

LC OSCILLATION ALTERNATING CURRENT

MOHIT SIR-IIT KGP

LC OSCILLATIONS

(i) Oscillation between Electrostatic energy and magnetic energy.

$$\begin{array}{c|c}
0 & -0 \\
\hline
2 & -2 \\
\hline
i & \\
t = 0
\end{array}$$

$$\begin{cases}
\frac{d^2x}{dt^2} + w^2x = 0
\end{cases}$$

$$\frac{2^2}{2C} + \frac{1}{2}Li^2 = Const$$

$$=) \frac{2}{c} \frac{dz}{dt} + \frac{2i}{dt} \frac{di}{dt} = 0$$

$$=) \frac{2}{c} + \frac{d^2}{dt^2} = 1$$

$$\frac{1}{2} = \frac{1}{2} = 0$$

$$\omega = \frac{1}{\sqrt{LC}} \Rightarrow T = 2\pi \sqrt{LC}$$

and,
$$2 = Q \sin(\omega t + \Phi)$$

$$\begin{array}{c|c}
0 & -0 \\
\hline
1 & 2 \\
\hline
1 & \\
1 & \\
\hline
1 & \\
1 & \\
\hline
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 &$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$2 = Q \sin(\omega t + \phi)$$

$$3 = Q \sin(\omega t + \phi)$$

$$4 = Q \cos(\omega t + \phi)$$

$$2 = Q \cos(\omega t + \phi)$$

$$2 = Q \cos(\omega t + \phi)$$

$$3 = Q \cos(\omega t + \phi)$$

$$4 = Q \cos(\omega t$$

Summary:

(1)
$$\frac{Q^2}{2C} = \frac{1}{2}LI_{max}^2 = \frac{2^2}{2C} + \frac{1}{2}Li^2$$

(2)
$$2 = Q \sin(\omega t + \phi)$$
, $\omega = \frac{1}{\sqrt{LC}}$

- (3) Complete UE to UB and Vice-Versa in T/4 time.

 (4) UE to UE in T/2.
 - Eduniti for Physics

(EN) EDUNITI

Q1.

- In a certain oscillating LC circuit, the total energy is converted from electrical energy in the capacitor to magnetic energy in the inductor in $1.50\,\mu s$.
- (a) What is the time period of oscillation?
- (b) How long after the magnetic energy is maximum will it be maximum again?

Q1.

- In a certain oscillating LC circuit, the total energy is converted from electrical energy in the capacitor to magnetic energy in the inductor in $1.50 \,\mu s$.
- (a) What is the time period of oscillation?
- (b) How long after the magnetic energy is maximum will it be maximum again?

Soln: (a)
$$U_E \longrightarrow U_B$$
 in $1.5 \mu s = T/q$
 $\Rightarrow T = 6 \mu s$
(b) $U_B \longrightarrow U_B$ in $T_2 \Rightarrow 3 \mu s$

In an oscillating LC circuit, in terms of the maximum charge Q_0 on the capacitor, what is the charge on it when the energy in the electric field is one third of that in the magnetic field?

In an oscillating LC circuit, in terms of the maximum charge Q_0 on the capacitor, what is the charge on it when the energy in the electric field is one third of that in the magnetic field?

