Set: 01

BRAC University

Semster: Spring 2020

Course No: CSE251

Course Title: ELECTRONIC DEVICES AND CIRCUITS

Section: 11

Faculty: ABA

Midterm

Full Marks: 40

TIme: 2 hours Date: March 10, 2022

Answer all 4 questions. All the questions carry equal marks.

Question 1 [CO1]

10

(b) IV Characteristics of the non-linear device N_D

- (a) **Identify** the equivalent linear circuit models for the 3 linear segments in the IV characteristics of the non-linear device N_D and **calculate** the model parameters. [3]
- [2] (b) **Show** the alternative representation of the circuit in Figure (a).
- (c) **Detect** the operating region for the device when $v_s = 3 \text{ V}$ and **calculate** the current through the device, i_s , for this voltage. [2]
- (d) **Apply** KVL and KCL to calculate the value of voltage source V_p when $v_s = 3$ V. [3]

Question 2 [CO2]

10

For this question, all of the diodes are ideal.

- (a) Assuming x, y, z are boolean variables, **analyze** the circuit on the left to find an expression of f in terms of x, y, and z.
- (b) **Analyze** the circuit on the left again to find the waveform (voltage vs time graph) of f assuming x, y, z are voltage signals, where y = 2 V, z = 3 V, and x has a waveform as shown in the figure on the right.
- (c) **Design** a circuit using ideal diodes to implement the logic function f = x.y.z. Here "." denotes logical AND. [2]

Bonus: Design a circuit using ideal diodes to implement the XOR logic function between x and y, assuming you have access to x, \bar{x} , y, and \bar{y} .

Question 3 [CO1]

10

- (a) **Analyze** the following circuit to find the values of I_{D_1} , I_{D_2} , v_x , and v_y . Here, **use** the Method of Assumed State using the CVD model of diode with $V_{D_0} = 0.5 \text{ V}$. [7]
- (b) Validate your assumptions about the states of the diodes. [3]

Question 4 [CO2]

10

A voltage waveform $v_i = 10\sin(100\pi t)$ V is input to a full-wave rectifier with a load resistance of $R = 50 \text{ k}\Omega$. Silicon diodes are used in this circuit for which the forward drop is $V_{D_0} = 0.7 \text{ V}$.

- (a) Show the circuit of the rectifier. Label the input and output voltages properly. [2]
- (b) Calculate the DC value of the output voltage. [1]
- (c) Contrast the value found in part (b) with that when a 5 μF capacitor is connected in parallel with the load.
- (d) **Identify** the two diodes will be ON in the positive half cycle. [1]

Now the two diodes from part (d) are replaced with Germanium diodes $[V_{D_0} = 0.2 \text{ V}].$

Set: 02

BRAC University

Semster: Spring 2020

Course Title: ELECTRONIC DEVICES AND CIRCLE

Course Title: ELECTRONIC DEVICES AND CIRCUITS Section: 11

Faculty: ABA

Midterm

Full Marks: 40

TIme: 2 hours Date: March 10, 2022

Question 1 [CO1]

10

(a) A circuit with a non-linear device N_D

(b) IV Characteristics of the non-linear device N_D

- (a) **Identify** the equivalent linear circuit models for the 3 linear segments in the IV characteristics of the non-linear device N_D and **calculate** the model parameters. [3]
- (b) **Show** the alternative representation of the circuit in Figure (a). [2]
- (c) **Detect** the operating region for the device when $v_s = 3$ V and **calculate** the current through the device, i_s , for this voltage. [2]
- (d) **Apply** KVL and KCL to calculate the value of voltage source V_p when $v_s = 3$ V. [3]

Question 2 [CO2]

10

- (a) Assuming x, y, z are boolean variables, **analyze** the circuit on the left to find an expression of f in terms of x, y, and z.
- (b) **Analyze** the circuit on the left again to find the waveform (voltage vs time graph) of f assuming x, y, z are voltage signals, where y = 2 V, z = 3 V, and x has a waveform as shown in the figure on the right.
- (c) **Design** a circuit using ideal diodes to implement the logic function f = x.y.z. Here "." denotes logical AND. [2]

Bonus: Design a circuit using ideal diodes to implement the XOR logic function between x and y, assuming you have access to x, \bar{x} , y, and \bar{y} .

Question 3 [CO1]

10

- (a) **Analyze** the following circuit to find the values of I_{D_1} , I_{D_2} , v_x , and v_y . Here, **use** the Method of Assumed State using the CVD model of diode with $V_{D_0} = 0.5 \text{ V}$. [7]
- (b) Validate your assumptions about the states of the diodes. [3]

Question 4 [CO2]

10

A voltage waveform $v_i = 10\sin(100\pi t)$ V is input to a full-wave rectifier with a load resistance of R = 50 k Ω . Silicon diodes are used in this circuit for which the forward drop is $V_{D_0} = 0.7$ V.

- (a) **Show** the circuit of the rectifier. **Label** the input and output voltages properly. [2]
- (b) Calculate the DC value of the output voltage. [1]
- (c) Contrast the value found in part (b) with that when a 5 μF capacitor is connected in parallel with the load.
- (d) **Identify** the two diodes will be ON in the positive half cycle. [1]

Now the two diodes from part (d) are replaced with Germanium diodes $[V_{D_0} = 0.2 \text{ V}].$

Set: 03

BRAC University

Semster: Spring 2020 Course No: CSE251

Course Title: ELECTRONIC DEVICES AND CIRCUITS

Course Title: ELECTRONIC DEVICES AND CIRCUITS Section: 11

Faculty: ABA

Midterm

Full Marks: 40

TIme: 2 hours Date: March 10, 2022

Question 1 [CO1]

10

(b) IV Characteristics of the non-linear device N_D

- (a) **Identify** the equivalent linear circuit models for the 3 linear segments in the IV characteristics of the non-linear device N_D and **calculate** the model parameters. [3]
- (b) **Show** the alternative representation of the circuit in Figure (a). [2]
- (c) **Detect** the operating region for the device when $v_s = 3$ V and **calculate** the current through the device, i_s , for this voltage. [2]
- (d) **Apply** KVL and KCL to calculate the value of voltage source V_p when $v_s = 3$ V. [3]

Question 2 [CO2]

10

- (a) Assuming x, y, z are boolean variables, **analyze** the circuit on the left to find an expression of f in terms of x, y, and z.
- (b) **Analyze** the circuit on the left again to find the waveform (voltage vs time graph) of f assuming x, y, z are voltage signals, where y = 2 V, z = 3 V, and x has a waveform as shown in the figure on the right.
- (c) **Design** a circuit using ideal diodes to implement the logic function f = x + y + z. Here "+" denotes logical OR. [2]

Bonus: Design a circuit using ideal diodes to implement the XOR logic function between x and y, assuming you have access to x, \bar{x} , y, and \bar{y} .

Question 3 [CO1]

10

- (a) **Analyze** the following circuit to find the values of I_{D_1} , I_{D_2} , v_x , and v_y . Here, **use** the Method of Assumed State using the CVD model of diode with $V_{D_0} = 0.5 \text{ V}$. [7]
- (b) Validate your assumptions about the states of the diodes. [3]

Question 4 [CO2]

10

A voltage waveform $v_i = 10\sin(100\pi t)$ V is input to a full-wave rectifier with a load resistance of R = 50 k Ω . Silicon diodes are used in this circuit for which the forward drop is $V_{D_0} = 0.7$ V.

- (a) **Show** the circuit of the rectifier. **Label** the input and output voltages properly. [2]
- (b) Calculate the DC value of the output voltage. [1]
- (c) Contrast the value found in part (b) with that when a 5 μF capacitor is connected in parallel with the load.
- (d) **Identify** the two diodes will be ON in the positive half cycle. [1]

Now the two diodes from part (d) are replaced with Germanium diodes $[V_{D_0} = 0.2 \text{ V}].$

BRAC University

Set: 04 Semster: Spring 2020

Course No: CSE251 Course Title: ELECTRONIC DEVICES AND CIRCUITS

Section: 11 TIme: 2 hours

Faculty: ABA Date: March 10, 2022

Question 1 [CO1]

10

Midterm

Full Marks: 40

- (a) A circuit with a non-linear device N_D
- (b) IV Characteristics of the non-linear device N_D
- (a) **Identify** the equivalent linear circuit models for the 3 linear segments in the IV characteristics of the non-linear device N_D and **calculate** the model parameters. [3]
- [2](b) **Show** the alternative representation of the circuit in Figure (a).
- (c) **Detect** the operating region for the device when $v_s = 3 \text{ V}$ and **calculate** the current through the device, i_s , for this voltage. [2]
- (d) Apply KVL and KCL to calculate the value of voltage source V_p when $v_s = 3$ V. [3]

Question 2 [CO2]

10

- (a) Assuming x, y, z are boolean variables, **analyze** the circuit on the left to find an expression of f in terms of x, y, and z.
- (b) **Analyze** the circuit on the left again to find the waveform (voltage vs time graph) of f assuming x, y, z are voltage signals, where y = 2 V, z = 3 V, and x has a waveform as shown in the figure on the right.
- (c) **Design** a circuit using ideal diodes to implement the logic function f = x + y + z. Here "+" denotes logical OR. [2]

Bonus: Design a circuit using ideal diodes to implement the XOR logic function between x and y, assuming you have access to x, \bar{x} , y, and \bar{y} .

Question 3 [CO1]

10

- (a) **Analyze** the following circuit to find the values of I_{D_1} , I_{D_2} , v_x , and v_y . Here, **use** the Method of Assumed State using the CVD model of diode with $V_{D_0} = 0.5 \text{ V}$. [7]
- (b) Validate your assumptions about the states of the diodes. [3]

Question 4 [CO2]

10

A voltage waveform $v_i = 10\sin(100\pi t)$ V is input to a full-wave rectifier with a load resistance of R = 50 k Ω . Silicon diodes are used in this circuit for which the forward drop is $V_{D_0} = 0.7$ V.

- (a) **Show** the circuit of the rectifier. **Label** the input and output voltages properly. [2]
- (b) Calculate the DC value of the output voltage. [1]
- (c) Contrast the value found in part (b) with that when a 5 μF capacitor is connected in parallel with the load.
- (d) **Identify** the two diodes will be ON in the positive half cycle. [1]

Now the two diodes from part (d) are replaced with Germanium diodes $[V_{D_0} = 0.2 \text{ V}].$

Set: 05

BRAC University

Semster: Spring 2020

Course No: CSE251

Course Title: FLECTRONIC DEVICES AND CIR

Course Title: ELECTRONIC DEVICES AND CIRCUITS Section: 11

Faculty: ABA

Midterm

Full Marks: 40 TIme: 2 hours

Date: March 10, 2022

Question 1 [CO1]

10

(b) IV Characteristics of the non-linear device N_D

- (a) **Identify** the equivalent linear circuit models for the 3 linear segments in the IV characteristics of the non-linear device N_D and **calculate** the model parameters. [3]
- (b) **Show** the alternative representation of the circuit in Figure (a). [2]
- (c) **Detect** the operating region for the device when $v_s = 3$ V and **calculate** the current through the device, i_s , for this voltage. [2]
- (d) **Apply** KVL and KCL to calculate the value of voltage source V_p when $v_s = 3$ V. [3]

Question 2 [CO2]

10

- (a) Assuming x, y, z are boolean variables, **analyze** the circuit on the left to find an expression of f in terms of x, y, and z.
- (b) **Analyze** the circuit on the left again to find the waveform (voltage vs time graph) of f assuming x, y, z are voltage signals, where y = 2 V, z = 3 V, and x has a waveform as shown in the figure on the right.
- (c) **Design** a circuit using ideal diodes to implement the logic function f = x + y + z. Here "+" denotes logical OR. [2]

Bonus: Design a circuit using ideal diodes to implement the XOR logic function between x and y, assuming you have access to x, \bar{x} , y, and \bar{y} .

Question 3 [CO1]

10

- (a) **Analyze** the following circuit to find the values of I_{D_1} , I_{D_2} , v_x , and v_y . Here, **use** the Method of Assumed State using the CVD model of diode with $V_{D_0} = 0.5 \text{ V}$. [7]
- (b) Validate your assumptions about the states of the diodes. [3]

Question 4 [CO2]

10

A voltage waveform $v_i = 10\sin(100\pi t)$ V is input to a full-wave rectifier with a load resistance of R = 50 k Ω . Silicon diodes are used in this circuit for which the forward drop is $V_{D_0} = 0.7$ V.

- (a) **Show** the circuit of the rectifier. **Label** the input and output voltages properly. [2]
- (b) Calculate the DC value of the output voltage. [1]
- (c) Contrast the value found in part (b) with that when a 5 μF capacitor is connected in parallel with the load.
- (d) **Identify** the two diodes will be ON in the positive half cycle. [1]

Now the two diodes from part (d) are replaced with Germanium diodes $[V_{D_0} = 0.2 \text{ V}].$

Set: 06

BRAC University

Semster: Spring 2020

Course No: CSE251

Course Title: ELECTRONIC DEVICES AND CIRCUITS

Section: 11
Faculty: ABA

Midterm

Full Marks: 40

TIme: 2 hours Date: March 10, 2022

Question 1 [CO1]

10

(b) IV Characteristics of the non-linear device N_D

- (a) **Identify** the equivalent linear circuit models for the 3 linear segments in the IV characteristics of the non-linear device N_D and **calculate** the model parameters. [3]
- (b) **Show** the alternative representation of the circuit in Figure (a). [2]
- (c) **Detect** the operating region for the device when $v_s = 3$ V and **calculate** the current through the device, i_s , for this voltage. [2]
- (d) **Apply** KVL and KCL to calculate the value of voltage source V_p when $v_s = 3$ V. [3]

Question 2 [CO2]

10

- (a) Assuming x, y, z are boolean variables, **analyze** the circuit on the left to find an expression of f in terms of x, y, and z.
- (b) **Analyze** the circuit on the left again to find the waveform (voltage vs time graph) of f assuming x, y, z are voltage signals, where y = 2 V, z = 3 V, and x has a waveform as shown in the figure on the right.
- (c) **Design** a circuit using ideal diodes to implement the logic function f = x + y + z. Here "+" denotes logical OR. [2]

Bonus: Design a circuit using ideal diodes to implement the XOR logic function between x and y, assuming you have access to x, \bar{x} , y, and \bar{y} .

Question 3 [CO1]

10

- (a) **Analyze** the following circuit to find the values of I_{D_1} , I_{D_2} , v_x , and v_y . Here, **use** the Method of Assumed State using the CVD model of diode with $V_{D_0} = 0.5 \text{ V}$. [7]
- (b) Validate your assumptions about the states of the diodes. [3]

Question 4 [CO2]

10

A voltage waveform $v_i = 10\sin(100\pi t)$ V is input to a full-wave rectifier with a load resistance of R = 50 k Ω . Silicon diodes are used in this circuit for which the forward drop is $V_{D_0} = 0.7$ V.

- (a) **Show** the circuit of the rectifier. **Label** the input and output voltages properly. [2]
- (b) Calculate the DC value of the output voltage. [1]
- (c) Contrast the value found in part (b) with that when a 5 μF capacitor is connected in parallel with the load.
- (d) **Identify** the two diodes will be ON in the positive half cycle. [1]

Now the two diodes from part (d) are replaced with Germanium diodes $[V_{D_0} = 0.2 \text{ V}].$

Set: 07

BRAC University

Semster: Spring 2020

Course No: CSE251

Course Title: ELECTRONIC DEVICES AND CIRCUITS

Section: 11
Faculty: ABA

Midterm

Full Marks: 40 TIme: 2 hours

Date: March 10, 2022

Question 1 [CO1]

10

(a) A circuit with a non-linear device N_D

(b) IV Characteristics of the non-linear device N_D

- (a) **Identify** the equivalent linear circuit models for the 3 linear segments in the IV characteristics of the non-linear device N_D and **calculate** the model parameters. [3]
- (b) **Show** the alternative representation of the circuit in Figure (a). [2]
- (c) **Detect** the operating region for the device when $v_s = 3$ V and **calculate** the current through the device, i_s , for this voltage. [2]
- (d) **Apply** KVL and KCL to calculate the value of voltage source V_p when $v_s = 3$ V. [3]

Question 2 [CO2]

10

- (a) Assuming x, y, z are boolean variables, **analyze** the circuit on the left to find an expression of f in terms of x, y, and z.
- (b) **Analyze** the circuit on the left again to find the waveform (voltage vs time graph) of f assuming x, y, z are voltage signals, where y = 2 V, z = 3 V, and x has a waveform as shown in the figure on the right. [5]
- (c) **Design** a circuit using ideal diodes to implement the logic function f = x + y + z. Here "+" denotes logical OR. [2]

Bonus: Design a circuit using ideal diodes to implement the XOR logic function between x and y, assuming you have access to x, \bar{x} , y, and \bar{y} .

Question 3 [CO1]

10

- (a) **Analyze** the following circuit to find the values of I_{D_1} , I_{D_2} , v_x , and v_y . Here, **use** the Method of Assumed State using the CVD model of diode with $V_{D_0} = 0.5 \text{ V}$. [7]
- (b) Validate your assumptions about the states of the diodes. [3]

Question 4 [CO2]

10

A voltage waveform $v_i = 10\sin(100\pi t)$ V is input to a full-wave rectifier with a load resistance of R = 50 k Ω . Silicon diodes are used in this circuit for which the forward drop is $V_{D_0} = 0.7$ V.

- (a) **Show** the circuit of the rectifier. **Label** the input and output voltages properly. [2]
- (b) Calculate the DC value of the output voltage. [1]
- (c) Contrast the value found in part (b) with that when a 5 μF capacitor is connected in parallel with the load.
- (d) **Identify** the two diodes will be ON in the positive half cycle. [1]

Now the two diodes from part (d) are replaced with Germanium diodes $[V_{D_0} = 0.2 \text{ V}].$

Set: 08

BRAC University

Semster: Spring 2020

Course No: CSE251

Course Title: ELECTRONIC DEVICES AND CIRCUITS

Section: 11
Faculty: ABA

Midterm

Full Marks: 40 TIme: 2 hours

Date: March 10, 2022

Question 1 [CO1]

10

 i_s (mA)

- (a) A circuit with a non-linear device N_D
- (b) IV Characteristics of the non-linear device N_D
- (a) **Identify** the equivalent linear circuit models for the 3 linear segments in the IV characteristics of the non-linear device N_D and **calculate** the model parameters. [3]
- (b) **Show** the alternative representation of the circuit in Figure (a). [2]
- (c) **Detect** the operating region for the device when $v_s = 3$ V and **calculate** the current through the device, i_s , for this voltage. [2]
- (d) **Apply** KVL and KCL to calculate the value of voltage source V_p when $v_s = 3$ V. [3]

Question 2 [CO2]

10

- (a) Assuming x, y, z are boolean variables, **analyze** the circuit on the left to find an expression of f in terms of x, y, and z.
- (b) **Analyze** the circuit on the left again to find the waveform (voltage vs time graph) of f assuming x, y, z are voltage signals, where y = 2 V, z = 3 V, and x has a waveform as shown in the figure on the right.
- (c) **Design** a circuit using ideal diodes to implement the logic function f = x + y + z. Here "+" denotes logical OR. [2]

Bonus: Design a circuit using ideal diodes to implement the XOR logic function between x and y, assuming you have access to x, \bar{x} , y, and \bar{y} .

Question 3 [CO1]

10

- (a) **Analyze** the following circuit to find the values of I_{D_1} , I_{D_2} , v_x , and v_y . Here, **use** the Method of Assumed State using the CVD model of diode with $V_{D_0} = 0.5 \text{ V}$. [7]
- (b) Validate your assumptions about the states of the diodes. [3]

Question 4 [CO2]

10

A voltage waveform $v_i = 10\sin(100\pi t)$ V is input to a full-wave rectifier with a load resistance of R = 50 k Ω . Silicon diodes are used in this circuit for which the forward drop is $V_{D_0} = 0.7$ V.

- (a) **Show** the circuit of the rectifier. **Label** the input and output voltages properly. [2]
- (b) Calculate the DC value of the output voltage. [1]
- (c) Contrast the value found in part (b) with that when a 5 μF capacitor is connected in parallel with the load.
- (d) **Identify** the two diodes will be ON in the positive half cycle. [1]

Now the two diodes from part (d) are replaced with Germanium diodes $[V_{D_0} = 0.2 \text{ V}].$

Set: 09

BRAC University

Semster: Spring 2020

Course No: CSE251

Course Title: ELECTRONIC DEVICES AND CIRCUITS

Section: 11

Faculty: ABA

Midterm

Full Marks: 40

TIme: 2 hours Date: March 10, 2022

Question 1 [CO1]

10

(b) IV Characteristics of the non-linear device N_D

- (a) **Identify** the equivalent linear circuit models for the 3 linear segments in the IV characteristics of the non-linear device N_D and **calculate** the model parameters. [3]
- [2](b) **Show** the alternative representation of the circuit in Figure (a).
- (c) **Detect** the operating region for the device when $v_s = 3 \text{ V}$ and **calculate** the current through the device, i_s , for this voltage. [2]
- (d) Apply KVL and KCL to calculate the value of voltage source V_p when $v_s = 3$ V. [3]

Question 2 [CO2]

10

- (a) Assuming x, y, z are boolean variables, **analyze** the circuit on the left to find an expression of f in terms of x, y, and z.
- (b) **Analyze** the circuit on the left again to find the waveform (voltage vs time graph) of f assuming x, y, z are voltage signals, where y = 2 V, z = 3 V, and x has a waveform as shown in the figure on the right.
- (c) **Design** a circuit using ideal diodes to implement the logic function f = x + y + z. Here "+" denotes logical OR. [2]

Bonus: Design a circuit using ideal diodes to implement the XOR logic function between x and y, assuming you have access to x, \bar{x} , y, and \bar{y} .

Question 3 [CO1]

10

- (a) **Analyze** the following circuit to find the values of I_{D_1} , I_{D_2} , v_x , and v_y . Here, **use** the Method of Assumed State using the CVD model of diode with $V_{D_0} = 0.5 \text{ V}$. [7]
- (b) Validate your assumptions about the states of the diodes. [3]

Question 4 [CO2]

10

A voltage waveform $v_i = 10\sin(100\pi t)$ V is input to a full-wave rectifier with a load resistance of R = 50 k Ω . Silicon diodes are used in this circuit for which the forward drop is $V_{D_0} = 0.7$ V.

- (a) **Show** the circuit of the rectifier. **Label** the input and output voltages properly. [2]
- (b) Calculate the DC value of the output voltage. [1]
- (c) Contrast the value found in part (b) with that when a 5 μF capacitor is connected in parallel with the load.
- (d) **Identify** the two diodes will be ON in the positive half cycle. [1]

Now the two diodes from part (d) are replaced with Germanium diodes $[V_{D_0} = 0.2 \text{ V}].$

Set: 10

BRAC University

Semster: Spring 2020 Course No: CSE251

Course Title: ELECTRONIC DEVICES AND CIRCUITS

Course Title: ELECTRONIC DEVICES AND CIRCUITS Section: 11

Faculty: ABA

Midterm

Full Marks: 40

TIme: 2 hours Date: March 10, 2022

Question 1 [CO1]

10

- (b) IV Characteristics of the non-linear device N_D
- (a) **Identify** the equivalent linear circuit models for the 3 linear segments in the IV characteristics of the non-linear device N_D and **calculate** the model parameters. [3]
- (b) **Show** the alternative representation of the circuit in Figure (a). [2]
- (c) **Detect** the operating region for the device when $v_s = 3$ V and **calculate** the current through the device, i_s , for this voltage. [2]
- (d) **Apply** KVL and KCL to calculate the value of voltage source V_p when $v_s = 3$ V. [3]

Question 2 [CO2]

10

- (a) Assuming x, y, z are boolean variables, **analyze** the circuit on the left to find an expression of f in terms of x, y, and z.
- (b) **Analyze** the circuit on the left again to find the waveform (voltage vs time graph) of f assuming x, y, z are voltage signals, where y = 2 V, z = 3 V, and x has a waveform as shown in the figure on the right.
- (c) **Design** a circuit using ideal diodes to implement the logic function f = x + y + z. Here "+" denotes logical OR. [2]

Bonus: Design a circuit using ideal diodes to implement the XOR logic function between x and y, assuming you have access to x, \bar{x} , y, and \bar{y} .

Question 3 [CO1]

10

- (a) **Analyze** the following circuit to find the values of I_{D_1} , I_{D_2} , v_x , and v_y . Here, **use** the Method of Assumed State using the CVD model of diode with $V_{D_0} = 0.5 \text{ V}$. [7]
- (b) Validate your assumptions about the states of the diodes. [3]

Question 4 [CO2]

10

A voltage waveform $v_i = 10\sin(100\pi t)$ V is input to a full-wave rectifier with a load resistance of R = 50 k Ω . Silicon diodes are used in this circuit for which the forward drop is $V_{D_0} = 0.7$ V.

- (a) **Show** the circuit of the rectifier. **Label** the input and output voltages properly. [2]
- (b) Calculate the DC value of the output voltage. [1]
- (c) Contrast the value found in part (b) with that when a 5 μF capacitor is connected in parallel with the load.
- (d) **Identify** the two diodes will be ON in the positive half cycle. [1]

Now the two diodes from part (d) are replaced with Germanium diodes $[V_{D_0} = 0.2 \text{ V}].$