Centre No.						Pape	er Refer	ence			Surname	Initial(s)
Candidate No.				6	6	7	9	/	0	1	Signature	
		-	r Reference								Etrana	inan'a uga anku

66/9/01

Edexcel GCE

Mechanics M3

Advanced/Advanced Subsidiary

Thursday 11 June 2009 – Morning

Time: 1 hour 30 minutes

|--|

mathematical formulae stored in them.

Mathematical Formulae (Orange or Green)

Items included with question papers

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

If you need more space to complete your answer to any question, use additional answer sheets.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 7 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

Printer's Log. No. N34273A

Examiner's use only

Team Leader's use only

1 3 4

6

7

W850/R6679/57570 3/5/5

A light elastic string has natural length 8 m and modulus of elasticity 80 N.	
The ends of the string are attached to fixed points P and Q which are on th horizontal level and 12 m apart. A particle is attached to the mid-point of the str hangs in equilibrium at a point 4.5 m below PQ .	
(a) Calculate the weight of the particle.	
	(6)
(b) Calculate the elastic energy in the string when the particle is in this position.	
	(3)

Question 1 continued	Leave blank
	Q1
(Total 9 marks)	

2. [The centre of mass of a uniform hollow cone of height h is $\frac{1}{3}h$ above the base on the line from the centre of the base to the vertex.]

Figure 1

A marker for the route of a charity walk consists of a uniform hollow cone fixed on to a uniform solid cylindrical ring, as shown in Figure 1. The hollow cone has base radius r, height 9h and mass m. The solid cylindrical ring has outer radius r, height 2h and mass 3m. The marker stands with its base on a horizontal surface.

(a) Find, in terms of *h*, the distance of the centre of mass of the marker from the horizontal surface.

(5)

When the marker stands on a plane inclined at $\arctan \frac{1}{12}$ to the horizontal it is on the point of toppling over. The coefficient of friction between the marker and the plane is large enough to be certain that the marker will not slip.

(b) Find h in terms of r.

(3)

Question 2 continued	Leave blank
	Q2
(Total 8 marks)	

3.

Figure 2

A particle P of mass m moves on the smooth inner surface of a hemispherical bowl of radius r. The bowl is fixed with its rim horizontal as shown in Figure 2. The particle moves with constant angular speed $\sqrt{\left(\frac{3g}{2r}\right)}$ in a horizontal circle at depth d below the centre of the bowl.

(a) Find, in terms of m and g, the magnitude of the normal reaction of the bowl on P. (4)

(1.)	T 1	7			0
(b)	Find	d	1n	terms	of <i>r</i> .

(4)

Leave blank

Question 3 continued		b
	_	
	_	

Question 3 continued		

Question 3 continued		Leav
		Q3
	(Total 8 marks)	

The finite region bounded by the x-axis, the curve $y = \frac{1}{x^2}$, the line $x = \frac{1}{4}$ and the $x = 1$, is rotated through one complete revolution about the x-axis to form a uniform	
of revolution.	ii soiiu
(a) Show that the volume of the solid is 21π .	
	(4)
(b) Find the coordinates of the centre of mass of the solid.	
	(5)

Question 4 continued	Leave blank
	Q4
(Total 9 marks)	

Leave blank

- 5. One end of a light inextensible string of length l is attached to a fixed point A. The other end is attached to a particle P of mass m, which is held at a point B with the string taut and AP making an angle $\arccos \frac{1}{4}$ with the downward vertical. The particle is released from rest. When AP makes an angle θ with the downward vertical, the string is taut and the tension in the string is T.
 - (a) Show that

$$T = 3mg\cos\theta - \frac{mg}{2}.$$

(6)

Figure 3

At an instant when AP makes an angle of 60° to the downward vertical, P is moving upwards, as shown in Figure 3. At this instant the string breaks. At the highest point reached in the subsequent motion, P is at a distance d below the horizontal through A.

(b)) F	Find	d	in	terms	of	l	
---	----	-----	------	---	----	-------	----	---	--

(5)

	Leave
Question 5 continued	blank

Question 5 continued		bla

	Leave blank
Question 5 continued	
	Q5
(Total 11 marks)	

6.	A cyclist and her bicycle have a combined mass of $100 \mathrm{kg}$. She is working at a constant rate of $80 \mathrm{W}$ and is moving in a straight line on a horizontal road. The resistance to motion is proportional to the square of her speed. Her initial speed is $4 \mathrm{m \ s^{-1}}$ and her maximum possible speed under these conditions is $20 \mathrm{m \ s^{-1}}$. When she is at a distance $x \mathrm{m}$ from a fixed point O on the road, she is moving with speed $v \mathrm{m \ s^{-1}}$ away from O .
	(a) Show that
	$v\frac{dv}{dx} = \frac{8000 - v^3}{10000v}$.
	(5)
	(b) Find the distance she travels as her speed increases from $4 \mathrm{m \ s^{-1}}$ to $8 \mathrm{m \ s^{-1}}$.
	(c) Use the trapezium rule, with 2 intervals, to estimate how long it takes for her speed to increase from 4 m s ⁻¹ to 8 m s ⁻¹ .
	(4)

16

	Leave
Question 6 continued	blank

Question 6 continued	

Question 6 continued	Leave blank
	Q6
(Total 14 marks)	

Leave blank

7.

Figure 4

A and B are two points on a smooth horizontal floor, where AB = 5 m.

A particle P has mass 0.5 kg. One end of a light elastic spring, of natural length 2 m and modulus of elasticity 16 N, is attached to P and the other end is attached to A. The ends of another light elastic spring, of natural length 1 m and modulus of elasticity 12 N, are attached to P and B, as shown in Figure 4.

(a) Find the extensions in the two springs when the particle is at rest in equilibrium.

(5)

Initially P is at rest in equilibrium. It is then set in motion and starts to move towards B. In the subsequent motion P does not reach A or B.

(b) Show that P oscillates with simple harmonic motion about the equilibrium position.

(4)

(c) Given that the initial speed of P is $\sqrt{10}$ m s⁻¹, find the proportion of time in each complete oscillation for which P stays within 0.25 m of the equilibrium position.

(7)

Question 7 continued	Leave blank

uestion 7 continued	

Question 7 continued	Leave blank

Question 7 continued		bla
		(
	(Total 16 marks)	