無線通訊系統 Homework #1

104061118 劉星佐

1. Implement the Erlang-B formula, and calculate the total offeredtraffic load for the following system parameters

	0.01	0.03	0.05	0.1
1	0.0101	0.0309	0.0526	0.1111
2	0.1526	0.2816	0.3813	0.5954
3	0.4555	0.7151	0.8994	1.2708
4	0.8694	1.2589	1.5246	2.0454
5	1.3608	1.8752	2.2185	2.8811
6	1.909	2.5431	2.9603	3.7584
7	2.5009	3.2497	3.7378	4.6662
8	3.1276	3.9865	4.543	5.5971
9	3.7825	4.7479	5.3702	6.5464
10	4.4612	5.5294	6.2157	7.5106
11	5.1599	6.328	7.0764	8.4871
12	5.876	7.141	7.9501	9.474
13	6.6072	7.9668	8.8349	10.47
14	7.3517	8.8035	9.7295	11.473
15	8.108	9.65	10.633	12.484
16	8.875	10.505	11.544	13.5
17	9.6516	11.368	12.461	14.522
18	10.437	12.238	13.385	15.548
19	11.23	13.115	14.315	16.579
20	12.031	13.997	15.249	17.613

200	179.74	190.89	198.51	214.32
201	180.71	191.89	199.55	215.43
202	181.67	192.9	200.58	216.53
203	182.64	193.91	201.62	217.64
204	183.61	194.92	202.66	218.74
205	184.58	195.93	203.7	219.85
206	185.55	196.94	204.74	220.95
207	186.52	197.95	205.78	222.06
208	187.48	198.96	206.82	223.17
209	188.45	199.96	207.85	224.27
210	189.42	200.97	208.89	225.38
211	190.39	201.98	209.93	226.48
212	191.36	202.99	210.97	227.59
213	192.33	204	212.01	228.69
214	193.3	205.01	213.05	229.8
215	194.27	206.02	214.09	230.9
216	195.24	207.03	215.13	232.01
217	196.21	208.04	216.17	233.12
218	197.18	209.05	217.21	234.22
219	198.15	210.06	218.25	235.33
220	199.12	211.07	219.29	236.43

Tab.1 m=1~20

Tab.2 $m=200\sim220$

已知
$$Erlang-B$$
 的公式為 $B(\rho,m) = \frac{\rho^m}{m! \sum_{k!}^{\rho k}}$,其中 B , ρ , m 分別為

Blocking rate, total offer traffic, channel number。我使用二分法 (Bisection method) 來解出 ρ ,雖然這不是一個規律的算法,因為區間初始值將影響影響執行效率,不過幸好 ρ 的數量級不會和m相同,以[0,3m]為初始區間大概在 5 個疊代步數內會收斂。另外,因公式內的階乘和指數都和通道數有關,當通道數過大時,執行程式會發生溢位。所在在計算B時,等式兩邊取對數是比較好的,階乘和指數就會變成自然對數的加法。

Given log(B), m, iter_time = 0
Initial L=0, R=3*m
while(iter_time < 10)
 mid = (L+R)/2
 iter_time++
 if log(Erlang-B(Mid, m))>= log(B): R= mid
 else: L=mid

至於為甚麼可以用二分法來逼近ρ,是因為我發現B是一個對ρ的遞增函數,將 Blocking Rate 對 total offer channel 偏微後可得到一個恆正的值,Blocking Rate 會隨著 total offer traffic 的增加而增加,最終趨近至1處,以下為證明。

$$\frac{\partial}{\partial \rho} B(m, \rho) = \frac{\frac{m\rho^{m-1}}{m!} \sum \frac{\rho^{i}}{i!} - \frac{\rho^{m}}{m!} \sum \frac{i\rho^{i-1}}{i!}}{(\sum \frac{\rho^{i}}{i!})^{2}}$$

其中 $(\sum_{i!}^{\rho i})^2 > 0$,對於所有 ρ 。所以決定 $\frac{\partial}{\partial \rho}$ B (m, ρ) 的是分子

$$\frac{m\rho^{m-1}}{m!} \sum \frac{\rho^i}{i!} - \frac{\rho^m}{m!} \sum \frac{i\rho^{i-1}}{i!}$$

$$\frac{m\rho^{m-1}}{m!} \sum_{i} \frac{\rho^{i}}{i!} - \frac{\rho^{m}}{m!} \sum_{i} \frac{i\rho^{i-1}}{i!} = \frac{\rho^{m}}{m!} \left(\sum_{i} \frac{m\rho^{i-1}}{i!} - \sum_{i} \frac{i\rho^{i-1}}{i!} \right)$$

$$= \frac{\rho^{m}}{m!} \left(\sum_{i} \frac{\rho^{i-1}(m-i)}{i!} \right) \ge 0 (\frac{1}{2} \mathbb{L})$$

2. (a) Could it be possible that the total offered traffic load is larger than the number of available channels? Why?

Fig.1 Comparison between different channel number

由 Fig.1 可以發現,total offer traffic 其實就是一個平均的概念。在固定 channel number 下,如果要增加 total offer traffic,就必須以更高的 Blocking Rate 為代價,雖然整體效能增加了,但嚴重影響用戶體驗。

乍看之下,這個結果有點奇怪,因為ρ是到達率和單位時間處理各數的乘積,照理來說,任何時間區間內,被接受用戶的平均數不應該超過總通道數。但是 Erlang-B 公式是建立在一個馬可夫鏈的基礎上,因此到達率並不會考慮用戶最終是否被接受,Blocking Rate 只能算出用戶進入系統後被拒絕的機率。所以,所有用戶都是被包含在到達率中的。由此,這個結果是沒有問題的,追求更高 total offer traffic,甚至倍於通道數的,會換來大量的用戶被拒絕。

至於 total offer traffic和 channel number 我認為沒有絕對關係的, total offer traffic應該是與 Blocking Rate相關,設計時需在兩者之間做取捨。

(b) How to determine the traffic that has been served?

如上所述,真正的 offer traffic 並不是 ρ ,因為 ρ 考慮了被拒絕的用戶,所以實際的 offer traffic 應該被修正成 $\rho(1-B)$,B 為給定最高能容忍的 Blocking Rate。例如系統中有 200 個通道,Blocking Rate 為 0.1,利用 Erlang-B 會計算出 total offer traffic 為 214,再乘上 0.9,為 192,小於總通道數 200。這就是系統中,實際的 offer traffic,我們並不在乎系統一次能進入多少用戶,而是真正通 過的用總數。

Fig. 2 Modified rho with different channel and Blocking rate

由 **Fig.2**,重新對修正後的 offer traffic 作圖可以發現,不斷增加最高能容忍的 Blocking rate 可使實際上的 offer traffic load 趨近於提供的通道數。

- 3. Assume that there are 600 channels equally shared by 1) one, 2) two, or 3) three operators by using the frequency reuse factor N = 5.
 - (a) Find the maximum offered traffic load per cell for the three cases with the blocking rate equal to 1%, 3%, 5%, or 10%

		0.01	0.03	0.05	0.1
1	oper	102.96	110.65	115.77	126.08
2	oper	93.8995	103.139	109.131	120.802
3	oper	87.023	97.2362	103.789	116.363

Tab.3 offered traffic load with different blocking rate(m=600)

channel 的總數為 600,但是 reuse factor 為 5,代表每個 cell 可以使用的通道數為 600/5=120,而 operator 的數量相當於數個獨立的系統,所以最後的 offered traffic load 是獨立系統再乘上 operator 數。例如現在有 3 個 operator, 120 個 channel, Blocking rate 為 0.01,可以先分別計算出一個 operator 的 offered traffic load 大約為 29,但是最終的 traffic load 是對 3 個 operator 的 traffic load 進行加總,29*3=87。

(b) Which case (one, two, or three operators) is more efficient?

由上圖的結果可以發現,多個 operator 相當於 channel 倍減,計算出的 maximum offered traffic 會低於原來的情況。所以只有一個 1 個 operator 的效率最高。

這次書報的內容為廣播系統中,解決 erasure channel 的問題。雖然在之前的論文中已 證實信息的增益存在一個上限,但是這是在所有通道都有回授的情况下,如果現在只考慮某 些特定通道存在回授,那這個問題就有了討論性,