# STABILIZERS AND ORBITS

Cosets

Author

Tom Jeong

October 9, 2024

## Contents

| 1 | Stabilizers  | • |
|---|--------------|---|
|   | 1.1 examples | • |

### 1 Stabilizers

From last class,  $\sigma = (123)(56) \in S_6$   $H = <\sigma> = \{\sigma, \sigma^2, \sigma^3, \sigma^4, \sigma^5, e\}$  and  $H \circlearrowleft M_6 = \{1, 2, 3, 4, 5, 6\}$ The sets of orbit  $M_6/H = \{\{1, 2, 3\}, \{4, 5, 6\}\}$ 

The stablizer:

$$\begin{split} H_{\{1\}} &= \{e, \sigma^3\} \\ H_{\{4\}} &= H \\ H_{\{5\}} &= \{\sigma^2, \sigma^4, e\} \\ H_{\{5,6\}} &= \{h \in H | h \cdot \{5,6\} = \{5,6\}\} = H \end{split}$$

Ex: Let  $H \leq G$ THen

$$\alpha: H \times G \to G$$
$$\alpha(h,g) = h \cdot g$$

is an action  $H \circlearrowright G$ the orbit  $H \cdot g = \{hg|h \in H\}$  ie the right coset Hg the set of orbit is  $H \backslash G$ ie the sest of right cosets fixed points  $H_g = \{h \in H|hg = g\}$ ther is no fixed points since  $H \neq \{e\}$ 

### 1.1 examples

ex.  $GL_2(\mathbb{R}) \circlearrowright \mathbb{R}^2$  by

$$\alpha = GL_2(\mathbb{R}) \times \mathbb{R}^2 \to \mathbb{R}^2$$
$$\alpha(A, v) = A \cdot v$$

$$A \cdot (0,0) = (0,0) \ \forall A \in GL_2(\mathbb{R})$$
If  $\vec{v} \neq (0,0)$ ,
$$GL_2(\mathbb{R}) \cdot \vec{v} = \mathbb{R}^2 \setminus \{(0,0)\}$$
Let  $S' = \{\vec{v} \in \mathbb{R}^2 | ||\vec{v}|| = 1\}$ 



exercise: stabilizer of S' is  $O_2(\mathbb{R}) = \{A \in GL_2(\mathbb{R}) | A^T A = id\}$ exercise Let H be a subgroup of G not necessarily normal

Then Define

$$\alpha: G \times G/H \to G/H$$
 
$$\alpha(g, g'H) = (gg')H$$

Tere is only one orbit since for any  $g_1H$  and  $g_2H$ ,

$$\alpha(g_2g_1^{-1}, g_1H) = g_2H$$

The stabilizer of  $H \in G/H$  is  $H \leq G$  since  $\alpha(h, H) = hH = H$  for all  $h \in H$ 

**Proposition 1.1.** Let  $\alpha: G \times S \to S$  be a group action.

- 1. let  $X \subseteq S$  Then the stabilizer  $G_X$  is a subsgroup of G
- 2. The set S is a union of G-ortbits.

$$S = \bigcup_{s \in S} G \cdot s$$

where 
$$G \cdot s \neq G \cdot t \longrightarrow G \cdot s \cap G \cdot t = \emptyset$$

3. Orbit-stabilizer lemma: Let  $x \in S$  then

$$\tilde{f}: G/G_X \to G \cdot x$$

given by  $\tilde{f}(gG_x) = g \cdot x$  is a well-defined bijection map between the set of left osets of  $G_X$  and the orbit of x

EX.

#### Example 1.2.

$$\sigma = (123)(56) \in S_6$$

$$H = <\sigma>$$

$$H \circlearrowleft M_6$$

set of orbits

$$M_6/H = \{\{1, 2, 3\}, \{4\}, \{5, 6\}\}\$$

with Stabilizer:

$$H_1 = \{e, \sigma^3\}$$

$$H_5 = \{\sigma^2, \sigma^4, e\}$$

$$H/H_5 = \{H_5, \sigma H_5\}$$
Note that  $\sigma H_5 = \{\sigma\sigma^2, \sigma\sigma^4, \sigma e\} = \{\sigma^3, \sigma^5, \sigma\} = H_1$ 

with the bijection

$$\tilde{f}: H/H_5 \to \{5, 6\}$$
  
 $\tilde{f}(H_5) = 5$   
 $\tilde{f}(\sigma H_5) = 6$ 

Now since we have seen the sample, we will show the proof of the proposition.

Proof.

- Prove that G<sub>X</sub> is a subgroup G<sub>X</sub> = {g ∈ G|gX = X}
   (Identity) e ∈ G<sub>X</sub> (by definiting of group action)
   (Closure) If g, h ∈ G<sub>X</sub> then (gh) · X = g(h · X) = gX = X
   (Inverse) If g ∈ G<sub>X</sub> then g<sup>-1</sup>X = g<sup>-1</sup>(gX) = X since g is in the stabilizer
- 2. We will define an equivalence relation: define  $\alpha:G\times S\to S$  be a group action. LEt  $s,t\in S$  Define  $s\sim t$  if  $\exists g\in G$  such that  $g\cdot s=t$

**Lemma 1.3.** This is an equivalence relation.

Proof.

- (a) reflexive:  $e \in G$  and  $e \cdot s = s$  for all  $s \in S$  so  $s \sim s$
- (b) symmetric: suppose  $s \sim t$  then  $\exists g \in G$  such that  $g \cdot s = t$  then  $g^{[} 1] \cdot t = g^{-1}(gs) = e \cdot s = s$  so  $t \sim s$
- (c) <u>transitive</u>: suppose  $s\sim t$  and  $t\sim u$  then  $\exists g,h\in G$  such that  $g\cdot s=t$  and  $h\cdot t=u$   $hg\cdot s=ht=u \text{ so } s\sim u$

So g orbits are eactly the equivalence classes of this relation.

3. wts:  $\tilde{f}: G/G_X \to G \cdot x$  with  $\tilde{f}(gG_X) = g \cdot x$  is a well-defined bijection. Let  $g_1, g_2 \in G$  suppose  $g_2G_x = g_2G_X$ . By Lemme 2.26

$$g_1G_X = g_2G_X \leftrightarrows g_1^{-1}g_2 \in G_X$$

we have that  $g_1^{-1}g_2 \in G_x$ 

 $liff g_1^{-1}g_2 \cdot x = x$ 

iff  $g_1 \cdot x = g_2 \cdot x$  so  $\tilde{f}$  is well-defined and injective

Let  $s \in G \cdot x$  Then  $s = g \cdot x$  for some  $g \in G$ .. Hence

$$\tilde{f}(gG_X) = g \cdot x$$

so  $\tilde{f}$  is surjective



**Example 1.4.** x should be on top right coerner ngl Let  $G = \{$  group of symmetries of a cube $\}$ . What is the order of G?

Let x be a vertex,  $|G \cdot x| = 8$  since the orbit of x is the number of vertices of the cube.

Stabilizer  $|G_X|=3$  which is the identity, rotation by  $\frac{2\pi}{3}, \frac{4\pi}{3}$  about the red axis By LaGranges Theorem  $|G|=|G/G_X|\cdot |G_X|=8\cdot 3=24$ by Previous proposition  $|G/G_X|=|G\cdot X|=8$  SO we have |G|=24

Corollary (2.10.7) Let  $G \times S \to S$  be a group action where S is a finnite set

Then

$$|S| = |S^G| + \sum_x |G/G_X|$$

where  $S^G$  are the fixed points. where the summation is done by picking out an element x from eah orbit with more than one element.

Proof.

BY 2) of the previous proposition  $|S| = \sum_{G \cdot X \in S/G} |G \cdot x| =$ 

$$|S^G|$$
 (orbits containing a single element)  $+\sum_x |G/G_X|$  (by part 3 of proposition)

Lemma 1.5 (Burnside's Lemma (2.10.8)).

Cauchy -Frobenius Lemma. Let  $G \times S \to S$  be a group action where S is a finite set and G is a finite group. Then the number of orbits is equal to the average number of fixed points of elements of G.

$$|S/G| = \frac{\sum_{g \in G} |S^g|}{|G|}$$

and where  $S^g = \{x \in S | gx = x\}$