模型部署资料

2021年12月13日 16:10

TensorRT部分

- 1. TensorRT官方资料
 - a. TensorRT GitHub: https://github.com/NVIDIA/TensorRT 里面有官方给 出的例子
 - b. TensorRT官方文档:

https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-803/dev eloper-quide/index.html

c. TensorRT官方优化指南:
https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-803/best
-practices/index.html

- 2. TensorRT和pytorch
 - a. https://github.com/NVIDIA-AI-IOT/torch2trt: torch2trt是一个PyTorch 到TensorRT的转换器,它利用了TensorRT Python API
- 3. Tensorrt和ONNX
 - a. ONNX Models zoo: https://github.com/onnx/models
 - b. https://github.com/onnx/onnx-tensorrt
- 4. TensorRT和Tensorflow
 - a. https://github.com/tensorflow/tensorrt 集成了tensorrt的Tensorflow
- 5. TensorRT和各种网络
 - a. https://elinux.org/TensorRT/YoloV3
 - b. https://elinux.org/TensorRT/YoloV4
 - c. https://github.com/Megvii-BaseDetection/YOLOX
 - d. https://github.com/CoinCheung/BiSeNet
 - e. https://github.com/wang-xinyu/tensorrtx 提供了非常多的基于trt部署的网络代码实现
 - f. https://github.com/NVIDIA/retinanet-examples
 - g. https://github.com/GeekAlexis/FastMOT
 - h. https://github.com/hunglc007/tensorflow-yolov4-tflite
 - i. https://github.com/CaoWGG/TensorRT-CenterNet
 - j. https://github.com/NVIDIA-AI-IOT/trt_pose
 - k. https://github.com/shouxieai/tensorRT Pro
 - I. https://github.com/grimoire/mmdetection-to-tensorrt
 - m. https://github.com/nvidia/tensorrt-laboratory/
 - n. https://github.com/NVIDIA/TensorRT/tree/master/demo
- 6. TensorRT FAQ系列
 - a. 官方FAQ: TensorRT Developer Guide#FAQs
 - b. 常见问题解答:
 - i. 你可以在这里找到关于使用TRT的一些常见问题的答案。请参考页面TensorRT/CommonFAO
 - c. TRT准确度常见问题:
 - i. 如果你的FP16结果或Int8结果不符合预期,下面的页面可以帮助你解决精度问题。请参考TensorRT/Accuracylssues

- d. TRT性能常见问题:
 - i. 如果用TRT做推理的性能没有达到预期,下面的页面可能会帮助你 优化性能。请参阅TensorRT/Perflssues
- e. TRT Int8校准常见问题
 - i. 下面的页面将介绍一些关于TRT Int8校准的常见问题。请参考页面 TensorRT/Int8CFAQ
- f. TRT插件常见问题
 - i. 下面的页面将介绍一些关于TRT插件的常见问题。请参考 TensorRT/PluginFAQ
- g. 如何解决一些常见的错误
 - i. 如果你在使用TRT时遇到一些错误,请在下面的页面中找到答案。 请参阅TensorRT/CommonErrorFix。
- h. 如何调试或分析
 - i. 下面的页面将帮助你以某种方式调试你的推理。请参考 TensorRT/How2Debug

CUDA部分

- 1. CUDA docker镜像: https://hub.docker.com/r/vistart/cuda
- 2. CUDA书籍
 - a. _《CUDA并行程序设计-GPU编程指南》_
 - b. <u>《CUDA by Example》</u>
 - c. 《GPU高性能编程CUDA实战》
- 3. CUDA在线文档
 - a. CUDA C++ Programming Guide
 - b. CUDA C++ Best Practices Guide
 - c. CUDA for Tegra
 - d. https://docs.nvidia.com/cuda/#cuda-api-references 各种CUDA API: CUBLAS、CUFFT、NPP等
- 4. CUDA资源
 - a. https://docs.opencv.org/4.1.2/d1/d1e/group_cuda.html
 - b. https://developer.download.nvidia.cn/compute/cuda/1.1-Beta/x86
 _website/projects/reduction/doc/reduction.pdf
 Optimizing Parallel Reduction in CUDA
 - c. CUDA 进阶学习
 - d. 苹果妖—CUDA
 - e. intro to parallel programming 视频: https://www.bilibili.com/video/BV1yt411w7h8
 - f. CUDA Wiki
- 5. 官方博客
 - a. CUDA Refresher: Reviewing the Origins of GPU Computing
 - b. CUDA Refresher: Getting started with CUDA
 - c. CUDA Refresher: The GPU Computing Ecosystem
 - d. CUDA Refresher: The CUDA Programming Model
 - e. How to Implement Performance Metrics in CUDA C++

- f. How to Query Device Properties and Handle Errors in CUDA C++
- g. How to Optimize Data Transfers in CUDA C++
- h. How to Overlap Data Transfers in CUDA C++
- i. How to Access Global Memory Efficiently in CUDA C++
- j. Using Shared Memory in CUDA C++
- k. An Efficient Matrix Transpose in CUDA C++
- I. Finite Difference Methods in CUDA C++, Part 1
- m. Finite Difference Methods in CUDA C++, Part 2
- n. Accelerated Ray Tracing in One Weekend with CUDA

6. CUDA代码

- a. https://github.com/NVIDIA/cuda-samples
- b. <u>libcu++</u>, NVIDIA C++标准库, 是整个系统的C++标准库。它提供了一个C++标准库的异构实现,可以在CPU和GPU代码中及之间使用。

7. CUDA工具

- a. CUDA Pro Tip: nvprof is Your Handy Universal GPU Profiler
- b. CUDA-GDB
- c. https://github.com/NVIDIA/nvbench cuda kernel benchmark
- d. https://github.com/PatWie/cuda-design-patterns 并没有讲述如何使用 cuda,但是简化了一些workflow
- e. https://github.com/NVIDIA/thrust 对标C++ STL的并行编程库
- f. CUDA Occupancy Calculator CUDA利用率计算工具,用excel计算