International Rectifier

IRF5305

HEXFET® Power MOSFET

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- P-Channel
- Fully Avalanche Rated

$V_{DSS} = -55V$ $R_{DS(on)} = 0.06\Omega$ $I_{D} = -31A$

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ -10V	-31	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ -10V	-22	Α
I _{DM}	Pulsed Drain Current ①	-110	
P _D @T _C = 25°C	Power Dissipation	110	W
	Linear Derating Factor	0.71	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy ^②	280	mJ
I _{AR}	Avalanche Current®	-16	А
E _{AR}	Repetitive Avalanche Energy®	11	mJ
dv/dt	Peak Diode Recovery dv/dt ③	-5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.4	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

IRF5305

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions		
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-55			V	$V_{GS} = 0V, I_{D} = -250\mu A$		
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.034		V/°C	Reference to 25°C, I _D = -1mA		
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.06	Ω	V _{GS} = -10V, I _D = -16A ④		
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$		
9 _{fs}	Forward Transconductance	8.0			S	$V_{DS} = -25V, I_{D} = -16A$		
I	Drain-to-Source Leakage Current			-25	μA	$V_{DS} = -55V, V_{GS} = 0V$		
I _{DSS}	Brain to Godice Leakage Current			-250	μΑ	$V_{DS} = -44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$		
Lana	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V		
I _{GSS}	Gate-to-Source Reverse Leakage			-100	I IIA	V _{GS} = -20V		
Qg	Total Gate Charge			63		I _D = -16A		
Q _{gs}	Gate-to-Source Charge			13	nC	$V_{DS} = -44V$		
Q _{gd}	Gate-to-Drain ("Miller") Charge			29		V_{GS} = -10V, See Fig. 6 and 13 \oplus		
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = -28V$		
t _r	Rise Time		66			$I_{D} = -16A$		
t _{d(off)}	Turn-Off Delay Time		39		ns	$R_G = 6.8\Omega$		
t _f	Fall Time		63			$R_D = 1.6\Omega$, See Fig. 10 \oplus		
L _D	Internal Drain Inductance		4.5			Between lead,		
-р			Tial Dialit inductance	4.5			nH	6mm (0.25in.)
1	Internal Source Inductance		7.5		''''	from package		
L _S						and center of die contact		
C _{iss}	Input Capacitance		1200			$V_{GS} = 0V$		
Coss	Output Capacitance		520		pF	$V_{DS} = -25V$		
C _{rss}	Reverse Transfer Capacitance		250			f = 1.0MHz, See Fig. 5		

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			-31		MOSFET symbol		
	(Body Diode)			-31	Α	showing the		
I _{SM}	Pulsed Source Current			110	-110	-110		integral reverse
	(Body Diode) ①						-110	
V _{SD}	Diode Forward Voltage			-1.3	V	$T_J = 25^{\circ}C$, $I_S = -16A$, $V_{GS} = 0V$ ④		
t _{rr}	Reverse Recovery Time		71	110	ns	$T_J = 25^{\circ}C, I_F = -16A$		
Q _{rr}	Reverse RecoveryCharge		170	250	nC	di/dt = -100A/µs ④		

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \mathbb{V}_{DD} = -25V, starting T_J = 25°C, L = 2.1mH $$R_G$ = 25$$\Omega$, I_{AS} = -16A. (See Figure 12) \end{tabular}$
- $\label{eq:loss} \begin{array}{l} \text{ } 3 \text{ } I_{SD} \leq \text{-16A, di/dt} \leq \text{-280A/}\mu\text{s, } V_{DD} \leq V_{(BR)DSS}, \\ T_{J} \leq 175^{\circ}\text{C} \end{array}$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International

TOR Rectifier

IRF5305

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF5305 International TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

International

TOR Rectifier

IRF5305

Peak Diode Recovery dv/dt Test Circuit

- * Reverse Polarity for P-Channel
- ** Use P-Channel Driver for P-Channel Measurements

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For P-Channel HEXFETS

International IRF5305 IOR Rectifier

Package Outline

TO-220AB Outline

Dimensions are shown in millimeters (inches)

4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

Part Marking Information

TO-220AB

EXAMPLE: THIS IS AN IRF1010

WITH ASSEMBLY LOT CODE 9B1M INTERNATIONAL PART NUMBER RECTIFIER IRF1010 LOGO **IQR**9246 9B 1 M DATE CODE **ASSEMBLY** (YYWW) LOT CODE YY = YEARWW = WEEK International

IOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 221 8371 IR TAIWAN:16 FI. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 4/99

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/