Introduction: SemiKong

The First Industry-Specific Large Language Model for Semiconductor Manufacturing

• What is SemiKong?

- First specialized LLM tailored for the semiconductor industry
- Foundation model with deep understanding of semiconductor processes
- Available in 8B and 70B parameter versions

• Why was it needed?

- Generic LLMs lack specialized knowledge for semiconductor challenges
- Complex physics and chemistry of semiconductor devices require expertise
- Industry-specific terminology and process flows need dedicated training

• Key Achievement:

- Outperforms larger general-purpose LLMs (GPT-3.5, Claude variants)
- Surpasses commercial products in expert-level metrics
- Expert-level understanding of semiconductor manufacturing

• Industry Impact:

- Enables AI-driven solutions for semiconductor manufacturing
- Foundation for company-specific proprietary models
- Bridges gap between AI researchers and domain experts

Broader Scope of SemiKong: Motivation

- Objective: SemiKong is designed to comprehensively support the entire semiconductor manufacturing lifecycle, extending beyond isolated tasks or single process stages.
- Covers both major stages of semiconductor manufacturing:
 - Front-End-of-Line (FEOL): fabrication steps performed on the silicon wafer to define and build individual transistor structures, including lithography, etching, doping, and thin-film deposition.
 - Back-End-of-Line (BEOL): subsequent steps that create metal interconnects, vias, and packaging to connect the transistors into functional circuits.
- Overcomes the gap between AI researchers (strong in ML but weak in domain knowledge) and semiconductor experts.
- Developed in close collaboration with domain experts to:
 - Systematically structure semiconductor knowledge.
 - Ensure that no critical processes are overlooked.
 - Enable efficient training and evaluation of domain-specialized language models.
- Serves as a foundation for creating:

- Expert-level LLMs for specific manufacturing stages.
- Benchmarks for evaluating domain-specific and general-purpose models.

Broader Scope of SemiKong: Ontology Structure

- The ontology systematically organizes the semiconductor manufacturing process into **10 major process groups:**
 - 1. Substrate Preparation (Wafer Manufacturing, Polishing, Cleaning)
 - 2. Film Formation (Oxidation, Deposition, Epitaxial Growth)
 - 3. Patterning (Lithography, Etching)
 - 4. Doping (Ion Implantation, Diffusion, In-situ Doping)
 - 5. Planarization (Chemical Mechanical, Etchback)
 - 6. Cleaning and Surface Preparation (Wet, Dry, Advanced)
 - 7. Thermal Processing (Annealing, Oxidation, Dopant Activation)
 - 8. Metrology and Inspection (Physical, Electrical, Defect)
 - 9. Advanced Modules (High-k/Metal Gate, Strain Engineering, 3D)
 - 10. Back-End Processes (Interconnect, Metallization, Packaging)
- Comprehensive coverage spans FEOL and BEOL processes:
 - FEOL: Active device creation (transistors, gates)
 - BEOL: Interconnection and packaging systems
- Each process group is further hierarchically decomposed:
 - Process Group \rightarrow Process Module \rightarrow Process Unit
 - Example: $Patterning \rightarrow Etching \rightarrow Reactive\ Ion\ Etching \rightarrow Deep\ Reactive\ Ion\ Etching$
 - Etching alone includes 9 specialized techniques (Wet, Dry, Plasma, RIE, DRIE, etc.)
- Expert-developed with industry collaboration:
 - Created with semiconductor experts from Tokyo Electron Ltd
 - Top-down approach ensuring no critical processes overlooked
 - Serves as benchmark for future general intelligence models
- Enables precise understanding, training, and evaluation of models at any desired level of detail.

Key Contributions (Detailed, with Full Terminology)

- 1 SemiKong-Corpus: Industry-Specific Knowledge Base
 - Scale & Coverage:
 - * 525.6 million tokens, entirely domain-specific.
 - * Covers entire semiconductor manufacturing lifecycle:
 - · Front-End-of-Line (FEOL): wafer preparation, lithography, etching, doping.
 - · Back-End-of-Line (BEOL): metallization, planarization, interconnects, packaging.
 - * Emphasis on etching technology.
 - Sources:
 - * 129 books and book chapters.
 - * 708 etching-specific peer-reviewed papers.

- * 20,000+ research papers spanning manufacturing, defect detection, and design methodologies.
- * 50,000 instruction—response pairs reflecting real-world semiconductor process scenarios.

- Processing Pipeline:

- * Raw PDFs processed via PyPDF to extract text.
- * Cleaned and semantically normalized using GPT-40-mini, preserving:
 - · Tables, equations, hierarchical structure.
- * Converted into structured Markdown for:
 - · High-fidelity domain representation.
 - · Elimination of noise and misaligned tokens found in generic corpora.

• 2 SemiKong-Trainer: Specialized Foundation Model Pipeline

Architecture Overview:

- * Based on Meta's LLaMA-3 (8B and 70B) checkpoints.
- * Domain-augmented strategy combining knowledge-rich pretraining with instruction-following fine-tuning.

Core Natural Language Processing Techniques:

- * Tokenization: Byte-Pair Encoding (BPE) via Tiktoken for compact subword representation.
- * **Positional Encoding:** Rotary Position Embedding (RoPE), superior for modeling long-range dependencies.

- Fine-Tuning Methodology:

* Supervised Fine-Tuning (SFT) directs the model to actionable reasoning, structured dialogue, and domain Q&A.

Post-Training Optimization:

- * Low-Rank Adaptation (LoRA): lightweight domain adaptation while preserving general capabilities.
- * GPTQ: post-training quantization for reduced memory footprint and faster inference.

• 3 SemiKong-Eval: Expert-In-The-Loop Evaluation Framework

– Why?

* Conventional evaluation metrics (e.g., BLEU, ROUGE) and non-expert annotators fail in expert domains.

- Pipeline Components:

- * Expert-created semiconductor ontology:
 - · Covers process groups, modules, and units (e.g., Wet Etching \rightarrow Plasma Etching \rightarrow Reactive Ion Etching (RIE)).
- * Benchmark dataset:
 - \cdot Easy: 100 questions
 - · Medium: 737 questions
 - · Hard: 150 questions
- * Evaluation metrics aligned with expert standards:
 - · Clarity & Directness (C&D)
 - · Practicality & Immediate Usability (PIU)
 - · Efficiency & Brevity (E&B)
 - · Logical Flow & Coherence (LFC)
 - · Expert-to-Expert Communication (EEC)
 - · Use of Examples & Specificity (UES)

- Iterative Refinement:

* Experts annotate outputs with justifications \rightarrow researchers distill criteria \rightarrow LLM evaluators align \rightarrow iterative improvements enhance benchmarks.

• Data Curation & Pretraining (Detailed)

- Pretraining Dataset:

- * Designed for depth over breadth.
- * Domain knowledge from:
 - · Process manuals, etching-focused physical and chemical research, patents, technical standards.
- * Processed:
 - \cdot PyPDF extraction.
 - · GPT-40-mini post-processing for:
 - · Fixing structural issues (broken lines, misparsed tables).
 - · Normalizing into machine-readable Markdown.

- Instruction Dataset:

- * 50,000 instruction—response pairs:
 - · 5,000 explaining semiconductor principles.
 - · 5,000 mathematically rigorous etching problems.
 - · 40,000 addressing routine control and defect diagnosis.
- * Answers generated via:
 - · GPT-40: conceptual and procedural reasoning.
 - · GPT-o1-preview: mathematically complex reasoning.

• Model Architecture & Training (Detailed)

Foundation Models:

* Meta's LLaMA-3 (8B and 70B), chosen for strong baselines and compatibility with parameter-efficient fine-tuning.

- Training Strategy:

- * Stage 1: Domain-specific pretraining.
- * Stage 2: Supervised Fine-Tuning (SFT) for natural-language alignment to semiconductor scenarios.

- Post-Processing:

- * Low-Rank Adaptation (LoRA): efficient fine-tuning and integration.
- * GPTQ: Post-Training Quantization method for Generative Pre-trained Transformers: quantized weights for lower memory and faster inference.

- Hardware & Compute Resources:

- * SemiKong-8B: $4 \times$ NVIDIA A100 80GB, \sim 150 hours (15 runs).
- * SemiKong-70B: 8× NVIDIA A100 80GB, ~200 hours (2 runs).

1 Project Overview

Vision-Language Fine-Tuning with Synthetic Annotations for SEM/TEM Nanomaterial Understanding

- Leverage publicly available SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) image datasets of semiconductor nanomaterials, which typically lack associated text labels or annotations.
- Automatically generate synthetic multimodal annotations including descriptive captions and Visual Question Answering (VQA) pairs using powerful pre-trained Vision-Language Models (VLMs).
- Fine-tune state-of-the-art small-to-mid-scale VLMs specifically for nanomaterial domain tasks:
 - Meta LLaMA-3.2 Vision (11B): robust vision-instruction model.
 - Alibaba Qwen-VL / Qwen2.5-VL (3B-7B): open-source, efficient for multimodal tasks.
 - Google PaliGemma-2 (3B & 10B): lightweight, optimized for captioning and VQA.
- The project aims to enable these VLMs to perform expert-level reasoning and understanding of complex nanomaterial imagery.

2 Motivation & Goals

- Current SEM/TEM datasets are limited to raw images without textual descriptions or annotations, making them unsuitable for multimodal AI training.
- Manual annotation of nanomaterial data is resource-intensive, subjective, and error-prone.
- Generic VLMs, trained on web-scale general data, are not equipped to handle the unique morphology and terminology of nanomaterials.
- By leveraging synthetic annotations generated automatically by VLMs, we can build a high-quality multimodal dataset and fine-tune models to deliver expert-level analysis.
- The goal is to bridge the gap between general-purpose VLM capabilities and specialized semiconductor nanomaterial knowledge, enabling models to support classification, captioning, and VQA tasks effectively.

3 Methodology

Step 1: Synthetic Annotation Generation

- Start with publicly available SEM/TEM image datasets of nanomaterials.
- Use a pre-trained VLM to generate:
 - Captions that describe key morphological features, such as grain structure, defects, and textures.
 - VQA pairs that include factual and reasoning-based questions about the image content and answers aligned with domain knowledge.
- The result is a synthetic multimodal dataset pairing each image with rich, domain-relevant text.

Step 2: VLM Fine-Tuning

• Fine-tune the selected VLMs using the synthetic multimodal dataset.

- Use instruction-style fine-tuning where each training sample consists of an image and a prompt, with the desired output as the response.
- Employ parameter-efficient adaptation techniques such as LoRA or Q-LoRA to minimize computational overhead.
- Validate performance on a held-out set of real SEM/TEM images.

4 Models & Setup

- The project will experiment with three complementary VLMs:
 - Meta LLaMA-3.2 Vision (11B): strong baseline for instruction-following multimodal tasks, compatible with Unsloth/vLLM training pipelines.
 - Qwen-VL / Qwen2.5-VL (3B-7B): open-source and efficient, supporting LoRA/Q-LoRA fine-tuning for multimodal applications.
 - Google PaliGemma-2 (3B & 10B): lightweight, designed specifically for captioning and VQA, with JAX/Flax-based fine-tuning.
- Training involves instruction-tuning on the synthetic dataset using low-rank adaptation, followed by evaluation and refinement.

5 Evaluation & Outcomes

• Evaluation Metrics:

- Measure captioning quality with standard metrics: BLEU, ROUGE, and BERTScore.
- Assess VQA performance through answer accuracy and expert-aligned correctness.
- Qualitative evaluation by semiconductor domain experts to judge relevance and clarity.

• Expected Deliverables:

- A synthetic multimodal dataset consisting of SEM/TEM images with corresponding captions and VQA pairs.
- Fine-tuned checkpoints for each of the three VLM families, ready for downstream applications.
- Evaluation reports, benchmarks, and deployment-ready documentation.

• Impact:

- Enables AI-powered tools for nanomaterial discovery, quality inspection, and scientific documentation.
- Demonstrates the potential of synthetic multimodal data and VLM fine-tuning in bridging the gap between generic AI models and highly specialized scientific domains.

6 How This Project Differs from SemiKong

• Scope of Data:

- SemiKong focuses on textual corpora curated semiconductor books, papers, patents, and manuals to train and fine-tune a language-only LLM.
- This project uses publicly available SEM/TEM image datasets and generates synthetic multimodal annotations (text + image).

• Modalities:

- SemiKong is a pure text-based foundation model, pre-trained and fine-tuned for question answering, explanations, and reasoning in semiconductor process knowledge.
- This project builds and fine-tunes Vision-Language Models (VLMs) capable of jointly processing images and text for tasks like classification, captioning, and VQA.

• Synthetic Data:

- SemiKong's synthetic data refers to expert-curated instruction—response text pairs within the text domain.
- This project generates synthetic annotations (captions, VQA pairs) for existing images, creating multimodal datasets for fine-tuning.

• Target Tasks:

- SemiKong is designed for process planning, optimization, and expert-level text reasoning in semiconductor manufacturing.
- This project targets nanomaterial image understanding, enabling automated visual interpretation of SEM/TEM imagery.

• Models:

- SemiKong builds on text-based LLMs (LLaMA-3 text), adapted for domain-specific language understanding.
- This project adapts and fine-tunes open-source multimodal VLMs (Meta LLaMA-3.2 Vision, Qwen-VL, PaliGemma-2) for nanomaterial domains.