Midterm

RJ Cass

Abstract

We analyzed data of the total Basal Area of trees in a plot, with corresponding environmental factors. We found that the factors that most influence tree growth are Elevation, Aspect, Longitude, and Latitude. We found that the combination of factors most conducive to tree growth was a Longitude and Latitude of -109.34, 40.99 (the maximum values for each), an elevation of 9755, and facing North (with slope not mattering). We created a GAM model to generate predcitions of total Basal Area for other plots not surveyed by the FIA, which are shown in Table 4 in the Appendix.

1: Introduction

Context

We have a dataset representing the total basal size of all Lodgepole Pines within a plot, along with various environmental factors that may contribute to tree growth. We want to use these data to answer the following questions:

- 1) How is lodgepole growth is affected by its environment?
- 2) What environments are conducive to lodgepole growth?
- 3) Given the environmental data for areas the FIA was not able to survey, what is the predicted basal area of the trees in that area?

Data Exploration

Upon examining the data, we noticed the output variable (Basal Area) does not appear to be normally distributed (see Figure 1). As such, the normality assumption required for many modeling methods is not met and, if not addressed, generated models will not properly reflect the relationships between the input and output variables, and will have reduced predictive power. To account for this, we examined a log and a square root transform, and found that the square root transform better fits the normality assumptions. Thus, in models where normality is assumed, we will use the Square Root transform of Basal Area.

We also identified that several of the factors appear either to be non-linear, or possibly non-significant in determining Basal Area. Shown in Figure 2 are the scatter-plots of Basal Area plotted against each factor.

Figure 1: Histograms of Basal Area (left) and its Log (middle) and Square Root (right) transforms. Note the skewness in the left and middle graphs.

Figure 2: Scatterplots of the square root of Basal Area vs. each explanatory factor. Note that Aspect and Elevation appear to be non-linear relationships.

2: Methodology

2.1 Proposed Models

Model 1

For our second model we considered a Generalized Additive Model (GAM). To determine which variables to include, we fit an inital GAM to the square root of Basal Area. Reviewing the plots in Figure 2, we chose Longitude, Latitude, and Slope to be linear relationships. We chose to fit Elevation using a natural spline because it forces linearity outside the range of given data which will help with better predictive power for values outside our range. We chose to fit Aspect using a basis spline because Aspect is bounded between 0 and 360 so we do not need to worry about values outside that range. We then reviewed the p-values to see which factors were significant and found that with an alpha = 0.5, Slope was not significant so we removed it from the model.

GAM models require the LINE assumptions of Linearity (in the case each variate is linear compared to the rest of the model), Independence, Normality, and Equal Variance. If these conditions are not met, the model will not accurately predict, nor represent the correct explanatory relatinships between values.

This model will allow us to answer the research questions by identifying what combination of factors yields the highest Basal Areas, as well as provide predictions for plots outside of the provided data.

Model 2

For our second model we created a LOESS (locally estimated scatterplot smoothing) model fitting. Given we found previously that Slope was not significant, and a LOESS model is normally limited to 4 factors due to increasing computational requirements with higher dimensionality, we chose to exclude Slope from this model as well.

Loess models do not have any assumptions that need to be met. This model can be used to answer the research questions by identifying which combinations give the largest Basal Area, and by predciting for plots outside the measured values.

2.2 Model Evaluation and Selection

To compare the models we performed Leave-One-Out Cross Validation and calculated the RMSE of each model, as shown in Table 1. The RMSE values for the two models are very close, and their confidence intervals overlap. Thus, neither of the models appears to have a signifianct advantage in predictive power. However, the GAM model is much more explainable due to being a direct transform of the explaining factors. Thus, we chose to use the GAM model to answer our research questions.

Table 1

Model	LOOCV RMSE
GAM	8.523 ± 1.875
LOESS	8.438 ± 1.861

The GAM model we are using follows this format:

$$g(\mathbb{E}(\sqrt{BasalArea})) = \beta_0 + \beta_1 Longitude + \beta_2 Latitude + \sum_{k=1}^{3} \beta_k b_k (Aspect) + \sum_{k=1}^{3} \beta_k n_k (Elevation)$$

As shown in Figure 1, we performed a transform on Basal Area to meet the normality assumptions. Independence is assumed (that one plot of trees does not impact another plot of trees). Figure 3 outlines the Linearity (left) and Equal Variance (right) assumptions. The left plot appears to have some shape to it, indicating that Linearity may not be a clear assumption. However, we believe it to be sufficient for this analysis. The variance of points in the line on the right plot appear equal, indicating the Equal Variance assumption is met.

Figure 3: Left - residual plot, note the change in variance across the x-axis. Right - fitted vs. actual values, note the variance appears equal over the fit

3: Results

The calculated coefficients for each term of the GAM model are provided in the Table 3 in the Appendix. As described previously, we found that all factors were signficant in determining Basal Area except for Slope.

We found that the conditions most conducive to tree growth are:

Table 2

Longitude	Latitude	Slope	Aspect	Elevation
-109.34	40.99	1	360	9755.76

4: Conclusions

Figure 4: Plots showing the model fit of each variable. Each plot holds all other variables constant at their mean value. Because Slope was excluded from the model it is just flat.

Figure 5: Distribution of Basal Area in relation to cardinal direction (North, East, etc.). Note that the largest Basal Areas tend to be on Northern-facing slopes.

Table 3

Variable Value
(Intercept) 13.5620137
LON 0.6116082
LAT 1.3064051
bs(Aspect)1 -1.9333634
bs(Aspect)2 -0.7828835
bs(Aspect)3 0.4552546
ns(ELEV, df = 3)1 3.7474787
ns(ELEV, df = 3)2 7.3697091
ns(ELEV, df = 3)3 0.3409309

Appendix

Table showing the coefficients of the chosen model. It is important to remember that these coefficients come from a model of the square root of Basal Area.

Table 4

	LON	LAT	Slope	Aspect	ELEV	Lodgepole
115	-109.5198	40.87226	6	306	7430	1.028137202
116	-110.9515	40.55974	6	90	9874	6.735208355
117	-110.9954	40.56292	6	156	9278	4.719442174
118	-110.6357	40.87199	6	70	10880	3.153959852
119	-110.7610	40.69594	7	327	10824	6.068041911
120	-109.5815	40.86886	8	43	7366	0.184081470
121	-110.4061	40.83268	8	3	11151	4.187557170
122	-110.4822	40.51814	9	111	8474	1.734507356
123	-109.5704	40.55577	10	250	6128	9.449841891
124	-109.9319	40.82875	10	352	10601	15.178192935
125	-110.9980	40.51779	11	260	9821	8.406509605
126	-111.0560	40.56657	12	170	9125	3.988007665
127	-111.1230	40.83439	12	303	9309	11.414640090
128	-110.2258	40.65166	13	151	10627	4.117587314
129	-110.7646	40.51741	14	254	10105	8.059824926
130	-109.4653	40.68576	15	212	8184	3.032943452
131	-109.7064	40.59679	17	205	8798	6.476771407
132	-109.9927	40.83059	17	280	11036	4.628703858
133	-110.1713	40.73923	17	300	11007	4.743006491
134	-109.7558	40.55485	20	175	6982	2.296745594
135	-110.9438	40.92702	20	335	8909	11.907304616
136	-110.5285	40.78882	20	87	10816	3.111740565
137	-110.8764	40.68762	20	100	10081	6.948048284

(007000	maea)					
	LON	LAT	Slope	Aspect	ELEV	Lodgepole
138	-109.9360	40.69535	21	75	10605	6.504532065
139	-109.6455	40.55103	22	192	6546	6.024550684
140	-110.7659	40.56251	22	17	9609	11.803366747
141	-109.9384	40.91927	22	174	9225	10.651474995
142	-111.0192	40.68235	22	151	10240	5.143457661
143	-109.4018	40.86244	23	338	7755	4.620680957
144	-110.8768	40.74240	23	8	10304	11.371865979
145	-109.3462	40.64482	24	160	6761	2.943244377
146	-109.9273	40.55387	25	80	7379	0.249763493
147	-111.0590	40.69536	25	290	9749	11.265867211
148	-111.0023	40.70136	25	320	9944	13.328234834
149	-110.4913	40.61982	25	96	10943	1.481387352
150	-110.0470	40.73850	25	220	10739	5.045371890
151	-110.1708	40.87685	25	123	11147	1.349052676
152	-109.3440	40.60056	28	192	6280	8.130401967
153	-111.1161	40.55838	28	187	7530	0.980619635
154	-110.2923	40.65113	28	22	10755	6.358859068
155	-109.6829	40.90886	30	2	6422	1.632258256
156	-109.8083	40.96409	30	16	7831	3.431203258
157	-110.0642	40.68469	30	137	10715	3.921821157
158	-109.7430	40.93585	31	359	6778	0.005091188
159	-109.6443	40.68962	31	246	9222	12.347845708
160	-110.2293	40.56296	32	165	8359	1.647648423
161	-109.9427	40.96765	33	347	9336	22.514149227
162	-109.8191	40.68913	33	138	10217	9.243685393
163	-109.4612	40.64508	34	256	7524	0.281112608
164	-111.0617	40.88088	35	230	8769	4.779396011
165	-109.5109	40.96192	37	241	6402	3.639945427
166	-110.9359	40.52199	37	344	9805	14.000623640
167	-109.4547	40.82271	38	140	7902	1.290106877
168	-109.6761	40.93287	40	142	6246	7.860386483
169	-111.0643	40.92369	40	158	7673	0.049375731
170	-110.1114	40.60659	40	218	7844	0.304951803
171	-110.3880	40.54058	40	55	9153	7.781217387
172	-109.8784	40.91685	42	72	8457	5.709489227
173	-109.5247	40.73060	42	244	8439	6.066635029
174	-109.9880	40.91924	45	210	9538	13.231604788
175	-110.0552	40.92061	45	165	10000	11.773868358
176	-110.8227	40.56215	49	311	10202	10.642406409
177	-109.4527	40.87241	50	50	6980	0.246257696
178	-110.1679	40.59570	50	331	10010	16.778760304
179	-109.9209	40.93394	51	255	8068	3.366622923

(continued)

	LON	LAT	Slope	Aspect	ELEV	Lodgepole
180	-109.9954	40.60632	51	355	8928	14.801476990
181	-110.3487	40.60104	53	223	8225	1.529135666
182	-110.4628	40.69858	55	355	10674	10.743801766
183	-109.4559	40.91507	60	320	6069	4.196680645
184	-109.8199	40.65146	60	73	8896	7.791459132
185	-110.8226	40.78491	60	147	10381	5.317253303
186	-109.6055	40.93588	65	160	6738	2.401893411
187	-110.1774	40.64587	70	65	8071	1.318880762
188	-110.7088	40.83536	74	336	10595	10.725607625
189	-109.6448	40.64241	75	118	7809	0.371635433
190	-110.9982	40.78764	75	64	8241	1.412278916
191	-110.7017	40.56653	75	114	8685	2.565330352
192	-110.9391	40.74638	80	220	9544	8.347995522