

**DECEMBER 02, 2014** 

# Numerical Optimization: Understanding L-BFGS (/blog/2014/12/understanding-lbfgs)

Numerical optimization is at the core of much of machine learning. Once you've defined your model and have a dataset ready, estimating the parameters of your model typically boils down to minimizing some <u>multivariate function</u>

(http://en.wikipedia.org/wiki/Multivariable calculus) f(x), where the input x is in some high-dimensional space and corresponds to model parameters. In other words, if you solve:

$$x^* = \arg\min_x f(x)$$

then  $x^{st}$  is the 'best' choice for model parameters according to how you've set your objective.  $^{1}$ 

In this post, I'll focus on the motivation for the <u>L-BFGS (http://en.wikipedia.org/wiki/Limited-memory\_BFGS)</u> algorithm for unconstrained function minimization, which is very popular for ML problems where 'batch' optimization makes sense. For larger problems, online methods based around <u>stochastic gradient descent</u>

(http://en.wikipedia.org/wiki/Stochastic\_gradient\_descent) have gained popularity, since they require fewer passes over data to converge. In a later post, I might cover some of these techniques, including my personal favorite <a href="Mailto:AdaDelta">AdaDelta</a>

(http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf).

**Note**: Throughout the post, I'll assume you remember multivariable calculus. So if you don't recall what a <u>gradient (http://en.wikipedia.org/wiki/Gradient)</u> or <u>Hessian (http://en.wikipedia.org/wiki/Hessian\_matrix)</u> is, you'll want to bone up first.





## **Newton's Method**

Most numerical optimization procedures are iterative algorithms which consider a sequence of 'guesses'  $x_n$  which ultimately converge to  $x^*$  the true global minimizer of f. Suppose, we have an estimate  $x_n$  and we want our next estimate  $x_{n+1}$  to have the property that  $f(x_{n+1}) < f(x_n)$ .

Newton's method is centered around a quadratic approximation of f for points near  $x_n$ . Assuming that f is twice-differentiable, we can use a quadratic approximation of f for points 'near' a fixed point x using a  $\underline{\text{Taylor expansion}}$  (http://en.wikipedia.org/wiki/Taylor\_series):

$$f(x+\Delta x)pprox f(x)+\Delta x^T
abla f(x)+rac{1}{2}\Delta x^T\left(
abla^2 f(x)
ight)\Delta x$$

where  $\nabla f(x)$  and  $\nabla^2 f(x)$  are the gradient and Hessian of f at the point  $x_n$ . This approximation holds in the limit as  $||\Delta x||\to 0$ . This is a generalization of the single-dimensional Taylor polynomial expansion you might remember from Calculus.

In order to simplify much of the notation, we're going to think of our iterative algorithm of producing a sequence of such quadratic approximations  $h_n$ . Without loss of generality, we can write  $x_{n+1}=x_n+\Delta x$  and re-write the above equation,

$$h_n(\Delta x) = f(x_n) + \Delta x^T \mathbf{g}_n + rac{1}{2} \Delta x^T \mathbf{H}_n \Delta x$$

where  $\mathbf{g}_n$  and  $\mathbf{H}_n$  represent the gradient and Hessian of f at  $x_n$ .

We want to choose  $\Delta x$  to minimize this local quadratic approximation of f at  $x_n$ . Differentiating with respect to  $\Delta x$  above yields:

$$rac{\partial h_n(\Delta x)}{\partial \Delta x} = \mathbf{g}_n + \mathbf{H}_n \Delta x$$

Recall that any  $\Delta x$  which yields  $\frac{\partial h_n(\Delta x)}{\partial \Delta x}=0$  is a local extrema of  $h_n(\cdot)$ . If we assume that  $\mathbf{H}_n$  is [postive definite] (psd) then we know this  $\Delta x$  is also a global minimum for  $h_n(\cdot)$ . Solving for  $\Delta x$ : $^2$ 

$$\Delta x = -\mathbf{H}_n^{-1}\mathbf{g}_n$$

This suggests  $\mathbf{H}_n^{-1}\mathbf{g}_n$  as a good direction to move  $x_n$  towards. In practice, we set  $x_{n+1}=x_n-\alpha(\mathbf{H}_n^{-1}\mathbf{g}_n)$  for a value of  $\alpha$  where  $f(x_{n+1})$  is 'sufficiently' smaller than  $f(x_n)$ .

#### **Iterative Algorithm**

The above suggests an iterative algorithm:

$$egin{aligned} \mathbf{NewtonRaphson}(f,x_0): \ & ext{For } n=0,1,\dots ext{ (until converged)}: \ & ext{Compute } \mathbf{g}_n ext{ and } \mathbf{H}_n^{-1} ext{ for } x_n \ & d=\mathbf{H}_n^{-1}\mathbf{g}_n \ & lpha = \min_{lpha \geq 0} f(x_n-lpha d) \ & ext{ } x_{n+1} \leftarrow x_n-lpha d \end{aligned}$$

The computation of the  $\alpha$  step-size can use any number of <u>line search</u> (<a href="http://en.wikipedia.org/wiki/Line\_search">http://en.wikipedia.org/wiki/Line\_search</a>) algorithms. The simplest of these is <u>backtracking line search</u>, where you simply try smaller and smaller values of  $\alpha$  until the function value is 'small enough'.

In terms of software engineering, we can treat **NewtonRaphson** as a blackbox for any twice-differentiable function which satisfies the Java interface:

```
public interface TwiceDifferentiableFunction { // compute f(x)
```

```
public double valueAt(double[] x);

// compute grad f(x)

public double[] gradientAt(double[] x);

// compute inverse hessian H^-1

public double[][] inverseHessian(double[] x);
}
```

With quite a bit of tedious math, you can prove that for a <u>convex function</u> (<a href="http://en.wikipedia.org/wiki/Convex\_function">http://en.wikipedia.org/wiki/Convex\_function</a>), the above procedure will converge to a unique global minimizer  $x^*$ , regardless of the choice of  $x_0$ . For non-convex functions that arise in ML (almost all latent variable models or deep nets), the procedure still works but is only guranteed to converge to a local minimum. In practice, for non-convex optimization, users need to pay more attention to initialization and other algorithm details.

#### **Huge Hessians**

The central issue with  $\mathbf{NewtonRaphson}$  is that we need to be able to compute the inverse Hessian matrix. Note that for ML applications, the dimensionality of the input to f typically corresponds to model parameters. It's not unusual to have hundreds of millions of parameters or in some vision applications even billions of parameters

(<a href="http://static.googleusercontent.com/media/research.google.com/en/us/archive/large\_deep\_networks\_nips2012.pdf">http://static.googleusercontent.com/media/research.google.com/en/us/archive/large\_deep\_networks\_nips2012.pdf</a>). For these reasons, computing the hessian or its inverse is often impractical. For many functions, the hessian may not even be analytically computable, let along representable.

Because of these reasons, **NewtonRaphson** is rarely used in practice to optimize functions corresponding to large problems. Luckily, the above algorithm can still work even if  $\mathbf{H}_n^{-1}$  doesn't correspond to the exact inverse hessian at  $x_n$ , but is instead a good approximation.

# **Quasi-Newton**

Suppose that instead of requiring  $\mathbf{H}_n^{-1}$  be the inverse hessian at  $x_n$ , we think of it as an approximation of this information. We can generalize  $\mathbf{NewtonRaphson}$  to take a  $\mathbf{QuasiUpdate}$  policy which is responsible for producing a sequence of  $\mathbf{H}_n^{-1}$ .

```
\begin{aligned} \mathbf{QuasiNewton}(f,x_0,\mathbf{H}_0^{-1},\mathrm{QuasiUpdate}): \\ & \text{For } n=0,1,\dots \text{ (until converged)}: \\ & // \text{ Compute search direction and step-size} \\ & d=\mathbf{H}_n^{-1}\mathbf{g}_n \\ & \alpha \leftarrow \min_{\alpha \geq 0} f(x_n-\alpha d) \\ & x_{n+1} \leftarrow x_n - \alpha d \\ & // \text{ Store the input and gradient deltas} \\ & \mathbf{g}_{n+1} \leftarrow \nabla f(x_{n+1}) \\ & s_{n+1} \leftarrow x_{n+1} - x_n \\ & y_{n+1} \leftarrow \mathbf{g}_{n+1} - \mathbf{g}_n \\ & // \text{ Update inverse hessian} \\ & \mathbf{H}_{n+1}^{-1} \leftarrow \text{ QuasiUpdate}(\mathbf{H}_n^{-1}, s_{n+1}, y_{n+1}) \end{aligned}
```

We've assumed that QuasiUpdate only requires the former inverse hessian estimate as well tas the input and gradient differences ( $s_n$  and  $y_n$  respectively). Note that if QuasiUpdate just returns  $\nabla^2 f(x_{n+1})$ , we recover exact NewtonRaphson.

In terms of software, we can blackbox optimize an arbitrary differentiable function (with no need to be able to compute a second derivative) using **QuasiNewton** assuming we get a quasi-newton approximation update policy. In Java this might look like this,

```
public interface DifferentiableFunction {
    // compute f(x)

public double valueAt(double[] x);

// compute grad f(x)

public double[] gradientAt(double[] x);
}

public interface QuasiNewtonApproximation {
    // update the H^{-1} estimate (using x_{n+1}-x_n and grad_{n+1}-grad_n)

public void update(double[] deltaX, double[] deltaGrad);

// H^{-1} (direction) using the current H^{-1} estimate

public double[] inverseHessianMultiply(double[] direction);
}
```

Note that the only use we have of the hessian is via it's product with the gradient direction. This will become useful for the L-BFGS algorithm described below, since we don't need to represent the Hessian approximation in memory. If you want to see these abstractions in action, here's a link to a <u>Java 8 (https://github.com/aria42/java8-</u>

optimize/tree/master/src/optimize) and golang

(https://github.com/aria42/taskar/blob/master/optimize/newton.go) implementation I've written.

#### Behave like a Hessian

What form should QuasiUpdate take? Well, if we have QuasiUpdate always return the identity matrix (ignoring its inputs), then this corresponds to simple  $\underline{gradient\ descent}$  (<a href="http://en.wikipedia.org/wiki/Gradient\ descent">http://en.wikipedia.org/wiki/Gradient\ descent</a>), since the search direction is always  $\nabla f_n$ . While this actually yields a valid procedure which will converge to  $x^*$  for convex f, intuitively this choice of QuasiUpdate isn't attempting to capture second-order information about f.

Let's think about our choice of  $\mathbf{H}_n$  as an approximation for f near  $x_n$ :

$$h_n(d) = f(x_n) + d^T \mathbf{g}_n + rac{1}{2} d^T \mathbf{H}_n d$$

#### **Secant Condition**

A good property for  $h_n(d)$  is that its gradient agrees with f at  $x_n$  and  $x_{n-1}$ . In other words, we'd like to ensure:

$$egin{aligned} 
abla h_n(x_n) &= \mathbf{g}_n \ 
abla h_n(x_{n-1}) &= \mathbf{g}_{n-1} \end{aligned}$$

Using both of the equations above:

$$abla h_n(x_n) - 
abla h_n(x_{n-1}) = \mathbf{g}_n - \mathbf{g}_{n-1}$$

Using the gradient of  $h_{n+1}(\cdot)$  and canceling terms we get

$$\mathbf{H}_n(x_n-x_{n-1})=(\mathbf{g}_n-\mathbf{g}_{n-1})$$

This yields the so-called "secant conditions" which ensures that  $\mathbf{H}_{n+1}$  behaves like the Hessian at least for the diference  $(x_n-x_{n-1})$ . Assuming  $\mathbf{H}_n$  is invertible (which is true if

it is psd), then multiplying both sides by  $\mathbf{H}_n^{-1}$  yields

$$\mathbf{H}_n^{-1}\mathbf{y}_n = \mathbf{s}_n$$

where  $\mathbf{y}_{n+1}$  is the difference in gradients and  $\mathbf{s}_{n+1}$  is the difference in inputs.

# **Symmetric**

Recall that the a hessian represents the matrix of 2nd order partial derivatives:  $\mathbf{H}^{(i,j)} = \partial f/\partial x_i \partial x_j$ . The hessian is symmetric since the order of differentiation doesn't matter.

# The BFGS Update

Intuitively, we want  $\mathbf{H}_n$  to satisfy the two conditions above:

- Secant condition holds for  $\mathbf{s}_n$  and  $\mathbf{y}_n$
- $\mathbf{H}_n$  is symmetric

Given the two conditions above, we'd like to take the most conservative change relative to  $\mathbf{H}_{n-1}$ . This is reminiscent of the MIRA update

(http://aria42.com/blog/2010/09/classification-with-mira-in-clojure/), where we have conditions on any good solution but all other things equal, want the 'smallest' change.

$$\begin{aligned} & \min_{\mathbf{H}^{-1}} & \|\mathbf{H}^{-1} - \mathbf{H}_{n-1}^{-1}\|^2 \\ & \text{s.t.} & \mathbf{H}^{-1}\mathbf{y}_n = \mathbf{s}_n \\ & \mathbf{H}^{-1} \text{ is symmetric} \end{aligned}$$

The norm used here  $\|\cdot\|$  is the <u>weighted frobenius norm</u> (<u>http://mathworld.wolfram.com/FrobeniusNorm.html</u>).<sup>4</sup> The solution to this optimization problem is given by

$$\mathbf{H}_{n+1}^{-1} = (I - 
ho_n y_n s_n^T) \mathbf{H}_n^{-1} (I - 
ho_n s_n y_n^T) + 
ho_n s_n s_n^T$$

where  $\rho_n=(y_n^Ts_n)^{-1}$ . Proving this is relatively involved and mostly symbol crunching. I don't know of any intuitive way to derive this unfortunately.

### Broyden, Fletcher, Goldfarb, Shanno





This update is known as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update, named after the original authors. Some things worth noting about this update:

- $\mathbf{H}_{n+1}^{-1}$  is positive definite (psd) when  $\mathbf{H}_n^{-1}$  is. Assuming our initial guess of  $\mathbf{H}_0$  is psd, it follows by induction each inverse Hessian estimate is as well. Since we can choose any  $\mathbf{H}_0^{-1}$  we want, including the I matrix, this is easy to ensure.
- The above also specifies a recurrence relationship between  $\mathbf{H}_{n+1}^{-1}$  and  $\mathbf{H}_{n}^{-1}$ . We only need the history of  $s_n$  and  $y_n$  to re-construct  $\mathbf{H}_n^{-1}$ .

The last point is significant since it will yield a procedural algorithm for computing  $\mathbf{H}_n^{-1}d$ , for a direction d, without ever forming the  $\mathbf{H}_n^{-1}$  matrix. Repeatedly applying the recurrence above we have

```
\begin{aligned} \mathbf{BFGSMultiply}(\mathbf{H}_0^{-1}, \{s_k\}, \{y_k\}, d): \\ r \leftarrow d \\ // \operatorname{Compute right product} \\ \text{for } i = n, \dots, 1: \\ \alpha_i \leftarrow \rho_i s_i^T r \\ r \leftarrow r - \alpha_i y_i \\ // \operatorname{Compute center} \\ r \leftarrow \mathbf{H}_0^{-1} r \\ // \operatorname{Compute left product} \\ \text{for } i = 1, \dots, n: \\ \beta \leftarrow \rho_i y_i^T r \\ r \leftarrow r + (\alpha_{n-i+1} - \beta) s_i \\ \text{return } r \end{aligned}
```

Since the only use for  $\mathbf{H}_n^{-1}$  is via the product  $\mathbf{H}_n^{-1}\mathbf{g}_n$ , we only need the above procedure to use the BFGS approximation in QuasiNewton.

# L-BFGS: BFGS on a memory budget

The BFGS quasi-newton approximation has the benefit of not requiring us to be able to analytically compute the Hessian of a function. However, we still must maintain a history of the  $s_n$  and  $y_n$  vectors for each iteration. Since one of the core-concerns of the  $\mathbf{NewtonRaphson}$  algorithm were the memory requirements associated with maintaining an Hessian, the BFGS Quasi-Newton algorithm doesn't address that since our memory use can grow without bound.

The L-BFGS algorithm, named for *limited* BFGS, simply truncates the **BFGSMultiply** update to use the last m input differences and gradient differences. This means, we only need to store  $s_n, s_{n-1}, \ldots, s_{n-m-1}$  and  $y_n, y_{n-1}, \ldots, y_{n-m-1}$  to compute the update. The center product can still use any symmetric psd matrix  $\mathbf{H}_0^{-1}$ , which can also depend on any  $\{s_k\}$  or  $\{y_k\}$ .

## L-BFGS variants

There are lots of variants of L-BFGS which get used in practice. For non-differentiable functions, there is an <u>othant-wise varient (http://research.microsoft.com/en-us/um/people/jfgao/paper/icml07scalable.pdf)</u> which is suitable for training  $L_1$  regularized loss.

One of the main reasons to *not* use L-BFGS is in very large data-settings where an online approach can converge faster. There are in fact <u>online variants</u> (<a href="http://jmlr.org/proceedings/papers/v2/schraudolph07a/schraudolph07a.pdf">http://jmlr.org/proceedings/papers/v2/schraudolph07a/schraudolph07a.pdf</a>) of L-BFGS, but to my knowledge, none have consistently out-performed SGD variants (including <a href="https://www.magicbroom.info/Papers/DuchiHaSi10.pdf">AdaGrad (http://www.magicbroom.info/Papers/DuchiHaSi10.pdf</a>) or AdaDelta) for sufficiently large data sets.

<sup>1.</sup> This assumes there is a unique global minimizer for f. In practice, in practice unless f is convex, the parameters used are whatever pops out the other side of an iterative algorithm.  $\underline{\omega}$ 

<sup>2.</sup> We know  $-\mathbf{H}^{-1}\nabla f$  is a local extrema since the gradient is zero, since the Hessian has positive curvature, we know it's in fact a local minima. If f is convex, we know the Hessian is always positive definite and we know there is a single unique global minimum.  $\underline{e}$ 

<sup>3.</sup> As we'll see, we really on require being able to multiply by  $\mathbf{H}^{-1}d$  for a direction d.

<sup>4.</sup> I've intentionally left the weighting matrix W used to weight the norm since you get the same solution under many choices. In particular for any positive-definite W such that  $Ws_n=y_n$  , we get the same solution.  $\underline{e}$ 

(http://twitter.com/aria42) (http://github.com/aria42) (http://linkedin.com/in/aria42) (mailto:me@aria42.com)