暑假班中期考试数学试卷-平面向量部分

本试卷共 6 页, 150 分. 考试时长 120 分钟. 测试分三个部分:填空、证明和计算. 计算题 仅给出最后结果不给分.

一、 填空题: 8 小题, 共 45 分.

- 1. (5 分) 设 P 是线段 P_1P_2 上的一点,点 $P_1 \setminus P_2$ 的坐标分别是 $(x_1, y_1) \setminus (x_2, y_2)$.
 - (I) 当 P 是线段 P_1P_2 的一个三等分点时,点 P 的坐标是 ;
 - (II) 当 $\overrightarrow{P_1P} = \lambda \overrightarrow{P_1P_2} (\lambda \neq -1)$ 时,点 P 的坐标是______.
- 2. (5 分) 已知 a = (4, 2),与 a 垂直的单位向量的坐标为______
- 3. (5 分) 已知 A(2,3)、B(4,-3),点 P 在线段 AB 的延长线上,且 $|\overrightarrow{AP}| = \frac{3}{2} |\overrightarrow{PB}|$,点 P 的 坐标为
- 4. (5 分) 已知向量 $\mathbf{a} = (1, 0)$ 、 $\mathbf{b} = (1, 1)$ 、 $\mathbf{c} = (-1, 0)$, $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$, 则 $\lambda =$ _______, $\mu =$ ______.
- 5. (5 分) 若 e_1 、 e_2 是夹角为 60° 的两个单位向量,则 $a = 2e_1 + e_2$, $b = -3e_1 + 2e_2$ 的夹角为_____.
- 6. (5 分) 如图,在 $\triangle ABC$ 中,点 O 是 BC 的中点,过点 O 的直线分别交直线 AB、AC 于不同的两点 M、N. 设 AB = m AM, AC = n AN, 则 m + n = _______.

- 7. (10 分) O 是 $\triangle ABC$ 内一点,定理 $S_{\triangle BOC} \cdot \overrightarrow{OA} + S_{\triangle AOC} \cdot \overrightarrow{OB} + S_{\triangle AOB} \cdot \overrightarrow{OC} = \overrightarrow{0}$ 成立. 记 $S_{\triangle BOC} : S_{\triangle AOC} : S_{\triangle AOB} = x : y : z$, 三边长为 a, b, c, 三个角为 A, B, C.
 - (I) 若 O 为 $\triangle ABC$ 重心,则 x:y:z=_____.
 - (II) 若 O 为 $\triangle ABC$ 内心,则 x:y:z=_____.
 - (III) 若 O 为 $\triangle ABC$ 外心,则 x:y:z=______.
 - (IV) 若 O 为 $\triangle ABC$ 垂心,则 x:y:z=_____.
- 8. (5 分) 如图,B、D 是以 AC 为直径的圆上的两点,其中 $AB = \sqrt{t+1}$, $AD = \sqrt{t+2}$, 则 $\overrightarrow{AC} \cdot \overrightarrow{BD} =$

- 二、 证明题: 8 小题, 共 60 分.
- 9. (5分)根据平面向量运算的定义,证明:对于向量 a,b,c 和实数 λ ,有

$$\begin{cases} (1) & \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{a}, \\ (2) & (\lambda \boldsymbol{a}) \cdot \boldsymbol{b} = \lambda (\boldsymbol{a} \cdot \boldsymbol{b}) = \boldsymbol{a} \cdot (\lambda \boldsymbol{b}), \\ (3) & (\boldsymbol{a} + \boldsymbol{b}) \cdot \boldsymbol{c} = \boldsymbol{a} \cdot \boldsymbol{c} + \boldsymbol{b} \cdot \boldsymbol{c}. \end{cases}$$

10. (5 分) 如图, 在任意四边形 ABCD 中, E, F 分别为 AD, BC 的中点, 求证: $\overrightarrow{AB} + \overrightarrow{DC} = 2\overrightarrow{EF}$.

11. (5 分) 如图,CD 是 $\triangle ABC$ 的中线;且 $CD=\frac{1}{2}$ AB. 用向量方法证明 $\triangle ABC$ 是直角三角形.

12. (5分)用向量法证明:直径所对的圆周角是直角.

13. (5分)用向量方法证明两角差的余弦公式

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta.$$

14. (5 分) 用向量方法证明:对于任意的 $a,b,c,d\in \mathbf{R}$,恒有不等式

$$(ac + bd)^2 \le (a^2 + b^2)(c^2 + d^2).$$

15. (20分)根据要求分别证明以下定理或推论.

- (I) 用向量法证明余弦定理: $c^2 = a^2 + b^2 2ab \cos C$.
- (II) 用向量法证明正弦定理:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

(III) 根据正弦定理证明:

$$S_{\triangle ABC} = \frac{1}{2}ab\sin C.$$

(IV) 证明:设三角形的外接圆半径为R,则

$$\frac{a}{\sin A} = 2R.$$

16. (10 分) 在 $\triangle ABC$ 中,BE 和 CF 分别是两条中线,交于点 O; D 为边 BC 的中点. 证明:A、O、D 三点共线,且 AO=2OD.

- 三、 计算题: 4 小题, 共 50 分.
- 17. (10 分) 已知点 C 为扇形 AOB 的弧 AB 上任意一点,且 $\angle AOB = \frac{\pi}{3}$,若 $\overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$ $(\lambda, \mu \in R)$,求 $\lambda + \mu$ 的取值范围.

18. (12 分) 已知 \overrightarrow{OA} 、 \overrightarrow{OB} 、 \overrightarrow{OC} 均为单位向量,满足 \overrightarrow{OA} · $\overrightarrow{OB} = \frac{1}{2}$, \overrightarrow{OA} · $\overrightarrow{OC} \geq 0$, \overrightarrow{OB} · $\overrightarrow{OC} \geq 0$, \overrightarrow{OB} · $\overrightarrow{OC} = x$ $\overrightarrow{OA} + y$ \overrightarrow{OB} ($x, y \in R$),求 3x + y 的最小值.

19. (10 分) 假设二维空间中有两个点 $A(x_1,y_1)$ 、 $B(x_2,y_2)$,O 为坐标原点,余弦相似度为向量 \overrightarrow{OA} 、 \overrightarrow{OB} 夹角的余弦值,记作 $\cos(A,B)$,余弦距离为 $1-\cos(A,B)$. 已知 $P(\cos\alpha,\sin\alpha)$, $Q(\cos\beta,\sin\beta)$, $R(\cos\alpha,-\sin\alpha)$,若 P,Q 的余弦距离为 $\frac{1}{3}$, $\tan\alpha\cdot\tan\beta=\frac{1}{7}$,求 Q,R 的余弦距离.

20. (13 分) 设点 P 在单位圆的内接正八边形 $A_1A_2\cdots A_8$ 的边 A_1A_2 上,求 $\overrightarrow{PA_1}^2 + \overrightarrow{PA_2}^2 + \cdots + \overrightarrow{PA_8}^2$ 的取值范围.