Problem 6.1 - Relational Syntax

Say whether each of the following expressions is a syntactically legal sentence of Relational Logic. Assume that *red*, *green*, *jim*, and *molly* are object constants. Assume that *color* is a binary function constant, and assume that *parent* is a binary relation constant.

a.	parent(red, green)	legal 1	•	1
b.	¬color(jim, green)	illegal 1	•	1
c.	color(blue, molly)	illegal 1	•	1
d.	parent(molly, molly)	legal 1	•	1
e.	parent(molly, z)	legal 1	•	1
f.	$\exists x.parent(molly, x)$	legal 1	•	1
g.	$\exists y.parent(molly, jim)$	legal 1	•	1
h.	$\forall z.(z(jim, molly) \Rightarrow z(molly, jim))$	illegal	•	1

Problem 6.2 - Counting

Consider a language with n object constants, no function constants, and a single binary relation constant

- a. How many ground terms are there in this language?

- \checkmark n n^2 2^n 2^{n^2} 2^{2^n}
- b. How many ground atomic sentences are there in this language?

- \checkmark 0n $0n^2$ 0n $0n^2$ $0n^2$
- c. How many distinct truth assignments are possible for this language?

- \checkmark 0 n 0 n^2 0 2^n 0 2^{n^2} 0 2^{n^2}

Problem 6.3 - Relational Evaluation

Consider a language object constants a and b, no function constants, and relation constants p and q where p has arity 1 and q has arity 2. The following is a truth assignment for this language.

$$p(a)^{i} = 1$$

$$p(b)^{i} = 0$$

$$q(a,a)^{i} = 0$$

$$q(a,b)^{i} = 1$$

$$q(b,a)^{i} = 1$$

$$q(b,b)^{i} = 0$$

Say whether each of the following sentences is true or false under with this truth assignment.

- a. $\forall x.(p(x) \Rightarrow q(x,x))$ false \checkmark
- b. $\forall x. \exists y. q(x,y)$ true \checkmark
- c. $\exists y. \forall x. q(x,y)$ false \checkmark
- d. $\forall x.(p(x) \Rightarrow \exists y.q(x,y))$ true \checkmark
- e. $\forall x.p(x) \Rightarrow \exists y.q(y,y)$ true \checkmark

Problem 6.4 - Relational Evaluation

This exercise concerns the interpersonal relations of a small sorority. There are just four members - Abby, Bess, Cody, and Dana; and there is just one type of binary relationship - likes. The following table below shows who likes whom. A check in a box of the table indicates that the girl named at the beginning of the row likes the girl named at the head of the column; the absence of a check means that she does not.

	Abby	Bess	Cody	Dana
Abby		1		1
Bess	1		1	
Cody		✓		1
Dana	1		1	

The following sentences are constraints that characterize the possibilities. Your job here is to select a truth value for each constraint indicating whether that constraint is satisfied by the table shown above.

Problem 6.5 - Relational Satisfaction

Consider a version of the Blocks World with just three blocks - a, b, and c. The on relation is axiomatized below.

$$\neg on(a,a)$$
 $on(a,b)$ $\neg on(a,c)$
 $\neg on(b,a)$ $\neg on(b,b)$ $on(b,c)$
 $\neg on(c,a)$ $\neg on(c,b)$ $\neg on(c,c)$

Let's suppose that the *above* relation is defined as follows. This is *almost* the same as in the notes except that we have replaced an occurrence of *on* with *above* and we have dropped the axiom $\forall x. \neg above(x.x)$.

$$\forall x. \forall z. (above(x,z) \Leftrightarrow on(x,z) \lor \exists y. (above(x,y) \land above(y,z)))$$

A sentence φ is consistent with a set Δ of sentences if and only if there is a truth assignment that satisfies all of the sentences in $\Delta \cup \{\varphi\}$. Say whether each of the following sentences is consistent with the sentences about *on* and *above* shown above. Be careful. It's tricky.

- a. above(a,c) Consistent ▼ ✓
 b. above(a,a) Consistent ▼ ✓
- c. above(c,a) Consistent ▼ ✓

Clausal Form

Consider a language with two object constants a and b and one function constant f. For each of the following sentences in this language, say which of the alternatives shown is its clausal form.

- 1. $\exists y. \forall x. p(x,y)$
 - $\bigcirc \{p(a,y)\}$
 - $\{p(c,y)\}$
 - \bigcirc {p(x,b)}
 - $\{p(x,c)\}$

 - $\bigcirc \{p(x,g(x))\}$
- 2. $\forall x. \exists y. p(x,y)$
 - $\bigcirc \{p(a,y)\}$
 - \emptyset {p(c,y)}
 - $\bigcirc \{p(x,b)\}$
 - $\bigcirc \{p(x,c)\}$
 - \emptyset {p(x,f(x))}
 - $\{p(x,g(x))\}$
- 3. $\exists x. \exists y. (p(x,y) \land q(x,y))$

 - \bigcirc {p(a,b)} and {q(a,b)}
 - p(c,d), q(c,d)
 - p(c,d) and q(c,d)
 - \bigcirc {p(x,y), q(x,y)}
 - $0 \{p(x,y)\}\$ and $\{q(x,y)\}\$
- 4. $\forall x. \forall y. (p(x,y) \Rightarrow q(x))$
 - \bigcirc { $\neg p(a,b), q(a)$ }
 - $= \{ \neg p(c,d), q(c) \}$
 - \bigcirc { $\neg p(x,b), q(x)$ }
 - \bigcirc { $\neg p(x,d), q(x)$ }
 - $\{ \neg p(x,y), q(x) \}$
- 5. $\forall x.(\exists y.p(x,y) \Rightarrow q(x))$
 - \bigcirc { $\neg p(a,b), q(a)$ }
 - \bigcirc $\{\neg p(c,d), q(c)\}$
 - \bigcirc $\{\neg p(x,b), q(x)\}$
 - \bigcirc $\{\neg p(x,d), q(x)\}$
 - $\{\neg p(x,y), q(x)\}$
 - \bigcirc $\{\neg p(x,g(x)), q(x)\}$