

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

\sim 4	1 R /	_1	1 !	
-≺ 1	 	\bigcap T	vati	n
\mathbf{O}_{\bullet} .	I I V I		val	

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

DATENBLATT - DMM

Characteristic Values

100 mV 1 V 10 V 100 V 1000 V 1000 V	11,999 10 μV 100 μV 1 mV 10 mV 100 mV	1199	≥9 ≥9 ≥9 ≥9 Voltage drop	MΩ MΩ MΩ MΩ MΩ o, approx	\sim / \rightleftharpoons \geq 9 M Ω // < 50 pF at upper range limit
1 V 10 V 100 V 1000 V	100 μV 1 mV 10 mV 100 mV		≥ 9 ≥ 9 ≥ 9 ≥ 9 Voltage drop	MΩ MΩ MΩ MΩ o, approx	\geq 9 M Ω // < 50 pF \geq 9 M Ω // < 50 pF \geq 9 M Ω // < 50 pF \geq 9 M Ω // < 50 pF at upper range limit
10 V 100 V 1000 V	1 mV 10 mV 100 mV		≥ 9 ≥ 9 ≥ 9 Voltage drop	MΩ MΩ MΩ o, approx	\geq 9 M Ω // < 50 pF \geq 9 M Ω // < 50 pF \geq 9 M Ω // < 50 pF at upper range limit
100 V 1000 V	10 mV 100 mV		≥ 9 ≥ 9 Voltage drop	MΩ MΩ o, approx	\geq 9 M Ω // < 50 pF \geq 9 M Ω // < 50 pF a. at upper range limit
1000 V	100 mV		≥ 9 Voltage drop	MΩ o, approx	\geq 9 M Ω // < 50 pF at upper range limit
100 μA	10 nA		Voltage drop	o, approx	. at upper range limit
1 mΔ					
1 mΔ			12	mV	12 mV
1 mA	100 n∆				
	100 117		120	mV	120 mV
10 mA	1 μΑ		16	mV	16 mV
100 mA	10 μA		160	mV	160 mV
기 원 1 A	100 μΑ		40	mV	40 mV
□ 10 A	1 mA		600	mV	600 mV
10 mA	1 μA		16	mV	16 mV
100 mA	10 μA		160	mV	160 mV
1 A	100 μΑ		40	mV	40 mV
10 A	1 mΔ		600	mV	600 mV
	10 mA	10 mA 1 μA	10 mA 1 μA 100 mA 10 μA	10 mA 1 μA 16	10 mA 1 μA 16 mV

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

SYSTEMATISCHER FEHLER

Welchen Innenwiderstand sollten die Instrumente haben?

- Voltmeter $R_{I,V} = 2$
- Amperemeter $R_{I,A} = \mathcal{O}$

Messfehler:

Differenz zwischen beobachtetem und wahrem Wert

Systematischer Fehler:

Abweichung der Messergebnisse, die dazu führt, dass die Messungen systematisch zu niedrig oder zu hoch sind.

SYSTEMATISCHER FEHLER BEI SPANNUNGSMESSUNG

Erwarteter Wert für U_a (Leerlauf)

$$V \Rightarrow U_{a,\text{true}} = V_{o}$$

 U_0 zu messende Quelle R_i Innenwiderstand Quelle $R_{I.V}$ Innenwiderstand Voltmeter

Tatsächlich gemessener Wert $U_{a,meas}$:

gegeben:
$$U_0, R_i, R_{I,V}$$
gesucht: $\frac{\Delta U}{U_0} = \frac{U_0 - U_a}{U_0} = \frac{\sqrt{6 - \sqrt{6 - \frac{Riv}{Ri+Riv}}}}{\sqrt{26 - \sqrt{6 - \frac{Riv}{Ri+Riv}}}} = \sqrt{1 - \frac{Riv}{Ri+Riv}} = \sqrt{1 - \frac{Riv}{Ri+Riv}}$

SYSTEMATISCHER FEHLER BEI STROMMESSUNG

Bestimmen Sie den wahren Wert $I_{L,true}$

$$I_{L,true} = \frac{U_0}{R_1 + R_L}$$

⇒ Der gemessene Strom ist stets

Bestimmen Sie den gemessenen Wert *I*_L

$$I_{L} = \frac{\sqrt{6}}{R_{i} + R_{i} + R_{i}}$$

als der wahre Strom.

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

GLEICHZEITIGE STROM- & SPANNUNGSMESSUNG

Anwendung:

- Kennlinien
- Leistungsmessung $P = \mathcal{U} \cdot \mathbf{I}$

Es kann nur einer von den zwei Werten genau gemessen werden. Wir unterscheiden:

- spannungsrichtige Messung
- stromrichtige Messung

Maßgeblich ist, welche Größe an R_X durch ein Messgerät genau angezeigt wird.

$$I_{m}, U_{m}$$

$$I_{X}, U_{X}$$

$$R_{X}$$

$$R_{m} = U_{m}/I_{m}$$

$$R_{I,V}$$

gemessene Werte Laststrom und -spannung wahrer Lastwiderstand gemessener Widerstand Innenwiderstand Voltmeter

Bestimmung von
$$e = \frac{R_m - R_x}{R_x}$$

on
$$e = \frac{R_m - R_x}{R_x}$$

$$\Rightarrow e = \frac{R_m - R_x}{R_x} = -\frac{R_x}{R_{I,V} + R_x} \approx -\frac{R_x}{R_{I,V}}$$

$$= \frac{\text{Um}}{\text{Im}}$$

$$= \frac{\text{Um}}{\text{Im}}$$

$$R_{M} = \frac{U_{M}}{I_{M}}$$

$$= \frac{U_{M}}{R_{i}v^{1}}$$

STROMRICHTIGE MESSUNG

Bestimmung von
$$e=rac{R_m-R_\chi}{R_\chi} \Rightarrow e=rac{R_m-R_\chi}{R_\chi}=rac{R_{I,A}}{R_\chi}$$

gemessene Werte

Laststrom und -spannung

Innenwiderstand des Amperemeters

wahrer Lastwiderstand

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

STROMMESSUNG MIT VOLTMETER

Anforderungen an Messwiderstand (engl. Shunt) R_M

- $R_M << R_{I,V}$
- $R_M \ll R_i + R_L$
- hohe Präzision von R_M
- zulässige Verlustleistung einhalten

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

BELASTETER SPANNUNGSTEILER

Hausaufgabe zur Übung (ca. 30 min):

Bestimmen Sie U_L/U_0 als Funktion von R/RL und $x=R_1/R$:

Lösung:
$$\frac{U_L}{U_0} = \frac{x}{1 + x \cdot (1 - x) \cdot \frac{R}{R_I}}$$

BELASTETER SPANNUNGSTEILER

- nichtlinear
- je kleiner die Last umso größer der systematische Fehler

BELASTETER SPANNUNGSTEILER

Bestimmen Sie die Ausgangsspannung des belasteten Spannungsteilers.

B. 4,5 *V*

C. 6 *V*

3.1 Drehspulinstrument

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

GENAUIGKEIT UND PRÄZISION

hohe Genauigkeit aber geringe Präzisior

hohe Präzision aber Offset (offset = geringe Genauigkeit)

Valide: sowohl genau als auch präzise

- Genauigkeit
 Maß der Übereinstimmung von gemessener Größe mit dem wahren Wert
- Präzision (früher auch Wiederholgenauigkeit)
 Grad, in dem zukünftige Messungen zu dem gleichen Ergebnis führen
- Valide
 Eine Messung wird als valide bezeichnet, wenn sie sowohl genau als auch präzise ist.

HAW Hamburg
Fakultät TI
Technik und Informatik

SPEZIFIKATION DER GENAUIGKEIT

Die Genauigkeit eines Voltmeters wird mit $\pm \Delta U$ angegeben.

- Messwerte werden dann wie folgt ausgedrückt:
 Messwert ± Genauigkeit (e.g. 6.45 V ± 0.15V)
- bei analogen Meßinstrumenten: $\Delta U = \text{Genauigkeit} \cdot \text{Meßbereich}$
- bei digitalen Meßinstrumenten:

$$\Delta U = a \cdot \mathrm{Rdg} + n \cdot d$$

wobei:

a: Genauigkeit

Rdg: abgelesener Wert

n: Faktor aus Datenblatt des Meßinstruments

d: geringstmöglicher Anzeigewert > 0 (value of least significant digit)

BEISPIEL: ANALOGINSTRUMENT

Voltmeter

relative Genauigkeit: 5% im Meßbereich 10 V

Diese hängt <u>nicht</u> von der gemessenen Spannung ab!

 \Rightarrow absolute Genauigkeit: $\Delta U = 5\% \cdot 10V = 0.5 V$

 \Rightarrow Ein Meßwert von 2.1 V bedeutet:

$$U = 2.1 V \pm 0.5 V$$

oder

$$U = 2.1 V (1 \pm 24\%)$$

BEISPIEL: DIGITALES VOLTMETER

DU-a. ready + hod Accuracy / benoming Kait

					ACCALACA LOBIN
Function	Measure- ment range	Resolution	Input impeda	nce	% rdg + d)
Ω			open circuit voltage	short circuit current	
	300.00 Ω	10 mΩ	max. 4.00 V	max. 1 mA	0.1 + 30
	3.0000 kΩ	100 m Ω	max. 1.25 V	max. 100 μA	0.1 + 6
	30.000 kΩ	1 Ω	max. 1.25 V	max. 10 μA	0.1 + 6
	300.00 kΩ	10 Ω	max. 1.25 V	max. 1 µA	0.1 + 6
	3.0000 MΩ	100 Ω	max. 1.25 V	max. 0.1µA	0.4 + 6
	30.000 MΩ	1 kΩ	max. 1.25 V	max. 0.1µA	3.0 + 6

abgelesen: 166.30 Ω , Meßbereich: 300.00 Ω , geringster Wert: $d = 0.01\Omega$

 \Rightarrow aus Datenblatt: a = 0.1 %, n = 30

 $\Rightarrow \Delta R = 0.1\% \cdot 166.30 \Omega + 30 \cdot 0.01\Omega = 0.4663\Omega \cong 0.47\Omega$

 \Rightarrow Meßergebnis: $R = 166.30 \Omega \pm 0.47 \Omega = 166.30 \Omega \cdot (1 \pm 0.3\%)$

BEISPIEL: DIGITALES VOLTMETER

Aufgabe: Bestimmen Sie das Meßergebnis für den abgelesenen Wert 4.952V.

 $4,952V \pm 0,0055 V$

4,952V ± 0,005 V → 4,952V ± 0,006 V ✓

 $4,952V \pm 0,018 V$

Function	Measurement range	nt Resolution Input impedance		Input impedance		iracy l <mark>g</mark> + d)
V			=	≅	=	√ ≅
	300.00 mV	10 μV	10 GΩ	5 MΩ //40pF	0.05 + 3	1 + 20
	3.0000 V	100 μV	11 MΩ	1 MΩ //40pF	0.05 + 3	1 + 20
	30.000 V	mV	10 MΩ	1 MΩ //40pF	0.05 + 3	1 + 20
	300.00 V	10 mV	10 MΩ	1 MΩ //40pF	0.05 + 3	1 + 20
	1000.0 V	100 mV	10 MΩ	1 MΩ //40pF	0.05 + 3	1 + 20

3	1		re	hs	pu	lin	S	rı	ıη	1e	nf	-
U.	1	$\boldsymbol{\mathcal{L}}$			ρu		J	., ,	ווג		ш	-

Anwendung

- 3.2 Systematischer Fehler
- 3.3 Gleichzeitige Strom- und Spannungsmessung
- 3.4 Kompensationsverfahren
- 3.5 Strommessung mit einem Voltmeter
- 3.6 Belasteter Spannungsteiler

- 3.7 Genauigkeit und Präzision von Messinstrumenten
- 3.8 Fehlerfortpflanzung
- 3.9 Grafische Darstellung von Kennlinien und Messungen

GRAPHISCHE DARSTELLUNG: LINEAR

Linear

x-Achse: **Abszisse**

y-Achse: Ordinate

GRAPHISCHE DARSTELLUNG: LOGARITHMISCH

halblogarithmisch

Ordinate: logarithmisch

Abszisse: linear

Häufig wird ein physikalischer Zusammenhang durch eine e –Funktion beschrieben.

⇒ Verlauf einer Geraden in halblogarithmischer Darstellung

BEISPIEL: KENNLINIE EINES VARISTORS (VDR)

Meßgeräte:

No 1): MetraHit 18S, Inv. Nr....

No 2): MetraHit 15S, Inv. Nr....

No 3): VDR #4

No 4): Power supply VHL 0..10V

VDR Voltage Departent Resistor

Schaltung für spannungsrichtige Messung

BEISPIEL: KENNLINIE EINES VARISTORS (VDR)

\mathbb{R}	= <u>U</u>	<u> </u>	3L 28 MA
	MP = 1	•	44

I ₀ /mA	U _{VDR} /V
0.121	0.103
0.235	0.201
0.356	0.297
0.502	0.403
0.645	0.499
0.807	0.600
1.001	0.712
1.460	0.946
2.764	1.470
4.711	2.045
9.293	2.982
17.14	4.040
27.28	5.000
42.36	6.040
62.68	7.060
86.91	8.000
104.60	8.560

LOGARITHMUS

Wenn der Verlauf einer e-Funktion erwartet wird ist eine logarithmische Darstellung geeignet, um die Parameter zu bestimmen.

$$\frac{U}{V} = C \left(\frac{I}{mA}\right)^{\beta} \Rightarrow \lg \frac{U}{V} \neq \lg C + \beta \cdot \lg \frac{I}{mA}$$

Exponentialfunktion in linearem Diagramm -> Gerade in logarithmischer Darstellung

- Rechenregeln f
 ür Logarithmus
- $a = b^x$ $x = log_b a f \ddot{u} r b \neq 1$
- $ln: = log_e$ "natürlicher Logarithmus"
- $lg: = log_{10}$ "10er-Logarithmus"
- $\lg(a_1/a_2) = \lg a_1 \lg a_2$

BEISPIEL: KENNLINIE EINES VARISTORS (VDR)

$$\frac{U}{V} = \mathcal{O}\left(\frac{I}{mA}\right)^{\mathcal{O}} \Rightarrow \lg \frac{U}{V} = \lg C + \beta \cdot \lg \frac{I}{mA}$$

Bestimmung von C:

Wann wird der rechte Term Null?

BEISPIEL: KENNLINIE EINES VARISTORS (VDR)

$$\frac{U}{V} = C \left(\frac{I}{mA}\right)^{\beta} \Rightarrow \lg \frac{U}{V} = \lg C + \beta \cdot \lg \frac{I}{mA}$$

I₀/m A

Bestimmung von β :

$$\Delta U = \beta \left(\frac{P_2}{MK} - \frac{P_1}{MK} \right) = \beta = \frac{\Delta U}{\Delta I}$$
HAW Hamburg 43

Technik und Informatik

100

DIAGRAMME MIT MATLAB

1. Messpunkte definieren (Vektor)

```
x = [0 : 0.1 : 3]
```

2. Ergebnis berechnen

$$y = x.^2$$

3. Ergebnis darstellen

```
figure(1)
plot(x, y, 'r:')
%or instead of plot: loglog, semilogx, semilogy
title ('Square')
xlabel('I 1 in mA')
ylabel('R in \Omega')
xlim([0 2])
```

LINKS ZU MATLAB

In Matlab selbst am Beispiel der plot-Funktion:

doc plot gibt die html-Hilfe für die Funktion plot wieder, dort finden Sie auch viele Anwendungsbeispiele

help plot gibt nur eine kurze Funktionsbeschreibung wieder, geht aber viel schneller

Video-Tutorial auf englisch:

http://www.mathworks.de/products/matlab/demos.html

Buch: Schweizer, Wolfgang: MATLAB kompakt

WAS SIE MITNEHMEN SOLLEN (1) ...

Belasteter Spannungsteiler

- Spannungsteiler-Formel nicht anwendbar *
 stattdessen: komplizierte Formel
- Genauigkeit und Präzision

WAS SIE MITNEHMEN SOLLEN (2)...

Graphische Darstellung

- Üben Sie den Umgang mit logarithmischen Diagrammen!
- virtuelles logarithmisches Papier gibts hier: <u>http://www.papersnake.de/logarithmuspapier/</u>