MA 3-21

- 1. Zjistěte největší a nejmenší hodnotu funkce f(x,y)=xy v bodech elipsy $x^2+2y^2=1$.
- 2. Přepište následující integrál

$$\int_{1}^{2} \int_{0}^{2-x} f \, dy \, dx$$

nejprve v opačném pořadí integrace a pak v polárních souřadnicích se středem v počátku v pořadí $d\rho d\varphi$.

3. Pomocí Gaussovy věty vypočtěte tok pole $\vec{F}=(x^3+yz,x^2+y^3,1+z^3)$ hranicí tělesa

$$P = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le a^2, \ z \ge \sqrt{x^2 + y^2} \}.$$

- 4. Mějme pole $\vec{F}=(6xz,\cos y,3x^2+y)$ a $\vec{G}=(-e^x,0,2z-y)$. Zjistěte, které z polí $\vec{F},\,\vec{G}$ a $\vec{F}+\vec{G}$ je potenciální a nalezněte jeho potenciál.
- 5. Nalezněte Fourierovu řadu 2π -periodické funkce, že f(x) = -|x| pro $x \in \langle -\pi, \pi \rangle$ a vyšetřete, kde řada reprezentuje funkci f.

Řešení.

1. Lagrangeova funkce je $L=xy-\lambda(x^2+2y^2-1)$. Stacionární body získáme řešením rovnic

$$y = 2\lambda x$$
, $x = 4\lambda y$, $x^2 + 2y^2 = 1$,

což jsou body $(\pm \frac{1}{\sqrt{2}}, \frac{1}{2})$ a $(\pm \frac{1}{\sqrt{2}}, -\frac{1}{2})$. Porovnáním hodnot dostaneme, že maximum je $\frac{1}{2\sqrt{2}}$ a nastává v bodech $\pm (\frac{1}{\sqrt{2}}, \frac{1}{2})$, minimum je $-\frac{1}{2\sqrt{2}}$ v bodech $\pm (-\frac{1}{\sqrt{2}}, \frac{1}{2})$.

2. Opačné pořadí je $\int_0^1 \int_1^{2-y} f \, dx \, dy$ a v polárních souřadnicích

$$\int_0^{\pi/4} \int_{1/\cos\varphi}^{2/(\cos\varphi+\sin\varphi)} f\varrho \, d\varrho \, d\varphi.$$

3. Protože div $\vec{F}=3(x^2+y^2+z^2),$ máme při použití sférických souřadnic

$$\iiint_P \operatorname{div} F = \int_0^{2\pi} \int_0^{\pi/4} \int_0^a 3\varrho^2 \varrho^2 \sin\theta \, d\varrho \, d\theta \, d\varphi = \frac{6\pi}{5} \, a^5 (1 - \frac{1}{2}\sqrt{2}).$$

- 4. rot $\vec{F}=(1,0,0)$, rot $\vec{G}=(-1,0,0)$, proto tato pole nejsou potenciální; rot $(\vec{F}+\vec{G})=(0,0,0)$ a má potenciál $h=3x^2z-e^x+\sin y+z^2+C$.
- 5. $-\frac{1}{2}\pi + \sum_{n=1}^{\infty} \frac{2(1-(-1)^n)}{\pi n^2} \cos nx$ a řada reprezentuje funkci všude.