Deciding the value 1 problem for probabilistic leaktight automata Séminaire Automates

Nathanaël Fijalkow, joint work with Hugo Gimbert and Youssouf Oualhadj

LIAFA, CNRS & Université Denis Diderot - Paris 7, France nath@liafa.jussieu.fr

November 25th, 2011

- 1 The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- 3 Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

- The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- 3 Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

- The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- 3 Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

Probabilistic automata (Rabin, 1963)

 $\mathbb{P}_{\mathcal{A}}: A^* \to [0,1]$

Cutpoint and value

Fix $0 < \lambda \le 1$, define:

$$L_{\lambda} = \{ w \mid \mathbb{P}_{\mathcal{A}}(w) \ge \lambda \}.$$

Cutpoint and value

Fix $0 < \lambda \le 1$, define:

$$L_{\lambda} = \{ w \mid \mathbb{P}_{\mathcal{A}}(w) \ge \lambda \}.$$

 λ is isolated if there exists $\delta > 0$ such that for all $w \in A^*$, we have

$$|\mathbb{P}_{\mathcal{A}}(w) - \lambda| \ge \delta$$

Cutpoint and value

Fix $0 < \lambda \le 1$, define:

$$L_{\lambda} = \{ w \mid \mathbb{P}_{\mathcal{A}}(w) \ge \lambda \}.$$

 λ is isolated if there exists $\delta > 0$ such that for all $w \in A^*$, we have

$$|\mathbb{P}_{\mathcal{A}}(w) - \lambda| \ge \delta$$

Theorem (Rabin, 1963)

If λ is isolated, then L_{λ} is a regular language.

- 1 The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- 3 Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

The isolation problem

Fix $0 \le \lambda \le 1$, the isolation problem is:

Instance: a probabilistic automaton A

Question: is λ isolated in \mathcal{A} ?

The isolation problem

Fix $0 \le \lambda \le 1$, the isolation problem is:

Instance: a probabilistic automaton A

Question: is λ isolated in \mathcal{A} ?

For $0 < \lambda < 1$, Bertoni showed that this is undecidable (in 1974)!

The value 1 problem

For $\lambda=1$ the isolation problem can be formulated as: "are there words accepted by $\mathcal A$ with probability arbitrarily close to 1".

The value 1 problem

For $\lambda=1$ the isolation problem can be formulated as: "are there words accepted by \mathcal{A} with probability arbitrarily close to 1". Equivalently, define $\operatorname{val}(\mathcal{A})=\sup_{w}\mathbb{P}_{\mathcal{A}}(w)$, then the problem is:

"val(
$$\mathcal{A}$$
) $\stackrel{?}{=}$ 1".

The value 1 problem

For $\lambda=1$ the isolation problem can be formulated as: "are there words accepted by $\mathcal A$ with probability arbitrarily close to 1". Equivalently, define $\operatorname{val}(\mathcal A)=\sup_w\mathbb P_{\mathcal A}(w)$, then the problem is:

"val(
$$\mathcal{A}$$
) $\stackrel{?}{=}$ 1".

Theorem (Gimbert, Oualhadj, 2010) *The value 1 problem is undecidable.*

An intuition

has value 1 if and only if $x > \frac{1}{2}$.

A very restricted case

Theorem (Fijalkow, Gimbert, Oualhadj, 2011)

The isolation problem is (still) undecidable if we randomise only on one transition.

Given \mathcal{A} reading words from A^* , we construct \mathcal{B} over a new alphabet B, with one probabilistic transition, and a morphism $\widehat{\ }: A^* \to B^*$ such that:

$$\forall w \in A^*, \mathbb{P}_{\mathcal{A}}(w) = \mathbb{P}_{\mathcal{B}}(\widehat{w}).$$

Given \mathcal{A} reading words from A^* , we construct \mathcal{B} over a new alphabet B, with one probabilistic transition, and a morphism $\widehat{\ }: A^* \to B^*$ such that:

$$\forall w \in A^*, \mathbb{P}_{\mathcal{A}}(w) = \mathbb{P}_{\mathcal{B}}(\widehat{w}).$$

$$\widehat{a} = \operatorname{check}(a,q_0) \cdot *\operatorname{apply}(a,q_0) \dots \operatorname{check}(a,q_{n-1}) \cdot *\operatorname{apply}(a,q_{n-1}) \cdot \operatorname{merge}.$$

Given \mathcal{A} reading words from A^* , we construct \mathcal{B} over a new alphabet B, with one probabilistic transition, and a morphism $\widehat{\ }: A^* \to B^*$ such that:

$$\forall w \in A^*, \mathbb{P}_{\mathcal{A}}(w) = \mathbb{P}_{\mathcal{B}}(\widehat{w}).$$

$$\widehat{a} = \operatorname{check}(a,q_0) \cdot *\operatorname{apply}(a,q_0) \dots \operatorname{check}(a,q_{n-1}) \cdot *\operatorname{apply}(a,q_{n-1}) \cdot \operatorname{merge}.$$

 \mathcal{B} is unable to check that a letter $\operatorname{check}(a,q)$ is actually followed by the corresponding $\operatorname{apply}(a,q)$: inbetween, it will go through s_* and "forget" the state it was in.

 \mathcal{B} is unable to check that a letter check (a, q) is actually followed by the corresponding apply (a, q): inbetween, it will go through s_* and "forget" the state it was in.

$$\sup_{n} \mathbb{P}_{\mathcal{B}}((\widehat{w} \cdot \text{finish})^{n}) = \mathbb{P}_{\mathcal{A}}(w)$$

Assume $p \in F$, $q \notin F$ and i is the initial state of a (deterministic) automaton recognizing $(\widehat{A^*} \cdot \text{finish})^*$.

Define a **large** and **interesting** subclass of probabilistic automata for which the value 1 problem is decidable.

- The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- 3 Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

- The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- 3 Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

Probabilistic automata VS distance automata

Consider a semiring $(\mathcal{K},+,\cdot)$. An automaton computes in the semiring \mathcal{K} if $\operatorname{val}(w) = \sum \{\Pi(\rho) \mid \rho \text{ is a run over } w\}$.

Probabilistic automata VS distance automata

Consider a semiring $(\mathcal{K}, +, \cdot)$. An automaton computes in the semiring \mathcal{K} if $\operatorname{val}(w) = \sum \{\Pi(\rho) \mid \rho \text{ is a run over } w\}$.

- Classical automata compute in the boolean semiring.
- Probabilistic automata compute in $(\mathbb{R}, +, \cdot)$ (there is a catch here).
- Distance automata compute in the tropical semiring $(\mathbb{N} \cup \{\infty\}, \min, +)$. Here is an example:

The value 1 problem VS the limitedness problem

The value 1 problem for probabilistic automata is:

"are there words accepted with probability arbitrarily close to 1?".

The **un**limitedness problem for distance automata is:

"are there words with arbitrarily high value?".

The value 1 problem VS the limitedness problem

The value 1 problem for probabilistic automata is:

"are there words accepted with probability arbitrarily close to 1?".

undecidable

The **un**limitedness problem for distance automata is:

"are there words with arbitrarily high value?". decidable (Hashiguchi, 1988)

- 1 The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- 3 Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

Weighted automata using algebra (Schützenberger)

$$a, b: 0 \qquad a: 1 \qquad a, b: 0$$

$$p \qquad b: 0 \qquad p$$

$$0 \qquad \infty \qquad \infty$$

$$\infty \qquad 1 \qquad \infty$$

$$\infty \qquad \infty \qquad 0$$

$$M = \begin{pmatrix} 0 & \infty & \infty \\ \infty & 1 & \infty \\ \infty & \infty & 0 \end{pmatrix} \qquad \langle b \rangle = \begin{pmatrix} 0 & 0 & \infty \\ \infty & \infty & 0 \\ \infty & \infty & 0 \end{pmatrix}$$

$$I = \begin{pmatrix} 0 & 0 & \infty \end{pmatrix} \qquad F = \begin{pmatrix} \infty \\ 0 \\ 0 \end{pmatrix}$$

Weighted automata using algebra (Schützenberger)

$$a, b: 0 \qquad a: 1 \qquad a, b: 0$$

$$p \qquad b: 0 \qquad b: 0$$

$$| b: 0 \qquad b: 0 \qquad | c \qquad c \qquad c$$

$$| \langle a \rangle = \begin{pmatrix} 0 & \infty & \infty \\ \infty & 1 & \infty \\ \infty & \infty & 0 \end{pmatrix} \qquad \langle b \rangle = \begin{pmatrix} 0 & 0 & \infty \\ \infty & \infty & 0 \\ \infty & \infty & 0 \end{pmatrix}$$

$$I \cdot \langle aaabaa \rangle \cdot F = \begin{pmatrix} 0 & 0 & \infty \end{pmatrix} \cdot \begin{pmatrix} 0 & 2 & 2 \\ \infty & \infty & 3 \\ \infty & \infty & 0 \end{pmatrix} \cdot \begin{pmatrix} \infty \\ 0 \\ 0 \end{pmatrix} = 2$$

$$\begin{cases} k \in \mathbb{N} & \text{best run has value } k \\ \infty & \text{no run} \end{cases}$$

Towards Leung's algorithm: ♯-expressions

Towards Leung's algorithm: #-expressions

An unlimitedness witness is $(a^{\sharp} \cdot b)^{\sharp} \cdot a^{\sharp}$.

Towards Leung's algorithm: stabilization

$$a, b : 0 \qquad a : 1 \qquad a, b : 0$$

$$p \qquad b : 0 \qquad b : 0$$

$$0 \qquad \infty \qquad \infty \qquad \infty$$

$$\infty \qquad 1 \qquad \infty \qquad \infty$$

$$\infty \qquad \infty \qquad 0 \qquad \infty$$

$$\langle a^{\sharp} \rangle = \begin{pmatrix} 0 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix}$$

Towards Leung's algorithm: stabilization

Exclude S argorithm. Stabilization
$$a:0$$

$$a:0$$

$$p b:0$$

$$p b:0$$

$$b:0$$

$$b:1$$

$$\langle a^{\sharp} \rangle = \begin{pmatrix} 0 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix} \qquad \begin{cases} k \in \mathbb{N} & \text{best run has value } k \\ \infty & \text{arbitrarily high value} \\ \infty & \text{no run} \end{cases}$$

Leung's algorithm

To ensure termination we project the tropical semiring $(\mathbb{N} \cup \infty, \min, +)$ into the **finite** semiring $(\{0, 1, \infty\}, \min, +)$.

Leung's algorithm

To ensure termination we project the tropical semiring $(\mathbb{N} \cup \infty, \min, +)$ into the **finite** semiring $(\{0, 1, \infty\}, \min, +)$.

Compute a monoid inside the monoid $\mathcal{M}_{Q\times Q}(\{0,1,\infty\},\min,+)$.

- Compute $\langle a \rangle$ for $a \in A$.
- Close under product and stabilization.
- If there exists a matrix M such that $I \cdot M \cdot F = \infty$ then "unlimited", otherwise "limited".

Leung's algorithm: termination and correction

Termination: the monoid $\mathcal{M}_{\mathcal{Q}\times\mathcal{Q}}(\{0,1,\infty\},\min,+)$ is finite.

Leung's algorithm: termination and correction

Termination: the monoid $\mathcal{M}_{\mathcal{Q}\times\mathcal{Q}}(\{0,1,\infty\},\min,+)$ is finite.

Correction: the proof is complicated, and relies on Simon's theorem.

Outline

- The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- 3 Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

Decide the value 1 problem for a *subclass* of probabilistic automata, by **algebraic** and **non-numerical** means.

Decide the value 1 problem for a *subclass* of probabilistic automata, by **algebraic** and **non-numerical** means.

- algebraic: focus on the automaton structure,
- **non-numerical:** abstract away the values.

Decide the value 1 problem for a *subclass* of probabilistic automata, by **algebraic** and **non-numerical** means.

- **algebraic:** focus on the automaton structure,
- **non-numerical:** abstract away the values.

Hence we consider non-deterministic automata: we project $(\mathbb{R},+,\cdot)$ into the boolean semiring $(\{0,1\},+,\cdot)$.

Decide the value 1 problem for a *subclass* of probabilistic automata, by **algebraic** and **non-numerical** means.

- algebraic: focus on the automaton structure,
- **non-numerical:** abstract away the values.

Hence we consider non-deterministic automata: we project $(\mathbb{R}, +, \cdot)$ into the boolean semiring $(\{0, 1\}, +, \cdot)$.

Outline

- The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- 3 Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

Defining stabilization

$$\langle a \rangle = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

In $\langle a \rangle$, the state 1 is transient and the state 2 is recurrent.

Defining stabilization

$$\langle a \rangle = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \qquad \langle a^{\sharp} \rangle = \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right)$$

In $\langle a \rangle$, the state 1 is transient and the state 2 is recurrent.

Defining stabilization

$$\langle a \rangle = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \qquad \langle a^{\sharp} \rangle = \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right)$$

In $\langle a \rangle$, the state 1 is transient and the state 2 is recurrent.

$$M^{\sharp}(s,t) = \left\{ egin{array}{ll} 1 & \mbox{if } M(s,t) = 1 \mbox{ and } t \mbox{ recurrent in } M, \\ 0 & \mbox{otherwise.} \end{array} \right.$$

(This definition gives an asymmetric monoid, this is unusual.)

A first algorithm

Compute a monoid inside the **finite** monoid $\mathcal{M}_{Q\times Q}(\{0,1\},+,\cdot)$.

• Compute $\langle a \rangle$ for $a \in A$:

$$\langle a \rangle(s,t) = \begin{cases} 1 & \text{if } \mathbb{P}_{\mathcal{A}}(s \xrightarrow{a} t) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Close under product and stabilization.

A first algorithm

Compute a monoid inside the **finite** monoid $\mathcal{M}_{Q\times Q}(\{0,1\},+,\cdot)$.

• Compute $\langle a \rangle$ for $a \in A$:

$$\langle a \rangle(s,t) = \begin{cases} 1 & \text{if } \mathbb{P}_{\mathcal{A}}(s \xrightarrow{a} t) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

- Close under product and stabilization.
- If there exists a matrix M such that

$$\forall t \in Q$$
, $M(s_0, t) = 1 \Rightarrow t \in F$

then " \mathcal{A} has value 1", otherwise " \mathcal{A} does not have value 1".

Correctness

Theorem

If there exists a matrix M such that

$$\forall t \in Q, \quad M(s_0, t) = 1 \Rightarrow t \in F$$

then A has value 1.

Correctness

Theorem

If there exists a matrix M such that

$$\forall t \in Q, \quad M(s_0, t) = 1 \Rightarrow t \in F$$

then A has value 1.

But the value 1 problem is undecidable, so...

No completeness

Left and right parts are symmetric, so for all M:

$$M(0,L_2)=1 \Longleftrightarrow M(0,R_2)=1.$$

Outline

- 1 The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- 3 Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

Outline

- 1 The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

A three-valued semiring

Instead of $(\{0,1\},+,\cdot)$ we compute in $(\{0,\varepsilon,1\},+,\cdot)$, where $0<\varepsilon<1$.

A three-valued semiring

Instead of $(\{0,1\},+,\cdot)$ we compute in $(\{0,\varepsilon,1\},+,\cdot)$, where $0<\varepsilon<1$.

+	0	ε	1		0	ε	1
0	0	ε	1	0	0	0	0
ε	ε	ε	1	ε	0	ε	ε
1	$\begin{bmatrix} 0 \\ 0 \\ \varepsilon \\ 1 \end{bmatrix}$	1	1	1	0 0	ε	1

The algorithm

• Compute $\langle a \rangle$ for $a \in A$:

$$\langle a \rangle(s,t) = \begin{cases} 1 & \text{if } \mathbb{P}_{\mathcal{A}}(s \xrightarrow{a} t) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Close under product and stabilization:

$$M^{\sharp}(s,t) = \begin{cases} 1 & \text{if } M(s,t) = 1 \text{ and } t \text{ recurrent in } M, \\ \varepsilon & \text{if } M(s,t) = 1 \text{ and } t \text{ transient in } M, \\ \varepsilon & \text{if } M(s,t) = \varepsilon, \\ 0 & \text{otherwise.} \end{cases}$$

The algorithm

• Compute $\langle a \rangle$ for $a \in A$:

$$\langle a \rangle(s,t) = \begin{cases} 1 & \text{if } \mathbb{P}_{\mathcal{A}}(s \xrightarrow{a} t) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Close under product and stabilization:

$$M^{\sharp}(s,t) = \begin{cases} 1 & \text{if } M(s,t) = 1 \text{ and } t \text{ recurrent in } M, \\ \varepsilon & \text{if } M(s,t) = 1 \text{ and } t \text{ transient in } M, \\ \varepsilon & \text{if } M(s,t) = \varepsilon, \\ 0 & \text{otherwise.} \end{cases}$$

• If there exists a matrix M such that

$$\forall t \in Q$$
, $M(s_0, t) = 1 \Rightarrow t \in F$

then "A has value 1", otherwise "A does not have value 1".

The control lemma

We say that a word w reify M in $\mathcal{M}_{\mathcal{A}}$ if:

- \bullet $M = \langle a \rangle$ and w = a;
- $M = M_1 \cdot M_2$ and there exists w_1 and w_2 reifying M_1 and M_2 , respectively, such that $w = w_1 \cdot w_2$;
- $M = N^{\sharp}$ and there exists x_1, \ldots, x_n each reifying N, such that $w = x_1 \ldots x_n$ for some $n \ge 1$.

The control lemma

We say that a word w reify M in $\mathcal{M}_{\mathcal{A}}$ if:

- \bullet $M = \langle a \rangle$ and w = a;
- $M = M_1 \cdot M_2$ and there exists w_1 and w_2 reifying M_1 and M_2 , respectively, such that $w = w_1 \cdot w_2$;
- $M = N^{\sharp}$ and there exists x_1, \ldots, x_n each reifying N, such that $w = x_1 \ldots x_n$ for some $n \ge 1$.

Lemma (The control lemma)

For all M in \mathcal{M}_{A} , for all words w reifying M, for all states s, t in Q, we have:

$$M(s,t) \neq 0 \iff \mathbb{P}_{\mathcal{A}}(s \xrightarrow{w} t) > 0.$$

Leaktight automata

Definition

An automaton A is leaktight if for all M, we have

$$M(s,t) = \varepsilon \Longrightarrow (s \text{ is transient) or } (M(t,s) = 1).$$

Leaktight automata

Definition

An automaton A is leaktight if for all M, we have

$$M(s,t) = \varepsilon \Longrightarrow (s \text{ is transient) or } (M(t,s) = 1).$$

Theorem (Fijalkow, Gimbert, Oualhadj)

The value 1 problem is decidable for leaktight automata.

Outline

- 1 The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem
- 2 An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung's algorithm
- 3 Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon's theorem

Decomposition trees

Fact

The set $\mathcal{M}_{\mathcal{A}}$ computed by the algorithm is a stabilization monoid.

Definition

A decomposition tree of a word $w \in A^+$ is a finite unranked ordered tree, whose nodes have labels in (A^+, \mathcal{M}_A) and such that:

- the root is labeled by (w, u), for some $u \in \mathcal{M}_{\mathcal{A}}$,
- every leaf is labeled by $(a, \langle a \rangle)$ where a is a letter,
- every internal node with two children labeled by (w_1, u_1) and (w_2, u_2) is labeled by $(w_1 \cdot w_2, u_1 \cdot u_2)$,
- for every internal node with three or more children, there exists $e \in E(M)$ such that the node is labeled by $(w_1 \dots w_n, e^{\sharp})$ and its children are labeled by $(w_1, e), \dots, (w_n, e)$.

In a decomposition tree, an iteration node is said discontinuous if $M^{\sharp} \neq M$. The span of a decomposition tree is the maximal length of a path that contains no discontinuous path.

In a decomposition tree, an iteration node is said discontinuous if $M^{\sharp} \neq M$. The span of a decomposition tree is the maximal length of a path that contains no discontinuous path.

Theorem (Simon, 1990)

Every word $w \in A^+$ has a decomposition tree whose span is less than $3 \cdot |\mathcal{M}_{\mathcal{A}}|$.

In a decomposition tree, an iteration node is said discontinuous if $M^{\sharp} \neq M$. The span of a decomposition tree is the maximal length of a path that contains no discontinuous path.

Theorem (Simon, 1990)

Every word $w \in A^+$ has a decomposition tree whose span is less than $3 \cdot |\mathcal{M}_{\mathcal{A}}|$.

Lemma (Simon, 1990)

Let $M \in E(\mathcal{M}_{\mathcal{A}})$, if $M^{\sharp} \neq M$, then $M^{\sharp} <_{\mathcal{J}} M$.

In a decomposition tree, an iteration node is said discontinuous if $M^{\sharp} \neq M$. The span of a decomposition tree is the maximal length of a path that contains no discontinuous path.

Theorem (Simon, 1990)

Every word $w \in A^+$ has a decomposition tree whose span is less than $3 \cdot |\mathcal{M}_{\mathcal{A}}|$.

Lemma (Simon, 1990)

Let $M \in E(\mathcal{M}_{\mathcal{A}})$, if $M^{\sharp} \neq M$, then $M^{\sharp} <_{\mathcal{J}} M$.

Corollary

Every word $w \in A^+$ has a decomposition tree whose height is less than $3 \cdot |\mathcal{M}_{\mathcal{A}}| \cdot J(\mathcal{A})$.

Bounding the acceptance probability from below

Lemma

There exists a positive rational number η which depends only on \mathcal{A} such that: for all words $w \in A^+$, there exists M in $\mathcal{M}_{\mathcal{A}}$ satisfying for all states $s, t \in Q$,

$$M(s,t) = 1 \Rightarrow \mathbb{P}_{\mathcal{A}}(s \xrightarrow{w} t) \geq \eta.$$

Bounding the acceptance probability from below

Lemma

There exists a positive rational number η which depends only on \mathcal{A} such that: for all words $w \in A^+$, there exists M in $\mathcal{M}_{\mathcal{A}}$ satisfying for all states $s, t \in Q$,

$$M(s,t) = 1 \Rightarrow \mathbb{P}_{\mathcal{A}}(s \xrightarrow{w} t) \geq \eta.$$

Proof idea: given w, consider a decomposition tree of bounded height, and prove by induction that the lower bound 2^{-h+1} holds at depth h, going from leaves to the root.

The case of an iteration node (1)

The node is labelled by $(w_1 \dots w_n, \langle u^{\sharp} \rangle)$ and its children are labelled by $(w_1, \langle u \rangle), \dots, (w_n, \langle u \rangle)$, where $\langle u \rangle$ is idempotent, and η a lower bound shared by the $n \geq 3$ children.

The case of an iteration node (1)

The node is labelled by $(w_1 \dots w_n, \langle u^{\sharp} \rangle)$ and its children are labelled by $(w_1, \langle u \rangle), \dots, (w_n, \langle u \rangle)$, where $\langle u \rangle$ is idempotent, and η a lower bound shared by the $n \geq 3$ children.

Let s, t such that $\langle u^{\sharp} \rangle (s, t) = 1$, then:

$$\mathbb{P}_{\mathcal{A}}(s \xrightarrow{w_1...w_n} t) \ge \underbrace{\mathbb{P}_{\mathcal{A}}(s \xrightarrow{w_1} t)}_{\ge \eta} \cdot \underbrace{\mathbb{P}_{\mathcal{A}}(t \xrightarrow{w_2...w_n} t)}_{\ge \eta} \ge \eta^2.$$

The case of an iteration node (1)

The node is labelled by $(w_1 \dots w_n, \langle u^{\sharp} \rangle)$ and its children are labelled by $(w_1, \langle u \rangle), \dots, (w_n, \langle u \rangle)$, where $\langle u \rangle$ is idempotent, and η a lower bound shared by the $n \geq 3$ children.

Let s, t such that $\langle u^{\sharp} \rangle (s, t) = 1$, then:

$$\mathbb{P}_{\mathcal{A}}(s \xrightarrow{w_1 \dots w_n} t) \ge \underbrace{\mathbb{P}_{\mathcal{A}}(s \xrightarrow{w_1} t)}_{\ge \eta} \cdot \underbrace{\mathbb{P}_{\mathcal{A}}(t \xrightarrow{w_2 \dots w_n} t)}_{\ge \eta} \ge \eta^2.$$

The left inequality follows from induction hypothesis, since $\langle u \rangle(s,t) = 1$.

The case of an iteration node (2)

Consider the right inequality: $\mathbb{P}_{\mathcal{A}}(t \xrightarrow{w_2...w_n} t) \ge \eta$ Let $C = \{q \mid \langle u \rangle (t,q) \ne 0\}$, we have:

$$\mathbb{P}_{\mathcal{A}}(t \xrightarrow{w_2 \dots w_n} t) = \sum_{q \in C} \mathbb{P}_{\mathcal{A}}(t \xrightarrow{w_2 \dots w_{n-1}} q) \cdot \underbrace{\mathbb{P}_{\mathcal{A}}(q \xrightarrow{w_n} t)}_{\geq \eta}$$

$$\geq \eta \cdot \underbrace{\sum_{q \in C} \mathbb{P}_{\mathcal{A}}(t \xrightarrow{w_2 \dots w_{n-1}} q)}_{-1} = \eta$$

Indeed, since t is recurrent and thanks to the leaktight assumption, we have $C \subseteq \{q \mid \langle u \rangle (q,t) = 1\}$, so the inequality follows from induction hypothesis, and the equality from the "control lemma".

What I didn't (and won't) say

- One can decide whether an automaton is leaktight in PSPACE,
- The value 1 problem for probabilistic leaktight automata is PSPACE-complete,
- The class of leaktight automata subsumes all subclasses of probabilistic automata whose value 1 problem is known to be decidable,
- The class of leaktight automata is closed under parallel composition and synchronized product.

The end.

Thanks for your attention!

