Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

07 listopada 2024

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

Przegląd projektu

Programowanie algorytmy genetyczne

roblem omiwojażera

ziękujemy za wagę

Przegląd projektu

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

Przegląd projektu

Programowanie algorytmy genetyczne

Problem

ziękujemy za

Przegląd projektu

Temat: Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Cele:

- Opracowanie bliskiego optimum rozwiązania problemu komiwojażera
- Implementacja algorytmu w Pythonie przy użyciu PyGAD i wizualizacja wyników
- Ocena i walidacja rozwiązania, porównanie z innymi metodami optymalizacji

Stos technologiczny: Python, PyGAD

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

Przegląd projektu

Programowanie i algorytmy genetyczne

omiwojażera

ziękujemy za

Programowanie i algorytmy genetyczne

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

Przegląd projektu

Programowanie i algorytmy genetyczne

komiwojażera

Dziękujemy za

Programowanie genetyczne

Programowanie genetyczne, GP (ang. genetic programming)

Zautomatyzowana metoda mająca na celu tworzenie programów komputerowych w oparciu o ogólną definicję problemu. Innymi słowy programowanie genetyczne pozwala, w oparciu o wysokopoziomową definicję mówiącą co ma być zrobione, automatycznie stworzyć program, który owo zagadnienie rozwiąże.

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

Przegląd projektu

Programowanie i algorytmy genetyczne

komiwojażera

Dziękujemy za Iwage

Algorytmy genetyczne

Algorytmy genetyczne to rodzaj algorytmów inspirowanych zasadami biologicznej ewolucji, które są wykorzystywane do rozwiązywania problemów optymalizacyjnych i poszukiwania rozwiązań w dużych przestrzeniach stanów. Działają one poprzez symulowanie procesu selekcji naturalnej, krzyżowania i mutacji, co pozwala na tworzenie coraz lepszych rozwiązań.

Rysunek 1: Algorytm genetyczny.

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

> Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

Przegląd projektu

Programowanie i algorytmy genetyczne

Problem komiwojaże

> Dziękujemy za wagę

Proces działania algorytmu genetycznego przedstawia rysunek 1 oraz może być opisany następująco:

- ► Inicjalizacja na początku generuje się populację losowych rozwiązań (nazywanych osobnikami).
- ► Selekcja wybiera się najlepsze osobniki na podstawie funkcji oceny, która określa ich jakość.
- Krzyżowanie (Crossover) łączy się wybrane osobniki, tworząc nowe rozwiązania poprzez wymianę ich "genów".
- Mutacja wprowadza się drobne, losowe zmiany do potomków, aby zapewnić różnorodność w populacji.
- ► Ewolucja proces selekcji, krzyżowania i mutacji powtarza się wielokrotnie, aż do osiągnięcia zadowalającego rozwiązania.

Algorytmy genetyczne są szeroko stosowane w różnych dziedzinach, takich jak optymalizacja logistyczna, projektowanie, uczenie maszynowe, robotyka, a nawet sztuka. Pomimo że mogą wymagać dużej mocy obliczeniowej, są w stanie znaleźć dobre przybliżenia do rozwiązań nawet dla bardzo skomplikowanych problemów.

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

Przegląd projektu

Programowanie i algorytmy genetyczne

Problem komiwojażera

Dziękujemy za Iwagę

Problem komiwojażera

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

Przegląd projekt

algorytmy genetyczne

komiwojażera

Problem

Dziękujemy za uwagę

Problem komiwojażera

Problem komiwojażera (ang. Travelling Salesman Problem, TSP)

Klasyczny problem optymalizacyjny, który polega na znalezieniu najkrótszej możliwej trasy, jaką musi pokonać komiwojażer (sprzedawca), aby odwiedzić każde z zadanych miast dokładnie raz i wrócić do punktu początkowego. Formalnie, mając dany zbiór miast oraz odległości między każdą parą miast, należy wyznaczyć najkrótszy cykl Hamiltona w grafie, który reprezentuje połączenia między miastami. Przykładowe rozwiązanie prezentuje rysunek 2. Problem komiwojażera jest zaliczany do klasy problemów NP-trudnych, co oznacza, że dla dużych zbiorów miast jego dokładne rozwiązanie staje się bardzo czasochłonne.

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

Przegląd projektu

Programowanie i algorytmy genetyczne

Problem komiwojażera

> ziękujemy za wage

Zastosowanie

Problem ten znajduje zastosowanie m.in. w logistyce, planowaniu tras transportowych i optymalizacji procesów produkcyjnych. Do jego rozwiązywania stosuje się różne podejścia, w tym algorytmy dokładne, przybliżone oraz heurystyczne, takie jak algorytmy genetyczne czy symulowane wyżarzanie.

Rysunek 2: Przykładowe rozwiązanie problemu komiwojażera

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

rzegląd projektu

Programowanie i algorytmy genetyczne

Problem komiwojażera

> ziękujemy za wagę

Dziękujemy za uwagę

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

Przegląd projektu

Programowanie algorytmy genetyczne

roblem omiwojażera

Dziękujemy za uwagę

Bibliografia

Rozwiązanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś, Tomasz Kawiak, Mateusz Mazur

Przegląd projektu

Programowanie algorytmy genetyczne

Problem

ziękujemy za wagę

Bibliografia

Leszek Rutkowski. Metody i techniki sztucznej inteligencji. PWN 2012

Rozwiazanie problemu komiwojażera z wykorzystaniem algorytmu genetycznego

Piotr Karaś. Tomasz Kawiak. Mateusz Mazur