Методы организации безопасности в операционных системах

Операционные системы

Симонова Полина Игоревна

31.03.2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Симонова Полина Игоревна
- студент группы НКАбд-04-24
- Российский университет дружбы народов
- · 1132246738@rudn.ru
- https://o5o6am.github.io/

Актуальность

Актуальность моего доклада обусловлена ростом киберугроз и необходимостью защиты конфиденциальной информации в корпоративных и частных системах.

Объект и предмет исследования

- Объектом исследования являются операционные системы и их безопасность
- Предметом исследования являются различные методы и механизмы обеспечения безопасности в ОС

Цель работы

• Изучить основные методы обеспечения безопасности операционных систем и способы их применения в современных ОС (Windows, macOS, Linux)

- Изучить механизмы аутентификации и авторизации, их роль в защите данных;
- Рассмотреть методы защиты памяти и процессов от вредносного воздействия;
- Изучить межсетевые экраны и системы обнаружения вторжений, их роль в обеспечении безопасности.

Теоретическое введение

Безопасность ОС — критически важный аспект, поскольку уязвимости могут привести к утечке данных, несанкционированному доступу и другим киберугрозам.

Аутентификация и авторизация

Аутентификация — процедура проверки подлинности

Таблица 1: Методы аутентификации

Метод	Примеры	Надежность	
Пароли	Логин/пароль	Низкая	
2FA	SMS, Google Auth	Средняя	
Биометрия	Face ID, отпечаток	Высокая	
Сертификаты	PKI, Smart-карты	Очень высокая	

Авторизация

Авторизация - предоставление прав доступа.

Основные методы:

- Дискреционное управление доступом (DAC) владелец ресурса сам назначает права (например, в Linux через chmod).
- Мандатное управление доступом (MAC) строгие правила, заданные администратором (используется в SELinux).
- · Ролевое управление доступом (RBAC) права назначаются ролям, а не пользователям.

Разделение адресных пространств

ОС изолирует процессы, предотвращая их вмешательство в работу друг друга.

Рис. 1: Сравнение Kernel Mode и User Mode

Шифрование файловых систем

Шифрование — это метод защиты информации путём преобразования её в зашифрованный вид.

• BitLocker - программа для полного шифрования диска, позволяющая создать диск BitLocker

Защита сетевого трафика

- · VPN
- Защищённый туннель для удалённого доступа
- SSL (Secure Sockets Layer)/TLS (Transport Level Security)
- · Шифрование веб-трафика (HTTPS)

Межсетевые экраны

Файрволы (Firewalls) — это программное или аппаратное устройство, которое контролирует и фильтрует сетевой трафик на основе заданных правил.

Рис. 4: Принцип работы межсетевого экрана

Системы обнаружения и предотвращения вторжений (IDS/IPS)

IDS/IPS - используются для выявления и предотвращения попыток несанкционированного проникновения во внутренние сети

Рис. 5: Принцип работы IDS и IPS

Обновления и мониторинг безопасности

Таблица 2: Сравнение систем обновления в ОС

Критерий	Windows	Linux (Ubuntu)	macOS
Менеджер	Windows Update	apt (APT)	Software Update
обновлений			
Частота	Ежемесячно (Patch	По мере выхода	Ежеквартально
обновлений	Tuesday)		
Критические	Автоматически через	Вручную/авто через	С задержкой 1-2
исправления	WU	репозитории	недели
Поддержка EOL*	5-10 лет	До 10 лет (LTS)	~7 лет
Риски	"Сломанные"	Конфликты	Задержки
	обновления	зависимостей	безопасности

Заключение

Безопасность операционных систем обеспечивается комплексом методов: от аутентификации и шифрования до защиты памяти и сетевой безопасности. Постоянное развитие угроз требует регулярного обновления защитных механизмов

Я изучила механизмы аутентификации и авторизации, методы защиты памяти и процессов от вредоносного воздействия и их роль в защите данных.