COGS118C: Neural Signal Processing

Introduction & Course Outline

Lecture 1 July 1, 2019

Goals for Today

- 1. Introduce ourselves & motivations
- 2. Course outline
- 3. Syllabus & course expectations

...in the summer?

Brain Technology is **Awesome**

NEUROSCIENCE

Scientists Take a Step Toward Decoding Speech from the Brain

New study gets closer to restoring natural communication for those who cannot speak

By Karen Weintraub on April 24, 2019

Brain Technology is **Awesome** Synthesized speech from brain signals Synthesized: Ship building is a most fascinating process. UCSF

Brain signals represent a subset of signals called time series, which are just fluctuations over time. All the methods we will learn can be applied directly to other time series.

More Generally...

What you get when you goosle "crazy stock market people"

Motivation

Why are you here?

4 min: Find a partner, and tell each other why you are here and what you hope to learn/accomplish.

8 min: Find another pair, convince the other pair why your partner's motivation is the **coolest**.

Pair think-pair-share activity: introduce yourself, share with a partner why you are here and what motivates you to take this class.

Then, find another pair, and convince the other pair why your partner's motivation is the coolest.

...in the summer?

Preambling. Me from previous life at 4:00

Preambling.

More preambling.

Goal for the Course

Leave this course with

concrete and demonstrable

coding skills,

with the requisite understanding of

math and physiology,

for neural signal processing.

These are the progression of topics we will cover.

The assignments cover the building blocks of a (traditional) signal processing pipeline, each building on the next.

The readings show you examples of how to think about, visualize, and communicate real scientific findings.

All these things come together for the final project, where you reproduce the entire pipeline to demonstrate that you have a holistic understanding of, not just the technical skills, but the thinking and communication skills required.

Cash money. Or graduate school. Whatever floats your boat.

Marketable portfolio of skills.

Week	Day	Date	Lecture	Topic
W1	M	1-Jul	L1	Introduction
	M	1-Jul	Leb1	Tech Setup + Math Review + A0
	Т	2-Jul	L2	Neurophysiology & modelities
	777	3-Jul	L3	Time-series: sampling and ADC
	707	3-Jul	Lab2	A1: time-series & epoch analyses
	Τh	4-Jul	HOLIDAY	
W2	M	8-Jul	L4	Epoch, averaging & trial-based analysis
	M	8-Jul	Leb3	A1 + paper discussion
	Т	9-Jul	L5	Correlation & Convolution
	W	10-Jul	LB	Fourier enalyses: FT. DFT, FFT
	W	10-Jul	Leb4	A2: code your own Fourier Transform
	Th	11-Jul	L7	Time-frequency analyses
W3	M	15-Jul	T1	Test 1
	M	15-Jul	Lab5	paper discussion
	Т	16-Jul	L8	Filters & wevelets
	7/7	17-Jul	L9	Hilbert-based methods
	707	17-Jul	Lab6	A3: code your own filter & Hilbert
	Th	16-Jul	L10	Equivalence of kernel methods
W4	M	22-Jul	L11	Nonlinear TS methods ***
	M	22-Jul	Lab7	paper discussion
	Т	23-Jul	L12	Spikes, physiology, and spike-LFP analyses
	W	24-Jul	L13	Spike train models
	100	24-Jul	Lab8	A4: spike & LFP analyses
	Τh	25-Jul	L14	Population models & analyses
W5	M	29-Jul	T2	Test 2
	M	29-Jul	Lab9	papar discussion
	Т	30-Jul	L15	Denoising and Statistical analyses
	W	31-Jul	L18	Other modalities ***
	197	31-Jul	Lab10	Work period for project
	Th	1-Aug	L17	Wrap-up
Finals	F	2-Aug	3-6pm	Final project presentation

Discuss syllabus (5-10 min)