CZ2003 Computer Graphics and Visualization

Report for Lab 2

In this report creation of parametric functions is described with respect to the attached files consisting of circle, ellipse, spiral, helix among others.

Christian Abdelmassih N1604991E

N1604991E@e.ntu.edu.sg

Description of files

In this lab I have created 8 parametric functions. These are

- Line
- Sin
- Circle and arc
- Ellipse and arc
- 2D Spiral
- Helix

To see the code for each function see the file for the corresponding section.

Line

The parametric representation of a line can be as simple as x = u, y = u with u having a limited domain as it is sufficient for the observing window.

A picture of the line

Sin

To represent $y=\sin(x)$ as a parametric function the substitution u=x was done which resulted in $y=\sin(u),\ x=u$. Since this function in trigonometric u serves as the angle which implies that the domain of u is expressed in radians.

The sin function with domain $[-2\pi, 2\pi]$ on u

Circle and arc

One parametric representation of a circle is $x = \sin(u)$, $y = \cos(u)$. To represent an arc we simply limit the domain of the circle from $[0, 2\pi]$ to $[0, \pi/2]$.

Ellipse and arc

The parametric representation of an ellipse can be very similar to a circle except that it has a coefficient, it is expressed as $x=a\sin(u),\ y=b\sin(u)$ where $a,b\in\mathbb{R}$ and $a,b\neq 0$ with u having a limited domain similar to the previous section.

2D Spiral

The parametric representation of a 2D spiral can be similar to an ellipse except that it has an additional coefficient u this results in $x = ua \sin(u)$, $y = ub \sin(u)$ where in this case a = b. To allow the spiral to form the domain of u should be a rather high multiple of 2π where the multiple indicates how many turns the spiral will make. To make the spiral display properly an increase of resolution was needed.

The spiral with a domain of $[0, 20\pi]$ on the angle and a = b = 1/40 and resolution 600

Helix

The parametric representation of a helix can be very similar to a circle. Up until now we have only showed functions which move through the xy-plane which was achieved by setting $z=\theta$. In this case we need to use z to express the helix properly. For these reasons one parametric representation of a helix is $x=\sin(u)$, $y=\cos(u)$, x=au where $a\in\mathbb{R}$ and $a\neq\theta$. In this case a is used to control the derivative of the helix in the z-axis.

A picture of the helix with domain $[0, 10\pi]$ on the angle and a = -0.1