Low-Level Design (LLD)

Project Title: Cryptocurrency Liquidity Forecasting for Market Stability

Data Acquisition

- Imported two CSV files using pandas.read_csv().
- Combined both datasets for comprehensive analysis.

Data Preprocessing

- Eliminated rows containing missing values using dropna().
- Identified and removed duplicate entries.
- Ensured proper column data types by converting where necessary.

Feature Engineering

- Generated moving averages to smooth fluctuations:
- Computed volatility as a measure of price variation:
- Derived liquidity ratio to assess market fluidity:
 - o liquidity_ratio = volume_24h / market_cap

Exploratory Data Analysis (EDA)

- Visualized Bitcoin price trends over time using Matplotlib.
- Generated a heatmap to illustrate feature correlations with Seaborn.
- Summarized dataset statistics using df.describe().

Model Development

- Partitioned data into training and testing sets using train_test_split().
- Implemented multiple regressor models and identified XGB as the best performing.
- Developed a **XGBoost model** as the final model.
- Conducted hyperparameter tuning to enhance model performance if required.

Model Evaluation

- Assessed model effectiveness using key metrics:
 - Root Mean Squared Error (RMSE)
 - Mean Absolute Error (MAE)
 - o R² Score

Model Persistence

o Save the pickle file in .pkl format

Local Deployment (Optional)

- Developed a simple interactive web application using **Streamlit**
- Enabled real-time liquidity prediction for new cryptocurrency inputs.