EP2 de Programação Linear

Gustavo Chicato Wandeur - 7557797 Vinícius Bitencourt Matos - 8536221

18 de maio de 2015

Definições 1

Definição 1. Um **poliedro** é um conjunto $S \subseteq \mathbb{R}^n$ limitado por um número finito de restrições lineares de igualdade $(a_i^T x = b_i)$ ou desigualdade $(a_i^T x \le b_i)$ ou $a_i^T x \ge b_i$.

Definição 2. Um problema de programação linear consiste em minimizar, sobre todos os vetores $x \in \mathbb{R}^n$ que satisfazem dado conjunto de restrições lineares, uma função linear $c^T x$, sendo $\mathbf{c} \in \mathbb{R}^n$ dado. Cada restrição linear é da forma $\mathbf{a}_i^T \mathbf{x} \leq b_i$, $\mathbf{a}_i^T \mathbf{x} \geq b_i$ ou $\mathbf{a}_i^T \mathbf{x} = b_i$. O vetor \mathbf{c} é chamado vetor de custos, e a função $\mathbf{c}^T \mathbf{x}$ é chamada função objetivo ou função

de custos.

Dizemos que $x \in \mathbb{R}^n$ é um ponto viável ou solução viável se x satisfaz a todas as restrições do problema de programação linear. O conjunto de todos os pontos viáveis é chamado conjunto viável. Segue das definições que o conjunto viável de um problema de programação linear é um poliedro. Um problema é *inviável* se seu conjunto viável é vazio.

Uma solução viável x^* que minimiza a função objetivo é chamada solução ótima, e o custo correspondente $c^T x$ é chamado custo ótimo.

Definição 3. Uma restrição é dita ativa em x^* se é satisfeita no ponto x^* por igualdade.

Definição 4. Um conjunto de restrições $\{a_i^Tx \leq b_i\}_{i \in I_1} \cup \{a_i^Tx \geq b_i\}_{i \in I_2} \cup \{a_i^Tx = b_i\}_{i \in I_3}$ (onde I_1, I_2, I_3 são conjuntos de índices disjuntos) é **linearmente independente** se $\{a_i\}_{i \in I_1 \cup I_2 \cup I_3}$ for um conjunto de vetores de \mathbb{R}^n linearmente independentes, isto é, se $\sum_{k=1}^n \lambda_k a_{ik} = \mathbf{0}$ apenas se $\lambda_1 = \cdots = \lambda_n = 0$.

Definição 5. Um ponto $x^* \in \mathbb{R}^n$ é uma solução básica se todas as restrições de igualdade são ativas em x^* e, além disso, dentre todas as restrições ativas em x^* , há no mínimo n linearmente independentes.

Definição 6. Diz-se que um problema de programação linear está no formato padrão se todas as variáveis são obrigatoriamente não negativas (ou seja, há uma restrição $x_i \ge 0$ para todo i = 1, 2, ..., n) e todas as demais restrições são de igualdade (isto é, da forma $\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x}=b_{i}$).

De modo compacto, podemos descrever um problema de programação linear no formato padrão como segue:

minimizar
$$c^{T}x$$

sujeito a $Ax = b$, $x \ge 0$

onde $A \in \mathbb{R}^{m \times n}$ é uma matriz cujas linhas são os vetores a_i , i = 1, ..., m, e $x \ge 0$ é interpretado componente a componente.

Qualquer problema de programação linear pode ser reescrito no formato padrão por meio do seguinte procedimento:

- Cada variável *livre* (cujo sinal não é restrito originalmente) x_j é substituída por x_j⁺-x_j⁻,
 em que x_j⁺ e x_j⁻ são variáveis novas e com restrição de serem ambas não negativas.
- Cada restrição da forma $\mathbf{a}_i^T \mathbf{x} \leq b_i$ é substituída por $\mathbf{a}_i^T \mathbf{x} + s_i = b_i$, em que a nova variável s_i (variável de folga) é não negativa. Analogamente, cada restrição da forma $\mathbf{a}_i^T \mathbf{x} \geq b_i$ é trocada por $\mathbf{a}_i^T \mathbf{x} s_i = b_i$, em que a nova variável s_i (variável de sobra) é não negativa.

Ademais, não há perda em impor que as linhas de *A* sejam linearmente independentes, uma vez que a dependência linear entre restrições nesse formato sempre leva a um dos seguintes casos:

- Há restrições redundantes, que podem ser simplesmente removidas sem alteração do problema;
- Há restrições incompatíveis, que tornam o problema inviável.

Uma vez que todo problema de programação linear pode ser expresso no formato padrão e com a matriz A com linhas linearmente independentes, é suficiente ter um método que resolve problemas desse tipo.

Consideremos o poliedro definido pelas restrições Ax = b e $x \ge 0$, em que $A \in \mathbb{R}^{m \times n}$ tem posto completo. Então, existem índices $B(1), \ldots, B(m)$ tais que as colunas $A_{B(1)}, \ldots, A_{B(m)}$ são linearmente independentes e $x_i = 0$ para todo $i \notin B(1), \ldots, B(m)$.

Se x é uma solução básica, então as variáveis $x_{B(1)}, \ldots, x_{B(m)}$ são chamadas variáveis básicas, as demais são chamadas variáveis não básicas.

2 Método simplex revisado

- 1. Em cada iteração, começamos com uma base correspondente às colunas $A_{B(1)}, \ldots, A_{B(m)}$, uma solução viável básica x e a inversa B^{-1} da matriz básica.
- 2. Calculamos primeiramente o vetor $p^T = c^T B^{-1}$. Em seguida, obtemos os custos reduzidos $\bar{c}_j = c_j p^T A_j$. Se todos forem positivos, então a solução viável básica x é ótima, e o algoritmo é encerrado. Caso contrário, escolhemos o menor valor de j que satisfaça $\bar{c}_j < 0$.
- 3. Calculamos $u = B^{-1}A_j$. Se nenhum componente de u for positivo, então a direção de redução de custos -u é viável para todo θ positivo. Logo o custo ótimo é $-\infty$ e o algoritmo termina.
- 4. Caso contrário, se temos ao menos uma componente positiva de u, então

$$\theta^* = \min_{\{i=1,\dots,m \mid u_i>0\}} \frac{x_{B(i)}}{u_i}.$$

- 5. Seja l tal que $\theta^* = \frac{x_{B(l)}}{u_l}$. Formamos uma nova base trocando a coluna $A_{B(l)}$ por A_j . Teremos então uma nova solução viável básica y com componentes $y_j = \theta^*$ e $y_{B(i)} = x_{B(i)} \theta^* u_i$, $i \neq l$.
- 6. Montamos uma matriz na forma $[B^{-1} \mid u]$. São realizadas então operações elementares de linha, adicionando a cada uma um múltiplo da l-ésima, a fim de que a última coluna termine como o vetor canônico e_l . As m primeiras colunas resultantes correspondem à matriz B^{-1} atualizada. Retorna-se ao passo 1 e continuamos até encontrar uma condição de parada (2 ou 3).

3 O programa

3.1 Formato da entrada

O programa em Octave recebe um argumento na linha de comando, que corresponde ao nome de um arquivo de texto descrevendo o problema na seguinte ordem:

 $\begin{array}{cc} \textbf{m} & \textbf{n} \\ \textbf{A} \end{array}$

b c x

O programa supõe que m e n são inteiros positivos, $\mathbf{A} \in \mathbb{R}^{m \times n}$ é uma matriz com linhas linearmente independentes, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{x} \in \mathbb{R}^n$. Além disso, supõe que \mathbf{x} é uma solução viável básica do seguinte problema, que por hipótese não possui soluções viáveis básicas degeneradas e será resolvido pelo programa:

minimizar
$$c^{T}x$$

sujeito a $Ax = b$
 $x > 0$

3.2 Exemplos de execução

3.2.1 Exemplo 1.8a do livro (adaptado)

A adaptação consistiu em transformar para o formato padrão. Solução viável básica inicial: $x = (0, 1, 0)^{T}$.

minimizar
$$x_1 + x_2$$

sujeito a $-x_1 + x_2 + x_3 = 1$
 $x > 0$

 $^{^{1}}$ O algoritmo descrito no livro para a atualização de B^{-1} depende que a nova coluna da matriz básica fique no lugar da anterior, consequentemente os índices $B(1), \ldots, B(m)$ podem ficar desordenados. Optamos por manter o algoritmo dessa forma, evitando gasto desnecessário de tempo para reordenar os índices e as filas da matriz. Contudo, conforme pede o enunciado, a impressão final da solução ótima (ou da direção que leva o custo a $-\infty$) respeita a ordem inicial das variáveis.

O arquivo de entrada exemplo-1.8a-pag-23.txt, correspondente a este problema, é mostrado abaixo, conforme o formato descrito em 3.1:

```
1 3
-1 1 1
1
1 1 0
0 1 0
```

A variável básica inicialmente é x_2 .

Calculando os custos reduzidos das variáveis não básicas, obtêm-se $\bar{c}_1=2$ e $\bar{c}_3=-1$. A única escolha para entrar na base, portanto, é x_3 , pois c_3 é o único custo reduzido negativo.

Agora, calcula-se o oposto do vetor de direções básicas $\boldsymbol{u} = \boldsymbol{B}^{-1}A_j$, que é [1], e para cada componente positiva u_i (a única), calcula-se o quociente $\frac{x_{B(i)}}{u_i}$, escolhendo o menor possível para ser θ^* , que é o maior múltiplo da direção que ainda leva a um ponto dentro do poliedro. Seja l esse índice. Temos, então, l=1, indicando $x_{B(1)}$ (isto é, x_2) sairá da base.

Após atualizarmos a matriz B^{-1} e a solução $x = (0, 0, 1)^{T}$, o programa agora vai para a próxima iteração.

Ao calcular os custos reduzidos, obtém-se $\bar{c}_N = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, e como todas as coordenadas são positivas, o algoritmo para, pois a solução x atual é ótima.

3.2.2 Exemplo 1.8d do livro (adaptado)

O arquivo de entrada a ser usado neste problema é exemplo-1.8d-pag-23.txt.

Voltemos ao problema do exemplo anterior, com $x^T = (0, 1, 0)$ inicial, mas agora considerando o vetor de custos $c^T = (-1, -1)$. Calculando os respectivos custos reduzidos, temos $\bar{c}_1 = -2$ e $\bar{c}_3 = 1$. Isso significa que 1 é índice de redução de custos, e o escolhemos para entrar na base.

Calculando pelo método usual, $u = -1 = -d_B$. Como u < 0 e, portanto, $d_B > 0$, a variável básica única x_2 crescerá indefinidamente e, portanto, a direção viável correspondente $d = (1,1,0)^T$ será válida para qualquer valor de $\theta > 0$, com a função de custos tendo seu valor reduzido ad infinitum ao longo dela.

Assim, o algoritmo para, pois encontramos uma direção ao longo da qual o custo ótimo diverge para $-\infty$.