Round-Based Public Transit Routing

Un algoritmo di ottimizzazione per il trasporto multimodale

Gianluca Covini

Università di Pavia

August 29, 2022

Indice

- Introduzione
- 2 Problema
- 3 Soluzioni esistenti
- 4 RAPTOR
- 6 Miglioramenti
- 6 Estensioni
- Risultati e conclusioni

Introduzione

Il problema presentato è quello del **miglior percorso nelle reti di trasporto pubblico**, andando a considerare in particolare due criteri di ottimizzazione: tempo di arrivo e numero di trasferimenti.

L'obiettivo della presentazione è formalizzare il problema, introdurre gli algoritmi esistenti, spesso varianti dell'algoritmo di Dijkstra e di presentare **RAPTOR**, Round-bAsed Public Transit Optimized Router, un algoritmo più efficiente delle soluzioni esistenti e non basato sull'algoritmo di Dijkstra.

Dati

Timetable

I dati del problema sono riassunti nel vettore

$$(\Pi, \mathcal{S}, \mathcal{T}, \mathcal{R}, \mathcal{F})$$

- Π, periodo operativo (come secondi di una giornata);
- S, insieme di fermate;
- T, insieme di viaggi;
- R, insieme di itinerari;
- \bullet \mathcal{F} , insieme di tracciati pedonali.

Il vettore prende il nome di timetable.

Dati

- Un viaggio $t \in \mathcal{T}$ è una sequenza di fermate di uno specifico veicolo lungo una linea;
- Un itinerario $r \in \mathcal{R}$ è un insieme di viaggi che condivide la stessa sequenza di fermate;
- Un tracciato pedonale $f \in \mathcal{F}$ è un percorso a piedi tra due fermate p_1 e p_2 , cui associo un tempo di percorrenza $I(p_1, p_2)$.

Dati

- Un viaggio $t \in \mathcal{T}$ è una sequenza di fermate di uno specifico veicolo lungo una linea;
- Un itinerario $r \in \mathcal{R}$ è un insieme di viaggi che condivide la stessa sequenza di fermate;
- Un tracciato pedonale $f \in \mathcal{F}$ è un percorso a piedi tra due fermate p_1 e p_2 , cui associo un tempo di percorrenza $I(p_1, p_2)$.

Tempo di arrivo e di partenza

Dato un viaggio $t \in \mathcal{T}$, formato da $p \in \mathcal{S}$ fermate associo un tempo di arrivo $\tau_{arr}(t,p)$ e un tempo di ripartenza $\tau_{dep}(t,p)$. Ovviamente varrà che:

$$au_{arr}(t,p) \leq au_{dep}(t,p)$$

L'**obiettivo** è produrre un insieme di percorsi \mathcal{J} .

L'**obiettivo** è produrre un insieme di percorsi \mathcal{J} .

Percorso

Un percorso $j\in\mathcal{J}$ è una sequenza di viaggi $t\in\mathcal{T}$ e tracciati $f\in\mathcal{F}$ che va da una fermata iniziale p_s a una fermata finale p_t . Notiamo che un percorso che ha k viaggi avrà esattamente k-1 trasferimenti.

A un percorso sono associati dei criteri di ottimizzazione.

L'**obiettivo** è produrre un insieme di percorsi \mathcal{J} .

Percorso

Un percorso $j\in\mathcal{J}$ è una sequenza di viaggi $t\in\mathcal{T}$ e tracciati $f\in\mathcal{F}$ che va da una fermata iniziale p_s a una fermata finale p_t . Notiamo che un percorso che ha k viaggi avrà esattamente k-1 trasferimenti.

A un percorso sono associati dei criteri di ottimizzazione.

Dominanza

Dati due percorsi j_1 e j_2 in \mathcal{J} . Diciamo che j_1 domina j_2 $(j_1 \leq j_2)$ se j_1 non è peggiore di j_2 in nessun criterio.

Fronte di Pareto

Un fronte di Pareto è un insieme di percorsi a due a due non dominati.

Fronte di Pareto

Un fronte di Pareto è un insieme di percorsi a due a due non dominati.

Etichetta

Definiamo etichetta(label) un viaggio intermedio.

Problemi

Possiamo considerare vari problemi, tra cui:

• Earliest Arrival Problem: date p_s , p_t e $\tau \in \Pi$, cerca un percorso $j \in \mathcal{J}$ che parta da p_s non prima di τ e arrivi in p_t il prima possibile.

Problemi

Possiamo considerare vari problemi, tra cui:

- Earliest Arrival Problem: date p_s , p_t e $\tau \in \Pi$, cerca un percorso $j \in \mathcal{J}$ che parta da p_s non prima di τ e arrivi in p_t il prima possibile.
- *Multi-Criteria Problem*: è una generalizzazione che ottimizza anche altri criteri e cerca un fronte di Pareto.

Problemi

Possiamo considerare vari problemi, tra cui:

- Earliest Arrival Problem: date p_s , p_t e $\tau \in \Pi$, cerca un percorso $j \in \mathcal{J}$ che parta da p_s non prima di τ e arrivi in p_t il prima possibile.
- *Multi-Criteria Problem*: è una generalizzazione che ottimizza anche altri criteri e cerca un fronte di Pareto.
- Range Problem: date p_s , p_t e $\tau \in \Pi$, cerca un percorso $j \in \mathcal{J}$ che parta da p_s non più tardi di τ e arrivi in p_t il prima possibile.

Problemi di questo tipo vengono formalizzati con strutture a grafi. Modellizziamo la rete nel seguente modo:

• Creiamo un **nodo-fermata** per ogni fermata $p \in \mathcal{S}$. Inoltre a ogni fermata p e itinerario $r \in \mathcal{R}$ passante per essa associamo un **nodo-itinerario** r_p .

Problemi di questo tipo vengono formalizzati con strutture a grafi. Modellizziamo la rete nel seguente modo:

- Creiamo un **nodo-fermata** per ogni fermata $p \in \mathcal{S}$. Inoltre a ogni fermata p e itinerario $r \in \mathcal{R}$ passante per essa associamo un **nodo-itinerario** r_p .
- All'interno di ogni fermata aggiungiamo degli archi (non orientati) tra il nodo-fermata e i nodi-itinerario corrispondenti, per permettere i trasferimenti. Il loro peso (costante) è dato dal tempo di trasferimento tra i viaggi che toccano p.

Problemi di questo tipo vengono formalizzati con strutture a grafi. Modellizziamo la rete nel seguente modo:

 Modellizziamo i viaggi come archi dipendenti dal tempo tra due nodi-itinerari: se un viaggio $t \in \mathcal{T}$ porta da p_1 a p_2 lungo r, allora lo modellizziamo come un arco tra r_{D1} e r_{D2} . Il loro peso sarà funzione del tempo di viaggio

$$\tau_{arr}(t, p_2) - \tau_{dep}(t, p_1).$$

Problemi di questo tipo vengono formalizzati con strutture a grafi. Modellizziamo la rete nel seguente modo:

- Modellizziamo i viaggi come archi dipendenti dal tempo tra due nodi-itinerari: se un viaggio $t \in \mathcal{T}$ porta da p_1 a p_2 lungo r, allora lo modellizziamo come un arco tra r_{p_1} e r_{p_2} . Il loro peso sarà funzione del tempo di viaggio $\tau_{arr}(t,p_2) \tau_{dep}(t,p_1)$.
- I trasferimenti pedonali li modellizziamo come archi tra i nodi-fermata corrispondenti con peso $l(p_1, p_2)$.

Vista l'analogia con i network flow problems, possiamo costruire degli algoritmi risolutivi simili.

In particolare l'Earliest Arrival Problem si può risolvere con una variante dell'algoritmo di Dijkstra, che prende il nome di **Time-Dijkstra** (TD).

Time-Dijkstra

L'algoritmo definisce una struttura di nodi finiti \mathcal{FN}^c . L'algoritmo rimuove uno alla volta i nodi da \mathcal{FN}^c per tempo di arrivo crescente, valutando ogni arco e=(u,v) al tempo d'arrivo in u e aggiornando di volta in volta l'etichetta. L'algoritmo si ferma quando viene analizzato il nodo d'arrivo p_t .

Il Multi-Criteria Problem si può risolvere con un algoritmo label-correcting che prende il nome di multi-label-correcting-algorithm (MLC).

MLC

Ogni etichetta possiede vari criteri di ottimizzazione. Ogni nodo u, ora, contiene un insieme B_u ("bag") che contiene delle etichette non dominate. Procede, poi, come un algoritmo label-correcting. A ogni passo, prende l'etichetta minima L_u e processa il nodo u. Dopodiché per ogni arco (u, v) crea una etichetta L_v : se non è dominata da nessuna etichetta in B_v la inserisce in B_v .

Quando oltre al tempo d'arrivo l'unico altro criterio di ottimizzazione è il numero di trasferimenti, si usa una variante dell'algoritmo Time-Dijkstra, che prende il nome di **Layered Dijkstra** (LD).

Layered Dijkstra

Sia K un limite superiore al numero di trasferimenti. Si costruiscono K copie del grafo con gli archi relativi ai trasferimenti che vanno da un grafo al successivo. Si applica, poi, l'algoritmo TD . Un percorso che termina sul k-esimo grafo avrà esattamente k trasferimenti.

Per il *Range Problem*, infine, si può usare l'algoritmo **Self-Pruning Connection-Setting** (SPCS).

SPCS

Agisce come TD ma con la differenza che vengono eliminate tutte le etichette L di un vertice v se questo possiede già un'altra etichetta L' per cui $\tau(L') \geq \tau(L)$.

RAPTOR

RAPTOR è un algoritmo che risolve i problemi per due criteri di ottimizzazione: il tempo di arrivo e il numero di trasferimenti.

RAPTOR

RAPTOR è un algoritmo che risolve i problemi per due criteri di ottimizzazione: il tempo di arrivo e il numero di trasferimenti.

- **Dati:** prendiamo una timetable $(\Pi, \mathcal{S}, \mathcal{T}, \mathcal{R}, \mathcal{F})$, una fermata di partenza e una fermata di arrivo p_s e $p_t \in \mathcal{S}$ e un tempo di partenza $\tau \in \Pi$.
- Obiettivo: per ogni k vogliamo trovare un percorso non dominato con tempo di arrivo minimo in p_t, avente al massimo k viaggi.

Algoritmo

L'algoritmo è iterativo: al passo k si calcola il modo più veloce per arrivare all'arrivo con al più k-1 trasferimenti (cioè al più k viaggi).

- Poniamo K un limite superiore del numero di iterazioni.
- L'algoritmo associa a ogni fermata un vettore $(\tau_0(p), \ldots, \tau_K(p))$, dove $\tau_i(p)$ rappresenta il tempo d'arrivo minore in p con al più i viaggi.

Algoritmo

Prima dell'inizio dell'iterazione inizializziamo i valori nel seguente modo:

Condizioni iniziali

- Inizializziamo tutti i $\tau_i(p)$ a ∞ ;
- poniamo $\tau_0(p_s) = \tau$.

Algoritmo

Prima dell'inizio dell'iterazione inizializziamo i valori nel seguente modo:

Condizioni iniziali

- Inizializziamo tutti i $\tau_i(p)$ a ∞ ;
- poniamo $\tau_0(p_s) = \tau$.

All'inizio del passo k avremo che $\tau_0(p), \ldots, \tau_{k-1}(p)$ sono corrette per ogni $p \in \mathcal{S}$, mentre le restanti saranno ancora pari a ∞ . L'obiettivo del passo k è calcolare $\tau_k(p)$ per ogni fermata p.

Il passo k si articola in tre step.

Primo step

• Per ogni $p \in \mathcal{S}$ poniamo $\tau_k(p) = \tau_{k-1}(p)$, in modo da porre una limitazione superiore per $\tau_k(p)$.

Introduzione

Il passo k si articola in tre step.

Secondo step

• Si analizza ogni itinerario r esattamente una volta. Definiamo $\mathcal{T}(r)=(t_0,\ldots,t_{|\mathcal{T}(r)|-1})$, i viaggi lungo l'itinerario r dal primo all'ultimo.

Sia, inoltre, $et(r, p_i)$ il viaggio più veloce, se esiste, in r tale per cui $\tau_{dep}(t, p_i) \ge \tau_{k-1}(p_i)$.

Per analizzare l'itinerario, lo percorriamo finché non troviamo una fermata p_i per cui $et(r,p_i)$ è definita. Nel caso chiamiamo *viaggio corrente* il viaggio corrispondente. Continuiamo il procedimento percorrendo tutte le fermate dell'itinerario r.

Per ogni fermata per cui è definita possiamo aggiornare $\tau_k(p)$ usando et(r, p).

Notiamo che al secondo passo possiamo dover aggiornare il viaggio corrente per k: a ogni fermata p_i lungo r è possibile che ci sia un viaggio più veloce per p_i perché si è trovato al passo precedente un modo più veloce per arrivare a p_i . Si verifica, quindi, che $\tau_{k-1}(p_i) < \tau_{arr}(t,p_i)$ e si aggiorna il viaggio corrente ricalcolando $et(r,p_i)$.

Il passo k si articola in tre step:

Terzo step

Per ogni tracciato pedonale $(p_i, p_j) \in \mathcal{F}$ si pone $\tau_k(p_j) = min\tau_k(p_j), \tau_k(p_i) + l(p_i, p_j)$

Il passo k si articola in tre step:

Terzo step

Per ogni tracciato pedonale $(p_i, p_j) \in \mathcal{F}$ si pone $\tau_k(p_j) = min\tau_k(p_j), \tau_k(p_i) + l(p_i, p_j)$

Criteri d'arresto

L'algoritmo si ferma dopo il passo k se non è stato aggiornato nessun valore $\tau_k(p)$ negli ultimi due step dell'iterazione.

Complessità computazionale

Complessità computazionale

L'algoritmo impiega $\mathcal{O}(K(\sum_{r\in\mathcal{R}}|r|+|\mathcal{T}|+|\mathcal{F}|))$ operazioni per produrre un fronte di Pareto di percorsi, dove K è il numero di iterazioni.

Infatti, noi percorriamo ogni itinerario al più una volta: per ciascuno di essi osserviamo $\sum_{r\in\mathcal{R}}|r|$ fermate. Per trovare $et(r,\cdot)$ guardiamo ogni viaggio di ogni itinerario al più una volta. E infine, nel terzo step, studiamo ogni tracciato pedonale al più una volta.

Matching

Una prima tecnica di miglioramento prevede di analizzare al passo k solamente quegli itinerari che contengono almeno una fermata raggiunta con k-1 viaggi. Quindi, ha senso considerare solamente gli itinerari che hanno avuto un aggiornamento al passo k-1.

Lo si implementa segnando al passo k-1 le fermate p per cui c'è stato un miglioramento di $\tau_{k-1}(p)$ e analizzando, poi, al passo k solo quegli itinerari che contengono una di queste fermate

Local pruning

Per ogni fermata p_i fissiamo un valore $\tau*(p_i)$ che rappresenta il più breve tempo di arrivo a p_i noto. Al passo k consideriamo una fermata solo quando il tempo di arrivo con k viaggi è minore di $\tau*(p_i)$.

Notiamo che il local pruning ci permette di evitare il primo step di ogni iterazione.

Target pruning

Infine, dato che siamo interessati solo ai viaggi che giungono al target stop p_t , non ha senso segnare tutte le fermate i cui tempi d'arrivo sono maggiori di $\tau * (p_t)$

Transfer preferences e dominanza stretta

L'algoritmo MLC può essere esteso al concetto di dominanza stretta.

Dominanza stretta

Un viaggio j_1 domina strettamente un altro viaggio j_2 se è strettamente migliori in almeno un criterio.

La motivazione è quella di introdurre dei criteri di preferenza per le location in cui avvengono i trasferimenti.

Transfer preferences e dominanza stretta

L'algoritmo MLC può essere esteso al concetto di dominanza stretta.

Dominanza stretta

Un viaggio j_1 domina strettamente un altro viaggio j_2 se è strettamente migliori in almeno un criterio.

La motivazione è quella di introdurre dei criteri di preferenza per le location in cui avvengono i trasferimenti.

È possibile introdurre questa cosa in RAPTOR: quando si prende un nuovo viaggio è sufficiente tenere traccia della fermata preferibile in cui prendere il viaggio.

McRAPTOR

È possibile estendere RAPTOR per gestire ulteriori criteri di ottimizzazione, introducendo **McRAPTOR**. McRAPTOR è in grado di gestire, per esempio, l'introduzione di tariffe a zona.

rRAPTOR

Per risolvere il range problem è possibile costruire l'estensione **rRAPTOR**.

Risultati

Un'analisi sul trasporto pubblico di Londra rivela che RAPTOR performa meglio di LD e MLC che risolvono lo stesso problema, essendo 9 volte più veloce di MLC e 6 volte più veloce di LD. Risulta che RAPTOR è più veloce, di un fattore 2, anche di TD che risolve, però, un problema più semplice, dal momento che non ottimizza il numero di trasferimenti.

Algorithm	Tr	# Rnd.	# Relax. p. Route	# Visits p. Stop	# Comp. p. Stop	# Jn.	Time [ms]
RAPTOR	•	8.4	3.0	11.1	22.2	1.9	7.3
TD	0	_	_	7.4	7.4	0.9	14.2
LD [7]	•	_	_	17.3	39.5	1.9	44.5
MLC [15]	•	_	_	12.8	28.7	1.9	67.2

Risultati

Algorithm	R	Tr	Fz	# Rnd.	# Relax. p. Route	# Visits p. Stop	# Comp. p. Stop	# Jn.	Time [ms]
rRAPTOR	•	•	0	138.5	36.6	124.7	346.4	16.3	87.0
McRAPTOR	•	•	0	9.5	3.8	15.1	2062.7	16.3	259.8
McRAPTOR	0	•	•	10.8	4.5	17.9	396.4	9.0	107.4
MLC [15]	0	•	•			48.1	930.3	9.0	399.5
SPCS [11]	•	0	0		_	76.2	76.2	7.8	183.6

				1 core		3 cores		6 cores		12 cores	
				# Comp.	Time	# Comp.	Time	# Comp.	Time	# Comp.	Time
Algorithm	R	Tr	Fz	p. Stop	[ms]	p. Stop	[ms]	p. Stop	[ms]	p. Stop	[ms]
RAPTOR	0	•	0	21.5	7.7	21.7	5.0	21.8	4.1	21.8	3.7
rRAPTOR	•	•	0	346.4	92.3	357.7	39.5	374.0	26.8	404.6	21.6
McRAPTOR	•	•	0	2098.6	280.2	2101.2	113.1	2098.4	66.1	2098.2	50.1
McRAPTOR	0	•	•	410.0	118.6	410.6	49.4	408.4	29.9	408.3	26.1
SPCS [11]	•	0	0	76.2	183.6	79.9	69.1	85.2	44.9	95.5	38.9

Risultati

			Los Angeles		New Y	ork	Chicago	
			# Comp.	Time	# Comp.	Time	# Comp.	Time
Algorithm	\mathbf{R}	Tr	p. Stop	[ms]	p. Stop	[ms]	p. Stop	[ms]
RAPTOR	0	•	24.0	3.4	14.6	3.1	14.4	1.8
RAPTOR-6	0	•	25.0	2.0	14.0	2.0	14.6	1.2
rRAPTOR	•	•	128.0	16.2	159.5	24.3	143.7	14.6
rRAPTOR-6	•	•	141.8	7.1	173.9	9.0	154.3	5.5
LD [7]	0	•	37.5	24.9	25.4	21.8	22.6	13.0
MLC [15]	0	•	21.7	38.1	16.8	32.2	9.8	17.6
SPCS [11]	•	0	28.4	37.9	29.6	53.7	29.3	36.3
SPCS-6 [11]	•	0	33.0	14.8	34.5	15.0	32.6	8.8

Conclusioni e bibliografia

RAPTOR si rivela un algoritmo più efficiente delle soluzioni esistenti: a differenza di queste non opera su un grafo e non utilizza code di priorità.

Bibliografia:

Delling, Pajor, Wernkeck, Round-Based Public Transit Routing, 2015.