PROJECT 1: ESTIMATING π

Abstract. The scope of the present project is to illustrate how Monte Carlo simulation can be used to estimate the value of π .

Estimate of π by means of a Poisson process on the plane

The mathematical constant π represents the ratio of a circle circumference to its diameter. We want to find an expression to evaluate in our simulation to approximate π . We know that by dividing the area of the circle by the area of its bounding square we get $\frac{\pi}{4}$. By simulating random numbers within the latter square, we get approximated values for the area of the circle and for the area of the square. Hence, we can estimate π by taking the ratio of simulated points that fall within the circle and the total number of simulated points and then multiplying by 4. In other words, we can estimate π by using the formula

$$\pi \approx 4 \cdot \frac{\text{number of simulated points within the circle}}{\text{total number of simulated points}}.$$

How do we generate random points in the square? We follow a Poisson process on the plane. A random set of points $X \subset \mathbb{R}^2$ is said to be a **Poisson process of density** $\lambda > 0$ on the plane if it satisfies the following conditions:

- Let X(D) denote the random number of points of X inside a domain D. For mutually disjoint sets $D_1, D_2, \ldots, D_k \subset \mathbb{R}^2$, the random variables $X(D_1), X(D_2), \ldots, X(D_k)$ are independent.
- Let |D| denote the area of a domain D. For any bounded $D \subset \mathbb{R}^2$ and any $k \geq 0$, it holds

$$P(X(D) = k) = e^{-\lambda |D|} \frac{(\lambda |D|)^k}{k!},$$

that is $X(D) \sim \text{Poi}(\lambda |D|)$. In particular, as a consequence, the mean number of points of X in D is $E[X(D)] = \lambda |D|$.

Algorithm to simulate a Poisson process on a square

We describe a simple algorithm to simulate a Poisson process X of density $\lambda > 0$ on the squared domain $\Lambda = [0, T] \times [0, T]$, with T > 0. The algorithm is based on two key facts:

- the number of points in Λ has distribution $Poi(\lambda T^2)$;
- conditional on $X(\Lambda)$ (number of points in Λ), locations of points $x \in X$ are independent and uniformly distributed on the domain Λ (see [2, p. 359]).

Input: size of the squared domain T; density of the Poisson process λ ;

Output: Euclidean coordinates of N points of the Poisson process;

Procedure

Step 1. Generate $N \sim \text{Poi}(\lambda T^2)$.

Step 2. If N = 0, then stop; there are no points in Λ . Otherwise, generate 2N independent random numbers in (0,1): $U_1, U_2, \ldots, U_N, V_1, V_2, \ldots, V_N$.

Step 3. The Euclidean coordinates of the N points of the Poisson process are (U_iT, V_iT) , for i = 1, ..., N.

Remark. Step 2 above relies on the fact that we are dealing with a squared domain. In general, different domain shapes require different algorithms. For instance, in [1, p. 279], an algorithm to generate a homogeneous Poisson process on a circle is given.

Project

Set $\Lambda = [0,1] \times [0,1]$ (squared domain) and let Γ be the circle with center $(\frac{1}{2},\frac{1}{2})$ and radius $\frac{1}{2}$ (inscribed circle). Fix a value of $\lambda > 0$ and consider a Poisson process X of density λ on the square Λ . An estimator for π is given by

$$\widehat{\Pi} = 4 \cdot \frac{X(\Gamma)}{X(\Lambda)}.$$

The value of π can be estimated by exploiting the law of large numbers. Let M denote the number of independent realizations of a Poisson process of density λ on the square Λ and let $\widehat{\Pi}_j$ be the estimate of π relative to the j-th simulation. If M is sufficiently large, then we have the approximation

$$\pi \approx \frac{1}{M} \sum_{j=1}^{M} \widehat{\Pi}_{j}.$$

By running several simulations and collecting the results in appropriate plots, investigate the following problems:

- How the approximate value of π depends on λ . Perform the analysis for densities of the form $\lambda = 5^k$, with $k \in \{1, 2, ..., 10\}$ (integer numbers from 1 to 10).
- How the standard deviation depends on λ . Show that the sample standard deviation

$$S_M = \sqrt{\frac{1}{M-1} \sum_{j=1}^{M} \left(\widehat{\Pi}_j - \pi\right)^2}$$

decreases to zero roughly as $\frac{c}{\sqrt{\lambda}}$, for some constant c > 0. Perform the analysis for densities of the form $\lambda = 5^k$, with $k \in \{1, 2, ..., 10\}$ (integer numbers from 1 to 10).

References

- [1] S.M. Ross. Simulation. Academic Press, 2006
- [2] S.I. Resnick. Adventures in stochastic processes. Birkhäuser Boston, 1992