Higher-rank Polymorphism: Type Inference and Extensions

by

Ningning Xie (谢宁宁)

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at The University of Hong Kong

February 2021

Abstract of thesis entitled "Higher-rank Polymorphism: Type Inference and Extensions"

Submitted by Ningning Xie

for the degree of Doctor of Philosophy at The University of Hong Kong in February 2021

DECLARATION

I declare that this thesis represents my own work, except where due acknowledgment is made, and that it has not been previously included in a thesis, dissertation or report submitted to this University or to any other institution for a degree, diploma or other qualifications.

.....

Ningning Xie

February 2021

ACKNOWLEDGMENTS

Contents

Dı	ECLAR	ATION		1
Ac	CKNOV	VLEDGM	IENTS	III
Lis	ST OF	Figures	s	VI
Li	ST OF	Tables		IX
Ι	Pr	OLOGU	E	1
1	Inte	RODUCTI	ION	3
	1.1	Contri	ibutions	. 3
	1.2	Organ	ization	. 5
2	BAC	KGROUN	ID	7
	2.1	The Hi	indley-Milner Type System	. 7
		2.1.1	Syntax	. 7
		2.1.2	Static Semantics	. 7
		2.1.3	Principal Type Scheme	. 8
	2.2	The O	dersky-Läufer Type System	. 9
		2.2.1	Higher-rank Types	. 9
	2.3	Algori	thmic Bidirectional Type System	. 9
II	Ty	pe Infe	ERENCE	11
3	Түрі	E Infere	ENCE WITH THE APPLICATION MODE	13
4	Unii	FICATIO	n with Promotion	15

Contents

III	EXTENSIONS	17
5	HIGHER RANK GRADUAL TYPES	19
6	Dependent Types	21
IV	Related and Future Work	23
7	Related Work	25
8	Future Work	27
V	Epilogue	29
9	Conclusion	31
Він	BLIOGRAPHY	33
VI	Technical Appendix	35

List of Figures

2.1	Syntax and static semantics of the Hindley-Milner type system	8
2.2	Subtyping in the Hindley-Milner type system.	9
2.3	Syntax and static semantics of the Odersky-Läufer type system	10

LIST OF TABLES

Part I

Prologue

1 Introduction

mention that in this thesis when we say "higher-rank polymorphism" we mean "predicative implicit higher-rank polymorphism".

1.1 Contributions

In summary the contributions of this thesis are:

- Chapter 3 proposes a new design for type inference of higher-rank polymorphism.
 - We design a variant of bi-directional type checking where the inference mode is combined with a new, so-called, application mode. The application mode naturally propagates type information from arguments to the functions.
 - With the application mode, we give a new design for type inference of higherrank polymorphism, which generalizes the HM type system, supports a polymorphic let as syntactic sugar, and infers higher rank types. We present a syntax-directed specification, an elaboration semantics to System F, and an algorithmic type system with completeness and soundness proofs.
 - Chapter 4 presents a new approach for implementing unification.
 - We propose a process named *promotion*, which, given a unification variable
 and a type, promotes the type so that all unification variables in the type are
 well-typed with regard to the unification variable.
 - We apply promotion in a new implementation of the unification procedure in higher-rank polymorphism, and show that the new implementation is sound and complete.
- Chapter 5 extends higher-rank polymorphism with gradual types.
 - We define a framework for consistent subtyping with

- * a new definition of consistent subtyping that subsumes and generalizes that of Siek and Taha [2007] and can deal with polymorphism and top types;
- * and a syntax-directed version of consistent subtyping that is sound and complete with respect to our definition of consistent subtyping, but still guesses instantiations.
- Based on consistent subtyping, we present he calculus GPC. We prove that our calculus satisfies the static aspects of the refined criteria for gradual typing [Siek et al. 2015], and is type-safe by a type-directed translation to λ B [Ahmed et al. 2009].
- We present a sound and complete bidirectional algorithm for implementing the declarative system based on the design principle of Garcia and Cimini [2015].
- Chapter 6 further explores the design of promotion in the context of kind inference for datatypes.
 - We formalize Haskell98' s datatype declarations, providing both a declarative specification and syntax-driven algorithm for kind inference. We prove that the algorithm is sound and observe how Haskell98' s technique of defaulting unconstrained kinds to ★ leads to incompleteness. We believe that ours is the first formalization of this aspect of Haskell98.
 - We then present a type and kind language that is unified and dependently typed, modeling the challenging features for kind inference in modern Haskell. We include both a declarative specification and a syntax-driven algorithm. The algorithm is proved sound, and we observe where and why completeness fails. In the design of our algorithm, we must choose between completeness and termination; we favor termination but conjecture that an alternative design would regain completeness. Unlike other dependently typed languages, we retain the ability to infer top-level kinds instead of relying on compulsory annotations.

Many metatheory in the paper comes with Coq proofs, including type safety, coherence, etc.¹

¹For convenience, whenever possible, definitions, lemmas and theorems have hyperlinks (click [37]) to their Coq counterparts.

1.2 Organization

This thesis is largely based on the publications by the author [Xie et al. 2018, 2019a,b; Xie and Oliveira 2017, 2018], as indicated below.

- **Chapter 3:** Ningning Xie and Bruno C. d. S. Oliveira. 2018. "Let Arguments Go First". In *European Symposium on Programming (ESOP)*.
- **Chapter 4:** Ningning Xie and Bruno C. d. S. Oliveira. 2017. "Towards Unification for Dependent Types" (Extended abstract), In *Draft Proceedings of Trends in Functional Programming (TFP)*.
- **Chapter 5:** Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. 2018. "Consistent Subtyping for All". In *European Symposium on Programming (ESOP)*.
 - Ningning Xie, Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2019. "Consistent Subtyping for All". In *ACM Transactions on Programming Languages and Systems (TOPLAS)*.
- **Chapter 6:** Ningning Xie, Richard Eisenberg and Bruno C. d. S. Oliveira. 2020. "Kind Inference for Datatypes". In *Symposium on Principles of Programming Languages (POPL)*.

2 BACKGROUND

2.1 THE HINDLEY-MILNER TYPE SYSTEM

The Hindley-Milner type system, hereafter referred to as HM, is a polymorphic type discipline first discovered in Hindley [1969], later rediscovered by Milner [1978], and also closely formalized by Damas and Milner [1982].

2.1.1 **SYNTAX**

The syntax of HM is given in Figure 2.1. The expressions e include variables x, literals n, lambda abstractions λx . e, applications e_1 e_2 and let $x = e_1$ in e_2 . Note here lambda abstractions have no type annotations, and the type information is to be reconstructed by the type system.

Types consist of polymorphic types σ and monomorphic types τ . A polymorphic type is a sequence of universal quantifications (which can be empty) followed by a monomorphic type τ , which can be integer Int, type variable a and function $\tau_1 \to \tau_2$. A context Ψ tracks the type information for variables.

2.1.2 STATIC SEMANTICS

The typing judgment $\Psi \vdash^{HM} e : \sigma$ derives the type σ of the expression e under the context Ψ . Rule HM-VAR fetches a polymorphic type $x : \sigma$ from the context. Literals always have the integer type (rule HM-INT). For lambdas (rule HM-LAM), since there is no type for the binder given, the system *guesses* a *monomorphic* type τ_1 as the type of x, and derives the type τ_2 as the body e, returning a function $\tau_1 \to \tau_2$. The function type is then eliminated by applications. In rule HM-APP, the type of the parameter must match the argument's type t_1 , and the application returns type τ_2 .

Rule HM-LET is the key rule for flexibility in HM, where a *polymorphic* expression can be defined, and later instantiated with different types in the call sites. In this rule, the expression e_1 has a polymorphic type σ , and the rule adds e_1 : σ into the context to type-check the body e_2 .

Expressions
$$e ::= x \mid n \mid \lambda x. e \mid e_1 e_2 \mid \mathbf{let} \ x = e_1 \mathbf{in} \ e_2$$
Types $\sigma ::= \forall \overline{a}^i. \tau$
Monotypes $\tau ::= \mathbf{lnt} \mid a \mid \tau_1 \to \tau_2$
Contexts $\Psi ::= \bullet \mid \Psi, x : \sigma$

Figure 2.1: Syntax and static semantics of the Hindley-Milner type system.

Rule HM-GEN and rule HM-INST correspond to type variable *generalization* and *instantiation* respectively. In rule HM-GEN, we can generalize over type variables \bar{a}^i which are not bound in the type context Ψ . In rule HM-INST, we can instantiate the type variables with arbitrary *monomorphic* types.

2.1.3 PRINCIPAL TYPE SCHEME

One salient feature of HM is that the system enjoys the existence of *principal types*, without requiring any type annotations. Before we present the definition of principal types, let's first define the *subtyping* relation among types.

The judgment $\vdash^{HM} \sigma_1 <: \sigma_2$, given in Figure 2.2, reads that σ_1 is a subtype of σ_2 . The subtyping relation indicates that σ_1 is more *general* than σ_2 : for any instantiation of σ_2 , we can find an instantiation of σ_1 to make two types match. Rule HM-S-INT and rule HM-S-TVAR are simply reflexive. In rule HM-S-ARROW, functions are *contravariant* on arguments, and *covariant* on return types. Rule HM-S-FORALLR has a polymorphic type $\forall a. \sigma_2$ on the right hand side. In order to prove the subtyping relation for *all* possible instantiation of a, we *skolemize* a, by making sure a does not appear in σ_1 (up to α -renaming). In this case, if σ_1 is still a subtype of σ_2 , we are sure then whatever a can be instantiated to, σ_1 can be instantiated

Figure 2.2: Subtyping in the Hindley-Milner type system.

to match σ_2 . In rule HM-S-FORALLL, by contrast, the a in $\forall a$. σ_1 can be instantiated to any monotype to match the right hand side.

Given the subtyping relation, now we can formally state that HM enjoys *principality*. That is, for every well-typed expression in HM, there exists one type for the expression, which is more general than any other types the expression can derive. Formally,

Theorem 2.1 (Principality for HM). If $\Psi \vdash^{HM} e : \sigma$, then there exists σ' such that $\Psi \vdash^{HM} e : \sigma'$, and for all σ such that $\Psi \vdash^{HM} e : \sigma$, we have $\vdash^{HM} \sigma' <: \sigma$.

2.2 THE ODERSKY-LÄUFER TYPE SYSTEM

2.2.1 HIGHER-RANK TYPES

2.3 Algorithmic Bidirectional Type System

$$\begin{array}{c} \text{Types} & \sigma, B & \coloneqq & \operatorname{Int} \mid a \mid \sigma \to B \mid \forall a. \sigma \\ \operatorname{Monotypes} & \tau, \tau & \coloneqq & \operatorname{Int} \mid a \mid \tau \to \tau \\ \operatorname{Terms} & e & \coloneqq & x \mid n \mid \lambda x : \sigma. e \mid \lambda x. e \mid e_1 e_2 \mid \operatorname{let} x = e_1 \operatorname{in} e_2 \\ \operatorname{Contexts} & \Psi & \coloneqq & \bullet \mid \Psi, x : \sigma \mid \Psi, a \\ \hline \\ \Psi \vdash^{OL} e : \sigma \\ \hline \\ \frac{(x : \sigma) \in \Psi}{\Psi \vdash^{OL} x : \sigma} & \frac{\operatorname{OL-INT}}{\Psi \vdash^{OL} n : \operatorname{Int}} & \frac{\operatorname{OL-LAMANN}}{\Psi \vdash^{OL} \lambda x : \sigma \vdash^{OL} e : B} & \frac{\operatorname{OL-LAM}}{\Psi \vdash^{OL} k : \sigma \to B} & \frac{\operatorname{U-IAM}}{\Psi \vdash^{OL} \lambda x : \sigma \vdash^{OL} e : B} \\ \hline \\ \frac{\operatorname{OL-APP}}{\Psi \vdash^{OL} e_1 : \sigma_1 \to \sigma_2} & \Psi \vdash^{OL} e_2 : \sigma_1 & \Psi \vdash^{OL} e : \sigma_1 & \Psi \vdash \sigma_1 < : \sigma_2 \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi, x : \sigma \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi, x : \sigma \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi, x : \sigma \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2 : B \\ \hline \\ \Psi \vdash^{OL} e_1 : \sigma & \Psi \vdash^{OL} e_2$$

Figure 2.3: Syntax and static semantics of the Odersky-Läufer type system.

Part II

Type Inference

3 Type Inference With The Application Mode

4 Unification with Promotion

Part III

EXTENSIONS

5 HIGHER RANK GRADUAL TYPES

6 DEPENDENT TYPES

Part IV

Related and Future Work

7 RELATED WORK

8 FUTURE WORK

Part V

EPILOGUE

9 Conclusion

BIBLIOGRAPHY

[Citing pages are listed after each reference.]

- Amal Ahmed, Robert Bruce Findler, Jacob Matthews, and Philip Wadler. 2009. Blame for All. In *Proceedings for the 1st Workshop on Script to Program Evolution (STOP '09)*. Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/1570506.1570507 [cited on page 4]
- Luis Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In *Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '82)*. Association for Computing Machinery, New York, NY, USA, 207–212. https://doi.org/10.1145/582153.582176 [cited on page 7]
- Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In *Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '15)*. Association for Computing Machinery, New York, NY, USA, 303–315. https://doi.org/10.1145/2676726.2676992 [cited on page 4]
- J. Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc. 146 (1969), 29–60. [cited on page 7]
- Robin Milner. 1978. A theory of type polymorphism in programming. *Journal of computer and system sciences* 17, 3 (1978), 348–375. [cited on page 7]
- Jeremy Siek and Walid Taha. 2007. Gradual Typing for Objects. In *Proceedings of the 21st European Conference on Object-Oriented Programming (ECOOP'07)*. Springer-Verlag, Berlin, Heidelberg, 2–27. [cited on page 4]
- Jeremy G Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined criteria for gradual typing. In *1st Summit on Advances in Programming Languages (SNAPL 2015)*. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. [cited on page 4]
- Ningning Xie, Xuan Bi, and Bruno C d S Oliveira. 2018. Consistent Subtyping for All. In *European Symposium on Programming*. Springer, 3–30. [cited on page 5]

- Ningning Xie, Xuan Bi, Bruno C. D. S. Oliveira, and Tom Schrijvers. 2019a. Consistent Subtyping for All. *ACM Transactions on Programming Languages and Systems* 42, 1, Article 2 (Nov. 2019), 79 pages. https://doi.org/10.1145/3310339 [cited on page 5]
- Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira. 2019b. Kind Inference for Datatypes. *Proc. ACM Program. Lang.* 4, POPL, Article 53 (Dec. 2019), 28 pages. https://doi.org/10.1145/3371121 [cited on page 5]
- Ningning Xie and Bruno C d S Oliveira. 2017. Towards Unification for Dependent Types. In *Draft Proceedings of the 18th Symposium on Trends in Functional Programming (TFP '18)*. Extended abstract. [cited on page 5]
- Ningning Xie and Bruno C d S Oliveira. 2018. Let Arguments Go First. In *European Symposium on Programming*. Springer, 272–299. [cited on page 5]

Part VI

TECHNICAL APPENDIX