Equivalenza tra riduzione gaussiana e fattorizzazione LU

Teorema: data $A \in \mathbb{R}^{n \times n}$,

$$\det A(1:k,1:k) \neq 0 \quad \forall k = 1, \dots, n-1$$

$$\iff a_{kk}^{(k-1)} \neq 0 \quad \forall k = 1, \dots, n-1,$$

cioè nelle ipotesi del teorema di esistenza ed unicità della fattorizzazione LU, il metodo di Gauss non richiede scambi di righe.

Fattorizzazione LU con Gauss

Possiamo definire delle matrici elementari di Gauss $E^{(1)}, \dots, E^{(n-1)}$ tali che:

$$A^{(k)} = E^{(k)}A^{(k-1)}.$$

Tali matrici hanno la forma $E^{(k)} = I - m^{(k)}e_k^t$. Allora:

$$\underbrace{A^{(n-1)}}_{U} = \underbrace{E^{(n-1)} \cdots E^{(1)}}_{L^{-1}} A.$$

Non occorre moltiplicare esplicitamente le matrici, per le proprietà delle matrici elementari di Gauss:

$$L = \begin{pmatrix} 1 & & & & \\ m_2^{(1)} & 1 & & & \\ m_3^{(1)} & m_3^{(2)} & 1 & & \\ \vdots & \vdots & \dots & \ddots & \\ m_n^{(1)} & m_n^{(2)} & & & 1 \end{pmatrix}$$