Fundamentals of Solid State Physics

Semiconductors - Intrinsic and Extrinsic

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Density of Carriers

when T = 0 K

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T} = 0$$

$$p_{v} = P_{v}(T)e^{-(\mu - E_{v})/k_{B}T} = 0$$

insulator

Density of Carriers

when T > 0 K

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T} > 0$$

$$p_{v} = P_{v}(T)e^{-(\mu - E_{v})/k_{B}T} > 0$$

conductivity

$$\sigma = n_c e \mu_e + p_v e \mu_h$$

T > 0 K thermalization 热激发 CB and VB are partly filled conductor

Density of Carriers

when T > 0 K

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T} > 0$$

$$p_{v} = P_{v}(T)e^{-(\mu - E_{v})/k_{B}T} > 0$$

mass action law

pure, no impurity, charge balance

$$n_c = p_v = n_i$$

$$\mu = E_F = E_i$$

$$= E_c - k_B T \ln \left(\frac{N_c(T)}{n_i} \right)$$

$$= E_v + k_B T \ln \left(\frac{P_v(T)}{n_i} \right)$$

pure, no impurity, charge balance

$$n_c = p_v = n_i$$

$$\mu = E_F = E_i$$

$$= E_v + \frac{1}{2}E_g + \frac{3}{4}k_BT \ln\left(\frac{m_h^*}{m_e^*}\right)$$

The chemical potential / Fermi level / Intrinsic level is closed to the middle gap

Example: intrinsic Si at 300 K

$$n_c = p_v = n_i \approx 10^{10} \text{ cm}^{-3}$$

$$\mu_e = 1500 \text{ cm}^2/\text{V/s}$$
 $\mu_h = 450 \text{ cm}^2/\text{V/s}$

temperature dependence of carrier concentration

$$n_i \propto T^{3/2} \cdot e^{-E_g/2k_BT}$$

$$\ln n_i \sim -\frac{E_g}{2k_B T}$$

temperature dependence of carrier mobility μ

$$\mu = e \frac{\tau}{m^*}$$

at low T

$$|\mu \sim T^{3/2}|$$

impurity scattering

at high T

$$\mu \sim T^{-3/2}$$

lattice scattering

Temperature Dependence of σ

Metals and semiconductors have different temperature

dependences of σ

 $\sigma = ne\mu$

 $\mu = e \frac{\tau}{m^*}$

Conductivity of Semiconductor

metals

	conductivity σ
	(S/m)
Ag	6.3*10 ⁷
Al	3.5*10 ⁷

insulators

wood	10 ⁻¹⁴ ~ 10 ⁻¹⁶
glass	10 ⁻¹¹ ~ 10 ⁻¹⁵

silicon with doping

	conductivity σ
	(S/m)
0	10 ⁻⁶
1 / 10 ⁹	10 ⁻¹
1 / 10 ⁶	10 ²
1 / 10 ³	10 ⁵

Doping Makes Functional Devices

For Si and Ge (group IV) add Group V dopants: P, As, Sb, ... create level E_d close to E_c with extra electrons these electrons can be excited at low temperature making Si more conductive donor 施主 ----> n-doping

						2 He
l.	u G	6 C	7 N	0	9 F	10 Ne
Ë	13	14	15	16	17	18
1	۱,	Si	Ρ	ร	ci	Ar
	31 3 a	32 Ge	33 A s	34 Se	յ5 Br	36 Kr
Г	49	50	51	_52	53	54 V •
	n	Sn	Sb	Те	ı	Хе

For Si and Ge (group IV) add Group III dopants: B, AI, Ga, ... create level E_a close to E_v with extra holes these holes can be excited at low temperature making Si more conductive acceptor 受主 ----> p-doping

Ionization Energy of Dopants 电离能

Hydrogen-like Model

© Bart Van Zeshbroeck 2007

$$\Delta E = 13.6 \frac{m^*}{m_0} \frac{1}{\varepsilon_r^2} \text{ eV}$$

Hydrogen Atom

$$E_1 = -\frac{m_0 e^4}{8\varepsilon_0^2 h^2} = -13.6 \text{ eV}$$

Ionization Energy of Dopants 电离能

Hydrogen-like Model

© Bart Van Zeshbroeck 2007

$$\Delta E = 13.6 \frac{m^*}{m_0} \frac{1}{\varepsilon_r^2} \text{ eV}$$

 m^* - effective mass ~ 0.1 m_0

 ε_r - relative dielectric constant ~ 10

$$\rightarrow$$
 $\Delta E \sim 0.01 \text{ eV}$

$$\Delta E$$
 E_c
 E_d
 E_d

$$\Delta E \stackrel{---}{\stackrel{\longleftarrow}{\downarrow}} \stackrel{\longleftarrow}{\stackrel{\longleftarrow}{\downarrow}} \stackrel{E}{\stackrel{\longleftarrow}{\downarrow}} \stackrel{E}{\stackrel{\longleftarrow}{\downarrow}}$$

Ionization Energy of Dopants 电离能

Table 28.2
LEVELS OF GROUP V (DONORS) AND GROUP III (ACCEPTORS)
IMPURITIES IN SILICON AND GERMANIUM

GROUP	III ACCEPTORS	(TABLE ENTRY	$(18 \epsilon_a - \epsilon_v)$		
	В	Al	Ga	In	Tl
Si	0.046 eV	0.057	0.065	0.16	0.26
Ge	0.0104	0.0102	0.0108	0.0112	0.01
GROUF	v donors (tal	BLE ENTRY IS	$\varepsilon_c - \varepsilon_d$		
	P	As	Sb	Bi	
Si	0.044 eV	0.049	0.039	0.069	
Ge	0.0120	0.0127	0.0096	_	
ROOM	TEMPERATURE E	NERGY GAPS	$(E_g = E_c - E_t)$,)	
Si	1,12 eV				
Ge	$0.67 \mathrm{eV}$				

Source: P. Aigrain and M. Balkanski, Selected Constants Relative to Semiconductors, Pergamon, New York, 1961.

Doping in Silicon

For Si (and Ge):

p dopant: B, Al, Ga, ...

n dopant: P, As, Sb, ...

These dopants are shallow level defects, which can be excited to generated carriers closed to E_c or E_v (~ 0.01 eV), room temperature k_BT ~0.03 eV

					2 He
5	6	7	0	9	10
B	C	N		F	Ne
13	14	15	16	17	Ar
Al	Si	P	S	CI	
31	32	33	34	35	36
Ga	Ge	A s	Se	Br	Kr
49	50	51	52	53	54
In	Sn	Sb	Te		Xe

Other Defects in Silicon

Many other elements are deep level defects, which cannot be excited, making traps for carriers and Si less conductive.

					2 He
5 B	6	7 N	0 8	9 F	10 Ne
13	C 14	1N 15	U 16	<u>г</u>	18
Ai	Si	P	s "	Ci	Αг
31	32	33	34	35	36
Ga	Ge	As	Se	Br	Kr
49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
81	82	83	_ 84	85	_B6
	IPb I	lBi l	IPo I	At	lRn -

Doping in GaAs

For GaAs:

p dopant:

replace Ga: Mg, Zn, Be

replace As: C

...

					2 He
5	6	7	0	9	10
B	C	N		F	Ne
13	14	15	16	17	18
Al	Si	P	S	CI	Ar
31	32	33	34	յ5	36
Ga	Ge	As	Se	Br	Kr
49	50	51	⁵²	53	54
In	Sn	Sb	Te		Xe
81	82	83	84	85	86
TI	Pb	Bi	Po	At	Rn

n dopant:

replace As: Se

replace Ga: Si, Ge

. . .

when T = 0 K, carriers cannot be excited

$$|n_c \rightarrow 0|$$

$$p_v \rightarrow 0$$

insulator

electrons and holes are frozen

$$\Delta E$$
 E_c
 E_d
 E_i
 E_i
 E_i
 E_i
 E_i
 E_i
 E_i

when T > 0 K, carriers can be excited (ionization 电离)

shallow level dopants are easily activated at room temperature T = 300 K.

mass action law
$$n_c p_v = N_v(T) P_v(T) e^{-E_g/k_B T} = n_i^2$$

at equilibrium, $n_c p_v$ is a constant

If $N_D >> n_i$ For n-doping

$$n_c = N_D$$

$$p_v = n_i^2 / n_c$$

 N_D - concentration of donor (cm⁻³)

when T > 0 K, carriers can be excited (ionization)

shallow level dopants are easily activated at room temperature T = 300 K.

mass action law
$$n_c p_v = N_v(T) P_v(T) e^{-E_g/k_B T} = n_i^2$$

at equilibrium, $n_c p_v$ is a constant

If
$$N_A >> n_i$$

For n-doping

$$p_v = N_A$$

$$n_c = n_i^2 / p_v$$

 N_{Δ} - concentration of acceptor (cm⁻³)

Example - Silicon

For intrinsic Si at room temperature (T = 300 K)

$$\sigma = n_c e \mu_e + p_v e \mu_h$$

$$n_i \sim 10^{10} \, \text{cm}^{-3}$$

$$|n_i \sim 10^{10} \,\mathrm{cm}^{-3}|$$
 $|\sigma \sim 10^{-6} \,\mathrm{S/cm}|$

atom density of Si

$$N_{Si} \sim 10^{22} \, \mathrm{cm}^{-3}$$

If we put 1 ppm (10⁻⁶) P in Si

$$N_D \sim 10^{16} \, \text{cm}^{-3} \gg n_i$$

$$n_c = N_D \sim 10^{16} \, \text{cm}^{-3}$$

$$p_v = n_i^2 / n_c \sim 10^4 \text{cm}^{-3}$$

$$|\sigma \sim 10^{\circ} \text{S/cm}|$$

the conductivity is increased by 10⁶

For n-doping

$$n_c = N_D$$

$$\left| n_c = N_D \right| \quad \left| p_v = n_i^2 / n_c \right|$$

$$n_c \gg p_v$$

$$--- E_{v}$$

N_D - concentration of donor (cm⁻³)

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T}$$

$$p_{v} = P_{v}(T)e^{-(\mu - E_{v})/k_{B}T}$$

$$\longrightarrow E_c - \mu \ll \mu - E_v$$

chemical potential / Fermi level moves closer to E_c

For n-doping

$$n_c = N_D$$

$$|n_c = N_D| \qquad |p_v = n_i^2 / n_c|$$

$$\mu = E_c - k_B T \ln \left(\frac{N_c(T)}{n_c} \right)$$

$$= E_i + k_B T \ln \left(\frac{N_D}{n_i}\right)$$

$$\approx E_v + \frac{1}{2}E_g + k_BT \ln\left(\frac{N_D}{n_i}\right)$$

$$\mu$$

For p-doping

$$p_v = N_A$$

$$|p_v = N_A| \qquad |n_c = n_i^2 / p_v|$$

$$p_v \gg n_c$$

N_{Δ} - concentration of acceptor (cm⁻³)

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T}$$

$$p_{v} = P_{v}(T)e^{-(\mu - E_{v})/k_{B}T}$$

$$\longrightarrow E_c - \mu \gg \mu - E_v$$

chemical potential / Fermi level moves closer to E_{ν}

 E_{c}

For p-doping

$$p_v = N_A$$

$$|p_v = N_A| \qquad |n_c = n_i^2 / p_v|$$

$$\mu = E_v + k_B T \ln\left(\frac{P_v(T)}{p_v}\right)$$

$$= E_i - k_B T \ln\left(\frac{N_A}{n_i}\right)$$

$$\approx E_v + \frac{1}{2}E_g - k_B T \ln\left(\frac{N_A}{n_i}\right)$$

$$oxed{E_c}$$

$$E_i$$
 μ

Intrinsic vs. Extrinsic

Intrinsic

Intrinsic vs. Extrinsic

Extrinsic (n-doping)

At Very High Temperature

when T is very high, more carriers can be excited

 $n_c \approx p_v \approx n_i \gg \text{doping concentration}$

similar to an intrinsic semiconductor

temperature dependence of carrier concentration

low T, freeze-out

$$n \sim e^{-(E_c - E_D)/k_B T}$$

median T, extrinsic

$$|n=N_D|$$

high T, intrinsic

$$n \sim e^{-E_g/2k_BT}$$

temperature dependence of chemical potential

temperature dependence of carrier concentration

low T, freeze-out

$$n \sim e^{-(E_c - E_D)/k_B T}$$

median T, extrinsic

$$|n=N_D|$$

high T, intrinsic

$$n \sim e^{-E_g/2k_BT}$$

temperature dependence of mobility μ

at low T

$$\mu \sim T^{3/2}$$

impurity scattering

at high
$$T$$
 $\mu \sim T^{-3/2}$

lattice scattering

when doping increases, mobility decreases, due to more impurity scattering

doping dependence of mobility μ

when doping increases, mobility decreases, due to more impurity scattering silicon, T = 300 K

Q: What happens if there are both donors and acceptors?

doping density = $N_A + N_D$ Doping density (cm⁻³)

compensated semiconductor (补偿半导体) contains both donor and acceptor

$$\begin{cases} n_c + N_A = p_v + N_D \\ n_c p_v = n_i^2 \end{cases}$$

charge balance

compensated semiconductor (补偿半导体) contains both donor and acceptor

$$\begin{cases} n_c + N_A = p_v + N_D \\ n_c p_v = n_i^2 \end{cases}$$

charge balance

if
$$|N_A > N_D| \longrightarrow \text{p-doping}$$

$$p_{v} = \frac{N_{A} - N_{D}}{2} + \sqrt{\left(\frac{N_{A} - N_{D}}{2}\right)^{2} + n_{i}^{2}}$$

$$|N_A - N_D \gg n_i| \longrightarrow |p_v = N_A - N_D|$$

$$p_{v} = N_{A} - N_{D}$$

$$|n_c = n_i^2 / p_v|$$

compensated semiconductor (补偿半导体) contains both donor and acceptor

$$\begin{cases} n_c + N_A = p_v + N_D \\ n_c p_v = n_i^2 \end{cases}$$

charge balance

if
$$|N_D > N_A| \longrightarrow \text{n-doping}$$

$$n_c = \frac{N_D - N_A}{2} + \sqrt{\left(\frac{N_D - N_A}{2}\right)^2 + n_i^2}$$

if
$$\left|N_D - N_A \gg n_i\right| \longrightarrow \left|n_c = N_D - N_A\right| \left|p_v = n_i^2 / n_c\right|$$

$$n_c = N_D - N_A$$

$$p_{v} = n_{i}^{2} / n_{c}$$

in compensated semiconductor (补偿半导体) contains both donor and acceptor

silicon, T = 300 K

the mobility μ depends on $N_A + N_D$

when doping increases, mobility decreases, due to more impurity scattering

doping density = $N_A + N_D$ Doping density (cm⁻³)

Mass Action Law - A Little Notion

 The product of electron and hole concentrations is a constant, at a fixed temperature

$$n_c p_v = n_i^2 = N_v(T) P_v(T) e^{-E_g/k_B T}$$

In water, the product of H⁺ and OH⁻ concentrations is also a constant

$$[H^+][OH^-] = K_w = 10^{-14} (\text{mol/L})^2 \text{ (at 25 °C)}$$

Both are originated from classical statistics (nondegenerate, Maxwell-Boltzmann distribution), not related to quantum mechanics

Measurement of Doping

- Hall Effect 霍尔效应
 - A current flows through a conductor
 - \Box V_H is generated when applying B_z

$$eE_y = ev_x B_z$$

$$j_x = nev_x$$

$$E_y = \frac{1}{ne} j_x B_z = R_H j_x B_z$$

R_H - Hall coefficient

Measurement of Doping

- Hall Effect 霍尔效应
 - A current flows through a conductor
 - \Box V_H is generated when applying B_z

$$E_y = \frac{1}{ne} j_x B_z = R_H j_x B_z$$

p-doping

$$R_H = \frac{1}{p_v e}$$

positive

n-doping

$$R_H = -\frac{1}{n_c e}$$

negative

Carrier Behaviors in Semiconductors

- Equilibrium carriers (平衡态载流子)
- Non-equilibrium carriers (非平衡态载流子)
- Current Flow
 - diffusion current
 - **¬** drift current
- Generation 产生
- Recombination 复合

Carrier Behaviors in Semiconductors

- Majority carriers (多数载流子)
- Minority carriers (少数载流子)
 - minority carriers are very important, because their amount can be easily changed by current injection, optical absorption, etc.

Equilibrium carriers (平衡态载流子)

only thermal activation

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T}$$

$$p_{v} = P_{v}(T)e^{-(\mu - E_{v})/k_{B}T}$$

$$n_c p_v = N_v(T) P_v(T) e^{-E_g/k_B T} = n_i^2$$

Non-equilibrium carriers (非平衡态载流子)

activation by other energy sources e.g., photon absorption, current injection, ...

extra more carriers n_c and p_v

$$p_{v} \neq P_{v}(T)e^{-(\mu-E_{v})/k_{B}T}$$

$$n_c \neq N_c(T)e^{-(E_c-\mu)/k_BT}$$

$$n_c p_v \neq N_v(T) P_v(T) e^{-E_g/k_B T} = n_i^2$$

mass action law is not valid

Non-equilibrium carriers (非平衡态载流子)

activation by other energy sources e.g., photon absorption, current injection, ...

extra more carriers n_c and p_v

rewrite:

$$p_{v} = P_{v}(T)e^{-(\mu_{p}-E_{v})/k_{B}T}$$

$$n_c = N_c(T)e^{-(E_c - \mu_n)/k_B T}$$

$$\mu_n \neq \mu_p$$

Current Flow

- Diffusion current 扩散电流
 - caused by concentration gradient

- Drift current 迁移电流
 - caused by electric field

Current Flow

- Diffusion current 扩散电流
 - caused by concentration gradient

3D

$$\mathbf{j} = -q\mathbf{D}\nabla\mathbf{n}$$

diffusivity 扩散系数

$$D = \mu \frac{kT}{q}$$

n - carrier concentration (#/m³)

D - diffusivity (m²/s) 扩散率

 μ - mobility (m²/V/s)

Current Flow

- Drift current 迁移电流
 - caused by electric field

Ohm's Law

$$j = \sigma E = nq\mu E = nqv$$

n - carrier concentration (#/m³)

D - diffusivity (m²/s) 扩散率

 μ - mobility (m²/V/s)

Carrier Generation

Excited by thermal energy

$$n_c p_v = N_v(T) P_v(T) e^{-E_g/k_B T} = n_i^2$$

- Excited by photons
 - photodetector
 - solar cells
 - **-**

$$h\nu = \mathbf{e} + \mathbf{h}$$

- Other sources
- ...

Carrier Recombination 复合

- Radiative 辐射
 - **LED**
 - laser

- Non-radiative recombination
 - defects, impurities, surfaces
 - lattice (phonons)

$$e + h = phonons$$

- Auger process

Carrier Recombination 复合

- 载流子寿命 Carrier lifetime τ_n and τ_p
 - the averaged time before the nonequilibrium carriers recombine
- 扩散率 Diffusivity D_n and D_p

- 扩散长度 Diffusion length L_n and L_p
 - the averaged distance carriers move before recombination

$$L = \sqrt{D\tau}$$

 At non-equilibrium, minority carrier diffusion and lifetime are important for device performance

D - diffusivity (m²/s) 扩散率

Semiconductors - Applications

different carrier behaviors offer different applications

integrated circuits

Thank you for your attention