

TO PASS 70% or higher

GRADE 100%

1/1 point

Final Exam

LATEST SUBMISSION GRADE 100%

1.

1\2 z 2,5 2,1 0,1 b 3,2 4,4 1,1 1,0 1,1 1,2

Find the strictly dominant strategies (click all that apply: there may be zero, one or more and remember the difference between strictly dominant and strictly dominated):

- ___ x;
- ___ b;
- ___ c;
- none

✓ Correct

No strategy is a strictly dominant strategy.

- a is strictly dominated by b and so is not dominant;
- if 2 plays z then 1 is indifferent between ${\bf c}$ and ${\bf b}$, while if 2 plays y then ${\bf b}$ is strictly better than **c**, and so neither is strictly dominant.
- Similarly, when 1 plays \mathbf{a} , x is the unique best response for 2; when 1 plays \mathbf{b} , y is the unique best response for 2; when 1 plays ${f c}$, z is the unique best response for 2, and so none of them is dominant.
- ___ y;
- __ z;
- ___ a;

2.

1\2	х	у	z
a	2,5	2,1	0,1
b	3,2	4,4	1,1
С	1,0	1,1	1,2

Find the weakly dominated strategies (click all that apply: there may be zero, one or more):

- y;
- ___ z;
- __ x;
- ✓ a;

✓ Correct

(a) and (c) are correct.

- For 1, both $\bf c$ and $\bf c$ are weakly dominated by $\bf b$. When 2 plays x or y, $\bf b$ is strictly better than ${f c}$; when 2 plays z, 1 is indifferent between ${f b}$ and ${f c}$.
- From the previous answer, player 2 has no weakly dominated strategies.
- ___ b;

1/1 point

(a) and (c) are correct.

- For 1, both c and c are weakly dominated by b. When 2 plays x or y, b is strictly better than c; when 2 plays z, 1 is indifferent between b and c.
- From the previous answer, player 2 has no weakly dominated strategies.

3.

1\2	х	у	Z
a	2,5	2,1	0,1
b	3,2	4,4	1,1
С	1,0	1,1	1,2

Which strategies survive the process of iterative removal of strictly dominated strategies (click all that apply: there may be zero, one or more)?

✓ b;

~

✓ Correct

(b), (c), (y) and (z) are the survivors.

- a is dominated by b.
- ullet x is dominated by y, once ${f a}$ is removed.
- No further removals can be made.
- ___ a;
- ✓ z;

(b), (c), (y) and (z) are the survivors.

- a is dominated by b.
- x is dominated by y, once a is removed.
- No further removals can be made.
- __ x;
- ✓ y;

✓ Correct

(b), (c), (y) and (z) are the survivors.

- a is dominated by b.
- ullet x is dominated by y, once ${f a}$ is removed.
- No further removals can be made.
- C;

✓ Correct

(b), (c), (y) and (z) are the survivors.

- **a** is dominated by **b**.
- x is dominated by y, once \mathbf{a} is removed.
- No further removals can be made.

4.

1\2	х	у	Z
a	2,5	2,1	0,1
b	3,2	4,4	1,1
С	1,0	1,1	1,2

Find all strategy profiles that form pure strategy Nash equilibria (click all that apply: there may be zero, one or more):

1/1 point

1/1 point

(a, x); (b, x); (b, z); (a, z); (b, y); ✓ Correct

(b, y) and (c, z) are pure-strategy Nash equilibria.

- It is easy to check the pure-strategy Nash equilibrium: no one wants to deviate.
- $\bullet~$ In any of the other combinations at least one player has an incentive to deviate. Thus, they are not equilibria.
- (a, y);
- (c, y);
- (c, z).

✓ Correct

(b, y) and (c, z) are pure-strategy Nash equilibria.

- It is easy to check the pure-strategy Nash equilibrium: no one wants to deviate.
- In any of the other combinations at least one player has an incentive to deviate. Thus, they are not equilibria.
- (c, x);

1\2	у	Z
b	4,4	1,1
с	1,1	2,2

Which of the following strategies form a mixed strategy Nash equilibrium? (p corresponds to the probability of 1 playing ${f b}$ and 1-p to the probability of playing ${f c}$; q corresponds to the probability of 2 playing y and 1-q to the probability of playing z).

- p = 1/4, q = 1/4;
- $\bigcap p = 2/3, q = 1/4;$
- p = 1/3, q = 1/4;
- p = 1/3, q = 1/3;

✓ Correct

(p = 1/4, q = 1/4) is true.

- In a mixed strategy equilibrium in this game both players must mix and so 1 must be indifferent between ${\bf b}$ and ${\bf c}$, and 2 between y and z.
- **b** gives 1 an expected payoff: 4q + (1-q)
- c gives 1 an expected payoff: 1q + 2(1-q)
- Setting these two payoffs to be equal leads to q=1/4.
- $\bullet \ \ {\rm By\ symmetry\ we\ have}\ p=1/4.$
- 6. One island is occupied by Army 2, and there is a bridge connecting the island to the mainland through which Army 2 could retreat.
 - Stage 1: Army 2 could choose to burn the bridge or not in the very beginning.
 - Stage 2: Army 1 then could choose to attack the island or not.
 - $\bullet \ \ \text{Stage 3: Army 2 could then choose to fight or retreat if the bridge was not burned, and has to fight if the}\\$ bridge was burned.

2 Not Burn Burn

1 / 1 point

First, consider the blue subgame. What is a subgame perfect equilibrium of the

blue subgame?

- (Not, Retreat).
- (Attack, Fight).
- (Not, Fight).
- (Attack, Retreat).

✓ Correct

(Attack, Retreat) is true.

- At the subgame when 1 attacks, it is better for 2 to retreat with a payoff (5, 0).
- If 1 doesn't attack, the payoff is (0, 5).
- It is thus optimal for 1 to attack, and so (Attack, Retreat) is the unique subgame prefect
 equilibrium in this subgame.
- One island is occupied by Army 2, and there is a bridge connecting the island to the mainland through which Army 2 could retreat.
 - Stage 1: Army 2 could choose to burn the bridge or not in the very beginning.
 - Stage 2: Army 1 then could choose to attack the island or not.
 - Stage 3: Army 2 could then choose to fight or retreat if the bridge was not burned, and has to fight if the bridge was burned.

What is the outcome of a subgame perfect equilibrium of the whole game?

- Bridge is burned, 1 does not attack.
- Bridge is not burned, 1 attacks and 2 retreats.
- Bridge is not burned, 1 does not attack.
- Bridge is burned, 1 attacks and 2 fights.

✓ Correct

(Bridge is burned, 1 does not attack) is true.

- At the subgame when the bridge is not burned, the equilibrium outcome is (5, 0) from the
 previous question.
- If the bridge is burned:
- If 1 attacks, 2 has to fight and gets (-2, -2);
- If 1 doesn't attack, the payoff is (0, 5).
- 1 is better off not attacking, with a payoff (0, 5).
- Thus, it is better for 2 to burn the bridge, which leads to (0, 5) instead of (5, 0).

1/1 point

There is a probability p that the game continues next period and a probability (1-p) that it ends. What is the threshold p^* such that when $p \geq p^*$ ((Play,Share), (Trust)) is sustainable as a subgame perfect equilibrium by a grim trigger strategy, but when $p < p^*$ ((Play,Share), (Trust)) can't be sustained as a subgame perfect equilibrium?

[Here a trigger strategy is: player 1 playing Not play and player 2 playing Distrust forever after a deviation from ((Play,Share), (Trust)).]

- 2/3;
- O 1/4.
- 1/3;
- 0 1/2;

✓ Correct

(1/3) is true.

• In the infinitely repeated game supporting ((Play,Share), (Trust)):

- Suppose player 2 uses the grim trigger strategy: start playing Trust and play Distrust forever after a deviation from ((Play,Share), (Trust)).
- If player 1 deviates and plays (Play, Steal), player 1 earns 8-6=2 more in the current period, but loses 4 from all following periods, which is 4p/(1-p) in total.
- Thus in order to support ((Play,Share), (Trust)), the threshold is 2=4p/(1-p), which is p=1/3
- Note that given player 1's strategy, player 2 has no incentive to deviate for any value of $\it p$.

9. • There are two players.

- The payoffs to player 2 depend on whether 2 is a friendly player (with probability p) or a foe (with probability 1-p).
- Player 2 knows if he/she is a friend or a foe, but player 1 doesn't know.

See the following payoff matrices for details.

Friend	Left	Right
Left	3,1	0,0
Right	2,1	1,0

with probability p

Foe	Left	Right
Left	3,0	0,1
Right	2,0	1,1

with probability 1-p

When p=1/4, which is a pure strategy Bayesian equilibrium:

(1's strategy; 2's type - 2's strategy)

- (Left ; Friend Left, Foe Left);
- (Right ; Friend Right, Foe Right);
- (Right; Friend Left, Foe Right);
- (Left ; Friend Left, Foe Right);

1 / 1 point

(Right; Friend - Left, Foe - Right) is true.

- For player 2, Left is strictly dominant when a friend and Right when a foe. Thus, that must be
- Conditional on 2's strategy, 1 gets an expected payoff of 3p=3/4 when choosing Left and 2p + (1-p) = 5/4 when choosing Right. Thus, 1's best response is to play Right.
- $\bullet\,$ It is easy to check that in any of the remaining options, at least one player has an incentive to

1/1 point

10. Player 1 is a company choosing whether to enter a market or stay out;

• If 1 stays out, the payoff to both players is (0, 3).

Player 2 is already in the market and chooses (simultaneously) whether to fight

player 1 if there is entry

ullet The payoffs to player 2 depend on whether 2 is a normal player (with prob 1-p) or an aggressive player (with prob p).

See the following payoff matrices for details.

Aggressive	Fight	Not
Enter	-1,2	1,-2
Out	0,3	0,3

with probability p

Normal	Fight	Not
Enter	-1,0	1,2
Out	0,3	0,3

with probability 1-p

Player 2 knows if he/she is normal or aggressive, and player 1 doesn't know. Which are true (click all that apply, there may be zero, one or more):

When p=1/2, it is a Bayesian equilibrium for 1 to enter, 2 to fight when aggressive

and not when normal;

✓ Correct

- $\bullet\,$ When 1 enters, it is optimal for the aggressive type to fight and for the normal type not to fight; and those actions don't matter when 1 stays out.
- ullet Conditional on 2's strategy, it is optimal for 1 to enter when p<1/2, it is optimal for 1 to stay out when p > 1/2 and it is indifferent for 1 to enter or to stay out when p = 1/2.
- $\hspace{1cm} \boxed{\hspace{1cm}} \hspace{1cm} \hspace{1$

when aggressive and not when normal.

✓ Correct

- When 1 enters, it is optimal for the aggressive type to fight and for the normal type not to fight; and those actions don't matter when 1 stays out.
- ullet Conditional on 2's strategy, it is optimal for 1 to enter when p<1/2, it is optimal for 1 to stay out when p>1/2 and it is indifferent for 1 to enter or to stay out when p=1/2.
- When p>1/2, it is a Bayesian equilibrium for 1 to stay out, 2 to fight

when aggressive and not when normal;

✓ Correct

All are true.

- When 1 enters, it is optimal for the aggressive type to fight and for the normal type not to fight; and those actions don't matter when 1 stays out.
- Conditional on 2's strategy, it is optimal for 1 to enter when p < 1/2, it is optimal for 1 to stay out when p>1/2 and it is indifferent for 1 to enter or to stay out when p=1/2.
- When p=1/2, it is a Bayesian equilibrium for 1 to stay out, 2 to fight when

aggressive and not when normal;

✓ Correct

All are true.

- When 1 enters, it is optimal for the aggressive type to fight and for the normal type not to fight; and those actions don't matter when 1 stays out.
- Conditional on 2's strategy, it is optimal for 1 to enter when p<1/2, it is optimal for 1 to stay out when p>1/2 and it is indifferent for 1 to enter or to stay out when p=1/2.