

Dois modelos de aprendizagem profunda para análise morfossintática

Marcos Vinícius Treviso marcos vtreviso @gmail.com

Orientador: Fabio Natanael Kepler Trabalho de Conclusão de Curso II

3 de dezembro de 2015

Universidade Federal do Pampa

Roteiro

- Introdução
- Fundamentação
- Trabalhos relacionados
- Modelo neural recursivo
- Modelo neural recorrente bidirecional
- Testes e resultados
- Considerações finais

Roteiro

- Introdução
 - Part-of-speech (POS) Tagging O problema Objetivos
- Fundamentação
- Trabalhos relacionados
- Modelo neural recursivo
- Modelo neural recorrente bidirecional
- Testes e resultados
- Considerações finais

POS Tagging

É conhecido em Processamento de Linguagem Natural (PLN) como o ato de classificar uma palavra pertencente a um conjunto de textos em uma classe gramatical.

- Qual a medida de eficiência?
 - Acurácia
 - Atualmente cerca de 97%
- Quais são as aplicações?
 - Tradução automática
 - Sumarização

4

O problema

- Linguagens naturais são ambíguas
- Estratégia trivial não é eficaz
- Necessário analisar o contexto
- Aprendizado de máquina

Objetivos

- Desenvolver novos modelos para POS Tagging
 - A princípio para o português brasileiro
- Alcançar estado da arte
 - Combinar abordagens existentes
- Analisar a acurácia
 - Palavras dentro do vocabulário
 - Palavras fora do vocabulário
 - Palavras ambíguas
 - Sentença

Roteiro

- Introdução
- Fundamentação
 - Aprendizado de máquina
 - Córpus
 - Representação de palavras
 - Redes neurais
 - Aprendizagem profunda
- Trabalhos relacionados
- Modelo neural recursivo
- Modelo neural recorrente bidirecional
- Testes e resultados
- Considerações finais

Aprendizado de máquina

- Aprendizado supervisionado
 - Regressão
 - Classificação
- Aprendizado não supervisionado

$$h_{\theta}(x) = \theta_0 + \theta_1 f(x_1) + \theta_2 f(x_2) + \dots + \theta_n f(x_n)$$

8

Aprendizado de máquina

- Aprendizado supervisionado
 - Regressão
 - Classificação
- Aprendizado não supervisionado

Córpus

- Coleções de textos agrupados
- Anotação gramatical manual
- Córpus para o português brasileiro:

Córpus	Sentenças	Palavras	Classes gramaticais
Mac-Morpho original	53,374	1,221,465	41
Mac-Morpho revisado ¹	49,932	945,958	26
Tycho Brahe	55,932	1,541,654	265

• Por que não combiná-los?

1. Revisado por: Fonseca, Rosa e Aluísio (2015).

Representação de palavras

- Vetores reais valorados em um espaço multidimensional (word embeddings)
- Mais desempenho de aplicações em PLN e menos engenharia de features
- Conseguem capturar informações sintáticas e semânticas
- Geradas de maneiras diferentes dependendo da técnica utilizada
 - Word2Vec, Wang2Vec, GloVe, etc.
- Palavras fora do vocabulário de treinamento podem ter seu próprio vetor

Representação de palavras

• Palavras similares estão próximas

Imagem criada pelo t-SNE Fonte: Turian, Ratinov e Bengio (2010)

Redes neurais

- Simulação do cérebro humano
- Unidades de ativação: $a_i^{(j)}$
- Pesos: $\theta^{(j)}$
- Função de ativação: $g(\cdot)$
- $a^{(j+1)} = g(\theta^{(j)}a^{(j)})$
- Forward propagation e Backpropagation

Redes neurais

- Simulação do cérebro humano
- Unidades de ativação: $a_i^{(j)}$
- Pesos: $\theta^{(j)}$
- ullet Função de ativação: $g(\cdot)$
- $a^{(j+1)} = g(\theta^{(j)}a^{(j)})$
- Forward propagation e Backpropagation

Aprendizagem profunda

- Muitas tranformações não lineares
- Extração automática de features
- Redes neurais profundas
 - Redes neurais convolucionais
 - Redes neurais recursivas
 - Redes neurais recorrentes

Long Short Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Bidirecional

Exemplo de rede neural recorrente com longa dependência Fonte: Olah (2015)

Roteiro

- Introdução
- Fundamentação
- Trabalhos relacionados
- Modelo neural recursivo
- Modelo neural recorrente bidirecional
- Testes e resultados
- Considerações finais

Trabalhos relacionados

• Escopo do português brasileiro

Autores	Modelo	Rep. palavras	Córpus
Kepler e Finger (2010)	VLMC	Seq. de carac.	Tycho Brahe
Santos e Zadrozny (2014)	RNs	Vet. de pal. e carac.	Tycho Brahe;
Santos e Zadrozny (2014)	1/1/1/5	vet. de pai, e carac.	Mac-Morpho v1, v2
Fonseca, Rosa e Aluísio (2015)	RNs	Vet. de palavras	Tycho Brahe;
Poliseca, Rosa e Aluisio (2013)	IVINS	vet. de palavras	Mac-Morpho v1, v2, v3
Este trabalho	RNs recur. e recor.	Vet. de palavras	Tycho Brahe;
Late trabanio	itivs recur. e recor.	vet. de palavias	Mac-Morpho v1, v3

• Estado da arte

Córpus	Autores	Acurácia
Mac-Morpho v1 (original)	Fonseca, Rosa e Aluísio (2015)	97.57%
Mac-Morpho v3 (revisado)	Fonseca, Rosa e Aluísio (2015)	97.33%
Tycho Brahe	Santos e Zadrozny (2014)	97.17%

Roteiro

- Introdução
- Fundamentação
- Trabalhos relacionados
- Modelo neural recursivo
 - Pré-processamento
 - Arquitetura
 - Treinamento
 - Predição
- Modelo neural recorrente bidirecional
- Testes e resultados
- Considerações finais

Pré-processamento

• Janela de palavras com tamanho t:

$$V_n = \left\{ i(w_{n-\lfloor t/2 \rfloor}), ..., i(w_n), ..., i(w_{n+\lfloor t/2 \rfloor}) \right\}$$

- Janela de etiquetas com o mesmo tamanho que a janela de palavras
- <mask>: Para as extremidades das janelas
- <unknown>: Para palavras raras ou desconhecidas
- <padding_prefix>: Para completar o vetor de prefixos
- <padding_suffix>: Para completar o vetor de sufixos

Arquitetura

$$ReLU(x) = max(0, x)$$

$$softmax(x) = \frac{e^{x_j}}{\sum_{k=1}^n e^{x_k}}, \quad para \ j=1,...,n$$

18

Treinamento

• Guiado por palavras mais fáceis (SHEN; SATTA; JOSHI, 2007)

Palavra/Etiqueta	substantivo	adjetivo	verbo
Computação	0.6	0.2	0.2
é	0.7	0.2	0.1
um	0.1	0.6	0.3
curso	0.8	0.1	0.1
legal	0.4	0.4	0.2
!	0.5	0.4	0.1

$$mp(M) = \underset{i \notin Q}{\arg \max} \left(\underset{0 \le j < |\gamma|}{\max} (M_{i,j}) \right)$$

$$J_c[mp(M) - \lfloor t/2 \rfloor : mp(M) + \lfloor t/2 \rfloor][I_t] = c_{mp(M)}$$

19

Predição

- Semelhante ao algoritmo treinamento
- Beam search de tamanho B
- B sequências de etiquetas mais prováveis para a sentença
- Dá para resumir nas seguintes etapas:
 - 1. Inicialização (pré-processamento)
 - 2. Atualização da janela de etiquetas
 - 3. Predição na rede neural
 - 4. Atualização das ${\it B}$ sentenças de acordo com a palavra mais provável
 - Levando em consideração a probabilidade da sentença e a probabilidade de emissão da etiqueta

Roteiro

- Introdução
- Fundamentação
- Trabalhos relacionados
- Modelo neural recursivo
- Modelo neural recorrente bidirecional
 - Pré-processamento
 - Arquitetura
 - Treinamento e Predição
- Testes e resultados
- Considerações finais

Pré-processamento

• Janela de palavras com tamanho t:

$$V_n = \left\{ i(w_{n-\lfloor t/2 \rfloor}), ..., i(w_n), ..., i(w_{n+\lfloor t/2 \rfloor}) \right\}$$

- <mask>: Para as extremidades das janelas
- <unknown>: Para palavras raras ou desconhecidas
- <padding_prefix>: Para completar o vetor de prefixos
- <padding_suffix>: Para completar o vetor de sufixos

Arquitetura '

- GRU: Camada recorrente com memória
 - Cada palavra da janela vai possuir uma representação vetorial com tamanho h_{\dim}

Treinamento e Predição

• Treinamento:

- Minimização da função de custo
- Categorical Cross-entropy:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i) \right]$$

- Otimizador: Adadelta

• Predição:

- Saída da rede neural: $c_{x_i} = \hat{y}_i$

Roteiro

- Introdução
- Fundamentação
- Trabalhos relacionados
- Modelo neural recursivo
- Modelo neural recorrente bidirecional
- Testes e resultados
 - Ambiente de teste
 - Pré-processamento
 - Hiperparâmetros
 - Resultados
 - Comparação com trabalhos relacionados
- Considerações finais

Ambiente de teste

• Bibliotecas:

- Theano: Bib. que otimiza e avalia expressões matemáticas
- Keras: Bib. para aprendizagem profunda
- Numpy: Bib. para operações com matrizes
- gensim: Bib. que possui um parser dos dumps da Wikipédia

• Máquina:

- Sistema operacional: Ubuntu 14.04 LTS
- Processador: Intel Xeon X5690 CPU @ $3.47GHz \times 24$
- Memória: 64GB 1333 MHz DDR3
- Python 3.4.3

Pré-processamento

- Transformação de palavras raras em <unknown>
- Transformação de todos os dígitos em "9"
- Utilização de *features* de prefixos, sufixos e capitalização
- Utilização de vetores distribuídos de palavras:
 - Treinamento não-supervisionado com um dump de artigos da Wikipédia:
 - 44 milhões de tokens
 - 618966 vetores
- Utilização de um vetor aleatório compartilhado para palavras fora do vocabulário

Hiperparâmetros

- A maioria foi escolhida de modo empírico
- Os hiperparâmetros não foram micro-ajustados

Hiperparâmetro	Modelo recursivo	Modelo recorrente bidirecional
Tamanho da janela de palavras	5	11
Tamanho da janela de etiquetas	5	-
Tamanho dos vetores de palavras	50	50
Tamanho dos vetores de capitalização	7	7
Tamanho dos vetores de prefixos	5	5
Tamanho dos vetores de sufixos	5	5
Número de unidades ocultas	250	250
Taxa de <i>Dropout</i>	0.5	0.5
Taxa de aprendizagem	1.0	1.0
Épocas de treinamento	3	20
Tamanho do <i>beam</i>	3	-
Taxa de raridade	5	5

Resultados

- Utilizamos três *córpus* nos experimentos:
 - Mac-Morpho original (versão 1)
 - Mac-Morpho revisado (versão 3)
 - Tycho Brahe
- Dividimos o conjunto de dados em:
 - 80% para treinamento
 - 20% para validação
- Utilizamos três tipos de vetores distribuídos:
 - Word2Vec
 - Wang2Vec
 - Fonseca (Treinados por Fonseca, Rosa e Aluísio (2015))

Resultados - Acurácia

$$\frac{1}{m}\sum_{i=1}^{m} equal(\hat{y}_i, y_i)$$

- Para palavras conhecidas
- Para palavras desconhecidas
- Para palavras ambíguas
- Para sentenças
 - Sentença é dita correta se todas as palavras na sentença foram classificadas corretamente

Resultados - Modelo neural recursivo

Acurácia sobre o Mac-Morpho original

Representação	Conhecidas	Desconhecidas	Ambíguas	Total	Sentenças
Word2Vec	94.80%	82.54%	94.24%	94.28%	46.39%
Wang2Vec	94.44%	82.12%	94.53%	93.91%	46.28%
Fonseca	95.92%	86.77%	95.26%	95.53%	47.39%

Acurácia sobre o Mac-Morpho revisado

Representação	Conhecidas	Desconhecidas	Ambíguas	Total	Sentenças
Word2Vec	94.13%	80.99%	93.02%	93.78%	42.14%
Wang2Vec	95.22%	81.57%	94.17%	94.56%	42.35%
Fonseca	96.12%	88.32%	96.44%	95.79%	47.28%

Acurácia sobre o Tycho Brahe

Representação	Conhecidas	Desconhecidas	Ambíguas	Total	Sentenças
Word2Vec	90.27%	48.12%	90.81%	88.82%	22.93%
Wang2Vec	91.23%	48.77%	90.86%	89.78%	23.47%
Fonseca	89.74%	47.75%	89.24%	88.31%	19.54%

Resultados - Modelo neural recorrente bidirecional

Acurácia sobre o Mac-Morpho original

Representação	Conhecidas	Desconhecidas	Ambíguas	Total	Sentenças
Word2Vec	97.01%	88.79%	97.05%	97.01%	59.43%
Wang2Vec	97.03%	87.60%	96.70%	96.63%	56.63%
Fonseca	97.60%	92.63%	97.25%	97.37%	66.38%

Acurácia sobre o Mac-Morpho revisado

Representação	Conhecidas	Desconhecidas	Ambíguas	Total	Sentenças
Word2Vec	96.92%	87.28%	96.30%	96.45%	57.03%
Wang2Vec	97.33%	90.03%	96.50%	96.99%	56.04%
Fonseca	97.33%	92.18%	96.50%	97.08%	56.77%

Acurácia sobre o Tycho Brahe

Representação	Conhecidas	Desconhecidas	Ambíguas	Total	Sentenças
Word2Vec	96.42%	65.45%	95.85%	95.53%	57.54%
Wang2Vec	96.33%	68.07%	95.37%	95.36%	58.91%
Fonseca	96.80%	73.39%	96.09%	96.00%	64.80%

Resultados - Análise

• Taxa de vetores não encontrados:

número de vetores não encontrados número de palavras no vocabulário

Representação	Mac-Morpho original (%)	Mac-Morpho revisado (%)	Tycho Brahe (%)
Word2Vec	33.92	27.74	78.52
Wang2Vec	33.92	27.74	78.52
Fonseca	39.33	32.12	93.98

• Taxa de ocorrência de vetores não encontrados:

 $\frac{}{\text{número de palavras no conjunto de (treinamento }\cup\text{ validação)}}$

Representação	Mac-Morpho original (%)	Mac-Morpho revisado (%)	Tycho Brahe (%)
Word2Vec	21.01	17.11	18.42
Wang2Vec	21.01	17.11	18.42
Fonseca	2.14	1.72	6.22

Comparação com trabalhos relacionados

• Melhores resultados em cada córpus:

Córpus	Mac-Morph	no original	Mac-Morph	o revisado FDV(%)	Tycho Todas(%)	Brahe FDV(%)
	10445(70)	1 2 1 (70)	10000(70)		10000(70)	
Kepler e Finger (2010)	-	-	-	-	96,29	71,60
Santos e Zadrozny (2014)	97.47	92.49	-	-	97.17	86.58
Fonseca, Rosa e Aluísio (2015)	97.57	93.38	97.33	93.66	96.93	84.14
Este trabalho	97.37	92.63	97.08	92.18	96.00	73.39

- dump da Wikipédia
- Modelo de caracteres

Roteiro

- Introdução
- Fundamentação
- Trabalhos relacionados
- Modelo neural recursivo
- Modelo neural recorrente bidirecional
- Testes e resultados
- Considerações finais
 - Conclusão
 - Trabalhos futuros

Conclusão

- Dois modelos para POS Tagging
 - Modelo neural recursivo
 - Modelo neural recorrente bidirecional
- Análise de acurácia
 - Para três córpus diferentes
 - Para três tipos de vetores distribuídos como representação de palavras
- Modelo neural recorrente bidirecional mostrou-se mais eficiente que o recursivo
- Segundo melhor resultado para palavras fora do vocabulário no Mac-Morpho original
- Criação de uma ferramenta chamada DeepTagger:
 https://bitbucket.org/fabiokepler/deeptagger>

Trabalhos futuros

- Realizar mais testes
- Revisar o dump utilizado: aumentar caso necessário
- Melhorar o DeepTagger com novas técnicas:
 - Modelo de caracteres
 - Mecanismos de atenção
 - Suporte a outras representações distribuídas de vetores
- Paralelizar o código de treinamento e predição do modelo neural recursivo

Trabalhos futuros

 Com a inclusão de um modelo de caracteres e trocando GRU por LSTM:

Córpus	Mac-Morpho original Todas(%) FDV(%)		Mac-Morpho revisado Todas(%) FDV(%)		Tycho Todas(%)	Tycho Brahe Todas(%) FDV(%)	
	Touas(/0)	FDV(70)	Todas(70)	FDV(70)	10uas(/0)	FDV(70)	
Kepler e Finger (2010)	-	-	-	-	96,29	71,60	
Santos e Zadrozny (2014)	97.47	92.49	-	-	97.17	86.58	
Fonseca, Rosa e Aluísio (2015)	97.57	93.38	97.33	93.66	96.93	84.14	
Antes	97.37	92.63	97.08	92.18	96.00	73.39	
Depois	97.56	93.08	97.29	92.84	97.27	84.06	

• Usando os vetores treinados por Fonseca, Rosa e Aluísio (2015)

Referências I

BENGIO, Y.; GOODFELLOW, I. J.; COURVILLE, A. Deep learning. Book in preparation for MIT Press. 2015. Disponível em: http://www.iro.umontreal.ca/~bengioy/dlbook. FONSECA, E. R.; ROSA, J. L. G.; ALUÍSIO, S. M. Evaluating word embeddings and a revised corpus for part-of-speech tagging in portuguese. *Journal of the Brazilian Computer Society*, Springer, v. 21, n. 1, p. 1–14, 2015.

KEPLER, F. N.; FINGER, M. Variable-length markov models and ambiguous words in portuguese. In: ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. *Proceedings of the NAACL HLT 2010 Young Investigators Workshop on Computational Approaches to Languages of the Americas.* [S.I.], 2010. p. 15–23.

OLAH, C. Understanding lstm networks. 2015. Disponível em: http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

Referências II

SANTOS, C. N. dos; ZADROZNY, B. Training state-of-the-art portuguese pos taggers without handcrafted features. In: *Computational Processing of the Portuguese Language*. [S.I.]: Springer, 2014. p. 82–93. SHEN, L.; SATTA, G.; JOSHI, A. Guided learning for bidirectional sequence classification. In: CITESEER. *ACL*. [S.I.], 2007. v. 7, p. 760–767.

TURIAN, J.; RATINOV, L.; BENGIO, Y. Word representations: a simple and general method for semi-supervised learning. In: ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. *Proceedings of the 48th annual meeting of the association for computational linguistics.* [S.I.], 2010. p. 384–394.

Dois modelos de aprendizagem profunda para análise morfossintática

Marcos Vinícius Treviso

marcosvtreviso@gmail.com

Orientador: Fabio Natanael Kepler

Trabalho de Conclusão de Curso II

3 de dezembro de 2015

Universidade Federal do Pampa

Aprendizagem profunda

- Muitas tranformações não lineares
- Objetivo de aprender automaticamente boas features
- Crescimento do desempenho computacional e criação de novos algoritmos

Adaptado de: Bengio, Goodfellow e

 Redes neurais com múltiplasCourville (2015) camadas

Redes neurais recursivas

- Grafo computacional parece como uma árvore
- Aplica-se transformações recursivamente
- Composição da saída com entrada

