S21 – Comprendre les réseaux

CM3 - Plan d'adressage et Services réseaux

Julien Gossa

IUT Robert Schuman - Département Informatique

julien.gossa@unistra.fr

2010

Sans transition...

- Plan d'adressage
- Services Réseaux

IP: Internet Protocol

- Protocole Réseau de Réseaux
- Routé
- Implémentation de la couche
 - Réseau
- Inter Net(work)
- Basé sur l'adresse IP
 - IPv4 ou IPv6
- Échange de Paquets

Plan d'adressage

- On dispose de l'adresse 192.1.1.0/24
- Plage: 192.1.1.0 192.1.1.255 (classe C)
- Comment attribuer les adresses aux machines ?

Plan d'adressage

- On dispose de l'adresse 192.1.1.0/24
- Plage: 192.1.1.0 192.1.1.255 (classe C)
- Comment attribuer les adresses aux machines?

Plan d'adressage

- On dispose de l'adresse 192.1.1.0/24
- Plage: 192.1.1.0 192.1.1.255 (classe C)
- Comment attribuer les adresses aux machines?

Plan d'adressage

- On dispose de l'adresse 192.1.1.0/24
- Plage: 192.1.1.0 192.1.1.255 (classe C)
- Comment attribuer les adresses aux machines?

- Partitionner le réseau
- Optimiser l'utilisation de la plage
- Permettre le routage interne des paquets

Plan d'adressage

- On dispose de l'adresse 192.1.1.0/24
- Plage: 192.1.1.0 192.1.1.255 (classe C)
- Comment attribuer les adresses aux machines?

- Partitionner le réseau
- Optimiser l'utilisation de la plage
- Permettre le routage interne des paquets

Plan d'adressage

- On dispose de l'adresse 192.1.1.0/24
- Plage: 192.1.1.0 192.1.1.255 (classe C)
- Comment attribuer les adresses aux machines?

- Partitionner le réseau
- Optimiser l'utilisation de la plage
- Permettre le routage interne des paquets

Plan d'adressage

- On dispose de l'adresse 192.1.1.0/24
- Plage: 192.1.1.0 192.1.1.255 (classe C)
- Comment attribuer les adresses aux machines?

- Partitionner le réseau
- Optimiser l'utilisation de la plage
- Permettre le routage interne des paquets

Plan d'adressage

- On dispose de l'adresse 192.1.1.0/24
- Plage: 192.1.1.0 192.1.1.255 (classe C)
- Comment attribuer les adresses aux machines?

- Attribuer des plages aux sous-réseaux
- Au plus juste, mais non saturées
- Par ordre décroissant du nombre d'adresses

Plan d'adressage

- On dispose de l'adresse 192.1.1.0/24
- Plage: 192.1.1.0 192.1.1.255 (classe C)
- Comment attribuer les adresses aux machines?

- Attribuer des plages aux sous-réseaux
- Au plus juste, mais non saturées
- Par ordre décroissant du nombre d'adresses

Plan d'adressage

- On dispose de l'adresse 192.1.1.0/24
- Plage: 192.1.1.0 192.1.1.255 (classe C)
- Comment attribuer les adresses aux machines?

- Attribuer des plages aux sous-réseaux
- Au plus juste, mais non saturées
- Par ordre décroissant du nombre d'adresses

Plan d'adressage

- On dispose de l'adresse 192.1.1.0/24
- Plage: 192.1.1.0 192.1.1.255 (classe C)
- Comment attribuer les adresses aux machines?

- Attribuer des plages aux sous-réseaux
- Au plus juste, mais non saturées
- Par ordre décroissant du nombre d'adresses

Plan d'adressage : Méthode

Attribuer des plages aux sous-réseaux

Plage 192.1.1.X/M: Trouver M, puis X

Au plus juste, mais non saturées

M doit être le plus petit possible, tout en laissant des adresses libres

Par ordre décroissant du nombre de machines

Contrainte technique

Plan d'adressage : Méthode

Attribuer des plages aux sous-réseaux

Plage 192.1.1.X/M: Trouver M, puis X

Au plus juste, mais non saturées

M doit être le plus petit possible, tout en laissant des adresses libres

Par ordre décroissant du nombre de machines

Contrainte technique

Plan d'adressage : Méthode

Attribuer des plages aux sous-réseaux

Plage 192.1.1.X/M: Trouver M, puis X

Au plus juste, mais non saturées

M doit être le plus petit possible, tout en laissant des adresses libres

Par ordre décroissant du nombre de machines

Contrainte technique

Plage 192.1.1. $X/M: M = 32 - nb \ bits \ necessaires \ pour \ les \ hotes$

```
• M=30: 32 - M = 2 bits hote \Rightarrow 4 adresses \Rightarrow 2 adresses utiles
```

```
● M=29: 32-M=3 bits hote \Rightarrow 8 adresses \Rightarrow 6 adresses utiles Masque de S-R 11000000.111111111111111111111111111000 255.255.255.248 Adresse IPv4 11000000.00000001.00000001.xxxxxxxxx 192. 1. 1.xxx
```

- M=25
- 32-M=7 bits hote \Rightarrow 128 adresses \Rightarrow 120 adresses utiles
 Masque de S-R 11000000.111111111.11111111.10000000 255.255.255.128
 Adresse IPv4 11000000.00000001.00000001.xxxxxxxxx 192. 1. 1.XXX

Plage 192.1.1.X/M: $M=32-nb\ bits\ necessaires\ pour\ les\ hotes$

• M=30 : $32 - M = 2 \ bits \ hote \Rightarrow 4 \ adresses \Rightarrow 2 \ adresses \ utiles$

Plage d'adresse :

```
      @ Réseau
      11000000.00000001.00000001.xxxxxxx00
      192.
      1.
      1.0

      11000000.0000001.00000001.xxxxxxx01
      192.
      1.
      1.1

      11000000.0000001.00000001.xxxxxxx10
      192.
      1.
      1.2

      @ Broadcast
      11000000.0000001.00000001.xxxxxxx11
      192.
      1.
      1.3
```

- M=25

Plage 192.1.1. $X/M: M = 32 - nb \ bits \ necessaires \ pour \ les \ hotes$

```
• M=30: 32-M=2 bits hote \Rightarrow 4 adresses \Rightarrow 2 adresses utiles Masque de S-R 11000000.111111111.11111111.111111100 255.255.255.255.252 Adresse IPv4 11000000.0000001.00000001.xxxxxxxx 192. 1. 1.XXX
```

Plage d'adresse :

```
      @ Réseau
      11000000.00000001.00000001.xxxxxxx00
      192.
      1.
      1.0

      11000000.0000001.00000001.xxxxxxx01
      192.
      1.
      1.1

      11000000.0000001.00000001.xxxxxxx10
      192.
      1.
      1.2

      @ Broadcast
      11000000.0000001.00000001.xxxxxxx11
      192.
      1.
      1.3
```

- .
- M=25

32 - M = 7 outs note $\Rightarrow 128$ addresses $\Rightarrow 120$ addresses utiles

Masque de S-R 11000000.111111111.11111111.10000000 255.255.255.128

Addresse IPv4 11000000.00000001.00000001.xxxxxxxxx 192. 1. 1.XXX

Plage 192.1.1.X/M: M = 32 - nb bits necessaires pour les hotes

Plage d'adresse :

```
      @ Réseau
      11000000.00000001.00000001.xxxxxxx00
      192.
      1.
      1.0

      11000000.0000001.00000001.xxxxxxx01
      192.
      1.
      1.1

      11000000.0000001.00000001.xxxxxxx10
      192.
      1.
      1.2

      @ Broadcast
      11000000.0000001.00000001.xxxxxxx11
      192.
      1.
      1.3
```

```
● M=29: 32 - M = 3 bits hote \Rightarrow 8 adresses \Rightarrow 6 adresses utiles Masque de S-R 11000000.1111111111.111111111111111000 255.255.255.248 Adresse IPv4 11000000.00000001.00000001.xxxxxxxxx 192. 1. 1.xxx
```

- . .
- M=25

32-M=7 bits hote \Rightarrow 128 adresses \Rightarrow 120 adresses utiles
Masque de S-R 11000000.111111111.11111111.10000000 255.255.255.128
Adresse IPv4 11000000.00000001.00000001.xxxxxxxxx 192. 1. 1.XXX

Plage 192.1.1.X/M: M = 32 - nb bits necessaires pour les hotes

```
● M=30: 32-M=2 bits hote \Rightarrow 4 adresses \Rightarrow 2 adresses utiles Masque de S-R 11000000.111111111.111111111.111111100 255.255.255.255.252 Adresse IPv4 11000000.00000001.00000001.xxxxxxxx 192. 1. 1.xxx
```

Plage d'adresse :

```
.
```

M=25

Plan d'adressage : Méthode - Trouver M

Plage 192.1.1.X/M: M = 32 - nb bits necessaires pour les hotes

```
• M=30: 32 - M = 2 bits hote \Rightarrow 4 adresses \Rightarrow 2 adresses utiles Masque de S-R 11000000.111111111.111111111.111111100 255.255.255.255.252 Adresse IPv4 11000000.00000001.00000001.xxxxxxxxx 192. 1. 1.xxx
```

Plage d'adresse :

```
...
```

M=25

 $32-M=7\ bits\ hote \Rightarrow 128\ adresses \Rightarrow 126\ adresses\ utiles$ Masque de S-R 11000000.111111111.11111111.10000000 255.255.255.128 Adresse IPv4 11000000.00000001.00000001.xxxxxxxx 192. 1. 1.xxx

Plan d'adressage : Méthode - Trouver M

Plage 192.1.1.X/M: M = 32 - nb bits necessaires pour les hotes

```
• M=30: 32 - M = 2 bits hote \Rightarrow 4 advesses \Rightarrow 2 advesses utiles
Masque de S-R 11000000.111111111.11111111.11111100
                                                         255.255.255.252
Adresse TPv4 11000000,00000001,00000001,xxxxxxxxx 192, 1, 1,XXX
```

Plage d'adresse :

```
@ Réseau
                11000000.00000001.00000001.xxxxxx00
                                                       192.
                                                                 1.0
                11000000.00000001.00000001.xxxxxx01
                                                      192.
                                                                 1.1
                11000000.00000001.00000001.xxxxxx10
                                                      192.
                                                                 1.2
@ Broadcast
               11000000.00000001.00000001.xxxxxx11
                                                                 1.3
                                                      192.
```

• M=29: 32 - M = 3 bits hote $\Rightarrow 8$ advesses $\Rightarrow 6$ advesses utiles Masque de S-R 11000000.111111111.111111111111000 255, 255, 255, 248 Adresse TPv4 11000000.0000001.00000001.xxxxxxxx 192. 1. 1.XXX

-
- \bullet M=25:

```
32 - M = 7 bits hote \Rightarrow 128 adresses \Rightarrow 126 adresses utiles
Masque de S-R
                11000000.11111111.11111111.10000000
                                                          255.255.255.128
Adresse IPv4
                11000000.00000001.00000001.xxxxxxxx
                                                          192. 1. 1.XXX
```

Plan d'adressage : Méthode - Trouver X

Plage 192.1.1.X/M

- X = adresse du sous-réseau
- Première adresse disponible suivante

Plan d'adressage : Application

Par ordre décroissant du nombre de machines

Sous-réseau A : 80 machines

Sous-réseau B : 15 machines

Sous-réseau C : 6 machines

- Sous-réseau A
 - $2^{6}(64) \le 80 + 2 < 2^{7}(128) \Rightarrow 7bits \Rightarrow M = 32 7$
 - 8 JJ 123
 - 255- 255- 255- 128
- 230. 230. 230. 120
- Sous-reseau B (ne pas oublier les 2 agresses reservees
 - $2^{4}(16) \le 15 + 2 < 2^{5}(32) \Rightarrow 5bits \Rightarrow M = 32 5 = 27$
 - M = 27
 - 11111111.11111111.11111111.111000000
 - 255. 255. 255. 224
- Sous-réseau C (non saturé)
 - $2^{3}(8) \le 6 + 2 < 2^{4}(16) \Rightarrow 4bits \Rightarrow M = 32 4 = 28$
 - M = 28
 - 11111111.11111111.11111111.11110000
 - **255. 255. 255. 2**

Plan d'adressage : Application

Au plus juste, non saturé

Sous-réseau A

- $2^{6}(64) < 80 + 2 < 2^{7}(128) \Rightarrow 7bits \Rightarrow M = 32 7$
 - M = 25
- 11111111.111111111.111111111.10000000
 - agu P (na nag gubliar lag 2 adragaga rágaryág
- 5005-165600 D (116 pas oublief 165 2 autesses 16561 vees
 - M = 27
 - 11111111.11111111.11111111.11100000
- Sous-réseau C (non saturé)
 - $2^3(8) \le 6 + 2 < 2^4(16) \Rightarrow 4bits \Rightarrow M = 32 4 = 28$
 - M = 28
 - 11111111.11111111.11111111.11110000
 - 255. 255. 255. 240

Plan d'adressage : Application

- Sous-réseau A
 - $2^{6}(64) \le 80 + 2 < 2^{7}(128) \Rightarrow 7bits \Rightarrow M = 32 7$
 - M = 25
 - 11111111.111111111.11111111.10000000
- Sous-réseau B (ne pas oublier les 2 adresses réservées
 - $2^4(16) \le 15 + 2 < 2^5(32) \Rightarrow 5bits \Rightarrow M = 32 5 = 27$
 - M = 27
 - 11111111.11111111.11111111.11100000
 - 255. 255. 255.
- Sous-réseau C (non saturé)
 - $2^3(8) \le 6 + 2 < 2^4(16) \Rightarrow 4bits \Rightarrow M = 32 4 = 28$
 - M = 28
 - 11111111.11111111.11111111.11110000
 - 255. 255.

Plan d'adressage : Application

- Sous-réseau A
 - $2^{6}(64) \le 80 + 2 < 2^{7}(128) \Rightarrow 7bits \Rightarrow M = 32 7$
 - M = 25

- Sous-réseau B (ne pas oublier les 2 adresses réservées)
 - $2^4(16) \le 15 + 2 < 2^5(32) \Rightarrow 5bits \Rightarrow M = 32 5 = 27$
 - M = 27
 - 11111111.11111111.11111111.11100000

- Sous-réseau C (non saturé)
 - $2^{3}(8) \le 6 + 2 < 2^{4}(16) \Rightarrow 4bits \Rightarrow M = 32 4 = 28$
 - M = 28
 - 11111111.11111111.11111111.11110000
 - 255. 255. 255. 2

- Sous-réseau A
 - $2^{6}(64) \le 80 + 2 < 2^{7}(128) \Rightarrow 7bits \Rightarrow M = 32 7$
 - M = 25
 - 11111111.111111111.11111111.10000000 255. 255. 255. 255. 128
- Sous-réseau B (ne pas oublier les 2 adresses réservées)
 - $2^4(16) \le 15 + 2 < 2^5(32) \Rightarrow 5bits \Rightarrow M = 32 5 = 27$
 - M = 27
 - 11111111.111111111.11111111.11100000
- Sous-réseau C (non saturé)
 - $2^{3}(8) \le 6 + 2 < 2^{4}(16) \Rightarrow 4bits \Rightarrow M = 32 4 = 28$
 - M = 28
 - 11111111.11111111.11111111.11110000
 - 255. 255. 2

- Sous-réseau A
 - $2^{6}(64) \le 80 + 2 < 2^{7}(128) \Rightarrow 7bits \Rightarrow M = 32 7$
 - M = 25
 - 111111111.111111111.111111111.10000000 255. 255. 255. 255. 128
- Sous-réseau B (ne pas oublier les 2 adresses réservées)
 - $2^4(16) \le 15 + 2 < 2^5(32) \Rightarrow 5bits \Rightarrow M = 32 5 = 27$
 - M = 27
 - 11111111.111111111.111111111.11100000 255. 255. 255. 224
- Sous-réseau C (non saturé)
 - $2^{3}(8) \le 6 + 2 < 2^{4}(16) \Rightarrow 4bits \Rightarrow M = 32 4 = 28$
 - M = 28
 - 11111111.111111111.111111111.11110000 255. 255. 255. 256. 240

- Sous-réseau A
 - $2^{6}(64) \le 80 + 2 < 2^{7}(128) \Rightarrow 7bits \Rightarrow M = 32 7$
 - M = 25
 - 11111111.111111111.11111111.10000000 255. 255. 255. 255. 128
- Sous-réseau B (ne pas oublier les 2 adresses réservées)
 - $2^4(16) \le 15 + 2 < 2^5(32) \Rightarrow 5bits \Rightarrow M = 32 5 = 27$
 - M = 27
 - 111111111.111111111.11111111.11100000 255. 255. 255. 255. 224
- Sous-réseau C (non saturé)
 - $2^{3}(8) \le \mathbf{6} + \mathbf{2} < 2^{4}(16) \Rightarrow 4bits \Rightarrow M = 32 4 = 28$
 - M = 28
 - 111111111.11111111.11111111.11110000 255. 255. 255. 255. 240

Plan d'adressage : Application

```
11000000.00000001.00000001.00000000
                                     192.1.1.0
                                     255.1.1.255
11000000.00000001.00000001.11111111
```

Plan d'adressage : Application

```
11000000,00000001,00000001,00000000
                                       192.1.1.0
                                                      @R
11000000.00000001.00000001.00000000
                                       192.1.1.1
                                                      αP
                                                           Sous-réseau A
                                                      @ H
                                                           192.1.1.0/25
. . .
11000000,00000001,00000001,01111111
                                       255.1.1.127
                                                      @B
11000000,00000001,00000001,10000000
                                       192.1.1.128
                                                           Reste
                                       255.1.1.255
11000000.00000001.00000001.11111111
```

Plan d'adressage : Application

```
11000000,00000001,00000001,00000000
                                       192.1.1.0
                                                      @R
11000000.00000001.00000001.00000000
                                       192.1.1.1
                                                      αP
                                                           Sous-réseau A
                                                      @ H
                                                           192.1.1.0/25
. . .
11000000.00000001.00000001.01111111
                                       255.1.1.127
                                                      aB
11000000,00000001,00000001,10000000
                                       192.1.1.128
                                                      @R
11000000.00000001.00000001.10000001
                                       192.1.1.129
                                                      @P
                                                           Sous-réseau B
                                                      @H
                                                           192.1.1.128/27
11000000.00000001.00000001.10011111
                                       255.1.1.159
                                                      @B
11000000,00000001,00000001,10100000
                                       192.1.1.160
                                                           Reste
11000000.00000001.00000001.11111111
                                       255.1.1.255
```

Plan d'adressage : Application

```
192.1.1.0
                                                      0R
11000000,00000001,00000001,00000000
                                       192.1.1.1
                                                      @P
                                                           Sous-réseau A
                                                      @H
                                                           192.1.1.0/25
11000000.00000001.00000001.01111111
                                       255.1.1.127
                                                      aB
11000000.00000001.00000001.10000000
                                       192.1.1.128
                                                      @R
11000000,00000001,00000001,10000001
                                       192.1.1.129
                                                      @P
                                                           Sous-réseau B
                                                      @H
                                                           192.1.1.128/27
11000000.00000001.00000001.10011111
                                       255.1.1.159
                                                      @B
                                       192.1.1.160
                                                      @R
11000000,00000001,00000001,10100001
                                       192.1.1.161
                                                      @P
                                                           Sous-réseau C
                                                      @H
                                                           192.1.1.160/28
11000000.00000001.00000001.10101111
                                       255.1.1.175
                                                      @B
11000000,00000001,00000001,10111100
                                       255.1.1.188
                                                           Reste
11000000.00000001.00000001.11111111
                                       255.1.1.255
```


Plan d'adressage : Application

```
@H
                                                           192.1.1.160/28
11000000.00000001.00000001.10101111
                                       255.1.1.175
                                                     @B
                                       192.1.1.176
                                                     @R
11000000.00000001.00000001.10110001
                                       192.1.1.177
                                                     0r1
                                                           S-R R1-R2
11000000.00000001.00000001.10110010
                                       255.1.1.178
                                                     @r2
                                                           192.1.1.176/30
11000000.00000001.00000001.10110011
                                       255.1.1.179
                                                     @B
                                       192.1.1.180
                                                     0R
11000000.00000001.00000001.10110101
                                       192.1.1.181
                                                           S-R R1-R3
                                                     0r1
11000000,00000001,00000001,10110110
                                       255.1.1.182
                                                     @r3
                                                           192.1.1.180/30
11000000.00000001.00000001.10110111
                                       255.1.1.183
                                                     @B
11000000.00000001.00000001.10111000
                                       192.1.1.184
                                                     @R
11000000.00000001.00000001.10111001
                                       192.1.1.185
                                                     @r2
                                                           S-R R2-R3
11000000.00000001.00000001.10111010
                                       255.1.1.186
                                                     @r3
                                                           192.1.1.184/30
11000000.00000001.00000001.10111011
                                       255.1.1.187
                                                     @R
                                       255.1.1.188
11000000,00000001,00000001,10111100
                                                           Reste
11000000.00000001.00000001.11111111
                                       255.1.1.255
```


Configuration: Interfaces

Configuration des interfaces

Adresse IP

192. 1. 1. 10

Masque de sous-réseau

255.255.255.128

Passerelle

192. 1. 1.

Passerelle

- Destination si la destination n'est pas dans le même S-R
- Exemple, si 192.1.1.10 envoie un paquet à destination de
 - 192.1.1. 15, le paquet est émis directement
 - 192.1.1.130, le paquet est émis à destination de la passerelle

Configuration: Interfaces

Configuration des interfaces

- Adresse IP
- Masque de sous-réseau
- Passerelle

- 192. 1. 1. 10
- 255.255.255.128
- 192. 1. 1.

Passerelle

- Destination si la destination n'est pas dans le même S-R
- Exemple, si 192.1.1.10 envoie un paquet à destination de
 - 192.1.1. 15, le paquet est émis directement
 - 192.1.1.130, le paquet est émis à destination de la passerelle

Configuration: Interfaces

Configuration des interfaces

- Adresse IP 192. 1. 1. 10
- Masque de sous-réseau 255.255.255.128
- Passerelle 192. 1. 1. 1

Détection du sous-réseau

- Application du Masque de sous-réseau
 - 192.1.1. 10 ET 255.255.255.128 = 192.1.1.0
 - 192.1.1. 15 ET 255.255.255.128 = 192.1.1.0
 - 192.1.1.130 ET 255.255.255.128 = 192.1.1.128

- Fonction des routeurs : Router les paquets
 - i.e. les acheminer au travers du réseau
- Machines dédiées au traitement réseau
- Possédant plusieurs interfaces
 - Une interface par sous-réseau connecté
- Basés sur une Table de Routage

Table de routage (R1)

- Fonction des routeurs : Router les paquets
 - i.e. les acheminer au travers du réseau
- Machines dédiées au traitement réseau
- Possédant plusieurs interfaces
 - Une interface par sous-réseau connecté
- Basés sur une Table de Routage

- Fonction des routeurs : Router les paquets
 - i.e. les acheminer au travers du réseau
- Machines dédiées au traitement réseau
- Possédant plusieurs interfaces
 - Une interface par sous-réseau connecté
- Basés sur une Table de Routage

- Fonction des routeurs : Router les paquets
 - i.e. les acheminer au travers du réseau
- Machines dédiées au traitement réseau
- Possédant plusieurs interfaces
 - Une interface par sous-réseau connecté
- Basés sur une Table de Routage

- Fonction des routeurs : Router les paquets
 - i.e. les acheminer au travers du réseau
- Machines dédiées au traitement réseau
- Possédant plusieurs interfaces
 - Une interface par sous-réseau connecté
- Basés sur une Table de Routage

Table de routage (R1)						
N	1	Adr Dest	Masque	Passerelle	Interface	Métrique
1	L	192.1.1.0	255.255.255.128	192.1.1.1	192.1.1.1	2
2	2	192.1.1.128	255.255.255.224	192.1.1.178	192.1.1.177	2
3	3	192.1.1.160	255.255.255.240	192.1.1.182	192.1.1.181	2
4	1	0.0.0.0	255.255.255.255	192.1.1.182	192.1.1.181	2

Configuration: Routeurs

Table de routage (R1)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.1	192.1.1.1
2	192.1.1.128	255.255.255.224	192.1.1.178	192.1.1.177
3	192.1.1.160	255.255.255.240	192.1.1.182	192.1.1.181
4	0.0.0.0	255.255.255.255	192.1.1.182	192.1.1.181

Table (de routage	(R1)
---------	------------	------

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.1	192.1.1.1
2	192.1.1.128	255.255.255.224	192.1.1.178	192.1.1.177
3	192.1.1.160	255.255.255.240	192.1.1.182	192.1.1.181
4	0.0.0.0	255.255.255.255	192.1.1.182	192.1.1.181

Table de routage (R2)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.177	192.1.1.178
2	192.1.1.128	255.255.255.224	192.1.1.129	192.1.1.129
3	192.1.1.160	255.255.255.240	192.1.1.186	192.1.1.187
4	0.0.0.0	255.255.255.255	192.1.1.186	192.1.1.187

Table	de	routag	ne i	(B3)	١
Iabic	uС	Touta	10 I	(I LO)	ı

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	255.255.255.255	80.0.0.1	192.1.1.254

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	255.255.255.255	80.0.0.1	192.1.1.254
	·			

```
Si ( Adresse IP ET Masque = Adr Dest )
Alors Envoyer le paquet vers Passerelle via Interface
```

À la réception par R3 d'un paquet à destination de 192.1.1.10

① 192.1.1.10 ET 255.255.255.128 (192.1.1.0) = 192.1.1.0

⇒ Le Paguet est envové vers 192.1.1.181 *via* 192.1.1.182

Configuration : Routeurs - Comment ça marche?

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	255.255.255.255	80.0.0.1	192.1.1.254
	•			

Si (Adresse IP ET Masque = Adr Dest)
Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de

192.1.1.10

① 192.1.1.10 ET 255.255.255.128 (192.1.1.0) = 192.1.1.0

⇒ Le Paguet est envoyé vers 192.1.1.181 via 192.1.1.182

Configuration : Routeurs - Comment ça marche?

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	255.255.255.255	80.0.0.1	192.1.1.254
	1			

```
Si ( Adresse IP ET Masque = Adr Dest )
```

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de

192.1.1.10

```
192.1.1.10 ET 255.255.255.128 (192.1.1.0) = 192.1.1.0
```

⇒ Le Paquet est envoyé vers 192.1.1.181 via 192.1.1.182

Configuration: Routeurs - Comment ça marche?

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	255.255.255.255	80.0.0.1	192.1.1.254
	•			

```
Si ( Adresse IP ET Masque = Adr Dest )
```

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de

192.1.1.10

```
192.1.1.10 ET 255.255.255.128 (192.1.1.0) = 192.1.1.0
```

⇒ Le Paquet est envoyé vers 192.1.1.181 via 192.1.1.182

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 255.255.255.240 192.1.1.160 192.1.1.161 192.1.1.161 0.0.0.0 255, 255, 255, 255 80.0.0.1 192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)
Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 192.1.1.132

① 192.1.1.132 ET 255.255.255.128 $(192.1.1.128) \neq 192.1.1.0$

2 192.1.1.132 ET 255.255.255.224 (192.1.1.128) = 192.1.1.128

 \Rightarrow Le Paquet est envoyé vers 192.1.1.187 \emph{via} 192.1.1.186

Configuration : Routeurs - Comment ça marche?

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255.255.255.240 192.1.1.161 192.1.1.161 0.0.0.0 255, 255, 255, 255 80.0.0.1 192.1.1.254

Si (Adresse IP ET Masque = Adr Dest)
Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 192.1.1.132

- ① 192.1.1.132 ET 255.255.255.128 (192.1.1.128) ≠ 192.1.1.0
- ② 192.1.1.132 ET 255.255.255.224 (192.1.1.128) = 192.1.1.128
- ⇒ Le Paquet est envoyé vers 192.1.1.187 via 192.1.1.186

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 2 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255.255.255.240 192.1.1.161 192.1.1.161 0.0.0.0 255.255.255.255 80.0.0.1 192.1.1.254

```
Si ( Adresse IP ET Masque = Adr Dest )
Alors Envoyer le paquet vers Passerelle via Interface
```

À la réception par R3 d'un paquet à destination de 192.1.1.132

- **1** 192.1.1.132 ET 255.255.255.128 (192.1.1.128) ≠ 192.1.1.0
- 2 192.1.1.132 ET 255.255.255.224 (192.1.1.128) = 192.1.1.128

⇒ Le Paquet est envoyé vers 192.1.1.187 via 192.1.1.186

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 2 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255.255.255.240 192.1.1.161 192.1.1.161 0.0.0.0 255.255.255.255 80.0.0.1 192.1.1.254

```
Si ( Adresse IP ET Masque = Adr Dest )
```

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de 192.1.1.132

- **1** 192.1.1.132 ET 255.255.255.128 (192.1.1.128) ≠ 192.1.1.0
- 2 192.1.1.132 ET 255.255.255.224 (192.1.1.128) = 192.1.1.128

⇒ Le Paquet est envoyé vers 192.1.1.187 via 192.1.1.186

Table de routage (R3)

N	Adr Dest	Masque	Passerelle	Interface
1	192.1.1.0	255.255.255.128	192.1.1.181	192.1.1.182
2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	0.0.0.0	255.255.255.255	80.0.0.1	192.1.1.254
_				

Si (Adresse IP ET Masque = Adr Dest)

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de

192.1.1.163

- ① 192.1.1.163 ET 255.255.255.128 $(192.1.1.128) \neq 192.1.1.0$
- 100 1 1 100 FF OFF OFF OFF OOA (100 1 1 100) / 100 1 1 100
- ③ 192.1.1.163 ET 255.255.255.160 (192.1.1.160) = 192.1.1.160
- \Rightarrow Le Paquet est envoyé vers 192.1.1.161 \emph{via} 192.1.1.161
- ⇒ Le Paguet est envoyé vers 192.1.1.163 via 192.1.1.161

Table de routage (R3) Adr Dest Passerelle Interface Masque 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255.255.255.240 192.1.1.161 192.1.1.161 4 0.0.0.0 255, 255, 255, 255 80.0.0.1 192.1.1.254

```
Si ( Adresse IP ET Masque = Adr Dest )
```

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de

192.1.1.163

- \bigcirc 192.1.1.163 ET 255.255.255.128 (192.1.1.128) ≠ 192.1.1.0
- 2 192.1.1.163 ET 255.255.255.224 (192.1.1.160) \neq 192.1.1.128
- ③ 192.1.1.163 ET 255.255.255.160 (192.1.1.160) = 192.1.1.160

⇒ Le Paquet est envoyé vers 192.1.1.161 *via* 192.1.1.161 ⇒ Le Paquet est envoyé vers 192.1.1.163 *via* 192.1.1.161

Table de routage (R3) Adr Dest. Passerelle Interface Masque 255,255,255,128 192.1.1.0 192.1.1.181 192.1.1.182 2 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255.255.255.240 192.1.1.161 192.1.1.161 4 0.0.0.0 255, 255, 255, 255 80.0.0.1 192.1.1.254

```
Si ( Adresse IP ET Masque = Adr Dest )
```

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de

192.1.1.163

- \bigcirc 192.1.1.163 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0
- ② 192.1.1.163 ET 255.255.255.224 (192.1.1.160) ≠ 192.1.1.128
- 3 192.1.1.163 ET 255.255.255.160 (192.1.1.160) = 192.1.1.160
- ⇒ Le Paquet est envoyé vers 192.1.1.161 via 192.1.1.16

Table de routage (R3) Adr Dest Passerelle Interface Masque 255.255.255.128 192.1.1.181 192.1.1.0 192.1.1.182 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255,255,255,240 192,1,1,161 192.1.1.161 4 0.0.0.0 255, 255, 255, 255 80.0.0.1 192.1.1.254

```
Si ( Adresse IP ET Masque = Adr Dest )
Alors Envoyer le paquet vers Passerelle via Interface
```

À la réception par R3 d'un paquet à destination de

192.1.1.163

- \bigcirc 192.1.1.163 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0
- ② 192.1.1.163 ET 255.255.255.224 (192.1.1.160) ≠ 192.1.1.128
- 3 192.1.1.163 ET 255.255.255.160 (192.1.1.160) = 192.1.1.160
- ⇒ Le Paquet est envoyé vers 192.1.1.161 via 192.1.1.16¹
- \Rightarrow Le Paquet est envoyé vers 192.1.1.163 \emph{via} 192.1.1.161

Table de routage (R3) Adr Dest Passerelle Interface Masque 255.255.255.128 192.1.1.181 192.1.1.0 192.1.1.182 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255.255.255.240 192.1.1.161 192.1.1.161 4 0.0.0.0 255, 255, 255, 255 80.0.0.1 192.1.1.254

```
Si ( Adresse IP ET Masque = Adr Dest )
```

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de

192.1.1.163

- \bigcirc 192.1.1.163 ET 255.255.255.128 (192.1.1.128) \neq 192.1.1.0
- ② 192.1.1.163 ET 255.255.255.224 (192.1.1.160) ≠ 192.1.1.128
- 3 192.1.1.163 ET 255.255.255.160 (192.1.1.160) = 192.1.1.160

⇒ Le Paquet est envoyé vers 192.1.1.161 via 192.1.1.161

 \Rightarrow Le Paquet est envoye vers 192.1.1.163 *via* 192.1.1.161

Table de routage (R3) Adr Dest. Passerelle Interface Masque 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255.255.255.240 192.1.1.161 192.1.1.161 4 0.0.0.0 255, 255, 255, 255 80.0.0.1 192.1.1.254

```
Si ( Adresse IP ET Masque = Adr Dest )
Alors Envoyer le paquet vers Passerelle via Interface
```

À la réception par R3 d'un paquet à destination de

- 192.1.1.163
- \bigcirc 192.1.1.163 ET 255.255.255.128 (192.1.1.128) ≠ 192.1.1.0
- ② 192.1.1.163 ET 255.255.255.224 (192.1.1.160) ≠ 192.1.1.128
- 3 192.1.1.163 ET 255.255.255.160 (192.1.1.160) = 192.1.1.160
- ⇒ Le Paquet est envoyé vers 192.1.1.161 via 192.1.1.161
- ⇒ Le Paquet est envoyé vers 192.1.1.163 via 192.1.1.161

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 2 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.161 192.1.1.160 255, 255, 255, 240 192.1.1.161

```
Si ( Adresse IP ET Masque = Adr Dest )
```

0.0.0.0

Alors Envoyer le paquet vers Passerelle via Interface

255.255.255.255

À la réception par R3 d'un paquet à destination de

132.2.5.1

192.1.1.254

- ① 132.2.5.1 ET 255.255.255.128 $(132.2.5.0) \neq 192.1.1.0$
- 2 132.2.5.1 ET 255.255.255.224 (132.2.5.0) \neq 192.1.1.128
- ③ 132.2.5.1 ET 255.255.255.160 (132.2.5.0) = 192.1.1.160
- \bigcirc 132.2.5.1 ET 255.255.255.255 (0.0.0.0) = 0.0.0.0

80.0.0.1

Table de routage (R3)					
1	1	Adr Dest	Masque	Passerelle	Interface
1	1	192.1.1.0	255.255.255.128	192.1.1.181	192.1.1.182
2	2	192.1.1.128	255.255.255.224	192.1.1.187	192.1.1.186
3	3	192.1.1.160	255.255.255.240	192.1.1.161	192.1.1.161
4	1	0.0.0.0	255.255.255.255	80.0.0.1	192.1.1.254
_	_				

```
Si ( Adresse IP ET Masque = Adr Dest )
```

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de

132.2.5.1

- \bigcirc 132.2.5.1 ET 255.255.255.128 (132.2.5.0) ≠ 192.1.1.0
- 2 132.2.5.1 ET 255.255.255.224 (132.2.5.0) \neq 192.1.1.128
- ③ 132.2.5.1 ET 255.255.255.160 (132.2.5.0) = 192.1.1.160
- \bigcirc 132.2.5.1 ET 255.255.255.255 (0.0.0.0) = 0.0.0.0
- ⇒ Le Paquet est envoye vers 80.0.0.1 via 192.1.1.254

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 2 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255.255.255.240 192.1.1.161 192.1.1.161 0.0.0.0 255.255.255.255 80.0.0.1 192.1.1.254

```
{	t Si} ( {	t Adresse} {	t IP} {	t ET} {	t Masque} = {	t Adr} {	t Dest} )
```

Alors Envoyer le paquet vers Passerelle via Interface

À la réception par R3 d'un paquet à destination de

132.2.5.1

- ① 132.2.5.1 ET 255.255.255.128 $(132.2.5.0) \neq 192.1.1.0$
- ② 132.2.5.1 ET 255.255.255.224 (132.2.5.0) ≠ 192.1.1.128
- ③ 132.2.5.1 ET 255.255.255.160 (132.2.5.0) = 192.1.1.160
- $\bigcirc 132.2.5.1 \text{ ET } 255.255.255.255 (0.0.0.0) = 0.0.0.0$
- \Rightarrow Le Paquet est envoyé vers **80.0.0.1** *via* **192.1.1.254**

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255.255.255.240 192.1.1.161 192.1.1.161 0.0.0.0 255.255.255.255 80.0.0.1 192.1.1.254

```
Si ( Adresse IP ET Masque = Adr Dest )
Alors Envoyer le paquet vers Passerelle via Interface
```

À la réception par R3 d'un paquet à destination de

132.2.5.1

- **1** 132.2.5.1 ET 255.255.255.128 (132.2.5.0) ≠ 192.1.1.0
- ② 132.2.5.1 ET 255.255.255.224 (132.2.5.0) ≠ 192.1.1.128
- **3** 132.2.5.1 ET 255.255.255.160 (132.2.5.0) = 192.1.1.160
- 4 132.2.5.1 ET 255.255.255.255 (0.0.0.0) = 0.0.0.0
- ⇒ Le Paquet est envoyé vers 80.0.0.1 via 192.1.1.254

Configuration : Routeurs - Comment ça marche?

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 2 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255.255.255.240 192.1.1.161 192.1.1.161 0.0.0.0 255.255.255.255 80.0.0.1 192.1.1.254

```
Si ( Adresse IP ET Masque = Adr Dest )
Alors Envoyer le paquet vers Passerelle via Interface
```

À la réception par R3 d'un paquet à destination de

132.2.5.1

- \bigcirc 132.2.5.1 ET 255.255.255.128 (132.2.5.0) \neq 192.1.1.0
- ② 132.2.5.1 ET 255.255.255.224 (132.2.5.0) ≠ 192.1.1.128
- 3 132.2.5.1 ET 255.255.255.160 (132.2.5.0) = 192.1.1.160
- 4 132.2.5.1 ET 255.255.255.255 (0.0.0.0) = 0.0.0.0

 \Rightarrow Le Paquet est envoyé vers 80.0.0.1 via 192.1.1.254

Configuration : Routeurs - Comment ça marche?

Table de routage (R3) Adr Dest Masque Passerelle Interface 192.1.1.0 255.255.255.128 192.1.1.181 192.1.1.182 2 192.1.1.128 255.255.255.224 192.1.1.187 192.1.1.186 192.1.1.160 255.255.255.240 192.1.1.161 192.1.1.161 0.0.0.0 255.255.255.255 80.0.0.1 192.1.1.254

```
Si ( Adresse IP ET Masque = Adr Dest )
Alors Envoyer le paquet vers Passerelle via Interface
```

À la réception par R3 d'un paquet à destination de

132.2.5.1

- **1** 132.2.5.1 ET 255.255.255.128 (132.2.5.0) ≠ 192.1.1.0
- ② 132.2.5.1 ET 255.255.255.224 (132.2.5.0) ≠ 192.1.1.128
- 3 132.2.5.1 ET 255.255.255.160 (132.2.5.0) = 192.1.1.160
- 4 132.2.5.1 ET 255.255.255.255 (0.0.0.0) = 0.0.0.0
- ⇒ Le Paquet est envoyé vers 80.0.0.1 via 192.1.1.254

Configuration: IP/MAC - Comment ça marche?

Problème

- Adresse IP au niveau IP + Adresse MAC au niveau Ethernet
- Comment les mettre en correspondance?

Configuration: IP/MAC - Comment ça marche?

Problème

- Adresse IP au niveau IP + Adresse MAC au niveau Ethernet
- Comment les mettre en correspondance?

Configuration: IP/MAC - Comment ça marche?

Problème

- Adresse IP au niveau IP + Adresse MAC au niveau Ethernet
- Comment les mettre en correspondance?

- Traduction d'addresse niveau réseau en addresse MAC
- Interface couche OSI 2 et 3
- Fonctionnement
 - Emission d'un broadcast Requête ARP sur le réseau local
 - Emission d'un unicast Réponse ARP contenant l'adresse MAC
- Accéléré par un mécanisme de cache
- Représente une vulnérabilité
- Supplanté en IPv6

Configuration: IP/MAC - Comment ça marche?

Problème

- Adresse IP au niveau IP + Adresse MAC au niveau Ethernet
- Comment les mettre en correspondance?

- Traduction d'addresse niveau réseau en addresse MAC
- Interface couche OSI 2 et 3
- Fonctionnement
 - Emission d'un broadcast Requête ARP sur le réseau local
 - Emission d'un unicast Réponse ARP contenant l'adresse MAC
- Accéléré par un mécanisme de cache
- Représente une vulnérabilité
- Supplanté en IPv6

Configuration: IP/MAC - Comment ça marche?

Problème

- Adresse IP au niveau IP + Adresse MAC au niveau Ethernet
- Comment les mettre en correspondance?

- Traduction d'addresse niveau réseau en addresse MAC
- Interface couche OSI 2 et 3
- Fonctionnement
 - Emission d'un broadcast Requête ARP sur le réseau local
 - Emission d'un unicast Réponse ARP contenant l'adresse MAC
- Accéléré par un mécanisme de cache
- Représente une vulnérabilité
- Supplanté en IPv6

Configuration: IP/MAC - Comment ça marche?

Problème

- Adresse IP au niveau IP + Adresse MAC au niveau Ethernet
- Comment les mettre en correspondance?

- Traduction d'addresse niveau réseau en addresse MAC
- Interface couche OSI 2 et 3
- Fonctionnement
 - Emission d'un broadcast Requête ARP sur le réseau local
 - Emission d'un unicast Réponse ARP contenant l'adresse MAC
- Accéléré par un mécanisme de cache
- Représente une vulnérabilité
- Supplanté en IPv6

Configuration: IP/MAC - Comment ça marche?

Problème

- Adresse IP au niveau IP + Adresse MAC au niveau Ethernet
- Comment les mettre en correspondance?

- Traduction d'addresse niveau réseau en addresse MAC
- Interface couche OSI 2 et 3
- Fonctionnement
 - Emission d'un broadcast Requête ARP sur le réseau local
 - Emission d'un unicast Réponse ARP contenant l'adresse MAC
- Accéléré par un mécanisme de cache
- Représente une vulnérabilité
- Supplanté en IPv6

Configuration: IP/MAC - Comment ça marche?

Problème

- Adresse IP au niveau IP + Adresse MAC au niveau Ethernet
- Comment les mettre en correspondance?

- Traduction d'addresse niveau réseau en addresse MAC
- Interface couche OSI 2 et 3
- Fonctionnement
 - Emission d'un broadcast Requête ARP sur le réseau local
 - Emission d'un unicast Réponse ARP contenant l'adresse MAC
- Accéléré par un mécanisme de cache
- Représente une vulnérabilité
- Supplanté en IPv6

Configuration: IP/MAC - Comment ça marche?

Problème

- Adresse IP au niveau IP + Adresse MAC au niveau Ethernet
- Comment les mettre en correspondance?

- Traduction d'addresse niveau réseau en addresse MAC
- Interface couche OSI 2 et 3
- Fonctionnement
 - Emission d'un broadcast Requête ARP sur le réseau local
 - Emission d'un unicast Réponse ARP contenant l'adresse MAC
- Accéléré par un mécanisme de cache
- Représente une vulnérabilité
- Supplanté en IPv6

Sans transition...

- Plan d'adressage
- Services Réseaux
 - Services
 - ADSL-box

Ensemble des services permettant le fonctionnement des réseaux locaux

- Matériel et/ou logiciel ("serveur")
- Attribution des addresses IP et noms de machines
- Gestion des

Sécurité

Julien Gossa

Ensemble des services permettant le fonctionnement des réseaux locaux

- Matériel et/ou logiciel ("serveur")
- Attribution des addresses IP et noms de machines
- Gestion des

Sécurité

- Matériel et/ou logiciel ("serveur")
- Attribution des addresses IP et noms de machines
- Gestion des
 - Utilisateurs
 - Fichiers
 - Données
 - Impressions
- Sécurité

- Matériel et/ou logiciel ("serveur")
- Attribution des addresses IP et noms de machines
- Gestion des
 - Utilisateurs
 - Fichiers
 - Données
 - Impressions
- Sécurité

- Matériel et/ou logiciel ("serveur")
- Attribution des addresses IP et noms de machines
- Gestion des
 - Utilisateurs
 - Fichiers
 - Données
 - Impressions
- Sécurité

- Matériel et/ou logiciel ("serveur")
- Attribution des addresses IP et noms de machines
- Gestion des
 - Utilisateurs
 - Fichiers
 - Données
 - Impressions
- Sécurité

- Matériel et/ou logiciel ("serveur")
- Attribution des addresses IP et noms de machines
- Gestion des
 - Utilisateurs
 - Fichiers
 - Données
 - Impressions
- Sécurité

- Matériel et/ou logiciel ("serveur")
- Attribution des addresses IP et noms de machines
- Gestion des
 - Utilisateurs
 - Fichiers
 - Données
 - Impressions
- Sécurité
 - Transversa
 - Dédié

- Matériel et/ou logiciel ("serveur")
- Attribution des addresses IP et noms de machines
- Gestion des
 - Utilisateurs
 - Fichiers
 - Données
 - Impressions
- Sécurité
 - Transversal
 - Dédié

- Matériel et/ou logiciel ("serveur")
- Attribution des addresses IP et noms de machines
- Gestion des
 - Utilisateurs
 - Fichiers
 - Données
 - Impressions
- Sécurité
 - Transversal
 - Dédié

Services Réseaux : IP

- Dynamic Host Configuration Protocol
- Limite le nombre d'adresses IP
- Facilite la configuration
- Permet l'accès aux machines nomades
- Fonctionnement

Services Réseaux : IP

- Dynamic Host Configuration Protocol
- Limite le nombre d'adresses IP
- Facilite la configuration
- Permet l'accès aux machines nomades
- Fonctionnement

- Dynamic Host Configuration Protocol
- Limite le nombre d'adresses IP
- Facilite la configuration
- Permet l'accès aux machines nomades
- Fonctionnement

Services Réseaux : IP

- Dynamic Host Configuration Protocol
- Limite le nombre d'adresses IP
- Facilite la configuration
- Permet l'accès aux machines nomades
- Fonctionnement

- Dynamic Host Configuration Protocol
- Limite le nombre d'adresses IP
- Facilite la configuration
- Permet l'accès aux machines nomades
- Fonctionnement
 - Requête broadcast TCP/IP DHCP DISCOVER
 - Réponse DHCP DISCOVER contenant

- Dynamic Host Configuration Protocol
- Limite le nombre d'adresses IP
- Facilite la configuration
- Permet l'accès aux machines nomades
- Fonctionnement
 - Requête broadcast TCP/IP DHCP DISCOVER
 - Réponse DHCP DISCOVER contena

- Dynamic Host Configuration Protocol
- Limite le nombre d'adresses IP
- Facilite la configuration
- Permet l'accès aux machines nomades
- Fonctionnement
 - Requête broadcast TCP/IP DHCP DISCOVER
 - Réponse DHCP DISCOVER contenant
 - Adresse IP + masque de sous-réseau
 - Adresse IP de la passerelle par défaut
 - Adresses IP des serveurs DNS
 - Adresses IP des serveurs NRNS (MINS

- Dynamic Host Configuration Protocol
- Limite le nombre d'adresses IP
- Facilite la configuration
- Permet l'accès aux machines nomades
- Fonctionnement
 - Requête broadcast TCP/IP DHCP DISCOVER
 - Réponse DHCP DISCOVER contenant
 - Adresse IP + masque de sous-réseau
 - Adresse IP de la passerelle par défau
 - Adresses IP des serveurs DNS
 - Adresses IP des serveurs NBNS (WINS)

- Dynamic Host Configuration Protocol
- Limite le nombre d'adresses IP
- Facilite la configuration
- Permet l'accès aux machines nomades
- Fonctionnement
 - Requête broadcast TCP/IP DHCP DISCOVER
 - Réponse DHCP DISCOVER contenant
 - Adresse IP + masque de sous-réseau
 - Adresse IP de la passerelle par défaut
 - Adresses IP des serveurs DNS
 - Adresses IP des serveurs NBNS (WINS)

- Dynamic Host Configuration Protocol
- Limite le nombre d'adresses IP
- Facilite la configuration
- Permet l'accès aux machines nomades
- Fonctionnement
 - Requête broadcast TCP/IP DHCP DISCOVER
 - Réponse DHCP DISCOVER contenant
 - Adresse IP + masque de sous-réseau
 - Adresse IP de la passerelle par défaut
 - Adresses IP des serveurs DNS
 - Adresses IP des serveurs NRNS (WINS)

- Dynamic Host Configuration Protocol
- Limite le nombre d'adresses IP
- Facilite la configuration
- Permet l'accès aux machines nomades
- Fonctionnement
 - Requête broadcast TCP/IP DHCP DISCOVER
 - Réponse DHCP DISCOVER contenant
 - Adresse IP + masque de sous-réseau
 - Adresse IP de la passerelle par défaut
 - Adresses IP des serveurs DNS
 - Adresses IP des serveurs NBNS (WINS)

Gestions - Utilisateurs

Annuaires

- Notions de groupes et de droits
- Annuaires
 - Active Directory : LDAP + Kerberos

Julien Gossa

Gestions - Utilisateurs

Annuaires

- Notions de groupes et de droits
- Annuaires
 - Active Directory : LDAP + Kerberos
 - Contient toutes les informations utilisateurs
 - Hiérarchisé

Gestions - Utilisateurs

Annuaires

- Notions de groupes et de droits
- Annuaires
 - Active Directory : LDAP + Kerberos
 - Contient toutes les informations utilisateurs
 - Hiérarchisé

Gestions - Utilisateurs

Annuaires

- Notions de groupes et de droits
- Annuaires
 - Active Directory : LDAP + Kerberos
 - Contient toutes les informations utilisateurs
 - Hiérarchisé

Gestions - Utilisateurs

Annuaires

- Notions de groupes et de droits
- Annuaires
 - Active Directory : LDAP + Kerberos
 - Contient toutes les informations utilisateurs
 - Hiérarchisé

Gestions - Fichiers /données

Serveurs de fichiers

- Partage des comptes utilisateurs
- FTP : File Transfer Protocol
- Samba

Gestions - Fichiers /données

Serveurs de fichiers

- Partage des comptes utilisateurs
 - NFS : Network File System
- FTP: File Transfer Protocol
- Samba

Gestions - Fichiers /données

Serveurs de fichiers

- Partage des comptes utilisateurs
 - NFS : Network File System
- FTP : File Transfer Protocol
- Samba

Gestions - Fichiers /données

Serveurs de fichiers

- Partage des comptes utilisateurs
 - NFS : Network File System
- FTP : File Transfer Protocol
- Samba

Gestions - Fichiers /données

Serveurs de fichiers

- Partage des comptes utilisateurs
 - NFS : Network File System
- FTP : File Transfer Protocol
- Samba
 - Multi-protocoles
 - Multi-plateformes

Gestions - Fichiers /données

Serveurs de fichiers

- Partage des comptes utilisateurs
 - NFS : Network File System
- FTP : File Transfer Protocol
- Samba
 - Multi-protocoles
 - Multi-plateformes

Gestions - Fichiers /données

Serveurs de fichiers

- Partage des comptes utilisateurs
 - NFS : Network File System
- FTP : File Transfer Protocol
- Samba
 - Multi-protocoles
 - Multi-plateformes

Serveur de Bases de Données

Julien Gossa

Serveurs de fichiers

- Partage des comptes utilisateurs
 - NFS : Network File System
- FTP : File Transfer Protocol
- Samba
 - Multi-protocoles
 - Multi-plateformes

- SGBD (MySQL, PostgreSQL, Oracle...)
- Stockage/sauvegarde
- Des données métiers/applicatives

Serveurs de fichiers

- Partage des comptes utilisateurs
 - NFS : Network File System
- FTP : File Transfer Protocol
- Samba
 - Multi-protocoles
 - Multi-plateformes

- SGBD (MySQL, PostgreSQL, Oracle...)
- Stockage/sauvegarde
- Des données métiers/applicatives

Serveurs de fichiers

- Partage des comptes utilisateurs
 - NFS : Network File System
- FTP : File Transfer Protocol
- Samba
 - Multi-protocoles
 - Multi-plateformes

- SGBD (MySQL, PostgreSQL, Oracle...)
- Stockage/sauvegarde
- Des données métiers/applicatives

Serveurs de fichiers

- Partage des comptes utilisateurs
 - NFS : Network File System
- FTP : File Transfer Protocol
- Samba
 - Multi-protocoles
 - Multi-plateformes

- SGBD (MySQL, PostgreSQL, Oracle...)
- Stockage/sauvegarde
- Des données métiers/applicatives

Gestions - Impression

- Partage de plusieurs imprimantes
- Entre plusieurs utilisateurs
- Connection direction
- Sous linux : CUPS (Common Unix Printing System)

Gestions - Impression

- Partage de plusieurs imprimantes
- Entre plusieurs utilisateurs
 - Interfacé à LDAP
 - Connection directe (USB) ou réseau
- Sous linux : CUPS (Common Unix Printing System

Gestions - Impression

- Partage de plusieurs imprimantes
- Entre plusieurs utilisateurs
 - Interfacé à LDAP
 - Connection directe (USB) ou réseau
- Sous linux : CUPS (Common Unix Printing System

Gestions - Impression

- Partage de plusieurs imprimantes
- Entre plusieurs utilisateurs
 - Interfacé à LDAP
 - Connection directe (USB) ou réseau
- Sous linux : CUPS (Common Unix Printing System)

Gestions - Impression

- Partage de plusieurs imprimantes
- Entre plusieurs utilisateurs
 - Interfacé à LDAP
 - Connection directe (USB) ou réseau
- Sous linux : CUPS (Common Unix Printing System)

Sécurité

Transversal et Dédié

Parefeu / DMZ

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone

Sous linux : CUPS (Common Unix Printing System)

Sécurité

Transversal et Dédié

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

Sécurité

Transversal et Dédié

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

Sécurité

Transversal et Dédié

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

Transversal et Dédié

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

Transversal et Dédié

Parefeu / DMZ

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Par 1 nu 2 nares-feux
- Sous linux : CUPS (Common Unix Printing System)

- Résistance aux pannes/surcharges
- Maître mot : Redondance

Transversal et Dédié

Parefeu / DMZ

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

- Résistance aux pannes/surcharges
- Maître mot : Redondance

Sécurité

Transversal et Dédié

Parefeu / DMZ

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

- Résistance aux pannes/surcharges
- Maître mot : Redondance

Transversal et Dédié

Parefeu / DMZ

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

- Résistance aux pannes/surcharges
- Maître mot : Redondance

Transversal et Dédié

Parefeu / DMZ

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

- Résistance aux pannes/surcharges
- Maître mot : Redondance

Transversal et Dédié

Parefeu / DMZ

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

- Résistance aux pannes/surcharges
- Maître mot : Redondance

Transversal et Dédié

Parefeu / DMZ

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

- Résistance aux pannes/surcharges
- Maître mot : Redondance
 - Sauvegarde
 - Equilibrage des charges (Load Balancing)
 - Externalisation

Transversal et Dédié

Parefeu / DMZ

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

- Résistance aux pannes/surcharges
- Maître mot : Redondance
 - Sauvegarde
 - Equilibrage des charges (Load Balancing)
 - Externalisation

Transversal et Dédié

Parefeu / DMZ

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

- Résistance aux pannes/surcharges
- Maître mot : Redondance
 - Sauvegarde
 - Equilibrage des charges (Load Balancing)
 - Externalisation

Transversal et Dédié

Parefeu / DMZ

- Pare-feu : filtrage des communications
- DMZ : DeMilitarized Zone
 - Zone isolée du reste du réseau
 - Par 1 ou 2 pares-feux
- Sous linux : CUPS (Common Unix Printing System)

- Résistance aux pannes/surcharges
- Maître mot : Redondance
 - Sauvegarde
 - Equilibrage des charges (Load Balancing)
 - Externalisation

ADSL-box

- Pon
- Serveur DHCF
- Pont + Passerelle + Proxy
 - Para-fau

- Hotspot Wifi (+ Serveur DHCP + WEP/WPA + Pare-fer
- Commutateu
- Serveur de fichier (FTP
- Serveur d'impression

- Por
- Serveur DHCE
- Pont + Passerelle + Provi
- Pare-feii

- Hotspot Wifi (+ Serveur DHCP + WEP/WPA + Pare-feu
- Commutateu
- Serveur de fichier (FTP
- Serveur d'impression

Plan d'adressage

adslbox

- Pont
- Serveur DHCF
- Pont + Passaralla + Provi
 - Dave four

- Hotspot Wifi (+ Serveur DHCP + WEP/WPA + Pare-feu
- Commutateu
- Serveur de fichier (FTF
 - Serveur d'impression

•0

- Pont
- Serveur DHCP
- Pont + Passerelle + Prox
 - Pare-fou

- Hotspot Wifi (+ Serveur DHCP + WEP/WPA + Pare-fet
- Commutateur
 - Serveur de fichier (FTF
 - Serveur d'impression

•0

- Pont
- Serveur DHCP
- Pont + Passerelle + Proxy
 - Pare-feu

- Hotspot Wifi (+ Serveur DHCP + WEP/WPA + Pare-fer
- Commutateur
- Serveur de lichier (FTF
- Serveur d'impression

- Pont
- Serveur DHCP
- Pont + Passerelle + Proxy
 - Para-fall

- Hotspot Wifi (+ Serveur DHCP + WEP/WPA + Pare-fei
- Commutateu
 - Serveur de fichier (FTF
 - Serveur d'impression

•0

- Pont
- Serveur DHCP
- Pont + Passerelle + Proxy
- Pare-feu

- Hotspot Wifi (+ Serveur DHCP + WFP/WPA + Pare-fei
- Commutateu
- Serveur de fichier (FTP
- Serveur d'impression

•0

- Pont
- Serveur DHCP
- Pont + Passerelle + Proxy
- Pare-feu

- Hotspot Wifi (+ Serveur DHCP + WEP/WPA + Pare-feu)
- Commutateu
- Serveur de fichier (FTP)
- Serveur d'impression

Plan d'adressage

adslbox

- Pont
- Serveur DHCP
- Pont + Passerelle + Proxy
- Pare-feu

- Hotspot Wifi (+ Serveur DHCP + WEP/WPA + Pare-feu)
- Commutateur
- Serveur de fichier (FTP)
- Serveur d'impression

•0

ADSL-box

- Pont
- Serveur DHCP
- Pont + Passerelle + Proxy
- Pare-feu

- Hotspot Wifi (+ Serveur DHCP + WEP/WPA + Pare-feu)
- Commutateur
- Serveur de fichier (FTP)
 - Serveur d'impression

- Pont
- Serveur DHCP
- Pont + Passerelle + Proxy
- Pare-feu

- Hotspot Wifi (+ Serveur DHCP + WEP/WPA + Pare-feu)
- Commutateur
- Serveur de fichier (FTP)
- Serveur d'impression

ADSL-box

Conclusion

```
TCP |
      Internet Protocol & ICMP
      Local Network Protocol
```

Protocol Relationships