On note:

- F(n) le nombre d'opérations nécessaire pour fusionner deux listes déjà triées de taille n, on sait qu'il existe $K \in \mathbb{N}$ tel que $F(n) \leq Kn$ car la fusion est de complexité linéaire.
- C(n) le nombre d'opérations élémentaires pour trier avec le tri fusion une liste de n éléments.

Montrons par récurrence $\forall n \in \mathbb{N}, C(n) \leq Kn \log_2(n)$

Initialisation : C(1) = 0 et $K \times 1 \times \log_2(1) = 0$

Hérédité : Soit $n \in \mathbb{N}$ tel que $C(n) \leq Kn \log_2(n)$ montrons qu'alors $C(2n) \leq 2Kn \log_2(2n)$ Le tri fusion d'une liste de taille 2n demande celui de deux listes de taille n puis la fusion de ces deux listes, c'est à dire :

C(2n) = 2C(n) + F(n)

 $C(2n) \le 2Kn\log_2(n) + F(n) \text{ (par HR)}$

 $C(2n) \le 2Kn\log_2(n) + Kn$

 $C(2n) \leq 2Kn(\log_2(n) + 1)$

 $C(2n) \leq 2Kn\log_2(2n)$

1