# 16-665 Robot Mobility: Homework 01 (AD)

Name: Kavin Kailash Ravie

Andrew ID: kravie Date: 09/21/2023

# **Question 1.1 - Pepy KBM Model Derivation**



**Pepy Kinematic Bicycle Model Geometry** 

From the above geometry, we formalize the following trivial observations

$$\frac{dx}{dt} = V cos(\phi)$$
 
$$\frac{dy}{dt} = V sin(\phi)$$
 
$$\frac{d\phi}{dt} = \omega$$

But we need to express the angular velocity  $\omega$  in terms of the known variables. This can be achieved by analyzing the  $\Delta ABC$ .

We have,  $\angle CBA = 90^{\circ} - \delta_f$ 

And hence,  $\angle BCA = \delta_f$  and we note that  $tan(\delta_f) = \frac{l_f + l_r}{R}$ 

where R is the instantaneous radius of curvature of the vehicle.

But, 
$$V=R\omega$$
, so  $\ \omega=Vrac{tan(\delta_f)}{l_f+l_r}$ 

Finally we obtain:

$$\frac{d\phi}{dt} = \omega = V \frac{tan(\delta_f)}{l_f + l_r}$$

Additionally we have the curvature  $\frac{1}{R}=\frac{tan(\delta_f)}{l_f+l_r}$  , this expression will be useful in Question 3.

### **Assumptions:**

- Purely kinematic formulation without inclusion of any dynamic factors.
- No rear-wheel steering
- No tire-slip (velocity at the tires always along the tire)
- Real and Front axles clumped as single front and rear wheels

# **Question 1.2 - Kong Model Derivation**



**Kong Kinematic Bicycle Model Geometry** 

From the above figure for the Kong model. We make the following trivial observations:

$$\frac{dx}{dt} = V\cos(\phi + \beta)$$

$$\frac{dy}{dt} = V\sin(\phi + \beta)$$

$$\frac{d\phi}{dt} = \omega$$

But as in the case with the analysis done for **Pepy** model, we need to further express the angular velocity  $\omega$  in terms of the given variables.

In 
$$\Delta \text{CAD},~ \angle ACD=180^{\circ}-\angle CDA-90^{\circ},$$
 but  $~\angle CDA=90-\beta$  (i.e  $180^{\circ}-90^{\circ}-\beta$  ), hence  $~\angle ACD=\beta$ 

Then we have,

$$sin(\beta) = \frac{l_r}{R} \implies R = \frac{l_r}{sin(\beta)}$$

As V=R 
$$\omega$$
 , we obtain  $~\omega=V\frac{sin(\beta)}{l_r}~$  giving us  $~\omega=\frac{Vsin(\beta)}{l_r}$ 

### **Assumptions:**

- Purely kinematic formulation without inclusion of any dynamic factors.
- No rear-wheel steering
- No tire-slip (velocity at the tires always along the tire)
- Real and Front axles clumped as single front and rear wheels

#### **Question 1.3**

A.

No, this does not mean that the vehicle slip is zero. It just means that with this
choice of placing the body-fixed coordinate reference, we no longer have to deal
with the vehicle slip for our analysis. But in reality, the vehicle would still
experience a vehicle slip when measured at the CoG. The expression for this can

be obtained as: 
$$\beta = atan(\frac{l_r\omega}{V}) \implies \beta = atan(\frac{tan(\delta_f)l_r}{lf + lr})$$

B.

- Vehicle Slip refers to the angle made by the velocity vector w.r.t the vehicle longitudinal axis.
- Tire Slip refers to the angle made b/w the velocity vector at the tires and the tire longitudinal axis.
- Yes, it is possible to have vehicle-slip without having any tire-slip, this is apparent from our analysis above for the Kong model where we have neglected any tire-slip affects and still ended up with a non-zero vehicle-slip. This is because vehicle-slip depends on the geometry of the vehicle and the choice of reference frame.

# **Question 1.4 - Pepy Model Simulation**

Common Simulation Parameters: V = 2.50 m/sec, Tf = 5.0 sec and dt = 0.05 sec

### Part A: Constant Steering Inputs (units in degrees)



The mathematical expression for the path radius of curvature can be obtained from the expression derived in Q1.1, and it is as follows:

$$R = \frac{l_f + l_r}{tan(\delta_f)}$$

but , 
$$l_f = l_r = 1.50$$
 hence,  $R = \frac{3.0}{tan(\delta_f)}$ 

Case 2: Sinusoidal Steering Input (units in degrees)



• I expected the vehicle to follow a sinusoidal path about the global frame x-axis (as initial yaw state = 0.0), but we observe a different behavior from the plots (the path diverging from the x-axis). This can be explained by the fact that the vehicle position and heading/yaw is continually changing, causing a non-zero Hysteresis effect over the entire input cycle.

Case 3: Square-waved Steering Input (units in degrees)



- This is unrealistic because the rising and dropping edges of a perfect square wave have infinite slope implying that the desired rate of change of Yaw would be infinitely high. But in reality as physical systems have a maximum bound on this imposed by the mechanical design, dynamics, controllers and many other factors.
- Hence to alleviate this irregularity, I would instead use a trapezoidal steering profile (ramp), with the slopes of the rising and falling edges corresponding to the maximum attainable Yaw rates by the physical system.

#### Code

```
close all;
clear all;
clc;
% Model Parameters
lf = 1.50;
lr = 1.50;
A = [lf, lr]';
%% Part A
% Control Inputs
v = 2.50;
df = linspace(-pi/4, pi/4, 10);
% Simultaion Time
dt = 0.05; Tf = 5.0;
ts = linspace(0, Tf, Tf/dt);
% Logging
X_log = zeros(3, length(ts), length(df));
X = [0,0,0]';
for i = 1:length(df)
X = [0,0,0]';
for j = 1:length(ts)
X = simulate_step(@pepyKBM,A,X,[v,df(i)],dt);
X \log(:,j,i) = X';
end
end
title('Path for Various Steering Inputs')
hold on;
grid on;
axis equal;
for i = 1:length(df)
plot(X log(1,:,i), X log(2,:,i), 'DisplayName', strcat('delta=', num2str((df(i)*180
/pi))))
end
xlabel("X [m]")
ylabel("Y [m]")
title('Path for Various Steering Inputs')
legend('show')
figure;
hold on;
grid on;
% axis equal;
for i = 1:length(df)
plot(ts, X_log(1,:,i),'DisplayName',strcat('delta=',num2str((df(i)*180/pi))))
xlabel("t [s]")
ylabel("X [m]")
legend('show')
```

```
title('X Trajectory')
figure;
hold on;
grid on;
% axis equal;
for i = 1:length(df)
plot(ts, X log(2,:,i), 'DisplayName', strcat('delta=', num2str((df(i)*180/pi))))
xlabel("t [s]")
ylabel("Y [m]")
legend('show')
title('Y Trajectory')
figure;
hold on;
grid on;
% axis equal;
for i = 1:length(df)
plot(ts,
180/pi*X log(3,:,i), 'DisplayName', strcat('delta=', num2str((df(i)*180/pi))))
xlabel("t [s]")
ylabel("\Phi [deg]")
legend('show')
title('\Phi Trajectory')
%% Part B
% Simulation Time
dt = 0.05; Tf = 5.0;
ts = linspace(0, Tf, Tf/dt);
% Control Inputs
v = 2.50;
df amp = [pi/8, pi/6, pi/4];
df = zeros(3, length(ts));
df freq = 0.5;
for i=1:length(df amp)
df(i,:) = df amp(i)*sin(2*pi*df freq*ts);
end
% Logging
X \log = zeros(3, length(ts), length(df));
X = [0, 0, 0]';
for i = 1:length(df amp)
X = [0,0,0]';
for j = 1:length(ts)
X = simulate step(@pepyKBM, A, X, [v, df(i, j)], dt);
X \log(:,j,i) = X';
end
end
figure;
hold on;
grid on;
```

```
% axis equal;
for i = 1:length(df amp)
plot(X log(1,:,i),X log(2,:,i),'DisplayName',strcat('delta {amp})
=', num2str((df amp(i)*180/pi))))
end
xlabel("X [m]")
ylabel("Y [m]")
legend('show')
title('Path for Sinusoidal Steering Input')
figure;
hold on;
grid on;
% axis equal;
for i = 1:length(df amp)
plot(ts, X log(3,:,i), 'DisplayName', strcat('delta amp=', num2str((df amp(i)*180/p
i))))
end
ylabel("\delta f [rad]")
xlabel("t [s]")
legend('show')
title('Steering Input (\delta f) ')
% figure;
% plot(ts,X)
%% Part C
% Simulation Time
dt = 0.05; Tf = 5.0;
ts = linspace(0, Tf, Tf/dt);
% Control Inputs
v = 2.50;
df amp = [pi/8, pi/6, pi/4];
df = zeros(3, length(ts));
df freq = 0.5;
for i=1:length(df amp)
df(i,:) = df amp(i)*square(2*pi*df freq*ts);
end
% Logging
X \log = zeros(3, length(ts), length(df));
X = [0,0,0]';
for i = 1:length(df amp)
X = [0, 0, 0]';
for j = 1:length(ts)
X = simulate step(@pepyKBM, A, X, [v, df(i, j)], dt);
X \log(:,j,i) = X';
end
end
figure;
hold on;
grid on;
axis equal;
```

```
for i = 1:length(df amp)
plot(X log(1,:,i), X log(2,:,i), 'DisplayName', strcat('delta {amp}=', num2str((df
amp(i)*180/pi))))
end
xlabel("X [m]")
ylabel("Y [m]")
legend('show')
title('Path for Square-waved Steering Input')
hold on;
grid on;
% axis equal;
for i = 1:length(df amp)
plot(ts,df(i,:),'DisplayName',strcat('delta {amp}=',num2str((df amp(i)*180/pi))
))
ylabel("\delta f [rad]")
xlabel("t [s]")
legend('show')
title('Steering Input (\delta f) ')
figure
for i = 1:length(df amp)
plot(ts, df(i,:))
hold on;
plot(ts,X log(3,:,i),'DisplayName',strcat('delta {amp}=',num2str((df amp(i)*180
/pi))))
end
function Xdot = pepyKBM(A,X,U)
      Xdot = [0,0,0]';
      Xdot(1) = U(1) * cos(X(3));
      Xdot(2) = U(1) * sin(X(3));
      Xdot(3) = U(1) *tan(U(2)) / (A(1) + A(2));
end
function Xn = simulate_step(dynamics, A, X, U,dt)
Xn = X + dynamics(A, X, U)*dt;
end
```

### **Q2.1 Model Development**

```
% Model Parameters
m = 1573;
Iz = 2873;
lf = 1.10;
lr = 1.58;
Cf = 8e4;
Cr = 8e4;
Vx = 30;
% System Matrix
A = 2*[0, 1/2, 0, 0;
0, -(Cf+Cr)/(m*Vx), (Cf+Cr)/m, (-Cf*lf+Cr*lr)/(m*Vx);
0, 0, 0, 1/2;
0, -(Cf*lf-Cr*lr)/(Iz*Vx), (Cf*lf-Cr*lr)/Iz, -(Cf*lf^2+Cr*lr^2)/(Iz*Vx)];
%Control Matrix
B1 = [0;
2*Cf/m;
0;
2*Cf*lf/Iz;
];
%Feed-Forward Matrix
B2 = [0;
-2*(Cf*lf-Cr*lr)/(m*Vx) - Vx;
-2*(Cf*1f^2+Cr*1r^2)/(Iz*Vx)
];
```

# **Question 2.2 - DBM Lane Change using LQR**











```
Max Abs. Lateral Error: 0.081435 m
Max Abs. Heading Error: 0.009063 rad
Max Steering Rate: 8.884825 rad/s
>>
```

#### **Error Stats**

# Poles obtained from LQR, LQR Weights and LQR Gain

#### Poles obtained from LQR:

```
P = 1.0e+02 * -0.0411 + 0.0307i -0.0411 - 0.0307i -0.0605 + 0.0000i -1.1127 + 0.0000i
```

### **State Weight Matrix:**

Q =

7.5000 0 0 0 0 0.4200 0 0 0 0 25.0000 0 0 0 0 17.0000

#### **Control Penalty Weight:**

R=

5.5000

LOR Gain:

K =

1.1677 0.2031 9.1127 1.4891

#### Code

```
close all;
clear all;
clc;
% Model Parameters
m = 1573;
Iz = 2873;
lf = 1.10;
lr = 1.58;
Cf = 8e4;
Cr = 8e4;
Vx = 30;
% System Matrix
A = 2*[0, 1/2, 0, 0;
0, -(Cf+Cr)/(m*Vx), (Cf+Cr)/m, (-Cf*lf+Cr*lr)/(m*Vx);
0, 0, 0, 1/2;
0, -(Cf*lf-Cr*lr)/(Iz*Vx), (Cf*lf-Cr*lr)/Iz, -(Cf*lf^2+Cr*lr^2)/(Iz*Vx)];
%Control Matrix
B1 = [0;
2*Cf/m;
0;
2*Cf*lf/Iz;
%Feed-Forward Matrix
B2 = [0;
-2*(Cf*lf-Cr*lr)/(m*Vx) - Vx;
-2*(Cf*lf^2+Cr*lr^2)/(Iz*Vx)
];
응응
% Reference Path
strt seg len1 x = 5.0;
strt seg len2 x = 35.0;
slant seg len x = 90;
total path len = strt seg len2 x+strt seg len1 x+slant seg len x;
slant_seg_len_y = 5.0;
str seg1 y = -5.0;
str seg2 y = 0.0;
slant ang = atan2(slant_seg_len_y,slant_seg_len_x);
slant_seg_len = norm([slant_seg_len_x,slant_seg_len_y]);
%% Time Parametrization
dt = 0.01;
tf = (slant_seg_len + strt_seg_len2_x + strt_seg_len1_x)/Vx;
t_strt1 = strt_seg_len1_x/Vx;
t slant = t strt1+slant seg len/Vx;
ts1 = linspace(0,t strt1,floor(t strt1/dt));
ts2 = linspace(t strt1+dt,t slant,floor((t slant-t strt1)/dt));
```

```
ts3 = linspace(t_slant+dt,tf,floor((tf-t_slant)/dt));
ts = [ts1, ts2, ts3];
dphi_wind = 10*dt;
x ref = zeros(1,length(ts));
y ref = zeros(1,length(ts));
dy ref = zeros(1,length(ts));
phi ref = zeros(1,length(ts));
dphi ref = zeros(1,length(ts));
X ref = zeros(4,length(ts));
x act = zeros(1,length(ts));
x act(1) = 0;
x_ref(1:length(ts1)) = linspace(0,strt_seg_len1_x,length(ts1));
x ref(length(ts1)+1:length(ts1)+length(ts2)) = strt seg len1 x +
linspace(Vx*dt*cos(slant ang),slant seg len x, length(ts2));
x ref(length(ts1)+length(ts2)+1:length(ts)) =
linspace(Vx*dt+strt seg len1 x+slant seg len x,strt seg len1 x+slant seg len x
+strt seg len2 x,length(ts3));
y ref(1:length(ts1)) = str seg1 y;
y ref(length(ts1)+1:length(ts1)+length(ts2)) =
linspace(Vx*dt*sin(slant_ang)+str_seg1_y,str_seg2_y, length(ts2));
y ref(length(ts1)+length(ts2)+1:length(ts)) = str seg2 y;
dy ref(1:length(ts1)) = 0.0;
dy ref(length(ts1)+1:length(ts1)+length(ts2)) = Vx*sin(slant ang);
dy ref(length(ts1)+length(ts2)+1:length(ts)) = 0.0;
dphi1 start = floor((t strt1-dphi wind)/dt);
dphi1 end = floor((t strt1)/dt);
dphi2 start = floor((t slant-dphi wind)/dt);
dphi2 end = floor((t slant)/dt);
dphi ref(dphi1 start:dphi1 end) = slant ang/dphi wind;
dphi ref(dphi2 start:dphi2 end) = -slant ang/dphi wind;
% for i=1:length(dphi ref)-1
% dphi_ref(i) = (phi_ref(i+1)-phi_ref(i))/dt;
% end
% dphi ref(length(dphi ref)) = dphi ref(length(dphi ref)-1);
% for i=1:length(phi ref)-1
% phi ref(i) =
atan2(path ref(2,i+1)-path ref(2,i),path ref(1,i+1)-path ref(1,i));
% end
for i=2:length(phi ref)
phi ref(i) = phi ref(i-1) + dphi ref(i-1)*dt;
end
% phi ref(length(phi ref)) = phi ref(length(phi ref)-1);
% dphi ref(dphi1 start:floor((dphi1 end-dphi1 start)/2)) =
2*slant ang/dphi wind*linspace(0,1,floor((dphi1 end-dphi1 start)/2)+1);
% dphi ref(floor((dphi1 end-dphi1 start)/2):dphi1 end) =
2*slant ang/dphi wind*linspace(1,0,floor((dphi1 end-dphi1 start)/2)+1);
% dphi ref(dphi2 start:floor((dphi2 end-dphi2 start)/2)) =
-2*slant ang/dphi wind*linspace(0,1,floor((dphi2 end-dphi2 start)/2)+1);
```

```
% dphi_ref(floor((dphi2_end-dphi2_start)/2):dphi2_end) =
-2*slant ang/dphi wind*linspace(1,0,floor((dphi2 end-dphi2 start)/2)+1);
X \operatorname{ref}(1,:) = y \operatorname{ref};
X ref(2,:) = dy ref;
X \text{ ref}(3,:) = phi \text{ ref};
X \text{ ref}(4,:) = dphi \text{ ref};
%% Controller
Q = eye(4);
R = 5.5;
Q(1,1) = 7.50;
Q(2,2) = 0.42;
Q(3,3) = 25;
Q(4,4) = 17.0;
[K,S,P] = lqr(A,B1,Q,R);
% K = place(A,B1,[-20,-5.20+2.35i,-5.2-2.35i,-55]);
%% Simulation 1
X0 = [str seg1 y, 0, 0, 0]';
E = [0,0,0,0]';
traj act = zeros(2, length(ts));
E_log = zeros(4,length(ts));
U log = zeros(1,length(ts));
E \log(:,1) = [0,0,0,0]';
traj_act(1,1) = 0;
traj act(2,1) = str seg1 y;
Edot = zeros(4,1);
for i=2:length(ts)
curr yaw = (phi ref(i) + E(3));
traj_act(1,i) = x_ref(i) - E(1)*sin(curr_yaw) - E(2)*sin(curr_yaw)*dt;
traj act(2,i) = y ref(i) + E(1)*cos(curr yaw) + E(2)*cos(curr yaw)*dt;
E \log(:,i) = E;
U \log(i) = -K*E;
Edot = A*E-B1*K*E+B2*dphi ref(i);
E = E + Edot*dt;
end
% for i = 2:length(ts)
% x \arctan(i) = x \arctan(i-1) + Vx * \cos(X \log(3,i-1)) * dt;
fprintf('Max Abs. Lateral Error: %f m\n', max(abs(E log(1,:))))
fprintf('Max Abs. Heading Error: %f rad\n',max(abs(E log(3,:))))
fprintf('Max Steering Rate: %f rad/s\n',max(diff(U log)/dt))
% fprintf('Max Abs. Lateral Error: %f m\n',max(abs(X(1,:)'-y ref)))
% fprintf('Max Abs. Heading Error: %f rad\n',max(abs(X(3,:)'-phi ref)))
% fprintf('Max Steering Rate: %f rad/s\n',max(diff(-K*X')/dt))
%% Plotting
figure;
plot(x_ref, y_ref)
hold on;
grid on;
plot(traj act(1,:), traj act(2,:));
title('Reference vs Tracking')
```

```
xlabel('X [m]')
ylabel('Y [m]')
legend('reference', 'actual')
figure;
plot(ts, E log(1,:));
grid on;
title('Lateral Error')
xlabel('t [s]')
ylabel('y {err} [rad]')
% legend('reference', 'actual')
xline(t strt1,'--','Lane Exit','LineWidth',1.50,'Color','b')
xline(t_strt1+1.0,'--','1 sec from Exit','LineWidth',1.50,'Color','b')
xline(t slant,'--','Lane Entry','LineWidth',1.50,'Color','b')
xline(t slant+1.0,'--','1 sec from Entry','LineWidth',1.50,'Color','b')
yline(0.002,'--','Settling Bound','LineWidth',1.5,'Color','g')
yline(-0.002,'--','Settling Bound','LineWidth',1.5,'Color','g')
% yline(0.01,'--','Bound','LineWidth',2.0,'Color','r')
figure;
plot(ts, U log)
title('Steering Angle')
xlabel('t [s]')
ylabel('\delta f [rad]')
grid on;
% legend('reference', 'actual')
% yline(25,'--','Bound','LineWidth',2.0,'Color','r')
plot(ts(2:length(ts)),diff(U log)/dt)
hold on;
grid on;
title('Steering Rate')
xlabel('t [s]')
ylabel('\delta f'' [rad/s]')
% legend('reference', 'actual')
% yline(25,'--','Bound','LineWidth',1.50,'Color','r')
xline(t strt1,'--','Lane Exit','LineWidth',1.50,'Color','b')
xline(t strt1+1.0,'--','1 sec from Exit','LineWidth',1.50,'Color','b')
xline(t_slant,'--','Lane Entry','LineWidth',1.50,'Color','b')
xline(t slant+1.0,'--','1 sec from Entry','LineWidth',1.50,'Color','b')
figure
% plot(ts, X log(3,:))
hold on;
% plot(ts,phi ref)
plot(ts, E_log(3,:));
title('Heading Error')
xlabel('t [s]')
ylabel('\Phi_{err} [rad]')
% legend('reference', 'actual')
xline(t strt1,'--','Lane Exit','LineWidth',1.50,'Color','b')
xline(t strt1+1.0,'--','1 sec from Exit','LineWidth',1.50,'Color','b')
xline(t slant,'--','Lane Entry','LineWidth',1.50,'Color','b')
```

```
xline(t_slant+1.0,'--','1 sec from Entry','LineWidth',1.50,'Color','b')
yline(0.01,'--','Max Bound','LineWidth',1.5,'Color','r')
yline(-0.01,'--','Max Bound','LineWidth',1.5,'Color','r')
yline(0.0007,'--','Settling Bound','LineWidth',1.5,'Color','g')
yline(-0.0007,'--','Settling Bound','LineWidth',1.5,'Color','g')
% max(abs(phi ref-X log(3,:)))
grid on;
% % plot(ts, X log(1,:));
% figure;
% % plot(ts,x ref)
% % subplot(3,1,1);
% plot(x_ref,y_ref);
% hold on;
% plot(x_act, X_log(1,:))
% grid on;
% title('Reference vs Actual Path')
% xlabel('x [m]')
% ylabel('y [m]')
% legend('reference', 'actual')
% yline(0.01,'--','Bound','LineWidth',2.0,'Color','r')
%% Simulation 2
% [r, tout, sv] = lsim(ss(A-B1*K,B2,C,0), dphi_ref,
linspace(0,tf,length(dphi ref)), X);
function U = control(X,B1,K,B2,dphi des)
U = -B1*K*X + B2*dphi des;
end
```

# **Q2.4 DBM Curve Tracking**

# **Absolute Lateral Error**



# Absolute Heading Error



\_\_\_\_\_\_



### **Error Stats**

```
Max Abs. Lateral Error: 0.008028 m
Max Abs. Heading Error: 0.005315 rad
Max Steering Rate: 0.220246 rad/s
>>
```

# Poles obtained from LQR, LQR Weights and LQR Gain

#### Poles from LQR:

```
P =

-5.3027 + 9.1697i

-5.3027 - 9.1697i

-17.8412 +14.3428i

-17.8412 -14.3428i
```

### **State Weight Matrix**

```
Q = 15.0000 0 0 0 0 0 0.0050 0 0 0 30.0000 0 0 0 0 0.0050
```

### **Control Penalty Weight:**

```
R =
```

#### LQR Gain:

```
K = 3.8730 0.2679 4.7365 0.0877
```

# Question 2.6 Vx = 60

Note: Error Plots are Absolute values

```
Max Abs. Lateral Error: 0.052119 m
Max Abs. Heading Error: 0.038643 rad
Max Steering Rate: 1.062970 rad/s
>> |
```





# **Question 2.6 Vx = 100**

Note: Error Plots are Absolute values

```
Max Abs. Lateral Error: 0.173252 m
Max Abs. Heading Error: 0.123584 rad
Max Steering Rate: 3.338304 rad/s
>>
```





#### **Explanation / Observation**

We observe that upon increasing the longitudinal velocity of the vehicle (Vx), the Lateral and Heading errors also appear to increase.

#### **Code**

```
close all;
clear all;
clc;
% Model Parameters
m = 1573;
Iz = 2873;
lf = 1.10;
lr = 1.58;
Cf = 8e4;
Cr = 8e4;
Vx = 30;
% System Matrix
A = 2*[0, 1/2, 0, 0;
0\,,\,\,-\left(\texttt{Cf+Cr}\right)/\left(\texttt{m*Vx}\right)\,,\,\,\left(\texttt{Cf+Cr}\right)/\texttt{m}\,,\,\,\left(-\texttt{Cf*lf+Cr*lr}\right)/\left(\texttt{m*Vx}\right)\,;
0, 0, 0, 1/2;
0, -(Cf*lf-Cr*lr)/(Iz*Vx), (Cf*lf-Cr*lr)/Iz, -(Cf*lf^2+Cr*lr^2)/(Iz*Vx)];
%Control Matrix
B1 = [0;
2*Cf/m;
0;
2*Cf*lf/Iz;
];
%Feed-Forward Matrix
B2 = [0;
-2*(Cf*lf-Cr*lr)/(m*Vx) - Vx;
0;
-2*(Cf*lf^2+Cr*lr^2)/(Iz*Vx)
];
% Measurement Matrix
C = [1 \ 0 \ 0 \ 0;
0 0 1 0];
응응
% Reference Path
strt seg1 dur = 1.0;
strt seg1_len = Vx*strt_seg1_dur;
strt seg2 dur = 1.0;
strt_seg2_len = Vx*strt_seg2_dur;
```

```
circ_seg1_rad = 1000;
circ seg1 dur = 5.0;
circ seg1 dir = 1;
circ seg2 rad = 500;
circ seg2 dur = 5.0;
circ_seg2_dir = -1;
init pos = [0,0]';
init phi = 0.0;
%% Time Parametrization
dt = 0.01;
tf = strt seg1 dur+strt_seg2_dur+circ_seg1_dur+circ_seg2_dur;
t strt1 = strt seg1 dur;
t circ1 = t strt1 + circ seg1 dur;
t strt2 = t circ1 + strt seg2 dur;
t circ2 = t strt2 + circ seg2 dur;
ts1 = linspace(0,t strt1,floor(t strt1/dt));
ts2 = linspace(t_strt1+dt,t_circ1,floor((circ_seg1_dur)/dt));
ts3 = linspace(t circ1+dt,t strt2,floor((strt seg2 dur)/dt));
ts4 = linspace(t_strt2+dt,t_circ2,floor((circ_seg2_dur)/dt));
ts = [ts1, ts2, ts3, ts4];
dy ref = zeros(1,length(ts));
phi ref = zeros(1,length(ts));
dphi ref = zeros(1,length(ts));
X ref = zeros(4,length(ts));
path ref = zeros(2,length(ts));
%straight segment 1
path ref(:,1:length(ts1)) = init pos + [Vx*cos(init phi),
Vx*sin(init phi)]'*ts1;
dy ref(1:length(ts1)) = Vx*sin(init phi);
%Circular segment 1
circ1 end phi = init phi+Vx*circ seg1 dur/circ seg1 rad;
theta1 = init phi+Vx*linspace(0, circ seg1 dur, length(ts2))/circ seg1 rad;
circ1_pts = circ_seg1_rad*[cos(theta1-pi/2); sin(theta1-pi/2)];
circ1 trans = path ref(:,length(ts1)) - circ1 pts(:,1);
circ1 pts = circ1 pts + circ1 trans + [Vx*cos(init phi),
Vx*sin(init phi)]'*dt;
path ref(:,length(ts1)+1:length(ts1)+length(ts2)) = circ1 pts;
dy_ref(length(ts1)+1:length(ts1)+length(ts2)) = Vx*sin(theta1);
%Straight Segment 2
path ref(:,length(ts1)+length(ts2)+1:length(ts1)+length(ts2)+length(ts3)) =
path ref(:,length(ts1)+length(ts2)) + [Vx*cos(circ1 end phi),
Vx*sin(circ1 end phi)]'*(ts3-t circ1);
dy ref(length(ts1)+length(ts2)+1:length(ts1)+length(ts2)+length(ts3)) =
Vx*sin(circ1 end phi);
%Circular segment 2
circ2 end phi = circ1 end phi-Vx*circ seg2 dur/circ seg2 rad;
theta2 = circ1_end_phi - Vx*linspace(0, circ_seg2_dur,
length(ts4))/circ seg2 rad;
circ2_pts = circ_seg2_rad*[cos(theta2+pi/2); sin(theta2+pi/2)];
```

```
circ2 trans =
path ref(:,length(ts3)+length(ts2)+length(ts1))+[Vx*cos(circ1 end phi),
Vx*sin(circ1_end_phi)]'*dt - circ2_pts(:,1);
circ2 pts = circ2 pts + circ2 trans;
path ref(:,length(ts1)+length(ts2)+length(ts3)+1:length(ts1)+length(ts2)+length
h(ts3)+length(ts4)) = circ2 pts;
dy ref(length(ts1)+length(ts2)+length(ts3)+1:length(ts1)+length(ts2)+length(ts
3) +length(ts4)) = Vx*sin(theta2);
% plot(path ref(1,:), path ref(2,:),'.')
for i=1:length(phi ref)-1
phi ref(i) =
atan2(path ref(2,i+1)-path ref(2,i),path ref(1,i+1)-path ref(1,i));
phi ref(length(phi ref)) = phi ref(length(phi ref)-1);
for i=1:length(dphi ref)-1
dphi ref(i) = (phi ref(i+1)-phi ref(i))/dt;
end
dphi ref(length(dphi ref)-1) = dphi ref(length(dphi ref)-2);
dphi_ref(length(dphi_ref)) = dphi_ref(length(dphi_ref)-2);
X_ref(1,:) = path_ref(2,:);
X ref(2,:) = dy ref;
X \text{ ref}(3,:) = phi \text{ ref};
X \operatorname{ref}(4,:) = \operatorname{dphi} \operatorname{ref};
%% Controller
Q = eye(4);
R = 1.0;
Q(1,1) = 15;
Q(2,2) = 0.005;
Q(3,3) = 30;
Q(4,4) = 0.005;
[K,S,P] = lqr(A,B1,Q,R);
%% Simulation 1
X0 = [init_pos(1),init_pos(2),init_phi,0]';
X = [0,0,0,0]';
E = [0,0,0,0]';
X log = zeros(4,length(ts));
E log = zeros(4,length(ts));
U log = zeros(1,length(ts));
Edot = zeros(4,1);
traj act = zeros(2, length(ts));
for i=1:length(ts)
X \log(:,i) = X \operatorname{ref}(:,i) + E;
curr yaw = (phi ref(i)+E(3));
traj_act(1,i) = path_ref(1,i) - E(1)*sin(curr_yaw) - E(2)*sin(curr_yaw)*dt;
traj act(2,i) = path ref(2,i) + E(1)*cos(curr yaw) + E(2)*cos(curr yaw)*dt;
E \log(:,i) = E;
U_log(i) = -K*E;
Edot = A*E-B1*K*E+B2*dphi ref(i);
E = E + Edot*dt;
```

```
end
fprintf('Max Abs. Lateral Error: %f m\n', max(abs(E log(1,:))))
fprintf('Max Abs. Heading Error: %f rad\n',max(abs(E_log(3,:))))
fprintf('Max Steering Rate: %f rad/s\n', max(diff(U log)/dt))
%% Plotting
figure;
plot(ts, abs(E log(1,:)));
title('Lateral Error')
xlabel('t [s]')
ylabel('y {err} [m]')
yline(0.01,'--','Bound','LineWidth',2.0,'Color','r')
grid on;
figure;
plot(ts, U_log)
title('Steering Angle')
xlabel('t [s]')
ylabel('\delta_f [rad]')
grid on;
figure;
plot(ts(1:length(ts)-1),diff(U_log)/dt)
title('Steering Rate')
xlabel('t [s]')
ylabel('\delta f'' [rad/s]')
grid on;
grid on;
figure
plot(ts, abs(E log(3,:)));
grid on;
title('Heading Error')
xlabel('t [s]')
ylabel('\Phi {err} [rad]')
yline(0.01,'--','Bound','LineWidth',2.0,'Color','r')
figure;
plot(path ref(1,:),path ref(2,:));
hold on;
plot(path_ref(1,:), X_log(1,:))
grid on;
title('Reference vs Actual Path')
xlabel('x [m]')
ylabel('y [m]')
legend('Reference', 'Actual')
%% Simulation 2
% [r, tout, sv] = lsim(ss(A-B1*K,B2,C,0), dphi ref,
linspace(0,tf,length(dphi_ref)), X);
function U = control(X,B1,K,B2,dphi des)
U = -B1*K*X + B2*dphi des;
end
```

### **Question 3**

We use the same EoMs developed above for the Pepy model for this problem. Except we also have a longitudinal controller providing us with a longitudinal acceleration which will affect the velocity as follows:

$$\frac{dV}{dt} = a_{lon}$$

$$\frac{dx}{dt} = V\cos(\phi)$$

$$\frac{dy}{dt} = V\sin(\phi)$$

$$\frac{d\phi}{dt} = \omega = V\frac{\tan(\delta_f)}{l_f + l_r}$$

Lookahead angle:  $\eta$  (angle made by the lookahead vector with the global X-axis)

Heading angle:  $\phi$ 

Yaw Error:  $\alpha$ 

- Then  $\eta = atan(\frac{y_t-y_v}{x_t-x_v})$ , where  $(x_t,y_t)$  is the coordinate of the target point,  $(x_v,y_v)$ corresponds to the coordinates of the vehicle (both in global frame)
- Then  $\alpha = \eta \phi$  is the expression to obtain the yaw-error.
- Once we obtain the yaw-error we use,
- $x_{tB} = Lsin(\alpha)$ , projection of the  $x_t$  on the body axes,
- And from the formulation of Pure-Pursuit controller, we have
- $\bullet \quad \frac{1}{R} = \frac{2x_{tB}}{L^2}$  , substituting the value of  $x_{tB}$  from above, we obtain,

$$\frac{1}{R} = \frac{2sin(\alpha)}{L}$$

• But from the Pepy model developed above we have:

$$\bullet \quad \frac{1}{R} = \frac{tan(\delta_f)}{l_f + l_r}$$

• Equating the two and eliminating R, we obtain

• 
$$\delta_f = atan(\frac{2(l_f + l_r)sin(\alpha)}{L})$$

Where,  $l_f + l_r$  is the wheelbase of the vehicle (WB).

# **Question 3.2 Plot for default parameters**



# **Question 3.3**

# L = 5.0m



# L = 10.0m



#### L = 20.0 m



### **High Lookahead Values**

- Result in a smoother but over-damped response
- This causes the Vehicle to short–cut many sharp turns resulting in a poor tracking performance
- Lower control effort, as steering input is inversely proportional to the lookahead distance

#### **Low Lookahead Values**

- Results in a snappier response, good tracking accuracy even in case of sharp turns, corners
- But too low of a value can induce oscillatory response and noise in the controller
- Results in a higher control effort

#### **Remarks**

 To always have an optimal tracking performance, one could adapt the look-ahead distance online as a function of the path curvature and the vehicle speed. I have worked on such an <u>adaptive look-ahead based non-linear 3D path controller</u> for UAVs in my Master's thesis at IIT Madras.

### Code

\*\*\*\*\*

Path tracking simulation with pure pursuit steering control and PID speed control for 16-665

```
16-665.
author: Rathin Shah(rsshah), Shruti Gangopadhyay (sgangopa)
*****
import math
import matplotlib.pyplot as plt
import numpy as np
# Pure Pursuit parameters
L = 1.0 # look ahead distance
dt = 0.1 # discrete time
# Vehicle parameters (m)
LENGTH = 4.5
                 #length of the vehicle (for the plot)
WIDTH = 2.0
                #length of the vehicle (for the plot)
BACKTOWHEEL = 1.0 #length of the vehicle (for the plot)
WHEEL_LEN = 0.3 #length of the vehicle (for the plot)
WHEEL_WIDTH = 0.2 #length of the vehicle (for the plot)
TREAD = 0.7
                 #length of the vehicle (for the plot)
              # wheel-base
WB = 2.5
def plotVehicle(x, y, yaw, steer=0.0, cabcolor="-r", truckcolor="-k"):
  outline = np.array(
    [
      [
        -BACKTOWHEEL,
        (LENGTH - BACKTOWHEEL),
        (LENGTH - BACKTOWHEEL),
        -BACKTOWHEEL,
        -BACKTOWHEEL,
      [WIDTH / 2, WIDTH / 2, -WIDTH / 2, -WIDTH / 2, WIDTH / 2],
    ]
```

```
)
fr_wheel = np.array(
    [WHEEL_LEN, -WHEEL_LEN, WHEEL_LEN, WHEEL_LEN],
      -WHEEL WIDTH - TREAD,
      -WHEEL_WIDTH - TREAD,
      WHEEL WIDTH - TREAD,
      WHEEL WIDTH - TREAD,
      -WHEEL_WIDTH - TREAD,
    ],
 ]
)
rr_wheel = np.copy(fr_wheel)
fl_wheel = np.copy(fr_wheel)
fl_wheel[1, :] *= -1
rl_wheel = np.copy(rr_wheel)
rl_wheel[1, :] *= -1
Rot1 = np.array([[math.cos(yaw), math.sin(yaw)], [-math.sin(yaw), math.cos(yaw)]])
Rot2 = np.array(
  [[math.cos(steer), math.sin(steer)], [-math.sin(steer), math.cos(steer)]]
)
fr\_wheel = (fr\_wheel.T.dot(Rot2)).T
fl_wheel = (fl_wheel.T.dot(Rot2)).T
fr_wheel[0, :] += WB
fl_wheel[0, :] += WB
fr_wheel = (fr_wheel.T.dot(Rot1)).T
fl_wheel = (fl_wheel.T.dot(Rot1)).T
outline = (outline.T.dot(Rot1)).T
rr_wheel = (rr_wheel.T.dot(Rot1)).T
rl_wheel = (rl_wheel.T.dot(Rot1)).T
outline[0, :] += x
outline[1, :] += y
fr_wheel[0, :] += x
fr_wheel[1, :] += y
rr_wheel[0, :] += x
```

```
rr_wheel[1, :] += y
  fl_wheel[0, :] += x
  fl_wheel[1, :] += y
  rl_wheel[0, :] += x
  rl_wheel[1, :] += y
  plt.plot(
     np.array(outline[0, :]).flatten(), np.array(outline[1, :]).flatten(), truckcolor
  plt.plot(
     np.array(fr_wheel[0, :]).flatten(),
     np.array(fr_wheel[1, :]).flatten(),
     truckcolor,
  )
  plt.plot(
     np.array(rr_wheel[0, :]).flatten(),
     np.array(rr_wheel[1, :]).flatten(),
     truckcolor,
  )
  plt.plot(
     np.array(fl_wheel[0, :]).flatten(),
     np.array(fl_wheel[1, :]).flatten(),
     truckcolor,
  )
  plt.plot(
     np.array(rl_wheel[0, :]).flatten(),
     np.array(rl_wheel[1, :]).flatten(),
     truckcolor,
  plt.plot(x, y, "*")
def getDistance(p1, p2):
  Calculate distance
  :param p1: list, point1
  :param p2: list, point2
  :return: float, distance
  dx = p1[0] - p2[0]
  dy = p1[1] - p2[1]
  return math.hypot(dx, dy)
```

```
class Vehicle:
  def __init__(self, x, y, yaw, vel=0):
     Define a vehicle class (state of the vehicle)
     :param x: float, x position
     :param y: float, y position
     :param yaw: float, vehicle heading
     :param vel: float, velocity
    # State of the vehicle
     self.x = x #x coordinate of the vehicle
     self.y = y #y coordinate of the vehicle
     self.yaw = yaw #yaw of the vehicle
     self.vel = vel #velocity of the vehicle
  def update(self, acc, delta):
     Vehicle motion model, here we are using simple bycicle model
     :param acc: float, acceleration
     :param delta: float, heading control
     ******
    # TODO- update the state of the vehicle (x,y,yaw,vel) based on simple bicycle model
     self.x += self.vel*math.cos(self.yaw)*dt
     self.y += self.vel*math.sin(self.yaw)*dt
     self.yaw += self.vel*math.tan(delta)*dt/(WB)
     self.vel += acc*dt
class Trajectory:
  def __init__(self, traj_x, traj_y):
     Define a trajectory class
     :param traj_x: list, list of x position
     :param traj_y: list, list of y position
     self.traj_x = traj_x
     self.traj_y = traj_y
     self.last_idx = 0
```

```
def getPoint(self, idx):
     return [self.traj_x[idx], self.traj_y[idx]]
  def getTargetPoint(self, pos):
     Get the next look ahead point
     :param pos: list, vehicle position
     :return: list, target point
    target_idx = self.last_idx
     target_point = self.getPoint(target_idx)
     curr_dist = getDistance(pos, target_point)
     while curr_dist < L and target_idx < len(self.traj_x) - 1:
       target_idx += 1
       target_point = self.getPoint(target_idx)
       curr_dist = getDistance(pos, target_point)
     self.last_idx = target_idx
     return self.getPoint(target_idx)
class Controller:
  def __init__(self, kp=1.0, ki=0.1):
     Define a PID controller class
     :param kp: float, kp coeff
     :param ki: float, ki coeff
     :param kd: float, kd coeff
     self.kp = kp
     self.ki = ki
     self.Pterm = 0.0
     self.lterm = 0.0
     self.last_error = 0.0
  def Longitudinalcontrol(self, error):
     PID main function, given an input, this function will output a acceleration for
longitudinal error
     :param error: float, error term
     :return: float, output control
     self.Pterm = self.kp * error
```

```
self.lterm += error * dt
    self.last_error = error
    output = self.Pterm + self.ki * self.lterm
    return output
  def PurePursuitcontrol(self, error):
    #TODO- find delta
    delta = math.atan(2*WB*math.sin(error)/L)
    return delta
def main():
  # create vehicle
  ego = Vehicle(0, 0, 0)
  plotVehicle(ego.x, ego.y, ego.yaw)
  # target velocity
  target_vel = 10
  # target course
  traj_x = np.arange(0, 100, 0.5)
  traj_y = [math.sin(x / 10.0) * x / 2.0 for x in traj_x]
  traj = Trajectory(traj x, traj y)
  goal = traj.getPoint(len(traj_x) - 1)
  # create longitudinal and pure pursuit controller
  PI_acc = Controller()
  PI_yaw = Controller()
  # real trajectory
  traj_ego_x = []
  traj_ego_y = []
  plt.figure(figsize=(12, 8))
  while getDistance([ego.x, ego.y], goal) > 1:
    target_point = traj.getTargetPoint([ego.x, ego.y])
    # use PID to control the speed vehicle
    vel_err = target_vel - ego.vel
    acc = PI_acc.Longitudinalcontrol(vel_err)
    # use pure pursuit to control the heading of the vehicle
```

```
# TODO- Calculate the yaw error
    eta = math.atan2(target_point[1]-ego.y,target_point[0]-ego.x)
    yaw_err = eta-ego.yaw #TODO- Update the equation
    delta = PI_yaw.PurePursuitcontrol(yaw_err) #TODO- update thr Pure pursuit
controller
    # move the vehicle
    ego.update(acc, delta)
    # store the trajectory
    traj_ego_x.append(ego.x)
    traj_ego_y.append(ego.y)
    # plots
    plt.cla()
    plt.plot(traj_x, traj_y, "-r", linewidth=5, label="course")
    plt.plot(traj_ego_x, traj_ego_y, "-b", linewidth=2, label="trajectory")
    plt.plot(target_point[0], target_point[1], "og", ms=5, label="target point")
    plotVehicle(ego.x, ego.y, ego.yaw, delta)
    plt.xlabel("x[m]")
    plt.ylabel("y[m]")
    plt.axis("equal")
    plt.legend()
    plt.grid(True)
    plt.pause(0.1)
plt.savefig('/home/kyouma/dev/academics/mobility/AD/'+str(target_vel)+'_'+str(L)+'.png')
if __name__ == "__main__":
```

main()