

Métodos Cuantitativos

Otoño 2024

Profesor: Jorge Rivera Ayudante : José Tomás Feliú

Ayudantía 7 - No Presencial

Ecuaciones en Diferencias

(a) Sea Y_t el producto nacional, I_t la inversión total y S_t el ahorro total. Suponga que los ahorros son proporcionales al ingreso nacional y que la inversión es proporcional al cambio en ingreso entre t y t+1. Así, tenemos que:

$$S_t = \alpha Y_t$$

$$I_{t+1} = \beta (Y_{t+1} - Y_t)$$

$$S_t = I_t$$

Asumiendo que $\beta > \alpha > 0$, plantee el problema como una ecuación en diferencias para Y_t y resuelva.

Respuesta:

Tomando la primera y tercera ecuación tenemos que $I_t = \alpha Y_t$. Así, reemplazando en la segunda ecuación tenemos: $\alpha Y_{t+1} = \beta (Y_{t+1} - Y_t)$. Por lo tanto, reordenando:

$$Y_{t+1} - \frac{\beta}{\beta - \alpha} Y_t = 0$$

Por lo tanto, tenemos que su polinomio característico tiene como solución: $\lambda = \frac{\beta}{\beta - \alpha}$. Por lo tanto, su solución viene dado por:

$$Y_t = \left(\frac{\beta}{\beta - \alpha}\right)^t c_1$$

Tomando Y_0 , llegamos a que $c_1 = Y_0$, por lo que podemos escribir su solución como:

$$Y_t = (\frac{\beta}{\beta - \alpha})^t Y_0$$

(b) Resuelva la ecuación:

$$x_{t+2} - 5x_{t+1} + 6x_t = 4^t + t^2 + 3$$

Respuesta:

Tenemos que la ecuación homogénea tiene ecuación característica $r^2 - 5r + 6 = 0$. Por lo tanto, la homogénea tiene solución $x_t^h = A2^t + B3^t$. Luego, la solución particular tiene la forma:

$$x_t^p = C4^t + Dt2 + Et + F$$

Al sustituir en la ecuación tenemos la igualdad

$$C4^{t+2} + D(t+2)^2 + E(t+2) + F - 5(C4^{t+1} + D(t+1)^2 + E(t+1) + F) + 6(C4^t + Dt^2 + Et + F) = 4^t + t^2 + 3$$

que después de algunas manipulaciones se reduce a

$$2C4^{t} + 2Dt^{2} + (-6D + 2E)t + (-D - 3E + 2F) = 4^{t} + t^{2} + 3.$$

Esta igualdad es cierta para todo t = 0, 1, 2, ..., por lo que

$$2C = 1$$

 $2D = 1$
 $-6D + 2E = 0$
 $-D - 3E + 2F = 3$

Se sigue que C=1/2, D=1/2, E=3/3 y F=4. La solución general es

$$x_t = A2^t + B3^t + \frac{1}{2}4^t + \frac{1}{2}t^2 + \frac{3}{2}t + 4$$

Ecuaciones diferenciales y en diferencias

(a) Muestre que la función $T(x,t) = \psi e^{-\alpha \beta^2 t} \sin(\beta x)$ es una solución de la siguiente ecuación diferencial en derivadas parciales:

$$\frac{\partial T(x,t)}{\partial t} = \alpha \frac{\partial^2 T(x,t)}{\partial x^2}$$

Respuesta:

Primero, es importante recordar que $(\sin(z))' = \cos(z)$ y $(\cos(z))' = -\sin(z)$.

Ahora bien, tomamos la función T(x,t) y vemos si se cumple la relación,

$$\frac{\partial T(x,t)}{\partial t} = -\alpha \beta^2 \psi e^{-\alpha \beta^2 t} \sin(\beta x) = 0$$

$$\frac{\partial T(x,t)}{\partial x} = \psi e^{-\alpha \beta^2 t} \cos(\beta x) \beta = 0$$

$$\frac{\partial^2 T(x,t)}{\partial x^2} = -\psi e^{-\alpha \beta^2 t} \sin(\beta x) \beta^2 = 0$$

Si multiplicamos la última derivada por α , llegamos a la relación solicitada, por lo que T(x,t) es una solución de la ecuación diferencial en derivadas parciales.

(b) Solucione la ecuación en diferencias $y_t - ay_{t-1} = \alpha t + \beta$. Considere $y_0 = 0$.

Respuesta:

La solución homogénea sería:

$$y_t^h - \alpha y_{t-1}^h = 0 \iff y_{t+1}^h - \alpha y_t^h = 0$$

Candidato a solución es $y_t^h = \lambda^t$, reemplazando:

$$\lambda^{t+1} - a\lambda^t = 0$$
$$\lambda^t(\lambda - a) = 0$$
$$\lambda = a$$

La solución homogénea es $y_t^h = c_1 a^t$ (recordar que si a^t es solución de la homogénea, cualquier combinación lineal también lo es).

Ahora, la solución particular $y_t^p = \gamma_2 t + \gamma_1$. Reemplazando en la ecuación en diferencias:

$$\gamma_2 t + \gamma_1 - a(\gamma_2(t-1) + \gamma_1) = at + \beta$$

 $(1-a)\gamma_2 t + (1-a)\gamma_1 + a\gamma_2 = at + \beta$

Igualando coeficientes:

(i)
$$\gamma_2 - a\gamma_2 = a \implies \gamma_2 = \frac{\alpha}{1-a}$$

(ii)
$$(1-a)\gamma_1 + a\gamma_2 = \beta \implies \gamma_1 = \frac{\beta(1-a) - a\alpha}{(1-a)^2}$$

Por lo tanto, la solución particular sería:

$$y_t^p = \gamma_2 t + \gamma_1 = \frac{\alpha}{1 - a} t + \frac{\beta(1 - a) - a\alpha}{(1 - a)^2}$$

Juntando la solución homogénea y particular,

$$y_t = c_1 a^t + \gamma_2 t + \gamma_1 = c_1 a^t + \frac{\alpha}{1-a} t + \frac{\beta(1-a) - a\alpha}{(1-a)^2}$$

Lo único que faltaría es determinar c_1 . Para hacerlo, se ocupa la condición inicial $y_0 = 0$. Se evalúa esto en t = 0:

$$y_0 = c_1 a^0 + \gamma_2 0 + \gamma_1 = \frac{\alpha}{1-a} 0 + \frac{\beta(1-a) - a\alpha}{(1-a)^2}$$

$$0 = c_1 + \frac{\beta(1-a) - a\alpha}{(1-a)^2}$$

$$c_1 = \frac{a\alpha - \beta(1-a)}{(1-a)^2}$$

Por lo que la solución es:

$$y_t = \frac{a\alpha - \beta(1-a)}{(1-a)^2} a^t + \frac{\alpha}{1-a} t + \frac{\beta(1-a) - a\alpha}{(1-a)^2}$$

(c) La sucesión de Fibonacci es $x_{t+2} = x_{t+1} + x_t$, con $x_0 = 0$ $x_1 = 1$. Suponiendo que $\frac{x_{t+1}}{x_t}$ converge, muestre que:

$$\lim_{t \to \infty} \frac{x_{t+1}}{x_t} = \frac{1 + \sqrt{5}}{2}$$

Respuesta:

Resolvemos primero la ecuación del enunciado:

$$x_{t+2} = x_{t+1} + x_t$$
$$x_{t+2} - x_{t+1} - x_t = 0$$

Candidato a solución es $x_t = \lambda^t$. Reemplazando:

$$\lambda^{t+2} - \lambda^{t+1} - \lambda^t = 0$$

$$\lambda^t (\lambda^2 - \lambda - 1) = 0$$

$$\lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2}$$

Por lo tanto, se tiene:

$$x_t = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^t + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^t$$

Ahora, se ocupa la condición inicial $x_0 = 0$ (evaluando en t = 0),

$$x_{0} = c_{1} \left(\frac{1+\sqrt{5}}{2}\right)^{0} + c_{2} \left(\frac{1-\sqrt{5}}{2}\right)^{0}$$

$$0 = c_{1} + c_{2}$$

$$c_{1} = -c_{2}$$

Ocupando la condición $x_1 = 1$ y evaluando en t = 1,

$$x_{1} = c_{1} \left(\frac{1+\sqrt{5}}{2}\right)^{1} + c_{2} \left(\frac{1-\sqrt{5}}{2}\right)^{1}$$

$$1 = c_{1} \left(\frac{1}{2} + \frac{\sqrt{5}}{2}\right) - c_{1} \left(\frac{1}{2} - \frac{\sqrt{5}}{2}\right)$$

$$1 = c_{1}\sqrt{5}$$

$$c_{1} = \frac{1}{\sqrt{5}} \Longrightarrow c_{2} = -\frac{1}{\sqrt{5}}$$

Resultando:

$$x_t = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^t - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^t$$

Ahora bien, suponiendo que $\frac{x_{t+1}}{x_t}$ converge, llamamos λ al límite, es decir,

$$\lim_{t \to \infty} \frac{x_{t+1}}{x_t} = \lambda$$

Como $\frac{x_{t+1}}{x_t}$ converge, entonces $\lambda = \lim_{t \to \infty} \frac{x_{t+1}}{x_t} = \lim_{t \to \infty} \frac{x_t}{x_{t-1}}$. Recordando esto, tenemos:

$$\lambda = \lim_{t \to \infty} \frac{x_{t+1}}{x_t}$$

$$= \lim_{t \to \infty} \frac{x_t + x_{t-1}}{x_t}$$

$$= \lim_{t \to \infty} \left(1 + \frac{x_{t-1}}{x_t}\right)$$

$$= 1 + \lim_{t \to \infty} \frac{1}{x_t/x_{t-1}}$$

$$= 1 + \frac{1}{\lim_{t \to \infty} (x_t/x_{t-1})}$$

$$= 1 + \frac{1}{\lambda}$$

Luego, si multiplicamos la última expresión por λ , llegamos a:

$$\lambda^{2} = \lambda + 1$$

$$\lambda^{2} - \lambda - 1 = 0$$

$$\lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2}$$

Ahora bien, ¿por qué no sirve $\lambda_2 = \frac{1-\sqrt{5}}{2}$?

$$\frac{x_{t+1}}{x_t} = \frac{x_t + x_{t-1}}{x_t} = 1 + \frac{x_{t-1}}{x_t}$$

notar que $1 + \frac{x_{t-1}}{x_t} > 1$, mientras que $\lambda_2 = \frac{1-\sqrt{5}}{2} < 0 < 1$. Por lo que $\lambda = \lambda_1 = \frac{1+\sqrt{5}}{2}$. Osea que nos queda:

$$\lim_{t\to\infty}\frac{x_{t+1}}{x_t}=\frac{1+\sqrt{5}}{2}$$

Ecuaciones diferenciales

(a) Resuelva la siguiente ecuación diferencial:

$$y''(t) = 3y'(t) - 2y(t) + 2$$

Respuesta:

Reordenando tenemos:

$$y''(t) - 3y'(t) + 2y(t) = 2$$

Por lo que su polinomio característico es:

$$p(\lambda) = \lambda^2 - 3\lambda + 2$$

Así, tenemos que $\lambda_1=2$ y $\lambda_2=1$. Por lo tanto, su solución homogénea es:

$$y_h(t) = c_1 c^{2t} + c_2^t$$

Luego, como para la particular f(t) = 2, entonces $y_p(t) = c_3$. Reemplazando $y_p(t) = c_3$ en la ecuación diferencial, tenemos que:

$$c_3 = 2$$

. Por lo tanto, la solución de la ecuación viene dada por:

$$y(t) = c_1 e^{2t} + c_2 e^t + 1$$

(b) (i) (Modelo de Malthus). El economista británico Thomas Malthus (1766–1834) observó que muchas poblaciones biológicas se incrementan a una tasa proporcional al tamaño de la población, P, es decir.

$$\dot{P}(t) = rP(t)$$

donde la constante de proporcional dad r es la tasa de crecimiento, positiva o negativa. Encuentre P(t), asumiendo que P_0 es la población inicial.

Respuesta:

Reordenando, tenemos que:

$$\dot{P}(t) - rP(t) = 0$$

Por lo que $P(t) = C_1 e^{rt}$ Luego, tomando P_0 como P(0), llegamos a que la solución viene dada por:

$$P(t) = P_0 e^{rt}$$

(ii) (Modelo de Verhulst) El matemático belga P.F. Verhulst (1804–1849) observó que las limitaciones de espacio, de la comida disponible, o de otros recursos, reducen la tasa de crecimiento, impidiendo el crecimiento exponencial. Por este motivo, modificó la ecuación de Malthus, reemplazando la constante r por una función de P, r(P):

$$\dot{P}(t) = r(P(t))P(t)$$

Verhulst supuso que r(P) = r - mP, donde r y m son constantes. Por tanto, la población evoluciona de acuerdo a

$$\dot{P}(t) = rP(t) - mP^2(t),$$

que se conoce como la ecuación logística. Podemos reescribirla como

$$\dot{P}(t) = r(1 - \frac{P(t)}{M})P(t)$$

donde $M = \frac{r}{m}$. La constante r es la tasa de crecimiento intrínseco y M es el nivel de población de saturación, o capacidad máxima del medio ambiente. Encuentre una expresión para P(t).

Hint: Este tipo de ecuaciones diferenciales se pueden resolver mediante el método de separación de variables. Esto consiste dejar todas las variables que involucran a P en un lado, y las que involucran a t en el otro. Luego de eso, se puede integrar y resolver. En este caso quedaría: $\int \frac{dP}{P(1-\frac{P}{M})} = \int r dt$.

Respuesta:

Utilizando el Hint, utilizamos separación de variables y tenemos:

$$\int \frac{dP}{P(1-\frac{P}{M})} = \int rdt$$

Luego, desarrollamos el lado izquierdo mediante integración por partes parciales:

$$\frac{A}{P} + \frac{B}{1 - \frac{P}{M}} = 1$$

$$A(1 - \frac{P}{M}) + BP = 1$$

Tomando P=0, tenemos que A=1. Luego, si P=M, tenemos que $B=\frac{1}{M}$. Así, reescribiendo las integrales:

$$\int \frac{dP}{P} + \frac{1}{M} \int \frac{dP}{1 - \frac{P}{M}} = r dt$$

$$ln |P| - ln |M - P| = rt + C$$

$$\frac{P}{M-P} = Ce^{rt} \quad (1)$$

Tomando t = 0 y $P = P_0$ tenemos que $C = \frac{P_0}{M - P_0}$. Luego, reescribiendo (1) tenemos:

$$P = \frac{MCe^{rt}}{1 + Ce^{rt}}$$

Reemplazando por el valor de C y reordenando llegamos al resultado:

$$P(t) = \frac{MP_0e^{rt}}{M + P_0(e^{rt} - 1)}$$

(c) Encuentre la solución de los siguientes sistemas de ecuaciones diferenciales y encuentre la solución que satisface $x_1(0) = 1$ y $x_2(0) = 0$.

(i)

$$x_1'(t) = x_1(t) - 5x_2(t)$$
 (1)

$$x_2'(t) = 2x_1(t) - 5x_2(t) \quad (2)$$

Respuesta:

Restando 1 a 2 tenemos que (omitimos los t
 como abuso de notación) $x_2' = x_1' + x_1$. Reemplazando esto en (2), tenemos $x_1' + x_1 = 2x_1 - 5x_2$. Por lo que $x_2 = \frac{1}{5}x_1 - \frac{1}{5}x_1'$. Así, $\frac{1}{5}x_1 - \frac{1}{5}x_1' = x_1' + x_1$. Luego, reordenando tenemos que $x_1'' + 4x_1' + 5 = 0$. Así, sus raíces del polinomio característico son:

$$\lambda = \frac{-4 \pm \sqrt{-4}}{2}$$

$$\lambda_{1,2} = -2 \pm i$$

Por lo que:

$$x_1(t) = e^{-2t}[c_1 \cos t + c_2 \sin t]$$

$$x_1'(t) = -2e^{-2t}[c_1\cos(t) + c_2\sin t] + e^{-2t}[-c_1\sin t + c_2\cos t]$$
$$x_1'(t) = e^{-2t}[(c_2 - 2c_1)\cos t - (c_1 + 2c_2)\sin t]$$

Luego, reemplazando en $x'_1 - x_1$ tenemos:

$$e^{-2t}[(c_2 - 2c_1)\cos t - (c_1 + 2c_2)\sin t] = 2e^{-2t}[c_1\cos t + c_2\sin t] - 5x_2$$

$$x_2 = e^{-2t} \left[\frac{c_2 - 3c_1}{5} \cos t + \frac{c_1 + 3c_2}{5} \sin t \right]$$

Tomando $x_2(0) = 0$:

$$c_2 = 3c_1$$

Luego, reemplazando $x_1(0) = 1$ en la fórmula de $x_1(t) = e^{-2t}[c_1 \cos t + c_2 \sin t \text{ tenemos que:}$

$$c_1 = 1$$

Así, $c_3 = 3$. Reemplazando obtenemos:

$$x_1(t) = e^{-2t} [\cos t + 3\sin t]$$

$$x_2(t) = e^{-2t} [2 \operatorname{sen} t]$$

(ii) Propuesto

$$x_1'(t) = -3x_1(t) + 5x_2(t)$$
 (1)

$$x_2'(t) = -x_1(t) + x_2(t)$$
 (2)

Respuesta:

La solución es:

$$x_1(t) = e^{-t}[\cos t - 2\sin t]$$

 $x_2(t) = e^{-t}[-\sin t]$

Control Óptimo I

Se utiliza Capital, (K_t) , y un recurso extractivo, R(t), para producir un bien, Q(t), según la función de producción $Q(t) = AK(t)^{1-\alpha}R(t)^{\alpha}$, donde $0 < \alpha < 1$. El producto se puede consumir a tasa C(t), donde la función de utilidad viene dada por $\ln C(t)$, o se puede convertir en capital. No hay depreciación de capital y el recurso fijo de donde se saca el bien extractivo en el tiempo 0 es $X(0) = X_0$. Por lo tanto, tenemos que las ecuaciones en movimiento vienen dadas por:

$$\dot{X}(t) = -R(t)$$

$$\dot{K} = AK(t)^{1-\alpha}R(t)^{\alpha} - C(t)$$

Además, sabemos que $K(0) = K_0$, K(T) = 0 y X(T) = 0.

(a) A partir del enunciado, plantee el Hamiltoniano y plantee las condiciones de primer orden. Hint 1: Hay dos variables de control y dos variables de estado. Hint 2: Queremos maximizar la utilidad bajo las condiciones dadas.

Respuesta:

El problema de optimización viene dado por:

$$\max_{C,R} \int_0^T \ln C(t) dt$$

sujeto a

$$X'(t) = -R(t),$$

$$X(0) = X_0$$

$$X(T) = 0$$

$$K'(t) = AK(t)^{1-\alpha}R(t)^{\alpha} - C(t),$$

$$K(0) = K_0,$$

$$K(T) = 0.$$

Luego, el Hamiltoniano es:

$$H(t) = \ln C(t) - \lambda R(t) + \mu(t) (AK(t)^{1-\alpha} R(t)^{\alpha} - C(t))$$

Las CPO:

$$\frac{\partial H}{\partial C(t)} = \frac{1}{C(t)} - \mu(t) = 0, \quad (1)$$

$$\frac{\partial H}{\partial R(t)} = -\lambda(t) + \alpha \mu(t) (AK(t)^{1-\alpha} R(t)^{\alpha} = 0, \quad (2)$$

$$\frac{\partial H}{\partial X(t)} = 0 = -\lambda'(t), \quad (3)$$

$$\frac{\partial H}{\partial K(t)} = (1 - \alpha)\mu(t) (AK(t)^{-\alpha} R(t)^{\alpha} = -\mu'(t). \quad (4)$$

(b) Muestre que, en el óptimo, el ratio $\frac{R(t)}{K(t)}$ es decreciente y el ratio capital-producto es creciente.

Respuesta:

De (3), tenemos que $\lambda(t)$ es constante en el tiempo. Así, sustituyendo $y(t) = \frac{R(t)}{K(t)}$ en (2) y diferenciando respecto al tiempo tenemos:

$$(1 - \alpha)\frac{y'(t)}{y(t)} = \frac{\mu'(t)}{\mu(t)}$$

Reemplazando esto en (4):

$$-y^{-(1+\alpha)}y'(t) = A$$

Integrando:

$$\frac{y(t)^{-\alpha}}{\alpha} + c = At$$

Luego, con c
 como la constante de integración, tenemos que $Ay(t)^{\alpha} = \frac{1}{k+\alpha t}$, d
onde $k = \frac{\alpha c}{A}$. Esta ecuación nos muestra que y(t) (el ratio de R sobre K), desciende sobre el tiempo. Luego, con esto en cuenta tenemos:

$$\frac{K(t)}{Q(t)} = \frac{K(t)}{AK(t)^{1-\alpha}R(t)^{\alpha}} = \frac{1}{Ay(t)^{\alpha}} = k + \alpha t$$

Por lo tanto, el ratio capital ingreso crece linealmente a tasa α .

Control Óptimo 2

La tasa a la que un nuevo producto se puede vender $(\dot{Q} \text{ es } f(p(t))g(Q(t)), \text{ donde } p \text{ es el precio y } Q \text{ las ventas acumuladas. Asuma que } f'(p) < 0 \text{ y}$

$$q'(Q) = \begin{cases} > 0 & si \quad Q < Q_1 \\ < 0 & si \quad Q > Q_1 \end{cases}$$

Asuma además que el costo de producción unitario, c, es constante y que el horizonte de tiempo es finito (T).

(a) Plantee el problema de control óptimo, el Hamiltoniano y presente las condiciones de primer orden.

Respuesta:

El problema de control óptimo viene dado por: El problema de optimización viene dado por:

$$\max_{p} \int_{0}^{T} (p-c)f(p)g(Q)dt$$

sujeto a

$$Q'(t) = f(p)g(Q).$$

Luego, el Hamiltoniano es:

$$H = (p - c) f(p) q(Q) + \lambda f(p) q(Q)$$

Así, las cpo son:

$$\frac{\partial H}{\partial p} = g(Q)[f'(p)(p-c+\lambda) + f(p)] = 0, \tag{1}$$

$$\frac{\partial H}{\partial Q} = g'(Q)f(p)[p - c + \lambda] = -\lambda' \tag{2}$$

$$Q'(t) = f(p)g(Q) \tag{3}$$

(b) Determine la forma de p(t), de manera que maximice las ganancias a través del tiempo.

Respuesta:

De (2) tenemos que $\lambda = -\frac{f(p)}{f'(p)} - p + c$. Diferenciando respecto al tiempo tenemos que:

$$\lambda' = -p'[2 - \frac{f(p)f''(p)}{[f'(p)]^2}]$$

Luego, sustituyendo ambas expresiones en (2):

$$-p'(t)\left[2 - \frac{f(p)f''(p)}{[f'(p)]^2}\right] = \frac{g'(Q)[f(p)]^2}{f'(p)} \quad (4)$$

Como estamos maximizando ${\cal H}$ tenemos que:

$$\frac{\partial^2 H}{\partial p^2} = g(Q)[f''(p)(p-c+\lambda+2f'(p))] < 0$$

Si reemplazamos la expresión encontrada para λ en la ecuación de arriba llegamos a que:

$$g(Q)f'(p)[2 - \frac{f(p)f''(p)}{[f'(p)]^2}] < 0$$

Como g(Q) > 0 y f'(p) < 0, entonces la operación en paréntesis debe ser positiva. Así, tomando (4) tenemos que:

$$signo\{-p'(t)\} = signo\{\frac{g'(Q)[f(p)]^2}{\}}f'(p)$$

ó

$$signo\{-p'(t)\} = signo\{g'(Q)\}$$

Esto se traduce en que la estrategia óptima es subir el precio hasta que Q_1 unidades son vendidas, para después disminuirlo.