Astroparticle Physics – the Dark Side of the Universe

Claudia Wulz and Wolfgang Waltenberger Institute of High Energy Physics, Vienna TU Vienna, CERN, Geneva

Outline

Dark Matter

- Evidence for dark matter
- Theory of dark matter
- Searches for dark matter
- · Searches at colliders
- · Direct searches
- · Indirect searches

Dark Energy and the History and Fate of the Universe

(2) Theory of Dark Matter

Dark matter needs to be (mostly) cold

Dark matter candidates

- Neutrinos
- Primordial Black Holes
- MACHOS massive astrophysical compact halo objects
- MOND (and TeVeS) MOdified Newtonian Dynamics
- WIMPS Weakly interacting massive particles, the darling of particle physicists
- Axions introduced in QCD to solve the strong CP problem
- Dark photons an entire dark sector that talks via a dark force with ordinary matter
- Emergent Gravity there is no fundamental gravity, there is only information

An enormous number of theories

... on all mass scales!

Indirect dark matter searches in gamma and cosmic rays", J. Conrad and O. Reimer, Nature Physics

Neutrinos

Majority of neutrinos = relic density neutrinos, density comparable to CMB photons (~ 400 cm⁻³)

Neutrinos in eV range \rightarrow 400 eV / cm³ could be a significant contribution to dark matter.

But: hot dark matter!!

only three "light" generations of neutrinos

Primordial Black Holes

PBH: A hypothetical type of black hole that is formed not by the gravitational collapse of a large star but by the extreme density of matter present during the universe's early expansion.

No good theory limits of typical size of such black holes, but $10^{17}g - 10^{26}g$ (size of asteroids) are preferred

arXiv:1607.06077v3

FIG. 3: Constraints on f(M) for a variety of evaporation (magenta), dynamical (red), lensing (cyan), large-scale structure (green) and accretion (orange) effects associated with PBHs. The effects are extragalactic γ -rays from evaporation (EG) [II], femtolensing of γ -ray bursts (F) [187], white-dwarf explosions (WD) [188], neutron-star capture (NS) [36], Kepler microlensing of stars (K) [189], MACHO/EROS/OGLE microlensing of stars (ML) [27] and quasar microlensing (broken line) (ML) [191], survival of a star cluster in Eridanus II (E) [190], wide-binary disruption (WB) [37], dynamical friction on halo objects (DF) [33], millilensing of quasars (mLQ) [32], generation of large-scale structure through Poisson fluctuations (LSS) [14], and accretion effects (WMAP, FIRAS) [15]. Only the strongest constraint is usually included in each mass range, but the accretion limits are shown with broken lines since they are are highly model-dependent. Where a constraint depends on some extra parameter which is not well-known, we use a typical value. Most constraints cut off at high M due to the incredulity limit. See the original references for more accurate forms of these constraints.

MACHOs

MAssive Compact Halo Objects

- made up of ordinary baryonic matter
- emits little to no light
- e.g. brown dwarfs, white dwarfs
- can be detected via the gravitational microlensing effect

MACHOs

MACHO collaboration [*] claims to see machos with about 0.5 solar masses, but nowhere near enough to account for the entire missing dark matter.

MOND – MOdified Newtonian Dynamics

Idea: explain rotational curves by assuming that Newtonian dynamics works differently at large scales.

$$F = ma \to F = m\mu(\frac{a}{a_0})a$$

Does not account for (almost) any phenoma other than rotational curves. MOND can be made compatible with relativity, e.g. TeVeS (Tensor-Vector-Scalar) Theories

WIMPs

Weakly interacting massive particles.

- Predicted by e.g. supersymmetry, if we impose a so-called "R-parity".

SUPERSYMMETRY

Standard particles

SUSY particles

 $Q | fermion \rangle = | boson \rangle$ $Q | boson \rangle = | fermion \rangle$

WIMP miracle

In order to obtain the correct abundance of dark matter today via thermal production, the self annihilation cross section of $\langle \sigma v \rangle \simeq 3 \times 10^{-26} {\rm cm}^3 {\rm s}^{-1}$ would be needed.

This is what is expected for a WIMP at a mass of O(100 GeV).

This fact is known as the WIMP miracle.

Axions

- Introduced in quantum chromodynamics (QCD) as a counterterm to a CP-violating term (the neutron would have an electric dipole moment, but we don't see one)
- The counterterm results in a pseudo-scalar light stable particle – the axion
- Primakoff effect: an axion should be created via interaction of a photon with a strong magnetic field, and tunnel through a wall. On the other side, a photon should be created through the inverse process.

$$\mathcal{L} = \left(\frac{\boldsymbol{\theta} - \frac{\boldsymbol{\varphi}_A}{f_A}}{f_A}\right) \frac{g_S^2 T_F}{16\pi^2} F_{\mu\nu}^a \tilde{F}^{a\mu\nu}$$

Dark Photons

There could be an entire "dark sector", with a "dark photon" being a portal between the Standard Model and the "dark sector" via mixing with the light photon:

