Intro to DB

CHAPTER 7 DATABASE DESIGN & THE E-R MODEL

Chapter 7. DB Design & the E-R Model

- Design Process
- Entity-Relationship Model
- Constraints
- Removing Redundant Attributes
- E-R Diagram
- Extended E-R Features
- Reduction to Relation Schemas
- Design Issues
- Alternative Notations for Modeling Data
- Other Aspects of Database Design

Creating a Database

- Reports you will need
- Inquiries you will want to make
- Sketch the table structure what kind of data is needed in each column
- Determine characteristics of field
 - Field name: Each field must have a unique field name
 - Field type & length
 - Character, numeric, date, ...

- Define each field in the table
- Define primary key

Entering the Data

- Enter data into the tables in datasheet view
- Enter data into the tables by using a graphical form

[Capron & Johnson, 2003]

Exercise: Part-Project-Supplier DB

"Parts are supplied to projects. There can be multiple suppliers for a part. Each part has part-id, part-name, and size. You must keep track of the project managers and contact information for each project."

Your Design

Design 1

Supplier	Part-ID	Part-Name	Size	Proj-ID	Manager	Contact	Quantity
Sammi	N125	Nut	1.25"	P002	K. Kang	222-1234	1320
Sammi	N100	Nut	1.00"	P003	S. Choi	333-2345	1000
Sammi	B332	Bolt	12"	P002	K. Kang	222-1234	1320
Sammi	B332	Bolt	12"	P003	S. Choi	333-2345	1000
ABC	N125	Nut	1.25"	P004	R. Smith	444-3456	500
ABC	B332	Bolt	12"	P004	R. Smith	444-3456	500

Design 1.2

Supplier	S-contact	Part-ID	Part-Name	Size	Proj-ID	Location	Manager	P-contact	Quantity
Sammi	555-555	N125	Mut	1.25"	P002	Seocho	K. Kang	222-1234	1320
Sammi	555-5555	N100	Nut	1.00"	P003	Маро	S. Choi	333-2345	1000
Sammi	555-5555	B332	Bolt	12"	P002	Seocho	K. Kang	222-1234	1320
Sammi	555-5555	B332	Bolt	12"	P003	Маро	S. Choi	333-2345	1000
ABC	777-7777	N125	Nut	1.25"	P004	Jamsil	R. Smith	444-3456	500
ABC	777-7777	B332	Bolt	12"	P004	Jamsil	R. Smith	444-3456	500

Center for E-Business Technology

Design 2

Supplier	S-contact
Sammi	555-5555
ABC	777-7777

Part-ID	Part-Name	Size
N125	Nut	1.25"
N100	Nut	1.00"
B332	Bolt	12"

Proj-ID	Location	Manager	P-contact
P002	Seocho	K. Kang	222-1234
P003	Маро	S. Choi	333-2345
P004	Jamsil	R. Smith	444-3456

Design 3 <ER Diagram>

Design 3 < Relations >

Supplier

S-Name	Contact	Phone

Capacity

S-Name	Part-ID	Quantity

Part

Part-ID	Part-Name	Size

Supplies

Proj-ID	Part-ID	S-Name	Date	Quantity

Project

Proj-ID	Proj-Name	Location	Manager	P-contact

Needs

Proj-ID	Part-ID	Quantity

Database Design

- Decide on the DB schema that
 - is able to hold all information in consideration,
 - with minimal (or no) redundancy, and
 - allows for effective & efficient data operations
- Critical in reducing operations and maintenance costs of SW systems

[SW Development Lifecycle]

Phases of Database Design

- Three phases
- Conceptual design
 - Construction of an ER schema

- Logical design
 - map onto the implementation data model of the DBMS (such as RDB)
- Physical design
 - specify physical features of the database (issues pertaining to performance rather than information contents; index, sequential order, etc.)

Phases of Database Design

[이상구 외, 2012]

Entity-Relationship Model

- Proposed by P. Chen in 1976
 - "The Entity-Relationship Model: Toward a Unified View of Data", *ACM Transactions On Database Systems*, Jan.1976.
- A very powerful tool in the design of databases
 - Simple model

- E-R model is not an implementation model
 - i.e., there is no DBMS whose internal structures are based on the E-R model

Database Modeling

A database can be modeled as:

```
DescriptionDescriptionDescription
```

Entity

- an object that exists and is distinguishable from other objects
- entity instance
 ex. specific person, company, event, plant

Attributes

- Entities have attributes
- ex. people have names and addresses

Entity set

- a set of entities of the same type that share the same properties
- ex. set of all persons, companies, trees, holidays

Entity & Entity Sets - examples

instructor_ID instructor_name

76766	Crick
45565	Katz
10101	Srinivasan
98345	Kim
76543	Singh
22222	Einstein

instructor

student-ID student_name

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

Relationships

- Relationships are defined between entities
- Relationship set:

Relationship Set advisor

Attributes of Relationships

Relationships can have attributes

E-R Diagrams

- Rectangles represent entity sets.
- **Diamonds** represent relationship sets.
- Attributes listed inside entity rectangle
- Underline indicates primary key attributes

Relationship Sets: Attributes & Roles

An ER Schema

An ER Schema

[From Atzeni, et al, Database Systems: Concepts, Languages and Architectures, 2000]

Types of Attributes

- Simple vs Composite attributes
 - Simple attribute

- Composite attribute
 - composed of multiple parts
 - name = (lastnm, firstnm)
 - phone# = (number, extension)
- Null
 - null value: a special value meaning "missing" or "unknown"
 - some attributes are not allowed to have null values

Types of Attributes (cont.)

- Single-valued vs multivalued :
 - Single-valued attribute
 - each attribute has a single value for an entity
 - id, name, dept
 - Multivalued attribute
 - an attribute may have more than one value for an instance
 - children = {john, tom}, phone#={5567, 5568}

Derived attributes

0

instructor

```
ID
name
  first_name
  middle_initial
  last name
address
  street
     street number
     street name
     apt_number
  city
  state
  zip
{ phone_number }
date_of_birth
age()
```

Degree of a Relationship Set

- Most relationships are binary
 - involve two entity sets (or degree two)
 - $R = \{ [e_1, e_2] \mid e_1 \in E_1, e_2 \in E_2 \}$
- You can define non-binary relationships
 - $R = \{ [e_1, e_2, e_3] \mid e_1 \in E_1, e_2 \in E_2, e_3 \in E_3 \}$: ternary

Mapping Constraints

Relationship cardinality

- Generic types
 - 1:1
 - □ 1:*m*
 - □ *m*:1
 - □ *m*: *n*

Mapping Cardinalities

Note: Some elements in A and B may not be mapped to any elements in the other set

Mapping Cardinalities (cont.)

Note: Some elements in A and B may not be mapped to any elements in the other set

Mapping (Cardinality) Constraints

many-to-many

Participation of an Entity Set in a Relationship Set

- Total participation (double line)
 - every entity in the entity set participates in at least one relationship in the relationship set
 - eg.: every section must have an associated course
- Partial participation
 - some entities may not participate in any relationship in the relationship set
 - eg.: participation of instructor in advisor is partial

Alternative Notation for Cardinality & Participation

- Express cardinality by upper and lower limits
 - min ... max
- Can also express participation constraints

Keys

- Key for an Entity (Set)
 - Same as keys in relational models: super key, candidate key, primary key
 - Set of attributes whose values can distinguish entities from each other
- Key for a Relationship (Set)
 - combination of primary keys of the participating entity sets forms a super key
 - Must consider the mapping cardinality of the relationship set when deciding what are the candidate keys (and primary key)

Redundant Attributes

Suppose we have entity sets

- dept_name in instructor is redundant
 since there is an explicit relationship which relates instructors to departments
 - The attribute replicates information present in the relationship, and should be removed from instructor

Weak Entity Sets

- Weak Entity Set: An entity set that does not have sufficient attributes to form a primary key
 - □ ⇔ strong entity set

- The existence of a weak entity set depends on the existence of a identifying entity set
 - Identifying relationship depicted using a double diamond
- The discriminator (or partial key) of a weak entity set: set of attributes that distinguishes
 among all the weak entities related to the same strong entity
- primary-key(weak entity set)
 - = *primary_key*(identifying strong entity) U *discriminator*(weak entity set)

Extended E-R Features

- - subgroupings within an entity set
 - Sub entities share common attributes
 - Each sub entity set may have its own specific attributes
- - combine a number of entity sets that share the same features into a higher-level entity set
 - Opposite of specialization depends on where you start

Extended E-R Features (cont.)

- Inheritance
 - The attributes and relationships of the higher-level entity sets are inherited by (applies to) the lower-level entity sets
- Types of generalization (super-sub entities)
 - disjoint vs overlapping:

total vs partial:

Exercise: Interpretthe ER Diagram

Surname Referee City *** Region (I,IN)Month Year Day_ REFEREEING Series Number Re<u>s</u>ult Date Number_ $\{1,1\}$ (I,N)Матсн DAY PLACING $\{1,1\}$ HOME NEUTRAL Postponed VISITING GROUND (I,N)(IJN)O Date Reason City TEAM Position City Of Name . Trainer (I,M)**Points** CONTRACT (1,1)SSN FirstName () (0,N)(H,M)PLAYER Surname O Position () $Day \square$ Month 🔾 DateOfBirth BirthPlace Position Year 🔿

∠`}Name

[From Atzeni, et al, *Database Systems: Concepts, Languages and Architectures*, 2000]

Reducing ER schema to tables

- Logical design
 - map onto the implementation data model of the DBMS
- Basic rule

- Entity set E with attributes a₁, ..., a_n
 - table r(E) with schema $E(a_1, ..., a_n)$
 - column a_i has domain D_i (as defined by the entity)
 - $r(E) \subseteq D_1 \times \ldots \times D_n$

10101	Srinivasar	65000
12121	Wu	90000
15151	Mozart	40000
22222	Einstein	95000
32343	El Said	60000
33456	Gold	87000
45565	Katz	75000
58583	Califieri	62000
76543	Singh	80000
76766	Crick	72000
83821	Brandt	92000
98345	Kim	80000

name

salary

ID

ER schema to tables (cont.)

- Relationship set R
 - involving entities E₁, ..., E_k
 table r with columns corresponding to

$$PK(E_1) \cup ... \cup PK(E_k) \cup attr(R)$$

- supplies relating supplier, client, part
- attends relating student and course-offering

customer-id	loan-number
019-28-3746	L-11
019-28-3746	L-23
244-66-8800	L-93
321-12-3123	L-17
335-57-7991	L-16
555-55-5555	L-14
677-89-9011	L-15
963-96-3963	L-17

=> add columns representing $PK(E_1) \cup attr(R)$ to table representing E_2

ID	name	salary
10101	Srinivasar	65000
12121	Wu	90000
15151	Mozart	40000
22222	Einstein	95000
32343	El Said	60000
33456	Gold	87000
45565	Katz	75000
58583	Califieri	62000
76543	Singh	80000
76766	Crick	72000
83821	Brandt	92000
98345	Kim	80000

ID	dept_name
10101	Comp. Sci
12121	Finance
15151	Music
•••	

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

9	ID	name	dept_name	salary
	10101	Srinivasan	Comp. Sci.	65000
	12121	Wu	Finance	90000
	15151	Mozart	Music	40000
	22222	Einstein	Physics	95000
	32343	El Said	History	60000
	33456	Gold	Physics	87000
	45565	Katz	Comp. Sci.	75000
	58583	Califieri	History	62000
	76543	Singh	Finance	80000
	76766	Crick	Biology	72000
	83821	Brandt	Comp. Sci.	92000
	98345	Kim	Elec. Eng.	80000

Generalization/Specialization to Relation Schema

- Option 1: A relation for each entity set
 - ISA relationship translated to foreign key
 - Good for partial and/or overlapping generalizations

member(<u>resident_id</u>, name) student(<u>stu_id</u>, resident_id, address, year) professor(<u>prof_id</u>, resident_id, year_emp, position)

- Option 2: Keep only the lower level entity sets
 - Merge attributes of higher level entity set onto each lower level entity set
 - Good for total and/or disjoint generalizations

student(resident_id, name, stu_id, address, year) professor(resident_id, name, prof_id, year_emp, position)

Design Issues

- an employee's telephone
 - as an attribute: simple
 - as an entity: independent
- decision should be based on
 - whether the telephone must be treated as an independent entity
 - the number of telephones an employee can have
 - whether telephones are shared between employees

"customer having an account at a branch"

- account as relationship: simple but limited (cannot participate in other relationships)
- account as entity: account can act as separate entity

Design Issues (cont.)

•

- all n-ary relationships can be represented by binary relationships by adding additional entities and corresponding relationships
- however, this is not always desirable

•

Decision should be based on how the model

best represents the real world situation

END OF CHAPTER 7