BUSINESS ANALYST CAREERS DATASET

Given: BusinessAnalyst.xlsx

Fields: Unnamed: 0, index, Job Title, Salary Estimate, Job Description, Rating, Company Name, Location, Headquarters, Size, Founded, Type of ownership, Industry, Sector, Revenue, Competitors, Easy Apply.

Unnamed	:)	ndex	Job Title	Salary Estimate	Job Description	Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership	Industry	
0)	0	Business Analyst - Clinical & Logistics Platform	56K- 102K (Glassdoor est.)	Company Overview\n\nAt Memorial Sloan Ketter	3.9	Memorial Sloan- Kettering\n3.9	New York, NY	New York, NY	10000+ employees	1884	Nonprofit Organization	Health Care Services & Hospitals	Healt
1	1	1	Business Analyst	56K- 102K (Glassdoor est.)	We are seeking for an energetic and collaborat	3.8	Paine Schwartz Partners\n3.8	New York, NY	New York, NY	1 to 50 employees	-1	Company - Private	Venture Capital & Private Equity	F
2	2	2	Data Analyst	56K- 102K (Glassdoor est.)	For more than a decade, Asembia has been worki	3.6	Asembia\n3.6	Florham Park, NJ	Florham Park, NJ	501 to 1000 employees	2004	Company - Private	Biotech & Pharmaceuticals	Bio Pharmace
3	3	3	Information Security Analyst, Incident Response	56K— 102K (Glassdoor est.)	Job Description Summary\nThe Information Secur	3.6	BD\n3.6	Franklin Lakes, NJ	Franklin Lakes, NJ	10000+ employees	1897	Company - Public	Health Care Products Manufacturing	Manufac
4	4	4	Analyst - FP&A Global Revenue	56K- 102K (Glassdoor est.)	Magnite is the world's largest independent sel	3.4	Rubicon Project\n3.4	New York, NY	Los Angeles, CA	201 to 500 employees	2007	Company - Public	Internet	Infori Techi

Fig. 1. First six records of the dataset

Dataset Cleaning:

I used Python to read the given dataset as a data frame into Jupyter Notebook for cleaning. There are 4092 records (rows) and 17 columns. In addition to two columns not needed (Unnamed: 0 and index), the dataset is misaligned from a particular index number to the end of the dataset. By means of two functions: is_aligned() and fix_misaligned(), this is corrected by shifting the dataset to the right.

```
import pandas as pd

def is_misaligned(row):
    # Check if 'Unnamed: 0' is not a number (it should be an index)
    unnamed_0 = row['Unnamed: 0']
    index_val = row['index']

if isinstance(unnamed_0, str) and not unnamed_0.isdigit():
    # Check if 'index' contains a salary pattern like '102K'
    if isinstance(index_val, str) and 'K' in index_val:
        return True
    return False

def fix_misaligned_row(row):
    if is_misaligned(row):
        shifted = [pd.NA] * 2 + row.tolist()[:-2] # shift right by 2
        return pd.Series(shifted, index=row.index)
    return row

df = df.apply(fix_misaligned_row, axis=1)
    df
```

Fig 2. Two functions to fix the misalignments in the dataset.

The sample records after fixing the misalignment.

df2 = df2.apply(fix_misaligned_row, axis=1) df2.head()															
Ur	nnamed: 0	inde	ex Jo	ob Title	Salary Estimate	Job Description	Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership	Industry	
0	0		O Cli	Business nalyst - inical & ogistics Platform	56K – 102K (Glassdoor est.)	Company Overview\n\nAt Memorial Sloan Ketter	3.9	Memorial Sloan- Kettering\n3.9	New York, NY	New York, NY	10000+ employees	1884	Nonprofit Organization	Health Care Services & Hospitals	Heal
1	1		1	Business Analyst	56K – 102K (Glassdoor est.)	We are seeking for an energetic and collaborat	3.8	Paine Schwartz Partners\n3.8	New York, NY	New York, NY	1 to 50 employees	-1	Company - Private	Venture Capital & Private Equity	F
2	2		2	Data Analyst	56K— 102K (Glassdoor est.)	For more than a decade, Asembia has been worki	3.6	Asembia\n3.6	Florham Park, NJ	Florham Park, NJ	501 to 1000 employees	2004	Company - Private	Biotech & Pharmaceuticals	Bio Pharmace
	3		3 A	rmation Security Analyst, ncident esponse	56K – 102K (Glassdoor est.)	Job Description Summary\nThe Information Secur	3.6	BD\n3.6	Franklin Lakes, NJ	Franklin Lakes, NJ	10000+ employees	1897	Company - Public	Health Care Products Manufacturing	Manufad
	4		4	nalyst - FP&A Global Revenue	56K- 102K (Glassdoor est.)	Magnite is the world's largest independent sel	3.4	Rubicon Project\n3.4	New York, NY	Los Angeles, CA	201 to 500 employees	2007	Company - Public	Internet	Infor Tech

Fig. 3. First six records after fixing this misalignment.

Then Unnamed:0 and index fields were dropped. Examining Rating closely revealed that there are 356 records have the value of -1. These records were removed because examining them showed that they had -1 too in other fields. Now our records remained 3736 with the index reset. We did not lose so much, and besides, these records were meaningless.

Duplicates were removed, no duplicates found. Next, the fields: Location, Headquarters, Type of ownership, Founded, Sector, Revenue, Competitors, and Size had -1, 'Unknown', 'Unknown / Non-Applicable' as values. These were replaced with NAN. But the field 'Easy Apply' had 1 and -1. I converted the -1 to 0, so that the field has 1 and 0 for Yes and No respectively. The field was the converted to int.

I added another field called Job_Category to categorize the Job Title into categories: Data Analyst, BI Analyst, Business Analyst, Marketing Analyst, Finance Analyst, Technical Analyst, Product Analyst, Operations Analyst, Research Analyst, ERP Analyst, other Analyst and Non-Analyst. Two more fields were added: salary_lower and salary_upper. These fields were based on the Salary_Estimate and would help in analysis. The following images show the dataset information and summary statistics of the numeric fields.

```
df2.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3736 entries, 0 to 3735
Data columns (total 18 columns):
                  Non-Null Count Dtype
 # Column
                          -----
    Job Title
                        3736 non-null object
 0
 1 Salary Estimate 3736 non-null object
 2 Job Description 3736 non-null object
 3 Rating
                         3736 non-null float64
3 Rating 3736 non-null float64
4 Company Name 3736 non-null object
5 Location 3736 non-null object
6 Headquarters 3726 non-null object
 7 Size 3690 non-null object
8 Founded 3007 non-null Int64
 9 Type of ownership 3704 non-null object
 10 Industry 3531 non-null object
11 Sector 3531 non-null object
12 Revenue
                        2909 non-null object
13 Competitors 1105 non-null object
14 Job_Category 3736 non-null object
15 salary_lower 3736 non-null int64
 16 salary_upper
                         3736 non-null int64
                          3736 non-null int32
 17 Easy Apply
dtypes: Int64(1), float64(1), int32(1), int64(2), object(13)
memory usage: 514.6+ KB
```

Fig. 4. The information about the dataset.

52]: df2.d	df2.describe()								
52]:	Rating	Founded	salary_lower	salary_upper	Easy Apply				
count	3736.000000	3007.0	3736.000000	3736.000000	3736.000000				
mean	3.760278	1975.044563	55122.323340	97911.937901	0.035064				
std	0.652571	48.86409	20165.029295	32364.796630	0.183967				
min	1.000000	1690.0	27000.000000	48000.000000	0.000000				
25%	3.400000	1966.0	41000.000000	78000.000000	0.000000				
50%	3.700000	1995.0	48000.000000	87000.000000	0.000000				
75%	4.100000	2004.0	63000.000000	111000.000000	0.000000				
max	5.000000	2020.0	124000.000000	226000.000000	1.000000				

Fig. 5. The summary statistics of the numeric fields.

The cleaned dataset was saved as 'updated_cleaned_business_analyst.xlsx'.

Analysis in R Studio:

Load the dataset

df <- read_excel('cleaned_business_analyst.xlsx')</pre>

This loads the dataset using the variable df

View the structure and data types

glimpse(df)

shows: Rows: 3,736, Columns: 18.

Summary(df)

Shows

> summary(df) Job Title Length:3736 Class :character Mode :character	Salary Estimate Length:3736 Class :character Mode :character	Job Descriptio Length:3736 Class :charact Mode :charact	Min. :1.00 er 1st Qu.:3.40	Company Name Length:3736 Class :character Mode :character	Location Length:3736 Class :character Mode :character	Headquarters Length:3736 Class :character Mode :character
Size Length:3736 Class :character Mode :character	Min. :1690 Lei 1st Qu.:1966 Cla	pe of ownership ngth:3736 ass :character de :character	Industry Length:3736 Class :character Mode :character	Sector Length:3736 Class :character Mode :character	Revenue Length:3736 Class :character Mode :character	Competitors Length:3736 Class :character Mode :character
Job_Category Length:3736 Class :character Mode :character	salary_lower Min. : 27000 M 1st Qu.: 41000 Median : 48000 Median : 55122 Mark Grand Qu.: 63000	salary_upper Min. : 48000 1st Qu.: 78000 Median : 87000 Mean : 97912 3rd Qu.:111000 Max. :226000	Easy Apply Min. :0.00000 1st Qu.:0.00000 Median :0.00000 Mean :0.03506 3rd Qu.:0.00000 Max. :1.00000			

Fig. 6. Summary statistics in R Studio

Fig. 6 gives information about the dataset and the summary statistics for the numeric fields. Rating, for example, shows that the minimum is 1 and maximum is 5, mean is 3.76, first quartile is 3.40, median is 3.70, and third quartile is 4.10.

colSums(is.na(df))

Fig. 7. Showing the missing values.

Fig. 7 shows the fields with missing values. Headquarters, 10 values missing, Size, 46 values, Founded, 729, and so forth.

Exploratory Data Analysis

One Variable

Count the number of Job Categories

> df %>%

+ count(Job_Category) %>%

+ filter(!is.na(`Job_Category`)) %>%

+ top_n(5, n) %>%

+ ggplot(aes(x = fct_reorder(`Job_Category`, n), y = n)) +

+ geom_col(fill = "steelblue") +

+ coord_flip() +

+ labs(

title = "Top 5 Job Titles",

+ x = "Job Title",

+ y = "Number of Jobs"

+)

Count occurrences of each title

Remove missing values

Show top 15 job titles by count

Bar plot

Flip axes for readability

Fig. 8. Top 5 Job Categories

On top is the Business Analyst, followed by Other Analyst, Technical Analyst, Data Analyst, and BI Analyst.

```
count(Industry) %>%  # Count jobs per industry
filter(!is.na(Industry)) %>%  # Remove missing values
top_n(5, n) %>%  # Select top 5 industries by count
ggplot(aes(x = fct_reorder(Industry, n), y = n)) +
geom_col(fill = "steelblue") +
coord_flip() +
labs(
title = "Top 5 Industries by Job Count",
x = "Industry",
y = "Number of Jobs"
```


Fig. 9. Top 5 industries in the Data Analyst dataset.

)

Fig. 9 shows top 5 industries. They are IT Services, Staffing & Outsourcing, Computer Hardware & Software, Consulting, and Health Care Services & Hospitals.

Top 5 locations for Data Analyst Jobs

```
df %>%
  count(Location) %>%
  filter(!is.na(Location)) %>%
  top_n(5, n) %>%
  ggplot(aes(x=fct_reorder(Location, n), y=n)) +
  geom_col(fill="steelblue") + coord_flip() +
  labs(
    title = "Top 5 Job Locations",
    x = "Locations",
    y = "Counts"
) +
```

theme_minimal()

Fig. 10. Top 5 Job Locations

The image above shows the top 5 cities for Data Analyst Jobs. Jacksonville, FL, tops, followed by San Diego, CA. In the fifth place is San Antonio, Tx.

```
Histogram of Rating
```

```
ggplot(df, aes(x = Rating)) +
  geom_histogram(binwidth = 0.5, fill = "skyblue", color = "black") +
  labs(title = "Histogram of Company Ratings", x = "Rating", y = "Frequency") +
  theme_minimal()
```


Fig. 11. Histogram of Ratings

Fig. 11 shows that Rating number 4 appears the most, followed 3, then 5. The least appeared Rating is 1.

Two-variables

```
Rating (numeric) vs Founded (numeric)

numeric_vars <- df %>%

select(Rating, Founded) %>%

na.omit()

cor_matrix <- cor(numeric_vars)

corrplot(cor_matrix, method = "color", type = "upper", tl.col = "black", addCoef.col = "red")
```


Fig. 12. Correlation between two numeric: Rating and Founded

The value of 0.21 is a weak positive linearity. This is not strong enough to suggest that there is a linear relationship, meaning that Rating increases with the year the business is founded. This is not the case.

```
# 4 Display Job Title, Rating, Location, Industry

# Display Job Title, Rating, Location, Industry

df_selected <- df %>%

select(`Job Title`, Rating, Location, Industry)

# View the first few rows

View(df_selected)
```


Fig. 13. Displaying the three selected fields

#5a. Top 20 Industries (must be unique values, no duplicates)

top_20_industries <- df %>%

filter(!is.na(Industry)) %>% # Industry is not NA

distinct() %>% # make it unique or distinct

count(Industry, sort = TRUE) %>%

slice_max(n, n = 20) # top 20

View(top_20_industries)

⟨ □ □ ⟩		
^	Industry	n [‡]
1	IT Services	644
2	Staffing & Outsourcing	509
3	Computer Hardware & Software	243
4	Consulting	233
5	Health Care Services & Hospitals	167
6	Insurance Carriers	163
7	Investment Carriers Asset Management	157
8	Enterprise Software & Network Solutions	123
9	Banks & Credit Unions	109
10	Internet	79
11	Accounting	78
12	Advertising & Marketing	76
13	Aerospace & Defense	72
14	Biotech & Pharmaceuticals	63
15	Federal Agencies	56
16	Colleges & Universities	53
17	Lending	41
10	Enorgy	25

Fig. 14. Top 20 Industries (unique and no duplicates)

```
# 5b. Top 20 Sectors (must be unique, no duplicates)
top_20_sectors <- df %>%
filter(!is.na(Sector)) %>% # Sector not NA
distinct() %>%
count(Sector, sort = TRUE) %>%
slice_max(n, n=20)
View(top_20_sectors)
```


5c. Top 20 Headquarters (must be unique, no duplicates)

Fig. 15. Top 20 Sectors

```
top_20_headquarters <- df %>%

filter(!is.na(Headquarters)) %>% # Headquarters not NA

distinct() %>%

count(Headquarters, sort = TRUE) %>% # descending
```

top 20

View(top_20_headquarters)

slice_max(n, n=20)

Fig. 16. Displaying top 20 headquarters

```
# 6a. Top 15 jobs based on Rating
The following shows the top 20 sectors
top_20_sectors <- df %>%
filter(!is.na(Sector)) %>% # Sector not NA
distinct() %>%
count(Sector, sort = TRUE) %>%
slice_max(n, n=20) %>%
View()
```

	🔊 🛭 🕆 Filter	
^	Job_Category	avg_rating
1	Business Analyst	3.85
2	Data Analyst	3.83
3	ERP Analyst	3.81
4	Technical Analyst	3.78
5	Non-Analyst	3.74
6	Research Analyst	3.74
7	Operations Analyst	3.67
8	Other Analyst	3.65
9	Finance Analyst	3.63
10	BI Analyst	3.62
11	Marketing Analyst	3.61
12	Product Analyst	3.54

Fig. 17. Displaying top 12 Job Titles

```
# 6b

top_15_jobs_consulting <- df %>%

filter(!is.na(`Job_Category`) & !is.na(Rating) & !is.na(Industry)) %>%

filter(Industry == 'Consulting') %>%

group_by(`Job_Category`, Industry) %>%

summarise(avg_rating = round(mean(Rating, na.rm = TRUE), 1), .groups='drop') %>%

ungroup() %>%

arrange(desc(avg_rating)) %>%

slice_head(n=15) %>%

View()
```

	🔊 🖓 Filter		
•	Job_Category	Industry [‡]	avg_rating [‡]
1	BI Analyst	Consulting	4.3
2	Technical Analyst	Consulting	4.0
3	Business Analyst	Consulting	3.9
4	Finance Analyst	Consulting	3.9
5	Non-Analyst	Consulting	3.9
6	Data Analyst	Consulting	3.8
7	Other Analyst	Consulting	3.8
8	Operations Analyst	Consulting	3.2
9	ERP Analyst	Consulting	1.0

Fig. 18. Displaying Top 12 Jobs based on Rating under consulting.

```
# 6c

bottom_15_jobs_rating <- df %>%

filter(!is.na(`Job_Category`) & !is.na(Rating)) %>%

group_by(`Job_Category`) %>%

summarise(avg_rating = round(mean(Rating, na.rm = TRUE), 1)) %>%

ungroup() %>%

arrange(avg_rating) %>%

slice_head(n=15) %>%

View()
```

	🖅 🛭 🍸 Filter	
•	Job_Category	avg_rating
1	Product Analyst	3.5
2	BI Analyst	3.6
3	Finance Analyst	3.6
4	Marketing Analyst	3.6
5	Non-Analyst	3.7
6	Operations Analyst	3.7
7	Other Analyst	3.7
8	Research Analyst	3.7
9	Business Analyst	3.8
10	Data Analyst	3.8
11	ERP Analyst	3.8
12	Technical Analyst	3.8

Fig. 19. Displaying top 12 Jobs based on Rating.

```
# 7a Top 10 Companies with rating greater than 3 and under industry â???Consultingâ???

top_consulting_companies <- df %>%

filter(Industry == "Consulting" & !is.na(`Company Name`) & !is.na(Rating) & Rating > 3)
%>%

group_by(`Company Name`) %>%

summarise(

avg_rating = round(mean(Rating, na.rm = TRUE), 1),

count = n()
) %>%

ungroup() %>%

arrange(desc(avg_rating)) %>%

slice_head(n = 10)
```

```
ggplot(top_consulting_companies, aes(x = fct_reorder(`Company Name`, avg_rating), y
= avg_rating)) +
geom_col(fill = "steelblue") +
coord_flip() +
labs(
    title = "Top 10 Consulting Companies (Rating > 3)",
    x = "Company Name",
    y = "Average Rating"
) +
theme_minimal()
```


Fig. 20. Top 10 companies under consulting with rating greater than 3.

```
# 7b Top 10 Companies with rating greater than 3 and under industry Energy top_consulting_companies_energy <- df %>% filter(Industry == "Energy" & !is.na(`Company Name`) & !is.na(Rating) & Rating > 3) %>% group_by(`Company Name`) %>%
```

```
summarise(
 avg_rating = round(mean(Rating, na.rm = TRUE), 1),
 count = n()
) %>%
ungroup() %>%
arrange(desc(avg_rating)) %>%
slice_head(n = 10)
ggplot(top_consulting_companies_energy, aes(x = fct_reorder(`Company Name`,
avg_rating), y = avg_rating)) +
geom_col(fill = "steelblue") +
coord_flip() +
labs(
 title = "Top 10 Consulting Companies (Rating > 3)",
 x = "Company Name",
 y = "Average Rating"
) +
theme_minimal()
```


Fig. 21. Top 10 companies with rating greater than 3

```
# 7c Top 10 Companies with rating greater than 3 and under industry Accounting top_consulting_companies_accounting <- df %>% filter(Industry == "Accounting" & !is.na(`Company Name`) & !is.na(Rating) & Rating > 3 ) %>% group_by(`Company Name`) %>% summarise( avg_rating = round(mean(Rating, na.rm = TRUE), 1), count = n() ) %>% ungroup() %>% arrange(desc(avg_rating)) %>% slice_head(n = 10) ggplot(top_consulting_companies_accounting, aes(x = fct_reorder(`Company Name`, avg_rating), y = avg_rating)) + geom_col(fill = "steelblue") +
```

```
coord_flip() +
labs(
  title = "Top 10 Consulting Companies (Rating > 3)",
  x = "Company Name",
  y = "Average Rating"
) +
theme_minimal()
```


Fig. 22. Top 15 jobs with rating greater than 3 and under accounting.

Fig. 22 shows top 10 companies with a rating of greater than 3 and under accounting. The First is UTC Associates Inc., having a rating of 4.7, the last is Connor Group, with a rating 4.0.

More summaries and plots.

Top 10 Job Locations

df %>%

```
filter(!is.na(Location)) %>%
count(Location) %>%
top_n(10, n) %>%
ggplot(aes(x=fct_reorder(Location, n), y=n)) +
geom_col(fill="steelblue") + coord_flip() +
labs(
    title = "Top 10 Job Locations",
    x = "Locations",
    y = "Number of Jobs"
) +
```

theme_minimal()

Fig. 23. Top 10 Job Locations.

The fig above (23) shows the top 10 job locations. In addition to showing the top 10 cities, I observed from the result that Texas has four of its cities in the top 10.

Top 10 Job Titles with highest average salary

df %>%

mutate(avg_salary = (salary_lower + salary_upper)/2) %>%

filter(!is.na(Job_Category) & !is.na(salary_lower) & !is.na(salary_upper) & !is.na(avg_salary)) %>%

group_by(Job_Category) %>%

summarise(avg_salary = round(mean(avg_salary, na.rm = TRUE))) %>%

ungroup() %>%

arrange(desc(avg_salary)) %>%

slice_head(n = 10) %>%

View()

Fig. 24. Top 10 Jobs with highest average salary

The figure above (fig. 24) highlights the top 10 jobs (Job Titles) with the highest average salary. Here we Business analyst on top, followed by Technical Analyst, then by BI Analyst, and so no. We can see the best-paying Job Titles on the average.

Top 10 industries based on Rating

df_clean <- df %>%

```
# Plot boxplot
ggplot(df_clean, aes(x = fct_lump(Industry, 10), y = Rating)) +
geom_boxplot(fill = "lightblue", outlier.color = "red") +
coord_flip() +
labs(title = "Rating Distribution by Industry (Top 10)",
    x = "Industry",
    y = "Rating") +
theme_minimal()
```


Fig. 25. Rating distribution by industry

Based on the above boxplots, IT Services industry has median more than 4. 50% of the ratings falls between 5 to 3.6. Internet has median around 3.8 and 50% of the ratings is 3.7 to 4.4, which is good. Then, Consulting and Computer Hardware & Software industries have a median of 3.8 and 50% of their ratings falls between 3.5 to 4.3.

```
# Company Size Vs. Average Salary
salary_based_onSize <- df %>%

mutate(avg_salary = (salary_lower + salary_upper)/2) %>%
filter(!is.na(Size) & !is.na(avg_salary)) %>%
group_by(Size) %>%
summarise(avg_salary = round(mean(avg_salary, na.rm = TRUE), 0)) %>%
arrange(desc(avg_salary)) %>%
ungroup()
```

ggplot(salary_based_onSize, aes(x=Size, y=avg_salary, fill=Size)) +
geom_col() +

labs(title="Average Salary vs. Company Size", x = "Size of Company", y = "Average Salary") +

theme_minimal()

Fig. 26. Company Size Vs. Average Salary

Fig. 26 shows that company sizes: 1 to 50 employees, 51 to 200 employees, and 201 to 500 employees pay the same and highest compared to the companies with higher sizes of employees. The conclusion is that the size of the company does not affect the average salary. Larger companies do not pay better.

```
# Top 10 Sector Using the Easy Apply

top_10_sectors_using_easyApply <- df %>%

filter(!is.na(Sector) & !is.na(`Easy Apply`)) %>%

filter(`Easy Apply` == 1) %>%

group_by(Sector) %>%

summarise(count = n()) %>%

arrange(desc(count)) %>%

slice_head(n = 10) %>%

Uiew()
```

•	Sector	count [‡]
1	Business Services	51
2	Information Technology	43
3	Manufacturing	7
4	Finance	4
5	Government	4
6	Health Care	4
7	Transportation & Logistics	4
8	Oil, Gas, Energy & Utilities	3
9	Insurance	2
10	Media	2

Fig. 27. Top 10 Sectors for Easy Apply

The above figure shows top 10 sectors in the dataset that have easy apply workflow. The charts for the above summaries.

```
ggplot(top_10_sectors_using_easyApply, aes(x=reorder(Sector, count), y = count)) +
  geom_col(fill='steelblue') +
  coord_flip() +
```

labs(title = "Top 10 Sectors With Easy Apply", x = "Sector", y = "Number of Easy Apply Jobs") +

theme_minimal()

Fig. 28. The column chart of the top 10 sectors using the Easy Apply

As the summaries, the first two are Business Services and Information Technology with 51 and 43 respectively. Then, Manufacturing comes third with 7. These sectors have made their application workflow easy.

```
# Top 10 companies with highest Job Listings top_10_companies_by_listings <- df %>% filter(!is.na(`Company Name`)) %>% group_by(`Company Name`) %>% summarise(count = n()) %>% arrange(desc(count)) %>% slice_head(n = 10) %>% ungroup() %>% View()
```

•	Company Name	count [‡]
1	Staffigo Technical Services, LLC 5.0	178
2	Kforce 4.1	37
3	Citi 3.7	30
4	Diverse Lynx 3.9	30
5	Solekai Systems Corp 4.2	30
6	Randstad 3.6	25
7	Apex Systems 3.8	21
8	Robert Half 3.5	21
9	Lorven Technologies Inc 4.0	20
10	MUFG 3.1	20

Fig. 29. Top 10 companies with highest Job Listings.

Fig. 29 shows the top 10 companies that have the highest number of job listings. The first is Staffigo Technical Services, LLC with 178 jobs, second place is Kforce with 37, followed by Citi, Diverse Lynx, Solekai Systems Corp that have 30 job listings each.

```
# The city with the highest number of job postings top_city_with_highest_jobs <- df %>% filter(!is.na(Location)) %>% group_by(Location) %>% summarise(number_of_jobs = n()) %>% arrange(desc(number_of_jobs)) %>% slice_head(n=1) %>% ungroup() %>% View()
```


Fig. 30. The city with the highest job listing.

The city with the highest job postings is Jacksonville, FL. It has 355 jobs posted.

```
# Proportion of jobs by type of ownership

df %>%

filter(!is.na(`Type of ownership`)) %>%

group_by(`Type of ownership`) %>%

summarise(number_of_jobs = n()) %>%

mutate(proportion = round(number_of_jobs/sum(number_of_jobs), 3)) %>%

arrange(desc(proportion)) %>%

Usew()
```

	₽ Filter		
_	Type of ownership	number_of_jobs	proportion [‡]
1	Company - Private	2167	0.585
2	Company - Public	1015	0.274
3	Subsidiary or Business Segment	184	0.050
4	Nonprofit Organization	120	0.032
5	Government	93	0.025
6	College / University	42	0.011
7	Hospital	26	0.007
8	Contract	24	0.006
9	Other Organization	13	0.004
10	Private Practice / Firm	8	0.002
11	School / School District	9	0.002
12	Self-employed	2	0.001
13	Franchise	1	0.000

Fig. 31. Proportion of jobs by type of ownership.

The above figure, fig. 31, shows the proportions of jobs for each type of ownership. Private owned companies account for 58% of the total jobs, followed by public owned companies that account for 27% of the jobs listed in the dataset. Others account for relatively insignificant amounts to the job postings.

Conclusions