Лекція 2. Елементарні функції комплексної змінної

TO		U	•
KOI	ротки	и зл	ист
	9 0		

Розділ 2.1. *Елементарні функції комплексної змінної*

2.1.1. Показникова функція

2.1.2. Логарифмічна функція

2.1.3. Степенева функція

2.1.4. Тригонометричні функції

2.1.5. Гіперболічні функції

2.1.6. Обернені тригонометричні функції

2.1.7. Обернені гіперболічні функції

Короткий зміст

У цій лекції:

— впроваджено елементарні функції комплексної змінної (показникова, логарифмічна, степенева, тригонометричні та обернені тригонометричні, гіперболічні та обернені гіперболічні) та вивчено їх основні властивості.

2.1. Елементарні функції комплексної змінної

2.1.1. Показникова функція

Показникову функцію e^z для будь-якого комплексного числа z=x+iy означують співвідношенням

$$w = e^z = e^{x+iy} = e^x(\cos y + i\sin y).$$

При x = 0 одержимо відому формулу Ейлера

$$e^{iy} = \cos y + i \sin y.$$

При y=0 означення показникової функції комплексної змінної узгоджується з означенням показникової функції дійсної змінної.

Функція e^z є однозначною, неперервною функцією на всій розширеній комплексній плошині $\overline{\mathbb{C}}$.

Властивості.

- 1. Для функції e^z правдива теорема додавання $e^{z_1}e^{z_2}\,=\,e^{z_1+z_2}.$
- 2. Для довільного комплексного z = x + iy правдиві рівності

$$|e^z| = e^x$$
; $\arg e^z = y$.

3. Функція e^z — періодична з уявним основним періодом $2\pi i$.

Доведення властивостей показникової функції

1.
$$e^{z_1}e^{z_2} = e^{x_1}(\cos y_1 + i\sin y_1) \cdot e^{x_2}(\cos y_2 + i\sin y_2) =$$

= $e^{x_1 + x_2}(\cos(y_1 + y_2) + i\sin(y_1 + y_2)) = e^{z_1 + z_2}$.

2. Властивість випливає з означення показникової функції.

3.
$$e^{z+2\pi ki} = e^{x+(y+2\pi k)i} = e^x(\cos(y+2\pi k)+i\sin(y+2\pi k)) =$$

= $e^x(\cos y + i\sin y) = e^{x+iy} = e^z, \forall k \in \mathbb{Z}.$

2.1.2. Логарифмічна функція

Погарифмічну функцію комплексної змінної означують як обернену до показникової функції.

3 рівняння

$$z = e^w$$

де

$$z = |z|e^{i\arg z} \neq 0$$

задано,

$$w = u + iv$$

— невідомо, одержимо

$$|z|e^{i\arg z} = e^{u+iv} = e^u e^{iv},$$

звідси

$$\begin{aligned} \left| z \right| &= e^u \ \Rightarrow \ u = \ln \left| z \right|; \\ e^{i \arg z} &= e^{iv} \ \Rightarrow \ v = \arg z + 2\pi k = \operatorname{Arg} z, k \in \mathbb{Z}, \end{aligned}$$

де $\operatorname{Arg} z$ — аргумент комплексного числа. Отже,

$$w \stackrel{\text{den}}{=} \operatorname{Ln} z = \ln|z| + i \operatorname{Arg} z = \ln|z| + i (\operatorname{arg} z + 2\pi k), k \in \mathbb{Z},$$

тобто логарифмічна функція є многозначною функцією, яка визначена для всіх $z \neq 0$. Однозначну вітку цієї функції можна виділити, підставивши замість kпевне значення.

При k = 0 одержимо головне значення логарифму

$$\ln z = \ln|z| + i \arg z.$$

Толі

$$\operatorname{Ln} z = \operatorname{ln} z + 2\pi ki, k \in \mathbb{Z}.$$

Приклад 2.1.

Обчислити значення функції Ln(-3).

О Оскільки

$$|-3| = 3, \quad \arg z = \pi,$$

TOMV

$$Ln(-3) = \ln 3 + i(\pi + 2\pi k), k \in \mathbb{Z}. \bullet$$

Якщо z- дійсне додатне число, тоді $\arg z=0$ і $\ln z=\ln |z|$. Отже, головне значення логарифму дійсного додатного числа співпадає зі звичайним натуральним логарифмом цього числа.

Логарифмічна функція $w = \operatorname{Ln} z$ має відомі властивості логарифму дійсної змінної.

Властивості.

1.
$$\operatorname{Ln}(z_1 z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2$$
.

1.
$$\operatorname{Ln}(z_1 z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2$$
.
2. $\operatorname{Ln} \frac{z_1}{z_2} = \operatorname{Ln} z_1 - \operatorname{Ln} z_2$.
3. $\operatorname{Ln}(z^n) = n \operatorname{Ln} z$.
4. $\operatorname{Ln} \sqrt[n]{z} = \frac{1}{n} \operatorname{Ln} z$.

3.
$$\operatorname{Ln}(z^n) = n \operatorname{Ln} z$$

$$4. \operatorname{Ln} \sqrt[n]{z} = \frac{1}{n} \operatorname{Ln} z.$$

Доведення властивостей логарифмічної функції

1.
$$\operatorname{Ln}(z_1 \cdot z_2) = \ln|z_1 \cdot z_2| + i\operatorname{Arg}(z_1 \cdot z_2) =$$

$$= \ln(|z_1| \cdot |z_2|) + i(\text{Arg}z_1 + \text{Arg}z_2) =$$

$$= (\ln|z_1| + i\operatorname{Arg} z_1) + (\ln|z_2| + i\operatorname{Arg} z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2.$$

Інші властивості логарифмічної функції перевіряються аналогічно.

За допомогою показникової та логарифмічної функцій комплексної змінної можна означити загальну показникову функцію

$$a^z = e^{z \operatorname{Ln} a}, a \neq 0.$$

2.1.3. Степенева функція

1. Якщо $n \in \mathbb{N}$, то *степеневу функцію комплексної змінної* означують рівністю $w = z^n = \rho^n(\cos n\varphi + i\sin n\varphi).$

Покладаючи z = x + iy та застосовуючи формулу бінома Ньютона, можна виділити дійсну та уявну частини функції z^n .

Функція z^n однозначна. Вона визначена та неперервна у всіх точках розширеної комплексної площини $\overline{\mathbb{C}}$.

2. Якщо
$$n=\frac{1}{m}, m\in\mathbb{N},$$
 то
$$w=z^{1/m}=\sqrt[m]{z}=\sqrt[m]{\rho}\Big(\cos\frac{\varphi+2k\pi}{m}+i\sin\frac{\varphi+2k\pi}{m}\Big),$$

$$k=\overline{0,m-1}.$$

Отже, функція $w=\sqrt[m]{z}$ m- значна. Однозначну вітку цієї функції можна виділити, підставивши замість k певне значення. При k=0 дістанемо головне значення функції.

3. Загальну степеневу функцію означують рівністю

$$w = z^a = e^{a \operatorname{Ln} z}.$$

 $w=z^a=e^{a \operatorname{Ln} z}.$ Функція z^a означена для всіх $z \neq 0, \, \epsilon$ многозначною функцією.

Приклад 2.2.

Запишемо алгебраїчну форму комплексного числа $i^{\sqrt{2}}$.

$$i^{\sqrt{2}} = e^{\sqrt{2} \operatorname{Ln} i} = e^{i\sqrt{2} \left(\frac{\pi}{2} + 2\pi k\right)} =$$

$$= \cos \sqrt{2} \left(\frac{\pi}{2} + 2\pi k\right) + i \sin \sqrt{2} \left(\frac{\pi}{2} + 2\pi k\right), k \in \mathbb{Z}. \bullet$$

2.1.4. Тригонометричні функції

3 формул Ейлера для дійсних x маємо

$$e^{ix} = \cos x + i \sin x,$$

$$e^{-ix} = \cos x - i \sin x.$$

Звідси

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}, \quad \cos x = \frac{e^{ix} + e^{-ix}}{2}.$$

Означимо *тригонометричні* функції $\sin z$ та $\cos z$ для будь-якого комплексного числа z рівностями:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}.$$

Функції $\operatorname{tg} z$ та $\operatorname{ctg} z$ у комплексній площині означують формулами:

$$\operatorname{tg} z = \frac{\sin z}{\cos z}, \operatorname{ctg} z = \frac{\cos z}{\sin z}.$$

Для дійсних z=x тригонометричні функції комплексної змінної збігаються з тригонометричними функціями дійсної змінної. Дійсно, при $z=x\ (y=0)$, наприклад, означення синуса дає

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \frac{1}{2i}((\cos x + i\sin x) - (\cos x - i\sin x)) = \sin x.$$

Тригонометричні функції комплексної змінної зберігають більшість властивостей тригонометричних функцій дійсної змінної.

Властивості.

- 1. Тригонометричні функції комплексної змінної $\sin z$, $\cos z$ періодичні з періодом 2π .
- 2. Для тригонометричних функцій комплексної змінної зберігаються відомі тригонометричні співвідношення.
- 3. $\sin z$ непарна функція $(\sin(-z) = -\sin z)$, а $\cos z$ парна функція $(\cos(-z) = \cos z)$.
- 4. Мають місце формули

$$\sin z = \sin(x + iy) = \sin x \operatorname{ch} y + i \cos x \operatorname{sh} y;$$
$$\cos z = \cos(x + iy) = \cos x \operatorname{ch} y - i \sin x \operatorname{sh} y.$$

5. Функція $\operatorname{tg} z$ неперервна для всіх $z \in \mathbb{C}$, за винятком $z = \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$, а функція $\operatorname{ctg} z$ неперервна для всіх $z \in \mathbb{C}$, за винятком $z = \pi k, k \in \mathbb{Z}$, функції $\operatorname{tg} z$, $\operatorname{ctg} z \in \mathbb{C}$ періодичними функціями з періодом π .

Наведені властивості легко перевіряються, виходячи з означення функцій.

Зауваження 2.1.

На відміну від тригонометричних функцій дійсної змінної $|\sin z|$ та $|\cos z|$ можуть бути більші за одиницю. Наприклад,

$$\cos i = \frac{1}{2} (e^{-1} + e) \approx 1,543; \sin i = \frac{1}{2i} (e^{-1} - e) \approx 1,174i.$$

2.1.5. Гіперболічні функції

 Γ іперболічні функції $\sinh z$, $\cosh z$, $\coth z$ означують формулами

$$\operatorname{sh} z = \frac{e^z - e^{-z}}{2}, \quad \operatorname{ch} z = \frac{e^z + e^{-z}}{2},$$

$$\operatorname{th} z = \frac{\operatorname{sh} z}{\operatorname{ch} z}, \quad \operatorname{cth} z = \frac{\operatorname{ch} z}{\operatorname{sh} z}.$$

З означень випливає, що функції $\sh z, \ch z$ періодичні з періодом $2\pi i$, а функції $\th z, \ch z$ мають період πi .

Гіперболічні функції зв'язані із тригонометричними функціями рівностями:

$$\operatorname{ch} z = \cos iz, \quad \operatorname{sh} z = -i \sin iz,$$

$$\cos z = \operatorname{ch} iz, \quad \sin z = -i \operatorname{sh} iz,$$

$$\operatorname{tg} z = -i \operatorname{th} iz, \operatorname{th} z = -i \operatorname{tg} iz,$$

$$\operatorname{ctg} z = i \operatorname{cth} iz, \operatorname{cth} z = i \operatorname{ctg} iz.$$

Покладаючи в першій парі цих формул

$$iz = z'$$
,

отримаємо

$$\cos z' = \operatorname{ch} z, \ \sin z' = i \operatorname{sh} z,$$

звідки випливає правило: довільне співвідношення між гіперболічними функціями $\operatorname{ch} z$, $\operatorname{sh} z$ можна одержати з відповідних співвідношень між тригонометричними функціями $\cos z$, $\sin z$, замінюючи $\cos z$ та $\sin z$ відповідно на $\operatorname{ch} z$ та $i \operatorname{sh} z$.

2.1.6. Обернені тригонометричні функції

Число w називають арксинусом числа z (позначають $w = \operatorname{Arcsin} z$), якщо $z = \sin w$.

Використовуючи означення синуса, матимемо:

$$z = \sin w = \frac{e^{iw} - e^{-iw}}{2i} \Rightarrow$$

$$e^{iw} - 2iz - e^{-iw} = 0 \Rightarrow$$

$$e^{2iw} - 2ize^{iw} - 1 = 0 \Rightarrow$$

$$e^{iw} = iz \pm \sqrt{1 - z^2}.$$

Мінус можна не писати, якщо розуміти корінь як двозначну функцію. Отже,

$$w = \operatorname{Arcsin} z = -i\operatorname{Ln}(iz + \sqrt{1 - z^2}).$$

Аналогічно означують інші обернені тригонометричні функції:

Arccos
$$z = -i \operatorname{Ln}(z + \sqrt{z^2 - 1});$$

Arctg $z = -\frac{i}{2} \operatorname{Ln} \frac{i - z}{i + z}, \ z \neq \pm i;$
Arcctg $z = \frac{i}{2} \operatorname{Ln} \frac{z - i}{z + i}, \ z \neq \pm i$

Всі обернені тригонометричні функції ϵ нескінченнозначними функціями.

2.1.7. Обернені гіперболічні функції

Функції, обернені до гіперболічних функцій, позначають відповідно $w = \operatorname{Arsh} z$ (ареасинус), $w = \operatorname{Arch} z$ (ареакосинус), $w = \operatorname{Arch} z$ (ареакотангенс), $w = \operatorname{Arch} z$ (ареакотангенс). Обернені гіперболічні функції означують рівностями

$$\operatorname{Arsh} z = \operatorname{Ln}(z + \sqrt{z^2 + 1});$$

$$\operatorname{Arch} z = \operatorname{Ln}(z + \sqrt{z^2 - 1});$$

$$\operatorname{Arth} z = \frac{1}{2} \operatorname{Ln} \frac{1 + z}{1 - z}, z \neq \pm 1;$$

$$\operatorname{Arcth} z = \frac{1}{2} \operatorname{Ln} \frac{z + 1}{z - 1}, z \neq \pm 1.$$

Усі ці функції нескінченнозначні.