Aula 5

Testes de postos com sinais de Wilcoxon

- Suponha uma população contínua e simétrica
- Uma amostra pareada (X, Y) de tamanho n.
- Este teste além de considerar o sinal (como no teste do sinal) também leva em conta a posição das diferenças entre as variáveis X e Y.
- Procedimento:
- Calcule as diferenças Di = Xi Yi. Ordene os valores absolutos |Di| em ordem crescente para i = 1, 2, ..., n
- Se Di> 0 associe o sinal +; se Di <0 associe o sinal -; sendo igual a 0 deve ser descartado e o valor de n deve ser considerado excluindo-se os descartes.
- Exemplo:
- X=(13, 5, 8, 4, 10) e Y=(1, 5, 9, 7, 3) logo Di = (12, 0, -1, -3, 7).
- Descartando valores nulos em Di, Di = (12, -1, -3, 7) e n=4
- Ordenando |Di| = (1,3,7,12), ordenado e com sinal: Di=(-1,-3,+7,+12)
- Posto com sinal = refere-se a posição dos valores de Di ordenado junto com o respectivo sinal:
- Postos com sinal: -1, -2, +3,+4
- R+ = soma dos postos com sinal positivo= 3+4=7
- R- = soma dos postos com sinal negativo = 1+2 = 3
- $R = min\{R + e R \} = 3$
- Para concluir o teste manualmente deve-se consultar uma tabela com os valores críticos para o teste de postos de sinais de Wilcoxon ou utilizar a aproximação normal.
- Neste curso usaremos o software R para realizar o teste.

Aproximação pela normal

- Se n for tal que n(n+1)/2 > 20 então
- Use a aproximação normal com
- $\mu = n (n+1)/4$
- $\sigma = \sqrt{n(n+1)(2n+1)/24}$

Exemplo 1

 Deseja-se testar se a resistência cisalhante mediana difere ou não de 2000 psi. São 20 valores observados. Execute um teste de Wilcoxon.

i	X	D
1	2158.70	158.70
2	1678.15	-321.85
3	2316.00	316.00
4	2061.30	61.30
5	2207.50	207.50
6	1708.30	-291.70
7	1784.70	-215.30
8	2575.10	575.10
9	2357.90	357.90
10	2256.70	256.70
11	2165.20	165.20
12	2399.55	399.55
13	1779.80	-220.20
14	2336.75	336.75
15	1765.30	-234.70
16	2053.50	53.50
17	2414.40	414.40
18	2200.50	200.50
19	2654.20	654.20
20	1753.70	-246.30

Formulação

H0: A força cisalhante mediana é igual a 2000 psi

H1: A força cisalhante mediana é diferente de 2000 psi

		0				
i	X	D	cial	Dabs	posto	Sinal
1	2158.70	158.70	16	53.50	1	1
2	1678.15	-321.85	4	61.30	2	1
3	2316.00	316.00	1	158.70	3	1
4	2061.30	61.30	11	165.20	4	1
5	2207.50	207.50	18	200.50	5	1
6	1708.30	-291.70	5	207.50	6	1
7	1784.70	-215.30	7	215.30	7	-1
8	2575.10	575.10	13	220.20	8	-1
9	2357.90	357.90	15	234.70	9	-1
10	2256.70	256.70	20	246.30	10	-1
11	2165.20	165.20	10	256.70	11	1
12	2399.55	399.55	6	291.70	12	-1
13	1779.80	-220.20	3	316.00	13	1
14	2336.75	336.75	2	321.85	14	-1
15	1765.30	-234.70	14	336.75	15	1
16	2053.50	53.50	9	357.90	16	1
17	2414.40	414.40	12	399.55	17	1
18	2200.50	200.50	17	414.40	18	1
19	2654.20	654.20	8	575.10	19	1
20	1753.70	-246.30	19	654.20	20	1

Verifique que R+ = 150 R- = 60

```
wilcox.test(x, mu=2000)
## ## Wilcoxon signed rank test ## ##
data: x
## V = 150, p-value = 0.09731
## alternative hypothesis: true location is not equal to 2000
```

Como p-valor = 0.09731, não podemos rejeitar a hipótese de que a resistência cisalhante seja igual a 2000 psi ao nível de significância de 0.05

Exemplo 2: duas amostras pareadas

Um engenheiro mecânico está investigando dois tipos A e B, de sistemas de injeção eletrônica de combustível, para avaliar se eles diferem quanto ao rendimento do carro. O sistema A foi instalado em doze diferentes carros e após isso, os mesmos 12 carros foram testados com o sistema B. O resultado da experiência está na tabela.

Execute o teste de Wilcoxon

	_		_	
Carro	X_{i}	Y_{i}	Sinal	
1	17,6	16,8	-	
2	19,4	20,0	+	
3	19,5	18,2	-	
4	17,1	16,4	-	
5	15,3	16,0	+	
6	15,9	15,4	-	
7	16,3	16,5	+	
8	18,4	18,0	-	
9	17,3	16,4	-	
10	19,1	20,1	+	
11	17,8	16,7	-	
12	18,2	17,9	-	

		ordem_in					
i	x1	x2	D	icial	Dabs	posto	Sinal
1	17.6	16.8	0.8	7	0.2	1	-1
2	19.4	20.0	-0.6	12	0.3	2	1
3	19.5	18.2	1.3	8	0.4	3	1
4	17.1	16.4	0.7	6	0.5	4	1
5	15.3	16.0	-0.7	2	0.6	5	-1
6	15.9	15.4	0.5	5	0.7	6	-1
7	16.3	16.5	-0.2	4	0.7	7	1
8	18.4	18.0	0.4	1	0.8	8	1
9	17.3	16.4	0.9	9	0.9	9	1
10	19.1	20.1	-1.0	10	1.0	10	-1
11	17.8	16.7	1.1	11	1.1	11	1
12	18.2	17.9	0.3	3	1.3	12	1

wilcox.test(x1,x2, paired=T)

Wilcoxon signed rank test data: x1 and x2 V = 56, p-value = 0.2036 alternative hypothesis: true location shift is not equal to 0

Fim da aula 5