Измерение вязкости воздуха по течению в тонких трубках. (1.3.3)

Зайнуллин Амир Б05-206

7 апреля 2023 г.

1 Аннотация

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

Оборудование: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

2 Теоретические сведения

Сила вязкого трения согласно закону Ньютона, где η это коэффициент динамической вязкости (или просто вязкость среды):

$$\tau = \eta \frac{\partial v_x}{\partial y} \tag{1}$$

Характер течения в жидкости может быть турбулентным или ламинарным. При ламинарном течении скорости образуют набор непрерывных линий тока, а слои жидкости не перемешиваются между собой. При малых Re течение ламирно.

$$Re = \frac{\rho ua}{\eta} \tag{2}$$

 ρ - плотность среды, u - характерная скорость потока, a - характерный размер системы.

Формула Пуазейля:

$$Q = \frac{\pi R^4 \Delta P}{8\eta l} \qquad \bar{u} = \frac{Q}{\pi R^2} - \text{средняя скорость потока}$$
 (3)

Длина установления течения Пуазейля:

$$l_{\text{VCT}} \approx 0.2R \cdot Re$$
 (4)

Отношение перепада давления в трубе к скоростному напору:

$$\tilde{\psi} = \frac{R}{l} \frac{\Delta P}{\rho \bar{u}^2} \tag{5}$$

Из теории размерностей:

$$\frac{\Delta P}{l} = C(Re) \cdot \frac{\rho \bar{u}^2}{R} \tag{6}$$

При больших числах Рейнольдса параметры течения жидкости не зависят от коэффициента вязкости, поэтому $C(Re) \mapsto const$, откуда

$$Q = const \cdot R^{5/2} \sqrt{\frac{\Delta P}{\rho l}} \tag{7}$$

3 Экспериментальная установка

Рис. 1: Экспериментальная установка

Поток воздуха под давлением немного превышающим атмосферное, поступает через газовый счетчик в тонкие металлические трубки. Интенсивность его подачи регулируется краном К.

U-образный манометр для измерения давления на входе.

В работе используется газовый счётчик барабанного типа, позволяющий измерять объём газа ΔV прошедшего через систему. Измеряя время Δt при помощи секундомера, можно вычислить средний объёмный расход газа $Q = \Delta V/\Delta t$ (для получения массового расхода [кг/с] результат необходимо домножить на плотность газа ρ).

Разность давлений на входах манометра измеряется по высоте подъема рабочей жидкости.

Инструментальные погрешности

Газовый счётчик: класс точности 1 **Микроманометр:** класс точности 1

Секундомер: $\Delta = \pm 0.3$ с

4 Результаты измерений и обработка данных

Измерили параметры окружающей среды: температуру, влажность воздуха и атмосферное давление.

Р, кПа	T, K	$\varphi,\%$
98.5	294,5	18.5

Таблица 1: Параметры окружающей среды

Проведем предварительные расчеты по следующим формулам. $\eta = 2 \cdot 10^{-5} \; \Pi \text{a.c.}$, Re = 1000

$$\rho = \frac{pM}{RT}$$

$$Q_{\rm kp} = \frac{Re\eta\pi rRT}{pM}$$

$$\Delta P_{\rm kp} = \frac{8Q_{\rm kp}\eta l}{\pi r^4}$$

l, cm	50	90	40
d, mm	3,95	4,95	3
Из теории			
$Q_{\rm \kappa p} \cdot 10^{-4} \; \frac{\text{M}^3}{\text{c}}$	1,06	1,36	0,82
$p_{\rm \kappa p},\Pi { m a}$	178	153	328
$p_{\mathrm{\kappa p}}$, дел.	91	71	169
1, см	39,5	50,5	34,2
из эксп.			
$p_{\mathrm{\kappa p}}$, дел.	75	65	168

Таблица 2: Полученные данные

Подобрали параметры измерения так, чтобы относительная погрешность была меньше процента. Для малых давлений относительная погрешность больше процента, потому что объем измерялся долго. Абсолютная погрешность измерения объема равна $5 \ n \cdot 0, 01 = 0,05 \ n$, так как класс точности газового счетчика равен 1, а предел измерения равен $5 \ n$.

t, c	ε_T	V, л	$arepsilon_V$	ΔP , mm	Р, Па	$Q, M^3/c \cdot 10^{-4}$	$\sigma_Q, { m M}^3/{ m c} \cdot 10^{-4}$
166	0,0002	4	0,013	20	39	0,24	0,003
113,3	0,0003	4	0,013	29	57	0,35	0,005
140,4	0,0002	6	0,008	35	68	0,43	0,004
137	0,0002	7	0,007	42	82	0,51	0,004
115,6	0,0003	7	0,007	50	98	0,61	0,004
113,3	0,0003	8	0,006	58	113	0,71	0,005
99,1	0,0003	8	0,006	66	129	0,81	0,005
89,9	0,0003	8	0,006	72	141	0,89	0,006
82,1	0,0004	8	0,006	92	180	0,97	0,006
76,1	0,0004	8	0,006	120	235	1,05	0,007
69,9	0,0004	8	0,006	148	290	1,14	0,008
74,8	0,0004	9	0,006	166	325	1,20	0,007
71,2	0,0004	9	0,006	185	362	1,26	0,008
63	0,0005	9	0,006	235	460	1,43	0,009
58	0,0005	9	0,006	275	538	1,55	0,009

Таблица 3: Таблица измерений для 3,95 мм

t, c	ε_T	V, л	$arepsilon_V$	ΔP , mm	Р, Па	$Q, M^3/c \cdot 10^{-4}$	$\sigma_Q, { m m}^3/{ m c} \cdot 10^{-4}$
111,1	0,0003	6	0,008	26	51	0,54	0,005
93,5	0,0003	6	0,008	31	61	0,64	0,006
76,3	0,0004	6	0,008	39	76	0,79	0,007
76,2	0,0004	7	0,007	47	92	0,92	0,007
77,4	0,0004	8	0,006	54	106	1,03	0,007
72	0,0004	8	0,006	60	117	1,11	0,007
69,4	0,0004	8	0,006	66	129	1,15	0,008
59,3	0,0005	8	0,006	90	176	1,35	0,009
51,6	0,0006	8	0,006	127	248	1,55	0,011
53,8	0,0006	9	0,006	153	299	1,67	0,010
49,8	0,0006	9	0,006	175	342	1,81	0,011
46,1	0,0007	9	0,006	205	401	1,95	0,012
42,5	0,0007	9	0,006	238	466	2,12	0,013
40,4	0,0007	9	0,006	262	513	2,23	0,014

Таблица 4: Таблица измерений для 5,05 мм

t, c	ε_T	V, л	$arepsilon_V$	ΔP , mm	Р, Па	$Q, M^3/c \cdot 10^{-4}$	$\sigma_Q, { m M}^3/{ m c} \cdot 10^{-4}$
68,6	0,0004	3	0,017	40	78	0,44	0,007
71	0,0004	4	0,013	55	108	0,56	0,007
59,4	0,0005	4	0,013	74	145	0,67	0,009
66	0,0005	5	0,010	90	176	0,76	0,008
63,7	0,0005	6	0,008	125	245	0,94	0,008
53,1	0,0006	6	0,008	170	333	1,13	0,010
59,6	0,0005	7	0,007	195	382	1,17	0,009
52,3	0,0006	7	0,007	229	448	1,34	0,010
57,9	0,0005	8	0,006	252	493	1,38	0,009
55,9	0,0005	8	0,006	275	538	1,43	0,010

Таблица 5: Таблица измерений для 3 мм

Линии проведены при помощи МНК, по точкам с ламинарным течением. С помощью коэффициентов наклона мы можем найти вязкость воздуха из формулы (3):

$$\eta = \frac{\pi R^4}{8kl}$$

где k – коэффициент наклона графика, l – длина участка трубы, а R – радиус трубки. По графикам определим значения коэффициента наклона с погрешностями:

	$d_1 = 3.0 \text{ mm}$	$d_2 = 3.95 \text{ mm}$	$d_3 = 5.05 \text{ mm}$
$k \cdot 10^{-6}$, м ³ /с·Па	0,3	0,63	0,87
$\sigma_k \cdot 10^{-6}$, $\text{m}^3/\text{c} \cdot \Pi \text{a}$	0.02	0.004	0,02
$\eta \cdot 10^{-5}, \Pi a \cdot c$	1.66	1.90	2,04
$\sigma_{\eta} \cdot 10^{-5}, \Pi \text{a·c}$	0.11	0.01	0.05

Таблица 6: Результаты полученные из графиков

Возьмем два последних значения и усредним

$$\eta = (1.97 \pm 0.03) \cdot 10^{-5} \; \Pi \text{a} \cdot \text{c}$$

Рис. 2: График для d=3,95 мм

Рис. 3: График для d = 5,05 мм

Рис. 4: График для d = 3 мм

Далее найдем критическое число Рейнольдса $Re_{\rm kp}$ для всех трубок:

$$Re = \frac{\rho u R}{\eta} = \frac{\rho Q}{\pi R \eta}$$

- $d_1=3.00$ мм: критический расход: $Q_1=0,94\cdot 10^{-4}$ м $^3/\mathrm{c},$ тогда $Re_1=1143\pm 20.$
- $d_2=3.95$ мм: критический расход: $Q_2=0,89\cdot 10^{-4}$ м $^3/{
 m c}$, тогда $Re_2=870\pm 15$.
- $d_3=5.05$ мм: критический расход: $Q_3=1,11\cdot 10^{-4}$ м $^3/\mathrm{c},$ тогда $Re_3=854\pm 14.$

Распределение давления газа вдоль трубки

Установили поток воздуха через трубку, близкий к критическому, но все еще сохраняющий ламинарный. Не меняя формат, подсоединим микроманометр ко всем выводам и измерим перепады давления.

d, mm	$Q \mathrm{m}^3/\mathrm{c} \cdot 10^{-4}$	L, cm	р, дел.	р, Па
3,95	0,084	50	68	133,3
3,95	0,084	90	125	245,0
3,95	0,084	120	220	431,2
5,05	0,11	90	59	115,6
5,05	0,11	120	77	150,9

Таблица 7: Полученные данные

Построим полученные графики

Рис. 5: График для d=3,95 мм

Рис. 6: График для d=5,05 мм

Измерение зависимости расхода от радиуса трубы при заданном градиенте

Подобрали некоторое значение градиента давления, при котором на всех трубках происходит ламинарное течение воздуха. Для каждой трубки подобрали расход, когда градиент равен данному. $\Delta P/l=0,72$ дел/см

l, cm	Р, дел.	d, mm	ln(r)	V, л	t, c	$Q \mathrm{m}^3/\mathrm{c} \cdot 10^{-4}$	ln(Q)
90	65	5,05	0,93	6	52,69	0,11	-2,17
40	29	3	0,41	2	63,3	0,03	-3,45
50	36	3,95	0,68	4	75,9	0,05	-2,94

Таблица 8: Полученные данные

Рис. 7: График для определение степени β

По МНК получим, что для ламинарного течения $\beta = 2,45 \pm 0,37$.

5 Вывод

В данной лабораторной работе мы исследовали свойства течения газов по тонким трубам при различных числах Рейнольдса. Так же выявили область применимости закона Пуазейля и с его помощью определили коэффициент вязкости воздуха.

$$\eta = (1.97 \pm 0.09) \cdot 10^{-5} \ \Pi a \cdot c$$

Сравним с табличным значением которое равно

$$\eta = 1.78 \cdot 10^{-5} \; \mathrm{\Pi a \cdot c}$$

Видно, что значения получились довольно близки друг к другу. Малое расхождение обусловлено тем, что в этой лабораторной работе нет приборов, которое бы вносило большую погрешность, а объем и время мы мерили так, чтобы относительная погрешность расхода была меньше процента.

Также в работе была изучена зависимость расхода от радиуса трубы при заданном градиенте. Для ламирного течения мы получили показатель степени 2.45, что должно быть показателем степени для турбулентного течения. Возможно, мы неправильно посчитали градиент, и в каждой трубке было турбулентное течение.