

8.5 配合物的应用

1.分析化学方面

离子的鉴定

▲ 形成有色配离子

$$Cu^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2+}$$

深蓝色

$$Fe^{3+} + nSCN^{-} \rightarrow [Fe(NCS)_n]^{3-n}$$

血红色

▶ 形成难溶有色配合物

离子的分离

离子的掩蔽

2. 配位催化方面

配位催化——在有机合成中,利用配位反应而产生的催化作用。即反应分子先与催化剂活性中心配合,然后在配位界内进行反应。

如 Wacker法由乙烯合成乙醛

$$C_2H_4 + \frac{1}{2}O_2 \xrightarrow{\text{PdCl}_2 + \text{CuCl}_2} \text{CH}_3\text{CHO}$$

用PdCl₂和CuCl₂的稀HCl溶液催化,形成PdCl₃(C₂H₄)]-、[PdCl₂(OH)(C₂H₄)]-等中间产物,使C₂H₄活化。

3. 冶金工业方面

● 制备高纯金属——采用羰基化精炼技术

如。高纯铁粉的制取

Fe+5CO
$$\xrightarrow{200^{\circ}\text{C}}$$
 [Fe(CO)₅] $\xrightarrow{200\sim250^{\circ}\text{C}}$ 5CO+Fe (细粉)

• 提取贵金属

如:在NaCN溶液中,使Au被氧化形成[Au(CN)₂]-而溶解,然后用Zn粉置换出Au。

$$2[Au(CN)_2]^- + Zn \rightarrow [Zn(CN)_4]^{2-} + 2Au$$

● 稀有金属的分离

元素铌(Nb)、钽(Ta)在天然矿物中共生在一起,性质相似,分离困难。通过形成配位氟化物 K_2 Ta F_7 和 K_2 Nb F_7 ,可以分离铌、钽。因为 K_2 Nb F_7 较易水解,形成溶解度较大的 K_2 NbO F_5 ,而 K_2 Ta F_7 却不易水解,且溶解度较小。

4. 医疗方面

药物

结构不同,性质也不同:

顺 — 二氯二氨合铂

反 — 二氯二氨合铂

棕黄色 , m > 0

淡黄色 *, m* = 0

 $S = 0.2523 \text{ g}/100 \text{ g H}_2\text{O}$ $S = 0.0366 \text{ g}/100 \text{ g H}_2\text{O}$

具抗癌活性(干扰DNA复制)

不具抗癌活性

治疗金属中毒

对于铅中毒病人,可注射溶于生理盐水或

葡萄糖溶液的Na₂[Ca(EDTA)]:

 $Pb^{2+}+[Ca(EDTA)]^{2-}\rightarrow[Pb(EDTA)]^{2-}+Ca^{2+}$