机器学习算法伪代码记录

中南大学 Junyi Fang 2025年1月

1 引言

本文将记录一些常见的机器学习算法的核心思想和伪代码,以便在上课和上机实验过程中进行参考和回顾。注:其中梯度提升算法和弹性网络算法虽然上课没讲到,但是在上机中需要对算法进行调参评优,故自主学习记录。

2 目录

- 梯度下降算法
- 逻辑回归算法
- KNN 算法
- 神经网络(反向传播算法)
- K-means clustering 算法
- DBSCAN 算法
- 支持向量分类 (SVC)
- 决策树分类 (DecisionTreeClassifier)
- 随机森林分类 (RandomForestClassifier)
- 梯度提升分类 (XGBClassifier)*
- KNN 分类 (KNeighborsClassifier)

- 多层感知器 (MLPClassifier)
- 朴素贝叶斯 (GaussianNB)
- AdaBoost 分类 (AdaBoostClassifier)
- 岭回归 (Ridge)
- Lasso 回归 (Lasso)
- 弹性网络 (ElasticNet)*
- 随机森林回归 (RandomForestRegressor)
- 梯度提升回归 (GradientBoostingRegressor)
- 自适应提升回归 (AdaBoostRegressor)
- 支持向量回归 (SVR)
- 决策树回归 (DecisionTreeRegressor)

3 算法伪代码

Algorithm 1: 梯度下降算法 (动量 + RMSprop)

Input: 学习率 α , 动量系数 β , 数值稳定性 ϵ

- 1 初始化: momentum = 0, squared_grads = 0;
- 2 定义损失函数: $L(x,y) = \sin(x) \cdot \cos(y)$;
- 3 定义梯度:

$$\frac{\partial L}{\partial x} = \cos(x) \cdot \cos(y), \quad \frac{\partial L}{\partial y} = -\sin(x) \cdot \sin(y)$$

训练过程: for 每个训练步骤 t = 1, 2, ..., T do

- 4 | 计算梯度 $\nabla L = \left[\frac{\partial L}{\partial x}, \frac{\partial L}{\partial y}\right];$
- 5 更新动量: momentum = β · momentum + (1β) · ∇L ;
- 6 更新平方梯度:

squared_grads = $\beta \cdot \text{squared_grads} + (1 - \beta) \cdot (\nabla L)^2$;

- 7 计算调整后的梯度: adjusted_grads = $\frac{\text{momentum}}{\sqrt{\text{squared_grads}} + \epsilon}$;
- \mathbf{s} 更新参数: params = params α · adjusted_grads;
- 9 输出: 返回最终的参数 params;

Algorithm 2: 逻辑回归算法 (通过梯度下降优化)

Input: 学习率 α , 迭代次数 T, 输入数据 X, 标签 y

- 1 初始化: weights = $\mathbf{0}$, bias = 0;
- 2 定义 Sigmoid 函数:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

训练过程: for 每个训练步骤 $t=1,2,\ldots,T$ do

- 3 计算线性模型输出: linear_model = $X \cdot \text{weights} + \text{bias}$;
- 4 计算预测值: predictions = σ (linear_model);
- 5 计算梯度: $dw = \frac{1}{n}X^T$ (predictions y),

 $db = \frac{1}{n} \sum (\text{predictions} - y);$

- \mathbf{z} 更新偏置: bias = bias $\alpha \cdot db$;
- 8 输出: 返回最终的权重 weights 和偏置 bias;

Algorithm 3: 逻辑回归预测

Input: 输入数据 X, 权重 weights, 偏置 bias

- 1 计算线性模型输出: linear_model = X · weights + bias;
- 2 计算预测概率: predicted_probabilities = σ (linear_model);
- 3 根据预测概率判断类别: predicted_class = $\{1 \text{ if } p > 0.5 \text{ else } 0 | p \in \text{predicted_probabilities}\};$
- 4 输出: 返回预测类别 predicted_class;

Algorithm 4: K-Nearest Neighbors (KNN) 算法

Input: 输入数据 X_{train} ,标签 y_{train} ,测试数据 X_{test} ,最近邻数目 k **1 初始化**: 将训练数据 X_{train} 和标签 y_{train} 存储为模型的属性; **for** 每

个测试样本 x 在 X_{test} 中 do

- 2 计算每个训练样本与测试样本之间的距离: distances = $[\operatorname{dis}(x, x_{\text{train}}) \text{ for each } x_{\text{train}}];$
- 3 找到最近的 k 个邻居: k_indices = argsort(distances)[: k];
- 4 获取这些邻居的标签:

 $k_{nearest_labels} = [y_{train}[i] \text{ for } i \text{ in } k_indices];$

- 使用投票机制确定预测标签: $most_common =$ $Counter(k_nearest_labels).most_common(1);$
- 6 预测标签: predicted_label = most_common[0][0];
- 7 输出:返回每个测试样本的预测标签;

Algorithm 5: 神经网络(前向传播与反向传播)

Input: 输入数据 X, 标签 y, 学习率 η

1 初始化: 权重: weights_input_hidden, weights_hidden_output,

偏置: bias_hidden, bias_output;

2 定义 Sigmoid 激活函数:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

3 前向传播过程:

hidden layer input $= X \cdot \text{weights}$ input hidden + bias hidden

 $hidden_layer_output = \sigma(hidden_layer_input)$

 $output_layer_input = hidden_layer_output \cdot weights_hidden_output + bias_output \\$ $output_layer_output = \sigma(output_layer_input)$

4 反向传播过程: 计算输出层误差:

 $d_output = (output_layer_output - y) \cdot \sigma'(output_layer_output)$

计算隐藏层误差:

 $d_hidden_layer = d_output \cdot weights_hidden_output^T \cdot \sigma'(hidden_layer_output)$

5 更新权重和偏置:

weights_hidden_output – = hidden_layer_output $^T \cdot \mathbf{d}$ _output $\cdot \, \eta$

$$bias_output - = \sum d_output \cdot \eta$$

weights_input_hidden — = $X^T \cdot \mathbf{d}_hidden_layer \cdot \eta$

$$bias_hidden-=\sum d_hidden_layer \cdot \eta$$

6 输出:返回更新后的权重和偏置;

Algorithm 6: K-means clustering 算法

Input: 数据集 *data*, 簇的数量 *num_clusters*, 最大迭代次数 *max_iter*, 收敛容忍度 *tol*

- 1 初始化: 随机选择 num_clusters 个数据点作为初始质心 centroids;
- 2 for 每次迭代 $i = 1, 2, ..., max_iter$ do
- 计算每个数据点到所有质心的距离: distances = norm(data[:, None] - centroids, axis = 2);
- 将每个数据点分配给最近的质心: labels = $\operatorname{argmin}(\operatorname{distances}, axis = 1);$
- 更新质心: new_centroids = mean(data[labels == i], axis = 0) for each cluster i;
- 如果质心的变化小于容忍度,则停止迭代:if norm(new_centroids centroids) ≤ tol then break;
- 7 更新质心: centroids = new_centroids;
- 8 输出: 返回最终的簇标签 labels 和质心 centroids;

Algorithm 7: DBSCAN 算法

Input: 数据集 data, 距离阈值 ϵ , 最小邻居数 min_pts

- 1 **初始化**: 标签 labels = -1, 访问标记 visited = 0, 簇标记 cluster id = 0;
- 2 邻居查找: 定义函数 neighbors(point idx) 计算距离小于 ϵ 的点;
- **3 扩展簇**: 定义函数 grow_cluster(*idx*, *neighbors_list*) 来扩展簇,并对未访问的点进行标记;
- 4 for 每个数据点 idx do
- 5 如果已经访问过,则跳过;标记为已访问;查找邻居: neighbor_pts = neighbors(*idx*);
- 6 如果邻居数大于等于 min_pts , 则扩展簇: grow_cluster(idx, neighbor_pts);
- 7 增加簇标记 *cluster_id*;
- 8 输出: 返回每个点的簇标签 labels;

Algorithm 8: 支持向量机分类 (SVC)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$,惩罚系数 $C \in \mathbb{R}$,核函数 K,容忍度 ϵ

- 1 **初始化**: 选择合适的核函数 K, 设置惩罚参数 C, 初始化拉格朗日 乘子 $\alpha = 0$; for 每个训练样本 i = 1, 2, ..., n do
- 2 计算核函数: $K(x_i, x_j)$; 计算拉格朗日乘子 α_i ; 通过最大化间隔, 求解支持向量机优化问题:

$$\min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{s.t.} \quad y_i(\mathbf{w}^T x_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$$

其中 ξ_i 是松弛变量,用于允许误差;

3 **输出**: 返回支持向量 α , 权重向量 **w**, 偏置项 b;

Algorithm 9: 决策树分类 (Decision Tree Classifier)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$, 标签 $y \in \mathbb{R}^n$, 最大深度 $D \in \mathbb{N}$, 最小样本分割数 $min_samples_split \in \mathbb{N}$

- 1 初始化:根节点为空; while 未满足停止条件 do
- 2 选择最佳特征 f,并计算特征 f 的划分点 θ ;计算信息增益或基 尼指数:

Information Gain = Entropy(S) -
$$\sum_{v \in Values(f)} \frac{|S_v|}{|S|} \cdot Entropy(S_v)$$

或者使用基尼指数:

$$Gini = 1 - \sum_{i=1}^{k} p_i^2$$

将数据集按特征 f 和划分点 θ 划分为左右子集; 递归构建左子 树和右子树;

3 输出: 返回构建的决策树;

Algorithm 10: 随机森林分类 (Random Forest Classifier)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$,决策树数量 $n_trees \in \mathbb{N}$,最大深度 $D \in \mathbb{N}$

- 1 for 每棵树 $t = 1, 2, ..., n_trees$ do
- 2 随机抽取数据集 $X_t \subset X$ 和 $y_t \subset y$, 训练决策树 t; 树的构建过程同决策树分类;
- 3 输出:通过所有树的投票机制,返回最终预测标签:

$$\hat{y} = \arg\max_{y} \sum_{t=1}^{n_trees} I(y_t = y)$$

其中 I 是指示函数,表示类别 y 出现的次数;

Algorithm 11: 极限梯度提升*(XGBClassifier)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$,学习率 $\eta \in \mathbb{R}$,树的 数量 $n_estimators \in \mathbb{N}$

- 1 初始化: 初始模型为零函数 $f_0(x) = 0$; for 每棵树 t = 1, 2, ..., n_estimators do
- 2 计算负梯度:

$$g_t = -\frac{\partial L}{\partial f_t(x)}$$

用 g_t 训练一棵回归树,获得树的预测 $h_t(x)$; 更新模型:

$$f_{t+1}(x) = f_t(x) + \eta \cdot h_t(x)$$

其中L是损失函数,通常为对数损失或平方误差;

3 输出:返回最终的模型 $f_T(x)$;

Algorithm 12: K 近邻分类 (KNeighbors Classifier)

Input: 训练数据 $X_{\text{train}} \in \mathbb{R}^{n_{\text{train}} \times p}$,标签 $y_{\text{train}} \in \mathbb{R}^{n_{\text{train}}}$,测试数据 $X_{\text{test}} \in \mathbb{R}^{n_{\text{test}} \times p}$,最近邻数量 $k \in \mathbb{N}$

- 1 for 每个测试样本 $x \in X_{test}$ do
- 2 计算每个训练样本与测试样本之间的距离:

$$distances = ||X_{train} - x||$$

找到最近的 k 个邻居:

$$k_{indices} = argsort(distances)[: k]$$

预测标签: $\hat{y} = \text{majority_vote}(y_{\text{train}}[k_\text{indices}]);$

3 输出: 返回每个测试样本的预测标签;

Algorithm 13: 多层感知器 (MLPClassifier)

Input: 输入数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$,学习率 $\eta \in \mathbb{R}$,隐藏层数量和神经元数量 h_1, h_2, \ldots, h_L

1 初始化: 随机初始化权重 $W_{\text{input}}, W_{\text{hidden}}, \dots$ 和偏置

 $b_{\text{input}}, b_{\text{hidden}}, \dots$; 前向传播:

 $hidden_{layer} = \sigma(X \cdot W_{input} + b_{input}), \quad output_{layer} = \sigma(hidden_{layer} \cdot W_{hidden} + b_{hidden})$

其中 σ 是激活函数,例如 ReLU 或 Sigmoid;**反向传播**:

 $\text{error_output} = \text{output_layer} - y, \quad \text{error_hidden} = \text{error_output} \cdot W_{\text{hidden}}^T \cdot \sigma'(\text{hidden_layer})$

更新权重和偏置:

 $W_{\mathrm{hidden}} - = \eta \cdot \mathrm{error_output} \cdot \mathrm{hidden_layer}^T, \quad W_{\mathrm{input}} - = \eta \cdot \mathrm{error_hidden} \cdot X^T$

输出:返回训练好的模型;

Algorithm 14: 朴素贝叶斯分类 (Gaussian Naive Bayes)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$

1 **初始化**:根据训练数据 X 和标签 y 计算每个类别的先验概率:

$$P(y = c) = \frac{\sum_{i=1}^{n} I(y_i = c)}{n}$$

和每个特征的条件概率:

$$P(x_j|y=c) = \frac{\sum_{i=1}^{n} I(y_i=c) \cdot x_{ij}}{\sum_{i=1}^{n} I(y_i=c)}$$

for 每个测试样本 x do

计算后验概率:

$$P(y|X) = P(y) \prod_{j=1}^{p} P(x_j|y)$$

选择最大后验概率的类别作为预测标签:

$$\hat{y} = \arg\max_{c} P(y = c|X)$$

3 输出:返回每个测试样本的预测标签;

Algorithm 15: AdaBoost 分类器 (AdaBoostClassifier)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$,弱分类器数量

 $n_estimators \in \mathbb{N}$

1 初始化: 样本权重 $w_i = \frac{1}{n}$; for 每个弱分类器

 $t = 1, 2, \dots, n_estimators$ do

 \mathbf{z} 训练一个弱分类器 h_t ; 计算加权错误率:

$$\operatorname{error}_{t} = \frac{\sum_{i=1}^{n} w_{i} I(h_{t}(x_{i}) \neq y_{i})}{\sum_{i=1}^{n} w_{i}}$$

更新分类器权重:

 $\alpha_t = \frac{1}{2} \ln \frac{1 - \text{error}_t}{\text{error}_t}$

更新样本权重:

$$w_i = w_i \cdot e^{-\alpha_t y_i h_t(x_i)}$$

3 输出:返回最终加权分类器模型;

Algorithm 16: 岭回归 (Ridge Regression)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$,正则化系数 $\lambda \in \mathbb{R}$

1 初始化: 计算正规方程:

$$\hat{\beta} = (X^T X + \lambda I)^{-1} X^T y$$

输出: 回归系数 $\hat{\beta} \in \mathbb{R}^p$

Algorithm 17: Lasso 回归 (Lasso Regression)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$,正则化系数 $\lambda \in \mathbb{R}$

1 初始化: 回归系数 $\beta = 0$; for 每个特征 j = 1, 2, ..., p do

2 | 计算坐标下降步长: $r_j = \frac{1}{n} \sum_{i=1}^n x_{ij} (y_i - \hat{y}_i + \beta_j x_{ij})$; 更新回归

系数: $\beta_i = \text{soft_threshold}(r_i, \lambda)$

3 **输出**:回归系数 $\beta \in \mathbb{R}^p$;

Algorithm 18: 弹性网回归*(ElasticNet)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$,正则化系数 $\lambda_1, \lambda_2 \in \mathbb{R}$

- 1 初始化: 回归系数 $\beta = 0$; for 每个特征 j = 1, 2, ..., p do
- 计算步长: $r_j = \frac{1}{n} \sum_{i=1}^n x_{ij} (y_i \hat{y}_i + \beta_j x_{ij})$; 更新回归系数: $\beta_j = \text{soft_threshold}(r_j, \lambda_1 + \lambda_2)$;
- 3 **输出**:回归系数 $\beta \in \mathbb{R}^p$;

Algorithm 19: 随机森林回归 (Random Forest Regressor)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$,树的数量 $n_trees \in \mathbb{N}$,最大深度 $D \in \mathbb{N}$

- 1 **初始化**: 随机森林模型 $\mathcal{F} = \{T_1, T_2, \dots, T_{n_trees}\}$; for 每棵树 $t = 1, 2, \dots, n_trees$ do
- 2 随机选择数据子集 $X_t \subset X$,标签子集 $y_t \subset y$;构建回归树 T_t ,最大深度为 D;
- 3 输出: 预测值 $\hat{y} = \frac{1}{n_trees} \sum_{t=1}^{n_trees} T_t(X);$

Algorithm 20: 梯度提升回归 (Gradient Boosting Regressor)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$,树的数量 $n_estimators \in \mathbb{N}$,学习率 $\eta \in \mathbb{R}$

1 **初始化**: 初始模型 $\hat{y}_0 = \frac{1}{n} \sum_{i=1}^n y_i$; for 每棵树

 $t = 1, 2, \dots, n_estimators$ do

- 2 计算残差: residuals_t = $y \hat{y}_{t-1}$; 训练回归树 T_t , 拟合残差; 更新模型: $\hat{y}_t = \hat{y}_{t-1} + \eta \cdot T_t(X)$;
- 3 输出: 最终预测值 $\hat{y}_{final} = \hat{y}_{n_estimators}$;

Algorithm 21: 自适应提升回归 (AdaBoost Regressor)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$, 标签 $y \in \mathbb{R}^n$, 弱回归器数量 n estimators $\in \mathbb{N}$

1 **初始化**: 样本权重 $w_i = \frac{1}{n}$,初始预测模型为常数模型

 $\hat{y}_0 = \frac{1}{n} \sum_{i=1}^n y_i$; for 每个弱回归器 $t = 1, 2, \dots, n$ _estimators do

- 3 输出: 最终加权回归器模型 $\hat{y} = \sum_{t=1}^{n_estimators} \alpha_t h_t(x)$;

Algorithm 22: 支持向量回归 (SVR)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$, 标签 $y \in \mathbb{R}^n$, 惩罚系数 $C \in \mathbb{R}$, 核函数 K, 容忍度 $\epsilon \in \mathbb{R}$

- 1 **初始化**: 选择合适的核函数 K, 设置惩罚参数 C, 容忍度 ϵ ; for 每个训练样本 $i=1,2,\ldots,n$ do
- ₂ 求解拉格朗日乘子,最大化间隔,最小化以下目标函数:

$$\mathcal{L}(\beta) = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{n} \max(0, |y_i - \hat{y}_i| - \epsilon)$$

3 **输出**: 支持向量回归模型 $\hat{y} = f(X)$;

Algorithm 23: 决策树回归 (Decision Tree Regressor)

Input: 训练数据 $X \in \mathbb{R}^{n \times p}$,标签 $y \in \mathbb{R}^n$,最大深度 $D \in \mathbb{N}$,最小样本分割数 $min_samples_split \in \mathbb{N}$

- 1 初始化:根节点为空; while 未满足停止条件 do
- 2 计算每个特征的最佳切分点:

$$BestSplit = arg \min_{feature, threshold} MSE_{split}$$

将数据集按最佳切分点切分为左右子集;对每个子集递归调用 决策树构建算法;

3 输出:决策树回归模型;