

INTRODUCCIÓN AL APRENDIZAJE AUTOMÁTICO

APRENDIZAJE PARA LA REGRESIÓN – EL DESCENSO POR EL GRADIENTE

LAURA DIAZ DÁVILA – FRANCISCO TAMARIT

REGRESIÓN

REPRESENTACIÓN DE LA INFORMACIÓN

CLASIFICACIÓN

DE REGRESIÓN LINEAL A "DESCENSO POR EL GRADIENTE" EN IA

- Análisis de la tendencia: Predecir valores de la variable dependiente –interpolar o extrapolar-.
- Prueba de hipótesis: Validar un modelo matemático existente con los resultados experimentales o adecuar el modelo a los datos.

PARÁMETROS

Regresión por mínimos cuadrados

$$y = a_{0} a_{1} x$$

Minimizar la suma de los cuadrados de los errores:

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_{i,\text{medida}} - y_{i,\text{modelo}})^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

$$\frac{\partial S_r}{\partial a_0} = -2\sum \left(y_i - a_0 - a_1 x_i \right)$$

$$\frac{\partial S_r}{\partial a_1} = -2 \sum \left[(y_i - a_0 - a_1 x_i) x_i \right]$$

$$n a_0 + \left(\sum x_i\right) a_1 = \sum y_i$$
$$\left(\sum x_i\right) a_0 + \left(\sum x_i^2\right) a_1 = \sum x_i y_i$$

EL DESCENSO POR EL GRADIENTE

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$

$$\text{Positive Slope} \quad \ \frac{\partial}{\partial \Theta_1} J(\Theta_1) \geqslant 0$$

 $\Theta_1 - \alpha(positive, number)$

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge

EL ALGORITMO DEL DESCENSO POR EL GRADIENTE

$$\frac{\partial}{\partial \Theta_j} J(\Theta_0, \, \Theta_1) := \frac{\partial}{\partial \Theta_j} \cdot \frac{1}{2m} \sum_{i=1}^n \left(\underline{h_{\Theta}(x^{(i)})} - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \Theta_j} J(\Theta_0, \, \Theta_1) := \frac{\partial}{\partial \Theta_j} \cdot \frac{1}{2m} \sum_{i=1}^n (\Theta_0 + \Theta_1 x^{(i)} - y^{(i)})^2$$

$$\frac{\partial}{\partial \Theta_0} J(\Theta_0, \, \Theta_1) = \frac{1}{m} \sum_{i=1}^n (h_{\Theta}(x^{(i)}) - y^{(i)})^2
\frac{\partial}{\partial \Theta_1} J(\Theta_0, \, \Theta_1) = \frac{1}{m} \sum_{i=1}^n (h_{\Theta}(x^{(i)}) - y^{(i)})^2 \cdot x^{(i)}$$

DE REGRESIÓN LINEAL A "DESCENSO POR EL GRADIENTE" EN IA

- Análisis de la tendencia: Predecir valores de la variable dependiente –interpolar o extrapolar-.
- Prueba de hipótesis: Validar un modelo matemático existente con los resultados experimentales o adecuar el modelo a los datos.

FUNCIÓN DE ACTIVACIÓN

PARÁMETROS O **PESOS SINÁPTICOS**

$$a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \bar{y} - a_1 \bar{x}$$

$$a_0 = \bar{y} - a_1 \bar{x}$$

Regresión por mínimos cuadrados

$$n a_0 + \left(\sum x_i\right) a_1 = \sum y_i$$
$$\left(\sum x_i\right) a_0 + \left(\sum x_i^2\right) a_1 = \sum x_i y_i$$

FUNCIÓN DE COSTE (LOSS FUNCTION)

Minimizar la suma de los cuadrados de los errores:

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_{i,\text{medida}} - y_{i,\text{modelo}})^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

$$\frac{\partial S_r}{\partial a_0} = -2\sum \left(y_i - a_0 - a_1 x_i \right)$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum \left[(y_i - a_0 - a_1 x_i) x_i \right] \quad \leqslant \quad$$

EL DESCENSO POR EL GRADIENTE EN PYTHON

LIBRERÍAS DE PYTHON:

https://www.youtube.com/watch?v=-_A_AAxqzCg

REGRESIÓN LINEAL MÚLTIPLE

 $S_{y/x}$

REGRESIÓN LINEAL MÚLTIPLE:

- * VARIABLES PREDICTORAS
- * MULTICOLINEALIDAD

FUNCIÓN DE COSTE PARA LA REGRESIÓN MULTILINEAL:

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})^2$$

REGRESIÓN LINEAL MÚLTIPLE

EL DESCENSO POR EL GRADIENTE

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#

¡Gracias!