Novo Espaço – Matemática A, 10.º ano

Proposta de teste de avaliação [janeiro - 2019]

Ano / Turma: _____

N.º:

Data: -

- Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
- As cotações dos itens encontram-se no final do enunciado da prova.
- 1. Em qual dos seguintes referenciais o.n. pode estar representada a circunferência de equação $x^2 + y^2 + 4x - 6y + 9 = 0$?

(A)

(C)

2. No referencial da figura estão representadas duas retas, $r \in s$, os pontos A(0,2) e $B(2k, 5-4m), k, m \in \square$, e a circunferência centrada na origem e que passa por A.

Sabe-se que:

- a equação reduzida da reta s é $y = -3x \frac{4}{3}$;
- a reta r passa pelo ponto A.

2.1. Os valores de k e m para os quais B é o ponto de interseção da reta s com o eixo das abcissas são:

(A)
$$k = \frac{1}{2} \text{ e } m = \frac{5}{4}$$

(B)
$$k = -\frac{2}{9}$$
 e $m = \frac{5}{4}$

(C)
$$k = -\frac{2}{9}$$
 e $m = 0$

(D)
$$k = -\frac{4}{9}$$
 e $m = 0$

2.2. Representa, através de uma condição, o conjunto dos pontos da região sombreada da figura.

Proposta de teste de avaliação [janeiro - 2019]

3. Em relação a um referencial o.n. (O, \vec{i}, \vec{j}) , considera a reta r definida pela seguinte equação vetorial:

$$(x,y) = \left(-\frac{5}{3}, 2\right) + k\left(\frac{1}{2}, -3\right), \quad k \in \square$$

A equação reduzida da reta r é:

(A)
$$y = -6x + 2$$
 (B) $y = -\frac{6}{5}x - \frac{12}{5}$ (C) $y = -6x - 8$ (D) $y = -\frac{3}{2}x - \frac{1}{2}$

- **4.** Dado um referencial o.n., considera os pontos A(-3,8), $B\left(-\frac{1}{3},4\right)$, C(2,5) e $P(5m+1,8+9m^2)$, $m \in \square$, e o vetor $\vec{u}(-4,3)$.
- **4.1.** Determina as coordenadas do vetor \vec{v} , colinear com \vec{u} , de sentido oposto e com norma 8.
- **4.2.** Determina o valor de m de modo que $\overrightarrow{AP} = \overrightarrow{BC}$.
- **4.3.** A reta AC pode ser representada através de uma das seguintes equações vetoriais. Identifica-a.

(A)
$$(x, y) = (7, 2) + k(5, -3), k \in \square$$
 (B) $(x, y) = (-3, 8) + k(2, 5), k \in \square$

(C)
$$(x, y) = (2, 5) + k(-3, 8), k \in \square$$
 (D) $(x, y) = (1, 1) + k(5, -3), k \in \square$

5. Na figura, em referencial o.n. Oxy, estão representados os pontos A(-3,5), B(1,2), a circunferência de diâmetro [AB] e centro C e as retas r e s.

- a reta r é a mediatriz de [AB];
- os pontos D e E são os pontos de interseção
 de r com cada um dos eixos coordenados.

- **5.1.** Representa, através de uma condição, a reta s, sabendo que passa por C e é paralela ao eixo das abcissas.
- **5.2.** Determina as coordenadas dos pontos $D \in E$.
- **5.3.** Representa a reta AB através da equação reduzida.

Proposta de teste de avaliação [janeiro - 2019]

Porto Editora

6. Considera a pirâmide quadrangular regular [*OABCV*] representada na figura, à qual foi aplicado um referencial o.n. *Oxyz*.

Os pontos A e C pertencem, respetivamente, aos eixos Ox e Oy, tal como a figura sugere.

Sabe-se que os pontos $A \in V$ têm de coordenadas (4, 0, 0) e (2, 2, 8), respetivamente.

- **6.1.** Qual das seguintes expressões representa a medida do perímetro do triângulo [ABV]?
 - **(A)** $10\sqrt{2}$
- **(B)** $4+12\sqrt{2}$
- (C) $4+4\sqrt{3}$
- **(D)** $4+6\sqrt{2}$
- **6.2.** Seja M o ponto médio de [BV].

Uma equação do plano paralelo ao plano coordenado xOz e que passa por M é:

- $(\mathbf{A}) \qquad y = 3$
- **(B)** x = 3
- (C) z = 4
- **(D)** y = 2
- **6.3.** Determina o ponto de interseção da reta AV com o plano coordenado yOz.
- **6.4.** Determina uma equação cartesiana do plano mediador do segmento de reta [AV] e identifica o ponto onde interseta o eixo das cotas.
- 7. Considera o paralelogramo [ABCD] representado no referencial o.n. (O, i, j) da figura.
 Sabe-se que as coordenadas dos pontos A, B e C são, respetivamente, (-2, 1), (5, 3) e (2, 5).
 Determina as coordenadas:

- 7.1. do ponto D;
- 7.2. do ponto E, sabendo que é o ponto de interseção da reta CD com o eixo das ordenadas.

FIM

	Cotações																
Questões	1.	2.1.	2.2.	3.	4.1	4.2.	4.3.	5.1.	5.2.	5.3.	6.1.	6.2.	6.3.	6.4.	7.1.	7.2.	Total
Pontos	10	10	14	10	15	15	10	12	15	12	10	10	15	15	12	15	200

1. $x^2 + y^2 + 4x - 6y + 9 = 0 \Leftrightarrow x^2 + 4x + 4 - 4 + y^2 - 6y + 9 = 0 \Leftrightarrow (x+2)^2 + (y-3)^2 = 4$ $(x+2)^2 + (y-3)^2 = 4$ é a equação da circunferência de centro (-2,3) e raio 2.

Resposta: Opção correta (B)

2.

2.1. O ponto B é a interseção da reta s com o eixo Ox.

$$0 = -3x - \frac{4}{3} \Leftrightarrow 3x = -\frac{4}{3} \Leftrightarrow x = -\frac{4}{9}$$

Assim, $B\left(-\frac{4}{9}, 0\right)$, pelo que:

$$\begin{cases} 2k = -\frac{4}{9} & \Leftrightarrow \begin{cases} k = -\frac{2}{9} \\ 5 - 4m = 0 \end{cases} \Leftrightarrow \begin{cases} m = \frac{5}{4} \end{cases}$$

Resposta: Opção correta (B)

- Resposta. Opção correta (B)
- **2.2.** Equação da circunferência: $x^2 + y^2 = 4$

Equação da reta s: $y = -3x - \frac{4}{3}$

Equação da reta r: y = -3x + 2

Região sombreada: $x^2 + y^2 \le 4 \land y \ge -3x - \frac{4}{3} \land y \le -3x + 2$

Resposta: $x^2 + y^2 \le 4 \land y \ge -3x - \frac{4}{3} \land y \le -3x + 2$

3. Declive da reta $r: m = \frac{-3}{\frac{1}{2}} = -6$

Então, a equação reduzida da reta é do tipo y = -6x + b.

Atendendo a que $\left(-\frac{5}{3}, 2\right)$ é um ponto pertencente à reta, então:

$$2 = -6 \times \left(-\frac{5}{3}\right) + b \iff 2 = 10 + b \iff b = -8$$

Equação reduzida da reta: y = -6x - 8

Resposta: Opção correta (C) y = -6x - 8

4.

4.1.
$$\vec{v} = k\vec{u}$$
, $k \in \square$

$$\left\| \vec{v} \right\| = 8 \Leftrightarrow \left| k \right| \left\| \vec{u} \right\| = 8 \Leftrightarrow \left| k \right| \sqrt{16 + 9} = 8 \Leftrightarrow \left| k \right| = \frac{8}{5} \Leftrightarrow k = \frac{8}{5} \lor k = -\frac{8}{5}$$

Como k < 0, conclui-se que $k = -\frac{8}{5}$.

Então,
$$\vec{v} = -\frac{8}{5}(-4, 3) = \left(\frac{32}{5}, -\frac{24}{5}\right)$$
.

Resposta:
$$\vec{v} \left(\frac{32}{5}, -\frac{24}{5} \right)$$

4.2.
$$\overrightarrow{AP} = P - A = (5m + 1 + 3, 8 + 9m^2 - 8) = (5m + 4, 9m^2)$$

$$\overrightarrow{BC} = C - B = \left(\frac{7}{3}, 1\right)$$

$$\overrightarrow{AP} = \overrightarrow{BC} \Leftrightarrow \begin{cases} 5m + 4 = \frac{7}{3} \Leftrightarrow \begin{cases} 5m = -\frac{5}{3} \\ 9m^2 = 1 \end{cases} \Leftrightarrow \begin{cases} m = -\frac{1}{3} \\ m^2 = \frac{1}{9} \end{cases} \Leftrightarrow \begin{cases} m = -\frac{1}{3} \\ m = \frac{1}{3} \lor m = -\frac{1}{3} \end{cases}$$

Resposta:
$$m = -\frac{1}{3}$$

4.3.
$$\overrightarrow{AC} = C - A = (5, -3)$$

Declive da reta $AC: -\frac{3}{5}$

As opções (A) e (D) são as únicas com declive $-\frac{3}{5}$.

Equação da reta $AC: y = -\frac{3}{5}x + b$

Como a reta AC passa no ponto C, então $5 = -\frac{3}{5} \times 2 + b \Leftrightarrow b = \frac{31}{5}$, pelo que $y = -\frac{3}{5}x + \frac{31}{5}$.

O ponto (7, 2) pertence à reta $y = -\frac{3}{5}x + \frac{31}{5}$ e o ponto (1, 1) não pertence.

Resposta: Opção correta (A)
$$(x,y) = (7,2) + k(5,-3), k \in \square$$

5.

5.1. C é o ponto médio de [AB].

$$C\left(\frac{-3+1}{2}, \frac{5+2}{2}\right) = \left(-1, \frac{7}{2}\right)$$

Equação da reta $s: y = \frac{7}{2}$

5.2. Seja o ponto P(x, y).

 $\overline{AP} = \overline{BP} \Leftrightarrow \sqrt{(x+3)^2 + (y-5)^2} = \sqrt{(x-1)^2 + (y-2)^2} \Leftrightarrow$

$$\Leftrightarrow x^2 + 6x + 9 + y^2 - 10y + 25 = x^2 - 2x + 1 + y^2 - 4y + 4 \Leftrightarrow -6y = -8x - 29 \Leftrightarrow$$

$$\Leftrightarrow y = \frac{4}{3}x + \frac{29}{6}$$
 é a equação reduzida da reta r .

Coordenadas do ponto D:

Se
$$y = 0$$
, tem-se $0 = \frac{4}{3}x + \frac{29}{6} \Leftrightarrow \frac{4}{3}x = -\frac{29}{6} \Leftrightarrow x = -\frac{29}{8}$.

$$D\left(-\frac{29}{8},0\right)$$

Coordenadas do ponto $E: E\left(0, \frac{29}{6}\right)$

Resposta:
$$D\left(-\frac{29}{8}, 0\right)$$
 e $E\left(0, \frac{29}{6}\right)$

5.3. $\overrightarrow{AB} = B - A = (4, -3)$

Declive da reta $AB : -\frac{3}{4}$

Uma equação da reta AB é do tipo $y = -\frac{3}{4}x + b$ e passa pelo ponto A.

$$5 = -\frac{3}{4} \times (-3) + b \iff b = \frac{11}{4}$$

$$y = -\frac{3}{4}x + \frac{11}{4}$$

Novo Espaço - Matemática A, 10.º ano

Proposta de resolução [janeiro - 2019]

Resposta: $y = -\frac{3}{4}x + \frac{11}{4}$

6.

6.1.
$$A(4, 0, 0) \in V(2, 2, 8)$$

 $\overline{OA} = \overline{AB} = 4$
 $\overline{VA} = \sqrt{(2-4)^2 + (2-0)^2 + (8-0)^2} = \sqrt{4+4+64} = \sqrt{72} = \sqrt{2^3 \times 3^2} = 6\sqrt{2}$
 $\overline{AB} + \overline{BV} + \overline{VA} = 4 + 6\sqrt{2} + 6\sqrt{2} = 4 + 12\sqrt{2}$

Resposta: Opção correta (B) $4+12\sqrt{2}$

6.2. $B(4, 4, 0) \in V(2, 2, 8)$

Então,
$$M\left(\frac{4+2}{2}, \frac{4+2}{2}, \frac{0+8}{2}\right) = (3, 3, 4).$$

Resposta: Opção correta (A) y = 1

6.3. Uma equação vetorial da reta AV: $(x, y, z) = A + k \overrightarrow{AV}$, $k \in \square$

$$(x, y, z) = (4,0,0) + k(-2,2,8), k \in \square$$

O ponto de interseção da reta AV com o plano yOz é o ponto da reta AV de coordenadas (0, y, z).

$$(0, y, z) = (4, 0, 0) + k(-2, 2, 8), \quad k \in \square$$
Daqui resulta:
$$\begin{cases} -2k + 4 = 0 \\ 2k + 0 = y \end{cases} \Leftrightarrow \begin{cases} k = 2 \\ y = 4 \end{cases}$$

Resposta: O ponto pedido tem coordenadas (0, 4, 16).

6.4. Seja P(x, y, z) e $\overline{PA} = \overline{PV}$.

$$\sqrt{(x-4)^2 + (y-0)^2 + (z-0)^2} = \sqrt{(x-2)^2 + (y-2)^2 + (z-8)^2} \Leftrightarrow$$

$$\Leftrightarrow x^2 - 8x + 16 + y^2 + z^2 = x^2 - 4x + 4 + y^2 - 4y + 4 + z^2 - 16z + 64 \Leftrightarrow$$

$$\Leftrightarrow -8x + 4x + 4y + 16z + 16 - 4 - 4 - 64 = 0 \Leftrightarrow -4x + 4y + 16z - 56 = 0 \Leftrightarrow$$

$$\Leftrightarrow -x + y + 4z - 14 = 0$$

Equação do plano mediador de [AV]: -x + y + 4z - 14 = 0

A interseção do plano com o eixo Oz é um ponto do tipo (0,0,z).

$$0+0+4z=14 \Leftrightarrow z=\frac{7}{2}$$
, logo as coordenadas do ponto de interseção são $\left(0,\,0,\,\frac{7}{2}\right)$.

Novo Espaço - Matemática A, 10.º ano

Proposta de resolução [janeiro - 2019]

Resposta: $\left(0, 0, \frac{7}{2}\right)$

7.

7.1.
$$D = A + \overrightarrow{BC} = (-2,1) + ((2,5) - (5,3)) = (-5,3)$$

Resposta: D(-5,3)

$$\overrightarrow{AB} = B - A = (7,2)$$

Declive da reta $AB: \frac{2}{7}$

C(2,5)é um ponto da reta.

$$5 = \frac{2}{7} \times 2 + b \Leftrightarrow b = \frac{31}{7}$$

O ponto E tem coordenadas $\left(0, \frac{31}{7}\right)$.

Resposta:
$$\left(0, \frac{31}{7}\right)$$

