⊳ Size-adaptive math

	(x)	parantheses
	[x]	brackets
	x	absolute value
	$ x ^2$	absolute value squared
{}	[x, y]	commutator
	$\langle x \rangle$	mean value

▷ Braket notation

	$\langle x $	bra
	$ x\rangle$	ket
{}	$\langle x y\rangle$	scalar product
{}	$ x\rangle\langle y $	ket-bra operator
{}{}	$\langle x y z\rangle$	matrix element
$\space{2mm} \space{2mm} \spa$	$\langle x y z\rangle$	small matrix element

> Special functions

	$\delta(x)$	delta function
	$\theta(x)$	theta function
	$\exp(x)$	exponential function
	e^x	exponential function
	Re(x)	real part, function form
	Im(x)	imaginary part, function form
\Re	Re	real part
\Im	Im	imaginary part

Named states

\ketPsi $|\Psi
angle$

\ketpsi	$ \psi\rangle$	
\ketphi	arphi angle	
\ketup	$ \!\!\uparrow\rangle$	spin up
\ketdn	$ \!\downarrow\rangle$	spin down
\ketzero	$ 0\rangle$	
\ketone	$ 1\rangle$	
\ketg	$ g\rangle$	ground state
\kete	$ e\rangle$	excited state
\vac	$ { m vac}\rangle$	vacuum
⊳ Pauli matrices		
\sx	σ^x	
\sy	σ^y	
\sz	σ^z	
\splus	σ^+	
\sminus	σ^{-}	
> Vectors		
\vecr	r	
\vecrone	$\mathbf{r_1}$	
\vecrtwo	$\mathbf{r_2}$	
\vecrn	${f r_N}$	
\vecri	$\mathbf{r_{i}}$	
\vecrj	$ m r_{j}$	
\vecR	\mathbf{R}	
\vecx	X	
\vecy	y	
\vecz	${f z}$	

\vecxi	$\mathbf{x_i}$	
\vecxj	x_j	
\veck	k	
\vecq	q	
\vecp	p	
\vecd	\mathbf{d}	
\vecmu	$oldsymbol{\mu}$	
\vecsigma	σ	
Differentiation		
	$\frac{\partial}{\partial x}$	partial differentiation
\laplace	$ abla^2$	laplace operator
▷ Integration		
	$\int dx$	integral
{}	$\int_{x}^{y} dz$	integral with boundaries
{}	$\int \frac{\mathrm{d}x}{y}$	integral with fraction
\intvol	$\int \! \mathrm{d}^3 r$	integral over r space
\intvolp	$\int \! \mathrm{d}^3 r'$	integral over r' space
\intvold	$\int \! \mathrm{d}^3 r \int \! \mathrm{d}^3 r'$	double integral over space
\intk	$\int \! \mathrm{d}^3 k$	integral over k space
\intkp	$\int \! \mathrm{d}^3 k'$	integral over k' space
\intkn	$c d^3k$	
	$\int \frac{\mathrm{d}^3 k}{(2\pi)^3}$	normalized integral over k space
\intkpn	$\int \frac{\mathrm{d}^3 k'}{(2\pi)^3} \int \frac{\mathrm{d}^3 k'}{(2\pi)^3}$	normalized integral over k space normalized integral over k' space
\intkpn		

 $\stackrel{!}{=}$ has to be \hastobe $\hat{=}$ corresponds to, is equivalent \eqhat \id identity matrix 1 hermitian conjugate \const const. ⊳ Second quantization annihilation operator \aop a a^{\dagger} creation operator \aopd \bop bannihilation operator \bopd b^{\dagger} creation operator \cop annihilation operator c c^{\dagger} \copd creation operator number operator \nop n $\hat{\psi}$ \psiop field operator $\hat{\psi}^{\dagger}$ \psiopd $\hat{\Psi}$ \PsiOp $\hat{\Psi}^{\dagger}$ \PsiOpd Differences Δx \Dx Δy \Dy \Dt Δt ▶ Trigonometry \asin asin \acos acos

atan

\atan

⊳ Figures