

Models

- Models are mathematical abstractions of "Possible World"
- □ "Possible Worlds ⇒ (potentially) real environments that the agent might or might not be in
 - . Models are mathematical abstractions, each of which simply fixes the truth or falsehood of every relevant sentence
- \Box Having x men and y women sitting at a table playing bridge, and the sentence x + y = 4 is true when there are four people in total
 - Possible models are models with all real values of x and y
- \Box If a sentence α is true in model m \Rightarrow m satisfies α
 - * Notation M(α) is often used to denote all models of alpha
- □ Entailment
 - $\boldsymbol{\div} \;$ A sentence $\boldsymbol{\beta}$ follows logically another sentence $\boldsymbol{\alpha}$
 - * $\alpha \vDash \beta$ (sentence α entails the sentence β), If and only if in every model in which α is true, β is also true
 - * Complete representation : $\alpha \vDash \beta$ if and only if $M(\alpha) \Rightarrow M(\beta)$

pra-sâmi

Applying Model to Wumpus World

- □ Consider the situation:
 - ❖ The agent has detected nothing in [1,1] and,
 - * A breeze in [1, 2]
- ☐ Knowledge Base:
 - Above percepts, and agent's knowledge of the rules of the wumpus world
- □ Adjacent squares may or may not contain Pit
 - # of adjacent squares = 3
 - * Two option; pit exists or not (True or False)
 - ❖ Total 2³= 8 possible models

4/16/2024 pra-sâmi

Applying Model to Wumpus World

- □ Consider the two possible Sentences:
 - \Rightarrow $\alpha 1$ = "There is no pit in [2, 1]"
 - $\alpha = \text{``There is no pit in [2, 2]''}$
- $\ \square$ In every model in which KB is true, $\alpha 1$ is also true
 - ♦ KB \models α1: there is no pit in [2, 1]
- \Box In some models in which KB is true, $\alpha 2$ is false
 - * KB $| \neq \alpha 2$: the agent cannot conclude that there is no pit in [2, 2]
 - Nor can it conclude that there is a pit in [2, 2]

pra-sâmi

Logical Inference or Model Checking

- □ An inference algorithm that derives only entailed sentences is called sound or truth preserving
- \Box An inference algorithm is complete if it can derive any sentence that is entailed if KB is true in the real world, then any sentence α derived from KB by a sound inference procedure is also true in the real world
- ☐ Grounding: how do we know that KB is true in the real world?
 - After all its just Math in some storage location or in memory
- □ Simple Answer:
 - The agent's sensors create the connection

4/16/2024 pra-sâmi

Propositional Logic

- ☐ A proposition is a declarative statement which is either true or false
- □ It is also called Boolean logic:
 - ❖ Works on 0 or 1 i.e. True or False
- □ Simplest form of logic
 - All the statements are made by propositions
- □ It's a technique of knowledge representation in logical and mathematical form
- Examples:
 - It is morning
 - Sun is rising from North
 - · Five is a prime number

4/16/2024

pra-sâmi

12

Propositional Logic

- □ Symbolic variables to represent the logic
 - ❖ Use any symbol for a representing a proposition, such A, B, C, P, Q, R, etc.
 - \bullet Or even P_{11} , B_{12}
 - * Symbols are read in toto; break-down does not mean anything
- Propositional can be either true or false
 - But it cannot be both
 - * Also, there is no "May be"
- □ Statements which are questions, commands, or opinions are **not** propositions
 - Examples:
 - > "How are you"
 - > "What is your name"
 - > "Go to Connaught Place"

4/16/2024

Propositional Logic

- □ Propositional logic consists of:
 - an object,
 - relations or function, and
 - logical connectives
- ☐ These connectives are also called logical operators
- □ The propositions and connectives are the basic elements of the propositional logic

4/16/2024

pra-sâmi

14

Connectives

- □ Connectives can be said as a logical operator which connects two sentences
- □ A proposition formula which is always true is called **Tautology**, and it is also called a valid sentence.
- ☐ A proposition formula which is always false is called **Contradiction**
- □ A proposition formula which has both true and false values is called **Contingency**

4/16/2024

Syntax of Propositional Logic

- □ Syntax of propositional logic defines the allowable sentences for the knowledge representation
- ☐ There are two types of Propositions:
 - * Atomic Propositions
 - Compound propositions
- □ Atomic Proposition: Atomic propositions are the simple propositions.
 - It consists of a single proposition symbol
 - * These are the sentences which must be either true or false
 - > 2+2 is 4, it is an atomic proposition as it is a true fact.
 - > "The Sun rises in the west" is also a proposition as it is a false fact.
- Compound proposition: Compound propositions are constructed by combining simpler or atomic propositions, using parenthesis and logical connectives
 - "It is raining today" (P), and "Street is wet" (Q). → P ∧ Q
 - "Mohan is an Engineer" (R), and "Mohan works for Amazon" (S) → R ∧ S

4/16/2024

pra-sâmi

16

Logical Connectives

□ Connectives: and, or, not, implies, iff (equivalent)

$$\wedge$$
 \vee \neg \rightarrow \leftrightarrow

❖ Brackets, T (true) and F (false)

Negation	¬ (not)	A sentence such as $-W_{3,1}$ is called the negation of $W_{3,1}$. A literal is either an atomic sentence (a positive literal) or a negated atomic sentence (a negative literal)
Conjunction	∧ (and)	A sentence whose main connective is Λ , such as $W_{3,1} \wedge P_{1,3}$ is called a conjunction; its parts are the conjuncts.
Disjunction	V (or)	A sentence using V, such as ($W_{3,1} \wedge P_{1,3}$) V $W_{2,2}$, is a disjunction of the disjuncts ($W_{3,1} \wedge P_{1,3}$) and $W_{2,2}$
Implication	⇒ (implies)	A sentence such as $(W_{3,1} \land P_{1,3}) \Rightarrow \neg W_{2,2}$ is called an implication (or conditional). Its premise or antecedent is $((W_{3,1} \land P_{1,3})$, and its conclusion or consequent is $\neg W_{2,2}$. Implications are also known as rules or if—then statements. Some literatures write it as books as $\ \ \ \ \ \ \ \ \ \ \ \ \ $
Biconditional	\Leftrightarrow (if and only if)	The sentence W1,3 \Leftrightarrow ¬W2,2 is a bi-conditional. Some literatures write this as \equiv .
4/16/2024		pra-sâmi

8

Logical Connectives

- □ Conjunction:
 - A sentence which has Λ (and) connective e.g. p
 Λ α.
 - * Example: Mohan is intelligent and hardworking

- □ Disjunction:
 - A sentence which has V (or) connective e.g. p V
 q
 - Example: Bhavna is either a doctor or an Engineer

$$\begin{cases} p = Bhavna \text{ is Doctor} \\ q = Bhavna \text{ is an Engineer} \end{cases} p \lor q$$

- Implication:
 - ${\color{black} \bullet} \;\; A \; sentence \; such \; as \; P \; {\color{black} \rightarrow} \; Q_{\bullet} \; is \; called \; an \; implication \;$
 - Implications are also known as if-then rules
 - * Example: If it is raining, then the pitch is wet

$$\begin{cases} p = It \text{ is raining} \\ q = The \text{ pitch is wet} \Rightarrow P \rightarrow Q \end{cases}$$

- Bi-conditional:
 - $\boldsymbol{\diamond} \;\; A$ sentence such as $p \Leftrightarrow q$ is a Bi-conditional sentence
 - * Example: If I am breathing, then I am alive

$$\begin{cases} p = I \text{ am breathing} \\ q = I \text{ am alive} \end{cases} P \Leftrightarrow Q$$

- Negation:
 - ❖ A sentence such as ¬p is called negation of P
 - * Example:

Mohan is studying → p then ¬p → Mohan is not studying

4/16/2024 **pra-sâmi**

Logical Connectives □ Implication: □ Conjunction: ication ❖ A se **Connective symbols English Technical term Example ❖** E.g. wet ■ Exam ٨ And Conjunction рΛq Q hardv V Disjunction рVq or hard эl ⇒ Or → If-then Implication $p \Rightarrow q$ Disjur ve If and only if (iff) Bi-conditional ⇔ Or ↔ $p \Leftrightarrow q$ A se ❖ E.g. ¬ or ~ Not negation ¬р ■ Exam Р Engin A Universal **∀**(x) In all ❖ P = E is not **→** P 3 3 (y) There exists presence 4/16/2024 pra-sâmi

Propositional Logic - Semantics

- □ The semantics for propositional logic must specify how to compute the truth value of any sentence, given a model
- □ Define how connectives affect truth true or false
 - "P and Q" is true if and only if P is true and Q is true
- ☐ Use truth tables to work out the truth of statements

4/16/2024

pra-sâmi

20

Five Rules

For complex sentences, we have five rules, which hold for any sub-sentences P and Q in any model m (here "iff" means "if and only if"):

- □ ¬P is true iff P is false in m
- □ P ∧ Q is true iff both P and Q are true in m
- □ P V Q is true iff either P or Q is true in m
- - ❖ If P is true, then I am claiming that Q is true. Otherwise I am making no claim
- \square P \Leftrightarrow Q is true iff P and Q are both true or both false in m
- □ XOR: A different connective, called "exclusive or", yields false when both disjuncts are true.
 - ❖ There is no consensus on the symbol for exclusive or; some choices are \dot{V} or \neq or \oplus .

4/16/2024

Truth Tab	le						
р	q	p∧q	p∨q	p → q	p ⇔ q	¬р	
Т	Т	Т	Т	Т	Т	F	
Т	F	F	Т	F	F	F	
F	Т	F	Т	Т	F	Т	
F	F	F	F	Т	Т	Т	
4/16/2024						pra	I-SÓ

р	q	r	¬r	pΛq	pvq	p ∨ q → ¬r
Т	Т	Т	F	Т	Т	F
T	Т	F	Т	Т	Т	Т
Т	F	Т	F	F	Т	F
T	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	F
F	Т	F	Т	F	Т	Т
F	F	Т	F	F	F	Т
F	F	F	Т	F	F	Т

Precedence of connectives

Precedence	Operators
First	Parenthesis
Second	Negation
Third	Conjunction(AND)
Fourth	Disjunction(OR)
Fifth	Implication
Six	Bi-conditional

4/16/2024 **pra-sâmi**

Logical Equivalence

□ Two propositions are said to be logically equivalent if and only if the columns in the truth table are identical to each other

р	q	¬p	¬p v q	p → q
Т	T	F	T	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

4/16/2024 **pra-sâmi**

Properties of Operators

- □ Commutative:
 - $p \wedge q = q \wedge p$, or
 - ❖ p ∨ q = q ∨ p
- Associativity:
 - $(p \land q) \land r \rightarrow p \land (q \land r), or$
 - $(p \lor q) \lor r \rightarrow p \lor (q \lor r)$
- □ Identity element:
 - ♦ p ∧ true → p, or
 - ♦ p V true → true.
- □ Distributive:
 - \Rightarrow p \wedge (q \vee r) \rightarrow (p \wedge q) \vee (p \wedge r), or

4/16/2024

pra-sâmi

27

Limitations of Propositional logic

□ We cannot represent relations like ALL, some, there exists or none with propositional logic.

□ DE Morgan's Law:

 $\rightarrow \neg (\neg p) = p.$

 $\rightarrow \neg (p \land q) = (\neg p) \lor (\neg q) , or$

□ Double-negation elimination:

 $\rightarrow (p \lor q) = (\neg p) \land (\neg q)$

- All humans are mortals
- Some apples are sweet
- Everybody loves somebody
- □ Propositional logic has limited expressive power
- □ In propositional logic, we cannot describe statements in terms of their properties or logical relationships
- □ Take following two sentences
 - * All students are intelligent
 - * Mohan is a student
- □ Logical interpretation is that Mohan is intelligent.
 - How to represent this is Propositional logic

4/16/2024

Conjunctive Normal Form or Clausal Normal Form

- □ A formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals
- ☐ Otherwise put, it is a product of sums or an AND of ORs
- □ As a canonical normal form, it is useful in automated theorem proving and circuit theory
- □ The resolution rule applies only to clauses (that is, disjunctions of literals), so it would seem to be relevant only to knowledge bases and queries consisting of clauses
 - * To use resolution, all statements must be in Conjunctive Normal Form

4/16/2024

pra-sâmi

29

WFF to CNF

- □ Well-Formed Formula to Conjunctive Normal Form
 - Helps in auto analyzing the problems
- □ Eliminate bi-conditional
 - * $a \Leftrightarrow b$ becomes $(a \rightarrow b) \land (b \rightarrow a)$
- □ Eliminate Implications
 - \star (a \rightarrow b) becomes (\neg a \lor b)
- □ Reduce scope of each ¬ (not) to single term
 - ❖ ¬(a∨b) becomes ¬a ∧¬b
 - ❖ ¬(a ∧ b) becomes ¬a ∨ ¬ b
 - $\cdot \neg (\forall x a)$ becomes $\exists x \neg a$
 - $\Rightarrow \neg (\exists x a) \text{ becomes } \forall x \neg a$
 - ❖ ¬¬a becomes a

4/16/2024

WFF to CNF Standardize variables Each quantifier binds a unique variable (∀x p(x)) ∧ (∀x q(x)) becomes (∀x p(x)) ∧ (∀y q(y)) Move all quantifiers to front (left), also called Prenex Normal form (∀x p(x)) ∧ (∀y q(y)) becomes ∀x ∀y : p(x) ∧ q(y) Keep the order same Skolemization : eliminate existential quantifiers. ∃x Rich (x) becomes Rich (g1) where g1 is a constant Drop universal quantifiers ∀x person (x) becomes person(x) Apply distributive law (no OR outside bracket) a V (b ∧ c) becomes (a V b) ∧ (a V c)

WFF to CNF - Example 2

- □ Convert B11 ⇔ (P12 V P21) to CNF
- \square Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$:
 - * (B11 \Rightarrow (P12 \vee P21)) \wedge ((P12 \vee P21) \Rightarrow B11).
- □ Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$:
 - ❖ (¬B11 ∨ P12 ∨ P21) ∧ (¬(P12 ∨ P21) ∨ B11)

- □ CNF requires ¬ to appear only in literals, so we "move ¬ inwards" by application of De Morgan :
 - ♦ (¬B11 V P12 V P21) ∧ ((¬P12 ∧ ¬P21) V B11)
- □ Now we have a sentence containing nested ∧ and ∨ operators applied to literals. We apply the distributivity law distributing ∨ over ∧ wherever possible.
 - ♦ (¬B11 V P12 V P21) A (¬P12 V B11) A (¬P21 V B11) → Conjunction of three Clauses

4/16/2024

pra-sâmi

4

Simple Knowledge Base

- ☐ Having defined the semantics for propositional logic, let's construct a knowledge base for the wumpus world
- □ Focus first on the immutable aspects
 - $P_{X,Y}$ is true if there is a pit in [x, y]
 - * $W_{X,Y}$ is true if there is a wumpus in [x, y], dead or alive
 - * $B_{X,Y}$ is true if the agent perceives a breeze in [x, y]
 - * $S_{X,Y}$ is true if the agent perceives a stench in [x, y]
 - * $V_{X,V}$ is true if [x, y] is visited.
 - * $G_{X,Y}$ true if there is gold in [x, y].
 - * $OK_{X,Y}$ true if [x, y] is safe.
- \Box Sentence to denote no pit at x, y will be $\neg P_{X,Y}$
- □ A square is breezy if and only if there is a pit in a neighboring square
 - $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

4/16/2024

5 Simple

- \Box Sentence to denote no pit at x, y will be $\neg P_{X,Y}$
 - ❖ R1:¬P_{1,1}
- □ A square is breezy if and only if there is a pit in a neighboring square
 - * R2: $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$
 - * R3: $B_{1,2} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{1,3})$
- ☐ Breeze percept of first two squares will be:
 - ❖ R4:¬B_{1,1}
 - R5: $B_{1,2}$ Knowledge Base

4/16/2024 **pra-sâmi**

Simple Inference Procedure

- □ Whether KB $\vDash \alpha$ for some sentence α
 - ❖ Is ¬ $P_{2,1}$ entailed by our KB?
- □ Model-checking approach:
 - Direct implementation of the definition of entailment: enumerate the models, and check that α is true in every model in which KB is true
- □ Wumpus-world example:
 - * Relevant proposition symbols : $B_{1,1}$, $B_{1,2}$, $P_{1,1}$, $P_{1,2}$, $P_{1,1}$, $P_{1,2}$, $P_{1,3}$, $P_{2,1}$, $P_{2,2}$
 - ❖ 7 symbols → 2^7 = 128 models
 - \star KB is true in 3 models and $\neg P_{2,1}$ is true in all 3
 - * $P_{2,2}$ is true only in 2 and false in 1 \rightarrow cannot say whether there is a pit in 2,2

4/16/2024 **pra-sâmi**

Propositional Theorem Proving

- □ Apply rules of inference directly to the sentences in our knowledge base to construct a proof of the desired sentence without consulting models
- □ A few concepts:
 - * Logical Equivalence: two sentences α and β are logically equivalent if they are true in the same set of models $(\alpha \leftrightarrow \beta)$
 - ❖ Validity: A sentence is valid if it is true in all models (P V ¬P)
 - > Valid sentences are also known as tautologies—they are necessarily true
 - * Satisfiability: if it is true in, or satisfied by, some model.
 - \succ For example, the knowledge base given earlier, (R1 \land R2 \land R3 \land R4 \land R5), is satisfiable because there are three models in which it is true

4/16/2024

pra-sâmi

38

Inference Rules

- □ A chain of conclusions that leads to the desired goal
 - * The best-known rule is called Modus Ponens

$$\alpha \Rightarrow \beta, \alpha$$
 $\therefore \beta$

 \star For example, if ("WumpusAhead" \land "WumpusAlive") \Rightarrow "Shoot" and ("WumpusAhead" \land "WumpusAlive") are given, then "Shoot" can be inferred

4/16/2024

Inference Rules and Equivalences in the Wumpus World

Knowledge Base

□ No pit at x, y

- ❖ R1:¬P_{1,1}
- ☐ A square is breezy if and only if there is a pit in a neighboring square
 - \Rightarrow R2: $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$
 - * R3: $B_{1,2} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{1,3})$
- □ Breeze percept of first two square relations $+ R4 : -B_{1,1}$ R5: $+ B_{1,2}$ But if the available interest $+ B_{1,2}$

Using R1 to R5

- ☐ Apply bi-conditional elimination to R2 to obtain * R6: $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- ☐ Apply And-Elimination to Porto obtain
- \Rightarrow R7 : $B_{1,1}$ ⇒ ($P_{1,1}$ is $P_{2,1}$)

 □ Logical equivalence for contrapositives gives R8: $(\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}))$
 - \square From the percept R4 (i.e., $\neg B_{1.1}$)
 - ❖ R9: ¬ $(P_{1,2} ∨ P_{2,1})$
 - □ Apply De Morgan's Rule ❖ R10: ¬ $P_{1,2}$ ∧ ¬ $P_{2,1}$

4/16/2024

Neither [1,2] nor [2,1] contains a pit

pra-sâmi

Proof by Resolution

- □ Consider: the agent returns from [1,2] to [1,1] and then goes to [2,1], where it perceives a stench, but no breeze.
- □ Add the following facts to the knowledge base:
 - ❖ R11: ¬ B_{2.1}
 - * R12: $B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{1,3})$

4/16/2024

Prove that Wumpus is in [3, 1]

- \square We know that $S_{1,1} \to W_{1,1} \lor W_{1,2} \lor W_{2,1}$ and also agent did not detect any stench [1, 1] so $\neg S_{1,1}$
 - Hence: $\neg S_{1,1} \rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$
 - And-Elimination Rule : $\neg W_{1,1}$, $\neg W_{1,2}$, $\neg W_{2,1}$
- \Box We know that $S_{1,2} \to W_{1,2} \lor W_{2,2} \lor W_{1,3}$ and also agent did not detect any stench [1, 2] so $\neg S_{1,2}$
 - ♦ Hence: $\neg S_{1,2} \rightarrow \neg W_{1,2} \land \neg W_{2,2} \land \neg W_{1,3}$
 - And-Elimination Rule: $\neg W_{1,2}$, $\neg W_{2,2}$, $\neg W_{1,3}$
- \square We know that $S_{2,1} \rightarrow W_{1,1} \lor W_{2,1} \lor W_{2,2} \lor W_{3,1}$ and agent did detect stench in the [2,1]
 - $\bullet \ \, \mathsf{Hence} S_{2,1} \to W_{1,1} \,\,\mathsf{V}\,\, W_{2,1} \,\,\mathsf{V}\,\, W_{2,2} \,\,\mathsf{V}\,\, W_{3,1}$

4/16/2024 **pra-sâmi**

43	Beyond Propositional Logic	
	☐ In propositional logic, we can only represent the facts	
	□ Facts which are either true or false	
	 □ Not sufficient to represent the complex sentences or natural language statements ★ Example: Every rose has a thorn 	
	☐ Has very limited expressive power	
	□ So we use First Order Logic → First-order logic is also known as Predicate logic or First-order predicate logic	
	4/16/2024	pra-sâmi

Arguments in Propositional Logic

- ☐ An argument in propositional logic is a sequence of propositions
- □ All but the final proposition are called premises.
 - * The last statement is the conclusion
- ☐ The argument is valid if the premises imply the conclusion
- □ An argument form is an argument that is valid no matter what propositions are substituted into its propositional variables
- $\ \square$ If the premises are p_1,p_2,\ldots,p_n and the conclusion is q then
 - $\ \, \boldsymbol{\div} \ \, (p_1 \wedge \, p_2 \wedge \, \ldots \, \wedge \, p_n) \rightarrow \mathsf{q} \\$
- □ Inference rules are all argument simple argument forms that will be used to construct more complex argument forms.

Discover some useful inference rules!

4/16/2024

pra-sâmi

48

Modus Ponens or Law of Detachment

□ Modus Ponens → mode that affirms

- □ Let p be "It is snows."
- □ Let q be "I will study ."
- $\ \square$ then $p \rightarrow q$ becomes "If it is snows, then I will study."
- ☐ "It is snowing."
 - "Therefore, I am studying."

□ Corresponding Tautology:

$$(p \land (p \rightarrow q)) \rightarrow q$$

□ Proof using Truth Table:

р	q	p → q
Т	T	T
Т	F	F
F	T	T
F	F	T

4/16/2024

Modus Tollens or Denying the Consequent

- □ Let p be "It is snowing."
- □ Let q be "I will study."
- \Box then $p \rightarrow q$ becomes "If it is snowing, then I will study ."
- ☐ "I will not study" is True
 - ❖ Therefore , "it is not snowing" is also True

□ Corresponding Tautology:

$$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$$

□ Proof using Truth Table:

р	q	$\mathbf{p} \rightarrow \mathbf{q}$
Т	Т	T
Т	F	F
F	Т	Т
F	F	Т

4/16/2024 **pra-sâmi**

Hypothetical Syllogism or Transitivity of Implication or Chain Argument

$$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \end{array}$$

- □ Let p be "It is snowing".
- □ Let q be "I will study".
- □ Let r be "I will get an A".

4/16/2024

- ☐ If "it is snowing" is true then "I will study", if "I will study" is true then "I will get an A"
 - ❖ Therefore "it is snowing" then "I will get an A"

□ Corresponding Tautology:

(($p \rightarrow q$) Λ ($q \rightarrow r$)) \rightarrow ($p \rightarrow r$)

р	q	r	p → q	q→r	$p \rightarrow r$
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F
T	F	Т	F	Т	Т
Т	F	F	F	Т	F
F	T	T	T	T	T
F	Т	F	Т	F	Т
F	F	T	T	T	T
F	F	F	Т	Т	Т

Disjunctive Syllogism or Disjunction Elimination or Elimination

p ∨ q

□ Corresponding Tautology:

 $((p \lor q) \land \neg p) \rightarrow q$

- □ Let p be "It is a banana".
- □ Let q be "It is an Apple".
- □ If I pull out one fruit out of the basket and it's not a banana → it will be an apple.

4/16/2024

pra-sâmi

52

Addition or Disjunction Introduction

p ∴ p **V** q □ Corresponding Tautology:

 $p \rightarrow (p V q)$

- □ Let p be "I will study AI".
- ☐ Let q be "I will visit Mumbai".
- ☐ If "I will study AI" is true.
 - ❖ Therefore, "I will study AI or I will visit Mumbai" is also true.

4/16/2024

Simplification or Conjunction Elimination

□ Corresponding Tautology:

$$(p \land q) \rightarrow p$$

- □ Let p be "It's raining".
- □ Let q be "It's pouring".
- □ If "It's raining and it's pouring" is true.
 - Therefore, "It's raining" is also true.

4/16/2024

pra-sâmi

Conjunction or Conjunction Introduction

 $\hfill \square$ Corresponding Tautology:

$$((p) \land (q)) \rightarrow (p \land q)$$

- $\begin{array}{c} & : & p \quad \land \quad q \\ \\ \hline \ensuremath{\square} & \text{Let p be "It's raining."} \end{array}$
- □ Let q be "It's pouring."
- ☐ If "It's raining" is true and "it's pouring" is true.
 - Therefore, "It's raining and it's pouring" is also true.

4/16/2024

Resolution

p V q ¬рVг ∴ q V r

□ Corresponding Tautology:

((p V q) Λ (\neg p V r)) \rightarrow (q V r)

□ Let p be "I will study discrete math."

- ☐ Let q be "I will study databases."
- □ Let r be "I will study English literature.
- ☐ "I will study discrete math or I will study databases." "I will not study discrete math or I will study English literature."
 - "Therefore, I will study databases or English literature."

Let's Work out another example!

Resolution plays an important role in Artificial

Intelligence and is used in the programming

language Prolog.

4/16/2024 pra-sâmi

Resolution

- □ Problem 1: Use resolution to show that the hypothesis
 - "Mohan is a bad boy or Bhavna is a good girl" and

"Mohan is a good boy or Gunjan is happy" implies the conclusion

"Bhavna is a good girl or Gunjan is happy"

□ Solution: let p denotes "Mohan is a good boy" q denotes "Bhavna is a good girl" and r denotes "Gunjan is happy".

C1 : ¬ p V q C2 : p V r

∴ C3 : q V r Negating C3 $C3 : \neg (q V r)$ $= \neg q \land \neg r$

4/16/2024

C1 : ¬ p V q C2 : p V r C3 : ¬ q C4 : ¬ r

From C1 and C2 \rightarrow C5 : q V r From C3 and C5 \rightarrow C6: r

From C6 and C4 \rightarrow C6 : \Box (empty)

Hence conclusion is proven!

Proof by Cases or Disjunction Elimination

 $\begin{array}{ccc}
p & q \\
r & q \\
p & V & r
\end{array}$ $\vdots \quad q$

 $\hfill \square$ Corresponding Tautology:

((p \rightarrow q) Λ (r \rightarrow q) Λ (p V r)) \rightarrow q

□ Apple is a fruit, banana is a fruit, I have apple or banana → I have a fruit!

■ Example:

- Let p be "I will study discrete math."
- Let q be "I will study Computer Science."
- Let r be "I will study databases."
- "If I will study discrete math, then I will study Computer Science."
- "If I will study databases, then I will study Computer Science."
- "I will study discrete math or I will study databases."
- □ "Therefore, I will study Computer Science."

4/16/2024

pra-sâmi

Constructive Dilemma or Disjunction of modus ponens

 $\begin{array}{ccc}
p & \rightarrow & q \\
r & \rightarrow & s \\
p & V & r
\end{array}$

☐ Corresponding Tautology:

(($p \rightarrow q$) Λ ($r \rightarrow s$) Λ (p V r)) \rightarrow (q V s)

∴ q V r

■ Example:

- Let p be "I will study discrete math."
- Let q be "I will study computer science."
- Let r be "I will study protein structures."
- Let s be "I will study biochemistry."
- * "If I will study discrete math, then I will study computer science."
- "If I will study protein structures, then I will study biochemistry."
- "I will study discrete math or I will study protein structures."
- ☐ "Therefore, I will study computer science or biochemistry."

4/16/2024

Destructive Dilemma or Disjunction of modus tollens

 $\begin{array}{ccc}
p & \rightarrow & q \\
r & \rightarrow & s \\
\neg q & V & \neg s
\end{array}$

☐ Corresponding Tautology:

 $((\ p \ \rightarrow \ q) \ \land \ (\ r \ \rightarrow \ s \) \ \land \ (\neg q \ V \ \neg \ s)) \ \rightarrow \ (\neg p \ V \ \neg \ r)$

∴ ¬p V ¬ r

■ Example:

- Let p be "I will study discrete math."
- Let q be "I will study computer science."
- Let r be "I will study protein structures."
- Let s be "I will study biochemistry."
- "If I will study discrete math, then I will study computer science."
- "If I will study protein structures, then I will study biochemistry."
- "I will not study computer science or I will not study biochemistry."
- □ "Therefore, I will not study discrete math or I will not study protein structures."

4/16/2024

pra-sâmi

50

Absorption

∴ p → (p Λ q)

□ Corresponding Tautology:

 $(p \rightarrow q) \rightarrow (p \rightarrow (p \land q))$

■ Example:

- Let p be "I will study discrete math."
- Let q be "I will study computer science."
- "If I will study discrete math, then I will study computer science."
- □ "Therefore, if I will study discrete math, then I will study discrete mathematics and I will study computer science."

4/16/2024

Building Valid Arguments

- □ A valid argument is a sequence of statements where each statement is either a premise or follows from previous statements (called premises) by rules of inference. The last statement is called conclusion.
- □ A valid argument takes the following form:
 - Premise 1
 - Premise 2
 - Premise 3
 - * •
 - * •
 - * •
 - Premise n
 - Conclusion

4/16/2024

pra-sâmi

62

Valid Arguments

□ Example: From the single proposition

$$p \land (p \rightarrow q)$$

Shows that q is conclusion

□ Solution:

No	Step	Reason
1	$p \land (p \rightarrow q)$	Premise
2	р	Conjunction using (1)
3	p → q	Conjunction using (1)
4	q	Modus Ponens using (2) and (3)

4/16/2024

Valid Arguments

Example

□ With these hypotheses:

- "It is not sunny this afternoon and it is colder than yesterday."
- "We will go swimming only if it is sunny."
- "If we do not go swimming, then we will take a canoe trip."
- "If we take a canoe trip, then we will be home by sunset."
- □ Using the inference rules, construct a valid argument for the conclusion:
 - "We will be home by sunset."

Solution

- □ Choose propositional variables:
 - ❖ p: "It is sunny this afternoon."
 - q: "It is colder than yesterday."
 - ❖ r: "We will go swimming."
 - ❖ s: "We will take a canoe trip."
 - t: "We will be home by sunset."
- □ Translation into propositional logic:

Hypotheses:

((¬p
$$\Lambda$$
 q) Λ (p \rightarrow r) Λ (¬r \rightarrow s) Λ (s \rightarrow t)

Conclusion: t

4/16/2024

pra-sâmi

Valid Arguments

■ Example:

4/16/2024

Hypotheses: (($\neg p \land q$) \land ($r \rightarrow p$) \land ($\neg r \rightarrow s$) \land ($s \rightarrow t$)

Conclusion: t

No	Step	Reason
1	¬p ∧ q	Premise
2	¬р	Simplification using (1)
3	p → r	Premise
4	¬r	Modus tollens using (2) and (3)
5	¬r → s	Premise
6	S	Modus Ponens using (4) and (5)
7	s → t	Premise
8	t	Modus Ponens using (6) and (7)

- p: "It is sunny this afternoon."
- q: "It is colder than yesterday."
- r: "We will go swimming."
- s: "We will take a canoe trip."
- t: "We will be home by sunset."

Programming domain for AI

- □ Artificial intelligence (AI) is a broad area of computer applications
 - Very heavy on logic and interpretations
 - * Characterized by the use of symbolic rather than numeric computations.
 - Implying that symbols, consisting of names rather than numbers, are manipulated
 - More convenient to use linked lists of data rather than arrays.
- □ Lisp (McCarthy et al., 1965):
 - ❖ Functional language
 - * First widely used programming language developed for AI applications was
 - * Most Al applications developed prior to 1990 were written in Lisp or one of its close relatives
- □ Prolog (Clocksin and Mellish, 2013):
 - logic programming
 - Alternative approach appeared in early 1970s
- □ More recently, some AI applications have been written in systems languages such as C. Scheme (Dybvig, 2009), a dialect of Lisp, and Prolog

4/16/2024