Bipolo

Utilizzatori

$$V = R \times I \ [V]$$

$$P_{Ass} = V \times I \ [W]$$

$$P_{Ero} = -V \times I \ [W]$$

Generatori

$$V = -R \times I \ [\mathbf{V}]$$

$$P_{Ass} = -V \times I \ [\mathbf{W}]$$

$$P_{Ero} = V \times I \ [\mathbf{W}]$$

Teorema di Tellegen

$$\sum V_n \times I_n = 0$$

Partitori

$$I_1 = I \times \frac{R_2}{R_1 + R_2} = I \times \frac{G_1}{\sum G_N}$$

$$I_1 = I \times \frac{R_2}{R_1 + R_2} = I \times \frac{G_1}{\sum G_N}$$
 $V_1 = V \times \frac{R_1}{R_1 + R_2} = V \times \frac{R_1}{\sum R_n}$

Nota: Dove è presente una maggiore resistenza, sarà presente una minore intensità di corrente ed una maggiore

	Serie	Parallelo
Corrente	$I = I_1 = \ldots = I_n$	$I = \sum I_n$
Tensione	$V = \sum V_n$	$V = V_1 = \ldots = V_n$

Trasformazioni

 $\mathbf{Stella} o \mathbf{triangolo}$

$$G_{12} = \frac{G_1 \times G_2}{\sum G_n}$$

Triangolo \rightarrow stella

$$R_1 = \frac{R_{12} \times R_{13}}{\sum R_n}$$

Equivalenti

Thévenin

Norton

Trasformatore ideale

$$V_1 = n \times V_2$$

$$I_1 = -\frac{1}{-} \times I_2$$

$$V_1 = n \times V_2$$
$$I_1 = -\frac{1}{n} \times I_2$$

$$z_{AB} = n^2 \times z$$

Doppi bipoli

$$\begin{split} R : \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} &= \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} + \begin{bmatrix} \hat{V_1} \\ \hat{V_2} \end{bmatrix} \\ G : \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} &= \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} + \begin{bmatrix} \hat{I_1} \\ \hat{I_2} \end{bmatrix} \end{split}$$

Ibride

$$\text{Diretta}: \begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} + \begin{bmatrix} \hat{V_1} \\ \hat{I_2} \end{bmatrix}$$

$$\text{Inversa}: \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} h'_{11} & h'_{12} \\ h'_{21} & h'_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ I_2 \end{bmatrix} + \begin{bmatrix} \hat{I_1} \\ \hat{V_2} \end{bmatrix}$$

Trasmissione

Diretta :
$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix} + \begin{bmatrix} \hat{V}_1 \\ \hat{I}_1 \end{bmatrix}$$

Inversa :
$$\begin{bmatrix} V_2 \\ I_2 \end{bmatrix} = \begin{bmatrix} t'_{11} & t'_{12} \\ t'_{21} & t'_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ -I_1 \end{bmatrix} + \begin{bmatrix} \hat{V_2} \\ \hat{I_2} \end{bmatrix}$$

Nota: se le relazioni non vengono trovate risolvendo il circuito, bisogna utilizzare il metodo delle prove semplici, spegnendo i generatori secondo necessità, risolvendo i risultanti circuiti. Per verificare l'esistenza di altre formulazioni, verificare che il determinante della matrice dei coefficienti delle variabili controllate sia diverso da zero.

Induttori e condensatori

$$V_L = L \times \frac{\mathrm{d}i_L(t)}{\mathrm{d}t}$$

$$V_L = L \times \frac{\mathrm{d}t_L(t)}{\mathrm{d}t}$$
$$[L] = [\mathbf{H}]$$

$$V_L = L \times \frac{\mathrm{d}i_L(t)}{\mathrm{d}t} \qquad V_C \stackrel{\downarrow}{\bigvee} I_C = C \times \frac{\mathrm{d}v_C(t)}{\mathrm{d}t} \qquad R = \frac{\lim_{c \to \infty} \frac{\mathrm{d}v_C(t)}{\mathrm{d}t}}{\sum_{c \to \infty} \frac{\mathrm{d}v_C(t)}{\mathrm{d}t}} = \frac{1}{\sum_{c \to \infty} \frac{\mathrm{d}v$$

$$R = \frac{\overbrace{l}^{\text{lunghezza}}}{\underbrace{s}_{\text{sezione}} \times \underbrace{c}_{\text{conducibilità}}}$$

Equazione di stato

- 1. Trovare la duale della variabile di stato in funzione di quest'ultima
- 2. Sostituire la duale con la relazione costituente

Generatori trifase

$$|\overline{V}_L| = \sqrt{3}V_{Fase}$$
 $|\overline{I}_L| = \sqrt{3}I_{Fase}$

$$|\overline{I}_L| = \sqrt{3}I_{Fase} \qquad V_{Fase} = |\overline{E}_1| \qquad I_{Fase} = |\overline{I}_{f31}|$$

$$\omega = \frac{1}{\sqrt{LC}}$$

Induttori accoppiati in serie e parallelo

Rifasamento

$$C = \frac{P \times \tan \varphi - P \times \tan \varphi_{Rifasato}}{\omega \times V^2}$$

Frequenza di risonanza

$$\mathbf{N.B.}:\ Q = P \times \tan \varphi$$

Serie: $L_{Eq} = L_1 + L_2 \pm 2M$

Parallelo: $L_{Eq} = \frac{L_1 L_2 - 2M}{L_1 + L_2 \mp 2M}$

Analisi nodale Semplice

LKC ai nodi con le correnti in funzione dei ponziali di nodo (verso positivo uscente). Risolvo poi il sistema risultante.

Modificata

Aggiungo un'equazione per ogni variabile aggiunta non controllabile in tensione. Risolvo poi il sistema risultante.

Per ispezione

- Matrice dei coefficienti:
 - Diagonale principale posizione (x, x): somma delle conduttanze che arrivano al nodo x.
 - Fuori dalla diagonale principale posizione (i, j): la conduttanza tra i nodi $i \in j$ con segno meno.
- Vettore dei termini noti riga i: valore del generatore di corrente entrante nel nodo i.

Nota: Ogni generatore si deve presentare due volte con segno opposto nel vettore dei termini noti od una sola volta se collegato al nodo di riferimento.

Regime alternato sinusoidale

e alternato sinusoidale
$$v(t) = \underbrace{A}_{\text{ampiezza}} \times \cos\left(\underbrace{\omega}_{\text{pulsazione}} t + \underbrace{\varphi}_{\text{fase}}\right) \iff \overline{V} = \underbrace{A}_{\text{ampiezza}} \times e^{j} \underbrace{\varphi} = a + jb$$

$$\underbrace{\omega}_{\text{pulsazione}} = 2\pi \underbrace{\nu}_{\text{frequenza}} \qquad A = \sqrt{a^2 + b^2} \qquad \varphi = \arctan \frac{b}{a} \qquad \text{Nota: attenzione al quadrante.} \qquad \text{Nota: } \overline{V} \in \mathbb{C}.$$

$$\underbrace{Z}_{\text{impedenza}} = \underbrace{R}_{\text{resistenza}} + j \underbrace{X}_{\text{reattanza}} \qquad \underbrace{Y}_{\text{ammettenza}} = \underbrace{G}_{\text{conduttanza}} + j \underbrace{B}_{\text{suscettanza}} \qquad \angle Z = -\angle Y$$

Resistori, condensatori ed induttori in RAS Resisori Condensatori

$$Z_R = R$$

$$Z_C = \frac{1}{j\omega C} = -\frac{1}{\omega C} \times j$$

$$Z_L = j\omega L$$

$$Y_R = \frac{1}{R}$$

$$Y_C = j\omega C$$

$$Y_L = \frac{1}{j\omega L}$$
 in RAS

Induttori

 $Y_L = \frac{1}{i\omega L} = -\frac{1}{\omega L} \times j$

L'immettenza è un termine generico per indicare l'impedenza o l'ammettenza.

$$S = \underbrace{P}_{\text{potenza complessa [VA]}} + j \underbrace{Q}_{\text{potenza attiva [W]}} S = \begin{cases} \overline{V}_{Eff} \times \overline{I}_{Eff}^* \\ \frac{1}{2} \times \overline{V} \times \overline{I}^* \end{cases} \qquad \overline{V}_{Eff} = \frac{\overline{V}}{\sqrt{2}} \quad \overline{I}_{Eff} = \frac{\overline{I}}{\sqrt{2}}$$

$$S=|S| imes \frac{\cos arphi}{arphi} + j|S| imes \sin arphi \qquad \cos arphi = rac{P}{|S|}$$

$$S = \begin{cases} \overline{V}_{Eff} \times \overline{I}_{Eff}^* \\ \frac{1}{2} \times \overline{V} \times \overline{I}^* \end{cases} \qquad \overline{V}_{Eff} = \frac{\overline{V}}{\sqrt{2}} \quad \overline{I}_{Eff} = \frac{\overline{I}}{\sqrt{2}}$$

$$S = |S| \times \underbrace{\cos \varphi}_{\text{fattore di potenza}} + j|S| \times \sin \varphi \qquad \cos \varphi = \frac{P}{|S|} \qquad \text{Notiamo che } \angle \overline{I} = -\angle \overline{I}^*, \text{ quindi } \varphi = \varphi_{Tensione} - \varphi_{Corrente}$$

Massimo trasferimento di potenza: $Z_{Sorgente} = Z_{Carico}^*$ Potenza apparente: $|S| = V_{Eff} \times I_{Eff}$ [VA] Bipoli passivi

- Bipoli passivi: $R\geqslant 0,\ G\geqslant 0,\ P\geqslant 0,\ -90^{\circ}\leqslant \varphi\leqslant 90^{\circ}$ Bipoli induttivi: $X>0,\ B<0,\ Q>0,\ 0^{\circ}<\varphi\leqslant 90^{\circ},\ {\rm ritardo}$
- Bipoli resistivi: X = B = 0, Q = 0, $\varphi = 0^{\circ}$
- Bipoli capacitivi: $X < 0, B > 0, Q < 0, -90^{\circ} \leqslant \varphi < 0^{\circ}$, anticipo
- Bipoli reattivi: R = G = 0, P = 0, $\varphi = \pm 90^{\circ}$

Induttori mutuamente accoppiati

$$\text{Tempo:} \begin{cases} v_1(t) = L_1 \frac{\operatorname{d} i_1(t)}{\operatorname{d} t} + M \frac{\operatorname{d} i_2(t)}{\operatorname{d} t} \\ v_2(t) = M \frac{\operatorname{d} i_1(t)}{\operatorname{d} t} + L_2 \frac{\operatorname{d} i_2(t)}{\operatorname{d} t} \end{cases} \iff \text{Fasori:} \begin{cases} \overline{V}_1 = j\omega L_1 \overline{I}_1 + j\omega M \overline{I}_2 \\ \overline{V}_2 = j\omega M \overline{I}_1 + j\omega L_2 \overline{I}_2 \end{cases} \qquad \underbrace{k}_{\text{coefficiente di accoppiamento}} = \frac{|M|}{\sqrt{L_1 L_2}}$$

$$\underbrace{k}_{\text{Configuration}} = \frac{|M|}{\sqrt{L_1 L_2}}$$

Transitorio

Esponenziale

•
$$i_L(t) = I_{L\infty} + (i_{L0} - i_{L\infty}) \times e^{-\frac{t}{\tau}}$$
 • $i_L(t) = \frac{V_L}{L}(t - T_0) + I_{L0}$

•
$$i_L(t) = \frac{V_L}{L}(t - T_0) + I_{L0}$$

$$au_L = LG = \frac{L}{R}$$
 $au_C = RC$

$$\tau_C = RC$$

• $v_C(t) = v_{C\infty} + (v_{C0} - v_{C\infty}) \times e^{-\frac{t}{\tau}}$ • $v_C(t) = \frac{I_C}{C}(t - T_0) + V_{C0}$ Circuiti magnetici

 Ψ_B : flusso attraveso la sezione, Φ_B : flusso concatenato con l'avvolgimento $\Phi_B(t) = A(t) \times B(t)$ $v = L \frac{\mathrm{d}i}{\mathrm{d}t}, \Phi_B = LI \rightarrow v = \frac{\mathrm{d}\Phi_B}{\mathrm{d}t}$

$$v = L \frac{\mathrm{d}i}{\mathrm{d}t}, \ \Phi_B = LI \rightarrow v = \frac{\mathrm{d}\Phi_B}{\mathrm{d}t}$$

 $\Phi_B = n \Psi_B$ $\mathcal{R} = \frac{l}{S\mu}$ μ : permeabilità magnetica $\mathcal{F} = \mathcal{R} \Psi_B$ Equivalente ad un generatore di tensione con $V_{Eq} = n I$

Induzione magnetica

1. Prendo il verso della sorgente come positivo

3. Alla destra dell'uguale $\rightarrow +\frac{d\Phi}{dt}$

- 2. LKT a sinistra dell'uguale (verso: regola della mano destra)
 - $E RI = \frac{\mathrm{d}\Phi}{\mathrm{d}t}$

Carica di un condensatore

$$W(t_0, t_1) = \frac{1}{2}C \left[v^2(t_1) - v^2(t_0) \right] [\mathbf{J}]$$

Carica di un induttore

$$W(t_0, t_1) = \frac{1}{2}L\left[i^2(t_1) - i^2(t_0)\right] [\mathbf{J}]$$