# Réseaux linéaires en régime sinusoïdal établi

### Circuit linéaire stable

### Définition : Circuit linéaire stable

Un circuit linéaire est dit **stable** en régime sinusoïdal établi (ou permanent) si :

- toutes les tensions  $u_n(t)$  et intensités  $i_n(t)$  du régime transitoire tendent vers 0,
- toutes les tensions  $u_n(t)$  et intensités  $i_n(t)$  du régime sinusoïdal établi sont bornées.

# Impédance

# **Impédance**

Un dipôle linéaire passif est caractérisé en régime sinusoïdal établi dans l'approximation des régimes quasi-stationnaires, par une *impédance*  $\underline{Z} = Ze^{j\varphi_Z}$ ,  $(Z>0, \varphi\in\mathbb{R})$  complexe, telle que, en convention récepteur, à chaque instant :

$$\frac{\underline{U}(t)}{\underline{\underline{I}}(t)} = \frac{\underline{U}_m}{\underline{I}_m} = \underline{Z}$$

On a donc:

$$Z = |\underline{Z}| = \frac{U_m}{I_m}$$
 et :  $\varphi_{\underline{Z}} = \varphi_U - \varphi_I$ .

En régime sinusoïdal établi :

réel 
$$u(t) = U_m \cos(\omega t + \varphi_u)$$
  $i(t) = I_m \cos(\omega t + \varphi_i)$  complexe  $\underline{U}(t) = \underline{U}_m e^{j\omega t}$   $\underline{I}(t) = \underline{I}_m e^{j\omega t}$ 

Équation caractéristique pour un dipôle passif linéaire :

$$\sum_{n} \alpha_{n} \frac{\mathrm{d}^{n} u}{\mathrm{d} t^{n}} + \sum_{n} \beta_{n} \frac{\mathrm{d}^{n} i}{\mathrm{d} t^{n}} = 0 \rightarrow \sum_{n} (j\omega)^{n} \alpha_{n} \underline{U}_{m} e^{j\omega t} = -\sum_{n} (j\omega)^{n} \beta_{n} \underline{I}_{m} e^{j\omega t}$$

Il existe  $\underline{Z}$  tel que :

$$\frac{\underline{U}(t)}{\underline{\underline{I}}(t)} = \frac{\underline{U}_m}{\underline{I}_m} = \underline{Z} = Ze^{j\varphi_Z}$$

# Résistance et réactance

### Définition : Résistance et réactance

On nomme respectivement *résistance* et *réactance* les parties réelle et imaginaire de  $\underline{Z}$ .

$$\underline{Z} = R + jS \begin{cases} R : \text{résistance} &= \text{Re}(\underline{Z}) \\ S : \text{réactance} &= \text{Im}(\underline{Z}) \end{cases}$$

On définit également l'admittance :

$$\underline{Y} = \frac{1}{\underline{Z}} = G + jB$$

$$\begin{cases} G : \text{conductance} &= \text{Re}(\underline{Y}) \\ B : \text{susceptance} &= \text{Im}(\underline{Y}) \end{cases}$$

La représentation dans le plan complexe de Z est nommée  $représentation de Fresnel^a$  de Z.

<sup>a</sup>A. J. Fresnel (1788-1827) physicien français

#### Lois de Kirchhoff

En régime sinusoïdal établi dans l'approximation des régimes quasi-stationnaires, les lois de Kirchhoff s'écrivent :

$$\sum_{p} \varepsilon_{p} \underline{U_{pm}} = 0 \text{ sur une maille orientée et : } \sum_{p} \varepsilon_{p} \underline{I_{pm}} = 0 \text{ à un nœud.}$$

On en déduit :

Impédance d'une association série de dipôles  $\underline{Z} = \sum Z_p$ 



Admittance d'une association parallèle de dipôles 
$$\underline{\underline{Y}} = \sum_{p} \underline{\underline{Y}_{p}}$$

Les relations des ponts diviseur de tension 
$$\underline{U_{nm}} = \frac{\underline{Z_n}}{\sum_p Z_p} \underline{U_{0m}},$$

diviseur de courant  $\underline{I_{nm}} = \frac{\underline{Y_n}}{\sum_p Y_p} \underline{I_{0m}},$ 

### **Exercice: circuit RLC série**

- 1. Déterminer l'impédance d'un dipôle RLC série en régime sinusoïdal établi en fonction de R, L, C et  $\omega$ . Établir sa représentation de Fresnel pour  $\omega \ge 1/\sqrt{LC}$  et  $\omega \le 1/\sqrt{LC}$ .
- En déduire l'amplitude complexe du courant <u>Im</u> le traversant, en fonction de la tension <u>Um</u> à ses bornes (en convention récepteur). Retrouver la résonance en courant du dipôle. <u>Illustrer par une construction de Fresnel</u>.
- 3. Exprimer la tension aux bornes du condensateur en fonction de  $\underline{U_m}$  à l'aide d'un diviseur de tension.

# Superposition

# Théorème : de superposition

Dans un circuit linéaire, alimenté par plusieurs sources sinusoïdales indépendantes, la *valeur com plexe*  $\underline{X}(t)$  d'une grandeur X(t) (courant ou tension) est égale à la somme des *valeurs complexes* produites par chacune des différentes sources agissant séparément, toutes les autres sources étant éteintes.

### Norton et Thévenin

# Représentations de Norton et Thévenin

Un dipôle linéaire actif peut être en régime sinusoïdal établi, représenté en convention

générateur par : 
$$\frac{\underline{U_m} = \underline{E_m} - \underline{Z}\underline{I_m}}{\text{Norton}}, \text{ avec } \underline{\eta_m} = \underline{E_m}/\underline{Z}.$$

### Puissance active et facteur de puissance

Soit, en notation complexe, un dipôle d'impédance  $\underline{Z} = Ze^{j\varphi_Z} = R + jS$  (resp. d'admittance  $\underline{Y} = G + jB$ ) parcouru par un courant d'intensité  $\underline{I}(t) = \underline{I_m}e^{j\omega t}$  et soumis à une tension  $U(t) = U_m e^{j\omega t}$  (en convention récepteur).

La puissance moyenne qu'il reçoit, en régime sinusoïdal établi, nommée *puissance ac-tive*, s'exprime selon :

$$\langle \mathcal{P} \rangle_T = \frac{1}{T} \int_{t_0}^{t_0+T} u(t)i(t)dt = \frac{U_m I_m \cos \varphi_Z}{2}$$
$$= \frac{1}{2} \operatorname{Re} \left( \underline{U}(t) \underline{I}(t) \right) = \frac{1}{2} R I_m^2 = \frac{1}{2} G U_m^2.$$

On nomme *facteur de puissance* du dipôle la quantité  $\cos \varphi_Z$ .

### Valeurs efficaces

# Définition : Valeur efficace

Pour une fonction h(t) périodique de période T, on définit la valeur efficace  $h_{\rm eff}$  de h par :

$$h_{\text{eff}} = \sqrt{\langle h(t)^2 \rangle_T} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} h^2(t) dt}.$$

# Puissance moyenne

Pour une fonction sinusoïdale,  $h(t) = H_m \cos(\omega t + \varphi)$ , on a :

$$h_{\text{eff}} = \frac{H_m}{\sqrt{2}}.$$

En particulier la puissance moyenne reçue, en régime sinusoïdal établi, par un dipôle de résistance R (de conductance G) s'exprime selon :

$$<\mathcal{P}>_T = RI_{\text{eff}}^2 = GU_{\text{eff}}^2.$$

# Indispensable

- impédances des dipôles linéaires de base
- expressions de la puissance :  $\mathbb{Z} < \mathcal{P} > \neq U_m I_m$  si la réactance n'est pas nulle.
- réviser les théorèmes en régime établi stationnaire
- constructions de Fresnel