# COMPARACIÓN CIRCUITOS COMBINACIONALES – SECUENCIALES.

| CIRCUITOS COMBINACIONALES                                                                                                                                       | CIRCUITOS SECUENCIALES                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Ejemplo: <b>sumador</b> (aritmético).                                                                                                                         | • Ejemplo: <b>contador</b> .                                                                                                                                                                                                                          |
| <ul> <li>Para cada combinación de valores de las<br/>variables de entrada, siempre se repiten<br/>los mismos valores de las variables de<br/>salida.</li> </ul> | Las salidas no sólo dependen de las<br>entradas, sino también del estado<br>(determinado por las entradas pasadas).                                                                                                                                   |
| Salidas actuales = f(entradas actuales)                                                                                                                         | <ul> <li>Salidas actuales = f(entradas actuales,<br/>estado)</li> </ul>                                                                                                                                                                               |
| No hay evolución de estados.                                                                                                                                    | Hay evolución de estados, <b>secuencia</b> de estados.                                                                                                                                                                                                |
| Circuitos sin memoria.                                                                                                                                          | Circuitos con memoria.                                                                                                                                                                                                                                |
| Pueden definirse mediante tablas de verdad, en las que exclusivamente aparecen las entradas actuales y las salidas actuales.                                    | No pueden definirse mediante tablas de<br>verdad, en las que exclusivamente<br>aparecen las entradas actuales y las<br>salidas actuales. Se necesitan otras tablas<br>diferentes en las que también debe<br>figurar el estado o las entradas previas. |
| • Elemento constructivo: <b>puertas lógicas</b> .                                                                                                               | Elemento constructivo: biestables.  Los biestables son circuitos construidos con puertas lógicas interconectadas mediante realimentación: algunas salidas se llevan de nuevo a las entradas, para poder tener conocimiento de la historia previa.     |



Figura A.34. Ejemplo de un visualizador LED de siete segmentos.





(b)  $F = \overrightarrow{BCD} + \overrightarrow{ACD}$ 

Figura A.9. Grupos solapados.

| Número         | Entrada |     |     |     |        | Salida |   |     |   |
|----------------|---------|-----|-----|-----|--------|--------|---|-----|---|
|                | Α       | В   | C · | D   | Número | W      | Х | Υ   | Z |
| . 0            | 0       | 0   | 0   | 0   | 1      | 0      | 0 | 0   | 1 |
| 1              | 0       | 0   | 0   | 1   | 2      | 0      | 0 | 1   | 0 |
| 2              | 0       | 0   | 1   | 0   | 3      | 0      | 0 | 1   | 1 |
| . 3            | 0       | 0   | 1   | . 1 | 4      | 0      | 1 | 0   | 0 |
| : 4            | 0       | 1 - | 0   | 0   | 5      | 0.     | 1 | 0   | 1 |
| .5             | 0       | 1   | 0   | 1   | 6      | 0      | 1 | 1   | 0 |
| 6              | 0 ,     | 1   | 1   | 0   | - 7    | 0      | 1 | 1   | 1 |
| 7              | 0 '     | 1   | 1   | 1   | 8      | 1      | 0 | 0   | 0 |
| . 8            | 1       | 0   | 0   | 0   | 9      | 1      | 0 | 0   | 1 |
| 9              | 1 .     | 0   | 0   | 1   | 0      | 0      | 0 | 0   | 0 |
| (              | 1       | 0   | 1   | 0   |        | d      | d | d.  | d |
|                | 1       | 0   | 1   | 1   |        | d      | d | d   | d |
| Indiferencias  | 1       | 1   | 0   | 0   |        | d      | d | d . | d |
| indirefericias | 1       | 1   | 0   | 1   | 1      | d      | d | d   | d |
|                | 1       | 1   | 1   | 0   |        | d      | d | d   | d |
|                | 1       | 1   | 1   | 1   |        | d      | d | d   | d |

ENTRADA:

Nº BCD 0-9

COMBINACIONAL

CIRCUITO

COMBINACIONAL

(BCD)

- código BCD (Decimal Codificado en Binario):

| Nº decim | 0       | 1 | Bo | 5 | . ( |   |       |
|----------|---------|---|----|---|-----|---|-------|
| N. decim | <u></u> | 8 | 4  | 2 | 1   | 4 | PESOS |
|          | 0       | 0 | ٥  | ٥ | 0   |   |       |
|          | 1       | 0 | ٥  | 0 | 1   |   |       |
|          | 2       | 0 | ٥  | 1 | ٥   |   |       |
|          | 3       | 0 | ٥  | 1 | 1   |   |       |
| · ·      | 4       | 0 | 1  | 0 | ۵   |   |       |
|          | 5       | 0 | 1  | ٥ | 1   |   |       |
|          | 6       | 0 | 1  | 1 | 0   |   |       |
|          | 7       | 0 | 1  | 1 | 1   |   |       |
|          | 8       | 1 | Ó  | ٥ | 0   |   |       |
|          | 9       | 1 | ^  | ^ |     |   |       |





Figura A.19. Ejemplo de un conjunto lógico programable.

Table A.8 Truth Table for a ROM

|   | Input |   |   |   | Output |   |   |  |  |
|---|-------|---|---|---|--------|---|---|--|--|
| 0 | 0     | 0 | 0 | 0 | 0      | 0 | 0 |  |  |
| 0 | 0     | 0 | 1 | 0 | 0      | 0 | 1 |  |  |
| 0 | 0     | 1 | 0 | 0 | 0      | 1 | 1 |  |  |
| 0 | 0     | 1 | 1 | 0 | 0      | 1 | 0 |  |  |
| 0 | 1     | 0 | 0 | 0 | 1      | 1 | 0 |  |  |
| 0 | 1     | 0 | 1 | 0 | 1      | 1 | 1 |  |  |
| 0 | 1     | 1 | 0 | 0 | 1      | 0 | 1 |  |  |
| 0 | 1     | 1 | 1 | 0 | 1      | 0 | 0 |  |  |
| 1 | 0     | 0 | 0 | 1 | 1      | 0 | 0 |  |  |
| 1 | 0     | 0 | 1 | 1 | 1      | 0 | 1 |  |  |
| 1 | 0     | 1 | 0 | 1 | 1      | 1 | 1 |  |  |
| 1 | 0     | 1 | 1 | 1 | 1      | 1 | 0 |  |  |
| 1 | 1     | 0 | 0 | 1 | 0      | 1 | 0 |  |  |
| 1 | 1     | 0 | 1 | 1 | 0      | 1 | 1 |  |  |
| 1 | 1     | 1 | 0 | 1 | 0      | 0 | 1 |  |  |
| 1 | 1     | 1 | 1 | 1 | 0      | 0 | 0 |  |  |



Figura A.20. ROM de 64 bit.



Figura A.32. Contador ondulado.

(b) Diagrama de tiempo

 $Q_3$ 



## **DISEÑO DE CIRCUITOS SECUENCIALES**

#### **ASPECTOS GENERALES**

#### **VARIABLES**

De entrada: "X" (X<sub>0</sub>, X<sub>1</sub>,...)
 De salida: "Z" (Z<sub>0</sub>, Z<sub>1</sub>,...)
 De estado: "Q" (Q<sub>0</sub>, Q<sub>1</sub>,...)

Estado actual: "Qn"Estado siguiente: "Qn+1"

## **NÚMERO DE BIESTABLES**

- El número de biestables necesarios depende del número de estados del circuito secuencial.
- Cada biestable aporta una variable de estado Q (representada por su salida).
- Si hay p biestables →
  p variables de estado (Q<sub>0</sub>, Q<sub>1</sub>,..., Q<sub>p-1</sub>) →
  pueden codificarse hasta 2<sup>p</sup> estados diferentes.

#### TIPOS DE CIRCUITOS SECUENCIALES

- Existen dos tipos de circuitos secuenciales: autómatas de Moore y de Mealy.
- Un mismo circuito secuencial puede definirse como autómata de Moore o de Mealy, aunque sus modos de funcionamiento no serán iguales.
- Por lo general, un autómata de Moore suele requerir más estados que el autómata de Mealy equivalente, por lo que puede necesitar más memoria (es decir, mayor número de biestables).

## **AUTÓMATA DE MOORE**

## **ECUACIONES**

• Evolución de estados:  $Q_{n+1} = f_1(Q_n, X_n)$ 

• Salida:  $Z_n = f_2(Q_n)$ 

 $\downarrow$ 

Las **salidas** sólo dependen del **estado**, no de las entradas. Durante cada estado se mantendrá el valor de las salidas.

### **ESQUEMA**



#### **DIAGRAMA DE ESTADOS**



## **AUTÓMATA DE MEALY**

## **ECUACIONES**

• Evolución de estados:  $Q_{n+1} = f_1(Q_n, X_n)$ 

Salida:  $Z_n = f_2(Q_n, X_n)$ 

 $\downarrow$ 

Las **salidas** dependen tanto del **estado** como de las **entradas**. Durante cada estado, las salidas pueden cambiar si lo hacen las entradas.

#### **ESQUEMA**



### **DIAGRAMA DE ESTADOS**

