CS146 Data Structures and Algorithms

Chapter 4: Divide-and-Conquer

L4.1

L4.3

Recurrence Relations

- Equation or an inequality that characterizes a function by its values on smaller inputs.
- Recurrence relations arise when we analyze the running time of iterative or recursive algorithms.
 - Ex: Divide and Conquer.

$$T(n) = \Theta(1)$$
 if $n \le c$
 $T(n) = a T(n/b) + D(n) + C(n)$ otherwise

Recurrences

• The expression:

$$T(n) = \begin{cases} c & n=1\\ 2T\left(\frac{n}{2}\right) + cn & n>1 \end{cases}$$

is a recurrence.

 Recurrence: an equation that describes a function in terms of its value on smaller functions

Recurrence Examples

$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

$$T(n) = \begin{cases} c & n=1\\ 2T\left(\frac{n}{2}\right) + c & n>1 \end{cases}$$

$$T(n) = \begin{cases} c & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

L4

1

Recurrences

A recurrence is an equation or inequality that describes a function in term of its value on smaller inputs.

$$ex1. T(n) = 1$$
 if $n = 1$,
= $T(n-1) + 1$ if $n > 1$.
Solution: $T(n) = n$.

ex2.
$$T(n) = aT(n/b) + f(n)$$

- Methods for solving recurrences
- (Obtaining asymptotic bounds on the solution, Θ or O)
- Substitution method
- Recursion-tree method
- Master method

Technicalities

- · We neglect certain technical details when we state and solve recurrences.
 - The assumption of integer arguments to functions. Boundary conditions is ignored.

 - Ignore floors, ceilings.
- · Exact vs. Asymptotic functions.
 - In algorithm analysis, both the recurrence and its solution are expressed using asymptotic notation.
 - Ex: Recurrence with exact function

$$T(n) = 1$$
 if $n = 1$
 $T(n) = 2T(n/2) + n$ if $n > 1$
Solution: $T(n) = n \lg n + n$
• Recurrence with asymptotics (BEWARE!)
 $T(n) = \Theta(1)$ if $n = 1$
 $T(n) = 2T(n/2) + \Theta(n)$ if $n > 1$
Solution: $T(n) = \Theta(n \lg n)$

4.3 Substitution method

- The substitution method for solving recurrence entails two steps:
 - 1. Guess the form of the solution.
 - 2. Use mathematical induction to find the constants and show that the solution works.

Example

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$T(1) = 1$$

(We may omit the initial condition later.)

- 1. Guess $T(n) = O(n \lg n)$ i.e. $T(n) \le c n \lg n$
- 2. Induction.

Inductive hypothesis is that $T(k) = k \lg k$ for k < n. Assume this bound holds for $\lfloor n/2 \rfloor$

$$T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg \lfloor n/2 \rfloor$$

L4.7 L4.8

2

$$T(n) \le 2(c \lfloor n/2 \rfloor \lg \lfloor n/2 \rfloor) + n \le cn \lg \frac{n}{2} + n$$

= $cn \lg n - cn \lg 2 + n \le cn \lg n$ (if $c \ge 1$.)
Initial condition $1 = T(1) < cn \lg 1 = 0 (\longrightarrow \longleftarrow)$
However, $4 = T(2) \le c2 \lg 2$ (if $c \ge 2$)
 $5 = T(3) \le c3 \lg 3$ (if $c \ge 2$)
 $\lg 2 = 1, \lg 3 = 1.585$