$FERHAOUI\ Yanisse\ 11909519\ |\ Lien\ du\ code: \underline{https://forge.univ-lyon1.fr/p1909519/modelisation-geometrique/-/tree/main/TP1?ref\ type=heads$

Hermite cubique spline 13 points de contrôle en

10 points entre chaque points de contrôle vs 100

Surface de révolution circulaire (courbe permettant de former une tour de jeu d'échecs)

$$X(u, heta) = egin{pmatrix} \cos(heta) & -\sin(heta) & 0 \ \sin(heta) & \cos(heta) & 0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} x(u) \ y(u) \ z(u) \end{pmatrix} = egin{pmatrix} x(u)\cos(heta) - y(u)\sin(heta) \ x(u)\sin(heta) + y(u)\cos(heta) \ z(u) \end{pmatrix}$$

Normale Tangente

Résolution: 10

Résolution: 100

Résolution: 1000

Courbe de Bézier en utilisant la Base de Bernstein

Sa surface de révolution circulaire (1000 de résolution, prend beaucoup + de temps que la cubique spline)

Même surface et points de contrôle que la courbe de Béziers mais version cubique spline (bien + rapide)

Bézier : surface de révolution en trompette de Gabriel

$$X(u, heta) = egin{pmatrix} u\cos(heta) \ u\sin(heta) \ rac{1}{u} \end{pmatrix}$$

où
$$u\in]0,1].$$

Formules des surfaces de révolution : https://fr.wikipedia.org/wiki/Surface_de_r %C3%A9volution