¿Es posible predecir con precisión la acción de Apple usando IA?

Aplicación de Machine Learning en mercados financieros

Lucas Alvarado Juan Diego Barrios Alejandro González David Sandino Luis Rubiano

Reto

- ¿ES POSIBLE PREDECIR CON PRECISIÓN LA TENDENCIA DE LA ACCION DE APPLE USANDO IA?
- IMPORTANCIA DE LA PREDICCIÓN EN LA TOMA DE DECISIONES FINANCIERAS.
- VOLATILIDAD E INCERTIDUMBRE EN LOS MERCADOS FINANCIEROS.

Factores que afectan una acción

- Variables clave:
 - Indicadores macroeconómicos (PIB, inflación, tasas de interés).
 - Sentimiento del mercado.
 - Eventos inesperados (crisis, noticias).
 - Resultados de la empresa
- Relación con la capacidad de predicción mediante modelos de ML.

Marco teórico

- El Machine Learning y su aplicación en finanzas.
- Tipos de modelos utilizados: regresión.
- Importancia de los datos históricos en la predicción de series de tiempo.
- Conceptos clave: regularización, overfitting, selección de características (features).

Problemas con los datos - Regularización

- Overfitting y underfitting.
- Necesidad de regularización en modelos predictivos.
- Métodos para manejar datos faltantes y ruido en los datos.

Modelos utilizados: Ridge, Lasso, y XGBoost

- Ridge y Lasso: Modelos de regresión lineal con regularización..
- XGBoost: Modelo basado en árboles de decisión que mejora el rendimiento.
- Comparación entre modelos en términos de precisión y robustez.

Resultados

- Comparación del desempeño de los modelos con métricas clave:
- RMSE (Error cuadrático medio).
- R² (Coeficiente de determinación).
- Visualización de predicciones vs. precios reales.
- Evaluación de la efectividad de los modelos bajo diferentes condiciones de mercado.

Ridge Regression Metrics:

MAE: 2.17 MSE: 15.95 RMSE: 3.99 R²: 0.97

Lasso Regression Metrics:

MAE: 2.13 MSE: 14.74 RMSE: 3.84 R²: 0.97

XGBoost Regression Metrics:

MAE: 0.61 MSE: 1.33 RMSE: 1.15 R²: 1.00

Ridge Cross-Validation:

RMSE Scores: [1.26405815 1.64700438 2.36413369 2.67243087 9.55193895]

Average RMSE: 3.50

Standard Deviation: 3.07

Lasso Cross-Validation:

RMSE Scores: [1.3659974 1.69128744 2.40622149 2.60265906 9.75142758]

Average RMSE: 3.56

Standard Deviation: 3.13

XGBRegressor Cross-Validation:

RMSE Scores: [2.87998876 6.36448417 8.22357094 11.08326188 27.73011964]

Average RMSE: 11.26

Standard Deviation: 8.66

Limitaciones

- Dificultad de predecir eventos inesperados.
- Dependencia de la calidad y cantidad de datos.
- Riesgo de sobreajuste en períodos de alta volatilidad.
- Modelos tradicionales vs. redes neuronales.

Aplicacciones

- Predicción de tendecia para traders.
- Optimización de estrategias cuantitativas.
- Gestión de riesgos en bancos y fondos de cobertura.
- Aplicaciones en robo-advisors y trading algorítmico.

Aplicaciones futuras y posibles mejoras

- Incorporación de datos alternativos como sentimiento en redes sociales y noticias.
- Uso de modelos avanzados de Deep Learning como LSTM y Transformers.
- Integración con trading automatizado y estrategias híbridas.

Conclusión

- Resumen de hallazgos clave.
- ¿Es posible predecir con precisión la acción de Apple?
- Impacto del ML en la toma de decisiones financieras.

Gracias

