Data Structures and Algorithms Cardinality and MinHash Sketch

CS 225 G Carl Evans

May 2, 2025

Department of Computer Science

Cardinality

Sometimes its not possible or realistic to count all unique objects!

Estimate: 60 billion — 130 trillion

Image: https://doi.org/10.1038/nature03597

946
5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960
42
6901
4336

Cardinality Estimation

Imagine I fill a hat with a random subset of numbered cards from 0 to 999

If I told you that the **minimum** value was 95, what have we learned?

Cardinality Estimation

Let min = 95. Can we estimate N, the cardinality of the set?

Conceptually: If we scatter N points randomly across the interval, we end up with N+1 partitions, each about 1000/(N+1) long

Assuming our first 'partition' is about average: 95
$$\approx 1000/(N+1)$$

 $N+1 \approx 10.5$
 $N \approx 9.5$

Cardinality Estimation

Imagine we have a SUHA hash h over a range m.

Inserting a new key is equivalent to adding a card to our hat!

Tracking only the minimum value is a **sketch** that estimates the cardinality!

To make the math work out, lets normalize our hash...

$$h'(x) = h(x)/(m-1)$$

0

1

Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 ... X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

X_{N+1} will be the new minimum with probability M

By definition of SUHA, X_{N+1} has a $\frac{1}{N+1}$ chance of being smallest item

Thus,
$$\mathbf{E}[M] = \frac{1}{N+1}$$

 $\stackrel{\mathsf{O}}{\longrightarrow} \stackrel{M}{\mid}$

Claim:
$$\mathbf{E}[M] = \frac{1}{N+1}$$

$$N \approx \frac{1}{M} - 1$$

Attempt 1

0.962	0.328	0.771	0.952	0.923
-------	-------	-------	-------	-------

Attempt 2

Attempt 3

The minimum hash is a valid sketch of a dataset but can we do better?

0

Claim: Taking the k^{th} -smallest hash value is a better sketch!

Claim:
$$\mathbf{E}[M_k] = \frac{k}{N+1}$$

$$0 \quad \stackrel{M_1}{\mid} \quad \stackrel{M_2}{\mid} \quad \stackrel{M_3}{\mid} \quad \dots \quad \stackrel{M_k}{\mid}$$

Given any dataset and a SUHA hash function, we can **estimate the number of unique items** by tracking the **k-th minimum hash value**.

To use the k-th min, we have to track k minima. Can we use ALL minima?

How can we describe how *similar* two sets are?

How can we describe how *similar* two sets are?

To measure **similarity** of A & B, we need both a measure of how similar the sets are but also the total size of both sets.

$$J = \frac{|A \cap B|}{|A \cup B|}$$

J is the Jaccard coefficient

Similarity Sketches

But what do we do when we only have a sketch?

Similarity Sketches

Imagine we have two datasets represented by their kth minimum values

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. Genome Biol 20, 232 (2019)

Similarity Sketches

Claim: Under SUHA, set similarity can be estimated by sketch similarity!

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. Genome Biol 20, 232 (2019)

MinHash Sketch

The **k-th minimum value sketch** is built by tracking k minima but only uses one value (the k-th minima) to get **cardinality!**

We can extend this approach into a full **MinHash sketch** that can also estimate **set similarities**.

MinHash Construction

$$S = \{ 16, 8, 4, 13, 15 \}$$

Algorithm is trivial:

$$h(x) = x \% 7$$

1. Hash each item

$$k = 3$$

2. Keep the k-minimum values in memory (Ignore collisions / duplicates)

Given sets A and B sampled uniformly from [0, 100], store the bottom-8 **MinHash:**

Sketch A							
3	15						
7	17						
8	22						
11	23						

Sketch B							
2	9						
3	11						
6	17						
7	23						

We want to estimate the Jaccard Coefficient: $\frac{|A \cap B|}{|A \cup B|}$

Sketch A							
3	15						
7	17						
8	22						
11	23						

Sketch B							
2	9						
3	11						
6	17						
7	23						

What do we know about $A \cup B$?

Sketch A							
3	15						
7	17						
8	22						

Sketch B								
2	9							
3	11							
6	17							
7	23							

We dont $know A \cup B$, but we can make a sketch!

Sketch A								
3	15							
7	17							
8	22							
11	23							

U

Sketch B								
2	9							
3	11							
6	17							
7	23							

Sketch A U B

	0						8			16						24										
Α			2			7	0		1			1		1					2	2						
, , D			3			1	0		1			5		7					2	3						•••
D		_	2		6	7			1					1						2						
		2	3		6	7		9	1					7						3						

Estimate $|A \cup B|$ (the cardinality of the union) from sketch:

Sketch $A \cup B$ Our sets sampled from [0, 100].

2	8
3	9
6	11
7	15

Can we build a 8-Minhash of $A \cap B$?

Sketch A						
3	15					
7	17					
8	22					
11	23					

 \bigcap

Sketch B					
2	9				
3	11				
6	17				
7	23				

Sketch $A \cap B$

	0						8					16						24			
Α			2			7	0		1		1		1			2	2				
, , D			3			1	0		1		5		7			2	3				•••
D						7			1				1				2				
		2	3		6	1		9	1				7				3				

Unlikely to be able to get a full sketch of the intersection!

Sketch A						
3	15					
7	17					
8	22					
11	23					

 \cap

Sketch B					
2	9				
3	11				
6	17				
7	23				

_

Sl	ketch	$A \cap$	В
	3	23	
	7		
	11		
	17		

Using MinHash sketches, we can estimate |A|, |B|, and $|A \cup B|$

Is this enough to estimate the Jaccard?

Inclusion-Exclusion Principle

$$|A \cap B| =$$

MinHash Indirect Jaccard Estimation

$$\frac{|A| \cap |B|}{|A| \cup |B|} = \frac{|A| + |B| - |A \cup B|}{|A \cup B|}$$

k=8 MinHash sketches

Our sets sampled from [0, 100]

Sketch A

3	15
7	17
8	22
11	23

Sketch B

Jict	JICCCIT D						
2	9						
3	11						
6	17						
7	23						

Sketch of

$$|A \cup B|$$

 2
 8

 3
 9

 6
 11

 7
 15

$$=\frac{(800/23-1)+(800/23-1)-(800/15-1)}{800/15-1}$$

$$=\frac{34.782 + 34.782 - 53.333 - 1}{53.333 - 1} \approx 0.29$$

MinHash Direct Jaccard Estimate

We can also estimate cardinality directly using our sketches!

Sketch A

3	15
7	17
8	22
11	23

Sketch B

2	9
3	11
6	17
7	23

Intersection

Union

MinHash Sketch

We can convert any hashable dataset into a MinHash sketch

We lose our original dataset, but we can still estimate two things:

1.

2.

Alternative MinHash Sketch Approaches

Rather than use one single hashes and take bottom-k, we can also use k hashes — if you have access to that many independent hashes!

1) Sequence decomposed into **kmers**

S₁: CATGGACCGACCAG
CAT GAC GAC
ATG ACC ACC
TGG CCG CCA
GGA CGA CAG

GCAGTACCGATCGT : S_2 GTA CGA CGT

AGT CCG TCG

CAG ACC ATC

GCA TAC GAT

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing Berlin et al (2015) *Nature Biotechnology*

- 1) Sequence decomposed into **kmers**
- 2) Multiple hash functions (**Γ**) map kmers to values.

1) Sequence decomposed into **kmers**

2) Multiple hash functions (**Γ**) map kmers to values.

3) The smallest values for each hash function is chosen

 S_1 : CATGGACCGACCAG GCAGTACCGATCGT: S₂ CAT GAC GAC GTA CGA CGT ATG ACC ACC AGT CCG TCG TGG CCG CCA CAG ACC ATC GCA TAC GAT GGA CGA CAG Γ_{4} 14 57 **36** CAT GCA 36 19 14 57 57 37 **19** ATG CAG 18 56 39 58 33 TGG AGT 11 28 40 33 2 11 49 6 **61** GGA **GTA 44 54** GAC TAC 49 47 47 **26** ACC **ACC** 26 60 CCG CCG 22 60 43 24 33 7 28 48 45 52 **45** CGA CGA **24 54** GAC 47 ATC 13 39 18 **26** ACC 28 49 62 56 **41** CCA TCG **54** 11 CGT [<u>5</u>, 15 6] Sketch (S₁) Sketch (S₂)

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing Berlin et al (2015) *Nature Biotechnology*

- 1) Sequence decomposed into **kmers**
- 2) Multiple hash functions (Γ) map kmers to values.

- 3) The smallest values for each hash function is chosen
- 4) The Jaccard similarity can be estimated by the overlap in the **Min**imum **Hash**es (**MinHash**)

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing Berlin et al (2015) *Nature Biotechnology*

MinHash in practice

Mash: fast genome and metagenome distance estimation using MinHash Ondov et al (2016) *Genome Biology*

Alternative MinHash Sketch Approaches

What if I have a dataset which is **much** larger than another?

```
S_1 = \{ 1, 3, 40, 59, 82, 101 \}

S_2 = \{ 1, 2, 3, 4, 5, 6, 7, ... 59, 82, 101, ... \}
```


Alternative MinHash sketches

Bottom-k minhash has low accuracy if the cardinality of sets are skewed

Ondov, Brian D., Gabriel J. Starrett, Anna Sappington, Aleksandra Kostic, Sergey Koren, Christopher B. Buck, and Adam M. Phillippy. **Mash Screen: High-throughput sequence containment estimation for genome discovery**. Genome biology 20.1 (2019): 1-13.

Alternative MinHash Sketch Approaches

If there is a large cardinality difference, use k-partitions!

K-Partition Minhash

00

Probabilistic Data Structures

Probabilistic data structures trade accuracy for efficiency

Most can maintain surprisingly good accuracy

"Cheat" Big O limitations on conventional data analysis