Lecture 3 Diffusion, Identification, Network Formation

Matthew O. Jackson NBER July 22, 2014

www.stanford.edu\~jacksonm\Jackson-NBER-slides2014.pdf

Lecture 3

Diffusion

 More on issues of identification, endogeneity of networks, network formation

Griliches (1957): Hybrid Corn Diffusion

Diffusion of a product/ technology

- Complementarities in choices/compatibility
- Awareness hear about through friends/ acquaintances
- Learning about value
- Fads/fashion
- Characteristics just similar tastes to friends due to homophily...

Dissecting diffusion

Policy implications

Externalities can cause diffusion to be too slow, inefficient

What is driving diffusion? Should we/can we improve it?

Identification

 Field/natural experiments (e.g., pseudo random injections in Indian data, identification – but don't control networks...)

- IV (Just saw in Lecture 2)
 - exploiting network position (Bramoulle, Djebbari, and Fortin, does not address endogenous networks/unobservables...)
 - things that affect network, but not behavior (Acemoglu, Garcia-Jimeno, and Robinson - rare ...)
- Structural modeling of behavior (e.g., diffusion model...)
- Model network formation...

Application: Structural Modeling

Use networks in richer way than just mapping peers

Model diffusion and use it to identify behavior:

Track paths of information diffusion

Micro - Individual Behavior and Peer Effects:

• Disentangling Peer effects:

Basic information diffusion: about a product –
 being aware of new product

 Peer influence/Endorsement/Game on Network: even if aware, more neighbors taking action leads to higher (or lower) action -endorsement (learning), peer pressure, complementarities...

Borrow: ቈ ф ₩ ₩ % æ ₩ ᇮ **&**

Start with Standard Peereffects analysis:

Let p_i be i's choice of whether to participate

- $Log(p_i/(1-p_i))$
 - = b_0
 - + b_{char} characteristics_i
 - + b_{Peer} frac_i friends participating

Start with Standard Peereffects analysis:

Let p_i be i's choice of whether to participate

- $Log(p_i/(1-p_i))$
 - $= b_0$
 - + b_{char} characteristics_i
 - + 2.5*** frac_i friends participating

Start with Standard Peereffects analysis:

Let p_i be i's choice of whether to participate

- $Log(p_i/(1-p_i))$
 - = b_0
 - + b_{char} characteristics_i
 - + 2.5*** frac, friends participating

frac 0 to 1 increases $p_i/(1-p_i)$ by factor 12.2, frac .1 to .3 increases $p_i/(1-p_i)$ by factor 1.65,

Modeling diffusion:

We know the set of initially informed nodes

 Informed nodes (repeatedly) pass information randomly to their neighbors over discrete times

 Once informed (just once), nodes choose to participate depending on their characteristics and their neighbors' choices

Modeling behavior/information diffusion:

- Probability of passing to a given individual:
 - q^N if did Not participate
 - q^P if did Participate

Passing: Different Probabilities

Choice Decision

Now conditional upon being informed:

- $Log(p_i/(1-p_i))$
 - = b_0
 - + b_{char} characteristics_i
 - + b_{Peer} frac_i informing friends participating

Estimation technique:

- Estimate b_0 , b_{char} , from initially informed (saves on computation size of grid)
- q^N, q^P, b_{peer} For each choice of parameters, simulate on the actual networks of the villages for time period proportional to number of trimesters in data for village (3 to 8 times)
- Choose parameters to best match simulated participation rates and various moments to observed moments (SMM)

Estimation: q^{N} = .15, q^{P} =.3, b-peer = .5

Estimated parameters:

• Information significant, peer/endorse effect not

	qN	qΡ	b-peer	qN - qP
Estimates:	0.05***	0.55***	-0.20	-0.50***
	[0.01]	[0.13]	[0.16]	[0.13]

Estimated parameters:

Information significant, peer/endorse effect not

	qN	qP	b-peer	qN - qP
With Diffusion	0.05***	0.55***	-0.20	-0.50***
	[0.01]	[0.13]	[0.16]	[0.13]

just peer:

2.5***

Results from Fitting Model of Diffusion in this case:

Significant information passing parameters

Insignificant, limited Peer Effects

 Information passing depends on whether participate: more likely if participate

Nonparticipants play a substantial role (1/3 of total)

Broader Messages:

 Simple network models can help estimate and dissect peer effects and diffusion processes: policy consequences

- Network structures have consequences for behavior:
 - Tractable and intuitive ways to quantify despite complexity of networks

fraction adopting over time, $P(d) = ad^{-2}$, Simulated diffusion process, threshold of neighbors

Approaches

 Field/natural experiments (e.g., pseudo random injections in Indian data, identification – but don't control networks...)

- IV (Just saw in Lecture 2)
 - exploiting network position (Bramoulle, Djebbari, and Fortin, does not address endogenous networks/unobservables...)
 - things that affect network, but not behavior (Acemoglu, Garcia-Jimeno, and Robinson - rare ...)
- Structural modeling of behavior (e.g., diffusion model...)
- Model network formation...

Network Formation

- Main challenges driving current literature
 - -multiplicity
 - integrating formation with behavior: unobservables
 - —link dependencies!!

Questions

Always lurking: correlated unobservables

 Peoples' behaviors correlate with network position because of homophily

Example

Goldsmith-Pinkham and Imbens (2013)

$$Y_i = b_0 + b_1 X_i + b_2 Y_{(i)}^{peer} + b_3 X_{(i)}^{peer} + b_4 Z_i + e_i$$

Z_i unobserved characteristics

Example

Utility from friendship based on homophily:

$$U_i(j) = a_0 + a_1 | X_i - X_j | + a_2 | Z_i - Z_j | + ... + e_{ij}$$

(... = past network relationships if available, e.g., past friends in common, linked in past)

Estimate Unobservables

$$Y_i = b_0 + b_1 X_i + b_2 Y_{(i)}^{peer} + b_3 X_{(i)}^{peer} + b_4 Z_i + e_i$$

 $U_i(j) = a_0 + a_1 | X_i - X_j | + a_2 | Z_i - Z_j | + ... + e_{ij}$

Links logistic in U_i (j), U_j (i)

Estimate system (Bayesian, MLE)

Infer unobservable Z_i 's:

ij connected with distant X_i 's have similar Z_i 's

ij unlinked with similar X_i 's have differing Z_i 's

Lesson:

$$Y_i = b_0 + b_1 X_i + b_2 Y_{(i)}^{peer} + b_3 X_{(i)}^{peer} + b_4 Z_i + e_i$$

Accounting for link formation can help infer unobservables

 Can help correct estimates of strategic interaction with friends/acquaintances

Link Dependencies

Link formation is significantly correlated!

Friends of friends

Value to having closure (enforcement of incentives...)

Link Dependencies - Clustering Coefficients:

- Prison friendships
 - .31 (MacRae 60) vs .0134
- Co-authorships
 - .15 math (Grossman 02) vs .00002,
 - .09 biology (Newman 01) vs .00001,
 - .19 econ (Goyal, van der Leij, Moraga 06) vs .00002,

- Florentine Marriage and Business dealings
 - .46 on 15 central families vs .29...

Challenges

No longer talk about probabilities at link level

 But cannot calculate probabilities at network level: too many networks to do MLE/Bayesian calculations!!

Models of Network Formation with Dependencies

 Dynamic/Specific Models (Jackson-Wolinsky 96, Barabasi-Albert 99, Bala-Goyal 00, Jackson-Watts 00, Jackson-Rogers 07, Currarini-Jackson-Pin 09,10, Christakis et al. 10, Bramoulle et al. 12, Mele 12...)

• ERGMs (Frank-Strauss 86, Wasserman-Pattison 96, Snjiders 02, Handcock 03...) estimation problems!

 Subgraphs, probabilities of seeing specific configurations of links (Chandrasekhar-Jackson 13)

Broader Messages:

 Simple network models can help estimate and dissect peer effects and diffusion processes: policy consequences

- Network structures have consequences for behavior:
 - Tractable and intuitive ways to quantify despite complexity of networks

Simplifying the Complexity

- Global patterns of networks
 - path lengths
 - degree distributions...
- Segregation Patterns: node types and homophily
- Local Patterns
 - Clustering
 - Support...
- Positions in networks
 - neighborhoods
 - Centrality, influence...

Identification

 Field/natural experiments (e.g., pseudo random injections in Indian data, identification – but don't control networks...)

- IV (Just saw in Lecture 2)
 - exploiting network position (Bramoulle, Djebbari, and Fortin, does not address endogenous networks/unobservables...)
 - things that affect network, but not behavior (Acemoglu, Garcia-Jimeno, and Robinson - rare ...)
- Structural modeling of behavior (e.g., diffusion model...)
- Model network formation...