

Chapitre 3 : Régression Linéaire

Ibrahima Sy

Université Cheikh Anta Diop de Dakar(UCAD) Master Modélisation Statistique et Informatique(MSI) Faculté des Sciences et Techniques (FST)

April 23, 2021

Plan

Rappel

Modèle de Régression Linéaire Régression linéaire 1 D Régression linéaire 2 D Comment Optimiser le problème

Formulation Probabiliste

Maximum de vraisemblance Régulation

Régression non Linéaire

References

Apprentissage supervisé, classification, régression

- L'apprentissage supervisé est lorsqu'on a une cible à prédire
 - ▶ classification : la cible est un indice de classe $t \in \{1, 2,K\}$
 - exemple : reconnaissance de caractères
 - \mathbf{x} : vecteur des intensités de tous les pixels de l'image
 - t : identité du caractère
 - **régression** : la cible est un nombre réel $t \in \mathbb{R}$
 - exemple : prédiction de la valeur d'une action à la bourse
 - \mathbf{x} : vecteur contenant l'information sur l'activité économique de la journée
 - t : valeur d'une action à la bourse le lendemain

Modèle, biais, poids

Le modèle de **régression linéaire** est de la forme :

$$y_{\mathbf{w}}(\mathbf{x}, \mathbf{w}) = \omega_0 + \omega_1 x_1 + \dots + \omega_D x_D = \mathbf{w}^T \mathbf{x}'$$

ou
$$\mathbf{x} = (x_1, \dots, x_D)$$

La prédiction correspond donc à :

- ▶ Une **droite** pour d = 1
- ▶ Un **plan** pour d = 2
- ▶ Un **hyperplan** pour D > 2

 \sqsubseteq Régression linéaire 1 D

Régression linéaire 1 ${\cal D}$

$$y_{\mathbf{w}}(\mathbf{x}, \mathbf{w}) = \omega_0 + \omega_1 x_1$$

Figure 1: Régression en 1D

Régression linéaire 2 D

Régression linéaire 2 ${\cal D}$

$$y_{\mathbf{w}}(\mathbf{x}, \mathbf{w}) = \omega_0 + \omega_1 x_1 + \omega_2 x_2$$

Figure 2: Régression en 2 ${\cal D}$

- ▶ <u>Idéale</u> : Trouver un modéle $y_{\mathbf{w}}$ telque : $y_{\mathbf{w}}(\mathbf{w}, x_n) = t_n$
- ▶ <u>Objectif</u>: Comme on ne peut avoir un modèle qui prédit exactement la cible maintenant l'objectif est de trouver un modèle qui fait le moins d'erreurs possible.
- ▶ Objectif: $\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} (y_{\mathbf{w}}(\mathbf{w}, x_n) t_n)^2$

▶ Pour entraı̂ner le modèle $y_{\mathbf{w}}(\mathbf{x}, \mathbf{w})$ nous passerons par une formulation probabiliste :

$$p(t|\mathbf{x}, \mathbf{w}, \beta^{-1}) = \mathcal{N}(t|y(\mathbf{x}, \omega), \beta^{-1})$$

▶ Équivaut à supposer que les cibles sont des versions bruitées du vrai modèle:

$$t_n = y_{\mathbf{w}}(\mathbf{x}, \omega) + \epsilon_n$$

 ϵ : Gaussienne de moyenne 0 et de variance β^{-1}

Soit notre ensemble d'entraı̂nement
$$\mathcal{D} = \left\{ (\mathbf{x_1}, t_1), (\mathbf{x_2}, t_2), \dots, (\mathbf{x_N}, t_N) \right\}$$

- ightharpoonup On peut aussi noter $\mathbf{X} = \{x_1, \dots, x_N\}$ et $\mathbf{T} = \{t_1, \dots, t_N\}^T$
- En faisant l'hypothèse i.i.d on a :

$$p(\mathbf{T}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | \mathbf{w}^T \mathbf{x}_n, \beta^{-1})$$

▶ Lors de l'entraı̂nement on cherche le **w** maximisant la (log-)probabilité des données d'entraı̂nement

011

$$\mathbb{E}_D = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \mathbf{x}_n\}^2$$

Le « meilleur » w est celui pour lequel le gradient est nul:

$$\nabla \mathbb{E}_D = \sum_{n=1}^N \{t_n - \mathbf{w}^T \mathbf{x}_n\} \mathbf{x}_n^T$$

$$= \sum_{n=1}^N t_n \mathbf{x}_n^T - \mathbf{w}^T (\sum_{n=1}^N \mathbf{x}_n \mathbf{x}_n^T)$$

$$\nabla \mathbb{E}_D = 0 \Longleftrightarrow \sum_{n=1}^N t_n \mathbf{x}_n^T - \mathbf{w}^T (\sum_{n=1}^N \mathbf{x}_n \mathbf{x}_n^T) = 0$$

En isolant \mathbf{w} , on obtient que:

$$\mathbf{W}_{MV} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{T}$$

$$X = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,d} \\ 1 & x_{2,1} & \cdots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N,1} & \cdots & x_{N,d} \end{pmatrix} \qquad T = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix}$$

Régularisation, weight decay, régression de Ridge

Pour éviter l'overfitting on ajoute un terme de régulation :

$$\mathbb{E}_D = \frac{1}{2} \sum_{1}^{N} \{t_n - \mathbf{w}^T \mathbf{x}_n\}^2 + \frac{\lambda \mathbf{w}^T \mathbf{w}}{2}$$

- équivaut au maximum a posteriori dans la formulation probabiliste
- ▶ le terme de régularisation est souvent appelé weight decay
- ▶ la régression avec un terme de régularisation est aussi appelée régression de Ridge

Régularisation, weight decay, régression de Ridge

➤ On peut montrer que la solution (maximum a posteriori) est alors :

$$\mathbf{W}_{MAP} = (\lambda \mathbb{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{T}$$

- ightharpoonup dans le cas $\lambda=0$, on retrouve la solution du maximum de vraisemblance
- ▶ si $\lambda > 0$, permet également d'avoir une solution plus stable numériquement(Si $\mathbf{X}^T\mathbf{X}$ n'est pas inversible)

Limites Régression Linéaire

 Un modèle linéaire est souvent pas assez flexible pour bien représenter les données

Figure 3: exemple de sous apprentissage avec LR

Solution

- ▶ on va projeter les donnée dans un espace plus grand, là où les données sont distribuées linéairement
- Ensuite on fait une régression sur des données de dimensions M au lieu de d dimensions(M > d)

$$\phi: \mathbb{R}^d \longrightarrow \mathbb{R}^M$$

Fonction de Base

▶ On transforme les entrées en définissant des fonctions de base (Basis Function)

$$y_{\mathbf{w}}(\mathbf{x}, \mathbf{w}) = \omega_0 + \sum_{n=1}^{M} \mathbf{w}_n \phi_i(\mathbf{x}_n)$$

▶ cas particulier(Régression linéaire) : $\phi_i(\mathbf{x}) = x_i$ et M = d + 1

Fontion de Base

Pour simplifier la notation, on va supposer que $\phi_0(\mathbf{x}) = 1$ afin d'inclure le biais dans la sommation

$$y_{\mathbf{w}}(\mathbf{x}, \mathbf{w}) = \sum_{n=0}^{M-1} \mathbf{w}_n \phi_i(\mathbf{x}_n)$$
$$= \mathbf{W}^T \phi(\mathbf{x})$$

- Avec $\mathbf{W} = (\omega_0, \dots, \omega_{M-1})$
- Avec $\phi = (\phi_0(\mathbf{x}), \dots, \phi_{M-1(\mathbf{x})})$
- ▶ Une des fonctions de base les plus fréquentes est la fonction polynomiale $\phi_i(\mathbf{x}) = x^i$

Formulation Probabiliste

Comme auparavant, on suppose que les données sont corrompues par un bruit gaussien

Estimateur du Maximum de vraisemblance

$$\mathbf{W}_{MV} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{T}$$

► Maximum a posteriori (MAP)

$$\mathbf{W}_{MAP} = (\lambda \mathbb{I} + \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{T}$$

Formulation Probabiliste

$$\Phi = \begin{pmatrix} \phi_0(\vec{x}_1) & \phi_1(\vec{x}_1) & \cdots & \phi_{M-1}(\vec{x}_1) \\ \phi_0(\vec{x}_2) & \phi_1(\vec{x}_2) & \cdots & \phi_{M-1}(\vec{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\vec{x}_N) & \phi_1(\vec{x}_N) & \cdots & \phi_{M-1}(\vec{x}_N) \end{pmatrix} \qquad T = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix}$$

 $ightharpoonup \Phi$: s'appelle design matrix

References I

- ▶ Hugo Larochelle, Professeur associé, Université de Montréal, Google
- ▶ Pierre-Marc Jodoin, Professeur titulaire Université Sherbrooke
- ▶ Bayesian Reasoning and Machine Learning de David Barber
- ▶ The Elements of Statistical Learning de Trevor Hastie,
- Robert Tibshirani et Jerome Friedman
- ▶ Information Theory, Inference, and Learning Algorithms de David J.C. MacKay
- Convex Optimization de Stephen Boyd et Lieven Vandenberghe
- Natural Image Statistics de Aapo Hyvärinen, Jarmo Hurri et Patrik O. Hoyer
- ▶ The Quest for Artificial Intelligence A History of Ideas and Achievements de Nils J. Nilsson
- Gaussian Processes for Machine Learning de Carl Edward Rasmussen et Christopher K. I. Williams
- Introduction to Information Retrieval de Christopher D. Manning, Prabhakar Raghavan et Hinrich Schütze