Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarskjema i vedlegg 2. (Du skal altså *ikk*e levere inn selve eksamensoppgaven med oppgaveteksten.)

a) Buffer

Hvilken av disse syrene er best egnet som sur komponent til en buffer med pH = 3.9?

- A. etansyre
- B. melkesyre
- C. ammoniumion
- D. hydrogensulfation

b) Buffer

Du har et stoff løst i vann. Til denne løsningen tilsetter du litt NaOH, slik at det blir en bufferløsning. Hvilket av disse stoffene var det i vannløsningen før NaOH ble tilsatt?

- A. NaNO₂
- B. Na₂CO₃
- C. NaHSO₃
- D. NaCH₃COO

c) Buffer

I en bufferløsning er pH 0,5 høyere enn p K_a . Konsentrasjonen av den sure bufferkomponenten er 0,5 mol/L.

Hva er konsentrasjonen av den basiske bufferkomponenten?

- A. 0,1 mol/L
- B. 0,5 mol/L
- C. 1,6 mol/L
- D. 5,0 mol/L

d) Organisk syntese

Hva er formålet med omkrystallisering?

- A. få renere stoff
- B. fjerne løsemiddel
- C. senke smeltepunktet
- D. øke utbyttet av reaksjonen

e) Massespekter

Hvilken av disse toppene vil du finne i massespekteret til propanon?

- A. m/z = 20
- B. m/z = 50
- C. m/z = 58
- D. m/z = 60

f) ¹H-NMR

Figur 1 viser en alkohol.

Hvor mange ulike hydrogenmiljøer er det i denne forbindelsen?

- A. 3
- B. 4
- C. 5
- D. 6

$$\begin{array}{c} & \text{CH}_3 \\ & | \\ & | \\ \text{CH}_2 & \text{C} & \text{OH} \\ & | \\ & \text{CH}_3 \end{array}$$

Figur 1

g) Organiske reaksjoner

Fra forbindelsen heptan-4-ol (se figur 2) blir det eliminert vann.

Hvor mange ulike forbindelser kan dannes ved eliminasjon av vann fra forbindelsen, medregnet stereoisomere?

- A. 1
- B. 2
- C. 3
- D. 4

h) Organisk syntese

32 g metanol ble oksidert til metansyre. Utbyttet var på 35 g. Omtrent hvor mange prosent av teoretisk utbytte er dette?

- A. 50 %
- B. 75 %
- C. 100 %
- D. 110 %

i) Organisk syntese

Når en tilsetter bromløsning til sykloheksen, avfarges løsningen. Her følger tre påstander om denne reaksjonen:

- i) Brom blir addert til sykloheksen.
- ii) Det blir dannet 1,2-dibromsykloheksan.
- iii) Brom blir redusert i denne reaksjonen.

Er noen av disse påstandene riktige?

- A. Ja, men bare i).
- B. Ja, men bare ii).
- C. Ja, men bare i) og iii).
- D. Ja, alle er riktige.

j) Organisk syntese

En løsning inneholder en blanding av to organiske stoffer med 6 karbonatomer i hvert stoff. Du gjør en fraksjonert destillasjon, og de to stabile temperaturområdene du finner, er 60 °C og 158 °C.

Hvilke typer stoff kan være i løsningen?

- A. ett alkan og en alkohol
- B. ett alkan og ett keton
- C. ett alken og en alkohol
- D. ett alken og ett aldehyd

k) Aminosyrer

Hvilken av disse aminosyrene har en netto negativ ladning ved pH = 7,4?

- A. Lysin
- B. Glutaminsyre
- C. Arginin
- D. Histidin

Organiske reaksjoner

Figur 3 viser tre forbindelser.

Figur 3

Under følger tre påstander.

- i) En av forbindelsene reagerer med Fehlings væske.
- ii) En av forbindelsene har et kiralt C-atom.
- iii) En av forbindelsene blir redusert.

Er noen av disse påstandene riktige?

- A. Ja, men bare i)
- B. Ja, men bare ii).
- C. Ja, men bare iii).
- D. Ja, alle tre er riktige.

m) Aminosyrer

Hvilken felles egenskap har alle aminosyrer som er klassifiserte som hydrofobe (vannavstøtende)?

- A. sure sidegrupper
- B. basiske sidegrupper
- C. polare sidegrupper
- D. upolare sidegrupper

n) Polymerer

Hvilken av disse typer stoff er en addisjonspolymer?

- A. fett
- B. protein
- C. stivelse
- D. polypropen

o) Korrosjon

I et forsøk med korrosjon ble tre jernspiker plassert i hvert sitt begerglass med saltløsning:

Begerglass 1: bare jernspikeren

Begerglass 2: en jernspiker med kobbertråd viklet rundt

Begerglass 3: en jernspiker med magnesiumtråd viklet rundt

Etter en gitt tid er jernspikerne korrodert i forskjellig grad i de tre begerglassene. Hva er rett rekkefølge fra *minst* til *mest* korrodert jern?

- A. 3, 1, 2
- B. 2, 3, 1
- C. 3, 2, 1
- D. 1, 2, 3

p) Oksidasjonstall

I hvilken av disse forbindelsene har mangan oksidasjonstallet +V?

- A. KMnO₄
- B. K₂MnCl₆
- C. Na₃MnO₄
- D. Na₃Mn(OH)₆

q) Redoksreaksjoner

Balanser denne redoksreaksjonen, og legg sammen alle koeffisientene. Husk å ta med koeffisienter på 1.

$$_$$
 PbO₂ + $_$ HCl \rightarrow $_$ PbCl₂ + $_$ Cl₂ + $_$ H₂O

Hva er summen av alle koeffisientene?

- A. 5
- B. 8
- C. 9
- D. 10

r) Redoksreaksjoner

En løsning inneholder kaliumjodid, KI(aq).

Hvilket av disse reagensene vil kaliumjodid reagere spontant med i en redoksreaksjon?

- A. 1,0 mol/L HCl
- B. 1,0 mol/L MnCl₂
- C. mettet løsning av CaSO₄
- D. 1,0 mol/L NaClO

s) Elektrokjemi

Figur 4 viser en elektrolysecelle. Pilen i figuren viser elektronretning.

Ved elektrode A blir det dannet en gass, ved elektrode B blir det dannet et metall.

Hvilken løsning må det være i cellen?

- A. 1,0 mol/L HCl
- B. 1,0 mol/L KNO₃
- C. 1,0 mol/L NaCl
- D. 1,0 mol/L NiSO₄

Figur 4

t) Polymerer

Figur 5 viser et utsnitt av strukturformelen til polymetylmetakrylat, som er en vanlig brukt polymer, også kjent som pleksiglass.

Her er tre påstander om denne polymeren.

- i) Figur 6 viser korrekt strukturformel til monomeren.
- ii) Dette er en kondensasjonspolymer.
- iii) Brom, Br₂, kan bli addert til polymeren.

Er noen av disse påstandene riktige?

- A. Ja, men bare i).
- B. Ja, men bare ii).
- C. Ja, men bare iii).
- D. Nei, alle er gale.

Figur 6

Oppgave 2

a) Figur 7 viser 12 organiske forbindelser som alle har fire karbonatomer.

- Figur 7
- 1) Bruk figur 7, og identifiser både **ett** utgangsstoff og det tilhørende organiske produktet for en eliminasjonsreaksjon. Skriv balansert reaksjonslikning med strukturformler for en slik eliminasjonsreaksjon.
- 2) Velg en forbindelse fra figur 7 som kan reagere med kromsyrereagens. Tegn strukturformel til denne forbindelsen og det organiske produktet som kan bli dannet i denne reaksjonen.
- 3) To av forbindelsene i figur 7 skal reagere i en kondensasjonsreaksjon. Skriv en balansert reaksjonslikning der du bruker strukturformler.

b) Du har fire begerglass med oppløst stoff merket A, B, C og D. Hvert av glassene inneholder ett av stoffene i lista under. Alle løsningene er 0,1 mol/L. Du skal finne ut hvilke stoffer det er i begerglassene.

Stoffer som kan være i løsningene:

- Natriumkarbonat, Na₂CO₃
- Kaliumjodid, Kl
- Saltsyre, HCl
- Natriumhydroksid, NaOH
- Natriumklorid, NaCl
- Glukose, C₆H₁₂O₆
- Sølvnitrat, AgNO₃
- 1) Du starter med å sjekke pH i løsningene. Her er resultatet:
 - A: sur
 - B: basisk
 - C: nøytral
 - D: nøytral

Du blander sammen litt av de fire løsningene i et nytt begerglass. Det blir ingen synlig reaksjon. Begerglasset ble litt varmere.

Forklar hvilke stoffer som kan være i løsning A og B. Forklar hvilke av stoffene som ikke kan være i C og D.

2) Du utfører elektrolyse av de to pH-nøytrale løsningene.

I begerglass C skjer det ingen synlig reaksjon.

I begerglass D blir det dannet en usynlig og luktfri gass ved katoden, og rundt anoden blir løsningen farget brun.

Forklar hva som kan være i begerglass C og D.

3) Du skal nå velge to påvisningsreagenser for å bekrefte dine antakelser om hva som er i begerglassene C og D. Forklar hvilke observasjoner du gjør, og hva slags reaksjoner som skjer.

c) Figur 8 viser de to minste naturlige monosakkaridene,D-glyseraldehyd og dihydroksyaceton.

1) Ved syntese i reagensrøret på laboratoriet kan det dannes både D- og Lglyseraldehyd som er speilbildeisomerer. I biokjemiske reaksjoner er det bare D-glyseraldehyd som blir dannet.

Forklar hvorfor det bare dannes den ene av speilbildeisomerene i biokjemiske reaksjoner.

2) Når glyserol brytes ned i cellene, er et av mellomproduktene dihydroksyacetonfosfat. Denne forbindelsen kan overføres til glyserol-3-fosfat, slik figur 9 viser.

$$0 = C \qquad \begin{array}{c} \text{NADH} + \text{H}^{+} \qquad \text{NAD}^{+} \\ \text{CH}_{2}\text{OH} \\ \text{CH}_{2} = 0 \qquad \begin{array}{c} \text{O}^{-} \\ \text{D} \\ \text{O} \end{array}$$

Figur 9

Forklar hvilken funksjon NADH har i slike reaksjoner.

3) Forbindelsene i figur 8 kan forbrennes både i kroppen og på laboratoriet. Gjør kort rede for både likheter og forskjeller i disse to forbrenningsreaksjonene.

Del 2

Oppgave 3

En planteolje inneholder ulike triglyserider. Disse kan reagere med KOH som vist i figur 10.

$$O = C$$
 $O = C$
 $O =$

- Figur 10
- a) Hvilken reaksjonstype er dette?
- b) Planteoljer består av ulike fettsyrer. Gjør kort rede for hvordan strukturen til disse fettsyrene kan være forskjellig.
- c) Glyserol kan polymerisere og ved de rette betingelsene danne kuleformede nanomolekyler. Figur 11 viser et utsnitt av et slikt molekyl.

Figur 11
Utsnitt av polyglyserol

Polymeriseringen av glyserol kan stoppes ved å tilsette organiske forbindelser som reagerer med polyglyserol. Disse stoffene er med å bestemme egenskapene til den ferdige nanopartikkelen.

- Hvilken reaksjonstype er det i polymeriseringen av glyserol?
- Gi ett eksempel på hva det organiske stoffet som skal stoppe polymeriseringen kan være.

Forsåpningstallet er et mål for hvor mye syre et gram av et triglyserid inneholder. Det måles i mg KOH, som er nødvendig for å spalte triglyseridet og nøytralisere syrene per gram triglyserid. Figur 10 viser reaksjonen mellom et triglyserid og KOH.

- d) En planteolje ble analysert for å finne forsåpningstallet til oljen.
 - 1,545 g av oljen ble veid og varmet opp.
 - 25,0 mL 0,500 mol/L KOH i etanol ble tilsatt.
 - KOH som ikke hadde reagert, ble titrert med 0,500 mol/L HCI.
 Forbruket av saltsyre var 13,6 mL før endepunktet for denne titreringen ble nådd. Da har HCI reagert med KOH i løsningen.

Beregn forsåpningstallet til planteoljen gitt i mg KOH per g olje som reagerer.

e) Forklar at forsåpningstallet er avhengig av R-gruppene i triglyseridet, se figur 10.

Oppgave 4

a) I en reaksjon mellom fenylmetanol og permanganation kan det dannes både fenylmetanal og fenylmetansyre, se figur 12.

Figur 12

Forklar at dette er redoksreaksjoner.

- b) Vurder om det er mulig ved hjelp av kromsyrereagens å finne ut om all fenylmetanol har reagert.
- c) Reaksjonslikningen for reaksjonen mellom fenylmetanol og permanganation til fenylmetansyre er:

3 fenylmetanol +
$$4MnO_4$$
 + $4H^+ \rightarrow 3$ fenylmetansyre + $4MnO_2$ + $5H_2O$

Dersom det ikke er nok KMnO₄, blir produktet fenylmetanal. Beregn hvor stort volum av 0,20 mol/L KMnO₄ som minst behøves for at 5,0 g fenylmetanol reagerer fullstendig til fenylmetansyre.

d) Noen elever ville undersøke om konsentrasjonen av en permanganatløsning var 0,1 mol/L eller 0,02 mol/L, ved å sammenligne visuelt med løsninger med kjent konsentrasjon, se figur 13. Forklar hvordan de kan gå fram for å undersøke hvor konsentrert løsningen er. Konsentrasjonen av løsningene i figur 13 er 0,0001 mol/L, 0,0002 mol/L, 0,0003 mol/L, 0,0004 mol/L og 0,0005 mol/L.

Figur 13

e) Et alken reagerer med KMnO₄ og gir to produkter:

$$R_1$$
-CH=CH- $R_2 \rightarrow R_1$ -COOH + R_2 -COOH

R₁-COOH er produkt 1, og R₂-COOH er produkt 2. ¹H-NMR- og MS-spektrene til de to produktene er vist i figurene 14, 15, 16 og 17:

Figur 14 ¹H-NMR-spektret til produkt 1. Tallene over toppene viser gjennomsnittlig skiftverdi.

Figur 15 MS-spektret til produkt 1 (molekylion: m/z = 60)

Figur 16 ¹H-NMR-spektret til produkt 2. Tallene over toppene viser gjennomsnittlig skiftverdi.

Figur 17 MS-spektret til produkt 2 (molekylion: m/z = 88)

Bruk informasjonen i spektrene til å forklare hva produkt 1 og 2 er, og tegn strukturen til det opprinnelige alkenet.

Oppgave 5

a) Hår består av proteinet keratin som inneholder aminosyren cystein. Strukturen i hår holdes sammen av disulfidbroer slik figur 18 viser.

Figur 18

Når frisøren lager krøller, tilsetter han et stoff som bryter opp S-S-bindingen, krøller opp håret og tilsetter et stoff som gjendanner S-S-bindingene.

Avgjør om det er primær-, sekundær-, tertiær- eller kvartærstrukturen i keratin som endres.

- b) Hvordan kan du på skolelaboratoriet på en enkel måte avgjøre om en ukjent saltløsning inneholder natriumsulfid, Na₂S, eller natriumsulfat, Na₂SO₄?
- c) Svovelsyre, H₂SO₄, og svovelsyrling, H₂SO₃, er oksosyrer av svovel.

Forklar hvorfor bare en av disse kan brukes som sur komponent i en bufferløsning.

d) Ved elektrolyse av en vannløsning av 1,0 mol/L svovelsyre blir det dannet oksygen og hydrogen. Ved elektrolyse av konsentrert svovelsyre blir det blant annet dannet peroksydisulfation, $S_2O_8^{2-}$. Standard reduksjonspotensial for reaksjonen fra peroksydisulfation til sulfation er

$$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$$
 $E^{\circ}_{red} = 2,05 \text{ V}.$

Forklar hvorfor det ikke blir dannet peroksydisulfation ved elektrolyse av en vannløsning av 1,0 mol/L svovelsyre.

e) Peroksydisulfation, $S_2O_8^{2-}$, vil reagere med jodid og gi jod. Dette kan brukes til å finne konsentrasjonen av peroksydisulfation i en løsning ved titrering med tiosulfatløsning med kjent konsentrasjon.

En løsning inneholder $S_2O_8^2$ -ioner. 25,0 mL av løsningen ble pipettert ut i en titreringskolbe. Titreringskolben ble tilsatt fast kaliumjodid i overskudd. Da skjer denne reaksjonen:

$$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$$

Løsningen i titreringskolben ble så titrert med 0,100 mol/L tiosulfatløsning. Reaksjonen som skjer, er da:

$$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^{-}$$

Forbruket av tiosulfatløsning var 30,0 mL. Beregn konsentrasjonen til $S_2O_8^{2-}$ ioner i løsningen.

Tabeller og formler i REA3012 Kjemi 2 (versjon 30.09.2016)

Dette vedlegget kan brukast/brukes under både Del 1 og Del 2 av eksamen.

STANDARD REDUKSJONSPOTENSIAL VED 25 °C

Halvreaksjon	Halvreaksjon						
oksidert form	+ ne ⁻	→	redusert form	<i>E</i> ° mål i V			
F ₂	+ 2e ⁻	→	2F ⁻	2,87			
O ₃ + 2H ⁺	+ 2e ⁻	→	O ₂ +H ₂ O	2,08			
H ₂ O ₂ + 2H ⁺	+ 2e ⁻	→	2H ₂ O	1,78			
Ce ⁴⁺	+ e ⁻	→	Ce ³⁺	1,72			
PbO ₂ + SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	PbSO ₄ + 2H ₂ O	1,69			
MnO ₄ ⁻ +4H ⁺	+ 3e ⁻	→	MnO ₂ +2H ₂ O	1,68			
2HClO + 2H ⁺	+2e ⁻	→	Cl ₂ + 2H ₂ O	1,61			
MnO ₄ ⁻ + 8H ⁺	+ 5e ⁻	→	Mn ²⁺ + 4H ₂ O	1,51			
BrO ₃ - + 6H+	+ 6e ⁻	→	Br ⁻ + 3H ₂ O	1,42			
Au ³⁺	+ 3e ⁻	→	Au	1,40			
Cl ₂	+ 2e ⁻	→	2CI ⁻	1,36			
Cr ₂ O ₇ ²⁻ + 14H ⁺	+ 6e ⁻	→	2Cr ³⁺ + 7H ₂ O	1,36			
O ₂ + 4H ⁺	+ 4e ⁻	→	2H ₂ O	1,23			
MnO ₂ + 4H ⁺	+ 2e ⁻	→	Mn ²⁺ + 2H ₂ O	1,22			
2IO ₃ ⁻ + 12H ⁺	+ 10e ⁻	→	I ₂ + 6H ₂ O	1,20			
Pt ²⁺	+ 2e ⁻	→	Pt	1,18			
Br ₂	+ 2e ⁻	→	2 Br ⁻	1,09			
NO ₃ ⁻ + 4H ⁺	+ 3e ⁻	→	NO + 2H ₂ O	0,96			
2Hg ²⁺	+ 2e ⁻	→	Hg ₂ ²⁺	0,92			
Cu ²⁺ + I ⁻	+ e ⁻	→	Cul(s)	0,86			
Hg ²⁺	+ 2e ⁻	→	Hg	0,85			
CIO ⁻ + H ₂ O	+ 2e ⁻	→	Cl ⁻ + 2OH ⁻	0,84			
Hg ₂ ²⁺	+ 2e ⁻	→	2Hg	0,80			
Ag ⁺	+ e ⁻	→	Ag	0,80			
Fe ³⁺	+ e ⁻	→	Fe ²⁺	0,77			
O ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ O ₂	0,70			
l ₂	+ 2e ⁻	→	21-	0,54			
Cu ⁺	+ e ⁻	→	Cu	0,52			
H ₂ SO ₃ + 4H ⁺	+ 4e ⁻	→	S + 3H ₂ O	0,45			
O ₂ + 2H ₂ O	+ 4e ⁻	→	40H ⁻	0,40			
Ag ₂ O + H ₂ O	+ 2e ⁻	→	2Ag + 2OH ⁻	0,34			
Cu ²⁺	+ 2e ⁻	→	Cu	0,34			

Vedlegg 1

oksidert form	+ ne-	→	redusert form	Eo mål i V
SO ₄ ²⁻ + 10H ⁺	+ 8e ⁻	→	$H_2S(aq) + 4H_2O$	0,30
SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	H ₂ SO ₃ + H ₂ O	0,17
Cu ²⁺	+ e ⁻	→	Cu ⁺	0,16
Sn ⁴⁺	+ 2e ⁻	→	Sn ²⁺	0,15
S + 2H+	+ 2e ⁻	→	H₂S(aq)	0,14
S ₄ O ₆ ²⁻	+ 2e ⁻	→	2S ₂ O ₃ ²⁻	0,08
2H ⁺	+ 2e ⁻	→	H ₂	0,00
Fe ³⁺	+ 3e ⁻	→	Fe	-0,04
Pb ²⁺	+ 2e ⁻	→	Pb	-0,13
Sn ²⁺	+ 2e ⁻	→	Sn	-0,14
Ni ²⁺	+ 2e ⁻	→	Ni	-0,26
PbSO ₄	+ 2e ⁻	→	Pb + SO ₄ ²⁻	-0,36
Cd ²⁺	+ 2e ⁻	→	Cd	-0,40
Cr ³⁺	+ e ⁻	→	Cr ²⁺	-0,41
Fe ²⁺	+ 2e ⁻	→	Fe	-0,45
S	+ 2e ⁻	→	S ²⁻	-0,48
2CO ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ C ₂ O ₄	-0,49
Zn ²⁺	+ 2e ⁻	→	Zn	-0,76
2H ₂ O	+ 2e ⁻	→	H ₂ + 20H ⁻	-0,83
Mn ²⁺	+ 2e ⁻	→	Mn	-1,19
ZnO + H ₂ O	+ 2e ⁻	→	Zn + 2OH ⁻	-1,26
Al ³⁺	+ 3e ⁻	→	Al	-1,66
Mg ²⁺	+ 2e ⁻	→	Mg	-2,37
Na ⁺	+ e ⁻	→	Na	-2,71
Ca ²⁺	+ 2e ⁻	→	Ca	-2,87
K ⁺	+ e ⁻	→	К	-2,93
Li ⁺	+ e ⁻	→	Li	-3,04

NOEN KONSTANTER

Avogadros tall: $N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$

Molvolumet av en gass: $V_m = 22,4 \text{ L/mol ved } 0 \text{ °C og } 1 \text{ atm,}$

24,5 L/mol ved 25 °C og 1 atm

Faradays konstant: F = 96485 C/mol

SYREKONSTANTER (Ka) I VANNLØSNING VED 25 °C

Navn	Formel	Ka	p <i>K</i> a
Acetylsalisylsyre	C ₈ H ₇ O ₂ COOH	3,3 · 10 ⁻⁴	3,48
Ammoniumion	NH ₄ ⁺	5,6 · 10 ⁻¹⁰	9,25
Askorbinsyre	$C_6H_8O_6$	9,1 · 10 ⁻⁵	4,04
Hydrogenaskorbation	C ₆ H ₇ O ₆ ⁻	2,0 · 10 ⁻¹²	11,7
Benzosyre	C ₆ H ₅ COOH	6,3 · 10 ⁻⁵	4,20
Benzylsyre (2-fenyleddiksyre)	C ₆ H ₅ CH ₂ COOH	4,9 · 10 ⁻⁵	4,31
Borsyre	B(OH) ₃	5,4 · 10 ⁻¹⁰	9,27
Butansyre	CH ₃ (CH ₂) ₂ COOH	1,5 · 10 ⁻⁵	4,83
Eplesyre (malinsyre)	HOOCCH ₂ CH(OH)COOH	4,0 · 10 ⁻⁴	3,40
Hydrogenmalation	HOOCCH ₂ CH(OH)COO [−]	7,8 · 10 ⁻⁶	5,11
Etansyre (eddiksyre)	CH₃COOH	1,8 · 10 ⁻⁵	4,76
Fenol	C ₆ H ₅ OH	1,0 · 10 ⁻¹⁰	9,99
Fosforsyre	H ₃ PO ₄	6,9 · 10 ⁻³	2,16
Dihydrogenfosfation	H ₂ PO ₄ ⁻	6,2 · 10 ⁻⁸	7,21
Hydrogenfosfation	HPO ₄ ²⁻	4,8 · 10 ⁻¹³	12,32
Fosforsyrling	H ₃ PO ₃	5,0 · 10 ⁻²	1,3
Dihydrogenfosfittion	H ₂ PO ₃ ⁻	2,0 · 10 ⁻⁷	6,70
Ftalsyre (benzen-1,2-dikarboksylsyre)	C ₆ H ₄ (COOH) ₂	1,1 · 10 ⁻³	2,94
Hydrogenftalation	C ₆ H ₄ (COOH)COO ⁻	3,7 · 10 ⁻⁶	5,43
Hydrogencyanid (blåsyre)	HCN	6,2 · 10 ⁻¹⁰	9,21
Hydrogenfluorid (flussyre)	HF	6,3 · 10 ⁻⁴	3,20
Hydrogenperoksid	H_2O_2	2,4 · 10 ⁻¹²	11,62
Hydrogensulfation	HSO ₄ ⁻	1,0 · 10 ⁻²	1,99
Hydrogensulfid	H ₂ S	8,9 · 10 ⁻⁸	7,05
Hypoklorsyre (underklorsyrling)	HCIO	4,0 · 10 ⁻⁸	7,40
Karbonsyre	H ₂ CO ₃	4,5 · 10 ⁻⁷	6,35
Hydrogenkarbonation	HCO ₃ ⁻	4,7 · 10 ⁻¹¹	10,33
Klorsyrling	HCIO ₂	1,1 · 10 ⁻²	1,94
Kromsyre	H ₂ CrO ₄	1,8 · 10 ⁻¹	0,74
Hydrogenkromation	HCrO ₄ ⁻	3,2 · 10 ⁻⁷	6,49
Maleinsyre (cis-butendisyre)	HOOCCH=CHCOOH	1,2 · 10 ⁻²	1,92
Hydrogenmaleation	HOOCCH=CHCOO-	5,9 · 10 ⁻⁷	6,23
Melkesyre (2-hydroksypropansyre)	CH₃CH(OH)COOH	1,4 · 10 ⁻⁴	3,86
Metansyre (mausyre)	НСООН	1,8 · 10 ⁻⁴	3,75
Oksalsyre	(COOH) ₂	5,6 · 10 ⁻²	1,25
Hydrogenoksalation	(COOH)COO ⁻	1,5 · 10 ⁻⁴	3,81
Propansyre	CH₃CH₂COOH	1,3 · 10 ⁻⁵	4,87
Salisylsyre (2-hydroksybenzosyre)	C ₆ H ₄ (OH)COOH	1,0 · 10 ⁻³	2,98
Salpetersyrling	HNO ₂	5,6 · 10 ⁻⁴	3,25
Sitronsyre	C ₃ H ₄ (OH)(COOH) ₃	7,4 · 10 ⁻⁴	3,13
Dihydrogensitration	C ₃ H ₄ (OH)(COOH) ₂ COO ⁻	1,7 · 10 ⁻⁵	4,76
Hydrogensitration	$C_3H_4(OH)(COOH)(COO^-)_2$	4,0 · 10 ⁻⁷	6,40
Svovelsyrling	H ₂ SO ₃	1,4 · 10 ⁻²	1,85
Hydrogensulfittion	HSO ₃ ⁻	6,3 · 10 ⁻⁸	7,2
Vinsyre (2,3-dihydroksybutandisyre, <i>L</i> -tartarsyre)	(CH(OH)COOH) ₂	1,0 · 10 ⁻³	2,98
Hydrogentartration	HOOC(CH(OH))₂COO⁻	4,6 · 10 ⁻⁵	4,34

BASEKONSTANTER (Kb) I VANNLØSNING VED 25 °C

Navn	Formel	K _b	pK _b
Acetation	CH₃COO⁻	5,8 · 10 ⁻¹⁰	9,24
Ammoniakk	NH ₃	1,8 · 10 ⁻⁵	4,75
Metylamin	CH ₃ NH ₂	4,6 · 10 ⁻⁴	3,34
Dimetylamin	(CH ₃) ₂ NH	5,4 · 10 ⁻⁴	3,27
Trimetylamin	(CH₃)₃N	6,3 · 10 ⁻⁵	4,20
Etylamin	CH ₃ CH ₂ NH ₂	4,5 · 10 ⁻⁴	3,35
Dietylamin	$(C_2H_5)_2NH$	6,9 · 10 ⁻⁴	3,16
Trietylamin	$(C_2H_5)_3N$	5,6 · 10 ⁻⁴	3,25
Fenylamin (Anilin)	C ₆ H ₅ NH ₂	7,4 · 10 ⁻¹⁰	9,13
Pyridin	C ₅ H ₅ N	1,7 · 10 ⁻⁹	8,77
Hydrogenkarbonation	HCO ₃ ⁻	2,0 · 10 ⁻⁸	7,65
Karbonation	CO ₃ ²⁻	2,1 · 10 ⁻⁴	3,67

SYRE-BASE-INDIKATORER

Indikator	Fargeforandring	pH- omslagsområde
Metylfiolett	gul-fiolett	0,0 - 1,6
Tymolblått	rød-gul	1,2 - 2,8
Metyloransje	rød-oransje	3,2 - 4,4
Bromfenolblått	gul-blå	3,0 - 4,6
Kongorødt	fiolett-rød	3,0 - 5,0
Bromkreosolgrønt	gul-blå	3,8 - 5,4
Metylrødt	rød-gul	4,8 - 6,0
Lakmus	rød-blå	5,0 - 8,0
Bromtymolblått	gul-blå	6,0 - 7,6
Fenolrødt	gul-rød	6,6 - 8,0
Tymolblått	gul-blå	8,0 - 9,6
Fenolftalein	fargeløs-rosa	8,2 - 10,0
Alizaringul	gul-lilla	10,1 - 12,0

SAMMENSATTE IONER, NAVN OG FORMEL

Navn	Formel	Navn	Formel
acetat, etanat	CH₃COO⁻	jodat	1O ₃ -
ammonium	NH ₄ ⁺	karbonat	CO ₃ ²⁻
arsenat	AsO ₄ ³⁻	klorat	ClO ₃ -
arsenitt	AsO ₃ ³⁻	kloritt	ClO ₂ -
borat	BO ₃ ³⁻	nitrat	NO ₃ -
bromat	BrO ₃ -	nitritt	NO ₂ -
fosfat	PO ₄ ³⁻	perklorat	ClO ₄ -
fosfitt	PO ₃ ³⁻	sulfat	SO ₄ ²⁻
hypokloritt	CIO-	sulfitt	SO ₃ ²⁻

MASSETETTHET OG KONSENTRASJON TIL NOEN VÆSKER

Forbindelse	Kjemisk formel	Masseprosent konsentrert løsning	Massetetthet $(\frac{g}{mL})$	Konsentrasjon $(\frac{\text{mol}}{\text{L}})$
Saltsyre	HCI	37	1,18	12,0
Svovelsyre	H₂SO ₄	98	1,84	17,8
Salpetersyre	HNO ₃	65	1,42	15,7
Eddiksyre	CH₃COOH	96	1,05	17,4
Ammoniakk	NH ₃	25	0,88	14,3
Vann	H₂O	100	1,00	55,56

STABILE ISOTOPER FOR NOEN GRUNNSTOFFER

Grunnstoff	Isotop	Relativ	Grunnstoff	Isotop	Relativ
		forekomst (%)			forekomst (%)
		i jordskorpen			i jordskorpen
Hydrogen	¹H	99,985	Silisium	²⁸ Si	92,23
	² H	0,015		²⁹ Si	4,67
Karbon	¹² C	98,89		³⁰ Si	3,10
	13C	1,11	Svovel	³² S	95,02
Nitrogen	¹⁴ N	99,634		³³ S	0,75
	¹⁵ N	0,366		³⁴ S	4,21
Oksygen	¹⁶ O	99,762		³⁶ S	0,02
	¹⁷ O	0,038	Klor	35CI	75,77
	¹⁸ O	0,200		³⁷ Cl	24,23
			Brom	⁷⁹ Br	50,69
				⁸¹ Br	49,31

LØSELIGHETSTABELL FOR SALTER I VANN VED 25 °C

	Br ⁻	Cl ⁻	CO ₃ ²⁻	CrO ₄ ²⁻	Γ	O ²⁻	OH⁻	S ²⁻	SO ₄ ²⁻
Ag ⁺	U	U	U	U	U	U	-	U	T
Al ³⁺	R	R	-	-	R	U	U	R	R
Ba ²⁺	L	L	U	U	L	R	L	Т	U
Ca ²⁺	L	L	U	T	L	Т	U	Т	Т
Cu ²⁺	L	L	-	U	-	U	U	U	L
Fe ²⁺	L	L	U	U	L	U	U	U	L
Fe ³⁺	R	R	1	U	1	U	U	U	L
Hg ₂ ²⁺	U	U	U	U	U	-	U	-	U
Hg ²⁺	T	L	-	U	U	U	U	U	R
Mg ²⁺	L	L	U	L	L	U	U	R	L
Ni ²⁺	L	L	U	U	L	U	U	U	L
Pb ²⁺	T	Т	U	U	U	U	U	U	U
Sn ²⁺	R	R	U	-	R	U	U	U	R
Sn ⁴⁺	R	R	-	L	R	U	U	U	R
Zn ²⁺	L	L	U	U	L	U	U	U	L

U = uløselig. Det løses mindre enn 0,01 g av saltet i 100 g vann.

T = tungtløselig. Det løses mellom 0,01 og 1 g av saltet i 100 g vann.

L = lettløselig. Det løses mer enn 1 g av saltet per 100 g vann.

^{- =} Ukjent forbindelse, eller forbindelse dannes ikke ved utfelling, R = reagerer med vann.

LØSELIGHETSPRODUKT (Ksp) FOR SALT I VANN VED 25 °C

Navn	Kjemisk formel	K _{sp}	Navn	Kjemisk formel	K _{sp}
Aluminiumfosfat	AIPO ₄	9,84 · 10 ⁻²¹	Kvikksølv(I)bromid	Hg ₂ Br ₂	6,40 · 10 ⁻²³
Bariumfluorid	BaF ₂	1,84 · 10 ⁻⁷	Kvikksølv(I)jodid	Hg ₂ I ₂	5,2 · 10 ⁻²⁹
Bariumkarbonat	BaCO ₃	2,58 · 10 ⁻⁹	Kvikksølv(I)karbonat	Hg ₂ CO ₃	3,6 · 10 ⁻¹⁷
Bariumkromat	BaCrO ₄	1,17 · 10 ⁻¹⁰	Kvikksølv(I)klorid	Hg ₂ Cl ₂	1,43 · 10 ⁻¹⁸
Bariumnitrat	Ba(NO ₃) ₂	4,64 · 10 ⁻³	Kvikksølv(II)bromid	HgBr ₂	6,2 · 10 ⁻²⁰
Bariumoksalat	BaC ₂ O ₄	1,70 · 10 ⁻⁷	Kvikksølv(II)jodid	Hgl ₂	2,9 · 10 ⁻²⁹
Bariumsulfat	BaSO ₄	1,08 · 10 ⁻¹⁰	Litiumkarbonat	Li ₂ CO ₃	8,15 · 10 ⁻⁴
Bly(II)bromid	PbBr ₂	6,60 · 10 ⁻⁶	Magnesiumfosfat	Mg ₃ (PO ₄) ₂	1,04 · 10 ⁻²⁴
Bly(II)hydroksid	Pb(OH) ₂	1,43 · 10 ⁻²⁰	Magnesiumhydroksid	Mg(OH) ₂	5,61 · 10 ⁻¹²
Bly(II)jodid	PbI ₂	9,80 · 10 ⁻⁹	Magnesiumkarbonat	MgCO ₃	6,82 · 10 ⁻⁶
Bly(II)karbonat	PbCO ₃	7,40 · 10 ⁻¹⁴	Magnesiumoksalat	MgC ₂ O ₄	4,83 · 10 ⁻⁶
Bly(II)klorid	PbCl ₂	1,70 · 10 ⁻⁵	Mangan(II)karbonat	MnCO ₃	2,24 · 10 ⁻¹¹
Bly(II)oksalat	PbC ₂ O ₄	8,50 · 10 ⁻⁹	Mangan(II)oksalat	MnC ₂ O ₄	1,70 · 10 ⁻⁷
Bly(II)sulfat	PbSO ₄	2,53 · 10 ⁻⁸	Nikkel(II)fosfat	Ni ₃ (PO ₄) ₂	4,74 · 10 ⁻³²
Bly(II)sulfid	PbS	3 · 10 ⁻²⁸	Nikkel(II)hydroksid	Ni(OH) ₂	5,48 · 10 ⁻¹⁶
Jern(II)fluorid	FeF ₂	2,36 · 10 ⁻⁶	Nikkel(II)karbonat	NiCO ₃	1,42 · 10 ⁻⁷
Jern(II)hydroksid	Fe(OH) ₂	4,87 · 10 ⁻¹⁷	Nikkel(II)sulfid NiS		2 · 10 ⁻¹⁹
Jern(II)karbonat	FeCO ₃	3,13 · 10 ⁻¹¹	Sinkhydroksid	Zn(OH) ₂	3 · 10 ⁻¹⁷
Jern(II)sulfid	FeS	8 · 10 ⁻¹⁹	Sinkkarbonat	ZnCO ₃	1,46 · 10 ⁻¹⁰
Jern(III)fosfat	FePO ₄ ×2H ₂ O	9,91 · 10 ⁻¹⁶	Sinksulfid	ZnS	2 · 10-24
Jern(III)hydroksid	Fe(OH) ₃	2,79 · 10 ⁻³⁹	Sølv(I)acetat	AgCH ₃ COO	1,94 · 10 ⁻³
Kalsiumfluorid	CaF ₂	3,45 · 10 ⁻¹¹	Sølv(I)bromid	AgBr	5,35 · 10 ⁻¹³
Kalsiumfosfat	Ca ₃ (PO ₄) ₂	2,07 · 10 ⁻³³	Sølv(I)cyanid	AgCN	5,97 · 10 ⁻¹⁷
Kalsiumhydroksid	Ca(OH) ₂	5,02 · 10 ⁻⁶	Sølv(I)jodid	AgI	8,52 · 10 ⁻¹⁷
Kalsiumkarbonat	CaCO ₃	3,36 · 10 ⁻⁹	Sølv(I)karbonat	Ag ₂ CO ₃	8,46 · 10 ⁻¹²
Kalsiummolybdat	CaMoO ₄	1,46 · 10 ⁻⁸	Sølv(I)klorid	AgCl	1,77 · 10 ⁻¹⁰
Kalsiumoksalat	CaC ₂ O ₄	3,32 · 10 ⁻⁹	Sølv(I)kromat	Ag ₂ CrO ₄	1,12 · 10 ⁻¹²
Kalsiumsulfat	CaSO ₄	4,93 · 10 ⁻⁵	Sølv(I)oksalat	Ag ₂ C ₂ O ₄	5,40 · 10 ⁻¹²
Kobolt(II)hydroksid	Co(OH) ₂	5,92 · 10 ⁻¹⁵	Sølv(I)sulfat	Ag ₂ SO ₄	1,20 · 10 ⁻⁵
Kopper(I)bromid	CuBr	6,27 · 10 ⁻⁹	Sølv (I) sulfid	Ag ₂ S	8 · 10 ⁻⁵¹
Kopper(I)klorid	CuCl	1,72 · 10 ⁻⁷	Tinn(II)hydroksid	Sn(OH) ₂	5,45 · 10 ⁻²⁷
Kopper(I)oksid	Cu ₂ O	2 · 10 ⁻¹⁵		•	•
Kopper(I)jodid	Cul	1,27 · 10 ⁻¹²	1		
Kopper(II)fosfat	Cu ₃ (PO ₄) ₂	1,40 · 10 ⁻³⁷	1		
Kopper(II)oksalat	CuC ₂ O ₄	4,43 · 10 ⁻¹⁰			

Vanlig navn			Vanlig navn	
Forkortelse pH ved	Strukturformel		Forkortelse pH ved	Strukturformel
isoelektrisk punkt			isoelektrisk punkt	
Alanin Ala 6,0	H ₃ C CH O		Arginin Arg 10,8	NH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH
Asparagin Asn 5,4	H ₂ N CH ₂ CH O NH ₃		Aspartat (Asparagin- syre) Asp 2,8	O
Cystein Cys 5,1	O CH ₂ CH NH ₃		Fenylalanin Phe 5,5	HC CH CH2 CH O CH NH3
Glutamin Gln 5,7	NH ₂ O O O O O O O O O O O O O O O O O O O		Glutamat (Glutamin- syre) Glu 3,2	O CH ₂ CH ₂ CH NH ₂
Glysin Gly 6,0	O == C O		Histidin His 7,6	HC CH CH O

Vedlegg 1

Vanlig navn			Vanlig navn	
Forkortelse pH ved isoelektrisk	Strukturformel		Forkortelse pH ved isoelektrisk	Strukturformel
punkt			punkt	
Isoleucin Ile 6,0	H ₃ C CH C O NH ₃		Leucin Leu 6,0	H ₃ C CH ₂ CC O CH ₂ CH CH O CH ₃ NH ₃
Lysin Lys 9,7	H ₃ N ⁺ CH ₂ CH ₂ CH ₂ CH O O O O O O O O O O O O O O O O O O		Metionin Met 5,7	H ₃ C CH ₂ CH O NH ₃
Prolin Pro 6,3	H ₂ C CH ₂ O CH CH C O		Serin Ser 5,7	HO CH ₂ CH O NH ₃
Treonin Thr 5,6	CH ₃ O CH CH NH ₃		Tryptofan Trp 5,9	O — CH CH CH CH NH3
Tyrosin Tyr 5,7	HC CH CH2 CH O O O O O O O O O O O O O O O O O O		Valin Val 6,0	CH ₃ O CH CH NH ₃

¹H-NMR-DATA

Typiske verdier for kjemisk skift, δ , relativt til tetrametylsilan (TMS) med kjemisk skift lik 0. R = alkylgruppe, HAL= halogen (Cl, Br eller I). Løsningsmiddel kan påvirke kjemisk skift.

Hydrogenatomene som er opphavet til signalet er uthevet.

Type proton	Kjemisk skift, ppm	Type proton	Kjemisk skift, ppm
—С Н ₃	0,9 - 1,0	O R	10 - 13
C H ₂ R	1,3 - 1,4	O = C \	9,4 - 10
-CHR ₂	1,4 - 1,6	O H / ^C \O-R	Ca. 8
—C≡C— H	1,8 - 3,1	−CH=CH ₂	4,5 - 6,0
-CH ₂ -HAL	3,5 - 4,4	O R/C\O-C H	3,8 - 4,1
R-O-CH ₂ -	3,3 - 3,7	R—O—H	0,5 - 6
0 R C C H ₂	2,2 - 2,7	0 	2,0 - 2,5
———	6,9 - 9,0	——ОН	4,0 - 12,0
− C H ₃	2,5 - 3,5	—С Н 2— ОН	3,4 - 4

ORGANISKE FORBINDELSER

Kp = kokepunkt,°C Smp = smeltepunkt,°C

	HYDROKARBONE	R, METTEDE	(alkaner)	
Navn	Formel	Smp	Кр	Diverse
Metan	CH ₄	-182	-161	
Etan	C ₂ H ₆	-183	-89	
Propan	C ₃ H ₈	-188	-42	
Butan	C ₄ H ₁₀	-138	-0,5	
Pentan	C ₅ H ₁₂	-130	36	
Heksan	C ₆ H ₁₄	-95	69	
Heptan	C ₇ H ₁₆	-91	98	
Oktan	C ₈ H ₁₈	-57	126	
Nonan	C ₉ H ₂₀	-53	151	
Dekan	C ₁₀ H ₂₂	-30	174	
Syklopropan	C ₃ H ₆	-128	-33	
Syklobutan	C ₄ H ₈	-91	13	
Syklopentan	C ₅ H ₁₀	-93	49	
Sykloheksan	C ₆ H ₁₂	7	81	
2-Metyl-propan	C ₄ H ₁₀	-159	-12	Isobutan
2,2-Dimetylpropan	C ₅ H ₁₂	-16	9	Neopentan
2-Metylbutan	C ₅ H ₁₂	-160	28	Isopentan
2-Metylpentan	C ₆ H ₁₄	-154	60	Isoheksan
3-Metylpentan	C ₆ H ₁₄	-163	63	
2,2-Dimetylbutan	C ₆ H ₁₄	-99	50	Neoheksan
2,3-Dimetylbutan	C ₆ H ₁₄	-128	58	
2,2,4-Trimetylpentan	C ₈ H ₁₈	-107	99	Isooktan
2,2,3-Trimetylpentan	C ₈ H ₁₈	-112	110	
2,3,3-Trimetylpentan	C ₈ H ₁₈	-101	115	
2,3,4-Trimetylpentan	C ₈ H ₁₈	-110	114	
	HYDROKARBONE	R, UMETTED	E, alkener	
Navn	Formel	Smp	Кр	Diverse
Eten	C ₂ H ₄	-169	-104	Etylen
Propen	C ₃ H ₆	-185	-48	Propylen
But-1-en	C ₄ H ₈	-185	-6	
<i>cis</i> -But-2-en	C ₄ H ₈	-139	4	
trans-But-2-en	C ₄ H ₈	-106	1	
Pent-1-en	C ₅ H ₁₀	-165	30	
cis-Pent-2-en	C ₅ H ₁₀	-151	37	
trans-Pent-2-en	C ₅ H ₁₀	-140	36	
Heks-1-en	C ₆ H ₁₂	-140	63	
<i>cis</i> -Heks-2-en	C ₆ H ₁₂	-141	69	
trans-Heks-2-en	C ₆ H ₁₂	-133	68	
cis-Heks-3-en	C ₆ H ₁₂	-138	66	

Navn	Formel	Smp	Кр	Diverse
trans-Heks-3-en	C ₆ H ₁₂	-115	67	
Hept-1-en	C ₇ H ₁₄	-119	94	
<i>cis</i> -Hept-2-en	C ₇ H ₁₄		98	
trans-Hept-2-en	C ₇ H ₁₄	-110	98	
<i>cis</i> -Hept-3-en	C ₇ H ₁₄	-137	96	
trans-Hept-3-en	C ₇ H ₁₄	-137	96	
Okt-1-en	C ₈ H ₁₆	-102	121	
Non-1-en	C ₉ H ₁₈	-81	147	
Dek-1-en	C ₁₀ H ₂₀	-66	171	
Sykloheksen	C ₆ H ₁₀	-104	83	
1,3-Butadien	C ₄ H ₆	-109	4	
2-metyl-1,3-butadien	C₅H ₈	-146	34	Isopren
Penta-1,2-dien	C₅H ₈	-137	45	
trans-Penta-1,3-dien	C₅H ₈	-87	42	
cis-Penta-1,3-dien	C₅H ₈	-141	44	
Heksa-1,2-dien	C ₆ H ₁₀		76	
cis-Heksa-1,3-dien	C ₆ H ₁₀		73	
trans-Heksa-1,3-dien	C ₆ H ₁₀	-102	73	
Heksa-1,5-dien	C ₆ H ₁₀	-141	59	
Heksa-1,3,5-trien	C ₆ H ₈	-12	78,5	
HYDR	OKARBONEI	R, UMETTED	E, alkyner	
Navn	Formel	Smp	Кр	Diverse
Etyn	C ₂ H ₂	-81	-85	Acetylen
Propyn	C ₃ H ₄	-103	-23	Metylacetylen
But-1-yn	C ₄ H ₆	-126	8	
But-2-yn	C ₄ H ₆	-32	27	
Pent-1-yn	C ₅ H ₈	-90	40	
Pent-2-yn	C ₅ H ₈	-109	56	
Heks-1-yn	C ₆ H ₁₀	-132	71	
Heks-2-yn	C ₆ H ₁₀	-90	85	
Heks-3-yn	C ₆ H ₁₀	-103	81	
Al	ROMATISKE	HYDROKARE	BONER	
Navn	Formel	Smp	Кр	Diverse
Benzen	C ₆ H ₆	5	80	
Metylbenzen	C ₇ H ₈	-95	111	
Etylbenzen, fenyletan	C ₈ H ₁₀	-95	136	
Fenyleten	C ₈ H ₈	-31	145	Styren, vinylbenzen
Fenylbenzen	C ₁₂ H ₁₀	69	256	Difenyl, bifenyl
Difenylmetan	C ₁₃ H ₁₂	25	265	
Trifenylmetan	C ₁₉ H ₁₆	94	360	Tritan
1,2-Difenyletan	C ₁₄ H ₁₄	53	284	Bibenzyl
Naftalen	C ₁₀ H ₈	80	218	Enkleste PAH
Antracen	C ₁₄ H ₁₀	216	340	PAH
Phenatren	C ₁₄ H ₁₀	99	340	PAH

ALKOHOLER										
Navn	Formel	Smp	Кр	Diverse						
Metanol	CH₃OH	-98	65	Tresprit						
Etanol	C ₂ H ₆ O	-114	78							
Propan-1-ol	C₃H ₈ O	-124	97	<i>n</i> -propanol						
Propan-2-ol	C₃H ₈ O	-88	82	Isopropanol						
Butan-1-ol	C ₄ H ₁₀ O	-89	118	<i>n</i> -Butanol						
Butan-2-ol	C ₄ H ₁₀ O	-89	100	sec-Butanol						
2-Metylpropan-1-ol	C ₄ H ₁₀ O	-108	180	Isobutanol						
2-Metylpropan-2-ol	C ₄ H ₁₀ O	-26	82	tert-Butanol						
Pentan-1-ol	C ₅ H ₁₂ O	-78	138	n-Pentanol, amylalkohol						
Pentan-2-ol	C ₅ H ₁₂ O	-73	119	sec-amylalkohol						
Pentan-3-ol	C ₅ H ₁₂ O	-69	116	Dietylkarbinol						
Heksan-1-ol	C ₆ H ₁₄ O	-47	158	Kapronalkohol, n-heksanol						
Heksan-2-ol	C ₆ H ₁₄ O		140							
Heksan-3-ol	C ₆ H ₁₄ O		135							
Heptan-1-ol	C ₇ H ₁₆ O	-33	176	Heptylalkohol, n-heptanol						
Oktan-1-ol	C ₈ H ₁₈ O	-15	195	Kaprylalkohol, n-oktanol						
Sykloheksanol	C ₆ H ₁₂ O	26	161							
Etan-1,2-diol	C ₂ H ₆ O ₂	-13	197	Etylenglykol						
Propan-1,2,3-triol	C ₃ H ₈ O ₃	18	290	Glyserol, inngår i fettarten triglyserid						
Fenylmetanol	C ₇ H ₈ O	-15	205	Benzylalkohol						
2-fenyletanol	C ₈ H ₁₀ O	-27	219	Benzylmetanol						
	KARBONYL	FORBINDELS	SER							
Navn	Formel	Smp	Кр	Diverse						
Metanal	CH ₂ O	-92	-19	Formaldehyd						
Etanal	C ₂ H ₄ O	-123	20	Acetaldehyd						
Fenylmetanal	C ₇ H ₆ O	-57	179	Benzaldehyd						
Fenyletanal	C ₈ H ₈ O	-10	193	Fenylacetaldehyd						
Propanal	C₃H ₆ O	-80	48	Propionaldehyd						
2-Metylpropanal	C ₄ H ₈ O	-65	65							
Butanal	C ₄ H ₈ O	-97	75							
3-Hydroksybutanal	C ₄ H ₈ O ₂		83							
3-Metylbutanal	C ₅ H ₁₀ O	-51	93	Isovaleraldehyd						
Pentanal	C ₅ H ₁₀ O	-92	103	Valeraldehyd						
Heksanal	C ₆ H ₁₂ O	-56	131	Kapronaldehyd						
Heptanal	C ₇ H ₁₄ O	-43	153							
Oktanal	C ₈ H ₁₆ O		171	Kaprylaldehyd						
Propanon	C₃H ₆ O	-95	56	Aceton						
Butanon	C ₄ H ₈ O	-87	80	Metyletylketon						
3-Metylbutan-2-on	C ₅ H ₁₀ O	-93	94	Metylisopropylketon						
Pentan-2-on	C ₅ H ₁₀ O	-77	102	Metylpropylketon						
Pentan-3-on	C ₅ H ₁₀ O	-39	102	Dietylketon						
4-Metylpentan-2-on	C ₆ H ₁₂ O	-84	117	Isobutylmetylketon						

Navn	Formel	Smp	Кр	Diverse
2-Metylpentan-3-on	C ₆ H ₁₂ O		114	Etylisopropylketon
2,4-Dimetylpentan-3-on	C ₇ H ₁₄ O	-69	125	Di-isopropylketon
2,2,4,4-Tetrametylpentan-3-on	C ₉ H ₁₈ O	-25	152	Di- <i>tert</i> -butylketon
Sykloheksanon	C ₆ H ₁₀ O	-28	155	Pimelicketon
trans-Fenylpropenal	C ₉ H ₈ O	-8	246	trans-Kanelaldehyd
	ORGAN	IISKE SYRER		
Navn	Formel	Smp	Кр	Diverse
Metansyre	CH ₂ O ₂	8	101	Maursyre, $pK_a = 3,75$
Etansyre	C ₂ H ₄ O ₂	17	118	Eddiksyre, $pK_a = 4,76$
Propansyre	C ₃ H ₆ O ₂	-21	141	Propionsyre, p $K_a = 4,87$
2-Metylpropansyre	C ₄ H ₈ O ₂	-46	154	pK _a = 4,84
2-Hydroksypropansyre	C ₃ H ₆ O ₃		122	Melkesyre, $pK_a = 3,86$
3-Hydroksypropansyre	C ₃ H ₆ O ₃			Dekomponerer ved oppvarming, $pK_a = 4,51$
Butansyre	C ₄ H ₈ O ₂	-5	164	Smørsyre, p $K_a = 4,83$
3-Metylbutansyre	C ₅ H ₁₀ O ₂	-29	177	Isovaleriansyre , $pK_a = 4,77$
Pentansyre	C ₅ H ₁₀ O ₂	-34	186	Valeriansyre, p $K_a = 4.83$
Heksansyre	C ₆ H ₁₂ O ₂	-3	205	Kapronsyre, $pK_a = 4,88$
Propensyre	C ₃ H ₄ O ₂	12	141	pK _a = 4,25
cis-But-2-ensyre	C ₄ H ₆ O ₂	15	169	<i>cis</i> -Krotonsyre, $pK_a = 4,69$
trans-But-2-ensyre	C ₄ H ₆ O ₂	72	185	<i>trans</i> -Krotonsyre, $pK_a = 4,69$
But-3-ensyre	C ₄ H ₆ O ₂	-35	169	pK _a = 4,34
Etandisyre	C ₂ H ₂ O ₄			Oksalsyre, $pK_{a1} = 1,25$, $pK_{a2} = 3,81$
Propandisyre	C ₃ H ₄ O ₄			Malonsyre, p K_{a1} = 2,85, p K_{a2} = 5,70
Butandisyre	C ₄ H ₆ O ₄	188		Succininsyre(ravsyre), $pK_{a1} = 4,21$, $pK_{a2} = 5,64$
Pentandisyre	C ₅ H ₈ O ₄	98		Glutarsyre, p K_{a1} = 4,32, p K_{a2} = 5,42
Heksandisyre	C ₆ H ₁₀ O ₄	153	338	Adipinsyre, p K_{a1} = 4,41, p K_{a2} = 5,41
Askorbinsyre	C ₆ H ₈ O ₆	190-192		$pK_{a1} = 4,17, pK_{a2} = 11,6$
trans-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	134	300	Kanelsyre, $pK_a = 4,44$
cis-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	42		pK _a = 3,88
Benzosyre	C ₇ H ₆ O ₂	122	250	
Fenyleddiksyre	C ₈ H ₈ O ₂	77	266	pK _a = 4,31
	E	STERE		
Navn	Formel	Smp	Кр	Diverse
Benzyletanat	C ₉ H ₁₀ O ₂	-51	213	Benzylacetat, lukter pære og jordbær
Butylbutanat	C ₈ H ₁₆ O ₂	-92	166	Lukter ananas
Etylbutanat	C ₆ H ₁₂ O ₂	-98	121	Lukter banan, ananas og jordbær

Vedlegg 1

Navn	Formel	Smp	Кр	Diverse
Etyletanat	C ₄ H ₈ O ₂	-84	77	Etylacetat, løsemiddel
Etylheptanat	C ₉ H ₁₈ O ₂	-66	187	Lukter aprikos og kirsebær
Etylmetanat	C ₃ H ₆ O ₂	-80	54	Lukter rom og sitron
Etylpentanat	C ₇ H ₁₄ O ₂	-91	146	Lukter eple
Metylbutanat	C ₅ H ₁₀ O ₂	-86	103	Lukter eple og ananas
3-Metyl-1-butyletanat	C ₇ H ₁₁ O ₂	-79	143	Isoamylacetat, isopentylacetat, lukter pære og banan
Metyl- <i>trans</i> -cinnamat	C ₁₀ H ₁₀ O ₂	37	262	Metylester av kanelsyre, lukter jordbær
Oktyletanat	C ₁₀ H ₂₀ O ₂	-39	210	Lukter appelsin
Pentylbutanat	C ₉ H ₁₈ O ₂	-73	186	Lukter aprikos, pære og ananas
Pentyletanat	C ₇ H ₁₄ O ₂	-71	149	Amylacetat, lukter banan og eple
Pentylpentanat	C ₁₀ H ₂₀ O ₂	-79	204	Lukter eple
ORGAN	IISKE FORBIN	DELSER MEI	D NITROGEN	İ
Navn	Formel	Smp	Кр	Diverse
Metylamin	CH₅N	-94	-6	pK _b = 3,34
Dimetylamin	C ₂ H ₇ N	-92	7	pK _b = 3,27
Trimetylamin	C ₃ H ₉ N	-117	2,87	pK _b = 4,20
Etylamin	C ₂ H ₇ N	-81	17	pK _b = 3,35
Dietylamin	C ₄ H ₁₁ N	-28	312	pK _b = 3,16
Etanamid	C ₂ H ₃ NO	79-81	222	Acetamid
Fenylamin	C ₆ H ₇ N	-6	184	Anilin
1,4-Diaminbutan	$C_4H_{12}N_2$	27	158-160	Engelsk navn: putrescine
1,6-Diaminheksan	$C_6H_{16}N_2$	9	178-180	Engelsk navn: cadaverine
ORGAI	NISKE FORBIN	IDELSER ME	D HALOGEN	
Navn	Formel	Smp	Кр	Diverse
Klormetan	CH ₃ Cl	-98	-24	Metylklorid
Diklormetan	CH ₂ Cl ₂	-98	40	Metylenklorid, Mye brukt som løsemiddel
Triklormetan	CHCl ₃	-63	61	Kloroform
Tetraklormetan	CCI ₄	-23	77	Karbontetraklorid
Kloretansyre	C ₂ H ₃ ClO ₂	63	189	Kloreddiksyre, p K_a = 2,87
Rior CtarisyrC			101	Dikloreddiksyre, p $K_a = 1.35$
Dikloretansyre	C ₂ H ₂ Cl ₂ O ₂	9,5	194	Dikioleddiksyle, pka - 1,33
· · · · · · · · · · · · · · · · · · ·	$C_2H_2CI_2O_2$ $C_2HCI_3O_2$	9,5 57	194	Trikloretansyre, $pK_a = 0.66$

KVALITATIV UORGANISK ANALYSE. REAKSJONER SOM DANNER FARGET BUNNFALL ELLER FARGET KOMPLEKS I LØSNING

	HCI	H ₂ SO ₄	NH ₃	KI	KSCN	K₃Fe(CN) ₆	K ₄ Fe(CN) ₆	K₂CrO₄	Na ₂ S (mettet)	Na ₂ C ₂ O ₄	Na ₂ CO ₃	Dimetylglyoksim (1%)
Ag⁺	Hvitt			Lysgult	Hvitt	Oransjebrunt	Hvitt	Rødbrunt	Svart	Gråhvitt		
Pb ²⁺	Hvitt	Hvitt	Hvitt	Sterkt gult	Hvitt		Hvitt	Sterkt gult	Svart	Hvitt	Hvitt	
Cu ²⁺			Sterkt blåfarget	Gulbrunt	Grønnsort	Gulbrun- grønt	Brunt	Brunt	Svart	Blåhvitt		Brunt
Sn ²⁺			Hvitt			Hvitt	Hvitt	Brungult	Brunt			
Ni ²⁺						Gulbrunt	Lyst grønnhvitt		Svart			Rødrosa
Fe²+			Blågrønt			Mørkeblått	Lyseblått	Brungult	Svart			Blodrødt med ammoniakk
Fe³+			Brunt	Brunt	Blodrødt	Sterkt brunt	Mørkeblått	Gulbrunt	Svart		Oransje- brunt	Brunt
Zn ²⁺						Guloransje	Hvitt	Sterkt gult	Hvitt/Gråhvitt		Hvitt	Rødbrunt
Ba ²⁺		Hvitt					Hvitt	Sterkt gult	Gråhvitt	Hvitt	Hvitt	
Ca ²⁺									Gulhvitt	Hvitt	Hvitt	

Grunnstoffenes periodesystem

Gruppe 1	Gruppe 2				Forklariı		armste	on ches	perio	acsyst	CIII	Gruppe 13	Gruppe 14	Gruppe 15	Gruppe 16	Gruppe 17	Gruppe 18
1 1,008					At	omnummer Atommasse	35 79,90	Fargekoder	Ikke-	metall							2 4,003
2,1 Hydrogen				Symbol Elektronegativitetsverdi		B (*) 2,8 Brom		Halvmetall		•						He - Helium	
3	4				() betyr m	Navn assetallet	БЮП	Aggregat-		stoff B		5	6	7	8	9	10
6,941 Li	9,012 Be				til den mes isotopen * Lantanoi			tilstand ved 25 °C og 1 atm		е Нg	-	10,81 B	12,01 C 2,5	14,01 N	16,00 O 3,5	19,00 F	20,18 Ne
1,0 Lithium	1,5 Beryl- lium				** Aktinoid	der			Gas	ss N		2,0 Bor	Karbon	3,0 Nitrogen	Oksygen	4,0 Fluor	Neon
11 22,99 Na	12 24,31 Mg											13 26,98 Al	14 28,09 Si	15 30,97 P	16 32,07 S	17 35,45 CI	18 39,95 Ar
0,9 Natrium	1,2 Magne- sium	3	4	5	6	7	8	9	10	11	12	1,5 Alumini- um	1,8 Silisium	2,1 Fosfor	2,5 Svovel	3,0 Klor	- Argon
19 39,10 K	20 40,08 Ca	21 44,96 Sc	22 47,87 Ti	23 50,94 V	24 52,00 Cr	25 54,94 Mn	26 55,85 Fe	27 58,93 Co	28 58,69 Ni	29 63,55 Cu	30 65,38 Zn	31 69,72 Ga	32 72,63 Ge	33 74,92 As	34 78,97 Se	35 79,90 B [36 83,80 Kr
0,8 Kalium	1,0 Kalsium	1,3 Scan- dium	1,5 Titan	1,6 Vana- dium	1,6 Krom	1,5 Mangan	1,8 Jern	1,9 Kobolt	1,9 Nikkel	1,9 Kobber	1,6 Sink	1,6 Gallium	1,8 Germa- nium	2,0 Arsen	2,4 Selen	2,8 Brom	- Krypton
37 85,47	38 87,62 Sr	39 88,91 Y	40 91,22	41 92,91 Nb	42 95,95 Mo	43 (98)	44 101,07	45 102,91	46 106,42	47 107,87	48 112,41	49 114,82	50 118,71	51 121,76	52 127,60 Te	53 126,90	54 131,29
Rb 0,8 Rubidium	1,0 Stron-	1,2 Yttrium	Zr 1,4 Zirko-	1,6 Niob	1,8 Molyb-	Tc 1,9 Techne-	Ru 2,2 Ruthe-	Rh 2,2 Rhodium	Pd 2,2 Palla-	Ag 1,9 Sølv	Cd 1,7 Kad-	l n 1,7 Indium	Sn 1,7 Tinn	Sb 1,8 Antimon	2,1 Tellur	2,4 Jod	Xe - Xenon
55 132,91	56 137,33	57 138,91	72 178,49	73 180,95	74 183,84	75 186,21	76 190,23	77 192,22	78 195,08	79 196,97	80 200,59	81 204,38	82 207,2	83 208,98	84 (209)	85 (210)	86 (222)
Cs 0,7 Cesium	Ba 0,9 Barium	La 1,1 Lantan*	Hf 1,3 Hafnium	Ta 1,5 Tantal	W 1,7 Wolfram	Re 1,9 Rhenium	Os 2,2 Osmium	lr 2,2 Iridium	Pt 2,2 Platina	Au 2,4 Gull	出國 1,9 Kvikk-	TI 1,8 Thallium	Pb 1,8 Bly	Bi 1,9 Vismut	Po 2,0 Poloni-	At 2,3 Astat	Rn - Radon
87 (223)	88 (226)	89 (227)	104 (267)	105 (268)	106 (271)	107 (270)	108 (269)	109 (278)	110 (281)	111 (280)	sølv 112 (285)	113 (286)	114 (289)	115 (289)	um 116 (293)	117 (294)	118 (294)
Fr 0,7 Francium	Ra 0,9 Radium	Ac 1,1 Actinium	Rf - Ruther-	Db Dub-	Sg - Sea-	Bh - Bohrium	Hs - Hassium	Mt - Meit-	Ds - Darm-	Rg - Rønt-	Cn - Coper-	Uut - Unun-	FI - Flero-	Uup - Unun-	Lv - Liver-	Uus - Unun-	Uuo - Unun-
Translam	Radiam	**	fordium	nium	borgium	Dominani	nassiam	nerium	stadtiu m	genium	nicium	trium	vium	pentium	morium	septium	oktium
		*	57 138,91	58 140,12 Ce	59 140,91 Pr	60 144,24 Nd	61 (145) Pm	62 150,36 Sm	63 151,96 Eu	64 157,25 Gd	65 158,93 Tb	66 162,50 Dy	67 164,93	68 167,26 Er	69 168,93 Tm	70 173,05 Yb	71 174,97 Lu
			La 1,1 Lantan	1,1 Cerium	1,1 Praseo-	1,1 Neodym	1,1 Prome-	1,2 Sama-	1,2 Euro-	1,2 Gado-	1,1 Terbium	1,2 Dyspro-	Ho 1,2 Hol-	1,2 Erbium	1,3 Thulium	1,1 Ytter-	1,3 Lute-
		**	89 (227)	90 232,04	91 231,04	92 238,03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	bium 102 (259)	103 (266)
			Ac 1,1 Actinium	Th 1,3 Thorium	Pa 1,4 Protacti-	U 1,4 Uran	Np 1,4 Neptu-	Pu 1,3 Pluto-	Am 1,1 Ame-	Cm 1,3 Curium	Bk 1,3 Berke-	Cf 1,3 Califor-	Es 1,3 Einstein-	Fm 1,3 Fer-	Md 1,3 Mende-	No 1,3 Nobel-	Lr 1,3 Lawren-
					nium		nium	nium	ricium		lium	nium	ium	mium	levium	ium	cium