

NetMob 2023 October 4-6, Madrid, Spain Alfonso de Miguel-Arribas (BIFI, U. de Zaragoza, Spain), Alberto Aletá (BIFI, U. de Zaragoza, Spain), Yamir Moreno (BIFI, U. de Zaragoza, Spain & CENTAI, Italy) & Esteban Moro (MIT Media Lab, USA & U. Carlos III, Spain)

Background: Epidemics on Metapopulations

Mobility models (typically) assume:

- Markovian random walks.
- Indistinguishable agents.

Metapopulation scheme [from Ventura et al. (2022)]

Background: Advances in human mobility

Vol 453|5 June 2008|doi:10.1038/nature06958

LETTERS

- Last decade: Exploration and preferential return models.
- Analysis of human mobility datasets reveal two main types of behaviors:

EXPLORERS & RETURNERS

Understanding individual human mobility patterns

Marta C. González¹, César A. Hidalgo^{1,2} & Albert-László Barabási^{1,2,3}

Modelling the scaling properties of human mobility

Chaoming Song^{1,2†}, Tal Koren^{1,2†}, Pu Wang^{1,2†} and Albert-László Barabási^{1,2,3}★

Explorers & returners

High exploration probability, High S -> Low visit frequency

Low exploration probability, Low S -> High visit frequency

Our work

 Literature mentions the relevance of these discoveries to epidemics, but have not been thoroughly explored.

- Explore & characterize an epidemic spreading under an EPR mobility model.

- Determine the role of explorers & returners in the spreading of an epidemic disease

SIR model + d-EPR model

Spatial structure: Locations' attractiveness

Left: Field reconstruction from high-resolution individual anonymized trajectories. Right: Attractiveness distribution (log-log).

Effective system size V~1300 of 1km².

Disease invasion: Explorers drive it

Disease prevalence

Explorers & returners deviate from the global average.

Infection times differ much less than invasion times

Explorers tend to be infected in most attractive locations.

Origin of infection, recurrence & attractiveness

Majority of infections occur outside home location \rightarrow Very small recurrence \rightarrow Bad luck? Agents were just wandering around very attractive locations

Spreading the disease (from origin to destination)

Contagion events & attractiveness

- [A & B] More attractiveness → more events, but size differences are not a thing. (?)
- [C] More attractiveness → Shorter inter-event times. But with also less attractiveness!
- Top A locations sustain the epidemic in time, bottom A locations show a short-lived outbreak
- [D] High synchronization

What we learned & Future work

Main conclusions:

- Heterogeneous populations & recurrence are fundamental to obtain richer behavior.
- Explorers deliver the disease across the system, they do it faster & are impacted more than returners.
- Returners are prone to get the infection at home, whereas explorers outside.
- Even for low rho values, an important number of trips is established with high attractiveness locations.
- High attractiveness locations constantly sustain the epidemic, while this occurs like a burst in the lowest attractiveness locations.

Ongoing/future work...

- Priority: Compare spreading under real trajectories with model predictions.
- Export this analysis to other cities/urban settlements.

Acknowledgements

Alberto Aletá
Ramón y Cajal Fellow
Institute for Biocomputation and Physics
of Complex Systems (BIFI).
Department of Theoretical Physics,
University of Zaragoza, Spain

Prof. Yamir Moreno Institute for Biocomputation and Physics of Complex Systems (BIFI). Department of Theoretical Physics, University of Zaragoza, Spain.

Esteban Moro
Media Lab, Massachusetts Institute of
Technology, Cambridge, MA, USA.
Department of Mathematics; GISC,
Universidad Carlos III de Madrid, Spain

Thank you!

Home/outside infection map

Home/outside infection map (II)

Mobility adjacency matrices

Average degree

Time evolution for incidence & prevalence

dominant locations attractiveness

Targeted vaccination

What's the average invader/infected mobility profile per location?

Explorers absolutely **dominate** when bringing the disease to a new location.

In the **most attractive** locations, the typical infected tends to be an **explorer** (ρ >0.5). In the **least attractive** locations, the typical infected tends to be a returner **lower** (ρ <0.5).