Dealing with organometallic molecules in RDKit

Jan H. Jensen

Department of Chemistry, University of Copenhagen

2020 RDKit UGM 2020.10.06

Most homogeneous catalysts are organometallic compounds Large datasets are becoming available but in xyz format

Most cheminformatics/ML relies on SMILES/graphs (e.g. substructure searching and graph convolution)

The tmQM Dataset - Quantum Geometries and Properties of 86k Transition Metal Complexes

David Balcells*,† and Bastian Bjerkem Skjelstad‡

chemrxiv.12894818.v1

Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database

Miguel Quirós^{1*}, Saulius Gražulis^{2,3}, Saulė Girdzijauskaitė³, Andrius Merkys² and Antanas Vaitkus²

the previously published cif_molecule program is used to get such image in many cases. The program package *Open Babel* is then applied to get SMILES strings from the CIF files (either those directly taken from the COD or those produced by cif_molecule when applicable). The results are then checked and/or fixed by a human editor, in a computer-aided task that at present still consumes a great deal of human time. Even if the procedure still needs to be

[OH2][Fe](O)(O)([OH2])([OH2]) [OH2]

Not readable by RDKIT
Charge from SMILES often incorrect

J Cheminform (2018)

xyz2mol for organic compounds

xyz2mol converts an xyz file to an RDKit mol object (needs the molecular charge and hydrogens)

Universal Structure Conversion Method for Organic Molecules: From Atomic Connectivity to Three-Dimensional Geometry

Yeonjoon Kim and Woo Youn Kim*

github.com/jensengroup/xyz2mol

Organic examples

Table 1. Atomic valences.

Elements	N_{ν}	Elements	N_{ν}
H	1	F, Cl, Br	1
В	3	N	3 or 4
C	4	P	3, 4, or 5
O	1 or 2	S	2, 4, or 6

Valence states	Formal charge	
Carbon with three single bonds	1/-1 depending on the total charge	
Boron	3 – (no. of bonds)	
The rest	(no. of valence electrons) $-8 + $ (no. of bonds)	

Sometimes there are more than one solution xyz2mol will generate one of them arbitrarily

Solution(?): generate all, then filter

Generate all using rdchem.ResonanceMolSupplier*

Create filter that picks "canonical" form

One approach for organometallics

Distinguishing dative from covalent bonds

$$O \rightarrow [Fe](O)(O)(<-O)(<-O)<-O$$
 $O \rightarrow [Fe](O)(O)(O)(<-O)<-O$

$$O \rightarrow [Fe](O)(O)(O)(<-O)<-O$$

OH

$$H_2O$$

 H_2O
 H_2O
 H_2O
 H_2O
 H_2O
 H_2O
 H_2O
 H_2O
 H_2O
 H_2O

Formal charge on Fe = total charge [e.g. Fe(OH) $_2$ ⁺]

Main problem

Distinguishing dative from covalent bonds before bond orders are assigned

Another approach

Only dative bonds

OH-
$$H_2O$$
 H_2O
 H_2O
 H_2O
 H_2O
 H_2O
 H_2O

Fe⁺²

Fe⁺³

Formal charge in Fe = total charge + ∑ charge on ligands

Also not sensitive to presence of bond(s)

Alex Clark J. Chem. Inf. Modeling 2011

Must know charge on Fe

total charge = charge on Fe $+ \sum$ charge on ligands

Most TMs have many different oxidation states

https://byjus.com/chemistry/transition-elements-oxidation-states/

Try all charges and save cases for which

total charge = charge on TM $+ \sum$ charge on ligands

Some issues

Not all bonds to TM are found (uses RDKit Hückel reduced overlap population)

Other resonance forms of ligands

Hydrides

Dative bond limits ResonanceMolSupplier

```
m = Chem.MolFromSmiles('C[C-](C)C=Q')
ms = rdchem.ResonanceMolSupplier(m)
Draw.MolsToGridImage(ms, molsPerRow=5, legends=None, subImgSize=(200,200))
```



```
m = Chem.MolFromSmiles('C[C-](C)C=C->[W+4]')
ms = rdchem.ResonanceMolSupplier(m)
Draw.MolsToGridImage(ms,molsPerRow=5,legends=None,subImgSize=(200,200))
```


Fragment -> Resonance structures -> combine(?)

Hydrides and SMILES (RDKit 2020.03.5)

```
mol = Chem.MolFromSmarts('[#26]')
rwMol = Chem.RWMol(mol)
rwMol.AddAtom(Chem.Atom(1))
rwMol.AddBond(1,0,Chem.BondType.DATIVE)
mol = rwMol.GetMol()
mol.GetAtomWithIdx(0).SetFormalCharge(2)
mol.GetAtomWithIdx(1).SetFormalCharge(-1)
print('SMILES and total charge', Chem.MolToSmiles(mol),Chem.GetFormalCharge(mol))
print('allHsExplicit', Chem.MolToSmiles(mol, allHsExplicit=True))
print('number of atoms', mol.GetNumAtoms())
print('charge on Fe and H', mol.GetAtomWithIdx(0).GetFormalCharge(), mol.GetAtomWithIdx(1).GetFormalCharge())
```

```
SMILES and total charge [HH2-]->[Fe+2] 1
allHsExplicit [HH2-]->[Fe+2]
number of atoms 2
charge on Fe and H 2 -1
```

Hydrides and SMILES (RDKit 2020.03.5)

SMILES does not give mol object with correct charge

```
mol = Chem.MolFromSmiles('[HH2-]->[Fe+2]')
print('SMILES and total charge', Chem.MolToSmiles(mol), Chem.GetFormalCharge(mol))
SMILES and total charge [FeH+2] 2
mol = Chem.AddHs(mol)
print('SMILES and total charge', Chem.MolToSmiles(mol), Chem.GetFormalCharge(mol))
SMILES and total charge [H][Fe+2] 2
[HH2-]->[Fe+2] becomes [FeH+2] or [H][Fe+2]
```

Hydrides and SMILES (RDKit 2020.03.5)

Greg found a workaround

```
parse_ps = Chem.SmilesParserParams()
parse_ps.removeHs=False
remove_ps = Chem.RemoveHsParameters()
remove_ps.removeHydrides = False
m = Chem.RemoveHs(Chem.MolFromSmiles('[HH2-]->[Fe+2]',parse_ps),remove_ps)
print(Chem.MolToSmiles(m),Chem.GetFormalCharge(m))
```

Another option is to treat TM-hydride bonds as covalent and reduce TM charge

Summary

Prototype generates RDKit readable SMILES for organometallic compounds w/o human intervention

But ...

Not all bonds to TM are found (uses RDKit Hückel reduced overlap population)

Non-unique oxidation states/resonance forms (filter/"canonicalization"?)

Hydrides charge bug for MolFromSmiles

How to automatically test code?

Additional RDKit issues

Depiction of octahedral compounds not helpful

Embedding/UFF optimization not working

Experimental branch can be found hereFeedback welcome

https://github.com/jensengroup/xyz2mol/tree/tm_comb