Logarithm Problem 91-100

Shiv Shankar Dayal

January 30, 2022

91. Prove that $\log_2 17 \log_{\frac{1}{5}} 2 \log_3 \frac{1}{5} > 2$

Solution:

$$\begin{split} L.H.S. &= \log_2 17 \log_{\frac{1}{5}} 2 \log_3 \frac{1}{5} \\ &= \log_2 17 \log_3 2 = \log_3 17 \\ &\because 17 > 3^2 \Rightarrow \log_3 17 > 2 \end{split}$$

92. Show that $\log_{49} 3$ lies between $\frac{1}{3}$ and $\frac{1}{4}$.

Solution:

$$\begin{aligned} & 3^3 < 49 < 3^4 \\ \Rightarrow & 3\log_3 3 < \log_3 49 < 4\log_3 3 \\ \Rightarrow & 3 < \log_3 49 < 4 \\ \Rightarrow & \frac{1}{3} > \frac{1}{\log_3 49} > \frac{1}{4} \\ \Rightarrow & \frac{1}{3} > \log_{49} 3 > \frac{1}{4} \end{aligned}$$

93. Show that $\log_{20} 3$ lies between $\frac{1}{2}$ and $\frac{1}{3}$.

Solution:

$$\begin{split} 3^2 < 20 < 3^3 \\ \Rightarrow 2\log_3 3 < \log_3 20 < 3\log_3 3 \\ \Rightarrow 2 < \log_3 20 < 3 \\ \Rightarrow \frac{1}{2} > \frac{1}{\log_3 20} > \frac{1}{3} \\ \Rightarrow \frac{1}{2} > \log_{20} 3 > \frac{1}{3} \end{split}$$

94. Show that $\log_{10} 2$ lies between $\frac{1}{4}$ and $\frac{1}{3}$.

Solution:

$$\begin{split} 2^3 < 10 < 2^4 \\ \Rightarrow 3\log_2 2 < \log_2 10 < 4\log_2 2 \\ \Rightarrow 3 < \log_2 10 < 4 \\ \Rightarrow \frac{1}{3} > \frac{1}{\log_2 10} > \frac{1}{4} \\ \Rightarrow \frac{1}{3} > \log_{10} 2 > \frac{1}{4} \end{split}$$

95. Solve $\log_{0.1}(4x^2 - 1) > \log_{0.1} 3x$

Solution:

Given,
$$\log_{0.1}(4x^2-1)>\log_{0.1}3x$$

$$\Rightarrow 4x^2-3x-1<0 \Rightarrow (4x+1)(x-1)<0$$

Thus, $\frac{-1}{4} < x < 1$ is the initial solution. However, x>0 from R.H.S. From L.H.S. $4x^2-1>0 \Rightarrow x<\frac{-1}{2}, x>\frac{1}{2}$ Thus, $\frac{1}{2< x<1}$ is what we have combining all the solutions.

96. Solve $\log_2(x^2 - 24) > \log_2 5x$

Solution:

Given,
$$\log_2(x^2-24)>\log_2 5x$$

$$\Rightarrow x^2-24>5x$$

$$\Rightarrow (x-8)(x+3)>0$$

$$\Rightarrow x<-3,x>8$$

But $x^2-24>0$ and also x>0 for logarithm function to be defined. x>8 is the solution.

97. Show that $\frac{1}{\log_3 \pi} + \frac{1}{\log_4 \pi} > 2$

Solution:

$$\begin{split} \frac{1}{\log_3 \pi} + \frac{1}{\log_4 \pi} &> 2 \\ \Rightarrow \log_\pi 3 + \log_\pi 4 &> 2 \\ \Rightarrow \log_\pi 12 &> 3 \\ \Rightarrow 12 &> \pi^2 \end{split}$$

which is true.

98. Without actual computation find greater among $(0.01)^{\frac{1}{3}}$ and $(0.001)^{\frac{1}{5}}$

Solution: Taking log of both with base 10 we get $\frac{1}{3}\log 0.01$ and $\frac{1}{4}\log 0.001$ i.e. $-\frac{2}{3}$ and $-\frac{3}{5}$ Since $.\frac{3}{5}$ is graeter so $(0.001)^{\frac{1}{5}}$ is graeter.

99. Without actual computation find greater among $\log_2 3$ and $\log_3 11$

Solution:

$$\log_2 3 < \log_2 4 = 2$$

$$\log_3 11 > \log_3 9 = 2$$

So $\log_3 11$ is greater.

100. Solve, $\log_3(x^2+10)>\log_37x$

Solution:

Given,
$$\begin{split} \log_3(x^2+10) > \log_3 7x \\ \Rightarrow x^2-7x+10 > 0 \Rightarrow (x-2)(x-5) > 0 \\ \Rightarrow x < 2, x > 5 \end{split}$$

However, for logarithm to be defined x > 0 and $x^2 + 10 > 0$. Thus, range is (0, 2) and $(5, \infty]$