Homework 2.1: Hodgkin-Huxley model - ion channel

Simplified HH model

1/1 point (graded)

In the Hodgkin-Huxley model, the potassium current obeys the equation:

$$I_K = {ar g}_K n(t)^4 \left(u\left(t
ight) - E_K
ight)$$

where \bar{g}_K is the maximal conductance, E_K the potassium reversal potential, and $n(t)^4$ is the proportion of channels that are open at time t. The quantity n obeys a first-order dynamics

$$\frac{dn}{dt} = \frac{n_{\infty}(u) - n}{\tau_n(u)}$$

with voltage-dependent time constant au_n and equilibrium value n_∞ .

In order to determine τ_n and n_∞ , Hodgkin and Huxley pharmacologically blocked the sodium current and measured the response of the potassium current to voltage jumps of various amplitudes. The goal of this exercise is to understand this key experiment by studying a simplified version of the Hodgkin-Huxley model. Suppose τ_n and n_∞ have the following form:

$$au_{n}\left(u
ight) = egin{cases} 1ms & ext{if u} <= 0 ext{ mV} \ 5ms & ext{if } 0 < ext{u} <= 25 ext{ mV} \ 1ms & ext{if u} > 25 ext{ mV} \end{cases}$$

$$n_{\infty}\left(u
ight) = egin{cases} 0 & ext{if u} <= 0 ext{ mV} \ u/50 & ext{if } 0 < ext{u} <= 50 ext{ mV} \ 1 & ext{if u} > 50 ext{ mV} \end{cases}$$

1. Calculate the response of
$$n\left(t\right)$$
 for $t>=0$ to a voltage jump: $u\left(t\right)=\left\{egin{array}{ll} 0 & ext{if } \mathrm{t}<0 \\ u_{0} & ext{if } \mathrm{t}>=0 \end{array}
ight.$

$$igcup n\left(t
ight) =n_{\infty }\left(u_{0}
ight) \left(1-rac{ au _{n}\left(u_{0}
ight) }{t+ au _{n}\left(u_{0}
ight) }
ight)$$

$$igcap n\left(t
ight) =1-rac{ au_{n}\left(u_{0}
ight) }{t+ au_{n}\left(u_{0}
ight) }$$

$$igotimes n\left(t
ight) = n_{\infty}\left(u_{0}
ight)\left(1-\exp\left(-rac{t}{ au_{n}\left(u_{0}
ight)}
ight)
ight)$$

$$\bigcap n\left(t
ight)=1-\exp\left(-rac{t}{ au_{n}\left(u_{0}
ight)}
ight)$$

$$oldsymbol{n}\left(t
ight)=n_{\infty}\left(u_{0}
ight)\ln\left(\exp\left(1
ight)+\left(1-\exp\left(1
ight)
ight)rac{ au_{n}\left(u_{0}
ight)}{t+ au_{n}\left(u_{0}
ight)}
ight)$$

$$\bigcap n\left(t
ight) =\ln \left(\exp \left(1
ight) +\left(1-\exp \left(1
ight)
ight) rac{ au _{n}\left(u_{0}
ight) }{t+ au _{n}\left(u_{0}
ight) }
ight)$$

Submit

You have used 1 of 1 attempt

✓ Correct (1/1 point)

Evolution of membrane potential channels

3/3 points (graded)

2. $n\left(t
ight)$ is sketched for $u_0=10,20$ and 40mV . Indicate the diagram belongs to each one:

 $u_0 = 10$:

 $u_0 = 20$:

В ▼ ✓

 $u_0 = 40$:

|A ▼ | **✓**

Submit

You have used 1 of 1 attempt

✓ Correct (3/3 points)

Evolution of the fraction of open channels

3/3 points (graded)

3. For $u_0=40mV$ the behaviour of $n\left(t\right)$, $n^2\left(t\right)$ and $n^4\left(t\right)$ is sketched (assuming $t\ll au_n$). Indicate the diagram belongs to each one:

n(t):

Α

 $n^{2}\left(t\right) :$

В

 $n^{4}\left(t\right) :$

С

Submit

You have used 1 of 1 attempt

✓ Correct (3/3 points)

Potassium current curve

1/1 point (graded) 4. Indicate the current I_K (t)($u_0=40mV$, $E_K=-80mV$) :

Α

Submit

You have used 1 of 1 attempt

✓ Correct (1/1 point)

Parameter estimation 0 points possible (ungraded) 5. If we measure $I_K(t) = \bar{g}_K n(t)^p (u(t) - E_K)$ for voltage steps of various amplitudes, how can we determine $p, \tau_n(u)$, and $n_\infty(u)$? (no point for this question) Submit You have used 1 of 1 attempt Discussion Topic: Week 2 / Homework 2.1: Hodgkin-Huxley model - ion channel

© All Rights Reserved