University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Katarzyna Kowalska

Student no. 371053

Approximation and Parameterized Algorithms for Segment Set Cover

Master's thesis in COMPUTER SCIENCE

Supervisor: dr Michał Pilipczuk Institute of Informatics

10 Supervisor's statement

- Hereby I confirm that the presented thesis was prepared under my supervision and that it fulfils the requirements for the degree of Master of Computer Science.
- Date Supervisor's signature

$_{14}$ Author's statement

Hereby I declare that the presented thesis was prepared by me and none of its contents was obtained by means that are against the law.

The thesis has never before been a subject of any procedure of obtaining an academic degree.

Moreover, I declare that the present version of the thesis is identical to the attached electronic version.

21 Date Author's signature

22 Abstract

In this thesis we analyze approximation and parametrization of Geometric Set Cover with segments. To achieve interesting results we define a concept of Geometric Set Cover with δ -extension, where we need to cover the points by geometric objects, which are extended by a tiny fraction, but we compare the soltuion size to the optimum solution without extension. We prove that Segment Set Cover is APX-hard even if we restrict segments to be axis-pararell and allow $\frac{1}{2}$ -extension (Chapter 3). We provide an FPT algorithm for unweighted Segment Set Cover (Section 4.1) and for Weighted Segment Set Cover with δ -extension (Section). Finally we prove that Weighted Segment Set Cover is W[1]-hard and there does not exist algorithm running in time $f(k) \cdot n^{o(\sqrt{k})}$ solving this problem even if we restrict segments to 3 directions (Chapter 5).

Keywords

set cover, geometric set cover, weighted set cover, FPT, W[1]-hard, APX-hard, ETH, grid tiling, MAX-(3,3)-SAT, δ -extension

Thesis domain (Socrates-Erasmus subject area codes)

37 11.3 Informatyka

39

38

36

33

Subject classification

- Theory of computation \rightarrow Design and analysis of algorithms \rightarrow Parameterized complexity and exact algorithms
- Theory of computation \rightarrow Design and analysis of algorithms \rightarrow Approximation algorithms analysis \rightarrow Packing and covering problems

44

46

47

Tytuł pracy w języku polskim

Algorytmy aproksymacyjne i parametryzowane dla problemu pokrywania punktów odcinkami na płaszczyźnie

48 Contents

49	1.	Introduction
50	2.	Preliminaries
51		2.1. Geometric Set Cover
52		2.2. Parameterization
53		2.3. Approximation
54		2.4. δ -extension
55		2.5. Weighted Geometric Set Cover
56	3.	APX-hardness of geometric set cover
57		3.1. MAX-(3,3)-SAT
58		3.2. Reduction
59		3.3. Construction of the Geometric Set Cover instance
60		3.3.1. VARIABLE-gadget
61		3.3.2. OR-gadget
62		3.3.3. CLAUSE-gadget
63		3.3.4. Summary
64		3.4. Proof that the construction is correct and sound
65	4.	Fixed-parameter tractable algorithm for geometric set cover problem 25
66		4.1. Fixed-parameter tractable algorithm for unweighted segments
67		4.1.1. Axis-parallel segments
68		4.1.2. Segments in arbitrary directions
69		4.2. Fixed-parameter tractable algorithm for weighted segments with δ -extension . 28
70	5 .	W[1]-hardness for axis-parallel weighted segments
71		5.1. Grid Tiling
72		5.2. Statement of reduction
73		5.3. Construction of the Geometric Set Cover instance
74		5.3.1. Points
75		5.3.2. Segments
76		5.4 Proof that reduction is correct

77 Chapter 1

87

88

89

90

102

103

104

105

106

107

108

Introduction

Some problems in Computer Science are known to be NP-complete, meaning that assuming $P \neq NP$ there is no polynomial time algorithm that can solve these problems. Even so, they still can be amenable to different approaches, such as approximation or parameterization.

Definition 1.1. In the SET COVER problem we are given a set of elements (universe) \mathcal{C} and a family of sets \mathcal{P} that are subsets of the universe \mathcal{C} and sum up to the whole \mathcal{C} . Our task is to find a set $\mathcal{R} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{R} = \mathcal{C}$ and the size of \mathcal{R} is minimum possible.

SET COVERIS a classical example of an NP-complete problem, which has been proven in [Dinur and Steurer, 2014] to be inapproximable with factor $(1 - o(1)) \ln n$ assuming $P \neq NP$ (which is a stronger result than APX-hardness), and W[2]-complete with the natural parameterization, see Theorem 13.21 in [Cygan et al., 2015]. However restricting the problem to various specialized settings can lead to more tractable special cases. In this thesis we take a closer look at the Geometric Set Cover problem in the plane, where elements to cover are points in the plane and sets to cover them with are geometric objects.

Definition 1.2. SEGMENT SET COVER is GEOMETRIC SET COVER where objects that we cover the points with are segments in the plane.

Approximation Over the years there has been a lot of work related to approximation algorithms for Geometric Set Cover. Notably, Geometric Set Cover with unweighted unit disks admits a PTAS (see Corollary 1.1 in [Mustafa and Ray, 2010]). When we consider the same problem with weighted unit disks (or unit squares), the problem admits a QPTAS [Mustafa et al., 2014], see also [Pilipczuk et al., 2020]. On the other hand, [Chan and Grant, 2014] proves that Geometric Set Cover with unweighted axis-parallel fat rectangles is APX-hard; they also show similar hardness for Geometric Set Cover with many other standard geometric objects.

Parameterization We consider Geometric Set Cover parameterized by the size of solution. Geometric Set Cover with unit squares was first proven to be W[1]-hard in [Marx, 2005] (Theorem 5). A later follow-up work [Marx and Pilipczuk, 2015] shows that there is an algorithm running in time $n^{\mathcal{O}(\sqrt{k})}$ that solves Geometric Set Cover with unit squares or disks and that there is no algorithm running in time $f(k) \cdot n^{o(\sqrt{k})}$ for any computable f under the Exponential-Time Hypothesis, so this is a tight bound for this problem.

We also consider parameterization of weighted problems. There does not seem to be a consensus of what parameterization in the weighted setting is exactly; there was an at-

tempt to introduce a quite complicated general framework of weighted parameterized setting in [Shachnai and Zehavi, 2017]. Kernels for several well-known weighted problems such as Weighted Subset Sum or Weighted Knapsack are presented in [Etscheid et al., 2017]. Another work [Kim et al., 2021] considers weighted parameterization of Weighted Directed Feedback Set and Weighted st-Cut.

 δ -extension In this paper, we focus on Segment Set Cover with δ -extension. δ -extension 115 is a problem relaxation method based on the δ -shrinking model which was introduced in 116 [Adamaszek et al., 2015] to provide an interesting result for the MAXIMUM WEIGHT INDE-117 PENDENT SET OF RECTANGLES problem. In this problem one needs to find a set of non-118 overlapping weighted rectangles with maximum sum of weight possible. In the δ -shrinking relaxed problem the returned set of rectangles must be non-overlapping after all the rectan-120 gles are shrunk by a tiny fraction δ towards the centre of symmetry. This problem is easier, 121 because we compare this result to the optimum result before the shrinking. It might even lead 122 to finding a set with result better than the optimum for the original problem. The author 123 in [Adamaszek et al., 2015] presents a PTAS for MAXIMUM WEIGHT INDEPENDENT SET 124 of Rectangles with δ -shrinking, which is later improved to EPTAS in [Pilipczuk et al., 125 2016 alongside presenting a new FPT result for this problem with the natural parameteri-126 zation. Later the similar δ -shrinking model was used in [Wiese, 2018] to present a PTAS for 127 MAXIMUM WEIGHT INDEPENDENT SET OF POLYGONS with δ -shrinking. 128

Definition 1.3. For any $\delta > 0$ and a centre-symmetric convex object L with centre of symmetry $S = (x_s, y_s)$, the δ -extension of L is the object:

$$L^{+\delta} = \{ (1+\delta) \cdot (x - x_s, y - y_s) + (x_s, y_s) : (x, y) \in L \}.$$

That is, $L^{+\delta}$ is the image of L under homothety centred at S with scale $(1+\delta)$.

Analogous to δ -shrinking, δ -extension provides a framework for relaxing Geometric Set Cover problems, where we allow the returned set of objects \mathcal{R} to almost cover the points in the universe by requiring that they are covered by \mathcal{R} after δ -extension, i.e. by set $\mathcal{R}^{+\delta}$. The same concept could be used for Geometric Set Hitting problems.

For a longer discussion of this concept see Section 2.4.

Similar model is used to prove that Geometric Set Cover with fat polygons relaxed with δ -extension admits EPTAS [Har-Peled and Lee, 2009]. The δ -extension model presented there is well-defined only for fat polygons. It extends the object by all the points that have distance to the closest point in the object P no larger than $\delta \cdot \operatorname{rad}(P)$, where $\operatorname{rad}(P)$ is a radius of a circle inscribed into P. Since segments do not have any circle inscribed into them, the definition presented there cannot be utilized for this problem. Polygons extended by δ -extension defined in Definition 1.3 covers a superset of set of points that object extended by δ -extension defined in [Har-Peled and Lee, 2009]. Since our definition is more permissive for any polygon, the EPTAS from [Har-Peled and Lee, 2009] also works for polygons extended by our δ -extension.

145 Our contribution

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

147

148

In this paper we make the following contributions.

We show that approximation of Segment Set Cover, even if segments are axis-parallel and we relax the problem with $\frac{1}{2}$ -extension, is APX-hard (Theorem 1.1).

Theorem 1.1. (SEGMENT SET COVER with axis-parallel segments and $\frac{1}{2}$ -extension is APX-hard). SEGMENT SET COVER with axis-parallel segments in the 2D plane is APX-151 hard (even with $\frac{1}{2}$ -extension). That is, assuming $P \neq NP$, there does not exist a PTAS for this problem.

Theorem 1.1 implies the following. Note that segments are just degenerated rectangles.

Corollary 1.1. (GEOMETRIC SET COVER with rectangles is APX-hard). GEOMET-155 RIC SET COVER with axis-parallel rectangles is APX-hard (even with $\frac{1}{2}$ -extension).

This expands the previous result of [Chan and Grant, 2014] that Geometric Set Cover with axis-parallel fat rectangles is APX-hard, we improved the result that rectangles no longer have to be fat (Corollary 1.1). This also proves that the assumption in [Har-Peled and Lee, 2009] for EPTAS about polygons being fat is necessary, because cover with arbitrary polygons with δ -extension is APX-hard.

We also provide two FPT algorithms for parameterized Segment Set Cover (Theorem 1.2) and Weighted Segment Set Cover relaxed with δ -extension (Theorem 1.3).

Theorem 1.2. (FPT for SEGMENT SET COVER). There exists an algorithm that given a family \mathcal{P} of segments (in any direction), a set of points \mathcal{C} and a parameter k, runs in time $k^{\mathcal{O}(k)}(|\mathcal{C}|\cdot|\mathcal{P}|)^2$, and outputs a solution $\mathcal{R}\subseteq\mathcal{P}$ such that $|\mathcal{R}|\leq k$ and \mathcal{R} covers all points in \mathcal{C} , or determines that such a set \mathcal{R} does not exist.

Theorem 1.3. (FPT for Weighted Segment Set Cover with δ -extension). There exists an algorithm that given a family \mathcal{P} of n weighted segments (in any direction), a set of m points \mathcal{C} , and parameters k and $\delta > 0$, runs in time $f(k, \delta) \cdot (nm)^c$ for some computable function f and a constant c and outputs a set \mathcal{R} such that:

- $\mathcal{R} \subseteq \mathcal{P}$,
- $|\mathcal{R}| \leq k$,
- $\mathcal{R}^{+\delta}$ covers all points in \mathcal{C} ,
- the weight of \mathcal{R} is not greater than the weight of an optimum solution of size at most k for this problem without δ -extension,

or determines that there is no set \mathcal{R} with $|\mathcal{R}| \leq k$ such that \mathcal{R} covers all points in \mathcal{C} .

On the other hand, we prove that Weighted Segment Set Cover is W[1]-hard even if segments are limited to 3 directions (Theorem 1.4) and assuming ETH there does not exist algorithm for this problem that runs in time $f(k)(|\mathcal{C}| + |\mathcal{P}|)^{o(\sqrt{k})}$. See Figure 1.1 for a summary of parameterized results for Weighted Segment Set Cover. Similar table for unweighted problem is present in Figure 1.2.

Theorem 1.4. Consider the problem of covering a set \mathcal{C} of points by selecting at most k segments from a set of segments \mathcal{P} with non-negative weights $w: \mathcal{P} \to \mathbb{R}^+$ so that the weight of the cover is minimal. Then this problem is W[1]-hard when parameterized by k and assuming ETH, there is no algorithm for this problem with running time $f(k) \cdot (|\mathcal{C}| + |\mathcal{P}|)^{o(\sqrt{k})}$ for any computable function f. Moreover, this holds even if all segments in \mathcal{P} are axis-parallel or right-diagonal.

See Section 2.1 for exact definitions of axis-parallel and right-diagonal segments.

This result is particularly interesting, because problem without weights is FPT and weighted problem is W[1]-hard. Moreover δ -extension allowed us to provide an FPT algorithm for a problem, which is W[1]-hard otherwise.

Note that the result of Theorem 1.4 is not tight: there exists a simple algorithm running in time $\mathcal{O}(f(k)(|\mathcal{C}|+|\mathcal{P}|)^k)$. So the question whether there exists an algorithm for this problem running in time $f(k) \cdot (|\mathcal{C}|+|\mathcal{P}|)^{o(k)}$ is still open.

Permissive FPT is a relaxed FPT problem, where we need to find solution of any size in FPT-time, but we compare it to the optimum solution of size at most k. Idea for permissive FPT in local search was presented in [Marx and Schlotter, 2011], [Gaspers et al., 2012].

Theorem 1.4 can be improved to show that a permissive FPT algorithm does not exist. This is formulated precisely in Theorem 5.2.

	exact	δ -extension
axis-parallel	?	FPT*
3 directions	W[1]-hard	FPT*
any direction	W[1]-hard*	FPT

Figure 1.1: Our results for Weighted Segment Set Cover parameterized by the size of solution. Results marked with * are not explicitly given in this thesis, but they trivially follow from stronger results shown in the other cells of the table.

	exact	δ -extension
axis-parallel	FPT*	FPT*
3 directions	FPT*	FPT*
any direction	FPT	FPT*

Figure 1.2: Our results for unweighted SEGMENT SET COVER parameterized by the size of solution. Results marked with * are not explicitly given in this thesis, but they trivially follow from stronger results shown in the other cells of the table.

Future work. There are two aforementioned problems that relate to Theorem 1.4 and were not solved in this thesis. We have not presented W[1]-hardness proof of WEIGHTED SEGMENT SET COVER where segments are limited to 3 directions, but it may be possible to improve this construction to use segments in 2 directions instead of 3 directions. The other question is what is the tight bound for this problem. The simple algorithm solving this problem is running in time $\mathcal{O}(f(k)(|\mathcal{C}| + |\mathcal{P}|)^k)$.

Another problem to consider is whether Geometric Set Hitting relaxed with δ -extension can yield some better results.

²⁰⁸ Chapter 2

Preliminaries

In this chapter we present some basic definitions that will be used later.

2.1. Geometric Set Cover

- Whenever speaking about Geometric Set Cover, we consider it in the 2-dimensional plane.
- In the GEOMETRIC SET COVER problem we are are given \mathcal{P} a set of objects, which are connected subsets of the plane and \mathcal{C} a set of points in the plane. The task is to choose $\mathcal{R} \subseteq \mathcal{P}$ such that every point in \mathcal{C} is inside some object from \mathcal{R} and $|\mathcal{R}|$ is minimized. We
- will mostly consider the case where \mathcal{P} consists of segments in the plane.
- In the weighted setting, there is some given weight function $f: \mathcal{P} \to \mathbb{R}^+$ and we would like to find a solution \mathcal{R} that minimizes $\sum_{R \in \mathcal{R}} f(R)$.
- **Definition 2.1.** A segment is **axis-parallel** if it lies on a line that is either horizontal y = c or vertical x = c.
- **Definition 2.2.** A line is **right-diagonal** if it is described by the linear function x + y = d for some $d \in \mathbb{R}$. Segment is **right-diagonal** if its direction is a right-diagonal line.

$_{24}$ 2.2. Parameterization

- In the parameterized setting of the Geometric Set Cover for a given k, our task is to either find a solution \mathcal{R} such that $|\mathcal{R}| \leq k$ or decide that there is no such solution.
- 227 Definition 2.3. A Fixed-parameter Tractable (FPT) algorithm for a problem with pa-
- rameter k and instance size n is an algorithm running in time $f(k) \cdot n^c$ for some constant c
- and some computable function f.
- Definition 2.4. Boolean formula is in conjunctive normal form (CNF) if it is a con-
- junction of one or more formulas, which are disjunction of literals. k-CNF formula is a CNF
- formula, where every disjunction consists of at most k literals.
- Definition 2.5. k-SAT problem is a boolean satisfiability problem of k-CNF formulas.
- Given k-CNF formula, one must answer if there exists any variable assignment that satisfies
- the formula.

Definition 2.6. For $k \geq 3$ set us define S_k as a set of constants σ such that there exists an algorithm solving k-SAT running in time $\mathcal{O}^*(2^{\sigma n})$. Let s_k be the infimum of the set S_k .

Exponential Time Hypothesis (ETH) asserts that $s_3 > 0$. This conjecture implies that there does not exist an algorithm solving 3-SAT running in time $2^{o(n)}$.

To see the definition of a W[1]-hard problem and W hierarchy, see Chapter 13.3 of [Cygan et al., 2015]. When proving that a problem is W[1]-hard, we are going to use Theorem 5.1, which was proved in [Marx, 2007].

$_{43}$ 2.3. Approximation

Let us recall some definitions related to optimization problems.

Definition 2.7. A polynomial-time approximation scheme (PTAS) for a minimization problem Π is a family of algorithms \mathcal{A}_{ϵ} for every $\epsilon > 0$ such that \mathcal{A}_{ϵ} takes an instance I of Π and in polynomial time finds a solution that is within a factor of $(1 + \epsilon)$ of being optimal. This means that the reported solution has weight at most $(1 + \epsilon)opt(I)$, where opt(I) is the weight of an optimal solution to I.

Definition 2.8. A problem Π is **APX-hard** if assuming $P \neq NP$, there exists $\epsilon > 0$ such that there is no polynomial-time $(1 + \epsilon)$ -approximation algorithm for Π .

$\mathbf{2.4.}$ δ -extension

256

257

258

259

260

261

262

263

264

265

266

267

Another idea presented here, which can be utilized only when considering the problems with geometric objects, is δ -extension. We define it specifically for the Geometric Set Cover problem with convex centre-symmetric objects.

Intuitively, we consider a problem with slightly larger objects, which makes the instance more permissive. However, we aim to find a solution that is not larger than the optimum solution to the original problem, so this is substantially easier than just solving the problem for the larger objects. It may even be the case that we are able to find a solution of size smaller than the optimum solution to the original problem.

Formal definition of δ -extended objects is present in Definition 1.3.

The Geometric Set Cover with δ -extension is a version of Geometric Set Cover with the following modifications.

- We need to cover all the points in \mathcal{C} by selecting objects from $\{P^{+\delta}: P \in \mathcal{P}\}$ (which always include no fewer points than the objects before δ -extension).
- We look for a solution that is not larger than the optimum solution to the original problem. Note that it does not need to be an optimal solution in the modified problem.
- 268 Formally, we have the following.
- Definition 2.9. The Geometric Set Cover problem with δ -extension is the problem where for an input instance $I = (\mathcal{P}, \mathcal{C})$ of Geometric Set Cover, the task is to output a solution $\mathcal{R} \subseteq \mathcal{P}$ such that the δ -extended set $\{R^{+\delta} : R \in \mathcal{R}\}$ covers \mathcal{C} and is not larger than the optimal solution to the problem without extension, i.e. $|\mathcal{R}| \leq |opt(I)|$.
- At last, we formulate a definition of the polynomial-time approximation scheme (PTAS) for a problem with δ -extension.

Definition 2.10. A PTAS for Geometric Set Cover with δ -extension is a family of algorithms $\{\mathcal{A}_{\delta,\epsilon}\}_{\delta,\epsilon>0}$ that each takes as an input instance $I=(\mathcal{P},\mathcal{C})$ of Geometric Set Cover where objects are centre-symmetric and convex, and in polynomial-time outputs a solution $\mathcal{R}\subseteq\mathcal{P}$ such that the δ -extended set $\{R^{+\delta}:R\in\mathcal{R}\}$ covers \mathcal{C} and is within a $(1+\epsilon)$ factor of the optimal solution to this problem without extension, i.e. $(1+\epsilon)|\mathcal{R}|\leq |opt(I)|$.

2.5. Weighted Geometric Set Cover

In this thesis we also consider a Weighted Geometric Set Cover problem, which is a combination of the weighted and parameterized setting described in Section 2.1. We already argued in the introduction that there is no consensus of how it is defined, but when we discuss the weighted parameterized setting we will consider the following definition. There is a given weight function $f: \mathcal{P} \to \mathbb{R}^+$ and we would like to find a solution \mathcal{R} such that $|\mathcal{R}| \leq k$ and $\sum_{R \in \mathcal{R}} f(R)$ is minimum possible among such sets \mathcal{R} .

Definition 2.11. The Weighted Geometric Set Cover problem with δ -extension is the problem where for an input instance $I=(\mathcal{P},\mathcal{C},f)$ of Weighted Geometric Set Cover, the task is to output a solution $\mathcal{R}\subseteq\mathcal{P}$ such that the δ -extended set $\{R^{+\delta}:R\in\mathcal{R}\}$ covers \mathcal{C} and it has weight not larger than the optimal solution to the problem without extension, i.e. $\sum_{R\in\mathcal{R}} f(R) \leq |opt(I)|$.

We also consider weighted parameterized setting with δ -extension, which we formally define below.

Definition 2.12. The Weighted Geometric Set Cover problem with δ -extension parameterized by the size of a solution is a problem where for an input instance $I = (\mathcal{P}, \mathcal{C}, f, k)$ of Weighted Geometric Set Cover parameterized by the size of a solution k, the task is to output a solution $\mathcal{R} \subseteq \mathcal{P}$ such that the δ -extended set $\{R^{+\delta} : R \in \mathcal{R}\}$ covers \mathcal{C} , uses no more than k sets, i.e. $|\mathcal{R}| \leq k$ and it has weight not larger than the optimal solution to the problem without extension, i.e. $\sum_{R \in \mathcal{R}} f(R) \leq |opt(I)|$.

Chapter 3

APX-hardness of geometric set cover

- In this section we analyze whether there exists a PTAS for geometric set cover for rectangles.
- We show that Segment Set Cover is APX-hard even if we can restrict this problem to a very simple setting: segments parallel to axes and allow $\frac{1}{2}$ -extension.
- Our result can be summarized in the following theorem and this section aims to prove it.
- Theorem 1.1. (Segment Set Cover with axis-parallel segments and $\frac{1}{2}$ -extension
- is APX-hard). Segment Set Cover with axis-parallel segments in the 2D plane is APX-
- hard (even with $\frac{1}{2}$ -extension). That is, assuming $P \neq NP$, there does not exist a PTAS for this problem.
- We prove Theorem 1.1 by taking a problem that is APX-hard and showing a reduction.
- For this problem we choose MAX-(3,3)-SAT which we define below.

3.1. MAX-(3,3)-SAT

- See Definition 2.4 for the definition of the k-CNF formula.
- Definition 3.1. MAX-3SAT is the following maximization problem. We are given a 3-CNF
- formula, and we need to find a boolean assignment of variables that satisfies the most clauses.
- Definition 3.2. MAX-(3,3)-SAT is a variant of MAX-3SAT with an additional restriction
- that every variable appears in exactly 3 clauses and every clause contains exactly 3 literals of 3
- different variables. Note that thus, the number of clauses is equal to the number of variables.
- In our proof of Theorem 1.1 we use hardness of approximation of MAX-(3,3)-SAT proved in [Håstad, 2001] and described in Theorem 3.1 below.
- Definition 3.3. MAX-3SAT formula with m clauses is at most α -satisfiable, if every assignment of variables satisfies no more than αm clauses.
- Theorem 3.1 ([Håstad, 2001]). For any $\epsilon > 0$, it is NP-hard to distinguish satisfiable (3,3)-SAT formulas from at most $(\frac{7}{8} + \epsilon)$ -satisfiable (3,3)-SAT formulas.

25 3.2. Reduction

The following lemma encapsulates the properties of the reduction described in this section, and it allows us to prove Theorem 1.1.

Lemma 3.1. Given an instance S of MAX-(3,3)-SAT with n variables and optimum value opt(S), we can construct an instance (C,P) of geometric set cover with axis-parallel segments in 2D such that:

- 331 (1) For every solution to instance S that satisfies k clauses, there exists a solution to (C, P) of size 15n k.
- 333 (2) For every solution \mathcal{R} to instance $(\mathcal{C}, \mathcal{P})$, there exists a solution to S that satisfies at least 15 $n |\mathcal{R}|$ clauses.
- 335 (3) For every $\mathcal{R} \subseteq \mathcal{P}$, if $\mathcal{R}^{+\frac{1}{2}}$ is a solution to $(\mathcal{C}, \mathcal{P})$, then \mathcal{R} is also a solution to $(\mathcal{C}, \mathcal{P})$.
- Therefore, the optimum size of a solution to $(\mathcal{C}, \mathcal{P})$ is $\mathsf{opt}((\mathcal{C}, \mathcal{P})) = 15n \mathsf{opt}(S)$.

We prove Lemma 3.1 in subsequent sections. Section 3.3 describes the proposed instance (C, P). Property (1) is proved by Lemma 3.11, (2) by Lemma 3.13, and finally (3) trivially follows from Lemma 3.10. Firstly let us prove Theorem 1.1 using Lemma 3.1 and Theorem 3.1.

Proof of Theorem 1.1. Consider any $0 < \epsilon < \frac{1}{15.8}$.

Let us assume that there exists a polynomial-time $(1 + \epsilon)$ -approximation algorithm for unweighted geometric set cover with axis-parallel segments in 2D with $\frac{1}{2}$ -extension. We construct an algorithm that solves the problem stated in Theorem 3.1, thereby proving that P = NP.

Take an instance S of MAX-(3,3)-SAT to be distinguished and construct an instance of geometric set cover $(\mathcal{C}, \mathcal{P})$ using Lemma 3.1. We now use the $(1+\epsilon)$ -approximation algorithm for geometric set cover relaxed with $\frac{1}{2}$ -extensions on $(\mathcal{C}, \mathcal{P})$. Denote the size of the solution returned by this algorithm as $\operatorname{approx}^*((\mathcal{C}, \mathcal{P}))$. We prove that if in S one can satisfy at most $(\frac{7}{8} + \epsilon)n$ clauses, then $\operatorname{approx}^*((\mathcal{C}, \mathcal{P})) \geq 15n - (\frac{7}{8} + \epsilon)n$, and if S is satisfiable, then $\operatorname{approx}^*((\mathcal{C}, \mathcal{P})) < 15n - (\frac{7}{8} + \epsilon)n$.

Assume S satisfiable. From the definition of S being satisfiable, we have:

$$opt(S) = n$$
.

From Lemma 3.1 we have:

$$opt((\mathcal{C}, \mathcal{P})) = 14n.$$

Therefore,

343

344

345

346

347

350

351

352

$$\begin{split} \operatorname{approx}^*((\mathcal{C},\mathcal{P})) &\leq (1+\epsilon)\operatorname{opt}((\mathcal{C},\mathcal{P})) = 14n(1+\epsilon) = 14n + 14\epsilon \cdot n = \\ &= 14n + (15\epsilon - \epsilon)n < 14n + \left(\frac{1}{8} - \epsilon\right)n = 15n - \left(\frac{7}{8} + \epsilon\right)n. \end{split}$$

Assume S is at most $(\frac{7}{8} + \epsilon)$ satisfiable. From the definition of S being at most $(\frac{7}{8} + \epsilon)$ n satisfiable, we have:

$$\mathsf{opt}(S) \leq \left(\frac{7}{8} + \epsilon\right)n$$

From Lemma 3.1 we have:

$$\operatorname{opt}((\mathcal{C}, \mathcal{P})) \ge 15n - \left(\frac{7}{8} + \epsilon\right)n$$

Since a solution to (C, P) with $\frac{1}{2}$ -extension is also a solution without any extension, by Lemma 3.1 (3), we have:

$$\mathsf{approx}^*((\mathcal{C},\mathcal{P})) \geq \mathsf{opt}((\mathcal{C},\mathcal{P})) = 15n - \left(\frac{7}{8} + \epsilon\right)n$$

Therefore, by using the assumed $(1 + \epsilon)$ -approximation algorithm, it is possible to distinguish the case when S is satisfiable from the case when it is at most $(\frac{7}{8} + \epsilon)n$ satisfiable: it suffices to compare $\operatorname{approx}^*((\mathcal{C}, \mathcal{P}))$ with $15n - (\frac{7}{8} + \epsilon)n$. Hence, the assumed approximation algorithm cannot exist, unless P = NP.

3.3. Construction of the Geometric Set Cover instance

We proceed to the proof of Lemma 3.1. That is, we show a reduction from the MAX-(3,3)SAT problem to geometric set cover with segments parallel to axes. Moreover, the obtained
instance of geometric set cover will be robust to $\frac{1}{2}$ -extension (have the same optimal solution
after $\frac{1}{2}$ -extension).

The construction will be composed of 2 types of gadgets: **VARIABLE-gadgets** and **CLAUSE-gadgets**. CLAUSE-gadgets will be constructed using two **OR-gadgets** connected together.

3.3.1. VARIABLE-gadget

364

365

366

372

VARIABLE-gadget is responsible for choosing the value of a variable in a CNF formula. It allows two minimum solutions of size 3 each. These two choices correspond to the two Boolean values of the variable corresponding to this gadget.

Points. Define points a, b, c, d, e, f, g, h as follows, where L = 22n:

Figure 3.1: VARIABLE-gadget. We denote the set of points marked with black circles as pointsVariable_i, and they need to be covered (are part of the set \mathcal{C}). Note that some of the points are not marked as black dots and exists only to name segments for further reference. We denote the set of red segments as chooseVariable^{false}_i and the set of blue segments as chooseVariable^{true}_i.

$$a:=(-3L,0)$$
 $b:=(-2L,0)$ $c:=(-L,0)$ $d:=(-3L,1)$ $e:=(-2L,1)$ $f:=(-2L,2)$ $g:=(L,0)$ $h:=(L,2)$

Let us define:

pointsVariable :=
$$\{a, b, c, d, e, f\}$$

and, for any $1 \le i \le n$,

 $pointsVariable_i := pointsVariable + (0, 4i).$

We denote $a_i := a + (0, 4i)$ etc.

374 **Segments.** Let us define:

chooseVariable_i^{true} :=
$$\{(a_i, d_i), (b_i, f_i), (c_i, g_i)\},$$

chooseVariable_i^{false} := $\{(a_i, c_i), (d_i, e_i), (f_i, h_i)\},$

 $segmentsVariable_i := chooseVariable_i^{true} \cup chooseVariable_i^{false}$.

We also name two of these segments for future reference: $\mathsf{xTrueSegment}_i := (c_i, g_i)$, $\mathsf{xFalseSegment}_i := (f_i, h_i)$.

Lemma 3.2. For any $1 \le i \le n$, points in pointsVariable_i can be covered using 3 segments from segmentsVariable_i.

279 Proof. We can use either set chooseVariable_i^{true} or chooseVariable_i^{false}. \Box

Lemma 3.3. For any $1 \le i \le n$, points in pointsVariable_i can not be covered with fewer than $3 \text{ segments from segmentsVariable}_i$.

Proof. No segment of segmentsVariable_i covers more than one point from $\{d_i, f_i, c_i\}$, therefore pointsVariable_i can not be covered with fewer than 3 segments.

Lemma 3.4. For every set $A \subseteq \text{segmentsVariable}_i \ such \ that \ A \ covers \ \mathsf{pointsVariable}_i \ and$ xTrueSegment_i, xFalseSegment_i $\in A$, it holds that $|A| \ge 4$.

Proof. No segment from segments Variable_i covers more than one point from $\{a_i, e_i\}$, therefore points Variable_i $-\{c_i, f_i\}$ can not be covered with fewer than 2 segments.

388 3.3.2. OR-gadget

391

392

393

394

395

396

397

398

An OR-gadget connects input and output segments (see Figure 3.2) in a way that is supposed to simulate the binary disjunction.

Input segments are the only segments that cover points outside of the gadget, as their left ends lie outside of it. Point $v_{i,j}$ is the only one that can be covered by segments that do not belong to the gadget.

The OR-gadget has the property that every set of segments that covers all the points in the gadget uses at least 3 segments from it. Moreover, the output segment belongs to the solution of size 3 only if at least one of the input segments belongs to the solution. Therefore, optimum solutions restricted to the OR-gadget behave like a binary disjunction for the input segments.

Figure 3.2: **OR-gadget.** Segments from chooseOr_{i,j}^{false} are red, segments from chooseOr_{i,j}^{true} are blue (both light blue and dark blue), segments from orMoveVariable_{i,j} are green and yellow. Dark blue segment is the *output* segment. Grey segments $input_x$ and $input_y$ are input segments that are not part of segmentsOr_{i,j}.

Points. We define

400

$$\begin{array}{lll} l_0 := (0,0) & m_0 := (0,1) & n_0 := (0,2) & o_0 := (0,3) \\ p_0 := (0,4) & q_0 := (1,1) & r_0 := (1,3) & s_0 := (2,1) \\ t_0 := (2,2) & u_0 := (2,3) & v_0 := (3,2) \end{array}$$

$$vec_{i,j} := (20i + 3 + 3j, 4(n+1) + 2j)$$

For integers i, j, define $\{l_{i,j}, m_{i,j}, \dots, v_{i,j}\}$ as $\{l_0, m_0, \dots, v_0\}$ shifted by $vec_{i,j}$, i.e. $l_{i,j} = l_0 + vec_{i,j}$ etc.

Note that $v_{i,0} = l_{i,1}$ (see Figure 3.3). Next, let

pointsOr_{i,j} :=
$$\{l_{i,j}, m_{i,j}, n_{i,j}, o_{i,j}, p_{i,j}, q_{i,j}, r_{i,j}, s_{i,j}, t_{i,j}, u_{i,j}\}$$

- Note that $\mathsf{pointsOr}_{i,j}$ does not include the point $v_{i,j}$.
- **Segments.** We define the set of segments in several parts:

$$\begin{array}{lll} \mathsf{chooseOr}^{\mathtt{false}}_{i,j} & := & \{(q_{i,j}, r_{i,j}), (s_{i,j}, u_{i,j})\}, \\ & \mathsf{chooseOr}^{\mathtt{true}}_{i,j} & := & \{(m_{i,j}, s_{i,j}), (o_{i,j}, u_{i,j}), (t_{i,j}, v_{i,j})\}, \\ \mathsf{orMoveVariable}_{i,j} & := & \{(l_{i,j}, n_{i,j}), (n_{i,j}, p_{i,j})\}. \end{array}$$

Finally all segments on OR-gadget are defined as:

$$\mathsf{segmentsOr}_{i,j} := \mathsf{chooseOr}^{\mathtt{false}}_{i,j} \cup \mathsf{chooseOr}^{\mathtt{true}}_{i,j} \cup \mathsf{orMoveVariable}_{i,j}$$

Lemma 3.5. For any $1 \le i \le n, j \in \{0,1\}$ and $x \in \{l_{i,j}, p_{i,j}\}$, points in points $\mathsf{Or}_{,i,j} - \{x\} \cup \{v_{i,j}\}$ can be covered with 4 segments from segments $\mathsf{Or}_{i,j}$.

Proof. We can do this using one segment from orMoveVariable_{i,j}, the one that does not cover x, and all segments from chooseOr^{true}_{i,j}.

Lemma 3.6. For any $1 \le i \le n, j \in \{0,1\}$, points in points $Or_{i,j}$ can be covered with 4 segments from segments $Or_{i,j}$.

Proof. We can do this using segments from orMoveVariable_{i,j} \cup chooseOr^{false}_{i,j}.

414 3.3.3. CLAUSE-gadget

A CLAUSE-gadget is responsible for determining whether variable values assigned in variable gadgets satisfy the corresponding clause in the input formula ϕ . It has a minimum solution of size w if and only if the clause is satisfied, i.e. at least one of the respective variables is assigned the correct value. Otherwise, its minimum solution has size w + 1. In this way, by analyzing the size of the minimum solution to the entire constructed instance, we will be able to tell how many clauses it is possible to satisfy in an optimum solution to ϕ .

Figure 3.3: **CLAUSE-gadget for a clause** $a \lor b \lor \neg c$. Every green rectangle is an OR-gadget. y-coordinates of $x_{i,0}$, $y_{i,0}$ and $z_{i,0}$ depend on the variables in the i-th clause. Grey segments corresponds to the values of variables satisfying the i-th clause.

Points. First, we define auxiliary functions for literals. For a literal w, let idx(w) be the index of the variable in w, and neg(w) be the Boolean value (0 or 1) whether the variable is negated in w or not.

$$\operatorname{idx}(w) := i \text{ when } w = x_i$$

$$\operatorname{neg}(w) := \begin{cases} 0 & \text{if } w = x_i \\ 1 & \text{if } w = \neg x_i \end{cases}$$

Let us assume that clause $C_i = a \lor b \lor c$ for any literals a, b, c. Then, we define points in the gadget as:

```
 \begin{aligned} x_{i,0} &:= (20i, 4 \cdot \mathsf{idx}(a) + 2 \cdot \mathsf{neg}(c)), & x_{i,1} &:= (20i, 4(n+1)), \\ y_{i,0} &:= (20i+1, 4 \cdot \mathsf{idx}(b) + 2 \cdot \mathsf{neg}(b)), & y_{i,1} &:= (20i+1, 4(n+1)+4), \\ z_{i,0} &:= (20i+2, 4 \cdot \mathsf{idx}(c) + 2 \cdot \mathsf{neg}(c)), & z_{i,1} &:= (20i+2, 4(n+1)+6). \end{aligned}
```

We are now ready to define the set of points in a clause gadget:

```
\begin{split} \mathsf{moveVariable}_i := \{x_{i,j} : j \in \{0,1\}\} \cup \{y_{i,j} : j \in \{0,1\}\} \cup \{z_{i,j} : j \in \{0,1\}\}, \\ \mathsf{pointsClause}_i := \mathsf{moveVariable}_i \cup \mathsf{pointsOr}_{i,0} \cup \mathsf{pointsOr}_{i,1} \cup \{v_{i,1}\}. \end{split}
```

Note that these two points are equal: $v_{i,0} = l_{i,1}$. This translates to the fact that the output of the first OR-gadget is an input to the second OR-gadget. This creates an or of 3 boolean values.

Segments. We also define segments for the clause gadget as below:

432

433

435

436

437

438

441

442

443

444

447

455

456

$$\begin{array}{lll} \mathsf{segmentsClause}_i &:= & \{(x_{i,0}, x_{i,1}), (y_{i,0}, y_{i,1}), (z_{i,0}, z_{i,1}), (x_{i,1}, l_{i,0}), (y_{i,1}, p_{i,0}), (z_{i,1}, p_{i,1}), \} \cup \\ & \cup \; \mathsf{segmentsOr}_{i,0} \cup \mathsf{segmentsOr}_{i,1}. \end{array}$$

The CLAUSE-gadgets consist of two OR-gadgets. Ideally, we would place the i-th CLAUSE-gadget close to the $\mathsf{xTrueSegment}_{j_1}$ or $\mathsf{xFalseSegment}_{j_1}$ segments corresponding to the literals that occur in the i-th clause. It would be inconvenient to position them there, because between these segments there may be additional $\mathsf{xTrueSegment}_{j_2}$ or $\mathsf{xFalseSegment}_{j_2}$ segments corresponding to the other literals.

Instead, we use simple auxiliary gadgets to transfer whether the segment is in a solution, i.e. segments $(x_{i,0}, x_{i,1}), (y_{i,0}, y_{i,1}), (z_{i,0}, z_{i,1})$. Each transfer gadget consists of two segments $(x_{i,0}, x_{i,1}), (x_{i,1}, a)$. These are the only segments that can cover $x_{i,1}$. We place $x_{i,0}$ on a segment that we want to transfer (i.e. segment responsible for choosing the variable value satisfying the corresponding literal). If in some solution $x_{i,0}$ is already covered by this segment, then we can cover $x_{i,1}$ by $(x_{i,1}, a)$, thus also covering a. If $x_{i,0}$ is not covered by this segment, then the only way to cover $x_{i,0}$ is to use segment $(x_{i,0}, x_{i,1})$. Intuitively, in any optimal solution the two segments transfer the state of whether $x_{i,0}$ is covered onto whether a is covered. Therefore, the number of segments in the optimal solution is increased by one, and we get a point a that was effectively placed on some segment s, but it can be placed anywhere in the plane instead, consequently simplifying the construction.

448 Lemma 3.7. For any $1 \le i \le n$ and $a \in \{x_{i,0}, y_{i,0}, z_{i,0}\}$, there is a set solClause $_i^{true,a} \subseteq$ segmentsClause $_i^{true,a} | = 11$ that covers all points in pointsClause $_i^{-true,a} = 1$.

Proof. For $a = x_{i,0}$ (analogous proof for $y_{i,0}$): First we use Lemma 3.5 twice with excluded $x = l_{i,0}$ and $x = l_{i,1} = v_{i,0}$, resulting with 8 segments in $chooseOr_{i,0}^{true} \cup chooseOr_{i,1}^{true}$ which cover all required points apart from $x_{i,1}, y_{i,0}, y_{i,1}, z_{i,0}, z_{i,1}, l_{i,0}$. We cover those using additional segments: $\{(x_{i,1}, l_{i,0}), (y_{i,0}, y_{i,1}), (z_{i,0}, z_{i,1})\}$.

For $a=z_{0,i}$: Using Lemma 3.6 and Lemma 3.5 with $x=p_{i,1}$, we obtain 8 segments in $\mathsf{chooseOr}_{i,0}^{\mathsf{false}} \cup \mathsf{chooseOr}_{i,1}^{\mathsf{true}}$ which cover all required points apart from $x_{i,0}, x_{i,1}, y_{i,0}, y_{i,1}, z_{i,1}, p_{i,1}$. We cover those using additional 3 segments: $\{(x_{i,0}, x_{i,1}), (y_{i,0}, y_{i,1}), (z_{i,1}, p_{i,1})\}$.

Lemma 3.8. For any $1 \le i \le n$ there is a set solClause_i^{false} \subseteq segmentsClause_i with solClause_i^{false} = 12 that covers all points in pointsClause_i.

Proof. Using Lemma 3.6 twice we can cover pointsOr_{i,0} and pointsOr_{i,1} with 8 segments. To cover the remaining points we additionally use: $\{(x_{i,0}, x_{i,1}), (y_{i,0}, y_{i,1}), (z_{i,0}, z_{i,1}), (t_{i,1}, v_{i,1})\}$.

462 **Lemma 3.9.** For any $1 \le i \le n$:

- (1) points in pointsClause_i can not be covered using any subset of segments from segmentsClause_i of size smaller than 12;
- 465 (2) points in pointsClause_i $-\{x_{i,0}, y_{i,0}, z_{i,0}\}$ can not be covered using any subset of segments 466 from segmentsClause_i of size smaller than 11.

Proof of (1). No segment in segments Clause_i covers more than 1 point from

$$\{x_{i,0}, y_{i,0}, z_{i,0}, l_{i,0}, p_{i,0}, q_{i,0}, u_{i,0}, v_{i,0} = l_{i,1}, p_{i,1}, q_{i,1}, u_{i,1}, v_{i,1}\}.$$

Therefore we need to use at least 12 segments.

Proof of (2). We can define disjoint sets X, Y, Z such that

$$X \cup Y \cup Z \subseteq \mathsf{pointsClause}_i - \{x_{i,0}, y_{i,0}, z_{i,0}\}$$

and there are no segments in **segmentsClause**_i covering points from different sets. And we prove a lower bound for each of these sets. First, let:

$$X := \{x_{i,1}, y_{i,1}, z_{i,1}\}.$$

No two points in X can be covered with one segment of segmentsClause_i, so it must be covered with 3 different segments. Next we define other sets:

$$Y := \mathsf{pointsOr}_{i,0} - \{l_{i,0}, p_{i,0}\},$$

 $Z := \mathsf{pointsOr}_{i,1} - \{l_{i,1}, p_{i,1}\}.$

For both Y and Z we can check all of the subsets of 3 segments of segmentsClause_i to conclude that none of them cover the considered, so both Y and Z have to be covered with disjoint sets of 4 segments each.

Therefore, pointsClause_i $-\{x_{i,0},y_{i,0},z_{i,0}\}$ must be covered with at least 3+4+4=11 segments from segmentsClause_i.

477 3.3.4. Summary

Finally we define the set of points and segments for the constructed instance:

$$\mathcal{C} := \bigcup_{1 \leq i \leq n} \mathsf{pointsVariable}_i \cup \mathsf{pointsClause}_i,$$

$$\mathcal{P} := \bigcup_{1 \leq i \leq n} \mathsf{segmentsVariable}_i \cup \mathsf{segmentsClause}_i.$$

TODO: Add some smart lemmas that sets will be exclusive to each other.

Lemma 3.10 (Robustness to $\frac{1}{2}$ -extension). For every segment $s \in \mathcal{P}$, s and $s^{+\frac{1}{2}}$ cover the same points from \mathcal{C} .

Figure 3.4: Scheme of the whole construction.

General layout of VARIABLE-gadgets and CLAUSE-gadgets and how they interact with each other.

TODO: We can rewrite the proof below with rectangles that should take care of the smart lemmas above and make the proof easier.

Proof. We can just check every segment. Most of the segments s are collinear only with points that lie on s, so trivially $s^{+\frac{1}{2}}$ cannot cover more points than s does. We discuss only the segments that are collinear with a point from outside of its gadget or with a point that belongs to another copy of the gadget.

Within VARIABLE-gadget for any $1 \le i \le n$ after $\frac{1}{2}$ -extension: (c_i, g_i) does not cover b_i .

Within OR-gadget some of the segments are collinear and share one point; specifically, for any $1 \le i \le n$ and $j \in \{0, 1\}$, after $\frac{1}{2}$ -extension:

- $(l_{i,j}, n_{i,j})$ does not cover $o_{i,j}$,
 - $(n_{i,j}, p_{i,j})$ does not cover $m_{i,j}$,
- $(t_{i,j}, v_{i,j})$ does not cover $n_{i,j}$.

491

497

498

499

500

501

502

503

504

505

507

508

511

519

520

Within CLAUSE-gadget, for any $1 \le i \le n$ after $\frac{1}{2}$ -extension:

- $(o_{i,0}, u_{i,0})$ does not cover $m_{i,1}$,
- $(m_{i,1}, s_{i,1})$ does not cover $u_{i,0}$,
- $(y_{i,1}, p_{i,0})$ does not cover $n_{i,1}$.

For two consecutive VARIABLE-gadgets, for any $1 \le i < n$ after $\frac{1}{2}$ -extension: (b_i, f_i) does not cover b_{i+1} (nor f_{i-1} for i > 1). Similarly (a_i, d_i) does not cover a_{i+1} (nor d_{i-1} for i > 1), because this segment is shorter than the previous one and a_i and b_i share y-coordinate.

For two consecutive CLAUSE-gadgets, segments from one do not cover anything from the other, as the gadgets have width 9 and every leftmost x-coordinate is divisible by 20. Hence two different gadgets do not interact with each other after $\frac{1}{2}$ -extension.

Next we need to check whether VARIABLE-gadget's segments do not cover any points $x_{i,0}, y_{i,0}$ or $z_{i,0}$ from CLAUSE-gadget. For any $1 \le i \le n$ and $1 \le j \le n$, all points $x_{j,0}, y_{j,0}$ and $z_{j,0}$ have x-coordinate strictly positive. Segment (a_i, c_i) have length 2L and c_i has x-coordinate equal to -L, so after $\frac{1}{2}$ -extension this segment does not cover any points with a positive x-coordinate.

3.4. Proof that the construction is correct and sound

In order to prove Lemma 3.1 we introduce several auxiliary lemmas proving properties of the construction described in the previous section.

Consider an instance S of MAX-(3,3)-SAT of size n with optimum solution satisfying k clauses. Let us construct an instance $(\mathcal{C}, \mathcal{P})$ of geometric set cover as described in Section 3.3 for the instance S of MAX-(3,3)-SAT.

Lemma 3.11. The instance (C, P) of geometric set cover admits a solution of size 15n - k.

Proof. Let the clauses in S be c_1, c_2, \ldots, c_n and the variables be x_1, x_2, \ldots, x_n . Let the variable assignment in the optimum solution to S be $\phi: \{x_1, x_2, \ldots, x_n\} \to \{\text{true}, \text{false}\}$.

We cover every VARIABLE-gadget with solution described in Lemma 3.2, where in the i-th gadget we choose the set of segments corresponding to the value of $\phi(x_i)$.

For every clause that is satisfied, say c_i , let us name the variable that is true in it as x_i and the point corresponding to x_i in pointsClause, as a. Points in pointsClause, are covered

with set solClause_i^{true,a} described in Lemma 3.7. For every clause that is not satisfied, say c_j , points in pointsClause_i are covered with set solClause_i^{false} described in Lemma 3.8.

Formally, we define sets responsible for choosing variable assignment and satisfying clauses, R_i and C_i respectively, as following:

$$R_i := \begin{cases} \mathsf{chooseVariable}_i^{\mathtt{true}} & \text{if } \phi(x_i) = \mathtt{true} \\ \mathsf{chooseVariable}_i^{\mathtt{false}} & \text{if } \phi(x_i) = \mathtt{false} \end{cases}$$

$$C_i := \begin{cases} \mathsf{solClause}_i^{\mathtt{true},a} & \text{if } c_i \text{ satisfied by the literal corresponding to point } a \\ \mathsf{solClause}_i^{\mathtt{false}} & \text{if } c_i \text{ not satisfied} \end{cases}$$

$$\mathcal{R} := \bigcup_{i=1}^n \{ R_i \cup C_i : 1 \leq i \leq n \}.$$

This set covers all the points from C, because the sets R_i , C_i individually cover their corresponding gadgets, as proved in the respective lemmas.

All of these sets are disjoint, so the size of the obtained solution is:

523

525

526

527

535

536

540

541

542

543

545

546

$$|\mathcal{R}| = \sum_{i=1}^{n} R_i + \sum_{i=1}^{n} C_i = 3n + 11k + 12(n-k) = 15n - k.$$

Lemma 3.12. Suppose we have a solution \mathcal{R} of the instance $(\mathcal{C}, \mathcal{P})$ of geometric set cover.

Then there exists a solution \mathcal{R}' such that $|\mathcal{R}'| \leq |\mathcal{R}|$ and \mathcal{R}' contains at most one of the segments \times TrueSegment; and \times FalseSegment; from each VARIABLE-gadget.

Proof. Assume that we have $\{xTrueSegment_i, xFalseSegment_i\} \subseteq \mathcal{R}$ for some i. We will show how to modify \mathcal{R} into \mathcal{R}' , such that the number of such i decreases, while \mathcal{R}' is still a valid solution to $(\mathcal{C}, \mathcal{P})$, and $|\mathcal{R}'| \leq |\mathcal{R}|$. Then, by repeating this procedure, we can eventually construct a solution satisfying the property from the Lemma.

To construct \mathcal{R}' , we first remove from \mathcal{R} all segments belonging to segmentsVariable_i. Recall that the *i*-th VARIABLE-gadget corresponds to variable x_i in S. As every variable in S is used in exactly 3 clauses, then one literal x_i or $\neg x_i$ must appear in at least 2 clauses. If that literal is x_i , then we add to the constructed solution all segments from chooseVariable^{true}_i, otherwise we add all segments from chooseVariable^{false}_i.

Now, there exists at most one CLAUSE-gadget which needs adjustment to make \mathcal{R}' valid; assuming it is the *j*-th clause, then one of the points $x_{j,0}, y_{j,0}$ or $z_{j,0}$ for this CLAUSE-gadget might be not covered, say $y_{j,0}$. We amend the solution by adding $(y_{j,0}, y_{j,1})$ to \mathcal{R}' .

By Lemma 3.4 we know that \mathcal{R} used at least 4 segments from segments Variable_i. Therefore, we removed at least 4 segments and added at most 4 segments, so $|\mathcal{R}'| \leq |\mathcal{R}|$.

Lemma 3.13. Suppose we have a solution \mathcal{R} of the instance $(\mathcal{C}, \mathcal{P})$ of geometric set cover. Then there exists a solution to S that satisfies at least $15n - |\mathcal{R}|$ clauses.

Proof. Let the clauses in S be c_1, c_2, \ldots, c_n and the variables be x_1, x_2, \ldots, x_n . Given a solution \mathcal{R} of the instance $(\mathcal{C}, \mathcal{P})$ of geometric set cover, we use Lemma 3.12 to modify \mathcal{R} so that for any i, \mathcal{R} contains at most one of $\mathsf{xTrueSegment}_i$ and $\mathsf{xFalseSegment}_i$; this may decrease the size of \mathcal{R} , but that does not matter in the subsequent construction. To simplify notation, in the remainder of this proof we use \mathcal{R} to refer to the modified solution.

Given \mathcal{R} , we construct a solution to S by defining an assignment of variables:

$$\phi: \{x_1, x_2, \dots, x_n\} \to \{\texttt{true}, \texttt{false}\}$$

that satisfies at least $15n - |\mathcal{R}|$ clauses in S.

Definition of ϕ . Recall that due to Lemma 3.12, \mathcal{R} contains at most one of xTrueSegment_i and xFalseSegment_i.

We define the value $\phi(x_i)$ for the variable x_i as follows:

$$\phi(x_i) := egin{cases} exttt{true} & ext{if } exttt{xTrueSegment}_i \in \mathcal{R}, \\ exttt{false} & ext{otherwise} \end{cases}$$

Moreover, from Lemma 3.3 we get $|segmentsVariable_i \cap \mathcal{R}| \geq 3$ for every i.

Clauses satisfied with the chosen variable assignment. For a clause c_i , \mathcal{R} needs to use at least 11 segments to cover pointsClause_i – $\{x_{i,0}, y_{i,0}, z_{i,0}\}$ in the *i*-th CLAUSE-gadget (Lemma 3.9).

Moreover, if none of the points $\{x_{i,0}, y_{i,0}, z_{i,0}\}$ are covered by the segments from $\mathcal{R} \cap$ segments Variable_i, then \mathcal{R} needs to cover points Clause_i with at least 12 segments by Lemma 3.9.

Let a be the number of clauses c_i for which none of the points $x_{i,0}, y_{i,0}, z_{i,0}$ in pointsClause_i are covered by segments from $\mathcal{R} \cap \text{segmentsVariable}_i$ for any $1 \leq j \leq n$.

Consider a clause c_i for which at least one of the points $x_{i,0}, y_{i,0}, z_{i,0}$ in pointsClause_i is covered by segments from $\mathcal{R} \cap \mathsf{segmentsVariable}_j$ for some $1 \leq j \leq n$. Denote this point as t and say it corresponds to literal q and variable x_j . Point t can be only covered in $\mathsf{segmentsVariable}_j$ by a corresponding $\mathsf{segment} \times \mathsf{TrueSegment}_j$ or $\mathsf{xFalseSegment}_j$ (depending on whether the literal q is negated or not). From the definition of ϕ and the fact that one of this $\mathsf{segment}$ is in \mathcal{R} , we know that $\phi(j)$ has the value that evaluates q to be true . Therefore, clause c_i is satisfied.

Consequently, ϕ satisfies all but at most a clauses in S.

To conclude, given a solution \mathcal{R} to $(\mathcal{C}, \mathcal{P})$ we constructed a variable assignment ϕ that satisfies at least n-a clauses of S. Finally, note that

$$|\mathcal{R}| \ge 3n + 11(n-a) + 12a = 3n + 11n + a = 14n + a,$$

hence

556

557

558

559

561

562

563

564

567

568

569

570

$$15n - |\mathcal{R}| \le 15n - 14n - a = n - a.$$

Therefore, ϕ satisfies at least $15n - |\mathcal{R}|$ clauses of S.

574 Chapter 4

587

Fixed-parameter tractable algorithm for geometric set cover problem

In this chapter we show fixed-parameter tractable algorithms for the geometric set cover problem in two different settings. Section 4.1 shows a fixed-parameter tractable algorithm for geometric set cover with unweighted segments. The remainder of the chapter presents a fixed-parameter tractable algorithm for geometric set cover with weighted segments with δ -extension. We show an algorithm for the setting with δ -extension, because the original problem with weights is W[1]-hard, as we show in Chapter 5.

We start with a shared definition for this problem. We define *extreme points* for a set of collinear points.

Definition 4.1. For a set of collinear points C in the plane, extreme points of C are the endpoints of the smallest segment that covers all points from set C.

If C consists of one point or is empty, then there are 1 or 0 extreme points respectively.

4.1. Fixed-parameter tractable algorithm for unweighted segments

In this section we consider fixed-parameter tractable algorithms for unweighted geometric set cover with segments. The setting where segments are required to be axis-parallel (or limited to a constant number of directions) has a trivial FPT algorithm. We present an FPT algorithm for geometric set cover with unweighted segments, where segments are in arbitrary directions.

4.1.1. Axis-parallel segments

Theorem 4.1. (FPT for segment cover with axis-parallel segments). There exists an algorithm that given a family \mathcal{P} of axis-parallel segments, a set of points \mathcal{C} and a parameter k, runs in time $\mathcal{O}(2^k)$, and outputs a solution $\mathcal{R} \subseteq \mathcal{P}$ such that $|\mathcal{R}| \leq k$ and \mathcal{R} covers all points in \mathcal{C} , or determines that such a set \mathcal{R} does not exist.

Proof. We show an $\mathcal{O}(2^k)$ -time branching algorithm. In each step, the algorithm selects a point a which is not yet covered, branches to choose one of the two directions, and greedily chooses a segment a in that direction to cover. This proceeds until either all points are covered or k segments are chosen.

Let us take the point $a = (x_a, y_a)$ which is the smallest among points that are not yet covered in the lexicographic ordering of points in \mathbb{R}^2 . We need to cover a with some of the remaining segments.

Branch over the choice of one of the coordinates (x or y); without loss of generality, let us assume we chose x. Among the segments lying on line $x = x_a$, we greedily add to the solution the one that covers the most points. As a was the smallest in the lexicographical order, all points on the line $x = x_a$ have the y-coordinate larger than y_a . Therefore, if we denote the greedily chosen segment as s, then any other segment on the line $x = x_a$ that covers a can only cover a subset of points covered by s. Thus, greedily choosing s is optimal.

In each step of the algorithm we add one segment to the solution, thus the recursion can be stopped at depth k. If no branch finds a solution, then this means that a solution of size at most k does not exist.

Note that the same algorithm can be used for segments in d directions, where we branch over d choices of directions, and it runs in complexity $\mathcal{O}(d^k)$.

4.1.2. Segments in arbitrary directions

603

604

605

606

607

608

609

610

611

613

614

617

625

In this section we consider the setting where segments are not constrained to a constant number of directions. We present a fixed-parameter tractable algorithm, parameterized by the size of the solution.

Theorem 1.2. (FPT for SEGMENT SET COVER). There exists an algorithm that given a family \mathcal{P} of segments (in any direction), a set of points \mathcal{C} and a parameter k, runs in time $k^{\mathcal{O}(k)}(|\mathcal{C}|\cdot|\mathcal{P}|)^2$, and outputs a solution $\mathcal{R}\subseteq\mathcal{P}$ such that $|\mathcal{R}|\leq k$ and \mathcal{R} covers all points in \mathcal{C} , or determines that such a set \mathcal{R} does not exist.

We will need the following lemmas proving properties of any instance of the problem.

Lemma 4.1. Given an instance $(\mathcal{P},\mathcal{C})$ of the segment cover problem, without loss of generality we can assume that no segment covers a superset of what another segment covers. That is, for any distinct $A, B \in \mathcal{P}$, we have $A \cap \mathcal{C} \not\subseteq B \cap \mathcal{C}$ and $A \cap \mathcal{C} \not\supseteq B \cap \mathcal{C}$.

Proof. Assume towards a contradiction that there is an instance $(\mathcal{P}, \mathcal{C})$, and two distinct subsets of \mathcal{P} , A, B, such that $A \cap \mathcal{C} \subseteq B \cap \mathcal{C}$.

We construct a set $\mathcal{P}' := \mathcal{P} - \{A\}$. We prove that for any solution \mathcal{R} of $(\mathcal{P}, \mathcal{C})$, we can construct a solution $\mathcal{R}' \subseteq \mathcal{P}'$, such that $|\mathcal{R}'| \leq |\mathcal{R}|$. Let us take any solution \mathcal{R} of $(\mathcal{P}, \mathcal{C})$. If $A \in \mathcal{R}$, then $\mathcal{R}' := \mathcal{R} \cup \{B\} - \{A\}$, otherwise $\mathcal{R}' := \mathcal{R}$. Let us consider the case when $A \in \mathcal{R}$, because the other case is trivial. Since $A \cap \mathcal{C} \subseteq B \cap \mathcal{C}$, then $\mathcal{R} \cup \{B\} - \{A\}$ covers any point from \mathcal{C} that was covered by \mathcal{R} . Also, $|\mathcal{R} \cup \{B\} - \{A\}| \leq |\mathcal{R}|$.

Lemma 4.2. Given an instance $(\mathcal{P}, \mathcal{C})$ of the segment cover problem transformed by Lemma 4.1, if there exists a line L with at least k+1 points on it, then there exists a subset $A \subseteq \mathcal{P}$, of size at most k, such that every solution \mathcal{R} with $|\mathcal{R}| \leq k$ satisfies $|A \cap \mathcal{R}| \geq 1$. Moreover, such a subset can be found in polynomial time.

Proof. Let us enumerate the points from C that lie on L as x_1, x_2, \ldots, x_t in the order in which they appear on L. Our proposed set is defined as:

 $A := \{ \text{segment collinear with } L \text{ that covers } x_i \text{ and does not cover } x_{i-1} : i \in \{1, \dots, k\} \},$

where for i = 1 we just take a segment that covers x_1 . If such a segment does not exist for any point x as above, then x does not give rise to any segment in A.

We prove the lemma by contradiction. Let us assume that there exists a solution \mathcal{R} of size at most k such that $\mathcal{R} \cap A = \emptyset$.

Let \mathcal{R}_L be the set of segments from \mathcal{R} that are collinear with L.

Every segment that is not collinear with L can cover at most one of the points that lie on this line. Hence, if \mathcal{R}_L was empty, then \mathcal{R} would cover at most k points on line L, but L had at least k+1 different points from \mathcal{C} on it.

Therefore, we know that \mathcal{R}_L is not empty and $|\mathcal{R} - \mathcal{R}_L| \leq k - 1$. Segments from $\mathcal{R} - \mathcal{R}_L$ can cover at most k - 1 points among $\{x_1, x_2, \ldots, x_k\}$, therefore at least one of these points must be covered by segments from \mathcal{R}_L . We take the leftmost point from $\{x_1, x_2, \ldots, x_k\}$ that is covered in \mathcal{R}_L and name it a. After the transformation from Lemma 4.1, in \mathcal{R} there is only one segment that starts in a and is collinear with L, therefore this segment must be in both \mathcal{R} and A. This contradiction concludes the proof that $|A \cap \mathcal{R}| \geq 1$ for any solution \mathcal{R} of size at most k.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We will prove this theorem by presenting a branching algorithm that works in desired complexity. It first branches over the choice of segments to cover the lines with many points and then solves a small instance (where every line has at most k points) by checking all possible solutions.

Algorithm. We present a recursive algorithm. Given an instance of the problem:

- (1) Use Lemma 4.1 to remove some redundant segments from our instance.
- (2) If there exists a line with at least k+1 points from \mathcal{C} , we branch over the choice of adding to the solution one of the at most k possible segments provided by Lemma 4.2; name this segment s and name the set of points from \mathcal{C} that lie on s as S. By recursion, we find a solution \mathcal{R} for the instance $(\mathcal{C} S, \mathcal{P} \{s\})$, and parameter k-1. We return $\mathcal{R} \cup \{s\}$. Note that if Lemma 4.2 returned \emptyset , then we respond NO.
- (3) If every line has at most k points on it and $|\mathcal{C}| > k^2$, then answer NO.
- (4) If $|\mathcal{C}| \leq k^2$, solve the problem by brute force: check all subsets of \mathcal{P} of size at most k.

Correctness. Lemma 4.2 proves that at least one segment that we branch over in (1) must be present in every solution \mathcal{R} with $|\mathcal{R}| \leq k$. Therefore, the recursive call can find a solution, provided there exists one.

In (2) the answer is no, because every line covers no more than k points from \mathcal{C} , which implies the same about every segment from \mathcal{P} . Under this assumption we can cover only k^2 points with a solution of size k, which is less than $|\mathcal{C}|$.

Checking all possible solutions in (3) is trivially correct.

Complexity. In the leaves of the recursion we have $|\mathcal{C}| \leq k^2$, so $|\mathcal{P}| \leq k^4$, because every segment can be uniquely identified by the two extreme points it covers (by Lemma 4.1). Therefore, there are $\binom{k^4}{k}$ possible solutions to check, each can be checked in time $\mathcal{O}(k|\mathcal{C}|)$. Thus, (3) takes time $k^{\mathcal{O}(k)}$.

In this branching algorithm our parameter k is decreased with every recursive call, so we have at most k levels of recursion with branching over k possibilities. Candidates to branch over can be found on each level in time $\mathcal{O}((|\mathcal{C}| \cdot |\mathcal{P}|)^{\mathcal{O}(1)})$.

Reduction from Lemma 4.1 can be implemented in time $\mathcal{O}((|\mathcal{C}| \cdot |\mathcal{P}|)^{\mathcal{O}(1)})$.

It follows that the overall complexity is $\mathcal{O}(((|\mathcal{C}| \cdot |\mathcal{P}|)^{\mathcal{O}(1)}) \cdot k^{\mathcal{O}(k)})$

4.2. Fixed-parameter tractable algorithm for weighted segments with δ -extension

In this section we consider the geometric set cover problem for weighted segments relaxed with δ -extension. We show that this problem admits an FPT algorithm when parameterized by the size of the solution and δ . In the next chapter we show that the assumption about the problem being relaxed with δ -extension is necessary: we prove that geometric set cover problem for weighted segments (without extension) is W[1]-hard, which means there does not exist any FPT algorithm parameterized by solution size for it, assuming FPT \neq W[1].

Theorem 1.3. (FPT for WEIGHTED SEGMENT SET COVER with δ -extension). There exists an algorithm that given a family \mathcal{P} of n weighted segments (in any direction), a set of m points \mathcal{C} , and parameters k and $\delta > 0$, runs in time $f(k, \delta) \cdot (nm)^c$ for some computable function f and a constant c and outputs a set \mathcal{R} such that:

- $\mathcal{R} \subseteq \mathcal{P}$,
- \bullet $|\mathcal{R}| \leq k$,

700

701

703

704

705

706

707

715

716

- $\mathcal{R}^{+\delta}$ covers all points in \mathcal{C} ,
 - the weight of R is not greater than the weight of an optimum solution of size at most k for this problem without δ -extension,

or determines that there is no set \mathcal{R} with $|\mathcal{R}| \leq k$ such that \mathcal{R} covers all points in \mathcal{C} .

To solve this problem we will introduce a lemma about choosing a *dense* subset of points. A dense subset of points for a set of collinear points C and parameters k and δ is a subset of C such that if we cover it with at most k segments, these segments after δ -extension will cover all of the points from C. We will prove that such set of size bounded by some function $f(k,\delta)$ always exists (Lemma 4.3). Later, Lemma 4.3 will allow us to find a kernel for our original problem.

Definition 4.2. For a set of collinear points C, a subset $A \subseteq C$ is (k, δ) -dense if for any set of segments R that covers A and such that $|R| \le k$, it holds that $R^{+\delta}$ covers C.

Lemma 4.3. For any set of collinear points C, $\delta > 0$ and $k \ge 1$, there exists a (k, δ) -dense set $A \subseteq C$ of size at most $(2 + \frac{2}{\delta})^k$. Moreover, there exists an algorithm that computes the (k, δ) -dense set in time $\mathcal{O}(|C| \cdot (2 + \frac{2}{\delta})^k)$.

⁷¹⁴ *Proof.* We prove this for a fixed δ by induction on k.

Inductive hypothesis. For any set of collinear points C, there exists a set A such that:

- A is subset of C,
- A is (ℓ, δ) -dense for every $1 \le \ell \le k$,
- $|A| \le (2 + \frac{2}{5})^k$,
- the extreme points of C are in A.

Base case for k = 1. It is sufficient that A consists of the extreme points of C.

If they are covered with one segment, it must be a segment that includes the extreme points from C, so it covers the whole set C.

There are at most 2 extreme points in C and $2 < 2 + \frac{2}{\delta}$.

720

721

722

723

724

725

726

727

729

730

731

732

733

734

735

736

737

Inductive step. Assuming inductive hypothesis for any set of collinear points C and for parameter k, we will prove it for k+1.

Let s be the minimal segment that includes all points from C. That is, the extreme points of C are endpoints of s.

We define $M = \lceil 1 + \frac{2}{\delta} \rceil$ subsegments of s by splitting s into M closed segments of equal length. We name these segments v_i , note that $|v_i| = \frac{|s|}{M}$ for each $1 \le i \le M$.

Let C_i be the subset of C consisting of points lying on v_i .

Let t_i be the segment with endpoints being the extreme points of C_i . It might be a degenerate segment if C_i consists of one point, or t_i might be empty if C_i is empty.

Figure 4.1 presents an example of such segments v_i and t_i .

Figure 4.1: Example of segments v_i and t_i .

Example for M = 7 and some set of points (marked with black circles). The top panel shows segments v_i and the bottom panel shows segments t_i on the same set of points. a and b are the extreme points and therefore segment s ends at a and b. Red segments depict the split into M segments of equal length v_i . Blue segments depict the segments t_i . t_5 is an empty segment, because there are no points that lie on segment v_5 . Segments v_5 and v_7 are degenerated to one point v_7 and v_8 expectively. Segments v_8 have one point v_8 .

We use the inductive hypothesis to choose (k, δ) -dense sets A_i for sets C_i . Note that if $|C_i| \leq 1$, then $A_i = C_i$ and it is still a (k, δ) -dense set for C_i .

Then we define $A = \bigcup_{i=1}^{M} A_i$. Thus A includes the extreme points of C, because they are included in the sets A_1 and A_M .

The size of each A_i is at most $(2 + \frac{2}{\delta})^k$ from the inductive hypothesis, therefore size of A is at most:

$$M\left(2+\frac{2}{\delta}\right)^k = \left\lceil 1+\frac{2}{\delta}\right\rceil \cdot \left(2+\frac{2}{\delta}\right)^k \leq \left(2+\frac{2}{\delta}\right)^{k+1}.$$

Proof that A is $(k+1, \delta)$ -dense for C. Let us take any cover of A with k+1 segments and call it \mathcal{R} .

For every segment t_i , if there exists a segment x in \mathcal{R} that is disjoint with t_i , then we have a cover of A_i with at most k segments using $\mathcal{R} - \{x\}$. Since A_i is (k, δ) -dense for t_i and C_i , $(\mathcal{R} - \{x\})^{+\delta}$ covers C_i . So $\mathcal{R}^{+\delta}$ covers C_i as well.

If there exists a segment t_i for which a segment x as defined above does not exist, then all k+1 segments that cover A_i intersect t_i . An example of such segments is depicted in Figure 4.2. Let us consider any such t_i . By the inductive hypothesis, the endpoints of s are in A_1 and A_M respectively, so \mathcal{R} must cover them. For each endpoint of s, there exists a segment that contains this endpoint and intersects t_i . Let us call these two segments y and z. It follows that: $|y| + |z| + |t_i| \ge |s|$. Since $|t_i| \le |v_i| = \frac{|s|}{M} \le \frac{|s|}{1+\frac{2}{\delta}} = \frac{|s|\delta}{\delta+2}$, we have

 $\max(|y|, |z|) \ge |s|(1 - \frac{\delta}{\delta + 2})/2 = \frac{|s|}{\delta + 2}$

740

741

750

753

755

757

Figure 4.2: Example of all k+1 segments intersecting one segment t_i . Both panels show the same set \mathcal{C} (black circles), the same as in Figure 4.1. The top panel shows blue segments t_i for M=7. The bottom panel shows green segments – solution \mathcal{R} of size 4. All segments from \mathcal{R} intersect t_4 . Segments z and y are named in the figure.

After δ -extension, the longer of these segments will expand at both ends by at least:

$$\max(|y|, |z|)\delta \ge \frac{|s|\delta}{\delta + 2} = \frac{|s|}{1 + \frac{2}{\delta}} \ge \frac{|s|}{M} = |v_i| \ge |t_i|.$$

Therefore, the longer of segments y and z will cover the whole segment t_i after δ -extension. We conclude that $\mathcal{R}^{+\delta}$ covers C_i . Since $C = \bigcup_{i=1}^{M} C_i$, it follows that $\mathcal{R}^{+\delta}$ covers C.

Algorithm. We can simulate the inductive proof presented above by a recursive algorithm with the following complexity:

$$O\left(|C| + \frac{1}{\delta}\right) + O\left(|C| \cdot \left(2 + \frac{2}{\delta}\right)^k\right).$$

Let us now formulate some claims about the properties for the problem parameterized by the solution size. These properties provide bounds for different objects in the problem instance, which help us to find a small kernel for the problem or conclude that the optimum solution to this instance must be, in terms of size, above some threshold.

Definition 4.3. A line in the plane is **long** if there are at least k+1 points from \mathcal{C} on it. 758

Claim 4.1. If there are more than k different long lines, then C can not be covered with k segments.

Proof. We prove the claim by contradiction. Let us assume that we have at least k+1 different long lines in our instance of the problem and there is a solution \mathcal{R} of size at most k covering points \mathcal{C} .

Choose any long line L. Every segment from \mathcal{R} which is not collinear with L, covers at most one point that lies on L. L is long, so there are at least k+1 points from \mathcal{C} that lie on L. This implies that there must be a segment in \mathcal{R} that is collinear with L.

Since we have at least k+1 different long lines, there are at least k+1 segments in \mathcal{R} collinear with different lines. This contradicts with the assumption that $|\mathcal{R}| \leq k$.

Claim 4.2. If there are more than k^2 points from C that do not lie on any long line, then C can not be covered with k segments.

Proof. We prove the claim by contradiction. Let us assume that we have at least $k^2 + 1$ points from \mathcal{C} that do not lie on any long line, call this set A, and a solution \mathcal{R} of size at most k covering all points in \mathcal{C} .

Every segment s from \mathcal{R} covers at most k points from A. This is because if s covered at least k+1 points from A, then the line in the direction of s would be a long line and that contradicts the definition of A.

If every segment from \mathcal{R} covers at most k points from A and $|\mathcal{R}| \leq k$, then at most k^2 points from A are covered by \mathcal{R} and that contradicts the fact that \mathcal{R} is a solution to the given geometric set cover instance.

We are now ready to give a proof of Theorem 1.3.

767

768

777

780

783

784

786

790

797

798

799

Proof of Theorem 1.3. Our goal is to either answer NO or to find a kernel (C', P') of size bounded by f(k) for some function f, such that:

- (Property 1) for every solution \mathcal{R} to $(\mathcal{C}, \mathcal{P})$ of size at most k, there exists a set $\mathcal{R}_1 \subseteq \mathcal{P}'$ such that $|\mathcal{R}_1| \leq k$, the weight of \mathcal{R}_1 is not greater than the weight of \mathcal{R} , and \mathcal{R}_1 covers \mathcal{C}' ;
 - (Property 2) for every set $\mathcal{R}_2 \subseteq \mathcal{P}'$ such that $|\mathcal{R}_2| \leq k$ and \mathcal{R}_2 covers all points in \mathcal{C}' , $\mathcal{R}_2^{+\delta}$ covers all points in the original set \mathcal{C} .

If we found such sets (C', \mathcal{P}') , using Property 1 we know that an optimum solution of size at most k to (C', \mathcal{P}') has no greater weight than an optimum solution of size at most k to (C, \mathcal{P}) . Using Property 2 we know that any solution to (C', \mathcal{P}') after δ -extension covers C.

Therefore, finding such sets and solving the instance (C', P') by iterating over all of the subsets of P' of size at most k in desired complexity is sufficient to prove Theorem 1.3.

Definition of C' and P'. Let us name the number of different long lines as l. Applying Claims 4.1 and 4.2, if we have more than k different long lines or more than k^2 points from C that do not lie on any long line, then we answer NO, because these lemmas prove that there is no solution of size at most k to this instance.

Otherwise, we can split C into at most k+1 sets:

- D: points that do not lie on any long line, $|D| \le k^2$;
- C_i for $1 \le i \le l$: points that lie on the *i*-th long line, $|C_i| > k$.

Note that sets C_i do not need to be disjoint.

Then, for every set C_i we can use Lemma 4.3 to obtain a (k, δ) -dense set A_i for C_i with $|A_i| \leq (2 + \frac{2}{\delta})^k$.

We define $\mathcal{C}' := D \cup (\bigcup A_i)$. \mathcal{C}' has size at most $k^2 + k(2 + \frac{2}{\delta})^k$. We define \mathcal{P}' as follows: for every pair of points \mathcal{C}' , we choose one segment from \mathcal{P} that has the lowest weight among segments that cover these points or decide that there is no segment that covers them.

There are at most $|\mathcal{C}'|^2$ different segments in \mathcal{P}' , therefore both \mathcal{P}' and \mathcal{C}' have size bounded by $\mathcal{O}\left((k^2 + k(2 + \frac{2}{\delta}))^2\right)$.

Proof of Property 2. Firstly, we prove that for every set $\mathcal{R}_2 \subseteq \mathcal{P}'$ such that $|\mathcal{R}_2| \leq k$ and \mathcal{R}_2 covers points in \mathcal{C}' , $\mathcal{R}_2^{+\delta}$ covers points in the original instance \mathcal{C} .

Let us take such a set \mathcal{R}_2 .

810

818

819

821

822

823

824

825 826

 \mathcal{C} is partitioned into several parts – sets D and C_i . Points from D are covered by \mathcal{R}_2 , because D is part of \mathcal{C}' . Each point from any A_i is covered, because A_i is a part of \mathcal{C}' ; A_i is a (k, δ) -dense set for C_i , therefore $\mathcal{R}_2^{+\delta}$ covers all points in C_i . Therefore, $\mathcal{R}_2^{+\delta}$ covers all points in \mathcal{C} .

Proof of Property 1. Secondly, we prove that for every solution \mathcal{R} to $(\mathcal{C}, \mathcal{P})$ of size at most k, there exists a set $\mathcal{R}_1 \subseteq \mathcal{P}'$ such that $|\mathcal{R}_1| \leq k$, the weight of \mathcal{R}_1 is not greater than the weight of \mathcal{R} and \mathcal{R}_1 covers \mathcal{C}' .

For every segment in \mathcal{R} , say s, let us look at the points from \mathcal{C}' that lie on s and call this set of points F. F is of course a set of collinear points. We can cover F with any segment that covers extreme points of F, because all other points lie on the segment between these points. Therefore, we can replace s with a segment s' that has lowest weight among the points that cover the extreme points of F. Such a segment belongs to \mathcal{P}' , because this is how it was defined. Segment s' has weight no greater than the weight of s, because s also covers s.

Therefore, we produced the set \mathcal{R}_1 that has size not greater than the size of \mathcal{R} (because some segments s can map to the same segment s'), weight not greater than \mathcal{R} , and it covers \mathcal{C}' .

Complexity We find a solution of $(\mathcal{C}', \mathcal{P}')$ by iterating over all the possible subsets of \mathcal{P}' . Finding sets \mathcal{P}' and \mathcal{C}' and then solving problem for kernel has overall complexity $(|\mathcal{P}| + |\mathcal{C}|)^{\mathcal{O}(1)}\mathcal{O}((2 + \frac{2}{\delta})^k) + \mathcal{O}((k^2 + k(2 + \frac{2}{\delta})^k)^k)$.

$_{ ext{\tiny 330}}$ Chapter 5

W[1]-hardness for axis-parallel weighted segments

In this chapter we consider the geometric set cover problem with axis-parallel or right-diagonal weighted segments. In Theorem 1.4 below, we prove that this problem is W[1]-hard when parameterized by the size of the solution.

We believe that the below construction can be improved to only utilize the axis-parallel segments.

Theorem 1.4. Consider the problem of covering a set \mathcal{C} of points by selecting at most k segments from a set of segments \mathcal{P} with non-negative weights $w: \mathcal{P} \to \mathbb{R}^+$ so that the weight of the cover is minimal. Then this problem is W[1]-hard when parameterized by k and assuming ETH, there is no algorithm for this problem with running time $f(k) \cdot (|\mathcal{C}| + |\mathcal{P}|)^{o(\sqrt{k})}$ for any computable function f. Moreover, this holds even if all segments in \mathcal{P} are axis-parallel or right-diagonal.

$_4$ 5.1. Grid Tiling

857

858

859

In order to prove Theorem 1.4 we will show a reduction from a W[1]-hard problem: grid tiling.
This problem was introduced in [Marx, 2007] (the author called it matrix tiling instead). It
was originally described as an approximation problem, but W[1]-hardness follows directly
from the theorems stated there. For a more contemporary description of this problem and a
proof of W[1]-hardness, see Chapter 14 of [Cygan et al., 2015].

Definition 5.1. We define the **powerset** of a set A, denoted as Pow(A), as the set of all subsets of A, i.e. $Pow(A) = \{B : B \subseteq A\}$.

Definition 5.2. In the grid tiling problem we are given integers n and k, and a function $f:\{1,\ldots,k\}\times\{1,\ldots,k\}\to \mathsf{Pow}(\{1,\ldots,n\}\times\{1,\ldots,n\})$ specifying the set of allowed tiles for each cell of a $k\times k$ grid. The task is to decide whether there exist functions $x,y:\{1,\ldots,k\}\to \{1,\ldots,n\}$ that assign colors from $\{1,\ldots,n\}$ to respectively columns and rows of the grid, so that $(x(i),y(j))\in f(i,j)$ for all $i,j\in\{1,\ldots,k\}$.

In short, in the grid tiling problem one needs to assign numbers to rows and columns in such a way that for every pair of a row and a column, the pair of colors assigned to the row and column belongs to the allowed set of tiles for this pair. The next theorem describes the complexity of this problem, which is W[1]-hard when parameterized by the size of the grid.

	x(1) = 3	x(2) = 1	x(3) = 3	x(4) = 7
y(4) = 1	(2,1); (2,2); (3,1); (3,9)	(1,1);(3,1)	(3,1) ; (7,2)	(2,1); (7,1)
y(3) = 1	(2,1); (3,1); (4,2); (8,2)	(1,1);(1,3)	(3,1) ; (4,3)	(2,2); (7,1)
y(2) = 6	(2,6);(3,6)	(1,2); (1,6); (2,6)	(2,6); (3,6)	(2,6); (7,6)
y(1) = 4	(2,4); (2,6); (3,4); (3,9)	(1,4);(1,9)	(3,4); (3,9)	(2,9); (7,4)

Figure 5.1: Example of a grid tiling instance and its solution.

In the first row and column of the table you can see the solution: functions x and y. The tiles used in this solution are marked in **bold**. If we instead chose the tiles marked in **blue** (whenever there is one, taking the tile marked in **bold** otherwise), then that corresponds to setting x(1) = 2, and would also form a correct solution. On the other hand, if we instead chose the tiles marked in red (as before), then this corresponds to setting y(1) = 9 and x(4) = 2 and that would **not** form a correct solution. Even though the first row is correct, the cell with coordinates (3,4) requires tile (2,1), not (2,2) (marked in **bold red**).

Theorem 5.1. [Marx, 2007] Grid tiling is W[1]-hard when parameterized by k and assuming ETH, there is no $f(k) \cdot n^{o(k)}$ -time algorithm solving the grid tiling problem for any computable function f.

The remainder of this section is devoted to proving Theorem 1.4 by a reduction from a grid tiling problem instance with parameter k (number of rows in the grid) to a geometric set cover instance with parameter k^2 (size of solution). This reduction is described in Lemma 5.1. This proves the W[1]-hardness of the geometric set cover problem, because if we could solve it with an FPT algorithm, then we could also solve the grid tiling problem (which we reduced to the geometric set cover). Therefore, geometric set cover with setting described in Theorem 1.4 is at least as hard as the grid tiling problem.

5.2. Statement of reduction

Let us denote an instance of grid tiling problem as (n, k, f) consisting of:

• the number of colors n,

861

862

863

864

865

866

867

868

869

870

873

874

875

876

877

- the size of the grid k,
 - the function specifying the allowed tiles $f: \{1, \ldots, k\} \times \{1, \ldots, k\} \to \mathsf{Pow}(\{1, \ldots, n\} \times \{1, \ldots, n\}).$
- Let us also define constants:

$$\begin{array}{rcl} \epsilon & := & \frac{1}{2k^2} \\ \delta & := & \frac{1}{4k^4} \\ W_{\mathsf{hv}} & := & 2k^2(n^2+1) - 4k^2\epsilon - 4k(1-\epsilon) \end{array}$$

which are going to be used when defining the weight of the constructed instance of geometric set cover with weighted segments.

```
Lemma 5.1. Given an instance (n, k, f) of the grid tiling problem, we can construct an instance (C, P, w, 3k^2 + 2k) of geometric set cover with weighted segments such that:
```

- (1) if the answer to (n, k, f) is YES, then there exists a solution to $(\mathcal{C}, \mathcal{P}, w, 3k^2 + 2k)$ of weight at most $W_{\mathsf{hv}} + k^2 \delta$;
- 884 (2) if there exists a solution to $(C, P, w, 3k^2 + 2k)$ of weight at most $W_{hv} + k^2 \delta$, then the answer to (n, k, f) is YES.
- First, let us prove Theorem 1.4 using Lemma 5.1.

892

893

894

895

897

898

899

900

901

902

903

904

905

906

908

Proof of Theorem 1.4. Let us take any instance (n,l,f) of the grid tiling problem. We prove the theorem by contradiction, therefore we assume that geometric set cover with weighted segments parameterized by solution size k admits a $g(k) \cdot n^{o(\sqrt{k})}$ -time algorithm for some computable function g.

Using Lemma 5.1 let us construct an instance I for (n,l,f). Let us assume that the optimum solution of size at most k to the instance I has weight u. Using (2) we know that if $u \leq W_{\mathsf{hv}} + k^2 \delta$, then the answer to (n,l,f) is YES. If $u > W_{\mathsf{hv}} + k^2 \delta$, then using (1) we know that the answer to (n,l,f) must be NO.

Therefore if we could find the solution in time $g(k) \cdot n^{o(\sqrt{k})}$, then we could solve the grid tiling problem in time $g(l) \cdot n^{o(l)}$ by constructing an instance of the set cover with weighted segments, solving it for parameter $k = 3l^2 + 2l$ in time $n^{o(\sqrt{3l^2+2l})}$ and then answering based on the weight of the optimum solution. As $\mathcal{O}(n^{o(l)}) \subseteq \mathcal{O}(n^{o(\sqrt{3l^2+2l})})$, the existence of this algorithm contradicts Theorem 5.1. Hence such an algorithm can not exist.

We prove Lemma 5.1 in subsequent sections. First, we define a constructed instance I, later property (1) is proved by Lemma 5.2 and property (2) is proved by Lemma 5.6.

In the proof of Lemma 5.6 we do not use the assumption that the solution is bounded by the size, which the problem is parameterized by, $3k^2 + 2k$. If we had a permissive FPT algorithm that finds a solution of any size that still has weight no more than $W_{hv} + k^2 \delta$, then we still would have a contradiction with grid tiling being W[1]-hard in proof of Theorem 1.4. Thus, this reduction proves that the problem is not only W[1]-hard, but assuming ETH there also does not exist permissive FPT algorithm for this problem. Formally we state this in the Theorem 5.2.

Theorem 5.2. (Permissive FPT does not exist). Consider the problem of covering a set C of points using segments from a set P with non-negative weights $w: P \to \mathbb{R}^+$ so that the weight of the cover is minimal. Let R^k be the optimum solution to this problem of size at most k. The task is to find a solution R of any size such that weight of R is not greater than the weight of R^k .

Assuming ETH, there is no algorithm for this problem with running time $f(k) \cdot (|\mathcal{C}| + |\mathcal{P}|)^{o(\sqrt{k})}$ for any computable function f. Moreover, this holds even if all segments in \mathcal{P} are axis-parallel or right-diagonal.

5.3. Construction of the Geometric Set Cover instance

We construct an instance $(\mathcal{C}, \mathcal{P}, w, 3k^2 + 2k)$ of geometric set cover as follows. First, let us choose any bijection order: $\{1, \dots, n^2\} \to \{1, \dots, n\} \times \{1, \dots, n\}$. Define $\mathsf{match}_v(i,j)$ and $\mathsf{match}_h(i,j)$ as boolean functions denoting whether two points share x or y coordinate:

 $\mathsf{match}_v(i,j)$ is $\mathsf{true} \iff \mathsf{order}(i)$ and $\mathsf{order}(j)$ have the same x coordinate, $\mathsf{match}_h(i,j)$ is $\mathsf{true} \iff \mathsf{order}(i)$ and $\mathsf{order}(j)$ have the same y coordinate.

920 5.3.1. Points

For $1 \le i, j \le k$ and $1 \le t \le n^2$ define points:

$$h_{i,j,t} := (i \cdot (n^2 + 1) + t, j \cdot (n^2 + 1)),$$

$$v_{i,j,t} := (i \cdot (n^2 + 1), j \cdot (n^2 + 1) + t).$$

Let us define sets H and V as:

$$H := \{ h_{i,j,t} : 1 \le i, j, \le k, 1 \le t \le n^2 \},$$

$$V := \{ v_{i,j,t} : 1 \le i, j, \le k, 1 \le t \le n^2 \}.$$

Let us recall that $\epsilon = \frac{1}{2k^2}$. For a point p = (x, y) we define points:

$$p^{L} := (x - \epsilon, y),$$

$$p^{R} := (x + \epsilon, y),$$

$$p^{U} := (x, y + \epsilon),$$

$$p^{D} := (x, y - \epsilon).$$

Then we define the point set as follows:

$$\mathcal{C} := H \cup \{p^L : p \in H\} \cup \{p^R : p \in H\} \cup V \cup \{p^U : p \in V\} \cup \{p^D : p \in V\}.$$

Definition 5.3. For every point $p \in H$, we name point p^L its **left guard** and point p^R its **right guard**.

Similarly for every points $p \in V$, we name point p^D its **lower guard** and point p^U its **upper guard**.

925 **5.3.2.** Segments

For $1 \le i, j \le k$ and $1 \le t, t_1, t_2 \le n^2$ define segments:

$$\begin{split} & \mathsf{hor}_{i,j,t_1,t_2} & := & (h^R_{i,j,t_1}, h^L_{i+1,j,t_2}), \\ & \mathsf{ver}_{i,j,t_1,t_2} & := & (v^U_{i,j,t_1}, v^D_{i,j+1,t_2}), \\ & \mathsf{horBeg}_{i,t} & := & (h^L_{1,i,1}, h^L_{1,i,t}), \\ & \mathsf{horEnd}_{i,t} & := & (h^R_{k,i,t}, h^R_{k,i,n^2}), \\ & \mathsf{verBeg}_{i,t} & := & (v^U_{i,1,1}, v^D_{i,1,t}), \\ & \mathsf{verEnd}_{i,t} & := & (v^U_{i,k,t}, v^U_{i,k,n^2}). \end{split}$$

Next, we define sets of vertical and horizontal segments:

$$\begin{split} \mathsf{HOR} & := & \{ \mathsf{hor}_{i,j,t_1,t_2} : 1 \leq i < k, 1 \leq j \leq k, 1 \leq t_1, t_2 \leq n^2, \mathsf{match}_h(t_1,t_2) \ \mathsf{holds} \} \\ & \cup & \{ \mathsf{horBeg}_{i,t} : 1 \leq i \leq k, 1 \leq t \leq n^2 \} \\ & \cup & \{ \mathsf{horEnd}_{i,t} : 1 \leq i \leq k, 1 \leq t \leq n^2 \}, \end{split}$$

928

934

927

$$\begin{split} \mathsf{VER} &:= & \{ \mathsf{ver}_{i,j,t_1,t_2} : 1 \leq i \leq k, 1 \leq j < k, 1 \leq t_1, t_2 \leq n^2, \mathsf{match}_v(t_1,t_2) \ \mathsf{holds} \} \\ & \cup & \{ \mathsf{verBeg}_{i,t} : 1 \leq i \leq k, 1 \leq t \leq n^2 \} \\ & \cup & \{ \mathsf{verEnd}_{i,t} : 1 \leq i \leq k, 1 \leq t \leq n^2 \}. \end{split}$$

An example is depicted in Figure 5.3.

Finally, we also define a set of right-diagonal segments:

DIAG :=
$$\{(h_{i,j,t}, v_{i,j,t}) : 1 \le i, j \le k, 1 \le t \le n^2, \text{ order}(t) \in f(i,j)\}.$$

930 An example of such segments is depicted in Figure 5.2.

Every segment in DIAG connects points $(i(n^2+1)+t, j\cdot(n^2+1))$ and $(i\cdot(n^2+1), j(n^2+1)+t)$ for some $1 \le i, j \le k, 1 \le t \le n^2$. The line on which it lies can be described by linear equation $x + y = t + (i+j)(n^2+1)$, thus these segments are in fact right-diagonal.

The constructed segment set is defined as:

$$\mathcal{P} := \mathsf{HOR} \cup \mathsf{VER} \cup \mathsf{DIAG}.$$

The weight of each segment in HOR \cup VER is equal to its length, while every segment in DIAG has weight δ .

$$w(s) = \begin{cases} length(s) & \text{if } s \in \mathsf{HOR} \cup \mathsf{VER} \\ \delta & \text{if } s \in \mathsf{DIAG} \end{cases}$$

5.4. Proof that reduction is correct

Now, we prove that the constructed instance of geometric set cover with weighted segments indeed gives a correct and sound reduction of the grid tiling problem. Lemma 5.2 proves that if a solution to the instance of the grid tiling instance exists, then there exists a solution with suitably bounded size and weight of the constructed instance of geometric set cover. Then Lemma 5.6 proves that if there is a solution to the geometric set cover instance with bounded weight, then there exists a solution to the original grid tiling instance.

Lemma 5.2. If there exists a solution to the grid tiling instance $(f_{i,j})$, then there exists a solution to the instance $(C, \mathcal{P}, w, 3k^2 + 2k)$ of geometric set cover with weight $W_{hy} + k^2\delta$.

Proof. Suppose there exists a solution x, y of the instance $(f_{i,j})$ of the grid tiling problem.

We define the proposed solution $\mathcal{R} \subseteq \mathcal{P}$ of the instance of geometric set cover in three

Figure 5.2: Vertices and segments in DIAG.

This is an example of constructed points any $1 \le i, j \le k$. Points from H and V are marked in black, their guards are marked in blue. You can also see segments from DIAG with their weights (equal to δ).

Figure 5.3: Vertices and segments in HOR.

This is an example for n=2 and any $1 \leq j \leq k$. Points from H are marked in black, their guards are marked in light blue. $t_{i,j}$ is a notation that we use for order⁻¹(i,j). Segments are represented as arcs between endpoints. You can see hor $\mathsf{Beg}_{i,t}$ segments in red. hor $\mathsf{Beg}_{i,1}$ is degenerated to a single point at $h_{1,1,t_{1,1}}^L$. Segments $\mathsf{hor}_{i,j,t_{x_1,y},t_{x_2,y}}$ are marked in blue and green. Blue segments connect $t_{x_1,y}$ and $t_{x_2,y}$ such that they share y-coordinate equal to 1, for green segments it is equal to 2.

parts: $D \subseteq \mathsf{DIAG}, A \subseteq \mathsf{HOR} \text{ and } B \subseteq \mathsf{VER}$:

950

952

953

954

955

956

957

958

```
D := \{(v_{i,i,t}, h_{i,i,t}) : 1 \le i, j \le k, t = \mathsf{order}^{-1}(x(i), y(j))\},\
A := \{\mathsf{horBeg}_{i.\mathsf{order}^{-1}(x(1),y(i))} : 1 \leq i \leq k\}
        \quad \cup \quad \{\mathsf{horEnd}_{i,\mathsf{order}^{-1}(x(k),y(i))} : 1 \leq i \leq k\}
        \cup \quad \{\mathsf{hor}_{i,j,\mathsf{order}^{-1}(x(i),y(j)),\mathsf{order}^{-1}(x(i+1),y(j))} : 1 \le i < k, 1 \le j \le k\},
B \ := \ \{\mathsf{verBeg}_{i,\mathsf{order}^{-1}(x(i),y(1))} : 1 \leq i \leq k\}
        \cup \quad \{\mathsf{verEnd}_{i,\mathsf{order}^{-1}(x(i),y(k))} : 1 \le i \le k\}
        \cup \quad \{ \mathsf{ver}_{i,j,\mathsf{order}^{-1}(x(i),y(j)),\mathsf{order}^{-1}(x(i),y(j+1))} : 1 \leq i \leq k, 1 \leq j < k \},
```

 $\mathcal{R} := D \cup A \cup B$.

Since $\mathcal{C} = H \cup V$, we show that \mathcal{R} covers the whole set H; the proof for V is analogous. Fix any $1 \leq j \leq k$ and define $t_i := \operatorname{order}^{-1}(x(i), y(j))$. The two leftmost segments in A for this j are $\mathsf{horBeg}_{j,t_1} = (h^L_{1,j,1}, h^L_{1,j,t_1})$ and $\mathsf{hor}_{1,j,t_1,t_2} = (h^R_{1,j,t_1}, h^L_{2,j,t_2})$. Therefore, points $h_{1,j,x}, h^L_{1,j,x}$ and $h^R_{1,j,x}$ for all $1 \le x \le n^2$ ale covered by horBeg_{j,t_1} and $\mathsf{hor}_{1,j,t_1,t_2}$, excluding point h_{1,i,t_1} .

Analogously for $2 \le i \le k-1$, the two consecutive segments $\mathsf{hor}_{i-1,j,t_{i-1},t_i}$ and $\mathsf{hor}_{i,j,t_i,t_{i+1}}$ cover points $h_{i,j,x}$, $h_{i,j,x}^L$ and $h_{i,j,x}^R$ for all $1 \le x \le n^2$, excluding point h_{i,j,t_i} .

Finally $\mathsf{hor}_{k-1,j,t_{k-1},t_k}$ and horEnd_{j,t_k} cover all points $h_{k,j,x}, h_{k,j,x}^L$ and $h_{k,j,x}^R$ for $1 \le x \le n^2$, excluding point h_{k,j,t_k} .

D covers all points h_{i,j,t_i} and v_{i,j,t_i} . As j was chosen arbitrarily, all points in H are covered. The size of this proposed solution is:

$$|\mathcal{R}| = |D| + |A| + |B| = k^2 + (k+1)k + (k+1)k = 3k^2 + 2k.$$

Then, we need to compute the total weight of the solution \mathcal{R} . First, we compute the sum 959 of weights of segments in A. Fix $1 \leq j \leq k$ and consider segments collinear with the j-th horizontal line. All points $h_{i,j,t}$, $h_{i,j,t}^L$ and $h_{i,j,t}^R$ for every $1 \le i \le k$ and $1 \le t \le n^2$ are covered by A excluding points $h_{i,j,\mathsf{order}^{-1}(x(i),y(j))}$. Every such point leaves a gap of length 2ϵ between 962 $h_{i,j,\mathsf{order}^{-1}(x(i),y(j))}^L$ and $h_{i,j,\mathsf{order}^{-1}(x(i),y(j))}^R$. Therefore, the total weight of segments in A that lie on the line in question equals the length of the segment $(h_{i,1,1}^L, h_{i,k,n^2}^R)$ minus $2\epsilon k$, which is 963

 $k(n^2+1)-2(1-\epsilon)-2k\epsilon$. We need to multiply that by k, as we consider all possible values of j.

Computation for vertical segments is analogous and yields the same result. Every segment in D has weight δ , therefore the sum of all weights is equal to:

$$2k(k(n^2+1)-2(1-\epsilon)-2k\epsilon)+k^2\delta=W_{hv}+k^2\delta.$$

Now we present a few additional properties of the constructed instance of the geometric set cover that help us to prove Lemma 5.6.

971 Claim 5.1. In any solution to the instance $(\mathcal{C}, \mathcal{P}, w, 3k^2 + 2k)$:

- the left and right guards of points in H (points in $\{p^L : p \in H\} \cup \{p^R : p \in H\}$) have to be covered with segments from HOR,
- the lower and upper guards of points in V (points in $\{p^D : p \in V\} \cup \{p^U : p \in V\}$) have to be covered with segments from VER.

Proof. We prove the claim for the points from H as the proof for points from V is analogous. Every segment in VER is vertical and has x-coordinate equal to $i(n^2+1)$ for some $1 \le i \le k$,
so they all have different x-coordinate than any left or right guard of points in H.

For every point x which is a left or right guard of a point in H, there are kn^2 segments from DIAG that intersect with the horizontal line that goes through x. All of these segments intersect with this line in points from set H, therefore none of them covers any of the guards.

Therefore none of the segments from VER or DIAG covers any of the guards of the points in H.

Claim 5.2. For any $1 \le i, j \le n$ and any solution to the instance $(\mathcal{C}, \mathcal{P}, w, 3k^2 + 2k)$, all but at most one point $h_{i,j,t}$ and at most one point $v_{i,j,t}$ for $1 \le t \le n^2$ must be covered with segments from HOR or VER.

Proof. We prove the claim for horizontal segments, as the proof for vertical segments is analogous.

We prove this by contradiction. Assume that we have two points $h_{i,j,t_1}, h_{i,j,t_2}, 1 \le t_1 < t_2 \le n^2$, such that they are not covered with segments from HOR.

Point h_{i,j,t_1}^R has to be covered with a segment from HOR by Claim 5.1. Every segment in HOR covering h_{i,j,t_1}^R , but not h_{i,j,t_1} must start at h_{i,j,t_1}^R and all such segments cover also h_{i,j,t_2} . This contradicts the assumption, which concludes the proof.

Lemma 5.3. For every solution \mathcal{R} to the instance $(\mathcal{C}, \mathcal{P}, w, 3k^2 + 2k)$, the sum of weights of segments chosen from sets HOR and VER is at least W_{hv} .

996 *Proof.* Let us fix $1 \le i \le k$.

979

980

997

998

999

We provide a lower bound for the sum of lengths of vertical segments from $\mathcal{R} \cap \mathsf{VER}$. This bound is the same for each i and is the same for horizontal lines, thus we need to multiply such a bound by 2k.

(1) The total length between $v_{i,1,1}^D$ and v_{i,k,n^2}^U is:

$$(k(n^2+1) + n^2 + \epsilon) - ((n^2+1) + 1 - \epsilon) = k(n^2+1) - 2(1-\epsilon).$$

1000 (2) For every $1 \le j \le k$ there exists at most one $1 \le t \le n^2$ such that $v_{i,j,t}$ is not covered 1001 by segments from VER (Claim 5.2). Its guards (see Definition 5.3) $v_{i,j,t}^U$ and $v_{i,j,t}^D$ have 1002 to be covered in VER (Claim 5.1). Therefore, at most k spaces of length 2ϵ can be left 1003 not covered by segments from VER between $v_{i,1,1}^D$ and $v_{i,k,n}^U$.

The sum of these lower bounds for vertical and horizontal lines is:

$$2k(k(n^2+1)-2k\epsilon-2(1-\epsilon))=2k^2(n^2+1)-4k^2\epsilon-4k(1-\epsilon)=W_{\text{hy}}.$$

Lemma 5.4. Let \mathcal{R} be a solution to a constructed instance $(\mathcal{C}, \mathcal{P}, w, 3k^2 + 2k)$ with weight at most $W_{\mathsf{hv}} + k^2 \delta$. Then for every $1 \leq i, j \leq k$ there exists $1 \leq t \leq n^2$ such that:

- 1006 (1) $v_{i,j,t}, h_{i,j,t}$ are not covered by segments from VER or HOR;
- 1007 (2) segment $(v_{i,j,t}, h_{i,j,t})$ is in solution \mathcal{R} ;

1016

1017

1018

1019

1020

1035

- 1008 (3) $\operatorname{order}(t) \in f(i,j)$, that is, $\operatorname{order}(t)$ is an allowed tile for (i,j);
- 1009 (4) for every $1 \le s \le n^2$, $s \ne t$, $v_{i,j,s}$ is covered in VER;
- 1010 (5) for every $1 \le s \le n^2$, $s \ne t$, $h_{i,i,s}$ is covered in HOR.

Proof. At most one of the points $\{h_{i,j,t_x}: 1 \leq t_x \leq n^2\}$ and one of the points $\{v_{i,j,t_y}: 1 \leq t_y \leq n^2\}$ is covered with DIAG (Claim 5.2).

Moreover, exactly one such point h_{i,j,t_x} and one such point v_{i,j,t_y} is covered with DIAG, because if none of them were covered, then the solution would have to have weight at least $W_{\text{hv}} + 2\epsilon$ (see the proof of Lemma 5.3), which is more than $W_{\text{hv}} + k^2\delta$.

We observe that points h_{i,j,t_x} and v_{i,j,t_y} have to be covered with the same segment from DIAG. Indeed we need to use at least k^2 of them to use exactly one DIAG segment for every pair of $1 \le i, j \le k$, if we used 2 segments from DIAG for one pair (i, j), then we would have used total weight at least $W_{\text{hv}} + k^2 \delta + \delta$ (Lemma 5.3), which if more than $W_{\text{hv}} + k^2 \delta$. Since points h_{i,j,t_x} and v_{i,j,t_y} are covered by a single segment from DIAG, we have $t_x = t_y$.

Therefore $t_x = t_y$ and $\operatorname{order}(t_x)$ is an allowed tile for (i,j) because the corresponding segment is in DIAG.

We refer to the function mapping $1 \le x \le k$ to t_x from Lemma 5.4 as diagonal: $\{1, \ldots, k\} \times \{1, \ldots, k\} \to \{1, \ldots, n^2\}$.

Lemma 5.5. Let \mathcal{R} be any solution of a constructed instance $(\mathcal{C}, \mathcal{P}, w, 3k^2 + 2k)$ with weight at most $W_{\mathsf{hv}} + k^2 \delta$. Then:

- 1027 1. for any $1 \le i < k, 1 \le j \le k$, match_h(diagonal(i, j), diagonal(i + 1, j)) is true;
- 1028 2. for any $1 \le i \le k, 1 \le j < k$, match_v(diagonal(i, j), diagonal(i, j + 1)) is true.

Proof. We prove (1) by contradiction, the proof of (2) is analogous.

Let us take any $1 \le i < k, 1 \le j \le k$ and name $t_1 = \mathsf{diagonal}(i,j)$ and $t_2 = \mathsf{diagonal}(i+1)$ Let us take any $1 \le i < k, 1 \le j \le k$ and name $t_1 = \mathsf{diagonal}(i,j)$ and $t_2 = \mathsf{diagonal}(i+1)$ Let us take any $1 \le i < k, 1 \le j \le k$ and name $t_1 = \mathsf{diagonal}(i,j)$ and $t_2 = \mathsf{diagonal}(i+1)$ Let us take any $1 \le i < k, 1 \le j \le k$ and name $t_1 = \mathsf{diagonal}(i,j)$ and $t_2 = \mathsf{diagonal}(i+1)$ Let us take any $1 \le i < k, 1 \le j \le k$ and name $t_1 = \mathsf{diagonal}(i,j)$ and $t_2 = \mathsf{diagonal}(i+1)$ and $t_2 = \mathsf{diagonal}(i+1)$ Let us take any $1 \le i < k, 1 \le j \le k$ and name $t_1 = \mathsf{diagonal}(i,j)$ and $t_2 = \mathsf{diagonal}(i+1)$ and $t_2 = \mathsf{diagonal}(i+1)$ and $t_3 = \mathsf{diagonal}(i+1)$ and $t_4 = \mathsf$

Therefore h_{i,j,t_1} and h_{i+1,j,t_2} are not covered by segments from HOR (Lemma 5.4), while h_{i,j,t_1}^R and h_{i+1,j,t_2}^L have to be covered by segments from HOR (Claim 5.1).

Every segment from HOR either:

- starts at point h_{x,y,z_1}^R and ends at point h_{x+1,y,z_2}^L for some $1 \le x < k, 1 \le y \le k$ and $1 \le z_1, z_2 \le n^2$; or 1036 1037
- is $\mathsf{horBeg}_{y,z}$ and starts at $h^L_{1,y,1}$ and ends at $h^L_{1,y,z}$ for some $1 \leq y \leq k$ and $1 \leq z \leq n^2$; 1038 1039
 - is $\mathsf{horEnd}_{y,z}$ and starts at $h_{k,y,z}^R$ and ends at $h_{k,y,n}^R$ for some $1 \leq y \leq k$ and $1 \leq z \leq n^2$.

All of the points between h_{i,j,t_1}^R and h_{i+1,j,t_2}^L are covered by segments in HOR and there is no 1041 segment $(h_{i,j,t_1}^R, h_{i+1,j,t_2}^L)$ in HOR. Hence, there are at least two different segments covering them. If both of these segments are neither $\mathsf{horBeg}_{y,z}$ nor $\mathsf{horEnd}_{y,z}$, then one of them must 1042 1043 begin at h_{i,j,t_1}^R and end at h_{i,j,z_2}^L and there must be other one that begins at h_{i,j,z_1}^R and ends 1044 at h_{i+1,j,t_2}^L for some $1 \le z_1, z_2 \le n^2$. 1045

Thus, the space between h_{i,j,z_1}^R and $h_{i,j+1,z_2}^L$ would be covered twice and is longer than ϵ . The case when one of them is $\mathsf{horBeg}_{y,z}$ or $\mathsf{horEnd}_{y,z}$ is analogous. Note that they cannot be both $\mathsf{horBeg}_{y,z}$ or $\mathsf{horEnd}_{y,z}$.

By the proof of Lemma 5.3, the lower bound for weight of such a solution is $W_{hv} + \epsilon$ which

is more than $W_{\mathsf{hv}} + k^2 \delta$.

Therefore h^R_{i,j,t_1} and h^L_{i+1,j,t_2} must be covered by one segment from HOR, namely $(h^R_{i,j,t_1}, h^L_{i+1,j,t_2})$.

Hence $(h^R_{i,j,t_1}, h^L_{i+1,j,t_2})$ is a segment in HOR and $\mathsf{match}_h(t_1,t_2)$ is true. 1051

Lemma 5.6. If there exists a solution to instance $(C, P, w, 3k^2 + 2k)$ with weight at most 1053 $W_{\mathsf{h}\mathsf{v}} + k^2 \delta$, then there exists a solution to the grid tiling instance $(f_{i,j})$. 1054

Proof. Take diagonal function from Lemma 5.4. 1055

1040

1046 1047

1048

1049

1050

1056

1057

1058

1059

To define the x function for every $1 \le i \le k$ set $x(i) := x_i$ where $(x_i, a) = \operatorname{order}(v_{i,1})$. Similarly, to define the y function, for every $1 \le i \le k$ set $y(i) := y_i$ where $(b, y_i) = \mathsf{order}(h_{1,i})$

To prove that this is a correct solution to grid tiling, we need to prove that for every $1 \le i, j \le k, (x(i), y(j))$ is in the allowed tiles set f(i, j).

Let us take any $1 \le i, j \le k$. By Lemma 5.5 and simple induction, we know that 1060 $\mathsf{match}_h(\mathsf{diagonal}(1,j),\mathsf{diagonal}(i,j)) \text{ and } \mathsf{match}_v(\mathsf{diagonal}(i,1),\mathsf{diagonal}(i,j)) \text{ are true. } \mathsf{There-}$ 1061 fore order(diagonal(i,j)) = (x(i),y(j)). By Lemma 5.4 we know that order(diagonal(i,j)) is in f(i,j). Therefore (x(i),y(j)) is in f(i,j).

$_{\scriptscriptstyle{1064}}$ Bibliography

- [Adamaszek et al., 2015] Adamaszek, A., Chalermsook, P., and Wiese, A. (2015). How to tame rectangles: Solving independent set and coloring of rectangles via shrinking. In Garg, N., Jansen, K., Rao, A., and Rolim, J. D. P., editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA, volume 40 of LIPIcs, pages 43-60. Schloss Dagstuhl Leibniz-Zentrum für Informatik.
- [Chan and Grant, 2014] Chan, T. M. and Grant, E. (2014). Exact algorithms and apxhardness results for geometric packing and covering problems. *Comput. Geom.*, 47(2):112– 124.
- [Cygan et al., 2015] Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., and Saurabh, S. (2015). *Parameterized Algorithms*. Springer.
- [Dinur and Steurer, 2014] Dinur, I. and Steurer, D. (2014). Analytical approach to parallel repetition. In Shmoys, D. B., editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 June 03, 2014, pages 624-633. ACM.
- [Etscheid et al., 2017] Etscheid, M., Kratsch, S., Mnich, M., and Röglin, H. (2017). Polynomial kernels for weighted problems. *J. Comput. Syst. Sci.*, 84:1–10.
- [Gaspers et al., 2012] Gaspers, S., Kim, E. J., Ordyniak, S., Saurabh, S., and Szeider, S. (2012). Don't be strict in local search! In Hoffmann, J. and Selman, B., editors, *Proceedings* of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI Press.
- [Har-Peled and Lee, 2009] Har-Peled, S. and Lee, M. (2009). Weighted geometric set cover problems revisited. *Journal of Computational Geometry*, 3.
- 1087 [Håstad, 2001] Håstad, J. (2001). Some optimal inapproximability results. *J. ACM*, 1088 48(4):798–859.
- [Kim et al., 2021] Kim, E. J., Kratsch, S., Pilipczuk, M., and Wahlström, M. (2021). Directed flow-augmentation. CoRR, abs/2111.03450.
- [Marx, 2005] Marx, D. (2005). Efficient approximation schemes for geometric problems? In
 Brodal, G. S. and Leonardi, S., editors, Algorithms ESA 2005, pages 448-459, Berlin,
 Heidelberg. Springer Berlin Heidelberg.
- [Marx, 2007] Marx, D. (2007). On the optimality of planar and geometric approximation schemes. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings, pages 338-348. IEEE Computer Society.

- [Marx and Pilipczuk, 2015] Marx, D. and Pilipczuk, M. (2015). Optimal parameterized algorithms for planar facility location problems using voronoi diagrams. CoRR, abs/1504.05476.
- [Marx and Schlotter, 2011] Marx, D. and Schlotter, I. (2011). Stable assignment with couples: Parameterized complexity and local search. *Discret. Optim.*, 8(1):25–40.
- [Mustafa et al., 2014] Mustafa, N. H., Raman, R., and Ray, S. (2014). Settling the apxhardness status for geometric set cover. In 55th IEEE Annual Symposium on Foundations
- of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages
- 541–550. IEEE Computer Society.
- [Mustafa and Ray, 2010] Mustafa, N. H. and Ray, S. (2010). Improved results on geometric hitting set problems. *Discret. Comput. Geom.*, 44(4):883–895.
- [Pilipczuk et al., 2016] Pilipczuk, M., van Leeuwen, E. J., and Wiese, A. (2016). Approximation and parameterized algorithms for geometric independent set with shrinking. *CoRR*, abs/1611.06501.
- [Pilipczuk et al., 2020] Pilipczuk, M., van Leeuwen, E. J., and Wiese, A. (2020). Quasi-polynomial time approximation schemes for packing and covering problems in planar graphs. *Algorithmica*, 82(6):1703–1739.
- [Shachnai and Zehavi, 2017] Shachnai, H. and Zehavi, M. (2017). A multivariate framework for weighted FPT algorithms. *J. Comput. Syst. Sci.*, 89:157–189.
- [Wiese, 2018] Wiese, A. (2018). Independent set of convex polygons: From n^{ϵ} to $1 + \epsilon$ via shrinking. Algorithmica, 80(3):918–934.