UNCLASSIFIED

AD NUMBER ADB205501 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Critical technology; Aug 1994. Other requests shall be referred to Air Force Materiel Command, Phillips Lab., Space and Missiles Tech. Dir., Kirtland AFB, NM 87117-5776. **AUTHORITY** AFMC, 26 Aug 1997

10 K CRYOCOOLER DEVELOPMENT PROGRAM

Lockheed Missiles & Space Company, Inc. Palo Alto, CA

August 1994

Final Report

Distribution authorized to U.S. Government Agencies and their contractors only; Critical Technology; August 1994. Other requests for this document shall be referred to AFMC/STI.

WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U.S.C., Sec 2751 et seq.) or The Export Administration Act of 1979, as amended (Title 50, U.S.C., App. 2401, et seq.). Violations of these export laws are subject to severe criminal penalties. Disseminate IAW the provisions of DoD Directive 5230.25 and AFI 61-204.

<u>DESTRUCTION NOTICE</u> - For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

YER CAVERED PARAMETER 2

PHILLIPS LABORATORYSpace and Missiles Technology Directorate
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

This final report was prepared by Lockheed Missiles & Space Company, Inc., Palo Alto, CA, under contract F29601-92-C-0110, Job Order 110102AF. The Laboratory Project Officer-in-Charge was Brian Whitney (VTPT).

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been authored by a contractor and an employee of the United States Government. Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish or reproduce the material contained herein, or allow others to do so, for the United States Government purposes.

If your address has changed, if you wish to be removed from the mailing list, or if your organization no longer employs the addressee, please notify PL/VTPT, Kirtland AFB, NM 87117-5776, to help maintain a current mailing list.

This technical report has been reviewed and is approved for publication.

BRIAN WHITN Project Officer

DAVID KRISTENSEN Chief, Space Power and

Thermal Management Division

HENRY L. PUGH, JR., Col, USAF

In Loshin

Director of Space and Missiles Technology

DO NOT RETURN COPIES OF THIS REPORT UNLESS CONTRACTUAL OBLIGATIONS OR NOTICE ON A SPECIFIC DOCUMENT REQUIRES THAT IT BE RETURNED.

The following notice applies to any unclassified (including originally classified and now declassified) technical reports released to "qualified U.S. contractors" under the provisions of DoD Directive 5230.25, Withholding of Unclassified Technical Data From Public Disclosure.

NOTICE TO ACCOMPANY THE DISSEMINATION OF EXPORT-CONTROLLED TECHNICAL DATA

- 1. Export of information contained herein, which includes, in some circumstances, release to foreign nationals within the United States, without first obtaining approval or license from the Department of State for items controlled by the International Traffic in Arms Regulations (ITAR), or the Department of Commerce for items controlled by the Export Administration Regulations (EAR), may constitute a violation of law.
- 2. Under 22 U.S.C. 2778 the penalty for unlawful export of items or information controlled under the ITAR is up to two years imprisonment, or a fine of \$100,000, or both. Under 50 U.S.C., Appendix 2410, the penalty for unlawful export of items or information controlled under the EAR is a fine of up to \$1,000,000, or five times the value of the exports, whichever is greater; or for an individual, imprisonment of up to 10 years, or a fine of up to \$250,000, or both.
- 3. In accordance with your certification that establishes you as a "qualified U.S. Contractor", unauthorized dissemination of this information is prohibited and may result in disqualification as a qualified U.S. contractor, and may be considered in determining your eligibility for future contracts with the Department of Defense.
- 4. The U.S. Government assumes no liability for direct patent infringement, or contributory patent infringement or misuse of technical data.
- 5. The U.S. Government does not warrant the adequacy, accuracy, currency, or completeness of the technical data.
- 6. The U.S. Government assumes no liability for loss, damage, or injury resulting from manufacture or use for any purpose of any product, article, system, or material involving reliance upon any or all technical data furnished in response to the request for technical data.
- 7. If the technical data furnished by the Government will be used for commercial manufacturing or other profit potential, a license for such use may be necessary. Any payments made in support of the request for data do not include or involve any license rights.
- 8. A copy of this notice shall be provided with any partial or complete reproduction of these data that are provided to qualified U.S. contractors.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

DRAFT SF 298

1. Report Date (dd August 1994	-mm-yy)	2. Report Type Final	3. Date 9/92 to		(from to)		
4. Title & subtitle 10 K Cryocooler Do	evelopmen	t Program		5a. Contract or Grant # F29601-92-C-0110			
			5b. Pro	gram Elem	nent # 62601F		
6. Author(s)			5c. Pro	ject # 11	01		
			5d. Tas	sk# 02			
			5e. Wo	rk Unit #	AF		
7. Performing Orga Lockheed Missiles Palo Alto, CA				8. Perform	ing Organization Report #		
Phillips Laborator	y =	ency Name & Address	,	10. Monito	or Acronym		
3550 Aberdeen Av Albuquerque, NM		5		11. Monito	or Report # 1138		
		his report is published s were not followed fo			exchange. The established		
cooling methods a cryocooler. This p objective of Phase proof-of-principal Phase 2. The obje	and critical phase was to Il was to c phase that ective of Ph building an	components necessa to contain several con characterize and evalu would give an initial (nase 3 was to downsel	ry for the develon tractors, each we late these compo GO/NO-GO decis lect to the most p	pment of a vith their over enents. This sion point for promising t	ective of Phase I was to identify a continuous 10 Kelvin with conceptual design. The is would essentially be a for any of the contractors in technology and bring that g the performance of that EDM at		
15. Subject Terms	Cryocoole	er, cold head,	·				
	ation of 17. Abstrac Unclassifie		19. Limitation of Abstract Limited	20. # of Pages 164	21. Responsible Person (Name and Telephone #) Brian Whitney (505) 846-1867		

PROJECT TITLE: 10 K CRYOCOOLER DEVELOPMENT

PROJECT MANAGER: Brian M. Whitney

CONTRACTOR: Lockheed - 3 Stage Stirling Cryocooler

CONTRACT NUMBER: F29601-92-C-0110

DESCRIPTION: Cryocooler designs with minimal weight, high efficiency and reliability are sought by this program. This project will develop the technology to provide continuous cooling at 10 K. Cryocoolers at this temperature range are enabling technology for future satellites the use VLWIR focal plane arrays or low temperature superconducting devices. Such low temperatures are required for IR sensor cooling to increase the signal-to-noise ratio.

OBJECTIVES: This program was broken into three separate phases. The objective of Phase 1 was to identify cooling methods and critical components necessary for the development of a continuous 10 Kelvin cryocooler. This Phase was to contain several contractors, each with their own conceptual design. The objective of Phase 2 was to design, develop and fabricate the critical components of the cryocooler and then to characterize and evaluate these components. This would essentially be a "proof-of-principle" phase that would give an initial GO/NO-GO decision point for any of the contractors in Phase 2. The objective of Phase 3 was to downselect to the most promising technology and bring that program through building an engineering design model (EDM) and evaluating the performance of that EDM at Phillips laboratory.

TECHNICAL DEFICIENCIES: Thermodynamic efficiency decreases as temperature decreases (i.e. it takes increasing amounts of power to cool to lower and lower temperatures). To reach temperatures as low as 10 Kelvin the thermodynamic efficiency drops to a few percent of what is theoretically possible. Much of this is due to losses in the system, such as regenerator (heat exchanger) losses in the cold end. Regenerator materials naturally lose heat capacity and thermal conductivity below approximately 20 Kelvin, thus making cooling to these temperatures increasingly difficult. The 10 K Cryocooler program is designed to advance technology to make these systems more efficient.

TECHNICAL APPROACH: Begin with system engineering to define cryocooler design/performance requirements of future space systems at 10 K. Begin development of critical components which need advancement beyond state-of-the-art to reach these requirements. These components will be fabricated and tested to demonstrate the improvement in cryocooler performance they would enable. This demonstration will allow selection of the most promising approach for the engineering model. Design, fabricate and test an engineering development model (EDM) cryocooler to demonstrate continuous 10 K cooling.

SYSTEM REQUIREMENTS:

Cooling 0.15 W @ 10 K
2.0 W @ 35 K
5.0 W @ 80 K
Input power < 1000 W
Weight < 100 kg
Total satellite penalty
Operational life 10 years

Accesio	n For	1	
NTIS DTIC Unanno Justific	TAB ounced	D	
By Distrib	ation /		
A [,]	vailabilit	y Codes	
Dist		and for ecial	
C-2	·		

Reliability

> .95

Vibration

< .05 N

USER NEED / PRIORITY: Supports LWIR, VLWIR requirements

COST / PERFORMANCE PAYOFF: Enabling technology for future satellites that use VLWIR focal plane arrays or low temperature superconducting devices.

KEY MILESTONES:

Oct 92 : Begin Phase 1 (3 contractors)

Mar 93: Downselect to one contractor (Aerojet Corp)

Mar 93: Lockheed contract canceled

SUMMARY:

This contract was let in Oct 1992 as part of a three pronged effort to pursue cryogenic cooling at 10 Kelvin. TRW, Lockheed, and Aerojet were contracted to perform preliminary component designs, trade studies, critical component identification and Phase 2 test plan under Phase 1 of this program. Lockheed proposed a three stage Stirling cryocooler to satisfy the requirements of this program.

This effort by lockheed proved to be unsatisfactory at the end of Phase 1 due to the inability to meet all of the specified requirements. Although Lockheed's design theoretically could have met the cooling requirements it used more than the allotted 1000 W of input power and more than the allotted 350 kg of total spacecraft penalty weight. Because of the requirements issue, Lockheed was not chosen to continue into Phase 2 of the 10 K program and the program was canceled.

CONCEPT REVIEW 10K CRYOCOOLER DEVELOPMENT CONTRACT

Air Force Phillips Laboratories 10K CoDR

TO Air Force Phillips Laboratory
Brian Whitney, Technical Monitor

FROM Lockheed Research Laboratory Palo Alto, California Ted Nast, Program Manager

T Lockheed/Palo Alto

March 4, 1993

=>Lockheed

FLOD

AGENDA

Phillips Laboratories 10K CoDR Air Force

AGENDA FOR 10K CRYOCOOLER DEVELOPMENT PROGRAM CONCEPT REVIEW, LOCKHEED PALO ALTO RESEARCH LABORATORY MARCH 4, 1993

Nast LOCKHEED CRYOCOOLER TECHNOLOGY 9AM-9:30

OVERVIEW

contracts/capabilities

PHASE 1 OVERVIEW 9:30-10:00

Nast

technical summary

phase 2 plans

BREAK 10:00-10:15

10K TECHNICAL RESULTS 10:15-12:00

displacer design

cooling performance predictions NIST cooling analysis

Isaac Yuan saac

Nast Nast

> MTI compressor design ACE regenerator

Champagne Champagne

Nexure compressordesign

I.UNCH 12:00-1:00

LAB TOUR 1:00-1:30 TECHNICAL RESULTS (CONTD.) 1:30-2:00

alignment work critical technologies demo/plans

Naes Nast

Nast

SUMMARY 2:00-2:15

TADD

Air Force Phillips Laboratories 10K CoDR

LOCKHEED CRYOCOOLER TECHNOLOGY OVERVIEW

₹\$Lockheed

Air Force Phillips Laboratories 10K CoDR

PHASE ONE OVERVIEW

三大Lockheed 三元Lockheed

TEAMING ARRANGEMENT STRUCTURE

Air Force Phillips Laboratories 10 K CoDR

• LINEAR MOTOR DESIGN **DESIGN AUDIT** LUCAS HARDWARE • OIL LUBRICATED COMPRESSOR E FLEXURE COMPRESSOR DEV. **LOCKHEED R&DD** · CUSTOMER PRIME • DISPLACER DEV. STIRLING CYCLE • REGENERATOR DEVELOPMENT ACE ANAL. AND DESIGN · REGENERATOR TEST/AUDIT REGENERATOR NIST

10K CoDR 020

Air Force TECHNOLOGY ADVANCEMENTS Phillips Laboratories 10 K Codr

TECHNOLOGY ITEM	ADVANCE	COMMENTS
Flexure bearing support of moving masses	Extensive development and test demonstration over the last 10 years,	Allows clearance gap to be used with relatively simple hardware, replaces gas bearings and magnetic bearings
Regenerator materials	New materials with high specific heats (rare earth compounds) being demonstrated, large improvement in performance below about 30K	Japanese group attained 2.2K with Gifford McMahon operating with rare earth compounds, manufacturing problem and weight loss with time still issues.
Induced vibration	Demonstration of millipound levels with back to back linear motors demonstrated at LMSC	Scaling to sizes for 10K cryocooler indicates requirements are attainable
Clearance gap control	Extensive development because of many machines utilizing flexures, several groups working problem.	Attainable, repeatable gaps approximately one half of prior values, 0.25 mil gaps attainable on compressor piston by LMSC-Lucas. Extensive LMSC development in dynamic modeling and dynamic measurements. Excellent tools and understanding.

10K CoDR108

=\footheed TROD

3 STAGE CRYOCOOLER SYSTEM IS MADE UP OF MODULAR COMPONENTS

Phillips Laboratories

=\frackheed == \frackheed == \

3 STAGE CRYOCOOLER SYSTEM IS MADE UP OF MODULAR COMPONENTS

Air Force Phillips Laboratories 10 K CoDR

10K CoDR 114

Force Albande And Moving 3RD STAGE Phillips Laboratories ## Force Alband Moving 3RD STAGE Phillips Laboratories ## P.D.D.

=\lockheed =\lockheed

CONCURRENCE OF REQUIREMENTS BASED ON MODELING AND TESTING

Air Force Phillips Laboratories 10 K CoDR

REQUIREMENTS	PROPOSED VALUES	BASIS
Cooling loads, 1st stage, 5W @ 80K + -2K 2nd stage, 2W @ 35K + -1K 3rd stage, 0.15W @ 10K + -0.1K	5W @ 80K 2W @ 35 0.15W @ 10	Two separate prediction models indicate cooling loads will be met at all three stages
Power Supply 28VDC + -20%	28VDC	Consistent with present electronic controller development
Maximum vibration 0.05 Newtons	≤ 0.05 Newtons	Based on laboratory measurements on similar systems scaled to larger size proposed
Maximum cryocooler Weight 100Kg	Compressor: 14.9 Kg Displacer: 4.3 Kg Displacer Balancer: 2.0 Kg Electronic Controller: 10.0 Kg Misc.: 2.0 Kg Total: 33.2 Kg	Actual hardware weight plus detail weight analysis of compressor and preliminary estimate for controller
Total Vehicle Effective Weight (goal), 250Kg.	165 Kg 528 W (including controller)	Based on predicted weight plus 0.25 Kg per W power Thermodynamic analysis on two programs
Operating Life, 2 years ground plus 10 years on orbit	2 Yrs. ground plus 10 years on orbit	Based on an extrapolation of extensive analysis and test data on smaller systems

10K CoDR 023

二加

MARY

Air Force Phillips Laboratories 10K CoDR

M RUN SUN	
d SRPM	
ockheel	007

Net Ref. Power (W)	0.145, 2.0, 5.0
Displacer Stroke (mm)	7
Disp. Swept Volumes (cc)	0.137, 1.12, 5.7
Clearance Gaps (Microns)	17, 20, 30
Comp. Swept Vol. (cc)	28.86
Compressor P-V (W)	349
Operating Frequency (Hz)	40
Fill Pressure (Psia)	220

₹\$lockheed

SUMMARY OF DISPLACER LOSS TERMS FOR A TYPICAL RUN Phillips Laboratories 10K CoDR

	80K FIRST STAGE	35K SECOND STAGE	10K THIRD STAGE
Gross Cooling	35.2 W	6.5 W	0.64 W
Regenerator Loss	s 22.45 W	3.6 W	0.31 W
Blow-By Loss	7.75 W	0.9 W	0.185 W
Net Cooling	5 W	2.0 W	^0.15 W

₹\$lockheed

CONCLUSIONS FROM NIST

Air Force Phillips Laboratories 10K CoDR

-RADO

THREE STAGE STIRLING CAN EASILY MEET SPECIFICATIONS

40 HZ OPERATION PREFERRED BECAUSE OF SMALLER COMPRESSOR

427 W INPUT POWER WITH LARGE EXCESS COOLING POWER

387 W INPUT TO MEET REQUIREMENTS

20 MICRON CLEARANCE GAP FOR 3RD. STAGE

LOW POROSITY REGENERATORS NECESSARY FOR HIGH EFFICIENCY

= 10ckheed **F***00

Porosity and D_h Trades Regenerator Design ing Power

Phillips Laboratories Concept Design Review Air Force

> ace Mabama cryogenic engineering, inc.

	_	
	\Box	
•	¥	
	0	
	_	
	C	
	$\mathbf{\mathbf{\mathbf{\mathcal{C}}}}$	
	_	
	•	

Hydraulic	Net Coolin	Hydraulic Net Cooling Power (Watts)	itts)		
Diameter		•	•		
(microns)			Porosity		
	0.10	0.15	0.20	0.25	0.40
10.0			no solution	0.91	0.71
14.1			0.91	0.85	0.63
20.0			0.78	0.72	0.51
28.3		no solution	0.59	0.50	
40.0	40.0 no solution	0.40	0.28		0.10

- Use REGEN 3.1 for calculations
- perforated plate system is modelled as axial tube flow
- the matrix volume of the perforated plate system is equal to the packed sphere case
- Baseline case
- 100 micron Er₃Ni spheres with porosity = 38%
 - cooling power = 0.61 Watts

= Lockheed = RDD

BASELINE WEIGHT SUMMARY

Air Force Phillips Laboratories 10K CoDR

	KG	LBS.	
MTI COMPRESSOR	14.89	32.7	
DISPLACER	4.3	9.46	
DISPLACER BALANCER	2.0	4.4	
ELECTRONIC CONTROLLER	10.0	22.0	
CABLES AND SUPPORT HDW.	2.0	4.4	
TOTALS	33.2KG	73LBS	REQUIREMENTS 100KG MAX.
TOTAL POWER INPUT	528 WATTS	ПS	1000W MAX.
EFFECTIVE POWER WEIGHT(1)	132 KG		i t
TOTAL VEHICLE EFFECTIVE WT.	165KG		250KG GOAL
(1) BASED ON 0.25KG/W			

FLOD

POWER BUDGET SUMMARY

Air Force Phillips Laboratories 10K CoDR

POWER, WATTS

				REQUIREMENT	1000 W MAX.
422	4		12	88	528 WATTS
MTI COMPRESSOR	DISPLACER	DISPLACER BALANCER	ELECTRONICS TURN ON POWER	ELECTRONICS INEFFECIENCY	TOTAL POWER INPUT

FLIGHT ELECTRONICS CARDS 10 K CRYO COOLER

- MOST OF THE CIRCUIT CARDS FROM THE LOCKHEED IN-HOUSE FLIGHT ELECTRONICS DESIGN CAN BE USED WITH THIS LARGER COOLER WITH LITTLE OR NO CHANGE
- INTERFACE COMPUTER DOES NOT CHANGE
- SENSOR SIGNAL CONDITIONING DOES NOT CHANGE ANALOG CONTROL LOOPS DO NOT CHANGE EXCEPT FOR SOME COMPONENT VALUES
- **DISPLACER DRIVE LINEAR AMPLIFIER NEEDS SLIGHTLY INCREASED** CAPACITY TO DRIVE THE LARGER DISPLACER LOAD SECONDARY POWER SUPPLY NEEDS SLIGHTLY INCREASED
 - CAPACITY TO DRIVE THE LARGER DISPLACER LOAD
- ONLY THE COMPRESSOR DRIVE CARD NEEDS TO BE SIGNIFICANTLY REDESIGNED
- THREE CARDS INSTEAD OF TWO ARE REQUIRED TO DRIVE THE TWO LARGER COMPRESSOR MOTORS

FLIGHT ELECTRONICS ENCLOSURE 10 K CHYO COOLER

- THE ENCLOSURE MUST ONLY GROW ENOUGH TO HOUSE THE ADDITIONAL IF CURRENT RIPPLE CAN BE TOLERATED ON THE 28 VDC POWER BUS, COMPRESSOR DRIVE CARD AND SOME NEW CONNECTORS
- **VOLUME WILL INCREASE FROM ABOUT 470 CUBIC INCHES TO ABOUT 550 CUBIC INCHES**
- MASS WILL INCREASE FROM ABOUT 6.2 KG TO ABOUT 7 KG
- IF MIL STD 461 OR EQUIVALENT CONDUCTED EMISSIONS REQUIREMENTS MUST BE MET, THE ENCLOSURE WILL NEED TO HOUSE A LOT MORE ELECTRICAL ENERGY STORAGE CAPABILITY
- **VOLUME WILL INCREASE ANOTHER 50% TO ABOUT 830 CUBIC INCHES**
- **MASS WILL INCREASE ANOTHER 50% TO ABOUT 11 KG**

=\$10ckheed ROD

RELATIVE POWER CONSUMPTION FOR VARIOUS STAGES

Phillips Laboratories 10K CoDR Air Force

STAGE/REQMTS.

PV WORK FOR STAGE

1st stage, 80 K, 5W

157 W

2nd stage, 35K, 2W

91 ₩

3rd stage, 10K, 0.15 W

61W

Results Show first stage dominates the power requirements

= Lockheed TA,00

CRITICAL COMPONENTS

ASSESSMENT AND RESOLUTION Phillips Laboratories 10K CodR

2	LYPERA	Dick	I WOLITING	COMBRENE
<u>;</u>		NCIN .		CINCIANA
_	displacer	cooling capacity	early build and test	phase 2 testing performed for
	thermodynamic	below specifications,	of displacer, early	cooling capability and
	performance		validation with time	temperature, use laboratory and
			for rework	commercial compressor
7	regenerator thermal	cooling below	thermal loss and	phase 2 testing to be performed
	performance	specification	pressure drop tests	on NIST apparatus on several
			on several candidates	regenerators.
3	regenerator IIfe	shifting, clumping,	avold use of	requires life testing on
	capability	pulverizing etc. will	unsupported	cryocooler
		change performance	configurations such	
		over lifetime	as spheres	
4	displacer clearance	wear (If gaps too	valldate design,	build and test displacer
	gap control	small or dynamics	manufacture and	structural model (with
		problem) or large	assembly on	regenerator ballasted) early in
		thermal losses (If	structural model	phase 2.
		gaps too large)		
S	Induced vibration	large forces resulting	analysis supported	displacer vibration output
		from large moving	by scaling from	measured in phase 2, compressor
		massses	existing units	In phase 3
9	scaling of flexure	minimal risk, detailed additional modeling	additional modeling	phase 2 testing. Flexures sent to
	supports for larger	analysis performed	In phase 2, build and	PHILLIPS for evaluation
	masses		test springs	
7	MTI compressor, life	long term stability of	system tests	In house life testing on system at
	limiting elements	diaphragm and		MTI. Performance testing under
		plunger sensors,		AFPL contract.
		compressor/control		
		Instabilities, higher		
		order vibration		
		harmonics		
∞	internal outgassing of	freezing of	modeling utilizing	calculation of outgassing rates in
	organics	condensibles, reduced		phase 2
		thermal performance	of coll/potting for	
			fast bakeout	
<u>6</u>	management of waste high temperatures	high temperatures	modeling utilizing	critical for flexure compressor
	heat	degrade thermal	existing codes. Verify	demonstrate manufacturing
		performance.	of displacer test.	during phase2

PHASE 2 PRINCIPAL TEST ACTIVITIES

Air Force Phillips Laboratories 10K CoDR

BUILD AND TEST A STRUCTURAL MODEL OF DISPLACER TO DEMONSTRATE ALIGNMENT, DYNAMICS AND MANUFACTURING

BUILD AND TEST A THERMAL DISPLACER TEST BED TO VERIFY ADEQUATE COOLING AND OPTIMIZE PARAMETERS THE ABOVE UNITS WOULD UTILIZE AN EXISTING COMPRESSOR MOTOR/HOUSING AS THE DISPLACER DRIVE LMSC WOULD BUILD A BRASSBOARD FLEXURE COMPRESSOR ON COMPANY FUNDING FOR DISPLACER TESTS

large flexures, low outgassing coils, and displacer induced vibration additional testing would include regenerator testing (at NIST),

Air Force Phillips Laboratories 10K CoDR

10K TECHNICAL RESULTS

Air Force
Phillips Laboratories
10K CoDR DISPLACER ACTIVE BALANCER COMPRESSOR DIMENSIONS IN MM 3 STAGE CRYOCOOLER SYSTEM IS MADE UP OF MODULAR COMPONENTS DISPLACER -353.5--421.6-742.5 -67.4-29.6 37.5 -110.1-120.0 15.5 三上Lockheed 158.0 TA,DD

₹\$Lockheed

BASELINE WEIGHT SUMMARY

Air Force Phillips Laboratories 10K CoDR

	·		(1) BASED ON 0.25KG/W
250KG GOAL		165KG	TOTAL VEHICLE EFFECTIVE WT.
		132 KG	EFFECTIVE POWER WEIGHT(1)
1000W MAX.	ПS	528 WATTS	TOTAL POWER INPUT
REQUIREMENTS 100KG MAX.	73LBS	33.2KG	TOTALS
	4.4	2.0	CABLES AND SUPPORT HDW.
	22.0	10.0	ELECTRONIC CONTROLLER
	4.4	2.0	DISPLACER BALANCER
	9.46	4.3	DISPLACER
	32.7	14.89	MTI COMPRESSOR
	LBS.	KG	

=\10ckheed

F.00

POWER

BUDGET SUMMARY

Air Force Phillips Laboratories 10K Codr

REQUIREMENT 1000 W MAX. POWER, WATTS **528 WATTS** 88 422 **ELECTRONICS TURN ON POWER ELECTRONICS INEFFECIENCY** DISPLACER BALANCER TOTAL POWER INPUT MTI COMPRESSOR DISPLACER

- * COMPRESSOR LINEAR MOTOR
- * STATIONARY 3RD STAGE REGENERATOR
- * JACKETED TRANSFER LINE
- * ISOTHERMALIZER AT COLDFINGER BASE
- * GAS DIFFUSER IN DISPLACER WARM END
- ANNULAR GAS TRANSFER AT EACH COLD STAGE
- * THERMAL MASS AT COLD END
- * EASILY REMOVED COLDFINGER
- * STANDARD COMPRESSOR BASED BALANCER

=\$Lockheed

THE 10K DISPLACER IS BASED ON THE CCS1000 COMPRESSOR MOTOR

Air Force Phillips Laboratories 10 K CoDR

10K CoDR 114

ADVANTAGE OF COMPRESSOR MOTOR FOR 10K DISPLACER

Air Force Phillips Laboratories 10 K CoDR

The current LMSC compressor is a good match for the displacer.

- * It satisfies all requirements for driving the large regenerator.
- * Suspension spring stresses are low.
- It behaves well dynamically when mated with the regenerator.
- The overall weight is compatible with the system.
- An active balancer is available.
- Controller interfaces are in place and well understood.
- * Hardware is existing and readily available.

=\Lockheed

-R,00

MOVING MASS IS SUPORTED BY 2 STACKS WITH UNEQUAL NUMBERS OF IDENTICAL SPRINGS

Air Force Phillips Laboratories 10 K CoDR

Rear Spring Stack Axial Direction Front Spring Stack Radial Direction

• 10K Displacer dynamics model (Dimensions in Centimeters):

- LMSC (0.125,420°) spiral spring, 0.012 in. thickness, 301 stainless steel used
- NOTE: Model neglects force and moment caused by flow past regenerator... -- small end-to-end pressure gradient; no destabilizing flow effects

Air Force Phillips Laboratories 10 K CoDR **LEGEND** 4 Springs, Forward Pack 10K Displacer 5 Springs, Forward Pack Suspension Configuration Study 6 Springs, Forward Pack 7 Springs, Forward Pack **Results Summary** 8 Springs, Forward Pack 9 Springs, Forward Pack 10 Springs, Forward Pack 11 Springs, Forward Pack Ø 12 Springs, Forward Pack 10K Displacer, Springs (LMSC,SS,012), (s,f) = (4.4,40), w/Gap Film x10⁻³ Worst-Case Deflection Limit 10K DISPLACER SPRING Max. 3rd Stage Regenerator Radial Excursionl, cm PACK STUDY MATRIX 1.8 9. <u>-</u>2 40 Hz 0. 10 No. Springs, Aft Pack

Convergence Study: 1X Model Effective Stress @ thin section LEGEND 0.008-in. thick spring 0.010-in. thick spring 0.012-in. thick spring Stresses in LMSC (0.125,420) Spiral Springs x10⁴0 80 STRESSES IN DISPLACER SPRINGS 6.0 Max. Effective Stress (psi) 2.0 1.0 0.5 1.5 2.0 2.5 3.0 3.5 4.5 5.0 Axial Extension (mm)

1900 TH

* The current LMSC compressor spring is an ideal choice.

Stresses at maximum stroke are quite low:

- approximatly 25 Ksi at the thin section. approximatly 35 Ksi at the inside spiral termination hole.
- For the 40 HZ design, an ideal design (minimizing radial deflections) is:
- 12 springs in the forward stack (regenerator end).
 - 4 springs in the aft stack (target plate end).

FIRST STAGE GAS FLOW PATHS

=\$Lockheed

SECOND TO THIRD STAGE GAS FLOW PATHS

₹\$Lockheed

COLD END GAS FLOW PATHS

FL00

• 3RD STAGE

- "Composite" regenerator utilizing mixture of ErAl₂ / GdRh / Pb in sintered form
- Layered regenerator utilizing sintered "plugs" of above
- Perforated plate with integral rare earth materials (ACE)

• 2ND STAGE

- Phosphor Bronze Screens
- · "Rolled" Screens to Reduce Porosity
- Above plus SnPb alloy at 30 K 50 K
- Phosphor Bronze with Lead Coating

• 1ST STAGE

- Stainless steel screens with graduated size distribution
- "Rolled" Screens to Reduce Porosity

REGENERATOR MATERIALS, THERMAL PENETRATION DEPTH AT 40 HZII

Air Force Phillips Laboratories 10 K CoDR

k/pC, (cm²/s)

DIFFUSIVITY,

THERMAL PENETRATION DEPTH mm ,sH O+ TA

-85%Pb-5%Sb

100

TEMPERATURE, K

-RADO

Stockheed VOLUMETRIC HEAT CAPACITIES OF SECOND STAGE REGENERATOR CANDIDATES

FLOD

VOLUMETRIC HEAT CAPACITY OF Phillips Laboratories COMPOSITE REGENERATOR

Alabama Cryogenic Engineering, Huntsville, AL Perforated Plates

AESAR, Johnson Matthey, Inc., Seabrook, NHDy - 40 mesh and 250 um powder, ingot Er - 250 um powder, ingot Gd - 40 mesh and 250 um powder, ingot Nd - 250 um powder, ingot Rh - 22 and 60 mesh powder

CERAC/PURE Division of CERAC, Milwaukee, WI Dy - 40 mesh powder, 12 mm pieces Er - 40 mesh powder, 12 mm pieces Gd - 40 mesh powder, 12 mm pieces Nd - 40 mesh powder, 12 mm pieces

Phosphor Bronze wire cloth - various meshes CRES wire cloth - various meshes Howard Wire Cloth, Hayward, CA

Metallurgy Division of NIST, Gaithersburg, MD Er3Ni - powder Rh - nitrided powder

= \$ Lockheed

TR,00

REGENERATOR MATERIAL SOURCES 2/2

Phillips Laboratories 10 K CoDR Air Force

Rhone Poulec, Phoenix, AZ

Er - ingot

ErNi - ingot pieces

Er3Ni - ingot pieces

Gd - ingot

GdRh - ingot

Toshiba, Westboro, MA Er3Ni - 0.18-0.45 mm powder

FL00

RISK/CONCERN

Maintain clearances during assembly. Maintain clearances during operation. Proper gas flow, pressure drop and heat transfer. Heat dissipation at displacer hot end. Uniform flow thru regenerator.

Third stage regenerator lifetime.

RESPONSE

Provide adjustment and means of measurement. Model extensively with dynamic model including gas dynamics.

Model with SRPM.

transfer line and/or isothermalizer. Model with SRPM, provide cooler

Provide flow diffuser.

Use sintered materials or perforated plates.

ALIGNMENT PROGRAM SUMMARY

P/059824

555 80K CDR

• A TECHNIQUE FOR MEASURING THE MOTION OF THE MOVING MASS HAS BEEN DEMONSTRATED IN THE LABORATORY

- **QUANTIFIES MAGNITUDE OF MOTION**
- ALLOWS EFFECTS OF ALIGNMENT EFFORT TO BE SEEN
- CURRENT SET-UP LIMITED BY SPRING ARM MOVEMENT @ 50-HZ TESTING CONTINUES TO DETERMINE SYSTEM SENSITIVITIES
- 80K BASELINE COMPATABLE WITH ALIGNMENT SCHEME
- FIRST USE OF CENTERING DEVICE TO BE IMPLEMENTED ON SCRS

TA Lockheed
Lucas Aerospace

PISTON/LINER CENTERING DEVICE

P/059824

NSS CDR

COLDFINGER CONCEPT WITH 3 STATIONARY REGENERATORS

Air Force Phillips Laboratories 10 K Kick Off Meeting

COOLING PERFORMANCE PREDICTIONS

SIDNEY W.K. YUAN

SRPM MODEL FEATURES (PAGE 2 OF 2)

P/011464

NSA NSA 80K PDR

· MODEL OUTPUT INCLUDES:

- COMPLETE THERMODYNAMIC CHARACTERIZATION

- TEMPERATURES

-- MASS FLOWRATES

-- PV-WORK (COMP & DISP)

- PRESSURE DROPS

-- SYSTEM LOSSES

-- HEAT BALANCE AT EACH NODE

- INPUT FOR DYNAMIC MODELING

- PRESSURE -VS- TIME IN COMPRESSOR, DISPLACER

-- YIELDS GAS SPRING STIFFNESS AND DAMPING -VS- EXTENSION

- INPUT FOR SINDA MODELING

- SHUTTLED MASS FLOWRATES

-- INTERNAL HEATING TERMS

-- EFFECTIVE FILM COEFFICIENTS

SRPM MODEL FEATURES

(PAGE 1 OF 2)

NSS POR

· MODELS SPLIT-STIRLING CRYOCOOLER GEOMETRY

OVER 95 NODES

- CONSERVATION OF MASS, MOMENTUM, ENERGY REQ'D AT EACH NODE

- INCLUDES BLOW-BY AT CLEARANCE SEALS

- ALLOWS FIRST-PRINCIPLE ASSESSMENT OF PARAMETER CHANGES

· MODELING FEATURES INCLUDE

SMITH'S COMPLEX NUSSELT NUMBER

- KAYS & LONDON CORRELATIONS BETWEEN HEAT/MASS TRANSFER IN REGEN

- AMAR & CANNON CALCULATION FOR PRESSURE DROP IN REGEN SCREENS

- GORRING & CHURCHILL EMPIRICAL CONDUCTIVITY EQN FOR REGEN MATRIX

- LAMINAR AND TURBULENT TRANSPORT IN TRANSFER LINE

- ENTRANCE/EXIT EFFECTS IN ALL CONTRACTIONS/EXPANSIONS

friction force

GOVERNING EQUATIONS USED IN THE REGENERATOR

干的

Gas Energy Balance Equation

$$\frac{h_t A}{L A_g} (T_m - T) = \frac{\partial}{\partial x} \left[\left(\frac{m}{A_g} \right)_h \right] - \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial t} (\varrho u)$$
heat enthalpy thermal energy transfer change conduction storage

Matrix Energy Balance Equation

$$\frac{h_{t}A}{LA_{s}} (T - T_{m}) = -\left(\frac{1 - n_{s}}{n_{s}}\right) \frac{\partial}{\partial x} \left(k \frac{\partial T_{m}}{\partial x}\right) + \frac{\partial}{\partial t} (\rho u)$$
heat thermal energy transfer conduction storage

Continuity Equation

$$\frac{\partial}{\partial x} \left(\frac{m}{A_b} \right) = -\frac{\partial \varrho}{\partial t}$$
mass mass

change divergence

Conservation of Momentum

$$-\left(\frac{A}{LA_s}\right)\left(\frac{m}{A_s}\right)\frac{|\dot{m}|}{A_s}\frac{f}{2\varrho} = \frac{\partial P}{\partial x} + \frac{\partial}{\partial x}\frac{1}{\varrho}\left(\frac{m}{A_s}\right)^2 + \frac{\partial}{\partial t}\left(\frac{m}{A_s}\right).$$

Trockheed

$$Q = [Nu_r(T-T_w) + (Nu_i/\omega)(dT/dt)] kA / D_h$$

Where

$$Nu_r = Nu_j = 0.98(PeD_h/L_S)^{0.59}$$

The Lockheed

" ≱

Figure 3. Comparison of predicted and experimental conductivities for dispersions.

KX = thermal conductivity of the matrix, w/cm K
KG = thermal conductivity of the gas in the matrix, w/cm K
KM = thermal conductivity of the metal in the matrix, w/cm K
FF = fraction of matrix volume filled with colid

= fraction of matrix volume filled with colid

CRYOCOOLERS VALIDATED BY SRPM

=\$lockheed

MACHINE	IINE	SIZE DISP. COMP.	TEMP.	HEAT LOAD EXPER/PRED.	COMMENTS
LOCKH	OCKHEED/ LUCAS	7 mm 17 mm	65 K	0.5 W 0.5 W	Detailed Validation, results published in Cryogenics Vol. 32, No 2, p143, 1992.
PHILII MAC BEA	PHILIPS/NASA 20 mm MAGNETIC 52 mm BEARING	20 mm 52 mm	65 K	5 W 5 W	Excellent prediction on input and heat load Results to be published in the 7th International Cryocooler Conference, Santa Fe, Nov. 1992
OXFORD	OXFORD UNIVERSITY	10 mm 20 mm	80 K	0.75 W 0.72 W	Good agreement, results to be published in the Cryogenic Eng. Conf., 1993.
M COM SPA(CONF. A COMMON COMP 10 mm SPACE	10 mm	55 K	1.4 W 1.3 - 1.8 W#	Limited data points, dependence on frequency and phase angle need further studies.
ပ က ပ	CONF. B	70 mm		0.69 - 1.08 W 0.75 - 1.16 W	0.69 - 1.08 W Excellent agreement on the prediction of net 0.75 - 1.16 W cooling as a function of compressor stroke.
A CONF. C COMMON SPACE	CONF. C COMMON COMP 17 mm SPACE	10 mm 17 mm	55 K	1 W	Preliminary results show good agreement between experimental data and predictiuon.

* DESCRIPTION OF THE COMPUTER MODEL CAN BE FOUND IN ADVANCES IN CRYOGENIC ENG. VOL.37 PART B, p1055, PLENUM PRESS, NEW YORK, 1992.

#PREDICTION PERFORMED BEFORE TEST DATA WAS AVAILABLE.

=\fockheed

TR,00

SCHEMATIC DIAGRAM OF THE 10K COOLER

Three-stage Stirling nodal diagram

LMSC THERMODYNAMIC MODELING ON SRPM MODEL

Air Force Phillips Laboratories 10 K Kick Off Meeting

- LMSC will set up compressor / displacer model of system. Principal parameters obtained from model will be:
- Required Motor Force.
- System Natural Frequency.
- · Energy Balance and Heat Dissipation.
- Transfer Line Sizing.
- · Gas Passages and Porting for Displacer.
- · First Estimates of Cooling and Losses.

10K Kickoff 004A

FR,00

SUMMARY OF RUNS

Air Force Phillips Laboratories 10K CoDR

MPIT PARAMETERS:	AMETER	ý												1	SOLUTION OF STREET						The state of the s
														2							COMMETALS
DATE OF RUN	ALG	Toc / Tde	F.	æ	•	s	8	38	11/01	12/D2	L3/D3/G3	TU / Tud	TGE1	TGE2	TGE3	A P c	₹ 0	NATEO	FORCE	8	
(mo/day/yr)		(K)/(K)	(06:0)	H	(660)	(cm)	Œΰ	(E)	(cm/cm)	(cm/cm)	(cm/cm/cm)	(mm)/(mm)	(K)	(K)	_	_			(lb)	نــــــــــــــــــــــــــــــــــــــ	
RUN #1	·	300/300	220	=	3	6	•	0.44	2.56/2.5	1 79/1 36 3	1.79/1 36 3.0/.871/0.245	254/3.5	06	36	20						3rd stage Er3Ni
RUN #2	•	:	:	ç	:	1.5	:	:	:	:	:	:	011	34	=						
RUN #3	•	:	:	:	:	:	:	9.0	:	:	:	:	105.6	33.4	18 42						
HUN M	•	:	:	:	ş	:	:	0.44	:	:	:	:	69 101		23						
RUN 65	-	:	:	:	2	:	:	:	:	:	:	:	108 5	37.5	20 46						
RUN A	•	:	:	:	2	:	:	:	2 56/3 5	:	:	:	88.3	36.3	20 6						:
RUN#7	•	:	:	:	:	:	:	:	:	:	:	:	63.9	34.9	18 6						3rd stage Composil Malena)
RUN #8	-	:	:	:	:	:	:	:	:	:	:	:	917	3.5	16.4						
RUN M	-	:	:	:	:	:	:		4 56/2 5	:	:	:	97.85	36.55	16 28						
RUN#10	•	:	:	=	7	:	:	:	:	:		254/3 0	108 2	35	16 35						
RUNATI	•	:	:	:	-	:	:	:	2 56/4 5	. :	:	254/3 5	69.3	36	15.2						
RUN#12	:	:	:	:	:	1	:	:	3.56/4.5	:	:	:	93 80	37 70	14 82						
RUN#13	:	:	:	:	:	:	-	:	:	:	:	:	93 80	37 50	15 10						change from screens to suberes in 3rd stade
RUN#14	:	:	:	20 00	7	-	:	:	2 56/2 5	:	:	:	101	37.70	16 00						
RUN#15	:	:	:	:	:	2 25	:	\exists	:	:	:	:	100 00	34 00	17 80		П				
RUNF16	:	:	=	:	-	:	:	090	-	:	:	:	114 00	33 74	16 00						
RUN#17	:	:	:	-	:	:	:	:	:	:	:	:		33 40	16 00	\Box					Ower can size in let A 2nd stans he so mercons
RUNATA	:	:	:	90.00	1	1 50	8	0 40	4.56/3.5	:	:	:	93.30	37.94	18 20	- 5	541 00			9 30	
RUN#19	\cdot	1	:	:	:	:	3 50	0.44	2 56/3 5	:			89 65	34 73	<u>*</u>	67	341 80	41 40	52 00	0 38 6	0.38 change 1st stage screens from 250 mesh to 325 mesh
RUNESO	:	:	:	:	:	:	:	090		:	:	;	19	33 31	16 04						
RUN#21	:	:	:	:	20 00	:	:	0.70	\exists	:	:	:	87.17	28 76	15 70	2	274 00	47 00	47 60	91.0	
PUN#22	:	:	:	:	20.00	-	:	:	:	:	3/1 3/0 45	:	87 50	33 40	13 80						
RUNES	:		320 00	:	40.00	7	:	:	:	:	1 5/1 3/0 45	:	96 80	29 10	14 70	1	166 00	51.00	80 70	0 37	
PUN#24	\exists	"	220.00	:	:	:	:	:	:	:	3/1 3/0 45	:	92 00	32 90	15 00	-	347 00	45 00	56 S0	0 40	0.40 change void fraction of 1st from 0.71 to 0.55
RUNES	:	1	:	:	:	;	:	:	:	:	2/1 3/0 45	:	63.43	30.60	15.08		347 00	47 00	57 70	0 34	0 34 and second stage from 0 67 to 0 5
RUNIZE	\vdots				7			-	:	:	3/1 3/0 4	:	84 20	31 10 12 20	12 20	ᆌ	349 00 46 50		58 00 0 64	0 64	
	£ .	•	į		ä		Stoke Length of	Tight of C	Compressor (XPC)	(xac)						İ		L1/Tlid	TL1/Tlid Transfer line length / I.D.	ine leng	m/10
Toc . Tempe	reture C	: Temperature Compressor Case (TCH)	TCH)	_	ă		ОПриева	or pleton	Compressor piston dameter (DPC)	Dec)							_	GE1-TOE	2.TGE3	181. 27.	TGE1-TGE2-TGE3 1st, 2nd and 3rd stage expansion temperatures

To: Temperature Compressor Case (TCH)
Td: Temperature Displacer Casé (TDH)

PIM : FIM Preseure (PPFILL)

FREQ: Compressor/Displacer Frequency (FREQ1/2)

L1/D1 : Ist stage regenerator length over dismeter L2/D2 : 2nd stage regenerator length over diameter Sd : Strake Length of Displacet (XPE)

TGE1-TGE2-TGE3 1st, 2nd and 3rd stage expansion temperatures PV c Net P.V WorluCycle in Compression Space

NFREO Natural frequency

PFORCE Motor force

=\$Lockheed =₹Lockheed

P-V IN THE COMPRESSION SPACE

Thockheed P.

P-V IN THE THIRD EXPANSION SPACE

=\text{lockheed}

HEAT REJECTION AT COMPRESSOR & DISPLACER

= Lockheed -RADO

PRESSURE AT COMPRESSION SPACE & 3RD EXPANSION SPACE

=> Lockheed

RUN SUMMARY

Air Force Phillips Laboratories 10K CoDR

FROD

Net Ref. Power (W)	0.145, 2.0, 5.0
Displacer Stroke (mm)	7
Disp. Swept Volumes (cc)	0.137, 1.12, 5.7
Clearance Gaps (Microns)	17, 20, 30
Comp. Swept Vol. (cc)	28.86
Compressor P-V (W)	349
Operating Frequency (Hz)	40
Fill Pressure (Psia)	220

300

SUMMARY OF DISPLACER LOSS Air Force TERMS FOR A TYPICAL RUN Phillips Laboratories 10K CoDR

	80K FIRST STAGE	35K SECOND STAGE	10K THIRD STAGE
Gross Cooling	35.2 W	6.5 W	0.64 W
Regenerator Loss	s 22.45 W	3.6 W	0.31 W
Blow-By Loss	7.75 W	0.9 W	0.185 W
Net Cooling	2 W	2.0 W	^0.15 W

- Design for higher cooling margins
- Design for reduced power
- Design more efficient compressor motor
- Design better regenerators
- Optimize run conditions

=\text{lockheed}

GAS SPRING FORCE IN COMPRESSOR

=\lockheed

TRADO

METAL SPRING FORCE

₹\$lockheed ₹\$DD

INERTIAL FORCE OF MOVING MASS

=\$lockheed =₹DD

TOTAL MOTOR FORCE VS. TIME

₹\$Lockheed

TOTAL MOTOR FORCE VS.
DISPLACEMENT

⊒\$Lockheed **∃**

AVERAGE MOTOR FORCE VS. TIME

三字Lockheed 三元DOC

Air Force Phillips Laboratories 10K CoDR

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) DR. RAY RADEBAUGH

100

- AND TECHNOLOGY (NIST)
 DR. RAY RADEBAUGH
- Perform a design audit on the machine thermodynamics, Complete iterations on the 40 Hz, 3 stage design using REGEN, REGEN 2 and REGEN3: initiated during proposal effort.
- Perform parameter trades for fill pressure 10 to 30 Bar, operating frequency from 20 to 40 Hz and several regenerator trades including the perforated plate design (ACE)
- Candidate is the effect of lower temperatures on the Conduct additional trades indicated by above work. 1st and/or 2nd stage on overall performance.
- of the art and provide quote on sintered 3rd stage regenerator Provide recommendations for regenerators, summarize state manufacture.
- Provide input to identification of critical components task and Phase 2 SOW.

SUMMARY

• Low porosity regenerators improve performance significantly, particularly in 2nd and 3rd stages

3rd stage: 0.30 porosity spheres, 2 sizes 2nd stage: 0.55 porosity screen (flattened) 1st stage: 0.60 porosity screen (flattened)

- Optimum mean pressure is 1.5 MPa
- Minimum clearance gap occurs in 3rd stage
- Both 20 Hz and 40 Hz cases studied
- REGEN3.1 used for analysis of all regenerators
- Degradation factor of 0.85 used to convert isothermal PV expansion work to gross refrigeration power in each stage
- Real gas properties used in calculations
- Actual input PV power taken as 1.5 times calculated isothermal PV power to account for compressor losses
- Efficiency of 85% assumed for conversion of electrical to PV power in linear resonant compressor

三字Lockheed

CONCLUSIONS FROM NIST

Air Force Phillips Laboratories 10K CoDR

FLOD

THREE STAGE STIRLING CAN EASILY MEET SPECIFICATIONS

40 HZ OPERATION PREFERRED BECAUSE OF SMALLER COMPRESSOR

427 W INPUT POWER WITH LARGE EXCESS COOLING POWER

387 W INPUT TO MEET REQUIREMENTS

20 MICRON CLEARANCE GAP FOR 3RD. STAGE

LOW POROSITY REGENERATORS NECESSARY FOR HIGH EFFICIENCY

₹\$Lockheed

Air Force Phillips Laboratories 10K CoDR

20 Hz and 40 Hz Operation

	$_{ m 20~Hz}$	40 Hz
Temperature, K	10, 35, 80	10, 35, 80
Net Refr. Power 0.19, 3.41, 10.3	0.19, 3.41, 10.3	0.19, 3.27, 10.9
Stroke (mm)	6.0	4.4
Swept vol. (cm ³)	0.11, 0.82, 4.3	0.07, 0.44, 1.7
Clear. gap (µm)	23, 30, 40	20, 25, 35
Comp. swpt vol.	26	19
Input el. power	408 W	427 W
% input power	12%, 28%, 60%	20%, 29%, 51%

Nomenclature:

MOH	ienciati	ire.
V,	(cw ₂)	Expansion space swept volume (or volume of gas passing through regen.)(magn.&phase)
d	(mm)	Diameter of displacer
t.	(mm)	Thickness of cylinder wall
t.,	(µ m)	Thickness of gap between displacer and cylinder wall
	en. mat.	Regenerator matrix material
Poro	sity	Porosity of regenerator matrix
Mes	h	Mesh size of screen used for regenerator matrix (if screen is used)
Par.	dia(µm	Diameter of sphericle particles in regenerator matrix (if spheres are used)
Ą	(cm³)	Total cross sectional area of regenerator (matrix plus gas)
D	(mm)	Diameter of regenerator
L	(mm)	Length of regenerator
V,,	(cm³)	Volume of gas in regenerator
V,, ^	7,	Ratio of regenerator gas volume to expansion space swept volume
P,		Pressure ratio at cold end of regenerator
P,/P)	Ratio of dynamic pressure amplitude to the mean pressure
ΔΡ/Ρ	9	Ratio of average pressure drop in one direction to the mean pressure
T,	(IK)	The log-mean temperature of the regenerator, $T_r = (T_h - T_h)/\ln(T_h/T_h)$
ṁ,	(g/a)	Mass flow rate into the expansion space volume (magnitude and phase)
m,	(g/s)	Mass flow rate at the cold end of the regenerator (magnitude and phase)
PV. /	RT,(g/s	Rate of change of mass within the regenerator due to pressure change (magn. and phase)
m,	(g/s)	Mass flow rate at hot end of regenerator (magnitude and phase)
W _e	(W)	Total work flow at cold end of regenerator
Ŵ,	(W)	Work flow into expansion apace volume (isothermal conditions)
વ <u>્ર</u> ધ્ર	(W)	Maximum gross refrigeration power in expansion space (includes real gas effects)
ધ્ર	(W)	Actual gross refrigeration power in practical system
વે., Q.	(W)	Regenerator loss due to ineffectiveness of regenerator
<u>Q.</u>	(W)	Conduction loss in regenerator matrix
Q,	(W)	Conduction loss in tube (pressure confining tube)
ધ્ય	(W)	Conduction down displacer (excluding any regenerator matrix)
<u>રે.</u>	(W)	Loss due to flow in gap between displacer and cylinder
42.	(W)	Shuttle heat loss
Q _{nat}	(W)	Net refrigeration power
₩,	(W)	Work flow at hot end of regenerator (neglecting pressure drop)
W _{hap}	(W)	Work flow at hot end of regenerator (including pressure drop in regenerator)
₩ ৣ	(W)	Compressor PV work required to provide flow work into expansion space volume
V 20 LOLA		Sum of compressor PV work required for specified stage plus all colder stages
REGE		Run number from REGEN3.1 analysis used for these calculations
ector		Factor that is used to multiply the mass flows, cross-sectional areas, volumes, and powers in the REGEN3.1 analysis to adjust to the size needed for this case
-		the contract of the contract o

Table 4. Characteristics of cold stages, 40 Hz, 1.5 MPa, 4.4 mm stroke.

Para	meter	3rd Stage 10 K,0.15 W	(Phase) (deg)	2nd Stage 35 K, 2 W	(Phase) (deg)	lst Stage 80 K, 5 W	(Phase) (deg)	Warm en 300 K
V.	(cm²)	0.071	-133	0.436	-133	1.688	-133	2.195
ď	(mm)	4.53		12.11		25.20		25.20
t,	(mm)	0.41		0.41		0.41		
t,	(mm)	20		25		35		
	n. mat.	composite		phos. bronze		S.S.		
Poros	ity	0.30		0.55		0.60		
Mesh				250		325		
Par.	dia(µm	183						
Ą	(cm ³)	0.900		0.840		3.78		
D	(mm)	10.70		10.34		21.94		
L	(mm)	30.0		25		30		
V.,	(cm³)	0.81		1.155		6.80		
V, /V	,	11.41		2.65		4.03		
Ρ,		1.700		1.735		1.798		1.889
P,/P,		0.2598		0.2687		0.2852		0.3077
ΔP/P,		0.00939		0.0165		0.0225		0.0200
Γ,	(K)	19.96		54.4		166.4		300.0
ń,	(g/s)	0.81	-32	0.89	88	1.63	29	
វ់ា ្	(g/s)	0.81	-82	1.43	18	2.70	11	
₽V,,/\$	T,(g/s	1.91	90	1.04	90	2.12	90	
rin _h	(g/s)	1.13	58	1.82	47	3.56	43	
Ŵ,	(W)	1.50		14.39		66.34		
k,	(W)	1.50		8.14		84.17		48
1 ,,,,	(W)	1.52		7.75		33.21		
1	(W)	1.29		6.59		28.23		
)	(W)	0.76		3.15		10.05		
ર્	(W)	0.12		0.08		2.57		
١,	(W)	0.02		0.18		2.92	(1.19,Ti)	
2.4	(W)	0.00		0.02		0.44		
),	(W)	0.13		0.48		0.63		
٤	(W)	0.07		0.51		6.87		
Lpns	(W)	0.19		3.27		9.17	(10.90.75)	
V ,	(W)	6.03		30.91		242.2		213
V _{hap}	(W)	6.25		32.81		261.8		213
٧	(W)	60.7		90.8		157.0		
V _{on Lake}	(W)			151.5		308.5		261
REGE	N3.1	#922		#960		#957		
actor		1.50		0.70		0.90		

Table 4b. Characteristics of aftercooler and compressor, 40 Hz, 1.5 MPa.

Paran	eter	Aftercooler 300 K	(Phase)	Conn. tube 320 K	(Phase)	Compressor 320 K	(Phase)	Electrical
V.	(cm³)					19	-203	
	(mm)						(a=70°)	
t,	(mm)						(0*=23°)	
t,	(pm)		·				(8=38°)	
Regen.	mat.	copper						
Porosit	y							
Mesh								
Par. di	a(µm							
A,	(cm²)							
	(mm)							
L (mm)							
V,,	(cm³)							
V,,/V,								
Р,		1.889				1.975		
P,/P.		0.3077				0.3277		
ΔP/P,		0.020						
T,	(K)	310				320		
	g/a)							
	g/s)	3.72	55					
PV _a /RT		0.2	90					
	g/s)	3.87	57					
	(W)	213						
	(W)					4.2		4.9
	(W)							
	w).							
	W)							
	W)							
	W)							
الم	W)							
	W)							
<u>د (</u>	w)							
ther (W)							
	M)	227				363		
	W)	242				363		427
	W)	1000						
Ven intal ((261)				(392)		(461.)
EGEN	3.1							
actor								

Table 5. Characteristics of cold stages, 40 Hz, 1.5 MPa, 4.4 mm stroke, smaller 1st.

Par	emeter	3rd Stage 10 K,0.15 W	(Phase) (deg)	2nd Stage 35 K, 2 W	(Phase) (deg)	1st Stage 80 K, 5 W	(Phase) (deg)	Warm er 300 K
V,	(cm³)	0.071	-133	0.436	-133	1.292	-133	1.799
d	(mm)	4.53		12.11		22.82		22.82
t.	(mm)	0.41		0.41		0.41		
t,	(µm)	20		25		85		
	en. mat.	composite		phos. bronze		S.S.		
	eity	0.30		0.55		0.60		
Mos				250		325		
Par.	dia(µm	183						
A,	(cm ³)	0.900	***	0.840		3.36		
D	(mm)	10.70		10.34		20.68		
L	(mm)	30.0		25		30		
V,	(cm³)	0.81		1.155		6.05		
V,,/	V,	11.41		2.65		4.68		
P,		1.700		1.735		1.798		1.889
P _t /P	,	0.2593		0.2687		0.2852		0.3077
ΔP/F	0	0.00939		0.0165		0.0225		0.0200
T,	(K)	19.96		54.4		166.4		300.0
m,	(g/e)	0.81	-32	0.89	33	1.25	29	
Ų,	(g/s)	0.81	-32	1.43	18	2.40	11	
۲۷,	RT,(g/a	1.91	90	1.04	90	1.88	90	
á,	(g/s)	1.13	58	1.82	47	3.16	43	
W,	(W)	1.50		14.39		58.97		
Ŵ,	(W)	1.50		8.14		26.16		39
Ź.m	(W)	1.52		7.75		25.42		
ئ	(W)	1.29		6.59		21.61		******
٤	(W)	0.76		3.15		8.94		
ي	(W)	0.12		0.08		2.28		
)	(W)	0.02		0.18		2.64	(1.08,Ti)	
Į.	(W)	0.00		0.02		0.27		
\	(W)	0.13		0.48		0.57		·
<u>. </u>	(W)	0.07		0.51		6.22		
Znar.	(W)	0.19		3.27		5.11	(6,67.Ti)	
V,	(W)	6.03		30.91		215.3		198
V _{hap}	(W)	6.25		32.81		282.3		193
٧,,,	(W)	60.7		90.8		120.2		
٧,, المد	at (W)			151.5		271.7		233
	EN8.1	#922		#960		#957		
acto	r	1.50		0.70		0.80		

Table 5b. Characteristics of aftercooler and compressor, 40 Hz, 1.5 MPa.

Par	ameter	Aftercooler 300 K	(Phase)	Conn. tube 320 K	(Phase)	Compressor 320 K	(Phase)	Electrical
V _∞	(cm²)	·				17	-202	
d	(mm)						(a=70°)	
t.	(mm)						(0*=22*)	
t,	(mm)						(0=37")	
	n. mat.	copper						
Poro								
Mes								
Par.	dia(µm							
A,	(cm²)							
n	(mm)							
L	(mm)							
V.,	(cm²)							
V,, /								
Ρ,		1.889				1.975		
P,/P,		0.3077				0.3277		
ΔΡ/Ρ		0.020						
T,	(K)	310				320		
m,	(g/a)							
ų,	(g/s)	3.40	56					
PV./	RT,(g/s	0.2*	90					
ń,	(g/s)	3.53	58					
Ŵ,	(W)	193						
Ŵ,	(W)					3.2		3.8
Q,m	(W)							
Q,	(W)							
Q. Q.,	(W)							
<u>Q</u>	(W)							
ବ୍ୟ ବ୍ୟ	(W)							
	(W)							
Q,	(W)							
Q,	(W)							
Q _{max}	(W)							
Ŵ,	(W)	206				329		
W _{hap}	(W)	219				829		887
Ŵ <u>"</u>	(W)							
	, (W)	(233)				(350)		(461)
REGI	EN8.1							
Pacto	r							

Table 1. Characteristics of three cold stages, 20 Hz, 1.5 MPa, 6.0 mm stroke.

Par	ameter	3rd Stage 10 K,0.15 W	(Phase) (deg)	2nd Stage 35 K, 2 W	(Phase) (deg)	1st Stage 80 K, 5 W		Warm en 300 K
V,	(cm ³)	0.107	-137	0.817	-1.87	4.76	-137	5.684
d.	(mm)	4.77		14.00	_	34.73		34.73
t,	(mm)	0.41		0.41		0.41		
t,	(µm)	23		30		40		
	n. mat.	comp.		phos bronze		8.S.		
Poro		0.30		0.55		0.643		
Mesi				325		325		
Par.	dia(um	183		- 1				
A,	(cm²)	0.60		1.078		3.35		
D.	(mm)	(8.74)		11.72		20.65		
L	(mm)	30.0		25.0		30.5		
V,,	(cm²)	0.54		1.483		6.57		
V., /\		5.05		1.815		1.638		
P,		1.700		1.721	· · · · · ·	1.750		1.832
P,/P,		0.2593		0.2649	· · · · · · · · · · · · · · · · · · ·	0.2728		0.2937
ΔP/P	,	0.00555		0.00770		0.0211		0.0200
Г,	(X)	19.96		54.4		166.4		300.0
b ,	(g/s)	0.54	-32	1.24	-30	2.09	-25	
ń,	(g/e)	0.54	-32	1.27	-11	3.00	-11	
PV,/	RT,(g/s	0.64	90	0.65	90	0.98	90	***************
da _h	(g/s)	0.48	65	1.12	17	2.91	7	
₩,	(W)	0.99		11.84		71.06		•
N .	(W)	0.99		8.05		45.23		-59
2 ,"	(W)	1.00		7.68		43.97		
į,	(W)	0.85		6.53		37.37		
)	(W)	0.35		2.11		11.76		
Ĺ	(W)	0.04		0.09		1.14		
کبر	(W)	0.02		0.20		3.96	(1.60, Ti)	
)	(W)	0.00		0.03		2.21		
<u>}</u>	(W)	0.13		0.43		1.85		
.	(W)	0.12		0.92		15.15		
2,,,1	(W)	0.19		3.41		5.08	(7.44. 79)	
V,	(W)	3.71		25.10		256		217
V _{hap}	(W)	3.79		25.83		276		217
V _m	(W)	38.3		87.2		208.2		
V _{no loca}	(W)	•		125.5		334		275
	N3.1	#923		#935		#941		
actor	. 7	1.00		0.70		1.00		

Table 1b. Characteristics of aftercooler and compressor, 20 Hz, 1.5 MPa.

Parameter	Aftercooler 300 K	(Phase)	Conn. tube 320 K	(Phase)	Compressor 320 K	(Phase)	Electrical
V_m (cm ³)					25	-223	
d (mm)						(a=86°)	
t., (mm)						(6*=43*)	
t, (µm)						(0 ≃ 58°)	
Regen. mat.	copper						
Porosity							
Mesh							
Par. dia(µm							
A_i (cm ²)							
D (mm)							
L (mm)							
V _{rg} (cm ³)							
V _m /V _e							
P,	1.832				1.914		
P ₁ /P ₀	0.2987				0.3137		
ΔP/P _e	0.020				·		
T, (K)	810				320		
m, (g/s)							
ණ. (g/s)	2.63						
PV,/RT,(g/s							
m_h (g/s)	2.70						
Ŵ, (W)	217						
Ŵ, (W)					4.7		5.5
Q _{rm} (W)							
Q, (W)							
Q., (W)							
Q. (W)							
Q _{ct} (W) Q _d (W) Q _d (W) Q _d (W) Q _d (W)							
(W)							·····
ધ <u>,</u> (W)							
Q, (W)							
Q _{net} (W)							·
Ŵ, (W)	231				871		
W _{hal} (W)	247				371		436
₩ _~ (W)							
W _{m tmal} (W)	(275)				(413)		(485)
REGEN3.1							
ector							

Table 2. Characteristics of cold stages, 20 Hz, 1.5 MPa, 6 mm stroke, longer 1st stage.

Para	meter	3rd Stage 10 K,0.15 W	(Phase) (deg)	2nd Stage 35 K, 2 W	(Phase) (deg)	1st Stage 80 K, 5 W	(Phase) (deg)	Warm end 300 K
V.	(cm³)	0.107	-137	0.817	-137	4.76	-137	5.684
ď	(mm)	4.77		14.00		34.73		34.73
t.	(mm)	0.41		0.41		0.41		
t,	(µm)	23		30		40		
Regen	. mat.	comp.		phos bronze		8.S.		
Poros	ity	0.30		0.55		0.60		
Mesh				325		250		
Par. d	lia(um	183				•		
A,	(cm²)	0.60		1.078		4.00		
D	(mm)	(6.74)		11.72		22.57		
L	(mm)	30.0		25.0		36.0		
V,,	(cm³)	0.54		1.483		8.64		
V,,/V		5.05		1.815		1.815		
P,		1.700		1.721		1.750		1.815
P,/Po		0.2593		0.2649		0.2726		0.2894
AP/P.		0.00555		0.00770		0.0168		0.0200
T,	(K)	19.96		54.4		166.4		200.0
m,	(g/s)	0.54	-32	1.24	-80	2.09	-25	
ıπ,	(g/s)	0.54	-32	1.27	-11	3.00	-11	
ÝV"/Ι	T,(g/s	0.64	90	0.65	90	1,28	90	
m̂ _h	(g/s)	0.48	65	1.12	17	2.95	14	
Ŵ,	(W)	0.99		11.84		70.18		•
Ŵ.	(W)	0.99		8.05		44.30		-58
Q,	(W)	1.00		7.68		42.89		
Q.	(W)	0,85		6.53		36.46		
Q.,,	(W)	0.35		2.11		10.25		
Q.	(W)	0.04		0.09		1.61		
Q,	(W)	0.02		0.20		3.36	(1.87, Ti)	
Q _{ed}	(W)	0.00		0.03		1.67		
ୟ	(W)	0.13		0.43		0.71		
Q.	(W)	0.12		0.92		12.84		
Q _{nat}	(W)	0.19		3.41		9.80	(11.79, Ti)	
Ŵ,	(W)	3.71		25.10		254		211
Whap	(W)	3.79		25.83		269		211
Ŵ.,	(W)	37.8		85.9		201.0		•
W _{m inte}	(W)			123.7		325		267
REGE		#923		#935		#959		
Factor		1.00		0.70		1.00		

Table 2b. Characteristics of aftercooler and compressor, 20 Hz, 1.5 MPa.

Paran	neter	Aftercooler 300 K	(Phase)	Conn. tube 320 K	(Phase)	Compressor 320 K	(Phase)	Electrica
V,	(cm³)					27	-218	
	(mm)						(α=81°)	
t.	(mm)		*****				(0*=38°)	
t,	(µm)						(9≈53°)	
Rogen.	mat.	copper						
Porosit	y							
Mesh								
Par. di	a(µm							
A,	(cm²)							
	(mm)							
L ((mm)							
	(cm³)							
V,,/V,								
P,		1.815				1.896		
P_1/P_0		0.2894				0.3094		
$\Delta P/P_0$		0.020						
T,	(K)	310				320		
m, ((g/s)							
	g /s)	2.63						
ĖV"/RΤ	,(g/s							
	(g/s)	2.70						
	(W)	211						
	(W)					4.7		5.5
Q _{rm}	(W)				•			
એ _{ન્સ} ((W)							
Q _{res} (W)							
ર્ક્ય (W							
ر (W)						<u> </u>	
	W							
<u> </u>	w)							
ર (W)		<u></u>					
el _{net} (W)							
<i>N</i> _h (w)	225				362		
	W)	241				362		426
	W)							
	(W)	(267)				(401)		(471)
REGEN	3.1							
actor				<u>_</u>	[

Table 3. Cold stages, 20 Hz, 1.5 MPa, 6 mm stroke, longer and smaller dia. 1st stage.

Para	meter	3rd Stage 10 K,0.15 W	(Phase) (deg)	2nd Stage 35 K, 2 W	(Phase) (deg)	1st Stage 80 K, 5 W		Warm end 300 K
V,	(cm³)	0.107	-137	0.817	-137	4.28	-137	5.204
d	(mm)	4.77		14.00		33.23		33.23
t.	(mm)	0.41		0.41		0.41		
t,	(µm)	23		30		40		
-	ı mat.	сотр.		phos bronze		S.S.		
Poros	ity	0.30		0.55		0.60		
Mesh		•		325		250		
Par.	lia(µm	183						
A,	(cm²)	0.60		1.078		3.80		
D	(mm)	(8.74)		11.72		22.00		
L	(mm)	30.0		25.0		36.0		
V,,	(cm³)	0.54		1.483		8.21		
V, /V		5.05		1.815		1.918		
P,		1.700		1.721		1.750		1.815
P_1/P_0		0.2593		0.2649		0.2726		0.2894
ΔP/P,		0.00555		0.00770		0.0168		0.0200
T,	(K)	19.96		54.4		1 66 .4		300.0
ń,	(g/s)	0.54	-32	1.24	-30	1.92	-25	
ń,	(g/8)	0.54	-32	1.27	-11	2.85	-11	
ŕV, ⁄F	T,(g/s	0.64	90	0.65	90	1.22	90	
m,	(g/s)	0.43	65	1.12	17	2.80	14	
Ŵ,	(W)	0.99		11.84		66.62		•
Ŵ,	(W)	0.99		8.05		40.79		-53
Q	(W)	1.00		7.68		39.49		
ર્સ	(W)	0.85		6.58		33.57		
ધ. ધ,	(W)	0.35		2.11		9.74		
<u>ئ</u>	(W)	0.04		0.09		1.53		
રે	(W)	0.02		0.20		3.22	(1.31, Ti)	
રે. સ્	(W)	0.00		0.03		1.49		
\	(W)	0.13		0.43		0.68		
ર્	(W)	0.12		0.92		12.29		
<u> </u>	(W)	0.19		3.41		8,40	(10.31 <u>Ti)</u>	
٧,	(W)	3.71		25.10		241		203
N _{hap}	(W)	3.79		25.83		256		203
N _m	(W)	37.8		85.9		185.0		
N _{50 1010} 1	(W)			123.7		809		256
REGE		#923		#835		#959		
actor		1.00		0.70		0.95		

Table 3b. Characteristics of aftercooler and compressor, 20 Hz, 1.5 MPa.

Paramet	er Aftercooler 300 K	(Phase)	Conn. tube 320 K	(Phase)	Compressor 320 K	(Phase)	Electrical
V _{ro} (cr	m ^s)				26	-218	
	m)					(a=81°)	
t. (m	m)					(0*=38*)	
	m)					(8=58*)	_
Regen. m	at. copper						
Porosity							
Mesh							
Par. dia()	ım						
A, (cr	n ¹)						
D (m	m)						
L (m	m)						
V _{rs} (cr	n*)						
V ₇₄ /V,							
P,	1.815				1.896		
P,/P,	0.2894				0.3094		
ΔP/P _e	0.020						
T, (K	310				320		
ni, (g/s	3)						
r் <u>ம்,</u> (g/s	2.63						
ĖV,,/RΤ,(g	/8						
m _h (g/e	2.70			•			
Ŵ, (W	7) 203						
Ŵ <u>.</u> (W	ח				3.2		3.7
﴿ (W)						
Q (W)						
وب (W غير (W)							
2. (W)						,	
رW)							
<u>کي (۱۷)</u>							
أور (W) الأور (W) أور (W) أور (W) أور (W) أور (W) أور (W)							
ک. (W)							
2 _{net.} (W)							
					347		
N_{hap} (W)					347		408
₩ (W							
V _{co soul} (W					(384)		(452)
REGENS.1							
factor							

Air Force Phillips Laboratories 10K CoDR

ALABAMA CRYOGENIC ENGINEERING (ACE)

REGENERATOR STUDIES

- Design a perforated plate/rare earth regenerator for the third stage:
- Perform trade studies and optimizations for 3rd stage regenerator.
- Based on gas flow characteristics from LMSC, design regenerator and perform thermodynamic analysis.
- Provide recommendations for interfacing/ implementation of regenerator.
 - Provide input to Phase 2 SOW including a cost quote to manufacture the regenerator.
- Provide recommendations for 1st and 2nd stage regenerators.

ace

alabama cryogenic engineering, inc.

Regenerator Design

Composite Perforated Plate Concept

Air Force Phillips Laboratories Concept Design Review

Displacer Cavity Flow Passage **Teflon Spacer**

-High Cp material Displacer Cavity Flow Region

Composite Preforated Plate

determined by thermal penetration Geometry of high-Cp material is effects.

ace

Regenerator Design **Technical Approach**

Concept Design Review Phillips Laboratories Air Force

Rerun baseline case -- provided by R. Radebaugh

· validate installation of Regen 3.1

gain experience

2

Move out each of the three trade axes

capacity ratio (C_r)
dead volume (DV)
heat transfer * Area product (hA)

M

Develop consensus within the program on test cases for Phase 2

Designs build on capabilities of composite perforated plates

nearly arbitrary C_r - subject only to volume constraints
 maximum hA per unit △P and DV

— minimum DV for given hA and ∆P

all designs investigated can be built

- Lockheed FX,DD ace

alabama cryogenic engineering, inc.

Porosity and D_h Trades Regenerator Design **Cooling Power**

Air Force Phillips Laboratories Concept Design Review

Hydraulic Diameter	Net Coolin	Hydraulic Net Cooling Power (Watts) Diameter	itts)		
(microns)			Porosity		
	0.10	0.15	0.20	0.25	0.40
10.0			no solution	0.91	0.71
14.1			0.91	0.85	0.63
20.0			0.78	0.72	0.51
28.3		no-solution	0.59	0.50	
40.0	40.0 no solution	0.40	0.28		0.10

Use REGEN 3.1 for calculations

perforated plate system is modelled as axial tube flow

- the matrix volume of the perforated plate system is equal to the packed sphere case

Baseline case

- 100 micron Er₃Ni spheres with porosity = 38%
 - cooling power = 0.61 Watts

= 1 lockheed ₹,DD

ace alabama cryogenic engineering, inc.

Regenerator Design

Porosity and D_h Trades Mass Flow

Phillips Laboratories Air Force Concept Design Review

Hydraulic	MFLUX0 a	Hydraulic MFLUX0 at Hot End (kg/sec)	J/sec)		
Diameter (x104)	(x10 ^x 4)	,			
(microns)			Porosity		
	0.10	0.15		0.25	0.40
10.0			no solution	7.40	
14.1			00.9	7.40	
20.0			0.9	7.40	
28.3		no solution	00.9	7.40	
40.0	40.0 no solution	5.70	9.00		11.00

Use REGEN 3.1 for calculations

- perforated plate system is modelled as axial tube flow
- the matrix volume of the perforated plate system is equal to the packed sphere case

Baseline case

- 100 micron Er_3Ni spheres with porosity = 38% mass flow = 11.0 x 10⁻⁴ kg/sec

Regen

ace

alabama cryogenic engineering, inc.

Air Force Phillips Laboratories Concept Design Review

Regenerator Design Trade Studies Insignificant improvement
 Penetration effects were tested and found to be insignificant

Increase C, holding hA and ΔP constant

Reduce DV by reducing porosity (hydraulic diameter held constant)

Baseline

Significant increase in cooling power

Increase hA by reducing hydraulic diameter (porosity held constant)

Significant increase in cooling power

Increase hA holding
— △P constant and
increasing DV

Significant decrease in cooling power

Porosity and D_n Trades Regenerator Design

Results

ace

Concept Design Review Air Force Phillips Laboratories

Changing hydraulic diameter, with a fixed porosity

- smaller hydraulic diameter yields a larger number of holes

smaller hydraulic diameter increases the hA product, improving wall-fluid heat transfer

pressure drop can increase to the point that REGEN 3.1 cannot smaller hydraulic diameter increases the pressure drop. The find a solution

Changing the porosity with a fixed hydraulic diameter

lower porosity yields fewer holes

lower porosity decreases dead volume and increases performance

lower porosity reduces the hA product

can increase to the point that REGEN 3.1 cannot find a solution. - lower porosity increases the pressure drop. The pressure drop

alabama cryogenic ace

Regenerator Design Conclusions and Recommendations

Air Force Phillips Laboratories Concept Design Review

- Significant improvements appear possible with perforated plates
 - reducing DV improves performance
- increasing hA improves performance
- Regen 3.1 appears to give reasonable answers but there are some open questions – further code improvements are recommended
 - performance appears insensitive to temperature gradient as though only the integrated C_r matters.
- balancing and re-balancing mass flows at top and bottom of regenerator is very tedious, given long run times.
- Develop consensus within the program on regenerator designs for Phase 2
 - best course may be to move out each "axis" (DV,hA,C,)
 - test cases will be selected in design task in Phase 2.
- Base designs on capabilities of composite perforated plates
 - nearly arbitrary Cr -- subject only to volume constraints maximum hA per unit ∆P and DV
 - minimum DV for given HA and ∆P
- all designs investigated can be built

MTI Linear-Motor-Driven Compressor

Presented by

Patrick Champagne Lockheed Palo Alto Research Laboratory

February 1993

PROPOSED LMSC PHASE I PRESENTATION OUTLINE

Conceptual Layout for 10 K Application

Moving Backiron Motor

— Weigh Table

PROPOSED LMSC PHASE I PRESENTATION OUTLINE

☐ Performance Summary

Critical Issues

□ Summary and Conclusions

☐ Proposed Phase II Activities

COMPRESSOR DESIGN PARAMETERS

☐ Initial fill pressure: 1.517 MPa (220 psia)
Maximum pressure: 2.027 MPa (294 psia)
Minimum pressure: 1.062 MPa (154 psia)
Pressure swing (peak-to-peak): 0.965 MPa (140 p
Total swept volume: 21.3 cc ⁽¹⁾
Operating frequency: 40 Hz
Piston position/pressure wave lag: 45°
Minimum drive voltage: 22 V
P-V power to gas: 512 W

(1) To Achieve 512 W of P-V power with the first harmonic of the pressure wave (0.965 MPa peak-to-peak and 45° lag), it is necessary to increase the swept volume to 23.8 cc)

CRYOCOOLER COMPRESSOR SCHEMATIC

POWER SYSTEMS DIVISION Mechanical Technology Incorporated (93P12) 82234

DUAL-MODULE COMPRESSOR DESIGN

Features	Benefits
Drive system hermetically isolated from helium environment	No contamination of helium cycle by drive system
 ☐ No relative moving parts within helium cycle 	No requirement for dynamic seals
☐ Two compressor modules of identical design	Minimizes development time and cost
☐ Each module has only one moving plunger — two per compressor which operate opposed on the same centerline	No intrinsic unbalanced radial forces or unbalanced dynamic moments, simplified dynamic vibration control

DUAL-MODULE COMPRESSOR DESIGN

Features	Benefits
☐ Flooded oil environment for each compressor module	☐ Inherent zero-gravity design, uniform thermal management of compressor, no launch caging required
 ☐ Oil-lubricated, lightly loaded sleeve bearings with documented wear rate 	☐ 100,000-hr life assured
☐ Linear reciprocating motor based on proven experience	☐ Assured performance
☐ All design tools, procedures, and data exist and validated	☐ No requirement for new technology needed for successful compressor development

METHOD OF HELIUM COMPRESSION

- Elastic deflection of metallic diaphragms provides positive displacement compression of helium in each compressor module
- Hermetic separation between helium gas and drive system hydraulic fluid
- Dynamic seals are eliminated within helium system

DIAPHRAGM ACTUATION

- ☐ Diaphragms are hydraulically actuated using an appropriate fluid
- Differential pressures across diaphragms are small (3 to 4 psi) resulting in low diaphragm stress
- Linear motors can be designed for long-stroke (~1.0 in.) operation for minimum size and weight
- ☐ Hydraulic pistons are mid-stroke ported
- Replenishes hydraulic leakage through piston clearance seal

COMPRESSOR DRIVE

- Moving permanent-magnet linear motors (not moving coil motors)
- Minimizes magnetic air gap
- Eliminates flexing electrical conductors
- □ Oil-filled motor cavity
- Eliminates 0-g oil management problems
- ☐ Lightly loaded oil-lubricated sleeve bearings
- 100,000-hr life

LINEAR MOTOR FOR PHILLIPS LABORATORY

30 K Advanced Compressor (150 W, 40 Hz, 12-mm Stroke)

PRESSURE BALANCING/VOLUME COMPENSATING BELLOWS

- □ Each compressor drive module contains a metal bellows component to:
- Maintain average hydraulic pressure essentially equal to average helium pressure in the refrigerators
- Compensate for hydraulic fluid volume changes under all operating and nonoperating temperature conditions
- Provide dynamic accommodation of changes in motor cavity volume due to piston displacement

DIAPHRAGM/BELLOWS DESIGN

Diaphragms

- MTI design is based on statistical procedures for specified life, reliability, and confidence requirements
- ☐ MTI diaphragm tests support design approach

Bellows

- ☐ MTI design is based on statistical procedures for specified life, reliability, and confidence requirements
- Preliminary calculations indicate reliability levels for bellows will exceed those of diaphragms

BELLOWS STRESS AT FOUR OIL TEMPERATURES

COMPRESSOR COOLING

- compressor module must be thermally transferred to the Four sources of energy dissipation (losses) within each spacecraft heat sink
- Thermal hysteresis loss in the helium compression and bellows chambers
- Motor electrical losses
- Bearing friction losses
- Fluid flow losses
- Oil-flooded motor will maintain uniform internal temperatures

COMPRESSOR CONTROLS

INHERENT UNBAL ANCED FORCES IN

:	TI'S COMPRESSOR
	Only avial forces in direction of plants and inches
7	Chiny axial tolices in direction of plunger motion
	No intrinsic unbalanced moments or radial forces
	Only source of unbalanced moments or radial forces due to manufacturing and assembly tolerances
$\overline{}$	Magnitude of reciprocating inertia force a function of linear motor type
	 Moving backiron: 1.53 kg plunger mass; 532 N reciprocating inertia Stationary backiron: 0.76 kg plunger mass; 384 reciprocating inertia
	Assuming perfect plunger mass match and colinearity of CGs, a 0.1% stroke mismatch plus a 0.1° phase mismatch will produce a first harmonic unbalanced force of 0.546 N
_	Active vibration control techniques required to reach specification limit of 0.05 N

16-mm STROKE, 40 Hz, 23.8 cc

POWER SYSTEMS
Mechanical Technology Incorporated

LOCKHEED COMPONENT WEIGHT BREAKDOWN

Reference Drawing 1061CSK-0006

*CENTER TIP ALUM ALLOY 2 0.007	_				
CENTER HOUSING	t	1	,	WEIGH	T (Lbm)
DIAPHRAGM 17-4 PH 2 0.346	DESCRIPTION	MATERIAL	QUANTITY	EACH	TOTAL
INNER SUPPORT NUMBER STATOR HYPERCO LAMS 2 1.680	CENTER HOUSING	STN STEEL	1	4.295	4.295
RECIPROCATING MASS ALUM ALLOY 2 0.199	INNER SUPPORT INNER STATOR MOTOR	ALUM ALLOY HYPERCO LAMS HYPERCO LAMS	2 2 2 2 2 2	0.850 1.680	
#PLUNGER *CARRIER BODY *MTG RING *MAGNETS AND WRAP *MAKE—UP *ALUM ALLOY *STN STEEL *BELLOWS *BELLOWS CAP *CLAMP *TO COMPARE **CARRIER BODY *ALUM ALLOY *ALUM ALL				6.750	13.500
(PRESSURE VESSEL) *MAIN BODY *SHELL END *BELLOWS *BELLOWS CAP *CLAMP *TO CLAMP *TO CLA	*PLUNGER *CARRIER BODY *MTG RING *MAGNETS AND WRAP	ALUM ALLOY	2 2 2 2 2	0.137 0.058 0.918	
*MAIN BODY *SHELL END *BELLOWS *BELLOWS CAP *CLAMP *MOTOR FRAME) *MTG RING *SUPPORT CYLINDER *WEBS (x5) 0.06" THK *CAPACITANCE PROBE) *CENTER TIP *GUARD *ALUM ALLOY ALUM AL				1.682	3.364
(MOTOR FRAME) *MTG RING ALUM ALLOY 2 0.056 *SUPPORT CYLINDER ALUM ALLOY 2 0.139 *WEBS (x5) 0.06" THK ALUM ALLOY 2 0.198 (CAPACITANCE PROBE) 0.393 0.786 *CENTER TIP ALUM ALLOY 2 0.007 *GUARD ALUM ALLOY 2 0.053 0.060 0.120	*MAIN BODY *SHELL END *BELLOWS *BELLOWS CAP	STN STEEL INCONEL 718 STN STEEL	2 2 2 2 2 2	0.446 0.203 0.079	
*MTG RING *SUPPORT CYLINDER *WEBS (x5) 0.06" THK ALUM ALLOY ALUM ALLOY ALUM ALLOY 2 0.056 0.139 0.198 CAPACITANCE PROBE) *CENTER TIP *GUARD ALUM ALLOY ALUM ALLOY ALUM ALLOY 2 0.007 ALUM ALLOY 2 0.007 0.053	(MOTOR EDAME)			3.006	6.012
(CAPACITANCE PROBE) *CENTER TIP *GUARD ALUM ALLOY 2 0.007 2 0.053 0.060 0.120	*MTG RING *SUPPORT CYLINDER	ALUM ALLOY	2 2 2	0.139	
*CENTER TIP				0.393	0.786
011	(CAPACITANCE PROBE) *CENTER TIP *GUARD		2 2		
OIL 2 1.989 3.978	011				0.120
	OIL		2	1.989	3.978

PERFORMANCE OF MTI'S DUAL-OPPOSED COMPRESSOR

- ☐ When operating at the specified design-point conditions, the predicted performance of MTI's dual-opposed compressor using stationarybackiron motors is as follows:
- Cylinder pumping power to drive cryocooler: 512.0 W
- Gas-to-wall cyclic heat transfer loss in cylinder: 50.6 W
- Total compression cylinder P-V power: 562.6 W
- Motor efficiency: 86.1%
- electronics, but including compressor hydraulic losses): 75.3% Overall compressor efficiency (excluding sensor and power
- Compressor input power at motor terminals: 680.0 W
- Compressor operating hours for 0.025-mm (0.001-in.) of bearing wear: 117,7700

- ☐ Long-term dc stability of diaphragm and plunger sensors
- ☐ Possible compressor/control system instabilities
- ☐ Excessive higher order vibration harmonics

Long-Term dc Stability of Diaphragm and Plunger Sensors

- MTI has developed and demonstrated a capacitance sensing system for the ERIS program whose goal was less than 0.1% FS drift over a 15-yr period
- Demonstrated performance was less than 0.02% per year over a temperature range of 20 to 65°C
- processing techniques have been suggested as a Optical sensors on the helium side utilizing digital possibly simpler and less expensive approach

Possible Compressor/Control System Instabilities

- and stable operation is expected to be demonstrated during System instability is not considered to be a "show stopper" actual compressor testing in the very near future
- combination of development testing and simulation If instabilities are experienced, it is expected that a model analysis will produce a viable solution

Excessive Higher Order Vibration Harmonics

- Possibly caused by diaphragm and motor force nonlinearities
- Can be reduced by derating motor and diaphragm design at the expense of increased compressor weight
- Expect that existing electronic vibration control techniques are directly applicable to diaphragm compressors
- Results of eminent compressor test program will give an initial appraisal of the magnitude of the higher harmonic vibration content

SUMMARY

- construction materials is highly feasible and within the bounds of common fabrication and welding procedures. Linear motor MTI's compressor design using aluminum and stainless steel design requirements are well within the envelope of MTI's demonstrated experience.
- Compressor weight can be reduced by using beryllium in place procedures for brazing beryllium to stainless steel would need of some of the stainless steel and aluminum parts. However, to be qualified with regard to hermeticity and strength of the pressure-containment braze joints.

SUMMARY

- believes that proven suppression techniques can be applied to our compressor, but this has not yet been demonstrated. Active vibration suppression techniques will be required to achieve the specified residual dynamic force levels. MTI
- The intrinsic cleanliness and hermeticity of the helium side bearings, provides a high degree of assurance that our of MTI's compressor, combined with the simplicity and compressor can achieve the required levels of life and ruggedness of the lightly loaded, oil-Iubricated motor reliability.

PROPOSED PHASE II ACTIVITIES

Critical Component Demonstration and Preliminary Design

Task 1.0: Preliminary Design Layout

- Prepare preliminary design layout of the compressor design selected during Phase I with emphasis on:
- Minimization of compressor weight
- Design of hermetic and structural joints
- Design of plunger displacement probe
- Integration of pressure balance line into compressor structure
 - Compressor mounting/interfacing design
 - Compressor cooling

Task 2.0 Design Optimization

pressure level and amplitude, displacement, etc. so as to minimize □ Optimize the compressor design with respect to frequency, compressor weight, transmitted vibration, and input power

PROPOSED PHASE II ACTIVITIES

Critical Component Demonstration and Preliminary Design

Task 3.0: Component and System Sizing

Finalize the compressor assembly layout drawing and size all compressor components based upon the work accomplished under Tasks 1.0 and 2.0. This layout will form the basis of the detail design work to be accomplished under Phase III which may follow. The component designs (motors, diaphragms, bellows, basic power control system
approach) will be conceptually the same as current MTI designs but will
be sized and stressed to levels consistent with the subject program
requirements.

Task 4.0: Update Performance Estimates

☐ Update previous performance estimates based upon the design prepared under Task 3.0.

FLEXURE BEARING COMPRESSOR Operation

Air Force Phillips Laboratories 10K CoDR

- Spiral-flexure diaphragm springs produce nonsliding linear motion
- Piston clearance seals eliminate wear
- Direct drive linear motor uses no contacting moving parts
- Position sensor provides precision feedback for control loop

Air Force Phillips Laboratories 10K CoDR FLEXURE BEARING COMPRESSOR Layout Ш =\text{lockheed}

- Traditional "Oxford" approach: no contacting moving parts
- Simplified mechanical system: only one moving component
- Stable, all-metallic mechanism
- Proven technology
- Scaled up from existing hardware

= Lockheed THOO D

FLEXURE BEARING COMPRESSOR **Spring Stress Analysis**

Phillips Laboratories 10K CoDR Air Force

(2.0,0.015) Effective Stress (in N/mm^2) @ 7.6 mm Extension, Max. LMSC (0.125,420) Spiral, Stainless Steel, (Ro,t)

DWL L3D3

EDGE PLOT

MIN 0.117E-04 1 0.117E+02

0.940E+02

0.106E+03

0.117E+03

0.129E+03

0.153E+03 0.141E+03

0.164E+03 0.176E+03

0.200E+03 0.188E+03

0.223E+03

MAX 0.247E+03 0.211E+03

Thockheed The Day

FLEXURE BEARING COMPRESSOR Spring Configuration Study

Air Force Phillips Laboratories 10K CoDR

• 10K Compressor dynamics model (dimensions in centimeters):

- LMSC (0.125,420°) spiral springs, stainless steel, 4 in. outer diameter, 0.015 in. thickness
- Operating conditions: 220 psi fill pressure, maximum stroke, 40 Hz operating frequency
- · Study included forces and moments generated within the clearance seal during operation

=\$\lockheed =\lockheed

FLEXURE BEARING COMPRESSOR Spring Configuration Results

Air Force Phillips Laboratories 10K CoDR

- an outer diameter of 4 in. and a thickness of 0.015 in. is a good choice • The LMSC (0.125,420°) spiral spring, stainless steel, with an for the 10K Compressor
- Spring stresses @ max. stroke are low
 - -- Max. effective stress = 36 Ksi
- A resonant frequency of 40 Hz is achieved with 30 springs, total
- With a partitioning of 20/10 springs in the forward/aft spring packs, the maximum piston radial excursion @ max. stroke = 17% of nominal clearance

三字Lockheed 干A。DD

FLEXURE BEARING COMPRESSOR Linear Motor Drive

Air Force Phillips Laboratories 10K CoDR

- Permanent magnet, moving coil
- Stable, Samarium-Colbalt magnet
- Low moving mass
- Linear force constant over stroke
- Minimum radial reaction forces
- Magnetic clamping of pole pieces

Per module motor:

Operation: 40 Hz

Maximum force: 90 lbf

Stroke: 15 mm

Design voltage: 22

Average current: 17 amp

Output power: 252 watts

FLEXURE BEARING COMPRESSOR Weight Break Down

Component	Material	Weight (per module)
moving mass	stainless steel	0.38 lb
coil wire	copper	0.52 lb
piston	alum alloy	0.23 lb
shaft	stainless steel	0.09 lb
target plate	alum alloy	0.03 lb
front spring pack	stainless steel	1.35 lb
rear spring pack	stainless steel	0.67 lb
linear motor		
magnet	rare earth	6.76 lb
pole	steel	1.44 lb
yoke	steel	5.88 lb
front boucing	will will a	ין היי
		3.32 ID 1 57 Ib
		5.70.1
General Figures	aium alloy	0.08.0
rear spring mount	alum alloy	1.1 / lb
	TOTAL	24.7 lb per module

=\text{lockheed} = \text{FLOCKHeed}

FLEXURE BEARING COMPRESSOR Critial Issues

- Coil outgassing contamination
 - potting material
- aspect ratio (no of layers)
- Vibration cancellation
- large moving mass
- tolerance control of larger parts
- Heat transfer
- from compressed gas
 - from motor coil

FLEXURE BEARING COMPRESSOR Summary

- Meets weight, size, and power goals
- Low-risk scaling of existing technology
- Experienced vibration control issues
- Mature flexure design and analysis
- Known material selection criteria

Lucas Aerospace

P/059824

NASA 80K CDR

> MANUFACTURING and ALIGNMENT

TEST PROGRAM ALIGNMENT

P/059824

S S S 80K CDR

· QUANTIFY "TYPICAL BUILD STANDARD"

- AVIONICS UNIT USED AS TEST BED

- TARGET PLATE XY-MOTION -VS- Z POSITION - FUNCTION OF FREQUENCY, PRESSURE - DETERMINE EFFECT OF CONNECTOR STRIPS

· RE-ALIGN MOVING MASS

- ANGULARITY

CENTERING

REPEAT MOTION CHARACTERIZATION TESTS AS ABOVE

- PROCESS DIRECTLY APPLICABLE TO 80K

- CENTERING TO BE USED ON SCRS PROGRAM FIRST

TOCKNOOD |

P/059824

Z Lockheed
Lucas Aerospace

PISTON/LINER CENTERING DEVICE

PISTON / CYLINDER ALIGNMENT TEST

ZZ Lockheed
Lucas Aerospace

EFFECT OF PRESSURE

NASA 80K CDR

P/059824

Lucas Aerospace

EFFECT OF FREQUENCY

ON

PISTON MOTION

P/059824

SOK CDR

Lucas Aerospace

EFFECT OF FREQUENCY
ON PISTON MOTION

P/059824

NSS CDR

ALIGNMENT PROGRAM SUMMARY

P/059824

- A TECHNIQUE FOR MEASURING THE MOTION OF THE MOVING MASS HAS BEEN DEMONSTRATED IN THE LABORATORY
- QUANTIFIES MAGNITUDE OF MOTION
- ALLOWS EFFECTS OF ALIGNMENT EFFORT TO BE SEEN
- CURRENT SET-UP LIMITED BY SPRING ARM MOVEMENT @ 50-HZ
 - TESTING CONTINUES TO DETERMINE SYSTEM SENSITIVITIES
- 80K BASELINE COMPATABLE WITH ALIGNMENT SCHEME
- FIRST USE OF CENTERING DEVICE TO BE IMPLEMENTED ON SCRS

FINAL ASSEMBLY

5 P/059824

80K CDR

NOTE:

· Drilling and pinning is a "dirty" operation. Protection of hardware required during conduct of the operation.

FINAL ASSEMBLY:

- · Install Liner Bushing onto body.
- Install Centering Device to Liner Bushing and Piston.
- Centering Device and Autocollimator, both centering and angularity shall be adjusted until requirements are met. Using Centering Device, Aft Position
 - Adjust by moving bushing and aft spring
- Tighten bushing and (9/12) aft spring pack Final drill aft spring pack holes and install tight tolerance pins (3/12) in aft spring outer bolt circle.
- Maintained by Mechanical Tolerancing of Compressor -to- Compressor Alignment Bodies.

TOP-LEVEL REQUIREMENT:

Angularity Piston-to-Liner: <50-µrad
 Centering: <25% of Nominal Gap.

₹\$Lockheed ₹\$DD

Air Force Phillips Laboratories 10K CoDR

CRITICAL TECHNOLOGY DEMONSTRATIONS

= 10ckheed -FL00

CRITICAL COMPONENTS ASSESSMENT AND RESOLUTION Phillips Laboratories 10K CoDR

Š	ITEM	RISK	RESOLUTION	COMMENIS
1	displacer	cooling capacity	early build and test	phase 2 testing performed for
	thermodynamic	below specifications,	of displacer, early	cooling capability and
	performance		valldation with time	temperature, use laboratory and
,			ior rework	commercial compressor
7	regenerator thermal	cooling below	thermal loss and	phase 2 testing to be performed
	pertormance	specification		on NIST apparatus on several
			on several candidates	regenerators.
<u>س</u>	regenerator life	shifting, clumping,	avoid use of	requires life testing on
	capability	pulverizing etc. will	unsupported	cryocooler
		change performance	configurations such	•
		over lifetime	as spheres	
4	displacer clearance	wear (if gaps too	validate design,	build and test displacer
	gap control	small or dynamics	manufacture and	structural model (with
		problem) or large	assembly on	regenerator ballasted) early in
		thermal losses (if	structural model	phase 2.
		gaps too large)		
S	Induced vibration	large forces resulting	analysis supported	displacer vibration output
		from large moving	by scaling from	measured in phase 2, compressor
		massses	existing units	In phase 3
9	scaling of flexure	minimal risk, detailed additional modeling	additional modeling	phase 2 testing. Flexures sent to
	supports for larger	analysis performed	In phase 2, build and	PHILLIPS for evaluation
	masses		test springs	
_	MTI'compressor, life	long term stability of	system tests	In house life testing on system at
	limiting elements	diaphragm and		MII. Performance testing under
		plunger sensors,		AFPI. contract.
		compressor/control		
		Instabilities, higher		
		order vibration		
c		harmonics		
×	internal outgassing of	freezing of		calculation of outgassing rates in
	organics	condensibles, reduced		phase 2
		thermal performance	of coll/potting for	
ļ			fast bakeout	
2	management of waste high temperatures	high temperatures	modeling utilizing	critical for flexure compressor
	heat	degrade thermal	existing codes. Verify	demonstrate manufacturing
		performance.	of displacer test.	during phase2

PHASE 2 PRINCIPAL TEST ACTIVITIES

Air Force Phillips Laboratories 10K CoDR

BUILD AND TEST A STRUCTURAL MODEL OF DISPLACER TO DEMONSTRATE ALIGNMENT, DYNAMICS AND MANUFACTURING

BUILD AND TEST A THERMAL DISPLACER TEST BED TO VERIFY ADEQUATE COOLING AND OPTIMIZE PARAMETERS

THE ABOVE UNITS WOULD UTILIZE AN EXISTING COMPRESSOR MOTOR/HOUSING AS THE DISPLACER DRIVE

LMSC WOULD BUILD A BRASSBOARD FLEXURE COMPRESSOR ON COMPANY FUNDING FOR DISPLACER TESTS

large flexures, low outgassing coils, and displacer induced vibration additional testing would include regenerator testing (at NIST),

=\text{lockheed} = \text{RDD}

PHASE 2 CRITICAL COMPONENTS DEMONSTRATIONS P

₹\$lockheed ₹\$DD

Air Force Phillips Laboratories 10K CoDR

SUMMARY

- · LOW RISK APPROACH, BASED ON AN EXTENSION OF PRESENT **TECHNOLOGY**
- · PRESENT TECHNOLOGIES INCLUDE:
- cold tip temperature stability. Flight version to be delivered in May, 1993 Electronic controller to minimize induced vibration, and provide
- Extensive dynamic and stress modeling of moving mass and flexures. Validation of radial motions by experimental measurements.
- Extensive alignment work in progress by optical means, fiber optics and eddy current sensors.
- Demonstration and measurement of low induced vibration, on similar systems.
- Extensive development of finite element thermodynamic programs.

- SUBSTANTIALLY BELOW WEIGHT AND POWER LIMITS SYSTEM
- MTI OIL LUBRICATED COMPRESSOR SELECTED AS BASELINE
- PENDING DEMONSTRATION AND LIFE TESTS OF MTI COMPRESSOR LMSC FLEXURE BEARING COMPRESSOR CARRIED AS BACK UP
- TWO SEPARATE ANALYSES OF COOLING AND POWER CONDUCTED WITH RELATIVELY GOOD AGREEMENT. SHOW REQMTS. CAN BE
- COMPRESSOR MOTOR AND CASE. PROVIDES EXCELLENT MATCH WITH SUBSTANTIAL COST AND SCHEDULE SAVINGS. DISPLACER DESIGN UTILIZES EXISTING SINGLE STAGE
- · DISPLACER DYNAMICS STUDIED AND FOUND WELL SUITED TO COMPRESSOR SPRINGS.

DISTRIBUTION LIST

AUL/LSE Bldg 1405 - 600 Chennault Circle Maxwell AFB, AL 36112-6424	1 cy
DTIC/OCC Cameron Station Alexandria, VA 22304-6145	2 cys
AFSAA/SAI 1580 Air Force Pentagon Washington, DC 20330-1580	1 cy
PL/SUL Kirtland AFB, NM 87117-5776	2 cys
PL/HO Kirtland AFB, NM 87117-5776	1 cy
Official Record Copy	
PL/VTPT/Brian Whitney	2 cys
Dr. R. V. Wick PL/VT Kirtland, AFB, NM 87117-5776	1 cy