BME2322 – Logic Design

The Instructors:

Dr. Görkem SERBES (C317)

gserbes@yildiz.edu.tr

https://avesis.yildiz.edu.tr/gserbes/

Lab Assistants:

Nihat AKKAN

nakkan@yildiz.edu.tr

https://avesis.yildiz.edu.tr/nakkan

LECTURE 11

Flip-Flop Conversion

Steps:

- Identify the avaliable and required flip-flop.
- Write the characteristic table for required flip-flop.
- Write the excitation table for avaliable flip-flop.
- Writye the Boolean expression for valiable flip-flop.
- Draw the circuit.

JK to D flip-flop conversion

- 1. Available flip-flop is JK and the required flip-flop is D type.
- Characteristic table of D flip-flop

Q_n	D	Q_{n+1}
0	0	0
0	1	1
1	0	0
1	1	1
	·	

Q_n	D	Q_{n+1}	J	K	
0	0	0	0	X	
0	1	1	1	X	
1	0	0	X	1	
1	1	Q _{n+1} 0 1 0 1	X	0	

3. Excitation table of JK flip-flop

Q_n	Q_{n+1}	J	K
0	0	0	Χ
0	1	1	X
1	0	Χ	1
1	1	X	0

4. Boolean Expression

$$J = D$$

$$K = D'$$

JK to D flip-flop conversion cont.

5. Draw the circuit

T flip-flop to D flip-flop conversion

- 1. Available flip-flop is T and the required flip-flop is D type.
- 2. Characteristic table of D flip-flop

(Q_n	D	Q_{n+1}	<u></u>
	0	0	0	
	0	1	1	
	1	0	0	
	1	1	1	
		•		
	Q_n	D	Q_{n+1}	Т
	0	0	0	0
				1

3. Excitation table of T flip-flop

Q_n	Q_{n+1}	Т
0	0	0
0	1	1
1	0	1
1	1	0

4. Boolean Expression

$$T = D \oplus Q_n$$

5. Circuit Diagram

SR flip-flop to JK flip-flop conversion

- Available flip-flop is SR and the required flip-flop is JK type.
- 2. Characteristic table of JK flip-flop

Q_n	J	K	Q_{n+1}	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	1	>
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0	

3. Excitation table of SR flip-flop

Q_n	Q_{n+1}	S	R	_
0	0	0	Χ	
0	1	1	0	
1	0	0	1	,
1	1	X	0	

Q_n	J	K	Q_{n+1}	S	R
0	0	0	0	0	X
0	0	1	0	0	X
0	1	0	1	1	0
0	1	1	1	1	0
1	0	0	1	X	0
1	0	1	0	0	1
1	1	0	1	X	0
1	1	1	0	0	1

SR flip-flop to JK flip-flop conversion cont.

Q_n	J	K	Q_{n+1}	S	R
0	0	0	0	0	X
0	0	1	0	0	X
0	1	0	1	1	0
0	1	1	1	1	0
1	0	0	1	X	0
1	0	1	0	0	1
1	1	0	1	X	0
1	1	1	0	0	1

5. Circuit Diagram

4. Boolean Expression

$$S = \overline{Q_n}J$$

$$R = Q_n K$$

Preset and Clear inputs

 The normal data inputs to a flip flop (D, S and R, or J and K) are referred to as synchronous inputs because they have an effect on the outputs (Q and not-Q) only in step, or in sync, with the clock signal transitions.

The 'Preset' and 'Clear' are the direct inputs or overriding inputs or asynchronous inputs.
 Preset o

- Preset =
$$0 \rightarrow Q_n = 1$$

- Clear =
$$0 \rightarrow Q_n = 0$$

 Whatever be the value of clock and synchronous inputs, 'preset' and 'clear' changes Q_n.

 They can be used in the design of counters.
 preset clear
 On

preset	clear	Qn_
0	0	Not Used
0	1	1
1	0	0
1	1	perform
Τ.	T	normally

Preset and Clear inputs cont

Introduction to State Diagrams

A sequential circuit

State Table is the table which tells us about the relation between the present state, next state and the output.

	Preser	nt State	Input	Next	State	Output
У	Q_A	Q_B	Х	Q_A^+	Q_B^+	У
	0	0	1	1	0	1
A r	random	case				

State Diagram: 2 flip-flops, so we will have $2^2 = 4$ states.

	Q_{A}	Q_B
S0	0	0
S1	0	1
S2	1	0
S 3	1	1

Introduction to State Diagrams cont.

	Q_{A}	Q_B
S0	0	0
S1	0	1
S2	1	0
S 3	1	1

Present State		Input	Next State		Output
Q_A	Q_B	X	Q^{\dagger}_{A}	Q_B^+	У
0	0	1	1	0	1

State diagram of JK flip-flop

<u>P.S</u>	<u>Inp</u>	<u>uts</u>	<u>N.S</u>
Q_{n}	J	K	Q _{n+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

• We have two possible states;

$$- S0 = 0$$

$$- S1 = 1$$

State equation of JK flip-flop

<u>P.S</u>	<u>Inp</u>	<u>uts</u>	<u>N.S</u>
Q_{n}	J	K	Q _{n+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$Q_{n+1}=Q_n.K'+(Q_n)'.J$$

State equation

State Equation → left hand side = right hand side

Next State

Combination of the present state and input

Sequential Circuit Analysis

- The output of a sequential circuit can be expressed in two different ways:
 - Moore model: Outputs= f(present state)
 - Mealy model: Outputs: f(present state, inputs)

Moore machine:

Example 1

Output combinational logic

The circuit is a Moore Machine

Example 2 (Moore)

- Two inputs: X and Y; One output: Z
- One state: A
- Note that Z= A, just a function of the current state

Example 2 (Moore) cont.

Present state	Inputs		Next state	Output	
A	Х	Y	Α	Z	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	0	
1	0	0	1	1	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

(b) State table

		Next	0		
Present State		Inpo	Output 7		
Α	00	01	10	11	
0	0	1	1	0	0
1	1	0	0	1	1

Example 2 (Moore) cont.

Present state	Inputs		Next state	Output	
A	Х	Y	Α	Z	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	0	
1	0	0	1	1	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

(b) State table

Mealy Machine

• The output is the function of present state as well as the input.

Comparision with Example 1

The circuit is a Mealy Machine

Analysis of clocked circuits with D ff

Step 1: Write Input and Output Equations

$$D_A = X. Q_A + Q_B$$

$$D_B = \overline{Q_A}. Q_B$$

$$Y = X. Q_A + \overline{X}. \overline{Q_B}$$

CLK	D	Q_{n+1}
0	Χ	Q_n
1	0	0
1	1	1

Analysis of clocked circuits with D ff cont.

Step 2: Find state table

$D_A = X. Q_A + Q_B$	
$D_B = \overline{Q_A}. Q_B$	
$Y = X. Q_A + \bar{X}. \overline{Q_B}$	

						ı	
	Preser	nt State		Next	State		
	Q_A	Q_B	Χ	Q^{\dagger}_{A}	Q_B^+	Υ	
	0	0	0	0	0	1	
	0	0	1	0	0	0	
	0	1	0	1	1	0	
_	0	1	11_	1	1	0	
	1	0	0	0	0	1	
	1	0	1	1	0	1	
_	1	1	0	1	0	0	
	1	1	1	1	0	1	23

Analysis of clocked circuits with D ff cont.

			J				
Prese	nt Sta			Next	State		
Q_A	Q_{E}	3	Χ	Q^{\dagger}_{A}	Q_B^+	Υ	- Input Output
0	0		0	0	0	1	0/1 *
0	0		1	0	0	0	1/0
0	1		0	1	1	0	
0	1		1	11	1	0	
1	0		0	0	0	1	$\frac{S0}{00}$
1	0		1	1	0	1	00 /
1	1		0	1	0	0	0/1
1	1		1	1	0	1	
S0 S1 S2 S3	Q _A 0 0 1 1 1	Q _B 0 1 0 1	_	Step 3:	Find s	tate dia	$ \begin{array}{c c} \hline S3 \\ 11 \\ \hline 1/0 \end{array} $ $ \begin{array}{c} S1 \\ 01 \end{array} $ $ \begin{array}{c} S2 \\ \hline 10 \end{array} $
							1/1

Analysis of clocked circuits with JK ff

Step 1: Input Equations, No Output Equation

$$J_A = Q_B$$
 $K_A = \overline{X}.J_A$
 $J_B = \overline{X}$ $K_B = X \oplus Q_A = \overline{X}.Q_A + X.\overline{Q_A}$

Analysis of clocked circuits with JK ff cont.

Step 2: Find the state table

	Preser	nt State						Next	State	
_	Q_A	Q_B	Χ	J_A	K_A	J_B	K_B	Q_A^+	Q_B^+	_
	0	0	0	0	0	1	0	0	1	
_	0	00	11	0	0	0	1	0	0	-
	0	1	0	1	1	1	0	1	1	
_	0	1	<u> </u>	<u> </u>	0	0	1	<u> </u>	0	_
	1	0	0	0	0	1	1	1	1	
	1	0	1	0	0	0	0	1	0	
_	1	1	0	1	1	1	1	0	0	•
	1	1	1	1	0	0	0	1	1	

Analysis of clocked circuits with JK ff cont.

	Preser	nt State	1 1			Next State			
_	Q_A	Q_B	Χ	J_A	K_A	J_B	K_B	Q_A^+	Q_B^+
	0	0	0	0	0	1	0	0	1
	0	0	1	0	0	0	1	0	0
	0	1	0	1	1	1	0	1	1
	0	1	11	1	0	0	1	1	0
	1	0	0	0	0	1	1	1	1
	1	0	1	0	0	0	0	1	0
	1	1	0	1	1	1	1	0	0
	1	1	1	1	0	0	0	1	1

	Q_{A}	Q_B
S0	0	0
S1	0	1
S2	1	0
S3	1	1

Step 3: Find state diagram

Analysis of clocked circuits with T ff

Step 1: Input Output Combinational Equation

$$T_A = X$$

$$T_B = X. Q_A$$

$$Y = Q_A. Q_B$$

Analysis of clocked circuits with T ff cont.

Analysis of clocked circuits with T ff cont.

Present State				Next State				
	Q_{A}	Q_{B}	X	T_A	T_B	Q^{\dagger}_{A}	Q_B^{\dagger}	Υ
	0	0	0	0	0	0	0	0
	0	0	1	1	0	1	0	0
	0	1	0	0	0	0	1	0
	0	1	1	1	0	11	1	0
	1	0	0	0	0	1	0	0
	1	0	1	1	1	0	1	0
	1	1	0	0	0	1	1	1
	1	1	1	1	1	0	0	1

Step 3: Find state diagram

Moore Machine

