Вариант 1

- **1.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}^3$, $f \mapsto (f'(-1), f''(-1), f(1))$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{e} пространства \mathbb{R}^3 , в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- **2.** Пусть V пространство всех верхнетреугольных матриц размера 2×2 с коэффициентами из $\mathbb{R},\ S=\begin{pmatrix}1&2\\-3&0\end{pmatrix},\ v=(1,-1).$ Рассмотрим на V линейные функции $\alpha_1,\alpha_2,\alpha_3,$ где

$$\alpha_1(X) = \operatorname{tr}(X), \ \alpha_2(X) = \operatorname{tr}(XS), \ \alpha_3(X) = vXv^T$$
 для всех $X \in V$.

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2, \alpha_3)$ является двойственным базисом пространства V^* .

- 3. Билинейная форма β на пространстве \mathbb{R}^3 имеет в стандартном базисе матрицу $\begin{pmatrix} 0 & 0 & 4 \\ 1 & 0 & 3 \\ -4 & 1 & 0 \end{pmatrix}$. Найдите невырожденную замену координат (выражение старых координат через новые), приводящую квадратичную форму $Q(x) := \beta(x,x)$ к нормальному виду, и выпишите этот вид.
- 4. Определите нормальный вид квадратичной формы

$$Q(x_1, x_2, x_3) = x_1^2 + ax_2^2 + 2x_3^2 + 4x_1x_2 - 2x_1x_3$$

- **5.** Пусть $L \subseteq \mathbb{R}^4$ подпространство, задаваемое уравнением $x_1 + 2x_2 2x_3 + x_4 = 0$. Дополните вектор $v = \frac{1}{2}(1,1,1,-1)$ до ортонормированного базиса в L.
- **6.** Прямая $l \subseteq \mathbb{R}^3$ проходит через точку (4,-3,3), пересекает прямую $\{2x-3z=6,\ x+y=4\}$ и параллельна плоскости 2x-3y+z=5. Найдите расстояние от точки P=(3,-4,6) до прямой l.

1	2	3	4	5	6	\sum

Вариант 2

- **1.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}^3$, $f \mapsto (f''(1), f(-1), f'(1))$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{f} пространства \mathbb{R}^3 , в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- 2. Пусть V пространство всех нижнетреугольных матриц размера 2×2 с коэффициентами из \mathbb{R} , $S=\begin{pmatrix}1&2\\3&0\end{pmatrix}$, v=(-1,1). Рассмотрим на V линейные функции $\alpha_1,\alpha_2,\alpha_3,$ где

$$\alpha_1(X) = \operatorname{tr}(X), \ \alpha_2(X) = \operatorname{tr}(SX), \ \alpha_3(X) = vXv^T$$
 для всех $X \in V$.

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2, \alpha_3)$ является двойственным базисом пространства V^* .

- 3. Билинейная форма β на пространстве \mathbb{R}^3 имеет в стандартном базисе матрицу $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \\ 3 & -2 & 0 \end{pmatrix}$. Найдите невырожденную замену координат (выражение старых координат через новые), приводящую квадратичную форму $Q(x) := \beta(x,x)$ к нормальному виду, и выпишите этот вид.
- 4. Определите нормальный вид квадратичной формы

$$Q(x_1, x_2, x_3) = x_1^2 + ax_2^2 + 4x_3^2 + 2x_1x_2 - 4x_2x_3$$

- **5.** Пусть $L \subseteq \mathbb{R}^4$ подпространство, задаваемое уравнением $x_1 x_2 + 2x_3 + 2x_4 = 0$. Дополните вектор $v = \frac{1}{2}(1, 1, -1, 1)$ до ортонормированного базиса в L.
- 6. Прямая $l\subseteq\mathbb{R}^3$ проходит через точку (5,-2,-1), пересекает прямую $\{3x+4z=7,\ x-y=5\}$ и параллельна плоскости 3x-5y+z=2. Найдите расстояние от точки P=(7,2,1) до прямой l.

1	2	3	4	5	6	\sum

Вариант 3

- **1.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}^3$, $f \mapsto (f''(1), f'(-1), f(1))$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{f} пространства \mathbb{R}^3 , в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- 2. Пусть V пространство всех верхнетреугольных матриц размера 2×2 с коэффициентами из \mathbb{R} , $S=\begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix}$, v=(1,-1). Рассмотрим на V линейные функции $\alpha_1,\alpha_2,\alpha_3,$ где

$$\alpha_1(X) = \operatorname{tr}(X), \ \alpha_2(X) = \operatorname{tr}(XS), \ \alpha_3(X) = vXv^T$$
 для всех $X \in V$.

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2, \alpha_3)$ является двойственным базисом пространства V^* .

3. Билинейная форма β на пространстве \mathbb{R}^3 имеет в стандартном базисе матрицу $\begin{pmatrix} 0 & 1 & -3 \\ 0 & 0 & 1 \\ 3 & -5 & 0 \end{pmatrix}$. Найдите невырожденную замену координат (выражение старых координат через новые), приводящую квадратичную форму $Q(x) := \beta(x,x)$ к нормальному

динат через новые), приводящую квадратичную форму $Q(x) := \beta(x, x)$ к нормальному виду, и выпишите этот вид.

4. Определите нормальный вид квадратичной формы

$$Q(x_1, x_2, x_3) = x_1^2 + ax_2^2 + 2x_3^2 - 2x_1x_2 + 4x_2x_3$$

- **5.** Пусть $L \subseteq \mathbb{R}^4$ подпространство, задаваемое уравнением $x_1 + 2x_2 + 2x_3 x_4 = 0$. Дополните вектор $v = \frac{1}{2}(1, -1, 1, 1)$ до ортонормированного базиса в L.
- **6.** Прямая $l\subseteq\mathbb{R}^3$ проходит через точку (3,3,2), пересекает прямую $\{3x+z=1,\,x-y=-2\}$ и параллельна плоскости x+2y+4z=5. Найдите расстояние от точки P=(6,4,3) до прямой l.

1	2	3	4	5	6	\sum

Вариант 4

- **1.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}^3$, $f \mapsto (f'(1), f''(-1), f(-1))$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{e} пространства \mathbb{R}^3 , в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- **2.** Пусть V пространство всех нижнетреугольных матриц размера 2×2 с коэффициентами из $\mathbb{R},\ S=\begin{pmatrix}0&-2\\3&1\end{pmatrix},\ v=(-1,1).$ Рассмотрим на V линейные функции $\alpha_1,\alpha_2,\alpha_3,$ где

$$\alpha_1(X) = \operatorname{tr}(X), \ \alpha_2(X) = \operatorname{tr}(SX), \ \alpha_3(X) = vXv^T$$
 для всех $X \in V$.

Найдите базис пространства V, для которого набор $(\alpha_1, \alpha_2, \alpha_3)$ является двойственным базисом пространства V^* .

- 3. Билинейная форма β на пространстве \mathbb{R}^3 имеет в стандартном базисе матрицу $\begin{pmatrix} 0 & 0 & -5 \\ 1 & 0 & 2 \\ 1 & -2 & 0 \end{pmatrix}$. Найдите невырожденную замену координат (выражение старых координат через новые), приводящую квадратичную форму $Q(x) := \beta(x,x)$ к нормальному виду, и выпишите этот вид.
- 4. Определите нормальный вид квадратичной формы

$$Q(x_1, x_2, x_3) = x_1^2 + ax_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3$$

- **5.** Пусть $L \subseteq \mathbb{R}^4$ подпространство, задаваемое уравнением $2x_1 2x_2 + x_3 + x_4 = 0$. Дополните вектор $v = \frac{1}{2}(1, 1, -1, 1)$ до ортонормированного базиса в L.
- **6.** Прямая $l \subseteq \mathbb{R}^3$ проходит через точку (3,2,0), пересекает прямую $\{2x+3z=3,\,x+y=-4\}$ и параллельна плоскости 2x+y+5z=3. Найдите расстояние от точки P=(5,6,2) до прямой l.

1	2	3	4	5	6	\sum