$$d_1(t)$$
 pendulum

 $d_1(t)$ pendulum

 $d_1 = d_1(t) \Rightarrow angle$

of top pendulum

 $d_2(t) \Rightarrow angle$
 $d_2(t) \Rightarrow angle$
 $d_2(t) \Rightarrow angle$

dr=dr(t)->angle of bottom pendulum m_z > mess of bottom pendulum $d_1 = \frac{dd_1(t)}{dt}$, $d_2 = \frac{dd_2(t)}{dt}$

angular velocities $\dot{\mathcal{L}}_{1} = \frac{J^{2} \mathcal{L}_{1}(t)}{Jt^{2}}, \quad \dot{\mathcal{L}}_{2} = \frac{J^{2} \mathcal{L}_{2}(t)}{Jt^{2}}$

angular accelerations

tree body diagram of top pendulum: inertial reference frame fixed to fixed point (red point) Ap = fixed temsion

point

top bor temsion m,g JT = bottom Newtons 2. lew modified for rotation (not translation) will be used: 7= Id Torque is equal to moment of iner his times angular acceleration. Rotation around for will will be considered: $(I = m_1 \cdot L_1^2)$ 1) $I_1 = -m_1 g \sin(d_1) L_1 + T_2 \sin(d_2 - d_1) L_1 = m_1 L_1^2 d_1$

Tree body diagram for bottom pendulum: non-inertial reference frame fixed to Mr. Inertial forces due to my centripetel and tengential accelerations will be added to the diagram: $\frac{d_1}{d_1}$ $\frac{1}{m_2}$ $\frac{$ centripe bl acceteration of $m = (d_1)^2 L_1$ tangental acceleration of m, => d1 L1 - $I_2 = -m_z g \sin(d_z) L_z - m_z d_1 L_1 \cos(d_1 - d_z) L_z +$ $+ m_2 (\dot{d}_1)^2 L_1 \sin(d_1 - d_2) L_2 = m_2 L_2^2 \ddot{d}_2$

3) $T_2 = m_2 (\dot{\alpha}_1)^2 L_2 + m_2 g \cos(\dot{\alpha}_1) + m_2 (\dot{\alpha}_1)^2 L_1 \cos(\dot{\alpha}_1 - \dot{\alpha}_1) + m_2 \dot{\alpha}_1 L_1 \sin(\dot{\alpha}_1 - \dot{\alpha}_1)$

Plugging 3) into 1) and solving for
$$d_1$$
:

U) $d_1 = \frac{-m_1 g \sin(d_1) + m_2(d_1)^2 L_2 \sin(d_2 - d_1) + \dots}{m_1 L_1 - m_2 \sin(d_1 - d_1) \sin(d_2 - d_1) L_1}$
 $+ m_2 g \cos(d_1) \sin(d_2 - d_1) + m_2 (d_1)^2 \cos(d_1 - d_2) \sin(d_2 - d_1) L_1$

Solving for d_2 from 2):

5) $d_2 = \frac{-3 \sin(d_2) - d_1 L_1 \cos(d_1 - d_2) + (d_1) L_1 \sin(d_1 - d_1)}{L_2}$

Numerical integration: at L_2

Compute $d_1(t_0)$ and $d_2(t_0)$ by d_1 and $d_2(t_0)$ $d_1(t_1) = d_{10} + \cot d_1(t_1)$
 $d_1(t_1) = d_{10} + \cot d_2(t_0)$, $d_2(t_1) = d_{10} + \cot d_2(t_1)$

Repeat for $d_2(t_1) = d_{10} + \cot d_2(t_1)$