

Structuri de Date și Algoritmi

Structuri de Date și Algoritmi

Lecția 2:

- Structuri de date neliniare grafuri
 - Definiții
 - Moduri de reprezentare
 - Operații pe grafuri
 - Complexitatea operaţiilor
 - Aplicaţii

Definiții:

Def. Graf neorientat (graf) – o pereche arbitrară G = (V, E) $E \subseteq \{\{u, v\} : u, v \in V \& u \neq v\}$

Definiții:

 $V = \{1, 2, 3, 4\}, E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 4\}, \{2, 4\}\}$

Def. Graf orientat (graf) – o pereche arbitrară G = (V, E), în care $E \subseteq V \times V$

$$V = \{1, 2, 3, 4\}, E = \{(1, 4), (2, 1), (3, 2), (3, 4), (4, 2)\}.$$

V formează mulțimea vârfurilor grafului, E – mulțimea muchiilor.

Muchia (u,v) este *incidentă* vârfurilor u,v, iar acestea sunt *adiacente* muchiei.

Definiții:

Gradul vârfului v, d(v) este numărul de muchii, incidente acestuia. Un vârf Def. este *izolat*, dacă gradul lui este 0.

Mulțimea de vecini ai vârfului v_i , $\Gamma(v_i)$ este formată din vârfurile adiacente la v_i . Def. Într-un graf orientat mulțimea vecinilor este formată din două componente distincte: $\Gamma(v_i) = \Gamma^+(v_i) \cup \Gamma^-(v_i)$.

 $\Gamma^+(v_i)$ - vârfurile adiacente din arcele cu originea în v_i .

 $\Gamma^{-}(v_{i})$ - vârfurile adiacente din arcele care se termină în v_{i} .

 $\begin{aligned} \textbf{Def.} & \textit{Cale} \text{ în graf este o consecutivitate de vârfuri } v_1, v_2, ... v_k \text{ astfel încât } \forall i = 1, ..., k-1 \\ & \text{vârfurile } v_i, v_{i+1} \text{ sunt adiacente. Dacă toate vârfurile } v_1, v_2, ... v_k \text{ sunt distincte, calea} \\ & \text{se numește } \textit{elementară}. \text{ Dacă } v_1 = v_k \text{ atunci } v_1, v_2, ... v_k \text{ formează un } \textit{ciclu} \text{ în } G \text{ .} \\ & \text{Ciclul este } \textit{elementar}, \text{ dacă } v_1, v_2, ... v_{k-1} \text{ sunt distincte.} \end{aligned}$

Definiții:

În grafurile orientate noțiunea de cale este substituită prin lanț.

Def. Lanțul este o consecutivitate de muchii (arce) luate astfel, încât vârful arcului (i) coincide cu originea arcului (i+1).

secvenţa de vârfuri 1,2,4 - cale; secvenţa 1,2,4,1 - ciclu

secvența de arce (3, 4) (4, 2) (2, 1) - lanț; secvența de arce (1, 4) (4, 2) (2, 1) – ciclu.

Metode de reprezentare:

Matricea de incidență

Structura de date clasică pentru reprezentarea unui graf G=(V,E) este considerată **matricea de incidență**. Este realizată prin un tablou bidimensional cu N linii (N=|V|) și M coloane (M=|E|).

Fiecare muchie (u,v) este descrisă într-o coloană a tabloului. Elementele coloanei sunt egale cu 1 pentru liniile care corespund vârfurilor u și v, 0 – pentru celelalte. În cazul grafului orientat vârful din care începe arcul este marcat cu -1, vârful final – cu +1.

Exemple

	(1, 2)	(1, 4)	(2, 3)	(2, 4)	(3, 4)
1	1	1	0	0	0
2	1	0	1	1	0
3	0	0	1	0	1
4	0	1	0	1	1
5	0	0	0	0	0

	(1, 4)	(4, 2)	(4, 5)	(2, 1)	(3, 4)	(3, 2)
1	-1	0	0		0	0
2	0	+1	0	-1	0	+1
3	0	0	0	0	-1	-1
4	+1	-1	-1	0	+1	0
5	0	0	+1	0	0	0

Matricea de adiacență

O altă reprezentare matriceală a grafului G = (V, E) este **matricea de adiacență**. Matricea de adiacență este și ea realizată prin un tablou bidimensional, cu N linii și N coloane, în care elementul cu indicii(i, j) este egal cu 1 dacă există muchia care unește vârful v_i cu vârful v_j și 0 – în caz contrar. Datele despre muchia (v_i, v_j) se dublează în elementele tabloului cu indicii (i, j) și (j, i) În grafurile orientate, pentru arcul (v_i, v_j) primește valoarea 1 doar elementul (i, j) al tabloului.

Exemple

	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	1	0
3	0	1	0	1	0
4	1	1	1	0	0
5	0	0	0	0	0

	1	2	3	4	5
1	0	0	0	1	0
2	1	0	0	0	0
3	0	1	0	1	0
4	0	1	0	0	1
5	0	0	0	0	0

Reprezentări liniare:

Lista de muchii

O altă categorie de reprezentări ale grafului o formează reprezentările prin liste. Cea mai simplă reprezentare este lista de muchii. Fie graful G = (V, E) și (N = |V|, M = |E|).

Lista de muchii conține M perechi de forma (v_i, v_j) , fiecare pereche reprezentând o muchie din graf, descrisă prin vârfurile care o formează.

Într-un graf orientat perechea descrie un arc, începutul lui fiind determinat de primul indice din pereche.

Exemple

Lista de adiacență

(Listele de vecini)

Încă o structură eficientă este lista de adiacență. Pentru fiecare nod $v \in V$ ea va conține o listă unidirecțională alocată dinamic, cu toate vârfurile $u : \exists (v,u) \in E$. Referințele către începutul fiecărei liste pot fi păstrate într-un tablou unidimensional. Elementul cu indicele i din tablou va conține referința către lista de vârfuri adiacente vârfului v_i din graf. Pentru grafurile neorientate descrierea fiecărei muchii se dublează.

Exemple

Exemple

Operații pe grafuri

Operații elementare:

- Adăugare vârf
- Lichidare vârf
- Adăugare muchie
- Lichidare muchie
- Divizare (dublare) vârf
- Contracție vârfuri
- Contracţie muchii

Adăugare vârf

	Matricea de incidență	Matricea de adiacență	Lista de muchii	Lista de vecini
Cu dublare a structurii de date	O(V E)	$O(V ^2)$	O(E)	$O(V ^2)$
Cu actualizare a structurii curente	0(1)	0(1)	O(1) / acces direct $O(E)$ / acces secvențial	0(1)

	Matricea de incidență
Cu dublare a structurii de date	O(V E)
Cu actualizare a structurii curente	0(1)

$$N = N + 1$$

	Matricea de adiacență
Cu dublare a structurii de date	$O(V ^2)$
Cu actualizare a structurii curente	0(1)

$$N = N + 1$$

	Lista de vecini
Cu dublare a structurii de date	$O(V ^2)$
Cu actualizare a structurii curente	0(1)

Eliminare vârf

	Matricea de incidență	Matricea de adiacență	Lista de muchii	Lista de vecini
Cu dublare a structurii de date	O(V E)	$O(V ^2)$	O(E)	$O(V ^2)$
Cu actualizare a structurii curente	O(V E)	$O(V ^2)$	O(E)	$O(V ^2)$

Inserare muchie

	Matricea de incidență	Matricea de adiacență	Lista de muchii	Lista de vecini
Cu dublare a structurii de date	O(V E)	$O(V ^2)$	O(E)	$O(V ^2)$
Cu actualizare a structurii curente	O(V) -fără reindexare $O(V E)$ - cu reindexare	0(1)	0(1)	0(1)

Eliminare muchie

	Matricea de incidență	Matricea de adiacență	Lista de muchii	Lista de vecini
Cu dublare a structurii de date	O(V E)	$O(V ^2)$	O(E)	$O(V ^2)$
Cu actualizare a structurii curente	O(V) -fără reindexare $O(V E)$ - cu reindexare	0(1)	O(E)	O(V)

Dublare vârf

Fie graful G=(V,E) și $(N=\left|V\right|,\ M=\left|E\right|)$ și $v_i\in V.$ Operația de dublare a vârfului v_i presupune adăugarea unui vârf nou $v_j:\ \Gamma(v_j)=\ \Gamma(v_i)\cup\{v_i\}$ și a unei muchii noi (v_i,v_j) .

Contracție vârfuri

2 3 4 5

Fie graful
$$G=(V,E),\ (N=|V|,\ M=|E|)$$
 și $v_i,\ v_j\in V,\ (v_i,\ v_j)\notin E$. Operația de contracție a vârfurilor $v_i,\ v_j$ presupune adăugarea unui vârf nou

$$v_z$$
: $\Gamma(v_z) = \Gamma(v_i) \cup \Gamma(v_j) - \{v_i, v_j\}$ și eliminarea vârfurilor v_i, v_j : $G^* = (V^*, E^*)$:

$$V^* = V - \{v_i, \ v_j\} \cup v_z$$

Respectiv, pentru fiecare muchie $(u, v) \in E$, dacă $u \in \{v_i, v_i\}$ $u \leftarrow v_z$, dacă $v \in \{v_i, v_i\}$ $v \leftarrow v_z$

Contracție muchii

Fie graful $G=(V,E),\ (N=|V|,\ M=|E|)$ și $v_i,\ v_j\in V,\ (v_i,\ v_j)\in E$. Operația de contracție a muchiei (v_i,v_j) presupune adăugarea unui vârf nou

$$v_z$$
: $\Gamma(v_z) = \Gamma(v_i) \cup \Gamma(v_j) - \{v_i, v_j\}$ și eliminarea vârfurilor v_i, v_j : $G^* = (V^*, E^*)$:

$$V^* = V - \{v_i, v_j\} \cup v_z$$

Respectiv, pentru fiecare muchie $(u, v) \in E$:

- dacă $u \in \{v_i, v_j\} u \leftarrow v_z$,
- dacă $v \in \{v_i, v_j\} \ v \leftarrow v_z$,
- dacă $v \in \{v_i, v_j\} \& u \in \{v_i, v_j\}, E = E (u, v).$

0	1	0	1	0	1	1
1	0	0	0	0	0	1
0	0	0	0	1	1	1
1	0	0	0	0	1	1
0	0	1	0	0	0	1
1	0	1	1	0	0	0
1	1	1	1	1	0	0

0	1	0	0	0	1	0	1
1	0	0	0	0	0	0	1
0	0	0	0	1	1	0	1
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1
1	0	1	0	0	0	0	1
0	0	0	0	0	0	0	0
1	1	1	0	1	1	0	0

Exemplu implementare

```
      0
      1
      0
      0
      1
      1

      1
      0
      0
      0
      0
      1

      0
      0
      0
      1
      1
      1

      0
      0
      1
      0
      0
      1

      1
      0
      1
      0
      0
      1

      1
      1
      1
      1
      1
      0
```


Demonstrație implementare

Contracția vârfurilor

Operații complexe

Operații complexe

Unare – sunt aplicate asupra unui singur graf. Produc un graf nou sau generează un rezultat pe graful existent

Binare – sunt aplicate asupra a două grafuri. Produc în calitate de rezultat un graf nou.

Operații pe grafuri

Operații complexe unare:

- Graf complementar
- Graf transpus
- Graf asociat
- Parcurgere în adâncime
- Parcurgere în lăţime

Operații pe grafuri:

Graful complementar

Fie G=(V,E). Prin graf complementar se înțelege graful $\tilde{G}=(V,\tilde{E}) \text{ unde } \tilde{E}=\{(u,v): u,v\in V;\, (u,v)\not\in E\}$

0	1	0	0	1	
1	0	1	1	1	
0	1	0	1	0	
0	1	1	0	0	
1	1	0	0	0	

Pentru un graf orientat G=(V,E), graful transpus este $G^T=(V,E^T) \text{ unde } E^T=\left\{(v_i,v_j):(v_j,v_i)\in E\right\}. \text{ Graful transpus are aceleași componente tare conexe ca și graful inițial.}$

Fie graful G=(V,E) reprezentat prin matricea de adiacență $A(n\times n)$. Matricea de adiacență a grafului $G^T=(V,E^T)$ se obține conform următoarei formule:

$$A_{i,j}^{T} = \begin{cases} 1 & dac\check{a} & A_{j,i} = 1 \\ 0 & \hat{i}n \ caz \ contrar \end{cases} \quad i, j = 1, ..., n$$

Operații pe grafuri:

Transpunerea

Operații pe grafuri:

Graful asociat

Fie graful neorientat G = (V, E) $E = \{e_1, ..., e_M\}$. Graful asociat pentru G = (V, E) se va numi graful $G_A = (V_A, E_A)$, unde $V_A = \{e_1, ..., e_M\}$ iar $E_A = \{(e_i, e_j) : \exists u \in V, u \in e_i \& u \in e_j\}$.

- Pas 1. Se creează lista muchiilor din G = (V, E). $L = \{e_1, ...e_m\}$.
- ${f Pas}$ 2. Se creează tabloul bidimensional E'- matricea de adiacență a grafului $G_{\!\scriptscriptstyle A}$.
- Pas 3. Pentru toți i de la 1 la m-1.

Pentru toți j de la i+1 la m

Dacă în
$$G = (V, E)$$
 $e_i \cap e_j \neq \emptyset$; $(e_i, e_j \in E)$,

atunci $E'_{i,j} \leftarrow E'_{j,i} \leftarrow 1$ altfel $E'_{i,j} \leftarrow E'_{j,i} \leftarrow 0$

Operații pe grafuri:

Graful asociat

Intrare: graful G = (V, E), matricea de adiacență a căruia este descrisă în tabloul bidimensional **a**.

Ieşire: matricea de adiacență a grafului $G_A = (V_A, E_A)$. Matricea de adiacență este localizată în tabloul bidimensional b.

list[i]

Operații pe grafuri:

Graful asociat

```
void asociat ()
    int i, j;
// modelare lista muchii
    for (i = 1; i \le n; i++)
      for (j = 1 + i; j \le n; j++)
        if (a[i][j]!=0)
        {m++; list[m].v1 = i; list[m].v2 = j;}
// modelare matrice adiacenta
     for (i = 1; i \le m ; i++)
        for (j = 1 + i; j \le m; j++)
             if (list[i].v1 == list[j].v1 || list[i].v1 == list[j].v2 ||
             list[i].v2 == list[j].v1 || list[i].v2 == list[j].v2)
                 b[i][j] = b[j][i] = 1;
    return;
```


Parcurgeri

DFS

BFS

În caz general problema parcurgerii se formulează în felul următor: Fie dat graful G = (V, E). Pentru un vârf dat $v \in V$ să se determine mulțimea $U \subseteq V$: $\forall u \in U$ există cel puțin o cale între v și u.

Parcurgeri

DFS

BFS

În caz general problema parcurgerii se formulează în felul următor: Fie dat graful G=(V,E). Pentru un vârf dat $v\in V$ să se determine mulțimea $U\subseteq V$: $\forall u\in U$ există cel puțin o cale între v și u.

Pentru ambele parcurgeri: descrierea grafului **G (V, E)** este dată de matricea de adiacență **a [] [],** în calitate de structură auxiliară este folosit vectorul de stări **b [],** nodurile parcurse se afișează în output-ul standard în ordinea parcurgerii.

Parcurgeri

DFS

BFS

DFS

BFS

```
int BFS (int s)
  int i, st, dr;
  b[s] = 1; c[1] = s; st = dr = 1;
  while (st <= dr)</pre>
   for (i = 1; i \le n; i++)
    if(a[c[st]][i] != 0 \&\& b[i] == 0)
        \{ dr++; c[dr] = i; b[i] = 1; \}
    printf("%d ", c[st]);
    st++;
  return 0;
```


Operații complexe binare:

- Reuniunea grafurilor
- Intersecția grafurilor
- (Inter)Conectarea grafurilor
- Diferența grafurilor

Reuniunea grafurilor

Def. Fie dat graful $G_1 = (V_1, E_1)$ și graful $G_2 = (V_2, E_2)$. Reuniune a grafurilor G_1, G_2 va fi graful $G_r = (V_r, E_r)$, în care $V_r = V_1 \cup V_2$, $E_r = E_1 \cup E_2$

$$V_1 = \{1, 2, 3, 4, 5, 6\}$$

 $E_1 = \{\{1, 6\}, \{2, 6\}, \{3, 6\}, \{4, 6\}, \{5, 6\}\}$

$$V_2 = \{1, 2, 3, 4, 5, 6\}$$

$$E_2 = \{\{1, 6\}, \{2, 1\}, \{3, 2\}, \{4, 3\}, \{4, 5\}, \{5, 6\}\}$$

$$G_1 \cup G_2$$

$$V_r = \{1, 2, 3, 4, 5, 6\}$$

$$E_r = \{\{1, 6\}, \{2, 1\}, \{3, 2\}, \{4, 3\}, \{5, 6\}, \{2, 6\}, \{3, 6\}, \{4, 6\}, \{5, 4\}\}$$

Intersecția grafurilor

Def. Fie dat graful $G_1=(V_1,E_1)$ și graful $G_2=(V_2,E_2)$. Intersecție a grafurilor G_1,G_2 va fi graful $G_r=(V_r,E_r)$, în care $V_r=V_1\cup V_2$, $E_r=E_1\cap E_2$

$$V_r = \{1, 2, 3, 4, 5, 6\}$$

 $E_r = \{\{1, 6\}, \{5, 6\}\}$

(Inter) Conectarea grafurilor

Def. Fie dat graful $G_1=(V_1,E_1)$ și graful $G_2=(V_2,E_2)$. (Inter)Conectare a grafurilor G_1,G_2 va fi graful $G_r=(V_r,E_r)$, în care

$$V_r = V_1 + V_2$$
, $E_r = E_1 \cup E_2 \cup \{\{u, v\}: u \in V_1, v \in V_2\}$

$$G_r = Ic(G_1, G_2)$$

(Inter) Conectarea grafurilor

 G_1

$$V_1 = \{1, 2, 3\}$$

 $E_1 = \{\{1, 2\}, \{2, 3\}\}$

$$V_2 = \{1, 2\}$$

 $E_2 = \{\{2, 1\}\}$

$$G_r = Ic(G_1, G_2)$$

$$V_r = \{1, 2, 3, 1^*, 2^*\}$$

$$E_r = \{\{1, 2\}, \{2, 3\}, \{1^*, 2^*\}, \{1^*, 1\}, \{1^*, 2\}, \{1^*, 3\}, \{2^*, 2\}, \{2^*, 3\}, \{2^*, 1\}\}$$

(Inter) Conectarea grafurilor

Def. Fie dat graful $G_1 = (V_1, E_1)$ și graful $G_2 = (V_2, E_2)$. Diferență a grafurilor G_1 , G_2 va fi graful $G_r = (V_r, E_r)$, în care $V_r = V_1 \cup V_2$, $E_r = \{\{u, v\} : \{u, v\} \in E_1 \&\&\{u, v\} \notin E_2\}$

 G_2

$$G_1 - G_2$$

$$V_r = \{1, 2, 3, 4, 5, 6\}$$

$$E_r = \{\{4, 6\}, \{2, 6\}, \{3, 6\}\}\$$

Aplicații

Determinarea componentelor tare conexe în grafuri orientate

Def. Componentă tare conexă a unui graf orientat G = (V, E) se numește mulțimea maximală de vârfuri $V' \subseteq V$: $\forall v_i, v_j \in V'$ există cel puțin câte un lanț $v_i \mapsto v_j$ și $v_j \mapsto v_i$.

Descriere

- **Pas 1.** Se construiește graful $G^T = (V, E^T)$
- Pas 2. Se lansează căutarea în adâncime pornind de la fiecare vârf necercetat din G^T . Pentru fiecare parcurgere se memorează cumulativ ordinea de cercetare a vârfurilor în vectorul f.
- Pas 3. Se lansează căutarea în adâncime pe graful inițial G, consecutiv, pornind de la ultimul vârf inclus în f către primul, după vârfurile necercetate.
- Pas 4. La fiecare căutare în adâncime realizată în pasul 3, se afișează vârfurile cercetate acestea formează o componentă tare conexă.

Algoritmul Kosaraju

Lucrul individual:

Elaborați o aplicație de consolă cu interfață text pentru realizarea operațiilor complexe pe grafuri. În calitate de structură pentru datele inițiale folosiți matricea de adiacență

În următoarea sesiune:

• Structuri dinamice de date: structuri liniare.