Rajalakshmi Engineering College

Name: KAVYA SRIRAM

Email: 241901045@rajalakshmi.edu.in

Roll no: 241901045 Phone: 8939657782

Branch: REC

Department: I CSE (CS) FA

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 5

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

In his computer science class, John is learning about Binary Search Trees (BST). He wants to build a BST and find the maximum value in the tree.

Help him by writing a program to insert nodes into a BST and find the maximum value in the tree.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the nodes to insert into the BST.

Output Format

The output prints the maximum value in the BST.

Refer to the sample output for formatting specifications.

```
Sample Test Case
```

```
Input: 5
    1051527
    Output: 15
    Answer
    #include <stdio.h>
   #include <stdlib.h>
    struct TreeNode {
      int data:
      struct TreeNode* left:
      struct TreeNode* right;
    };
    struct TreeNode* createNode(int key) {
      struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct
    TreeNode));
      newNode->data = key;
      newNode->left = newNode->right = NULL;
      return newNode;
    struct TreeNode* insert(struct TreeNode* root, int key) {
      if (root == NULL) {
        return createNode(key);
      if (key < root->data) {
        root->left = insert(root->left, key);
      } else {
        root->right = insert(root->right, key);
      return root;
int findMax(struct TreeNode* root) {
```

```
241901045
                                                           241901045
        while (root->right != NULL) {
          root = root->right;
        return root->data;
     int main() {
        int N, rootValue;
        scanf("%d", &N);
        struct TreeNode* root = NULL;
; N; i+

mit key;

scanf("%d", &key);

if (i == 0) root\/c'

root
        for (int i = 0; i < N; i++) {
                                                                                         24,190,1045
          if (i == 0) rootValue = key;
          root = insert(root, key);
        int maxVal = findMax(root);
        if (maxVal != -1) {
          printf("%d", maxVal);
       }
        return 0;
                                                                                Marks : 10/10
     Status: Correct
```

24,190,1045

241901045

241901045

24,190,1045