Fourier Series

Fourier Series

Any sampled data waveform x(n) with N samples: x(n) for n = 0, 1, ... (N - 1)

can be expressed as the sum of N/2+1 cosine waves with frequencies

$$f_k = \frac{k}{N}$$
 for $k \in \{0, 1, ..., \frac{N}{2}\}$

using the Fourier Series: $x(n) = A_0 + \sum_{k=1}^{N/2} A_k \cos(2\pi f_k n + \phi_k)$

Different N sample waveforms have <u>different</u> values of A_k and ϕ_k , but the <u>same</u> values of f_k

Each term in the sum is called a frequency component.

Amplitude, Frequency, Phase

$$x(n) = A_0 + \sum_{k=1}^{N/2} A_k \cos(2\pi f_k n + \phi_k)$$

Amplitude A_k

- Tells us how large the cosine is.
- The frequency components with the largest amplitude are the "most important."

Frequency f_k

- Tells us how quickly the cosine changes
- small k = low frequency = slowly changing
- large k = high frequency = quickly changing

Phase ϕ_k

Not as important, just shifts each cosine left or right.

Example

$$x(n) = A_0 + \sum_{k=1}^{N/2} A_k \cos(2\pi f_k n + \phi_k)$$

$$A_0 = 1$$

$$A_1 = 0.8$$

$$A_{20} = 0.1$$

large low frequency component and small high frequency component

$$A_0 = 1$$

$$A_1 = 0.7$$

$$A_{20} = 0.8$$

small low frequency component and large high frequency component

Amplitude Spectrum

Example: Square Wave

More Complex Example

Transforms

The Fourier Series is only one of many transforms:

- Fourier Transform
- Laplace Transform
- Z Transform

Transforms are merely a different way of expressing the same data. No information is lost or gained when taking a transform.

We use a transform because

- It gives us a different way of viewing or understanding the signal.
- Some operations on signals are easier to understand/analyze after taking the transform.