

Préparation des librairies de séquençage avec le kit de préparation de l'ADN d'Illumina

À utiliser avec le kit de préparation de l'ADN d'Illumina (anciennement kit Nextera Flex).

Note: Toujours centrifuger les plaques et les tubes avant de les ouvrir afin de minimiser le risque de contamination.

Note : Pour éviter toute contamination croisée, changer d'embout entre chaque échantillon lors de l'ajout ou du transfert d'échantillons ou de mélanges maîtres de réactifs.

Note: Si vous utilisez des tubes à 8 barrettes dans le thermocycleur, il est important d'inclure au moins 3 barrettes de tubes au total pour équilibrer la pression du couvercle (les tubes "BALANCE" vides sont acceptables).

Note: Lors de la préparation des réactions PCR, il est important de toujours travailler sur de la glace (ou des blocs froids) afin d'éviter que les composants thermoréactifs ne s'activent prématurément. En outre, gardez à l'esprit le temps nécessaire au couvercle de votre thermocycleur pour atteindre la température de réaction, et préchauffez votre thermocycleur en conséquence.

Note : Toujours laisser les billes SPRI s'équilibrer à la température ambiante pendant 30 minutes avant de les utiliser.

Fournitures

Matériel:

- → Pipette P20 (pipette multicanaux en option)
- → Pipette P200 (pipette multicanaux en option)
- → Thermocycleur
- \rightarrow Centrifugeuse pour tubes
- → Centrifugeuse pour plaques
- \rightarrow Vortex
- → Aimant pour plaques à 96 puits
- → Scelleur de plaques
- \rightarrow Minuterie
- → Fluorimètre QuBit
- → Bioanalyseur

Consommables:

- → Plaques PCR à 96 puits
- → Plaque de stockage Deepwell de 96 puits en polypropylène de 0,8 ml (plaque Midi) (2)
- → Joint adhésif pour plaque Microseal B (utilisé pour couvrir les échantillons pendant les réactions)
- → Joint d'étanchéité Microseal F (utilisé pour le stockage à long terme)
- → Tubes de microcentrifugation de 1,5 ml
- → Tubes à 8 barrettes avec bouchon
- → Embouts de pipette : P20, P200
- → EPI et matériel de biosécurité appropriés

Réactifs:

- → Kit de préparation d'ADN Illumina
- → IDT par Illumina UD Indexes
- → Eau sans nucléase
- → Éthanol

Préparation pré-protocole

Préparation de la plaque d'indexation

1. Déterminez l'ensemble des index à utiliser. IDT for Illumina UD Indexes peut être utilisé sur n'importe quelle plateforme de séquençage Illumina, tandis que les Illumina Nextera CD Indexes ne doivent être utilisés que sur les plateformes MiSeq et NextSeq (pour plus d'informations, voir <u>ce lien</u>).

Note : Veuillez noter que <u>différents</u> puits de la <u>même</u> plaque d'indexation doivent être utilisés pour les échantillons d'un lot de séquençage (c'est-à-dire que les puits ne peuvent pas être mélangés et appariés sur différentes plaques d'indexation).

Note: chaque puits d'une plaque d'indexation ne peut être utilisé qu'une seule fois (pour un seul échantillon, dans un seul lot). Si vous n'avez pas utilisé tous les puits d'une plaque d'indexation, vous pouvez recongeler la plaque et utiliser les puits non ouverts dans un lot de séquençage ultérieur.

2. En utilisant le tableau approprié de l'annexe A, indiquez l'index ou les index utilisés pour chaque échantillon (pour les index UD, indiquez l'index sélectionné; pour les index CD, indiquez les deux valeurs de la cellule appropriée). Il s'agit ici d'une étape cruciale du processus : si vous oubliez de noter les index utilisés, vos données de séquençage ne pourront pas être traitées dans le pipeline bioinformatique.

Tagmentation de l'ADN génomique

Cette étape utilise les transposomes liés à des billes pour marquer l'ADN, un processus qui fragmente et marque l'ADN avec des séquences adaptatrices.

Matériel:

- → Pipette P20 (pipette multicanaux en option)
- → Pipette P200
- → Thermocycleur
- → Centrifugeuse pour tubes
- \rightarrow Vortex

Consommables:

- → Plagues PCR à 96 puits
- → Joint pour plaques adhésif Microseal B
- → Tubes de microcentrifugation de 1,5 ml
- → Barrette de 8 tubes
- → Embouts de pipette : P20, P200

Réactifs:

- → Transposomes liés à des billes (BLT) du kit de préparation de l'ADN d'Illumina
- → Tampon de tagmentation 1 (TB1) du kit de préparation de l'ADN d'Illumina
- → Eau exempte de nucléase

Protocole:

- 1. Amener les transposomes liés à des billes (BLT) à température ambiante. Mélanger à l'aide d'un vortex. Ne pas centrifuger avant de pipeter. Ne pas utiliser de BLT conservés à des températures inférieures à 2°C.
- 2. Amener le tampon de tagmentation (TB1) à température ambiante. Mélanger au vortex.
- 3. Préparer 20-23* échantillons d'ADN plus 1 contrôle négatif d'eau sans nucléase par librairie. Ajouter 2-30μL d'ADN dans chaque puits d'une plaque PCR à 96 puits de façon à ce que la quantité totale d'entrée pour chaque échantillon soit de 10-24 ng**. Veiller à ce que la même quantité d'ADN soit ajoutée pour chaque échantillon.

Note: Le nombre d'échantillons d'ADN à multiplexer dépend de la longueur du génome, de la couverture souhaitée et de la technologie de séquençage utilisée. Cette recommandation s'applique à des génomes bactériens de ~4M, à une couverture de ~30x et à un cycle MiSeq avec le kit de réactifs V2.

Note: L'ADN d'entrée peut être aussi petit que 1 ng et aussi grand que 500 ng. La quantité d'entrée doit être enregistrée pour chaque échantillon et le nombre de cycles PCR sous « Amplify Tagmented DNA » doit être ajusté en conséquence. Voir le guide de référence relatif à la préparation de l'ADN d'Illumina pour les ajustements si l'ADN d'entrée est <10 ng ou >24 ng.

- 4. Si le volume d'ADN d'un échantillon est $<30\mu$ L, ajouter de l'eau sans nucléase à l'échantillon d'ADN pour porter le volume total à 30μ L.
- 5. Vortexer vigoureusement le BLT (bouchon jaune) pendant 10 secondes pour le remettre en suspension. Répéter l'opération si nécessaire.
- 6. Préparer la réaction suivante par échantillon :

Composant	Volume
BLT	10 μL
TB1	10 μL
ADN	30 μL
Volume total	50 μL

Note : Le BLT et le TB1 peuvent être combinés à l'avance dans un mélange maître. Vortexer soigneusement le mélange maître de tagmentation pour le remettre en suspension et, en utilisant un nouvel embout de pipette pour chaque échantillon, ajouter $20\mu L$ de mélange maître à chaque puits de la plaque contenant un échantillon.

- 7. Pipeter chaque échantillon 10 fois pour le remettre en suspension. Utiliser de nouveaux embouts pour chaque échantillon.
- 8. Boucher la plaque avec le Microseal B ou un autre scellant optiquement clair.
- 9. Effectuer les opérations suivantes sur un thermocycleur :

Température	Durée
55°C	15 min
10°C	∞

Note: Choisir l'option couvercle de préchauffage et régler à 100°C. Régler le volume de réaction à 50μL.

Nettoyage après tagmentation

Cette étape permet de laver l'ADN marqué par l'adaptateur sur la BLT avant l'amplification par PCR.

Matériel:

- → Aimant pour plaque à 96 puits
- → Pipette P20 (pipette multicanaux en option)
- → Pipette P200 (pipette multicanaux en option)
- → Thermocycleur
- → Centrifugeuse pour tubes
- \rightarrow Vortex

Consommables:

- → Adhésif pour plaque Microseal B
- → Embouts de pipette : P20, P200

Réactifs:

- → Tagment Stop Buffer (TSB) du kit de préparation de l'ADN d'Illumina
- → Tagment Wash Buffer (TWB) du kit de préparation de l'ADN d'Illumina

Protocole:

- 1. Si des précipités sont observés dans le Tagment Stop Buffer (TSB), chauffer à 37°C pendant 10 minutes, puis vortexer jusqu'à ce que les précipités soient dissous. Utiliser à température ambiante.
- 2. Ajouter 10µL de TSB à chaque puits d'échantillon de la réaction de tagmentation.
- 3. Pipeter lentement chaque puits 10 fois pour remettre les billes en suspension.
- 4. Sceller la plaque avec le Microseal B.
- 5. Effectuer les opérations suivantes sur un thermocycleur :

Température	Durée
37°C	15 min
10°C	∞

Note: Choisir l'option couvercle de préchauffage et régler à 100°C. Régler le volume de réaction à 60μL.

- 6. Placer la plaque sur le support magnétique et attendre que le liquide soit clair (~3 minutes).
- 7. Retirer et jeter le surnageant, en veillant à ne pas perturber les billes.
- 8. Retirer la plaque d'échantillon du support magnétique et utiliser une technique de pipetage délibérément lente pour ajouter 100 μl de TWB (à température ambiante) directement sur les billes. Une technique de pipetage délibérément lente minimise le potentiel de moussage du TWB afin d'éviter une aspiration incorrecte du volume et un mélange incomplet.
- 9. Pipeter lentement jusqu'à ce que les billes soient entièrement remises en suspension.

- 10. Placer la plaque sur le support magnétique et attendre que le liquide soit clair (~3 minutes).
- 11. À l'aide d'une pipette multicanaux, retirer et jeter le surnageant.
- 12. Répéter les étapes 8 à 11 pour un total de deux lavages.
- 13. Retirer la plaque du support magnétique et utiliser une technique de pipetage délibérément lente pour ajouter 100µl de TWB directement sur les billes.
- 14. Pipeter lentement chaque puits pour remettre les billes en suspension.
- 15. Sceller la plaque et la placer sur le support magnétique jusqu'à ce que le liquide soit clair (~3 minutes). Garder sur le support magnétique jusqu'à l'étape 4 de la section Amplification de l'ADN tagmenté ci-dessous. Le TWB reste dans les puits pour éviter un séchage excessif des billes.

Amplifier l'ADN tagmenté

Cette étape amplifie l'ADN tagmenté à l'aide d'un programme PCR à cycle limité. L'étape PCR ajoute les adaptateurs et les séquences nécessaires à la génération de grappes de séquençage.

Matériel:

- → Aimant pour plaque à 96 puits
- → Pipette P20 (pipette multicanaux en option)
- → Pipette P200 (pipette multicanaux en option)
- → Thermocycleur
- → Centrifugeuse pour tubes
- → Centrifugeuse pour plaques
- → Vortex

Consommables:

- → Adhésif pour plaque Microseal B
- → Tubes de microcentrifugation de 1,5 ml
- → Embouts de pipette : P20, P200

Réactifs:

- → Mélange PCR amélioré (EPM) du kit de préparation de l'ADN d'Illumina
- → Adaptateurs d'index (tubes ou plaques)
- → Eau exempte de nucléase

Protocole:

- 1. Décongeler l'EPM sur de la glace. Inverser pour mélanger, puis centrifuger brièvement.
- 2. Décongeler les adaptateurs d'index à température ambiante. Essorer brièvement avant utilisation.
- 3. Préparer le mélange maître suivant par échantillon :

Composant	Volume
EPM	20 μL
Eau exempte de nucléase	20 μL
Volume total	40 μL

Note: Agiter brièvement le mélange maître au vortex et centrifuger à 280 x g pendant 10 secondes.

- 4. La plaque d'ADN tagmenté reposant sur le support magnétique, utiliser une pipette de 200μL pour retirer et jeter le surnageant J (la mousse qui reste sur les parois des puits n'a pas d'effet négatif sur la librairie).
- 5. Retirer la plaque de l'aimant et ajouter *immédiatement* 40µL de mélange maître directement sur les billes. Utiliser un embout de pipette différent pour chaque puits d'échantillon.
- 6. Mélanger immédiatement à la pipette jusqu'à ce que les billes soient entièrement remises en suspension. Sceller la plaque d'échantillon et centrifuger à 280 x g pendant 3 secondes.
- 7. Préparer la plaque d'index sélectionnée en la centrifugeant à 1000 x g pendant 1 minute pour éliminer le liquide du joint.
- 8. Ajouter 10µL de l'adaptateur d'index approprié à chaque échantillon, en prenant soin d'éviter toute contamination. Changer les embouts de pipette entre chaque ajout et s'assurer d'avoir noté le(s) index ajouté(s) à chaque échantillon.
- 9. À l'aide d'une pipette réglée sur 40 μl, pipeter 10 fois pour mélanger. Sinon, sceller la plaque et utiliser un agitateur de plaque à 1600 tr/min pendant 1 minute.
- 10. Sceller la plaque avec le Microseal B et centrifuger à 280 x g pendant 30 secondes.
- 11. Effectuer les opérations suivantes sur un thermocycleur :

Température	Durée
68°C	3 min
98°C	3 min
98°C	45 sec
62°C	30 sec
68°C	2 min
Répéter les étapes 3, 4 et 5 pour un to	otal de 8 cycles.
68°C	1 min
10°C	8

Note : Choisir l'option couvercle de préchauffage et régler à 100° C. Régler le volume de réaction à 50μ L. Attendre que l'appareil atteigne sa température avant d'ajouter les échantillons.

Note : Le nombre de cycles suppose une entrée de 10 à 24 ng d'ADN. Consultez le Guide de référence pour la préparation de l'ADN d'Illumina pour connaître les recommandations relatives aux cycles pour différentes valeurs d'entrée.

12. À ce stade, l'ADN peut être conservé à 2-8 °C pendant 3 jours maximum.

Nettoyer les librairies

Cette étape utilise la procédure de purification des billes double face pour purifier les librairies amplifiées.

Matériel:

- → Support de plaque magnétique
- → Pipette P20 (pipette multicanaux en option)
- → Pipette P200 (pipette multicanaux en option)
- → Thermocycleur
- → Centrifugeuse pour tubes
- → Centrifugeuse pour plaques
- \rightarrow Vortex

Consommables:

- → Plaque de stockage Deepwell 96 puits en polypropylène 0,8 ml (plaque Midi) (2)
- → Plaque PCR 96 puits
- → Joint adhésif Microseal B pour plaques
- → Joint d'étanchéité Microseal F
- → Tubes de microcentrifugation de 1,5 ml
- → Embouts de pipette : P20, P200

Réactifs:

- → Billes de purification d'échantillon (SPB) du kit de préparation de l'ADN d'Illumina
- → Tampon de remise en suspension (RSB) du kit de préparation de l'ADN d'Illumina
- → Éthanol à 80 % fraîchement préparé
- → Eau exempte de nucléase

Protocole:

- Laisser les billes de purification d'échantillons à température ambiante pendant 30 minutes avant de les utiliser. Vortexer les billes avant *chaque* utilisation et pipeter lentement en raison de la viscosité de la solution.
- 2. Décongeler le RSB et l'amener à température ambiante. Mélanger au vortex.
- 3. Centrifuger à 280 × g pendant 1 minute pour recueillir le contenu au fond du puits.
- 4. Placer la plaque sur le support magnétique et attendre que le liquide soit clair (~5 minutes).
- 5. Transférer 45 μ l de surnageant de chaque puits de la plaque PCR dans le puits correspondant d'une nouvelle plaque midi.
- 6. Vortexer et retourner le SPB plusieurs fois pour le remettre en suspension.
- 7. Ajouter 40 µl d'eau exempte de nucléase à chaque puits contenant le surnageant.
- 8. Ajouter 45 µl de SPB à chaque puits contenant le surnageant.

Protocole de séquençage d'Illumina

- 9. Pipeter chaque puits 10 fois pour mélanger. Sinon, sceller la plaque et utiliser un agitateur de plaques à 1600 tr/min pendant 1 minute.
- 10. Sceller la plaque et incuber à température ambiante pendant 5 minutes.
- 11. Placer sur le support magnétique et attendre que le liquide soit clair (~5 minutes).
- 12. Pendant l'incubation, vortexer soigneusement le SPB (tube de stock non dilué), puis ajouter 15 μ l à chaque puits d'une nouvelle plaque midi.
- 13. Transférer 125 μl de surnageant de chaque puits de la première plaque dans le puits correspondant de la seconde plaque (contenant 15 μl de SPB non dilué).
- 14. Pipeter chaque puits de la seconde plaque 10 fois pour mélanger. Alternativement, sceller la plaque et utiliser un agitateur de plaque à 1600 tr/min pendant 1 minute.
- 15. Jeter la première plaque.
- 16. Incuber la plaque midi scellée à température ambiante pendant 5 minutes.
- 17. Placer sur le support magnétique et attendre que le liquide soit clair (~5 minutes).
- 18. Sans déranger les billes, retirer et jeter le surnageant.
- 19. La plaque étant sur le support magnétique, ajouter 200 μl d'EtOH frais à 80% sans mélanger.
- 20. Incuber pendant 30 secondes.
- 21. Sans perturber les billes, retirer et jeter le surnageant.
- 22. Répéter les étapes 19 à 21 pour un total de deux lavages.
- 23. Utiliser une pipette de 20 µl pour enlever et jeter l'EtOH résiduel.
- 24. Sécher à l'air sur le support magnétique pendant 5 minutes. Éviter de trop sécher les billes.
- 25. Retirer du support magnétique.
- 26. Ajouter 32 μl de RSB aux billes.
- 27. Remettre en suspension à l'aide d'une pipette.
- 28. Incuber à température ambiante pendant 2 minutes.
- 29. Placer la plaque sur le support magnétique et attendre que le liquide soit clair (~2 minutes).
- 30. Transférer 30 µl de surnageant dans une nouvelle plaque PCR à 96 puits.
- 31. À ce stade, les librairies peuvent être conservées congelées en toute sécurité (-25°C à 15°C) jusqu'à 30 jours.

Librairies collectives

Matériel:

- → Pipettes P20 (pipettes multicanaux en option)
- → Pipettes P200 (pipettes multicanaux en option)
- → Centrifugeuse pour tubes
- \rightarrow Vortex

Consommables:

- → Plaque PCR à 96 puits
- → Tubes de microcentrifugation de 1,5 ml
- → Embouts de pipette : P20, P200

Réactifs:

→ Eau exempte de nucléase

Protocole:

- 1. Quantifier chaque librairie individuellement à l'aide d'un fluorimètre Qubit.
- 2. Calculer la taille moyenne des fragments et évaluer la qualité des librairies à l'aide d'une TapeStation ou d'un BioAnalyseur.

Note : Ne pas mettre en commun les librairies qui sont principalement constituées de dimères d'amorces. La taille moyenne des fragments pour ce protocole est d'environ 600 pb. Les dimères d'amorce apparaîtront sur un BioAnalyzer ou une TapeStation sous la forme de fragments plus courts, d'une longueur d'environ 150-200 pb.

- 3. Diluer toutes les librairies à 5nM dans de l'eau exempte de nucléase.
- 4. Regrouper les librairies individuelles en quantités équimolaires en ajoutant 5 μl de chaque librairie à 5 nm.

Remarque : Ne regrouper les librairies de concentration <5nM que si la librairie est relativement exempte de dimères d'amorce. Dans ce cas, ajouter 5 μ l de la librairie sans diluer.

5. Exécuter à nouveau le Bioanalysateur pour obtenir la concentration finale des librairies regroupées et la taille des fragments.

Annexe A

1. *Si vous utilisez les index UD d'Illumina*, les dispositions des plaques A à D sont disponibles <u>ici</u> et dans les tableaux ci-dessous. La séquence spécifique associée à chaque index (nécessaire pour préparer une feuille d'échantillons) est disponible <u>ici</u>. Si vous regroupez moins de 8 échantillons, veuillez lire les « Stratégies de regroupement de deux à huit plex » de <u>ce site</u> avant de choisir les index à utiliser.

Plaque A/ensemble 1 IDT for Illumina UD Indexes

Le tableau suivant décrit la disposition des plaques pour IDT pour la Plaque A/Ensemble 1 des index UD d'Illumina. Notez l'index unique à ajouter à chaque échantillon.

Plaque B/Ensemble 2 IDT for Illumina UD Indexes

Le tableau suivant décrit la disposition des plaques pour IDT pour la Plaque B/Ensemble 2 des index UD d'Illumina. Notez l'index unique à ajouter à chaque échantillon.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	UDP0097	UDP0105	UDP0113	UDP0121	UDP0129	UDP0137	UDP0145	UDP0153	UDP0161	UDP0169	UDP0177	UDP0185
В	UDP0098	UDP0106	UDP0114	UDP0122	UDP0130	UDP0138	UDP0146	UDP0154	UDP0162	UDP0170	UDP0178	UDP0186
С	UDP0099	UDP0107	UDP0115	UDP0123	UDP0131	UDP0139	UDP0147	UDP0155	UDP0163	UDP0171	UDP0179	UDP0187
D	UDP0100	UDP0108	UDP0116	UDP0124	UDP0132	UDP0140	UDP0148	UDP0156	UDP0164	UDP0172	UDP0180	UDP0188
E	UDP0101	UDP0109	UDP0117	UDP0125	UDP0133	UDP0141	UDP0149	UDP0157	UDP0165	UDP0173	UDP0181	UDP0189
F	UDP0102	UDP0110	UDP0118	UDP0126	UDP0134	UDP0142	UDP0150	UDP0158	UDP0166	UDP0174	UDP0182	UDP0190
G	UDP0103	UDP0111	UDP0119	UDP0127	UDP0135	UDP0143	UDP0151	UDP0159	UDP0167	UDP0175	UDP0183	UDP0191
н	UDP0104	UDP0112	UDP0120	UDP0128	UDP0136	UDP0144	UDP0152	UDP0160	UDP0168	UDP0176	UDP0184	UDP0192

Plaque C/Ensemble 3 IDT for Illumina UD Indexes

Le tableau suivant décrit la disposition des plaques pour IDT pour la Plaque B/Ensemble 2 des index UD d'Illumina. Notez l'index unique à ajouter à chaque échantillon.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	UDP0193	UDP0201	UDP0209	UDP0217	UDP0225	UDP0233	UDP0241	UDP0249	UDP0257	UDP0265	UDP0273	UDP0281
В	UDP0194	UDP0202	UDP0210	UDP0218	UDP0226	UDP0234	UDP0242	UDP0250	UDP0258 V2	UDP0266	UDP0274	UDP0282
С	UDP0195	UDP0203	UDP0211	UDP0219	UDP0227	UDP0235	UDP0243	UDP0251	UDP0259	UDP0267	UDP0275	UDP0283
D	UDP0196	UDP0204	UDP0212	UDP0220	UDP0228	UDP0236	UDP0244	UDP0252 V2	UDP0260	UDP0268	UDP0276	UDP02854
E	UDP0197	UDP0205	UDP0213	UDP0221	UDP0229	UDP0237	UDP0245	UDP0253	UDP0261	UDP0269	UDP0277	UDP0285
F	UDP0198	UDP0206	UDP0214	UDP0222	UDP0230	UDP0238	UDP0246	UDP0254	UDP0262	UDP0270	UDP0278	UDP0286
G	UDP0199	UDP0207	UDP0215	UDP0223	UDP0231	UDP0239	UDP0247	UDP0255	UDP0263	UDP0271	UDP0279	UDP0287
н	UDP0200	UDP0208	UDP0216	UDP0224	UDP0232	UDP0240	UDP0248	UDP0256	UDP0264	UDP0272	UDP0280	UDP0288

Plaque D/Ensemble 4 IDT for Illumina UD Indexes

Le tableau suivant décrit la disposition des plaques pour IDT pour la Plaque B/Ensemble 2 des index UD d'Illumina. Notez l'index unique à ajouter à chaque échantillon.

	1	2	3	4	5	6	7	8	9	10	11	12
A	UDP0289 V2	UDP0297	UDP0305	UDP0313	UDP0321	UDP0329	UDP0337	UDP0345	UDP0353	UDP0361	UDP0369	UDP0377
В	UDP0290 V2	UDP0298	UDP0306	UDP0314	UDP0322	UDP0330	UDP0338	UDP0346	UDP0354	UDP0362	UDP0370	UDP0378
С	UDP0291 V2	UDP0299	UDP0307	UDP0315	UDP0323	UDP0331	UDP0339	UDP0347	UDP0355	UDP0363	UDP0371	UDP0379
D	UDP0292	UDP0300	UDP0308	UDP0316	UDP0324	UDP0332	UDP0340	UDP0348	UDP0356	UDP0364	UDP0372	UDP0380
E	UDP0293	UDP0301 V2	UDP0309	UDP0317	UDP0325	UDP0333	UDP0341	UDP0349	UDP0357	UDP0365	UDP0373	UDP0381
F	UDP0294	UDP0302	UDP0310	UDP0318	UDP0326	UDP0334	UDP0342	UDP0350	UDP0358	UDP0366	UDP0374	UDP0382
G	UDP0295	UDP0303	UDP0311	UDP0319	UDP0327	UDP0335	UDP0343	UDP0351	UDP0359	UDP0367	UDP0375	UDP0383
н	UDP0296	UDP0304	UDP0312	UDP0320	UDP0328	UDP0336	UDP0344	UDP0352	UDP0360	UDP0368	UDP0376	UDP0384

2. Si vous utilisez des index CD d'Illumina, la disposition des plaques pour les index CD d'ADN Nextera est disponible <u>ici</u> ou dans le tableau ci-dessous. La séquence spécifique associée à chaque index (nécessaire pour préparer la feuille d'échantillons) est disponible <u>ici</u>. Si vous regroupez moins de 8 échantillons, veuillez lire la section « Stratégies de regroupement de deux à huit plex » de <u>ce site</u> avant de choisir les index à utiliser.

Note: Vous devez noter les numéros H7 et H5 dans la cellule sélectionnée pour chaque échantillon.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	H701	H702	H703	H705	H707	H723	H706	H712	H720	H710	H711	H714
	H505	H506	H517									
В	H702	H703	H701	H707	H723	H705	H712	H720	H706	H711	H714	H710
	H517	H505	H506									
С	H703	H701	H702	H723	H705	H707	H720	H706	H712	H714	H710	H711
Ŭ	H506	H517	H505									
D	H705	H707	H723	H706	H712	H720	H710	H711	H714	H701	H702	H703
	H503											
E	H706	H712	H720	H710	H711	H714	H701	H702	H703	H705	H707	H723
-	H516											
F	H710	H711	H714	H701	H702	H703	H705	H707	H723	H706	H712	H720
	H522	H510	H513									
G	H711	H714	H710	H702	H703	H701	H707	H723	H705	H712	H720	H706
3	H513	H522	H510									
н	H714	H710	H711	H703	H701	H702	H723	H705	H707	H720	H706	H712
"	H510	H513	H522									