- 1. Pentru $n \in \mathbb{N}^*$, notăm $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$. Câte numere naturale nenule n satisfac inegalitatea $n! \leq 120$? (5 pct.)
 - a) 8; b) 4; c) 3; d) 7; e) 6; f) 5.

Soluție. Metoda 1. Calculăm succesiv valorile factorialelor n! (n>0) care au valori inferioare sau egale cu 120 și folosim faptul că funcția factorial este strict crescătoare pentru $n\geq 1$. Obținem succesiv: $1!=1,\ 2!=1\cdot 2=2,\ 3!=1\cdot 2\cdot 3=6,\ 4!=1\cdot 2\cdot 3\cdot 4=24$ $5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120$; observăm că $6!=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6=720>120$, deci valorile acceptabile pentru $n\geq 1$ sunt 1,2,3,4,5, raspuns corect 5. Metoda 2. Pentru calculul factorialelor folosind formula $(n+1)!=n!\cdot (n+1)$, rezultă: $1!=1,\ 2!=1\cdot 2=2,\ 3!=2\cdot 3=6,\ 4!=6\cdot 4=24,\ 5!=24\cdot 5=120;\ 6!=120\cdot 6=720$. În continuare se procedează ca la metoda 1.

- 2. Soluția ecuației 5x 12 = 3x este: (5 pct.)
 - a) 4; b) 5; c) -5; d) 6; e) 3; f) -3.

Soluţie. $5x - 12 = 3x \Leftrightarrow 2x = 12 \Leftrightarrow x = 6$.

- 3. Suma soluțiilor ecuației $x^2 4x + 3 = 0$ este: (5 pct.)
 - a) -3; b) 4; c) -2; d) 5; e) 7; f) 2.

Soluţie. Metoda 1. Rezolvăm ecuația: $x^2 - 4x + 3 = 0 \Leftrightarrow x \in \{\frac{4\pm\sqrt{16-12}}{2}\} = \{\frac{4\pm2}{2}\} \Leftrightarrow x \in \{1,3\}$, deci suma rădăcinior este 3+1=4. Metoda 2. Folosind prima relație Viéte, avem suma celor două rădăcini, $x_1 + x_2 = -\frac{-4}{1} = 4$.

- 4. Modulul numărului complex 4 + 3i este: (5 pct.)
 - a) 3; b) 5; c) 4; d) $\sqrt{7}$; e) 1; f) 2.

Soluție. Folosind formula $|a+ib|=\sqrt{a^2+b^2}$, obținem $|4+3i|=\sqrt{4^2+3^2}=5$.

- 5. Soluţia ecuaţiei $3^{x-1} = 9$ este: (5 pct.)
 - a) 3; b) 4; c) 5; d) 0; e) 2; f) 1.

Soluție. Ecuația se rescrie: $3^{x-1} = 9 \Leftrightarrow 3^{x-1} = 3^2$. Aplicând funcția logaritm în baza 3 (inversa funcției exponențiale de bază 3) ambilor termeni ai egalității, obținem: $x - 1 = 2 \Leftrightarrow x = 3$.

- 6. Soluția ecuației $\sqrt{3x+4}=2$ este: (5 pct.)
 - a) x = 3; b) x = 1; c) x = 0; d) x = 2; e) x = 4; f) x = -1.

Soluţie. Condiția de existență a radicalului este $3x + 4 \ge 0 \Leftrightarrow x \ge -\frac{4}{3}$. Ridicând ecuația la pătrat, obținem $3x + 4 = 4 \Leftrightarrow x = 0$ (care satisface atăt condiția de existență, cât și ecuația dată).

- 7. Multimea soluțiilor ecuației $x^3 9x = 0$ este: (5 pct.)
 - a) $\{-4,1\}$; b) $\{-2,0,2\}$; c) $\{4,1\}$; d) $\{-3,0,3\}$; e) $\{-3,3\}$; f) $\{-1,0,1\}$.

Soluţie. Dând factor comun x şi folosind formula $a^2 - b^2 = (a+b)(a-b)$, rezolvăm ecuaţia: $x^3 - 9x = 0 \Leftrightarrow x(x^2-9) = 0 \Leftrightarrow x(x+3)(x-3) = 0 \Leftrightarrow x \in \{-3,0,3\}.$

- 8. Să se rezolve ecuația: $\log_3 x = 1$. (5 pct.)
 - a) x = 9; b) x = 17; c) x = 3; d) x = 14; e) x = 11; f) x = 13.

Soluție. Aplicăm ambilor membri ai ecuației funcția exponențială de bază 3 (inversa funcției logaritmice de bază 3) și obținem $x = 3^1$, deci x = 3.

- 9. Ordonați crescător numerele π , 3, $\sqrt{5}$. (5 pct.)
 - a) π , 3, $\sqrt{5}$; b) 3, π , $\sqrt{5}$; c) $\sqrt{5}$, 3, π ; d) $\sqrt{5}$, π , 3; e) π , $\sqrt{5}$, 3; f) 3, $\sqrt{5}$, π .

Soluție. Avem $\pi = 3, 14...$, deci $3 < \pi$. De asemenea, $500 < 529 = 23^2$ implică, împărțind prin 100 și extrăgând radical din termenii inegalității (folosind faptul că funcția radical este strict crescătoare), $\sqrt{5} < 2, 3$; atunci $\sqrt{5} < 2, 3 < \pi$ și deci $\sqrt{5} < 3 < \pi$.

- 10. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + e^x$. Să se calculeze f'(1). (5 pct.)
 - a) 2 + e; b) 1 + e; c) 3 + e; d) e; e) e 1; f) 2e.

Soluție. $f'(x) = 2x + e^x$, deci f'(1) = 2 + e.

11. Fie polinomul $f = (2X^2 - 1)^2$. Să se calculeze f(1). (5 pct.)

a) 3; b) 1; c)
$$-1$$
; d) 0; e) 2; f) -2 .

Soluție. Prin înlocuirea lui x cu 1 în expresia funcției polinomiale asociate $f(x) = (2x^2 - 1)^2$, rezultă $f(1) = (2 \cdot 1^2 - 1)^2 = 1$.

- 12. Al 5-lea termen al progresiei aritmetice 1, 4, 7, ... este: (5 pct.)
 - a) 13; b) 15; c) 10; d) 12; e) 11; f) 16.

Soluție. *Metoda 1.* Notând termenii progresiei cu a_1, a_2, \ldots , rația progresiei aritmetice este $r = a_2 - a_1 = 4 - 1 = 3$ deci, folosind formula $a_n = a_1 + (n-1)r$ pentru $n \ge 1$, rezultă $a_5 = 1 + (5-1) \cdot 3 = 13$. *Metoda 2.* Folosind proprietatea $a_m = \frac{a_{m-p} + a_{m+p}}{2}$, $\forall m \ge 2, p \ge 1, m > p$, rezultă $\frac{a_1 + a_5}{2} = a_3 \Leftrightarrow a_5 = 2a_3 - a_1 = 2 \cdot 7 - 1 = 13$.

13. Să se rezolve sistemul $\begin{cases} 2x + 5y = 3 \\ x - 5y = 0. \end{cases}$ (5 pct.)

a)
$$x = 2$$
, $y = 3$; b) $x = 3$, $y = 5$; c) $x = -1$, $y = 4$; d) $x = 4$, $y = -1$; e) $x = 4$, $y = 2$; f) $x = 1$, $y = \frac{1}{5}$.

Soluţie. Metoda 1. Adunând cele două ecuații, rezultă $3x=3 \Rightarrow x=1$, și înlocuind în ecuația a doua, obținem $y=\frac{1}{5}$. Răspuns corect: $x=1,\ y=\frac{1}{5}$. Metoda 2. Sistemul este compatibil determinat de tip Cramer, deoarece numărul de ecuații coincide cu cel al necunoscutelor și $\Delta=\left|\begin{smallmatrix}2&5\\1&-5\end{smallmatrix}\right|=-15\neq0$. Atunci, aplicând regula lui Cramer, se obține soluția unică a sistemului:

$$x = \frac{\Delta_x}{\Delta} = \frac{1}{-15} \begin{vmatrix} 3 & 5 \\ 0 & -5 \end{vmatrix} = \frac{-15}{-15} = 1 \qquad y = \frac{\Delta_y}{\Delta} = \frac{1}{-15} \begin{vmatrix} 2 & 3 \\ 1 & 0 \end{vmatrix} = \frac{-3}{-15} = \frac{1}{5},$$

deci răspuns corect: $x = 1, y = \frac{1}{5}$.

14. Să se calculeze determinantul $D = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 7 & 0 \\ 2 & 3 & 1 \end{bmatrix}$. (5 pct.)

a)
$$D = 11$$
; b) $D = 0$; c) $D = 15$; d) $D = -5$; e) $D = 7$; f) $D = -4$.

Soluție. Metoda 1. Calculăm determinantul cu regula lui Sarrus: D = (14+0+0) - (14+0+0) = 0. Metoda 2. Dezvoltăm determinantul după linia a doua: $D = (-1)^{2+2} \mid_{2}^{2} \mid_{1}^{1} \mid = 0$. Metoda 3. Determinantul are liniile 1 și 3 egale, deci este nul (D=0). Metoda 4. Determinantul are coloanele 1 și 3 prporționale, deci este nul (D=0).

- 15. Dacă $x \le 3 2x$, atunci: (5 pct.)
 - a) $x \le 1$; b) $x \ge 0$; c) $x \le -5$; d) $x \le 0$; e) $x \ge 15$; f) $x \le -11$.

Solutie. $x \le 3 - 2x \Leftrightarrow 3x \le 3 \Leftrightarrow x \le 1$.

16. Fie $A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$. Să se calculeze A^2 . (5 pct.)

a)
$$\binom{4}{5}\binom{5}{4}$$
; b) $\binom{5}{4}\binom{-4}{5}$; c) $\binom{3}{4}\binom{-4}{3}$; d) $\binom{-3}{4}\binom{4}{3}$; e) $\binom{-3}{4}\binom{-3}{-4}$; f) $\binom{-3}{-4}\binom{4}{5}$.

Soluţie. $A^2 = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1-4 & -2-2 \\ 2+2 & -4+1 \end{pmatrix} = \begin{pmatrix} -3 & -4 \\ 4 & -3 \end{pmatrix}$.

17. Să se calculeze punctul de extrem al funcției $f:(0,\infty)\to\mathbb{R}, f(x)=x-\ln x.$ (5 pct.)

a)
$$x = \frac{1}{4}$$
; b) $x = 3$; c) $x = 1$; d) $x = 4$; e) $x = \frac{1}{2}$; f) $x = 2$

Soluţie. Prin derivare, obţinem $f'(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$, deci $f'(x) = 0 \Leftrightarrow \frac{x-1}{x} = 0 \Leftrightarrow x = 1 \in (0, \infty)$. Dar f'(x) < 0 (f descrescătoare) pentru $x \in (0, 1)$ şi f'(x) > 0 (f descrescătoare) pentru $x \in (1, \infty)$, deci x = 1 este punct de minim pentru funcţia f.

18. Să se calculeze $\int_0^1 (x+e^x)dx$. (5 pct.)

a)
$$e - \frac{1}{2}$$
; b) $3e$; c) $e + \frac{1}{2}$; d) $2e$; e) $2 + 3e$; f) $\frac{1}{2}$.

Soluţie. Aplicând formula Leibnitz-Newton, obţinem $\int_0^4 (x+e^x)dx = \left. \frac{x^2}{2} + e^x \right|_0^1 = \left(\frac{1^2}{2} + e \right) - \left(\frac{0^2}{2} + e^0 \right) = e - \frac{1}{2}.$