Complete Simulation Results for On the Use of Information Criteriz for Subset Selection in Least Squares Regression

Sen Tian, Clifford M. Hurvich, Jeffrey S. Simonoff

- Orthogonal X, simulation setups are discussed in the Supplemental Material Section B.1.
 - The performance of selection rules for BS. The selection rules include C_p , AICc, BIC, GCV and 10-fold CV. For each selection rule except CV, there are two columns in the table indicating the degrees of freedoms to use in calculating the information criterion. The "edf" (effective degrees of freedom) is estimated using definition (3) by assuming the knowledge of μ and σ , and hence it is an infeasible rule. The "ndf/hdf/bdf" (naive degrees of freedom / heuristic degrees of freedom / degrees of freedom based on bootstrap) are feasible selection rules in practice.

* Orth-Sparse-Ex1: tables S1-S2 * Orth-Sparse-Ex2: tables S3-S4 * Orth-Dense: tables S5-S6

- General X, simulation setups are discussed in Supplemental Material Section B.2.
 - The performance of BOSS compared to BS, FS and regularization methods (n > p). For BOSS, we consider three selection rules, that are AICc-hdf, C_p -hdf and CV. For lasso and gamma lasso, we consider AICc and CV. And for the remaining methods, we use CV. Note that for lasso, we use the number of non-zero coefficients $k(\lambda)$ in place of edf in the AICc formula (7). Zou et al. (2007) showed that $k(\lambda)$ is an unbiased estimator of edf for lasso. For gamma lasso, Taddy (2017) suggested a heuristic degrees of freedom to be plugged into (7) in order to use AICc as the selection rule.

* Sparse-Ex1: tables S7-S12
* Sparse-Ex2: tables S13-S18
* Sparse-Ex3: tables S19-S24
* Sparse-Ex4: tables S25-S30
* Dense: tables S31-S36

- The performance of BOSS compared to FS and regularization methods (n < p). For FS, we consider EBIC (Wang, 2009), HDBIC and HDHQ (Ing and Lai, 2011). We also consider the stopping rule, the trimming rule, and a combination of both introduced by Ing and Lai (2011) for FS.

* Sparse-Ex1: tables S37-S39
* Sparse-Ex2: tables S40-S42
* Sparse-Ex3: tables S43-S45
* Sparse-Ex4: tables S46-S48
* Dense: tables S49-S51

Table S1: The performance of BS using different selection rules, Orth-Sparse-Ex1, n=200

			C_p		AICc		BIC		GCV	CV
		edf	ndf/hdf/bdf	edf	ndf/hdf/bdf	edf	ndf/hdf/bdf	edf	ndf/hdf/bdf	CV
					% worse that	n the best	possible BS			
	p=14	8	33/9/11	7	33/6/9	0	10/0/1	9	34/8/10	19
١, ا	p=30	4	84/5/7	2	83/2/5	0	28/0/0	4	86/4/7	24
hsnr	p=60	2	157/3/5	1	159/2/3	0	64/0/0	2	167/3/4	-
	p=180	1	338/30/32	0	392/1/2	0	206/0/0	0	431/2/3	-
	p=14	8	33/14/12	7	33/11/10	0	10/2/1	9	34/14/12	19
	p=30	4	84/12/11	2	83/8/7	0	28/1/2	4	86/10/10	24
msnr	p=60	2	157/13/10	1	159/8/7	0	64/2/2	2	167/11/9	-
	p=180	1	338/40/38	0	392/7/6	0	206/3/4	0	431/10/8	-
	p=14	18	16/23/23	18	17/24/24	93	43/97/93	18	16/23/23	26
١,	p=30	20	25/36/33	21	24/37/35	68	23/68/67	21	26/37/35	28
lsnr	p=60	18	44/28/27	21	45/31/30	43	17/43/43	20	48/30/29	-
	p=180	15	108/35/34	18	132/22/22	25	50/25/25	17	149/22/21	-
					Rela	tive efficie	ency			
	p=14	0.93	0.75/0.92/0.9	0.94	0.75/0.94/0.92	1	0.91/1/0.99	0.92	0.75/0.92/0.91	0.84
	p=30	0.96	0.54/0.95/0.93	0.98	0.55/0.98/0.96	1	0.78/1/1	0.96	0.54/0.96/0.94	0.81
hsnr	p=60	0.98	0.39/0.97/0.95	0.99	0.39/0.98/0.97	1	0.61/1/1	0.98	0.38/0.97/0.96	-
	p=180	0.99	0.23/0.77/0.76	1	0.2/0.99/0.98	1	0.33/1/1	1	0.19/0.98/0.97	-
	p=14	0.93	0.75/0.88/0.89	0.94	0.75/0.9/0.91	1	0.91/0.99/0.99	0.92	0.75/0.88/0.9	0.84
	p=30	0.96	0.54/0.89/0.9	0.98	0.55/0.92/0.93	1	0.78/0.99/0.98	0.96	0.54/0.91/0.91	0.81
msnr	p=60	0.98	0.39/0.89/0.91	0.99	0.39/0.92/0.93	1	0.61/0.98/0.98	0.98	0.38/0.9/0.92	-
	p=180	0.99	0.23/0.71/0.72	1	0.2/0.93/0.94	1	0.33/0.97/0.96	1	0.19/0.91/0.92	-
	p=14	0.99	1/0.95/0.95	0.98	1/0.94/0.94	0.6	0.82/0.59/0.6	0.99	1/0.95/0.94	0.92
١,	p=30	1	0.97/0.89/0.9	1	0.97/0.88/0.89	0.72	0.98/0.72/0.72	0.99	0.96/0.88/0.89	0.94
lsnr	p=60	0.99	0.81/0.92/0.92	0.97	0.81/0.89/0.9	0.82	1/0.82/0.82	0.98	0.79/0.9/0.91	-
	p=180	1	0.55/0.86/0.86	0.97	0.5/0.95/0.95	0.93	0.77/0.93/0.93	0.98	0.46/0.95/0.95	-
					Sparsistency (n	umber of e	extra variables)			
	p=14	6(0.2)	6(1.3)/6(0.4)/6(0.4)	6(0.2)	6(1.2)/6(0.2)/6(0.3)	6(0)	6(0.2)/6(0)/6(0)	6(0.3)	6(1.3)/6(0.4)/6(0.4)	6(0.7)
١,	p=30	6(0.1)	6(3.9)/6(0.2)/6(0.2)	6(0)	6(3.8)/6(0.1)/6(0.1)	6(0)	6(0.6)/6(0)/6(0)	6(0.1)	6(4.1)/6(0.1)/6(0.1)	6(0.7)
hsnr	p=60	6(0)	6(8.9)/6(0)/6(0.1)	6(0)	6(9.2)/6(0)/6(0)	6(0)	6(1.6)/6(0)/6(0)	6(0)	6(10.5)/6(0)/6(0.1)	-
	p=180	6(0)	6(32.2)/6(6.4)/6(6.3)	6(0)	6(48.9)/6(0)/6(0)	6(0)	6(9.5)/6(0)/6(0)	6(0)	6(74.6)/6(0)/6(0)	-
	p=14	6(0.2)	6(1.3)/6(0.7)/6(0.4)	6(0.2)	6(1.2)/6(0.5)/6(0.3)	6(0)	6(0.2)/6(0)/6(0)	6(0.3)	6(1.3)/6(0.6)/6(0.4)	6(0.7)
	p=30	6(0.1)	6(3.9)/6(0.4)/6(0.3)	6(0)	6(3.8)/6(0.2)/6(0.1)	6(0)	6(0.6)/6(0)/6(0)	6(0.1)	6(4.1)/6(0.3)/6(0.2)	6(0.7)
msnr	p=60	6(0)	6(8.9)/6(0.3)/6(0.2)	6(0)	6(9.2)/6(0.1)/6(0.1)	6(0)	6(1.6)/6(0)/6(0)	6(0)	6(10.5)/6(0.2)/6(0.1)	-
	p=180	6(0)	6(32.2)/6(6.6)/6(6.6)	6(0)	6(48.9)/6(0.1)/6(0.1)	6(0)	6(9.5)/6(0)/6(0)	6(0)	6(74.6)/6(0.1)/6(0.1)	-
	p=14	5.5(2.3)	5.2(1.3)/5.6(4.6)/5.4(3.6)	5.4(2.1)	5.2(1.2)/5.4(4.2)/5.3(3.2)	0.9(0.1)	3.6(0.2)/0.7(0.1)/0.9(0.1)	5.5(2.4)	5.3(1.3)/5.6(4.6)/5.4(3.5)	4.9(1.6)
1	p=30	4.5(1.9)	5.3(3.9)/4.2(4.9)/4.2(4)	4.2(1.2)	5.2(3.8)/3.3(2.2)/3.4(1.8)	0.1(0)	3.7(0.6)/0.1(0)/0.2(0)	4.5(2)	5.3(4.1)/3.9(4.1)/3.9(3.3)	4(1.9)
lsnr	p=60	3.4(1.1)	5.2(8.9)/2.7(1.8)/2.8(1.6)	2.7(0.6)	5.3(9.2)/1.5(0.2)/1.7(0.3)	0(0)	3.8(1.4)/0.1(0)/0.1(0)	3.1(0.9)	5.4(10.4)/2(0.6)/2.1(0.7)	-
	p=180	1.9(0.5)	5.3(32.2)/1.8(10.9)/1.9(9.8)	1.1(0.1)	5.6(49)/0.5(0)/0.6(0)	0(0)	4.2(8.4)/0(0)/0(0)	1.4(0.2)	5.8(74.6)/0.7(0.1)/0.8(0.1)	-

 $\textbf{Table S2:} \ \, \textbf{The performance of BS using different selection rules, Orth-Sparse-Ex1, n=2000}$

		edf	C_p ndf/hdf/bdf	edf	AICc ndf/hdf/bdf	edf	BIC ndf/hdf/bdf	edf	GCV ndf/hdf/bdf	CV
			nar, nar, bar	Cur	% worse than the			car	nar/nar/sar	<u> </u>
hsnr	p=14 p=30 p=60 p=180	8 3 2 0	33/7/9 $85/3/6$ $155/2/4$ $334/1/3$	8 3 2 1	33/7/9 $85/3/6$ $156/2/4$ $337/1/3$	0 0 0 0	3/0/0 9/0/0 21/0/0 60/0/0	8 3 2 1	33/7/9 $86/3/6$ $156/2/4$ $340/1/3$	18 23 -
msnr	p=14 p=30 p=60 p=180	8 3 2 0	33/7/9 85/3/6 155/2/4 334/1/3	8 3 2 1	33/7/9 85/3/6 156/2/4 337/1/3	0 0 0 0	3/0/0 9/0/0 21/0/0 60/0/0	8 3 2 1	33/7/9 $86/3/6$ $156/2/4$ $340/1/3$	18 23 -
lsnr	p=14 p=30 p=60 p=180	8 3 2 0	33/9/9 $85/6/7$ $155/5/5$ $334/5/4$	8 3 2 1	33/9/9 $85/5/6$ $156/5/5$ $337/4/4$	0 0 0 0	3/0/0 9/0/0 21/0/0 60/1/1	8 3 2 1	33/9/9 $86/6/7$ $156/5/5$ $340/5/4$	18 23 - -
<u> </u>	Relative efficiency							1 004		
hsnr	p=14 p=30 p=60 p=180	0.93 0.97 0.98 1	0.75/0.94/0.92 0.54/0.97/0.94 0.39/0.98/0.96 0.23/0.99/0.97	0.93 0.97 0.98 0.99	0.75/0.94/0.92 0.54/0.97/0.94 0.39/0.98/0.96 0.23/0.99/0.97	1 1 1 1	0.97/1/1 $0.92/1/1$ $0.83/1/1$ $0.62/1/1$	0.92 0.97 0.98 0.99	0.75/0.94/0.92 0.54/0.97/0.94 0.39/0.98/0.96 0.23/0.99/0.97	0.84 0.81 -
msnr	p=14 p=30 p=60 p=180	0.93 0.97 0.98 1	0.75/0.94/0.92 0.54/0.97/0.94 0.39/0.98/0.96 0.23/0.99/0.97	0.93 0.97 0.98 0.99	0.75/0.94/0.92 0.54/0.97/0.94 0.39/0.98/0.96 0.23/0.99/0.97	1 1 1 1	0.97/1/1 0.92/1/1 0.83/1/1 0.62/1/1	0.92 0.97 0.98 0.99	0.75/0.94/0.92 0.54/0.97/0.94 0.39/0.98/0.96 0.23/0.99/0.97	0.84 0.81 -
lsnr	p=14 p=30 p=60 p=180	0.93 0.97 0.98 1	0.75/0.92/0.92 0.54/0.95/0.94 0.39/0.95/0.95 0.23/0.96/0.96	0.93 0.97 0.98 0.99	0.75/0.92/0.92 0.54/0.95/0.94 0.39/0.95/0.95 0.23/0.96/0.96	1 1 1 1	$\begin{array}{c} 0.97/1/1 \\ 0.92/1/1 \\ 0.83/1/1 \\ 0.62/0.99/0.99 \end{array}$	0.92 0.97 0.98 0.99	0.75/0.92/0.92 0.54/0.95/0.94 0.39/0.95/0.95 0.23/0.96/0.96	0.84 0.81 -
					Sparsistency (num	ber of e	extra variables)			
hsnr	p=14 p=30 p=60 p=180	6(0.3) 6(0.1) 6(0) 6(0)	$\begin{array}{c} 6(1.2)/6(0.3)/6(0.3) \\ 6(3.8)/6(0.1)/6(0.2) \\ 6(8.6)/6(0)/6(0) \\ 6(27.5)/6(0)/6(0) \end{array}$	6(0.3) 6(0.1) 6(0) 6(0)	$\begin{array}{c} 6(1.2)/6(0.3)/6(0.3) \\ 6(3.8)/6(0.1)/6(0.2) \\ 6(8.6)/6(0)/6(0) \\ 6(28.2)/6(0)/6(0) \end{array}$	6(0) 6(0) 6(0) 6(0)	$\begin{array}{c} 6(0)/6(0)/6(0) \\ 6(0.1)/6(0)/6(0) \\ 6(0.3)/6(0)/6(0) \\ 6(1.1)/6(0)/6(0) \end{array}$	6(0.3) 6(0.1) 6(0) 6(0)	$\begin{array}{c} 6(1.2)/6(0.3)/6(0.3) \\ 6(3.9)/6(0.1)/6(0.2) \\ 6(8.7)/6(0)/6(0) \\ 6(28.9)/6(0)/6(0) \end{array}$	6(0.6) 6(0.6) -
msnr	p=14 p=30 p=60 p=180	6(0.3) 6(0.1) 6(0) 6(0)	6(1.2)/6(0.3)/6(0.3) 6(3.8)/6(0.1)/6(0.2) 6(8.6)/6(0)/6(0) 6(27.5)/6(0)/6(0)	6(0.3) 6(0.1) 6(0) 6(0)	$\begin{array}{c} 6(1.2)/6(0.3)/6(0.3) \\ 6(3.8)/6(0.1)/6(0.2) \\ 6(8.6)/6(0)/6(0) \\ 6(28.2)/6(0)/6(0) \end{array}$	6(0) 6(0) 6(0) 6(0)	$\begin{array}{c} 6(0)/6(0)/6(0) \\ 6(0.1)/6(0)/6(0) \\ 6(0.3)/6(0)/6(0) \\ 6(1.1)/6(0)/6(0) \end{array}$	6(0.3) 6(0.1) 6(0) 6(0)	$\begin{array}{c} 6(1.2)/6(0.3)/6(0.3) \\ 6(3.9)/6(0.1)/6(0.2) \\ 6(8.7)/6(0)/6(0) \\ 6(28.9)/6(0)/6(0) \end{array}$	6(0.6) 6(0.6) -
lsnr	p=14 p=30 p=60 p=180	$ \begin{vmatrix} 6(0.3) \\ 6(0.1) \\ 6(0) \\ 6(0) \end{vmatrix} $	6(1.2)/6(0.4)/6(0.3) 6(3.8)/6(0.2)/6(0.2) 6(8.6)/6(0.1)/6(0.1) 6(27.5)/6(0.1)/6(0)	$ \begin{vmatrix} 6(0.3) \\ 6(0.1) \\ 6(0) \\ 6(0) \end{vmatrix} $	$\begin{array}{c} 6(1.2)/6(0.4)/6(0.3) \\ 6(3.8)/6(0.2)/6(0.2) \\ 6(8.6)/6(0.1)/6(0.1) \\ 6(28.2)/6(0.1)/6(0) \end{array}$	6(0) 6(0) 6(0) 6(0)	$\begin{array}{c} 6(0)/6(0)/6(0) \\ 6(0.1)/6(0)/6(0) \\ 6(0.3)/6(0)/6(0) \\ 6(1.1)/6(0)/6(0) \end{array}$	6(0.3) 6(0.1) 6(0) 6(0)	$\begin{array}{c} 6(1.2)/6(0.4)/6(0.3) \\ 6(3.9)/6(0.2)/6(0.2) \\ 6(8.7)/6(0.1)/6(0.1) \\ 6(28.9)/6(0.1)/6(0) \end{array}$	6(0.6) 6(0.6) - -

Table S3: The performance of BS using different selection rules, Orth-Sparse-Ex2, n=200

		edf	C_p ndf/hdf/bdf	edf	AICc ndf/hdf/bdf	edf	BIC ndf/hdf/bdf	edf	GCV ndf/hdf/bdf	CV
i			,,		% worse than t		- / - /		,,	1
hsnr	p=14 p=30 p=60 p=180	23 21 17 12	21/32/29 48/27/26 89/20/19 200/32/33	23 21 17 11	21/32/28 $47/25/23$ $91/18/18$ $236/11/11$	39 27 19 11	$\begin{array}{c} 20/40/38 \\ 20/27/26 \\ 33/19/18 \\ 112/11/11 \end{array}$	24 21 17 11	21/32/29 $49/27/25$ $96/18/18$ $262/11/12$	23 24 -
msnr	p=14 p=30 p=60 p=180	13 6 3 3	33/23/20 78/21/19 146/20/17 314/50/50	11 4 3 2	33/21/17 78/15/14 148/14/13 365/15/15	3 1 1 2	$\begin{array}{c} 14/12/11 \\ 28/19/18 \\ 59/34/28 \\ 184/65/57 \end{array}$	14 6 3 3	34/23/19 80/18/17 155/17/15 400/16/16	21 24 -
lsnr	p=14 p=30 p=60 p=180	25 21 19 15	$\begin{array}{c} 26/34/32 \\ 54/37/34 \\ 95/34/32 \\ 198/57/54 \end{array}$	25 20 17 15	26/34/33 54/34/31 97/33/31 235/39/35	52 48 49 56	24/91/77 23/90/79 35/84/76 105/72/68	26 22 18 15	27/34/33 56/35/33 102/33/32 260/37/34	27 29 - -
						e efficier	v			
hsnr	p=14 p=30 p=60 p=180	0.97 0.99 0.99 0.99	0.99/0.91/0.93 0.81/0.94/0.95 0.62/0.97/0.98 0.37/0.84/0.84	0.97 0.99 1 1	0.99/0.91/0.93 0.81/0.96/0.97 0.61/0.99/0.99 0.33/1/1	0.86 0.94 0.98 1	1/0.86/0.87 1/0.94/0.95 0.87/0.98/0.98 0.52/1/1	0.97 0.99 1 1	0.99/0.91/0.93 0.8/0.95/0.96 0.59/0.98/0.99 0.31/1/0.99	0.97 0.97 - -
msnr	p=14 p=30 p=60 p=180	0.91 0.95 0.98 0.99	0.77/0.83/0.85 0.57/0.84/0.85 0.41/0.84/0.86 0.25/0.68/0.68	0.92 0.97 0.99	0.77/0.85/0.87 0.57/0.88/0.89 0.41/0.88/0.89 0.22/0.89/0.89	1 1 1 1	0.9/0.92/0.93 0.79/0.85/0.86 0.64/0.76/0.79 0.36/0.62/0.65	0.9 0.95 0.98 1	0.77/0.83/0.86 0.56/0.86/0.86 0.4/0.86/0.88 0.2/0.88/0.88	0.85 0.81
lsnr	p=14 p=30 p=60 p=180	0.99 0.99 0.99 1	0.98/0.92/0.93 0.78/0.88/0.9 0.6/0.88/0.89 0.39/0.73/0.75	0.99 1 1 1	0.98/0.92/0.93 0.78/0.9/0.92 0.6/0.88/0.9 0.34/0.83/0.85	0.81 0.82 0.79 0.74	1/0.65/0.7 0.98/0.63/0.67 0.87/0.64/0.67 0.56/0.67/0.69	0.98 0.98 0.99 1	0.97/0.92/0.93 0.77/0.89/0.9 0.58/0.88/0.89 0.32/0.84/0.86	0.97 0.93 -
					Sparsistency (num	ber of ex	ctra variables)			
hsnr	p=14 p=30 p=60 p=180	5.3(0.9) 4.8(0.4) 4.5(0.2) 4.2(0)	5.6(1.3)/5.1(1.7)/5.2(1.2) 5.6(3.9)/4.6(0.8)/4.7(0.7) 5.6(8.9)/4.3(0.3)/4.4(0.3) 5.7(32.2)/4.3(7.8)/4.4(7.4)	5.2(0.7) 4.7(0.2) 4.4(0.1) 4.1(0)	$\begin{array}{c} 5.6(1.2)/5(1.3)/5.1(1) \\ 5.6(3.8)/4.5(0.2)/4.6(0.2) \\ 5.7(9.2)/4.2(0.1)/4.3(0.1) \\ 5.8(48.9)/4.1(0)/4.1(0) \end{array}$	4.1(0) 4(0) 4(0) 4(0) 4(0)	5.1(0.2)/4.1(0)/4.2(0) 5.1(0.6)/4(0)/4.1(0) 5.1(1.5)/4(0)/4(0) 5.3(9.1)/4(0)/4(0)	5.3(0.9) 4.8(0.4) 4.4(0.1) 4.2(0)	$\begin{array}{c} 5.6(1.3)/5.1(1.6)/5.2(1.2) \\ 5.7(4.1)/4.5(0.6)/4.6(0.6) \\ 5.7(10.5)/4.3(0.1)/4.4(0.1) \\ 5.9(74.6)/4.1(0)/4.2(0.1) \end{array}$	5.3(1) 5(0.9)
msnr	p=14 p=30 p=60 p=180	4.2(0.4) 4.1(0.1) 4(0) 4(0)	4.8(1.3)/4.5(1.2)/4.4(0.9) 4.8(3.9)/4.2(0.7)/4.2(0.6) 4.8(8.9)/4.1(0.3)/4.1(0.3) 4.8(32.2)/4.1(7.3)/4.1(7)	4.2(0.3) 4(0.1) 4(0) 4(0)	4.8(1.2)/4.4(1)/4.3(0.6) 4.8(3.8)/4.1(0.3)/4.1(0.2) 4.8(9.3)/4(0.2)/4(0.1) 5.1(49.2)/3.9(0.1)/3.9(0.1)	4(0) 4(0) 4(0) 4(0)	4.3(0.2)/4(0)/4(0) 4.3(0.6)/3.8(0)/3.9(0) 4.3(1.5)/3.7(0)/3.8(0) 4.4(8.9)/3.4(0)/3.5(0)	4.2(0.5) 4.1(0.2) 4(0) 4(0)	$\begin{array}{c} 4.8(1.3)/4.5(1.2)/4.4(0.8) \\ 4.8(4.1)/4.2(0.5)/4.1(0.5) \\ 4.9(10.5)/4.1(0.2)/4(0.2) \\ 5.3(74.7)/3.9(0.1)/3.9(0.1) \end{array}$	4.4(0.7) 4.2(0.7)
lsnr	p=14 p=30 p=60 p=180	3.4(1) 2.7(0.6) 2.3(0.3) 1.9(0.3)	3.8(1.3)/3.9(2.4)/3.7(1.8) 3.8(3.9)/2.8(2)/2.7(1.5) 3.8(8.9)/2.2(0.9)/2.2(0.8) 3.9(32.2)/1.8(9)/1.9(8.2)	3.3(0.8) 2.6(0.4) 2.2(0.2) 1.8(0.2)	3.8(1.2)/3.7(2.1)/3.5(1.5) 3.8(3.8)/2.5(0.9)/2.4(0.7) 3.9(9.3)/1.8(0.2)/1.9(0.3) 4.3(49.6)/1.1(0.1)/1.2(0.1)	1.8(0) 1.5(0) 1.2(0) 0.6(0)	2.8(0.2)/1.1(0)/1.4(0) 2.8(0.6)/0.6(0)/0.9(0) 2.8(1.5)/0.4(0)/0.6(0) 3.1(8.4)/0.2(0)/0.3(0)	3.4(1.1) 2.7(0.7) 2.2(0.3) 1.9(0.2)	3.8(1.3)/3.9(2.4)/3.6(1.7) 3.9(4.1)/2.7(1.4)/2.6(1.2) 4(10.5)/2(0.4)/2(0.4) 4.7(74.7)/1.2(0.1)/1.3(0.1)	3.2(0.8) 2.8(1) -

Table S4: The performance of BS using different selection rules, Orth-Sparse-Ex2, n=2000

		edf	C_p ndf/hdf/bdf	edf	AICc ndf/hdf/bdf	edf	BIC ndf/hdf/bdf	edf	GCV ndf/hdf/bdf	CV
į		i			% worse than	the best	possible BS			
hsnr	p=14 p=30 p=60 p=180	8 3 2 0	33/10/9 $85/6/7$ $155/4/5$ $334/4/4$	8 3 2 1	33/9/9 85/5/6 156/4/5 337/4/3	0 0 0 0	3/0/1 $9/0/0$ $21/1/1$ $60/4/3$	8 3 2 1	33/9/9 $86/6/7$ $156/4/5$ $340/4/4$	18 23 -
msnr	p=14 p=30 p=60 p=180	13 14 15 15	27/31/28 66/39/35 111/39/35 217/37/35	13 13 14 16	27/32/27 66/39/35 111/38/35 219/37/35	47 74 80 63	26/95/80 23/93/86 22/82/78 34/63/62	13 13 15 16	27/32/28 66/39/35 112/39/35 221/37/35	22 31 -
lsnr	p=14 p=30 p=60 p=180	15 7 3 1	$\begin{array}{c} 29/19/17 \\ 71/13/12 \\ 131/10/9 \\ 288/9/8 \end{array}$	15 7 3 1	$\begin{array}{c} 29/19/17 \\ 71/13/12 \\ 131/10/9 \\ 291/8/7 \end{array}$	1 1 0	8/8/7 11/10/7 19/16/11 51/35/30	15 7 3 1	$\begin{array}{c} 29/19/17 \\ 71/13/12 \\ 132/10/9 \\ 293/9/8 \end{array}$	20 24 - -
						ve efficie	b .			
hsnr	p=14 p=30 p=60 p=180	0.93 0.97 0.98 1	0.75/0.91/0.91 0.54/0.95/0.94 0.39/0.96/0.95 0.23/0.96/0.97	0.93 0.97 0.98 0.99	0.75/0.92/0.92 0.54/0.95/0.94 0.39/0.96/0.96 0.23/0.97/0.97	1 1 1 1	0.97/1/0.99 0.92/1/1 0.83/0.99/0.99 0.62/0.96/0.97	0.92 0.97 0.98 0.99	0.75/0.91/0.91 0.54/0.95/0.94 0.39/0.96/0.95 0.23/0.96/0.97	0.84 0.81 -
msnr	p=14 p=30 p=60 p=180	1 1 1 1	0.89/0.86/0.88 0.68/0.82/0.84 0.54/0.83/0.85 0.36/0.84/0.85	1 1 1 1	0.89/0.86/0.89 0.68/0.82/0.84 0.54/0.83/0.85 0.36/0.84/0.85	0.77 0.65 0.64 0.71	0.9/0.58/0.63 0.92/0.59/0.61 0.94/0.63/0.64 0.86/0.71/0.71	1 1 1 1	0.89/0.86/0.88 0.68/0.82/0.84 0.54/0.83/0.85 0.36/0.84/0.85	0.93 0.87
lsnr	p=14 p=30 p=60 p=180	0.9 0.95 0.98 0.99	0.81/0.88/0.89 0.59/0.9/0.9 0.44/0.91/0.92 0.26/0.92/0.93	0.91 0.95 0.98 0.99	0.81/0.88/0.89 0.59/0.9/0.91 0.43/0.92/0.93 0.26/0.93/0.93	1 1 1 1	0.96/0.97/0.97 0.92/0.92/0.95 0.84/0.87/0.9 0.66/0.74/0.77	0.91 0.95 0.98 0.99	0.81/0.88/0.89 0.59/0.9/0.91 0.43/0.91/0.93 0.26/0.92/0.93	0.87 0.82
					Sparsistency (nun	nber of e	xtra variables)			
hsnr	p=14 p=30 p=60 p=180	6(0.3) 6(0.1) 6(0) 6(0)	6(1.2)/6(0.4)/6(0.3) 6(3.8)/6(0.2)/6(0.2) 6(8.6)/6(0.1)/6(0.1) 6(27.5)/6(0)/6(0)	6(0.3) 6(0.1) 6(0) 6(0)	6(1.2)/6(0.4)/6(0.3) 6(3.8)/6(0.2)/6(0.2) 6(8.6)/6(0.1)/6(0.1) 6(28.2)/6(0)/6(0)	6(0) 6(0) 6(0) 6(0)	$\begin{array}{c} 6(0)/6(0)/6(0) \\ 6(0.1)/6(0)/6(0) \\ 6(0.3)/6(0)/6(0) \\ 6(1.1)/6(0)/6(0) \end{array}$	6(0.3) 6(0.1) 6(0) 6(0)	6(1.2)/6(0.4)/6(0.3) 6(3.9)/6(0.2)/6(0.2) 6(8.7)/6(0.1)/6(0.1) 6(28.9)/6(0)/6(0)	6(0.6) 6(0.6)
msnr	p=14 p=30 p=60 p=180	5.9(0.6) 5.8(0.4) 5.6(0.4) 5.4(0.3)	$\begin{array}{c} 6(1.2)/5.8(1.7)/5.8(1.2) \\ 6(3.8)/5.5(1)/5.6(0.8) \\ 6(8.6)/5.2(0.3)/5.3(0.3) \\ 6(27.5)/4.8(0.1)/4.8(0.1) \end{array}$	5.9(0.6) 5.8(0.4) 5.6(0.4) 5.4(0.3)	$\begin{array}{c} 6(1.2)/5.8(1.7)/5.8(1.1) \\ 6(3.8)/5.5(0.9)/5.5(0.8) \\ 6(8.6)/5.2(0.3)/5.3(0.3) \\ 6(28.2)/4.8(0.1)/4.8(0.1) \end{array}$	5.1(0) 4.5(0) 4.1(0) 4(0)	5.5(0)/4.4(0)/4.6(0) 5.5(0.1)/4.2(0)/4.3(0) 5.5(0.3)/4.1(0)/4.2(0) 5.5(1.1)/4(0)/4.1(0)	5.9(0.6) 5.8(0.4) 5.6(0.4) 5.4(0.3)	$\begin{array}{c} 6(1.2)/5.8(1.7)/5.8(1.2) \\ 6(3.9)/5.5(1)/5.6(0.8) \\ 6(8.7)/5.2(0.3)/5.3(0.3) \\ 6(28.9)/4.8(0.1)/4.8(0.1) \end{array}$	5.9(0.8) 5.7(1)
lsnr	p=14 p=30 p=60 p=180	4.3(0.5) 4.1(0.2) 4(0) 4(0)	4.9(1.2)/4.5(1)/4.4(0.6) 4.9(3.8)/4.2(0.4)/4.1(0.4) 4.9(8.6)/4.1(0.2)/4.1(0.1) 4.9(27.5)/4(0.1)/4(0.1)	4.3(0.5) 4.1(0.2) 4(0) 4(0)	$\begin{array}{c} 4.9(1.2)/4.5(0.9)/4.4(0.6) \\ 4.9(3.8)/4.2(0.4)/4.1(0.3) \\ 4.9(8.6)/4.1(0.1)/4.1(0.1) \\ 4.9(28.2)/4(0.1)/4(0.1) \end{array}$	4(0) 4(0) 4(0) 4(0)	4.1(0)/4(0)/4(0) 4.1(0.1)/3.9(0)/4(0) 4.1(0.3)/3.9(0)/3.9(0) 4.1(1.1)/3.7(0)/3.8(0)	4.3(0.5) 4.1(0.2) 4(0) 4(0)	4.9(1.2)/4.5(1)/4.4(0.6) 4.9(3.9)/4.2(0.4)/4.1(0.3) 4.9(8.7)/4.1(0.2)/4.1(0.1) 4.9(28.9)/4(0.1)/4(0.1)	4.5(0.7) 4.3(0.8)

Table S5: The performance of BS using different selection rules, Orth-Dense, n=200

		edf	C_p ndf/hdf/bdf	edf	AICc ndf/hdf/bdf	edf	BIC ndf/hdf/bdf	edf	GCV ndf/hdf/bdf	CV
		eur	nar/nar/bar	eur	, ,		st possible BS	eur	nar/nar/bar	<u> </u>
<u> </u>	p=14	0	0/0/0	0	0/0/0	0	1/0/0	0	0/0/0	0
	p=14 p=30	1	$\frac{0}{0}$	1	$\frac{0}{0}$	1	28/3/5	1	$\frac{0}{0}$	7
hsnr	p=60	8	7/9/9	9	7/11/11	20	8/32/33	8	8/10/10	'
	p=180	7	45/21/20	9	52/18/19	18	26/39/42	7	64/13/13	-
<u> </u>	p=14	0	9/0/1	0	10/0/1	0	36/1/2	0	9/0/1	6
	p=30	3	10/3/4	3	11/4/5	21	27/19/25	3	10/4/4	11
msnr	p=60	10	11/14/13	10	11/13/13	26	10/48/48	10	12/14/13	-
	p=180	8	52/23/23	10	62/18/19	21	25/61/56	8	74/14/14	-
	p=14	5	22/6/8	7	23/8/10	73	50/73/72	6	22/7/8	19
,	p=30	15	10/16/16	20	10/21/20	27	16/27/27	17	10/18/18	16
lsnr	p=60	13	25/17/16	13	25/13/13	13	11/13/13	13	26/14/14	-
	p=180	8	86/22/22	7	102/7/7	7	39/7/7	7	116/7/7	-
		Relative efficiency								
	p=14	1	1/1/1	1	1/1/1	1	0.99/1/1	1	1/1/1	1
,	p=30	1	0.91/1/1	1	0.9/1/0.99	1	0.79/0.98/0.96	1	0.91/1/1	0.95
hsnr	p=60	0.99	1/0.98/0.98	0.98	1/0.97/0.96	0.89	0.99/0.81/0.8	0.99	0.99/0.98/0.98	-
	p=180	1	0.74/0.89/0.89	0.99	0.71/0.91/0.9	0.91	0.85/0.77/0.76	1	0.65/0.95/0.95	-
	p=14	1	0.92/1/0.99	1	0.91/1/0.99	1	0.74/1/0.99	1	0.92/1/0.99	0.95
	p=30	1	0.93/0.99/0.99	0.99	0.92/0.98/0.98	0.85	0.81/0.87/0.82	1	0.93/0.99/0.99	0.93
msnr	p=60	1	0.99/0.96/0.97	1	0.99/0.97/0.97	0.87	1/0.74/0.74	1	0.98/0.97/0.97	-
	p=180	1	0.71/0.88/0.88	0.98	0.67/0.91/0.91	0.89	0.87/0.67/0.69	1	0.62/0.95/0.95	-
	p=14	0.98	0.85/0.97/0.96	0.97	0.84/0.96/0.94	0.6	0.69/0.6/0.6	0.98	0.85/0.97/0.95	0.86
١,	p=30	0.95	1/0.95/0.95	0.91	1/0.91/0.91	0.86	0.94/0.86/0.86	0.93	1/0.93/0.93	0.94
lsnr	p=60	0.98	0.89/0.95/0.96	0.99	0.89/0.99/0.99	0.98	1/0.98/0.98	0.98	0.88/0.97/0.98	-
	p=180	1	0.58/0.88/0.88	1	0.53/1/1	1	0.77/1/1	1	0.5/1/1	-
					Sparsistency (nu	mber o	f extra variables)			
	p=14	14	14/14/14	14	14/14/14	14	14/14/14	14	14/14/14	14
,	p=30	30	24.7/29.5/29	30	24.2/29.4/28.8	30	20.9/28.8/27.5	30	24.7/29.5/29	26.6
hsnr	p=60	29.8	30.5/38.4/35.8	22.2	29.4/25.6/24.5	17.8	22.5/16.8/16.5	28.6	31.3/36.8/34	-
	p=180	20.5	53.3/37.4/35.5	18.3	62.3/16.3/16.3	16.1	35/13.7/13.5	19.4	89.8/17.8/17.8	-
	p=14	14	13.2/14/13.9	14	13.2/14/13.9	14	11.8/13.9/13.8	14	13.2/14/13.9	13.4
man-	p=30	27.3	18.8/27.4/26.1	26.5	18.3/26.8/25.3	18	13.4/20.4/17.6	27.3	18.8/27.4/26.1	20.8
msnr	p=60	19.4	24.1/29.6/27	13.9	23.4/15.6/15.2	9.3	14.5/7.5/7.4	18.3	25.2/26/24.1	-
	p=180	12.6	47.1/29.1/28.1	10.4	59/8.8/8.8	8.1	24.4/4.8/5	11.3	86.4/10/10	-
	p=14	13.6	7.7/12.7/11.7	13.4	7.6/12.3/11.3	0.7	3.6/0.7/0.8	13.5	7.8/12.6/11.6	8.8
lsnr	p=30	12.8	10.5/14.6/13	7.6	10.3/8.5/7.6	0	4/0/0	11.3	10.8/12.3/11.2	7.5
ISIII	p=60	3.4	15.7/6.5/6	1	15.8/0.8/1	0	4.9/0/0	2	17.3/2.4/2.4	-
	p=180	0.8	39/14.5/13.7	0.3	55.2/0.2/0.3	0	11.8/0/0	0.4	81.7/0.3/0.4	-

Table S6: The performance of BS using different selection rules, Orth-Dense, n=2000

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			10	C _p	10	AICc	10	BIC	10	GCV	CV
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		edf	ndf/hdf/bdf	edf	ndf/hdf/bdf	edf	ndf/hdf/bdf	edf	ndf/hdf/bdf	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						% worse than	tne be	st possible BS			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	0		0	, ,	0	/ /	1	, ,	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1 *				, ,		, ,			1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	nsnr	1 *				, ,		, ,		, ,	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	6	34/8/8	6	34/8/8	19	7/36/37	6	35/8/8	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	0	0/0/0	0	0/0/0	0	0/0/0	0	0/0/0	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=30			1				1		5
$ \begin{vmatrix} p=14 & 0 & 5/0/0 & 0 & 5/0/0 & 0 & 49/0/1 & 0 & 5/0/0 & 4 \\ p=30 & 2 & 11/3/3 & 2 & 11/3/3 & 44 & 41/36/45 & 2 & 11/3/3 & 10 \\ p=60 & 10 & 10/13/12 & 10 & 10/13/12 & 32 & 16/45/48 & 10 & 10/13/12 & - \\ p=180 & 8 & 48/10/10 & 8 & 48/10/10 & 24 & 8/45/47 & 8 & 49/10/10 & - \\ \hline $	msnr	p=60	1								-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	6	39/9/9	6	39/8/9	21	7/38/40	6	40/8/9	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	0	5/0/0	0	5/0/0	0	49/0/1	0	5/0/0	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,	p=30	2	11/3/3	2	11/3/3	44	41/36/45	2	11/3/3	10
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Isnr	p=60	10	10/13/12	10		32	16/45/48			-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	8	48/10/10	8	48/10/10	24	8/45/47	8	49/10/10	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Relative efficiency									
$ \begin{array}{ c c c c c c c c } \hline hsnr & p=60 & 0.99 & 1/0.99/0.99 & 0.99 & 1/0.99/0.99 & 0.83 & 0.89/0.78/0.76 & 0.99 & 1/0.99/0.99 & - \\ p=180 & 1 & 0.79/0.98/0.98 & 1 & 0.79/0.98/0.98 & 0.89 & 1/0.78/0.78 & 1 & 0.79/0.98/0.98 & - \\ \hline \\ p=14 & 1 & 1/1/1 & 1 & 1/1/1 & 1 & 1/1/1 & 1 & $		p=14	1	1/1/1	1	1/1/1	1	1/1/1	1	1/1/1	1 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=30	1	0.99/1/1	1	0.99/1/1	1	0.85/1/0.99	1	0.99/1/1	0.99
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr	p=60	0.99	1/0.99/0.99	0.99	1/0.99/0.99	0.83	0.89/0.78/0.76	0.99	1/0.99/0.99	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	1	0.79/0.98/0.98	1	0.79/0.98/0.98	0.89	1/0.78/0.78	1	0.79/0.98/0.98	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	1	1/1/1	1	1/1/1	1	1/1/1	1	1/1/1	1 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=30	1	0.92/1/1	1	0.92/1/1	1	0.72/0.99/0.96	1	0.92/1/1	0.96
$ \begin{vmatrix} p=14 & 1 & 0.95/1/1 & 1 & 0.95/1/1 & 1 & 0.67/1/0.99 & 1 & 0.92/0.99/0.99 \\ p=30 & 1 & 0.92/0.99/0.99 & 1 & 0.92/0.99/0.99 & 0.71 & 0.73/0.75/0.7 & 1 & 0.92/0.99/0.99 & 0.93 \\ p=60 & 1 & 1/0.97/0.98 & 1 & 1/0.97/0.98 & 0.83 & 0.94/0.75/0.74 & 1 & 1/0.97/0.98 & - \\ p=180 & 1 & 0.73/0.98/0.98 & 1 & 0.73/0.98/0.98 & 0.87 & 1/0.74/0.73 & 1 & 0.72/0.98/0.98 & - \\ $	msnr	p=60	0.99	1/0.98/0.98	0.99	1/0.98/0.98	0.83	0.92/0.77/0.76	0.99	1/0.98/0.98	-
$ \begin{vmatrix} \text{lsnr} & \text{p=30} & 1 & 0.92/0.99/0.99 & 1 & 0.92/0.99/0.99 & 0.71 & 0.73/0.75/0.7 & 1 & 0.92/0.99/0.99 & 0.93 \\ \text{p=60} & 1 & 1/0.97/0.98 & 1 & 1/0.97/0.98 & 0.83 & 0.94/0.75/0.74 & 1 & 1/0.97/0.98 & - \\ \text{p=180} & 1 & 0.73/0.98/0.98 & 1 & 0.73/0.98/0.98 & 0.87 & 1/0.74/0.73 & 1 & 0.72/0.98/0.98 & - \\ $		p=180	1	0.76/0.98/0.98	1	0.76/0.98/0.98	0.88	1/0.77/0.76	1	0.76/0.98/0.98	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	1	0.95/1/1	1	0.95/1/1	1	0.67/1/0.99	1	0.95/1/1	0.96
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,	p=30	1	0.92/0.99/0.99	1	0.92/0.99/0.99	0.71	0.73/0.75/0.7	1	0.92/0.99/0.99	0.93
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	lsnr	p=60	1	1/0.97/0.98	1	1/0.97/0.98	0.83	0.94/0.75/0.74	1	1/0.97/0.98	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	1	0.73/0.98/0.98	1	0.73/0.98/0.98	0.87	1/0.74/0.73	1	0.72/0.98/0.98	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Sparsistency (nu	mber o	f extra variables)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	14	14/14/14	14	14/14/14	14	14/14/14	14	14/14/14	14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 *			1			, ,	1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr	p=60	44.9	, ,	44.2		28.5	30.5/27.6/27.4	45.1	, ,	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	32.1	58.9/32.4/32.3	31.8	58.9/31.6/31.6	27	31.3/25/24.9	32	59.9/32.1/32	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	14	14/14/14	14	14/14/14	14	14/14/14	14	14/14/14	14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 *	1						l		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	msnr	p=60	34.8	33.3/42.8/40.1	33.9	, ,	20.4	, ,	34.6	33.3/42.8/40	-
$ \begin{vmatrix} p = 30 & 28.8 & 19.9/28.2/26.9 \\ p = 60 & 21.6 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 28.8 & 19.9/28.1/26.8 \\ 20.9 & 24.7/29.2/26.9 \end{vmatrix} \begin{vmatrix} 13.5 & 12.5/16.7/14.1 \\ 10.5 & 12.5/16.7/14.1 \end{vmatrix} \begin{vmatrix} 28.8 & 19.9/28.2/26.9 \\ 21.8 & 24.9/30.4/27.7 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 23.8 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 23.8 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 23.8 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 23.8 & 24.8/30.6/27.9 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 23.8 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 22.8 & 22.8 & 22.8 \\ 22.3 & 22.8 & 22.8 & 22.8 & 22.8 \end{vmatrix}$		p=180	24.2	52.4/24.4/24.3	24	52.6/23.6/23.6	19.2	23.6/17.3/17.2	24.1	53.5/24.1/24.1	-
$ \begin{vmatrix} p = 30 & 28.8 & 19.9/28.2/26.9 \\ p = 60 & 21.6 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 28.8 & 19.9/28.1/26.8 \\ 20.9 & 24.7/29.2/26.9 \end{vmatrix} \begin{vmatrix} 13.5 & 12.5/16.7/14.1 \\ 10.5 & 12.5/16.7/14.1 \end{vmatrix} \begin{vmatrix} 28.8 & 19.9/28.2/26.9 \\ 21.8 & 24.9/30.4/27.7 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 23.8 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 23.8 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 23.8 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 23.8 & 24.8/30.6/27.9 \end{vmatrix} \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 22.8 & 24.8/30.6/27.9 \\ 22.3 & 23.8 & 24.8/30.6/27.9 \end{vmatrix} \begin{vmatrix} 22.3 & 22.8 & 22.8 & 22.8 & 22.8 \\ 22.3 & 22.8 & 22.8 & 22.8 & 22.8 \end{vmatrix}$		p=14	14	13.6/14/13.9	14	13.6/14/13.9	14	11.7/14/13.9	14	13.6/14/13.9	13.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	1 *						, ,			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lsnr	p=60	21.6	24.8/30.6/27.9	20.9		10	12.7/8.7/8.5	21.8	24.9/30.4/27.7	-
		p=180	13.9	43.8/14/14	13.6	44.1/13.3/13.3	9.1	13.4/7/6.8	13.8	45/13.7/13.6	-

Table S7: The performance of BOSS compared to other methods, Sparse-Ex1, ρ =0, n=200

		BOSS C_v -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
		, , , , , , , , , , , , , , , , , , , ,		% worse t	than the best possible	BOSS		
i	p=14	8/6/18	19	19	42/41	16/20	13	15
	p=30	5/3/23	25	23	71/69	32/23	14	19
hsnr	p=60	4/2/21	-	23	87/85	51/24	16	19
	p=180	34/1/19	-	22	119/121	134/25	17	19
	p=14	17/14/18	19	19	43/42	23/23	14	16
	p=30	15/11/23	25	23	71/69	49/28	16	20
msnr	p=60	13/9/22	-	24	87/85	82/28	17	20
	p=180	44/7/20	-	22	119/121	222/30	17	20
	p=14	22/24/25	26	25	8/9	13/15	18	15
1	p=30	32/34/26	26	26	2/2	14/9	10	7
lsnr	p=60	27/29/24	-	24	-1/-2	27/5	6	3
	p=180	32/22/18	-	19	-4/-2	83/2	1	1
					Relative efficiency			
	p=14	0.98/1/0.89	0.89	0.89	0.74/0.75	0.91/0.88	0.93	0.92
,	p=30	0.98/1/0.84	0.82	0.83	0.6/0.61	0.78/0.83	0.9	0.87
hsnr	p=60	0.99/1/0.84	-	0.83	0.55/0.55	0.68/0.83	0.88	0.86
	p=180	0.75/1/0.85	-	0.83	0.46/0.46	0.43/0.81	0.87	0.85
	p=14	0.98/1/0.96	0.96	0.96	0.8/0.81	0.93/0.93	1	0.98
	p=30	0.96/1/0.9	0.89	0.9	0.65/0.66	0.75/0.87	0.96	0.93
msnr	p=60	0.97/1/0.9	-	0.88	0.58/0.59	0.6/0.85	0.94	0.91
	p=180	0.75/1/0.9	-	0.88	0.49/0.49	0.33/0.83	0.91	0.89
	p=14	0.89/0.88/0.87	0.86	0.86	1/1	0.95/0.94	0.92	0.95
lsnr	p=30	0.78/0.76/0.81	0.81	0.81	1/1	0.9/0.94	0.93	0.96
ISIII	p=60	0.77/0.76/0.79	-	0.79	1/1	0.78/0.94	0.93	0.96
	p=180	0.73/0.79/0.81	-	0.81	1/0.98	0.52/0.94	0.95	0.95
			Ç	Sparsistenc	y (number of extra va	ariables)		
	p=14	6(0.4)/6(0.2)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.6)	6(0.9)/6(1.4)	6(0.7)	6(0.6)
1	p=30	6(0.1)/6(0)/6(0.6)	6(0.7)	6(0.6)	6(7.3)/6(8.4)	6(2.3)/6(1.7)	6(1)	6(0.7)
hsnr	p=60	6(0.1)/6(0)/6(0.5)	-	6(0.5)	6(10)/6(11.3)	6(4.6)/6(1.8)	6(1.4)	6(0.7)
	p=180	6(8.9)/6(0)/6(0.4)	-	6(0.4)	6(15.3)/6(20.3)	6(18.1)/6(2.1)	6(2.3)	6(0.7)
	p=14	6(0.8)/6(0.6)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.6)	6(1.1)/6(1.4)	6(0.6)	6(0.6)
man-	p=30	6(0.4)/6(0.2)/6(0.6)	6(0.7)	6(0.6)	6(7.4)/6(8.4)	6(2.9)/6(1.6)	6(0.7)	6(0.7)
msnr	p=60	6(0.2)/6(0.1)/6(0.5)	-	6(0.5)	6(10)/6(11.3)	6(6.2)/6(1.6)	6(1)	6(0.8)
	p=180	6(9.1)/6(0.1)/6(0.4)	-	6(0.4)	6(15.3)/6(20.3)	6(27.7)/6(1.7)	6(1.4)	6(0.8)
	p=14	5.4(4.5)/5.2(4.1)/4.6(1.7)	4.5(1.6)	4.6(1.7)	5.5(3.3)/5.5(3.9)	5(1.5)/5.1(2.9)	5(2.7)	5(2.1)
lsnr	p=30	4(4.7)/3.1(2.1)/3.7(2)	3.7(2)	3.7(2)	5.3(6.4)/5.3(7.1)	4.9(3.8)/4.8(4.9)	4.8(5.3)	4.6(3.6)
18111	p=60	2.8(1.9)/2(0.3)/2.9(1.4)	-	3(1.4)	5.1(8.5)/5.2(9.2)	4.8(8.1)/4.5(6.3)	4.5(7)	4.3(4.4)
	p=180	2.1(13.8)/1(0.1)/1.8(0.8)	-	1.8(0.8)	4.4(11.8)/4.5(15.4)	4.7(36.6)/3.8(10.1)	4.1(11.9)	3.7(7.5)

Table S8: The performance of BOSS compared to other methods, Sparse-Ex1, ρ =0, n=2000

		BOSS	BS	FS	LASSO	Gamma LASSO	SparseNet	rLASSO
		C_p -hdf/AICc-hdf/CV	CV	CV	AICc/CV	AICc/CV	CV	CV
				% worse	than the best poss	sible BOSS		
	p=14	6/6/17	18	17	40/40	12/14	11	13
_	p=30	3/3/20	21	21	72/69	19/16	12	15
hsnr	p=60	2/2/23	-	22	100/96	30/19	15	17
	p=180	1/1/21	-	21	136/132	53/20	14	16
	p=14	6/6/17	18	17	41/40	14/17	12	13
	p=30	3/3/20	21	21	72/69	26/18	12	15
msnr	p=60	2/2/23	-	22	100/96	46/22	15	18
	p=180	1/1/21	-	21	136/132	97/22	13	17
	p=14	8/8/17	18	17	41/40	21/20	12	13
	p=30	5/4/20	21	21	72/69	44/23	12	15
lsnr	p=60	5/4/23	-	22	100/96	84/27	16	17
	p=180	5/5/21	-	21	136/132	192/27	13	17
					Relative efficiency	У		
	p=14	1/1/0.9	0.9	0.91	0.76/0.76	0.95/0.92	0.95	0.94
	p=30	1/1/0.86	0.85	0.85	0.6/0.61	0.87/0.88	0.92	0.89
hsnr	p=60	1/1/0.83	-	0.83	0.51/0.52	0.78/0.85	0.89	0.87
	p=180	1/1/0.84	-	0.84	0.43/0.44	0.66/0.85	0.89	0.87
	p=14	1/1/0.9	0.9	0.91	0.75/0.76	0.93/0.91	0.95	0.94
	p=30	1/1/0.86	0.85	0.85	0.6/0.61	0.82/0.87	0.92	0.89
msnr	p=60	1/1/0.83	-	0.83	0.51/0.52	0.7/0.84	0.89	0.86
	p=180	1/1/0.83	-	0.83	0.43/0.44	0.51/0.83	0.9	0.87
	p=14	1/1/0.93	0.92	0.93	0.77/0.77	0.9/0.9	0.97	0.96
,	p=30	1/1/0.87	0.86	0.87	0.61/0.62	0.73/0.85	0.93	0.91
lsnr	p=60	1/1/0.85	-	0.85	0.52/0.53	0.57/0.82	0.9	0.89
	p=180	1/1/0.86	-	0.86	0.44/0.45	0.36/0.83	0.93	0.9
			S_1	parsisten	cy (number of extr	ra variables)		
	p=14	6(0.2)/6(0.2)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.4)	6(0.9)/6(1.2)	6(0.6)	6(0.5)
,	p=30	6(0.1)/6(0.1)/6(0.5)	6(0.6)	6(0.6)	6(8.5)/6(8.8)	6(1.9)/6(1.7)	6(1)	6(0.5)
hsnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(13.4)/6(12.6)	6(4)/6(2.2)	6(1.6)	6(0.6)
	p=180	6(0)/6(0)/6(0.4)	-	6(0.3)	6(23)/6(20.1)	6(10.4)/6(2.5)	6(2.1)	6(0.4)
	p=14	6(0.2)/6(0.2)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.4)	6(1)/6(1.3)	6(0.6)	6(0.5)
	p=30	6(0.1)/6(0.1)/6(0.5)	6(0.6)	6(0.6)	6(8.5)/6(8.7)	6(2.2)/6(1.6)	6(0.9)	6(0.5)
msnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(13.3)/6(12.6)	6(5)/6(1.9)	6(1.5)	6(0.6)
	p=180	6(0)/6(0)/6(0.4)	-	6(0.3)	6(22.8)/6(20)	6(15.7)/6(1.9)	6(1.8)	6(0.4)
	p=14	6(0.4)/6(0.4)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.4)	6(1.1)/6(1.3)	6(0.5)	6(0.5)
1	p=30	6(0.1)/6(0.1)/6(0.5)	6(0.6)	6(0.6)	6(8.5)/6(8.7)	6(2.9)/6(1.4)	6(0.7)	6(0.5)
lsnr	p=60	6(0.1)/6(0.1)/6(0.5)	-	6(0.5)	6(13.4)/6(12.5)	6(6.7)/6(1.6)	6(1)	6(0.6)
	p=180	6(0.1)/6(0.1)/6(0.4)	-	6(0.3)	6(23)/6(20)	6(23.6)/6(1.1)	6(1)	6(0.4)

Table S9: The performance of BOSS compared to other methods, Sparse-Ex1, ρ =0.5, n=200

		BOSS C_n -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
		C _p -ndi/Aicc-ndi/CV			an the best possible		CV	CV
							10	10
	p=14	7/5/20	18	21	39/39	16/19	13	18
hsnr	p=30	4/2/20	22	21	66/65	34/21	15	18
	p=60	3/2/21	-	23 22	92/89	57/25	16 16	18 16
<u> </u>	p=180	65/1/19			139/134	136/25		
	p=14	19/17/20	15	20	34/34	21/20	12	21
msnr	p=30	13/9/22	23	23	66/65	50/26	17	26
mom	p=60	12/8/22	-	25	90/88	85/30	17	29
	p=180	46/9/21	-	25	126/125	211/31	18	39
	p=14	19/22/23	23	21	-2/-2	12/6	7	4
lomm	p=30	26/27/25	24	23	-4/-5	9/2	2	-1
lsnr	p=60	24/26/22	-	20	-4/-6	22/1	0	-3
	p=180	48/12/14	-	14	-2/-2	91/2	1	0
				R	elative efficiency			
	p=14	0.98/1/0.87	0.89	0.87	0.75/0.75	0.9/0.88	0.93	0.89
١,	p=30	0.99/1/0.85	0.84	0.84	0.61/0.62	0.77/0.85	0.89	0.87
hsnr	p=60	0.99/1/0.85	-	0.83	0.53/0.54	0.65/0.82	0.88	0.87
	p=180	0.61/1/0.85	-	0.83	0.42/0.43	0.43/0.81	0.87	0.87
	p=14	0.95/0.96/0.94	0.98	0.93	0.84/0.84	0.93/0.94	1	0.93
	p=30	0.97/1/0.9	0.89	0.89	0.66/0.66	0.73/0.87	0.93	0.87
msnr	p=60	0.97/1/0.88	-	0.87	0.57/0.58	0.59/0.83	0.93	0.84
	p=180	0.75/1/0.9	-	0.88	0.48/0.49	0.35/0.83	0.93	0.79
	p=14	0.82/0.8/0.8	0.8	0.81	1/1	0.88/0.92	0.91	0.94
١,	p=30	0.75/0.75/0.76	0.77	0.77	0.99/1	0.87/0.93	0.93	0.96
lsnr	p=60	0.76/0.75/0.77	-	0.78	0.99/1	0.77/0.94	0.95	0.97
	p=180	0.66/0.87/0.86	-	0.86	1/1	0.51/0.96	0.97	0.98
			Sp	arsistency	(number of extra v	variables)		
	p=14	6(0.3)/6(0.2)/6(0.8)	6(0.6)	6(0.8)	6(3.8)/6(4.2)	6(0.9)/6(1.3)	6(0.6)	6(1)
	p=30	6(0.1)/6(0)/6(0.6)	6(0.7)	6(0.6)	6(6)/6(8.6)	6(2.5)/6(1.5)	6(1.1)	6(0.8)
hsnr	p=60	$\hat{6}(0)/6(\hat{0})/6(\hat{0}.5)$	-	6(0.6)	6(8.8)/6(12.5)	6(4.9)/6(1.7)	6(1.4)	6(0.9)
	p=180	6(9.4)/6(0)/6(0.3)	-	6(0.4)	6(11.7)/6(21.3)	6(16.6)/6(1.7)	6(1.9)	6(0.6)
	p=14	6(1.2)/6(1)/6(1.1)	6(0.7)	6(1.1)	6(3.8)/6(4.2)	6(1.1)/6(1.5)	6(0.7)	6(1.7)
	p=30	6(0.4)/6(0.2)/6(0.7)	6(0.7)	6(0.7)	6(6.1)/6(8.6)	6(3.1)/6(1.6)	6(1)	6(1.3)
msnr	p=60	6(0.2)/6(0.2)/6(0.6)	-	6(0.6)	6(8.8)/6(12.4)	6(6.3)/6(1.8)	6(1.1)	6(1.6)
	p=180	6(10.2)/6(0.1)/6(0.4)	-	6(0.4)	6(16)/6(21.1)	6(26.5)/6(1.6)	6(1.3)	6(1.6)
	p=14	4.4(3.5)/4.1(3.2)/3.8(2.4)	3.7(2)	3.8(2.2)	5(3.3)/5.1(3.5)	4(1.6)/4.6(2.8)	4.6(2.7)	4.6(2.6)
1	p=30	3.7(4.4)/2.9(2.1)/3.4(2.7)	3.3(2.3)	3.4(2.3)	4.8(4.8)/5.2(7.4)	4.5(3.9)/4.7(5.2)	4.8(5.7)	4.6(4.5)
lsnr	p=60	2.4(2)/1.6(0.5)/2.5(1.8)	-	2.5(1.6)	4.4(6.4)/4.8(10)	4.4(8.2)/4.2(7)	4.4(7.9)	4.1(5.7)
	p=180	1.3(14.1)/0.3(0.1)/1(0.8)	-	1.1(0.7)	2.5(4.9)/3.2(12)	4.2(35.8)/2.9(9.2)	3(9.7)	2.7(7.5)

Table S10: The performance of BOSS compared to other methods, Sparse-Ex1, ρ =0.5, n=2000

		BOSS	BS	FS	LASSO	Gamma LASSO	SparseNet	rLASSO
		C_p -hdf/AICc-hdf/CV	CV	CV	AICc/CV	AICc/CV	CV	CV
				% worse	than the best poss	sible BOSS		
	p=14	7/6/17	19	17	38/39	12/14	12	14
١, ١	p=30	3/3/20	23	22	67/65	21/18	14	19
hsnr	p=60	2/2/21	-	21	91/89	29/19	15	20
	p=180	2/1/22	-	23	126/123	52/20	15	17
	p=14	7/6/17	19	17	39/39	16/17	12	14
	p=30	3/3/20	23	22	67/66	29/20	14	19
msnr	p=60	2/2/21	-	21	91/89	45/21	14	20
	p=180	2/1/22	-	23	126/123	95/22	15	17
	p=14	13/13/17	18	17	39/39	23/21	13	19
١, ١	p=30	6/6/20	23	22	67/65	49/25	15	21
lsnr	p=60	5/5/21	-	21	91/89	83/26	15	20
	p=180	4/4/22	-	23	126/123	192/28	15	17
					Relative efficiency	7		
	p=14	1/1/0.91	0.9	0.91	0.77/0.77	0.95/0.93	0.95	0.93
	p=30	1/1/0.86	0.84	0.84	0.62/0.62	0.85/0.87	0.9	0.87
hsnr	p=60	1/1/0.84	-	0.84	0.54/0.54	0.79/0.86	0.89	0.85
	p=180	1/1/0.83	-	0.83	0.45/0.45	0.67/0.85	0.88	0.87
	p=14	1/1/0.91	0.9	0.91	0.77/0.76	0.92/0.91	0.95	0.93
	p=30	1/1/0.86	0.84	0.84	0.62/0.62	0.8/0.86	0.9	0.87
msnr	p=60	1/1/0.84	-	0.84	0.54/0.54	0.71/0.84	0.89	0.85
	p=180	1/1/0.83	-	0.83	0.45/0.45	0.52/0.83	0.89	0.87
	p=14	1/1/0.96	0.95	0.96	0.81/0.81	0.92/0.93	1	0.95
١, ١	p=30	1/1/0.88	0.86	0.87	0.63/0.64	0.71/0.85	0.92	0.88
lsnr	p=60	1/1/0.87	-	0.87	0.55/0.56	0.57/0.84	0.91	0.87
	p=180	1/1/0.85	-	0.85	0.46/0.47	0.36/0.82	0.9	0.89
			Sı	parsisten	cy (number of ext	ra variables)		
	p=14	6(0.3)/6(0.3)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.2)	6(0.9)/6(1)	6(0.6)	6(0.6)
,	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.7)	6(0.6)	6(6.6)/6(8.3)	6(2.1)/6(1.7)	6(1)	6(0.8)
hsnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.4)	6(10.3)/6(12.1)	6(3.7)/6(2)	6(1.3)	6(0.7)
	p=180	6(0)/6(0)/6(0.5)	-	6(0.4)	6(13.8)/6(18.9)	6(9.3)/6(2.5)	6(2.3)	6(0.4)
	p=14	6(0.3)/6(0.3)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.2)	6(1)/6(1.2)	6(0.6)	6(0.6)
	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.7)	6(0.6)	6(6.6)/6(8.3)	6(2.5)/6(1.6)	6(0.9)	6(0.8)
msnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.4)	6(10.4)/6(12)	6(4.6)/6(1.7)	6(1.2)	6(0.7)
	p=180	6(0)/6(0)/6(0.5)	-	6(0.4)	6(14)/6(18.7)	6(14.2)/6(2)	6(2.1)	6(0.5)
	p=14	6(0.6)/6(0.6)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.3)	6(1.2)/6(1.3)	6(0.5)	6(1)
	p=30	6(0.2)/6(0.1)/6(0.6)	6(0.7)	6(0.6)	6(6.6)/6(8.4)	6(3.1)/6(1.5)	6(0.7)	6(0.8)
lsnr	p=60	6(0.1)/6(0.1)/6(0.5)	-	6(0.4)	6(10.3)/6(12)	6(6.5)/6(1.4)	6(0.8)	6(0.8)
	p=180	6(0.1)/6(0)/6(0.5)	-	6(0.4)	6(13.8)/6(18.8)	6(23)/6(1.4)	6(1.4)	6(0.5)

Table S11: The performance of BOSS compared to other methods, Sparse-Ex1, ρ =0.9, n=200

		BOSS C_p -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
		Cp-lidi/ Micc-lidi/ C v			han the best possible			
	p=14	20/21/19	16	18	6/5	10/6	12	7
	p=30	16/16/28	15	28	24/24	26/16	12	25
hsnr	p=60	15/15/34	-	34	58/59	66/38	28	23
	p=00 p=180	59/8/35	-	36	98/98	153/45	27	23
	p=14	26/27/18	17	16	-8/-9	11/1	3	-3
	p=30	24/27/20	19	15	-11/-12	5/-5	-3	-7
msnr	p=60	16/16/19	-	16	$^{2/3}$	27/6	8	0
	p=180	26/7/15	-	16	31/31	111/17	15	12
	p=14	28/27/24	22	19	-9/-13	9/3	3	-1
,	p=30	19/18/21	19	15	-18/-21	5/-7	-9	-10
lsnr	p=60	17/18/20	-	14	-20/-21	6/-12	-14	-18
	p=180	47/21/18	-	14	-13/-14	53/-9	-10	-12
					Relative efficiency			
	p=14	0.87/0.87/0.89	0.91	0.89	0.99/1	0.95/0.99	0.94	0.98
,	p=30	0.97/0.97/0.87	0.98	0.88	0.91/0.91	0.89/0.96	1	0.89
hsnr	p=60	1/0.99/0.85	-	0.85	0.73/0.72	0.69/0.83	0.9	0.93
	p=180	0.68/1/0.8	-	0.79	0.55/0.54	0.43/0.74	0.85	0.88
	p=14	0.72/0.71/0.77	0.77	0.78	0.98/1	0.82/0.9	0.88	0.93
	p=30	0.71/0.69/0.74	0.74	0.76	0.99/1	0.84/0.93	0.91	0.95
msnr	p=60	0.86/0.85/0.83	-	0.86	0.98/0.97	0.78/0.94	0.92	1
	p=180	0.86/1/0.93	-	0.92	0.82/0.82	0.51/0.92	0.93	0.96
	p=14	0.68/0.68/0.7	0.71	0.73	0.95/1	0.8/0.85	0.85	0.88
lsnr	p=30	0.67/0.67/0.66	0.67	0.69	0.96/1	0.76/0.85	0.87	0.88
18111	p=60	0.68/0.67/0.66	-	0.69	0.98/1	0.74/0.89	0.92	0.96
	p=180	0.59/0.71/0.73	-	0.76	1/1	0.57/0.95	0.96	0.98
			S	parsistenc	y (number of extra va	riables)		
	p=14	5.6(2.8)/5.5(2.6)/5.7(2.8)	5.6(1.9)	5.6(2.6)	5.9(4)/6(4)	5.6(1.4)/5.8(2)	5.6(2.2)	5.9(3.8)
hsnr	p=30	5.6(1.5)/5.6(1.2)/5.8(3.2)	5.8(1.5)	5.8(2.8)	6(7.5)/6(8.6)	5.8(3.4)/5.8(3.4)	5.8(2.3)	6(7.3)
HSHF	p=60	5.9(1)/5.8(0.9)/5.9(2.8)	-	5.9(1.9)	6(10.2)/6(12.1)	5.9(6.6)/5.9(4)	5.9(3)	6(3.1)
	p=180	6(9.9)/5.9(0.4)/6(2.4)	-	6(1.2)	6(13.6)/6(18)	6(21.6)/6(4.8)	6(4.3)	6(2.5)
	p=14	2.9(2)/2.7(1.7)/3.7(2.9)	3.5(2.4)	3.6(2.7)	4.9(3.7)/5(3.7)	3.3(1.6)/4.2(2.6)	4(2.6)	4.6(3.4)
msnr	p=30	3.3(2.9)/3(2.1)/3.9(4.9)	3.6(3.6)	3.8(4.1)	5.1(7.3)/5.3(8.2)	4.1(3.8)/4.7(5.7)	4.6(5.5)	4.9(7.4)
шыш	p=60	4.3(2.8)/4.1(2.1)/4.4(4.3)	-	4.4(3.2)	5.6(10.1)/5.6(11.8)	4.7(7.4)/5(6.9)	5(6.8)	5.5(7.9)
	p=180	5.1(11.7)/5(1.2)/5(2.3)	-	5(1.7)	5.9(14.8)/5.9(17.5)	5.3(28.6)/5.4(6.8)	5.4(6.3)	5.6(5.5)
	p=14	1(1)/0.9(0.9)/1.5(1.7)	1.4(1.4)	1.5(1.4)	2.6(2.5)/2.9(2.7)	1.5(1.4)/2(1.8)	2(1.9)	2.1(2.1)
lsnr	p=30	0.9(1.8)/0.8(1.4)/1.2(2.9)	1.1(2.4)	1.2(2.2)	2.2(4.8)/2.6(6)	1.6(3.2)/2(4.2)	2.1(4.5)	1.9(4.5)
18111	p=60	0.9(2)/0.7(1.4)/1.1(3.2)	-	1.1(2.4)	2.6(7)/2.9(9)	2(6.5)/2.3(6.6)	2.5(7.2)	2.6(7.3)
	p=180	1.3(14.7)/0.5(0.6)/1(2.6)	-	1.2(1.9)	2.8(9.7)/3.1(13.9)	2.6(26.4)/2.6(10)	2.8(11.4)	2.7(9.4)

Table S12: The performance of BOSS compared to other methods, Sparse-Ex1, ρ =0.9, n=2000

		BOSS C _n -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
					an the best possible		CV	CV
	p=14	7/7/21	18	22	30/30	6/8	17	23
	p=14 p=30	4/3/22	25	23	58/57	14/12	21	33
hsnr	p=60	$\frac{4/3/22}{2/2/21}$	-	23	81/82	34/19	18	18
	p=00 p=180	1/1/18	-	22	114/113	68/18	15	17
	p=14	15/15/21	14	21	22/20	14/12	14	23
	p=30	4/4/28	23	28	54/53	46/22	21	50
msnr	p=60	2/2/22	-	24	81/82	76/24	20	24
	p=180	1/1/18	-	22	114/113	140/21	15	18
	p=14	27/28/17	17	15	-7/-9	10/2	4	-2
	p=30	22/22/20	16	17	-7/-7	10/-1	0	-4
lsnr	p=60	9/9/17	-	16	15/15	42/13	16	12
	p=180	3/3/13	-	15	59/58	146/21	33	18
				R	Relative efficiency			
	p=14	0.99/0.99/0.87	0.89	0.87	0.81/0.81	1/0.97	0.9	0.86
1	p=30	1/1/0.85	0.83	0.84	0.65/0.66	0.9/0.92	0.86	0.77
hsnr	p=60	1/1/0.84	-	0.83	0.56/0.56	0.76/0.86	0.86	0.86
	p=180	1/1/0.85	-	0.83	0.47/0.47	0.6/0.85	0.88	0.86
	p=14	0.98/0.98/0.93	0.99	0.93	0.92/0.93	0.99/1	0.98	0.91
	p=30	1/1/0.81	0.85	0.81	0.67/0.68	0.71/0.85	0.86	0.69
msnr	p=60	1/1/0.83	-	0.82	0.56/0.56	0.58/0.82	0.85	0.82
	p=180	1/1/0.85	-	0.83	0.47/0.47	0.42/0.84	0.87	0.86
	p=14	0.72/0.72/0.78	0.78	0.79	0.98/1	0.83/0.9	0.88	0.93
lsnr	p=30	0.76/0.76/0.77	0.8	0.79	0.99/1	0.84/0.94	0.92	0.97
15111	p=60	1/1/0.93	-	0.93	0.94/0.94	0.77/0.96	0.94	0.97
	p=180	1/1/0.92	-	0.9	0.65/0.65	0.42/0.85	0.78	0.88
			Sı		(number of extra v			
	p=14	6(0.3)/6(0.3)/6(0.9)	6(0.7)	6(0.9)	6(3.4)/6(3.4)	6(0.2)/6(0.3)	6(0.6)	6(1.9)
hsnr	p=30	6(0.1)/6(0.1)/6(0.7)	6(0.7)	6(0.6)	6(7.6)/6(8)	6(0.9)/6(0.7)	6(1.2)	6(2.3)
HSIII	p=60	6(0)/6(0)/6(1)	-	6(0.5)	6(11.1)/6(12.1)	6(2.9)/6(1.4)	6(1.4)	6(0.8)
	p=180	6(0)/6(0)/6(1.3)	-	6(0.4)	6(15.6)/6(18.5)	6(9.5)/6(1.7)	6(1.9)	6(0.6)
	p=14	5.9(1.2)/5.9(1.2)/6(1.7)	6(1)	6(1.6)	6(4)/6(3.9)	6(1)/6(1.2)	5.9(1)	6(3.3)
msnr	p=30	6(0.2)/6(0.2)/6(1.2)	6(0.7)	6(1)	6(7.8)/6(8.2)	6(3.1)/6(1.4)	6(1.2)	6(4.8)
1110111	p=60	6(0)/6(0)/6(1.1)	-	6(0.6)	6(11.1)/6(12.1)	6(6.4)/6(1.5)	6(1.2)	6(1.1)
	p=180	6(0)/6(0)/6(1.3)	-	6(0.4)	6(15.8)/6(18.5)	6(18.7)/6(1.4)	6(1.5)	6(0.6)
	p=14	3.5(2.1)/3.5(2.1)/4.3(3)	4(2.4)	4.2(2.8)	5.3(3.8)/5.4(3.8)	3.9(1.8)/4.6(2.7)	4.5(2.6)	5(3.5)
lsnr	p=30	4.1(2.7)/4.1(2.7)/4.6(4.5)	4.5(3.2)	4.5(3.7)	5.6(7.7)/5.7(8)	4.7(4)/5.1(5.3)	5.1(5)	5.5(7)
19111	p=60	5(1.4)/5(1.4)/5.1(3.1)	-	5.1(2.2)	5.9(11.1)/5.9(12)	5.3(8.2)/5.4(6)	5.3(5.7)	5.8(7.4)
	p=180	5.6(0.6)/5.6(0.6)/5.6(2)	-	5.6(0.9)	6(15.7)/6(18.4)	5.7(26.1)/5.6(3.6)	5.5(5.3)	5.9(3.1)

Table S13: The performance of BOSS compared to other methods, Sparse-Ex2, ρ =0, n=200

		BOSS	BS	FS	LASSO	Gamma LASSO	SparseNet	rLASSO
		C_p -hdf/AICc-hdf/CV	CV	CV	AICc/CV	AICc/CV	CV	CV
				% worse th	an the best possible	BOSS		
	p=14	8/6/20	21	20	41/41	17/20	15	16
١,	p=30	5/3/24	25	25	69/68	32/22	15	20
hsnr	p=60	4/2/21	-	23	95/94	53/23	16	19
	p=180	34/1/19	-	21	129/130	139/27	18	17
	p=14	17/14/20	21	20	42/41	23/23	16	17
	p=30	17/13/24	25	25	69/68	48/27	16	21
msnr	p=60	13/9/21	-	23	95/94	84/28	16	23
	p=180	49/10/20	-	22	129/130	224/32	18	29
	p=14	21/22/24	25	24	7/7	14/14	16	12
1	p=30	29/31/26	25	26	1/1	13/8	8	6
lsnr	p=60	26/28/23	-	22	0/0	25/5	6	5
	p=180	31/18/15	-	16	-2/0	85/4	3	3
				I	Relative efficiency			
	p=14	0.98/1/0.89	0.88	0.89	0.75/0.75	0.91/0.89	0.92	0.91
١.	p=30	0.98/1/0.83	0.82	0.82	0.61/0.61	0.78/0.84	0.9	0.86
hsnr	p=60	0.99/1/0.85	-	0.83	0.52/0.53	0.67/0.83	0.88	0.86
	p=180	0.75/1/0.85	-	0.84	0.44/0.44	0.42/0.8	0.86	0.86
	p=14	0.98/1/0.95	0.94	0.95	0.8/0.81	0.93/0.93	0.98	0.98
	p=30	0.96/1/0.91	0.9	0.9	0.67/0.67	0.76/0.89	0.97	0.93
msnr	p=60	0.97/1/0.9	-	0.89	0.56/0.56	0.59/0.85	0.94	0.89
	p=180	0.74/1/0.92	-	0.9	0.48/0.48	0.34/0.83	0.93	0.85
	p=14	0.89/0.88/0.86	0.86	0.86	1/1	0.94/0.94	0.92	0.95
1	p=30	0.78/0.77/0.8	0.8	0.8	1/1	0.89/0.93	0.93	0.95
lsnr	p=60	0.79/0.78/0.81	-	0.81	1/0.99	0.8/0.95	0.94	0.95
	p=180	0.75/0.83/0.85	-	0.85	1/0.98	0.53/0.94	0.95	0.95
			S_1	parsistency	(number of extra var	riables)		
	p=14	6(0.3)/6(0.2)/6(0.6)	6(0.7)	6(0.6)	6(3.6)/6(4.4)	6(1)/6(1.4)	6(0.6)	6(0.6)
١,	p=30	6(0.1)/6(0)/6(0.6)	6(0.7)	6(0.7)	6(7.5)/6(8.4)	6(2.4)/6(1.7)	6(1.1)	6(0.8)
hsnr	p=60	6(0.1)/6(0)/6(0.5)	-	6(0.5)	6(11.4)/6(13.2)	6(4.8)/6(1.6)	6(1.6)	6(0.7)
	p=180	6(8.8)/6(0)/6(0.4)	-	6(0.4)	6(15.9)/6(22.1)	6(18.5)/6(2.2)	6(2.6)	6(0.7)
	p=14	6(0.8)/6(0.6)/6(0.6)	6(0.7)	6(0.6)	6(3.6)/6(4.4)	6(1.1)/6(1.4)	6(0.6)	6(0.6)
	p=30	6(0.5)/6(0.2)/6(0.6)	6(0.7)	6(0.7)	6(7.4)/6(8.5)	6(2.9)/6(1.6)	6(0.8)	6(0.9)
msnr	p=60	6(0.2)/6(0.1)/6(0.5)	-	6(0.5)	6(11.3)/6(13.2)	6(6.4)/6(1.5)	6(1)	6(0.9)
	p=180	6(9.8)/6(0.1)/6(0.4)	-	6(0.4)	6(15.9)/6(22)	6(27.5)/6(2)	6(1.6)	6(1.3)
	p=14	5.5(4.5)/5.4(4.2)/4.8(1.8)	4.8(1.7)	4.8(1.8)	5.7(3.3)/5.7(4)	5.1(1.5)/5.3(2.9)	5.2(2.8)	5.2(2)
١,	p=30	3.9(4.3)/3.1(1.8)/3.6(2.2)	$3.\dot{6}(2)^{'}$	3.6(2.1)	$5.3(\hat{6}.6)/5.3(\hat{7}.1)$	4.8(3.8)/4.7(4.9)	4.8(5.3)	4.5(3.6)
lsnr	p=60	2.3(1.8)/1.4(0.3)/2.7(1.4)	-	2.7(1.4)	4.7(8.8)/4.7(9.9)	4.9(8.6)/4.2(6.9)	4.3(7.5)	4(5.5)
	p=180	1.7(14.1)/0.5(0.1)/1.4(0.6)	-	1.4(0.7)	3.7(10.7)/3.8(13.5)	4.6(36.7)/3.2(9.4)	3.3(10.3)	3.1(8)

Table S14: The performance of BOSS compared to other methods, Sparse-Ex2, ρ =0, n=2000

		BOSS C _n -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
 					than the best poss		CV	CV
	p=14	6/6/17	17	17	40/41	12/14	11	13
	p=30	3/3/22	22	23	74/71	20/18	13	16
hsnr	p=60	2/2/24	-	23	97/93	29/19	15	18
	p=180	1/1/21	-	21	131/128	52/18	13	16
	p=14	6/6/17	17	17	41/41	14/17	11	13
	p=30	3/3/22	22	23	74/71	27/20	13	16
msnr	p=60	2/2/24	-	23	97/93	44/21	15	18
	p=180	1/1/21	-	21	131/127	97/22	13	16
	p=14	9/8/17	17	17	41/41	21/21	12	13
lsnr	p=30	5/5/22	22	23	74/71	46/25	13	16
ISHF	p=60	5/4/24	-	23	97/93	82/26	15	18
	p=180	5/5/21	-	21	131/128	192/26	12	17
					Relative efficiency	У		
	p=14	1/1/0.91	0.91	0.91	0.76/0.76	0.95/0.93	0.96	0.94
١,	p=30	1/1/0.84	0.84	0.84	0.59/0.6	0.86/0.87	0.91	0.89
hsnr	p=60	1/1/0.83	-	0.83	0.52/0.53	0.79/0.86	0.89	0.86
	p=180	1/1/0.83	-	0.84	0.44/0.44	0.66/0.86	0.89	0.87
	p=14	1/1/0.91	0.91	0.91	0.75/0.75	0.93/0.91	0.96	0.94
	p=30	1/1/0.84	0.84	0.84	0.59/0.6	0.81/0.86	0.91	0.89
msnr	p=60	1/1/0.83	-	0.83	0.52/0.53	0.71/0.84	0.89	0.86
	p=180	1/1/0.83	-	0.84	0.44/0.44	0.51/0.83	0.9	0.87
	p=14	1/1/0.93	0.93	0.93	0.77/0.77	0.9/0.9	0.97	0.96
lsnr	p=30	1/1/0.86	0.86	0.85	0.6/0.61	0.72/0.84	0.93	0.91
ISHF	p=60	1/1/0.84	-	0.85	0.53/0.54	0.57/0.83	0.91	0.89
	p=180	1/1/0.86	-	0.86	0.45/0.46	0.36/0.83	0.94	0.9
			S_1	parsisten	cy (number of ext	ra variables)		
	p=14	6(0.3)/6(0.3)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.5)	6(0.9)/6(1.3)	6(0.6)	6(0.5)
,	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(8.4)/6(8.7)	6(2)/6(1.8)	6(0.9)	6(0.5)
hsnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(13.1)/6(12.2)	6(3.8)/6(2.1)	6(1.5)	6(0.6)
	p=180	6(0)/6(0)/6(0.3)	-	6(0.3)	6(21.6)/6(19.3)	6(10.3)/6(2.4)	6(2.1)	6(0.5)
	p=14	6(0.3)/6(0.3)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.5)	6(0.9)/6(1.3)	6(0.6)	6(0.5)
	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(8.5)/6(8.7)	6(2.2)/6(1.7)	6(0.9)	6(0.5)
msnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(13.1)/6(12.2)	6(4.8)/6(1.8)	6(1.4)	6(0.6)
	p=180	6(0)/6(0)/6(0.3)	-	6(0.3)	6(21.8)/6(19.4)	6(15.6)/6(1.9)	6(1.9)	6(0.5)
	p=14	6(0.4)/6(0.4)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.5)	6(1.1)/6(1.4)	6(0.5)	6(0.5)
long	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(8.4)/6(8.7)	6(3)/6(1.6)	6(0.7)	6(0.5)
lsnr	p=60	6(0.1)/6(0.1)/6(0.5)	-	6(0.5)	6(13.1)/6(12.2)	6(6.8)/6(1.4)	6(1)	6(0.6)
	p=180	6(0.1)/6(0.1)/6(0.3)	-	6(0.3)	6(21.7)/6(19.4)	6(23.9)/6(1.1)	6(0.9)	6(0.5)

Table S15: The performance of BOSS compared to other methods, Sparse-Ex2, ρ =0.5, n=200

		BOSS C_n -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
		, , ,	9	worse that	an the best possible	BOSS		
<u> </u>	p=14	8/6/17	18	17	46/44	15/20	13	15
	p=30	5/3/24	24	24	91/88	28/23	14	18
hsnr	p=60	4/2/22	-	23	123/119	43/24	16	17
	p=180	34/1/19	-	22	168/165	100/28	17	15
	p=14	19/16/26	18	17	46/44	21/23	14	16
	p=30	22/18/29	23	25	89/87	42/28	14	41
msnr	p=60	16/11/29	-	25	121/117	70/29	16	42
	p=180	48/9/29	-	30	160/157	179/32	14	52
	p=14	24/25/28	23	26	18/17	15/20	22	23
lamm	p=30	33/34/26	20	30	17/17	15/19	18	22
lsnr	p=60	28/29/23	-	28	15/16	23/17	16	19
	p=180	28/14/14	-	17	8/9	71/11	10	12
				R	elative efficiency			
	p=14	0.98/1/0.91	0.9	0.91	0.73/0.74	0.92/0.89	0.94	0.92
١,	p=30	0.98/1/0.83	0.83	0.83	0.54/0.55	0.8/0.84	0.9	0.87
hsnr	p=60	0.98/1/0.83	-	0.83	0.46/0.46	0.71/0.82	0.88	0.87
	p=180	0.75/1/0.85	-	0.83	0.38/0.38	0.5/0.79	0.86	0.88
	p=14	0.96/0.98/0.9	0.97	0.97	0.78/0.79	0.94/0.92	1	0.98
	p=30	0.93/0.97/0.88	0.92	0.91	0.6/0.61	0.8/0.89	1	0.81
msnr	p=60	0.96/1/0.86	-	0.89	0.5/0.51	0.66/0.87	0.96	0.78
	p=180	0.74/1/0.84	-	0.83	0.42/0.42	0.39/0.83	0.95	0.71
	p=14	0.92/0.92/0.9	0.94	0.91	0.97/0.98	1/0.96	0.94	0.94
lsnr	p=30	0.87/0.86/0.92	0.96	0.88	0.99/0.98	1/0.96	0.98	0.94
15111	p=60	0.89/0.89/0.93	-	0.89	1/0.99	0.93/0.98	0.99	0.96
	p=180	0.84/0.94/0.94	-	0.92	1/0.99	0.63/0.97	0.98	0.96
			Sp	arsistency	(number of extra va	riables)		
	p=14	6(0.4)/6(0.3)/6(0.6)	6(0.6)	6(0.6)	6(4.6)/6(5.5)	6(0.9)/6(1.5)	6(0.7)	6(0.6)
la como m	p=30	6(0.1)/6(0)/6(0.7)	6(0.7)	6(0.7)	6(11.2)/6(12.8)	6(2.2)/6(1.5)	6(1.1)	6(0.7)
hsnr	p=60	6(0.1)/6(0)/6(0.5)	-	6(0.5)	6(16)/6(19.1)	6(4.3)/6(1.5)	6(1.7)	6(0.6)
	p=180	6(9.3)/6(0)/6(0.4)	-	6(0.4)	6(22.5)/6(31.5)	6(14.2)/6(2.1)	6(2.8)	6(0.6)
	p=14	6(0.9)/6(0.8)/6(0.6)	6(0.6)	6(0.6)	6(4.6)/6(5.5)	6(1.1)/6(1.6)	6(0.7)	6(0.6)
msnr	p=30	6(0.6)/6(0.4)/6(0.7)	6(0.7)	6(0.7)	6(11.2)/6(12.8)	6(2.7)/6(1.5)	6(0.9)	6(2)
msnr	p=60	6(0.3)/6(0.2)/6(0.5)	-	6(0.6)	6(16)/6(19.1)	6(5.6)/6(1.3)	6(1.4)	6(1.9)
	p=180	6(10.1)/6(0.1)/6(0.5)	-	6(0.7)	6(22.3)/6(31.6)	6(23.9)/6(2)	6(2.1)	6(2.5)
	p=14	5.7(4.8)/5.6(4.5)/5.1(1.6)	5.1(1.4)	5.1(1.9)	5.7(4.3)/5.7(5.1)	5.4(1.6)/5.5(3.7)	5.3(2.7)	5.4(3.2)
lsnr	p=30	3.6(5.3)/2.4(2.2)/3.9(2.4)	3.9(1.9)	3.5(2.8)	4.5(8)/4.4(8.9)	5(4.7)/4.3(6.5)	4.2(5.3)	3.9(6.1)
ISIII.	p=60	2.3(2.4)/1(0.3)/3.1(2.1)	-	2.5(1.8)	3.8(9.8)/3.7(10.9)	5(9)/3.7(8.1)	3.7(7)	3.3(7.8)
	p=180	1.7(14.9)/0.4(0.1)/1.4(1.1)	-	0.9(0.8)	2.4(9.8)/2.4(12.9)	4.5(35.8)/2.3(11)	2.3(9.3)	2.1(9.1)

Table S16: The performance of BOSS compared to other methods, Sparse-Ex2, ρ =0.5, n=2000

$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $			BOSS	BS	FS	LASSO	Gamma LASSO	SparseNet	rLASSO
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			C_p -hdf/AICc-hdf/CV	CV	CV	AICc/CV	AICc/CV	CV	CV
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				(% worse	than the best poss	sible BOSS		
$\begin{array}{ c c c c c c c }\hline hsnr & p=60 & 2/2/23 & - & 23 & 124/120 & 28/20 & 14 & 15 \\ p=180 & 1/1/21 & - & 21 & 174/171 & 46/20 & 14 & 15 \\ \hline \\ hsnr & p=30 & 4/3/23 & 22 & 23 & 85/83 & 25/20 & 12 & 16 \\ p=30 & 4/3/23 & 22 & 23 & 85/83 & 25/20 & 12 & 16 \\ p=60 & 2/2/23 & - & 23 & 125/120 & 39/22 & 14 & 15 \\ p=180 & 1/1/21 & - & 21 & 174/171 & 77/23 & 13 & 15 \\ \hline \\ hsnr & p=60 & 8/8/26 & - & 23 & 124/120 & 72/28 & 14 & 15 \\ p=60 & 8/8/26 & - & 23 & 124/120 & 72/28 & 14 & 15 \\ p=60 & 8/8/26 & - & 23 & 124/120 & 72/28 & 14 & 15 \\ p=60 & 8/8/26 & - & 23 & 124/120 & 72/28 & 14 & 15 \\ p=180 & 10/9/24 & - & 21 & 175/170 & 163/29 & 12 & 16 \\ \hline \\ hsnr & p=60 & 1/1/0.84 & 0.85 & 0.84 & 0.56/0.56 & 0.86/0.87 & 0.92 & 0.89 \\ p=60 & 1/1/0.84 & 0.85 & 0.84 & 0.37/0.37 & 0.69/0.84 & 0.89 & 0.89 \\ p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.69/0.84 & 0.89 & 0.88 \\ \hline \\ hsnr & p=60 & 1/1/0.84 & 0.85 & 0.84 & 0.37/0.37 & 0.69/0.84 & 0.89 & 0.88 \\ \hline \\ hsnr & p=60 & 1/1/0.84 & 0.85 & 0.84 & 0.37/0.37 & 0.69/0.84 & 0.89 & 0.88 \\ \hline \\ hsnr & p=60 & 1/1/0.84 & 0.85 & 0.84 & 0.37/0.37 & 0.57/0.82 & 0.89 & 0.88 \\ \hline \\ hsnr & p=60 & 1/1/0.84 & 0.85 & 0.84 & 0.37/0.37 & 0.57/0.82 & 0.89 & 0.88 \\ \hline \\ hsnr & p=60 & 1/1/0.85 & - & 0.83 & 0.45/0.46 & 0.73/0.83 & 0.89 & 0.88 \\ \hline \\ hsnr & p=60 & 1/1/0.85 & - & 0.84 & 0.37/0.37 & 0.57/0.82 & 0.89 & 0.88 \\ \hline \\ hsnr & p=60 & 1/1/0.85 & - & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ \hline \\ hsnr & p=60 & 1/1/0.85 & - & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ \hline \\ hsnr & p=60 & 1/1/0.85 & - & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ \hline \\ hsnr & p=60 & 1/1/0.85 & - & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ \hline \\ hsnr & p=60 & 1/1/0.85 & - & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ \hline \\ hsnr & p=60 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(18.1)/6(1.7.) & 6(0.2)/6(2.4) & 6(0.1) & 6(0.5) \\ \hline \\ hsnr & p=60 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(18.1)/6(1.7.) & 6(3.8)/6(2.1) & 6(0.5) \\ \hline \\ hsnr & p=60 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(18.1)/6(1.7.) & 6(3.8)/6(2.1) & 6(0.5) \\ \hline \\ hsnr & p=60 & 6(0)/6(0)/6(0.$		p=14	7/7/18	19	18	48/47	14/18	13	15
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	١,	p=30	4/3/23	22	23	86/83	20/18	12	16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr	p=60		-	23			14	15
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	1/1/21	-	21	174/171	46/20	14	15
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	7/7/18			49/48	16/19		14
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=30		22	23	85/83	25/20	12	16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	msnr	p=60	2/2/23	-	23	125/120	39/22	14	15
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	1/1/21	-	21	174/171	77/23	13	15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	12/12/23	19	18	50/48	21/23	13	14
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	١,	p=30	9/8/27	22	23	85/83	40/25		16
$\begin{array}{ c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	Isnr	p=60	8/8/26	-	23	124/120	72/28	14	15
$\begin{array}{ c c c c c c c c } & p=14 & 1/1/0.91 & 0.9 & 0.91 & 0.72/0.72 & 0.94/0.91 & 0.94 & 0.93 \\ p=30 & 1/1/0.84 & 0.85 & 0.84 & 0.56/0.56 & 0.86/0.87 & 0.92 & 0.89 \\ p=60 & 1/1/0.83 & - & 0.83 & 0.45/0.46 & 0.79/0.85 & 0.89 & 0.89 \\ p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.69/0.84 & 0.89 & 0.88 \\ \hline & p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.69/0.84 & 0.89 & 0.88 \\ \hline & p=30 & 1/1/0.84 & 0.85 & 0.84 & 0.56/0.56 & 0.83/0.86 & 0.92 & 0.89 \\ p=60 & 1/1/0.83 & - & 0.83 & 0.45/0.46 & 0.73/0.83 & 0.89 & 0.88 \\ \hline & p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.57/0.82 & 0.89 & 0.88 \\ \hline & p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.57/0.82 & 0.89 & 0.88 \\ \hline & p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.57/0.82 & 0.89 & 0.88 \\ \hline & p=180 & 1/1/0.85 & 0.89 & 0.88 & 0.58/0.59 & 0.77/0.87 & 0.96 & 0.93 \\ \hline & p=30 & 1/1/0.85 & 0.89 & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ \hline & p=60 & 1/1/0.85 & - & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ \hline & p=180 & 0.99/1/0.88 & - & 0.9 & 0.4/0.4 & 0.41/0.85 & 0.97 & 0.94 \\ \hline & & & & & & & & & & & & & & & & & &$		p=180	10/9/24	-	21	175/170	163/29	12	16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						Relative efficiency	7		
$ \begin{array}{ c c c c c c c c } \hline hsnr & p=60 & 1/1/0.83 & - & 0.83 & 0.45/0.46 & 0.79/0.85 & 0.89 & 0.89 \\ p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.69/0.84 & 0.89 & 0.88 \\ \hline & p=14 & 1/1/0.91 & 0.9 & 0.91 & 0.72/0.72 & 0.92/0.89 & 0.94 & 0.93 \\ p=30 & 1/1/0.84 & 0.85 & 0.84 & 0.56/0.56 & 0.83/0.86 & 0.92 & 0.89 \\ p=60 & 1/1/0.83 & - & 0.83 & 0.45/0.46 & 0.73/0.83 & 0.89 & 0.88 \\ p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.57/0.82 & 0.89 & 0.88 \\ \hline \\ & & p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.57/0.82 & 0.89 & 0.88 \\ \hline \\ & & & p=30 & 1/1/0.85 & 0.89 & 0.88 & 0.58/0.59 & 0.77/0.87 & 0.96 & 0.93 \\ p=30 & 1/1/0.85 & - & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ p=180 & 0.99/1/0.88 & - & 0.9 & 0.4/0.4 & 0.41/0.85 & 0.97 & 0.94 \\ \hline \\ & & & & & & & & & & & & & & & & &$		p=14	1/1/0.91	0.9	0.91	0.72/0.72	0.94/0.91	0.94	0.93
$\begin{array}{ c c c c c c c c } \hline & p=00 & 1/1/0.85 & - & 0.85 & 0.45/0.46 & 0.79/0.85 & 0.89 & 0.88 \\ \hline & p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.69/0.84 & 0.89 & 0.88 \\ \hline & p=14 & 1/1/0.91 & 0.9 & 0.91 & 0.72/0.72 & 0.92/0.89 & 0.94 & 0.93 \\ \hline & p=30 & 1/1/0.84 & 0.85 & 0.84 & 0.56/0.56 & 0.83/0.86 & 0.92 & 0.89 \\ \hline & p=60 & 1/1/0.83 & - & 0.83 & 0.45/0.46 & 0.73/0.83 & 0.89 & 0.88 \\ \hline & p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.57/0.82 & 0.89 & 0.88 \\ \hline & p=180 & 1/1/0.85 & 0.89 & 0.88 & 0.58/0.59 & 0.77/0.87 & 0.96 & 0.93 \\ \hline & lsnr & p=60 & 1/1/0.85 & - & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ \hline & p=180 & 0.99/1/0.88 & - & 0.9 & 0.4/0.4 & 0.41/0.85 & 0.97 & 0.94 \\ \hline & & & & & & & & & & & & & & & & & &$	_	p=30	1/1/0.84	0.85	0.84	0.56/0.56	0.86/0.87	0.92	0.89
$\begin{array}{ c c c c c c c } & p=14 & 1/1/0.91 & 0.9 & 0.91 & 0.72/0.72 & 0.92/0.89 & 0.94 & 0.93 \\ p=30 & 1/1/0.84 & 0.85 & 0.84 & 0.56/0.56 & 0.83/0.86 & 0.92 & 0.89 \\ p=60 & 1/1/0.83 & - & 0.83 & 0.45/0.46 & 0.73/0.83 & 0.89 & 0.88 \\ p=180 & 1/1/0.84 & - & 0.84 & 0.37/0.37 & 0.57/0.82 & 0.89 & 0.88 \\ \hline & p=180 & 1/1/0.85 & 0.89 & 0.88 & 0.58/0.59 & 0.77/0.87 & 0.96 & 0.93 \\ lsnr & p=30 & 1/1/0.85 & 0.89 & 0.88 & 0.58/0.59 & 0.77/0.87 & 0.96 & 0.93 \\ p=180 & 0.99/1/0.85 & - & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ p=180 & 0.99/1/0.88 & - & 0.9 & 0.4/0.4 & 0.41/0.85 & 0.97 & 0.94 \\ \hline & & & & & & & & & & & & & & & & & &$	hsnr	p=60	1/1/0.83	-	0.83	0.45/0.46	0.79/0.85	0.89	0.89
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	1/1/0.84	-	0.84	0.37/0.37	0.69/0.84	0.89	0.88
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	1/1/0.91	0.9	0.91	0.72/0.72	0.92/0.89	0.94	0.93
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=30	1/1/0.84	0.85	0.84	0.56/0.56	0.83/0.86	0.92	0.89
$ \begin{vmatrix} p=14 & 1/1/0.91 & 0.94 & 0.95 & 0.75/0.76 & 0.92/0.91 & 0.99 & 0.98 \\ p=30 & 1/1/0.85 & 0.89 & 0.88 & 0.58/0.59 & 0.77/0.87 & 0.96 & 0.93 \\ p=60 & 1/1/0.85 & - & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ p=180 & 0.99/1/0.88 & - & 0.9 & 0.4/0.4 & 0.41/0.85 & 0.97 & 0.94 \\ \hline \\ $	msnr	p=60	1/1/0.83	-	0.83	0.45/0.46	0.73/0.83	0.89	0.88
$ \begin{vmatrix} p = 30 & 1/1/0.85 & 0.89 & 0.88 & 0.58/0.59 & 0.77/0.87 & 0.96 & 0.93 \\ p = 60 & 1/1/0.85 & - & 0.88 & 0.48/0.49 & 0.63/0.84 & 0.95 & 0.93 \\ p = 180 & 0.99/1/0.88 & - & 0.9 & 0.4/0.4 & 0.41/0.85 & 0.97 & 0.94 \\ \hline \\ & & & & & & & & & & & & & & & & $		p=180	1/1/0.84	-	0.84	0.37/0.37	0.57/0.82	0.89	0.88
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	1/1/0.91	0.94	0.95	0.75/0.76	0.92/0.91	0.99	0.98
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	١,	p=30	1/1/0.85	0.89	0.88	0.58/0.59	0.77/0.87	0.96	0.93
$ \begin{array}{ c c c c c c c c c } \hline & Sparsistency (number of extra variables) \\ \hline & p=14 & 6(0.3)/6(0.3)/6(0.6) & 6(0.7) & 6(0.6) & 6(4.7)/6(5.5) & 6(1)/6(1.4) & 6(0.7) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(10.9)/6(11.3) & 6(2.1)/6(1.9) & 6(0.9) & 6(0.5) \\ p=60 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(18.1)/6(17.7) & 6(3.8)/6(2.1) & 6(1.4) & 6(0.4) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.3) & 6(32.2)/6(29.7) & 6(9.2)/6(2.4) & 6(2.1) & 6(0.3) \\ \hline & p=14 & 6(0.3)/6(0.3)/6(0.6) & 6(0.7) & 6(0.6) & 6(4.8)/6(5.5) & 6(1)/6(1.5) & 6(0.6) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(11)/6(11.3) & 6(2.3)/6(1.7) & 6(0.9) & 6(0.5) \\ \hline & msnr & p=60 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(18.1)/6(17.7) & 6(4.6)/6(1.8) & 6(1.4) & 6(0.4) \\ \hline \end{array}$	Isnr	p=60	1/1/0.85	-	0.88	0.48/0.49	0.63/0.84	0.95	0.93
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	0.99/1/0.88	-	0.9	0.4/0.4	0.41/0.85	0.97	0.94
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Sı	parsisten	cy (number of exti	ra variables)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	6(0.3)/6(0.3)/6(0.6)	6(0.7)	6(0.6)	6(4.7)/6(5.5)	6(1)/6(1.4)	6(0.7)	6(0.5)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(10.9)/6(11.3)	6(2.1)/6(1.9)	6(0.9)	6(0.5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(18.1)/6(17.7)	6(3.8)/6(2.1)	6(1.4)	6(0.4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	6(0)/6(0)/6(0.3)	-	6(0.3)	6(32.2)/6(29.7)	6(9.2)/6(2.4)	6(2.1)	6(0.3)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	6(0.3)/6(0.3)/6(0.6)	6(0.7)	6(0.6)	6(4.8)/6(5.5)	6(1)/6(1.5)	6(0.6)	6(0.5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(11)/6(11.3)	6(2.3)/6(1.7)	6(0.9)	6(0.5)
	msnr	p=60	6(0)/6(0)/6(0.5)	-		6(18.1)/6(17.7)	6(4.6)/6(1.8)	6(1.4)	6(0.4)
p-100 0(0)/0(0)/0(0.3) - 0(0.3) 0(32.3)/0(29.1) 0(13.4)/0(1.8) 0(2) 0(0.3)		p=180	6(0)/6(0)/6(0.3)	-	6(0.3)	6(32.3)/6(29.7)	6(13.4)/6(1.8)	$\hat{6}(2)$	6(0.3)
		p=14	6(0.6)/6(0.5)/6(0.6)	6(0.7)	6(0.6)	6(4.8)/6(5.5)	6(1.1)/6(1.5)	6(0.6)	6(0.5)
		p=30							6(0.5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lsnr	p=60		. ,	6(0.5)				. ,
p=180 6(0.1)/6(0.1)/6(0.3) - 6(0.3) - 6(32.5)/6(29.7) - 6(21.7)/6(1.1) - 6(1.2) - 6(0.4)		p=180	6(0.1)/6(0.1)/6(0.3)	-	6(0.3)	6(32.5)/6(29.7)	6(21.7)/6(1.1)	6(1.2)	6(0.4)

Table S17: The performance of BOSS compared to other methods, Sparse-Ex2, ρ =0.9, n=200

		BOSS C_n -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
 					the best possible B			
	p=14	18/15/25	17	23	53/51	20/27	14	18
	p=30	12/9/42	9	53	91/89	18/18	1	40
hsnr	p=60	9/6/49	-	69	131/126	16/12	-6	48
	p=180	22/5/75	-	111	138/120	-7/-16	-30	42
	p=14	25/23/29	3	24	35/34	10/16	3	21
	p=30	23/20/31	-15	36	50/48	-1/2	-17	34
msnr	p=60	21/18/30	-	48	65/61	-7/-7	-26	46
	p=180	23/22/20	-	64	48/35	-16/-1	-24	32
	p=14	40/41/31	32	50	41/40	38/39	39	43
lomm	p=30	42/42/28	28	61	53/53	44/51	46	56
lsnr	p=60	36/35/25	-	50	45/45	52/47	45	48
	p=180	25/9/11	-	15	10/11	59/12	12	13
				Rela	ative efficiency			
	p=14	0.97/0.99/0.91	0.97	0.93	0.75/0.75	0.95/0.89	1	0.97
hsnr	p=30	0.9/0.92/0.71	0.93	0.66	0.53/0.53	0.86/0.85	1	0.72
nsnr	p=60	0.87/0.89/0.63	-	0.56	0.41/0.42	0.81/0.84	1	0.64
	p=180	0.58/0.67/0.4	-	0.33	0.3/0.32	0.76/0.84	1	0.49
	p=14	0.82/0.83/0.79	0.99	0.83	0.76/0.77	0.94/0.88	1	0.85
	p=30	0.68/0.69/0.63	0.98	0.61	0.55/0.56	0.84/0.82	1	0.62
msnr	p=60	0.61/0.62/0.57	-	0.5	0.45/0.46	0.79/0.79	1	0.51
	p=180	0.62/0.62/0.63	-	0.46	0.51/0.56	0.9/0.76	1	0.57
	p=14	0.94/0.93/1	0.99	0.87	0.92/0.93	0.95/0.94	0.94	0.92
lsnr	p=30	0.9/0.9/1	1	0.8	0.83/0.84	0.89/0.85	0.88	0.82
15111	p=60	0.92/0.93/1	-	0.83	0.86/0.86	0.83/0.85	0.87	0.85
	p=180	0.87/1/0.98	-	0.95	0.98/0.98	0.68/0.97	0.97	0.96
			Spa	rsistency (r	umber of extra vari	ables)		
	p=14	6(0.9)/6(0.7)/6(0.7)	6(0.6)	6(1)	6(6.5)/6(7.2)	6(1.3)/6(2.2)	6(0.7)	6(0.8)
hsnr	p=30	6(1.1)/6(0.9)/6(2.5)	6(0.7)	6(3.7)	6(18.3)/6(19.9)	6(2.9)/6(2.5)	6(1.1)	6(5.7)
nsnr	p=60	6(1.7)/6(1.6)/6(3.3)	-	6(4.9)	6(31.8)/6(36.4)	6(4.2)/6(2.7)	6(1.8)	6(7.5)
	p=180	6(14.9)/6(6.8)/6(11.8)	-	5.9(19.7)	6(51.3)/6(76.1)	6(8.6)/6(4.1)	6(3.2)	6(17.5)
	p=14	6(3)/6(2.7)/6(1.2)	6(0.6)	6(2.4)	6(6.5)/6(7.2)	6(1.5)/6(3)	6(1.3)	6(2.4)
msnr	p=30	6(5.1)/6(4)/6(3.5)	6(0.7)	6(7)	6(18.2)/6(19.9)	6(3.6)/6(5.3)	6(3.4)	6(9.8)
1115111	p=60	6(6.1)/6(4.7)/6(5.1)	-	6(10.3)	6(31.8)/6(36.3)	6(6.5)/6(7.7)	6(6)	6(16.8)
	p=180	5.9(38.2)/5.5(14.8)/5.8(18.2)	-	4.2(16.8)	5.8(49.6)/6(75.8)	6(23.5)/5.9(36.2)	5.9(31.7)	6(46.5)
	p=14	5.7(4.9)/5.6(4.6)/5.6(2.7)	5.2(1.2)	5.3(4)	5.8(6.3)/5.8(6.9)	5.4(3.7)/5.7(5.9)	5.4(4.7)	5.7(5.6)
lsnr	p=30	4(7.5)/2.9(4.4)/4.6(6.6)	4.1(1.7)	2.5(4.5)	2.7(8.3)/2.8(9.2)	4.4(9.7)/3.3(9.4)	3.4(8.7)	2.6(7.6)
ISIII	p=60	2.6(7.1)/1.4(2.5)/3.8(9.8)	-	0.8(1.7)	0.8(4.4)/0.9(5.7)	3.7(16)/1.3(7.2)	1.8(9.1)	0.9(4.9)
	p=180	1.2(20.1)/0.3(0.5)/0.7(2.7)	-	0.1(0.5)	0.3(4.4)/0.3(4.6)	2(35.8)/0.3(4.5)	0.3(4.9)	0.3(3.5)

Table S18: The performance of BOSS compared to other methods, Sparse-Ex2, ρ =0.9, n=2000

		BOSS C _n -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
 					than the best poss		CV	CV
_	p=14	7/7/18	19	18	56/55	22/28	14	15
	p=30	4/3/23	22	23	118/116	29/29	14	17
hsnr	p=60	2/2/23	-	23	186/182	37/33	15	15
	p=00 p=180	$\frac{2/2/23}{1/1/21}$	_	21	299/294	51/41	15	13
<u> </u>	p=14	8/8/18	19	18	56/55	23/29	14	14
	p=30	4/4/24	22	23	118/115	31/30	13	17
msnr	p=60	3/3/23	_	23	185/182	42/36	16	15
	p=180	3/3/22	-	21	298/293	61/43	14	13
İ	p=14	36/36/42	15	19	52/50	22/30	12	23
	p=30	37/36/43	12	32	100/97	28/26	7	40
lsnr	p=60	39/38/47	-	47	141/138	35/22	1	61
	p=180	38/38/37	-	72	178/175	45/16	-12	100
					Relative efficiency	У		
	p=14	1/1/0.91	0.9	0.91	0.68/0.69	0.88/0.84	0.94	0.93
	p=30	1/1/0.84	0.85	0.84	0.47/0.48	0.8/0.8	0.9	0.88
hsnr	p=60	1/1/0.83	-	0.83	0.35/0.36	0.74/0.76	0.88	0.88
	p=180	1/1/0.84	-	0.84	0.25/0.26	0.67/0.72	0.88	0.89
	p=14	1/1/0.91	0.91	0.92	0.69/0.7	0.88/0.83	0.94	0.94
	p=30	1/1/0.84	0.85	0.84	0.48/0.48	0.79/0.8	0.91	0.89
msnr	p=60	1/1/0.84	-	0.84	0.36/0.36	0.72/0.76	0.88	0.9
	p=180	1/1/0.84	-	0.85	0.26/0.26	0.64/0.72	0.9	0.91
	p=14	0.83/0.83/0.79	0.98	0.94	0.74/0.75	0.92/0.87	1	0.91
1	p=30	0.79/0.79/0.75	0.96	0.81	0.54/0.54	0.84/0.85	1	0.76
lsnr	p=60	0.72/0.73/0.68	-	0.69	0.42/0.42	0.75/0.83	1	0.63
	p=180	0.64/0.64/0.64	-	0.51	0.32/0.32	0.61/0.76	1	0.44
			S_1	parsisten	cy (number of extr	ra variables)		
	p=14	6(0.3)/6(0.3)/6(0.6)	6(0.7)	6(0.6)	6(6.6)/6(7.2)	6(1.5)/6(2.1)	6(0.7)	6(0.5)
1	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(17.8)/6(18.9)	6(2.7)/6(2.6)	6(0.9)	6(0.5)
hsnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(34.2)/6(35.3)	6(4.5)/6(2.9)	6(1.4)	6(0.4)
	p=180	6(0)/6(0)/6(0.3)	-	6(0.3)	6(72.8)/6(73.6)	6(8.7)/6(3.9)	6(2.2)	6(0.2)
	p=14	6(0.3)/6(0.3)/6(0.6)	6(0.7)	6(0.6)	6(6.6)/6(7.2)	6(1.5)/6(2.2)	6(0.7)	6(0.5)
	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(17.8)/6(18.8)	6(2.8)/6(2.3)	6(0.9)	6(0.5)
msnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(34.2)/6(35.2)	6(4.8)/6(2.6)	6(1.4)	6(0.4)
	p=180	6(0)/6(0)/6(0.3)	-	6(0.3)	6(72.8)/6(73.6)	6(10.5)/6(3.3)	6(2.1)	6(0.2)
	p=14	6(2.7)/6(2.6)/6(0.6)	6(0.7)	6(0.9)	6(6.6)/6(7.2)	6(1.5)/6(2.5)	6(0.8)	6(1.3)
1	p=30	6(2.1)/6(2)/6(0.8)	6(0.6)	6(1.5)	6(17.8)/6(18.8)	6(3.2)/6(2.7)	6(1.4)	6(2.5)
lsnr	p=60	6(1)/6(0.9)/6(0.9)	-	6(2.2)	6(34.2)/6(35.1)	6(6.3)/6(3.7)	6(2.6)	6(3.9)
	p=180	6(1.4)/6(1.4)/6(1.8)	-	6(4.6)	6(72.3)/6(73.5)	6(17.1)/6(8.4)	6(7.1)	6(10.4)

Table S19: The performance of BOSS compared to other methods, Sparse-Ex3, ρ =0, n=200

		BOSS C_n -hdf/AICc-hdf/CV	BS CV	FS CV	$\begin{array}{c} {\rm LASSO} \\ {\rm AICc/CV} \end{array}$	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
					an the best possible I	,		
	p=14	8/6/20	21	20	44/43	17/20	15	16
	p=30	5/3/24	25	25	69/67	32/23	15	19
hsnr	p=60	4/2/21	-	23	97/96	52/24	16	19
	p=180	34/1/19	-	21	133/133	137/28	19	16
	p=14	17/14/20	21	20	44/43	24/24	16	17
	p=30	18/13/24	25	25	69/67	48/27	16	21
msnr	p=60	14/9/21	-	23	97/95	84/29	16	22
	p=180	50/11/20	-	22	132/133	224/33	19	29
	p=14	22/23/26	26	26	8/8	13/15	17	15
,	p=30	29/32/26	26	25	1/1	14/8	8	6
lsnr	p=60	27/29/22	-	22	0/1	24/6	6	6
	p=180	30/16/14	-	14	-2/1	84/4	3	4
				R	telative efficiency			
	p=14	0.98/1/0.89	0.88	0.89	0.74/0.75	0.91/0.88	0.93	0.91
1	p=30	0.98/1/0.83	0.82	0.82	0.61/0.61	0.78/0.84	0.89	0.86
hsnr	p=60	0.99/1/0.85	-	0.83	0.52/0.52	0.67/0.83	0.88	0.86
	p=180	0.75/1/0.85	-	0.84	0.43/0.43	0.43/0.79	0.85	0.87
	p=14	0.98/1/0.95	0.95	0.96	0.8/0.8	0.92/0.92	0.99	0.98
	p=30	0.96/1/0.92	0.91	0.91	0.67/0.68	0.76/0.89	0.98	0.94
msnr	p=60	0.96/1/0.9	-	0.89	0.56/0.56	0.59/0.85	0.94	0.9
	p=180	0.74/1/0.92	-	0.91	0.48/0.47	0.34/0.83	0.93	0.86
	p=14	0.89/0.88/0.86	0.86	0.86	1/1	0.95/0.94	0.92	0.94
lsnr	p=30	0.78/0.76/0.8	0.8	0.81	1/1	0.88/0.93	0.93	0.95
ISIII	p=60	0.79/0.78/0.82	-	0.82	1/1	0.81/0.95	0.94	0.95
	p=180	0.76/0.85/0.86	-	0.86	1/0.98	0.53/0.94	0.95	0.95
			Sp	arsistency	(number of extra var	iables)		
	p=14	6(0.3)/6(0.2)/6(0.6)	6(0.7)	6(0.6)	6(3.7)/6(4.5)	6(1)/6(1.3)	6(0.6)	6(0.6)
hsnr	p=30	6(0.1)/6(0)/6(0.6)	6(0.7)	6(0.7)	6(7.4)/6(8.2)	6(2.4)/6(1.7)	6(1)	6(0.7)
nsnr	p=60	6(0.1)/6(0)/6(0.5)	-	6(0.5)	6(11.3)/6(13.1)	6(4.8)/6(1.7)	6(1.5)	6(0.7)
	p=180	6(8.8)/6(0)/6(0.4)	-	6(0.4)	6(16.5)/6(22.7)	6(18)/6(2.5)	6(2.7)	6(0.6)
	p=14	6(0.8)/6(0.6)/6(0.6)	6(0.7)	6(0.6)	6(3.7)/6(4.5)	6(1.2)/6(1.4)	6(0.6)	6(0.6)
msnr	p=30	6(0.5)/6(0.3)/6(0.6)	6(0.7)	6(0.7)	6(7.4)/6(8.2)	6(2.9)/6(1.6)	6(0.8)	6(0.8)
msm	p=60	6(0.3)/6(0.1)/6(0.5)	-	6(0.5)	6(11.4)/6(13.1)	6(6.4)/6(1.5)	6(1.1)	6(0.9)
	p=180	6(9.4)/6(0.1)/6(0.4)	-	6(0.4)	6(16.5)/6(22.8)	6(27.4)/6(2)	6(1.7)	6(1.1)
	p=14	5.4(4.4)/5.2(4.1)/4.7(1.8)	4.7(1.7)	4.7(1.7)	5.6(3.3)/5.6(4)	5.1(1.5)/5.3(3)	5.1(2.8)	5(2.1)
lsnr	p=30	4(4.4)/3.1(1.9)/3.7(2.1)	3.6(2.1)	3.7(2)	5.3(6.4)/5.4(7)	4.9(3.8)/4.8(4.9)	4.8(5.3)	4.6(3.6
18111	p=60	2.2(1.8)/1.2(0.2)/2.6(1.4)	-	2.6(1.3)	4.6(8.6)/4.6(9.6)	4.9(8.5)/4.1(6.6)	4.2(7.2)	3.9(5.5
	p=180	1.6(14.2)/0.5(0.1)/1.3(0.6)	-	1.3(0.6)	3.4(10.4)/3.5(13.1)	4.6(36.9)/3(9)	3.2(10.5)	2.9(7.7)

Table S20: The performance of BOSS compared to other methods, Sparse-Ex3, ρ =0, n=2000

			BOSS	BS	FS	LASSO	Gamma LASSO	SparseNet	rLASSO
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			C_p -hdf/AICc-hdf/CV	CV	CV	AICc/CV	AICc/CV	CV	CV
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					% worse	than the best poss	sible BOSS		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		p=14	6/6/17	17	17	41/41	12/15	11	13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=30	3/3/22	22	23	72/69	20/18	13	16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr	p=60	2/2/24	-	23	97/93	29/19	14	17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	1/1/21	-	21	132/129	53/19	13	17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	6/6/17			41/41	14/17	11	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		p=30	3/3/22	22	23	72/69	26/20	13	17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	msnr	p=60	2/2/24	-	23	97/93	43/21	14	18
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	1/1/21	-	21	132/129	97/22	13	17
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	9/9/17		17	42/41		12	13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	١,	p=30	5/5/22	22	23	72/69	45/25	13	16
$\begin{array}{ c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	Isnr	p=60	5/4/24	-	23	97/93	82/26	15	18
$\begin{array}{ c c c c c c c } & p=14 & 1/1/0.91 & 0.91 & 0.91 & 0.76/0.76 & 0.95/0.93 & 0.96 & 0.94 \\ p=30 & 1/1/0.84 & 0.84 & 0.84 & 0.6/0.61 & 0.86/0.87 & 0.91 & 0.88 \\ p=60 & 1/1/0.83 & - & 0.83 & 0.52/0.53 & 0.79/0.86 & 0.89 & 0.87 \\ p=180 & 1/1/0.83 & - & 0.84 & 0.44/0.44 & 0.66/0.85 & 0.89 & 0.86 \\ \hline \\ p=14 & 1/1/0.91 & 0.91 & 0.91 & 0.75/0.75 & 0.93/0.91 & 0.96 & 0.94 \\ p=30 & 1/1/0.84 & 0.84 & 0.84 & 0.6/0.61 & 0.81/0.86 & 0.91 & 0.88 \\ p=60 & 1/1/0.83 & - & 0.83 & 0.52/0.53 & 0.71/0.84 & 0.89 & 0.87 \\ p=180 & 1/1/0.83 & - & 0.83 & 0.52/0.53 & 0.71/0.84 & 0.89 & 0.87 \\ p=180 & 1/1/0.83 & - & 0.84 & 0.44/0.44 & 0.51/0.83 & 0.89 & 0.86 \\ \hline \\ p=14 & 1/1/0.93 & 0.93 & 0.93 & 0.77/0.77 & 0.9/0.9 & 0.97 & 0.96 \\ p=30 & 0.99/1/0.86 & 0.86 & 0.85 & 0.61/0.62 & 0.72/0.84 & 0.93 & 0.9 \\ p=60 & 1/1/0.84 & - & 0.85 & 0.53/0.54 & 0.57/0.83 & 0.91 & 0.89 \\ p=180 & 0.99/1/0.86 & - & 0.86 & 0.45/0.46 & 0.36/0.82 & 0.92 & 0.89 \\ \hline \\ bsnr & p=60 & 1/1/0.84 & - & 0.85 & 0.53/0.54 & 0.57/0.83 & 0.91 & 0.89 \\ p=180 & 0.99/1/0.86 & - & 0.86 & 0.45/0.46 & 0.36/0.82 & 0.92 & 0.89 \\ \hline \\ bsnr & p=60 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.8)/6(4.5) & 6(0.9)/6(1.3) & 6(0.6) & 6(0.5) \\ p=20 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.3)/6(8.5) & 6(2)/6(1.8) & 6(0.9) & 6(0.5) \\ p=180 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(13)/6(12.2) & 6(3.9)/6(2.1) & 6(1.5) & 6(0.5) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.5) & 6(13)/6(12.2) & 6(3.9)/6(1.8) & 6(0.9) & 6(0.5) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.5) & 6(13)/6(12.2) & 6(4.8)/6(1.8) & 6(1.4) & 6(0.6) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.5) & 6(13)/6(12.2) & 6(4.8)/6(1.8) & 6(1.4) & 6(0.6) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.5) & 6(13)/6(12.2) & 6(4.8)/6(1.8) & 6(1.4) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.3)/6(8.5) & 6(2.2)/6(1.8) & 6(0.5) & 6(0.5) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.5) & 6(13)/6(12.2) & 6(4.8)/6(1.8) & 6(1.4) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.3)/6(8.5) & 6(3)/6(1.6) & 6(0.5) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.5) & - &$		p=180	5/4/21	-	21	132/129	192/26	13	17
$\begin{array}{ c c c c c c } & p=30 & 1/1/0.84 & 0.84 & 0.84 & 0.6/0.61 & 0.86/0.87 & 0.91 & 0.88 \\ p=60 & 1/1/0.83 & - & 0.83 & 0.52/0.53 & 0.79/0.86 & 0.89 & 0.87 \\ p=180 & 1/1/0.83 & - & 0.84 & 0.44/0.44 & 0.66/0.85 & 0.89 & 0.86 \\ \hline & p=14 & 1/1/0.91 & 0.91 & 0.91 & 0.75/0.75 & 0.93/0.91 & 0.96 & 0.94 \\ p=30 & 1/1/0.84 & 0.84 & 0.84 & 0.6/0.61 & 0.81/0.86 & 0.91 & 0.88 \\ p=60 & 1/1/0.83 & - & 0.83 & 0.52/0.53 & 0.71/0.84 & 0.89 & 0.87 \\ p=180 & 1/1/0.83 & - & 0.84 & 0.44/0.44 & 0.51/0.83 & 0.89 & 0.86 \\ \hline & p=14 & 1/1/0.93 & 0.93 & 0.93 & 0.77/0.77 & 0.9/0.9 & 0.97 & 0.96 \\ p=30 & 0.99/1/0.86 & 0.86 & 0.85 & 0.61/0.62 & 0.72/0.84 & 0.93 & 0.9 \\ p=60 & 1/1/0.84 & - & 0.85 & 0.63/0.54 & 0.57/0.83 & 0.91 & 0.89 \\ p=180 & 0.99/1/0.86 & - & 0.86 & 0.45/0.46 & 0.36/0.82 & 0.92 & 0.89 \\ \hline & & & & & & & & & & & & & & & & & &$						Relative efficiency	У		
$\begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$		p=14	1/1/0.91	0.91	0.91	0.76/0.76	0.95/0.93	0.96	0.94
$\begin{array}{ c c c c c c c c c } \hline & p=100 & 1/1/0.83 & - & 0.84 & 0.44/0.44 & 0.66/0.85 & 0.89 & 0.86 \\ \hline & p=180 & 1/1/0.83 & - & 0.84 & 0.44/0.44 & 0.66/0.85 & 0.89 & 0.86 \\ \hline & p=30 & 1/1/0.84 & 0.84 & 0.84 & 0.6/0.61 & 0.81/0.86 & 0.91 & 0.88 \\ \hline & p=60 & 1/1/0.83 & - & 0.83 & 0.52/0.53 & 0.71/0.84 & 0.89 & 0.87 \\ \hline & p=180 & 1/1/0.83 & - & 0.84 & 0.44/0.44 & 0.51/0.83 & 0.89 & 0.86 \\ \hline & p=180 & 1/1/0.83 & - & 0.84 & 0.44/0.44 & 0.51/0.83 & 0.89 & 0.86 \\ \hline & p=30 & 0.99/1/0.86 & 0.86 & 0.85 & 0.61/0.62 & 0.72/0.84 & 0.93 & 0.9 \\ \hline & p=30 & 0.99/1/0.86 & 0.86 & 0.85 & 0.61/0.62 & 0.72/0.84 & 0.93 & 0.9 \\ \hline & p=60 & 1/1/0.84 & - & 0.85 & 0.53/0.54 & 0.57/0.83 & 0.91 & 0.89 \\ \hline & p=180 & 0.99/1/0.86 & - & 0.86 & 0.45/0.46 & 0.36/0.82 & 0.92 & 0.89 \\ \hline & & & & & & & & & & & & & & & & & &$		p=30	1/1/0.84	0.84	0.84	0.6/0.61	0.86/0.87	0.91	0.88
$\begin{array}{ c c c c c c c c } & p=14 & 1/1/0.91 & 0.91 & 0.91 & 0.75/0.75 & 0.93/0.91 & 0.96 & 0.94 \\ p=30 & 1/1/0.84 & 0.84 & 0.84 & 0.6/0.61 & 0.81/0.86 & 0.91 & 0.88 \\ p=60 & 1/1/0.83 & - & 0.83 & 0.52/0.53 & 0.71/0.84 & 0.89 & 0.87 \\ p=180 & 1/1/0.83 & - & 0.84 & 0.44/0.44 & 0.51/0.83 & 0.89 & 0.86 \\ \hline \\ p=180 & 1/1/0.83 & - & 0.84 & 0.44/0.44 & 0.51/0.83 & 0.89 & 0.86 \\ \hline \\ lsnr & p=30 & 0.99/1/0.86 & 0.86 & 0.85 & 0.61/0.62 & 0.72/0.84 & 0.93 & 0.9 \\ p=60 & 1/1/0.84 & - & 0.85 & 0.53/0.54 & 0.57/0.83 & 0.91 & 0.89 \\ p=180 & 0.99/1/0.86 & - & 0.86 & 0.45/0.46 & 0.36/0.82 & 0.92 & 0.89 \\ \hline \\ \\ p=180 & 0.99/1/0.86 & - & 0.86 & 0.45/0.46 & 0.36/0.82 & 0.92 & 0.89 \\ \hline \\ \\ lsnr & p=60 & 1/1/0.84 & - & 0.85 & 0.53/0.54 & 0.57/0.83 & 0.91 & 0.89 \\ p=180 & 0.99/1/0.86 & - & 0.86 & 0.45/0.46 & 0.36/0.82 & 0.92 & 0.89 \\ \hline \\ \\ \\ \\ p=180 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.8)/6(4.5) & 6(0.9)/6(1.3) & 6(0.6) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(8.3)/6(8.5) & 6(2)/6(1.8) & 6(0.9) & 6(0.5) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.3) & 6(21.7)/6(19.1) & 6(10.3)/6(2.4) & 6(2.1) & 6(0.4) \\ \hline \\ \\ \\ msnr & p=44 & 6(0.3)/6(0.3)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.9)/6(4.5) & 6(1)/6(1.3) & 6(0.6) & 6(0.5) \\ p=180 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(13)/6(12.2) & 6(3.9)/6(1.8) & 6(0.9) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.9)/6(4.5) & 6(1)/6(1.8) & 6(0.9) & 6(0.5) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.5) & 6(13)/6(12.2) & 6(4.8)/6(1.8) & 6(1.4) & 6(0.6) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.5) & 6(13)/6(1.2) & 6(4.8)/6(1.8) & 6(1.4) & 6(0.6) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.5) & 6(13)/6(1.2) & 6(4.8)/6(1.8) & 6(1.4) & 6(0.6) \\ p=180 & 6(0)/6(0)/6(0.6) & 6(0.6) & 6(0.6) & 6(0.8) & 6(3.9)/6(4.5) & 6(1.1)/6(1.4) & 6(0.5) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(8.3)/6(8.5) & 6(3)/6(1.6) & 6(0.5) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(8.3)/6(8.5) & 6(3)/6(1.5) & 6(1) & 6(0.5) \\ lsnr & p=60 & 6(0.1)/6(0.1)/6(0.5) & - & 6(0.5) & 6(1.32)/6(1.22) & 6$	hsnr	p=60	1/1/0.83	-	0.83	0.52/0.53	0.79/0.86	0.89	0.87
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	1/1/0.83	-	0.84	0.44/0.44	0.66/0.85	0.89	0.86
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	1/1/0.91	0.91	0.91	0.75/0.75	0.93/0.91	0.96	0.94
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=30	1/1/0.84	0.84	0.84	0.6/0.61	0.81/0.86	0.91	0.88
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	msnr	p=60	1/1/0.83	-	0.83	0.52/0.53	0.71/0.84	0.89	0.87
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	1/1/0.83	-	0.84	0.44/0.44	0.51/0.83	0.89	0.86
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	p=30	0.99/1/0.86	0.86	0.85	0.61/0.62	0.72/0.84	0.93	0.9
$\begin{array}{ c c c c c c c c } & Sparsistency (number of extra variables) \\ \hline & p=14 & 6(0.3)/6(0.3)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.8)/6(4.5) & 6(0.9)/6(1.3) & 6(0.6) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(8.3)/6(8.5) & 6(2)/6(1.8) & 6(0.9) & 6(0.5) \\ p=60 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(13)/6(12.2) & 6(3.9)/6(2.1) & 6(1.5) & 6(0.5) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.3) & 6(21.7)/6(19.1) & 6(10.3)/6(2.4) & 6(2.1) & 6(0.4) \\ \hline \\ msnr & p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.9)/6(4.5) & 6(1)/6(1.3) & 6(0.6) & 6(0.5) \\ p=30 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(13)/6(12.2) & 6(4.8)/6(1.8) & 6(0.9) & 6(0.5) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.3) & 6(21.6)/6(19.1) & 6(15.6)/6(1.8) & 6(1.4) & 6(0.6) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.3) & 6(21.6)/6(19.1) & 6(15.6)/6(1.8) & 6(1.8) & 6(0.4) \\ \hline \\ lsnr & p=60 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.9)/6(4.5) & 6(1.1)/6(1.4) & 6(0.5) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(8.3)/6(8.5) & 6(3)/6(1.6) & 6(0.7) & 6(0.5) \\ lsnr & p=60 & 6(0.1)/6(0.1)/6(0.5) & - & 6(0.5) & 6(13.2)/6(12.2) & 6(6.8)/6(1.5) & 6(1) & 6(0.6) \\ \hline \\ lsnr & p=60 & 6(0.1)/6(0.1)/6(0.5) & - & 6(0.5) & 6(13.2)/6(12.2) & 6(6.8)/6(1.5) & 6(1) & 6(0.6) \\ \hline \\ \end{tabular}$	Isnr	p=60		-		0.53/0.54	0.57/0.83		0.89
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	0.99/1/0.86	-	0.86	0.45/0.46	0.36/0.82	0.92	0.89
$\begin{array}{ c c c c c c c c } & p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(8.3)/6(8.5) & 6(2)/6(1.8) & 6(0.9) & 6(0.5) \\ p=60 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(13)/6(12.2) & 6(3.9)/6(2.1) & 6(1.5) & 6(0.5) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.3) & 6(21.7)/6(19.1) & 6(10.3)/6(2.4) & 6(2.1) & 6(0.4) \\ \hline \\ msnr & p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.9)/6(4.5) & 6(1)/6(1.3) & 6(0.6) & 6(0.5) \\ p=60 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(13)/6(12.2) & 6(4.8)/6(1.8) & 6(1.4) & 6(0.6) \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.3) & 6(21.6)/6(1.9) & 6(15.6)/6(1.8) & 6(1.8) & 6(0.4) \\ \hline \\ lsnr & p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.9)/6(4.5) & 6(1.1)/6(1.4) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(8.3)/6(8.5) & 6(3)/6(1.6) & 6(0.7) & 6(0.5) \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(8.3)/6(8.5) & 6(3)/6(1.6) & 6(0.7) & 6(0.5) \\ lsnr & p=60 & 6(0.1)/6(0.1)/6(0.5) & - & 6(0.5) & 6(13.2)/6(12.2) & 6(6.8)/6(1.5) & 6(1) & 6(0.6) \\ \hline \end{array}$				S_{I}	parsisten	cy (number of exti	ra variables)		
$\begin{array}{ c c c c c c c c } \hline hsnr & p=60 & 6(0)/6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(13)/6(12.2) & 6(3.9)/6(2.1) & 6(1.5) & 6(0.5) \\ \hline p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.3) & 6(21.7)/6(19.1) & 6(10.3)/6(2.4) & 6(2.1) & 6(0.4) \\ \hline \\ p=30 & 6(0.1)/6(0.1)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.9)/6(4.5) & 6(1)/6(1.3) & 6(0.6) & 6(0.5) \\ \hline \\ p=60 & 6(0)/6(0)/6(0.5) & - & 6(0.5) & 6(13)/6(12.2) & 6(4.8)/6(1.8) & 6(1.4) & 6(0.6) \\ \hline \\ p=180 & 6(0)/6(0)/6(0.3) & - & 6(0.3) & 6(21.6)/6(19.1) & 6(15.6)/6(1.8) & 6(1.8) & 6(0.4) \\ \hline \\ p=14 & 6(0.4)/6(0.4)/6(0.6) & 6(0.6) & 6(0.6) & 6(3.9)/6(4.5) & 6(1.1)/6(1.4) & 6(0.5) & 6(0.5) \\ \hline \\ lsnr & p=60 & 6(0.1)/6(0.1)/6(0.5) & - & 6(0.5) & 6(1.3)/6(1.2) & 6(6.8)/6(1.5) & 6(1) & 6(0.5) \\ \hline \\ lsnr & p=60 & 6(0.1)/6(0.1)/6(0.5) & - & 6(0.5) & 6(1.3)/6(1.2) & 6(6.8)/6(1.5) & 6(1) & 6(0.5) \\ \hline \\ lsnr & p=60 & 6(0.1)/6(0.1)/6(0.5) & - & 6(0.5) & 6(1.3)/6(1.2) & 6(6.8)/6(1.5) & 6(1) & 6(0.5) \\ \hline \end{array}$		p=14	6(0.3)/6(0.3)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.5)	6(0.9)/6(1.3)	6(0.6)	6(0.5)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(8.3)/6(8.5)	6(2)/6(1.8)	6(0.9)	6(0.5)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(13)/6(12.2)	6(3.9)/6(2.1)	6(1.5)	6(0.5)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	6(0)/6(0)/6(0.3)	-	6(0.3)	6(21.7)/6(19.1)	6(10.3)/6(2.4)	6(2.1)	6(0.4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	6(0.3)/6(0.3)/6(0.6)	6(0.6)	6(0.6)	6(3.9)/6(4.5)	6(1)/6(1.3)	6(0.6)	6(0.5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(8.3)/6(8.6)	6(2.2)/6(1.8)	6(0.9)	6(0.5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	msnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(13)/6(12.2)	6(4.8)/6(1.8)	6(1.4)	6(0.6)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	6(0)/6(0)/6(0.3)	-	6(0.3)	6(21.6)/6(19.1)	6(15.6)/6(1.8)	6(1.8)	6(0.4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	6(0.4)/6(0.4)/6(0.6)	6(0.6)	6(0.6)	6(3.9)/6(4.5)	6(1.1)/6(1.4)	6(0.5)	6(0.5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=30							6(0.5)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	lsnr	p=60		. ,	6(0.5)				
		p=180	6(0.1)/6(0)/6(0.3)	-	6(0.3)	6(21.9)/6(19.1)	6(23.7)/6(1)	6(1)	6(0.5)

Table S21: The performance of BOSS compared to other methods, Sparse-Ex3, ρ =0.5, n=200

		BOSS	BS	FS	LASSO	Gamma LASSO	SparseNet	rLASSO
		C_p -hdf/AICc-hdf/CV	CV	CV	AICc/CV	AICc/CV	CV	CV
			Ç	% worse th	an the best possible	e BOSS		
	p=14	7/6/18	19	18	40/39	15/18	14	15
١,	p=30	5/2/22	24	22	70/68	30/21	14	19
hsnr	p=60	3/1/22	-	23	93/92	51/22	16	19
	p=180	35/1/18	-	21	135/135	134/26	17	20
	p=14	15/13/18	19	18	40/39	20/21	15	17
	p=30	14/10/22	25	23	69/68	45/25	15	22
msnr	p=60	13/9/23	-	24	91/89	78/26	15	27
	p=180	48/11/20	-	23	132/133	218/31	18	43
	p=14	19/21/24	24	24	5/4	11/11	13	10
1	p=30	28/30/25	25	25	0/0	12/6	7	6
lsnr	p=60	23/25/21	-	21	-3/-3	22/3	3	2
	p=180	27/11/13	-	13	-3/-1	83/3	3	3
				R	telative efficiency			
	p=14	0.98/1/0.9	0.89	0.9	0.75/0.76	0.92/0.9	0.92	0.92
١,	p=30	0.98/1/0.84	0.82	0.84	0.6/0.61	0.79/0.85	0.9	0.86
hsnr	p=60	0.98/1/0.83	-	0.83	0.53/0.53	0.67/0.83	0.88	0.85
	p=180	0.75/1/0.85	-	0.84	0.43/0.43	0.43/0.8	0.86	0.84
	p=14	0.98/1/0.95	0.95	0.95	0.8/0.81	0.93/0.93	0.98	0.96
	p=30	0.97/1/0.9	0.88	0.89	0.65/0.66	0.76/0.88	0.96	0.9
msnr	p=60	0.97/1/0.88	-	0.88	0.57/0.57	0.61/0.86	0.94	0.86
	p=180	0.75/1/0.92	-	0.9	0.48/0.47	0.35/0.84	0.94	0.77
	p=14	0.88/0.86/0.84	0.84	0.84	0.99/1	0.94/0.94	0.93	0.95
lsnr	p=30	0.78/0.77/0.8	0.8	0.8	1/1	0.9/0.94	0.93	0.95
ISHI	p=60	0.79/0.78/0.8	-	0.8	1/1	0.79/0.94	0.94	0.95
	p=180	0.76/0.87/0.86	-	0.86	1/0.98	0.53/0.94	0.94	0.94
			S_{I}	arsistency	(number of extra v	variables)		
	p=14	6(0.4)/6(0.2)/6(0.6)	6(0.7)	6(0.6)	6(3.7)/6(4.5)	6(0.9)/6(1.3)	6(0.7)	6(0.6)
1	p=30	6(0.2)/6(0)/6(0.6)	6(0.7)	6(0.6)	6(7.9)/6(9)	6(2.4)/6(1.5)	6(1.1)	6(0.9)
hsnr	p=60	6(0.1)/6(0)/6(0.5)	-	6(0.5)	6(11.5)/6(13.3)	6(4.9)/6(1.6)	6(1.6)	6(0.8)
	p=180	6(9.6)/6(0)/6(0.3)	-	6(0.4)	6(16.6)/6(23.8)	6(18.1)/6(2.1)	6(2.4)	6(0.8)
	p=14	6(0.7)/6(0.6)/6(0.6)	6(0.7)	6(0.6)	6(3.7)/6(4.5)	6(1)/6(1.3)	6(0.6)	6(0.8)
man	p=30	6(0.4)/6(0.2)/6(0.7)	6(0.8)	6(0.7)	6(8)/6(9)	6(2.9)/6(1.5)	6(0.8)	6(1)
msnr	p=60	6(0.3)/6(0.2)/6(0.6)	-	6(0.6)	6(11.5)/6(13.3)	6(6.1)/6(1.5)	6(1.1)	6(1.3)
	p=180	6(10)/6(0.1)/6(0.4)	-	6(0.5)	6(17)/6(23.8)	6(27.9)/6(1.8)	6(1.7)	6(1.8)
	p=14	5.3(4.3)/5.2(4)/4.6(2.1)	4.6(2)	4.6(2)	5.5(3.4)/5.6(4)	4.9(1.4)/5.2(3)	5.2(2.6)	5.1(2.4)
lsnr	p=30	3.8(4.3)/2.9(2)/3.6(2.4)	3.4(2.1)	3.5(2.3)	5.1(6.9)/5.2(7.5)	4.6(3.9)/4.6(5.3)	4.7(5.3)	4.5(4.2)
ISHI	p=60	2.1(1.7)/1.3(0.4)/2.3(1.5)	-	2.3(1.4)	4.4(8.6)/4.5(9.7)	4.4(8.3)/3.9(6.7)	4(7.5)	3.8(5.8)
	p=180	1.4(15.1)/0.3(0.1)/1(0.7)	-	1(0.7)	3(9.7)/3(12.5)	4.3(37.2)/2.5(8.3)	2.6(9.3)	2.4(7.7)

Table S22: The performance of BOSS compared to other methods, Sparse-Ex3, ρ =0.5, n=2000

		BOSS	BS	FS	LASSO	Gamma LASSO	SparseNet	rLASSO
		C_p -hdf/AICc-hdf/CV	CV	CV	AICc/CV	AICc/CV	CV	CV
				% worse	than the best poss	sible BOSS		
	p=14	7/6/18	19	19	43/42	13/16	13	15
,	p=30	3/3/22	22	21	73/71	21/18	14	17
hsnr	p=60	1/1/21	-	20	96/92	29/18	13	17
	p=180	1/1/22	-	22	130/126	53/20	14	18
	p=14	7/6/18	19	19	44/43	16/18	13	16
msnr	p=30	3/3/22	22	21	73/71	28/20	14	17
IIISIII	p=60	1/1/21	-	20	96/92	43/21	13	17
	p=180	1/1/22	-	22	130/126	98/22	13	18
	p=14	9/9/18	19	19	44/43	22/22	13	16
lsnr	p=30	5/5/22	21	21	73/71	47/25	14	17
18111	p=60	4/4/21	-	20	96/92	80/26	14	17
	p=180	5/5/22	-	22	129/126	192/27	13	19
					Relative efficiency	У		
	p=14	1/1/0.9	0.9	0.9	0.75/0.75	0.94/0.92	0.95	0.92
,	p=30	1/1/0.85	0.85	0.85	0.59/0.6	0.85/0.87	0.91	0.88
hsnr	p=60	1/1/0.84	-	0.84	0.52/0.53	0.79/0.86	0.89	0.86
	p=180	1/1/0.83	-	0.83	0.44/0.45	0.66/0.84	0.89	0.86
	p=14	1/1/0.9	0.9	0.9	0.74/0.75	0.92/0.9	0.94	0.92
	p=30	1/1/0.85	0.85	0.85	0.59/0.6	0.8/0.85	0.9	0.88
msnr	p=60	1/1/0.84	-	0.84	0.52/0.53	0.71/0.84	0.9	0.87
	p=180	1/1/0.83	-	0.83	0.44/0.45	0.51/0.83	0.89	0.86
	p=14	1/1/0.92	0.92	0.92	0.75/0.76	0.89/0.89	0.96	0.94
lsnr	p=30	1/1/0.86	0.86	0.86	0.61/0.61	0.71/0.84	0.92	0.9
18111	p=60	1/1/0.86	-	0.86	0.53/0.54	0.58/0.83	0.91	0.88
	p=180	1/1/0.86	-	0.86	0.46/0.46	0.36/0.82	0.93	0.88
			$S_{\bar{i}}$	parsisten	cy (number of ext	ra variables)		
	p=14	6(0.3)/6(0.3)/6(0.6)	6(0.6)	6(0.6)	6(3.9)/6(4.4)	6(0.9)/6(1.3)	6(0.6)	6(0.6)
,	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(8.4)/6(8.6)	6(2.1)/6(1.7)	6(1)	6(0.6)
hsnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(13.2)/6(12.3)	6(3.9)/6(2.1)	6(1.6)	6(0.6)
	p=180	6(0)/6(0)/6(0.4)	-	6(0.4)	6(21.5)/6(18.7)	6(10.4)/6(2.6)	6(2.3)	6(0.6)
	p=14	6(0.3)/6(0.3)/6(0.6)	6(0.6)	6(0.6)	6(3.9)/6(4.5)	6(1)/6(1.4)	6(0.6)	6(0.6)
	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(8.3)/6(8.6)	6(2.4)/6(1.6)	6(0.9)	6(0.6)
msnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(13)/6(12.3)	6(4.7)/6(1.8)	6(1.4)	6(0.6)
	p=180	6(0)/6(0)/6(0.4)	-	6(0.4)	6(21.5)/6(18.7)	6(15.7)/6(1.9)	6(2.1)	6(0.5)
	p=14	6(0.4)/6(0.4)/6(0.6)	6(0.6)	6(0.6)	6(3.9)/6(4.5)	6(1.1)/6(1.4)	6(0.5)	6(0.6)
1	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(8.3)/6(8.6)	6(3)/6(1.4)	6(0.7)	6(0.6)
lsnr	p=60	6(0.1)/6(0.1)/6(0.5)	-	6(0.5)	6(13.1)/6(12.2)	6(6.5)/6(1.5)	6(1)	6(0.6)
	p=180	6(0.1)/6(0.1)/6(0.4)	-	6(0.4)	6(21.2)/6(18.7)	6(23.5)/6(1.2)	6(0.9)	6(0.5)

Table S23: The performance of BOSS compared to other methods, Sparse-Ex3, ρ =0.9, n=200

		BOSS	BS CV	FS CV	LASSO	Gamma LASSO	SparseNet	rLASSO
		C_p -hdf/AICc-hdf/CV	CV		AICc/CV	AICc/CV	CV	CV
				% worse t.	han the best possible			
	p=14	7/6/24	13	24	33/33	14/16	12	16
homm	p=30	7/5/41	17	41	66/64	26/29	12	23
hsnr	p=60	6/4/43	-	43	84/83	44/38	13	19
	p=180	35/3/27	-	29	126/126	132/35	16	18
	p=14	14/13/19	16	19	18/17	17/17	6	9
msnr	p=30	15/13/24	8	25	30/29	29/24	0	8
IIISIII	p=60	12/10/20	-	20	43/42	50/25	-6	6
	p=180	35/7/16	-	18	87/87	164/23	2	13
	p=14	17/20/22	22	21	-2/-3	5/3	5	4
lsnr	p=30	26/28/24	23	23	-2/-2	8/6	5	3
ISH	p=60	23/26/22	-	22	-3/-3	20/3	4	2
	p=180	29/16/16	-	15	-5/-3	79/1	1	0
					Relative efficiency			
	p=14	0.99/1/0.85	0.93	0.85	0.79/0.79	0.92/0.91	0.95	0.91
١,	p=30	0.98/1/0.74	0.9	0.74	0.63/0.64	0.83/0.81	0.93	0.86
hsnr	p=60	0.98/1/0.73	-	0.73	0.57/0.57	0.73/0.75	0.92	0.87
	p=180	0.76/1/0.8	-	0.79	0.45/0.45	0.44/0.76	0.88	0.87
	p=14	0.93/0.94/0.9	0.92	0.9	0.9/0.91	0.91/0.91	1	0.97
	p=30	0.87/0.88/0.8	0.93	0.8	0.77/0.77	0.77/0.8	1	0.92
msnr	p=60	0.84/0.85/0.78	-	0.78	0.66/0.66	0.63/0.75	1	0.89
	p=180	0.75/0.95/0.88	-	0.87	0.55/0.55	0.39/0.83	1	0.9
	p=14	0.83/0.81/0.8	0.8	0.81	0.99/1	0.93/0.94	0.93	0.94
lsnr	p=30	0.78/0.76/0.79	0.8	0.8	1/1	0.91/0.93	0.93	0.95
ISH	p=60	0.78/0.77/0.79	-	0.8	1/1	0.8/0.94	0.93	0.95
	p=180	0.74/0.82/0.82	-	0.83	1/0.98	0.53/0.94	0.95	0.95
			S	parsistenc	y (number of extra va	riables)		
	p=14	6(0.6)/6(0.5)/6(1.4)	6(0.6)	6(1.4)	6(3.9)/6(4.5)	6(1)/6(1.4)	6(0.7)	6(1.2)
,	p=30	6(0.7)/6(0.6)/6(2.1)	6(0.8)	6(2.1)	6(9.2)/6(10.3)	6(2.5)/6(3.4)	6(1.6)	6(2.3)
hsnr	p=60	6(0.8)/6(0.7)/6(2)	- 1	6(1.9)	6(12.4)/6(14.2)	6(5.1)/6(4.7)	6(2.5)	6(2.1)
	p=180	6(9.2)/6(0.1)/6(0.6)	-	6(0.6)	6(16.2)/6(22.2)	6(18.1)/6(3.4)	6(2.4)	6(0.8)
	p=14	5.6(1.2)/5.6(1.1)/5.8(2.1)	5.8(1.8)	5.8(2.1)	6(4)/6(4.5)	5.7(1.5)/5.8(2.6)	5.8(1)	5.9(1.9)
	p=30	5.1(1.5)/5.1(1.2)/5.3(2.6)	5.5(1.4)	5.3(2.6)	6(9.1)/6(10.2)	5.2(4.1)/5.4(5.8)	5.7(1.8)	5.7(3.2)
msnr	p=60	5.2(1.2)/5.2(1)/5.2(1.7)	-	5.2(1.6)	5.9(12.4)/6(14.1)	5.2(7.5)/5.3(5.2)	5.8(1.7)	5.7(2.8)
	p=180	5.6(10)/5.6(0.5)/5.6(0.8)	-	5.6(0.8)	6(16.2)/6(22.2)	5.6(27.5)/5.6(3.1)	5.9(1.7)	5.9(1.9)
	p=14	4.4(4)/4.2(3.6)/3.7(2.5)	3.6(2.4)	3.7(2.3)	4.8(3.6)/4.9(4.1)	3.9(2.1)/4.4(3.2)	4.5(2.5)	4.5(3)
,	p=30	2.6(4.4)/1.9(2.3)/2.4(3)	2.5(2.8)	2.4(2.9)	3.9(7.5)/4(8.2)	3.3(4.9)/3.3(6.3)	3.7(6.1)	3.4(5.3)
lsnr	p=60	1.7(2)/1.1(0.8)/1.8(2)	-	1.8(1.9)	3.7(9.4)/3.8(10.4)	3.4(8.9)/3.2(7.6)	3.4(7.7)	3.2(6.5)
	p=180	1.4(14.4)/0.5(0.2)/1.1(1.1)	-	1.1(1.1)	3.2(11.1)/3.3(14.7)	3.5(36.7)/2.8(10.2)	3(10.8)	2.8(9.1)

Table S24: The performance of BOSS compared to other methods, Sparse-Ex3, ρ =0.9, n=2000

		BOSS C_v -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
 					in the best possible			
-	p=14	6/6/19	19	19	40/39	12/14	13	15
	p=30	2/2/21	21	22	74/72	20/18	13	17
hsnr	p=60	$\frac{2/2/21}{1/1/22}$	-	22	101/97	29/19	14	19
	p=180	1/1/21	-	22	135/131	52/18	14	21
	p=14	6/6/19	19	19	42/40	18/18	14	15
	p=30	2/2/21	21	22	74/72	27/20	14	17
msnr	p=60	1/1/22	-	22	101/97	43/21	14	19
	p=180	1/1/21	-	22	135/132	96/21	13	21
	p=14	9/9/19	19	19	27/26	17/18	6	14
١,	p=30	5/5/21	20	21	53/51	34/23	3	14
lsnr	p=60	4/4/20	-	20	75/71	62/22	1	12
	p=180	4/4/17	-	17	92/89	145/23	-5	11
				Re	elative efficiency			
	p=14	1/1/0.89	0.89	0.89	0.76/0.76	0.95/0.93	0.94	0.92
١,	p=30	1/1/0.84	0.85	0.84	0.59/0.6	0.85/0.87	0.9	0.87
hsnr	p=60	1/1/0.83	-	0.83	0.5/0.51	0.79/0.85	0.89	0.85
	p=180	1/1/0.84	-	0.83	0.43/0.44	0.67/0.86	0.89	0.84
	p=14	1/1/0.89	0.89	0.89	0.75/0.76	0.9/0.9	0.93	0.92
	p=30	1/1/0.84	0.85	0.84	0.59/0.6	0.81/0.85	0.9	0.87
msnr	p=60	1/1/0.83	-	0.83	0.5/0.51	0.71/0.84	0.89	0.85
	p=180	1/1/0.84	-	0.83	0.43/0.44	0.52/0.83	0.9	0.84
	p=14	0.97/0.97/0.89	0.89	0.89	0.83/0.84	0.91/0.89	1	0.93
lsnr	p=30	0.98/0.98/0.85	0.86	0.85	0.67/0.68	0.77/0.83	1	0.9
ISIII	p=60	0.97/0.97/0.84	-	0.84	0.58/0.59	0.62/0.82	1	0.9
	p=180	0.91/0.91/0.81	-	0.81	0.49/0.5	0.39/0.77	1	0.85
			Spa	arsistency	(number of extra	variables)		
	p=14	6(0.3)/6(0.3)/6(0.7)	6(0.6)	6(0.6)	6(4.1)/6(4.6)	6(0.8)/6(1)	6(0.7)	6(0.6)
1	p=30	6(0)/6(0)/6(0.6)	6(0.6)	6(0.6)	6(9.2)/6(9.5)	6(2)/6(1.8)	6(1)	6(0.7)
hsnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(14)/6(13.3)	6(3.7)/6(2.1)	6(1.5)	6(0.8)
	p=180	6(0)/6(0)/6(0.4)	-	6(0.4)	6(23.2)/6(20.6)	6(10.1)/6(2.4)	6(2.2)	6(0.7)
	p=14	6(0.3)/6(0.3)/6(0.7)	6(0.6)	6(0.6)	6(4.2)/6(4.6)	6(1.1)/6(1.3)	6(0.7)	6(0.6)
menr	p=30	6(0)/6(0)/6(0.6)	6(0.6)	6(0.6)	6(9.2)/6(9.5)	6(2.3)/6(1.7)	6(1)	6(0.7)
msnr	p=60	6(0)/6(0)/6(0.5)	-	6(0.5)	6(14.1)/6(13.3)	6(4.7)/6(1.8)	6(1.4)	6(0.7)
	p=180	6(0)/6(0)/6(0.4)	-	6(0.4)	6(23.2)/6(20.5)	6(15.3)/6(1.9)	6(1.9)	6(0.7)
	p=14	5.8(0.4)/5.8(0.4)/5.9(1.4)	5.9(1.5)	5.9(1.5)	6(4.2)/6(4.6)	5.9(1.2)/5.9(2.1)	6(0.8)	6(1.6)
lsnr	p=30	5.8(0.3)/5.8(0.3)/5.8(1.1)	5.8(1.1)	5.8(1.1)	6(9.2)/6(9.5)	5.8(2.8)/5.9(3)	6(0.8)	6(1.6)
ISIII	p=60	5.8(0.3)/5.8(0.3)/5.8(0.8)	-	5.8(0.8)	6(14)/6(13.3)	5.8(6.3)/5.8(2.3)	6(1.1)	6(1.4)
	p=180	5.7(0.3)/5.7(0.3)/5.7(0.7)	-	5.7(0.7)	6(23)/6(20.6)	5.7(23.2)/5.7(2.6)	6(1)	5.9(1.7)

Table S25: The performance of BOSS compared to other methods, Sparse-Ex4, ρ =0, n=200

		BOSS C_p -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
		C _p -ndi/Alcc-ndi/CV	CV		han the best possible		CV	CV
		20.100.100			*			
	p=14	30/30/22	22	22	19/19	16/18	20	20
hsnr	p=30	24/21/24	25	25	29/28	32/19	16	20
11.5111	p=60	16/15/20	-	21	37/36	57/17	13	21
	p=180	29/5/14	-	15	50/51	168/14	11	16
	p=14	25/22/22	23	22	31/31	26/21	18	18
msnr	p=30	26/20/27	28	28	52/51	43/24	21	26
1113111	p=60	18/14/24	-	25	69/68	72/25	21	27
	p=180	55/16/26	-	27	97/99	237/29	27	36
	p=14	34/34/29	30	29	16/16	19/25	25	19
lsnr	p=30	37/34/31	31	31	20/18	33/25	24	22
ISHF	p=60	32/33/29	-	29	20/20	55/24	22	22
	p=180	49/29/27	-	26	18/20	142/23	21	17
					Relative efficiency			
	p=14	0.89/0.89/0.95	0.95	0.95	0.98/0.98	1/0.98	0.97	0.97
	p=30	0.94/0.96/0.94	0.93	0.93	0.9/0.91	0.88/0.98	1	0.97
hsnr	p=60	0.97/0.99/0.94	-	0.94	0.83/0.83	0.72/0.97	1	0.93
	p=180	0.82/1/0.92	-	0.92	0.7/0.7	0.39/0.92	0.94	0.91
	p=14	0.95/0.96/0.97	0.96	0.97	0.9/0.9	0.94/0.98	1	1
	p=30	0.96/1/0.95	0.94	0.94	0.79/0.8	0.84/0.97	0.99	0.95
msnr	p=60	0.96/1/0.92	-	0.92	0.68/0.68	0.66/0.91	0.95	0.9
	p=180	0.74/1/0.92	-	0.91	0.59/0.58	0.34/0.9	0.91	0.85
	p=14	0.86/0.87/0.9	0.89	0.9	1/1	0.97/0.93	0.93	0.97
,	p=30	0.87/0.89/0.9	0.91	0.9	0.99/1	0.89/0.95	0.96	0.97
lsnr	p=60	0.91/0.9/0.93	-	0.93	1/1	0.77/0.97	0.98	0.98
	p=180	0.78/0.91/0.92	-	0.92	0.99/0.97	0.48/0.95	0.96	1
			S	parsistenc	y (number of extra va	riables)		
	p=14	5(1.7)/4.9(1.3)/5.2(0.9)	5.2(0.9)	5.2(0.9)	5.8(3.4)/5.9(4.2)	5.5(1.3)/5.3(1.5)	5.3(1.3)	5.2(1.1)
,	p=30	4.6(0.7)/4.4(0.2)/4.9(0.9)	4.9(1.1)	4.9(1)	5.7(7)/5.8(8)	5.4(3.3)/5(1.9)	5(2)	5(1.4)
hsnr	p=60	4.3(0.2)/4.2(0)/4.6(0.7)	-	4.6(0.7)	5.5(10.4)/5.6(12.1)	5.4(7.5)/4.8(2.2)	4.9(2.8)	4.6(1.6)
	p=180	4.3(10.2)/4.1(0)/4.2(0.4)	-	4.3(0.5)	5.2(14)/5.3(19)	5.4(35.4)/4.4(2.3)	4.5(3.9)	4.3(1.5)
	p=14	4.5(1.3)/4.4(1)/4.4(0.6)	4.4(0.7)	4.4(0.7)	5.2(3.1)/5.2(3.6)	4.6(1.1)/4.5(1)	4.4(0.8)	4.4(0.7
	p=30	4.2(0.8)/4.1(0.4)/4.2(0.8)	4.2(0.8)	4.2(0.8)	5(6.5)/5(7.1)	4.6(2.9)/4.3(1.3)	4.3(1.3)	4.3(1.2)
msnr	p=60	4(0.3)/4(0.2)/4.1(0.6)	-	4.1(0.6)	4.7(9.5)/4.7(10.7)	4.5(6.5)/4.1(1.3)	4.2(1.7)	4.1(1.2)
	p=180	4.1(10.4)/3.9(0.1)/4(0.5)	-	4(0.5)	4.4(13.1)/4.5(17.1)	4.6(31.6)/4(1.6)	4.1(2.6)	4(1.7)
	p=14	3.9(2.4)/3.7(2)/3.3(0.9)	3.3(1.1)	3.2(0.9)	4.4(2.7)/4.5(3)	3.7(1.3)/3.6(1.5)	3.6(1.6)	3.6(1.2)
,	p=30	2.6(1.8)/2.2(0.7)/2.5(1.1)	2.5(1.1)	2.5(1.1)	$3.8(\hat{5}.3)/3.9(\hat{5}.\acute{5})$	3.4(3.5)/2.9(2.5)	$3(2.9)^{'}$	3(2.4)
lsnr	p=60	2(0.8)/1.7(0.2)/2.2(0.8)	-	2.2(0.8)	3.4(7.3)/3.5(8.1)	3.5(7.8)/2.7(3.3)	2.8(3.9)	2.7(3.1)
	p=180	1.8(12)/1.3(0.1)/1.6(0.6)	-	1.7(0.6)	2.9(9.7)/2.9(11.2)	3.7(34)/2.2(5)	2.4(6.2)	2.2(3.8)

Table S26: The performance of BOSS compared to other methods, Sparse-Ex4, ρ =0, n=2000

		BOSS C_n -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
					han the best possible	,		
	p=14	9/9/17	17	17	41/41	19/15	12	13
	p=30	5/5/22	22	23	74/71	45/22	13	16
hsnr	p=60	4/4/24	-	23	97/93	83/23	16	17
	p=180	4/4/21	-	21	131/127	200/23	13	17
	p=14	31/31/21	21	22	34/33	20/20	22	22
	p=30	40/40/29	31	29	52/50	42/29	28	34
msnr	p=60	40/40/32	-	32	64/61	76/29	29	33
	p=180	39/40/31	-	32	67/64	157/27	27	30
	p=14	19/19/19	19	19	28/28	24/18	16	16
lsnr	p=30	11/11/21	22	21	49/47	57/20	14	17
ISIII	p=60	10/9/20	-	20	64/61	102/19	13	17
	p=180	9/8/20	-	20	91/88	235/21	14	18
				:	Relative efficiency			
	p=14	1/1/0.93	0.93	0.93	0.77/0.77	0.91/0.95	0.97	0.96
homm	p=30	1/1/0.86	0.86	0.86	0.6/0.61	0.72/0.86	0.93	0.91
hsnr	p=60	1/1/0.84	-	0.84	0.53/0.54	0.57/0.85	0.9	0.89
	p=180	1/1/0.86	-	0.86	0.45/0.46	0.35/0.85	0.92	0.89
	p=14	0.91/0.91/0.99	0.99	0.98	0.9/0.9	1/0.99	0.98	0.98
	p=30	0.91/0.91/0.99	0.97	0.99	0.84/0.85	0.9/0.99	1	0.95
msnr	p=60	0.92/0.92/0.97	-	0.98	0.78/0.8	0.73/1	1	0.97
	p=180	0.91/0.91/0.96	-	0.96	0.76/0.77	0.49/1	1	0.97
	p=14	0.97/0.97/0.97	0.97	0.97	0.9/0.91	0.93/0.98	1	1
lsnr	p=30	1/1/0.92	0.91	0.92	0.74/0.76	0.71/0.93	0.98	0.95
15111	p=60	1/1/0.91	-	0.91	0.67/0.68	0.54/0.92	0.97	0.93
	p=180	1/1/0.9	-	0.9	0.57/0.58	0.32/0.9	0.95	0.92
			S	parsistenc	y (number of extra va	riables)		
	p=14	6(0.4)/6(0.4)/6(0.6)	6(0.6)	6(0.6)	6(3.8)/6(4.5)	6(1.1)/6(0.8)	6(0.5)	6(0.5)
homm	p=30	6(0.1)/6(0.1)/6(0.6)	6(0.6)	6(0.6)	6(8.4)/6(8.7)	6(2.9)/6(1.3)	6(0.7)	6(0.5)
hsnr	p=60	6(0.1)/6(0.1)/6(0.5)	-	6(0.5)	6(13)/6(12.2)	6(6.8)/6(1.5)	6(1.1)	6(0.6)
	p=180	6(0)/6(0)/6(0.3)	-	6(0.3)	6(21.7)/6(19.4)	6(24.4)/6(1.5)	6(1.2)	6(0.5)
	p=14	5.8(1.9)/5.8(1.8)/5.8(0.8)	5.8(0.8)	5.8(0.8)	6(3.8)/6(4.4)	5.9(1.2)/5.9(1.5)	5.8(1.1)	5.8(0.9)
menr	p=30	5.4(1)/5.4(0.9)/5.6(0.9)	5.6(0.9)	5.6(0.9)	6(8.5)/6(8.6)	5.9(3.4)/5.7(2.2)	5.7(1.9)	5.6(1.5)
msnr	p=60	5.2(0.3)/5.2(0.3)/5.6(0.8)	-	5.6(0.8)	6(13)/6(12.1)	5.9(7.8)/5.7(2.6)	5.7(2.7)	5.6(1.4)
	p=180	4.7(0.1)/4.7(0.1)/5.2(0.6)	-	5.2(0.6)	5.9(21.7)/5.9(19)	5.9(26.9)/5.4(2.9)	5.4(4.5)	5.2(1.4)
	p=14	4.5(1)/4.5(1)/4.5(0.6)	4.5(0.6)	4.5(0.6)	5.3(3.4)/5.4(3.8)	4.8(1.3)/4.6(1)	4.5(0.7)	4.5(0.6)
lsnr	p=30	4.1(0.3)/4.1(0.3)/4.3(0.6)	4.3(0.6)	4.3(0.6)	5.1(7.2)/5.1(7.3)	4.8(3.6)/4.3(1.2)	4.3(1)	4.2(0.9)
ISIII	p=60	4.1(0.2)/4.1(0.2)/4.2(0.5)	-	4.2(0.5)	5(11.2)/4.9(10.1)	4.8(8)/4.2(1.2)	4.2(1.2)	4.2(0.8)
	p=180	4(0.1)/4(0.1)/4.1(0.4)	-	4.1(0.4)	4.7(18.7)/4.6(15.6)	4.8(27)/4.1(1)	4.1(1.4)	4.1(0.8)

Table S27: The performance of BOSS compared to other methods, Sparse-Ex4, ρ =0.5, n=200

		BOSS C_n -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
! 					han the best possible			
<u> </u>	p=14	34/33/25	22	26	29/28	17/25	25	33
	p=30	23/19/24	23	28	49/47	34/26	21	32
hsnr	p=60	18/17/21	_	24	56/54	52/21	17	28
	p=180	29/4/15	-	16	82/81	170/16	13	15
	p=14	27/25/29	20	21	38/37	25/20	17	24
	p=30	24/19/34	24	30	74/72	52/26	16	52
msnr	p=60	17/13/33	-	28	90/89	78/26	14	62
	p=180	52/14/37	-	29	137/137	263/29	17	91
	p=14	37/35/31	24	30	30/29	23/29	26	33
lsnr	p=30	37/35/32	23	34	35/35	30/31	23	38
ISH	p=60	37/38/32	-	36	38/40	53/34	24	42
	p=180	49/31/26	-	34	33/35	120/31	20	38
					Relative efficiency			
	p=14	0.88/0.88/0.94	0.97	0.93	0.91/0.92	1/0.94	0.94	0.89
hsnr	p=30	0.97/1/0.96	0.97	0.93	0.8/0.81	0.89/0.95	0.99	0.9
HSHF	p=60	0.99/1/0.96	-	0.94	0.75/0.76	0.77/0.96	1	0.91
	p=180	0.81/1/0.91	-	0.9	0.57/0.58	0.39/0.9	0.92	0.91
	p=14	0.92/0.94/0.91	0.97	0.96	0.84/0.85	0.93/0.97	1	0.94
	p=30	0.93/0.98/0.87	0.93	0.89	0.66/0.67	0.76/0.92	1	0.76
msnr	p=60	0.97/1/0.85	-	0.88	0.6/0.6	0.64/0.9	1	0.7
	p=180	0.74/1/0.83	-	0.88	0.48/0.48	0.31/0.88	0.97	0.59
	p=14	0.9/0.91/0.94	0.99	0.95	0.95/0.95	1/0.95	0.98	0.92
lsnr	p=30	0.9/0.91/0.93	1	0.92	0.91/0.91	0.94/0.93	1	0.89
15111	p=60	0.91/0.9/0.94	-	0.91	0.9/0.89	0.81/0.93	1	0.87
	p=180	0.81/0.92/0.96	-	0.9	0.91/0.89	0.55/0.92	1	0.87
			S	parsistenc	y (number of extra va	riables)		
	p=14	5.2(1.9)/5.1(1.4)/5.5(0.9)	5.5(0.9)	5.4(1)	5.9(4.6)/6(5.4)	5.7(1.3)/5.4(1.9)	5.4(1.4)	5.2(1.4)
hsnr	p=30	4.5(0.9)/4.4(0.2)/5(1)	5(1)	4.8(1.1)	5.7(10.4)/5.7(12)	5.4(3.6)/4.8(2.3)	4.8(2.1)	4.5(1.8)
nsnr	p=60	4.4(0.3)/4.2(0.1)/4.7(0.8)	-	4.6(0.8)	5.6(15)/5.7(17.8)	5.5(7.4)/4.7(2.3)	4.8(2.8)	4.4(1.6)
	p=180	4.3(11.4)/4(0)/4.2(0.5)	-	4.1(0.5)	5.1(20.2)/5.3(27.9)	5.2(35.3)/4.2(2.1)	4.2(3.5)	4.1(0.8)
	p=14	4.7(1.6)/4.6(1.3)/4.4(0.6)	4.5(0.7)	4.5(0.7)	5.4(4.2)/5.5(5)	4.7(1.1)/4.6(1.2)	4.5(0.8)	4.6(1.1)
msnr	p=30	4.2(1)/4.1(0.5)/4.2(0.7)	4.2(0.7)	4.2(1)	5(9.3)/5.1(10.7)	4.5(3.1)/4.2(1.4)	4.2(1.2)	4.3(2.9)
msnr	p=60	4.1(0.4)/4(0.2)/4.1(0.6)	-	4.1(0.8)	4.8(13.6)/4.9(15.9)	4.5(6.8)/4.1(1.6)	4.1(1.8)	4.1(3.8)
	p=180	4.1(10.7)/4(0.1)/4(0.4)	-	4(0.6)	4.5(19.3)/4.6(26.2)	4.5(35.4)/4(1.7)	4.1(2.6)	4(5.2)
	p=14	4(2.7)/3.8(2.2)/3.3(0.8)	3.3(0.8)	3.3(1)	4.5(3.6)/4.7(4.1)	3.7(1.4)/3.5(1.7)	3.4(1.4)	3.7(2)
lsnr	p=30	2.7(2.3)/2.3(1)/2.7(1.3)	2.6(1)	2.6(1.5)	3.6(6.9)/3.6(7.5)	3.4(3.7)/2.9(3.3)	2.8(2.9)	2.9(4)
15111	p=60	1.9(1.1)/1.5(0.3)/2.3(1.2)	-	2(1.1)	2.9(8.5)/2.9(9.5)	3.4(7.8)/2.4(4)	2.5(3.9)	2.4(5.2)
	p=180	1.7(12.7)/1(0.2)/1.6(0.9)	-	1.3(0.8)	2.2(10.7)/2.1(13.3)	3.5(32.4)/1.9(6.4)	2.1(6.5)	1.9(8)

Table S28: The performance of BOSS compared to other methods, Sparse-Ex4, ρ =0.5, n=2000

		BOSS C_n -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
İ			-	% worse th	an the best possible	BOSS		
i	p=14	12/11/25	19	18	48/47	19/16	13	14
	p=30	8/7/29	21	23	86/83	39/20	12	16
hsnr	p=60	7/7/28	-	23	125/120	73/22	14	15
	p=180	7/6/28	-	21	174/171	171/23	12	18
	p=14	33/33/26	18	20	44/42	20/23	18	34
	p=30	40/39/33	21	31	71/69	43/35	26	54
msnr	p=60	42/43/35	-	42	93/90	76/44	31	69
	p=180	41/42/33	-	46	105/102	153/48	37	67
	p=14	22/22/30	21	21	36/35	24/20	17	19
1	p=30	14/13/30	22	23	61/59	55/20	15	19
lsnr	p=60	11/10/28	-	21	89/85	104/21	13	20
	p=180	8/8/27	-	20	125/121	242/19	10	26
				I	Relative efficiency			
	p=14	1/1/0.89	0.94	0.95	0.75/0.76	0.94/0.96	0.99	0.98
١,	p=30	1/1/0.83	0.89	0.87	0.58/0.59	0.77/0.89	0.96	0.93
hsnr	p=60	1/1/0.83	-	0.87	0.47/0.48	0.62/0.87	0.93	0.92
	p=180	1/1/0.83	-	0.88	0.39/0.39	0.39/0.87	0.95	0.9
	p=14	0.88/0.88/0.93	1	0.98	0.82/0.83	0.99/0.96	1	0.88
	p=30	0.87/0.87/0.91	1	0.93	0.71/0.72	0.85/0.9	0.97	0.79
msnr	p=60	0.92/0.92/0.98	-	0.92	0.68/0.69	0.75/0.91	1	0.77
	p=180	0.94/0.94/1	-	0.91	0.65/0.66	0.53/0.9	0.97	0.8
	p=14	0.96/0.96/0.9	0.97	0.96	0.86/0.87	0.94/0.98	1	0.98
lsnr	p=30	0.99/1/0.87	0.93	0.92	0.7/0.71	0.73/0.95	0.99	0.95
ISIII	p=60	1/1/0.86	-	0.91	0.58/0.59	0.54/0.91	0.98	0.92
	p=180	0.99/1/0.85	-	0.9	0.48/0.49	0.32/0.91	0.98	0.86
			S_1	parsistency	(number of extra var	riables)		
	p=14	6(0.6)/6(0.5)/6(0.6)	6(0.7)	6(0.6)	6(4.7)/6(5.5)	6(1)/6(1)	6(0.6)	6(0.5)
hsnr	p=30	6(0.2)/6(0.2)/6(0.6)	6(0.6)	6(0.6)	6(10.9)/6(11.3)	6(2.7)/6(1.4)	6(0.8)	6(0.5)
IISHF	p=60	6(0.1)/6(0.1)/6(0.5)	-	6(0.5)	6(18)/6(17.7)	6(6.4)/6(1.5)	6(1.1)	6(0.4)
	p=180	6(0.1)/6(0.1)/6(0.3)	-	6(0.3)	6(32.2)/6(29.8)	6(22.3)/6(1.3)	6(1.3)	6(0.4)
	p=14	5.9(2.1)/5.9(2)/6(0.7)	5.9(0.7)	5.9(0.9)	6(4.8)/6(5.5)	6(1.2)/5.9(1.9)	5.9(1.1)	5.9(1.7)
menr	p=30	5.6(1.1)/5.6(1)/5.9(0.8)	5.9(0.7)	5.8(1)	6(10.9)/6(11.3)	6(3.3)/5.8(2.8)	5.8(2)	5.6(2.2)
msnr	p=60	5.4(0.4)/5.3(0.3)/5.8(0.8)	-	5.6(1.1)	6(18)/6(17.6)	6(7.7)/5.6(3.7)	5.7(3.1)	5.3(2.3)
	p=180	4.8(0.2)/4.8(0.2)/5.5(1)	-	5.1(0.8)	5.9(31.7)/5.9(29)	6(26.5)/5.1(4.5)	5.2(4.7)	4.7(2)
	p=14	4.6(1.4)/4.6(1.3)/4.6(0.7)	4.6(0.7)	4.6(0.8)	5.5(4.4)/5.5(5)	4.9(1.3)/4.6(1.2)	4.5(0.8)	4.4(0.8)
lsnr	p=30	4.2(0.5)/4.2(0.4)/4.3(0.7)	4.3(0.6)	4.2(0.7)	5.2(9.6)/5.3(9.9)	4.8(3.6)/4.3(1.1)	4.3(1)	4.2(0.8)
ISIII	p=60	4.1(0.2)/4.1(0.2)/4.2(0.5)	-	4.1(0.5)	5(15.5)/5(14.7)	4.8(8.2)/4.1(1.2)	4.1(1.2)	4.1(0.9)
	p=180	4(0.1)/4(0.1)/4(0.4)	-	4(0.4)	4.6(26.1)/4.6(23.6)	4.8(27.9)/4(1)	4.1(1.3)	4(0.9)

Table S29: The performance of BOSS compared to other methods, Sparse-Ex4, ρ =0.9, n=200

		BOSS C_p -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
 					han the best possible	,		
<u>'</u>	p=14	34/33/29	24	46	45/44	33/43	40	53
	p=30	25/21/33	21	56	73/71	40/36	28	58
hsnr	p=60	23/22/37	-	57	95/91	50/31	22	64
	p=180	27/7/34	-	68	123/110	91/2	-10	62
	p=14	29/27/28	15	33	41/39	23/28	16	39
	p=30	25/19/30	-4	52	61/60	29/23	3	56
msnr	p=60	22/14/24	-	83	90/86	57/38	16	91
	p=180	31/17/26	-	66	78/66	78/26	6	70
	p=14	41/39/31	27	54	51/50	46/47	38	55
lsnr	p=30	39/32/27	18	78	71/72	58/66	44	75
ISIII	p=60	29/28/23	-	81	80/80	79/79	57	84
	p=180	37/17/18	-	36	33/33	110/37	35	36
					Relative efficiency			
	p=14	0.93/0.94/0.96	1	0.85	0.86/0.86	0.94/0.87	0.89	0.81
hsnr	p=30	0.97/1/0.91	1	0.78	0.7/0.71	0.87/0.9	0.95	0.77
nsnr	p=60	0.99/1/0.89	-	0.77	0.62/0.64	0.81/0.93	0.99	0.74
	p=180	0.71/0.84/0.68	-	0.54	0.41/0.43	0.47/0.88	1	0.56
	p=14	0.89/0.91/0.9	1	0.87	0.82/0.83	0.93/0.9	0.99	0.83
	p=30	0.77/0.81/0.74	1	0.63	0.6/0.6	0.75/0.78	0.93	0.62
msnr	p=60	0.93/1/0.92	-	0.62	0.6/0.61	0.73/0.83	0.99	0.6
	p=180	0.81/0.9/0.84	-	0.64	0.59/0.64	0.59/0.84	1	0.62
	p=14	0.9/0.91/0.97	1	0.83	0.84/0.84	0.87/0.86	0.92	0.82
lsnr	p=30	0.85/0.89/0.93	1	0.66	0.69/0.69	0.75/0.71	0.82	0.67
15111	p=60	0.95/0.97/1	-	0.68	0.69/0.68	0.69/0.69	0.78	0.67
	p=180	0.86/1/0.99	-	0.86	0.88/0.88	0.56/0.86	0.87	0.86
			S	parsistenc	y (number of extra va	ariables)		
	p=14	5.8(2.9)/5.7(2.5)/5.6(1.6)	5.6(0.8)	5.3(2)	6(6.5)/6(7.2)	5.5(2.3)/5.4(3.4)	5.3(2.4)	5.4(3.2)
hsnr	p=30	5.2(3.7)/5.1(2.8)/5.3(3.8)	5(1)	4.8(4.1)	5.8(17.8)/5.8(19.5)	4.9(4.5)/4.5(3.4)	4.4(2.7)	4.8(6.8)
nsnr	p=60	5(4.2)/4.8(3)/4.9(4.7)	-	4.5(4.3)	5.6(30.2)/5.7(35.1)	4.9(8.8)/4.3(3.6)	4.3(3.3)	4.3(8.7)
	p=180	4.4(13.2)/4.2(2.4)/4.3(4.3)	-	4.3(8)	4.6(44.2)/4.8(64.9)	4.4(29.2)/4.1(4)	4.1(3.1)	4.1(15.4)
	p=14	5(2.5)/4.9(2.2)/4.7(1.4)	4.6(0.7)	4.9(2.4)	5.6(6.3)/5.7(7)	4.6(1.8)/4.9(3.3)	4.6(2.4)	5(3.9)
msnr	p=30	4.5(4.5)/4.4(3.6)/4.5(3.7)	4.2(0.7)	4.6(6.5)	5.2(16.9)/5.3(18.5)	4.4(4.7)/4.5(7)	4.4(5.8)	4.8(11.2)
1115111	p=60	4.3(5.9)/4.2(5.1)/4.3(5.7)	-	3.7(6.3)	4.8(28.3)/5(32.8)	4.4(10.4)/4.2(11.8)	4.3(11.7)	4.1(17.8)
	p=180	4.1(24.5)/3.6(7.6)/3.7(9.2)	-	3(8.8)	3.8(37.7)/4.3(59.6)	4.3(37.5)/3.6(20.4)	3.8(22.8)	3.2(26)
	p=14	4.2(3)/4(2.7)/3.8(1.9)	3.3(0.7)	3.9(2.9)	4.9(5.9)/5.1(6.5)	3.8(2.6)/4.1(4.1)	3.7(3.2)	4.4(4.7)
lsnr	p=30	3.1(5.5)/2.7(3.9)/3.2(5)	2.7(0.9)	2.2(4.4)	3(10.1)/3(11)	3.3(7.6)/2.8(8)	2.9(8)	2.6(8.5)
15111	p=60	2.2(5.3)/1.9(3.9)/2.6(6.8)	-	0.9(2)	1.2(7.4)/1.2(8.4)	2.8(12.8)/1.3(6.6)	2(10)	1.1(6.4)
	p=180	1.4(18.2)/0.7(1.7)/1.1(5.5)	-	0.2(0.6)	0.3(4.8)/0.3(5.4)	2.3(40.2)/0.3(4.4)	0.6(9)	0.3(4.4)

Table S30: The performance of BOSS compared to other methods, Sparse-Ex4, ρ =0.9, n=2000

		BOSS C_n -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
		P / /	Ç	% worse th	an the best possible I	BOSS		
	p=14	33/33/27	16	20	53/51	17/20	15	27
	p=30	33/32/33	16	33	108/106	26/22	12	46
hsnr	p=60	27/26/30	-	48	157/154	37/22	9	73
	p=180	15/15/25	-	90	226/223	68/33	10	140
	p=14	28/28/22	18	45	53/51	26/39	30	57
	p=30	22/22/26	23	89	108/105	56/75	55	109
msnr	p=60	21/21/27	-	114	166/162	100/107	92	124
	p=180	25/25/30	-	107	253/250	190/110	105	106
	p=14	33/33/32	20	29	45/44	24/28	19	37
1	p=30	28/27/34	16	40	85/82	44/30	12	57
lsnr	p=60	19/19/30	-	59	122/119	75/32	9	89
	p=180	15/14/27	-	104	179/176	167/48	20	159
				F	Relative efficiency			
	p=14	0.86/0.86/0.9	0.99	0.96	0.75/0.76	0.98/0.95	1	0.91
١,	p=30	0.84/0.84/0.84	0.96	0.84	0.54/0.54	0.89/0.92	1	0.77
hsnr	p=60	0.86/0.86/0.84	-	0.74	0.42/0.43	0.8/0.89	1	0.63
	p=180	0.95/0.96/0.88	-	0.58	0.34/0.34	0.65/0.82	1	0.46
	p=14	0.92/0.92/0.97	1	0.81	0.77/0.78	0.94/0.85	0.91	0.76
	p=30	0.99/1/0.96	0.99	0.64	0.58/0.59	0.78/0.7	0.78	0.58
msnr	p=60	1/1/0.95	-	0.56	0.45/0.46	0.6/0.58	0.63	0.54
	p=180	1/1/0.96	-	0.6	0.35/0.36	0.43/0.6	0.61	0.61
	p=14	0.9/0.9/0.9	1	0.92	0.82/0.83	0.96/0.93	1	0.87
lsnr	p=30	0.87/0.88/0.83	0.97	0.8	0.61/0.61	0.78/0.86	1	0.71
15111	p=60	0.92/0.92/0.84	-	0.69	0.49/0.5	0.62/0.83	1	0.58
	p=180	1/1/0.9	-	0.56	0.41/0.41	0.43/0.77	0.95	0.44
			S_{I}	parsistency	(number of extra var	riables)		
	p=14	6(1.4)/6(1.4)/6(0.6)	6(0.7)	6(0.9)	6(6.6)/6(7.2)	6(1.2)/6(1.8)	6(0.9)	6(1.4)
1	p=30	6(0.5)/6(0.4)/6(0.7)	6(0.6)	6(1.3)	6(17.8)/6(18.9)	6(2.6)/6(2.5)	6(1.6)	6(2.4)
hsnr	p=60	6(0.4)/6(0.4)/6(0.8)	-	6(2)	6(34.2)/6(35.3)	6(5.8)/6(3.9)	6(3.1)	6(4.1)
	p=180	6(1.4)/6(1.4)/6(1.7)	-	5.9(3.8)	6(72.7)/6(73.8)	6(17.2)/6(9.4)	6(8.7)	5.9(9.4)
	p=14	6(2)/6(2)/6(1.3)	6(0.7)	5.9(2.4)	6(6.6)/6(7.2)	6(2.4)/5.9(4.1)	5.9(2.9)	5.8(3.9)
msnr	p=30	5.9(2.4)/5.9(2.4)/5.9(2.6)	5.9(0.7)	5.4(3.4)	6(17.8)/6(18.8)	5.9(5.9)/5.6(7.2)	5.6(6.2)	5.1(5.6)
msnr	p=60	5.8(4.8)/5.8(4.8)/5.9(5.6)	-	4.7(1.9)	6(34)/6(35.1)	5.8(12.4)/4.9(7.7)	5(8.3)	4.3(2.6)
	p=180	5.5(12.9)/5.5(12.7)/5.7(16.2)	-	4.2(0.6)	5.7(68.6)/5.7(69.3)	5.4(31.9)/4.2(3.4)	4.3(5)	4(0.3)
	p=14	5(2.5)/5(2.4)/4.7(1.1)	4.6(0.7)	4.6(1.5)	5.7(6.4)/5.7(7)	4.6(1.5)/4.7(2.4)	4.5(1.5)	4.7(2.6)
lsnr	p=30	4.5(2.1)/4.4(1.9)/4.4(1.7)	4.3(0.6)	4.3(2.2)	5.4(16.6)/5.4(17.6)	4.5(3.7)/4.3(3.5)	4.2(2.5)	4.4(4.6)
15111	p=60	4.2(1.9)/4.2(1.8)/4.3(2.3)	-	4.2(3.2)	5.1(30.6)/5.1(31.3)	4.3(8.1)/4.2(5.8)	4.2(5)	4.3(8.8)
	p=180	4.1(3.7)/4.1(3.6)/4.1(4.4)	-	3.7(3.7)	4.6(60.3)/4.6(60.5)	4.3(26.8)/4.1(14.8)	4.2(14.2)	3.6(13.7)

Table S31: The performance of BOSS compared to other methods, Dense, ρ =0, n=200

		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
						possible BOSS		
<u> </u>	p=14	0/0/0	0	0	0/0	0/1	0	0
	p=30	2/2/7	8	7	1/1	8/2	4	4
hsnr	p=60	9/11/11	-	11	0/-2	-1/-1	1	2
	p=180	18/13/11	-	12	18/12	5/5	3	13
	p=14	0/0/6	6	6	1/1	7/1	3	3
	p=30	4/5/10	10	10	0/-1	8/2	4	3
msnr	p=60	11/12/12	-	12	-3/-5	-1/-2	-1	-1
	p=180	19/14/13	-	12	3/0	13/1	2	5
	p=14	7/9/20	19	20	3/3	17/8	10	10
lsnr	p=30	15/19/16	16	16	-8/-8	5/-1	-3	-3
ISIII	p=60	16/14/14	-	14	-9/-8	11/-4	-4	-4
	p=180	22/7/8	-	9	-5/-3	65/0	-1	0
					Relative effic	iency		
	p=14	1/1/1	1	1	1/1	1/0.99	1	1
homm	p=30	0.99/0.99/0.95	0.94	0.94	1/1	0.93/0.99	0.97	0.98
hsnr	p=60	0.9/0.88/0.89	-	0.89	0.98/1	1/0.99	0.98	0.96
	p=180	0.88/0.91/0.93	-	0.93	0.88/0.93	0.99/0.99	1	0.92
	p=14	1/1/0.95	0.95	0.95	1/1	0.94/0.99	0.97	0.98
	p=30	0.96/0.95/0.91	0.9	0.91	0.99/1	0.92/0.98	0.96	0.96
msnr	p=60	0.86/0.85/0.85	-	0.85	0.98/1	0.96/0.97	0.96	0.96
	p=180	0.84/0.88/0.89	-	0.89	0.97/1	0.88/0.98	0.98	0.95
	p=14	0.96/0.94/0.86	0.86	0.85	0.99/1	0.88/0.95	0.93	0.93
١,	p=30	0.8/0.77/0.79	0.79	0.79	1/1	0.88/0.93	0.94	0.94
lsnr	p=60	0.79/0.8/0.8	-	0.8	1/1	0.83/0.95	0.96	0.96
	p=180	0.78/0.89/0.88	-	0.88	1/0.98	0.58/0.95	0.96	0.95
			Spar	sistenc	y (number o	f extra variables)		
	p=14	14/14/14	14	14	14/14	14/14	14	14
١,	p=30	29.2/29/26	25.7	25.9	28.6/29.2	25.3/28.6	27.2	26.8
hsnr	p=60	35.8/24.3/28	-	27.6	40.5/44.9	29.8/38.4	36.8	32.8
	p=180	36.9/17/19.3	-	19.2	47.5/67.6	38.7/36.4	32.4	36.5
	p=14	14/14/13.4	13.4	13.4	13.9/13.9	13.4/13.9	13.6	13.7
	p=30	26.9/26/21.1	20.7	20.9	25.1/26.3	18.8/24.9	23.7	22.6
msnr	p=60	26/14.9/18.4	-	18.3	32.2/36.4	22.7/29.2	29.6	25
	p=180	30.7/7.9/9.9	-	9.9	33.8/49.1	40.6/30.1	27.9	25.8
	p=14	12.2/11.8/8.3	8.4	8.2	10.6/11.2	7.6/10.4	10	9.1
lsnr	p=30	13/7.8/8	7.5	7.8	14/15.1	10.3/12.3	12.7	10.6
ISIII	p=60	5.4/1/4.2	-	4.1	15.2/16.6	15.3/13.7	14.6	12.2
	p=180	16.6/0.3/1.4	-	1.5	12.4/15.8	41.6/12.2	13.5	11.3

Table S32: The performance of BOSS compared to other methods, Dense, ρ =0, n=2000

		BOSS C _p -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
i			% v	worse t	han the best	possible BOSS		
	p=14	0/0/0	0	0	2/2	1/4	0	0
	p=30	0/0/1	1	1	1/1	3/6	1	1
hsnr	p=60	5/5/7	-	7	1/0	0/0	3	4
	p=180	7/7/9	-	9	15/14	3/5	2	9
	p=14	0/0/0	0	0	0/0	0/2	0	0
	p=30	1/1/5	5	5	1/1	4/2	3	3
msnr	p=60	8/8/9	-	9	1/0	-1/0	3	4
	p=180	8/8/10	-	10	13/12	3/4	3	7
	p=14	0/0/4	4	4	0/0	3/1	3	3
1,	p=30	3/3/10	10	9	1/0	7/2	5	5
lsnr	p=60	13/13/12	-	12	0/-1	0/1	3	3
	p=180	9/9/12	-	13	9/8	14/5	4	7
					Relative effic	eiency		
	p=14	1/1/1	1	1	0.98/0.98	0.99/0.96	1	1
,	p=30	1/1/0.99	0.99	0.99	0.99/0.99	0.97/0.94	0.99	0.99
hsnr	p=60	0.95/0.95/0.93	-	0.93	0.99/0.99	1/1	0.97	0.96
	p=180	0.95/0.96/0.94	-	0.94	0.89/0.9	0.99/0.98	1	0.94
	p=14	1/1/1	1	1	1/1	1/0.99	1	1
	p=30	1/1/0.96	0.96	0.96	1/1	0.97/0.99	0.97	0.97
msnr	p=60	0.92/0.92/0.91	-	0.91	0.98/0.99	1/0.99	0.96	0.96
	p=180	0.95/0.95/0.93	-	0.93	0.91/0.92	1/0.99	1	0.96
	p=14	1/1/0.96	0.96	0.96	1/1	0.98/0.99	0.98	0.97
lsnr	p=30	0.97/0.97/0.91	0.91	0.92	1/1	0.94/0.98	0.96	0.96
Isnr	p=60	0.88/0.88/0.88	-	0.88	0.99/1	0.99/0.99	0.96	0.96
	p=180	0.95/0.96/0.93	-	0.93	0.96/0.97	0.91/1	1	0.97
			Spar	sistenc	y (number o	f extra variables)		
	p=14	14/14/14	14	14	14/14	14/14	14	14
١,	p=30	30/30/29.8	29.8	29.8	30/30	30/30	29.9	29.9
hsnr	p=60	50.1/49.6/39.8	-	39.7	53.1/54.3	46.4/50.2	44.8	42.6
	p=180	32.5/31.6/32.3	-	32.1	88.1/88.8	62.2/60.9	46.4	38.7
	p=14	14/14/14	14	14	14/14	14/14	14	14
	p=30	29.8/29.8/28.1	28.2	28.1	29.6/29.8	28.9/29.7	28.7	28.7
msnr	p=60	42/41.1/31.3	-	31.1	48.1/49.1	37.1/43.5	37.5	34.2
	p=180	23.9/23.2/24.1	-	24.1	75.1/74.9	51.3/44.6	38.9	29.6
	p=14	14/14/13.7	13.7	13.7	14/14	13.8/14	13.8	13.8
Ι,	p=30	27.8/27.8/22.1	21.9	22.1	26.8/27.5	21/26.2	24.6	23.4
lsnr	p=60	30/28.5/19.9	-	19.5	38.5/38.9	25.4/31.4	29.1	25.3
	p=180	14.1/13.5/14.1	-	14	55.3/53.9	42/31.8	29.7	23.4

Table S33: The performance of BOSS compared to other methods, Dense, ρ =0.5, n=200

		BOSS C _p -hdf/AICc-hdf/CV	BS CV	FS CV	LASSO AICc/CV	Gamma LASSO AICc/CV	SparseNet CV	rLASSO CV
İ			% v	worse t	han the best	possible BOSS		
	p=14	0/0/4	0	0	0/0	1/2	0	-1
	p=30	1/1/8	9	8	2/1	6/2	5	1
hsnr	p=60	13/13/12	-	12	10/7	5/5	7	4
	p=180	37/14/13	-	16	47/27	10/13	8	7
	p=14	0/0/5	5	4	0/0	2/1	2	1
	p=30	4/5/10	11	10	4/3	8/4	8	3
msnr	p=60	16/15/14	-	14	11/6	4/6	7	4
	p=180	43/14/14	-	17	37/21	18/18	11	14
	p=14	5/7/17	19	17	9/7	16/8	14	12
lsnr	p=30	18/18/17	16	18	10/7	10/10	11	7
15111	p=60	17/13/13	-	14	6/5	19/8	8	5
	p=180	47/4/8	-	9	2/4	79/6	6	4
					Relative effic	eiency		
	p=14	0.99/0.99/0.95	0.99	0.99	0.99/0.99	0.99/0.97	0.99	1
,	p=30	0.98/0.98/0.93	0.91	0.93	0.98/0.98	0.94/0.98	0.94	0.98
hsnr	p=60	0.92/0.92/0.93	-	0.93	0.95/0.98	0.99/0.99	0.97	1
	p=180	0.78/0.94/0.95	-	0.92	0.73/0.84	0.97/0.95	0.99	1
	p=14	1/1/0.95	0.95	0.96	1/1	0.98/0.99	0.98	0.99
	p=30	0.98/0.98/0.93	0.92	0.93	0.99/1	0.95/0.98	0.95	0.99
msnr	p=60	0.89/0.9/0.91	-	0.91	0.93/0.98	1/0.98	0.97	1
	p=180	0.77/0.97/0.97	-	0.95	0.81/0.91	0.94/0.94	1	0.97
	p=14	0.97/0.96/0.87	0.86	0.87	0.93/0.96	0.88/0.94	0.9	0.91
lsnr	p=30	0.9/0.9/0.92	0.92	0.91	0.97/1	0.98/0.97	0.96	1
ISH	p=60	0.9/0.93/0.93	-	0.93	0.99/1	0.88/0.98	0.97	1
	p=180	0.69/0.97/0.94	-	0.94	1/0.98	0.57/0.96	0.96	0.98
			Spar	sistenc	y (number o	f extra variables)		
	p=14	14/14/14	14	14	14/14	14/14	14	14
,	p=30	29.7/29.6/26.1	25.1	26	29.1/29.7	27/29.2	27	28
hsnr	p=60	42/29.1/29.4	-	28.6	44.7/50.7	33.7/43.1	35	42
	p=180	43.6/17/20.2	-	19.6	52.2/87.1	40.3/42.5	32.4	63.5
	p=14	14/14/13.7	13.6	13.7	14/14	13.8/14	13.8	13.9
	p=30	28.3/27.8/21.1	18.8	20.9	26.7/28.2	20.3/26.2	22.6	25.1
msnr	p=60	34.4/17.9/19.9	-	19.6	34.7/43.5	24.7/33.7	27.1	35.8
	p=180	36.7/8.3/11	-	9.7	24.5/61.4	39.6/28.9	22.1	47.6
	p=14	13.1/12.7/9.4	8.7	9.3	10.8/12	8.7/11.4	10.3	10.6
lame	p=30	13.4/5.7/7.5	6.6	7.1	5.3/12.9	11.8/11.8	10.3	11.4
lsnr	p=60	4.8/0.6/3.5	-	3	3.7/11.2	15.7/9.4	8.9	8.7
	p=180	19/0.2/1.1	-	0.9	2.7/8.6	38.9/7.2	6.9	5.9

Table S34: The performance of BOSS compared to other methods, Dense, ρ =0.5, n=2000

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			BOSS	BS	FS	LASSO	Gamma LASSO	SparseNet	rLASSO
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l I		· · · · · · · · · · · · · · · · · · ·						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		0.10.10						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 *				,	,		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr	1 *	/ /			,	,		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	110111	1 *							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180				· '			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 *	, ,				,		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	menr	*	, ,				,		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	mom	1 *	, ,						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	9/9/11	-	14	36/34	16/18	9	33
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 *				,			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	lown	1 *	, ,			,			
$\begin{array}{ c c c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	ISH	1 *	' '	-		,	,		
$\begin{array}{ c c c c c c c c c c } \hline & p=14 & 1/1/1 & 1 & 1 & 0.98/0.98 & 0.98/0.95 & 1 & 1 \\ p=30 & 0.98/0.98/0.96 & 0.98 & 0.98 & 0.97/0.97 & 0.9/0.89 & 0.98 & 0.99 \\ p=60 & 0.98/0.98/0.96 & - & 0.96 & 1/1 & 0.99/0.98 & 0.98 & 0.98 \\ p=180 & 1/1/0.99 & - & 0.96 & 0.79/0.79 & 0.9/0.89 & 1 & 0.81 \\ \hline & p=30 & 0.98/0.98/0.94 & 0.93 & 0.94 & 0.98/0.98 & 0.95/0.94 & 0.96 & 0.97 \\ msnr & p=60 & 0.95/0.95/0.95 & - & 0.95 & 0.98/0.98 & 1/1 & 0.98 & 0.96 \\ p=180 & 0.99/1/0.98 & - & 0.95 & 0.98/0.98 & 1/1 & 0.98 & 0.96 \\ p=180 & 0.99/1/0.98 & - & 0.95 & 0.8/0.81 & 0.93/0.92 & 1 & 0.81 \\ \hline & p=30 & 0.98/0.98/0.91 & 0.99 & 0.99 & 0.99 & 0.99 \\ p=180 & 0.99/1/0.97 & - & 0.95 & 0.8/0.81 & 0.93/0.97 & 0.93 & 0.96 \\ p=60 & 0.91/0.91/0.93 & - & 0.93 & 0.95/0.96 & 1/0.98 & 0.98 & 0.94 \\ p=180 & 0.99/1/0.97 & - & 0.95 & 0.83/0.85 & 0.93/0.93 & 1 & 0.85 \\ \hline & & & & & & & & & & & & & & & & & &$		p=180	11/11/13	-	16	32/30	19/18	10	30
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						Relative effici	ency		
$ \begin{array}{ c c c c c c c c } \hline hsnr & p=60 & 0.98/0.98/0.96 & - & 0.96 & 1/1 & 0.99/0.98 & 0.98 & 0.98 \\ p=180 & 1/1/0.99 & - & 0.96 & 0.79/0.79 & 0.9/0.89 & 1 & 0.81 \\ \hline & p=30 & 0.98/0.98/0.94 & 0.93 & 0.94 & 0.98/0.98 & 0.95/0.94 & 0.96 & 0.97 \\ p=60 & 0.95/0.95/0.95 & - & 0.95 & 0.98/0.98 & 1/1 & 0.98 & 0.96 \\ p=180 & 0.99/1/0.98 & - & 0.95 & 0.8/0.81 & 0.93/0.92 & 1 & 0.81 \\ \hline & p=30 & 0.98/0.98/0.91 & 0.9 & 0.91 & 0.98/0.98 & 0.93/0.97 & 0.93 & 0.96 \\ p=180 & 0.99/1/0.97 & - & 0.93 & 0.95/0.96 & 1/0.98 & 0.98 & 0.94 \\ p=180 & 0.99/1/0.97 & - & 0.95 & 0.83/0.85 & 0.93/0.93 & 1 & 0.85 \\ \hline & & & & & & & & & & & & & & & & & &$		p=14	1/1/1	1	1	0.98/0.98	0.98/0.95	1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	١,	p=30	0.98/0.98/0.96	0.98	0.98	0.97/0.97	0.9/0.89	0.98	0.99
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr	p=60	0.98/0.98/0.96	-	0.96	1/1	0.99/0.98	0.98	0.98
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	1/1/0.99	-	0.96	0.79/0.79	0.9/0.89	1	0.81
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	1/1/0.98	1	1	1/1	0.99/0.96	1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=30	0.98/0.98/0.94	0.93	0.94	0.98/0.98	0.95/0.94	0.96	0.97
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	msnr	p=60	0.95/0.95/0.95	-	0.95	0.98/0.98	1/1	0.98	0.96
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	0.99/1/0.98	-	0.95	0.8/0.81	0.93/0.92	1	0.81
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	1/1/0.95	0.98	0.98	1/1	0.99/0.99	0.99	0.99
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=30	0.98/0.98/0.91	0.9	0.91	0.98/0.98	0.93/0.97	0.93	0.96
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Isnr	p=60	0.91/0.91/0.93	-	0.93		1/0.98	0.98	0.94
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	0.99/1/0.97	-	0.95	0.83/0.85	0.93/0.93	1	0.85
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Spa	rsisten	cy (number of	extra variables)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	14/14/14	14	14	14/14	14/14	14	14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 *	, ,	30	30		30/30	30	30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr	p=60	53.6/53.3/40.3	-	40	,		43.8	49
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=180	36/34.5/35.1	-	32.6	106.5/113.5	76.5/77.1	43	66.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=14	14/14/14	14	14	14/14	14/14	14	14
p=00		1 *	, ,			,	,		
p=14 14/14/13.9 13.9 13.9 14/14 14/14 13.9 1	msnr	p=60	47.5/46.6/31.6	-	31.2	51.5/53.4	42.1/48.1	36.3	43.6
p=30 $29.1/29/22.7$ 21.2 22.1 $28/28.9$ $23/27.6$ 24.1 26.2		p=180	27.3/26.2/27.1	-	24.1	90.5/98.9	60/54.4	35.2	54.9
p=30 $29.1/29/22.7$ 21.2 22.1 $28/28.9$ $23/27.6$ 24.1 26.2		p=14	14/14/13.9	13.9	13.9	14/14	14/14	13.9	13.9
		p=30	29.1/29/22.7	21.2	22.1	28/28.9	23/27.6		26.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	lsnr	p=60	36.1/34.7/21.1	-	19.8	42.2/45.5	28.3/34.9	26.5	35.2
p=180 17/16/17 - 14.3 61.8/72 43.7/33.1 25.3 46.9		p=180	17/16/17	-	14.3	61.8/72	43.7/33.1	25.3	46.9

Table S35: The performance of BOSS compared to other methods, Dense, ρ =0.9, n=200

		BOSS	BS	FS	LASSO	Gamma LASSO	SparseNet	rLASSO
		C_p -hdf/AICc-hdf/CV	CV	CV	AICc/CV	AICc/CV	CV	CV
1						possible BOSS		
		1 0/0/2				*		
	p=14	0/0/5	0	0	0/0	6/7	1	1
hsnr	p=30	2/2/9	10	8	2/2	14/15	8	3
110111	p=60	15/19/14	-	12 12	12/11	12/13	14 20	6 23
	p=180	46/15/12	-		71/43	23/24		
	p=14	1/1/7	8	6	2/1	8/8	5	5
msnr	p=30	4/5/12	12	10	4/3	8/5	9	7
1115111	p=60	20/23/16	-	13	30/17	12/15	15	18
	p=180	58/26/15	-	17	61/46	31/37	26	44
	p=14	11/13/18	19	18	11/10	13/12	18	16
lsnr	p=30	19/15/14	15	13	10/11	19/12	12	15
ISIII	p=60	14/11/12	-	12	9/12	34/13	12	4
	p=180	59/12/10	-	10	15/17	106/12	9	10
					Relative effic	iency		
	p=14	0.99/0.99/0.95	0.99	0.99	0.99/0.99	0.94/0.93	0.99	0.99
١,	p=30	0.98/0.98/0.91	0.9	0.92	0.98/0.98	0.87/0.87	0.93	0.97
hsnr	p=60	0.87/0.84/0.87	-	0.89	0.89/0.9	0.89/0.88	0.88	0.94
	p=180	0.77/0.97/1	-	1	0.65/0.78	0.91/0.9	0.93	0.91
	p=14	0.99/0.99/0.94	0.93	0.94	0.98/0.99	0.93/0.93	0.95	0.96
	p=30	0.99/0.98/0.92	0.92	0.93	0.99/1	0.95/0.98	0.95	0.96
msnr	p=60	0.93/0.92/0.97	-	0.99	0.86/0.96	1/0.97	0.98	0.95
	p=180	0.73/0.91/1	-	0.98	0.71/0.79	0.88/0.84	0.91	0.8
	p=14	0.93/0.91/0.87	0.87	0.88	0.94/0.94	0.91/0.93	0.88	0.89
	p=30	0.92/0.96/0.97	0.96	0.97	1/1	0.92/0.98	0.98	0.96
lsnr	p=60	0.91/0.94/0.93	-	0.93	0.96/0.93	0.78/0.93	0.93	1
	p=180	0.69/0.97/0.99	-	1	0.95/0.93	0.53/0.98	1	1
			Spar	sistenc	y (number o	f extra variables)		
	p=14	14/14/14	14	14	14/14	14/14	14	14
١.	p=30	29.5/29.3/25.2	23	24.6	28.9/29.5	24.4/24.8	26.2	27.6
hsnr	p=60	44.3/26.1/27.4	-	23.6	46.5/49.8	31.6/34.4	32.9	41.2
	p=180	46.7/15.6/21.3	-	17.2	54.4/93.4	44.8/46.9	37.7	67.6
	p=14	14/14/13.5	13.2	13.4	13.9/14	13.4/13.7	13.5	13.6
	p=30	28.6/28/20.2	16.6	19	26.4/27.9	19.3/24.4	22.3	24.5
msnr	p=60	33/13/18.4	-	14.9	30.3/42.2	24.7/32.3	25.8	34.3
	p=180	41.6/5.8/14.1	-	9.3	4.8/42.5	46.7/30.9	26	29.2
	p=14	10.6/9.8/7.1	6.4	6.6	8.9/9.3	7.5/8.6	7	7.6
1,	p=30	8.6/4.1/5.2	4.3	4.5	8.4/9.2	10.3/7.6	5.9	6.8
lsnr	p=60	3.7/1.4/4	-	2.7	2.7/8.1	14.5/6.2	5	4.2
	p=180	18/1/2.1	-	1.6	3.9/6.8	37.7/4	3.3	2.7

Table S36: The performance of BOSS compared to other methods, Dense, ρ =0.9, n=2000

		BOSS	BS	FS	LASSO	Gamma LASSO	SparseNet	rLASSO
		C_p -hdf/AICc-hdf/CV	CV	CV	AICc/CV	AICc/CV	CV	CV
l I						possible BOSS		
-		1 0/0/0						
	p=14	0/0/0	0	0	3/4	27/27	2	0
hsnr	p=30	0/0/3	1	1	2/2	106/106	1	3
110111	p=60	7/8/9	-	6	6/6	74/74	8	7
	p=180	10/10/10		9	39/38	56/56	17	35
	p=14	0/0/3	0	0	1/1	8/8	1	0
msnr	p=30	0/0/5	7	5	1/1	25/25	3	6
msm	p=60	12/12/10	-	8	9/8	11/11	9	10
	p=180	10/11/12	-	9	41/39	22/23	16	38
	p=14	1/1/7	5	4	1/1	5/8	3	3
lomm	p=30	3/3/11	11	9	3/2	7/6	8	8
lsnr	p=60	19/18/14	-	10	14/13	8/11	12	15
	p=180	12/12/13	-	11	40/38	27/26	18	37
					Relative effici	ency		
	p=14	1/1/1	1	1	0.97/0.97	0.79/0.79	0.98	1
	p=30	1/1/0.97	0.99	0.99	0.98/0.98	0.49/0.49	0.99	0.98
hsnr	p=60	0.98/0.98/0.97	-	1	1/1	0.61/0.61	0.97	0.99
	p=180	0.99/0.99/0.99	-	1	0.78/0.79	0.7/0.7	0.93	0.8
	p=14	1/1/0.97	1	1	0.99/0.99	0.92/0.92	0.99	1
	p=30	1/1/0.96	0.94	0.95	1/1	0.8/0.8	0.97	0.95
msnr	p=60	0.96/0.96/0.98	-	1	0.99/0.99	0.97/0.97	0.99	0.98
	p=180	0.98/0.98/0.98	-	1	0.77/0.78	0.89/0.88	0.94	0.79
	p=14	1/1/0.94	0.95	0.97	1/1	0.96/0.93	0.98	0.98
	p=30	0.99/0.99/0.92	0.92	0.94	1/1	0.96/0.96	0.94	0.95
lsnr	p=60	0.91/0.92/0.95	-	0.99	0.95/0.96	1/0.98	0.97	0.95
	p=180	1/0.99/0.99	-	1	0.8/0.81	0.88/0.88	0.94	0.81
			Spa	rsisten	ey (number of	extra variables)		
	p=14	14/14/14	14	14	14/14	14/14	14	14
	p=30	30/30/29.9	29.9	29.9	30/30	26.1/26.1	30	29.9
hsnr	p=60	53.2/52.7/39.2	-	36.3	55.5/57.2	29.4/29.4	46	49.5
	p=180	37/35/38.6	-	30.2	109.6/118.6	43.1/43.1	52.4	74.3
i	p=14	14/14/14	14	14	14/14	14/14	14	14
	p=30	29.9/29.9/28.2	27.3	27.9	29.7/29.9	26.3/26.3	28.8	28.7
msnr	p=60	47.5/46.6/31.3	_	27.4	51.1/53.4	35.5/35.6	37.2	44
	p=180	30.8/28.4/32	-	23	95.1/104.1	62.7/59	44.6	71.3
	p=14	14/14/13.8	13.6	13.7	14/14	13.8/13.9	13.8	13.8
	p=30	28.8/28.8/21.2	18.5	20.2	27.6/28.4	21.7/24.8	23.5	24.8
lsnr	p=60	35.3/33.6/20.6	-	16.3	41/43.9	28.5/33.1	26.4	35.4
	p=180	18.5/16.6/21.4	-	11.8	65.3/76.1	49.6/41.2	32.3	60.8
	1 *	1 / /			'	,		

Table S37: The performance of BOSS for high dimensional data, Sparse-Ex1, ρ =0, n=200

P=200			BOSS C _v /AICc/CV	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	İ			, , ,	% worse than the	best possi	ible BOSS	,	,		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	i –	p=250	6/1/17	502/502/502/18	1/0/1	502	0	141/142	183/142	17	16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	١.					511	0				18
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr	p=1000	86/13/21	512/512/512/22	2/0/0	512	0	184/192	424/192		17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		p=1500	122/44/19	505/505/505/21	2/0/0	505	0	206/209	433/209	26	15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{ c c c c c c } \hline p_{p} = 1000 & 150/128/23 & 499/499/489/25 & 11/601/53 & 499 & 604 & 20/206 & 472/206 & 26 & 63 \\ \hline p_{p} = 250 & 161/51/3 & 166/166/166/13 & 15/16/15 & 166 & 16 & -3/0 & 122/0 & 3 & 3 \\ p_{p} = 1000 & 22/12/12 & 149/149/149/12 & 149/12 & 149 & 12 & -3/0 & 143/0 & 3 & 3 \\ p_{p} = 1000 & 33/16/9 & 138/138/189/6 & 9/9/9 & 136 & 9 & -3/2 & 133/2 & 3 & 4 \\ p_{p} = 1000 & 33/16/9 & 138/138/189/6 & 33/3/3 & 138 & 3 & -3/1 & 133/2 & 3 & 4 \\ p_{p} = 1000 & 33/16/9 & 138/138/189/6 & 3/3/3 & 138 & 3 & -3/1 & 133/2 & 3 & 4 \\ p_{p} = 1000 & 0.54/0.89/188 & 0.17/0.17/0.185 & 0.99/1/0.99 & 0.17 & 1 & 0.42/0.41 & 0.35/0.41 & 0.85 & 0.87 \\ p_{p} = 000 & 0.59/0.99/0.85 & 0.16/0.16/0.16/0.82 & 0.98/1/0.99 & 0.16 & 1 & 0.38/0.38 & 0.21/0.38 & 0.81 & 0.85 \\ p_{p} = 1000 & 0.54/0.89/0.88 & 0.16/0.16/0.16/0.82 & 0.98/1/1 & 0.16 & 1 & 0.35/0.34 & 0.19/0.32 & 0.79 & 0.86 \\ p_{p} = 1000 & 0.54/0.93/0.88 & 0.17/0.17/0.17/0.87 & 1/0.28/0.08 & 0.17 & 0.28 & 0.43/0.33 & 0.21/0.32 & 0.79 & 0.86 \\ p_{p} = 0.00 & 0.66/0.85/0.89 & 0.17/0.17/0.17/0.87 & 1/0.28/0.08 & 0.17 & 0.28 & 0.43/0.33 & 0.21/0.32 & 0.79 & 0.86 \\ p_{p} = 0.00 & 0.38/0.48/0.89 & 0.17/0.17/0.17/0.87 & 1/0.28/0.08 & 0.17 & 0.28 & 0.43/0.33 & 0.21/0.32 & 0.89 \\ p_{p} = 0.00 & 0.38/0.48/0.89 & 0.17/0.17/0.17/0.88 & 1/0.21/0.9 & 0.17 & 0.21 & 0.41/0.4 & 0.19/0.4 & 0.85 & 0.83 \\ p_{p} = 0.00 & 0.38/0.48/0.89 & 0.17/0.17/0.17/0.88 & 1/0.21/0.9 & 0.17 & 0.21 & 0.41/0.4 & 0.19/0.4 & 0.85 & 0.83 \\ p_{p} = 0.00 & 0.38/0.48/0.89 & 0.18/0.18/0.18/0.366 & 1/0.16/0.91 & 0.18 & 0.16 & 0.36/0.36 & 0.19/0.36 & 0.87 \\ p_{p} = 0.00 & 0.38/0.88/0.89 & 0.18/0.18/0.18/0.86 & 1/0.16/0.91 & 0.18 & 0.16 & 0.36/0.36 & 0.19/0.36 & 0.87 \\ p_{p} = 0.00 & 0.79/0.87/0.87 & 0.39/0.39/0.39/0.87 & 0.39/0.88/0.89 & 0.18 & 0.18/0.18/0.18 & 0.16 & 0.36/0.36 & 0.19/0.36 & 0.87 \\ p_{p} = 0.00 & 0.73/0.81/0.89 & 0.41/0.41/0.41/0.99 & 0.94/0.95/0.95 & 0.41 & 0.95 & 1/0.96 & 0.41/0.97 & 0.94 & 0.94 \\ p_{p} = 0.00 & 0.73/0.81/0.89 & 0.41/0.41/0.31/0.99 & 0.89/0.99 & 0.41 & 0.95 & 1/0.96 & 0.41/0.$	menr										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	mam										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$, ,	, , ,	, ,			,			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	lsnr										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p-1000	1 04/20/0	100/100/100/0	, ,			-0/1	100/1		-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		l n=250	1 0 0 0 0 0 0 0 0	0.17/0.17/0.17/0.05				0.49/0.41	0.25/0.41	0.05	0.97
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	i	p=250	0.84/0.93/0.88	0.17/0.17/0.17/0.87	1/0.28/0.98	0.17	0.28	0.43/0.43	0.25/0.43	0.88	0.81
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						0.17				0.85	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	msnr	p=1000	0.46/0.69/0.87	0.18/0.18/0.18/0.86	1/0.16/0.91	0.18	0.16	0.38/0.37	0.18/0.37	0.84	0.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=1500	0.38/0.48/0.89	0.18/0.18/0.18/0.88	1/0.16/0.72	0.18	0.16	0.36/0.36	0.19/0.36	0.87	0.68
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=250	0.84/0.85/0.86	0.37/0.37/0.37/0.86	0.85/0.84/0.84		0.84				0.94
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	lonn										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ISIII										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=1500	0.73/0.81/0.92	0.41/0.41/0.41/0.92	, ,		0.95	1/0.96	0.41/0.96	0.94	0.93
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c } \hline hsnr & p=1000 & 6/6/6 & 6/6/6/6/$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{ l c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	msnr										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=1500				6	0.1	6/6	6/6	6	5.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p=250	0.8/0.4/1.1	5.6/5.6/5.6/1.1	0.3/0/0.1	5.6	0	3.3/3.3	4.6/3.3	2.9	2.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	١,	p=500	1.1/0.4/0.8	4.3/4.3/4.3/0.8	0.2/0/0.1		0	3/3			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Isnr										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		p=1500	0.8/0.5/0.3	2.3/2.3/2.3/0.3	, ,			1.5/1.6	2.4/1.6	1.4	1.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	hsnr										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, ,	. , , ,							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{vmatrix} p = 1500 & 8.1/4/0.3 & 193/193/193/0.3 & 0/0/0 & 192.9 & 0 & 21.3/44.1 & 99/44.1 & 2.6 & 2.5 \\ p = 250 & 0.7/0.1/0.5 & 193.4/193.4/193.4/0.5 & 0/0/0 & 193.4 & 0 & 10.1/13.1 & 70/13.1 & 9.6 & 7.2 \\ p = 500 & 2.8/0.2/0.5 & 194.7/194.7/0.4 & 0/0/0 & 194.7 & 0 & 11.3/15.9 & 113.7/15.9 & 12.4 & 8.9 \\ p = 1000 & 5.8/1.5/0.4 & 195.8/195.8/195.8/0.3 & 0/0/0 & 195.8 & 0 & 10.7/20 & 113/20 & 14.1 & 11.5 \\ \end{vmatrix} $	msnr										
$ \begin{vmatrix} p = 250 & 0.7/0.1/0.5 & 193.4/193.4/193.4/0.5 & 0/0/0 & 193.4 & 0 & 10.1/13.1 & 70/13.1 & 9.6 & 7.2 \\ p = 500 & 2.8/0.2/0.5 & 194.7/194.7/0.4 & 0/0/0 & 194.7 & 0 & 11.3/15.9 & 113.7/15.9 & 12.4 & 8.9 \\ lsnr & p = 1000 & 5.8/1.5/0.4 & 195.8/195.8/195.8/195.8/0.3 & 0/0/0 & 195.8 & 0 & 10.7/20 & 113/20 & 14.1 & 11.5 \\ \end{vmatrix} $											
$ \begin{vmatrix} p = 500 \\ lsnr \end{vmatrix} = \begin{vmatrix} 2.8/0.2/0.5 & 194.7/194.7/0.4 & 0/0/0 & 194.7 & 0 & 11.3/15.9 & 113.7/15.9 & 12.4 & 8.9 \\ p = 1000 & 5.8/1.5/0.4 & 195.8/195.8/195.8/195.8/0.3 & 0/0/0 & 195.8 & 0 & 10.7/20 & 113/20 & 14.1 & 11.5 \end{vmatrix} $	_	1 *	, , ,	, , ,	, ,		0		,	9.6	7.2
$ \begin{vmatrix} \text{lsnr} \\ \text{p} = 1000 \end{vmatrix} = 5.8/1.5/0.4 + 195.8/195.8/195.8/195.8/0.3 + 0/0/0 + 195.8 + 0 + 10.7/20 + 113/20 + 14.1 + 11.5 $		1 *									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	lsnr										
		p=1500	6.1/3.2/0.3	196.7/196.7/196.7/0.3	0/0/0	196.6	0	9.5/15.6	111.9/15.6	12.8	10.7

Table S38: The performance of BOSS for high dimensional data, Sparse-Ex1, ρ =0.5, n=200

		BOSS $C_p/AICc/CV$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
i				% worse than the	best possi	ible BOSS				
	p=250	4/1/17	495/495/495/20	1/0/1	495	0	139/138	177/138	17	16
hsnr	p=500	21/2/18	507/507/507/18	3/0/1	507	0	161/161	359/161	20	19
nsnr	p=1000	70/9/20	513/513/513/21	3/0/0	513	0	184/186	425/186	24	20
	p=1500	113/30/16	502/502/502/19	3/0/0	502	0	208/209	428/209	23	14
	p=250	22/13/19	490/490/490/22	4/303/8	490	304	137/136	293/136	18	37
msnr	p=500 p=1000	53/24/20 116/52/23	498/498/498/20 506/506/506/25	8/412/20 8/570/26	498 506	414 570	157/158 180/184	450/158 475/184	21 24	35 39
	p=1500	182/113/22	491/491/491/24	11/584/61	491	584	203/204	465/204	26	73
	p=250	13/12/11	165/165/165/12	12/13/13	165	13	-4/-2	117/-2	1	1
١,	p=500	20/12/11	150/150/150/11	11/12/12	150	12	-3/-1	144/-1	2	2
lsnr	p=1000	30/14/9	136/136/136/9	8/8/8	136	8	-4/0	133/0	2	3
	p=1500	31/17/6	141/141/141/6	3/2/2	141	2	-3/0	138/0	3	4
					efficiency					
	p=250	0.96/0.99/0.85	0.17/0.17/0.17/0.83	0.99/1/0.99	0.17	1	0.42/0.42	0.36/0.42	0.85	0.86
hsnr	p=500 p=1000	0.83/0.98/0.84 0.59/0.92/0.84	0.16/0.16/0.16/0.85 0.16/0.16/0.16/0.82	0.97/1/0.99 0.97/1/1	0.16 0.16	1 1	0.38/0.38 0.35/0.35	0.22/0.38 0.19/0.35	0.83 0.81	0.84 0.83
	p=1000 p=1500	0.47/0.77/0.86	0.17/0.17/0.17/0.84	0.98/1/1	0.10	1	0.32/0.32	0.19/0.33	0.81	0.88
	p=250	0.85/0.92/0.87	0.18/0.18/0.18/0.85	1/0.26/0.96	0.18	0.26	0.44/0.44	0.26/0.44	0.88	0.76
	p=500	0.7/0.87/0.89	0.18/0.18/0.18/0.9	1/0.21/0.9	0.18	0.21	0.42/0.42	0.2/0.42	0.89	0.8
msnr	p=1000	0.5/0.71/0.88	0.18/0.18/0.18/0.87	1/0.16/0.86	0.18	0.16	0.39/0.38	0.19/0.38	0.87	0.78
	p=1500	0.4/0.52/0.91	0.19/0.19/0.19/0.9	1/0.16/0.69	0.19	0.16	0.37/0.37	0.2/0.37	0.89	0.64
	p=250	0.85/0.86/0.86	0.36/0.36/0.36/0.86	0.86/0.85/0.85	0.36	0.85	1/0.98	0.44/0.98	0.95	0.95
lsnr	p=500	0.8/0.86/0.87	0.39/0.39/0.39/0.87	0.87/0.86/0.86	0.39	0.86	1/0.97	0.4/0.97	0.94	0.94
13111	p=1000	0.74/0.84/0.88 0.74/0.83/0.92	0.41/0.41/0.41/0.88 0.4/0.4/0.4/0.92	0.89/0.88/0.88 0.95/0.95/0.95	0.41	0.88 0.95	1/0.96 1/0.97	0.41/0.96 0.41/0.97	0.94 0.94	0.93 0.94
	p=1500	0.74/0.83/0.92	0.4/0.4/0.4/0.92	, ,	sistency	0.95	1/0.97	0.41/0.97	0.94	0.94
	l 050	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
	p=250 p=500	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
hsnr	p=300 p=1000	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
	p=1500	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
	p=250	6/6/6	6/6/6/6	6/3.1/5.9	6	3.1	6/6	6/6	6	6
msnr	p=500	6/6/6	6/6/6/6	6/2.3/5.9	6	2.3	6/6	6/6	6	6
msm	p=1000	6/6/6	6/6/6/6	6/1/5.8	6	1	6/6	6/6	6	6
	p=1500	6/6/6	6/6/6/6	5.9/0/5.5	6	0	6/6	6/6	6	5.9
	p=250	0.7/0.3/1 1/0.4/0.8	5.5/5.5/5.5/1 4.2/4.2/4.2/0.8	0.2/0/0.1 0.2/0/0.1	5.5 4.2	0	3/3.1 2.9/2.9	4.3/3.1 3.7/2.9	2.7 2.5	2.5 2.4
lsnr	p=500 p=1000	1.2/0.6/0.6	3.1/3.1/3.1/0.6	0.2/0/0.1	3.1	0	2.5/2.5	3/2.5	2.5	2.4
	p=1500	0.7/0.4/0.2	2.1/2.1/2.1/0.2	0/0/0	2.1	ő	1.3/1.3	2.1/1.3	1.2	1.1
<u> </u>				Number of	extra varia	bles	,	· · · · · · · · · · · · · · · · · · ·		
	p=250	0.2/0/0.3	193/193/193/0.3	0/0/0	193	0	17/23.7	26.6/23.7	2	0.5
١,	p=500	1/0/0.3	193/193/193/0.3	0/0/0	193	0	18.3/28.3	71.3/28.3	3	0.8
hsnr	p=1000	3.6/0.3/0.2	193/193/193/0.3	0/0/0	193	0	18.7/35.2	87.8/35.2	3.6	0.6
	p=1500	5.9/1.3/0.2	193/193/193/0.2	0/0/0	192.9	0	22.5/44.6	89.1/44.6	3.9	0.5
	p=250	0.5/0.2/0.3	193/193/193/0.4	0/0/0	193	0	16.7/23.7	46.2/23.7	1.2	1.2
msnr	p=500	1.7/0.3/0.3	193/193/193/0.3	0/0/0	193 193	0	18.4/28.3	98.4/28.3 101/35.2	1.8 2	1.3
	p=1000 p=1500	4.6/1/0.3 7.6/3.2/0.3	193/193/193/0.3 193/193/193/0.3	0/0/0 0/0/0	193	0	18.9/35.2 22.4/44.6	101/35.2	2.4	1.4 2.9
		0.4/0.1/0.5		0/0/0	193.5	0	9.4/12.1	67.6/12.1	8.7	6.7
	p=250 p=500	0.4/0.1/0.5 2.4/0.2/0.5	193.5/193.5/193.5/0.6 194.8/194.8/194.8/0.5	0/0/0	193.5	0	9.4/12.1 10.8/15.6	114.8/15.6	12.2	9.3
lsnr	p=1000	5.2/1.3/0.4	195.9/195.9/195.9/0.4	0/0/0	195.8	0	10.8/18	115.1/18	12.8	10.6
	p=1500	5.2/2.3/0.3	196.9/196.9/196.9/0.3	0/0/0	196.8	0	9/13.3	113.5/13.3	11.4	9.6
		, , ,	, , , , , , , , , , , , , , , , , , , ,	, ,				, -		

Table S39: The performance of BOSS for high dimensional data, Sparse-Ex1, ρ =0.9, n=200

		BOSS $C_p/AICc/CV$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
ĺ				% worse than the	best possi	ible BOSS				
	p=250	5/4/39	447/447/447/39	3/25/4	447	22	108/107	201/107	22	25
1	p=500	7/5/40	473/473/473/42	4/17/6	473	16	135/134	341/134	31	26
hsnr	p=1000	18/7/50	447/447/447/51	3/46/6	447	43	143/141	360/141	30	22
	p=1500	37/9/48	459/459/459/49	5/27/7	459	26	176/173	389/173	54	30
	p=250	10/9/19	272/272/272/19	14/199/18	272	199	41/40	170/40	25	20
msnr	p=500 p=1000	12/8/13 21/12/13	262/262/262/14 242/242/242/15	7/232/14 7/291/18	262 242	232 291	48/47 52/50	239/47 226/50	27 26	11 5
	p=1500	41/21/14	237/237/237/15	11/273/58	237	273	66/64	223/64	26	31
	p=250	11/11/11	164/164/164/10	11/11/11	164	11	-13/-12	97/-12	-8	-8
١.	p=500	14/12/12	155/155/155/12	13/13/13	155	13	-9/-9	149/-9	-5	-5
lsnr	p=1000	18/11/10	139/139/139/10	9/9/9	139	9	-9/-8	136/-8	-5	-4
	p=1500	19/7/6	151/151/151/6	2/2/2	151	2	-5/-3	147/-3	-1	0
					efficiency					
	p=250	0.98/0.99/0.74	0.19/0.19/0.19/0.74	1/0.82/0.99	0.19	0.85	0.49/0.5	0.34/0.5	0.84	0.83
hsnr	p=500 p=1000	0.97/0.99/0.75 0.87/0.96/0.69	0.18/0.18/0.18/0.74 0.19/0.19/0.19/0.68	1/0.89/0.99 1/0.71/0.97	0.18 0.19	0.9 0.72	0.44/0.45 0.42/0.43	0.24/0.45 0.22/0.43	0.8 0.8	0.83 0.84
	p=1000 p=1500	0.77/0.97/0.71	0.19/0.19/0.19/0.08	1/0.83/0.99	0.19	0.72	0.42/0.43	0.22/0.43	0.68	0.84
	p=250	0.99/1/0.91	0.29/0.29/0.29/0.91	0.96/0.36/0.92	0.29	0.36	0.77/0.78	0.4/0.78	0.87	0.9
	p=500	0.96/0.99/0.95	0.3/0.3/0.3/0.94	1/0.32/0.94	0.23	0.32	0.72/0.73	0.32/0.73	0.85	0.97
msnr	p=1000	0.87/0.93/0.93	0.31/0.31/0.31/0.91	0.98/0.27/0.89	0.31	0.27	0.69/0.7	0.32/0.7	0.83	1
	p=1500	0.79/0.92/0.98	0.33/0.33/0.33/0.97	1/0.3/0.71	0.33	0.3	0.67/0.68	0.34/0.68	0.88	0.85
	p=250	0.78/0.78/0.78	0.33/0.33/0.33/0.79	0.78/0.78/0.78	0.33	0.78	1/0.99	0.44/0.99	0.95	0.95
lsnr	p=500	0.79/0.81/0.81	0.36/0.36/0.36/0.81	0.81/0.8/0.8	0.36	0.8	1/0.99	0.36/0.99	0.95	0.95
13111	p=1000	0.77/0.82/0.83 0.8/0.89/0.9	0.38/0.38/0.38/0.82 0.38/0.38/0.38/0.9	0.83/0.83/0.83 0.93/0.94/0.94	0.38 0.38	0.83 0.94	1/0.98 1/0.98	0.39/0.98 0.38/0.98	0.95 0.96	0.95 0.95
	p=1500	0.8/0.89/0.9	0.38/0.38/0.38/0.9	, ,		0.94	1/0.98	0.38/0.98	0.96	0.95
	1 050	0.10.10	0.10.10.10		sistency	F 0	0.10	0.10		
	p=250 p=500	6/6/6 6/6/6	6/6/6/6 6/6/6/6	6/5.8/6 6/5.9/6	6	5.8 5.9	6/6 6/6	6/6 6/6	6 6	6
hsnr	p=300 p=1000	6/6/6	6/6/6/6	6/5.7/5.9	6	5.7	6/6	5.9/6	6	6
	p=1500	6/6/6	6/6/6/6	6/5.8/5.9	6	5.8	6/6	5.9/6	5.9	6
	p=250	5/5/5	5.9/5.9/5.9/5.1	4.9/2.1/4.8	5.9	2.1	5.9/5.9	5.2/5.9	5	5.6
	p=500	5/5/5	5.6/5.6/5.6/5	4.9/1.8/4.8	5.6	1.7	5.9/5.9	4.9/5.9	4.8	5.7
msnr	p=1000	4.9/4.9/4.9	5.4/5.4/5.4/4.9	4.8/0.6/4.7	5.4	0.6	5.9/5.9	4.9/5.9	4.7	5.7
	p=1500	4.9/4.9/4.8	5.2/5.2/5.2/4.8	4.7/0/3.9	5.2	0	5.8/5.8	4.9/5.8	4.6	5.4
	p=250	0.4/0.2/0.6	5.3/5.3/5.3/0.7	0.1/0/0.1	5.3	0	2.4/2.5	2.9/2.5	2.2	2.1
lsnr	p=500 p=1000	0.6/0.3/0.6 0.7/0.3/0.4	3.6/3.6/3.6/0.6 2.6/2.6/2.6/0.4	0.1/0/0.1 0.1/0/0	3.6 2.6	0	$\frac{2.2}{2.4}$ $\frac{2}{2.2}$	2.6/2.4 2.2/2.2	2 1.8	1.9 1.7
	p=1000 p=1500	0.4/0.1/0.2	1.9/1.9/1.9/0.2	0.1/0/0	1.9	0	1/1	1.6/1	0.9	0.8
_	p-1000	0.1/0.1/0.2	1.0/1.0/1.0/0.2	Number of			-/-	1.0, 1	0.0	0.0
	p=250	0.5/0.5/2.8	193/193/193/1.3	0.5/0.5/0.5	193	0.2	17.9/21.4	35.7/21.4	3.9	2.7
١.	p=500	0.3/0.2/1.4	193/193/193/0.9	0.2/0.2/0.2	193	0.1	19.5/25.2	72.1/25.2	5.1	1.6
hsnr	p=1000	1.2/0.6/1.6	193/193/193/1.3	0.6/0.5/0.5	193	0.3	21.2/29.9	85.1/29.9	7	2.3
	p=1500	2/0.3/1.1	193/193/193/1	0.2/0.2/0.2	193	0.2	25.2/40.1	91.9/40.1	10	1.9
	p=250	1.6/1.4/2.9	193.1/193.1/193.1/2	1.2/0.5/1.2	193.1	0.5	17.9/21.4	57/21.4	6.9	6.8
msnr	p=500	1.7/1.3/1.7	193.4/193.4/193.4/1.6	1.1/0.3/1	193.4	0.3	19.4/25	103.4/25	7.3	5.3
1113111	p=1000 p=1500	2.5/1.7/1.7 4.6/2.2/1.7	193.6/193.6/193.6/1.7	1.2/0.2/1.2 1.2/0/0.9	193.6 193.7	0.2	21.1/29.8 25.1/39.7	107/29.8 107.2/39.7	7.8 7.5	4.7 8.5
			193.7/193.7/193.7/1.7					•		
	p=250	0.9/0.4/1.6	193.7/193.7/193.7/1.5	0.2/0/0.1 0.1/0/0	193.7 195.4	0	12.2/13.8 12.7/16	62.3/13.8	11.5 12.9	9.6 10.2
lsnr	p=500 p=1000	1.7/0.5/1.5 3.3/0.9/1	195.4/195.4/195.4/1.2 196.4/196.4/196.4/0.9	0.1/0/0	195.4	0	13.8/18	119.1/16 120.8/18	12.9	10.2
	p=1500	3.3/0.8/0.5	197.1/197.1/197.1/0.5	0/0/0	197	0	10.8/14.5	119.7/14.5	12.4	9.2
	1 *	-//	, , ,	-1-1-		-	,	/		

Table S40: The performance of BOSS for high dimensional data, Sparse-Ex2, ρ =0, n=200

		$\begin{array}{c c} \operatorname{BOSS} \\ \operatorname{C}_p/\operatorname{AICc/CV} \end{array}$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
ĺ				% worse than the	best possi	ble BOSS				
	p=250	5/1/18	501/501/501/18	2/0/1	501	0	152/152	189/152	18	16
hsnr	p=500	30/3/18	501/501/501/19	2/0/1	501	0	178/179	366/179	23	17
nsnr	p=1000	86/11/20	501/501/501/20	2/0/0	501	0	203/204	420/204	25	14
	p=1500	132/40/19	501/501/501/21	2/0/0	501	0	218/218	432/218	26	15
	p=250	29/16/19	498/498/498/20	5/419/13	498	419	151/151	311/151	18	60
msnr	p=500	83/38/22	495/495/495/23	10/514/39	495	514	175/176	448/176	23	87
moni	p=1000 p=1500	162/88/26 214/151/27	491/491/491/27 485/485/485/29	18/538/89 26/536/142	491 485	538 536	197/200 210/211	462/200 460/211	27 26	117 140
	1 *	, ,	, , ,	, ,						
	p=250 p=500	10/8/9 16/6/8	169/169/169/9 162/162/162/8	8/7/8 5/4/5	169 162	7 4	-3/0 -2/1	$\frac{125}{0}$ $\frac{156}{1}$	3 4	3 4
lsnr	p=500 p=1000	27/9/6	158/158/158/6	3/3/3	158	3	-2/1 -1/3	155/3	5	5
	p=1500	36/20/6	156/156/156/6	2/2/2	156	2	-2/2	153/2	4	6
<u> </u>	1			, ,	e efficiency		,	,		
	p=250	0.95/0.99/0.85	0.17/0.17/0.17/0.85	0.98/1/0.99	0.17	1	0.4/0.4	0.35/0.4	0.84	0.86
hsnr	p=500	0.77/0.97/0.85	0.17/0.17/0.17/0.84	0.98/1/0.99	0.17	1	0.36/0.36	0.21/0.36	0.81	0.86
nsnr	p=1000	0.54/0.9/0.84	0.17/0.17/0.17/0.83	0.98/1/1	0.17	1	0.33/0.33	0.19/0.33	0.8	0.87
	p=1500	0.43/0.72/0.84	0.17/0.17/0.17/0.83	0.98/1/1	0.17	1	0.31/0.31	0.19/0.31	0.79	0.87
	p=250	0.81/0.9/0.88	0.18/0.18/0.18/0.88	1/0.2/0.93	0.18	0.2	0.42/0.42	0.26/0.42	0.89	0.66
msnr	p=500	0.6/0.8/0.9	0.18/0.18/0.18/0.89	1/0.18/0.79	0.18	0.18	0.4/0.4	0.2/0.4	0.89	0.59
mani	p=1000	0.45/0.63/0.94 0.4/0.5/0.99	0.2/0.2/0.2/0.93 0.22/0.22/0.22/0.98	1/0.19/0.63 1/0.2/0.52	0.2 0.22	0.19 0.2	0.4/0.39 0.41/0.4	0.21/0.39 0.22/0.4	0.93 1	0.54 0.52
	p=1500									
	p=250	0.88/0.9/0.89 0.85/0.93/0.91	0.36/0.36/0.36/0.89 0.38/0.38/0.38/0.91	0.9/0.91/0.9 0.94/0.94/0.94	0.36	0.91 0.94	1/0.98 1/0.97	0.43/0.98 0.38/0.97	0.95 0.94	0.95
lsnr	p=500 p=1000	0.85/0.93/0.91	0.38/0.38/0.38/0.93	0.94/0.94/0.94	0.38	0.94	1/0.97	0.39/0.96	0.94	0.94
	p=1500	0.73/0.82/0.93	0.38/0.38/0.38/0.93	0.96/0.97/0.96	0.38	0.97	1/0.96	0.39/0.96	0.95	0.93
	P		3130, 3130, 3130, 3130	, ,	sistency		-7 0100	0.007 0.00		
	p=250	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
١.	p=500	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
hsnr	p=1000	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
	p=1500	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
	p=250	6/6/6	6/6/6/6	6/1.7/5.9	6	1.7	6/6	6/6	6	6
msnr	p=500	6/6/6	6/6/6/6	5.9/0.5/5.7	6	0.5	6/6	6/6	6	5.9
	p=1000 p=1500	6/6/6 6/6/6	6/6/6/6 6/6/6/6	5.8/0.1/5.2 5.8/0/4.6	6	0.1	6/6 6/6	6/6 6/6	6	5.8 5.7
-	1 *									
	p=250 p=500	0.4/0.2/0.7 0.5/0.2/0.4	5.5/5.5/5.5/0.7 4/4/4/0.4	0.1/0/0.1 0.1/0/0	5.5 4	0	2.4/2.3 1.7/1.8	4.3/2.3 3.5/1.8	2.1 1.6	1.9 1.5
lsnr	p=300 p=1000	0.5/0.2/0.4	2.7/2.7/2.7/0.3	0.1/0/0	2.7	0	1.3/1.3	2.6/1.3	1.0	1.2
	p=1500	0.6/0.3/0.2	2.1/2.1/2.1/0.2	0/0/0	2.1	ő	1.1/1.1	2.1/1.1	1	0.9
<u> </u>		' '	, , ,	Number of	extra varia	bles		,		
	p=250	0.2/0/0.3	193/193/193/0.3	0/0/0	193	0	18.2/26.6	29.1/26.6	2.5	0.6
hsnr	p=500	1.7/0/0.3	193/193/193/0.3	0/0/0	193	0	20.5/35	75/35	3.5	0.5
Inshr	p=1000	4.7/0.3/0.3	193/193/193/0.3	0/0/0	193	0	22.3/44.2	88.9/44.2	4.2	0.4
	p=1500	7.1/1.9/0.2	193/193/193/0.3	0/0/0	192.9	0	23/48.8	90.4/48.8	4.4	0.4
	p=250	0.5/0.2/0.3	193/193/193/0.3	0/0/0	193	0	18.2/26.6	49.3/26.6	1.6	2.3
msnr	p=500 p=1000	3/0.6/0.3 6.6/1.9/0.4	193/193/193/0.4 193/193/193/0.4	0/0/0 0/0/0	193 193	0	20.7/34.9 22.4/44.3	98.2/34.9 100.9/44.3	2.1 2.6	3.7 4.6
	p=1000 p=1500	9.3/4.8/0.4	193/193/193/0.4	0/0/0	193	0	23/48.6	100.9/44.3	2.6	6.2
	p=1500 p=250			0/0/0	193.5	0	8.9/11		8.1	6.5
	p=250 p=500	0.5/0/0.4 2.1/0.1/0.3	193.5/193.5/193.5/0.4 195/195/195/0.3	0/0/0 0/0/0	193.5 195	0	8.9/11 8.5/11.9	69.1/11 114.5/11.9	8.1 9.6	6.5 7.6
lsnr	p=300 p=1000	3.9/0.7/0.3	196.3/196.3/196.3/0.3	0/0/0	196.3	0	8.5/13.5	114/13.5	10.6	8.7
	p=1500	5.6/2.6/0.2	196.9/196.9/196.9/0.3	0/0/0	196.9	0	8.2/12.9	112.5/12.9	10.4	8.9

Table S41: The performance of BOSS for high dimensional data, Sparse-Ex2, ρ =0.5, n=200

		BOSS $C_p/AICc/CV$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
ĺ				% worse than the	best possi	ble BOSS				
	p=250	6/1/18	501/501/501/18	2/0/1	501	0	214/206	125/206	18	27
homm	p=500	40/3/18	501/501/501/19	2/0/1	501	0	259/245	269/245	24	37
hsnr	p=1000	110/16/20	501/501/501/22	2/0/0	501	0	304/285	373/285	26	55
	p=1500	154/49/21	501/501/501/25	2/0/0	501	0	337/306	391/306	27	75
	p=250	30/13/34	457/457/457/43	3/382/6	457	382	191/184	232/184	12	140
msnr	p=500 p=1000	74/26/41 113/57/44	412/412/412/62 331/331/331/66	8/437/27 20/368/73	412 331	437 368	206/195 195/179	347/195 298/179	9	177 180
	p=1500	104/80/42	263/263/263/67	29/296/96	263	296	172/153	240/153	-2	157
	p=250	7/5/8	162/162/162/9	5/5/5	162	5	3/4	113/4	7	7
١,	p=500	9/3/6	155/155/155/6	2/2/2	155	2	1/3	147/3	5	5
lsnr	p=1000	16/5/5	153/153/153/5	1/1/1	153	1	1/3	148/3	4	5
	p=1500	26/13/4	152/152/152/5	1/0/0	152	0	0/2	148/2	3	5
					e efficiency					
	p=250	0.94/0.99/0.85	0.17/0.17/0.17/0.85	0.98/1/0.99	0.17	1	0.32/0.33	0.44/0.33	0.85	0.79
hsnr	p=500 p=1000	0.72/0.97/0.85 0.48/0.86/0.83	0.17/0.17/0.17/0.84 0.17/0.17/0.17/0.82	0.98/1/0.99 0.98/1/1	0.17 0.17	1 1	0.28/0.29 0.25/0.26	0.27/0.29 0.21/0.26	0.8 0.79	0.73 0.65
	p=1500	0.39/0.67/0.83	0.17/0.17/0.17/0.02	0.98/1/1	0.17	1	0.23/0.25	0.2/0.25	0.79	0.57
<u> </u>	p=250	0.8/0.91/0.77	0.19/0.19/0.19/0.72	1/0.21/0.97	0.19	0.21	0.36/0.36	0.31/0.36	0.92	0.43
	p=500	0.62/0.86/0.76	0.21/0.21/0.21/0.67	1/0.2/0.85	0.21	0.2	0.35/0.37	0.24/0.37	0.99	0.39
msnr	p=1000	0.48/0.66/0.72	0.24/0.24/0.24/0.62	0.86/0.22/0.6	0.24	0.22	0.35/0.37	0.26/0.37	1	0.37
	p=1500	0.48/0.54/0.69	0.27/0.27/0.27/0.59	0.76/0.25/0.5	0.27	0.25	0.36/0.39	0.29/0.39	1	0.38
	p=250	0.97/0.98/0.96	0.39/0.39/0.39/0.95	0.98/0.99/0.98	0.39	0.99	1/0.99	0.49/0.99	0.97	0.97
lsnr	p=500	0.93/0.99/0.96	0.4/0.4/0.4/0.95	0.99/0.99/0.99 1/1/1	$0.4 \\ 0.4$	0.99 1	1/0.99 1/0.98	0.41/0.99	0.96 0.96	0.96 0.96
	p=1000 p=1500	0.87/0.96/0.96 0.8/0.89/0.96	0.4/0.4/0.4/0.96 0.4/0.4/0.4/0.96	0.99/1/1	0.4	1	1/0.98	0.41/0.98 0.4/0.98	0.96	0.96
	p-1000	0.070.0070.00	0.1/0.1/0.1/0.00	, ,	sistency	1	1/0.50	0.4/0.50	0.51	
-	p=250	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
	p=500	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
hsnr	p=1000	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
	p=1500	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
	p=250	6/6/6	6/6/6/6	6/1.5/5.9	6	1.5	6/6	6/6	6	5.9
msnr	p=500 p=1000	6/6/6	6/6/6/5.9 6/6/6/5.7	5.9/0.3/5.6 5.6/0/4.7	6	0.3 0	5.9/6	6/6 6/5.9	6	5.8 5.6
	p=1000 p=1500	5.9/5.9/5.9 5.8/5.8/5.7	5.9/5.9/5.9/5.3	5.1/0/3.8	5.9	0	5.7/5.9 5.3/5.6	5.9/5.6	6	5.0
	p=250	0.2/0.1/0.5	5.5/5.5/5.5/0.3	0/0/0	5.5	0	1/1	4/1	1	0.9
	p=500	0.2/0.1/0.2	3.6/3.6/3.6/0.2	0/0/0	3.6	ő	0.7/0.7	2.8/0.7	0.7	0.6
lsnr	p=1000	0.2/0.1/0.1	2.1/2.1/2.1/0.1	0/0/0	2.1	0	0.5/0.5	1.8/0.5	0.5	0.4
	p=1500	0.2/0.1/0.1	1.5/1.5/1.5/0.1	0/0/0	1.5	0	0.4/0.4	1.3/0.4	0.4	0.3
				Number of	extra varia	bles				
	p=250	0.2/0/0.3	193/193/193/0.3	0/0/0	193	0	27.9/43.8	19.2/43.8	2.7	1
hsnr	p=500	2.5/0/0.3	193/193/193/0.3	0/0/0	193	0	31.8/58.1	53.8/58.1	3.9	1.3
110111	p=1000 p=1500	6.9/0.7/0.3 8.6/2.4/0.3	193/193/193/0.3 193/193/193/0.3	0/0/0 0/0/0	193 192.9	0	35.4/76.2 36.9/86	80.3/76.2 83.5/86	4.5 5	3.2
_	p=250	0.9/0.3/0.6	193/193/193/1	0.1/0/0.1	193	0	27.7/43.8	39.5/43.8	2.4	10.9
	p=500	4.3/0.8/0.9	193/193/193/1.6	0.2/0/0.1	193	0	31.4/57.4	89.5/57.4	4.1	20.8
msnr	p=1000	9.2/3/1.3	193/193/193/2.1	0.3/0/0.1	193	0	32/71.9	97.2/71.9	7.6	35.4
	p=1500	10.9/6.7/1.7	193.1/193.1/193.1/2.2	0.3/0/0.1	193	0	29.5/74.2	97.6/74.2	11.5	42.2
	p=250	0.3/0/0.6	193.5/193.5/193.5/0.4	0/0/0	193.5	0	6.1/7.2	65.5/7.2	6.3	5.1
lsnr	p=500	1.2/0.1/0.3	195.4/195.4/195.4/0.3	0/0/0	195.4	0	6.6/7.7	111.7/7.7	7.1	5.6
	p=1000 p=1500	2.5/0.5/0.3 4/1.7/0.2	196.9/196.9/196.9/0.3 197.5/197.5/197.5/0.3	0/0/0 0/0/0	196.9 197.4	0	6.5/9.2 6.8/9.4	112.7/9.2 111/9.4	$7.9 \\ 7.4$	5.9 6.5
	P-1900	4/1.1/0.2	101.0/101.0/101.0/0.0	0/0/0	131.4	0	0.0/ 3.4	111/ 3.4	1.4	0.0

Table S42: The performance of BOSS for high dimensional data, Sparse-Ex2, ρ =0.9, n=200

		$\begin{array}{c} {\rm BOSS} \\ {\rm C}_p/{\rm AICc/CV} \end{array}$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
				% worse than the	best possi	ible BOSS				
	p=250	18/13/68	225/225/225/128	37/137/49	225	116	186/147	-7/147	-36	116
hsnr	p=500	106/69/105	70/70/70/141	96/180/111	70	174	275/234	-31/234	-30	221
nsnr	p=1000	97/68/108	22/22/22/129	91/159/106	22	158	177/178	21/178	158	176
	p=1500	91/84/116	7/7/7/132	111/147/122	7	147	137/133	8/133	134	131
	p=250	23/21/18	68/68/68/61	57/82/64	68	82	75/70	-4/70	-9	70
msnr	p=500	14/14/15	21/21/21/26	24/32/27	21	32	27/27	6/27	27	27
mam	p=1000 p=1500	11/11/13 10/10/12	11/11/11/19 7/7/7/15	18/22/20	11 7	22 17	18/18 12/12	2/18 -2/12	19 12	18 12
	•	, ,	, , ,	15/17/16						
	p=250 p=500	3/3/6	157/157/157/7 153/153/153/5	$\frac{3/3/3}{1/1/1}$	157 153	3 1	$\frac{3}{4}$ $\frac{2}{2}$	83/4 132/2	5 4	6 5
lsnr	p=500 p=1000	5/1/5 12/2/4	153/153/153/5	0/0/0	153	0	1/2	138/2	4	5 5
	p=1500	21/9/4	151/151/151/5	0/0/0	151	0	1/2	140/2	3	5
	1	7-7	.,.,.,.	, ,	e efficiency			-/		
	p=250	0.54/0.56/0.38	0.2/0.2/0.2/0.28	0.47/0.27/0.43	0.2	0.3	0.22/0.26	0.69/0.26	1	0.3
hsnr	p=500	0.34/0.41/0.34	0.41/0.41/0.41/0.29	0.35/0.25/0.33	0.41	0.25	0.18/0.21	1/0.21	0.98	0.21
nsnr	p=1000	0.61/0.72/0.58	0.99/0.99/0.99/0.53	0.63/0.47/0.59	0.99	0.47	0.44/0.43	1/0.43	0.47	0.44
	p=1500	0.56/0.58/0.49	1/1/1/0.46	0.51/0.43/0.48	1	0.43	0.45/0.46	0.98/0.46	0.45	0.46
	p=250	0.74/0.76/0.77	0.54/0.54/0.54/0.57	0.58/0.5/0.56	0.54	0.5	0.52/0.54	0.95/0.54	1	0.54
msnr	p=500	0.93/0.93/0.92	0.88/0.88/0.88/0.84	0.85/0.8/0.83	0.88	0.8	0.83/0.83	1/0.83	0.84	0.83
	p=1000 p=1500	0.92/0.91/0.9 0.89/0.89/0.87	0.91/0.91/0.91/0.86 0.92/0.92/0.92/0.85	0.86/0.83/0.85 0.85/0.84/0.84	0.91 0.92	0.83 0.84	0.86/0.86 0.87/0.87	1/0.86 1/0.87	0.86 0.87	0.86 0.87
								,		
	p=250 p=500	0.99/1/0.97 0.96/1/0.96	0.4/0.4/0.4/0.96 0.4/0.4/0.4/0.96	$\frac{1}{1}$ $\frac{1}{1}$	0.4	1 1	0.99/0.99 0.99/0.99	0.56/0.99 0.43/0.99	0.97 0.97	0.97 0.96
lsnr	p=300 p=1000	0.9/0.98/0.96	0.4/0.4/0.4/0.96	1/1/1	0.4	1	0.99/0.99	0.42/0.98	0.97	0.96
	p=1500	0.83/0.92/0.96	0.4/0.4/0.4/0.96	1/1/1	0.4	1	1/0.98	0.42/0.98	0.97	0.95
	-		, , ,	Spar	sistency			,		
	p=250	6/6/6	6/6/6/5.8	5.6/4.7/5.5	6	4.7	6/6	6/6	6	6
hsnr	p=500	4.7/4.7/4.7	5.4/5.4/5.4/3.4	3.9/2.2/3.6	5.4	2.2	1.4/2.2	6/2.2	6	2.3
nsm	p=1000	3.7/3.7/3.5	4.3/4.3/4.3/1.9	2.9/0.8/2.5	4.3	0.8	0.8/0.7	3.1/0.7	1.2	0.8
	p=1500	2.4/2.4/2.1	3/3/3/0.8	1.5/0.1/1.1	3	0.1	0.8/0.8	1.9/0.8	0.8	0.8
	p=250	4.1/3.9/4.5	5.8/5.8/5.8/1.6	1.5/0.1/1.1	5.8	0.1	1/1.5	5.8/1.5	5.7	1.5
msnr	p=500 p=1000	1.9/1.8/1.9 1.3/1.2/1.1	4/4/4/0.6 2.6/2.6/2.6/0.4	0.7/0/0.4 0.4/0/0.2	4 2.6	0	0.7/0.6 0.4/0.4	2.5/0.6 1.7/0.4	0.7 0.4	0.5 0.4
	p=1500	0.8/0.8/0.6	1.8/1.8/1.8/0.2	0.2/0/0.1	1.8	0	0.4/0.4	1.3/0.4	0.4	0.4
	p=250	0.1/0.1/0.2	4.9/4.9/4.9/0.1	0/0/0	4.9	0	0.2/0.2	1.4/0.2	0.2	0.2
	p=500	0.1/0.1/0.2	2.5/2.5/2.5/0	0/0/0	2.5	0	0.2/0.2	1.3/0.1	0.2	0.2
lsnr	p=1000	0.1/0/0	1.3/1.3/1.3/0	0/0/0	1.3	ő	0.1/0.1	0.8/0.1	0.1	0.1
	p=1500	0/0/0	0.9/0.9/0.9/0	0/0/0	0.9	0	0.1/0.1	0.5/0.1	0.1	0.1
				Number of	extra varia	bles				
	p=250	9.4/6.3/11.3	193/193/193/23.8	4/2/3.6	193	0	68.2/108.6	9.5/108.6	4.2	49.7
hsnr	p=500	12.7/9/11.2	193.6/193.6/193.6/10.4	3.4/1/2.6	193.6	0	9.6/35.3	33.7/35.3	56.3	36.3
	p=1000 p=1500	6.3/6.8/5.8 6.4/5.7/3.7	194.7/194.7/194.7/3.5 196/196/196/1.1	2.3/0.3/1.5 1.1/0/0.6	194.6 195.9	0	6.1/6.3 8.6/13.4	89/6.3 94/13.4	16.4 11.3	4.9 9.9
	•	, ,	, , ,	, ,				,		
	p=250 p=500	13.6/10.4/16.5 3.8/3.2/4.4	193.2/193.2/193.2/2.9 195/195/195/0.9	0.5/0/0.2 0.2/0/0.1	193.2 195	0	6.8/19.3 5.9/7.3	52.7/19.3 82.8/7.3	65.4 7.7	16.7 5.1
msnr	p=300 p=1000	2.9/2.1/1.8	196.4/196.3/196.4/0.4	0.1/0/0	196.3	0	5.5/6.2	95.5/6.2	5.2	4.8
	p=1500	3.9/2.7/1	197.2/197.2/197.2/0.4	0/0/0	197.1	0	6.8/8.8	97.8/8.8	7.3	6.1
	p=250	0.2/0.1/0.6	194.1/194.1/194.1/0.3	0/0/0	194.1	0	4.5/4.4	51.1/4.4	4.2	3.3
	p=500	0.7/0.1/0.3	196.5/196.5/196.5/0.3	0/0/0	196.5	ő	5.5/5.6	102.5/5.6	5.4	4.5
lsnr	p=1000	1.9/0.3/0.3	197.7/197.7/197.7/0.3	0/0/0	197.7	0	5.6/7.5	105.8/7.5	6	5.2
	p=1500	3.4/1.3/0.2	198.1/198.1/198.1/0.3	0/0/0	198.1	0	6.1/7.7	105.5/7.7	6.3	6

Table S43: The performance of BOSS for high dimensional data, Sparse-Ex3, ρ =0, n=200

		$\begin{array}{c c} \operatorname{BOSS} \\ \operatorname{C}_p/\operatorname{AICc/CV} \end{array}$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
				% worse than the	best possi	ble BOSS				
	p=250	6/1/18	501/501/501/18	2/0/1	501	0	131/134	189/134	18	15
hsnr	p = 500	24/2/18	501/501/501/19	2/0/1	501	0	151/155	364/155	23	17
nsnr	p=1000	74/12/20	501/501/501/20	2/0/0	501	0	173/179	417/179	24	16
	p=1500	128/40/19	501/501/501/21	2/0/0	501	0	185/193	430/193	27	15
	p=250	21/10/19	498/498/498/19	6/221/10	498	223	130/133	313/133	20	20
msnr	p=500	57/24/20	496/496/496/21	9/383/21	496	385	149/153	448/153	25	26
mom	p=1000 p=1500	134/63/24 194/121/24	494/494/494/24 493/493/493/26	13/509/45 17/553/64	494 493	510 553	170/177 181/190	464/177 467/190	29 29	36 42
	•	, ,	, , ,	, ,						
.	p=250 p=500	18/18/15 24/14/13	168/168/168/15 154/154/154/12	19/24/21 14/18/16	168 154	24 18	-4/0	124/0 148/0	3 4	2 3
lsnr	p=500 p=1000	37/18/10	144/144/144/10	11/13/12	144	13	-3/0 -3/2	140/2	4	4
.	p=1500	46/29/9	139/139/139/10	9/11/10	139	11	-3/3	137/3	5	5
	1	-7 -7-		, ,	efficiency		-,-	,		
T	p=250	0.95/0.99/0.85	0.17/0.17/0.17/0.85	0.98/1/0.99	0.17	1	0.43/0.43	0.35/0.43	0.85	0.87
hsnr	p=500	0.81/0.98/0.85	0.17/0.17/0.17/0.84	0.98/1/0.99	0.17	1	0.4/0.39	0.22/0.39	0.81	0.86
IISIII	p=1000	0.58/0.9/0.84	0.17/0.17/0.17/0.83	0.98/1/1	0.17	1	0.37/0.36	0.19/0.36	0.8	0.86
	p=1500	0.44/0.72/0.84	0.17/0.17/0.17/0.83	0.98/1/1	0.17	1	0.35/0.34	0.19/0.34	0.79	0.87
.	p=250	0.88/0.96/0.89	0.18/0.18/0.18/0.89	1/0.33/0.96	0.18	0.33	0.46/0.46	0.26/0.46	0.88	0.88
msnr	p=500	0.69/0.88/0.91	0.18/0.18/0.18/0.91	1/0.23/0.91	0.18	0.23	0.44/0.43	0.2/0.43	0.88	0.87
	p=1000 p=1500	0.48/0.69/0.91 0.4/0.53/0.94	0.19/0.19/0.19/0.91 0.2/0.2/0.2/0.93	1/0.19/0.78 1/0.18/0.71	0.19	0.19 0.18	0.42/0.41 0.42/0.4	0.2/0.41 0.21/0.4	0.88 0.91	0.83 0.83
	p=1500 p=250				0.36	0.78	1/0.97	0.43/0.97	0.94	0.94
.	p=250 p=500	0.82/0.82/0.84 0.78/0.84/0.86	0.36/0.36/0.36/0.84 0.38/0.38/0.38/0.86	0.81/0.78/0.8 0.84/0.82/0.83	0.36	0.78	1/0.97	0.43/0.97	0.94	0.94
lsnr	p=1000	0.71/0.82/0.88	0.4/0.4/0.4/0.88	0.88/0.86/0.87	0.36	0.86	1/0.95	0.4/0.95	0.94	0.94
. 1	p=1500	0.67/0.75/0.89	0.41/0.41/0.41/0.89	0.89/0.88/0.88	0.41	0.88	1/0.95	0.41/0.95	0.93	0.93
				Spars	sistency		-			i
	p=250	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
hsnr	p=500	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
115111	p=1000	6/6/6	6/6/6/6	6/6/6 6/6/6	6 6	6 6	6/6	6/6 6/6	6 6	6
	p=1500	6/6/6	6/6/6/6	, ,			6/6			
.	p=250 p=500	6/6/6 6/6/6	6/6/6/6	6/4.2/5.9 5.9/2.7/5.9	6 6	4.2 2.7	6/6	6/6 6/6	6 6	6
msnr	p=500 p=1000	6/6/6	6/6/6/6 6/6/6/6	5.9/2.1/5.9 5.9/1.4/5.7	6	1.4	6/6 6/6	6/6	6	6
.	p=1500	6/6/6	6/6/6/6	5.9/0.9/5.5	6	0.9	6/6	6/6	6	6
	p=250	1.2/0.7/1.4	5.6/5.6/5.6/1.4	0.5/0/0.3	5.6	0	3.9/3.9	4.5/3.9	3.3	3.1
.	p=500	1.3/0.7/1	4.4/4.4/4.4/1	0.3/0/0.1	4.4	0	3.3/3.4	4/3.4	2.8	2.6
lsnr	p=1000	1.3/0.8/0.7	3.2/3.2/3.2/0.7	0.2/0/0.1	3.2	0	2.6/2.8	3.1/2.8	2.3	2.2
.	p=1500	1.3/0.9/0.6	2.6/2.6/2.6/0.6	0.2/0/0.1	2.6	0	2.4/2.4	2.7/2.4	2	2
				Number of	extra varia	bles				
.	p=250	0.4/0/0.3	193/193/193/0.3	0/0/0	193	0	15.1/22.3	29.1/22.3	2.5	0.5
hsnr	p=500	1.4/0/0.3	193/193/193/0.3	0/0/0	193	0	17.1/27.7	74.4/27.7	3.6	0.8
	p=1000 p=1500	3.9/0.4/0.3 6.8/1.9/0.2	193/193/193/0.3 193/193/193/0.3	0/0/0 0/0/0	193 192.9	0	19.2/35.4 19.3/40.1	87.2/35.4 89.7/40.1	4.2 4.7	0.8 0.8
	•	, ,		0/0/0		0		,	1.7	
.	p=250 p=500	0.6/0.1/0.3 2/0.3/0.3	193/193/193/0.3 193/193/193/0.3	0/0/0	193 193	0	15.1/22.3 17.2/27.7	49.9/22.3 97.2/27.7	2.4	0.6 1.2
msnr	p=300 p=1000	5.4/1.4/0.3	193/193/193/0.3	0/0/0	193	0	18.9/35.8	100.1/35.8	2.4	1.3
.	p=1500	8.3/3.8/0.3	193/193/193/0.3	0/0/0	192.9	0	19.4/40.4	99.6/40.4	2.6	1.8
-	p=250	1/0.1/0.5	193.4/193.4/193.4/0.5	0/0/0	193.4	0	10.8/14.6	69.8/14.6	10.3	7
										8.2
' ,	p=500	2.6/0.2/0.5	194.6/194.6/194.6/0.4	0/0/0	194.6	0	11.3/15.7	113.8/15.7	11	8.2
lsnr	p=500 p=1000 p=1500	2.6/0.2/0.5 6.1/1.5/0.3 8/4/0.3	194.6/194.6/194.6/0.4 195.8/195.8/195.8/0.3 196.3/196.3/196.3/0.3	0/0/0 0/0/0 0/0/0	194.6 195.8 196.3	0 0 0	11.2/18.9 11.1/20	113.8/15.7 113.7/18.9 111.8/20	11 13.5 14.5	10.2 11.4

Table S44: The performance of BOSS for high dimensional data, Sparse-Ex3, ρ =0.5, n=200

		$\frac{\mathrm{BOSS}}{\mathrm{C}_p/\mathrm{AICc/CV}}$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
				% worse than the	best possi	ible BOSS				
	p=250 p=500	6/1/16 24/2/18	495/495/495/19 495/495/495/20	2/0/1 2/0/1	495 495	0	135/137 156/159	182/137 356/159	19 24	16 16
hsnr	p=1000	79/11/19	495/495/495/20	2/0/0	495	0	179/185	412/185	25	15
	p=1500	124/44/18	495/495/495/20	2/0/0	495	0	191/199	425/199	26	14
	p=250 p=500	22/11/18 61/26/19	492/492/492/20 490/490/490/22	4/234/8 7/408/19	492 490	236 409	134/136 153/157	304/136 441/157	19 24	24 33
msnr	p=500 p=1000	133/62/23	488/488/488/24	11/515/41	488	409 515	176/182	458/182	27	33 46
	p=1500	190/122/22	486/486/486/24	15/549/63	486	549	187/195	460/195	27	56
	p=250	17/17/14	166/166/166/14	17/21/19	166	21	-3/0	122/0	4	3
lsnr	p=500	23/13/12	153/153/153/12	13/15/14	153	15	-3/1	148/1	4	3
	p=1000 p=1500	35/17/10 44/28/9	144/144/144/10 140/140/140/9	9/11/10 8/9/9	144 140	11 9	-3/2 -2/3	141/2 138/3	4 5	4 6
				Relative	efficiency		,			
	p=250	0.95/0.99/0.86	0.17/0.17/0.17/0.84	0.98/1/0.99	0.17	1	0.43/0.42	0.35/0.42	0.84	0.86
hsnr	p=500 p=1000	0.8/0.98/0.85 0.56/0.9/0.84	0.17/0.17/0.17/0.83 0.17/0.17/0.17/0.84	0.98/1/0.99 0.98/1/1	0.17 0.17	1 1	0.39/0.39 0.36/0.35	0.22/0.39 0.2/0.35	0.81 0.8	0.86 0.87
	p=1000 p=1500	0.45/0.7/0.85	0.17/0.17/0.17/0.84	0.98/1/1	0.17	1	0.34/0.33	0.2/0.33	0.8	0.88
	p=250	0.86/0.94/0.89	0.18/0.18/0.18/0.87	1/0.31/0.96	0.18	0.31	0.45/0.44	0.26/0.44	0.87	0.84
msnr	p=500	0.67/0.85/0.9	0.18/0.18/0.18/0.88	1/0.21/0.9	0.18	0.21	0.42/0.42	0.2/0.42	0.87	0.81
msnr	p=1000	0.48/0.68/0.9 0.39/0.52/0.94	0.19/0.19/0.19/0.9 0.2/0.2/0.2/0.92	1/0.18/0.79	0.19	0.18 0.18	0.4/0.39 0.4/0.39	0.2/0.39 0.2/0.39	0.88	0.76
	p=1500 p=250	0.83/0.83/0.85	0.2/0.2/0.2/0.92	1/0.18/0.7 0.83/0.8/0.82	0.2	0.18	1/0.97	0.2/0.39	0.94	0.73
	p=250 p=500	0.83/0.83/0.83	0.38/0.38/0.38/0.87	0.86/0.84/0.85	0.38	0.8	1/0.97	0.39/0.96	0.94	0.95
lsnr	p=1000	0.72/0.83/0.89	0.4/0.4/0.4/0.89	0.89/0.88/0.88	0.4	0.88	1/0.96	0.41/0.96	0.94	0.93
	p=1500	0.68/0.76/0.9	0.41/0.41/0.41/0.9	0.9/0.89/0.9	0.41	0.89	1/0.95	0.41/0.95	0.93	0.92
				Spar	sistency					
	p=250	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
hsnr	p=500 p=1000	6/6/6 6/6/6	6/6/6/6 6/6/6/6	6/6/6 6/6/6	6	6 6	6/6 6/6	6/6 6/6	6 6	6 6
	p=1500	6/6/6	6/6/6/6	6/6/6	6	6	6/6	6/6	6	6
	p=250	6/6/6	6/6/6/6	6/4/5.9	6	4	6/6	6/6	6	6
msnr	p=500	6/6/6	6/6/6/6	6/2.3/5.9	6	2.3	6/6	6/6	6	6
mom	p=1000 p=1500	6/6/6 6/6/6	6/6/6/6 6/6/6/6	5.9/1.2/5.7 5.9/0.8/5.5	6	1.2 0.8	6/6 6/6	6/6 6/6	6	6 5.9
	p=250	1.1/0.6/1.2	5.5/5.5/5.5/1.3	0.4/0/0.2	5.5	0	3.6/3.6	4.3/3.6	3	2.9
	p=500	1.2/0.5/0.9	4.2/4.2/4.2/0.9	0.3/0/0.1	4.2	0	3/3	3.8/3	2.6	2.4
lsnr	p=1000	1.1/0.7/0.6	3/3/3/0.6	0.2/0/0.1	3	0	2.3/2.4	2.9/2.4	2.1	2
	p=1500	1.2/0.8/0.5	2.5/2.5/2.5/0.5	0.2/0/0	2.5	0	2.1/2.2	2.5/2.2	1.9	1.7
	p=250	0.3/0/0.3	193/193/193/0.3	Number of 0/0/0	extra varia	bles 0	15.8/23.3	28.2/23.3	2.6	0.5
	p=250 p=500	1.4/0/0.3	193/193/193/0.3	0/0/0	193	0	17.7/29.6	73.4/29.6	3.7	0.6
hsnr	p=1000	4.4/0.4/0.3	193/193/193/0.3	0/0/0	193	0	19.6/37.8	87.6/37.8	4.1	0.6
	p=1500	6.7/2.2/0.2	193/193/193/0.3	0/0/0	192.9	0	20.4/42.7	89.5/42.7	4.6	0.5
	p=250	0.5/0.1/0.3	193/193/193/0.3	0/0/0	193	0	15.9/23.3	48.6/23.3	1.6	0.8
msnr	p=500 p=1000	2.3/0.4/0.3 5.5/1.4/0.3	193/193/193/0.3 193/193/193/0.3	0/0/0 0/0/0	193 193	0	18/29.7 19.6/37.9	96.8/29.7 100.4/37.9	2.2 2.5	1.7 1.8
	p=1000 p=1500	8.4/3.9/0.3	193/193/193/0.3	0/0/0	193	0	20.6/43	99.7/43	2.5	2.4
	p=250	0.8/0.1/0.5	193.5/193.5/193.5/0.5	0/0/0	193.5	0	10.3/14.4	69.3/14.4	10.3	7.1
lsnr	p=500	2.9/0.2/0.4	194.8/194.8/194.8/0.4	0/0/0	194.8	0	11.2/15.8	114.6/15.8	11.2	8.6
ıSIII	p=1000 p=1500	5.7/1.5/0.4 7.6/3.8/0.3	196/196/196/0.4 196.5/196.5/196.5/0.3	0/0/0 0/0/0	196 196.4	0	10.9/18.1 10.7/18.8	113.7/18.1 112.5/18.8	13.8 14.1	10.1 12
	h=1900	1.0/3.8/0.3	190.0/190.0/190.0/0.3	0/0/0	190.4	U	10.7/18.8	112.0/18.8	14.1	12

Table S45: The performance of BOSS for high dimensional data, Sparse-Ex3, ρ =0.9, n=200

		BOSS $C_p/AICc/CV$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
i				% worse than the	best possi	ible BOSS				
	p=250	8/3/30	477/477/477/33	3/13/4	477	13	135/137	167/137	17	16
hsnr	p=500	28/6/33	476/476/476/34	4/13/7	476	13	156/159	334/159	22	17
nsnr	p=1000	85/17/34	475/475/475/35	6/13/9	475	13	179/183	393/183	22	17
	p=1500	123/52/32	474/474/474/34	6/13/10	474	13	191/196	405/196	24	18
	p=250	15/7/12	367/367/367/13	2/172/4	367	172	91/92	217/92	3	13
msnr	p=500 p=1000	44/17/13 103/44/15	366/366/366/13 365/365/365/17	4/315/11 7/401/27	366 365	315 401	107/110 126/130	327/110 342/130	5 10	21 37
	p=1500	140/92/16	364/364/364/17	9/426/42	364	426	135/139	343/139	11	45
	p=250	16/15/14	164/164/164/14	16/18/17	164	18	-3/0	118/0	3	3
١, ١	p=500	21/12/11	151/151/151/11	11/12/12	151	12	-3/0	145/0	2	3
lsnr	p=1000	33/15/9	142/142/142/9	8/9/8	142	9	-3/2	139/2	4	4
	p=1500	41/27/8	139/139/139/8	7/7/7	139	7	-3/2	136/2	4	6
					efficiency					
	p=250	0.96/1/0.79 0.81/0.99/0.79	0.18/0.18/0.18/0.77	1/0.91/0.99	0.18	0.91	0.44/0.43	0.39/0.43	0.88	0.89
hsnr	p=500 p=1000	0.81/0.99/0.79	0.18/0.18/0.18/0.78 0.18/0.18/0.18/0.78	1/0.92/0.98 1/0.94/0.97	0.18 0.18	0.92 0.94	0.41/0.4 0.38/0.37	0.24/0.4 0.21/0.37	0.86 0.87	0.89 0.91
	p=1500	0.47/0.7/0.8	0.18/0.18/0.18/0.79	1/0.94/0.96	0.18	0.94	0.36/0.36	0.21/0.36	0.85	0.91
	p=250	0.89/0.96/0.91	0.22/0.22/0.22/0.9	1/0.38/0.98	0.22	0.38	0.54/0.53	0.32/0.53	0.99	0.91
	p=500	0.72/0.88/0.92	0.22/0.22/0.22/0.91	1/0.25/0.93	0.22	0.25	0.5/0.49	0.24/0.49	0.99	0.86
msnr	p=1000	0.53/0.74/0.93	0.23/0.23/0.23/0.92	1/0.21/0.84	0.23	0.21	0.47/0.47	0.24/0.47	0.98	0.78
	p=1500	0.45/0.57/0.94	0.23/0.23/0.23/0.93	1/0.21/0.77	0.23	0.21	0.46/0.46	0.25/0.46	0.98	0.75
	p=250	0.83/0.84/0.85	0.37/0.37/0.37/0.85	0.84/0.82/0.83	0.37	0.82	1/0.97	0.45/0.97	0.94	0.94
lsnr	p=500	0.8/0.87/0.87	0.38/0.38/0.38/0.87	0.87/0.86/0.86	0.38	0.86	1/0.97	0.39/0.97	0.94	0.94
	p=1000 p=1500	0.73/0.84/0.89 0.69/0.76/0.9	0.4/0.4/0.4/0.89 0.41/0.41/0.41/0.9	0.9/0.89/0.89 0.91/0.91/0.91	0.4 0.41	0.89 0.91	1/0.95 1/0.95	0.41/0.95 0.41/0.95	0.93 0.93	0.93 0.92
	p=1000	0.09/0.10/0.9	0.41/0.41/0.41/0.9	, ,	sistency	0.31	1/0.55	0.41/0.55	0.55	0.92
_	p=250	6/6/6	6/6/6/6	6/5.9/6	6	5.9	6/6	6/6	6	6
	p=500	6/6/6	6/6/6/6	6/5.9/6	6	5.9	6/6	6/6	6	6
hsnr	p=1000	6/6/6	6/6/6/6	6/5.9/5.9	6	5.9	6/6	5.9/6	6	6
	p=1500	6/6/6	6/6/6/6	6/5.9/5.9	6	5.9	6/6	5.9/6	6	6
	p=250	5.5/5.5/5.5	5.9/5.9/5.9/5.5	5.5/3.7/5.5	5.9	3.7	6/6	5.6/6	5.8	5.9
msnr	p=500	5.5/5.5/5.5	5.8/5.8/5.8/5.5	5.5/2/5.4	5.8	2	6/6	5.6/6	5.8	5.9
1110111	p=1000 p=1500	5.5/5.5/5.5 5.5/5.5/5.5	5.6/5.6/5.6/5.5 5.6/5.6/5.6/5.5	5.5/0.9/5.3 5.5/0.6/5.1	5.6 5.6	0.9 0.6	6/6 5.9/6	5.5/6 5.5/6	5.8 5.8	5.8 5.8
	1 *	0.8/0.5/1	5.2/5.2/5.2/1	0.3/0/0.2	5.2	0.0	3/3	3.5/3	2.6	2.4
	p=250 p=500	0.8/0.5/1	3.7/3.7/3.7/0.7	0.3/0/0.2	3.7	0	2.4/2.4	3.1/2.4	2.0	2.4
lsnr	p=1000	0.9/0.5/0.5	2.6/2.6/2.6/0.5	0.1/0/0	2.6	0	1.9/1.9	2.3/1.9	1.8	1.6
	p=1500	0.9/0.7/0.4	2.1/2.1/2.1/0.4	0.1/0/0	2.1	0	1.6/1.7	2/1.7	1.5	1.4
				Number of	extra varia	bles				
	p=250	0.3/0.1/0.6	193/193/193/0.7	0.1/0.1/0.1	193	0.1	17.2/25.2	26.8/25.2	2.8	0.8
hsnr	p=500	1.6/0.1/0.7	193/193/193/0.6	0.1/0.1/0.1	193	0.1	19.1/32.2	71.2/32.2	4	0.8
115111	p=1000 p=1500	5/0.7/0.6 7.3/2.8/0.5	193/193/193/0.6 193/193/193/0.5	0.1/0.1/0.1 0.1/0.1/0.1	193 192.9	0.1 0.1	21.2/40.2 22/45	87.3/40.2 89.8/45	4.6 5.4	0.8
	1 *						,	,		
	p=250 p=500	1/0.6/0.8 2.7/0.8/0.8	193.1/193.1/193.1/0.8 193.2/193.2/193.2/0.8	0.5/0.3/0.5 0.5/0.1/0.5	193.1 193.2	0.3 0.1	17.2/25.1 19.1/32.2	47.5/25.1 97.3/32.2	2 2.2	2 2.6
msnr	p=500 p=1000	6.6/1.9/0.8	193.2/193.2/193.2/0.8 193.4/193.3/193.4/0.8	0.5/0.1/0.5	193.2	0.1	21.1/40.6	100.4/40.6	3	3.4
	p=1500	9.1/4.8/0.8	193.4/193.4/193.4/0.8	0.5/0/0.4	193.3	0	21.8/44.9	100.5/44.9	3.3	4
	p=250	1/0.2/0.8	193.8/193.8/193.8/0.9	0.1/0/0	193.8	0	11.2/14.5	68.1/14.5	10.9	8.1
,	p=500	2.9/0.3/0.6	195.3/195.3/195.3/0.6	0/0/0	195.3	0	11.3/15.9	114.2/15.9	11.5	8.8
lsnr	p=1000	5.9/1.4/0.5	196.4/196.4/196.4/0.5	0/0/0	196.4	0	11.2/18.2	114.5/18.2	14	11
	p=1500	7.6/4.2/0.4	196.9/196.9/196.9/0.4	0/0/0	196.8	0	10.9/19.3	112.4/19.3	14.3	12.6

Table S46: The performance of BOSS for high dimensional data, Sparse-Ex4, ρ =0, n=200

		BOSS C _n /AICc/CV	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
i				% worse than the	best possi	ible BOSS		,		
i —	p=250	10/6/13	302/302/302/13	6/5/6	302	5	63/63	234/63	11	16
١.	p=500	23/6/11	294/294/294/12	4/3/4	294	3	73/75	281/75	12	16
hsnr	p=1000	56/13/12	289/289/289/12	3/2/2	289	2	84/87	280/87	13	12
	p=1500	78/31/11	286/286/286/11	3/1/2	286	1	90/93	278/93	13	12
	p=250	33/30/29	452/452/452/29	39/153/58	452	153	108/109	363/109	29	74
msnr	p=500	65/36/31	427/427/427/31	46/155/75	427 399	155	115/119	421/119	35 38	86
	p=1000 p=1500	116/62/36 153/109/38	399/399/399/37 386/386/386/37	51/150/89 55/146/95	386	150 146	$\frac{119}{127}$ $\frac{122}{131}$	396/127 383/131	38 41	95 100
_	p=250	35/35/28	275/275/275/28	38/47/42	275	47	19/22	201/22	21	23
1	p=500	39/27/23	244/244/244/23	29/35/32	244	35	14/19	242/19	19	21
lsnr	p=1000	51/27/19	217/217/217/19	21/24/23	217	24	10/16	217/16	16	19
	p=1500	63/40/17	207/207/207/18	18/20/20	207	20	9/15	206/15	14	19
					e efficiency					
	p=250 p=500	0.96/0.99/0.93 0.84/0.98/0.93	0.26/0.26/0.26/0.93 0.26/0.26/0.26/0.92	0.99/1/1 0.99/1/1	0.26 0.26	1 1	0.65/0.65 0.6/0.59	0.32/0.65 0.27/0.59	0.95 0.92	0.91 0.89
hsnr	p=500 p=1000	0.65/0.9/0.91	0.26/0.26/0.26/0.92	0.99/1/1	0.26	1	0.6/0.59	0.27/0.59	0.92	0.89
	p=1500	0.57/0.78/0.91	0.26/0.26/0.26/0.91	0.99/1/1	0.26	1	0.53/0.52	0.27/0.52	0.89	0.91
	p=250	0.97/0.99/1	0.23/0.23/0.23/1	0.93/0.51/0.81	0.23	0.51	0.62/0.62	0.28/0.62	0.99	0.74
	p=500	0.79/0.96/1	0.25/0.25/0.25/1	0.89/0.51/0.75	0.25	0.51	0.61/0.59	0.25/0.59	0.97	0.7
msnr	p=1000	0.63/0.84/1	0.27/0.27/0.27/0.99	0.9/0.54/0.72	0.27	0.54	0.62/0.6	0.27/0.6	0.99	0.69
	p=1500	0.54/0.66/0.99	0.28/0.28/0.28/1	0.88/0.56/0.7	0.28	0.56	0.62/0.59	0.28/0.59	0.97	0.69
	p=250	0.88/0.88/0.93	0.32/0.32/0.32/0.93	0.86/0.81/0.84	0.32	0.81	1/0.97	0.39/0.97	0.98	0.96
lsnr	p=500 p=1000	0.82/0.9/0.93 0.73/0.87/0.93	0.33/0.33/0.33/0.93 0.35/0.35/0.35/0.93	0.89/0.85/0.86 0.91/0.89/0.89	0.33 0.35	0.85 0.89	1/0.96 1/0.95	0.33/0.96 0.35/0.95	0.96 0.95	0.95 0.93
	p=1500	0.67/0.78/0.93	0.35/0.35/0.35/0.92	0.92/0.9/0.91	0.35	0.9	1/0.94	0.35/0.94	0.95	0.91
	1		, , ,		sistency		,	,		
<u> </u>	p=250	4.1/4.1/4.3	5.8/5.8/5.8/4.2	4.1/4/4	5.8	4	5/5.2	5.4/5.2	4.5	4.2
١.	p=500	4.2/4.1/4.2	5.3/5.3/5.3/4.2	4/4/4	5.3	4	4.8/4.9	5.1/4.9	4.4	4.1
hsnr	p=1000	4.2/4.1/4.1	4.9/4.9/4.9/4.1	4/4/4	4.9	4	4.6/4.8	4.8/4.8	4.3	4
	p=1500	4.2/4.1/4.1	4.7/4.7/4.1	4/4/4	4.7	4	4.5/4.6	4.6/4.6	4.3	4
	p=250	3.8/3.7/3.9	5.6/5.6/5.6/3.9	3.6/2.3/3.4	5.6 4.9	2.3	4.3/4.3	4.8/4.3	4	3.8 3.6
msnr	p=500 p=1000	3.9/3.7/3.8 3.9/3.7/3.7	4.9/4.9/4.9/3.8 4.5/4.5/4.5/3.7	3.4/2.2/3.1 3.3/2/2.8	4.9	2.2	4.1/4.2 $4/4.1$	4.6/4.2 4.3/4.1	3.9 3.9	3.4
	p=1500	3.9/3.8/3.6	4.3/4.3/4.3/3.6	3.2/2/2.7	4.3	2	3.8/4	4.1/4	3.8	3.3
<u> </u>	p=250	0.8/0.5/1.2	5.3/5.3/5.3/1.2	0.4/0/0.2	5.3	0	2.2/2.2	3.7/2.2	2	1.8
١,	p=500	0.9/0.5/0.9	3.8/3.8/3.8/0.9	0.3/0/0.1	3.8	0	1.9/1.8	3.3/1.8	1.7	1.6
lsnr	p=1000	0.9/0.6/0.6	2.7/2.7/2.7/0.6	0.2/0/0.1	2.7	0	1.6/1.5	2.5/1.5	1.4	1.3
	p=1500	1/0.7/0.5	2.3/2.3/2.3/0.5	0.2/0/0	2.3	0	1.4/1.4	2.1/1.4	1.3	1.2
				Number of						
	p=250	0.2/0/0.4	193.2/193.2/193.2/0.3	0/0/0	193.2	0	16.1/22.7	67.5/22.7	3.2	1.1
hsnr	p=500 p=1000	2/0.1/0.3 5.1/0.7/0.3	193.7/193.7/193.7/0.3 194.1/194.1/194.1/0.3	0/0/0 0/0/0	193.7 194.1	0	17.9/29.1 19.2/36.7	101.9/29.1 96.1/36.7	4.2 5.1	1.6 0.9
	p=1000 p=1500	7.3/2.4/0.3	194.3/194.3/194.3/0.3	0/0/0	194.1	0	20.2/40.2	92.2/40.2	5.7	1
	p=250	0.5/0.1/0.4	193.4/193.4/193.4/0.4	0/0/0	193.4	0	15/20.1	73/20.1	2.7	3.1
mon-	p=500	2.4/0.3/0.4	194.1/194.1/194.1/0.4	0/0/0	194.1	0	16.8/26.3	117/26.3	4.2	4.1
msnr	p=1000	5.9/1.5/0.4	194.5/194.5/194.5/0.4	0/0/0	194.5	0	18.1/32.9	111.4/32.9	5	5.3
<u></u>	p=1500	8.2/4.3/0.4	194.7/194.7/194.7/0.4	0/0/0	194.7	0	18.2/35.6	106.8/35.6	6.1	5.6
	p=250	0.4/0.1/0.5	193.7/193.7/193.7/0.5	0/0/0	193.7	0	9.1/11	67/11	6.8	5.6
lsnr	p=500 p=1000	1.9/0.1/0.4 4.6/1/0.3	195.2/195.2/195.2/0.4 196.2/196.2/196.2/0.3	0/0/0 0/0/0	195.2 196.2	0	10.2/12.8 10.3/15.7	128.2/12.8 126.3/15.7	8.4 10.6	6.8 9.1
	p=1000 p=1500	4.6/1/0.3 6.6/2.9/0.3	196.2/196.2/196.2/0.3	0/0/0	196.2	0	10.3/15.7	126.3/15.7	10.6	10.8
	P-1000	1 5.0/2.0/0.0		0/0/0	100.1		10/10.0	-21.0/10.0	11.0	10.0

Table S47: The performance of BOSS for high dimensional data, Sparse-Ex4, ρ =0.5, n=200

		$\begin{array}{c c} \operatorname{BOSS} \\ \operatorname{C}_p/\operatorname{AICc/CV} \end{array}$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
				% worse than the	best possi	ible BOSS				
	p=250 p=500	9/5/12 26/4/11	292/292/292/13 283/283/283/12	5/5/5 3/2/2	292 283	5 2	95/93 112/107	215/93 268/107	13 12	19 21
hsnr	p=1000 p=1500	59/13/11 84/37/11	278/278/278/12 277/277/277/12	$\frac{2/1/1}{1/0/1}$	278 277	1 0	132/125 145/135	268/125 268/135	12 12	30 39
	p=250	26/22/31	374/374/374/44	29/117/44	374	118	123/121	306/121	15	115
msnr	p=500 p=1000 p=1500	48/22/28 72/36/27 78/56/26	314/314/314/47 267/267/267/45 235/235/235/39	30/100/49 30/83/47 26/72/42	314 267 235	100 84 73	117/115 112/110 102/101	308/115 264/110 232/101	20 24 23	102 87 72
	p=250	25/24/21	251/251/251/33	32/37/35	251	37	30/32	180/32	25	35
lsnr	p=500 p=1000	26/17/17 30/14/12	216/216/216/24 187/187/187/15	21/24/23 11/12/12	216 187	24 12	20/23 11/14	214/23 186/14	21 14	26 17
	p=1500	36/22/11	177/177/177/12	8/9/8	177 e efficiency	9	7/11	177/11	12	15
	l - 050	1 0 00 /0 00 /0 03	0.07/0.07/0.07/0.00		0.27	1	0.52/0.54	0.33/0.54	0.93	0.88
hsnr	p=250 p=500 p=1000	0.96/0.99/0.93 0.81/0.98/0.92 0.63/0.89/0.91	0.27/0.27/0.27/0.92 0.27/0.27/0.27/0.91 0.27/0.27/0.27/0.9	0.99/1/1 0.99/1/1	0.27 0.27 0.27	1 1	0.53/0.54 0.48/0.49 0.43/0.45	0.28/0.49 0.27/0.45	0.93 0.91 0.9	0.84 0.77
	p=1000 p=1500	0.55/0.73/0.91	0.27/0.27/0.27/0.9	0.99/1/1 $0.99/1/1$	0.27	1	0.43/0.45 $0.41/0.43$	0.27/0.43	0.9	0.77
	p=250 p=500	0.91/0.94/0.88 0.81/0.98/0.94	0.24/0.24/0.24/0.8 0.29/0.29/0.29/0.82	0.89/0.53/0.8 0.93/0.6/0.81	0.24 0.29	0.53 0.6	0.52/0.52 0.55/0.56	0.28/0.52 0.29/0.56	1 1	0.54 0.6
msnr	p=1000 p=1500	0.72/0.91/0.97 0.69/0.79/0.98	0.34/0.34/0.34/0.85 0.37/0.37/0.37/0.88	0.95/0.67/0.84 0.98/0.71/0.87	$0.34 \\ 0.37$	$0.67 \\ 0.71$	0.58/0.59 $0.61/0.61$	0.34/0.59 0.37/0.61	1 1	$0.66 \\ 0.71$
	p=250 p=500	0.97/0.98/1 0.93/1/1	0.35/0.35/0.35/0.91 0.37/0.37/0.37/0.94	0.92/0.88/0.9 0.97/0.95/0.95	0.35 0.37	0.88 0.95	0.94/0.92 0.97/0.95	0.43/0.92 0.37/0.95	0.97 0.97	0.9
lsnr	p=300 p=1000 p=1500	0.85/0.97/0.98 0.79/0.88/0.97	0.37/0.37/0.37/0.94 0.39/0.39/0.39/0.96 0.39/0.39/0.39/0.96	1/0.99/0.99 1/0.99/0.99	0.39	0.99 0.99	1/0.97 1/0.96	0.39/0.97 0.39/0.96	0.97 0.96	0.94 0.93
	p=1300	1 0.79/0.88/0.97	0.39/0.39/0.39/0.90		sistency	0.99	1/0.90	0.39/0.90	0.90	0.93
	p=250	4.1/4.1/4.2	5.8/5.8/5.8/4.1	4/4/4	5.8	4	4.8/5	5.3/5	4.3	4
	p=500	4.1/4.1/4.1	5.2/5.2/5.2/4.1	4/4/4	5.2	4	4.5/4.7	5/4.7	4.2	4
hsnr	p=1000 p=1500	4.1/4.1/4 4.1/4.1/4	4.7/4.7/4.7/4 4.5/4.5/4.5/4	$\frac{4/4/4}{4/4/4}$	$\frac{4.7}{4.5}$	4	4.3/4.5 $4.2/4.4$	4.6/4.5 4.4/4.4	4.1 4.1	4 4
	p=250	3.9/3.9/3.9	5.6/5.6/5.6/3.7	3.5/2.3/3.3	5.6	2.3	4.1/4.3	4.8/4.3	4	3.3
msnr	p=500 p=1000	3.8/3.7/3.7 3.7/3.6/3.5	4.8/4.8/4.8/3.3 4.2/4.2/4.2/3.1	3.2/2.2/2.9 3/2.1/2.7	4.8 4.2	2.1	$\frac{3.8}{4}$ $\frac{3.4}{3.7}$	4.4/4 $4.1/3.7$	3.8 3.6	2.9 2.6
	p=1500	3.5/3.5/3.3	4/4/4/2.9	2.9/2/2.5	4	2	3.2/3.4	3.8/3.4	3.4	2.5
	p=250	0.8/0.6/1.2	5.3/5.3/5.3/0.7	0.3/0/0.1	5.3	0	1.4/1.2	3.4/1.2	1.4	1.1
lsnr	p=500 p=1000	0.7/0.5/0.7 0.5/0.3/0.3	3.6/3.6/3.6/0.4 2.3/2.3/2.3/0.2	0.1/0/0.1 0.1/0/0	3.6 2.3	0	0.9/0.9 0.6/0.6	2.8/0.9 1.7/0.6	1 0.6	0.7 0.5
	p=1000 p=1500	0.4/0.4/0.2	1.7/1.7/1.7/0.2	0.1/0/0	1.7	0	0.5/0.5	1.3/0.5	0.5	0.3
				Number of	extra varia	bles				i
	p=250	0.4/0/0.4	193.2/193.2/193.2/0.3	0/0/0	193.2	0	23.7/36.4	63.8/36.4	3.4	1.1
hsnr	p=500	2.7/0.1/0.3	193.8/193.8/193.8/0.3	0/0/0	193.8	0	26.1/46.1	104.6/46.1	4.1	1.4
110111	p=1000 p=1500	6.2/0.8/0.3 8.3/3.1/0.3	194.3/194.3/194.3/0.3 194.5/194.5/194.5/0.3	0/0/0 0/0/0	194.2 194.4	0	28.5/59.2 29.8/66	103.1/59.2 100.1/66	5.1 5.3	2.3 3.7
	p=250	0.9/0.4/0.8	193.4/193.4/193.4/0.9	0.1/0/0	193.4	0	21.7/32.8	74.5/32.8	4.6	6.5
msnr	p=500	3.4/0.7/0.9	194.2/194.2/194.2/0.9	0.1/0/0	194.2	0	22.8/39.7	116.2/39.7	7.4	5.5
	p=1000 p=1500	6.6/1.9/1 8.2/4.6/0.9	194.8/194.7/194.8/0.8 195/195/195/0.7	0.1/0/0 0.1/0/0	194.7 194.9	0	22.9/46.5 22.5/47.9	114.4/46.5 111.5/47.9	9.3 10.8	5.1 4.2
	p=250	0.6/0.2/1.1	193.7/193.7/193.7/0.6	0/0/0	193.7	0	8.6/10.2	68.8/10.2	6.8	7
lsnr	p=500	1.7/0.3/0.7 3.3/0.8/0.4	195.4/195.4/195.4/0.4 196.7/196.7/196.7/0.3	0/0/0 0/0/0	195.4 196.7	0	7.9/9.8 7.6/11.5	126.8/9.8 126.4/11.5	8.1 8.5	6.8 7.6
	p=1000 p=1500	3.3/0.8/0.4 4.7/2.3/0.3	196.7/196.7/196.7/0.3	0/0/0	196.7	0	7.5/11.5	126.4/11.5 122.8/12.2	8.5 9.4	9.2

Table S48: The performance of BOSS for high dimensional data, Sparse-Ex4, ρ =0.9, n=200

		${}^{\mathrm{BOSS}}_{\mathrm{C}_p/\mathrm{AICc/CV}}$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
				% worse than the	best poss	ible BOSS				
	p=250	13/5/35	249/249/249/75	6/10/6	249	3	182/149	140/149	4	151
hsnr	p=500	26/8/48	196/196/196/90	8/32/12	196	22	254/169	170/169	10	196
	p=1000	15/60/119	51/51/51/147	105/146/115	51	144	105/58	47/58	4	50
	p=1500	26/48/123	23/23/23/146	114/141/124	23	140	97/39	21/39	3	36
	p=250	19/21/23	144/144/144/79	51/102/60	144	101	86/72	100/72	20	67
msnr	p=500	16/14/17	66/66/66/53	34/60/40	66	60	60/50	62/50	-11	48
mam	p=1000	12/12/15	22/22/22/25	19/27/22	22	27	24/25	21/25	15	25
	p=1500	10/10/13	13/13/13/18	15/19/16	13	19	15/15	12/15	14	15
	p=250	11/10/14	197/197/197/20	16/16/16	197	16	17/17	160/17	20	20
lsnr	p=500	8/5/9	173/173/173/11	7/7/7	173 162	7 2	8/9	170/9	10 6	11 8
	p=1000 p=1500	15/4/6 23/10/5	162/162/162/7 158/158/158/6	$\frac{2/2/2}{1/1/1}$	158	1	$\frac{3}{5}$ $\frac{2}{3}$	$\frac{160}{5}$ $\frac{157}{3}$	5	7
	p-1000	20/10/0	100/100/100/0	, ,	e efficiency		2/0	101/0		
-	p=250	0.92/0.99/0.77	0.3/0.3/0.3/0.59	0.98/0.94/0.98	0.3	1	0.37/0.42	0.43/0.42	1	0.41
	p=500	0.85/1/0.73	0.36/0.36/0.36/0.57	1/0.82/0.96	0.36	0.88	0.37/0.42	0.4/0.4	0.98	0.36
hsnr	p=1000	0.91/0.65/0.48	0.69/0.69/0.69/0.42	0.51/0.42/0.49	0.69	0.43	0.51/0.66	0.71/0.66	1	0.7
	p=1500	0.81/0.69/0.46	0.83/0.83/0.83/0.42	0.48/0.43/0.46	0.83	0.43	0.52/0.74	0.85/0.74	1	0.76
	p=250	1/0.99/0.97	0.49/0.49/0.49/0.67	0.79/0.59/0.75	0.49	0.6	0.64/0.69	0.6/0.69	1	0.72
	p=500	0.76/0.78/0.76	0.53/0.53/0.53/0.58	0.66/0.55/0.63	0.53	0.55	0.55/0.59	0.55/0.59	1	0.6
msnr	p=1000	1/1/0.97	0.92/0.92/0.92/0.89	0.94/0.88/0.92	0.92	0.88	0.9/0.9	0.93/0.9	0.97	0.9
	p=1500	1/0.99/0.97	0.97/0.97/0.97/0.93	0.95/0.92/0.94	0.97	0.92	0.95/0.95	0.98/0.95	0.96	0.95
1	p=250	0.99/1/0.97	0.37/0.37/0.37/0.91	0.95/0.95/0.95	0.37	0.95	0.94/0.94	0.42/0.94	0.92	0.92
lsnr	p=500	0.98/1/0.96	0.39/0.39/0.39/0.95	0.98/0.98/0.99	0.39	0.98	0.97/0.97	0.39/0.97	0.95	0.95
15111	p=1000	0.89/0.98/0.97	0.39/0.39/0.39/0.96	1/1/1	0.39	1	0.99/0.97	0.39/0.97	0.96	0.95
	p=1500	0.82/0.92/0.96	0.39/0.39/0.39/0.95	1/1/1	0.39	1	0.99/0.98	0.39/0.98	0.96	0.95
					sistency					
	p=250	4.1/4.1/4.2	5.6/5.6/5.6/4.1	4/3.9/4	5.6	3.9	4.3/4.6	4.5/4.6	4.2	4.1
hsnr	p=500	4/4/4	4.8/4.8/4.8/4	3.9/3.7/3.8	4.8	3.7	$\frac{3.2}{4}$ $\frac{3}{3}$	4.3/4 2.5/3	4.2	3.1
	p=1000 p=1500	3.1/3/2.8 2.2/2.1/1.7	3.6/3.6/3.6/1.9 2.6/2.6/2.6/0.8	2/1.4/1.8 1.2/0.7/1	3.6 2.6	1.4 0.7	2.5/2.8	1.9/2.8	3.9 3.3	3 2.8
	1 *	, ,		2.2/1/1.9	5.4	1	2.9/3.2	3.9/3.2	2.9	2.9
	p=250 p=500	3.5/3.3/3.5 2.6/2.4/2.5	5.4/5.4/5.4/2.3 4/4/4/1	1.3/0.4/1	5.4 4	0.4	1.3/1.6	3.9/3.2 2.8/1.6	2.9	1.7
msnr	p=1000	1.1/1/1	2.4/2.4/2.4/0.4	0.5/0.1/0.4	2.4	0.1	0.6/0.6	1.5/0.6	1	0.5
	p=1500	0.8/0.7/0.5	1.6/1.6/1.6/0.2	0.3/0.1/0.2	1.6	0.1	0.5/0.5	1/0.5	0.5	0.4
	p=250	0.3/0.3/0.4	4.7/4.7/4.7/0.1	0.1/0/0	4.7	0	0.2/0.2	1.9/0.2	0.2	0.2
	p=500	0.2/0.1/0.1	2.5/2.5/2.5/0	0/0/0	2.5	0	0.2/0.1	1.3/0.1	0.1	0.1
lsnr	p=1000	0.1/0.1/0	1.3/1.3/1.3/0	0/0/0	1.3	0	0.1/0.1	0.7/0.1	0.1	0.1
	p=1500	0.1/0/0	0.8/0.8/0.8/0	0/0/0	0.8	0	0.1/0.1	0.5/0.1	0.1	0.1
				Number of	extra varia	bles				
	p=250	2.9/1.2/3.6	193.4/193.4/193.4/7.3	0.8/0.7/0.8	193.4	0	55.7/90.9	49.1/90.9	9.3	39.6
hsnr	p=500	7.8/2.5/4.9	194.2/194.2/194.2/11.5	1.8/1.2/1.6	194.2	0	44.1/104.6	96/104.6	33.9	18.9
lisiii	p=1000	24.7/10.1/6.6	195.4/195.4/195.4/5.9	2.5/0.9/2	195.4	0	50.1/93.8	108.1/93.8	87.7	40.7
	p=1500	28.5/18.4/4.5	196.4/196.4/196.4/2.1	1.7/0.5/1.1	196.3	0	43/101.4	109.6/101.4	84.5	61.6
	p=250	9.9/7.2/9.2	193.6/193.6/193.6/6.6	1.6/0.2/1.2	193.6	0	33.4/55.5	68.7/55.5	24.4	27.8
msnr	p=500	11.9/6.4/7.4	195/195/195/2	1.1/0.1/0.6	195	0	15.2/36.7	112.9/36.7	41 25.6	24.6
	p=1000 p=1500	4.7/2.9/2.7 5.4/3.3/1.4	196.6/196.6/196.6/0.8 197.4/197.4/197.4/0.6	0.4/0/0.2 0.2/0/0.1	196.5 197.3	0	8.2/11 8.6/11.9	115.1/11 113.4/11.9	25.6 10.1	7.5 7.8
								•		
	p=250	0.7/0.6/1.5	194.3/194.3/194.3/0.3	0/0/0	194.3 196.5	0	4.2/3.8	79.1/3.8	4.2 4.7	2.8 3.9
lsnr	p=500 p=1000	0.6/0.2/0.5 2.1/0.3/0.3	196.5/196.5/196.5/0.3 197.7/197.7/197.7/0.3	0/0/0 0/0/0	196.5	0	4.7/5.2 5.9/8.1	123.5/5.2 121.3/8.1	6.3	5.5
	p=1000 p=1500	3.6/1.3/0.3	198.2/198.2/198.2/0.3	0/0/0	198.1	0	6.5/8.5	119.2/8.5	7	6.6
	1 . 2000	,, 0.00	,,, 0.0	~/ ~/ ~			0.0,0.0		•	0.0

Table S49: The performance of BOSS for high dimensional data, Dense, ρ =0, n=200

		BOSS $C_p/AICc/CV$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
				% worse than the	best poss	ible BOSS				
hsnr	p=250 p=500 p=1000 p=1500	11/14/14 15/9/12 18/9/10 20/13/10	68/68/68/13 55/55/55/12 45/45/45/10 41/41/41/10	35/166/50 33/147/74 38/132/101 46/126/109	68 55 45 41	166 147 132 126	18/9 25/12 32/13 36/15	5/9 23/12 27/13 26/15	3 3 1 1	16 19 20 18
	p=250	13/19/16	76/76/76/16	32/69/35	76	69	5/1	27/1	3	7
msnr	p=500 p=1000 p=1500	15/11/13 17/10/9 18/13/8	60/60/60/13 49/49/49/9 44/44/44/8	21/68/26 $14/66/21$ $12/64/22$	60 49 44	68 66 64	5/1 5/1 5/1	47/1 41/1 38/1	3 2 1	7 7 6
lsnr	p=250 p=500 p=1000 p=1500	11/9/9 16/7/8 26/11/7 35/21/6	$\begin{array}{c} 156/156/156/9 \\ 150/150/150/8 \\ 145/145/145/7 \\ 143/143/143/6 \end{array}$	8/9/9 $6/6/6$ $4/4/4$ $4/3/3$	156 150 145 143	9 6 4 3	-3/0 -2/1 -2/2 -2/3	112/0 $143/1$ $141/2$ $140/3$	2 3 4 4	3 3 5 6
				Relativ	e efficiency	7				
hsnr	p=250 p=500 p=1000 p=1500	0.93/0.91/0.91 0.89/0.94/0.91 0.86/0.93/0.92 0.84/0.89/0.92	0.62/0.62/0.62/0.91 0.66/0.66/0.66/0.92 0.7/0.7/0.70.92 0.72/0.72/0.72/0.92	0.76/0.39/0.69 0.77/0.42/0.59 0.74/0.44/0.5 0.69/0.45/0.48	0.62 0.66 0.7 0.72	0.39 0.42 0.44 0.45	0.88/0.95 0.82/0.92 0.76/0.89 0.74/0.88	0.99/0.95 0.84/0.92 0.8/0.89 0.8/0.88	1 1 1 1	0.89 0.87 0.85 0.85
msnr	p=250 p=500 p=1000 p=1500	0.9/0.85/0.87 0.87/0.9/0.89 0.86/0.92/0.92 0.86/0.89/0.94	0.57/0.57/0.57/0.87 0.63/0.63/0.63/0.89 0.68/0.68/0.68/0.92 0.7/0.7/0.7/0.94	0.77/0.6/0.75 0.83/0.6/0.8 0.88/0.61/0.83 0.9/0.62/0.83	0.57 0.63 0.68 0.7	0.6 0.6 0.61 0.62	0.97/1 0.96/1 0.96/1 0.96/1	0.8/1 $0.68/1$ $0.72/1$ $0.73/1$	0.98 0.98 0.99	0.95 0.94 0.95 0.96
lsnr	p=250 p=500 p=1000 p=1500	0.88/0.89/0.89 0.85/0.91/0.91 0.78/0.88/0.92 0.73/0.81/0.93	0.38/0.38/0.38/0.89 0.39/0.39/0.39/0.9 0.4/0.4/0.4/0.92 0.4/0.4/0.4/0.92	0.9/0.89/0.89 0.92/0.92/0.92 0.94/0.94/0.94 0.95/0.95/0.95	0.38 0.39 0.4 0.4	0.89 0.92 0.94 0.95	1/0.97 1/0.97 1/0.96 1/0.95	0.46/0.97 0.4/0.97 0.41/0.96 0.41/0.95	0.95 0.95 0.95 0.94	0.95 0.95 0.93 0.93
				Spar	sistency					
hsnr	p=250 p=500 p=1000 p=1500	21.3/14.8/16.5 26.8/15.6/14.8 29.9/19.2/13.7 29.3/23.6/13.5	199/199/199/16.3 199/199/199/14.5 199/199/199/13.6 199/199/199/13.3	11.3/3.1/10.1 10.7/3/7.8 9.6/3/5.1 8.8/3/4.1	199 199 199 198.9	3.1 3 3 3	47.7/74.1 47.2/87.8 45.9/99 45.4/106.3	47.2/74.1 80.7/87.8 96.1/99 98/106.3	32.1 30.9 27.7 27.1	35.5 34.5 34 36.8
msnr	p=250 p=500 p=1000 p=1500	12/5.9/7.9 16.3/6.4/5.7 18.6/9.8/4.4 19.6/13.9/3.9	$\begin{array}{c} 199/199/199/7.6 \\ 199/199/199/5.6 \\ 199/199/199/4.4 \\ 199/199/199/3.9 \end{array}$	3.2/1.5/3 3.1/0.8/2.7 2.9/0.3/2.5 2.9/0.2/2.3	199 199 199 198.9	1.5 0.8 0.3 0.2	32.7/49.7 30.5/54.7 27.7/57.1 27.2/59	57.8/49.7 103.2/54.7 106.3/57.1 106.4/59	27.7 26.2 22.8 20.7	27.8 25.8 20.7 19.8
lsnr	p=250 p=500 p=1000 p=1500	1.1/0.3/1.1 2.6/0.4/0.8 5/1.5/0.6 6.5/3.4/0.5	199/199/199/1.1 199/199/199/0.8 199/199/199/0.6 199/199/199/0.5	0.2/0/0.1 0.1/0/0.1 0.1/0/0 0.1/0/0	199 199 199 198.9	0 0 0 0	11.1/14.7 11.1/14.8 10.6/16.6 10/17.6	72.2/14.7 117.1/14.8 114.9/16.6 113.5/17.6	11.3 12.5 12.5 12.8	9.5 9.1 10.5 11.8
				Number of	extra varia	ables				
hsnr	p=250 p=500 p=1000 p=1500	-/-/- -/-/- -/-/- -/-/-	-/-/-/- -/-/-/- -/-/-/- -/-/-/-	-/-/- -/-/- -/-/- -/-/-	-	- - -	-/- -/- -/- -/-	-/- -/- -/- -/-	- - - -	- - -
msnr	p=250 p=500 p=1000	-/-/- -/-/- -/-/-	-/-/-/- -/-/- -/-/-	-/-/- -/-/- -/-/-	- - -	- - -	-/- -/- -/-	-/- -/- -/-	- - -	- - -
lsnr	p=1500 p=250 p=500 p=1000 p=1500	-/-/- -/-/- -/-/- -/-/-	-/-/- -/-/- -/-/-/- -/-/-	-/-/- -/-/- -/-/- -/-/-	- - - -	- - -	-/- -/- -/- -/-	-/- -/- -/- -/-	- - - -	- - -

Table S50: The performance of BOSS for high dimensional data, Dense, ρ =0.5, n=200

		$\frac{\mathrm{BOSS}}{\mathrm{C}_p/\mathrm{AICc/CV}}$	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
				% worse than the	best poss	ible BOSS				
hsnr	p=250 p=500 p=1000 p=1500	9/11/11 10/7/13 15/10/24 18/13/35	62/62/62/13 47/47/47/14 32/32/32/28 21/21/21/38	34/147/59 45/127/87 51/104/89 53/88/79	62 47 32 21	147 127 104 88	44/23 71/29 100/52 89/57	6/23 9/29 11/52 8/57	5 1 3 21	27 45 90 79
msnr	p=250 p=500 p=1000 p=1500	13/14/13 8/6/8 10/5/5 12/8/4	66/66/66/15 52/52/52/8 46/46/46/5 44/44/44/4	19/49/21 10/54/13 7/61/11 6/63/13	66 52 46 44	49 54 61 63	24/17 21/15 22/15 24/17	15/17 32/15 34/15 34/17	10 6 3 2	20 16 18 21
lsnr	p=250 p=500 p=1000 p=1500	10/9/10 10/6/7 17/6/6 24/12/5	$\begin{array}{c} 156/156/156/11 \\ 147/147/147/7 \\ 142/142/142/6 \\ 140/140/140/6 \end{array}$	9/10/9 5/5/5 4/3/4 3/2/2	156 147 142 140 e efficiency	10 5 3 2	4/6 2/3 1/2 0/2	99/6 135/3 135/2 134/2	7 5 4 4	8 5 5 4
<u> </u>	p=250	0.96/0.95/0.95	0.65/0.65/0.65/0.93	0.78/0.43/0.66	e emciency 0.65	0.43	0.73/0.86	0.99/0.86	1	0.83
hsnr	p=250 p=500 p=1000 p=1500	0.92/0.94/0.89 0.9/0.94/0.83 0.92/0.96/0.8	0.69/0.69/0.69/0.88 0.69/0.78/0.78/0.81 0.89/0.89/0.89/0.79	0.78/0.43/0.66 0.7/0.44/0.54 0.68/0.51/0.55 0.71/0.58/0.6	0.69 0.78 0.89	0.43 0.44 0.51 0.58	0.73/0.86 0.59/0.78 0.52/0.68 0.57/0.69	0.99/0.86 0.92/0.78 0.93/0.68 1/0.69	1 1 0.89	0.69 0.54 0.61
msnr	p=250 p=500 p=1000 p=1500	0.98/0.96/0.98 0.98/0.99/0.98 0.94/0.98/0.98 0.91/0.94/0.98	$\begin{array}{c} 0.66/0.66/0.66/0.96 \\ 0.7/0.7/0.7/0.98 \\ 0.71/0.71/0.71/0.99 \\ 0.71/0.71/0.71/0.99 \end{array}$	0.92/0.74/0.91 0.96/0.69/0.94 0.97/0.64/0.93 0.96/0.63/0.9	0.66 0.7 0.71 0.71	0.74 0.69 0.64 0.63	0.89/0.94 0.88/0.92 0.85/0.89 0.82/0.87	0.96/0.94 0.8/0.92 0.77/0.89 0.76/0.87	1 1 1 1	0.92 0.91 0.88 0.84
lsnr	p=250 p=500 p=1000 p=1500	0.95/0.96/0.95 0.92/0.96/0.95 0.86/0.95/0.95 0.81/0.89/0.95	$\begin{array}{c} 0.41/0.41/0.41/0.94 \\ 0.41/0.41/0.41/0.95 \\ 0.42/0.42/0.42/0.95 \\ 0.42/0.42/0.42/0.95 \end{array}$	0.96/0.95/0.95 0.97/0.96/0.96 0.97/0.97/0.97 0.97/0.98/0.97	0.41 0.41 0.42 0.42	0.95 0.96 0.97 0.98	1/0.99 1/0.99 1/0.98 1/0.98	0.52/0.99 0.43/0.99 0.43/0.98 0.43/0.98	0.98 0.97 0.97 0.96	0.97 0.97 0.96 0.96
				Spar	sistency					
hsnr	p=250 p=500 p=1000 p=1500	21.5/15.1/17.4 22.6/15.5/15.7 20.8/15.7/12.5 16.1/16.1/9.8	199/199/199/16.5 199/199/199/15.6 199/199/199/11.5 199/199/199/8.6	$\begin{array}{c} 10.9/3.2/9 \\ 9.1/3.1/5.8 \\ 7.3/3/4.1 \\ 6/3/3.6 \end{array}$	199 199 199 198.9	3.2 3.1 3 3	58.7/96.1 52.3/106.6 30.2/92.9 29.4/71.9	44.4/96.1 63/106.6 87/92.9 94.5/71.9	27.1 30.3 38.3 28.8	63 66.7 19.8 11
msnr	p=250 p=500 p=1000 p=1500	9.2/5/6.6 7.7/4.8/4.4 10.2/5.4/3.8 11.1/8/3.7	199/199/199/5.2 199/199/199/4.1 199/199/199/3.8 199/199/199/3.7	3.2/1.8/3.1 3.1/1.1/2.9 3/0.4/2.8 3/0.3/2.6	199 199 199 198.9	1.8 1.1 0.4 0.3	28.2/49 26.1/43.2 25.9/47 24.9/48.7	52.3/49 93.3/43.2 103.5/47 103.2/48.7	15.2 10.4 9.2 10.1	25 18.5 21.1 22.5
lsnr	p=250 p=500 p=1000 p=1500	0.6/0.2/1.1 1.4/0.2/0.7 3.3/0.6/0.5 4.2/1.6/0.4	$\begin{array}{c} 199/199/199/0.9 \\ 199/199/199/0.6 \\ 199/199/199/0.5 \\ 199/199/199/0.4 \end{array}$	0.1/0/0.1 0.1/0/0 0.1/0/0 0/0/0	199 199 199 198.9	0 0 0 0	8.3/9.2 8.1/9.6 8/10.1 8.1/10.6	65.2/9.2 112.3/9.6 112.4/10.1 110.5/10.6	7.2 7.7 8.4 9.3	6.2 5.8 7.2 7.2
				Number of	extra varia	ables				
hsnr	p=250 p=500 p=1000 p=1500	-/-/- -/-/- -/-/- -/-/-	-/-/-/ -/-/-/ -/-/-/ -/-/-/	-/-/- -/-/- -/-/- -/-/-	- - -	- - -	-/- -/- -/- -/-	-/- -/- -/- -/-	- - -	- - -
msnr	p=250 p=500 p=1000 p=1500	-/-/- -/-/- -/-/-	-/-/-/- -/-/-/- -/-/-/-	-/-/- -/-/- -/-/- -/-/-	- - -	- - -	-/- -/- -/- -/-	-/- -/- -/- -/-	- - -	- - - -
lsnr	p=250 p=500 p=1000 p=1500	-/-/- -/-/- -/-/-	-/-/-/- -/-/-/- -/-/- -/-/-	-/-/- -/-/- -/-/- -/-/-	- - -	- - -	-/- -/- -/- -/-	-/- -/- -/- -/-	- - -	- - -

Table S51: The performance of BOSS for high dimensional data, Dense, ρ =0.9, n=200

		BOSS C _v /AICc/CV	FS EBIC/HDBIC/HDHQ/CV	FSstop EBIC/HDBIC/HDHQ	FStrim HDBIC	FSstoptrim HDBIC	lasso AICc/CV	Gamma lasso AICc/CV	SparseNet CV	rlasso CV
i				% worse than the	best possi	ible BOSS	-			
	p=250 p=500	10/21/12 27/24/18	79/79/79/12 61/61/61/21	68/113/90 68/95/82	79 61	113 95	75/39 113/71	19/39 32/71	14 52	42 80
hsnr	p=1000 p=1500	45/21/26 34/17/25	37/37/37/29 22/22/22/26	51/67/58 37/51/42	37 22	67 51	$\frac{129}{123}$ $\frac{101}{103}$	$\frac{30/123}{17/103}$	55 36	125 106
	p=250	14/13/9	94/94/94/9	17/49/23	94	49	46/43	33/43	15	46
msnr	p=500 p=1000	10/9/7 8/7/7	85/85/85/7 79/79/79/7	15/46/22 15/43/25	85 79	46 43	$\frac{49}{50}$ $\frac{45}{46}$	49/50 53/46	18 25	48 44
	p=1500 p=1500	7/7/7	76/76/76/7	15/41/26	76	41	41/42	55/42	33	41
	p=250 p=500	15/16/11 15/15/11	227/227/227/11 220/220/220/11	15/38/20 15/37/22	227 220	38 37	14/14 13/13	143/14 200/13	10 9	11 10
lsnr	p=500 p=1000	19/15/11	213/213/213/12	16/36/24	213	36	12/13	198/13	9	10
	p=1500	24/17/13	209/209/209/13	17/34/24	209	34	12/14	194/14	10	10
				Relative	efficiency					
	p=250 p=500	1/0.91/0.99 0.93/0.95/1	0.62/0.62/0.62/0.99 0.73/0.73/0.73/0.98	0.66/0.52/0.58 0.71/0.61/0.65	0.62	0.52 0.61	0.63/0.8 0.56/0.69	0.92/0.8 0.9/0.69	0.97 0.78	0.78 0.66
hsnr	p=300 p=1000	0.83/1/0.97	0.89/0.89/0.89/0.94	0.8/0.73/0.77	0.73	0.01	0.53/0.59 $0.53/0.54$	0.93/0.54	0.78	0.54
	p=1500	0.87/1/0.94	0.96/0.96/0.96/0.93	0.85/0.77/0.82	0.96	0.77	0.58/0.58	1/0.58	0.86	0.57
	p=250	0.96/0.96/1	0.56/0.56/0.56/1	0.93/0.73/0.89	0.56	0.73	0.75/0.76	0.82/0.76	0.95	0.75
msnr	p=500	0.97/0.98/1 0.99/1/1	0.58/0.58/0.58/1 0.6/0.6/0.6/1	0.93/0.73/0.87 0.93/0.75/0.85	0.58	0.73 0.75	0.71/0.71 0.74/0.73	0.72/0.71 0.7/0.73	0.91 0.86	0.72 0.74
	p=1000 p=1500	1/1/1	0.61/0.61/0.61/1	0.93/0.76/0.85	0.61	0.76	0.74/0.75 $0.76/0.75$	0.69/0.75	0.81	0.74
	p=250	0.96/0.95/0.99	0.34/0.34/0.34/0.99	0.96/0.8/0.92	0.34	0.8	0.97/0.97	0.45/0.97	1	1
lsnr	p=500	0.95/0.95/0.98 0.92/0.95/0.98	0.34/0.34/0.34/0.99	0.95/0.8/0.89	0.34 0.35	0.8 0.81	0.97/0.96 0.97/0.96	0.36/0.96	1 1	0.99
	p=1000 p=1500	0.88/0.94/0.97	0.35/0.35/0.35/0.98 0.35/0.35/0.35/0.98	0.94/0.81/0.89 0.94/0.82/0.88	0.35	0.81	0.97/0.96	0.37/0.96 0.37/0.97	1	1
<u> </u>			. , ,	Spars	sistency		,	· · · · · · · · · · · · · · · · · · ·		=
	p=250	17.2/13.2/19.3	199/199/199/16.3	6.4/3.2/4.7	199	3.2	55.8/93.9	49.7/93.9	42.5	77.7
hsnr	p=500	13.1/11.7/16.3	199/199/199/13.6	5/3.1/3.8	199	3.1	38.3/79.6	71.1/79.6	36.1	55.5
	p=1000 p=1500	6.6/9.7/10.4 4.9/7.9/6.9	199/199/199/8 199/199/199/5.8	4.2/3/3.6 3.9/2.9/3.5	199 199	3 2.9	9.8/19.2 12.5/12.6	62.7/19.2 63.7/12.6	15.1 20.8	9.2 3.2
<u> </u>	p=250	5.1/3.8/6.7	199/199/199/4.6	2.8/1.3/2.5	199	1.3	17/28.6	52.8/28.6	14.9	17.2
msnr	p=500	3.6/3.6/4.6	199/199/199/4	2.7/1.1/2.3	199	1.1	7.4/8.9	82/8.9	16.8	3.5
1110111	p=1000 p=1500	3.6/3.6/3.8 3.9/3.9/3.6	199/199/199/3.6 199/199/199/3.5	2.5/1/1.9 2.4/1/1.8	199 199	1 1	8.3/8.3 10.4/10.5	93.8/8.3 97.2/10.5	17.8 11.8	2.3 2.6
<u> </u>	p=250	0.9/0.8/2	199/199/199/1.6	0.7/0.1/0.6	199	0.1	6.6/6.8	64.6/6.8	3.8	3.1
lsnr	p=500	1/0.8/1.5	199/199/199/1.3	0.6/0.1/0.4	199	0.1	7.5/7.3	112.2/7.3	3.9	3.2
15111	p=1000 p=1500	1.5/0.9/1.2 2.2/1/1.1	199/199/199/1.2 199/199/199/1.1	0.5/0/0.3 0.5/0/0.3	199 199	0	9.1/9.2 9.3/10.3	115.1/9.2 112.6/10.3	4.9 5.6	3.9 4.7
<u> </u>	1		,,,	Number of	extra varia	bles	/	-/		
<u> </u>	p=250	-/-/-	-/-/-	-/-/-	-	-	-/-	-/-	-	<u> </u>
hsnr	p=500	-/-/-	-/-/-	-/-/-	-	-	-/-	-/-	-	-
110111	p=1000 p=1500	-/-/- -/-/-	-/-/- -/-/-	-/-/- -/-/-	-	-	-/- -/-	-/- -/-	-	-
<u> </u>	p=250	-/-/-	-/-/-	-/-/-	-	-	-/-	-/-	-	
msnr	p=500	-/-/-	-/-/-	-/-/-	-	-	-/-	-/,-	-	-
1115111	p=1000 p=1500	-/-/- -/-/-	-/-/- -/-/-	-/-/- -/-/-	-	-	-/- -/-	-/- -/-	-	-
<u> </u>	p=250	-/-/-	-/-/-	-/-/-	_	-	-/-	-/-	-	
lsnr	p=500	-/-/-	-/-/-/-	-/-/-	-	-	-/-	-/-	-	-
ism	p=1000 p=1500	-/-/-	-/-/-	-/-/-	-	-	-/- -/-	-/- -/-	-	-
	h=1900	-/-/-	-/-/-	-/-/-	-	-	-/-	-/-	-	-

References

- Ing, C.-K. and T. L. Lai (2011). A stepwise regression method and consistent model selection for high-dimensional sparse linear models. *Statistica Sinica*, 1473–1513.
- Taddy, M. (2017). One-step estimator paths for concave regularization. *Journal of Computational and Graphical Statistics* 26(3), 525–536.
- Wang, H. (2009). Forward regression for ultra-high dimensional variable screening. *Journal of the American Statistical Association* 104 (488), 1512–1524.
- Zou, H., T. Hastie, and R. Tibshirani (2007). On the "degrees of freedom" of the lasso. *The Annals of Statistics* 35(5), 2173–2192.