Part I

1 5. Valori proprii si vectori proprii

1.1 A. Teorie

Problematica pe care o abordam in acest capitol are aplicatii in cele mai diverse ramuri ingineresti. Folosim valori si vectori proprii in probleme de optimizare a sistemelor mari, in probleme ierarhizare a paginilor Web si in orice analiza de retele (electrice, de calculatoare, sociale, neuronale, etc.). Un instrument important folosit in asemenea aplicatii - oferit de teoria pe care o expunem aicieste o tehnica simpla de calcul al matricei A^m unde A este o matrice patratica.

1.1.1 5.1. Operatori. Problema diagonalizarii

Un raspuns partial la problema calculului matrice
i ${\cal A}^m$ este dat de metoda diagonalizarii.

Peste tot in cele ce urmeaza V este un spatiu vectorial peste corpul $K \in \{\mathbb{R}, \mathbb{C}\}$, iar $B = \{v_1, v_2, \dots, v_n\}$ si $B' = \{v'_1, v'_2, \dots, v'_n\}$ sunt doua baze in acest spatiu.

Definitia 5.1.1. Operator liniar. O functie liniara $L: V \to V$ se numeste **operator liniar** (al spatiuluiV). Notam multimea operatorilor liniari ai spatiului V cu $\mathcal{L}(V)$ (in loc de $\mathcal{L}(V,V)$). Numim **matrice a operatorului** L in baza B si o notam L_B matricea patratica a aplicatiei L in perechea de baze B, B, i.e. $L_B := L_{BB}$.

Deoarece operatorii liniari sunt aplicatii liniare particulare avem urmatoarele proprietati.

Propozitia 5.1.1. Fie $f \in \mathcal{L}(V)$, $g \in \mathcal{L}(V)$ si $T_{BB'}$ matricea de trecere de la baza B la baza B'.

- 1. $f_B \in K^{n \times n}$.
- 2. $f \circ g, g \circ f \in \mathcal{L}(V)$ si $(f \circ g)_B = f_B \cdot g_B$.
- 3. $f_{B'} = T_{BB'}^{-1} \cdot f_B \cdot T_{BB'}$
- 4. Orice matrice $A \in K^{n \times n}$ defineste in mod unic un operator $h \in \mathcal{L}(V)$ pentru care $A = h_B$; expresia sa analitica h(v), unde $v = x_1v_1 + x_2v_2 + \cdots + x_nv_n \in V$, este data de matricea coloana

$$Av_B := \left(\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_2 \end{array}\right)$$

$$prin \ h(v) = y_1v_1 + y_2v_2 + \cdots + y_nv_n.$$

5. f este izomorfism daca si numai daca f_B este nesingulara; in acest caz matricea operatorului f^{-1} este inversa matricei operatorului f, adica $(f^{-1})_B = (f_B)^{-1}$.

Definitia 5.1.2. Matrice diagonala. O matrice de forma

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \in K^{n \times n}$$

in care cel putin unul dintre scalarii $\lambda_1, \lambda_2, \dots, \lambda_n$ este nenul se numeste **ma**trice diagonala.

Problema diagonalizarii. Ne punem problema depistarii unui procedeu de de gasire a matricei A^m , unde A este o matrice patratica, iar m este un numar intreg pozitiv. Daca D este matricea diagonala din definitia de mai sus, atunci, prin inductie matematica obtinem ca D^m este de asemenea matrice diagonala:

$$D^m = \begin{pmatrix} \lambda_1^m & 0 & \cdots & 0 \\ 0 & \lambda_2^m & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_n^m \end{pmatrix}.$$

Fie $L \in \mathcal{L}(V)$ si $L_B := A$ matricea sa in baza B. Presupunem ca exista o baza B' in care matricea operatorului L este matricea diagonala $L_{B'} := D$. Atunci $D = T_{BB'}^{-1} \cdot A \cdot T_{BB'}$ si de aici

$$A = T_{BB'} \cdot D \cdot T_{BB'}^{-1}.$$

Ridicand la patrat obtinem

$$A^2 = T_{BB'} \cdot D \cdot T_{BB'}^{-1} \cdot T_{BB'} \cdot D \cdot T_{BB'}^{-1} = T_{BB'} \cdot D^2 \cdot T_{BB'}^{-1}.$$

Prin inductie matematica deducem ca

$$A^m = T_{BB'} \cdot D^m \cdot T_{BB'}^{-1}.$$

Prin urmare calculul matrice
i ${\cal A}^m$ este facil atunci cand matrice
a ${\cal A}$ se poate aduce la forma diagonala.

Ne punem problema existentei unei baze in care un operator (matrice patratica) are forma diagonala, si, in cazul existentei gasirea formei diagonale precum si a unei baze in care are aceasta forma. Aceasta este **problema diagonalizarii**.

Vom folosi adesea expresiile de operator diagonalizabil sau matrica diagonalizabila.

Definitia 5.1.3. Matrice diagonalizabila. Operator diagonalizabil. Fie $L \in \mathcal{L}(V)$ si A matricea sa intr-o baza B. Daca exista o baza B' in care matricea $L_{B'}$ este matrice diagonala spunem ca L este un operator diagonalizabil si ca matricea A este matrice diagonalizabila.

Observatia 5.1.1. Daca
$$L \in \mathcal{L}(V)$$
 are forma diagonala $L_B = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$

in baza $B = \{v_1, v_2, \cdots, v_n\}$ atunci $L(v_1) = \lambda_1 v_1$, $L(v_2) = \lambda_2 v_2$,..., $L(v_n) = \lambda_n v_n$. Prin urmare problema diagonalizarii este strict legata de problema depistarii unor scalari λ si a unor vectori nenuli v astfel incat $L(v) = \lambda v$.

Exemplu 5.1.1. Matricea $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ este matricea operatorului $f \in \mathcal{L}\left(\mathbb{R}^2\right)$, $f\left(x,y\right) = (x+y,x+y)$ in baza canonica. Daca ea ar fi diagonalizabila si $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ ar fi forma diagonala in baza $B = \{v_1,v_2\}$ atunci, conform observatiei precedente trebuie sa gasim $\lambda \in \mathbb{R}$ si doi vectori liniar independenti de forma $v = (x,y) \in \mathbb{R}^2$ astfel incat $L\left(v\right) = \lambda v$. Matriceal

$$(A - \lambda I_2) \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \Leftrightarrow \left(\begin{array}{cc} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right).$$

Pentru ca acest sistem sa admita solutii netriviale tretuie ca $\begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix} = 0$, deci $\lambda \in \{0,2\}$. Daca $\lambda = 0$ sistemul se reduce la ecuatia x+y=0, deci un vector nenul $v_1 = (x,y)$ pentru care $L(v_1) = \lambda v_1$ trebuie sa apartina multimii $\{(x,-x) \mid x \in \mathbb{R}\} = \{x(1,-1) \mid x \in \mathbb{R}\}$; alegem de exemplu $v_1 = (1,-1)$. Analog, daca $\lambda = 2$ sitemul se reduce la ecuatia x-y=0, deci un vector nenul $v_2 = (x,y)$ pentru care $L(v_2) = \lambda v_2$ trebuie sa apartina multimii $\{x(1,1) \mid x \in \mathbb{R}\}$; alegem de exemplu $v_2 = (1,1)$. Am obtinut baza $B = \{v_1,v_2\}$; matricea de trecere de la baza canonoca la baza B este $T = \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix}$, iar matricea operatorului in aceasta baza este matricea $f_B = T^{-1}AT = \begin{pmatrix} 0 & 0\\ 0 & 2 \end{pmatrix}$ adica o matrice diagonala.

Raspunsul la problema diagonalizarii este dat, printre altele, de teoria valorilor si a vectorilor proprii.

1.1.2 5.2. Valori proprii si vectori proprii

Definitia 5.2.1. Fie $f \in \mathcal{L}(V)$ si A matricea sa in baza $B = \{v_1, v_2, \dots, v_n\}$. Un vector nenul $v \in V \setminus \{\theta_V\}$ se numeste vector propriu al operatorului

liniar f (sau a matricei A) daca exista un numar $\lambda \in K$ astfel incat

$$f(v) = \lambda v$$
.

Numarul λ se numeste voloare proprie a operatorului liniar f (sau a matricei A) asociata vectorului propriu v. Multimea valorilor proprii ale operatorului f (matricei A) ce noteaza cu $\sigma(f)$ ($\sigma(A)$) si se numeste spectrul operatorului f (spectrul matricei A).

Prin urmare $\lambda \in \sigma(f)$ daca si numai daca

$$\exists v \in V \setminus \{\theta_V\} : f(v) = \lambda v,$$

sau, echivalent

$$\exists v \in \ker (f - \lambda i d_V) \setminus \{\theta_V\}$$

sau, echivalent $\exists v = x_1v_1 + x_2v_2 + \cdots + x_nv_n \neq \theta_V$ astfel incat

$$v_B \in Null(A - \lambda I_n) \setminus \left\{ \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \right\}.$$

De aici obtinem imediat ca

$$\lambda \in \sigma(A) \Leftrightarrow \lambda \in K \text{ si } \det(A - \lambda I_n) = 0$$

Exemplul 5.2.1. Pentru matricea $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ studiata la exemplul 5.1.1, spectrul este format din multimea solutiilor ecuatiei $det(A - \lambda I_2) = 0$, deci $\sigma(A) = \{0, 2\}$.

Definitia 5.2.2. Fie A si f ca in definitia 5.2.1. Functia polinomiala de grad n definita prin

$$p: K \to K, p(\lambda) := \det(A - \lambda I_n)$$

se numeste **polinomul caracteristic al matricei** A (al operatorului f), iar ecuatia de grad n cu coeficienti din K

$$p(\lambda) = 0$$

se numeste ecuatia caracteristica a matricei A (a operatorului f).

Observatia 5.2.1. Cu aceste notatii spectrul matricei A este

$$\sigma(A) = \{\lambda_1, \lambda_2, ..., \lambda_n\} \cap K,$$

unde $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{C}$ sunt cele n radacini ale polinomului caracteristic. Se verifica usor ca spectrul unui operator f nu depinde de baza B, i.e. daca A' este matricea operatorului in baza B' atunci $\sigma(A) = \sigma(A')$.

S-a conturat urmatorul

Algoritm de calcul al vectorilor proprii.

- Determinam spectrul $\sigma(A) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$ rezolvand ecuatia caracteristica $p(\lambda) = 0$.
- Pentru fiecare $\lambda \in \sigma(A) \cap K$ aflam multimea

$$S_{\lambda} := \{ v \in V \mid f(v) = \lambda v \}$$

stiind ca $v=x_1v_1+x_2v_2+\cdots+x_nv_n\in S_\lambda$ daca si numai daca solutiile sistemul

$$(A - \lambda I_n) \cdot v_B = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Multimea vectorilor proprii asociati valorii proprii λ este $S_{\lambda} \setminus \{\theta_V\}$.

Multimea S_{λ} definita este un subspatiu vectorial al lui V. Mai mult: **Propozitia 5.2.1.** Fie $f \in \mathcal{L}(V)$ si $\lambda \in \sigma(A) \cap K$. Atunci

- 1. $S_{\lambda} := \{ v \in V \mid f(v) = \lambda v \} \leq V$.
- 2. $f(S_{\lambda}) \subset S_{\lambda}$.
- 3. Daca valorile proprii $\lambda_1, \lambda_2, ..., \lambda_k \in \sigma(A)$ sunt distincte (adica $\lambda_i \neq \lambda_j$ daca $i \neq j$) si $v_1, v_2, ..., v_k$ sunt vectori proprii asociati acestora (adica $f(v_i) = \lambda_i v_i$ pentru $i \in \{1, ..., k\}$) atunci $\{v_1, v_2, ..., v_k\}$ este un sistem de vectori liniar independent.
- 4. Daca $\lambda \in \sigma \left(A \right)$ este o radacina multipla de ordinul ka polinomului caracteristic atunci

$$\dim S_{\lambda} \leq k$$
.

Subspatiul S_{λ} se numeste (din cauza proprietatii 2) subspatiul invariant asociat valorii proprii λ .

Din exemplele 5.1.1 si 5.2.1 rezulta ca:

Exemplul 5.2.2. Daca $f \in \mathcal{L}(\mathbb{R}^2)$, f(x,y) = (x+y,x+y) atunci $\sigma(f) = \{0,2\}$, iar subspatiile invariante sunt $S_0 = \{x(1,-1) \mid x \in \mathbb{R}\} = Span(\{1,-1\})$, respectiv $S_2 = \{x(1,1) \mid x \in \mathbb{R}\} = Span(\{1,1\})$. Multimea vectorilor proprii asociati valorii proprii $\lambda = 0$ este $\{x(1,-1) \mid x \in \mathbb{R}^*\}$, iar multimea vectorilor proprii asociati valorii proprii $\lambda = 2$ este $\{x(1,1) \mid x \in \mathbb{R}^*\}$.

Multimea vectorilor proprii ai unui operator poate fi vida.

Exemplul 5.2.3. Fie $f \in \mathcal{L}\left(\mathbb{R}^2\right)$, $f\left(x,y\right) = \left(x+y,-x+y\right)$. Atunci matricea operatorului f (in baza canonica) este $A = \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right)$. Ecuatia caracteristica este

$$\det (A - \lambda I_2) = \begin{vmatrix} 1 - \lambda & -1 \\ 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 + 1 = 0.$$

Prin urmare operatorul $\sigma(f) = \emptyset$, iar f nu are vectori proprii.

Teorema 5.2.1. Teorema diagonalizarii. Fie V un spatiu n-dimensiaonal peste corpul K si $f \in \mathcal{L}(V)$. Operatorul f este diagonalizabil daca si numai daca

- 1. $\sigma(f) \subset K$;
- 2. dimensiunea subsptiului S_{λ} este egala cu ordinul de multiplicitate al valorii proprii λ , oricare ar fi $\lambda \in \sigma(f)$.

2

2.1 PROBLEME REZOLVATE

1. Să se determine valorile proprii și câte o bază în subspațiile invariante ale operatorului $f: \mathbb{R}^3 \to \mathbb{R}^3$ de matrice $A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \\ 1 & 1 & 2 \end{bmatrix}$

REZOLVARE:

Matricea
$$A - \lambda I_3 = \begin{bmatrix} 1 - \lambda & -2 & 1 \\ 2 & 1 - \lambda & 3 \\ 1 & 1 & 2 - \lambda \end{bmatrix}$$
 are $det(A - \lambda I_3) =$

 $=(1-\lambda)^2(2-\lambda)$ deci valorile proprii, adică rădăcinile ecuației caracteristice $det(A-\lambda I_3)=0$ sunt $\lambda_{1,2}=1,\ \lambda_3=2$.

Pentru $\lambda_{1,2}=1$ avem subspaţiul invariant corespunzător $S_{\lambda_{1,2}}=Null(A-\lambda_{1,2}I_3)=Null(A-I_3).$

Prin operații pe linie.

$$A - I_3 = \begin{bmatrix} 0 & -2 & 1 \\ 2 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_3} \begin{bmatrix} \boxed{1} & 1 & 1 \\ 2 & 0 & 3 \\ 0 & -2 & 1 \end{bmatrix} \xrightarrow{-L_1 + L_2 \to L_2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & \boxed{-2} & 1 \\ 0 & -2 & 1 \end{bmatrix}$$

$$\stackrel{L_2+L_3\to L_3}{\to} \begin{bmatrix} 1 & 1 & 1 \\ 0 & \boxed{-2} & 1 \\ 0 & 0 & 0 \end{bmatrix} = S_{A-I_3}$$

Dar $u=[x_1,x_2,x_3]^T\in Null(A-I_3)\iff u\in Null(S_{A-I_3}),$ adică dacă si numai dacă

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ -2x_2 + x_3 = 0 \end{cases}$$

Avem că x_1 și x_2 sunt necunoscute principale pentru că ele corespund poziției pivoților iar $x_3 = \alpha$ e necunoscută secundară. Astfel, sistemul

devine
$$\begin{cases} x_1 + x_2 = -\alpha \\ -2x_2 = -\alpha \end{cases}$$
 de unde, prin substituție inversă $x_2 = \frac{\alpha}{2}$ și

devine $\begin{cases} x_1 + x_2 = -\alpha \\ -2x_2 = -\alpha \end{cases}$ de unde, prin substituţie inversă $x_2 = \frac{\alpha}{2}$ şi $x_1 = \frac{\alpha}{2}$. Deci $u \in S_{\lambda_{1,2}} \iff u = [\frac{\alpha}{2}, \frac{\alpha}{2}, \alpha]^T = \frac{\alpha}{2}[1, 1, 2]^T$ cu alte cuvinte $S_{\lambda_{1,2}} = Span(u_1)$ unde am notat $u_1 = [1, 1, 2]^T$. Aşdar $B_1 = \{u_1\}$ e o bază în $S_{\lambda_{1,2}}$.

Pentru $\lambda_3 = 2$ avem subspațiul invariant corespunzător $S_{\lambda_3} = Null(A \lambda_3 I_3) = Null(A - 2I_3).$

Prin operații pe linie,

$$A - 2I_3 = \begin{bmatrix} \boxed{-1} & -2 & 1\\ 2 & -1 & 3\\ 1 & 1 & 0 \end{bmatrix} \xrightarrow{2L_1 + L_2 \to L_2; L_1 + L_3 \to L_3} \begin{bmatrix} \boxed{-1} & -2 & 1\\ 0 & -5 & 5\\ 0 & -1 & 1 \end{bmatrix}$$

$$\stackrel{\frac{1}{5}L_2 \to L_2}{\to} \left[\begin{array}{ccc} \boxed{-1} & -2 & 1 \\ 0 & \boxed{-1} & 1 \\ 0 & -1 & 1 \end{array} \right] \stackrel{-L_2 + L_3 \to L_3}{\to} \left[\begin{array}{ccc} \boxed{-1} & -2 & 1 \\ 0 & \boxed{-1} & 1 \\ 0 & 0 & 0 \end{array} \right] = S_{A-2I_3}$$

 $\operatorname{Dar} u = [x_1, x_2, x_3]^T \in \operatorname{Null}(A - 2I_3) \iff u \in \operatorname{Null}(S_{A - 2I_3}), \operatorname{adică} \operatorname{dacă}$ și numai dacă

$$\begin{cases}
-x_1 + 2x_2 + x_3 = 0 \\
-x_2 + x_3 = 0
\end{cases}$$

Avem că x_1 și x_2 sunt necunoscute principale pentru că ele corespund poziției pivoților iar $x_3 = \alpha$ e necunoscută secundară. Astfel, sistemul devine $\begin{cases} -x_1-x_2=-\alpha\\ -x_2=-\alpha \end{cases}$ de unde, prin substituție inversă $x_2=\alpha$ și $x_1 = -\alpha$. Deci $u \in S_{\lambda_3} \iff u = [-\alpha, \alpha, \alpha]^T = \alpha[-1, 1, 1]^T$ cu alte cuvinte $S_{\lambda_3} = Span(u_2)$ unde am notat $u_2 = [-1, 1, 1]^T$. Aşdar $B_2 = \{u_2\}$ e o bază în S_{λ_3} .

2. Fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1, -x_2)$. Fără a calcula polinomul caracteristic al lui f, să se găsească valorile proprii și polinoamele invariante le lui f.

REZOLVARE:

Geometric vorbind, f asociază unui vector $u = (x_1, x_2)$ simetricul său față de axa Ox. Un vector u din plan va fi vector propriu dacă și numai dacă este coliniar cu simetricul său față de Ox.

Observăm că dacă u e un vector de pe axa Ox, atunci simetricul lui u este el însuşi, deci vectorii de pe axa Ox sunt vectori proprii corespunzători valorii proprii $\lambda_1 = 1$, pentru că în cazul lor f(u) = u. Dar cum subspațiul acestor vectori e generat de e_1 , avem că $B_1 = Span(e_1)$ e bază în S_{λ_1} .

Pe de altă parte mai observăm că dacă u e un vector de pe axa Oy, atunci simetricul lui u este opusul său, deci vectorii de pe axa Oy sunt vectori proprii corespunzători valorii proprii $\lambda_2 = -1$, pentru că în cazul lor f(u) = -u. Pentru că subspaţiul acestor vectori este generat de e_2 , avem că $B_2 = Span(e_2)$ e bază în S_{λ_2} .

3. Să se stabilească dacă operatorul de la problema 1 este diagonalizabil. REZOLVARE:

Toate valorile proprii $\lambda_1 = 1, \lambda_2 = 1, \lambda_3 = 2 \in \mathbb{R}$ dar pentru $\lambda_{1,2} = 1$, avem că ordinul său algebric de multiplicitate $m_{\lambda_{1,2}} = 2$ însă $dim(S_{\lambda_{1,2}}) = 1$, deci operatorul f nu e diagonalizabil.

4. Să se stabilească dacă operatorul $f: \mathbb{R}^3 \to \mathbb{R}^3$ de matrice $A = \left[\begin{array}{cc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$

este diagonalizabil. REZOLVARE:

Matricea
$$A - \lambda I_3 = \begin{bmatrix} -\lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{bmatrix}$$
 are $det(A - \lambda I_3) =$

 $= -(1 - \lambda)^2 (1 + \lambda)$ deci valorile proprii, adică rădăcinile ecuației caracteristice $det(A - \lambda I_3) = 0$ sunt $\lambda_{1,2} = 1$, $\lambda_3 = -1$.

Pentru $\lambda_{1,2}=1$ avem subspaţiul invariant corespunzător $S_{\lambda_{1,2}}=Null(A-\lambda_{1,2}I_3)=Null(A-I_3)$.

Prin operații pe linie,

$$A - I_3 = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix} \xrightarrow{L_1 + L_3 \to L_3} \begin{bmatrix} \boxed{-1} & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = S_{A - I_3}$$

Dar $u=[x_1,x_2,x_3]^T\in Null(A-I_3)\iff u\in Null(S_{A-I_3}),$ adică dacă și numai dacă

$$\begin{cases} -x_1 + x_3 = 0 \end{cases}$$

Avem că x_1 e necunoscută principală pentru că ea corespunde poziției pivotului iar $x_2 = \alpha$ și $x_3 = \beta$ sunt necunoscute secundare. Astfel, $x_1 = \beta$. Deci $u \in S_{\lambda_{1,2}} \iff u = [\beta, \alpha, \beta]^T = \alpha[0, 1, 0]^T + \beta[1, 0, 1]^T$ cu alte cuvinte $S_{\lambda_{1,2}} = Span(u_1, u_2)$ unde am notat $u_1 = [0, 1, 0]^T$ și $u_2 = [1, 0, 1]^T$. În plus, u_1, u_2 sunt liniar independenți. Așadar $B_1 = \{u_1, u_2\}$ e o bază în $S_{\lambda_{1,2}}$.

Pentru $\lambda_3 = -1$ avem subspațiul invariant corespunzător $S_{\lambda_3} = Null(A - \lambda_3 I_3) = Null(A + I_3)$.

Prin operații pe linie,

$$A + I_3 = \begin{bmatrix} \boxed{1} & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \xrightarrow{-L_1 + L_3 \to L_3} \begin{bmatrix} \boxed{1} & 0 & 1 \\ 0 & \boxed{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} = S_{A + I_3}$$

Dar $u = [x_1, x_2, x_3]^T \in Null(A + I_3) \iff u \in Null(S_{A+I_3})$, adică dacă și numai dacă

$$\begin{cases} x_1 + +x_3 = 0 \\ 2x_2 = 0 \end{cases}$$

Avem că x_1 şi x_2 sunt necunoscute principale pentru că ele corespund poziției pivoților iar $x_3 = \alpha$ e necunoscută secundară. Astfel, $x_2 = 0$ şi $x_1 = -\alpha$. Deci $u \in S_{\lambda_3} \iff u = [-\alpha, 0, \alpha]^T = \alpha[-1, 0, 1]^T$ cu alte cuvinte $S_{\lambda_3} = Span(u_3)$ unde am notat $u_3 = [-1, 0, 1]^T$. Aşdar $B_2 = \{u_3\}$ e o bază în S_{λ_3} .

Observăm că toate valorile proprii $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$, în plus $m_{\lambda_{1,2}} = 2 = dim(S_{\lambda_{1,2}})$ și $m_{\lambda_3} = 1 = dim(S_{\lambda_3})$, deci conform teoremei de diagonalizare, operatorul f e diagonalizabil.

5. Să se calculeze A^{2k} unde Ae matricea operatorului din problema precedentă.

REZOLVARE:

Operatorul e diagonalizabil, mai precis matricea sa în baza $B = \{u_1 = [0,1,0]^T, u_2 = [1,0,1]^T, u_3 = [-1,0,1]\}$ din \mathbb{R}^3 format'a din vectori proprii, are matricea

$$D = f_B = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Dacă notăm $T=T_{B_cB}=[u_{1_{B_c}}|u_{3_{B_c}}|u_{3_{B_c}}]=\left[\begin{array}{ccc} 0&1&-1\\1&0&0\\0&1&1\end{array}\right]$ Atunci avem

că $A = TDT^{-1}$ și ridicând această relație la puterea 2k obținem

$$A^{2k} = (TDT^{-1})(TDT^{-1})\dots(TDT^{-1})$$

deci $A^{2k}=TD^{2k}T^{-1}.$ Dar cum $D^{2k}=I_3,$ obținem că $A^{2k}=TT^{-1}=I_3.$

6. Fie $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}, \ T(A) = A^T$ operatorul de transpunere a matricilor. Să se scrie matricea operatorului în baza canonică

$$B = \{E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\}$$

apoi să se determine spectrul său.

REZOLVARE:

Avem $T(E_1)=E_1=1E_1+0E_2+0E_3+0E_4$, deci $T(E_1)_B=(1,0,0,0)$. Analog $T(E_2)=E_3=0E_1+0E_2+1E_3+0E_4$, astfel $T(E_2)_B=(0,0,1,0)$, apoi $T(E_3)=E_2=0E_1+1E_2+0E_3+0E_4$, deci $T(E_3)_B=(0,1,0,0)$ și

în final $T(E_4) = E_4 = 0E_1 + 0E_2 + 0E_3 + 1E_4$, cu $T(E_1)_B = (0,0,0,1)$. Aşadar

$$A = T_B = [T(E_1)_B | T(E_2)_B | T(E_3)_B | T(E_4)_B] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Polinomul caracteristic este

$$det(T - \lambda I_4) = \begin{vmatrix} 1 - \lambda & 0 & 0 & 0 \\ 0 & -\lambda & 1 & 0 \\ 0 & 1 & -\lambda & 0 \\ 0 & 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} -\lambda & 1 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix}$$

$$= (1-\lambda)^2 \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = (1-\lambda)^2 (\lambda^2 - 1) = -(1-\lambda)^3 (1+\lambda)$$

deci spectrul lui T este $\sigma(T) = \{\lambda_{1,2,3} = 1, \lambda_4 = -1\}$

7. Să se găsească valorile proprii ši subspaţiile invariante ale operatorului din problema precedentă fă ră a mai calcula polinomul caracteristic. REZOLVARE:

Căutăm matrici $A \in \mathbb{R}^{2 \times 2}$ pentru care $T(A) = A^T = \lambda A$. Observăm că o matrice simetrică, adică o matrice cu proprietatea că $A^T = A$ este vector propriu corespunzător valorii proprii $\lambda_1 = 1$. Dar o astfel de matrice simetrică are forma

$$A = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right] = a \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + b \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] + c \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right]$$

cu alte cuvinte dacă notăm $\mathbb{R}_S^{2\times 2}$ subspațiul matricilor simetrice, atunci $\mathbb{R}_S^{2\times 2}=Span(E_1,M_1,E_4)$, unde $M_1=\begin{bmatrix}0&1\\1&0\end{bmatrix}$. Cum aceste matrici sunt liniar independente, $B_1=\{E_1,M_1,E_4\}$ este o bază în $\mathbb{R}_S^{2\times 2}=S_{\lambda_1}$. Pe de altă parte, o matrice antisimetrică e o matrice A cu proprietatea că $A^T=-A$, deci matricile antisimetrice vor fi vectori proprii pentru $\lambda_2=-1$. O astfel de matrice are forma

$$A = \left[\begin{array}{cc} 0 & a \\ -a & 0 \end{array} \right] == a \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]$$

deci dacă notăm $\mathbb{R}_A^{2\times 2}$ subspațiul matricilor antisimetrice, atunci $\mathbb{R}_A^{2\times 2} = Span(M_2)$, unde $M_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ și deci $B_2 = \{M_2\}$ e o bază în subspațiul invariant $S_{\lambda_2} = \mathbb{R}_A^{2\times 2}$.

8. Dacă $Null(A+5I_n)$ conține vectori nenuli, atunci ce informație avem despre spectrul matricii A?

REZOLVARE:

 $Null(A+5I_n)$ conține vectori nenuli dacă și numai dacă sistemul omogen de matrice $A+5I_n$ admite și soluții nebanale, ceea se întâmplă doar dacă $det(A+5I_n)=det(A-(-5)I_n)=0$, de unde $\lambda=-5$ este valoare proprie pentru matricea A, adică $-5\in\sigma(A)$.

2.2 PROBLEME PROPUSE

- 1. Sa se stabileasca care dintre functiile $f: \mathbf{R}^3 \to \mathbf{R}^3$ definite mai jos sunt operatori liniari; in caz de liniaritate sa se determine matricele in baza canonica si rangul acestora.
 - (a) f(x,y,z) = (x,2y,3z);
 - (b) f(x, y, z) = (y + z, z x, z);
 - (c) f(x,y,z) = (y-z,z-x,z+1);
 - (d) f(x, y, z) = (y z, z x, x y);
 - (e) $f(x, y, z) = (y^2 z, z x, z)$;

$$Raspunsuri. \ a. \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, 3; b. \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}, 3; d. \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}, 2.$$

2. Operatorul $f \in \mathcal{L}(\mathbf{R}^3, \mathbf{R}^3)$ are, in baza canonica, matricea $\begin{pmatrix} 1 & 2 & 3 \\ a & 3 & 4 \\ -1 & 2 & 1 \end{pmatrix}$. Sa se determine $a \in \mathbf{R}$ astfel incat f sa fie izomorfism.

Raspuns. $a \in \mathbf{R} \setminus \{1\}$.

- 3. Operatorul $f \in \mathcal{L}(\mathbf{R}^3, \mathbf{R}^3)$ are, in baza canonica, matricea $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ -1 & 2 & 1 \end{pmatrix}$.
 - (a) Sa se determine f(x, y.z) pentru orice $(x, y.z) \in \mathbf{R}^3$.
 - (b) Sa se afle matricea operatorului f^{-1} in baza $\{(1,1,0),(1,0,1),(1,0,0)\}$.
- 4. Fie $f, g \in \mathcal{L}(\mathbf{R}^2, \mathbf{R}^2)$ ale caror matrice in baza canonica sunt $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, respectiv $\begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}$. Sa se scrie matricea operatorilor $f \circ g$ si $g \circ f$ in baza $\{(1, 1,), (-1, 1)\}$; sunt operatorii $f \circ g$ si $g \circ f$ inversabili?
- 5. Demonstrati ca operatorul de derivare $\frac{d}{dx}: \mathbf{R}_n[x] \to \mathbf{R}_n[x]$ este liniar. Determinati matricea acestuia in:

- (a) baza canonica $\{1, x, ...x^n\}$;
- (b) baza $\left\{1, \frac{x-a}{1!}, \frac{(x-a)^2}{2!}, ..., \frac{(x-a)^n}{n!}\right\}$, unde a este un numar real.

Sa se determine cate o baza pentru nucleul, respectiv imaginea sa.

- 6. Operatorul liniar f are, in baza $B = \{e_1, e_2, ..., e_n\}$, matricea $[f]_B$. Ce transformari va suferi aceasta matrice daca interschimbam vectorii e_i si e_j ?
- 7. Un operator liniar are matricea $\begin{pmatrix} 1 & 2 & 0 & 1 \\ 3 & 0 & -1 & 2 \\ 2 & 5 & 3 & 1 \\ 1 & 2 & 1 & 3 \end{pmatrix}$ in baza $\{e_1, e_2, e_3, e_4\}$.

Sa se determine matricea operatorului in baza:

- (a) $\{e_1, e_3, e_2, e_4\}$;
- (b) $\{e_1, e_1 + e_2, e_1 + e_2 + e_3, e_1 + e_2 + e_3 + e_4\}$.

Raspunsuri. a.
$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 2 & 3 & 5 & 1 \\ 3 & -1 & 0 & 2 \\ 1 & 1 & 2 & 3 \end{pmatrix}$$
. b.
$$\begin{pmatrix} -2 & 0 & 1 & 0 \\ 1 & -4 & -8 & -7 \\ 1 & 4 & 6 & 4 \\ 1 & 3 & 4 & 7 \end{pmatrix}$$
.

- 8. Matricea operatorului $f: \mathbf{R}^2 \to \mathbf{R}^2$ in baza $B = \{e_1 = (1,2), e_2 = (2,3)\}$ este $\begin{pmatrix} 3 & 5 \\ 4 & 3 \end{pmatrix}$, iar matricea operatorului $g: \mathbf{R}^2 \to \mathbf{R}$ in baza $B' = \{e'_1 = (3,1), e'_2 = (4,2)\}$ este $\begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix}$. Sa se determine matricea operatorului f+g in baza B'. Raspuns. $\begin{pmatrix} 44 & 44 \\ -\frac{59}{2} & -25 \end{pmatrix}$.
- 9. Matricea operatorului $f: \mathbf{R}^2 \to \mathbf{R}^2$ in baza $B = \{e_1 = (-3,7), e_2 = (1,-2)\}$ este $\begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix}$, iar matricea operatorului $g: \mathbf{R}^2 \to \mathbf{R}^2$ in baza $B' = \{e'_1 = (6,-7), e'_2 = (-5,6)\}$ este $\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$. Sa se determine matricea operatorului $f \circ g$ in baza canonica. Raspuns. $\begin{pmatrix} 109 & 93 \\ 34 & 29 \end{pmatrix}$.
- 10. Determinati valorile proprii si subspatiile invariante corespunzatoare pentru matricele:

(a)
$$\begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$$
;

(b)
$$\begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix} .$$

Raspunsuri. a. $\lambda_1 = \lambda_2 = \lambda_3 = -1$, $\{x(1,1,-1) \mid x \in \mathbf{R}\}$; b. $\lambda_1 = \lambda_2 = \lambda_3 = 2$, $\{x(1,2,0) + y(0,0,1) \mid x,y \in \mathbf{R}\}$.

11. Determinati subspatiile care sunt invariante simultan pentru matricele

$$\begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix} \text{ si } \begin{pmatrix} -6 & 2 & 3 \\ 2 & -3 & 6 \\ 3 & 6 & 2 \end{pmatrix}.$$

Raspuns. $\{x(1,0,-1) + y(0,1,2) \mid x,y \in \mathbf{R}\}.$

12. Determinati valorile si vectorii proprii ale urmatoarelor matrice:

(a)
$$\begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -7 & 4 \end{pmatrix}$$
;

(b)
$$\begin{pmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{pmatrix};$$

(c)
$$\begin{pmatrix} 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 0 & 5 & -3 \\ 4 & -1 & 3 & -1 \end{pmatrix}.$$

Raspunsuri. a. 1, cu multimea vectorilor proprii $\{x\,(1,1,1)\mid x\in\mathbf{R}^*\}$, respectiv 0, cu vectorii proprii $x\,(1,2,3)$, unde $x\neq 0$; b. 1, cu multimea vectorilor proprii $\{x\,(3,1,1)\mid x\in\mathbf{R}^*\}$; c. 2, cu vectorii proprii de forma (x+y,x+y,-x,y), unde scalarii x si y nu sunt simultan nuli.

- 13. Sa se determine $a, b, c \in \mathbf{R}$ astfel ca (1, -1, 1) sa fie vector propriu pentru operatorul $f : \mathbf{R}^3 \to \mathbf{R}^3$, f(x, y, z) = (ax + y + z, x + by + z, x + y + cz). Raspuns. $(a, b, c) \in \{(\lambda, \lambda, \lambda 2) \mid \lambda \in \mathbf{R}\}$.
- 14. Sa se aduca la forma diagonala si sa se indice o baza in care are aceasta forma matricele:

(a)
$$\begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix};$$

(b)
$$\begin{pmatrix} 6 & -5 & -3 \\ 3 & -2 & -2 \\ 2 & -2 & 0 \end{pmatrix};$$

(d)
$$\begin{pmatrix} 4 & -3 & 1 & 2 \\ 5 & -8 & 5 & 4 \\ 6 & -12 & 8 & 5 \\ 1 & -3 & 2 & 2 \end{pmatrix};$$

Raspunsuri. a.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 , $\left\{ \left(1,1,1 \right), \left(1,1,0 \right), \left(1,0,-3 \right) \right\}$; b. matricea nu

se poate aduce la forma diagonala; c.
$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}, \{(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,-1,-1,-1,-1)\}$$
d. matricea nu se poate aduce la forma diagonala; e.
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \{(1,0,0,1), (0,1,1,0), (0,-1,1,0), ($$

d. matricea nu se poate aduce la forma diagonala; e.
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \{(1,0,0,1), (0,1,1,0), (0,-1,1,0), (0,0,1$$

15. Un operator liniar are matricea
$$A=\begin{pmatrix}15&-11&5\\20&-15&8\\8&-7&6\end{pmatrix}$$
 in baza $\{e_1,e_2,e_3\}$.

Sa se gaseasca matricea operatorului in baza $\{2e_1 + 3e_2 + e_3, 3e_1 + 4e_2 + e_3, e_1 + 2e_2 + 2e_3\}$ si sa se calculeze A^{2010} .

Raspuns.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
,

$$\begin{pmatrix} -6+12\cdot 2^{2010}+3^{2010} & 10-9\cdot 2^{2010}-3^{2010} & -4+3\cdot 2^{2010}+3^{2010} \\ -18+16\cdot 2^{2010}+2\cdot 3^{2010} & 15-12\cdot 2^{2010}-2\cdot 3^{2010} & -4+4\cdot 2^{2010}+2\cdot 3^{2010} \\ -6+4\cdot 2^{2010}+2\cdot 3^{2010} & 5-3\cdot 2^{2010}-2\cdot 3^{2010} & -2+2^{2010}+2\cdot 3^{2010} \end{pmatrix}.$$

16. Operatorul
$$f \in \mathcal{L}(\mathbf{R}^3, \mathbf{R}^3)$$
 are, in baza canonica, matricea $A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & 5 \end{pmatrix}$. Sa se arate ca $(A + I_3)^3 = 0$.

18. Sa se arate ca exista o matrice
$$T$$
 astfel ca $\begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} = T \begin{pmatrix} -1 & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & -\sqrt{3} \end{pmatrix} T^{-1}.$

$$Raspuns. \text{ De exemplu } T = \begin{pmatrix} -1 & 1 & 1 \\ 0 & \sqrt{3} + 1 & -\sqrt{3} + 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- 19. Sa se reduca la forma diagonala matricea $\begin{pmatrix} 0 & \sin \alpha & \sin 2\alpha \\ \sin \alpha & 0 & \sin 2\alpha \\ \sin 2\alpha & \sin \alpha & 0 \end{pmatrix}, \text{ unde}$ $\alpha \in \mathbf{R} \setminus \{k\pi \mid k \in \mathbf{Z}\}.$ $Raspuns. \begin{pmatrix} -\sin \alpha & 0 & 0 \\ 0 & -\sin 2\alpha & 0 \\ 0 & 0 & \sin \alpha & +\sin 2\alpha \end{pmatrix}, \operatorname{daca} 2\cos \alpha \neq 1 \operatorname{si} \begin{pmatrix} \sin \alpha & 0 & 0 \\ 0 & \sin \alpha & 0 \\ 0 & 0 & \sin \alpha \end{pmatrix}$
- 20. Sa se arate ca exista o matrice nesingulara T astfel incat $\begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix} T = T \begin{pmatrix} a+2b & 0 & 0 \\ 0 & a-b & 0 \\ 0 & 0 & a-b \end{pmatrix}$.
- 21. *Sa se arate ca un subspatiu S al unui spatiu V/K este invariant pentru automorfismul f daca si numai daca el este invariant pentru operatorul f^{-1} .
- 22. Operatorul f are, intr-o baza data, matricea $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 1 & a \end{pmatrix}$, $a \in \mathbf{R}$. Sa se determine numarul a pentru care f nu este automorfism. Raspuns. a = 1.
- 23. Determinati toate subspatiile invariante ale spatiului polinoamelor de grad mai mic sau egal cu n, $\mathbf{R}_n[x]$, relativ la operatorul de derivare. Raspuns. Subspatiul nul si subspatiile $\mathbf{R}_m[x]$, unde $m \leq n$.
- 24. *Folosind teorema Cayley-Hamilton sa se arate ca $\begin{pmatrix} 3 & 1 & 1 \\ 2 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -\frac{1}{2} & 1 \\ -1 & \frac{1}{2} & 2 \\ -1 & \frac{1}{2} & 1 \end{pmatrix}$.
- 25. *Matricea operatorului $f \in \mathcal{L}(\mathbf{R}^3, \mathbf{R}^3)$, in baza canonica, este $\begin{pmatrix} 1+a^2 & ab & ac \\ ab & 1+b^2 & bc \\ ac & bc & 1+c^2 \end{pmatrix}$. Sa se determine $a,b,c\in\mathbf{R}$ astfel incat sa existe o baza in care matricea operatorului f sa fie matricea unitate.

Indicatie. Se arata ca matricea este diagonalizabila daca si numai daca $a^2+b^2+c^2\neq 0.$