测量 $10\Omega(外接)$ 和 $1k\Omega(内接)$ 电阻的伏安特性

10欧外接:

精度等级

$$1V * 0.5\% = 0.005V$$

$$75mA * 0.5\% = 0.375mA$$
(1)

	1	2	3	4	5	6	7	8	9	10
电压表 (1V/100格)	20.1	25.3	30.1	36.8	43.3	49.9	55.9	65.9	52.2	46
电流表 (75mA/150 格)	41.9	52.2	62	75.5	89	102	115.1	136	108.2	95.5
电压 (V)	0.201	0.253	0.301	0.368	0.433	0.499	0.559	0.659	0.522	0.460
电流 (mA)	21.0	26.1	31.0	37.8	44.5	51.0	57.6	68.0	54.1	47.8

$$I=rac{U}{R_x}+rac{U}{R_V}$$
 (1)
$$\mbox{\mathbb{H}} R_x=rac{1}{102.93}k\Omega=9.715\Omega$$

相对不确定度
$$u_r = \frac{|10 - 9.715|}{10} = 2.95\%$$
 (2)

1k欧内接

精度等级

$$10V * 0.5\% = 0.05V$$

$$7.5mA * 0.5\% = 0.0375mA$$
(3)

	1	2	3	4	5	6	7	8	9	10
电压表 (10V/100 格)	19.5	25.5	28.8	34	39.8	49.5	53.5	60	49.8	42.9
电流表 (7.5mA/150 格)	39.2	51.2	58	68	80	90.8	107.5	120	100	85.9
电压 (V)	1.95	2.55	2.88	3.40	3.98	4.95	5.35	6.00	4.98	4.29
电流 (mA)	1.96	2.56	2.90	3.40	4.00	4.54	5.38	6.00	5.00	4.30

$$I=rac{U}{R_x+R_A}$$
 (4)
又由于 R_A 趋近于 0
即 $R_x=rac{1}{1.0003}k\Omega=0.9997k\Omega$

相对不确定度
$$u_r = \frac{|1k - 0.9997k|}{1k} = 0.03\%$$
 (5)

测绘半导体二极管的正、反向伏安特性曲线

精度等级

$$1V * 0.5\% = 0.005V$$

$$15mA * 0.5\% = 0.075mA$$
(6)

考虑到拐点时二极管电阻较大,约为几百欧姆以上,采用内接法

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
电压表 (1V/100 格)	12.9	22.9	32.8	52.5	64.2	67.9	70	72.2	73.3	74.2	75.5	76.8	77.5	78.9	80
电流表 (15mA/150 格)	0.1	0.1	0.2	0.3	0.8	2.6	5.1	10.5	15.8	20.5	29.2	42.3	55.2	70.3	105
电压 (V)	0.129	0.229	0.328	0.525	0.642	0.679	0.700	0.722	0.733	0.742	0.755	0.768	0.775	0.789	0.800
电流 (mA)	0.01	0.01	0.02	0.03	0.08	0.26	0.51	1.05	1.58	2.05	2.92	4.23	5.52	7.03	10.50

精度等级

$$10V * 0.5\% = 0.05V$$

$$15mA * 0.5\% = 0.075mA$$
(7)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
电压表 (10V/100 格)	5	11.5	16	21.2	29.8	40.1	45.2	47.3	49.8	51	51.3	51.5	51.5	51.6	51.7	51.8	51.9
电流表 (15mA/150 格)	0.1	0.1	0.2	0.3	0.3	0.4	0.6	0.8	2.9	6	9.9	20.5	29	41.2	53.2	86	109.5
电压 (V)	0.50	1.15	1.60	2.12	2.98	4.01	4.52	4.73	4.98	5.1	5.13	5.15	5.15	5.16	5.17	5.18	5.19
电流 (mA)	0.01	0.01	0.02	0.03	0.03	0.04	0.06	0.08	0.29	0.6	0.99	2.05	2.9	4.12	5.32	8.6	10.95

则得到半导体二极管伏安特性曲线,可以看出20°左右时二极管最高反向工作电压约为5V,反向电流约为0.3mA,正向导通电压约为0.7V