The Planeteers

Renewable Energy Needs to Combat Climate Change

Min Kook Cho, Rithikaa Madhavan, Aaron Na, Jason Tourville, Carmen Yu

Problem

As the population and average temperature across the world changes we, humans, will consume more cooling/ heating energy.

Why it Matters

Greater production and consumption of traditional energies are not viable for the future. As consumption of energies such as oil increases so does global temperatures. Thus, a forecast of future energy needs and how renewable energies can serve those needs will be evaluated.

Using ARIMA's time-series model, the resulting data predicted temperatures which were then used to create monthly population-weighted degree days per state.

Utilizing Tableau, the forecasted values were plotted and visualized to see the impact over the years. Each component can also be used as a filter object. Higher powered renewable energy plants would be placed in lighter colored regions.

Data

Temperature and Population State by Tables

National Centers for Environmental Information
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Daily temperatures years 2010-2024

Scraping and DataGrip

Maximum temperatures each state 2010-2024

Energy data per state up to year 2040

Evaluation

 $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

 $2k-2\ln \widehat{L}$

Dashboard

AZ

US Climate Region: Southwest

Consumes 610,152.10MW

Needs Additional 1,015.38MW

Solar-Wind Combo (User Selection) 40% Solar Power and 28% Wind Power

141 Solar Farms of 702.80MW 153 Wind Farms of 312.58MW

> 85.0F to 65F 20.0 Cooling Degrees 75-100% Max CDD

CA

US Climate Region: West

Consumes 2,890,252.06MW

Needs Additional 987.90MW

Solar-Wind Combo (User Selection)

40% Solar Power and 28% Wind Power

697 Solar Farms of 675.32MW 725 Wind Farms of 312.58MW

90.5F to 65F 25.5 Cooling Degrees 75-100% Max CDD