Московский физико-технический институт (госудраственный университет)

Лабораторная работа по общему курсу физики Термодинамика и молекулярная физика

2.2.3. Измерение теплопроводности воздуха при атомосферном давлении

Глаз Роман Сергеевич Группа Б01-007

Долгопрудный 2021

Содержание

1	\mathbf{Teo}	ретические сведения	1
	1.1	Теория	1
	1.2	Схема установки	1
	1.3	Методика измерений	2
2	Xoz	ц работы	3
	2.1	Снятие данных	3
	2.2	Исследование зависимостей R(P)	6
		Получение теплопроводности газа	
3	Зак	ключение	10
4	Спі	исок используемой литературы	11

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры

Используемое оборудование: цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); эталонное сопротивление; источник постоянного напряжения; реостат (или магазин сопротивлений).

1. Теоретические сведения

1.1. Теория

Для цилиндрически симметричной установки, в которой поток тепла направлен к стенкам цилиндра от нити, расположенной по его оси, справедлива формула:

$$T_r - T_R = \frac{Q}{2\pi L \chi} \ln\left(\frac{R}{r}\right)$$

Отсюда можно сделать вывод, что разница температур пропорциональна мощности, выделяемой на нити.

$$\chi = \frac{Q}{T_r - T_R} \frac{1}{2\pi L} \ln\left(\frac{R}{r}\right) \tag{1}$$

Также будут использованы формула Джоуля - Ленца:

$$P = I^2 R$$

Связь температуры проводника с его сопротивлением можно описать следующим образом в интервале температур, близких к комнатной температуре:

$$R = R_0(1 + \alpha t)$$

1.2. Схема установки

Схема установки изображена на рисунке 1.

Тонкая нить (никелевая или вольфрамовая проволока) натянута по оси длинной вертикально стоящей медной трубки 1. Через штуцер трубка заполняется исследуемым газом. Нить нагревается электрическим током, ее температура T_r определяется по изменению электрического сопротивления.

Рис. 1. Схема установки для определения теплопроводности газов

Рис. 1: Схема установки

Трубка находится в кожухе, через который пропускается вода из термостата. Температура воды T_R измеряется термометром, помещенным в термостат. Количество теплоты, протекающей через газ, равно (если пренебречь утечками тепла через торцы) количеству теплоты, выделяемому током в нити, и может быть найдено по закону Джоуля—Ленца.

При этом ток в нити определяется по напряжению на включенном последовательно с ней эталонном сопротивлении 10 Ом.

Таким образом, все величины, входящие в правую часть формулы (1), поддаются непосредственному измерению.

Электрическая часть схемы состоит из источника питания и подключенных к нему последовательно соединенных нити, эталонного сопротивления 10 Ом и магазина сопротивлений R_M , служащего для точной установки тока через нить. Цифровой вольтметр может подключаться как к нити, так и к эталонному сопротивлению, измеряя таким образом напряжение на нити и ток через нее.

1.3. Методика измерений

Принципиально неустранимая систематическая ошибка измерения температуры с помощью термометра сопротивления возникает из-за необходимости пропускать через резистор (нить) измерительный ток. Чем этот ток выше, тем с большей точностью будет измерен как он сам, так и напряжение. Однако при этом квадратично возрастает выделяющаяся на резисторе мощность $Q = I^2 R$.

Следовательно, температура резистора становится выше, чем у объекта, температуру которого надо измерить. Измерения же при малых токах не дают достаточной точности (в частности, из-за существенного вклада термоэлектрических явлений в проводниках и контактах). Эта проблема решается построением нагрузочной кривой — зависимости измеряемого сопротивления R от выделяющейся в нём мощности R(Q), с последующей экстраполяцией к нулевой мощности $Q \to 0$ для определения сопротивления $R_0 = R(0)$, при котором его температура равна температуре измеряемого объекта.

Кроме того, в данной работе измерение нагрузочных кривых позволяет в ходе эксперимента получить температурную зависимость сопротивления нити, так как при $Q \to 0$ температура нити равна температуре термостата $(T \approx T_0)$.

2. Ход работы

2.1. Снятие данных

Определим параметры экспериментальной установки:

$$L=347\ {
m MM}$$
 $2r=0,055\ {
m MM}$ $2R=10\ {
m MM}$ $R_0=10\ {
m OM}$

Проведём измерения зависимости падения напряжений от температуры молибденовой нити. Для этого будем устанавливать с помощью магазина напряжений различные напряжения в цепи в интервале от 0,1 до 1,5 В и затем переносить штекер от вольтметра на прибор для измерения теплопроводности. Зависимость снимем для различных температур в интервале от комнатной температуры до 60 градусов по Цельсию. Результаты измерений занесём в таблицу.

Сопротивление нити рассчитывается по формуле $R_H = R_0 \frac{U_H}{U_0}$. Выделяемая мощность рассчитывается по формуле $Q = \frac{U_H U_0}{R_0}$. Эти значения также занесём в таблицу 1.

T = 21,3 K	$U_{\rm H}$, мВ	U_{9} , мВ	$R_{\rm 9}$, Ом	<i>I</i> , мА	$R_{\scriptscriptstyle \mathrm{H}},~\mathrm{Om}$	$P_{\scriptscriptstyle \mathrm{H}}$, мк B_{T}
1	131,85	91,69	10	9,169	14,37998	1208,933
2	259,4	180,22	10	18,022	14,39352	4674,907
3	389,9	270,5	10	27,05	14,41405	10546,8
4	521,31	360,87	10	36,087	14,44592	18812,51
5	652,07	450,29	10	45,029	14,48111	29362,06
6	784,68	540,1	10	54,01	14,52842	$42380,\!57$
7	920,12	630,8	10	63,08	14,58656	58041,17
8	1055	720,1	10	72,01	14,65074	75970,55
9	1271,5	860,84	10	86,084	14,77046	109455,8

T = 30 K	$U_{\rm H}$, мВ	$U_{\mathfrak{d}}$, мВ	$R_{\rm 9},~{ m Om}$	I, м A	$R_{\scriptscriptstyle \mathrm{H}},~\mathrm{Om}$	$P_{\scriptscriptstyle \mathrm{H}}$, мк B т
1	135,54	91,51	10	$9,\!151$	14,8115	$1240,\!327$
2	468,06	315,03	10	31,503	14,85763	14745,29
3	652,75	437,82	10	43,782	14,9091	28578,7
4	795,8	532,14	10	$53,\!214$	14,95471	42347,7
5	918,6	612,25	10	61,225	15,00367	56241,29
6	1027,2	682,96	10	68,296	15,04041	70153,65
7	1128	747,02	10	74,702	15,1	84263,86
8	1221,1	806,11	10	80,611	15,14806	98434,09
9	1308,6	861,09	10	86,109	15,19702	112682,2

T = 35 K	$U_{\rm H}$, мВ	$U_{\mathfrak{d}}$, мВ	$R_{\mathfrak{d}}$, Om	I, мА	$R_{\scriptscriptstyle \mathrm{H}}$, Om	$P_{\scriptscriptstyle \mathrm{H}}$, мк $\mathrm{B}\mathrm{ ext{T}}$
1	$137,\!53$	91,26	10	9,126	15,07013	$1255,\!099$
2	457,44	302,7	10	30,27	15,11199	13846,71
3	633,91	418,27	10	41,827	15,15552	26514,55
4	772,36	508,19	10	50,819	15,19825	39250,56
5	890,8	584,44	10	58,444	15,24194	52061,92
6	996,21	651,73	10	65,173	15,28562	64925,99
7	1092,8	712,87	10	71,287	15,32958	77902,43
8	1182,3	769,02	10	76,902	15,37411	90921,23
9	1226,5	821,4	10	82,14	15,4188	104030,3

T = 40,2 K	$U_{\rm H}$, мВ	$U_{\rm 9}$, мВ	$R_{\mathfrak{d}}$, Om	I, мА	$R_{\scriptscriptstyle \rm H},{ m Om}$	P_{h} , мк B т
1	139,77	91,54	10	9,154	15,26873	1279,455
2	463,67	302,71	10	30,271	15,3173	14035,75
3	642,38	418,25	10	41,825	15,35876	26867,54
4	782,67	508,18	10	50,818	15,40143	39773,72
5	902,59	584,43	10	58,443	15,44394	52750,07
6	1009,37	651,76	10	65,176	15,48684	65786,7
7	1106,43	712,8	10	71,28	15,52231	78866,33
8	1197,6	769,08	10	76,908	15,57185	92105,02
9	1282,72	821,5	10	82,15	15,61436	105375,4

$T = 45,5 \mathrm{~K}$	$U_{\rm h}$, мВ	$U_{\rm 9}$, мВ	$R_{\mathfrak{d}}$, Om	I, м A	$R_{\scriptscriptstyle \rm H}$, Om	$P_{\rm H}$, мк ${ m B}{ m T}$
1	141,65	91,395	10	9,1395	15,49866	1294,61
2	465,1	299,23	10	29,923	15,54323	13917,19
3	643,675	413,2	10	41,32	15,57781	26596,65
4	783,99	501,94	10	50,194	15,6192	39351,59
5	903,95	576,725	10	57,6725	15,67385	52133,06
6	1010,585	643,537	10	64,3537	15,7036	65034,88
7	1107,82	704,26	10	70,426	15,73027	78019,33
8	1198,465	758,075	10	75,8075	15,80932	90852,64
9	1289,75	814,79	10	81,479	15,82923	105087,5

T = 50,2 K	$U_{\rm H}$, мВ	U_{9} , мВ	$R_{\rm 9},~{ m Om}$	I, мА	$R_{\scriptscriptstyle \mathrm{H}},~\mathrm{Om}$	$P_{\scriptscriptstyle \mathrm{H}}$, мк $\mathrm{B}\mathrm{ ext{ iny T}}$
1	143,53	91,25	10	9,125	15,72932	1309,711
2	466,53	295,75	10	29,575	15,77447	13797,62
3	644,97	$408,\!15$	10	40,815	15,80228	26324,45
4	785,31	495,7	10	49,57	15,84245	38927,82
5	905,31	569,02	10	56,902	15,90999	51513,95
6	1011,8	635,314	10	63,5314	15,92598	64281,07
7	1109,21	695,72	10	69,572	15,94334	77169,96
8	1199,33	747,07	10	74,707	16,05378	89598,35
9	1296,78	808,08	10	80,808	16,04767	104790,2

T = 59,3 K	$U_{\rm H}$, мВ	$U_{\rm 9}$, мВ	$R_{\rm e}$, Om	<i>I</i> , мА	$R_{\scriptscriptstyle \mathrm{H}},~\mathrm{Om}$	$P_{\scriptscriptstyle \mathrm{H}}$, мк B_{T}
1	147,56	91,27	10	9,127	16,16742	1346,78
2	479,48	295,76	10	29,576	16,21179	12079,13
3	663,32	408,41	10	40,841	16,24152	27090,65
4	807,29	495,21	10	49,521	16,30197	39977,81
5	931,11	569,84	10	56,984	16,33985	53058,37
6	1041,18	635,63	10	63,563	16,38028	66180,52
7	1141,6	695,08	10	69,508	16,42401	79350,33
8	1234,6	749,89	10	74,989	16,46375	92581,42
9	1321,9	800,88	10	80,088	16,50559	105868,3

2.2. Исследование зависимостей R(P)

Построим графики нагрузочных прямых и убедимся, что полученные кривые действительно прямые:

Рис. 2: Зависимости R(P)

Посчтаем с помощью МНК коэффициенты наклона всех прямых, соотнеся с их температурами, также параллельно найдём константы в линейном уравнении зависимостей:

T, K	R_0 , Om	ΔR_0 , Om	dR/dP, мОм/Вт	$\Delta (dR/dP)$, мОм/Вт
21,3	14,377	0,059	3,445	0,048
30	14,808	0,031	3,352	0,036
35	15,065	0,034	3,303	0,035
40,2	15,272	0,029	3,263	0,033
45,5	15,523	0,039	3,236	0,038
50,2	15,723	0,049	3,202	0,049
59,3	16,167	0,041	3,077	0,037

2.3. Получение теплопроводности газа

Теперь рассмотрим, каким образом зависит начальное значение сопротивления нити от температуры, при которой находилась установка во время измерений:

Рис. 3: Зависимости R(T)

Так как известны погрешности опреления сопротивлений, можно воспользоваться методом хи-квадрат. Для этого необходимо, чтобы погрешности измерения температуры были меньше, чем сопротивления (гораздо меньше). Для температуры оценим погрешность (взяв максимум): $\sigma_T = 0, 1/300 = 3, 33 \cdot 10^{-4}$, для сопротивлений имеем $\sigma_R = 0, 04/14 = 2, 85 \cdot 10^{-3} \gg \sigma_T$. Значит можно воспоьзоваться критерием Пирсона (хиквадрат):

$$\frac{dR}{dT} = 4,53 \cdot 10^{-2} \text{ Om/K}$$
 (1)

$$\Delta \left(\frac{dR}{dT}\right) = 0,098 \cdot 10^{-2} \text{ OM/K}$$
(2)

При этом теперь можем связать мощность, выделяющуюся при протекании тока, с температурой:

$$\frac{dP}{dT} = \frac{dPdR}{dTdR} = \frac{\frac{dR}{dT}}{\frac{dR}{dP}} \tag{3}$$

T, K	dP/dT, Вт/ К	$\Delta (dP/dT)$, BT/K	κ , BT/(M·K)	$\Delta \kappa$, Bt/(M·K)
21,3	13,147	0,439	29,574	1,069
30	13,513	0,395	29,831	1,029
35	13,714	0,407	30,275	1,041
40,2	13,882	0,401	30,645	1,036
45,5	14,000	0,409	30,906	1,045
50,2	14,147	0,442	31,231	1,073
59,3	14,719	0,436	32,493	1,065

Погрешности для найденным значений теплопроводности найдём из формулы для косвенных погрешностей:

$$\Delta \kappa = \kappa \sqrt{\left(\frac{\sigma_{dP/dT}}{dP/dT}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_R}{R}\right)^2} \tag{4}$$

Из таблицы видно. что последняя точка явно выбивается из тенденции возрастания коэффициента теплопроводности, поэтому далее не будем её учитывать.

Построим график зависимости теплопроводности от температуры (кривая, аппроксимирующая зависимость полиномом, приведена только для наглядности):

Предполагая, что зависимость теплопроводности от температуры степенная, прологарифмируем полученную зависимость (заметим, что на данном этапе уже потеряна большая разница в погрешностях для различныъ температур из-за наличия косвенных измерений, которые в большей степени повлияли на погрешность, а значит при логарифмировании

Рис. 4: Зависимости $\kappa(T)$

можно считать погрешности практически эквивалентными и целесообразно воспользоваться МНК):

T, K	ln(T)	$ln(\kappa)$
21,3	5,6851	3,3875
30	5,7043	3,3955
35	5,7208	3,4103
40,2	5,7473	3,4225
45,5	5,7641	3,4310
50,2	5,7797	3,4414

Имеем по МНК:

$$\kappa = C \cdot T^{\beta}$$
, где $\beta = 0,574$, $\Delta \beta = 0,037$ (5)

Заметим, что полученное значение сохраняет теоретическую направленность, что коэффициент выходит меньше единицы. Более того, по значение он почти совпадает с теоретическим значением (0,5).

Рис. 5: Зависимости ln(k)(ln(T))

3. Заключение

- 1. В ходе работы была экспериментально определена теплопроводность воздуха при различных температурах, обнаружена линейная зависимость этих величин.
- 2. Были оценены погрешности измерения зависимости сопротивления молибденовой нити и мощности, выделяющейся на ней. Основной вклад в величину погрешности вносит относительная погрешность измерения напряжения на эталонном сопротивлении: 0,1 В при классе точности прибора вольтметра 0,01 В.
- 3. Экспериментально было определено значение температурного коэффициента молибдена: значение, которое можно получить из снятых измерений, равно $\alpha=0.00453\pm0.00038~K^{-1}$, в то время как табличное значение $\alpha=0.004579~K^{-1}$.
- 4. Был определён характер зависимости коэффициента теплопроводности газа от температуры. Полученная зависимость почти сошлась

в выведенной теоретически ($\kappa = AT^{1/2}$). Различие может быть связано с погрешностями при проведении эксперимента (методическими).

4. Список используемой литературы

- Гладун А. Д. Лабораторный практикум по общей физике. Термодинамика и молекулярная физика
 - Описание лабораторных работ на кафедре общей физики МФТИ