Dispositivos y Circuitos Electrónicos III FCEIA-UNR

Trabajo Práctico - Rectificación Polifásica controlada

En este trabajo práctico se utilizarán 2 modelos Simulink provistos por la cátedra, uno que implementa un rectificador trifásico de media onda **R3FMO_ctrl** y uno trifásico onda completa tipo puente, **R3FOCPuente_ctrl**.

Sobre ambos modelos realizar las siguientes tareas:

- 1.- Relevar los modelos implementados para comprender los respectivos funcionamientos.
- 2.- Los tiristores tienen una señal (bloque que implementa un tren de pulsos) que los dispara. Diseñar los tiempos t_1 , t_2 , y t_3 para los respectivos disparos que tenga en cuenta diferentes ángulos de disparo α .
- 3.- Realizar ensayos para los siguientes valores de ángulo de disparo, ancho de pulso y carga:

Ángulos de disparo: $\alpha_1 = 0$, $\alpha_2 = \pi/3$, $\alpha_3 = \pi/2$

Ancho de pulso de disparo: $\Delta t=5\%$ y $\Delta t=35\%$

Potencia en la carga

Media Onda: P_{M0}= 100W, Q_{M01}=50Var y Q_{M02}=500VAr

Onda Completa: Poc= 5000W, Q_{0C1} =500Var y Q_{0C2} =5000VAr

4.- Repetir los ensayos anteriores suponiendo que hay una falla de software y uno de los tiempos de conmutación, $(t_1, t_2, o t_3)$, vale cero.

Observar las formas de onda de las tensiones y corrientes en la carga y en uno de los tiristores. Calcular el valor medio y eficaz de las variables de salida.

4.- Programar una falla de cortocircuito en alguna de las llaves de los respectivos rectificadores y analizar qué ocurre.