Observamos como primer pantallazo el accuracy, siendo la Regresión Logística la más relevante con un 91%.

Sin embargo, dado que tanto los **falsos positivos como los falsos negativos son relevantes** para nuestro problema, no basta con mirar el accuracy solamente. En ese caso, **usamos el F1-score** como métrica principal porque **equilibra precisión y recall**, dándonos una visión más completa del rendimiento.

La Regresión Logística sigue destacándose, también con el mejor F1-score: 85,8%. Esto indica que, además de acertar mucho en general, el modelo equilibra bien la detección de los casos positivos reales sin pasarse de falsos positivos.

Tomando en cuenta tanto **accuracy** como **F1-score**, la **Regresión Logística** es el modelo más sólido para este problema, y recomendamos seguir con él como primera opción.

Evaluation results for	r targe	t (No	ne, sh	ow ave	erage o	ver classes)	`
Model	AUC	CA	F1	Prec	Recall	MCC	
Tree	0. 700	0. 686	0. 687	0. 699	0.686	0.380	
Logistic Regression	0. 910	0. 857	0. 858	0. 859	0.857	0.712	
Neural Network	0. 877	0. 771	0. 769	0. 771	0.771	0.529	