Please amend the above-identified patent application, without prejudice, as follows:

IN THE CLAIMS:

Amend claims 2 and 3 by replacement as follows:

2. (amended) A compound of the formula II

A is O or S;

x is 0 or 1;

Ar is a group R_3 ; or Ar is cyclopentyl, cyclohexyl, naphthyl, anthracyl,

By

biphenylyl or an O-, S- or N-containing 5- or 6-membered heterocyclic ring, where the radicals cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl and 5- or 6-membered heterocyclic ring are unsubstituted or substituted by halogen, C_1 - C_4 alkyl and/or C_1 - C_4 alkoxy;

 \mathbf{R}_1 and \mathbf{R}_2 independently of one another are C_1 - C_{20} alkyl, OR_{11} , CF_3 or halogen;

 R_3 , R_4 and R_5 independently of one another are hydrogen, C_1 - C_{20} alkyl, OR_{11} or halogen; or in each case two of the radicals R_1 , R_2 , R_3 , R_4 and R_5 together form C_1 - C_{20} alkylene which can be interrupted by O, S or -NR₁₄;

 R_6 is C_1 - C_{24} alkyl, unsubstituted or substituted by C_5 - C_{24} cycloalkenyl, phenyl, CN, C(O) R_{11} , C(O)OR₁₁, C(O)OR₁₂, OC(O)N(R_{14})₂, OC(O)OR₁₁, OC(O)OR₁₁, N(R_{14})C(O)N(R_{14}), OC(O)NR₁₄, N(R_{14})C(O)OR₁₁, cycloalkyl, halogen,

$$OR_{11}$$
, SR_{11} , $N(R_{12})(R_{13})$ or $-CH^{O}CH_{2}$;

 C_2 - C_{24} alkyl which is interrupted once or more than once by nonconsecutive O, S or NR_{14} and which is unsubstituted or substituted by phenyl, OR_{11} , SR_{11} , $N(R_{12})(R_{13})$, CN, $C(O)R_{11}$, $C(O)OR_{11}$, $C(O)N(R_{14})_2$

and/or
$$-CH_2$$
;

 C_2 - C_{24} alkenyl which is uninterrupted or interrupted once or more than once by nonconsecutive O, S or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃);

 C_s - C_{24} cycloalkenyl which is uninterrupted or interrupted once or more than once by nonconsecutive O, S or NR_{14} and which is unsubstituted or substituted by OR_{11} , SR_{11} or $N(R_{12})(R_{13})$;

 C_7 - C_{24} arylalkyl which is unsubstituted or substituted on the aryl group by C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy or halogen;

 C_4 - C_{24} cycloalkyl which is uninterrupted or interrupted once or more than once by O, S and/or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃); or C₈-C₂₄ arylcycloalkyl or C₈-C₂₄ arylcycloalkenyl;

 \mathbf{R}_{11} is H, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted by OH and/or SH;

 R_{12} and R_{13} independently of one another are hydrogen, C_1 - C_{20} alkyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl which is interrupted once or more than once by O or S and which is unsubstituted or substituted by OH and/or SH; or R_{12} and R_{13} together are C_3 - C_5 alkylene which is uninterrupted or interrupted by O, S or NR_{14} ;

 Y_1 is C_1 - C_{18} alkyl which is unsubstituted or substituted by one or more phenyl; C_1 - C_{18} -halogenoalkyl; C_2 - C_{18} alkyl which is interrupted once or more than once by O or S and which can be substituted by OH and/or SH; unsubstituted C_3 - C_{18} cycloalkyl or C_3 - C_{18} cycloalkyl substituted by C_1 - C_{20} alkyl, OR_{11} , CF_3 or halogen; C_2 - C_{18} alkenyl; or Y_1 is OR_{11} , $N(R_{12})(R_{13})$ or one of the radicals

or Y_1 is cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl or an O-, S- or N-containing 5- or 6-membered heterocyclic ring, where the radicals cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl and 5- or 6-membered heterocyclic ring are unsubstituted or substituted by halogen, C_1 - C_4 alkyl and/or C_1 - C_4 alkoxy;

 Y_2 is a direct bond; unsubstituted or phenyl-substituted C_1 - C_{18} alkylene; unsubstituted C_4 - C_{18} -cycloalkylene or C_4 - C_{18} cycloalkylene substituted by C_1 - C_{12} alkyl, OR_{11} , halogen and/or phenyl; unsubstituted C_5 - C_{18} cycloalkenylene or C_5 - C_{18} cycloalkenylene substituted by C_1 - C_{12} alkyl, OR_{11} , halogen

DJ.

4

and/or phenyl; unsubstituted phenylene or phenylene substituted one to four times by C_1 - C_{12} alkyl, OR_{11} , halogen, -(CO) OR_{14} , -(CO) $N(R_{12})(R_{13})$ and/or phenyl;

or
$$Y_2$$
 is a radical Y_3 or Y_4 , where these radicals are unsubstituted

or are substituted one to four times on one or both aromatic ring(s) by C_1 - C_{12} alkyl, OR_{11} , halogen and/or phenyl;

Y₃ is O, S, SO, SO₂, CH₂, C(CH₃)₂, CHCH₃, C(CF₃)₂, CO or a direct bond;

 \mathbf{R}_{14} is hydrogen, phenyl, C_1 - C_{12} alkyl or C_2 - C_{12} alkyl which is interrupted once or more than once by O or S and which can be substituted by OH and/or SH;

 R_1' and R_2' independently of one another have the same meanings as given for R_1 and R_2 ; and R_3' , R_4' and R_5' independently of one another have the same meanings as given for R_3 , R_4 and R_5 ; or in each case two of the radicals R_1' , R_2' , R_3' , R_4' and R_5' together form C_1 - C_{20} alkylene which may be interrupted by O, S or -NR₁₄;

with the proviso that Y₁ is not identical to Ar and wherein the compounds n-butyl-(2,6-dimethoxybenzoyl)-(2,4,6-trimethylbenzoyl) phosphine oxide, i-butyl-(2,6-dimethoxybenzoyl)-(2,4,6-trimethylbenzoyl) phosphine oxide and (2,6-dimethoxybenzoyl)-(2,6-dimethylbenzoyl)-(2,4,4-trimethylpentyl) phosphine oxide are excluded.

3. (amended) A compound of the formula III

$$Ar \stackrel{O}{--}C \stackrel{(A)_x}{\stackrel{|}{--}}Z_1$$
 (III), in which R_6

A is O or S;

x is 0 or 1;

Ar is a group
$$R_3$$
; or Ar is cyclopentyl, cyclohexyl, naphthyl, anthracyl,

biphenylyl or an O-, S- or N-containing 5- or 6-membered heterocyclic ring, where the radicals

BH

cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl and 5- or 6-membered heterocyclic ring are unsubstituted or substituted by halogen, C_1 - C_4 alkyl and/or C_1 - C_4 alkoxy;

 \mathbf{R}_1 and \mathbf{R}_2 independently of one another are C_1 - C_{20} alkyl, OR_{11} , CF_3 or halogen;

 R_3 , R_4 and R_5 independently of one another are hydrogen, C_1 - C_{20} alkyl, OR_{11} or halogen; or in each case two of the radicals R_1 , R_2 , R_3 , R_4 and R_5 together form C_1 - C_{20} alkylene which can be interrupted by O, S or -NR₁₄;

 \mathbf{R}_{6} is C_{1} - C_{24} alkyl, unsubstituted or substituted by C_{5} - C_{24} cycloalkenyl, phenyl, CN, C(O) \mathbf{R}_{11} , C(O)OR₁₁, C(O)OR₁₁, OC(O)OR₁₁, OC(O)OR₁₄, OC(O)OR₁₄, N(R₁₄)C(O)OR₁₄, N(R₁₄)C(O)OR₁₅, cycloalkyl, halogen, O.

$$OR_{11}$$
, SR_{11} , $N(R_{12})(R_{13})$ or $-CH^{O}$ CH_2 ;

 C_2 - C_{24} alkyl which is interrupted once or more than once by nonconsecutive O, S or NR₁₄ and which is unsubstituted or substituted by phenyl, OR₁₁, SR₁₁, N(R₁₂)(R₁₃), CN, C(O)R₁₁, C(O)OR₁₁, C(O)N(R₁₄)₂

and/or
$$-CH_2$$
;

 C_2 - C_{24} alkenyl which is uninterrupted or interrupted once or more than once by nonconsecutive O, S or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃);

 C_5 - C_{24} cycloalkenyl which is uninterrupted or interrupted once or more than once by nonconsecutive O, S or NR_{14} and which is unsubstituted or substituted by OR_{11} , SR_{11} or $N(R_{12})(R_{13})$;

 C_7 - C_{24} arylalkyl which is unsubstituted or substituted on the aryl group by C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy or halogen;

 C_4 - C_{24} cycloalkyl which is uninterrupted or interrupted once or more than once by O, S and/or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃); or C₈-C₂₄arylcycloalkyl or C_8 - C_{24} arylcycloalkenyl;

 \mathbf{R}_{11} is H, \mathbf{C}_1 - \mathbf{C}_{20} alkyl, \mathbf{C}_2 - \mathbf{C}_{20} alkenyl, \mathbf{C}_3 - \mathbf{C}_8 cycloalkyl, phenyl, benzyl or \mathbf{C}_2 - \mathbf{C}_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted by OH and/or SH;

 R_{12} and R_{13} independently of one another are hydrogen, C_1 - C_{20} alkyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl, which is interrupted once or more than once by O or S and which is unsubstituted or substituted by OH and/or SH; or R_{12} and R_{13} together are C_3 - C_5 alkylene which is uninterrupted or interrupted by O, S or NR_{14} ;

BIL

 Z_1 is C_1 - C_{24} alkyl, which is unsubstituted or substituted once or more than once by OR_{15} , SR_{15} ,

 $N(R_{16})(R_{17})$, phenyl, halogen, CN, -N=C=A, $-C \stackrel{O}{\leftarrow} CH_2$, $-C \stackrel{A}{\leftarrow} R_{18}$, $-C \stackrel{A}{\leftarrow} OR_{18}$

and/or $-C - N(R_{18})_2$ or Z_1 is $C_2 - C_{24}$ alkyl which is interrupted once or more than once by O, S or NR_{14} and which can be substituted by OR_{15} , SR_{15} , $N(R_{16})(R_{17})$, phenyl, halogen, $-C - CH_2$,

 Z_1 is unsubstituted C_3 - C_{24} cycloalkyl or C_3 - C_{24} cycloalkyl substituted by C_1 - C_{20} alkyl, OR_{11} , CF_3 or halogen; unsubstituted C_2 - C_{24} alkenyl or C_2 - C_{24} alkenyl substituted by C_6 - C_{12} aryl, CN, $(CO)OR_{15}$ or $(CO)N(R_{18})_2$; or

 Z_1 is C_3 - C_{24} cycloalkenyl or is one of the radicals R_{22} R_{21} R_{22} R_{22} R_{22} R_{22} R_{22} R_{22} R_{22} R_{22} R_{22} R_{23} R_{22} R_{22}

$$G = \begin{bmatrix} E \\ G \\ G \end{bmatrix} = \begin{bmatrix} G \\ Si \\ G \end{bmatrix} = \begin{bmatrix} G \\ Si \\ G \end{bmatrix} = \begin{bmatrix} E \\ G \\ G \end{bmatrix} = \begin{bmatrix} E \\$$

$$R_3$$
 R_4 R_2 R_3 R_4 R_3 R_4 R_2 R_3 R_4 R_3 R_4 R_3 R_4 R_5 R_4 R_5 R_5

radical is uninterrupted or interrupted once or more than once by nonconsecutive O or S, and is unsubstituted or substituted by OR_{15} , SR_{15} and/or halogen; with the proviso that Z_1 and R_6 are not identical;

is O, S or NR_{18a}; Α,

is C_1 - C_{24} alkylene; C_2 - C_{24} alkylene interrupted once or more than once by O, S or NR_{14} ; C_2 - C_{24} alkenylene; C_2 - C_{24} alkenylene interrupted once or more than once by O, S or NR_{14} ; C_3 - C_{24} cycloalkylene; C_3 - C_{24} cycloalkylene interrupted once or more than once by O, S or NR_{14} ; C_3 - C_{24} cycloalkylene; C_3 - C_{24} cycloalkenylene interrupted once or more than once by O, S or NR₁₄; where the radicals C_1 - C_{24} alkylene, C_2 - C_{24} alkylene, C_2 - C_{24} alkenylene, C_3 - C_{24} cycloalkylene and C_3 - C_{24} cycloalkenylene are unsubstituted or are substituted by OR_{11} , SR_{11} , $N(R_{12})(R_{13})$ and/or halogen; or Z_2

, where these radicals are unsubstituted or are substituted on the aromatic

by C_1 - C_{20} alkyl; C_2 - C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms

and which is unsubstituted or substituted by OH and/or SH; OR_{11} , SR_{11} , $N(R_{12})(R_{13})$, phenyl, halogen, NO_2 , CN, (CO)- OR_{11} , (CO)- R_{11} , (CO)- $N(R_{12})(R_{13})$, SO_2R_{24} , OSO_2R_{24} , CF_3 and/or CCl_3 ;

or
$$Z_2$$
 is a group
$$\begin{bmatrix} CH_{2r} \\ CH_3 \end{bmatrix}_s \begin{bmatrix} E \\ O-Si \\ G \end{bmatrix} \begin{bmatrix} E \\ O-Si \\ G \end{bmatrix}_q \begin{bmatrix} CH_{2r} \\ CH_3 \end{bmatrix}_r$$
 (r) or

$$\begin{array}{c|c} - & & & & & & & & & & & & & \\ \hline - & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ &$$

- Z_3 is CH_2 , CH(OH), $CH(CH_3)$ or $C(CH_3)_2$;
- \mathbf{Z}_{4} is S, O, CH₂, C=O, NR₁₄ or a direct bond;
- \mathbf{Z}_{s} is S, O, $CH_{2'}$ $CHCH_{3'}$ $C(CH_{3})_{2'}$ $C(CF_{3})_{2'}$ SO, $SO_{2'}$ CO;
- \mathbf{Z}_{6} and \mathbf{Z}_{7} independently of one another are CH_{2} , $CHCH_{3}$ or $C(CH_{3})_{2}$;
- r is 0, 1 or 2;
- s is a number from 1 to 12;
- q is a number from 0 to 50;
- t and p are each a number from 0 to 20;

E, **G**, **G**₃ and **G**₄ independently of one another are unsubstituted C_1 - C_{12} alkyl or C_1 - C_{12} alkyl substituted by halogen, or are unsubstituted phenyl or phenyl substituted by one or more C_1 - C_4 alkyl; or are C_2 - C_{12} alkenyl;

 R_{11a} is C_1 - C_{20} alkyl substituted once or more than once by OR_{15} or $-\overset{O}{C_1}$ - CH_2 ; or is C_2 - C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and is unsubstituted or substituted once or more than once by OR_{15} , halogen or $-\overset{O}{C_1}$ - CH_2 ; or R_{11a} is C_2 - C_{20} alkenyl, C_3 - C_{12} alkynyl; or R_{11a} is C_3 - C_{12} cycloalkenyl which is substituted once or more than once by halogen, NO_2 , C_1 - C_6 alkyl, OR_{11} or $C(O)OR_{18}$; or C_7 - C_{16} arylalkyl or C_8 - C_{16} arylcycloalkyl;

 \mathbf{R}_{14} is hydrogen, phenyl, C_1 - C_{12} alkoxy, C_1 - C_{12} alkyl or C_2 - C_{12} alkyl which is interrupted once or more than once by O or S and which is unsubstituted or substituted by OH and/or SH;

BIT

has one of the meanings given for R_{11} or is a radical ---C-

$$-C-N(R_{18})_2$$
;

 \mathbf{R}_{16} and \mathbf{R}_{17} independently of one another have one of the meanings given for \mathbf{R}_{12} or are a radical

is hydrogen, C_1 - C_{24} alkyl, C_2 - C_{12} alkenyl, C_3 - C_8 cycloalkyl, phenyl, benzyl; C_2 - C_{20} alkyl which is interrupted once or more than once by O or S and which is unsubstituted or substituted by OH; \mathbf{R}_{18a} and \mathbf{R}_{18b} independently of one another are hydrogen; C_1 - C_{20} alkyl, which is substituted once or more than once by OR_{15} , halogen, styryl, methylstyryl, -N=C=A or $-C_1 - CH_2$; or $C_2 - C_{20}$ alkyl, which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted once or more than once by OR_{1s} , halogen, styryl, methylstyryl or $-\overset{O}{C} - CH_2$; or R_{18a} and

 R_{18b} are C_2 - C_{12} alkenyl; C_5 - C_{12} cycloalkyl, which is substituted by -N=C=A or -CH₂-N=C=A and is additionally unsubstituted or substituted by one or more C_1 - C_4 alkyl; or R_{18a} and R_{18b} are C_6 - C_{12} aryl, unsubstituted or substituted once or more than once by halogen, NO_2 , C_1 - C_6 alkyl, C_2 - C_4 alkenyl, OR_{11} , -N=C=A, -CH₂-N=C=A or C(O)OR₁₈; or R_{18a} and R_{18b} are C₇-C₁₆ arylalkyl; or R_{18a} and R_{18b} together are C₈-

 C_{16} arylcycloalkyl; or R_{18a} and R_{18b} independently of one another are \checkmark \nearrow Y_3 \checkmark \nearrow N=C=A or

is O, S, SO, SO₂, CH₂, C(CH₃)₂, CHCH₃, C(CF₃)₂, (CO), or a direct bond; Υ,

 \mathbf{R}_{19} , \mathbf{R}_{20} , \mathbf{R}_{21} , \mathbf{R}_{22} and \mathbf{R}_{23} independently of one another are hydrogen, C_1 - C_{20} alkyl; C_2 - C_{20} alkyl, which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted by OH and/or SH; or R_{19} , R_{20} , R_{21} , R_{22} and R_{23} are OR_{11} , SR_{11} , $N(R_{12})(R_{13})$, NO_2 , CN, SO_2R_{24} , R_{21} , R_{22} , R_{23} , R_{24} , R_{24} , R_{25} , R_{25 OSO₂R₂₄, CF₃, CCl₃, halogen; or phenyl which is unsubstituted or substituted once or more than once by C₁-C₄alkyl or C₁-C₄alkoxy;

or in each case two of the radicals R_{19} , R_{20} , R_{21} , R_{22} and R_{23} together form C_1 - C_{20} alkylene which is uninterrupted or interrupted by O, S or -NR₁₄;

Caugh

 \mathbf{R}_{24} is C_1 - C_{12} alkyl, halogen-substituted C_1 - C_{12} alkyl, phenyl, or phenyl substituted by OR_{11} and/or SR_{11} ; with the proviso that R_6 and Z_1 are not identical and wherein the compounds benzyl-n-butyl-(2,6-dimethoxybenzoyl) phosphine oxide and benzyl-n-butyl-(2,4,6-trimethylbenzoyl) phosphine oxide are excluded.