STAT253/317 Winter 2017 Lecture 13

6.5. Limiting Probabilities

Definition. Just like discrete-time Markov chains, if the probability that a continuous-time Markov chain will be in state j at time t, $P_{ij}(t)$, converges to a limiting value P_j independent of the initial state i, for all $i \in \mathcal{X}$

$$P_j = \lim_{t \to \infty} P_{ij}(t) > 0$$

then we say P_j is the *limiting probability* of state j. If P_j exists for all $j \in \mathcal{X}$, we say $\{P_j\}_{j \in \mathcal{X}}$ is the *limiting distribution* of the chain.

Remark. If $\lim_{t\to\infty} P_{ii}(t)$ exists, we must have

$$\lim_{t\to\infty}P'_{ij}(t)=0.$$

Recall the forward equations are

$$q_{kj} = \ln_k P_{kj}$$

$$P_{ij}'(t) = \left(\sum_{k \in \mathcal{X}, k
eq j} P_{ik}(t) q_{kj}
ight) -
u_j P_{ij}(t)$$

If we let $t \to \infty$, and assume that we can interchange limit and summation, we obtain

$$\lim_{t\to\infty} P'_{ij}(t) = \lim_{t\to\infty} \left(\sum_{k\in\mathcal{X}, k\neq j} P_{ik}(t) q_{kj} \right) - \nu_j P_{ij}(t)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 = \sum_{k\in\mathcal{X}, k\neq j} P_k q_{kj} \qquad - \nu_j P_j$$

Hence we get the balanced equations.

$$u_j P_j = \sum_{k \in \mathcal{X}} P_k q_{kj} \quad \text{for all } j \in \mathcal{X}$$

Interpretation of the Balanced Equations

$$\nu_j P_j = \sum_{k \in \mathcal{X}, k \neq j} P_k q_{kj}$$

 $\nu_j P_j = \text{rate at which the process leaves state } j$ $\sum_{k \in \mathcal{X}, k \neq j} P_k q_{kj} = \text{rate at which the process enters state } j$

Balanced equations means that the rates at which the process enters and leaves state j are equal.

The limiting distribution $\{P_j\}_{j\in\mathcal{X}}$ can be obtained by solving the balanced equations along with the equation $\sum_{j\in\mathcal{X}}P_j=1$.

Remarks. Just like discrete-time Markov chains, a sufficient condition for the existence of a limiting distribution is that the chain is irreducible and positive recurrent.

Examples

▶ Poisson processes: $\mu_n = 0$, $\lambda_n = \lambda$ for all $n \ge 0$

$$\nu_i = \lambda, \ P_{i,i+1} = 1, \quad q_{i,i+1} = \nu_i P_{i,i+1} = \lambda$$

Balanced equations:

$$\nu_j P_j = P_{j-1} q_{j-1,j} \quad \Rightarrow \quad \lambda P_j = \lambda P_{j-1} \quad \Rightarrow \quad P_j = P_{j-1}$$

No limiting distribution exists. The chain is not irreducible. All states are transient.

Examples

Poisson processes: $\mu_n = 0$, $\lambda_n = \lambda$ for all $n \ge 0$

$$\nu_i = \lambda, \ P_{i,i+1} = 1, \quad q_{i,i+1} = \nu_i P_{i,i+1} = \lambda$$

Balanced equations:

$$\nu_j P_j = P_{j-1} q_{j-1,j} \quad \Rightarrow \quad \lambda P_j = \lambda P_{j-1} \quad \Rightarrow \quad P_j = P_{j-1}$$

No limiting distribution exists. The chain is not irreducible. All states are transient.

Pure birth processes with $\lambda_n > 0$ for all nNo limiting distribution exists. All states are transient.

Examples

▶ Poisson processes: $\mu_n = 0$, $\lambda_n = \lambda$ for all $n \ge 0$

$$\nu_i = \lambda, \ P_{i,i+1} = 1, \quad q_{i,i+1} = \nu_i P_{i,i+1} = \lambda$$

Balanced equations:

$$\nu_j P_j = P_{j-1} q_{j-1,j} \quad \Rightarrow \quad \lambda P_j = \lambda P_{j-1} \quad \Rightarrow \quad P_j = P_{j-1}$$

No limiting distribution exists. The chain is not irreducible. All states are transient.

- ▶ Pure birth processes with $\lambda_n > 0$ for all n No limiting distribution exists. All states are transient.
- ▶ Pure birth processes with

$$\lambda_n > 0$$
 for $n \le 10$, and $\lambda_n = 0$ for all $n > 10$.

State space $\mathcal{X} = \{0, 1, 2, \dots, 10\}.$

State 10 is the only absorbing state. All others are transient.

Lecture 13 - 4

Birth and Death Processes

For a birth and death process,

$$\begin{array}{l} \nu_0 = \lambda_0, \\ \nu_i = \lambda_i + \mu_i, \ i > 0 \\ P_{01} = 1, \\ P_{i,i+1} = \frac{\lambda_i}{\lambda_i + \mu_i}, \quad i > 0 \\ P_{i,j-1} = \frac{\mu_i}{\lambda_i + \mu_i}, \quad i > 0 \\ P_{i,j} = 0 \qquad \text{if } |i-j| > 1 \end{array} \Rightarrow \begin{array}{l} q_{i,i+1} = \nu_i P_{i,i+1} = \lambda_i, \ i \geq 0 \\ q_{i,i-1} = \nu_i P_{i,i-1} = \mu_i, i \geq 1 \end{array}$$

Balanced Equations for Birth and Death Processes

The balanced equations $\nu_j P_j = \sum_{k \in \mathcal{X}, k \neq j} P_k q_{kj}$ for a birth and death process are

$$\lambda_0 P_0 = \mu_1 P_1$$

$$(\mu_1 + \lambda_1) P_1 = \lambda_0 P_0 + \mu_2 P_2,$$

$$(\mu_2 + \lambda_2) P_2 = \lambda_1 P_1 + \mu_3 P_3,$$

$$\vdots$$

$$(\mu_n + \lambda_n) P_n = \lambda_{n-1} P_{n-1} + \mu_{n+1} P_{n+1}$$

Adding up all the equations above and eliminating the common terms on both sides, we get

$$\lambda_n P_n = \mu_{n+1} P_{n+1} \quad n \ge 0,$$

We hence just need to solve $\lambda_n P_n = \mu_{n+1} P_{n+1}$ for the limiting distribution.

6.6. Time Reversibility

Definition. A continuous-time Markov chain with state space \mathcal{X} is *time reversible* if

$$P_iq_{ij}=P_jq_{ji}, \quad ext{for all } i,j\in\mathcal{X} \quad ext{(detailed balanced equation)}$$

If a distribution $\{P_j\}$ on \mathcal{X} satisfies the detailed balanced equation, then it is a stationary distribution for the process.

Example. We have just shown that for Birth and Death processes, the balanced equations would lead to the detailed balanced equations, which are

$$\lambda_n P_n = \mu_{n+1} P_{n+1}, \quad n \geq 0$$

Limiting Dist'n for Birth and Death Processes

Solving $\lambda_n P_n = \mu_{n+1} P_{n+1}$, $n \geq 0$ for the limiting distribution, we get

$$P_{n} = \frac{\lambda_{n-1}}{\mu_{n}} P_{n-1} = \frac{\lambda_{n-1}}{\mu_{n}} \frac{\lambda_{n-2}}{\mu_{n-2}} P_{n-2} = \dots = \frac{\lambda_{n-1} \lambda_{n-2} \cdots \lambda_{0}}{\mu_{n} \mu_{n-1} \cdots \mu_{1}} P_{0}$$

To meet the requirement $\sum_{n=0}^{\infty} P_n = 1$, we need

$$\sum_{n=0}^{\infty} P_n = P_0 + P_0 \sum_{n=1}^{\infty} \frac{\lambda_{n-1} \lambda_{n-2} \cdots \lambda_0}{\mu_n \mu_{n-1} \cdots \mu_1} = 1$$

In other words, to have a limiting distribution, it is necessary that

$$\sum_{n=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} < \infty$$

Limiting Dist'n for Birth and Death Processes (Cont'd)

If $\sum_{n=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n}$ is finite, the limiting distribution is

$$P_0 = \frac{1}{1 + \sum_{n=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n}}$$

and

$$P_k = \frac{\lambda_0 \lambda_1 \cdots \lambda_{k-1} / (\mu_1 \mu_2 \cdots \mu_k)}{1 + \sum_{n=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n}}, \quad k \ge 1$$

- ightharpoonup single-server service station. Service times are i.i.d. $\sim \textit{Exp}(\mu)$
- **Poisson** arrival of customers with rate λ

- ightharpoonup single-server service station. Service times are i.i.d. $\sim \textit{Exp}(\mu)$
- \blacktriangleright Poisson arrival of customers with rate λ
- Upon arrival, customer
 - ightharpoonup goes into service if the server is free (queue length = 0)
 - ▶ joins the queue if $1 \le$ queue length < N, or
 - walks away if queue length ≥ N includes the one being served.

- ightharpoonup single-server service station. Service times are i.i.d. $\sim \textit{Exp}(\mu)$
- ightharpoonup Poisson arrival of customers with rate λ
- Upon arrival, customer
 - goes into service if the server is free (queue length = 0)
 - ightharpoonup joins the queue if $1 \le$ queue length < N, or
 - ▶ walks away if queue length ≥ N

Q: What fraction of potential customers are lost?

- ightharpoonup single-server service station. Service times are i.i.d. $\sim \textit{Exp}(\mu)$
- \blacktriangleright Poisson arrival of customers with rate λ
- Upon arrival, customer
 - ightharpoonup goes into service if the server is free (queue length = 0)
 - ightharpoonup joins the queue if $1 \le$ queue length < N, or
 - ▶ walks away if queue length ≥ N

Q: What fraction of potential customers are lost?

Let X(t) be the number of customers in the station at time t. $\{X(t), t \ge 0\}$ is a birth-death process with the birth and death

rates below

$$\mu_n = \begin{cases} 0 & \text{if } n = 0 \text{ or } n \\ \mu & \text{if } 1 \le n \le N \end{cases} \text{ } n >= 1$$

$$\lambda_n = \begin{cases} \lambda & \text{if } 0 \le n < N \\ 0 & \text{if } n \ge N \end{cases}$$

Solving $\lambda_n P_n = \mu_{n+1} P_{n+1}$ for the limiting distribution

$$P_1 = (\lambda/\mu)P_0$$

$$P_2 = (\lambda/\mu)P_1 = (\lambda/\mu)^2P_0$$

$$\vdots$$

$$P_i = (\lambda/\mu)^iP_0, \qquad i = 1, 2, \dots, N$$

Plugging $P_i = (\lambda/\mu)^i P_0$ into $\sum_{i=0}^N P_i = 1$, one can solve for P_0 and get

$$P_i = \frac{1 - \lambda/\mu}{1 - (\lambda/\mu)^{N+1}} (\lambda/\mu)^i$$

Answer: The fraction of customers lost is $P_N = \frac{1-\lambda/\mu}{1-(\lambda/\mu)^{N+1}} (\lambda/\mu)^N$

Lemma: (Ratio Test) If $a_n \ge 0$ for all n, then

$$\sum_{n=1}^{\infty} a_n \begin{cases} < \infty & \text{if } \lim_{n \to \infty} a_n / a_{n-1} < 1 \\ = \infty & \text{if } \lim_{n \to \infty} a_n / a_{n-1} \ge 1 \end{cases}$$

For $a_n = \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n}$, $a_n/a_{n-1} = \lambda_{n-1}/\mu_n$. By the ratio test, if

$$\lim_{n\to\infty}\frac{\lambda_{n-1}}{\mu_n}<1,$$

then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} < \infty$, the limiting distribution exists.

Example 6.4 Linear Growth Model with Immigration

$$\mu_n = n\mu, \quad \lambda_n = n\lambda + \theta$$

Using the Ratio Test,

$$\lim_{n\to\infty}\frac{\lambda_{n-1}}{\mu_n}=\lim_{n\to\infty}\frac{(n-1)\lambda+\theta}{n\mu}=\frac{\lambda}{\mu}$$

So the linear growth model has a limiting distribution if and only $\lambda < \mu.$

Duration Times for Birth and Death Processes

Let

$$T_i$$
 = time to move from state i to state $i + 1$, $i = 0, 1, ...$

Suppose at some moment X(t) = i. Let

$$B_i$$
 = time until the next birth $\sim Exp(\lambda_i)$
 D_i = time until the next death $\sim Exp(\mu_i)$

Then

$$T_i = \begin{cases} B_i & \text{if the next step is } i \to i+1, \text{ i.e., } B_i < D_i \\ D_i + T_{i-1} + T_i^* & \text{if the next step is } i \to i-1, \text{ i.e., } D_i < B_i \end{cases}$$

$$= \min(B_i, D_i) + \begin{cases} 0 & \text{if } B_i < D_i, \text{ occur w/ prob. } \frac{\lambda_i}{\lambda_i + \mu_i} \\ \hline T_{i-1} + T_i^* & \text{if } D_i < B_i, \text{ occur w/ prob. } \frac{\mu_i}{\lambda_i + \mu_i} \end{cases}$$
are indep of B_i and D_i and T_i^* has the same distribution as T_i .

Lecture 13 - 13

Duration Times for Birth and Death Processes

Taking expected value on

$$T_i = \min(B_i, D_i) + \begin{cases} 0 & \text{if } B_i < D_i, \text{ occur w/ prob.} & \frac{\lambda_i}{\lambda_i + \mu_i} \\ T_{i-1} + T_i^* & \text{if } D_i < B_i, \text{ occur w/ prob.} & \frac{\mu_i}{\lambda_i + \mu_i} \end{cases}$$
 we get
$$\text{because min(B_i, D_i)} \sim \text{Exp(lambda_i+mu_i)}$$

$$\mathbb{E}[T_i] = \mathbb{E}[\min(B_i, D_i)] + (\mathbb{E}[T_{i-1}] + \mathbb{E}[T_i]) \frac{\mu_i}{\lambda_i + \mu_i}$$

$$= \frac{1}{\lambda_i + \mu_i} + \frac{\mu_i}{\lambda_i + \mu_i} (\mathbb{E}[T_{i-1}] + \mathbb{E}[T_i])$$

We obtain the recursive formula

$$\lambda_i \mathbb{E}[T_i] = 1 + \mu_i \mathbb{E}[T_{i-1}]$$

Duration Times for Birth and Death Processes (Cont'd)

Since $T_0 \sim Exp(\lambda_0)$, $\mathbb{E}[T_0] = 1/\lambda_0$. Using the recursive formula $\lambda_i \mathbb{E}[T_i] = 1 + \mu_i \mathbb{E}[T_{i-1}]$, we have

$$\mathbb{E}[T_0] = \frac{1}{\lambda_0}$$

$$\mathbb{E}[T_1] = \frac{1}{\lambda_1} + \frac{\mu_1}{\lambda_1} \mathbb{E}[T_0] = \frac{1}{\lambda_1} + \frac{\mu_1}{\lambda_1 \lambda_0}$$

$$\mathbb{E}[T_2] = \frac{1}{\lambda_2} + \frac{\mu_2}{\lambda_2} \left(\frac{1}{\lambda_1} + \frac{\mu_1}{\lambda_1 \lambda_0} \right) = \frac{1}{\lambda_2} + \frac{\mu_2}{\lambda_2 \lambda_1} + \frac{\mu_2 \mu_1}{\lambda_2 \lambda_1 \lambda_0}$$

$$\mathbb{E}[T_i] = \frac{1}{\lambda_i} + \frac{\mu_i}{\lambda_i} \mathbb{E}[T_{i-1}] = \frac{1}{\lambda_i} + \frac{\mu_i}{\lambda_i \lambda_{i-1}} + \dots + \frac{\mu_i \mu_{i-1} \dots \mu_2 \mu_1}{\lambda_i \lambda_{i-1} \dots \lambda_2 \lambda_1 \lambda_0}$$
$$= \frac{1}{\lambda_i} \left(1 + \sum_{k=1}^i \prod_{j=1}^k \frac{\mu_{i-j+1}}{\lambda_{i-j}} \right)$$