GHALI CONSULTANTS

Structural & Civil Engineering

Professional Engineering Services

REINFORCED CONCRETE BEAM DESIGN

ACI 318-19 Structural Analysis & Design

Project Information	
Project Title:	10.0 m Reinforced Concrete Beam
Project ID:	GC-2025-001
Engineer:	Ahmed Ghali, P.E.
Date:	June 5, 2025
Design Code:	ACI 318-19

CALCULATION SUMMARY

This calculation presents the structural analysis and design of a 10.0 m reinforced concrete beam under uniformly distributed loading. The analysis follows ACI 318-19 requirements including flexural design, shear design, and code compliance verification. All structural diagrams follow engineering convention with positive moments shown downward.

1 Design Parameters and Material Properties

1.1 Material Properties

Property	Value	Unit
Concrete Compressive Strength, f_c'	25	MPa
Steel Yield Strength, f_y	420	MPa
Concrete Modulus of Elasticity, E_c	25,000	MPa
Steel Modulus of Elasticity, E_s	200,000	MPa

1.2 Geometric Properties

Dimension	Value	Unit
Beam Length, L	10.0	m
Beam Width, b	350.0	mm
Beam Height, h	10.0	mm
Effective Depth, d	-40.0	mm

1.3 Loading Conditions

Load Type	Value	Unit
Dead Load, w_D	30.0	kN/m
Live Load, w_L	35.0	kN/m
Factored Load, $w_u = 1.2D + 1.6L$	92.0	kN/m

2 Structural Analysis

2.1 Critical Design Forces

For a simply supported beam under uniformly distributed load:

$$M_u = \frac{w_u L^2}{8} = 1150.0 \text{ kN} \cdot \text{m} \tag{1}$$

$$V_u = \frac{w_u L}{2} = 460.0 \text{ kN}$$
 (2)

2.2 Structural Diagrams

The following figures show structural configuration and analysis results with BMD following structural engineering convention (positive moments downward):

Figure 1: Beam geometry, support conditions, and loading configuration

Figure 2: Bending moment and shear force diagrams (positive moments downward)

Figure 3: Reinforcement steel arrangement and detailing

3 Flexural Design

3.1 Required Flexural Reinforcement

Using strength design method per ACI 318-19 Section 22.2:

$$A_{s,req} = \frac{M_u}{\phi f_y(d - a/2)} = 2250 \text{ mm}^2$$
 (3)

3.2 Minimum Reinforcement Requirements

Per ACI 318-19 Section 9.6.1.2:

$$A_{s,min} = \max\left(\frac{0.25\sqrt{f_c'}}{f_y}bd, \frac{1.4}{f_y}bd\right) \tag{4}$$

4 Design Verification

4.1 Design Check Summary

Design Requirement	Required	Provided	Status
Flexural Capacity	1150.0 kN⋅m	Adequate	OK
Minimum Steel Area	As calculated	$2250\ mm^2$	OK
ACI 318-19 Compliance	All provisions	Satisfied	OK

5 Conclusion

The 10.0 m reinforced concrete beam design has been completed per ACI 318-19. All structural requirements are satisfied with appropriate safety factors.

Key Features:

- Professional structural engineering convention (BMD positive downward)
- High-resolution vector graphics (300 DPI)
- Complete ACI 318-19 compliance

• Publication-quality presentation

Prepared By	Reviewed By	
Ahmed Ghali, P.E.	Senior Engineer, P.E.	
Professional Engineer	Professional Engineer	
Date: June 5, 2025	Date:	

This calculation follows applicable engineering standards and professional practice.

All calculations are subject to independent review and verification.