#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 p-value 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분 석

데이터 가져오기

실린더수에 따른 연비에 대한 file:///D:/02_상관분석 (1).ipynb

상관분석

#01. 작업준비

패키지 가져오기

```
import numpy as np
from pandas import read_excel
from scipy import stats

import sys
import seaborn as sb
from matplotlib import pyplot as plt
```

예제 (1)

언어영역 점수와 수리영역 점수의 상관관계

1. 데이터 가져오기

```
df = read_excel("https://data.hossam.kr/E03/point.xlsx")
df
```

02 상관분석 (1).ipynb

상관분석

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 p-value 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분 석

데이터 가져오기

실린더수에 따른 연비에 대한

	언어영역	수리영역
0	392	428
1	404	518
2	346	376
3	382	426
4	368	409
5	449	490
6	391	448

2. 탐색적 데이터 분석

산점도 그래프를 통한 상관정도 확인

```
plt.rcParams["font.family"] = 'AppleGothic' if sys.platform = 'darwin'
plt.rcParams["font.size"] = 12
plt.rcParams["figure.figsize"] = (10, 5)
plt.rcParams["axes.unicode_minus"] = False
```

```
#sb.scatterplot(data=df, x='언어영역', y='수리영역') sb.regplot(data=df, x='언어영역', y='수리영역') plt.grid()
```

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 pvalue 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분

데이터 가져오기

실린더수에 따른 연비에 대한

plt.show() plt.close()

3. 공분산

공분산은 상관관계의 상승 혹은 하강하는 경향을 이해할 수는 있으나 2개 변수의 측정 단위의 크기에 따라 값이 달라지므로 절대적 정도를 파악하기에는 한계가 있다.

결과값이 양수면 정비례, 음수면 반비례

그래서 잘 안쓴다.

np.cov(df['언어영역'], df['수리영역'])[0, 1]

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 p-value 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분 석

데이터 가져오기

실린더수에 따른 연비에 대한 file:///D:/02 상관분석 (1).ipynb

```
1271.9523809523807
```

4. 상관분석

numpy를 통한 상관계수 구하기

p-value 는 알 수 없기 때문에 분석 결과를 검정할 수 없다.

기본적으로 상관행렬을 표시한다.

```
np.corrcoef(df['언어영역'], df['수리영역'])
```

```
array([[1. , 0.82106421], [0.82106421, 1. ]])
```

상관계수를 얻기 위해서는 0,1 혹은 1,0 번째 항목을 취한다.

```
np.corrcoef(df['언어영역'], df['수리영역'])[0,1]
```

0.821064207442306

피어슨 상관계수와 p-value 구하기

```
r, p = stats.pearsonr(df['언어영역'], df['수리영역'])
```

02_상관분석 (1).ipynb

상관분석

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 p-value 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분 석

데이터 가져오기

실린더수에 따른 연비에 대한

"상관계수: %f, p-value: %f" % (r, p)

'상관계수: 0.821064, p-value: 0.023564'

결과 해석

p-value 가 유의수준 0.05보다 작으므로 귀무가설을 기각하고 대립가설을 채택한다. 그러므로 언어영역 점수와 수리영역 점수는 상관이 있다.

데이터프레임 객체를 통한 상관계수 구하기

numpy를 통해 구한 결과와 동일하다.

이와 같이 표시되는 형태를 상관행렬이라고 한다.

corr = df.corr(method='pearson')
corr

	언어영역	수리영역			
언어영역	1.000000	0.821064			
수리영역	0.821064	1.000000			

상관분석 결과 시각화

plt.rcParams["figure.figsize"] = (5,3)

sb.heatmap(corr,

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 p-value 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분 석

데이터 가져오기

실린더수에 따른 연비에 대한 file:///D:/02 상관분석(1).ipynb

```
02 상관분석 (1).ipynb
```

```
annot = True, #실제 값 화면에 나타내기
cmap = 'Greens', #색상
vmin = -1, vmax=1 , #컬러차트 영역 -1 ~ +1
linewidths=.5 #구분선
)
plt.show()
plt.close()
```


예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분석

R 패키지인 ggplot2에 내장된 샘플 데이터로 자동차 32종의 11개 속성에 대한 정보를 담고 있는 데이터

필드	설명
mpg	연료 효율성 (마일 당 갤런)

23. 7. 21. 오전 11:47

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 p-value 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분 석

데이터 가져오기

실린더수에 따른 연비에 대한

필드	설명
cyl	실린더 수
disp	배기량 (cubic inches)
hp	마력 (horsepower)
drat	후륜축 비율 (rear axle ratio)
wt	차량 무게 (1000 파운드)
qsec	1/4 마일 달성 시간 (초)
VS	V/S (V 엔진 형태인지, S는 직렬 엔진 형태인지를 나타냄)
am	변속기 형태 (0: 자동, 1: 수동)
gear	전진 기어 수 (전송 기어)
carb	기화기 개수 (carburetors)

데이터 가져오기

df = read_excel("https://data.hossam.kr/E03/mtcars.xlsx", index_col='nam
df

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	ca
name											
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 pvalue 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분 석

데이터 가져오기

실린더수에 따른 연비에 대한

02_영단군식 (I).ipynb												
	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	ca	
name												
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4	
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1	
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2	
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1	
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4	
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2	
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2	
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4	
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4	
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3	
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3	
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3	

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 pvalue 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분 석

데이터 가져오기

실린더수에 따른 연비에 대한

UZ_경단군식 (I).ipynb												
	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	ca	
name												
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4	
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4	
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4	
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1	
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2	
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1	
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1	
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2	
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2	
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4	
Pontiac	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2	

02 상관분석 (1).ipynb

상관분석

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 p-value 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분 석

데이터 가져오기

실린더수에 따른 연비에 대한 file:///D:/02_상관분석 (1).ipynb

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	ca
name											
Firebird											
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2
I											

실린더수에 따른 연비에 대한 산점도 그래프

plt.rcParams["figure.figsize"] = (10, 5)

sb.regplot(data=df, x='cyl', y='mpg')
plt.grid()

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 p-value 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분 석

데이터 가져오기

실린더수에 따른 연비에 대한

```
plt.show()
plt.close()
```


실린더 수가 증가함에 따라 연비가 낮아지는 경향이 있는것으로 보임

상관분석

```
plt.rcParams["figure.figsize"] = (5,3)

corr = df.filter(['cyl', 'mpg']).corr(method='pearson')

sb.heatmap(corr,
        annot = True, #실제 값 화면에 나타내기
```

```
23. 7. 21. 오전 11:47
```

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 p-value 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분 석

데이터 가져오기

실린더수에 따른 연비에 대한

```
02 상관분석 (1).ipynb
```

```
cmap = 'Greens', #색상
vmin = -1, vmax=1 , #컬러차트 영역 -1 ~ +1
linewidths=.5 #구분선
```

plt.show()
plt.close()

분석결과 상관계수가 -0.85 로 나타나 실린더수와 연비는 강한 음의 상관관계가 있는 것으로 나타남

분석결과 검정

```
stats.pearsonr(df['cyl'], df['mpg'])
```

#01. 작업준비

패키지 가져오기

예제 (1)

- 1. 데이터 가져오기
- 2. 탐색적 데이터 분석

산점도 그래프를 통한 상관 정도 확인

- 3. 공분산
- 4. 상관분석

numpy를 통한 상관계수 구 하기

피어슨 상관계수와 pvalue 구하기

결과 해석

데이터프레임 객체를 통한 상 관계수 구하기

상관분석 결과 시각화

예제 (2) - mtcars 데이터를 통한 실린더수와 연비의 상관관계 분

데이터 가져오기

실린더수에 따른 연비에 대한

PearsonRResult(statistic=-0.8521619594266132, pvalue=6.112687142580964e-

결과보고

32종의 자동차를 대상으로 실린더수에 따른 연비를 조사한 결과 실린더 수와 연비는 강한 음의 상관 관계를 갖는 것으로 타나났다. p-value 가 유의수준 0.05보다 작으므로 이는 통계적으로 유의하 다.