## Contents

| 1  | PR.                  | AM                                             | 6               |  |  |  |  |
|----|----------------------|------------------------------------------------|-----------------|--|--|--|--|
|    | 1.1                  | Prerequisites                                  | 6               |  |  |  |  |
|    | 1.2                  | Definition                                     | 6               |  |  |  |  |
|    | 1.3                  | How it works                                   | 7               |  |  |  |  |
|    |                      | 1.3.1 Computation                              | 7               |  |  |  |  |
|    |                      | 1.3.2 PRAM Classificiation                     | 7               |  |  |  |  |
|    |                      | 1.3.3 Strengths of PRAM                        | 8               |  |  |  |  |
|    |                      | 1.3.4 How to compare PRAM models               | 8               |  |  |  |  |
|    | 1.4                  | MVM algorithm                                  | 10              |  |  |  |  |
|    | 1.5                  | SPMD sum                                       | 12              |  |  |  |  |
|    | 1.6                  | MM algorithm                                   | 16              |  |  |  |  |
|    | 1.7                  | PRAM variants and Lemmas                       | 17              |  |  |  |  |
|    | 1.8                  | PRAM implementation                            | 18              |  |  |  |  |
|    | 1.9                  | Amdahl's and Gustafson's Laws                  | 20              |  |  |  |  |
| _  | -                    |                                                |                 |  |  |  |  |
| 2  |                      | damentals of architecture                      | 23              |  |  |  |  |
|    | 2.1                  | Introduction                                   | 23<br>23        |  |  |  |  |
|    |                      | 2.1.1 Simplest processor                       | 23<br>24        |  |  |  |  |
|    |                      | <ul><li>2.1.2 Superscalar processor</li></ul>  | $\frac{24}{25}$ |  |  |  |  |
|    |                      | 2.1.4 Multi-Core Processor                     | $\frac{25}{25}$ |  |  |  |  |
|    | 2.2                  | Accessing Memory                               | $\frac{25}{26}$ |  |  |  |  |
|    | 2.2                  | 2.2.1 What is a memory?                        | 26              |  |  |  |  |
|    |                      | 2.2.2 How to reduce processor stalls           | 28              |  |  |  |  |
|    |                      | 2.2.2.1 Cache                                  | 28              |  |  |  |  |
|    |                      | 2.2.2.2 Multi-threading                        | 28              |  |  |  |  |
|    |                      | 2.2.2.2 Main amounts                           |                 |  |  |  |  |
| 3  | $\operatorname{Pro}$ | ogramming models                               | 31              |  |  |  |  |
|    | 3.1                  | Implicit SPMD Program Compiler (ISPC)          | 31              |  |  |  |  |
|    | 3.2                  | Shared Address Space Model                     | 35              |  |  |  |  |
|    | 3.3                  |                                                |                 |  |  |  |  |
|    | 3.4                  | Data-Parallel model                            |                 |  |  |  |  |
| 4  | Dar                  | allel Programming Models and pthreads          | 39              |  |  |  |  |
| -1 | 4.1                  | How to create parallel algorithms and programs | 39              |  |  |  |  |
|    | 4.2                  | Analyze parallel algorithms                    | 41              |  |  |  |  |
|    | 4.3                  | Technologies                                   | 44              |  |  |  |  |
|    | 4.4                  | Threads                                        |                 |  |  |  |  |
|    |                      | 4.4.1 Flynn's taxonomy                         | 47              |  |  |  |  |
|    |                      | 4.4.2 Definition                               | 47              |  |  |  |  |
|    |                      | 4.4.3 pthreads API                             | 49              |  |  |  |  |
|    |                      | 4.4.3.1 Creation                               | 49              |  |  |  |  |
|    |                      | 4.4.3.2 Termination                            | 50              |  |  |  |  |
|    |                      | 4.4.3.3 Joining                                | 51              |  |  |  |  |
|    |                      | 4.4.3.4 Detaching                              | 52              |  |  |  |  |
|    |                      | 4.4.3.5 Joining through Barriers               | 53              |  |  |  |  |
|    |                      | 4.4.3.6 Mutexes                                | 54              |  |  |  |  |
|    |                      | 4.4.3.7 Condition variables                    | 54              |  |  |  |  |

| 5 | Ope           | nMP v5.2                                              | 55         |
|---|---------------|-------------------------------------------------------|------------|
|   | 5.1           | Introduction                                          | 55         |
|   | 5.2           | Basic syntax                                          | 57         |
|   | 5.3           | ·                                                     | 60         |
|   |               |                                                       | 60         |
|   |               |                                                       | 65         |
|   |               |                                                       | 67         |
|   |               |                                                       | 68         |
|   |               | 9 /                                                   | 69         |
|   |               |                                                       | 72         |
|   | 5.4           | i                                                     | . –<br>76  |
|   | 5.5           | v                                                     | . o<br>79  |
|   | 5.6           |                                                       | <br>87     |
|   | 5.7           | v                                                     | 90         |
|   | 5.8           |                                                       | 94         |
|   | 5.9           |                                                       | 97         |
|   | 0.5           | DIVID VCCtorization                                   | 91         |
| 6 | $\mathbf{GP}$ | J Architecture 10                                     |            |
|   | 6.1           |                                                       | 00         |
|   | 6.2           |                                                       | 01         |
|   | 6.3           |                                                       | 03         |
|   |               |                                                       | 03         |
|   |               |                                                       | 07         |
|   |               | 0 1 ,                                                 | 09         |
|   |               | 6.3.4 Running a CUDA program on a GPU                 | 12         |
|   |               | 6.3.5 Implementation of CUDA abstractions             | 18         |
|   |               | 6.3.6 Advanced thread scheduling                      | 21         |
|   |               | 6.3.7 Memory and Data Locality in Depth               | 26         |
|   |               | 6.3.8 Tiling Technique                                | 35         |
|   |               | 6.3.8.1 Tiled Matrix Multiplication                   | 38         |
|   |               | 6.3.8.2 Implementation Tiled Matrix Multiplication 14 | 43         |
|   |               | 6.3.8.3 Any size matrix handling                      | 48         |
|   |               | 6.3.9 Optimizing Memory Coalescing                    | 53         |
|   |               |                                                       |            |
| 7 | CU            | <b>DA</b>                                             |            |
|   | 7.1<br>7.2    |                                                       |            |
|   | 1.2           | CUDA Basics                                           |            |
|   |               | 7.2.1 GPGPU Best Practices                            |            |
|   |               | r r r                                                 | $70^{-20}$ |
|   |               | 96 6                                                  | 72         |
|   | - 0           |                                                       | 75<br>     |
|   | 7.3           |                                                       | 78         |
|   | 7.4           | • • •                                                 | 80         |
|   | 7.5           | ů.                                                    | 82         |
|   | 7.6           | v v                                                   | 85         |
|   | 7.7           |                                                       | 93         |
|   | 7.8           | ±                                                     | 97         |
|   |               |                                                       | 97         |
|   |               |                                                       | 02         |
|   |               | 7.8.3 Memory Management with Multiple GPUs            | 05         |

|           |                                                      | 7.8.4   | Batch Processing and Cooperative Patterns with OpenMP 2 | 211 |  |  |  |
|-----------|------------------------------------------------------|---------|---------------------------------------------------------|-----|--|--|--|
|           |                                                      | 7.8.5   | OpenMP for heterogeneous architectures                  |     |  |  |  |
|           |                                                      | 7.8.6   | MPI-CUDA applications                                   | 216 |  |  |  |
| 8         | Mor                                                  |         | longistoner                                             | 20  |  |  |  |
| O         | 8 Memory Consistency<br>8.1 Coherence vs Consistency |         |                                                         |     |  |  |  |
|           | 8.2                                                  |         | ion                                                     |     |  |  |  |
|           | 8.3                                                  |         | itial Consistency Model                                 |     |  |  |  |
|           | 8.4                                                  | -       | ry Models with Relaxed Ordering                         |     |  |  |  |
|           | 0.4                                                  | 8.4.1   | Allowing Reads to Move Ahead of Writes                  |     |  |  |  |
|           |                                                      | 8.4.2   | Allowing writes to be reordered                         |     |  |  |  |
|           |                                                      | -       | <u> </u>                                                |     |  |  |  |
|           | 0 =                                                  | 8.4.3   | Allowing all reorderings                                |     |  |  |  |
|           | 8.5                                                  |         | ages Need Memory Models Too                             |     |  |  |  |
|           | 8.6                                                  | -       | nenting Locks                                           |     |  |  |  |
|           |                                                      | 8.6.1   | Introduction                                            |     |  |  |  |
|           |                                                      | 8.6.2   | Test-and-Set based lock                                 |     |  |  |  |
|           |                                                      | 8.6.3   | Test-and-Test-and-Set lock                              | 244 |  |  |  |
| 9         | Hete                                                 | erogen  | eous Processing 2                                       | 48  |  |  |  |
| •         | 9.1                                                  |         | Constrained Computing                                   |     |  |  |  |
|           | 9.2                                                  |         | ite Specialization                                      |     |  |  |  |
|           | 9.3                                                  | _       | nges of heterogeneous designs                           |     |  |  |  |
|           | 9.4                                                  |         | ing energy consumption                                  |     |  |  |  |
|           | 0.1                                                  | 100000  | onergy companipolar vivivivivivivivivi                  | -00 |  |  |  |
| <b>10</b> |                                                      | erns    |                                                         | 71  |  |  |  |
|           | 10.1                                                 | Depend  | dencies                                                 | 271 |  |  |  |
|           | 10.2                                                 | Paralle | el Patterns                                             | 280 |  |  |  |
|           |                                                      | 10.2.1  | Nesting Pattern                                         | 281 |  |  |  |
|           |                                                      | 10.2.2  | Serial Control Patterns                                 | 282 |  |  |  |
|           |                                                      | 10.2.3  | Parallel Control Patterns                               | 284 |  |  |  |
|           |                                                      | 10.2.4  | Serial Data Management Patterns                         | 289 |  |  |  |
|           |                                                      |         | Parallel Data Management Patterns                       |     |  |  |  |
|           |                                                      | 10.2.6  | Other Parallel Patterns                                 | 295 |  |  |  |
|           | 10.3                                                 | Map P   | attern                                                  | 297 |  |  |  |
|           |                                                      | 10.3.1  | What is a Map?                                          | 297 |  |  |  |
|           |                                                      | 10.3.2  | Optimizations                                           |     |  |  |  |
|           |                                                      |         | 10.3.2.1 Sequences of Maps                              |     |  |  |  |
|           |                                                      |         | 10.3.2.2 Code Fusion                                    | 300 |  |  |  |
|           |                                                      |         |                                                         | 301 |  |  |  |
|           |                                                      | 10.3.3  | Related Patterns                                        | 302 |  |  |  |
|           |                                                      | 10.3.4  | Scaled Vector Addition (SAXPY)                          | 304 |  |  |  |
|           | 10.4                                                 | Collect | ives operations                                         | 307 |  |  |  |
|           |                                                      | 10.4.1  | Reduce (or Reduction) Pattern                           | 308 |  |  |  |
|           |                                                      |         |                                                         | 314 |  |  |  |
|           | 10.5                                                 | Gather  | Pattern                                                 | 325 |  |  |  |
|           |                                                      | 10.5.1  | What is a Gather?                                       | 325 |  |  |  |
|           |                                                      | 10.5.2  | Shift                                                   | 329 |  |  |  |
|           |                                                      | 10.5.3  | Zip                                                     | 331 |  |  |  |
| _         |                                                      |         |                                                         |     |  |  |  |
| In        | $\mathbf{dex}$                                       |         | 3                                                       | 30  |  |  |  |

## 10.5.3 Zip

The **Zip operation** is a special case of the gather pattern where **two** (or more) arrays are combined by interleaving their elements. It functions like a zipper, taking one element from each array in sequence to form a new combined array. It is important to note that it works with different types, so we can zip elements of different types, like integers and floats, or even complex objects.

## **✗** How does it work?

The operation takes an element from the first array, then one from the second array, another from the third, and so on, and repeats the process. The output is the combined sequence.



## Parallelism

Each pair of elements (one from each array) can be **combined independently**. This independence allows **parallel execution since there's no dependency between the operations for different pairs**.