

مبانی رمزنگاری و امنیت شبکه

سیستمهای رمز دنبالهای

Stream Ciphers

مهتاب ميرمحسني

نیمسال دوم (بهار) ۹۹-۹۹

سیستم رمز متقارن یا تک کلیدی (Symmetric=One Key)

- کلیدهای رمزگذاری و رمزگشایی یکسان یا به راحتی از روی یکدیگر قابل محاسبه
 - سیستمهای رمز قالبی (Block Ciphers)
 - سیستمهای رمز دنبالهای (Stream Ciphers)

سیستمهای رمز دنبالهای (Stream Ciphers)

• هر سمبل از دنباله متن اصلی توسط سمبل متناظر دنباله کلید رمز می شود $P = P_1 P_2 P_3 \dots$

$$K = K_1 K_2 K_3 \dots$$

$$C = E(K, P) = E(K_1, P_1)E(K_2, P_2)... = C_1C_2... \Rightarrow C_i = E(K_i, P_i)$$

- ایدهآل: دنباله متن اصلی نامحدود \longrightarrow دنباله کلید نامحدود
 - الگوریتم ساخت دنباله کلید نامتناهی از کلید اصلی

رمز دنبالهاي

- دنباله کلید
- نامتناوب: رمز ورنام ← امن كامل
 - متناوب: مانند رمز Vigenère

- $K = K_1 K_2 \dots K_d K_1 K_2 \dots K_d \dots$
- (طبق معیار شانون) אולפریتم رمزگذاری ($E(K_i,\cdot)$) ساختار ساده XOR است (طبق معیار شانون) •

رمز دنبالهای

11001100 plaintext

① 01101100 key stream

10100000 ciphertext

$$C_i = K_i \oplus P_i$$
 رمز گذاری

10100000 ciphertext

$$P_i = K_i \oplus C_i$$
 رمزگشایی •

$$K_i = ?$$

الزامات رمز دنبالهاي

- A1: دوره تناوب دنباله کلید باید از یک حداقل معلوم بزرگ تر باشد
 - هر چه طولانی تر رمزشکنی پیچیده تر (حمله نوع اول)
 - A2: دنباله کلید تولید شده تصادفی به نظر برسد
 - خواص دنباله تصادفی واقعی را تا حد ممکن ارضا نماید
- \bigcirc هر چه دنباله کلید تصادفی r_{0} متن رمزشده تصادفی r_{0} رمزشکنی پیچیده تر رحمله نوع اول)
 - A3: غيرقابل پيشبيني: الگوريتم توليد كليد غيرخطي باشد
 - مقابله با حمله نوع دوم (حمله متن اصلی معلوم)
 - کلید اصلی طولانی باشد
 - مقابله با حمله جستجوی فراگیر
 - 🔾 فناوری امروزه: حداقل ۱۲۸ بیت

دنبالههاي تصادفي

- مولد دنباله شبه تصادفی: تولید توسط یک الگوریتم یقینی
 - pseudorandom number generators (PRNGs) o
 - deterministic random bit generators (DRBGs) o
 - استفاده از منبع تصادفی فیزیکی
 - true random number generators (TRNGs) o
 - non-deterministic random bit generators (NRBGs) o

کاربرد دنبالههای تصادفی در امنیت

- دنباله کلید در رمز دنبالهای (متقارن)
- تولید کلید در الگوریتمهای رمزنگاری کلید همگانی (RSA)
 - تولید اعداد اول (مثلا از مرتبه ۱۰۱۵۰)
- ◄ روش جستجوی فراگیر (آزمودن تمامی اعداد فرد کوچکتر از جذر)
- × استفاده از الگوریتمهایی با ورودی اعداد تصادفی- randomization
 - تولید کلید نشست (session key)
 - کلید مخفی برای استفاده در مدت زمان معین و محدود
 - توزیع کلید و احراز اصالت
 - تولید تکشمار (nonce) برای مقابله با حمله تکرار

تولید اعداد تصادفی

TRNG = true random number generator

PRNG = pseudorandom number generator

PRF = pseudorandom function

دنباله شبهتصادفی Pseudorandom Number (PN)

- دنباله غیرتصادفی (یقینی) با خواص تصادفی مورد نظر
 - ۰ معیارهای سه گانه گالوب
 - هر دنباله که در این معیارها صدق کند: PN-sequence
- run: مجموعه سمبلهای همنام که با سمبل قبل و بعد خود متفاوت باشند
 - eap : اگر سمبلها صفر باشند
 - block اگر سمبلها یک باشند

دنباله شبهتصادفی Pseudorandom Number (PN)

- دنباله غیرتصادفی (یقینی) با خواص تصادفی مورد نظر
 - ۰ معیارهای سهگانه گالوب
 - O هر دنباله که در این معیارها صدق کند: PN-sequence
- run: مجموعه سمبلهای همنام که با سمبل قبل و بعد خود متفاوت باشند
 - gap: اگر سمبلها صفر باشند
 - block: اگر سمبلها یک باشند
 - $\{s_t\}, \{s_{t+ au}\}$ تابع همبستگی یک دنباله متناوب (با دوره تناوب p
 - برابرند که ۲ دنباله در یک دوره تناوب برابرند: $A \circ$
 - $(D\!\!=\!\!p\!\!-\!\!A)$ تعداد محلهایی که ۲ دنباله در یک دوره تناوب متفاوتند: $D\!\!=\!\!p\!\!-\!\!A$

$$C_{\tau} = \frac{A - D}{p} \qquad 0 \le \tau < p$$

معیارهای گالوب (تصادفی بودن (A2))

- R1: تعداد صفرها و یکها در یک دوره تناوب برابر باشند
 - نصف سمبلها صفر و نصف آن ها یک باشند ho
 - م فرد: اختلاف تعداد صفرها و یکها، فقط یک باشد
 - توزیع یکنواخت
 - R2: یکنواختی runها
- در یک دوره تناوب، نصف runها دارای طول ۱، یک چهارم دارای طول ۲، یک هشتم دارای طول ۳ و ... باشند
 - برای هر یک از runها، تعداد gapها و blockها برابر باشند
 - R3: تابع همبستگی غیرهمفاز (au
 eq 0) مقدار ثابتی باشد
 - ٥ پس از حذف بایاس: تابع همبستگی غیرهمفاز صفر باشد
 - 0 استقلال

تستهای آماری ارزیابی تصادفی بودن

- تست فرکانس: بررسی مساوی بودن (تقریبی) احتمال تولید بیت صفر و یک
 اساسی ترین تست
- تست runها: تعداد runها با طول متفاوت تقریبا برابر با مقدار مورد نظر است
 - تست سريال: قابل قبول بودن احتمالهاى انتقالى
 - تست تابع همبستگی: محاسبه تقریبی
 - تست آماری جامع Maurer
 - دنباله كاملاً تصادفي قابل فشردهسازي نيست
 - تعیین میزان فشردهسازی

عدم پیشبینی

- با دانستن تعدادی از بیتهای دنباله نتوان دنباله را یافت
- عدم پیشبینی پیشرو (Forward unpredictability)
- تا زمانی که کلید اصلی (seed) نامعلوم باشد، با دانستن بیتهای قبلی دنباله کلید متناوب نتوان بیت بعدی را تعیین کرد
 - عدم پیشبینی پسرو (Backward unpredictability)
- با دانستن هر تعداد از بیتهای دنباله کلید متناوب، نتوان کلید اصلی (seed) را تعیین کرد
 - تستهای آماری: مشابه تستهای ارزیابی تصادفی بودن

true random number generator (TRNG)

- منبع تصادفی (منبع آنتروپی)
- فيزيكى: حركت ماوس، مقدار لحظهاى كلاك سيستم، ...
 - ۰ ترکیب منابع
 - نیاز به حذف بایاس 🔾

true random number generator (TRNG)

- منبع تصادفی (منبع آنتروپی)
- فيزيكى: حركت ماوس، مقدار لحظهاى كلاك سيستم، ...
 - ترکیب منابع
 - نیاز به حذف بایاس
 - چرا شبه تصادفی؟
- رمز دنبالهای: نیاز به ارسال امن دنباله کلید (به طول متن اصلی)
 - ◄ ۱۲۸ بيت کليد اصلي
 - \bigcirc کاربردهای دنباله تصادفی با طول محدود \longrightarrow شبهتصادفی
 - × حذف بایاس با استفاده از PRF
 - 🗷 نرخ تولید اعداد واقعی تصادفی معمولا در حد مورد نیاز نیست

شبه تصادفي

PRNG = pseudorandom number generator PRF = pseudorandom function

(c) PRF

(b) PRNG

- (deterministic) الگوريتم يقيني
 - فیدبک از خروجی به ورودی
- مهاجم با دانستن الگوریتم و ورودی (کلید اصلی = seed)، دنباله را میتواند بازسازی کند
 - PRNG: توليد دنباله با طول دلخواه
 - ۰ کاربرد در رمز دنبالهای
 - PRF: دنباله با طول معين
 - کلید مخفی نشست و تکشمار
 - الگوریتم یکسان میتواند بکار رود
 - تستهای آماری

الزامات كليد اصلي = seed

 اگر مهاجم کلید اصلی را بداند با توجه به یقینی بودن الگوریتم، دنباله کلید را میسازد

- کلید اصلی باید امن باشد
- دنباله تصادفی یا شبه تصادفی
- معمولاً کلید اصلی توسط TRNG تولید میشود
 استاندارد 90-SP800

طراحی PRNG برای رمزنگاری

- الگوریتمهای ویژه تولید اعداد شبه تصادفی
- تنها برای تولید اعداد شبه تصادفی (مولد اعداد شبه تصادفی)
- برخی استفاده کلی دارند و برخی برای رمز دنبالهای طراحی شدهاند
 - RC4 $_{
 m 9}$ LFSR $_{
 m O}$
 - الگوریتمهایی بر پایه روشهای موجود رمزنگاری
 - الگوریتمهای رمزنگاری ورودی را تصادفی میکنند
- ◄ مهاجم از خواص غیرتصادفی متن رمزشده در رمزشکنی استفاده می کند
- كاربرد: سيستمهايي كه از الگوريتم خاصي براي رمزنگاري استفاده ميكنند
 - 1. رمزهای متقارن قالبی
 - 2. رمزهای کلید همگانی (نامتقارن): استفاده از مفاهیم نظریه اعداد
 - 3. توابع چکیدهساز و کدهای احراز اصالت پیام

مولد خطی همنهشتی (Linear Congruential Generators)

- پیشنهاد توسط Lehmer در سال ۱۹۵۱
- دنباله اعداد تصادفی $\{X_n\}$ به صورت زیر (تکراری) تولید می شود:

$$X_{n+1} = (aX_n + c) \mod m$$
 the modulus $m > 0$
 a the multiplier $0 < a < m$
 c the increment $0 \le c < m$
 X_0 the starting value, or seed $0 \le X_0 < m$

- $0 \le X_n < m$ عدد صحیح : $\{X_n\}$
 - انتخاب مقادیر a, c, m

$$a = 7, c = 0, m = 32 \rightarrow \{7,17,23,1,7,...\}$$

 $a = 5, c = 0, m = 32 \rightarrow \{5,25,29,17,21,9,13,1,5,...\}$
 $m \approx 2^{31}$

مولد خطی همنهشتی (ادامه)

- شرایط پیشنهادی برای مولد:
- \sim دوره تناوب کامل باشد (تمامی اعداد از 0 تا m-1 تولید شوند)
- اول و c=0 باشد d می توان d را طوری انتخاب کرد که دوره تناوب d باشد (همه مقادیر به جز d)
 - دنباله تولیدشده تصادفی به نظر برسد
 - قابل پیادهسازی در حساب ۳۲ بیتی
 - $m = 2^{31} 1$ اول مناسب m ×
 - $X_{n+1} = (aX_n) \mod(2^{31}-1)$ **a, c, m** انتخاب مناسب مقادیر
 - $a = 7^5 = 16807$ تعداد کمی $a = 7^5 = 16807$ در شرایط صدق می کنند
 - كامييوترهاى IBM360

مولد خطى همنهشتى (ادامه)

- با انتخاب مناسب مقادیر a, c, m دنباله اعداد به دست آمده مشابه یک انتخاب تصادفی از مجموعه $\{1,2,...,m-1\}$ میباشد
 - است الگوریتم یقینی است! تنها قسمت تصادفی انتخاب مقدار اولیه X_0 است الگوریتم یقینی است!
 - $a=7^5, c=0, m=2^{31}-1$ اطلاعات دشمن: نوع الگوريتم و پارامترها
 - با مشخص شدن یک عدد، تمامی اعداد بعدی مشخص میشوند
 - اطلاعات دشمن: نوع الگوريتم
- $X_1 = (aX_0 + c) \mod m$ دانستن طول محدودی از دنباله برای تعیین پارامترها کافی است $X_1 = (aX_0 + c) \mod m$

$$X_2 = (aX_1 + c) \operatorname{mod} m$$

$$X_3 = (aX_2 + c) \operatorname{mod} m$$

- استفاده از منابع تصادفی
- \circ دنباله پس از هر N عدد، با مقدار لحظهای کلاک سیستم باز آغاز شود

مو**لد** (۱۹۸۶) Blum Blum Shub مولد

$$p \equiv q \equiv 3 \mod 4$$
 : دو عدد اول بزرگ $p \in q$ و p را انتخاب می کنیم، به طوری که: $p \equiv q \equiv 3 \mod 4$

$$s: \text{random} \rightarrow (s, n) = 1$$

$$X_0 = s^2 \mod n$$

 $\mathbf{for} i = 1 \mathbf{to} \infty$
 $X_i = (X_{i-1})^2 \mod n$
 $B_i = X_i \mod 2$

مولد Blum Blum Shub

$$n = 192649 = 383 \times 503$$
$$s = 101355$$

i	X_i	B_i
0	20749	
1	143135	1
2	177671	1
3	97048	0
4	89992	0
5	174051	1
6	80649	1
7	45663	1
8	69442	0
9	186894	0
10	177046	0

i	X_i	B_i
11	137922	0
12	123175	1
13	8630	0
14	114386	0
15	14863	1
16	133015	1
17	106065	1
18	45870	0
19	137171	1
20	48060	0

مو**لد Blum Blum Shub**

- مولد بیت شبه تصادفی امن از نظر رمزنگاری
- Cryptographically secure pseudorandom bit generator (CSPRBG)
 - تست بیت بعدی
 - با دانستن k بیت قبلی، احتمال صفر یا یک بودن بیت بعدی 0. و باشد
 - ◄ در زمان چندجملهای
 - غیرقابل پیشبینی از نظر محاسباتی
 - پیچیدگی معادل با تجزیه n به دو عامل اول x

ماشین حالت محدود (finite state machine)

- $S = \{S_i\}$ مجموعه حالات محدود
- $A = \{A_i\}$ الفباى محدود ورودى •
- $B = \{B_i\}$ الفباى محدود خروجى •
- $B_k = \mu(A_i, S_j)$ خروجی تابعی از ورودی و حالت ماشین \bullet
- $S'_{j} = \delta(A_{i}, S_{j})$ قبلی و حالت قبلی از ورودی و حالت بعدی تابعی از ورودی
 - دیاگرام حالت

حالت اوليه	ورودی	$A_{\rm l}$	A_2
S_1		B_1, S_1	B_3, S_2
S_2		B_{2}, S_{1}	B_2, S_2

ماشین حالت محدود (ادامه)

$$\widehat{A_1}\widehat{A_1}\widehat{A_2} \ \widehat{A_1}\widehat{A_1}\widehat{A_2} \ A_1A_1A_2 \dots$$
 $S_1\widehat{S_1}\widehat{S_1} \ \widehat{S_2}\widehat{S_1}\widehat{S_1} \ \widehat{S_2}S_1S_1 \dots$
 $B_1\widehat{B_1}B_3 \ B_2\widehat{B_1}B_3 \ B_2B_1B_3 \dots$

- اگر دنباله ورودی یک ماشین حالت محدود، یک دنباله در نهایت متناوب باشد، دنباله خروجی نیز در نهایت متناوب است
 - اگر ماشین حالت محدود، الگوریتم تولید کلید باشد، دنباله کلید تولید شده
 یک دنباله در نهایت متناوب خواهد بود
 - اگر شیفت رجیستر با فیدبک خطی: دنباله از ابتدا متناوب
 - ارضای A1 و A2

شيفت رجيستر

• مجموعهای از حافظههای باینری

- $||S|| = 2^n$ racle all \circ
- ماشین حالت محدود با الفبای ورودی و خروجی باینری

• تابع فیدبک خطی باشد

$$f(S_0, S_1, \dots, S_{n-1}) = C_0 S_0 + C_1 S_1 + \dots + C_{n-1} S_{n-1}$$
$$C_i \in \{0, 1\}$$

$$C_0 = 1$$

- ستاوب است LFSR با ورودی صفر و فرض $C_0 = 1$ یک دنباله متناوب است
 - $p \le 2^n 1$ طبقه: دوره تناوب $n \in$
 - اگر دوره تناوب حداکثر شود: (Maximal length sequence) اگر دوره تناوب حداکثر

$$f(x) = 1 + C_1 x + \ldots + C_{n-1} x^{n-1} + x^n = \sum_{i=0}^{n} C_i x^i$$
 with $C_i(x) = 1 + C_1 x + \ldots + C_{n-1} x^{n-1} + x^n = \sum_{i=0}^{n} C_i x^i$

$$f(x) = 1 + C_1 x + \dots + C_{n-1} x^{n-1} + x^n = \sum_{i=0}^{n} C_i x^i$$

 $\operatorname{GF}(2^n)$ چندجملهایها در •

$$C_0 = 1$$

- چندجملهای سادهنشدنی (irreducible)
- هرگاه بر هیچ چندجملهای به جز ۱ و خودش بخشپذیر نباشد
 - exponent) نما
- $e \le 2^n 1 \iff f(x) | x^e + 1$:e به طوری که e کوچکترین عدد صحیح مانند $e \le 2^n 1$
 - چندجملهای اولی (primitive)
 - $e=2^n-1$ هر چندجملهای سادهنشدنی با نمای بیشینه \circ
- شرط لازم و کافی برای آن که خروجی LFSR دوره تناوب بیشینه داشته باشد، آن است که چندجملهای مشخصه اولی باشد $p=2^n-1$

/A1 •

• LFSRای که چندجملهای مشخصهاش اولی باشد، معیارهای سهگانه گالوب را برآورده می کند

$$f(x) = 1 + C_1 x + ... + C_{n-1} x^{n-1} + x^n = \sum_{i=0}^{n} C_i x^i$$

- - 2^n :n تعداد چندجملهایهای درجه \circ
 - برای nهای بزرگ تفاوت چندانی نمی کند \circ

$$n = 128 \rightarrow 2^{128} \approx 10^{39} , \frac{2^{128}}{128} \approx 10^{37}$$

امنیت رمز دنبالهای با LFSR

- کلید = حالت اولیه (n, n) + ضرایب چندجملهای فیدبک
 - حالت اولیه به جز صفر
 - چندجملهای اولی

$$||K|| = \lambda(n)(2^n - 1) = \frac{(2^n - 1)\phi(2^n - 1)}{n} \approx \frac{2^n \cdot 2^n}{n} = \frac{2^{2n}}{n}$$

$$H(K) = \log\left(\frac{2^{2n}}{n}\right) \approx 2n \to N_0 \approx \frac{2n}{3.2} = 0.6n$$

- با افزایش •
- در برابر حمله نوع اول مقاوم است

امنیت رمز دنبالهای با LFSR

- حمله نوع دوم
- متن اصلی متناظر با بخشی از متن رمزشده در اختیار است

$$p_i \oplus k_i = c_i \longrightarrow k_i = p_i \oplus c_i$$

- تعداد معینی از بیتهای دنباله کلید در اختیار است
- تعداد معینی از بیتهای دنباله خروجی LFSR در اختیار است
- (n-1) هدف: بدست آوردن کلید = حالت اولیه (n بیت) + ضرایب چندجملهای فیدبک (n-1)
- پند بیت (متوالی) از دنباله کلید معلوم باشد تا سیستم شکسته شود؟ $2l \leq 2n$
 - 2l=2n :چندجملهای اولی \circ

امنیت رمز دنبالهای با LFSR

$$n = 64 \rightarrow p = 2^{64} - 1 \approx 10^{20}$$

2n = 128

- A1: دوره تناوب دنباله کلید بزرگ
- A2: دنباله کلید تولید شده تصادفی به نظر برسد
 - معیارهای گالوب
 - 2*n*-1 مجهول
 - o با 2n معادله خطی به جواب میرسد
 - A3 : الگوريتم توليد كليد غيرخطي باشد
 - ساختار غیرخطی
- تابع فیدبک غیرخطی (شیفت رجیستر با فیدبک غیرخطی (NLFSR))
 - ترکیب کنندههای غیرخطی (میان چند LFSR)

جدول صحت (truth table)

ورودى		خروجی	تابع سطر			
	S_0	S_1	S_2	S_3		$S_0 S_1 S_2 -$
	0	0	0	1	$(S_0+1)(S_1+1)(S_2+1)$	1:=1
	0	0	1	1	$(S_0+1)(S_1+1)S_2$	عاگذاری بک شود
	0	1	0	0	$(S_0+1)S_1(S_2+1)$	ب سود
	0	1	1	1	$(S_0+1)S_1S_2$	e~
	1	0	0	0	$S_0(S_1+1)(S_2+1)$	جموع ع هر سطر در
	1	0	1	0	$S_0(S_1+1)S_2$	سطر ر ر
	1	1	0	1	$S_0S_1(S_2+1)$	$f\left(S_0, S_1, S_2\right) = \left(S_0 + \frac{1}{2}\right)$
	1	1	1	0	$S_{0}S_{1}S_{2}$	$+(S_0$
						$+(S_0$
						1 . 0

$$S_0 S_1 S_2 \to S_1 S_2 S_3$$

- تابع سطر: با جاگذاری مقادیر سطر، یک شود
- تابع فیدبک: مجموع
 حاصلضرب تابع هر سطر در
 خروجی همان سطر

$$\begin{aligned} f(S_0, S_1, S_2) &= (S_0 + 1)(S_1 + 1)(S_2 + 1) \cdot 1 \\ &+ (S_0 + 1)(S_1 + 1)S_2 \cdot 1 \\ &+ (S_0 + 1)S_1(S_2 + 1) \cdot 0 + \cdots \\ &= 1 + S_0 + S_1 + S_1S_2 \end{aligned}$$

شیفت رجیستر با فیدبک غیرخطی (NLFSR)

- هر جدول صحت یک تابع فیدبک را میدهد و برعکس
 تناظر یک به یک
 - 2^{2^n} = racle delta = racle delta = racle o
 - 2^n = تعداد توابع فیدبک خطی \circ
- برای شکستن در حمله نوع دوم 2×2^n بیت لازم است \bullet
 - تحت شرايطي!

تركيب كنندههاي غيرخطي

$$(n_i, n_j) = 1$$

- قضیه Ruppel-Staffelbach
 - چندجملهایها اولی

تركيب كنندههاي غيرخطي

• ترکیب کننده Hadamard

 $2 \times nm$ و بیت مورد نیاز در حمله نوع دوم •

- احتمال بیت ۱: $\frac{1}{4}$ احتمال بیت \mathbb{R} 1 امی کند
- یا دانستن یک بیت $x_3 = 1$ دو بیت از LFSR ها مشخص می شود $x_3 = 1$
 - همبستگی دنباله خروجی با تک تک ورودیها

تركيب كنندههاي غيرخطي

• ترکیب کننده حالت به کمک flip-flop

$$q_n = (a_n + b_n + 1)q_{n-1} + a_n$$

$$p = \left(2^m - 1\right)\left(2^n - 1\right)$$

J	K	q_n
0	0	q_{n-1}
0	1	0
1	0	1
1	1	$\overline{q_{n-1}}$

• هر ۲ بیت متوالی یک بیت LFSR را میدهد

تولید دنباله شبه تصادفی بر پایه رمزهای قالبی

- الگوریتمهای رمزنگاری ورودی را تصادفی می کنند
- كاربرد: سيستمهايي كه از الگوريتم خاصي براي رمزنگاري استفاده ميكنند
 - سبک کاری CTR: استانداردهای PFC 4086 ANSI X9.82 ،NIST SP 800-90A: استانداردهای
 - o سبک کاری OFB: X9.82 ، AV9.82 کاری OFB

ANSI X9.17 PRNG

- کاربردهای امنیت سیستمهای مالی و PGP
 - ٣ ماجول 3-DES

NIST SP 800-90A - CTR_DRBG

- counter mode-deterministic random bit generator
 - پروسسورهای اینتل
 - استفاده از یک منبع تصادفی فیزیکی و TRNG
 - استفاده از 3DES با ۳ کلید یا •

- توسط Ron Rivest در ۱۹۸۷ برای امنیت سیستم
 - رمز دنبالهای با طول کلید متغیر و عملیات بایتی
 - ۰ بر پایه جایگشت تصادفی
 - ۰ دوره تناوب دنباله کلید بیشتر از ۱۰۱۰۰
 - ۰ سرعت زیاد
 - استفاده در امنیت 802.11 wireless LAN
- WiFi Protected Access (WPA) و پروتکل Wired Equivalent Privacy (WEP) و پروتکل ⊙
 - استفاده در پروتکل Kerberos و امنیت لایه انتقال (Secure Shell (SSH))
 - استفاده در امنیت وب
 - Secure Sockets Layer/Transport Layer Security (SSL/TLS)استاندارد
 - تا سال ۱۹۹۴ مخفی بود!
 - کلید = ۱ تا ۲۵۶ بایت (۸ تا ۲۰۴۸ بیت)، بردار حالت=۲۵۶ بایت

1. مقداردهی اولیه (Initialization)

```
S[0] = 0, S[1] = 1, \dots, S[255] = 255 مقادیر \cdot تا ۲۵۵ در S ریخته میشوند S[0] = 0, S[1] = 1, \dots, S[255]
```

کلید در T کپی و به مقدار مورد نیاز تکرار میشود

```
/* Initialization */
for i = 0 to 255 do
S[i] = i;
T[i] = K[i mod keylen];
```


2. جایگشت اولیه (Initial permutation of S)

- هر بایت در S[i] را با بایت دیگری از آن جایگزین کن
 - این عمل را مطابق با مقدار $\mathsf{T}[\mathsf{i}]$ انجام بده c

```
/* Initial Permutation of S */
j = 0;
for i = 0 to 255 do
    j = (j + S[i] + T[i]) mod 256;
Swap (S[i], S[j]);
```



```
/* Stream Generation */
i, j = 0;
while (true)
   i = (i + 1) mod 256;
   j = (j + S[i]) mod 256;
Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];
```

3. تولید دنباله

- کلید از الگوریتم خارج میشود
- حایگشت S بر طبق مقادیر خودش

• رمزگذاری و رمزگشایی: XOR بایتی

امنیت RC4

- حملات زیادی به آن صورت گرفته
- با طول کلید بیشتر از ۱۲۸ بیت ناموفق هستند
 - مشکل در پروتکل WEP
- Fluhrer, S.; Mantin, I.; and Shamir, A. "Weakness in the Key Scheduling Algorithm of RC4." Proceedings, Workshop in Selected Areas of Cryptography, 2001.
 - استفاده در تامین محرمانگی 802.11 wireless LAN
 - ۰ آسیبپذیر
 - مشکل در RC4 نیست، بلکه در روش تولید کلید اصلی میباشد
 - در کاربردهای دیگر RC4 مشکلی نیست
 - سیستم امن = الگوریتم رمزنگاری + پروتکل

امنیت RC4

- تحلیلهای اخیر نشان گر ضعف در دنباله کلید تولید شده:
- Paul, G., and Maitra, S. "Permutation after RC4 Key Scheduling Reveals the Secret Key", *Selected Areas of Cryptography: SAC 2007, Lecture Notes on Computer Science*, Vol. 4876, pp. 360–337, 2007.
- Al Fardan, N., et al. "On the Security of RC4 in TLS and WPA." *USENIX Security Symposium*, July 2013.
 - منع استفاده در:
 - TLS در RFC 7465 توسط TETF
 - Prohibiting RC4 Cipher Suites, February 2015
 - کاربردهای دولتی توسط NIST
 - SP 800-52, Guidelines for the Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations, September 2013

True random number generator (TRNG)

- استفاده از منبع تصادفی غیر یقینی
 - :RFC 4086 O
 - ズ ورودی صدا/تصویر
 - ◄ ديسک درايو
 - random.org •
 - NIST SP 800-90B •
 - باياس: توزيع نتايج يكنواخت نباشد
- نرخ آنتروپی $1 \leq r \leq 0$: معیار تصادفی بودن و غیرقابل پیشبینی بودن
 - Conditioning algorithms or deskewing algorithms
 - O تابع چکیدهساز (Hash Function)
 - رمز قالبی (با کلید دلخواه)

Intel Digital Random Number Generator (DRNG)

- May 2012 •
- پیادهسازی سختافزاری (امنیت و سرعت بالا)
- دنباله تصادفی با نرخ 4 Gbps (منبع آنتروپی سختافزاری)
- مرحله آخر: شبه تصادفی
 - CTR_DRBG O
 - **ENRNG** O