Capítulo 7

Lei de Ampere

No capítulo anterior, estudamos como cargas em movimento (correntes elétricas) sofrem forças magnéticas, quando na presença de campos magnéticos. Neste capítulo, consideramos como estas correntes *produzem* campos magnéticos.

7.1 Lei de Biot-Savart

• A Lei de Biot-Savart determina o campo magnético $d\vec{B}$ gerado em um ponto P a uma distância r de um elemento de comprimento $d\vec{s}$ em um fio por onde se passa uma corrente i:

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{i \ d\vec{s} \times \hat{r}}{r^2} \tag{7.1}$$

• Permeabilidade do vácuo: $\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}.$

Figura 7.1: Lei de Biot-Savart para o campo magnético. (Serway)

Note que

- $d\vec{B}$ é \perp a $d\vec{s}$ e a \vec{r} . Direção pela regra da mão direita:
 - Coloque polegar na direção da corrente.
 - Os outros dedos se curvam na direção do campo.
 - $-\vec{B}$ é gerado *circulando* a corrente.
- $dB \propto i$, $ds \in \sin \theta$.
- $dB \propto 1/r^2$, como na Lei de Coulomb
- Para campo gerado por todo o fio, deve-se integrar a Lei de Biot-Savart.

Figura 7.2: Regra da mao-direita. (Serway)

7.2 Exemplos

7.2.1 Fio Reto

Figura 7.3: Campo devido a um fio reto. (Serway)

Considere um fio reto de corrente, como na Fig. 7.3 A contribuição devido a um elemento ds do fio é mostrada na figura. Todos os elementos $d\vec{B}$ do fio apontam para fora da página, na direcao \hat{z} . Para a magnitude precisamos calcular:

$$d\vec{s} \times \hat{r} = (dx \sin \theta)\hat{z} \tag{7.2}$$

A Lei de Biot-Savart nos dá

$$dB = \frac{\mu_0 i}{4\pi} \frac{dx \sin \theta}{r^2} \tag{7.3}$$

Usando $r^2 = x^2 + a^2$ e $\sin \theta = a/\sqrt{x^2 + a^2}$, temos

$$dB = \frac{\mu_0 i}{4\pi} \frac{a dx}{(x^2 + a^2)^{3/2}} \tag{7.4}$$

Usando o resultado da Eq. 1.15, temos

$$B = \int dB = \frac{\mu_0 i a}{4\pi} \int_{-b}^{b} \frac{dx}{(x^2 + a^2)^{3/2}} = \frac{\mu_0 i a}{4\pi} \left[\frac{x}{a^2 \sqrt{x^2 + a^2}} \right]_{-b}^{b}$$

$$\rightarrow B = \frac{\mu_0 i}{4\pi a} \left[\frac{2b}{\sqrt{b^2 + a^2}} \right]$$
(7.5)

Para um fio infinito $b \to \infty$, e temos

$$B = \frac{\mu_0 i}{2\pi a} \tag{7.6}$$

7.2.2 Fio Curvado

Figura 7.4: Campo devido a um fio curvo. (Serway)

Considere um fio curvo de corrente, como na Fig. 7.4 A contribuição do campo no ponto O devido a um elemento ds do fio é mostrada na figura. Os elementos AA' e CC' nao contribuem, pois neles $d\vec{s} \parallel \hat{r}$.

Em todos os pontos de AC, temos $d\vec{s} \perp \hat{r}$, portanto $|d\vec{s} \times \hat{r}| = ds$. A direção do campo em O é entrando na página. Pela lei de Biot-Savart temos:

$$dB = \frac{\mu_0 i}{4\pi} \frac{ds}{R^2} \tag{7.7}$$

que podemos facilmente integrar e obter o campo total:

$$B = \int dB = \frac{\mu_0 i}{4\pi R^2} \int ds = \frac{\mu_0 i}{4\pi R^2} (\theta R)$$

$$\rightarrow B = \frac{\mu_0 i}{4\pi R} \theta$$
(7.8)

7.2. EXEMPLOS 61

Se tivermos uma espira completa, $\theta = 2\pi$ e obtemos

$$B = \frac{\mu_0 i}{2R} \tag{7.9}$$

7.2.3 Espira Circular

Figura 7.5: Campo devido a uma espira circular. (Serway)

Considere uma espira circular de corrente, como na Fig. 7.5. A contribuição do campo no ponto P no eixo x da espira devido a um elemento ds do fio é mostrada na figura.

Temos $d\vec{s} \perp \hat{r}$ para todos os pontos do fio (note entretanto angulo θ entre \hat{r} e o eixo y), portanto $|d\vec{s} \times \hat{r}| = ds$. Temos

$$dB = \frac{\mu_0 i}{4\pi} \frac{ds}{x^2 + R^2} \tag{7.10}$$

Componentes de $d\vec{B}$: dB_x ao longo do eixo e $dB_y = dB_{\perp}$ na direção perpendicular. Somando contribuições $B_{\perp} = 0$ por cancelamentos. Calculamos então B_x , integrando $dB_x = dB\cos\theta$, onde $\cos\theta = R/\sqrt{x^2 + R^2}$:

$$B_{x} = \oint dB \cos \theta = \oint \frac{\mu_{0}i}{4\pi} \frac{ds}{x^{2} + R^{2}} \frac{R}{\sqrt{x^{2} + R^{2}}} = \frac{\mu_{i}R}{4\pi(x^{2} + R^{2})^{3/2}} \oint ds = \frac{\mu_{i}R}{4\pi(x^{2} + R^{2})^{3/2}} (2\pi R)$$

$$\rightarrow B_{x} = \frac{\mu_{0}iR^{2}}{2(x^{2} + R^{2})^{3/2}}$$

$$(7.11)$$

Em x = 0, reobtemos o resultado anterior:

$$B_x = B = \frac{\mu_0 i}{2R} \tag{7.12}$$

enquanto para $x \gg R$, lembrando do momento magnético $\mu = i(\pi R^2)$, temos:

$$B \approx \frac{\mu_0 i R^2}{2x^3} = \frac{\mu_0}{2\pi} \frac{\mu}{x^3} \tag{7.13}$$

ou vetorialmente

$$\vec{B} = \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{x^3} \tag{7.14}$$

similar ao campo distante de um dipolo elétrico $\vec{E} = \vec{p}/4\pi\epsilon_0 x^3$.

7.2.4 Força entre correntes paralelas

Figura 7.6: Forca entre dois fios paralelos de corrente. (Serway)

Considere 2 fios paralelos de comprimento l com correntes i_1 e i_2 separados de uma distância a.

Vamos calcular a forca magnética F_1 no fio 1 devido ao campo magnético \vec{B}_2 do fio 2. Como \vec{B}_2 é perpendicular ao comprimento \vec{l} do fio, temos

$$F_1 = i_1 l B_2 \sin 90^o = i_1 l \frac{\mu_0 i_2}{2\pi a} = \frac{\mu_0 i_1 i_2 l}{2\pi a}$$
 (7.15)

 F_1 é simétrico sob $1 \to 2$. Portanto $F_2 = F_1$. A direção de F_2 é oposta a F_1 , c.f. a 3^a lei de Newton. Correntes na mesma direção: fios se atraem Correntes opostas: fios se repelem.

7.3 Lei de Ampere

A Lei de Ampere relaciona a corrente (constante) que atravessa um circuito S com a circulação sobre este circuito do campo B criado pela corrente:

$$\oint_{L} \vec{B} \cdot d\vec{l} = \mu_{0} i_{\text{in}} \quad \text{(Lei de Ampere)}$$
(7.16)

A corrente na Lei de Ampere é a corrente total (soma de correntes positivas e negativas dependendo da direção), que atravessam o circuito. Correntes "fora" do circuito não contribuem.

A Lei de Ampere é uma das Equações de Maxwell e portanto uma lei fundamental do eletromagnetismo. Podemos trivialmente verificar que a Lei de Ampere vale para um fio infinito de corrente, em que $B = \mu_0 i/2\pi r$ a uma distância r do fio. Neste caso temos, para um circuito C circular ao fio, onde sabemos que B tem o mesmo valor, e aponta na direção de $d\vec{l}$

$$\oint_{L} \vec{B} \cdot d\vec{l} = \oint Bdl = B \oint dl = \left(\frac{\mu_0 i}{2\pi r}\right) (2\pi r) = \mu_0 i \tag{7.17}$$

Sendo uma lei fundamental, a Lei de Ampere vale não apenas neste caso, mas sempre.

7.4. EXEMPLOS 63

7.4 Exemplos

7.4.1 Fio com corrente

Figura 7.7: Campo fora e dentro de um fio, gerado por sua corrente. (Halliday)

Considere um fio reto com raio R com corrente uniformemente distribuida em seu interior, como na Fig. 7.7, para o qual desejamos saber o campo B tanto dentro quanto fora do fio.

Usando a Lei de Ampere com um circuito Amperiano fora do fio, temos

$$\oint \vec{B} \cdot d\vec{s} = \oint Bdl = B \oint dl = B(2\pi r) = \mu_0 i$$

$$\rightarrow B = \frac{\mu_0 i}{2\pi r} \tag{7.18}$$

Similarmente, usando um circuito dentro do fio e incluindo somente a corrente i' interna a r:

$$\oint \vec{B} \cdot d\vec{s} = B(2\pi r) = \mu_0 i' = \mu_0 i \frac{r^2}{R^2}$$

$$\rightarrow B = \frac{\mu_0 i}{2\pi R^2} r \tag{7.19}$$

7.4.2 Exercício: Fio com corrente e cavidade

Considere um fio cilíndrico, como anteriormente, mas com uma cavidade cilíndrica como mostrado na Fig. 7.8. Mostre que o campo magnético B em um ponto P genérico dentro da cavidade é constante. Essa é uma maneira de obter uma região com campo magnético constante.

Sugestão:

Considere primeiro o fio cilíndrico sem a cavidade e expresse a resposta em termos de r e $\hat{\theta}$. Considere então um fio com densidade de corrente no sentido oposto na posição da cavidade; expresse esta resposta em termos de r e $\hat{\theta}$. Por fim, use o princípio da superposição para a corrente total no fio.

Figura 7.8: Fio cilíndrico com uma cavidade cilíndrica em uma região qualquer.

7.4.3 Solenóide

Figura 7.9: Campo em um solenóide. (Halliday)

Considere um solenóide, como na Fig. 7.9, para o qual desejamos saber o campo B em seu interior.

O solenóide é basicamente uma soma de espiras empilhadas.

No seu interior, os campos se somam e o campo total é aproximadamente constante e uniforme.

No seu exterior, os campos se cancelam, e o campo é aproximadamente nulo.

Solenóide ideal: o comprimento é infinito e uma densidade de espiras infinita.

Considere o circuito mostrado, que contém N espiras com suas correntes atravessando o circuito. Usando a Lei de Ampere, temos

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{in} \tag{7.20}$$

Temos

$$\oint \vec{B} \cdot d\vec{s} = \int_a^b \vec{B} \cdot d\vec{s} + \int_b^c \vec{B} \cdot d\vec{s} + \int_c^d \vec{B} \cdot d\vec{s} + \int_d^a \vec{B} \cdot d\vec{s} \tag{7.21}$$

Destas, somente a primeira produz valor não nulo e igual a Bh. A segunda e quarta sao nulas pois o $\vec{B} \perp d\vec{l}$ e na terceira B=0. Alem disso, definindo

$$n = \frac{N}{h}$$
: número de espiras por unidade de comprimento (7.22)

temos $i_{in} = Ni = nhi$

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{in} \rightarrow Bh = \mu_0 inh$$

$$\rightarrow B = \mu_0 in \quad \text{(Solen\'oide ideal)}$$
(7.23)

$$\rightarrow B = \mu_0 in$$
 (Solenóide ideal) (7.24)

7.4.4Toróide

Figura 7.10: Campo em um toróide. (Halliday)

Considere um toróide com raio r, como na Fig. 7.10, para o qual desejamos saber o campo Bem seu interior.

O toroide é basicamente um solenóide curvado e com as extremidades identificadas.

Usando a Lei de Ampere, temos

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{in} \rightarrow B(2\pi r) = \mu_0 N i$$
(7.25)
$$B = \frac{\mu_0 N i}{2\pi r} \quad \text{(Tor\'oide)}$$
(7.26)

$$B = \frac{\mu_0 Ni}{2\pi r} \quad \text{(Tor\'oide)} \tag{7.26}$$

7.5 Magnetismo na Matéria

Vamos agora investigar o que ocorre com campos magnéticos na presença de um meio material.

7.5.1 Momento de Dipolo Magnético e Momento Angular

- Os átomos e íons podem possuir momento de dipolo magnético $\vec{\mu}$, normalmente relacionado a um momento angular do átomo.
- \bullet Considere um elétron de massa m e carga -e orbitando um núcleo atômico em uma trajetória circular e raio r. O momento angular L é dado por

$$L = mvr (7.27)$$

• Por outro lado, a corrente associada do movimento do elétron, bem como o momento de dipolo magnético ficam

$$i = \frac{e}{T} = \frac{ev}{2\pi r}$$

$$\mu = iA = \left(\frac{ev}{2\pi r}\right)\pi r^2 = \frac{evr}{2}$$
(7.28)

• Usando então vr = L/m, obtemos

$$\mu = \frac{e}{2m}L\tag{7.29}$$

ou, vetorialmente, como a carga do eletron é negativa,

$$\vec{\mu} = -\frac{e}{2m}\vec{L} \tag{7.30}$$

- Na mecânica quântica, verifica-se que o momento angular dos átomos é quantizado, de modo que a trajetória corresponda a um número inteiro de comprimentos de onda associado ao elétron. Esta é a base do modelo do átomo de Bohr, que leva à quantização dos níveis de energia.
- Os elétrons e átomos também possuem *spin*, que também está relacionado a um momento de dipolo magnético.

7.5.2 Diamagnetismo e Paramagnetismo

- Na maior parte dos materiais, os momentos magnéticos dos átomos se cancelam devido a orientações aleatórias.
- Quando um campo magnético é aplicado, um alinhamento resultante destes dipolos magnéticos ocorre e o meio se torna magnetizado.
- Lembre que a polarização elétrica sempre aponta na direção do campo externo E.
- Em se tratanto de um campo magnético externo, no entanto, alguns materiais têm seus dipolos magnéticos alinhados na direção de *B* (paramagnéticos), enquanto outros se alinham na direção oposta a *B* (diamagnéticos).
- O paramagnetismo se dá devido ao fato de que os momentos de dipolo magnético sofrem um torque e tendem a se alinhar com o campo externo.
- Alguns materiais mantém um momento de dipolo magnético mesmo após a retirada do campo externo. Estes são ditos ferromagnéticos. São usados e.g. como ímas. Nestes materiais, a magnetização depende de toda a história do material, e não apenas no campo externo momentâneo.
- O diamagnetismo é causado pela indução de Faraday, um efeito que estudaremos no próximo capítulo. Basicamente, a variação do campo magnético externo B_{orig} (enquanto ele é criado) gera uma voltagem V que causa uma corrente induzida i_{ind}, cujo campo induzido B_{ind} se opõe ao campo original B_{orig}. Portanto, o dipolo magnético μ_{ind} se alinha na direção oposta ao campo original B_{orig}. Esse efeito, embora sempre presente, em geral é mais fraco do que o paramagnetismo, quando ambos ocorrem.

67

7.5.3 Magnetização

• Magnetização: $\vec{M}=$ momento de dipolo magnético $\vec{\mu}$ por unidade de volume v

$$\vec{M} = \frac{\vec{\mu}}{\Delta v} \tag{7.31}$$

Figura 7.11: Magnetização em um elemento de volume $\Delta v = A \ ds$ ao redor do qual passa uma corrente i.

$$M = \frac{\mu}{\Delta v} = \frac{iA}{A \, ds} = \frac{i}{ds} \tag{7.32}$$

• Portanto, a corrente no circuito do elemento fica

$$i = Mds (7.33)$$

• Considere agora uma fatia de altura ds composta por varios elementos de circuito como esse, representando e.g. o momento de dipolo de uma camada de átomos:

Figura 7.12: Magnetização de vários elementos de volume $\Delta v = A \ ds$. Para magnetização constante, as correntes internas se cancelam, sobrando apenas uma corrente total circulante. Essa corrente i_m , embora nao necessariamente real, é chamada de corrente de magnetização.

- As correntes internas se cancelam, enquanto as externas se mantém formando uma "corrente" de magnetização i_M .
- Considere novamente 1 elemento, com a corrente de magnetizacao mostrada entrando na pagina.
- No circuito mostrado, para o qual temos

$$\oint \vec{M} \cdot d\vec{s} = Mds = i$$
(7.34)

pois $\vec{M}=0$ fora dos elementos e $\vec{M}\perp d\vec{s}$ nas bordas de cima e de baixo.

Figura 7.13: A circulação de M no circuito é igual a corrente de magnetização.

Figura 7.14: A circulação de M em um circuito qualquer pode ser obtida como a soma sobre vários elementos, pois as contribuições internas se cancelam.

- Para obter a circulação em um circuito qualquer, basta considerá-lo como a soma de vários elementos, pois as contribuições internas se cancelam, sobrando apenas as bordas.
- Portanto para um circuito c qualquer, com magnetização constante, temos que a corrente de magnetização fica

$$i_M = \sum \left[\oint_{\text{elementos}} \vec{M} \cdot d\vec{s} \right]$$

= $\oint_{\vec{a}} \vec{M} \cdot d\vec{s}$ (7.35)

7.5.4 Lei de Ampere

Considere uma região do espaco onde há correntes livres i_l e correntes de magnetização i_M . A Lei de Ampere leva em conta todas as correntes, e nos dá

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{tot} = \mu_0 (i_l + i_M)$$
 (7.36)

Usando $i_M = \oint \vec{M} \cdot d\vec{s}$, obtemos

$$\oint \frac{\vec{B}}{\mu_0} \cdot d\vec{s} = i_l + \oint \vec{M} \cdot d\vec{s}$$

$$\rightarrow \oint \left(\frac{\vec{B}}{\mu_0} - \vec{M}\right) = i_l$$
(7.37)

Definimos o vetor \vec{H} :

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \quad \text{ou} \quad \vec{B} = \mu_0 (\vec{H} + \vec{M})$$
 (7.38)

para o qual a Lei de Ampere fica

$$\oint \vec{H} \cdot d\vec{s} = i_l \tag{7.39}$$

i.e. \vec{H} é determinado apenas pelas correntes livres. Para materiais lineares, temos

$$\vec{M} = \chi_M \vec{H} \tag{7.40}$$

onde χ_M : susceptibilidade magnética. Neste caso temos

$$\vec{B} = \mu_0(\vec{H} + \chi_M \vec{H}) = \mu_0(1 + \chi_M)\vec{H} = \mu \vec{H}$$
(7.41)

onde μ : permeabilidade magnética. Finalmente

$$\kappa_M = \mu/\mu_0 = (1 + \chi_M)$$
 é a permeabilidade relativa (7.42)

E a Lei de Ampere também pode ser escrita como

$$\oint \vec{B} \cdot d\vec{s} = \mu \ i_l \,. \tag{7.43}$$