Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-10-23

Plan for Today

- Textbook Chapters 8: General Quantification
 - ... using metavariable * for operators
 - Theorems that work for all quantification operators
- Textbook Chapters 9: Predicate Logic
 - Universal and Existential Quantification

Quantification Examples

$$(\sum i \mid 0 \le i < 4 \bullet i \cdot 8)$$

= \langle Quantification expansion, substitution \rangle $0 \cdot 8 + 1 \cdot 8 + 2 \cdot 8 + 3 \cdot 8$

$$(\prod i \mid 0 \le i < 3 \bullet i + (i+1))$$

= $\langle \text{ Quantification expansion, substitution } \rangle$ $(0+1)\cdot(1+2)\cdot(2+3)$

$$(\forall i \mid 1 \le i < 3 \bullet i \cdot d \ne 6)$$

= \langle Quantification expansion, substitution \rangle 1 · $d \neq 6 \land 2 \cdot d \neq 6$

$$(\exists i \mid 0 \le i < 21 \bullet b.i = 0)$$

= \langle Quantification expansion, substitution \rangle $b.0 = 0 \lor b.1 = 0 \lor \boxed{\dots} \lor b.20 = 0$

General Quantification

It works not only for +, \wedge , $\vee \dots$

Let a type T and an operator $\star : T \times T \to T$ be given.

If for an appropriate u : T we have:

- **Symmetry:** $b \star c = c \star b$
- Associativity: $(b \star c) \star d = b \star (c \star d)$
- **Identity** u: $u \star b = b = b \star u$

we may use \star as quantification operator:

$$(\star x: T_1, y: T_2 \mid R \bullet P)$$

- $R : \mathbb{B}$ is the **range** of the quantification
- *P* : *T* is the **body** of the quantification
- *P* and *R* may refer to the **quantified variables** *x* and *y*
- The type of the whole quantification expression is *T*.

General Quantification: Instances

Let a type T and an operator $\star : T \times T \to T$ be given.

If for an appropriate u : T we have:

- **Symmetry:** $b \star c = c \star b$
- Associativity: $(b \star c) \star d = b \star (c \star d)$
- **Identity** u: $u \star b = b = b \star u$

we may use \star as quantification operator: $(\star x : T_1, y : T_2 \mid R \bullet P)$

• $\vee : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ is symmetric (3.24), associative (3.25) and has *false* as identity (3.30):

$$(\lor k : \mathbb{N} \mid k > 0 \bullet k \cdot k < k + 1)$$

 $(\exists k : \mathbb{N} \mid k > 0 \bullet k \cdot k < k + 1)$

• $\wedge : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ is symmetric (3.36), associative (3.27) and has *true* as identity (3.39):

$$(\land k : \mathbb{N} \mid k > 2 \bullet prime k \Rightarrow \neg prime(k+1))$$

 $(\forall k : \mathbb{N} \mid k > 2 \bullet prime k \Rightarrow \neg prime(k+1))$

Quantification Examples — Notation

$$(+i \mid 0 \le i < 4 \bullet i \cdot 8)$$

= (switching to conventional "quantifier")

$$(\sum i \mid 0 \le i < 4 \bullet i \cdot 8)$$

$$(\cdot i \mid 0 \le i < 3 \bullet i + (i+1))$$

= (switching to conventional "quantifier")

$$(\prod i \mid 0 \le i < 3 \bullet i + (i+1))$$

$$(\land i \mid 1 \le i < 3 \bullet i \cdot d \ne 6)$$

= (switching to conventional "quantifier")

$$(\forall i \mid 1 \le i < 3 \bullet i \cdot d \ne 6)$$

$$(\vee i \mid 0 \le i < 21 \bullet b i = 0)$$

= \langle switching to conventional "quantifier" \rangle

$$(\exists i \mid 0 \le i < 21 \bullet b i = 0)$$

Trivial Range Axioms

(8.13) **Axiom, Empty Range** (where u is the identity of \star):

$$(\star x \mid false \bullet P) = u$$

 $(\forall x \mid false \bullet P) = true$
 $(\exists x \mid false \bullet P) = false$
 $(\sum x \mid false \bullet P) = 0$

(8.14) **Axiom, One-point Rule:** Provided $\neg occurs('x', 'E')$,

$$(\star x \mid x = E \bullet P) = P[x \coloneqq E]$$

Distributivity

(8.15) Axiom, (Quantification) Distributivity:

$$(\star x \mid R \bullet P) \star (\star x \mid R \bullet Q) = (\star x \mid R \bullet P \star Q),$$

provided each quantification is defined.

$$(\sum i : \mathbb{N} \mid i < n \bullet f i) + (\sum i : \mathbb{N} \mid i < n \bullet g i)$$

$$= \langle \text{ Quantification Distributivity (8.15)} \rangle$$

$$(\sum i : \mathbb{N} \mid i < n \bullet f . i + g . i)$$

Note: Some quantifications are not defined, e.g.: $(\sum n : \mathbb{N} \bullet n)$

Note that quantifications over \land or \lor are always defined:

$$(\forall x \mid R \bullet P) \land (\forall x \mid R \bullet Q) = (\forall x \mid R \bullet P \land Q)$$

$$(\exists x \mid R \bullet P) \lor (\exists x \mid R \bullet Q) = (\exists x \mid R \bullet P \lor Q)$$

Disjoint Range Split

(8.16) Axiom, Range Split:

$$(\star x \mid R \lor S \bullet P) = (\star x \mid R \bullet P) \star (\star x \mid S \bullet P)$$

provided $R \wedge S = false$ and each quantification is defined.

$$(\Sigma x \mid R \lor S \bullet P) = (\Sigma x \mid R \bullet P) + (\Sigma x \mid S \bullet P)$$

provided $R \wedge S = false$ and each sum is defined.

$$(\forall x \mid R \lor S \bullet P) = (\forall x \mid R \bullet P) \land (\forall x \mid S \bullet P)$$

provided $R \wedge S = false$.

$$(\exists x \mid R \lor S \bullet P) = (\exists x \mid R \bullet P) \lor (\exists x \mid S \bullet P)$$

provided $R \wedge S = false$.

Range Split "Axioms"

(8.16) Axiom, Range Split:

$$(\star x \mid R \lor S \bullet P) = (\star x \mid R \bullet P) \star (\star x \mid S \bullet P)$$

provided $R \wedge S = false$ and each quantification is defined.

(8.17) Axiom, Range Split:

$$(\star x \mid R \lor S \bullet P) \star (\star x \mid R \land S \bullet P) = (\star x \mid R \bullet P) \star (\star x \mid S \bullet P)$$

provided each quantification is defined.

(8.18) Axiom, Range Split for idempotent *:

$$(\star x \mid R \lor S \bullet P) = (\star x \mid R \bullet P) \star (\star x \mid S \bullet P)$$

provided each quantification is defined.

Range Split for Idempotent Operators

(8.18) Axiom, Range Split for idempotent *:

$$(\star x \mid R \lor S \bullet P) = (\star x \mid R \bullet P) \star (\star x \mid S \bullet P)$$

provided each quantification is defined.

$$(\forall x \mid R \lor S \bullet P) = (\forall x \mid R \bullet P) \land (\forall x \mid S \bullet P)$$

$$(\exists x \mid R \lor S \bullet P) = (\exists x \mid R \bullet P) \lor (\exists x \mid S \bullet P)$$

Manipulating Ranges

(8.23) **Theorem Split off term**: For $n : \mathbb{N}$ and dummies $i : \mathbb{N}$,

$$(*i \mid 0 \le i < n+1 \bullet P) = (*i \mid 0 \le i < n \bullet P) * P[i := n]$$

$$(*i \mid 0 \le i < n+1 \bullet P) = P[i := 0] * (*i \mid 0 < i < n+1 \bullet P)$$

- Typical use: Verification of loops
- Generalisation: $\mathbb{N} \longrightarrow \mathbb{Z}$, $0 \longrightarrow m : \mathbb{Z}$ (with $m \le n$)

The following work both with $m, n, i : \mathbb{N}$ and with $m, n, i : \mathbb{Z}$:

Theorem: Split off term from top:

$$m \le n \implies \left(\star i \mid m \le i < n+1 \bullet P \right) = \left(\star i \mid m \le i < n \quad \bullet P \right) \star P[i \coloneqq n]$$

Theorem: Split off term from bottom:

$$m \le n \implies (\star i \mid m \le i < n+1 \bullet P) = P[i := m] \star (\star i \mid m+1 \le i < n+1 \bullet P)$$

```
Implicit Universal Quantification in Theorems
```

(9.16) **Metatheorem**: P is a theorem iff $(\forall x \bullet P)$ is a theorem.

Proof method: To prove $(\forall x \mid R \bullet P)$, we prove *P* for arbitrary *x* in range *R*.

That is:

- Assume *R* to prove *P* (and assume nothing else that mentions *x*)
- This proves $R \Rightarrow P$
- Then, by (9.16), $(\forall x \bullet R \Rightarrow P)$ is a theorem.
- With (9.2) Trading for \forall , this is transformed into ($\forall x \mid R \bullet P$).

In CALCCHECK:

• Proving $(\forall v : \mathbb{N} \bullet P)$:

For any ' $v : \mathbb{N}'$:

Proof for P

• Proving $(\forall v : \mathbb{N} \mid R \bullet P)$:

For any $v: \mathbb{N}'$ satisfying 'R': Proof for P using Assumption R

Using "For any" for "Proof by Generalisation"

In CALCCHECK:

• Proving $(\forall v : \mathbb{N} \bullet P)$:

For any ' $v : \mathbb{N}'$:

Proof for P

Proving $\forall x : \mathbb{N} \bullet x < x + 1$:

For any $x : \mathbb{N}$:

x < x + 1

 \equiv \langle Identity of + \rangle

x + 0 < x + 1

 \equiv \langle Cancellation of + \rangle

0 < 1

 $\equiv \langle Fact `1 = suc 0 ` \rangle$

0 < suc 0

 \equiv \langle Zero is less than successor \rangle

true

Using "For any ... satisfying" for "Proof by Generalisation"

In CALCCHECK:

• Proving $(\forall v : \mathbb{N} \mid R \bullet P)$:

For any $v: \mathbb{N}'$ satisfying 'R': Proof for P using Assumption R

Proving $\forall x : \mathbb{N} \mid x < 2 \bullet x < 3$:

For any $x : \mathbb{N}$ satisfying x < 2:

 \boldsymbol{x}

< \langle Assumption x < 2

2

 $\equiv \langle Fact ^2 < 3 \rangle$

3

∃-Introduction

$$P[x := E]$$
= $\langle (8.14) \text{ One-point rule } \rangle$
 $(\exists x \mid x = E \bullet P)$

$$\Rightarrow \langle (9.25) \text{ Range weakening for } \exists \rangle$$
 $(\exists x \mid true \lor x = E \bullet P)$
= $\langle (3.29) \text{ Zero of } \lor \rangle$
 $(\exists x \mid true \bullet P)$
= $\langle true \text{ range in quantification } \rangle$
 $(\exists x \bullet P)$

This proves:

(9.28)
$$\exists$$
-Introduction: $P[x := E] \Rightarrow (\exists x \bullet P)$

An expression *E* with P[x := E] is called a "witness" of $(\exists x \bullet P)$.