SYSTÈMES D'INFORMATION DÉCISIONNELS

ANALYSE MULTICRITERE

Département d'informatique

Module: Systèmes d'information décisionnels

Chargé du module: Mokeddem, S

Email: sidahmed.mokadem@univ-mosta.dz

Année universitaire: 2017/2018

L'art d'aider (assister) les decideurs à prendre de bonnes decisions

- Plusieurs possibilités pour decider
 - Exemple:
 - Quelle specialité de doctorat je dois choisir?
 - Probleme classique: Traveller Salesman Problem
 - Optimisation combinatoire:
 - Trouver les meilleurs solutions
 - Dans un espace de solution fini
 - Sans trouver toute les solutions

L'art d'aider (assister) les decideurs à prendre de bonnes decisions

- Plusieurs possibilités pour decider
 - Exemple:
 - Quelle specialité de doctorat je dois choisir?
 - Probleme classique: Traveller Salesman Problem
 - Optimisation combinatoire:
 - Trouver les meilleurs solutions
 - Dans un espace de solution fini
 - Sans trouver toute les solutions

- Plusieurs décideurs!
- Exemple:

- Mise en commun de la meilleure solution
- Connaitre les préférences de chaque décideur
- Parfois la solution n'existe pas (pas de consensus!)

- Le processus décisionnels est un processus non trivial
 - Plusieurs possibilités pour décider
 - Plusieurs décideurs
 - Plusieurs critères
- Exemple:
 - Est ce que je dois voir un mauvais film avec mon acteur préféré ou bien un bon film sans lui
 - multicriteria decision aiding

- Plusieurs possibilités: optimisation combinatoire
- Plusieurs décideurs: Théorie du choix social
 - Préférence individuelle > Préférence globale
- Plusieurs critères: Aide à la décision multicritère
 - Préférence sur un critère >Préférence sur une alternative

- un **agent décisionnel** se trouve face a un problème de décision : choix d'une alternative, classement de plusieurs alternatives par ordre de préférence, rangement des alternatives dans des catégories prédéfinies...
- les alternatives sont décrites par plusieurs attributs.
- un critère est un attribut muni d'une relation de préférence.
- les critères ne sont pas réductibles a un seul et sont potentiellement conflictuels

attribut	VTT	vélo de course
vitesse	20 km/h	35 km/h
robustesse	Très bonne	Moyenne
prix	500e	1000e

21/10/2017

- un **agent décisionnel** se trouve face a un problème de décision : choix d'une alternative, classement de plusieurs alternatives par ordre de préférence, rangement des alternatives dans des catégories prédéfinies...
- les alternatives sont décrites par plusieurs attributs.
- un critère est un attribut muni d'une relation de préférence.
- les critères ne sont pas réductibles a un seul et sont potentiellement conflictuels

attribut	VTT	vélo de course
vitesse	20 km/h	35 km/h
robustesse	Très bonne	Moyenne
prix	500e	1000e

Formalisme des données:

un ensemble $\mathcal{X} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_n$ d'alternatives une représentation des préférences sur chacun des critères $i \in N$ (fonction d'utilité, relation de préférence $\succsim_i \ldots$) une représentation de l'importance des coalitions de critères (coefficients, mesures non additives, relations d'importance)

Formalisme des traitements :

une règle de décision utilisant les informations sur les critères et sur les coalitions pour discriminer les alternatives possibles

$$\begin{cases} x = (x_1, \dots, x_n) \\ y = (y_1, \dots, y_n) \end{cases} \Rightarrow (x \succsim y) \text{ ou } (y \succsim x)$$

- La dominance de Pareto
- La somme pondérée
- Le vote

La dominance de Pareto

Une alternative est préférée à une autre si elle est considérée comme meilleure sur tous les critères.

$$x \succsim y \iff [\forall i \in \mathbb{N}, x_i \succsim_i y_i]$$

critère	Vélo A	Vélo B	critère	Vélo A	Vélo B
vitesse max	20 km/h	35 km/h	vitesse	20 km/h	35 km/h
robustesse	bonne	très bonne	robustesse	mauvaise	très bonne
prix	1000e	500e	prix	999e	1000e

La somme pondérée

	g1	g2	g3	g4	g5	V
а	100	100	100	100	55	91
b	85	85	85	85	100	88
	1/5	1/5	1/5	1/5	1/5	

	g1	g2	V
а	100	0	50
b	0	100	50
С	50	50	50
d	50	50	50
	1/2	1/2	

Vote

Une alternative est préférée à une autre si elle est considérée comme meilleure sur une majorité de critères.

$$x \succsim y \iff |\{i \in \mathbb{N}, \ x_i \succsim_i y_i\}| \ge |\{i \in \mathbb{N}, \ y_i \succsim_i x_i\}|$$

$$\frac{\text{critère}}{\text{vitesse}} \frac{\text{V\'elo A}}{35 \text{km/h}} \frac{\text{20 km/h}}{\text{20 km/h}}$$

Critere	V CIO A	V CIO D
vitesse	35km/h	20km/h
robustesse	bonne	très bonne
prix	1000e	500e

$$\begin{cases}
\{i \in N, B_i \succsim_i A_i\} = \{\text{robustesse, prix}\} \\
\{i \in N, A_i \succsim_i B_i\} = \{\text{vitesse}\}
\end{cases} \Rightarrow B \succ A$$

\boldsymbol{x}	c_1	c_1	c_1	c_1
a	9	10	10	11
\boldsymbol{b}	8	γ	6	19
c	12	13	14	1
d	3	2	18	17

Calculer les valeurs obtenues par agrégation avec les fonctions f suivantes :

- 1. minimum
- 2. maximum
- 3. Moyenne arithmétique
- 4. Moyenne quadratique
- 5. Moyenne harmonique

- la décision multicritère est un problème délicat. On parle d'ailleurs plus volontiers « d'aide multicritère a la décision » pour montrer que la décision finale appartient a l'humain.
- toutes les méthodes ont des avantages et des inconvénients : il n'y a pas une « meilleure » méthode
- les méthodes apparemment naturelles possèdent toutes de fort biais structurels

- problématique du choix : on doit choisir la ou les meilleures alternatives
- problématique du classement : on doit classer toutes les alternatives de la meilleure à la moins bonne
- problématique du tri : on doit repartir les alternatives dans des catégories préexistantes (ordonnées ou non)

- l'approche quantitative « agréger puis comparer » (critère unique de synthèse)
- l'approche qualitative « comparer puis agréger » (surclassement de synthèse)

Problématique de Choix (Alpha)

Problématique de Rangement (Gamma)

AMC: Concepts Fondamentaux

Action

La représentation d'une éventuelle contribution à la décision globale;

kactions apparti	ennent a un 	ensemb	le denote p	ar A.
finition Get Ares	\mathbf{g}_1	\mathbf{g}_2	g _j	\mathbf{g}_{m}
Aftension: A	= {a1,,an}			
Ę Ŋċĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	on : A₀oous-	e nକୃକୃ କ୍ଷାଧ	$le. g_{j}(R_{0})$	0.92
Action a ₁	1.00	0.45	$g_{j}(a_{1})$	0.91
e expression qua	ilitative ou q ı	uantitat i	ve permett	ant
			•• ••	
Action a _i			$g_j(a_i)$	
	••		•• •• ••	
				, and the second
	finition de Ares Are Rension: A Are Rension: A Are Rension a Action a e expression qua examiner les action	finition de Ares Are Rension: $A = \{a1,,an\}$ Action a_1 e expression qualitative ou qualitative a_1 Action a_1 Action a_1 Action a_1 Action a_1 Action a_1 Action a_1	finition de Ares g_1 g_2 Are Rension: $A = \{a1,,an\}$ An compréhension: A_0 g_0 g_0 Action a_1 g_0 g_0 Action a_1 g_0 g_0 Action g_0	Action a_1 expression a_1 a_1 a_2 a_3 a_4 a_5

Critère

Critères	Nuisances	Bruit	g _i	Climat
Actions			,	
Action a0	1.00	0.68	$g_{j}(a_{0})$	0.92
A -4:1	1.00	0.45	- (-)	0.01
Action a1	1.00	0.45	$\ldots g_{j}(a_{1}) \ldots$	0.91
••	••		•• ••	
Action a _i			$g_{j}(a_{i})$	
••	••			
Action a _m	0.64	0.81	$g_j(a_m)$	0.78

Critères	Échelle	Facteurs associés
Nuisances	[0,1]	Pollutions Atmosphériques, Odeurs.
Bruit	[0,1]	Autoroutes routes, Chemins de fer
Impacts	{0,,6}	Eaux souterraines, Plan Sectoriel: sites et contraintes naturelles, paysages à protéger, Forêts.
Géotechnique et risques naturels	{0,,6}	Glissements de terrain.
Équipements	[0,2244]	Distance aux équipements : gaz, électricité, eaux, routes de desserte.
Accessibilité	[0,15]	Durée moyenne des trajets entre le domicile et le lieu de travail
Climat	[0,1]	Ensoleillement, brouillard, température.

- Exhaustivité : il s'agit de ne pas oublier un critère. Le test d'exhaustivité proposé par B. Roy et D. Bouyssou est très simple : quand les conséquences de deux actions sont identiques pour l'ensemble des critères en présence, il doit exister une relation d'indifférence entre ces deux actions.
- Cohérence: il doit y avoir une cohérence entre les **préférences locales** de chaque critère et les **préférences globales**. Ie: si une action a est égale à une action b pour tous les critères sauf un où elle lui est supérieure, ceci signifie que l'action a est globalement supérieure à l'action b.
- Indépendance : il ne doit pas y avoir une redondance entre les critères. Leur nombre doit être tel que la suppression d'un des critères ne permet plus de satisfaire les deux conditions précédentes.

- Considérons deux actions potentielles a et b ainsi que leurs performances respectives sur les *n* critères considérés.
- Plus souvent, a sera meilleure que b pour certains critères, et b meilleure que a pour d'autres.
- Dans des cas pareils, en comparant a et b, sur quelle base pouvions-nous trouver un jugement compréhensif?
 - Ie: prendre en compte, d'une manière compréhensive, les *n* performances de a et les *n* performances de b.
- Ce problème s'appelle habituellement : le *problème d'agrégation*.

- Agrégation complète transitive (approche du critère unique de synthèse évacuant toute incomparabilité)
- Les principales méthodes sont :
 - produit de ratios pondérés ,
 - Goal-Programming,
 - Maut : théorie de l'utilité multi-attribut,
 - Uta: utilités additives, Ahp: analytic hierarchy process,
 - analyse coûts-bénéfices,

- Agrégation partielle (approche du surclassement de synthèse acceptant l'incomparabilité)
- Principales méthodes:
 - Electre,
 - Promethee

- Agrégation locale et itérative (approche du jugement local interactif avec itérations essai-erreur)
- Principales méthodes:
 - Stem (Pop),
 - Uta interactive,
 - Prefalc

- Les méthodes ELECTRE considèrent les poids comme une mesure de l'importance de chaque critère pour le décideur.
- Ensuite, les poids est utilisée dans le but de construire des indices (ou des coefficients) de **concordance** et **discordance**.

Variable	Symbole	Signification
Action potentielle	a _i	La représentation d'une éventuelle contribution à la décision globale. L'ensemble des actions comprend <i>n</i> actions (de a ₁ à a _n)
Critère	c _j	Une expression qualitative ou quantitative permettant d'examiner les actions L'ensemble des critères comprend <i>m</i> critères (de c ₁ à c _m)
Performance	$g_j(a_i)$	La performance ou l'évaluation de l'action a _i pour un critère c _j donné
Relation de Surclassement S	$\mathbf{a_i} S \mathbf{a_k}$	Une action a_i surclasse une action a_k si elle est au moins aussi bonne que a_k relativement à une majorité de critères, sans être trop nettement plus mauvaise que a_k relativement aux autre critères
Poids	$\mathbf{P_{j}}$	Qualifie l'importance relative d'un critère c _j donné vis à vis des autres critères

Seuil de Préférence	$\mathbf{Sp_{j}}$	Il s'agit du seuil à partir duquel la différence entre les deux actions est perceptible et fait préférer l'une à l'autre
Indice de Concordance	$c_{j}(a_{i}, a_{k})$	Qualifie le degré de crédibilité de la relation « a _i surclasse a _k »
Indice de Discordance	$\mathbf{d_j}(\mathbf{a_i}, \mathbf{a_k})$	Indique pour les critères où a _i P a _k n'est pas vérifié, si le non respect de l'hypothèse de surclassement a _i S a _k n'est pas trop important

Construction de la matrice de concordance

	a_1	a_2	a_3	a_4	a_5
a_1	_	c ₁₂	c ₁₃	c ₁₄	c ₁₅
a_2	c ₂₁	-	c ₂₃	c ₂₄	c ₂₅
a_3	c ₃₁	c ₃₂	_	C ₃₄	c ₃₅
a_4	C ₄₁	C ₄₂	c ₄₃	_	C ₄₅
a_5	c ₅₁	C ₅₂	c ₅₃	c ₅₄	_

Indice de concordance

$$c_{lk} = \frac{\sum_{j: a_l S_j a_k} w_j}{\sum_j w_j}$$

Construction de la matrice de discordance

	a_1	a_2	a_3	a_4	a_5
a_1	_	d_{12}	d_{13}	d_{14}	d_{15}
a_2	d_{21}	ı	d_{23}	d_{24}	d_{25}
a_3	d_{31}	d_{32}	_	d_{34}	d_{35}
a_4	d_{41}	d_{42}	d_{43}	_	d_{45}
a_5	d_{51}	d_{52}	d_{53}	d_{54}	_

Indice de discordance

$$d_{lk} = \begin{cases} 0 \text{ si } a_{lj} \ge a_{kj} \ \forall j \\ \frac{\text{Max}(a_{kj} - a_{lj})}{\delta} \end{cases}$$
$$\delta = \max \left(\max(a_{.j}) - \min(a_{.j}) \right)$$

Construction de la matrice de préférence

	a_1	a_2	a_3	a_4	a_5
a_1	_	S ₁₂	S ₁₃	S ₁₄	S ₁₅
a_2	s ₂₁	1	S ₂₃	S ₂₄	s ₂₅
a_3	s ₃₁	S ₃₂	_	S ₃₄	S ₃₅
a_4	S ₄₁	S ₄₂	S ₄₃	_	S ₄₅
a_5	s ₅₁	s ₅₂	s ₅₃	S ₅₄	_

$$s_{lk} = \begin{cases} 1, & \textit{si} \quad c_{lk} > p \ e \ d_{lk} < q \\ & 0, \textit{Otherwise} \end{cases}$$

Construction du graphe de préférences

	A	В	С	D	Е
A	-	0,9	0,8	1,0	0,4
В	0,3	-	0,7	1,0	0,6
С	0,3	0,3	-	1,0	0,2
D	0,0	0,1	0,0	-	0,0
Е	0,6	0,4	0,9	1,0	-

	A	В	C	D	E
A	-	0,3	0,2	0,0	0,7
В	0,8	-	0,4	0,0	0,5
С	0,8	0,8	-	0,0	0,8
D	1,0	1,0	1,0	-	1,0
Е	0,4	0,7	0,2	0,0	-

Posant p = 1,0 et q = 0,1, donner la matrice de préférences (dominance)

Construction du graphe de préférences

	A	В	С	D	Е
A	-	0,9	0,8	1,0	0,4
В	0,3	-	0,7	1,0	0,6
С	0,3	0,3	-	1,0	0,2
D	0,0	0,1	0,0	-	0,0
Е	0,6	0,4	0,9	1,0	-

	A	В	C	D	E
A	-	0,3	0,2	0,0	0,7
В	0,8	-	0,4	0,0	0,5
С	0,8	0,8	-	0,0	0,8
D	1,0	1,0	1,0	-	1,0
Е	0,4	0,7	0,2	0,0	-

Posant p = 1,0 et q = 0,1, donner la matrice de préférences (dominance)

Construction du graphe de préférences

	A	В	С	D	Е
A	-	0	0	1	0
В	0	-	0	1	0
С	0	0	-	1	0
D	0	0	0	-	0
Е	0	0	0	1	-

K: Noyau ou Kernel: Ensemble d'alternatives parmi lesquelles il n'y a pas de relation de sur-classsement. Ces alternatives sont incomparables ou non dominées.

D: ensemble, dont les alternatives sont surclassées par au moins une alternative dans K.

Construction du graphe de préférences

	A	В	С	D	Е
A	-	0	0	1	0
В	0	-	0	1	0
С	0	0	-	1	0
D	0	0	0	-	0
Е	0	0	0	1	-

-
$$K = \{A, B, C, E\}$$

- $D = \{D\}$

K: Noyau ou Kernel: Ensemble d'alternatives parmi lesquelles il n'y a pas de relation de sur-classsement. Ces alternatives sont incomparables ou non dominées.

D: ensemble, dont les alternatives sont surclassées par au moins une alternative dans K. p = 0.7 et q = 0.4.;

Exercice: Déroulez la méthode Electre 1

	g1	g2	g3	g4	g5	g6	g7
a1	1	2	1	5	2	2	4
a2	3	5	3	5	3	3	3
a3	3	5	3	5	3	2	2
a4	1	2	2	5	1	1	1
a5	1	1	3	5	4	1	5
W	0,0780	0,1180	0,1570	0,3140	0,2350	0,0390	0,0590