

SUPERIEUR ET DE L'EMPLOYABILITE (DGESE)

Concours ITA session 2015

Composition: Chimie 2 Durée : 2 Heures

EXERCICE-1

L'iodure I est oxydé par le bromate Br03 en milieu acide suivant la réaction : $9 I^{-} + BrO_{3}^{-} + 6 H_{3}O^{+} \rightarrow 3 I_{3}^{-} + Br^{-} + 9 H_{2}O$ (1)

- 1- La loi de vitesse v de la réaction indicatrice (1) a été déterminée expérimentalement, elle se présente sous la forme : $v = k [H_3O^+]^2[BrO_3^-][I^-]$ où
 - $k = 51.10^{1.7}$ SI est la constante de vitesse de la réaction à 298 K
 - a- Ouelle est l'unité de la constante de vitesse k
 - b- Quel est l'ordre global de la réaction (1) ? Que devient l'ordre global si on opère en milieu tamponné à pH = 3?
 - 2- Le mécanisme réactionnel envisagé pour la réaction indicatrice (1) est le suivant:

$$BrO_{3}^{-} + 2 H_{3}O^{+} \xrightarrow{k1}^{k1} H_{2}BrO_{3}^{+} + 2 H_{2}O \qquad \text{équilibre rapide}$$

$$H_{2}BrO_{3}^{+} + I^{-} \xrightarrow{k2}^{k2} IBrO_{2} + H_{2}O \qquad \text{réaction lente}$$

$$IBrO_{2} + I^{-} \xrightarrow{k3}^{k3} I_{2} + BrO_{2}^{-} \qquad \text{réaction rapide}$$

$$BrO_{2}^{-} + 2 I^{-} + H_{3}O^{+} \xrightarrow{k4}^{k4} I_{2} + BrO^{-} + 3 H_{2}O \qquad \text{réaction rapide}$$

$$BrO^{-} + 2 I^{-} + 2 H_{3}O^{+} \xrightarrow{k5}^{k5} I_{2} + Br^{-} + 3 H_{2}O \qquad \text{réaction rapide}$$

$$I_{2} + I^{-} \xrightarrow{k6}^{k6} I_{3}^{-} \qquad \text{équilibre rapide}$$

- a- Peut-on appliquer l'approximation de l'état quasi-stationnaire ou principe de Bodenstein aux espèces intermédiaires H₂BrO₃⁺ et IBrO₂ ? Expliquer
- b- Montrer que ce mécanisme réactionnel est en accord avec la loi de vitesse déterminée expérimentalement. En déduire l'expression littérale de k.
- c- Exprimer l'énergie d'activation E_A en fonction des énergies d'activation E_{A1}, E_{A2} et E_{A-1}

EXERCICE-2

L'acide sulfurique H_2SO_4 est un produit très utilisé dans l'industrie. L'une des étapes de sa préparation consiste à oxyder SO_2 en SO_3 selon la réaction :

$$2 SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

- 1- Quelle est l'influence d'une variation de la pression totale sur cet équilibre ?
- 2- Calculer les grandeurs de réactions ΔrH° , ΔrS° et ΔrG° à T = 298 K
- 3- Pouvait-on prévoir le signe de ΔrS° ? Justifier votre réponse.
- 4- Quelle est l'influence d'une variation de température sur cet équilibre ? Justifier votre réponse.
- 5- A la température T = 750 K, la constante d'équilibre est égale à 10050. En déduire les valeurs de l'enthalpie libre standard et l'entropie standard de la réaction à cette température
- 6- Sous une pression constante P, que l'on déterminera, et à la température T = 750 K, on mélange initialement 200 moles de SO_2 et 100 moles de O_2 . A l'équilibre, le rendement en moles est de 96 %.
 - a- Déterminer la composition du système dans son état d'équilibre
 - b- Donner les expressions des pressions partielles des différents constituants en fonction de la pression totale P.
 - c- Calculer la valeur de cette pression totale P

Données : $R = 8,32 \text{ J.K}^{-1}.\text{mol}^{-1}$

Composé	$SO_{3(g)}$	$SO_{2(g)}$	$O_{2(g)}$
$\Delta_{\rm f}$ H°(kJ.mol ⁻¹) à 298 K	-395,7	-296,8	0
S°(J.K ⁻¹ .mol ⁻¹)	256,4	248,0	205,0
$C_p^0(J.K^{-1}.mol^{-1})$	65,3	47,8	31,6