

Outline

• Chapter 1.1 Periodic Array of Atoms (原子的周期性排列)

• Chapter 1.2 Symmetry of Crystals (晶体的对称性)

• Chapter 1.3 Typical Crystal Structures (典型晶体结构)

• Chapter 1.4 Reciprocal Lattice (倒易点阵)

Objectives

> To learn atomic packings in crystals;

> To understand close packing;

> To learn the typical crystal structures.

Atomic Packings (原子堆积)

- ➤ Packing (堆积)
- ❖ A crystal lattice can be described in terms of a packing of **non-overlapping rigid spheres**.
- ***** Each type of atom in the crystal is considered as **spheres of identical size**.

- ➤ Packing (堆积)
- The tightness of packing is determined by two factors:
 - I. Packing Fraction (堆积比率,或堆积密度): The fraction of volume in a crystal structure that is occupied by constituent particles.

$$ext{PF} = rac{N_{ ext{particle}}V_{ ext{particle}}}{V_{ ext{unit cell}}}$$

 N_{particle} : The number of particles in the unit cell;

 $V_{\rm particle}$: The volume of each particle;

 $V_{
m unit\ cell}$: The volume occupied by the unit cell.

- ➤ Packing (堆积)
- ❖ The **tightness of packing** is determined by two factors:
 - II. Coordination Number (配位数): The number of atoms (or molecules/ions) bonded to a given atom (or molecule/ion) in a crystal.

- ➤ Close Packing (密堆积)
- Close packing is a dense arrangement of equal spheres in a crystal lattice.

- ➤ Close Packing (密堆积)
- There are two close-packing structures having denser packing than all other structures:
 - 1) Hexagonal Close Packing (六角密堆, "HCP"):

ABABAB....

- ➤ Close Packing (密堆积)
- ❖ There are **two close-packing structures** having denser packing than all other structures:
 - 2) Cubic Close Packing (立方密堆, or Face-Centered Cubic, "FCC"):

ABCABC....

- ➤ Close Packing (密堆积)
- ❖ There are **two close-packing structures** having denser packing than all other structures:

➤ Close Packing (密堆积)

The coordination numbers for HCP and FCC are both 12.

❖ The packing fractions for HCP and FCC are also the highest:

$$rac{\pi}{3\sqrt{2}} \simeq 0.74048$$

> Other Packings

❖ Body-Centered Cubic (体心立方, BCC):

The packing fraction is **0.68**

The coordination number is 8

> Other Packings

❖ Simple Cubic (简单立方, SC):

The packing fraction is **0.52**

The coordination number is 6

Examples of Crystal Structures (晶体结构实例)

➤ NaCl Structure (NaCl型结构)

Na ⁺	000	½½0	½0½	0 ½ ½
Cl-	1/2 1/2 1/2	00½	0 ½ 0	½00

➤ NaCl Structure (NaCl型结构)

- The lattice is face-centered cubic (FCC);
- ❖ The basis consists of one Na⁺ ion and one Cl⁻ ion separated by one-half the body diagonal of a unit cell;
- **Each ion has 6** nearest-neighbor ions of the opposite kind;
- There are 4 units of NaCl in each unit cell.

➤ NaCl Structure (NaCl型结构)

* Representative crystals having the NaCl structure include:

Crystal	a (Å)	Crystal	a (Å)
LiH	4.08	AgBr	5.77
MgO	4.20	PbS	5.92
MnO	4.43	KCl	6.29
NaCl	5.63	KBr	6.59

➤ CsCl Structure (CsCl型结构)

unit cell Cesium Chloride

➤ CsCl Structure (CsCl型结构)

❖ The lattice is simple cubic (SC);

❖ There is one CsCl "molecule" per unit cell (primitive cell), with atoms at the corners (000) and body-centered positions (½ ½ ½) of the SC lattice;

Each atom has **8** nearest-neighbor atoms of the opposite kind.

➤ CsCl Structure (CsCl型结构)

* Representative crystals having the CsCl structure include:

Crystal	a (Å)	Crystal	a (Å)
BeCu	2.70	LiHg	3.29
AlNi	2.88	NH ₄ Cl	3.87
CuZn (eta -phase)	2.94	TlBr	3.97
CuPd	2.99	CsCl	4.11
AgMg	3.28	TII	4.20

- ➤ Simple Lattice VS Compound Lattice (简单晶格Vs复式晶格)
 - ❖ Simple lattice (简单晶格):
 - There is only one atom per primitive cell (or basis);
 - All atoms are identical in terms of their chemical properties, positions in the lattice,
 and coordination numbers.

BCC simple lattice

FCC simple lattice

- ➤ Simple Lattice VS Compound Lattice (简单晶格Vs复式晶格)
 - ❖ Compound lattice (复式晶格):
 - There are more than one atoms per primitive cell (or basis);
 - The atoms in a cell (or basis) can be of the same type or different types.
 - The corresponding atoms of different cells form the same type of simple lattice.

FCC compound lattice

➤ HCP Structure (六角密堆积型结构)

➤ HCP Structure (六角密堆积型结构)

- \clubsuit The primitive cell has $a_1=a_2$, with an angle of 120°;
- \clubsuit The c axis is normal to the plane of a_1 and a_2 ;
- ightharpoonup The ideal HCP structure has c = 1.633 a;
- \diamond One basis has **2** atoms, with one at (000) and the other at (2/3 1/3 1/2).

➤ HCP Structure (六角密堆积型结构)

* Representative crystals having the HCP structure include:

Crystal	c/a	Crystal	c/a
He	1.633	Со	1.622
Be	1.581	Υ	1.570
Mg	1.623	Zr	1.594
Ti	1.586	Gd	1.592
Zn	1.861	Lu	1.586
Cd	1.886		

➤ Diamond Structure (金刚石型结构)

➤ Diamond Structure (金刚石型结构)

- The lattice is face-centered cubic (FCC);
- The primitive basis has 2 identical atoms at coordinates (000) and (¼ ¼ ¼);
- ❖ Because the unit cell of FCC contains 4 lattice sites, the unit cell of the diamond structure contains 2×4=8 atoms;

The packing fraction is only 0.34 (46% of the FCC packing).

➤ Diamond Structure (金刚石型结构)

* Representative crystals having the diamond structure include:

Crystal	a (Å)	Crystal	a (Å)
C (diamond)	3.576	Ge	5.658
Si	5.430	Sn	6.49

➤ Cubic ZnS Structure (立方硫化锌型结构)

➤ Cubic ZnS Structure (立方硫化锌型结构)

- ❖ The Cubic ZnS (Zinc Blende 闪锌矿) structure is similar to the diamond (FCC) structure.
- The Zn atoms are placed on one FCC lattice and the S atoms on the other FCC lattice.
- There are 4 "molecules" of ZnS per unit cell.
- Each atom has 4 equally distant atoms of the opposite kind.
- ❖ The ZnS structure does NOT have inversion symmetry (while the diamond structure does have).

➤ Cubic ZnS Structure (立方硫化锌型结构)

2020级微纳班同学"科学可视化"作品

Si的反演对称性

雷伟杰、胡志强、孙炜昊、田雨顺、王嘉谦、赵源祥

雷伟杰 王嘉谦 赵源祥 孙炜昊 胡志强 田雨顺

➤ Cubic ZnS Structure (立方硫化锌型结构)

* Representative crystals having the cubic ZnS structure include:

Crystal	a (Å)	Crystal	a (Å)
SiC	4.35	ZnSe	5.65
ZnS	5.41	GaAs	5.65
AIP	5.45	AlAs	5.66
GaP	5.45	InSb	6.46

Summary (总结)

➤ Summary (总结)

- **Atomic Packing in Crystals:**
 - 1) HCP (close packing)

4) SC

2) FCC (close packing)

3) BCC

- ***** Typical Crystal Structures:
 - 1) NaCl

2) CsCl

3) HCP

4) Diamond

5) Cubic ZnS

Chapter 1.3: 课后作业

如果将等体积球分别排列成下列结构,计算出钢球所占体积与总体积之比:

1) 简单立方, 2) 体心立方, 3) 面心立方, 4) 六角密堆, 5) 金刚石结构

提交时间: 3月3日之前

提交方式:手写(写明姓名学号)后拍照,通过本班课代表统一提交电子版