Friday March 10, 2017

Last time:

- Linear dielectric materials: an atomic perspective
- Effect of dielectrics on capacitance
- Applications of dielectrics and capacitors

Today:

- Calculation of charge
- Applications of dielectrics and capacitors
- Group activity

On document camera

Application: Capacitive Fuel Gauge

https://www.youtube.com/watch?v=0du-QU1Q0T4

Group activity

capacitor with surface area A and plate separation d is charged to an electric charge of q. Step 2: A dielectric slab of thickness b and dielectric constant κ is inserted between the capacitor plates. What is the ratio between the final and initial voltages measured across the capacitor?

STEP 2

(10 marks) Consider the following scenario depicted in the diagrams below. Step 1: A parallel-plate

dimensions and ϵ_{\circ} ?

2. (1 mark) What is the voltage, V_{\circ} , across the capacitor in Step 1 in terms of q, ϵ_{\circ} and the

1. (1 mark) What is the capacitance of the parallel-plate capacitor in Step 1 in terms of its

- dimensions of the capacitor?
- 3. (1 mark) Is the charge on the capacitor in Step 2 the same as it was in Step 1? Explain.
- 4. (2 marks) If the electric field strength between the plates in Step 2 is E_{\circ} in the region outside of the dielectric, and E_d inside the dielectric, what is the voltage across the capacitor in Step 2 in terms of E_{\circ} , E_d and the dimensions of the capacitor and the dielectric slab?
- 5. (2 marks) Use Gauss's law to find E_{\circ} and E_{d} in Step 2, in terms of q, ϵ_{\circ} , κ and the dimensions of the capacitor and the dielectric slab.

 6. (2 marks) Using your result from Question 5, write the voltage, V, across the capacitor in Step

2 in terms of q, ϵ_{\circ} , κ and the dimensions of the capacitor and the dielectric slab.