

StratoVirt 热插拔技术研发实践与未来展望

中国电信股份有限公司研究院 2023年10月

热插拔技术研发实践

热插拔技术未来展望

轻量级虚拟化实现性能提升的同时缺失热插拔特性

以RUST-VMM为代表的虚拟机可提供启动速度快、资源消耗低的虚拟机用于Serverless容器业务。 但QEMU传统VMM的高级特性支持例如热插拔仍有待社区各方力量提供补齐。

资源动态扩缩

功能需求:虚机资源扩缩、安

全容器的资源扩缩

- 1. cpu热插拔
- 2. 内存热插拔
- 3. pci设备热插拔

启动优化加速

性能需求

- I. 降低初始化时间,使用通用 虚机模板
- 2. 虚拟设备独立初始化

项目名称	vCPU热插拔	MEM热插拔
QEMU	支持	支持
FireCracker	-	-
StratoVirt	-	-
Cloud Hypervisor	仅热插	支持

QEMU和主流RUST-VMM热插拔能力对比

Stratovirt现状

- · 内存热插拔
 - √支持balloon方式调整内存
 - ×不支持新增加内存
- ・ vCPU热插拔
 - ×不支持vCPU热插拔
- ・ PCI热插拔

▼standVM支持,基于virtio协议

ACPI 热插拔方案设计思路

ACPI规范是一种标准,可以理解为操作系统和硬件之间的接口层,用于计算机系统中的电源管理、 硬件配置和设备控制。生成ACPI规范的事件通知可以对运行中的系统来插入或移除硬件。

- **ACPI事件**:包含固定事件和通用事件,固定事件在ACPI规范中已经预先定义。通用事件没有在ACPI规范中预定义,可以设置自定义事件。
- **ACPI方法**: 事件的处理方法,通过方法可以调用其它方法 也可调用ACPI中登记的硬件设备。
- ACPI设备:登记系统中的硬件设备信息。

基于ACPI Generic Event Deivce(GED)的设备热插拔

- 1.GED是ACPI通用事件编程模型,自定义设备热插拔事件
- 2. 自定义热插拔事件的处理方法,完成硬件的插入拔出
- 3. VMM负责硬件的创建/删除,向虚拟机注入中断,虚拟机操作系统触发ACPI GED事件

CPU热插拔——基于ACPI方案

CPU热插流程

CPU热拔流程

注:蓝色标记部分为操作系统自带功能

CPU热插拔——StratoVirt实现

StratoVirt 基础上修改的部分

- GED: 增加了CPU热插拔的事件
- CPU Controller: 负责可热插拔CPU的生命周期管理, CPU热插拔事件的处理。
- MADT: 增加非启动CPU的描述
- 方法:为CPU设备的_STA、_EJ0、_OST接口实现CSTA、
 CEJ0、COST方法,为CPU Controller实现CSCN、CTFY方法。
- QMP:增加了CPU热插拔命令

CPU Controller Methods

方法	作用	调用时机	方法执行流程
CSCN	流程总控 制	ACPI 开始 执行CPU热 插拔	1.MMIO读操作:获得要插拔的CPU ID 2.MMIO读操作:获得操作类型(热插或热拔) 3.ACPI Notify操作:调用CTFY,提供CPU ID和热 插/热拔标记参数 4.MMIO写操作:通知VMM恢复CPU的标记状态
CTFY	发送CPU 设备通知	CSCN方法 第三步	1.根据参数获得对应ID的CPU设备对象 2.根据参数通知CPU设备对象执行热插或热拔操作

CPU设备的方法接口与方法实现

ACPI	方法 CSCN CSTA CEJO
系统硬件 GED	CPU Controller

)	实现方法	接口	作用	调用时机	方法执行流程
	CSTA	_STA	查询该CPU 设备是否启 用	Guest OS在CPU 初始化、插入或 拔出时调用检查 设备状态	 MMIO写操作:根据ID选中要读取状态的CPU MMIO读操作:获得对应CPU是否启动 如果CPU启动则返回0xf,否则返回0x0
<i>)</i> }	CEJ0	_EJO	设备拔出通 知	Guest OS在CPU 拔出完成后调用	1. MMIO写操作: Guest OS拔出已经完成, 由VMM完成CPU设备删除
	COST	_OST	执行结果通 知	Guest OS对CPU 热插拔执行结束 后	1.MMIO写操作:通知执行结束码 2. (执行失败) MMIO写操作:通知执行错 误日志

内存热插拔——基于ACPI方案

内存热插流程

内存热拔流程

内存热插拔——StratoVirt实现

StratoVirt 基础上修改的部分

- GED: 增加了内存热插拔的事件
- Memory Controller: 负责可热插拔内存的生命 周期管理,内存热插拔事件的处理。
- 方法:为内存设备的_STA、_EJ0、_OST接口实现 MSTA、MEJ0、MOST方法,为Memory Controller实现MSCN、MTFY方法。

• QMP: 增加了内存热插拔命令

ACPI	方法 MSCN MSTA MEJO 			
系统硬件				
GED	Memory Controller			

Memory Controller方法

方法	作用	调用时机	1 方法执行流程		
MSCN	流程总控 制	ACPI开始执行 内存热插拔	1.MMIO读操作:获得要插拔的内存设备ID 2.MMIO读操作:获得操作类型(热插或热拔) 3.ACPI Notify操作:调用MTFY,提供内存设备ID和 热插/热拔标记参数 4.MMIO写操作:通知VMM恢复内存设备的标记状态		
MTFY	发送内存 设备通知	CSCN方法第 三步	1.根据参数获得对应ID的内存设备对象 2.根据参数通知内存设备对象执行热插/热拔操作		

内存设备的方法接口与方法

实现方法	方法接口	作用	调用时机	方法执行流程
MCRS	_CRS	查询内存 设备的地 址描述	Guest OS在内 存设备初始化、 插入时	 MMIO写操作:根据ID选中要读取状态的内存设备 MMIO读操作:读取内存地址的相关属性 返回内存地址描述
MSTA	_STA	查询该内 存设备状 态	Guest OS在内 存设备初始化、 插入或拔出时	 MMIO写操作:根据ID选中要读取状态的内存设备 MMIO读操作:获得对应内存设备是否启动 如果内存设备启动则返回0xf,否则返回0x0
MEJ0	_E10	设备拔出 通知	Guest OS在内 存设备成功拔 出后	1. MMIO写操作: Guest OS拔出内存设备已经完成, 通知VMM完成内存设备删除
MOST	_OST	执行结果 通知	Guest OS对内 存设备热插拔 执行结束后	1.MMIO写操作:通知执行结束码 2. (执行失败) MMIO写操作:通知执行错误日志

热插拔演示—虚拟机创建

创建虚机:

启动CPU数量为1,最大CPU数量为3,

启动内存为512MB, 可热插拔内存插槽数量为3, 最大内存数量为4096MB。

```
stratovirt-dev \
-machine q35 \
-smp 1,maxcpus=3 -m "size=512,slots=3,max_size=4096" \
-kernel std-vmlinuxz \
-append "console=ttyS0 root=/dev/vda reboot=k panic=1 movable_node" \
-drive file=/usr/share/edk2/ovmf/OVMF_CODE.fd,if=pflash,unit=0,readonly=true \
-device pcie-root-port,port=0x0,addr=0x1.0x0,bus=pcie.0,id=pcie.1 \
-drive file=openEuler-22.03-LTS-stratovirt-x86_64.img,id=rootfs,readonly=false \
-device virtio-blk-pci,drive=rootfs,bus=pcie.1,addr=0x0.0x0,id=blk-0 \
-qmp unix:stdvm.sock,server,nowait \
-serial stdio
```

```
[root@StratoVirt ~]# ls /sys/devices/system/memory/
auto online blocks memory0 memory2
                                      power
                                            uevent
block size bytes
                    memory1 memory3
                                      probe
[root@StratoVirt ~]# free -h
                                                  shared buff/cache
                                                                       available
               total
                                        free
                            used
                                                   1.0Mi
              466Mi
                            26Mi
                                       395Mi
                                                                44Mi
                                                                           426Mi
Mem:
Swap:
                  0B
                              0B
                                          0B
```

热插拔演示—CPU热插拔

CPU热插

```
[root@localhost img]# ncat -U stdvm.sock
{"QMP":{"version":{"qemu":{"micro":1,"minor":0,"major":5},"package":"StratoVirt-2.2.0"},
{"execute": "device_add","arguments": { "id": "cpu-1", "driver": "generic_x86_cpu"}}
{"return":{}}
```

热插cpu-1,返回插入成功

```
[root@StratoVirt ~]# CPU1 has been hot-added SMP alternatives: switching to SMP code x86: Booting SMP configuration: smpboot: Booting Node 0 Processor 1 APIC 0x1 kvm-clock: cpu 1, msr 27401041, secondary cpu clock kvm-guest: KVM setup async PF for cpu 1 kvm-guest: stealtime: cpu 1, msr 3d2b4080 Will online and init hotplugged CPU: 1
```

虚拟机 cpu1自动上线

```
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 45 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
```

虚拟机 在线CPU数量为2

CPU热拔

```
{"execute": "device_del", "arguments": { "id": "cpu-1"}}
{"return":{}}
```

热拔cpu-1,返回热拔成功

```
[root@StratoVirt ~]# kvm-guest: Unregister pv shared memory for cpu 1 smpboot: CPU 1 is now offline
```

虚拟机cpu1自动下线

```
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 45 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 1
On-line CPU(s) list: 0
```

客户机 在线CPU数量为1

热插拔演示—内存热插拔

内存热插

```
[root@localhost img]# ncat -U stdvm.sock
{"QMP":{"version":{"qemu":{"micro":1,"minor":0,"major":5},"package":"StratoVirt-2.2.0"},"capabilities
{"execute": "device_add", "arguments": { "id": "dimm-0", "driver": "pc_dimm", "mem_size": "128"}}
{"return":{}}
```

热插dimm-0,128M内存,返回插入成功

```
[root@StratoVirt ~]# Fallback order for Node 0: 0
Built 1 zonelists, mobility grouping on. Total pages: 151228
Policy zone: DMA32
```

虚拟机 dimm-0内存自动上线

```
[root@StratoVirt ~]# ls /sys/devices/system/memory/
auto online blocks memory0 memory2 memory32 probe
block size bytes
                   memory1 memory3 power
                                               uevent
[root@StratoVirt ~]# free -h
              total
                           used
                                       free
                                                 shared buff/cache
                                                                      available
             594Mi
                           28Mi
                                      520Mi
                                                  1.0Mi
                                                               45Mi
                                                                          551Mi
Mem:
Swap:
                 0B
                                         0B
```

虚拟机 新增一个内存块, 内存增加128MB

内存热拔

```
{"execute": "device_del", "arguments": { "id": "dimm-0"}} {"return":{}}
```

热拔dimm-0,128MB内存,返回拔出成功

```
[root@StratoVirt ~]# Offlined Pages 32768
Fallback order for Node 0: 0
Built 1 zonelists, mobility grouping on. Total pages: 118456
Policy zone: DMA32
```

虚拟机 dimm-0内存自动下线

```
[root@StratoVirt ~]# ls /sys/devices/system/memory/
auto online blocks memory0 memory2 power uevent
block size bytes
                            memorv3 probe
                   memory1
[root@StratoVirt ~]# free -h
                                                                     available
                           used
                                                 shared buff/cache
               total
                                       free
               466Mi
                           26Mi
                                                  1.0Mi
Mem:
                                      395Mi
                                                               45Mi
                                                                          426Mi
Swap:
                 0B
                             0B
                                         0B
```

虚拟机 内存减少128MB

后续推进计划

代码开源

- 1. 根据openEuler社区wiki代码规范自查
 - 2. 撰写测试用例
 - 3. 整理代码并提交PR

现网应用

- 1. 结合kata-container组成安全容器在现网验证业务承载
 - 2. 在现有私有云进行嵌套虚拟化的验证

技术探索

- 1. 电信NFV网元场景使用轻量级虚拟化
- 2. NFV容器编排层加速技术结合安全容器实践

热插拔技术研发实践

 \equiv

热插拔技术未来展望

ACPI功能补全· ARM指令集下的热插拔功能实现

Arm社区近年来也非常关注vCPU,MEM的热插拔功能,其中内存热插拔实现较早(2016-11), 而CPU热插拔的实现面临较多挑战,近年正在攻克中

• CPU热插拔: 必须依赖ACPI协议, 目前生态仍未完善

• 内存热插拔:基于ACPI协议的内存热插拔已有开源rust-vmm实现

2022-07 Cloud-Hypervisor commit: 在aarch64环境基于ACPI协议实现了vCPU的

热插拔实验性功能

2023-02 Linux内核RFC ACPI/arm64:添加了对虚拟 CPU 热插拔的支持

通过适配arm转译acpi协议的方式即可移植现有x86架构的acpi热插拔cpu、内存功能。

未来演进展望· Stratovirt作为一种沙盒运行时

使用MicroVM作为容器底层运行时目前有两种技术方案,Kata-container,Kuasar

Kata-container方案

containerd/isulad+kata-container+Stratovirt

√ Kata 2.1沙盒适配Stratovirt启动参数

Todo: Kata适配Stratovirt qmp vCPU、vMEM扩缩参数

Kuasar方案

isulad+kuasar+Sandbox API+Stratovirt

√ 使用最新沙盒API, 支持MicroVM WASM混部

Todo: Kuasar目前有待测试云原生功能和接口

热插拔·跳出ACPI的框架之外

ACPI协议受制于x86原生特性并且具有较大冗余,RUST-VMM业界也积极尝试跳过ACPI来实现热插 拔的功能,提供更好的灵活性、颗粒度和更低的损耗

• **Upcall的cpu热插拔方案**:通过对vmm和Guest kernel的定制化,降低ACPI协议链路的损耗同时增强 os可控性。目前为dragonball实验特性,已开源dbs-upcall等crates。

Virtio-mem方案: 打破内存最小块限制,提高热拔成功率,解决了NUMA无法感知等问题。Virtio-mem是新型通用架构内存热插拔方案,在Servelss时代或更具优势。目前在Cloud Hypervisor已支持该方案。