(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年9月1日 (01.09.2005)

PCT

(10) 国際公開番号 WO 2005/080955 A1

(51) 国際特許分類7:

(21) 国際出願番号:

G01N 27/409,

27/41, 27/30, H01M 4/90

PCT/JP2004/013561

(22) 国際出願日: 2004年9月16日(16.09,2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2004-045325 2004年2月20日(20.02.2004) ЛР

(71) 出願人 (米国を除く全ての指定国について): 株式会社 フルヤ金属 (FURUYA METAL CO., LTD.) [JP/JP]; 〒 1700005 東京都豊島区南大塚二丁目37番5号 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 後藤孝 (GOTO, Takashi) [JP/JP]; 〒9820003 宮城県仙台市太白区 郡山六丁目5番8号205 Miyagi (JP). 木村 禎一 (KIMURA, Teiichi) [JP/JP]; 〒9810943 宮城県仙台市 青葉区国見六丁目 2 7 番 1 号 Miyagi (JP). 鈴木 宗 (SUZUKI, Hajime) [JP/JP]; 〒1700005 東京都豊島区 南大塚二丁目37番5号 株式会社フルヤ金属内 Tokyo (JP). 地主 啓一郎 (JINUSHI, Keiichiro) [JP/JP]; 〒1700005 東京都豊島区南大塚二丁目37番5号株 式会社フルヤ金属内 Tokyo (JP).
- (74) 代理人: 今下勝博, 外(IMASHITA, Katsuhiro et al.); 〒1050021 東京都港区東新橋一丁目3番9号楠本第 6 ビル 8 階アイル知財事務所 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,

/続葉有/

(54) Title: PARTICLE-DISPERSED COMPLEX AND SOLID ELECTROLYTIC SENSOR USING IT

(54) 発明の名称: 粒子分散複合物及びそれを用いた固体電解質型センサー

(57) Abstract: A particle-dispersed complex which can serve as a very active electrochemical catalyst used as the sensor electrode of a solid electrolytic sensor such as an oxygen sensor and an exhaust gas sensor that are sensitive even at low temperature, or as the electrode of an electrolytic or electrochemical device such as a battery by dipsersing without aggregating ruthenium fine particles having a very small particle size into a carbon matrix phase to keep ruthenium fine particles in a high catalyst active state. The particle-dispersed complex is characterized by comprising fine particles that have a particle size of 5-100 nm, contain ruthenium element as a constituent element, and are dispersed in a matrix mainly containing carbon, and by having conductivity.

本発明の目的は、粒子径の非常に小さいルテニウム系微粒子を炭素マトリックス相中に凝集させるこ となく分散させることで、ルテニウム系微粒子を高触媒活性状態として、低温でも感度の良い酸素センサー、排

/続葉有/

WO 2005/080955 A1

BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG,

CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

粒子分散複合物及びそれを用いた固体電解質型センサー 技術分野

[0001] 本発明は、ルテニウム系微粒子を炭素マトリックスに均一分散させた粒子分散複合物に関し、特に酸素センサー、排ガスセンサー等の固体電解質型センサー用電極、或いは電解又は電池等の電気化学デバイスなどの電極に使用する活性が極めて高い電気化学触媒に関するものである。さらに粒子分散複合物を用いた固体電解質型センサーに関する。

背景技術

- [0002] 電気化学反応では電極を媒体として電極表面でイオンなどの物質の電荷のやりとりを行い、反応を促進させている。これに使用する電極は極めて重要な役割を持っており、反応に必要とされる理論的なエネルギーである、電解化学反応における理論分解電圧の他に、目的とする電気化学反応を進めるための電極特有の過剰エネルギー、つまり過電圧を必要とする。この過電圧は物質とその状態によって与えられ、いわゆる触媒活性を表わすのと同じ事であるので、電極物質を電気化学触媒という言葉で言い表している。
- [0003] 電気化学デバイスでは他の化学反応と同じく触媒による反応の選択性、並びにその必要とする過剰エネルギー即ち過電圧が極めて重要な要素である。つまり電気化学センサーでは云うまでもなく選択性は重要な要素であり、更に過電圧はその反応性に極めて重要な役割を与える。
- [0004] このようなセンサーについても、また電解反応に直接関与する電解用電極についても、或いは電気化学反応により発電する電池用電極についても、電気化学触媒の作用は全く同じであるが、従来は最も活性で安定な電極として白金が使われることが多かった。確かに標準水素電極は白金黒を電極としてそれをゼロと定義されており、白金は電気化学の技術分野では最もよく知られ活用されている有効な電気化学触媒である。
- [0005] 白金以外の白金族金属はそれ自身で化学触媒としては広く使われているが、電気

化学触媒として炭素と共に使用されることは少なかった。つまりルテニウムはそれ自身で或いはそれと安定な金属であるチタンなどと共に金属基材上に焼き付けることによって、酸化ルテニウムの状態で、いわゆる不溶性金属電極として食塩電解用の陽極として広く使用されている。また白金と白金以外の白金族金属の合金も燃料電池用電極に使用されている。前者は特に水溶液中の塩素イオンを酸化して塩素ガスを生成するのに有効に使用されており(例えば特許文献1を参照。)、また後者は助触媒的な作用を行なうことが知られている(例えば特許文献2を参照。)。

[0006] 特許文献1:特開2002-088494号公報

特許文献2:特開2003-187851号公報

発明の開示

発明が解決しようとする課題

[0007] しかしながら、これらは触媒としての活性を有するもののむしろ実用面を主体として おり、センサーなど、あるいは微少量の電気化学反応などを対象とした反応特性とい う点では感度も鈍く、合目的ではなかった。

[0008] 本発明は、粒子径の非常に小さいルテニウム系微粒子を炭素マトリックス相中に凝集することなく分散させることで、ルテニウム系微粒子を高触媒活性状態として、低温でも感度の良い酸素センサー、排ガスセンサー等の固体電解質型センサーのセンサー電極、或いは高活性の電気化学触媒となりうる粒子分散複合物を提供することを目的とする。

課題を解決するための手段

[0009] 本発明者らは、低温でも感度の良い固体電解質型センサーの電極を探索している際に、CVD法により不完全な酸化条件において基板上にルテニウム含有薄膜の合成を行なうことで、粒子径の非常に小さいルテニウム系微粒子を炭素マトリックス相中に凝集することなく分散させた、つまり金属微粒子が分散した炭素質全体において、高活性の粒子分散複合物が得られることを見出して、本発明を完成させた。すなわち、本発明に係る粒子分散複合物は、炭素を主成分とするマトリックスにルテニウム元素を構成元素として含む粒径5~100nmの微粒子が分散、且つ導電性を有することを特徴とする。そして本発明に係る粒子分散複合物は、前記微粒子の全表面が

前記マトリックス若しくは前記微粒子の少なくとも一方と接触し合っている場合を包含する。ここで、前記マトリックスはカーボンブラック又はナノカーボンである場合を含む。また、前記微粒子は、ルテニウム金属微粒子、酸化ルテニウム微粒子又は表面酸化ルテニウム金属微粒子であるか、或いはこれらの微粒子の混合物である場合を含む。微粒子は粒径が5~100nmと小さいため高活性であり、また担持するマトリックスがカーボンブラック又はナノカーボン等の微細カーボンであればさらに高活性である

- [0010] 本発明に係る粒子分散複合物は、導電性基体上に担持されてなることが好ましい。 導電性基体上に担持させることで、酸素センサー、排ガスセンサー等の固体電解質 型センサーのセンサー電極、或いは電解又は電池等の電気化学デバイスなどの電 極などの各種用途へ利用しやすい形態にすることができる。
- [0011] 本発明に係る粒子分散複合物では、固体電解質基体上に形成されてなることが好 ましい。ここで、固体電解質基体と該固体電解質基体の表面に形成された前記粒子 分散複合物からなる薄膜との界面電気伝導度 σ が、190~350℃において、10⁻⁵S m⁻¹以上10⁻²Sm⁻¹以下である場合を含む。さらに、本発明に係る粒子分散複合物は 、固体電解質型センサーのセンサー電極であるか、又は固体電解質用電極であるこ とを含む。固体電解質基体上に粒子分散複合物を形成することで、燃料電池の電極 として使用することができる。このとき、190~350℃と低温においても固体電解質と 電極との界面抵抗を小さくすることができる。ここで酸素イオン伝導性の固体電解質 として、酸化ジルコニウムに酸化カルシウムまたは酸化イットリウム等の安定化剤を固 溶させた材料が、一般に安定化ジルコニアとして用いられている。本発明に係る固体 電解質型センサーは、炭素を主成分とするマトリックスにルテニウム元素を構成元素 として含む粒径5~100nmの微粒子が分散されてなり且つ導電性を有する粒子分 散複合物が、安定化剤を含有する酸化ジルコニウム基板の表面に電極として形成さ れていることを特徴とする。そして本発明に係る固体電解質型センサーは、前記微粒 子の全表面が前記マトリックス若しくは前記微粒子の少なくとも一方と接触し合ってい る場合を包含する。
- [0012] 本発明に係る粒子分散複合物は、電気化学触媒であることを含む。電解又は電池

等の電気化学デバイスの電極として使用できる。さらに芳香環やアニリン、ピジリンの水素化反応、酸化反応、脱水素化反応、分解反応、オキソ反応、異性化反応、水素化分解、リフォーミング反応などの各反応の触媒として使用できる。

発明の効果

[0013] 本発明に係る粒子分散複合物は、粒子径の非常に小さいルテニウム系微粒子が 炭素マトリックス相中に凝集することなく分散しているため、ルテニウム系微粒子が高 触媒活性状態である。そして、低温でも感度の良い酸素センサー、排ガスセンサー 等の固体電解質型センサー用電極、或いは高活性の電気化学触媒となる。

図面の簡単な説明

[0014] [図1]本発明の実施例による粒子分散複合物からなる電極膜の形成に用いられるC VD製造装置の一形態を示した概念図である。

[図2]原料の熱重量曲線を示す図であり、Ru(dpm)。とRu(acac)。の二例を示したものである。

[図3]基板温度400℃の条件において、酸素含有率による相変化を示すXRDチャートである。

[図4]キャリアガスの酸素含有率が17%の条件において、基板温度を変化させた場合の相変化を示すXRDチャートである。

[図5]実施例4のTEM観察の電子顕微鏡写真を示す図(写真画像)である。

[図6]実施例4の350℃における(a)コールコールプロット、(b)直流法により電流電圧特性の測定結果を示した。

[図7]実施例4の250℃における(a)コールコールプロット、(b)直流法により電流電圧特性の測定結果を示した。

[図8]実施例4の190℃における(a)コールコールプロット、(b)直流法により電流電圧特性の測定結果を示した。

[図9]実施例4の190~350℃において、界面電気伝導度の温度変化を示した。 「図10]実施例4の膜のAESスペクトルを示す図である。

「図11]酸素ガス濃淡セルの模式図である。

「図12]酸素ガス濃淡セルの起電力の温度依存性を示すグラフである。

[図13]250℃で酸素濃度を変化させたときの酸素ガス濃淡セルの起電力の時間変化を示すグラフである。

[図14]250℃での酸素分圧と起電力との関係を示すグラフである。

符号の説明

- [0015] 1a, 不活性ガス発生源
 - 1b,酸素ガス発生源
 - 2, ガス流量コントローラー
 - 3a, 原料供給管
 - 3b, ガス加熱管
 - 4a. 原料容器
 - 5, 反応室
 - 6, 排気手段
 - 7, 基板保持部
 - 8, 基板

発明を実施するための最良の形態

- [0016] 以下、本発明について実施形態を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。
- [0017] 図1に示すCVD成膜装置を使用して基板上に本発明に係る粒子分散複合物を成膜する。図1の製造装置は一例である。このCVD成膜装置は、不活性ガスや酸素ガスのガス発生源1a、1b、ガス流量コントローラー2a、2b、加熱部を備えた原料供給管3a、加熱部を備えたガス加熱管3b、原料容器4a、加熱部を備えた反応室5、排気手段6、基板保持部7を備える。
- [0018] まず、図1の製造装置について説明する。ガス発生源1aは、キャリアガスである不活性ガスを供給する。ガス発生源1bは酸素ガスを供給する。ガス流量コントローラー2aは、ガス発生源1aで発生させたアルゴンや窒素ガス等の不活性ガスを原料供給管3aに供給する際に、原料ガス供給管3aに必要なキャリアガスの流量を制御する。原料供給管3aは加熱部を備え、内部に設置された原料容器4aと共にこれに載置された原料を所定の温度に加熱して気化させ、反応室5内にキャリアガスとともに原料

を供給する。同時にガス発生源1bで発生させた酸素ガスをガス加熱管3bで加熱して 反応室5内に供給する。反応室5内は排気手段6によって所定の圧力に減圧される。 反応室5内に設置された基板保持部7に基板8が載置され、反応室5の加熱部によっ て基板8は所定の温度に加熱される。

- [0019] 原料としては、ルテニウム有機金属化合物やルテニウム有機金属錯体などを使用する。ここで、有機金属錯体としてジピバロイルメタネートルテニウムとすることが好ましく、これらの原料を原料容器4aに入れ、原料容器4aを原料供給管3a内に載置する。
- [0020] ジピバロイルメタネート錯体はβージケトン錯体(R1-CO-CH₂-CO-R2)に属する。例えば、同じβージケトン錯体に属するアセチルアセトネートルテニウム(Ru(acac)₃)は、ジピバロイルメタネートルテニウム(Ru(dpm)₃)と比較して、必要な蒸気圧を得るために高い加熱温度が必要となる。これに対して、ジピバロイルメタネートルテニウムは、気化させるための加熱温度をアセチルアセトネートルテニウムよりも低く設定でき、気化後の残渣もほとんどない。したがって、原料の使用効率が高くなる。
- [0021] 本発明では、三塩化ルテニウムとジピバロイルメタンとをアルカリ性反応促進剤の存在下で反応させてジピバロイルメタネートルテニウムを合成するに際して窒素雰囲気下で還流して粗原料を得、該粗原料をカラムクロマトグラフィー法により精製し、さらに昇華により精製したジピバロイルメタネートルテニウムを使用することがより好ましい。上記の製法により得たジピバロイルメタネートルテニウムは、窒素雰囲気下での還流により合成途中での酸化分解が起こらず、副生成物の含有が少ない。したがって、気化効率が高く気化後の残渣が少ない。また副生成物の含有量が少ないため基板到達前の分解が減少し、基板表面に純度の高いままのジピバロイルメタネートルテニウムが供給されることとなる。さらに、ジピバロイルメタネートルテニウムが供給されることとなる。さらに、ジピバロイルメタネートルテニウムが分解に起因する異物ガス、例えば原料の半分解副生成物、炭素系化合物等が少ないため、基板表面での反応が均質に進み、粒径の揃った粒子からなる薄膜を析出させることが可能となる。
- [0022] 還流条件は、窒素雰囲気下で、例えば100~230℃、好ましくは、120~210℃で、15~25時間、好ましくは18~22時間である。またアルカリ性反応促進剤としては、

例えば炭酸水素ナトリウム、炭酸水素カリウム等が例示できる。

WO 2005/080955

[0023] 原料容器4aである原料皿は、各有機金属錯体に対して不活性の材質の皿が選択され、例えば石英ボートとする。

7

PCT/JP2004/013561

- [0024] なお、図1ではジピバロイルメタネート錯体を昇華させる方法について述べたが、ジピバロイルメタネート錯体を有機溶媒、例えばエタノールに溶解させて気化容器に収容して、バブリングにより原料蒸気を反応室5に導入しても良い。
- [0025] 図1に示すCVD成膜装置を使用して基板上に本発明に係る粒子分散複合物を成膜する手順について説明する。排気手段6によって反応室5内を所定の圧力とする。 圧力は13~4000Pa、好ましくは13~1000Paとする。
- [0026] 反応室5を加熱し、基板保持部7に載置された基板8を所定の温度に加熱する。基 板温度は、表面での原料化合物の分解反応に必要な温度に加熱する。
- [0027] 基板は、目的によって適宜選択されるが、金属、炭素、導電性セラミックス等の導電性基体が例示される。石英ガラス基板でも良い。本実施形態では固体電解質用の電極として使用する場合を例として説明するため、基板を固体電解質、例えば安定化剤を含有する酸化ジルコニウムからなる酸素イオン伝導性の固体電解質基板とする。安定化剤としては、酸化マグネシウム、酸化カルシウム、酸化イットリウム、酸化スカンジウム又は酸化セリウム等の金属酸化物であることが好ましい。安定化剤を含有する酸化ジルコニウムとは、安定化酸化ジルコニウム(安定化ジルコニア)又は部分安定化酸化ジルコニウム(部分安定化ジルコニア)である。
- [0028] 次に原料供給管3aを加熱し、原料容器4a内の原料を加熱する。原料加熱温度は、140~270℃とする。所望の気化速度を得るために原料加熱温度を適宜調整する
- [0029] 次にガス発生源1aから不活性ガス、例えばアルゴンガスや窒素ガスを、ガス流量コントローラー2aを介して原料供給管3aに供給する。また、ガス発生源1bから酸素ガスを、ガス流量コントローラー2bを介してガス加熱管3bに供給する。酸素ガスは、原料のキャリアガスの温度にあわせるためにガス加熱管3bで加熱する。気化した原料を含む不活性ガスと酸素ガスとを別個に反応室内に導入してもよく、或いは図1で示したように気化した原料を含む不活性ガスと酸素ガスとの混合をより確実に行なうた

めに、基板に導入する直前で混合して供給してもよい。ここで、得ようとする膜の組成を制御するために原料供給管3aに供給する不活性ガスの流量や原料の加熱温度を それぞれ調整する。

- [0030] 不活性ガスと酸素ガスとの混合ガスは少なくとも反応室内において、基板までに原料ガスを導くキャリアガスとなり、このキャリアガスの流量は、反応室5の大きさや基板の大きさによって適宜調整する。ここで不活性ガスと酸素ガスとの混合ガスであるキャリアガス中の酸素含有率は、結晶性微粒子を得るためには9%以上とすることが好ましい。また、非晶質性微粒子を得るためには、キャリアガス中の酸素含有率は9%未満とすることが好ましい。
- [0031] 気化した原料を含む不活性ガスと酸素ガスとが反応室5内に送られ、加熱された基板表面に導入される。なお、反応室5は原料供給管や反応室に至る配管よりも高い温度に設定されているため、途中で原料が凝縮・固化することはない。さらに所定の高純度のジピバロイルメタネートルテニウムを使用することで、原料搬送中での副反応進行等による原料使用効率の低下が抑えられると共に、固体電解質基板上で均質に原料分解を進めてほぼ均一の薄膜微細構造が得られる。
- [0032] 基板表面に到達した原料は所定酸素含有率下で熱分解して、基板上に粒子分散複合物が析出する。この粒子分散複合物は、ルテニウム有機金属錯体に含まれる炭素を主成分とするマトリックスと、マトリックス中に分散した、ルテニウム有機金属錯体に含まれるルテニウム元素を構成元素として含む粒径5~100nm、好ましくは粒径5~50nm、さらに好ましくは粒径5~20nmの微粒子とからなる。上述したとおり、キャリアガス中の酸素含有率により、結晶性微粒子も非晶質性微粒子のいずれも得られる。微粒子の全表面はマトリックス若しくは微粒子の少なくとも一方と接触し合っている、すなわち、微粒子とマトリックスの界面には空孔やギャップはほとんど若しくは全くないことが好ましい。微粒子とマトリックスとがその界面の全面で密着していることで、分散微粒子の粒子径が小さいこととあいまって、接触している界面面積が極めて大きくなり、その結果、粒子分散複合物は高い界面電気伝導度が得られると考えられる。また、粒子分散複合物のマトリックス中での分散状態は、凝集することなく均一分散していることが好ましい。すなわち、微粒子の全表面はマトリックスのみと接触し合って

いることがより好ましい。マトリックスが接触している界面面積が大きくなるからである。

- [0033] この粒子分散複合物は導電性を有する。また、マトリックスはカーボンブラック又はナノカーボンを含む。
- [0034] 結晶性微粒子は、キャリアガス中の酸素含有率によって変化し、酸素含有率は9%以上において、酸素含有率の低いほうから、ルテニウム金属微粒子、表面酸化ルテニウム金属微粒子、酸化ルテニウム微粒子が得られる。実施例で述べるように、特にキャリアガスの酸素含有率を、9%を超えて23%未満とし且つ基板の温度を350~450℃の条件とすることで、炭素を主成分とするマトリックス中に、結晶性微粒子としてルテニウム金属微粒子を分散させることができる。
- [0035] 本実施形態に係る粒子分散複合物では、炭素とルテニウムの原子数比は(10:90)~(90:10)とすることが好ましく、(30:70)~(70:30)とすることがより好ましい。さらに(50:50)~(65:35)とすることが好ましい。原子数比で(10:90)よりも炭素が少ないと微粒子の凝集が起こり、一方、原子数比で(90:10)よりも炭素が多いと微粒子の分散濃度が小さく、酸素センサーの応答速度が遅くなる、あるいは起電力・限界電流が小さくなるなどの不利な場合がある。ただし、この場合は、検量線を予め作製することで、酸素濃度の定量に用いることができる。この組成は、原料の気化温度、キャリアガス流量等で自由に制御することが可能である。
- [0036] 本実施形態に係る粒子分散複合物は、固体電解質用電極として用いた場合に、低い温度領域、例えば190~350℃においても固体電解質基板-電極の界面抵抗増加が抑制される。固体電解質基体と該固体電解質基体の表面に形成された粒子分散複合物からなる薄膜との界面電気伝導度 σ は190℃において10⁻⁶Sm⁻¹以上であり、190~350℃において10⁻⁶Sm⁻¹以上10⁻²Sm⁻¹以下である場合を含む。
- [0037] この電極を形成した基板は、酸素センサー等のセンサー電極、燃料電池の構成部材、電解用電極として特に適している。また、触媒として使用する場合には、ルテニウム触媒は、脂肪族カルボニル化合物及び芳香族化合物の環の水素化に高活性を示し、温和な条件で、副反応を伴わず水素化することができる。特に反応系に水が共存すると、水と共に触媒となり高い活性を表わす。また、貴金属触媒の中では例外的に硫黄化合物に耐毒性がある。さらに酸や塩基にも極めて安定で強酸中での反応

にも使用できる。その他、本実施形態では、低温において電解反応がおこり、電解によって分解、反応がある。また、分解による電気製造も考慮できる。さらに、微粒子でルテニウム系微粒子を分散させたため、(1)触媒の使用量が非常に少なくても活性度が高く、(2)温和な条件で反応できる為、ユーティリティー、設備投資に費用がかからず、(3)選択性が良い為、副反応によって収率が低下せず、(4)溶媒が酸性でも塩基性でも用いることが可能である、という特徴を有する。

[0038] なお電極の厚みは、固体電解質酸素センサーや固体電解質型燃料電池の電極形 状とその大きさ等によって最適な膜厚、例えば100nm~200 μ mとする。後述する 実施例のように1 μ m以下の膜厚であっても良い。膜厚は、原料の供給量や成膜時 間などの条件によって制御することが可能である。

実施例

[0039] (原料の気化テスト)

三塩化ルテニウムとジピバロイルメタンとをアルカリ性反応促進剤の存在下で反応させてジピバロイルメタネートルテニウムを合成するに際して窒素雰囲気下で155~200℃の範囲内で20時間還流して粗原料を得、この粗原料をカラムクロマトグラフィー法により精製し、さらに昇華により精製したジピバロイルメタネートルテニウムを実施例として熱重量分析を行なった。結果を図2に示す。熱重量曲線から明らかなように、140℃付近から昇華し始め、230℃付近で完全に昇華した。一方、アセチルアセトネートルテニウム(Ru(acac)₃)を参考例として同様の昇華テストを行なったところ、200℃付近から昇華し始め、270℃付近で昇華が終了した。結果を同じく図2に示した。したがって、ジピバロイルメタネートルテニウムは、低温でアセチルアセトネートルテニウムよりも高い蒸気圧特性を有する。また気化安定性が良いため残渣が少ない。これはジピバロイルメタネートルテニウムが安定して基板まで到達することを示唆している。

(実験1)

[0040] 図1の装置を用いて、イットリア安定化酸化ジルコニウム基板上に本実施形態に係る粒子分散複合物からなる電極の形成を行なった。アルゴンに所定量の酸素を混合してジピバロイルメタネートルテニウムを反応室中に導入した。このとき、アルゴンは2

Oscem、酸素ガス流量は10scemとした。したがってキャリアガスの酸素含有率は、3 3%である。成膜圧力は400Paとした。基板温度は400℃とした。また成膜時間は膜 厚が400nmとなるように調整した。これを実施例1とした。

(実験2)

- [0041] 酸素ガス流量は8sccmとした以外は、実験1と同様の条件で成膜し、これを実施例2とした。キャリアガスの酸素含有率は、29%である。 (実験3)
- [0042] 酸素ガス流量は6sccmとした以外は、実験1と同様の条件で成膜し、これを実施例3とした。キャリアガスの酸素含有率は、23%である。 (実験4)
- [0043] 酸素ガス流量は4sccmとした以外は、実験1と同様の条件で成膜し、これを実施例4とした。キャリアガスの酸素含有率は、17%である。 (実験5)
- [0044] 酸素ガス流量は2sccmとした以外は、実験1と同様の条件で成膜し、これを実施例 5とした。キャリアガスの酸素含有率は、9%である。 (実験6)
- [0045] 酸素ガス流量はOsccmとした以外は、実験1と同様の条件で成膜し、これを実施例 10とした。キャリアガスの酸素含有率は、0%である。 (実験7)
- [0046] 酸素ガス流量は4sccmとし、基板温度を350℃とした以外は、実験1と同様の条件で成膜し、これを実施例6とした。キャリアガスの酸素含有率は、17%である。 (実験8)
- [0047] 酸素ガス流量は4sccmとし、基板温度を450℃とした以外は、実験1と同様の条件で成膜し、これを実施例7とした。キャリアガスの酸素含有率は、17%である。 (実験9)
- [0048] 酸素ガス流量は4sccmとし、基板温度を500℃とした以外は、実験1と同様の条件で成膜し、これを実施例8とした。キャリアガスの酸素含有率は、17%である。 (実験10)

- [0049] 酸素ガス流量は4sccmとし、基板温度を550℃とした以外は、実験1と同様の条件で成膜し、これを実施例9とした。キャリアガスの酸素含有率は、17%である。 (実験11)
- [0050] 酸素ガス流量は4sccmとし、基板温度を600℃とした以外は、実験1と同様の条件で成膜し、これを実施例11とした。キャリアガスの酸素含有率は、17%である。 (実験12)
- [0051] 酸素ガス流量は4sccmとし、基板温度を300℃とした以外は、実験1と同様の条件で成膜し、これを比較例1とした。キャリアガスの酸素含有率は、17%である。
 (X線回折による評価)
- [0052] XRD(Rigaku Geigerflex)により相の同定を行なった。基板温度400℃の条件 における酸素含有率による相変化を調べた。結果を図3に示した。
- [0053] また、酸素ガス流量を4sccm、すなわちキャリアガスの酸素含有率を17%の条件で、基板温度を変化させた場合の相変化を調べた。結果を図4に示した。
- [0054] まず、基板温度を400℃と一定としてキャリアガス中の酸素含有率を変化させて結晶相の変化を示した図3を参照する。キャリアガス中の酸素含有量が0%の実施例1 0は、基板上に析出物が得られたもののアモルファスであり、炭素マトリックス中にアモルファスの粒子が分散していた。キャリアガス中の酸素含有量が9%の実施例5は、金属ルテニウム結晶によるピークが観察され、キャリアガス中の酸素含有量が17%の実施例4は、より結晶性の良い金属ルテニウム結晶のピークが観察された。さらにキャリアガス中の酸素含有量が23%の実施例3及びキャリアガス中の酸素含有量が29%の実施例2は、金属ルテニウム結晶のピークが観察されたものの、結晶性は実施例4の方が優れていた。これは、ルテニウム金属微粒子の表面が酸化されることにより、結晶性が低下したと推測される。さらに、キャリアガス中の酸素含有量が33%の実施例1は、結晶性の良い酸化ルテニウム結晶のピークが観察された。したがって、酸素含有率を9%以上とすることで結晶性のルテニウム系結晶を含む析出物が得られることがわかった。
- [0055] 次に、結晶性の良いルテニウム金属結晶が析出した酸素含有率である17%と一定 として、基板温度を変化させて結晶相の変化を示した図4を参照する。基板温度が3

50℃の実施例6は、酸化ルテニウム結晶によるピークが観察され、基板温度400℃の実施例4は、結晶性の良い金属ルテニウム結晶のピークが観察された。さらに基板温度450℃の実施例7は、酸化ルテニウム結晶によるピークが観察された。基板温度500℃の実施例8は、金属ルテニウム結晶のピークが観察された。基板温度550℃の実施例9は、実施例4と比較して結晶性が低い金属ルテニウム結晶のピークが観察された。実施例4及び実施例6~9を比較すると、同一酸素含有率で基板温度が異なる場合には基板温度により得られる結晶相は異なり、結晶性が最も良い析出物が得られたのは実施例4であった。なお、比較例1で300℃において成膜を行なった場合、析出物が得られなかった。原料ガスが分解しなかったと考えられる。また実施例11で600℃において成膜を行なった場合、アモルファスの粒子分散複合物が得られた。

(微細構造評価)

- [0056] 次に最も結晶性が良かった実施例4について透過型電子頭微鏡(TEM、JEOL-JEM-ARM1250)よる微細構造の観察を行った。図5に実施例4のTEM観察の結果を示した。図5では直径約5~20nmの球状微粒子が凝集せずに分散していることがわかった。この球状微粒子は、図5では格子配列が観察されていて、ほぼ単結晶微粒子であると考えられる。そして、X線回折との結果を考慮すると、球状の微粒子は金属ルテニウム微粒子であると考えられる。粒子とマトリックスの界面には空孔やギャップは観察されなかった。また、この微粒子を担持しているマトリックスは、原料由来の炭素を主成分とするマトリックスであることがわかった。この炭素系マトリックスは、カーボンブラックの凝集体或いはいわゆるナノカーボンである。したがって、実施例4のサンプルは粒子分散複合物であり、ルテニウム有機金属錯体に含まれる炭素を主成分とするマトリックスと、マトリックス中に分散した、ルテニウム有機金属錯体に含まれるルテニウム元素を構成元素として含む粒径5~20nmの微粒子とからなる。
- [0057] 実施例4のX線回折パターンにおいて、Scherrerの式を用いて、Ruの回折ピークの半値幅から見積もった結晶子サイズは約8nmであった。 (電気的特性評価)
- [0058] 実施例4の析出物は、球状の単結晶に近いルテニウム微粒子が分散しているため

、非常に高活性であると考えられる。そこで実施例4のサンプルの表面にリード線を付け、交流インピーダンス法による複素インピーダンスの評価を行った。

- [0059] 図6(a)に実施例4の350℃におけるコールコールプロット、(b)に直流法により電流電圧特性の測定結果を示した。図7(a)に実施例4の250℃におけるコールコールプロット、(b)に直流法により電流電圧特性の測定結果を示した。また、図8(a)に実施例4の190℃におけるコールコールプロット、(b)に直流法により電流電圧特性の測定結果を示した。なお、350℃、250℃、190℃を測定温度としたデータである図6~8は、代表例として示したものである。
- [0060] 例えば、図6(a)に示されるコールコールプロットの3つの半円は、低インピーダンス側から固体電解質の粒内抵抗(すなわちバルク固体電解質の抵抗)、固体電解質の粒界抵抗、及び固体電解質と電極膜の界面抵抗に対応する。実軸との切片が抵抗値である。しかし、測定条件によっては3つの半円のうち一部しか見られないことがある。特に界面抵抗の測定が難しい場合がある。そこで、直流法により電流電圧特性を測定し、その傾きから直流抵抗を求めた。直流抵抗は、3つの半円のトータルの抵抗値に対応するため、交流インピーダンス法で測定できるバルク抵抗と粒界抵抗を、トータルの抵抗から差し引くことで界面抵抗を算出した。この方法の正確さを明らかにするため、3つの半円が現れるようなサンプルで確認したところ、実験結果が良く一致することが確認された。
- [0061] 図6〜図8のグラフが示すように実施例4のサンプルについて、固体電解質用電極としてはきわめて低温である190〜350℃の温度領域で抵抗値の測定が行なうことができることがわかった。そこで、350℃、250℃、190℃の測定温度を含め、190〜350℃の温度領域内で、界面電気伝導度の温度変化を図9に示した。350℃における界面電気伝導度 σ は、3. 2×10^{-3} Sm $^{-1}$ であり、190℃における界面電気伝導度 σ は、7. 9×10^{-6} Sm $^{-1}$ であった。そして、図9に示されるように190〜350℃の温度領域内で、基板温度T(K)としたときの1000/Tと界面電気伝導度log(σ /Sm $^{-1}$)とは、相関良くほぼ直線で表せることがわかった。
- [0062] 界面電気伝導度は、ガス/電極/固体電解質の三相界面における電荷移動反応 速度に対応する。実施例4の粒子分散複合物は、Pt電極と比較して1万倍~10万倍

WO 2005/080955 15 PCT/JP2004/013561

の高い界面電気伝導度を示した。

- [0063] このことから、実施例4の粒子分散複合物は、固体電解質用電極として低温できわめて界面抵抗が低いといえる。図5で示されたように、分散粒子とマトリックスの界面には空孔やギャップはほとんどなく、分散粒子とマトリックスとがその界面の全面で密着していることで、分散粒子の粒子径が小さいこととあいまって、接触している界面面積が極めて大きい。また、粒子分散複合物のマトリックス中での分散状態は、凝集することなく均一分散していたので、粒子と粒子との接触が非常に少なく、粒子とマトリックスが接触している界面面積が大きい。その結果、粒子分散複合物は高い界面電気伝導度が得られたと考えられる。したがって、固体電解質型酸素センサーの電極として実施例4の粒子分散複合物を用いたときに、低温においても感度良く電流を感知でき、精度が高い。また、燃料電池を低温作動させたときに酸素イオン伝導に非常に敏感且つ高速応答の電極として実施例4は適していることが分かる。
- [0064] 実施例4の粒子分散複合物について、オージェ電子分光法(AES)(日本電子株式会社製、JAMP-7100E)を用いて、組成を求めた。図10にアルゴンイオンで300秒エッチングした後に測定した膜のAESスペクトルを示す。得られた膜中には、炭素が存在し、ピーク強度比から算出した炭素含有量は64atom%、すなわち炭素とルテニウムの原子数比は(64:36)であった。
- [0065] 実施例4の粒子分散複合物と同等の条件で成膜した粒子分散複合物をもちいて、固体電解質型センサーを作製した。図11に酸素ガス濃淡セルの模式図を示す。YSZ 固体電解質の両側にコンポジット電極を合成して、酸素ガス濃淡セルを作製し、両側の酸素濃度を変化させて電極間に生じる起電力を測定した。図12は、酸素ガス濃淡セルの起電力の温度依存性を示すグラフである。白金電極では527℃以下では起電力を示さなかったが、実施例4の粒子分散複合物と同等の条件で成膜した粒子分散複合物の膜を電極とした場合には、227℃でもNernstの式から計算される理論起電力を示した。図13は250℃という低温において、酸素濃度を変化させたときの酸素ガス濃淡セルの起電力の時間変化を示すグラフである。酸素濃度を10%から100%の範囲で段階的に上昇させ、その後、段階的に低下させたところ、酸素濃度に応じて起電力が得られ、その起電力は理論値とおおむね一致していることが示されて

いる。また図14は、250℃での酸素分圧と起電力との関係を示すグラフである。実験値は理論値と比較すると、起電力が一定割合で低めに測定されているものの、酸素分圧に応じて起電力が変化する。このプロファイルは理論値と類似し、直線的な変化を示している。図12、図13及び図14とから、実施例4の粒子分散複合物を電極とした固体電解質型センサーは、250℃というこれまでにない低温で酸素濃度を検出できることが示された。なお、227℃における電極の応答時間は、900秒であった。

[0066] 実施例4をはじめ、他の実施例においても、ルテニウム系微粒子を炭素系マトリックス中に凝集することなく分散させたので、ルテニウム系微粒子は高活性であり、実施例の粒子分散複合物からなる電極を、酸素センサーや固体電解質型燃料電池の電極として使用する場合、非常にわずかな酸素イオンの動きも信号として取り出すことができ、低温での作動を可能とする。これは、実施例の粒子分散複合物からなる電極と安定化ジルコニア界面の抵抗を著しく低減させることで酸素イオン伝導の敏感化を実現させたものである。また、限界電流方式センサーである自動車等の排ガスセンサーの電極として使用しうる。さらに、溶融金属中の酸素センサー、特に鉛、ビスマスを含む溶融金属中の酸素センサーの電極として使用しうる。

請求の範囲

- [1] 炭素を主成分とするマトリックスにルテニウム元素を構成元素として含む粒径5~10 Onmの微粒子が分散されてなり且つ導電性を有することを特徴とする粒子分散複合物。
- [2] 前記微粒子の全表面が前記マトリックス若しくは前記微粒子の少なくとも一方と接触し合っていることを特徴とする請求項1記載の粒子分散複合物。
- [3] 前記マトリックスはカーボンブラック又はナノカーボンを含むことを特徴とする請求項 1記載の粒子分散複合物。
- [4] 前記微粒子は、ルテニウム金属微粒子、酸化ルテニウム微粒子又は表面酸化ルテニウム金属微粒子であるか、或いはこれらの微粒子の混合物であることを特徴とする 請求項1記載の粒子分散複合物。
- [5] 導電性基体上に担持されてなることを特徴とする請求項1、2、3又は4記載の粒子分散複合物。
- [6] 固体電解質基体上に形成されてなることを特徴とする請求項1、2、3、4又は5記載 の粒子分散複合物。
- [7] 固体電解質基体と該固体電解質基体の表面に形成された前記粒子分散複合物からなる薄膜との界面電気伝導度 σ は、190~350℃において、10⁻⁶Sm⁻¹以上10⁻²S m⁻¹以下であることを特徴とする請求項6記載の粒子分散複合物。
- [8] 前記固体電解質基体は、安定化剤を含有する酸化ジルコニウム基板であることを特徴とする請求項6又は7記載の粒子分散複合物。
- [9] 固体電解質型センサーのセンサー電極であるか、又は固体電解質用電極であることを特徴とする請求項1、2、3、4、5、6、7又は8記載の粒子分散複合物。
- [10] 電気化学触媒であることを特徴とする請求項1、2、3、4、5、6、7、8又は9記載の 粒子分散複合物。
- [11] 炭素を主成分とするマトリックスにルテニウム元素を構成元素として含む粒径5~10 Onmの微粒子が分散されてなり且つ導電性を有する粒子分散複合物が、安定化剤を含有する酸化ジルコニウム基板の表面に電極として形成されていることを特徴とする固体電解質型センサー。

[12] 前記微粒子の全表面が前記マトリックス若しくは前記微粒子の少なくとも一方と接触 し合っていることを特徴とする請求項11記載の固体電解質型センサー。

WO 2005/080955 5/12 PCT/JP2004/013561

[図10]

[図11]

WO 2005/080955 10/12 PCT/JP2004/013561

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/013561

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ G01N27/409, G01N27/41, G01N27/30, H01M4/90					
According to Int	ternational Patent Classification (IPC) or to both nationa	l classification and IPC			
B. FIELDS SE					
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ G01N27/24-27/49, H01M4/86-4/90, H01M8/02					
Jitsuyo	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2004 Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004				
	pase consulted during the international search (name of d File (JOIS)	lata base and, where practicable, search te	rms used)		
C. DOCUMEN	NTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
X Y	JP 63-319050 A (Tanaka Kikinzoku Kogyo Kabushiki Kaisha), 27 December, 1988 (27.12.88), Claims; page 2, upper right column, lines 7 to 15; Fig. 1 Claims; page 2, upper right column, lines 7 to 15; Fig. 1 (Family: none)		1-10 11-12		
X .	JP 2003-317728 A (Ube Indust: 07 November, 2003 (07.11.03), Claims; Par. Nos. [0022] to [to 3 (Family: none)		1-10		
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international		"T" later document published after the inte date and not in conflict with the applica the principle or theory underlying the in "X" document of particular relevance; the c	ation but cited to understand invention		
filing date	which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered when the document is taken alone			
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family			
Date of the actual completion of the international search 19 October, 2004 (19.10.04)		Date of mailing of the international sear 09 November, 2004 (
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2O04/013561

C (Continuation).	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Y	JP 2003-282077 A (Furuya Metal Co., Ltd. 03 October, 2003 (03.10.03), Full text; Figs. 1 to 9 (Family: none)),	11-12
P,A	<pre>JP 2004-103549 A (Takashi GOTO), 02 April, 2004 (02.04.04), Full text; all drawings (Family: none)</pre>		1-12
A	JP 2001-250563 A (Matsushita Electric Industrial Co., Ltd.), 14 September, 2001 (14.09.01), Full text; all drawings		1-12

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl7 G01N27/409、G01N27/41、G01N27/30、H01M4/90

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl7 G01N27/24-27/49, H01M4/86-4/90, H01M8/02

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2004年

日本国登録実用新案公報

1994-2004年

日本国実用新案登録公報

1996-2004年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

JICSTファイル (JOIS)

C. 関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
X Y	JP 63-319050 A(田中貴金属工業株式会社) 1988.12.27 特許請求の範囲、第2頁右上欄第7~15行、第1図 特許請求の範囲、第2頁右上欄第7~15行、第1図 (ファミリー無し)	1-10 11-12		
X	JP 2003-317728 A(宇部興産株式会社) 2003.11.07 特許請求の範囲、段落番号【0022】-【0023】第1-3図 (ファミリー無し)	1-10		

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日19.10.2004国際調査報告の発送日09.11.2004国際調査機関の名称及びあて先
日本国特許庁(ISA/JP)
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号特許庁審査官(権限のある職員)
黒田 浩一2 J 9 2 1 8電話番号 03-3581-1101内線 3 2 5 1

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2003-282077 A(株式会社フルヤ金属) 2003.10.03 全文、第1-9図 (ファミリー無し)	11–12
P, A	JP 2004-103549 A(後藤孝) 2004.04.02 全文、全図 (ファミリー無し)	1-12
A	JP 2001-250563 A(松下電器産業株式会社) 2001. O9. 14 全文、全図	1–12
,		