

Quantum Computing

Chao Liang

School of Computer Science Wuhan University

Review: Lecture 5

■ Composite Systems

- Tensor Product
 - > Tensor product allows parallel action
- Assembling System
 - Tensor product of states and acts, graphs and matrices
- Assembling Quantum System
 - Assembling of independent quantum systems have the tensor product as its state space

Lecture 6: Quantum Gates

1

Bits and Qubits

- Definitions: bit and qubit
- Relation between bit and qubit
- Definitions: byte and qubyte
- Vector representation of qubits

2

Classical Gates

- NOT gate
- AND gate
- OR gate
- NAND gate
- 功能完备与通用门
- Sequential and Parallel Operations

3

Reversible Gates

- Motivation
- Controlled-NOT gate
- Toffoli gate
- Fredkin gate

4

Quantum Gates

- Definition
- Geometric representation
- Phase shift gate
- Controlled-U gate
- Deutsch gate
- No-Clone Theorem

- Definition: bit
 - A bit is a unit of information describing a twodimensional classical system
 - a bit is a way of describing a system whose set of states is of size 2
 - > A bit can be either in state $|0\rangle$ or in state $|1\rangle$, i.e., a 2-by-1 binary matrix

$$|0\rangle = \frac{\mathbf{0}}{\mathbf{1}} \begin{bmatrix} 1\\0 \end{bmatrix} \qquad |1\rangle = \frac{\mathbf{0}}{\mathbf{1}} \begin{bmatrix} 0\\1 \end{bmatrix}$$

- Definition: qubit
 - A quantum bit or a qubit is a unit of information describing a two dimensional quantum system
 - We shall represent a qubit as a 2-by-1 matrix with complex numbers

Relation between bit and qubit

will be found in state |1⟩. Whenever we measure a qubit, it automatically becomes a bit. So we shall never "see" a general qubit. Nevertheless, they do exist and are the

- Byte and Qubyte
 - 8 bits: 01101011
 - Vector representation of bits

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Tensor product representation

$$|0\rangle \otimes |1\rangle \otimes |1\rangle \otimes |0\rangle \otimes |1\rangle \otimes |0\rangle \otimes |1\rangle \otimes |1\rangle$$

ightharpoonup An element of $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$

Byte

Qubyte

 8 bits together 8 qubits together **00000000** Γ 00000000 c_0 28=256 complex 00000001 0000001 0 c_1 numbers to indicate a qubyte 01101010 0 01101010 c_{106} 01101011 01101011 c_{107} VS 01101100 0 01101100 c_{108} 8 binary numbers 11111110 11111110 c_{254} to indicate a byte 11111111 11111111 c_{255}

■ A qubit pair (two qubits)

Linear combination

$$\Rightarrow |\psi\rangle = c_{0,0}|00\rangle + c_{0,1}|01\rangle + c_{1,0}|10\rangle + c_{1,1}|11\rangle$$

- Classical logical gates
 - Ways of manipulating bits
 - Binary matrices

NOT gate

$$NOT = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

AND gate

$$AND = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} =
\begin{bmatrix}
0 \\
1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}
=
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}$$

OR gate

$$OR = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

NAND gate

■ 逻辑等价

P	Q	$P \lor Q$	P	Q	$\neg P$	$\neg Q$	$\neg P \land \neg Q$	$\neg(\neg P \land \neg Q)$
T	T	T	Т	T	F	F	F	T
T	F	T	Т	F	F	T	F	Т
F	, T	T	F	T	T	F	F	Т
F	F	F	F	F	Т	T	T	F
		'		$P\vee$	$Q \equiv -$	$\neg(\neg P \land$	$\neg Q$) – –	;

● 这意味着任何"或"都可以被"与"和"非"替代

来源于: 《人人可懂的量子计算》,Chris Bernhardt著,邱道文等译,机械工业出版社,2020年

■ 逻辑等价

● 这意味着 "异或" 也可以被 "与" 和 "非" 替代

■ 布尔函数

P	Q	R	f(P,Q,R)
T	T	T	
T	T	F	
T	F	T	
T	F	F	
F	T	Т	a a
F	Т	F	
F	F	Т	
F	F	F	

需要填充8个值。对每个值,我们有两种选择,总计2⁸种函数。 我们会展示不管如何选择函数,都能找到仅用函数¬和∧的等价 表示。

来源于: 《人人可懂的量子计算》,Chris Bernhardt著,邱道文等译,机械工业出版社,2020年

■ 功能完备性

P	Q	R	f(P,Q,R)
T	T	T	$F = f(P,Q,R) \equiv (P \land \neg Q \land R \bigcirc \neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land \neg R)$
T	T	F	F (17,2,11) (17, 12/11,10) (17, 12/11,10)
T	F	T	
T	F	F	F
F	Т	T	$f(P,Q,R) \equiv \neg(\neg(P \land \neg Q \land R) \land \neg(\neg P \land Q \land \neg R) \bigcirc \neg P \land \neg Q \land \neg R)$
F	T	F	
F	F	T	F (17/12)
F	F	F	$\neg(\neg[\neg(\neg(P \land \neg Q \land R) \land \neg(\neg P \land Q \land \neg R))] \land \neg[\neg P \land \neg Q \land \neg R])$

● { "非" , "与" } 是一个功能完备的布尔运算集

来源于: 《人人可懂的量子计算》,Chris Bernhardt著,邱道文等译,机械工业出版社,2020年

■ 功能完备性

• "与非" $P \uparrow Q = \neg (P \land Q)$

● { "与非" } 也是一个功能完备的布尔运算集

来源于:《人人可懂的量子计算》,Chris Bernhardt著,邱道文等译,机械工业出版社,2020年

- 与非门是一个通用门
 - "非门"的"与非门"表示

● "与门"的"与非门"表示

来源于: 《人人可懂的量子计算》,Chris Bernhardt著,邱道文等译,机械工业出版社,2020年

Sequential operation

 $B \star A$, which is a $(2^p - by - 2^n) \star (2^n - by - 2^m) = (2^p - by - 2^m)$ matrix

Parallel operation

 $A \otimes B$ is of size $2^{n}2^{n'} = 2^{n+n'}$ -by- $2^{m}2^{m'} = 2^{m+m'}$

Mix operations

$$(B\otimes I_{m-p})\star A$$

Example

■ Example 1

• OR \star (NOT \otimes AND)

$$\begin{bmatrix} \text{NOT} \otimes \text{AND} \\ \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$(5.51)$$

And so we get

$$OR \star (NOT \otimes AND) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}.$$
 (5.52)

Example 2

• NOT \star AND \star (NOT \otimes NOT) = OR

$$\begin{bmatrix} \text{NOT} \otimes \text{NOT} \\ = \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$
 (5.54)

This DeMorgan's law corresponds to the following identity of matrices:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \star \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \star \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}. \tag{5.55}$$

Motivation

- Landauer's principle (1960s)
 - erasing information, as opposed to writing information, is what causes energy loss and heat

Figure 5.3. State |0) dissipating and creating energy.

|1>

writing information is a reversible procedure while erasing is not

Motivation

- Bennett's thought (1970s)
 - Irreversible->erasing->energy loss
 - Reversible->no energy loss
- Reversible circuits and programs
 - Examples: NOT, controlled-NOT, Toffoli, Fredkin, ...
 - Note: AND, OR gates are irreversible

补充材料: 可逆门

■门与布尔函数

 与门								
输	人	输出						
0	0	0						
0	1	0						
1	0	0						
1	1	1						

		半加器	
输	人	输	出
		数字	进位
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

■ 可逆门与可逆函数

● 给定一组输出,是否可以确定输入?

Controlled-NOT gate

controlled-NOT gate can be reversed by itself

■ Toffoli gate / doubly-controlled gate

 $\bullet |x, y, z\rangle \mapsto |x, y, z \oplus (x \wedge y)\rangle$

	000	001	010	011	100	101	110	111
000	1	0	0	0	0	0	0	0
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	0	1	0	0
110	0	0	0	0	0	0	0	1
111	0	0	0	0	0	0	1	0

■ Toffoli gate

A gate with three controlling bits

- Toffoli gate
 - Toffoli gate is universal (通用门)

Fredkin gate / controlled swap gate

•
$$|0, y, z\rangle \mapsto |0, y, z\rangle$$
 and $|1, y, z\rangle \mapsto |1, z, y\rangle$

	000	001	010	011	100	101	110	111
000	1	0	0	0	0	0	0	0]
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	0	0	1	0
110	0	0	0	0	0	1	0	0
111	0	0	0	0	0	0	0	1

- Fredkin gate
 - Fredkin gate is (also) universal

4. Quantum Gates

- Definition: quantum gate
 - A quantum gate is simply an operator that acts on qubits. Such operators will be represented by unitary matrices

Remarks

- Reversible matrix operators that work on classic bits also work on qubits, e.g., NOT, CNOT, Toffoli, and Fredkin gates
- Some matrix operators only make sense in a quantum context, e.g., Hadamard (H) gate

4. Quantum Gates

Examples

Pauli matrices:
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

> Square root of NOT:
$$\sqrt{\text{NOT}} = \frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix}$$

Some others:
$$H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
 $S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$ and $T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$

Phase shift gate, Controlled-U gate, Deutsch gate

补充材料

■ 经典逻辑门、可逆门、量子门

Geometric representation of 1-qubit state

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle$$

4 real numbers -> 2 actual degrees of freedom

$$|\psi\rangle = r_0 e^{i\phi_0} |0\rangle + r_1 e^{i\phi_1} |1\rangle$$

- Reasons
 - Scale multiplication does not change state (4->3)

$$e^{-i\phi_0}|\psi\rangle = e^{-i\phi_0}(r_0 e^{i\phi_0}|0\rangle + r_1 e^{i\phi_1}|1\rangle) = r_0|0\rangle + r_1 e^{i(\phi_1 - \phi_0)}|1\rangle$$

➤ Normalization (3->2)

$$1 = |c_0|^2 + |c_1|^2 \quad \Box \quad r_0^2 + r_1^2 = 1$$

Geometric representation of 1-qubit state

$$|\psi\rangle = \cos(\theta)|0\rangle + e^{i\phi}\sin(\theta)|1\rangle$$

- Latitude: $0 \le \theta \le \frac{\pi}{2}$
- Longitude: $0 \le \phi < 2\pi$
- Problem

$$\triangleright$$
 (θ, ϕ) vs $(\pi - \theta, \phi + \pi)$

Figure 5.6. Bloch sphere.

- Geometric representation of 1-qubit state
 - New Bloch sphere

$$|\psi\rangle = \cos(\theta) |0\rangle + e^{i\phi} \sin(\theta) |1\rangle$$

$$x = \cos \phi \sin 2\theta$$
,

$$y = \sin 2\theta \sin \phi$$
,

$$z = \cos 2\theta$$
.

where
$$0 \le \theta \le \frac{\pi}{2}$$
 and $0 \le \phi < 2\pi$

- Geometric representation of 1-qubit state
 - New Bloch sphere (cont.)

Figure 5.6. Bloch sphere.

- Bit locates in the north or south pole
- \blacktriangleright Measurement probability depends on the latitude 2θ
- Page 25 Page
- Phase (longitude) shift does not affect the collapsing probability

- Geometric representation of operator
 - Dynamics
 - every unitary 2-by-2 matrix (i.e., a one-qubit operation) can be visualized as a way of manipulating the sphere

Figure 5.7. A rotation of the Bloch sphere at y.

Phase shift gate

$$R(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix} \quad \Rightarrow \quad R(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$$
 (5.95)

This gate performs the following operation on an arbitrary qubit:

$$\cos(\theta')|0\rangle + e^{i\phi}\sin(\theta')|1\rangle = \begin{bmatrix} \cos(\theta') \\ e^{i\phi}\sin(\theta') \end{bmatrix} \mapsto \begin{bmatrix} \cos(\theta') \\ e^{i\theta}e^{i\phi}\sin(\theta') \end{bmatrix}. \tag{5.96}$$

This corresponds to a rotation that leaves the latitude alone and just changes the longitude. The new state of the qubit will remain unchanged. Only the phase will change.

- Controlled-U gate or ^CU gate
 - IF-THEN statement

$$|0, y\rangle \mapsto |0, y\rangle \text{ and } |1, y\rangle \mapsto |1, Uy\rangle$$

$$U = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \Rightarrow \quad {}^{C}U = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix}$$

■ Deutsch gate $D(\theta)$

•
$$|x, y, z\rangle = \begin{cases} |1, 1, R(\theta)z\rangle, & \text{if } |x\rangle = |y\rangle = |1\rangle \\ |x, y, z\rangle, & \text{otherwise} \end{cases}$$

- Universal gates
 - Universal logic gates
 - > {AND, NOT}
 - > NAND
 - > Toffoli
 - > Fredkin
 - Universal quantum gates

$$ightharpoonup \left\{ H, {}^{C}\text{NOT}, R\left(\cos^{-1}\left(\frac{3}{5}\right)\right) \right\}$$

 $\triangleright D(\theta)$

- Properties of quantum gates
 - Every operation must be reversible
 - No-cloning Theorem*
 - We can "cut" and "paste" a quantum state
 - We cannot "copy" and "paste" a quantum state

- No-Cloning Theorem
 - Assume there is a potential cloning operation C
 - > It would be a linear map (indeed unitary!)

$$C: \mathbb{V} \otimes \mathbb{V} \longrightarrow \mathbb{V} \otimes \mathbb{V}$$

 \succ To clone $|x\rangle$

$$C(|x\rangle \otimes |0\rangle) = |x\rangle \otimes |x\rangle$$

• When $|x\rangle$ are basic states

$$C(|0\rangle \otimes |0\rangle) = |0\rangle \otimes |0\rangle$$
 and $C(|1\rangle \otimes |0\rangle) = |1\rangle \otimes |1\rangle$

• When $|x\rangle$ are superposition state $c_0|0\rangle + c_1|1\rangle$

$$C((c_0|0\rangle + c_1|1\rangle) \otimes |0\rangle)$$
 $= C(c_0(|0\rangle \otimes |0\rangle) + c_1(|1\rangle \otimes |0\rangle))$ % Tensor product distributes over addition
 $= c_0 C(|0\rangle \otimes |0\rangle) + c_1 C(|1\rangle \otimes |0\rangle)$ % C is a linear operation
 $= c_0(|0\rangle \otimes |0\rangle) + c_1(|1\rangle \otimes |1\rangle)$ % clone when $|x\rangle$ is basic state
 $\neq (c_0|0\rangle + c_1|1\rangle) \otimes (c_0|0\rangle + c_1|1\rangle)$ % definition of clone operation

When C is a linear operation, clone is not permitted

- No-Cloning Theorem
 - Consider a transporting operation T
 - > It would be a linear map too

$$T \colon \mathbb{V} \otimes \mathbb{V} \longrightarrow \mathbb{V} \otimes \mathbb{V}$$

 \succ To transport $|x\rangle$

$$T(|x\rangle \otimes |0\rangle) = |0\rangle \otimes |x\rangle$$

• When $|x\rangle$ are basic states

$$T(|0\rangle \otimes |0\rangle) = |0\rangle \otimes |0\rangle$$
 and $T(|1\rangle \otimes |0\rangle) = |0\rangle \otimes |1\rangle$

• When $|x\rangle$ are superposition state $c_0|0\rangle + c_1|1\rangle$

$$T((c_0|0\rangle + c_1|1\rangle) \otimes |0\rangle)$$

= $T(c_0(|0\rangle \otimes |0\rangle) + c_1(|1\rangle \otimes |0\rangle))$ % Tensor product distributes over addition
= $c_0T(|0\rangle \otimes |0\rangle) + c_1T(|1\rangle \otimes |0\rangle)$ % T is a linear operation
= $c_0(|0\rangle \otimes |0\rangle) + c_1(|0\rangle \otimes |1\rangle)$ % clone when $|x\rangle$ is basic state
= $|0\rangle \otimes (c_0|0\rangle + c_1|1\rangle)$ % definition of transport operation

When T is a linear operation, transport is permitted

Conclusion

- 1. Bits and Qubits
 - Definitions and their relation
- Classical Gates
 - NOT, AND, OR, and NAND gates
 - 功能完备与通用门
 - Sequential and Parallel Operations
- Reversible Gates
 - Controlled-NOT, Toffoli, and Fredkin gates
- 4. Quantum Gates
 - Definition
 - Geometric representation
 - Phase shift, Controlled-U, and Deutsch gates
 - No-Clone Theorem

预告

- 下次上课讲量子算法,入门可能有点难,大家 提前看两个资料:
 - Quantum Computing for Computer Scientists,
 Microsoft Research, 2016

https://www.bilibili.com/video/BV14W411o7G6?from=search&seid=2931728500800941075

● 量子计算通识, zhyuzh3d, 简书, 2019 https://www.jianshu.com/p/2a23f15e4efb