

UNIVERSIDADE FEDERAL DO ABC CENTRO DE MATEMÁTICA, COMPUTAÇÃO E COGNIÇÃO

Prof. Monael Pinheiro Ribeiro

INTERCALA

Intercala.[c | cpp | java]

Faça um algoritmo que aloque dois vetores \mathbf{V}_1 e \mathbf{V}_2 com o tamanho de cada entrada \mathbf{q}_1 e \mathbf{q}_2 , receba os \mathbf{q}_1 valores no vetor \mathbf{V}_1 e os \mathbf{q}_2 valores no vetor \mathbf{V}_2 . E construa um terceiro vetor, \mathbf{V}_r , com a intercalação dos vetores \mathbf{V}_1 e \mathbf{V}_2 de forma que \mathbf{V}_r ordenada. Seu programa deve ser $\mathbf{O}(\mathbf{n})$, onde \mathbf{n} é a quantidade de valores, ou seja $\mathbf{q}_1 + \mathbf{q}_2$. Exemplo:

V_1 :		V ₂ :	
0 1 2 3 4	ı	0 1 2 3	4 5 6
1 21		0 2 4 6	8 10 12
	V_r :		
	Δt.		
_ 9	5 6 Z 8	g g 10 11	_
0 1 2 3 4	5 6 7 8	3 10 12 21	

Entrada

A entrada consiste de dois número positivo \mathbf{q}_1 e \mathbf{q}_2 , sendo $0 < \mathbf{q}_{1,2} \le 500000$, representando a quantidade de entradas do programa. Seguido de $\mathbf{q}_1 + \mathbf{q}_2$ linhas, onde nas \mathbf{q}_1 primeiras linhas estão os \mathbf{q}_1 valores e nas demais \mathbf{q}_2 linhas estão os \mathbf{q}_2 valores. Esses valores são naturais \mathbf{n} , $0 \le \mathbf{n} \le 999999$. E ainda, dentro do mesmo bloco é garantido que o número \mathbf{n} representado na linha \mathbf{q} é menor que o número que está em $\mathbf{q+1}$ e maior que ou igual ao que está em $\mathbf{q-1}$. Ou seja: $\mathbf{n}_{0-1} \le \mathbf{n}_0 < \mathbf{n}_{0+1} \ \forall \ \mathbf{q}$.

Saída

A saída deverá ser todos os $\mathbf{q}_1 + \mathbf{q}_2$ valores das duas entradas intercalados e impressos de forma crescente.

Exemplos

Entrada	Saída
5	0
7	1
1	2
3	3
5	4
7	5
21	6
0	7
2	8
4	10
6	12
8	21
10	
12	