COMP0026: Image Processing

Image Transformations

Lectures will be Recorded

Outline

- Grey-level transformations
 - Histogram equalization
- Geometric transformations
 - Affine transformations
 - Interpolation
 - Warping and morphing

Grey-level Transformations

- Start with I_1
- Change the image grey level in each pixel by a fixed mapping f

Grey-level Transformations

- Start with I_1
- Change the image grey level in each pixel by a fixed mapping f

$$f: \mathbb{R} \to \mathbb{R}$$

Grey-level Transformations

- Start with I_1
- Change the image grey level in each pixel by a fixed mapping f

$$f: \mathbb{R} \to \mathbb{R}$$

$$I_2(x,y) = f(I_1(x,y))$$

±UCL

Linear: Contrast Stretch

• f is an affine/linear function:

$$f(x) = \alpha x + \beta$$

We must preserve the range of grey level values as [0,255]

Contrast Stretch α =1.0, β =-40

$$f(x) = \alpha x + \beta$$

Contrast Stretch α =1.0, β =-40

$$f(x) = \alpha x + \beta$$

Transformations

Contrast Stretch α =1.0, β =40

$$f(x) = \alpha x + \beta$$

Contrast Stretch α =1.0, β =40

brighter

$$f(x) = \alpha x + \beta$$

Contrast Stretch α =0.4, β =0

$$f(x) = \alpha x + \beta$$

Contrast Stretch α =0.4, β =0

$$f(x) = \alpha x + \beta$$

Transformations

Contrast Stretch α =2.0, β =0

$$f(x) = \alpha x + \beta$$

Contrast Stretch α =2.0, β =0

$$f(x) = \alpha x + \beta$$

Transformations

Campa 34 1 2

Non-linear grey-level transformations are useful too

- Non-linear grey-level transformations are useful too
- Gamma correction adjusts for differences between camera sensitivity and the human eye

$$f(x) = Ax^{\gamma}$$

- Non-linear grey-level transformations are useful too
- Gamma correction adjusts for differences between camera sensitivity and the human eye

$$f(x) = Ax^{\gamma}$$

• $A=255^{1-\gamma}$ ensures that the grey scale range is unchanged

$$Ax^{1-\gamma}$$

$$\gamma = 0.25$$

 $Ax^{1-\gamma}$ $\gamma = 0.25$

Transformations

$$Ax^{1-\gamma}$$

$$\gamma = 0.5$$

 $Ax^{1-\gamma}$ A = 0.5

Transformations

$$Ax^{1-\gamma}$$

$$Ax^{2}$$

$$\gamma = 2$$

 $Ax^{1-\gamma}$ $Ax^{2-\gamma}$

COMP0026: Image Processing

$$Ax^{1-\gamma}$$

$$A = 4$$

Transformations

COMP0026: Image Processing

Gamma Correction

For example, CRT's would have $\gamma = 2.5$, so pre-apply a $\gamma = 1/2.5$.

Histogram Equalization

- Tries to use all the grey levels equally often
- · The resultant grey level histogram should then flat

• Use the cumulative histogram for f

Cumulative Histogram

Histogram Equalization

$$h(v) = ext{round} \left(rac{cdf(v) - cdf_{min}}{(M imes N) - cdf_{min}} imes (L-1)
ight)$$

where cdf_{min} is the minimum non-zero value of the cumulative distribution function (in this case 1), M × N gives the image's number of pixels (for the example above 64, where M is width and N the height) and L is the number of grey levels used (in most cases, like this one, 256).

Histogram Equalization

Equalized Image

original

equalized

Equalized Histograms

Cumulative histogram

Exercises (not assessed)

- Write functions for linear grey-level transformations and gamma correction.
- Try moderate and extreme settings on an image and observe the effects they have.
- Plot the grey-level histograms before and after the grey-level transformations.

