

Анализ и прогнозирование гидрологических данных Дипломная работа

Александр Сергеевич Павлов Научный руководитель: Цеховая Татьяна Вячеславовна

> Факультет прикладной математики и информатики Кафедра теории вероятностей и математической статистики

> > Минск, 2015

Постановка задачи

- Предварительный статистический анализ гидроэкологических данных озера Баторино;
- Вариограммный анализ временного ряда: построение оценок семивариограммы, подбор моделей семивариограммы;
- Исследование статистических свойств оценки вариограммы гауссовского случайного процесса;
- 4. Прогнозирование значений временного ряда с помощью интерполяционного метода кригинг;
- 5. Исследование точности прогноза в зависимости от оценки вариограммы и модели вариограммы, лежащих в основе метода кригинг.

Содержание

- 1. Обзор реализованного программного обеспечения:
 - Модуль предварительного анализа;
 - Модуль анализа остатков;
 - Модуль вариограммного анализа;
- 2. Детерминированные методы:
 - Проверка на нормальность;
 - Корреляционный анализ;
 - Регрессионный анализ;
 - Анализ остатков;
- 3. Геостатистические методы:
 - Визуальный подход;
 - Автоматический подход;
 - Теоретическая часть.

Исходные данные

Данные получены от учебно-научного центра «Нарочанская биологическая станция им. Г.Г.Винберга».

Рис. 1: Исходные данные

Исходные данные представляют собой выборку $X(t), t=\overline{1,n}, n=38$, состоящую из значений средней температуры воды в июле месяце каждый год в период с 1975 по 2012 годы.

Минск. 2015

5/30

- Доступно с любого устройства, имеющего доступ в интернет, по адресу apaulau.shinyapps.io/batorino;
- Реализовано на языке программирования R;
- Логически разделено на три модуля;
- Имеет простой, быстро расширяемый гибкий интерфейс;
- Широкие графические возможности;
- Проверка тестов и критериев;
- Мгновенный отклик на изменение параметров.

Обзор реализованного ПО

6 / 30

Модуль предварительного анализа

Рис. 2: Первичный анализ и описательные статистики

Проверка на нормальность

Выборочное распределение характеризуется небольшой скошенностью вправо (коэффициент асимметрии 0.30) и пологостью пика кривой распределения (коэффициент эксцесса -0.746) относительно нормального.

Рис. 3: График квантилей

Визуально и проверкой критериев Шапиро-Уилка, χ^2 -Пирсона и Колмогорова-Смирнова была показана близость выборочного распределения к нормальному с параметрами $\mathcal{N}(19.77,5.12)$.

Обзор реализованного ПО Модуль предварительного анализа

Рис. 4: Корреляционный анализ

Обзор реализованного ПО Модуль предварительного анализа

Рис. 5: Регрессионный анализ

Регрессионная модель

Исследуемый временной ряд является аддитивным:

$$X(t) = y(t) + \varepsilon(t), \tag{1}$$

где y(t) — тренд, $\varepsilon(t)$ — нерегулярная составляющая.

Найдена модель тренда: y(t) = at + b = 0.1014t + 18.0521

- F-критерий Фишера при уровне значимости $\alpha=0.05$ показал адекватность модели
- При $\alpha=0.05$, с помощью критерия Стьюдента, доказана значимость коэффициентов регрессионной модели
- Точность модели невысока, поскольку коэффициент детерминации $\eta_{x(t)}^2 = 0.275$

Таблица 1: Сравнение прогнозных значений (модель y(t))

	X(t)	y(t)	X(t) - y(t)
2007	19.400	18.071	1.329
2008	21.800	18.181	3.619
2009	21.900	18.290	3.610
2010	24.300	18.400	5.900
2011	22.800	18.509	4.291
2012	20.200	18.619	1.581

Обзор реализованного ПО Модуль анализа остатков

Рис. 6: Автокорреляционная функция

Анализ остатков

- Визуально и проверкой тестов показана близость выборочного распределения к нормальному $\mathcal{N}(0.00, 4.07);$
- По графику и тестом Льюнга-Бокса сделано заключение об отсутствии значимых автокорреляций;
- Значения имеют небольшую амплитуду и имеют тенденцию к затуханию. Это говорит о стационарности в широком смысле, что показал расширенный тест Дики-Фуллера.

Вариограммный анализ

Прогнозные значения $X^*(t)$ вычисляются по формуле:

$$X^*(t) = y(t) + \varepsilon^*(t),$$

где y(t) — тренд, $\varepsilon^*(t)$ — значения, вычисленные с помощью кригинга.

Рис. 7: Оценка семивариограммы Матерона

Для оценки качества модели используются

- коэффициент корреляции $r_{\varepsilon\varepsilon^*}$
- Среднеквадратическая ошибка

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\varepsilon(t_i) - \varepsilon^*(t_i))^2,$$
 (2)

где *п* — объём выборки

Обзор реализованного ПО Модуль вариограммного анализа

Рис. 8: Возможности по подбору модели семивариограммы

Обзор реализованного ПО Модуль вариограммного анализа

Рис. 9: Подбор параметров модели семивариограммы

Обзор реализованного ПО

Модуль вариограммного анализа

Рис. 10: Сравнение прогнозных значений

$$\widehat{\gamma}(h) = \mathbf{c}_0 + Lin(h) =$$

$$= \begin{cases} \mathbf{c}_0 + \mathbf{b} \cdot \mathbf{h}, & h > 0, \\ \mathbf{c}_0, & h \le 0, \end{cases}$$
(3)

где b – параметр, отвечающий за угол наклона, c_0 — эффект самородков.

Подобранная модель:

$$\widehat{\gamma}_1(\mathbf{h}) = \mathbf{Lin}(\mathbf{h}), \quad \mathbf{b} = 4, \quad \textbf{(4)}$$

$$r_{\varepsilon\varepsilon^*} = -0.09129$$
, $MSE = 6.324$

Рис. 11: Модель семивариограммы $\widehat{\gamma}_1(h)$

Рис. 12: Прогноз по модели $\widehat{\gamma}_1(h)$

$$\widehat{\gamma}(h) = \mathbf{c}_0 + \mathbf{c} \cdot Lin(h, \mathbf{a}) =$$

$$= \begin{cases} \mathbf{c}_0 + \mathbf{c} \cdot \frac{h}{\mathbf{a}}, & 0 \leq h \leq \mathbf{a}, \\ \mathbf{c}_0 + \mathbf{c}, & h > \mathbf{a}, \end{cases}$$
(5)

Подобранная модель:

$$\widehat{\gamma}_2(\mathbf{h}) = 4 \cdot \mathbf{Lin}(\mathbf{h}, 2).$$
 (6)

$$r_{\varepsilon\varepsilon^*} = 0.152, \quad MSE = 18.69$$

Рис. 13: Модель семивариограммы $\widehat{\gamma}_2(h)$

Рис. 14: Прогноз по модели $\widehat{\gamma}_2(h)$

$$\begin{split} \widehat{\gamma}(\textbf{\textit{h}}) &= \textbf{\textit{c}}_0 + \textbf{\textit{c}} \cdot \textbf{\textit{Sph}}(\textbf{\textit{h}},\textbf{\textit{a}}) = \\ &= \left\{ \begin{array}{ll} \textbf{\textit{c}}_0 + \textbf{\textit{c}} \cdot (\frac{3}{2}\frac{\textbf{\textit{h}}}{\textbf{\textit{a}}} - \frac{1}{2}(\frac{\textbf{\textit{h}}}{\textbf{\textit{a}}})^3), & \textbf{\textit{h}} \leq \textbf{\textit{a}}, \\ \textbf{\textit{c}}_0 + \textbf{\textit{c}}, & \textbf{\textit{h}} \geq \textbf{\textit{a}}, \\ \textbf{\textit{(7)}} \end{array} \right. \end{split}$$

Подобранная модель:

$$\widehat{\gamma}_3(h) = 0.9 + 4Sph(h, 6.9),$$
 (8)

$$r_{\varepsilon\varepsilon^*} = -0.009, \quad MSE = 5.396$$

Рис. 15: Модель семивариограммы $\widehat{\gamma}_3(h)$

Рис. 16: Прогноз по модели $\widehat{\gamma}_3(h)$

$$\widehat{\gamma}(\pmb{h}) = \pmb{c}_0 + \pmb{c} \cdot \pmb{\textit{Per}}(\pmb{h}, \pmb{a}) = \\ = 1 - \pmb{\cos}(\frac{2\pi \pmb{h}}{\pmb{a}}), \quad \mbox{(9)}$$

Подобранная модель:

$$\hat{\gamma}_4(h) = 4 \cdot Per(h, 0.898),$$
 (10)

$$r_{\varepsilon\varepsilon^*} = 0.404$$
, $MSE = 4.369$

Рис. 17: Модель семивариограммы $\widehat{\gamma}_4(h)$

Рис. 18: Прогноз по модели $\widehat{\gamma}_4(h)$

$$\widehat{\gamma}(\textbf{\textit{h}}) = \textbf{\textit{c}}_0 + \textbf{\textit{c}} \cdot \textbf{\textit{Per}}(\textbf{\textit{h}}, \textbf{\textit{a}}) = 1 - \cos(\frac{2\pi \textbf{\textit{h}}}{\textbf{\textit{a}}}),$$

Подобранная модель:

$$\widehat{\gamma}_5(\mathbf{h}) = 3.8 + 0.32 \cdot \textit{Per}(\mathbf{h}, 1.3)$$
 (11)

$$r_{\varepsilon \varepsilon^*} = -0.15$$
, $MSE = 5.22$

Рис. 19: Модель семивариограммы $\hat{\gamma}_5(h)$

Рис. 20: Прогноз по модели $\widehat{\gamma}_5(h)$

$$\widehat{\gamma}(\mathbf{h}) = \mathbf{c}_0 + \mathbf{c} \cdot \mathbf{Wav}(\mathbf{h}, \mathbf{a}) = 1 - \frac{\mathbf{a}}{\mathbf{h}} \cdot \mathbf{sin}(\frac{\mathbf{h}}{\mathbf{a}}),$$
 (12)

Подобранная модель:

$$\widehat{\gamma}_{6}(\textit{h}) = 4.11 + 1.65 \cdot \textit{Wav}(\textit{h}, 3.59), \tag{13}$$

$$r_{\varepsilon\varepsilon^*} = -0.03$$
, $MSE = 4.20$

Рис. 21: Модель семивариограммы $\widehat{\gamma}_6(h)$

Рис. 22: Прогноз по модели $\widehat{\gamma}_6(h)$

Оценка вариограммы

Определение 1

 $extit{Bapuoapammoŭ}$ случайного процесса $extit{X}(t), t \in \mathbb{Z}$, называется функция вида

$$2\gamma(h) = V\{X(t+h) - X(t)\}, t, h \in \mathbb{Z}.$$
(14)

При этом функция $\gamma(h), h \in \mathbb{Z}$, называется *семивариограммой*.

Рассматривается стационарный в широком смысле гауссовский случайный процесс с дискретным временем $X(t),\ t\in\mathbb{Z},$ нулевым математическим ожиданием, постоянной дисперсией и неизвестной вариограммой $2\gamma(h), h\in\mathbb{Z}.$

В качестве оценки вариограммы рассматривается статистика, предложенная Матероном:

$$2\tilde{\gamma}(h) = \frac{1}{n-h} \sum_{t=1}^{n-h} (X(t+h) - X(t))^2, \quad h = \overline{0, n-1}.$$
 (15)

Теорема 1

Для оценки $2 ilde{\gamma}(h)$ имеют место следующие соотношения:

$$E\{2\tilde{\gamma}(h)\} = 2\gamma(h),$$

$$\begin{aligned} \text{cov}(2\tilde{\gamma}(\textit{h}_{1}),2\tilde{\gamma}(\textit{h}_{2})) &= \frac{2}{(\textit{n}-\textit{h}_{1})(\textit{n}-\textit{h}_{2})} \sum_{t=1}^{\textit{n}-\textit{h}_{1}} \sum_{\textit{s}=1}^{\textit{n}-\textit{h}_{2}} (\gamma(\textit{t}-\textit{h}_{2}-\textit{s}) + \\ &+ \gamma(\textit{t}+\textit{h}_{1}-\textit{s}) - \gamma(\textit{t}-\textit{s}) - \gamma(\textit{t}+\textit{h}_{1}-\textit{s}-\textit{h}_{2}))^{2}, \end{aligned}$$

$$V\{2\tilde{\gamma}(h)\} = \frac{2}{(n-h)^2} \sum_{t,s=1}^{n-h} (\gamma(t-h-s) + \gamma(t+h-s) - 2\gamma(t-s))^2,$$

еде $\gamma(h), h \in \mathbb{Z}$, — семивариограмма процесса X(t), $h, h_1, h_2 = \overline{0, n-1}$.

Теорема 2

Если имеет место соотношение $\sum_{h=-\infty}^{+\infty} |\gamma(h)| < +\infty$, то

$$\lim_{\substack{n\to\infty}}(\mathbf{n}-\min\{\mathbf{h}_1,\mathbf{h}_2\})\mathrm{cov}\{2\tilde{\gamma}(\mathbf{h}_1),2\tilde{\gamma}(\mathbf{h}_2)\}=$$

$$=2\sum_{m=-\infty}^{+\infty}\gamma(m-h_2)+\gamma(m+h_1)-\gamma(m)-\gamma(m+h_1-h_2))^2,$$

$$\lim_{n\to\infty} (\mathbf{n} - \mathbf{h}) \mathbf{V} \{2\tilde{\gamma}(\mathbf{h})\} = 2\sum_{\mathbf{m}=-\infty}^{+\infty} \gamma(\mathbf{m} - \mathbf{h}) + \gamma(\mathbf{m} + \mathbf{h}) - 2\gamma(\mathbf{m}))^2,$$

еде $\gamma(h), h \in \mathbb{Z}$, — семивариограмма процесса $X(t), h, h_1, h_2 = \overline{0, n-1}$.

Асимптотическое поведение оценки вариограммы

Следствие 1

Из теоремы 2 следует соотношение

$$\lim_{\mathbf{n}\to\infty} \mathbf{V}\{2\tilde{\gamma}(\mathbf{h})\} = 0, \quad \mathbf{h} = \overline{0, \mathbf{n} - 1}$$

Следствие 2

В силу показанной в теореме 1 несмещённости оценки и вышеприведённого следствия получаем, что оценка вариограммы $2\tilde{\gamma}(h)$ является состоятельной в среднеквадратическом смысле для вариограммы $2\gamma(h), h \in \mathbb{Z}$.

Заключение

- 1. Проведён предварительный статистический анализ данных:
 - показана близость выборочного распределения к нормальному $\mathcal{N}(19.77,5.12);$
 - выявлена умеренная положительная зависимость температуры от времени;
 - построена линейная регрессионная модель;
 - вычислен и исследован ряд остатков;
- 2. Выполнен вариограммный анализ:
 - Рассмотрены два подхода по подбору моделей семивариограмм: визуальный и автоматический;
 - Визуальным подходом показано, что линейная модель с порогом (6) и периодическая (10) являются наилучшими;
 - Автоматическим подходом показано, что волновая (13) и периодическая (11) являются наилучшими;

- 3. По различным моделям построены прогнозные значения методом кригинг. Исследована зависимость точности прогноза от оценки вариограммы и модели;
- Исследованы статистические свойства оценки вариограммы гауссовского случайного процесса. Показана несмещённость и состоятельность в среднеквадратическом смысле оценки вариограммы (14);
- 5. Реализовано программное обеспечение для решения класса задач, аналогичных исходной.

Список использованных источников

Cressie N.

Statistics for Spatial Data.

New York. — Wiley, 1993.

А.А. Савельев, С.С. Мухарамова, А.Г. Пилюгин, Н.А. Чижикова Геостатистический анализ данных в экологии и природопользовании (с применением пакета R) Казань: Казанский университет, 2012.

Н.Н. Труш

Асимптотические методы статистического анализа временных рядов. Белгосуниверситет, 1999.

Robert H. Shumway, David S. Stoffer

Time series and Its Applications: With R Examples (Springer Texts in Statistics). Springer Science+Business Media. LLC 2011. 3d edition. 2011.

Paul Teetor

R Cookbook (O'Reilly Cookbooks).

O'Reilly Media, 1 edition, 2011.

Mingoti Sueli Aparecida, Rosa Gilmar

A note on robust and non-robust variogram estimators *Rem: Revista Escola de Minas.*, Vol. 61:87–95, 2008.

Спасибо за внимание!