THE UNIVERSITY OF SYDNEY SHANGHAI JIAO TONG UNIVERSITY

DVC: An End-to-end Deep Video Compression Framework

Guo Lu¹, Wanli Ouyang², Dong Xu², Xiaoyun Zhang¹, Chunlei Cai¹, Zhiyong Gao¹ ¹Shanghai Jiao Tong University, ²The University of Sydney

> Objective

Build an end-to-end optimized deep video compression framework

Motivation

- Traditional video compression uses hand-crafted techniques.
- Deep learning is successfully used for a lot of vision tasks.

> Challenge

- It remains an open problem to learn how to generate and compress the motion information.
- It is unclear how to build a DNN based video compression system by minimizing the rate-distortion.

Contribution

- The first end-to-end deep video compression model that jointly learns motion estimation, motion compression, and residual compression.
- This work is a starting point for researchers working on video compression, computer vision, and deep model design.

> DVC Framework

End-to-end Video Compression Framework

Motion Compression Net

Optimization Loss

$$\lambda D + R = \lambda d(x_t, \hat{x}_t) + (H(\hat{m}_t) + H(\hat{y}_t)),$$

D and R represent the distortion and coding bits respectively.

> Experimental Results

[1] Anurag Ranjan, Michael J. Black, Optical Flow Estimation Using a Spatial Pyramid Network, CVPR18

[2] Johannes Ballé et.al. Variational Image Compression with a Scale Hyperprior. ICLR18