Exercises for Optimization I Sheet 6*

You can submit in your solutions for the Numerical Exercise until Sunday, June 12 at 9pm, Discussion of this Exercise Sheet will be on June 13-14.

Exercise 1: Show the left inequality from Lemma 2 iii) in lecture 11.

Exercise 2: Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) := -\frac{1}{4}x^4$ with starting point $x^0 \in \mathbb{R}$ arbitrary. Show that the sequence (x^k) generated by Newton's method converges to $x^* = 0$. What kind of extremum is x^* ?

Exercise 3: Show that the simplified Newton's method (for an optimization problem) with $M_k = \text{Hess}(f(x^0))$, where x^0 close enough to x^* , admits linear convergence, i.e.

$$||x^{k+1} - x^*|| \le c ||x^k - x^*|| \quad \forall k, \quad \text{with } c < 1.$$

Exercise 4:

a) Given the matrices $U,V\in\mathbb{R}^{n\times m}$ and the invertible matrix $A\in\mathbb{R}^{n\times n}$. Show that if $(Id_m-V^\top A^{-1}U)$ is invertible, then $M:=A-UV^\top$ is invertible with

$$M^{-1} = A^{-1} + A^{-1}U(Id_m - V^{\top}A^{-1}U)^{-1}V^{\top}A^{-1}.$$

Hint: Calculate MM^{-1} and $M^{-1}M$.

(b) Show that $M = A - uv^{\top}$, with $u, v \in \mathbb{R}^n$ is invertible, if and only if $1 - v^{\top}A^{-1}u \neq 0$. In this case it holds

$$M^{-1} = A^{-1} + \frac{A^{-1}uv^{\mathsf{T}}A^{-1}}{1 - v^{\mathsf{T}}A^{-1}u}.$$

^{*}Group 6 will present the solutions.

Numerical Exercise 3: (Minimal triangulated graphs)

Compute the minimal triangular graph over $\Omega:=(0,1)^2$, i.e find a function $q:\bar{\Omega}\to\mathbb{R}$, which is piecewise linear and continuous on a given triangulation of Ω , and which satisfies the boundary conditions $q_{|\partial\Omega}=\frac{1}{2}-|x_2-\frac{1}{2}|$, and whose graph has minimal surface area among all piecewise linear and continuous functions defined on the same triangulation and satisfying the same boundary conditions.

Figure 1: Boundary condition

Output: Surface area and a figure showing the triangulated graph.

Proceed as follows: Subdivide Ω into triangles (everything consists of triangles (Plato)) with corners $Q_1(x_1^1, x_2^1), \dots, Q_m(x_1^m, x_2^m)$. Consider functions q, which are continuous on $\bar{\Omega}$ and linear on each triangle. Construct a function $A: \mathbb{R}^n \to \mathbb{R}$ which defines the surface area of the graph of q (what is n?).

Solution algorithm: Steepest descent with Armijo step size rule:

- a) Choose $x^0 \in \mathbb{R}^n$, and $\beta, \gamma \in (0,1)$,
- b) for k = 0, 1, 2, ... do
 - (i) $\nabla f(x^k) = 0 \rightarrow \text{STOP with } x^* = x^k$.
 - (ii) $s^k := -\nabla f(x^k)$,
 - (iii) $\sigma_k := \max\{\sigma > 0; \sigma \in \{1, \beta, \beta^2, \dots\}\} : f(x^k) f(x^k + \sigma s^k) \ge -\gamma \sigma \nabla f(x^k)^t s^k$
 - (iv) $x^{k+1} = x^k + \sigma_k s^k$

Choose $\beta = \frac{1}{2}$, $\gamma \in [10^{-3}, 10^{-2}]$ and stop if in b) (ii) $||s^k|| \le 10^{-8}$ is satisfied.