Model Compression

Mohammadreza Banaei

Outline

- Motivation
- Compression methods
 - Pruning
 - Quantization
 - Weight factorization
 - Knowledge distillation
 - Weight Sharing
- Sub-quadratic Transformers

Why do we need compression?

Growth of model parameters

Exponential growth in model parameters

Growth of model parameters

- Exponential growth in model parameters
 - Scaling laws

Growth of model parameters

- Exponential growth in model parameters
 - Scaling laws
 - Emergent abilities of LLMs

- Cloud processing not always possible
 - Latency issue
 - Data privacy

- Cloud processing not always possible
 - Latency issue
 - Data privacy
- Inference time for edge devices

- Cloud processing not always possible
 - Latency issue
 - Data privacy
- Inference time for edge devices
- Memory issue
 - ~350 GB just for storing a LLM weights!

- Cloud processing not always possible
 - Latency issue
 - Data privacy
- Inference time for edge devices
- Memory issue
 - ~350 GB just for storing a LLM weights!
- Finetuning LLMs
 - Time-consuming
 - Expensive

- Cloud processing not always possible
 - Latency issue
 - Data privacy
- Memory
- Inference
 Memory
 ~350 GB
 Compression could reduce
 #parameters and inference time!
- Finetuning LLMs
 - Time-consuming
 - Expensive

• Large models are more robust to compression techniques than small models

- Large models are more robust to compression techniques than small models
- For given test-time constraints (e.g., inference time, #parameter)
 - heavily compressed, large models > lightly compressed, small models

- Large models are more robust to compression techniques than small models
- For given test-time constraints (e.g., inference time, #parameter)
 heavily compressed, large models > lightly compressed, small models
- Comparing downstream task performance for discussed scenarios

- Large models are more robust to compression techniques than small models
- For given test-time constraints (e.g., inference time, #parameter)
 - heavily compressed, large models > lightly compressed, small models

Li, Zhuohan et al. "Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers." ArXiv abs/2002.11794 (2020)

How is the compression done?

Compression Methods

- Pruning
- Quantization
- Weight factorization
- Knowledge Distillation
- Weight sharing

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning		
Quantization		
Weight Factorization		
Weight Sharing		
Knowledge distillation		
Sub-quadratic Transformer		

- Sparse connectivity inspired by biological neural networks
- Unstructured pruning Vs. structured pruning

- Sparse connectivity inspired by biological neural networks
- Unstructured pruning Vs. structured pruning

- Sparse connectivity inspired by biological neural networks
- Unstructured pruning Vs. structured pruning

- Sparse connectivity inspired by biological neural networks
- Unstructured pruning Vs. structured pruning

What is the potential benefit of structured pruning?

How to choose pruned weights?

Pruning: case study

- Goal: a BERT-based sentiment classifier model
 - constraints: 50% of weights should be pruned

Pruning: case study

- Goal: a BERT-based sentiment classifier model
 - constraints: 50% of weights should be pruned

which weights should be pruned?

Pruning: case study

- Goal: a BERT-based sentiment classifier model
 - constraints: 50% of weights should be pruned

which weights should be pruned?

- Magnitude pruning
 - Pruning weights with small magnitude
 - Pruning x% at global Vs. Module level

- Magnitude pruning
 - Pruning weights with small magnitude
 - Pruning x% at global Vs. Module level

- Magnitude pruning
 - Pruning weights with small magnitude
 - Pruning x% at global Vs. Module level
- Iterative magnitude pruning
 - pruning gradually during training

- Magnitude pruning
 - Pruning weights with small magnitude
 - Pruning x% at global Vs. Module level
- Iterative magnitude pruning
 - pruning gradually during training
- Movement pruning

- Magnitude pruning
 - Pruning weights with small magnitude
 - Pruning x% at global Vs. Module level
- Iterative magnitude pruning
 - pruning gradually during training
- Movement pruning
- (Differentiable) masking as a pruning method
 - Example: attention head masking

- Structured pruning for Transformer language models
 - Pruning neurons

- Structured pruning for Transformer language models
 - Pruning neurons
 - Pruning attention heads

Michel, Paul, Omer Levy, and Graham Neubig. "Are sixteen heads really better than one?." Advances in neural information processing systems 32 (2019).
Voita, Elena, et al. "Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned." arXiv preprint arXiv:1905.09418 (2019).

- Structured pruning for Transformer language models
 - Pruning neurons
 - Pruning attention heads
 - Pruning sub-layers
 - Example: pruning feed-forward sub-layer

- Structured pruning for Transformer language models
 - Pruning neurons
 - Pruning attention heads
 - Pruning sub-layers
 - Example: pruning feed-forward sub-layer
 - Pruning layers
 - Example: pruning the last K layers

Pruning Attention Heads

How can we prune attention heads?

$$MultiHead(Q, K, V) = Concat_i(head_i)W^O$$

Pruning Attention Heads

How can we prune attention heads?

$$\label{eq:MultiHead} \begin{split} \text{MultiHead}(Q,K,V) &= \text{Concat}_i(\text{head}_i)W^O \\ \\ \text{MultiHead}(Q,K,V) &= \text{Concat}_i(g_i,\text{head}_i)W^O \end{split}$$

Pruning Attention Heads

How can we prune attention heads?

$$\label{eq:MultiHead} \begin{aligned} \text{MultiHead}(Q,K,V) &= \text{Concat}_i(\text{head}_i)W^O \\ \\ \text{MultiHead}(Q,K,V) &= \text{Concat}_i(g_i \cdot \text{head}_i)W^O \end{aligned}$$

- L0 regularization over attention heads' mask parameters
 - Example: Translation task

$$L = L_{xent} + \lambda L_C \qquad \lambda = 0.01$$

Pruning Attention Heads

• Large fraction of Transformer attention heads can be removed at test time!

Layer		Layer	
1	-0.01%	7	0.05%
2	0.10%	8	-0.72%
3	-0.14%	9	-0.96%
4	-0.53%	10	0.07%
5	-0.29%	11	-0.19%
6	-0.52%	12	-0.12%

(Delta accuracy by layer when only one head is kept for MNLI BERT model)

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization		
Weight Factorization		
Weight Sharing		
Knowledge distillation		
Sub-quadratic Transformer		

Quantization

• How else can we compress a given neural module?

Quantization

• How else can we compress a given neural module?

Quantization

• How else can we compress a given neural module?

- Number of parameters remains the same!
 - Improvement in memory footprint + inference time
- Quantization is mostly applied on a trained model

Binarized Network

- Essentially using 1 bit per parameter!
- Deterministic Binarization
 - c1 and c2 from K-means over the weights
 - c1 and c2 tuned on downstream task

$$w_b = \begin{cases} c_1 & \text{if } w \ge (c_1 + c_2)/2 \\ c_2 & \text{if } w < (c_1 + c_2)/2 \end{cases}$$

Binarized Network

- Essentially using 1 bit per parameter!
- Deterministic Binarization
 - c1 and c2 from K-means over the weights
 - c1 and c2 tuned on downstream task

$$w_b = \begin{cases} c_1 & \text{if } w \ge (c_1 + c_2)/2 \\ c_2 & \text{if } w < (c_1 + c_2)/2 \end{cases}$$

Question: How can we improve the binarized network performance?

General Quantized Networks

- Uniform Quantization
 - Not necessarily optimal

- Better fitted for non-uniform weights!
- Example: Decide bin boundaries using clustering!

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization	Yes	Yes
Weight Factorization		
Weight Sharing		
Knowledge distillation		
Sub-quadratic Transformer		

Weight Factorization

The weight modules are replaced by their factorized matrices

Weight Factorization

• The weight modules are replaced by their factorized matrices

- Factorization methods
 - Two low-rank matrices (similar to SVD)
 - Tensor decomposition
 - Non-linear factorization by using Auto-encoders

Case Study: ALBERT

- #parameters issue in token embedding matrix
 - ~23M out of 110M parameters in BERT-base
 - More than half of the parameters in mBERT
- Token embedding dimension are generally tied to the hidden dimension
 - What if we disentangle them by factorizing the embedding matrix?

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization	Yes	Yes
Weight Factorization	Yes	No
Weight Sharing		
Knowledge distillation		
Sub-quadratic Transformer		

Weight Sharing

- A common example of parameter compression/efficiency
 - Finding weight blocks that can share the same weight

Weight Sharing

- A common example of parameter compression/efficiency
 - Finding weight blocks that can share the same weight
- Examples of weight sharing
 - Sharing token embedding and LM decoder head
 - Parameter sharing in the embedding matrix
 - Cross-layer parameter sharing (e.g., ALBERT)

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization	Yes	Yes
Weight Factorization	Yes	No
Weight Sharing	Yes	No
Knowledge distillation		
Sub-quadratic Transformer		

- Training a smaller student network by distilling a large teacher model
 - The student's goal is to imitate teacher's behavior!
- Can we have the best of the two worlds?
 - Good performance of teacher model + faster & parameter-efficient student model

- Training a smaller student network by distilling a large teacher model
 - The student's goal is to imitate teacher's behavior!
- Can we have the best of the two worlds?
 - Good performance of teacher model + faster & parameter-efficient student model
- Knowledge distillation Vs. Transfer learning
 - Transfer learning \rightarrow deals with shared architecture/layers
 - Knowledge distillation ightarrow often the student model has a different smaller architecture

How can we distill the teacher's knowledge?

Intuition behind knowledge distillation

- Intuition behind knowledge distillation
- Consider a 3-class sentiment analysis dataset
 - We pass the following 2 samples to the teacher model to get class probabilities

	Positive	Negative	Neutral
Groundtruth	1	0	0
Teacher prob.	0.94	0.01	0.05

	Positive	Negative	Neutral
Groundtruth	1	0	0
Teacher prob.	0.67	0.02	0.31

- How to leverage soft labels for the student model?
 - Additional cross-entropy to soft labels (soft loss)
 - Cross-entropy loss to ground-truth labels \rightarrow hard loss

$$\mathcal{L} = \alpha \cdot \mathcal{L}_{CE} + (1 - \alpha) \cdot \mathcal{L}_{distill}$$
Hard Loss Soft Loss

- How to leverage soft labels for the student model?
 - Additional cross-entropy to soft labels (soft loss)
 - Cross-entropy loss to ground-truth labels \rightarrow hard loss

$$\mathcal{L} = \alpha \cdot \mathcal{L}_{CE} + (1 - \alpha) \cdot \mathcal{L}_{distill}$$
Hard Loss
Soft Loss

- Teacher making confident prediction for easy downstream tasks
 - Solution: increase softmax temperature to get suitably soft targets!

- How to leverage soft labels for the student model?
 - Additional cross-entropy to soft labels (soft loss)
 - Cross-entropy loss to ground-truth labels \rightarrow hard loss

$$\mathcal{L} = \alpha \cdot \mathcal{L}_{CE} + (1 - \alpha) \cdot \mathcal{L}_{distill}$$
Hard Loss
Soft Loss

- Teacher making confident prediction for easy downstream tasks
 - Solution: increase softmax temperature to get suitably soft targets!

#	Model	SST-2	QQP	MNLI-m	MNLI-mm
	1110401	Acc	F ₁ /Acc	Acc	Acc
1	BERT _{LARGE} (Devlin et al., 2018)	94.9	72.1/89.3	86.7	85.9
2	BERT _{BASE} (Devlin et al., 2018)	93.5	71.2/89.2	84.6	83.4
3	OpenAI GPT (Radford et al., 2018)	91.3	70.3/88.5	82.1	81.4
4	BERT ELMo baseline (Devlin et al., 2018)	90.4	64.8/84.7	76.4	76.1
5	GLUE ELMo baseline (Wang et al., 2018)	90.4	63.1/84.3	74.1	74.5
6	Distilled BiLSTM _{SOFT}	90.7	68.2/88.1	73.0	72.6
7	BiLSTM (our implementation)	86.7	63.7/86.2	68.7	68.3

- 6-layer student model distilled from BERT-base (i.e., teacher)
 - Initialize the student from the teacher by taking one layer out of two

- 6-layer student model distilled from BERT-base (i.e., teacher)
 - Initialize the student from the teacher by taking one layer out of two
- Distillation on MLM loss
 - Improving LM generalization

I absolutely [MASK] natural language processing field.

- 6-layer student model distilled from BERT-base (i.e., teacher)
 - Initialize the student from the teacher by taking one layer out of two
- Distillation on MLM loss
 - Improving LM generalization

```
BERT-base

Bert-base
```

- 6-layer student model distilled from BERT-base (i.e., teacher)
 - Initialize the student from the teacher by taking one layer out of two
- Distillation on MLM loss
 - Improving LM generalization

```
BERT-base

| Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-base | Bert-
```

Proposed Loss: MLM + distilling BERT MLM + distilling hidden states

- 6-layer student model distilled from BERT-base (i.e., teacher)
 - Initialize the student from the teacher by taking one layer out of two
- Distillation on MLM loss
 - Improving LM generalization

I absolutely [MASK] natural language processing field.

```
BERT-base

| 0.241 | I absolutely | love | natural language processing field. | | |
| 0.154 | I absolutely | love | natural language processing field. |
| 0.045 | I absolutely | need | natural language processing field. |
| 0.040 | I absolutely | mean | natural language processing field. |
| 0.034 | I absolutely | hated | natural language processing field. |
| 0.032 | I absolutely | understand | natural language processing field. |
| 0.024 | I absolutely | loved | natural language | processing | field. |
| 0.023 | I absolutely | like | natural language | processing | field. |
| 0.020 | I absolutely | miss | natural language | processing | field. |
| 0.020 | I absolutely | miss | natural language | processing | field. |
| 0.020 | I absolutely | miss | natural language | processing | field. |
| 0.021 | natural language | nat
```

- Proposed Loss: MLM + distilling BERT MLM + distilling hidden states
- Competitive performance to the teacher

Model	IMDb (acc.)	SQuAD (EM/F1)
BERT-base	93.46	81.2/88.5
DistilBERT	92.82	77.7/85.8
DistilBERT (D)	-	79.1/86.9

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization	Yes	Yes
Weight Factorization	Yes	No
Weight Sharing	Yes	No
Knowledge distillation	Yes	Yes
Sub-quadratic Transformer		

Processing Long Contexts

Issue with trained position embeddings

- Example: BERT model

Processing Long Contexts

- Issue with trained position embeddings
 - Example: BERT model
- Sinusoidal position embedding
 - Example: (original) Transformer paper

$$\omega_k = rac{1}{10000^{2k/d}} \qquad \overrightarrow{p_t} = egin{bmatrix} \sin(\omega_1.t) \ \cos(\omega_1.t) \ \sin(\omega_2.t) \ \cos(\omega_2.t) \ dots \ dots \ \sin(\omega_2.t) \ \cos(\omega_2.t) \ dots \ \cos(\omega_2.t) \ \cos(\omega_{d/2}.t) \ \cos(\omega_{d/2}.t) \end{bmatrix}_{d imes 1}$$

Processing Long Contexts

- Issue with trained position embeddings
 - Example: BERT model
- Sinusoidal position embedding
 - Example: (original) Transformer paper
- Relative positional encoding
 - Rotary Position Embedding (RoPE)
 - Attention with Linear Biases (ALiBi)

$$\omega_k = rac{1}{10000^{2k/d}} \qquad \overrightarrow{p_t} = egin{bmatrix} \sin(\omega_1.t) \ \cos(\omega_1.t) \ \sin(\omega_2.t) \ \cos(\omega_2.t) \ dots \ \vdots \ \sin(\omega_{d/2}.t) \ \cos(\omega_{d/2}.t) \end{bmatrix}_{d imes 1}$$

ALiBi

- No additive position embeddings in the input layer
- adding a linear bias to each attention score

ALiBi

- No additive position embeddings in the input layer
- adding a linear bias to each attention score

Inference time for long inputs?

Sub-quadratic Transformers

- Time and activation memory grows quadratically with the sequence length
 - Especially important for long sequences
 - O Potentially limiting the maximum sequence length

Sub-quadratic Transformers

- Time and activation memory grows quadratically with the sequence length
 - Especially important for long sequences
 - O Potentially limiting the maximum sequence length
- Do tokens need to directly attend to every other token?
 - What if attention is performed more locally! → Longformer
 - Masking attention between far tokens (using M matrix)

$$\operatorname{Attention}(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V},\boldsymbol{M}) = \operatorname{softmax}\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\top}}{\sqrt{d}}\odot\boldsymbol{M}\right)\boldsymbol{V}$$

Longformer

Every token should attend to its neighbor tokens

Full n^2 attention

Sliding window attention

Longformer

- Every token should attend to its neighbor tokens
- Need for some global tokens to bridge across the sequence
 - [CLS] for text classification
 - Question tokens for QA

Full n^2 attention

Sliding window attention

Global+sliding window

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization	Yes	Yes
Weight Factorization	Yes	No
Weight Sharing	Yes	No
Knowledge distillation	Yes	Yes
Sub-quadratic Transformer	No	Yes

Recap

- Compression leads to improving:
 - Number of parameters
 - Inference time
 - Size-performance trade-off
 - heavily compressed large models > lightly compressed small models
- Different compression techniques
 - O Pruning, quantization, factorization, weight sharing, knowledge distillation
- Improvement over quadratic attention mechanism

