FUNDAMENTOS DE COMUNICAÇÃO ENTRE PROCESSOS

DCE540 - Computação Paralela e Distribuída

Atualizado em: 18 de novembro de 2021

Iago Carvalho

Departamento de Ciência da Computação

COMUNICAÇÃO

Em sistemas computacionais não distribuídos, comunicação entre processos é uma tarefa bem simples

- Arquivos
- Memória compartilhada

Entretanto, quando temos diversos dispositivos espalhados por todo o mundo, esta tarefa é um pouco mais complicada...

- O Baseada em protocolos de baixo nível
- Troca de mensagens
- Remote Procedure Calls (RPC)

MODELO OSI

Para começarmos a discutir os processos de comunicação, devemos primeiro entender o modelo OSI

○ ISO Open Systems Interconnection Reference Model

O modelo OSI é dividido em 7 camadas

- Cada camada com diversos protocolos de comunicação
- Em geral, protocolos são mortos

A grande vantagem do modelo OSI é auxiliar no entendimento de como redes de computadores funcionam

MODELO OSI

CAMADAS NO MODELO OSI

Camada de aplicação

- A aplicação, literalmente
- E-mail, transferência de arquivos, web...

Camada de apresentação

- Controla a maneira como os dados são representados
- Tradução de dados
- Criptografia e segurança

Camada de sessão (data link)

Estabelece a comunicação entre duas aplicações

Camada de transporte

- Protocolos de comunicação entre aplicações
 - Confiáveis ou não

CAMADAS NO MODELO OSI

Camada de rede

- Controla o fluxo de mensagens na rede
- Roteamento de mensagens
- Prevenção e tratamento de congestionamento

Camada de enlace (data link)

Detecção e correção de erros de transmissão

Camada física

- Como os computadores estão conectados entre si
 - Cabos
 - Wi-Fi
 - 0 ...
- Representação binária dos dados

MENSAGEM DE REDE

Processo P quer se comunicar com um processo remoto Q

P tem que enviar uma mensagem para Q

MODELO TCP/IP

O modelo OSI é um modelo de referência que nos ajuda a entender como redes funcionam

Já o modelo TCP/IP apresenta o modelo que realmente funciona no mundo real

- Baseada nos protocolos TCP e IP
- É a maneira como a Internet está implementada e organizada

TCP/IP VS OSI

TCP/IP model	Protocols and services	OSI model
Application	HTTP, FTTP, Telnet, NTP, DHCP, PING	Application
		Presentation
		Session
Transport	TCP, UDP (Transport
Network	IP, ARP, ICMP, IGMP	Network
Network Interface	Ethernet	Data Link
		Physical

9

PROTOCOLOS DE MIDDLEWARE

Um *middleware* está localizado logicamente na camada de aplicação do modelo TCP/IP

Um protoclo de *middleware* deve fornecer uma interface transparente para as aplicações trabalharem e trocarem mensagens

O Responsável por coordenar todo o sistema distribuído

PROTOCOLOS DE MIDDLEWARE

TIPOS DE COMUNICAÇÃO

O restante de nossas aulas deverá focar em protocolos de comunicação oferecidos por *middlewares*

 Oferece serviços de comunicação para as aplicações (componentes)

Um *middleware* implementa dois diferentes tipos de comunicação

- Persistente
- Transiente

Estas comunicações também podem ser de dois tipos

- Síncronas
- Assíncronas

MODELOS DE PERSISTÊNCIA DE MENSAGENS

Comunicação persistente

- Mensagens enviadas por aplicações são armazenadas pelo middleware
- Deve ser replicada (caso necessário)
- Mensagem fica armazenada até que não seja mais necessária
 - Então, pode ser deletada

Comunicação transiente

- Mensagem é armazenada no middleware enquanto as aplicações estão rodando
 - Aplicação remetente
 - Aplicação desninatária
- Normalmente, protocolos da camada de transmissão utilizam comunicação transiente

SÍNCRONIA DE MENSAGENS

Similar aos conceitos que vimos em arquiteturas de sistemas distribuídos

Comunicação síncrona

O Processo remetente fica bloqueado até receber uma resposta

Comunicação assíncrona

O Processo remetente não é bloqueado até receber resposta

Comunicação transiente + mensagens síncronas → RPC

Próxima aula