Algorithm Analysis

Big-D Notation

Given two functions of and g, we say that f(n) is O(g(n)) if f is eventually bounded from above by g.

> After a certain point, the purple function is always going to be greate than the green one.

mathematical defin: fin) is O(q(n)) if there is a constant C and some number N such that f(n) < Cq(n) for all n > N.

Examples

- 2n2+n+3 is o(n2), but not o(n)
- Lesson: Lower order terms don't matter with big-0 2"+ nlovooo" is o(2"), but not o(nlovooo)
- Lesson: Exponential functions always grow faster than polynomials logn is O(n) and $O(n^{1/2})$ and $O(n^{0.0000001})$, but not O(1)
 - lesson: Logarthms always grow slows than polynamials but faster than constants

Complexity
An algorithm's time complexity is a measure of how many
An algorithm's time complexity is a measure of how many primitive operations (array accesses, arithmetic, etc.) are required with respect to the size of its input
One defines space complexity in a similar way for how much additional space memory is used by the algorithm.
Usually we do worst-case analysis.