Mysis modeling brainstorm:

Variables:

Time	=	t
Average solar radiation	=	a
Thermocline's distance from surface	=	d
Calories (c)	=	if migrating: $+\omega$
		else. –e

Migrate Desire Model equations:

Mysis engrained desire to migrate:	M(t) =	C_1 (assuming resolution of a single day)
Pressure not to migrate from light levels:	L(a) =	$C_2 \log(a)$
Pressure " " from thermocline depth:	D(d) =	$C_3(d)$
Hunger:	H(c) =	$c_4 e^c$

Total Mysis model:

Migrate or Not	=	MoN(t, a, d, c) = M(t) - L(a) - D(d) + H(c)
If $(MoN(t, a, d, c) > \alpha \text{ for day})$	=	migrate

A large number of Mysis will be initialized with randomly permuted starting conditions and run through an arbitrary amount of time (say a year). Their migration patterns will be visualized, from this visualizations patterns in migration will be come apparent.

Light Intensity Equation

$$I_x = I_0 e^{-kx}$$

 $I_{x,o}$ = intensity at depth x and surface respectively (in lux)

k = extinction coefficient (or water clarity)

So to solve for distance to threshold we find..

$$\begin{array}{rcl} \frac{I_x}{I_o} & = & e^{-kx} \\ ln(\frac{I_x}{I_o}) & = & -kx \\ ln(I_x) - ln(I_o) & = & -kx \\ ln(I_o) - ln(I_x) & = & kx \\ \frac{1}{k}(ln(I_o) - ln(I_x)) & = & x \end{array}$$

We set the threshold (I_x) to be 10^{-2} lux (per Boscarino 2007) and the extinction coefficient (k) to be 0.15 (per Jensen 2006). This turns the function into one of current light level at surface (I_o) in the form of:

Distance of light threshold:
$$f(I_o) = \frac{1}{k}(ln(I_o) - ln(I_x))$$
 or
$$f(I_o) = \frac{1}{0.15}(ln(I_o) + 6.9)$$

1

Note: make sure to plot the different parameter values for this equation later. Maybe make an interactive visualization of it.

For nightime light intensity I am currently going off of a fishing website's un-cited figure. This will need to be updated to a more legitimate source when I am on the UVM network.

After running all of this through the r program we get a nice output for a given 30 day lunar cycle of ...

Mysis light threshold

Combined measures:

Mysis light threshold

