Imputing Missing Data

TLDR: It's Hard and mostly "It Depends"

Kenneth Farr - 2nd Watch Software Engineering Manager ken@farr.ai
github.com/kfarr3/presentation-data-imputation

IMPUTATION

Finance

assign (a value) to something by inference from the value of the products or processes to which it contributes.

Theology

ascribe (righteousness, guilt, etc.) to someone by virtue of a similar quality in another.

• MAR - Missing At Random

• MAR - Missing At Random

MCAR - Missing Completely At Random

MAR - Missing At Random

• MCAR - Missing Completely At Random

MNAR - Missing Not At Random

MAR - Missing At Random

• Missing data is systematically related to the observed data but not the unobserved data

MAR - Missing At Random

Missing data is systematically related to the observed data but not the unobserved data

• Whether a value is missing can typically be predicted from observed data.

MAR - Missing At Random

• Missing data is systematically related to the observed data but not the unobserved data

• Whether a value is missing can typically be predicted from observed data.

• Temperature Sensors in the kitchen malfunction whenever the microwave runs, around noon M-F.

MCAR - Missing Completely At Random

• Missing data is systematically unrelated to the observed and unobserved data

MCAR - Missing Completely At Random

• Missing data is systematically unrelated to the observed and unobserved data

• Whether a value is missing can not be predicted from observed data.

MCAR - Missing Completely At Random

Missing data is systematically unrelated to the observed and unobserved data

• Whether a value is missing can not be predicted from observed data.

• Temperature Sensors transmit readings over an unreliable UDP network, some packets are dropped and result in missing data.

MNAR - Missing Not At Random

• Missing data is systematically related to the unobserved data

MNAR - Missing Not At Random

• Missing data is systematically related to the unobserved data

• Whether a value is missing can not be predicted from observed data.

MNAR - Missing Not At Random

Missing data is systematically related to the unobserved data

• Whether a value is missing can not be predicted from observed data.

• Temperature Sensors fail to transmit readings when the value is < 20*C. Missing data is systematically related to the temperature.

What To Do?

Data Scientists Spend

80%

of time spent cleaning data

That's How Intuition Is Gained

Imputation of Missing Data

- MAR Missing At Random
 - Good Candidate
- MCAR Missing Completely At Random
 - Best Candidate
- MNAR Missing Not At Random
 - Best To Understand Data Better

How to Impute Simply

Simple! Fill Average

Simple! Fill Average - um...which average?

Titanic Data

Titanic Data Set

	pclass	sex	age	sib_sp	parch	fare	cabin	embarked	survived	cabin_floor
0	3	male	22.0	1	0	7.2500	NaN	S	0	NaN
1	1	female	38.0	1	0	71.2833	C85	С	1	С
2	3	female	26.0	0	0	7.9250	NaN	S	1	NaN
3	1	female	35.0	1	0	53.1000	C123	S	1	С
4	3	male	35.0	0	0	8.0500	NaN	S	0	NaN

What's Missing?

```
[4]:
     for col in df.columns:
         missing count = df[df[col].isna()].shape[0]
         total count = df.shape[0]
         print(f"{col:20} {missing count:8} {(100*missing count/total_count):0.2f}%")
     pclass
                                  0 0.00%
                                  0 0.00%
     sex
                                177 19.87%
     age
                                  0 0.00%
     sib sp
     parch
                                  0 0.00%
     fare
                                  0 0.00%
     cabin
                                687 77.10%
     embarked
                                  2 0.22%
     survived
                                  0 0.00%
     cabin floor
                                687 77.10%
```

Baseline: Logistic Regression v XGBoost, Drop NA

AUC LR: 0.77 XG: 0.87

XG Acc

XG Acc 0.80

Add Age where NA=Mean

	Drop NA	Age.NA = Mean	Increase
LR AUC	0.7684	0.7894	0.021
XG AUC	0.8697	0.8667	-0.003
XG Accuracy	0.7989	0.7877	-0.0112

• Age is not a great predictor?

- Age is not a great predictor?
- Mean Age is a worse predictor

- Age is not a great predictor?
- Mean Age is a worse predictor
- Other types may produce better results

Cabin Floor to Mode

	Age.NA = Mean	Cabin.NA = Mode	Increase
LR AUC	0.7894	0.8050	0.0156
XG AUC	0.8667	0.8625	-0.0042
XG Accuracy	0.7877	0.8156	0.0279

Predict Missing Values

XG Boost Predictors for each Missing Value

	Error
Age_Model	11.37 (RMSE)
Cabin_Model	0.63 (Accuracy)

Minor Improvements w/o Hyper Parameter Tuning

	Means	Predictors	Increase
LR AUC	0.8050	0.8069	0.0019
XG AUC	0.8625	0.8879	0.0254
XG Accuracy	0.8156	0.8212	0.0056

XG Accuracy dropping NA: 0.7989 XG Accuracy predicting: 0.8212 Increase in Accuracy of 2.23%