Cryptographie avancée : Examen du 16 décembre 2013

Durée : 3h. Sans document. Les exercices sont indépendants.

– EXERCICE 1. Soient g et h deux entiers d'ordre q|p-1 modulo un premier p publics.

Alice s'engage auprès de Bob en lui fournissant l'entier $E \mod p$. Elle souhaite convaincre Bob qu'elle connaît deux entiers r et x tels que

$$E = g^r h^x \bmod p$$
.

Proposer un protocole en trois passes de la forme :

- Alice fournit à Bob un entier z modulo p,
- Bob fournit à Bob un bit $\varepsilon = 0, 1,$
- Alice révèle à Bob deux entiers u et v modulo q.

Montrer que votre protocole démontre la connaissance de r et x et est complet, valide, et sans divulgation.

– EXERCICE 2. Soient g_1, g_2, g_3 trois générateurs d'un sous-groupe multiplicatif G de $\mathbb{Z}/p\mathbb{Z}$ d'ordre q premier. Soit donné un triplet (y_1, y_2, y_3) d'éléments de G. Proposer un protocole sans divulgation qui démontre l'existence d'un entier x modulo q tel que l'on ait simultanément :

$$y_1 = g_1^x \mod p, \ y_2 = g_2^x \mod p, \ y_3 = g_3^x \mod p.$$

Montrer que votre protocole est bien complet, valide et sans divulgation.

- EXERCICE 3. Soient g et h deux générateurs d'un sous-groupe multiplicatif G de $\mathbb{Z}/p\mathbb{Z}$ d'ordre q premier. Soit donné un triplet (y, z_1, z_2) , d'éléments de G. Le protocole suivant est destiné à démontrer qu'il existe un entier x modulo q tel que $y = g^x \mod p$ et
- $\operatorname{soit} z_1 = h^x \bmod p,$

 $- \operatorname{soit} z_2 = h^x \bmod p.$

Le protocole se déroule ainsi :

- le prouveur P envoie au vérificateur V quatre éléments de G, soient $u_1, v_1, u_2, v_2, \dots$
- le vérificateur renvoie un entier c modulo q,
- le prouveur envoie quatre entiers c_1, c_2, w_1, w_2 modulo q tels que
 - $-c_1 + c_2 = c \bmod q,$
 - $-g^{w_1} = u_1 y^{c_1}$ et $h^{w_1} = v_1 z_1^{c_1}$,
 - $-g^{w_2} = u_2 y^{c_2}$ et $h^{w_2} = v_2 z_2^{c_2}$.
 - a) Montrer que le protocole est complet. On montrera par exemple que si $h^x = z_1$, alors le prouveur peut avoir préparé u_2 et v_2 sous la forme $u_2 = g^{w_2}y^{-c_2}$ et $v_2 = h^{w_2}z_2^{-c_2}$.
 - b) Montrer que le protocole est valide. On montrera que si le prouveur est capable de répondre à deux défis distincts c et c' par deux réponses satisfaisantes (c_1, c_2, w_1, w_2) et (c'_1, c'_2, w'_1, w'_2) , alors
 - soit $c_1 \neq c'_1$, et dans ce cas on doit avoir $y = g^x$ et $h^x = z_1$ pour un même x,
 - soit $c_2 \neq c_2'$, et dans ce cas on doit avoir $y = g^x$ et $h^x = z_2$.
 - c) Montrer que le protocole est sans divulgation. En particulier, le vérificateur ne sait pas lequel des deux entiers, z_1 ou z_2 , est égal à h^x avec $y = g^x$.
- EXERCICE 4. Soit p un nombre premier et g un élément d'ordre q dans $(\mathbb{Z}/p\mathbb{Z})^*$, pour un diviseur q de p-1 donné. Soit G le sous-groupe multiplicatif de $(\mathbb{Z}/p\mathbb{Z})^*$ engendré par g. On rappelle que le problème de Diffie-Hellman décisionnel consiste à savoir décider si, étant donnés g^a et g^b , un troisième élément z du groupe G est ou non égal à g^{ab} mod p.

On souhaite construire un protocole de transfert inconscient. Alice dispose de deux secrets s_1 et s_2 , éléments de $(\mathbb{Z}/p\mathbb{Z})$. Bob souhaite acquérir un des deux, disons s_i , sans qu'Alice découvre la valeur de i. On procède ainsi :

– Bob choisit deux entiers modulo q aléatoires a et b, puis il communique à Alice quatre entiers modulo p,

$$(g^a, g^b, Z_1, Z_2).$$

- Alice vérifie que $Z_1 \neq Z_2 \mod p$ (si $Z_1 = Z_2$ elle interrompt le protocole) puis choisit deux entiers modulo q aléatoires u et v et communique à Bob trois entiers modulo p, soit w, $s_1 + x_1$ et $s_2 + x_2$, où :

$$w = (g^a)^u g^v$$

$$x_1 = Z_1^u (g^b)^v$$

$$x_2 = Z_2^u (g^b)^v.$$

- a) Trouver une valeur de Z_1 (respectivement Z_2) qui permet à Bob d'obtenir x_1 (resp. x_2) et par conséquent s_1 (resp. s_2).
- b) Montrer que si Bob a utilisé cette valeur pour Z_1 (par exemple) alors, quelle que soit la valeur de Z_2 , il n'a aucune information sur x_2 (et donc sur l'autre secret s_2), ceci même si Bob est suffisamment puissant pour savoir calculer des logarithmes modulo p. On montrera donc que toutes les valeurs possibles de x_2 sont compatibles avec toutes les données dont dispose Bob.
- c) Montrer que si Alice sait quel est le secret que Bob obtient par ce procédé, alors elle sait résoudre le problème de Diffie-Hellman décisionnel.
- d) Montrer que le protocole de l'exercice 3 permet de contraindre Bob à suivre le présent protocole sans possibilité de tricher, c'est-à-dire en obtenant exactement un des deux secrets et rien sur l'autre.
- EXERCICE 5. On suppose que l'on dispose d'un protocole \mathcal{P} de transfert inconscient d'un secret de $\{0,1\}^{\ell}$ parmi deux. On souhaite réaliser le transfert inconscient d'un secret parmi trois secrets appelés a,b,c et également dans $\{0,1\}^{\ell}$.
 - a) Montrer, comment en appliquant deux fois le protocole \mathcal{P} à deux paires de secrets, x, y d'une part et z, t d'autre part, et en ayant décomposé a, b, c en sommes bien choisies d'éléments de $\{x, y, z, t\}$, on peut réaliser le transfert inconscient d'un secret de $\{a, b, c\}$. On montrera notamment que le récepteur n'a aucune information sur au moins deux des trois secrets.

- b) Pouvez-vous généraliser votre protocole à un transfert inconscient d'un secret parmi n > 3? Montrer comment réaliser un transfert inconscient d'un secret parmi sept en trois applications du protocole \mathcal{P} .
- EXERCICE 6. Soit p un nombre premier et g un élément d'ordre q dans $(\mathbb{Z}/p\mathbb{Z})^*$, pour un diviseur q de p-1 donné. Soit G le sous-groupe multiplicatif de $(\mathbb{Z}/p\mathbb{Z})^*$ engendré par g. On rappelle que le problème de Diffie-Hellman décisionnel consiste à savoir décider si, étant donnés g^a et g^b , un troisième élément z du groupe G est ou non égal à g^{ab} mod p.

Soit $h: (\mathbb{Z}/p\mathbb{Z})^* \to \{0,1\}^n$ une fonction de hachage. Soit s un entier modulo q et soit $P = g^s \in \mathbb{Z}/p\mathbb{Z}$. Les données (p,q,g,P) sont publiques et s est une donnée secrète.

À un message clair $M \in \{0,1\}^n$ on associe le message chiffré dans $G \times \mathbb{Z}/p\mathbb{Z} \times \{0,1\}^n$

$$C = (g^r, xP^r, M + h(x))$$

où r et x sont des quantités choisies aléatoirement, respectivement dans $\mathbb{Z}/q\mathbb{Z}$ et dans $\mathbb{Z}/p\mathbb{Z}$, et où + désigne l'addition bit à bit de n-uples binaires.

- a) Montrer comment le détenteur du secret s déchiffre le cryptogramme C.
- b) Montrer pourquoi, dans le modèle de l'oracle aléatoire, décrypter C est aussi difficile que de résoudre le problème de Diffie-Hellman décisionnel. On montrera que s'il existe un attaquant qui distingue si un chiffré est le chiffré de M_0 ou de M_1 , alors on peut l'utiliser comme sous-programme pour construire un algorithme qui résoud le problème de Diffie-Hellman décisionnel. On supposera que l'attaquant mène une attaque à clair choisis (CPA).