Descriptive Statistics D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\LIS.DBF

Variable Name is AREA

Percentiles: 0.0% 0.5%	= 0.25 = 0.25	Minimum	Tukey Five Number Summary: Minimum = 0.25 Fourth = 0.50
2.5%	= 0.25		Median = 1.25
10.0%	= 0.25		Fourth $= 2.75$
25.0%	= 0.50	Quartile	Maximum = 33.75
50.0%	= 1.25	Median	
75.0%	= 2.8125	Quartile	
90.0%	= 9.125		
97.5%	= 27.1687	6	
99.5%	= 33.75		Test for normality results:
100.0%	= 33.75	Maximum	$D = .31$ $p \le 0.001$

Five number summary was calculated using the technique from UNDERSTANDING ROBUST AND EXPLORATORY DATA ANALYSIS by Hoaglin, Mosteller And Tukey. See complete reference in WINKS manual.

Confidence Intervals about the mean:

```
80 % C.I. based on a t(77) critical value of 1.3 is (2.51961, 4.37142) 90 % C.I. based on a t(77) critical value of 1.67 is (2.25608, 4.63494) 95 % C.I. based on a t(77) critical value of 2.0 is (2.02105, 4.86998) 98 % C.I. based on a t(77) critical value of 2.38 is (1.7504, 5.14063) 99 % C.I. based on a t(77) critical value of 2.65 is (1.55809, 5.33293)
```

The normality test suggests that the data are not normally distributed. The test for normality is a modified Kolmogorov-Smirnov test based on papers by Lilliefors and Dallal & Wilkinson. References in latenews.txt.

Lisburne - Closure areas

AREA

Descriptive Statistics D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\LIS.DBF

Variable Name is HEIGHT

Percentiles:		Tukey Five Number Summary:
0.0%	= 8.60 Minimum	Minimum = 8.60
0.5%	= 8.60	Fourth = 27.40
2.5%	= 11.72	Median = 47.40
10.0%	= 15.68	Fourth $= 76.90$
25.0%	= 27.05 Quartile	Maximum = 297.90
50.0%	= 47.40 Median	
75.0%	= 76.90 Quartile	
90.0%	= 118.08	
97.5%	= 248.3701	
99.5%	= 297.90	Test for normality results:
100.0%	= 297.90 Maximum	D = .168 $p <= 0.001$

Five number summary was calculated using the technique from UNDERSTANDING ROBUST AND EXPLORATORY DATA ANALYSIS by Hoaglin, Mosteller And Tukey. See complete reference in WINKS manual.

Confidence Intervals about the mean:

```
80 % C.I. based on a t(77) critical value of 1.3 is (53.36639, 68.649)
90 % C.I. based on a t(77) critical value of 1.67 is (51.19156, 70.82383)
95 % C.I. based on a t(77) critical value of 2.0 is (49.25184, 72.76355)
98 % C.I. based on a t(77) critical value of 2.38 is (47.01823, 74.99716)
99 % C.I. based on a t(77) critical value of 2.65 is (45.43119, 76.5842)
```

The normality test suggests that the data are not normally distributed. The test for normality is a modified Kolmogorov-Smirnov test based on papers by Lilliefors and Dallal & Wilkinson. References in latenews.txt.

Lisburne – Closure heights

HEIGHT

Linear Regression and Correlation

D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\LIS.DBF

Dependent variable is HEIGHT, 1 independent variables, 77 cases.

Variable	Coefficient	St. Error	t-value	p(2 tail)
Intercept	36.238482	4.024189	9.0051641	<.001
AREA	8.0597315	.663365	12.149769	<.001

R-Square = 0.6631 Adjusted R-Square = 0.6586

Analysis of Variance to Test Regression Relation

Source	Sum of Sqs	df	Mean Sq	F	p-value	_
Regression Error	137480.92 69850.196	_	137480.92 931.33594	147.6169	<.001	_
Total	207331.12	76				

A low p-value suggests that the dependent variable HEIGHT may be linearly related to independent variable(s).

MEAN X = 3.052 S.D. X = 5.277 CORR XSS = 2116.417 MEAN Y = 60.836 S.D. Y = 52.231 CORR YSS = 207331.2 REGRESSION MS= 137480.921 RESIDUAL MS= 931.336

Pearson's r (Correlation Coefficient) = 0.8143

The linear regression equation is:
HEIGHT = 36.23848 + 8.059731 * AREA

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (two-tailed test) t = 12.15 with 75 degrees of freedom p <= .001

Note: A low p-value implies that the slope does not = 0.

Linear Regression and Correlation

D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\LIS.DBF

Dependent variable is LOGHEIGHT, 1 independent variables, 78 cases.

Variable	Coefficient	St. Error	t-value	p(2 tail)
Intercept	3.7122893	.0706039	52.579118	<.001
LOGAREA	.3583242		6.5960248	<.001

R-Square = 0.3641 Adjusted R-Square = 0.3557

Analysis of Variance to Test Regression Relation

Source	Sum of Sqs	df	Mean Sq	F	p-value	
Regression Error	15.85472 27.695398	1 76	15.85472 .3644131	43.507543	<.001	_
Total	43.550118	77				

A low p-value suggests that the dependent variable LOGHEIGHT may be linearly related to independent variable(s).

MEAN X = .326 S.D. X = 1.266 CORR XSS = 123.483 MEAN Y = 3.829 S.D. Y = .752 CORR YSS = 43.55 REGRESSION MS= 15.855 RESIDUAL MS= .364

Pearson's r (Correlation Coefficient) = 0.6034

The linear regression equation is:

LOGHEIGHT = 3.712289 + .3583243 * LOGAREA

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (two-tailed test) t = 6.6 with 76 degrees of freedom p <= .001

Note: A low p-value implies that the slope does not = 0.

