

Interval Continous P(X=c)=0Mix Discret and Continous $P(a \le X \le b) = \int f(x) dx$ Density curve 4.1 PDF otherwise uniform distribution $P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b)$ $F(x) = P(X \le x) = \int f(y) \, dy$ $P(a \le X \le b) = F(b) - F(a)$ Using F(x) to Compute Probabilities F'(x) = f(x). Obtaining f(x) from F(x) 4.2 CDF and EV Percentiles $.5 = F(\widetilde{\mu}).$ $E[h(X)] = \mu_{h(X)} = h(x) \cdot f(x) dx$ EV $\sigma_X^2 = V(X) = (x - \mu)^2 \cdot f(x) dx = E[(X - \mu)^2]$ $V(X) = E(X^2) - [E(X)]^2$ Central Limit Theorem $f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)} -\infty < x < \infty$ Mu: symmetric about mu and bell-shaped $X \sim N(\mu, \sigma^2)$. Sigma: is the distance from mu to the inflection points of the curve $\mu = 0$ and $\sigma = 1$ $f(z; 0, 1) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} - \infty < z < \infty$ Standard normal distribution cdf of Z is $P(Z \le z) = \int_{-z}^{z} f(y; 0, 1) dy$, denote by $\Phi(z)$. z_{α} is the $100(1-\alpha)$ th percentile of the standard normal distr Z alpha for z Critical Values 4.3 The Normal Distribution $P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)$ $= \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$ Nonstandard Normal Distributions $P(X \le a) = \Phi\left(\frac{a-\mu}{\sigma}\right)$ $P(X \ge b) = 1 - \Phi\left(\frac{b-\mu}{\sigma}\right)$ $\frac{(100p)\text{th percentile}}{\text{for normal }(\mu, \sigma)} = \mu + \begin{bmatrix} (100p)\text{th for standard normal} \end{bmatrix} \cdot \sigma$ 1 SD: 68% 2 SD: 95% 3 SD: 99.7% 0.5: continuity correction Approximating the binomial Distribution np >= 10nq >= 10 NORM.DIST NORM.INV GAMMA.DIST **GAMMA.INV** Verify each other! Excel **EXPON.DIST** BETA.DIST