Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3221	К работе допущен
Студент Фам Данг Чунг Нгиа	Работа выполнена
Преподаватель Коробков М , П	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.13

Изучение прецессии гироскопа

1, Цель работы

- 1. Наблюдение прецессии гироскопа.
- 2. Экспериментальное подтверждение линейно зависимости пе риода прецессии гироскопа от частоты вращения гироскопа во круг оси симметрии.
- 3. Экспериментальное определение момента инерции гироскопа.

2, Задачи

- 1. Измерить период прецессии гироскопа.
- 2. Измерить частоту вращения гироскопа вокруг своей оси.
- 3. Рассчитать момент инерции гироскопа относительно оси вра щения используя данные полученные в ходе экперимента. Сравнить полученный результат с моментом инерции гироскопа, рассчитанным теоретически.

3, Объект исследования

Момент инерции гироскопа.

4, Метод экспериментального исследования

Многократные косвенные измерения.

5, Рабочие формулы и исходные данные

5.1) Период прецессии гироскопа:

$$T' = \frac{2\pi}{Fl}I\omega = \frac{2\pi}{mgl}I\omega$$

где T'- период прецессии,

F = mg - сила тяжести груза,

l - плечё силы F,

I - момент инерции гироскопа относительно оси вращения,

 ω - угловая скорость гироскопа

5.2) Исходные данные:

Объект	Обозначение	Единица измерения	Величина
Масса маховика	m	КГ	1,5
Радиус маховика	R	СМ	12,5
Плечо силы	l	СМ	22,5
Масса держателя грузов	m_0	Γ	4,1
Масса 1-го груза	m_1	Γ	10,0

6, Измерительные приборы

№	Наименование	Предел измерений	Используемый диапазон	Погрешность прибора
1	Электронный секундомер	60 мин	0 - 10 c	0,005 с
2	Цифровой тахометр	10000 об/мин	0 - 600 об/мин	0,05 об/мин
3	Весы	3000 г	0-20 г	0,1 г

7, Схема установки

- 1. Гироскоп
- 2. Грузы
- 3. Стартерной нить
- 4. Электронный динамометр
- 5. Ветошь, используемая для торможения маховика гироскопа.

8. Таблицы измерение

Таблица 1: Йзмерение зависимости периода прецессии от частоты вращения маховика гироскопа

т, г	ω_1 , об/мин	ω_2 , об/мин	$\omega_{cp},$ об/мин	ω_{cp} , rad/c	T _{np} , c
$m_0 + m_1 =$	438,7	427,8	433,3	45,3	70,14
14,1	462,6	425,4	444,0	46,5	73,30
	501,2	465,9	483,6	50,6	77,80
	386,4	350,2	368,3	38,5	61,60
	380,5	358,4	369,5	38,7	60,52
$m_0 + 2m_1 =$	507,9	483,5	495,7	51,9	54,00
24,1	396,8	378,9	387,9	40,6	40,20
	480,3	455,0	467,7	48,9	48,90
	396,1	366,6	381,4	39,9	39,05
	478,8	442,7	460,8	48,2	48,09
$m_0 + 3m_1 =$	459,5	417,1	438,3	45,9	35,10
34,1	420,2	396,9	408,6	42,8	33,00
	419,9	399,1	409,5	42,9	34,10
	395,4	357,2	376,3	39,4	31,02
	411,8	383,1	397,5	41,6	32,16

$$\omega_{\rm cp} = \frac{\omega_1 + \omega_2}{2} = \frac{438,7 + 427,8}{2} = 433,3$$
 об/мин

9. Расчет результатов косвенных измерений
$$T'=\frac{2\pi}{mgl}I\omega=\mathrm{A}\omega,\ \ (\mathrm{A}=\frac{2\pi}{mgl})$$

При $m = m_0 + m_1$:

$$A_1 = \frac{\sum_{i=1}^{5} \omega_{cpi} \cdot T_{npi}}{\sum_{i=1}^{5} \omega_{cpi}^2} = 1,5616 \ c^2$$

$$\sigma_{A} = \sqrt{\frac{\sum_{i=1}^{5} (T_{npi} - A\omega_{cpi})^{2}}{\sum_{i=1}^{5} (5-1)\omega_{cpi}^{2}}} = 0,0107 c^{2}$$

Для доверительной вероятности $\alpha = 0.90$.

$$\Delta A = 2\sigma_A = 0.0214 c^2$$

$$\varepsilon_A = \frac{\Delta A}{A} \cdot 100\% = 1,37\%$$

При $m = m_0 + 2m_1$:

$$A_2 = \frac{\sum_{i=1}^{5} \omega_{cpi} \cdot T_{npi}}{\sum_{i=1}^{5} \omega_{cpi}^2} = 1,0047 \ c^2$$

$$\sigma_{A} = \sqrt{\frac{\sum_{i=1}^{5} (T_{\text{npi}} - A\omega_{\text{cp}i})^{2}}{\sum_{i=1}^{5} (5-1)\omega_{\text{cp}i}^{2}}} = 0.0110 c^{2}$$

Для доверительной вероятности $\alpha = 0.90$.

$$\Delta A = 2\sigma_A = 0.0220 c^2$$

$$\varepsilon_A = \frac{\Delta A}{\Delta} \cdot 100\% = 2,19\%$$

При $m = m_0 + 3m_1$:

$$A_3 = \frac{\sum_{i=1}^{5} \omega_{cpi} \cdot T_{npi}}{\sum_{i=1}^{5} \omega_{cpi}^2} = 0,7780 \ c^2$$

$$\sigma_{A} = \sqrt{\frac{\sum_{i=1}^{5} (T_{\text{npi}} - A\omega_{\text{cp}i})^{2}}{\sum_{i=1}^{5} (5-1)\omega_{\text{cp}i}^{2}}} = 0,0057 c^{2}$$

Для доверительной вероятности $\alpha = 0.90$.

$$\Delta A = 2\sigma_A = 0.0114 c^2$$

$$\varepsilon_A = \frac{\Delta A}{\Delta} \cdot 100\% = 1,47\%$$

Таблица 2: Теоретическое и экспериментальное значения момента инерции маховика гироскопа

$I_{\text{reop}} = \frac{mR^2}{2}$, kg.cm ²	117,1875
$I_{\text{эксп 1}} = \frac{A_1(m_0 + m_1)gl}{2\pi}, \text{ кг.см}^2$	99,0835
$I_{_{ m ЭКСП 2}} = rac{A_2(m_0 + 2m_1)gl}{2\pi}, { m Kf.cm}^2$	108,9597
$I_{_{9 \text{КСП 3}}} = \frac{A_3(m_0 + 3m_1)gl}{2\pi}$, кг.см ²	114,1098
$I_{\text{эксп среднее}} = \frac{I_{\text{эксп 1}} + I_{\text{эксп 2}} + I_{\text{эксп 3}}}{3}, \text{ кг.cm}^2$	107,3843

10. Расчет погрешностей измерений

Абсолютная погрешность:

$$\Delta I_{abc} = \left| I_{reop} - I_{skcn cpeqhee} \right| = 9,8032 \text{ kg.cm}^2$$

Относительная погрешность:

$$\delta = \frac{\Delta I_{a6c}}{I_{reop}} \times 100\% = 8.4 \%$$

11. Графики

График 1. График экспериментальной и линейной зависимостей периода прецессии гиро скопа от частоты вращения его маховика при $m=m_0+m_1$

График 2. График экспериментальной и линейной зависимостей периода прецессии гиро скопа от частоты вращения его маховика при $m=m_0+2m_1$

График 3. График экспериментальной и линейной зависимостей периода прецессии гиро скопа от частоты вращения его маховика при $m=m_0+3m_1$

12. Окончательные результаты $I = (107,38 \pm \ 9,80) \ \text{kg.cm}^2 \ ; \ \delta = 8,4 \ \%; \ \alpha = 0,90.$

13. Выводы и анализ результатов работы

В ходе выполнения эксперимента были достигнуты основные цели исследования. Были проведены многократные измерения периода прецессии гироскопа и частоты его вращения вокруг оси симметрии. На основе полученных данных удалось рассчитать момент инерции гироскопа экспериментальным способом и сравнить его с теоретическим значением. Однако выявленная относительная погрешность, составляющая 23.01%, указывает на возможные источники ошибок в эксперименте, такие как трение, неточность измерительных приборов или предположения в теоретической модели. Тем не менее, эксперимент подтвердил линейную зависимость периода прецессии от частоты вращения, что соответствует теоретическим ожиданиям.