CREDIT DEFAULT RISK ASSESSMENT

NATE TALAMPAS

WHAT IS CREDIT DEFAULT RISK?

- Credit default risk is the risk a lender takes that a borrower will not make the required payments on a debt obligation.
- Earlier credit and risk management analysis would be conducted by analyzing the borrower's credentials and capabilities, which was more prone to error.
- Machine learning algorithms are more efficient in performing credit risk assessments with better precision and at faster speeds.

RESEARCH QUESTIONS

What variables are most significant in predicting credit default risk?

How do different machine learning algorithms perform in predicting credit risk?

DETERMINING SIGNIFICANT PREDICTORS

- To determine which predictors are significant, we perform a logistic regression. All regression coefficients with a
 p-value less than 0.05 will be statistically significant.
- Significant predictors include loan status, annual income, home ownership, employment length, loan intent, loan
 grade, loan amount, interest rate, and percent income.

```
coefficients:
                            Estimate Std. Error z value Pr(>|z|)
                           -4.121e+00 1.991e-01 -20.698
(Intercept)
person_age
person_income
person_home_ownershipOTHER 4.285e-01 3.011e-01
person_home_ownershipOWN
                         -1.790e+00 1.128e-01 -15.865
person_home_ownershipRENT 8.282e-01 4.291e-02 19.300
person_emp_length
loan intentEDUCATION
                           -8.728e-01 6.106e-02 -14.295
loan_intentHOMEIMPROVEMENT 5.032e-02 6.779e-02
loan_intentMEDICAL
loan_intentPER50NAL
loan_gradeB
                           1.095e-01 8.277e-02
loan_gradeC
loan_gradeD
loan_gradeE
loan_gradeF
loan_gradeG
loan amnt
loan_int_rate
loan_percent_income
                            1.316e+01 2.511e-01 52.396
cb_person_default_on_fileY 2.152e-02 5.312e-02
cb_person_cred_hist_length 1.140e-02 9.449e-03
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

SUMMARY OF THE DATA SET

- The potential predictors to predict the outcome of whether a person will default include age, annual income, home ownership, employment length (in years), loan intent, loan grade, loan amount, interest rate, percent income, historical default, and credit history length.
- The dataset contains 32,581 observations and 12 variables.

SUMMARY STATISTICS OF DATASET

person_age Min. :20.00	person_income Min. : 4000	person_home_ownership Length:28632	p person_emp_length Min. : 0.00	n loan_intent Length:28632	loan_grade Length:28632	loan_amnt Min. : 500	loan_int_rate Min. : 5.42
1st Ou.:23.00		Class :character	1st Qu.: 2.00	Class :character	Class :character	1st Qu.: 5000	1st Ou.: 7.90
Median :26.00	Median : 55900	Mode :character	Median : 4.00	Mode :character	Mode :character	Median: 8000	Median :10.99
Mean :27.71	Mean : 66427		Mean : 4.78			Mean : 9655	Mean :11.04
3rd Qu.:30.00	3rd Qu.: 80000		3rd Qu.: 7.00			3rd Qu.:12500	3rd Qu.:13.48
Max. :84.00	Max. :2039784		Max. :41.00			Max. :35000	Max. :23.22
loan_status	loan_percent_inc	ome cb_person_default	_on_file cb_person_	_cred_hist_length			
Min. :0.0000	Min. :0.0000	Length:28632	Min. : 2	2.000			
1st Qu.:0.0000	1st Qu.:0.0900	Class :character	1st Qu.: 3	3.000			
Median :0.0000	Median :0.1500	Mode :character	Median : 4	1.000			
Mean :0.2166	Mean :0.1695		Mean : 5	5.794			
3rd Qu.:0.0000	3rd Qu.:0.2300		3rd Qu.: 8	3.000			
Max. :1.0000	Max. :0.8300		Max. :30	0.000			

HOW WE BUILD MODELS

- Determine if data is imbalanced
- Convert character values into factor data type
- Split data into training and test sets

```
# converting categorical values into factor values
factor_names = c("person_home_ownership", "loan_intent", "loan_grade")
df1 = df1 |>
mutate_at(factor_names, factor)

# checking if data is balanced
table(df1$loan_status)/nrow(df1)

# The data is unbalanced. 78.34% of individuals did not default.
```

```
# splitting into training set and test set
set.seed(123)
n = nrow(df1)
prop = 0.5
train_id = sample(1:n, size = round(n*prop), replace = FALSE)
test_id = (1:n)[-which(1:n %in% train_id)]
train_set = df1[train_id, ]
test_set = df1[test_id, ]
```

LOGISTIC REGRESSION

We fit a logistic regression.

```
logi_reg = glm(loan_status ~ ., family = "binomial", data = train_set)
summary(logi_reg)
logi_pred = ifelse(predict(logi_reg, data = test_set, type = "response") >
0.5, 1, 0)
tb_log = table(predict_status = logi_pred,
                true_status = test_set$loan_status)
tb_log
logi_acc = ((9453 + 500) / (9453 + 2586 + 1779 + 500))*100
cat("Accuracy:", logi_acc)
library(ROCR)
logi_pred = predict(logi_reg, data = test_set)
pred = prediction(logi_pred, test_set$loan_status)
perf = performance(pred, "tpr", "fpr")
plot(perf, main = "ROC Curve")
abline(0, 1, lty=3)
auc = as.numeric(performance(pred, "auc")@y.values)
cat("\nAUC:", auc)
```

LOGISTIC REGRESSION

true_status predict_status 0 1 0 9492 2512 1 1766 546 Accuracy: 69.5139

Accuracy is 0.6951

AUC value is 0.5030

AUC: 0.5030266

LINEAR DISCRIMINANT ANALYSIS

We fit a LDA model using the training set.

LINEAR DISCRIMINANT ANALYSIS

true_status predict_status 0 1 0 10609 1257 1 649 1801 Accuracy: 86.68623

Accuracy is 0.8669

AUC value is 0.8669


```
```{r}
auc = as.numeric(performance(pred, "auc")@y.values)
auc
[1] 0.8669293
```

#### RIDGE REGRESSION

```
library(glmnet)
xmat = model.matrix(loan_status ~ ., df1)[,-1]
y = df1$loan_status
for (i in 1:ncol(xmat)){
 xmat[,i] = scale(xmat[,i], center=FALSE)
mod.ridge = glmnet(xmat, y, alpha=0, family="binomial")
plot(mod.ridge, xvar="lambda", label=TRUE)
coefs.ridge = coef(mod.ridge)
set.seed(123)
cv.out = cv.glmnet(xmat, y, alpha=0, nfolds=5, family="binomial")
best.lambda = cv.out$lambda.min
best.lambda
test.std = model.matrix(loan_status ~ ., test_set)[,-1]
for (i in 1:ncol(test.std)){
 test.std[,i] = scale(test.std[,i], center=FALSE)
best.ridge = qlmnet(xmat, y, alpha=0, lambda=best.lambda,
family="binomial")
```

```
computing accuracy
ridge.pred = predict(best.ridge, newx = test.std, type="response")
ridge.pred = ifelse(ridge.pred > 0.5, "Yes", "No")
cm.ridge = table(pred=ridge.pred, true=test_set$loan_status)
cm.ridge

ACC = (cm.ridge[1, 1] + cm.ridge[2, 2])/sum(cm.ridge)
cat("Accuracy:",ACC)

computing AUC
ridge.prob = predict(best.ridge, newx=test.std, type="response")
ridge.pred = prediction(ridge.prob, test_set$loan_status)
ridge.perf = performance(ridge.pred, "tpr", "fpr")
plot(ridge.perf, main="ROC Curve")
abline(0,1,lty=3)

ridge.auc=as.numeric(performance(ridge.pred, "auc")@y.values)
cat("\nAUC:",ridge.auc)
```

true pred 0 1 No 10821 1480 Yes 437 1578 Accuracy: 0.8660939 AUC: 0.868914



RIDGE REGRESSION



Accuracy is 0.8661



AUC value is 0.8689

### **CLASSIFICATION TREE**

```
library(tree)
train_set$loan_status <- as.factor(train_set$loan_status)</pre>
mod.tree <- tree(loan_status ~ ., data = train_set)</pre>
cv.out = cv.tree(mod.tree)
cv.out$size[which.min(cv.out$dev)]
cv. out
plot(mod.tree)
text(mod.tree, pretty=0, cex=0.5)
tree.pred = predict(mod.tree, test_set, type="class")
cm.tree = table(pred = tree.pred, true=test_set$loan_status)
cm.tree
tree_acc = (cm.tree[1,1] + cm.tree[2, 2])/sum(cm.tree)
cat("Accuracy:", tree_acc)
tree.pred = prediction(as.numeric(tree.pred),
as.numeric(test_set$loan_status))
tree.perf = performance(tree.pred, "tpr", "fpr")
plot(tree.perf, main="ROC Curve")
abline(0,1,lty=3)
tree.auc = as.numeric(performance(tree.pred, "auc")@y.values)
cat("\nAUC:",tree.auc)
```

```
> cv.out$size[which.min(cv.out$dev)]
[1] 9
```

## CLASSIFICATION TREE

- You are considered not a risk if:
  - Your loan is more than 30.5% of your annual income, and you either mortgage or own a house
  - Your loan has a grade of A, B, or C, with the intent on the graph, and have been employed for more than 2.5 years
- You are considered a risk if:
  - Your income is less than 19900 and your loan is more than 15.5% of your income
  - You have been employed for less than 2.5 years and you rent



# 



# CLASSIFICATION TREE



Accuracy is 0.9218



AUC value is 0.8239

#### SUMMARY OF MAIN RESULTS

	Logistic Regression	Linear Discriminant Analysis	Ridge Regression	Classification Tree
Accuracy	69.51%	86.69%	86.61%	92.18%
ROC/AUC	0.5030	0.8669	0.8689	0.8239

While Classification Tree has the best accuracy, the Ridge Regression has the highest AUC value. If the lender has low-risk clients or low loan amounts, use Classification Tree. If the lender has high-risk clients or high loan amounts, then use Ridge Regression.

# CHALLENGES AND POSSIBLE FUTURE WORK



We could not fit a K-nearest-neighbor algorithm because there were too many ties.



For future work, we could use unsupervised learning methods like neural networks.