DIRECCIONESIP

0000 0000 . 0000 0000 . 0000 0000 . 0000 0000

DIRECCIONES IP

Mascara de red.

CLASES - RFC 790/940/950

Class	First Octet Range 1-126 128-191	Max Hosts 16M	Format		
A			NETID 0	HOSTID	
В			1 Octet NETID 1 0	3 Octets HOSTID	
С	192-223	254	2 Octets NET	HOSTID	
D	224-239	N/A	-	Iticast Address	
E	240-255	N/A	1 1 1 1	xperimental	

CLASES - RFC 790/940/950

Clase A: NETID HOSTID HOSTID HOSTID

Clase B: NETID NETID HOSTID HOSTID

NET ID

NET ID

HOST ID

NET ID

Clase C:

¿Cómo las identifico?

$$B -> 10$$

$$C -> 110$$

CLASE B HOST

DIRECCIONESIP

NETID HOSTID

CLASE B RED

Problema del esquema de clases

4 REDES FÍSICAS REQUIEREN 4 REDES IP

Este bloque de IP tiene la capacidad de direccionar 2^16-2 hosts

Asignárselo a una sola red, que no va a usar ni la mitad de su capacidad, es ineficiente y un desperdicio

Subnetting fijo

Tomar prestados bits del host para generar subredes

Con esta división, pasamos de una sola red con mascara default /16 a 2^8 redes con una mascara /24

 11000001
 10101000
 00000100
 0000000

 193
 168
 4
 0/24

Tenemos esta dirección de red de clase C. Si necesito 4 subredes, podemos dividirla en 4 subredes de 62 hosts c/u.

Si tengo distintas cantidades de hosts, este esquema no me sirve.

```
193.168.4.0 /26:
/26 00 193.168.4.0,
/26 01 193.168.4.64,
/26 10 193.168.4.128,
/26 11 193.168.4.192.
```

VLSM: CUANDO DIVIDIR LA RED EN PARTES IGUALES NO ME CONVIENE. POR EJEMPLO, TENGO REDES QUE NECESITAN 200 HOSTS Y REDES QUE NECESITAN 2 (REDES INTERCONECTABLES)

SOLUCIÓN: VARIABLE LENGTH SUBNET MASK

SUBPEDES IGUALES /26

VLSM

125, 126, 127, 27

Ejemplo Subnetting - VLSM

172.16.32.0/20

Esta IP posee 12 bits para hosts: 4094 direccionables

10101100.00010000.0010 0000.00000000

1111111111111111111 0000.0000000

#1: Se empieza siempre por la subred que va a requerir más hosts.

Para direccionar 262 hosts voy a necesitar 9 bits. (100000110) = 262 en binario.

Voy a dividir mi red única con 12 bits en el host en 8 subredes de 9 bits.

172.16.32.0/23

10101100.00010000.0010 0000.00000000 1111111.111111.1111 1110.0000000

La máscara de red pasa de ser /20 a ser /23. Ahora tenemos tres bits para las subredes= 8 subredes.

RED A

172 . 16 . 32 . 0 10101100.00010000.0010 0000.0000000

Asignamos esta IP a la red que necesita 262 hosts. Su capacidad total es de 2^9 - 2 hosts = 509

RED B

172 . 16 . 34 . 0
10101100.00010000.0010 0010.00000000

La siguiente red necesita 62 hosts.

Para direccionar 62 hosts voy a necesitar 6 bits. (111110) = 62 en binario.

RED B

172 . 16 . 34 . 0
10101100.00010000.0010 0010.00000000

Voy a dividir la red B, moviendo la máscara de /23 a /26

10101100.00010000.0010 0010.00000000

La red B ahora esta dividida en 8 subredes de 2^6= 64 hosts totales.

Restando red y broadcast = 62 hosts totales.

Para la tercera red, que necesita 26 hosts, podría tomar la red C y repetir el procedimiento. ¿Cuál sería un posible problema de hacer esto?

Recordemos nuestra estructura:

Voy a dividir la red B.1, moviendo la máscara de /26 a /27

<u>172</u> . <u>16</u> .0010 0010.01000000

172 . 16 . 34 .01000000

Tenemos un bit para las subredes= 2 subredes.

B.1.a 172 . 16 . 34 .0100000

B.1.b 172 . 16 . 34 .01100000

La cuarta, quinta y sexta red son las redes interconectadas. Requieren de dos hosts.

Siguiendo el mismo procedimiento, tomamos la red B.1.b:

B.1.b

172 . 16 . 34 .01100000

Para las redes interconectadas se utiliza una máscara /30, para direccionar los 2 routers.

 $2^2 = 4 - 2 = 2$ hosts directionables.

B.1.b.0

172.16.34.01100000

B.1.b.1

172.16.34.01100100

B.1.b.2

172.16.34.01101000

Importante: Cuando se dice que las redes interconectadas requieren 2 hosts, se asume que se está hablando de una red simple entre dos routers.

Pueden existir redes interconectadas donde haya 3, 4 routers conectados, en este caso la máscara no deberá ser /30.

RED A	172 . 16 . 32 . 0 / 23		
RED B.0	172.16.34.0/26		
RED B.1.a	172 . 16 . 34 . 64/ 27		
RED B.1.b.0	172 . 16 . 34 . 96/30		
RED B.1.b.1	172 . 16 . 34 . 100 / 30		
RED B.1.b.2	172 . 16 . 34 . 104 / 30		