I. Proof of Lemma 1

In this Section, we present the proof of Lemma 1. For every order-i conditional independence (CI) test, we have a privacy budget of ϵ_i . Given a CI test statistic $f(\mathcal{D})$ with l_1 -sensitivity Δ , threshold T and margins (β_1,β_2) , we perturb the test statistic by Laplace noise defined as $Z = Lap(\frac{\Delta}{\epsilon_i})$, and check for conditional independence between $(v_a,v_b) \in \mathcal{G}$ conditioned on S as:

- (a) If $f(\mathcal{D}) + Z > T(1 + \beta_2) \implies$ delete edge (v_a, v_b) ,
- (b) If $f(\mathcal{D}) + Z < T(1 \beta_1) \implies \text{keep edge } (v_a, v_b)$,
- (c) Else keep edge (v_a, v_b) with probability $\frac{1}{2}$.

For the simplicity of notations, we define $f_{v_a,v_b|S}(\mathcal{D}) \triangleq f(\mathcal{D})$. **Type-I Error:** We now analyze the Type-I error relative to the unperturbed CI test, i.e., the private algorithm keeps the edge given that the unperturbed test statistic deletes the edge $f(\mathcal{D}) > T$. In other words, this can be written as follows:

$$\mathbb{P}(E_1^i) = \mathbb{P}(\text{Error}|f(\mathcal{D}) > T). \tag{1}$$

We next note that the error event occurs only for cases (b) and (c). We can bound the relative Type-I error as follows:

$$\mathbb{P}(E_1^i) = \mathbb{P}(\text{Error}|f(\mathcal{D}) > T)$$

$$\leq \frac{1}{2} \left(\mathbb{P}(f(\mathcal{D}) + Z \in [T(1 - \beta_1), T(1 + \beta_2)] | f(\mathcal{D}) > T) \right)$$
(2)

$$+ \mathbb{P}(f(\mathcal{D}) + Z < T(1 - \beta_1)|f(\mathcal{D}) > T) \tag{3}$$

$$\leq \frac{c_1}{2} + \mathbb{P}(f(\mathcal{D}) + Z < T(1 - \beta_1)|f(\mathcal{D}) > T) \tag{4}$$

$$\leq \frac{c_1}{2} + \frac{1}{2} \exp\left(\frac{-T\beta_1 \epsilon_i}{\Delta}\right). \tag{5}$$

where the last inequality follows from the Laplacian tail bound and using the fact that $f(\mathcal{D}) > T$; and we have defined c_1 as $c_1 \triangleq \mathbb{P}(f(\mathcal{D}) + Z \in [T(1-\beta_1), T(1+\beta_2)]|f(\mathcal{D}) > T)$. Upper-bound on $\mathbb{P}[f(\mathcal{D}) + Z < T(1-\beta_1)|f(\mathcal{D}) > T]$ is obtained from Laplace Tail bound as:

$$\mathbb{P}[f(\mathcal{D}) + Z < T(1 - \beta_1)|f(\mathcal{D}) > T]$$

$$= \mathbb{P}[Z < T(1 - \beta_1) - f(\mathcal{D})]$$

$$= \frac{1}{2} \exp\left(\frac{T - T\beta_1 - f(\mathcal{D})}{\Delta/\epsilon_i}\right)$$

$$\leq \frac{1}{2} \exp\left(\frac{T - T\beta_1 - T}{\Delta/\epsilon_i}\right)$$

$$= \frac{1}{2} \exp\left(\frac{-T\beta_1 \epsilon_i}{\Delta}\right). \tag{6}$$

Type-II Error: Next we analyze the Type-II error relative to the unperturbed CI test, i.e., the differentially private algorithm deletes an edge given that the unperturbed CI test statistic keeps the edge, $f(\mathcal{D}) < T$. Mathematically,

$$\mathbb{P}[E_2^i] = \mathbb{P}(\text{Error}|f(\mathcal{D}) < T). \tag{7}$$

The type-II error occurs only for cases (a) and (c). Therefore, we can bound the Type-II error as:

$$\mathbb{P}(E_2^i) = \mathbb{P}(\text{Error}|f(\mathcal{D}) < T) \tag{8}$$

$$\leq \frac{1}{2} \left(P(f(\mathcal{D}) + Z \in [T(1 - \beta_1), T(1 + \beta_2)] | f(\mathcal{D}) < T) \right)$$

$$+ \mathbb{P}(f(\mathcal{D}) + Z > T(1 + \beta_2) | f(\mathcal{D}) < T) \tag{9}$$

$$\leq \frac{c_2}{2} + \mathbb{P}(f(\mathcal{D}) + Z > T(1 + \beta_2)|f(\mathcal{D}) < T)$$
 (10)

$$\leq \frac{c_2}{2} + \frac{1}{2} \exp\left(\frac{-T\beta_2 \epsilon_i}{\Delta}\right).$$
(11)

where the last inequality follows from the Laplacian tail bound and using the fact that $f(\mathcal{D}) < T$; and we have defined c_2 as $c_2 \triangleq \mathbb{P}(f(\mathcal{D}) + Z \in [T(1-\beta_1), T(1+\beta_2)]|f(\mathcal{D}) < T)$. The probability $\mathbb{P}[f(\mathcal{D}) + Z > T(1+\beta_2)|f(\mathcal{D}) < T]$ can also be upper bounded as:

$$\mathbb{P}[f(\mathcal{D}) + Z > T(1 + \beta_2)|f(\mathcal{D}) < T]$$

$$= \mathbb{P}[Z > T(1 + \beta_2) - f(\mathcal{D})]$$

$$= \frac{1}{2} \exp\left(-\frac{T + T\beta_2 - f(\mathcal{D})}{\Delta/\epsilon_i}\right)$$

$$\leq \frac{1}{2} \exp\left(-\frac{T + T\beta_2 - T}{\Delta/\epsilon_i}\right)$$

$$= \frac{1}{2} \exp\left(-\frac{T + T\beta_2 - T}{\Delta/\epsilon_i}\right).$$
(12)
$$= \frac{1}{2} \exp\left(-\frac{T\beta_2 \epsilon_i}{\Delta}\right).$$
(13)

II. SENSITIVITY ANALYSIS OF WEIGHTED KENDALL'S τ :

Conditional independence (CI) tests in Causal Graph Discovery (CGD) measures the dependence of one variable (v_a) on other (v_b) conditioned on a set of variables. Let, the CI test statistic for connected variable pairs (v_a, v_b) in graph $\mathcal G$ is $\tau(\mathcal D)$ for dataset $\mathcal D$ and $\tau(\mathcal D')$ for dataset $\mathcal D'$. For large samples, the test statistic $\tau(\cdot)$ follows a *Gaussian Distribution*. Therefore, the sensitivity can be bounded as:

$$\Delta(\Phi(\tau(\mathcal{D}))) = \sup_{\mathcal{D} \neq \mathcal{D}'} |\Phi(\tau(\mathcal{D})) - \Phi(\tau(\mathcal{D}'))|
\leq \Delta(\Phi(\cdot)) \cdot \Delta(\tau(\cdot))
= \sup_{\mathcal{D} \neq \mathcal{D}'} \frac{|\Phi(\tau(\mathcal{D})) - \Phi(\tau(\mathcal{D}'))|}{|\tau(\mathcal{D}) - \tau(\mathcal{D}')|} \cdot |\tau(\mathcal{D}) - \tau(\mathcal{D}')|
\leq L_{\Phi} \cdot \sup |\tau(\mathcal{D}) - \tau(\mathcal{D}')|.$$
(14)

Here, $\sup_{\mathcal{D} \neq \mathcal{D}'} |\tau(\mathcal{D}) - \tau(\mathcal{D}')|$ is the l_1 -sensitivity of the CI test statistic for dataset \mathcal{D} and \mathcal{D}' , and Φ is the PDF of standard normal distribution. As, $\Phi(\cdot)$ is differentiable, therefore the Lipschitz constant (L_Φ) can be upper bounded as $L_\Phi \leq \frac{1}{\sqrt{2\pi}}$. Therefore, the sensitivity can easily be calculated with the sensitivity of the weighted test statistic.

 l_1 -sensitivity analysis: For large sample size (n >> 1), Kendall's τ test statistic follows Gaussian Distribution with zero mean and variance $\frac{2(2n+5)}{9n(n-1)}$ where n is the number of i.i.d. samples. Given a dataset \mathcal{D} with d-features, the conditional dependence of between variables (v_a, v_b) conditioned on set S can be measured with Kendall's τ as a CI test statistic. For instance, the data is split according to the unique values of set S into k-bins. For each i^{th} -bin test statistic τ_i is calculated and

weighted average of all τ_i represents the test statistic for the entire dataset. The weighted average [8] is measures as follows:

$$\tau = \frac{\sum_{i=1}^k w_i \tau_i}{\sqrt{\sum_{i=1}^k w_i}}.$$

where w_i is the inverse of the variance $w_i = \frac{9n_i(n_i-1)}{2(2n_i+5)}$

For the scope of this paper, we consider the *Lipschitz Constant* of Gaussian distribution while calculating the sensitivity. The weighted average (τ) essentially follows the standard normal distribution, i.e., $\tau \sim \mathcal{N}(0,1)$. Hence, the l_1 -sensitivity can be defined as:

$$\Delta = |\Phi(\tau(\mathcal{D}) - \Phi(\tau(\mathcal{D}'))|
= \frac{|\Phi(\tau(\mathcal{D}) - \Phi(\tau(\mathcal{D}'))|}{|\tau(\mathcal{D}) - \tau(\mathcal{D}')|} \cdot |\tau(\mathcal{D}) - \tau(\mathcal{D}')|
\leq L_{\Phi}|\tau(\mathcal{D}) - \tau(\mathcal{D}')| \leq \frac{1}{\sqrt{2\pi}}|\tau(\mathcal{D}) - \tau(\mathcal{D}')|.$$
(15)

The sensitivity of the weighted Kendall's τ can be also upper-bounded as:

$$\Delta(\tau) = \max_{|\mathcal{D}' - \mathcal{D}| \le 1} |\tau(\mathcal{D}') - \tau(\mathcal{D})|$$

$$\le \Delta(\tau_i)\Delta(w_i)$$

The sensitivity of τ_i depends upon the number of elements n_i and $\Delta(\tau_i) \leq \frac{2}{n_i-1}$ [8]. The sensitivity of weights $\Delta(w_i)$ can be represented as follows:

$$\Delta(w_{i}) \leq \left| \frac{w'_{i}}{\sqrt{\sum_{i \neq j}^{k} w_{j} + w'_{i}}} - \frac{w_{i}}{\sqrt{\sum_{j=1}^{k} w_{j}}} \right|$$

$$\leq \left| \frac{\frac{9n_{i}(n_{i}+1)}{2(2(n_{i}+1)+5)}}{\sqrt{\sum_{j=1}^{k} w_{j} + w'_{i}}} \right| - \left| \frac{\frac{9n_{i}(n_{i}-1)}{2(2n_{i}+5)}}{\sqrt{\sum_{j=1}^{k} w_{j}}} \right|.$$
 (16)

Through triangle inequality we can provide an upper-bound on Equation (II) and the sensitivity of the weight can be bounded as:

$$\Delta(w_i) \le \sqrt{\frac{2}{n}} \left(\left| \frac{9n_i(n_i+1)}{2(2(n_i+1)+5)} \right| - \left| \frac{9n_i^2}{2(2n_i+5)} \right| \right). \tag{17}$$

The sensitivity $\Delta(\tau)$ essentially depends upon the number of elements in the i^{th} bin (the bin that changed due to the addition or removal of a single user). For dataset with block size at least size c and $kc \approx n$, with Equation (II) and Equation (II), the overall sensitivity can be bounded as:

$$\begin{split} \Delta &\leq \frac{1}{\sqrt{2\pi}} \cdot \frac{2}{n_i - 1} \cdot \sqrt{\frac{2}{n}} \cdot \\ & \left(\left| \frac{9n_i(n_i + 1)}{2(2(n_i + 1) + 5)} \right| - \left| \frac{9n_i^2}{2(2n_i + 5)} \right| \right) \\ &= \frac{2}{\sqrt{n\pi}} \left(\frac{\left| \frac{9n_i(n_i + 1)}{2(2(n_i + 1) + 5)} \right| - \left| \frac{9n_i^2}{2(2n_i + 5)} \right|}{n_i - 1} \right) \end{split}$$

$$\Delta \le \frac{2}{\sqrt{n\pi}} \left(\frac{\left| \frac{9n_i(n_i+1)}{2(2(n_i+1)+5)} \right| - \left| \frac{9n_i^2}{2(2n_i+5)} \right|}{n_i - 1} \right)$$

Therefor, the l_1 sensitivity Δ can be upper bounded as $\Delta \leq \frac{C}{\sqrt{n}}$ where the constant C can be derived by setting the permissible bin size (n_i) . This concludes the sensitivity analysis of Kendall's τ test statistic.