Matters of Discussion

Introduction to Data & Analytics

➤ Getting to Know your data and dataset.

>Analytic case

Data Analytics in Business Intelligence

Data Analytics: On What Kinds of Data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and multi-linked data
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web

Types of Data Sets

- Record
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data: text documents: termfrequency vector
 - Transaction data
- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Spatial, image and multimedia:
 - Spatial data: maps
 - Image data:
 - Video data:

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> objects; columns ->attributes.

Attributes

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
 - E.g., customer _ID, name, address
- Types:
 - Nominal
 - Binary
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = { auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, zip codes
 - A variable with values which have no numerical value

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings
- A variable with values which have no numerical value

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval
 - Measured on a scale of equal-sized units
 - Values have order
 - E.g., temperature in C°or F°, calendar dates
 - No true zero-point

Ratio

- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Document database

- A document can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.
- Term frequency (TF) means how often a term occurs in a document.

Term frequency dataset

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

Time series Data

- A time series is a series of data points indexed (or listed or graphed) in time order.
- Most commonly, a time series is a sequence taken at successive equally spaced points in time.
- Thus it is a sequence of discrete-time data.
- Examples of time series are heights of ocean tides, USD value, market share value, many more..

Date	Ozone (μg/m³)	Temperature (°C)	Relative humidity (%)	n deaths
1 Jan 2002	4.59	-0.2	75.7	199
2 Jan 2002	4.88	0.1	77.5	231
3 Jan 2002	4.71	0.9	81.3	210
4 Jan 2002	4.14	0.5	85.4	203
5 Jan 2002	2.01	4.3	93.5	224
6 Jan 2002	2.4	7.1	96.4	198
7 Jan 2002	4.08	5.2	93.5	180
8 Jan 2002	3.13	3.5	81.5	188
9 Jan 2002	2.05	3.2	88.3	168
10 Jan 2002	5.19	5.3	85.4	194
11 Jan 2002	3.59	3.0	92.6	223
12 Jan 2002	12.87	4.8	94.2	201
Compiled By: Dr.	Nilamadhab M	lishra [(PhD- CSIE) Taiwd	an]	12

Example of Time Series Data

Field	Example topics
Economics	Gross Domestic Product (GDP), Consumer Price Index (CPI), S&P 500 Index, and unemployment rates
Social sciences	Birth rates, population, migration data, political indicators
Epidemiology	Disease rates, mortality rates, mosquito populations
Medicine	Blood pressure tracking, weight tracking, cholesterol measurements, heart rate monitoring
Physical sciences	Global temperatures, monthly sunspot observations, pollution levels.

Time Series Components

Time Series Components – cont...

Time Series Components---cont..

- Trend:- general tendency of the data to increase or decrease during a long period of time.
- ➤ 'long term' movement in a time series without calendar related and irregular effects.

population growth, price inflation and general economic

changes.

Time Series Components—cont..

How do we identify seasonality or seasonal pattern?

- With respect to calendar related effects.
- large seasonal increase in December retail sales due to Christmas shopping.
- magnitude of the seasonal component increases over time, as the trend does.

periodic time series

Time Series Components--Cycle

- A cyclic pattern exists when data exhibit rises and falls that are not of fixed period.
- ❖ The duration of these fluctuations is usually of at least 2 years.
- If the fluctuations are not of fixed period then they are cyclic else seasonal.

Within the time interval, the fluctuations are not fixed

Time Series Components-summary

These components are defined as follows:

- Level: The average value in the series.
- Trend: The increasing or decreasing value in the series.
- Seasonality: The repeating short-term cycle in the series.
- Cyclic: data exhibit rises and falls that are not of fixed period
- Noise: The random variation in the series.

Specific Data Analytic case

Cosine Similarity in Data Analytic Apps

 A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||,$$

where \bullet indicates vector dot product, ||d||: the length of vector d

Example: Cosine Similarity

- $cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where • indicates vector dot product, ||d|: the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

$$d_1 \bullet d_2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25$$

$$||d_1|| = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2||$$
 = $(3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)^{0.5}$ = 4.12

$$\cos(d_1, d_2) = 0.94$$

TASK FOR YOU—A2

- 1. Investigate the Attribute or dimensions or features or variables with a suitable scenario and prepare your critical report?
 - Nominal
 - Binary
 - ordinal
 - Numeric: quantitative

V.V.I

- 1. Investigate the numerous time series components in context to the business analytics and application modeling.
- 2. Types of Data Sets and Data Object concept
- 3. Document database- Term frequency dataset
- 4. Cosine Similarity in Data Analytic Apps.

SI. No	Nos code
	SSC/N2101
1	(Carry out rulebased statistical
	analysis)
	SSC/N0703
2	(Create documents for
	knowledge Sharing)
	NOS/N9001
3	(Manage your work to meet
	requirements)
	SSC/N9002
4	(Work effectively with colleagues)
	SSC/N9003
5	(Maintain a healthy, safe and
	secure working environment)
	SSC/N9004
6	(Provide data/information
	in standard formats)
	SSC/N9005
7	(Develop your knowledge, skills
	and competence)

Cheers For the Great Patience! Query Please?