1.5.1. Опыт 1. «Последовательное соединение в цепи постоянного тока»

Результаты измерений для опыта 1

Таблица 1.1

R_1 , Om	<i>R</i> ₂ , Ом	<i>E</i> , B	U_2 , B	U_1 , B	I, MA

Рис. 1.2. Схема опыта 1

1) Проверка уравнения второго закона Кирхгофа: $U_1 + U_2 = E$,

_____.

2) Расчет по закону Ома величин сопротивлений:

$$R_1 = U_1/I =$$
_____ Om; $R_2 = U_2/I =$ ____ Om.

- 3) Эквивалентное сопротивление цепи: R = E/I =_____ Ом.

1.5.2. Опыт 2. «Параллельное соединение в цепи постоянного тока»

Рис. 1.3. Схема опыта 2

Результаты измерений для опыта 2

<i>R</i> ₁ , O _M	R_2 , Om	<i>E</i> , B	<i>I</i> ₁ , мА	<i>I</i> ₂ , мА	<i>I</i> ₃ , мА

- 1) Проверка уравнения первого закона Кирхгофа: $I_2 + I_3 = I_1$,
- 2) Расчет по закону Ома величин сопротивлений:

$$R_1 = E/I_2 =$$
_____ = ___ Om; $R_2 = E/I_3 =$ ____ = ___ Om.

- 3) Эквивалентное сопротивление цепи: $R = E/I_1 =$ _____ = ____ Ом.
- 4) Проверка выражения $R = \frac{R_1 R_2}{R_1 + R_2}$: R =_____ Ом.

1.5.3. Опыт 3. «Измерения в цепи синусоидального тока»

Рис. 1.4. Схема опыта 3

Таблица 1.3

Результаты измерений для опыта 3

R_1 , Ом	U, B	I, mA		<i>P</i> , B _T	U_1 , B	
Iti, Ow	OM		PA1	1, 11	O_1, D	

- 1) Расчет по закону Ома сопротивления: $Z_1 = R_1 = U_1/I =$ _____ Ом.
- 2) Расчет суммарного внутреннего сопротивления $R_{\rm BH}$ амперметра PA_1 и Измерителя фазы PP: $R_{\rm BH} = \frac{U-U_1}{I} =$ ______ Ом.
 - 3) Расчет мощности: $P_{\text{ист}} = UI =$ _____ = ___ Вт; $P_{\text{потр}} = I^2 (R_{\text{l}} + R_{\text{вн}}) =$ ____ Вт.

Работу выполнили:

Работу проверил:

Таблица 2.1 Проверка законов Кирхгофа, принципов наложения и взаимности

$R_1 = ext{Om} ext{} R_2 = ext{Om} ext{} R_3 = ext{Om}$							
Включены обе ЭДС			Включ	нена ЭДС	Включ	ена ЭДС	
E_1	= B	и $E_2 =$	В	E_1 =	В	$E_2 =$	В
I_1 , MA		U_{R1} , B		I_1' , MA		I_1'' , MA	
<i>I</i> ₂ , мА		U_{R2} , B		I_2' , mA		I_2'' , MA	
<i>I</i> ₃ , мА		U_{R3} , B		I_3' , мА		I_3'' , MA	

Рис. 2.2. Схема замещения цепи

Таблица 2.2

Определение параметров эквивалентного генератора

Способ определения параметров	$I_{3_{K3}}$, MA	$U_{abxx} = E_{\Gamma}, B$	R_{Γ} , Om
Опыт			
Расчет по схеме замещения			
Расчет из опыта двух нагрузок			

Таблица 2.3

Зависимости $I_3 = f(R_3)$, $U_3 = f(R_3)$ и $P_3 = f(R_3)$

	f(x,y) = f(x,y)								
Опыт	R_3 , Om	0	10	20	30	47	68	100	150
	I_3 , MA								
	U_3 , B								
Расчет	P_3 , BT								

Работу выполнили:		
Работу проверил:		

Таблица 3.1

Эквивалентные параметры исследуемых двухполюсников

	эквивалентиве параметры исследуемых двухнолюстиков									
	Cware	Cyaya			Опыт Расчет					
Двухполюсник	Схема замещения	<i>U</i> , B	<i>I</i> , мА	<i>Р</i> , Вт	φ, град.	$Z = \frac{U}{I}$, Om	$R_9 = Z\cos\varphi,$ OM	$X_3 = Z \sin \varphi,$ OM	$\underline{Z} = Ze^{j\varphi}$	$P = I^2 R_3$
Резистор <i>R</i> = Ом	$R \longrightarrow R$				0		R = Z =	0		
Катушка индуктивности $L = _{___}$ м Γ н	R_{κ} L						$R_{\scriptscriptstyle m K}=$	$X_L =$		
Конденсатор С = мкФ	R_C C						$R_{ m C} =$	$X_{\rm C} =$		
Последовательное соединение резистора, катушки индуктивности и конденсатора	<u>Z</u> ₃ → ○						$R_9 =$	$X_9 =$		

$R + R_{\kappa} + jX_L + R_C - j$	$X_C = \underline{\hspace{1cm}}$		 		=	+ j	=_	e ^j
				$Z_9 = R_9 + jX_9$	=	+ j	=_	e ^j
Работу выполнили:								
Работу проверил:								

Заданные параметры: частота f =____ Γ ц, индуктивность катушки L =____ м Γ н; емкость конденсатора C =___ мк Φ ; сопротивление $R_3 = 10$ Ом.

Рис. 4.1. Определение параметров элементов

Таблица 4.2

Опытное определение параметров элементов

Элемент	<i>U</i> , B	<i>I</i> , мА	φ, град.	$Z = \frac{U}{I}$, Om	Zcosφ, Om	Zsinф, Ом
Катушка индуктивности L					$R_{\scriptscriptstyle m K}$ =	$X_L =$
Катушка индуктивности L_2					$R_{\kappa 2} =$	$X_{L2} =$
Конденсатор С					R =	$X_{\rm C} =$
Резистор R_3			0		$R_3 =$	0

Таблица 4.3

Результаты измерений

	- 00 jul - 1.01.10 p 0 - 1.11							
Способ определения	U, B	U_1 , B	U_2 , B	I_1 , м A	<i>I</i> ₂ , мА	<i>I</i> ₃ , мА	ф, град.	<i>P</i> , Вт
Опыт								
Расчет								
Осциллограф								

Рис. 4.2. Схема исследуемой электрической цепи

Работу выполнили:	
Работу проверил:	

Частота f =____ Γ ц, угловая частота $\omega =$ ____ pag/c.

5.5.1. Определение параметров индуктивно связанных катушек

В табл. 5.1 величины с индексом 1 относятся к катушке, подключенной к выходу функционального генератора, с индексом 2 – к гнездам мультиметра.

Рис. 5.3. Определение взаимной индуктивности M

Таблица 5.1

Результаты измерений

К выходу генератора подключена катушка							
L_1				L_2			
U_1 , B	I_1 , MA	φ1, град.	U_2 , B	U_1 , B	I_1 , MA	ф1, град.	U_2 , B

Предварительные расчеты параметров катушек

1) К выходу генератора подключена катушка L_1 :

$$Z_1 = \frac{U_1}{I_1} =$$
 = Om; $R_{\kappa 1} = Z_1 \cos \varphi_1 =$ = Om; $X_{LI} = Z_1 \sin \varphi_1 =$ = Om; $X_{M1} = \frac{U_2}{I_1} =$ = Om; $M_{12} = \frac{X_{M1}}{\omega} =$ Γ_{H} .

2) К выходу генератора подключена катушка L_2 :

$$Z_2 = \frac{U_1}{I_1} =$$
 = Om; $R_{\kappa 2} = Z_2 \cos \varphi_2 =$ = Om;

$$X_{L2} = Z_2 \sin \varphi_2 =$$
 = Ом; $X_{M2} = \frac{U_2}{I_1} =$ = Ом;
$$M_{21} = \frac{X_{M2}}{\omega} =$$
 Γ H.

5.5.2. Последовательное соединение катушек

Рис. 5.4. Последовательное соединение индуктивно связанных катушек

Таблица 5.2

Результаты измерений

	Соединение катушек								
согласное				встречное					
U , B	I, MA	U_1 , B	U_2 , B	φ, град.	U , B	<i>I</i> , мА	U_1 , B	U_2 , B	φ, град.
$Z_{ m corn}^{ m экc}$	=U/I=	=	=	Ом	$Z_{ ext{BCTP}}^{ ext{9KC}}$	=U/I=	=	=	Ом

Работу выполнили	1:	
Работу проверил:		

Параметры цепи: L =__ мГн; C =__ мкФ; $R_{\kappa} =$ __ Ом; $R_{1} = 10$ Ом; U =__ В. Предварительные расчеты:

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = \qquad = \qquad \Gamma_{\mathrm{II}}; \qquad \rho = \sqrt{\frac{L}{C}} = \qquad = \qquad \mathrm{Om}.$$

$$R_C = \frac{P}{I^2} = \qquad = \qquad \mathrm{Om} \; ; \qquad Q = \frac{\rho}{R_C + R_{\mathrm{K}} + R_{\mathrm{I}}} = \qquad = \qquad ;$$

$$\Delta f = \frac{f_0}{Q} = \qquad = \qquad \Gamma_{\mathrm{II}}.$$

$$\frac{\Delta f}{Q} = \frac{f_0}{Q} = \qquad = \qquad \Gamma_{\mathrm{II}}.$$

Рис. 6.2. Схема электрической цепи для определения сопротивления потерь в конденсаторе R_C

Рис. 6.3. Схема электрической цепи для исследования резонанса напряжений

<i>f</i> , Гц	<i>I</i> , мА	$U_{\scriptscriptstyle m K}, \ { m B}$	$U_L = \sqrt{U_{\kappa}^2 - (R_{\kappa}I)^2}, B$	$U_{ ext{KOH}} pprox U_C, \ \mathrm{B}$	ф, град.	<i>Р</i> , Вт	Приме- чания
100							$f < f_1$
					≈ -45°		f_1
							$f_1 < f < f_0$
					≈ 0		f_0
							$f_2 > f > f_0$
					≈ 45°		f_2
540							$f>f_2$

$\Delta f = f_2 - f_1 =$	=	=	Гц.		
Работу выполнили:					
Работу проверил:					

Рис. 7.2. Схема электрической цепи

Параметры входного напряжения: U= В; f= Гц. Параметры элементов: $R_{\kappa}=$ Ом; L= мГн;

$$C_0 = \frac{1}{\left(2\pi f\right)^2 L} = \approx \text{MK}\Phi.$$

Таблица 7.1

Результаты измерений и расчетов

Параметр		Значения									
C , мк Φ	3,3	4,7	6,8	10	15	22	32	47	57	69	79
		Резул	іьтаті	ы изм	ерени	ий					
I, MA											
$U_{\scriptscriptstyle m K},{ m B}$											
U_C , B											
ф, град.											
Р, Вт											
		Резу	льтат	ъ рас	счето	В					
$U_{R_{K}}=R_{K}I, B$											
$U_L = \sqrt{U_{\kappa}^2 - U_{R_{\kappa}}^2} , B$											
S = UI, BA											
$Q = S \sin \varphi$, вар											

Работу выполнили:	
Работу проверил:	

Параметры цепи: L= мГн; $R_{\rm \tiny K}=$ Ом; C= мк Φ ; U= В.

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{L - R_{\kappa}^2 C}{L^2 C}} =$$
 $=$ \approx Γ ц.

Рис. 8.2. Схема электрической цепи

Таблица 8.2

Результаты измерений и расчетов

Параметр Значение							
Результаты измерений							
$\mathbf{v} = \frac{f}{f_0}$	0,5	1	2				
f, Гц							
I, mA							
I_{RL} , mA							
I_C , MA							
ф, град.							
	Результаты ра	счета					
$\dot{I}_{RL},$ MA							
\dot{I}_{RL} ,мА \dot{I}_{C} ,мА							
İ,mA							
ф, град.							

Работу выполнили:	
Работу проверил: _	