Problem 1: Subset Sum, Dynamic Programming (25 points)

You are given n items $\{1, 2, ... n\}$, where each item has a given positive weight w_i , $1 \le i \le n$. You are also given an upper bound W. You would line to select a subset S of the items so that $\sum_{i \in S} w_i \le W$, and, subject to this restriction, $\sum_{i \in S} w_i \le W$ is as large as possible. Give an O(nW) algorithm, justify correctness and running time.

Answer:

We are going to solve this with dynamic programming.

There are $n \times W$ items in the lookup table. Therefore it takes O(nW) to fill up the table. It takes O(n) to follow the path backwards to get the answer. Therefore O(nW + n) = O(nW).

Last Name: Chen First Name: Robert Email: rchen87@gatech.edu CS 6505, Fall 2017, Homework 3, 9-20-17 Due 9-25-17 by 6pm Klaus 2138 Page 2/4

Problem 2: Balanced Tree, Dynamic Programming (25 points).

Let T(V, E) be a directed acyclic graph with $V = \{v_1, \dots v_n\}$.

Suppose that T is given in topologically sorted order, that is, if v_i is an ancestor of v_j then i < j.

Suppose further that each vertex $v_i \in V$ has a given positive cost $c(v_i) > 0$. Define the weight of a vertex $v_i \in V$ as the sum of the costs of all vertices that can be reached from v_i (equivalently belong to the subtree rooted at v_i): $weight(v_i) = \sum v_j \in V$:

 v_j is reachable from v_i

Say that T is balanced if and only if, for every vertex $v_i \in V$, if v_i has children u_1, \ldots, u_k , then

$$weight(u_1) = weight(u_2) = \ldots = weight(u_k)$$

Give a polynomial time algorithm that decides if a directed tree with costs on its vertices is balanced. Justify your answer and argue running time.

Answer:

Last Name: Chen First Name: Robert Email: rchen87@gatech.edu
CS 6505, Fall 2017, Homework 3, 9-20-17 Due 9-25-17 by 6pm Klaus 2138 Page 3/4

Problem 3: Max Independent Set, Dynamic Programming (25 points)

- (a) Consider a line graph on vertices $\{1, \ldots, n\}$ and edges $\{1, 2\}$, $\{2, 3\}$, ..., $\{(n-1), n\}$. Each vertex has a positive weight w_i , $1 \le i \le n$. Give an O(n) algorithm that outputs the weight of a maximum weight independent set of the line graph. You may give a simple description of the algorithm, and/or pseudocode. You should include a short argument of correctness and running time.
- (b) Consider a cycle graph on vertices $\{1, \ldots, n\}$ and edges $\{1, 2\}$, $\{2, 3\}$, ..., $\{(n-1), n\}$, $\{n, 1\}$. Each vertex has a positive weight w_i , $1 \le i \le n$. Give an O(n) algorithm that outputs the weight of a maximum weight independent set of the cycle graph. You may give a simple description of the algorithm, and/or pseudocode. You should include a short argument of correctness and running time.

${f Answer:}$

Recall that a subset S of a graph G is an independent subset if there are no edges between any two elements in S.

Part a

Let MIS = max independent set. So say you have vertex v_i , then one of two scenarios exists: 1. v_i is IN the MIS of v_i and later, or 2. v_i is NOT in the MIS and thus the MIS is the MIS of vertices after v_i . If v_i is IN the MIS from v_i and later, then the MIS is the weight of v_i , plus the total weight of the MIS from $v_{i+2}tov_n$. Otherwise, then the MIS from v_itov_n is the MIS from $v_{i+1}tov_n$. If you model the recurrence this way then the MIS from any v_itov_n is:

$$MIS(v_i) = MAX\{MIS(v_{i+1}), w_i + MIS(v_{i+2})\}$$

This can be solved in linear time (O(n)) because its a line and that the subproblem for each subsequent vertex is smaller than the one before it.

Part b

This is the same problem as part a except that we have a cycle. Arbitrarily choose to cut the graph at any edge and now you have a line graph. Find MIS of this in the way as in **part a**. Running time is O(n) following the same logic.

Last Name: Chen First Name: Robert Email: rchen87@gatech.edu CS 6505, Fall 2017, Homework 3, 9-20-17 Due 9-25-17 by 6pm Klaus 2138 Page 4/4

Problem 4: Longest Path, Dynamic Programming (25 points)

Let G(V, E) be a directed acyclic graph, where $V = \{v_1, \ldots, v_n\}$. The graph is presented in adjacency list representation, and with the property that $v_i \to v_j \in E$ only if i < j. Give an O(|V| + |E|) algorithm that finds the length of the longest path (maximum number of edges) from v_1 to v_n . If there is no path from v_1 to v_2 then your algorithm should output ∞ .

Give a short justification of correctness and running time.

Answer:

This can be solved with dynamic programming. It is O(|V| + |E|) because you go thru all vertices in topological order and evaluate all edges once (all edges of each adjacent vertex in question).