Artificial Intelligence 1

Prof. Dr. Frank Hopfgartner Dr. Matthias Horbach

Institute for Web Science and Technologies (WeST)
University of Koblenz

Overview

- Introduction
- 2 Classical logics and Prolog
 - Classical logics
 - First-order Logic
 - Prolog
- Search and automatic planning
- 4 Knowledge representation and reasoning
- 5 Agents and multi agent systems
- 6 Summary and conclusion

First-order Logic - Overview

- ► First-order logic is an extension of propositional logic that adds *relations*, *functions* and *objects* (Hilbert, Ackermann 1928)
- ► The foundation of a first-order logic are atomic statements such as

```
knows(John, Mary) = "John knows Mary"

brotherOf(Carl, Dave) = "Carl is the brother of Dave"
```

- As in propositional logic, atomic statements can be combined with ∧ (AND), ∨ (OR), and ¬ (NOT) in order to obtain more complex statements
- ▶ Additionally we have quantification \forall , \exists
- ► The following introduction to first-order logic is structured analogously to the introduction of propositional logic

First-order logic - syntax 1/6

Definition

A first-order signature Σ is a triple $\Sigma = (U, P, F)$ with

- U is a set of constant symbols (objects)
- ▶ *P* is a set of predicate symbols
- F is a set of function symbols (functors)

For every $e \in P \cup F$ let $ar(e) \in \mathbb{N}$ denote the *arity* of e (=number of parameters).

Example

Let
$$\Sigma_1=(U_1,P_1,F_1)$$
 with
$$U_1=\{\mathsf{john},\mathsf{carl},\mathsf{mary},\mathsf{dave}\} \qquad P_1=\{\mathsf{knows},\mathsf{brotherOf}\}$$
 $F_1=\{\mathsf{fatherOf}\}$

and ar(knows) = ar(brotherOf) = 2, ar(fatherOf) = 1.

First-order logic - syntax 2/6

Definition

Let $\Sigma = (U, P, F)$ be a first-order signature and V a set of variables. The set of terms Terms (Σ, V) is the minimal set T with the following properties:

- 1. $U \subseteq T$
- 2. $V \subseteq T$
- 3. For all $f \in F$ with ar(f) = k and $t_1, \ldots, t_k \in T$, $f(t_1, \ldots, t_k) \in T$

Remark

To differentiate between variables and constants we will use the convention that variables start with an uppercase letter and constants with a lowercase letter.

First-order logic - syntax 3/6

```
Example
Let \Sigma_1 = (U_1, P_1, F_1) with
    U_1 = \{\text{john, carl, mary, dave}\} P_1 = \{\text{knows, brotherOf}\}
    F_1 = \{fatherOf\}
with ar(knows) = ar(brotherOf) = 2 and ar(fatherOf) = 1. Let
V_1 = \{X, Y, Z\} be a set of variables. Then
                      john
                      Χ
                      fatherOf(mary)
                      fatherOf(Y)
                      fatherOf(fatherOf(mary))
```

are terms in Terms(Σ_1, V_1).

First-order logic - syntax 4/6

Definition

Let $\Sigma = (U, P, F)$ be a first-order signature, V a set of variables, $p \in P$ a predicate symbol with ar(p) = k, and $t_1, \ldots, t_k \in \mathsf{Terms}(\Sigma, V)$. Then

$$p(t_1,\ldots,t_k)$$

is a first-order atom.

Example

Let Σ_1 and V_1 be as before. Then

knows(john, mary) brotherOf(john, fatherOf(mary)) brotherOf(X, fatherOf(fatherOf(Y)))

are first-order atoms.

First-order logic - syntax 5/6

Definition (Syntax)

Let $\Sigma = (U, P, F)$ be a first-order signature and V a set of variables. The *first-order language* $\mathcal{L}(\Sigma, V)$ is the minimal set \mathcal{L} with

- 1. If $p(t_1,\ldots,t_k)$ is a first-order atom then $p(t_1,\ldots,t_k)\in\mathcal{L}$
- 2. $\top, \bot \in \mathcal{L}$ (tautology and contradiction) and
- 3. for all $\phi, \psi \in \mathcal{L}$ and $X \in V$
 - 3.1 $\phi \land \psi \in \mathcal{L}$
 - 3.2 $\phi \lor \psi \in \mathcal{L}$
 - 3.3 $\neg \phi \in \mathcal{L}$
 - **3.4** $\forall X : \phi \in \mathcal{L}$
 - 3.5 $\exists X : \phi \in \mathcal{L}$

First-order logic - syntax 6/6

Remark

Again, we are assuming that parentheses "(" and ")" are part of the syntax. Implication \Rightarrow and equivalence \Leftrightarrow is also defined as in propositional logic.

Example

Let Σ_1 and V_1 be as before. Then

```
\phi_1 = \mathsf{knows}(\mathsf{john}, \mathsf{mary})
```

 $\phi_2 = \neg brotherOf(john, fatherOf(mary)) \lor knows(john, mary)$

$$\phi_3 = \forall X : \exists Y : \mathsf{knows}(X, Y)$$

are formulas in $\mathcal{L}(\Sigma_1, V_1)$.

First-order logic - syntax (summary)

Let $\Sigma = (U, P, F)$ be a first-order signature and V a set of variables. The set U contains constants, P predicates, and F functors. Each $p \in P$ and $f \in F$ has arity ar(p), ar(f).

- **a term** is a symbol *t* such that either:
 - t ∈ U
 - ▶ t ∈ V
 - $ightharpoonup t=f(t_1,\ldots,t_n)$ (where t_1,\ldots,t_n are terms and n=ar(f))
- ▶ an **atom** is a symbol $p(t_1, ..., t_n)$ (where $p \in P$, $t_1, ..., t_n$ are terms, and n = ar(p))
- a formula is either:
 - an atom
 - $\blacktriangleright \phi \land \psi, \ \phi \lor \psi$ (where ϕ, ψ are formulas)
 - $ightharpoonup
 eg \phi$ (where ϕ is a formula)
 - ▶ $\forall X : \phi$ (where $X \in V$ and ϕ is a formula)
 - ▶ $\exists X : \phi$ (where $X \in V$ and ϕ is a formula)
 - → T or ⊥

First-order logic - semantics 1/8

- Meaning is assigned to first-order formulas through interpretations
- Every interpretation represents a possible world by enumerating everything that is true in this world

Definition

Let $\Sigma = (U, P, F)$ be a first-order signature with $P = \{p_1, \dots, p_n\}$ and $F = \{f_1, \dots, f_m\}$. A first-order interpretation I is a tuple $I = (U_I, f_I^U, P_I, F_I)$ with

- 1. U_I is a non-empty set of objects (the *universe* or *domain*)
- 2. f_I^U is a function $f_I^U: U \to U_I$
- 3. P_I is a set of relations $P_I = \{p_1^I, \dots, p_n^I\}$ with $p_i^I \subseteq U_I^k$ for $ar(p_i) = k \ (i = 1, \dots, n)$ and
- 4. F_I is a set of functions $F_I = \{f_1^I, \dots, f_m^I\}$ with $f_i^I : U_I^k \to U_I$ for $ar(f_i) = k \ (i = 1, \dots, m)$

First-order logic - semantics 2/8

```
Example
Let \Sigma_1 be as before. Define I = (U_I, f_I^U, P_I, F_I) through
       U_I = \{ "John Johnsson", "Carl Carlson", "Mary Meyer",
               "Dave Davidson" }
f_I^U(\mathsf{john}) = "John Johnsson" \dots
       P_I = \{ \text{knows}^I, \text{brotherOf}_I \}
               with knows I = \{("John Johnsson", "Carl Carlson"), 
                         ("Carl Carlson", "Dave Davidson")}
                    brotherOf^{I} = \{("Mary Meyer", "Dave Davidson")\}
       F_I = \{fatherOf^I\}
               with fatherOf^{I}("Mary Meyer") = "Carl Carlson" \dots
```

First-order logic - semantics 3/8

What about variables?

Definition

Let $\Sigma = (U, P, F)$ be a first-order signature, $I = (U_I, f_I^U, P_I, F_I)$ a first-order interpretation and V a set of variables. A *variable* assignment VA for V wrt. Σ and I is a function $VA : V \to U_I$.

Example

Let Σ_1 , V_1 , and I as before. Then $VA_1:V_1\to U_I$ defined via

VA(X) ="Carl Carlsson"

VA(Y) = "Mary Meyer"

VA(Z) ="Carl Carlsson"

is a variable assignment.

First-order logic - semantics 4/8

Given an interpretation $I = (U_I, f_I^U, P_I, F_I)$ and variable assignment $VA : V \rightarrow U_I$ we abbreviate

$$VA(c) = f_I^U(c) \quad \text{if } c \in U$$
 $VA(f(t_1, \dots, t_k)) = f^I(VA(t_1), \dots, VA(t_k))$

First-order logic - semantics 5/8

We now turn to the satisfaction relation of first-order logic

Definition

Let $\Sigma = (U, P, F)$ be a first-order signature, V a set of variables, $I = (U_I, f_I^U, P_I, F_I)$ a first-order interpretation, $X \in V$, VA a variable assignment, and $\phi, \psi \in \mathcal{L}(\Sigma, V)$. Define inductively

$$(I, VA) \models p(t_1, \dots, t_k)$$
 iff $(VA(t_1), \dots, VA(t_k)) \in p^I$
 $(I, VA) \models \phi \lor \psi$ iff $(I, VA) \models \phi$ or $(I, VA) \models \psi$
 $(I, VA) \models \phi \land \psi$ iff $(I, VA) \models \phi$ and $(I, VA) \models \psi$
 $(I, VA) \models \neg \phi$ iff $(I, VA) \not\models \phi$

First-order logic - semantics 6/8

$$(I, VA) \models \forall X : \phi$$
 iff for all VA' with $VA' = VA$ except possibly $VA'(X) \neq VA(X)$ we have $(I, VA') \models \phi$ $(I, VA) \models \exists X : \phi$ iff for at least one VA' with $VA' = VA$ except possibly $VA'(X) \neq VA(X)$ we have $(I, VA') \models \phi$

Define additionally $(I, VA) \models \top$ and $(I, VA) \not\models \bot$ for every I and VA and

$$I \models \phi$$
 iff for all VA we have $(I, VA) \models \phi$

Remark

The terms *model*, *entailment* and *equivalence* are defined as in propositional logic.

First-order logic - semantics 7/8

Consider

Is it true that $I \models \phi$?

$$\phi = \forall X : \exists Y : \mathsf{knows}(X,Y)$$
 and the interpretation $I = (U_I, f_I^U, P_I, F_I)$ defined via
$$U_I = \{ \text{"John Johnsson", "Carl Carlson", "Mary Meyer"} \}$$

$$f_I^U(\mathsf{john}) = \text{"John Johnsson"} \quad \dots$$

$$P_I = \{\mathsf{knows}^I\}$$
 with $\mathsf{knows}^I = \{(\text{"John Johnsson", "Carl Carlson"}), (\text{"Carl Carlson", "John Johnsson"}) \}$
$$(\text{"Mary Meyer", "Carl Carlson"}) \}$$

$$F_I = \{ \}$$

First-order logic - semantics 8/8

```
I \models \forall X : \exists Y : \mathsf{knows}(X, Y)
                 for all VA: (I, VA) \models \forall X: \exists Y: knows(X, Y)
                  for all VA: for all VA' with VA' = VA
      \iff
                             except possibly VA'(X) \neq VA(X)
                             we have (I, VA') \models \exists Y : knows(X, Y)
                  for all VA: (I, VA) \models \exists Y : knows(X, Y)
                  for all VA: for some VA' with VA' = VA
                             except possibly VA'(Y) \neq VA(Y)
                             we have (I, VA') \models \text{knows}(X, Y)
```

First-order logic - semantics 8/8

We have either

$$VA(X) =$$
 "John Johnsson" or $VA(X) =$ "Carl Carlson" or $VA(X) =$ "Mary Meyer".

Let's try VA(X) = "John Johnsson". Then define VA' with VA'(Y) = "Carl Carlson" and VA' = VA otherwise, consider:

$$(I, VA') \models \mathsf{knows}(X, Y)$$
 $\iff (VA'(X), VA'(Y)) \in \mathsf{knows}^I$
 $\iff (\text{"John Johnsson"}, \text{"Carl Carlson"}) \in \mathsf{knows}^I$
 $\iff \mathsf{TRUE}$

For VA(X) = "Carl Carlson" and VA(X) = "Mary Meyer" we can find an appropriate VA' as well.

It follows that $I \models \forall X : \exists Y : knows(X, Y)$.

First-order logic - calculus, implementation

- Automatic reasoning with first-order logic is also called "(automatic) theorem proving"
- ► For general first-order logic, the problem "is there an I with $I \models \phi$?" is undecidable [Turing, 1937]
- (Impossible to construct an algorithm that always leads to a correct yes-or-no answer)
- ► There is a wide range of syntactic restrictions of first-order logic (such as description logics) which are decidable.
- ► Implementations/systems for first-order logic:
 - EProver: http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
 - Vampire: https://vprover.github.io
 - Hyper: https: //userpages.uni-koblenz.de/~obermaie/hyper/hyper.htm

First-order logic and propositional logic

- ► First-order logic is a *faithful generalisation* of propositional logic
- Any propositional logic can be embedded into a first-order logic
- If At is a propositional signature then $\Sigma_{At} = (\emptyset, At, \emptyset)$, with ar(a) = 0 for every $a \in At$, is the corresponding first-order signature
- ▶ Then $\mathcal{L}(\mathsf{At}) \subseteq \mathcal{L}(\Sigma,\emptyset)$
- All other notions (satisfaction, entailment) are then equivalent
- \rightarrow whenever we can use propositional logic formulas we can also use first-order logic

Chapter 2.1: Classical logics

Summary

Chapter 2.1: Summary

- Syntax and semantics of formal logics
- Propositional logic
 - ► Syntax: signature, ∧, ∨, ¬
 - Semantics: interpretations, models, satisfaction relation
 - Inference, equivalence
 - Satisfiability, CNF, SAT
- ► First-order logic
 - Syntax: signature, variables, terms, atoms, ∧, ∨, ¬, ∀, ∃
 - Semantics: interpretations, variable assignments, models, satisfaction relation
 - Automatic theorem proving

Overview

- Introduction
- 2 Classical logics and Prolog
 - Classical logics
 - First-order Logic
 - Prolog
- Search and automatic planning
- 4 Knowledge representation and reasoning
- 5 Agents and multi agent systems
- 6 Summary and conclusion

First-order logic and Horn logic 1/2

- Drawback of first-order logic: too expressive and therefore not decidable in general
- Wanted: Subset of first-order logic that is expressive but decidable
 - For modelling (ontologies, semantic web): description logic
 - For programming: Horn logic
- ► Horn logic is the foundation of most logical programming languages such as Prolog

First- order logic and Horn logic 2/2

- Recall definition clause (propositional logic): a disjunction of literals
- Definition is the same for first-order logic, example:

$$s(a,b) \vee \neg t(a) \vee \neg r(b,c)$$

Definition

A *Horn clause* is a clause with a most one positive literal.

Examples:

- ▶ $s(a, b) \lor \neg t(a)$ is a Horn clause.
- ▶ $p(X) \lor \neg t(Y) \lor \neg u(X, Y)$ is a Horn clause.
- $ightharpoonup q \lor \neg v \lor \neg x$ is a Horn clause.
- ▶ $s(a,b) \lor t(a) \lor \neg r(b,c)$ is not a Horn clause.

Horn clauses and Prolog

▶ A Horn clause $h \lor \neg b_1 \lor \ldots \lor \neg b_n$ is logically equivalent to an implication

$$h \Leftarrow (b_1 \wedge \ldots \wedge b_n)$$

- Rules (=implications) are the building blocks of Prolog.
- The syntax of Prolog is very similar to the syntax of first-order logic with few exceptions

First-order logic	Prolog	
<=	:-	Rule
٨	,	Conjunction
V	;	Disjunction
7	not	Negation*

^{*}Not exactly the same

Prolog programs 1/4

Definition

A Prolog program P consists of

- 1. a data base D
- 2. and a rule base R

Definition

A data base D is a set of first-order atoms without variables (and without functors). Every atom is terminated by a full stop ".".

Prolog programs 2/4

Example

```
childOf(maria, claudia).
childOf(claudia, berta).
female(maria).
female(claudia).
female(berta).
```

Convention: variables start with an uppercase letter (or with $_$) and constants start with a lowercase letter. Predicate symbols also start with a lowercase letter.

Prolog programs 3/4

Definition

A rule base R is a set of Horn clauses of the form

```
H :- B1,...,BN.
with H,B1,...,BN being first-order atoms (without functors).
Example
grandchildOf(X,Z) :- childOf(X,Y), childOf(Y,Z).
mother(X) :- female(X), childOf(_,X).
male(X) :- not(female(X)).
```

Remark: _ is an anonymous variable and can be used if the actual value is not important.

Evaluation of Prolog programs 1/3

- Prolog programs represent a knowledge base (facts and rules)
- ▶ Prolog programs are "executed" by asking specific *queries*

Definition

A *Prolog query* (also *goal*) is a first-order atom (possibly with variables) with a prefixed ?-.

Example

- ▶ ?- female(maria) Is Maria female?
- ?- female(X) For what X is it true that X is female?
- > ?- grandchildOf(maria, X) For what X is it true that maria is a grandchild of X?

Evaluation of Prolog programs 2/3

- Executing a query means to determine whether the program entails the query.
- If query contains variables: determine for which assignments of these variables the program entails the query (could be none, could be more than one).
- Semantics of Prolog follows the Closed World Assumption (Statements that are not entailed are assumed to be false.)
- Execution of queries via depth-first backward chaining, where rules are applied in the order in which they occur in the program.

Evaluation of Prolog programs 3/3

Data base:

```
childOf(maria, claudia). childOf(claudia, berta).
female(maria). female(claudia). female(berta).
```

Rule base:

```
\begin{split} & \text{grandchildOf}(X,Z) := \text{childOf}(X,Y), \text{ childOf}(Y,Z). \\ & \text{mother}(X) := \text{female}(X), \text{ childOf}(\_,X). \\ & \text{male}(X) := \text{not}(\text{female}(X)). \end{split}
```

- ?- childOf(maria, berta) No (Not entailed)
- ?- female(carla) No (Carla is not mentioned)
- ?- male(dieter) Yes (Why?)
- ?- mother(X) Yes, with multiple assignments for X:
 - X = claudia
 - X = berta

Prolog interpreter: SWI-Prolog 1/4

- Prolog is an interpreted programming language
- ▶ We use SWI-Prolog (http://www.swi-prolog.org/) for this lecture and for the tutorials

Installation of SWI-Prolog in Unix/Linux

\$ sudo apt-get install swi-prolog

Prolog interpreter: SWI-Prolog 2/4

simpleFamily.pl:

```
childOf(maria, claudia).
childOf(claudia, berta).
female(maria).
female(claudia).
female(berta).
grandchildOf(X,Z) :- childOf(X,Y), childOf(Y,Z).
mother(X) :- female(X), childOf(_,X).
male(X) :- not(female(X)).
```

Execution using SWI-Prolog

```
$ swipl simpleFamily.pl
```

Prolog interpreter: SWI-Prolog 3/4

Interpreter.

```
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.6.6)
Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word).
```

Prolog interpreter: SWI-Prolog 4/4

Asking queries:

```
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.6.6)

Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- grandchildOf(maria, X).

X = berta.

?-
```

Interpreter is terminated by entering "halt."

Arithmetic operators 1/3

- Prolog has built-in functionalities for arithmetics, natural numbers are predefined constants
 - ▶ Addition: X+2▶ Subtraction: Y-5▶ Multiplication: 3*5
 - Division: 12/4
- Comparison operators
 - Syntactic equality: =
 - Semantic equality/inequality: =:=
 - less than/greater than: >,<,>=,=<</pre>

Example:

```
?- 3+4 = 1+6.
false.
?- 3+X = Y+4.
X = 4,
Y = 3.
```

Arithmetic operators 2/3

More examples:

```
?- 2*5 =:= 10.
true.
?- 3*3 < 10.
true.
```

arithmetics1.pl:

```
isSumOf(X,Y,Z) :- X =:= Y+Z.
```

```
?- isSumOf(10,6,4).
true.
?- isSumOf(7,1,3).
false.
```

Arithmetic operators 3/3

?- X is (2*3+4).

▶ Value assignment is realised via is: X is Arithmetic expression

```
X = 10.
arithmetics2.pl:
even(0).
even(X) := X > 0, Y is (X-1), odd(Y).
odd(X) :- not(even(X)).
?- even(2).
true.
?- even(7).
```

Termination

Note: Prolog program may not terminate.

Be cautious when implementing, in particular with recursive definitions and arithmetic expressions:

$$t(X) := t(X+1).$$

ERROR: Out of global stack