Santa Claus meets Makespan and Matroids: Algorithms and Reductions

Étienne Bamas¹, **Alexander Lindermayr**², Nicole Megow², Lars Rohwedder³, Jens Schlöter²

¹ETH AI Center, Switzerland

²University of Bremen, Germany

³Maastricht University, Netherlands

MAPSP 2024

m children

n gifts

Task: assign gifts; maximize the happiness of the unhappiest child.

Task: assign gifts; maximize the happiness of the unhappiest child.

Task: assign gifts; maximize the happiness of the unhappiest child.

Big open question: Is there a constant factor approximation algorithm?

The Makespan Problem $(R \mid\mid C_{max})$

m machines

n jobs

The Makespan Problem $(R || C_{max})$

Task: assign jobs; minimize the load of the heaviest machine (=makespan).

The Makespan Problem $(R || C_{max})$

Task: assign jobs; minimize the load of the heaviest machine (=makespan).

The Makespan Problem $(R \mid\mid C_{max})$

Task: assign jobs; minimize the load of the heaviest machine (=makespan).

Big open question: Is there a better-than-2 approximation algorithm?

Resource Allocation Problems: Santa Claus and Makespan

Task: assign *n* gifts / jobs

to m children / machines with (unrelated) values v_{ii} / sizes p_{ii} .

SANTACLAUS: $\max \min_{i} \sum_{i \to i} v_{ij}$

MAKESPAN: $\min \max_{i} \sum_{i \to i} p_{ij}$

Resource Allocation Problems: Santa Claus and Makespan

Task: assign *n* gifts / jobs

to m children / machines with (unrelated) values v_{ii} / sizes p_{ii} .

SantaClaus: $\max \min_{i} \sum v_{ij}$ Makespan: $\min \max_{i} \sum p_{ij}$

MAKESPAN:
$$\min \max_{i} \sum_{j \to i} p_{ij}$$

▶ Restricted SANTACLAUS / MAKESPAN: $v_{ii} \in \{0, v_i\}$ / $p_{ii} \in \{\infty, p_i\}$.

Resource Allocation Problems: Santa Claus and Makespan

Task: assign *n* gifts / jobs

to m children / machines with (unrelated) values v_{ii} / sizes p_{ii} .

SantaClaus: $\max \min_{i} \sum v_{ij}$ Makespan: $\min \max_{i} \sum p_{ij}$

MAKESPAN:
$$\min \max_{i} \sum_{j \to i} p_{ij}$$

- ▶ Restricted SANTACLAUS / MAKESPAN: $v_{ii} \in \{0, v_i\}$ / $p_{ii} \in \{\infty, p_i\}$.
- ▶ 2V-SANTACLAUS / 2S-MAKESPAN: $v_{ij} \in \{0, u, w\} / p_{ij} \in \{\infty, u, w\}$.

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- \blacktriangleright APX-hard for <1.5~[LST '90]

SANTACLAUS

Poly-time n^{ϵ} -approximation for $\epsilon > 0$ [Chrakabarty, Chuzhoy, Khanna '09]

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ightharpoonup APX-hard for < 1.5 [LST '90]

SANTACLAUS

- Poly-time n^{ϵ} -approximation for $\epsilon > 0$ [Chrakabarty, Chuzhoy, Khanna '09]
- ► APX-hard for < 2 [Bezáková, Dani '05]

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ightharpoonup APX-hard for < 1.5 [LST '90]

SANTACLAUS

- Poly-time n^{ϵ} -approximation for $\epsilon > 0$ [Chrakabarty, Chuzhoy, Khanna '09]
- ► APX-hard for < 2 [Bezáková, Dani '05]
- Constant approximation possible?

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ► APX-hard for < 1.5 [LST '90]
- ► Better-than-2 approximation possible?

SANTACLAUS

- Poly-time n^{ϵ} -approximation for $\epsilon>0$ [Chrakabarty, Chuzhoy, Khanna '09]
- ► APX-hard for < 2 [Bezáková, Dani '05]
- Constant approximation possible?

Restricted SANTACLAUS

Constant approximation via LLL [Bansal, Sviridenko '06] [Feige '08] [Häupler, Saha, Srinivasan '11].

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ► APX-hard for < 1.5 [LST '90]
- ► Better-than-2 approximation possible?

SANTACLAUS

- Poly-time n^{ϵ} -approximation for $\epsilon>0$ [Chrakabarty, Chuzhoy, Khanna '09]
- ► APX-hard for < 2 [Bezáková, Dani '05]
- Constant approximation possible?

Restricted SANTACLAUS

Constant approximation via LLL [Bansal, Sviridenko '06] [Feige '08] [Häupler, Saha, Srinivasan '11].

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ► APX-hard for < 1.5 [LST '90]
- ► Better-than-2 approximation possible?

SANTACLAUS

- Poly-time n^{ϵ} -approximation for $\epsilon>0$ [Chrakabarty, Chuzhoy, Khanna '09]
- ► APX-hard for < 2 [Bezáková, Dani '05]
- Constant approximation possible?

Restricted SantaClaus

- Constant approximation via LLL [Bansal, Sviridenko '06] [Feige '08] [Häupler, Saha, Srinivasan '11].
- ► Constant approximation via hypergraph matching (Haxell's theorem) [Asadpour, Feige, Saberi '08] [Svensson, Poláček '15] [Annamalai, Kalaitzis, Svensson '15] [Annamalai '16] [Jansen, Rohwedder '18] [Cheng, Mao '19] [Davies, Rothvoss, Zhang '20]

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ► APX-hard for < 1.5 [LST '90]
- Better-than-2 approximation possible?

SANTACLAUS

- Poly-time n^{ϵ} -approximation for $\epsilon>0$ [Chrakabarty, Chuzhoy, Khanna '09]
- ► APX-hard for < 2 [Bezáková, Dani '05]
- Constant approximation possible?

Restricted SANTACLAUS

- Constant approximation via LLL [Bansal, Sviridenko '06] [Feige '08] [Häupler, Saha, Srinivasan '11].
- ► Constant approximation via hypergraph matching (Haxell's theorem) [Asadpour, Feige, Saberi '08] [Svensson, Poláček '15] [Annamalai, Kalaitzis, Svensson '15] [Annamalai '16] [Jansen, Rohwedder '18] [Cheng, Mao '19] [Davies, Rothvoss, Zhang '20]

Makespan

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ► APX-hard for < 1.5 [LST '90]
- ► Better-than-2 approximation possible?

- ► Integrality gap bounds < 2
 [Svensson '12] [Jansen, Rohwedder '20]
- ► Quasi-poly-time < 2-approximation [Jansen, Rohwedder '20]

SANTACLAUS

- Poly-time n^{ϵ} -approximation for $\epsilon>0$ [Chrakabarty, Chuzhoy, Khanna '09]
- ► APX-hard for < 2 [Bezáková, Dani '05]
- Constant approximation possible?

Restricted SantaClaus

- Constant approximation via LLL [Bansal, Sviridenko '06] [Feige '08] [Häupler, Saha, Srinivasan '11].
- ► Constant approximation via hypergraph matching (Haxell's theorem) [Asadpour, Feige, Saberi '08] [Svensson, Poláček '15] [Annamalai, Kalaitzis, Svensson '15] [Annamalai '16] [Jansen, Rohwedder '18] [Cheng, Mao '19] [Davies, Rothvoss, Zhang '20]

Makespan

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ► APX-hard for < 1.5 [LST '90]
- ► Better-than-2 approximation possible?

- ► Integrality gap bounds < 2 [Svensson '12] [Jansen, Rohwedder '20]
- ► Quasi-poly-time < 2-approximation [Jansen, Rohwedder '20]

SANTACLAUS

- Poly-time n^{ϵ} -approximation for $\epsilon>0$ [Chrakabarty, Chuzhoy, Khanna '09]
- ► APX-hard for < 2 [Bezáková, Dani '05]</p>
- Constant approximation possible?

Restricted SantaClaus

- ► Constant approximation via LLL [Bansal, Sviridenko '06] [Feige '08] [Häupler, Saha, Srinivasan '11].
- ► Constant approximation via hypergraph matching (Haxell's theorem) [Asadpour, Feige, Saberi '08] [Svensson, Poláček '15] [Annamalai, Kalaitzis, Svensson '15] [Annamalai '16] [Jansen, Rohwedder '18] [Cheng, Mao '19] [Davies, Rothvoss, Zhang '20]

Makespan

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ► APX-hard for < 1.5 [LST '90]
- ► Better-than-2 approximation possible?

- ► Integrality gap bounds < 2
 [Svensson '12] [Jansen, Rohwedder '20]
- ► Quasi-poly-time < 2-approximation [Jansen, Rohwedder '20]
- ► Poly-time < 2-approximations for 2S [Chakrabarty, Khanna, Li '15] [Annamalai '19]

SANTACLAUS

- Poly-time n^{ϵ} -approximation for $\epsilon>0$ [Chrakabarty, Chuzhoy, Khanna '09]
- ► APX-hard for < 2 [Bezáková, Dani '05]</p>
- Constant approximation possible?

Restricted SantaClaus

- ► Constant approximation via LLL [Bansal, Sviridenko '06] [Feige '08] [Häupler, Saha, Srinivasan '11].
- ➤ Constant approximation via hypergraph matching (Haxell's theorem) [Asadpour, Feige, Saberi '08] [Svensson, Poláček '15] [Annamalai, Kalaitzis, Svensson '15] [Annamalai '16] [Jansen, Rohwedder '18] [Cheng, Mao '19] [Davies, Rothvoss, Zhang '20]

Makespan

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ► APX-hard for < 1.5 [LST '90]
- ► Better-than-2 approximation possible?

- ► Integrality gap bounds < 2
 [Svensson '12] [Jansen, Rohwedder '20]
- ► Quasi-poly-time < 2-approximation [Jansen, Rohwedder '20]
- ► Poly-time < 2-approximations for 2S [Chakrabarty, Khanna, Li '15] [Annamalai '19]

SANTACLAUS

- Poly-time n^{ϵ} -approximation for $\epsilon>0$ [Chrakabarty, Chuzhoy, Khanna '09]
- ► APX-hard for < 2 [Bezáková, Dani '05]</p>
- Constant approximation possible?

Restricted SantaClaus

- ► Constant approximation via LLL [Bansal, Sviridenko '06] [Feige '08] [Häupler, Saha, Srinivasan '11].
- ► Constant approximation via hypergraph matching (Haxell's theorem) [Asadpour, Feige, Saberi '08] [Svensson, Poláček '15] [Annamalai, Kalaitzis, Svensson '15] [Annamalai '16] [Jansen, Rohwedder '18] [Cheng, Mao '19] [Davies, Rothvoss, Zhang '20]

Makespan

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ► APX-hard for < 1.5 [LST '90]
- Better-than-2 approximation possible?

- ► Integrality gap bounds < 2
 [Svensson '12] [Jansen, Rohwedder '20]
- ► Quasi-poly-time < 2-approximation [Jansen, Rohwedder '20]
- ► Poly-time < 2-approximations for 2S [Chakrabarty, Khanna, Li '15] [Annamalai '19]

SANTACLAUS

- Poly-time n^{ϵ} -approximation for $\epsilon > 0$ [Chrakabarty, Chuzhoy, Khanna '09]
- ► APX-hard for < 2 [Bezáková, Dani '05]</p>
- Constant approximation possible?

Makespan

- ► 2-approximation via LP rounding [Lenstra, Shmoys, Tardos '90][ST '93]
- ► APX-hard for < 1.5 [LST '90]
- ► Better-than-2 approximation possible?

Restricted SantaClaus

- ► Constant approximation via LLL [Bansal, Sviridenko '06] [Feige '08] [Häupler, Saha, Srinivasan '11].
- Constant approximation via hypergraph matching (Haxell's theorem) [Asadpour, Feige, Saberi '08] [Svensson, Poláček '15] [Annamalai, Kalaitzis, Svensson '15] [Annamalai '16] [Jansen, Rohwedder '18] [Cheng, Mao '19] [Davies, Rothvoss, Zhang '20]

Restricted Makespan

- ► Integrality gap bounds < 2
 [Svensson '12] [Jansen, Rohwedder '20]
- ► Quasi-poly-time < 2-approximation [Jansen, Rohwedder '20]
- ► Poly-time < 2-approximations for 2S

 [Chakrabarty, Khanna, Li '15] [Annamalai '19]

configuration LP

Theorem 1

better-than-2 for Makespan \implies constant for SantaClaus

Theorem 1

better-than-2 for Makespan \implies constant for SantaClaus

For any $\alpha \geq 2$ and $\epsilon > 0$:

$$(2-1/\alpha)$$
-apx. for Makespan $\implies (\alpha+\epsilon)$ -apx. for SantaClaus

The reduction runs in polynomial time.

Theorem 1

better-than-2 for Makespan \implies constant for SantaClaus

For any $\alpha \geq 2$ and $\epsilon > 0$:

$$(2-1/\alpha)$$
-apx. for Makespan $\implies (\alpha + \epsilon)$ -apx. for SantaClaus

The reduction runs in polynomial time.

Theorem 2

better-than-2 for 2S-Makespan \iff constant for 2V-SantaClaus

Theorem 1

better-than-2 for Makespan \implies constant for SantaClaus

For any $\alpha \geq 2$ and $\epsilon > 0$:

$$(2-1/\alpha)$$
-apx. for Makespan $\implies (\alpha + \epsilon)$ -apx. for SantaClaus

The reduction runs in polynomial time.

Theorem 2

better-than-2 for 2S-Makespan ← constant for 2V-SantaClaus

Corollary

For 2S-Makespan, there is a

- **•** poly-time $(2-1/n^{\epsilon})$ -approximation for any $\epsilon>0$, and a
- quasi-poly-time (2 1/polylog(n))-approximation.

Improves in many cases over current SOTA of $2-1/\emph{m}$. [Shchepin and Vakhania '05]

Theorem 1

For any $\alpha \geq 2$ and $\epsilon > 0$:

 $(2-1/\alpha)$ -apx. for Makespan $\implies (\alpha+\epsilon)$ -apx. for SantaClaus

Theorem 1

For any $\alpha \geq$ 2 and $\epsilon >$ 0:

$$(2-1/lpha)$$
-apx. for Makespan \implies $(lpha+\epsilon)$ -apx. for SantaClaus

Sufficient goal (via standard guessing framework):

Given SantaClaus instance / with Opt(/) \geq 1, find a solution of value $\geq \frac{1}{\alpha+\epsilon}$.

Theorem 1

For any $\alpha \geq 2$ and $\epsilon > 0$:

(2 -1/lpha)-apx. for Makespan \Longrightarrow ($lpha+\epsilon$)-apx. for SantaClaus

Sufficient goal (via standard guessing framework):

Given SANTACLAUS instance I with $OPT(I) \ge 1$, find a solution of value $\ge \frac{1}{\alpha + \epsilon}$.

Now: exponential reduction from *I* to a MAKESPAN instance *I'* using:

 $\mathcal{C}_i = \mathsf{set}$ of all subsets of gifts with total value ≥ 1 for child i.

Theorem 1

For any $\alpha \geq 2$ and $\epsilon > 0$:

(2
$$-1/lpha$$
)-apx. for Makespan \implies ($lpha+\epsilon$)-apx. for SantaClaus

Sufficient goal (via standard guessing framework):

Given SANTACLAUS instance I with $OPT(I) \ge 1$, find a solution of value $\ge \frac{1}{\alpha + \epsilon}$.

Now: exponential reduction from *I* to a MAKESPAN instance *I'* using:

 $C_i = \text{set of all subsets of gifts with total value} \geq 1 \text{ for child } i.$

For polynomial reduction: job types, rounding strategies and monotone configurations \Rightarrow loses factor of $1+\epsilon$.

Reduction to the MAKESPAN Instance I

$$\mathcal{C}_1 \supseteq \{\{1\}, \{2,3\}\}$$

Reduction to the MAKESPAN Instance /

$$\mathcal{C}_1 \supseteq \{\{1\}, \{2,3\}\}$$

Reduction to the MAKESPAN Instance /

$$\mathcal{C}_1 \supseteq \{\{1\}, \{2,3\}\}$$

$$\begin{split} \mathcal{C}_1 &\supseteq \{\{1\}, \{2,3\}\} \\ \mathcal{C}_2 &\supseteq \{\{1,4\}, \{2,3,4\}\} \end{split}$$

$$\mathcal{C}_1 \supseteq \{\{1\}, \{2,3\}\}$$

$$\mathcal{C}_2 \supseteq \{\{1,4\}, \{2,3,4\}\}$$

$$\begin{array}{c} \downarrow_{1} \\ \downarrow_{1} \\ \downarrow_{1} \\ \downarrow_{21} \\ \downarrow_{21} \\ \downarrow_{21} \\ \downarrow_{31} \\ \downarrow_{21} \\ \downarrow_{21} \\ \downarrow_{21} \\ \downarrow_{31} \\ \downarrow_{21} \\ \downarrow_{31} \\ \downarrow_{21} \\ \downarrow_{21} \\ \downarrow_{31} \\ \downarrow$$

Proof steps:

(i)
$$Opt(I) \ge 1 \Longrightarrow Opt(I') \le 1$$
 (omitted)

$$\begin{split} \mathcal{C}_1 &\supseteq \{\{1\}, \{2,3\}\} \\ \mathcal{C}_2 &\supseteq \{\{1,4\}, \{2,3,4\}\} \end{split}$$

Proof steps:

- (i) $Opt(I) \ge 1 \Longrightarrow Opt(I') \le 1$ (omitted)
- (ii) Approximate solution for l' has a makespan of at most $2 \frac{1}{\alpha}$.

$$\mathcal{C}_1\supseteq\{\{1\},\{2,3\}\}$$

$$\mathcal{C}_2\supseteq\{\{1,4\},\{2,3,4\}\}$$
 child 1 child 2

gift 3

Proof steps:

gift 2

gift 1

(i) $Opt(I) \ge 1 \Longrightarrow Opt(I') \le 1$ (omitted)

gift 4

(ii) Approximate solution for l' has a makespan of at most $2 - \frac{1}{\alpha}$.

$$C_{1} \supseteq \{\{1\}, \{2,3\}\}$$

$$C_{2} \supseteq \{\{1,4\}, \{2,3,4\}\}$$

$$\begin{array}{c} \text{child 1} \\ \text{child 2} \\ \text{v}_{11} \\ \text{v}_{21} \\ \text{v}_{31} \\ \text{child 2} \\ \text{child 2} \\ \text{child 3} \\ \text{child 4} \\ \text{child 2} \\ \text{child 4} \\ \text{child 5} \\ \text{child 6} \\ \text{child 9} \\ \text{c$$

gift 3

Proof steps:

gift 2

gift 1

(i) $Opt(I) \ge 1 \Longrightarrow Opt(I') \le 1$ (omitted)

gift 4

- (ii) Approximate solution for l' has a makespan of at most $2 \frac{1}{\alpha}$.
- (iii) Child 1 receives a total value of $v_{31} \geq \frac{v_{31}}{v_{21}+v_{31}} \geq 2-(2-\frac{1}{\alpha})=\frac{1}{\alpha}$.

Reductions within Special Cases

Theorem 1

better-than-2 for Makespan \implies constant for SantaClaus.

Reductions within Special Cases

Theorem 1

better-than-2 for Makespan \implies constant for SantaClaus.

Can we also stay within special instance classes?

better-than-2 for restricted MAKESPAN

constant for restricted SANTACLAUS

(Recall: restricted SantaClaus / Makespan: $v_{ij} \in \{0, v_j\} \ / \ p_{ij} \in \{\infty, p_j\}$)

Applying the Reduction to Restricted SantaClaus

Idea for a Generalization

Idea for a Generalization

blue gift can "copy" to set of children subject to a matroid constraint

Idea for a Generalization

blue gift can "copy" to set of children subject to a polymatroid constraint

Given: m entities E (children / machines) and n items (gifts / jobs) associated with integer polymatroids $\mathcal{P}_1, \ldots, \mathcal{P}_n$ over E.

Given: m entities E (children / machines) and n items (gifts / jobs) associated with integer polymatroids $\mathcal{P}_1, \ldots, \mathcal{P}_n$ over E.

Integer polymatroid = matroid on multisets

Formally,

$$\mathcal{P}_j = \left\{ x \in \mathbb{Z}_{\geq 0}^E : \sum_{i \in S} x(i) \leq f_j(S) \ \forall S \subseteq E \right\}$$

for a submodular, monotone set function $f_j: 2^E \to \mathbb{Z}_{\geq 0}$ with $f_j(\emptyset) = 0$.

Given: m entities E (children / machines) and n items (gifts / jobs) associated with integer polymatroids $\mathcal{P}_1, \ldots, \mathcal{P}_n$ over E.

Given: m entities E (children / machines) and n items (gifts / jobs) associated with integer polymatroids $\mathcal{P}_1, \ldots, \mathcal{P}_n$ over E.

Given: m entities E (children / machines) and n items (gifts / jobs) associated with integer polymatroids $\mathcal{P}_1, \ldots, \mathcal{P}_n$ over E.

Given: m entities E (children / machines) and n items (gifts / jobs) associated with integer polymatroids $\mathcal{P}_1, \ldots, \mathcal{P}_n$ over E.

Matroid SANTACLAUS:
$$\max_{i} \min_{i} \sum_{i} v_{ij} \cdot x_{j}(i)$$

Given: m entities E (children / machines) and n items (gifts / jobs) associated with integer polymatroids $\mathcal{P}_1, \ldots, \mathcal{P}_n$ over E.

Theorem 3

better-than-2 approximation for restricted matroid 2S-MAKESPAN

constant approximation for restricted matroid 2V-SANTACLAUS

Theorem 3

better-than-2 approximation for restricted matroid 2S-MAKESPAN

constant approximation for restricted matroid 2V-SANTACLAUS

Approximation factors: $(2-1/\alpha)$ -apx. \iff α -apx. for any $\alpha \geq 2$.

Theorem 3

better-than-2 approximation for restricted matroid 2S-MAKESPAN

constant approximation for restricted matroid 2V-SantaClaus

Approximation factors: $(2-1/\alpha)$ -apx. \iff α -apx. for any $\alpha \geq 2$.

Theorem 4

For any $\epsilon > 0$, there is a

- ightharpoonup poly-time (8 + ϵ)-apx. for restricted matroid SANTACLAUS and a
- ▶ poly-time $(4 + \epsilon)$ -apx. for restricted matroid 2V-SANTACLAUS.

Theorem 3

better-than-2 approximation for restricted matroid 2S-MAKESPAN

constant approximation for restricted matroid 2V-SANTACLAUS

Approximation factors: $(2-1/\alpha)$ -apx. $\iff \alpha$ -apx. for any $\alpha \geq 2$.

Theorem 4

For any $\epsilon > 0$, there is a

- \blacktriangleright poly-time (8 + ϵ)-apx. for restricted matroid SANTACLAUS and a
- ▶ poly-time $(4 + \epsilon)$ -apx. for restricted matroid 2V-SANTACLAUS.

Corollary

For any $\epsilon > 0$, there exists a $(1.75 + \epsilon)$ -apx. for restricted 2S-MAKESPAN.

Improves over best known bound of 1.8945 [Annamalai '19].

There is a better-than-2 approximation for $\rm MAKESPAN$ only if there is a constant approximation for $\rm SANTACLAUS.$

There is a better-than-2 approximation for ${\rm MAKESPAN}$ only if there is a constant approximation for ${\rm SANTACLAUS}.$

▶ Is the other direction also true?

There is a better-than-2 approximation for MAKESPAN only if there is a constant approximation for SANTACLAUS.

▶ Is the other direction also true?

For the 2-value cases, both questions are equivalent, in both the general setting and the restricted matroid setting.

There is a better-than-2 approximation for MAKESPAN only if there is a constant approximation for SANTACLAUS.

▶ Is the other direction also true?

For the 2-value cases, both questions are equivalent, in both the general setting and the restricted matroid setting.

- ► Reductions within the general restricted (matroid) case?
- ► Reductions within other special cases, e.g., graph balancing?