Резонанс напряжений в последовательном контуре

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

Перед выполнением работы следует изучить основы теории электрических колебаний по литературе из списка, приведённого в конце данного описания. Необходимые дополнения будут приведены ниже.

Резонанс напряжений

Схема экспериментального стенда для изучения резонанса напряжений в последовательном колебательном контуре показана на рис. 1а. Синусоидальный сигнал от генератора GFG-8255A поступает через согласующую RC-цепочку на вход источника напряжения, собранного на операционном усилителе ОУ. Питание операционного усилителя осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 Вольт (цепь питания на схеме не показана). Источник напряжения, обладающий по определению нулевым внутренним сопротивлением, фактически обеспечивает с высокой точностью постоянство амплитуды сигнала $E = E_0 \cos(\omega t + \varphi_0)$ на меняющейся по величине нагрузке — последовательном колебательном контуре, изображенном на рис. 1а в виде эквивалентной схемы. На рис. 1б контур представлен почти в натуральную величину. Источник напряжения с согласующей цепочкой, колебательный контур и блок питания заключены в отдельный корпус с названием «Резонанс напряжений», отмеченный на рисунке штриховой линией.

Рис. 1а. Схема экспериментального стенда.

Рис. 1б. Колебательный контур.

На корпусе имеются коаксиальные разъёмы «Вход», « U_1 » и « U_2 », а также переключатель магазина ёмкостей C_n с указателем номера $n=1,2,\ldots 7$. Величины ёмкостей C_n указаны в табличке на крышке корпуса. Напряжение E на контуре через разъём « U_1 » попадает одновременно на канал 1 осциллографа GOS-620 и вход 1-го цифрового вольтметра GDM-8245. Напряжение на конденсаторе U_C подаётся через разъём « U_2 » одновременно на канал 2 осциллографа и вход 2-го цифрового вольтметра GDM-8245.

Колебательный контур нашей установки собран из стандартных элементов, используемых в современных радиоэлектронных цепях. Известно, что в реальных конденсаторах и, особенно, в катушках индуктивности происходят необратимые потери энергии, обусловленные различными причинами. К ним относятся: утечки и диэлектрические потери в конденсаторах, вихревые токи и потери на перемагничивание в сердечниках катушек индуктивности, омические потери в проводниках, растущие с частотой за счёт скин-эффекта, и некоторые другие. Рост потерь приводит к увеличению действительных частей комплексных сопротивлений элементов контура, и, значит, к изменению его резонансных свойств, в частности, к уменьшению добротности.

Потери в элементах контура зависят как от частоты, так и от амплитуды тока (напряжения), температуры и ряда других факторов, например, от вида диэлектрика конденсатора, сердечника катушки и т.д. От перечисленных факторов в общем случае зависят и основные параметры контура: индуктивность L, ёмкость C и суммарное активное сопротивление R_Σ .

В нашем контуре катушка индуктивности L на ферритовом каркасе обладает малым сопротивлением по постоянному току и высокой собственной резонансной частотой $f_{\rm r} \ge 1,3$ МГц. В общем случае каждая катушка, помимо индуктивности L, характеризуется также собственной (межвитковой) ёмкостью C_L и активным сопротивлением потерь R_L , распределёнными по её длине. Принимается, что эти величины сосредоточены в отдельных элементах схемы, образующих с индуктивностью L замкнутую колебательную цепь с собственной резонансной частотой $f_r = 1/2\pi\sqrt{LC_L}$. Вследствие влияния ёмкости C_L при измерении на частоте f определяется не истинная индуктивность L, а эффективное значение индуктивности $L_{eff} = L/(1-f^2/f_r^2)$, которое может заметно отличаться от истинной величины L. В рабочем диапазоне частот нашего контура выполняется неравенство $f \ll f_r$, так что в эквивалентной схеме контура на рис. 1а индуктивность представлена своим истинным значением L и активным сопротивлением R_L .

Полипропиленовые конденсаторы, входящие в комплект магазина ёмкостей C_n (n=1, 2,...7), в рабочем диапазоне частот имеют пренебрежимо малые собственные индуктивности (менее 10^{-5} мГн на 1 см общей длины обкладок и выводов) и относительно малые активные потери. Для оценки возможного вклада активных потерь в конденсаторах в общий импеданс контура воспользуемся представлением конденсатора с ёмкостью C последовательной эквивалентной схемой, показанной на рис. 2a.

Рис. 2. Последовательная эквивалентная схема конденсатора с потерями.

На этой схеме R_S — так называемое эквивалентное последовательное сопротивление (ЭПС), обусловленное, главным образом, электрическим сопротивлением материала обкладок и выводов конденсатора и контактов между ними, а также потерями в диэлектрике. Из эквивалентной схемы и векторной диаграммы к ней (рис. 26) видно, что активные потери в конденсаторе, пропорциональные, как известно, косинусу угла φ сдвига фаз между током и напряжением на ёмкости, убывают с ростом φ и, соответственно, с уменьшением угла $\delta = 90^{\circ} - \varphi$. Потери в конденсаторе принято характеризовать величиной $\operatorname{tg} \delta$, обычно приводимой в документации к изделию. Из рисунка 2 и закона Ома при этом получаем выражение для ЭПС на циклической частоте $\omega = 2\pi f$ в виде

$$R_S = \frac{U_{RS}}{I} = \frac{U_{RS}}{\omega C U_{CS}} = \frac{1}{\omega C} \operatorname{tg} \delta . \tag{1}$$

Конденсаторы магазина ёмкостей C_n в интересующем нас диапазоне частот имеют $\operatorname{tg} \delta < 10^{-3}$, что является очень хорошим (низким!) показателем для конденсаторов с твёрдым диэлектриком.

В колебательный контур нашей установки входит постоянный резистор R (см. рис. 1), снижающий его добротность. Это сделано для упрощения процедур получения и обработки резонансных кривых. Таким образом, суммарное активное сопротивление контура принимается равным

$$R_{\Sigma} = R + R_L + R_S \,. \tag{2}$$

Далее будем пользоваться методом комплексных амплитуд (см., например, [1], с. 37). Для импедансов индуктивности Z_L , ёмкости Z_C и последовательного контура $Z=Z_L+R+Z_C$ с учётом (2), (3) получаем формулы:

$$Z_L = R_L + i\omega L$$
, $Z_C = R_S - i\frac{1}{\omega C}$, $Z = R_\Sigma + i\left(\omega L - \frac{1}{\omega C}\right)$. (3)

Комплексные амплитуды тока в контуре $\vec{I}=E/Z$ и напряжений на индуктивности $\vec{U}_L=Z_L\vec{I}$ и ёмкости $\vec{U}_C=Z_C\vec{I}$ при нулевой начальной фазе φ_0 напряжения на контуре $\vec{E}=Ee^{i\varphi_0}$ с учётом (1)-(3) удобно представить в виде

$$\vec{I} = \frac{E}{R_{\Sigma}} \frac{1}{1 + iQ \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}, \quad \vec{U}_L = iEQ \frac{\omega}{\omega_0} \frac{1 - iR_L/\rho}{1 + iQ \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}, \quad \vec{U}_C = -iEQ \frac{\omega_0}{\omega} \frac{1 + i\lg \delta}{1 + iQ \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}. \quad (4)$$

Здесь использованы стандартные обозначения для характеристик колебательного контура: $\omega_0 = 1/\sqrt{LC}$ — собственная частота, определяемая из условия ${\rm Im}\, Z = 0$, то есть из условия действительности импеданса контура, $\rho = \sqrt{L/C}$ — реактивное, или волновое, сопротивление контура, Q — добротность колебательного контура, связанная с его параметрами соотношениями

$$Q = \rho/R_{\Sigma} = \omega_0 L/R_{\Sigma} = 1/\omega_0 CR_{\Sigma} \gg 1.$$
 (5)

Сильное неравенство в (5) означает, что о резонансе, как правило, говорят, если добротность колебательного контура достаточно велика. При этом частоту ω_0 обычно называют резонансной. Условие (5) выполняется для всех контуров, используемых в нашей работе.

Из формул (4), (5) видно, что потерями в конденсаторах, явно представленных тангенсом угла потерь $\operatorname{tg} \delta$, в нашем случае меньшим 10^{-3} , можно пренебречь. В то же время вклад потерь в конденсаторах в суммарное активное сопротивление контура R_{Σ} вблизи резонанса, примерно равный $\rho \operatorname{tg} \delta$, можно будет оценить только по результатам эксперимента.

Наибольший практический интерес представляет случай, когда отклонение $\Delta \omega = \omega - \omega_0$ частоты внешней ЭДС от частоты ω_0 удовлетворяет сильному неравенству

$$|\Delta\omega| \ll \omega_0$$
 (6)

При этом в первом порядке малости по безразмерному параметру $|\Delta\omega|/\omega_0$

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0},\tag{7}$$

что позволяет упростить выражения (4) и представить их в виде

$$\vec{I} = \frac{E}{R_{\Sigma}} \frac{e^{i\varphi_I}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_I = -\arctan(\tau \Delta \omega), \qquad (8a)$$

$$\vec{U}_L = EQ \frac{\omega}{\omega_0} \frac{e^{i\varphi_L}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_L = \frac{\pi}{2} - \frac{R_L}{\rho} - \arctan(\tau \Delta \omega), \qquad (86)$$

$$\vec{U}_C = EQ \frac{\omega_0}{\omega} \frac{e^{i\varphi_C}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_C = -\frac{\pi}{2} + \delta - \arctan(\tau \Delta \omega), \qquad (8B)$$

где $\tau = 2L/R_{\Sigma} = 2Q/\omega_0$ — время затухания, или «постоянная времени», контура. Величина $\gamma = 1/\tau$ называется коэффициентом затухания. В выражениях (8б), (8в) мы пренебрегли относительными поправками порядка Q^{-2} , а величину δ сохранили исключительно для общно-

сти, положив её, однако, константой. Из формул (8) видно, что зависимости модулей тока \vec{I} в контуре и напряжений \vec{U}_L на индуктивности и \vec{U}_C на ёмкости от частоты ω внешней ЭДС имеют вблизи резонанса, то есть при условии (6), практически одинаковый характер.

При резонансе, когда $\omega = \omega_0$, $\Delta \omega = 0$, выражения для модулей комплексных амплитуд то-ка и напряжения на ёмкости, их фаз и производных фаз по частоте ω принимают вид:

$$I(\omega_0) = \frac{E}{R_{\Sigma}}, \qquad \varphi_I(\omega_0) = 0, \qquad (9a)$$

$$U_L(\omega_0) = QE, \qquad \varphi_L(\omega_0) = \frac{\pi}{2} - \frac{R_L}{\rho}, \qquad (96)$$

$$U_C(\omega_0) = QE$$
, $\varphi_C(\omega_0) = -\frac{\pi}{2} + \delta$, (9B)

$$\varphi_I'(\omega_0) = \varphi_C'(\omega_0) = -\tau . \tag{9r}$$

Из формул (8), (9) следует, что на частоте ω_0 , где импеданс контура Z становится чисто активным и равным R_Σ , амплитуда тока достигает максимального значения $I_{\max}=E/R_\Sigma$. Напряжения \vec{U}_L и \vec{U}_C на индуктивности и ёмкости на частоте ω_0 находятся почти в противофазе и в Q раз превышают по амплитуде напряжение \vec{E} внешней ЭДС. Последнее обстоятельство послужило поводом назвать резонанс в такой цепи «резонансом напряжений». Отметим, однако, что максимальные (резонансные) значения напряжений на индуктивности и ёмкости не строго равны QE и достигаются не строго на частоте ω_0 . Соответствующие относительные поправки, обусловленные множителями $(\omega/\omega_0)^{\pm 1}$ и малыми добавками к фазам в выражениях для \vec{U}_L (86) и \vec{U}_C (88), составляют доли Q^{-2} .

При отклонении $\Delta\omega$ частоты внешней ЭДС от ω_0 таком, что выполняется условие

$$\tau \Delta \omega = \pm 1$$
, (11)

амплитуда тока I , как видно из формул (8), уменьшается в $\sqrt{2}$ раз относительно своей максимальной (резонансной) величины, а фаза φ_I изменяется на угол $\mp \pi/4$. При условии (11), если не учитывать поправки в его правой части порядка Q^{-1} , происходят аналогичные изменения амплитуд U_L , U_C и фаз φ_L , φ_C напряжений на индуктивности и ёмкости: амплитуды уменьшаются в $\sqrt{2}$ раз, а фазы меняются на угол $\mp \pi/4$ по отношению к своим резонансным значениям.

Схожесть поведения вблизи резонанса частотных характеристик тока и напряжений на реактивных элементах последовательного контура с добротностью $Q\gg 1$ упрощает эксперимент, позволяя проводить измерения именно напряжений. В нашей работе — это напряжение на контуре E и напряжение на ёмкости U_C (см. рис. 1).

Величина $\delta\omega\equiv 2\left|\Delta\omega\right|=2/\tau$ представляет собой важную характеристику колебательного контура — ширину резонансной кривой $U_{C}\left(\omega\right)$ на уровне $U_{C}\left(\omega_{0}\right)/\sqrt{2}$, по которой можно определить время релаксации $\tau=2/\delta\omega$ и, зная резонансную частоту ω_{0} , найти добротность контура $Q=\omega_{0}/\delta\omega$.

Эти же параметры можно определить по фазово-частотной характеристике: расстояние по оси ω между точками, в которых фаза φ_C меняется от $-\pi/4$ до $-3\pi/4$, согласно (8в) равно $2/\tau$, а тангенс угла наклона функции $\varphi_C(\omega)$ в точке резонанса согласно (9г) определяет время релаксации τ .

Следует отметить, что в соотношении $\tau \cdot \delta \omega \sim 1$, которому подчиняется произведение времени релаксации и ширины резонансной кривой колебательного контура, проявляется фундаментальное *соотношение неопределённости*, связывающее, в частности, «время жизни» τ квантового осциллятора с шириной спектральной линии $\delta \omega$ его излучения (см., например, [2], с.255; [3], с.345).

Выполнение эксперимента

Символом « * » отмечены дополнительные задачи эксперимента и, соответственно, обработки и представления результатов, а также контрольные вопросы повышенной сложности.

1. Перед включением приборов проверьте правильность их соединения, которое должно соответствовать схеме на рис. 1а и рис. 3.

Рис. 3. Общий вид установки.

- 2. Поверните ручку AMPL на генераторе GFG-8255A в вытянутом состоянии в крайнее левое положение, включите генератор, нажмите кнопку "~" (синус) в нижнем ряду и кнопку "10k" (пятый частотный поддиапазон) в верхнем ряду, выставьте частоту ручкой FRE-QUENCY около 32 кГц, если переключатель ёмкостей стоит в положении 1, как на рис. 3. Погрешность установки частоты генератора GFG-8255A в пятом поддиапазоне составляет ± 1 Гц.
- 3. Включите питание блока «Резонанс напряжений» тумблером ВКЛ.

- 4. Включите вольтметры и переведите их в режим измерения переменного напряжения с автоматическим выбором предела измерения, нажав кнопки ACV и AUTO/MAN. При этом на табло вольтметров должны появиться крупные цифры, а на нижней строке – мелким шрифтом надписи AUTO и AC. Погрешность вольтметров GDM-8245 в интересующем нас диапазоне частот ≤ 3%.
- 5. Вращая ручку AMPL на генераторе GFG-8255A, выставьте <u>с максимальной точностью</u> на входе контура среднеквадратичное значение напряжения E, заданное преподавателем (в пределах $50 \div 300$ мВ), контролируя его по показанию 1-го вольтметра (см. рис. 3).
- 6. Включите осциллограф GOS-620, краткое описание которого находится на рабочем столе, в следующем режиме.
 - <u>Развёртка</u> (панель HORIZONTAL): ручка плавной развёртки SWP.VAR в крайнем правом положении, ручка TIME/DIV в положении "5 μ ", если переключатель ёмкостей стоит в положении 1, как на рис. 3.
 - <u>Синхронизация</u> (панель TRIGGER): кнопка TRIG.ALT отжата, мода NORM, источник CH 1, полярность SLOPE нажата, ручка уровня LEVEL в положении "0".
 - <u>Вертикальное отклонение</u> (панель VERTICAL): вход каналов AC, кнопка ALT/CHOP отжата, мода DUAL.

Отцентрируйте по оси Y положение осей X обоих каналов. Для этого, не меняя источника синхронизации (СН1), заземлите СН2, поставив переключатель вида сигнала в положение GND, и ручкой VERTICAL POSITION приведите луч СН2 к середине экрана. Верните переключатель вида сигнала СН2 в положение АС. Проделайте ту же процедуру для СН1, выбрав СН2 в качестве источника синхронизации. После настройки снова сделайте источником синхронизации СН1, не забыв вернуть его в положение АС.

При правильно выставленном режиме на экране осциллографа должны появиться две синусоиды. Подберите удобные для измерений частоты развёрток ручкой TIME/DIV и усиления каналов ручками VOLTS/DIV. Картина на экране осциллографа должна выглядеть примерно так, как на рис. 3. Начало развёртки лучей специально сдвинуто ручкой HORIZONTAL POSITION на видимую часть экрана, чтобы проверить настройку синхронизации: луч СН1 должен выходить из начала координат с отрицательным наклоном и быть симметричным относительно оси X. Для устранения возможной асимметрии воспользуйтесь ручкой уровня LEVEL на панели TRIGGER.

- 7. Меняя частоту f генератора, убедитесь по осциллографу и вольтметрам, что у синусоиды $U_C(t)$ меняется амплитуда и фаза относительно начала координат, тогда как синусоида E(t) «привязана» к началу отсчёта, а её амплитуда остаётся неизменной с относительной погрешностью не более 1%. Теперь можно приступить к измерениям.
- 8. Для контуров с семью различными ёмкостями, меняя их с помощью переключателя на блоке, измерьте резонансные частоты f_{0n} и напряжения $U_{C}(f_{0n})$. Регистрируйте также

напряжения $E(f_{0n})$, игнорируя отклонения в пределах относительной погрешности 1%. Приближение к резонансу удобно наблюдать по фигуре Лиссажу на экране осциллографа в режиме X-Y, который включается поворотом ручки TIME/DIV в крайнее левое положение. При этом фигура Лиссажу представляет собой эллипс, оси которого на резонансной частоте f_{0n} направлены вдоль осей X, Y. Напомним, что максимальные значения напряжения U_C достигаются на частотах, несколько отличных от резонансных частот f_{0n} .

- 8.* <u>Дополнительное упражнение.</u> Проделайте измерения п.8 ещё для двух напряжений <math>E, существенно отличающихся друг от друга и от напряжения, использованного в п.8.
- 9. Для контуров с двумя разными ёмкостями (по указанию преподавателя) снимите амплитудно-частотные характеристики $U_C(f)$ для значений $U_C(f) \ge 0, 6U_C(f_{0n})$ (16-17 точек в сумме по обе стороны от резонанса) при том же напряжении E, что и в п.8.
- 10. Для тех же двух контуров снимите фазово-частотные характеристики $\varphi_C(f)$ для значений $U_C(f) \ge 0, 3U_C(f_{0n})$ (16-17 точек в сумме по обе стороны от резонанса) при том же напряжении E, что и в п.8.

Перед выполнением этой части работы измените с помощью ручек POSITION и TIME/DIV горизонтальной развёртки настройки осциллографа таким образом, чтобы картинка на экране имела вид, подобный представленным на рис. 4. Из осциллограмм рис. 4 видно, что синхронизующий сигнал E(t) «привязан» к общему началу отсчёта времени и напряжений на экране, лежащему на оси X координатной сетки экрана, и оба сигнала симметричны относительно этой оси.

Рис. 4. Осциллограммы сигналов E(t) и $U_C(t)$.

Если это не так, то следует повторить процедуру центрировки горизонтальных осей каналов, как описано в п.6.

Расстояние x от начала отсчёта до точки первого обращения в нуль напряжения $U_{\mathbb{C}}(t)$ на участке спада характеризует разность фаз $\Delta \varphi$ сигналов. Эта величина, выра-

женная в радианах, очевидно, даётся формулой $\Delta \varphi = (x/x_0)\pi$, где x_0 — расстояние от начала отсчёта до точки первого обращения в нуль напряжения E(t) на участке подъёма, соответствующее полупериоду этого сигнала. Так, на осциллограммах рис. 4 $\Delta \varphi/\pi \simeq -0.76$ (слева) и $\Delta \varphi/\pi \simeq -0.52$ (справа).

Обработка и представление результатов

Настоятельно рекомендуется для обработки и представления результатов измерений использовать электронные таблицы (например, Microsoft Excel) или Mathcad.

11. Результаты измерений п.8 внесите в табл. 1 (ЗАГЛАВНЫМИ БУКВАМИ в круглых скобках в таблице записаны названия соответствующих функций в Microsoft Excel).

Табл. 1

C_n , нФ	f_{0n} , кГц	$U_{\it C}$, B	<i>E</i> , B	L, мкГн	Q	ho, Ом	$R_{\!\scriptscriptstyle \Sigma}$, Ом	$R_{S{ m max}}$, Om	$R_{\!L}$, Ом	<i>I</i> , мА
C ₁										
C ₇										
Среднее значение: СРЗНАЧ(:)										
Среднеквадратичная погрешность среднего значения: КОРЕНЬ((КВАДРОТКЛ(:))/(n*(n-1)))										
Коэффициент Стьюдента $t_{n\alpha}$ для n=7, α =0,95										
Случайная погрешность										

В первый столбец этой таблицы запишите значения ёмкостей C_n , приведённые в табличке на корпусе блока «Резонанс напряжений». Для каждого значения C_n по формулам вводной части и данным эксперимента проведите последовательно расчёт L, Q, ρ , R_Σ , $R_{S\max}=10^{-3}\,\rho$, R_L , I. Затем определите $\langle L\rangle\pm\Delta L$ и $\langle R_L\rangle\pm\Delta R$, где угловыми скобками отмечено среднее значение, а символом " Δ " — случайная погрешность величин L и R_L , полученных в результате косвенных измерений, проделанных в работе. Оцените вклад активных потерь в конденсаторах, представленных в табл.1 сопротивлением $R_{S\max}$, рассчитанным для максимального значения tg $\delta=10^{-3}$, в суммарное активное сопротивление контура. Оцените влияние погрешностей приборов на результаты измерений.

- 11.* Дополнительное упражнение. Выполните задание п.11 для данных, полученных в п.8*. Сравните с результатами п.11. Объясните причины расхождения результатов, если они обнаружатся.
- 12. По данным измерений п.9 постройте на одном графике амплитудно-частотные характеристики в координатах f, $U_{\mathbb{C}}(f)$ для выбранных контуров. Проведите сравнительный анализ характеристик.

- 13. По данным измерений п.9 также постройте на одном графике амплитудно-частотные характеристики в безразмерных координатах $x \equiv f/f_{0n}$, $y \equiv U_C(x)/U_C(1)$. По ширине резонансных кривых на уровне 0,707 определите добротности Q соответствующих контуров. Оцените погрешности. Сравните эти величины с данными табл. 1 из п.11.
- 14. По данным измерений п.10 постройте на одном графике фазово-частотные характеристики в координатах $x \equiv f/f_{0n}$, $y \equiv \varphi_C/\pi$ для выбранных контуров. По этим характеристикам определите добротности контуров одним из двух способов: по расстоянию между точками по оси x, в которых y меняется от -1/4 до -3/4, равному 1/Q, или по формуле $Q = 0.5 \, d\varphi_C(x)/dx$ при x = 0. Оцените погрешности. Сравните с результатами пп.11, 13.
- 15. По данным табл. 1 постройте зависимость $R_L(f_{0n})$ в системе координат с началом в точке $(0,6f_{0n};0)$; нанесите на график прямую $\langle R_L \rangle$. Назовите возможные причины изменения R_L с частотой.
- 16. По данным табл. 1 из п.11 постройте векторную диаграмму (см., например, [1], с. 41) тока и напряжений для контура с наименьшей добротностью в резонансном состоянии. Ось абсцисс направьте по вектору \vec{E} . Масштаб по этой оси сделайте в 2 раза более крупным, чем по оси ординат.

Контрольные вопросы

- 1. Приведите определение добротности колебательного контура в «энергетических» терминах.
- 2. Объясните, почему оси эллипса на экране осциллографа в п.8 ориентированы в резонансе, то есть при $\omega = \omega_0$, вдоль направлений X, Y.
- 3. Как оценить добротность контура по векторной диаграмме в п.16?
- 4. По каким причинам потери в контуре зависят от частоты?
- 5*. Зависят ли потери в контуре от амплитуды сигнала и, если зависят, то по каким причинам?
- 6*. Получите более точное, чем ω_0 , выражение для частоты ω_m , на которой напряжение U_C достигает максимума. Чему равно $U_C(\omega_m)$?

СПИСОК ЛИТЕРАТУРЫ

- 1. Лабораторный практикум по обще физике. Т. 2. Электричество и магнетизм. М.: МФТИ, 2007. С.30-51.
- 2. Сивухин Д.В. Общий курс физики. Т. III. Электричество. М.: ФИЗМАТЛИТ, 2006. §§126, 127.
- 3. *Кириченко Н.А.* Электричество и магнетизм. М.: МФТИ, 2011. §§17.1-17.3.