Министерство науки высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» (Университет ИТМО)

Факультет информационных технологий и программирования

Расчётно-графическая работа №1

По дисциплине «Теория вероятности»

<u>Лабораторная работа №1 по теме «Классическое определение вероятности»</u>

Преподаватель *Сарычев Павел Александрович*Выполнили студенты группы №М3204: *Воротникова Эмилия*

Санкт-Петербург

Тема

«Повелитель Токио» — вероятность выживания игрока №1 к началу его следующего хода

Цель работы

Сравнить теоретическую вероятность выживания игрока №1 к началу его следующего хода в игре «Повелитель Токио» с эмпирической частотой, полученной в серии из 200 испытаний.

Правила оформления (по заданию)

Отчёт оформлен в текстовом формате с подробным описанием и аргументацией всех действий, а также содержит ссылку на исходный код программы, написанной для решения задач (см. раздел «Приложения»).

Постановка задачи и исходные данные

Играют трое: игроки P_1, P_2, P_3 . На момент начала анализа ходит P_1 , затем ходят P_2 и P_3 .

- Позиции: P_2 находится в Токио, P_1 и P_3 вне Токио.
- Жизни: $L_1 = 2$, $L_2 = 5$, $L_3 = 4$.
- Кубики: 6 штук; каждый ход до трёх бросков. На каждом перебросе игрок удерживает только грани целевого типа согласно своей стратегии, остальные перебрасывает.
- Грани кубика: {1, 2, 3, ♥, энергия, лапа}.
- Стратегии согласно условию:
 - 1) Если игрок вне Токио и у него ≤ 3 жизней, он **максимизирует сердца** (\heartsuit). Иначе вне Токио **лапы**.
 - 2) Если игрок в Токио и, получив раны, остаётся с ≤ 3 жизнями, он **покидает** Токио
 - 3) Если игрок в Токио, он максимизирует лапы.
 - 4) Энергия и карты игнорируются; очки не учитываются, только жизни.

Смысл урона: при выпадении лап игрок, находящийся вне Токио, бьёт всех в Токио; игрок, находящийся в Токио, бьёт всех вне Токио.

Теоретические основы (формулы и их доказательства)

Классическое определение и независимость бросков

Пусть все элементарные исходы равновероятны. Тогда для события A:

$$P(A) = \frac{\#\{\text{благоприятные исходы}\}}{\#\{\text{все равновозможные исходы}\}}.$$

Для кубика каждое гранение имеет вероятность 1/6. Броски разных кубиков и разные броски одной кости считаются nesaeucumыmu (модель идеального кубика).

Теорема умножения вероятностей (для независимых событий)

Если A_1, \ldots, A_n независимы, то

$$P(A_1 \cap \cdots \cap A_n) = \prod_{i=1}^n P(A_i).$$

Доказательство (эскиз). По определению независимости двух событий $P(A \cap B) = P(A)P(B)$. Распространяя рассуждение индукцией на n событий, получаем формулу. \square

Биномиальное распределение (вывод)

Пусть делаем n независимых испытаний с вероятностью «успеха» p (Бернулли). Вероятность получить ровно k успехов:

$$P{X = k} = {n \choose k} p^k (1-p)^{n-k}$$

Доказательство. Любая конкретная последовательность с k успехами имеет вероятность $p^k(1-p)^{n-k}$ (по теореме умножения). Число таких последовательностей — $\binom{n}{k}$. Складываем — получаем формулу. \square

Мультиномиальное распределение (вывод)

Если каждый из n независимых исходов принимает одно из m значений с вероятностями p_1, \ldots, p_m (сумма = 1), то для фиксированных счётов (n_1, \ldots, n_m) (сумма = n):

$$P\{N_1 = n_1, \dots, N_m = n_m\} = \frac{n!}{n_1! \cdots n_m!} p_1^{n_1} \cdots p_m^{n_m} .$$

Доказательство. Вероятность конкретной последовательности $\prod_j p_j^{n_j}$. Число перестановок одинаковых объектов — $n!/(n_1! \cdots n_m!)$. \square

Формула полной вероятности

Если $(B_i)_i$ — разбиение пространства (пара непересекающихся событий, покрывающих всё), то

$$P(A) = \sum_{i} P(A \mid B_i) P(B_i)$$

Доказательство. $A = \bigcup_i (A \cap B_i)$, множества $A \cap B_i$ попарно не пересекаются. По аддитивности вероятности и определению $P(A \mid B_i)$ получаем формулу. \square

Вероятности для «трёх бросков с удержанием целевой грани»

Рассмотрим одну кость и стратегию «целевое лицо T». За три попытки мы останавливаемся, как только выпало T; если T не выпало ни разу, берём результат третьего броска (не T).

Лемма 1.
$$P(umor = T) = 1 - \left(\frac{5}{6}\right)^3 = \frac{91}{216} \approx 0,421296.$$

Доказательство. «Не попасть в T» трижды подряд имеет вероятность $(5/6)^3$. Противоположность — хотя бы раз попасть — даёт выражение выше. □

Лемма 2. Для любой конкретной нецелевой грани $x \neq T$: $\mathsf{P}(umor = x) = \frac{(5/6)^3}{5} = \frac{25}{216} \approx 0,115741.$

Доказательство. Если T ни разу не выпал, на 3-м броске условно равновероятны 5 нецелевых граней (вероятность 1/5 на каждую). Умножая на $(5/6)^3$, получаем формулу. \square

Следствие. Для одной кости:

- При стратегии «сердца»: $p_{\heartsuit} = 91/216$, $p_{\text{лапа}} = 25/216$.
- При стратегии «лапы»: $p_{\text{лапа}} = 91/216, p_{\heartsuit} = 25/216.$

Проверка: $\frac{91}{216} + 5 \cdot \frac{25}{216} = 1$.

Строгая вероятностная модель конкретной партии

Обозначения: H_1, C_1 — число сердец и лап у P_1 на его ходу (6 кубов, стратегия «сердца»). После хода P_1 :

$$L_1 = \min(10, 2 + H_1), \qquad L_2 = 5 - C_1.$$

Если $C_1 \ge 1$ и $L_2 \le 3$, P_2 покидает Токио, P_1 заходит в Токио. Если $L_2 \le 0$, P_2 умирает и пропускает свой ход.

Требуемая вероятность по формуле полной вероятности:

$$\mathsf{P}_{\mathrm{surv}} = \sum_{h=0}^{6} \sum_{c=0}^{6-h} \underbrace{\mathsf{P}(H_1 = h, C_1 = c)}_{\mathrm{мультиномиал}} \cdot \underbrace{\mathsf{P}(\mathsf{выжить} \mid h, c)}_{\mathsf{разбор ветвей}}$$

Распределение $P(H_1 = h, C_1 = c)$

Пусть при «сердцах» для одной кости $p_H = 91/216$, $p_C = 25/216$, $p_O = 1 - p_H - p_C = 100/216$. Тогда для 6 костей (мультиномиал):

$$P(H_1 = h, C_1 = c) = \frac{6!}{h! \, c! \, (6 - h - c)!} \, p_H^h \, p_C^c \, p_O^{6 - h - c} \, .$$

Условная вероятность P(выжить | h, c)

Обозначим $L_1 = \min(10, 2+h), L_2 = 5-c.$

Ветвь А: $c \le 1$ (**P2 остаётся в Токио**). Ход P_2 : «лапы», каждая из 6 костей бьёт лапой с вероятностью $p_C^{\text{(claw)}} = 91/216$ (лемма 1). Тогда

$$C_2 \sim \text{Bin}(6, \frac{91}{216}), \qquad \mathsf{P}(\text{выжить} \mid h, c \le 1) = \sum_{x=0}^{L_1-1} \binom{6}{x} \left(\frac{91}{216}\right)^x \left(1 - \frac{91}{216}\right)^{6-x}.$$

Здесь P_3 бьёт P_2 (в Токио), поэтому P_1 дальше урон не получает.

Ветвь В: $c \ge 2$ (Р2 уходит, Р1 входит в Токио). В1. Если $L_2 \le 0$ (Р2 умер), хода P_2 нет. P_3 (вне Токио, $L_3 = 4 > 3$) играет «лапы»:

$$C_3 \sim \mathrm{Bin} \left(6, \frac{91}{216} \right), \qquad \mathsf{P} \left(\mathsf{выжить} \mid h, c \geq 2, \ L_2 \leq 0 \right) = \sum_{x=0}^{L_1-1} \binom{6}{x} \left(\frac{91}{216} \right)^x \left(1 - \frac{91}{216} \right)^{6-x}.$$

B2. Если $1 \le L_2 \le 3$ (Р2 жив вне Токио), он играет «сердца». Тогда его лапы редки:

$$C_2 \sim \text{Bin}(6, \frac{25}{216}).$$

Сначала урон P_2 по P_1 (который сейчас в Токио): $L_1^{(2)} = L_1 - C_2$.

• Если $C_2 \ge 1$ и $L_1^{(2)} \le 3$, P_1 обязан покинуть Токио (а P_2 заходит). Тогда P_3 бьёт уже P_2 , а P_1 дальше урон не получает. Условие выживания: $L_1^{(2)} \ge 1$. Вклад:

$$\sum_{\substack{x \ge 1: \\ L_1 - x \le 3, L_1 - x \ge 1}} \binom{6}{x} \left(\frac{25}{216}\right)^x \left(1 - \frac{25}{216}\right)^{6 - x}.$$

• Иначе (либо $C_2 = 0$, либо $L_1^{(2)} > 3$), P_1 остаётся в Токио, и P_3 (вне Токио, $L_3 = 4 > 3$) играет «лапы»:

$$C_3 \sim \text{Bin}(6, \frac{91}{216}),$$
 нужно $L_1^{(2)} - C_3 > 0.$

Вклад:

$$\sum_{x=0}^{6} \mathbf{1}[(x=0) \lor (L_1 - x > 3)] \binom{6}{x} \left(\frac{25}{216}\right)^x \left(1 - \frac{25}{216}\right)^{6-x} \cdot \sum_{y=0}^{L_1 - x - 1} \binom{6}{y} \left(\frac{91}{216}\right)^y \left(1 - \frac{91}{216}\right)^{6-y}.$$

Итого для ветви В:

$$\mathsf{P}(\mathsf{выжить} \mid h, c \geq 2) = \underbrace{\mathbf{1}[L_2 \leq 0] \cdot \sum_{y=0}^{L_1-1} \binom{6}{y} p_C^y (1-p_C)^{6-y}}_{\mathsf{B1}} + \underbrace{\mathbf{1}[1 \leq L_2 \leq 3] \cdot \left(\mathsf{вклад «уйти»} + \mathsf{вклад « уйти»} + \mathsf{вклад « уйти»}\right)}_{\mathsf{B2}}$$

где $p_C = 91/216$ в сумме по y, а «вклад «уйти»» и «остаться» расписаны выше.

Финальная формула

Обозначая $p_H = 91/216$, $p_C^{(\heartsuit)} = 25/216$ (когда оппонент «сердца»), $p_C^{(\text{claw})} = 91/216$ (когда «лапы»), итоговая вероятность — это конечная двойная сумма по (h,c) мультиномиальной массы \times кусочно-заданной условной вероятности выживания, выписанной выше. Формула конечна и вычислима в явном виде.

Численный результат (теоретически)

Суммирование по всем h, c со всеми ветвями даёт численно:

$$\mathsf{P}_{\mathrm{surv}}^{(\mathrm{reop})} \approx 0.8271240589$$

Промежуточные биномиальные суммы вычислены программно, но используемая формула — именно та, что выписана в разделе «Строгая модель».

Эмпирическое моделирование (200 испытаний)

Смоделировано 200 независимых партий (фиксированный seed=2025) по тем же правилам:

- Каждый кубик бросался до 3 раз с удержанием только целевой грани согласно стратегии.
- Применялись правила ухода/входа в Токио и «кто кого бьёт» в точности как в разделе 3.
- Фиксировались трассы: (H_1, C_1) , зашёл ли P_1 в Токио, сколько урона нанёс P_2 , бил ли P_3 P_1 и т.д.

Результат (частота выживания):

$$\widehat{p}_{200} = 0.835$$
 .

Согласованность с теорией (оценка погрешности)

Пусть истинная вероятность $p \approx 0.8271$. Тогда стандартная ошибка частоты на выборке N=200:

SE
$$\approx \sqrt{\frac{p(1-p)}{N}} \approx \sqrt{\frac{0.8271 \cdot 0.1729}{200}} \approx 0.0267.$$

Типичный разброс $\pm 2 \cdot \text{SE} \approx \pm 0.053$. Наблюдаемая 0.835 лежит в этом интервале от теории — расхождение статистически ожидаемо для N=200.

Вероятность выживания игрока №1 к началу следующего хода

Рис. 1:

Выводы

- 1. Построена строгая вероятностная модель на основе классических формул (бином, мультиномиал, полная вероятность) и заданных стратегий игроков.
- 2. **Теоретическая** вероятность выживания P_1 к началу следующего хода: ≈ 0.8271 .
- 3. **Эмпирическая** частота по 200 симуляциям: 0.835, что согласуется с теорией с учётом стандартной ошибки.
- 4. Наибольшая опасность для P_1 ветви, где P_2 остаётся в Токио и бьёт лапами; если P_2 уходит и P_1 входит в Токио, то на ходу P_2 урона мало (он «сердца»), а значимый риск остаётся только от P_3 .

Приложения (данные и код)

• Распологаются на github: King of tokio lab

Приложение: краткие доказательства использованных формул

Лемма 3 (стоп-процесс за 3 броска, целевое лицо T). $P(umos = T) = 1 - (5/6)^3$.

Доказательство. Единственный способ ne получить T — промахнуться 3 раза: $(5/6)^3$. Противоположность даёт формулу. \square

Лемма 4 (вероятность конкретной нецелевой грани $x \neq T$). $\mathsf{P}(umoz = x) = (5/6)^3/5$.

Доказательство. Если T ни разу не выпал, на 3-м броске условно равновероятны 5 нецелевых граней, значит 1/5 от $(5/6)^3$. □

Теорема 1 (бином).
$$P\{X=k\} = \binom{n}{k} p^k (1-p)^{n-k}$$
.

Доказательство. См. раздел «Биномиальное распределение (вывод)». □

Теорема 2 (мультиномиал).
$$P\{N_1 = n_1, \dots, N_m = n_m\} = \frac{n!}{n_1! \cdots n_m!} p_1^{n_1} \cdots p_m^{n_m}.$$

Доказательство. См. раздел «Мультиномиальное распределение (вывод)». □

Теорема 3 (полная вероятность). $P(A) = \sum_{i} P(A \mid B_i) P(B_i)$ для разбиения (B_i) .

Доказательство. См. раздел «Формула полной вероятности». □