Using WEKA and ML to learn more about Diabetes diagnosis

CS 4961

Ashley Muñoz & Jake Schultz

Data

Patients

- Females at least 21 years old
- o Pima Indian Heritage

Attributes of interest

- Plas
 - Plasma glucose concentration 2 hours in an oral glucose tolerance test
- Mass
 - Body mass index (bmi)
- Age

```
Title: Pima Indians Diabetes Database

Sources:
(a) Original owners: National Institute of Diabetes and Digestive and Kidney Diseases
(b) Donor of database: Vincent Sigillito (vgs@aplcen.apl.jhu.edu)
Research Center, RMI Group Leader
Applied Physics Laboratory
The Johns Hopkins University
Johns Hopkins Road
Laurel, MD 20707
(301) 953-6231
(c) Date received: 9 May 1990
```

Information Gain

InfoGainAttributeEval:

- Ranks the Attributes by their worth
- Measures Information Gain
- Attributes with high Information Gain are ranked higher and have more impact

What is Information Gain?

- Measures how likely an event is to occur based on the value of a variable
- High Information Gain means an event is likely to occur

Attributes and Rankings

- 1. Plas
- 2. Mass
- 3. Age
- 4. Insu
- 5. Skin
- 6. Preg
- 7. Pedi
- 8. Pres
- 9. Class

- Insu
 - o 2 hour serum insulin
- Skin
 - Triceps skin fold thickness
- Preg
 - Num of times pregnant
- Pedi
 - Diabetes pedigree function
- Pres
 - Diastolic blood pressure

21:30:33 - Ran	iker + InfoC	SainAttributeEval
Ranked	attr	ibutes:
0.1901	1	plas
0.0749	2	mass
0.0725	5 3	age
0.0595	5 4	insu
0.0443	5	skin
0.0392	2 6	preg
0.0208	7	pedi
0.014	8	pres

Logistic Regression

- Binary classification algorithm
- Learns coefficient for each input value
- Input values are linearly combined into a regression function
- Regression function is then transformed using a Logistic Function

We use the SimpleLogistic function

- Dependent Variable is nominal
 - Tested Positive/Tested Negative
- Tests whether getting a particular value of the dependent variable is associated to the measured variables.

Confusion Matrix

Takes the number of accurate results of a threshold and compares it to the number of inaccurate results.

True Negative	False Negative
False Positive	True Positive

```
20:53:20 - functions.SimpleLogistic

=== Confusion Matrix ===

a b <-- classified as

186 16 | a = tested_negative

47 58 | b = tested_positive
```

ROC curve

- Takes the confusion matrix for each threshold value from 0-1
- 0 is everything is classified as False
- 1 is everything is classified as True
- The goal is to get the curve very close to 1 for as many values as possible
- This limits the number of false positives while maximizing True positives

Simple Logistic

Classification Boundary

- Helps visualize where a particular person will be categorized
- Prominent diagonal line near upper middle of dataset

Mass vs Plasma Simple Logistic

Observations?

Plot Matrix

- Focus on
 - Plasma concentration
 - Mass
 - Age
- No clear correlation between the values

PositiveNegative

Observations?(cont.)

- Plas v. Age
 - Higher the patient's plasma the more likely the diagnosis
- Age v. Plas
 - The younger the patient and the higher plasma the likely the diagnosis
- Values cluster
 - Around 21-51 age range
 - o Around 99.5 199 plasma range
 - Plasma average?

Plas v. Age

Age v. Plas

Observations?(cont.)

- Mass v. Plas
 - A range around a BMI 33.2 and Plasma 99.5 where no diagnosis
 - beyond Plasma 99.5
- Plas v. Mass
 - o BMI alone is no clear indicator
 - Though, a higher BMI and Plasma the more likely a diagnosis
- Values cluster
 - Around 33.55 BMI range
 - BMI Average?

Mass v. Plas

Plas v. Mass

Observations?(cont.)

- Age v. Mass
 - The older someone is and the lower their BMI the less likely diagnosis
- Mass v. Age
 - No definite conclusions

Age v. Mass

Mass v. Age

Summary

- Plasma concentration seems to be very significant to diabetes diagnosis
- Age and Mass seem to help supplement these conclusions significantly especially when combined with Plasma Concentration
- Though
 - The data clustered in some spots
 - Seems that there was more data on a specific groups
 - i.e. there was more data for the ages 21 51
 - It is important to look at wider and diverse data sets
 - It is important to look at ALL attributes that may assist with diagnosis

Conclusion!

THANK YOU FOR LISTENING