

GENERAL SPECIFICATIONS

NOTE: Electrical characteristics at $+25\,^{\circ}\text{C}$ unless otherwise specified

Capacitance Range: 1.0 pF to 0.056 μF

Temperature Coefficient of Capacitance (TCC):

 0 ± 30 ppm/°C from - 55 °C to + 125 °C

Dissipation Factor (DF):

0.1 % maximum at 1.0 Vrms and 1 kHz for values > 1000 pF 0.1 % maximum at 1.0 Vrms and 1 MHz for values \le 1000 pF

FEATURES

 C0G is an ultra-stable dielectric offering a Temperature Coefficient of Capacitance (TCC) of 0 ± 30 ppm/°C

- Low Dissipation Factor (DF)
- · Ideal for critical timing and tuning applications
- Ideal for snubber and surge suppression applications

Insulation Resistance (IR):

At + 25 °C and rated voltage 100 000 M Ω minimum or 1000 Ω F, whichever is less At + 125 °C and rated voltage 10 000 M Ω minimum or

100 Ω F, whichever is less

Dielectric Withstanding Voltage (DWV):

This is the maximum voltage the capacitors are tested for a 1 to 5 second period and the charge/discharge current does not exceed 50 mA

≤ 200 Vdc: DWV at 250 % of rated voltage 500 Vdc: DWV at 200 % of rated voltage 630/1000 Vdc: DWV at 150 % of rated voltage 3000 Vdc: DWV at 120 % of rated voltage

VJ0805 ³⁾ CASE CODE DIELECTRIC COPACITANCE NOMINAL CODE CAPACITANCE TOLERANCE TERMINATION DC VOLTAGE RATING ¹⁾ A = COG (NP0) Expressed in picofarads (pF). The first D = ± 0.10 pF D = ± 0.5 pF D	ORDER	ING INFO	RMATION						
two digits are significant, the third is a multiplier. An "R" indicates a decimal point. Examples: $102 = 1000 \text{ pF}$ 102	CASE CODE 0402 0603 0805 1206 1210 1808 1812 1825 2220	DIELECTRIC	CAPACITANCE NOMINAL CODE L Expressed in picofarads (pF). The first two digits are significant, the third is a multiplier. An "R" indicates a decimal point. Examples: 102 = 1000 pF	CAPACITANCE TOLERANCE B = $\pm 0.10 \text{ pF}$ C = $\pm 0.25 \text{ pF}$ D = $\pm 0.5 \text{ pF}$ F = $\pm 1 \%$ G = $\pm 2 \%$ J = $\pm 5 \%$ K = $\pm 10 \%$ NOTE: B, C, D < $\pm 10 \text{ pF}$	TERMINATION X = Ni barrier 100 % tin	DC VOLTAGE RATING ¹⁾ L X = 25 V A = 50 V B = 100 V C = 200 V E = 500 V L = 630 V G = 1000 V	MARKING A = Unmarked M = Marked NOTE: Marking is only available for 0805 and 1206 T = 7" reel/plastic t C = 7" reel/paper ta R = 11 1/4" reel/pla P = 11 1/4" reel/pa O = 7" reel/flamed	ape ape astic tape per tape paper tape	### ²⁾ PROCESS CODE

- 1. DC voltage rating should not be exceeded in application
- 2. Process Code may be added with up to three digits, used to control non-standard products and/or special requirements
- 3. Case size designator may be replaced by a four digit drawing number used to control non-standard products and/or requirements

Vishay Vitramon

Multilayer Ceramic Chip Capacitors

COG	(NPO)	DIEL	LEC1	ric																	
	YLE		/J040			/J060	3		VJC	805			1	/J120	6			٧	J1210	1)	
EIA	TYPE		0402			0603			08	805				1206					1210		
VOLTA	GE (Vdc)	25	50	100	50	100	200	50	100	200	500	50	100	200	500	630	50	100	200	500	630
CAP.																					
CODE	CAP.																				
1R0	1.0 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•					
1R2	1.2 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•					<u> </u>
1R5 1R8	1.5 pF 1.8 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•					
2R2	2.2 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•					
2R7	2.7 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•					
3R3	3.3 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•					
3R9 4R7	3.9 pF 4.7 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•					<u> </u>
5R6	5.6 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•					
6R8	6.8 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•					
8R2	8.2 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•					
100	10 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•			•		<u> </u>
120 150	12 pF 15 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•			•		
180	18 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•			•		
220	22 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•			•		
270	27 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•			•		
330	33 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•			•		
390 470	39 pF 47 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•			•		
560	56 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•			•	•	•
680	68 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•			•	•	•
820	82 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•			•	•	•
101 121	100 pF 120 pF	••	••	••	••	••	••	••	••	••	•	•	•	•	•	•			•	•	•
151	150 pF	••	••	••	••	••	••	••	••	••	•	•								•	
181	180 pF	••	••		••	••	••	••	••	••	•	•	•	•	•	•			•	•	•
221	220 pF	••	••		••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•
271 331	270 pF 330 pF				••	••	••	••	••	••	•	•	•	•	•	•	•	•	•	•	•
391	390 pF				••	••		••	••	••	•	•	•		•	•			•	•	
471	470 pF				••			••	••	•		•	•	•	•	•	•	•	•	•	•
561	560 pF				••			••	••	•		•	•	•	•	•	•	•	•	•	•
681 821	680 pF				••			••	••	•		•	•	•	•	•	•	•	•	•	•
102	820 pF 1000 pF							••	••	•		•	•	•	•	•	•	•	•	•	•
122	1200 pF							•	•			•	•	•			•	•	•	•	•
152	1500 pF							•	•			•	•	•			•	•	•	•	•
182	1800 pF							•	<u> </u>			•	•	•			•	•	•	•	•
222 272	2200 pF 2700 pF							•				•	•	•			•	•	•		_
332	3300 pF							•				•	•	•			•	•	•		
392	3900 pF							•				•	•				•	•	•		
472	4700 pF											•	•				•	•	•		
562 682	5600 pF 6800 pF								-			•					•	•	•		₩
822	8200 pF											•					· ·	⊢ <u> </u>			
103	0.010 µF											•					•				
123	0.012 µF																•				<u> </u>
153 183	0.015 μF 0.018 μF								-												
223	0.018 µF								 												\vdash
273	0.027 µF																				
333	0.033 µF																				
	0.039 µF																				
	0.047 μF 0.056 μF								-												₩
Note	σ.σσσ μι		l	ı	l	!	ı		1	ı	ı	l	ı	ı	l	ı	<u> </u>	1	!	l .	——

- 1. See soldering recommendations within this data book, or visit www.vishay.com/doc?45034
- Available only in paper tape

Vishay Vitramon

6-	TYLE		-EC	J180					V 14	812 ¹⁾)			V 11	825 ¹⁾			V	J222	n1)			VIO	225 ¹⁾	
			٧٠	1100	0''													٧,	J222(J·/			VJZ	225"	
	TYPE			-		1				312					25	1			-					-	
	GE (VDC)	50	100	200	500	1000	50	100	200	500	1000	3000	50	100	200	500	50	100	200	500	1000	50	100	200	500
CAP.	CAP.																								
1R0	1.0 pF																								
1R2 1R5	1.2 pF 1.5 pF																								
1R8	1.8 pF																								
2R2	2.2 pF																								
2R7	2.7 pF																								
3R3	3.3 pF																								
3R9 4R7	3.9 pF 4.7 pF																								
5R6	5.6 pF																								
6R8	6.8 pF																								
8R2	8.2 pF																								
100	10 pF								•	•															
120 150	12 pF 15 pF								•	•		•													
180	18 pF								•	•	•	•													
220	22 pF								•	•	•	•													
270	27 pF								•	•	•	•													
330	33 pF								•	•	•	•													
390	39 pF								•	•	•	•													
470 560	47 pF 56 pF								•	•	•	•													
680	68 pF			•					•	•	•	•													
820	82 pF			•					•	•	•	•													
101	100 pF			•					•	•	•	•			•	•									•
121 151	120 pF			•	•				•	•	•				•	•									•
181	150 pF 180 pF			•	•				•	•	•				•	•									•
221	220 pF	•	•	•	•	•			•	•	•				•	•									•
271	270 pF	•	•	•	•	•			•	•	•				•	•									•
331	330 pF	•	٠	•	•	•			•	•	•				•	•									•
391 471	390 pF 470 pF	•	•	•	•	•			•	•	•				•	•									•
561	560 pF	•	•	•	•	•	•	•	•	•	•				•	•									•
681	680 pF	•	•	•	•	•	•	•	•	•	•				•	•									•
821	820 pF	•	٠	•	•	•	٠	•	•	•	•				•	•									•
102	1000 pF	•	•	•	•	•	•	•	•	•	•		•	•	•	•								•	•
122	1200 pF	•	•	•	•		•	•	•	•	•		•	•	•	•						•	•	•	•
152 182	1500 pF 1800 pF	•	•	•	•		•	•	•	•	•		•	•	•	•						•	•	•	•
222	2200 pF	•	•	•	-		•	•	•	•	•		•	•	•	•				•	•	•	•	•	•
272	2700 pF	•	•	•			•	•	•	•			•	•	•	•				•	•	•	•	•	•
332	3300 pF	•	•	•			•	•	•	•			•	•	•	•				•	•	•	•	•	•
392	3900 pF	•	•	•			•	•	•	•			•	•	•	•			-	•	•	•	•	•	•
472 562	4700 pF 5600 pF	•	•	•		-	•	•	•	•			•	•	•	•			•	•		•	•	•	•
682	6800 pF	•	•	•			•	•	•				•	•	•		•	•		Ť		•		•	•
822	8200 pF	•	•				•	•	•				•	•	•	•	•	•	•			•	•	•	•
103	0.010 μF	•					•	•	•				•	•	•	•	•	•	•			•	•	•	•
123	0.012 µF						•	•	•				•	•	•		٠	•	•			•	•	•	•
153 183	0.015 μF 0.018 μF						•	•					•	•	•		•	•				•	•	•	
223	0.018 μF 0.022 μF						•						•	•	•		•	•				•	•	•	
273	0.022 μΓ 0.027 μF												•	•	•		•					•	•	•	
333	0.033 μF												•	•			•					•	•	•	
393	0.039 µF												٠									•	•	•	
473	0.047 μF																								

1. See soldering recommendations within this data book, or visit www.vishay.com/doc?45034

EIA STYLE	VISHAY VITRAMON	LENGTH	WIDTH	MAXIMUM THICKNESS (T)	TERMINA	ATION (P)
EIA STYLE	STYLE DESIGNATION	(L)	(W)	THICKNESS (I)	(Min.)	(Max.)
0402	VJ0402	0.040 + 0.004/ - 0.002 [1.00 + 0.10/ - 0.05]	0.020 + 0.004/ - 0.002 [0.50 + 0.10/ - 0.05]	0.024 [0.60]	0.004 [0.10]	0.016 [0.41]
0603	VJ0603	0.063 ± 0.005 [1.60 ± 0.12]	0.031 ± 0.005 [0.80 ± 0.12]	0.036 [0.92]	0.012 [0.30]	0.018 [0.46]
-	VJ0612	0.063 ± 0.008 [1.60 ± 0.20]	0.126 ± 0.008 [3.20 ± 0.20]	0.067 [1.68]	0.010 [0.25]	0.018 [0.46]
-	VJ0508	0.049 ± 0.008 [1.25 ± 0.20]	0.079 ± 0.008 [2.00 ± 0.20]	0.042 [1.07]	0.005 [0.13]	0.018 [0.46]
0805	VJ0805	0.079 ± 0.008 [2.00 ± 0.20]	0.049 ± 0.008 [1.25 ± 0.20]	0.057 [1.45]	0.010 [0.25]	0.028 [0.71]
1206	VJ1206	0.126 ± 0.008 [3.20 ± 0.20]	0.063 ± 0.008 [1.60 ± 0.20]	0.067 [1.68]	0.010 [0.25]	0.028 [0.71]
1210	VJ1210	0.126 ± 0.008 [3.20 ± 0.20]	0.098 ± 0.008 [2.50 ± 0.20]	0.067 [1.68]	0.010 [0.25]	0.028 [0.71]
-	VJ1808	0.177 ± 0.010 [4.50 ± 0.25]	0.080 ± 0.010 [2.03 ± 0.25]	0.067 [1.68]	0.010 [0.25]	0.030 [0.76]
1812	VJ1812	0.177 ± 0.010 [4.50 ± 0.25]	0.126 ± 0.008 [3.20 ± 0.20]	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]
1825	VJ1825	0.177 ± 0.010 [4.50 ± 0.25]	0.252 ± 0.010 [6.40 ± 0.25]	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]
-	VJ2220	0.220 ± 0.008 [5.59 ± 0.20]	0.200 ± 0.010 [5.08 ± 0.25]	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]
-	VJ2225	0.220 ± 0.010 [5.59 ± 0.25]	0.250 ± 0.010 [6.35 ± 0.25]	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]
-	VJ3640	0.360 ± 0.015 [9.14 ± 0.38]	0.400 ± 0.015 [10.20 ± 0.38]	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]

Vishay Vitramon

Multilayer Ceramic Chip Capacitors

REEL DIMENSIONS in inches (millimeters)												
TAPE SIZE	A MAX.	B MIN.	С	D MIN.	N MIN.	W ₁	W ₂ MAX.	W ₃				
8 mm	10.000	0.050	0.512 + 0.50 - 0.20	0.705	1.969	0.331 + 0.059/- 0.0 (8.4 + 1.5/- 0.0)	0.567 (14.4)	Shall				
12 mm	12.992 (330)	0.059 (1.5)		0.795 (20.2)	(50.0)	0.488 + 0.079/- 0.0 (12.4 + 2.0/- 0.0)	0.724 (18.4)	tape width without				
16 mm			(13.0 + 0.50 - 0.20)		2.401 (61.0)	0.646 + 0.0789/- 0.0 (16.4 + 2.0/- 0.0)	0.882 (22.4)	interferance				

Note

- 1. For reels less than 360 mm diameter (A), the most widely used reel diameters are 178 mm ± 2 mm and 330 mm ± 2 mm. Reel diameters ranging from 254 mm to 292 mm also exist. Commonly used hub diameters are 80, 100, 150 and 178 mm.
- Tape with components must wrap around hub without damage.

STANDAR	D PACKAG	ING QUANTITIES	1/2)				
		7" R QUAN	EEL TITIES	11 1/4" AND 13"REEL QUANTITIES			
BODY SIZE	TAPE SIZE	PAPER TAPE PACKAGING CODE "C"/"O" ⁴⁾	PLASTIC TAPE PACKAGING CODE "T"	PAPER TAPE PACKAGING CODE "P"/" " ⁴⁾	PLASTIC TAPE PACKAGING CODE "R"		
0402 ³⁾	8 mm	5000/10 000	N/A	10 000/30 000	N/A		
0603	8 mm	4000	4000	10 000	N/A		
0805 4)	8 mm	3000	3000	10 000	10 000		
1206 ⁵⁾	8 mm	N/A	3000	N/A	10 000		
1210 ⁵⁾	8 mm	N/A	3000	N/A	10 000		
1808	12 mm	N/A	3000	N/A	10 000		
1812	12 mm	N/A	1000	N/A	5000		
1825	12 mm	N/A	1000	N/A	4000		
2220	12 mm	N/A	1000	N/A	4000		
2225	12 mm	N/A	1000	N/A	4000		
3640	16 mm	N/A	500	N/A	2000		

- REFERENCE: EIA Standard RS 481 "Taping of Surface Mount Components for Automatic Placement"
- N/A = Not Available, not supported anymore
- Quantity can vary with customer request Flamed paper tape code "O" (7" reel) and "I" (11 1/4/13" reel) for AgPd terminated parts (termination code F) Packaging "C/P" or "T/R" and quantity can depend from product thickness

EMBOSSED 8, 12 AND 16 MM CARRIER TAPE

Figure 1

CONSTAN	CONSTANT CARRIER TAPE METRIC DIMENSIONS in inches (millimeters)												
TAPE SIZE	D ₀	E ₁	P ₀	P ₂	S ₁ MIN.	T MAX.	T ₁						
8 mm and 12 mm	0.059 + 0.004/- 0.0 (1.50 + 0.10/- 0.0)	0.069 + 0.004 (1.75 ± 0.10)	0.175 + 0.004 (4.0 ± 0.10)	0.079 + 0.002 (2.0 ± 0.05)	0.024 (0.60)	0.024) (0.60)	0.004 (0.10) Max.						

VARIAB	VARIABLE CARRIER TAPE METRIC DIMENSIONS in inches (millimeters)												
TAPE SIZE	B ₁ MAX.	D ₁ MIN.	E ₂ MIN.	F	P ₁	R MIN.	T ₂	W MAX.	A ₀ , B ₀ AND K ₀				
8 mm 2 mm Pitch	0.171 (4.35)	0.177 (0.450)	0.246 (6.25)	0.138 ± 0.002 (3.50 ± 0.05)	0.79 ± 0.004 (2.00 ± 0.10)	0.984 (25.0)	0.098 (2.50) Max.	0.327 (8.30)	see note 1				
8 mm 4 mm Pitch	0.171 (4.35)	0.177 (0.450)	0.246 (6.25)	0.138 ± 0.002 (3.50 ± 0.05)	0.157 ± 0.004 (4.00 ± 0.10)	0.984 (25.0)	0.098 (2.50) Max.	0.327 (8.30)	see note 1				
12 mm 2 mm Pitch	0.323 (8.20)	0.059 (0.150)	0.404 (10.25)	0.217 ± 0.002 (5.50 ± 0.05)	0.157 ± 0.004 (4.00 ± 0.10)	1.181 (30.0)	0.256 (6.50) Max.	0.484 (12.30)	see note 1				
16 mm 4 mm Pitch	0.476 (12.1)	0.059 (0.150)	0.561 (14.25)	0.295 ± 0.004 (7.50 ± 0.1)	0.157 ± 0.004 (4.00 ± 0.10)	1.181 (30.0)	0.341 (8.0) Max.	0.641 (16.3)	see note 1				

- 1. The cavity defined by Ao, Bo and Ko shall surround the component with sufficient clearance that:
 - a) The component does not protrude above the top surface of the carrier tape.
 - b) The component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed.
 - c) Rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm figure 3 & 4.
 - d) Lateral movement of the component is restricted to 0.5 mm maximum for 8 mm and 12mm wide tape and to 1.0 mm maximum for 16 mm wide tape figure 5.

PAPER 8 MM CARRIER TAPE

CONSTAN	CONSTANT CARRIER TAPE METRIC DIMENSIONS in inches (millimeters)											
TAPE SIZE	D ₀	E ₁	P ₀	P ₂	T ₁ MAX.	G MIN.	R REF.					
8 mm	0.059 + 0.004/- 0.0 (1.50 + 0.10/- 0.0)	0.069 + 0.004 (1.75 ± 0.10)	0.175 + 0.004 (4.0 ± 0.10)	0.079 + 0.002 (2.0 ± 0.05)	0.024 (0.60)	0.029 (0.75)	0.010 (0.25)					

VARIABLE	VARIABLE CARRIER TAPE METRIC DIMENSIONS in inches (millimeters)												
TAPE SIZE	E ₂ MIN.	F	P ₁	W MAX.	A _{0,} B ₀ AND K ₀	Т							
8 mm 2 mm Pitch	0.246 (6.25)	0.138 ± 0.002 (3.50 ± 0.05)	0.79 ± 0.004 (2.00 ± 0.10)	0.327 (8.30)	see note 1	1.1 mm maximum for paper base tape							
8 mm 4 mm Pitch	0.246 (6.25)	0.138 ± 0.002 (3.50 ± 0.05)	0.157 ± 0.004 (4.00 ± 0.10)	0.327 (8.30)	see note 1	1.1 mm maximum for paper base tape							

- 1. The cavity defined by Ao, Bo and Ko shall surround the component with sufficient clearance that:
 - a) The component does not protrude above the top surface of the carrier tape.
 - b) The component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed.
 - c) Rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm figure 3 & 4.
 - d) Lateral movement of the component is restricted to 0.5 mm maximum for 8 mm and 1 2mm wide tape and to 1.0 mm maximum for 16 mm wide tape figure 5.

MAXIMUM COMPONENT ROTATION FOR PUNCHED AND EMBOSSED CARRIER

Figure 3 Maximum Lateral Movement Carrier Top View

8 & 12 mm carrier: 0.020" (0.050 mm) Maximum

16 mm carrier: 0.039" (1.0 mm) Maximum

8 & 12 mm carrier: 0.020" (0.050 mm) Maximum

16 mm carrier: 0.039" (1.0 mm) Maximum

Figure 4

Maximum Component Rotation Embossed Carrier Side View

Maximum Component Rotation Paper Carrier Side View

MAXIMUM LATERAL MOVEMENT FOR PUNCHED AND EMBOSSED CARRIER

Figure 5 Maximum Component Rotation Top View

BENDING RADIUS FOR PUNCHED EMBOSSED CARRIER

Figure 6

Note 1: The tape with or without components shall pass without damage round "R", see dimensions table

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000
Revision: 08-Apr-05
www.vishay.com