How should we tackle the strong CP problem?

Based on 1703.01112 1504.06084 1602.07909 1702.00227

Hajime Fukuda (Kavli IPMU, U. Tokyo) July 18, 2017

Outline

- 1. Strong CP Problem and the solutions
- 2. Challenge for the origin of Peccei-Quinn symmetry
- 3. Our study
 - 3.1 "Gauged" axion
 - 3.2 Heavy axion

Strong CP Problem and the Solutions

Strong CP Problem

- Yang-Mills theory in 4D has θ vacua, which can be written in Lagrangian: $\Delta \mathcal{L} \sim \theta F \tilde{F}$ (see Seiberg 10)
- Non-zero θ breaks CP symmetry: $|\theta_{OCD}| \lesssim 10^{-10}$
- θ_{QCD} consists of two parts, θ_{YM} and $arg(det(Y_uY_d))$
 - We expect the latter is around $J \sim 10^{-5}$, at least
 - No reason to cancel
- Why is θ_{OCD} so small? Strong CP Problem
- Anthoropic principle cannot be used see Ubaldi 08, for instance

The Solutions

- As far as I know, there are roughly two ways
- Spontaneous CP Breaking (e.g. Nelson-Barr Mechanism)
 - Complicated and not so easy Dine and Draper. 15 for detail
- Use of anomaly

Anomaly and θ

 Chiral (non-vectorial) U(1) symmetries in 4D generally have anomalies

$$\partial J \sim F\tilde{F}$$

- The chiral rotation only moves θ θ becomes unphysical!
- This is why we do not have "Weak CP Problem"...

$$\partial J_L \sim W\tilde{W} + F\tilde{F}$$
 : $\bar{e}_R \to e^{-i\theta_w/3}\bar{e}_R, L_L \to e^{i\theta_w/3}L_L, \theta_w \to 0$

Peccei-Quinn Mechanism

- In a nutshell, "if a symmetry were anomalous in QCD, θ would be unphysical"
- The anomaly never disappear (e.g. Anomaly Matching)
- That anomaly must have low-energy consequence!
 - Massless colored Fermion
 - (For historical reason, this is usually not referred as PQ)
 - Pseudo NGB with $\Delta \mathcal{L} \sim \frac{a}{f_a} G \tilde{G}$
 - Peccei and Quinn 1977, Weinberg 1978, Wilczek 1978

With Massless Colored Fermion

- No additional massless Fermion is allowed in SM
- May up be massless? So called "massless up" solution
- Inconsistent with chiral perturbation?
 - Still instanton may save it? Georgi and McArthur 81
- (Un)fortunately, lattice people finally concluded it is inconsistent

Axion, the Main Topic!

Among many ways, the simplest is KSVZ axion

	$SU(3)_{QCD}$	$U(1)_{PQ}$
φ	1	1
ψ_L	3	-1
$\bar{\psi}_R$	3	0

- The Lagrangian is $\Delta \mathcal{L} \sim \phi \bar{\psi}_R \psi_L V(\phi)$
- With the "wine-bottle" $V(\phi)$, $\mathrm{U}(1)_{PQ}$ is spontaneously broken and axion appears, with $\Delta\mathcal{L}\sim \frac{a}{f_a}G\tilde{G}$

Axion Mass

- U(1)_{PQ} is not exact the axion, a, has mass
- · From the chiral condensation,

$$m_a^2 \sim \frac{m_q \Lambda_{QCD}^3}{f_a^2} \sim \left(1 \text{ meV } \frac{10^9 \text{ GeV}}{f_a}\right)^2$$

• f_a : axion decay constant, $\sim \langle \phi \rangle$

Rich Phenomenology of Axion

- Axion couples with baryons, photons (and leptons)
- Many experiments/observations constrain axions
 - Star lifetime, axion helioscopes, reactors, etc.
 - $f_a(\sim \langle \phi \rangle) \gtrsim 10^9 \, \text{GeV}$
- Axion coherent oscilation may be the dark matter
 - $\ddot{a}(t) + 3H\dot{a}(t) m_a^2 a(t) = 0 \Rightarrow \rho_a(t)R(t)^3 = \text{const.}$
 - The initial amplitude of oscilation is $O(1)f_a$
 - For $\Omega h^2 \sim 0.1$, $f_a \sim 10^{12} \, \text{GeV}$

Summary So Far

- The Standard Model has the Strong CP problem
- The most plausible (≃ consistent with other observations) solution is the Peccei-Quinn mechanism and axion
- Rich phenomenology, many things to do!

Challenge for the origin of Peccei-Quinn symmetry

Big Obstacle for the Peccei-Quinn Mechanism

U(1)_{PQ} must be an **extremely** good "symmetry"

$$\Delta \mathcal{L} = c \frac{\phi^5}{M_{\text{Pl}}} \Rightarrow \mathcal{L}_a = -\frac{m_a^2}{2} a^2 + c \frac{f_a^4}{M_{\text{Pl}}} a$$

Since $\theta_{\text{eff}} = \langle a \rangle / f_a$, $c \lesssim 10^{-60}$ for $\theta \lesssim 10^{-10}$!

- Quality problem
- So, where does the $U(1)_{PO}$ come?
 - U(1)_{PQ} is by definition not a symmetry
 - Even an exact global symmetry should be broken in Quantum Gravity
 - No anthoropic argument!
 - Accidental or/and "anthoropic-izing" solution

How Can We Solve It?

- Expecting something in some unknown theory
 - Brane separation, etc.
- Using modulies in String Theory
 - Many modulies, many "light" mode
 - Most of them get mass
 - · Some of them might be really light
 - The decay constant should be around string / Planck scale
 - Too large for DM, but anthoropic arguments may be used
 - This will be confirmed / excluded by BH superradiance

How Can We Solve It? (cont.)

- Imposing discrete (gauge) symmetries
 - · Discrete symmetries may emerge from gauge symmetry
 - e.g. Abelian Higgs with charge +2
 - For $\Delta \mathcal{L} \sim O(1) \frac{\phi^n}{M_{\rm Pl}^{n-4}}, n \gtrsim 11!$
- Imposing continuous gauge symmetries
- Heavy QCD Axion

Our Study

Our Study

- We show two different models as examples
 - "Gauged" axion HF, Ibe, Suzuki, Yanagida 1703.01112
 - Heavy axion Chiang, HF, Harigaya, Ibe, Yanagida 1504.06084, 1602.07909, 1702.00227

"Gauged" Axion

"Gauged" Axion

- Needless to say, U(1)_{PQ} cannot be gauged
- ullet However, gauge symmetry may protect $U(1)_{PQ}$ Georgi, Hall, Wise 81

Gauged U(1) Symmetries and Anomalies

- Chiral U(1) symmetries generally have anomalies
- How about $U(1)_Y$?
 - There, anomalies from *lepton* and *quark* sectors are cancelled!
 - Conversely, "U(1)_Y" in each sector are anomalous
 - Of course, due to Higgs, both sector are connected
 - However, what if we have 2HDM? Weinberg-Wilczek model
 - B-L, B and L? R-parity?
- Generally, multiple "U(1)" are assembled into one gauged U(1)
- Hence, if a gauged U(1) exists, anomalous U(1)s may well exist

Gauged U(1) and Protection of $U(1)_{PQ}$

- No operators breaking gauged U(1) is allowed
- The problem is the connection between two sector
 - Depending on the charge assignment, PQ breaking operators are suppressed

Example of Models Barr, Seckel 92, HF, Ibe, Suzuki, Yanagida 17

	$SU(3)_{QCD}$	U(1) _g	$(U(1)_{PQ})$
ϕ_1	1	1	1
$\psi_{L1,10}$	3	-1	-1
$\bar{\psi}_{R1,10}$	3	0	0
ϕ_2	1	-10	0
ψ_{L2}	3	10	0
$\bar{\psi}_{R2}$	3	0	0

With interaction: $\Delta \mathcal{L} \sim \phi_1 \bar{\psi}_{R1,10} \psi_{L1,10} + \phi_2 \bar{\psi}_{R2} \psi_{L2}$

• Breaking Operator: $\mathcal{L}_{PQ} = \frac{1}{M_{\rm PL}^7} \phi_1^{10} \phi_2^\dagger + {\rm H.c.}$

How to Build Models?

- Building models are really easy
- Introducing two PQ sector, gauging the diagonal group
 - Always, one linear combination of two PQ currents are anomaly-free in QCD
- The problem is how we can suppress cross-terms
- How "realistic" can the model be? Future work
- What is the cosmological evolution? Future work

Heavy Axion

Heavy Axion

- As I mentioned, m_a is written in terms of f_a , $m_a \sim \sqrt{m_q \Lambda^3/f_a}$
- Okay, let us forget it temporarily
- With PQ-breaking operator $\Delta \mathcal{L} = c\phi^5/M_{\text{PI}}$,

$$\mathcal{L}_a \sim -\frac{{m_a}^2}{2}a^2 + c\frac{{f_a}^4}{M_{\text{Pl}}}a$$

• Thus, if m_a were bigger, we could ignore $\Delta \mathcal{L}!$

How to Make it Heavier?

ullet Another gauge theory with the same θ is needed

What is the Other Gauge Theory?

- Two way is known
- Use of larger group $SU(N + 3) \supset SU(3)_{QCD} \times SU(N)$ Dimopoulos 79
 - Recently Shifman et al. 16, used this
 - · However, we believe this is almost dead
- Use of a copy of the standard model Rubakov 94
 - This is only the possibility

Use of the Copy SM 1504.06084, 1602.07909, 1702.00227

- The axion mass is now $m_a \sim \sqrt{m_q' \Lambda'^3/f_a}$
- If the axion is heavier than O(1-10)GeV, we have no constraint for the axion
 - Cosmology like BBN,...
 - Meson Invisible Decay
 - Astrophysics like SN1978A,...
- We may make v' and Λ' large using \mathbb{Z}_2 breaking
- Since we have introduced a copy, many particles are stable
 - · We have found that one of them may be the dark matter
 - · How to detect it? Future work

Summary

Summary

- The Peccei-Quinn mechanism is probably the most successful solution to the Strong CP problem
- However, its quality is puzzling
- We have proposed two different way to realize good quality
 - "Gauged" axion
 - Gauge symmetry may protect PQ
 - · How realistic does it look? Future work
 - Cosmological evolution Future work
 - Heavy axion
 - If axion were heavy, quality becomes better
 - Many phenomenology Future work