$\lambda x.x$

"the λ calculus can be called the smallest universal programming language of the world"

Raul Rojas - A Tutorial Introduction To Lambda Calculus

Developed by Alonzo Church in the 1930's, the λ calculus is a universal system for expressing any **computable function**.

The λ calculus is equivalent to Turing machines, but is not concerned with the machine.

The λ calculus only considers how functions can be expressed and evaluated.

There are two main components in the λ calculus:

- 1. expressions or "functions"
- 2. variables or "names"

There are two keywords in the λ calculus:

λ.

All expressions in the λ calculus have the structure:

 $\lambda x \cdot x$

 $\lambda x \cdot x$

The **head** of the expression: λx . The **body** of the expression: x

 $\lambda x \cdot x$

There is one variable: x

Let's talk about functions

Given the function:

$$f(x) = x$$

Given the function:

$$f(x) = x$$

What's the domain?

Given the function:

$$f(x) = x$$

What's the codomain?

Given f(x) = x

$$f(1) = 1$$

$$f(2) = 2$$

• • •

Domain = $\{1, 2 ... \}$

Codomain = $\{1, 2 ... \}$

$$f(x) = x$$

$$f(x) = x$$

$$\lambda x \cdot x$$

head

$$f(x) = x$$

$$\lambda x \cdot x$$

body

Let's talk about applying expressions

 $(\lambda x \cdot x) y$

y

Reduced form

$$(\lambda x.x) y = y$$

Redex (unreduced)

 $(\lambda x \cdot x) y$

Let's talk about Alpha Equivalency

Alpha Equivalency

$$(\lambda x . x) = (\lambda y . y)$$

Alpha Equivalency

$$(\lambda x . x) = (\lambda y . y) = (\lambda z . z)$$

Let's talk about free and bound variables

A free variable is not bound in the head

 $(\lambda x \cdot y)$

y is free

A bound variable is defined in the head

 $(\lambda x \cdot x)$

x is bound

 $(\lambda x y . x z)$

What are the bound variables?

What are the free variables?

Let's talk about Beta Reduction

Beta Reduction is the application of expressions until no further application can occur:

$$(\lambda x . x) y$$
 $(\lambda [x := y] . x)$
 $(\lambda [x := y] . y)$
 y

Let's try a slightly harder example:

 $(\lambda x z . x z) y$

Let's try a slightly harder example:

$$(\lambda x z . x z) y$$

$$(\lambda [x := y] z . x z)$$

$$(\lambda [x := y] z . y z)$$

$$(\lambda z . y z)$$

Let's try a slightly harder example still:

$$(\lambda x \cdot x) (\lambda y \cdot y)$$

Let's try a slightly harder example still:

$$(\lambda x \cdot x) (\lambda y \cdot y)$$

 $(\lambda [x := (\lambda y \cdot y)] \cdot x)$
 $(\lambda [x := (\lambda y \cdot y)] \cdot (\lambda y \cdot y))$
 $(\lambda y \cdot y)$

Let's revisit this example:

$$(\lambda x \cdot x) (\lambda y \cdot y)$$

$$(\lambda [x := (\lambda y \cdot y)] \cdot x)$$

$$(\lambda [x := (\lambda y \cdot y)] \cdot (\lambda y \cdot y)$$

$$(\lambda y \cdot y)$$

$$(\lambda x \cdot x) ? (\lambda y \cdot y)$$

Via **Beta Reduction**, we have shown that two expressions are **Alpha Equivalent**, meaning that they are the same expression.

$$(\lambda x \cdot x) (\lambda y \cdot y)$$

 $(\lambda [x := (\lambda y \cdot y)] \cdot x)$
 $(\lambda [x := (\lambda y \cdot y)] \cdot (\lambda y \cdot y))$
 $(\lambda y \cdot y)$

$$(\lambda x \cdot x) \equiv (\lambda y \cdot y)$$

We can also say that we have an expression, whose **domain** and **codomain** are always the same. This is known as the identity expression.

$$(\lambda x \cdot x) (\lambda y \cdot y)$$

 $(\lambda [x := (\lambda y \cdot y)] \cdot x)$
 $(\lambda [x := (\lambda y \cdot y)] \cdot (\lambda y \cdot y))$
 $(\lambda y \cdot y)$

$$(\lambda x \cdot x) \equiv (\lambda y \cdot y)$$

Let's talk about the Y Combinator

Given an expression Y, such that

$$Y = (\lambda y. (\lambda x. y (xx))(\lambda x. y (xx)))$$

Given an expression Y, such that

$$Y = (\lambda y . (\lambda x . y (x x))(\lambda x . y (x x)))$$

And given an expression R, such that

$$YR = (\lambda y. (\lambda x. y (xx))(\lambda x. y (xx))) R$$

Can we show that the **Y** Combinator allows us to employ recursion using nothing but **Beta Reduction** with lambda expressions (anonymous functions)?

Yes!

$$YR = (\lambda y.(\lambda x.y(xx))(\lambda x.y(xx)))R$$

$$YR = (\lambda y. (\lambda x. y (xx))(\lambda x. y (xx))) R$$

 $YR = (\lambda y . (\lambda x . y (x x))(\lambda x . y (x x)))R$

 $YR = (\lambda [y := R].(\lambda x.y(xx))(\lambda x.y(xx)))$

$$YR = (\lambda y . (\lambda x . y (x x))(\lambda x . y (x x)))R$$

$$YR = (\lambda [y := R] . (\lambda x . y (x x))(\lambda x . y (x x)))$$

$$YR = (\lambda y . (\lambda x . y (x x))(\lambda x . y (x x))) R$$

$$YR = (\lambda [y := R] . (\lambda x . y (x x))(\lambda x . y (x x)))$$

$$YR = (\lambda [y := R].(\lambda x.R(xx))(\lambda x.R(xx)))$$

$$YR = (\lambda y . (\lambda x . y (x x))(\lambda x . y (x x))) R$$

$$YR = (\lambda [y := R] . (\lambda x . y (x x))(\lambda x . y (x x)))$$

$$YR = (\lambda [y := R].(\lambda x.R(xx))(\lambda x.R(xx)))$$

$$YR = (\lambda x . R (x x))(\lambda x . R (x x))$$

$$YR = (\lambda x . R (x x))(\lambda x . R (x x)))$$

$$YR = (\lambda x . R (x x))(\lambda x . R (x x))$$

$$YR = (\lambda x . R (x x))$$

$$YR = (R (\lambda x.R (xx))(\lambda x.R (xx)))$$

What happens if we factor R?

$$YR = (R (\lambda x . R (x x))(\lambda x . R (x x)))$$

What happens if we factor R?

$$YR = (R (\lambda x . R (x x))(\lambda x . R (x x)))$$

$$Y = (\lambda y (\lambda x. y (xx))(\lambda x. y (xx)))R$$

We return to our original Y combinator form:

$$Y = (\lambda y (\lambda x . \lambda y (x x))(\lambda x . \lambda y (x x))) R$$

Why?

Dr. Seuss

More resources:

Allen, Christopher and Moronuki, Julie. *Haskell Programming From First Principles*. haskellbook.com

Rojas, Raul. *A Tutorial Introduction to the Lambda Calculus*. FU Berlin, WS-97/98. http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf