

Processos de Fabrico I

(bloco processos de ligação)

Regras gerais de seleção de materiais de adição

(soldadura de aços ao C e C-Mn e de baixa liga)

- Composição química do metal depositado (MD) semelhante à do metal base (MB).
- Propriedades mecânicas do MD maiores ou iguais às do MB.

O _{rotura do MD}	2	O _{rotura do MB}	Em qualquer situação de
Ō _{cedência do MD}	2	O _{cedência do MB}	serviço
E _{após} rotura do MD	?	E _{após} rotura do MB	
Tenacidade do MD	?	Tenacidade do MB	Depende des condições de
Resist. Corrosão do MD	?	Resist. Corrosão do MB	Depende das condições de serviço (fadiga,
Resist. a alta temperatura do MD	?	Resist. a alta temperatura do MB	temperatura, corrosão, etc)
Etc. do MD	?	Etc. do MB	

- No Arco Submerso o metal de adição é um binário fio/fluxo que tem que ser selecionado em conjunto.
- Diferentes combinações de fio fluxo dá origem a diferentes composições químicas e propriedades mecânicas do metal depositado.

Propriedades do metal		Fluxo				
	sitado	A	В	С		
	Α	$\sigma_{rot.}, \sigma_{ced.}, \epsilon, \text{etc}$	$\sigma_{rot.}, \sigma_{ced.}, \epsilon, ext{etc}$	$\sigma_{rot.}, \ \sigma_{ced.}, \ \epsilon, \ { m etc}$		
Fio	В	$\sigma_{rot.}, \sigma_{ced.}, \epsilon, ext{etc}$	$\sigma_{rot.}, \sigma_{ced.}, \epsilon, ext{etc}$	$\sigma_{rot.}, \ \sigma_{ced.}, \ \epsilon, \ { m etc}$		
	С	$\sigma_{rot.}, \sigma_{ced.}, \epsilon, ext{etc}$	$\sigma_{rot.}, \sigma_{ced.}, \epsilon, ext{etc}$	$\sigma_{rot.}, \sigma_{ced.}, \epsilon, \text{etc}$		

DEMEC DEPARTAMENTO DE ENGENHARIA MECÂNICA

Seleção de materiais de adição :

GOVERED HITIOKI SLECTHODES ISMAW) MILO SYREE, RIJECTRODES

OK 43.32

Easy-to-west rullie type electrode for welding in the flat position. The good flowing properties of the weld metal give a good firish to the weld beads on both butt and filler welds. Good slag detachedery. The stable arc, even at low welding currents, makes the electrode very solitable for sheet metal welding.

Classifications:	SFA/AWS A5.1:E6013, EN ISO 2560-A:E 42 0 RR 12
Approvals:	CE EN 13479, ABS 2, DNV 2, BV 1, GL 1, RS 2, DB 10,039:36, LR 1, VdTÜV 00621

Approveis are based on factory location. Please contact ESAB for more information.

Welding Current:	AC, DC+-
Alloy Type:	Carbon Steel
Coating Type:	Fulle :

Typical Tensile F	Properties			
Condition	Yield Strength	Tensile Strength	Elongation	
ISO				
As welded	480 MPa	520 MPa	27 %	

Typical Charpy V-No	otch Properties		
Condition	Testing Temperature	Impact Value	
ISO			
As welded	0.4C	D D	
As welded	-10 °C	55.1	

Typical Weld Met	al Analysis %		
C	Mn	Si	
0.07	0.5	0.4	

Deposition I	Deposition Data					
Diameter	Current	Voltage	kg weld metal/ kg electrodes	Number of electrodes/kg weld metal	Fusion time per electrode at 90% I max	Deposition rate 90% I max
2.0 x 300 mmi	50-60 A	23 V	0.54	167	36 s	0.6 kg/h
2.5 x 350 mm	50-110 A	25 V	0,54	88	46 s	0.9 kg/h
3.2 x 350 mm	80-150 A	26 V	0.57	51	57 s	1.3 kg/h
3.2 x 450 mm	80-140 A	26 V	0.54	40.5	74 s	1,3 kg/h
4.0 x 350 mm	120-210 A	25 V	0.52	35	63 s	1.6 kg/h
4.0 x 450 mm	120-210 A	27 V	0.54	27	76 s	1.9 kg/h
5.0 × 450 mm	170-290 A	26 V	0.56	17	87 s	2.5 kg/h
6.0 x 450 mm	230-370 A	30.6 V	0,52	12.4	105 s	2,8 kg/h

OVERED ISTICK) ELECTRODES (EMINA) III IN STEEL ELECTRODES

OK 48.04

OK 48:04 is an AC/OC; general purpose: LMA electrode for welding mild and low-aloy steels. It has very good welding properties and deposits a high quality weld metal with very good mechanical properties. The electrode can be used for welding restrained structures where high welding stresses cannot be avoided.

Classifications:	EN ISO 2560-A:E 42 4 B 32 H5, SFA/AWS A5.1:E7018	
Approvals:	CE EN 13479, ABS 3Y H5, PRS 3Y H5, BV 3Y H5, GL 3Y H5, DNV 3Y H5, Septics UNA 272580, RS 3Y H5, NAKS/HAKC 2.5-5,0 mm, ABS AWS A5.1 - E7018, LR 3Ym H15	

Approvals are based on factory location. Please contact ESAB for more information.

Welding Current:	AG, DC+(-)
Diffusible Hydrogen:	<5.0 ml/100g
Alloy Type:	Carbon Manganese
Coating Type:	Lime Besic

Condition	Yield Strength	Tensile Strength	Elongation
ISO	To reference (Control - 10.)	10.000000000000000000000000000000000000	I Disservanies
As welded	480 MPa	560 MPa	28 %

Typical Charpy V-Notch Properties			
Condition	Testing Temperature	Impact Value	
ISO .			
As welded	-30°C	110 J	
As welded	-40 °C	100 J	

Typical Weld Metal Analysis %			
C	Mn	Si	
0.06	1.2	0.6	

Diameter	Current	Voltage	kg weld metal/ kg electrodes	Number of electrodes/kg weld metal	Fusion time per electrode at 90% I max	Deposition rate 90% I max
2,5 x 350 mm	75-110 A	23 V	0.64	67.0	59 s	1,00 kg/h
3.2 x 350 mm	90-155 A	22 V	0.63	42.3	62.4 s	1.37 kg/h
3.2 x 450 mm	90-155 A	25 V	0.67	30.0	92 s	1.50 kg/h
4.0 x 450 mm	125-200 A	26 V	0.68	20.0	101 s	2.00 kg/h
5.0 x 450 mm	190-260 A	26 V	0.72	13.0	106 s	2.80 kg/h

Alloy Type:

OK Tigrod 12.60

OK Tigrod 12.60 is a copper-coated Mn-Si-alloyed W2SI/ER70S-3 solid rad for the GTAW of non-alloyed steels, as used in general construction, pressure vessel fabrication and shipbuilding.

Classifications Weld Metal:	EN ISO 636-A:W 38 3 W2Si
Classifications Wire Electrode:	SFA/AWS A5.18:ER70S-3, EN ISO 636-A:W2Si
Approvals:	CE EN 13479, BV 3YM, ABS ER70S-s; DNV III YM (I1)", NAKS/HAKC 2.0MM, VdTÜV 11141, ABS 3YSA

Approvals are based on factory location. Please contact ESAB for more information.

Carbon-manganese steel

Typical Tensile I	roperties		
Condition	Yield Strength	Tensile Strength	Elongation
Ar (11) EN			
As weldert	420 MPa	515 MPa	26.%

Typical Charpy V-No	otch Properties		
Condition	Testing Temperature	Impact Value	
Ar (I1) EN			
As welded	-30 °C	L06	

Typical Wire Composition %			
С	Mn	Si	
0.10	1.11	0.72	

OK Autrod 12.51

OK Autroct 12.51 is a copper-costed solid wire with higher levels of decoldizers imanganese and siliconi. The high content of decelars allow welding over heavier amounts of dist, rust, and mill scale while providing a more Build public and

Classifications Weld Metal:	EN ISO 14341-A:G 38 3 C1 3Si1, EN ISO 14341-A:G 42 4 M21 3Si1
Classifications Wire Electrode:	EN ISO 14341-A:G 3Si1, SFA/AWS A5.18:ER70S-8, CAN/CSA-ISO 14341:B-G 49A 3 C1 S8, JIB Z 3312-YGW 12(C1)
Approvals:	CE EN 13479, DNV III YMS (M21), VdTÜV 00899, BV SA3YM (M21), JIS YGW12, CWB B-G 49A 3 C1 S8 (B-G 49A 3 C G8), DNV II YMS (C1), GL 3YS (C1), BV SA3YM (C1), DB 42:039.06, RINA 3YS (C1), RINA 3YS (M21), NAKSHAKC 1:0MM-2:0MM, NAKSHAKC 1:2MM-1:6MM, ABS 3YSA (C1 & M21), LB 3YS H15 (C1 & M21), FRS 3YS (C1 & M21), RS 3YMS (C1 & M21).

Approvats any based on factory location. Please contact ESAE for more information.

Carbon-manganese steel Mn/Si-allovedi

Typical Tensile Propert	les		
Condition	Yield Strength	Tensile Strength	Elongation
EN 80Ar 20CO2			
As welded	480 MPa	560 MPa	26.%
Stress releved 15 hr 620 °C	380 MPa	495 MPa	28 %

Condition	Testing Temperature	Impact Value
EN 80Ar 20CO2		(3)
As welded	20 °C	130 J
As welded	-20 °C	130 J
As welded	-30 °C	90 J
As welded	-40 °C	90 J
Stress relieved 15 hr 520 °C	20 °C	120 J
Stress relieved 15 hv 620 °C	-20 °C	90 J

Typical Wire Composition %			
С	Mn	Si	
0.078	1.45	0.85	

Deposition D				
Diameter	Current	Voltage	Wire Feed Speed	Deposition Rate
0.6 mm	30-100 A	15-20 V	5,5-13 m/min	0,7-1,7 kg/h
0.8 mm	60-200 A	18-24 V	3,2-13 m/min	0,8-3,0 kg/h
0.9 mm	70-250 A	18-26 V	3,0-12 m/min	0.9-3,6 kg/h
1.0 mm	80-300 A	18-32 V	2,7-15 m/min	1,0-5,6 kg/h
1.2 mm	120-380 A	18-34 V	2.5-15 m/min	1,3-8.0 kg/h
5.4 mm	150-420 A	22-36 V	2,3-12 m/min	1,6-8,7 kg/h
1.6 mm	225-550 A	28-38 V	2.3-12 m/min	2.1-11.4 kg/h
2.0 mm	300-660 A	32-44 V	4-15 m/min	3.2-12.5 kg/h

SUBMERGED ARC WIRES & PLUXES (SAW)
MILE STEEL/LOW ALLEY FLUXES

OK Flux 10.70

OK Flux 16.70 is an agglomerated, basic flux for submerged arc welding. It is designed for welding joints with high dilution such as I-joints with one run from each ade and filef welds. Due to its high alloying of mainty Mn, it creates a weld metal with good toughness values in these joints. It can be used for single and multi-wire procedures and works equally well on DC and AC. On multi-pass welding the number of passes is finited and the plate thickness should not exceed approx. 25 mm. Non-aloyed wires such as CK Autrod 12.10 and OK Autrod 12.20 are the preferred ones to be matched with OK Flux 10.70. The man application area for OK Flux 10.70 is in shipbuilding. Here it is used preferably in the two run, double-aided technique. However, it is also used in other market segments where joints with the field appears of a contraction of a number of course are specified. This is in the counterface of course and application or an extension of course are specified. This is in the counterface of course are specified.

of passes are wolded. This	is in the construction of pressure vessels, in the transport industries and general construction.
Classifications:	EN ISO 14174 S A AB 1 79 AC
Approvals:	CE EN 13479, DB 51.039,06

Approvals are based on factory location. Plesse contact ESAB for more information.

Slag Type:	Aluminate-basic	
Alloy Transfer:	Moderately Silicon and very high Manganese alloying	
Density:	nam: 1.2 kg/dm3	
Basicity Index:	nam: 1.4	
Grain Size (met):	0.2-1.6 mm (10x65 mesh)	

FI	UX	Cor	151	mp	tion	
	64					

Volts	kg Flux / kg Wire DC+	kg Flux / kg Wire AC	
26 V	0.7 kg	0.6 kg	
30 V	1.0 kg	0.9 kg	
34 V	1.3 kg	1.2 kg	
38 V	1.6 kg	1.4 kg	

Dimensions	Amps	Travel Speed
Ø 4.0 mm	580 A	55 cm/min

Classifications	Wire	Weld Metal				
Wire	AWS/EN	EN - As Welded	AWS - As Welded	AWS - PWHT		
OK Autrod 12.10	A5.17:EL12/ 14171-A:S1	S 42 3 AB S1	A5.17: F7A4-EL12	A5:17: F7P4-EL12		
OK Autrod 12:20	A5.17:EM12/ 14171-A:S2	S 46 3 AB S2	A5.17: F7A2-EM12	A5:17: F7P2-EM12		
OK Autroid 12:24	A5:23:EA2/ 14171-A:S2Mo; 24598-A:S.S.Mo	S 50 0 AB S2Mo	A5,23: F9A0-EA2-A3	A5.23: F9PZ-EA2-A3		

OK Flux 10.70

Approvals										
Wire	ABS	BV	DNV	GL	LR	DB	CE	PRS	RS	VdTÜV
OK Autrod 12,10								•		
OK Autrod 12.20	-	to	+::	-	-			-	100	

^{*}Selected production units only. Please contact ESAB for more information.

Visit esab.com to download specific Ruv/wire combination fact sheets for more details.

Typical Mechanical Properties							
Wire	Condition	Yield Strength	Tensile Strength	Elongation	Charpy V-Notch		
OK Autrod 12.10	As Welded AWS DC+	430 MPa	520 MPa	30 %	125 J @ 20°C 100 J @ 0°C 70 J @ -20°C 55 J @ -30°C 40 J @ -40°C		
OK Autrod 12:20	As Welded AWS DC+	470 MPa	580 MPa	29 %	100 J @ 20°C 90 J @ 0°C 75 J @ -20°C 50 J @ -29°C		
OK Autrod 12:24	As Welded AWS DC+	580 MPa	670 MPa	23 %	60 J @ 20°C 50 J @ 0°C 40 J @ +18°C		

С	Mn	Si	Mo
	1000	101	i mar
OK Autrod 12.10	DC+,580A,29V		
0.05	1.7	0.5	7
OK Autrod 12.20	DC+, 580A, 29V		
0.06	1.9	0.6	÷
OK Autrod 12.24	DC+, 580A, 29V		
0.06	2.0	0.6	0.5

SUBMERGED ARC WIRES & FLUXES (SAW)
MILD STEEL WIRES

OK Autrod 12.10

Copper-coated, unalloyed wire for Submerged Arc Welding. For low requirements or in combination with high SI and Mn altoying fuxes. Suitable for non- and low alloyed stees.

Classifications Wire Electrode:	SFA/AWS A5.17 EL12. EN ISO 14171-A;S1			
Approvals:	CE EN 13479, DB 52.039.01, VoTÚV 12103			
approvals are based on factory location.	Please contact ESAR for more in	ominition		
AMERICAN STREET, STREET, SC. L. STREET, SC. STREET, SC	2.000000.000000000000000000000000000000	50 (((((((((((((((((((
Typical Wire Composition C		Si		

OK Autrod 12.20

Copper-coated, unalloyed with for Submerged Arc and Electrodiag Vitilding. Suitable in combination with most fluxes. For structural steels, ship building steels, pressure vesses steels, fire grained steels, stc.

Classifications Wire Electrode:	SFA/AWS A5:17:EM12, EN ISO 14171-A:S2			
Approvals:	CE EN 13479, VdTCV 12103, DB 52.039.02, NAKS/HAKC 3.0 mm, 4.0 mm			
Approvals are based on factory location	PROBLED CONTACT ESPERTOR MORE AT	compacer		
Typical Wire Composition	4			
Typical Wire Composition ' C	Mn	Si		

OK Autrod 12.22

Copper-coated, unalloyed wire for Submerged Arc Welding. Suitable in combination with most fluxes, increased Si content and titus especially for reutinal fluxes (e.g. CK Flux 10.62) or in order to increase the fluidity of the motion pool. For introducial steals, ship buildings steals, pressure vessel steals, fine grained steals, etc.

Classifications Wire Electrode:	SFA/AWS A5.17:EM12K, EN ISO 14171-A:S2Si
Approvals:	CE EN 13479, VdTÜV 12103, DB 52.039.05, NAKSHAKC 2.0 mm-5.0 mm

Approvals are based on factory incation. Please contact ESAS for more information.

Typical Wire Composition %			
С	Mn	Si	
0.09	1.01	0.19	