CSL7480 Cryptography

09 Jan 2023

Lecture 3: Cryptography

Lecturer: Somitra Sanadhya Scribe: Sumit Kumar Prajapati (B20CS074)

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

3.1 History

There were two area of study -

• Cryptography: designing secure communication schemes

• Cryptoanalysis: attacking above schemes to break it

Nowadays, we study both under Cryptography

3.2 Attack Models

The goal of the attacker is to gain some information about plaintext m* corresponding to a given cipher text c*. We categorise the attack models based on the resources accessible to the attacker.

- 1. Ciphertext Only
 - The attacker has access to only ciphertext c*.
- 2. Known Plaintext Attack
 - The attacker has access to some (m_i, c_i) pairs s.t. $Enc_k(m_i) = c_i$ and $c_i \neq c*$.
- 3. Chosen Plaintext Attack (CPA)
 - The attacker has access to some (m_i, c_i) pairs s.t. $Enc_k(m_i) = c_i$ and $c_i \neq c*$. The attacker can choose specific m_i and ask for its corresponding encryption c_i .
- 4. Chosen Ciphertext Attack (CCA)
 - The attacker has access to some (m_i, c_i) pairs s.t. $Enc_k(m_i) = c_i$ and $c_i \neq c*$. Here, the attacker can choose specific either m_i (and ask for the corresponding encryption c_i) or c_i (and ask for the corresponding decryption m_i) for each pair.
 - CCA is further divided into two categories:
 - CCA-1: The c* will be given at the end of after all pair-exchanges and no further query will be allowed.
 - CCA-2: The c* can be asked by the attacker at any point of time. He/she can query more pairs even after c* is revealed.

Clearly, the power(resources) of the attacker increases from top to bottom in the list. Our ultimate goal is to design a cryptographic scheme which will be secure under **CCA-2** attack model.

3.3 Encryption Scheme Model

- An encryption scheme consists of three spaces:
 - **Key Space** (\mathcal{K}): The key k is generated at random using KeyGen() algorithm. It may have some security parameter as input (for eg. length of the key).
 - Message Space (M): Messages come from some distribution; let D be a random variable for sampling the messages from the message space M. Distribution D is known to the adversary. This captures a priori information about the messages.
 - Ciphertext Space (C): The ciphertext c = Enc(k, m) depends on:
 - * m chosen according to D.
 - * k chosen randomly (according to KeyGen())
 - * Enc may also use some randomness

These induce a distribution C over the ciphertexts c.

• For correctness of the scheme, following must hold: $\forall k \in \mathcal{K}, \forall m \in \mathcal{M}, \ Dec(k, Enc(k, m)) = m.$

3.4 'Unbreakable Cryptosystem'

- Intuitively, we might want to define perfect security of an encryption scheme as follows: **Given a ciphertext all messages are equally likely**.
- This can be formulated as:

$$\forall m_0, m_1 \in M, c \in C$$

$$Pr[M = m_0|C = c] = Pr[M = m_1|C = c]$$

- The probability here is over the randomness used in the KeyGen() and Enc algorithms and the probability distribution over the message space.
- But this definition has a problem. It might be a priori known that the message m_0 is more likely than m_1 . We do not want 'seeing the ciphertext' to change this information.
- We want the ciphertext to provide **no additional information** about the message.

3.4.1 Shannon's Secrecy

A cipher $(\mathcal{M}, \mathcal{K}, KeyGen, Enc, Dec)$ is Shannon secure w.r.t a distribution D over M if

$$\forall m' \in \mathcal{M}, \forall c \in \mathcal{C}$$

$$Pr[m \leftarrow \mathcal{D} : m = m'] = Pr[k \leftarrow KeyGen() : m = m'|Enc(m, k) = c]$$

where the first probability is taken over \mathcal{M} chosen according to distribution D, over random keys K chosen in \mathcal{K} , and over the possible random choices of the (possibly) probabilistic encryption algorithm Enc, while the second probability is taken over $M \leftarrow D$.

It is Shannon secure if it is Shannon secure w.r.t all distributions D over \mathcal{M} .

3.4.2 Perfect Security

- Suppose we have two messages: $m_1, m_2 \in \mathcal{M}$.
- What is the distribution of ciphertexts for m_1 ?

$$C_1 := \{ Enc(m_1, k) \mid k \leftarrow KeyGen() \}$$

• What is the distribution of ciphertexts for m_2 ?

$$C_2 := \{ Enc(m_2, k) \mid k \leftarrow KeyGen() \}$$

• For perfect secrecy:

 C_1 and C_2 must be identical for every pair m_1, m_2 .

 \Rightarrow Ciphertexts are *independent* of the plaintext(s)

Definition: A Scheme $(\mathcal{M}, \mathcal{K}, KeyGen, Enc, Dec)$ is **perfectly secure** if

$$\forall m_1, m_2 \in \mathcal{M}, \forall c \in \mathcal{C}$$

$$Pr[k \leftarrow KeyGen() : Enc(m_1, k) = c] = Pr[k \leftarrow KeyGen() : Enc(m_2, k) = c]$$

where both probabilities are taken over the choice of K in K and over the coin tosses of the (possibly) probabilistic algorithm Enc()

- So much simpler than Shannon Secrecy!
- No mention of distributions, a priori or posteriori.
- Much easier to work with.

3.4.3 Which notion is better?

- We have two definitions: Shannon secrecy and Perfect secrecy.
- Both of them intuitively seem to guarantee great security!
- Is one better than the other?
- If our intuition is right, shouldn't they offer 'same level' of security?

3.4.4 Equivalence of Shannon Secrecy and Perfect Secrecy

Theorem: A private-key encryption scheme is *perfectly secure* if and only if it is *Shannon secure*.

$$Perfect \ Secrecy \Leftrightarrow Shannon \ Secrecy$$

Simplifying Notation

- We drop KeyGen and D when clear from context.
- $Enc_k(m)$ will be shorthand for Enc(k, m).

• For example:

$$-Pr_{m}[...] = Pr[m \leftarrow D : ...]$$

$$-Pr_{k}[...] = Pr[k \leftarrow KeyGen() : ...]$$

$$-Pr_{k,m}[...] = Pr[m \leftarrow D, k \leftarrow KeyGen() : ...]$$

Proof: Perfect Secrecy \Rightarrow Shannon Secrecy

Given: $\forall (m_1, m_2) \in \mathcal{M} \times \mathcal{M}, \ \forall c \in \mathcal{C}$:

$$Pr_k[Enc_k(m_1) = c] = Pr_k[Enc_k(m_2) = c]$$

To Show: for every D over $\mathcal{M}, m' \in \mathcal{M}, c \in \mathcal{C}$

$$Pr_{k,m}[m = m' \mid Enc_k(m) = c] = Pr_m[m = m']$$

$$L.H.S = Pr_{k,m}[m = m' \mid Enc_k(m) = c]$$

$$(3.1)$$

$$=\frac{Pr_{k,m}[m=m'\cap Enc_k(m)=c]}{Pr_{k,m}[Enc_k(m)=c]}$$
(3.2)

(3.3)

$$= \frac{Pr_{k,m}[m=m' \cap Enc_k(m')=c]}{Pr_{k,m}[Enc_k(m)=c]} (\because m=m')$$
(3.4)

(3.5)

 $\therefore Pr[m=m']$ is independent of k and $Pr[Enc_k(m')=c]$ is independent of m

$$= \frac{Pr_{k,m}[m=m'].Pr[Enc_k(m')=c]}{Pr_{k,m}[Enc_k(m)=c]}$$
(3.6)

$$= R.H.S \times \frac{Pr[Enc_k(m') = c]}{Pr_{k,m}[Enc_k(m) = c]}$$
(3.7)

(3.8)

Now, we will show that $\frac{Pr[Enc_k(m')=c]}{Pr_{k,m}[Enc_k(m)=c]} = 1$

The probability that we get a cipher-text c from any message m is the sum of the probabilities of each test in the message set \mathcal{M} leading to c on encryption using Enc

$$Pr[Enc_k(m') = c] = \sum_{m=m''} Pr_m[m = m''] Pr_k[Enc_k(m'') = c]$$
(3.9)

(3.10)

 \therefore probability of getting ciphertext c is equal for every message in \mathcal{M}

$$= \sum_{m=m"} Pr_m[m=m"] Pr_k[Enc_k(m') = c]$$
 (3.11)

$$= Pr_k[Enc_k(m') = c] \sum_{m=m"} Pr_m[m = m"]$$
 (3.12)

$$= Pr_k[Enc_k(m') = c] \times 1 \text{ (QED)}$$
(3.13)

(3.14)

Proof: Perfect Secrecy \Leftarrow Shannon Secrecy

Given: for every D over $\mathcal{M}, m' \in \mathcal{M}, c \in \mathcal{C}$

$$Pr_{k,m}[m = m' \mid Enc_k(m) = c] = Pr_m[m = m']$$

To Show: $\forall (m_1, m_2) \in \mathcal{M} \times \mathcal{M}, \ \forall c \in \mathcal{C}$:

$$Pr_k[Enc_k(m_1) = c] = Pr_k[Enc_k(m_2) = c]$$

Now,

$$Pr_{k,m}[m = m_1 \mid Enc_k(m) = c] = \frac{Pr_{k,m}[m = m_1 \cap Enc_k(m) = c]}{Pr_{k,m}[Enc_k(m) = c]}$$
(3.15)

$$= \frac{Pr_{k,m}[m = m_1 \cap Enc_k(m_1) = c]}{Pr_{k,m}[Enc_k(m) = c]} (\because m = m_1)$$
 (3.16)

$$= \frac{Pr_{k,m}[Enc_k(m) = c]}{Pr_{k,m}[Enc_k(m) = c]}$$

$$= \frac{Pr_{k,m}[m = m_1] \cdot Pr[Enc_k(m_1) = c]}{Pr_{k,m}[Enc_k(m) = c]}$$
(3.17)

(3.18)

$$Pr_{k,m}[m = m_1 \mid Enc_k(m) = c] = Pr_{k,m}[m = m']$$
 (3.19)

$$\frac{Pr_{k,m}[m=m_1].Pr[Enc_k(m_1)=c]}{Pr_{k,m}[Enc_k(m)=c]} = Pr_{k,m}[m=m']$$
(3.20)

$$Pr[Enc_k(m_1) = c] = Pr_{k,m}[Enc_k(m) = c]$$
 (3.21)

$$Pr[Enc_k(m_1) = c] = Pr_{k,m}[Enc_k(m) = c]$$
 (3.22)

Similarly,
$$Pr[Enc_k(m_2) = c] = Pr_{k,m}[Enc_k(m) = c]$$
 (3.23)

$$\therefore Pr[Enc_k(m_1) = c] = Pr[Enc_k(m_2) = c] \ \forall m_1, m_2 \in \mathcal{M} \ (QED)$$

3.4.5 Perfect Security: Key Size Requirement

Theorem: For Perfect Security, $|\mathcal{K}| \ge |\mathcal{M}|$ must hold. **Proof by Contradiction**

- Assume that there is a perfectly secure cipher with $|\mathcal{K}| < |\mathcal{M}|$.
- Choose any random $m_1 \in \mathcal{M}, k \in \mathcal{K}$ and let $c = Enc_k(m)$.
- Now let $M = \{Dec'_k(c)\}$ for all possible keys k'
- Clearly, $|M| \leq |\mathcal{K}|$
- Since $|\mathcal{K}| < |\mathcal{M}|$, this means $\exists m_2 \notin M$.
- Hence, $Pr[Enc_k(m_2) = c] = 0$
- But, $Pr[Enc_k(m_1) = c] > 0$
- Note: The above probability will be 1 for a deterministic encryption scheme.
- There exist m_1, m_2, c s.t. $Pr[Enc_k(m_1) = c] \neq Pr[Enc_k(m_2) = c]$.
- Contradiction.

3.4.6 One Time Pad: A perfect secure scheme

- let n be an integer = length of plaintext messages.
- Message space $\mathcal{M} := \{0,1\}^n$ (bit-strings of length n)
- Key space $\mathcal{K} := \{0,1\}^n$ (keys too are length n bit-strings)
- The key is as long as the message. A random key is used **only once**.
- The Encryption Scheme:
 - KeyGen(): samples a key uniformly at random $k \leftarrow \{0,1\}^n \Rightarrow Pr_k[k=k'] = 2^{-n}$
 - $Enc(m, k) = m \oplus k$ (bit-by-bit xor) Let $m = m_1 m_2 ... m_n$ and $k = k_1 k_2 ... k_n$; Output $c = c_1 c_2 ... c_n$ where $c_i = m_i \oplus k_i \forall i \in [n]$
 - $Dec(c, k) = c \oplus k.$
 - Return m where $m_i = c_i \oplus k_i \forall i$

```
ENCRYPT

0 0 1 1 0 1 0 1 Plaintext
11 1 0 0 0 1 1 Secret Key
= 11 0 1 0 1 1 0 Ciphertext

DECRYPT

1 1 0 1 0 1 1 0 Ciphertext
1 1 1 0 0 0 1 1 Secret Key
= 0 0 1 1 0 1 0 1 Plaintext
```

Theorem: One Time Pad is a perfectly secure private-key encryption scheme. **Proof**

Fix $m \in \{0, 1\}^n$ and $c \in \{0, 1\}^n$.

$$Pr_k[Enc(m) = c] = Pr[m \oplus k = c]$$
 (3.24)

$$= Pr[k = m \oplus c] = 2^{-n} \tag{3.25}$$

(3.26)

$$\Rightarrow \forall (m_1, m_2) \in \{0, 1\}^{n \times n}, \forall c : \\ Pr[Enc_k(m_1) = c] = Pr_k[Enc_k(m_2) = c] = 2^{-n} \text{ (QED)}$$

The One Time Pad (OTP) scheme is also known as the Vernam Cipher.

References

- $\bullet \ https://www.ics.uci.edu/{\sim} stasio/fall04/lect1.pdf$
- \bullet https://www3.cs.stonybrook.edu/ \sim omkant/L02-short.pdf
- $\bullet\ https://www.cs.purdue.edu/homes/hmaji/teaching/Fall\%202016/lectures/03.pdf$