Salary Prediction Classification

A data science project by Rafif

About this project

In this project, I make machine learning models to predict whether a person makes > \$50K or <= \$50K a year

The dataset was obtained from <u>Kaggle</u>. It was acquired from the 1994 Census database by Barry Becker.

This project focuses on: data pre-processing, EDA, data visualization, feature selection, and classification algorithm.

Dataset

This dataset contains 15 columns:

6 numerical columns

8 categorical columns

1 target column (salary)

39

50

38

53

28

workclass

State-gov

Self-emp-

not-inc

Private 215646

Private 234721

Private 338409

fnlwqt education 77516

83311

Bachelors

HS-grad

Bachelors

11th

Bachelors

13 13

education-

num

13

civ-spouse

Nevermarried Married-

marital-

Divorced

Married-

Married-

civ-spouse

civ-spouse

status

Adm-clerical Execmanagerial Handlers-

cleaners

Handlers-

Prof-specialty

cleaners

Not-in-family White Husband White Not-in-family White

Husband

occupation relationship

9

10

11

12

13

14

Black

Black

salary

race

Male Male Male Male

Female

0

0

capital-

Data columns (total 15 columns):

Column

fnlwgt

race

sex

workclass

education

occupation

relationship

capital-gain

capital-loss

hours-per-week

native-country

sex

education-num

marital-status

age

0

Non-Null Count

32561 non-null

Dtype

int64

int64

object

object

int64

object

object

object

object

object

native-

United-

United-

United-

United-

States

States

States

States

salary

<=50K

<=50K

<=50K

<=50K

Cuba <=50K

40

Checking for any missing value (NaN)

```
# Check the number of NaN
    # values in every column
    df.isna().sum()
age
workclass
fnlwat
education
education-num
marital-status
occupation
relationship
race
sex
capital-gain
capital-loss
hours-per-week
native-country
salary
```

No missing values? Sometimes they are marked as string characters (e.g. empty space '')!

Column: workclass

Never-worked

Private	22696
Self-emp-not-inc	2541
Local-gov	2093
?	1836
State-gov	1298
Self-emp-inc	1116
Federal-gov	960
Without-pay	14

They are marked as '?'

Replacing all '?'s with $NaNs \rightarrow$ there are 2399 (~7.4%) rows with missing values

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	salary
14	40	Private	121772	Assoc-voc	11	Married- civ-spouse	Craft-repair	Husband	Asian- Pac- Islander	Male	0	0	40	NaN	>50K
27	54	NaN	180211	Some- college	10	Married- civ-spouse	NaN	Husband	Asian- Pac- Islander	Male	0	0	60	South	>50K
38	31	Private	84154	Some- college	10	Married- civ-spouse	Sales	Husband	White	Male	0	0	38	NaN	>50K
51	18	Private	226956	HS-grad	9	Never- married	Other- service	Own-child	White	Female	0	0	30	NaN	<=50K
61	32	NaN	293936	7th-8th	4	Married- spouse- absent	N <mark>aN</mark>	Not-in-family	White	Male	0	0	40	NaN	<=50K

These rows are dropped altogether

45 rows have duplicates

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	salary
2303	90	Private	52386	Some- college	10	Never- married	Other- service	Not-in-family	Asian- Pac- Islander	Male	0	0	35	United- States	<=50K
3917	19	Private	251579	Some- college	10	Never- married	Other- service	Own-child	White	Male	0	0	14	United- States	<=50K
4325	25	Private	308144	Bachelors	13	Never- married	Craft-repair	Not-in-family	White	Male	0	0	40	Mexico	<=50K
4767	21	Private	250051	Some- college	10	Never- married	Prof- specialty	Own-child	White	Female	0	0	10	United- States	<=50K
4881	25	Private	308144	Bachelors	13	Never- married	Craft-repair	Not-in-family	White	Male	0	0	40	Mexico	<=50K

Dropped the duplicates and kept the first row

Binary encoding for salary

```
df['salary'] = df['salary'].apply(lambda x: 0 if x ==' <=50K' else 1)
df.head()</pre>
```

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per-week	native- country	salary
0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United- States	0
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ-spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	0
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	0
3	53	Private	234721	11th	7	Married- civ-spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	0
4	28	Private	338409	Bachelors	13	Married- civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	0

Train-test split

To test the performance of my model-to-be with unseen data, I split the data into training and test sets with a ratio of 80:20.

```
from sklearn.model_selection import train_test_split

# Select the features
X = df.drop('salary',axis=1)
# Select the target
y = df[['salary']]

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)
```

Data Understanding

The target feature is not balanced (salary=1 is ~3 times salary=0

Undersampling data with salary = 0

Data Understanding

Distribution of numerical features:

A lot of zeros in capital-gain and capital-loss

I kept them as they are

Data Understanding

native-country

Count plot of categorical features:

ting 4000

The percentage of people based on their salary in each categorical value for workclass and education:

Self-employed people and doctoral graduates tend to make more salary

Overall there are correlations with salary

Data Understanding

No multicollinearity among numerical features

No clear distinction in all features based on salary.

Building the Models

 Not dropping any feature (the numerical features are weakly correlated with salary anyway)

 Classification algorithms: logistic regression and random forest

Grid search with cross-validation to tune the parameters

Building the Models: logistic regression

Prerequisite I: label encoding using sklearn

Prerequisite II: scale the features (to interpret the coefficients easier)

```
# To check feature importance later, we use the same scale across all features
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
scaler.fit(X_train_encoded)

X_train_scaled = scaler.transform(X_train_encoded)
X_test_scaled = scaler.transform(X_test_encoded)
```

Building the Models: logistic regression

```
# Import the logistic regression model from sklearn
from sklearn.linear model import LogisticRegression
# Import the grid search algorithm from sklearn
from sklearn.model selection import GridSearchCV
import warnings
warnings.filterwarnings('ignore')
# parameter grid to be tested for the logistic regression model
parameters = {
    'penalty' : ['l1','l2'],
        : np.logspace(-2,2,5),
    'solver' : ['newton-cg', 'lbfgs', 'liblinear'],
logreg = LogisticRegression()
clf = GridSearchCV(logreg,
                   param grid=parameters,
                   scoring='accuracy',
                   cv=5)
```

clf.fit(X train scaled,y train)

Grid search method to find the best parameters

Hyperparameters:

- Penalty
- (
- solver

```
# Print the best model and its accuracy from the cross-validation method
print("Tuned Hyperparameters :", clf.best_params_)
print("Accuracy :",clf.best_score_)
```

```
Tuned Hyperparameters : {'C': 1.0, 'penalty': 'll', 'solver': 'liblinear'}
Accuracy : 0.821231150966241
```


	feature	feature_importance	
15	cat_education_Doctorate	4.021244	
19	cat_education_Prof-school	4.015817	
17	cat_education_Masters	3.115950	
21	catmarital-status_ Married-AF-spouse	3.066734	Consisten
14	cat_education_Bachelors	2.618511	results fro
22	catmarital-status_ Married-civ-spouse	2.480619	
12	cateducation_ Assoc-acdm	2.004323	
13	cateducation_ Assoc-voc	1.845402	
44	cat_relationship_Wife	1.585974	
20	cat_education_Some-college	1.397390	

Consistent with the results from EDA!

Building the Models: logistic regression

```
print(confusion matrix(y test,y pred),'\n')
print(classification report(y test,y pred))
[[4308 177]
 934
       60911
                           recall f1-score
              precision
                                               support
                             0.96
                   0.82
                                        0.89
                                                  4485
                   0.77
                             0.39
                                        0.52
                                                  1543
                                        0.82
                                                  6028
    accuracy
                   0.80
                             0.68
                                        0.70
                                                  6028
   macro ava
weighted avg
                   0.81
                             0.82
                                        0.79
                                                  6028
```

```
print(f'accuracy = {accuracy_score(y_test,y_pred)}')
print(f'ROC AUC score = {roc_auc_score(y_test,y_pred)}')
```

```
accuracy = 0.8156934306569343
ROC AUC score = 0.6776103971544813
```

The accuracy is 81.6%, but the AUC score is only 68.8%

Since the test salary is also very likely to be imbalanced, this indicates that this model is not good enough

Building the Models: random forest

```
# Import random forest from sklearn
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(random state=7)
parameters = \{'n \text{ estimators'}: [100,200,300,400,500],
               'criterion': ['gini', 'entropy']}
clf = GridSearchCV(estimator=rf,
                    param grid=parameters,
                    scoring='accuracy',
                    cv=5)
clf.fit(X train encoded,y train)
```

Grid search method to find the best parameters

Hyperparameters:

- n_estimators
- criterion

```
# Print the best model and its accuracy from the cross-validation method
print("Tuned Hyperparameters :", clf.best_params_)
print("Accuracy :",clf.best_score_)
```

Tuned Hyperparameters : {'criterion': 'entropy', 'n_estimators': 300}
Accuracy : 0.8181282147256621

Building the Models: random forest

```
print(confusion matrix(y test,y predrf),'\n')
print(classification report(y predrf, y test))
[[3632 853]
 [ 241 1302]]
              precision
                            recall f1-score
                                               support
                   0.81
                              0.94
                                        0.87
                                                  3873
                   0.84
                              0.60
                                        0.70
                                                  2155
                                        0.82
                                                  6028
    accuracy
   macro avg
                   0.83
                              0.77
                                        0.79
                                                  6028
weighted avg
                   0.82
                              0.82
                                        0.81
                                                  6028
```

```
The accuracy and AUC score are both >80%, indicating this model performs quite well.
```

This is expected since the random forest algorithm is more complex than logistic regression

```
print(f'accuracy = {accuracy_score(y_test,y_predrf)}')
print(f'ROC AUC score = {roc_auc_score(y_test,y_predrf)}')
```

accuracy = 0.818513603185136 ROC AUC score = 0.8268106188194103

Conclusions

- 1. This dataset contains 15 columns, 6 are numerical, 8 are categorical, and the target salary is binary.
- 2. The numerical features are very weakly correlated with salary, and the categorical features seem to have stronger correlations with salary.
- 3. I use two classification algorithms: logistic regression and random forest to predict salary.
- 4. The best model is the random forest classifier, where I can obtain an accuracy of 81.8%, and an ROC AUC score of 82.7%.