

Computer Vision Head pose estimation

Jonas Vanthornhout University of Leuven

June 18, 2012

Outline

Possible Approaches

Appearance template methods

Detector arrays

Nonlinear regression methods

Manifold embedding methods

Flexible models

Geometric methods

Tracking methods

Hybrid method:

Chosen approach

Yaw detection

Pitch detection

Conclusion

Possible approaches [5]

Possible Approaches

Appearance template methods

Detector arrays

Nonlinear regression methods

Manifold embedding methods

Flexible models

Geometric methods

Tracking methods

Hybrid methods

Appearance template methods

- 1. Match head with set of heads
- 2. Best match determines pose

Appearance template methods

- 1. Match head with set of heads
- 2. Best match determines pose

Advantages	Disadvantages
No features needed	Only discrete poses
Can be easily expanded	Head region must be known
	Performance degradation possible
	Pairwise similarity

Detector arrays

- 1. Similar to appearance template methods
- 2. Detector for each pose is made
 - \Rightarrow only variation corresponding to pose change is learned
 - \Rightarrow pairwise similarity problem is solved

Detector arrays

- 1. Similar to appearance template methods
- 2. Detector for each pose is made
 - ⇒ only variation corresponding to pose change is learned
 - ⇒ pairwise similarity problem is solved

Advantages	Disadvantages		
No head localization needed	More difficult training phase		
Learns the correct appearance varia-	Performance degradation possible		
tion			

Nonlinear regression methods

- Calculate from each image a value
 Possible to use features to calculate this value
- 2. Use nonlinear regression on these values to estimate the pose

Remark: mostly used in combination with a neural network

Nonlinear regression methods

- Calculate from each image a value
 Possible to use features to calculate this value
- 2. Use nonlinear regression on these values to estimate the pose

Remark: mostly used in combination with a neural network

Advantages	Disadvantages		
Fast	Nontrivial regression		
Accurate	Head locator needed		

Manifold embedding methods

- 1. Reduce the dimensionality of the image
- 2. Uses these dimensions to estimate pose

Manifold embedding methods

- 1. Reduce the dimensionality of the image
- 2. Uses these dimensions to estimate pose

Advantages	Disadvantages	
Uses correct dimension	Difficult to reduce dimensionality	

Flexible models

- 1. Map a known model to an image
- 2. Compare this mapping to other mappings
- 3. Best match determines the head pose

Flexible models

- 1. Map a known model to an image
- 2. Compare this mapping to other mappings
- 3. Best match determines the head pose

Advantages	Disadvantages	
Robust to deformations	Feature detector needed	
	Computationally expensive	
	Frontal position needed	

Geometric methods

- 1. Based on psychophysical experiments
- 2. Use this knownledge to determine head pose

Remark: a lot of implementations possible

- Features
- Gradients

Geometric methods

- 1. Based on psychophysical experiments
- 2. Use this knownledge to determine head pose

Remark: a lot of implementations possible

- Features
- Gradients

Advantages	Disadvantages		
Simplicity	Feature/ detector needed		
Uses information known to humans	Accuracy limited by humans		

Tracking methods

- 1. Use information from consecutive images
- 2. "Normal" head pose estimator for first image
- 3. Next images can use previous estimation and the image

Remark: pose estimation of next images

- Feature tracking
- Texture mapping

Tracking methods

- 1. Use information from consecutive images
- 2. "Normal" head pose estimator for first image
- 3. Next images can use previous estimation and the image

Remark: pose estimation of next images

- Feature tracking
- Texture mapping

Advantages	Disadvantages		
Robust	Consecutive images needed		

Hybrid methods

- Combine results to get an average head pose
- Use weights to get best head pose

Hybrid methods

- Combine results to get an average head pose
- Use weights to get best head pose

Advantages	Disadvantages		
Robust	Multiple estimators needed		
	Slower		

Geometric method [3]

- Based on results of psychophysical experiments
- Uses features
- Perception of head pose

Chosen approach

Yaw detection Pitch detection

Geometric method

Advantages	Disadvantages	
Intuitive	Noise sensitive	
Simplicity	Features needed	
Fast	Head locator needed	

Chosen approach
Yaw detection

Jonas Vanthornhout KUL

Yaw detection: training

Yaw detection: training

- 1. Detect eyes Cascade classifier [4] Unable to detect eye \rightarrow position = (0,0)
- 2. Get relative horizontal positions of eyes

Yaw detection: testing

- 1. Detect eyes $(e_1 \& e_2)$
- 2. Calculate average position $(p_1 = e_1 + e_2)$
- 3. Get score of each image

Calculate average position (p_2)

Check if amount of eyes matches, otherwise score = 1,000,000.

No eyes, score = 0.

One eye, different eye, score = 1,000,000

One eye, same eye, score = $|p_1 - p_2|$

Two eyes, score $=|p_1-p_2|$

4. Best score determines the yaw

Yaw detection: results

method	correct	accuracy	avg. abs. err.	wrong direction	wrong frontal
detect (sorted)	209	86.0%	6.3	4	9
landmarks (sorted)	214	88.1%	8.4	15	0
detect	211	86.8%	5.6	2	9
landmarks	228	93.8%	0.84	0	0
hybrid	183	75.3%	10.3	4	13
landmarks (logical)	212	87.2%	3.4	0	0
hybrid (logical)	191	78.6%	9.3	4	13

Table 1: 20-fold cross validation on the Bosphorus database [6] with 243 samples

Yaw detection: implementation

Eyes resize image

raise minimum neighbours till maximum two eyes are found two eves must be at the same height, otherwise delete lowest two eyes overlap → remove biggest eye if no eyes are found, redo with bigger image

- Make the estimator more robust to inconsistencies of the head locator
- Use a more accurate feature detector
- Use a continuous pose instead of a discrete pose
- Use a eye detector that knows which is the left and right eye

- Make the estimator more robust to inconsistencies of the head locator
- Use a more accurate feature detector

- Make the estimator more robust to inconsistencies of the head locator
- Use a more accurate feature detector
- Use a continuous pose instead of a discrete pose
- Use a eye detector that knows which is the left and right eye

- Make the estimator more robust to inconsistencies of the head locator
- Use a more accurate feature detector
- Use a continuous pose instead of a discrete pose
- Use a eye detector that knows which is the left and right eye

Chosen approach

Pitch detection

Jonas Vanthornhout KUL Slide: 21

Pitch detection: training

1. Detect eyes [4], mouth and nose [2]

Jonas Vanthornhout KUL Slide: 22

Pitch detection: training

- 1. Detect eyes [4], mouth and nose [2]
- 2. calculate d1 = d(eyes, nose) and d2 = d(nose, mouth)

KUL Slide: 22

Pitch detection: training

- 1. Detect eyes [4], mouth and nose [2]
- 2. calculate d1 = d(eyes, nose) and d2 = d(nose, mouth)
- 3. calculate $r = \frac{d1}{d2}$

1. Calculate ratio r_{test}

Jonas Vanthornhout KUL Slide: 23

- 1. Calculate ratio r_{test}
- 2. Let every image vote for its pitch Image may vote if $|r_{train} r_{test}| < threshold$

- 1. Calculate ratio r_{test}
- 2. Let every image vote for its pitch Image may vote if $|r_{train} - r_{test}| < threshold$
- 3. Pitch with most votes wins

Fine tuning: threshold

- 1. good initial value?
- 2. decrease threshold when tie \rightarrow more specific wins
- 3. increase threshold when tie \rightarrow more general wins

Pitch detection: results

method	correct	accuracy	avg. abs. err.	wrong direction	wrong neutral
detect	71	68.3%	0.35	0	20
landmarks	71	68.3%	0.35	1	16
facial normal [1]	51	49.0%	1.1	27	22
facial normal (corr.) [1]	74	71.2%	0.29	0	14

Table 2: The obtained results of the pitch detector

Pitch detection: ratios

Figure 1: The ratios (x-axis) for the pitches (y-axis) using the cascade classifier.

Pitch detection: ratios

Figure 2: The ratios (x-axis) for the pitches (y-axis) using the landmarks.

Pitch detection: ratios

Figure 3: The ratios (x-axis) for the pitches (y-axis) using the facial normal.

Pitch detection: implementation

Eyes see yaw detection

Nose resize image raise minimum neighbours till maximum one nose is found if no nose is found, redo with bigger image

Mouth resize image

delete every mouth that doesn't have a point in the lower quarter two mouths overlap \rightarrow delete smallest too many eyes → increase minimum neighbours, redo too few eyes \rightarrow , redo with bigger image

Pitch detection: futher improvements

- Normalize the ratios \rightarrow deviation head length needed

Pitch detection: futher improvements

- lacktriangle Normalize the ratios o deviation head length needed
- \blacksquare We can conclude we've reached the limits of the method \rightarrow new method

KUL Slide: 30

Conclusion

- Yaw detection is far mor easier than pitch detection
- Yaw detector better feature detector \rightarrow better results
- Pitch detector: inherently difficult

Bibliography I

[1] Oljira Dejene Boru.

Head pose estimation using opency.

http://mmlab.disi.unitn.it/wiki/index.php/Head_Pose_Estimation_using_OpenCV

[2] M. Castrillón Santana, O. Déniz Suárez, M. Hernández Tejera, and C. Guerra Artal.

Encara2: Real-time detection of multiple faces at different resolutions in video streams.

Journal of Visual Communication and Image Representation, pages 130–140, April 2007.

[3] A. H. Gee and R. Cipolla.

Determining the gaze of faces in images.

Image and Vision Computing, 12:639–647, 1994.

Bibliography II

- [4] Shameem Hameed.
 http://www-personal.umich.edu/~shameem/haarcascade_eye.html.
- [5] E. Murphy-Chutorian and M. Trivedi. Head pose estimation in computer vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 Issue 4(Pages 607-626), 2009.
- [6] A. Savran, N. Alyz, H. Dibekliolu, O. eliktutan, B. Gkberk, B. Sankur, and L. Akarun.

Bosphorus database for 3d face analysis.

In The First COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008), May 2008.