The total vaniation distance w.r.t. two probability distributions u and V defined on Ω is $|| u - V||_{TV} := \sup_{A \subseteq \Omega} ||u(A) - V(A)||_{A \subseteq \Omega}$

Lemma CTV distance & LI-norm]

Assume I is finite or countable. Then

$$\| u - v \|_{TU} = \frac{1}{2} \frac{\sum_{\alpha \in \mathcal{R}} |u(\alpha) - v(\alpha)|}{\sum_{\alpha \in \mathcal{R}} |u(\alpha) - v(\alpha)|}.$$
 (1)

$$= \sum (\mu(\alpha) - \gamma(\alpha))$$

$$\alpha \in \Omega: \mu(\alpha) > \gamma(\alpha)$$
(2)

$$= 1 - \sum_{\alpha \in \Omega} (\mathcal{M}(\alpha) \wedge \mathcal{V}(\alpha))$$
 (3)

Proof. Let B:= {a & 52: ma} > Y(a) }.

Besides,
$$\sum_{\alpha \in B^{c}} (v(\alpha) - u(\alpha)) = \sum_{\alpha \in B^{c}} (v(\alpha) - u(\alpha)) + \sum_{\alpha \in B} (v(\alpha) - v(\alpha))$$

$$= 1 - \Xi (u(a) \wedge v(a))$$

			= Q	∑ (J) .fß	((a) - V	(a)) -	LE (μ(a) - ₍	m(a))
			זו	Σ (υ atb	ua) – V	(a))			
Hence	condudes	B)~ V(B)	= V((3c) - ,hv(B ^C) a	nd	N UL- V N-	rv= <u>1</u> Σ αες	l (m(a)-x(a)) [,] s
	00.1.000								