Problem (Problem 1): Use de Rham cohomology to prove that if B^n is a closed ball in \mathbb{R}^n , and $f: B^n \to B^n$ is smooth, then f has a fixed point.

Solution: Suppose $f: B^n \to B^n$ is a fixed-point free self-map of the ball. It follows then that by drawing a line between ν and $f(\nu)$, we may define a smooth retraction of the ball to the sphere S^{n-1} . Call this retraction r.

We observe then that r induces a map in cohomology r^* : $H^*_{DR}(S^{n-1}) \to H^*_{DR}(B^n)$. In particular, since r is a retraction to S^{n-1} , it follows that r is homotopic to the identity map when restricted to S^{n-1} , meaning r^* is an isomorphism in de Rham cohomology of $H^*_{DR}(S^{n-1})$ and $H^*_{DR}(B^n)$.

Yet, we recognize that $H_{DR}^{n-1}(S^{n-1}) \cong \mathbb{R}$, while $H_{DR}^{n-1}(B^n) \cong 0$, the latter emerging from the fact that B^n is contractible via the straight-line homotopy and the Poincaré lemma. Thus, no such r exists, whence f cannot have a fixed point.

Problem (Problem 2): Suppose M is a compact smooth manifold with a smooth triangulation, and let $f: M \to M$ be a smooth map preserving the triangulation. Write f_k^* for the induced map on $H^k_{DR}(M)$. Prove that if

$$L(f) = \sum_{k=0}^{n} (-1)^{k} \operatorname{tr}(f_{k}^{*})$$

$$\neq 0.$$

then f has a fixed point.

Solution: By abuse of notation, we treat $f^* \colon H^*(M; \mathbb{R}) \to H^*(M; \mathbb{R})$ to be the corresponding map on the simplicial cohomology rather than the de Rham cohomology, which follows from de Rham's theorem and the isomorphism between singular and simplicial cohomology.

Suppose f has no fixed points. Let $\Delta \subseteq M$ be a simplex. Then, by the definition of f, we observe that $f(\Delta) \subseteq M$ is also a simplex, which we call Λ . Suppose toward contradiction that $\Lambda = \Delta$. Then, restricting the map f to Δ , we observe that $f \colon \Delta \to \Delta$ is a smooth self-map of the k-simplex Δ . Yet, since $\Delta \cong B^n$ are diffeomorphic (when considering a small neighborhood of Δ), this implies that we have a smooth self-map on Δ , whence f has a fixed point by the result of Problem (1).

From the de Rham isomorphism and the fact that M is triangulated, an arbitrary cochain on M, I_{ω} , can be defined by

$$I_{\omega}(\Delta) = \int_{\Lambda} \omega,$$

which induces the isomorphism $H^*_{DR}(M) \cong H^*(M; \mathbb{R})$. We observe that f^* yields a map on cochains by taking

$$f^*(I_{\omega})(\sigma) = \int_{\sigma} f^*\omega$$
$$= I_{f^*\omega}(\sigma)$$

for a k-simplex σ .

We seek to show that for an arbitrary cochain I_{ω} , that

$$\sum_{k=0}^{n} (-1)^k \operatorname{tr}(f_k^* I_{\omega}) = 0$$

Problem (Problem 3): Compute the de Rham cohomology of \mathbb{RP}^n .

Solution: To start, we observe that $\mathbb{RP}^1 \cong S^1$, meaning that the de Rham cohomology of \mathbb{RP}^1 is

$$H_{DR}^*(\mathbb{RP}^1) = \begin{cases} \mathbb{R} & k = 0\\ \mathbb{R} & k = 1.\\ 0 & \text{else} \end{cases}$$

In higher dimensions, we consider the family of charts defined by

$$U_k = \{ [x_0 : \cdots : x_k : \cdots : x_n] \mid x_{i \neq k} \in \mathbb{R}, x_k \neq 0 \}.$$

We seek to understand the picture of

$$U_{k\neq 0} = \bigcup_{k=1}^{n} U_{k}$$
$$= \bigcup_{k=1}^{n} \{ [x_{0} : \dots : n] \mid x_{k} \neq 0 \}.$$

In particular, the only elements of U_0 that are not in $U_{k\neq 0}$ are the ones of the form $[1:0:\cdots:0]$, whence $U_{k\neq 0} \cong \mathbb{R}^n \setminus \{0\}$.

Next, we observe that

$$U_{0} \cap U_{k\neq 0} = \{ [x_{0} : \dots : x_{n}] \mid x_{0} \neq 0 \} \cap \bigcup_{k=1}^{n} \{ [x_{0} : \dots : x_{n}] \mid x_{k} \neq 0 \}$$

$$= \{ [x_{0} : \dots : x_{n}] \mid x_{0} \neq 0, x_{k} \neq 0 \text{ for at least one } 1 \leq k \leq n \}$$

$$= U_{0} \setminus \{ [1 : 0 : \dots : 0] \}$$

$$\cong \mathbb{R}^{n} \setminus \{ 0 \}.$$

Thus, by Mayer-Vietoris, we obtain the following short exact sequence.

$$0 \longrightarrow \mathsf{H}^*(\mathbb{RP}^n) \longrightarrow \mathsf{H}^*(\mathbb{R}^n) \oplus \mathsf{H}^*(\mathbb{R}^n \setminus \{0\}) \longrightarrow \mathsf{H}^*(\mathbb{R}^n \setminus \{0\}) \longrightarrow 0$$

Focusing on the case of H^0 , this yields the following exact sequence, whence $H^0(\mathbb{RP}^n) \cong \mathbb{R}$.

$$0 \longrightarrow H^0(\mathbb{RP}^n) \longrightarrow \mathbb{R} \oplus \mathbb{R} \longrightarrow \mathbb{R} \longrightarrow \cdots$$

Since the $H^k(\mathbb{R}^n)$ are zero for all $k \ge 1$, it follows that we have $H^k(\mathbb{R}\mathbb{P}^n) \cong 0$ for $1 \le k < n$.

Finally, concerning ourselves with $H^n(\mathbb{RP}^n)$, we concern ourselves with orientability; specifically, $H^n(\mathbb{RP}^n) \cong \mathbb{R}$ if n is odd and $H^n(\mathbb{RP}^n) \cong 0$ if n is even, as \mathbb{RP}^n is orientable if and only if n is odd.

Problem (Problem 4): Prove the Five Lemma. Namely, consider the following commutative diagram of vector spaces, where the horizontal sequences are exact. Show that if f_1 , f_2 , f_4 , f_5 are isomorphisms, that f_3 is also an isomorphism.

Solution: We start by showing that f_3 is injective. Let $x \in \ker(f_3)$.

• By commutativity, we have

$$0 = \beta_3 \circ f_3(x)$$

= $f_4 \circ \alpha_3(x)$,

so it follows that $\alpha_3(x) = 0$ as f_4 is injective, so $x \in \ker(\alpha_3)$. By exactness, we let $a_2 \in A_2$ be such that $\alpha_2(a_2) = x$, and define $f_2(a_2) = b_2$.

• By commutativity,

$$\beta_2(b_2) = \beta_2(f_2(a_2))$$
= $f_3(\alpha_2(a_2))$
= $f_3(x)$
= 0,

so $b_2 \in \ker(\beta_2)$, meaning that by exactness, there is $b_1 \in B_1$ such that $\beta_1(B_1) = b_2$. Since f_1 is surjective, we let $\alpha_1 \in A_1$ be such that $f_1(\alpha_1) = b_1$.

• Finally, by commutativity, we have

$$f_2(\alpha_1(\alpha_1)) = \beta_2(f_1(\alpha_1))$$

$$= \beta_1(b_1)$$

$$= b_2$$

$$= f_2(\alpha_2),$$

and since f_2 is injective, we have $a_2 = \alpha_1(a_1)$.

• Thus, since $x = \alpha_2(\alpha_2)$, we have

$$x = \alpha_2(\alpha_1(\alpha_1))$$

= $(\alpha_2 \circ \alpha_1)(\alpha_1)$
= 0 ,

so f is injective.

Now, we show that f is surjective.