Projet P3

Introduction au génie chimique : analyse du procédé de production d'ammoniac

Groupe 124.3

FRENYO Péter (6266-12-00)

GILLAIN Nathan (7879-12-00)

Lamine Guillaume (7109-13-00)

PIRAUX Pauline (2520-13-00)

PARIS Antoine (3158-13-00)

Quiriny Simon (4235-13-00)

Schrurs Sébastien (7978-13-00)

- Introduction
- Tâche 8 amélioration du procédé
- 3 Conclusion des tâches 3 et 8
- 4 Bilan de groupe
- 6 Conclusion du projet

- Introduction
- Tâche 8 amélioration du procédé
- Conclusion des tâches 3 et 8
- Bilan de groupe
- Conclusion du projet

Analyse de l'impact environnemental : Démarche

- Recherche des valeurs à quantifier grâce à un brainstorming;
- Recherche des différentes températures des réacteurs;
- Quantification des flux de produits secondaires grâce à l'outil de gestion;
- Calcul de l'énergie dégagée/absorbée par les différentes réactions;
- Pistes d'amélioration.

Analyse de l'impact environnemental : Résultats

Pour une production de 1500~t/d avec une température de 1000~K dans le reformage primaire, nous produisons pour tout le procédé :

- $1725 \text{ t/d de } CO_2$;
- Entre 0.9 et 1.95 t/d de NO_x ;
- -53.75 kJ/d;
- 22.6 t/d de Ar.

Analyse de l'impact environnemental : Pistes pour améliorer le procédé

Nous avons réfléchi aux divers points négatifs et avons trouvé quelques pistes pour y remédier :

- Utiliser un procédé de production de dihydrogène moins polluant(électrolyse, partial oxydation, ...) .
- Chauffer le reformage primaire avec une source d'énergie verte:
- Récupérer l'énergie dégagée par les diverses réactions exothermiques;
- Reconvertir le CO₂ et les autres déchets produits ou les vendre:
- Utiliser d'autres matières premières pour la production de dihydrogène et; de diazote et éviter les poisons catalytiques à traiter.

- Introduction
- 2 Tâche 8 amélioration du procédé
- 3 Conclusion des tâches 3 et 8
- 4 Bilan de groupe
- Conclusion du projet

Démarche

Analyse des enjeux environnementaux

Démarche

Choix d'une source d'impact et pistes d'amélioration

Notre choix : le CO_2 .

Deux possibilités : soit réduire les émissions, soit recycler.

Pour reduire les émissions :

- Changer le procédé de combustion;
- Changer le procédé de création de dihydrogène.

Pour recycler:

- Produire du carburant à partir d'algues;
- Recycler en matière première;
- Revendre le CO_2 à d'autres usines en ayant besoin.

Démarche

Choix d'une source d'impact et pistes d'amélioration

Notre choix : le CO_2 .

Deux possibilités : soit réduire les émissions, soit recycler.

Pour reduire les émissions :

- Changer le procédé de combustion ;
- Changer le procédé de création de dihydrogène.

Pour recycler:

- Produire du carburant à partir d'algues;
- Recycler en matière première;
- Revendre le CO_2 à d'autres usines en ayant besoin.

Notre proposition : l'algocarburant Fonctionnement

Notre proposition : l'algocarburant Facteurs importants pour le développement des micro-algues

- Luminosité (rayons UV);
- Température ;
- Régulation des nutriments;
- Qualité du CO₂;
- Espèce d'algue.

Nos arguments

Avantages...

Micro-algues	Algocarburants
 + Croissance; + Pas de compétition avec les cultures alimentaires; 	 Directement consommable par nos moteurs; Rejets de CO₂ moins élevés.
+ Rendement;	
 Faible emprunte environnementale; 	
+ Facilité à cultiver.	

Nos arguments

... mais aussi quelques inconvénients

- Faute de production en masse : prix élevés ;
- Extraction de l'huile coûteuse et dévoreuse d'énergie;
- Nécessité de rendre le CO₂ propre à la consommation des algues;
- Quantité élevé d'azote et de phosphore élevé dans la biomasse.

Nos arguments Etude quantitative

Notre production de CO_2 :

- Procédé : x t par an;
- Combustion : x t par an.

Production des micro-algues :

- 1 ha d'algue $\approx x \ kg$ de biomasse $\approx y \ kg$ d'huile $\approx z \ L$ de carburant ;
- 1 kg de biomasse ≈ 1.8 kg de CO_2 fixé.

Avec x ha d'algues, on produit x L de carburant et on recycle x t de CO_2 par an. C'est à dire X % de nos émissions.

- Introduction
- 2 Tâche 8 amélioration du procédé
- 3 Conclusion des tâches 3 et 8
- 4 Bilan de groupe
- Conclusion du projet

- Introduction
- 2 Tâche 8 amélioration du procédé
- Conclusion des tâches 3 et 8
- 4 Bilan de groupe
- Conclusion du projet

- Introduction
- 2 Tâche 8 amélioration du procédé
- Conclusion des tâches 3 et 8
- 4 Bilan de groupe
- 6 Conclusion du projet