R. Notebook

Parametros:

Mean :2

car

```
Measure = G-mean

Columns = learner

Performance = holdout_measure

Filter keys = sampling, weight_space, underbagging

Filter values = FALSE, FALSE, FALSE

library("scmamp")

library(dplyr)
```

Tratamento dos dados

```
Carregando data set compilado
ds = read.csv("/home/rodrigo/Dropbox/UNICAMP/IC/estudo_cost_learning/SummaryResults/summary_compilation
ds = filter(ds, learner != "classif.rusboost")
summary(ds)
##
                                weight_space
                   learner
                       :17100
                                Mode :logical
##
   classif.ksvm
   classif.randomForest:17100
                                FALSE:41040
   classif.rusboost
                                TRUE: 10260
                      :
##
   classif.xgboost
                       :17100
                                NA's :0
##
##
##
##
                               measure
                                             sampling
                                                          underbagging
##
   Accuracy
                                   :10260
                                           ADASYN:10260
                                                          Mode :logical
                                           FALSE :30780
##
  Area under the curve
                                   :10260
                                                          FALSE: 41040
## F1 measure
                                           SMOTE :10260
                                                          TRUE :10260
                                   :10260
##
   G-mean
                                   :10260
                                                          NA's :0
   Matthews correlation coefficient:10260
##
##
##
  tuning_measure
##
                     holdout_measure
                                      holdout_measure_residual
  Min.
         :-0.1277
                     Min. :-0.2120
                                            :-0.4658
##
                                      Min.
  1st Qu.: 0.6911
                     1st Qu.: 0.4001
                                      1st Qu.: 0.1994
## Median : 0.9700
                     Median : 0.8571
                                      Median : 0.5581
                     Mean : 0.6718
## Mean : 0.7903
                                      Mean : 0.5298
## 3rd Qu.: 0.9975
                     3rd Qu.: 0.9900
                                      3rd Qu.: 0.8755
## Max.
          : 1.0000
                     Max. : 1.0000
                                      Max.
                                            : 1.0000
## NA's
          :1077
                     NA's
                          :1077
                                      NA's
                                            :1077
## iteration_count
                                       dataset
                                                      imba.rate
## Min. :1
               abalone
                                           : 900
                                                    Min. :0.0010
## 1st Qu.:1
                   adult
                                           : 900 1st Qu.:0.0100
## Median :2
                                              900
                   bank
                                                    Median :0.0300
```

900

Mean :0.0286

```
## 3rd Qu.:3
                    cardiotocography-10clases:
                                                900
                                                      3rd Qu.:0.0500
## Max.
           :3
                    cardiotocography-3clases :
                                                900
                                                      Max.
                                                             :0.0500
## NA's
           :1077
                    (Other)
                                             :45900
Filtrando pela metrica
ds = filter(ds, measure == params$measure)
Filtrando o data set
if(params$filter_keys != 'NULL' && !is.null(params$filter_keys)){
  dots = paste0(params$filter_keys," == '",params$filter_values,"'")
  ds = filter (ds, .dots = dots)
}
summary(ds)
##
                    learner
                               weight_space
##
   classif.ksvm
                        :684
                               Mode :logical
## classif.randomForest:684
                               FALSE:2052
                        : 0
  classif.rusboost
                               NA's :0
   classif.xgboost
                        :684
##
##
##
                                              sampling
##
                                                          underbagging
                                measure
##
   Accuracy
                                    :
                                        0
                                            ADASYN:
                                                      0
                                                          Mode :logical
   Area under the curve
                                        0
                                            FALSE :2052
                                                          FALSE:2052
  F1 measure
                                        0
                                            SMOTE: 0
                                                          NA's :0
##
   G-mean
                                    :2052
  Matthews correlation coefficient:
##
##
##
##
  tuning_measure
                     holdout_measure holdout_measure_residual
         :0.0000
                            :0.0000
                                            :0.00000
## Min.
                     Min.
                                     Min.
  1st Qu.:0.1111
                     1st Qu.:0.0000 1st Qu.:0.07942
## Median :0.5516
                     Median :0.5774
                                    Median :0.34506
                            :0.5104
## Mean
          :0.5059
                                             :0.40094
                     Mean
                                    Mean
  3rd Qu.:0.8595
                     3rd Qu.:0.9103
                                      3rd Qu.:0.70611
## Max.
          :1.0000
                     Max.
                            :1.0000
                                      Max.
                                             :1.00000
## NA's
           :15
                     NA's
                            :15
                                      NA's
                                             :15
## iteration_count
                                         dataset
                                                       imba.rate
                                                           :0.0010
## Min.
         :1
                    abalone
                                             : 36
                                                     Min.
## 1st Qu.:1
                    adult.
                                               36
                                                     1st Qu.:0.0100
## Median :2
                    bank
                                                36
                                                     Median : 0.0300
                                                           :0.0286
## Mean
         :2
                    car
                                                36
                                                     Mean
## 3rd Qu.:3
                    cardiotocography-10clases:
                                                36
                                                     3rd Qu.:0.0500
## Max.
                                                            :0.0500
          :3
                    cardiotocography-3clases:
                                                36
                                                     Max.
## NA's
          :15
                    (Other)
                                             :1836
Computando as médias das iteracoes
ds = group_by(ds, learner, weight_space, measure, sampling, underbagging, dataset, imba.rate)
ds = summarise(ds, tuning_measure = mean(tuning_measure), holdout_measure = mean(holdout_measure),
               holdout_measure_residual = mean(holdout_measure_residual))
ds = as.data.frame(ds)
```

```
Criando dataframe
```

```
# Dividindo o ds em n, um para cada técnica
splited_df = ds %>% group_by_at(.vars = params$columns) %>% do(vals = as.data.frame(.)) %>% select(vals
# Juntando cada uma das partes horizontalmente em um data set
df_tec_wide = do.call("cbind", splited_df)
# Renomeando duplicacao de nomes
colnames(df_tec_wide) = make.unique(colnames(df_tec_wide))
# Selecionando apenas as medidas da performance escolhida
df_tec_wide_residual = select(df_tec_wide, matches(paste("^", params$performance, "$|", params$performa
# Renomeando colunas
new_names = NULL
for(i in (1:length(splited_df))){
 id = toString(sapply(splited_df[[i]][1, params$columns], as.character))
 new_names = c(new_names, id)
colnames(df_tec_wide_residual) = new_names
# Verificando a dimensao do df
dim(df_tec_wide_residual)
## [1] 228
# Renomeando a variavel
df = df_tec_wide_residual
head(df)
    classif.ksvm classif.randomForest classif.xgboost
##
## 1 0.0000000
                           0.0000000
                                            0.0000000
## 2
     0.00000000
                            0.0000000
                                            0.0000000
## 3
     0.19012012
                            0.0000000
                                            0.0000000
## 4 0.41880678
                            0.0000000
                                            0.0606977
## 5 0.08202566
                            0.5396421
                                            0.4769822
## 6 0.08202566
                                   NA
                                            0.4769822
summary(df)
##
    classif.ksvm
                    classif.randomForest classif.xgboost
## Min. :0.0000 Min.
                          :0.0000
                                         Min.
                                                :0.0000
## 1st Qu.:0.0000
                   1st Qu.:0.2034
                                         1st Qu.:0.2603
## Median :0.2715
                    Median :0.6667
                                         Median :0.7071
## Mean :0.3612
                                         Mean :0.5965
                    Mean
                          :0.5749
## 3rd Qu.:0.6667
                    3rd Qu.:0.9359
                                         3rd Qu.:0.9297
## Max. :1.0000
                    Max.
                          :1.0000
                                         Max. :1.0000
##
                    NA's
                           :5
```

Verificando a média de cada coluna selecionada

```
for(i in (1:dim(df)[2])){
    print(paste("Media da coluna ", colnames(df)[i], " = ", mean(df[,i], na.rm = TRUE), sep=""))
}
## [1] "Media da coluna classif.ksvm = 0.361159697459419"
## [1] "Media da coluna classif.randomForest = 0.574916411982247"
## [1] "Media da coluna classif.xgboost = 0.596496355175027"
```

Fazendo teste de normalidade

Testando as diferencas

```
friedmanTest(df)

##

## Friedman's rank sum test

##

## data: df

## Friedman's chi-squared = 72, df = 2, p-value = 2.22e-16
```

Testando as diferencas par a par

```
test <- nemenyiTest (df, alpha=0.05)
abs(test$diff.matrix) > test$statistic

## classif.ksvm classif.randomForest classif.xgboost
## [1,] FALSE TRUE TRUE
## [2,] TRUE FALSE TRUE
## [3,] TRUE FALSE TRUE
```

Plotando os ranks

```
print(colMeans(rankMatrix(df)))

## classif.ksvm classif.randomForest classif.xgboost
## 2.421053 1.947368 1.631579
```

Plotando grafico de Critical Diference