MAS115 Calculus I 2007-2008

Problem sheet for exercise class 2

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problems in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online by Friday.

Problem 1: Evaluate in terms of radicals

- (*) (i) $\sin \frac{7\pi}{12}$
 - (ii) $\cos \frac{\pi}{12}$ [2007 exam questions]

Problem 2: Find a formula for $f \circ g$ and $g \circ f$ and find the domain and range of each.

- (a) $f(x) = 2 x^2$, $g(x) = \sqrt{x+2}$
- (b) $f(x) = \sqrt{x}$, $g(x) = \sqrt{1-x}$

Problem 3: Prove the identity

$$\frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$$

Problem 4: The graph of f is shown. Draw the graph of each function.

(a)
$$y = f(-x)$$
, (b) $y = -f(x)$, (c) $y = -2f(x+1) + 1$, (d) $y = 3f(x-2) - 2$.

Extra: Graph the equations (a) |x| + |y| = 1 + x and (b) y + |y| = x + |x|.

(i) use
$$\sin^2 \theta = \frac{1}{2} \left((-\cos 2\theta) \right)$$

 $\sin^2 \frac{7\pi}{12} = \frac{1}{2} \left((-\cos 2\theta) \right)$

$$=\frac{1}{2}\left(1+\cos\frac{\pi}{6}\right)$$

(ii) we
$$\frac{7}{12} = \frac{1}{4} + \frac{1}{3}$$
 & addition theorems

$$\begin{array}{rcl}
\sin \frac{2\pi}{12} & = & \sin \left(\frac{\pi}{4} + \frac{\pi}{8} \right) \\
& = & \sin \frac{\pi}{4} \cos \frac{\pi}{3} + \cos \frac{\pi}{4} \sin \frac{\pi}{3} \\
& = & \frac{\pi}{2} \cdot \frac{1}{2} + \frac{\pi}{2} \cdot \frac{3}{3} = \frac{\pi}{4} \cdot \frac{\pi}{6} \cdot \frac{\pi}{4}
\end{array}$$

(i) where
$$\cos^2 z = \frac{1}{2} \left(1 + \cos 2x \right)$$

$$\cos^2 \frac{\pi}{12} = \frac{1}{2} \left(1 + \cos \frac{\pi}{6} \right)$$

$$= \frac{1}{2} \left(1 + \frac{3}{2} \right)$$

sign of
$$\cos \frac{\pi}{2}$$
: $0 \le \frac{\pi}{12} \le \frac{\pi}{2}$, positive $\cos \frac{\pi}{12} = \frac{1}{2} \left(\frac{\pi}{2} \right) = \frac{1}{2}$

(ii) un
$$\frac{1}{12} = \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$= \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{$$

Problem 2 (a)

 $(f \circ g)(x) = f(g(x)) = f(\sqrt{x+2}) = 2 - (\sqrt{x+2})^2 = -x, x > -2.$ $(g \circ f)(x) = f(g(x)) = g(2 - x^2) = \sqrt{(2 - x^2) + 2} = \sqrt{4 - x^2}$

Domain of fog: $[-2, \infty)$.

Domain of gof: [-2, 2].

Range of fog: $(-\infty, 2]$.

Range of gof; [0, 2].

Orables 7 (b)

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{1-x}) = \sqrt{\sqrt{1-x}} = \sqrt[4]{1-x}.$$

 $(g \circ f)(x) = f(g(x)) = g(\sqrt{x}) = \sqrt{1-\sqrt{x}}$

Domain of fog: $(-\infty, 1]$.

Domain of gof: [0, 1].

Range of fog: $[0, \infty)$.

Range of gof: [0, 1].

Vollen 3

$$\sin^2 x + \cos^2 x = 1 \implies \sin^2 x = 1 - \cos^2 x = (1 - \cos x)(1 + \cos x)$$

$$\Rightarrow (1 - \cos x) = \frac{\sin^2 x}{1 + \cos x} \Rightarrow \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$$

$$\Rightarrow \frac{1-\cos x}{\sin x} = \frac{\sin x}{1+\cos x}$$

Poller 4

(a) The given graph is reflected about the y-axis.

(c) The given graph is shifted left I unit, stretched vertically by a factor of 2, reflected about the x-axis, and then shifted upward 1 unit.

(b) The given graph is reflected about the x-axis.

(d) The given graph is shifted right 2 units, stretched vertically by a factor of 3, and then shifted downward 2 units.

Extra

- We use reasoning similar to Exercise (1) We use a grant (1) 1st quadrant: y + |y| = x + |x|
 - $\Leftrightarrow 2y = 2x \Leftrightarrow y = x.$
- (2) 2nd quadrant: y + |y| = x + |x| $\Leftrightarrow 2y = x + (-x) = 0 \Leftrightarrow y = 0$.
- (3) 3rd quadrant: y + |y| = x + |x|
 ⇔ y + (-y) = x + (-x) ⇔ 0 = 0
 ⇒ all points in the 3rd quadrant satisfy the equation.
- (4) 4th quadrant: y + |y| = x + |x|
 ⇔ y + (-y) = 2x ⇔ 0 = x. Combining these results we have the graph given at the right:

