<u>AB1 – Trigonometrische Funktionen</u>

Sinus, Cosinus und Tangens eines Winkels α können über strecken am Einheitskreis (Kreis mit Radius 1) definiert werden (s. Abb. rechts). Für die Größe des Winkels α wird oftmals das Bogenmaß genutzt. Dieses ergibt sich aus dem Umfang des Einheitskreises. Ein voller Winkel von 360° entspricht somit 2π (Taschenrechnereinstellung beachten!).

Umrechnung: Gradmaß/Bogenmaß

$$\frac{x}{2\pi} = \frac{\alpha}{360^{\circ}}$$
 $\alpha = \text{Gradmaß}$
 $x = \text{Bogenmaß}$

Definitionsmenge: IR Wertemenge: [-1;1]

Periodenlänge: 2π

Punktsymmetrie zum Ursprung Achsensymmetrie zur y-Achse Punktsymmetrie zum Ursprung

Nullstellen: $x = k \pi, k \in \mathbb{Z}$

Definitionsmenge: IR Wertemenge: [-1;1]

Periodenlänge: 2π

Nullstellen: $x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$ Nullstellen: $x = k\pi$, $k \in \mathbb{Z}$

Def.menge: $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$

Wertemenge: R Periodenlänge: π

Anpassung der Sinus-Funktion

(die Anpassung der Cosinus-Funktion erfolgt analog)

sin (x)

 $f(x) = a \cdot \sin(x) \quad (a > 0)$ Der Parameter a streckt oder

staucht den Graphen in y-Richtung. Damit wird die Amplitude der Sinusschwingung verändert.

 $f(x) = \sin(b \cdot x)$

Der Parameter b streckt oder staucht den Graphen in x-Richtung. Dadurch wird die Periodenlänge bzw. die Frequenz der Sinusschwingung verändert. le größer b, desto kleiner die Periodenlänge und desto größer die Frequenz.

 $f(x) = \sin(x - c)$

Der Parameter c verschiebt den Graphen in x-Richtung. Damit wird die Phase der Sinusschwingung verändert.

 $f(x) = \sin(x) + d$

Der Parameter d verschiebt den Graphen in y-Richtung. Die Amplitude wird nicht verändert.

Die Amplitude ist der maximale Ausschlag der "Schwingung" nach oben oder nach unten.

Eine Periode ist ein "Auf-und-Ab" der "Schwingung". b gibt an, wie viele Perioden im Intervall $[0;2\pi]$ vorkommen.

Die **Periodenlänge** beträgt $\frac{2\pi}{h}$

Die **Frequenz** gibt die Anzahl der Perioden pro Einheit an.

Die Phase bestimmt die Verschiebung des normalen Sinusgraphen auf der x-Achse.

Zu den Begrifflichkeiten: Periode: Ein vollständiger Durchlauf, bis die Wiederholung anfängt. Periodenlänge: Gibt an, wie lang eine Periode ist.

Die allgemeine Sinusfunktion

Eine allgemeine Sinusfunktion hat die Form $f(x) = a \cdot \sin(b(x-c)) + d$. Die Paramater haben einen vergleichbaren Einfluss wie die bei der Scheitelpunktsform von quadratischen Funktionen.

Der Einfluss der einzelnen Parameter wird im Folgenden schrittweise am Beispiel der Funktion $f(x) = 2 \cdot \sin\left(2(x + \frac{\pi}{2})\right) + 1$ gezeigt.

 $f(x) = \sin(x)$

 $f(x) = 2 \cdot \sin(x)$ (Streckung entlang y-Achse)

 $f(x) = \sin(x)$

 $f(x) = \sin(x) + 1$ (Verschiebung entlang y -Achse)

 $f(x) = \sin(x)$

 $f(x) = \sin(2x)$ (Stauchung entlang x-Achse)

 $f(x) = \sin(x)$

 $f(x) = \sin(x + \frac{\pi}{2})$ (Verschiebung entlang x-Achse)

 $f(x) = \sin(x)$

 $f(x) = 2\sin\left(2(x + \frac{\pi}{2})\right) + 1$

- 1. Wie nennt man den maximalen Ausschlag einer Sinusfunktion?
- 2. Welcher Parameter wirkt sich auf die Verschiebung entlang der x-Achse aus?
- 3. Welcher Parameter hat Auswirkungen auf die Periodenlänge?
- 4. Gib die Periodenlänge der Funktion $f(x) = \sin(\frac{1}{4} \cdot x)$ an.
- 5. Welche der folgenden Funktionen hat ihren maximalen y-Wert bei 4 und ihren minimalen y-Wert bei 2?

a)
$$f(x) = \sin(x) + 1$$

b) $f(x) = 4\sin(x)$
c) $f(x) = \sin(x) + 4$
d) $f(x) = \sin(x) + 3$
e) $f(x) = \sin(x) - 4$
f) $f(x) = 2\sin(x) + 2$

$$d) f(x) = \sin(x) + 3$$

b)
$$f(x) = 4\sin(x)$$

e)
$$f(x) = \sin(x) - 4$$

c)
$$f(x) = \sin(x) + 4$$

$$f) f(x) = 2\sin(x) + 2$$

6. Gib eine allgemeine Formel für die x-Werte der Nullstellen, Hochpunkte und Tiefpunkte der normalen Sinus- und Cosinus-Funktion an.

	Sinus-Funktion	Kosinus-Funktion
Nullstellen		
Hochpunkte		
Tiefpunkte		

7. Zeichne je 1,5 Perioden der Funktionen f(x) = sin(x) und g(x) = cos(x) mit unterschiedlichen Farben in ein Koordinatensystem (x-Achse in Bogenmaß, y-Achse: 1 Einheit entsprechen 8 Kästchen).

★ Begründe, warum $\tan(x)$ für $(2k+1)\frac{\pi}{2}+k\pi$ $(k\in\mathbb{Z})$ nicht definiert ist.

- 8. Der Graph der Sinus-Funktion ist _____symmetrisch zum ____
- 9. Der Graph der Cosinus-Funktion entsteht aus dem Graphen der Sinus-Funktion durch Verschiebung um______ in x-Richtung: $\cos(x) = \sin(x + y)$
- 10. Vervollständige die Wertetabelle.

x in Gradmaß	x in Bogenmaß	sin(x)	cos(x)
0°			
30°			
45°			
60°			
	$\frac{\pi}{2}$		
135°			
180°			
	$\frac{3\pi}{2}$		
		0,5	
			0,5
		$-\sqrt{\frac{1}{2}}$	
		$\frac{\sqrt{3}}{2}$	
			$ \sqrt{\frac{1}{2}} $ $ \frac{\sqrt{3}}{2} $
			$\frac{\sqrt{3}}{2}$

arcsin, arccos, arctan sind Umkehrfunktionen. D. h. sie geben z. B. zu einem Sinuswert den dazugehörigen Winkel im Intervall $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ bzw. im Gradmaß $[-90^\circ; 90^\circ]$ an. Sie heißen auf dem Taschenrechner sin $^{-1}$, cos $^{-1}$, tan $^{-1}$. Gemeint ist aber nicht $\frac{1}{sin}$, $\frac{1}{cos}$, $\frac{1}{tan}$ sondern arcsin, arccos, arctan.

- 11. Für welche x gilt sin(x) = cos(x)?
- 12. Skizziere die Funktionen $f(x) = 3\sin(2x)$, $g(x) = \cos\left(\frac{1}{2}x\right) + 1$ und $h(x) = 0.5\sin(x + 2\pi)$.
- 13. Ermittle die Funktionslgeichungen zu folgenden Graphen:

(es gibt mehrereMöglichkeiten!★ Finde weitere!)

