高等数学

Thursday $24^{\rm th}$ November, 2022

目录

Ι	极限		5
1	基础		5
	1.1	常用极限	5
	1.2	常用等价无穷小	5
Π	导	数	5
2	基础		6
_	2.1	常用高阶导数	6
	2.2	莱布尼茨公式	6
	2.3	中值定理	6
	2.4	泰勒中值定理	6
		2.4.1 拉格朗日型余项	7
		2.4.2 佩亚诺型余项	7
		2.4.3 误差估计式	7
		2.4.4 特别的:麦克劳林公式	7
		2.4.5 常用麦克劳林公式	7
	2.5	极值	8
	2.6	拉格朗日乘数法(求条件极值)	8
	2.7	雅可比行列式	9
II	I 积	R分	9
3	基础		9
3	季 144 3.1	牛顿-莱布尼茨公式	9
	3.2	第一类换元(凑微分)法	9
	3.3	第二类换元法	
	3.4	分部积分	
	3.5	常用积分表	
	3.6	有理函数积分通解(递推)	
	3.7	万能代换	
	3.8	极坐标图形面积	
	3.9	旋转体体积(参数方程)	
		旋转体侧面积(参数方程)(可轮换)	
		平面曲线弧长(参数方程)(可轮换)	
		平面曲线曲率(参数方程)	

4	重积	R分	12
	4.1	二重积分	12
		4.1.1 换元	12
		4.1.2 广义极坐标变换	12
	4.2	三重积分	12
		4.2.1 换元	12
		4.2.2 柱面坐标	12
		4.2.3 球面坐标	13
		4.2.4 曲面面积(可轮换)	
		21-12 by	
5	曲线	与曲面积分	13
	5.1	曲线积分	13
		5.1.1 格林公式	13
		5.1.2 平面曲线积分与积分路径无关条件	13
		5.1.3 曲线积分路径无关	14
	5.2	曲面积分	14
		5.2.1 三合一投影法(外侧取正,内侧取负)	14
		5.2.2 高斯公式	
		5.2.3 曲面积分路径无关	
6	批红		15
U	2911 C		10
7	向量	计分析	15
	7.1	梯度	15
	7.2	散度	15
	7.3	旋度	15
TT	₇ /山	数分方程	
IV	1元	X カ / 作	15
8	基础		16
	8.1		16
			16
	O. _	H 2 1/2 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
9	一阶	3线性微分方程	16
10	一 [[介	· 线性微分方程	16
10			16
	10.1	月以、十月以、延附、旬附入水・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
11	n 阶)常系数线性齐次微分方程	17
	11.1	特征方程	17
		对应项	
12	二阶	常系数线性微分方程	17

13	全微分方程 13.1 条件	18
\mathbf{V}	空间解析几何	18
14	基础	18
	14.1 向量的方向余弦	18
15	空间曲面	18
	15.1 基础	18
	15.1.1 法向量	18
	15.2 平面	18
	15.2.1 平面点法式	18
	15.2.2 平面截距式	19
16	空间曲线	19
	16.1 参数方程	19
	16.2 切向量	19
	16.3 直线	19
	16.4 直线对称式 (点向式) 方程	19
	16.5 直线参数方程	19
17	特殊曲面	20
	17.1 圆锥面	20
	17.2 椭球面	20
	17.3 椭圆抛物面	20
	17.4 双曲抛物面(马鞍面)	20
	17.5 单叶双曲面	20
	17.6 双叶双曲面	20
T 71	r /17 **L	20
V]		20
18	收敛与发散	21
	18.1 条件收敛	21
	18.2 绝对收敛	21
19	正项级数	21
	19.1 积分审敛法	21
	19.2 比较审敛法	21
	19.3 比值审敛法(拉朗贝尔判别法)	21
	10.4 根值审敛法(柯西判别法)	22

20	交错		22
	20.1	莱布尼兹判别法	22
21	幂(泰勒)级数	22
		阿贝尔定理	
		系数模比值法	
		系数模根值法	
		加减运算	
		泰勒级数	
	21.6	常用泰勒级数	23
22		1021.00	23
		傅里叶级数	
	22.2	狄利克雷收敛定理	24

Part I

极限

1 基础

1.1 常用极限

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n f\left(\frac{i}{n}\right) = \int_0^1 f(x) dx \left(n \in \mathbb{N}^+\right)$$

1.2 常用等价无穷小

$$x$$
 为函数, $\lim_{x\to 0}$ 时

 $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$

$$x \sim (e^x - 1) \sim \ln(x + 1) \sim \ln(x + \sqrt{1 + x^2})$$

$$x^3 \sim 6(x - \sin x) \sim 6(\arcsin x - x) \sim 3(\tan x - x)$$

$$x^3 \sim 3(x - \arctan x) \sim 2(\tan x - \sin x)$$

$$1 - \cos x \qquad \sim \frac{x^2}{2}$$

$$\log_a (1+x) \qquad \sim \frac{x}{\ln a}$$

$$(1+x)^a \qquad \sim ax+1$$

$$a^x - 1 \qquad \sim x \ln a \ (0 < a \neq 1)$$

$$(1+ax)^{\frac{1}{bx}} \qquad \sim e^{\frac{a}{b}} (1 - \frac{a^2}{2b}x)$$

Part II

导数

2 基础

2.1 常用高阶导数

$$\sin^{(n)} \omega x = \omega^n \sin\left(\omega x + \frac{n\pi}{2}\right) \quad (n \in \mathbb{N})$$

$$\cos^{(n)} \omega x = \omega^n \cos\left(\omega x + \frac{n\pi}{2}\right) \quad (n \in \mathbb{N})$$

$$\ln^{(n)} (1+x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} \quad (n \in \mathbb{N}^+)$$

$$\ln^{(n)} (1-x) = -\frac{(n-1)!}{(1-x)^n} \quad (n \in \mathbb{N}^+)$$

2.2 莱布尼茨公式

$$(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)} v^{(k)}$$

2.3 中值定理

定理	公式	约束
积分中值定理	$f(\xi) = \frac{\int_{a}^{b} f(x) dx}{x \Big _{a}^{b}}$	$\xi \in [a,b]$
罗尔中值定理	$f'(\xi) = 0$	$\xi \in (a,b)$
拉格朗日中值定理	$f'(\xi) = \frac{f(x) _a^b}{x _a^b}$	$\xi \in (a,b)$
柯西中值定理	$\frac{f'(\xi)}{g'(\xi)} = \frac{f(x) _a^b}{g(x) _a^b}$	$\xi \in (a,b)$

2.4 泰勒中值定理

 $R_n(x)$ 为余项

$$P_{n}(x) = \sum_{i=0}^{n} \left[(x - x_{0}) \frac{d}{dx} \right]^{i} \frac{f(x_{0})}{i!} + R_{n}(x)$$

$$P_{n}(x, y) = \sum_{i=0}^{n} \left[(x - x_{0}) \partial_{x} + (y - y_{0}) \partial_{y} \right]^{i} \frac{f(x_{0}, y_{0})}{i!} + R_{n}(x, y)$$

2.4.1 拉格朗日型余项

 $\theta \in (0,1)$

$$R_n(x) = \left[(x - x_0) \frac{\mathrm{d}}{\mathrm{d}x} \right]^{n+1} \frac{f(x_0 + \theta(x - x_0))}{(n+1)!}$$

$$R_n(x, y) = \left[(x - x_0) \partial_x + (y - y_0) \partial_y \right]^i \frac{f(x_0 + \theta(x - x_0), y_0 + \theta(y - y_0))}{(n+1)!}$$

2.4.2 佩亚诺型余项

$$R_n(x) = o[(x - x_0)^n]$$

 $R_n(x, y) = o\left[\sqrt{(x - x_0)^2 + (y - y_0)^2}\right]^n$

2.4.3 误差估计式

$$n \in \mathbb{N}; \exists M > 0 \forall x \in D \to M \geqslant \left| f^{(n+1)}(\xi) \right|$$

$$\implies |R_n(x)| \leq M \cdot \frac{|x - x_0|^{n+1}}{(n+1)!}$$

2.4.4 特别的:麦克劳林公式

$$\begin{cases}
(2.4.1) \\
x_0 = y_0 = 0
\end{cases} \implies \begin{cases}
P_n(x) = \sum_{i=0}^n \left(x \frac{d}{dx} \right)^i \frac{f(0)}{i!} + R_n(x) \\
P_n(x, y) = \sum_{i=0}^n \left(x \hat{\partial}_x + y \hat{\partial}_y \right)^i \frac{f(0, 0)}{i!} + R_n(x, y)
\end{cases}$$

2.4.5 常用麦克劳林公式

 $\cos x$ 的 2k 和 2k+1 阶

$$\cos x = \sum_{i=0}^{k} (-1)^{i} \frac{x^{2i}}{2i!} + (-1)^{k+1} \cos \theta x \frac{x^{2k+2}}{(2k+2)!}$$

 $\sin x$ 的 2k-1 和 2k 阶

$$\sin x = \sum_{i=1}^{k} (-1)^{i-1} \frac{x^{2i-1}}{(2i-1)!} + (-1)^k \cos \theta x \frac{x^{2k+1}}{(2k+1)!}$$

其他函数的 n 阶

$$e^{x} = \sum_{i=0}^{n} \frac{x^{i}}{i!} + e^{\theta x} \frac{x^{n+1}}{(n+1)!}$$

$$\ln(1+x) = \sum_{i=0}^{n} (-1)^{i-1} \frac{x^{i}}{i} + \frac{(-1)^{n}}{(1+\theta x)^{n+1}} \cdot \frac{x^{n+1}}{(n+1)} (x > -1)$$

$$(1+x)^{\alpha} = \sum_{i=0}^{n} \left(\prod_{j=1}^{n} (\alpha - j + 1) \cdot \frac{x^{i}}{i!} \right) + \frac{\prod_{i=0}^{n} (\alpha - i)}{(1+\theta x)^{n+1-\alpha}} \cdot \frac{x^{n+1}}{(n+1)!}$$

2.5 极值

$$\begin{cases} f'_x(x_0, y_0) = 0 \\ f'_y(x_0, y_0) = 0 \\ f''_{xy}(x_0, y_0) < f''_{xx}(x_0, y_0) f''_{yy}(x_0, y_0) \end{cases} \Longrightarrow f(x_0, y_0)$$
为极值点
$$f''_{xy}(x_0, y_0) > f''_{xx}(x_0, y_0) f''_{yy}(x_0, y_0) \quad f(x_0, y_0)$$
不取极值
$$f''_{xy}(x_0, y_0) = f''_{xx}(x_0, y_0) f''_{yy}(x_0, y_0) \quad$$
需进一步讨论

2.6 拉格朗日乘数法(求条件极值)

二元情况

$$\begin{cases} \text{约束条件: } \varphi(x,y) = 0 \\ \text{目标函数: } f(x,y) \end{cases}$$

$$\begin{cases} \nabla f = \lambda \nabla \varphi \left(\mathbb{P} \nabla f \parallel \nabla \varphi \right) \\ \varphi(x,y) = 0 \end{cases}$$

$$\implies \text{解得几组}(x,y) \mathbb{P} \text{为极值点}$$

n 元情况

2.7 雅可比行列式

$$\frac{\partial (u_1, u_2, \cdots, u_n)}{\partial (x_1, x_2, \cdots, x_n)} = \begin{vmatrix} \partial_{u_1} x_1 & \partial_{u_1} x_2 & \cdots & \partial_{u_1} x_n \\ \partial_{u_2} x_1 & \partial_{u_2} x_2 & \cdots & \partial_{u_2} x_n \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{u_n} x_1 & \partial_{u_n} x_2 & \cdots & \partial_{u_n} x_n \end{vmatrix}$$

Part III

积分

- 3 基础
- 3.1 牛顿-莱布尼茨公式

$$\int_{a}^{b} f'(x) \, \mathrm{d}x = f(x) \big|_{a}^{b}$$

3.2 第一类换元(凑微分)法

$$\int f(x) g(x) dx = \int f(x) d\left(\int g(x) dx\right)$$

3.3 第二类换元法

$$\int f(x) dx = \int f(t) dt \Big|_{t=\varphi(x)}$$

$$\int_{a}^{b} f[\varphi(x)] dx = \int_{\varphi(a)}^{\varphi(b)} f(t) \frac{d\varphi^{-1}(t)}{dt} dt \Big|_{t=\varphi(x)}$$

3.4 分部积分

$$u_x v_x = \int u_x dv_x + \int v_x du_x$$
$$u_x v_x \Big|_a^b = \int_a^b u_x dv_x + \int_a^b v_x du_x$$

3.5 常用积分表

$$\int \sinh x dx = \cosh x + C$$

$$\int \cosh x dx = \sinh x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int \sec x \tan x dx = \sec x + C$$

$$\int \cot x dx = -\ln|\cos x| + C$$

$$\int \cot x dx = \ln|\sin x| + C$$

$$\int \cot x dx = \ln|\sin x| + C$$

$$\int \cot x dx = \ln|\cos x + \tan x| + C$$

$$\int \cot x dx = \ln|\cos x - \cot x| + C$$

$$\int \cot x dx = \ln|\cos x - \cot x| + C$$

$$\int \cot x dx = \ln|\cos x - \cot x| + C$$

$$\int \cot x dx = \ln|\cos x - \cot x| + C$$

$$\int \cot x dx = \ln|\cos x - \cot x| + C$$

$$\int \cot x dx = \ln|\cos x - \cot x| + C$$

$$\int \cot x dx = \ln|\cos x - \cot x| + C$$

$$\int \cot x dx = \ln|\cos x - \cot x| + C$$

$$\int \cot x dx = \ln|\cos x - \cot x| + C$$

$$\int \cot x dx = \ln|\cos x - \cot x| + C$$

$$\int \cot x dx = \ln|x + \sqrt{x^2 + a^2}| + C$$

$$\int \cot x dx = \ln|x + \sqrt{x^2 - a^2}| + C$$

$$\int \cot x dx = \ln|x + \sqrt{x^2 - a^2}| + C$$

$$\int \cot x dx = \ln|x + \sqrt{x^2 - a^2}| + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx + C$$

$$\int \cot x dx = -\cot x dx + C$$

$$\int \cot x dx + C$$

$$\int \cot$$

3.6 有理函数积分通解(递推)

$$\int \frac{x+N}{(x^2+px+q)^{\lambda}} dx \begin{cases}
0 > p^2 - 4q \\
a = \sqrt{q - \frac{p^2}{4}} \\
b = N - \frac{p}{2}
\end{cases}$$

$$= \begin{cases}
\frac{2bx + bp - 2a^2}{4(\lambda - 1) a^2 (x^2 + px + q)^{\lambda - 1}} + \frac{b(2\lambda - 3)}{2(\lambda - 1) a^2} \int \frac{dx}{(x^2 + px + q)^{\lambda - 1}} & (\lambda > 1) \\
\frac{\ln(x^2 + px + q)}{2} + \frac{b}{a} \arctan \frac{x + 2p}{2a} + C & (\lambda = 1)
\end{cases}$$

3.7 万能代换

$$x = 2 \arctan u \implies \begin{cases} \sin x = \frac{2u}{1+u^2} \\ \cos x = \frac{1-u^2}{1+u^2} \\ dx = \frac{2}{(1+u^2)} du \end{cases}$$

3.8 极坐标图形面积

$$A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 \left(\theta\right) d\theta$$

Definition 3.8.1 (以下参数方程中都有).

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

3.9 旋转体体积(参数方程)

绕 x 轴

$$V = \pi \int_{a}^{b} x' y^2 dt$$

3.10 旋转体侧面积(参数方程)(可轮换)

绕 x 轴

$$S = 2\pi \int_a^b x \sqrt{x'^2 + y'^2} dt$$

3.11 平面曲线弧长(参数方程)(可轮换)

$$s = \int_{a}^{b} \sqrt{x'^2 + y'^2} dt = \int_{\alpha}^{\beta} \sqrt{r^2(\theta) + r'^2(\theta)} d\theta$$

3.12 平面曲线曲率(参数方程)

曲率半径: K^{-1}

$$K = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}$$

4 重积分

4.1 二重积分

Definition 4.1.1 $(d\sigma = dxdy)$.

$$\iint\limits_{D} f\left(x,y\right) \mathrm{d}\sigma$$

4.1.1 换元

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \\ \frac{\partial(x, y)}{\partial(u, v)} \Big|_{D'} \neq 0 \end{cases} \implies \iint_{D} f(x, y) \, dx dy = \iint_{D'} f(x, y) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv$$

4.1.2 广义极坐标变换

$$\begin{cases} x(r,\theta) = x_0 + ar\cos\theta \\ y(r,\theta) = y_0 + br\sin\theta \end{cases} \implies \iint_D f(x,y) \, dx dy = ab \iint_D f(x,y) \, r dr d\theta$$

4.2 三重积分

Definition 4.2.1 (dV = dxdydz).

$$\iiint\limits_{\Omega} f\left(x,y,z\right) \mathrm{d}V$$

4.2.1 换元

$$\begin{cases} x = x (u, v, w) \\ y = y (u, v, w) \\ z = z (u, v, w) \end{cases} \Rightarrow \iiint_{\Omega} f(x, y, z) \, dx dy dz = \iiint_{\Omega'} f(x, y, z) \left| \frac{\partial (x, y, z)}{\partial (u, v, w)} \right| \, du dv dw$$

$$\frac{\partial (x, y, z)}{\partial (u, v, w)} \Big|_{\Omega'} \neq 0$$

4.2.2 柱面坐标

$$\begin{cases} x = x (r, \theta, z) = x_0 + ar \cos \theta \\ y = y (r, \theta, z) = y_0 + br \sin \theta \\ z = z (r, \theta, z) = z \end{cases}$$

$$\iiint_{\Omega} f(x, y, z) dxdydz = \iiint_{\Omega} f(x, y, z) rdrd\theta dz$$

4.2.3 球面坐标

$$\begin{cases} x = x \, (r, \varphi, \theta) = \rho \sin \varphi \cos \theta \\ y = y \, (r, \varphi, \theta) = \rho \sin \varphi \sin \theta \\ z = z \, (r, \varphi, \theta) = \rho \cos \varphi \end{cases}$$

$$\iiint_{\Omega} f \, (x, y, z) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint_{\Omega} f \, (x, y, z) \, \rho^2 \sin \varphi \mathrm{d}\rho \mathrm{d}\varphi \mathrm{d}\theta$$

4.2.4 曲面面积(可轮换)

$$z = z(x,y)$$

$$(x,y) \in D_{xy}$$

$$\Longrightarrow S = \iint_{D_{xy}} \sqrt{1 + z_x'^2 + z_y'^2} dxdy$$

5 曲线与曲面积分

5.1 曲线积分

Definition 5.1.1.

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases} P = P(x, y, z)$$
$$Q = Q(x, y, z)$$
$$R = R(x, y, z)$$

Definition 5.1.2 (第一类). $t \in [\alpha, \beta]$

$$\int_{\Gamma} f(x, y, z) ds = \int_{\alpha}^{\beta} f(x, y, z) \sqrt{x'^2 + y'^2 + z'^2} dt$$

Definition 5.1.3 (第二类(坐标积分)). $t: \alpha \rightarrow \beta$

$$\int_{\Gamma} P dx + Q dy + R dz = \int_{\alpha}^{\beta} (Px' + Qy' + Rz') dt$$

5.1.1 格林公式

L 围成 D

$$\oint_{L} P dx + Q dy = \iint_{D} (Q'_{x} - P'_{y}) dx dy$$

5.1.2 平面曲线积分与积分路径无关条件

$$\int_L P dx + Q dy$$
 与积分路径无关

$$\int_{L} P dx + Q dy = \int_{A}^{B} P dx + Q dy$$

$$\iff \oint_{L} P dx + Q dy = 0$$

$$\iff \exists u = u (x, y), du = P dx + Q dy$$

$$\iff D, Q'_{x} = P'_{y}$$

5.1.3 曲线积分路径无关

$$\int_{L} P dx + Q dy \to Q'_{x} = P'_{y}$$

$$\int_{\Gamma} P dy dz + Q dz dx + R dx dy \to \begin{cases} R'_{y} = Q'_{z} \\ P'_{z} = R'_{x} \\ Q'_{x} = P'_{y} \end{cases}$$

5.2 曲面积分

Definition 5.2.1.

$$z = z(x, y) \qquad \begin{cases} P = P(x, y, z) \\ Q = Q(x, y, z) \\ R = R(x, y, z) \end{cases}$$

Definition 5.2.2 (第一类(可轮换)).

$$t \in [\alpha, \beta]$$

$$\iint\limits_{\Sigma} f\left(x,y,z\right)\mathrm{d}S = \iint\limits_{D_{xy}} f\left(x,y,z\right) \sqrt{z_{x}^{\prime2} + z_{y}^{\prime2} + 1} \mathrm{d}x \mathrm{d}y$$

Definition 5.2.3 (第二类(坐标积分)(外(远离原点)侧取正,内(指向原点)侧取负)).

$$\iint\limits_{\Sigma} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y = \pm \iint\limits_{\Sigma} \frac{-Pz_x' - Qz_y' + R}{\sqrt{z_x'^2 + z_y'^2 + 1}} \mathrm{d}S$$

5.2.1 三合一投影法(外侧取正,内侧取负)

$$\iint\limits_{\Sigma} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y = \pm \iint\limits_{D_{xy}} \left(-Pz_x' - Qz_y' + R \right) \mathrm{d}x \mathrm{d}y$$

5.2.2 高斯公式

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iiint_{\Omega} (P'_x + Q'_y + R'_z) dV$$

5.2.3 曲面积分路径无关

$$\iint\limits_{\Sigma} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y \to P'_x + Q'_y + R'_z = 0$$

6 斯托克斯公式

$$\oint_{\Gamma} P dx + Q dy + R dz = \iint_{\Sigma} \left(R'_y - Q'_z \right) dy dz + \left(P'_z - R'_x \right) dz dx + \left(Q'_x - P'_y \right) dx dy$$

7 向量分析

Definition 7.0.1 (向量场).

$$\vec{\psi} = \{P, Q, R\}$$

7.1 梯度

Definition 7.1.1 (梯度).

$$\nabla = \{\partial_x, \partial_y, \partial_z\}$$

7.2 散度

Definition 7.2.1 (通过 Σ 流向指定侧的通量).

$$\Phi = \iint_{\Sigma} P dy dz + Q dz dx + R dx dy$$

Theorem 7.2.1 (散度).

$$\operatorname{div} \vec{\psi} = \nabla \cdot \vec{\psi} = P'_x + Q'_y + R'_z$$

7.3 旋度

Definition 7.3.1 (沿封闭曲线 Γ 的环流量).

$$\oint_{\mathcal{D}} P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z$$

Theorem 7.3.1 (旋度).

$$\mathrm{rot}\vec{\psi} = \nabla \times \vec{\psi} = \left\{R_y' - Q_z', P_z' - R_x', Q_x' - P_y'\right\}$$

Part IV

微分方程

8 基础

Definition 8.0.1 (*n* 阶线性微分方程).

$$y^{(n)} + \sum_{i=0}^{n-1} p_i(x) y^{(i)} = f(x)$$

8.1 线性相关

$$\frac{f(x)}{g(x)} = C(C \in \mathbb{C})$$

8.2 伯努利方程

$$y' + P(x) y = Q(x) y^{\alpha} \xrightarrow{z=y^{1-\alpha}} z' + (1-\alpha) P(x) z = (1-\alpha) Q(x)$$

9 一阶线性微分方程

Definition 9.0.1 $(f(x) \equiv 0$ 时,为齐次).

$$\begin{cases}
(8.0.1) \\
n = 1
\end{cases} \implies y' + P(x)y = f(x)$$

Theorem 9.0.1 (通解).

$$y = \frac{\int f(x) \exp(\int P(x) dx) dx + C}{\exp(\int P(x) dx)}$$

10 二阶线性微分方程

Definition 10.0.1.

$$y'' + P(x)y' + Q(x)y = f(x)$$

10.1 齐次、非齐次、通解、特解关系

齐特 + 齐特 (线性无关) = 齐通

齐通 + 非特 = 非通

齐特 + 非特 = 非特

非特 - 非特 = 齐特

11 n 阶常系数线性齐次微分方程

Definition 11.0.1.

$$y^{(n)} + \sum_{i=0}^{n-1} p_i y^{(i)} = 0 \ (p_i \in \mathbb{C})$$

11.1 特征方程

$$r^n + \sum_{i=0}^{n-1} p_i r^i = 0$$

11.2 对应项

k 重实根 r 在通解中对应项

$$y_r = \sum_{i=1}^k C_i x^{i-1} \cdot e^{rx}$$

特别的: r 为复根时,可改写为两个实根

$$Ce^{rx} = (C_1 \cos \beta x + C_2 \sin \beta x)e^{\alpha x} (r = \alpha \pm \beta i)$$

12 二阶常系数线性微分方程

Definition 12.0.1.

$$y'' + py' + qy = f(x)$$

Theorem 12.0.1 (特解).

(12.0.1)
$$f(x) = \left[\mathcal{P}_{n_1}(x)\cos\omega x + \mathcal{P}_{n_2}(x)\sin\omega x\right]e^{\lambda x}$$

$$m = \max\{n_1, n_2\}$$

$$y^* = x^k \left[\mathcal{U}_m(x) \cos \omega x + \mathcal{V}_m(x) \sin \omega x \right] e^{\lambda x} \begin{cases} k = 0 & (\lambda \pm \omega i \pi 是特征方程根) \\ k = 1 & (\lambda \pm \omega i 是特征方程根) \end{cases}$$

Theorem 12.0.2 (特解的特解). $\omega = 0$ 时,即 $m = n_1$

$$\frac{(12.0.1)}{f(x) = \mathcal{P}_m(x) e^{\lambda x}} \Longrightarrow y^* = x^k \mathcal{Q}_m(x) e^{\lambda x} \begin{cases} k = 0 & (\lambda T 是特征方程根) \\ k = 1 & (\lambda 是特征方程单根) \\ k = 2 & (\lambda 是特征方程重根) \end{cases}$$

13 全微分方程

13.1 条件

P(x,y) dx + Q(x,y) dy = 0 是全微分方程的条件(微分换序)

$$P'_y = Q'_x$$

Part V

空间解析几何

- 14 基础
- 14.1 向量的方向余弦

$$\vec{\mathbf{v}}^0 = \begin{bmatrix} \cos \alpha \\ \cos \beta \\ \cos \gamma \end{bmatrix} = \frac{1}{\|\vec{\mathbf{v}}\|} \begin{bmatrix} \vec{\mathbf{v}}_x \\ \vec{\mathbf{v}}_y \\ \vec{\mathbf{v}}_z \end{bmatrix}$$

15 空间曲面

15.1 基础

Definition 15.1.1.

$$F\left(x,y,z\right) =0$$

15.1.1 法向量

$$\nabla F$$

15.2 平面

Definition 15.2.1.

$$Ax + By + Cz + D = 0$$

15.2.1 平面点法式

过
$$(x_0,y_0,z_0)$$
,法向量 $\begin{bmatrix} A \\ B \\ C \end{bmatrix}$
$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$

15.2.2 平面截距式

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

16 空间曲线

Definition 16.0.1.

$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$

16.1 参数方程

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

16.2 切向量

$$\vec{\tau} = \nabla F \times \nabla G$$

16.3 直线

Definition 16.3.1.

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

16.4 直线对称式(点向式)方程

过
$$(x_0,y_0,z_0)$$
,方向向量 $\begin{bmatrix} m \\ n \\ p \end{bmatrix}$
$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p} = t$$

16.5 直线参数方程

$$\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$$

17 特殊曲面

Definition 17.0.1 (绕 z 轴旋转曲面: (原曲线为 $f(y_1, z) = 0$).

$$\begin{cases} f(y_1, z) = 0 \\ \sqrt{x^2 + y^2} = |y_1| \end{cases} \implies f(\pm \sqrt{x^2 + y^2}, z) = 0$$

17.1 圆锥面

$$z^2 = \cot^2 \alpha \cdot \left(x^2 + y^2\right)$$

Definition 17.1.1 (以下二次曲面方程中都有).

17.2 椭球面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

17.3 椭圆抛物面

$$\frac{x^2}{2p} + \frac{y^2}{2q} = z$$

17.4 双曲抛物面(马鞍面)

$$-\frac{x^2}{2p} + \frac{y^2}{2q} = z$$

$$z = xy$$

17.5 单叶双曲面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

17.6 双叶双曲面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

Part VI

级数

- 18 收敛与发散
- 18.1 条件收敛

$$\sum_{n\in\mathbb{N}^+} u_n = s, s \in \mathbb{C}$$

18.2 绝对收敛

$$\sum_{n \in \mathbb{N}^+} |u_n| = s, s \in \mathbb{C}$$

绝对收敛 --> 条件收敛

- 19 正项级数
- 19.1 积分审敛法

$$\sum_{n \in \mathbb{N}^{+}} f(n) = \int_{1}^{+\infty} f(x) dx$$
欽散同

19.2 比较审敛法

$$\lim \frac{u_n}{v_n} \begin{cases} = 0 & \Longrightarrow \sum v_n 收敛则 \sum u_n 收敛 \\ \in (0, +\infty) & \Longrightarrow \sum v_n, \sum u_n 敛散同 \\ = +\infty & \Longrightarrow \sum v_n 发散则 \sum u_n 发散$$

19.3 比值审敛法(拉朗贝尔判别法)

$$\lim \frac{u_{n+1}}{u_n} \begin{cases} <1 & \Longrightarrow \sum u_n 收敛 \\ =1 & \Longrightarrow \sum u_n 可能收敛可能发散 \\ >1 & \Longrightarrow \sum u_n 发散 \end{cases}$$

19.4 根值审敛法(柯西判别法)

$$\lim \sqrt[n]{u_n} \begin{cases} <1 & \Longrightarrow \sum u_n 收敛 \\ =1 & \Longrightarrow \sum u_n 可能收敛可能发散 \\ >1 & \Longrightarrow \sum u_n 发散 \end{cases}$$

20 交错级数

20.1 莱布尼兹判别法

正项级数
$$u_n \setminus \lim_{n \to \infty} u_n = 0$$
 \Longrightarrow 交错级数 $\sum_{n \to \infty} (-1)^n ($ 或 $\sum_{n \to \infty} (-1)^{n-1} u_n)$ 收敛

21 幂(泰勒)级数

Definition 21.0.1 (以下默认幂级数形式).

$$\sum_{n\in\mathbb{N}} = a_n x^n, \, \text{\text{ψ}} \, \text{\text{ψ}} \, \text{\text{ψ}} \, \text{\text{Z}} \, \text{\text{Z}} \, \text{\text{Z}}$$

21.1 阿贝尔定理

$$\begin{cases} x \in (-R,R) & \text{收敛} \\ x \in \{-R,R\} & \text{单独讨论} \\ x \in (-\infty,-R) \cup (R,+\infty) & \text{发散} \end{cases}$$

21.2 系数模比值法

$$R^{-1} = \rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

21.3 系数模根值法

$$R^{-1} = \rho = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

21.4 加减运算

$$\left. \frac{\sum a_n x^n 收敛域为I_a}{\sum b_n x^n 收敛域为I_b} \right\} \implies \sum a_n x^n \pm \sum b_n x^n = \sum (a_n \pm b_n) x^n, x \in I_a \cap I_b$$

21.5 泰勒级数

$$f(x) \sim \sum_{n \in \mathbb{N}} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

21.6 常用泰勒级数

$$e^{x} = \sum_{n \in \mathbb{N}} \frac{x^{n}}{n!}$$

$$\sin x = \sum_{n \in \mathbb{N}} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n \in \mathbb{N}} (-1)^{n} \frac{x^{2n}}{(2n)!}$$

$$\ln (1+x) = \sum_{n \in \mathbb{N}^{+}} (-1)^{n-1} \frac{x^{n}}{n} \qquad x \in (-1,1]$$

$$\ln (1-x) = \sum_{n \in \mathbb{N}^{+}} -\frac{x^{n}}{n} \qquad x \in (-1,1]$$

$$\frac{1}{1+x} = \sum_{n \in \mathbb{N}} (-1)^{n-1} x^{n} \qquad x \in (-1,1)$$

$$\frac{1}{1-x} = \sum_{n \in \mathbb{N}} x^{n} \qquad x \in (-1,1)$$

$$(1+x)^{\alpha} = \sum_{n \in \mathbb{N}} \frac{\prod_{i=0}^{n-1} (\alpha - i)}{n!} x^{n} \quad \text{此处定义} \prod_{i=0}^{-1} (\alpha - i) = 1$$

22 三角(傅里叶)级数

22.1 傅里叶级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n \in \mathbb{N}^+} (a_n \cos nx + b_n \sin nx)$$

f(x) 周期为 2l 时 (l 常取 $\pi)$, 有傅里叶系数:

$$\begin{cases} a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx, n \in \mathbb{N} \\ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx, n \in \mathbb{N}^+ \end{cases}$$

$$T = 2l$$

$$\omega = \frac{2\pi}{T} = \frac{\pi}{l}$$

22.2 狄利克雷收敛定理

f(x) 在一个周期内有:

- 1. 连续或只有有限个第一类间断点
- 2. 只有有限个极值点

即 f(x) 的傅里叶级数在 \mathbb{R} 连续,且

- 1. x_0 连续时,级数收敛于 $f(x_0)$
- 2. x_0 是第一类间断点时,级数收敛于 $\frac{f(x_0^-)+f(x_0^+)}{2}$