Linearization and Transversality

D. Zack Garza

Review 8.2

Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F

Linearization and Transversality

Sections 8.3 and 8.4

D. Zack Garza

April 2020

Linearization and Transversality

D. Zack Garza

Review 8.2

ection 8.3: The pace of Perturbations of

Linearizing the Floer Equation:
The Differential

Review 8.2

Linearization and

Section 8.3: The Space of Perturbations of

Section 8.3: The Space of Perturbations of Н

Goal

Linearization and Transversality

D. Zack Garz

Review 8.3

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differentia of F **Goal**: Given a fixed Hamiltonian $H \in C^{\infty}(W \times S^1; \mathbb{R})$, perturb it (without modifying the periodic orbits) so that $\mathcal{M}(x, y)$ are manifolds of the expected dimension.

Goal

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F Start by trying to construct a subspace $\mathcal{C}^{\infty}_{\mathbb{C}}(H) \subset \mathcal{C}^{\infty}(W \times S^1; \mathbb{R})$, the space of perturbations of H depending on a certain sequence $\varepsilon = \{\varepsilon_k\}$, and show it is a dense subspace.

Define an Absolute Value

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F Idea: similar to how you build $L^2(\mathbb{R})$, define a norm $\|\cdot\|_{\varepsilon}$ on $C_{\varepsilon}^{\infty}(H)$ and take the subspace of finite-norm elements.

- Let $h(\mathbf{x}, t) \in C_{\varepsilon}^{\infty}(H)$ denote a perturbation of H.
- Fix $\varepsilon = \left\{ \varepsilon_k \mid k \in \mathbb{Z}^{\geq 0} \right\} \subset \mathbb{R}^{>0}$ a sequence of real numbers, which we will choose carefully later.
- For a fixed $\mathbf{x} \in W$, $t \in \mathbb{R}$ and $k \in \mathbb{Z}^{\geq 0}$, define

$$|d^k h(\mathbf{x}, t)| = \max \{d^{\alpha} h(\mathbf{x}, t) \mid |\alpha| = k\},$$

the maximum over all sets of multi-indices α of length k. Note: I interpret this as

$$d^{\alpha_1,\alpha_2,\cdots,\alpha_k}h=\frac{\partial^k h}{\partial x_{\alpha_1}\,\partial x_{\alpha_2}\cdots\partial x_{\alpha_k}},$$

the partial derivatives wrt the corresponding variables.

Define a Norm

Linearization and Transversality

D. Zack Garz

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F – Define a norm on $C^{\infty}(W \times S^1; \mathbb{R})$:

$$||h||_{U} = \sum_{k\geq 0} \varepsilon_k \sup_{(x,t)\in W\times S^1} |d^k h(x,t)|.$$

– Since $W \times S^1$ is assumed compact (?), fix a finite covering $\{B_i\}$ of $W \times S^1$ such that

$$\bigcup_{i} B_{i}^{\circ} = W \times S^{1}.$$

Choose them in such a way we obtain charts

$$\Psi_i: B_i \longrightarrow \overline{B(0,1)} \subset \mathbb{R}^{2n+1}$$
 (?).

Obtain the computable form

$$||h||_{\cdot\cdot} = \sum_{k>0} \varepsilon_k \sup_{(x,t)\in W\times S^1} \sup_{i,z\in B(0,1)} |d^k(h\circ \Psi_i^{-1})(z)|.$$

Define a Banach Space

Linearization and Transversality

D. Zack Garz

Review 8.3

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F Define

$$C_{\varepsilon}^{\infty} = \left\{ h \in C^{\infty}(W \times S^{1}; \mathbb{R}) \mid \|h\|_{\varepsilon} < \infty \right\} \subset C^{\infty}(W \times S^{1}; \mathbb{R}),$$

which is a Banach space (normed and complete).

– Show that the sequence $\{\varepsilon_k\}$ can be chosen so that C_{ε}^{∞} is a dense subspace for the C^{∞} topology, and in particular for the C^1 topology.

Theorem

Such a sequence $\{\varepsilon_k\}$ can be chosen.

Lemma

 $C^{\infty}(W \times S^1; \mathbb{R})$ with the C^1 topology is separable as a topological space (contains a countable dense subset).

Sketch Proof of Theorem

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F

- By the lemma, produce a sequence $\{f_n\} \subset C^{\infty}(W \times S^1; \mathbb{R})$ dense for the C^1 topology.
- Using the norm on $C^n(W \times S^1; \mathbb{R})$ for the f_n , define

$$\frac{1}{\varepsilon_n} = 2^n \max \left\{ \|f_k\| \ \middle| \ k \le n \right\} \implies \varepsilon_n \sup |d^n f_k(x,t)| \le 2^{-n}$$

which is summable.

Why does this imply density? I don't know.

Modified Theorem

Linearization and Transversality

D. Zack Garz

Review 8

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differentia of F The next proposition establishes a version of this theorem with compact support:

Theorem

For any $(\mathbf{x}, t) \subset U \in W \times S^1$) there exists a $V \subset U$ such that every $h \in C^{\infty}(W \times S^1; \mathbb{R})$ can be approximated in the C^1 topology by functions in C^{∞}_{ϵ} supported in U.

Then fix a time-dependent Hamiltonian H_0 with nondegenerate periodic orbits and consider

$$\left\{h\in C_{\varepsilon}^{\infty}(H_0)\ \middle|\ h(x,t)=0 \text{ in some }U\supseteq \text{the 1-periodic orbits of }H_0\right\}$$

Then supp(h) is "far" from $Per(H_0)$, so

$$||h||_{\varepsilon} \ll 1 \implies \operatorname{Per}(H_0 + h) = \operatorname{Per}(H_0)$$

and are both nondegenerate.

Linearization and Transversality

Section 8.4: Linearizing the Floer Equation: The Differential

Section 8.4: Linearizing the Floer Equation: The Differential of F

Goal

Linearization and Transversality

D. Zack Garz

Review 8

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F Choose $m > n = \dim(W)$ and embed $TW \hookrightarrow \mathbb{R}^m$ to identify tangent vectors (such as Z_i , tangents to W along u or in a neighborhood B of u) with actual vectors in \mathbb{R}^m .

Why? Bypasses differentiating vector fields and the Levi-Cevita connection.

We can then identify

im
$$\mathcal{F} = C^{\infty}(\mathbb{R} \times S^1; \mathbb{R}^m)$$
 or $L^p(\mathbb{R} \times S^1; W)$,

and we seek to compute its differential $d\mathcal{F}$.

We've just replaced the codomain here.

Definitions

Linearization and Transversality

D. Zack Garz

Review 8.2

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F

Recall that

- -x, y are contractible loops in W that are nondegenerate critical points of the action functional A_H ,
- $-u \in \mathcal{M}(x,y) \subset C^{\infty}_{loc}$ denotes a fixed solution to the Floer equation,
- $-C_{\searrow}(x,y)\subset \{u\in C^{\infty}(R\times S^1;W)\}$ is the set of smooth solutions $u:\mathbb{R}\times S^1\longrightarrow W$ satisfying some conditions:

$$\lim_{s \to -\infty} u(s, t) = x(t), \quad \lim_{s \to \infty} u(s, t) = y(t)$$

and
$$\left| \frac{\partial u}{\partial t}(s,t) \right|$$
, $\left| \frac{\partial u}{\partial t}(s,t) - X_H(u) \right| \sim \exp(|s|)$

Compactify to Sphere

Linearization and Transversality

D. Zack Garz

Review 8.2

Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F Fix a solution

$$u \in \mathcal{M}(x, y) \subset C^{\infty}_{loc}(\mathbb{R} \times S^1; W).$$

We lift each solution to a map

$$\tilde{u}:S^2\longrightarrow W$$

in the following way:

The loops x, y are contractible, so they bound discs. So we extend by pushing these discs out slightly:

Lift to 2-Sphere

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: Th Space of

Perturbations H

Section 8.4: Linearizing the Floer Equation: The Differential

$$u \in C^{\infty}(S^1 \times \mathbb{R}; W) \quad \mapsto \quad \tilde{u} \in C^{\infty}(S^2; W)$$

Trivial the Pullback

Linearization and Transversality

D. Zack Garz

Review 8

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F From earlier in the book, we have

Assumption (6.22):

For every $w \in C^{\infty}(S^2, W)$ there exists a symplectic trivialization of the fiber bundle w^*TW , i.e. $\langle c_1(TW), \pi_2(W) \rangle = 0$ where c_1 denotes the first Chern class of the bundle TW.

Note: I don't know what this pairing is. The top Chern class is the Euler class (obstructs nowhere zero sections) and are defined inductively:

$$c_1(TW) = e(\Lambda^n(TW)) \in H^2(W; \mathbb{Z})$$

Assumption is satisfied when all maps $S^2 \longrightarrow W$ lift to $B^3 \iff \pi_2(W) = 0$.

We have a pullback that is a symplectic fiber bundle:

$$\tilde{u}^* TW \xrightarrow{d\tilde{u}} TW
\downarrow \qquad \downarrow \qquad \downarrow
S^2 \xrightarrow{\tilde{u}} W$$

Choose a Frame

Linearization and Transversality

D. Zack Garz

Review 8.

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F – Using the assumption, trivialize the pullback \tilde{u}^*TW to obtain an orthonormal unitary frame

$$\{Z_i\}_{i=1}^{2n}\subset T_{u(s,t)}W$$

where

- The frame depends smoothly on $(s, t) \in S^2$,
- $\lim_{s\to\infty} Z_i$ exists for each *i*.

$$\frac{\partial}{\partial s}$$
, $\frac{\partial^2}{\partial s^2}$, $\frac{\partial^2}{\partial s \ \partial t}$ $\sim Z_i \overset{s \longrightarrow \pm \infty}{\longrightarrow} 0$ for each i

Claim: such trivializations exist, "using cylinders near the spherical caps in the figure".

Define "Banach Manifold Charts"

Linearization and Transversality

D. Zack Garza

Review 8.

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F Recall we had $W^{1,p}(x,y)$ a completion of C^{∞}

$$\mathcal{M}(x,y) \subset C^{\infty}_{\searrow}(x,y) \subset \mathcal{P}^{1,p}(x,y) \underset{\mathsf{defn}}{\subset} \left\{ (s,t) \xrightarrow{\varphi} \exp_{w(s,t)} Y(s,t) \right\}.$$

where we restrict to

- $-Y\in W^{1,p}(w^*TW),$
- $w \in C^{\infty}_{\searrow}(x, y)$

Use the chosen frame $\{Z_i\}$ to define a chart centered at u of $\mathcal{P}^{1,p}(x,y)$ given by

$$\iota: W^{1,p}\left(\mathbb{R} \times S^1; \mathbb{R}^{2n}\right) \longrightarrow \mathcal{P}^{1,p}(x,y)$$
$$\mathbf{y} = (y_1, \dots, y_{2n}) \longmapsto \exp_u\left(\sum y_i Z_i\right).$$

- Note that the derivative at zero is $\sum_{i=1}^{2n} y_i Z_i$.

Define the Floer Map in Charts

Linearization and Transversality

D. Zack Garza

Review 8.

Section 8.3: Th Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F Define and compute the differential of the composite map $\tilde{\mathcal{F}}$ defined as follows:

– From now on, let $\mathcal F$ denote $\tilde{\mathcal F}$.

Add a Tangent

Linearization and Transversality

D. Zack Garz

Review 8.2

Section 8.3: Th Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F Take the vector

$$Y(s,t) := (y_1(s,t), \cdots) \in \mathbb{R}^{2n} \subset \mathbb{R}^m$$

- View Y as a vector in \mathbb{R}^m tangent to W, given by $Y = \sum_{i=1}^{2n} y_i Z_i$.
- Plug u+Y into the equation for \mathcal{F} , directly yielding

Add a Tangent

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F

$$\mathcal{F}(u) = \frac{\partial u}{\partial s} + J(u)\frac{\partial u}{\partial t} - J(u)X_t(u)$$

$$\mathcal{F}(u+Y) = \frac{\partial (u+Y)}{\partial s} + J(u+Y)\frac{\partial (u+Y)}{\partial t} - J(u+Y)X_t(u+Y)$$

Extract Linear Part

Linearization and Transversality

D. Zack Garz

Review 8

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F Extract the part that is linear in Y and collect terms:

$$(d\mathcal{F})_{u}(Y)$$

$$= \frac{\partial Y}{\partial s} + (dJ)_{u}(Y)\frac{\partial u}{\partial t} + J(u)\frac{\partial Y}{\partial t} - (dJ)_{u}(Y)X_{t} - J(u)(dX_{t})_{u}(Y)$$

$$= \left(\frac{\partial Y}{\partial s} + J(u)\frac{\partial Y}{\partial t}\right)$$

$$+ \left((dJ)_{u}(Y)\frac{\partial u}{\partial t} - (dJ)_{u}(Y)X_{t} - J(u)(dX_{t})_{u}(Y)\right)$$

- This is a sum of two differential operators:
 - One of order 1, one of order 0 (Perspective 1)
 - The Cauchy-Riemann operator, and one of order zero (Perspective 2, not immediate from this form)

Leibniz Rule

Linearization and Transversality

D. Zack Garz

Review 8.2

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F – Now compute in charts. Need a lemma:

Lemma (Leibniz Rule)

For any source space X and any maps

$$J: X \longrightarrow \operatorname{End}(\mathbb{R}^m)$$
$$Y : X \longrightarrow \mathbb{R}^m$$

we have

$$(dJ)(Y) \cdot v = d(Jv)(Y) - Jdv(Y).$$

Sketch: Proof of Leibniz Rule

Linearization and Transversality

D. Zack Garza

Review 8.

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F Differentiate the map

$$J \cdot v : X \longrightarrow \mathbb{R}^m$$
$$x \mapsto J(x) \cdot v(x)$$

to obtain

$$J(x + Y)v(x + y)$$

$$= (J(x) + (dJ)_x(Y)) \cdot (v(x) + (dv)_x(Y)) + \cdots$$

$$= J(x) \cdot v(x) + J(x) \cdot (dv)_x(Y) + (dJ)_x(Y) \cdot v(x)$$

$$+ (dJ)_x(Y) \cdot (dv)_x(Y) + \cdots$$

$$\implies d(J \cdot v)_x(Y) = (dJ)_x(Y) \cdot v(x) + J(x) \cdot (dv)_x(Y).$$

Decompose by Order

Linearization and Transversality

D. Zack Garza

Review 8

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F Using the chart ι defined by $\{Z_i\}$ to write $Y = \sum_{i=1}^{2n} y_i Z_i$ and thus

$$(d\mathcal{F})_u(Y) = O_0 + O_1$$

where O_0 are order 0 terms ("they do not differentiate the y_i ") and the O_1 are order 1 terms:

$$O_1 = \sum_{i=1}^{2n} \left(\frac{\partial y_i}{\partial s} Z_i + \frac{\partial y_i}{\partial t} J(u) Z_i \right)$$

$$O_0 = \sum_{i=1}^{2n} y_i \left(\frac{\partial Z_i}{\partial s} + J(u) \frac{\partial Z_i}{\partial t} + (dJ)_u(Z_i) \frac{\partial u}{\partial t} - J(u)(dX_t)_u Z_i - (dJ)_u(Z_i) X_t \right).$$

Order One

Linearization and Transversality

D. Zack Garz

Review 8.

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F - Study O_1 first, which (claim) reduces to

$$O_1 = \sum_{i=1}^{2n} \left(\frac{\partial y_i}{\partial s} + J_0 \frac{\partial y_i}{\partial t} \right) Z_i = \bar{\partial} (y_1, \dots, y_{2n}).$$

where J_0 is the standard complex structure on $\mathbb{R}^{2n} = \mathbb{C}^n$

- The second equality follows from the assumption that the Z_i are symplectic and orthonormal.
- Note that this writes $(d\mathcal{F})_u(Y) = O_0 + O_{CR}$, a sum of an order zero and a Cauchy-Riemann operator.

Recap

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential Note that since we've computed in charts, we have actually computed the differential of \mathcal{F}_u in the following diagram

Order 0 Term is Linear

Linearization and Transversality

D. Zack Garza

Review 8.2

Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F

$$(d\mathcal{F})_{u} = \left(\frac{\partial Y}{\partial s} + J(u)\frac{\partial Y}{\partial t}\right) + \left((dJ)_{u}(Y)\frac{\partial u}{\partial t} - (dJ)_{u}(Y)X_{t} - J(u)(dX_{t})_{u}(Y)\right)$$

$$:= \overline{\partial} Y + SY$$

where $S \in C^{\infty}(\mathbb{R} \times S^1; \operatorname{End}(\mathbb{R}^n))$ is a linear operator of order 0.

Order 0 Symmetry in the Limit

Linearization and Transversality

D. Zack Garza

Review 8.2

Section 8.3: The Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F

Theorem (8.4.4, CR + Symmetric in the Limit)

If u solves Floer's equation, then

$$(d\mathcal{F})_u = \bar{\partial} + S(s,t)$$

where

- S is linear
- S tends to a symmetric operator as $s \longrightarrow \pm \infty$, and

_

$$\frac{\partial S}{\partial s}(s,t) \stackrel{s \longrightarrow \pm \infty}{\longrightarrow} 0$$
 uniformly in t

Proof

Linearization and Transversality

D. Zack Garz

Review 8.

Section 8.3: Th Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F Omitted – S is exactly O_0 from before:

$$O_{0} = \sum_{i=1}^{2n} y_{i} \left(\frac{\partial Z_{i}}{\partial s} + J(u) \frac{\partial Z_{i}}{\partial t} + (dJ)_{u}(Z_{i}) \frac{\partial u}{\partial t} - J(u)(dX_{t})_{u}Z_{i} - (dJ)_{u}(Z_{i})X_{t} \right)$$

$$= \sum_{i=1}^{2n} y_{i} \left(\frac{\partial Z_{i}}{\partial s} + (dJ)_{u}(Z_{i}) \left(\frac{\partial u}{\partial t} - (Z_{i})X_{t} \right) + J(u) \frac{\partial Z_{i}}{\partial t} - J(u)(dX_{t})_{u}Z_{i} \right).$$

- The term in blue vanishes as $s \longrightarrow \pm \infty$
 - Using the fact that u is a solution
 - Uses $\frac{\partial u}{\partial s} \longrightarrow 0$ uniformly (as do its derivatives?)
- Suffices to show the remaining part is symmetric in the limit

Proof

Linearization and Transversality

D. Zack Garz

Review 8.2

Space of Perturbations o

Section 8.4: Linearizing the Floer Equation: The Differential of F Write the remaining part as

$$A(y_1, \dots, y_{2n}) = \dots \implies A_{ij} = A_{ji}$$

using inner product calculations

– Uses the fact the Z_i needed to be chosen to be unitary and symplectic.

asdas

Linearization and Transversality

D. Zack Garz

Review 8.3

Section 8.3: Th Space of Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F Write O_1 as a map $Y \mapsto S \cdot Y$, so $S \in C^{\infty}(\mathbb{R} \times S^1; \operatorname{End}(\mathbb{R}^{2n}))$ and define the symmetric operators

$$S^{\pm} \coloneqq \lim_{s \longrightarrow \pm \infty} S(s, \cdot)$$
 respectively

Theorem

The equation

$$\partial_t Y = J_0 S^{\pm} Y$$

linearizes Hamilton's equation

$$\frac{\partial z}{\partial t} = X_t(z) \quad \text{at} \quad \begin{cases} x = \lim_{s \to -\infty} u & \text{for } S^- \\ y = \lim_{s \to \infty} u & \text{for } S^+ \end{cases} \quad \text{respectively}.$$

Image

Linearization and Transversality

D. Zack Garza

Review 8.3

Space of
Perturbations of

Section 8.4: Linearizing the Floer Equation: The Differential of F Reminder the x, y were the top/bottom pieces of the original cylinder/sphere:

Proof Sketch

Linearization and Transversality

D. Zack Garza

Review 8.

Section 8.3: The Space of Perturbations of H

Section 8.4: Linearizing the Floer Equation: The Differential of F

- Use the fact that $\frac{\partial Y}{\partial t} = (dX_t)_X Y$
- Expand $\sum \frac{\partial y_i}{\partial t} Z_i$ in the Z_i basis (roughly) to write $\frac{\partial y_i}{\partial t} = \sum b_{ij} y_j$ for some coefficients b_{ij} .
- Collect terms into a matrix/operator B^{\mp} for x, y respectively to write

$$\frac{\partial Y}{\partial t} = B^- \cdot Y$$

- Write $(d\mathcal{F})_u = \bar{\partial} + S$ where S is zero order and symmetric in the limit
- Get the corresponding operator A in coordinates
- Expand in a basis (roughly) as $A(\sum y_i Z_i) = \sum s_{ij} y_j Z_i$
- Check that $s_{ij} = \pm b_{i\pm n,j}$
- This implies

$$S^- = -J_0 B^ S^+ = -J_0 B^+$$
 $\Longrightarrow \frac{\partial Y}{\partial t} = J_0 S^{\pm} Y$