

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15070058603

FCC REPORT (WIFI)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 18.5" Android non-touch LCD Media Player

Model No.: DT185-AS4-720, 502-1859ATM

FCC ID: 2AB6Z-DT185-AS4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 22 Jul., 2015

Date of Test: 23 Jul., to 21 Aug., 2015

Date of report issued: 21 Aug., 2015

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description		
00	21 Aug., 2015	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMB) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.		

Sera Ximy Report Clerk Prepared by: Date: 21 Aug., 2015

Reviewed by: 21 Aug., 2015 Date:

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		NTENTS	
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	8
	5.5	LABORATORY LOCATION	8
	5.6	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	15
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1	Conducted Emission Method	
	6.7.2		
7	TES	T SETUP PHOTO	30
Ω	EUT	CONSTRUCTIONAL DETAILS	21

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247(d)	Pass*
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

Product Name:	18.5" Android non-touch LCD Media Player
Model No.:	DT185-AS4-720, 502-1859ATM
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.5 dBi
AC Adapter:	MODEL: PS36IBCAY3000S Input: AC 100-240V 50/60Hz 1.0A Output: DC 12V, 3000mA

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequence							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Report No: CCIS15070058603

5.3 Test environment and mode

Operating Environment:				
24.0 °C				
54 % RH				
1010 mbar				
Test mode:				
Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS15070058603

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016	

Cond	Conducted Emission:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)						
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015						
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016						
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016						
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016						
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A						

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207								
Test Method:	ANSI C63.4: 2009								
Test Frequency Range:	150 kHz to 30 MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9 kHz, VBW=30 kHz								
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average								
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
Test procedure	* Decreases with the logarithm1. The E.U.T and simulators								
	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 								
Test setup:	Refere	ence Plane							
	LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test								
	LISN: Line Impedence Stabilizatio Test table height=0.8m	n Network							
Test Instruments:	Refer to section 5.6 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Measurement Data

Neutral:

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 18.5" Android touch LCD Media player : DT185-AS4-720 EUT

Model Test Mode : WIFI mode

Power Rating: AC 120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki

Kemark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu₹	dB	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.150	52.25	0.25	10.78	63.28	66.00	-2.72	QP
2	0.175	34.60	0.25	10.77	45.62	54.72	-9.10	Average
3	0.521	23.72	0.28	10.76	34.76			Average
4	0.541	29.02	0.26	10.76	40.04	56.00	-15.96	QP
5	0.654	27.27	0.20	10.77	38.24	56.00	-17.76	QP
1 2 3 4 5 6 7 8 9	0.686	20.52	0.19	10.77	31.48	46.00	-14.52	Average
7	0.876	21.63	0.20	10.83	32.66	56.00	-23.34	QP
8	1.054	12.53	0.22	10.88	23.63	46.00	-22.37	Average
9	1.619	11.15	0.27	10.93	22.35	46.00	-23.65	Average
10	2.884	20.89	0.29	10.92	32.10	56.00	-23.90	QP
11	18.721	31.08	0.26	10.91	42.25	60.00	-17.75	QP
12	18,820	26, 14	0.26	10.92	37.32	50,00	-12.68	Average

Trace: 7

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 18.5° Android touch LCD Media player : DT185-AS4-720 EUT

Model Test Mode : WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

iomarn	Freq	Read Level		Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	dB	dBu₹	dBu∀	<u>dB</u>	
1	0.150	53.45	0.27	10.78	64.50	66.00	-1.50	QP
2	0.170	28.83	0.27	10.77	39.87	54.94	-15.07	Average
3	0.185	47.53	0.28	10.77	58.58	64.24	-5.66	QP
1 2 3 4 5 6 7 8	0.285	23.90	0.26	10.74	34.90	50.68	-15.78	Average
5	0.724	19.59	0.22	10.78	30.59	46.00	-15.41	Average
6	0.739	26.79	0.22	10.79	37.80	56.00	-18.20	QP
7	1.153	17.01	0.25	10.89	28.15	46.00	-17.85	Average
8	1.619	16.48	0.26	10.93	27.67	46.00	-18.33	Average
9	2.513	24.35	0.27	10.94	35.56	56.00	-20.44	QP
10	9.654	28.55	0.31	10.92	39.78	60.00	-20.22	QP
11	18.820	31.81	0.34	10.92	43.07	60.00	-16.93	QP
12	18.920	24.76	0.34	10.92	36.02	50.00	-13.98	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.					

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.4:2009 and KDB558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB			

6.5 Power Spectral Density

•	•
Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	8dBm
Test setup:	
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.6.2 Radiated Emission Method

Test Regu	Test Requirement: FCC Part 15 C Section 15.209 and 15.205									
Test Metho		ANSI C63.4: 2009								
		2.3GHz to 2.5GHz								
Test site:	, ,	Measurement Distance: 3m								
		Measurement D	istance. Sm							
Receiver s	etup:	Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value								
Limit:			TUVIO	11111112	JIVII IZ	Average value				
Liiiit.		Freque	ncy	Limit (dBuV/	m @3m)	Remark				
		Above 1		54.0		Average Value				
				74.0		Peak Value 0.8 meters above				
Test Proce		the ground to determin 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the numbers and to find the rust of find the rust of the EUT have 10dB	at a 3 meter case the position of as set 3 meters hich was mount as height is varied to determine the antal and vertical and vertical and vertical easurement. Uspected emission the antennal the rota table maximum readiceiver system was and width with sion level of the ecified, then test would be reported.	amber. The of the highest saway from ted on the to ed from one maximum al polarization was turned from the ed from	table was rest radiation. the interfer op of a variate meter to for a value of the arm o	ence-receiving able-height antenna are set to ged to its worst from 1 meter to 4 ees to 360 degrees Function and and the peak values assions that did not using peak, quasi-				
Test setup		peak or average method as specified and then reported in a data sheet. Antenna Tower Horn Antenna Spectrum Analyzer Amplifier								
Test Instru	iments:	Refer to section	5.6 for details							
Test mode		Refer to section								
Test result	s:	Passed								

Measurement Data:

Test mode: 80)2.11b		Test channel: Lowest			Remark: Peak				
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over			
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.		
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/III)	(ubuv/III)	(dB)			
2390	23.35	27.58	6.63	0	55.56	74	-16.44	Vertical		
2390	23.41	27.58	6.63	0	55.62	74	-16.38	Horizontal		
Test mode: 80)2.11b		Test channel: Lowest			Remark: Ave	erage			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over			
	Level	Factor	Loss	Factor			Limit	Polar.		
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)			
2390	10.74	27.58	6.63	0	42.95	54	-9.05	Vertical		
2390	10.61	27.58	6.63	0	42.82	54	-9.18	Horizontal		

Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.5	23.45	27.52	6.85	0	57.82	74	-16.18	Vertical
2483.5	22.87	27.52	6.85	0	57.24	74	-16.76	Horizontal
Test mode: 802.11b								
Test mode: 80)2.11b		Test char	nel: Highest		Remark: Ave	erage	
Test mode: 80 Frequency (MHz)	02.11b Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 802.11g			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390	30.07	27.58	6.63	0	64.28	74	-9.72	Vertical
2390	24.37	27.58	6.63	0	58.58	74	-15.42	Horizontal
Test mode: 80)2.11g		Test channel: Lowest			Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390	13.11	27.58	6.63	0	47.32	54	-6.68	Vertical
2390	11.42	27.58	6.63	0	45.63	54	-8.37	Horizontal

Test mode: 802.11g			Test chan	nel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.5	23.42	27.52	6.85	0	57.79	74	-16.21	Vertical
2483.5	22.95	27.52	6.85	0	57.32	74	-16.68	Horizontal
Toot made, 00	00.44		T	1 . 1 . 1		Remark: Average		
Test mode: 80)2.11g		lest chan	nel: Highest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 80	02.11n-HT20)	Test char	nnel: Lowest		Remark: Peak		
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polai.
2390	30.84	27.58	6.63	0	65.05	74	-8.95	Vertical
2390	29.25	27.58	6.63	0	63.46	74	-10.54	Horizontal
						Remark: Average		
Test mode: 80	02.11n-HT20)	Test char	nel: Lowest		Remark: Ave	erage	
	Read	Antenna	Cable	Preamp	Level	Remark: Ave	Over	Deler
Test mode: 80 Frequency (MHz)					Level (dBuV/m)			Polar.
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 80)2.11n-HT20)	Test char	nel: Highest		Remark: Peak		
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.
(1711 12)	(dBuV)	(dB/m)	(dB)	(dB)	(dDd V/III)	(aba v/III)	(dB)	
2483.5	23.78	27.52	6.85	0	58.15	74	-15.85	Vertical
2483.5	21.95	27.52	6.85	0	56.32	74	-17.68	Horizontal
Test mode: 80)2.11n -HT2	0	Test char	nel: Highest		Remark: Ave	erage	
Fraguenov	Read	Antenna	Cable	Preamp	Lovel	LimitLino	Over	
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.
Frequency (MHz)					Level (dBuV/m)	Limit Line (dBuV/m)		Polar.
	Level	Factor	Loss	Factor			Limit	Polar.

Test mode: 80	02.11n -HT4	0	Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390	23.45	27.58	6.63	0	57.66	74	-16.34	Vertical
2390	23.92	27.58	6.63	0	58.13	74	-15.87	Horizontal
Test mode: 80	02.11n -HT4	0	Test char	nel: Lowest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390	11.56	27.58	6.63	0	45.77	54	-8.23	Vertical
2390	11.02	27.58	6.63	0	45.23	54	-8.77	Horizontal

Test mode: 80)2.11n -HT4	0	Test chan	nel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.5	23.96	27.52	6.85	0	58.33	74	-15.67	Vertical
2483.5	24.11	27.52	6.85	0	58.48	74	-15.52	Horizontal
Test mode: 80	02.11n -HT4	0	Test chan	nel: Highest		Remark: Ave	Remark: Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
	Level	Antenna Factor	Loss	Factor			Over Limit	Polar.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Defer to acction E.G. for details					
	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	and 15.205						
Test Method:	ANSI C63.4:200)9							
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Fraguency Detector DDW VDW Demons								
	Frequency Detector RBW VBW Remark								
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	7.5575 15112	RMS	1MHz	3MHz	Average Value				
Limit:			1: ::/:15.37	/ 00 \	Б				
	Freque		Limit (dBuV		Remark				
	30MHz-8 88MHz-21		40.0 43.5		Quasi-peak Value Quasi-peak Value				
	216MHz-9		46.0		Quasi-peak Value				
	960MHz-		54.0		Quasi-peak Value				
			54.0		Average Value				
	Above 1	GHz	74.0		Peak Value				
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the numbers and to find the number stands the limit specified EUT have 10dB	at a 3 meter come the position was set 3 meter which was mount a height is varied to determine to the and vertice measurement. The rota table maximum read ceiver system and width with sion level of the would be reported to the position of the would be reported to the maximum tead to the rota table maximum read ceiver system and width with sion level of the would be reported to the reported to th	amber. The toof the highest saway from the on the too the too the maximum all polarizations on the EU awas turned was turned was set to Paximum He EUT in peasing could by the could be re-tested.	able was ro st radiation. the interfer op of a varia e meter to for a value of the ons of the an T was arran to heights to from 0 degre eak Detect old Mode. ak mode wa be stopped a vise the emi one by one	e 0.8 meters above tated 360 degrees ence-receiving able-height antenna our meters above e field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees Function and s 10dB lower than and the peak values ssions that did not e using peak, quasi-ported in a data				

Below 1GHz

Horizontal:

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	191.745	46.09	10.56	1.37	28.89	29.13	43.50	-14.37	QP
2	287.990	42.32	12.84	1.74	28.47	28.43	46.00	-17.57	QP
2	400.432	44.39	15.10	2.12	28.78	32.83	46.00	-13.17	QP
4	480.528	40.94	16.07	2.35	28.92	30.44	46.00	-15.56	QP
4	670.489	36.01	18.71	2.84	28.73	28.83	46.00	-17.17	QP
6	833.317	37.69	20.42	3.22	28.07	33.26	46.00	-12.74	QP

Vertical:

3m chamber

Site Condition FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL 18.5" Android non-touch LCD Media Player DT185-AS4-720

EUT

Model Test mode : WIFI mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55% 101KPa

Test Engineer: Viki REMARK :

•								
Freq								Remark
MHz	—dBu∀	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
130.837	45.50	8.88	1.20	29.32	26.26	43.50	-17.24	QP
191.745	40.00	10.56	1.37	28.89	23.04	43.50	-20.46	QP
319.937	42.40	13.33	1.84	28.50	29.07	46.00	-16.93	QP
403.250	39.66	15.14	2.13	28.79	28.14	46.00	-17.86	QP
480.528	44.63	16.07	2.35	28.92	34.13	46.00	-11.87	QP
560.693	41.13	17.77	2.56	29.07	32.39	46.00	-13.61	QP
	MHz 130.837 191.745 319.937 403.250 480.528	Freq Level MHz dBuV 130.837 45.50 191.745 40.00 319.937 42.40 403.250 39.66 480.528 44.63	Freq Level Factor MHz dBuV dB/m 130.837 45.50 8.88 191.745 40.00 10.56 319.937 42.40 13.33 403.250 39.66 15.14 480.528 44.63 16.07	MHz dBuV dB/m dB 130.837 45.50 8.88 1.20 191.745 40.00 10.56 1.37 319.937 42.40 13.33 1.84 403.250 39.66 15.14 2.13 480.528 44.63 16.07 2.35	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 130.837 45.50 8.88 1.20 29.32 191.745 40.00 10.56 1.37 28.89 319.937 42.40 13.33 1.84 28.50 403.250 39.66 15.14 2.13 28.79 480.528 44.63 16.07 2.35 28.92	MHz dBuV dB/m dB dB dBuV/m 130.837 45.50 8.88 1.20 29.32 26.26 191.745 40.00 10.56 1.37 28.89 23.04 319.937 42.40 13.33 1.84 28.50 29.07 403.250 39.66 15.14 2.13 28.79 28.14 480.528 44.63 16.07 2.35 28.92 34.13	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 130.837 45.50 8.88 1.20 29.32 26.26 43.50 191.745 40.00 10.56 1.37 28.89 23.04 43.50 319.937 42.40 13.33 1.84 28.50 29.07 46.00 403.250 39.66 15.14 2.13 28.79 28.14 46.00 480.528 44.63 16.07 2.35 28.92 34.13 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 130.837 45.50 8.88 1.20 29.32 26.26 43.50 -17.24 191.745 40.00 10.56 1.37 28.89 23.04 43.50 -20.46 319.937 42.40 13.33 1.84 28.50 29.07 46.00 -16.93 403.250 39.66 15.14 2.13 28.79 28.14 46.00 -17.86 480.528 44.63 16.07 2.35 28.92 34.13 46.00 -11.87

Above 1GHz

Test mode: 8	est mode: 802.11b			nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polar.
4824.00	(dBuV) 46.59	(dB/m) 31.54	(dB) 10.58	(dB) 40.22	46.56	74.00	(dB) -27.44	Vertical
4824.00	44.87	31.54	10.58	40.22	43.26	74.00	-30.74	Horizontal
Test mode: 8		01.04		nnel: Lowest	43.20	Remark: Ave		Tionzontai
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	37.97	31.54	10.58	40.22	35.26	54.00	-18.74	Vertical
4824.00	35.69	31.54	10.58	40.22	35.12	54.00	-18.88	Horizontal

Test mode: 80	Test mode: 802.11b			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.10	31.57	10.64	40.15	45.26	74.00	-28.74	Vertical	
4874.00	46.27	31.57	10.64	40.15	44.16	74.00	-29.84	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.63	31.57	10.64	40.15	35.26	54.00	-18.74	Vertical	
4874.00	37.85	31.57	10.64	40.15	33.26	54.00	-20.74	Horizontal	

Test mode: 80	02.11b		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	44.59	31.61	10.70	40.08	42.56	74.00	-31.44	Vertical	
4924.00	44.76	31.61	10.70	40.08	41.28	74.00	-32.72	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	36.63	31.61	10.70	40.08	36.45	54.00	-17.55	Vertical	
4924.00	35.62	31.61	10.70	40.08	35.12	54.00	-18.88	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.35	31.54	10.58	40.22	41.25	74.00	-32.75	Vertical
4824.00	45.02	31.54	10.58	40.22	43.26	74.00	-30.74	Horizontal
						Remark: Average		
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	rage	
Test mode: 80 Frequency (MHz)	02.11g Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 80	02.11g		Test chan	nel: Middle		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.58	31.57	10.64	40.15	45.75	74.00	-28.25	Vertical
4874.00	47.02	31.57	10.64	40.15	44.96	74.00	-29.04	Horizontal
Test mode: 80	12 11a		Test chan	nel: Middle		Remark: Average		
	<i>z</i> i ig						. age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	45.02	31.61	10.70	40.08	42.56	74.00	-31.44	Vertical
4924.00	44.85	31.61	10.70	40.08	41.25	74.00	-32.75	Horizontal
Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	35.62	31.61	10.70	40.08	33.56	54.00	-20.44	Vertical
4924.00	35.85	31.61	10.70	40.08	35.26	54.00	-18.74	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	02.11n(H20)		Test char	nnel: Lowest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.25	31.54	10.58	40.22	45.16	74.00	-28.84	Vertical
4824.00	45.63	31.54	10.58	40.22	42.55	74.00	-31.45	Horizontal
Test mode: 8	02.11n(H20)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	37.12	31.54	10.58	40.22	36.26	54.00	-17.74	Vertical
4824.00	36.63	31.54	10.58	40.22	33.58	54.00	-20.42	Horizontal

Test mode: 8	02.11n(H20)		Test char	nnel: Middle		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.25	31.57	10.64	40.15	44.58	74.00	-29.42	Vertical
4874.00	46.63	31.57	10.64	40.15	46.12	74.00	-27.88	Horizontal
Test mode: 8	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.68	31.57	10.64	40.15	35.26	54.00	-18.74	Vertical

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.36	31.61	10.70	40.08	45.75	74.00	-28.25	Vertical
4924.00	45.23	31.61	10.70	40.08	41.25	74.00	-32.75	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	37.52	31.61	10.70	40.08	35.62	54.00	-18.38	Vertical
4924.00	35.14	31.61	10.70	40.08	33.59	54.00	-20.41	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	45.85	31.55	10.61	40.19	45.75	74.00	-28.25	Vertical
4844.00	46.02	31.55	10.61	40.19	46.52	74.00	-27.48	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	35.96	31.55	10.61	40.19	36.45	54.00	-17.55	Vertical
4844.00	36.69	31.55	10.61	40.19	35.28	54.00	-18.72	Horizontal

Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.35	31.57	10.64	40.15	47.56	74.00	-26.44	Vertical
4874.00	47.12	31.57	10.64	40.15	45.15	74.00	-28.85	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.91	31.57	10.64	40.15	35.89	54.00	-18.11	Vertical
4874.00	37.85	31.57	10.64	40.15	33.65	54.00	-20.35	Horizontal

Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	46.35	31.59	10.67	40.10	47.85	74.00	-26.15	Vertical
4904.00	46.22	31.59	10.67	40.10	41.52	74.00	-32.48	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	36.69	31.59	10.67	40.10	35.64	54.00	-18.36	Vertical
4904.00	37.01	31.59	10.67	40.10	35.26	54.00	-18.74	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.