Lecture 7 Multiple Regression II

Outline

- Unbiasedness and consistency
- The notion of control
- Good, bad and useless controls
- Dummy Variable Trap

Takeaways about R-square and adjusted R-square

- Adjusted R-square is a standardized measure that can be used to compare models. It is useful if our objective is to making prediction
- In micro-econometrics, R-square is not that useful. Because our objective is NOT fitting the data, but to find whether one specific X has causal impact on Y.
 - e.g. How many factors can explain variation in one's health status?
 - Perhaps many more than we can include in the regression
 - It's natural to get a small R-square if we only include education as X
 - Our interest lies in whether education has caused variation in health, not in predicting health status based only on one variable

Mathematical formula for β (difficult)

- We run a multiple regression $Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_N X_{Ni} + \varepsilon_i$
- We could run a regression of X_{1i} on all of the other X variables, and then compute the residuals- call it \widehat{X}_{1i} (partial out the effect of all the other X variables)
- Then $\hat{\beta}_1 = \frac{Cov(\widetilde{X_{1i}}, Y_i)}{Var(\widetilde{X_{1i}})}$
- ullet The relationship between X1 and Y holding all other X variables fixed

Test of joint hypothesis

- Let STR = student teacher ratio, Expn = expenditures per pupil, and PctEL = percent of English learners
- Consider the population regression model:
- $TestScore_i = \beta_0 + \beta_1 STR_i + \beta_2 Expn_i + \beta_3 PctEL_i + u_i$
- The null hypothesis is that "school resources don't matter," and the alternative that they do, corresponds to:
- H_0 : $\beta_1 = 0$ and $\beta_2 = 0$
- vs. H_1 : either $\beta_1 \neq 0$ or $\beta_2 \neq 0$ or both
- $TestScore_i = \beta_0 + \beta_1 STR_i + \beta_2 Expn_i + \beta_3 PctEL_i + u_i$

Test of joint hypothesis

- H_0 : $\beta_1 = 0$ and $\beta_2 = 0$
- vs. H_1 : either $\beta_1 \neq 0$ or $\beta_2 \neq 0$ or both
- A *joint hypothesis* specifies a value for two or more coefficients, that is, it imposes a restriction on two or more coefficients.
- In general, a joint hypothesis will involve q restrictions. In the example above, q=2, and the two restrictions are $\beta_1=0$ and $\beta_2=0$.

The "restricted" and "unrestricted" regressions

Example: are the coefficients on STR and Expn zero?

Unrestricted population regression (under H_1):

$$TestScore_i = \beta_0 + \beta_1 STR_i + \beta_2 Expn_i + \beta_3 PctEL_i + u_i$$

Restricted population regression (that is, under H_0):

$$TestScore_i = \beta_0 + \beta_3 PctEL_i + u_i \qquad (why?)$$

- The number of restrictions under H_0 is q = 2 (why?).
- The fit will be better (R^2 will be higher) in the unrestricted regression (why?)

By how much must the R^2 increase for the coefficients on Expn and PctEL to be judged statistically significant?

F-statistic

• The *F*-statistic tests all parts of a joint hypothesis at once.

F-test

- With a multiple regression $Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_N X_{Ni} + \epsilon_i$, we can still perform statistical inference using p-value or confidence interval to determine if a specific β is **statistically different** from 0 (or other number)
- Now if we want to test whether a group of variables jointly have any effect on Y, we will use F-test.
- H₀: $\beta_1 = \beta_2 = ... = \beta_N = 0$
- H_a : at least one of the β s is not zero

Simple formula for the F-statistic:

$$F = \frac{(R_{unrestricted}^2 - R_{restricted}^2)/q}{(1 - R_{unrestricted}^2)/(n - k_{unrestricted} - 1)}$$

where:

 $R_{restricted}^2$ = the R^2 for the restricted regression $R_{unrestricted}^2$ = the R^2 for the unrestricted regression q = the number of restrictions under the null $k_{unrestricted}$ = the number of regressors in the unrestricted regression.

• The bigger the difference between the restricted and unrestricted R^2 's – the greater the improvement in fit by adding the variables in question – the larger is the F.

7

Example:

Restricted regression:

Test score=
$$644.7 - 0.671$$
 PctEL, $R_{restricted}^2 = 0.4149$ (1.0) (0.032)

Unrestricted regression:

Test score =
$$649.6 - 0.29STR + 3.87Expn - 0.656PctEL$$

(15.5) (0.48) (1.59) (0.032)
 $R_{unrestricted}^2 = 0.4366, k_{unrestricted} = 3, q = 2$
so $F = \frac{(R_{unrestricted}^2 - R_{restricted}^2)/q}{(1 - R_{unrestricted}^2)/(n - k_{unrestricted}^2 - 1)}$
 $= \frac{(.4366 - .4149)/2}{(1 - .4366)/(420 - 3 - 1)} = 8.01$

F-statistic – summary

$$F = \frac{(R_{unrestricted}^2 - R_{restricted}^2)/q}{(1 - R_{unrestricted}^2)/(n - k_{unrestricted}^2 - 1)}$$

• The F-statistic rejects when adding the two variables increased the R^2 by "enough" – that is, when adding the two variables improves the fit of the regression by "enough"

Example of F-test

- Healthi=β₀ + β₁Educi + β₂Agei + β₃male+ε_i
- I want to know whether education, age and gender are jointly affecting health
- $H_0:\beta_1=\beta_2=\beta_3=0$
- What is Ha?
- Where is F-test in STATA output?
 - Top right panel
 - Like t-stat, F-stat follows a specific distribution, a bigger F-stat means higher power to reject the H₀

3, 46946) = 1272.88

Adj R-squared =

Root MSE

• Prob>F is like the p-value in t-test. We can look at "Prob>F" and compare it with α to decide whether rejecting H₀

Unbiasedness of OLS

- In the econometric model we have population parameter β , and what we get from data is a sample estimate $\hat{\beta}$. If we draw many samples, we will get multiple $\hat{\beta}$. Those $\hat{\beta}$ form a sampling distribution with a certain mean and standard deviation
- Unbiased estimator:
 - If $E(\hat{\beta}) = \beta$, then $\hat{\beta}$ is unbiased
 - If the mean of all those $\hat{\beta}$ s equal to the true parameter β , then it is unbiased
- If the estimate is unbiased, it is likely we get the true causal effect.
 - It doesn't mean the specific $\hat{\beta}$ is the true β , it means if the sample is "typical", we are near the true effect

When is OLS estimate unbiased?

- There are four conditions
- The most important one is "zero conditional mean", $E(\varepsilon | X)=0$
 - It is an assumption made in the population, it's not about a specific sample
 - The expected value of error term is zero for every given X.
 - In other words, the error is randomly distributed for a given X.
- It is an untestable assumption
- Likely to be true or not? Can you think of an example when OLS is biased?

Consistency of OLS

- The conditions for unbiased estimator are hard to meet, so we settle for estimators that are consistent.
- Consistency: the distribution of the estimate becomes more tightly distributed around β as the sample size grows $_{|}$
- As $n \to \infty$, the distribution of the estimate $\hat{\beta}$ collapse to the parameter value β

Unbiasedness and consistency

• For unbiasedness, we have "zero conditional mean":

$$E(\varepsilon \mid X)=0 (1)$$

• For consistency, we have a weaker assumption-"zero mean and zero correlation":

$$E(\varepsilon)=0 \& Cov(X, \varepsilon)=0 (2)$$

- $E(\varepsilon)=0$ is always true for OLS estimator, so $Cov(X, \varepsilon)=0$ is the key condition
- Why is (2) a weaker condition of (1)?
- Assumption (1) requires the error term to be completely random given each X
 - e.g. ε cannot be related to X^2
- Assumption (2) says that error is not correlate with X, but can be correlated with other stuff
 - e.g. ϵ can be correlated with X^2

Unbiasedness and consistency

- Unbiasedness is a finite sample property
- Consistency is a large sample property
- Unbiased means on average you will get the true β
- Consistent means on average you may not get the true β , but as sample size increase, you will be more likely to get true β
- Consistency requires a weaker assumption, therefore the condition to get correct causal estimate is relaxed to $Cov(X, \varepsilon)=0$.

OLS with control

- Look at multiple regression from another perspective:
- $Y = \alpha + \beta D + \gamma_1 X_1 + \gamma_2 X_2 + \dots + \gamma_n X_n + \varepsilon$
- We have treated all independent variables equally. Now we give special attention to our variable of interest, **the treatment variable D**, and consider other variables X_1 - X_n as **controls**
- We put X_1 - X_n in the regression, because we can observe them and the data allow us to measure them. Therefore they are also called **the observables**
- There can be factors that we want to control but are not observable to us (or we cannot measure them in the data). These factors are called **unobserved** variables (unobservables). They are represented by the error term ε

Why do we have biased $\hat{\beta}$?

- Assume the true model for whether insurance affect health is
 - $Health = \alpha + \beta Insured + \gamma_1 Age + \gamma_2 Educ + \gamma_3 Income + \varepsilon$
- We are now running this model:
 - $Health = \alpha' + \beta' Insured + \gamma_1' Age + \gamma_2' Educ + \varepsilon'$
- Is β' the true causal impact of insured on health (β) ?
- Recall the condition for β' to be causal is $Cov(\epsilon',Insured)=0$
- Which variable is now left in ε' ?
 - Income
- Is Cov (income, Insured) likely to be 0?
 - No. Therefore $\widehat{\beta}'$ is biased
- Failure to include proper controls result in biased estimates

The notion of control

- Meaning of control #1:
 - When you control for variables you hold that variable constant or fixed
 - Similar notion to a lab experiment keep other factors held fixed (ceteris paribus)
- Meaning of control #2:
 - e.g. $Health = \alpha + \beta Insured + \gamma_1 Age + \gamma_2 Educ + \gamma_3 Income + \varepsilon$
 - Within group comparison: compare mean health status of the insured with the uninsured for those with same age, education and income. It's more proper than across group comparison
- Meaning of control #3:
 - "Partialling Out"
 - β tells us the causal effect of whether insured on health after the confounding effect of age, education and income has been partialled (or netted) out

Omitted variable bias

- The bias in the OLS estimator that occurs as a result of an omitted factor is called *omitted variable* bias. For omitted variable bias to occur, the omitted factor "Z" must be:
 - 1. A determinant of Y (i.e. Z is part of ε); and
 - 2. Correlated with the regressor X (i.e. $corr(Z,X) \neq 0$)
- **Both** conditions must hold for the omission of Z to result in omitted variable bias.

Omitted variable bias direction

		Corr(omitted variable,x)	
		positive	negative
Corr(omitted variable,y)	positive	upward bias	downward bias
	negative	downward bias	upward bias

The notion of control

- Health = $\alpha + \beta Insured + \gamma_1 Age + \gamma_2 Educ + \gamma_3 Income + \varepsilon$
- More on "partialling out":
 - If insurance status is randomly assigned, we won't have to control for other factors. In that case, all the variation in insured is "clean".
 - Since insurance status is not randomly assigned, it contains both "clean" variation and "dirty" variation
 - The "dirty" variation is the part that correlates with age, educ or income.
 - By controlling for age, educ and income, we are partialling out the "dirty" variation, leaving the "clean" variation for identification. What does it exactly mean?

Diagram showing clean and dirty variation

 $Health = \alpha + \beta Insured + \gamma_1 Age + \gamma_2 Educ + \gamma_3 Income + \varepsilon$

Good, bad and the useless

- Good controls are variables that you include in the regression in order to kill dirty identifying variation
- Useless controls are variables that you include in the regression that aren't correlated with treatment variable D.
 - Useless controls can still explain Y
 - Often it's worthwhile to include these controls to reduce your standard errors, but fundamentally, these controls don't do that much
- Bad controls are variables that are caused by D. Controlling for these variables is called "over controlling"

Example: Immigrantion

- Suppose immigration positively impacts crime rate
- If I regress crime on immigration, I may find a positive effect
- Crime = $\alpha + \beta$ Number of Immigrants + ε , $\hat{\beta}$ >0
- Is this relationship biased?
 - Possibly, because some other factors (e.g. big city indicator) is left in the error term. Once controlling for big city, the effect may change
- Note, when we include a control, we are more concerned whether it affects treatment variable **D**, not whether it affects Y.

Example: good, bad and useless controls

- Variable "big city" affects both immigration and crime rate, therefore it is a good control.
- Now you include another variable number of rainy days. You think number of rainy days will affect crime. But it has nothing to do with immigration. Therefore it is a useless control. (Although the adjusted R-square will increase, it doesn't eliminate any "dirty" variation)
- Now consider the variable-local unemployment rate. This variable is likely to be caused by immigrants and therefore may be a **bad** control. Because it will take away the "clean" variation too. You will over-control by including it
 - Note: when you try to think of a bad control, think about the mechanisms why immigrants affect crime rate, controlling for these mechanisms are usually over-controlling

Criteria for good, bad and useless controls

- Good controls affect Y and D (variable of interest)
- Useless controls affect Y but not D
- Bad controls affects Y, and are caused by D (Bad controls are often mechanisms through which D affect Y)

Example: code categorical variables into dummies

- Sometimes, you want to turn a categorical variable into dummy variables to model the relationship more flexibly
- e.g. Education: 0 if HS dropout, 1 if HS grad, and 2 if college grad. Recode it into three dummy variables:
 - less_HS:1 if education=0, 0 otherwise
 - HS_grad:1 if education=1, 0 otherwise
 - college_or_above:1 if education=2, 0 otherwise

Dummy variable trap

- If we run Health= $\beta_0+\beta_1$ Less_HS+ β_2 HS_grad+ β_3 College_or_above+ ϵ
 - The regression will not work
 - This is called perfect multi-collinearity

Constant	less_HS	HS_grad	college	health status
1	1	0	0	3
1	0	1	0	4
1	0	1	0	4 Less_HS+HS_grad+college_or_above
1	0	0	1	=constant
1	0	0	1	Cannot estimate the regression!
1	1	0	0	1
1	0	1	0	4

How to get out of dummy variable trap(1)?

- There are two ways of getting out of the dummy variable trap
- Way #1: omit one category of the dummy variables
- e.g. if we run a regression:
- Health= $\beta_0 + \beta_1$ HS_grad+ β_2 College_or_above+ ϵ
- We omit HS dropouts dummy and treat it as the baseline. The categories we include are compared to the category we exclude
- How do we interpret β_1 ?
 - The average health status of HS grads relative to HS dropouts.
 - It is the difference in average health between HS grad and HS dropouts
- Exercise: Interpret β_0 , β_2

How to get out of dummy variable trap(2)?

- Way#2: omit the constant term
- Health= β_1 Less $HS + \beta_2$ HS_grad+ β_3 College_or_above+ ϵ
 - How does this regression differ from the previous?
- How do we interpret β_1 ?
 - The average health status of HS dropouts.
- ullet Exercise: Interpret eta_2 and eta_3

Review for quizzes

- Know the meaning, null and alternative hypothesis of F-test
- Understand the conditions for unbiasedness and consistency and the relationship between them
- Understand why we need controls-Because cov(D, ϵ)=0 is violated, and the estimate is biased
- Be able to come up with examples of three types of controls, and explain why they are good, bad and useless
- Know the dummy variable trap and how to get rid of it.