

Classification using Logistic Regression I

Swati Mishra

Applications of Machine Learning (4AL3)

Fall 2024

ENGINEERING

Review

- Polynomial Regression Fundamental and Implementation
- Test MSE, Train MSE, Overfitting and Underfitting
- Brief encounter with Bias Variance Trade Off
- Cross Validation (Validation Set Approach, LOOCV, k-fold CV)

MSE₁ MSE₂ MSE₃ MSE₄

samples of the data do not differ much

from each other (Underfitting)

samples of the data are very different from each other (high variance)

MSE₁ MSE₂ MSE₃ MSE₄

from each other (Underfitting)

from each other (high variance)

Classification problems

• So far, our goal was to study where y (target) is a continuous quantitative value and x_i (input features) are also quantitative

$$f(x_1, x_2, \dots, x_p) \to y$$

Classification problems

• So far, our goal was to study where y (target) is a continuous quantitative value and x_i (input features) are also quantitative

$$f(x_1, x_2, \dots, x_p) \to y$$

What if y is categorical variable?

The shuttle consists of an orbiter (which carries the crew and has powerful engines in the back), a large liquid-fuel tank for the orbiter engines, and 2 solid-fuel booster rockets mounted on the sides of the central tank. Segments of the booster rockets are shipped to the launch site, where

they are assembled to make the solid-fuel rockets. Where these segments mate, each joint is sealed by two rubber O-rings as shown above. In the case of the Challenger accident, one of these joints leaked, and a torchlike flame burned through the side of the booster rocket.

The shuttle consists of an orbiter (which carries the crew and has powerful engines in the back), a large liquid-fuel tank for the orbiter engines, and a solid-fuel booster rockets mounted on the sides of the central tank. Segments of the booster rockets are shipped to the launch site, where

they are assembled to make the solid-fuel rockets. Where these segments mate, each joint is sealed by two rubber O-rings as shown above. In the case of the Challenger accident, one of these joints leaked, and a torchlike flame burned through the side of the booster rocket.

Will the O-rings fail catastrophically on the launch day because of the cold weather?

			Cross Sectional View		Top View			
36,138	,	SAM	Erosion	Perimeter	Nominal	Length Of	Total Heat	Clocking Location
رم	APPT	Mo.	Depth (in.)	Affected (deg)	Dia. (in.)	Max Erosion (in.)	Affected Length (in.)	(deg)
'n	,		7	1-29/			, ,,,,,	
δ.	61A LH Center Field**	32A 22A	None	None	d:280	None	None	36*66* 338*-18
	COLA LH CENTER FIELD""		NONE	NONE		NONE	NONE	338 -18
4	51C LH Forward Field**	15A	0.010	154.0	0.280	4.25	5.25	163
_	51C RH Center Field (prim)***	15B	0.038	130.0	0.280	12.50	58.75	354
y '	(510 RH Center Field (sec)	158	None	45.0	0.280	None	29.50	354
	410 RH Forward Field	138	0.028	110.0	0.280	3.00	Hone	275
	41C LH Aft Field*	114	None	None	0.280	None	None	
	418 LH Forward Field	10A	0.040	217.0	0.280	3.00	14.50	351
,hy	STS-2 RH Aft Field	28	0.053	116.0	0.280			90

BLOW BY HISTORY SRM-15 WORST BLOW-BY		HISTORY	OF C (DEGRE		IPERATURES
· 2 CASE JOINTS (80°), (110°) ARC	MOTOR	<u>mbT</u>	AMB	O-RING	WIND
O MUCH WORSE VISUALLY THAN SRM-22	om-+	68	36	47	10 MPH
	DM -2	76	45	52	10 mp#
5RM 12 BLOW-BY	Qm - 3	72.5	40	48	10 mpH
0 2 CASE JOINTS (30-40°)	Qm - 4	76	48	51	10 MPH
,	SRM-15	52	64	53	10 mPH
SRM-13 A, 15, 16A, 18, 23A 24A	5RM-22	77	78	7 5	10 MPH
O NOZZLE BLOW-BY	S Rm - 25	5 5	26	29 27	10 MPH 25 MPH

Flight	Date	Temperature °F	Erosion incidents	Blow-by incidents	Damage index	Comments
51-C	01.24.85	53°	3	2	11	Most erosion any flight; blow-by; back-up rings heated.
41-B	02.03.84	57°	1		4	Deep, extensive erosion.
61-C	01.12.86	58°	1		4	O-ring erosion on launch two weeks before Challenger.
41-C	04.06.84	63°	1		2	O-rings showed signs of heating, but no damage.
1	04.12.81	66°			0	Coolest (66°) launch without O-ring problems.
6	04.04.83	67°			0	The state of the s
51-A	11.08.84	67°			0	
51-D	04.12.85	67°			0	
5	11.11.82	68°			0	
3	03.22.82	69°			0	
2	11.12.81	70°	1		4	Extent of erosion not fully known.
9	11.28.83	70°			0	
41-D	08.30.84	70°	1		4	2
51-G	06.17.85	70°			0	
7	06.18.83	72°			0	
8	08.30.83	73°			0	
51-B	04.29.85	75°			0	
61-A	10.30.85	75°		2	4	No erosion. Soot found behind two primary O-rings.
51-I	08.27.85	76°			0	E1 8 (F4)
61-B	11.26.85	76°			0	
41-G	10.05.84	78°			0	
51-J	10.03.85	79°			0	
4	06.27.82	80°			?	O-ring condition unknown; rocket casing lost at sea.
51-F	07.29.85	81°			0	, No. 1935 to 4 de

Analysis for Go-no-go!

Date	Launch Temp (F)	Leak Check Pressure	Thermal distress	Number of O-rings
4/12/81	66	50	0	6
11/12/81	70	50	1	6
3/22/82	69	50	0	6
11/11/82	68	50	0	6
4/4/83	67	50	0	6
6/18/83	72	50	0	6
8/30/83	73	50	0	6
11/28/83	70	100	0	6
2/3/84	57	100	1	6
4/6/84	63	200	1	6
8/30/84	70	200	1	6
10/5/84	78	200	0	6

Date	Launch Temp (F)	Leak Check Pressure	Thermal distress	Number of O-rings
11/8/84	67	200	0	6
1/24/85	53	200	2	6
4/12/85	67	200	0	6
4/29/85	75	200	0	6
6/17/85	70	200	0	6
7/29/85	81	200	0	6
8/27/85	76	200	0	6
10/3/85	79	200	0	6
10/30/85	75	200	2	6
11/26/85	76	200	0	6
1/12/86	58	200	1	6

Binary Classification

Linear model equation: $y = \beta_0 + \sum_{i=1}^p \beta_i x_i + \epsilon$

Binary Classification

Linear model equation:
$$y = \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

• What happens, if the right side of the equation was a not a continuous set of values, but, binary values?

Binary Classification

Linear model equation:
$$y = \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

- What happens, if the right side of the equation was a not a continuous set of values, but, binary values?
- In this case, the right side is continuous unbounded, but the left side is binary, which means our y is either 0 or 1

Linear model equation:
$$y = \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

- What happens, if the right side of the equation was a not a continuous set of values, but, binary values?
- In this case, the right side is continuous unbounded, but the left side is binary, which means our *y* is either 0 or 1.
- Our goal is to predict the **probability** that a given instance belongs to 1 class of y. Therefore, we can modify the above equation to,

Linear model equation:
$$y = \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

- What happens, if the right side of the equation was a not a continuous set of values, but, binary values?
- In this case, the right side is continuous unbounded, but the left side is binary, which means our *y* is either 0 or 1.
- Our goal is to predict the **probability** that a given instance belongs to 1 class of y. Therefore, we can
 modify the above equation to,

$$P(y = 1|x) \propto \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

Linear model equation:
$$y = \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

- What happens, if the right side of the equation was a not a continuous set of values, but, binary values?
- In this case, the right side is continuous unbounded, but the left side is binary, which means our y is either 0 or 1.
- Our goal is to predict the **probability** that a given instance belongs to 1 class of y. Therefore, we can modify the above equation to,

$$P(y = 1|x) \propto \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

P(y = 1|x) means the probability that at least one O-Ring has failed

$$P(y = 1|x) \propto \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

• Above equation compares two inputs and identifies which of them leads to a higher probability of y belonging to a given class, in other words, we can **rank these probabilities**

$$P(y = 1|x) \propto \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

- Above equation compares two inputs and identifies which of them leads to a higher probability of y belonging to a given class, in other words, we can **rank these probabilities**
- So far, we know that eta is a parameter matrix, and x represents the features.

$$P(y = 1|x) \propto \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

- Above equation compares two inputs and identifies which of them leads to a higher probability of y belonging to a given class, in other words, we can **rank these probabilities**
- So far, we know that β is a parameter matrix, and x represents the features. Therefore, above equation can be re-written as

$$P(y=1|x)=b+W.X$$

$$P(y = 1|x) \propto \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

- Above equation compares two inputs and identifies which of them leads to a higher probability of y belonging to a given class, in other words, we can **rank these probabilities**
- So far, we know that β is a parameter matrix, and x represents the features. Therefore, above equation can be re-written as

$$P(y=1|x)=b+W.X$$

• In above equation, we are taking sum of the **weighted features**, which is a dot product, and we are adding them to a **bias term**.

$$P(y = 1|x) \propto \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

- Above equation compares two inputs and identifies which of them leads to a higher probability of y belonging to a given class, in other words, we can **rank these probabilities**
- So far, we know that β is a parameter matrix, and x represents the features. Therefore, above equation can be re-written as

$$P(y=1|x)=b+W.X$$

• In above equation, we are taking sum of the **weighted features**, which is a dot product, and we are adding them to a **bias term**.

$$P(y = 1|x) \propto \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \epsilon$$

- Above equation compares two inputs and identifies which of them leads to a higher probability of y belonging to a given class, in other words, we can **rank these probabilities**
- So far, we know that β is a parameter matrix, and x represents the features. Therefore, above equation can be re-written as

$$P(y = 1|x) = b + W.X$$
 Our algorithm needs to learn W and b

• In above equation, we are taking sum of the **weighted features**, which is a dot product, and we are adding them to a **bias term**.

$$P(y=1|x)=b+W.X$$

• But our equation still does not provide a probability, and it looks like a linear model.

$$P(y=1|x)=b+W.X$$

- But our equation still does not provide a probability, and it looks like a linear model.
- What we really want to do is take this linear model and squash its outputs into the interval (0,1)

$$P(y=1|x)=b+W.X$$

- But our equation still does not provide a probability, and it looks like a linear model.
- What we really want to do is take this linear model and squash its outputs into the interval (0,1).
- This transformation can be done using a logistic function or more formally known as **sigmoid function**

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$P(y=1|x)=b+W.X$$

- But our equation still does not provide a probability, and it looks like a linear model.
- What we really want to do is take this linear model and squash its outputs into the interval (0,1).
- This transformation can be done using a logistic function or more formally known as **sigmoid function**

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$P(y=1|x)=b+W.X$$

- But our equation still does not provide a probability, and it looks like a linear model.
- What we really want to do is take this linear model and squash its outputs into the interval (0,1).
- This transformation can be done using a logistic function or more formally known as **sigmoid function**

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

It is differentiable!

$$P(y=1|x)=b+W.X$$

- But our equation still does not provide a probability, and it looks like a linear model.
- What we really want to do is take this linear model and squash its outputs into the interval (0,1).
- This transformation can be done using a logistic function or more formally known as **sigmoid function**

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

It is differentiable!

Has the property: $1 - \sigma(z) = \sigma(-z)$

$$P(y = 1|x) = \sigma(b + \mathbf{w}.\mathbf{x})$$

• Apply this transformation to our linear model.

$$P(y = 1 | x) = \sigma(b + \mathbf{w}.\mathbf{x})$$

Apply this transformation to our linear model.

Probability of an input to belong to class y=1 is given by:

$$P(y = 1) = \frac{1}{1 + e^{-(b+w.x)}}$$

$$P(y = 1 | x) = \sigma(b + \mathbf{w}.\mathbf{x})$$

Apply this transformation to our linear model.

Probability of an input to belong to class y=1 is given by:

$$P(y = 1) = \frac{1}{1 + e^{-(b+w.x)}}$$

Probability of an input to belong to class y=0 is given by:

$$P(y = 0) = 1 - \sigma(b + W.X) = \frac{e^{-(b+w.x)}}{1 + e^{-(b+w.x)}}$$

$$P(y = 1 | x) = \sigma(b + \mathbf{w}.\mathbf{x})$$

Apply this transformation to our linear model.

Probability of an input to belong to class y=1 is given by:

$$P(y = 1) = \frac{1}{1 + e^{-(b+w.x)}}$$

Probability of an input to belong to class y=0 is given by:

$$P(y = 0) = 1 - \sigma(b + W.X) = \frac{e^{-(b+w.x)}}{1 + e^{-(b+w.x)}}$$

Therefore, log of the odds ratio can be given by

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

$$P(y = 1 | x) = \sigma(b + \mathbf{w}.\mathbf{x})$$

Apply this transformation to our linear model.

Probability of an input to belong to class y=1 is given by:

$$P(y = 1) = \frac{1}{1 + e^{-(b+w.x)}}$$

Probability of an input to belong to class y=0 is given by:

$$P(y = 0) = 1 - \sigma(b + W.X) = \frac{e^{-(b+w.x)}}{1 + e^{-(b+w.x)}}$$

Therefore, log of the odds ratio can be given by,

Logit function

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

Logistic regression model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

• We can predict a y=1 if the probability is high, and y=0 if probability is low.

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

• We can predict a y=1 if the probability is high, and y=0 if probability is low.

How do we decide what is high and what is low?

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

- We can predict a y=1 if the probability is high, and y=0 if probability is low.
- We arbitrarily we select a threshold, which is usually 0.5

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i \quad \Rightarrow y = b + \mathbf{W}.\mathbf{X}$$

p = number of observations

n = number of features

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i \quad \Rightarrow y = b + \mathbf{W}.\mathbf{X}$$

p = number of observations n = number of features

$$y = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{vmatrix} \qquad X = \begin{vmatrix} x_{11} & x_{12} \dots & x_{1n} \\ x_{21} & x_{22} \dots & x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ x_{p1} & x_{p2} \dots & x_{pn} \end{vmatrix} \qquad W = \begin{vmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{vmatrix} \qquad b = \begin{vmatrix} b \\ b_2 \\ \vdots \\ b_p \end{vmatrix}$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i \quad \Rightarrow y = b + \mathbf{W}.\mathbf{X}$$

p = number of observations n = number of features

$$y = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{vmatrix} \qquad X = \begin{vmatrix} x_{11} & x_{12} \dots & x_{1n} \\ x_{21} & x_{22} \dots & x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ x_{p1} & x_{p2} \dots & x_{pn} \end{vmatrix} \qquad W = \begin{vmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{vmatrix} \qquad b = \begin{vmatrix} b \\ b_2 \\ \vdots \\ b_p \end{vmatrix}$$

$$p * 1 \qquad p * 1$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i \quad \Rightarrow y = b + \mathbf{W}.\mathbf{X}$$

p = number of observations n = number of features

$$y = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{vmatrix} \qquad X = \begin{vmatrix} x_{11} & x_{12} \dots & x_{1n} \\ x_{21} & x_{22} \dots & x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ x_{p1} & x_{p2} \dots & x_{pn} \end{vmatrix} \qquad W = \begin{vmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{vmatrix} \qquad b = \begin{vmatrix} b \\ b_2 \\ \vdots \\ b_p \end{vmatrix}$$

$$p * 1 \qquad p * 1$$

Dot multiplication of X and W?

$$X = \begin{vmatrix} x_{11} & x_{12} \dots & x_{1n} \\ x_{21} & x_{22} \dots & x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ x_{p1} & x_{p2} \dots & x_{pn} \end{vmatrix} \qquad W = \begin{vmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{vmatrix}$$

$$p * n \qquad p * 1$$

```
print('dot mutliplication:\n {}\n'.format(np.dot(a,b)))
```

```
dot mutliplication:
 [[[232 152]
  [125 112]
  [125 112]]
 [[172 116]
  [123 76]
  [123 76]]
 [[442 296]
  [228 226]
  [228 226]]
 [[962 652]
  [465 512]
  [465 512]]]
```

Dot multiplication of X and W?

$$X = \begin{vmatrix} x_{11} & x_{12} \dots & x_{1n} \\ x_{21} & x_{22} \dots & x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ x_{p1} & x_{p2} \dots & x_{pn} \end{vmatrix} \qquad W = \begin{vmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{vmatrix}$$

$$p * n \qquad p * 1$$

```
print('matrix multiplication:\n {}\n'.format(np.matmul(a,b)))
```

```
matrix multiplication:
 [[[232 152]
  [172 116]
  [442 296]
  [962 652]]
 [[125 112]
  [123 76]
  [228 226]
  [465 512]]
 [[125 112]
  [123 76]
  [228 226]
  [465 512]]]
```

Matrix multiplication of X and W?

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i \quad \Rightarrow y = b + \mathbf{W}.\mathbf{X}$$

p = number of observations n = number of features

$$y = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{vmatrix} \qquad X = \begin{vmatrix} x_{11} & x_{12} & x_{21} & x_{22} & x_{2n} \\ x_{21} & x_{22} & x_{2n} & \vdots \\ x_{p1} & x_{p2} & x_{pn} \end{vmatrix} \qquad W = \begin{vmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{vmatrix} \qquad b = \begin{vmatrix} b \\ b_2 \\ \vdots \\ b_p \end{vmatrix}$$

$$p * 1 \qquad p * 1 \qquad p * 1$$

Dot multiplication of X and W?

Matrix multiplication of X and W?

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i \quad \Rightarrow y = b + \mathbf{W}.\mathbf{X}$$

p = number of observations n = number of features

$$y = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{vmatrix} \qquad X = \begin{vmatrix} x_{11} & x_{12} \dots & x_{1n} \\ x_{21} & x_{22} \dots & x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ x_{p1} & x_{p2} \dots & x_{pn} \end{vmatrix} \qquad W = \begin{vmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{vmatrix} \qquad b = \begin{vmatrix} b \\ b_2 \\ \vdots \\ b_p \end{vmatrix}$$

$$p * 1 \qquad p * 1$$

$$p * 1$$

y = X.dot(W) + b

To align our vectors for multiplication

$$log(\frac{p(x)}{1-p(x)}) = \beta_0 + \sum_{i=1}^p \beta_i x_i \Rightarrow y = b + W.X$$
 $p = \text{number of observations}$

n = number of features

$$y = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{vmatrix} \qquad X = \begin{vmatrix} x_{11} & x_{12} \dots & x_{1n} \\ x_{21} & x_{22} \dots & x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ x_{p1} & x_{p2} \dots & x_{pn} \end{vmatrix} \qquad W = \begin{vmatrix} w_1 \\ w_2 \\ \vdots \\ w_p \end{vmatrix} \qquad b = \begin{vmatrix} b \\ b_2 \\ \vdots \\ b_p \end{vmatrix}$$

$$p * 1 \qquad p * 1$$

Try this at home

```
tensor1 = torch.tensor([5, 8, 2])
tensor2 = torch.tensor([4, 7, 2])
tensor1 @ tensor2
torch.dot(tensor1, tensor2)
torch.matmul(tensor1, tensor2)
```


$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

- We can predict a y = 1 if the probability is high, and y = 0 if probability is low.
- We arbitrarily we select a threshold, which is usually 0.5.
- How do we train Logistic Regression?

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

- We can predict a y = 1 if the probability is high, and y = 0 if probability is low.
- We arbitrarily we select a threshold, which is usually 0.5.
- How do we train Logistic Regression?

Select a cost function:

The likelihood function is the conditional probability of the data conditional on the given set of parameters. If x_i and y_i are two given points, then

$$P(x_i, y_i | \beta) = \begin{cases} p(x_i), & \text{if } y_i = 1 \\ 1 - p(x_i), & \text{if } y_i = 0 \end{cases}$$

$$P(x_i, y_i | \beta) = \begin{cases} p(x_i), & \text{if } y_i = 1 \\ 1 - p(x_i), & \text{if } y_i = 0 \end{cases}$$

We can take the above equation, generalize it across N data points, apply log on both sides and get the complete **log-likelihood** function over the entire dataset as

$$\ell(\beta) = \sum_{i=1}^{N} log(P(\cdot x_{i'} \ y_{i} \ \beta)) = \sum_{i=1}^{N} \{y_{i} log(p(x_{i})) + (1 - y_{i}) log(1 - p(x_{i}))\}$$

$$P(x_i, y_i | \beta) = \begin{cases} p(x_i), & \text{if } y_i = 1 \\ 1 - p(x_i), & \text{if } y_i = 0 \end{cases}$$

We can take the above equation, generalize it across N data points, apply log on both sides and get the complete **log-likelihood** function over the entire dataset as

$$\ell(\beta) = \sum_{i=1}^{N} log(P(x_i', y_i | \beta)) = \sum_{i=1}^{N} \{y_i log(p(x_i)) + (1 - y_i) log(1 - p(x_i))\}$$

Likelihood estimator / Cost function

Date	Launch Temp (F)	Leak Check Pressure	Thermal distress	Number of O-rings
4/12/81	66	50	0	6
11/12/81	70	50	1	6
3/22/82	69	50	0	6
11/11/82	68	50	0	6
4/4/83	67	50	0	6
6/18/83	72	50	0	6
8/30/83	73	50	0	6
11/28/83	70	100	0	6
2/3/84	57	100	1	6
4/6/84	63	200	1	6
8/30/84	70	200	1	6
10/5/84	78	200	0	6
	1			

Date	Launch Temp (F)	Leak Check Pressure	Thermal distress	Number of O-rings
11/8/84	67	200	0	6
1/24/85	53	200	2	6
4/12/85	67	200	0	6
4/29/85	75	200	0	6
6/17/85	70	200	0	6
7/29/85	81	200	0	6
8/27/85	76	200	0	6
10/3/85	79	200	0	6
10/30/85	75	200	2	6
11/26/85	76	200	0	6
1/12/86	58	200	1	6
				· · · · · · · · · · · · · · · · · · ·

Thermal distress	Launch Temp (F)	Did 0-ring get damaged
0	66	0
1	70	1
0	69	0
0	68	0
0	67	0
0	72	0
0	73	O
0	70	0
1	57	1
1	63	1
1	70	1
0	78	0

Thermal distress	Launch Temp (F)	Did 0-ring get damaged
0	67	0
2	53	1
0	67	0
0	75	0
0	70	0
0	81	0
0	76	0
0	79	0
2	75	1
0	76	0
1	58	1

Thermal distress	Launch Temp (F)	Did 0-ring get damaged
0	66	0
1	70	1
0	69	0
0	68	0
0	67	0
0	72	0
0	73	0
0	70	0
1	57	1
1	63	1
1	70	1
0	78	0

Thermal	Launch	Did 0-ring
distress	Temp (F)	get damaged
O	67	0
2	53	1
0	67	0
0	75	0
0	70	0
0	81	0
0	76	0
0	79	0
2	75	1
0	76	0
1	58	1

$$p(x) = b + W.X$$

Thermal distress	Launch Temp (F)	Did 0-ring get damaged
0	66	0
1	70	1
0	69	0
0	68	0
0	67	0
0	72	0
0	73	0
0	70	0
1	57	1
1	63	1
1	70	1
0	78	0

Thermal distress	Launch Temp (F)	Did 0-ring get damaged
0	67	0
2	53	1
0	67	0
0	75	0
0	70	0
0	81	0
0	76	0
0	79	0
2	75	1
0	76	0
1	58	1

$$p(x) = b + W.X$$

$$b = 10.875$$
 $W = -0.171$

Thermal distress	Launch Temp (F)	Did 0-ring get damaged
0	66	0
1	70	1
0	69	0
0	68	0
0	67	0
0	72	0
0	73	0
0	70	0
1	57	1
1	63	1
1	70	1
0	78	0

Thermal distress	Launch Temp (F)	Did 0-ring get damaged
0	67	0
2	53	1
0	67	0
0	75	0
0	70	0
0	81	0
0	76	0
0	79	0
2	75	1
0	76	0
1	58	1

$$p(x) = b + W.X$$

$$b = 10.875$$
 $W = -0.171$

$$log\left(\frac{p(x)}{1-p(x)}\right)$$
$$= 10.875 - 0.171x$$

Thermal distress	Launch Temp (F)	Did 0-ring get damaged
0	66	0
1	70	1
0	69	0
0	68	0
0	67	0
0	72	0
0	73	0
0	70	0
1	57	1
1	63	1
1	70	1
0	78	0

Thermal distress	Launch Temp (F)
0	67
2	53
0	67
0	75
0	70
0	81
0	76
0	79
2	75
0	76
1	58

et damaged
$$p(x) = b + W.X$$

$$0$$

$$1$$

$$0$$

$$0$$

$$0$$

$$0$$

$$1$$

$$0$$

$$0$$

$$1$$

$$0$$

$$0$$

$$1$$

$$0$$

$$0$$

$$1$$

$$0$$

$$0$$

$$1$$

$$0$$

$$0$$

$$1$$

$$log\left(\frac{p(x)}{1-p(x)}\right)$$
$$= 10.875 - 0.171x$$

On that day it was 31°F

$$P(y=1) = \frac{1}{1 + e^{-(10.875 + 0.171x_{31})}} = 0.996$$

96% probability that at least 1 O-ring would fail on that day!

Next Lecture

- How do we build and train a logistic regression model?
- No readings for this lecture.

Thank You

