STAT131 Week 1 Notes

William Santosa

Winter 2022 Quarter

1 Introduction

This document covers essential information and example problems with answers in Chapter 1 in the "Introduction to Probability, 2nd Edition" written by Joseph K. Blitzstein and Jessica Hwang.

2 Important Definitions

Contains important definitions for understanding Chapter 1 in textbook.

- Sample Space S is the set of all possible outcomes from the experiment.
- Event A is the subset of sample space S.
 - **Note:** We say an event *occurred* if the actual outcome is in A.
- Complement of A are the elements not in A, denoted as

 A^c

• Union of A and B occurs if at least one of A or B occurs

 $A \cup B$

• Intersect of A and B occurs if only and if both of A and B occur

 $A \cap B$

• De Morgan's laws are a pair of transformation rules vital to set theory

$$(A \cup B)^c = A^c \cap B^c$$
 and $(A \cap B)^c = A^c \cup B^c$

• Naive definition of probability is to count the number of ways an event can happen and divide by the total number of possible outcomes

$$P_{naive}(A) = \frac{|A|}{|S|} = \frac{\text{number of outcomes favorable to A}}{\text{total number of outcomes in S}}$$

- 1. There is *symmetry* in the problem if outcomes are equally likely.
- 2. Naive can be used when outcomes are equally likely by design.
- 3. Naive is useful as a *null model*, which is when we apply the naive definition to see what predictions it would yield.
- The multiplication rule is used for sampling with replacement and sampling without replacement.
 - Usage: Compound experiment with experiment A, B, with a, b outcomes respectively. Then the compound experiment has ab possible outcomes.
- To adjust for overcounting, note the amount of times you count each probability (c) and adjust by dividing by c.
- Story proofs are proofs by interpretation. This usually means counting the same thing in two different ways, rather than doing an algebraic proof.
- A probability space consists of a sample space S and a probability function P that takes an event A is a subset of S as input and returns P(A), a real number between 0 and 1, inclusive, as output. It must satisfy the following axioms.
 - 1. $P(\emptyset) = 0, P(S) = 1.$
 - 2. If A_1, A_2, \dots are disjoint events, then

$$P(\bigcup_{j=1}^{\infty} (A_j)) = \sum_{j=1}^{\infty} P(A_j).$$

- For any events A and B, they hold the properties:
 - 1. $P(A^c) = 1 P(A)$
 - 2. If $A \subset B$, then $P(A) \leq P(B)$
 - 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- ullet Permutations occur when selecting without replacement and order is important
 - Usage: $\frac{n!}{(n-k)!}$, n = total number of items, k = number of chosen items, denoted as ${}_nP_k, P(k,n), P_{n,k}$

- Combinations occur when selecting without replacement and order isn't important
 - Usage: $\frac{n!}{(n-k)!k!}$, n = total number of items, k = number of chosen items, denoted as ${}_nC_k, C(k,n), C_{n,k}$
- Choosing an item with replacement means you can choose the same item multiple times
 - **Usage:** $n^k,\,\mathbf{n}=$ total number of items, $\mathbf{k}=$ number of chosen items

3 Screenshots

English	Sets
Events and occurrences	
sample space	S
s is a possible outcome	$s \in S$
A is an event	$A\subseteq S$
A occurred	$s_{\text{actual}} \in A$
something must happen	$s_{ ext{actual}} \in S$
New events from old events	
A or B (inclusive)	$A \cup B$
A and B	$A\cap B$
not A	A^c
A or B , but not both	$(A \cap B^c) \cup (A^c \cap B)$
at least one of A_1, \ldots, A_n	$A_1 \cup \cdots \cup A_n$
all of A_1, \ldots, A_n	$A_1 \cap \cdots \cap A_n$
Relationships between events	
A implies B	$A\subseteq B$
${\cal A}$ and ${\cal B}$ are mutually exclusive	$A\cap B=\emptyset$
A_1, \ldots, A_n are a partition of S	$A_1 \cup \cdots \cup A_n = S, A_i \cap A_j = \emptyset \text{ for } i \neq j$

1.