Stat 150, Fall 2018, HW #4

Due Thurs Oct 18 at the start of class 9:30 AM in Evans 10. Late assignments will not be accepted.

- 1. Pinsky and Karlin [PK], Problems (not exercises):
 - 5.3.5
 - 5.3.6. *Hint:* Relate $\int_0^T N(t)dt$ to the amount of time the first Q-1 customers wait to be processed.
 - 5.4.2
 - 5.4.4. Hint: Let $Z_t = \min\{W_1 + Z_1, \dots, W_{X(t)} + Z_{X(t)}\}$. Find $\mathbb{P}(Z_t > z)$, and then let $t \to \infty$ to obtain $\mathbb{P}(Z > z)$.
- 2. Durrett [D], Exercises:
 - 2.38
 - 2.53
- 3. Let $(X_t: t \ge 0)$ be a Poisson process with rate $\lambda > 0$. Let W_n be the time of the *n*th event. Find:
 - (a) $\mathbb{E}(X_5)$
 - (b) $\mathbb{E}(W_3)$
 - (c) $\mathbb{P}(X_5 < 3)$
 - (d) $\mathbb{P}(W_3 > 5)$
 - (e) $\mathbb{P}(W_3 > 5 | X_2 = 1)$.
- 4. Robins and blackbirds make short, independent visits to a bird feeder. The number of robins seen by time t is a Poisson process $(R_t : t \ge 0)$ with rate $\lambda > 0$. The number of blackbirds seen by time t is a Poisson process $(B_t : t \ge 0)$ with rate $\mu > 0$.
 - (a) Argue that $(T_t = R_t + B_t : t \ge 0)$ is a Poisson process, and give its rate.
 - (b) Find the probability that the first bird to arrive is a robin.
 - (c) Given that n birds have arrived by time t, identify the conditional distribution of the number of robins that have arrived by time t.