COD310 PRESENTATION

Topic: Implementing SLAM on AGV

Project Supervisor: Prof. Chetan Arora

Team

Mayank Arya Aditya Gupta 2021ES10757 2023EE11181

Contribution - Aditya

- 1) ORB-SLAM3 Integration on ROS2
- 2) Building of rover and implementing RC control on it.
- 3) Hyperparameter tuning of ORB-SLAM parameters using EuRoC dataset

Building of Rover and implementing RC on it

Challenges Faced

- Previous Rover components were not working
- 2) Motor Driver stopped working and further procurement took time.

Challenges Faced during Hyper Parameter Tuning

Challenges Faced During Hyper Parameter Tuning

Orb SLAM gave different trajectories with the same hyper parameters on the same dataset.

Attempted to stop random number generation - led to high errors in sse.

Contribution - Mayank

Generation of odometry via RTABMAP (plus Aruco) and OrbSlam 3 separately and evaluation using Evo Slam

Using Aruco markers to estimate Ground truth

Dataset collection in form of RosBags

Trajectory Comparison Process

Initiate ROS Nodes

Start ROS nodes remotely to begin data collection

Save ORB Output

Save ORB output in TUM format

Align **Trajectories**

Align the trajectories using EVO SLAM

Compute Absolute Pose Errors

Calculate absolute pose errors between trajectories

Save RTABMAP odometry data in TUM format

Move Setup

Move the setup forward and back to the initial position

Scale Mono Trajectory

Scale the mono trajectory using Umeyama's method

Terminate ROS Nodes

End ROS nodes remotely after data collection

Variation in camera position in global frame using ARUCO

Further improvements

Achieve higher

accuracy with

resolution diversity

Ensure smoother

tracking with

reduced jumps

Adjust marker

distances for

resolution diversity

Follow a marked

path for data

collection

Image Comparison of the Trajectories

ORB

RTABMAP + ARUCO