5.1 # 2.6, 7, 11, 13, 15, 19, 21, 23, 24, 25, 27, 31

 $\lambda = -3$ is an eigenvalue $\iff A\vec{x} = -3\vec{x}$ has a non-trivial soln ← (A+3I) x = 0 has a nontrivial soln

$$A+3I = \begin{bmatrix} -1 & 4 \\ 6 & 9 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 12 \end{bmatrix}$$

Is $A\hat{x}$ a multiple of \hat{x} ? $A\hat{x} = \begin{bmatrix} 3 & 6 & 7 \\ 3 & 2 & 7 \\ 5 & 6 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ This is not a multiple $\begin{bmatrix} 5 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ of $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ so $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

7.) Is
$$\lambda = 4$$
 an eigenvalue of $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$? If so, find one corresponding eigenvector.

Any nonzero solution to (A-4I) = 0 is an eigenvector.

$$X_1 = -X_3$$

 $X_2 = -X_2$

$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_3 \\ -x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_3 \\ -x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
 is an eigenvector. So is any multiple of $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$.

$$A = \begin{bmatrix} 1 & -3 \\ -4 & 5 \end{bmatrix}, \lambda = 1,7$$

For
$$\lambda = -1$$
: $A + I = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 2 & -3 & 0 \\ -4 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3/2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times_{1} = \frac{3}{2} \times_{2}$

$$\hat{\mathbf{X}} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} = \begin{bmatrix} 3/2 \mathbf{X}_2 \\ \mathbf{X}_2 \end{bmatrix} = \mathbf{X}_2 \begin{bmatrix} 3/2 \\ 1 \end{bmatrix}$$

For
$$\lambda = 7$$
: $A - 7I = \begin{bmatrix} -6 & -3 \\ -4 & -2 \end{bmatrix}$ $\begin{bmatrix} -6 & -3 & 0 \\ -4 & -2 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$

$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3}x_3 \end{bmatrix} = x_3 \begin{bmatrix} -\frac{1}{3} \\ 1 \end{bmatrix}$$

A basis for the eigenspace corresponding to $\lambda = 1$ is $\lambda = 1$.

$$A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \quad \lambda = 1, 2, 3$$

For
$$\lambda=1$$
: $A-I=\begin{bmatrix} 3 & 0 & 1 \\ -2 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ So the solutions to $(A-I)\hat{x}$:
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ x_3 \end{bmatrix} =$$

So the solutions to
$$(A-I)\hat{x} = \hat{0}$$

are $\hat{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ x_3 \end{bmatrix} = X_2 \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

For
$$\lambda = 2$$
: $A - aI = \begin{bmatrix} 2 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 1 & -1 \end{bmatrix}$ So the solutions to $A - aI = \begin{bmatrix} 2 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1/2 \\ -2 & 0 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$ are $\hat{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}$

So the solutions to
$$(A-2I)\hat{x} = \hat{0}$$
are $\hat{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -1/a \\ 1 \end{bmatrix}$

For
$$\lambda = 3$$
: A-3I = $\begin{bmatrix} 1 & 0 & 1 \\ -2 & -2 & 0 \\ -2 & 0 & -2 \end{bmatrix}$ So the solns to $(A-3I)\hat{x} = \hat{0}$

For $\lambda = 3$: A-3I = $\begin{bmatrix} 1 & 0 & 1 \\ -2 & -2 & 0 \\ -2 & 0 & -2 \end{bmatrix}$ are $\hat{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

So the solns to
$$(A-3I)\ddot{x} = \ddot{0}$$

are $\dot{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

15.)
$$A = \begin{bmatrix} -4 & 11 \\ a & -3a \\ 3 & 3-a \end{bmatrix}$$
, $A = -5$ $A + 5J = \begin{bmatrix} 1 & 1 & 1 \\ a & a & a \\ 3 & 3 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times_{a_1} \times_{a_2} \times_{a_3} + x_3 = 0$

So Solutions to
$$(A+5I)\vec{x}=\vec{0}$$
 are $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_2 - x_3 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ x_3 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ x_3 \\ 0 \end{bmatrix}$

19.) For
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$
, find one eigenvalue, with no calculation. Justify youranswer.

The columns of A are linearly dependent, so A is not invertible by IMT. Therefore zero is an eigenvalue of A.

21.) True/False. Lot A be an nxn matrix.

- a) If $A\hat{x} = \lambda \hat{x}$ for some vector \hat{x} , then λ is an eigen value of A.
- bi) A matrix A is not invertible if zero is an eigenvalue of A.
- Ci) A number c is an eigenvalue of A iff the equation $(A-cI)\vec{\chi}=\vec{0}$ has a nontrivial soln.
- d) Finding an eigenvector of A may be difficult, but checking whether a given vector is an eigenvector is easye
- e) To find the eigenvalues of A, reduce A to echelon form.

23.) Explain why a 2x2 matrix can have at most two distinct eigenvalues. Explain why on nxn matrix can have at most n distinct eigenvalues.

The set of eigenvectors corresponding to distinct eigenvalues is linearly independent by Thm 2. For an nxn matrix, the eigenvectors have n entries.

Having more than n distinct eigenvalues means you have more than n eigenvectors. A set with more vectors than entries in

each vector is linearly dependent.

Since λ is a Scalar, we can rearrange, $\hat{x} = \lambda A'\hat{x}$ and then multiply both sides by λ' . $\lambda'\hat{x} = \lambda'\hat{x} = \lambda'\hat{x} \Rightarrow \lambda'\hat{x} = A'\hat{x}$ Since \hat{x} is non zero, λ' is an eigenvalue of A'.

- 27.) Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^T . λ is an eigenvalue of $A \Leftrightarrow (A-\lambda I)\hat{x} = \hat{o}$ has a nontrivial soln. $(A-\lambda I)\hat{x} = \hat{o}$ has a non trivial soln $\Leftrightarrow A-\lambda I$ is not invertible (IMT) $A-\lambda I$ is not invertible $\Leftrightarrow (A-\lambda I)^T$ is not invertible. $\Leftrightarrow A^T-\lambda I$ is not invertible $\Leftrightarrow (A-\lambda I)^T = A^T-\lambda I$ $\Leftrightarrow \lambda$ is an eignenvalue of A^T
- 31) A is the standard matrix of T. T is the transformation on \mathbb{R}^2 that reflects points across Some line through the origin. Without writing A, find an eigenvalue of A and describle the eigen space. A line through the origin is the set of all multiples of some nonzero vector \vec{v} . T reflects points across this line, so points on the line stay put, meaning $T(\vec{v}) = \vec{v}$ or in terms of the matrix $A\vec{v} = \vec{v}$. \vec{v} is nonzero, so its an eigenvector corresponding to $\lambda = 1$.

The eigenspace corresponding to A=1 is Span = \$\forall^3.