Regression Observations

Logistic Regression and Linear Regression models using all variables:

REG_ALL CLASSIFICATION ACCURACY ====== REG_ALL_Train = 0.8947147651006712 REG_ALL = 0.8825503355704698

REG_ALL RMSE ACCURACY ====== REG_ALL_Train = 3084.1451401847994 REG_ALL = 3926.760224661266

Logistic Regression and Linear Regression models using Decision Tree variables:

REG_TREE CLASSIFICATION ACCURACY ====== REG_TREE_Train = 0.8808724832214765 REG_TREE = 0.8833892617449665

REG_TREE RMSE ACCURACY ====== REG_TREE_Train = 3739.5333611235496 REG_TREE = 4398.331351097118

Logistic Regression and Linear Regression models using Random Forest variables:


```
REG_RF CLASSIFICATION ACCURACY
======
REG_RF_Train = 0.8770973154362416
REG_RF = 0.8666107382550335
```

REG_RF RMSE ACCURACY ====== REG_RF_Train = 4116.751171064979 REG_RF = 4730.411757005278

Logistic Regression and Linear Regression models using Gradient Boosting variables:

REG_GB CLASSIFICATION ACCURACY ====== REG_GB_Train = 0.8798238255033557 REG_GB = 0.87248322147651

REG_GB RMSE ACCURACY ====== REG_GB_Train = 4116.751171064979 REG_GB = 4730.411757005278

Default Total Variables: 9 INTERCEPT = -5.208565049387862 M DEBTINC = 2.6985066425002087 TRUNC IMP DEBTINC = 0.10532405952028602 TRUNC IMP CLAGE = -0.007323217480724324 TRUNC IMP DELINQ = 0.6709625409509762 M_VALUE = 3.4771700353982435 TRUNC_IMP_DEROG = 0.6811211734369641 TRUNC_LOAN = -8.112092843416792e-06 TRUNC_IMP_VALUE = -4.129584544029806e-07 Loss Amt Total Variables: 5 INTERCEPT = -15839.343085938335 TRUNC_LOAN = 0.7724188017610201 TRUNC IMP CLNO = 233.07760113646154 TRUNC IMP DEBTINC = 218.31743246827963 M DEBTINC = 5444.177105397876

Logistic Regression and Linear Regression models using Stepwise Selection variables:

REG_STEPWISE CLASSIFICATION ACCURACY
======

REG_STEPWISE_Train = 0.8819211409395973

REG_STEPWISE = 0.8783557046979866

REG_STEPWISE RMSE ACCURACY

REG_STEPWISE RMSE ACCURACY ====== REG_STEPWISE_Train = 4116.751171064979 REG_STEPWISE = 4730.411757005278

ALL CLASSIFICATION ACCURACY

======

RF = 0.910234899328859

GB = 0.9085570469798657

REG_TREE = 0.8833892617449665

REG_ALL = 0.8825503355704698

TREE = 0.8808724832214765

REG_STEPWISE = 0.8783557046979866

REG_GB = 0.87248322147651

REG RF = 0.8666107382550335

ALL LOSS AMT MODEL ACCURACY

=====

GB = 3177.9937332803356

RF = 3506.6713918019404

REG_ALL = 3926.760224661266

REG_TREE = 4398.331351097118 REG_RF = 4730.411757005278

REG GB = 4730.411757005278

REG STEPWISE = 4730.411757005278

TREE = 6135.514689615248

Observations

Having played around with the LogisticRegression Solver parameters, I settled on 'newton-cg', as the other alternatives I tried, i.e. 'sag', 'saga' and 'lbfgs' degraded the model. I would recommend using the Random Forest model as it has the highest classification accuracy. I would also recommend using the Gradient Boosting model for predicting Loss Amounts. The Default predictive variables for the most part make sense, M_DEBTINC makes sense as individuals that don't provide their debt to income ratio may be hiding high debt and be more risky, on the other hand I'm not sure about the M_VALUE field, I would reach out to a subject matter expert to see if a missing home value is predictive of default. With respect to the Loss Amount variables again we see M_DEBTINC and also TRUNC_IMP_DEBTINC which makes sense, also showing as predictive is TRUN_IMP_CLNO which is a double edge sword, the fewer the tradelines the riskier but any individual may have a lot of tradelines and run up a lot of debt which is also risky.