Homework 1 CS-712

Brandon Bluemner

2017

1 Problem 1

1.1 a : 4 - adjacent

As show in the **Table 1** for 4 - adjacent the answer is no, this is because $\forall i \in [0-3], S1[i][3] \neq S2[i][0]$. So the column 3 in S1 and the column 0 in s2 have no over laps with respect to $V = \{1\}$

1.2 b: 8 - adjacent

This is an adjacent connection show by the two underscored numbers in S1 and S2 (S1[3][3] = S2[0][3] on the diagonal)

1.3 Union Question

 $S1 \cup S2$ (as shown in the far right of Table 1) is both 4-adjacent, denoted by bold numbers and 8-adjacent denoted by underscored numbers.

Table 1: S1				S2				$\parallel S1 \cup S2$			
0	0	0	0	0	0	1	1	0	0	1	1
0	0	1	0	0	1	0	0	0	1	1	0
0	0	1	0	1	1	0	0	1	1	1	0
0	1	1	1	0	0	0	0	0	1	1	1

2 Problem 2

The images shown below are quite different, but their histograms are the same. Suppose that each image is blurred with a 3*3 averaging mask. Would the histograms of the blurred images still be equal? Please explain.

No, The left side blue effect will have pixes such as the following

0	0	1	0	1	1
0	0	1	0	1	1
0	0	1	0	1	1

how ever the right had side will get a blur filer of

1	U	U
0	1	1
0	1	1

which will yield a intensity that the left image won't have.

: the images will be different.

3 Problem 3

Consider the image segment shown

$$3 \ 1 \ 2 \ 1 \ (q)$$

3.1 a : Let
$$V = \{0, 1\}$$

$$x \quad 1 \quad x \quad 1 \quad (q)$$

$$\frac{-}{1}$$
 $\frac{-}{x}$ $\frac{-}{1}$ $\frac{-}{1}$

There is no way for 4 -adjacent or 8 - adjacent to get from $p \to q$, as row[2] has no members of the set as shown above in underscored $\underline{\mathbf{x}}$

A path exists for both 4-adjacent and 8-adjacent highlighted above.

4 Problem 4

Perform histogram equalization on the following histogram, where r is the intensity level and n is the number of pixels with the corresponding intensity level. You need to find out the histogram after the equalization.

r	n	$n \div (M \times N)$	S_k	$(int)S_k$
0	400	0.09765625	0.68359375	1
1	700	0.170898438	1.879882813	2
2	800	0.1953125	3.247070313	3
3	900	0.219726563	4.78515625	5
4	500	0.122070313	5.639648438	6
5	400	0.09765625	6.323242188	6
6	196	0.047851563	6.658203125	7
7	200	0.048828125	7	7
\sum	4096	M = 64		
$\sqrt{\sum}$::	64	N = 64		

5 Problem 5

Give a 3*3 mask for performing unsharp masking in a single pass through an image. Assume that the average image is obtained using the filter below.

$$f(x,y) = \text{original image}, \quad \bar{f}(x,y) = \text{blur image}, \quad g_{mask} = f(x,y) - \bar{f}(x,y)$$

 $g(x,y) = f(x,y) + g_{mask} \Rightarrow g(x,y) = f(x,y) + f(x,y) - \bar{f}(x,y)$
 $\therefore 2f(x,y) - \bar{f}(x,y)$

6 Problem 6

Textbook Problem 3.28 Show that subtracting the Laplacian from an image is proportional to unsharp masking. Use the definition for the Laplacian given below:

$$\nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

$$\begin{split} &f(x,y) - \bigtriangledown^2 f(x,y) = \\ &= f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)] \\ &= 6f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) + 1f(x,y)] \\ &= 5 \times \left[\frac{6}{5} \times f(x,y) - \frac{1}{5} \times [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) + 1f(x,y)] \right] \end{split}$$

$$= 5 \times \left[\frac{6}{5}f(x,y) - \bar{f}(x,y)\right]$$

$$\therefore f(x,y) - \nabla^2 f(x,y) \propto f(x,y) - \bar{f}(x,y)$$

7 Problem 7

Textbook Problem 4.12 Consider a checkerboard image in which each square is 1mm * 1 mm. Assuming that the image extends infinitely in both coordinate directions, what is the minimum sampling rate (in samples/mm) required to avoid aliasing? (Hint; consider the image in the form of . . .

101010101 The period of this signal is 2mm.)

$$\begin{split} P &= 2mm; frequency = \frac{1}{period} \\ max_{frequency} &= \frac{1}{p} \Rightarrow max_{frequency} = \frac{1}{2} = 0.5 \frac{cycles}{mm} \\ \text{to avoid the aliasing } 2 \times max_{frequency} = 2(0.5) = 1 \end{split}$$

... each sample would need to exceed $\frac{1sample}{mm}$

8 Problem 8

Prove that the 1DFT satisfies

$$F(0) = \sum_{x=0}^{M-1} f_x$$

$$F(u) = \sum_{x=0}^{M-1} f_x \times e^{\frac{-j2\pi ux}{M}}$$

 $e^{\frac{-j2\pi ux}{M}}$ where $u=0 \Rightarrow e^0=1$

$$F(0) = \sum_{x=0}^{M-1} f_x \times 1 = \sum_{x=0}^{M-1} f_x \blacksquare$$