제 1 문 (15점)

어느 건강 클리닉에서 다이어트 프로그램 A와 B의 체중 감량 효과를 비교하기 위하여 지원자 18명을 임의로 각 프로그램에 9명씩 할당하고 6개월간 각 다이어트 프로그램을 수행한 후 체중 감량분을 조사하여 다음과 같은 결과를 얻었다.

	표본평균	표본분산
프로그램 A	14	19
프로그램 B	11	17

- (1) 프로그램 A와 프로그램 B의 합동분산(pooled variance)의 추정치를 구하라.
- (2) 프로그램 A에서의 체중감소분의 분산과 프로그램 B에서의 체중감소분의 분산이 같다고 가정할 때

 H_0 : 두 다이어트 프로그램에 대한 체중감량 평균의 차이가 없다 H_1 : 두 다이어트 프로그램에 대한 체중감량 평균의 차이가 있다 에 대한 검정을 유의수준 5%에서 실시하라.

- (3) 위의 자료에 대하여 성별, 프로그램 시작 전 체중, 체형 등을 고려하여 프로그램 A의 지원자와 프로그램 B의 지원자를 짝을 지운 후 표본상관계수를 계산하였더니 0.8이였다. 각 짝에서 프로그램 A 수강생의 감량분에서 프로그램 B의 감량분을 뺀 값에 대한 평균은 3, 표본분산은 7.24, 표본표준편차는 2.69이였다. 이 경우에 대하여 (2)에서와 같은 가설을 유의수준 5%에서 검정하라.
- (4) (2)의 결과와 (3)의 결과를 비교하여 논하라.

<표> t분포의 상위 lpha의 확률을 주는 값

				0	t_{α}			
а		41.	10					S Lanning
f. \	.25	.10	.05	.025	.01	.00833	.00625	,005
1	1.000	3.078	6.314	12.706	31.821	38.190	50.923	63.65
2	.816	1.886	2.920	4.303	6.965	7.649	8.860	9.92
3	.765	1.638	2.353	3.182	4.541	4.857	5.392	5.84
4	.741	1.533	2.132	2.776	3.747	3.961	4.315	4.60
5	.727	1.476	2.015	2.571	3.365	3.534	3.810	4.03
6	.718	1.440	1.943	2.447	3.143	3.287	3.521	3.70
7	.711	1.415	1.895	2.365	2.998	3.128	3.335	3.49
8	.706	1.397	1.860	2.306	2.896	3.016	3.206	3.35
9	.703	1.383	1.833	2.262	2.821	2.933	3.111	3.25
10	.700	1.372	1.812	2.228	2.764	2.870	3.038	3.16
11	.697	1.363	1.796	2.201	2.718	2.820	2.981	3.10
12	.695	1.356	1.782	2.179	2.681	2.779	2.934	3.05
13	.694	1.350	1.771	2.160	2.650	2.746	2.896	3.01
14	.692	1.345	1.761	2.145	2.624	2.718	2.864	2.97
15	.691	1.341	1.753	2.131	2.602	2.694	2.837	2.94
16	.690	1.337	1.746	2.120	2.583	2.673	2.813	2.92
17	.689	1.333	1.740	2.110	2.567	2.655	2.793	2.89
18	.688	1.330	1.734	2.101	2.552	2.639	2.775	2.87
19	.688	1.328	1.729	2.093	2.539	2.625	2.759	2.86
20	.687	1.325	1.725	2.086	2.528	2.613	2.744	2.84
21	.686	1.323	1.721	2.080	2.518	2.601	2.732	2.83
22	.686	1.321	1.717	2.074	2.508	2.591	2.720	2.81
23	.685	1.319	1.714	2.069	2.500	2.582	2.710	2.80
24	.685	1.318	1.711	2.064	2.492	2.574	2.700	2.79
25	.684	1.316	1.708	2.060	2.485	2.566	2.692	2.78
26	.684	1.315	1.706	2.056	2.479	2.559	2.684	2.77
27	.684	1.314	1.703	2.052	2.473	2.552	2.676	2.77
28	.683	1.313	1.701	2.048	2.467	2.546	2.669	2.76
29	.683	1.311	1.699	2.045	2.462	2.541	2.663	2.75
30	.683	1.310	1.697	2.042	2.457	2.536	2.657	2.75
40	.681	1.303	1.684	2.021	2.423	2.499	2.616	2.70
60	.679	1.296	1.671	2.000	2.390	2.463	2.575	2.66
120	.677	1.289	1.658	1.980	2.358	2.428	2.536	2.61
00	.674	1.282	1.645	1.960	2.326	2.394	2.498	2.57