

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA

EM608 – Elementos de Máquinas ES690 – Sistemas Mecânicos

ELEMENTOS ELÁSTICOS (MOLAS)

Resistência e Coeficiente de Segurança

Prof. Gregory Bregion Daniel <u>gbdaniel@fem.unicamp.br</u>
Prof.^a Katia Lucchesi Cavalca <u>katia@fem.unicamp.br</u>

Campinas, 2º semestre 2020

Esforços Residuais

Quando um arame é enrolado em forma de espira, esforços residuais de tração se desenvolvem na superfície externa da espira e esforços residuais de compressão se desenvolvem na superfície interna. Nenhum destes esforços residuais é benéfico, podendo ser removidos, aliviando assim, as tensões na mola.

Pré-assentamento (*setting*): alívio de esforços residuais podem ser introduzidos por um processo chamado de pré-assentamento pelos fabricantes.

Carregamento Reverso: não é aceitável que se aplique cargas reversas nas espiras.

Jateamento de granalha (*shot peening*): alívio de esforços residuais por impacto de esferas muito pequenas nas espiras das molas, sendo empregado para carregamento cíclico em fadiga.

Flambagem de Molas de Compressão

Uma mola de compressão é carregada como uma coluna, podendo flambar se for muito delgada. O vinculo das extremidades da mola afetam sua tendência de flambar. Se uma extremidade é apenas apoiada (figura 12 (a)) a mola irá flambar com uma razão menor que para extremidades fixas ou engastadas em placas paralelas (figura 12 (b)).

livre para girar

extremidade fixa

(a) Extremidades não-paralelas

extremidade paralela

extremidade fixa

(b) Extremidades paralelas

Figura 12 - Condição de Extremidade para caso Critico de Flambagem

A flambagem é avaliada pela razão entre o comprimento livre e o diâmetro médio da espira L_f / D . Se este fator for maior que 4, a mola pode flambar.

A razão entre a deflexão de trabalho e seu comprimento livre $(y_{working}/L_f)$ também afeta a tendência de flambagem. Na figura 13, molas localizadas à esquerda dos limites de flambagem são estáveis.

Figura 13 - Curvas para Condição Critica de Flambagem

Frequência Natural em Molas de Compressão

A frequência natural ω_n ou f_n de uma mola de compressão helicoidal depende das suas condições de contorno. Para ambas extremidades fixas:

$$\omega_n = \pi.\sqrt{\frac{k.g}{W_a}}$$
 [rad/s] $f_n = \frac{1}{2}.\sqrt{\frac{k.g}{W_a}}$ [Hz]

Onde k é a rigidez da mola, W_a é o peso das espiras ativas e g é a constante gravitacional. Sendo que:

$$W_a = \frac{\pi^2.d^2.D.N_a.\gamma}{4}$$

Onde γ é a densidade de peso do material (para o peso total da mola, substitua N_t por N_a).

Assim, obtém-se:

$$f_n = \frac{2}{\pi . N_a} \cdot \frac{d}{D^2} \cdot \sqrt{\frac{G \cdot g}{32 \cdot \gamma}} \quad \text{[Hz]}$$

Uma mola com uma das extremidades fixa e a outra livre, atua como uma mola com ambas as extremidades fixas, porém com o dobro de seu comprimento.

Neste caso (com uma das extremidades livres), sua frequência natural é calculada com o dobro de Na presente na mola real.

Resistência Limite para Molas de Compressão

<u>Limite de Escoamento Torcional (Sys)</u>: A tabela 3 mostra os limites de escoamento torcional, com e sem pré-assentamento, como uma porcentagem da resistência máxima à tração *Sut*.

Tabela 3 - Máxima Resistência ao Escoamento Torcional para Aplicação Estática

Material	Sem pré-assentamento	Com pré-assentamento
Aço Carbono trabalhado a frio	45%	60-70%
Aço Baixa-Liga Endurecido e Temperado	50%	65-75%
Aço Inoxidável Austenitico	35%	55-65%
Ligas Não-ferrosas	35%	55-65%

Resistência à Fadiga Torcional ($S_{\rm fw}$): A tabela 4 mostra valores recomendados para diversos materiais, com ou sem jateamento de granalha, em três pontos dos diagramas S-N: 10^5 , 10^6 , e 10^7 ciclos.

Tabela 4 - Máxima Resistência a Fadiga Torcional para Arames Circulares

ASTM 228, Aços Inoxidáveis e Não-Ferrosos ASTM A230 e A232

I	Vida em Fadiga	Normal	Com jateamento	Normal	Com jateamento
			de granalha		de granalha
	105	36%	42%	42%	49%
	10^{6}	33%	39%	40%	47%
I	10^{7}	30%	36%	38%	46%

<u>Limite de Resistência à Fadiga Torcional (S_{ew}):</u> Existe um limite de resistência a fadiga para aços com $S_{ut} > 200$ kpsi, que se mantém constante.

Zimmerli afirma que todas as molas de aço, com diâmetro inferior a 10 mm, exibem um limite de resistência à fadiga torcional para vida infinita, Sew, para carga pulsante.

 $S_{ew}' \approx 45.0$ kpsi (310 MPa) molas sem jateamento de granalha $S_{ew}' \approx 67.5$ kpsi (465 MPa) molas com jateamento de granalha

Não há necessidade de se aplicar fatores de correção, tanto para S_{fw} como para S_{ew} , já que os dados de testes disponíveis foram obtidos em condições reais de testes em carga pulsante.

Projeto para Carga Estática

O fator de segurança é obtido por comparação entre a resistência ao escoamento em torção, para carga estática, e a tensão de cisalhamento.

$$N_s = S_{ys} / \tau$$

Projeto para Carga Dinâmica (em fadiga)

Uma mola carregada dinamicamente vai operar entre dois níveis limites de esforços *Fmax* e *Fmin*. Destes valores, são obtidas as componentes média e alternada da força aplicada.

$$F_a = \frac{F_{\text{max}} - F_{\text{min}}}{2} \qquad F_m = \frac{F_{\text{max}} + F_{\text{min}}}{2}$$

A linha de carregamento, que define o estado de tensão, não parte da origem, neste caso, mas de um ponto sobre a abscissa τ_m , representando a tensão inicial τ_i , na pré-carga de montagem das espiras. O fator de segurança em fadiga torcional, é dado pela relação :

$$S_{es} = 0.5 \frac{S_{ew} S_{us}}{S_{us} - 0.5 S_{ew}}$$

$$N_{fs} = \frac{S_{es}(S_{us} - \tau_i)}{S_{es}(\tau_m - \tau_i) + S_{us}\tau_a}$$

