Q1. Data processing

(1) Tokenizer

使用 Hugging Face 的 Bert Tokenizer。Bert Tokenizer 會將 word 轉成 basic token,然後再把這些 basic token 轉成 word-piece token 用於 sub-word,這些 token 會用 id(integer)記錄下來。Tokenizer 也新增 special token 如[CLS],[MASK], [SEP] 到要轉換的句子裡。

(2) Answer Span

 How did you convert the answer span start/end position on characters to position on tokens after BERT tokenization?

BertTokenizer 的回傳 tokenized_examples 中,有 offset_mapping 的 attribute 可以將 token 轉回成原本 char 的 position 以及 sequence_id 可以得到 sequence。

train.json 中可以得到 answer 的 start_char position 以及 text 的長度,相加後可得到 end_char position。

接者初始化 start_token_index 及 end_token_index 在此 sequence 的頭跟尾,一直迴圈到 offset_mapping[start_token_index]為 start_char。此時 start_token 對應到的就是 answer span 中的開始,而用相同的做法也可找到結尾。

After your model predicts the probability of answer span start/end position, what rules did you apply to determine the final start/end position?
找到該 example 可能 start logits 與 end logits 記錄前 20 個機率最高的 span, 20 個裡面機率最高的就是輸出的 answer span

Q2. Modeling with BERTs and their variants

(1) Describe

Model

Paragraph selection: bert-base-chinese

■ Span selection: hfl/chinese-roberta-wwm-ext

Performance

Paragraph selection Accuracy: 0.9557

■ Span selection EM: 81.887

Loss function

Paragraph selection: Cross-Entropy

■ Span selection: Cross-Entropy

Optimizer

Paragraph selection: AdamW

Span selection: AdamW

- Learning Rate
 - Paragraph selection: 3e-5
 - Span selection: 3e-5
- Batch Size
 - Paragraph selection: 2
 - Span selection: 2

(2) Another Type(Span Selection)

- Model: hfl/chinese-bert-wwm-ext
- Peformance EM: 78.531

•

Q3. Curves

(1) Loss Curve

每 2000 步紀錄一次 validation 的 total loss

(2) EM Curve

每 2000 步紀錄一次 validation 的 Exact Match

Q4. Pre-trained vs Not Pre-trained