习题 2.2.7

叶卢庆* 杭州师范大学理学院, 浙江 杭州 310036

习题 (2.2.7). 证明 $x^d - 1$ 整除 $x^n - 1$ 当且仅当 d 整除 n.

证明. \Leftarrow : 此时, 不妨设 n = kd, 此时, 易得

$$x^{n} - 1 = (x^{d})^{k} - 1^{k} = (x^{d} - 1)\Delta.$$

其中 Δ 是一个多项式. 因此 $x^d - 1|x^n - 1$.

 $\Rightarrow: x^d - 1 | x^n - 1$ 说明 $n \geq d$. 假若 $d \not| n$,则根据带余除法,存在唯一的 q, r,使得

$$n = qd + r,$$

其中 0 < r < d. 则

$$x^n - 1 = x^{qd+r} - 1.$$

而

$$x^{qd+r} - 1 = x^{qd}x^r - x^r + x^r - 1 = x^r(x^{qd} - 1) + (x^r - 1) = (x^d - 1)x^r\Delta' + (x^r - 1).$$

易得 $x^d - 1$ / $x^r - 1$, 因此, $x^d - 1$ / $x^n - 1$, 矛盾. 因此 d|n.

注 1. 这个结论建立了 d|n 和 $x^d-1|x^n-1$ 的对应关系, 个人认为会有大用.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:h5411167@gmail.com