НАИМЕНОВАНИЕ ОРГАНИЗАЦИИ

УТВЕРЖДАЮ
Руководитель (должность, наименование предприятия - заказчика АС)
Личная подпись Расшифровка подписи
<u>Печать</u>
<u>Дата</u>
УТВЕРЖДАЮ
Руководитель (должность, наименование предприятия - заказчика АС)
Личная подпись Расшифровка подписи
<u>Печать</u>
<u>Дата</u>
АКП 1
Система детекции нарушения климатических условий
АКП 1
техническое задание
Действует с 2023 г.
СОГЛАСОВАНО
Заведующий лаборатории Аксёнов Дмитрий Андреевич
Личная подпись Расшифровка подписи
<u>Печать</u>

<u>Дата</u>

1. Hav OKI 6	именование ОКР, основание, исполнитель и сроки выполнения Р
6	1.1 Наименование ОКР
6	1.3 Исполнитель ОКР
2. Цел 6	ть выполнения OKP, наименование и индекс изделия
6	2.1 Цель ОКР
OKP: 7	2.2 Наименование и индекс образца, объект исследования
3. Tex 7	нические требования к изделию
7	3.1 Состав изделия:
8	3.2 Требования и назначения
8	3.2.1 Назначение:
8	3.2.2 Функции:
9	3.2.3 Метрологические характеристики:
10	3.2.4 Требования к электропитанию:
10	3.3 Требования электромагнитной совместимости:
возде 10	3.4 Требования живучести и стойкости к внешним ействиям:
10	3.5 Требования надежности:

эстет 11	3.6 Требования эргономики, обитаемости и технической ики:
1 1	0.7.T. 6
техни 11	3.7 Требования к эксплуатации, хранению, удобству ческого обслуживания и ремонта:
11	3.8 Требования транспортабельности
11	3.9 Требования безопасности:
11	3.10 Требования стандартизации и унификации:
11	3.11 Требования технологичности:
12	3.12 Конструктивные требования:
4. Tex 12	нико-экономические требования
12	4.1 Аппаратная составляющая
13	4.2 Эскизный проект
-	4.3 Описание компьютерных систем, серверов, сетевых йств, периферийных устройств и других аппаратных средств, а их характеристики
17	4.4 методология оценки правильности испытаний.
19	4.5 технический проект
5. Про 20	ограммная составляющая
20	5.1 Описание разработанных программных продуктов
21	5.2 Архитектура работы продукта

22	5.3 Использованные технологии и инструменты
23	- Processing 5.4 Примеры кода продукта
6. Tpe 23	ебования к пользователю по работе с программой
котор 23	6.1 Требования к аппаратному обеспечению компьютера, на ом будет запускаться программа отчета по ОКР
котор 23	6.2 Требования к операционной системе компьютера, на ом будет запускаться программа отчета по ОКР
	6.3 Требования к настройкам компьютера, включая настройки асности и настройки сетевого соединения, если программа а по ОКР использует сетевые ресурсы.
OKP 25	6.4 Инструкции по установке и запуску программы отчета по
25	6.5 Инструкция по использования программы ОКР
включ 26	6.6 Инструкции по обращению за технической поддержкой, ная рекомендации по описанию проблемы
7 Рез ₎ 26	ультаты тестирования
26	7.1 Оценка полноты решения поставленной задачи
27	7.2 Оценка достоверности полученных результатов
работ 28	7.3 Сравнение с аналогичным результатом отечественной ы
28	7.4 Недостатки
обосн	7.5 Предложения по дальнейшим направлениям работ или нование о необходимости их прекращения

8 Зак. 29	пючение
29	8.1 Выводы по результатам ОКР
30	8.2 Оценка полноты решения поставленных задач
OKP 31	8.3 Разработка рекомендаций по конкретному использованию
31	8.4 Оценка технико-экономической эффективности внедрения.
34	8.5 Оценка технического уровня выполненной ОКР

1. Наименование ОКР, основание, исполнитель и сроки выполнения ОКР

1.1 Наименование ОКР

АПК1.1 «Управление яркостью светодиода с помощью клавиатуры»

АПК1.2 «Мартышкин пинг-понг»

АПК1.3 «Система детекции нарушения климатических условий»

1.2 Основание для выполнения ОКР

Приложение1.1.pdf

Приложение1.2.pdf

Приложение1.3.pdf

1.3 Исполнитель ОКР

Финансовый университет, УЦИ20-1, Группа Негры:

- Дуденко Богдан Андреевич
- Васильев Иван Сергеевич
- -Грюнер Георгий Андреевич
- 1.4 Срок выполнения ОКР

Выполнен:

С 11.09.23 по 25.09.2023

2. Цель выполнения ОКР, наименование и индекс изделия

2.1 Цель ОКР

Создать программно-аппаратный комплекс осуществляющий мониторинг климата в помещении. С возможностью вывода получаемых данных от датчиков и оповещении пользователя о нарушении предельных значений.

2.2 Наименование и индекс образца, объект исследования ОКР:

Наименование - «Управление яркостью трехцветного светодиода с клавиатуры», Индекс-АПК1.1

Наименование - «Мартышкин пинг-понг», Индекс-АПК1.2

Наименование - «Система детекции нарушения климатических условий», Индекс АПК1.3

3. Технические требования к изделию

3.1 Состав изделия:

АПК1.1 состав изделия: Arduino UNO R3 - 1, RGB светодиод - 3, резистор 220 ОМ - 3, беспаечная макетная плата -1, компьютер/ноутбук - 1, провод для подключения Arduino UNO R3 к компьютеру(USB type A на USB type B) – 1, клавиатура - 1, набор проводов для соединения компонентов - 1.

Используемые возможности платы: цифровой ввод, аналоговый ввод, УАПП (UART).

АПК1.2 состав изделия: Arduino UNO R3 - 1, компьютер/ноутбук - 1, провод для подключения Arduino UNO R3 к компьютеру(USB type A на USB type B) — 1, резистивные датчик изгиба - 2, кнопочный выключатель - 2, резистор 4 кОм - 4, беспаечная макетная плата - 1, набор проводов для соединения компонентов - 1.

Используемые возможности платы: цифровой ввод, аналоговый ввод, УАПП (UART).

АПК1.3 состав изделия: Компьютер/ноутбук - 1, Arduino UNO R3 – 1, провод для подключения Arduino UNO R3 к компьютеру(USB type A на USB type B) – 1, беспаечная макетная плата - 1, DHT11 – 1, ЖК-дисплей 16Х2 I2С – 1, МQ-3 - 1, YG1006 – 1, YL-38 - 1, резистор 220 Ом – 4, Красный(Или любой друго цвет) светодиод - 4, Активный пьезоэлектрический зуммер 5 В – 4, водяной насос – 1, Реле 5V – 1, Источник питания 9V – 1, набор проводов для соединения компонентов - 1

3.2 Требования и назначения

3.2.1 Назначение:

Мониторинг нарушения климатических условий и оповещение с помощью видимых и звуковых сигналов характерных для каждого из климатических условий.

3.2.2 Функции:

АПК1.1- Тестирование возможностей RGB светодиода

АПК1.2- Тестирование возможностей ультразвукового датчика для возможности взаимодействия с пользователем

АПК1.3- измерение температуры, измерение влажности воздуха, обнаружение огня, измерение количества углекислого газа в воздухе, измерение уровня влажности почвы, включение выключения насоса, включение звука при нарушении критических значений, вывод данных на дисплей, на основе двух предыдущих работ включение светового сигнала при нарушении критических значений.

3.2.3 Метрологические характеристики:

1. Датчики температуры и влажности DHT11

Диапазон измерения температуры: от 0° C до 50° C, допуск $\pm 5^{\circ}$ C;

Диапазон измерения влажности: $20\% \sim 95\%$, допуск $\pm 5\%$;

Размеры платы: 29 x 18 мм; Монтажное отверстие: 2.0мм.

2. УЗ-датчик расстояния HC-SR04

диапазон измерения — от 2 до 100 см;

точность — 1,0 см;

эффективный рабочий угол — <15°;

угол измерения: 30 градусов;

Длительность импульса срабатывания: 10 микросекунд;

3. Датчик пламени YG1006

Напряжение питания (Vcc): 3.5 - 5.5 B

Диапазон чувствительности 760 нм - 1100 нм

Угол обнаружения пламени: 60°

Сигнал на выходе компаратора LM393: 15 мА

Два выхода: DO цифровой (0 или 1) и AO аналоговый

Размеры: 36 x 16 мм

Масса: 5 гр.

Расстояние тестирования от 1 см до 50 см.

4. Датчик влажности почвы YL-38

Сенсор при работе потребляет ток около 35 мА.

Напряжение питания 3,3—5 В.

Возвращаемый сигнал при питании от 5 В: 0—4,2 В.

Отобразив эти значения на 10-битный диапазон, можно воспользоваться следующими приближениями:

0—300: сухая почва

300—700: влажная почва 700—950: датчик в воде

5. Датчик газа MQ-3

Датчик качества воздуха чувствительный к аммиаку (NH3), оксиду азота (NOx), алкоголю, бензолу, дыму, углекислому газу (CO2)

Напряжение питания нагревателя: 5 В

Напряжение питания датчика: 3,3-5 В

Потребляемый ток: 150 мА

Габариты: 25,4×25,4 мм

Диапазон измерений: Аммиак: 10—300 ррт Бензин: 10—1000 ррт Алкоголь:

10—300 ppm.

3.2.4 Требования к электропитанию:

Выходное напряжение; 0-30 в

Выход ток; 0-5А

Эффект мощности; CV≤1 % + 10мв

Эффект нагрузки; CV≤1 % + 5мв

Пульсация; CV≤200mV (максимум)

Точность индикации; lcd/V: $1\% \pm 1d lcd/A$: $1\% \pm 2d$

3.3 Требования электромагнитной совместимости:

В связи отсутствия корпуса с заземлением запрещается использовать устройство возле высоко индуктивных контуров и источников сильного переменного магнитного поля.

3.4 Требования живучести и стойкости к внешним воздействиям:

Поскольку это образец требования по безопасности не выдвигались поэтому живучесть не обеспечена.

3.5 Требования надежности:

АПК должен обеспечивать надежную работу в течение всего срока эксплуатации.

Поскольку это образец требования по надежности не выдвигались, поэтому работа в течении всего срока эксплуатации не обеспечена.

3.6 Требования эргономики, обитаемости и технической эстетики:

Поскольку это образец требования по эргономике и технической эстетике не выдвигались.

3.7 Требования к эксплуатации, хранению, удобству технического обслуживания и ремонта:

Поскольку это образец требования по хранению удобству и техническому обслуживанию не выдвигалось.

3.8 Требования транспортабельности

АПК должен соответствовать размерам вместимым в упаковку набора «Умный дом на базе Arduino. Большой набор» ISBN 978-5-9775-6608-7

3.9 Требования безопасности:

АПК должен соответствовать требованиям безопасности использования электроприборов до 15В.

Гост р мэк 60598-2000

Гост р 51317.28-89

3.10 Требования стандартизации и унификации:

На уровне прототипа требования не выдвигались, соответствие стандартизации и унификации не обеспечено.

- 3.11 Требования технологичности:
 - 1. Датчики температуры и влажности DHT11
 - 2. УЗ-датчик расстояния HC-SR04
 - 3. Датчик пламени YG1006
 - 4. Датчик влажности почвы YL-38
 - 5. Датчик газа МО-3

- 6. Светодиод RGB
- 7. ЖК-дисплей 1602 с модулем I2С
- 8. Модуль Реле 5V
- 9. Активный пьезоэлектрический зуммер 5 В

3.12 Конструктивные требования:

На уровне прототипа не предусматривает защитного кожуха поэтому требования выдвигаются на основе техники безопасности

4. Технико-экономические требования

4.1 Аппаратная составляющая

АПК1.1 состав изделия: Arduino UNO R3 - 1, RGB светодиод - 3, резистор 220 ОМ - 3, беспаечная макетная плата -1, компьютер/ноутбук - 1, провод для подключения Arduino UNO R3 к компьютеру(USB type A на USB type B) – 1, клавиатура - 1, набор проводов для соединения компонентов - 1.

Используемые возможности платы: цифровой ввод, аналоговый ввод, УАПП (UART).

АПК1.2 состав изделия: Arduino UNO R3 - 1, компьютер/ноутбук - 1, провод для подключения Arduino UNO R3 к компьютеру(USB type A на USB type B) – 1, УЗ-датчик расстояния HC-SR04 - 2, кнопочный выключатель - 2, резистор 10 кОм - 4, беспаечная макетная плата - 1, набор проводов для соединения компонентов - 1.

Используемые возможности платы: цифровой ввод, аналоговый ввод, УАПП (UART).

АПК1.3 состав изделия: Компьютер/ноутбук - 1, Arduino UNO R3 – 1, провод для подключения Arduino UNO R3 к компьютеру(USB type A на USB type B) – 1, беспаечная макетная плата - 1, DHT11 – 1, ЖК-дисплей 16X2 I2C – 1, MQ-135 - 1, YG1006 – 1, YL-38 - 1, резистор 220 Ом – 2, RGB Светодиод - 1, Красный(Или любой друго цвет) светодиод - 1, Активный пьезоэлектрический зуммер 5 В – 1, водяной насос – 1, Реле 5V – 1, Источник питания 9V – 1, набор проводов для соединения компонентов - 1

4.2 Эскизный проект

- 4.3 Описание компьютерных систем, серверов, сетевых устройств, периферийных устройств и других аппаратных средств, а также их характеристики
 - 1. Arduino UNO R3
 - 2. Датчики температуры и влажности DHT11
 - 3. УЗ-датчик расстояния HC-SR04
 - 4. Датчик пламени YG1006
 - 5. Датчик влажности почвы YL-38
 - 6. Датчик газа MQ-135
 - 7. Светодиод RGB

- 8. Красный Светодиод
- 9. ЖК-дисплей 1602 с модулем I2С
- 10. Модуль Реле 5 В
- 11. Активный пьезоэлектрический зуммер 5 В
- 4.4 методология оценки правильности испытаний.
- 1. Сборка всех элементов в единую схему, написание программы на Arduino program language и загрузка ее на Arduino UNO R3 с помощью Arduino IDE.
- 2. Проверка работоспособности каждого датчика по отдельности (наблюдение за изменением показателей)
- 2.1 Проверка датчика DHT11: Изменение температуры и влажности в помещении посредством термометра и гигрометра.
- 2.2 Проверка датчика HC-SR04: Измерение расстояния посредством перемещения руки к датчику и от датчика.
- 2.3 Проверка датчика YG1006: Включение и выключение зажигалки на расстоянии 1см.
- 2.4 Проверка датчика YL-38: Поместить датчик в стаканчик с водой, результаты датчика влажности должны увеличится, после вытащить и протереть датчик, данные датчика должны уменьшится.
- 2.5 Проверка датчика MQ-135: Подуть на датчик, чтобы увеличить концентрацию углекислого газа, что позволяет создавать контролируемые условия для тестирования датчика.
- 2.6 Проверка диода путем подачи электрического тока на каждый пин отдельно и вместе.

3.Проверка корректности выводимых на LCD дисплей: вывод данных на LCD							
дисплей с помощью программы в пункте 1.							

4.5 технический проект

АПК1.1

АПК1.3

5. Программная составляющая

5.1 Описание разработанных программных продуктов

В новой системе, все схемы, представленные в задачах Task_0.1 по Task_0.4, будут объединены на одной беспаечной плате. Это позволит упростить установку и подключение компонентов, а также сделает систему более компактной.

Кроме того, в систему будет добавлено звуковое и световое оповещение, которое будет индивидуальным для каждого датчика. Например, при превышении заданного уровня влажности почвы или воздуха, будет воспроизводиться определенный звуковой сигнал и включаться светодиодный индикатор.

Вся информация о показаниях датчиков и состоянии системы будет выводиться на дисплей LCD 16X2 I2C. Это позволит оператору легко отслеживать текущие значения влажности почвы и воздуха, а также управлять системой.

Теперь водяной насос будет включаться не только от датчика влажности почвы, но и от датчика влажности воздуха. Если уровень влажности воздуха будет ниже заданного значения, система автоматически включит насос для увлажнения воздуха.

Таким образом, новая система будет более удобной и эффективной, так как оператор будет получать более подробную информацию о состоянии почвы и воздуха, а также сможет принимать меры для поддержания оптимальных условий для растений.

5.2 Архитектура работы продукта

АПК1.2

АПК1.3

5.3 Использованные технологии и инструменты

- Arduino programming language
- Java
- Arduino IDE

- Processing
 - 5.4 Примеры кода продукта

https://github.com/MinDl1/labs

6. Требования к пользователю по работе с программой

6.1 Требования к аппаратному обеспечению компьютера, на котором будет запускаться программа отчета по ОКР

Linux X-86-64, Win 10+ 64bit, macos intel, macos Apple Silicon

6.2 Требования к операционной системе компьютера, на котором будет запускаться программа отчета по ОКР

Windows 10+ 64bits, Linux 64bits, macOS intel 10.14: "Mojave"+ 64bits, macOS Apple Silicon, 11: "Big Sur"+ 64bits.

Linux системы основанные на Debian и RedHat:

- Processor: 1 gigahertz (GHz) or faster processor or SoC
- RAM: 1 gigabyte (GB)
- Hard disk space: 10 GB
- Graphics card: Любой графический адаптер на который устанавливается драйвера

Linux системы основанные на Slackware(Запуск на данной платформе не гарантируется):

• Processor: 586

• RAM: 32 MB

• Hard disk space: 1 GB

• Graphics card: Любой графический адаптер на который устанавливается драйвера

Windows 10:

- Processor: 1 gigahertz (GHz) or faster processor or SoC
- RAM: 1 gigabyte (GB) for 32-bit or 2 GB for 64-bit
- Hard disk space: 16 GB for 32-bit OS or 20 GB for 64-bit OS
- Graphics card: DirectX 9 or later with WDDM 1.0 driver
- Display: 800 x 600

MacOS intel:

- Processor: 3.2 GHz Q. Core Xeon W3565
- VRAM: 1GB
- RAM: 2GB
- Video card: Radeon HD 5770
- HDD minimum :12,5 ГБ

MacOs Apple silicon:

Processor: Apple M1

RAM: 8 ГБ

HDD minimum: 44GB

6.3 Требования к настройкам компьютера, включая настройки безопасности и настройки сетевого соединения, если программа отчета по ОКР использует сетевые ресурсы.

Не использует сетевые ресурсы, у компьютера должен быть доступ к USB портам. Должны быть скачены драйвера для Arduino UNO(обычно при установки приложения Arduino IDE они устанавливаются автоматически).

6.4 Инструкции по установке и запуску программы отчета по ОКР Инструкция по установки для администратора:

Скачать Arduino IDE, библиотеки необходимые для работы скетча (LiquidCrystal_I2C.h, Wire.h, DHT.h, MQ135.h), Processing со встроенной библиотекой Serial.

Сначала необходимо загрузить Arduino sketch на Arduino UNO, после этого закрыть Arduino IDE и открыть Processing и запустить скетч для АПК1.2. Для АПК1.1 и АПК1.3 только зугрузить Arduino скетч.

6.5 Инструкция по использования программы ОКР

Для АПК1.2 использования Processing нужно:

Скачать Processing открыть файл для Processing, проверить правильность считывания порта (с того ли порта считывает компьютер, описано в пункте 6.6) после запустить скетч и начать играть с помощью датчиков (В зависимости от компьютера(зависимость не выявлена, для каких компьютеров нужно) нужно будет зайти в «набросок» в верхнем меню и выбрать «импортировать библиотеку» «serial»).

Для АПК1.3 не нужны приложения для конечного пользователя.

Для АПК1.1 нужно иметь скаченную Arduino IDE в верхнем меню выбрать «Tools» и «Serial Monitor» и написать в строку w - для режима 1(все светодиоды меняют цвета в один такт) и е для режима 2(светодиоды передают цвета друг другу поочередно).

6.6 Инструкции по обращению за технической поддержкой, включая рекомендации по описанию проблемы

Если у вас после запуска processing не двигаются ракетки, нужно проверить правильность подключения порта, в коде программы нужно поменять в функции void setup() во второй строчке String portName = Serial.list()[1], на 0, 2, 3 и тд пока ракетки не начнут двигаться.

Пример отправки:

Описать проблему.

Консольный лог (Ошибка если есть).

Код программы.

Фото собранной схемы.

Описать процесс сборки и загрузки скетча на Arduino UNO.

Обращаться за технической поддержкой на почту: b0gdandudenk0@mail.ru или TG: @MinDl1

7 Результаты тестирования

7.1 Оценка полноты решения поставленной задачи

Наш АПК дает возможность контролировать оптимальные условия внутри помещения. Благодаря использованию датчиков, этот комплекс способен отслеживать такие параметры, как температура, влажность, уровень СО2 и

другие факторы, впоследствии визуализируя эту информацию для пользователя посредством LCD дисплея, RGB светодиодов и звуков с помощью зуммера.

7.2 Оценка достоверности полученных результатов

Датчик	Измерен	Измерен	Измерен	Измерен	Измерен	Средние
	ие	ие	ие	ие	ие	показатели
DHT11	23.9 C	24.8 C	24 C	23.8 C	24 C	24,1 C
MQ135	810 ppm	798 ppm	805 ppm	800 ppm	796 ppm	801,8 ppm
YL-38	543	542	545	544	545	543,8

Погрешность DHT11 = $\pm 5\%$

Погрешность MQ135 = 10 - 15 ppm

Погрешность $YL-38 = \pm 2\%$

В связи с ограниченностью ресурсов нам пришлось заменить гибкие датчики на ультразвуковые, в остальном полученные результаты соответствуют техническому заданию.

7.3 Сравнение с аналогичным результатом отечественной работы

Область	Температу	Относитель	Перепад	Атмосферное	Концентрация
показател	pa	ная	давления	давление	углекислого газа в
ей		влажность	воздуха		воздухе
Команда	0°С до	20% ~ 95%,	-	-	(30010000)
«Негры»	50°C,	допуск ±			$ppm\Delta \le \pm 30 ppm$
	допуск ±	5%;			
000	(-80	(0100) %	(0 50)	30…110) кПа ∆ ≤	(40010000) ppm
Инженерн	+125) °C	$\Delta \leq \pm 1,5$	Па	±0,2 кПа	$\Delta \le \pm 30 \text{ ppm}$
ые	$\Delta \leq \pm 0,2$		(0500)		

В данной таблице происходит сравнение основных областей показателей АПК сконструированным командой «Негры» и системы мониторинга микроклимата «Гигротермон» от ООО Инженерные Технологии(Cataloge tovarov 4.pdf (gigrotermon.ru).

На уровне прототипа нашей команде удалось приблизиться к функционалу области измерений, как у готового продукта от фирмы потенциального конкурента, также в нашем прототипе присутствуют функции, которых нет у «Гигротермона», такие, как датчик пламени, датчик влажности почвы и ультразвуковой датчик расстояния.

7.4 Недостатки

После проведения сравнения с конкурентами можно выделить следующие недостатки:

- 1. Отсутствует датчик измерения перепадов давления воздуха.
- 2. Отсутствует датчик измерения атмосферного давления воздуха.
- 3. Все датчики подключены проводами.
- 4. Не подходит для больших коммерческих помещений.
- 5. Отсутствует удалённый контроль.
- 6. Отсутствует сбор данных, только мониторинг.
- 7. Отсутствуют уведомления (СМС, Email, уведомление на компьютер).
- 7.5 Предложения по дальнейшим направлениям работ или обоснование о необходимости их прекращения

Предложения по исправлению недостатков:

- 1. Добавить датчики измерения перепадов и датчик измерения атмосферного давления.
- 2. Сделать беспроводное соединения с помощью WI-FI соединения используя модули ESP32 или ESP8266.
- 3. С помощью WI-FI датчиков сделать удалённый контроль и уведомления пользователю уведомления на ПК и Email и сбор данных.

8 Заключение

8.1 Выводы по результатам ОКР

Мы создали программно-аппаратный комплекс для мониторинга климата в помещении с оповещением о нарушении предельных значений, что является

важным и полезным решением, которое позволит пользователям более эффективно контролировать комфортные условия внутри помещений.

8.2 Оценка полноты решения поставленных задач

Наш аппаратно-программный комплекс выполняет все поставленные задачи из ТЗ:

- 1. Все 4 схемы объединены в 1 с помощью беспаечной платы
- 2. К схеме детекции огня добавлен зуммер и красный светодиод. В случае обнаружения огня зуммер издает соответствующий сигнал, а красный диод мигает
- 3. Добавлена аналогичная система звуко и свет оповещения для других датчиков. Их триггером будет служит некоторое критическое значение, задаваемое константой.
- 4. Подключен вывод всей информации из консоли на экран в последовательном виде, с подписями что есть что.
- 5. Система детекции стала системой климат контроля, добавлено устройство изменения условий. Насос включается не только по датчику влажности почвы, но и по датчику влажности воздуха.
- 6. Для каждого из датчиков добавлена собственная мелодия и мигание диода, чтобы можно было однозначно идентифицировать нештатную ситуацию моментально.

8.3 Разработка рекомендаций по конкретному использованию ОКР Система применяется для контроля климатических параметров в следующих отраслях:

- метеостанция в небольшой комнате;
- террариум для животных;
- маленькие цветочные комнаты;
- Маленький холодильник для медикаментов;
- система безопасности маленьких отсеков хранения и транспортировки
- 8.4 Оценка технико-экономической эффективности внедрения.

Сильные стороны	Слабые	Возможности	Угрозы
	стороны		

1.Проект предлагает 1. 1. Расширение 1. Ограниченный Конкуренция: комплексное функциональност функционал: и: проект может проект может решение для мониторинга проект может расширить свой столкнуться с ограничиватьс функционал, сильной климатических условий, что может добавив новые конкуренцией я только привлечь возможности, на рынке мониторингом потенциальных климатически такие как мониторинга клиентов. х условий, что мониторинг климатических может снизить качества воздуха условий, что 2. Проект использует его или управление может современные привлекательн системами затруднить его датчики и ость для автоматизации проникновение микроконтроллеры, некоторых и удержание дома. что обеспечивает клиентов. позиций. высокую точность и 2. Партнерство: 2. проект может надежность измерений. Ограниченные установить возможности партнерские 3. отношения с платы: Функциональность: некоторые производителями проект предлагает изделия могут и поставщиками широкий спектр иметь датчиков и других функций, включая ограниченные компонентов, что обнаружение огня, возможности поможет измерение уровня платы Arduino, улучшить его влажности почвы и конкурентоспособ что может газов в воздухе, а ограничить их ность и также вывод данных функциональн доступность. на дисплей. ость и гибкость.

4. Метрологические 3. 3. Расширение характеристики: Ограниченная рынка: проект проект обладает может расширить безопасность: высокой точностью проект должен свою измерений, что соответствова деятельность на повышает его ТЬ другие регионы требованиям или отрасли, что надежность и безопасности качество позволит ему использования предоставляемых привлечь новых электроприбор данных. клиентов и ов, но могут увеличить свою возникнуть клиентскую базу. проблемы с безопасность ю при использовании высокого напряжения.

0.5.0	
8.5 Оценка технического уровня выполненной ОКР	