Computer Systems Organization

Topic 2

Based on chapter 2 from Computer Systems by Randal E. Bryant and David R. O'Hallaron

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

Visualizing (Mathematical) Integer Addition

- Integer Addition
 - -4-bit integers *u*,
 - -Compute true sum $Add_4(u, v)$
 - –Values increase linearly with u and v
 - Forms planar surface

 $Add_4(u, v)$

Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\ge 2^w$
 - At most once
 - Decrements by 2^w

True Sum

Two's Complement Addition

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

- Will give s == t

TAdd Overflow

- Functionality
 - True sumrequires w+1bits
 - Drop off MSB
 - Treat remaining bits as 2's comp. integer

Two's Complement Addition

- In summary, subtract 2^w if positive overflow
- Add 2[^]w if negative overflow
- No changes if 2^(w-1) <= sum < 2^(w-1)
- For w = 4 bits,
- -8 [1000] + -5 [1011] = -13 [10011] = 3 [0011]
- 5 [0101] + 5 [0101] = 10 [01010] = -6 [1010]

Visualizing 2's Complement Addition

- Values
 - 4-bit two's comp.
 - Range from -8 to +7
- Wraps Around
 - If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
 - $If sum < -2^{w-1}$
 - Becomes positive
 - At most once

Negation

- Complement the bits, increment the result by 1
- 0101 [5] \rightarrow 1010 [-6] \rightarrow 1011 [-5]
- 1000 [-8] \rightarrow 0111 [7] \rightarrow 1000 [-8]

•

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic $UMult_w(u, v) = u \cdot v \mod 2^w$

Signed Multiplication in C

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

Example

- Unsigned: 5 [101] * 3 [011] = 15 [01111] → 7
 [111] Truncated
- 101
- 011
- 101
- 101
- 000
- -----
- 01111

Example

- Two's C: -3 [101] * 3 [011] = -9 [110111] → -1 [111] Truncated
- Need to sign extend and then multiply
- 111101
- 000011
- 111101
- 111101
- 000000
- 000000
- 000000
- 000000
- -----
- 000101**110111**

Power-of-2 Multiply with Shift

- Operation
 - $-\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
 - Both signed and unsigned

uOperands: w bits 2^k $u\cdot 2^k$ True Product: w+k bits $UMult_{w}(u, 2^{k})$ Discard k bits: w bits $TMult_{w}(u, 2^{k})$

k

- Examples
 - -u << 3 == u * 8
 - (u << 5) (u << 3) ==
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $-\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary	
x	15213	15213	3B 6D	00111011 01101101	
x >> 1	7606.5	7606	1D B6	00011101 10110110	
x >> 4	950.8125	950	03 B6	00000011 10110110	
x >> 8	59.4257813	59	00 3B	00000000 00111011	

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Using Unsigned

- Don't use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```