CD-ROM文件系统

VxWorks 操作系统是美国WindRiver公司于1983年设计开发的一种嵌入式实时操作系统(RTOS)

- VxWorks嵌入式操作系统:
 - ① FFS: Fast File System,快速文件系统
 - ② SCSI: Small Computer System Interface,小型计算机系统接口
 - ③ FAT: File Allocation Table,文件分配表
 - ④ RT11FS:Real Time 11 File System,实时文件系统
 - ⑤ TAPEFS: TAPE File System,磁带文件系统

8.2 嵌入式Linux文件系统框架

- 传统文件系统
 - 采用设备API,经过设备驱动,直接去访问磁盘。
 - 或者,采用文件API,经过文件管理器,以及设备驱动,去访问磁盘。

设备API函数:

- ① open()
- ② close()
- ③ read()
- 4 write()
- ⑤ lseek():移动文件读/写指针
- 6 ioctl()

• Linux文件系统

- 采用POSIX文件API,经过设备驱动,直接去访问磁盘。
- 或者,采用POSIX文件API,经过VFS和磁盘独立转换器,以及设备驱动, 去访问磁盘。

POSIX: Portable Operating System
Interface of UNIX,可移植操作系统接口

VFS: Virtual File Systems,虚拟文件系统

8.3 JFFS2嵌入式文件系统

- JFFS: Journalling Flash File System, 闪存设备日志型文件系统,最初是由瑞典的 Axis Communication AB 公司开发,其目的是作为嵌入式系统免受宕机和断电危害的文件系统。
- JFFS2: Journalling Flash File System Version2, 闪存日志型文件系统第2版, 其功能就是管理在MTD设备上实现的日志型文件系统。除了提供具有断电可靠性的日志结构文件系统, JFFS2还会在它管理的MTD设备上实现"损耗平衡"和"数据压缩"等特性。

MTD: Memory Technology Device,内存技术设备。是用于访问memory设备(ROM、flash)的Linux的子系统。MTD的主要目的是为了使新的memory设备的驱动更加简单,为此它在硬件和上层之间提供了一个抽象的接口。MTD的所有源代码在/drivers/mtd子目录下。CFI接口的MTD设备分为四层(从设备节点直到底层硬件驱动),这四层从上到下依次是:设备节点、MTD设备层、MTD原始设备层和硬件驱动层。

· JFFS2的数据结构:

· JFFS2数据结构的内存表示:

MSB: Most Significant Bit, 最高有效位

LSB: Least Significant Bit, 最低有效位

• 8.3.1 目录节点的定义

```
struct jffs2 raw direct
                                           //节点类型的补充
        _u16 magic;
                                           //节点类型
        _u16 nodetype;
                                           //节点总长度
        u32 totlen;
                                           //CRC校验码
        _u32 hdr_crc;
                                           //上层目录节点的标号
        _u32 pino;
        _u32 version;
                                           //节点编号
        u32 ino;
                                           //创建时间
        _u32 mctime;
                                           //大小
        _u8 nsize;
        _u8 unused[2];
                                            //校验码
        _u32 nod_crc;
        _u32 name_crc;
                                            //名称
        _u8 name[0];
```

• 8.3.2 数据节点

```
struct jffs2_raw_inode
                                        //节点类型的补充
         _u16 magic;
         u16 nodetype;
                                        //节点类型
                                        //节点总长度
         u32 totlen;
                                        //CRC校验码
         u32 hdr crc;
                                        //上层目录节点的标号
         _u32 pino;
         _u32 version;
         u32 ino;
                                         //文件的类型
         u32 mode;
         u32 uid;
         _u32 gid;
                                         //实际长度
         _u32 isize;
         u32 atime;
         u32 mtime;
         u32 ctime;
         u32 offset;
                                        //对应数据文件的起始位置
                                        //压缩数据的长度
         u32 csize;
                                        //数据有效长度
         u32 dsize;
                                        //当前压缩算法
         _u8 compr;
                                        //当前指定的压缩算法
         u8 usercompr;
         _u16 flage;
                                        //标志位
         _u32 data_crc;
                                        //数据校验码
                                        //名称
         _u32 name[0];
```

• 8.3.3 内存使用

 JFFS2中的i节点信息并没有全部存放在内存里面,存放在内存中的 节点信息是一个缩小尺寸的数据节点结构体(struct jffs2_raw_node_ref):

- 通过使用struct jffs2_inode_cache结构体,管理struct jffs2_raw_node_ref信息。
- 通过使用struct jffs2_sb_info结构体,管理所有的节点链表和Flash 块。

• 8.3.4 JFFS3简介

- JFFS3: Journalling Flash File System Version3,闪存日志型文件系统第3版
- JFFS3支持大容量Flash: 大于1TB
- JFFS3是将索引信息存放在Flash上,而JFFS2则将索引信息保存在内存中
- JFFS3的基本结构借鉴了ReiserFS4的设计思想,整个文件系统就是一个B+ 树

ReiserFS4: 是一种新型的文件系统,它通过一种与众不同的方式——完全 平衡树结构来容纳数据,包括文件数据,文件名以及日志支持。ReiserFS4 还以支持海量磁盘和磁盘阵列,并能在上面继续保持很快的搜索速度和很 高的效率。

B+树: 是一种树数据结构,通常用于数据库和操作系统的文件系统中。B+树的特点是能够保持数据稳定有序,其插入与修改拥有较稳定的对数时间复杂度。B+树元素自底向上插入,这与二叉树恰好相反。

8.4 根文件系统

- 8.4.1 什么是根文件系统
 - 系统挂载的第一个文件系统就是根文件系统
 - 根文件系统顶层目录:
 - ① bin: 用户命令所在目录
 - ② sbin: 系统管理员命令目录
 - ③ usr: 共享的文件
 - ④ proc: 虚拟文件系统,用来显示内核及进程信息
 - ⑤ dev: 硬件设备文件及其它特殊文件
 - ⑥ etc: 系统配置文件,包括启动文件等
 - ⑦ lib: 链接库文件目录
 - ⑧ boot: 引导加载程序使用的静态文件
 - ⑨ home: 多用户主目录
 - ⑩ mnt:装配点,用于装配临时文件系统或其他的文件系统
 - ① opt: 附加的软件套件目录
 - (12) root:用户主目录(13) tmp:临时文件目录
 - 4 var: 监控程序和工具程序所存放的可变数据

- Ubuntu的根文件系统(在Ubuntu的"终端"上执行):
 - linux@linux-pc:/\$ cd /
 - linux@linux-pc:/\$ ls
 - bin boot cdrom dev etc home initrd.img initrd.img.old lib lib32 lib64 libx32 media
 - mnt opt proc root run sbin snap source srv sys tftpboot tmp usr var vmlinuz vmlinuz.old
 - linux@linux-pc:/\$
- 实验箱的根文件系统(在Xshell上执行):
 - linux@localhost:~\$ cd /
 - linux@localhost:/\$ ls
 - · bin dev home lost+found mnt proc run snap sys tmp var
 - · boot etc lib media opt root sbin srv system usr
 - linux@localhost:/\$

• 实验箱的根文件系统位于Ubuntu的/home/linux/fs3399/rootfs/目录

bin目录

• 8.4.2 建立JFFS2根文件系统

- Linux下常用文件系统结构:
 - · 采用JFFS2作为根文件系统

- VFS: Virtual File Systems, 虚拟文件系统。
- JFFS2: Journalling Flash File System Version2,闪存日志型文件系统第2版,其功能就是管理在MTD设备上实现的日志型文件系统。除了提供具有断电可靠性的日志结构文件系统,JFFS2还会在它管理的MTD设备上实现"损耗平衡"和"数据压缩"等特性。
- YAFFS: Yet Another Flash File System,是专为嵌入式系统使用NAND型闪存而设计的一种日志型文件系统。
- Ramfs: 基于RAM的文件系统。
- MTD: Memory Technology Device, 内存技术设备。
 是用于访问memory设备(ROM、flash)的Linux的子系统。

Linux下常用文件系统结构

- 手工建立JFFS2文件系统的步骤:
 - ① 准备制作JFFS2根文件系统的工具: mkfs.jffs2
 - ② 建立根文件系统的目录
 - ③ 编译busyBox
 - ④ 复制动态链接库到lib目录中
 - ⑤ 创建/etc/init.d/rcS、/etc/profile、/etc/fstab、/etc/inittab文件,并且复制主机中的/etc/passwd、/etc/shadow、/etc/group文件到相应的目录中
 - ⑥ 移植bash,将其复制到/bin目录中
 - ⑦ 执行"mkfs.jffs2 -r ./rootfs -o rootfs.jffs2 -n -e 0x20000", 生成JFFS2根文件系统镜像

第16章 基于 busybox 的最小文件系统制作

16.1 busybox 源码编译及安装

实验箱的根文件系统(最新文件系统)制作请参考"实验指导书(嵌入式Linux应用与驱动开发).pdf"的第16章

可以从 http://busybox.net/downloads/ 网站下载 busybox-1.29.3 源码用于制作 Linux 文件系统,为了方便,已将源码放进了光盘。

建立源码目录

将【华清远见-嵌入式 ARM 实验箱资料-I-FS3399\程序源码\Linux 最小文件系统\busybox 源码】下的 busybox-1.29.3.tar.bz2 拷贝至虚拟机目录,并进入该目录下。

mkdir ~/hqyj/busybox -p ///在家目录下创建文件夹
cd ~/hqyj/busybox //进入刚创建的目录下
cp /mnt/hgfs/share/busybox-1.29.3.tar.bz2 ./ //将 busybox 源码拷贝到此目录下
tar xvf busybox-1.29.3.tar.bz2 //解压文件
cd busybox-1.29.3 //进入解压后文件夹

配置 busybox 源码:

vi Makefile

将顶层目录下的 Makefile 文件中的 CROSS_COMPILE 字段修改为 "/home/linux/toolchain/6.4-aarch64/bin/aarch64-linux-gnu-"

16.2 添加主要系统启动文件

创建其他需要的目录:

mkdir dev etc mnt proc var tmp sys root

添加库:

将工具链中的库拷贝到 install 目录下:

cp -a /home/linux/toolchain/6.4-aarch64/aarch64-cortexa53-linux-gnu/sysroot/lib* .

删除静态库:

rm lib/*.a

添加系统启动文件:

在 etc 下添加文件 inittab, 文件内容如下:

注意:修改文件均为 install 目录下

etc/inittab

示例代码 16-1 添加内容

- 1 #this is run first except when booting in single-user mode.
- 2 ::sysinit:/etc/init.d/rcS
- 3 # /bin/sh invocations on selected ttys
- 4 # start an "askfirst" shell on the console (whatever that may be)
- 5 ::askfirst:-/bin/sh

16.3 制作最小文件系统烧写镜像

前面我们做的最小文件系统是通过 NFS 挂载的方式,放到我们的开发板上,本节实验我们制作最小文件系统,烧写进我们的开发板。

1. 制作 rootfs.img

dd: 用指定大小的块拷贝一个文件,并在拷贝的同时指定转换成想要的格式。

if=文件名:输入文件名,缺省为标准输入。

of=文件名:输出文件名,缺省为标准输出。

192

嵌入式 Linux 应用与驱动开发

——基于 FS3399

bs=btyes: 同时设置输入/输出的块大小为 bytes 个字节。

count=blocks: 仅拷贝 blocks 个块,块大小等于指定的 bs 字节数。

cd ~/hqyj

dd if=/dev/zero of=rootfs.img bs=1M count=300

linux@linux-pc:~/hqyj\$ dd if=/dev/zero of=rootfs.img bs=1M count=300
300+0 records in
300+0 records out
314572800 bytes (315 MB, 300 MiB) copied, 1.09356 s, 288 MB/s

16.4 烧写最小文件系统

- 1. 打开我们的烧写工具 AndroidTool。
- 2. 连接开发板

图 16-7 接线

3. 按住开发板的 VOL+键,然后开发板上电。

确定下方显示"发现一个LOADER设备"。

勾选 rootfs 前的方框, 地址为 0x0005A000, 路径为 rootfs.img 所在的路径 + /rootfs.img。

rootfs.img 可使用上节制作的文件系统镜像,也可以直接在资料中获取,路径在【华清远见-嵌入式

小结

- 嵌入式Linux文件系统的框架
- 常见的几个嵌入式文件系统:
 - ① JFFS2: Journalling Flash File System Version2,闪存日志型文件系统第2版
 - ② JFFS3: Journalling Flash File System Version3,闪存日志型文件系统第3版
 - ③ YAFFS: Yet Another Flash File System,是专为嵌入式系统使用NAND型闪存而设计的一种日志型文件系统
 - ④ Cramfs: Compressed ROM File System,只读压缩的文件系统
 - ⑤ Ramfs:基于RAM的文件系统
- 如何制作根文件系统(最小文件系统)?同学们可以按照实验指导书在自己的电脑上试一下!

进一步探索

- · Cramfs根文件系统的制作:
 - 使用 busybox 生成文件系统中的命令部分
 - 使用mkcramfs 工具制作Cramfs 格式的根文件系统

Thanks