MAT4010: Functional Analysis

Tutorial 3: Compactness*

Mou, Minghao
The Chinese University of Hong Kong, Shenzhen

February 11, 2023

1 Exercises

Problem 1.1 (Subsets of Separable Metric Spaces). Show that every subset of a separable metric space is separable.

Problem 1.2 (Bounded Linear Operator). (a). A bounded linear operator from a normed space X to a normed space Y is bounded if and only if it maps bounded sets onto bounded sets. (b). Show that the inverse of a bounded linear operator need not be bounded.

Problem 1.3 (Local Compactness). (a). A metric space X is said to be **locally compact** if every point of X has a compact neighborhood. Show that \mathbb{R} and \mathbb{C} and, more generally, \mathbb{R}^n and \mathbb{C}^n are locally compact. (b). Show that a compact metric space X is locally compact.

Problem 1.4 (Compact Metric Space). (a) If X is a compact metric space and $M \subset X$ is closed, show that M is compact. (b). Let X and Y be metric spaces, X is compact and $T: X \to Y$ bijective and continuous. Show that T is a homeomorphism.

Problem 1.5 (Totally Bounded Sets). Let A be a subset of a metric space. Show that A is totally bounded if and only if \overline{A} is bounded.

Problem 1.6 (The Sequence Space s). Show that for an infinite subset M in the space s to be compact, it is necessary and sufficient that there are numbers $\gamma_1, \gamma_2, \cdots$ such that for all $x = (\xi_k(x)) \in M$ we have $|\xi_k(x)| \leq \gamma_k$.

Problem 1.7 (Closed Subset). If X is a compact metric space and $M \subset X$ is closed. Show that M is compact.

Problem 1.8 (Continuous Image of Precompact Set). If $A \subset X$ is precompact and $T: X \to Y$ is continuous, prove that $T(A) \subset Y$ is precompact.

^{*}The presentation of this note is based on [BS18] and [Kre91].

2 Compact Sets

Definition 2.1 (Boundedness). Let (\mathcal{X}, d) be a metric space and $A \subset \mathcal{X}$. A is said to be **bounded** if $\exists x_0 \in \mathcal{X}$ and r > 0 such that $A \subset B(x_0, r)$, where

$$B(x_0, r) := \{ x \in \mathcal{X} : d(x, x_0) < r \}.$$

In finite-dimensional Euclidean space, finite bounded set must contain a convergent subsequence, which is the well-known **Bolzano-Weierstrass Theorem**. However, this property fails to hold in general metric space.

Theorem 2.1 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.

Proof. This proof is constructive. Let $\{x_n\} \subset \mathbb{R}$ be a bounded sequence, say, $|x_n| \leq L$ for some L > 0. Then all the x_n 's fall in the interval [-L, L]. First, we divide the interval into two halves. One of the two must contain infinitely many x_n 's. Pick one of those x_n , denote it as x_{n_1} . Continue the dividing process and every time pick one x_{n_i} such that $n_i > n_{i-1}$. One should also notice that the endpoints of those intervals approaches 0. Then it is natural to choose that x_{n_i} converges to the limit of the endpoints, which exist by the monotone convergence theorem.

Be careful that the Bolzano-Weierstrass Theorem fails in infinite-dimensional space. Here is an simple example.

Example 2.1. In C[0,1], consider the sequence $f_n(t) := x^n \in C[0,1]$. Obviously $\{f_n\} \subset B(\theta,2)$, where θ denotes the constant zero function. However, $\{x_n\}$ does not contain a convergent subsequence. (closedness and boundedness does not imply sequential compactness)

Proof. Notice that $\{f_n\}_{n\in\mathbb{N}}$ converges pointwisely to the function

$$f := \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1, \end{cases}$$

which is not in C[0,1]. For any subsequence of $\{f_n\}_{n\in\mathbb{N}}$, if it converges in C[0,1] to some function, the convergence is uniform and thus the limit must be f, which is impossible. \square

Let (\mathcal{X}, d) be a metric space and let $K \subset \mathcal{X}$. Then the restriction of the distance function d to $K \times K$ is a distance function denoted by $d_K := d|_{K \times K} : K \times K \to \mathbb{R}$, so (K, d_K) is a metric space in its own right. The metric space (\mathcal{X}, d) is called **sequentially compact** if every sequence in \mathcal{X} has a convergent subsequence. The subset K is called **sequentially compact** if (K, d_K) is sequentially compact, i.e. if every sequence in K has a subsequence that converges to an element in K. It is called **precompact** if its closure is sequentially compact. Thus K is sequentially compact if and only if it is precompact and closed. The subset K is called **complete** if (K, d_K) is a complete metric space, i.e. if every Cauchy

sequence in K converges to an element of K. It is called **totally bounded** if it is either empty or, for every $\epsilon > 0$, there exists finitely many elements $x_1, x_2, ..., x_m \in K$ such that

$$K \subset \bigcup_{i=1}^m B_{\epsilon}(x_i).$$

The next theorem characterizes the compact subsets of a metric space (\mathcal{X}, d) in terms of open subsets of \mathcal{X} . It thus shows that compactness depends only on the topology $\mathscr{U}(\mathcal{X}, d)$ induced by the distance function d.

Example 2.2. Show that a bounded metric space does not have to be totally bounded.

Proof. Consider the discrete metric space (\mathcal{X}, d) where \mathcal{X} is an infinite set.

The Heine-Borel Theorem fails in infinite-dimensional spaces and thus the characterization of compact sets is of special interests.

Theorem 2.2 (Characterization of Compact Sets). Let (\mathcal{X}, d) be a metric space and let $K \subset \mathcal{X}$. Then the followings are equivalent.

- 1. K is sequentially compact.
- 2. K is complete and totally bounded.
- 3. Every open cover of K has a finite subcover.

Lemma 2.3. Let (\mathcal{X}, d) be a metric space and let $K \subset \mathcal{X}$. Then the followings are equivalent.

- 1. Every sequence in K has a Cauchy subsequence.
- 2. K is totally bounded.

Proof.

Example 2.3. Consider $c_0 \subset l^{\infty}$ the space of all sequences converging to zero. Fix a sequence $x \in c_0$ and let

$$S_x := \{ y \in c_0 | |y_n| \le |x_n| \}.$$

Show that S_x is a compact subset of c_0 .

It follows from Theorem 2.2 that every compact metric space is separable. Here are the relevant definitions.

Definition 2.2 (Separability). Let \mathcal{X} be a topological space. A subset $S \subset \mathcal{X}$ is called **dense** in \mathcal{X} if its closure is equal to \mathcal{X} , equivalently, every nonempty open subset of \mathcal{X} contains an element of S. The space \mathcal{X} is called **separable** if it admits a countable dense subset. (A set is called **countable** if it is either finite or countably infinite.)

Corollary 2.4. Every compact metric space is separable.

Proof. Let $n \in \mathbb{N}$. Since \mathcal{X} is totally bounded by Theorem 2.2, there exists a finite set $S_n \subset \mathcal{X}$ such that $\mathcal{X} = \bigcup_{\xi \in S_n} B_{1/n}(\xi)$. Hence $S := \bigcup_{n \in \mathbb{N}} S_n$ is a countable dense subset of \mathcal{X} by the axiom of countable choice.

Remark 2.1. Note that in the above proof we only use the fact that a compact metric space is totally bounded. Therefore, a totally bounded metric space is separable. Moreover, if every sequence has a Cauchy subsequence, the metric space is also separable.

Corollary 2.5. Let (\mathcal{X}, d) be a metric space and let $A \subset \mathcal{X}$. Then the followings are equivalent.

- 1. A is precompact.
- 2. Every sequence in A has a subsequence that converges in \mathcal{X} .
- 3. A is totally bounded and every Cauchy sequence in A converges in \mathcal{X} .

Proof. • (1) implies (2) directly follows from the definitions.

- We prove that (2) implies (3). By (2) every sequence in A has a Cauchy subsequence and so A is totally bounded by Lemma 2.3. If $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in A, then by (2) there exists a subsequence $(x_{n_i})_{i\in\mathbb{N}}$ that converges in \mathcal{X} , and so the original sequence converges in \mathcal{X} because a Cauchy sequence converges if and only if it has a convergent subsequence (exercise: prove this!).
- We finally prove that (3) implies (1). Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in the closure \overline{A} of A. Then, there exists a sequence $(a_n)_{n\in\mathbb{N}}\subset A$ such that $d(a_n,x_n)<1/n$ for all $n\in\mathbb{N}$. Since A is totally bounded, it follows from Lemma 2.3 that the sequence $(a_n)_{n\in\mathbb{N}}$ has a Cauchy subsequence $(a_{n_i})_{i\in\mathbb{N}}$. This subsequence converges in \mathcal{X} by (3). Denote its limit by a. Then $a\in\overline{A}$ and $a=\lim_{i\to\infty}x_{n_i}$. Thus \overline{A} is sequentially compact.

3 The Arzela-Ascoli Theorem

It is a recurring theme in functional analysis to understand which subsets of a Banach space or topological vector space are compact. For the Euclidean space the answer is given by the **Heine-Borel Theorem**, which continues to hold for any finite-dimensional spaces (recall that the finite-dimensionality is characterized by the compactness of the closed unit ball). For infinite-dimensional spaces a necessary condition is that a compact set is bounded and closed but the reverse does not hold. For the Banach space of continuous mappings on a compact metric space, a characterization of compact sets is given by a theorem of Arzela and Ascoli.

Let (X, d_X) and (Y, d_Y) be metric spaces and assume that X is compact. Then the space

$$C(X,Y) := \{f : X \to Y | f \text{ is continuous} \}$$

of continuous maps from X to Y is a metric space with the distance function

$$d(f,g) := \sup_{x \in X} d_Y(f(x), g(x)), \quad f, g \in C(X, Y).$$
 (1)

Problem 3.1. Check that (1) is a well-defined distance function.

Problem 3.2. Check that when X is nonempty, the metric space $(C(X,Y), d(\cdot, \cdot))$ is complete if and only if Y is complete.

Definition 3.1 (Equi-continuity/Pointwise Compactness). A subset $\mathscr{F} \subset C(X,Y)$ is called **equi-continuous** if, for every $\epsilon > 0$, there exists a constant $\delta > 0$ such that, for all $x, x' \in X$ and for all $f \in \mathscr{F}$,

$$d_X(x, x') < \delta \quad \Rightarrow \quad d_Y(f(x), f(x')) < \epsilon.$$

It is called **pointwise compact** if, for every element $x \in X$, the set

$$\mathscr{F}(x) := \{ f(x) | f \in \mathscr{F} \}$$

is a compact subset of Y. The **pointwise precompactness** is defined similarly.

Theorem 3.3 (Arzela-Ascoli). Let (X, d_X) and (Y, d_Y) be metric spaces such that X is compact and let $\mathscr{F} \subset C(X,Y)$. Then the following are equivalent.

- 1. F is precompact.
- 2. F is pointwise precompact and equi-continuous.

When the target space Y is the Euclidean space $(\mathbb{R}^n, \|\cdot\|_2)$. The Arzela-Ascoli Theorem takes the following form.

Corollary 3.4. Let (X,d) be a compact metric space and let $\mathscr{F} \subset C(X,\mathbb{R}^n)$. Then the following hold.

- 1. \mathscr{F} is precompact if and only if it is bounded and equi-continuous.
- 2. F is compact if and only if it is closed, bounded, and equi-continuous.

References

- [BS18] Theo Bühler and Dietmar A Salamon. Functional analysis, volume 191. American Mathematical Soc., 2018.
- [Kre91] Erwin Kreyszig. Introductory functional analysis with applications, volume 17. John Wiley & Sons, 1991.