In [1]:

```
import numpy as np,pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

reading the dataframe

In [2]:

 $\label{lem:csv} $$ df=pd.read_csv(r"C:\Users\91950\OneDrive\Documents\rainfall\ in\ india\ 1901-2015.csv") $$ df$

Out[2]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	38
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	19 [·]
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	18
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	22:
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	26
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	11
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	14:
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	7:
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	16
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	16
4116 r	ows × 19 columr	าร										
4												•

performing the basic pre-processing steps

In [3]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):
Column Non-Null Count Dty

#	Column	Non-Null Count	Dtype
0	SUBDIVISION	4116 non-null	object
1	YEAR	4116 non-null	•
2	JAN	4112 non-null	
3	FEB	4113 non-null	float64
4	MAR	4110 non-null	float64
5	APR	4112 non-null	float64
6	MAY	4113 non-null	float64
7	JUN	4111 non-null	float64
8	JUL	4109 non-null	float64
9	AUG	4112 non-null	float64
10	SEP	4110 non-null	float64
11	OCT	4109 non-null	float64
12	NOV	4105 non-null	float64
13	DEC	4106 non-null	float64
14	ANNUAL	4090 non-null	float64
15	Jan-Feb	4110 non-null	float64
16	Mar-May	4107 non-null	float64
17	Jun-Sep	4106 non-null	float64
18	Oct-Dec	4103 non-null	float64
dtyp	es: float64(1	7), int64(1), ob	ject(1)

memory usage: 611.1+ KB

dropping the columns

In [4]:

df.describe()

Out[4]:

	YEAR	JAN	FEB	MAR	APR	MAY	
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.0
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.2
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.7
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.40
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.3
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.7
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.1
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.9
4							•

In [5]:

df.isna().any()

Out[5]:

SUBDIVISION	False
YEAR	False
JAN	True
FEB	True
MAR	True
APR	True
MAY	True
JUN	True
JUL	True
AUG	True
SEP	True
OCT	True
NOV	True
DEC	True
ANNUAL	True
Jan-Feb	True
Mar-May	True
Jun-Sep	True
Oct-Dec	True
dtype: bool	

In [6]:

df["SUBDIVISION"].value_counts()

Out[6]:

SUBDIVISION	
WEST MADHYA PRADESH	115
EAST RAJASTHAN	115
COASTAL KARNATAKA	115
TAMIL NADU	115
RAYALSEEMA	115
TELANGANA	115
COASTAL ANDHRA PRADESH	115
CHHATTISGARH	115
VIDARBHA	115
MATATHWADA	115
MADHYA MAHARASHTRA	115
KONKAN & GOA	115
SAURASHTRA & KUTCH	115
GUJARAT REGION	115
EAST MADHYA PRADESH	115
KERALA	115
WEST RAJASTHAN	115
SOUTH INTERIOR KARNATAKA	115
JAMMU & KASHMIR	115
HIMACHAL PRADESH	115
PUNJAB	115
HARYANA DELHI & CHANDIGARH	115
UTTARAKHAND	115
WEST UTTAR PRADESH	115
EAST UTTAR PRADESH	115
BIHAR	115
JHARKHAND	115
ORISSA	115
GANGETIC WEST BENGAL	115
SUB HIMALAYAN WEST BENGAL & SIKKIM	115
NAGA MANI MIZO TRIPURA	115
ASSAM & MEGHALAYA	115
NORTH INTERIOR KARNATAKA	115
LAKSHADWEEP	114
ANDAMAN & NICOBAR ISLANDS	110
ARUNACHAL PRADESH	97
Name: count, dtype: int64	

In [7]:

```
df.pop("SUBDIVISION")
Out[7]:
0
        ANDAMAN & NICOBAR ISLANDS
1
        ANDAMAN & NICOBAR ISLANDS
2
        ANDAMAN & NICOBAR ISLANDS
3
        ANDAMAN & NICOBAR ISLANDS
        ANDAMAN & NICOBAR ISLANDS
4111
                       LAKSHADWEEP
4112
                       LAKSHADWEEP
4113
                       LAKSHADWEEP
4114
                       LAKSHADWEEP
4115
                       LAKSHADWEEP
```

In [8]:

```
df.pop("Jan-Feb")
```

Out[8]:

```
0
        136.3
1
        159.8
2
        156.7
3
         24.1
          1.3
4111
         7.9
4112
         19.3
4113
         60.6
4114
         69.3
          2.7
4115
```

Name: Jan-Feb, Length: 4116, dtype: float64

Name: SUBDIVISION, Length: 4116, dtype: object

In [9]:

```
df.describe()
```

Out[9]:

	YEAR	JAN	FEB	MAR	APR	MAY	
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.0
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.2
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.7
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.40
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.3
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.7
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.1
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.9
4							•

```
In [10]:
```

```
df.pop("Mar-May")
Out[10]:
0
        560.3
1
        458.3
2
        236.1
3
        506.9
        309.7
4111
        196.2
4112
         99.6
4113
        131.1
         76.7
4114
        223.9
4115
Name: Mar-May, Length: 4116, dtype: float64
In [11]:
df.pop("Jun-Sep")
Out[11]:
0
        1696.3
1
        2185.9
2
        1874.0
3
        1977.6
        1624.9
         . . .
4111
        1013.0
4112
        1119.5
4113
        1057.0
4114
         958.5
         860.9
4115
Name: Jun-Sep, Length: 4116, dtype: float64
In [12]:
df.pop("Oct-Dec")
Out[12]:
0
        980.3
        716.7
1
2
        690.6
3
        571.0
        630.8
        . . .
4111
        316.6
4112
        167.1
4113
        177.6
4114
        290.5
        555.4
4115
Name: Oct-Dec, Length: 4116, dtype: float64
```

```
In [13]:
```

```
df.describe()
```

Out[13]:

	YEAR	JAN	FEB	MAR	APR	MAY	
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.0
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.2
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.7
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.40
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.3
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.7
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.1
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.9
4							•

filling the nullvalues

```
In [ ]:
```

```
df.fillna(method="bfill",inplace=True)
```

In [15]:

```
features=df.columns[0:12]
target=df.columns[-1]
```

In [16]:

```
x=df[features].values
y=df[target].values
```

In [17]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [18]:

```
a=LinearRegression()
a.fit(x_train,y_train)
print(a.score(x_test,y_test))
```

0.9965181999324586

k-Means

In [19]:

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

In [20]:

```
plt.scatter(df["JAN"],df["ANNUAL"])
plt.xlabel("JAN")
plt.ylabel("ANNUAL")
plt.show()
```


In [21]:

from sklearn.cluster import KMeans

In [22]:

```
km=KMeans()
km
```

Out[22]:

KMeans()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [23]:

```
y_predicted=km.fit_predict(df[["JAN","ANNUAL"]])
y_predicted
```

C:\Users\91950\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
warnings.warn(

Out[23]:

array([3, 6, 3, ..., 2, 7, 2])

In [24]:

```
df["cluster"]=y_predicted
df.head()
```

Out[24]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ΑI
0	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	
1	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	
2	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	
3	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	
4	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	
4														•

In [25]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["JAN"],df1["ANNUAL"],color="blue")
plt.scatter(df2["JAN"],df2["ANNUAL"],color="green")
plt.scatter(df3["JAN"],df3["ANNUAL"],color="orange")
plt.xlabel("JAN")
plt.ylabel("ANNUAL")
plt.show()
```


In [26]:

from sklearn.preprocessing import MinMaxScaler

In [27]:

```
scaler=MinMaxScaler()
scaler.fit(df[["JAN"]])
s=scaler.transform(df[["JAN"]])
df.head()
```

Out[27]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Al
0	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	
1	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	
2	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	
3	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	
4	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	
4														•

In [28]:

```
scaler.fit(df[["ANNUAL"]])
d=scaler.transform(df[["ANNUAL"]])
df.head()
```

Out[28]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Al
0	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	
1	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	
2	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	
3	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	
4	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	
4														•

In [29]:

```
km=KMeans()
km
```

Out[29]:

KMeans()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [30]:

```
y_predicted=km.fit_predict(df[["JAN","ANNUAL"]])
y_predicted
```

C:\Users\91950\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init
` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(

Out[30]:

array([4, 4, 1, ..., 6, 2, 6])

In [31]:

```
df["New cluster"]=y_predicted
y_predicted
```

Out[31]:

array([4, 4, 1, ..., 6, 2, 6])

In [32]:

```
df1=df[df["New cluster"]==0]
df2=df[df["New cluster"]==1]
df3=df[df["New cluster"]==2]
plt.scatter(df1["JAN"],df1["ANNUAL"],color="blue")
plt.scatter(df2["JAN"],df2["ANNUAL"],color="red")
plt.scatter(df3["JAN"],df3["ANNUAL"],color="green")
plt.xlabel("JAN")
plt.ylabel("ANNUAL")
plt.show()
```


In [33]:

```
km.cluster_centers_
```

Out[33]:

In [34]:

```
df1=df[df["New cluster"]==0]
df2=df[df["New cluster"]==1]
df3=df[df["New cluster"]==2]
plt.scatter(df1["JAN"],df1["ANNUAL"],color="green")
plt.scatter(df2["JAN"],df2["ANNUAL"],color="violet")
plt.scatter(df3["JAN"],df3["ANNUAL"],color="orange")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="yellow",marker="+")
plt.xlabel("JAN")
plt.ylabel("ANNUAL")
plt.show()
```



```
In [35]:
p=range(1,10)
sse=[]
for k in p:
km=KMeans(n clusters=k)
km.fit(df[["JAN","ANNUAL"]])
sse.append(km.inertia_)
C:\Users\91950\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\91950\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\91950\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
```

warnings.warn(

C:\Users\91950\AppData\Local\Programs\Python\Python311\Lib\site-packages\s klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit ly to suppress the warning

warnings.warn(

C:\Users\91950\AppData\Local\Programs\Python\Python311\Lib\site-packages\s klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit ly to suppress the warning

warnings.warn(

C:\Users\91950\AppData\Local\Programs\Python\Python311\Lib\site-packages\s klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit ly to suppress the warning

warnings.warn(

C:\Users\91950\AppData\Local\Programs\Python\Python311\Lib\site-packages\s klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit ly to suppress the warning

warnings.warn(

C:\Users\91950\AppData\Local\Programs\Python\Python311\Lib\site-packages\s klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit ly to suppress the warning

warnings.warn(

C:\Users\91950\AppData\Local\Programs\Python\Python311\Lib\site-packages\s klearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit ly to suppress the warning

warnings.warn(

In [36]:

```
plt.plot(p,sse)
plt.xlabel("K")
plt.ylabel("Sum of squared error")
```

Out[36]:

Text(0, 0.5, 'Sum of squared error')

district wise

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [2]:

df=pd.read_csv(r"C:\Users\91950\OneDrive\Documents\district wise rainfall normal.csv")
df

Out[2]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	A
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	27
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	42
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	46
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	42
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	71
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	52
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	63
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	35
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	59
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	21

641 rows × 19 columns

localhost:8888/notebooks/(rainfall of train)-mini project-3.ipynb

In [3]:

```
df.info()
```

Dtype STATE_UT_NAME 641 non-null 0 object 1 DISTRICT 641 non-null object float64 2 641 non-null JAN 641 non-null float64 3 FEB 4 641 non-null float64 MAR 5 APR 641 non-null float64 float64 6 MAY 641 non-null 7 JUN 641 non-null float64 8 JUL 641 non-null float64 9 float64 641 non-null AUG 10 SEP 641 non-null float64 11 641 non-null float64 OCT NOV 641 non-null float64 12 13 DEC 641 non-null float64 float64 14 ANNUAL 641 non-null float64 641 non-null 15 Jan-Feb Mar-May 641 non-null float64 16 float64 17 Jun-Sep 641 non-null 18 Oct-Dec 641 non-null float64

dtypes: float64(17), object(2)

memory usage: 95.3+ KB

In [4]:

```
df.pop("STATE_UT_NAME")
```

Out[4]:

0	ANDAMAN And NICOBAR ISLANDS
1	ANDAMAN And NICOBAR ISLANDS
2	ANDAMAN And NICOBAR ISLANDS
3	ARUNACHAL PRADESH
4	ARUNACHAL PRADESH
	•••
636	KERALA
637	KERALA
638	KERALA
639	KERALA
640	LAKSHADWEEP

Name: STATE_UT_NAME, Length: 641, dtype: object

```
In [5]:
```

```
df.pop("DISTRICT")
Out[5]:
0
              NICOBAR
1
        SOUTH ANDAMAN
2
        N & M ANDAMAN
3
                 LOHIT
4
            EAST SIANG
636
                IDUKKI
637
              KASARGOD
       PATHANAMTHITTA
638
              WAYANAD
639
          LAKSHADWEEP
640
Name: DISTRICT, Length: 641, dtype: object
In [6]:
df.pop("Jan-Feb")
Out[6]:
0
       165.2
1
        69.7
2
        48.6
3
       123.0
4
       112.8
       . . .
636
        35.5
637
         3.3
638
        65.0
639
        13.1
        35.5
640
Name: Jan-Feb, Length: 641, dtype: float64
In [7]:
df.pop("Mar-May")
Out[7]:
0
       540.7
       483.5
1
2
       405.6
3
       841.3
       645.4
       . . .
636
       426.6
       272.9
637
638
       553.5
639
       275.4
       232.4
640
Name: Mar-May, Length: 641, dtype: float64
```

In [8]:

```
df.pop("Jun-Sep")
Out[8]:
0
       1207.2
1
       1757.2
2
       1884.4
3
       1848.5
4
       3008.4
636
       2276.2
637
       3007.5
       1715.7
638
       2632.1
639
        998.5
640
Name: Jun-Sep, Length: 641, dtype: float64
```

In [9]:

```
df.pop("Oct-Dec")
```

Out[9]:

```
0
       892.1
1
       705.3
2
       574.7
3
       231.0
4
       268.1
       . . .
636
       564.2
637
       337.9
638
       624.2
639
       332.5
640
       333.6
Name: Oct-Dec, Length: 641, dtype: float64
```

In [10]:

```
df.describe()
```

Out[10]:

	JAN	FEB	MAR	APR	MAY	JUN	JUL
count	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000
mean	18.355070	20.984399	30.034789	45.543214	81.535101	196.007332	326.033697
std	21.082806	27.729596	45.451082	71.556279	111.960390	196.556284	221.364643
min	0.000000	0.000000	0.000000	0.000000	0.900000	3.800000	11.600000
25%	6.900000	7.000000	7.000000	5.000000	12.100000	68.800000	206.400000
50%	13.300000	12.300000	12.700000	15.100000	33.900000	131.900000	293.700000
75%	19.200000	24.100000	33.200000	48.300000	91.900000	226.600000	374.800000
max	144.500000	229.600000	367.900000	554.400000	733.700000	1476.200000	1820.900000
4							•

```
In [11]:
```

```
features=df.columns[0:12]
target=df.columns[-1]
```

In [12]:

```
x=df[features].values
y=df[target].values
```

In [13]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [14]:

```
a=LinearRegression()
a.fit(x_train,y_train)
print(a.score(x_test,y_test))
```

1.0

lasso

In [15]:

```
from sklearn.linear_model import Ridge,RidgeCV,Lasso
ridge=Ridge(alpha=10)
ridge.fit(x_train,y_train)
train_score_ridge=ridge.score(x_train,y_train)
test_score_ridge=ridge.score(x_test,y_test)
print(train_score_ridge)
print(test_score_ridge)
```

- 0.999999999947972
- 0.99999999936745

In [16]:

```
l=Lasso(alpha=10)
l.fit(x_train,y_train)
train_score_l=l.score(x_train,y_train)
test_score_l=l.score(x_test,y_test)
print(train_score_l)
print(test_score_l)
```

- 0.9999994726527797
- 0.9999993701605238

In []: