Лабораторная работа №1

По дисциплине «Анализ данных»

Погрешности измерений

Выполнила Шандыбина Виктория ИВТ, 2 курс, 1 подгруппа

Используемые формулы:

1. Среднее значение

Среднее значение величины находится по формуле:

$$\bar{x} = x_0 + \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - x_0)$$

Это среднее значение принимают за приближенное (наиболее вероятное) значение измеряемой величины.

2. Дисперсия

Дисперсия – среднеквадратичная погрешность. Рассеяние результатов измерений относительно среднего значения принято характеризовать дисперсией ΔS^2 :

$$\Delta S^2 = \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} (x_i - x_0)^2 - n(\bar{x} - x_0)^2 \right)$$

3. Стандартное отклонение

$$\Delta S = \sqrt{\Delta S^2}$$

4. Абсолютная погрешность

Абсолютная погрешность результата – **доверительный интервал** – Δx – характеризует попадание случайной величины в доверительный интервал с доверительной вероятностью α :

$$X = \overline{x} \pm \Delta x$$

$$\Delta x = t_{\alpha} \cdot \Delta S$$

где t_α – **коэффициент Стьюдента** зависит от доверительной вероятности и числа проведенных экспериментов. В математической статистике коэффициент Стьюдента вычислен для различных значений, и его можно найти в таблице:

Таблица коэффициентов Стьюдента.

n	α												
	0.80	0.90	0.95	0.98	0.99	0.995	0.998	0.999					
1	3.0770	6.3130	12.7060	31.820	63.656	127.656	318.306	636.619					
2	1.8850	2.9200	4.3020	6.964	9.924	14.089	22.327	31.599					
3	1.6377	2.35340	3.182	4.540	5.840	7.458	10.214	12.924					
4	1.5332	2.13180	2.776	3.746	4.604	5.597	7.173	8.610					
5	1.4759	2.01500	2.570	3.649	4.0321	4.773	5.893	6.863					
6	1.4390	1.943	2.4460	3.1420	3.7070	4.316	5.2070	5.958					
7	1.4149	1.8946	2.3646	2.998	3.4995	4.2293	4.785	5.4079					
8	1.3968	1.8596	2.3060	2.8965	3.3554	3.832	4.5008	5.0413					
9	1.3830	1.8331	2.2622	2.8214	3.2498	3.6897	4.2968	4.780					
10	1.3720	1.8125	2.2281	2.7638	3.1693	3.5814	4.1437	4.5869					

Для n=5 (число измерений) и $\alpha=0.95$, коэффициент Стьюдента – 2.570

Обычно для расчетов доверительного интервала пользуются значениями a=0,95; иногда достаточно a=0,90, но при ответственных измерениях требуется более высокая надежность (a=0,99).

5. Относительная погрешность

$$\frac{\Delta x}{x} \cdot 100\%$$

Относительная погрешность:

Если в результате непосред-

ственных (прямых) измерений некоторой физической величины x получены значения $x_1, x_2, x_3, \dots x_n$, то оценку погрешности рекомендуется проводить следующим образом:

1. По результатам измерений величины x определяется среднее арифметическое из n измерений

$$\widetilde{x} = \frac{1}{n} \sum_{i=1}^n x_i \ .$$

 Вычисляется среднеквадратичное отклонение результатов измерений от среднего арифметического

$$\widetilde{\sigma} = \sqrt{\frac{\displaystyle\sum_{i=1}^{n} \left(\widetilde{x} - x_{i}\right)^{2}}{n(n-1)}} \; .$$

- 3. Для доверительной вероятности $\alpha = 0.95$ и при количестве измерений n по таблице 2 определяется коэффициент Стьюдента t_{on} .
- Рассчитываются границы доверительного интервала (случайная погрешность) для многократных измерений

$$\Delta \widetilde{x}_{C,T} = t_{\alpha n} \widetilde{\sigma}$$
.

 Оценивается доверительный интервал (погрешность) однократных измерений

$$\Delta \widetilde{x}_{on} = \alpha \cdot d$$
,

где d — параметр равномерного распределения, связанный с ценой деления или классом точности измерительного прибора.

 Определяется общая погрешность серии измерений (доверительный интервал)

$$\Delta \widetilde{x} = \sqrt{\Delta \widetilde{x}_{CH}^2 + \Delta \widetilde{x}_{OH}^2} \; .$$

- 7. Окончательный результат записывается в виде
 - $x = \widetilde{x} \pm \Delta \widetilde{x}$ с доверительной вероятностью α .
- 8. Оценивается относительная погрешность результата измерений

$$\delta = \frac{\Delta \widetilde{x}}{\widetilde{z}} \cdot 100\%.$$

Относительная погрешность позволяет сравнивать неточности измерений величин, имеющих различную размерность.

Задание №1

Задача: В таблице представлены результаты измерений диаметра цилиндра. Вычислить погрешность эксперимента средствами Excel. В качестве d0 выбрать удобное для вычисления значение, например 14.80. Результаты оформить в виде таблицы.

Результат работы:

n	d	dO	di-d0	(di-d0)^2	d cp	дисперсия	стандартное отклонение	абсолютная погрешность(+)	абсолютная погрешность(-)	относительная погрешность
1	14,8500	14,8000	0,0500		14,8180	0,0005	0,0112	14,8468	14,7892	0,19%
2	14,8000		0,0000	0,0000		0,0005				
3	14,7900		-0,0100	0,0001		0,0005				
4	14,8400		0,0400	0,0016		0,0005				
5	14,8100		0,0100	0,0001		0,0005				
						0,000126				

Задание №2

Задача: В результате определения содержания алюминия в сплаве получены следующие значения(в % масс): 7.48, 7.49, 7.52, 7.47, 7.50. Вычислить погрешность эксперимента средствами Excel. Результаты оформить в виде таблицы. В качестве m0 выбрать 7.48.

Результат работы:

n	m	m0	m-m0	(m-m0)^2	m cp	дисперсия	стандартное отклонение	абсолютная погрешность(+)	абсолютная погрешность(-)	относительная погрешность
1	7,4800	7,4800	0,0000	0,0000	7,492	0,0015	0,0192	7,5414	7,4426	0,66%
2	7,4900		0,0100	0,0001		0,0015				
3	7,5200		0,0400	0,0016		0,0015				
4	7,4700		-0,0100	0,0001		0,0015				
5	7,5000		0,0200	0,0004		0,0015				
						0,00037				

Задание №3

Задача: При взвешивании образца анализируемого вещества получены следующие результаты: 47,12; 47,08; 47,13 г. Оценить истинную массу образца и определить точность этой оценки для доверительной вероятности 0,95.

Результат работы:

n	m	m0	m-m0	(m-m0)^2	m cp	дисперсия	стандартное отклонение	абсолютная погрешность(+)	абсолютная погрешность(-)	относиельная погрешность
1	47,1200	31,4167	15,7033	246,5947	47,1100	0,0014	0,0265	47,1942	47,0258	0,14%
2	47,0800		15,6633	245,3400		0,0014				
3	47,1300		15,7133	246,9088		0,0014				
						0,0007				

Задача: 1). Рассчитать погрешность прямых измерений величины b (среднее арифметическое, среднеквадратичное отклонение, случайная погрешность многократных измерений, оценить доверительный интервал однократных измерений, общая погрешность серии измерений). Запиать полученное из эксперимента значение величины b с учетом погрешности.

- 2). Рассчитать погрешность прямых измерений величины h и величины а.
- 3). Рассчитать значения объема параллелепипеда (косвенные измерения).

Результат работы:

	n a	b	h	(b-b0)^2	среднее	nucronous h	случайная погрешность	доверительный интервал	общая погрешность
					арифметическое b	дисперсия b	многократного изменения b	однократного изменения b	серии <mark>b</mark>
1	12,7000	12,7000	14,8000	0,0100	12,8000	0,0100	0,1837	0,0950	0,2068
2	12,7000	12,8000	14,9000	0,0000		0,0000			
3	12,7000	12,9000	14,7000	0,0100		0,0100			
~	12,7000	12,8000	14,8000			0,0577			