Introduction to programming in R: Day 1

Kanhu Charan Moharana

November 25, 2019

About me

Currently

PhD student LQFPP/CBB

Research interests

- Bioinformatics
- Plant genomics

Skills and experience

- Unix and grid computing
- Reproducible research using various languages such as Shell, Perl, R, Python.
- Web development

Connect

- Email: kcm.eid@gmail.com
- Twitter @kc_moharana
- http://lattes.cnpq.br/2585560606421215

Lassume

- You have basic understanding of MS Excel
 - Excel Sheets, tables
 - Generating basic plots
 - Using simple formula
- You have installed following software on your laptop
 - R software
 - R studio
 - Excel
- Example Data sets

We will not cover

- Advanced statistical tests
 - hypothesis testing
 - Multivariate tests
 - Machine learning
 - Clustering, Classification
- Bioinformatics analysis

Learning objectives: Day 1

- Introduction to R
 - Basic setup Get help
- Data types and Objects
 - Vectors
 - Factors
 - Matrix
 - List

 - Data frame
 - missing values
- Class Coercion
- Reading and writing Data files
- Sub setting

R

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS.

History

- S language (Bell Labs)
- 1991: Ross Ihka and Robert Gentleman started developing R language.
- 1993: First public announcement of R
- 1995: GNU free license to R
- 1996: R public mailing group was created.
- 1997: The R Core group was created.
- 2000: R version 1.0 was released
- Current version 3.6.1: https://cran.r-project.org

Pros

- Reproducible data intensive research
- A programming language
- Large community
- Huge number of free to use libraries.
- Easy learning curve.

Cons

- Hard to master
- Large data takes large memory.
- https://www.r-bloggers.com/why-r-is-hard-to-learn/

Basic Setup

- Download and install R
 - https://cran.r-project.org/
 - https://mran.microsoft.com/
- Latest version: R 3.6.1
- Integrated Development Environment (IDE)
 R-studio
- Online editors
 - https://rdrr.io/snippets/

Core R terminal

R Studio: interactive developmental environment

- Syntax-highlighting code editor
- 2 R terminal
- 3 WorkSpace: Variables and function
- Wiew plots/help

Hello world

On R terminal type the following

Hello world!

```
# This is a comment line and will not execute
print("hello")
```

```
## [1] "hello"
```

Using Panel-1 to execute code

- type the follwoing on the panel-1 of R-studio
- select all lines and press Ctrl+Enter

Print R version

```
r_version <- getRversion()
print("your R version is: ")
## [1] "your R version is: "
print(r_version)
## [1] '3.4.4'</pre>
```

Save the script

• Use File -> save as to save the script as print_r_version.R

R terminal as calculator

• R interface can be used as a simple calculator.


```
# Type on R terminal
1+5
100 * (10+40+33)/200
a = 10
b = 34
a + b
```

Assignment operator (<-), left to right

- To store values in a variable (on RAM)
- equals to(=) or <-
 - both can be used for assignment
 - <- is more accepted for variable assignment= used for defining function parameters.
- ## Type on your R terminal

```
foo <- 10.3
```

bar <- 89

baz <- foo * bar

R built-in functions

Figure 1: Excel sum() function

- functions are a type of procedure or routine
 - often accept input and parameters
 - o performs some operation and may return a value
- use a pair of parenthesis '()'

R built-in functions

```
# Diplays demo plots
demo()

# Get help
help()
# help on any topic, e.g plot
help('plot')
# list all files in current working directry
dir()

# Exit R terminal
q()
```

Working directory

- Where to find and save necessary files on your computer.
- Should be defined before beginning any analysis.
- Use menus.
- Session -> Set working directory. Using command line getwd() and setwd()

Get the current working directory

- getwd() # Set the current working directory to PATH setwd("path/to/address") # Change \ to \\ or / for Windows setwd('C:/Users/Kanhu/Desktop/R_course')
- ## OR.
- setwd('C:\\Users\\Kanhu\\Desktop\\R_course')

Basic syntax rules

- Each line may have an optional semicolon (;)
 - useful in writing compact functions
- \bullet Multi-line instructions should be separated by plus (+)
 - ggplot2 uses +
- Comments: A comment is a way of annotating code.
 - Hash (#)symbol is used at the beginning of the line.
 - These lines will not be executed by R
 - Instruction or documentation purpose
- Functions: Executes predefined instructions
 - accepts parameters.
 - Example:
 - x <- 'I love UENF' print(x, ...)

Tabular data

String	Date	Time	Decimal	Binary	Binary	Integer	Decimal
Name	Date of Birth	Time of birth	Height	Married	Gender	Number of publication	Average impact factor
John	1-Apr-78	0:12:01	165.3	N	M	89	10.4
Nikita	22-Feb-81	14:43:54	171.8	Υ	F	44	13.2
Robert	3-Dec-88	5:12:01	158	N	M	32	4.5
Priyanka	14-Apr-91	13:32:11	161	N	F	21	20.4
Anderson	5-Jul-98	8:13:14	163.1	Υ	М	10	1.6
Xi	18-Jan-90	5:22:01	161.8	Υ	M	55	2.5
Sung	17-Aug-89	13:30:44	158.3	Υ	F	37	9.3

Figure 2: Tables with rows and columns

A table has rows and columns

Cell address

Figure 3: Cell address: M7 (Column:M, Row:7)

- Each bit of data is stored in a CELL
- Collection of CELLs make a SERIES
 - Two cells can be used for mathematical operation and the result can be saved in another cell.
 - Row number and column number can be used to point to one cell

Data table

- Many SERIES combine together to form a table
 - A series can be a column or row
 - Useually one column has a distinct datatype

Data types

String	Date	Time	Decimal	Binary	Binary	Integer	Decimal
Name	Date of Birth	Time of birth	Height	Married	Gender	Number of publication	Average impact factor
John	1-Apr-78	0:12:01	165.3	N	M	89	10.4
Nikita	22-Feb-81	14:43:54	171.8	Υ	F	44	13.2
Robert	3-Dec-88	5:12:01	158	N	M	32	4.5
Priyanka	14-Apr-91	13:32:11	161	N	F	21	20.4
Anderson	5-Jul-98	8:13:14	163.1	Υ	M	10	1.6
Xi	18-Jan-90	5:22:01	161.8	Υ	M	55	2.5
Sung	17-Aug-89	13:30:44	158.3	Υ	F	37	9.3

Figure 4: Each column has distinct datatype

Data types in R

- Logical: TRUE, FALSE
- 2 Character: 'a', 'name', 'TRUE', "1234", "--NA", "+2"
- 3 Integer: 10, 20,100, 78
- 4 Double: 0.0001, 12.898, 10e-10
- **5** Complex: 3 + 2i
- @ Raw:

Variables and R objects

- In programming, a variable is a value that can change, depending on conditions or on information passed to the program.
- Rules to follow:
 - Identifiers can be a combination of letters, digits, period (.) and underscore (_).
 - It must start with a letter or a period. If it starts with a period, it cannot be followed by a digit.
 - They are case sensitive. e.g Data_table NOT equals to data_table

Variable names

Acceptable variable names

total, Sum, .fine.with.dot, this_is_acceptable, Number5

Wrong variable names

- tot@1, 5um, fine, TRUE, .One
 - Reserved words in R cannot be used as identifiers.
 - Reserved words :
 - for, if, next
 - Pre-defined Constants :
 - o pi, LETTERS, letters, month.name

Objects in real world

Class, attributes and objects

- Class: Car has several attributes
 - Number of wheels
 - Fuel
 - Color
- Instances of each class is an object
 - So each class inherits the attributes of the class

Objects in R

Primary objects

- Vector: collection of values
- Matrix: 2D-collection of multiple vectors
- Array: >2D-collection of multiple vectors

Derived objects

- List
- Data frame

Special Vector

Factor

Objects in R

Vectors

vector or length 3

Dataframe

Vectors

- Basic type of 'R object'
- Only one type of data
- Similar to one column in Excel Table.
- If there is one character data, will convert all to character
- If there is one decimal data, convert all to decimal

Integer vector

Numeric vector

Character vector

Vectors

```
type on R terminal
```

```
x <- vector(mode='double',length=5)

# Three 'shortcuts' to create numerical vector
a <- c(1,2,5,6,7)
b <- 1:5
c <- seq(12,20, by= 2)

dec <- seq(0, 0.5, by=0.025)

products <- c('milk', 'mango', 'good')</pre>
```

Factors

- Categorical data
 - Ordered (High, medium, Low)
 - Unordered (Male, Female)
- Can be also integers
- Useful in data modelling problems
- Factors are vectors(), with additional information or attribute called levels, representing that order

```
## Create a vector
x <- factor(
   c('yes', 'no', 'no', 'yes', 'no'),
   levels = c('yes', 'no')
)</pre>
```

Factors

Some functions are useful to create factors

```
gl()
```

Generate factors by specifying the pattern of their levels.

```
# 2 conditions and 8 replication each
gl(2, 8, labels = c("Control", "Treat"))
    [1] Control Control Control Control Control Control Control
    [9] Treat
             Treat
                      Treat
                              Treat
                                      Treat
                                             Treat
```

Levels: Control Treat

```
rep()
```

 Replicate Elements of Vectors rep(x=1:2, each=2, times=3, length.out=6) Treat

Treat

Matrix

Vectors

Dataframe

Figure 5: R objects: matrix

Matrix

```
    Are vectors with dimension attribute (# of rows, # of columns)

    Only one type of data

# Empty matrix
m <- matrix()
m1 \leftarrow matrix(c(1,2,3,4), byrow=T, nrow=2)
m1
  [,1] [,2]
## [1,] 1 2
## [2,] 3 4
m2 \leftarrow matrix(c(1,2,3,4), byrow=F, nrow=2)
m2
       [,1] [,2]
##
## [1,] 1
## [2,] 2 4
dim(m1)
```

[1] 2 2

Matrix for a vector

- We can devide a vector to matrix of specified columns and rows.
- R can interpret the number of rows and columns from your arguments
 - byrow=F, byrow=T

byRow=FALSE 1 2 1 1 6 2 7

byRow=TRUE

	1	2	3	4	5
1	1	2	3	-7 4	5
2	6	7	8	9	10

Create matrix from vectors using functions

cbind(), rbind()

• cbind(): bind columns

Create matrix from vectors using functions

```
a <- 1:5
b <- 11:15
c <- 21:25

cbind(a,b,c)

## a b c
## [1,] 1 11 21
## [2,] 2 12 22
## [3,] 3 13 23
## [4,] 4 14 24
## [5,] 5 15 25

rbind(a,b,c)
```

a

b

c

1

21

[,1] [,2] [,3] [,4] [,5]

3

11 12 13 14 15

23 24

22

5

25

Mix multiple datatypes in a matrix

```
#Character matrix
mat <- matrix(c('a','b','c','k'), byrow=T, nrow=2)
mat

## [,1] [,2]
## [1,] "a" "b"
## [2,] "c" "k"

## Mix an integer type value
mat2 <- matrix(c('a',1,'c','k'), byrow=T, nrow=2)
mat2

## [,1] [,2]
```

[1,] "a" "1" ## [2,] "c" "k"

Data frames

Data frames are collection of named vectors.

```
df <- data.frame(
    Name = c('Robert', 'Priyanka', 'John'),
    Height = c(167.1, 156.9, 162.5)
)
df</pre>
```

- ## Name Height ## 1 Robert 167.1
- ## 2 Priyanka 156.9
- ## 3 John 162.5

Data frames

Figure 6: Data frames

Read tabular files to create DF

Figure 7: Data frames from *.csv file

List

\$Height

\$num_elements
[1] 2

##

```
Ocollection of R objects
Objects can be of different class

new_list <-list(
    name = c('Robert', 'Priyanka', 'John'),
    Height = c(167.1, 156.9, 162.5),
    num_elements=2
)
new_list

## $name
## [1] "Robert" "Priyanka" "John"
##</pre>
```

[1] 167.1 156.9 162.5

Missing Values

- Undefined values
- Denoted by NA or NaN
 - NaN: for mathematical operations (e.g: 0/0)
 - NA: everything else
 - character NA
 - Integer NA
- NaN can be equal to NA, but reverse is not true
- is.na() used to check NA values in a vector
- is.nan() used to check NaN values

```
x < -c(5,6,NA,9)
```

is.na(x)

[1] FALSE FALSE TRUE FALSE

```
x \leftarrow c(5,6,NaN,9,NA)
is.na(x)
```

[1] FALSE FALSE TRUE FALSE TRUE

```
is.nan(x)
```

[1] FALSE FALSE TRUE FALSE FALSE

1. Implicit coercion

- sometimes different classes of R objects get mixed together
- vectors and matrices cannot have values of different datatypes
- coercion occurs so that every element in the vector is of the same class.
- lower ranking type will be coerced into the higher ranking type
 logical < integer < numeric < character

```
y
## [1] "1.7" "a"
p <- c(TRUE, "Hello")
p
## [1] "TRUE" "Hello"
q <- c(TRUE, 12)
q
## [1] 1 12</pre>
```

y <- c(1.7, "a") ## character

2. Explicit Coercion

```
• Objects can be explicitly coerced from one class to another using the 'as.*' functions.
```

```
x <- 0:6 class(x)
```

```
## [1] "integer"
```

```
as.numeric(x)
```

```
## [1] 0 1 2 3 4 5 6
```

```
as.logical(x)
```

```
## [1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE
```

Data frame to matrix

```
    often many operations require the input as matrix

df <- data.frame(foo=1:5,bar=11:15)</pre>
df
     foo bar
##
## 1
       1 11
     2 12
## 2
## 3 3 13
## 4 4 14
## 5
     5 15
class(df)
## [1] "data.frame"
as.matrix(df)
        foo bar
##
## [1,] 1 11
## [2,] 2 12
```

5 15

[3,] 3 13 ## [4,] 4 14 ## [5,]

List to data frame

generic functions and operations

Function	Description
ls()	list R objects in the current environment
class()	a character vector giving the names of the classes from which the object
length()	the number of elements in a vector or factor.
dim()	a vector of length 2, representing rows and columns
head()	displays first 10 lines of a vector, matrix, df.
tail()	displays last 10 lines of a vector, matrix, df.
str()	compactly display the internal *str*ucture of an R object
print()	generic print an R object to screen or output devices.
rm()	remove/delete given list of R objects from current environment
attributes()	to access an object's attributes.

Figure 8: Some important R functions.

Name attribute

- Naming column and rows makes it easier to data manipulation and human readable.
- All R objects can have names attribute
 - ## Named vectors
- each element in a vector can be named.

```
a <- c('a'=5, 'b'=10, 'c'= 2)
a
## a b c
```

```
## a b c
## 5 10 2
names(a)
```

```
## [1] "a" "b" "c"
```

Name attribute: Matrix

Matrices

```
Row and column of a matrix can be named
  o dimnames() : for matrices
      o colnames(): column names
      o rownames() : row names
m = matrix(c(1,2,3,4), byrow=F, nrow=2)
dimnames(m) =list( c('p','q'),c('r','s') )
##
   r s
## p 1 3
## q 2 4
colnames(m)
## [1] "r" "s"
rownames(m)
## [1] "p" "q"
```

Name attribute: data frames

data frames

```
o row.names(): get/set row names
       o row.names(): always unique for each row
  names(): get/set column names
           names(): always unique for each column
df = data.frame(
  k=c('q','a','r'),
  1=c(1,2,3)
df
     k 1
## 1 q 1
## 2 a 2
## 3 r 3
row.names(df)
## [1] "1" "2" "3"
```

Name attribute: data frames

data frames

```
names(df)
## [1] "k" "1"
# Assign new row names
row.names(df) <- c('a','b','c')
# assign new column names
names(df) <- c('foo','baz')

df
## foo baz
## a q 1
## b a 2
## c r 3</pre>
```

Create file by input from keyboard

Enter data using editor

```
mydata <- data.frame(
   age=numeric(0),
   gender=character(0),
   weight=numeric(0)
)

mydata <- edit(mydata)</pre>
```

Contd...

Create file by input from keyboard

Enter data using editor

Q D	ata Editor						
File	Edit Help)					
	age	gender	weight	var4	var5	var6	var7
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							

Read/Write data from text file

Read

- Two important functions to read tabular data
 read.table(), read.csv()
- Read R script (*.R)
 - eau it script (.i ⊚ source()
- Read saved R data objects (*.RData)
 - load()

Read/Write data from text file

Write

- Two important functions to write tabular data
 write.table(),write.csv()
- Save the R command to a text file (*.R)
 savehistory()
- Read current R data objects to a binary file (*.RData)
 - save()

Iris Flower data set

Tabular data

Table 1: First 6 lines

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

read.table()

• Reads a file in table format and creates a data frame from it.

```
df <- read.table(file="iris_dataset.csv",
   header = FALSE, ## TRUE, if 1st row repsresnts the header

sep = "", ## Column separator

skip = 0, ## Skip top 'n' number of lines

check.names = TRUE, ## Check column names for characters like space, comma, @
fill = !blank.lines.skip,
strip.white = FALSE,
blank.lines.skip = TRUE
)</pre>
```

read.csv()

write.table() / write.csv()

```
write.csv(data_frame, file="output_dataframe.csv",
  header = TRUE,
  quote = FALSE,
  row.names = TRUE,
  col.names = TRUE
)
```

write R code and read pre-defined codes

savehistory()

- Write the R command history to a text file
- Use extension .R

source()

- read and execute codes written in a plain text file
- usually .R extension

save and load R objects

- writes an external representation of R objects to the specified file.
- The objects can be read back from the file at a later date by using the function 'load' or 'attach'
- Use .RData extension

```
## Save the current environment (all objects) to one file
save(data, vector_a, file= "analysis_results.RData")

## Reload all objects) from .RData file
load("analysis_results.RData")
```

Real life example of importing tabular data

Note: Meltan has an ability assigned in the code for Pokémon Let's Go, even though abilities are not available.

Additional artwork

Pokédex data

National Nº	809
Туре	STEEL
Species	Hex Nut Pokémon
Height	2.5 m (8'02")
Weight	800.0 kg (1763.7 lbs)
Abilities	1. Iron Fist
Local №	153 (Let's Go Pikachu/Let's Go Eevee

Training

EV yield	-
Catch rate	_
Base Friendship	_
Base Exp.	-
Growth Rate	_

Breeding

Egg Groups	Undiscovered
Gender	_
Egg cycles	_

Base stats

Dase Stats

The effectiveness of each type on Melmetal.

Type defenses

Real life example of importing tabular data

4 A	В	С	D	E	F	G	Н		J	K	L	M	N	0	P
Pokedex number	Name	percentage male	type1	type2	weight_k g	" -	generation		defense	hp	attack	special attack	special defense	speed	ls legendar
1	Bulbasaur	88.1	grass	poison	6.9	0.7	1	Seed Pokémon	49	45	49	65	65	45	0
2	Ivysaur	88.1	grass	poison	13	1	1	Seed Pokémon	63	60	62	80	80	60	0
3	Venusaur	88.1	grass	poison	100	2	1	Seed Pokémon	123	80	100	122	120	80	0
4	Charmand		fire		8.5	0.6	1		43	39	52	60	50	65	0
5	Charmeled		fire		19	1.1	1		58	58	64	80	65	80	0
7 6	Charizard		fire	flying	90.5	1.7	1		78	78	104	159	115	100	0
7	Squirtle	88.1	water		9	0.5	1	Tiny Turtle Pokémo		44	48	50	64	43	0
8	Wartortle	88.1	water		22.5	1	1		80	59	63	65	80	58	0
0 9	Blastoise		water		85.5	1.6	1	Shellfish Pokémon	120	79	103	135	115	78	0
1 10	Caterpie	50	bug		2.9	0.3	1		35	45	30	20	20	45	0
2 11	Metapod	50	bug		9.9	0.7	1	Cocoon Pokémon		50	20	25	25	30	0
3 12	Butterfree	50	bug	flying	32	1.1	1	Butterfly Pokémon		60	45	90	80	70	0
4 13	Weedle	50	bug	poison	3.2	0.3	1		30	40	35	20	20	50	0
5 14	Kakuna	50	bug	poison	10	0.6	1	Cocoon Pokémon		45	25	25	25	35	0
15	Beedrill	50	bug	poison	29.5	1	1	Poison Bee Pokém		65	150	15	80	145	0
7 16	Pidgey	50	normal	flying	1.8	0.3	1	Tiny Bird Pokémon	40	40	45	35	35	56	0
B 17	Pidgeotto		normal	flying	30	1.1	1	Bird Pokémon	55	63	60	50	50	71	0
18	Pidgeot	50	normal	flying	39.5	1.5	1	Bird Pokémon	80	83	80	135	80	121	0
19	Rattata	50	normal	dark			1		35	30	56	25	35	72	0
1 20	Raticate	50	normal	dark			1		70	75	71	40	80	77	0
2 21	Spearow	50	normal	flying	2	0.3	1	Tiny Bird Pokémon	30	40	60	31	31	70	0
3 22	Fearow	50	normal	flying	38	1.2	1		65	65	90	61	61	100	0
4 23	Ekans	50	poison		6.9	2	1		44	35	60	40	54	55	0
5 24	Arbok	50	poison		65	3.5	1	Cobra Pokémon	69	60	95	65	79	80	0
6 25	Pikachu	50	electric		6	0.4	1		40	35	55	50	50	90	0
7 26	Raichu	50	electric	electric			1	Mouse Pokémon	50	60	85	95	85	110	0
8 27	Sandshrev	50	ground	ice			1	Mouse Pokémon	90	50	75	10	35	40	0

Source: https://www.kaggle.com/rounakbanik/pokemon/data

Real life example of importing tabular data

Prepare your dataset

```
o if your data is in excel export it as csv file.
    o or tab separated file (*.tsv)
# Read the *.csv file
pokemon_data <- read.csv(
    file='Data/pokemon_data.csv',
    sep=',',
    header=TRUE
)
# Get an over view of the data
dim(pokemon_data)
## [1] 801 16</pre>
```

Get overview of data frame

```
# See top 10 lines
head(pokemon_data)
```

##		Pokedex.number	Name	percenta	ge.male	type1	type2	weight_kg
##	1	1	Bulbasaur		88.1	grass	poison	6.9
##	2	2	Ivysaur		88.1	grass	poison	13.0
##	3	3	Venusaur		88.1	grass	poison	100.0
##	4	4	${\tt Charmander}$		88.1	fire		8.5
##	5	5	${\tt Charmeleon}$		88.1	fire		19.0
##	6	6	Charizard		88.1	fire	flying	90.5
##		height_m genera	ation class:	fication	defense	hp att	tack spe	ecial.attack
##	1	0.7	1	Seed	49	45	49	65
##	2	1.0	1	Seed	63	60	62	80
##	3	2.0	1	Seed	123	80	100	122
##	4	0.6	1	Lizard	43	39	52	60
##	5	1.1	1	Flame	58	58	64	80
##	6	1.7	1	Flame	78	78	104	159
##		special.defense	e speed Is.	legendary				
##	1	65	5 45	0	1			
##	2	80	60	0	1			
##	3	120	0 80	0	1			
##	4	50	65	0	1			
##	5	65	5 80	0	1			
##	6	115	5 100	0	ı			

Get overview of data frame

```
# See datatypes
str(pokemon data)
  'data.frame': 801 obs. of 16 variables:
   $ Pokedex.number : int 1 2 3 4 5 6 7 8 9 10 ...
                   : Factor w/ 801 levels "Abomasnow", "Abra", ...: 73 321 745 95 96
##
   $ Name
   ##
   $ type1
                   : Factor w/ 18 levels "bug", "dark", "dragon", ...: 10 10 10 7 7 7
##
##
   $ type2
                   : Factor w/ 19 levels "", "bug", "dark", ...: 15 15 15 1 1 9 1 1 1
##
   $ weight kg
                         6.9 13 100 8.5 19 90.5 9 22.5 85.5 2.9 ...
                   : num
##
   $ height_m
                   : niim
                         0.7 1 2 0.6 1.1 1.7 0.5 1 1.6 0.3 ...
##
   $ generation
                         1 1 1 1 1 1 1 1 1 1 . . .
                   : int
##
   $ classfication
                   : Factor w/ 588 levels "Abundance", "Acorn", ...: 449 449 449 299
   $ defense
                   : int 49 63 123 43 58 78 65 80 120 35 ...
##
##
   $ hp
                         45 60 80 39 58 78 44 59 79 45 ...
                   : int
                         49 62 100 52 64 104 48 63 103 30 ...
##
   $ attack
                   : int.
   $ special.attack : int 65 80 122 60 80 159 50 65 135 20 ...
##
##
   $ special.defense: int 65 80 120 50 65 115 64 80 115 20 ...
                   : int 45 60 80 65 80 100 43 58 78 45 ...
##
   $ speed
##
   $ Is.legendary
                   : int
                         0 0 0 0 0 0 0 0 0 0 ...
```

Packages available in R

- a packages is a free libraries of code written by R's active user community.
- They add many useful R functions to your R environment

Files	Plots	Packages	Help	Viewer					_	-6
O In	nstall 🕝	Update					Q			
	Name		Descri	ption				Version		
User	Library									4
	acepack			nd AVAS fo	_	Multiple Regression	ı	1.4.1	•	3
	Annotatio	nDbi	Annot	ation Data	abase Interfac	e		1.45.1	0	3
	ape		Analy:	ses of Phyl	logenetics and	d Evolution		5.3	0	3
	askpass		Safe P	assword E	ntry for R, Git	t, and SSH		1.1	0	3
	assertthat		Easy F	re and Po	st Assertions			0.2.1	0	3
	backports		Reimp 3.0.0	lementati	ons of Functio	ons Introduced Sin	ce R-	1.1.4	• (3
	base64en		Tools	for base64	encoding			0.1-3	0 (3
	ВН		Boost	C++ Head	der Files			1.69.0-1	0 (3
	Biobase		Bioba	se: Base fu	nctions for Bi	oconductor		2.43.1	0 (3
	BiocGener	ics	S4 ge	neric funct	tions for Bioco	onductor		0.29.2	0 (3
	BiocMana	ger	Acces	s the Bioco	onductor Proj	ect Package Repos	itory	1.30.4	0 (3
	BiocVersio	n	Set th	e appropri	iate version o	f Bioconductor pac	:kages	3.9.0	0 (3
	Biostrings		Efficie	nt manipu	lation of biol	ogical strings		2.52.0	0	3
	bit nu Charan M	loharana	A Clas		ors of 1-Bit Bo	ooleans nming in R: Day 1		1.1-14 Nove	mber 25,	2019

Install external packages

- To install an R package, open an R session and type at the command line install.packages("<the package's name>")
 install an package to read Excel files
 search on internet or r-cran.org
 ## Install many packages as a vector install.packages(
 c('readxl','gplots')
 - usually installs in "My Documents"

Thank you.

