C.d.L. in Informatica (3 anni) Docenti: G. Semeraro, P. Lops

20 Giugno 2006

(h.1.30)			
Nome e Cognome Matricola A.A. in cui si è seguito il corso	:		
1) Sia dato il segue	ente lingt	naggio: $L = \{a^n b a^{3m} : n, m > 0\}$	
Di che tipo è L (il più sen	nplice nella gerarchia di Chomsky)?	(PUNTI 4)
Giustificare form	nalmente	la risposta	(PUNTI 6)
2) Dimostrare che	la classe	dei linguaggi contestuali è chiusa rispetto alla conc	atenazione.
			(PUNTI 10)

3) Sia dato il seguente automa riconoscitore a stati finiti nondeterministico:

$$M = (Q, \delta, q_0, F)$$

con alfabeto di ingresso $X = \{1, 2\}$, ove:

$$Q = \{q_0, B, C, D\},\$$

$$\mathcal{S}(q_0, 1) = \{B, C\}$$
 $\mathcal{S}(q_0, 2) = \{D\}$
 $\mathcal{S}(B, 1) = \{B, D\}$ $\mathcal{S}(B, 2) = -$
 $\mathcal{S}(C, 1) = \{D\}$ $\mathcal{S}(C, 2) = -$
 $\mathcal{S}(D, 1) = \mathcal{S}(D, 2) = \{B\}$

ed $F = \{D\}.$

Determinare una grammatica lineare destra che genera T(M).

(PUNTI 4)

Costruire il diagramma di transizione di un automa a stati finiti deterministico equivalente ad *M*.

(PUNTI 6)

C.d.L. in Informatica (3 anni) Docente: G. Semeraro, P. Lops 4 Luglio 2006

		4 Luglio 2006	
No Ma A.	1.30) ome e Cognome atricola A. in cui si è guito il corso	:	
1)	Dimostrare for	rmalmente che il seguente linguaggio: $L = \{a^i b^j c^k : k = min\{i,j\}, i,j \ge 0\}$	
	non è libero da	contesto.	
2)	Dimostrare che	la classe dei linguaggi a stati finiti è chiusa rispetto al complemento.	(PUNTI 10) . (PUNTI 10)
3)	ove $X = \{$	tente grammatica lineare destra $G = (X, V, S, P)$ {a, b}, {S, A, B},	

Costruire il diagramma di transizione di un automa a stati finiti M che riconosce L(G).

 $S \rightarrow a \mid aA \mid aB$, $A \rightarrow aB \mid bA$, $B \rightarrow b \mid bB$

(PUNTI 10)

Prova scritta di LINGUAGGI di PROGRAMMAZIONE (sede di Brindisi)

C.d.L. in Informatica (3 anni)
Docente: P. Lops
5 Luglio 2006

(h.1.30)							
Nome e Cognome Matricola A.A. in cui si è seguito il corso	: - : -						
2) Sia dato il segue	ente lingua	ggio:					
		$L = \frac{1}{2}$	$\{a^nba^{3n}: n>0\}$	0}			
Dimostrare form	almente ch	ne L non $\grave{\mathrm{e}}$ linea	re destro.			(PUNTI 10)
3) Dimostrare che	la classe de	ei linguaggi a s	tati finiti è c	hiusa rispet	to al compl	emento.	
						(.	PUNTI 10)
3) Progettare, commodelle stringhe bir						ore per il	linguaggio
							(PUNTI 6)
Costruire una gr punto precedente		lineare destra	che genera	il linguagg	gio riconoso	ciuto dall	'automa al
							(PUNTI 4)

C.d.L. in Informatica (3 anni) Docente: G. Semeraro, P. Lops 6 Settembre 2006

(h.1.30)		
Nome e Cognome	:	
Matricola	:	
A.A. in cui si è		
seguito il corso	:	

1) Stabilire se il seguente linguaggio:

$$L = \{ab^jac^ka: j,k \ge 0\}$$

è lineare destro.

(PUNTI 2)

Giustificare formalmente la risposta

(PUNTI 8)

2) Dimostrare che la classe dei linguaggi lineari destri è chiusa rispetto all'unione.

(PUNTI 10)

3) Costruire una grammatica lineare destra che genera il linguaggio riconosciuto dal seguente automa a stati finiti:

(PUNTI 10)

C.d.L. in Informatica (3 anni) Docenti: G. Semeraro, P. Lops 26 Settembre 2006

Matricola A.A. in cui si è	:		
seguito il corso	:		
1) 6: 7 11 11			
	_	hale su $X = \{a,b\}$ denotato dall'espressione regolare $\{a,b\}$ denotato dall'espressione regolare ab .	$(a+b)^*$, ed L_2 11
Determinare una	grammat	tica lineare destra che genera $L=L_I\cdot L_2$.	(PUNTI 10)
2) Dimostrare che la	a classe d	lei linguaggi liberi da contesto è chiusa rispetto all'itera	azione. (PUNTI 10)
3) Dimostrare forms	almente c	che il seguente linguaggio:	
		$L = \{ a^n b^m : m = n^3, i, j > 0 \}$	
non è libero da co	ontesto.		(PUNTI 10)