Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Lösningar till finaltävlingen den 22 november 1970

- 1. För ett heltal x är sista siffran i x^2 något av talen 0, 1, 4, 5, 6 eller 9. Sista siffran i x^4 är någon av siffrorna 0, 1, 5 eller 6. Vid division av x^4 med 5 erhålls därför resten 0 eller 1. Vid division av $x^4 + y^4 + z^4$ med 5 måste därför resten vara något av talen 0, 1, 2 eller 3. Ett positivt heltal vars sista siffra är 4 eller 9 kan således inte skrivas som $x^4 + y^4 + z^4$.
- 2. Låt P vara en punkt inom två av de givna cirklarna med medelpunkter P_1, P_2 och radier r_1, r_2 . Då är avstånden

$$|PP_1| < r_1 \qquad |PP_2| < r_2 \tag{1}$$

För avståndet $|P_1P_2|$ gäller

$$|P_1P_2| \ge r_1$$
 $|P_1P_2| \ge r_2$ (2)

Om P, P_1 och P_2 bildar en triangel måste på grund av (1) och (2) sidan P_1P_2 vara triangelns största. Då i en triangel den största sidan står mot den största vinkeln följer det att strålarna PP_1 och PP_2 bildar en vinkel som är större än 60° . Detta gäller även om P, P_1 , P_2 ligger i rät linje eftersom i detta fall (1) och (2) medför att P ligger mellan P_1 och P_2 .

Om nu P skulle ligga inom alla cirklarna skulle strålarna från P genom cirklarnas medelpunkter uppräknade successivt (exempelvis moturs) ge 6 vinklar vid P, var och en större än 60° och därför med summa större än 360° , vilket är orimligt.

3. Sätt q(x) = p(x) - 5. Polynomet q(x) har heltalskoefficienter och nollställen i fem-heltalspunkter, säg i x_1, \ldots, x_5 . Då q(x) har nollstället x_1 kan vi skriva $q(x) = (x - x_1)q_1(x)$. Polynomet $q_1(x)$ erhålls från q(x) genom division med $x - x_1$. Eftersom x_1 är heltal genomförs denna division helt med heltalskoefficienter, varför även $q_1(x)$ har heltalskoefficienter. Upprepad användning av detta resultat ger

$$q(x) = (x - x_1)(x - x_2)(x - x_3)(x - x_4)(x - x_5)q_5(x)$$

där $q_5(x)$ har heltalskoefficienter.

För ett heltal $a \mod q(a) \neq 0$ är

$$|(a-x_1)\cdots(a-x_5)| \ge 12$$
 (1) $|q_5(a)| \ge 1$

ty vänstra ledet i (1) antar sitt minsta värde då x_1, \ldots, x_5 ligger så nära a som möjligt dvs är a+1, a+2, a-1, a-2 och exempelvis a+3, och vänstra ledet i (2) är ett heltal som inte är 0. Alltså är $|q(a)| \ge 12$. Speciellt kan det inte finnas något a med p(a) = 9 och därmed q(a) = 4.

4. Metod 1.

$$p'(x) = (x - x_2)(x - x_3) + (x - x_1)(x - x_3) + (x - x_1)(x - x_2)$$

$$p''(x) = 2((x - x_1) + (x - x_2) + (x - x_3)).$$

Härav följer:

$$(p'(x))^{2} = ((x - x_{2})(x - x_{3}))^{2} + ((x - x_{1})(x - x_{3}))^{2} + ((x - x_{1})(x - x_{2}))^{2} + p(x)p''(x).$$

Eftersom kvadraterna i högra ledet $\ddot{a}r \geq 0$, erhålls den sökta olikheten.

Metod 2. För $x \neq x_1, x_2, x_3$ kan man skriva

$$\frac{p'(x)}{p(x)} = \frac{1}{x - x_1} + \frac{1}{x - x_2} + \frac{1}{x - x_3}.$$

Derivering ger:

$$\frac{p(x)p''(x) - (p'(x))^2}{(p(x))^2} = -\frac{1}{(x - x_1)^2} - \frac{1}{(x - x_2)^2} - + \frac{1}{(x - x_3)^2}.$$

vilket $\ddot{a}r \leq 0$.

5. Då papperet utvecklas är i var och en av de tre kvadraterna en diagonal markerad så som i fig. Numrera de 6 trianglarna som i fig. från vänster till höger. I var och en av dessa trianglar är en punkt markerad; numrera dem som trianglarna. Eftersom sträckorna P_1P_2 , P_3P_4 och P_5P_6 är vinkelräta mot respektive diagonal blir punkterna P_1,\ldots,P_6 numrerade från vänster till höger. Härav följer att minsta avståndet mellan två av dessa punkter är att söka bland avstånden $|P_2P_3|$, $|P_3P_4|$, $|P_4P_5|$. (Man har $|P_1P_2| = |P_3P_4|$, $|P_1P_3| > |P_2P_3|$ osv.) Kalla P_3 :s avstånd till de tre sidorna i triangeln T_3 för d_1, d_2, d_3 .

Då blir

$$|P_2P_3| = 2d_1, |P_3P_4| = 2d_2, |P_4P_5| = 2d_3.$$

Det gäller därför att få $d=\min(d_1,d_2,d_3)$ så stort som möjligt. Att d är det minsta av d_1,d_2,d_3 betyder att d är radien i den största cirkel med medelpunkt i P_3 som ligger i triangeln T_3 . Denna radie är störst då cirkeln är den i triangeln inskrivna cirkeln. Knappnålen skall således stickas genom medelpunkten för den inskrivna cirkeln.

Vill man beräkna själva minimiavståndet mellan punkterna P_1,\ldots,P_6 (då detta är maximalt) kan man införa koordinater och får $d_1=x,d_2=(1-x-y)/\sqrt{2},d_3=y$. Likheterna $d=d_1=d_2=d_3$ ger avståndet $2d=2-\sqrt{2}$.

6. Eftersom $p \le n - p$ kan vi skriva

$$\frac{(n-p)!}{p!} = (p+1)(p+2)\cdots(n-p-1)(n-p),$$

en produkt med n-2p faktorer. För att visa att detta är $\leq \left(\frac{n+1}{2}\right)^{n-2p}$ räcker det (vare sig n-2p är jämnt eller udda) att visa att

$$(p+1)(n-p) \leq \left(\frac{n+1}{2}\right)^2$$
$$(p+2)(n-p-1) \leq \left(\frac{n+1}{2}\right)^2$$
$$\vdots$$

dvs allmänt (om n + 1 ersätts med m) att

$$k(m-k) \le \frac{1}{4} m^2.$$

Men detta kan inses så:

$$\frac{1}{4}m^2 - k(m-k) = \frac{1}{4}\left(m^2 - 4mk + 4k^2\right) = \frac{1}{4}(m-2k)^2 \ge 0$$

Variation.

Det aritmetiska mediet av $p+1,\ldots,n-p$ är $\frac{n+1}{2}$, det geometriska är $((p+1)\cdots(n-p))^{n-2p}$. Den sökta olikheten följer därför om man vet att det geometriska mediet alltid är mindre eller likamed det aritmetiska.

Lösningarna hämtade, med författarens tillstånd, ur:

Skolornas Matematiktävling Problem 1969 – 1990 med lösningar utarbetade av Olof Hanner