Lab 1: An Introduction to Good Analytical Lab Technique

Questions

Part A

Delivery instrument	Sample #	Mass (Analytical Balance, g)	Mass (Top Loading Balance, g)
	1	1.0037	1.007
P-1000	2	1.0106	1.008
	3	1.0168	1.010
	1	0.9670	0.900
10 mL graduated cylinder	2	0.9595	1.008
	3	0.9167	1.049
	1	1.0064	1.030
P-200	2	1.0154	1.034
	3	1.0191	1.030

1.

Delivery instrument	Average density (g/mL) ± std. dev.			
Denvery histrument	Analytical Balance	Top Loading Balance		
P-1000	1.0104 ± 0.0066	1.008 ± 0.002		
10 mL graduated cylinder	0.9477 ± 0.0271	0.986 ± 0.077		
P-200	1.0136 ± 0.0065	1.031 ± 0.002		

- P-1000:
 - Analytical

Analytical:

- Average:
$$\overline{x} = \frac{\sum x_i}{N} = \frac{1.0037 \frac{g}{\text{mL}} + 1.0106 \frac{g}{\text{mL}} + 1.0168 \frac{g}{\text{mL}}}{3} = 1.0104 \text{ g/mL}$$

– Standard Deviation: s =
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{N-1}}$$
 =

$$\sqrt{\frac{\left(1.0037\frac{g}{mL}-1.0104\frac{g}{mL}\right)^2+\left(1.0106\frac{g}{mL}-1.0104\frac{g}{mL}\right)^2+\left(1.0168\frac{g}{mL}-1.0104\frac{g}{mL}\right)^2}{3-1}}=0.0066~\text{g/mL}$$

- ► Top-Loading:
 - Average: $\overline{x} = \frac{\sum x_i}{N} = \frac{1.007 \frac{g}{\text{mL}} + 1.008 \frac{g}{\text{mL}} + 1.010 \frac{g}{\text{mL}}}{3} = 1.008 \text{ g/mL}$

– Standard Deviation: s =
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{N-1}}$$
 =

$$\sqrt{\frac{\left(1.007\frac{g}{mL}-1.008\frac{g}{mL}\right)^2+\left(1.008\frac{g}{mL}-1.008\frac{g}{mL}\right)^2+\left(1.010\frac{g}{mL}-1.008\frac{g}{mL}\right)^2}{3-1}}=0.002~\mathrm{g/mL}$$

- 10 mL graduated cylinder:
 - Analytical:

- Average:
$$\overline{x} = \frac{\sum x_i}{N} = \frac{0.9670 \frac{g}{\text{mL}} + 0.9595 \frac{g}{\text{mL}} + 0.9167 \frac{g}{\text{mL}}}{3} = 0.9477 \text{ g/mL}$$

- Standard Deviation: s =
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{N-1}}$$
 =
$$\sqrt{\frac{\left(0.9670\frac{g}{mL} - 0.9477\frac{g}{mL}\right)^2 + \left(0.9595\frac{g}{mL} - 0.9477\frac{g}{mL}\right)^2 + \left(0.9167\frac{g}{mL} - 0.9477\frac{g}{mL}\right)^2}{3-1}} = 0.0271 \text{ g/mL}$$

- Average:
$$\overline{x} = \frac{\sum x_i}{N} = \frac{0.900 \frac{g}{\text{mL}} + 1.008 \frac{g}{\text{mL}} + 1.049 \frac{g}{\text{mL}}}{3} = 0.986 \text{ g/mL}$$

⁻ Standard Deviation:
$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N-1}} =$$

$$\sqrt{\frac{\left(0.900\frac{g}{mL}-0.986\frac{g}{mL}\right)^2+\left(1.008\frac{g}{mL}-0.986\frac{g}{mL}\right)^2+\left(1.049\frac{g}{mL}-0.986\frac{g}{mL}\right)^2}{3-1}}=0.077~\mathrm{g/mL}$$

• P-200:

- Average:
$$\overline{x} = \frac{\sum x_i}{N} = \frac{1.0064 \frac{g}{\text{mL}} + 1.0154 \frac{g}{\text{mL}} + 1.0191 \frac{g}{\text{mL}}}{3} = 1.0136 \text{ g/mL}$$

– Standard Deviation: s =
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{N-1}}$$
 =

$$\sqrt{\frac{\left(1.0064\frac{g}{mL}-1.0136\frac{g}{mL}\right)^2+\left(1.0154\frac{g}{mL}-1.0136\frac{g}{mL}\right)^2+\left(1.0191\frac{g}{mL}-1.0136\frac{g}{mL}\right)^2}{3-1}}=0.0065~\mathrm{g/mL}$$

- Average:
$$\overline{x} = \frac{\sum x_i}{N} = \frac{1.030 \frac{g}{\text{mL}} + 1.034 \frac{g}{\text{mL}} + 1.030 \frac{g}{\text{mL}}}{3} = 1.031 \text{ g/mL}$$

– Standard Deviation: s =
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{N-1}}$$
 =

$$\sqrt{\frac{\left(1.030\frac{g}{mL}-1.031\frac{g}{mL}\right)^2+\left(1.034\frac{g}{mL}-1.031\frac{g}{mL}\right)^2+\left(1.030\frac{g}{mL}-1.031\frac{g}{mL}\right)^2}{3-1}}=0.002~\mathrm{g/mL}$$

2. The data suggests that the most precise combination was using either the P-200 or the P-1000 with the top-loading balance; with both having a standard deviation of 0.002. The most accurate combination was the P-1000 and the top-loading balance, with the average being 1.008 g/mL, which is 0.011 g/mL away from the true density of water at 21.3°C, 0.997 g/mL (as computed using the table in the lab handout from Table 1.5 R.A. Ray, Jr.; A.L. Underwood. Quantitative Analysis Laboratory

Manual. Prentice-Hall: N.J., 1986.). Thus, the most reliable combination by both metrics is the P-1000 and the top-loading balance.

1. The results for the delivery instruments agrees with what was expected. The 10 mL graduated cylinder was less precise and less accurate since it is not a volumetric tool. The precisions of the P-1000 and P-100 were comparable. An unexpected result of the lab was the top-loading balance outperforming the analytical balance in terms of both accuracy and precision.

Part B

1.	Sample	Weight delivered (g)	Calc. volume delivered (μL)
	0	0.4828	482.8
	1	0.4942	494.2
	2	0.4940	494.0
	3	0.4942	494.2
	4	0.4953	495.3

According to the manufacturer, the % error of the mean for the P-1000 pipette is 0.8%, which means the range for 500 μ L is 496 μ L - 504 μ L. This does not compare well with the average of the data, 0.4921 μ L, indicating the accuracy of the pipette is not within manufacturer specifications. This systemic underestimate of weight may be a result of the extremely dry conditions in the lab causing water to evaporate while in the weigh boat. The manufacturer specifies the standard deviation should be 3.0 μ L. This compares well with the experimental standard deviation, 0.0052 μ L

2. To test the contributions of operator error as compared to equipment error, one can repeat the procedure with a different piece of equipment and see if the error remains, or alternately, have a different experimenter repeat the procedure using the same micropipette.

Lab Notebook

Exp. No. 1	Experiment/Sybje Introduction	to Good Analyt	tical Lab Technique	Date		Course & Art
THE RESIDENCE OF THE PARTY OF T	white	Lab Partner		Locker Deak N		Course & ACL Section No.
	A	t	istersulaxe Europhia Aut	203 40	ette, for lume: 500 emp: 21.5	
Volume of Imb delivered using	Sample number	Analytical Bulance (3)	Top Loading Bulance (g)	Sarp	le le livere	19 Volume de
P-1000	1 2	1,0106	1.007	3	0.4942	494.0
	3	1,0168	1.010	_ \ '	0,495	3 445.3
10 ml grated cylinder	1	0.9670	1.008		Balance:	Orland Piène
Jun	3	0.9167	1.049		-	
P-200	1 2	1.0664	1.030			
	13	1.0191	1.030			
frocedure: ()	4) Use Volume 3) Delive th	different p to tomp men er a cons ne pipe to	of gaterade language of consuming de late mass of some consuminations and record an balance	viets and timb g	Sp for armse ter from	m mass him
Signature Math	STUDENT LAB	hic Date 1/	Witness/TA	a lima		Date