有限元第三次编程作业

W Huang

日期: 2023年12月16日

1 编程第一题

1.1 求解设置

求解 PDE

$$\begin{cases}
-\Delta u = f, & \text{in } \Omega = [0, 1]^2, \\
u = 0, & \text{on } \partial\Omega.
\end{cases}$$
(1)

取精确解

$$u(x,y) = \sin(\pi x)\sin(\pi y),\tag{2}$$

并导出右端项,进行测试。网格如图1所示。

图 1: $h = \frac{1}{8}$ 时的计算网格

考虑 Hiercharchical Basis (以下简称 HB) 预优算子:

$$B = D + IA_H^{-1}I^t. (3)$$

其中 I 是线性元空间下粗网格到细网格的自然延拓(即线性插值),而 A_H^{-1} 涉及到方程组的求解。我们选择使用**朴素 CG 方法**求解粗网格上的方程 $A_H u_H = f_H$ 。

1.2 编译说明

请安装 deal.ii 及其依赖库,见 https://www.dealii.org/developer/readme.html;安装完毕后,在本文档目录下打开终端,依次运行:

```
cd src-2D
mkdir build
cd build
cmake ..
make release
make
```

等待编译完成后,用以下命令执行测试:

```
./elliptic 10 2
```

上述测试采用 1.1 节所述的网格,规模为 $N=2^{10}$,使用两层网格;如果需要改变网格规模,将 10 换成别的正整数;如需使用多层网格,将 2 换成别的正整数;特别地,当最后一个参数缺省时,默认使用单层网格,即朴素 CG 方法。

1.3 测试结果

用朴素 CG 方法与 HB 预优 CG 方法对比,Tolerance 设置为 $\varepsilon = 10^{-12}||f||_2$ (其中 f 是方程的右端项) 结果见图 2, 图 3 和表 1。

可以看到,朴素 CG 方法的 CG 迭代次数指数级增长;HB 预优 CG 方法的 CG 迭代次数不升反降。将预处理耗时与求解耗时相加,可以看出在 h=1/1024 时,HB 预优 CG 方法具有明显加速。

首先我们需要说明,Tolerance 设置为 $\varepsilon=10^{-12}||f||_2$ 远远超过了实际需要,其实想要达到上表的误差,Tolerance 设置为 $\varepsilon=10^{-4}||f||_2$ 足矣,求解几乎是瞬间完成。我们取如此夸张的Tolerance 是为了对比出加速效果。

但是,我们只取了两层网格,因此加速效果不明显。甚至当h继续变小时,HB 预优 CG 方法的速度比朴素 CG 方法还要慢。这是因为 HB 预优方法虽然最外层的 CG 迭代次数得到了控制,但它需要在粗网格中进行大量的 CG 迭代,代价太大。要在实际中应用,还是需要多层网格。

图 2: $h = \frac{1}{256}$ 时的数值解

图 3: $h = \frac{1}{256}$ 时数值解与真解的误差

	h	$\frac{1}{256}$	收敛阶	$\frac{1}{512}$	收敛阶	$\frac{1}{1024}$
朴素 CG 方法	$ u^h - u _{L^2}$	2.46e-05	2.00	6.16e-06	2.00	1.54e-06
	$ u^h - u _{H^1}$	1.36e-02	1.00	6.82e-03	1.00	3.41e-03
	预处理耗时(s)	0.23		0.92		3.9
	求解耗时(s)	0.031		0.26		8.9
	CG 迭代次数	439		852		1651
HB 预优 CG 方法 (两层网格)	$ u^h - u _{L^2}$	2.46e-05	2.00	6.16e-06	2.00	1.54e-06
	$ u^h - u _{H^1}$	1.36e-02	1.00	6.82e-03	1.00	3.41e-03
	预处理耗时(s)	0.27		1.1		4.8
	求解耗时(s)	0.10		0.84		3.6
	CG 迭代次数	52		94		62
HB 预优 CG 方法 (三层网格)	$ u^h - u _{L^2}$	2.46e-05	2.00	6.16e-06	2.00	1.54e-06
	$ u^h - u _{H^1}$	1.36e-02	1.00	6.82e-03	1.00	3.41e-03
	预处理耗时(s)	0.29		1.2		4.9
	求解耗时(s)	0.15		0.68		3.0
	CG 迭代次数	52		50		49

表 1: $h = \frac{1}{256}, \frac{1}{512}, \frac{1}{1024}$ 的求解结果

2 编程第二题

2.1 求解设置

求解 PDE

$$\begin{cases} -\Delta u = f, & \text{in } \Omega = [0, 1]^3, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$
 (4)

取精确解

$$u(x, y, z) = 10\sin(\pi x)\sin(\pi y)\sin(\pi z),\tag{5}$$

并导出右端项,进行测试。三维空间中的四面体网格过于复杂,粗细网格之间的索引极其困难, 因此为了简化,我们选择了使用六面体网格,如图 4 所示。

图 4: $h = \frac{1}{8}$ 时的计算网格

六面体网格对应的有限元空间是 Q_1 元,在 Q_1 元中,对于一个参考单元 $[0,1]^3$,其节点基函数为:

$$\begin{split} \phi_{(0,0,0)}(x,y,z) &= (1-x)(1-y)(1-z), \\ \phi_{(0,0,1)}(x,y,z) &= (1-x)(1-y)z, \\ \phi_{(0,1,0)}(x,y,z) &= (1-x)y(1-z), \\ \phi_{(0,1,1)}(x,y,z) &= (1-x)yz, \\ \phi_{(1,0,0)}(x,y,z) &= x(1-y)(1-z), \\ \phi_{(1,0,1)}(x,y,z) &= x(1-y)z, \\ \phi_{(1,1,0)}(x,y,z) &= xy(1-z), \\ \phi_{(1,1,1)}(x,y,z) &= xyz. \end{split}$$

在六面体网格和 Q_1 元下,粗细网格之间的索引非常容易,且线形插值的表示也非常简单。

考虑 Hiercharchical Basis (以下简称 HB) 预优算子:

$$B = D + IA_H^{-1}I^t. (6)$$

其中 I 是线性元空间下粗网格到细网格的自然延拓(即线性插值),而 A_H^{-1} 涉及到方程组的求解。我们选择使用**朴素 CG 方法**求解粗网格上的方程 $A_H u_H = f_H$ 。

编译、运行方法与二维程序完全相同,这里不做重复说明。

2.2 测试结果

用朴素 CG 方法与 HB 预优 CG 方法对比, Tolerance 设置为 $\varepsilon = 10^{-6}||f||_2$ (其中 f 是方程的 右端项) 结果见表 2。

结论是两层网格的 HB 预优 CG 方法一致收敛,但与朴素 CG 方法相比,毫无加速效果。另外,我们观察到朴素 CG 方法的迭代次数不随网格加细而增加,甚至稳定在 1 次,这是一个有趣的现象。

	h	$\frac{1}{32}$	收敛阶	$\frac{1}{64}$	收敛阶	$\frac{1}{128}$
朴素 CG 方法	$ u^h - u _{L^2}$	2.84e-03	2.00	7.10e-04	2.00	1.77e-04
	$ u^h - u _{H^1}$	5.45e-01	1.00	2.73e-01	1.01	1.36e-01
	预处理耗时(s)	0.13		1.2		10
	求解耗时(s)	0.00061		0.0044		0.035
	CG 迭代次数	1		1		1
HB 预优 CG 方法 (两层网格)	$ u^h - u _{L^2}$	2.84e-03	2.00	7.10e-04	2.00	1.77e-04
	$ u^h - u _{H^1}$	5.45e-01	1.00	2.73e-01	1.01	1.36e-01
	预处理耗时(s)	0.16		1.3		11
	求解耗时(s)	0.0028		0.026		0.31
	CG 迭代次数	4		4		4

表 2: $h = \frac{1}{32}, \frac{1}{64}, \frac{1}{128}$ 的求解结果