遷音速銀河風モデルによる 星形成銀河からのガス流出量の評価

五十嵐朱夏、森正夫(筑波大)、新田伸也(筑波技大)

高い星形成率

- →星間ガスにエネルギー注入
- →銀河風で星間ガスが流出

- 1. 星形成の抑制
- 2. 銀河間空間の重元素汚染

星形成銀河の銀河風速度

金属吸収線から評価される銀河風速度

星形成銀河の銀河風速度

高温ガスの流れによって低温ガスが加速

低温ガスの最大速度 { 高温ガスの最大速度(の下限)

近傍星形成銀河の銀河風

(Heckman 2015, 2016)

影響の大きさは流出ガスの { 選皮 | に依存

質量流束は?

Shell outflow model

M: 質量流束

N_H: ガス柱密度

(m):平均質量

 v_{out} : 平均速度

r_{out}: シェルの半径

 $\dot{M} \sim 4\pi N_H \langle m \rangle v_{out} r_{out}$

N_H は金属柱密度から予想

r_{out} は 2 × effective radius (UV) と仮定

mass loading factor (MLF) = \dot{M} / SFR

MLF はISMの流出効率を示す

ハロ一質量への依存性は見えない

 N_H と r_{out} には不定性がある

高精度の outflow model を構築

Transonic analysis

例: 太陽風モデル (Parker 1958)

1. 連続の式
$$4\pi\rho vr^2 = const.$$

2. 運動方程式
$$v\frac{dv}{dr} = -\frac{c_s^2}{\rho}\frac{d\rho}{dr} - \frac{d\Phi}{dr}$$

$$\frac{M^2 - 1}{M^2} \frac{dM^2}{dr} = \frac{4}{r} - \frac{2}{c_s^2} \frac{d\Phi}{dr} \quad \left(\Phi(\mathbf{x}) \propto -\frac{1}{r}\right)$$

超音速 理音速から超音速 に加速する過程 悪音速 で

M: マッハ数(= 速度 / 音速)

遷音速流は<u>エントロピー最大</u>の解
→ 遷音速銀河風を仮定する

Transonic outflow model

球対称定常モデル

 $\dot{
ho}_m$: (ガス)質量注入

- \dot{q} : エネルギー注入 1. 連続の式 $\dfrac{1}{r^2}\dfrac{d}{dr}(\rho v r^2) = \rho_m$
- 2. 運動方程式 $\rho v \frac{dv}{dr} = -\frac{dP}{dr} + \rho g \rho_m \dot{v}$
- 3. エネルギー式 $\frac{1}{r^2} \frac{d}{dr} \left\{ vr^2 \left(\frac{1}{2} \rho v^2 + \frac{\Gamma}{\Gamma 1} P \right) \right\} = \rho vg + \dot{q}$

SNell からのエネルギー注入を仮定 重力場に ダークマターハローと星を仮定

Result: 遷音速解の topology と物理量の関係

Result: 速度分布と mass loading factor (MLF)

 $MLF = \dot{M} / SFR$

ダークマターハロー質量分布は赤方偏移と星質量から予想 (Behroozi et al. 2010, 2013; Bullock et al. 2001; Munoz-Cuartas et al. 2011). 星質量分布は赤方偏移と星質量から予想 (Shibuya et al. 2015).

Result: 速度分布と mass loading factor (MLF)

 $MLF = \dot{M} / SFR$

(星質量ごとに) 最大速度と MLF の関係を評価

Heckman et al.2015, 2016

遷音速銀河風モデルと観測された 最大速度から MLF を評価

Result: Shell outflow model との比較

$$MLF = \dot{M} / SFR$$

mass loading factor (MLF) を観測された最大速度から評価 \rightarrow MLF はダークマターハロー質量に強く依存 (MLF \propto $V_{\rm circ}^{-2.5}$)

Result: ダークマターハロー質量への依存性

mass loading rate (MLR): SNeII からの ejected mass と massflux の比 星間ガスの流出効率を示す

$$MLR \equiv \dot{M} / \dot{M}_{SNeII} (\propto MLF) \mid (\dot{M}_{SNeII} \propto SFR)$$

 $M_{DMH} \ll 10^{11.5} M_{\odot}$: MLR $\gg 1$ 星間ガスの流出効率が高い (星形成が抑制されやすい)

 $M_{DMH} \sim 10^{11.5} M_{\odot}$: MLR ~ 1 SNeII からの ejected mass が そのまま出てくる

 $M_{DMH}\gg 10^{11.5}M_{\odot}$: MLR $\ll 1$ ガス流出の効率が低い

discussion: ガス柱密度

質量流束からガス柱密度が予想できる Kennicutt-Schmidt law と比較

遷音速モデルで予想されたガス柱密度は (starburst galaxies の) Kennicutt-Schmidt law と矛盾しない

Kennicutt-Schmidt law for spirals and starbursts (Daddi et al. 2010)

Conclusion

- 遷音速銀河風モデルでは、mass loading factor (MLF)はダークマターハロー質量に強く依存することが予想される。
- MLF を (ハロ一質量と) 観測された最大速度から評価した。
- ダークマターハロー質量が $\sim 10^{11.5} M_{\odot}$ より小さい銀河では、mass loading rate が 1より大きい。これは、小質量銀河で星間ガスの流出効率が高いことを示す。より 重い銀河では、流出効果が低くなる。
- モデルから予想される column density は、Kennicutt-Schmidt law と矛盾しない。

Transonic outflow model

adiabatic spherically-symmetric steady model

1.equation of continuity

$$\frac{1}{r^2}\frac{d}{dr}(\rho v r^2) = \dot{\rho_m}$$

r: radius g: graviry v: velocity M: Mach number Γ:specific heat ratio ρ: density

 c_s : sound speed \dot{p}_m : mass injection

P: pressure

 \dot{q} : energy injection

2.equation of motion

$$\rho v \frac{dv}{dr} = -\frac{dP}{dr} + \rho g - \rho_m v$$

3.energy equation

$$\frac{1}{r^2}\frac{d}{dr}\left\{vr^2\left(\frac{1}{2}\rho v^2 + \frac{\Gamma}{\Gamma - 1}P\right)\right\} = \rho vg + \dot{q}$$

mass flux $\dot{m} \equiv 4\pi \rho v r^2$

energy flux $\dot{e} \equiv \left\{ \frac{1}{2}v^2 + \frac{1}{\Gamma - 1}c_s^2 + \Phi \right\} \dot{m}$

assuming mass and energy injected by SNell

mass and energy injections

 e_{SN} : injected energy per stellar mass

$$\dot{\rho}_{m} = \lambda_{MLF}(SFR/M_{st})\rho_{st}$$

$$\dot{q} = e_{SN}(SFR/M_{st})\rho_{st}$$

stellar mass distribution (Hernquist 1990)

$$\rho_{st}(r) = \frac{M_{st}}{2\pi} \frac{r_H}{r} \frac{1}{(r + r_H)^3} \quad \left(r_H = \frac{r_{1/2}}{1 + \sqrt{2}}\right)$$

 M_{st} : total stellar mass $r_{\rm H}$: scale radius $r_{1/2}$: half light radius

$$\rho_{DMH}(r) = \frac{\rho_{dmh} r_{dmh}^3}{r(r + r_{dmh})^2}$$

(DM) halo and stellar mass

assuming the gravity of dark matter

DM halo mass distribution indicted by

CDM scenario (Navarro et al. 1996)

 $(= 0.1 \times 1.86 \times 10^{-2} \times 10^{51} \text{ erg})$ r_{dmh} : DM halo scale radius ρ_{dmh} : DM halo scale density λ_{MLF} : mass loading factor (=massflux/SFR)

discussion: ガス柱密度

質量流束からガス柱密度が予想できる Kennicutt-Schmidt law と比較

●── ガス柱密度 (< 有効半径) ■── ガス柱密度 (< 2.68 x 有効半径)

Kennicutt (1998)

Daddi et al. (2010), spirals

Daddi et al. (2010), starbursts

遷音速モデルで予想されたガス柱密度は (starburst galaxies の) Kennicutt-Schmidt law と矛盾しない

