

CEN 263 Digital Design

Autumn 2024

Lecture 2

Announcements

• Website:

Week 2 Outlines

- Combinational logic
- Boolean algebra
- Simplification of Boolean expressions

Where are we now?

Processor (CPU)

- Datapath
- Control Logic
- Pipelining

Synchronous Digital Systems

- Sequential Logic
- Combinational Logic

Transistors

Note: Transistors will not be in scope for exams.

Logic Gates

- Operators with:
 - One or more 1-bit inputs
 - One 1-bit output
- Can be built out of transistors
- Can be represented as:
 - A block in a circuit diagram
 - A truth table, listing the output for every possible input
 - A Boolean algebra expression
- Used to perform bitwise operations
 - Recall: We saw bitwise operations (NOT, OR, AND, XOR)

NOT

- One 1-bit inputs, labeled A
- One 1-bit output, labeled Out
- Can be represented as:

Out =
$$\bar{A}$$

Α	Out
0	1
1	0

A diagram

An algebraic expression

OR

- Two 1-bit inputs, labeled A and B
- One 1-bit output, labeled Out
- Can be represented as:

Out =
$$A + B$$

А	В	Out
0	0	0
0	1	1
1	0	1
1	1	1

A diagram

An algebraic expression

AND

- Two 1-bit inputs, labeled A and B
- One 1-bit output, labeled Out
- Can be represented as:

Out = AB

Α	В	Out
0	0	0
0	1	0
1	0	0
1	1	1

A diagram

An algebraic expression

XOR

- Two 1-bit inputs, labeled A and B
- One 1-bit output, labeled Out
- Can be represented as:

Out =
$$\overline{A}B + \overline{B}A$$

А	В	Out
0	0	0
0	1	1
1	0	1
1	1	0

A diagram

An algebraic expression

Combinational Logic

- We can combine logic gates to make larger circuits
 - One or more inputs
 - One or more outputs
 - Perform more complicated logic operations
- These circuits can also be represented as
 - A block in a circuit diagram
 - A truth table, listing the output for every possible input
 - A Boolean algebra expression

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Let's try to write the truth table from the circuit diagram.

How many rows are in the truth table? (Hint: How many unique inputs are there?)

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Α	В	С	Out
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Try inputs on the circuit to fill out the truth table!

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Α	В	С	Out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Let's write the algebraic expression from the circuit.

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Α	В	O	Out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$Out = (A + B) + C$$

Mystery Circuit #1: 3-way OR

- Intuitively: Outputs 1 when at least one of the inputs is 1
- Sometimes drawn like this:

Α	В	O	Out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$Out = (A + B) + C$$

Converting Between Representations

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Given the algebraic expression, let's draw the circuit diagram.

$$Out = AB + BC + AC$$

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

$$Out = AB + BC + AC$$

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Given the algebraic expression, let's write the truth table.

Α	В	C	Out
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$Out = AB + BC + AC$$

- Three 1-bit inputs, labeled A, B, C
- One 1-bit output, labeled Out

Α	В	С	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Out = AB + BC + AC$$

Mystery Circuit #2: Majority Circuit

Intuitively: Outputs the most common value
 (0 or 1) among the three inputs

Α	В	С	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Out = AB + BC + AC$$

Converting Between Representations

We just converted algebraic expressions to truth tables and circuit diagrams.

Before we see the next conversion, let's talk a bit more about Boolean algebra.

Boolean Algebra

History of Boolean Algebra

- Early computer designers built ad hoc circuits from switches
- Began to notice common patterns in their work:
 ANDs, ORs, ...
- Master's thesis (by Claude Shannon, 1940) made link between work and 19th century mathematician George Boole
- Called it "Boolean Algebra" in his honor

George Boole

Boolean Algebra Operations

- Recall the Boolean algebra operations from earlier
 - We can compute these operations with logic gates

Operation	Notation
A and B	AB
A or B	A + B
not A	Ā

Note: There are a variety of accepted symbols used for these operations.

Simplifying Boolean Algebra

 Given a complicated Boolean algebra expression, we can use some rules to simplify them

 Useful way to simplify circuits: convert to Boolean algebra, simplify, and convert back

Simplifying circuits = less hardware

Laws of Boolean Algebra

Name	AND Form	OR form	
Commutative	AB = BA	A + B = B + A	
Associative	AB(C) = A(BC)	A + (B + C) = (A + B) + C	
Identity	1A = A	0 + A = A	
Null	0A = 0	1 + A = 1	
Absorption	A(A + B) = A	A + AB = A	
Distributive	(A + B)(A + C) = A + BC	A(B + C) = AB + AC	
Idempotent	A(A) = A	A + A = A	
Inverse	$A(\overline{A}) = 0$	$A + \overline{A} = 1$	
De Morgan's	$\overline{\mathrm{AB}} = \overline{\mathrm{A}} + \overline{\mathrm{B}}$	$\overline{A} + \overline{B} = \overline{A}(\overline{B})$	

Boolean Algebra Simplification Example

$$y = ab + a + c$$

 $= ab + a(1) + c$ Identity
 $= a(b+1) + c$ Distributive
 $= a(1) + c$ Null
 $= a + c$ Identity

Sum-of-Products

- Given a truth table, how can we convert it to a Boolean algebra expression?
- Idea: Look for every row where the output is 1
 - For Out=1, we either have:
 - (A=0 and B=0 and C=1), or
 - (A=1 and B=0 and C=1), or
 - (A=1 and B=1 and C=1)
- In Boolean algebra: $(\overline{A})(\overline{B})(C) + (A)(\overline{B})(C) + (A)(B)(C)$
- This is called the sum-of-products form
 - For each row where Out=1, create one product (AND the inputs together)
 - Then take the sum of all the products (OR the products together)

Α	В	С	Out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- Three 1-bit inputs, labeled A, B, S
- One 1-bit output, labeled Out

Given the truth table, let's write the algebraic expression.

Strategy: Start with sum-of-products form, then simplify with Boolean algebra laws.

Α	В	S	Out
0	0	0	0
1	0	0	1
0	0	1	0
1	0	1	0
0	1	0	0
1	1	0	1
0	1	1	1
1	1	1	1

- Three 1-bit inputs, labeled A, B, S
- One 1-bit output, labeled Out

Out =
$$(a)(\overline{b})(\overline{s}) + (a)(b)(\overline{s}) + (\overline{a})(b)(s) + abs$$

= $((a)(\overline{b}) + ab)(\overline{s}) + ((\overline{a})(b) + ab)s$
= $((a)(\overline{b} + b))(\overline{s}) + ((\overline{a} + a)(b))s$
= $(a(1))(\overline{s}) + ((1)b)s$
= $a(\overline{s}) + bs$

Α	В	S	Out
0	0	0	0
1	0	0	1
0	0	1	0
1	0	1	0
0	1	0	0
1	1	0	1
0	1	1	1
1	1	1	1

- Three 1-bit inputs, labeled A, B, S
- One 1-bit output, labeled Out

Given the simplified algebraic expression, we can draw a circuit diagram with fewer logic gates (compared to drawing a diagram from sum-of-products form).

Α	В	S	Out
0	0	0	0
1	0	0	1
0	0	1	0
1	0	1	0
0	1	0	0
1	1	0	1
0	1	1	1
1	1	1	1

Out =
$$(A)(\overline{S}) + (B)(S)$$

- Three 1-bit inputs, labeled A, B, S
- One 1-bit output, labeled Out

Α	В	S	Out
0	0	0	0
1	0	0	1
0	0	1	0
1	0	1	0
0	1	0	0
1	1	0	1
0	1	1	1
1	1	1	1

Out =
$$(A)(\overline{S}) + (B)(S)$$

Mystery Circuit #3: Multiplexer (MUX)

- Intuitively:
 - o If S is 0, output the value in A.
 - o If S is 1, output the value in B.
 - S is the "select" bit
- Usually drawn like this:

Α	В	S	Out
0	0	0	0
1	0	0	1
0	0	1	0
1	0	1	0
0	1	0	0
1	1	0	1
0	1	1	1
1	1	1	1

Out =
$$(A)(\overline{S}) + (B)(S)$$

Converting Between Representations

Now, we can convert truth tables to algebraic expressions.

Adders

- Inputs:
 - o 32-bit input A
 - o 32-bit input B
- Outputs:
 - 32-bit output Sum
- How many rows in the truth table?
 - o 2³² possible inputs for each of A and B
 - 2⁶⁴ possible inputs in total
- Can we build this more efficiently?
 - Yes connect smaller building blocks together!

How do we add binary numbers by hand?

0 0 1 0 0 1 1 1

Consider the inputs and outputs in one column:

(1)	(1)	(0)		
0	0	1	0	
+ 0	1	1	1	
1	0	0	1	

Inputs:

- 0, 1: Bits being added
- (1): Carry-in bit

Outputs:

- 0: Sum
- (1): Carry-out bit

- Three 1-bit inputs, labeled A, B, Cin
- Two 1-bit outputs, labeled Sum and Cout

Α	В	Cin	Sum	Cout
	0	0	0	_
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Three 1-bit inputs, labeled A, B, Cin
- Two 1-bit outputs, labeled Sum and Cout

Λ	D	C:	Curro	<u> </u>
Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$Cout = BCin + ACin + AB$$

Idea: Chain n 1-bit adders together to add n-bit numbers together

End of Week 2!

Do not go home, we'll have another lecture...