Abstract Binding Trees

Jonathan Sterling

1 Preliminaries

Fix a set \mathcal{S} of *sorts*. We will say s *sort* when $s \in S$. A valence $\vec{p} \parallel \vec{q}.s$ specifies an expression of sort s which binds symbols in \vec{p} and variables in \vec{q} .

$$\frac{s \ sort \quad p_i \ sort \quad (i \le m) \quad q_i \ sort \quad (i \le n)}{p_0, \dots, p_m \parallel q_0, \dots, q_n . s \ valence}$$

An arity $(\vec{v})s$ specifies an operator of sort s with arguments of valences \vec{v} . We will call the set of valences \mathcal{V} , and the set of arities \mathcal{A} .

$$\frac{s \ sort \ v_i \ valence \ (i \le n)}{(v_0, ..., v_n) s \ arity}$$

Let \mathbb{I} be the infinite set of symbols; let \mathbb{F} be the free cocartesian category over \mathbb{I} . Then, fix a covariant presheaf of operators $\mathscr{O}: \mathbb{F} \times \mathscr{A} \to \mathbf{Set}$ such that the arrows in \mathbb{F} lift to renamings of operators' parameters; via the Grothendieck construction, we can also consider the set $\int \mathscr{O}$ of operators (U, ϱ, ϑ) for $\vartheta \in \mathscr{O}(U, \varrho)$.

$$\frac{\vartheta \in \mathcal{O}(U,\varrho)}{U \vdash \vartheta : \varrho}$$

The judgment $U \vdash \vartheta : \varrho$ supports the structural principles of weakening and exchange, because of the functoriality of \mathscr{O} .

Examples Operators are defined by specifying the fibres of $\int \mathcal{O}$ in which they reside. For instance, consider the lambda calculus with a single sort, exp, about whose operators we may assert the following:

$$U \vdash \lambda : (\cdot \parallel \exp . \exp) \exp)$$

 $U \vdash ap : (\cdot \parallel \cdot . \exp, \cdot \parallel \cdot . \exp) \exp$

However, consider the extension of the calculus with assignables. Then, we shall have the following:

$$U \vdash \mathsf{decl} : (\cdot \parallel \cdot . \mathsf{exp}, \mathsf{exp} \parallel \cdot . \mathsf{exp}) \mathsf{exp}$$

$$U, u \vdash \mathsf{get}\{u\} : (\cdot) \mathsf{exp}$$

$$U, u \vdash \mathsf{set}\{u\} : (\cdot \parallel \cdot . \mathsf{exp}) \mathsf{exp}$$

Weakening can be seen as inducing a "degeneracy map" on operators, whereas a renaming $u \mapsto v$ will take $get\{u\}$ to $get\{v\}$.

2 Contexts

In general, we will have three kinds of context: metacontexts, variable contexts, and parameter contexts. A metacontext Ω consists of bindings of valences to metavariables; a variable context Γ is a collection of bindings of sorts to variables, and a parameter context Υ is a collection of bindings of sorts to symbols.

$$\frac{\Omega \ mctx \ v \ valence \ M \notin |\Omega|}{\Omega, M : v \ mctx}$$

$$\frac{\Gamma \ vctx \ s \ sort \ x \notin |\Gamma|}{\Gamma, x : s \ vctx}$$

$$\frac{\Gamma \ vctx \ s \ sort \ u \notin |\Gamma|}{\tau, u : s \ sctx}$$

3 Abstract Binding Trees

Let the judgment $\Omega \triangleright \Upsilon \parallel \Gamma \vdash M : s$ presuppose Ω mctx, Υ sctx, Γ vctx and s sort, meaning that M is an abstract binding tree of sort s, with metavariables in Ω , parameters in Υ , and variables in Γ .

$$\begin{split} \frac{\Gamma \ni x : s}{\Omega \rhd \Upsilon \parallel \Gamma \vdash x : s} \ var \\ \Omega \ni M : p_0, \dots, p_m \parallel q_0, \dots, q_n . s \\ \Upsilon \ni u_i : p_i \quad (i \le m) \\ \Omega \rhd \Upsilon \parallel \Gamma \vdash M_i : q_i \quad (i \le n) \\ \hline{\Omega \rhd \Upsilon \parallel \Gamma \vdash M \{u_0, \dots, u_m\} (u_0, \dots, u_m; M_0, \dots, M_n) : s} \ mvar \\ |\Upsilon| \vdash \vartheta : p_0, \dots, p_m \parallel q_0, \dots, q_n . s \\ \Upsilon \ni u_i : p_i \quad (i \le m) \\ \Omega \rhd \Upsilon \parallel \Gamma \vdash M_i : q_i \quad (i \le n) \\ \hline{\Omega \rhd \Upsilon \parallel \Gamma \vdash \vartheta \{u_0, \dots, u_m\} (u_0, \dots, u_m; M_0, \dots, M_n) : s} \ app \end{split}$$