Universidad de la República, Facultad de Ciencias Económicas y Administración

ECONOMETRIA II - CURSO 2016

PRACTICO 2

Omisión de variables, errores de medida Variables Instrumentales

Ejercicio 1 (Omisión de variables)

Parte I: Omisión de variables en el MRLS

Considere el siguiente modelo:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + u_i$$
 Modelo 1
se cumple que $E(u|x_1, x_2) = 0$ (Supuesto 1)
se cuenta con una muestra aleatoria de observaciones iid $\{y_i, x_{1i}\}_{i=1,2...N}$ (Supuesto 2)

Se pide:

- 1) Escriba el modelo estimable (ponga especial atención a la forma del error de la ecuación).
- 2) Derive el sesgo asintótico que se produce cuando se estima β_1 a través de una regresión de y_i sobre x_{1i} ¿de qué depende dicho sesgo?
- 3) Analice en los siguientes casos el sesgo por omisión de variable (en el marco del Modelo 1, manteniendo los supuestos 1 y 2)
 - a. y: salario; x1: años de educación; x2: habilidad del individuo
 - b. y: salario; x1: años de educación; x2: edad
 - c. y: salario; x1: años de educación; x2: experiencia laboral
 - d. y: producción agrícola; x1: horas de trabajo; x2: calidad del suelo
 - e. y: producción agrícola; x1: horas de trabajo; x2: cantidad de heladas
 - f. y: consumo; x1: ingreso disponible; x2: riqueza
 - g. *y:* consumo; *x1:* ingreso disponible; *x2:* tasa subjetiva de descuento intertemporal

Razone:

- i. ¿es x1 un regresor exógeno o endógeno?
- ii. ¿espera que haya sesgos en la estimación de los coeficientes?
- iii. en caso afirmativo: ¿es posible concluir respecto al signo de dicho sesgo?
- iv. ¿y respecto a la magnitud del sesgo?

Parte II: Omisión de variables en el MRLG

Considere el siguiente modelo:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i$$
 Modelo 2
se cumple que $E(u|x_1, x_2, x_3) = 0$ (Supuesto 2.1)
se cuenta con una muestra aleatoria de observaciones iid $\{y_i, x_{1i}, x_{2i}\}_{i=1,2...N}$ (Supuesto 2.2)

Se pide:

- 1) Escriba el modelo estimable (ponga especial atención a la forma del error de la ecuación)
- 2) Indique el sesgo asintótico que se produce en la estimación de β_1 y β_2 a través de una regresión de y_i sobre x_{1i} y x_{2i} ¿de qué depende dicho sesgo?. En el caso que las variables x2 y x3 estén incorrelacionadas ¿se puede afirmar que la estimación de β_2 será consistente?
- 3) Analice en los siguientes casos el sesgo por omisión de variable (en el marco del Modelo 1, manteniendo los supuestos 1 y 2)
 - a. y: salario; x1: años de educación; x2: edad; x3: habilidad del individuo
 - b. y: salario; x1: años de educación; x2: experiencia laboral; x3: habilidad del individuo
 - c. y: producción agrícola; x1: horas de trabajo; x2: cantidad de heladas; x3: calidad del suelo

Razone:

- ii. ¿son x1 y x2 regresores exógenos o endógenos?
- iii. ¿espera que haya sesgos en la estimación de los coeficientes β_1 y β_2 ?

Ejercicio 2 (Errores de medida)

Considere el siguiente modelo:

$$y_i = \beta_0 + \beta_1 x_i^* + u_i$$
 Modelo 1

se cumple que $E(u|x^*) = 0$ (Supuesto 1)

se cuenta con una muestra aleatoria de observaciones iid $\{y_i, x_i\}_{i=1,2,\dots,N}$ (Supuesto 2) donde

 $x_i = x_i^* + \varepsilon_i$ se cumple que $cov(x^*, \varepsilon) = 0$ $cov(u, \varepsilon) = 0$ (Supuestos 3)

Se pide:

- 1) Escriba el modelo estimable (ponga especial atención a la forma del error de al ecuación).
- 2) Determine el sesgo asintótico que se produce cuando se estima β_1 a través de una regresión de y_i sobre x_i ; de qué depende dicho sesgo?
- 3) Analice en los siguientes casos el sesgo por error de medida (en el marco del Modelo 1, manteniendo los supuestos 1 a 3)
 - a. y: consumo; x: ingreso disponible
 - b. y: salario; x: años de educación;

Razone:

- a. ¿es x un regresor exógeno o endógeno?
- b. ¿espera que haya un sesgo en la estimación de los coeficientes?
- c. en caso afirmativo: ¿es posible concluir respecto al signo de dicho sesgo?
- d. ¿y respecto a la magnitud del sesgo?

Ejercicio 3 (Regresores endógenos y estimación VI) (Revisión Mayo 2012, Ejemplo 15.4 Wooldridge Introducción a la Econometría, 2ª. edición)

En Card, D. (1995), "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," se propone la estimación por variables instrumentales de un modelo para estimar los retornos de la educación a partir de la siguiente ecuación:

$$ln(w_i) = \beta_0 + \beta_1 educ_i + \beta_2 exper_i + \beta_3 exper_i^2 + x_i'\gamma + u_i$$

Donde:

w: salario por hora

educ: años de educación completadosexper: experiencia potencial (edad-educ-6)

exper²: experiencia potencial al cuadrado sobre 100

El vector x incluye un conjunto de características observables tales como: Indicador de raza y dummies por lugar de residencia en el año 66 (son 9 regiones: reg661 a reg669).

Estimación 1

. reg lwage educ exper exper2 black reg661 reg662 reg663 reg664 reg665 reg666 reg667 reg668

Source	SS	df	MS		Number of obs F(12, 2997)	
Model Residual	158.799165 433.84248		332637 758919		Prob > F R-squared Adj R-squared	= 0.0000 = 0.2680
Total	592.641645	3009 .1969	956346		Root MSE	= .38047
lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.0790114	.0035504	22.25	0.000	.0720499	.0859729
exper	.0875037	.0067655	12.93	0.000	.0742381	.1007692
exper2	2440668	.0323233	-7.55	0.000	3074449	1806887
black	1828211	.018577	-9.84	0.000	219246	1463962
reg661	139752	.0396339	-3.53	0.000	2174643	0620397
reg662	0191121	.0288544	-0.66	0.508	0756886	.0374643
reg663	.0158491	.0279321	0.57	0.570	0389189	.0706172
reg664	1197227	.0358249	-3.34	0.001	1899666	0494789
reg665	1546054	.0286622	-5.39	0.000	2108049	0984059
reg666	1540476	.0332663	-4.63	0.000	2192746	0888205
reg667	1512786	.0317948	-4.76	0.000	2136206	0889367
reg668	198882	.0472951	-4.21	0.000	2916162	1061479
_cons	4.798294	.0725941	66.10	0.000	4.655954	4.940633

[.] est store MCO1

Estimación 2

. reg educ cercania exper exper2 black reg661 reg662 reg663 reg664 reg665 reg666 reg667 reg668

Source	SS	df	MS		Number of obs F(12, 2997)	
Model Residual	10197.5689 11364.5112		9.79741 9196235		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4729
Total	21562.0801	3009 7.16	5586243		Root MSE	= 0.4708
educ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cercania	.4511111	.0804158	5.61	0.000	.2934354	.6087868
exper	4122875	.033806	-12.20	0.000	4785728	3460021
exper2	.0616767	.1654383	0.37	0.709	2627073	.3860608
black	917234	.0937926	-9.78	0.000	-1.101138	7333297
reg661	2626612	.2028006	-1.30	0.195	6603036	.1349813
reg662	2826386	.14774	-1.91	0.056	5723206	.0070435
reg663	2426988	.1429935	-1.70	0.090	5230741	.0376764
reg664	2062228	.1839477	-1.12	0.262	5668994	.1544538
reg665	5978626	.1473585	-4.06	0.000	8867966	3089287
reg666	6319188	.173194	-3.65	0.000	9715099	2923277
reg667	4815461	.1636825	-2.94	0.003	8024876	1606046
reg668	.2755212	.2423875	1.14	0.256	1997416	.750784
_cons	17.11109	.2037857	83.97	0.000	16.71151	17.51066

[.] est store MCO2

Estimación 3

. reg cercania educ exper exper2 black reg661 reg662 reg663 reg664 reg665 reg666 reg667 reg668

Source	SS	df	MS		Number of obs	
Model	72.4409605	12	6.0367467		Prob > F	= 0.0000
Residual	580.290269	2997 .	193623713		R-squared	= 0.1110
					Adj R-squared	= 0.1074
Total	652.731229	3009 .	216926298		Root MSE	= .44003
cercania	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
educ	.0230345	.004106	2 5.61	0.000	.0149833	.0310856
exper	.0092538	.007824	5 1.18	0.237	0060882	.0245958
exper2	0202356	.037382	8 -0.54	0.588	0935342	.053063
black	.0760105	.021484	8 3.54	0.000	.033884	.118137
reg661	.0208837	.045837	7 0.46	0.649	0689929	.1107602
reg662	.0824481	.033370	9 2.47	0.014	.0170158	.1478804
reg663	0670166	.032304	3 -2.07	0.038	1303574	0036757
reg664	1883116	.041432	5 -4.55	0.000	2695507	1070726
reg665	2192266	.033148	6 -6.61	0.000	284223	1542302
reg666	4178311	.038473	4 -10.86	0.000	4932681	3423942
reg667	2438311	.036771	7 -6.63	0.000	3159313	1717309
reg668	1675116	.054698	2 -3.06	0.002	2747614	0602619
_cons	.4244655	.083957	3 5.06	0.000	.2598459	.5890852

[.] est store MCO3

Estimación 4

. ivreg lwage exper exper2 black reg661 reg662 reg663 reg664 reg665 reg666 reg667 reg668 (educ=cercania)

Number of obs = 3010 F(12, 2997) = 34.25 Prob > F = 0.0000

3010

Instrumental variables (2SLS) regression

Source SS df MS

Model -86.6485253 12 -7.22071044

Residual	679.29017	2997 .226	656713		R-squared Adi R-squared	= .
Total	592.641645	3009 .196	956346		Root MSE	= .47608
lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.2252076	.0435823	5.17	0.000	.1397534	.3106618
exper	.1477947	.0197825	7.47	0.000	.1090059	.1865834
exper2	2518298	.0405116	-6.22	0.000	3312632	1723964
black	0523826	.0451294	-1.16	0.246	1408703	.0361052
reg661	1023405	.0508197	-2.01	0.044	2019855	0026955
reg662	.0171478	.0376728	0.46	0.649	0567193	.0910149
reg663	.0561695	.0369402	1.52	0.128	0162613	.1286003
reg664	0767075	.0466074	-1.65	0.100	1680932	.0146781
reg665	0516725	.0470966	-1.10	0.273	1440174	.0406725
reg666	0328478	.0549963	-0.60	0.550	1406821	.0749865
reg667	0638896	.0474812	-1.35	0.179	1569885	.0292094
reg668	2284216	.0598252	-3.82	0.000	3457243	111119
_cons	2.242164	.7634572	2.94	0.003	.7452112	3.739118

Instrumented: educ

Instruments: exper exper2 black reg661 reg662 reg663 reg664 reg665 reg666

reg667 reg668 cercania

[.] est store VI1

Contraste de Hausman

. hausman VI1 MCO1

	Coeffi	cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	VI1	MCO1	Difference	S.E.
educ	.2252076	.0790114	.1461961	.0434374
exper	.1477947	.0875037	.060291	.0185897
exper2	2518298	2440668	007763	.0244212
black	0523826	1828211	.1304385	.0411286
reg661	1023405	139752	.0374115	.0318088
reg662	.0171478	0191121	.0362599	.0242211
reg663	.0561695	.0158491	.0403204	.0241739
reg664	0767075	1197227	.0430152	.0298132
reg665	0516725	1546054	.1029329	.0373707
reg666	0328478	1540476	.1211997	.0437944
reg667	0638896	1512786	.0873891	.035264
reg668	2284216	198882	0295396	.0366365

b = consistent under Ho and Ha; obtained from ivreg
B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic

```
chi2(12) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 11.33
Prob>chi2 = 0.5011
```

Valor del estadístico del contraste = 11.33

```
p-valor de una chi² con 1 grado de libertad en 11.33 = .00076265
p-valor de una chi² con 2 grados de libertad en 11.33 = .00346515
p-valor de una chi² con 12 grados de libertad en 11.33 = .50086928
p-valor de una chi² con 13 grados de libertad en 11.33 = .58319361
```

Se pide:

- 1) Defina "regresor endógeno" y señale qué fuentes de endogeneidad podrían estar afectando la variable *educ* en el modelo antes definido. Indique los potenciales sesgos y la dirección (signo) de los mismos.
- 2) Indique que características debe tener una variable para ser un instrumento válido y que contrastes conoce para corroborar dicha validez.
- 3) En Card (1995) se propone utilizar la variable *cercanía* como instrumento para la variable *educ*, siendo la variable *cercanía* una dummy que indica si, al momento de tomar la decisión de realizar estudios universitarios (aprox. a los 18 años), los individuos residían en una localidad en la que había una institución terciaria que ofreciera carreras de 4 años. Discuta la validez de dicho instrumento, utilice para ello la evidencia que se ofrece en las estimaciones disponibles.

- 4) Realice un contraste para someter a prueba la hipótesis de que la variable *educ* es exógena. Indique la hipótesis nula y la alternativa del contraste, la forma del estadístico del contraste, su distribución asintótica y su conclusión. Analice las implicancias de dicha conclusión.
- 5) En base a la evidencia analizada señale cuál es la medida que le resulta más apropiada para medir cuánto se espera se incrementen (en promedio) los salarios ante un incremento de 1 año de educación.

Ejercicio 4 (Regresores endógenos y estimación VI)

(Examen diciembre 2009, Extraído parcialmente de Cameron y Trivedi , 2009, Microeconometrics using Stata)

Se desea investigar los determinantes del gasto en medicamentos en personas de más de 65 años en los Estados Unidos. Para ello se utiliza el Medical Expenditure Panel Survey (EUA) con información de personas de 65 años y más. El objetivo principal del estudio es determinar si el hecho de poseer un seguro que cubra los gastos en medicamentos promueve un mayor gasto en éstos.

La variable dependiente del modelo es:

GtoMedicam: Total de gastos en medicamentos (en logaritmos)

Los regresores a considerar son:

Seguro: Dummy que vale 1 si el individuo tiene un seguro de salud asociado a su

empleador o al sindicato

Crónicas: Cantidad de enfermedades crónicas que tiene el individuo

Edad: Edad en años

Mujer: Dummy que vale 1 si la persona es de sexo femenino

Ingreso: Ingreso anual total del hogar (en logaritmos)

Además se cuenta con otras variables que no están incluidas en el modelo:

RatioSS: Ratio ingresos por la Seguridad Social (jubilaciones y pensiones) respecto al

ingreso total.

IngresoBajo: Dummy que vale 1 si el ingreso del hogar está por debajo de determinado

umbral.

Se realiza una estimación MCO pero se sospecha que ésta nos es una buena estimación ya que la variable Seguro podría ser endógena. El argumento es el siguiente: aunque la mayoría de los individuos en la muestra ya están retirados, es razonable suponer que aquellos que hubieran previsto mayores gastos en medicamentos habrían buscado un trabajo donde el empleador o el sindicato le proporcionaran un seguro para cubrir los gastos de medicamentos luego del retiro. Entonces, es razonable suponer que hay variables no observables que afectan tanto la variable *GtoMedicam* como la dummy Seguro. Así se procede a estimar el modelo utilizando el estimador de Variables Instrumentales, considerando dos instrumentos alternativos: *RatioSS y IngresoBajo*.

Se realizan las siguientes estimaciones:

Estimación 1: Estimación MCO de la variable GtosMedicam sobre los siguientes regresores: Seguro, Edad, Cronicas, Mujer e Ingreso.

. reg GtoMedicam Seguro Edad Cronicas Mujer Ingreso

Source	SS	df	MS		Number of obs	= 10089 = 428.76
Model Residual	3281.46741 15433.6488		6.293482 .5306604		Prob > F R-squared Adj R-squared	= 0.0000 = 0.1753
Total	18715.1162	10088 1.	85518599		Root MSE	= 1.2372
GtoMedicam	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
Seguro Edad Cronicas Mujer Ingreso _cons	.0800203 0027476 .4396048 .05867 .0195124 5.751526	.0260973 .0018797 .0095806 .0251863 .0138181 .1513568	-1.46 45.88 2.33 1.41	0.002 0.144 0.000 0.020 0.158 0.000	.0288644 0064321 .420825 .0092998 0075738 5.454836	.1311762 .000937 .4583847 .1080402 .0465987 6.048215

[.] est store MCO

Estimación 2: Estimación MCO variable dependiente Seguro sobre los siguientes regresores: RatioSS, Edad, Cronicas, Mujer e Ingreso. reg Seguro RatioSS Edad Cronicas Mujer Ingreso

Source	SS	df 	MS		Number of obs F(5, 10083)	= 10089 = 160.79
Model Residual	175.91949 2206.32335		1838981 8816161		Prob > F R-squared Adj R-squared	= 0.0000 $= 0.0738$ $= 0.0734$
Total	2382.24284	10088 .23	6146197		Root MSE	= .46778
Seguro	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
RatioSS Edad Cronicas Mujer Ingreso _cons	1937974 0083182 .0125198 0732171 .0520009 .986775	.0141383 .0007109 .0036263 .009504 .0056354 .0568269	-13.71 -11.70 3.45 -7.70 9.23 17.36	0.000 0.000 0.001 0.000 0.000 0.000	2215112 0097118 .0054116 0918468 .0409543 .8753829	1660836 0069246 .019628 0545874 .0630474 1.098167

Estimación 3: Estimación MCO variable dependiente Seguro sobre los siguientes regresores: IngresoBajo, Edad, Cronicas, Mujer e Ingreso.

. reg Seguro IngresoBajo Edad Cronicas Mujer Ingreso

Source	SS	df		MS		Number of obs F(5, 10083)	=	10089 132.66
Model Residual	147.043485 2235.19935	5 10083		4086969 1679991		Prob > F R-squared Adj R-squared	=	0.0000 0.0617 0.0613
Total	2382.24284	10088	.236	6146197		Root MSE	=	.47083
Seguro	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
IngresoBajo Edad Cronicas Mujer Ingreso _cons	0915806 0093884 .0102067 0789788 .0748563 .9252111	.012 .0007 .003 .0095	7097 8645 8534 8096	-7.43 -13.23 2.80 -8.27 14.10 16.25	0.000 0.000 0.005 0.000 0.000	115742 0107797 .0030618 0977054 .0644485 .8135803	 	0674192 0079972 0173516 0602522 0852641 .036842

Estimación 4: Estimación VI de la variable GtoMedicam sobre los siguientes regresores: Seguro, Edad, Cronicas, Mujer e Ingreso utilizando RatioSS como instrumento de la variable "Seguro"

. ivreg GtoMedicam Edad Cronicas Mujer Ingreso (Seguro = RatioSS)

Instrumental variables (2SLS) regression

Source 	SS 	10083 1.7	MS 9.926039 72721274 35518599		Number of obs F(5, 10083) Prob > F R-squared Adj R-squared Root MSE	= 381.82 = 0.0000 = 0.0694
GtoMedicam	Coef.	Std. Err	. t	 P> t	[95% Conf.	Interval]
Seguro Edad Cronicas Mujer Ingreso _cons	859033 0118072 .4488576 016775 .0975094 6.602719	.2049656 .0027974 .010372 .0313372 .0223603 .2444106	-4.19 -4.22 43.28 -0.54 4.36 27.01	0.000 0.000 0.000 0.592 0.000 0.000	-1.260806 0172907 .4285264 078202 .0536788 6.123626	4572596 0063236 .4691888 .0446521 .14134 7.081813
Instrumented: Instruments:	Seguro Edad Cronica	as Mujer Ir	ngreso Rat	 ioSS		

[.] est store ${\tt VI_RATIOSS}$

Estimación 5: Estimación VI de la variable GtoMedicam sobre los siguientes regresores: Seguro, Edad, Cronicas, Mujer e Ingreso utilizando IngresoBajo como instrumento de la variable "Seguro"

. ivreg GtoMedicam Edad Cronicas Mujer Ingreso (Seguro = IngresoBajo)

Instrumental variables (2SLS) regression

Source	SS	df	MS	_	Number of obs F(5, 10083)	=	10089 426.71
Model Residual	3274.09787 15441.0184	5 10083	654.81957 1.5313912		Prob > F R-squared Adi R-squared	=	0.0000 0.1749 0.1745
Total	18715.1162	10088	1.8551859	9	Root MSE	=	1.2375
GtoMedicam	Coef.	Std.	Err.	t P> t	[95% Conf.	In	terval]
GtoMedicam Seguro Edad Cronicas Mujer Ingreso _cons	Coef13728360021951 .4390406 .0632706 .0147562 5.69962	Std. .3537 .0038 .0101 .037 .0323	511 0. 883 -0. 939 43. 921 1. 983 0.	39 0.698 56 0.572 07 0.000 67 0.095 46 0.649	[95% Conf. 556139 009817 .4190586 0110621 0487508 5.00609	· · · · ·	terval] 8307062 0054268 4590226 1376033 0782632 6.39315

Instrumented: Seguro

Instruments: Edad Cronicas Mujer Ingreso IngresoBajo

Contraste 1: Se realiza un contraste de Hausman utilizando la estimación 4 como estimación consistente y se la compara con la regresión MCO de la estimación 1

hausman VI_RATIOSS MCO

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	RATIO	•	Difference	S.E.
+				
Seguro	859033	.0800203	9390533	.2032974
Edad	0118072	0027476	0090596	.0020718
Cronicas	.4488576	.4396048	.0092528	.0039737
Mujer	016775	.05867	0754449	.0186458
Ingreso	.0975094	.0195124	.0779969	.0175796

b = consistent under Ho and Ha; obtained from ivreg B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic

 $chi2(5) = (b-B)'[(V_b-V_B)^(-1)](b-B)$

= 21.34 Prob>chi2 = 0.0007

[.] est store VI_IngresoBajo

Contraste 2: Se realiza un contraste de Hausman utilizando la estimación 5 como estimación consistente y se la compara con la regresión MCO de la estimación 1

• hausman VI_IngresoBajo MCO

Coeffi	cients		
(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
IB		Difference	S.E.
1272026	000000	0572622	.3527871
0021951	0027476	.0005525	.0034038
.4390406	.4396048	0005642	.0034824
.0632706	.05867	.0046006	.0283487
.0147562	.0195124	0047562	.0293037
	(b) IB .1372836 0021951 .4390406 .0632706	(b) (B) IB .1372836 .0800203 00219510027476 .4390406 .4396048 .0632706 .05867	(b) (B) (b-B) IB . Difference .1372836 .0800203 .057263300219510027476 .0005525 .4390406 .43960480005642 .0632706 .05867 .0046006

b = consistent under Ho and Ha; obtained from ivreg
B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic

 $chi2(5) = (b-B)'[(V_b-V_B)^(-1)](b-B)$ = 0.03 Prob>chi2 = 1.0000

Se Pide:

- Interprete los resultados de la estimación 1 (recuerde cual es el objetivo principal del estudio a la hora de dedicar tiempo a la interpretación de las distintas variables).
 Señale cuál sería el problema del estimador MCO para estimar el efecto de la variable Seguro en los gastos en medicamentos.
- 2) Señale que características debe tener una variable para ser un instrumento válido. Analice y discuta la validez de las variables RatioSS y IngresoBajo como instrumentos para la variable Seguro en el modelo a estimar.
- 3) Compare las estimaciones del coeficiente asociado a la variable Seguro en las estimaciones 1 y 4 por un lado y 1 y 5 por el otro. Interprete los resultados.
- 4) Complemente sus comentarios del punto 4 indicando que conclusiones extrae de los contrastes de Hausman realizados. En particular, señale si la evidencia analizada permite concluir que la variable Seguro es endógena.
- 5) ¿Le permite la evidencia analizada concluir que poseer un seguro que cubra los gastos en medicamentos promueve un mayor gasto en éstos? Justifique

Ejercicio 5 (Regresores endógenos y estimación VI)

(Examen Mayo 2008)

Considere un modelo en el cual el gasto en salud está dado por la suma de una proporción constante del ingreso permanente y un componente aleatorio que suponemos no correlacionado con el ingreso permanente:

$$gs_i = \beta y_i^P + v_i \tag{1}$$

Se observa el gasto en salud y el ingreso disponible definido como

$$y_i = y_i^P + y_i^T \tag{2}$$

donde el supraíndice P denota el componente permanente y el T el componente transitorio del ingreso. Los subíndices *i* corresponden a los diferentes individuos en la muestra. La Encuesta de Ingresos y Gastos realizada por el Instituto de Estadísticas y Censos del Uruguay proporciona datos respecto al ingreso disponible y los gastos de salud para un conjunto de 1916 hogares.

Utilizando esa muestra se procedió a realizar una regresión del gasto en salud (misal) sobre el ingreso disponible (mling), ambas variables en logaritmos y considerando los desvíos respecto a las respectivas medias muestrales.

Los resultados fueron:

Linear reg	gression					Number of obs F(1, 1914) Prob > F R-squared Root MSE	= 1916 = 400.20 = 0.0000 = 0.2206 = 1.997
mls	sal	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	J !	1.474354 2.47e-07	.0736997	20.00	0.000	1.329813 0894752	1.618894

Dada las características del modelo antes detallado se sospecha que en dicha estimación el regresor "ingreso disponible" podría ser endógeno. Para ello se propone recurrir a una estimación por variables instrumentales utilizando como instrumentos el gasto en vivienda y el gasto en enseñanza, ambas variables también en logaritmos y considerando los desvíos respecto a las respectivas medias muestrales.

Para proceder a la estimación en primer lugar se procede a realizar una regresión MCO del ingreso disponible sobre el gasto en vivienda y el gasto en enseñanza. Los resultados son:

Source	SS	df 	MS		Number of obs F(2, 1913)	
Model Residual Total		1913 .418	017337 058183 945158		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.1952
mling	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
mlviv mlens _cons	.0724792 .1077466 -1.14e-08	.0063199 .0062227 .0147714	11.47 17.32 -0.00	0.000 0.000 1.000	.0600845 .0955426 0289697	.0848739 .1199506 .0289697

A continuación se estima un modelo de variables instrumentales en el que el gasto en vivienda y el gasto en enseñanza se utilizan como instrumentos del gasto en salud. Los resultados son:

Instrumental variables (2SLS) regression

			Number of obs =	:	1916
			F(1, 1914) =	:	160.32
			Prob > F =	:	0.0000
Total (centered) SS	=	9793.281472	Centered R2 =	:	0.2077
Total (uncentered) SS	=	9793.281472	Uncentered R2 =	:	0.2077
Residual SS	=	7758.868727	Root MSE =	:	2.012

	Coef.			P> z	[95% Conf.	Interval]
mling	1.830124 2.53e-07	.1444647	12.67		1.546978 0901053	2.113269

Instrumented: mling
Instruments: mlviv mlens

Finalmente se realiza un contraste de Hausman para probar la endogeneidad del regresor "ingreso disponible", los resultados son:

	Coeff: (b) .	(B) MCO	(b-B) Difference	<pre>sqrt(diag(V_b-V_B)) S.E.</pre>
mling	1.830124	1.474354	.3557702	.1242514

b = consistent under Ho and Ha; obtained from ivreg2
B = inconsistent under Ha, efficient under Ho; obtained from regress

```
chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 8.20
Prob>chi2 = 0.0042
```

Se pide:

- 1) Derive el potencial sesgo de la estimación del parámetro β utilizando una regresión MCO del gasto en salud sobre el ingreso disponible.
- 2) Discuta la validez de utilizar el gasto en vivienda y el gasto en salud como instrumentos para el ingreso disponible.
 - 3) Describa el procedimiento de estimación por Mínimos Cuadrados en dos etapas y determine la forma del estimador. Señale condiciones son necesarias para que el modelo esté identificado.
 - 4) Explique en que consiste el contraste de Hausman detallando la hipótesis nula y la alternativa del contraste, el estadístico del contraste y su distribución asintótica. Aplique dicho contraste utilizando las estimaciones realizadas.

Ejercicio 6

Ejercicio 5.14 en Wooldridge, J. M. (2006) *Introducción a la Econometría: un enfoque moderno*, Thomson Learning, México, 2ª. Edición, página 580.

Ejercicio 7

Problema 5.3 en Wooldridge, J. (2002) *Econometric Analysis of Cross Section and Panel Data*, MIT Press, página 116.