Uber Dataset Analysis In SQL

By Purva Pharat

Introduction

My name is Purva Pharat. I worked on this project using the Uber dataset to enhance my skills in data analysis and SQL. This project allowed me to explore real-world data, practice writing efficient SQL queries, and gain deeper insights into analysing and interpreting data. It was a valuable experience that helped me improve my technical expertise and problem-solving abilities.

Data Description

The UberDataset_cleaned.csv file contains ride details collected from Uber trips. It captures various attributes of the trips, including time, location, purpose, and distance. The dataset comprises 1154 entries and 11 columns, which are described below:

Column Descriptions:

- 1. START_DATE: The timestamp marking the start of the trip.
- 2. END_DATE: The timestamp indicating the end of the trip.
- 3. CATEGORY: Categorizes the trip as either "Business" or "Personal."
- 4. START: The starting location of the trip.
- 5. STOP: The destination location of the trip.
- 6. MILES: The total distance of the trip measured in miles.
- 7. PURPOSE: Specifies the reason for the trip (e.g., "Meeting," "Airport Drop-off").
- 8. TIME_OF_DAY: Groups the trip into periods such as morning, afternoon, or evening.
- 9. MONTH_OF_THE_RIDE: Identifies the month in which the trip occurred.
- 10. DAY_OF_THE_RIDE: Specifies the day of the week for the trip.
- 11. DURATION_OF_THE_RIDE: Duration of the trip in hours and minutes format.

Database Link: Click Here | Clean Data Link: Click Here | Python File: Click Here

Basic Level

• List all unique pickup locations to identify distinct areas of service.

select distinct START from uberdataset;

There are 177 locations available for pickup

• List all unique available locations to identify distinct areas of service.

Determine the total number of rides recorded in the dataset.

select count(*) as data_count
from uberdataset;

- Display the earliest and latest pickup_datetime data.
 - a. Earlier Pickup Time select * from uberdatasetwhere START_DATE = (select min(START_DATE) from uberdataset);

b. Latest Pickup Time select * from uberdatasetwhere START_DATE = (select max(START_DATE) from uberdataset);

	START_DATE	END_DATE	CATEGORY	START	STOP	MILES	PURPOSE	TIME_OF_DAY	MONTH_OF_THE_RIDE	DAY_OF_THE_RIDE	DURATION_OF_THE_RIDE
١	2016-12-31 22:08:00	2016-12-31 23:51:00	Business	Gampaha	Ilukwatta	48.2	Temporary Site	Night	Dec	Sat	103

• List all unique values in the CATEGORY column (e.g., business, personal).

select CATEGORY , count(CATEGORY) as count from uberdataset group by CATEGORY;

CATEGORY C		count	
•	Business	1077	
	Personal	77	

• Count the total number of rides for each PURPOSE category.

select PURPOSE,count(PURPOSE) from uberdataset group by PURPOSE;

	PURPOSE	count(PURPOSE)	
١	Meal/Entertain	160	
	Unknown	502	
	Errand/Supplies	128	
	Meeting	186	
	Customer Visit	101	
	Temporary Site	50	
	Between Offices	18	
	Charity (\$)	1	
	Commute	1	
	Moving	4	
	Airport/Travel	3	

Intermediate Level

• Calculate the total number of rides for each pickup_location.

select START as location , count(START) as total_ride from uberdataset group by START;

	location	total_ride
•	Fort Pierce	5
	West Palm Beach	2
	Cary	201
	Jamaica	2
	New York	4
	Elmhurst	1
	Midtown	14
	East Harlem	1
	Flatiron District	1
	Midtown East	1
	Hudson Square	2
	Lower Manhattan	1
	Hell's Kitchen	1
	Downtown	9
	Gulfton	1

There are 177 locations available for pickup

Find the top 5 busiest pickup_locations.

select START as location , count(START) as total_ride from uberdataset group by START order by count(START) desc limit 5;

	location	total_ride
•	Cary	201
	Unknown Location	148
	Morrisville	85
	Whitebridge	68
	Islamabad	57

• Find the top 5 busiest locations.

limit 5;

	location	total_ride
•	Cary	403
	Unknown Location	297
	Morrisville	169
	Whitebridge	133
	Islamabad	115

• Calculate the total distance traveled (MILES) for each ride category (CATEGORY).

select CATEGORY , round(SUM(MILES)) as MILES_COVERED from uberdataset group by CATEGORY;

	CATEGORY	MILES_COVERED
•	Business	11477
	Personal	718

Calculate the average DURATION_OF_THE_RIDE(min) for each ride category.

select CATEGORY,round(avg(DURATION_OF_THE_RIDE)) as avg from uberdataset group by CATEGORY;

	CATEGORY	avg
•	Business	23
	Personal	20

• Analyze the total number of rides by MONTH_OF_THE_RIDE.

select MONTH_OF_THE_RIDE,count(MONTH_OF_THE_RIDE) as ride from uberdataset group by MONTH_OF_THE_RIDE order by count(MONTH_OF_THE_RIDE) desc limit 1;

	MONTH_OF_THE_RIDE	ride
•	Jan	61
	Feb	115
	Mar	113
	April	54
	May	49
	June	107
	July	112
	Aug	133
	Sep	36
	Oct	106
	Nov	122
	Dec	146

• Identify the time of day (TIME_OF_DAY) when most rides occur.

select TIME_OF_DAY, count(TIME_OF_DAY) as ride_count from uberdataset group by TIME_OF_DAY order by count(TIME_OF_DAY) desc;

	TIME_OF_DAY	ride_count
•	Afternoon	541
	Evening	284
	Morning	236
	Night	74
		19

• Compute the percentage of rides for each PURPOSE to understand their relative importance.

select PURPOSE,
round(count(PURPOSE)/(select (count(*)) as ride_count from uberdataset) * 100) as
ride_count
from uberdataset
group by PURPOSE
order by count(PURPOSE) desc;

	PURPOSE	ride_count
•	Unknown	44
	Meeting	16
	Meal/Entertain	14
	Errand/Supplies	11
	Customer Visit	9
	Temporary Site	4
	Between Offices	2
	Moving	0
	Airport/Travel	0
	Charity (\$)	0
	Commute	0

• Find the day of the week (DAY_OF_THE_RIDE) with the highest number of rides.

select DAY_OF_THE_RIDE,count(DAY_OF_THE_RIDE) as ride_count from uberdataset group by DAY_OF_THE_RIDE order by count(DAY_OF_THE_RIDE) desc;

	DAY_OF_THE_RIDE	ride_count
•	Fri	206
	Tues	175
	Mon	174
	Thus	154
	Sat	150
	Sun	148
	Wed	147

Advanced Level

• Identify the day with the highest number of rides.

select date(START_DATE) AS DATE, count(START) as ride_count from uberdataset group by date(START_DATE) order by count(START) desc;

	DATE	ride_count
•	2016-12-29	13
	2016-02-21	11
	2016-06-27	11
	2016-12-19	11
	2016-02-19	10
	2016-03-04	10
	2016-08-22	10
	2016-08-26	10
	2016-11-13	10
	2016-12-21	10

294 rows are return

• Find the average ride distance for each pickup_location.

select START , round(avg(MILES)) as avg_ride_distance
from uberdataset
group by START;

	START	avg_ride_distance
•	Fort Pierce	17
	West Palm Beach	6
	Cary	9
	Jamaica	19
	New York	14
	Elmhurst	8
	Midtown	7
	East Harlem	6
	Flatiron District	2
	Midtown East	2
	Hudeen Course	2

177 rows are return

• Find the percentage contribution of each pickup_location to the total rides.

 $select\ START\ ,\ round(sum(total_ride)/(select\ count(*)\ from\ uberdataset)*100)\ as\ percentage_contribution$

from (select START,count(START) as total_ride

from uberdataset

group by START

union all

select STOP,count(STOP) as total_ride

from uberdataset

group by STOP) as data

group by START

order by sum(total_ride) desc;

	START	percentage_contribution
•	Cary	35
	Unknown Location	26
	Morrisville	15
	Whitebridge	12
	Islamabad	10
	Durham	6

209 rows are return

	Insights		
There are 177 pickup locations available.			