20/10/2024, 20:18 gan.ipynb - Colab

create a dataframe with 2 columns and 10 rows import pandas as pd import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import SGDRegressor from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt # loading the dataset housing =fetch_california_housing() #converting data into dataframe california_df= pd.DataFrame(data=housing.data, columns=housing.feature_names) california_df["target"]= housing.target #spliting the data into features and target x=california_df.drop("target", axis=1) y=california_df["target"] #split trian and testing the set # 80% data will be trained and 20% data will be tested x_train, x_test, y_train, y_test= train_test_split(x, y, test_size=0.2, random_state=42) #standarding the features scaler= StandardScaler() x_train_scaled= scaler.fit_transform(x_train) x_test_scaled= scaler.transform(x_test) #fit the SGDRegressor model sgd_reg= SGDRegressor(max_iter=1000, tol=1e-3,random_state=42) sgd_reg.fit(x_train_scaled, y_train) **→** SGDRegressor SGDRegressor(random_state=42) #making predections predictions= sgd_reg.predict(x_test_scaled) #evaluate the model's performance using out mean squared error matrics mse= mean_squared_error(y_test, predictions) print("Mean Squared Error:", mse) → Mean Squared Error: 0.550598777585777 #visualizing the predictions plt.figure(figsize=(8,6)) plt.scatter(y_test, predictions, alpha=0.6) plt.plot([0,5],[0,5],color="red", linestyle='--') plt.title("predicted vs true values") plt.xlabel("True Values") plt.ylabel("Predicted Values") plt.show()

Q

Close

20/10/2024, 20:18 gan.ipynb - Colab

₹

Double-click (or enter) to edit