Generate Collection

L6: Entry 34 of 62

File: JPAB

Feb 7, 1995

PUB-NO: JP407038376A

DOCUMENT-IDENTIFIER: JP 07038376 A

TITLE: BRANCHING FILTER AND MOBILE RADIO EQUIPMENT USING THE SAME

PUBN-DATE: February 7, 1995

INVENTOR - INFORMATION:

NAME

COUNTRY

WATANABE, KAZUSHI

ONUKI, HIDEO HOSAKA, NORIO

YUHARA, AKITSUNA

ASSIGNEE-INFORMATION:

NAME COUNTRY

HITACHI LTD

APPL-NO: JP05176885

APPL-DATE: July 16, 1993

INT-CL (IPC): H03 H 9/64; H03 H 7/46; H03 H 9/72; H04 B 1/52; H01 P

1/213

ABSTRACT:

PURPOSE: To provide a branching filter for mobile radio equipment of small size and with high performance as the branching filter to separate the transmission signal and the reception signal of mobile radio equipment which performs transmission and reception simultaneously by using a single antenna.

CONSTITUTION: This branching filter is the one to branch the transmission signal and the reception signal when the transmission/reception is performed simultaneously by using different frequencies for the transmission signal and the reception signal. The filter is provided with a transmission circuit which transmits the transmission signal and a reception circuit which receives the reception signal. The reception circuit is equipped with a first inductor 3 connected to a reception terminal, a second inductor 4 connected to the first inductor 1 in series, a T-type circuit 6 equipped with a surface acoustic wave resonator 5 whose one terminal is connected to the connecting point of the first and second inductors and whose other terminal is grounded, and a surface acoustic wave device 7 connected to the second inductor of the T-type circuit 6 in series, and the T-type circuit 6 is set so as to suppress a signal in the frequency band of the transmission signal in advance, and the

surface acoustic wave device 7 is set so as to pass the signal in the frequency band of the reception signal in advance.

COPYRIGHT: (C) 1995, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-38376

(43)公開日 平成7年(1995)2月7日

技術表示箇所		FΙ	庁内整理番号	識別記号			(51) Int.Cl.*
			<i>7</i> 259−5 J	Z		9/64	H03H
			9184-5 J	Α		7/46	
			7 259−5 J			9/72	
						1/52	H 0 4 B
				M	3	1/213	# H01P
未請求 請求項の数6 OL (全 9 頁)	未	審查請求					
000005108	00	(71)出顧人		5-176885	4	· · · ·	(21)出顧番号
株式会社日立製作所	株						
東京都千代田区神田駿河台四丁目6番地	東		月16日	平成5年(1993)7月	3		(22)出顧日
護辺 一志	波	(72)発明者					
神奈川県横浜市戸塚区吉田町292番地 株	神						
式会社日立製作所映像メディア研究所内	式						
大賞 秀男	大	(72) 発明者					
神奈川県横浜市戸塚区吉田町292番地 株	神						
式会社日立製作所映像メディア研究所内	式						
保坂 憲生	保	(72)発明者					
神奈川県横浜市戸塚区吉田町292番地 株	神						
式会社日立製作所映像メディア研究所内	太						
弁理士 當田 和子	弁	(74)代理人					
最終質に続く							

(54) 【発明の名称】 分波器およびこれを用いた移動無線機

(57)【要約】

【目的】単一のアンテナを用いて送、受信を同時に行う 移動無線器の送信信号と受信信号とを分離するための分 波器において、小形で、高性能な移動無線機用分波器を 提供する。

【構成】送信信号と受信信号とで異なる周波数帯域を使用して同時に送受信を行う際に前記送信信号と前記受信信号をの分波を行う分波器であって、前記送信信号を送信する送信回路と、前記受信信号を受信する受信回路とを有する。前記受信回路は、受信端から順に、当該受信端に接続される第1のインダクタ3と、該第1のインダクタに直列に接続された第2のインダクタ4と、第1および第2のインダクタの接続点に一端が接続され、他端が接地された弾性表面波共振子5とを備えるT型回路6と、該T型回路6の第2のインダクタに直列に接続される弾性表面波装置7とを備え、前記T型回路6は、前記受信信号の周波数帯域の信号を抑圧するようにあらかじめ設定され、前記弾性表面波装置7は、前記受信信号の周波数帯域の信号を通過させるようにあらかじめ設定される。

【特許請求の範囲】

【請求項1】送信信号と受信信号とで異なる周波数帯域 を使用して同時に送受信を行う際に前記送信信号と前記 受信信号との分波を行う分波器であって、

前記送信信号を送信する送信回路と、前記受信信号を受 信する受信回路とを有し、

前記受信回路は、

受信端から順に、当該受信端に接続される第1のインダ クタと、該第1のインダクタに直列に接続された第2の インダクタと、第1および第2のインダクタの接続点に 10 一端が接続され、他端が接地された弾性表面波共振子と を備えるT型回路と、

該T型回路の第2のインダクタに直列に接続される弾性 表面波装置とを備え、

前記T型回路は、前記送信信号の周波数帯域の信号を抑 圧するようにあらかじめ設定され、

前記弾性表面波装置は、前記受信信号の周波数帯域の信 号を通過させるようにあらかじめ設定されることを特徴 とする分波器。

【請求項2】請求項1において、前記送信回路は、 受信端から順に、当該受信端に接続される第1のインダ クタと、該第1のインダクタに直列に接続された第2の インダクタと、第1および第2のインダクタの接続点に 一端が接続され、他端が接地された弾性表面波共振子と を備えるT型回路と、

該T型回路の第2のインダクタに直列に接続される弾性 表面波装置とを備え、

前記T型回路は、前記受信信号の周波数帯域の信号を抑 圧するようにあらかじめ設定され、

号を通過させるようにあらかじめ設定されることを特徴 とする分波器。

【請求項3】請求項1において、前記T型回路のインダ クタは、前記受信信号の周波数通過帯域において、損失 を少なくするように設定されることを特徴とする分波 器.

【請求項4】請求項1、2または3において、前記T型 回路と前記弾性表面波装置とを、同一の集積回路のパッ ケージ内に形成したことを特徴とする分波器。

回路と前記弾性表面波装置とを、同一基板上に形成した ことを特徴とする分波器。

【請求項6】送信信号と受信信号とで異なる周波数帯域 を使用して単一アンテナを用いて送受信を同時に行い、 前記送信信号と前記受信信号との分波を行う分波器を有 する移動無線機であって、

前記分波器は、

前記送信信号を送信する送信回路と、前記受信信号を受 信する受信回路とを有し、

前記受信回路は、

前記アンテナ側から順に、当該アンテナに接続される第 1のインダクタと、該第1のインダクタに直列に接続さ れた第2のインダクタと、第1および第2のインダクタ の接続点に一端が接続され、他端が接地された弾性表面

2

波共振子とを備える工型回路と、 該工型回路の第2のインダクタに直列に接続される弾性 表面波装置とを備え、

前記工型回路は、前記送信信号の周波数帯域の信号を抑 圧するようにあらかじめ設定され、

前記弾性表面波装置は、前記受信信号の周波数帯域の信 号を通過させるようにあらかじめ設定されることを特徴 とする移動無線機。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、単一のアンテナを用い て、送信および受信を同時に行う移動無線機の送信信号 と受信信号とを分離する分波器に関する。

【従来の技術】移動無線機は、単一のアンテナを用い、

[0002]

20 送信/受信を同時に行っている。このため、送信周波数 帯域と受信周波数帯域との違いを利用し、微弱受信信号 を受信部へ、送信信号をアンテナへと分離する、誘電体 共振子およびSAWフィルタなどの素子で構成された分 波器が重要な役割を果たしている。従来、送信信号と受 信信号とを分離する分波器については、特開昭62-1 71327号公報に示される技術がある。該従来技術で は、分波器のフィルタ素子として、弾性表面波装置(以 下SAWフィルタ)のみ、あるいは、誘電体フィルタの

前記弾性表面波装置は、前記送信信号の周波数帯域の信 30 7530号公報においては、送信系、受信系とも、それ ぞれアンテナから順に、自系統の希望信号を通過させ、 他系統の希望信号の通過を阻止する弾性表面波帯域阻止 フィルタと、自系統の希望信号のみを通過させる誘電体 帯域通過フィルタとを縦続接続した構成のものがある。 [0003]

みを組み合わせて構成している。 更に、特開平1-22

【発明が解決しようとする課題】誘電体フィルタのみを 組み合わせて構成した従来の分波器は、フィルタ素子と しての周波数特性を実現するためには、複数個の誘電体 共振器が必要となる。通常、受信側の誘電体フィルタで 【請求項5】請求項1、2または3において、前記T型 40 $4\sim$ 6段、送信側の誘電体フィルタで $3\sim$ 5段の誘電体 フィルタが必要である。この誘電体共振器の共振周波数 は、使用するセラミックスの比誘電率と外形寸法により 決まることから、1GHz程度の周波数帯域では小型化 するのが難しい。このため、移動無線機用分波器を構成 した場合、分波器の体積が非常に大きくなるという問題 がある。

> 【0004】SAWフィルタのみを組み合わせて構成し た従来の分波器は、SAWフィルタ自体の形状が小さ く、SAWフィルタの周波数特性は、圧電性基板上のす 50 だれ状電極の構成で決まることから、多段に接続する必

要がなく、誘電体フィルタのみで構成した場合のような 問題はない。しかしながら、分波器特性においては、送 受信の周波数特性は、低損失化のほか、送信/受信周波 数帯域で人力インピーダンスが大きい (反射係数が1に 近い)という反射特性を両立することが必要となり、1 GHz程度の周波数帯域では、SAWフィルタは、通過 帯域外でのインピーダンスを大きくすることが難しくな る。このため、受信側のSAWフィルタと送信側とのS AWフィルタが相互に影響しあい、送信、受信SAWフ ィルタの設計と、分波回路の構成が複雑になるという問 10 題がある。この問題は、アンテナに近い側にSAWフィ ルタを配置した場合には、常に発生する可能性がある。 更に、SAWフィルタのインピーダンス整合において は、インダクタ等の外部マッチング素子が必要となり、 分波器の小形化の点で不利である。

【0005】また、自系統の希望信号を通過させ、他系 統の希望信号の通過を阻止する弾性表面波帯域阻止フィ ルタと、自系統の希望信号のみを通過させる誘電体帯域 通過フィルタとを縦続接続した構成では、上記問題のほ か、誘電体フィルタを使用するため、分波器自体のサイ 20 ズを小さくするのには限界がある。

【0006】本発明は、上記従来技術の問題点を解決 し、小形で、高性能な分波器およびこれを用いた移動無 線機を提供することを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成するため に、本発明は、送信信号と受信信号とで異なる周波数帯 域を使用して同時に送受信を行う際に前記送信信号と前 記受信信号との分波を行う分波器であって、前記送信信 号を送信する送信回路と、前記受信信号を受信する受信 30 👚 回路とを有し、前記受信回路は、受信端から順に、当該 受信端に接続される第1のインダクタと、該第1のイン ダクタに直列に接続された第2のインダクタと、第1お よび第2のインダクタの接続点に一端が接続され、他端 が接地された弾性表面波共振子とを備えるT型回路と、 該T型回路の第2のインダクタに直列に接続される弾性 表面波装置とを備え、前記T型回路は、前記送信信号の 周波数帯域の信号を抑圧するようにあらかじめ設定さ れ、前記弾性表面波装置は、前記受信信号の周波数帯域 の信号を通過させるようにあらかじめ設定されることに 40 より達成される。この場合、前記T型回路のインダクタ は、前記受信信号の周波数通過帯域において、損失を少 なくするように設定される。

【0008】また、前記送信回路は、受信端から順に、 当該受信端に接続される第1のインダクタと、該第1の インダクタに直列に接続された第2のインダクタと、第 1および第2のインダクタの接続点に一端が接続され、 他端が接地された弾性表面波共振子とを備えるT型回路 と、該T型回路の第2のインダクタに直列に接続される **弾性表面波装置とを備え、前記T型回路は、前記受信信 50 る送信信号の干渉はほとんどない分波器が可能となる。**

号の周波数帯域の信号を抑圧するようにあらかじめ設定 され、前記弾性表面波装置は、前記送信信号の周波数帯

域の信号を通過させるようにあらかじめ設定されるよう にしてもよい。

【0009】前記T型回路と前記弾性表面波装置とを、 同一集積回路のパッケージ内に形成でき、また、同一基 板上に形成するようにしてもよい。

4

【0010】さらに、上記分波器を移動無線機に利用す ることができる。

[0011]

【作用】送信側と受信側とそれぞれの通過周波数特性を 決めるフィルタとして、小形で、周波数特性の設計自由 度が大きなSAWフィルタを用いている。SAWフィル 夕を、前記受信信号の周波数帯域の信号を通過させるよ うにあらかじめ設定しておく。

【0012】本発明ではさらに、少なくとも受信側にお いて、従来のSAWフィルタの通過帯域外でのインピー ダンスを改善するために、インダクタおよびSAW共振 子からなるT型回路を用いている。受信側のみに設ける のは、受信信号のレベルは微弱であり、送信信号のレベ ルは大きいために、受信回路において、送信信号を抑圧 できればよいからである。上記T型回路は、前記送信信 号の周波数帯域の信号を抑圧するようにあらかじめ設定 しておく。さらに、インダクタは、前記受信信号の周波 数通過帯域において、損失を少なくするようにあらかじ め設定しておく。 また、同様に、送信回路において も、SAWフィルタに加えて、T型回路を設けてもよ い。この場合、SAWフィルタは、前記送信信号の周波 数帯域の信号を通過させるようにあらかじめ設定してお き、T型回路は、前記受信信号の周波数帯域の信号を抑 圧するようにあらかじめ設定しておく。

【0013】以上のように設定することにより、図2に 示すような作用が得られる。図2に、受信回路と送信回 路との周波数特性、および、受信回路の反射特性を示 す。図2において、f 1~f 2は受信周波数帯域、f 3 ~f4は送信周波数帯域である。 図2に示す周波数特性 においては、送信フィルタ手段を従来のSAWフィルタ のみで構成した場合の周波数特性を示している。

【0014】一般に、送信側の周波数特性は、送信周波 数帯域で挿入損失が小さく、受信周波数帯域で入力イン ピーダンスが大きい (反射係数が1に近い) 特性のもの が、また、受信側の周波数特性は、受信周波数帯域で挿 入損失が小さく、送信周波数帯域で入力インピーダンス が大きい (反射係数が1に近い) 特性のものが適してい る。

【0015】本発明によれば、図2に示すように、送信 側から受信側を見た場合、送信周波数帯域 f 3~f 4の 反射係数が大きく(反射係数が1に近い)、受信周波数 帯域 f 1~f 2の反射特性が小さいため、受信側におけ

または送信周波数帯域での損失が小さく、かつ、分波す る送信および受信信号相互の干渉を防ぐため、互いの周 波数帯域での減衰量(帯域外抑圧度)を大きくする必要 がある。また、ここで、帯域外即圧度とは、あるフィル

6

タにおいて、信号を通す帯域以外の部分において、0 d Bを基準にしたときの差をいう。また、あるフィルタの 特性において、信号レベルをできるだけ抑圧する帯域 を、阻止帯域というものとする。図2に示すように、受 信フィルタの受信信号通過帯域(f1~f2)では、送 信フィルタの送信信号阻止帯域になっていて、送信フィ

ルタの送信信号通過帯域(f3~f4)では、受信フィ

ルタの受信信号阻止帯域になっている必要があり、これ

らの帯域において、帯域外抑圧度が大きい方がよい。受

信周波数帯域または送信周波数帯域での損失を小さくす るには、反射係数をより大きくするように取ればよい。 【0022】帯域外抑圧度を大きく取れることを、SA W共振子とSAWフィルタとのそれぞれの周波数特性を 参照して説明する。図6に、図1における受信側のSA Wフィルタのみの周波数特性を示す。また、図7に、図 1における受信側のSAW共振子のみの周波数特性を示

す。 図8に、図1における受信側のT型回路の周波数特

【0023】図6に示すように、SAWフィルタのみの 分波器では、受信フィルタの受信信号通過帯域 (f1~ f2)の損失は小さいが、送信信号通過帯域 (f3~f 4)における減衰量の帯域外抑圧度は、40dBぐらい である。SAWフィルタは、入力電極19と出力電極2 0との電極線幅を調整することにより、受信信号通過帯 域をf1~f2に設定することができる。

【0024】また、図7に示すように、SAW共振子の みの分波器では、送信信号通過帯域(f3~f4)にお ける減衰量が60dBぐらいとなる。これらのSAW共 振子とSAWフィルタとを組み合わせることで、送信信 号通過帯域(f3~f4)における抑圧度を大きくする ことができる。

【0025】さらに、図8に示すように、SAW共振子 に2つのインダクタを組み合わせて、T型回路を構成す ることにより、送信信号通過帯域(f3~f4)におけ る抑圧度を大きくでき、インピーダンスマッチングをす 回路14、配線またはマイクロストリップ線路等で構成 40 ることができる。T型回路のインダクタのL値は、T型 回路+SAWフィルタの反射特性において、 $f1\sim f2$ の受信信号の通過帯域で50Ω付近のインピーダンスに なるように設定しなければ、フィルタの通過域の帯域内 特性の損失が増加する。このため、T型回路のインダク タのL値は、T型回路+SAWフィルタの反射特性にお いて、損失が小さい値、すなわち、受信信号の通過帯域 で50Ω付近のインピーダンスになるように設定するこ とにより、図8に示すように、受信信号の通過帯域での 損失を押さえることができる。

【0021】一般に、分波器の特性は、受信周波数帯域 50 【0026】本実施例によれば、図2に示すように、送

【0016】本発明では、それぞれ1個のSAW共振子 と、2個のインダクタで構成されるT型回路と、SAW フィルタとを組み合わせることで実現している。このた め、従来の誘電体共振器だけでフィルタを構成した場合 に比べ、小形化が可能となる。また、送信側と受信側そ れぞれの通過周波数特性を決めるSAWフィルタと、イ ンダクタ、SAW共振子からなるT型回路とは、小形な ため、同一パッケージに形成することも可能で、一層の 小形化が実現できると同時に、SAWフィルタとSAW 共振子は、同一基板上に形成できるため、フィルタ作成 10 上非常に有効である。更に、通過域周波数特性を決める 小形で、周波数特性の設計自由度が大きなSAWフィル タと、通過帯域外でのインピーダンスを改善するため に、インダクタ、SAW共振子からなるT型回路とを組 み合わせて用いているため、SAWフィルタについて は、通過域の周波数特性を重点に注目して設計すれば良 く、反射係数の周波数特性を含めて設計する場合に比 べ、設計自由度が大きくなり、一層高性能で、小形なも のが実現可能である。

[0017]

【実施例】以下、本発明の第1の実施例を図1を参照し て説明する。

【0018】図1は、本発明を適用した分波器のブロッ ク図である。図1において、分波器は、アンテナ1と、 アンテナ1において受信した受信信号を出力する受信回 路と、送信信号を入力して送信信号をアンテナ1から送 出する送信回路とを備える。受信回路と送信回路とは、 2つのインダクタおよびSAW共振子からなるT型回路 と、SAWフィルタとの縦列接続より構成される。受信 回路および送信回路は、受信周波数帯域 (f1~f2) と送信周波数帯域 (f3~f4)とに合わせて、それぞ れ通過周波数帯域を異ならせている。また、送信回路 は、上記構成の代わりに、従来のフィルタを備えてもよ 11

【0019】受信信号は、アンテナ1から、配線または マイクロストリップ線路等で構成される分岐回路2と、 T型回路6、受信側SAWフィルタ7を順次経て、受信 信号出力端子8に伝送されている。送信信号は、送信信 号入力端子9から、送信側SAWフィルタ10と、T型 される分岐回路2を順次経て、アンテナ1へ送信され る。

【0020】つぎに、図2を参照して、本実施例におけ る分波器の周波数特性を説明する。図2は、受信回路と 送信回路との周波数特性、および、受信回路の反射特性 を示している。図2において、f1~f2は受信周波数 帯域、f 3~f 4は送信周波数帯域である。 図2に示す 周波数特性においては、送信回路を従来のフィルタによ り構成した場合の周波数特性を示している。

信側から受信側を見た場合、送信周波数帯域 f 3~f4 の反射係数が大きく(反射係数が1に近い)、受信周波 数帯域f1~f2の反射特性が小さいため、受信側にお ける送信信号の干渉がほとんどない分波器が可能とな る。このため、従来の誘電体共振器だけでフィルタを構 成した場合、送信、受信、それぞれ、4~6個、3~5 個の誘電体共振器を必要とするのに対し、送信および受 信、それぞれSAW共振子1個ですむ。このことから、 小形で、高性能な分波器が提供できる。よって、本実施 例の分波器を用いることで、小形な移動無線機が実現で 10 きる。

【0027】図3は、上記実施例の送信側と受信側とを それぞれ一つのパッケージにした場合のブロック図を示 したものである。図3において、受信側では、T型回路 6および受信側SAWフィルタ7を1つのパッケージに 一体化した受信回路16と、送信側では、送信側SAW フィルタ10およびT型回路14を1つのパッケージに 一体化した送信回路17とを備える。

【0028】このパッケージの具体的構成例を図4に示 す。図4は、受信回路について記載したものである。図 20 4に示すように、パッケージ17上 (パッケージ直径約 7mm) に、上記インダクタ3、インダクタ4、SAW 共振子5およびSAWフィルタ7が配置される。

【0029】受信通過周波数特性を決める受信側SAW フィルタ7は、36度回転Y軸切断X軸伝搬のタンタル 酸リチウム単結晶 (36°Y−X LiTaO3)から なる圧電性基板18上に形成される。 受信側SAWフィ ルタ7の電極構成は、入力電極19を7個、出力電極2 0を6個形成した多電極構成となっている。この受信側 SAWフィルタ7の中心周波数は、820MHzであ り、入力電極19と出力電極20との電極線幅は、1. 2μmであり、電極膜厚は100nmである。また、他 素子との接続は、 ボンディングパッド21からワイヤ2 2を経由して接続されている。このボンディングパッド 21は、600nmの厚付けが施されている。更に、T 型回路6を構成する2つのインダクタ3およびインダク タ4は、アルミナ基板上に設けた鍋パターンインダクタ を使用している。このパターンインダクタの寸法は、1 mm角である。また、このパターンインダクタと並列に 接続するSAW共振子5は、圧電性基板として、受信側 40 SAWフィルタ7と同じ、36°Y-X LiTaO3 基板を用い、開口長70μm、電極対数300対の1開 口IDT型構成としている。このSAW共振子5の共振 周波数Frは、945MHzであり、反共振周波数Fa は980MHzである。なお、共振子を構成する電極の 電極線幅、電極膜厚は、受信側SAWフィルタ7と同じ 100 n mである。以上説明した受信側SAWフィルタ 7、パターンインダクタ3、インダクタ4およびSAW 共振子5は、それぞれ直径25μmのA1またはAuワ イヤ22で接続され、最終的に、パッケージステムの入 50 移動無線機用分波器限らず、帯域外減衰量を必要とする

カリードピン23と、出力リードピン24とに接続され る。

【0030】以上示したように、インダクタ3、インダ クタ4およびSAW共振子5からなるT型回路6と、受 信側SAWフィルタ7とを1つのパッケージにまとめた 構成とすることで従来に比べ、小形な分波器が可能とな

【0031】また、図5に、受信回路を1チップ化した 場合の具体的構成例を示す。図5は、図4に示したT型 回路を構成する、インダクタ3、インダクタ4、SAW 共振子5および受信側SAWフィルタ7を同一圧電性基 板上に形成し、1チップ化したものを示している。 すな わち、インダクタ3およびインダクタ4は、アルミナ基 板上に設けた、銅パターンインダクタで構成し、受信側 SAWフィルタ7およびSAW共振子5のボンディング パッド21作成時に同時に形成することとした。 このイ ンダクタの膜厚は、600nmである。なお、SAW共 振子と、受信側SAWフィルタとの電極構成は、上記説 明したものと同じ構成である。

【0032】以上説明したように、T型回路を構成する インダクタ、SAW共振子と、受信側SAWフィルタを 同一圧電性基板上に形成し、1チップ化することで、分 波器が一層小形化できる。更に、インダクタ、SAW共 振子、受信側SAWフィルタを、同時にホトリソグラフ ィ技術によって作成でき、パッケージに上記素子を接着 するダイボンド作業においても、1チップであるため、 製造プロセスが簡単化する利点がある。

【0033】本実施例においては、受信側SAWフィル タ7は、多電極構成のものとしたが、目的の通過周波数 30 特性を満足し、使用する配線、またはマイクロストリッ ブ線路とインピーダンス整合できるものであれば、SA Wフィルタの構成は、多電極構成以外の構成であっても かまわない。

【0034】なお、受信側SAWフィルタ7およびSA W共振子5の電極材料は、耐電力性を考慮して、A1-Tiを使用したが、他の耐電力性の優れたAl-Cu等 のA1系合金であっても良い。また、圧電性基板17 は、LiTaO3に限らず、ニオブ酸リチウム単結晶基 板(LiNbOョ)あるいは水晶基板であっても良い。 更に、受信側SAWフィルタ7およびSAW共振子5の 入力電極18と、出力電極19との形成には、電極幅に 高い寸法精度が要求されるため、湿式化学エッチングに 代わり、RIE (ドライエッチング) 技術を用いること ができる。

【0035】更に、本発明の構成は、移動無線機用分波 器に適用した場合であるが、T型回路を構成するインダ クタ値、SAW共振子の共振周波数を適当に替えてSA Wフィルタと組み合わせることで、帯域外減衰量の大き なフィルタ周波数特性を得ることができる。このため、

VTR、または、CATV用コンバータ、衛星放送用受 信機システム等のSAWフィルタとしても有効な手段で あることはいうまでもない。

【0036】以上説明したように、本実施例によれば、 送信側と受信側それぞれの通過周波数特性を決めるフィ ルタとして、小形で、周波数特性の設計自由度が大きな SAWフィルタを用い、通過帯域外でのインピーダンス を大きくするために、インダクタ、SAW共振子からな る工型回路を用い分波器を構成しているため、反射特性 において、必要な周波数帯域で反射係数を1に近付ける 10 反射特性。 ことができ、送信信号と、受信信号との相互干渉のな い、分波損失の小さい分波器が実現できる。更に、小形 化に有利なSAWフィルタおよびSAW共振子を用い、 同一パッケージで形成可能なことから、一層小形な分波 器が実現できる。また、通過周波数特性を決めるSAW フィルタは、T型回路を用いることで、その設計自由度 が大きくなる。

[0037]

【発明の効果】本発明によれば、小形で、高性能な分波 器を実現できる。

【図面の簡単な説明】

【図1】 本発明の分波器のブロック図。

【図2】 本発明の分波器の受信側周波数特性および反

射特性。

【図3】 本発明の分波器の構成図。

【図4】 本発明の分波器の受信側のパッケージ平面 図.

10

【図5】 本発明の分波器の受信側のパッケージ平面 図。

【図6】 SAWフィルタのみの受信側周波数特性およ び反射特性。

【図7】 SAW共振子のみの受信側周波数特性および

【図8】 T型回路の受信側周波数特性および反射特 性。

【符号の説明】

1…アンテナ、2…分岐回路、3および4…受信側イン ダクタ、5…受信側SAW共振子、6…受信側T型回 路、7…受信側SAWフィルタ、8…受信信号出力端 子、9…送信信号入力端子、10…送信側SAWフィル タ、11および12…送信側インダクタ、13…送信側 SAW共振子14…送信側T型回路、15…受信回路、 20 16…送信回路、17…パッケージ、18…圧電性基板 (LiTaO3) 19…入力電極、20…出力電極、2 1…ボンディングパッド、22…ワイヤ、23…入力リ ードピン、24…出力リードピン。

【図2】

1000

【図1】

図1

【図3】

図 3

【図4】

.

【図5】

图 5

【図8】

フロントページの続き

٠. .

(72)発明者 湯原 章綱

神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所映像メディア研究所内