This is a "preproof" accepted article for *International Journal of Technology Assessment in Health Care*.

This version may be subject to change during the production process.

DOI: 10.1017/S0266462324004823

- Development and validation of the NICE
- 2 artificial intelligence (AI) medical device
- 3 intervention search filters for MEDLINE and
- 4 Embase (Ovid)
- 5 **RUNNING TITLE:** NICE AI medical device intervention filters
- 6 Lynda Ayiku (Corresponding author)
- 7 National Institute for Health and Care Excellence (NICE)
- 8 Level 1a, City Tower
- 9 Piccadilly Plaza
- 10 Manchester
- 11 M1 4BT
- 12 United Kingdom
- Telephone number: 0161 870 3088. Email: lynda.ayiku@nice.org.uk
- 14 Amy Finnegan

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence

(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

15	National Institute for Health and Care Excellence (NICE), Manchester, United
16	Kingdom
17	Thomas Hudson
18	National Institute for Health and Care Excellence (NICE), Manchester, United
19	Kingdom
20	Nicola Walsh, FCLIP (CILIP Fellow)
21	National Institute for Health and Care Excellence (NICE), Manchester, United
22	Kingdom
23	Rachel Adams
24	National Institute for Health and Care Excellence (NICE), Manchester, United
25	Kingdom
26	

[Insert footer here] 2 of 27

Abstract

27

28	റ	h	i۵	cti	٧e	9
ZO	V	v	JC	CU	A C	3

- 29 Medical device interventions with an artificial intelligence (AI) component can
- 30 potentially improve the effectiveness and efficiency of activities such as
- diagnostic screening through automation. However, inconsistent terminology
- 32 for the interventions is used in research literature and it can be challenging to
- find evidence about them in literature searches reliably. Information
- 34 specialists at the United Kingdom's National Institute for Health and Care
- 35 Excellence (NICE) developed novel validated search filters to retrieve
- 36 evidence about AI medical device interventions from MEDLINE and Embase
- 37 (Ovid).

38 Methods

- 39 The filters were drafted using Al-related terminology selected from references
- 40 identified in NICE AI medical device topics.
- 41 Using relative recall methodology, gold standards containing references from
- 42 systematic reviews about AI medical devices were generated for each
- 43 database and then divided into Development and Validation Sets. The draft
- 44 filters were finalised using their Development Sets and validated externally by
- 45 calculating their recall against their Validation Sets. Target recall was >90
- 46 percent.

47 Results

48 Both filters achieved 96 percent recall against their Validation Sets.

49 Conclusions

- 50 The NICE AI medical device intervention search filters retrieve evidence about
- 51 the interventions effectively and reliably. The filters can be used by
- 52 information professionals, researchers, and clinicians to find evidence about

[Insert footer here] 3 of 27

54 used as part of a 'multi-stranded' literature search strategy when details of 55 brand names and/or medical device manufacturers are known. Keywords 56 57 Artificial intelligence 58 Therapy, Computer-Assisted 59 Databases, Bibliographic Information Storage and Retrieval 60 61 Information Science 62 63

Al medical device interventions in literature searches. The filters should be

[Insert footer here] 4 of 27

53

64 Introduction

65	The National Institute for Health and Care Excellence (NICE)
66	and artificial intelligence (AI) medical device interventions
67	The United Kingdom's (UK) National Institute for Health and Care Excellence
68	(NICE) began publishing evaluations of the effectiveness of medical device
69	interventions with an artificial intelligence (AI) component in 2020 as part of its
70	medical technologies and diagnostics programmes (1). In addition, NICE has
71	published the 'Evidence standards framework for digital health technologies'
72	which provides a description of the evidence standards that are required for
73	digital health technologies (including AI medical device interventions) to
74	demonstrate their value to the UK National Health Service (NHS) and social
75	care system (2). NICE's work supports the UK government's initiatives to
76	implement AI medical device interventions safely and effectively (3).
77	Al is an umbrella term that encompasses several automated machine learning
78	tools (4). Machine learning tools are models and algorithms that are trained to
79	learn from data (4). Al medical device interventions can automate, augment,
80	or assist with activities that are traditionally performed by healthcare
81	professionals (5). These activities include behavioural therapy, screening,
82	detecting conditions, assessing the risk of developing a condition, predicting
83	the outcomes of a condition, or assessing the relapse of a condition (5). Al
84	medical device interventions have the potential to improve the efficiency and
85	effectiveness of health care services. For instance, they can speed up routine
86	tasks that are usually carried by health care professionals, assist with
87	decision-making, target patient needs more precisely to improve outcomes,
88	and provide convenient and broader access to healthcare services for
89	patients (4; 5). Each of these factors help to reduce the resource costs
90	required for health care service delivery (4; 5).

[Insert footer here] 5 of 27

- 91 However, evaluating AI medical device interventions can be challenging (4).
- 92 For instance, there is often a lack of rigorous research evidence available for
- 93 Al interventions to evaluate their effectiveness (4). In addition, many Al
- interventions are frequently updated and evolve over time ("adaptive Al")
- which can lead to their need for re-evaluation (4).

96

101

102

103

113

The NICE AI medical device intervention search filters

In addition to the evaluation challenges highlighted above, NICE information specialists have also encountered complexities with retrieving evidence about

99 the interventions from bibliographic databases when literature searching. For

100 example, Al medical device interventions can be poorly reported in the title

and abstracts of research literature. In these cases, the brand names for the

interventions are not reported and inconsistent, wide-ranging terminology of

direct or indirect relevance to AI is used to describe the interventions. In

addition, subject headings of relevance to AI technologies are applied

inconsistently to the database records of the research literature in

bibliographic databases. The consequence of this is that evidence for Al

107 medical device interventions can be missed in literature searches that would

typically consist of search terms for Al intervention brand names and narrow

terminology that is directly relevant to AI technologies. The evidence-base for

110 Al interventions is usually small and so the accidental non-retrieval of relevant

evidence could have a major impact upon evaluation decisions. Conversely,

when several search terms and subject headings of both direct and indirect

relevance to AI technologies are used in literature search strategies, it can

result in the retrieval of unmanageable volumes of irrelevant evidence.

In response to these searching challenges, a project team of NICE

information specialists undertook a study to develop validated search filters

with the aim of improving the effectiveness of literature searches to retrieve

118 evidence on AI medical device interventions from the MEDLINE and Embase

(Ovid Platform) bibliographic databases reliably. No validated search filters for

[Insert footer here] 6 of 27

120 Al medical device interventions existed previously and a broad variety of 121 untested search strategies were used to retrieve evidence about the 122 interventions in literature searches. MEDLINE and Embase were chosen for 123 the filters because these sources are two of the largest health care 124 bibliographic databases and they are routinely used to find evidence for 125 clinical topics at NICE (6). The project team had experience of developing 126 search filters for digital health interventions, having developed and validated 127 filters for retrieving evidence about health apps from MEDLINE and Embase 128 in 2020 (7).

Search filters

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

A search filter is a set of pre-made, reusable search terms that are applied to literature search strategies to retrieve evidence on specific study designs or topics (8; 9). Search filters are available for a range of topics including geographic locations, population groups, conditions, and interventions (10). Search filters differ from literature search strategies because their retrieval performance has been evaluated in a process known as validation (8; 9).

There are two types of validated search filter, 'internally validated' and 'externally validated' (9):

- Internally validated: Search terms for the filter are derived objectively from a set of relevant references on the topic of the filter and the development of the search filter is based on these terms. The retrieval performance of the filters is calculated against the set of relevant references from which they were derived.
- Externally validated: Search terms for the filter are derived either subjectively or objectively. The retrieval performance of the filter is calculated against an independent set of relevant references that were not used in the development of the filter.

[Insert footer here] 7 of 27

147	The external validation of search filters is important because it allows
148	conclusions to be made about the generalisability of a search filter's recall and
149	provides users with an indication of how successfully they work (8; 9). For
150	both internally and externally validated search filters, a key filter retrieval
151	performance measure is recall (also known as sensitivity). Recall is the
152	percentage of known relevant references that a filter retrieves, and it provides
153	an indication of how effective filters are at retrieving evidence on the topic of
154	the filter (8; 9). Recall is calculated as the number of relevant records
155	retrieved divided by the total number of relevant references. The resulting
156	figure is commonly multiplied by 100 to express as a percentage (8; 9; 11).
157	This paper describes the development, internal validation, and external
158	validation of the NICE AI medical device intervention filters.
159	Objective
160	The aim of the NICE AI filters for medical device interventions was to improve
161	the retrieval of evidence for AI medical device interventions in literature
162	searches. The objectives were to develop externally validated search filters
163	for MEDLINE and Embase (OVID) to retrieve evidence about AI medical
164	device interventions with high recall (defined as >90 percent).
165	Methods
166	The NICE AI medical device intervention search filters were created in two
167	phases. In the first phase, 'internal validation' search filter methodology was
168	employed to develop the initial draft filters. In the second phase, the draft
169	filters were finalised and validated using 'external validation' search filter
170	methodology.
171	Draft filter development: internal validation
172	The draft MEDLINE filter was developed first using 'internal validation' filter
173	methodology (8; 9). This method involves using a set of known relevant
	[Insert footer here] 8 of 27

174 175	calculating the recall of the filters against the references (8; 9).
176	Identifying the search terms and search fields for the draft
177	MEDLINE filter
178	The candidate AI technology search terms for the draft MEDLINE filter were
179	identified using the titles, abstracts, keywords, and subject headings from
180	included references from 11 published NICE AI medical technologies and
181	diagnostics topics. See Supplementary File 1 for details of the NICE AI topics.
182	A total of 66 included references from the published NICE AI topics were
183	available in the MEDLINE All database and these were used to create a Test
184	Set to aid the development of the draft filter. See Supplementary File 2 for
185	details of the 66 included references in the Test Set.
186	Title, abstract, and keyword terms of most relevance to AI medical device
187	interventions were selected as candidate search terms for the draft filter from
188	the references in the Test Set. Terms for artificial intelligence-related
189	technologies such as 'machine learning' and terms of wider relevance to
190	artificial intelligence such as 'algorithm' were deemed to be relevant. See
191	Supplementary File 3 for the candidate search terms. Subject headings were
192	not selected because the project team made a judgement based on previous
193	experience that the application of Al-related subject headings to database
194	records is inconsistent as well as being imprecise and that their inclusion in
195	literature search strategies can lead to the over retrieval of irrelevant
196	evidence.
197	To test the usefulness of each candidate search term for the draft filter, the
198	terms were translated into MEDLINE search syntax in the MEDLINE ALL
199	bibliographic database and searched on separate search lines in the following
200	search fields: title, abstract, keyword heading and keyword heading word. The
201	purpose of the testing was to find the most efficient combination of terms,
202	eliminating those that did not contribute to the overall recall. The primary
	[Insert footer here] 9 of 27

```
author and title for each included reference was used to form individual
203
204
       search lines in MEDLINE ALL to create a search strategy for the 66 included
205
       references in the Test Set.
206
       To test the performance of each candidate search term for the draft filter,
207
       single search lines and combinations of the search lines were run against the
208
       search strategy for the Test Set and their recall of the references was
209
       examined. The combination of search terms and search fields plus the use of
210
       proximity operators for the search lines that were judged to be the most
211
       appropriate were investigated to assess their impact on the recall of the 66
212
       included references in the Test Set. Superfluous search terms were removed
213
       from the filter. The aim of the investigations was to reduce the number of
214
       irrelevant results found by each individual search term or combination of
215
       search terms while ensuring that they retrieved as many of the Test Set
216
       references as possible. Examples of the investigations can be found in
217
       Supplementary File 4.
218
       The draft MEDLINE AI medical interventions filter was created using what was
219
       judged to be the most appropriate combination of candidate search terms,
220
       search fields, and use of proximity operators for retrieving the Test Set. The
221
       draft MEDLINE AI medical interventions filter is presented below:
222
                  algorithm*.ti,kf.
                  (algorithm* adj1 (learn* or automate* or detect* or treatment* or
223
             therap* or radiolog* or AI or DL or data or dataset* or base*)).ab.
224
225
                  artificial intelligen*.ti,ab,kf.
             4
226
                  Al.ti,kf.
227
             5
                  machine learning*.ti,ab,kf.
228
             6
                  deep learn*.ti,ab,kf.
229
             7
                  convolutional neural network*.ti,ab,kf.
230
                  automate*.ti.
             8
                  (automate* adj3 (system* or score* or software* or analysis* or
231
232
              analyse* or risk* or evaluat* or tool* or detect* or process*)).ab,kf.
233
              10
                 or/1-9
```

[Insert footer here] 10 of 27

234	Draft filter recall
235	The draft MEDLINE filter retrieved 53 out of the 66 included references from
236	the Test Set in MEDLINE ALL, achieving 80 percent recall. See Table 1 for
237	further details.
238	Table 1: Recall of the draft MEDLINE filter against the Test Set
239	Upon investigation, it was found that only the 53 references that were
240	retrieved by the filter had AI terminology in the searchable fields of their
241	MEDLINE records. The missing 13 references did not contain any terminology
242	of relevance to AI technologies their records. Therefore, the MEDLINE filter
243	achieved 100 percent recall of the included references with Al-related
244	terminology in the searchable fields of their database records.
245	Upon further examination, it was found that 12 of the missing 13 references
246	would have been retrieved in a 'real life' literature search because the device
247	brand names for the interventions were available in the searchable fields of
248	their database records. It was also found that the remaining single missing
249	reference was not about an Al device topic. See Supplementary File 5 for
250	more detailed information about the 13 missing references.
251	Creating the draft Embase filter
252	Upon completion, the draft MEDLINE filter was translated into Embase search
253	syntax to create a draft Embase filter for use in the Embase bibliographic
254	database. The Embase draft filter is identical to the draft MEDLINE filter that
255	is presented above.
256	'Watchful waiting' period
257	Following the development of the draft MEDLINE and Embase AI medical
258	device intervention filters, a 'watchful waiting' period of 6 months was
259	implemented. The purpose of this was to further assess the retrieval
260	performance of the filters by testing them on active and retrospective NICE AI
	[Insert footer here] 11 of 27

261	topics and to allow for the potential identification of new relevant Al
262	terminology from the NICE AI topics and the field of AI medical device
263	intervention technologies. However, no changes were required for the draft
264	filters following the 'watchful waiting' period.
265	Gold Standard set
266	A Gold Standard is a set of known relevant references that is used to develop
267	and validate search filters (8; 9; 11). The relative recall method was used to
268	identify references for the Gold Standard set (11). This method involves
269	identifying the Gold Standard set from included references of evidence
270	reviews such as systematic reviews, literature reviews, guidelines, and reports
271	(11).
272	
273	The Gold Standard set for the AI medical device intervention filters was
274	identified from included references from systematic reviews on AI medical
275	device intervention topics. The following search strategy was run using the
276	'Advanced search' function in Google Scholar between Tuesday 21st June
277	2022 to Thursday 30th June 2022 to find the systematic reviews: allintitle:
278	"artificial intelligence" and "systematic review". A variety of literature search
279	approaches was used to find evidence on AI interventions in these systematic
280	reviews.
281	
282	The first 12 relevant systematic reviews about Al medical device interventions
283	that were published in 2022 and had full-text access available with no upfront
284	cost were selected. The details of the 12 systematic reviews are available in
285	Supplementary File 6. The primary author and title for each of the included
286	references from the 12 systematic reviews were used to form individual
287	search lines in MEDLINE ALL to create a search strategy for the included
288	references. The references that were available in MEDLINE ALL and Embase
	[Insert footer here] 12 of 27

289	formed a Gold Standard set for each of the databases. There were 464
290	references for the MEDLINE Gold Standard set and 446 references for the
291	Embase Gold Standard set.
292	Development Sets
293	A portion of each Gold Standard set was used to create Development Sets for
294	MEDLINE All and Embase. The Development Sets were used to further test
295	the recall of the draft filters and to identify if the filters required revisions to
296	their search terms, search fields, or proximity operators. To create the
297	Development Sets, every 3rd reference from each Gold Standard was
298	selected after the results had been listed in alphabetical order by the surname
299	of the primary author. There were 155 MEDLINE Development Set references
300	(see Supplementary File 7 for details of the MEDLINE Development Set
301	references) and 146 Embase Development Set references (see
302	Supplementary File 8 for details of the Embase Development Set references).
303	When run against their respective Development Sets, the draft MEDLINE filter
304	achieved 74percent recall (115 out of 155 references retrieved) and the draft
305	Embase filter achieved 80percent recall (117 out of 146 references retrieved).
306	These results fell short of the >90percent recall target for the filters and so the
307	references that the filters did not retrieve were investigated with the aim of
308	identifying additional AI search terms, search fields, or proximity operators for
309	the filters to increase their recall performance.
310	Upon investigation, it was found that some of the references that were missed
	Upon investigation, it was found that some of the references that were missed
311	by the filters contained AI technology terminology such as 'vector machine',
312	'radiomics', and 'supervised classifier' which were not included in the search
313	terms of the draft filters. It was also found that certain search lines in the draft
314	filters were too specific to find some of the missing references. For instance,
315	in search line 7, the search phrase 'convolutional neural network*.ti,ab,kf' was
316	used in the draft filters but this phrase did not retrieve references that
	[Insert footer here] 13 of 27

317	contained related technology terms such as 'artificial neural network' or 'deep
318	neural network'. In addition, it was found that proximity operators were
319	required for some lines of the draft filters to retrieve the missing references.
320	For instance, one missing reference had referred to 'deep metric learning' and
321	this was not retrieved because search line 6 of the draft filters used 'deep
322	learn*.ti,ab,kf' to retrieve references about deep learning technologies. See
323	Supplementary File 9 for a detailed examination of missing reference using
324	the process used for the draft Embase filter as an example.
325	In accordance with the examination findings, the draft filters were revised by
326	adding the additional AI technology terms and proximity operators with the
327	aim of retrieving as many of the missing references as possible. Their recall
328	against the Development Set was then calculated. The revised MEDLINE
329	draft filter now achieved 96 percent recall and the revised Embase draft filter
330	now achieved 98 percent recall. See Table 2 for further details.
331	Table 2: Recall of the revised filters against their Development Sets
332	These results met the >90 percent recall target, and the revised filters became
333	the final filters that were deemed to be ready for the validation process.
334	Validation Sets
335	The remaining references in the MEDLINE and Embase Gold Standard sets
336	formed the Validation Sets for each database. There were 309 MEDLINE
337	Validation Set references (See Supplementary File 10 for details of the
338	MEDLINE Validation Set references) and 300 Embase Validation Set
339	references (See Supplementary File 11 for details of the Embase Validation
340	Set references).
341	The purpose of the Validation Sets was to validate the filters externally using
342	an independent set of references that had not been used in their
	[Insert footer here] 14 of 27

https://doi.org/10.1017/S0266462324004823 Published online by Cambridge University Press

343	development. The final MEDLINE and Embase AI medical device filters were
344	validated by calculating their recall against their respective Validation Sets.
345	A sample size of at least 100 relevant references is suggested to provide a
346	reasonable confidence interval for a filter that aims to retrieve at least 90
347	percent of all relevant references (11). Both the MEDLINE and Embase
348	Validation Sets exceeded this minimum specification.
349	
350	Results
351	The final NICE AI medical device intervention filters are presented below in
352	Figure 1:
353	Figure 1: Final NICE MEDLINE and Embase Al medical device intervention
354	filters
355	Validation
356	Both the final MEDLINE and Embase filters achieved 96 percent recall against
357	their respective Validation Sets (as shown in Table 3), exceeding the >90
358	percent recall target.
359	Table 3: Validation of the NICE MEDLINE and Embase Al medical device
360	intervention filters
361	The majority of the missing Validation Set references were found to be poorly
362	reported and they contained vague terminology to describe AI technologies.
363	Two of the references were not about AI interventions. Detailed information
364	about the missing references can be found in Supplementary File 12.
365	

[Insert footer here] 15 of 27

366	Discussion
367	The NICE AI medical device intervention filters for MEDLINE and Embase are
368	the first validated filters for retrieving evidence about AI medical device
369	interventions. As indicated in the results, AI technology can be poorly
370	described in the searchable fields of database records. However, where Al
371	technology is described clearly, the filters retrieve evidence about AI medical
372	device interventions effectively with high recall.
373	The filters are also likely to be more efficient than previously used untested
374	search strategies for AI medical device interventions that included subject
375	headings plus a wide range of indirect terminology for AI technologies.
376	The NICE AI medical device intervention filters do not contain subject
377	headings and so they can be used in any bibliographic database with
378	comparable search fields and search features to MEDLINE and Embase.
379	However, it is important to note that the filters' retrieval performance in
380	databases other than MEDLINE and Embase has not been examined.
381	Proposed usage of the filters
382	It is intended that the NICE AI medical device intervention filters will be
383	applied to literature search strategies that describe the type of AI medical
384	device intervention technologies required for the research question using the
385	'AND' Boolean operator. For instance, for a topic on Al-aided chest x-rays for
386	detecting lung cancer, a literature search strategy would be conducted to find
387	results about x-rays for lung cancer and then the NICE AI medical device
388	intervention filters would be applied to the search strategy using the 'AND'
389	Boolean operator. The literature search structure for this example is as
390	follows:
391	Description of intervention (chest x-rays)
392	AND

16 of 27

https://doi.org/10.1017/S0266462324004823 Published online by Cambridge University Press

[Insert footer here]

393	2. Condition (lung cancer)
394	AND
395	3. NICE Al medical device search filter
396	The filters should be used as part of a 'multi-stranded' literature search
397	strategy when details of brand names and/or medical device manufacturers
398	are known as advised by Cooper, Dawson, & Lefebvre (12) in their practical
399	guide on literature searching for medical device interventions. In this approach
400	a search concept to identify AI medical device interventions using known AI
401	device brand names and/or device manufacturers would be created when
402	these details are available (12). This search concept would then be combined
403	with the example search strategy structure above with the 'OR' Boolean
404	operator. The reason for this is that the first phase of the filter development
405	study revealed that 20percent of included references for AI medical
406	interventions from NICE AI topics did not provide terminology for AI
407	technologies in the searchable fields of their database records. Instead, these
408	database records for these papers only provided the brand name of device
409	manufacturer name for the technologies. This finding is likely to be an
410	underestimate because the sample is based on known relevant references for
411	Al medical device interventions.
412	When Al-related terminology is available in the searchable fields of their
413	database records, the filters can be used to retrieve evidence on the efficacy
414	and effectiveness of specific AI medical device interventions, discover AI
415	medical device interventions for the purpose of 'horizon scanning', find
416	evidence about evaluation methods for the interventions, or to retrieve
417	evidence about safety and regulatory issues related to the technologies.
418	Limitations
419	As with any search filter, a limitation of the NICE AI medical device filters is
420	that they are unable to retrieve references that have poorly reported details [Insert footer here] 17 of 27

122	However, the filters were developed and validated using approximately 500 Al
123	medical device intervention references and the authors are confident that the
124	filters work effectively to retrieve research literature that has AI terminology of
125	relevance to medical device interventions in the searchable fields of their
426	MEDLINE and Embase records. As discussed above, it is advised that the
127	filters should be used as part of a 'multi-stranded' literature search approach
428	to find evidence on AI medical device interventions when details such as
129	brand names or manufacturer names for the interventions are known.
430	A recognised limitation of using the relative recall method to create Gold
431	Standard sets for search filter development is that identifying a relevant set of
432	references is only as good as the original individual literature searches (8).
433	However, to help mitigate against this, several systematic reviews on Al
434	medical device interventions that used a variety of literature search
435	approaches were used to source references for the Gold Standard set (see
436	Supplementary File 5).
437	It is acknowledged that subjective decisions were made to select the
438	candidate search terms for the filters and that frequency analysis was not
139	conducted to inform their inclusion and combinations. Furthermore, it is
440	acknowledged that the candidate search terms were not reviewed by people
441	with expertise in the field of AI medical device interventions. However, as the
142	references that were used to identify the search terms for the filter had been
143	selected for inclusion for published NICE AI medical device intervention topics
144	as well as systematic reviews on AI medical device intervention topics, the
145	authors are confident that the terminology used for the filters is correct and
146	relevant.
147	The NICE AI medical device intervention filters do not contain subject
148	headings and it is possible that the addition of subject headings could have
149	increased their recall. However, both the MEDLINE and Embase filters met
	[Insert footer here] 18 of 27

about AI technologies in the searchable fields of their database records.

421

450	the >90percent recall target and so the omission of subject headings did not
451	have a significant impact on the filters' retrieval effectiveness.
452	It is recognised that the fields of AI medical device intervention technologies
453	and AI technologies in general are rapidly evolving, and it is possible that nev
454	Al terminology of relevance for the medical device interventions could come
455	into prominence. The authors of this paper will endeavour to update the filters
456	with new AI technology terminology as required.
457	Conclusion
458	The novel NICE AI medical device intervention filters retrieve evidence about
459	the interventions effectively with high recall. It is also likely that the filters are
460	more efficient than previously used untested search strategies for AI medical
461	device interventions that included subject headings plus a wide range of
462	indirect as well as direct terminology for AI technologies. They can be used by
463	information professionals, researchers, and health care professionals for
464	range of AI medical device intervention topics including the effectiveness of
465	the interventions for specific health conditions, evaluation methods, or safety
466	and regulatory issues.
467	
468	Acknowledgements
469	None
470	Sources of Funding
471	This research received no specific funding from any agency, commercial or
472	not-for-profit sectors.
	[Insert footer here] 19 of 2

473	Conflicts of Interest: None.
474	Competing interests: The authors declare none.
475	Implications for practice
476	Prior to the development of the NICE AI medical device intervention search
477	filters, it could be challenging to retrieve evidence about the interventions from
478	bibliographic databases. As a result, relevant evidence about Al medical
479	device interventions could have been missed in searches.
480	The NICE AI medical device intervention search filters improve searching
481	practice for the interventions. The filters retrieve evidence about AI medical
482	devices from MEDLINE and Embase (Ovid) with high recall. They can be
483	applied to literature searches to retrieve evidence on a range of AI medical
484	device topics including the effectiveness of the interventions for specific health
485	conditions, evaluation methods, or safety and regulatory issues.
486	

[Insert footer here] 20 of 27

487	Refe	rences
488	1.	National Institute for Health and Care Excellence [Internet] Digital
489		health. 2024 [cited 2024 December 03]. Available from:
490		https://www.nice.org.uk/about/what-we-do/digital-health
491	2.	National Institute for Health and Care Excellence [Internet] Corporate
492		document [ECD7]: Evidence standards framework for digital health
493		technologies. 2022 [cited 2024 December 03] Available from:
494		https://www.nice.org.uk/corporate/ecd7
495	3.	Medicines and Healthcare products Regulatory Agency [Internet].
496		Software and Artificial Intelligence (AI) as a Medical Device. 2024.
497		[cited 2024 December 03]. Available from:
498		https://www.gov.uk/government/publications/software-and-artificial-
499		intelligence-ai-as-a-medical-device/software-and-artificial-intelligence-
500		ai-as-a-medical-device
501	4.	Bélisle-Pipon JC, Couture V, Roy MC, Ganache I, Goetghebeur M,
502		Cohen IG. What Makes Artificial Intelligence Exceptional in Health
503		Technology Assessment? Front Artif Intell [Internet]. 2021 Nov [cited
504		2024 December 03];2;4:736697. Available from:
505		https://www.frontiersin.org/articles/10.3389/frai.2021.736697/full
506	5.	NHSX [Internet] Artificial Intelligence: How to get it right Putting policy
507		into practice for safe data-driven innovation in health and care. 2019
508		[cited 2024 December 03]. Available from:
509		https://www.nhsx.nhs.uk/media/documents/NHSX_AI_report.pdf
510	6.	National Institute for Health and Care Excellence [Internet] PMG20
511		Developing NICE guidelines: the manual. 2024 [cited 2024 December
512		03]. Available from:
513		https://www.nice.org.uk/process/pmg20/resources/developing-nice-
514		guidelines-the-manual-pdf-72286708700869
	[Insert	footer here] 21 of 27

	/.	Ayıku, L., Hudson, T., Glover, S., Walsh, N., Adams, R., Deane, J., &
516		Finnegan, A. The NICE MEDLINE and Embase (Ovid) health apps
517		search filters: Development of validated filters to retrieve evidence
518		about health apps. International Journal of Technology Assessment in
519		Health Care [Internet]. 2021 [cited 2024 December 03];37(1), E16.
520		Available from: https://www.cambridge.org/core/journals/international-
521		journal-of-technology-assessment-in-health-care/article/abs/nice-
522		medline-and-embase-ovid-health-apps-search-filters-development-of-
523		validated-filters-to-retrieve-evidence-about-health-
524		apps/458C19CD00C034F336DD32AE6627231F
525	8.	Jenkins, M. Evaluation of methodological search filters: A
526		review. Health Info Libr J. [Internet]. 2004 Aug [cited 2024 December
527		03];21:148–63. Available
528		from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1471-
529		<u>1842.2004.00511.x</u>
530	9.	Glanville, J., Bayliss, S., Booth, A., Dundar, Y., Fernandes, H.,
531		Fleeman, ND., Foster, L., Fraser, C., Fry-Smith, A., Golder, S.,
532		Lefebvre, C., Miller, C., Paisley, S., Payne, L., Price, A., & Welch, K.
533		So many filters, so little time: the development of a search filter
534		appraisal checklist. J Med Libr Assoc [Internet]. 2008 Oct [cited 2024
535		December 03];96(4):356-61. Available from:
536		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568852/
537	10	Damarell, R.A., May, N., Hammond, S., Sladek, RM., & Tieman, JJ.
538		Topic search filters: a systematic scoping review. Health Info Libr J
539		[Internet]. 2019 December [cited 2024 December 03];36: 4-40.
540		Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/hir.12244
541	11	. Sampson, M., Zhang, L., Morrison, A., Barrowman, NJ., Clifford, TJ.,
542		Platt, RW., Klassen, TP., & Moher, D. An alternative to the hand
543	[Insert	searching Gold Standard: validating methodological search filters using footer here] 22 of 2

544	relative recall. BMC Med Res Methodol [Internet]. 2006 July [cited 2024
545	December 03];18(6):33. Available from:
546	https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-
547	<u>2288-6-33</u>
548	12. Cooper, C., Dawson, S., & Lefebvre, C. Searching for medical devices
549	- Practical guidance. Res Syn Meth [Internet]. 2022 [cited 2024
550	December 03];13(1):144-154. Available from:
551	https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1524
552	
553	

[Insert footer here] 23 of 27

554 Table 1: Recall of the draft MEDLINE filter against the Test Set

Database	No. of Test Set references	No. of Test Set references retrieved by filter	Recall
MEDLINE	66	53	80%

555

556

[Insert footer here] 24 of 27

557 Table 2: Recall of the revised filters against their Development Sets

Database	No. of	No. of	Recall
	Development Set	Development Set	
	references	references	
		retrieved by filter	
MEDLINE	155	149	96%
Embase	146	143	98%

558

559

[Insert footer here] 25 of 27

Table 3: Validation of the NICE MEDLINE and Embase Al medical device

561 intervention filters

Database	No. of Validation	No. of Validation	Recall
	Set references	Set references	
		retrieved by filter	
MEDLINE	309	297	96%
Embase	300	289	96%

562

560

563

[Insert footer here] 26 of 27

Figure 1: Final NICE MEDLINE and Embase AI medical device intervention

565 filters

564

- 1 algorithm*.ti,kf.
- 2 (algorithm* adj2 (learn* or automate* or detect* or predict* or treatment* or therap* or radiolog* or AI or DL or data or dataset* or base* or classif*)).ab.
- 3 artificial intelligen*.ti,ab,kf.
- 4 Al.ti,kf.
- 5 (machine adj2 learn*).ti,ab,kf.
- 6 machinelearn*.ti,ab,kf.
- 7 (deep adj2 learn*).ti,ab,kf.
- 8 deeplearn*.ti,ab,kf.
- 9 neural network*.ti,ab,kf.
- 10 (convolutional adj1 network*).ti,ab,kf.
- 11 automate*.ti.
- 12 (automate* adj3 (system* or score* or software* or analysis* or analyse* or risk* or evaluat* or tool* or detect* or process*)).ab,kf.
- 13 (vector machine* or svm*).ti,ab,kf.
- 14 radiomic*.ti,ab,kf.
- 15 ((supervised or unsupervised) adj3 (classifier* or prediction*)).ti,ab,kf.
- 16 or/1-15

566

567

[Insert footer here] 27 of 27