Mathématiques I

Opérations sur les fonctions

Dr. Mucyo Karemera

Ce document a été préparé avec l'aide du Prof. Stéphane Guerrier

Assistants: G. Blanc, B. Poilane & H. Voegeli

Etant donné deux fonctions f,g de même domaine de définition, on peut aisément en créer de nouvelles avec les opérations élémentaires $+,-,\cdot,\div$.

Définition (Addition de fonctions)

Soient $A \subset \mathbb{R}$ et $f, g : A \to \mathbb{R}$. On définit la fonction somme, notée (f+g), ainsi: $(f+g) : A \to \mathbb{R}$ $\times \mapsto (f+g)(x) = f(x) + g(x)$

Remarque

Si $f: A \to \mathbb{R}$ et $g: B \to \mathbb{R}$ n'ont pas le même domaine de définition, la fonction somme peut être définie sur l'intersection de deux domaines, i.e.

$$(f+g):A\cap B\to \mathbb{R}.$$

La définition est similaire pour la soustraction (f - g), et la multiplication $(f \cdot g)$.

Définition (Soustraction et produit de fonctions)

Soient $A \subset \mathbb{R}$ et $f,g:A \to \mathbb{R}$. On définit (f-g) et $(f \cdot g)$ ainsi:

$$(f-g): A \rightarrow \mathbb{R}$$

 $x \mapsto f(x) - g(x)$

$$(f \cdot g) : A \rightarrow \mathbb{R}$$

 $x \mapsto f(x) \cdot g(x)$

Pour la division de fonction, il faut prendre une précaution supplémentaire.

Définition (Division de fonctions)

Soient $A \subset \mathbb{R}$ et $f, g : A \to \mathbb{R}$ tel que $g(x) \neq 0$, $\forall x \in A$. On définit $\left(\frac{f}{g}\right)$, ainsi: $\left(\frac{f}{g}\right) \cdot A \to \mathbb{R}$

$$\begin{pmatrix} \frac{f}{g} \end{pmatrix} : A \to \mathbb{R}$$

$$x \mapsto \left(\frac{f}{g} \right) (x) = \frac{f(x)}{g(x)}$$

Composition de fonctions

Une opération courante sur les fonctions est la composition.

Définition (Composition de fonctions)

Soient $A, B \subset \mathbb{R}$, $f : A \to B$ et $g : B \to \mathbb{R}$. On définit la composition de f et de g, notée $(g \circ f)$, ainsi:

$$(g \circ f) : A \rightarrow \mathbb{R}$$

 $x \mapsto (g \circ f)(x) = g(f(x))$

L'écriture ci-dessus peut aussi se comprendre de la façon suivante

$$(g \circ f): A \xrightarrow{f} B \xrightarrow{g} \mathbb{R}$$

 $x \mapsto f(x) \mapsto g(f(x))$

Composition de fonctions

Attention

Il faut veiller à ne pas confondre $(g \circ f)$ et $(f \circ g)$. Par exemple, pour

 $(g \circ f)$ est bien définie alors que $(f \circ g)$ n'est l'est pas!! En effet, on a dans ce cas $\forall x \in \mathbb{R}_+$,

$$(g \circ f)(x) = g(\sqrt{x}) = g(x^{\frac{1}{2}}) = (x^{\frac{1}{2}})^3 = x^{\frac{3}{2}}.$$

Par contre,

$$(f \circ g)(-1) = f(-1)^3 = f(-1) = \sqrt{-1} \notin \mathbb{R}.$$

Réciproque d'une fonction

Pour une fonction **bijective** $f:A\to B$, où $A,B\subset\mathbb{R}$, on peut caractériser la **réciproque**, notée $f^{-1}:B\to A$ par l'équivalence suivante

$$y = f(x) \Leftrightarrow x = f^{-1}(y).$$

Cette équivalence peut aussi s'écrire avec le signe de composition ainsi: $\forall x \in A$ et $\forall y \in B$

$$x = (f^{-1} \circ f)(x)$$
 et $y = (f \circ f^{-1})(y)$.

Réciproque d'une fonction

Attention

Il faut veiller à ne pas confondre f^{-1} et $\frac{1}{f}$. La première est définie ci-dessus et la deuxième est donnée par

$$\left(\frac{1}{f}\right)(x) = \frac{1}{f(x)}$$

 $\forall x \in A \text{ tel que } f(x) \neq 0.$

Ceci explique pour quoi la notation f^r est parfois préférée pour désigner la fonction réciproque.