Résumé des notions fondamentales sur les diodes

Une série de cinq dias permet de couvrir les notions fondamentales du cours

Dia 2:permet de comparer le modèle Uj de la diode avec la réalité. Cette comparaison s'effectue avec une double interprétation:

- L'approche graphique exploitant la notion de droite de charge
- L'approche analytique avec une loi linéaire exploitable avec le modèle et une loi exponentielle inexploitable avec la réalité

Dia 3: Observation des zones de fonctionnement d'une diode Zener selon sa position dans le circuit (à l'endroit ou à l'envers par rapport au sens de conduction d'une diode normale). Quatre zones sont visibles:

- Conduit comme une diode normale avec U_i entre l'anode et la cathode
- Conduit comme une Zener avec -U₇ entre l'anode et la cathode
- Ne conduit aucun courant si la tension entre l'anode et la cathode est comprise entre -Uz et Ui
- Ne peut être soumise aux tensions supérieures à $U_{\rm J}$ ou inférieures à $-U_{\rm Z}$ entre l'anode et la cathode Ces bornes correspondent évidemment à un modèle. Dans la réalité les limites évoluent selon les conditions

Dia 4: On observe 6 conditions (6 configurations de circuit) permettant à des diodes normales ou Zener de fonctionner. Ces conditions dépendent de l'orientation de la diode dans le circuit et de la valeur de la source de tension.

Dia 5: La dia rappelle une recette en trois étapes permettant de calculer les variations aux bornes d'une diode.

Dia 6: On propose 5 exercices "types" couvrant l'ensemble des comportements d'une diode normale.

Interprétation graphique exploitant la loi réelle et le modèle de la diode

Circuit de base mettant en évidence:

- Un outil d'interprétation graphique (droite de charge)
- · La qualité du modèle

Exploitation modèle de la zener selon sa position

Courants observés selon les tensions appliquées

Recette de cuisine DC = Polarisation, AC = Variations petits signaux

 Φ 1: Polarisation Modèle DC (Uj est suffisant) Calcul de I_0

 $\Phi 3\colon$ Variations Modèle AC (Il faut connaître $r_{\rm D})$ Calcul des variations ${\bf u_{\rm S1}}$ avec un diviseur résistif $_5$

Etude de cas du montage à diode

Plusieurs analyses possibles:

1)
$$U_{EO} = 5V$$

2)
$$u_E(t) = 3\sin\omega t [V]$$

3)
$$U_{E0} = -3V$$

4)
$$U_{E0} = 5V$$
 et $u_{E}(t) = 3\sin\omega t [V]$

5)
$$U_{EO} = 3V \text{ et } u_{E}(t) = 5 \sin \omega t [V]$$

Interprétation avec droite de charge

- · diode modélisée
- · diode réelle

Analyse avec Zéner possible