\dot{q}_k , erste Ableitung der generalisierten Koordinaten q_k nach der Zeit:

$$\dot{q}_k(t), k = 1, ..., f$$

 q_k , dem gegebenen mechanischen System optimal angepasste Koordinaten. Ihre Anzahl entspricht den Freiheitsgraden des Systems. $q_k(t), k=1,...,f$

Differenz der kinetischen Energie $E_{\rm kin}=T$ und der potenziellen Energie $E_{\rm pot}=V$ als Funktionen der generalisierten Koordinaten q_k und generalisierten Geschwindigkeiten \dot{q}_k :

$$L(q_k, \dot{q}_k, t) = T(q_k, \dot{q}_k) - V(q_k, t)$$

 $Q_k = \sum_{i=1}^{3N} F_i \frac{\partial x_i}{\partial q_k}, k=1,...,f$ $x_i, i=1,...,3N \text{ sind die kartesischen Koordinaten eines Systems aus N Massenpunkten.}$

 Q_k , definiert durch die Ausdrücke

Momentane infinitesimale Verschiebung $\delta \vec{r}$ eines Massenpunktes unter Einhaltung der für die Bewegung geltenden einschränkenden Nebenbedingungen, ohne Änderung der Zeitvariablen:

$$\vec{r} \rightarrow \vec{r} + \delta \vec{r}$$
 bei $\delta t = 0$

System von f Differentialgleichungen 2. Ordnung in der Zeit zur Bestimmung der generalisierten Koordinaten q_k als Funktionen der Zeit:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = 0, k = 1, ..., f$$

Wirkungsintegral, W Integral der Lagrange-Funktion $L(q_k,\dot{q}_k,t)$ über die Zeit,

$$W = \int_{t_1}^{t_2} L(q_k(t), \dot{q}_k(t), t) dt$$

Zwischen zwei festen Punkten $q_k(t_1), q_k(t_2)$ verlaufende Bahnkurve $\hat{q}_k(t)$, die von der tatsächlichen Bahnkurve $q_k(t)$ infinitesimal abweicht durch Zusammenfassung der virtuellen Verrückungen δq_k zu einer festen Zeit t mit $\delta t = 0$.