Contents

Chapter 1. Foundations	2
1 Basic Category Theory	2
1.1 Categories	2
1.2 Functors	3
1.3 Limits	3
Chapter 2. The Fundamental Group	4
1 The Fundamental Grupoid	4
2 The Fundamental Group	7
Chapter 3. Singular Homology	8
Free Abelian Groups	8
Chain Complexes	9
Appendix A. Set Theory	12
1 Basic Concepts	
Appendix. Bibliography	13

CHAPTER 1

Foundations

1. Basic Category Theory

1.1. Categories. We use the first order theory of Neumann-Bernays-Gödel (BNG) as described in [Men15, p. 231].

Definition 1.1 (Category). A category & consists of

- A class $ob(\mathcal{C})$, called the **objects of** \mathcal{C} .
- A class $mor(\mathcal{C})$, called the **morphisms of** \mathcal{C} .
- Two functions dom: $mor(\mathcal{C}) \to ob(\mathcal{C})$ and $cod: mor(\mathcal{C}) \to ob(\mathcal{C})$, which assign to each morphism f in \mathcal{C} its **domain** and **codomain**, respectively.
- For each $X \in \text{ob}(\mathcal{C})$ a function $\text{ob}(\mathcal{C}) \to \text{mor}(\mathcal{C})$ which assigns a morphism id_X such that $\text{dom id}_X = \text{cod id}_X = X$.
- A function

$$\circ : \{ (g, f) \in \operatorname{mor}(\mathcal{C}) \times \operatorname{mor}(\mathcal{C}) : \operatorname{dom} g = \operatorname{cod} f \} \to \operatorname{mor}(\mathcal{C})$$
 (1)

mapping (g, f) to $g \circ f$, called **composition**, such that $dom(g \circ f) = dom f$ and $cod(g \circ f) = cod g$.

Subject to the following axioms:

• (Associativity Axiom) For all $f, g, h \in mor(\mathcal{C})$ with dom h = cod g and dom g = cod f, we have that

$$(h \circ g) \circ f = h \circ (g \circ f). \tag{2}$$

• (Unit Axiom) For all $f \in mor(\mathcal{C})$ with dom f = X and cod f = Y we have that

$$f = f \circ \mathrm{id}_X = \mathrm{id}_Y \circ f. \tag{3}$$

Remark 1.1. Let \mathcal{C} be a category. For $X, Y \in ob(\mathcal{C})$ we will abreviate

$$\mathcal{C}(X,Y) := \{ f \in \operatorname{mor}(\mathcal{C}) : \operatorname{dom} f = X \text{ and } \operatorname{cod} f = Y \}.$$

Moreover, $f \in \mathcal{C}(X, Y)$ is depicted as

$$f: X \to Y. \tag{4}$$

1.2. Functors.

Definition 1.2 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F: \mathcal{C} \to \mathcal{D}$ is a pair of functions (F_1, F_2) , $F_1: ob(\mathcal{C}) \to ob(\mathcal{D})$, called the **object function** and $F_2: mor(\mathcal{C}) \to mor(\mathcal{D})$, called the **morphism function**, such that for every morphism $f: X \to Y$ we have that $F_2(f): F_1(X) \to F_1(Y)$ and (F_1, F_2) is subject to the following **compatibility conditions**:

- For all $X \in ob(\mathcal{C})$, $F_2(id_X) = id_{F_1(X)}$.
- For all $f \in \mathcal{C}(X,Y)$ and $g \in \mathcal{C}(Y,Z)$ we have that $F_2(g \circ f) = F_2(g) \circ F_2(f)$.

Remark 1.2. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. It is convenient to denote the components F_1 and F_2 also with F.

1.3. Limits.

Definition 1.3 (Diagram). Let \mathcal{C} be a category and A a small category. A functor $A \to \mathcal{C}$ is called a **diagram in** \mathcal{C} **of shape** A.

Definition 1.4 (Cone and Limit). Let \mathcal{C} be a category and $D: A \to \mathcal{C}$ a diagram in \mathcal{C} of shape A. A **cone on D** is a tuple $(C, (f_{\alpha})_{\alpha \in A})$, where $C \in \mathcal{C}$ is an object, called the **vertex** of the cone, and a family of arrows in \mathcal{C}

$$\left(C \xrightarrow{f_{\alpha}} D(\alpha)\right)_{\alpha \in A}. \tag{5}$$

such that for all morphisms $f \in A$, $f : \alpha \to \beta$, the triangle

commutes. A (small) limit of D is a cone $(L, (\pi_{\alpha})_{\alpha \in A})$ with the property that for any other cone $(C, (f_{\alpha})_{\alpha \in A})$ there exists a unique morphism $\overline{f}: A \to L$ such that $\pi_{\alpha} \circ \overline{f} = f_{\alpha}$ holds for every $\alpha \in A$.

Remark 1.3. In the setting of definition 1.4, if $(L, (\pi_{\alpha})_{\alpha \in A})$ is a limit of D, we sometimes reffering to L only as the limit of D and we write

$$L = \lim_{\leftarrow A} D. \tag{6}$$

CHAPTER 2

The Fundamental Group

1. The Fundamental Grupoid

Lemma 2.1 (Gluing Lemma). Let $X, Y \in \text{ob}(\mathsf{Top})$, $(X_{\alpha})_{\alpha \in A}$ a finite closed cover of X and $(f_{\alpha})_{\alpha \in A}$ a finite family of maps $f_{\alpha} \in \mathsf{Top}(X_{\alpha}, Y)$ such that $f_{\alpha}|_{X_{\alpha} \cap X_{\beta}} = f_{\beta}|_{X_{\alpha} \cap X_{\beta}}$ for all $\alpha, \beta \in A$. Then there exists a unique $f \in \mathsf{Top}(X, Y)$ such that $f|_{X_{\alpha}} = f_{\alpha}$ for all $\alpha \in A$.

Proof. Let $x \in X$. Since $(X_{\alpha})_{\alpha \in A}$ is a cover of X, we find $\alpha \in A$ such that $x \in X_{\alpha}$. Define $f(x) := f_{\alpha}(x)$. This is well defined, since if $x \in X_{\alpha} \cap X_{\beta}$ for some $\beta \in A$, we have that $f(x) = f_{\beta}(x) = f_{\alpha}(x)$. Clearly $f|_{X_{\alpha}} = f_{\alpha}$ for all $\alpha \in A$ and f is unique. Let us show continuity. To this end, let $K \subseteq Y$ be closed. Then

$$f^{-1}(K) = X \cap f^{-1}(K)$$

$$= \bigcup_{\alpha \in A} X_{\alpha} \cap f^{-1}(K)$$

$$= \bigcup_{\alpha \in A} (X_{\alpha} \cap f^{-1}(K))$$

$$= \bigcup_{\alpha \in A} (X_{\alpha} \cap f_{\alpha}^{-1}(K)).$$

Since each f_{α} is continuous, $f_{\alpha}^{-1}(K)$ is closed in X_{α} for each $\alpha \in A$ and thus since X_{α} is closed, $f^{-1}(K)$ is closed as a finite union of closed sets.

Theorem 2.1. There is a functor Top \rightarrow Grpd.

Proof. The proof is divided into several steps. Let us denote $\Pi : \mathsf{Top} \to \mathsf{Grpd}$ for the claimed functor.

Step 1: Definition of Π on objects. Let $X, Y \in \text{ob}(\mathsf{Top}), f, g \in \mathsf{Top}(X, Y)$ and $A \subseteq X$. A map $F \in \mathsf{Top}(X \times I, Y)$ is called a **homotopy from X to Y relative to A**, if

- F(x,0) = f(x), for all $x \in X$.
- F(x, 1) = g(x), for all $x \in X$.
- F(x,t) = f(x) = g(x), for all $x \in A$ and for all $t \in I$.

If there exists a homotopy between f and g relative to A we say that f and g are **homotopic** relative to A and write $f \simeq_A g$. If we want to emphasize the homotopy relative to A, we write $F : f \simeq_A g$.

Lemma 2.2. Let $X, Y \in \text{ob}(\mathsf{Top})$ and $A \subseteq X$. Then being homotopic relative to A is an equivalence relation on $\mathsf{Top}(X,Y)$.

Proof. Define a binary relation $R_A \subseteq \text{Top}(X, Y) \times \text{Top}(X, Y)$ by

$$fR_Ag$$
 : \Leftrightarrow $f \simeq_A g$.

Let $f \in \text{Top}(X, Y)$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := f(x)$$
.

Then clearly $F: f \simeq_A f$. Hence R_A is reflexive.

Let $g \in \text{Top}(X, Y)$ and assume that fR_Ag . Thus $G : f \simeq_A g$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := G(x, 1-t).$$

Then it is easy to check that $F: g \simeq_A f$ and so R_A is symmetric.

Finally, let $h \in \text{Top}(X, Y)$ and suppose that fR_Ag and gR_Ah . Hence $F_1: f \simeq_A g$ and $F_2: g \simeq_A h$. Define $F \in \text{Top}(X \times I, Y)$ by

$$F(x,t) := \begin{cases} F_1(x,2t) & 0 \le t \le \frac{1}{2}, \\ F_2(x,2t-1) & \frac{1}{2} \le t \le 1. \end{cases}$$

Continuity of F follows by an application of the gluing lemma 2.1. Then it is easy to check that $F: f \simeq_A h$ and hence R_A is transitive.

Let $X \in \text{ob}(\mathsf{Top})$ and u a path in X from p to q. Define the **path class [u] of u** by $[u] := [u]_{R_{\mathcal{U}}}$. Define now

- ob $(\Pi(X)) := X$.
- $\Pi(X)(p,q) := \{[u] : u \text{ is a path from } p \text{ to } q\} \text{ for all } p,q \in X.$
- Let $p \in X$. Then define $\mathrm{id}_p \in \Pi(X)(p,p)$ by $\mathrm{id}_p := [c_p]$, where c_p is the constant path defined by $c_p(s) := p$ for all $s \in I$.
- And $\Pi(X)(q,r) \times \Pi(X)(p,q) \to \Pi(X)(p,r)$ by

$$([v],[u]) \mapsto [u * v]$$

Where $u * v \in \text{Top}(p, r)$ is the *concatenated path of u and v*, defined by

$$(u*v)(s) := \begin{cases} u(2s) & 0 \le t \le \frac{1}{2}, \\ v(2s-1) & \frac{1}{2} \le t \le 1 \end{cases}.$$

Continuity follows again from the gluing lemma 2.1 whereas well definedness follows from the next lemma.

Lemma 2.3. Suppose that $[u_1], [u_2] \in \Pi(X)(p,q)$ and $[v_1], [v_2] \in \Pi(X)(q,r)$ such that $[u_1] = [u_2]$ and $[v_1] = [v_2]$. Then $[u_1 * v_1] = [u_2 * v_2]$.

Proof. By assumption we have $G: u_1 \simeq_{\partial I} u_2$ and $H: v_1 \simeq_{\partial I} v_2$. Define $F \in \text{Top}(I \times I, X)$ by

$$F(s,t) := \begin{cases} G(2s,t) & 0 \le s \le \frac{1}{2}, \\ H(2s-1,t) & \frac{1}{2} \le s \le 1. \end{cases}$$

Again, continuity follows from the gluing lemma 2.1 and it is easy to check that $F: u_1 * v_1 \simeq_{\partial I} u_2 * v_2$.

Let us now check that $\Pi(X)$ is indeed a category. Let $[u] \in \Pi(X)(p,q)$. We want to show that $u \simeq_{\partial I} c_p * u$. To this end, we consider figure 1a and conclude that a suitable homotopy is given by $F \in \text{Top}(I \times I, X)$ defined by

$$F(s,t) := \begin{cases} p & 0 \le 2s \le t, \\ u\left(\frac{2s-t}{2-t}\right) & t \le 2s \le 2. \end{cases}$$

Similarly, considering figure 1b leads to $F \in \text{Top}(I \times I, X)$ defined by

FIGURE 1. Visualization of the proof that $\Pi(X)$ is a grupoid object.

$$F(s,t) := \begin{cases} u\left(\frac{4s}{t+1}\right) & -1 \le 4s - 1 \le t, \\ v(4s - t - 1) & t \le 4s - 1 \le t + 1, \\ w\left(\frac{4s - t - 2}{4 - t - 2}\right) & t + 1 \le 4s - 1 \le 3. \end{cases}$$

Lastly, we check that $\Pi(X)$ is a grupoid. To this end, for a path u from p to q, define its **reverse path** \overline{u} by

$$\overline{u}(s) := u(1-s).$$

We claim that $u * \overline{u} \simeq_{\partial I} c_p$. From figure 1c we deduce that $F \in \text{Top}(I \times I, X)$ is given by

$$F(s,t) := \begin{cases} u(2s) & 0 \le 2s \le 1 - t, \\ u(1-t) & 1 - t \le 2s \le t + 1, \\ \overline{u}(2s-1) & t + 1 \le 2s \le 2. \end{cases}$$

Step 2: Definition of Π on morphisms. Let $f \in \text{Top}(X, Y)$. Then $\Pi(f)$ is a functor from $\Pi(X)$ to $\Pi(Y)$. Define $\Pi(f)$ as follows:

- Let $p \in \text{ob}(\Pi(X))$. Then define $\Pi(f)(p) := f(p) \in \text{ob}(\Pi(Y))$.
- Let $[u] \in \Pi(X)(p,q)$. Then define $\Pi(f)[u] := [f \circ u] \in$. We have to check that this definition is independent of the choice of the representative.

Lemma 2.4. Let u and v be paths from p to q in X and suppose that [u] = [v]. Then for any $f \in \text{Top}(X, Y)$ we also have that $[f \circ u] = [f \circ v]$.

Proof. Suppose that $H: u \simeq_{\partial I} v$. Define $F \in \text{Top}(I \times I, Y)$ by

$$F(s,t) := (f \circ F)(s,t).$$

Then $F: f \circ u \simeq_{\partial I} f \circ v$.

Checking that Π satisfies the functorial properties is left as an exercise. \square

Exercise 1.1. Check that $\Pi : \mathsf{Top} \to \mathsf{Grpd}$ is indeed a functor.

2. The Fundamental Group

Lemma 2.5. Let \mathcal{G} be a locally small grupoid. Then for every $X \in \text{ob}(\mathcal{G})$, $\mathcal{G}(X, X)$ can be equipped with a group structure.

Proof. Since \mathcal{G} is locally small, $\mathcal{G}(X,X)$ is a set for every $X \in \text{ob}(\mathcal{G})$. Define a multiplication $\mathcal{G} \times \mathcal{G} \to \mathcal{G}$ by $gh := h \circ g$.

CHAPTER 3

Singular Homology

Free Abelian Groups

Proposition 3.1. The forgetful functor $U : Ab \rightarrow Set$ admits a left adjoint.

Proof. We have to construct a functor $F : Set \rightarrow Ab$. Let S be a set. Define

$$F(S) := \{ f \in \mathbb{Z}^S : \text{supp } f \text{ is finite} \}.$$

Equipped with pointwise addition, F(S) is an abelian group. There is a natural inclusion $\iota: S \hookrightarrow U\left(F(S)\right)$ sending $x \in S$ to the function taking the value one at x and zero else. Hence we may regard elements of F(S) as formal linear combinations $\sum_{x \in S} m_x x$, where $m_x \in \mathbb{Z}$ for all $x \in S$. Let $G \in \text{ob}(\mathsf{Ab})$ be an abelian group and $\varphi \in \mathsf{Ab}\left(F(S), G\right)$ a morphism of groups. Define $\overline{\varphi} \in \mathsf{Set}\left(S, U(G)\right)$ by $\overline{\varphi} := U(\varphi)$. Conversly, if we have $f \in \mathsf{Set}\left(S, U(G)\right)$, define $\overline{f} \in \mathsf{Ab}\left(F(S), G\right)$ by $\overline{f}\left(\sum_{x \in S} m_x x\right) := \sum_{x \in S} m_x f(x)$. This is well defined since all but finitely many m_x are zero and G is abelian. It is easy to check that \overline{f} is indeed a morphism of groups. Let $\varphi \in \mathsf{Ab}\left(F(S), G\right)$. Then

$$\begin{split} \overline{\overline{\varphi}} \left(\sum_{x \in S} m_x x \right) &= \sum_{x \in S} m_x \overline{\varphi}(x) \\ &= \sum_{x \in S} m_x U(\varphi)(x) \\ &= \sum_{x \in S} m_x \varphi(x) \\ &= \varphi \left(\sum_{x \in S} m_x x \right). \end{split}$$

And for $f \in Set(S, U(G))$ we have that

$$\overline{\overline{f}}(x) = U(\overline{f})(x) = \overline{f}(x) = f(x).$$

Hence $\overline{\overline{\varphi}} = \varphi$ and $\overline{\overline{f}} = f$ and so we have a bijection

$$\mathsf{Ab}\left(F(S),G\right)\cong\mathsf{Set}\left(S,U(G)\right).$$

The mapping $f \mapsto \overline{f}$ will be referred to as *extending by linearity*. To check naturality in S and G is left as an exercise.

Exercise 0.1. Check the naturality of the bijection in proposition 3.1. Also check that $F : Set \to Ab$ is indeed a functor. F is called the *free functor from* **Set** *to* **Ab**.

Definition 3.1 (Free Abelian Group). Let $F : Set \to Ab$ be the free functor. For any set S, we call F(S) the free group generated by S.

Chain Complexes

Definition 3.2 (Chain Complex). A chain complex is a tuple $(C_{\bullet}, \partial_{\bullet})$ consisting of a sequence $(C_n)_{n \in \mathbb{Z}}$ in ob(Ab) and a sequence $(\partial_n)_{n \in \mathbb{Z}}$ in mor(Ab), called **boundary operators**, such that we have $\partial_n \in \mathsf{Ab}(C_n, C_{n-1})$ and $\partial_n \circ \partial_{n+1} = 0$ for all $n \in \mathbb{Z}$.

Definition 3.3 (Chain Maps). Let $(C_{\bullet}, \partial_{\bullet})$ and $(C'_{\bullet}, \partial'_{\bullet})$ be two chain complexes. A **chain map** $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ is a sequence $(f_n)_{n \in \mathbb{Z}}$ in mor(Ab) such that $f_n \in Ab(C_n, C'_n)$ and the diagram

$$C_{n} \xrightarrow{\partial_{n}} C_{n-1}$$

$$f_{n} \downarrow \qquad \qquad \downarrow f_{n-1}$$

$$C'_{n} \xrightarrow{\partial'_{n}} C'_{n-1}$$

commutes for all $n \in \mathbb{Z}$.

Proposition 3.2. There is a category with objects chain complexes and morphisms chain maps.

Proof. Let $f_{\bullet}: C_{\bullet} \to C'_{\bullet}$ and $g_{\bullet}: C'_{\bullet} \to C''_{\bullet}$ be chain maps. Define a map $g_{\bullet} \circ f_{\bullet}$ by $g_n \circ f_n$ for each $n \in \mathbb{Z}$. This defines a chain map. Moreover, for each chain complex C_{\bullet} define $\mathrm{id}_{C_{\bullet}}$ by id_{C_n} for all $n \in \mathbb{Z}$. It is easy to check, that then \circ is associative and the identity laws hold.

Definition 3.4 (Comp). The category in 3.2 is called the **category of chain complexes** and we refer to it as Comp.

Theorem 3.1. *There is a functor* Top \rightarrow Comp.

Proof. The proof is divided into several steps. Let us denote C_{\bullet} : Top \rightarrow Comp for the claimed functor.

Step 1: Construction of a sequence of abelian groups. Let $v_0, \ldots, v_k \in \mathbb{R}^n$ for some $n, k \in \mathbb{N}$. We say that (v_0, \ldots, v_k) is **affinely independent** if $(v_1 - v_0, \ldots, v_k - v_0)$

is linearly independent. We define the *k*-simplex spanned by (v_0, \ldots, v_k) , written $[v_0, \ldots, v_k]$, to be

$$[v_0, \dots, v_k] := \left\{ \sum_{i=0}^k s_i v_i : s_i \ge 0 \text{ for all } i = 0, \dots, k \text{ and } \sum_{i=0}^k s_i = 1 \right\}.$$
 (7)

equipped with the subspace topology. Moreover, we define the *standard n-simplex* Δ^n to be the *n*-simplex spanned by (e_0, \ldots, e_n) where $(e_{i+1})_i$ is the standard basis of \mathbb{R}^{n+1} . Let $X \in \text{ob}(\mathsf{Top})$. Define a *singular n-simplex in* X to be a map $\sigma \in \mathsf{Top}(\Delta^n, X)$. Let $n \in \mathbb{Z}$. Define

$$C_n(X) := \begin{cases} F\left(\mathsf{Top}(\Delta^n, X)\right) & n \ge 0, \\ 0 & n < 0. \end{cases}$$
(8)

We will call elements of $C_n(X)$ singular n-chains.

Step 2: Construction of boundary operators. Let $X \in \text{ob}(\mathsf{Top})$ and σ a singular n-simplex in X for $n \geq 1$. We define $\varphi_k^n : \Delta^{n-1} \to \Delta^n$, called the k-th face map, by

$$\varphi_k^n(s_0,\ldots,s_{n-1}) := \begin{cases} (0,s_0,\ldots,s_{n-1}) & k=0,\\ (s_0,\ldots,s_{k-1},0,s_k,\ldots,s_{n-1}) & 1 \le k \le n-1. \end{cases}$$
(9)

Define now

$$\partial \sigma := \sum_{k=0}^{n} (-1)^k \sigma \circ \varphi_k^n \in U\left(C_{n-1}(X)\right) \tag{10}$$

to be the **boundary of** σ . Moreover, the **singular boundary operator** is defined to be $\overline{\partial_n}$ and $\partial_n := 0$ for $n \le 0$.

Step 3: $\partial_n \circ \partial_{n+1} = 0$ for all $n \in \mathbb{Z}$. It is enough to consider $n \ge 1$, since $\partial_n \circ \partial_{n+1} = 0$ holds trivially in the other cases. Let $X \in \text{ob}(\mathsf{Top})$ and $\sigma \in \mathsf{Top}(\Delta^{n+1}, X)$. Then we have

$$(\partial_n \circ \partial_{n+1})(\sigma) = \partial_n \left(\sum_{k=0}^{n+1} (-1)^k \sigma \circ \varphi_k^{n+1} \right)$$

$$= \sum_{k=0}^{n+1} (-1)^k \partial_n \left(\sigma \circ \varphi_k^{n+1} \right)$$

$$= \sum_{k=0}^{n+1} \sum_{j=0}^{n} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n$$

$$= \sum_{0 \le k \le j \le n} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n + \sum_{0 \le j < k \le n+1} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n$$

$$= \sum_{0 \le j \le k \le n} (-1)^{k+j} \sigma \circ \varphi_j^{n+1} \circ \varphi_k^n + \sum_{0 \le j < k \le n+1} (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n$$

$$= \sum_{0 \le j < k \le n+1} \left((-1)^{k+j-1} \sigma \circ \varphi_j^{n+1} \circ \varphi_{k-1}^n + (-1)^{k+j} \sigma \circ \varphi_k^{n+1} \circ \varphi_j^n \right)$$

Step 4: Construction of chain maps. Let $X,Y \in \text{ob}(\mathsf{Top})$ and $f \in \mathsf{Top}(X,Y)$. For $n \geq 0$, define $f_n^\# : \mathsf{Top}(\Delta^n,X) \to U\left(C_n(Y)\right)$ by $f^\# := f \circ \sigma$. Extending this map by linearity yields a homomorphism $f_n^\# : C_n(X) \to C_n(Y)$. Moreover, set $f_n^\# = 0$ for n < 0. Let $n \geq 1$ and $\sigma \in \mathsf{Top}(\Delta^n,X)$. Then on one hand we have

$$(f_{n-1}^{\#} \circ \partial_n)(\sigma) = f_{n-1}^{\#} \left(\sum_{k=0}^n (-1)^k \sigma \circ \varphi_k^n \right) = \sum_{k=0}^n (-1)^k f \circ \sigma \circ \varphi_k^n$$

and on the other

$$(\partial_n \circ f_n^{\#})(\sigma) = \partial_n (f \circ \sigma) = \sum_{k=0}^n (-1)^k f \circ \sigma \circ \varphi_k^n.$$

Step 5: Checking functorial properties. We are ready to define the functor C_{\bullet} : Top \rightarrow Comp. Let $C_{\bullet}(X)$ be the chain complex consisting of $(C_n(X))_{n\in\mathbb{Z}}$ and $(\partial_n)_{n\in\mathbb{Z}}$.

APPENDIX A

Set Theory

1. Basic Concepts

Problem 1.1. Let $n \in \mathbb{N}$ and $a_{kj} \in \mathbb{C}$ for k = 0, ..., n + 1, j = 0, ..., n. Show that

$$\sum_{k=0}^{n+1} \sum_{j=0}^{n} a_{kj} = \sum_{0 \le k \le j \le n} a_{kj} + \sum_{0 \le j < k \le n+1} a_{kj}.$$

Bibliography

[Men15] E. Mendelson. *Introduction to Mathematical Logic*. Sixth Edition. Textbooks in Mathematics. CRC Press, 2015.