Northwestern MSDS-498 Artificial

Model #101: Credit Card Default Model

Model Development Guide

Andrew Stevens

September 1, 2022

(1) Introduction

.

(2) The Data

University of California Irvine hosts a Machine Learning Repository (Dua and Graff 2019) which includes the default of credit card clients in Taiwan prepared to compare the predictive abilities of selected data mining methods (Dua and Graff 2019). The response variable of the dataset is a binary indicator for whether a customer defaulted on their credit card debt. Delinquency is defined as missing a single payment due date, while default is not making a specific number of consecutive payments (Cagan 2020). Entering default involves collections actions and likely losses for the creditor, so a company would seek customers unlikely to default.

The predictor variables included in the dataset can be divided into two categories about the customer: demographic attributes and billing/payment history. The demographic attributes are comprised of SEX, EDUCATION, MARRIAGE, and AGE. The billing/payment history variables comprise six months of history including repayment status, billing amount, and payment amount.

Before the data can be engineered into features consumable by different modeling methods, each datatype and feature class must be reviewed for sufficient and consistent data quality. The dataset was first checked for empty values, and zero nullity was reported across all fields. The dataset was focused to only explanatory and target variables.

ccd_focus <- subset(credit_card_default, select=ID:DEFAULT)</pre>

Then the dlookr () packages describe function was used to generate descriptive statistics, and the field of interest `na` was searched for values greater than 0 (indicating any empty records).

desc <- describe(ccd_focus)
any(desc\$na > 0)
>> [1] FALSE

The data dictionary must next be used to review whether invalid values exist and must be cleaned. Appendix A provides the complete dictionary with each field explicitly defined.

Table 1: Data Dictionary - Abridged

Fields	Variable	Valid Values	
X1	LIMIT_BAL	> 0	
X2	SEX	(1,2)	
Х3	EDUCATION	(1:4)	
X4	MARRIAGE	(1:3)	
X5	AGE	Int, >0,<120	
X6-X11	PAY_#	(-1,1:9)	
X12-X17	BILL_AMT#	numeric	
X18-X23	PAY_AMT#	numeric	
Z	DEFAULT	binary	

(3) Feature Engineering

In the practice of credit risk modeling, features are usually engineered by aggregating customer transactional data to determine behavioral patterns (Bahnsen et al 2016). We will also consider and test approaches for binning and combining demographic attributes of the customer, dependent on each specific model's needs.

The AGE attribute is received as integers indicating years of age for each customer. Because age is a discrete variable with high cardinality, discretization can bring it closer to a knowledge-level

representation (Peng et al 2009) and is essential for models such as trees/forests. Age has been initially separated by decade, and testing will be performed on more evenly distributed bins or perhaps other approaches.

Table 2: Resulting distribution of Age Binning

Age_Group	Freq
1-10	0
11-20	0
21-30	11,013
31-40	10,713
41-50	6,005
51-60	1,997
61-70	257
71-80	15

Weight of evidence binning was also tested, which divided the AGE attribute into four classes and the 'separation' of response results indicates that it will be a more effective means than based only on decade.

Figure 1: Weight of Evidence Binning Result

In order to produce variables useful and potentially meaningful to statistical models, all transactional data will be replaced with aggregated and computed statistics.

- List out max, avgs.... Generated
- (eng credit card default data.R)

(4) Exploratory Data Analysis

I wasted time attempting several R EDA pacakages that i coudln't get working (e.g. eda_web_report). Didn't realize till late that One Rule Classification module was for EDA. I've got laptop problems right now & don't seem to have sufficient resources for OneR

The window has crashed (reason: 'oom', code: '-536870904')

We are sorry for the inconvenience. You can reopen the window to continue where you left off.

Figure 2: FAIL

Or even exporting to csv....

Error: cannot allocate vector of size 234 Kb

Error during wrapup: cannot allocate vector of size 4.6 Mb

Error: no more error handlers available (recursive errors?); invoking

'abort' restart

The target variable, DEFAULT, is imbalanced, though not severely. This will require adjustment to accuracy measure and potentially modeling choices.

Figure 3: Histogram of Target Variable

The method used to calculate some of the engineered variables will require further adjustment.

NAs result in 0 in division

pay_ratio1 has 2468 (8.2%) missing values	Missing
pay_ratio2 has 2814 (9.4%) missing values	Missing
pay_ratio3 has 3150 (10.5%) missing values	Missing
pay_ratio4 has 3449 (11.5%) missing values	Missing
pay_ratio5 has 3959 (13.2%) missing values	Missing
ratio_avg has 5791 (19.3%) missing values	Missing

Eda....

	•
	methods.
(5)	
(6)	Comparison of Results
	results
(7)	Conclusions
	conclusion.

Predictive Modeling: Methods and Results

(8) Bibliography

- Dua, D. and Graff, C. (2019). UCI Machine Learning Repository
 [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and
 Computer Science.
- 2. Yeh, I. C., and Lien, C. H. (2009). The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2), 2473-2480.
- 3. Cagan, Michele. Debt 101: From Interest Rates and Credit Scores to Student Loans and Debt Payoff Strategies, an Essential Primer on Managing Debt. First Adams Media hardcover edition, Adams Media, 2020.
- 4. Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics
 Tables. R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
- 5. Correa Bahnsen, Alejandro, et al. "Feature Engineering Strategies for Credit Card Fraud Detection." *Expert Systems with Applications*, vol. 51, June 2016, pp. 134–42. *DOI.org (Crossref)*, https://doi.org/10.1016/j.eswa.2015.12.030.
- 6. L. Peng, W. Qing and G. Yujia, "Study on Comparison of Discretization Methods," 2009 International Conference on Artificial Intelligence and Computational Intelligence, 2009, pp. 380-384, doi: 10.1109/AICI.2009.385.

7.

8. Liu, and

(9) Appendix A: Data Dictionary

X1	LIMIT_BAL	Amount of the given credit (NT dollar): it includes both the individual consumer	
		credit and his/her family (supplementary) credit.	
X2	SEX	Gender (1 = male; 2 = female).	
X3	EDUCATION	Education (1 = graduate school; 2 = university; 3 = high school; 4 = others).	
X4	MARRIAGE	Marital status (1 = married; 2 = single; 3 = others).	
X5	AGE	Age (year).	
History of r	monthly past	payment. The measurement scale for the repayment status is: -1 = pay duly; 1 =	
payment d	elay for one r	nonth; 2 = payment delay for two months;; 8 = payment delay for eight months; 9	
= payment	delay for nine	e months and above.	
X6	PAY_1	repayment status in September, 2005	
X7	PAY_2	repayment status in August, 2005	
X8	PAY_3	repayment status in July, 2005.	
X9	PAY_4	repayment status in June, 2005.	
X10	PAY_5	repayment status in May, 2005.	
X11	PAY_6	repayment status in April, 2005.	
Amount of	Amount of bill statement (NT dollar)		
X12	BILL_AMT1	bill statement amount in September, 2005	
X13	BILL_AMT2	bill statement amount in August, 2005	
X14	BILL_AMT3	bill statement amount in July, 2005.	
X15	BILL_AMT4	bill statement amount in June, 2005.	
X16	BILL_AMT5	bill statement amount in May, 2005.	
X17	BILL_AMT6	bill statement amount in April, 2005.	
Amount of	Amount of previous payment (NT dollar)		
X18	PAY_AMT1	amount paid in September, 2005	
X19	PAY_AMT2	amount paid in August, 2005	
X20	PAY_AMT3	amount paid in July, 2005.	
X21	PAY_AMT4	amount paid in June, 2005.	
X22	PAY_AMT5	amount paid in May, 2005.	
X23	PAY_AMT6	amount paid in April, 2005.	