实验 2: 组合逻辑电路设计

一、实验目的:

- 1. 学习组合逻辑电路的设计方法和步骤, 掌握译码器, 编码器等组合部件的设计方法。
- 2. 掌握串行加法器设计方法, 理解减法和比较运算的实现方法。
- 3. 掌握汉明码校验电路的设计方法。
- 4. 掌握桶形移位器的设计方法。

二、实验环境

Logisim 2.16

三、实验内容

1、译码器实验

整体模块设计:

使用8个4输入与非门,7个非门,1个与门,7个输入引脚,8个输出引脚来实现拥有3个使能控制端的输出端低电平有效的3-8译码器。

输入输出引脚作用:

G1, G2A_L,G2B_L, 为三个使能控制端, A, B, C 为三个输入端, 从高到低位是 CBA, 代表了一个二进制数, Y0_L,Y1_L,·····,Y7_L 为输出端, 代表了十进制数。

原理图:

EN=G1+G2A L+G2B L

例: Y6 L=EN+C+B+A

图 2.1 3-8 译码器 74X138 原理图

电路图:

真值表:

		Inputs			Outputs								
G1	G2A_L	G2B_L	С	В	Α	Y7_L	Y6_L	Y5_L	Y4_L	Y3_L	Y2_L	Y1_L	Y0_L
0	Х	х	X	х	Х	1	1	1	1	1	1	1	1
X	1	X	X	X	X	1	1	1	1	1	1	1	1
X	X	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	0	0	1	1	1	0	1	1	1	1
1	0	0	1	0	1	1	1	0	1	1	1	1	1
1	0	0	1	1	0	1	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1	1	1	1

2、编码器实验

整体模块设计:

运用3个异或门,8个多输入与门实现8-3优先级编码器,通过1个十六进制数码管显示并测试电路。

输入输出引脚作用:

I0,I1,······,I7 为输入端,代表一个十进制数,O0,O1,O2 为输出端,代表一个二进制数。

原理图:

图 2.3 8-3 优先级编码器原理图

电路图:

真值表:

10		l1	12	13	14	15	16	17	00	01	02	Hex显示
	1	Х	Х	Χ	Х	Х	Х	X	0	0	0	0
	0	1	Х	X	Х	Х	Х	X	0	0	1	1
	0	0	1	X	Х	Х	Х	X	0	1	0	2
	0	0	0	1	Х	Х	Х	Х	0	1	1	3
	0	0	0	0	1	Х	Х	X	1	0	0	4
	0	0	0	0	0	1	Х	X	1	0	1	5
	0	0	0	0	0	0	1	X	1	1	0	6
	0	0	0	0	0	0	0	1	1	1	1	7

3、加减法器实验

整体模块设计:

首先实现子电路全加器 FA,通过逻辑电路分别实现结果 F 和产生的进位 Cout。然后通过串联 4 个全加器子电路来实现 4 位串行进位加法器,将加数,被加数和最终的和分别连接到 16 进制数码显示管进行验证。在实现加法器的基础上,减法器则通过 Cin 的输入值来区分加减, Cin=0 时, 执行补码加法 运算 F=X+Y; 当 Cin=1 时, 执行补码减法运算 F=X-Y。

输入输出引脚作用:

隧道操作数 x 代表被加数,隧道操作数 y 表示加数,Cin 为先前产生的进位(若为减法器,则是控制加减法的控制器),Cout 为最终加法结果产生的进位,Sum 为全加器最终的和的结果。

原理图:

提示: 使用独立逻辑门及全加器FA子电路实现4位二进制数加减法器, 禁止直接使用加减法器组件。

真值表:

A	В	Cin	F	Cout
0	0	0	0	0 -
0	0	1	1	0.
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4、汉明码校验电路

整体模块设计:

通过添加 3-8 译码器的子电路, 4 位偶校验器的子电路, 来控制生成 7 位的汉明码检/纠错电路。

输入输出引脚:

Input 为输入,output 为输出,NoError 检验是否存在错误。 原理图:

电路图:

真值表:

74 1	五八.				
Input	NoErro Output			39 0 19	39 0 19
00	1 00	Input NoEr	roOutput	3a 0 2a	3a 0 2a
		00 1	00	3b 0 33	3b 0 33
01	0 00	01 0	00	3c 0 34	3c 0 34
02	0 00	02 0	00	3d 0 2d	3d 0 2d
03	0 07			3e 0 1e	3e 0 1e
		03 0	07	3f 0 7f	3f 0 7f
04	0 00	04 0	00	40 0 00	40 0 00
05	0 07	05 0	07	41 0 61	41 0 61
06	0 07			42 0 52	42 0 52
07	1 07	06 0	07	43 8 4b	43 0 4b
		07 1	07	44 0 4c	44 0 4c
08	0 00	08 0	00	45 0 55	45 0 55
09	0 19	09 0	19	46 0 66	46 0 66
0a	0 2a		2a	47 0 07	47 0 07
0b	0 4b			48 8 4c	48 0 4c
0c	0 4c	0b 0	4b	49 0 4b	49 0 46
		0c 0	4c	4a 8 4b	48 0 46
0d	0 2d	0d 0	2d	4b 1 4b	4b 1 4b
0e	0 1e	0e 0	1e	46 1 46	40 1 40
0f	0 07			4d 8 4c	4d 0 4c
10	0 00	0f 0	07	4e 8 4c	4e 0 4c
		10 0	00	4f 8 4b	46 0 45
11	0 19	11 0	19	58 8 52	50 0 52
12	0 52	12 0	52	51 0 55	51 0 55
13	0 33			52 1 52	52 1 52
14	0 34	13 0	33	52 1 52 53 0 52	52 1 52
15	0 55	14 0	34	54 8 55	54 0 55
		15 0	55	55 1 55	55 1 55
16	0 1e	16 0	1e	56 0 52	56 0 52
17	0 07	17 0	07	57 0 55	57 0 55
18	0 19			58 0 78	58 0 78
19	1 19	18 0	19	59 8 19	59 0 19
		19 1	19	5a 0 52	5a 0 52
1a	0 1e	1a 0	1e	5b 8 4b	5b 0 4b
1b	0 19	1b 0	19	5c 8 4c	5c 0 4c
1c	0 1e			5d 0 55	5d 0 55
1d	0 19	1c 0	1e	5e 8 1e	5e 0 1e
1e	1 1e	1d 0	19	5f 0 7f	5f 0 7f
		1e 1	1e	68 8 61	60 0 61
1f	0 1e	1f 0	1e	61 1 61	61 1 61
20	0 00	20 0	00	62 0 66	62 0 66
21	0 61			63 0 61	63 0 61
22	0 2a	21 0	61	64 0 66	64 0 66
		22 0	2a	65 8 61	65 0 61
23	0 33	23 0	33	66 1 66	66 1 66
24	0 34	24 0	34	67 8 66	67 0 66
25	0 2d			68 0 78	68 0 78
26	0 66	25 0	2d	69 0 61	69 0 61
		26 0	66	6a 6 2a	6a 0 2a
27	0 07	27 0	07	6b 8 4b	6b 0 4b
28	0 2a	28 0	2a	6c 8 4c	6c 0 4c
29	0 2d	29 0	2d	6d 8 2d	6d 0 2d
2a	1 2a			6e 8 66	6e Ø 66
2b	0 2a	2a 1	2a	6f 8 7f	6f 0 7f
		2b 0	2a	78 8 78	70 0 78
2c	0 2d	2c 0	2d	71 8 61	71 0 61
2d	1 2d	2d 1	2d	72 0 52	72 0 52
2e	0 2a			73 0 33	73 0 33
2f	0 2d	2e 0	2a	74 8 34	74 0 34
		2f 0	2d	75 0 55	75 0 55
30	0 34	30 0	34	76 0 66	76 0 66
31	0 33	31 0	33	77 8 7f	77 Ø 7 f
32	0 33	32 0	33	78 1 78	78 1 78
33	1 33			79 8 78	79 0 78
34	1 34	33 1	33	7a 0 78	7a 0 78
		34 1	34	7b 0 7f	7b 0 7f
35	0 34	35 0	34	7c 8 78	7c 0 78
36	0 34	36 0	34	7d 0 7f	7d 0 7f
37	0 33	37 0		7e 0 7f	7e 0 7f
38	0 78		33	7f 1 7ff	7f 1 7f
20		38 0	78		

5、桶形移位器

整体模块设计:

使用3个8位的四路选择器,实现移动类型给定(包含算数/逻辑/循环移位),移动位数确定的移位功能。

输入输出引脚功能:

Shamt 表示移位位数, 选择段 L/R 表示左移和右移, 选择段 A/L 为移位类型选择, din 为输入数据端, dout 为输出数据端。

原理图:

第一级利用 shamt[0]来控制是否需要移动一位,第二级在第一级的移动结果上用 shamt[1]

来 控制是否要移动两位,第三级在第二级的基础上再对应判断是否要移动四位。每个四路选择器有两位 控制端,控制端低位 S0 为当前级是否需要移动,对应 shamt[i],当 S0=0时,选中 4 路选择器的 0号 或 2号输入端口,均不做任何移动。当 S0=1时,控制端高位 S1 对应 L/R 输入,当 S1=0时,表示右 移,选中 4 路选择器的 1号输入端口;当 S1=1时,表示左移,选中 4 路选择器的 3号输入端口。这 两个输入端分别连接了数据低位或高位的上一级输出。

(此为不含循环移位的原理图)

提示: 使用多路选择器级联实现8位桶形移位器; 禁止直接使用移位器组件;

Din	shamt	LR.	AL	Dout	Din	shamt	LR	AL	Dout
b7	0	0	0	b7	b7	0	0	0	b7
b7	1	0	0	5b	b7	1	0	0	5b
b7	2	0	0	2d	b7	2	0	0	2d
b7	3	0	0	16	b7	3	0	0	16
b7	4	0	0	0 b	b7	4	0	0	0 b
b7	5	0	0	05	b7	5	0	0	0 5
b7	6	0	0	02	b7	6	0	0	0 2
b7	7	0	0	01	b7	7	0	0	01
b7	0	1	0	b7	b7	0	1	0	b7
b7	1	1	0	6e	b7	1	1	0	6e
b7	2	1	0	dc	b7	2	1	0	dc
b7	3	1	0	b8	b7	3	1	0	b8
b7	4	1	0	70	b7	4	1	0	70
b7	5	1	0	e0	b7	5	1	0	e0
b7	6	1	0	c 0	b7	6	1	0	c0
b7	7	1	0	80	b7	7	1	0	80
b7	0	0	1	b7	b7	0	0	1	b7
b7	1	0	1	db	b7	1	0	1	db
b7	2	0	1	ed	b7	2	0	1	ed
b7	3	0	1	f6	b7	3	0	1	f6
b7	4	0	1	fb	b7	4	0	1	fb
b7	5	0	1	fd	b7	5	0	1	fd
b7	6	0	1	fe	b7	6	0	1	fe
b7	7	0	1	ff	b7	7	0	1	ff
b7	0	1	1	b7	b7	0	1	1	b7
b7	1	1	1	6f	b7	1	1	1	6f
b7	2	1	1	de	b7	2	1	1	de
b7	3	1	1	bd	b7	3	1	1	bd
b7	4	1	1	7b	b7	4	1	1	7b
b7	5	1	1	f6	b7	5	1	1	f6
b7	6	1	1	ed	b7	6	1	1	ed
b7	7	1	1	db	b7	7	1	1	db

四、思考题

1、修改实验中的加法器电路,生成进位标志 CF、溢出标志 OF、符号标志 SF 和结果为零标志位 ZF。

整体模块设计:

在全加器的基础上,通过增添异或门和与门实现标志位的生成。

原理图:

2、通过减法器执行比较指令

执行比较指令, 也即是判定 a 与 b 的大小, 此时可通过 a-b 来判定。

A: a, b 均为无符号数。

若 a<b: 那么结果不会溢出,OF=0;需要进行借位减法,CF=1;ZF=0;

若 a>b: 那么结果仍然不会溢出, OF=0; 不需要借位减法, CF=0; ZF=0;

若 a=b: ZF=1;

B: a, b 均为带符号数。

若 a>b:符号仍然为正, SF=0; 且没有发生溢出, OF=0; ZF=0;

若 a<b:符号为负, SF=1; 仍然不可能发生溢出, OF=0; ZF=0;

若 a=b:ZF=0;

综上:

无符号数比较:

两有符号数相减判断结果正负:

SF=OF时大于, SF≠OF时小于; 即SF⊕OF=0时大于, SF⊕OF=1时小于。 做减法以比较大小,规则: Unsigned: CF=0时,大于

3、使用逻辑门电路实现 4 位无符号二进制数比较器,并扩展到带符号数的比较,输出相等、大于 和小于三个结果。

整体模块设计:

对无符号数,高位优先,从最高位到最低位依次比较;对带符号数,符号位优先比较,在符号位相等的情况下,依次比较。

原理图与电路图: (无符号)

(有符号):

4、使用 8 位桶形移位器扩展到 32 位桶形移位器。

整体模块设计:

消防 8 位桶形移位器,将选择题增添到五个,代表移 1 位, 2 位, 4 位, 8 位, 16 位, 32 位。Shamt 数组增添至五位。其余原理保持一致。

输入输出引脚:

与8位桶形移位器保持一致,移除了循环左移这一功能。

