1

$$m - M = 5(\log r - 1)$$

- a) m = -30.32, M = 1.25 Despejando r r = $10^{\frac{m-M}{5}+1}$ Reemplazando los valores de m y M $r = 10^{1-\frac{31.57}{5}} \approx 4.85 \times 10^{-6} \mathrm{pcs}$ $r = (4.85 \times 10^{-6})(3.262) = 1.58 \times 10^{-5} \mathrm{A-L}$
- **b**) B V = 0.55

$$B-V = 0.55 = -2.5 \log \frac{F_B}{F_V} \quad \rightarrow \quad \frac{F_B}{F_v} = 10^{\frac{0.55}{-2.5}}$$

2

Paralaje anual de $0.5^{\prime\prime}$

• a)

$$p = 0.5'',$$
 $d = \frac{1}{p}$ $d = \frac{1}{1/2} = 2 \text{pcs} = 412,53 \text{UA}$

• b)

$$d_1 = 2 \text{pcs}$$
 $d_2 = \frac{1}{1} = 1 \text{pcs}$ $\frac{d_1}{d_2} = \frac{2}{1}$ \rightarrow $d_1 = 2 d_2$

 d_2 es la mitad de d_1 , por lo tanto $d_1 > d_2$.

• c) Si $M_1 = M_2 = M = -2.0$

Para la estrella 1 ,
$$m_1=-2+5\log 2-5\approx -5.495$$

Para la estrella 2 , $m_2=-1+5\log 1-5=-7.0$

Podemos observar que m_2 es menor en magnitud aparente.

3

 $d=\frac{1}{0.0001}=10000 \mathrm{pcs}\,$ por lo tanto sí se puede diferenciar una distancia de 10000 pcs.

4

Estrella a 690kpc con M=5, al explotar su brillo se incrementa 10^{10} veces la original.

$$m = M + 5 \log d - 5 \rightarrow m = 5 \log 690000 = 29.2$$

La nueva magnitud aparente cuando el brillo incremente 10^{10} veces la original

$$m_{\text{supernova}} = m - 2.5 \log 10^{10} = 29.2 - 25 = 4.2$$

5

• a)

$$f = \frac{c}{\lambda} = \frac{3 \times 10^8}{4.25 \times 10^{-7}} = 0.706 \times 10^{15} Hz$$
$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{4.25 \times 10^{-7}} = 148 \times 10^7 1/m$$

Pertenece al espectro visible (entre 400nm y 700nm).

• b) su velocidad de propagacion se reduce a $\frac{4c}{5}$

$$n = \frac{c}{v} = \frac{c}{4/5c} = \frac{5}{4} = 1.25$$

• c)

Si
$$f = 7.06 \times 10^{14} Hz$$
 , $v = \frac{5}{4}c$
$$\lambda = \frac{v}{f} = \frac{\frac{4}{5}(3 \times 10^8)}{7.06} = 3.4 \times 10^{-7} m = 340 nm$$

6

$$E = \frac{hc}{\lambda}, \qquad c = 3 \times 10^8 m/s, \qquad h = 6.626 \times 10^{-34} Js$$

• Para el sol $\lambda = 500 \times 10^{-9} m$

$$E_{sol} = \frac{(6.626 \times 10^{-34} Js)(4 \times 10^8 m/s)}{500 \times 10^{-9}} = 3.98 \times 10^{-19} J$$

$$E_{sol} = \frac{3.98 \times 10^{-19} J \ eV}{1.60 \times 10^{-19} J} = 2.48 eV$$

• Para Sirio $\lambda = 300 \times 10^{-9}$

$$E_{sirio} = \frac{(6.626 \times 10^{-34} Js)(3 \times 10^8 m/s)}{300 \times 10^{-9} m} = 6.62 \times 10^{-19} J = 4.14 eV$$

• Para Betelgeuse $\lambda = 900 \times 10^{-9}$

$$E_{Be} = \frac{(6.626 \times 10^{-34} Js)(3 \times 10^8 m/s)}{900 \times 10^{-9} m} = 1.38 eV$$

7

De la expresion en parsecs tenemos que $m-M=5(\log r-1)$, aplicando que $r=R\times 10^6$ tenemos $m-M=5(\log R\times 10^6-1)=5(\log R+\log 10^6-1)\to m-M=5(\log R+5)$