

3-tensor

Can think of a matrix code as a 3-tensor over \mathbb{F}_q

Equivalence then becomes tensor isomorphism

$$\mathscr{C} \subseteq \mathbb{F}_q^{m \times n \times k}$$

$$\mathcal{D} \subseteq \mathbb{F}_q^{m \times n \times k}$$

symmetry

Viewed as a 3-tensor, we can see & from three directions

- an k-dimensional code in $\mathbb{F}_q^{m \times n}$
- an m-dimensional code in $\mathbb{F}_q^{n \times k}$
- an n-dimensional code in $\mathbb{F}_q^{m \times k}$

$$\mathscr{C} \subseteq \mathbb{F}_q^{m \times n \times k}$$

$$\mathscr{C} \subseteq \mathbb{F}_q^{m \times n \times k}$$

$$\mathscr{C} \subseteq \mathbb{F}_q^{m \times n \times k}$$

