$CS301_hw1$

Mustafa Yağız Kılıçarslan

October 2022

1 Recurrences (10 points)

Give an asymptotic tight bound for T(n) in each of the following recurrences. Assume that T (n) is constant for n 2. No explanation is needed.

Note that according to Master Method:

if recurrence is in the form of T(n) = aT(n/b) + f(n) where $a, b \ge 1$ and f(n)is asymptotically positive, then:

Case 1: if
$$f(n) = O(n^{\lg_b a - \epsilon})$$
 for some $\epsilon > 0$ then $T(n) = \Theta(n^{\lg_b a})$

Case 2: if
$$f(n) = \Theta(n^{\lg_b a})$$
 then $T(n) = \Theta(n^{\lg_b a} \lg n)$

Case 3: if $f(n) = \Omega(n^{\lg_b a + \epsilon})$ for some $\epsilon > 0$ and if $cf(n) \ge af(n/b)$ for some c < 1 and for large n then $T(n) = \Theta(f(n))$

a. $T(n) = 2T(n/2) + n^3$

Using Master Theorem Case 3:

$$a = b = 2 \ge 1$$
, $f(n) = n^3$ asymptotically positive

$$f(n) = n^3 = \Omega(n^{\lg_2 2 + \epsilon}) = \Omega(n^{\epsilon}), \ \epsilon > 3$$

Check: $2(n/2)^3 = n^3/4 \le cn^3$ for c = 1/4 < 1 and for large n

In this case we can apply Case 3:

$$T(n) = \Theta(f(n)) = \Theta(n^3)$$

b. $T(n) = 7T(n/2) + n^2$ Using Master Theorem Case 1:

$$a=7\geq 1,\,b=2\geq 1,\,f(n)=n^2$$
 asymptotically positive $f(n)=n^2=O(n^{\lg_2 7-\epsilon})$, $\epsilon>0$

$$f(n) = n^2 = O(n^{\lg_2 7 - \epsilon}), \ \epsilon > 0$$

We can apply Case 1:

$$T(n) = \Theta(n^{\lg_b a}) = \Theta(n^{\lg_2 7})$$

c.
$$T(n) = 2T(n/4) + \sqrt{n}$$

Using Master Theorem Case 2:

$$a=2\geq 1,\,b=4\geq 1,\,f(n)=\sqrt{n}$$
 asymptotically positive

$$n^{\lg_b a} = n^{\lg_4 2} = \sqrt{n}$$

$$f(n) = \sqrt{n} = \Theta(n^{\lg_4 2}) = \Theta(\sqrt{n})$$
We can apply Case 2:
$$T(n) = \Theta(n^{\lg_b a} \lg n) = \Theta(\sqrt{n} \lg n)$$

- d. T(n) = T(n-1) + nProve that $T(n) = \Theta(n^2)$
 - d.1 Prove $T(n) = O(n^2)$ by induction: Inductive Step: Assume that $T(k) \le ck^2$ for some c>0, for all k< n holds.

$$T(n) \le c(n-1)^2 + n$$

$$T(n) \le cn^2 - 2cn + c + n$$

$$T(n) \le cn^2 - (2cn - c - n)$$

$$(2cn - c - n) > 0$$
 for $c > 1/2$ and $n_0 < \frac{c}{2c - 1}$

Therefore, $T(n) \leq cn^2$

 $T(n) = O(n^2)$ for mentioned c and n_0 values.

d.2 Prove $T(n) = \Omega(n^2)$ by induction: Inductive Step: Assume that $T(k) \ge ck^2$ for some c > 0, for all k < n holds.

$$T(n) \ge c(n-1)^2 + n$$

$$T(n) \ge cn^2 - 2cn + c + n$$

$$T(n) \ge cn^2 + (n + c - 2cn)$$

$$(2cn-c-n) > 0$$
 for $c < 1/2$ and $n_0 > \frac{c}{2c-1}$

Therefore, $T(n) \ge cn^2$

 $T(n) = \Omega(n^2)$ for mentioned c and n_0 values.

Since we can show that: $T(n) = O(n^2)$ and $T(n) = \Omega(n^2)$ $T(n) = \Theta(n^2)$

2 (Longest Common Subsequence - Python)

- i. What is the best asymptotic worst-case running time of the naive recursive algorithm shown in Figure 1? Please explain.
- ii. What is the best asymptotic worst-case running time of the recursive algorithm with memoization, shown in Figure 2? Please explain