Grundlagen der Rechnerarchitektur: Übungsblatt 5

Alexander Waldenmaier, Maryia Masla

11. Dezember 2020

Aufgabe 1: Minimierung zu Ehren Maurice Karnaugh

Die Wahrheitstabelle von $f(x_1, x_2, x_3)$ und $g(x_1, x_2, x_3)$:

x_3	$ x_2 $	$ x_1 $	$f(x_1, x_2, x_3)$	$g(x_1, x_2, x_3)$
0	0	0	1	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

a) Die DKNF und KKNF lassen sich für beide Funktionen aus der Wahrheitstabelle ablesen.

DKNF:

$$f(x_1, x_2, x_3) = \overline{x_3 x_2 x_1} + \overline{x_3} x_2 x_1 + x_3 \overline{x_2} x_1 + x_3 x_2 \overline{x_1} + x_3 x_2 x_1$$

$$g(x_1, x_2, x_3) = \overline{x_3 x_2} x_1 + x_3 \overline{x_2} x_1 + x_3 \overline{x_2} x_1 + x_3 x_2 x_1$$

KKNF:

$$f(x_1, x_2, x_3) = (x_3 + x_2 + \overline{x_1}) \cdot (x_3 + \overline{x_2} + x_1) \cdot (\overline{x_3} + x_2 + x_1)$$

$$g(x_1, x_2, x_3) = (x_3 + x_2 + x_1) \cdot (x_3 + \overline{x_2} + x_1) \cdot (x_3 + \overline{x_2} + \overline{x_1}) \cdot (\overline{x_3} + \overline{x_2} + x_1)$$

b) Vollständig minimierte DKNF von f():

$$f(x_1, x_2, x_3) = \overline{x_3 x_2 x_1} + x_3 x_2 + x_3 x_1 + x_2 x_1$$

 x_3x_2

00 01 11 10

 x_3x_2

c) Vollständig minimierte KKNF von g():

$$g(x_1, x_2, x_3) = (x_3 + \overline{x_2}) \cdot (x_3 + x_1) \cdot (\overline{x_2} + x_1)$$

Aufgabe 2: Moment - Warum eigentlich minimieren?

a) Die Wertetabelle der Funktion $f(x_1, x_2, x_3, x_4)$:

x_1	x_2	x_3	x_4	$(x_1, x_2, x_3, x_4)_{10}$	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	0	2	1
0	0	1	1	3	1
0	1	0	0	4	1
0	1	0	1	5	1
0	1	1	0	6	1
0	1	1	1	7	0
1	0	0	0	8	1
1	0	0	1	9	1
1	0	1	0	10	1
1	0	1	1	11	0
1	1	0	0	12	1
1	1	0	1	13	1
1	1	1	0	14	1
1	1	1	1	15	1

 x_1

 mit

$$f(x_1,..,x_4) = \begin{cases} 1 & \text{falls } (x_1x_2x_3x_4)_{10} \mod 4 = 1 \\ 1 & \text{falls die Quersumme von } (x_1x_2x_3x_4)_{10} = 6 \text{ ist} \\ 1 & \text{falls } (x_1x_2x_3x_4)_{10} \mod 2 = 0 \\ 1 & \text{falls } (x_1x_2x_3x_4)_{10} = 3 \\ 0 & \text{sonst} \end{cases}$$

b) DKNF:

$$f(x_1,x_2,x_3,x_4) = \overline{x_1x_2x_3x_4} + \overline{x_1x_2}x_3\overline{x_4} + \overline{x_1x_2}x_3x_4 + \overline{x_1}x_2\overline{x_3}x_4 + \overline{x_1}x_2\overline{x_3}x_4 + \overline{x_1}x_2x_3\overline{x_4} + x_1\overline{x_2}x_3\overline{x_4} + x_1\overline{x_2}x_3\overline{x_4} + x_1x_2\overline{x_3}x_4 + x_1x_2\overline{x_3}x_4 + x_1x_2x_3\overline{x_4} + x_1x_2x$$

c) KKNF:

$$f(x_1, x_2, x_3, x_4) = (x_1 + x_2 + x_3 + \overline{x_4}) \cdot (x_1 + \overline{x_2} + \overline{x_3} + \overline{x_4}) \cdot (\overline{x_1} + x_2 + \overline{x_3} + \overline{x_4})$$

d) DNF und KNF:

 x_3x_4

e) Aus dem KV-Diagramm von f lässt sich ablesen, dass die KKNF nicht weiter minimiert werden kann d.h. die Maxterme sind gleichzeitig Primimplikanten. Die DKNF kann von 13 Mintermen auf 4 Primimplikanten reduziert werden. Außerdem beinhalten Primimplikanten weniger Literale: vorher $13 \cdot 4 = 52$, nach Minimierung 10.

Die Minimierung von (Schalt-) Funktionen bringt in Hinsicht auf elektrische Schaltungen folgende Vorteile:

- -Reduzierung vom benötigten Platz/Raum (kleinere Funktion \to weniger Verknüpfungen/Operationen \to kleinere Größe der Schaltung C(S))
- Laufzeitoptimierung (bei Minimierung der Funktion eventuell kleinere Tiefe der Schaltung D(S))
- Kostenreduzierung durch ersparte Materialien und Energie