.	<u> </u>			
Теоретический	конст	іект по	теорве	py
Владимир Латыпов				
donrumata03@gmail.com				

Содержание

1 Об инегралах	3
9 Числовые успактовистики спицайных велиции	3

1 Об инегралах

Можно рассматривать функции от случайных векторов. Если $g:\mathbb{R}^n \to \mathbb{R}$, то g(X) — случайная величина.

Более того, можно интегрировать эту штуку по вероятностному пространству Ω :

$$\int_{\Omega} g(X(\omega))P(d\omega) = \int_{\mathbb{R}^n} g(x)P_X(dx)$$

Forward measure — мера при отображении.

Теорема 1.1 (Фубини): Пусть X — случайный вектор в \mathbb{R}^n , $g:\mathbb{R}^n \to \mathbb{R}$ — борелевская функция. Тогда

$$\begin{split} \int g(x,y) P_{X,Y}(\,\mathrm{d} x,\mathrm{d} y) &= \int \biggl[\int g(x,y) \,\mathrm{d} F_Y(y) \biggr] \,\mathrm{d} F_X(x) = \\ &= \int \biggl[\int g(x,y) \,\mathrm{d} F_X(x) \biggr] \,\mathrm{d} F_Y(y) \end{split}$$

(один интеграл — по Forward measure, другой — по мере Лебега-Стилтьеса)

2 Числовые характеристики случайных величин

Определение 2.1: Пусть X — случайная величина. Тогда её математическим ожиданием называется число

$$\mathbb{E} X = \int_{\mathbb{R}} x \, \mathrm{d} F_X(x)$$

(интеграл Лебега-Стилтьеса)

3амечание: Если X — дискретная случайная величина, то

$$\mathbb{E}X = \sum_{x \in \mathbb{R}} x P_X(x)$$

 $\it 3$ амечание: Если $\it X$ — абсолютно непрерывная случайная величина, то

$$\mathbb{E} X = \int_{\mathbb{R}} x p_X(x) \, \mathrm{d}x$$

<<<<< HEAD

Свойство 2.1.1:

2.1.1.1.1.1

Свойство 2.1.2 (Функция от случайной величины): $g: \mathbb{R} \to \mathbb{R}$ — борелевская функция, X — случайный вектор. Тогда

$$\mathbb{E} \underbrace{g(X_1,...,X_n)}_{Y} = \int y \, \mathrm{d} F_Y(y) = \int_{\mathbb{R}^n} g(x_1,...,x_n) P_{\mathrm{d} x_1,...,\mathrm{d} x_n}$$

Свойство 2.1.3 (Линейность): $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$

Свойство 2.1.4 (Неотрицательность):

- $X \ge 0$ почти наверное $\Rightarrow \mathbb{E} X \ge 0$.
- $X \ge 0, \mathbb{E}X = 0 \Rightarrow X = 0$ почти наверное.

Свойство 2.1.5 (Монотонность): $X \leq Y$ почти наверное, то $\mathbb{E} X \leq \mathbb{E} Y$

Свойство 2.1.6 (Матожидание произведения независимых случайных величин): $\mathbb{E} XY = \mathbb{E} X \mathbb{E} Y$

Теорема 2.1.1.1.1.1.1 (Неравенство Маркова): Пусть X — неотрицательная случайная величина, $\exists \mathbb{E} X,\ a>0$. Тогда

$$P(X \ge a) \le \frac{\mathbb{E}X}{a}$$

Доказательство:

$$\mathbb{E} X = \int_0^\infty x p_X(x) \, \mathrm{d} x \geq \int_a^\infty a p_X(x) \, \mathrm{d} x \geq a \int_a^\infty p_X(x) \, \mathrm{d} x = a P(X \geq a)$$

Свойство 2.1.7: $\mathbb{E} X = \int_0^\infty P(X \ge x) \, \mathrm{d} x$ для абсолютно непрерывных случайных величин.

 $\mathbb{E} X = \sum_{x \in \mathbb{R}} P(X \geq x)$ для дискретных случайных величин.

>>>>> 915777c52b0bcbb2209652b42eaec8b85d38ed76

Определение 2.1.1.1.1.1.1: Пусть X — случайная величина. Тогда её дисперсией называется число

$$\operatorname{Var} X = \mathbb{D}X = \mathbb{E}(X - \mathbb{E}X)^2$$

Стандартным отклонением случайной величины X называется число $\sigma_X = \sqrt{\operatorname{Var} X}.$ Она часто используется вместо дисперсии, потому что она имеет ту же размерность, что и X.

Свойство 2.1.1.1.1.1.1.1 (Неотрицательность**)**: $\operatorname{Var} X \geq 0$

Свойство 2.1.1.1.1.1.1.2 (Связь с матожиданием): $\operatorname{Var} X = \mathbb{E} X^2 - (\mathbb{E} X)^2$

Свойство 2.1.1.1.1.1.1.3 (Квадратичная однородность): $Var(aX+b)=a^2 Var X$

Свойство 2.1.1.1.1.1.4 (Дисперсия суммы (разности)):

$$Var(X \pm Y) = Var X + Var Y \pm 2 Cov(X, Y)$$

(для независимых случайных величин Cov(X,Y) = 0)

Свойство 2.1.1.1.1.1.1.5 (Нулевая дисперсия и константность): $\operatorname{Var} X = 0 \Leftrightarrow X = C$ почти наверное

Теорема 2.1.1.1.1.1.2 (Неравенство Чебышёва): Пусть X — случайная величина, $\exists \mathbb{E} X, \operatorname{Var} X, \, a>0.$ Тогда

$$P(|X - \mathbb{E}X| \ge a) \le \frac{\operatorname{Var}X}{a^2}$$

Доказательство:

$$P(|X - \mathbb{E}X| \geq a) = P\Big((X - \mathbb{E}X)^2 \geq a^2\Big) \leq \frac{\mathbb{E}(X - \mathbb{E}X)^2}{a^2} = \frac{\operatorname{Var}X}{a^2}$$

Определение 2.1.1.1.1.1.2: Пусть X — случайная величина. Тогда для $\alpha \in (0,1)$

$$q_{\alpha}$$
— квантиль порядка α — число, такое что
$$\begin{cases} P\big(x \geq q_{\alpha}\big) \geq 1 - \alpha \\ P\big(x \leq q_{\alpha}\big) \geq \alpha \end{cases}$$

Для непрерывной случайной величины X квантиль порядка α — это решение уравнения $F_X(x)=\alpha$. Если F_X строго возрастает, то $q_{\alpha}=F_X^{-1}(\alpha)$.

Для дискретной случайной величины X квантиль порядка α — это минимальное x, такое что $P_X(x) \geq \alpha$.

Определение 2.1.1.1.1.1.3: Медиана случайной величины $\operatorname{med} X$ — это квантиль порядка $\frac{1}{2}$.

Теорема 2.1.1.1.1.1.3:

$$\operatorname{med} X = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} |X - x|$$

Матожидание тоже кое-что оптимизирует, но не так круто.

Теорема 2.1.1.1.1.1.4:

$$\mathbb{E} X = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} (X - x)^2$$

Почему не так круто, спросите вы? Потому что матожидание — это не медиана, а среднее. А среднее — это для средних, посредственных людей. А медиана — это для лучших. $^{\circ}$ Copilot

Определение 2.1.1.1.1.1.1.4: Момент порядка k случайной величины X — это число $\mathbb{E} X^k$.

Определение 2.1.1.1.1.1.1.5: Центральный момент порядка k случайной величины X — это число $\mathbb{E}(X-\mathbb{E}X)^k$.

Определение 2.1.1.1.1.1.6: Абсолютный момент порядка k случайной величины X — это число $\mathbb{E}|X|^k$.

Определение 2.1.1.1.1.1.7: Абсолютный центральный момент порядка k случайной величины X — это число $\mathbb{E}|X-\mathbb{E}X|^k$.

Пример : Коэфициент асимметрии случайной величины X — это, с точностью до коэфициента, центральный момент порядка 3: $\mathbb{E} \frac{(X-\mathbb{E} X)^3}{\sigma^3}$.

Коэфициент эксцесса случайной величины X — это, с точностью до коэфициента, центральный момент порядка 4: $\mathbb{E} \frac{(X-\mathbb{E} X)^4}{\sigma^4} - 3$. Минус три потому что мы хотим, чтобы эксцесс нормального распределения был нулевой.

Определение 2.1.1.1.1.1.18: Мода случайной величины X — это число $\operatorname{argmax}_{x \in \mathbb{R}} p_X(x).$

Если мода одна, то говорят, что случайная величина X унимодальна.

Определение 2.1.1.1.1.1.9: Ковариация случайных величин X и Y — это число $\mathrm{Cov}(X,Y)=\mathbb{E}(X-\mathbb{E}X)(Y-\mathbb{E}Y).$

Свойство 2.1.1.1.1.1.1.9.1: $\mathrm{Cov}(X,Y) = \mathbb{E} XY - \mathbb{E} X\mathbb{E} Y$, то есть для независимых случайных величин $\mathrm{Cov}(X,Y) = 0$. (Но обратное неверно: если $\mathrm{Cov}(X,Y) = 0$, то случайные величины могут быть зависимыми)

Свойство 2.1.1.1.1.1.9.2: Cov(X, X) = Var X.

Свойство 2.1.1.1.1.1.9.3 (Симметричность): Cov(X,Y) = Cov(Y,X).

Свойство 2.1.1.1.1.1.9.4 (Билинейность): $Cov(aX+b,Y)=a\ Cov(X,Y).$