The Ellipticity of the Milky Way Disk with APOGEE & Gaia:

A Window on the Shape of the Dark Matter Halo

James Lane Supervisor: Jo Bovy

DUNLAP INSTITUTE
for ASTRONOMY & ASTROPHYSICS

Road Map

- Introduction Why does halo shape matter?
- Data APOGEE & Gaia
- Models Determining ellipticity from the data, and predictions from theory
- Results Inferred halo shape
- Conclusions What did we learn? What's next?

Dark Matter Halos

- Halos seed galaxy formation.
- Shapes often non-spherical.

Milky Way sized dark matter halo (Left) drawn from the Aquarius simulations (Top). From Springel (2008)

Why does halo shape matter?

- 1. Calibrate simulations of galaxy formation.
- 2. Detailed modelling of Milky Way satellite orbits
- 3. Constrains nature of dark matter particle

Right: Illustris halo flatness (top), and axis ratio in the plane of the galaxy (bottom). From Chua+ 2019

Terminology & halo geometry

- Refer to scale length of halo as **a**
- Axis ratio in the plane of the disk: b/a
- Vertical axis ratio: c/a

What are we measuring? The *Gaia* connection

What are we measuring? The *Gaia* connection

APOGEE + Gaia DR2 Synergies

- *Gaia* DR2: 5D phase space information
- APOGEE+AstroNN:
 radial velocity and
 improved distances.
 About 40,000 stars after
 selection

APOGEE + **Synergies**

AstroNN:

Bayesian neural network abundances, stellar parameters, ages, distances Gaia DR (accurate to 10 kpc) for DR14 / DR16 (is space in an announced VAC)

3.5

3.0

2.5

1.5

1.0

- **APOGE** About 4
 - radial ve Leung & Bovy (2019a/b), Bovy+ (2019), improve Mackereth+ (2019) github: henrysky/astroNN

Disk orbits in a spherical and triaxial halo

Simple assumptions about triaxial halo:

- Velocity field in disk is m=2 sinusoid
- Phase of velocity field constant with radius
- Amplitude constant at each radius, and changes smoothly with radius

Simple assumptions about triaxial halo:

- Velocity field in disk is m=2 sinusoid
- Phase of velocity field constant with radius
- Amplitude constant at each radius, and changes smoothly with radius

Tangential Circular m=2 sinusoid velocity Simple assum triaxial halo: Model is linear, can be solved analytically Velocity for maximum likelihood A and v_o using m=2 sinu Bayes theorem with simple Gaussian $n \left[2(\phi - \phi_b) \right]$ Phase of likelihood and prior. constant with radius Radial Phase of Fluctuation amplitude Amplitude constant at with radius velocity perturbation each radius, and changes smoothly with radius

Predicting Triaxial Halo Properties

- Want to know, given b/a and ϕ_b what amplitudes would we see (What are the A(R))?
- Allows us to infer halo shape from *Gaia* data

Predicting Triaxial Halo Properties

- Want to know, given b/a and ϕ_b what amplitudes would we see (What are the A(R))?
- Allows us to infer halo shape from *Gaia* data

Two methods:

- Distribution function mapping
 - Numerical, correct, (relatively)
 computationally expensive. (Dehnen 2000)
- The elliptical disk potential.
 - Analytic, approximate, computationally inexpensive. (Kuijken & Tremaine 1994)

- Want to k and ϕ_b wh the <u>accurate</u> distribution function method would we see (vynat are the A(R))?
- Allows us to infer halo shape from Gaia data

Numerical, correct, (relatively) computationally expensive. (Dehnen 2000)

pping

- The elliptical disk potential.
 - Analytic, approximate, computationally inexpensive. (Kuijken & Tremaine 1994)

The Bar & Spiral Arms?

- Non-axisymmetric structures induce competing fluctuations
- Resonances make disentangling potentials difficult
- Safe to work outside of ~10 kpc

Linear Model m=2 Amplitudes In Outer Disk

Inferring halo parameters

We use an ABC method to infer PDF of b/a and ϕ_b

- 1. Randomly pick halo parameters & determine velocity field
- 2. Add bar model velocities
- 3. Mock up field to look like *Gaia* data
- 4. Calculate linear model amplitudes
- Looks like APOGEE-Gaia data? Accept halo parameters in PDF

Summary

- We model observed velocity fields & theoretical fields from triaxial halos + bars
- We have demonstrated that the MW halo has $b/a \sim 0.9$ or less
- Still need to examine more non-axisymmetric potentials and Milky Way-like potentials to confirm results.

Thanks for listening!

Data in Outer Disk

