LECTURE 2, PART III: CAUSAL INFERENCE

- ² Text references: Chapter 16 from *All of Statistics* by Larry Wasserman (on
- 3 Canvas)

Association versus Causation

- 6 There is much confusion about the difference between causation and asso-
- τ ciation. Roughly speaking, the statement "X causes Y" means that chang-
- $_*$ ing the value of X will change the distribution of Y. When X causes Y, X
- $_{\circ}$ and Y will be associated but the reverse is not, in general, true. Association
- does not necessarily imply causation.
- For example, there is a strong linear relationship between death rate due
- to breast cancer and fat intake. So,

DEATH BY CANCER =
$$\beta_0 + \beta_1 \text{FAT} + \epsilon$$
 (1)

- where $\beta_1 > 0$. Does that mean that FAT causes breast cancer? Consider
- two interpretations of (1).
- ASSOCIATION (or correlation). Fat intake and breast cancer are
- associated. Therefore, if I observe someone's fat intake, I can use
- equation (1) to predict their chance of dying from breast cancer.

- CAUSATION. Fat intake causes Breast cancer. Therefore, if I ob-
- serve someone's fat intake, I can use equation (1) to predict their
- chance of dying from breast cancer. Moreover, if I change some-
- one's fat intake by one unit, their risk of death from breast cancer
- s changes by β_1 .
- $_{6}$ If the data are from a **randomized study** (X is randomly assigned) then
- ⁷ the causal interpretation is correct. If the data are from an **observational**
- study, (X is not randomly assigned) then the association interpretation is
- s correct. To intuitively see why the causal interpretation is wrong in the
- observational study, consider the following example:
- Example. Suppose that people with high fat intake are the rich people.
- And suppose, for the sake of the example, that rich people smoke a lot.
- Further, suppose that smoking does cause cancer. Then it will be true that
- high fat intake predicts high cancer rate. But changing someone's fat intake
- may not change their cancer risk.

- How can we make these ideas precise? The answer is to use either di-
- ² rected acyclic graphs (DAG's) as in the figure above [see AOS Chapter 17
- or Shalizi Chapters 21-24 if interested] or to use counterfactuals. In this
- 4 course, we will discuss causation using the idea of counterfactual random
- variables which, as we shall see, relate naturally to regression analysis.

Counterfactual Model for Binary Treatments

- ⁷ [Reference: Sec 16.1 in *All of Statistics*]
- 1. Suppose that X is a **binary treatment variable** where X = 1 means "treated" and X = 0 means "not treated". Treatment might refer to a medication or something like smoking. An alternative to "treated/not treated" is "exposed/not exposed" but we shall use the former.
- 2. Let Y be some **outcome variable** such as presence or absence of disease.
- 3. To distinguish the statement "X is associated Y" from the statement "X causes Y" we need to enrich our probabilistic vocabulary. We introduce two new random variables $\{C(0), C(1)\}$, called **potential outcomes** with the following interpretation: C(0) is the outcome if the subject is not treated; that is if X=0; and C(1) is the outcome if the subject is treated; that is, if X=1. Hence, the response Y is given by

21

More succinctly, we write	More	succinctly,	we	write
---------------------------	------	-------------	----	-------

$$Y = C(X)$$

- which is called the consistency relationship. You can think of the poten-
- $_{2}$ tial outcomes $\{C(0),C(1)\}$ as hidden variables that contain all the relevant
- information about the subject.
- ⁴ To be clear: Suppose that n subjects receive binary treatments $X_1,, X_n$
- 5 and that their respective potential outcomes are given by $\{C_i(0), C_i(1)\}$
- for j = 1, ..., n. What are the respective *observed* outcomes? What are the
- 7 unobserved variables?

9

10

12

13

1	Toy Example 1. (Denote the counterfactuals by *; these are outcomes you
2	would have had if, counter to the fact, you had been treated or not treated.)
3	
	Now define the average causal effect or average treatment effect , θ :
	Define the association , α :

We can estimate the association α from data $(X_1, Y_1), \ldots, (X_n, Y_n)$ are	nd by
LLN, $\widehat{\alpha}$ is a consistent estimator of α :	
Note: In concret accordation is not concertion that is 0 / a	
Note: In general, association is not causation , that is, $\theta \neq \alpha$.	
Toy Example 2. Suppose that we want to investigate the causal rela	ation-
ship between treatment X and health Y , but we have two subpo	
tions: population A (wealthy subjects) and population B (poor). Onl	-
wealthy can afford treatment and they tend to be (or to simplify, is alw	
healthy for other reasons, and the poor cannot afford treatment and	they
tend to be (or, to simplify, is always) unhealthy. Then an observat	ional
prospective study would look something like this:	

	n (Part III: Causai Inference)
•	andomized study that may look like this:
	, ,
_	
	, ,
	, ,
	, ,
_	, ,
	, ,
	, ,
	, ,
	, ,
	, ,
	, ,
	, ,
	, ,
	, ,
-	, ,
	, ,

1	Bottomline: [See AOS Theorem 16.1 and 16.3]
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

Beyond Binary Treatments

- [Reference: Sec 16.2 in All of Statistics]
- Now generalize beyond binary treatments to a continuous random vari-
- able X. Let Y be the outcome variable. In the binary treatment case with
- $x \in \{0,1\}$, we only had two potential outcomes $\{C(0),C(1)\}$ for each sub-
- ject. For continuous treatment variables, we will introduce a counterfac-
- tual function C(x), where C(x) is the outcome a subject would have if he
- received dose $x \in \mathbb{R}$.

Similar to before, the observed response is given by the consistency rela-

FIGURE 16.1. A counterfactual function C(x). The outcome Y is the value of the curve C(x) evaluated at the observed dose X.

Figure 1: From "All of Statistics" by Wasserman

tion

$$Y \equiv C(X)$$
.

- $_{i}$ To be clear: Suppose that there are n subjects whose observations will be
- denoted $(X_1, Y_1), ..., (X_n, Y_n)$. For each subject j, there is a counterfactual
- function $C_j(x)$ that gives, for each x, the potential observation (possible
- value of Y_j) that will be observed if $X_j = x$. Each subject has a $C_j(x)$ func-
- 6 tion of the sort plotted in Figure 1. They can be all different shapes. Dif-
- ⁷ ferent subjects functions can cross each other. Some might be decreasing
- while others are not monotone at all.

- In the setting with continuous treatment variables, the tables that appeared
- in the Toy Examples are much harder to display because (i) each $\{C_j(0),C_j(1)\}$
- pair (one for each row of the table) needs to be replaced by an entire func-
- tion $C_j(x)$, and (ii) all of the values of $C_j(x)$ are counterfactual except for
- 5 the one that corresponds to that subjects value of X.
- $_{6}$ Since there are more than two "treatments" with a continuous X, there is
- no natural analog to the causal effect $\theta = \mathbb{E}[C(1)] \mathbb{E}[C(0)]$. Instead, we
- * define the **causal regression function** $\theta(x)$ as

10 _____

- Similarly, we replace the association $\alpha = \mathbb{E}[Y|X=1] \mathbb{E}[Y|X=1]$ with
- the **regression function** r(x), where

14

Take a close look at Fig 16.2 in AOS p.258.

FIGURE 16.2. The top plot shows the counterfactual function C(x) for four subjects. The dots represent their X values. Since $C_i(x)$ is constant over x for all i, there is no causal effect. Changing the dose will not change anyone's outcome. The lower plot shows the causal regression function $\theta(x) = (C_1(x) + C_2(x) + C_3(x) + C_4(x))/4$. The four dots represent the observed data points $Y_1 = C_1(X_1)$, $Y_2 = C_2(X_2)$, $Y_3 = C_3(X_3)$, $Y_4 = C_4(X_4)$. The dotted line represents the regression $r(x) = \mathbb{E}(Y|X=x)$. There is no causal effect since $C_i(x)$ is constant for all i. But there is an association since the regression curve r(x) is not constant.

Figure 2: From "All of Statistics" by Wasserman

- Important result [AOS Theorem 16.4]: In general, $\theta(x) \neq r(x)$. However,
- when X is randomly assigned, $\theta(x) = r(x)$. Can you show this?
- Follow-up question: So what do we do if we have an observational study?
- $_{4}$ How do we attempt to study the causal effect of one variable X on another
- ₅ variable *Y*?

Observational Studies and Confounding

2	[Reference: Sec 16.3 in All of Statistics]	
3	Key: Adjust for confounding bias by measuring so-called confounding vari-	
4	ables , or variables that depend on both X and Y . Suppose Z is the entire	
5	collection of confounding variables such that	
8		
o		
7		
8	Roughly speaking, the general idea (in matching by Z as well as adjusting	
	for confounding by regression) is to:	
0	1. Partition the population into groups that are (approximately) homoge-	
1	neous relative to ${\cal Z}$	
2		
•		
4		
5	2. Assess the effect of <i>X</i> on <i>Y</i> in each homogeneous group	
6 7		
B		
9	3. Average the results over Z	
0		
2		

1	Toy	Exampl	le 2	revi	isited	
---	-----	--------	------	------	--------	--

2	Note that within groups of Z , the choice of treatment X does not depend
3	on type, as represented by the counterfactual functions $\{C(x):x\in\mathbb{R}\}$. Ir
4	other words, [AOS Eq.16.6]
5	
6	
7	
8	
9	The way we adjust for confounders in regression is to regress Y on X and Z
0	(where Z is the collection of confounding variables). More formally, define
1	the conditional regression function $r(x, z)$:

	Lecture 2: The Truth about Regression (Part III: Causai Inference)
3	
4	
28	
29	
30	