# Catena elettronica di lettura del segnale per spettroscopia

# Catena di lettura per spettroscopia

#### Condizione per spettroscopia: RC>>t<sub>racc</sub> (o RC>>τ)





## **Preamplificatore**

#### In cfg. Voltage Sensitive

#### hp.) A>> $R_2/R_1$ e $R_{in}C_{in}>>t_{racc}$



$$V_{out} = \frac{R_2}{R_1} V_{in}$$

Se  $\tau$  del circuito di input (R<sub>in</sub>//C<sub>in</sub>)>> $t_{racc}$  V<sub>in</sub> sarà dato da Q/C<sub>in</sub>

$$V_{out} = -\frac{R_2}{R_1} \frac{Q}{C_{in}}$$

dove  $C_{in} = riv + cavi + in del pre$ 

- Dipende dalla capacità del rivelatore!!
- Può non essere stabile
- Può dipendere dalle condizioni di lavoro

#### In cfg. Charge Sensitive

hp.)  $A >> (C_i + C_f)/C_f e R_f C_f >> t_{racc}$ 



$$V_{out} = -A \frac{Q}{C_{in} + (A+1)C_f} \simeq \frac{Q}{C_f}$$

Il segnale di uscita V<sub>out</sub> è proporzionale alla Q, che viene integrata su Cf

- Non dipende dalla capacità del rivelatore!!
- Dipende da C<sub>f</sub> che è un parametro hardware che controlliamo

## Preamplificatore charge sensitive



## **Amplificatore**

### Rumore elettronico vs. Shaping Time

- Amplifica il segnale che arriva al suo input mantenendo proporzionalità tra V<sub>max</sub> e Energia
- Filtra il rumore
- Forma il segnale
- Seleziona la banda passante (fatto da circuiti RC-CR)



 $\Delta E(eV) = \Delta Q \cdot W$ 

## **Amplificatore**

#### Rumore elettronico vs. V<sub>bias</sub>



S. Capelli - UniMiB

## **ADC**

Un ADC (Analog-to-Digital Converter) è un dispositivo che converte segnali analogici in segnali digitali.

- 1. Campionamento Discretizzazione nel tempo: il segnale analogico continuo viene campionato a intervalli di tempo regolari. Ogni campione rappresenta il valore del segnale in un preciso istante di tempo.
- 2. Quantizzazione Discretizzazione in ampiezza: ogni campione viene convertito in un valore discreto. Il processo di quantizzazione assegna al campione un valore tra un insieme di valori discreti.
- 3. Codifica: Il valore quantizzato viene rappresentato in codice binario con un numero N di cifre.
  - Risoluzione: Dipende dal numero di bit. Un ADC a 8 bit può rappresentare 28=256 livelli di quantizzazione
  - Frequenza di campionamento: Numero di campioni al secondo (espressa in Hz). Maggiore è la frequenza, più accurata sarà la rappresentazione del segnale.
  - Errore di quantizzazione: Differenza tra il segnale analogico reale e il suo valore quantizzato.





## **ADC-MCA**

Un **ADC-MCA** (Multi-Channel Analyzer) è uno strumento utilizzato per l'analisi dei **segnali provenienti da rivelatori di radiazioni,** per misurare la distribuzione energetica delle particelle rivelate. In questo caso l'ADC digitalizza solo il valore relativo al massimo di ampiezza del segnale e poi l'MCA distribuisce nei canali (bin) i valori digitalizzati per ogni evento acquisito e forma un **istogramma** della distribuzione delle ampiezze degli eventi rilevati.

#### Funzionamento:

- 1. Segnale in ingresso: Il rivelatore invia impulsi analogici in corrispondenza di deposizioni di energia (segnale V(t))
- 2. **Digitalizzazione**: L'impulso analogico viene inviato a un **ADC**, che lo converte in un numero digitale **proporzionale** all'ampiezza del segnale, e quindi all'energia della particella.
- 3. **Canalizzazione**: Il valore digitale viene associato a uno dei canali del MCA, in base alla sua ampiezza. Ogni canale corrisponde a un intervallo di ampiezza.
- 4. **Accumulazione dei dati**: Il numero di eventi (impulsi) che rientrano in ciascun canale viene **accumulato** in un istogramma. Questo istogramma rappresenta la distribuzione energetica dei segnali rilevati.

#### Caratteristiche principali:

- **Numero di canali**: può essere configurato indipendentemente dal numero di bit dell'ADC, ma è limitato da esso: NCHA<sub>max</sub>=2<sup>N</sup>.
- **Dinamica**: definisce l'intervallo di ampiezze (V<sub>max</sub>-V<sub>min</sub>), ovvero di valori analogici che possono essere convertiti in valori digitali.
- Passo di quantizzazione:  $\Delta V = (V_{max} V_{min})/2^N = > Maggiore è il numero di bit, più precisa è la risoluzione in ampiezza.$
- **Visualizzazione**: L'istogramma finale fornisce una rappresentazione grafica del numero di eventi in funzione dell'energia.