Supplemental Materials

CACE for a single trial with noncompliance

According to Zhou et al. (2019), each observed n_{rto} has a corresponding probability that can be written in terms of parameters defined in $\boldsymbol{\beta}=(\pi_a,\pi_n,u_1,v_1,s_1,b_1)$. $\lambda=\Pr(R_j=1)$ is the proportion of assigning the active treatment, which is usually known in randomized trials. Thus the vector $(n_{000},n_{001},n_{010},n_{011},n_{100},n_{101},n_{110},n_{111})$ follows a multinomial distribution with parameters N and \mathbf{p} , where $N=\sum n_{rto}$ and the elements of \mathbf{p} are listed in Table 1.

Table 1: Observed data and probabilities

Observed	Probabilities
n_{000}	$(1-\lambda)\{\pi_c(1-v_1)+\pi_n(1-s_1)\}$
n_{001}	$(1-\lambda)(\pi_c v_1 + \pi_n s_1)$
n_{010}	$(1-\lambda)\pi_a(1-b_1)$
n_{011}	$(1-\lambda)\pi_a b_1$
n_{100}	$\lambda \pi_n (1-s_1)$
n_{101}	$\lambda \pi_n s_1$
n_{110}	$\lambda \{\pi_c(1-u_1) + \pi_a(1-b_1)\}$
<i>n</i> ₁₁₁	$\lambda(\pi_c u_1 + \pi_a b_1)$

Therefore, the log likelihood is

$$\log L(\boldsymbol{\beta}) = n_{000} \log \{ \pi_c(1 - v_1) + \pi_n(1 - s_1) \} + n_{001} \log (\pi_c v_1 + \pi_n s_1) + n_{010} \log \{ \pi_a(1 - b_1) \}$$

$$+ n_{011} \log \{ \pi_a b_1 \} + n_{100} \log \{ \pi_n(1 - s_1) \} + n_{101} \log (\pi_n s_1)$$

$$+ n_{110} \log \{ (\pi_c(1 - u_1) + \pi_a(1 - b_1) \} + n_{111} \log (\pi_c u_1 + \pi_a b_1) + \text{constant.}$$
(1)

Assigning a vague prior distribution $f(\beta)$ to the parameters $\beta = (\pi_a, \pi_n, u_1, v_1, s_1, b_1)$, by Bayes' theorem the joint posterior distribution is proportional to $L(\beta)f(\beta)$. Functionals of the posterior distribution can be estimated by Gibbs and Metropolis–Hastings sampling algorithms using the software JAGS via the rjags package in R.

CACE for meta-analysis with incomplete compliance information

Table 2: Observed data and probabilities in study i

Observed	Probabilities
n_{i000}	$(1 - \lambda_i) \{ \pi_{ic}(1 - v_{i1}) + \pi_{in}(1 - s_{i1}) \}$
n_{i001}	$(1-\lambda_i)(\pi_{ic}v_{i1}+\pi_{in}s_{i1})$
n_{i010}	$(1-\lambda_i)\pi_{ia}(1-b_{i1})$
n_{i011}	$(1-\lambda_i)\pi_{ia}b_{i1}$
n_{i100}	$\lambda_i \pi_{in} (1 - s_{i1})$
n_{i101}	$\lambda_i \pi_{in} s_{i1}$
n_{i110}	$\lambda_i \{ (\pi_{ic}(1 - u_{i1}) + \pi_{ia}(1 - b_{i1})) \}$
n_{i111}	$\lambda_i(\pi_{ic}u_{i1}+\pi_{ia}b_{i1})$
n_{i0*0}	$(1 - \lambda_i) \{ \pi_{ic}(1 - v_{i1}) + \pi_{in}(1 - s_{i1}) + \pi_{ia}(1 - b_{i1}) \}$
n_{i0*1}	$(1-\lambda_i)(\pi_{ic}v_{i1}+\pi_{in}s_{i1}+\pi_{ia}b_{i1})$
n_{i1*0}	$\lambda_i \{ (\pi_{ic}(1 - u_{i1}) + \pi_{ia}(1 - b_{i1}) + \pi_{in}(1 - s_{i1}) \}$
n_{i1*1}	$\lambda_i(\pi_{ic}u_{i1} + \pi_{ia}b_{i1} + \pi_{in}s_{i1})$

Table 2 shows the relation between each observed count and the corresponding probability, which is a function of the parameters defined in the complete-compliance CACE section of the main paper. As before, λ_i is the known allocation ratio for study i, i.e., $\lambda_i = \Pr(R_{ij} = 1)$.

The log likelihood contribution for trial i is obtained from the multinomial distribution:

```
\begin{split} &\log L_{i}(\boldsymbol{\beta}_{i}) \\ = & n_{i000} \log \{\pi_{ic}(1-v_{i1}) + \pi_{in}(1-s_{i1})\} + n_{i001} \log (\pi_{ic}v_{i1} + \pi_{in}s_{i1}) \\ + & n_{i010} \log \{\pi_{iia}(1-b_{i1})\} + n_{i011} \log (\pi_{ia}b_{i1}) + n_{i100} \log \{\pi_{in}(1-s_{i1})\} \\ + & n_{i101} \log (\pi_{in}s_{i1}) + n_{i110} \log \{(\pi_{ic}(1-u_{i1}) + \pi_{ia}(1-b_{i1})\} + n_{i111} \log (\pi_{ic}u_{i1} + \pi_{ia}b_{i1}) \\ + & n_{i0*0} \log \{\pi_{ic}(1-v_{i1}) + \pi_{in}(1-s_{i1}) + \pi_{ia}(1-b_{i1})\} + n_{i0*1} \log (\pi_{ic}v_{i1} + \pi_{in}s_{i1} + \pi_{ia}b_{i1}) \\ + & n_{i1*0} \log \{(\pi_{ic}(1-u_{i1}) + \pi_{ia}(1-b_{i1}) + \pi_{in}(1-s_{i1})\} + n_{i1*1} \log (\pi_{ic}u_{i1} + \pi_{ia}b_{i1} + \pi_{in}s_{i1}) \\ & (2) \end{split}
```

Because the parameters $\boldsymbol{\beta}_i = (\pi_{ia}, \pi_{in}, s_{i1}, b_{i1}, u_{i1}, v_{i1})$ are the same as in the complete-compliance case, the estimation process is also the same: assign distributions $f(\boldsymbol{\beta}_i|\boldsymbol{\beta}_0, \boldsymbol{\Sigma}_0)$, where $\boldsymbol{\beta}_0$ is the vector of mean hyper-parameters, and $\boldsymbol{\Sigma}_0$ is the covariance matrix; then specify prior distributions for $f(\boldsymbol{\beta}_0)$ and $f(\boldsymbol{\Sigma}_0)$, so the joint posterior is proportional to $\prod_i L_i(\boldsymbol{\beta}_i) f(\boldsymbol{\beta}_i|\boldsymbol{\beta}_0, \boldsymbol{\Sigma}_0) f(\boldsymbol{\beta}_0) f(\boldsymbol{\Sigma}_0)$. Similarly, the CACE for this meta-analysis incorporating incomplete compliance data is $\theta^{\text{CACE}} = E(\theta_i^{\text{CACE}}) = E(u_{i1}) - E(v_{i1}) = \Phi(\frac{\alpha_u}{\sqrt{1+\sigma_u^2}}) - \Phi(\frac{\alpha_v}{\sqrt{1+\sigma_v^2}})$ if the probit link function is used for u_{i1} and v_{i1} .

Bibliography

J. Zhou, J. S. Hodges, M. F. K. Suri, and H. Chu. A bayesian hierarchical model estimating cace in meta-analysis of randomized clinical trials with noncompliance. *Biometrics*, 75(3): 978–987, 2019. [p1]