Generalized Linear Models

Part 1. GLM in General

Linear Model

$$\mu=E(y)=\beta_0+\beta_1x_1+\ldots+\beta_px_p$$

- ▶ The response follows normal distribution
- ▶ The relation between the response and the predictors is linear

Generalized Linear Model

$$g(\mu)=\beta_0+\beta_1x_1+\ldots+\beta_px_p=x'\beta$$

- The response y follows a distribution in the linear exponential distribution (LED) family
- \blacktriangleright The relation between the response and the predictors defined by the link function $g(\cdot)$

Linear Exponential Distribution

$$f(y; \theta, \phi) = exp\left[\frac{y\theta - b(\theta)}{\phi} + S(y, \phi)\right]$$

- Examples: Normal, Binomial, Negative Binomial, Poisson, Gamma Distribution, Inverse Gamma.
- The mean and the variance of the distribution are as follows.

$$E(y) = b'(\theta)$$

$$Var(y) = \phi b^{''}(\theta)$$

Prameter Estimation

- ▶ Parameters of GLM is $\beta = [\beta_0, \beta_1, ...\beta_p]$
- \triangleright β can be estimated using the Maximum Likelihood Method

MLE

 \blacktriangleright Given any data set $(x_1,y_1),(x_2,y_2),...(x_n,y_n)$ the probability of seeing that data is

$$L(\beta) = f(y_1) \cdot f(y_2) \cdot \cdot \cdot f(y_n)$$

Case 1: Linear Model

With $E(y) = \mu$

$$g(\mu) = \mu = \beta_0 + \beta_1 x$$

We assume that $Y\sim N(\mu,\sigma^2).$ Let $\epsilon=y-\beta_0+\beta_1x.$ We have $\epsilon\sim N(0,\sigma^2).$ Therefore

$$y = \beta_0 + \beta_1 x + \epsilon.$$

We see that this is how we define linear model earlier.

Likelihood Function

$$\begin{split} \prod f(y_i) &= \prod \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(y_i - \mu_i)^2}{2\sigma^2}} \\ &= \prod \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}} \end{split}$$

The parameters β_0 and β_1 that maximizing the likelihood function are the same as the OLS estimators.

Case 2: Logistic Regression

$$g(\mu) = \log\left(\frac{\mu}{1-\mu}\right) = \beta_0 + \beta_1 x,\tag{1}$$

where $Y \sim Bernoulli(p)$, which has the following density distribution

$$f(y) = p^y (1 - p)^{1 - y}$$

Notice that $\mu=E(y)=p$. Thus, from (1)

$$\mu = \frac{1}{1 - e^{-\beta_0 - \beta_1 x}}$$

$$\implies p = \frac{1}{1 - e^{-\beta_0 - \beta_1 x}}$$

That's why logistic regression is also modeled the probability of Y=1.

Log-Likelihood Function

We have

$$\begin{split} f(y) &= p^y (1-p)^{1-y} \\ \Longrightarrow \log f(y_i) &= \log p_i^{y_i} (1-p_i)^{1-y_i} \\ &= y_i \log p_i + (1-y_i) \log (1-p_i) \\ &= \log (1-p_i) + y_i \log \frac{p_i}{1-p_i} \\ &= -\log (e^{\beta_0 + \beta_1 x} + 1) + y_i (\beta_0 + \beta_1 x) \end{split}$$

$$\implies \sum \log f(y_i) = \sum -\log(e^{\beta_0+\beta_1 x}+1) + \sum y_i(\beta_0+\beta_1 x)$$

- We differentiate the log likelihood with respect to the parameters and solve for them equal to zero.
- ▶ There is no close-form solution. We need to soleve for it numerically.

Example 1

admit	gre	gpa
0	380	3.61
1	660	3.67
1	800	4.00
1	640	3.19
0	520	2.93
1	760	3.00
1	560	2.98
0	400	3.08
1	540	3.39
0	700	3.92
0	800	4.00
0	440	3.22
1	760	4.00
0	700	3.08
1	700	4.00
0	480	3.44
Λ	780	3 27

1 00		
1.00	-4.60	0.00
0.00	2.54	0.01
0.32	2.36	0.02
	0.00	0.00 2.54 0.32 2.36

 $P(admit=1) = \frac{1}{1 - e^{-4.949378 + 0.002691 \cdot gre - 0.754687 \cdot gpa}}$

Coefficients

- ▶ The positive coefficient of gpa indicates that increasing gpa will increase the chance of being admitted.
- ▶ The same for the gre scores

admit gre gpa predicted_prob 0 380 3.61 0.2310310 1 660 3.67 0.4003934 1 800 4.00 0.5552525 1 640 3.19 0.3057873 0 520 2.93 0.2076762 1 760 3.00 0.3451566 1 560 2.98 0.2326106 0 400 3.08 0.1752786 1 540 3.39 0.2813004 0 700 3.92 0.4731443 0 800 4.00 0.5552525 0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226841 1 700 4.00 0.4882142 0 480 3.44 0.2569798
1 660 3.67 0.4003934 1 800 4.00 0.5552525 1 640 3.19 0.3057873 0 520 2.93 0.2076762 1 760 3.00 0.3451566 1 560 2.98 0.2326106 0 400 3.08 0.1752786 1 540 3.39 0.2813004 0 700 3.92 0.4731441 0 800 4.00 0.5552525 0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226843 1 700 4.00 0.4882142
1 800 4.00 0.5552525 1 640 3.19 0.3057873 0 520 2.93 0.2076762 1 760 3.00 0.3451566 1 560 2.98 0.2326106 0 400 3.08 0.1752786 1 540 3.39 0.2813004 0 700 3.92 0.4731443 0 800 4.00 0.55552525 0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226843 1 700 4.00 0.4882142
1 640 3.19 0.3057873 0 520 2.93 0.2076762 1 760 3.00 0.3451566 1 560 2.98 0.2326106 0 400 3.08 0.1752786 1 540 3.39 0.2813004 0 700 3.92 0.4731443 0 800 4.00 0.55552525 0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226843 1 700 4.00 0.4882142
0 520 2.93 0.2076762 1 760 3.00 0.3451566 1 560 2.98 0.2326106 0 400 3.08 0.1752786 1 540 3.39 0.2813004 0 700 3.92 0.4731441 0 800 4.00 0.5552525 0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226841 1 700 4.00 0.4882142
1 760 3.00 0.3451566 1 560 2.98 0.2326106 0 400 3.08 0.1752786 1 540 3.39 0.2813004 0 700 3.92 0.4731441 0 800 4.00 0.5552525 0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226841 1 700 4.00 0.4882142
1 560 2.98 0.2326106 0 400 3.08 0.1752786 1 540 3.39 0.2813004 0 700 3.92 0.4731441 0 800 4.00 0.5552525 0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226841 1 700 4.00 0.4882142
0 400 3.08 0.1752786 1 540 3.39 0.2813004 0 700 3.92 0.4731441 0 800 4.00 0.5552525 0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226841 1 700 4.00 0.4882142
1 540 3.39 0.2813004 0 700 3.92 0.4731441 0 800 4.00 0.5552525 0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226841 1 700 4.00 0.4882142
0 700 3.92 0.4731441 0 800 4.00 0.5552525 0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226841 1 700 4.00 0.4882142
0 800 4.00 0.5552525 0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226841 1 700 4.00 0.4882142
0 440 3.22 0.2082699 1 760 4.00 0.5285412 0 700 3.08 0.3226841 1 700 4.00 0.4882142
1 760 4.00 0.5285412 0 700 3.08 0.3226841 1 700 4.00 0.4882142
0 700 3.08 0.3226841 1 700 4.00 0.4882142
1 700 4.00 0.4882142
0 480 3.44 0.2569799
0 780 3.87 0.5174912
0 360 2.56 0.1141804

Example 2

income	age	bought_insurance
30	22	0
40	25	0
70	47	1
50	52	0
90	46	1
75	56	1
70	55	0
65	60	1
70	62	1
100	61	1
10	18	0
25	28	0
35	27	0
45	29	0
130	49	1
95	55	1
15	25	1

	Est.	S.E.	z val.	р
(Intercept)	-5.94	2.13	-2.79	0.01
age	0.09	0.05	1.94	0.05

0.17

0.03 income 0.04 Standard errors: MLE

1.39

predicted_prob	bought_insurance	age	income
0.0569696	0	22	30
0.1037916	0	25	40
0.7265557	1	47	70
0.6625367	0	52	50
0.8379541	1	46	90
0.8790796	1	56	75
0.8460245	0	55	70
0.8774682	1	60	65
0.9120940	1	62	70
0.9671907	1	61	100
0.0193308	0	18	10
0.0793765	0	28	25
0.1030927	0	27	35
0.1675142	0	29	45
0.9685957	1	49	130
0.9339869	1	55	95
0.0430395	1	25	15
0.9132951	1	58	80

Case 3. Probit Regression

 $Y \sim Bernoulli(p)$

$$g(\mu) = \phi^{-1}(\mu) = \beta_0 + \beta_1 x$$

$$\iff \mu = \phi(\beta_0 + \beta_1 x),$$

where $\phi(z)=\frac{1}{2\pi}\int_{-\infty}^z e^{-\frac{u^2}{2}}du$ is the CDF of the standard normal distribution.

income	age	bought_insurance
30	22	0
40	25	0
70	47	1
50	52	0
90	46	1
75	56	1
70	55	0
65	60	1
70	62	1
100	61	1
10	18	0
25	28	0
35	27	0
45	29	0
130	49	1
95	55	1
15	25	1
80	58	1

	Est.	S.E.	z val.	р	
(Intercept)	-3.26	1.01	-3.23	0.00	
age	0.05	0.03	2.07	0.04	

income 0.02 0.01	Standard		
	income	0.02	0.01

1.34 0.18

income	age	bought_insurance	predicted_prob
30	22	0	0.0675621
40	25	0	0.1267136
70	47	1	0.7321767
50	52	0	0.6955872
90	46	1	0.8274191
75	56	1	0.8853669
70	55	0	0.8538991
65	60	1	0.8906097
70	62	1	0.9240656
100	61	1	0.9742320
10	18	0	0.0183095
25	28	0	0.1032072
35	27	0	0.1295963
45	29	0	0.2031544
130	49	1	0.9688680
95	55	1	0.9366018
15	25	1	0.0530884
80	58	1	0.9200541

Case 4. Poisson Regression

$$\log(\mu) = \beta_0 + \beta_1 x$$

where $Y \sim Poisson(\mu)$

We have

$$\begin{split} f(y) &= \frac{e^{-\mu}\mu^y}{y!} \\ \Longrightarrow & \log f(y) = \mu + y \log \mu \log(y!) \\ &= e^{\beta_0 + \beta_1 x} + y (\beta_0 + \beta_1 x) - \log(y!) \end{split}$$

$$\implies \sum \log f(y_i) = \sum e^{\beta_0 + \beta_1 x_i} + y_i (\beta_0 + \beta_1 x_i) - \log(y_i!)$$

As logistic regression, we need to solve for the derivative equalling zeros using numerical methods.

Example: Predicting Insurance Claims

- ClaimNb Number of claims during the exposure period.
- Exposure The period of exposure for a policy, in years.
- Power The power of the car (ordered categorical).
- CarAge The vehicle age, in years.
- DriverAge The driver age, in years (in France, people can drive a car at 18).
- Brand The car brand divided in the following groups: A-Renaut Nissan and Citroen, B- Volkswagen, Audi, Skoda and Seat, C- Opel, General Motors and Ford, D- Fiat, E-Mercedes Chrysler and BMW, F- Japanese (except Nissan) and Korean, G- other.
- Gas The car gas, Diesel or regular.
- Region The policy region in France (based on the 1970-2015 classification).
- Density The density of inhabitants (number of inhabitants per km2) in the city the driver of the car lives in.

Model

Prediction

Deviance

Deviance

$$D = \phi \cdot 2(l_{SAT} - l)$$

- ▶ l is the loglikelihood of the data using the model. This is calculated by replacing μ_i by $\hat{\mu_i}$ in the loglikelihood function.
- $lackbox{l}_{SAT}$ is the loglikelihood of the *perfect* model. This is calculated by replacing μ_i by y_i (thus, perfect prediction) in the loglikelihood function.
- ϕ is the scale parameter in the distribution of the response. For logistic regression and Posisson regression $\phi=1$ and for linear model, $\phi=\sigma^2$

Deviance of Linear Model

$$D = \sum (y_i - \hat{\mu_i})^2$$

Deviance of Logistic Regression

Deviance of Poisson Regression

$$D = 2\sum \left[y_i \ln \left(\frac{y_i}{\hat{\mu}_i} \right) - (y_i - \hat{\mu}_i) \right]$$

Example

Full Model vs. Reduced Model

- $\blacktriangleright \ H_0: \beta_1=\beta_2=\beta_3=0 \ \text{(Reduced Model)}$
- $ightharpoonup H_{\alpha}: H_0$ is false. (Full Model)
- ▶ $LRT=2(l_1-l_0)\sim \chi_{3,\alpha}$ where l_1 and l_0 are the maximum likelihood of the two models.

Example