Digital Electronic Circuits Section 1 (EE, IE)

Lecture 25

Counter Basics

- A counter keeps a record of the number of times a particular event has occurred by advancing its state.
- In counter, a unique state of the digital circuit is associated with a particular count.
- With every trigger, the state advancement can be
 - in any random order
 - a sequential increase (up counter)
 - a sequential decrease from a pre-defined value (down counter)
- All the flip-flops defining the state of the count get the trigger:
 - simultaneously in synchronous counter
 - at different point of time in asynchronous counter
- A modulo-n or mod-n counter has n different states. It returns to initial value after n triggers. For m flip-flops used in counter design, $2^m \ge n$.
- Usually, clock is given as input trigger. Mod-*n* counter is also called divided-by-*n* counter.

Asynchronous Up Counter

CLK↓	С	В	A	Count
-	0	0	0	0
a	0	0	1	1
b	0	1	0	2
c	0	1	1	3
d	1	0	0	4
e	1	0	1	5
f	1	1	0	6
g	1	1	1	7
h	0	0	0	0

Also, called **Ripple Counter**

•
$$f_A = f_{Clock} / 2$$

•
$$f_B = f_{Clock} / 4$$

•
$$f_C = f_{Clock} / 8$$

Cumulative Delay

For n flip-flops, the delay is $n\tau$ where τ is propagation delay of each flip-flop.

- No miss till $n\tau < T_{clock}$
- Glitch

Asynchronous Down Counter

Time -	C	a i	b	c ϵ	d	e j	f g	g = I	h	i
	,	, ,	,	,	,	,	, ,	,	, ,	,
Count clock -										
A	0	1	0	1	0	1	0	1	0	1
B_{\perp}	0	1	1	0	0	1	1	0	0	1
$C_{_}$	0	1	1	1 1	1	0	0	0	0	1

CLK↓	С	В	A	Count
-	0	0	0	0
a	1	1	1	7
b	1	1	0	6
c	1	0	1	5
d	1	0	0	4
e	0	1	1	3
f	0	1	0	2
g	0	0	1	1
h	0	0	0	0

Here, if output as C'B'A', then up counter

Similarly, previous up counter circuit gives down count at its inverted outputs.

Asynchronous Up – Down Counter

Mode, M = 0: Up counter

M = 1: Down counter

IC 7493

4-bit Asynchronous Binary Up Counter

RESET/COUNT

RESET INPUTS	OUTPUTS				
R0(1) R0(2)	Q_D Q_C Q_B Q_A				
н н	LLLL				
L X	COUNT				
X L	COUNT				

Mod 8: CKA unused, CKB triggered

when used as mod 16 and CKA triggered.

Decoding Counter State

Once in every 8 clock cycles, Y = 1 for 1 clock cycle whenever the state of the counter, CBA = 111

Decoding Logic

A decoding gate connected to the outputs of a counter is activated only when the counter content is equal to a given state.

Mod-16 Counter: 4-input logic gate for decoding

Glitch and Strobed Decoding Gate

111→000

 $111 \rightarrow (110) \rightarrow (100) \rightarrow 000$

t_p = FF Propagation delay

Note that the basic gate delay for the decoding logic which is smaller than FF, is not shown in diagram.

 $CB\overline{A}.Clock$ T_{Clock} usually much larger than t_p

Strobed gate

Glitch between *a* and *b*

Glitch removed

Synchronous Up Counter

\boldsymbol{C}	B	A	Count
0	0	0	0
$0 \\ 0$	0	1	1
0	1	0	2
0	1_	1	3
1	0	0	4
1	0	1	5 6
1	1*	0	6
1	1	1	7
0	0	0	0

Timing Diagram

- No cumulative delay
- No glitch

Synchronous Down Counter

С	В	A	Count
0	0	<u>0</u>	0
1	1	1	7
1	1	<u>0</u>	6
1	0	1	5
1	0	<u>0</u>	4
0	1	1	3
0	1	<u>0</u>	2
0	0	1	1
0	0	<u>0</u>	0
1	1 ↓	1	7

Synchronous Up-Down Counter

Count states: DCBA

Up Counter: Clock to 'Count up' while 'Count down' held at 0.

Down Counter: Clock to 'Count down' while 'Count up' held at 0.

M is mode of counter

M = 0: Up

M = 1: Down

References:

- ☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &
- **Applications 8e, McGraw Hill**
- ☐ Texas Instrument's Digital Logic Pocket Data Book (2007)