Tema 2: Continuïtat

- 1. Definitions
 - 1.1. **Definició** Una funció escalar és:

$$f: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $x = (x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n) = f(x)$

1.2. **Definició** Una funció vectorial és:

$$F: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
$$x = (x_1, \dots, x_n) \longmapsto (F_1(x), \dots, F_m(x))$$

- 1.3. **Definició** El **domini** de F és el subconjunt de \mathbb{R}^n on F està definida.
- 1.4. **Definició** La **imatge** de F és $Im(F) = \{ y \in \mathbb{R}^m \mid \exists x \in \mathbb{R}^n \text{ amb } f(x) = y \}.$
- 1.5. **Definició** La **gràfica** de F és $Graf(F) = \{(x, F(x)) \mid x \in Dom \ F\} \subset \mathbb{R}^{n+m}$.
- 1.6. **Definició** Donada una funció escalar $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ es defineix el **conjunt de nivell** k com $C_k(f) = \{x \in \mathbb{R}^n \mid f(x) = k\}.$
- 1.7. **Definició** Donada $F: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ i $p \in A'$. Direm que $\lim_{x \to p} F(x) = L$ si per a tot $\varepsilon > 0$ existeix $\delta > 0$ tal que $d(F(x), L) < \varepsilon$ per a tot $x \in A$ tal que $0 < d(x, p) < \delta$.
- 1.8. Propietat
 - (i) El límit, si existeix, és únic.
 - (ii) Donada $F: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ i $p \in A'$, aleshores

$$\lim_{x \to p} F(x) = L \iff \lim_{x \to p} F_j(x) = L_j \quad \forall j = 1, \dots, m$$

- 1.9. **Lema** Existeix $\lim_{x\to x_0} F(x) = L$ si i només si per tota successió (x_k) amb límit x_0 , tal que $x_k \neq x_0$ per tot k, $F(x_k) \longrightarrow L$.
- 1.10. **Propietats** Siguin F_1 i $F_2:A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ tals que $\lim_{x\to p}F_j(x)=L_j$, i siguin f_1 i $f_2:A\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ tals que $\lim_{x\to p}f_j(x)=l_j$, aleshores:
 - (i) $\lim_{x \to p} (F_1 \pm F_2)(x) = L_1 \pm L_2$
 - (ii) $\lim_{x \to p} (rF)(x) = rL \quad \forall r \in \mathbb{R}$
 - (iii) $\lim_{x \to p} (f_1 f_2)(x) = l_1 l_2$
 - (iv) $\lim_{x\to p} \left(\frac{f_1}{f_2}\right)(x) = \frac{l_1}{l_2}$ sempre que la divisió tingui sentit.
- 1.11. Proposició (límits de funcions de dues variables)

Si $F: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ i $(a,b) \in D'$ tal que $\exists \lim_{(x,y)\to(a,b)} F(x,y) = L$, llavors per tota funció real i contínua g definida en un entorn de a, tal que g(a) = b, tenim que $\lim_{x\to a} F(x,g(x)) = L$

- 2. Continuïtat i continuïtat uniforme.
 - 2.1. **Definició** Direm que F és **contínua** en $p \in A$ si existeix $\lim_{x \to p} F(x) = F(p)$. F serà contínua en A si ho és per a tot $p \in A$.
 - 2.2. **Definició** Direm que F és **uniformement contínua** en A si $\forall \varepsilon > 0 \quad \exists \delta > 0$ tal que $d(F(x), F(y)) < \varepsilon$, per a tot $x, y \in A$ que satisfaci $d(x, y) < \delta$.
 - 2.3. Corol·lari Tota funció uniformement contínua és contínua.
 - 2.4. **Proposició** Sigui $F: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$. Són equivalents:
 - (i) F és contínua en A.

- (ii) Per a tota $(x_n) \subset A$ tal que $x_n \longrightarrow p$, $F(x_n) \longrightarrow F(p)$.
- (iii) Per a tot $C \subset \mathbb{R}^m$ tancat, existeix $D \subset \mathbb{R}^n$ tancat tal que $F^{-1}(C) = D \cap A$.
- (iv) Per a tot obert U de \mathbb{R}^m , existeix V obert de \mathbb{R}^n tal que $F^{-1}(U) = V \cap A$.
- 2.5. Corol·lari Siguin g i $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ funcions contínues, aleshores:
 - (i) $A = \{x \in \mathbb{R}^n \mid f(x) > g(x)\}$ és obert.
 - (ii) $B = \{x \in \mathbb{R}^n \mid f(x) \ge g(x)\}$ és tancat.
- 2.6. **Proposició** Siguin $F: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ i $G: B \subset \mathbb{R}^m \longrightarrow \mathbb{R}^l$, amb A = Dom F, B = Dom G, $F(A) \subset B$, $p \in A$ de manera que q = F(p) i $L = G(q) = (G \circ F)(p)$. Si F és contínua en p i G ho és en q, aleshores $(G \circ F)$ és contínua en p.
- 2.7. **Proposició** Donada $f: I \longrightarrow J$ contínua, i I, J espais mètrics. Són equivalents:
 - (i) f no és uniformement contínua.
 - (ii) Existeix $\varepsilon>0$ tal que per a tot $\delta>0$ existeixen $x,x'\in I$ tal que $d(x,x')<\delta$ i $d(f(x),f(x'))\geq \varepsilon$.
 - (iii) Existeix $\varepsilon > 0$ i dues successions $(x_n) \subset I$ i $(x'_n) \subset I$ tals que $\lim_{n \to \infty} d(x_n, x'_n) = 0$ i $d(f(x_n), f(x'_n)) \ge \varepsilon \quad \forall n \in \mathbb{N}.$
- 2.8. Teorema de Heine Sigui $f:K\subset M\longrightarrow N$ contínua, K compacte, aleshores f és uniformement contínua.
- 2.9. **Teorema** Sigui $f: M \longrightarrow N$ uniformement contínua. Per a tota (x_n) successió de Cauchy en M, la successió $(f(x_n))$ és de Cauchy a N. El recíproc no és cert.
- 2.10. **Propietat** Sigui $F: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ contínua, aleshores $F(\bar{A}) \subset \overline{F(A)}$.
- 2.11. **Teorema** Sigui $F: K \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ contínua i K compacte, aleshores F(K) és compacte.
- 2.12. **Teorema de Weierstrass** Sigui $f: K \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ contínua, amb K compacte, aleshores f assoleix un mínim i un màxim absoluts.
- 2.13. **Teorema del valor intermedi** Sigui $f:A\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ contínua i A connex, aleshores per tot $x,y\in A$ i per tot $c\in[f(x),f(y)]\subset R$, existeix $z\in A$ tal que f(z)=c.
- 2.14. Lema Sigui $f: A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ contínua i $B \subset A$ connex, aleshores F(B) és connex.
- 2.15. **Definició** Sigui $F: M \longrightarrow M$, amb M espai mètric complet.
 - i. Direm que F és **k-contractiva** si $d(f(x), f(y)) \le kd(x, y) \quad \forall x, y \in M \text{ amb } 0 \le k < 1.$
 - ii. Direm que F és **Lipschitz** si existeix k > 0 tal que $d(f(x), f(y)) \le kd(x, y) \quad \forall x, y \in M$.
- 2.16. Teorema de l'aplicació contractiva o del punt fix Sigui $F: M \longrightarrow M$ k-contractiva i M complet aleshores existeix un únic $x \in M$ tal que f(x) = x.
- 3. Normes i distàncies equivalents.
 - 3.1. **Definició** En un espai mètric M, dues normes $\|\cdot\|$ i $\|\cdot\|'$ són equivalents si existeixen $\lambda, \mu > 0$ tals que $\mu \|x\|' \le \|x\| \le \lambda \|x\|'$.
 - 3.2. **Teorema** A \mathbb{R}^n totes les normes són equivalents.
 - 3.3. **Definició** En un espai mètric M, dues distàncies d i d' són equivalents si

$$Id: (M,d) \longrightarrow (M,d')$$
$$x \longmapsto x$$

és contínua, bijectiva i d'inversa contínua.

3.4. **Definició** En un espai mètric M, dues distàncies d i d' són uniformement equivalents si

$$Id: (M,d) \longrightarrow (M,d')$$

$$r \longmapsto r$$

és uniformement contínua, bijectiva i d'inversa uniformement contínua.