Predictive Modeling Lesson 2 CART

Kevin Zollicoffer

09/23/2013

Introduction

The RStudio project files and accompanying artifacts, including the tex file that created this PDF, are publicly available on GitHub

https://github.com/zollie/PASS-PredictiveModeling-CART

Data Setup

I took the Excel spreadsheet and saved it as a CSV for easy import into R

- > wine <- read.csv("~/R/PASS/PredictiveModeling/CART/Wine.csv")
- > wine <- wine[1:178,1:14]</pre>
- > head(wine)

	Туре	Alcohol	${\tt Malic_Acid}$	Ash	Ash_Alcalinity	Magnesium	Total_Phenols		
1	Α	14.23	1.71	2.43	15.6	127	2.80		
2	Α	13.20	1.78	2.14	11.2	100	2.65		
3	Α	13.16	2.36	2.67	18.6	101	2.80		
4	Α	14.37	1.95	2.50	16.8	113	3.85		
5	Α	13.24	2.59	2.87	21.0	118	2.80		
6	Α	14.20	1.76	2.45	15.2	112	3.27		
	Flava	anoids No	onflavanoid_	Pheno	ls Proanthocyar	nins Color	_Intensity Hue		
1		3.06		0.	28 2	2.29	5.64 1.04		
2		2.76		0.	26	1.28	4.38 1.05		
3		3.24		0.	30 2	2.81	5.68 1.03		
4		3.49		0.	24 2	2.18	7.80 0.86		
5		2.69		0.	39	1.82	4.32 1.04		
6		3.39		0.	34	1.97	6.75 1.05		
OD280_OD315 Proline									
1		3.92	1065						
2		3.40	1050						

```
3 3.17 1185
4 3.45 1480
5 2.93 735
6 2.85 1450
```

Partitioning

Next, partition the data into 50% Train and 50% Test sets. I set the RNG seed for reproducibility

```
> set.seed(21275)
> n <- nrow(wine)
> nt <- sort(sample(1:n, floor(n/2)))</pre>
> train <- wine[nt,]</pre>
> test <- wine[-nt,]</pre>
> head(train)
   Type Alcohol Malic_Acid Ash Ash_Alcalinity Magnesium Total_Phenols
          14.23
                       1.71 2.43
                                             15.6
                                                         127
6
      Α
          14.20
                       1.76 2.45
                                             15.2
                                                         112
                                                                       3.27
8
          14.06
                       2.15 2.61
                                                                       2.60
                                             17.6
                                                         121
9
                       1.64 2.17
                                             14.0
                                                          97
      Α
          14.83
                                                                       2.80
          13.86
                       1.35 2.27
                                             16.0
                                                          98
                                                                       2.98
10
                                                         105
11
          14.10
                       2.16 2.30
                                             18.0
                                                                       2.95
   Flavanoids Nonflavanoid_Phenols Proanthocyanins Color_Intensity Hue
                                                 2.29
         3.06
                                0.28
                                                                   5.64 1.04
1
6
         3.39
                                0.34
                                                 1.97
                                                                   6.75 1.05
8
         2.51
                                0.31
                                                 1.25
                                                                   5.05 1.06
9
         2.98
                                0.29
                                                 1.98
                                                                   5.20 1.08
10
                                0.22
                                                                   7.22 1.01
         3.15
                                                 1.85
         3.32
                                0.22
                                                 2.38
                                                                   5.75 1.25
   OD280_OD315 Proline
          3.92
                   1065
1
          2.85
6
                   1450
8
          3.58
                   1295
9
          2.85
                   1045
10
          3.55
                   1045
```

> head(test)

3.17

1510

11

	Туре	Alcohol	Malic_Acid	Ash	Ash_Alcalinity	Magnesium	Total_Phenols
2	Α	13.20	1.78	2.14	11.2	100	2.65
3	Α	13.16	2.36	2.67	18.6	101	2.80
4	Α	14.37	1.95	2.50	16.8	113	3.85
5	Δ	13 24	2 59	2 87	21 0	118	2 80

```
7
      Α
          14.39
                       1.87 2.45
                                            14.6
                                                         96
                                                                      2.50
                                                         95
12
      Α
          14.12
                       1.48 2.32
                                            16.8
                                                                      2.20
   Flavanoids Nonflavanoid_Phenols Proanthocyanins Color_Intensity Hue
2
                                                1.28
         2.76
                               0.26
                                                                 4.38 1.05
3
         3.24
                               0.30
                                                2.81
                                                                 5.68 1.03
4
         3.49
                               0.24
                                                2.18
                                                                 7.80 0.86
5
         2.69
                               0.39
                                                1.82
                                                                 4.32 1.04
                                                                 5.25 1.02
7
         2.52
                               0.30
                                                1.98
12
         2.43
                               0.26
                                                1.57
                                                                 5.00 1.17
   OD280_OD315 Proline
2
          3.40
                   1050
3
          3.17
                   1185
4
          3.45
                   1480
5
          2.93
                   735
7
          3.58
                   1290
12
          2.82
                   1280
```

CART with the rpart package

First we build the decision tree with train data

```
> library(rpart)
> fit <- rpart(Type ~ ., data=train, method="class", minbucket = 1)
Then make predictions using the test data
> pred <- predict(fit, newdata=test, type="class")
> tab <- table(pred, test[,"Type"])
Visually the tree looks like
> library(rpart.plot)
> prp(fit)
```


Lesson 2 Question and Answer

[1] 0.1460674

```
1
What is the error rate for the validation data?
> printcp(fit)
Classification tree:
rpart(formula = Type ~~., data = train, method = "class", minbucket = 1)
Variables actually used in tree construction:
                            Magnesium
[1] Flavanoids Hue
                                        OD280_OD315 Proline
Root node error: 53/89 = 0.59551
n= 89
        CP nsplit rel error xerror
1 0.566038
                0 1.000000 1.20755 0.080000
2 0.320755
                1 0.433962 0.45283 0.078994
3 0.037736
                2 0.113208 0.20755 0.058583
                4 0.037736 0.16981 0.053666
4 0.018868
5 0.010000
                5 0.018868 0.20755 0.058583
The error rate is
> 1-sum(diag(tab))/sum(tab)
```

2

Indicate the number of misclassification

The Classification Matrix is given below

```
> tab
```

```
pred A B C
0 0 0 0
A 0 25 2 6
B 0 1 31 2
C 0 0 2 20
```

3

Study the Best Pruned tree and develop a set of classification rules, using if-then statement; e.g. "if a >= b then A" and "if a < b then B"

```
> fit
n= 89
node), split, n, loss, yval, (yprob)
   * denotes terminal node
```

- 1) root 89 53 B (0.00000000 0.37078652 0.40449438 0.22471910)
 - 2) Proline>=755 34 2 A (0.00000000 0.94117647 0.05882353 0.00000000)
 - 3) Proline< 755 55 21 B (0.00000000 0.01818182 0.61818182 0.36363636)

 - 7) DD280_DD315< 2.185 23 3 C (0.00000000 0.00000000 0.13043478 0.86956522)

 - 15) Hue< 0.965 21 1 C (0.00000000 0.00000000 0.04761905 0.95238095)

If Proline greater than or equal to 760 and Color greater than or equal to 4.8 and Flavanoids greater than or equal to 1.4 then $\rm C$

If Proline greater than or equal to 760 and Color greater than or equal to 4.8 and Flavanoids less than 1.4 then B

If Proline greater than or equal to 760 and Color less than 4.8 and Flavanoids greater than or equal to .52 then ${\cal C}$

If Proline greater than or equal to 760 and Color less than 4.8 and Flavanoids less than .52 and Ash greater than or equal to 2.8 then B

If Proline greater than or equal to 760 and Color less than 4.8 and Flavanoids less than .52 and Ash less than 2.8 then A

If Proline less than 760 and Total Phenols greater than or equal to 2.1 then C

If Proline less than 760 and Total Phenols less than 2.1 then A