HW3

309555025 羅文笙

補交 Note: 更新了第二題全部/第三題補上 log likelihood curve!

1. Gaussian Process for Regression

Predicion Result

Show RMS

	RMS of training	RMS of test
[0,0,0,1]	3.1292	3.3201
[1,16,0,0]	2.4239	2.4656
[1,16,0,4]	2.4105	2.4557
[1,64,32,0]	1.0428	1.0925

Discussion

最後我選擇 theta = [10,1024,0,0] 當作最好的超參數。 θ_2 和 θ_3 似乎不太重要,就沒有去嘗試了,我發現 θ_0 因為是乘上後面一大串 \exp ,所以一定要不等於 0,且一定要>0,不然後面求變異數的時候會產生負數,那 θ_0 和 θ_1 越大的話,training set 和 test set 的 RMS 就會越小,甚至可以小到 0.05,但是相對的,標準差就會變得很大,所以我選擇這個組合,取得 RMS 和標準差之間的平衡。

	RMS of training	RMS of test	平均標準差
[10,1024,0,0]	0.5156	0.6415	1.3189
[1000,4096,0,0]	0.0564	0.1704	7.1930
[1,64,32,0]	1.0428	1.0925	1.0621

2. Support Vector Machine (SVM)

2-1 Analyze & Decide which approaches to use

One-VS-Rest,主要會有兩個問題,第一個就是每次的分類都是在訓練不同的 classifier,所以不能夠保證不同 classifier 的 $y_k(x)$ 值會在相同的數量級上,在使用最後的 decision value 來決定最後的分類結果時,可能會有誤差。第二個問題是,如果本來每個 label 的 training data 都佔了相同的數量,但用 One-VS-Rest 的時候,在每次訓練 classifier 時會變成 One 只佔了一點點,Rest 有很大一塊,產生 training sets 的 imbalance。

One-VS-One 的話就比較沒有 One-VS-Rest 的這些問題,但是假設有 N 個類別的話,就必須要訓練出 C(N,2)個 classifier,整體的時間上會需要比 One-VS-Rest 還要久。

最後,考量到 training data set 每一個 label 的數量都差不多,為了 避免用 One-VS-Rest 產生 imbalance 的問題,且只有 3 個 label,OneVS-One 和 One-VS-Rest 都需要訓練出 3 個 classifier,不會需要比較久的時間,最後我選擇使用 One-VS-One 的方法。

2-2/2-3 Plot the corresponding decision boundary and support vector.

2-4 Please discuss the difference between (2), (3)

Kernel function 主要的功用就是希望當不同類別的資料在原始空間中無法被線性 classifier 區隔開來時,利用非線性的投影使得資料能在更高維度的空間中可以更區隔開。

所以當 linear kernel 無法有效區隔資料點的時候就可以考慮使用 polynomial kernel 來將資料投影到更高維度來試試看。但是在本次作業中,其實 linear 的 kernel 就已經分得不錯了,反而是使用 polynomial kernel 之後,還分類的比較不好。因此 kernel function 的選擇,主要還是要看 input data 和實際結果之後來做決定會比較好。

3. Gaussian Mixture Model

3-1 Table of μ_k

		•		
*** Table of k = 2 ***				
R	G	В		
60	75	82		
143	161	164		
*** Table	of k = 3 **	*		
R	G	В		
167	183	183		
91	111	119		
47	59	67		
*** Table	of k = 5 **	*		
R	G	В		
50	79	88		
113	135	142		
185	197	195		
78	91	98		
40	51	58		
*** Table	of k = 7 **	*		
R	G	В		
45	57	65		
203	213	210		
97	118	126		
140	160	162		
22	35	41		
71	76	78		
63	87	98		
*** Table of k = 10 ***				
R	G	В		
119	121	115		
79	99	109		

121	154	175
47	60	67
174	176	168
140	194	208
218	221	216
108	132	147
73	159	156
153	147	136

3-2/ 3-4 Log likelihood curve

3-3 Image

3-5 Discussion

隨著 k 越來越大,圖片也越來越清晰,k 在這邊代表的意思可以想成是有幾種顏色的畫筆,當 k=2 時,圖片中的每個 pixel 只有灰色或黑色的選擇,k=10 的時候,就變得非常接近原來的圖片了。