Příjmení a jméno:

Úloha	1	2	3	4	5	Celkem
Maximum	10	10	10	10	10	50
Počet bodů						

1. Uvažujeme vektory $\mathbf{x} = (1, 0, -2), \mathbf{y} = (2, 0, 1) \in \mathbb{R}^3$ a matici

$$\mathbf{A} = \begin{bmatrix} \mathbf{x} & \mathbf{y} \\ \|\mathbf{x}\| & \|\mathbf{y}\| \end{bmatrix} \in \mathbb{R}^{3 \times 2},$$

kde ||.|| je eukleidovská norma. Rozhodněte o pravdivosti tvrzení a každou odpověď zdůvodněte.

- (a) (2 b) Matice $\mathbf{A}\mathbf{A}^T$ je ortogonální projektor na rovinu procházející počátkem v \mathbb{R}^3 .
- (b) (2 b) Matice $\mathbf{A}\mathbf{A}^T$ má vlastní číslo 1.
- (c) (2 b) Matice A je ortogonální.
- (d) (2 b) Reálná funkce $f(\mathbf{z}) = \|\mathbf{A}\mathbf{z}\|^2$ je všude diferencovatelná, kde $\mathbf{z} \in \mathbb{R}^2$.
- (e) (2 b) Matice $\mathbf{A}\mathbf{A}^T$ je regulární.

Řešení:

- (a) Ano. Jelikož je \mathbf{A} matice se dvěma ortonormálními sloupci, podle definice je $\mathbf{A}\mathbf{A}^T$ maticí projekce na sloupcový prostor matice \mathbf{A} , což je právě rovina procházející počátkem v \mathbb{R}^3 .
- (b) Ano. Pro $\mathbf{z} \in \mathbb{R}^3$ vezmeme vektor tvaru $\mathbf{A}\mathbf{A}^T\mathbf{z}$, pak platí $\mathbf{A}\mathbf{A}^T\mathbf{A}\mathbf{A}^T\mathbf{z} = \mathbf{A}\mathbf{A}^T\mathbf{z}$, neboli $\mathbf{A}\mathbf{A}^T\mathbf{z}$ je vlastní vektor a 1 je vlastní číslo. To je intuitivně zřejmé, protože $\mathbf{A}\mathbf{A}^T\mathbf{z}$ již leží v prostoru, na který promítáme, a další projekcí se tedy nezmění.
- (c) Ne, protože má 2 sloupce a 3 řádky.
- (d) Ano, neboť všechny zúčastněné funkce v definici f jsou diferencovatelné.
- (e) Ne, protože např. všechny vektory ležící v přímce kolmé na vektory ${\bf x}$ a ${\bf y}$ se zobrazí na nulový vektor.
- 2. Mějme matici $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$.
 - (a) (4 b) Nalezněte singulární čísla matice A.
 - (b) (3 b) Nalezněte lineárně nezávislé pravé singulární vektory matice A.
 - (c) (3 b) Nalezněte lineárně nezávislé levé singulární vektory matice A.

Optimalizace Zkouškový test 5. 9. 2022

Řešení:

- (a) Určíme nenulová vlastní čísla matice $\mathbf{A}\mathbf{A}^T$ nebo $\mathbf{A}^T\mathbf{A}$, jejich odmocněním získáme všechna nenulová singulární čísla matice \mathbf{A} . Platí $\mathbf{A}\mathbf{A}^T = \begin{bmatrix} 13 & 6 \\ 6 & 4 \end{bmatrix}$, charakteristický polynom je $\lambda^2 17\lambda + 16 = (\lambda 16)(\lambda 1)$. Tedy singulární čísla jsou $s_1 = 4$ a $s_2 = 1$.
- (b) Stačí spočítat vlastní vektory matice $\mathbf{A}^T\mathbf{A}$. Pro vlastní číslo 16 jsou tvaru (t,2t) a pro vlastní číslo 1 mají tvar (-2t,t). Tedy volíme např. $\mathbf{v}_1=\frac{1}{\sqrt{5}}(1,2)$ a $\mathbf{v}_2=\frac{1}{\sqrt{5}}(-2,1)$.
- (c) Platí, že každý levý singulární vektor lze získat jako $\mathbf{u}_i = \frac{\mathbf{A}\mathbf{v}_i}{s_i}$. Tedy pro pravé singulární vektory nalezené v bodu (b) dostaneme $\mathbf{u}_1 = \frac{1}{\sqrt{5}}(-1,2)$ a $\mathbf{u}_2 = \frac{1}{\sqrt{5}}(2,1)$.
- 3. Řešte následující úlohy.
 - (a) (6 b) Minimalizujte funkci $f(x_1,x_2)=-x_1+2x_2$ za omezení $x_1+x_2\leq 4,\ 2x_1+x_2\leq 5,\ -x_1+4x_2\geq 2,$ kde $x_1,x_2\geq 0$ a vysvětlete postup řešení.
 - (b) (3 b) Formulujte duální úlohu k té předchozí.
 - (c) (1 b) Jaká bude optimální hodnota duální úlohy?

Řešení:

- (a) Jedná se o lineární program, kde množina přípustných řešení je omezený polyedr s vrcholy $(0, \frac{1}{2}), (0, 4), (1, 3), (2, 1)$. Víme, že minimum se nachází v nějakém vrcholu. Porovnáním funkčních hodnot zjistíme, že minimum se nachází v bodě (2, 1) a má hodnotu 0.
- (b) Maximalizuj $-4y_1-5y_2+2y_3$ za podmínek $y_1,y_2,y_3\geq 0$ a $-y_1-2y_2-y_3\leq -1,$ $-y_1-y_2+4y_3\leq 2.$
- (c) Obě úlohy mají podle věty o dualitě stejnou optimální hodnotu 0.
- 4. Minimalizujeme funkci $f(x,y) = x^2 + y^2$ na množině $\{(x,y) \in \mathbb{R}^2 \mid y = e^x\}$.
 - (a) (2 b) Problém načrtněte a naznačte, kde přibližně bude ležet minimum.
 - (b) (6 b) Formulujte Lagrangeovu funkci, podmínky optimality prvního řádu a zjednodušte je tak, abyste dostali jednu rovnici g(x) = 0 s jednou neznámou x.
 - (c) (2 b) Jak byste tuto rovnici řešili? Napište jednu iteraci vybrané metody. Pokud budete používat derivace, rozepište je, nepište jen g' či g''.

Řešení:

- (b) Lagrangeova funkce je $L(x,y,\lambda)=x^2+y^2+\lambda(e^x-y)$. Podmínky optimality jsou $2x+\lambda e^x=0$ a $2y-\lambda=0$. Dosazením λ z druhé rovnice do první dostaneme $x+ye^x=0$ a z podmínky přípustnosti dále $x+e^{2x}=0$.
- (c) Tuto rovnici lze řešit např. metodou největšího spádu. Její iterace má tvar $x_{k+1}=x_k-\alpha(1+2e^{2x_k})$, kde $\alpha>0$ je krok.

- 5. Uvažujme funkci $f(x, y, z) = x^2 + y^2 + 2xy + z^2$.
 - (a) (2 b) Jaká je směrová derivace funkce f ve směru (1,0,0)?
 - (b) (3 b) Napište Taylorův polynom prvního řádu kolem bodu (1,1,1). Pokud budete používat nějaké derivace, rozepište je, nepoužívejte f' či f''.
 - (c) (2 b) Je f konvexní? Proč?
 - (d) (3 b) Je vrstevnice funkce f výšky 1 konvexní množina? Proč?

Řešení:

- (a) Směrová derivace funkce f ve směru (1,0,0) je parciální derivace podle první proměnné, tedy 2x + 2y.
- (b) Vzhledem k tomu, že f(1,1,1) = 5 a f'(1,1,1) = (4,4,2), má Taylorův polynom tvar $T_1(x,y,z) = 5 + 4(x-1) + 4(y-1) + 2(z-1)$.
- (c) Funkce je konvexní, neboť jde zapsat jako $(x+y)^2 + z^2$, což je součet dvou konvexních funkcí, přičemž první funkce je konvexní jakožto složení afinní a konvexní funkce.
- (d) Vrstevnice má tvar $\{(x,y,z) \mid (x+y)^2 + z^2 = 1\}$. Tato množina konvexní není, protože do ní patří body (0,0,1) a (0,0,-1), ale nikoli bod (0,0,0), který leží na úsečce mezi nimi.