Universidad Autónoma Gabriél René Moreno Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones

Arquitectura del Computador

Contador 0-99

Integrantes	Registros
Leonardo Henry Añez Vladimirovna	217002498
Erick Edwing Vidal Céspedes	217055321
Cristian Coca Terceros	217050662

9 de julio de 2018

Introducción

El contador digital es aquella secuencia constante de números de 0 a 9, el cual se aprecia su funcionamiento en un display de 7 Segmentos, en este proyecto veremos el funcionamiento lógico de los circuitos internos utilizados para llegar a que funcione este contador.

1. Descripción

Para el circuito, desarrollaremos las tablas de Karnaugh para el caso 0-9 (Contador MOD10), ya que de este se puede partir a una generalización de un contador.

1.1. Decodificador BCD de 7 Segmentos (7447)

Es un dispositivo que *decodifica* un código de entrada en otro. Es decir, transforma una combinación de unos y cero, en otra. 74LS47, en particular transforma el código binario en el código de 7 segmentos.

El decodificador recibe en su entrada el número que será visualizado en el display. Posee 7 salidas, una para cada segmento. Para un valor de entrada, cada salida toma un estado determinado (activada o desactivada).

1.1.1. Uso del Decodificador

Entonces, como ya lo dijimos, hay que aplicar el número deseado en la entrada y el dispositivo, automáticamente, habilita los segmentos correspondientes a la salida. Supongamos que queremos mostrar el número 5. Utilizando la tabla anterior vemos que 5 en binario es 0101. Debemos aplicar este valor en los pines de entrada en el orden DCBA, es decir DCBA = 0101, o sea D=0, C=1, B=0, A=1. Al hacerlo, el integrado enciende todos los segmentos, salvo b y e para mostrar el número 5.

2. Materiales

- \blacksquare Circuito Integrado 555
- Circuitos Integrados SN7447AN (2)
- Circuitos Integrados SN74SL90N (2)
- Resistencia de 220 Ohm (14)
- Display de 7 Segmentos, Anodo Comun (2)
- Protoboard (2)
- 1 metro de Cable UTP

- Potenciometro 10K (1)
- \blacksquare Condensador de $100\mu F$
- Fuente de Alimentación de 5V
- Multímetro Básico (Instrumentación)
- Pinzas (Instrumentación)

3. Diseño Lógico

Estados del Contador MOD10

DEC	Q_3	Q_2	Q_1	Q_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	0	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

En esta sección se detallan los mapas de Karnaugh para el Contador MOD10 (0-9)

3.0.1. Mapas de Karnaugh

Q_3Q_2				
Q_1Q_0	00	01	11	10
00	X	0	x	0
01	X	0	x	x
11	X	1	x	x
10	X	0	x	x

Q_3Q_2				
Q_1Q_0	00	01	11	10
00	0	0	x	X
0:	1 0	0	x	x
1:	1 0	1	x	x
10	0	0	x	x

Q_3Q_2				
Q_1Q_0	00	01	11	10
00	X	X	x	0
01	X	X	x	1
11	x	x	x	x
10	X	х	x	x

3.0.2. Diagrama

J_i	K_i
$J_0 = 1$	$K_0 = 1$
$J_1 = Q_0 \overline{Q}_3$	$K_1 = Q_0$
$J_2 = Q_0 Q_1$	$K_2 = Q_0 Q_1$
$J_3 = Q_0 Q_1 Q_2$	$K_3 = Q_0$

Como el circuito lógico es un contador 0–9 simplemente se procede a obtener del pin que de el pulso de subida cuando llega a 9 a otro del mismo tipo, solo que este va directamente donde iría el pulso de reloj.

4. Diseño en Proteus 8.6 ©

Para el contador 0–99 hemos realizado el contador 0–9, este, a travez del pulso de reloj cuenta, y una vez llega a 9 se reinicia en cero. Como este princio puede ser generalizado podemos conectar un circuito bajo el mismo esquema del 7447 y 7490, mandar desde la conección 11–6, al pin 14 del 7490 para las decenas, y así sucesivamente para 999,9999,9999, etc...

Figura 1: Foto del Circuito Final

Conclusión

En si pudimos apreciar el funcionamiento lógico de los *circuitos integrados* en la manera de cómo va la información según a los pulsos de voltaje y como se puede realizar una extensión para realizar un contador hasta 999, 9999, etc. Porque los circuitos integrados al igual que la informática se basa en la lectura y escritura de números binarios.