REAL-VALUED OBSERVABLES AND QUANTUM UNCERTAINTY

Stan Gudder
Department of Mathematics
University of Denver
Denver, Colorado 80208
sgudder@du.edu

Dedicated to the memory of Richard Greechie (1941–2022). The author's cherished friend, long time colleague and collaborator.

Abstract

We first present a generalization of the Robertson-Heisenberg uncertainty principle. This generalization applies to mixed states and contains a covariance term. For faithful states, we characterize when the uncertainty inequality is an equality. We next present an uncertainty principle version for real-valued observables. Sharp versions and conjugates of real-valued observables are considered. The theory is illustrated with examples of dichotomic observables. We close with a discussion of real-valued coarse graining.

1 Introduction

One of the basic principles of quantum theory is the Robertson-Heisenberg uncertainty inequality [4, 7]

$$\Delta_{\psi}(A)\Delta_{\psi}(B) \ge \frac{1}{4} \left| \langle \psi, [A, B] \psi \rangle \right|^2 \tag{1.1}$$

where A, B are self-adjoint operators and ψ is a vector state on a Hilbert space. The inequality (1.1) is usually applied to position and momentum operators A, B in which case $|\langle \psi, [A, B] \psi \rangle|^2 = \hbar^2$ where \hbar is Planck's constant.

In this situation, A and B are unbounded operators, but for mathematical rigor we shall only deal with bounded operators. However, our results can be extended to the unbounded case by considering a dense subspace common to the domains of A and B. In this paper, we derive a generalization of (1.1). This generalization applies to mixed states and contains an additional covariance term that results in a stronger inequality.

The main result in Section 2 is an uncertainty principle for observable operators. This principle contains four parts: a commutator term, a covariance term, a correlation term and a product of variances term. This last term is sometimes called a product of uncertainties. In Section 2 we also characterize, for faithful states, when the uncertainty inequality is an equality. Section 3 introduces the concept of a real-valued observable. If ρ is a state and A is a real-valued observable, we define the ρ -average, ρ -deviation and ρ -variance of A. If B is another real-valued observable, we define the ρ -correlation and ρ -covariance of A, B. An uncertainty principle for real-valued observables is given in terms of these concepts. An important role is played by the stochastic operator \widetilde{A} for A. In Section 3 we also define the sharp version of a real-valued observable and characterize when two real-valued observables have the same sharp version

Section 4 illustrates the theory presented in Section 3 with two examples. The first example considers two dichotomic arbitrary real-valued observables. The second example considers the special case of two noisy spin observables. In this case, the uncertainty inequality becomes very simple. Section 5 discusses real-values coarse graining of observables.

2 Quantum Uncertainty Principle

For a complex Hilbert space H, we denote the set of bounded linear operators by $\mathcal{L}(H)$ and the set of bounded self-adjoint operators by $\mathcal{L}_S(H)$. A positive trace-class operator with trace one is a *state* and the set of states on H is denoted by $\mathcal{S}(H)$. A state ρ is *faithful* if $\operatorname{tr}(\rho C^*C) = 0$ for $C \in \mathcal{L}(H)$ implies that C = 0. For $\rho \in \mathcal{S}(H)$ and $C, D \in \mathcal{L}(H)$ we define the sesquilinear form $\langle C, D \rangle_{\rho} = \operatorname{tr}(\rho C^*D)$.

Lemma 2.1. (i) If $C \in \mathcal{L}(H)$, $\rho \in \mathcal{S}(H)$, then $\operatorname{tr}(\rho C^*) = \operatorname{tr}(\rho C)$. (ii) The form $\langle \bullet, \bullet \rangle_{\rho}$ is a positive semi-definite inner product. (iii) A state ρ is faithful if and only if $\langle \bullet, \bullet \rangle_{\rho}$ is an inner product

Proof. (i) If D is a trace-class operator and $\{\phi_i\}$ is an orthonormal basis for H, we have

$$\operatorname{tr}(D^*) = \sum_{i} \langle \phi_i, D^* \phi_i \rangle = \sum_{i} \overline{\langle D^* \phi_i, \phi_i \rangle} = \sum_{i} \overline{\langle \phi_i, D \phi_i \rangle} = \overline{\operatorname{tr}(D)}$$

Hence,

$$\operatorname{tr}(\rho C^*) = \operatorname{tr}[(C\rho)^*] = \overline{\operatorname{tr}(C\rho)} = \overline{\operatorname{tr}(\rho C)}$$

(ii) Applying (i), we have

$$\overline{\langle C, D \rangle_{\rho}} = \overline{\operatorname{tr}(\rho C^* D)} = \operatorname{tr}\left[\rho (C^* D)^*\right] = \operatorname{tr}\left(\rho D^* C\right) = \langle D, C \rangle_{\rho}$$

Moreover, since $C^*C \geq 0$ we have $\langle C,C\rangle_{\rho} = \operatorname{tr}(\rho C^*C) \geq 0$. Hence, $\langle \bullet, \bullet \rangle_{\rho}$ is a positive semi-definite inner product. (iii) If $\langle \bullet, \bullet \rangle_{\rho}$ is an inner product, then

$$\langle C, C \rangle_{\rho} = \operatorname{tr}(\rho C^*C) = 0$$

implies C=0 so ρ is faithful. Conversely, if ρ is faithful, then

$$\operatorname{tr}(\rho C^*C) = \langle C, C \rangle_{\rho} = 0$$

implies C = 0 so $\langle \bullet, \bullet \rangle_{\rho}$ is an inner product

For $A \in \mathcal{L}_S(H)$ and $\rho \in \mathcal{S}(H)$, the ρ -average (or ρ -expectation) of A is $\langle A \rangle_{\rho} = \operatorname{tr}(\rho A)$ and ρ -deviation of A is $D_{\rho}(A) = A - \langle A \rangle_{\rho} I$ where I is the identity map on H. If $A, B \in \mathcal{L}_S(H)$, the ρ -correlation of A, B is

$$\operatorname{Cor}_{\rho}(A, B) = \operatorname{tr} \left[\rho D_{\rho}(A) D_{\rho}(B) \right]$$

Although $\operatorname{Cor}_{\rho}(A,B)$ need not be a real number, it is easy to check that $\overline{\operatorname{Cor}_{\rho}(A,B)}=\operatorname{Cor}_{\rho}(B,A)$. We say that A and B are uncorrelated if $\operatorname{Cor}_{\rho}(A,B)=0$. The ρ -covariance of A, B is $\Delta_{\rho}(A,B)=\operatorname{Re}\operatorname{Cor}_{\rho}(A,B)$ and the ρ -variance of A is

$$\Delta_{\rho}(A) = \Delta_{\rho}(A, A) = \operatorname{Cor}_{\rho}(A, A) = \operatorname{tr} \left[\rho D_{\rho}(A)^{2}\right]$$

It is straightforward to show that

$$\operatorname{Cor}_{\rho}(A, B) = \operatorname{tr}(\rho A B) - \langle A \rangle_{\rho} \langle B \rangle_{\rho}$$
 (2.1)

$$\Delta_{\rho}(A,B) = \operatorname{Re}\operatorname{tr}(\rho AB) - \langle A \rangle_{\rho} \langle B \rangle_{\rho} \tag{2.2}$$

$$\Delta_{\rho}(A) = \langle A^2 \rangle_{\rho} - \langle A \rangle_{\rho}^2 \tag{2.3}$$

We see from (2.1) that A and B are ρ -uncorrelated if and only if $\operatorname{tr}(\rho AB) = \langle A \rangle_{\rho} \langle B \rangle_{\rho}$. We say that A and B commute if their commutant [A, B] = AB - BA = 0.

Example 1. In the tensor product $H_1 \otimes H_2$ let $\rho = \rho_1 \otimes \rho_2 \in \mathcal{S}(H_1 \otimes H_2)$ be a product state and let $A_1 \in \mathcal{L}_S(H_1)$, $A_2 \in \mathcal{L}_S(H_2)$. Then $A = A_1 \otimes I_2$, $B = I_1 \otimes A_2 \in \mathcal{L}_S(H_1 \otimes H_2)$ are ρ -uncorrelated because

$$\operatorname{tr}(\rho AB) = \operatorname{tr}\left[\rho_{1} \otimes \rho_{2}(A_{1} \otimes I_{2})(I_{2} \otimes A_{2})\right] = \operatorname{tr}\left[\rho_{1} \otimes \rho_{2}(A_{1} \otimes A_{2})\right]$$
$$= \operatorname{tr}(\rho_{1}A_{1} \otimes \rho_{2}A_{2}) = \operatorname{tr}(\rho_{1}A_{1})\operatorname{tr}(\rho_{2}A_{2})$$
$$= \operatorname{tr}(\rho_{1} \otimes \rho_{2}A_{1} \otimes I_{2})\operatorname{tr}(\rho_{1} \otimes \rho_{2}I_{1} \otimes A_{2}) = \langle A \rangle_{\rho}\langle B \rangle_{\rho}$$

This shows that A,B are ρ -uncorrelated for any product state ρ . Of course, [A,B]=0 in this case. However, there are examples of noncommuting operators that are uncorrelated. For instance, on $H=\mathbb{C}^2$ let $\alpha=\begin{bmatrix}1\\0\end{bmatrix}$,

$$\phi = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \psi = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \text{ With } \rho = |\alpha\rangle\langle\alpha|, \ A = |\phi\rangle\langle\phi|, \ B = |\psi\rangle\langle\psi| \text{ we have}$$
$$\operatorname{tr}(\rho A B) = \langle A \rangle_{\alpha}\langle B \rangle_{\alpha} = 0$$

Hence, A, B are ρ -uncorrelated. However,

$$AB = \langle \phi, \psi \rangle |\phi\rangle \langle \psi| = \frac{1}{\sqrt{2}} |\phi\rangle \langle \psi|$$
$$BA = \langle \psi, \phi \rangle |\psi\rangle \langle \phi| = \frac{1}{\sqrt{2}} |\psi\rangle \langle \phi|$$

so
$$[A, B] \neq 0$$
.

We now present our main result.

Theorem 2.2. If $A, B \in \mathcal{L}_{S}(H)$ and $\rho \in \mathcal{S}(H)$, then (i) $\frac{1}{4} |\text{tr } (\rho [A, B])|^{2} + [\Delta_{\rho}(A, B)]^{2} = |\text{Cor}_{\rho}(A, B)|^{2}$ (ii) $\frac{1}{4} |\text{tr } (\rho [A, B])|^{2} + [\Delta_{\rho}(A, B)]^{2} \leq \Delta_{\rho}(A)\Delta_{\rho}(B)$

Proof. (i) Applying Lemma 2.1 we have

$$\operatorname{tr} ([A, B]) = \operatorname{tr} (\rho AB) - \operatorname{tr} (\rho BA) = \operatorname{tr} (\rho AB) - \overline{\operatorname{tr} [\rho (BA)^*]}$$
$$= \operatorname{tr} (\rho AB) - \overline{\operatorname{tr} (\rho A^*B^*)} = \operatorname{tr} (\rho AB) - \overline{\operatorname{tr} (\rho AB)}$$

$$= 2i\operatorname{Im}\left[\operatorname{tr}\left(\rho AB\right)\right] \tag{2.4}$$

From (2.2) and (2.4) we obtain

$$\frac{1}{4} |\operatorname{tr} (\rho [A, B])|^{2} + [\Delta_{\rho}(A, B)]^{2} = [\operatorname{Im} (\rho AB)]^{2} + \left[\operatorname{Re} \operatorname{tr} (\rho AB) - \langle A \rangle_{\rho} \langle B \rangle_{\rho}\right]^{2}$$

$$= \left|\operatorname{Re} \operatorname{tr} (\rho AB) - \langle A \rangle_{\rho} \langle B \rangle_{\rho} + i \operatorname{Im} \operatorname{tr} (\rho AB)\right|^{2}$$

$$= \left|\operatorname{tr} (\rho AB) - \langle A \rangle_{\rho} \langle B \rangle_{\rho}\right|^{2} = |\operatorname{Cor}_{\rho}(A, B)|^{2}$$

(ii) Applying Lemma 2.1(ii), the form $\langle C, D \rangle_{\rho} = \operatorname{tr}(\rho C^*D)$ is a positive semi-definite inner product. Hence, Schwarz's inequality holds and we have

$$|\operatorname{Cor}_{\rho}(A,B)|^{2} = |\operatorname{tr}\left[\rho D_{\rho}(A)D\rho(B)\right]|^{2} = \left|\langle D_{\rho}(A), D_{\rho}(B)\rangle_{\rho}\right|^{2}$$

$$\leq \langle D_{\rho}(A), D_{\rho}(A)\rangle_{\rho}\langle D_{\rho}(B), D_{\rho}(B)\rangle_{\rho} = \operatorname{tr}\left[\rho D_{\rho}(A)^{2}\right] \operatorname{tr}\left[\rho D_{\rho}(B)^{2}\right]$$

$$= \Delta_{\rho}(A)\Delta_{\rho}(B) \qquad \Box$$

We call Theorem 2.2(i) the uncertainty equation and Theorem 2.2(ii) the uncertainty inequality. Together, they are called the uncertainty principle. Notice that Theorem 2.2(ii) is a considerable strengthening of the usual Robertson-Heisenberg inequality (1.1) since it contains the term $[\Delta_{\rho}(A, B)]^2$ and it applies to arbitrary states. Thus, even when [A, B] = 0 we still have an uncertainty relation

$$[\Delta_{\rho}(A,B)]^{2} = |\operatorname{tr} \left[\rho \Delta_{\rho}(A) \Delta_{\rho}(B)\right]|^{2} \le \Delta_{\rho}(A) \Delta_{\rho}(B)$$

Lemma 2.3. A state ρ is faithful if and only if the eigenvalues of ρ are positive.

Proof. Suppose the eigenvalues λ_i of ρ are positive with corresponding normalized eigenvectors ϕ_i . Then we can write $\rho = \sum \lambda_i |\phi_i\rangle\langle\phi_i|$ for the orthonormal basis $\{\phi_i\}$. For any $A \in \mathcal{L}(H)$ we obtain

$$\operatorname{tr}(\rho A^* A) = \sum \lambda_i \operatorname{tr}(|\phi_i\rangle \langle \phi_i| A^* A) = \sum \lambda_i \langle A\phi_i, A\phi_i\rangle = \sum \lambda_i ||A\phi_i||^2$$

Hence, $\operatorname{tr}(\rho A^*A) = 0$ implies $A\phi_i = 0$ for all i. It follows that A = 0. Conversely, if 0 is an eigenvalue of ρ and ϕ is a corresponding unit eigenvector, then setting $P_{\phi} = |\phi\rangle\langle\phi|$ we have

$$\operatorname{tr}\left(\rho P_{\phi}^{*} P_{\phi}\right) = \operatorname{tr}\left(\rho P_{\phi}\right) = \langle \phi, \rho \phi \rangle = 0$$

But $P_{\phi} \neq 0$ so ρ is not faithful.

Theorem 2.4. If ρ is faithful. then the following statements are equivalent. (i) The uncertainty inequality of Theorem 2.2(ii) is an equality. (ii) $D_{\rho}(B) = \alpha D_{\rho}(A)$ for $\alpha \in \mathbb{R}$. (iii) $B = \alpha A + \beta I$ for $\alpha, \beta \in \mathbb{R}$. If one of the conditions holds, then

$$[\Delta_{\rho}(A,B)]^2 = |\operatorname{Cor}_{\rho}(A,B)|^2 = \Delta_{\rho}(A)\Delta(B)$$
(2.5)

Proof. (i)⇒(ii) If the uncertainty inequality is an equality, then

$$|\operatorname{tr}\left[\rho D_{\rho}(A)D_{\rho}(B)\right]|^{2} = \Delta_{\rho}(A)\Delta_{\rho}(B) \tag{2.6}$$

We can rewrite (2.6) as

$$\left| \langle D_{\rho}(A), D_{\rho}(B) \rangle_{\rho} \right|^{2} = \langle D_{\rho}(A), D_{\rho}(A) \rangle_{\rho} \langle D_{\rho}(B), D_{\rho}(B) \rangle_{\rho}$$

Since we have equality in Schwarz's inequality and $\langle \bullet, \bullet \rangle_{\rho}$ is an inner product, it follows that $D_{\rho}(B) = \alpha D_{\rho}(A)$ for some $\alpha \in \mathbb{C}$. Since $D_{\rho}(B)^* = D_{\rho}(B)$ and $D_{\rho}(A)^* = D_{\rho}(A)$ we conclude that $\alpha \in \mathbb{R}$. (ii) \Rightarrow (iii) If $D_{\rho}(B) = \alpha D_{\rho}(A)$ for $\alpha \in \mathbb{R}$, we have

$$B - \langle B \rangle_{\rho} I = \alpha \left(A - \langle A \rangle_{\rho} I \right)$$

Hence, letting $\beta = \langle B \rangle_{\rho} - \alpha \langle A \rangle_{\rho}$ we have $B = \alpha A + \beta I$. Since $A, B \in \mathcal{L}_S(H)$ and $\alpha \in \mathbb{R}$, we have that $\beta \in \mathbb{R}$. (iii) \Rightarrow (i) If (iii) holds, then

$$\langle B \rangle_{\rho} = \operatorname{tr}(\rho B) = \alpha \operatorname{tr}(\rho A) + \beta = \alpha \langle A \rangle_{\rho} + \beta$$

Hence, $\beta = \langle B \rangle_{\rho} - \alpha \langle A \rangle_{\rho}$ so that

$$D_{\rho}(B) = B - \langle B \rangle_{\rho} I = \alpha A + \beta I - \langle B \rangle_{\rho} I$$
$$= \alpha A + \langle B \rangle_{\rho} I - \alpha \langle A \rangle_{\rho} I - \langle B \rangle_{\rho} I = \alpha D_{\rho}(A)$$

Thus, (ii) holds and it follows that (2.6) holds and this implies (i). Equation (2.5) holds because (2.6) holds.

Example 2. The simplest faithful state when dim $H = n < \infty$ is $\rho = I/n$. Then $\langle A, B \rangle_{\rho} = \frac{1}{n} \operatorname{tr} (A^*B)$ which is essentially the Hilbert-Schmidt inner product $\langle A, B \rangle_{HS} = \operatorname{tr} (A^*B)$. In this case for

 $A, B \in \mathcal{L}_S(H)$ we have $\langle A \rangle_{\rho} = \frac{1}{n} \operatorname{tr}(A), D_{\rho}(A) = A - \frac{1}{n} \operatorname{tr}(A)I$. The other statistical concepts become:

$$\operatorname{Cor}_{\rho}(A,B) = \operatorname{tr} \left[\rho D_{\rho}(A) D_{\rho}(B) \right] = \frac{1}{n} \operatorname{tr} (AB) - \frac{1}{n^{2}} \operatorname{tr} (A) \operatorname{tr} (B)$$

$$\Delta_{\rho}(A,B) = \frac{1}{n} \operatorname{Re} \operatorname{tr} (AB) - \frac{1}{n^{2}} \operatorname{tr} (A) \operatorname{tr} (B)$$

$$\Delta_{\rho}(A) = \frac{1}{n} \operatorname{tr} (A^{2}) - \left[\frac{1}{n} \operatorname{tr} (A) \right]^{2}$$

$$\operatorname{tr} \left(\rho \left[A, B \right] \right) = \frac{2i}{n} \operatorname{Im} \operatorname{tr} (AB)$$

The uncertainty principle is given by:

$$[\operatorname{Im}\operatorname{tr}(AB)]^{2} + \left[\operatorname{Re}\operatorname{tr}(AB) - \frac{1}{n}\operatorname{tr}(A)\operatorname{tr}(B)\right]^{2} = \left|\operatorname{tr}(AB) - \frac{1}{n}\operatorname{tr}(A)\operatorname{tr}(B)\right|^{2}$$

$$\leq \left[\operatorname{tr}(A^{2}) - \frac{1}{n}\operatorname{tr}(A)^{2}\right]\left[\operatorname{tr}(B^{2}) - \frac{1}{n}\operatorname{tr}(B)^{2}\right] \qquad \Box$$

3 Real-Valued Observables

An effect is an operator $C \in \mathcal{L}_S(H)$ that satisfies $0 \leq C \leq I$ [1, 4, 6]. Effects are thought of as two outcomes yes-no measurements. When the result of measuring C is yes, we say that C occurs and when the result is no, then C does not occur. A real-valued observable is a finite set of effects $A = \{A_x : x \in \Omega_A\}$ where $\sum_{x \in \Omega_A} A_x = I$ and $\Omega_A \subseteq \mathbb{R}$ is the outcome space for A. The effect A_x occurs when the result of measuring A is the outcome x. The condition $\sum_{x \in \Omega_A} A_x = I$ specifies that one of the possible outcomes of A must occur. An observable is also called a positive operator-valued measure (POVM). We say A is sharp if A_x is a projection for all $x \in \Omega_A$ and in this case, A is a projection-valued measure [4, 7]. Corresponding to A we have the stochastic operator $\widetilde{A} \in \mathcal{L}(H)$ given by $\widetilde{A} = \sum_{x \in \Omega_A} x A_x$. Notice that we need A to be real-valued in order for \widetilde{A} to exist.

We now apply the theory presented in Section 2 to real-valued observables. For $\rho \in \mathcal{S}(H)$, the ρ -average (or ρ -expectation) of A is defined by

$$\langle A \rangle_{\rho} = \left\langle \widetilde{A} \right\rangle_{\rho} = \operatorname{tr}(\rho \widetilde{A}) = \sum_{x \in \Omega_{A}} x \operatorname{tr}(\rho A_{x})$$
 (3.1)

We interpret $\operatorname{tr}(\rho A_x)$ as the probability that a measurement of A results in the outcome x when the system is in state ρ . Thus, (3.1) says that

the ρ -average of A is the sum of its outcomes times the probabilities these outcomes occur. We define the ρ -deviation of A by

$$D_{\rho}(A) = D_{\rho}(\widetilde{A}) = \widetilde{A} - \langle A \rangle_{\rho} I = \sum_{x \in \Omega_{A}} x A_{x} - \sum_{x \in \Omega_{A}} x \operatorname{tr}(\rho A_{x}) I$$
$$= \sum_{x \in \Omega_{A}} x \left[A_{x} - \operatorname{tr}(\rho A_{x}) I \right]$$

If A, B are real-valued observables, the ρ -correlation of A, B is $\operatorname{Cor}_{\rho}(A, B) = \operatorname{Cor}_{\rho}(\widetilde{A}, \widetilde{B})$, ρ -covariance of A, B is $\Delta_{\rho}(A, B) = \Delta_{\rho}(\widetilde{A}, \widetilde{B})$ and the ρ -variance of A is $\Delta_{\rho}(A) = \Delta_{\rho}(\widetilde{A})$. Applying (2.1) we obtain

$$\operatorname{Cor}_{\rho}(A,B) = \operatorname{tr}\left(\rho \widetilde{A}\widetilde{B}\right) - \left\langle \widetilde{A} \right\rangle_{\rho} \left\langle \widetilde{B} \right\rangle_{\rho} = \operatorname{tr}\left(\rho \sum_{x,y} xy A_{x} B_{y}\right) - \left\langle \widetilde{A} \right\rangle_{\rho} \left\langle \widetilde{B} \right\rangle_{\rho}$$
$$= \sum_{x,y} xy \left[\operatorname{tr}\left(\rho A_{x} B_{y}\right) - \operatorname{tr}\left(\rho A_{x}\right) \operatorname{tr}\left(\rho B_{y}\right)\right] \tag{3.2}$$

It follows that

$$\Delta_{\rho}(A, B) = \sum_{x,y} xy \left[\operatorname{Re} \operatorname{tr} \left(\rho A_x B_y \right) - \operatorname{tr} \left(\rho A_x \right) \operatorname{tr} \left(\rho B_y \right) \right]$$
 (3.3)

and

$$\Delta_{\rho}(A) = \sum_{x,y} xy \left[\operatorname{tr} \left(\rho A_x A_y \right) - \operatorname{tr} \left(\rho A_x \right) \operatorname{tr} \left(\rho A_y \right) \right]$$
 (3.4)

We also have by (2.4) that

$$\operatorname{tr}\left(\rho\left[\widetilde{A},\widetilde{B}\right]\right) = 2i\operatorname{Im}\operatorname{tr}\left(\rho\widetilde{A}\widetilde{B}\right) = 2i\operatorname{Im}\operatorname{tr}\left(\rho\sum_{x,y}xyA_{x}B_{y}\right)\right)$$
$$= 2i\sum_{x,y}xy\operatorname{Im}\operatorname{tr}\left(\rho A_{x}B_{y}\right) \tag{3.5}$$

Substituting \widetilde{A} , \widetilde{B} for A, B in Theorem 2.2 gives an uncertainty principle for real-valued observables.

Two observables A, B are compatible (or jointly measurable) if there exists a joint observable $C_{(x,y)}$, $(x,y) \in \Omega_a \times \Omega_B$, such that $A_x = \sum_y C_{(x,y)}$, $B_y = \sum_x C_{(x,y)}$ for all $x \in \Omega_a$, $y \in \Omega_B$. If $[A_x, B_y] = 0$ for all x, y, then

A, B are compatible with $C_{(x,y)} = A_x B_y$ for all $(x,y) \in \Omega_A \times \Omega_B$. However, if A, B are compatible, they need not commute [4]. If A, B are compatible real-valued observables, then

$$\widetilde{A} = \sum_{x} x A_{x} = \sum_{x,y} x C_{(x,y)}$$
$$\widetilde{B} = \sum_{y} y B_{y} = \sum_{x,y} y C_{(x,y)}$$

Using (3.2), (3.3), (3.4), (3.5) we can write $\operatorname{Cor}_{\rho}(A,B)$, $\Delta_{\rho}(A,B)$, $\Delta_{\rho}(A)$, $\Delta_{\rho}(B)$ and $\operatorname{tr}\left(\rho\left[\widetilde{A},\widetilde{B}\right]\right)$ in terms of $C_{(x,y)}$. Hence, we can express the uncertainty principle in terms of $C_{(x,y)}$.

If $A = \{A_x \colon x \in \Omega_a\}$ is a real-valued observable, then \widetilde{A} has spectral decomposition $\widetilde{A} = \sum_{i=1}^n \lambda_i P_i$ where $\lambda_i \in \mathbb{R}$ are the distinct eigenvalues of \widetilde{A} and P_i are projections with $\sum P_i = I$. We call $\widehat{A} = \{P_i \colon i = 1, 2, \dots, n\}$ the sharp version of A. Then \widehat{A} is a real-valued observable with outcome space $\Omega_{\widehat{A}} = \{\lambda_i \colon i = 1, 2, \dots, n\}$. Since $(\widehat{A})^{\sim} = \widetilde{A}$, A and \widehat{A} have the same stochastic operator. It follows that $\langle A \rangle_{\rho} = \left\langle \widehat{A} \right\rangle_{\rho}$, $\Delta_{\rho}(A) = \Delta_{\rho}(\widehat{A})$ and if B is another real-valued observable, then $\operatorname{Cor}_{\rho}(A, B) = \operatorname{Cor}_{\rho}(\widehat{A}, \widehat{B})$ and $\Delta_{\rho}(A, B) = \Delta_{\rho}(\widehat{A}, \widehat{B})$.

Lemma 3.1. The following statements are equivalent. (i) $\widehat{A} = \widehat{B}$. (ii) $\widetilde{A} = \widehat{B}$. (iii) $\langle A \rangle_{\rho} = \langle B \rangle_{\rho}$ for all $\rho \in \mathcal{S}(H)$.

Proof. (i) \Rightarrow (ii) If $\widehat{A} = \widehat{B}$ then

$$\widetilde{A} = (\widehat{A})^{\sim} = (\widehat{B})^{\sim} = \widetilde{B}$$

(ii) \Rightarrow (iii) If $\widetilde{A} = \widetilde{B}$ then

$$\langle A \rangle_{\rho} = \left\langle \widetilde{A} \right\rangle_{\rho} = \left\langle \widetilde{B} \right\rangle_{\rho} = \langle B \rangle_{\rho}$$

(iii) \Rightarrow (i) If $\langle A \rangle_{\rho} = \langle B \rangle_{\rho}$ for all $\rho \in \mathcal{S}(H)$, then $\langle \widetilde{A} \rangle_{\rho} = \langle \widetilde{B} \rangle_{\rho}$ for all $\rho \in \mathcal{S}(H)$. It follows that $\widehat{A} = \widehat{B}$.

Let $\widetilde{A} = \sum x A_x = \sum \lambda_i P_i$ so $\widehat{A} = \{P_i : i = 1, 2, ..., n\}$ is a sharp version of A. Let $B = \{B_x : x \in \Omega_A\}$ be the real-valued observable given by $B_x = \{A_x : x \in \Omega_A\}$

 $\sum_{i=1}^{n} P_i A_x P_i$. We conclude that A and B have the same sharp version because

$$\widetilde{B} = \sum_{x} x B_{x} = \sum_{i} P_{i} \sum_{x} x A_{x} P_{i} = \sum_{i} P_{i} \widetilde{A} P_{i} = \sum_{i} P_{i} \sum_{j} \lambda_{j} P_{j} P_{i}$$
$$= \sum_{i,j} \lambda_{i} P_{i} P_{j} P_{i} = \sum_{i} \lambda_{i} P_{i} = \widetilde{A}$$

so by Lemma 3.1, $\widehat{A} = \widehat{B}$. We say that B is a *conjugate* of A. Letting $C_{ix} = P_i A_x P_i$, we have that

$$\{C_{ix}: i = 1, 2, \dots, n, x \in \Omega_A\}$$

is an observable and $\sum_i C_{ix} = B_x$, $\sum_x C_{ix} = P_i$. It follows that B and \widehat{A} are compatible with joint observable $\{C_{ix}\}$. We say that an observable $A = \{A_x : x \in \Omega_A\}$ is commutative if $[A_x, A_y] = 0$ for all $x, y \in \Omega_A$. Notice that if A is sharp, then A is commutative. However, there are many unsharp observables that are commutative.

Theorem 3.2. If A is commutative, then B is conjugate to A if and only if B = A.

Proof. If A is commutative, we show that A is conjugate to A. Since

$$\widehat{A} = \sum x A_x = \sum \lambda_i P_i$$

we have that $\left[\widehat{A}, A_x\right] = 0$ for all $x \in \Omega_A$. By the spectral theorem, $\left[A_x, P_i\right] = 0$ for all x, i so $A_x = \sum P_i A_x P_i$. Therefore, A is conjugate to A. Conversely, suppose A is commutative and B is conjugate to A. Then $B_x = \sum_i P_i A_x P_i$

for all $x \in \Omega_A$. As before, we have that $\left[\widehat{A}_x, A_x\right] = 0$ for all $x \in \Omega_A$ so $[A_x, P_i] = 0$ for all x, i. Hence,

$$B_x = \sum_i P_i A_x P_i = A_x \sum_i P_i = A_x$$

for all $x \in \Omega_B = \Omega_A$ so B = A.

Thus, nontrivial conjugates only occur in the nonclassical case where ${\cal A}$ is noncommutative.

4 More Examples

This section illustrates the theory in Sections 2 and 3 with two examples.

Example 3. A two outcome observable is called a *dichotomic observable*. Of course, a dichotomic observable is commutative but it need not be sharp. Let $A = \{A_1, I - A_1\}$ be a dichotomic observable with $\Omega_A = \{1, -1\}$. Then

$$\widetilde{A} = A_1 - (I - A_1) = 2A_1 - I$$

$$\langle A \rangle_{\rho} = \operatorname{tr}(\rho \widetilde{A}) = \operatorname{tr}[\rho(2A_1 - I)] = 2\operatorname{tr}(\rho A_1) - 1$$

$$D_{\rho}(A) = \widetilde{A} - \langle A \rangle_{\rho} I = 2A_1 - I - 2\operatorname{tr}(\rho A_1)I + I = 2[A_1 - \operatorname{tr}(\rho A_1)I]$$

If $B = \{B_1, I - B_1\}$ is another dichotomic observable with $\Omega_B = \{1, -1\}$, then

$$\operatorname{Cor}_{\rho}(A, B) = \operatorname{tr} (\rho \widetilde{A} \widetilde{B}) - \langle A \rangle_{\rho} \langle B \rangle_{\rho}
= \operatorname{tr} [\rho (2A_{1} - I)(2B_{1} - I)] - [2 \operatorname{tr} (\rho A_{1} - 1)] [2 \operatorname{tr} (\rho B_{1} - 1)]
= \operatorname{tr} [\rho (4A_{1}B_{1} - 2A_{1} - 2B_{1} + I)] - 4 \operatorname{tr} (\rho A_{1}) \operatorname{tr} (\rho B_{1})
+ 2 \operatorname{tr} (\rho A_{1}) + 2 \operatorname{tr} (\rho B_{1}) - 1
= 4 [\operatorname{tr} (\rho A_{1}B_{1}) - \operatorname{tr} (\rho A_{1}) \operatorname{tr} (\rho B_{1})]$$
(4.1)

Hence,

$$\Delta_{\rho}(A,B) = 4 \left[\operatorname{Re} \operatorname{tr} \left(\rho A_{1} B_{1} \right) - \operatorname{tr} \left(\rho A_{1} \right) \operatorname{tr} \left(\rho B_{1} \right) \right]$$

and

$$\Delta_{\rho}(A) = \Delta_{\rho}(A, A) = 4 \left[\operatorname{tr} \left(\rho A_{1}^{2} \right) - \left(\operatorname{tr} \left(\rho A_{1} \right) \right)^{2} \right]$$

We also have

$$\left[\widetilde{A}, \widetilde{B}\right] = [2A_1 - I, 2B_1 - I] = (2A_1 - I)(2B_1 - I) - (2B_1 - I)(2A_1 - I)$$
$$= 4[A_1, B_1]$$

We conclude that $\left[\widetilde{A},\widetilde{B}\right]=0$ if and only if $[A_1,B_1]=0$ and this does not hold in general so $\widetilde{A},\widetilde{B}$ need not commute. The uncertainty principle becomes

$$[\operatorname{Im}\operatorname{tr}(\rho A_1B_1)]^2 + [\operatorname{Re}\operatorname{tr}(\rho A_1B_1) - \operatorname{tr}(\rho A_1)\operatorname{tr}(\rho A_2)]^2$$

$$= \left| \operatorname{tr} \left(\rho A_1 B_1 \right) - \operatorname{tr} \left(\rho A_1 \right) \operatorname{tr} \left(\rho B_1 \right) \right|^2$$

$$\leq \left[\operatorname{tr} \left(\rho A_1^2 \right) - \left(\operatorname{tr} \left(\rho A_1 \right) \right)^2 \right] \left[\operatorname{tr} \left(\rho B_1^2 \right) - \left(\operatorname{tr} \left(\rho B_1 \right) \right)^2 \right] \quad \Box$$
(4.2)

Example 4. We now consider a special case of Example 3. For $H \in \mathbb{C}^2$ we define the Pauli matrices

$$\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Let $\mu \in [0,1]$ and define the dichotomic observable $A = \{A_1, I - A_1\}$, where

$$A_1 = \frac{1}{2}(I + \mu \sigma_x) = \frac{1}{2} \begin{bmatrix} 1 & \mu \\ \mu & 1 \end{bmatrix}$$

and $\Omega_A = \{1, -1\}$. Similarly, let $B = \{B_1, I - B_1\}$, where

$$B_1 = \frac{1}{2}(I + \mu \sigma_y) = \frac{1}{2} \begin{bmatrix} 1 & i\mu \\ -i\mu & 1 \end{bmatrix}$$

and $\Omega_B = \{1, -1\}$. We call A and B noisy spin observables along the x and y directions, respectively, with noise parameter $1 - \mu$ [7].

Any state $\rho \in \mathcal{S}(H)$ has the form $\rho = \frac{I}{2}(I + \overrightarrow{r} \cdot \overrightarrow{\sigma})$ where $\overrightarrow{r} \in \mathbb{R}^3$ with $||\overrightarrow{r}|| \le 1$ [1, 2]. This is called the *Block sphere* representation of ρ [4, 7]. The eigenvalues of ρ are $\lambda_{\pm} = \frac{1}{2}(1 \pm ||\overrightarrow{r}||)$. Then $\lambda_{+} = 1$, $\lambda_{-} = 0$ if and only if $||\overrightarrow{r}|| = 1$ and these are precisely the pure states. Letting $\sigma_1 = \sigma_x$, $\sigma_2 = \sigma_y$, $\sigma_3 = \sigma_z$ we obtain

$$\rho = \frac{1}{2} \begin{bmatrix} 1 + r_3 & r_1 - ir_2 \\ r_1 + ir_2 & 1 - r_3 \end{bmatrix}$$

and

$$\rho A_1 = \frac{1}{4} \begin{bmatrix} 1 + r_3 & r_1 - ir_2 \\ r_1 + ir_2 & 1 - r_3 \end{bmatrix} \begin{bmatrix} 1 & \mu \\ \mu & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 + r_3 + (r_1 - ir_2)\mu & (1 + r_3)\mu + r_1 - ir_2 \\ (1 - r_3)\mu + r_1 + ir_2 & 1 - r_3 + (r_1 + ir_2)\mu \end{bmatrix}$$

Hence, $\operatorname{tr}(\rho A_1) = \frac{1}{2}(1 + r_1\mu)$ and as in Example 3, $\langle A \rangle_{\rho} = r_1\mu$. Similarly, $\operatorname{tr}(\rho B_1) = \frac{1}{2}(1 + r_2\mu)$ and $\langle B \rangle_{\rho} = r_2\mu$. We also obtain

$$\operatorname{tr}(\rho A_1 B_1) = \frac{1}{4} \left[1 + (r_1 + r_2)\mu + ir_2\mu^2 \right]$$

and it follows from (4.1) that

$$\operatorname{Cor}_{\rho}(A, B) = 4 \left[\operatorname{tr} \left(\rho A_1 B_1 \right) - \operatorname{tr} \left(\rho A_1 \right) \operatorname{tr} \left(\rho B_1 \right) \right]$$

= 1 + \left(r_1 + r_2 \rho \mu + i r_3 \rho^2 - (1 + r_1 \rho) (1 + r_2 \rho) = -r_1 r_2 \rho^2 + i r_3 \rho^2

Therefore, $\Delta_{\rho}(A,B) = -r_1 r_2 \mu^2$. A straightforward calculation shows that

$$\operatorname{tr}(\rho A_1^2) = \frac{1}{4}(1+\mu^2) + \frac{1}{2}\mu r_1$$

$$\operatorname{tr}(\rho B_1^2) = \frac{1}{4}(1+\mu^2) + \frac{1}{2}\mu r_2$$

It follows that

$$\Delta_{\rho}(A) = 4 \left[\operatorname{tr} \left(\rho A_1^2 \right) - \left(\operatorname{tr} \left(\rho A_1 \right) \right)^2 \right] = \mu^2 (1 - r_1^2)$$

and similarly, $\Delta_{\rho}(B) = \mu^2(1 - r_2^2)$.

The commutator term in (4.2) becomes

$$[\operatorname{Im}\operatorname{tr}(\rho A_1 B_1)]^2 = \frac{1}{16} r_3^2 \mu^4$$

The covariance term in (4.2) is

$$[\operatorname{Re}(\rho A_1 B_1) - \operatorname{tr}(\rho A_1) \operatorname{tr}(\rho B_1)]^2 = \frac{1}{16} r_1^2 r_2^2 \mu^4$$

and the correlation term in (4.2) is

$$|\operatorname{tr}(\rho A_1 B_1) - \operatorname{tr}(\rho A_1) \operatorname{tr}(\rho B_1)|^2 = \frac{1}{16} (r_3^2 + r_1^2 r_2^2) \mu^4$$

Finally, the variance term in (4.2) is given by

$$\Delta_{\rho}(A_1)\Delta_{\rho}(B_1) = \frac{1}{16}(1-r_1^2)(1-r_2^2)\mu^4$$

The inequality in (4.2) reduces to

$$\frac{1}{16}(r_3^2 + r_1^2 + r_2^2)\mu^4 \le \frac{1}{16}(1 - r_1^2)(1 - r_2^2)\mu^4 \tag{4.3}$$

If $\mu \neq 0$, (4.3) is equivalent to the inequality

$$||\overrightarrow{r}||^2 = r_1^2 + r_2^2 + r_3^2 \le 1$$

If the commutator term vanishes and $\mu \neq 0$, the uncertainty inequality becomes

$$r_1^2 r_2^2 \le (1 - r_1^2)(1 - r_2^2) \tag{4.4}$$

which is equivalent to $r_1^2 + r_2^2 \le 1$. If A and B are ρ -uncorrelated and $\mu \ne 0$, the uncertainty inequality becomes $r_3^2 \le (1 - r_1^2)(1 - r_2^2)$ which is equivalent to $||\overrightarrow{r}||^2 \le 1 + r_1^2 r_2^2$. This inequality and (4.4) are weaker than (4.3).

5 Real-Valued Coarse Graining

Let $A = \{A_x \colon x \in \Omega_A\}$ be an arbitrary observable. We assume that A is not necessarily real-valued so the outcome space Ω_A is an arbitrary finite set. For $f \colon \Omega_A \to \mathbb{R}$ with range $\mathcal{R}(f)$ we define the real-valued observable f(A) by $\Omega_{f(A)} = \mathcal{R}(f)$ and for all $z \in \Omega_{f(A)}$

$$f(A)_z = A_{f^{-1}(z)} = \sum \{A_x \colon f(x) = z\}$$

We call f(A) a real-valued coarse graining of A [2, 3, 4]. Then f(A) has stochastic operator

$$f(A)^{\sim} = \sum_{z} z f(A)_z = \sum_{z} z A_{f^{-1}(z)} = \sum_{z} \sum_{x \in f^{-1}(z)} z A_x = \sum_{x} f(x) A_x$$

It follows that $\langle f(A) \rangle_{\rho} = \sum_{x} f(x) \operatorname{tr}(\rho A_{x})$ for all $\rho \in \mathcal{S}(H)$. If B is another observable and $g \colon \Omega_{B} \to \mathbb{R}$ we have

$$\operatorname{Cor}_{\rho}\left[f(A), g(B)\right] = \sum_{x,y} f(x)g(y)\operatorname{tr}\left(\rho A_{x}B_{y}\right) - \langle f(A)\rangle_{\rho}\langle g(B)\rangle_{\rho}$$

$$\Delta_{\rho}\left[f(A), g(B)\right] = \sum_{x,y} f(x)g(y)\operatorname{Re}\operatorname{tr}\left(\rho A_{x}B_{y}\right) - \langle f(A)\rangle_{\rho}\langle g(B)\rangle_{\rho}$$

$$\Delta_{\rho}\left[f(A)\right] = \sum_{x,y} f(x)f(y)\operatorname{tr}\left(\rho A_{x}A_{y}\right) - \langle f(A)\rangle_{\rho}^{2}$$

Moreover, we have the uncertainty inequality

$$\left|\operatorname{Cor}_{\rho}\left[f(A),g(B)\right]\right|^{2} \leq \Delta_{\rho}\left[f(A)\right] \Delta_{\rho}\left[g(B)\right]$$

We denote the set of trace-class operators on H by $\mathcal{T}(H)$. An operation on H is a completely positive, trace reducing, linear map $\mathcal{O} \colon \mathcal{T}(H) \to \mathcal{T}(H)$ [1, 2, 3, 4]. If \mathcal{O} preserves the trace, then \mathcal{O} is called a channel. A (finite) instrument is a finite set of operators $\mathcal{I} = \{\mathcal{I}_x \colon x \in \Omega_{\mathcal{I}}\}$ such that $\overline{\mathcal{I}} = \sum \{\mathcal{I}_x \colon x \in \Omega_{\mathcal{I}}\}$ is a channel [1, 2, 3, 4]. We say that \mathcal{I} measures an observable A if $\Omega_{\mathcal{I}} = \Omega_A$ and tr $[\mathcal{I}_x(\rho)] = \operatorname{tr}(\rho A_x)$ for all $x \in \Omega_{\mathcal{I}}$. It can be shown that \mathcal{I} measures a unique observable which we denote by $J(\mathcal{I})$ [2, 3]. Conversely, any observable is measured by many instruments [1, 2, 3, 4]. Corresponding to an operation \mathcal{O} we have its dual-operation $\mathcal{O}^* \colon \mathcal{L}(H) \to \mathcal{L}(H)$ defined by $\operatorname{tr}[\rho \mathcal{O}^*(C)] = \operatorname{tr}[\mathcal{O}(\rho)C]$ for all $\rho \in \mathcal{S}(H)$

[2, 3]. It can be shown that $J(\mathcal{I})_x = \mathcal{I}_x^*(I)$ for all $x \in \Omega_{\mathcal{I}}$ where I is the identity operator [2, 3].

As with observables, if \mathcal{I} is an instrument, and $f: \Omega_{\mathcal{I}} \to \mathbb{R}$ we define the real-valued instrument $f(\mathcal{I})$ such that $\Omega_{f(\mathcal{I})} = \mathcal{R}(f)$ and

$$f(\mathcal{I})_z = \sum \{ \mathcal{I}_x \colon f(x) = z \}$$

If $J(\mathcal{I}) = A$, then $J[f(\mathcal{I})] = f(A)$ because

$$\operatorname{tr} \left[f(\mathcal{I})_{z}(\rho) \right] = \operatorname{tr} \left[\sum \left\{ \mathcal{I}_{x}(\rho) \colon f(x) = z \right\} \right] = \sum \left\{ \operatorname{tr} \left[\mathcal{I}_{x}(\rho) \right] \colon f(x) = z \right\}$$
$$= \sum \left\{ \operatorname{tr} \left(\rho A_{x} \right) \colon f(x) = z \right\} = \operatorname{tr} \left[\rho \sum \left\{ A_{x} \colon f(x) = z \right\} \right]$$
$$= \operatorname{tr} \left[\rho f(A)_{z} \right]$$

for all $z \in \Omega_{f(A)} = \Omega_{f(\mathcal{I})}$. If \mathcal{I} is real-valued, we define $\widetilde{\mathcal{I}}$ on $\mathcal{L}(H)$ by $\widetilde{\mathcal{I}}(C) = \sum x \mathcal{I}_x(C)$ and $\langle \mathcal{I} \rangle_{\rho} = \operatorname{tr} \left[\widetilde{\mathcal{I}}(\rho) \right]$. If $J(\mathcal{I}) = A$, then

$$\langle \mathcal{I} \rangle_{\rho} = \operatorname{tr} \left[\sum x \mathcal{I}_{x}(\rho) \right] = \sum x \operatorname{tr} \left[\mathcal{I}_{x}(\rho) \right] = \sum x \operatorname{tr} \left(\rho A_{x} \right) = \langle A \rangle_{\rho}$$

for all $\rho \in \mathcal{S}(H)$. We also define $\Delta_{\rho}(\mathcal{I}) = \Delta_{\rho}(A)$. It follows that $\langle f(\mathcal{I}) \rangle_{\rho} = \langle f(A) \rangle_{\rho}$, $\Delta_{\rho}[f(\mathcal{I})] = \Delta_{\rho}[f(A)]$ and $f(\mathcal{I})^{\sim} = \sum f(x)\mathcal{I}_{x}$.

Let $A = \{A_x : x \in \Omega_A\}$, $B = \{B_y : y \in \Omega_B\}$ be arbitrary observables and suppose \mathcal{I} is an instrument with $J(\mathcal{I}) = A$. Define the \mathcal{I} -product observable $A \circ B$ with $\Omega_{A \circ B} = \Omega_A \times \Omega_B$ given by $(A \circ B)_{(x,y)} = \mathcal{I}_x(B_y)$ [2, 3]. Then $A \circ B$ is indeed an observable because

$$\sum_{x,y} (A \circ B)_{(x,y)} = \sum_{x,y} \mathcal{I}_x^*(B_y) = \sum_x \mathcal{I}_x^* \left(\sum_y B_y\right) = \sum_x \mathcal{I}_x^*(I) = \sum_x A_x = I$$

Although $A \circ B$ depends on \mathcal{I} , we shall not indicate this for simplicity. We interpret $A \circ B$ as the observable obtained by first measuring A using \mathcal{I} and then measuring B. If $f: \Omega_A \times \Omega_B \to \mathbb{R}$ we obtain the real-valued observable $f(A, B) = f(A \circ B)$. We then have

$$f(A,B)_z = (A \circ B)_{f^{-1}(z)} = \sum \{ (A \circ B)_{(x,y)} \colon f(x,y) = z \}$$
$$= \sum \{ \mathcal{I}_x^*(B_y) \colon f(x,y) = z \}$$
$$f(A,B)^{\sim} = \sum_{x,y} f(x,y)(A \circ B)_{(x,y)} = \sum_{x,y} f(x,y)\mathcal{I}_x^*(B_y)$$

$$\langle f(A,B) \rangle_{\rho} = \sum_{x,y} f(x,y) \operatorname{tr} \left[\rho(A \circ B)_{(x,y)} \right] = \sum_{x,y} f(x,y) \operatorname{tr} \left[\rho \mathcal{I}_{x}^{*}(B_{y}) \right]$$

$$\Delta_{\rho} \left[f(A,B) \right] = \sum_{x,y,x',y'} f(x,y) f(x',y') \operatorname{tr} \left[\rho(A \circ B)_{(x,y)} (A \circ B)_{(x',y')} \right] - \langle f(A,B) \rangle_{\rho}^{2}$$

$$= \operatorname{tr} \left\{ \rho \left[\sum_{x,y} f(x,y) \mathcal{I}_{x}^{*}(B_{y}) \right]^{2} \right\} - \langle f(A,B) \rangle_{\rho}^{2}$$

If f is a product function f(x,y) = g(x)h(y) we obtain

$$f(A,B)_z = \sum_{z} \{ \mathcal{I}_x^*(B_y) \colon g(x)h(y) = z \}$$

We then have the simplification

$$f(A,B)^{\sim} = \sum_{x,y} g(x)h(y)\mathcal{I}_x^*(B_y) = \sum_x g_x \mathcal{I}_x^* \left(\sum_y h(y)B_y\right)$$
$$= \sum_x g(x)\mathcal{I}_x^* [h(B)^{\sim}]$$

Hence,

$$\langle f(A,B) \rangle_{\rho} = \operatorname{tr} \left[\rho f(A,B)^{\sim} \right] = \operatorname{tr} \left\{ \rho \sum_{x} g(x) \mathcal{I}_{x}^{*} \left[h(B)^{\sim} \right] \right\}$$
$$= \sum_{x} g(x) \operatorname{tr} \left\{ \rho \mathcal{I}_{x}^{*} \left[h(B)^{\sim} \right] \right\} = \sum_{x} g(x) \operatorname{tr} \left\{ \mathcal{I}_{x}(\rho) \left[h(B)^{\sim} \right] \right\}$$
$$= \operatorname{tr} \left\{ \sum_{x} g(x) \mathcal{I}_{x}(\rho) \left[h(B)^{\sim} \right] \right\} = \operatorname{tr} \left\{ g(\mathcal{I})^{\sim} (\rho) \left[h(B)^{\sim} \right] \right\}$$

In a similar way we obtain

$$\Delta_{\rho} [f(A,B)] = \operatorname{tr} \left\{ (g(\mathcal{I})^{\sim}(\rho) [h(B)^{\sim}])^{2} \right\} - \langle f(A,B) \rangle_{\rho}^{2}$$

If A and B are arbitrary observables, we define the observable B conditioned by A to be

$$(B \mid A)_y = \mathcal{I}_{\Omega_A}^*(B_y) = \sum_{x \in \Omega_A} \mathcal{I}_x^*(B_y)$$

where $\Omega_{B|A} = \Omega_B$ [2, 3]. We interpret $(B \mid A)$ as the observable obtained by first measuring A without taking the outcome into account and then measuring B. If B is real-valued we have

$$(B \mid A)^{\sim} = \sum_{y} y(B \mid A)_{y} = \sum_{x,y} y\mathcal{I}_{x}^{*}(B_{y}) = \mathcal{I}_{\Omega(A)}^{*}(\widetilde{B})$$

$$\langle (B \mid A) \rangle_{\rho} = \sum_{y} y \operatorname{tr} \left[\rho \mathcal{I}_{\Omega(A)}^{*}(B_{y}) \right] = \sum_{y} y \operatorname{tr} \left[\overline{\mathcal{I}}(\rho) B_{y} \right] = \operatorname{tr} \left[\overline{\mathcal{I}}(\rho) \widetilde{B} \right] = \langle B \rangle_{\overline{\mathcal{I}}(\rho)}$$

$$\Delta_{\rho} \left[(B \mid A) \right] = \Delta_{\rho} \left[(B \mid A)^{\sim} \right] = \Delta_{\rho} \left[\mathcal{I}_{\Omega(A)}^{*}(\widetilde{B}) \right] = \operatorname{tr} \left\{ \left[\mathcal{I}_{\Omega(A)}^{*}(\widetilde{B}) \right]^{2} \right\} - \left[\langle B \rangle_{\overline{\mathcal{I}}(\rho)} \right]^{2}$$

We now illustrate the theory of this section with some examples.

Example 5. The simplest example of an instrument is a *trivial* instrument $\mathcal{I}_x(\rho) = \omega(x)\rho$ where ω is a probability measure on the finite set $\Omega_{\mathcal{I}}$. It is clear that \mathcal{I} measures the *trivial observable* $A_x = \omega(x)I$. Let B be an arbitrary observable and let $f: \Omega_A \times \Omega_B \to \mathbb{R}$. We then have

$$(A \circ B)_{(x,y)} = \mathcal{I}_x^*(B_y) = \omega(x)B_y$$
$$f(A,B)_z = f(A \circ B)_z = \sum \{\omega(x)B_y \colon f(x,y) = z\}$$

We conclude that

$$f(A,B)^{\sim} = \sum_{x,y} f(x,y)\omega(x)B_y$$

$$\langle f(A,B)\rangle_{\rho} = \sum_{x,y} f(x,y)\omega(x)\operatorname{tr}(\rho B_y)$$

$$\Delta_{\rho} [f(A,B))] = \operatorname{tr} \left\{ \rho \left[\sum_{x,y} f(x,y)\omega(x)B_y \right]^2 \right\} - \langle f(A,B)\rangle_{\rho}^2$$

Moreover, since

$$(B \mid A)_y = \sum_x \mathcal{I}_x^*(B_y) = \sum_x \omega(x)(B_y) = B_y$$

we have that $(B \mid A) = B$.

Example 6. Let $A = \{A_x : x \in \Omega_A\}$ and $B = \{B_y : y \in \Omega_B\}$ be arbitrary observables and let $\mathcal{H}_x(\rho) = \operatorname{tr}(\rho A_x)\alpha_x$, $\alpha_x \in \mathcal{S}(H)$ be a *Holevo instrument* [2, 3]. Then \mathcal{H} measure A because

$$\operatorname{tr} \left[\mathcal{H}_x(\rho) \right] = \operatorname{tr} \left[\operatorname{tr} \left(\rho A_x \right) \alpha_x \right] = \operatorname{tr} \left(\rho A_x \right)$$

Since $\mathcal{H}_{x}^{*}(a) = \operatorname{tr}(\alpha_{x}a)A_{x}$ for all $x \in \Omega_{A}$ [2, 3], we have

$$(A \circ B)_{(x,y)} = \mathcal{H}_x^*(B_y) = \operatorname{tr}(\alpha_x B_y) A_x$$

If $f: \Omega_A \times \Omega_B \to \mathbb{R}$, we obtain the real-valued observable

$$f(A,B)_z = \sum \left\{ \operatorname{tr} \left(\alpha_x B_y \right) A_x \colon f(x,y) = z \right\}$$

We conclude that

$$f(A,B)_{z} = \sum_{x,y} f(x,y)\mathcal{H}_{x}^{*}(B_{y}) = \sum_{x,y} f(x,y)\operatorname{tr}(\alpha_{x}B_{y})A_{x}$$

$$\langle f(A,B)\rangle_{\rho} = \sum_{x,y} f(x,y)\operatorname{tr}(\alpha_{x}B_{y})\operatorname{tr}(\rho A_{x})$$

$$\Delta_{\rho} [f(A,B)] = \sum_{x,y,x',y'} f(x,y)f(x',y')\operatorname{tr} \left[\rho\operatorname{tr}(\alpha_{x}B_{y})A_{x}\operatorname{tr}(\alpha_{x'}B_{y'})A_{x'}\right]$$

$$-\langle f(A,B)\rangle_{\rho}^{2}$$

$$= \operatorname{tr} \left\{\rho \left[\sum_{x,y} f(x,y)\operatorname{tr}(\alpha_{x}B_{y})A_{x}\right]^{2}\right\} - \langle f(A,B)\rangle_{\rho}^{2}$$

Moreover, we have

$$(B \mid A)_y = \sum_x \mathcal{H}_x^*(B_y) = \sum_x \operatorname{tr}(\alpha_x B_y) A_x \qquad \Box$$

Example 7. Let A, B be arbitrary observables and let \mathcal{L} be the Lüders instrument given by $\mathcal{L}_x(\rho) = A_x^{1/2} \rho A_x^{1/2}$ [2, 3, 6]. Then

$$\operatorname{tr} \left[\mathcal{L}_x(\rho) \right] = \operatorname{tr} \left(A_x^{1/2} \rho A_x^{1/2} \right) = \operatorname{tr} \left(\rho A_x \right)$$

so \mathcal{L} measures A. Since $\mathcal{L}_{x}^{*}(a) = A_{x}^{1/2} a A_{x}^{1/2}$ [2, 3] we have

$$(A \circ B)_{(x,y)} = A_x^{1/2} B_y A_x^{1/2}$$

If $f: \Omega_A \times \Omega_B \to \mathbb{R}$, we obtain the real-valued observable

$$f(A,B)_z = \sum \left\{ A_x^{1/2} B_y A_x^{1/2} \colon f(x,y) = z \right\}$$

We conclude that

$$f(A,B)^{\sim} = \sum_{x,y} f(x,y) A_x^{1/2} B_y A_x^{1/2}$$

$$\begin{split} \left\langle f(A,B) \right\rangle_{\rho} &= \sum_{x,y} f(x,y) \mathrm{tr} \left(\rho A_{x}^{1/2} B_{y} A_{x}^{1/2} \right) = \sum_{x,y} f(x,y) \mathrm{tr} \left(A_{x}^{1/2} \rho A_{x}^{1/2} B_{y} \right) \\ \Delta_{\rho} \left[f(A,B) \right] &= \mathrm{tr} \left\{ \rho \left[\sum_{x,y} f(x,y) A_{x}^{1/2} B_{y} A_{x}^{1/2} \right]^{2} \right\} - \left\langle f(A,B) \right\rangle_{\rho}^{2} \end{split}$$

Moreover, we have

$$(B \mid A)_y = \sum_x \mathcal{L}_x^*(B_y) = \sum_x A_x^{1/2} B_y A_x^{1/2}$$

References

- [1] P. Busch, M. Grabowski and P. Lahti, *Operational Quantum Physics*, Springer-Verlag, Berlin, 1995.
- [2] S. Gudder, Conditional observables in quantum mechanics, arXiv:quant-ph 2005.04775 (2020).
- [3] —, Quantum instruments and conditioned observables, arXiv:quant-ph 2005.08117 (2020).
- [4] T. Heinosaari and M. Ziman, *The Mathematical Language of Quantum Theory*, Cambridge University Press, Cambridge, 2012.
- [5] K. Kraus, States, Effects and Operations, Springer-Verlag, Berlin, 1983.
- [6] G. Lüders, Uber due Zustandsänderung durch den Messprozess, Ann. Physik 6, 322–328 (1951).
- [7] M. Nielson and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.