20-1 YONSEI ESC FINAL PROJECT REGRSSION WITH 서울 주민 가구원 행복도 데이터

2020. 06. 04 2조 김윤환 백채빈 손지우 신혜연 이상완 조인식

- l. 역할 분담 및 INTRO
- 2. Our Approach
- 3. Model Selection
- 4. 결과
- 5. 결과 해석 및 한계점
- 6. Q&A

역 할 분 담

1. 김윤환(조장님) : SVR 모델링

2. 백채빈 : 변수 정리 및 Lasso 모델링

3. 손지우 : FA 모델링

4. 신혜연, 조인식: PPT 제작 및 발표

5. 이상완 : Random Forest, Xgboost, lightGBM 모델링 및 배경지식 제공

역할 분담 및 INTRO 지난 번 어디까지 했었지?

지난 1주차

- 범주형 변수가 남발하는 설문조사 데이터 전처리
- 변수 정리

지난 1주차 마지막 피피티

앞으로.

- 1) Feature Extraction PCA < FAMD
- 2)Analysis SVM XGboost Group Lasso Random Forest *stacking

지난 1주차의 계획

- PCA, FA, FAMD?
- ANALYSIS
- FA ~ 행복의 3요소?

지난 1주차

- 범주형 변수가 남발하는 설문조사 데이터 전처리
- 변수 정리

지난 1주차 마지막 피피티

앞으로.

- 1) Feature Extraction PCA < FAMD
- 2)Analysis SVM XGboost Group Lasso Random Forest *stacking

지난 1주차의 계획 결교

- 변수 점리 및 더미변수 생성
- PCA, FA, FAMD?
 - + FA ~ 행복의 3요소? FA!
- ANALYSIS

우리가 배운 것을 적용해 해석해보자

Our Approach 앞으로 뭘 할까?

Our Approach

---- in Github

- 1. 가구원의 소득, 계층, 주거환경 등 다양한 변수가 서로 어떤 관련이 있는가?
- 2. 가구원의 소득, 계층, 주거환경 등 다양한 변수를 바탕으로 행복도를 예측할 수 있는가?
- 3. 가구원의 행복도를 제고하기 위해 어떻게 해야 하는가?

데이터 전처리 후

유의할 모델들 적용해보기

SVR, Lasso PCA, FA Random Forest, Xgboost, lightGBM 등

모델 해석

RMSE 낮추기

RMSE를 감안하더라도 한 번 "잘" 해석해보자!

Our Approach 앞으로 뭘 할까?

Our Approach

---- in Github

- 1. 가구원의 소득, 계층, 주거환경 등 다양한 변수가 서로 어떤 관련이 있는가?
- 2. 가구원의 소득, 계층, 주거환경 등 다양한 변수를 바탕으로 행복도를 예측할 수 있는가?
- 3. 가구원의 행복도를 제고하기 위해 어떻게 해야 하는가?

데이터 전처리 후

유의할 모델들 적용해보기

SVR, Lasso PCA, FA Random Forest, Xgboost, lightGBM 등

설문조사의 특성, 행복도 고려

RMSE를 감안하더라도 한 번 "잘" 해석해보자!

SVR이란

: SVM의 Regression version

SVR(support vector regression)

Q. 종속변수가 <mark>연속형</mark> 자료라면 ? 차이점은, 에러의 정의

Hyperparameter 임의로 지정

```
from sklearn.svm import SVR
regressor = SVR(kernel = 'linear',C=100,gamma='auto')
regressor.fit(X_train, y_train)
```

- from sklearn.metrics import mean_squared_error mean_squared_error(y_test, y_pred)
- 96.77509533338213

Hyperparameter 임의로 지정

```
from sklearn.svm import SVR
regressor = SVR(kernel = 'linear',C=100,gamma='auto')
regressor.fit(X_train, y_train)
```

- from sklearn.metrics import mean_squared_error mean_squared_error(y_test, y_pred)
- 96.77509533338213

Grid search로 최적의 hyperparameter 찾자!

Grid Search 시도

```
from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV

parameters = {'kernel': ('linear', 'rbf'), 'C':[1,5,10],'gamma': [1e-7,0.1,1.0,10.0,100.0],'epsilon':[0,0.1,1,2,4]}
svr = SVR()
gs = GridSearchCV(svr, parameters)
gs.fit(X_train,y_train)
gs.best_params_
```


포기!

Model Selection Random Forest, XGBoost, lightGBM

Model Selection Random Forest, XGBoost, lightGBM

Model Selection
Random Forest, XGBoost, lightGBM

01 02 03 04 05 06 역할 분담 및 INTRO Our Approach Model Selection 결과 결과 해석 및 한계점 Q & A

1. 표준화 후 LASSO

```
clf_std = linear_model.Lasso(alpha=0.1, fit_intercept=True)
clf_std.fit(X_std_train, y_std_train)
```

```
len(clf_std.coef_[clf_std.coef_ != 0])
```

11

```
lasso_std_var = X_train.columns[np.where(clf_std.coef_ != 0)]
lasso_std_var
```

2. Factor number 결정

Model Selection FA: LASSO 후 FA

3. FA with 3 Factor

- FactorAnalysis
- OLS 실시 -----
- RMSE :

#표준화 복원 후 RMSE

print('표준화 복원 후 RMSE: %f' %np.sq

표준화 복원 후 RMSE: 9.899882

OLS Regression Results

Dep. Variable:	Q4B	R-squared (uncentered):	0.185
Model:	OLS	Adj. R-squared (uncentered):	0.185
Method:	Least Squares	F-statistic:	1686.
Date:	Tue, 02 Jun 2020	Prob (F-statistic):	0.00
Time:	15:08:00	Log-Likelihood:	- 30107.
No. Observations:	22293	AIC:	6.022e+04
Df Residuals:	22290	BIC:	6.024e+04
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Factor 1	-0.5141	0.008	- 68.390	0.000	-0.529	-0.499
Factor 2	0.1838	0.010	18.523	0.000	0.164	0.203
Factor 3	-0.0647	0.011	-6.126	0.000	-0.085	-0.044

 Omnibus:
 3932.153
 Durbin-Watson:
 1.444

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 11564.584

 Skew:
 -0.929
 Prob(JB):
 0.00

 Kurtosis:
 6.000
 Cond. No.
 1.40

• 행복도의 3 요소

A formula for wellbeing

SWB = LS + FPA - FNA

SWB = Subjective Wellbeing

LS = Life Satisfaction

FPA = Frequent Positive Affect

FNA = Frequent Negative Affect

1. Factor 별 coefficient

#/NC: 임금수준

#STR: 스트레스(STRESS)

#CUL: 일상생활에서 문화예술의 비중

#WIT: 함께 여가생활하는 사람

#SES: SocioEconomic Status

#CMP: 계층이동가능성(Class movement possibility)

#PRD: 서울 시민으로서의 자부심

#AGE: 연령(10단위)

#ESA: 문화환경만족도(Envinronment Satisfaction)

#GD: 강동구

2. 11개 변수별 Factor 에 대한 weight

#EDU: 학력(고졸 or NOT)

	INC	STR	CUL	WIT	SES	СМР	PRD	AGE	ESA	GD	EDU
0	-0.482514	0.038056	-0.528027	0.253000	0.554757	-0.324104	- <u>0.259185</u>	0.395685	-0.345583	- <u>0.164507</u>	-0.449886
1	0.047825	0.231324	-0.094062	0.031549	-0.290380	0.326311	0.086959	0.359734	0.032187	0.141333	-0.283642
2	0.296181	-0.066858	-0.364506	0.012909	- <u>0.163148</u>	-0.085713	- <u>0.109765</u>	-0.037807	-0.250989	0.015407	0.167932

┃**결과 해석 및 한계점** ┃결과를 잘 해석해보자

"FACTOR의 coef"

coef
Factor 1 -0.5141
Factor 2 0.1838
Factor 3 -0.0647

"변수별 의미"

#/NC: 임금수준

#STR: 스트레스(STRESS)

#CUL: 일상생활에서 문화예술의 비중

#WIT: 함께 여가생활하는 사람 #SES: SocioEconomic Status

#CMP: 계층이동가능성(Class movement possibility)

#PRD: 서울 시민으로서의 자부심

#AGE: 연령(10단위)

#ESA: 문화환경만족도(Envinronment Satisfaction)

#GD: 강동구

#EDU: 학력(고졸 or NOT)

INC	STR	CUL	WIT	SES	СМР	PRD	AGE	ESA	GD	EDU
-0.482514	0.038056	-0.528027	0.253000	0.554757	- <u>0.324104</u>	- <u>0.259185</u>	0.395685	-0.345583	- <u>0.164507</u>	-0.449886
0.047825	0.231324	-0.094062	0.031549	-0.290380	0.326311	0.086959	0.359734	0.032187	0.141333	-0.283642
0.296181	-0.066858	-0.364506	0.012909	-0.163148	-0.085713	- <u>0.109765</u>	-0.037807	-0.250989	0.015407	0.167932

결과 해석 및 한계점 결과를 잘 해석해보자

01 02 05 04 05 06 역할 분담 및 INTRO Our Approach Model Selection 결과 결과 해석 및 한계점 Q & A

결과 해석 및 한계점 결과를 잘 해석해보자

* Factor 별 coef

coef

Factor 1 -0.5141

음수인 경우, 파람

Factor 2 0.1838

• 양수인 경우, 빨감

Factor 3 -0.0647

* Factor Loading table

INC	STR	CUL	WIT	SES	CMP	PRD	AGE	ESA	GD	EDU
-0.482514	0.038056	- <u>0.528027</u>	0.253000	0.554757	- <u>0.324104</u>	- <u>0.259185</u>	0.395685	-0.345583	- <u>0.164507</u>	-0.449886
0.047825	0.231324	-0.094062	0.031549	-0.290380	0.326311	0.086959	0.359734	0.032187	0.141333	-0.283642
0.296181	-0.066858	-0.364506	0.012909	- <u>0.163148</u>	-0.085713	- <u>0.109765</u>	-0.037807	- <u>0.250989</u>	0.015407	0.167932

* 변수 설명

#INC: 임금수준

#STR: 스트레스(STRESS)

#CUL: 일상생활에서 문화예술의 비중

#WIT: 함께 여가생활하는 사람 #SES: SocioEconomic Status #PRD: 서울 시민으로서의 자부심

#AGE: 연령(10단위)

#ESA: 문화환경만족도(Envinronment Satisfaction)

#CMP: 계층이동가능성(Class movement possibility)

#GD: 강동구

#EDU: 학력(고졸 or NOT)

| 결과 해석 및 한계점 | 결과를 잘 해석해보자

* Factor 별 coef

coef
Factor 1 -0.5141
• 음수인 경우, 파람
Factor 2 0.1838
• 양수인 경우, 빨강
Factor 3 -0.0647

* Factor Loading table

INC	STR	CUL	WIT	SES	CMP	PRD	AGE	ESA	GD	EDU
-0.482514	0.038056	- <u>0.528027</u>	0.253000	0.554757	-0.324104	- <u>0.259185</u>	0.395685	-0.345583	- <u>0.164507</u>	-0.449886
0.047825	0.231324	-0.094062	0.031549	-0.290380	0.326311	0.086959	0.359734	0.032187	0.141333	-0.283642
0.296181	-0.066858	-0.364506	0.012909	-0.163148	-0.085713	-0.109765	-0.037807	- <u>0.250989</u>	0.015407	0.167932

* 변수 설명

#/NC: 임금수준

#STR: 스트레스(STRESS)

#CUL: 일상생활에서 문화예술의 비중

#WIT: 함께 여가생활하는 사람

#SES: SocioEconomic Status

#CMP: 계층이동가능성(Class movement possibility)

#PRD: 서울 시민으로서의 자부심

#AGE: 연령(10단위)

#ESA: 문화환경만족도(Envinronment Satisfaction)

#GD: 강동구

#EDU: 학력(고졸 or NOT)

결과 해석 및 한계점 행복도와 3요소?!?

01 02 05 04 05 06 역할분담및■NTRO Our Approach Model Selection 결과 결과해석및한계점 Q & A

결과 해석

A formula for wellbeing

SWB = LS + FPA - FNA

SWB = Subjective Wellbeing

LS = Life Satisfaction

FPA = Frequent Positive Affect

FNA = Frequent Negative Affect

Factor 1와 Factor 2

결과 해석 및 한계점 행복도와 3요소?!?

01 02 05 04 05 06 약화분담및■NTRO Our Approach Model Selection 결과 결과 해석및한계점 Q&A

한 계 점

A formula for wellbeing

SWB = LS + FPA - FNA

SWB = Subjective Wellbeing

LS = Life Satisfaction

FPA = Frequent Positive Affect

FNA = Frequent Negative Affect

Factor 3

2조 발표 끝! 감사합니다. Q & A

2020.06.04

2조

조장: 김윤환

조원: 백채빈 손지우 신혜연 이상완 조인식

