Assumptions:

This course is for 3rd/4th year students in geoscience.

Basic background of physics are not preferred, but not required.

Apps developed by Jupyter Notebooks, Python and SimPEG are used, but strong software background is not required.

The Physics of Geophysical Prospecting Methods: Resistivity and Controlled Source vs Natural EM methods

Seogi Kang

Stanford University

Learning goals

Understand electrical resistivity and its linkage to geologic units.

Understand physical principles of Electromagnetic (EM) methods

- Charge build-up (or current channeling, galvanic currents)
- EM induction

Identify difference between controlled-source EM and magnetotellurics (MT)
Identify all EM methods are governed by the same physical principles
Understand survey setup of EM methods and data
Understand sensitivity of EM methods to conductors & resistors

Electromagnetic (EM) survey

Electrical resistivity (or conductivity)

DC resistivity is sensitive to:

- σ: Conductivity [S/m]
- ρ: Resistivity [Ωm]
- $\sigma = 1/\rho$

Varies over many orders of magnitude

Depends on many factors:

- Rock type
- Porosity
- Connectivity of pores
- Nature of the fluid
- Metallic content of the solid matrix

Electrical resistivity can be a diagnostic physical property for ...

3D resistivity model from an airborne EM survey

EM imaging – inverse problem

There are many models that can fit the data – non-uniqueness CRITICAL to understand underlying physics

Resistivity, Controlled-source EM, and Magnetotellurics

Direct Current resistivity

Controlled-source EM

Grounded source

Inductive source

Depth range

Magnetotellurics

meters

Electromagnetics: basic equations (quasi-static)

	Time	Frequency
Faraday's Law	$ abla imes ec{e} = -rac{\partial ec{b}}{\partial t}$	$ abla imes ec{E} = -i\omega ec{B}$
Ampere's Law	$ abla imes ec{h} = ec{j} + rac{\partial ec{d}}{\partial t}$	$ abla imes ec{H} = ec{J} + i\omega ec{D}$
No Magnetic Monopoles	$\nabla \cdot \vec{b} = 0$	$\nabla \cdot \vec{B} = 0$
Constitutive	$ec{j}=\sigmaec{e}$	$ec{J}=\sigmaec{E}$
Relationships (non-dispersive)	$ec{b}=\muec{h}$	$ec{B}=\muec{H}$
	$ec{d}=arepsilonec{e}$	$ec{D}=arepsilonec{E}$

Steady-state Maxwell's equations – DC resistivity method

	Full	Steady State	
Faraday	$\nabla \times \vec{e} = -\frac{\partial \vec{b}}{\partial t}$	$\nabla \times \vec{e} = 0 \qquad \vec{e} = -\nabla V$	
Ampere	$\nabla \times \vec{h} = \vec{j} + \frac{\partial \vec{d}}{\partial t} + \vec{j}_s$	$ abla \cdot ec{j} = - abla \cdot ec{j}_s$	
Ohm's Law	$ec{j}=\sigmaec{e}$		

Put it together

$$\nabla \cdot \sigma \nabla V = I\delta(r)$$

Potential in a homogeneous halfspace

$$V = \frac{I}{2\pi\sigma} \frac{1}{r} \qquad V = \frac{\rho I}{2\pi r}$$

$$V = \frac{\rho I}{2\pi r}$$

Currents and potentials: halfspace

$$V = \frac{\rho I}{2\pi r}$$

$$\rho = \frac{2\pi rV}{I}$$

Currents and potentials: 4-electrode array

$$\Delta V_{MN} = \rho I \underbrace{\frac{1}{2\pi} \left[\frac{1}{AM} - \frac{1}{MB} - \frac{1}{AN} + \frac{1}{NB} \right]}_{G}$$

Resistivity

$$\rho = \frac{\Delta V_{MN}}{IG}$$

G: geometric factor

Currents and Apparent resistivity

$$\Delta V_{MN} = \rho I \underbrace{\frac{1}{2\pi} \left[\frac{1}{AM} - \frac{1}{MB} - \frac{1}{AN} + \frac{1}{NB} \right]}_{G}$$

Apparent resistivity

$$\rho_a = \frac{\Delta V_{MN}}{IG}$$

G: geometric factor

Conductive overburden (100 Ωm)

Geometric sounding

Geometric sounding

Geometric sounding

Concept of charges

Normal component of current density is continuous

$$J_{1n} = J_{2n}$$
$$\sigma_1 E_{1n} = \sigma_2 E_{2n}$$

Conductivity contrast

$$\sigma_1 \neq \sigma_2$$

Electric field discontinuous

Charge build-up

$$\mathbf{E} = \frac{Q}{4\pi\varepsilon_0|\mathbf{r} - \mathbf{r}'|^2}\hat{\mathbf{r}}$$

Currents, charges, and potentials

What would happen if there was a resistor

DC resistivity -> EM; EM fields are varying with time or frequency

	Time	Frequency
Faraday's Law	$ abla imes ec{e} = -rac{\partial ec{b}}{\partial t}$	$ abla imes ec{E} = -i\omega ec{B}$
Ampere's Law	$ abla imes ec{h} = ec{j} + rac{\partial ec{d}}{\partial t}$	$ abla imes ec{H} = ec{J} + i\omega ec{D}$
No Magnetic Monopoles	$\nabla \cdot \vec{b} = 0$	$\nabla \cdot \vec{B} = 0$
Constitutive Relationships (non-dispersive)	$ec{j}=\sigmaec{e}$	$ec{J}=\sigmaec{E}$
	$ec{b}=\muec{h}$	$ec{B}=\muec{H}$
	$ec{d}=arepsilonec{e}$	$ec{D}=arepsilonec{E}$

Controlled-source EM methods

Types of EM source

Grounded source

Types of current waveform

Time-domain; Transient

Frequency-domain; Harmonic

EM induction

Ampere's Law: $\ \, \vec{\nabla} imes \vec{h} = \vec{j} \,$

EM induction

Ampere's Law: $\ \, \vec{\nabla} imes \vec{h} = \vec{j} \,$

Faraday's Law:
$$\vec{\nabla} \times \vec{e} = -\mu_0 \frac{\partial \vec{h}}{\partial t}$$

EM induction

Ampere's Law: $\vec{\nabla} \times \vec{h} = \vec{j}$

Ohm's Law: $\vec{j} = \sigma \vec{e}$

Currents diffuse away (EM induction)

EM induction methods (no need to "contact")

Airborne EM

Towed time-domain EM

EM-31

DualEM

Diffusive EM wave

Electric fields at 0.06 ms

Diffusive EM wave

Electric fields at 0.1 ms -100 --200 --300-400-200200 400

Diffusive EM wave

Electric fields at 0.6 ms

10⁻⁷

Electrical fields are parallel to the layered structure

Layered structure

Layered structure

Biased sensitivity towards a conductor

DC resistivity vs. Inductive source EM

E-fields crosses the layer boundary (charge build-up; galvanic currents; current channeling)

E-fields parallel to the layer boundary (EM induction)

DC resistivity vs. Inductive source EM

E-fields crosses the layer boundary (charge build-up; galvanic currents; current channeling)

E-fields parallel to the layer boundary (EM induction)

Shielding problem

DC resistivity

Hard to see below the insulator

Inductive source EM

Easy to see below the insulator

Grounded source EM

Current channeling + EM induction

For deeper imaging (a few km to 100s of km)

Direct Current resistivity

Controlled-source EM

Grounded source

Inductive source

Depth range

What is required to see deeper?

Penetration depth depends upon system power

Controlled source:

- Using a small loop
- Magnetic moment m = IA
- Total geometric decay

$$\sim \frac{1}{r^6}$$

Infinitely large loop source

- Sheet currents generate plane waves
- Total geometric decay

$$\sim \frac{1}{r^3}$$

Natural EM sources

Sun and magnetosphere, solar storms

Lightning Auroral electrojet Aurora

Aurora

Festivard Electrojet

Boundaries of Eastward Electrojet

Metatech

Refraction of waves

Snell's law

$$k_i \sin \theta_i = k_t \sin \theta_t$$

k is complex wave number

$$k^2 = \omega^2 \mu \varepsilon - i\omega \mu \sigma$$

Quasi-static: $\frac{\omega \varepsilon_0}{\sigma} \ll 1$

$$\sin \theta_t = \sqrt{\frac{2\omega\varepsilon_0}{\sigma}} \sin \theta_i$$

Angle of refraction is $\theta_t = 0^\circ$ in almost every instance

Example for 10,000 Hz

$$\sigma=10^{-3}~\text{S/m}$$

$$\theta_{\rm i} = 89^{\circ}$$

Then
$$\theta_t = 1.35^{\circ}$$

Plane waves and skin depth

Skin depth (meters)

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = 503\sqrt{\frac{1}{\sigma f}}$$

Low frequency waves propagate further

Frequency sounding

Depth of propagation

- A few skin depths
- Only a portion of a wavelength

Controlled-source vs. Natural source

Controlled-source
Well-defined location,
geometry, and amplitude

MT Station

↑ ∫ time

Frequency-domain

Maxwell's equations:

- Linear in J_s
- E and H affected in the same way

Effects of unknown source removed by taking ratio

Transfer function
$$\mathbf{E} = \mathbf{ZH}$$
impedance (matrix)
$$\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{pmatrix} \begin{pmatrix} H_x \\ H_y \end{pmatrix}$$

Impedance and resistivity

Plane wave in homogenous media:

• E and H fields are perpendicular

E-field parallel to the boundary (EM induction)

Homogeneous half space

Impedance	Resistivity	Phase
$Z_{xy} = \frac{E_x}{H_y}$	$\rho = \frac{1}{\omega \mu} \left Z_{xy} \right ^2$	$\Phi = \tan^{-1} \left(\frac{Im(Z_{xy})}{Re(Z_{xy})} \right) = \frac{\pi}{4}$

Impedance and resistivity

Plane wave in homogenous media:

• E and H fields are perpendicular

E-field parallel to the boundary (EM induction)

E-field crosses the boundary (Current channeling)

Homogeneous half space

<u>_</u>	·	
Impedance	Resistivity	Phase
$Z_{xy} = \frac{E_x}{H_y}$	$\rho = \frac{1}{\omega \mu} \left Z_{xy} \right ^2$	$\Phi = \tan^{-1} \left(\frac{Im(Z_{xy})}{Re(Z_{xy})} \right) = \frac{\pi}{4}$

MT soundings in 1D

In general:

$$Z = \begin{pmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{pmatrix}$$

Apparent resistivity:

$$\rho_a = \frac{1}{\omega \mu_0} |Z_{xy}|^2$$

• Phase:

$$\Phi = \tan^{-1} \left(\frac{Im(Z_{xy})}{Re(Z_{xy})} \right)$$

• In 1D:

$$Z = \begin{pmatrix} 0 & Z_{xy} \\ Z_{yx} & 0 \end{pmatrix}$$

$$Z_{xy} = \frac{E_x}{H_y}$$

$$Z_{xy} = -Z_{yx}$$

Very similar to inductive source EM (E-fields parallel to the boundary)

Frequency sounding for depth resolution

 $E \times H = P$

P: ponyting vector

MT soundings in 2D

• In general:

$$Z = \begin{pmatrix} Z_{\chi\chi} & Z_{\chi y} \\ Z_{\chi\chi} & Z_{\chi y} \end{pmatrix}$$

• In 2D:

$$Z = \begin{pmatrix} 0 & Z_{xy} \\ Z_{yx} & 0 \end{pmatrix}$$

$$Z_{xy} \neq Z_{yx}$$

- TE mode
 - E-field parallel to structure

$$Z_{yx} = \frac{E_y}{H_x}$$

E-field parallel to the boundary (EM induction; biased sensitivity towards a conductor)

MT soundings in 2D

• In general:

$$Z = \begin{pmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{pmatrix}$$

• In 2D:

$$Z = \begin{pmatrix} 0 & Z_{xy} \\ Z_{yx} & 0 \end{pmatrix}$$

$$Z_{xy} \neq Z_{yx}$$

- TM mode
 - H-field parallel to structure
 - E_x discontinuous

$$Z_{xy} = \frac{E_x}{H_y}$$

E-field crosses the boundary (Current channeling; sensitive to both conductor & resistor)

MT soundings in 3D

• In general:
$$Z = \begin{pmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{pmatrix}$$

• In 3D:

$$Z = \begin{pmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{pmatrix}$$

 No symmetry or special conditions

Demo: 2D MT forward modelling app

Why interactive apps?

- Visualization aids understanding
- Learn through interaction ask questions and investigate
- Open source:
 Free to use
 - Welcome contributions!

Understand electrical resistivity and its linkage to geologic units.

Understand physical principles of Electromagnetic (EM) methods

- Charge build-up (or current channeling, galvanic currents)
- EM induction

Identify difference between controlled-source EM and magnetotellurics (MT)

Identify all EM methods are governed by the same physical principles

Current channeling EM induction

Understand survey setup of EM methods and data Understand sensitivity of EM methods to conductors & resistors

Resources:

https://github.com/sgkang/higp_em_physics

The end