Министерство науки и высшего образования Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИУ-КФ «Информатика и управление»</u>

КАФЕДРА <u>ИУ4-КФ «Программное обеспечение ЭВМ, информационные</u> технологии»

ЛАБОРАТОРНАЯ РАБОТА №6

«Методы классификации многомерных объектов пересекающихся классов с использованием карт Кохонена»

ДИСЦИПЛИНА: «Методы машинного обучения»

Выполнил: студент гр. ИУК4-62Б	(Подпись)	(Борисов Н.С.) (Ф.И.О.)
Проверил:	(Подпись)	(Кручинин И.И.) (Ф.И.О.)
Дата сдачи (защиты):		
Результаты сдачи (защиты):		
- Балльная	оценка:	
- Оценка:		

Калуга, 2022

Цель работы: приобрести практические навыки использования линейных классификации многомерных объектов.

Задачи:

- 1. Изучить линейные классификаторы;
- 2. Понять принципы методов классификации многомерных объектов пересекающихся классов;
- 3. Научится работать с линейными классификаторами.

Задание:

Наименование	Калории	Жиры	Холестерин	Натрий	Калий	Белок	Коэффициент
рыбы							скорости
Рыба мечь	172	8	78	97	499	23	69
Тунец	184	6	49	50	323	30	68
Акула	130	4.5	51	79	160	21	70
лосось	208	13	55	59	363	20	58
скумбрия	262	18	75	83	401	24	59
треска	69	6.1	40	55	340	16	29
кефаль	88	2.2	53	72	468	23	28
пикша	90	0.6	66	261	351	20	37
палтус	186	14	46	80	268	14	55
камбала	70	1.9	45	296	160	12	44

Классификация рыб по скорости движения:

- 1. Очень быстроплавающие коэффициент скорости от 61 до 70;
- 2. быстроплавающие коэффициент скорости от 31 до 60;
- 3. Умеренно быстрые – коэффициент скорости от 21 до 30

Классификация рыб по пищевой ценности: нежирные, умеренно жирные и жирные (характеристические показатели: калории, жиры, холестерин, натрий, калий, белок)

Вариант 2

Разработать классификатор для идентификации сортов рыбы с точки зрения пищевой ценности и скорости движения в воде, основанный на обучении без учителя.

Визуализировать результаты с помощью карт Кохонена для оценки распределения сортов рыбы в рамках выбранного водного пространства.

Использовать средства языка R — функции SOM и SOMGRID. Параметры для функции SOM GRID fct=" gaussian", topo=" hexagonal". Зададим число кластеров k=6 и выполним иерархическую кластеризацию (по умолчанию используются method = "complete" и distance = "euclidean"). Построить карты

«mapping", "quality", "property", "count". Проверить результаты классификации с помощью функций RBF и rbfDDA.

Рыбы: акула, рыба - мечь, кефаль, треска, пикша, палтус, скумбрия необходимо разделить по категориям: умеренно жирные и нежирные, очень быстроплавающие, быстроплавающие и умеренно быстрые.

Листинг программы:

```
library(kohonen)
library(RSNNS)
ramFo <- read.csv2("file.csv")</pre>
alg <- matrix(0:0, nrow=150, ncol=4)</pre>
for (i in 1:50) {
  for (j in 1:4)
    alg[i,j] = sample(5:50,1)
  }
}
for (i in 51:100) {
 for (j in 1:4)
    alg[i,j] = sample(51:95,1)
}
for (i in 101:150) {
  for (j in 1:4)
    alg[i,j] = sample(1:4,1)
}
write.table(alg, file="GMB1.txt")
ramFo2 = data.frame(read.table("GMB1.txt", header = TRUE, sep = ""))
inputs <- normalizeData(ramFo2[,1:4], "norm")</pre>
model <- som(inputs, mapX=26, mapY=26, maxit=400, calculateActMaps=TRUE,</pre>
targets=ramFo2[,4])
par(mfrow=c(3,3))
for(i in 1:ncol(inputs))
plotActMap(model$componentMaps[[i]],col=rev(topo.colors(12)))
plotActMap(model$map, col=rev(heat.colors(12)))
plotActMap(log(model$map+1), col=rev(heat.colors(12)))
persp(1:model$archParams$mapX,
                                                 1:model$archParams$mapY,
log(model$map+1), theta = 30, phi = 30, expand = 0.5, col = "lightblue")
plotActMap(model$labeledMap)
model$componentMaps
model$labeledUnits
model$map
names (model)
j=3
for (i in 1:2000000) {
  j=j+1
}
ramFo2
ramFo2[sample(1:nrow(ramFo2),length(1:nrow(ramFo2))),1:ncol(ramFo2)]
```

```
ramFo2Values <- ramFo2[,1:4]</pre>
ramFo2Targets <- decodeClassLabels(ramFo2[,4])</pre>
ramFo2
         <-
               splitForTrainingAndTest(ramFo2Values,
                                                         ramFo2Targets,
ratio=0.15)
ramFo2 <- normTrainingAndTestSet(ramFo2)</pre>
model <- rbfDDA(ramFo2$inputsTrain, ramFo2$targetsTrain)</pre>
summary(model)
par(mfrow=c(2,2))
weightMatrix(model)
extractNetInfo(model)
par(mfrow=c(2,2))
plotIterativeError(model)
predictions <- predict(model,ramFo2$inputsTest)</pre>
plotRegressionError(predictions[,2], ramFo2$targetsTest[,2])
confusionMatrix(ramFo2$targetsTrain,fitted.values(model))
confusionMatrix(ramFo2$targetsTest,predictions)
plotROC(fitted.values(model)[,2], ramFo2$targetsTrain[,2])
plotROC(predictions[,2], ramFo2$targetsTest[,2])
confusionMatrix(ramFo2$targetsTrain,
encodeClassLabels(fitted.values(model), method="402040", l=0.4, h=0.6))
ramFo2<-
ramFo2[sample(1:nrow(ramFo2),length(1:nrow(ramFo2))),1:ncol(ramFo2)]
ramFo2Values <- ramFo2[,1:4]</pre>
ramFo2Targets <- decodeClassLabels(ramFo2[,4])</pre>
ramFo2
       <-
                splitForTrainingAndTest(ramFo2Values, ramFo2Targets,
ratio=0.15)
ramFo2 <- normTrainingAndTestSet(ramFo2)</pre>
             rbf(ramFo2$inputsTrain,
model
       <-
                                       ramFo2$targetsTrain, size=40,
maxit=1000,
             initFuncParams=c(0, 1, 0, 0.01, 0.01),
             learnFuncParams=c(1e-8, 0, 1e-8, 0.1, 0.8), linOut=TRUE)
summary(model)
par(mfrow=c(2,2))
weightMatrix(model)
extractNetInfo(model)
par(mfrow=c(2,2))
plotIterativeError(model)
predictions <- predict(model,ramFo2$inputsTest)</pre>
plotRegressionError(predictions[,2], ramFo2$targetsTest[,2])
confusionMatrix(ramFo2$targetsTrain,fitted.values(model))
confusionMatrix(ramFo2$targetsTest,predictions)
plotROC(fitted.values(model)[,2], ramFo2$targetsTrain[,2])
plotROC(predictions[,2], ramFo2$targetsTest[,2])
confusionMatrix(ramFo2$targetsTrain,
encodeClassLabels(fitted.values(model), method="402040", l=0.4, h=0.6))
```

Результаты работы:

Рис.2

Вывод: в ходе лабораторной работы были приобретены практические навыки использования линейных классификации многомерных объектов.