Quantum Circuits using Pennylane

 $QCNN\ and\ RQNN\ Working\ Mechanism$

1. Introduction

This document presents the detailed architecture and functioning of the Quantum Convolutional Neural Network (QCNN) and the Recurrent Quantum Neural Network (RQNN) circuits, both designed using the Pennylane quantum framework. Each circuit operates with 8 qubits (n_qubits = 8) and employs 3 variational layers, integrating parameterized rotations and entanglement to model feature extraction and temporal evolution.

2. Circuit Architecture Overview

2.1 Entangling Layer (entangle_layer)

This component forms the backbone of both QCNN and RQNN circuits, enabling qubit interaction and correlation through controlled operations.

Component	Technical Detail	Working
Gate	CNOT (Controlled-NOT)	Flips the target qubit when the
		control qubit is $ 1\rangle$, generat-
		ing entanglement that allows
		information exchange between
		qubits.
Connectivity	Cyclic/Ring Topology	Connects adjacent qubits
		([i, i+1]) and includes a wrap-
		around CNOT ([7,0]) to ensure
		complete cyclic entanglement.
Inputs/Outputs	Quantum states (not classical	Produces an entangled multi-
	data).	qubit state as input to the next
		rotation layer.

2.2 QCNN Layer (qcnn_layer)

The QCNN acts as a quantum feature extractor, analogous to a convolutional layer in classical deep learning, encoding spatial correlations through quantum entanglement.

Phase	Operation	Gate Detail	Inputs & Out-
			puts
Data Encoding	RY(inputs[i], wires	$= \mathbf{Riy}(\theta) = e^{-i\frac{\theta}{2}Y}.$	Input: 8 classi-
		Rotates the qubit	cal features $(0 \le $
		around the Y-axis	$\theta \leq \pi$). Output:
		by angle θ .	Initial encoded 8-
			qubit state $ \psi_{\rm in}\rangle$.
Variational Layer	RX rotation	$\mathbf{R}_{\mathbf{X}}(\phi) = e^{-i\frac{\phi}{2}X}.$	Input: Quantum
		Applies a trainable	state from previous
		rotation around the	step. Parameter:
		X-axis.	8 learnable angles
			per layer.
	entangle_layer	CNOT entangle-	Input: Rotated
		ment.	qubit states. Out-
			put: Entangled
			feature state.
Output	expval(PauliZ(i))	$\langle \sigma_Z \rangle = \langle \psi Z \psi \rangle.$	Produces a feature
		Measures the ex-	vector of 8 values
		pectation value	(-1 to 1).
		along Z.	

Figure 1: Quantum Convolutional Neural Network (QCNN) — showing RY feature encoding, RX parameter rotations, cyclic CNOT entanglement, and Z-basis measurement for feature extraction.

2.3 RQNN Cell (rqnn_cell)

The RQNN cell captures temporal dependencies in quantum states, allowing sequential modeling analogous to a recurrent neural network's hidden memory mechanism.

Phase	Operation	Gate Detail	Inputs & Out-
			puts
State Encoding	RY(x+h, wires = i)	$\mathbf{R}_{\mathbf{Y}}(\theta)$ rotations	Input: 8 input
		combine current	features (x) and
		input and memory.	8 hidden states
			(h). Output:
			Combined encoded
			quantum state
			$ \psi_{\text{combined}}\rangle$.
Variational Layer	RZ rotation	$\mathbf{R}_{\mathbf{Z}}(\phi) = e^{-i\frac{\phi}{2}Z}.$	Input: State from
		Introduces phase	encoding layer.
		rotation controlled	Parameter: 8
		by trainable pa-	trainable phase
		rameters.	angles per layer.
	entangle_layer	CNOT entangle-	Input: Post-
		ment.	rotation state.
			Output: En-
			tangled hidden
			representation.
Output	expval(PauliZ(i))	$\langle \sigma_Z \rangle = \langle \psi Z \psi \rangle.$	Generates a new 8-
			dimensional hidden
			state for sequen-
			tial time-step pro-
			cessing.

Figure 2: Recurrent Quantum Neural Network (RQNN) — combining RY encoding of input and hidden states, RZ-based variational processing, cyclic CNOT entanglement, and Z-basis measurement.

3. Working of the Quantum Circuits

3.1 QCNN Layer (Feature Extraction)

- 1. **Input Encoding:** Classical feature values are encoded as Y-rotations, generating an initial quantum state.
- 2. Variational Processing: The repeated RX and CNOT layers transform and entangle features, learning nonlinear spatial correlations.
- 3. **Feature Readout:** The expectation values $\langle Z \rangle$ are measured, forming the quantum feature vector.

3.2 RQNN Cell (Sequential Memory)

- 1. **State Integration:** The RY encoding merges new input and prior memory, allowing quantum memory retention.
- 2. **Temporal Transformation:** RZ and CNOT layers evolve this state across time, learning progression patterns.
- 3. **Hidden State Update:** Z-measurements produce the next hidden state, reused recursively across sequence steps.