CIDR is the number of network bits used. 255.255.255.192 = 11111111.11111111111111111111111100000 = /26 network bits, 32-26 = 6 host bits Many teachers and some exams require you know the long way to do things- longhand calculation of usable hosts per subnet= 21-2 (H= host bits) Usable subnets=2N with N for network. If you know how to draw the number line of binary with bits up high enough, it's clear every bit after 4096 is just as before going to double the previous bit's number. It's easier to draw what you need like done in this sheet. Block Sizes: Subtract subnet mask from 256 to get the bit position or "magic number." Mask of 192 (256-192=64) gives the network numbers of 0, 64, 128, and 192. So 255.255.255.192 has a /26 CIDR. Since 32-26= 6 host bits, we get 26-2=62 usable hosts per subnet. Remembering mask numbers: Add bit value to it's bigger neighbor's mask like this: 128+64=192, 192+32=224, 224+16=240, etc.

Normal Bit Value/ Position	128	64	32	16	8	4	2	1
2-exponent representation	27	26	25	24	2 ³	2 ²	2 ¹	2º
Subnet Mask for Bit Position	128	192	224	240	248	252	254	255
Class C CIDR	/25	/26	/27	/28	/29	/30	/31	/32
Subnets	2	4	8	16	32	64	128	n/a
Hosts per Subnet	126	62	30	14	6	2	2-no NetID/BC	n/a
			A /24 is all ho	st bits in the 4	th octet, thus	1 class C (2/2:	's, 4/26's, or 8	/27's, etc.)
Class B CIDR (3rd Octet)	/17	/18	/19	/20	/21	/22	/23	/24
Subnets	128 /24's	64 /24's	32 /24's	16 /24's	8 /24's	4/24's	2 /24's	1 Class C
Hosts (unsubnetted)	32766	16382	8190	4094	2046	1022	510	254
Class B CIDR (4th Octet)	/25	/26	/27	/28	/29	/30		
Subnets	512	1024	2048	4096	8192	16384		
Hosts (unsubnetted)	126	62	30	14	6	2		
			<u>Like /24, a /1</u>	<u>6 is a whole cl</u>	ass B, holding	all host bits in	the 3rd and 4th	<u>octets</u>
Class A CIDR (2nd Octet)	/9	/10	/11	/12	/13	/14	/15	/16
Subnets	128 / 16's	64 /16's	32 / 16's	16 / 16's	8 / 16's	4/16's	2/16's	1 Class B
Hosts per Subnet (subtract 2)	8,388,606	4,194,302	2,097,150	1,048,574	524,286	262,142	131,070	65,534
Class A CIDR (3rd Octet)	/17	/18	/19	/20	/21	/22	/23	/24
Subnets	512	1024	2048	4096	8192	16,384	32,768	65,536
Hosts per Subnet (subtract 2)	32766	16382	8190	4094	2046	1022	510	254

Jejuuit ciussj	ui bysteili								
	Leading Bits		Starts At	Net Bits	Bits Left	# of Nets	Hosts per Net	Default Mask	Native CIDRs
Class A	0xxx, 1-126	-	0.0.0.1	8	24	128	16,777,216	255.0.0.0	/9 to /16
Class B	10xx, 128-191	-	128.0.0.0	16	16	16,384	65,534	255.255.0.0	/17 to /24
Class C	110x, 192-223	-	192.0.0.0	24	8	2,097,152	254	255.255.255.0	/25 to /32
Class D	1110, 224-239	Multicast	224.0.0.0	-	-	-	-	-	
Class E	1111, 240-254	Reserved	240.0.0.0	-	-	-	-	-	

Reserved and Private Addresses

Class A	10.0.0.0 - 10.255.255.255	10.0.0.0/8
Class B	172.16.0.0 - 172.31.255.255	172.16.0.0/12
Class C	192.168.0.0 - 255.255	192.168.0.0/16
Loopback	127.x.x.x	127.0.0.0/8
APIPA	169.254.x.x	169.254.0.0/16
Carrier NAT	100.64.0.0 - 100.127.255.255	100.64.0.0/14
Stress-testing	198 18 0 0 - 199 19 255 255	198 18 0 0/15

The main reason the chart above lists CIDR info for unusual-looking address space is to assist with imagining the "subnetting" of large chunks of private address space as is mostly the case in 10.0.0.0/8, but also 172.16.0.0/12 blocks. In those cases, for ease of reference mimicking the traditional routed addressing while adding a more human-recognizable patterns might help, (i.e., 10.1.x.x for eastern US, 10.2.x.x for central U.S., 10.3.x.x for western U.S., and so forth, as appropriate). An entire 10.0.0.0/8 has plenty of space for creativity.

Using the worksheet on the right hand side

Class B Subnetting - Subnetting for Hosts
We are given a Class B: 160.12.0.0, BC: 255.255.0.0. We are asked for 4080 hosts so add 2= 4082 Bits: where is the line drawn? 4096 ^ 2048 1024 512 256 128 64 32 16 8 4 2 1

drawn? 4096 * 2048 1024 512 250 126 04 32 10 0 4 2 1

So we need 12 bits- for hosts count from the RIGHT 160.12. 0 0 0 1

128 64 32 16 || 8 4 2 1 . 128 64 32 16 8 4 2 1

Subnet mask is 240 (128+64+32+16) "Magic number" is 16 160.12.16.0... 160.12.31.255 160.12.32.0, 160.12.48.0, 160.12.64.0, etc

Class C Subnetting - Subnetting for Networks
We are given 201.9.6.0 told to make 25 subnets- add 2 and it's 27.
27 = 5 bits - count from the left
201.9.6. 0 0 0 0 1
128 64 32 16 8 || 4 2 1
CIDR is /29 and 255.255.255.248 mask
Network IDs are 201.9.6.8, 201.9.6.16, 201.9.6.24, 201.9.6.32, 201.9.6.40 ... etc.

Class C Subnetting - Subnetting for Hosts
We have 195.12.8.0 and need 40 hosts +2 = 42 = 6 bits to hold
This time count FROM THE RIGHT to place the divider:

128 64 || 32 16 8 4 2 1 Subnet mask is 255.255.192 (128+64), CIDR is /26 Network IDs 195.12.8.64, 195.12.8.128. That's it since 192 is subnet for these subnets (and it's only a class C

/9	128	128	24	223	8,388,608
/10	192	64	23	222	4,194,304
/11	224	32	22	221	2,097,152
/12	240	16	21	220	1,048,576
/13	248	00	20	219	524,288
/14	252	4	19	218	262,144
/15	254	2	18	217	131,072
/16	255	_	17	216	65,536
			·		
117	128	128	16	215	32,768
/18	192	64	15	214	16,384
/19	224	32	4	213	8,192
/20	240	16	13	212	4,096
/21	248	œ	12	211	2,048
/22	252	4	1	210	1,024
/23	254	2	10	29	512
/24	255	_	9	28	256
/25	128	128	00	27	128
/26	192	64	7	26	64
/27	224	32	6	25	32
/28	240	16	σı	24	16
/29	248	00	4	23	8
/30	252	4	ω	22	4
/31	254	2	2	21	2
/32	255	_	_	20	1
/29 /30 /31 /32 ← CIDR (network bits)	248 252 254 255 ← subnet mask	16 8 4 2 1 ← Binary bit by octet	5 4 3 2 1 ←Binary bit placement	2^4 2^3 2^2 2^1 2^0 \leftarrow Power of 2	1 ←# of hosts by position