Title: A decomposition of vector fields in \mathbb{R}^{d+1}

Abstract: Given a vector field $\rho(1, \mathbf{b}) \in L^1_{loc}(\mathbb{R}^+ \times \mathbb{R}^d, \mathbb{R}^{d+1})$ such that $\operatorname{div}_{t,x}(\rho(1, \mathbf{b}))$ is a measure, we consider the problem of uniqueness of the representation η of $\rho(1, \mathbf{b})\mathcal{L}^{d+1}$ as a superposition of characteristics $\gamma: (t_{\gamma}^-, t_{\gamma}^+) \to \mathbb{R}^d$, $\dot{\gamma}(t) = (t, \gamma(t))$. We give conditions in terms of a local structure of the representation η on suitable sets in order to prove that there is a partition of \mathbb{R}^{d+1} into disjoint trajectories $\wp_{\mathfrak{a}}$, $\mathfrak{a} \in \mathfrak{A}$, such that the PDE

$$\operatorname{div}_{t,x}(u\rho(1,\mathbf{b})) \in \mathcal{M}(\mathbb{R}^{d+1}), \qquad u \in L^{\infty}(\mathbb{R}^{+} \times \mathbb{R}^{d}),$$

can be disintegrated into a family of ODEs along $\wp_{\mathfrak{a}}$ with measure r.h.s.. The decomposition $\wp_{\mathfrak{a}}$ is essentially unique. We finally show that $\mathbf{b} \in L^1_t(\mathrm{BV}_x)_{\mathrm{loc}}$ satisfies this local structural assumption and this yields, in particular, the renormalization property for nearly incompressible BV vector fields.