# Nile Tilapia: Retina Gene Expression

Group 2 Oophaga: Expression between Developmental Stages



0

1

# Introduction

Background, Research Question

## **Background: Nile Tilapia Developmental Shift in Photokinesis**

- I. Nile Tilapia exhibit phototaxis behavior in the form of kinesis
- II. Developmental switch in phototaxis
  - A. 12 days post fertilization (dpf): Increased kinesis in light
  - B. 17 dpf: Increased kinesis in darkness
- III. Underlying genetic basis of shift?
  - A. Differential retina gene expression between developmental stages/age
- IV. Data Collected
  - A. Our samples include fish offspring from one father and 2 mothers—one with red (R) and one with blue (B) markings.
  - B. 3'Tag-seq sequencing data from RNA extracted from 12 dpf and 17 dpf fish samples

## How do expression values change across developmental stages?

- 1. How does retina gene expression change between 12 days post fertilization (dph) and 17 days post fertilization (dph)?
- 1. Do maternal factors play a role in retina gene expression?

<u>Motivation:</u> By studying how retina gene expression for phototaxis varies, we can gain insight into the development of visual systems for aquatic organisms and other species that exhibit phototaxis behavior.

# **Analysis Method**

- 1. Clean datasets for Analysis
- 2. Normalized raw retina read counts using TPM
  - a. Log normalization, removing 0's & infinite values
- 3. Ran and Visualize PCA
- 4. Explore sources of variation
  - a. ANOVA
  - b. Further PCA
  - c. DEseq2

# 2

## Part 1:

How does retina gene expression change between 12 days post fertilization (dph) and 17 days post fertilization (dph)?

# **Phototaxis Variation Explained by PCA**



| PC <sup>‡</sup> | var_explained <sup>‡</sup> |
|-----------------|----------------------------|
| PC1             | 0.11365235                 |
| PC2             | 0.08955472                 |
| PC3             | 0.05611321                 |
| PC4             | 0.05149670                 |
| PC5             | 0.03970535                 |
| PC6             | 0.03640119                 |
| PC7             | 0.03461753                 |
| PC8             | 0.03219968                 |
| PC9             | 0.02978300                 |

# **PC1 Score Boxplot by Day**



### Feature Chosen by PC1:

 Day accounts for ~11% of the total variation of the samples

#### **Analysis**

- More Variation in Day 12 than 17
- More Outliers in Day 17

#### **Further Questions**

 Why does the day account for such a small amount of the variation?

| PC  | var_explained ^ |
|-----|-----------------|
| PC8 | 0.03219968      |
| PC7 | 0.03461753      |
| PC6 | 0.03640119      |
| PC5 | 0.03970535      |
| PC4 | 0.05149670      |
| PC3 | 0.05611321      |
| PC2 | 0.08955472      |
| PC1 | 0.11365235      |



# **Significance: Day17>Day12**

DeSeq by Stage for 17/12:

```
out of 24208 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 1546, 6.4%
LFC < 0 (down) : 973, 4%
outliers [1] : 0, 0%
low counts [2] : 7359, 30%
(mean count < 1)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of</pre>
```

## Day 17 more differentially expressed than Day 12



## Reason Guess:

- Biological processes more actively
- Certain cellular processes responses might undergo significant changes later

## Significant genes

**Rdh20:** protein\_coding\_gene Taxon: Danio rerio(tropical fish)

WFIKKN2: human protein

Taxon: Pan troglodytes





## **Analysis:**

- Patterns and Clusters
  - Taxon: Danio rerio (jph1b&mfge8b)
  - O Pan troglodytes (cmpk2)
- Intensity of Color

#### **Prediction:**

- regulatory mechanisms?
- environmental cues?
- cellular responses?
- Sample distribution?





# 3

## **Part 2:**

Do maternal factors play a role in retina gene expression?

# **PC1 Score Boxplot by Mother**



### **Analysis**

- For both mothers, fish in 12 dph have
   a lower score than fish in 17 dph.
- Variation differences in PC1 scores
  - Significant variation when comparing days to respective mothers

#### **Further Questions**

Why is there variation between the PC1 scores for the dph, depending on the mother?

# **PC2 Score Boxplot by Mother**



## Feature Chosen by PC2

The mother accounts for ~9%
 of the total variation

## **Analysis**

- More Variation in the children of B than R
- More Outliers in mother R
- PCA Results after filtering by mother

#### **Further Questions**

Differences in genes expressed?



# **Our Findings**

- Identified genetic differences in Nile Tilapia based off of days post fertilization account for a significant amount of variance, with increase and less varied expression in 17 dph.
- More overall variation in offspring of Mother B.
- GO annotations to cross evaluate with highly annotated organisms
  - Identify specific molecular functional differences
  - Overlay on heatmap for better visualization

# **Potential Implications and Final Thoughts**

- Aligns with exploration of how visual adaptations allow for mobile aquatic organisms to thrive.
- Initial concern over low counts
  - Accounted for by p value difference in DESeq versus volcano plot
  - Still significant in broader picture
- Exploring more questions
  - Why was there so much variation between PC1 & PC2 compared to rest of values?
  - Relationship between Danio rerio & Pan troglodytes & Nile Tilapia
  - How do these functions relate to the observed expression patterns and potential interactions with other genes?

Thank you! Questions?