Exercises from Chapter 7

Wesley Basener

May 6, 2025

Problem 1.1. Show that $-1^2 = 1$ in R .
Proof. $-1 + (-1)^2 = -1(1+-1) = -1(0) = 0$
Problem 1.2. Prove that if u is a unit, then so is $-u$.
<i>Proof.</i> Let w be the multiplicative inverse of u and consider $-u \cdot w \cdot w$, by problem 1, when we multiply this by $-u$, we get $(-u)^2 \cdot w^2 = u \cdot w = 1$. Thus, $-u$ is a unit.
Problem 1.3. Let R be a ring with identity and S be a subring of R containing the identity. Prove that if u is a unit in S , then it is a unit in R . Show by example that the converse is false.
<i>Proof.</i> If u is a unit in S , then there is some v in S , such that $uv = 1$. Since S is a subset of R , v is also in R . So, u is a unit in R . For the second part, consider the ring of rational numbers \mathbb{Q} , which has the integers \mathbb{Z} as a subring. Although 2 is a unit in \mathbb{Q} , with inverse $1/2$, it is not a unit in \mathbb{Z} .
Problem P. rove that the intersection of any nonempty set of subrings is also a subring.
<i>Proof.</i> Let S_1, S_2 be a set of subrings in R and let $S = S_1 \cap S_2 \cap$ be the intersection of all the subrings \square