DEPARTMENT OF COMPUTER SCIENCE & SOFTWARE ENGINEERING COMP232 MATHEMATICS FOR COMPUTER SCIENCE

Fall 2020

Assignment 2. Solutions.

- 1. Let P(x, y, z) denote the statement $x + y \le z$, where $x, y, z \in \mathbb{Z}^+$. What is the truth value of each of the following? Explain your answers.
 - (a) $\forall x \exists y \exists z P(x, y, z)$.

Solution: True. Let x be any integer. By choosing y = 1 and z = x + 1, we see that the statement is true.

(b) $\forall y \exists x \forall z P(x, y, z)$.

Solution: False. If y = 10 and z = 1 then there is no x such that $10 + x \le 1$

(c) $\exists z \exists y \forall x P(x, y, z)$.

Solution: False. x could be arbitrarily large.

- 2. For each of the premise-conclusion pairs below, give a valid step-by-step argument (proof) along with the name of the inference rule used in each step. For examples, see pages 73 and 74 in textbook.
 - (a) Premise: $\{\neg p \lor q \to r, \ s \lor \neg q, \ \neg t, \ p \to t, \ \neg p \land r \to \neg s\}$, conclusion: $\neg q$.

Solution:

S	${ m Step}$	Conclusion	Reason
	1.	$p \to t$	Premise
	2.	$\neg t$	Premise
	3.	$\neg p$	Modus Tollens using (1) and (2)
	4.	$\neg p \lor q$	Addition using (3)
	5.	$\neg p \lor q \to r$	Premise
	6.	r	Modus Ponens using (4) and (5)
	7.	$\neg p \wedge r$	Conjunction using (3) and (6)
	8.	$\neg p \land r \to \neg s$	Premise
	9.	$\neg s$	Modus Ponens using (7) and (8)
	10.	$s \vee \neg q$	Premise
	11.	$\neg q$	Disjunctive Syllogism using (9) and (10)

(b) Premise: $\{\neg p \rightarrow r \land \neg s, \ t \rightarrow s, \ u \rightarrow \neg p, \ \neg w, \ u \lor w\}$, conclusion: $\neg t \lor w$.

Solution:

\mathbf{Step}	Conclusion	Reason
1.	$u \lor w$	Premise
2.	$\neg w$	Premise
3.	u	Disjunctive Syllogism using (1) and (2)
4.	$u \rightarrow \neg p$	Premise
5.	$\neg p$	Modus Ponens using (3) and (4)
6.	$\neg p \to r \land \neg s$	Premise
7.	$r \wedge \neg s$	Modus Ponens using (5) and (6)
8.	$\neg s$	Simplification using (7)
9.	$t \to s$	Premise
10.	$\neg t$	Modus Tollens using (8) and (9)
11.	$\neg t \lor w$	Addition using (10)

(c) Premise: $\{p \lor q, \ q \to r, \ p \land s \to t, \ \neg r, \ \neg q \to u \land s\}$, conclusion: t.

Solution:

\mathbf{Step}	Conclusion	Reason
1.	$\neg r$	Premise
2.	$q \rightarrow r$	Premise
3.	$\neg q$	Modus Tollens using (1) and (2)
4.	$\neg q \rightarrow u \land s$	Premise
5.	$u \wedge s$	Modus Ponens using (3) and (4)
6.	s	Simplification using (5)
7.	$p \lor q$	Premise
8.	p	Disjunctive Syllogism using (3) and (7)
9.	$p \wedge s$	Conjunction using (6) and (8)
10.	$p \wedge s \to t$	Premise
11.	t	Modus Ponens using (9) and (10)

3. For each of the following, determine whether argument is valid. You may use a counterexample, equivalence transformations or truth-tables to justify your answer.

(a)
$$p \to q$$

$$\frac{\neg p}{\therefore \neg q}$$

Solution: Invalid. Counterexample: p is False and q is True.

(b)
$$\frac{\neg p \to \neg q}{\because (\neg p \to q) \to p}$$

Solution: Valid. We show using a truth-table that

$$\underbrace{\left(\neg p \to \neg q\right)}_{\mathbf{a}} \to \underbrace{\left(\underbrace{\left(\neg p \to q\right)}_{\mathbf{b}} \to p\right)}_{\mathbf{b}} \text{ is a tautology.}$$

				a	b	c	
p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$	$\neg p \rightarrow q$	$(\mathbf{b} \to p)$	$\mathbf{a} \rightarrow \mathbf{c}$
T	T	F	F	T	T	T	T
T	F	F	T	T	T	T	T
F	T	T	F	F	T	F	T
F	F	T	T	T	F	T	T

(c)
$$p \to r$$

 $q \to r$
 $\neg (p \lor q)$
 $\vdots \neg r$

Solution: Invalid. Counterexample: p and q are False and r is True.

(d)
$$p \to q$$

$$p \to (q \to \neg p)$$

$$\therefore \neg p$$

Solution: Valid. We show using a truth-table that

$$\left(\underbrace{\left(p \to q\right)}_{\mathbf{a}} \land \underbrace{\left(p \to \underbrace{\left(q \to \neg p\right)}_{\mathbf{b}}\right)}_{\mathbf{b}}\right) \to \neg p \text{ is a tautology.}$$

			a	b	c		
p	$\mid q \mid$	$\neg p$	$p \rightarrow q$	$q \to \neg p$	$p \to \mathbf{b}$	$\mathbf{a} \wedge \mathbf{c}$	$\mathbf{a} \wedge \mathbf{c} \to \neg p$
T	T	F	T	F	F	F	T
T	$\mid F \mid$	F	F	T	T	F	T
F	$\mid T \mid$	T	T	T	T	T	T
F	$\mid F \mid$	T	T	T	T	T	T

- 4. For each of the arguments below, indicate whether it is valid or invalid.
 - (a) A convertible car is fun to drive.

Isaac's car is not a convertible.

: Isaac's car is not fun to drive.

Solution: Invalid. The argument is of the form

 $CC(Isaac) \to FD(Isaac)$

 $\neg CC(Isaac)$

 $\therefore \neg FD(Isaac)$

After applying universal instantiation, the argument contains the **fallacy of denying the hypothesis**.

(b) All healthy people eat an apple a day.

Herbert is not a healthy person.

: Herbert does not eat an apple a day.

Solution: Invalid. The argument is of the form

 $HP(\text{Herbert}) \rightarrow EA(\text{Herbert})$

 $\neg HP(\text{Herbert})$

 $\therefore \neg EA(\text{Herbert})$

It is an **inverse** error.

(c) If a product of two real numbers is 0, then at least one of the numbers is 0.

For a particular real number x, neither (x-1) nor (x+1) equals 0.

 \therefore The product (x-1)(x+1) is not 0.

Solution: Valid. Let's use a instead of x-1 and b instead of x+1. The argument is of the form

 $\forall x \forall y \big(x \cdot y = 0 \to (x = 0 \lor y = 0) \big)$

 $a \neq 0 \land b \neq 0$

 $\therefore a \cdot b \neq 0.$

The argument is an instance of *Universal Modus Tollens*.

5. Use rules of inference to show that if $\forall x (P(x) \to Q(x))$, $\forall x (Q(x) \to R(x))$, and $\exists x (\neg R(x))$ are true, then $\exists x (\neg P(x))$ is true.

Solution:

(1)
$$\forall x (P(x) \to Q(x))$$
 Premise

(2)
$$P(c) \rightarrow Q(c)$$
 Universal instantiation from (1)

(3)
$$\forall x (Q(x) \to R(x))$$
 Premise

(4)
$$Q(c) \rightarrow R(c)$$
 Universal instantiation from (3)

(5)
$$P(c) \rightarrow R(c)$$
 Hypothetical Syllogism from (2) and (4)

(6)
$$\exists x (\neg R(x))$$
 Premise

(7)
$$\neg R(c)$$
 Existential instantiation from (6)

(8)
$$\neg P(c)$$
 Modus Tollens from (7) and (8)

(6)
$$\exists x (\neg P(x))$$
 Existential Generalization from (7)

6. (a) Give a direct proof of: "If x is an odd integer and y is an even integer, then x + y is odd."

Solution: If x is odd, then x = 2k + 1 for some $k \in \mathbb{Z}$, and if y is even, then y = 2k' for some $k' \in \mathbb{Z}$. Consequently x + y = 2k + 1 + 2k' = 2(k + k') + 1 which means that x + y is odd.

(b) Give a proof by contradiction of: "If n is an odd integer, then n^2 is odd."

Solution: Suppose n is odd and n^2 is even. Then n = 2k + 1, for some $k \in \mathbb{Z}$, and $n^2 = (2k+1)(2k+1) = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, which contradicts the assumption that n^2 is even.

(c) Give an indirect proof of: "If x is an odd integer, then x + 2 is odd."

Solution: We show that if x + 2 is even, then x is even. If x + 2 is even, then x + 2 = 2k, for some $k \in \mathbb{Z}$. Therefore x = 2k - 2 = 2(k - 1), which means that x is even.

(d) Use a proof by cases to show that there are no solutions in positive integers to the equation $x^4 + y^4 = 100$.

Solution: The powers are $1^4 = 1$, $2^4 = 16$, $3^4 = 81$, $4^4 = 256$.

Therefore the possible cases for (x, y) where $x^4 + y^4 \le 100$. are

- (1,1) which gives 2.
- (1,2) or (2,1) which gives 17.
- (1,3) or (3,1) which gives 82.
- (2,2) which gives 32.
- (2,3) or (3,2) which gives 97.

Consequently the equation $x^4 + y^4 = 100$ has no solutions im positive integers.

(e) Prove that given a nonnegative integer n, there is a unique nonnegative integer m, such that $m^2 \le n < (m+1)^2$.

Solution:

Establish existence: Choose $m = \lfloor \sqrt{n} \rfloor$. Then $\sqrt{n} = m + \epsilon$, where $0 \le \epsilon < 1$. Thus $m^2 \le (m + \epsilon)^2 = \sqrt{n^2} = n = \sqrt{n^2} = (m + \epsilon)^2 < (m + 1)^2$.

6

Show uniqueness: Suppose $p^2 \le n < (p+1)^2$ for some integer p. Then $p \le \sqrt{n} < (p+1)$, and since $\sqrt{n} = m + \epsilon$ we get $p \le m + \epsilon , which, since <math>0 \le \epsilon < 1$, is true only if p = m.

- 7. For each of the statements below state whether it is True or False. If True then give a proof. If False then explain why, e.g., by giving a counterexample.
 - (a) The difference of any two odd integers is odd.

Solution: The claim is false. Counterexample: n = 7, m = 3, m - n = 4.

(b) Let a and b be integers. If a + b is even, then either a or b is even.

Solution: The claim is false. Counterexample: 1 + 1 = 2.

(c) For all positive integers n, it holds that n is even if and only if $3n^2 + 8$ is even.

Solution: Only if direction: Suppose n is even. Then n = 2k for some $k \in \mathbb{Z}$. Consequently $3n^2 + 8 = 3(2k)^2 + 8 = 12k^2 + 8 = 2(6k + 4)$ which means that $3n^2 + 8$ is even. If direction: Proof by contraposition: Suppose n is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$. Consequently $3n^2 + 8 = 3(2k + 1)^2 + 8 = 3(4k^2 + 4k + 1) + 8 = 12k^2 + 12k + 3 + 8 = 2(6k^2 + 6k) + 10 + 1 = 2(6k^2 + 6k + 5) + 1$, which means that $3n^2 + 8$ is odd.

(d) For all positive $x, y \in \mathbb{R}$, if x is irrational and y is irrational then x + y is irrational.

Solution: The statement is false. We first show that $2+\sqrt{2}$ is irrational. Suppose it is not. Then $2+\sqrt{2}=\frac{a}{b}$, for some integers a and b, with $b\neq 0$. But then $\sqrt{2}=\frac{a}{b}-2=\frac{a-2b}{b}$ which would mean that $\sqrt{2}$ is rational; a contradiction since we already have shown that $\sqrt{2}$ is irrational. Similarly we see that $2-\sqrt{2}$ is irrational. We now have a counter-example, since $(2+\sqrt{2})+(2-\sqrt{2})=4$, which is rational. Note that $2-\sqrt{2}$ is positive.

(e) $\forall x, y \in \mathbb{R}$, if x is irrational and y is rational then xy is irrational.

Solution: The statement is false. Counterexample: Let $x = \sqrt{2}$, which is irrational, and y = 0, which is rational. Then xy = 0, which is rational.