Machine Learning Workshop

Predicting Housing Prices with Multiple Linear Regression Techniques By: Vibhuti Gandhi and Jason Dang

Topics

- Data Pre-Processing
- Exploratory Data Analysis
- Data Cleaning and Feature Engineering
 - Missing Data
 - Categorical Data & Dummy Variables
 - Dimensionality Reduction
 - Feature Transformation
- Machine Learning
 - Multiple Linear Regression
 - Data Modelling
 - Overfitting & Underfitting
 - Regularization

Aim of this Workshop

- Introduce you to Multiple Linear Regression
- Build upon the existing statistical and python knowledge that you have
- See how data science workflows occurs
- Less Coding, More discussion on the How, Why and What
- Most importantly, you are encouraged to take these topics, expand upon them and build your own data science project.

Data

- Ames Housing dataset compiled by Dean De Cock
- Data contains 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa.

Variables of Interest:

- Response Variable:
 - SalePrice the property's sale price in dollars
- Explanatory Variables:
 - LotArea Lot size in square feet
 - Foundation Type of foundation

Analysis

- We have a continuous response variable
- We have one numeric (LotArea) and one categorical (Foundation)
 explanatory variable
- We want to describe the relationship between the response and two explanatory variables simultaneously
- We can use a multiple linear regression model for this purpose!!!

What is a Multiple Linear Regression

The **multiple linear regression model** is a model for describing the relationship between a dependent variable and two or more independent variables simultaneously

Notation

Let Y_i be the sale price of the ith house Let x_1 and x_2 be the LotArea and Foundation respectively of the ith house

For our categorical predictor (Foundation):

- Need k-1 = 5 indicator variables, one for each of levels 2-6
- Let x_3i = 1 if the ith house has foundation Brick & Tile
- and $x_3i = 0$ otherwise

Model Specification

$$Y_i = \beta_0 + \sum_{i=1}^7 \beta_i x_{ji} + \varepsilon_i$$

$$Y_i = \beta_0 + \sum_{i=1}^7 \beta_j x_{ji} + \varepsilon_i$$

Join our Social Media Platforms

SFUDSSS

SFU DATA SCIENCE DISCORD

