平成25年度

大学院博士前期課程(修士)入学試験問題

材 料 力 学

注意事項:解答用紙に指示してある問題番号,解答の仕方にしたがって記入すること.

岡山大学大学院自然科学研究科(工学グループ) 機械システム工学専攻(機械系)

材 料 力 学

- 【1】 片持ちはりに関する以下の問いに答えよ. ただし、図1に示すいずれのはりに関しても、縦弾性係数をE、断面二次モーメントをIとする.
 - (1) 図 1 (a) に示すように、片持ちはりの自由端 B に集中荷重 P が下向きに作用するとき、自由端におけるたわみ(y 軸方向の変位) δ_{B1} を求めよ.
 - (2) 同じ図 1 (a) に示す片持ちはりについて、固定端 A から距離 a のところにある点 C のたわみ δ_{CI} を求めよ.
 - (3) 図 1 (b) に示すように、片持ちはりの点Cに上向きの集中荷重Qが作用している. このとき、点Cのたわみ δ_{C2} を求めよ.
 - (4) これまでの結果を利用して、図1(c)に示すように点Cが支持され、自由端Bで集中荷重Pを受ける片持ちはりに関して、自由端Bにおけるたわみ δ_B を求めよ.

図 1

材 料 力 学

- 【2】図2に示すように、長さ α の棒AB(材料1)と長さbの棒BC(材料2)が面Bで接合された異材接合棒ACがある.その両端AとCを剛体壁で固定した後、棒全体の温度を均一に ΔT だけ上昇させる.これに関して以下の問いに答えよ.ただし、両棒の断面は等しく、材料1と2の縦弾性係数と線膨張係数をそれぞれ E_1 、 α 、および E_2 、 α_2 とする.
 - (1) 異材接合棒ACを剛体壁で固定せず両端を自由として ΔT だけ温度上昇させたとき、棒の伸び λ_T を求めよ.
 - (2) 剛体壁で固定して ΔT だけ温度上昇させた場合、棒に生じる圧縮応力 σ_c を求め よ.
 - (3) 間(2)の状態における接合部 Bの水平方向の変位 δ_B を求めよ. ただし、変位は図 2 に示すように右方向を正とする.

図2

材 料 力 学

- 【3】図3のように、長さIの両端支持ばりがある.このはりの中央に、高さhから質量mの物体を落下させる.このとき、以下の問いに答えよ.ただし、はりの縦弾性係数をE、断面二次モーメントをI、重力加速度をgとする.
 - (1) 図3のように、はりの左端に原点をとり、はりの長手方向にx軸をとるとき、物体の落下によってはりに働く最大荷重をPとして、はりに生じるモーメントをxの関数で表せ.
 - (2) 問(1)で求めたモーメントを使って,はりに蓄えられる弾性ひずみエネルギーを 求めよ.
 - (3) 物体の落下によるエネルギーがすべてはりの弾性ひずみエネルギーになったとして、最大荷重Pを求めよ、ただし、はりのたわみは高さhより十分に小さいとする.
 - (4) はり中央の最大たわみ δ を求めよ.
 - (5) はりの断面が一辺aの正方形のとき、はりに生じる最大曲げ応力を求めよ.

