Job : 66925-200 Plan : 1

DESIGN CRITERIA:

A. Code: CBC 2010, Wind: C, 85 mph, Category: D

B. Wood Species: Douglas Fir Larch with maximum 19% moisture content

prior to Installation of Finish Material

4X Members: No.2 or Better

6X, 8X Beams and Headers: No.1 or Better 2X Joists and Rafters: No.2 or Better

Plates and Blocking: Standard Grade or Better

Studs: Stud Grade or Better

Mud Sills: Pressure Treated Utility Grade or Better

PRIMARY ROOF LOADING

SECONDARY ROOF LOADING

Pitch		4.0:12	Pitch		4.0:12
K = Increase for pitch		1.05	K = Increase for pitch		1.05
Rafter(2x8 16" O/C) Joist(2x10 16" O/	C x K	6.10	Rafter(2x8 16" O/C) Joist(No Ceil'G Joists)	хK	2.70
Plywood(1/2")	хK	1.63	Plywood(1/2")	хK	1.63
		0.00			0.00
Shingle	хK	3.16	Shingle	хK	3.16
Sprinkler		1.00	Sprinkler		1.00
Misc.(Insul.,Elect.,ETC)		2.10	Misc.(Insul.,Elect.,ETC)		1.50
Snow Load		0.00	Snow Load		0.00
Live Load		20.00	Live Load		20.00
Dead Load		14.00	Dead Load		10.00

LATERAL SECTION

SHEET: L1 JOB NO.: 66925

DATE: 08/08/2012

CLIENT: REMODELING/ADDITION

SHEET : L-I : 66925 JOB NO. : Remodel CLIENT : 1

CBC 2010 PLAN NO. POURING NON MONO

DATE : 5/14/2012(Ver400)

Y DIRECTION SECTION IY

LATERAL ANALYSIS

BLDG DIMENSION (FT): BASE HT=0.5, SLOPE ROOF HT=14.0, GABLE MEAN ROOF HT=12.5, L=30.5, B=16.0

FLOOR HT (FT): 1-FLR=9.0

WIND PARAMETERS: WIND SPEED=85 MPH, WIND EXPOSURE=C COEFFICIENTS: K_d =0.85, K_{zt} =1.00, G=0.85, GC_{Di} = \pm 0.18, ω =1.00

INTERPOLATION: L/B \Rightarrow YES, h/L \Rightarrow YES, $\theta \Rightarrow$ YES, qh=13.35

WIND HEIGHT (FT): 15 UPLIFT (AVE.)

WALL PRESSURE ωP (PSF): 12.69 8.86

OVERHANGS: 19.00/1.50

GABLE: 16.00(WW)/15.50, 16.00(LW)/15.50

WIND LOAD ROOF (PLF): +Y/+GCpi=78.24(R) +Y/-GCpi=78.24(R) -Y/+GCpi=78.24(R) -Y/-GCpi=78.24(R) MAX TOTAL=78.24 R_v= 6.5. SITE CLASS: D. S_{DS}=2F₂S₅/3=2x1.00x1.50/3=1.000, S_{D1}=2F_vS₁/3=2x1.50x0.60/3=0.600, S_{DC}=D, k=1.0000

0.1099W $V=S_{DS}IW/1.4R_{y}=(1.000)(1.00)W/(1.4*6.5)=$

ROOF: DL ROOF = $14.0 \times 32.0 =$ 448.00 PLF 15.0[1.0(9.00-4.50)] = DL EXT WALL = 67.50 PLF DL INT WALL = 10.0[2.5(9.00-4.50)] = 112.50 PLF

SHEAR = 0.1099(448.00+67.50+112.50) = 0.1099(628.00) =69.01 PLF

TOTAL SEISMIC LOAD = 69.01 PLF (89.71 PLF) 69.01 =(DIAPH.ONLY)

ROOF: **78.24 PLF WIND GOVERN**

89.71 PLF **ROOF DIAPHRAGM** \lor = $89.71 \times 16.00 / (2 \times 30.50) =$ 23.53 PLF MAX SHEAR =

USE: 15/32" CDX RATED UNBLKED 32/16 W/8d COMMON NAILS AT 6", 6", 12" O.C.

 $89.71 \times 16.00 \times 16.00 / (8 \times 30.50) =$ CHORD FORCE = 94.13 LBS

SPLICE W/ MINI (5)16d SINKER NAILS EACH SIDE OF SPLICE @ 8 IN. O.C. (STANDARD CONSTRUCTION)

SHEET : L-2 : 66925 JOB NO. : Remodel CLIENT : 1

CBC 2010 PLAN NO. POURING NON MONO

DATE : 5/14/2012(Ver400)

X DIRECTION SECTION IX

LATERAL ANALYSIS

BLDG DIMENSION (FT): BASE HT=0.5, SLOPE ROOF HT=14.0, GABLE MEAN ROOF HT=12.5, L=16.0, B=30.5

FLOOR HT (FT): 1-FLR=9.0

WIND PARAMETERS: WIND SPEED=85 MPH, WIND EXPOSURE=C COEFFICIENTS: K_d =0.85, K_{zt} =1.00, G=0.85, GC_{Di} = \pm 0.18, ω =1.00 $\text{INTERPOLATION:} \quad \text{L/B} \Rightarrow \text{YES,} \quad \text{h/L} \Rightarrow \text{YES,} \quad \theta \Rightarrow \text{YES,} \quad \text{qh=13.35}$

WIND HEIGHT (FT): 15 UPLIFT (AVE.)

WALL PRESSURE ωP (PSF): 14.75 8.95

ROOF: 30.50(WW)/8.00/18.43°, 30.50(LW)/8.00/18.43°; OVERHANGS: 32.00/3.00

WIND LOAD ROOF (PLF): MINIMUM LOAD=(10*5.00*1.00)+66.36=116.36 MAX TOTAL=116.36

 $R_x = 6.5$. SITE CLASS: D. $S_{DS} = 2F_aS_s/3 = 2 \times 1.00 \times 1.50/3 = 1.000$, $S_{D1} = 2F_vS_1/3 = 2 \times 1.50 \times 0.60/3 = 0.600$, $S_{DC} = D$, k = 1.0000

 $V=S_{DS}IW/I.4R_{x}=(1.000)(1.00)W/(1.4*6.5)=$ 0.1099W 14.0×19.0 = DL ROOF = 266.00 PLF ROOF: DL EXT WALL = 15.0[2.0(9.00-4.50)] =135.00 PLF DL INT WALL = 10.0[1.5(9.00-4.50)] =67.50 PLF

SHEAR = 0.1099(266.00+135.00+67.50) = 0.1099(468.50) =

51.48 PLF 51.48 PLF TOTAL SEISMIC LOAD = 51.48 = νοο, 3 (DIAPH.ONLY) 116.36 PLF (66.93 PLF)

ROOF: 116.36 PLF WIND GOVERN

ROOF DIAPHRAGM \lor = MAX SHEAR = $116.36 \times 25.00 / (2 \times 16.00) =$ 90.91 PLF

USE: 15/32" CDX RATED UNBLKED 32/16 W/8d COMMON NAILS AT 6", 6", 12" O.C.

CHORD FORCE = $116.36 \times 25.00 \times 25.00 / (8 \times 16.00) =$ 568.17 LBS

SPLICE W/ MINI (5) 16d SINKER NAILS EACH SIDE OF SPLICE @ 8 IN. O.C. (STANDARD CONSTRUCTION)

Tung Thanh Vo, M.S., P.E.

SHEARWALS DESIGN

2010-CBC

Job : 66925-200

Plan:1

Wind: 626 Seismic: 552

1 @Left of Elevation 1ST Floor 2-Pour Exterior Wall(Y Dir.)

Wind 626(Uplift on Roof=8.9 PSF) Seismic 928=(552+ 161)*1.30

Strap(E)

Drag Force Analysis

A: Simpson ST22 (1192 LB)

ALT (10) # 16d sinker per top plate splice

Total Wall Length = 30.25(FT) Total Panel Length = 4.00(FT) P.T./User Design

ρ = **1.30**

Shear Diaphragm = 928/30.25 = 31(PLF)

Use (3 A35) or (2 LS50) Along Line of Shear Panel or for Framing Clips Spacing See S.W. Schedule

Design Wall Shear(S) = 928/4.00= 232(PLF)(Flexible, SW V_allow(Seismic) Ajusted for H/W Ratio) Max. Drag = 514(LB)

Use TYPE 2

Max. Panel Deflection: \triangle M = (4.0/1.0) x \triangle s x 1.4 = 1.671" <= 0.02 x 108.0 = 2.160"

Dead Loads: Wall 135.0= 15 * 9.0'

Roof_P 56.0 = 14 * 8.0/2 FROM 0.0' TO 30.0'

OVERTURN ANALYSIS UPLIFT(T) DOWN(C)
Panel A Left Side : T = 2077(LB) C= 2289(LB)

Right Side : T= 2077(LB) C= 2289(LB)

HDU2/4x4 HDU2/4x4

Use HDU2/4x4 on both ends w/(2)5/8" x 12" Anchor Bolt (@ 48" O.C. Max.)

Job: 66925-200

Plan: 1

Wind: 626 Seismic: 552

@Right of Elevation 1ST Floor 2-Pour **Exterior Wall(Y Dir.)**

Wind 626(Uplift on Roof=8.9 PSF) Seismic 968=(552+ 192)*1.30

Strap(E)

Drag Force Analysis

ALT (10) # 16d sinker per top plate splice A: Simpson ST22 (1192 LB) Total Wall Length = 30.25(FT) Total Panel Length = 4.00(FT) P.T./User Design

Shear Diaphragm = 968/30.25 = 32(PLF)

= 1.30

HDU2/4x4

Use (3 A35) or (2 LS50) Along Line of Shear Panel or for Framing Clips Spacing See S.W. Schedule Design Wall Shear(S) = 968/4.00= 242(PLF)(Flexible, SW V_allow(Seismic) Ajusted for H/W Ratio) Max. Drag = 504(LB)

Use TYPE 2

Max. Panel Deflection:

 \triangle M = (4.0/1.0) x \triangle s x 1.4 = 1.775" <= 0.02 x 108.0 = 2.160"

Dead Loads:

Wall 135.0= 15 * 9.0'

0.0 = 14 * 0.0/2 FROM 0.0' TO 65.0' Roof_P

OVERTURN ANALYSIS UPLIFT(T) DOWN(C) A : T = 2225(LB) C = 2348(LB)Panel Left Side Right Side : T= 2225(LB) C= 2348(LB)

HDU2/4x4 Use HDU2/4x4 on both ends w/(2)5/8" x 12" Anchor Bolt (@ 48" O.C. Max.)

Job: 66925-200

Plan: 1

Wind: 1455 Seismic: 644

@Rear of Master Bath 1ST Floor 2-Pour Exterior Wall(X Dir.)

> Wind 1455(Uplift on Roof=8.9 PSF) Seismic 973=(644+ 105)*1.30

Strap(E)

Drag Force Analysis

A: Simpson ST22 (1192 LB)

ALT (10) # 16d sinker per top plate splice

Total Wall Length = 16.00(FT) Total Panel Length = 8.00(FT) P.T./User Design

Shear Diaphragm = 1455/16.00 = 91(PLF)

= 1.30

Use (4 A35) or (3 LS50) Along Line of Shear Panel or for Framing Clips Spacing See S.W. Schedule Design Wall Shear(W) = 1455/8.00= 182(PLF)(Flexible) Max. Drag = 386(LB)

Use TYPE 1

Max. Panel Deflection:

 \triangle M = (4.0/1.0) x \triangle s x 1.4 = 0.588" <= 0.02 x 108.0 = 2.160"

Dead Loads:

135.0= 15 * 9.0' Wall

70.0 = 14 *10.0/2 FROM 0.0' TO 16.0' Roof_P

OVERTURN ANALYSIS Panel Left Side

UPLIFT(T) DOWN(C) : T= 1458(LB) C= 1930(LB) Right Side : T= 1391(LB) C= 1930(LB)

HDU2/4x4 HDU2/4x4

Use HDU2/4x4 on both ends w/(2)5/8" x 12" Anchor Bolt (@ 72" O.C. Max.)

Job: 66925-200 Plan: 1

Wind: 1978 Seismic: 875

@Front of Dining Room 1ST Floor 2-Pour Exterior Wall(X Dir.)

> Wind 1978(Uplift on Roof=8.9 PSF) Seismic 1253=(875+ 89)*1.30

T HD Strap(E)

A: Simpson ST22 (1192 LB)

ALT (10) # 16d sinker per top plate splice

Total Wall Length = 16.00(FT) Total Panel Length = 11.25(FT) P.T./User Design

Shear Diaphragm = 1978/16.00 = 124(PLF)

= 1.30

Use (5 A35) or (4 LS50) Along Line of Shear Panel or for Framing Clips Spacing See S.W. Schedule Design Wall Shear(W) = 1978/11.25= 176(PLF)(Flexible) Max. Drag = 495(LB)

Use TYPE 1

Max. Panel Deflection:

 \triangle M = (4.0/1.0) x \triangle s x 1.4 = 0.426" <= 0.02 x 108.0 = 2.160"

Dead Loads:

Wall 135.0= 15 * 9.0'

70.0 = 14 *10.0/2 FROM 0.0' TO 0.0' Roof_P

OVERTURN ANALYSIS UPLIFT(T) DOWN(C) Left Side : T = 1169(LB) C = 1625(LB)Panel

HDU2/4x4(I) w/DBL BLK'G ***

Right Side : T = 1169(LB) C = 1625(LB)

HDU2/4x4(Í) w/DBL BLK'G ***

Use HDU2/4x4(I) on both ends w/(2)5/8" x 12" Anchor Bolt (@ 72" O.C. Max.)

⁽I) Holdown inside of panel

^{***} User prefered

Tung Thanh Vo, M.S., P.E.

BEAMS DESIGN

2010-CBC

Job : 66925-200

Plan : 1

Beam ID: 1 Hip Bm Over the Master Bath

Loads (Downward +)

Beam Weight 20.0 PLF @ 0.0' to 11.0' Secondary Roof 0 PLF= 0.0'x(10+20)/2 @ 0.00' to

240 PLF=16.0'x(10+20)/2 @11.00'

Reactions(DL+LL/Max. Load Combination)
Down 550/550 990/990
Up 0/0 0/0

Use DFL NO2 2-2 x 10(Fb= 900 Fv=180)

Critical Shear =-905 LB @10.67' 1.5xShear/(FvxA)=0.217

Fv=225 A= 27.75

Critical Moment =2159 LBxFT @ 6.25' Ratio=0.489

Fb= 1238 S= 42.78

Critical Deflection = -0.083 INCH @ 5.75'

Moment Diagram:DL + RF_L

Beam ID: 2 Clg Bm Over the Master Bath

Loads (Downward +)

Beam Weight 30.0 PLF from 0.0' to 15.3'
Point Load(P1) From right of BM 1 @ 7.50
Point Load(P2) From left of BM 1 @ 7.50

▼:Point Load Location

Reactions(DL+LL/Max. Load Combination)
Down 1011/1011 986/986
Up 0/0 0/0

Use DFL NO2 4-2 x 10(Fb=900 Fv=180)

Critical Shear =1001 LB @ 0.33' 1.5xShear/(FvxA)=0.235

Fv=213 A= 52.25

Critical Moment =6742 LBxFT @ 7.50' Ratio=0.779

Fb= 1688 S= 82.73

Critical Deflection =-0.371 Inch @ 7.58' L/240=0.762

P2

Moment Diagram:DL + RF_L

Deflection Diagram:DL+LL

Job : 66925-200

Plan : 1

Beam ID: 3(Drop) Header @ Left of the Master Bedroom

Loads (Downward +)

20.0 PLF @ 0.0' to 8.3' Beam Weight

323 PLF=19.0'x(14+20)/2 @ 0.00' to 8.25' Primary Roof 30 PLF= 2.0'x15.0 @ 0.00' to 8.25' **Exterior Wall**

Reactions(DL+LL/Max. Load Combination) 1539/1539 1539/1539 Down Up 0/0 0/0

Use DFL NO2 4 x 10(Fb= 900 Fv=180)

LB @ 0.33' 1.5xShear/(FvxA)=0.291 Critical Shear =1414

Fv=225 A= 32.38

Critical Moment =3173 LBxFT @ 4.17' Ratio=0.573

Fb= 1331 S= 49.91

INCH @ 4.17' Critical Deflection = -0.054

Moment Diagram:DL + RF_L

Beam ID: 4(Drop) Header @ Left of the Master Bedroom

Loads (Downward +)

Beam Weight 20.0 PLF from 0.0' to 6.3'

Primary Roof 323 PLF=19.0'x(14+20)/2 @ 0.00' to 6.25' **Exterior Wall** 30 PLF= 2.0'x15.0 @ 0.00' to 6.25'

Reactions(DL+LL/Max. Load Combination) Down 1166/1166 1166/1166 Up 0/0 0/0

Use DFL NO2 4 x 8(Fb= 900 Fv=180)

Critical Shear =1041LB @ 0.33' 1.5xShear/(FvxA)=0.274

Fv=225 A= 25.38

Critical Moment =1821 LBxFT @ 3.17' Ratio=0.491

Fb= 1451 S= 30.66

INCH @ 3.17' Critical Deflection = -0.037

Moment Diagram:DL + RF_L

Deflection Diagram:LL