Back of the Envelope Estimation

· Power of 2

- A byte is a sequence of 8 bits. - ASCII character uses one byte of memory.

Power	Approximate value	Full name	Short name
10	1 Thousand	1 Kilobyte	1 KB
20	1 Million	1 Megabyte	1 MB
30	1 Billion	1 Gigabyte	1 GB
40	1 Trillion	1 Terabyte	1 TB
50	1 Quadrillion	1 Petabyte	1 PB

· Latery numbers every programmer should know

	T I
Operation name	Time
L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns
Mutex lock/unlock	100 ns
Main memory reference	100 ns
Compress 1K bytes with Zippy	10,000 ns = 10 μs
Send 2K bytes over 1 Gbps network	20,000 ns = 20 μs
Read 1 MB sequentially from memory	250,000 ns = 250 μs
Round trip within the same datacenter	500,000 ns = 500 μs
Disk seek	10,000,000 ns = 10 ms
Read 1 MB sequentially from the network	10,000,000 ns = 10 ms
Read 1 MB sequentially from disk	30,000,000 ns = 30 ms
Send packet CA (California) ->Netherlands->CA	150,000,000 ns = 150 ms

- Conclusions

- Memory is fast but the disk is slow.
- Avoid disk seek if possible.
- Simple compression algorithms are fast.
- Compress data before sending it over the internet if possible.
- Data centers are usually in different regions, and it takes time to send data between them.

· Availability Numbers

- High availability is the ability, to be continuously operational took a long time.

- Hvailability is measured in percentage.

- Mast services tall between 99% and 100%

- Uplime is measured in nines

Availability %	Downtime per day	Downtime per year
99%	14.40 minutes	3.65 days
99.9%	1.44 minutes	8.77 hours
99.99%	8.64 seconds	52.60 minutes
99.999%	864.00 milliseconds	5.26 minutes
99.9999%	86.40 milliseconds	31.56 seconds

· Example: Estimate Twitter QPS and Storage requirement
- Assumption
- 300 million monthly active users.
- 50% of users we Twitter daily.
- Users bast 2 tweeks bor day on average.
- 300 million monthly active users 50% of users use Twitter daily Users post 2 tweeks per day on average 10% of tweeks contain media Data is stored for 5 years.
- Dara is storted for 5 years.
- Estimations
- Query per second (QPS) estimation:
- Query per second [QPS] estimation: Daily Active Users (DAV) = 50% of 300 million = 150 million
minon
· Tweeks QPS = 150 million × 2 tweeks 124 howr 1
3600 Sec
= ~ <i>3500</i>
· Peak QPS = 2 × QPS = ~7000
- Storage Estimates
· Average tweet size · tweet-id - 64 bytes
· tweet-id - 64 bytes
o text - 140 bytes
o media – 1 MB
· Media Starage: 150 million × 2× 10°/0 × 1 MB
= 30 TB per day
• 5 year media storage: 30 TB * 365 × 5
 Media Starage: 150 million × 2 × 10°10 × 1 MB = 30 TB per day 5 year media storage: 30 TB × 365 × 5 = ~ 55 PB

Tips - Rounding and Approximation
- Write down all assumption
- Label your units
- Commonly asked estimations - QPS, Peak QPS,
Storage, cache, number of servers etc.