Problem Set 4 Curvature Fall 2020

Throughout, let E denote a holomorphic vector bundle over a complex manifold X.

1. Show that a connection D on E induces, in a natural way, a connection D^* on the dual bundle E^* satisfying

$$d(\alpha(\sigma)) = (D^*\alpha)(\sigma) + \alpha(D\sigma)$$

for sections $\alpha \in A^0(E^*)$ and $\sigma \in A^0(E)$.

- **2.** Let End(E) denote the corresponding endomorphism bundle.
 - (a) Show that a connection D on E also induces a connection on the bundle $\operatorname{End}(E)$ satisfying an identity similar to the one of the previous problem.
 - (b) The trace Tr describes a bundle map to the trivial bundle. Argue that

$$d \circ \operatorname{Tr} = \operatorname{Tr} \circ D$$
,

where D denotes the induced connection on $\operatorname{End}(E)$.

- **3.** If D is a connection, show that the composition D^2 is $C^{\infty}(X)$ -linear.
- **4.** Show that D^2 corresponds to an End(E)-valued 2-form F_D .
- **5.** Show that $DF_D = 0$, where D denotes the appropriate extension of the connection D. This formula is called the Bianchi identity.
- **6.** Show that $Tr(F_D)$ is closed.
- 7. For a hermitian metric H on E, show that there is a unique connection D_H satisfying
 - $\bullet \ D_H^{0,1} = \bar{\partial}$
 - $\bullet \ D_H H = 0.$

The connection D_H is called the Chern connection associated to H.

- **8.** For a hermitian metric H, show that F_H belongs to $A^{1,1}(\operatorname{End}(E,H))$, where $\operatorname{End}(E,H)$ denotes the bundle of skewhermitian endomorphisms of E.
- **9.** If two metrics H, K satisfy

$$\langle \xi, \eta \rangle_H = \langle h\xi, \eta \rangle_K$$

for an endomorphism h of E, then write H = Kh.

- (a) Show that h is a positive endomorphism of E.
- (b) Show that h is self-adjoint with respect to both H and K.
- (c) Show that

$$F_H = F_K + \bar{\partial}(h^{-1}\partial_K h).$$

(d) In particular, if $h = e^s$ for an endomorphism s, show that

$$F_H = F_K + \bar{\partial}\partial_K s.$$

- 10. Let \mathcal{H} denote the space of hermitian metrics on E.
 - (a) Describe \mathcal{H} as a subset of the space of sections of the bundle $E \otimes \overline{E}^*$, where \overline{E} denotes the pullback of E under the conjugation involution.
 - (b) Describe the tangent space $T_H \mathcal{H}$ at a typical metric H.
- 11. The assignment $H \mapsto F_H$ describes a map $\mathcal{H} \to A^{1,1}(\operatorname{End}(E))$.
 - (a) Describe the derivative of this map at the point H.
 - (b) The trace determines a map from $A^{1,1}(\operatorname{End}(E))$ to $A^{1,1}(X)$. Show that the derivative of the composition

$$\mathcal{H} \to A^{1,1}(\operatorname{End}(E)) \to A^{1,1}(X)$$

has an image that is a subset of im $\partial \bar{\partial}$.

12. Show that the cohomology class of

 $\operatorname{Tr}(F_H)$ is independent of the metric H. (Hint: Since any two metrics are connected by a path, argue that it is enough to show that along a path H_t , the derivative of $\operatorname{Tr}(F_{H_t})$ lies in im $\partial \bar{\partial}$.)