\leftarrow

Key concepts on Deep Neural Networks Quiz, 10 questions

10/10 points (100%)

✓ Congratulations! You passed!

Next Item

1/1 points

1.

What is the "cache" used for in our implementation of forward propagation and backward propagation?

- We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.
- It is used to cache the intermediate values of the cost function during training.
- It is used to keep track of the hyperparameters that we are searching over, to speed up computation.
- We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.

Correct

Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.

1/1 points

2.

Among the following, which ones are "hyperparameters"? (Check all that apply.)

activation values $a^{[l]}$

Un-selected is correct

Correct

Key converts on Deep Neural Networks

10/10 points (100%) Quiz, 10 questions weight matrices $\boldsymbol{W}^{[l]}$ **Un-selected is correct** number of iterations Correct bias vectors $b^{[l]}$ **Un-selected is correct** number of layers L in the neural network Correct 1/1 points Which of the following statements is true? The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers. Correct The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers. 1/1 points Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ...,L. True/False? True Correct Yes, and it makes your model run a lot faster! However, you still need a loop for the iterative optimization algorithm such as Gradient Descent (inside which you run forward propagation). **False**

Key concepts on Deep Neural Networks

Quiz, 10 questions

10/10 points (100%)

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

Correct

points

6

Consider the following neural network.

How many layers does this network have?

The number of layers L is 4. The number of hidden layers is 3. Key concepts on Deep Neural Networks

10/10 points (100%)

٠,	 941		0.	
		Co	rr	ect

	As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The tand output layers are not counted as hidden layers.
	The number of layers $\it L$ is 3. The number of hidden layers is 3.
	The number of layers L is 4. The number of hidden layers is 4.
	The number of layers L is 5. The number of hidden layers is 4.
~	1/1 points
functio	forward propagation, in the forward function for a layer l you need to know what is the activation n in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward n also needs to know what is the activation function for layer l , since the gradient depends on it.
back	True ect as you've seen in the week 3 each activation has a different derivative. Thus, during propagation you need to know which activation was used in the forward propagation to be to compute the correct derivative.
	False
8.There a	1 / 1 points are certain functions with the following properties:
(i) To co measui	ompute the function using a shallow network circuit, you will need a large network (where we re size by the number of logic gates in the network), but (ii) To compute it using a deep network you need only an exponentially smaller network. True/False?
	True
Corre	ect
	False

1/1 points

9.

Consider the following 2 hidden layer neural network: Key concepts on Deep Neural Networks

10/10 points (100%)

Which of the following statements are True? (Check all that apply).

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

Un-selected is correct

Un-selected is correct

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Un-selected is correct

Key concepts on Deep Neural Networks Quiz, 10 questions

10/10 points (100%)

Un-selected is correct

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

Un-selected is correct

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Un-selected is correct

1/1 points

10

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

Correct

True

 $W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$