1. Lattices and Rectifiability

- 1.1. Recall that if V is a k((t))-vector space, then a k[t]-submodule $M \subseteq V$ is a lattice in V iff:
 - (1) It is free over k[t].
 - (2) The map $M\left[\frac{1}{t}\right] = M \otimes_{k \llbracket t \rrbracket} k((t)) \to V$ is an isomorphism.

If hypothesis (1) holds and V is finite-dimensional, then hypothesis (2) holds if and only if the k[t]-rank of M equals the dimension of V.

Now, let A be a k-algebra and V a free module over $A \hat{\otimes} F$ of finite rank. Let M be an arbitrary $(A \hat{\otimes} \mathcal{O})$ -submodule of V.

Definition 1.2. We say that M is an \mathcal{O} -lattice in V iff:

- (1) It is *locally* free over $A \otimes \mathcal{O}$ in the Zariski topology.
- (2) The map $M \otimes_{A \hat{\otimes} \mathcal{O}} (A \hat{\otimes} F) \to V$ is an isomorphism.

Note that if hypothesis (1) holds, then hypothesis (2) holds if and only if the $(A \hat{\otimes} \mathcal{O})$ -rank of M equals the $(A \hat{\otimes} F)$ -rank of V.

By [SP, Tag 00NX], a finitely-generated module over an arbitrary ring is locally free in the Zariski topology if and only if it is projective. By [SP, Tag 0593], any projective module over a local ring is free. Therefore, Definition 1.2 recovers the definition in §1.1 when $\mathcal{O} = k \llbracket t \rrbracket$ and A = k.

We say that an \mathcal{O} -lattice is **free** iff it is free over $A \otimes \mathcal{O}$, not just locally free. Henceforth, we fix a free \mathcal{O} -lattice

$$V_{\mathcal{O}} \subseteq V$$
.

For instance, if we have chosen an isomorphism $V \simeq (A \, \hat{\otimes} \, F)^{\oplus n}$, then we can take $V_{\mathcal{O}} = (A \, \hat{\otimes} \, \mathcal{O})^{\oplus n}$.

Definition 1.3. Let $i \geq 0$ be an integer. We say that M is i-rectifiable with respect to $V_{\mathcal{O}}$ iff:

- (1) $\mathfrak{m}^i V_{\mathcal{O}} \subseteq M \subseteq \mathfrak{m}^{-i} V_{\mathcal{O}}$.
- (2) $(\mathfrak{m}^{-i}V_{\mathcal{O}})/M$ is locally free over A of finite rank.

We say that M is **rectifiable** with respect to $V_{\mathcal{O}}$ iff it is i-rectifiable for some i.

Our terminology differs from Görtz's terminology in [G, §2.3]. What he calls a lattice is what we call a rectifiable module. However, he always assumes that $\mathcal{O} = k[\![t]\!]$. The results below show that \mathcal{O} -lattices are always rectifiable, and in the case where $\mathcal{O} = k[\![t]\!]$, the converse holds.

Proposition 1.4. Every \mathcal{O} -lattice in V is rectifiable with respect to $V_{\mathcal{O}}$.

Lemma 1.5. If M is a free \mathcal{O} -lattice in V, then it admits a free complement as an A-submodule of V.

Proof. We can assume $V = (A \hat{\otimes} F)^{\oplus n}$ for some n. Since M is a free \mathcal{O} -lattice, it is the image of $(A \hat{\otimes} \mathcal{O})^{\oplus n}$ under some invertible $(A \hat{\otimes} \mathcal{O})$ -linear map $\Phi : V \to V$. Pick a splitting of k-vector spaces $F \simeq \mathcal{O} \oplus E$. Then we have a splitting of A-modules $A \hat{\otimes} F \simeq (A \hat{\otimes} \mathcal{O}) \oplus (A \otimes E)$, so the image of $(A \otimes E)^{\oplus n}$ under Φ is the desired complement of M.

Lemma 1.6. If M, M' are free \mathcal{O} -lattices in V and $M' \subseteq M$, then M/M' is locally free over A of finite rank.

Proof. By Lemma 1.5, we have A-module isomorphisms $V \simeq M \oplus N \simeq M' \oplus N'$, where N, N' are free over A. The short exact sequence

$$0 \to M/M' \to N' \to N \to 0$$

splits, so M/M' is projective over A. Moreover, M/M' is finitely generated over A because M is. By [SP, 00NX], we deduce that M is locally free over A.

Proof of Proposition 1.4. First, we will construct an A-algebra A' such that, if

(1)
$$M' = M \otimes_{A \hat{\otimes} \mathcal{O}} (A' \hat{\otimes} \mathcal{O}),$$

then M is free over $A' \, \hat{\otimes} \, \mathcal{O}$. Pick a *finite* Zariski open cover of Spec $(A \, \hat{\otimes} \, \mathcal{O})$ that trivializes M, say, $A \, \hat{\otimes} \, \mathcal{O} \to \prod_i (A \, \hat{\otimes} \, \mathcal{O})_{f_i}$. For each i, let $a_i \in A$ be the image of f_i under $A \, \hat{\otimes} \, \mathcal{O} \to A \, \hat{\otimes} \, k = A$. Since the f_i generate $A \, \hat{\otimes} \, \mathcal{O}$, the a_i generate A. Taking $A' = \prod_i A_{a_i}$, we see that the map $A \, \hat{\otimes} \, \mathcal{O} \to A' \, \hat{\otimes} \, \mathcal{O}$ factors as

$$A \, \hat{\otimes} \, \mathcal{O} \to \prod_{i} (A \, \hat{\otimes} \, \mathcal{O})_{f_{i}} \to \prod_{i} (A_{a_{i}} \, \hat{\otimes} \, \mathcal{O})_{f_{i}} \xrightarrow{\sim} \prod_{i} (A_{a_{i}} \, \hat{\otimes} \, \mathcal{O}) \xrightarrow{\sim} A' \, \hat{\otimes} \, \mathcal{O},$$

where the last isomorphism uses the finiteness of the product. Thus, the module M' defined by (1) is free over $A' \, \hat{\otimes} \, \mathcal{O}$.

In what follows, let V', resp. $V'_{\mathcal{O}}$ denote the base change of V, resp. $V_{\mathcal{O}}$ along $A \, \hat{\otimes} \, \mathcal{O} \to A' \, \hat{\otimes} \, \mathcal{O}$. Since M' is free of finite rank over $A' \, \hat{\otimes} \, \mathcal{O}$, we can pick i large enough that we get inclusions

$$\mathfrak{m}^i V_{\mathcal{O}}' \subseteq M' \subseteq \mathfrak{m}^{-i} V_{\mathcal{O}}'$$

of $(A' \hat{\otimes} \mathcal{O})$ -submodules of V'. We claim that they restrict to inclusions

$$\mathfrak{m}^i V_{\mathcal{O}} \subseteq M \subseteq \mathfrak{m}^{-i} V_{\mathcal{O}}.$$

Indeed, the map $A \, \hat{\otimes} \, \mathcal{O} \to A' \, \hat{\otimes} \, \mathcal{O}$ is injective because the map $A \to A'$, being faithfully flat, is injective. Since $V_{\mathcal{O}}$ and M are flat over $A \, \hat{\otimes} \, \mathcal{O}$, the induced maps $V_{\mathcal{O}} \to V'_{\mathcal{O}}$ and $M \to M'$ are also injective, and the claim follows. It remains to check that $(\mathfrak{m}^{-i}V_{\mathcal{O}})/M$ is locally free over A of finite rank. Observe that

$$\begin{split} (\mathfrak{m}^{-i}V_{\mathcal{O}}')/M' &\simeq \frac{(\mathfrak{m}^{-i}V_{\mathcal{O}}')/(\mathfrak{m}^{i}V_{\mathcal{O}}')}{M'/(\mathfrak{m}^{i}V_{\mathcal{O}}')} \\ &\simeq \frac{(\mathfrak{m}^{-i}V_{\mathcal{O}})/(\mathfrak{m}^{i}V_{\mathcal{O}}) \otimes_{A \hat{\otimes}_{\mathcal{O}}} (A' \ \hat{\otimes} \ \mathcal{O})}{M/(\mathfrak{m}^{i}V_{\mathcal{O}}) \otimes_{A \hat{\otimes}_{\mathcal{O}}} (A' \ \hat{\otimes} \ \mathcal{O})} \\ &\simeq \frac{(\mathfrak{m}^{-i}V_{\mathcal{O}})/(\mathfrak{m}^{i}V_{\mathcal{O}}) \otimes_{A} A'}{M/(\mathfrak{m}^{i}V_{\mathcal{O}}) \otimes_{A} A'} \\ &\simeq (\mathfrak{m}^{-i}V_{\mathcal{O}}/M) \otimes_{A} A'. \end{split}$$

By Lemma 1.6, $(\mathfrak{m}^{-i}V'_{\mathcal{O}})/N$ is locally free over A' of finite rank, so we're done by Zariski descent.

Remark 1.7. Suppose that $A \to B$ is a faithfully-flat morphism of k-algebras. It is not necessarily true that $A \otimes \mathcal{O} \to B \otimes \mathcal{O}$ is faithfully flat: See

https://mathoverflow.net/a/152538

for a counterexample. Consequently, it is also not necessarily true that $B \, \hat{\otimes} \, \mathcal{O} \simeq B \otimes_A (A \, \hat{\otimes} \, \mathcal{O})$. So in the above proof, the difference between base change along $A \to A'$ and along $A \, \hat{\otimes} \, \mathcal{O} \to A' \, \hat{\otimes} \, \mathcal{O}$ is essential where it appears.

Proposition 1.8. If \mathcal{O} is normal, then every rectifiable $(A \, \hat{\otimes} \, \mathcal{O})$ -submodule of V is an \mathcal{O} -lattice.

Proof. This is the
$$(1) \implies (2)$$
 direction in [G, Lem. 2.11].

Example 1.9. We give two examples that show how Proposition 1.8 fails when \mathcal{O} is not normal.

- (1) Let $\mathcal{O} = k[\![x,y]\!]/(xy)$, so that $F = k(\!(x)\!) \times k(\!(y)\!)$. Let $M = k[\![x]\!] \times k[\![y]\!]$.
- (2) Let $\mathcal{O} = k[t^2, t^3]$, so that F = k(t). Let M = k[t].

In both cases, $M \subseteq F$ is 1-rectifiable with respect to \mathcal{O} , but not locally free over \mathcal{O} .