Dinamika demokratskih izborov

Matej Rojec

02.02.2025

Povzetek

Esej obravnava Galamov model in njegove dinamike [1, 2, 3]. Predstavi osnovni model, njegove razširitve ter poudari njegovo uporabnost pri analizi dinamike mnenj v sistemih, ki jih zaznamujejo pomembni dogodki in predsodki. Analizirane so dinamike modela, razširitve pa naslavljajo njegove omejitve in povečujejo uporabnost. Obravnavan je primer volitev Donalda Trumpa leta 2016, ki ponazarja uporabnost modela.

Lambda funkcija

V primeru modelov rasti nas ponavadi zanimajo rešitve enačbe $p_{T-1} = p_T$. Za boljše razumevanje rešitev te enačbe definiramo lambda funkcijo, ki jo v enačbah in ?? izračunamo za sode in lihe vrednosti r.

Definicija 1. Lambda funkcija je definirana kot:

$$\lambda_T(p) = \frac{dp_T(p_{T-1})}{dp_{T-1}}(p) := \sum_{r=1}^L a_r \lambda_r(p), \tag{1}$$

kjer je $\lambda_r(p) := \frac{d\mathbb{P}_r(p_{T-1})}{dp_{T-1}}(p).$

konec definicije

Za lihe vrednosti r se $\lambda_r(p)$ izračuna kot:

$$\lambda_r(p) = \sum_{m = \frac{r+1}{2}}^{r} {r \choose m} (m - rp) p^{m-1} (1 - p)^{r-m-1},$$

Za sode vrednosti r se pa $\lambda_r(p)$ izračuna kot:

$$\lambda_r(p) = \sum_{m=\frac{r}{2}+1}^r \binom{r}{m} (m-rp) p^{m-1} (1-p)^{r-m-1} + k \binom{r}{\frac{r}{2}} \frac{r}{2} (1-2p) p^{\frac{r}{2}-1} (1-p)^{\frac{r}{2}-1}.$$

Definirajmo sedaj stabilnost in nestabilnost fiksne točke. Fiksna točka je stabilna, če je $\lambda_T(p) < 1$, in nestabilna, če je $\lambda_T(p) > 1$.

Stabilnost v dinamičnem sistemu pomeni, da sosednje trajektorije sčasoma konvergirajo proti fiksni točki, medtem ko nestabilnost kaže na to, da trajektorije od nje divergirajo. Ko ocenimo λ_T v točkah $a_A=1$ in $a_B=0$, ugotovimo, da so vrednosti enake 0 za vse r, kar pomeni, da je $\lambda_T(a_A)=\lambda_T(a_B)=0$ in posledično sta to stabilni fiksni točki.

Glede na to, da sta obe točki atraktorja v sistemu, to nakazuje obstoj prevojne točke - natančneje, nestabilne fiksne točke, označene kot a_c , ki leži med njima. V splošnem je analitično rešitev za fiksno točko a_c težko najti.

V posebnem primeru, ko je k enak $\frac{1}{2}$, $a_c = \frac{1}{2}$ služi kot fiksna točka za sistem. V tem primeru lahko pokažemo, da je $\lambda_r(a_c) > 1$, kar potrjuje njeno nestabilnost. V tem primeru lahko analitično rešitev izračunamo s spodnjo enačbo:

$$a_{c,r,k} = \frac{1 - 6k + \sqrt{13 - 36k + 36k^2}}{6(1 - 2k)}. (2)$$

Poglejmo si sedaj "realističnen" scenarij, kjer obravnavamo šest enakomerno porazdeljenih skupin, označenih kot L=6, z enakimi verjetnostmi za vsako skupino, tj. $a_1=a_2=a_3=a_4=a_5=a_6=\frac{1}{6}$. Dodatno preučimo primer s petimi enakomerno porazdeljenimi skupinami, kjer je L=5 in $a_1=a_2=a_3=a_4=a_5=\frac{1}{5}$. Prevojne točke za različne vrednosti k v teh dveh scenarijih so prikazane na slikah 1 in 2

Slika 1: Prevojne točke Galamovega modela s petimi enakomerno porazdeljenimi skupinami za različne vrednosti k.

Slika 2: Prevojne točke Galamovega modela s šestimi enakomerno porazdeljenimi skupinami za različne vrednosti k.

Literatura

- [1] Serge Galam. Stubbornness as an unfortunate key to win a public debate: an illustration from sociophysics. Springer-Verlag Berlin Heidelberg, February 2015.
- [2] Serge Galam. The trump phenomenon: An explanation from sociophysics. *International Journal of Modern Physics B*, September 2016.
- [3] Serge Galam. Tipping points in opinion dynamics: A universal formula in five dimensions, November 2020.