Supplementary materials

Mohammad Rohaninejad and Zdeněk Hanzálek

Industrial Informatics Department, Czech Institute of Informatics Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic

1 Customized models in the literature

1.1 PLSP 1

Indices

 $\begin{array}{ll} j,j' & \text{Index of jobs } (j,j'=1,...,J) \\ o,o' & \text{Index of operations} \\ h_j & \text{Last operation of job } j \\ m & \text{Index of machines } (m=1,...,M) \\ t & \text{Index of macro-periods } (t=1,...,T) \\ \tau,\tau' & \text{Index of micro-periods} \\ \zeta_t & \text{Index of the last micro-period belonging to the macro-period } t \end{array}$

Parameters

 D_{it} Demand of job j at the end of period tProcessing time needed to produce one unit of product related to operation O_{io} p_{io} C_{mt} Capacity of machine m during period tAvailable time in micro-period τ c_{τ} Setup time of $O_{j'o'}$ if processed immediately after O_{jo} on the same machine $\delta_{joj'o'}$ Machine that is assigned to process O_{jo} a_{jo} Setup cost needed to run O_{jo} in period t sc_{iot} Production cost needed to produce one unit of product related to O_{jo} in period t pc_{jot} Inventory holding cost for one unit of product related to O_{jo} at the end of period t hc_{jot} Set of micro-periods belonging to the macro-period t ϑ_t GA big positive number

Variables

 $x_{jo\tau}$ Quantity of O_{jo} that is processed in micro-period τ (lot-size)

 $I_{jo\tau}$ Amount of inventory related to O_{jo} at the end of micro-period τ

 $z_{jo\tau}$ 1 iff a setup for O_{jo} is occurred in micro-period τ ; 0, otherwise

 $y_{jo\tau}$ 1 iff a machine is set up for O_{jo} at the end of micro-period τ ; 0, otherwise

 $w_{joj'o'\tau}$ 1 iff $O_{j'o'}$ produced immediately after O_{jo} in micro-period τ on the same machine; 0, otherwise

TSC Total system cost

$$Min\ TSC = \left(\sum_{\forall t} \sum_{\forall (j,o)} z_{jot} \cdot sc_{jot} + x_{jot} \cdot pc_{jot} + I_{jo\zeta_t} \cdot hc_{jot}\right)$$
(1)

$$I_{jh_j\zeta_t-1} + x_{jh_j\zeta_t} - I_{jh_j\zeta_t} = D_{jt} \qquad \forall t, \, \forall j$$
 (2)

$$I_{jo\tau-1} + x_{jo\tau} - I_{jo\tau} = x_{j(o+1)\tau} \qquad \forall \tau, \, \forall j, o = 1, ..., h_j - 1$$
 (3)

$$I_{jo\tau-1} \ge x_{j(o+1)\tau} \qquad \forall \tau, \, \forall j, o = 1, ..., h_j - 1 \tag{4}$$

$$x_{jo\tau} \cdot p_{jo} \le (y_{jo\tau - 1} + y_{jo\tau}) \cdot c_{\tau} \qquad \forall \tau, \, \forall (j, o)$$
 (5)

$$\sum_{\forall (j,o)|a_{jo}=m} \left(x_{jo\tau} \cdot p_{jo} + \sum_{\forall (j',o')|a_{j'o'}=m} \omega_{joj'o'\tau} \cdot \delta_{joj'o'} \right) \le c_{\tau} \qquad \forall \tau, \, \forall m$$
 (6)

$$\sum_{\tau \in \vartheta_t} \sum_{\forall (j,o)|a_{jo} = m} x_{jo\tau} \cdot p_{jo} \le C_{mt} \qquad \forall t, \, \forall m$$
 (7)

$$\sum_{\forall (j,o)|a_{jo}=m} y_{jo\tau} \le 1 \qquad \forall \tau, \, \forall m \tag{8}$$

$$z_{jo\tau} \ge y_{jo\tau} - y_{jo\tau-1} \qquad \forall \tau, \, \forall m, \, \forall j, o = 1, ..., h_j | a_{jo} = m$$
 (9)

$$\omega_{joj'o'\tau} \ge y_{jo\tau-1} + y_{j'o'\tau} - 1 \qquad \forall \tau, \, \forall m$$

$$\forall \tau, \, \forall (j, o), \, \forall (j', o') \, | \, (j, o) \ne (j', o') \, \& \, a_{jo} = a_{j'o'} = m$$

$$(10)$$

$$\{x_{jo\tau}, I_{jo\tau}\} \in \mathbb{R}^+; \{z_{jo\tau}, y_{jo\tau}, \omega_{joj'o'\tau}\} \in \{0, 1\} \quad \forall t, \, \forall (j, o), \, \forall (j', o')$$

$$(11)$$

1.2 PLSP 2

New variables

 $xb_{jo\tau}$ Quantity of O_{jo} that is processed in micro-period τ for first campaign $xe_{jo\tau}$ Quantity of O_{jo} that is processed at the end of micro-period τ (if a second campaign is started in micro-period τ)

$$Min\ TSC = \left(\sum_{\forall t} \sum_{\forall (j,o)} z_{jot} \cdot sc_{jot} + x_{jot} \cdot pc_{jot} + I_{jo\zeta_t} \cdot hc_{jot}\right)$$
(12)

$$I_{jh_{i}\tau-1} + x_{jh_{i}\tau} - I_{jh_{i}\tau} = D_{jt} \qquad \forall t, \, \forall j, \, \tau = \zeta_{t}$$

$$\tag{13}$$

$$I_{jo\tau-1} + x_{jo\tau} - I_{jo\tau} = x_{j(o+1)\tau}$$
 $\forall \tau, \forall j, o = 1, ..., h_j - 1$ (14)

$$x_{jo\tau} = xb_{jo\tau} + xe_{jo\tau} \qquad \forall \tau, \, \forall j, o = 1, ..., h_j$$
 (15)

$$\sum_{\forall (j,o)|a_{jo}=m} y_{jo\tau} \le 1 \qquad \forall \tau, \, \forall m \tag{16}$$

$$z_{jo\tau} \ge y_{jo\tau} - y_{jo\tau-1} \qquad \forall \tau, \, \forall m, \, \forall j, o = 1, ..., h_j | a_{jo} = m$$

$$\tag{17}$$

$$xb_{jo\tau} \le y_{jo\tau-1} \cdot G \qquad \forall \tau, \, \forall j, o = 1, ..., h_j$$
 (18)

$$xe_{jo\tau} \le z_{jo\tau} \cdot G \qquad \forall \tau, \, \forall j, o = 1, ..., h_j$$
 (19)

$$\sum_{\tau \in \vartheta_t} \sum_{\forall (j,o) | q_{jo} = m} x_{jo\tau} \cdot p_{jo} \le C_{mt} \qquad \forall t, \, \forall m$$
 (20)

$$\omega_{joj'o'\tau} \ge y_{jo\tau-1} + y_{j'o'\tau} - 1 \qquad \forall \tau, \, \forall m \tag{21}$$

$$\forall (j, o), \forall (j', o') \mid (j, o) \neq (j', o') \& a_{jo} = a_{j'o'} = m$$

$$xb_{jo\tau} \le I_{jo\tau-1} \qquad \forall \tau, \, \forall j, o = 1, ..., h_j$$
 (22)

$$xe_{jo\tau} \le I_{jo\tau-1} + xb_{jo\tau} \qquad \forall \tau, \, \forall j, o = 1, ..., h_j$$
 (23)

$$z_{jo\tau} \le y_{jo\tau} \qquad \forall \tau, \, \forall j, o = 1, ..., h_j$$
 (24)

$$z_{jo\tau} \ge y_{jo\tau} - \sum_{\tau' \in \vartheta_t \mid \tau' < \tau} \sum_{\forall (j',o') \mid a_{j'o'} = a_{jo}} y_{j'o'\tau'} \qquad \forall t, \, \forall \tau \in \vartheta_t, \, \forall j, o = 1, ..., h_j$$
 (25)

$$\sum_{j=1}^{J} \sum_{o=1|a_{jo}=m}^{h_{j}} \left(x_{jo\tau} \cdot p_{jo} + \sum_{\forall (j',o')|a_{j'o'}=m} \omega_{joj'o'\tau} \cdot \delta_{joj'o'} \right) \le c_{\tau} \qquad \forall \tau, \, \forall m$$
 (26)

$$\{x_{jo\tau}, xb_{jo\tau}, xe_{jo\tau}, I_{jo\tau}\} \in \mathbb{R}^+; \{z_{jo\tau}, y_{jo\tau}, \omega_{joj'o'\tau}\} \in \{0, 1\} \quad \forall t, \forall (j, o), \forall (j', o')$$
 (27)

1.3 GLSP

New parameters

R Number of microperiod per machine in each period

Variables

 u_{rt} Starting time of microperiod r in period t (lot-size)

 I_{jort} Inventory of product of operation O_{jo} at the end of microperiod r (units)

 x_{iort} Quantity of O_{io} that is processed in microperiod r of period t (lot-size)

 \hat{x}_{jort} Share of x_{jort} that can be used by successors in the same microperiod r of period t (units)

 \check{x}_{jort} Share of x_{jort} that can as WIP-stock first be used by successors in the following microperiod t (units)

 y_{jomrt} Setup state: $y_{jomrt} = 1$, if machine m is set up for O_{jo} in microperiod r (0 otherwise)

 $z_{joj'o'rt}$ Takes on 1, if a changeover from operation O_{jo} to operation $O_{j'o'}$ takes place on their eligible machine during microperiod r (0 otherwise)

 x_{mrt}^{b} Fractional setup time for changeover at the beginning of microperiod r on machine m

 x_{mrt}^e Fractional setup time for changeover at the end of microperiod r on machine m

 \bar{x}^b_{mrt} Standby time on machine m in microperiod r before production

 \bar{x}^e_{mrt} Standby time on machine m in microperiod r after production

$$Min\ TSC = \left(\sum_{\forall t} \sum_{\forall r|r>1} \sum_{\forall (j,o)} \sum_{\substack{\forall (j',o')\\|a_{jo}=a_{j'o'}}} z_{j'o'jort} \cdot sc_{jot} + \sum_{\forall t} \sum_{\forall (j,o)} y_{jom1t} \cdot sc_{jot} + \sum_{\substack{\forall t\\\forall r|r=R}} \sum_{\substack{\forall (j,o)}} I_{jort} \cdot hc_{jot}\right)$$

$$+ \sum_{\forall t} \sum_{\forall r} \sum_{\substack{\forall (j,o)}} x_{jort} \cdot pc_{jot} + \sum_{\forall t} \sum_{\substack{\forall r|r=R}} \sum_{\substack{\forall (j,o)}} I_{jort} \cdot hc_{jot}\right)$$
 (28)

$$I_{jort} = I_{jo(r-1)t} + \hat{x}_{jort} + \check{x}_{jo(r-1)t} - x_{j(o+1)rt} \qquad \forall t, \forall r, \forall j, o = 1, ..., h_j - 1$$
 (29)

$$I_{jort} = I_{jo(r-1)t} + x_{jort} - D_{jt} \qquad \forall t, \forall r, \forall j, o = h_j | r = R$$
(30)

$$I_{jort} = I_{jo(r-1)t} + x_{jort} \qquad \forall t, \forall r, \forall j, o = h_j | r < R$$
(31)

$$I_{jort} = I_{jor'(t-1)} + \hat{x}_{jort} - x_{j(o+1)rt} \qquad \forall t, \forall r, r' \, \forall j, o = 1, ..., h_j - 1 | r = 1, r' = R$$
 (32)

$$I_{jort} = I_{jor'(t-1)} + x_{jort} \qquad \forall t, \forall r, r' \, \forall j, o = h_j | r = 1, r' = R$$

$$(33)$$

$$x_{jort} = \hat{x}_{jort} + \check{x}_{jort} \qquad \forall t, \forall r, \, \forall (j, o)$$
(34)

$$x_{jort} - y_{jomrt} \cdot G \le 0 \qquad \forall t, \forall r, \forall (j, o), \forall m \mid a_{jo} = m$$
 (35)

$$\sum_{j=1}^{J} \sum_{\substack{o=1 \mid a_{io}=m}}^{h_j} y_{jomrt} = 1 \qquad \forall t, \forall r, \forall m$$
(36)

$$y_{jom(r-1)t} + y_{j'o'mrt} - 1 \le z_{joj'o'rt} \qquad \forall t, \forall r, \forall m, \tag{37}$$

 $\forall (j, o), \forall (j', o') \mid (j, o) \neq (j', o') \& a_{jo} = a_{j'o'} = m$

$$\sum_{\forall (j,o)} \sum_{\substack{\forall (j',o')\\|a_{jo}=a_{j'o'}=m}} z_{joj'o'rt} = 1 \qquad \forall t, \forall r, \forall m$$
(38)

$$x_{mrt}^{b} + \bar{x}_{mrt}^{b} \ge x_{m'rt}^{b} + \bar{x}_{m'rt}^{b} - G \cdot (2 - y_{jom'rt} - y_{j(o+1)mrt}) \qquad \forall j, o = 1, ..., h_{j} - 1$$

$$\forall t, \forall r, \forall m, m' | a_{jo+1} = m \& a_{jo} = m'$$
(39)

$$\check{x}_{jort} \cdot p_{jo} + x_{m'rt}^e + \bar{x}_{m'rt}^e \ge x_{mrt}^e + \bar{x}_{mrt}^e - G \cdot (2 - y_{jom'rt} - y_{j(o+1)mrt}) \qquad \forall j, o = 1, ..., h_j - 1 \tag{40}$$

$$\forall t, \forall r, \forall m, m' | a_{jo+1} = m \& a_{jo} = m'$$

$$x_{m(r-1)t}^{e} + x_{mrt}^{b} = \sum_{\forall (j,o)} \sum_{\substack{\forall (j',o')\\|a_{jo} = a_{j'o'} = m}} \delta_{joj'o'} \cdot z_{joj'o'rt} \qquad \forall t, \forall r, \forall m$$

$$(41)$$

$$u_{r+1t} \ge u_{rt} + x_{mrt}^b + \bar{x}_{mrt}^b + x_{mrt}^e + \bar{x}_{mrt}^e + \sum_{\forall (j,o)|a_{jo} = m} x_{jort} \cdot p_{jo} \qquad \forall t, \forall r, \forall m | r < R$$
 (42)

$$x_{mrt}^{b} = \sum_{\forall (j,o)|a_{jo} = m} \delta_{0jo} \cdot y_{jomrt} \qquad \forall t, \forall r, \forall m | r = 1$$

$$\tag{43}$$

$$\sum_{\forall (j,o)|a_{jo}=m} \sum_{\forall r} x_{jort} \cdot p_{jo} \le C_{mt} \qquad \forall t, \forall m$$
(44)

$$u_{rt} \ge t \cdot L \qquad \forall t, \forall r | r = 1$$
 (45)

$$u_{rt} + x_{mrt}^b + \bar{x}_{mrt}^b + x_{mrt}^e + \bar{x}_{mrt}^e + \sum_{\forall (j,o)|a_{jo}=m} x_{jort} \cdot p_{jo} \le (t+1) \cdot L \qquad \forall t, \forall r, \forall m | r = R$$
 (46)

$$\{u_{rt}, I_{jort}, x_{jort}, \hat{x}_{jort}, x_{jort}^b, x_{mrt}^b, \bar{x}_{mrt}^b, x_{mrt}^e, \bar{x}_{mrt}^e\} \in \mathbb{R}^+; \{y_{jomrt}, z_{joj'o'rt}\} \in \{0, 1\}$$

$$\forall t, \forall r, \forall m \, \forall (j, o), \, \forall (j', o')$$

$$(47)$$

1.4 CTLSP

Variables

 x_{jot} Quantity of O_{jo} that is processed in macro-period t (lot-size)

 I_{jot} Amount of inventory related to O_{jo} at the end of macro-period t

 s_{jot} Start time of O_{jo} in macro-period t

 z_{jot} 1 iff O_{jo} is produced in macro-period t; 0, otherwise

 $y_{joj'o't}$ 1 iff $O_{j'o'}$ produced immediately after O_{jo} in macro-period t on the same machine; 0, otherwise

$$Min\ TSC = \left(\sum_{\forall t} \sum_{\forall (j,o)} z_{jot} \cdot sc_{jot} + x_{jot} \cdot pc_{jot} + I_{jot} \cdot hc_{jot}\right)$$
(48)

$$I_{jh_jt-1} + x_{jh_jt} - I_{jh_jt} = D_{jt} \qquad \forall t, \, \forall j$$

$$\tag{49}$$

$$I_{jot-1} + x_{jot} - I_{jot} = x_{j(o+1)t}$$
 $\forall t, \forall j, o = 1, ..., h_j - 1$ (50)

$$x_{jot} - z_{jot} \cdot G \le 0 \qquad \forall t, \, \forall (j, o)$$
 (51)

$$\sum_{\forall (j,o)|a_{jo}=m} x_{jot} \cdot p_{jo} \le C_{mt} \qquad \forall t, \, \forall m$$
 (52)

$$s_{jot} \ge s_{j'o't} + \delta_{j'o'jo} + x_{j'o't} \cdot p_{j'o'} + (1 - y_{j'o'jot}) \cdot G$$

$$\forall t, \, \forall (j, o), \, \forall (j', o') \, | \, (j, o) \ne (j', o') \, \& \, a_{jo} = a_{j'o'}$$

$$(53)$$

$$s_{j(o+1)t} \ge s_{jot} + x_{jot} \cdot p_{jo}$$
 $\forall t, \forall j, o = 1, ..., h_j - 1$ (54)

$$s_{jot} \ge t \cdot L + \delta_{0jo} \cdot z_{jot} \qquad \forall t, \, \forall (j, o)$$
 (55)

$$s_{jot} + x_{jot} \cdot p_{jo} \le (t+1) \cdot L \qquad \forall t, \, \forall (j,o)$$
 (56)

$$y_{j'o'jot} + y_{joj'o't} \ge 1 - (2 - z_{jot} - z_{j'o't}) \cdot G \qquad \forall t, \, \forall (j, o), \, \forall (j', o') | a_{jo} = a_{j'o'}$$
 (57)

$$y_{j'o'jot} + y_{joj'o't} \le 1 \qquad \forall t, \, \forall (j,o), \, \forall (j',o') | a_{jo} = a_{j'o'}$$
 (58)

$$\{x_{jot}, I_{jot}, s_{jot}\} \in \mathbb{R}^+; \{z_{jot}, y_{joj'o't}\} \in \{0, 1\} \quad \forall t, \, \forall (j, o), \, \forall (j', o')$$
 (59)

2 Comparison of the number of variables and constraints

In this dection a comparison between our proposed model, CTLSP, PLSP1, PLSP2 and GLSP models has been made in terms of the number of variables and constraints for four instances with different dimensions. The Table 1 shows the results.

 Table 1: Comparison of the number of variables and constraints

oec moton:		Proposed Model	lel		CTLSP			PLSP1			PLSP2			GLSP	
Illotalices	No.	No. Binary	No. Binary No. Positive No.	No.	No. Binary	No. Binary No. Positive	No.	No. Binary	No. Binary No. Positive	No.	No. Binary	No. Binary No. Positive	No.	No. Binary	No. Positive
	Constraint	variables	Constraint variables variables Constraint	Constraint	variables	variables	Constraint	variables	variables	Constraint variables	variables	variables	Constraint	variables	variables
3-10-5-5	2300	974	450	2159	806	450	36390	29671	0006	61115	30450	18000	15331	8550	6345
10-5-5-6	0269	3150	006	6930	3150	006	180158	161242	30000	258804	161700	00009	66320	46500	19890
20-5-5-5	21545	10220	1875	21465	10220	1875	1095431	1037319	100000	1361317	1039500	200000	368020	305000	63150
10-20-15-4	24128	11164	2400	22883	10484	2400	795509	723389	105600	1117630	754000	211200	363638	267600	82656

3 Comparison of the proposed solution methods for data group ($\{\mathcal{W}\}$)

The results obtained by proposed solution methods for data group ($\{W\}$) are summarized in Table 2. We set the time limit to 3600 seconds for the solution methods.

Table 2: Comparison of the proposed solution methods

Total number	Instances	Prop	osed Model			FR-FO			DH	
of operations	(J-O-M-T)	CPU time (s)	Objective function	RPD	CPU time (s)	Objective function	RPD	CPU time (s)	Objective function	RPD
12	(24) 2.4.2.5			0.00			0.00			0.00
12	$\{W\}$ 3-4-3-5	0.5	3982.6	0.00	2.9	3982.7	0.00	0.7	3982.7	0.00
12	$\{W\}$ 4-3-3-6	0.4	5108.1	0.00	2.5	5108.1	0.00	0.7	5108.1	0.00
30	$\{W\}$ 6-5-5-4	72.9	7967.7	0.00	16.7	7967.7	0.00	1.2	8075.0	0.01
30	$\{W\}$ 3-10-5-5	2.0	8807.5	0.00	6.5	8807.5	0.00	0.8	8807.5	0.00
30	$\{W\}$ 5-6-5-6	7.4	9601.4	0.00	7.5	9601.4	0.00	0.9	9601.4	0.00
50	$\{W\}$ 5-10-5-4	24.5	10766.9	0.00	26.3	10766.9	0.00	0.7	10766.9	0.00
50	$\{W\}$ 5-10-7-5	316.1	12992.5	0.00	144.3	12992.5	0.00	1.2	12992.5	0.00
50	{ <i>W</i> }10-5-5-6	40.9	15531.8	0.00	16.1	15531.7	0.00	1.0	15531.7	0.00
80	$\{W\}$ 10-8-5-4	>3600	17336.1	0.00	654.2	17448.1	0.01	1.6	17262.1	0.00
80	$\{W\}$ 8-10-5-5	1394.1	21606.7	0.00	154.8	21606.6	0.00	1.6	21606.6	0.00
80	$\{W\}$ 20-4-4-6	462.2	25178.0	0.00	53.6	25178.0	0.00	1.5	25178.0	0.00
90	$\{W\}$ 6-15-10-5	>3600	22767.2	0.01	377.3	22576.9	0.00	7.6	22616.3	0.002
100	$\{W\}$ 10-10-5-4	736.7	20581.4	0.00	550.7	20947.9	0.02	1.3	20581.4	0.00
100	$\{W\}$ 20-5-5-5	654.4	26476.1	0.00	315.4	26916.3	0.02	1.2	26476.1	0.00
100	$\{W\}$ 5-20-10-6	>3600	-	-	>3600	-	-	4.5	29375.6	0.00
120	{ <i>W</i> }10-12-8-5	>3600	34834.8	0.05	1270.9	33098.1	0.00	5.9	33072.8	0.00
150	{ <i>W</i> }10-15-10-4	>3600	-	-	2050.3	32551.6	0.02	6.2	31976.9	0.00
160	{ <i>W</i> }10-16-10-6	>3600	-	-	1476.3	60664.0	0.21	6.1	49953.8	0.00
180	{ <i>W</i> }12-15-10-5	>3600	-	-	>3600	50661.8	0.09	4.4	46664.9	0.00
200	{ <i>W</i> }10-20-15-4	>3600	-	-	578.0	59944.6	0.35	4.5	44323.6	0.00