Tae Eun Kim Summer 2020

Below are problems from numerical analysis covering Gaussian elimination through the singular value decomposition; these are for the written part of the final exam. For the online part, please review all 7 quizzes.

Problem 1.

(Gaussian Elimination by Hand)

Solve the following matrix equation by hand using partial pivoting:

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & 2 \\ -2 & 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}.$$

Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \end{bmatrix}.$$

Denote the i^{th} row and the j^{th} column of A by \mathcal{R}_i and \mathcal{C}_j respectively.

- (a) Multiply A by a permutation matrix P to interchange \mathcal{R}_1 with \mathcal{R}_4 . Write out P explicitly.
- (b) Multiply A by a permutation matrix P to interchange C_1 with C_4 . Write out P explicitly.
- (c) Multiply A by two permutation matrices P to interchange C_1 with C_4 and C_4 with C_4 . Write out P explicitly.
- (d) Write down MATLAB statements for the previous parts, that is, create A and then permute its rows/columns as indicated WITHOUT using matrix multiplication.
- (e) (*) Find a permutation matrix which moves $(\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \mathcal{R}_4)$ to $(\mathcal{R}_2, \mathcal{R}_3, \mathcal{R}_4, \mathcal{R}_1)$ respectively, leaving \mathcal{R}_5 unmoved. What is the smallest positive integer k such that $P^k = I$? Write this permutation as a product of elementary permutation matrices.

Let $U \in \mathbb{R}^{n \times n}$ be an upper triangular matrix whose (i, j)-entry is denoted by $u_{i,j}$.

- (a) Write a MATLAB function back_subs which solves the matrix equation $U\mathbf{x} = \mathbf{y}$ using backward substitution. The function takes U and \mathbf{y} as input arguments and produces \mathbf{x} as an output argument.
- (b) Show that the cost of solving $U\mathbf{x} = \mathbf{y}$ via backward substitution is approximately n^2 flops for large n.

Let $\{\mathbf{e}_j \in \mathbb{R}^n \mid j \in \mathbb{N}[1,n]\}$ be the standard unit basis of \mathbb{R}^n , i.e. $\mathbf{e}_1 = (1,0,0,\cdots,0)^{\mathrm{T}}, \ \mathbf{e}_2 = (0,1,0,\cdots,0)^{\mathrm{T}}, \ldots, \ \mathbf{e}_n = (0,0,0,\cdots,1)^{\mathrm{T}}$. Let $1 \leq j < i \leq n$. Show that the inverse of the elementary Gaussian transformation matrix of the form $G_j = I + a_{i,j}\mathbf{e}_i\mathbf{e}_j^{\mathrm{T}}$ is given by

$$G_j^{-1} = I - a_{i,j} \mathbf{e}_i \mathbf{e}_j^{\mathrm{T}}.$$

(*Hint:* You may find $\mathbf{e}_{j}^{\mathrm{T}}\mathbf{e}_{i}=\delta_{i,j}$ to be useful.)

Find the PLU-factorization of the matrix

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 10 & -7 & 10 \\ -6 & 4 & -5 \end{bmatrix},$$

by Gaussian elimination with partial pivoting. That is, find matrices P (permutation matrix), L (unit lower triangular matrix), and U (upper triangular matrix) such that PA = LU. Do this by hand.

(Hint: You may use the results from the previous problem.)

Write a Matlab script carrying out the LDL factorization of the following symmetric matrix A:

$$A = \begin{bmatrix} 2 & 4 & 4 & 2 \\ 4 & 5 & 8 & -5 \\ 4 & 8 & 6 & 2 \\ 2 & -5 & 2 & -26 \end{bmatrix}.$$

That is, write a program that calculates a unit lower triangular matrix L and a diagonal matrix D satisfying $A = LDL^{T}$. Assume that A is already stored in Matlab.

Let

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}.$$

- (a) Calculate $||A||_1$, $||A||_2$, $||A||_{\infty}$, and $||A||_F$ all by hand.
- (b) Find a vector \mathbf{x} satisfying $\|\mathbf{x}\|_1 = 1$ and $\|A\mathbf{x}\|_1 = \|A\|_1$.
- (c) Imagine that MATLAB does not offer norm function and you are writing one for others to use, which begins with

```
function mat_norm(A, j)
% mat_norm computes matrix norms
% Usage:
% mat_norm(A, 1) returns the 1-norm of A
% mat_norm(A, 2) is the same as mat_norm(A)
% mat_norm(A, 'inf') returns the infinity-norm of A
% mat_norm(A, 'fro') returns the Frobenius norm of A
```

Complete the program. (*Hint:* To handle the second input argument properly which can be a number or a character, use ischaracter and strcmp.)

Problem 8.

A set of data points given in the table below is to be interpolated by a polynomial:

x_j	2	3	5	8
y_j	3	-2	12	3

- (a) Write down the Lagrange form of interpolating polynomial.
- (b) Write down the Newton form of interpolating polynomial.

A set of data points given in the table below is to be interpolated by a polynomial:

x_j	1	3	4	5
y_j	8	36	32	0

(a) Complete the following general-purpose MATLAB program that evaluates the Lagrange polynomial ℓ_i at one or more points.

```
function y = mylagrange(xdp, j, x)
% input:
% xdp   abscissas of data points
% j     evaluate j-th lagrange polynomial
% x     points where polynomial or derivative is evaluated
% (scalar, vector, matrix)
nr_dp = length(xdp);
y = 1;
```

(b) Using the function mylangrange, write a script that plots the interpolating polynomial which passes through the given data points on the interval [0,6]. Draw red circles around the data points.

Let $\rho_{n-1}(x)$ be defined by

$$\rho_{n-1}(x) = \prod_{j=1}^{n} (x - x_j) = (x - x_1)(x - x_2) \cdots (x - x_n),$$

for a given set of data $\{x_j \mid j \in \mathbb{N}[1, n]\}$. Write a MATLAB program which plots $\rho_{n-1}(x)$ on [-1, 1] for

- uniform nodes $x_j = -1 + (j-1)\Delta x$ with $\Delta x = 2/(n-1)$;
- Chebyshev nodes $x_j = -\cos((j-1/2)\Delta\theta)$ with $\Delta\theta = \pi/n$.

Problem 11. (Error Analysis)

Consider interpolating $f(x) = \sin(\pi x)$ using a polynomial $p_{n-1}(x)$ on the interval [-1,1] with n=5 uniform nodes, that is, $\{-1,-1/2,0,1/2,1\}$. Using the error theorem for polynomial interpolation, find an upper bound for the error $f(x) - p_{n-1}(x)$.

A set of data points $\{(x_i, y_i) | i = 1, 2, ..., n\}$ is interpolated by a cubic spline $p(x) = p_i(x)$ on $[x_i, x_{i+1}]$ with

$$p_i(x) = c_{i,1} + c_{i,2}(x - x_i)c_{i,3}(x - x_i)^2 + c_{i,4}(x - x_i)^3.$$

Derive the two equations on p. 22 of Lecture 13 slides implementing the *not-a-knot* boundary conditions.

The following set of data points are to be fitted to a straight line $p(x) = c_1 + c_2 x$ via Linear Least Square approximation:

x_j	0	2	4
y_j	1	3	2

- (a) Write out the conditions y_j "=" $p(x_j)$, for $1 \le j \le 3$, and turn them into a matrix equation of the form \mathbf{y} "=" $X\mathbf{c}$.
- (b) Write out the squared 2-norm of the residual $\|\mathbf{r}\|_2^2$ where $\mathbf{r} = X\mathbf{c} \mathbf{y}$; call it $g(c_1, c_2)$. **DO NOT** simplify your answer.
- (c) The function g is minimized at \mathbf{c} where $\nabla g = \mathbf{0}$. Turn this condition into a single matrix equation for \mathbf{c} .
- (d) Verify that the result of the previous part agrees with the normal equation $X^T X \mathbf{c} = X^T \mathbf{y}$.

Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal. Show that

- (a) $\|Q\mathbf{x}\|_2 = \|\mathbf{x}\|_2$, for all $\mathbf{x} \in \mathbb{R}^n$.
- (b) $\|Q\|_2 = 1$.
- (c) $\kappa_2(Q) = 1$. (*Hint*. You are allowed to use, without proof, the facts that $Q^{-1} = Q^{T}$ and Q^{T} is orthogonal.)

Let $\mathbf{z} \in \mathbb{R}^n$ be given.

- (a) Write down the definition of the Householder matrix H associated with \mathbf{z} .
- (b) Show that H is symmetric and orthogonal.
- (c) Show that $||H\mathbf{z}||_2 = ||\mathbf{z}||_2$.
- (d) Suppose that \mathbf{z} is stored in Matlab as a column vector, but you do not know its size. Write a script that creates the associated H. Make sure that H is computed stably, avoiding any potential catastrophic cancellation. Since it is a script, no local function is to be defined.

Problem 16. (Pseudoinverse)

Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Using the QR factorization A = QR, write down its pseudoinverse A^{\dagger} .

Let $p(z) = c_1 + c_2 z + \cdots + c_{n+1} z^n$. The value of p for a matrix argument is defined as

$$p(A) = c_1 I + c_2 A + \dots + c_{n+1} A^n.$$

Show that if A is a square matrix and has an EVD, then p(A) can be found using only evaluations of p at the eigenvalues and two matrix multiplications.

Calculate the singular values of

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ -1 & -1 \end{bmatrix}$$

by solving a 2×2 eigenvalue problem.

Let $A \in \mathbb{R}^{n \times n}$. Show that

- (a) A and A^{T} have the same singular values.
- (b) $||A||_2 = ||A^T||_2$.

Problem 20.

Let

$$A = \begin{bmatrix} 3 & -1 \\ -2 & 0 \end{bmatrix}.$$

- (a) Write out $R_A(\mathbf{x})$ explicitly as a function of x_1 and x_2 .
- (b) Find $R_A(\mathbf{x})$ for $x_1 = 1, x_2 = 2$.
- (c) Find the gradient vector $\nabla R_A(\mathbf{x})$.
- (d) Show that the gradient vector is zero when $x_1 = 1$, $x_2 = 2$.