Analyses performed for DAOP well-defined residues.

Procheck analysis, RMSD calculation and structure superimposition are based on DAOP with S(phi)+S(psi)>=1.8:8A-21A, 27A-39A, 45A-48A, 53A-59A, 63A-80A

NESG ID: NAME

PDB ID:

Deposition date:

Common Name:

Class:

Length (a.a.): 92

Organism: SwissProt/ **TrEMBL ID:**

models: 20

Oligomerization: monomer

Molecular

weight:

Secondary Structure Elements:

alpha helices: 9A-20A, 29A-39A, 52A-58A

10580

beta strands: 63A-70A, 73A-80A

FIDs deposited in the BMRB? no

Comparison of core atoms:

A:8..A:21, A:27..A:39, A:45..A:48, A:53..A:59, DAOP > 1.8 Å:

A:63..A:80

FindCore2: A:7..A:22, A:26..A:41, A:43, A:45, A:51..A:68,

A:73..A:81

CYRANGE: 7..81

Ordered residues² Selected residues³ **RMSD** All residues

All backbone atoms	3.7 Å	0.8 Å	0.8 Å
All heavy atoms	4.4 Å	1.3 Å	1.3 Å

Ramachandran Plot Summary for selected residues³ from Procheck

Most favoured regions	Additionally allowed regions	Generously allowed regions	Disallowed regions
95.2%	4.8%	0.0%	0.0%

Ramachandran Plot Summary for selected residues³ from Richardson Lab's Molprobity

Most favoured regions	Allowed regions	Disallowed regions	<u>View plot</u> <u>View model summary</u>
97.9%	2%	0.2%	

Global quality scores

Program	Verify3D	ProsaII (-ve)	Procheck (phi-psi) ³	Procheck (all) ³	MolProbity Clashscore
Raw score	0.18	0.41	0.20	0.20	16.85
Z -score 1	-4.49	-0.99	1.10	1.18	-1.37

Close Contacts and Deviations from Ideal Geometry (from PDB validation software)

Number of close contacts (within 1.6 & Aring for H atoms, 2.2 & Aring for heavy atoms): 9 RMS deviation for bond angles: 1.8° RMS deviation for bond lengths: $0.020 \,\text{Å}$

³ Selected residues DAOP with S(phi)+S(psi)>=1.8: 8A-21A, 27A-39A, 45A-48A, 53A-59A, 63A-80A

¹ With respect to mean and standard deviation for a set of 252 X-ray structures < 500 residues, of resolution <= 1.80 Å, R-factor <= 0.25 and R-free <= 0.28; a positive value indicates a 'better' score

² Ordered residues (DAOP): 8A-21A, 27A-39A, 45A-48A, 53A-59A, 63A-80A

Procheck G-factor for phi-psi

09/29/22 3

Procheck G-factor for all dihedral angles

Model 20

09/29/22 4

09/29/22 5

Residue Plot of Ramachandran anlysis(based on data from Richardson Lab's Molprobity)

References:

- 1. Bhattacharya A, Tejero R and Montelione GT, "Evaluating protein structures determined by structural genomics consortia". Proteins 2007, 66:778-795
- 2. Tejero R, Snyder D, Mao B, Aramini JM and Montelione GT, "PDBStat: a universal restraint converter and restraint analysis software package for protein NMR". J Biomol NMR 2013, 56:337-351
- 3. Luthy R, Bowie JU and Eisenberg D, "Assessment of protein models with three-dimensional profiles". Nature 1992, 356:83-85
- 4. Bowie JU, Luthy R and Eisenberg D, "A Method to identify protein sequences that fold into a known three-dimensional structure". Science 1991, 253:164-169
- 5. Sippl MJ, "Recognition of errors in three-dimensional structures of proteins". Proteins 1993, 17:355-362
- 6. Sippl MJ, "Calculation of conformation ensembles from potentials of mean force". J Mol Biol 1990, 213:859-883
- 7. Laskowski RA et al, "AQUA and PROCHECK_NMR: programs for checking the quality of proteins structures solved by NMR". J Biomolec NMR 1996, 8:477-486
- 8. Laskowski RA et al "PROCHECK: a program to check the stereochemical quality of protein structures". J Appl Cryst 1993, 26:283-291
- 9. Word JM et al, "Exploring steric constrains on protein mutations using MAGE / PROBE". Prot Sci 2000, 9:2251-2259
- 10. Word JM et al, "Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation". J Mol Biol 1999, 285:1735-1747
- 11. Word JM et al, "Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogens". J Mol Biol 1999, 285:1711-1733
- 12. Luthy R, McLachlan AD and Eisenberg D, "Secondary structure-based profiles: use of structure-conserving scoring tables in searching protein sequence databases for structural similarities". Proteins 1991, 18:229-239
- 13. Richardson DC, Richardson J S, "The kinemage: a tool for scientific communication". Prot Sci 1992, 1(1):3-9
- 14. Guntërt P, Mumenthaler, C & Wüthrich, K "Torsion angle dynamics for NMR structure calculation with the new program DYANA". J. Mol. Biol 1997, 273:283-298
- 15. Lovell SC et al, "Structure validation by Calpha geometry: phi,psi and Cbeta deviation". Proteins 2003, 50:437-450
- 16. Kabsch W, Sander C, "Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features". Biopolymers 1983, 22:2577-2637
- 17. Bagaria A, Jaravine, V, Huang YJ, Montelione, GT, and Guntert, P "Protein structure validation by generalized linear model root-mean-square deviation prediction". Protein Sci 2012) 21:229-238.

Protein Structure Validation Suite (PSVS)

Software Environment

Software for structure quality evaluation:

DSSP DsspCMBI-April-2000 pdbstat PdbStat-5.20.8 Version

AutoAssign Version 2.4.0 (uses only AVS scripts)
RPF analysis ASDP-2.3
PDB validation Version 8.061

Version 1.0 corrected by Aneerban

PDB Various

Verify3D Version 1

Prosa2003 PROCHECK Version 3.5.4

MolProbity programs:

1999

clashlistcluster 1999 (corrected by Aneerban)

Version 6.35.040409 Version 6.35.040406 prekin

reduce Version 2.14 probe Version 2.6

Other Software:

PERL Version 5.16.3 ImageMagick 6.7.8 convert Ghostscript 9.25 ps2pdf

v1.8.28 htmldoc

gnuplot Version 4.6.2

netpbm-progs 10.79.00 jpegtopnm netpbm-progs 10.79.00 pnmcrop netpbm-progs 10.79.00 pnmtojpeg

Information updated on October, 2021. RTT