POLS 5377 Scope & Method of Political Science

Week 7 Data Presentation

Data presentation

Healey. (2016) Statistics: A Tool for Social Research, Chapter 2

Key Questions:

- What are the most commonly used graphs for data presentation?
- * How do we decide which graph we should use?
- * How can graphs be misused, and how do we avoid it?

Outline

- * Pie charts
- * Bar charts
- * Histograms
- * Line charts
- Using Graphs Appropriately

Using Graphs to Present Data

- Pie charts, bar charts, histograms, and line charts present frequency distributions graphically
- Graphs are commonly used for presenting "pictures" of research results
- Graphs and charts are very useful ways to display the overall shape of a distribution

Pie Chart

- Pie charts are useful for categorical variables with only a few categories. The pie is divided into segments which are proportional in size to the percentage of cases in each category.
- * When more than five, may consider to use other types of chart.

Bar Chart

Bar charts are useful for categorical variables. The categories are represented by bars. The height of these bars corresponds to the number or percentage of cases in each category.

Histograms

- Histogram: most appropriate for continuous interval-ratio level variables, but can be used for discrete interval-ratio level variables
- * Look like bar charts, but categories (or scores) of the variable border each other Age Distribution of the Population of the United States, 2010

Line Charts

- * Sometimes called frequency polygons
- Constructed similarly to a histogram, except graph a dot at each category's midpoint and then connect the dots
- Especially appropriate for continuous interval-ratio level variables, but can be used for discrete interval-ratio level variables

- * Because graphs are powerful and effective tool to deliver messages, they can also be misused by the presenter or misleading to the audience.
- * We need to be extra cautious when presenting or reading graphs.
- Here are some examples to show the importance of using graphs appropriately:

Using Graphs Appropriately

In 2015, the White House tweeted: "Good news: America's high school graduation rate has increased to an all-time high." The tweet included this chart:

Source: http://qz.com/580859/the-most-misleading-charts-of-2015-fixed/

- * The chart is misleading, because:
 - * The illustration does not represent the data in appropriate scale.
 - * The column chart didn't start the vertical axis at zero

Source: http://qz.com/580859/the-most-misleading-charts-of-2015-fixed/

Using Graphs Appropriately

To emphasize the change of rates, we can present the data with the y-axis starts from a higher value. But it is better to include more data points to give the audience a good reference.

Source: http://qz.com/580859/the-most-misleading-charts-of-2015-fixed/

Does Global Warming exist? National Review tweeted this line chart in December 2015.

Source: https://twitter.com/NRO/status/676516015078039556/photo/1?ref_src=twsrc%5Etfw

Using Graphs Appropriately

If we want to accurately represent the change of global average temperature since 1880, we can start the y-axis at a higher number:

Source: http://qz.com/580859/the-most-misleading-charts-of-2015-fixed/

- Watch this video to learn more about Misleading Graphs: https://www.youtube.com/watch?v=GEsjMbTPiZM
- * Common misleading practices:
 - Vertical axis does not start from zero (it is appropriate under certain circumstances)
 - * Using illustrations or icons
 - * 3D graphs
 - * Uneven interval
 - Missing data points
 - Wrong information

Dealing with Data

- * As a analyst, when you get a dataset, first thing you should do: screen the dataset by using the descriptive statistics and check the following common problems:
 - * Improbable values
 - Check the values that outside of expected range, for example, the age of respondents that is 3, 4, 5, or 99, 107...etc.
 - * missing values
 - * Check the blanks that should not be existed
 - * outliers
 - * inconsistent spelling

After this lecture:

You should be able to:

- Distinguish different types of graphs used in descriptive statistics
- * Be aware of the misleading graphs
- Be a conscious data consumer and responsible data presenter