Homework 6

Walker Bagley

April 9, 2024

1 Simple Cycles

A graph C_n with n nodes would have 2n automorphisms. This is because there exist automorphisms for the n possible rotations as well as for mappings created by a reflection about an axis followed by n possible rotations. Thus there are n + n = 2n automorphisms of C_n .

2 Complete Graphs

A complete graph K_n means that every node is connected to every other node. Thus, the number of automorphisms is equivalent to the number of combinations we can create of the n nodes. For the first node, there are n options, second has n-1 options and so on until there is 1 node left. So, the number of ways to arrange the n nodes and therefore number of automorphisms is $n \cdot (n-1) \dots 2 \cdot 1 = n!$.

3 Automorphism Orbits

In a graph P_n , there can be an even or odd number of nodes stretched along a line. Let's number the nodes on the line from left to right counting from 1 to n, so node 1 is the leftmost and n the rightmost. Then, we count orbits working from both ends inwards. Counting nodes 1 and n as an orbit, nodes 2 and n-1 and so on. If n is even, then the middle two nodes will form one orbit and thus we are done, otherwise if n is odd, then the very middle node will not have a match and thus be its own orbit. So we have $\frac{n}{2}$ orbits in the even case and $\frac{n+1}{2}$ orbits in the odd case, which we can rewrite as $\lceil \frac{n}{2} \rceil$ to generalize both cases.

4 GDV

Orbit	l .	l .	l .		l .	l	l		l .						
GDV	5	2	9	1	0	6	0	7	1	0	0	3	0	0	0