9 An aluminium wire of length 1.8 m and area of cross-section 1.7×10^{-6} m² has one end fixed to a rigid support. A small weight hangs from the free end, as illustrated in Fig. 9.1.

Fig. 9.1

The resistance of the wire is $0.030\,\Omega$ and the Young modulus of aluminium is $7.1\times10^{10}\,Pa$.

The load on the wire is increased by 25 N.

- (a) Calculate
 - (i) the increase in stress,

increase =Pa

(ii) the change in length of the wire.

change = m

[4]

3 (a) Explain what is meant by the *centre of gravity* of an object.

(b) A non-uniform plank of wood XY is 2.50 m long and weighs 950 N. Force-meters (spring balances) A and B are attached to the plank at a distance of 0.40 m from each end, as illustrated in Fig. 3.1.

Fig. 3.1

When the plank is horizontal, force-meter A records 570 N.

(i) Calculate the reading on force-meter B.

reading =N

- (ii) On Fig. 3.1, mark a likely position for the centre of gravity of the plank.
- (iii) Determine the distance of the centre of gravity from the end X of the plank.

distance = m

[6]

Answer all the questions in the spaces provided.

Distinguish between the <i>mass</i> of a body and its <i>weight</i> .
mass
woight
weight
[4]

2 A student determines the acceleration of free fall using the apparatus illustrated in Fig. 2.1.

Fig. 2.1

3 (a) State the two conditions necessary for the equilibrium of a body which is acted upon by a number of forces.

1	 	 	 	
2				
	 	 	 	 [2]

(b) Three identical springs S_1 , S_2 and S_3 are attached to a point A such that the angle between any two of the springs is 120° , as shown in Fig. 3.1.

Fig. 3.1

The springs have extended elastically and the extensions of S_1 and S_2 are x. Determine, in terms of x, the extension of S_3 such that the system of springs is in equilibrium. Explain your working.

extension of $S_3 = \dots$ [3]

(c) The lid of a box is hinged along one edge E, as shown in Fig. 3.2.

Fig. 3.2

The lid is held open by means of a horizontal cord attached to the edge F of the lid. The centre of gravity of the lid is at point C.

On Fig. 3.2 draw

- (i) an arrow, labelled W, to represent the weight of the lid,
- (ii) an arrow, labelled T, to represent the tension in the cord acting on the lid,
- (iii) an arrow, labelled R, to represent the force of the hinge on the lid.

[3]