TPC1

Resultados dos exercícios propostos

- **1.** Converta os seguintes valores da representação dada para a representação pedida (representações sem sinal):
 - a) Para binário: 132, 12.375 e 0.2

```
132 = 10000100_2

12.375 = 1100.011_2

0.2 \sim 0.00110011_2 = 0.19609375
```

b) Para decimal 101001₂ e 1010.1011₂

```
101001_2 = 41

1010.1011_2 = 10.6875
```

c) Converta para hexadecimal 74, 260 e 110101011.01102

```
74 = 0x4a

260 = 0x104

110101011.0110_2 = 0x1ab.6
```

d) Converta para octal 111110011101₂ e 11011.11₂

```
111110011101_2 = 7635_8
11011.11_2 = 33.6_8
```

e) Converta para binário 0x1c2a

$$0x1c2a = 1110000101010_2$$

f) Converta para ternário 24 e 2/3

$$24 = 220_3$$

 $2/3 = 0.2_3$

2. Represente, usando apenas 6 bits, os valores abaixo (expressos em decimal) usando cada uma das representações indicadas:

	S+A	Complemento 1	Complemento 2	Excesso 31
12	001100	001100	001100	101011
-1	100001	111110	111111	011110
-31	111111	100000	100001	000000

3. Converta para decimal cada uma das cadeias de *bits* abaixo, considerando a representação indicada em cada coluna:

	S+A	Complemento 1	Complemento 2	Excesso 15
00011	3	3	3	-12
10001	-1	-14	-15	2
11110	-14	-1	-2	15

4. A maioria das pessoas apenas consegue contar até 10 com os seus dedos; contudo, os engenheiros informáticos podem fazer melhor!

Como? Cada dedo conta como um bit, valendo 1 se esticado, e 0 se dobrado.

a) Com este método, até quanto é possível contar usando ambas as mãos?

b) Considere que um dos dedos na extremidade da mão é o bit do sinal numa representação em sinal + amplitude.

Qual a gama de valores que é possível representar com ambas as mãos?

c) Considerando apenas 5 dedos e complemento para 2, qual o valor representado na imagem abaixo?

R:
$$111111_2 = -1$$

5. Preencha, em decimal, a tabela abaixo com a gama de valores representáveis usando **6 bits** em cada um dos sistemas de representação propostos. Preencha também a coluna que indica qual a resolução da representação, isto é a diferença entre dois valores consecutivos.

Representação	Mínimo	Resolução	Máximo
Binário sem sinal, inteiros	0	1	63
Binário sem sinal, 2 bits fraccionários	0	0.25	15.75
Complemento para 2, inteiros	-32	1	31
Sinal + Amplitude, 1 bit fraccionário	-15.5	0.5	15.5
Excesso de 7, 3 bits fraccionários	-7	0.125	0.875

6. Represente cada um dos valores abaixo em complemento para 2 usando o número de bits indicado. Se algum valor não for representado preencha a respetiva célula com "overflow"

	4 bits	5 bits	7 bits
13	overflow	01101	0001101
7	0111	00111	0000111
- 8	1000	11000	1111000

7. Relembrando aquilo que já sabe e consultando a tabela acima enuncie a regra usada para fazer "extensão do sinal" em complemento para 2, isto é, como se aumenta o número de bits usado para representar um qualquer valor.

R: Estende-se o bit do sinal, isto é, se o número é positivo acrescenta-se 0's à esquerda, se é negativo acrescenta-se 1's à esquerda

- **8.** Efectue as seguintes **operações aritméticas** na base dada e usando apenas o número de dígitos indicado em cada alínea. Note que nas alíneas em que a base é binária a representação é complemento para 2. Se algum resultado não for representável usando esse número de dígitos assinale a situação de *overflow*
 - **a)** $00110011_2 + 01110101_2 = \text{overflow}$
 - **b)** $00100.11_2 + 00011.01_2 = 01000.00_2 = 8$
 - **c)** $0100101_2 + 1101001_2 = 0001110_2 = 14$
 - **d)** 0xac + 0x2b = 0xd7
 - **e)** $272_8 + 533_8 = \text{overflow}$
 - **f)** $0010_2 \times 0011_2 = 0110_2$

9. Um centro de supercomputação atribui um código binário a cada um dos núcleos de processamento (processing cores) do seu supercomputador. Este código é atribuído em função do piso do edifício em que se encontra, do bastidor onde está colocado, do número do sistema dentro do bastidor e do número do núcleo de processamento dentro daquele sistema.

O edifício tem um total de 7 pisos: 2 subterrâneos (numerados de -1 a -2), o piso térreo com o número 0 e 4 pisos numerados de 1 a 4. Em cada piso há 200 bastidores, cada bastidor tem 32 sistemas e cada sistema comporta um total de 64 núcleos de processamento.

Proponha uma estrutura para este código binário usando o <u>menor número possível de bits</u> e apresente a codificação para o processador número 14, do terceiro sistema do bastidor 122 do piso -1.

```
R: Temos 7 pisos, necessitamos de 3 bits. Usaremos a representação em excesso de 2 (gama de valores: -2 a 5). 8 bits para identificar o bastidor (0 ... 199), 5 bits para o sistema (0..31) e 6 bits para o processador (0...63).
```

Para o piso -1 (1 em excesso de 2), bastidor 122, sistema 2 (terceiro) e processador 14 temos:

```
001 01111010 00010 001110
```

10. Considere que está a executar código num computador de **6-bits**, o qual usa complemento para 2 para representar valores do tipo inteiro. Complete a tabela, considerando as definições abaixo. Se algum resultado não for representável usando 6 bits assinale a situação de *overflow*.

```
int y = -3;
int x = -20;
int z = 21;
unsigned ux = 34;
```

Expressão	Decimal	Binário
Zero	0	000000
	-6	111010
	18	010010
ux	34	100010
2 * ux	68	overflow
Х	-20	101100
x >> 1	-10	110110
T _{Max}	31	011111
T _{min}	-32	100000
y + x	-23	101001
x + z	1	000001

Nota: T_{min} e T_{Max} representam, respetivamente, o menor e o maior valor representável.