Contents

1	Data	2
	Data Basics	2
	Visualizing Data	2
် ၁	Descriptive Statistics	A
_	Descriptive Statistics	4
	Descriptive vs. Inferential	4
	Accuracy, Precision, Resolution	4
	Data Distribution	4
	Measures of Central Tendency	4

1 Data

Data Basics

- > Frequent types of data in statistics:
 - Interval: numeric scale with meaningful intervals, e.g. temperature in celsius.
 - o Ratio: numeric but with a meaningful zero, e.g. height.
 - **Discrete**: numeric with with no arbitrary precision, e.g. population.
 - o **Ordinal**: sortable and discrete, e.g. education level.
 - o **Nominal**: non-sortable and discrete, e.g. genre.
- ▶ **Sample data**: Data from *some* members of a group.
- ▶ **Population data**: Data from *all* members of a group.
- \triangleright Sample population sometimes uses hat notation, e.g. $\hat{\beta}$, $\hat{\sigma}$, or other slight ambiguities. Sample data is used more often than population in statistics.

Visualizing Data

- ▶ Bar plots: used to represent categorical (nominal and ordinal) and discrete numerical data.
- ▶ **Box plots**: collection of a data that is split into separate quatiles in order to illustrate overall distribution of data and its potential outliers.
- ▶ **Histograms**: similar to bar plots, but with binned continuous data on the x-axis. Shape and order is meaningful.
 - Histograms of counts:
 - Often more meaningful interpretation of raw data.
 - Difficult to compare across datasets.
 - Does not need to sum up to 1.
 - Usually better for qualitative inspection.
 - Histograms of proportion:
 - Can be more difficult to relate to raw data.
 - Easier to compare across datasets.
 - Illustrates proportion of dataset.
 - Usually better for quantitative analysis.

- ho Translating from counts to proportions: $bin_i = 100 \, (bin_i \, / \, sum(bins))$
- ▶ Pie charts: representation of nominal, ordinal, or discrete data that must sum up to 1.

2 Descriptive Statistics

Descriptive vs. Inferential

▶ Descriptive:

- The point is to obtain individual numbers that describe a dataset.
- Mean, median, mode, variance, kurtosis, skew, distribution, spectrum.
- No relation to population; no generalization to other datasets of groups.

▶ Inferential:

- Use features of sample data set to make generalizations about a population.
- P-value, T/F/chi-square value.
- Confidence intervals.
- Hypothesis testing.

Accuracy, Precision, Resolution

- ▶ Accuracy: the relationship between measurement and the actual truth. Inversely related to bias.
- ▶ **Precision**: the certainty of each measurement. Inversely related to variance.
- > Resolution: the number of data points per unit measurement.

Data Distribution

- ▶ **Data Distribution**: a function that lists values or intervals of data, and how often each value occurs.
- ▷ Common distributions include power-law, gaussian (bell curve), t, F, and Chi-squared.
- ▶ Most statistical procedures are based on assumptions about distributions.
- Data distributions provide insights into nature and often used to model physical and biological systems.

Measures of Central Tendency

- ▶ **Central tendency**: the center of typical value for a probability distribution.
- ▷ Common measures of central tendency: mean, median, mode.
- ▶ Mean, aka average or arithmetic mean:

- Formula: $\bar{x} = n^{-1} \sum x_i$.
- \circ Alternate notations for mean: μ , μ_x .
- The mean is most suitable for normally distributed interval and ratio data.
- Discrete and ordinal data can be useful, but must be carefully interpreted.
- ▶ Median:

$$\circ x_i, i = \frac{n+1}{2}$$

- o Most suitable for unimodal distributed interval and ratio data.
- ▶ Mode: the most common value that is suitable for any distribution and data type, though mostly used for nominal.