

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}.$$

Para comparar o crescimento de f(n) e g(n), observamos o valor de

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}.$$

• Se vale ∞ , então f(n) cresce mais que g(n).

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}.$$

- Se vale ∞ , então f(n) cresce mais que g(n).
- Se vale 0, então f(n) cresce menos que g(n).

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}.$$

- Se vale ∞ , então f(n) cresce mais que g(n).
- Se vale 0, então f(n) cresce menos que g(n).
- Se vale uma constante positiva c, então f(n) e g(n) crescem iguais.

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}.$$

- Se vale ∞ , então f(n) cresce mais que g(n).
- Se vale 0, então f(n) cresce menos que g(n).
- Se vale uma constante positiva c, então f(n) e g(n) crescem iguais. Ou seja, $f(n) \approx c \cdot g(n)$.

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}.$$

- Se vale ∞ , então f(n) cresce mais que g(n).
- Se vale 0, então f(n) cresce menos que g(n).
- Se vale uma constante positiva c, então f(n) e g(n) crescem iguais. Ou seja, $f(n) \approx c \cdot g(n)$. Notação: $f(n) \in \Theta(g(n))$.

Para comparar o crescimento de f(n) e g(n), observamos o valor de

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}.$$

- Se vale ∞ , então f(n) cresce mais que g(n).
- Se vale 0, então f(n) cresce menos que g(n).
- Se vale uma constante positiva c, então f(n) e g(n) crescem iguais. Ou seja, $f(n) \approx c \cdot g(n)$. Notação: $f(n) \in \Theta(g(n))$.

Veremos regras que dispensam o cálculo destes limites.

Em análise de algoritmos, as funções T(n) são geralmente produtos e somas de

• b^{an} , com b > 0

- b^{an} , com b > 0
- n^d

- b^{an} , com b > 0
- n^d
- $\log^e n$

- b^{an} , com b > 0
- n^d
- $\log^e n$
- Constante positiva c

- b^{an} , com b > 0
- n^d
- $\log^e n$
- Constante positiva c

Ex.:
$$T(n) = 2^{3n} \cdot n^2 \cdot \log n + 5n \cdot \log^3 n$$
.

Forma básica: $c \cdot b^{an} \cdot n^d \cdot \log^e n$

Forma básica: $c \cdot b^{an} \cdot n^d \cdot \log^e n$

As funções decrescentes crescem menos que a função constante T(n)=c.

Forma básica: $c \cdot b^{an} \cdot n^d \cdot \log^e n$

As funções decrescentes crescem menos que a função constante T(n) = c.

Ao comparar duas funções crescentes,

Forma básica: $c \cdot b^{an} \cdot n^d \cdot \log^e n$

As funções decrescentes crescem menos que a função constante T(n) = c.

Ao comparar duas funções crescentes,

• Cresce mais a que tem maior b^a .

Forma básica: $c \cdot b^{an} \cdot n^d \cdot \log^e n$

As funções decrescentes crescem menos que a função constante T(n) = c.

Ao comparar duas funções crescentes,

- Cresce mais a que tem maior b^a .
- Empatando no b^a , cresce mais a que tem maior d.

Forma básica: $c \cdot b^{an} \cdot n^d \cdot \log^e n$

As funções decrescentes crescem menos que a função constante T(n) = c.

Ao comparar duas funções crescentes,

- Cresce mais a que tem maior b^a .
- Empatando no b^a , cresce mais a que tem maior d.
- Empatando no b^a e no d, cresce mais a que tem maior e.

Forma básica: $c \cdot b^{an} \cdot n^d \cdot \log^e n$

As funções decrescentes crescem menos que a função constante T(n) = c.

Ao comparar duas funções crescentes,

- Cresce mais a que tem maior b^a .
- Empatando no b^a , cresce mais a que tem maior d.
- Empatando no b^a e no d, cresce mais a que tem maior e.

Ex.: $2^n \cdot n^4 \cdot \log^3 n$ cresce mais que $2^n \cdot n^4 \cdot \log^2 n$.

Como comparar quando as funções possuem vários termos?

Ex.:
$$T(n) = \underbrace{3 \cdot 2^{4n} \cdot n^7 \cdot \log^5 n}_{\text{termo}} + \underbrace{n^2/\log(n)}_{\text{termo}} + \underbrace{5}_{\text{termo}}$$

Como comparar quando as funções possuem vários termos?

Ex.:
$$T(n) = \underbrace{3 \cdot 2^{4n} \cdot n^7 \cdot \log^5 n}_{\text{termo}} + \underbrace{n^2/\log(n)}_{\text{termo}} + \underbrace{5}_{\text{termo}}$$

Em cada função:

- Identifique o termo que cresce mais.
- 2 Ignore os outros termos.

Como comparar quando as funções possuem vários termos?

Ex.:
$$T(n) = \underbrace{3 \cdot 2^{4n} \cdot n^7 \cdot \log^5 n}_{\text{termo}} + \underbrace{n^2/\log(n)}_{\text{termo}} + \underbrace{5}_{\text{termo}}$$

Em cada função:

- 1 Identifique o termo que cresce mais.
- 2 Ignore os outros termos.

Ex.:
$$T(n) = 3 \cdot 2^{4n} \cdot n^7 \cdot \log^5 n + n^2 / \log(n) + 5$$

• 10 termo cresce mais, pois tem $b^a = 2^4$, e os outros termos têm $b^a = 1$.

Como comparar quando as funções possuem vários termos?

Ex.:
$$T(n) = \underbrace{3 \cdot 2^{4n} \cdot n^7 \cdot \log^5 n}_{\text{termo}} + \underbrace{n^2/\log(n)}_{\text{termo}} + \underbrace{5}_{\text{termo}}$$

Em cada função:

- Identifique o termo que cresce mais.
- Ignore os outros termos.

Ex.:
$$T(n) = 3 \cdot 2^{4n} \cdot n^7 \cdot \log^5 n + \frac{n^2}{\log(n)} + 5$$

- 10 termo cresce mais, pois tem $b^a = 2^4$, e os outros termos têm $b^a = 1$.
- Podemos então ignorar o termo $n^2/\log(n)$ e o termo 5, resultando na forma básica.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se $b^a > 1$, então T(n) é **exponencial**.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se $b^a > 1$, então T(n) é **exponencial**. Ex.: 2^n , $2^n n^3 \log^2 n$, $3^{0,001n}/n^{100}$.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se $b^a > 1$, então T(n) é **exponencial**. Ex.: 2^n , $2^n n^3 \log^2 n$, $3^{0,001n}/n^{100}$.

Se $b^a < 1$, então T(n) é **exponencial decrescente**.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se
$$b^a > 1$$
, então $T(n)$ é **exponencial**.
Ex.: 2^n , $2^n n^3 \log^2 n$, $3^{0,001n}/n^{100}$.

Se $b^a < 1$, então T(n) é **exponencial decrescente**.

Ex.: $1/2^n$, $n^{100}/3^{0,001n}$.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se $b^a = 1$ e d > 0, então T(n) é **polinomial**.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se $b^a=1$ e d>0, então T(n) é **polinomial**. Ex.: n^4 , $n^{0,001}/\log^{100} n$.

Se $b^a=1$ e d<0, então T(n) é polinomial decrescente. Ex.: $1/n^4$, $\log^{100} n/n^{0,001}$.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se
$$b^a = 1$$
 e $d > 0$, então $T(n)$ é **polinomial**. Casos particulares:

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se $b^a = 1$ e d > 0, então T(n) é **polinomial**.

Casos particulares:

• Se d=2 e e=0, então T(n) é quadrática. Ex.: $5n^2$.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se $b^a=1$ e d>0, então T(n) é **polinomial**.

Casos particulares:

- Se d = 2 e e = 0, então T(n) é quadrática.
- Se d=1 e e=1, então T(n) tem **tempo de ordenação**. Ex.: $5n \log n$.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se $b^a=1$ e d>0, então T(n) é **polinomial**.

Casos particulares:

- Se d = 2 e e = 0, então T(n) é quadrática.
- Se d = 1 e e = 1, então T(n) tem **tempo de ordenação**.
- Se d=1 e e=0, então T(n) é **linear**. Ex.: 5n.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se
$$b^a = 1$$
, $d = 0$ e $e > 0$, então $T(n)$ é **potência de logaritmo**. Ex.: $5 \log^3 n$.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se $b^a = 1$, d = 0 e e > 0, então T(n) é **potência de logaritmo**. Ex.: $5 \log^3 n$.

No caso particular com e = 1, temos que T(n) é **logarítmica**. Ex.: $5 \log n$.

Forma básica:
$$T(n) = c \cdot b^{an} \cdot n^d \cdot \log^e n$$
, com $c > 0$

Se
$$b^a = 1$$
, $d = 0$ e $e = 0$, então $T(n)$ é **constante**. Ex.: 5.

Comparação de crescimento entre as classes:

• Exponenciais crescem mais que polinômios.

Comparação de crescimento entre as classes:

- Exponenciais crescem mais que polinômios.
- Polinômios crescem mais que potências de logaritmo.

Comparação de crescimento entre as classes:

- Exponenciais crescem mais que polinômios.
- Polinômios crescem mais que potências de logaritmo.
- Potências de logaritmo crescem mais que constantes.

Comparação de crescimento entre as classes:

- Exponenciais crescem mais que polinômios.
- Polinômios crescem mais que potências de logaritmo.
- Potências de logaritmo crescem mais que constantes.
- Exponenciais decrescentes e polinomiais decrescentes crescem menos que constante.

Algumas funções importante crescem mais que a exponencial.

Algumas funções importante crescem mais que a exponencial.

• Exponencial tem b^{an} , com $b^a > 1$, ou seja, constante elevada a função linear.

Algumas funções importante crescem mais que a exponencial.

- Exponencial tem b^{an} , com $b^a > 1$, ou seja, constante elevada a função linear.
- Se expoente cresce mais que linear, função cresce mais que exponencial.

Algumas funções importante crescem mais que a exponencial.

- Exponencial tem b^{an} , com $b^a > 1$, ou seja, constante elevada a função linear.
- Se expoente cresce mais que linear, função cresce mais que exponencial.
- Ex.: 2^{n^2} , pois o expoente n^2 cresce mais que uma função linear.

Algumas funções importante crescem mais que a exponencial.

- Exponencial tem b^{an} , com $b^a > 1$, ou seja, constante elevada a função linear.
- Se expoente cresce mais que linear, função cresce mais que exponencial.
- Ex.: 2^{n^2} , pois o expoente n^2 cresce mais que uma função linear.
- Ex.:

 $n! \approx n^n$

Algumas funções importante crescem mais que a exponencial.

- Exponencial tem b^{an} , com $b^a > 1$, ou seja, constante elevada a função linear.
- Se expoente cresce mais que linear, função cresce mais que exponencial.
- Ex.: 2^{n^2} , pois o expoente n^2 cresce mais que uma função linear.
- Ex.:

$$n! \approx n^n = (2^{\log_2 n})^n$$

Algumas funções importante crescem mais que a exponencial.

- Exponencial tem b^{an} , com $b^a > 1$, ou seja, constante elevada a função linear.
- Se expoente cresce mais que linear, função cresce mais que exponencial.
- Ex.: 2^{n^2} , pois o expoente n^2 cresce mais que uma função linear.
- Ex.:

$$n! \approx n^n = (2^{\log_2 n})^n = 2^{n \log_2 n}$$

Algumas funções importante crescem mais que a exponencial.

- Exponencial tem b^{an} , com $b^a > 1$, ou seja, constante elevada a função linear.
- Se expoente cresce mais que linear, função cresce mais que exponencial.
- Ex.: 2^{n^2} , pois o expoente n^2 cresce mais que uma função linear.
- Ex.:

$$n! \approx n^n = (2^{\log_2 n})^n = 2^{n \log_2 n}$$

O expoente $n \log n$ cresce mais que o expoente linear an.

Algoritmos **inviáveis**: crescimento exponencial ou maior.

$$b^{an} = (2^{\log_2 b})^{an}$$

$$b^{an} = (2^{\log_2 b})^{an} = 2^{(a \log_2 b)n}$$

$$b^{an} = (2^{\log_2 b})^{an} = 2^{(a \log_2 b)n} = 2^{c \cdot n}$$

O conjunto das funções com crescimento exponencial é denotado por $2^{\Theta(n)}$, pois

$$b^{an} = (2^{\log_2 b})^{an} = 2^{(a \log_2 b)n} = 2^{c \cdot n}$$

• Como $b^a > 1$, temos que $c = a \log_2 b = \log_2 b^a > 0$. (a função $\log x > 0$ para x > 1)

$$b^{an} = (2^{\log_2 b})^{an} = 2^{(a \log_2 b)n} = 2^{c \cdot n}$$

- Como $b^a > 1$, temos que $c = a \log_2 b = \log_2 b^a > 0$. (a função $\log x > 0$ para x > 1)
- Concluímos que $c \cdot n \in \Theta(n)$.

$$b^{an} = (2^{\log_2 b})^{an} = 2^{(a \log_2 b)n} = 2^{c \cdot n}$$

- Como $b^a > 1$, temos que $c = a \log_2 b = \log_2 b^a > 0$. (a função $\log x > 0$ para x > 1)
- Concluímos que $c \cdot n \in \Theta(n)$.
- Ou seja, $b^{an} = 2^{c \cdot n} \in 2^{\Theta(n)}$.

Funções com crescimento polinomial possuem $b^a = 1$ e d > 0.

ullet Mesmo que d seja fracionário ou n^d esteja multiplicado por potência de logaritmo.

- ullet Mesmo que d seja fracionário ou n^d esteja multiplicado por potência de logaritmo.
- Ex.: $3n^2$, $n^{3,5}$, $n \log n$.

- ullet Mesmo que d seja fracionário ou n^d esteja multiplicado por potência de logaritmo.
- Ex.: $3n^2$, $n^{3,5}$, $n \log n$.
- Expoente do *n* não pode crescer mais que constante.

- ullet Mesmo que d seja fracionário ou n^d esteja multiplicado por potência de logaritmo.
- Ex.: $3n^2$, $n^{3,5}$, $n \log n$.
- Expoente do *n* não pode crescer mais que constante.
- Ex. não polinomial: $n^{\log_2 n}$.

- ullet Mesmo que d seja fracionário ou n^d esteja multiplicado por potência de logaritmo.
- Ex.: $3n^2$, $n^{3,5}$, $n \log n$.
- Expoente do *n* não pode crescer mais que constante.
- Ex. não polinomial: $n^{\log_2 n}$.
 - Cresce mais que polinomial, pois $\log_2 n$ cresce mais que constante.

- Mesmo que d seja fracionário ou n^d esteja multiplicado por potência de logaritmo.
- Ex.: $3n^2$, $n^{3,5}$, $n \log n$.
- Expoente do *n* não pode crescer mais que constante.
- Ex. não polinomial: $n^{\log_2 n}$.
 - Cresce mais que polinomial, pois $\log_2 n$ cresce mais que constante.
 - Como $n^{\log_2 n} = (2^{\log_2 n})^{\log_2 n} = 2^{\log^2 n}$, a função $n^{\log_2 n}$ cresce menos que exponencial.

- Mesmo que d seja fracionário ou n^d esteja multiplicado por potência de logaritmo.
- Ex.: $3n^2$, $n^{3,5}$, $n \log n$.
- Expoente do *n* não pode crescer mais que constante.
- Ex. não polinomial: $n^{\log_2 n}$.
 - Cresce mais que polinomial, pois $\log_2 n$ cresce mais que constante.
 - Como $n^{\log_2 n} = (2^{\log_2 n})^{\log_2 n} = 2^{\log^2 n}$, a função $n^{\log_2 n}$ cresce menos que exponencial.
 - Ou seja, está entre as duas classes!

Algoritmos **viáveis**: crescimento polinomial ou menor.

Algoritmos viáveis: crescimento polinomial ou menor.

• Não é verdade para grau alto, como n^{1000} , mas este caso é raro.

O conjunto das funções com crescimento polinomial é denotado por $n^{\Theta(1)}$, pois

ullet $\Theta(1)$ é o conjunto das constante positivas.

Passando T(n) para a notação Θ

Passos:

Passos:

Remova os termos que crescem menos, e

Passos:

- Remova os termos que crescem menos, e
- Remova as constantes multiplicativas.

Passos:

- Remova os termos que crescem menos, e
- Remova as constantes multiplicativas.

Ex.:
$$T(n) = 3 \cdot 2^{4n} \cdot n^7 \cdot \log^5 n + \frac{n^2}{\log(n)} + 5$$

Passos:

- Remova os termos que crescem menos, e
- Remova as constantes multiplicativas.

Ex.:
$$T(n) = 3 \cdot 2^{4n} \cdot n^7 \cdot \log^5 n + \frac{n^2 / \log(n)}{1 + 5}$$

Ou seja, $T(n) \in \Theta(2^{4n} \cdot n^7 \cdot \log^5 n)$.

 $T(n) = 3^{4n} + 4^{3n}$

$$T(n) = 3^{4n} + 4^{3n}$$

• O termo 3^{4n} tem $b^a = 3^4 = 81 > 1$, e o termo 4^{3n} tem $b^a = 64 > 1$.

r (*n*) = 3 +

$$T(n) = 3^{4n} + 4^{3n}$$

- O termo 3^{4n} tem $b^a = 3^4 = 81 > 1$, e o termo 4^{3n} tem $b^a = 64 > 1$.
- ullet Como os dois termos são exponenciais, cresce mais o que tem maior b^a .

$$T(n) = 3^{4n} + 4^{3n}$$

- O termo 3^{4n} tem $b^a = 3^4 = 81 > 1$, e o termo 4^{3n} tem $b^a = 64 > 1$.
- ullet Como os dois termos são exponenciais, cresce mais o que tem maior b^a .
- Concluímos que $T(n) \in \Theta(3^{4n})$ (exponencial).

$$T(n) = 2^{0.5n} + 2^n/n^{100} + 2^n$$

$$T(n) = 2^{0.5n} + 2^n/n^{100} + 2^n$$

• Termo $2^{0,5n}$: $b^a = 2^{0,5} \approx 1,4 > 1, d = e = 0$.

$$T(n) = 2^{0.5n} + 2^n/n^{100} + 2^n$$

- Termo $2^{0,5n}$: $b^a = 2^{0,5} \approx 1,4 > 1, d = e = 0$.
- Termo $2^n/n^{100}$: $b^a = 2 > 1$, d = -100, e = 0.

$$T(n) = 2^{0.5n} + 2^n/n^{100} + 2^n$$

- Termo $2^{0.5n}$: $b^a = 2^{0.5} \approx 1.4 > 1$, d = e = 0.
- Termo $2^n/n^{100}$: $b^a = 2 > 1, d = -100, e = 0$.
- Termo 2^n : $b^a = 2 > 1$, d = e = 0.

$$T(n) = 2^{0.5n} + 2^n/n^{100} + 2^n$$

- Termo $2^{0.5n}$: $b^a = 2^{0.5} \approx 1.4 > 1$, d = e = 0.
- Termo $2^n/n^{100}$: $b^a = 2 > 1$, d = -100, e = 0.
- Termo 2 / H . D = 2 > 1, d = -100, e = -100
- Termo 2ⁿ: b^a = 2 > 1, d = e = 0.
 Os 3 termos são exponenciais.

$$T(n) = 2^{0.5n} + 2^n/n^{100} + 2^n$$

- Termo $2^{0.5n}$: $b^a = 2^{0.5} \approx 1.4 > 1$, d = e = 0.
- Termo $2^n/n^{100}$: $b^a = 2 > 1$, d = -100, e = 0.
- Termo 2^n : $b^a = 2 > 1$, d = e = 0.
- Termo 2": $b^a = 2 > 1, a = e = 0.$
- Os 3 termos são exponenciais.
- ullet 1o termo tem b^a menor que o 2o termo, então pode ser descartado.

$$T(n) = 2^{0.5n} + 2^n/n^{100} + 2^n$$

- Termo $2^{0.5n}$: $b^a = 2^{0.5} \approx 1.4 > 1$, d = e = 0.
- Termo $2^n/n^{100}$: $b^a = 2 > 1$, d = -100, e = 0.
- Termo 2^n : $b^a = 2 > 1$, d = e = 0.
- Os 3 termos são exponenciais.
- 10 termo tem b^a menor que o 20 termo, então pode ser descartado.
- 10 termo tem b menor que o 20 termo, entao pode ser descartad

• Como b^a é igual no 20 e 30 termos, comparamos o d.

$$T(n) = 2^{0.5n} + 2^n/n^{100} + 2^n$$

- Termo $2^{0.5n}$: $b^a = 2^{0.5} \approx 1.4 > 1$, d = e = 0.
- Termo $2^n/n^{100}$: $b^a = 2 > 1$, d = -100, e = 0.
- Termo 2^n : $b^a = 2 > 1, d = e = 0$.
- Os 3 termos são exponenciais.
- 10 termo tem b^a menor que o 20 termo, então pode ser descartado.
- Como b^a é igual no 20 e 30 termos, comparamos o d.
- Portanto, $f(n) = \Theta(2^n)$ (exponencial).

 $T(n) = 5n^3 \log n + 8n^3$

$$T(n) = 5n^3 \log n + 8n^3$$

• Termo $5n^3 \log n$: c = 5, b = 1, d = 3, e = 1.

$$T(n) = 5n^3 \log n + 8n^3$$

- Termo $5n^3 \log n$: c = 5, b = 1, d = 3, e = 1.
- Termo $8n^3$: c = 8, a = 0, d = 3, e = 0.

$$T(n) = 5n^3 \log n + 8n^3$$

- Termo $5n^3 \log n$: c = 5, b = 1, d = 3, e = 1.
- Termo $8n^3$: c = 8, a = 0, d = 3, e = 0.
- Como c é ignorado, a=0 e d=3 nos dois, devemos comparar o valor de e.

$$T(n) = 5n^3 \log n + 8n^3$$

- Termo $5n^3 \log n$: c = 5, b = 1, d = 3, e = 1.
- Termo $8n^3$: c = 8, a = 0, d = 3, e = 0.
- Como c é ignorado, a=0 e d=3 nos dois, devemos comparar o valor de e.
- Concluímos que $f(n) = \Theta(n^3 \log n)$ (polinomial).

$$T(n)=2^{2^{5n}}$$

$$T(n)=2^{2^{5n}}$$

• Para ser exponencial $(2^{\Theta(n)})$ o expoente deveria crescer linearmente $(\Theta(n))$, mas cresce exponencialmente (2^{5n}) .

$$T(n)=2^{2^{5n}}$$

- Para ser exponencial $(2^{\Theta(n)})$ o expoente deveria crescer linearmente $(\Theta(n))$, mas cresce exponencialmente (2^{5n}) .
- Ou seja, esta função cresce mais rápido que a exponencial (nenhuma das classes).

 $T(n) = \frac{6n^{5,2} + 7n^{7,5}}{2n^{3,1} + 7n^{2,4}}$

$$T(n) = \frac{6n^{5,2} + 7n^{7,5}}{2n^{3,1} + 7n^{2,4}}$$

• Use o termo que domina no numerador e o termo que domina no denominador.

$$T(n) = \frac{6n^{5,2} + 7n^{7,5}}{2n^{3,1} + 7n^{2,4}}$$

- Use o termo que domina no numerador e o termo que domina no denominador.
- Assim,

$$T(n) pprox rac{7n^{7,5}}{2n^{3,1}} = \left(rac{7}{2}
ight)n^{4,4}.$$

$$T(n) = \frac{6n^{5,2} + 7n^{7,5}}{2n^{3,1} + 7n^{2,4}}$$

- Use o termo que domina no numerador e o termo que domina no denominador.
- Assim,

$$T(n) pprox rac{7n^{7,5}}{2n^{3,1}} = \left(rac{7}{2}
ight)n^{4,4}.$$

• Portanto, $T(n) \in \Theta(n^{4,4})$ (polinomial).

$$T(n) = -2n$$

$$T(n) = -2n$$

ullet Nenhuma das classes, pois c<0.

$$T(n) = 5n^{\log_2^3 n}$$

$$T(n) = 5n^{\log_2^3 n}$$

ullet Para ser polinomial ($n^{\Theta(1)}$) o expoente teria que ser constante, mas é uma potência de logaritmo. Ou seja, cresce mais que uma função polinomial.

$$T(n) = 5n^{\log_2^3 n}$$

• Para ser polinomial ($n^{\Theta(1)}$) o expoente teria que ser constante, mas é uma potência de logaritmo. Ou seja, cresce mais que uma função polinomial.

$$5n^{\log_2^3 n} = 5(2^{\log_2 n})^{\log_2^3 n} = 5 \cdot 2^{\log_2^4 n}$$

Para ser exponencial ($2^{\Theta(n)}$) o expoente teria que ser linear, mas é potência de logaritmo.

$$T(n) = 5n^{\log_2^3 n}$$

• Para ser polinomial ($n^{\Theta(1)}$) o expoente teria que ser constante, mas é uma potência de logaritmo. Ou seja, cresce mais que uma função polinomial.

$$5n^{\log_2^3 n} = 5(2^{\log_2 n})^{\log_2^3 n} = 5 \cdot 2^{\log_2^4 n}$$

Para ser exponencial ($2^{\Theta(n)}$) o expoente teria que ser linear, mas é potência de logaritmo.

Ou seja, cresce menos que uma função exponencial.

$$T(n) = 5n^{\log_2^3 n}$$

• Para ser polinomial ($n^{\Theta(1)}$) o expoente teria que ser constante, mas é uma potência de logaritmo. Ou seja, cresce mais que uma função polinomial.

$$5n^{\log_2^3 n} = 5(2^{\log_2 n})^{\log_2^3 n} = 5 \cdot 2^{\log_2^4 n}$$

Para ser exponencial ($2^{\Theta(n)}$) o expoente teria que ser linear, mas é potência de logaritmo.

- Ou seja, cresce menos que uma função exponencial.
- Conclusão: nenhuma das classes.