**Theorem 1.** If A is a retract of X, then the homomorphism of fundamental groups induced by inclusion  $j: A \to X$  is injective.



## Theorem 2. No retraction Theorem

There is no retraction of  $B^2$  onto  $S^1$ , aka the unit disk onto the unit circle.

This is a silly little definition-based proof. Let's look at the disk; it is star-convex (recall Chapter 52??). This means it must be simply connected, and thus its fundamental group is trivial (page 333).

Now let's look at  $S^1$  and its fundamental group. By Theorem 54.5, we know the fundamental group of  $S^1$  is isomorphic to the additive set of integers. Great. It is nontrivial.

Okay, now that those observations are out of the way, let's suppose towards a contradiction that there is a retraction of  $B^2$  onto  $S^1$ . By Lemma 55.1 (above), this means that inclusion  $j: S^1 \to B^2$  must induce an injective  $j_*$ . But guys. Horrible news ahead.  $j_*$  maps the fundamental group of  $S_1$ , which is nontrivial, to the fundamental group of  $B^2$ , which is trivial. So it can't be injective. Oh my god gasp a contradiction. Crazy time! I wanted to also briefly mention a generalization about this; the source I will link to Piazza.

**Theorem 3.** Let X be a topological space homeomorphic to the underlying space of a 2-dimensional simplicial complex. Then there exists no retraction  $r: X \to \partial X$ 

Several comments on this. Given my brief and hasty research on what a "simplical complex" means, I am very unsure. But, given our knowledge of the proof, I assume we can make the less stronger statement that

**Theorem 4.** Let X be a topological space homeomorphic to a simply connected space. Then there exists no retraction  $r: X \to \partial X$ 

Again, I am very unsure. But this is cool!

**Theorem 5.** (Brouwer fixed-point theorem for disc) If  $f: B^2 \to B^2$  is continuous, then there exists a point  $x \in B^2$  such that f(x) = x.

## Proof Sketch (Hatcher):

Suppose for a contradiction...



We can define  $r: B^2 \to S^1$ , which is a retraction! Note that  $w_0 \simeq w_1$  in  $B^2$ , but  $w_0 \not\simeq w_1$  in  $S^1$ . Yet we can force a composition that reaches a contradiction.

Corollary: Let A be a 3 by 3 matrix of positive real numbers. Then A has a positive real eigenvalue.

How is B homeomorphic to  $B^2$  in the textbook proof?