Simulating Cluster-Level Counts from Multinomial Models

Suzanne Dufault

January 3, 2019

1 Set-Up

	Seek Care				Do Not Seek Care			
	Infected with DENV	Infected with OFI	Not Infected	Total	Infected with DENV	Infected with OFI	Not Infected	Total
Vaccinated Not Vaccinated	$rac{A}{G}$	$B \ H$	$C \ I$	$N_1 N_3$	$D \ J$	$rac{E}{K}$	$F \ L$	$N_2 \ N_4$

Table 1: Stratification of population based on intervention status, infection, and health care-seeking behavior. Adapted from Figure 1 of Jackson & Nelson (2013).

Hence, A represents the number of test-positive individuals in the treatment arm. We denote the observed number of these individuals in cluster j as A_j . Previously, we were using the historic data and setting A_j^* (the number of test-positive individuals in the intervention arm *after* the intervention) deterministically such that:

$$A_i^* = A_j \times \lambda$$

2 Description

We propose drawing case and OFI (e.g. A, B, G, H) counts from multinomial distributions. Cases are drawn from the multinomial distribution parameterized by n sampled cases (n = 200, 400, 600, 800, 1000), with distribution among the clusters according to:

$$p_{Dj}^* = \frac{X \times \lambda p_{D_j} + (1 - X) \times p_{D_j}}{\sum\limits_{j \in J} \left(X \times \lambda p_{D_j} + (1 - X) \times p_{D_j} \right)}$$

where X = 0, 1 according to treatment status and p_{D_j} is the observed proportion of cases in cluster j.

OFIs are drawn from the multinomial distribution parameterized by $4 \times n$ sampled cases, with distribution among the clusters according to the observed distribution (i.e. intervention does not affect OFI counts).

3 Hypothetical 10 Cluster Example

Cluster	Cases	OFI	Period	tx	pD	pD.bar
1	52	138	1	1	0.086	0.079
2	74	212	1	1	0.123	0.121
3	54	125	1	0	0.090	0.072
4	72	145	1	0	0.120	0.083
5	46	165	1	0	0.076	0.095
6	42	194	1	1	0.070	0.111
7	70	250	1	0	0.116	0.143
8	50	131	1	0	0.083	0.075
9	73	229	1	1	0.121	0.131
10	69	156	1	1	0.115	0.089

Table 2: Hypothetical table of observed case and OFI counts and proportions

Multinomial Draws -- Cases

Multinomial Draws -- OFIs

