Etude d'intersections d'hyperplans vectoriels

Soit \mathbb{K} un corps et E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$.

Partie I – Description d'un sous-espace vectoriel en intersection d'hyperplans

- 1. Soit H_1 et H_2 deux hyperplans de E.
- 1.a On suppose $H_1 \neq H_2$. Justifier $H_1 + H_2 = E$.
- 1.b Déterminer $\dim H_1 \cap H_2$ selon que $H_1 = H_2$ ou non.
- 2.a Soit H un hyperplan de E et F un sous-espace vectoriel de E . Déterminer $\dim F\cap H$ selon que $F\subset H$ ou non.
- 2.b Soit $p\in\mathbb{N}^*$ et H_1,\ldots,H_p des hyperplans de E . Montrer que $\dim(H_1\cap\ldots\cap H_p)\geq n-p$.
- 3. Soit F un sous-espace vectoriel de E, distincts de E. On pose $p=\dim F$. On se propose d'établir que F peut s'écrire comme intersection de n-p hyperplans. Dans un premier temps on suppose $F\neq \{\vec{o}\}$.
- 3.a Montrer qu'il existe une base $\mathcal{B}=(\vec{e}_1,...,\vec{e}_n)$ de E telle que $\forall 1\leq i\leq p, \vec{e}_i\in F$. On pose, pour tout $i\in \left\{p+1,...,n\right\},\ H_i=\mathrm{Vect}(\vec{e}_1,...,\vec{e}_{i-1},\vec{e}_{i+1},...,\vec{e}_n)$.
- 3.b Montrer que les H_i sont des hyperplans de E.
- 3.c Observer que $F = H_{p+1} \cap ... \cap H_n$.
- 3.d On suppose maintenant que $F = \{\vec{o}\}\$.

 Montrer que F peut s'écrire comme intersection de n hyperplans.

Partie II – Décomposition d'un drapeau en intersection d'hyperplans

On considère un drapeau de E , c'est à dire une famille $(F_0, F_1, ..., F_n)$ de sous-espaces vectoriels de E telle que :

- (i) $\forall 0 \leq i \leq n, \dim F_i = i$,
- (ii) $\forall 1 \leq i \leq n, F_{i-1} \subset F_i$.
- 1. Préciser F_0 et F_n .
- 2.a Justifier que, pour tout $i \in \{1,\dots,n\}$, $\exists \vec{e}_i \in F_i$ tel que $\vec{e}_i \not\in F_{i-1}$.
- 2.b Montrer que $\mathcal{B} = (\vec{e}_1, ..., \vec{e}_n)$ est une base de E.
- 2.c Observer que $\forall 1 \leq i \leq n$, $F_i = \text{Vect}(\vec{e_1},...,\vec{e_i})$.
- 3.a Montrer que, pour tout $i \in \{1,...,n\}$, il existe un hyperplan de E noté H_i tel que : $F_{i-1} = F_i \cap H_i$.
- 3.b Observer qu'alors, pour tout $i \in \{1,...,n\}$: $F_{i-1} = H_i \cap ... \cap H_n$.