Álgebra lineal I, Grado en Matemáticas

Ejemplo de examen tipo test con contenidos similares a los del examen de febrero 2020, segunda semana.

Preguntas relacionadas con los conceptos pedidos en las definiciones:

Pregunta 1 Matriz. Si dos matrices A y B cumplen que su producto es una matriz AB de orden n, entonces

- (a) Siempre existe el producto BA.
- (b) El producto BA no siempre se puede realizar.
- (c) Si existe el producto BA, entonces es una matriz de orden n.

Pregunta 2 Coordenadas. Si v es el vector de coordenadas (1, 2, 3) respecto de una base $\mathcal{B} = \{v_1, v_2, v_3\}$ de V, entres sus coordenadas en la base $\mathcal{B}' = \{v_1, v_2 + v_1, v_3 + v_1\}$ son

- (a) Los vectores $\{v_1, v_2 + v_1, v_3 + v_1\}$ no forman una base de V.
- (b) (2, -1, 3)
- (c) (-4,2,3)

Pregunta 3 Espacio vectorial cociente. Si $U = L(v_1, v_2)$ es un subespacio de V y $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ es una base de V, y V/U es el espacio vectorial cociente de V módulo U, entonces

- (a) $v_3 + U$, $v_4 + U$ es una base de
- (b) V/U es un espacio vectorial de dimensión distinta a la de U.
- (c) $v_3 + v_2 + U$, $v_4 + v_1 + U$ no es una base de V/U.

Pregunta 4 Aplicación lineal. Sea $f:U\to V$ una aplicación lineal y P un plano contenido en U. Si el subespacio f(P), imagen por f de dicho plano, es un plano de V, entonces

- (a) f es invectiva pues conserva las dimensiones.
- (b) f no puede ser sobreyectiva.
- (c) f puede ser inyectiva y sobreyectiva.

Preguntas relacionadas con la realización de ejercicios:

Ejercicio 1: (2 puntos)Demuestre que si C es una matriz de orden n y rango n, entocnes rg(AC) = rg(A) para toda matriz A de orden $m \times n$.

Este ejercicio no tendrá correspondencia en el examen tipo test. Los 2 puntos se repartirán entre más preguntas del tipo anterior y algún ejercicio o apartado de ejercicio más.

Pregunta 5 El determinante de A es

(a)
$$\det(A) = \lambda_1 \cdots \lambda_n$$

(b)
$$\det(A) = -\lambda_1 \cdots \lambda_n$$

(c)
$$\det(A) \neq 0$$
 si $\lambda_1 \cdots \lambda_n \neq 0$

Pregunta 6 Si A es invertible y la inversa es $B = (b_{ij})$, entonces

(a)
$$b_{ij} = 0$$
 si $i \neq j$ y $b_{i,i} = \frac{1}{\lambda_{i+n-1}}$ para $i = 1, \dots, n$.

(b)
$$b_{ij} = 0 \text{ si } i + j \neq n + 1 \text{ y } b_{i,n-i+1} = \frac{1}{\lambda_{n-i+1}} \text{ para } i = 1, \dots, n.$$

(c)
$$b_{ij} = 0$$
 si $i + j \neq n + 1$ y $b_{i,n-i+1} = \frac{1}{\lambda_i}$ para $i = 1, \dots, n$.

Ejercicio 3: Sean u, v y w vectores linealmente independientes de un \mathbb{K} –espacio vectorial V de dimensión mayor que 3, con $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$.

Pregunta 7 : Los vectores $v_1 = au + 3v + w$, $v_2 = u - v - w$, $v_3 = 2u - av - w$ con $a \in \mathbb{K}$ son

- (a) Linealmente independientes si $a \neq \pm 1$.
- (b) Linealmente dependientes si y sólo si $\mathbb{K} = \mathbb{C}$ y a = i.
- (c) Linealmente independientes para todo $a \in \mathbb{R}$.

Ejercicio 4: Sea $f: \mathbb{K}_3[x] \to \mathbb{K}_3[x]$ la aplicación lineal definida por f(p(x)) = p(x) - xp'(x)

Pregunta 8 : La matriz de f en la base $\mathcal{B} = \{1, 1+x, 1+x^2, 1+x^3\}$ es

(a)
$$\mathfrak{M}_{\mathcal{B}'}(f) = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}$$
 (b) $\mathfrak{M}_{\mathcal{B}'}(f) = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}$ (c) $\mathfrak{M}_{\mathcal{B}'}(f) = \begin{pmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}$

Pregunta 9 : La aplicación lineal f

- (a) Es un isomorfismo
- (b) El subespacio Ker(f) no contiene polinomios de grado 2.
- (c) El subespacio Im(f) tiene dimensión 2.

Pregunta 10 : Sea U el subespacio generado por el polinomio $p(x) = x + x^2 + x^3$. Entonces

- (a) U no está contenido en Im(f).
- (b) $U \cap \text{Im}(f)$ es una recta.
- (c) f(U) = U.

Soluciones 1a, 2c, 3a, 4c, 5c, 6b, 7c, 8a, 9b, 10 a.