SUE SUSANS † , JAMES JAMESON † , AND A. U. THORS ‡

Abstract. An example of SIAM IATEX macros is presented. Various aspects of composing manuscripts for SIAM's journal series are illustrated with actual examples from accepted manuscripts. SIAM's stylistic standards are adhered to throughout and are illustrated. When writing your own abstract, keep it to a single paragraph, avoid displayed math, and use standard TeX terms instead of your own definitions.

Key words. sign-nonsingular matrix, LU-factorization, indicator polynomial

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction and examples. This paper presents a sample file for the use of SIAM's IATEX macro package. It illustrates the features of the macro package, using actual examples culled from various papers published in SIAM's journals. It is to be expected that this sample will provide examples of how to use the macros to generate standard elements of journal papers. This paper also serves as an example of SIAM's stylistic preferences for the formatting of such elements as bibliographic references, displayed equations, and equation arrays, among others. More information about SIAM's editorial style can be found in the style manual, available at http://www.siam.org/journals/pdf/stylemanual.pdf.

Note: This paper is not to be read in any form for content. The conglomeration of equations, lemmas, and other text elements were put together solely for typographic illustrative purposes and don't make any sense as lemmas, equations, etc.

1.1. Sample text. The following are a few sentences showing normal setup of math in text: Let $S = [s_{ij}]$ $(1 \le i, j \le n)$ be a (0, 1, -1)-matrix of order n. Then S is a sign-nonsingular matrix (SNS-matrix) provided that each real matrix with the same sign pattern as S is nonsingular. There has been considerable recent interest in constructing and characterizing SNS-matrices [1], [4], [16]. There has also been interest in strong forms of sign-nonsingularity [2]. In this paper we give a new generalization of SNS-matrices and investigate some of their basic properties.

Blackboard bold characters, such as \mathbb{C} and \mathbb{R} , should be created with use of the amssymb package and its definitions.

Let $S = [s_{ij}]$ be a (0, 1, -1)-matrix of order n and let $C = [c_{ij}]$ be a real matrix of order n. The pair (S, C) is called a matrix pair of order n. Throughout, $X = [x_{ij}]$ denotes a matrix of order n whose entries are algebraically independent indeterminates over the real field. Let $S \circ X$ denote the Hadamard product (entrywise product) of S and X. We say that the pair (S, C) is a sign-nonsingular matrix pair of order n, abbreviated SNS-matrix pair of order n, provided that the matrix

$$A = S \circ X + C$$

is nonsingular for all positive real values of the x_{ij} . If C = O then the pair (S, O) is a

 $^{^*}$ This work was supported by the Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania.

[†]Production Department, Society for Industrial and Applied Mathematics, 3600 Market St., Philadelphia, PA 19104-2688 (pseudonym@siam.org, alias@siam.org).

[‡]Institute of Applied Mathematics, Department of Mathematics, Vancouver, BC V6T 1Z1, Canada (au.thors@math.ubc.ca). The research of this author was partially supported by various foundation grants.

42

43

44

SNS-matrix pair if and only if S is a SNS-matrix. If S = O then the pair (O, C) is a SNS-matrix pair if and only if C is nonsingular. Thus SNS-matrix pairs include both nonsingular matrices and sign-nonsingular matrices as special cases. Now let $\alpha > 0$ and let x^* be the weak*-limit of some net $\{x_{\tau}^*\} \subseteq (\sum_{i \in I} N_{C_i}(x)) \cap \alpha \mathbf{B}$.

Matrices of no more than two rows appearing in text should be created with the commands atop, choose, or smallmatrix: The multiplication is conformable at the block level, and the orthogonal matrix $\begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$, said to be in bidiagonal-block form, can be parameterized by $\theta_1, \ldots, \theta_r \in [0, \frac{\pi}{2}]$ and $\phi_1, \ldots, \phi_{r-1} \in [0, \frac{\pi}{2}]$. Matrices with three or more rows should be used in display equations: The pairs (S, C) with

$$S = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \qquad C = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right]$$

49 and

50

52

53

62

65

66

67

69

70

71

72

73

74

75

$$S = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}$$

are examples of SNS-matrix pairs.

1.2. A remuneration list. In this paper we consider the evaluation of integrals of the following forms:

$$\int_{a}^{b} \left(\sum_{i} E_{i} B_{i,k,x}(t) \right) \left(\sum_{j} F_{j} B_{j,l,y}(t) \right) dt,$$

$$\int_{a}^{b} f(t) \left(\sum_{i} E_{i} B_{i,k,x}(t) \right) dt,$$

where $B_{i,k,x}$ is the *i*th B-spline of order k defined over the knots $x_i, x_{i+1}, \ldots, x_{i+k}$. We will consider B-splines normalized so that their integral is one. The splines may be of different orders and defined on different knot sequences x and y. Often the limits of integration will be the entire real line, $-\infty$ to $+\infty$. Note that (1.1) is a special case of (1.2) where f(t) is a spline [7].

There are five different methods for calculating (1.1) that will be considered:

- 1. Use Gauss quadrature on each interval.
- 2. Convert the integral to a linear combination of integrals of products of B-splines and provide a recurrence for integrating the product of a pair of B-splines.
- 3. Convert the sums of B-splines to piecewise Bézier format and integrate segment by segment using the properties of the Bernstein polynomials.
- 4. Express the product of a pair of B-splines as a linear combination of B-splines. Use this to reformulate the integrand as a linear combination of B-splines, and integrate term by term.
 - 5. Integrate by parts.

Of these five, only methods 1 and 5 are suitable for calculating (1.2). The first four methods will be touched on and the last will be discussed at length.

1.3. Some displayed equations and {eqnarray}s. By introducing the product topology on $R^{m \times m} \times R^{n \times n}$ with the induced inner product

$$\langle (A_1, B_1), (A_2, B_2) \rangle := \langle A_1, A_2 \rangle + \langle B_1, B_2 \rangle,$$

 $_{77}$ we calculate the Fréchet derivative of F as follows:

78
$$F'(U,V)(H,K) = \langle R(U,V), H\Sigma V^T + U\Sigma K^T - P(H\Sigma V^T + U\Sigma K^T) \rangle$$
79
$$(1.4) = \langle R(U,V), H\Sigma V^T + U\Sigma K^T \rangle$$
80
$$= \langle R(U,V)V\Sigma^T, H \rangle + \langle \Sigma^T U^T R(U,V), K^T \rangle.$$

In the middle line of (1.4) we have used the fact that the range of R is always perpendicular to the range of P. The gradient ∇F of F, therefore, may be interpreted as the pair of matrices:

$$\nabla F(U, V) = (R(U, V)V\Sigma^T, R(U, V)^TU\Sigma) \in R^{m \times m} \times R^{n \times n}.$$

Because of the product topology, we know

86 (1.6)
$$\mathcal{T}_{(U,V)}(\mathcal{O}(m) \times \mathcal{O}(n)) = \mathcal{T}_{U}\mathcal{O}(m) \times \mathcal{T}_{V}\mathcal{O}(n),$$

where $\mathcal{T}_{(U,V)}(\mathcal{O}(m) \times \mathcal{O}(n))$ stands for the tangent space to the manifold $\mathcal{O}(m) \times \mathcal{O}(n)$ at $(U,V) \in \mathcal{O}(m) \times \mathcal{O}(n)$ and so on. The projection of $\nabla F(U,V)$ onto $\mathcal{T}_{(U,V)}(\mathcal{O}(m) \times \mathcal{O}(n))$, therefore, is the product of the projection of the first component of $\nabla F(U,V)$ onto $\mathcal{T}_U\mathcal{O}(m)$ and the projection of the second component of $\nabla F(U,V)$ onto $\mathcal{T}_V\mathcal{O}(n)$. In particular, we claim that the projection g(U,V) of the gradient $\nabla F(U,V)$ onto $\mathcal{T}_{(U,V)}(\mathcal{O}(m) \times \mathcal{O}(n))$ is given by the pair of matrices:

$$g(U,V) = \left(\frac{R(U,V)V\Sigma^{T}U^{T} - U\Sigma V^{T}R(U,V)^{T}}{2}U, \frac{R(U,V)^{T}U\Sigma V^{T} - V\Sigma^{T}U^{T}R(U,V)}{2}V\right).$$

96 Thus, the vector field

100

104

106

109

97 (1.8)
$$\frac{d(U,V)}{dt} = -g(U,V)$$

defines a steepest descent flow on the manifold $\mathcal{O}(m) \times \mathcal{O}(n)$ for the objective function F(U,V).

2. Environments. Let (S, C) be a matrix pair of order n. The determinant

$$\det(S \circ X + C)$$

is a polynomial in the indeterminates of X of degree at most n over the real field. We call this polynomial the *indicator polynomial* of the matrix pair (S, C) because of the following proposition.

THEOREM 2.1 (see [20]). The matrix pair (S, C) is a SNS-matrix pair if and only if all the nonzero coefficients in its indicator polynomial have the same sign and there is at least one nonzero coefficient.

Proof. Assume that (S, C) is a SNS-matrix pair. Clearly the indicator polynomial has a nonzero coefficient. Consider a monomial

$$b_{i_1,...,i_k;j_1,...,j_k} x_{i_1j_1} \cdots x_{i_kj_k}$$

occurring in the indicator polynomial with a nonzero coefficient. By taking the x_{ij} that occur in (2.1) large and all others small, we see that any monomial that occurs

117

118

119

in the indicator polynomial with a nonzero coefficient can be made to dominate all others. Hence all the nonzero coefficients have the same sign. The converse is immediate. \Box

For SNS-matrix pairs (S, C) with C = O the indicator polynomial is a homogeneous polynomial of degree n. In this case Theorem 2.1 is a standard fact about SNS-matrices.

LEMMA 2.2 (stability). Given T > 0, suppose that $\|\epsilon(t)\|_{1,2} \le h^{q-2}$ for $0 \le t \le T$ and $q \ge 6$. Then there exists a positive number B that depends on T and the exact solution ψ only such that for all $0 \le t \le T$,

$$\frac{d}{dt} \|\epsilon(t)\|_{1,2} \le B(h^{q-3/2} + \|\epsilon(t)\|_{1,2}) .$$

The function B(T) can be chosen to be nondecreasing in time.

Theorem 2.3. The maximum number of nonzero entries in a SNS-matrix S of order n equals

$$\frac{n^2+3n-2}{2}$$

with equality if and only if there exist permutation matrices such that $P|S|Q = T_n$ where

$$T_{n} = \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 & 1 \\ 1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 1 & \cdots & 1 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 1 & 1 \end{vmatrix}.$$

We note for later use that each submatrix of T_n of order n-1 has all 1s on its main diagonal.

We now obtain a bound on the number of nonzero entries of S in a SNS-matrix pair (S, C) in terms of the degree of the indicator polynomial. We denote the strictly upper triangular (0,1)-matrix of order m with all 1s above the main diagonal by U_m . The all 1s matrix of size m by p is denoted by $J_{m,p}$.

Proposition 2.4 (convolution theorem). Let

$$a * u(t) = \int_0^t a(t - \tau)u(\tau)d\tau, \quad t \in (0, \infty).$$

136 Then

128

130

131

132

133

134

137

141

$$\widehat{a*u}(s) = \widehat{a}(s)\widehat{u}(s).$$

Lemma 2.5. For $s_0 > 0$, if

$$\int_0^\infty e^{-2s_0 t} v^{(1)}(t) v(t) dt \le 0 ,$$

then

$$\int_0^\infty e^{-2s_0 t} v^2(t) dt \le \frac{1}{2s_0} v^2(0).$$

COROLLARY 2.6. Let E satisfy (5)–(6) and suppose E^h satisfies (7) and (8) with a general G. Let $G = \nabla \times \Phi + \nabla p$, $p \in H_0^1(\Omega)$. Suppose that ∇p and $\nabla \times \Phi$ satisfy all the assumptions of Theorems 2.1 and 2.3, respectively. In addition suppose all the regularity assumptions of Theorems 2.1 and 2.3 are satisfied. Then for $0 \le t \le T$ and $0 < \epsilon \le \epsilon_0$ there exists a constant $C = C(\epsilon, T)$ such that

$$||(\boldsymbol{E} - \boldsymbol{E}^h)(t)||_0 < Ch^{k+1-\epsilon}$$

where C also depends on the constants given in Theorems 4.1 and 4.2.

DEFINITION 2.7. Let S be an isolated invariant set with isolating neighborhood N. An *index pair* for S is a pair of compact sets (N_1, N_0) with $N_0 \subset N_1 \subset N$ such that:

(i) $cl(N_1 \setminus N_0)$ is an isolating neighborhood for S.

- (ii) N_i is positively invariant relative to N for i=0,1, i.e., given $x \in N_i$ and $x \cdot [0,t] \subset N$, then $x \cdot [0,t] \subset N_i$.
- (iii) N_0 is an exit set for N_1 , i.e. if $x \in N_1$, $x \cdot [0, \infty) \not\subset N_1$, then there is a $T \ge 0$ such that $x \cdot [0, T] \subset N_1$ and $x \cdot T \in N_0$.

SIAM's preferred style for environments such as remarks, assumptions, and examples is italic lowercase headings and roman text. They can be formatted by adding the line

{\newtheorem{remark}[theorem]{\textit{Remark}}}

(as appropriate) to the preamble. The body of each remark is made italic with the command rm.

Remark 2.8 (Lagrange multipliers). The multipliers p, p_1 , p_2 are the Lagrange multipliers for the given constraints. The Lagrange multiplier p represents the PDE constraint, the multiplier p_1 gives the dependency of the initial control w to the initial condition $\rho(0,\cdot)$, and, finally, p_2 represents the relation between the control a and the inflow $\lambda(W(\cdot,\rho))\rho(\cdot,0)$.

Assumption 2.9 (compatibility conditions on a_d , $\rho_{0,d}$ and $\rho_{1,d}$, $\rho_{T,d}$ and the weights in the cost functional). For continuity reasons, we require the two compatibility conditions

$$a_{\rm d}(0) = \lambda(W(0, \rho_{\rm 0.d})) \, \rho_{\rm 0.d}(0), \qquad \rho_{\rm 1.d}(T) = \rho_{\rm T.d}(1)$$

to hold at the origin (0,0) and at the final point (T,1), respectively, and the conditions on the weights in the cost functional, that is,

$$\alpha = \lambda (W(0, \rho_{0,d}))^{-1} \epsilon, \qquad \gamma = \delta.$$

There is no default style for algorithms in the macro at present, but the preferred style would have a heading like that for theorems, i.e., small caps. The body of the algorithm, if not code, may be either italic or roman. The following sample uses the algorithm style package, with the addition of a definition to change the appearance of the heading.

2.1. Numerical experiments, with figures and tables. We conducted numerical experiments in computing inexact Newton steps for discretizations of a *modified Bratu problem*, given by

$$\Delta w + c e^w + d \frac{\partial w}{\partial x} = f \quad \text{in } D,$$
184 (2.4)
185
$$w = 0 \quad \text{on } \partial D,$$

```
ALGORITHM 1. T = \text{BuildTree}(d, p).

Define P := T := \{\{1\}, \dots, \{d\}\}

while \#P > 1 do

Choose C' \in \mathcal{C}_p(P) with C' := \operatorname{argmin}_{C \in \mathcal{C}_p(P)} \varrho(C)

Find an optimal partition tree T_{C'}

Update P := (P \setminus C') \cup \{\bigcup_{t \in C'} t\}

Update T := T \cup \{\bigcup_{t \in \tau} t : \tau \in T_{C'} \setminus \mathcal{L}(T_{C'})\}

end while

return T
```

```
(a) (b) \epsilon_{\text{max}} \in \overline{\text{max}} = 5\% \quad 0.5\%
```

Fig. 2.1. Avoid use of low line weights and light colors, which tend to disappear during printing. Compare with Figure 2.2.

where c and d are constants. The actual Bratu problem has d = 0 and $f \equiv 0$. It provides a simplified model of nonlinear diffusion phenomena, e.g., in combustion and semiconductors, and has been considered by Glowinski, Keller, and Rheinhardt [14], as well as by a number of other investigators; see [14] and the references therein. See also problem 3 by Glowinski and Keller and problem 7 by Mittelmann in the collection of nonlinear model problems assembled by Moré [17]. The modified problem (2.4) has been used as a test problem for inexact Newton methods by Brown and Saad [9].

In our experiments, we took $D = [0, 1] \times [0, 1]$, $f \equiv 0$, c = d = 10, and discretized (2.4) using the usual second-order centered differences over a 100×100 mesh of equally spaced points in D. In GMRES(m), we took m = 10 and used fast Poisson right preconditioning as in the experiments in section 2. The computing environment was as described in section 2. All computing was done in double precision.

In the first set of experiments, we allowed each method to run for 40 GMRES(m) iterations, starting with zero as the initial approximate solution, after which the limit of residual norm reduction had been reached. The results are shown in Figure 2.1. In Figure 2.1, the top curve was produced by method FD1. The second curve from the top is actually a superposition of the curves produced by methods EHA2 and FD2; the two curves are visually indistinguishable. Similarly, the third curve from the top is a superposition of the curves produced by methods EHA4 and FD4, and the fourth curve from the top, which lies barely above the bottom curve, is a superposition of the curves produced by methods EHA6 and FD6. The bottom curve was produced by method A.

In the second set of experiments, our purpose was to assess the relative amount of computational work required by the methods which use higher-order differencing to reach comparable levels of residual norm reduction. We compared pairs of methods EHA2 and FD2, EHA4 and FD4, and EHA6 and FD6 by observing in each of 20 trials the number of GMRES(m) iterations, number of F-evaluations, and run time required by each method to reduce the residual norm by a factor of ϵ , where for each pair of methods ϵ was chosen to be somewhat greater than the limiting ratio of final to initial residual norms obtainable by the methods. In these trials, the initial approximate solutions were obtained by generating random components as in the similar experiments in section 2. We note that for every method, the numbers of

g replacements	PSfrag replacements
$\lambda^2 = 1$	$\lambda^2 = 1$
$\lambda^2 = 10^{-3}$	$\lambda^2 = 10^{-3}$
$\lambda^2 = 10^{-7}$	$\lambda^2 = 10^{-7}$
$\lambda^2 = 0$	$\lambda^2 = 0$
Δt	Δt
L^1 error on N	L^1 error on N
L^1 error on Ψ	L^1 error on Ψ

219

220

221

222

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239

241

Fig. 2.2. Note darker lines on this figure.

Tables are to appear in 8-point (footnotesize) type.

		Number of	Number of	Mean run time	Standard
Method	ϵ	iterations	F-evaluations	(seconds)	deviation
EHA2	10^{-10}	26	32	47.12	.1048
FD2	10^{-10}	26	58	53.79	.1829
EHA4	10^{-12}	30	42	56.76	.1855
FD4	10^{-12}	30	132	81.35	.3730
EHA6	10^{-12}	30	48	58.56	.1952
FD6	10^{-12}	30	198	100.6	.3278

GMRES(m) iterations and F-evaluations required before termination did not vary at all over the 20 trials. The GMRES(m) iteration counts, numbers of F-evaluations, and means and standard deviations of the run times are given in Table 1.

In our first set of experiments, we took c = d = 10 and used right preconditioning with a fast Poisson solver from FISHPACK [21], which is very effective for these fairly small values of c and d. We first started each method with zero as the initial approximate solution and allowed it to run for 40 GMRES(m) iterations, after which the limit of residual norm reduction had been reached. Figure 2.2 shows plots of the logarithm of the Euclidean norm of the residual versus the number of GMRES(m)iterations for the three methods. We note that in Figure 2.2 and in all other figures below, the plotted residual norms were not the values maintained by GMRES(m), but rather were computed as accurately as possible "from scratch." That is, at each GMRES(m) iteration, the current approximate solution was formed and its product with the coefficient matrix was subtracted from the right-hand side, all in double precision. It was important to compute the residual norms in this way because the values maintained by GMRES(m) become increasingly untrustworthy as the limits of residual norm reduction are neared; see [22]. It is seen in Figure 2.2 that Algorithm EHA achieved the same ultimate level of residual norm reduction as the FDP method and required only a few more GMRES(m) iterations to do so.

In our second set of experiments, we took c = d = 100 and carried out trials analogous to those in the first set above. No preconditioning was used in these experiments, both because we wanted to compare the methods without preconditioning and because the fast Poisson preconditioning used in the first set of experiments is not cost effective for these large values of c and d. We first allowed each method to run

244

245

246

247

248

249

251

252

253

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274 275

276

277 278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

for 600 GMRES(m) iterations, starting with zero as the initial approximate solution, after which the limit of residual norm reduction had been reached.

- 3. Numbering and linking within the article. The SIAM macro numbers sections, environments, and equations by section. Environments may be given single numbers by using the optional argument onethmnum in the documentclass command, and equations are single numbered by including one-eqnum. Tables and figures are given single numbers in the current SIAM macro to facilitate linking in the PDF.
- 4. References. References are usually numbered, but the author may also use a combination of letters and numbers in brackets after bibitem to create reference identifiers of his or her choice. Use of natbib is also permitted.

The aforementioned style manual contains many examples of preferred styles for different types of references.

5. Supplemental material. Authors should use the standard SIAM macro for supplemental material that resembles the normal article, such as appendices. Ideally, numbered items should be prefaced by the letter M (as in Theorem M.1).

Acknowledgments. The authors thanks the anonymous authors whose work largely constitutes this example file. We are also thankful for the many recommendations and suggestions that have made this macro example file what it is today.

REFERENCES

- R. A. BRUALDI AND B. L. SHADER, On sign-nonsingular matrices and the conversion of the permanent into the determinant, in Applied Geometry and Discrete Mathematics, The Victor Klee Festschrift, P. Gritzmann and B. Sturmfels, eds., American Mathematical Society, Providence, RI, 1991, pp. 117–134.
- [2] J. Drew, C. R. Johnson, and P. van den Driessche, Strong forms of nonsingularity, Linear Algebra Appl., 162 (1992), to appear.
- [3] P. M. Gibson, Conversion of the permanent into the determinant, Proc. Amer. Math. Soc., 27 (1971), pp. 471–476.
- [4] V. Klee, R. Ladner, and R. Manber, Signsolvability revisited, Linear Algebra Appl., 59 (1984), pp. 131–157.
- [5] K. Murota, LU-decomposition of a matrix with entries of different kinds, Linear Algebra Appl., 49 (1983), pp. 275–283.
- [6] O. AXELSSON, Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations, Linear Algebra Appl., 29 (1980), pp. 1–16.
- [7] C. Bernardi, M. Dauge, and Y. Maday, Polynomials in the Sobolev World, https://hal.archives-ouvertes.fr/hal-00153795v1 (3 September 2007).
- [8] C. BOUTSIDIS, M.W. MAHONEY, AND P. DRINEAS, An improved approximation algorithm for the column subset selection problem, in Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2009, pp. 968–977.
- [9] P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 450–481.
- [10] I. CHATTOPADHYAY, Scalable ε-optimal self-organization in communicating swarms using implicit probabilistic automata, in Proceedings of the American Control Conference (ACC), IEEE Press, Piscataway, NJ, 2012, pp. 6047–6052.
- [11] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982), pp. 400–408.
- [12] S. C. EISENSTAT, H. C. ELMAN, AND M. H. SCHULTZ, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345–357.
- [13] H. C. Elman, Iterative methods for large, sparse, nonsymmetric systems of linear equations, Ph.D. thesis, Department of Computer Science, Yale University, New Haven, CT, 1982.
- [14] R. GLOWINSKI, H. B. KELLER, AND L. RHEINHART, Continuation-conjugate gradient methods for the least-squares solution of nonlinear boundary value problems, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 793–832.

294 [15] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Second ed., The Johns Hopkins 295 University Press, Baltimore, MD, 1989.

296

297 298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

- [16] C. P. LI AND F. H. ZENG, Finite difference methods for fractional differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1230014.
- [17] J. J. Moré, A collection of nonlinear model problems, in Computational Solutions of Nonlinear Systems of Equations, E. L. Allgower and K. Georg, eds., Lectures in Applied Mathematics, Vol. 26, American Mathematical Society, Providence, RI, 1990, pp. 723–762.
- [18] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp., 37 (1981), pp. 105–126.
- [19] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
- [20] CL. SCHILLINGS AND CH. SCHWAB, Sparsity in Bayesian inversion of parametric operator equations, Inverse Problems, 30 (2014), http://dx.doi.org/10.1088/0266-5611/30/6/065007.
- [21] P. N. SWARZTRAUBER AND R. A. SWEET, Efficient FORTRAN subprograms for the solution of elliptic partial differential equations, ACM Trans. Math. Software, 5 (1979), pp. 352–364.
- [22] H. F. Walker, Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 152–163.
- [23] H. F. WALKER, Implementations of the GMRES method, Computer Phys. Comm., 53 (1989), pp. 311–320.