Lista nr 7 z matematyki dyskretnej

- 1. Ile jest wyrazów złożonych z n liter należących do 25-literowego alfabetu łacińskiego, zawierających parzystą liczbę liter a?
- 2. Znajdź ogólną postać rozwiązań następujących równań rekurencyjnych za pomocą anihilatorów i rozwiąż jedno z równań do końca:
 - (a) $a_{n+2} = 2a_{n+1} a_n + 3^n 1$, gdy $a_0 = a_1 = 0$.
 - (b) $a_{n+2} = 4a_{n+1} 4a_n + n2^{n+1}$, gdy $a_0 = a_1 = 1$.
 - (c) $a_{n+2} = \frac{1}{2^{n+1}} 2a_{n+1} a_n$, gdy $a_0 = a_1 = 1$.
- 3. Niech c_n oznacza liczbę ciągów długości n złożonych z n cyfr ze zbioru $\{0,1,2\}$, nie zawierających dwóch następujących po sobie zer i dwóch następujących po sobie jedynek. Wyprowadź zależność rekurencyjną, jaką spełniają liczby c_n przyjmując $c_0=1$. Rozwiąż otrzymaną zależność rekurencyjną.
- 4. Na ile sposobów można rozdać n różnych nagród wśród czterech osób A, B, C, D tak, aby:
 - (a) A dostała przynajmniej jedną nagrodę?
 - (b) A lub B nie dostała nic?
 - (c) Zarówno A jak i B dostała przynajmniej jedną nagrodę?
 - (d) Przynajmniej jedna spośród A, B, C nic nie dostała?
 - (e) Każda z 4 osób coś dostała?
- 5. Rozwiąż równanie rekurencyjne $a_n + 5a_{n-1} + 6a_{n-2} = 3n^2$, jeśli $a_0 = 1, a_1 = 4$.
- 6. Rozwiąż zależności rekurencyjne:
 - (a) $c_0 = 1, c_n = c_0 + c_1 + \dots, c_{n-1}$
 - (b) $d_0 = 1, d_1 = 2, d_n = d_{n-1}^2 / d_{n-2}$.
- 7. Rozwiąż za pomocą anihilatorów następującą zależność rekurencyjną: $a_0=0, a_1=1, a_2=3, \ a_{n+3}=a_n.$

Katarzyna Paluch