Lecture 6:

Alpha-beta Pruning and Decision Trees

6 February 2020

- Adversarial problems
 - Agent is competing against another agent
 - Could be a human or another AI agent
 - Agents are trying to accomplish conflicting tasks
 - Trying to stop other agent from reaching its goal
 - Other agent trying to stop you from reaching your goal
- Games
 - Chess
 - Checkers
 - tic tac toe
 - Computer games
 - Dota 2
- What makes adversarial problems difficult?
 - Need to predict actions of other agent

What move will opponent make?

- Observation
 - A good state for you is a bad state for your opponent
 - A bad state for you is a good state for your opponent
 - Assume opponent will always pick worst state for you
 - Strategy:
 - Select action where opponent's best move will lead to best state for you
 - Select action with best worst state
 - Example: Chess
 - Opponent can mate in one
 - Select move that stops check-mate

```
function minimax(s, d, bMaxPlayer)
if d = 0 or goal(s)
    return h(s)
if bMaxPlayer then
    V := -∞
   for each action a
       s' = \tau(s,a)
       v := max(v, minimax(s, d - 1, FALSE))
    return v
else
   for each action a
       s' = \tau(s,a)
       v := min(v, minimax(s, d - 1, TRUE))
    return v
```


- Look ahead *d* moves
- Compute h of all leaves
- Inductively compute values for internal nodes from values of children
 - Max Step (agent's turn): Set values to be max value of children
 - Min Step (opponent's turn): Set value to min value of children
- Select child of root that has highest value
 - This is the action the agent should make

- Expand noes in depth first ordering
- Expand action c₁ and get 2
- What can you say about about state C and action a₂?

- Expand noes in depth first ordering
- Expand action c₁ and get 2
- What can you say about about state C and action a₂?
 - At state C opponent will be able to get to a state with a value ≤ 2
 - Already know that a₁ gives you a value of 3
 - Never want to take action a₂
- Don't even need to consider other children of C

- Expand noes in depth first ordering
- Expand action c₁ and get 2
- What can you say about about state C and action a₂?
 - At state C opponent will be able to get to a state with a value ≤ 2
 - Already know that a₁ gives you a value of 3
 - Never want to take action a₂
- Don't even need to consider other children of C

- Best case complexity
 - $O(|A|^{d/2})$
- Worst case complexity
 - O(|A|^d)
- What impacts how long search takes?

- Best case complexity
 - $O(|A|^{d/2})$
- Worst case complexity
 - O(|A|^d)
- What impacts how long search takes?
 - Order which you explore children
 - Maximizing steps: Want to expand children with higher value first
 - Minimizing step: Want to expand children with lower value first
- How can you accomplish this?

- Best case complexity
 - $O(|A|^{d/2})$
- Worst case complexity
 - O(|A|^d)
- What impacts how long search takes?
 - Order which you explore children
 - Maximizing steps: Want to expand children with higher value first
 - Minimizing step: Want to expand children with lower value first
- How can you accomplish this?
 - Order children based on heuristic

- Agent is O
- Agent moves next
- h = number of chains of 2 Os and a blank
 - number of chains of 2 Xs and a blank
 - Below example would have a h value of -1

- Nodes are states
 - At each state you need to make a decision specific to that state
 - Edge for each choice
 - Edge leads to state obtained by selecting choice
- Effectively, actions are choices
 - Different from other examples because actions are different for

each state

- Example navigating a road map
 - At intersection of Main and Oak
 - Turn right on Oak
 - Turn Left on Oak
 - Stay on Main Street
 - Options available different for different intersections

Plant and animal classification

Can we build a decision tree from a sample set of data?

RUTGERS

Building Decision Trees

- Problem
 - Given a list of choices construct a decision tree

RUTGERS

Building Decision Trees: Example

- Problem
 - Given a list of choices construct a decision tree
 - Given a list of restaurants
 - Construct a decision tree
 - Decide what type of restaurant to go to

· ·	Гуре	Price	Crowded	Time
McDonald's F	ast Food	\$	Yes	< 10 min
Burger King F	ast Food	\$	Yes	< 10 min
Chipotle M	Mexican	\$\$	Yes	< 10 min
Jennie's D	Diner	\$\$\$	Yes	< 10 min
Fred's Fried S Fish	Seafood	\$	No	< 10 min
Captain John's S	Seafood	\$\$\$	No	20 min
Henri's F	rench	\$\$\$	No	30 min
Pinocchio's It	talian	\$\$	Yes	20 min
Taste of Italy It	talian	\$\$	No	20 min

- Entropy or Information Gain
 - define p(x) to be the proportion of elements of class x
 - Example: Proportion of restaurants of type fast food
 - E(S) = entropy of a set

$$\mathrm{H}(S) = \sum_{x \in X} -p(x) \log_2 p(x)$$

RUTGERS Iterative Dichotomiser 3 (ID3) Algorithm

Recursively select trait that results in groups with lowest entropy

RUTGERS Iterative Dichotomiser 3 (ID3) Algorithm

 Recursively select trait that results in groups with lowest entropy

	Туре	Price	Crowded	Time
McDonald's	Fast Food	\$	Yes	< 10 min
Burger King	Fast Food	\$	Yes	< 10 min
Chipotle	Mexican	\$\$	Yes	10 min
Jennie's	Diner	\$\$\$	Yes	10 min
Fred's Fried Fish	Seafood	\$	No	< 10 min
Captain John's	Seafood	\$\$\$	No	20 min
Henri's	French	\$\$\$	No	30 min
Pinocchio's	Italian	\$\$	Yes	20 min
Taste of Italy	Italian	\$\$	No	20 min

Decision Tree Example

Induced Decision Tree

