

Saturation with chiral interactions and consequences for finite nuclei

Chencan Wang

4.24.2023 Journal Club

PHYSICAL REVIEW C 96, 014303 (2017)

Saturation with chiral interactions and consequences for finite nuclei

J. Simonis, ^{1,2,*} S. R. Stroberg, ^{3,†} K. Hebeler, ^{1,2,‡} J. D. Holt, ^{3,§} and A. Schwenk ^{1,2,4,∥}

¹Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

²ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

³TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada

⁴Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

(Received 11 April 2017; published 5 July 2017)

1. Nuclear forces and many-body theory

- A. Chiral nuclear force, renormalization group, and nuclear matter
- B. In-medium similarity renormalization group

2. Results & discussions

- A. Closed-shell nuclei
- B. Open-shell nuclei
- 3. Summary

Chiral nuclear force

	Two-nucleon force	Three-nucleon force	Four-nucleon force		
LO (Qº)	X 	$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi}^{(2)}(M_{\pi}, F_{\pi}) + \mathcal{L}_{\pi}^{(4)}(l_{1,,7}) + \mathcal{L}_{\pi N}^{(1)}(g_{A}) + \mathcal{L}_{\pi N}^{(2)}(m, c_{1,,7}) + \mathcal{L}_{\pi N}^{(3)}(d_{1,,23}) + \mathcal{L}_{\pi N}^{(4)}(e_{1,,118}) + \mathcal{L}_{NN}^{(0)}(C_{S}, C_{T}) + \mathcal{L}_{NN}^{(2)}(C_{1,,7}) + \mathcal{L}_{NN}^{(4)}(D_{1,,12}) + \mathcal{L}_{\pi NN}^{(1)}(D) + + \mathcal{L}_{NNN}^{(0)}(E) + \mathcal{L}_{NNN}^{(2)}(E_{1,,10}),$			
NLO (Q²)	XMMX				
N²LO (Q³)	♦	++++			
N³LO (Q⁴)	X	科 	TH 141		
N ⁴ LO (Q ⁵)		₩₩ Ж ~	14+1 +X1 ···		

Hierarchy of nuclear forces at increasing orders in chiral expansion in the Weinberg scheme, from *Epelbaum, Krebs and Reinert, Front. Phys. 8, 98 (2020).*

Similarity renormalization group

Renormalization group (sharp or smooth cut) $V_{low k}$

k' λ' λ'

$$H_s = U_s H U_s^{\dagger} \equiv T_{\rm rel} + V_s$$

$$\frac{\mathrm{d}H_{\mathrm{s}}}{\mathrm{d}s} = [\eta_{\mathrm{s}}, H_{\mathrm{s}}], \quad \eta_{\mathrm{s}} = \frac{\mathrm{d}U_{\mathrm{s}}}{\mathrm{d}s} U_{\mathrm{s}}^{\dagger} = -\eta_{\mathrm{s}}^{\dagger}.$$

Similarity renormalization group

$$\eta_s = [G_s, H_s],$$

$$\frac{\mathrm{d}H_{\mathrm{s}}}{\mathrm{d}\mathrm{s}}=[[G_{\mathrm{s}},H_{\mathrm{s}}],H_{\mathrm{s}}].$$

Bogner, Furnstahl & Schwenk, Prog. Part. Nucl. Phys. 65 (2010) 94.

In-medium SRG (many-body method)

$$\hat{H} = \sum_{qr} T_{qr} a_q^{\dagger} a_r + \frac{1}{2!^2} \sum_{qrst} V_{qrst}^{(2)} a_q^{\dagger} a_r^{\dagger} a_t a_s + \frac{1}{3!^2} \sum_{qrstuv} V_{qrstuv}^{(3)} a_q^{\dagger} a_r^{\dagger} a_s^{\dagger} a_v a_u a_t + \cdots$$

reference state $|\Phi\rangle$

$$H = E + \sum_{qr} f_{qr} : a_q^{\dagger} a_r : + \frac{1}{4} \sum_{qrst} \Gamma_{qrst} : a_q^{\dagger} a_r^{\dagger} a_t a_s + \frac{1}{36} \sum_{qrstuv} W_{qrstuv} : a_q^{\dagger} a_r^{\dagger} a_s^{\dagger} a_v a_u a_t :$$

$$\frac{dH(s)}{ds} = [\eta(s), H(s)]$$

$$\eta = \sum_{ai} \frac{f_{ai}}{f_a - f_i} : a_a^{\dagger} a_i :$$

$$+ \frac{1}{4} \sum_{abij} \frac{\Gamma_{abij}}{f_a + f_b - f_i - f_j} : a_a^{\dagger} a_b^{\dagger} a_j a_i : -\text{H.c.},$$

$$\lim_{s \to \infty} E_0(s) = \langle \Phi | H(s) | \Phi \rangle = E_{gs}.$$

Morris, Parzuchowski & Bogner, Phys. Rev. C 92 034331 (2015).

Nuclear matter

	$V_{{ m low}k}$		SRG	
Λ or λ/Λ_{3NF} (fm)	c_D	c_E	c_D	c_E
$1.8/2.0 (\text{EM } c_i \text{'s})$	+1.621	-0.143	+1.264	-0.120
$2.0/2.0$ (EM c_i 's)	+1.705	-0.109	+1.271	-0.131
$2.0/2.5$ (EM c_i 's)	+0.230	-0.538	-0.292	-0.592
$2.2/2.0$ (EM c_i 's)	+1.575	-0.102	+1.214	-0.137
$2.8/2.0$ (EM c_i 's)	+1.463	-0.029	+1.278	-0.078
$2.0/2.0$ (EGM c_i 's)	-4.381	-1.126	-4.828	-1.152
$2.0/2.0$ (PWA c_i 's)	-2.632	-0.677	-3.007	-0.686

NN force: N³LO nucleon-nucleon (NN) potential (Entem & Machleidt, 500 MeV), from *Hebeler, et al., Phys. Rev. C 83, 031301 (2011).*

Truncations

NN: single-particle spherical harmonic-oscillator (HO) states with quantum $e=2n+l \le e_{\rm max}$

3N:
$$e_1 + e_2 + e_3 \le E_{3{\rm Max}}$$

$$e_{{\rm Max}}/E_{3{\rm Max}} = 10/14, 12/14, 14/14, 14/16, {\rm and} \ 14/18.$$

Total angular momentum $J \leq 9$

IM-SRG(2): normal-ordered two-body approximation, the residual three-body term W is discarded.

Charge radius

$$R_{\rm ch} = \sqrt{R_p^2 + \langle r_p^2 \rangle + \frac{N}{Z} \langle r_n^2 \rangle + \frac{3}{4M_p^2 c^4} + \langle r^2 \rangle_{\rm so}},$$
$$\langle r^2 \rangle_{\rm so} = \frac{1}{Z} \sum_{i=1}^A \langle r_i^2 \rangle_{\rm so} = -\frac{1}{Z} \sum_i \frac{\mu_i}{M^2} (\kappa_i + 1),$$

$$R_p^2 = \frac{1}{Z} \sum_{i=1}^{Z} (\vec{r}_i - \vec{R})^2,$$

$$\kappa = \begin{cases} l, & j = l - \frac{1}{2} \\ -(l+1), & j = l + \frac{1}{2}. \end{cases}$$

Closed-shell nuclei (Ca)

Closed-shell nuclei (Ni)

Closed-shell nuclei (overlooking)

Open-shell nuclei (sd and pf shell nuclei)

Open-shell nuclei (Mn isotope chain)

Open-shell nuclei (first-excitation states)

Peaks appear since shell closure.

Summary & Outlook

- A set of chiral low-resolution NN + 3N interactions that predict realistic saturation properties are employed to calculations of ground-state energies and charge radii of a broad range of closed- and open-shell nuclei with $A \le 78$.
- The systematics of ground-state energies and radii indicates that the difference is dominantly due to their different nuclear matter saturation properties.
- One particular interaction yields energies in good agreement with experiment from light nuclei up to $A \le 78$, which appears to be accidental. But it suggests two conclusions:

<u>First</u>, operator structures contained in these chiral interactions (NN at N³LO and 3N at N²LO) are sufficient to describe many of the features of the energies of light- and medium-mass nuclei <u>Second</u>, saturation properties are essential for this accurate descriptions.

Thank you for your attention