Álgebra Lineal II

Alejandro López

Curso 2018-2019

1 Formas canónicas de endomorfismos

1.1 Invariantes lineales

- **(D) Grupo lineal general.** Sea V un espacio vectorial. Se denota por GL(V) al conjunto de todos los automorfismos definidos en V, que tiene estructura de grupo y recibe el nombre de *grupo lineal general* de V.
- (**P**) Equivalencia lineal. Dos endomorfismos f y g de V son linealmente equivalentes si y solo si sus matrices son semejantes. Dadas dos matrices A, B, son semejantes si existe una matriz P regular tal que $A = P^{-1}BP$.
- **(D) Invariante lineal.** Se llama *invariante lineal* a cualquier propiedad que comparten los endomorfismos linealmente equivalentes; o, de forma equivalente, las propiedades que comparten las matrices semejantes.

1.2 Autovalores y autovectores. Endomorfismos diagonalizables

- **(D) Autovalor.** Diremos que un escalar $\lambda \in \mathbb{K}$ es un *autovalor* de un endomorfismo f si existe un vector no nulo $v \in V$ tal que $f(v) = \lambda v$. Se denomina *espectro* de f y se denota por sp(f) al conjunto formado por todos los autovalores de f.
- **(D) Autovector.** Un vector $v \in V$ es un *autovector* asociado a un autovalor λ de f si y solo si $f(v) = \lambda v$. El conjunto formado por todos los autovectores asociados a un autovalor λ se denomina *subespacio propio* asociado a λ y se denota por

$$V_{\lambda} = \{ v \in V : f(v) = \lambda v \}$$

(P). Sea λ un autovalor de un endomorfismo f y A su matriz respecto de la base \mathcal{B} . Entonces se cumple lo siguiente:

i. $V_{\lambda} = Ker(f - \lambda id)$ es un subespacio vectorial de V.

ii.
$$dim(V_{\lambda}) = dim(V) - rg(A - \lambda I)$$
.

iii.
$$\lambda \in sp(f)$$
 si y solo si $det(A - \lambda I) = 0$.

(D) Polinomio característico. Sea f un endomorfismo de un espacio vectorial V de dimensión n, y A una matriz de f respecto de una base \mathcal{B} . Se denomina *polinomio* característico de f, o de A, al polinomio de grado n en la indeterminada λ

$$p_f(\lambda) = det(A - \lambda I).$$

- (**D**) Endomorfismo diagonalizable. Un endomorfismo es *diagonalizable* si existe una base \mathcal{B} tal que la matriz de f en dicha base es diagonal.
- **(P).** Un endomorfismo es diagonalizable si y solo si existe una base de V formada por autovectores de f.

(P) Autovectores y autovalores.

- i. Sean $\{v_1, ..., v_k\}$ autovectores no nulos asociados a autovalores distintos, entonces son linealmente independientes.
- (ii. Sean $\{\lambda_1,...,\lambda_k\}$ autovalores distintos, entonces se cumple esta suma directa de subespacios propios

$$V = V_{\lambda_1} \oplus ... \oplus V_{\lambda_k}$$

- (**D**) Multiplicidad de un autovalor. Sea λ un autovalor de un endomorfismo f, entonces tiene asociados dos tipos de multiplicidades:
- i. Llamamos *multiplicidad algebraica* de λ a su multiplicidad como raíz del polinomio característico, y la denotamos por a.
- ii. Llamamos *multiplicidad geométrica* de λ a la dimensión del subespacio propio V_{λ} , y la denotamos por g.
- **(P).** La multiplicidad algebraica de un autovalor es mayor o igual que la multiplicidad geométrica.
- (T) Caracterización de los endomorfismos diagonalizables. Sea f un endomorfismo de un espacio vectorial V de dimensión n y λ_1 , ..., λ_k los distintos autovalores de f con multiplicidades algebraicas a_1 , ..., a_k y geométricas g_1 , ..., g_k . Entonces f es diagonalizable si y solo si se cumplen estas dos condiciones:

i.
$$a_1 + ... + a_k = n$$

ii.
$$a_i = g_i, \forall i \leq k$$

(P). Si un endomorfismo f de un espacio vectorial V de dimensión n tiene n autovalores distintos, entonces f es diagonalizable.

1.3 Forma canónica de Jordan

(D) Bloque y matriz de Jordan.

i. Un *bloque de Jordan* de orden n es una matriz cuadrada de orden n que denotaremos por $B_n(\lambda)$, tal que su diagonal solo tiene valores λ , y la subdiagonal solo

tiene unos.

- ii. Una *matriz de Jordan* es una matriz cuadrada diagonal por bloques de modo que los bloques de la diagonal son bloques de Jordan.
- **(D) Subespacio invariante.** Un subespacio vectorial U de V se dice que es invariante por un endomorfismo f de V, o f-invariante, si se cumple $f(U) \subset U$. Es decir, $\forall u \in U, f(u) \in U$.
- **(P)** Intersección y suma de subespacios invariantes. Sean U y W dos subespacios invariantes por un endomorfismo f de V, entonces $U \cap W$ y U + W también lo son.
- **(P) Base asociada a un bloque de Jordan.** La base asociada a un bloque de Jordan es de la forma

$$\mathcal{B}_{J} = \{v_{1}, (f - \lambda Id)(v_{1}), ..., (f - \lambda Id)^{n-1}(v_{1})\}\$$

- **(P) Subespacio r-cíclico.** Sean los vectores $\{v_1, (f-\lambda Id)(v_1), ..., (f-\lambda Id)^{n-1}(v_1)\}$ tal que $v \in Ker(f-\lambda Id)^r Ker(f-\lambda Id)^{r-1}, r \ge 1$. El subespacio que generan se denomina *subespacio r-cíclico*, y es un subespacio invariante por f.
- (D) Subespacio propio generalizado. Se denomina *subespacio propio generalizado* i-ésimo asociado a un autovalor λ de un endomorfismo f, al subespacio vectorial

$$K^{i}(\lambda) = Ker(f - \lambda Id)^{i}$$
, para $i = 1, 2, ...$

- (P) Propiedades de los subespacios propios generalizados. Sea λ un autovalor de un endomorfismo f. Entonces, se cumplen las siguientes propiedades:
 - i. $K^i(\lambda) \subseteq K^{i+1}(\lambda)$.
 - ii. $v \in K^i(\lambda)$ si y solo si $(f \lambda Id)(v) \in K^{i-1}(\lambda)$.
- iii. Existe un entero k>0 tal que $K^k(\lambda)$ contiene o es igual que el resto de subespacios propios generalizados. Este subespacio se denomina *subespacio máximo* asociado a λ , y se denota por $M(\lambda)$.
 - iv. Los subespacios propios generalizados son f-invariantes.
- v. Sea $d_i = dim(K^i(\lambda))$. Entonces se cumple que la diferencia en dimensiones entre subespacios propios generalizados consecutivos $r_i = d_i d_{i-1}$ es decreciente.
- (T) Base de Jordan de un subespacio máximo. Sea λ un autovalor de un endomorfismo f de un espacio vectorial V de dimensión n; entonces existe una base

B del subespacio máximo $M(\lambda)$ tal que la matriz de f restringido a $M(\lambda)$ es una matriz de Jordan.

- (**P**). Sea f un endomorfismos y λ_1 , ..., λ_r autovalores de f distintos, y sean $M(\lambda_1)$, ..., $M(\lambda_r)$ los subespacios máximos asociados. Entonces, la aplicación lineal $f \lambda_i Id$ restringida a $M(\lambda_j)$: $i \neq j$, es un automorfismo de $M(\lambda_j)$.
- (T). Teorema de existencia. Sea f un endomorfismo de un espacio vectorial V de dimensión n. Entonces existe una base \mathcal{B} tal que la matriz de f respecto de esa base es una matriz de Jordan si y solo si f tiene n autovalores teniendo en cuenta su multiplicidad (si un autovalor se repite m veces, se considera como m autovalores).
- **(D). Forma canónica de Jordan.** Sea f un endomorfismo de un espacio vectorial V. Diremos que f admite una forma canónica de Jordan si existe una base \mathcal{B}_J de V tal que la matriz de f respecto a dicha base es una matriz de Jordan J.
- (**P**). Teorema de Jordan. Sean f y g dos endomorfismos de un espacio vectorial V que admiten una forma de Jordan y tales que sus polinomios característicos coinciden. Sean $\lambda_1, ..., \lambda_r$ sus autovalores distintos y $K_f^i(\lambda_j), K_g^i(\lambda_j)$ los subespacios propios generalizados de f y g respectivamente. Entonces g y f son linealmente equivalentes si y solo si

$$dim(K_f^i(\lambda_j)) = dim(K_g^i(\lambda_j)), \forall j=1,...,r; i=1,2,...$$

- (A) Algoritmo para calcular la base de Jordan. Sea A una matriz no diagonalizable de $n \times n$. Para hallar su base de Jordan se deben seguir los siguientes pasos:
- 1. Calculamos sus autovalores hallando las soluciones de su polinomio característico.
- **2.** Calculamos los subespacios propios generalizados hasta obtener el subespacio máximo de cada autovalor.
- **3.** Obtenemos una base de cada subespacio máximo. Para esto debemos proceder de la siguiente forma:
- **3.1.** Sea $M(\lambda) = K^k$ el subespacio máximo de λ y $r_k = dim(K^k) dim(K^{k-1})$. Entonces debemos seleccionar r_k vectores cualesquiera $v_1, ..., v_{r_k} \in K^k K^{k-1}$, de forma que ninguna de sus combinaciones lineales pertenezca a K^{k-1} . Finalmente, añadimos a la base de $M(\lambda)$: $\mathcal{B}_{M(\lambda)}$ los vectores $v_1, ..., v_{r_k}$ y sus imágenes sucesivas por las potencias de $(f \lambda Id)$.

3.2. Consideramos la diferencia de dimensiones entre los subespacios propios generalizados sucesivos $l_{k-1} = dim(K^{k-1}) - dim(K^{k-2})$ y seleccionamos l_{k-1} vectores arbitrarios linealmente independientes $u_1, ..., u_{l_{k-1}} \in K^{k-1} - K^{k-2}$. de forma que ninguna de sus combinaciones lineales pertenezca a K^{k-2} . Los añadimos a $\mathcal{B}_{M(\lambda)}$ junto con sus imágenes iteradas por $(f - \lambda Id)$.

Continuamos así hasta que en el último paso llegamos al subespacio propio $K^1=V_{\lambda}$.

- **3.3.** Si con los vectores que se han añadido en los pasos anteriores tenemos una base de K^1 ya hemos terminado. En caso contrario, añadimos los vectores $w_1, ..., w_{l_1}$ que fueran necesarios y el proceso ya habría terminado.
- **4.** Finalmente, obtenemos la base de Jordan \mathcal{B}_J uniendo las bases de todos los subespacios máximos calculadas en el paso anterior.

1.4 Forma de Jordan real

- **(T). Teorema de Ruffini.** Sea $p(x) \in \mathbb{K}[x]$ un polinomio y $a \in \mathbb{K}$ una de sus raíces, entonces (x a) divide a p(x).
- **(P) Factorización compleja.** Sea $p(x) \in \mathbb{R}[x]$ un polinomio y a + bi, $a bi \in \mathbb{C}$ dos raíces conjugadas. Entonces:

$$p(x) = q'(x)(x - (a + bi))(x - (a - bi)) = q'(x)((x - a)^2 + b^2)$$

(P) Extensión compleja de un espacio vectorial. Sea V un espacio vectorial, llamamos *extensión compleja* de V al espacio vectorial $\hat{V} = \{v + wi : v, w \in V\}$ que contiene a V. Un endomorfismo f de \hat{V} a \hat{V} es de la forma

$$f:\hat{V}\to\hat{V}:f(u+wi)=f(u)+f(w)i$$

- **(P).** Si $\mathcal B$ es una base de V, también es una base de $\hat V$.
- (P) Subespacios máximos. Sea $\mathcal{B} = \{v_1, ..., v_r\}$ una base de $M(\lambda)$, entonces $\hat{\mathcal{B}} = \{\hat{v}_1, ..., \hat{v}_r\}$ lo es de $M(\hat{\lambda})$.

2 Subespacios invariantes

(**D**). Subespacio reducible Sea f un endomorfismo de un espacio vectorial real V y U un subespacio f-invariante. Diremos que U es reducible si se puede descomponer en suma directa

$$U = U_1 \oplus U_2$$

Tales que U_1 , U_2 son subespacios f-invariantes no triviales. En caso contrario diremos que U es *irreducible*.

2.1 Rectas e hiperplanos invariantes

- (P) Rectas e hiperplanos invariantes. Sea f un endomorfismo de V y A su matriz respecto de una base dada \mathcal{B} . Entonces se cumple lo siguiente:
 - i. L(v) es una recta invariante por f si y solo si v es un autovector de f.
- ii. El hiperplano de ecuación $u_1x_1 + ... + u_1x_1 = 0$ es invariante por f si y solo si $(u_1, ..., u_n)_B$ es un autovector del automorfismo f^t , cuya matriz es la traspuesta de la de f.
 - (P). De la proposición anterior se deduce lo siguiente:
- i. Todas las rectas f-invariantes L(v) están contenidas en los subespacios propios V_{λ} , tal que $\lambda \in sp(f)$.
- ii. El número de rectas invariantes es igual al número de hiperplanos invariantes.

2.2 Descomposición de subespacios invariantes

(P) Descomposición de subespacios invariantes. Sean f un endomorfismo que que admite una forma canónica de Jordan J y U un subespacio f-invariante. Entonces U se descompone como suma directa de subespacios invariantes $U_i \subset M(\lambda_i)$:

$$U = U_1 \oplus ... \oplus U_k$$
, tal que $U_i = M(\lambda_i) \cap U$

(P) Subespacios f-invariantes irreducibles. Sea f un endomorfismo de un espacio vectorial V que admite una forma canónica de Jordan J. Un subespacio U de V es f-invariante e irreducible si y solo si es un subespacio r-cíclico.

2.3 Subespacios invariantes y polinomios

(P). Sea f un endomorfismo de un espacio vectorial V y $p(t) \in \mathbb{K}[t]$. Entonces el subespacio vectorial Kerp(f) es f-invariante.

- **(P) Polinomio anulador.** Diremos que un polinomio p(t) anula a un endomorfismo f o que es un *polinomio anulador* de f si p(f) es el polinomio nulo, lo que denotaremos por p(f) = 0.
- (T) Teorema de Cayley-Hamilton. Si $p_f(t)$ es un polinomio característico de un endomorfismo f entonces $p_f(f) = 0$.
- **(P).** Todo autovalor de un endomorfismo f es raíz de cualquier polinomio anulador de f.
- **(D) Polinomio mínimo.** Se denomina *polinomio mínimo anulador* de un endomorfismo f al polinomio $m_f(t) \in \mathbb{K}[t]$ mónico de grado mínimo que anula a f.

3 Formas bilineales y cuadráticas

3.1 Introducción

(D) Forma bilineal. Dado un espacio vectorial V, una aplicación $f: V \times V \to \mathbb{K}$ es una *forma bilineal* si cumple las siguientes propiedades:

i.
$$f(au + bv, w) = af(u, w) + bf(v, w)$$
.

ii.
$$f(u, av + bw) = af(u, v) + bf(u, w)$$
.

3.2 Matriz de una forma bilineal

(D) Matriz de una forma bilineal. Sea $f: V \times V \to \mathbb{K}$ una forma bilineal y sean $x, v \in V: x = (x_1, ..., x_n)_B$ e $y = (y_1, ..., y_n)_B$, donde $B = (v_1, ..., v_n)$ es una base de V. Entonces, la matriz asociada a f se define como sigue:

$$\mathfrak{M}_B(f) = (x_1 \dots x_n) A \begin{pmatrix} y_1 \\ \vdots \\ y_1 \end{pmatrix} : A = f(v_i, v_j), \forall v \in \mathcal{B}.$$

- **(P) Congruencia de matrices.** Dadas dos matrices A y B, están asociadas a la misma forma bilineal en distintas bases si y solo si son congruentes, es decir, existe una matriz P invertible tal que $A = P^t B P$.
- (**D**) Rango de una forma bilineal. Se llama rango de una forma bilineal f, al rango de cualquier matriz de f.

- (D) Forma bilineal simétrica y antisimétrica. Una forma bilineal $f: V \times V \to \mathbb{K}$ puede ser:
 - i. sim'etrica si $f(u, v) = f(v, u), \forall u, v \in V$.
 - ii. antisimétrica si $f(u, v) = -f(v, u), \forall u, v \in V$.

3.3 Formas cuadráticas

- **(D) Forma cuadrática.** Se llama *forma cuadrática* asociada a la forma bilineal f de V a la aplicación $\Phi: V \to \mathbb{K}$ definida por $\Phi(v) = f(v, v)$.
- (P) Caracterización de la forma cuadrática. Una aplicación $\Phi:V\to\mathbb{K}$ es una forma cuadrática si y solo si cumple las siguientes propiedades:
 - i. $\Phi(\lambda v) = \lambda^2 \Phi(v), \forall v \in V$.
- ii. La aplicación $f_{\Phi}: V \times V \to \mathbb{K}$ definida por $f_{\Phi}(u, v) = \frac{1}{2} [\Phi(u + v) \Phi(u) \Phi(v)]$ es una forma bilineal simétrica (y se denomina *forma polar* de Φ).
- (D) Matriz de una forma cuadrática. Se denomina matriz de una forma cuadrática Φ en una base \mathcal{B} , y se denota $\mathfrak{M}_{\mathcal{B}}(\phi)$ a la matriz de su forma polar en dicha base. Además, la ecuación

$$\phi(x) = X^t \mathfrak{M}_{\mathcal{B}}(\Phi) X$$

se denomina expresión analítica o ecuación de Φ en la base $\mathcal{B}.$

3.4 Diagonalización de formas bilineales simétricas y formas cuadráticas

- **(D) Nociones de conjugación.** Sea $f: V \times V \to \mathbb{K}$ una forma bilineal simétrica:
- i. Dos vectores $v, u \in V$ son *conjugados* respecto a f si f(u, v) = 0.
- ii. Un vector $v \in V$ conjugado de sí mismo: f(v, v) = 0, se denomina vector *autoconjugado* o *isótropo*.
 - iii. El *núcleo* o *radical* de f es el conjunto $Ker(f) = \{u \in V : f(u, v) = \forall v \in V\}.$
 - iv. Se dice que una forma bilineal f es no degenerada si Ker(f) = 0.
- **(D) Conjugado de un subconjunto.** Sea $f: V \times V \to \mathbb{K}$ una forma bilineal simétrica. Se llama *conjugado de un subconjunto* $S \subset V$ respecto a f, y se denota

por S^c , al conjunto formado por todos los vectores que son conjugados de todos los vectores de S:

$$S^c = \{u \in V : f(u, v) = 0, \forall v \in V\}$$

Si S está formado por un único vector v, entonces usamos la notación v^c . En particular, de la definición se deduce que $V^c = Ker(f)$.

- **(P) Propiedades de la conjugación.** Sean $f: V \times V \to \mathbb{K}$ una forma bilineal simétrica y U y W dos subespacios vectoriales de V. Se cumplen las siguientes propiedades:
 - i. Si $U \subset W$, entonces $W^c \subset U^c$.
 - ii. $U^c + W^c \subset (U \cap W)^c$.
 - iii. $U^c \cap W^c = (U + W)^c$.
 - iv. $U \subset (U^c)^c$.
- (T) Base de vectores conjugados. Dada una forma bilineal simétrica f en un espacio vectorial V de dimensión finita n, existe una base de vectores conjugados respecto a f. De forma equivalente, existe una matriz diagonal de f.
- (**D**) Forma cuadrática diagonalizada. Dada una forma cuadrática $\Phi: V \to \mathbb{K}$ y una base \mathcal{B} de V, se dice que Φ está *diagonalizada* o escrita como suma de cuadrados, respecto de \mathcal{B} si su matriz asociada $\mathfrak{M}_{\mathcal{B}}(\Phi)$ es diagonal ($\mathfrak{M}_{\mathcal{B}}(\Phi) = D$), y su expresión analítica es:

$$\Phi(x) = X^t D X = d_1 x_1^2 + \dots + d_n x_n^2.$$

3.5 Clasificación de formas bilineales y cuadráticas reales

- (D) Clasificación de formas bilineales simétricas. Dada una forma bilineal simétrica f, se dice que es:
 - i. *Definida positiva* si f(v, v) > 0, $\forall v \in V : v \neq 0$.
 - ii. Semidefinida positiva si $f(v,v) \ge 0, \forall v \in V$ y f(v,v) = 0 para algún $v \ne 0$.
 - iii. *Definida negativa* si f(v, v) < 0, $\forall v \in V : v \neq 0$.
 - iv. Semidefinida negativa si $f(v,v) \le 0$, $\forall v \in V$ y f(v,v) = 0 para algún $v \ne 0$.
 - v. *indefinida* en cualquier otro caso.
 - (T) Ley de inercia de Sylvester. Sea f una forma bilineal simétrica y real, y

 Φ la forma cuadrática asociada. En cualquier matriz diagonal de f, el número de elementos positivos p y negativos q es siempre el mismo, tal que p+q=rg(f). El par (p,q) se denomina signatura de f o de Φ , y se denota por sg(f) o $sg(\Phi)$ respectivamente.

- (P) Criterio de Sylvester. Sean A una matriz cualquiera de una forma bilineal y Δ_i , i = 1, ..., n; sus menores principales. Entonces:
 - i. f es definida positiva si y solo si $\Delta_i = det(A_i) > 0$, $\forall i = 1, ..., n$.
 - ii. f es definida negativa si y solo si $(-1)^i \Delta_i > 0$, $\forall i = 1, ..., n$.

4 Espacio vectorial euclídeo

4.1 Producto escalar

- **(D) Producto escalar.** Un producto escalar en un espacio vectorial real V es una forma bilineal $f: V \times V \to \mathbb{R}$ simétrica y definida positiva. Se suele usar la notación <,>; es decir f(u,v) se escribirá < u,v>.
- **(D) Espacio vectorial euclídeo.** Se llama *espacio vectorial euclídeo* a un espacio vectorial V en el que hay definido un producto escalar. Se denota con el par (V, <, >).
- **(D) Matriz de un producto escalar.** Sea <, > un producto escalar y sean $x, v \in V$: $x = (x_1, ..., x_n)_B$ e $y = (y_1, ..., y_n)_B$, donde $B = (v_1, ..., v_n)$ es una base de (V, <, >). Entonces, la matriz asociada a <, > se define como sigue:

$$\langle x, y \rangle = X^t G_{\mathcal{B}} Y = (x_1 \dots x_n) G_{\mathcal{B}} \begin{pmatrix} y_1 \\ \vdots \\ y_1 \end{pmatrix} : G_{\mathcal{B}} = (g_{ij}) = \langle v_i, v_j \rangle, \forall v \in \mathcal{B}.$$

4.2 Norma y ángulo

(D) Norma. Sea (V, <, >) un espacio vectorial euclídeo. Se define la *norma* o longitud de un vector $v \in V$ como el número real no negativo

$$\|v\| = \sqrt{< v, v>}$$

(D) Propiedades de la norma. Sea (V, <, >) un espacio vectorial euclídeo:

i. $\|v\| > 0$, $\forall v \neq 0_V$; $\|0_V\| = 0$. ii. $\|\alpha v\| = |\alpha| \|v\|$. iii. $\|u + v\|^2 = \|u\|^2 + \|v\|^2 + 2 < u, v >$. iv. $|< u, v > | \le \|u\| + \|v\|$. (Designaldad de Cauchy-Schwartz) v. $\|u + v\| \le \|u\| + \|v\|$. (Designaldad triangular) vi. $\|u + v\|^2 = \|u\|^2 + \|v\|^2$ si y solo si < u, v > = 0. (Teorema de Pitágoras) vii. $\|u + v\|^2 - \|u - v\|^2 = 2(\|u\|^2 + \|v\|^2)$.

4.3 Ortogonalidad. Bases ortogonales y ortonormales

(D) Vectores ortogonales y conjuntos ortogonales. Sea (V, <, >) un espacio vectorial euclídeo. Dos vectores v, u se dice que son *ortogonales* y se denota por $u \perp v$ si < u, v >= 0.

Un conjunto de vectores no nulos $\{v_1, ..., v_k\}$ se denomina *conjunto ortogonal* si sus vectores son ortogonales dos a dos, es decir: $\langle v_i, u_i \rangle = 0, \forall i \neq j$.

- **(D) Bases ortogonales y ortonormales.** Sea (V, <, >) un espacio vectorial euclídeo. Una *base ortogonal* de V es una base formada por un conjunto ortogonal, y una base *ortonormal* es una base ortogonal cuyos vectores son unitarios, es decir, de norma 1.
- **(D) Matriz ortogonal.** Sea A una matriz regular. Se dice que A es ortogonal si $A \cdot A^t = I$.
- **(P) Coeficientes de Fourier.** Sean (V, <, >) un espacio vectorial euclídeo y $\mathcal{B} = \{v_1, ..., v_n\}$ una base ortogonal. Las coordenadas de un vector $u \in V$ respecto de \mathcal{B} son

$$u = (\frac{\langle u, v_1 \rangle}{\|v_1\|^2}, ..., \frac{\langle u, v_n \rangle}{\|v_n\|^2})_{\mathcal{B}}$$

(T) Teorema de Gram-Schmidt. Sean (V, <, >) un espacio vectorial euclídeo y $\mathcal{B} = \{v_1, ..., v_n\}$ una base de V. Entonces los vectores $\{e_1, ..., e_n\}$ definidos por

$$e_1 = v_1$$
 $e_2 = v_2 - \frac{\langle v_2, e_1 \rangle}{\|e_1\|^2} e_1$
...

$$e_i = v_i - \frac{\langle v_i, e_1 \rangle}{\|e_1\|^2} e_1 - \dots - \frac{\langle v_i, e_{i-1} \rangle}{\|e_{i-1}\|^2} e_{i-1}, i = 2, \dots, n$$

Forman una base ortogonal de V y satisfacen

$$L(e_1, ..., e_n) = L(v_1, ..., v_n), \forall i = 1, ..., n$$

4.4 Subespacios ortogonales. Proyección ortogonal

(D) Subespacios ortogonales. Sea (V, <, >) un espacio vectorial euclídeo. Dados dos subconjuntos S y T de V se dice que son *ortogonales* y se denota por $S \perp T$ si se cumple que todos los vectores de S son ortogonales a todos los de T y viceversa. Es decir, $< s, t >= 0, \forall s \in S, t \in T$.

Dado un subconjunto $S \subset V$, llamaremos ortogonal de S, y lo denotaremos por S^{\perp} al conjunto conjugado de S por <, >:

$$S^{\perp} = \{ v \in V : v \perp s \forall s \in S \}$$

(D) Proyección ortogonal. Sean (V, <, >) un espacio vectorial euclídeo, U un espacio vectorial de V y $v \in V$. Llamaremos *proyección ortogonal del vector* v *sobre el subespacio* U, y se denota por $proy_U(v)$ al único vector tal que

$$proy_U(v) \in U, yv - proy_U(v) \in U^{\perp}$$

4.5 Producto vectorial

- (D) Orientación de una base. Se dice que una base \mathcal{B} tiene *orientación positiva* si el determinante de la matriz cambio de base de \mathcal{B} a la base canónica es positivo. Si el determinante es negativo, en cambio, diremos que la base \mathcal{B} tiene orientación negativa.
- **(D) Producto vectorial.** Sea (V, <, >) un espacio vectorial euclídeo y $v, u \in V$ dos vectores linealmente independientes. Llamamos *producto vectorial* de v, u al vector $u \land v \in V$, que cumple las siguientes condiciones:
 - i. $(u \wedge v) \perp u$, y $(u \wedge v) \perp v$.
 - ii. $||u \wedge v|| = ||u|| ||v||$ se $n \angle (u, v)$.
 - iii. La orientación de $\{u, v, (u \land v)\}$ es positiva.

4.6 Endomorfismos simétricos

(D) Endomorfismo simétrico. Sea (V, <, >) un espacio vectorial euclídeo y $f: V \to V$ un endomorfismo de V. Se dice que f es un *endomorfismo simétrico* si cumple que

$$\langle u, f(v) \rangle = \langle f(u), v \rangle, \forall u, v \in V.$$

(T) Teorema espectral. Sea (V, <, >) un espacio vectorial euclídeo de dimensión finita tal que $V \ne 0$. Entonces existe una base ortonormal de V formada por autovectores de f.

5 Isometrías vectoriales

5.1 Definición y caracterizaciones

(D) Isometría vectorial. Sean (V, <, >) y (V', <, >') dos espacios vectoriales euclídeos. Una aplicación lineal $f: V \to V'$ es una *isometría vectorial* si cumple

$$\langle u, v \rangle = \langle f(u), f(v) \rangle', \forall u, v \in V.$$

- **(P) Propiedades de las isometrías.** ean (V, <, >) y (V', <, >') dos espacios vectoriales euclídeos y $f: V \to V'$ una isometría vectorial. Entonces f tiene las siguientes propiedades:
 - i. Conserva la norma: ||v|| = ||f(v)||', $\forall v \in V$.
 - ii. Conserva los ángulos: $\angle(u, v) = \angle(f(u), f(v))$.
 - iii. Es inyectiva.
 - iv. Si dim(V) = dim(V'), entonces f es un isomorfismo.
 - v. Transforma una base ortonormal de V en una base ortonormal de V'.
- **(D) Grupo ortogonal.** Sea (V, <, >) un espacio vectorial euclídeo. Se denomina *grupo ortogonal*, y se denota por O(V) al conjunto de todos los automorfismos de V, que tiene estructura de grupo con la composición de isometrías. Además O(V) es un subgrupo de GL(V). Es decir $O(V) \le GL(V)$.

5.2 Clasificación de isometrías

(D) Equivalencia métrica. Sean $f, g \in O(V)$ isometrías vectoriales de un espacio vectorial euclídeo (V, <, >). Diremos que f y g son métricamente equivalentes

si y solo si existe otra isometría h tal que $f = h^{-1}gh$.

Además, dos matrices A y B son *ortogonalmente semejantes* si y solo si existe una matriz ortogonal P tal que $A = P^{-1}BP$.

- **(D) Rotación y reflexión.** Sea $f \in O(V)$ una isometría de (V, <, >) y A una matriz de f respecto de una base ortonormal \mathcal{B} de V.
- i. Se dice que f es una rotación si det(A) = 1. Es decir, si f conserva la orientación de la base \mathcal{B} . El grupo $O^+(V)$, formado por las isometrías con determinante 1, se llama grupo de rotaciones de V, y es un subgrupo de O(V).
- ii. Se dice que f es una reflexión si det(A) = -1. Es decir, si f cambia la orientación de la base \mathcal{B} . El conjunto $O^-(V)$, formado por las isometrías con determinante -1 no tiene estructura de grupo, ya que la composición de dos reflexiones no es una reflexión.
- **(D) Base de una reflexión.** Sea $f \in O^-(V)$ una reflexión de (V, <, >). Los subespacios de V invariantes por f se denominan *base de la reflexión*. Cuando especificamos la base de una reflexión, nos referiremos a ella como *simetría ortogonal*.

5.3 Teorema de Cartan-Dieudonné

- **(D) Simetría ortogonal hiperplano.** Sea $f \in O^-(V)$ una reflexión de un espacio vectorial euclídeo (V, <, >) de dimensión n. Diremos que f es una *simetría ortogonal hiperplano* si su base es un hiperplano $H \subset V$ de dimensión n-1.
- **(T) Teorema de Cartan-Dieudonné.** Toda isometría f de un espacio vectorial euclídeo (V, <, >) de dimensión n es de la forma

$$f = \sigma_1 \circ \dots \circ \sigma_k, k \leq n$$

Donde σ_i son simetrías ortogonales hiperplano. Lo que también se expresa diciendo que f se puede descomponer en el producto de, como máximo, n simetrías.