ORBITS AS CONIC SECTIONS SHOWING THAT A DISTANCE SQUARED LAW GIVES AN ELLIPTICAL ORBIT

by

Todd Lines

A senior thesis submitted to the faculty of Brigham Young University - Idaho in partial fulfillment of the requirements for the degree of

Bachelor of Science

Copyright © 2021 Todd Lines

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY - IDAHO

DEPARTMENT APPROVAL

of a senior thesis submitted by

Todd Lines

This thesis has been reviewed by the research advisor, research coordinator, and department chair and has been found to be satisfactory.

Date	Lance Nelson, Advisor
Date	Ryan Nielson, Committee Member
Date	Brian Tonks, Committee Member
Date	Evan Hansen, Thesis Coordinator
Date	R. Todd Lines, Department Chair

ABSTRACT

ORBITS AS CONIC SECTIONS SHOWING THAT A DISTANCE SQUARED LAW GIVES AN ELLIPTICAL ORBIT

Todd Lines

Department of Physics

Bachelor of Science

The abstract is a summary of the thesis, not an introduction. Keep in mind that abstracts are often published separately from the paper they summarize. In your abstract, give a concise synopsis of the work, emphasizing the conclusions; you need not include the supporting arguments for the conclusions. The purpose of the abstract is to help prospective readers decide whether to read your thesis, but your goal is not necessarily to persuade people to read your thesis. In fact, a successful abstract enables people to get an accurate overall view of your work without needing to read it. Usually, an abstract contains a single paragraph, but it can have more if absolutely necessary. Remember to state the subject of the paper immediately followed by a summary of the experimental or theoretical results and the methods used to obtain them. Avoid equations, graphics, and citations; if a citation is essential it must be cited fully

within the abstract. Keep the abstract factual. Avoid vague statements like, "Conclusions are drawn," or "the significance of the experiment is discussed." State the conclusions and findings outright in the abstract.

ACKNOWLEDGMENTS

This page is optional. You may acknowledge whom you will—your advisor, colleagues, family members. Please keep acknowledgments in good taste. I would like to acknowledge Dr. Kristine Hansen and Dr. Elizabeth Hedengren, whose Advanced Writing Seminar motivated this project. I also wish to thank Jean-François Van Huele, Steven Turley, and Ross Spencer for reviewing this document and for ripping it to shreds as every good advisor should do to a thesis draft.

Contents

Ta	able	of Contents	viii
\mathbf{Li}	st of	Figures	ix
1	Orb 1.1 1.2 1.3 1.4	Elliptical orbits	
2	Nuı	merical Verification of the Orbit Equation	14
3	Lon	g Quotations	15
	3.1	Chemical Equations in LATEX	16
	3.2	Long Section Names	16
	3.3	Double figures	17
	3.4	defining new math operators	18
	3.5	Tables	19
Ri	hling	ranhy	21

List of Figures

1.1	A PH121 Circular Orbit, It's not Enough!
1.2	A mistake
3.1	short caption A
3.2	Caption b goes here

Chapter 1

Orbits

In the following sections, we show that orbits are really conic sections. The case of a circular orbit is just a special case.

1.1 Elliptical orbits

Figure 1.1 A PH121 Circular Orbit, It's not Enough!

In all our work in PH121 we used circular orbits. Kepler said orbits should be elliptical. And that is true. We won't go though this in class, but showing that Newton's law of gravitation implies an ellipse is a great way to show off our new mathematics of dot and cross products. So if you are

Figure 1.2 A mistake

comfortable with our new math, and curious to see how orbits work, read on. Let's start with Newton's second law for our orbiting satellite again.

$$\overrightarrow{W} = -m_s \overrightarrow{a}$$

$$= -m_s g(r) \hat{r}$$

$$= -m_s \left(G \frac{M_E}{r_{Es}^2} \right) \hat{r}$$

We can write this as

$$-m_s \overrightarrow{a} - m_s \left(G \frac{M_E}{r_{E_s}^2} \right) \hat{r} = 0$$

The subscripts may become burdensome, so we will drop them now, but remember that $r = r_{Es}$ is the distance from the satellite to the Earth center of mass to center of mass.

$$-m_s \overrightarrow{a} - m_s \left(G \frac{M_E}{r^2} \right) \hat{r} = 0$$

In the next section we will find that conservation of energy is important 1.2. Notice that I used a marker to come up with the section number automatically.

1.2 Conservation of Orbital Mechanical Energy

Now we are going to do something strange. For no apparent reason, lets compute the dot product of both sides of this equation

$$\overrightarrow{v} \cdot \left(m_s \overrightarrow{a} + m_s \left(G \frac{M_E}{r^2} \right) \hat{r} \right) = \overrightarrow{v} \cdot 0$$

then

$$\overrightarrow{v} \cdot m_s \overrightarrow{a} + \overrightarrow{v} \cdot m_s \left(G \frac{M_E}{r^2} \right) \hat{r} = 0$$

or

$$m_s \overrightarrow{v} \cdot \overrightarrow{a} + m_s \left(G \frac{M_E}{r^2} \right) \overrightarrow{v} \cdot \hat{r} = 0$$

Now we need to learn a little bit more about dot products mixed with derivatives. We have a position vector $\overrightarrow{r} = r\hat{r}$ The derivative of this position vector is

$$\frac{d\overrightarrow{r}}{dt} = \frac{d}{dt} \left(r\hat{r} \right)$$

$$= r\frac{d\hat{r}}{dt} + \frac{dr}{dt}\hat{r}$$

so if we take

$$\frac{d\overrightarrow{r}}{dt} \cdot \hat{r} = \left(r\frac{d\hat{r}}{dt} + \frac{dr}{dt}\hat{r}\right) \cdot \hat{r}$$

$$= r \frac{d\hat{r}}{dt} \cdot \hat{r} + \frac{dr}{dt} \hat{r} \cdot \hat{r}$$

$$=0+\frac{dr}{dt}$$

since $d\hat{r}/dt = 0$.

So

$$\frac{d\overrightarrow{r}}{dt} \cdot \hat{r} = \frac{dr}{dt}$$

and we recognize

$$\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt}$$

so we can write

$$\overrightarrow{v} \cdot \hat{r} = \frac{dr}{dt} \tag{1.1}$$

and we have this in our orbit equation. Our orbit equation becomes

$$m_s \overrightarrow{v} \cdot \overrightarrow{d} + m_s \left(G \frac{M_E}{r_{Es}^2} \right) \frac{d \overrightarrow{r}}{dt} \cdot \hat{r} = 0$$

or just

$$m_s \overrightarrow{v} \cdot \overrightarrow{a} + m_s \left(G \frac{M_E}{r^2} \right) \frac{dr}{dt} = 0$$

We can do something similar for the first term We can recognize

$$\overrightarrow{a} = \frac{d\overrightarrow{v}}{dt}$$

and that $\overrightarrow{v} = v\hat{v}$ where \hat{v} is a unit vector in

the same direction \overrightarrow{v} . Then

$$\frac{d\overrightarrow{v}}{dt} = \frac{d}{dt} \left(v\hat{v} \right)$$

$$= v\frac{d\hat{v}}{dt} + \frac{dv}{dt}\hat{v}$$

and

$$\overrightarrow{v} \cdot \overrightarrow{a} = \overrightarrow{v} \cdot \frac{d\overrightarrow{v}}{dt}$$

$$= \overrightarrow{v} \cdot \left(v \frac{d\hat{v}}{dt} + \frac{dv}{dt} \hat{v} \right)$$

$$= v\hat{v} \cdot v \frac{d\hat{v}}{dt} + v\hat{v} \cdot \frac{dv}{dt}\hat{v}$$

$$= 0 + v \frac{dv}{dt} \hat{v} \cdot \hat{v}$$

$$=v\frac{dv}{dt}$$

so our orbit equation becomes

$$m_s v \frac{dv}{dt} + m_s \left(G \frac{M_E}{r_{Es}^2} \right) \frac{dr}{dt} = 0$$

Now let's play a clever mathematical trick. Let's take the derivative of the kinetic energy with respect to time.

$$\frac{d}{dt} \left(\frac{1}{2} m v^2 \right) = \frac{1}{2} m \frac{d}{dt} \left(v^2 \right)$$
$$= \frac{1}{2} m \left(2v \frac{dv}{dt} \right)$$

$$= mv \frac{dv}{dt}$$

Notice that this is in our orbit equation! So then

$$m_s v \frac{dv}{dt} + m_s \left(G \frac{M_E}{r^2} \right) \frac{dr}{dt} = 0$$

becomes

$$\frac{d}{dt}\left(\frac{1}{2}mv^2\right) + m_s\left(G\frac{M_E}{r^2}\right)\frac{dr}{dt} = 0$$

We can play this trick again for the second term

$$\frac{d}{dt}\left(G\frac{M_E}{r}\right) = GM_E\frac{d}{dt}\left(\frac{1}{r}\right)$$

$$= GM_E\left(-\frac{1}{r^2}\frac{dr}{dt}\right)$$

which once again we recognize this as part of our orbit equation so we can write

$$\frac{d}{dt}\left(\frac{1}{2}mv^2\right) - m_s \frac{d}{dt}\left(G\frac{M_E}{r}\right) = 0$$

or

$$\frac{d}{dt}\left(\left(\frac{1}{2}mv^2\right) - m_s\left(G\frac{M_E}{r}\right)\right) = 0$$

which tells us that

$$\left(\frac{1}{2}mv^2\right) - m_s\left(G\frac{M_E}{r_{Es}}\right) = \text{constant}$$

That is, the mechanical energy is conserved since we recognize this as just

$$K + U_q = \text{constant}$$

And this makes sense. There are no energy loss mechanisms in our orbit. Our masses are particles (no tidal forces inside the objects, etc.) So we expect conservation of energy in forming our orbit.

1.3 Conservation of Orbital Angular Momentum

Now, let's do just what we did before only let's use a cross product with \overrightarrow{r} .

$$\overrightarrow{r} \times \left(-m_s \overrightarrow{a} - m_s \left(G \frac{M_E}{r^2} \right) \hat{r} \right) = \overrightarrow{r} \times 0$$

$$-\overrightarrow{r} \times m_s \overrightarrow{a} - \overrightarrow{r} \times m_s \left(G \frac{M_E}{r^2}\right) \hat{r} = 0$$

$$m_s \overrightarrow{r} \times \overrightarrow{a} + m_s G \frac{M_E}{r^2} \overrightarrow{r} \times \hat{r} = 0$$

$$m_s \overrightarrow{r} \times \overrightarrow{a} + m_s G \frac{M_E}{r^2} r \hat{r} \times \hat{r} = 0$$

The last term has $\hat{r} \times \hat{r}$. The angle between \hat{r} and \hat{r} must be zero (they are in the same direction) so

$$\hat{r} \times \hat{r} = (1)(1)\sin(0) = 0$$

and we are left with

$$m_s \overrightarrow{r} \times \overrightarrow{a} = 0$$

which really does note seem to helpful, but it is. Consider that

$$\overrightarrow{a} = \frac{d^2 \overrightarrow{r}}{dt^2}$$

$$\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{r} \times \frac{d^2 \overrightarrow{r}}{dt^2}$$

$$= \overrightarrow{r} \times \frac{d^2(r\hat{r})}{dt^2}$$

Now consider the quantity

$$\frac{d}{dt}\left(\overrightarrow{r}\times\frac{d\overrightarrow{r}}{dt}\right) = \overrightarrow{r}\times\frac{d^2\overrightarrow{r}}{dt^2} + \frac{d\overrightarrow{r}}{dt}\times\frac{d\overrightarrow{r}}{dt}$$

The second term must be zero because the angle between any vector and itself must be zero and $\sin(0) = 0$, but the first term is just what we have in our equation! so our equation becomes

$$m_s \overrightarrow{r} \times \overrightarrow{d} = m_s \frac{d}{dt} \left(\overrightarrow{r} \times \frac{d\overrightarrow{r}}{dt} \right) = 0$$

which we can write as

$$\frac{d}{dt}\left(\overrightarrow{r}\times m_s\frac{d\overrightarrow{r}}{dt}\right) = 0$$

$$\frac{d}{dt} \left(\overrightarrow{r} \times m_s \overrightarrow{v} \right)$$

$$=\frac{d}{dt}\left(\overrightarrow{L}\right)=0$$

and, hurrah! we have conservation of angular momentum for our general orbit!

1.4 Conic Section Equation

You may not be a thrilled as I was at this point, but what we have done is typical for physicists. We use the power of mathematics and some ingenuity to predict what

motions will be. You might say, "but I would never think of taking cross and dot products seemingly randomly to find a result." This may be true now, but as you get used to using the mathematical tools an operation like this may become more obvious. In any case, recall that early physicists spent many years trying out ways to use their mathematical tools. So eventually someone was bound to try our cross and dot product tricks. But we have only shown conservation of energy and angular momentum. We have not reached our goal. So let's return to our basic motion equation that we started with

$$-m_s \overrightarrow{d} - m_s \left(G \frac{M_E}{r^2} \right) \hat{r} = 0$$

and now let's consider our equation for angular momentum

$$\overrightarrow{L} = \overrightarrow{r} \times m_s \overrightarrow{v}$$

and form the cross product of the first equation with \overrightarrow{L}

$$\left(-m_s \overrightarrow{a} - m_s \left(G \frac{M_E}{r^2}\right) \hat{r}\right) \times \overrightarrow{L} = 0 \times \overrightarrow{L}$$

$$m_s \overrightarrow{a} \times \overrightarrow{L} + m_s \left(G \frac{M_E}{r^2}\right) \hat{r} \times \overrightarrow{L} = 0$$

Again this may not seem like an obvious thing to do! But we find that

$$m_s \overrightarrow{a} \times \overrightarrow{L} = -\left(G\frac{M_E}{r^2}\right) \hat{r} \times \overrightarrow{L}$$

and it is time for another mathematical trick. Consider the quantity

$$\frac{d}{dt} \left(\overrightarrow{v} \times \overrightarrow{L} \right) = \overrightarrow{v} \times \frac{d\overrightarrow{L}}{dt} + \frac{d\overrightarrow{v}}{dt} \times \overrightarrow{L}$$

$$= \overrightarrow{v} \times \frac{d}{dt} \left(\overrightarrow{r} \times m_s \overrightarrow{v} \right) + \overrightarrow{a} \times \overrightarrow{L}$$

$$= \overrightarrow{v} \times (0) + \overrightarrow{a} \times \overrightarrow{L}$$

$$= \overrightarrow{a} \times \overrightarrow{L}$$

for our situation because we have already shown that angular momentum is conserved.

$$m_s \frac{d}{dt} \left(\overrightarrow{v} \times \overrightarrow{L} \right) = -\left(G \frac{M_E}{r^2} \right) \hat{r} \times \overrightarrow{L}$$

Now let's look at the right hand side. Writing out the angular momentum gives

$$\hat{r} \times \overrightarrow{L} = \hat{r} \times (\overrightarrow{r} \times m_s \overrightarrow{v})$$

and I will use a vector product identity that I will let the math department teach you

$$\overrightarrow{A} \times \left(\overrightarrow{B} \times \overrightarrow{C}\right) = \overrightarrow{B} \left(\overrightarrow{A} \cdot \overrightarrow{C}\right) - \overrightarrow{C} \left(\overrightarrow{A} \cdot \overrightarrow{B}\right)$$

so for us

So we have

$$\overrightarrow{r} \times \overrightarrow{L} = m_s \hat{r} \times (\overrightarrow{r} \times \overrightarrow{v})$$

$$= m_s (\overrightarrow{r} (\hat{r} \cdot \overrightarrow{v}) - \overrightarrow{v} (\hat{r} \cdot \overrightarrow{r}))$$

$$= m_s (\overrightarrow{r} (\hat{r} \cdot \overrightarrow{v}) - \overrightarrow{v} r)$$

We already know from equation (1.1) that

$$\overrightarrow{v} \cdot \hat{r} = \frac{dr}{dt}$$

then

$$\hat{r} \times \overrightarrow{L} = m_s \left(r \hat{r} \left(\frac{dr}{dt} \right) - \overrightarrow{v} r \right)$$

then finally

$$m_s \frac{d}{dt} \left(\overrightarrow{v} \times \overrightarrow{L} \right) = -\left(G \frac{M_E m_s}{r^2} \right) \left(r \hat{r} \left(\frac{dr}{dt} \right) - \overrightarrow{v} r \right)$$
$$= -\left(G M_E m_s \right) \left[\left(\frac{dr}{dt} \right) \frac{\hat{r}}{r} - \frac{\overrightarrow{v}}{r} \right]$$

Let's employ one more mathematical trick

$$\frac{d}{dt}\left(\frac{\overrightarrow{r}}{r}\right) = -\overrightarrow{r}\frac{1}{r^2}\frac{dr}{dt} + \frac{1}{r}\frac{d\overrightarrow{r}}{dt}$$

$$= -\overrightarrow{r}\frac{1}{r^2}\frac{dr}{dt} + \frac{1}{r}\overrightarrow{v}$$
$$= -\left(\hat{r}\frac{1}{r}\frac{dr}{dt} - \frac{1}{r}\overrightarrow{v}\right)$$

and this is the part of our equation that I wrote in square brackets, so with a substitution our equation becomes

$$m_s \frac{d}{dt} \left(\overrightarrow{v} \times \overrightarrow{L} \right) = (GM_E m_s) \left(\frac{d}{dt} \left(\frac{\overrightarrow{r}}{r} \right) \right)$$

or, canceling the dt factors from both sides

$$m_s d\left(\overrightarrow{v} \times \overrightarrow{L}\right) = (GM_E m_s) \left(d\left(\frac{\overrightarrow{r}}{r}\right)\right)$$

and we can integrate both sides

$$m_s \int d\left(\overrightarrow{v} \times \overrightarrow{L}\right) = -\left(GM_E m_s\right) \int \left(d\left(\frac{\overrightarrow{r}}{r}\right)\right)$$

to find

$$m_s \overrightarrow{v} \times \overrightarrow{L} = (GM_E m_s) \left(\frac{\overrightarrow{r}}{r}\right) + \overrightarrow{B}$$

where \overrightarrow{B} is a vector constant of integration. Once again for no apparent reason let's take the dot product of this equation with \overrightarrow{r}

$$\overrightarrow{r} \cdot \left(m_s \overrightarrow{v} \times \overrightarrow{L} \right) = -\left(GM_E m_s \right) \overrightarrow{r} \cdot \left(\frac{\overrightarrow{r}}{r} \right) + \overrightarrow{r} \cdot \overrightarrow{B}$$

and use another vector product identity

$$\overrightarrow{A} \cdot \overrightarrow{B} \times \overrightarrow{C} = \overrightarrow{A} \times \overrightarrow{B} \cdot \overrightarrow{C}$$

We can write this as to write our dot product equation as

$$(m_s \overrightarrow{r} \times \overrightarrow{v}) \cdot \overrightarrow{L} = (GM_E m_s) r + rB \cos \theta_{rB}$$

or

$$\frac{1}{m_s} \left(\overrightarrow{r} \times m_s \overrightarrow{v} \right) \cdot \overrightarrow{L} = \left(GM_E m_s \right) r + rB \cos \theta_{rB}$$

$$(\overrightarrow{r} \times m_s \overrightarrow{v}) \cdot \overrightarrow{L} = (GM_E m_s) r + rB \cos \theta_{rB}$$

$$\overrightarrow{L} \cdot \overrightarrow{L} = (GM_E m_s) r + rB \cos \theta_{rB}$$

$$L^2 = (GM_E m_s) r + rB \cos \theta_{rB}$$

and now we can solve for r

$$L^2 = r\left((GM_E m_s) + B\cos\theta_{rB}\right)$$

then

$$r = \frac{L^2}{((GM_E m_s) + B\cos\theta_{rB})}$$

or, rearranging slightly,

$$r = \frac{L^2 / (GM_E m_s)}{(1 + (B/GM_E m_s)\cos\theta_{rB})}$$

If we compare this to the parametric equation for a conic section (straight out of your calculus text book),

$$r = \frac{p}{1 + e\cos\nu}$$

we can see that our orbit must be a conic section with a semi-latus rectum,

$$p = L^2/\left(GM_E m_s\right)$$

and an eccentricity,

$$e = B/GM_Em_s$$

and an angle

$$\nu = \theta_{rB}$$

This means our orbit could be any conic section, circle, ellipse, parabola, or hyperbola. For satellites we most often choose ellipses. But the other conic sections are possible. So Kepler was partially right. An ellipse is a general form for an orbit, but it might even be better to write Kepler's law to say that orbits are conic sections.

If you are a normal PH121 student, your reaction to this problem might be "Agh, maybe I should change my major to horticulture!" But don't worry, This was really a junior level problem, and for us physics majors we have many classes (both physics and math classes) to take before we would be expected to do a problem like this. Still it is fun to see that we can do a problem like this with the math we learned in lowly PH121 if we are very persistent! Interested students can read more in the the book Fundamentals of Astrodynamics by Bate et. al. [1][2][3] [4]

Chapter 2

Numerical Verification of the Orbit Equation

We can use Euler's method to numerically test our mathematical results. An example code is given in Appendix ??

Chapter 3

Long Quotations

Let's start with a long meaningless quotation so we can see how quotations are done.

Four score and seven years ago our fathers brought forth on this continent, a new nation, conceived in Liberty, and dedicated to the proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure. We are met on a great battle-field of that war. We have come to dedicate a portion of that field, as a final resting place for those who here gave their lives that that nation might live. It is altogether fitting and proper that we should do this.

But, in a larger sense, we can not dedicate – we can not consecrate – we can not hallow – this ground. The brave men, living and dead, who struggled here, have consecrated it, far above our poor power to add or detract. The world will little note, nor long remember what we say here, but it can never forget what they did here. It is for us the living, rather, to be dedicated here to the unfinished work which they who fought here

have thus far so nobly advanced. It is rather for us to be here dedicated to the great task remaining before us – that from these honored dead we take increased devotion to that cause for which they gave the last full measure of devotion – that we here highly resolve that these dead shall not have died in vain – that this nation, under God, shall have a new birth of freedom – and that government of the people, by the people, for the people, shall not perish from the earth.

Now some text outside the quotation.

3.1 Chemical Equations in LaTeX

If you need chemistry symbols you can use \space{mhchem} which must be in the preamble of your main document. They are made in the following way $\ce{H20}$ becomes H_2O . There is very little O_2 in space.

3.2 Some section names are way to long to appear in the table of contents so you need to include a short title for the TOC

This is an example of a section name that is too long. You should shorten it if you can, but if you can't this long name will mess up the Table of Contents. So there is an option to include a short title. Put the short section nave version in square brackets before the actual (long) section name (in curly brackets). Here is a random numbered list.

- 1. one item that is long so we can see the hanging indent happen and because a hanging indent looks better, don't you think so?
- 2. a second item, 2π

3.3 Double figures

Sometimes it is useful to have two figures side by side. One way to do this is with a minipage environment. Here is an example of doing just that. Notice that I had to adjust the caption sizes to make the figures line up nicely. I used a \vspace command to adjust the vertical spacing of the second figure. There are probably more elegant ways of doing this.

Figure 3.2 Caption b goes here

You might want to have different figures all as part of a larger figure. I recommend making the graphics as all one piece. For example see figure 3.1 and 3.2.

3.4 defining new math operators

This can be done with the following commands

\DeclareMathOperator {\myOp}{myOp}
\myOp(x)

The first line needs to be in the preamble of your document. The second is put into math where you want the new operator to appearr. Then when you use the new operator it looks like this

Let's try this with erfc for the error function. Then we want to add

\DeclareMathOperator {\erfc}{erfc}

to the preamble and

 $\ensuremath{\ensuremath}\amb}\amb}\amb}}}}}}}}}}}}}}$

to the text where we want it. It should look like this

$$\operatorname{erfc}(x)$$

or in the text $\operatorname{erfc}(x)$. You might also want to put normal text in an equation. Like

$$\frac{x^2 + distance^2}{r^2}$$

Note that the word "distance" doesn't look right. Using the

\textrm{normal text}

command fixes this.

$$\frac{x^2 + \text{distance}^2}{r^2}$$

.

3.5 Tables 19

3.5 Tables

There is a lot to LaTeXtables. I have more to write on this. But centering can be a difficulty. Here are examples of doing that.

Example 1 Use the array package and define a new column type with horizontal or vertical centering (or both).

\newcolumntype{M}[1]{>{\centering\arraybackslash}m{#1}}

line above. Then in the column definitions in your table replace the "p" with an "M."

Samples	Data Item 1		Data Item 2		Data Item 3	
Lifetime (τ)	1	2	1	2	1	2
Average	116.5	464.2	114.7	404.7	115.3	414.7
Lifetime (ps)	110.0	404.2	114.1	404.1	110.0	414.1
Intensity (%)	69	31	64.5	35.5	66.2	33.8

Table 3.1 This is the table caption

Example 2: I use this one a lot. Just put \hfil in each cell you want centered.

Samples	Data Item 1		Data Item 2		Data Item 3	
Lifetime (τ)	1	2	1	2	1	2
Average Life-	116.5	464.2	114.7	404.7	115.3	414.7
time (ps)						
Intensity (%)	69	31	64.5	35.5	66.2	33.8

Table 3.2 This is the table caption

Example 3: The last example was a trick. Maybe a "better" way to go is to put \centering in the cells you want centered.

3.5 Tables **20**

Samples	Data Item 1		Data Item 2		Data Item 3	
Lifetime (τ)	1	2	1	2	1	2
Average Life-	116.5	464.2	114.7	404.7	115.3	414.7
time (ps)						
Intensity (%)	69	31	64.5	35.5	66.2	33.8

 ${\bf Table \ 3.3 \ This \ is \ the \ table \ caption }$

The internet tells me that this is better, but when you look at the source code you will see that I haven't won yet. The last column didn't like the \centering.

Bibliography

- [1] R. R. Bate, D. D. Mueller, and J. E. White, Fundamentals of Astrodynamics (Dover, New York, 1971).
- [2] C. Barnatt, https://www.explainingcomputers.com/, 2021-05-15.
- [3] BYUI Web Team, https://www.byui.edu/physics/, 2021-11-05.
- [4] C. Acquista, "Light Scattering by Tenuous Particles: A Generalization of the Rayleigh-Gans-Rocard Approach," Applied Optics **15**, 2932–2936 (1976).