K-Mean

Ngô Minh Nhựt

Bộ môn Công nghệ Tri thức

2021

Gom cum

- Là thuật toán học không giám sát
- Dữ liệu học không cần gán nhãn
- Được dùng để nhận dạng các mẫu giống nhau. Ví dụ:
 - Kết quả tìm kiếm,
 - Thói quen mua sắm, ...
- Thuật toán học hữu ích khi có ít thông tin về dữ liệu

- Ý tưởng về gom cụm:
 - Gom những mẫu giống nhau vào cùng nhóm
 - Ví dụ: xét những mẫu dữ liệu 2 chiều sau

- Ý tưởng về gom cụm:
 - Gom những mẫu giống nhau vào cùng nhóm
 - Ví dụ: xét những mẫu dữ liệu 2 chiều sau

- Ý tưởng về gom cụm:
 - Gom những mẫu giống nhau vào cùng nhóm
 - Ví dụ: xét những mẫu dữ liệu 2 chiều sau

Độ giống nhau (similarity)?

- Ví dụ: khoảng cách Euclide
- Kết quả gom cụm phụ thuộc vào cách tính độ giống nhau

K-mean

- Là thuật toán học không giám sát
- Được dùng để gom cụm dữ liệu: học cấu trúc
- Dựa vào khoảng cách Euclide: 2 mẫu có khoảng cách nhỏ thì thuộc cùng một cụm

Source: Wikipedia

Ứng dụng của gom cụm

- Computer science: image segmentation, recommender system, anomaly detection
- Social network analysis: clustering community, search result grouping
- Business marketing: dividing consumers into market segments

Original

Source: Andrew Ng, Wikipedia

Ứng dụng của gom cụm

- Image segmentation
 - Mục tiêu: phân chia ảnh thành các vùng có ý nghĩa hoặc giống nhau trực quan

Source: James Hayes

Ứng dụng của gom cụm

- Gom cụm dữ liệu biểu diễn gene
- Mục tiêu: tìm ra những mẫu gen tương tự nhau

Source: Eisen et al, PNAS 1998

Thuật toán K-mean

- Input: số cụm K, m mẫu dữ liệu
- Mục tiêu: tìm các cụm sao cho khoảng cách giữa mẫu dữ liệu tới trung tâm là ngắn nhất
- Bước 1: khởi tạo K điểm trung tâm
- Bước 2: phân các điểm dữ liệu vào cụm gần nhất
- Bước 3: tính lại điểm trung tâm
- Lặp cho tới khi hội tụ

Thuật toán

- \square Khởi tạo ngẫu nhiên K điểm trung tâm: $\mu_1, \mu_2, ..., \mu_K$
- Lặp tới khi điểm trung tâm không đổi:
 - Lặp i = 1 tới m
 - $c^{(i)} = chỉ số của điểm trung tâm mà mẫu dữ liệu <math>x^{(i)}$ gần nhất
 - Lặp k = 1 tới K
 - μ_k = trung bình của các mẫu dữ liệu được phân vào cụm k

Hàm mục tiêu

- ☐ Giả sử:
 - ullet $c^{(i)}$: cụm của mẫu x $^{(i)}$
 - ullet μ_k : điểm trung tâm của cụm k
 - ullet $\mu_{c^{(i)}}$: điểm trung tâm của cụm mà x $^{(i)}$ được gán vào
- □ Hàm chi phí:

$$J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

Mục tiêu:

$$\min_{c^{(1)},...,c^{(m)},\mu_1,...,\mu_K} J(c^{(1)},...,c^{(m)},\mu_1,...,\mu_K)$$

Thuật toán

- \square Khởi tạo ngẫu nhiên K điểm trung tâm: $\mu_1, \mu_2, ..., \mu_K$
- Lặp tới khi điểm trung tâm không đổi:
 - lacksquare Lặp i = 1 tới m $\displaystyle \min_{c^{(i)}} J(...)$
 - $c^{(i)}$ = chỉ số của điểm trung tâm mà mẫu dữ liệu $x^{(i)}$ gần nhất
 - Lặp k = 1 tới K $\min_{\mu_k} J(...)$
 - μ_k = trung bình của các mẫu dữ liệu được phân vào cụm k

Khởi tạo trung tâm

- Lặp i = 1 tới 100
 - Khởi tạo ngẫu nhiên K điểm trung tâm
 - Chạy thuật toán K-mean
 - Tính chi phí

$$J(c^{(1)},...,c^{(m)},\mu_1,...,\mu_K)$$

Chọn các gom cụm có chi phí nhỏ nhất

Chọn số điểm trung tâm K

Phương pháp Elbow: chọn K tại vị trí mà chi phí không đổi sau đó

Các khoảng cách khác

Khoảng cách Euclide

•
$$d(x,y) = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}$$

- Khoảng cách Manhattan
 - $d(x,y) = \sum_{i=1}^{n} |x_i y_i|$, n: số đặc trưng
- Maximum norm
 - $d(x,y) = \max_{1 \le i \le n} |x_i y_i|$, n: số đặc trưng
- Khoảng cách cosine
 - $d(x,y) = 1 \frac{x^T y}{\|x\| \|y\|}$, d có giá trị từ 0 đến 2
- Khoảng cách Hamming
 - Số thành phần khác nhau giữa 2 véc tơ x và y
 - Ví dụ: 2 véc tơ (0, 1, 1) và (0, 1, 0) có khoảng cách Hamming là 1

Ví dụ

Ưu điểm của k-mean

- ☐ Tìm ra các cụm có variance nhỏ
- Đơn giản và nhanh
- Dễ cài đặt

Khuyết điểm của k-mean

- Cần phải chọn tham số K trước
- Bị ảnh hưởng bởi outliers
- Dễ rơi vào cực tiểu địa phương
- Phụ thuộc lớn vào việc khởi tạo các cụm ban đầu
- Có thể chậm. Độ phức tạp của mỗi lần lặp: O(Kmn), m là số mẫu, n là số chiều