CLAIM AMENDMENTS

1	1.	(Currently Amended) A data processing method for generating a multiplicative
2		inverse for use in determining a digital signature, the method comprising the
3		computer-implemented steps of:
4		receiving and transiently storing a first integer data value relating to a digital signature
5		of an electronic message;
6		digitally computing determining a multiplicative inverse of the first integer data value
7		modulo a prime modulus data value by computing a first quantity modulo the
8		prime modulus data value, wherein said computing includes using a modulo
9		exponentiation block;
10		wherein the first quantity substantially equals, modulo the prime modulus data value,
11		the first integer data value raised to a power of a second quantity;
12		wherein the second quantity is two less than the prime modulus data value; and
13		storing the multiplicative inverse in a computer hardware storage element for use in
14		determining the digital signature of the electronic message.
1	2.	(Currently Amended) A method for generating a digital an output signal indicating a
2		multiplicative inverse of an integer data value modulo a prime modulus for use in
3		performing a particular operation, the method comprising the steps of:
4		receiving sending a first signal, indicating a value of the integer data value, at to a
5		base input of a modulo exponentiation block of an electronic integrated
6		circuit;
7	•	sending a second signal, indicating a value of the prime modulus, to a modulus input
8		of the modulo exponentiation block; and
9		sending a third signal, indicating a value of the prime modulus less two, to an
10		exponent input of the modulo exponentiation block;
11		wherein the modulo exponentiation block generates an output based on a first quantity
12		modulo a value at the modulus input; and

13		wherein the first quantity substantially equals, modulo the value at the modulus input,
14		a value at the base input raised to a power of a value at the exponent input;
15		<u>and</u>
16		wherein the output generated by the modulo exponentiation block is stored in a
17		computer hardware storage element for use in performing a particular
18		operation that is selected from the group consisting of a digital signature
19		algorithm signing operation, a digital signature algorithm verifying operation,
20		an encryption operation for a first electronic message, and a decryption
21		operation for a second electronic message.
1	3.	(Currently Amended) A method for fabricating an electronic circuit that generates an
2		output signal indicating a multiplicative inverse of an integer data value modulo a
3		prime modulus, the method comprising the steps of:
4		connecting a first register holding signals indicating a value of the integer data value
5		to a base input of a modulo exponentiation block;
6		connecting a second register holding signals indicating a value of the prime modulus,
7		to a modulus input of the modulo exponentiation block;
8		connecting a third register holding signals indicating a value of the prime modulus
9		less two, to an exponent input of the modulo exponentiation block;
10		wherein the modulo exponentiation block generates an output based on a first quantity
11		modulo a value at the modulus input; and
12		wherein the first quantity substantially equals, modulo the value at the modulus input,
13		a value at the base input raised to a power of a value at the exponent input.
1	4.	(Currently Amended) An apparatus for generating an output signal indicating a
2		multiplicative inverse of an integer modulo a prime modulus comprising:
3		a modulo exponentiation block configured to generate the output signal based on a
4		first quantity modulo a value at a modulus input, the first quantity
5		substantially equal, modulo the value at the modulus input, to a value at a base
6		input raised to a power of a value at an exponent input;

7 .		a first input for receiving a first signal indicating a value of the integer, the first input
8		connected to the base input;
9		a second input for receiving a second signal indicating a value of the prime modulus,
10		the second input connected to the modulus input; and
11		a circuit connected to the second input configured to generate on a first output a third
12		signal indicating a value of the prime modulus less two, the first output
13		connected to the exponent input.
1	5.	(Currently Amended) An apparatus for performing a particular operation for using
2		digital signatures on a network, the apparatus comprising a modulo exponentiation
3		block configured for producing a multiplicative inverse of an integer modulo a prime
4		modulus, wherein said multiplicative inverse is used in performing the particular
5		operation.
1	6.	(Currently Amended) The apparatus as recited in Claim 5, further comprising
2		wherein the apparatus has no circuitry block configured to perform an extended
3		Euclidian algorithm (EEA) and no general-purpose processor configured by
4		instructions to perform the EEA.
1	7.	(Original) The apparatus as recited in Claim 5, wherein:
2		the particular operation is performed in a series of sequential computations
3		accomplished over a corresponding series of computation cycles; and
4		the apparatus further comprises connections configured to use the modulo
5		exponentiation block during a plurality of computation cycles of the series of
6		computation cycles.
1	8.	(Currently Amended) The apparatus as recited in Claim 5, wherein the particular
2		operation is an RSA a Rivest, Shamir, and Adleman encrypting operation.
1	9.	(Currently Amended) The apparatus as recited in Claim 5, wherein the particular
2		operation is an RSA a Rivest, Shamir, and Adleman decrypting operation.

1 10. (Original) The apparatus as recited in Claim 5, wherein the particular operation is a 2 digital signature algorithm signing operation. 1 11. (Original) The apparatus as recited in Claim 5, wherein the particular operation is a 2 digital signature algorithm verifying operation. 1 12. (Currently Amended) A computer-readable medium carrying one or more sequences 2 of instructions for generating a multiplicative inverse of an integer modulo a prime modulus for use in performing a particular operation, which instructions, when 3 4 executed by one or more processors, cause the one or more processors to carry out the 5 steps of: 6 sending data indicating a value of the integer as an base input to a modulo 7 exponentiation function; 8 sending data indicating a value of the prime modulus as an modulus input to the 9. . modulo exponentiation function; and 10 sending data indicating a value of the prime modulus less two as an exponent input of 11 the modulo exponentiation function, 12 wherein 13 the modulo exponentiation function generates an output based on a first 14 quantity modulo the modulus input, and 15 the first quantity substantially equals, modulo the modulus input, the base input raised to a power of the exponent input; and 16 17 the output generated by the modulo exponentiation function is used in 18 performing a particular operation that is selected from the group 19 consisting of a digital signature algorithm signing operation, a digital 20 signature algorithm verifying operation, an encryption operation for a 21 first electronic message, and a decryption operation for a second 22 electronic message.

1 (Original) The computer-readable medium recited in Claim 12, wherein the 13. 2 exponentiation function sends the base input, the modulus input and the exponent 3 input to a special-purpose block of circuitry configured to perform modulo 4 exponentiation. (New) A computer-readable medium carrying one or more sequences of instructions 14. 1 for generating a multiplicative inverse for use in determining a digital signature, 2 3 which instructions, when executed by one or more processors, cause the one or more processors to carry out the steps of 4 5 receiving and storing a first integer data value relating to a digital signature of an 6 electronic message; 7 determining a multiplicative inverse of the first integer data value modulo a prime 8 modulus data value by computing a first quantity modulo the prime modulus 9 data value, wherein said computing includes using a modulo exponentiation 10 block: wherein the first quantity equals, modulo the prime modulus data value, the first 11 12 integer data value raised to a power of a second quantity; 13 wherein the second quantity is two less than the prime modulus data value; and 14 storing the multiplicative inverse in a computer hardware storage element for use in 15 determining the digital signature of the electronic message. 1 15. (New) An apparatus for generating a multiplicative inverse for use in determining a 2 digital signature, the method comprising the computer-implemented steps of: 3 means for receiving and storing a first integer data value relating to a digital signature 4 of an electronic message; 5 means for determining a multiplicative inverse of the first integer data value modulo a 6 prime modulus data value by computing a first quantity modulo the prime 7 modulus data value, wherein said computing includes using a modulo 8 exponentiation block;

9	wherein the first quantity equals, modulo the prime modulus data value, the first
10	integer data value raised to a power of a second quantity;
11	wherein the second quantity is two less than the prime modulus data value; and
12	means for storing the multiplicative inverse in a computer hardware storage element
13	for use in determining the digital signature of the electronic message.
1	16. (New) An apparatus for generating a output signal indicating a multiplicative inverse
2	of an integer data value modulo a prime modulus for use in performing a particular
3	operation, the apparatus comprising:
4	means for sending a first signal, indicating a value of the integer data value, to a base
5	input of a modulo exponentiation block of an electronic integrated circuit;
6	means for sending a second signal, indicating a value of the prime modulus, to a
7	modulus input of the modulo exponentiation block; and
8	means for sending a third signal, indicating a value of the prime modulus less two, to
9	an exponent input of the modulo exponentiation block;
10	wherein the modulo exponentiation block includes means for generating an output
11	based on a first quantity modulo a value at the modulus input;
12	wherein the first quantity equals, modulo the value at the modulus input, a value at the
13	base input raised to a power of a value at the exponent input; and
14	wherein the output generated by the modulo exponentiation block is stored in a
15	computer hardware storage element for use in performing a particular operatio
16	that is selected from the group consisting of a digital signature algorithm
17	signing operation, a digital signature algorithm verifying operation, an
18	encryption operation for a first electronic message, and a decryption operation
19	for a second electronic message.