Building Deep Reinforcement Learning Applications on Apache Spark with Analytics Zoo using BigDL

Yuhao Yang Intel Data Analytics Technologies

Agenda

Analytics Zoo overview

Reinforcement learning overview

Reinforcement learning with Analytics zoo

future directions

- Analytics + AI Platform for Apache Spark and BigDL
 - Open source, Scala/Python, Spark 1.6 and 2.X

Analytics Zoo

High level API, Industry pipelines, App demo & Util

BigDL

MKL, Tensors, Layers, optim Methods, all-reduce

Apache Spark

RDD, DataFrame, Scala/Python

High level pipeline APIs

nnframes: Spark DataFrames and ML Pipelines for DL

Keras-style API

autograd: custom layer/loss using auto differentiation

Transfer learning

Built-in deep learning pipelines & models

Object detection: API and pre-trained SSD and Faster-RCNN

Image classification: API and pre-trained VGG, Inception, ResNet, MobileNet, etc.

Text classification API with CNN, LSTM and GRU

Recommendation API with NCF, Wide and Deep etc.

End-to-end reference use cases

reinforcement learning

anomaly detection

sentiment analysis

fraud detection

image augmentation

object detection

variational autoencoder

• • •

Reinforcement Learning (RL)

RL is for Decision-making

Examples of RL applications

• Play: Atari, poker, Go, ...

• Interact with users: recommend, Healthcare, chatbot, personalize, ...

• Control: auto-driving, robotics, finance, ...

Deep Reinforcement Learning (DRL)

Agents take actions (a) in state (s) and receives rewards (R) Goal is to find the policy (π) that maximized <u>future</u> rewards

http://people.csail.mit.edu/hongzi/content/publications/DeepRM-HotNets16.pdf

Cartpole

Observation

Type: Box(4)

Num	Observation	Min	Max
0	Cart Position	-2.4	2.4
1	Cart Velocity	-Inf	Inf
2	Pole Angle	~ -41.8°	~ 41.8°
3	Pole Velocity At Tip	-Inf	Inf

Actions

Type: Discrete(2)

Num	Action
0	Push cart to the left
1	Push cart to the right

Reward

Reward is 1 for every step taken,

Approaches to Reinforcement Learning

- Value-based RL
 - Estimate the optimal value function Q*(S,A)
 - Output of the Neural network is the value for Q(S, A)
- Policy-based RL
 - Search directly for the optimal policy π^*
 - Output of the neural network is the probability of each action.
- Model-based RL

DRL algo

Policy Based Value Based Actor Critic **DQN TRPO** A₃C **NFQ DPG GAE DDQN** REINFORCE **DDPG** NAF

Model Based

Planning

MPC

AlphaGo

Examples

• 1. Simple DQN to demo API and train with Spark RDD.

• 2. Distributed REINFORCE

Q-network

https://ai.intel.com/demystifying-deep-reinforcement-learning/

Bellman Equation

Optimal value maximises over all decisions. Informally:

$$Q^*(s,a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \dots$$
$$= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$$

Value iteration algorithms solve the Bellman equation

$$Q_{i+1}(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q_i(s',a') \mid s,a\right]$$

DQN critical routines

```
for e in range(EPISODES):
    state = env.reset()
    state = np.reshape(state, [1, state_size])
    for time in range(500):
      action = agent.act(state) \varepsilon-greedy action selection
      next_state, reward, done, _ = env.step(action)
      reward = reward if not done else -10
      next_state = np.reshape(next_state, [1, state_size])
      agent.remember(state, action, reward, next_state, done)
      state = next state
      if len(agent.memory) > batch_size:
       agent.replay(batch size)
```

Parallelize the neural network training

```
def replay(self, batch_size):
   X_{batch} = np.array([0,0,0,0])
   y batch = np.array([0,0])
                                                            experience replay
   minibatch = random.sample(self.memory, batch size)
   for state, action, reward, next_state, done in minibatch:
      target = reward
      if not done:
        target = (reward + self.gamma *
             np.amax(self.model.predict local(next state)[0]))
      target f = self.model.predict local(state)
      target_f[0][action] = target
      X_batch = np.vstack((X_batch, state))
      y batch = np.vstack((y batch, target f))
   rdd sample = to RDD(X batch,y batch)
   self.model.fit(rdd_sample, None, nb_epoch=10, batch_size=batch_size)
```

Analytics Zoo Keras-style Model

Vanilla DQN

Policy gradients

• In Policy Gradients, we usually use a neural network (or other function approximators) to directly model the action probabilities.

• we tweak the parameters θ of the neural network so that "good" actions will be sampled more likely in the future.

$$abla_{ heta} E[R_t] = E[
abla_{ heta} log P(a) R_t]$$

REINFORCE

```
function REINFORCE
     Initialise \theta arbitrarily
     for each episode \{s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do
          for t = 1 to T - 1 do
               \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t
          end for
     end for
     return \theta
end function
```

Time breakdown

Game playing takes the most time in each iteration

Distributed REINFORCE

```
# create and cache several agents on each partition as specified by parallelism
# and cache it
with DistributedAgents(sc, create_agent=create_agent, parallelism=parallelism) as a:
  agents = a.agents # a.agents is a RDD[Agent]
  optimizer = None
  num_trajs_per_part = int(math.ceil(15.0 / parallelism))
  mean std = []
  for i in range(60):
    with SampledTrajs(sc, agents, model, num_trajs_per_part=num_trajs_per_part) as trajs:
      trajs = trajs.samples \ # samples is a RDD[Trajectory]
         .map(lambda traj: (traj.data["observations"],
                   traj.data["actions"],
                   traj.data["rewards"]))
```

REINFORCE algorithm

Distributed REINFORCE

Other RL algorithms

- Flappy bird with DQN
- Discrete and continuous PPO
- A2C (in roadmap)

Q & A

Analytics Zoo

High level API, Industry pipelines, App demo & Util

https://github.com/intel-analytics/analytics-zoo

Thanks Shane Huang and Yang Wang for working on RL implementations.