

CLAIMS

What is claimed is:

- 5 1. A flash memory source and drain formation process comprising:
 depositing a silicide layer in a source and drain area;
 implanting a dopant in said source and drain area; and
 performing a diffusion process on said source and drain area.
- 10 2. The flash memory source and drain formation process of claim 1 wherein said silicide layer comprises cobalt silicide.
- 15 3. The flash memory source and drain formation process of claim 1 wherein said dopant comprises arsenic.
- 20 4. The flash memory source and drain formation process of claim 1 wherein said diffusion process is performed in a temperature range of about 600 to 950 Celsius.
- 25 5. The flash memory source and drain formation process of claim 1 wherein said implanting introduces a dopant into said silicide layer.
- 30 6. The flash memory source and drain formation process of claim 5 wherein said dopant in said silicide layer diffuses into said source and drain areas during an anneal process.
- 35 7. The flash memory source and drain formation process of claim 1 wherein said source and drain form shallow junctions.
8. A memory cell comprising:
 a control gate component having a capacity to receive a charge;
 an oxide region having electrical charge insulation characteristics and electrical charge penetration characteristics, said oxide region coupled to said control gate;
 a floating gate having a charge trapping region, said floating gate coupled to said oxide region;
 a well component having a charge doping characteristic, said well coupled to said floating gate component;
 a source component having opposite charge doping characteristics formed by implantation of a dopant and diffusion of said dopant from a silicide, said source component coupled to said substrate; and
 a drain component having similar doping charge characteristics to said source component and formed by implantation of a dopant and diffusion of said dopant from a silicide, said drain component coupled to said substrate.

9. The memory cell of Claim 8 wherein said source and drain form shallow junctions.
10. The memory cell of Claim 8 wherein said source and drain components are configured to reduce
5 leakage current.
11. The memory cell of Claim 8 wherein said source and drain components have reduced resistivity
characteristics.
- 10 12. The memory cell of Claim 8 wherein said silicide includes cobalt silicide.
13. The memory cell of Claim 8 wherein said dopant includes arsenic.
14. The memory cell of Claim 8 further comprising a sidewall spacer that has a thickness of about
15 50Å to about 800Å.
15. A flash memory formation method comprising:
preparing a wafer substrate for lithographic processes;
executing a gate formation process;
20 performing a silicide source and drain formation process; and
depositing a metal layer over the source and drain respectively.
16. A flash memory formation method of Claim 15 further comprising:
depositing an oxide and a nitride protective layer on said wafer substrate; and
25 performing a chemical mechanical polishing process.
17. A flash memory formation method of Claim 15 further comprising:
depositing an insulating layer;
creating a floating gate area in said insulating layer;
30 removing excess charge trapping material;
depositing additional insulating material over said floating gate area;
depositing a control gate material on top of the insulating material;
removing materials deposited during said gate formation process from areas not included under
said control gate; and
35 depositing a sidewall spacer material on the sides of said control gate area.
18. A flash memory formation method of Claim 15 further comprising:
preparing said source and drain area for implantation and diffusion;
depositing a silicide layer in a source and drain area;

implanting a dopant in said source and drain area;

performing a diffusion process on said source and drain area to "push" doping agents included in the silicide layer through the surface of said wafer substrate into said source and drain areas.

5 19. A flash memory formation method of Claim 15 wherein some of said dopant is trapped in said silicide layer during said implantation of dopants in said source and drain areas.

20. A flash memory formation method of Claim 15 wherein said metal layer couples said source and drain areas to other components included on said wafer.

10