Projeto de Aprendizagem de Máquina

Dayvid Victor Rodrigues de Oliveira e Denys Lins Farias

9 de maio de 2012

Resumo

ABSTRACT

Sumário

1	Intr	oducão	1
	1.1	Conceito	1
	1.2	Objetivo	1
	1.3	Estrutura do Trabalho	1
2	Téci	nicas Avaliadas	2
	2.1	Contexto e Histórico	2
		2.1.1 Sistemas de Reconhecimento de Padrões	2
	2.2	Classificadores	2
		2.2.1 K-Nearest Neighbor	3
		2.2.2 Janela de Parzen	3
		2.2.3 Estimação da Máxima Verossimilhança	4
		2.2.4 Expectation-Maximization	4
		2.2.5 Combinação de Classificadores	4
	2.3	Agrupamento	4
		2.3.1 K-Means	4
3	Exp	erimentos	5
	3.1	Metodologia	5
	3.2	Geração de Dados	5
	3.3	Avaliação	5
	3.4	Comparação	5
4	Con	clusão	6
Referências Bibliográficas			

Lista de Tabelas

Lista de Figuras

Introducão

- 1.1 Conceito
- 1.2 Objetivo
- 1.3 Estrutura do Trabalho

Técnicas Avaliadas

2.1 Contexto e Histórico

Esta sessão abordará sistemas de reconhecimento de padrões e classificadores com aprendizagem baseadas em instâncias.

2.1.1 Sistemas de Reconhecimento de Padrões

No final dos anos 50, surgiram os primeiros trabalhos de aprendizagem de máquina. De uma forma geral, elas consistiam em dar ao computador a habilidade de reconhecer formas. A partir daí, surgiram diversos problemas onde a aprendizagem de máquina atuava.

Existem três problemas gerais que a aprendizagem de máquina tenta resolver. Um deles é o problema do agrupamento, que consiste em agrupar dados de acordo com suas características, de forma que seja possível extrair informação útil destes agrupamentos. Um outro problema é a discriminação, que basicamente é achar uma forma de reconhecer um conceito, dado um conjunto de conceitos exemplos. O terceiro e último problema é o da generalização, que é o problema de como reduzir uma regra de classificação, tornando-a mais abrangente e menos custosa.

Reconhecimento de padrões ataca principalmente o problema da discriminação, tendo por objetivo classificar padrões, discriminando-os entre duas ou mais classes. A classificação pode ser feita com padrões pertencentes a qualquer domínio, como reconhecimento de digitais, gestos, escrita, fala, entre outros.

2.2 Classificadores

Todo sistema de reconhecimento de padrões utiliza um classificador para discriminar os padrões de teste. A eficiência de um classificador é medida pela taxa de acerto média, pela variância, e pelo seu custo computacional. Um classificador de aprendizagem baseada em instâncias muito utilizado é o *K-Nearest Neighbor*, KNN [Patrick and II (1969)].

2.2.1 K-Nearest Neighbor

O KNN é muito usado por ser um método de aprendizagem supervisionado simples, e por possuir uma taxa de acerto relativamente alta. O conceito básico consiste em: Dado um padrão x a ser classificado e um conjunto de padrões conhecidos T, obter as classes dos K elementos de T mais próximos de x. A classe que obtiver maior ocorrência, ou peso, será a classe de x. Pode-se dizer que o KNN utiliza uma abordagem "Dize-me com quem andas, e direi quem és.". O algoritmo esta descrito em Algorithm 1.

Algorithm 1 KNN

Require: *K*: um número

Require: *T*: conjunto de treinamento **Require:** *x*: elemento para ser classificado

Require: L: uma lista 1: **for all** $t_i \in T$ **do**

2: $d_i = distance(t_i, x)$

3: adicione $(d_i, Classe(t_i))$ em L

4: end for

5: *Ordene(L)* de acordo com as distâncias

6: obtenha os K primeiros elementos de L

7: **return** a classe de maior ocorrência, ou peso, entre os K

Pode-se dizer que o *K* – *NearestNeighbor* atua considerando a densidade das classes na região onde o padrão que se deseja classificar. A estimação de densidade é baseada na probabilidade a posteriori.

2.2.2 Janela de Parzen

Janela de Parzen é uma técnica de estimação de densidade que se baseia na interpolação de dados. Esta estimativa é feita assumindo-se uma função K(x) que determina a janela centrada em x com largura h, esta função é chamada de função de kernel.

De maneira simples, para estimar a densidade fixa-se uma região R e um volume fixo V, e k correspondente é determinado a partir dos dados de aprendizagem. Assumindo que a região R é um hipercubo de d dimensões, o seu volume é dado por h^d .

$$p(x) = \frac{\frac{k}{n}}{V} \tag{2.1}$$

Para se obter a função de densidade de probabilidade de uma amostra x utilizandose a Janela de Parzen, simplismente centra-se a região R em x e conta-se o número de instâncias dentro desta região (valor de k) na equação 2.1.

Determinar o h ideal é uma tarefa minunciosa, pois, se o valor de h for muito pequeno, haverá muita especialização e estará mais sujeita a erros ocasionados por ruídos, já se h for muito grande, ocorrerá uma super-generalização. A escolha da função K(x) apropriada também é um problema para esta técnica.

2.2.3 Estimação da Máxima Verossimilhança

Estimativa por máxima verossimilhança, *Maximum – Likelihood*, é um método para estimar os parâmetros de um modelo estatístico. A partir de um conjunto de dados e um dado modelo estatístico (i.e. Normal), o *MLE* estima valores adequados para os parâmetros do modelo.

De forma geral, dado um conjunto de instâncias de treinamento e um modelo estatístico, o *MLE* estima os valores dos parâmetros do modelo estatístico de forma que a probabilidade dos dados observados sejam maximizados.

- 2.2.4 Expectation-Maximization
- 2.2.5 Combinação de Classificadores
- 2.3 Agrupamento
- **2.3.1 K-Means**

Experimentos

- 3.1 Metodologia
- 3.2 Geração de Dados
- 3.3 Avaliação
- 3.4 Comparação

Conclusão

Com os resultados observados, pode-se concluir que o ASGP e o ASGPM possuam uma redução de instâncias intermediária, entre o SGP1 e o SGP2.

Quanto a taxa de acerto, percebe-se que as adaptações propostas ocasionam uma pequena queda na taxa de acerto da classe marjoritária, ocasionando uma queda também na taxa de acerto geral. Porém, observa-se que, na grande maioria dos casos, a percentagem de acerto ganha na classe minoritária é muito superior a percentagem perdida na classe marjoritária.

Assim, conclui-se que o ASGP e o ASGPM são técnicas eficientes quando se deseja priorizar a classe minoritária, e é necessário reduzir drasticamente o conjunto de instâncias.

Para trabalhos futuros, propõe-se que sejam avaliadas novas formas de utilizar o *Merge* e o *Pruning*, para encontrar um equilibrio entre a remoção de instâncias da classe marjoritária e a representação da classe minoritária.

Referências Bibliográficas

Patrick, E. A. and II, F. P. F. (1969) A generalization of the k-nearest neighbor rule. In *IJCAI*, pp. 63–64.