Introdução a Segurança de rede

Segurança em Redes de Comunicações

Mestrado em Cibersegurança

Mestrado em Engenharia de Computadores e

Telemática

DETI-UA

Tipo de ataques (1)

- Objetivos.
 - Diversão e/ou reputação de
 - hacking Fins políticos
 - Fins militares
 - Fins econômicos
 - Outro?
- Objetivos técnicos:
 - Interrupção da operação
 - Para interceptação de dados
 - Ambos
 - Interrupção para interceptar!
 - Interceptar para interromper!

Tipo de ataques (2)

- Objetivos técnicos:
 - Interrupção da operação.
 - (Negação de serviço distribuída.
 - Sequestro de recursos.
 - → Spam,
 - Mineração/masternodes em moeda criptografada,
 - plataforma para outros ataques!
 - Interceptação/roubo de dados.
 - Dados pessoais
 - Como objetivo final,
 - Ou como ferramenta para obter mais informações de valor!
 - Dados técnicos,
 - Geralmente usado para obter mais informações de valor!
 - Dados comerciais
 - Objetos digitais, planos financeiros e/ou de engenharia, ...
- A interrupção pode ser usada para conseguir a interceptação!
- A interceptação pode ser usada para causar interrupção (operacional ou comercial)!

Ataques de interrupção

DoS distribuído

- Vários dispositivos lentos/pequenos gerando tráfego para um destino
 - **→**TCP x UDP
- Objetivo da interrupção
 - →Por política/econômica/"reputação"
 - → Redirecionamento para outro serviço/local?

Solução no alvo

- ➡Balanceadores de carga
- ➡Para TCP, talvez seja possível sobreviver fazendo redefinições de sessão ativas (com validação de cliente lícita) (servidor/firewalls)
 - Solução de lista branca, para negociação de sessão concluída
- ➡ Para UDP/DNS, bloqueie solicitações para servidores DNS de retransmissão/redirecionamento externos conhecidos (bloqueia amplificação de ataque, falsificação de alvo de IP)
 - Não funciona com botnets grandes e solicitações diretas ao alvo

Solução na fonte

- →Detecção de comportamentos anômalos
 - Variações de baixo tráfego difíceis de detectar
 - Mudanças de tempo e periodicidade são mais fáceis de detectar
 - Destinos das mudanças de tráfego
 - Com taxas de dados "realmente baixas" é impossível detectar
- Negação de serviço por interferência de sinal físico
 - Disrupção pura, ou
 - Interrupção para ativar canais secundários (mais facilmente comprometidos).
 - Solução
 - →Detecte, localize a fonte e neutralize fisicamente.

Fases de Ataques

Os ataques são feitos de forma incremental

Escalada de metas e privilégios.

O conhecimento público abre portas para informações privadas e acesso a domínios protegidos [Infiltração]. O primeiro acesso ilícito a um domínio protegido pode não

fornecer uma saída relevante. O atacante deve adquirir mais conhecimento [Aprendizado].

- O conhecimento adicional permite acessar outras zonas/dispositivos/ dados de domínio seguros com relevância crescente [Propagação].
 - → Em qualquer fase, o invasor pode exigir conhecimento adicional [Aprendizado].
- Quando um resultado relevante é adquirido, ele deve ser transferido para fora do domínio protegido [Exfiltração].
- A exfiltração direta pode denunciar os pontos relevantes dentro do domínio seguro.
 - → O resultado relevante deve primeiro ser transferido dentro do domínio protegido para um ponto menos importante [Agregação].
 - → O atacante escolhe um ponto que pode ser detectado e perdido sem causar danos.

Vulnerabilidades técnicas de rede

- Programas
 - Formulários
 - Estruturas/API
 - Protocolos
 - Sistemas operacionais
 - → Kernel, módulos do kernel, drivers e aplicativos básicos.
 - →Configurações!
 - Código de baixo nível
 - →Microcódigo da CPU, firmware e BIOS/UEFI.
- Hardware
 - Temperamento físico
 - Emissões físicas
 - →Emissões eletromagnéticas, som, ...
 - Instabilidade de energia, pulsos eletromagnéticos (EMP), etc...
- Conhecido versus desconhecido
 - CVE
 - Bancos de dados de IDS/IPS e antivírus

Defesas Tradicionais

- Correção de vulnerabilidade.
- Firewalls
 - Centralizado.
 - Distribuído.
- Prevenção de intrusões
 e Sistemas de Detecção
 (IDS/IPS).

Antivírus.

Todos confiam no conhecimento prévio da ameaça e/ou problema!

A BENEFIT HER

Defesas "inteligentes"

- Detecção de ameaças e/ou problemas desconhecidos.
 - A tempo de implementar contra-medidas.
- Aplicação de técnicas de Big Data e Data Science para dados de monitoramento de redes e sistemas.
- Algumas soluções tradicionais passam a incorporar IA em seus equipamentos
 - Por exemplo, firewalls de rede de Palo Alto, dispositivos Cisco,...
- Ainda limitado a soluções baseadas no fabricante e dados localizados. Ainda
- limitado em escopo.
 - Ameaças óbvias versus ameaças furtivas.
- A implantação ideal requer um conhecimento geral da rede e dos sistemas.
 - Consciência situacional de redes e sistemas (cibernéticos).

Fase de infiltração

- As máquinas lícitas devem ser comprometidas para implementar as diferentes fases dos ataques.
 - Idealmente numa "zona" privilegiada da rede, e/ou
 - Com credenciais de acesso, e/ou
 - Credenciais de usuário, endereço(s), chave de hardware, etc...
 - Com software "especial" e/ou
 - dados de destino.
- Pode incluir a instalação de software ou o uso de software vulnerável lícito.
- Pode ser controlado remotamente (constantemente ou não).
 - Comando e controle (C&C).
- Pode ter bots autônomos (IA) instalados para realizar ações ilícitas.
 - Quando o C&C remoto não é possível ou está sujeito a fácil detecção.

Fase de propagação

- Feito usando uma mistura de metodologias:
 - Exploração de credenciais.
 - Uso direto ou usando aplicativos permitidos.
 - Representando usuários e sistemas.
 - Semelhante à exploração de credenciais, mas mais avançada com base no conhecimento adquirido (comportamento lícito).
 - Requer tempo para aprender e imitar o comportamento lícito.
 - Padrões de tempo, padrões de tráfego, padrões de aplicativos, etc...
 - Exploração de vulnerabilidades.
 - Dentro de um domínio protegido, os sistemas são muitas vezes considerados uma zona segura.
 - Sistemas operacionais/aplicativos menos mantidos e legados podem ser necessários para execução (sem aplicação de patches).
 - Gama mais ampla de vulnerabilidades

Fase de agregação e exfiltração

- Dados transferidos de máquina para máquina.
- Internamente [Agregação] isso pode ser feito usando canais existentes.
- Externamente [Exfiltração]
 - Isso pode ser feito diretamente usando os canais existentes.
 - Cópia de arquivo, e-mail, compartilhamento de arquivos,
 - etc... Podem ser detectados.
 - Isso pode ser feito ocultando informações em canais existentes/permitidos e comunicações lícitas.
 - Transferência de dados mais lenta, mais difícil (impossível?) de
 - detectar. Exemplos:
 - Uso de esteganografia em fotos (via redes sociais).
 - Uso de dados incorporados em mensagens de texto e voz.

- . . .

Métricas/KPI de segurança

- Gerenciamento de acesso
 - Quantos usuários têm acesso administrativo e com que frequência é usado.
 - Senhas compartilhadas entre funcionários.
- Preparação
 - Porcentagem de dispositivos totalmente corrigidos e atualizados.
- Dias para corrigir
 - Tempo médio entre a disponibilidade do patch e a implantação.
- Dispositivos não identificados
 - Dispositivos implantados ilicitamente.
 - Política BYOD, dispositivos legados, dispositivos não listados, dispositivos IoT, etc...
- Carga média/máxima dos dispositivos de segurança por período de tempo.
- Tentativas de intrusão
 - Quantidade de tentativas detectadas e não detectadas (em tempo real ou após auditoria off-line).
- Custo por incidente
 - Inclui horas extras da equipe, suporte externo, custos de investigação, perda de produtividade dos funcionários, perda de comunicação, falha no serviço, etc.

- Tempo Médio entre Falhas (MTBF)
 - Tempo médio entre falhas (hardware e/ ou software).
 - Geral ou por dispositivo/serviço.
- Tempo Médio de Recuperação (MTTR)
 - Tempo médio entre falha e recuperação (hardware e/ou software).
- Tempo Médio para Detecção (MTTD)
 - Tempo médio entre intrusão e detecção.
- Tempo Médio para Reconhecimento (MTTA)
 - Tempo médio entre a detecção e o início da implantação de contramedidas.
- Tempo médio de contenção (MTTC)
 - Tempo médio entre o início da implantação de contramedidas e a mitigação completa.
- Tempo Médio para Resolução (MTTR)
 - MTTA+MTTR