Basic Statistical Analysis and Interpretation

Concepts and Variables
Structure of Statistical Analysis
Statistical Packages/Software

http://orcid.org/0000-0003-0006-8841

Dave E. Marcialwww.davemarcial.net
demarcial@su.edu.ph

Determine what needs to be done based on the problem or specific objective of the study

Descriptive Statistics

- Summarizing Data
 - Measures of Dispersion (variations among the data)
 - Range (minimum and maximum values)
 - Standard Deviation
 (measure of precision: "how close are your measurements")
 - Confidence Interval (measure of accuracy: "how close are you to the true value")

A Inferential Statistics

To compare Frequency Tables:

Chi-Square Test

- Frequency Table vs Theoretical Distribution: Goodness of Fit Test
- Comparing 2 or more Frequency Tables:
 Contingency Table Test

Inferential Statistics

•Comparing Frequency Tables

⇒Observed Frequency
Table vs Theoretical
Distribution

Chi Square Test (X²): Goodness of Fit Test

⇒2 or more Observed Frequency Tables

Chi Square Test (X²): Contingency Table

Chi Square Test for Independence

A Inferential Statistics

Remember that a Pearson product-moment correlation is an index of the degree of <u>linear</u> relationship between two variables.

That is, the correlation gives an indication of how closely the points in a scatter plot cluster around a straight line. But the relationship between two variables is not always linear.

Test

 Comparing 2 or more Frequency Tables:
 Contingency Table Test

Pearson Product Moment Correlation

If data are ranks: Spearman
Rank Correlation

The Spearman rank-order correlation is used when both variables are at least ordinal scales of measurement, but one is not sure that both would qualify as interval or ratio scales of measurement.

Inferential Statistics

•Relationship between two variables

⇒Continuous Data

Pearson Product Moment
Correlation (r)

Scatter plot

⇒Rank Data Set

Spearman Rank Correlation (r)

If r approaches 1: the relationship is directly proportional

If r approaches 0 : there is no relationship

If r approaches -1: the relationship is inversely

Inferential Statistics

To predict values for Y variable given a value for X variable

Regression analysis

For a simple linear regression (y = a + bX), the analysis will determine the a and b values in the equation

⇒In principle, the regression analysis can only predict values with the range of the values of the samples used in the correlation.

t-test

- t-test: Mean vs Standard
- Pooled estimate of variance t-test (Independent Population)
- Paired t-test (Dependent Population)

- Wilcoxon Rank Sum Test: (Independent Population)
- Wilcoxon Signed Rank Test: (Dependent Population, Mean ys Standard)

<u>Independent - Correlated</u>

Table 2. Fish larvae diversity in the three sampling areas

	Northeast Monsoon		
Fam ilies	Bacong	Masaplod	Zamboanguita
A canthuridae	-	-	-
A pogonidae	-	+	+
Balistidade	-	-	-
Blenniidae	-	-	-
Carangidae *	-	+	+
Chaetodontidae	-	+	-
Clupeidae *	-	-	+
Engraulidae *	-	-	-
G erreidae	-	+	+
Gobiesocidae	-	-	-
Haemulidae	-	+	-
Hoplichthyidae	-	-	+
Labridae	+	+	-
Lethrinidae	-	+	+
Lutjanidae	-	+	+
Mullidae	-	+	+
Nemipteridae	_	+	-
Pempherididae	_	+	-
Pomacanthidae	_	-	+
Pomacentridae	_	+	+
Priacanthidae	_	_	+
Scaridae	-	_	+
Schindleriidae	_	+	+
Serranidae	+	+	+
Sphyraenidae *	+	-	+
Teraponidae	+	+	+
Total Families#	3	14	13

Legend: (+) present; (-) absent; (*) pelagic fishes, # reef fishes only

tistical Analysis

be done based on the jective of the study To determine patterns or artificial parisons or iships between groupings among the variables: tial Statistics **Exploratory Statistics Exploratory Statistics** is develops artificial groupings based on an arity generated from the occurrence or ites in the variables being studied. OII val Cluster Analysis

www.su.edu.ph

