Osnovni pojmovi i terminologija u virtualizaciji

4. PREDAVANJE

Virtualized Data Center

Virtualize Network

Virtualized Data Center (VDC)

Transformacija Classic Data Center-a (CDC) u Virtualized Data Center (VDC) traži virtualizaciju osnovnih elemenata data centra.

Classic Data Center (CDC)

Virtualize Compute

Korištenjem pristupa "u fazama" možemo olakšati tranziciju prema virtualizaciji.

Compute virtualizacija

Compute Virtualization

Tehnika maskiranja fizičkog compute hardvera i omogućavanje izvršavanja više OS-ova da se izvršavaju konkurentno na jednoj fizičkoj mašini ili unutar okvira klastera.

- Omogućava kreiranje više virtualnih mašina (VM), od kojih svaka ima svoj OS i aplikacije
 - VM je logički entitet koji se ponaša i izgleda kao fizička mašina
- Virtualization layer "sjedi" između hardvera i virtualnih mašina
 - > To je ono što zovemo hypervisor

Potreba za Compute virtualizacijom

Prije virtualizacije

- Jedan OS per server
- Direktno "veže" HW i SW
- Može doći do konflikata kada više aplikacija koristi istu fizičku mašinu
- Infrastruktura obično radi ispod svojih mogućnosti, nije fleksibilna i prilično je skupa

Nakon virtualizacije

- Više OS-ova po serveru
- Odvaja OS i aplikacije od HW
- Izolira virtualne mašine jednu od druge, manji konflikti
- Poboljšava iskoristivost, fleksibilnost korištenja infrastrukture
- Trošak -?

Hypervisor

Hypervisor

Softverska komponenta koja omogućava pokretanje više OS-ova konkurentno na jednom fizičkom server u direktnu interakciju sa fizičkim hardverom.

- > Dvije komponente
 - > Kernel
 - > Virtual Machine Monitor (VMM)

Tipovi hipervizora

Type 1: Bare-Metal Hypervisor

Type 1: Bare-Metal Hypervisor

- U pitanju je operacijski sustav (OS)
- Instalira se i pokreće na x86 bare-metal hardveru
- Traži certificirani hardver

Type 2: Hosted Hypervisor

Type 2: Hosted Hypervisor

- Instalira se i pokreće kao dodatna aplikacija
- Koristi usluge OS-a za podršku pri korištenju uređaja i upravljanje resursima

Benefits of Compute Virtualization

- > Server consolidation
- > Isolation
- > Encapsulation
- > Hardware independence
- > Reduced cost

Requirements: x86 Hardware Virtualization

- > An operating system (OS) is designed to run on a bare-metal hardware and to fully own the hardware
 - > x86 architecture offer four levels of privilege
 - \times Ring 0, 1, 2, and 3
 - User applications run in Ring 3
 - ▼ OS run in Ring o (most privileged)
- > Challenges of virtualizing x86 hardware
 - > Requires placing the virtualization layer below the OS layer
 - > Is difficult to capture and translate privileged OS instructions at runtime
- Techniques to virtualize compute

Full Virtualization

- Virtual Machine Monitor (VMM) runs in the privileged Ring o
- > VMM decouples guest operating system (OS) from the underlying physical hardware
- > Each VM is assigned a VMM
 - Provides virtual components to each VM
 - Performs Binary Translation (BT) of nonvirtualizable OS instructions
- Guest OS is not aware of being virtualized

Paravirtualization

- > Guest operating system (OS) knows that it is virtualized
- Guest OS runs in Ring o
- Modified guest OS kernel is used, such as Linux and OpenBSD
- Unmodified guest OS is not supported, such as Microsoft Windows

Hardware Assisted Virtualization

- ➤ Achieved by using hypervisor-aware CPU to handle privileged instructions
 - > Reduces virtualization overhead caused due to full and paravirtualization
 - > CPU and Memory virtualization support is provided in hardware
- ➤ Enabled by AMD-V and Intel VT technologies in the x86 processor architecture

Virtual Machine

- > From a user's perspective, a logical compute system
 - Runs an operating system (OS) and application like a physical machine
 - Contains virtual components such as CPU, RAM, disk, and NIC
- > From a hypervisor's perspective
 - Virtual machine (VM) is a discrete set of files such as configuration file, virtual disk files, virtual BIOS file, VM swap file, and log file

Virtual Machine Files

File name	Description
Virtual BIOS File	Stores the state of the virtual machine's (VM's) BIOS
Virtual Swap File	 Is a VM's paging file which backs up the VM RAM contents The file exists only when VM is running
Virtual Disk File	 Stores the contents of the VM's disk drive Appears like a physical disk drive to VM VM can have multiple disk drives
Log File	Keeps a log of VM activityIs useful for troubleshooting
Virtual Configuration File	 Stores the configuration information chosen during VM creation Includes information such as number of CPUs, memory, number and type of network adaptors, and disk types

Virtual Machine Hardware

Serial/Com

Seri

VM Hardware Components

primijenjeno računarstvo

Virtual Hardware	Description
vCPU	Virtual machine (VM) can be configured with one or more virtual CPUs
	Number of CPUs allocated to a VM can be changed
vRAM	 Amount of memory presented to the guest operating system (OS)
	 Memory size can be changed based on requirement
Virtual Diak	Stores VM's OS and application data
Virtual Disk	 A VM should have at least one virtual disk
vNIC	 Enables a VM to connect to other physical and virtual machines
Virtual DVD/CD-ROM Drive	 It maps a VM's DVD/CD-ROM drive to either a physical drive or an .iso file
Virtual Floppy Drive	 It maps a VM's floppy drive to either a physical drive or an .flp file
Virtual SCSI Controller	VM uses virtual SCSI controller to access virtual disk
Virtual USB Controller	Maps VM's USB controller to the physical USB controller

Virtual Machine Console

- > Provides mouse, keyboard, and screen functionality
- > Sends power changes (on/off) to the virtual machine (VM)
- > Allows access to BIOS of the VM
- > Typically used for virtual hardware configuration and troubleshooting issues

Resource Management

Resource management

A process of allocating resources from physical machine or clustered physical machines to virtual machines (VMs) to optimize the utilization of resources.

- ➤ Goals of resource management
 - > Controls utilization of resources
 - > Prevents VMs from monopolizing resources
 - > Allocates resources based on relative priority of VMs
- > Resources must be pooled to manage them centrally

Resource Pool

Resource pool

It is a logical abstraction of aggregated physical resources that are managed centrally.

- > Created from a physical machine or cluster
- ➤ Administrators may create child resource pool or virtual machine (VM) from the parent resource pool
- ➤ Reservation, limit, and share are used to control the resources consumed by resource pools or VMs

Physical to Virtual Machine (P2V) Conversion

P2V Conversion

It is a process through which physical machines are converted into virtual machines (VMs).

- Clones data from physical machine's disk to VM disk
- Performs system reconfiguration of the destination VM such as:
 - Change IP address and computer name
 - Install required device drivers to enable the VM to boot

Physical Machine

Virtual Machine (VM)

Conversion Options

> Hot conversion

- > Occurs while physical machine is running
- > Performs synchronization
 - Copies blocks that were changed during the initial cloning period
- > Performs power off at source and power on at target virtual machine (VM)
- > Changes IP address and machine name of the selected machine, if both machines must co-exist on the same network

> Cold conversion

- Occurs while physical machine is not running OS and application
- > Boots the physical machine using converter boot CD
- Creates consistent copy of the physical machine

