Section 10.1

4. $a_{n+1} = a_n + 2.5a_n, \ n \ge 0.$ $a_n = (3.5)^n a_0 = (3.5)^n (1000).$ For n = 12, $a_n = (3.5)^{12} (1000) = 3,379,220,508.$

- 4. $a_n = a_{n-1} + a_{n-2}, \ n \ge 2, \ a_0 = a_1 = 1$ $r^2 - r - 1 = 0, \ r = (1 \pm \sqrt{5})/2$ $a_n = A((1 + \sqrt{5})/2)^n + B((1 - \sqrt{5})/2)^n$ $a_0 = a_1 = 1 \Longrightarrow A = (1 + \sqrt{5})/2\sqrt{5}, \ B = (\sqrt{5} - 1)/2\sqrt{5}$ $a_n = (1/\sqrt{5})[((1 + \sqrt{5})/2)^{n+1} - ((1 - \sqrt{5})/2)^{n+1}]$
- 6. For all three parts, let b_n , $n \ge 0$, count the number of ways to fill the n spaces under the condition(s) specified including the condition allowing empty spaces.
 - (a) Here $b_0 = 1$, $b_1 = 3$, and $b_n = 3b_{n-1} + b_{n-2}$, $n \ge 2$. This recurrence relation leads us to the characteristic equation $r^2 3r 1 = 0$, and the characteristic roots $r = (3 \pm \sqrt{13})/2$. Consequently, $b_n = c_1[(3 + \sqrt{13})/2]^n + c_2[(3 \sqrt{13})/2]^n$, $n \ge 0$. From $1 = b_0 = c_1 + c_2$ and $3 = b_1 = c_1[(3 + \sqrt{13})/2] + c_2[(3 \sqrt{13})/2]$, we find that $c_1 = (3 + \sqrt{13})/2\sqrt{13}$ and $c_2 = (-3 + \sqrt{13})/2\sqrt{13}$. So $b_n = (1/\sqrt{13})[(3 + \sqrt{13})/2]^{n+1} (1/\sqrt{13})[(3 \sqrt{13})/2]^{n+1}$, $n \ge 0$.
 - (b) For this part we have $b_n = 2b_{n-1} + 3b_{n-2}$, $n \ge 0$, $b_0 = 1$, $b_1 = 2$. Here the characteristic equation is $r^2 2r 3 = 0$ and the characteristic roots are r = 3, r = -1. Therefore, $b_n = c_1(3^n) + c_2(-1)^n$, $n \ge 0$. From $1 = b_0 = c_1 + c_2$ and $2 = b_1 = 3c_1 c_2$, we find that $c_1 = 3/4$, $c_2 = 1/4$. So $b_n = (3/4)(3^n) + (1/4)(-1)^n$, $n \ge 0$.
 - (c) Here $b_0=1$, $b_1=3$, and $b_n=3b_{n-1}+3b_{n-2}$, $n\geq 2$. The characteristic equation $r^2=3r+3$ gives us the characteristic roots $r=(3\pm\sqrt{21})/2$. So $b_n=c_1[(3+\sqrt{21})/2]^n+c_2[(3-\sqrt{21})/2]^n$, $n\geq 0$. From $1=b_0=c_1+c_2$ and $3=b_1=c_1[(3+\sqrt{21})/2]+c_2[(3-\sqrt{21})/2]$, we have $c_1=[(3+\sqrt{21})/2\sqrt{21}]$ and $c_2=[(-3+\sqrt{21})/2\sqrt{21}]$. Consequently, $b_n=(1/\sqrt{21})[((3+\sqrt{21})/2)^{n+1}-((3-\sqrt{21})/2)^{n+1}]$, $n\geq 0$.
- 10. Here $a_1 = 1$ and $a_2 = 1$. For $n \ge 3$, $a_n = a_{n-1} + a_{n-2}$, because the strings counted by a_n either end in 1 (and there are a_{n-1} such strings) or they end in 00 (and there are a_{n-2} such strings).

Consequently, $a_n = F_n$, the nth Fibonacci number, for $n \ge 1$.

- 24. Here $a_1 = 1$, for the case of one vertical domino, and $a_2 = 3$ use (i) one square tile; or (ii) two horizontal dominoes; or (iii) two vertical dominoes. For $n \ge 3$ consider the nth column of the chessboard. This column can be covered by
 - (1) one vertical domino this accounts for a_{n-1} of the tilings of the $2 \times n$ chessboard;
 - (2) the right squares of two horizontal dominoes placed in the four squares for the (n-1)st and nth columns of the chessboard this accounts for a_{n-2} of the tilings; and
 - (3) the right column of a square tile placed on the four squares for the (n-1)st and nth columns of the chessboard this also accounts for a_{n-2} of the tilings.

These three cases account for all the possible tilings and no two cases have anything in common so

$$a_n = a_{n-1} + 2a_{n-2}, \quad n \ge 3, a_1 = 1, a_2 = 3.$$

Here the characteristic equation is $x^2 - x - 2 = 0$ which gives x = 2, x = -1 as the characteristic roots. Consequently, $a_n = c_1(-1)^n + c_2(2)^2$, $n \ge 1$. From $1 = a_1 = c_1(-1) + c_2(2)^2$

2

 $c_2(2)$ and $3 = a_2 = c_1(-1)^2 + c_2(2)^2$ we learn that $c_1 = 1/3$, $c_2 = 2/3$. So $a_n = (1/3)[2^{n+1} + (-1)^n]$, $n \ge 1$. [The sequence 1, 3, 5, 11, 21, ..., described here, is known as the *Jacobsthal* sequence.]