



L2 : Systèmes Numériques Travaux Dirigés

# 1 TD1

# 1.1 Exercice 1

1.1.1 Compléter le chronogramme du circuit ci dessous :





- 1.1.2 Expliquer pourquoi les valeurs R = S = 1 posent problème.
- 1.1.3 Donner le schéma d'une bascule  $\overline{SR}$  à l'aide de portes logiques combinatoires.
- 1.1.4 Expliquer pourquoi les valeurs  $\overline{R} = \overline{S} = 0$  posent problème. Compléter le chronogramme suivant pour cette bascule.



1.1.5

# 1.2 Exercice 2

Soit le circuit séquentiel de la figure ci contre. L'état initial est Q = 1.

1.2.1 Élaborer le chronogramme du signal de sortie S quand l'entrée h reçoit huit impulsions.



# 1.3 Exercice 3

Soit le circuit séquentiel de la figure ci contre.

L'état initial est  $Q_a = Q_b = 0$ .

1.3.1 Élaborer le chronogramme du signal de sortie S quand l'entrée h reçoit 6 impulsions.



L2

# 1.4 Exercice 4

Soit le circuit 1 de la figure suivante :





Élaborer le chronogramme de la sortie Q du circuit 1 en fonction des entrées T, CLK et RAZ.

Nous nommons bascule T le circuit précédent. Soit le circuit de la figure suivante :



1.4.2 Élaborer le chronogramme du circuit, suivant les valeurs de l'entrée T<sub>0</sub>.

## 1.5 Exercice 5

Soit le circuit de la figure ci contre. L'état initial est  $Q_0 = Q_1 = 0$ .

- 1.5.1 Déterminer les équations de  $D_0$  et de  $D_1$ .
- 1.5.2 Tracer le chronogramme de  $Q_0$  et de  $Q_1$  pour 6 impulsions d'horloge.
- 1.5.3Déterminer le cycle réalisé par ce circuit. Quelle est la fonction réalisée ?



#### 1.6 Exercice 6

Soit le circuit de la figure ci contre. L'état initial est  $Q_0 = Q_1 = Q_2 = 0$ .

- 1.6.1 Élaborer le chronogramme de  $Q_0$ ,  $Q_1$ ,  $Q_2$  pour 10 impulsions d'horloge.
- 1.6.2Préciser la fonctionnalité du circuit.



#### 1.7 Exercice 7

Les conditions initiales (CI) du circuit ci-dessous sont :  $Q_1 = Q_2 = Q_3 = 0$ 

1.7.1 Compléter le chronogramme.





2 TD2

L2

## 2.1 Exercice 1

L'état initial est  $Q_0 = Q_1 = Q_2 = 0$ .

2.1.1 Élaborer le chronogramme de Q<sub>0</sub>, Q<sub>1</sub>, Q<sub>2</sub> pour 6 impulsions d'horloge et préciser le cycle de fonctionnement.



# 2.2 Exercice 2

.2.1 Compléter le chronogramme suivant du circuit ci contre.





# 2.3 Exercice 3

2.3.1 Élaborer le schéma de réalisation d'un registre à décalage synchrone à trois éléments binaires en utilisant des bascules D sur fronts 1.

Le signal S détermine le sens du décalage : S = 1 à droite, S = 0 à gauche.

2.3.2 Élaborer les modifications à apporter au circuit (portes INV, NAND et NOR)

#### 2.4 Exercice 4

- Soit le registre à décalage bidirectionnel de 8 bits de la figure suivante.
- $D/G = 1 \Rightarrow$  décalage à droite,  $D/G = 0 \Rightarrow$  décalage à gauche.
- À l'état initial le registre contient la valeur binaire du nombre 76|10.
- La bascule de droite représente le chiffre de poids le plus fort.
- La bascule de gauche représente le chiffre de poids le plus faible.
- Un niveau BAS est présent sur l'entrée des données (ED).
- La sortie de données est S<sub>D</sub>.





2.4.1 Déterminer les états du registre en présentant les résultats sous forme de tableau.

# 3 TD3

L2

# 3.1 Exercice 1

- Soit le registre à décalage bidirectionnel de quatre bits ci contre.
- L'entrée load active sur niveau bas, le chargement parallèle des entrées D<sub>0</sub>, D<sub>1</sub>, D<sub>2</sub>, D<sub>3</sub>.
- E<sub>SD</sub> et E<sub>SG</sub> sont les entrées de données série respectivement, à droite et à gauche.



3.1.1 Élaborer le schéma d'un registre à décalage bidirectionnel de 8 bits à partir de deux registres à décalage de 4 bits. Expliquer les différentes connexions.

#### 3.2 Exercice 2

- Les circuits des schémas suivants sont des compteurs de 4 bits.
- La sortie RCO (Register Carry Output) passe à 1 quand l'état du compteur passe à :
  Qd Qc Qb Qa = 1111|<sub>2</sub> = F|<sub>16</sub> = 15|<sub>10</sub>.
- D : entrée, Qd : sortie de poids fort. A : entrée, Qa : sortie de poids faible.
- L'entrée load active sur niveau bas le chargement parallèle des entrées A, B, C, D.
- L'entrée VAL active sur «1», le fonctionnement du circuit et sur «0» la mémorisation de l'état en cours.





3.2.1 Élaborer le cycle de fonctionnement de chacun de ces 2 montages.

# 3.3 Exercice 3

#### PIN DESCRIPTION

| PIN No         | SYMBOL   | NAME AND FUNCTION                           |  |  |  |  |
|----------------|----------|---------------------------------------------|--|--|--|--|
| 1              | CLEAR    | Asynchronous Reset<br>Input (Active LOW)    |  |  |  |  |
| 2              | SR       | Serial Data Input (Shift<br>Right)          |  |  |  |  |
| 3, 4, 5, 6     | A to D   | Parallel Data Input                         |  |  |  |  |
| 7              | SL       | Serial Data Input (Shift<br>Left)           |  |  |  |  |
| 9, 10          | S0, S1   | Mode Control Inputs                         |  |  |  |  |
| 11             | CLOCK    | Clock Input (LOW to<br>HIGH Edge-triggered) |  |  |  |  |
| 15, 14, 13, 12 | QA to QD | Paralle Outputs                             |  |  |  |  |
| 8              | GND      | Ground (0V)                                 |  |  |  |  |
| 16             | Vcc      | Positive Supply Voltage                     |  |  |  |  |

#### IEC LOGIC SYMBOL

L2



#### TRUTH TABLE

| INPUTS |      |    |          |        |       |          |   | OUTPUS |    |     |     |     |     |
|--------|------|----|----------|--------|-------|----------|---|--------|----|-----|-----|-----|-----|
| CLEAR  | MODE |    | СГОСК    | SERIAL |       | PARALLEL |   |        | QA | QB  |     | OD  |     |
|        | S1   | S0 | CLOCK    | LEFT   | RIGHT | Α        | В | С      | D  | 3   | QВ  | QC  | QD  |
| L      | X    | X  | X        | X      | X     | Χ        | Χ | Χ      | Χ  | L   | L   | L   | L   |
| Н      | X    | X  | l        | X      | X     | Х        | X | Χ      | X  | QA0 | QB0 | QC0 | QD0 |
| Н      | Н    | Н  | <b>니</b> | X      | X     | a        | b | С      | d  | a   | b   | С   | d   |
| Н      | L    | Н  |          | X      | Н     | X        | Χ | X      | Χ  | Н   | QAn | QBn | QCn |
| Н      | L    | Н  | <b>-</b> | X      | L     | Χ        | Χ | Χ      | Χ  | L   | QAn | QBn | QCn |
| Н      | Н    | L  | ۲,       | Н      | X     | Χ        | Χ | Χ      | Χ  | QBn | QCn | QDn | Н   |
| Н      | Н    | L  |          | L      | X     | Х        | Χ | Χ      | Χ  | QBn | QCn | QDn | L   |
| Н      | L    | L  | Х        | X      | X     | X        | X | X      | X  | QA0 | QB0 | QC0 | QD0 |

X: Don't Care : Don't Care

a ~ d : The level of steady state input voltage at input A ~ D respactively

QA0 ~ QD0 : No change

QAn ~ QDn : The level of QA, QB, QC, respectively, before the mst recent positive transition of the clock.

Nous avons : A = 0, B = 0, C = 1 et D = 1

3.3.1 Compléter le chronogramme en identifiant les états : décalage gauche, décalage droit, chargement //.



#### 3.4 Exercice 4

Le compteur synchrone du schéma ci-contre, possède :

- 4 entrées (A, B, C, D) de données parallèles,
- 4 sorties (Qa, Qb, Qc, Qd) de données parallèles,
- 1 commande de chargement parallèle : load active au niveau bas.
  Le numéro d'état est : Qd Qc Qb Qa (poids faible Qa, poids fort Qd).



3.4.1 En utilisant l'entrée de chargement //, réaliser le cycle : [0,1,2,3,4,5,6,10,11,12,14,15].

# 4 TD4

#### 4.1 Exercice 1

Nous disposons d'un jeu de lumières à 5 lampes à programmer suivant la séquence suivante :



L2

À ces 5 états, notés  $E_1$ ,  $E_2$ ,  $E_3$ ,  $E_4$ ,  $E_5$ , nous ajoutons un bouton poussoir permettant de mémoriser l'état en cours : bouton b appuyé (b = 1)  $\Rightarrow$  les lampes se figent dans le dernier état rencontré.

Les circuits séquentiels utilisés sont des bascules D.

- 4.1.1 Montrer que ce système peut n'utiliser que 3 sorties  $S_1$ ,  $S_2$ ,  $S_3$ .
- 4.1.2 Établir le graphe des états.
- 4.1.3 Établir la table des états présents et suivants, en tenant compte des valeurs de b : b = 1 bouton enfoncé ⇒ mémorisation de l'état courant, b = 0 bouton relâché ⇒ état suivant.
- 4.1.4 Établir la table de transition, les états codés de la façon suivante ( $Ei = e_2 e_1 e_0$ ;  $E_1 = 000$ ,  $E_2 = 001$ ,  $E_3 = 010$ ,  $E_4 = 011$ ,  $E_5 = 100$ ).
- 4.1.5 Élaborer puis simplifier par la méthode de Karnaugh, les équations des états.
- 4.1.6 Élaborer puis simplifier par la méthode de Karnaugh, les équations des sorties :  $S_1$ ,  $S_2$ ,  $S_3$ .

#### 4.2 Exercice 2

Soit un compteur synchrone réalisant la séquence 1, 3, 4, 5, .6 avec des bascules JK et Ji = Ki.

- 4.2.1 Élaborer le graphe des états.
- 4.2.2 Élaborer la table des états présents et des états suivants
- 4.2.3 Élaborer la table de transition de la bascule J K
- 4.2.4 Simplifier les équations des bascules JK par la méthode de Karnaugh.
- 4.2.5 Réaliser le schéma du circuit en n'utilisant que des portes INV, NOR et/ou NAND.

#### 4.3 Exercice 3

Soit un compteur synchrone réalisé avec des bascules JK permettant de créer la séguence 1, 2, 5, .7.

L2

- 4.3.1 Élaborer le graphe des états.
- 4.3.2 Élaborer la table des états présents et des états suivants
- 4.3.3 Élaborer la table de transition de la bascule J K
- 4.3.4 Simplifier les équations des bascules JK par la méthode de Karnaugh.
- 4.3.5 Réaliser le schéma du circuit en n'utilisant que des portes INV, NOR et/ou NAND.

#### 4.4 Exercice 4

Les conditions initiales du compteur ci contre sont :  $Q_0 = Q_1 = Q_2 = 0$ .

4.4.1 Élaborer le chronogramme des sorties pour 10 impulsions d'horloge.



Chaque bascule possède un temps de propagation (retard) de 8 ns : c'est le temps qui sépare le front déclencheur (entrée CLK) et le changement d'état correspondant (sorties Q<sub>2</sub> Q<sub>1</sub> Q<sub>0</sub>)

4.4.2 Déterminer le ou les pires cas de propagation (cas pour lesquels le temps de propagation entre CLK et  $Q_2$  et le plus long) et calculer les temps de propagation.

#### 4.5 Exercice 5

4.5.1 Faire le schéma d'un compteur asynchrone modulo 5 à l'aide de bascules JK et de portes logique INV, NOR et/ou NAND.

#### 4.6 Exercice 6

Soit un compteur synchrone réalisé avec des bascules JK  $(J_i = K_i)$  permettant de créer la séquence 1, 3, 4, 6.

- 4.6.1 Élaborer le graphe des états.
- 4.6.2 Élaborer la table des états présents et des états suivants
- 4.6.3 Élaborer la table de transition de la bascule J K
- 4.6.4 Simplifier les équations des bascules JK par la méthode de Karnaugh.
- 4.6.5 Réaliser le schéma du circuit en n'utilisant que des portes INV, NOR et/ou NAND.