Digital Image Processing Laboratory 2

2-D Random Processes Praneet Singh

100/100

January 31, 2020

1 Power Spectral Density of Image

In this problem, we use Matlab to read and analyze the gray scale image img04g.tif.

1.1 Gray Scale Image img04g.tif

1.2 Power Spectral Density Plots

1.3 MATLAB Code

```
1 function res=BetterSpecAnal(X)
     n = 64;
     x = 2*pi*((0:(n-1)) - n/2)/n;
     y = 2*pi*((0:(n-1)) - n/2)/n;
     window=hamming(n)*hamming(n)';
     img_res=size(X);
     img_w=img_res(2);
     img_h=img_res(1);
     % To ensure we create 25 non-overlapping regions
10
      start_w = (img_w - (5*n))/2;
      start_h = (img_h - (5*n))/2;
      res=zeros(n,n);
      for w=1:5
13
14
               z=X(start_h+(h-1)*n:start_h+h*n-1,start_w+(w-1)*n:start_w+w*n-1);
               z=fftshift(fft2(z.*window)).^2;
               res=res+log((1/n^2)*abs(z));
17
          end
18
      end
19
      res=res/25;
20
      figure
21
      mesh(x,y,res)
      colormap jet
23
      xlabel('\mu axis','FontSize',20)
24
      ylabel('\nu axis','FontSize',20)
25
      zlabel('log(PSD)','FontSize',20)
26
      title('Estimated Power Spectrum, N=64', 'FontSize', 30)
27
```

2 Power Spectral Density of a 2-D AR Process

In this problem, we will generate a synthetic 2-D autoregressive (AR) process using Matlab, and analyze its power spectral density.

2.1 The image 255 + (x + 0.5)

2.2 Difference Equation

In order to implement the filter, we need to use the difference equation. Let's consider the given equation,

$$H(z_1, z_2) = \frac{3}{1 - 0.99z_1^{-1} - 0.99z_2^{-1} + 0.9801z_1 - 1z_2^{-1}}$$
(1)

But we know that,

$$H(z_1, z_2) = \frac{Y(z_1, z_2)}{X(z_1, z_2)}$$

Thus 1 becomes,

$$\frac{Y(z_1, z_2)}{X(z_1, z_2)} = \frac{3}{1 - 0.99z_1^{-1} - 0.99z_2^{-1} + 0.9801z_1 - 1z_2^{-1}}$$
$$Y(z_1, z_2)1 - 0.99z_1^{-1} - 0.99z_2^{-1} + 0.9801z_1 - 1z_2^{-1} = 3 * X(z_1, z_2)$$

Taking Inverse Z-Transform and simplifying gives us the required difference equation,

$$y(m,n) = 0.99(y(m-1,n) + y(m,n-1)) - 0.9801y(m-1,n-1) + 3x(m,n)$$

2.3 The Filtered image y + 127

2.4 Derivation of Power Spectral Density

We know that $S_y(u, v)$ is given as,

$$S_y(u,v) = |H(u,v)|^2 S_x(u,v)$$
 (2)

Let us first find the PSD of x. We know that,

$$S_x(u,v) = \lim_{N \to \infty} \frac{E(|X_N(u,v)|^2)}{N}$$
 (3)

We know that X is uniformly distributed i.e U[-0.5, 0.5]. Hence,

$$\mu(X) = E[X] = (-0.5 + 0.5)/2 = 0$$

 $\sigma^2 = Var[X] = (0.5 + 0.5)^2/12 = 1/12$

But,

$$Var[X] = E[X^2] - (E[X])^2$$

 $Var[X] = E[X^2] = 1/12$

Thus using these values, 3 becomes,

$$S_x(u, v) = \lim_{N \to \infty} \frac{N * Var[X]}{N}$$
$$= Var[X]$$
$$S_x(u, v) = 1/12$$

Using the above value in 2, we get,

$$S_y(u,v) = \frac{|H(u,v)|^2}{12}$$

From 1, the 2-D Fourier Transform can be obtained by substituting $z_1=e^{ju}$ & $z_2=e^{jv}$

$$H(u,v) = \frac{3}{1 - 0.99e^{-ju} - 0.99e^{-jv} + 0.9801e^{-j(u+v)}}$$
(4)

Thus,

$$S_y(u,v) = \frac{1}{12} * \left| \frac{3}{1 - 0.99e^{-ju} - 0.99e^{-jv} + 0.9801e^{-j(u+v)}} \right|^2$$

2.5 A mesh plot of the function $log(S_y(u, v)))$

Power Spectrum Theoretical, N=64

$\textbf{2.6} \quad \textbf{A mesh plot of the function} \ log(S_y(u,v))) \ \textbf{generated using BetterSpecAnal.m}$

