

TSA03: Univariate Stationary Time Series Models Jakey BLUE

Properties of a Stationary Stochastic Process

Autocorrelation or Spectrum

What is a Time Series?

- If a series of observations is collected at the timestamps $\{t_1, t_2, ..., t_n\}$ • $\{y(t_1), y(t_2), ..., y(t_n)\}$ is a time series
- Is a time series Continuous or Discrete?
 - Can we really capture a Continuous Time Series?
 - Discrete Time Series is usually collected via
 - sampling a continuous time series
 - e.g., gas flow
 - accumulating a variable over a period of time
 - e.g., rainfall, material batch

Stochastic Process

- Can a time series be "deterministic"?
- A stochastic process contains a statistical phenomenon that evolves in time according to probabilistic laws.
 - e.g., a Markovian series, random walk series
- A time series is the realization (or outcome) of a stochastic process.

Stationarity of a Stochastic Process

$$\mu = E[y_t] = \int_{-\infty}^{\infty} y p(y) dy$$

$$\sigma_y^2 = V[y_t] = E[(y_t - \mu)^2] = \int_{-\infty}^{\infty} (y - \mu)^2 p(y) dy$$

• Strictly stationary: if the joint probability distribution associated with m observations $\{y_1, y_2, ..., y_m\}$, made at any set of times $\{t_1, t_2, ..., t_m\}$, is the same as that associated with m observations $\{y_{1+k}, y_{2+k}, ..., y_{m+k}\}$, made at times $\{t_{1+k}, t_{2+k}, ..., t_{m+k}\}$.

Autocovariance/Autocorrelation Functions

$$\gamma_k = \text{COV}[y_t, y_{t+k}] = \text{E}[(y_t - \mu)(y_{t+k} - \mu)]$$

$$\rho_k = \frac{\text{E}[(y_t - \mu)(y_{t+k} - \mu)]}{\sqrt{V[y_t]V[y_{t+k}]}} = \frac{\text{E}[(y_t - \mu)(y_{t+k} - \mu)]}{\sigma_y^2}$$

- \bullet $\rho_k = ?$
- \bullet $\rho_0 = ?$

$$\bullet \quad \Gamma_n = \begin{bmatrix} \gamma_0 & \gamma_1 & \gamma_2 & \dots & \gamma_{n-1} \\ \gamma_1 & \gamma_0 & \gamma_1 & \dots & \gamma_{n-2} \\ \gamma_2 & \gamma_1 & \gamma_0 & \dots & \gamma_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma_{n-1} & \gamma_{n-2} & \gamma_{n-3} & \dots & \gamma_0 \end{bmatrix} = ?f(\rho)$$

Positive Definiteness of the Autocovariance MX

- The determinant of Γ_n or Γ_n is greater than 0, why?
 - Think about a linear combination of the random variables

$$\{y_t, y_{t-1}, y_{t-2}, \dots, y_{t-n+1}\} \to L_t = l_1 y_t + l_2 y_{t-1} + \dots + l_n y_{t-n+1}$$

$$: COV[y_i, y_j] = \gamma_{|i-j|}, V[L_t] = \sum_{i=1}^n \sum_{j=1}^n l_i l_j \gamma_{|i-j|}$$

- $V[L_t]$ must be larger than 0 for any non-zero $\{l_1, l_2, ..., l_n\}$ such that

 - Γ_n or \mathbf{P}_n is p.d.

Conditions to Positive Definiteness (Check the Principal Minors of the Matrices)

$$\bullet$$
 $n=2, \mathbf{P}_2=\begin{bmatrix}1 & \rho_1\\ \rho_1 & 1\end{bmatrix}$

Is L_t Stationary? if y_t is not stationary.

$$COV[L_t, L_{t-k}] = \sum_{i=1}^{n} \sum_{j=1}^{n} l_i l_j COV[y_{t+1-i}, y_{t+1-k-j}] = \sum_{i=1}^{n} \sum_{j=1}^{n} l_i l_j \gamma_{|k+j-i|}$$

- to extend, we check if the first-order difference of y_t : $\nabla y_t = y_t y_{t-1}$, or higher differences $\nabla^d y_t$ are all stationary.
 - This simply reveals the idea of handling a non-stationary time series.

Gaussian Process → Weak Stationarity

- If the probabilistic law a stochastic process follows is a multivariate normal distribution, the process is called "Gaussian Process".
 - Fixed μ and Γ_n will be sufficient to ensure the stationarity.
- **©** Compared to "strict stationarity", weak stationarity only ensures fixed μ and Γ_n , that is to say, "second-order stationary".
- The most fundamental example of a stationary process:
 - A sequence of i.i.d. random variables \rightarrow strict or weak? μ and $\Gamma_n =$?

Autocovariance or Autocorrelation

- Unit-invariant property
 - autocovariance or autocorrelation?
- Symmetric property

$$\bullet \quad \gamma_{-k} = \gamma_k$$

$$\bullet$$
 $\rho_{-k} = \rho_k$

We will only look at the positive side.

Estimating Autocovariance/Autocorrelation

- We were only talking about the theoretical parts of a stochastic process.
- What if we have collected the real data: $\{y_1, y_2, ..., y_n\}$
 - sample mean (accuracy):

$$\overline{y} = \sum_{t=1}^{n} \frac{y_t}{n} \Rightarrow \mathbb{E}[\overline{y}] = \mu.$$

• Precision of \overline{y} :

$$V[\overline{y}] = \frac{1}{n^2} \sum_{t=1}^n \sum_{s=1}^n \gamma_{t-s} = \frac{\gamma_0}{n} \left[1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right].$$

When
$$n$$
 is big enough, $nV[\overline{y}] \to \gamma_0 \left[1 + 2\sum_{k=1}^{\infty} \rho_k\right]$.

The Most Satisfactory Estimate of ρ_k not too far from the intuition

$$\hat{\rho}_{k} = r_{k} = \frac{c_{k}}{c_{0}}$$

$$c_{k} = \frac{1}{n} \sum_{t=1}^{n-k} (y_{t} - \overline{y})(y_{t+k} - \overline{y}), k = 1, 2, ..., K$$

• r_k (or $\hat{\rho}_k$) is usually called the sample autocovariance (or autocorrelation) function.

k	r_k	k	r_k	k	r_k
1	-0.39	6	-0.05	11	0.11
2	0.30	7	0.04	12	-0.07
3	-0.17	8	-0.04	13	0.15
4	0.07	9	0.00	14	0.04
5	-0.10	10	0.01	15	-0.01

Standard Errors of Autocorrelation Estimates

Bartlett, M. S. "On the Theoretical Specification and Sampling Properties of Autocorrelated Time-Series." *Supplement to the Journal of the Royal Statistical Society*, vol. 8, no. 1, 1946, pp. 27–41. *JSTOR*, www.jstor.org/stable/2983611.

For a Gaussian Process

$$V[r_k] \approx \frac{1}{n} \sum_{v=-\infty}^{\infty} \left(\rho_v^2 + \rho_{v+k} \rho_{v-k} - 4\rho_k \rho_v \rho_{v-k} + 2\rho_v^2 \rho_k^2 \right)$$

• If $\rho_k = \phi^{|k|} \ (-1 < \phi < 1)$

$$V[r_k] \approx \frac{1}{n} \left[\frac{(1+\phi^2)(1-\phi^2)}{1-\phi^2} - 2k\phi^{2k} \right], V[r_1] \approx \frac{1}{n} [1-\phi^2]$$

 \odot Sometimes autocorrelations may die-out after certain lag, say q.

$$V[r_k] \approx \frac{1}{n} \left(1 + 2 \sum_{\nu=1}^{q} \rho_{\nu}^2 \right), k > q.$$

• The simplest form (Bartlett 1946): $V[r_k] = \frac{1}{n}$

Why Do We Need the Standard Errors?

	1			'	<u> </u>
k	r_k	k	r_k	k	r_k
1	-0.39	6	-0.05	11	0.11
2	0.30	7	0.04	12	-0.07
3	-0.17	8	-0.04	13	0.15
4	0.07	9	0.00	14	0.04
5	-0.10	10	0.01	15	-0.01

Stationary Models May Have Spectral Properties

Periodogram of a Time Series

- A time series can be viewed as the composition of sine and cosine waves with different frequencies.
 - Assuming the number of observations is odd: n = 2q + 1

$$y_t = \alpha_0 + \sum_{i=1}^{q} [\alpha_i \cos(2\pi f_i t) + \beta_i \sin(2\pi f_i t)] + e_t,$$

where $f_i = \frac{i}{n}$ is the i^{th} harmonic of the basic frequency $\frac{1}{n}$ associated with the i^{th} sine wave component.

• The least square estimates of the α_0 and (α_i, β_i) are

$$a_0 = \overline{y}, a_i = \frac{2}{n} \sum_{t=1}^n y_t \cos(2\pi f_i t), b_i = \frac{2}{n} \sum_{t=1}^n y_t \sin(2\pi f_i t).$$

Intensity of the Basic Frequency f_i

$$I(f_i) = \frac{n}{2}(a_i^2 + b_i^2), i = 1, 2, ..., q,$$

is called the intensity at frequency f_i . (recall the number of observations is odd: 2q + 1)

- \odot When *n* is even, set n = 2q
 - \bullet $a_q = \frac{1}{n} \sum_{t=1}^{n} (-1)^t y_t$, $b_q = 0$
 - $I(f_q) = I(0.5) = na_q^2$

Analysis of Variance (on the Intensities)

• When n is odd, we can have $\frac{n-1}{2}$ pairs of degrees of freedom, i.e., (a_i, b_i) .

$$\sum_{t=1}^{n} (y_t - \bar{y})^2 = \sum_{i=1}^{q} I(f_i)$$

- When n is even, there become $\frac{n-2}{2}$ pairs of degrees of freedom and a single one associated with the coefficient a_q .
- Compared to "if the process is truly random" $\Rightarrow y_t = \alpha_0 + e_t$
 - $E[I(f_i)] = 2\sigma^2$ and $I(f_i)$ is distributed as $\sigma^2 \chi^2(2)$.

Monthly Temperatures for Central England in 1964

Month	Temperature	c1t	s1t
1	3.40	0.87	0.50
2	4.50	0.50	0.87
3	4.30	0.00	1.00
4	8.70	-0.50	0.87
5	13.30	-0.87	0.50
6	13.80	-1.00	0.00
7	16.10	-0.87	-0.50
8	15.50	-0.50	-0.87
9	14.10	0.00	-1.00
10	8.90	0.50	-0.87
11	7.40	0.87	-0.50
12	3.60	1.00	0.00

$$y_t = a_1 \cos(2\pi f_1 t) + b_1 \sin(2\pi f_1 t)$$

$$a_1 = -5.30, b_1 = -3.82$$

18.00 —Temperature —c1t —s1t

England Temperature Record

Analysis of the Variance of the Periodogram

i	a_i	b_i
1	-5.30	-3.82
2	0.05	0.17
3	0.10	0.50
4	0.52	-0.52
5	0.09	-0.58
6	-0.30	

	Frequenc	у			
i	f_{i}	Period	Periodogram $I(f_i)$	Degrees of Freedom	Mean Square
1	1/12	12	254.96	2	127.48
2	1/6	6	0.19	2	0.10
3	1/4	4	1.56	2	0.78
4	1/3	3	3.22	2	1.61
5	5/12	12/5	2.09	2	1.05
6	1/2	2	1.08	1	1.08
			242.40		
			263.10	11	23.92

From Periodogram to Spectrum

- We can relax the frequency setting, from $f = \frac{i}{n}$ to 0 < f < 0.5
 - \bullet Given a fixed f,

$$I(f) = 2\left[c_0 + 2\sum_{k=1}^{n-1} c_k \cos(2\pi f k)\right],$$

which is the Fourier cosine transform of the estimate of the autocovariance.

Furthermore, there are issues related to spectrum, spectral density function.

Key remark: "Spectral Density" and "Autocorrelation" are describing a time series equivalently but in different perspectives.

Linear Stationary Models

A time series is generated by a linear aggregation of random shocks.

2

66

Without loss of generality, From the rest of this slides, we let y_t denoted the **centered** series, i.e., $y_t = y_t - E[y_t]$.

Definitions in Premise

 An infinite series is absolutely summable if the sum of the absolute values of its summands converges, i.e.,

$$\sum_{j=0}^{\infty} \left| \theta_j \right| < \infty$$

Thus, the partial sum of the series $\sum_{j=0}^{\infty} \theta_j a_{t-j}$ can converge in mean square to the random variable y_t , i.e.,

$$\lim_{n \to \infty} \mathbb{E}\left[\left(\sum_{j=0}^{n} \theta_{j} a_{t-j} - y_{t}\right)^{2}\right] = 0$$

Considering a General Linear Process

$$y_t = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \dots = a_t + \sum_{j=1}^{\infty} \psi_j a_{t-j} y.$$

 a_t is the *white noise* (shock, innovation, error, etc.), where

$$E[a_t] = 0, V[a_t] = \sigma_a^2.$$

$$\mathbf{E}[a_t a_{t-k}] = \begin{cases} \sigma_a^2 & k = 0\\ 0 & k \neq 0 \end{cases}$$

Is y a stationary stochastic process? Any assumptions?

Alternative Form of the General Linear Process

$$y_t = \pi_1 y_{t-1} + \pi_2 y_{t-2} + \dots + a_t = \sum_{j=1}^{\infty} \pi_j y_{t-j} + a_t.$$

- The alternative form is to express the process in terms of the past y_t and an added shock a_t .
- Introducing 2 important operators:
 - Backward shift operator $B: By_t = y_{t-1}$, and hence $B^j y_t = ?$
 - Forward shift operator $F: Fy_t = y_{t+1}$, and $F^jy_t = ?$
- The general linear process becomes

$$y_t = \left(1 + \sum_{j=1}^{\infty} \psi_j B^j\right) a_t \text{ or } y_t = \left(\sum_{j=1}^{\infty} \pi_j B^j\right) y_t + a_t.$$

Simple Stochastic Process: $y_t = a_t - \theta a_{t-1}$

$$y_t = (1 - \theta B)a_t = \theta(B)a_t$$

Is it stationary?

HOW?

$$\Rightarrow (1 + \theta B + \theta^2 B^2 + \cdots) y_t = a_t.$$

 $\Rightarrow (1 - \theta B)^{-1} y_t = a_t$

$$\Rightarrow y_t = -\theta y_{t-1} - \theta^2 y_{t-2} - \theta^3 y_{t-3} - \dots + a_t$$

Let $\pi_i = -\theta^j$

$$y_t = \sum_{j=1}^{\infty} \pi_j B^j y_t + a_t \Rightarrow \left(1 - \sum_{j=1}^{\infty} \pi_j B^j\right) y_t = a_t = \pi(B) y_t$$

Invertibility to Stationarity

• To ensure $y_t = (1 - \theta B)a_t$ an invertible process, one needs

$$\sum_{j}^{\infty} |\theta|^{j} = \sum_{j}^{\infty} |\pi_{j}| < \infty.$$
 Absolutely Summable

That is to say, the inverted series is stationary.

$$\pi(B) = (1 - \theta B)^{-1} = \sum_{j=0}^{N} \theta^j B^j$$
 converges for all $|\theta| < 1$

Stationary Condition for $\widetilde{y}_t = \pi_1 \widetilde{y}_{t-1} + a_t$

On what condition do you think this time series is stationary?

$$y_t = \pi_1 y_{t-1} + a_t$$

- Intuition: $|\pi_1| < 1$
- Characteristic function: $\pi(B) = 1 \pi_1 B$
- By assigning $\pi(B) = 0$, one gets

$$B = \frac{1}{\pi_1}$$

Combining the intuition:

As B can be a complex number, |B| > 1 indicates the region outside the unit circle of the complex plane.

Viewpoint from the Autocovariances

• For the General Linear Process: $y_t = a_t + \sum_{j=1}^{\infty} \psi_j a_{t-j}$

$$\gamma_k = \sigma_a^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+k}$$

- It implies that $\sum_{j=0}^{\infty} |\psi_j| < \infty$ will ensure the **stationarity**, because the autocovariances converge.

*Autocovariance Generating Function (AGF)

Definition

$$\gamma(B) = \sum_{k=-\infty}^{\infty} \gamma_k B^k$$

- For white noise, $\gamma(B) = \sigma_a^2$
- For $y_t = \psi(B)a_t$, $\gamma(B) = \sigma_a^2 \psi(B)\psi(B^{-1}) = \sigma_a^2 \psi(B)\psi(F)$
- \bullet For $y_t = a_t \theta a_{t-1} = (1 \theta B) a_t$, $\gamma(B) = \sigma_a^2 (1 + \theta B) (1 + \theta B^{-1}) = \sigma_a^2 [-\theta B^{-1} + (1 + \theta^2) - \theta B]$
- Compared with $\gamma_0 = (1 + \theta^2)\sigma_a^2$; $\gamma_1 = -\theta\sigma_a^2$; $\gamma_k = 0$ for $k \ge 2$. Something

Derivation of AGF

$$\gamma_{k} = \sigma_{a}^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+k}$$

$$\gamma(B) = \sigma_{a}^{2} \sum_{k=-\infty}^{\infty} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+k} B^{k} = \sigma_{a}^{2} \sum_{j=0}^{\infty} \sum_{k=-j}^{\infty} \psi_{j} \psi_{j+k} B^{k}$$

$$= \sigma_{a}^{2} \sum_{j=0}^{\infty} \sum_{h=0}^{\infty} \psi_{j} \psi_{h} B^{h-j} = \sigma_{a}^{2} \sum_{j=0}^{\infty} \psi_{j} B^{j} \sum_{h=0}^{\infty} \psi_{h} B^{h} = \sigma_{a}^{2} \psi(B) \psi(F)$$

Let h = j + k

Summary: Stationarity and Invertibility

For a linear process $y_t = a_t + \sum_{j=1}^{\infty} \psi_j a_{t-j}$ to be stationary $\sum_{j=0}^{\infty} |\psi_j| < \infty.$

For a linear process $y_t = a_t + \sum_{j=1}^{\infty} \psi_j a_{t-j}$ to be invertible $\sum_{j=0}^{\infty} |\pi_j| < \infty,$

• where $\pi_j = \psi^j$ and $\pi(B) = \psi^{-1}(B) = 1 - \sum_{j=1}^{\infty} \pi_j B^j$.

Preview of Time Series Models

AutoRegressive

$$y_{t} = \phi_{1}y_{t-1} + \phi_{2}y_{t-2} + \cdots + \phi_{p}y_{t-p} + a_{t}$$

$$(1 - \phi_1 B + \phi_2 B^2 + \cdots + \phi_p B^p) y_t = a_t$$

$$\phi(B)y_t = a_t$$

$$y_t = \frac{1}{\phi(B)} a_t$$

MovingAverage

$$y_t = a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \cdots$$

$$- \theta_q a_{t-q}$$

$$(1 - \theta_1 B - \theta_2 B^2 - \cdots$$

$$- \theta_q B^q) a_t = y_t$$

$$\theta(B) a_t = y_t$$

ARMA

$$y_{t} = \phi_{1}y_{t-1} + \phi_{2}y_{t-2} + \cdots + \phi_{p}y_{t-p} + a_{t} - \theta_{1}a_{t-1} - \theta_{2}a_{t-2} - \cdots - \theta_{q}a_{t-q} \phi(B)y_{t} = \theta(B)a_{t} y_{t} = \frac{\theta(B)}{\phi(B)}a_{t} = \frac{1 - \phi_{1}B + \phi_{2}B^{2} + \cdots + \phi_{p}B^{p}}{1 - \theta_{1}B - \theta_{2}B^{2} - \cdots - \theta_{q}B^{q}}a_{t}$$

Moving Average Processes

Invertible Conditions for MA Processes

 \odot An MA(q) process is expressed as

$$\begin{aligned} y_t &= a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \dots - \theta_q a_{t-q} \\ &= \left(1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q\right) a_t \\ &= \theta(B) a_t, \end{aligned}$$

- where $a_t \sim^{iid} N(0, \sigma_a^2)$ for $t = 1, 2, ..., \infty$.
- As seen, a MA(1) process, $y_t = (1 \theta_1 B) a_t$, is invertible if $|\theta_1| < 1$,
 - such that $\pi(B) = (1 \theta_1 B)^{-1} = \sum_{j=0}^{\infty} \theta_1^j B^j$ will converge on/within an unit circle.
 - Equivalently, $B = \theta_1^{-1}$ of $(1 \theta_1 B) = 0$ lies outside the unit circle.

The Simplest MA Process: MA(1)

- MA(1) model: $y_t = (1 \theta_1 B) a_t$
 - \bullet $E[y_t] = ?$

 - $\gamma_1 = \text{COV}[y_t, y_{t-1}] = ?$
 - \bullet $\gamma_k = \text{COV}[y_t, y_{t-k}] = ?, \forall k \ge 2$
- Therefore, the ACF (AutoCorrelation Function) of MA(1) is: $\rho_k = \begin{cases} ?, & k = 0 \\ ?, & k = 1 \\ ?, & k \ge 2 \end{cases}$

Insight of the ACF of MA(1)

$$\bullet \quad \theta_1 < 0 \Rightarrow \rho_1 > 0$$

 \bullet $\theta_1 > 0 \Rightarrow \rho_1 < 0$

Which is which?

What's the behavior of the ACF?

MA(2) Process

$$MA(2): y_t = a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} = (a_t - \theta_1 B - \theta_2 B^2) a_t$$

- Mean: $E[y_t] = ?$
- Variance: $\gamma_0 = V[y_t] = ?$

• ACF:
$$\rho_k = \begin{cases} ? & , k = 0 \\ ? & , k = 1 \\ ? & , k = 2 \\ ? & , k \ge 3 \end{cases}$$

What's the behavior of the ACF?

MA(2) Process

$$MA(2): y_t = a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} = (a_t - \theta_1 B - \theta_2 B^2) a_t$$

- \bullet Mean: $E[y_t] = ?$
- Variance: $\gamma_0 = V[y_t] = ?$

$$\bullet \quad \text{ACF: } \rho_k = \begin{cases} 1 & \text{, } k = 0 \\ \frac{-\theta_1(1 - \theta_2)}{1 + \theta_1^2 + \theta_2^2} & \text{, } k = 1 \\ \frac{-\theta_2}{1 + \theta_1^2 + \theta_2^2} & \text{, } k \ge 2 \\ 0 & \text{, } k \ge 3 \end{cases}$$

What's the behavior of the ACF?

General MA(q) Process

- \bullet Mean: $E[y_t] = 0$
- Variance: $\gamma_0 = V[y_t] = \sigma_a^2(\sum_{i=0}^q \theta_i^2), \theta_0 = 1$
- Autocovariance:

$$\gamma_{k} = E[y_{t}y_{t-k}] - E[y_{t}]E[y_{t-k}]
= E\{(a_{t} - \theta_{1}a_{t-1} - \dots - \theta_{q}a_{t-q})(a_{t-k} - \theta_{1}a_{t-k-1} - \dots - \theta_{q}a_{t-k-q})\}$$

HOW?
$$= \sigma_a^2 \left(-\theta_k + \sum_{j=1}^{q-k} \theta_j \theta_{j+k} \right), 1 \le k \le q$$
 What's the behavior of the ACF?

AutoRegressive Processes

Stationary Conditions for AR Processes

 \bullet An AR(p) process is expressed as

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + a_t$$
 or
$$(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) y_t = a_t.$$

 \bullet AR(1): $(1 - \phi_1 B)y_t = a_t$

$$|\phi_1| < 1 \Rightarrow |B| > 1,$$

i.e., the root of the characteristic equation $1 - \phi_1 B = 0$ lies outside the unit circle.

Stationary Condition for AR Processes

• As for an AR(p) process: $\phi(B)y_t = a_t$, let's guess the roots of the characteristic equation $\phi(B) = 0$

$$\phi(B) = (1 - G_1 B)(1 - G_2 B) \dots (1 - G_p B),$$

- where G_1^{-1} , ..., G_p^{-1} are the roots to $\phi(B) = 0$.
- We can also rearrange the process

$$y_t = \phi^{-1}(B)a_t = \sum_{i=1}^p \frac{K_i}{1 - G_i B} a_t.$$

• If we want $\psi(B) = \phi^{-1}(B)$ to be convergent, i.e., if we want $\psi_j = \sum_{i=1}^p K_i G_i^j$ to be absolutely summable such that the AR(p) is stationary, we need

$$|G_i| < 1, i = 1, 2, ..., p$$

• equivalently, the roots to $\phi(B) = 0$ must lie outside the unit circle.

Invertibility of AR Processes

$$\psi_j = \phi_1 \psi_{j-1} + \phi_2 \psi_{j-2} + \dots + \phi_p \psi_{j-p}$$
, for $j > 0$.

 \bullet with $\psi_0 = 1$, and $\psi_j = 0$ for j < 0, we can solve

$$\psi_j = \sum_{i=1}^p K_i G_i^j.$$

First-Order AR Process: AR(1)

- AR(1) model: $y_t = \phi_1 y_{t-1} + a_t$,
 - consequently, $y_{t-1} = \phi_1 y_{t-2} + a_{t-1}$, i.e., y_{t-1} is independent of a_t
 - \bullet $E[y_t] = ?$
 - \bullet $V[y_t] = ?$
 - $\gamma_k = E[y_t y_{t-k}] E[y_t]E[y_{t-k}] = E[y_t y_{t-k}] = ?$

The ACF, ρ_k , Behavior of AR(1)

AR(2) Process

- AR(2) model: $y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + a_t$,
 - \bullet $E[y_t] = 0$

$$V[y_t] = \phi_1 \gamma_1 + \phi_2 \gamma_2 + \sigma_a^2 = \gamma_0$$

$$\gamma_0 = \frac{\sigma_a^2}{1 - \phi_1 \rho_1 - \phi_2 \rho_2}$$

$$Where $\rho_1 = \frac{\phi_1}{1 - \phi_2}, \rho_2 = \frac{\phi_1^2}{1 - \phi_2} + \phi_2$

$$V[y_t] = \frac{\sigma_a^2}{1 - \phi_1 \frac{\phi_1}{1 - \phi_2} - \phi_2 \left(\frac{\phi_1^2}{1 - \phi_2} + \phi_2\right)} = \frac{(1 - \phi_2)\sigma_a^2}{(1 + \phi_2)(1 - \phi_1 - \phi_2)(1 + \phi_1 - \phi_2)} > 0$$$$

Scenarios for $V[y_t] = \frac{(1-\phi_2)\sigma_a^2}{(1+\phi_2)(1-\phi_1-\phi_2)(1+\phi_1-\phi_2)} > 0$

- (1 ϕ_2)(1 + ϕ_2) > 0 and 1 ϕ_1 ϕ_2 < 0 and 1 + ϕ_1 ϕ_2 < 0 no common solution set
- $\bullet \quad (1 \phi_2)(1 + \phi_2) < 0 \text{ and } 1 \phi_1 \phi_2 > 0 \text{ and } 1 + \phi_1 \phi_2 < 0$ $1 \phi_2^2 < 0 \Rightarrow |\phi_2| > 1 \text{ and } \begin{cases} \phi_1 + \phi_2 < 1 \\ \phi_2 \phi_1 > 1 \end{cases}$
 - However, $\rho_1 = \frac{\phi_1}{1-\phi_2}$ and $|\rho_1| < 1 \Rightarrow$ it conflicts against the conditions above.

Stationary Conditions for AR(2) Process

- For the AR(2) to be stationary, one needs $\begin{cases} |\phi_2| < 1 \\ \phi_1 + \phi_2 < 1 \\ \phi_2 \phi_1 < 1 \end{cases}$
- This is equivalent to the conditions that make the solution to the "characteristic equation" of AR(2), i.e., the roots to $\phi(B) = 1 \phi_1 B \phi_2 B^2 = 0$, outside the unit circle.

$$\Rightarrow |B_1| = \left| \frac{-\phi_1 + \sqrt{\phi_1^2 + 4\phi_2}}{2\phi_2} \right| > 1 \text{ and } |B_2| = \left| \frac{-\phi_1 - \sqrt{\phi_1^2 + 4\phi_2}}{2\phi_2} \right| > 1$$

The Region for AR(2) Stationarity

$$\begin{cases} |\phi_2| < 1 \\ \phi_1 + \phi_2 < 1 \\ \phi_2 - \phi_1 < 1 \end{cases}$$

$$|B_2| = \left| \frac{-\phi_1 - \sqrt{\phi_1^2 + 4\phi_2}}{2\phi_2} \right| > 1$$

ACF of AR(2)

$$\gamma_k = E[y_t y_{t-k}] - E[y_t] E[y_{t-k}]
= E[y_t y_{t-k}]
= \phi_1 E[y_{t-1} y_{t-k}] + \phi_2 E[y_{t-2} y_{t-k}] + E[a_t y_{t-k}]
= \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2}$$

dividing γ_0 on the both sides

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}, \forall k$$

$$\rho_{k} = \phi_{1}\rho_{k-1} + \phi_{2}\rho_{k-2}, \forall k$$
Yule-Walker Equations
$$\begin{cases} \rho_{1} = \phi_{1}\rho_{0} + \phi_{2}\rho_{-1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{0} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1} + \phi_{2}\rho_{1} \\ \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{2} \end{cases} \Rightarrow \begin{cases} \rho_{1} = \phi_{1}$$

More Interpretations of AR(2) Stationarity

Stralkowski, C.M., Wu, S. M., DeVor, R. E. "Characterization of grinding wheel profiles by autoregressive-moving average models." *International Journal of Machine Tool Design and Research*, vol. 9, no. 2, 1969, pp. 145-163. DOI: 0020-7357(69)90013-4

- When roots of $\phi(B) = 0$ are real, ACFs are damped exponentials (1)(2).
- If $\phi_1^2 + 4\phi_2 < 0$, roots of $\phi(B) = 0$ are complex \Rightarrow (3)(4), the ACFs are damped sine waves:

$$\rho_k = \frac{D^k \sin(2\pi f_0 k + F)}{\sin F},$$

- $D = \sqrt{-\phi_2}$: damping factor;
- f_0 : frequency;
- F: phase.

Extension to AR(p)

- AR(p) model: $y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + a_t$
 - \bullet $E[y_t] = 0$
 - $V[y_t] = \phi_1 E[y_{t-1}y_t] + \phi_2 E[y_{t-2}y_t] + \dots + \phi_p E[y_{t-p}y_t] + E[a_t y_t] = \phi_1 \gamma_1 + \phi_2 \gamma_2 + \dots + \phi_p \gamma_p + \sigma_a^2 = \gamma_0$ $(1 \phi_1 \rho_1 \phi_2 \rho_2 \dots \phi_p \rho_p) \gamma_0 = \sigma_a^2$ $\gamma_0 = \frac{\sigma_a^2}{(1 \phi_1 \rho_1 \phi_2 \rho_2 \dots \phi_p \rho_p)}$

Yule-Walker Equations of AR(p)

$$\begin{cases} \rho_{1} = \frac{\phi_{1}}{\rho_{1}} + \phi_{2}\rho_{1} + \dots + \phi_{p}\rho_{p-1} \\ \rho_{2} = \phi_{1}\rho_{1} + \frac{\phi_{2}}{\rho_{2}} + \dots + \phi_{p}\rho_{p-2} \\ \vdots \\ \rho_{p} = \phi_{1}\rho_{p-1} + \phi_{2}\rho_{p-2} + \dots + \frac{\phi_{p}}{\rho_{p}} \end{cases}$$

If the operator B is applied

$$\rho_{k} = \phi_{1}B\rho_{k} + \phi_{2}B^{2}\rho_{k} + \dots + \phi_{p}B^{p}\rho_{k}$$

$$\phi(B)\rho_{k} = (1 - \phi_{1}B - \phi_{2}B^{2} - \dots - \phi_{p}B^{p})\rho_{k} = 0, \forall k = 1, 2, \dots$$

How to get $\{\rho_1, \rho_2, ..., \rho_p, \rho_{p+1}, \rho_{p+2}, ...\}$?

The Beauty of Yule-Walker Equations

$$\begin{cases} \rho_1 = \phi_1 + \phi_2 \rho_1 + \dots + \phi_p \rho_{p-1} \\ \rho_2 = \phi_1 \rho_1 + \phi_2 + \dots + \phi_p \rho_{p-2} \\ \vdots \\ \rho_p = \phi_1 \rho_{p-1} + \phi_2 \rho_{p-2} + \dots + \phi_p \end{cases} \Rightarrow \begin{bmatrix} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_p \end{bmatrix} = \begin{bmatrix} 1 & \rho_1 & \dots & \rho_{p-1} \\ \rho_1 & 1 & \dots & \rho_{p-2} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{p-1} & \rho_{p-2} & \dots & 1 \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_p \end{bmatrix}$$
$$\mathbf{\rho} = \mathbf{P} \mathbf{\phi} \Rightarrow \mathbf{\phi} = \mathbf{P}^{-1} \mathbf{\rho}$$

• When playing with sample data, calculate the sample autocorrelations, and the estimates of ϕ_i can be solved as the regression coefficients.

Give it a Try: Yule-Walker Equations

- AR(1)
 - \bullet $\phi_1 = [1]^{-1}\rho_1 = \rho_1$
- AR(2)

$$\bullet \quad \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} = \begin{bmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \rho_1 \\ \rho_2 \end{bmatrix} = \frac{1}{1 - \rho_1^2} \begin{bmatrix} 1 & -\rho_1 \\ -\rho_1 & 1 \end{bmatrix} \begin{bmatrix} \rho_1 \\ \rho_2 \end{bmatrix}$$

$$\oint \phi_1 = \frac{\rho_1(1-\rho_2)}{1-\rho_1^2}$$

$$\phi_2 = \frac{\rho_2-\rho_1^2}{1-\rho_1^2}$$
As long as we can calculate $\hat{\rho}_i$...

Stationary Conditions for AR(p) Processes

• In a similar fashion, one can derive the stationary conditions of AR(p)

$$(1 - \phi_1 B + \phi_2 B^2 + \dots + \phi_p B^p) y_t = a_t \Rightarrow \phi(B) y_t = a_t$$

$$p \text{ roots of } \phi(B) = 0 \text{ should satisfy } |B_i| > 1$$

Recall the procedures: find the ranges of $\{\phi_1, \phi_2, ..., \phi_p\}$ for $\sigma_y^2 > 0$ and $|\rho_i| < 1$. Since B_i are functions of $\{\phi_1, \phi_2, ..., \phi_p\}$, we get the aforementioned conditions.

How Do We Know the Value p in AR(p)?

- \odot By numerating the value p from 1, 2, ..., p, we have p AR processes.
 - \bullet AR(1): $y_t = \phi_{11} y_{t-1} + a_t$;
 - \bullet AR(2): $y_t = \phi_{21}y_{t-1} + \phi_{22}y_{t-2} + a_t$;
 - AR(3): $y_t = \phi_{31}y_{t-1} + \phi_{32}y_{t-2} + \phi_{33}y_{t-p} + a_t$;

.....

- AR(p): $y_t = \phi_{p_1} y_{t-1} + \phi_{p_2} y_{t-2} + \dots + \phi_{pp} y_{t-p} + a_t$.
- If the real $p=2,\phi_{33},\phi_{44},...,\phi_{pp}$ shall be ZEROs.
 - How do we calculate $\{\phi_{11}, \phi_{22}, \phi_{33}, ..., \phi_{pp}\}$?

Partial Autocorrelation Function (PACF)

- \bullet $\{\phi_{11}, \phi_{22}, \phi_{33}, ..., \phi_{pp}\}$ are defined as the PACF of y_t .
 - \bullet Can be solved by p sets of Yule-Walker equations.

$$\begin{bmatrix} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_p \end{bmatrix} = \begin{bmatrix} 1 & \rho_1 & \cdots & \rho_{p-1} \\ \rho_1 & 1 & \cdots & \rho_{p-2} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{p-1} & \rho_{p-2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{\phi}_{p1} \\ \boldsymbol{\phi}_{p2} \\ \vdots \\ \boldsymbol{\phi}_{pp} \end{bmatrix}.$$

$$\phi_{11} = \rho_{1}; \phi_{22} = \frac{\begin{vmatrix} 1 & \rho_{1} \\ \rho_{1} & \rho_{2} \end{vmatrix}}{\begin{vmatrix} 1 & \rho_{1} \\ \rho_{1} & 1 \end{vmatrix}} = \frac{\rho_{2} - \rho_{1}^{2}}{1 - \rho_{1}^{2}}; \phi_{33} = \frac{\begin{vmatrix} 1 & \rho_{1} & \rho_{1} \\ \rho_{1} & 1 & \rho_{2} \\ \rho_{2} & \rho_{1} & \rho_{3} \end{vmatrix}}{\begin{vmatrix} 1 & \rho_{1} & \rho_{2} \\ \rho_{1} & 1 & \rho_{1} \\ \rho_{2} & \rho_{1} & 1 \end{vmatrix}}.$$

Example for Applying PACF

k	r_k	k	r_k	k	r_k
1	-0.39	6	-0.05	11	0.11
2	0.30	7	0.04	12	-0.07
3	-0.17	8	-0.04	13	0.15
4	0.07	9	0.00	14	0.04
5	-0.10	10	0.01	15	-0.01

k	$\hat{\phi}_{kk}$	k	$\hat{\phi}_{kk}$	k	$\hat{oldsymbol{\phi}}_{kk}$
1	-0.39	6	-0.12	11	0.14
2	0.18	7	0.02	12	-0.01
3	0.00	8	0.00	13	0.09
4	-0.04	9	-0.06	14	0.17
5	-0.07	10	0.00	15	0.00

ACF vs. PACF: Yield Data

 \odot What we need to determine the p?

$$\bullet \quad \mathsf{E}\big[\hat{\phi}_{kk}\big] = 0$$

Quenouille, M. H. "Approximate Tests of Correlation in Time-Series." *Journal of the Royal Statistical Society. Series B (Methodological)*, vol. 11, no. 1, 1949, pp. 68–84., www.jstor.org/stable/2983696.

Mix AR with MA ARMA

(AutoRegressive Moving Average)

5

ARMA(p,q) Process

 \bullet An ARMA(p,q) process is expressed as:

$$y_t = \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$$

$$\Rightarrow \phi(B) y_t = \theta(B) a_t,$$

where

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p; \theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q.$$

- \bullet $E[y_t] = 0$
- \bullet VAR[y_t] =?
- $\bullet | \gamma_k = ?$

ACF of ARMA(p, q) is not trivial.

$$\begin{split} & \gamma_{k} = \mathrm{E}[y_{t}y_{t-k}] \\ & = \mathrm{E}\big[\phi_{1}y_{t-1}y_{t-k} + \dots + \phi_{p}y_{t-p}y_{t-k} + a_{t}y_{t-k} - \theta_{1}a_{t-1}y_{t-k} - \dots - \theta_{q}a_{t-q}y_{t-k}\big] \\ & = \phi_{1}\gamma_{k-1} + \dots + \phi_{p}\gamma_{k-p} + \gamma_{ay}(k) - \theta_{1}\gamma_{ay}(k-1) - \dots - \theta_{q}\gamma_{ay}(k-q), \end{split}$$

- where $\gamma_{ay}(j) = \text{cov}[a_t, y_{t-j}] = \text{E}[a_t y_{t-j}].$
 - $j > 0 \Rightarrow \gamma_{av}(j) = 0$
 - $k > q \Rightarrow j > 0 \Rightarrow \gamma_k = \phi_1 \gamma_{k-1} + \dots + \phi_p \gamma_{k-p}$
 - $k \le q \Rightarrow \gamma_k$ is function of $\{\phi_1, \phi_2, ..., \phi_p, \theta_1, \theta_2, ..., \theta_q\}$
 - $k = q \Rightarrow \gamma_q = \phi_1 \gamma_{k-1} + \dots + \phi_p \gamma_{k-p} + \gamma_{av}(q) \theta_1 \gamma_{av}(q-1) \dots \theta_q \gamma_{av}(0)$
 - $k = q 1 \Rightarrow \gamma_{q-1} = \phi_1 \gamma_{k-1} + \dots + \phi_p \gamma_{k-p} + \gamma_{ay} (q 1) \theta_1 \gamma_{ay} (q 2) \dots \theta_{q-1} \gamma_{ay} (0) \theta_q \gamma_{ay} (-1)$
 - k = q 2...

ARMA(1, 1) Process

- ARMA(1, 1) model: $(1 \phi B)y_t = (1 \theta B)a_t$
 - Stationary Conditions:

$$y_t = (1 - \phi B)^{-1} (1 - \theta B) a_t = (1 + \phi B + \phi^2 B^2 + \cdots) (1 - \theta B) a_t$$
$$= \{1 + (\phi - \theta)B + \phi(\phi - \theta)B^2 + \phi^2(\phi - \theta)B^3 + \cdots\} a_t$$

• Let
$$\psi_i = \phi^{i-1}(\phi - \theta)$$

$$y_t = \{1 + \psi_1 B + \psi_2 B^2 + \psi_3 B^3 + \cdots \} a_t$$

$ACF ext{ of } ARMA(1, 1)$

$$\Rightarrow \gamma_0 = \left(\frac{1 - 2\theta\phi + \theta^2}{1 - \phi^2}\right)\sigma_a^2 \Rightarrow \gamma_1 = \left(\frac{(\phi - \theta)(1 - \theta\phi)}{1 - \phi^2}\right)\sigma_a^2 \quad \text{what's the Boundary of this ACF?}$$

$$\Rightarrow \rho_1 = \frac{(\phi - \theta)(1 - \theta\phi)}{1 - 2\theta\phi + \theta^2}; \rho_2 = \phi\rho_1; \dots; \rho_k = \phi^{k-1}\rho_1 = \phi^{k-1} \frac{(\phi - \theta)(1 - \theta\phi)}{1 - 2\theta\phi + \theta^2}$$

What's the behavior

$$\frac{(\phi - \theta)(1 - \theta\phi)}{1 - 2\theta\phi + \theta^2}$$

After such a long journey...

we have successfully visited these islands.

- Stationarity and Invertibility
- MA Processes, always stationary
- AR Processes, always invertible
- ARMA, mixed feelings...