Álgebra Folha 3

1. Sejam G um grupo, H um subgrupo de G e $x \in G$. Mostre que as três seguintes afirmações são equivalentes:

- (a) Hx é subgrupo de G
- (b) $x \in H$
- (c) Hx = H
- 2. Seja G um grupo finito tal que |G| é primo. Usando o Teorema de Lagrange, mostre que para todo o $a \in G \setminus \{e\}$ tem-se $G = \langle a \rangle$. Podemos concluir que G é abeliano?
- 3. Sejam G um grupo e H e K dois subgrupos finitos de G tais que |H| e |K| são primos entre si. Mostre que $H \cap K = \{e\}$.
- **4.** Sejam G um grupo e H um subgrupo de índice 2. Prove que para todo o $x \in G$, $x^2 \in H$.
- **5.** Seja G um grupo e sejam H e K subgrupos finitos de G. Mostre que se $H \cap K = \{e\}$ então a aplicação $f: H \times K \to HK$ dada por f(h, k) = hk é bijetiva.
- 6. Seja G um grupo de ordem 20 e sejam H e K subgrupos de G de ordem 5. Mostre que H = K (Sugestão: Usando o exercício anterior, comece por mostrar que $|H \cap K| = 5$.). Qual o índice de H em G?
- 7. Considere o grupo simétrico S_3 e o subgrupo $H = \langle \sigma \rangle$ gerado pela permutação σ dada por $\sigma(1) = 2$, $\sigma(2) = 1$ e $\sigma(3) = 3$.
 - (a) Qual a ordem de σ ? Qual o índice $|S_3:H|$?
 - (b) Usando a permutação τ dada por $\tau(1)=1,\ \tau(2)=3$ e $\tau(3)=2,$ mostre que H não é normal em S_3 .
- 8. Seja G um grupo. Mostre que o centro de G dado por $Z(G) = \{x \in G : \forall g \in G, gx = xg\}$ é um subgrupo normal de G.
- 9. Sejam G um grupo e H e K normais de G tais que $H \cap K = \{e\}$. Mostre que para todos os $h \in H$ e $k \in K$, hk = kh.