Mathématiques Préparatoires I

Ce document est une synthèse du cours de mathématiques dispensé par M. Jean-François Mallordy en classe préparatoire au lycée Blaise Pascal, Clermont-Ferrand en 2022-2023. Il s'agit d'un complément au cours de Maths Spé et ne saurait en aucun cas y être un quelconque remplacement!

Paris, 2024

Mis en forme par Émile Sauvat emile.sauvat@ens.psl.eu

U	Introduction	3
1	Ensembles et applications	8
2	Calculus	12
3	Nombres Complexes	15
4	Fonctions	18
5	Primitives et équations différentielles	25
6	Nombres réels et suites numériques	30
7	Fonctions d'une variable réelle	38
8	Arithmétique dans Z	47
9	Structures algébriques usuelles	53
10	Calcul matriciel et systèmes linéaires	58
11	Polynômes et fractions rationnelles	65
12	Analyse asymptotique	71
13	Espaces vectoriels et applications linéaires	72
14	Matrices II	73
15	Groupe symétrique et déterminant	79
16	Intégration	80
17	Dénombrement	86
18	Probabilités	90
19	Espaces préhilbertiens réels	94
20	Procédés sommatoires discrets	100
21	Fonctions de deux variables	101

Introduction

Tout les éléments mathématiques seront déclarés et définis, les textes seront différenciés des formules mathématiques.

Contenu

0.1	Règles	d'écriture	3
0.	.1.1 Q	Quantificateurs	3
0.	.1.2 C	Conditions Nécessaires et Suffisantes	4
0.2	Modes o	de démonstaration	4
0.	.2.1 M	Modus Ponen	4
0.	.2.2 C	Contraposée	4
0.	.2.3 D	Disjonction de cas	4
0.	.2.4 A	bsurde	4
0.	.2.5 A	nalyse Synthèse	4
		Analyse	4
		Synthèse	4
0.	.2.6 R	écurrence	5
0.	.2.7 E	xemples	5
		Irrationnalité de $\sqrt{2}$	5
		Infinité de l'ensemble des nombres premiers	6
		Inégalité arithmético-géométrique	6

0.1 Règles d'écriture

0.1.1 Quantificateurs

En écriture mathématique, on utilise les quatificateurs suivants : \exists : Existence \forall : Quelque soit Exemples :

$$\forall \ y \in \mathbb{R}, \ \exists \ x \in \mathbb{R} \ : \ y = x^7 - x \quad \neq \quad \exists \ x/ \in \mathbb{R} \ : \ y \in \mathbb{R}, \ y = x^7 - x$$

$$\forall \ \epsilon > \mathsf{o}, \ \exists \ n_\mathsf{o} \in \mathbb{N}: \ \forall \ n \in \mathbb{N} \ (n_\mathsf{o} \geq n \Rightarrow \mid u_n - l \mid \geq \epsilon) \quad \rightarrow \quad (u_n \ converge \ vers \ l)$$

un losange.

0.1.2 Conditions Nécessaires et Suffisantes

Une condition Q est nécessaire pour avoir P avoir P si dès que P est vraie Q est vraie. Une condition Q est suffisante pour avoir P si dès que P est vraie Q est vraie. Si dès que Q est vraie P est vraie. $Q \Rightarrow P$ ABCD à 4 côtés égaux est une condition suffisante pour que ABCD soit un losange. condition nécessaire pour que ABCD soit

Si P est nécessaire et suffisante pour avoir Q alors P est nécessairement suffisante pour avoir Q. On dit aussi que P et Q sont logiquement équivalentes. $P \Leftrightarrow Q$ ABCD est un quadrilatère à 4 côtés égaux et ABCD est un losange sont logiquement équivalente.

0.2 Modes de démonstaration

0.2.1 Modus Ponen

Soit P et Q deux assertions. On démontre que P est vraie et que P est une condition suffisante pour avoir Q. On a alors Q.

$$P \wedge (P \Rightarrow Q) \Rightarrow Q$$

On peut utiliser la transitivité de l'implication. $P \wedge ((P \Rightarrow Q) \wedge (Q \Rightarrow R)) \Rightarrow R$

0.2.2 Contraposée

$$(P \Rightarrow Q) \iff (\neg Q \Rightarrow \neg P)$$

Pour montrer que P est une condition suffisante pour avoir Q, on peut montrer que la négation de P est une condition suffisante pour avoir la négation de Q.

0.2.3 Disjonction de cas

Soit P, Q et R trois assertions.
$$(P \lor Q) \land (P \Rightarrow R) \land (Q \Rightarrow R) \Rightarrow R$$

Pour montrer qu'un condition A est suffisante pour en avoir une seconde B, on la sépare en plusieurs cas, puis on montre que chaque cas est une condition suffisante pour avoir B.

0.2.4 Absurde

$$(\neg P \Rightarrow Q \land \neg Q) \Rightarrow P$$

L'ensemble des nombres naturel est infini

0.2.5 Analyse Synthèse

Utilisé pour démontrer l'existence et l'unicité d'un objet mathématique.

Analyse On détermine un certain nombre de conditions nécessaires.

Synthèse On détermine une condition suffisante parmis les nécessaires.

0.2.6 Récurrence

On définit un prédicat dépendant d'une variable.

On montre alors que le prédicat est vrai pour un certain rang de la valeur.

On montre ensuie que le prédicat vraie à un certain rang (ou sur une série de rangs) est une condition suffisante pour avoir le prédicat vrai à un autre rang.

$$P(n) \Rightarrow P(n+1) \ / \ P(n_0) \land ... \land P(n) \Rightarrow P(n+1) \ / \ (P(n) \Rightarrow P(2n)) \land (P(n+1) \Rightarrow P(n))$$

Théorème : Premier principe de récurrence.

Soit
$$P(n)$$
 un prédicat définit sur $\mathbb N$
Si on a $\left\{egin{array}{l} P(0) \ orall n\in \mathbb N,\ P(n) \Rightarrow P(n+1) \
ight. \
ight.$ alors $orall n\in \mathbb N,\ P(n)$

Démonstration. On suppose au contraire $\exists n_0 \in \mathbb{N}^*$ tel que $\neg P(n_0)$.

On considère alors $A = \{k \mid \neg P(k)\}$

On a alors $A \neq \emptyset$ car $n_0 \in A$ et $A \subset \mathbb{N}^*$ donc d'après le principe du bon ordre dans \mathbb{N}^* A admet un plus petit élément noté k_0 .

Par suite
$$k_0 - 1 \in A$$
 soit $P(k_0 - 1)$ puis d'après l'hérédité $P(k_0)$.

Corollaire : Principe de récurrence forte.

Soit
$$P(n)$$
 un prédicat défini sur \mathbb{N} $Si \left\{ egin{array}{l} P(n_0) \ orall n \in \mathbb{N}, \ n \geq n_0, \ P(n_0) \wedge ... \wedge P(n) \ \Rightarrow \ P(n+1) \ Alors \ orall n \in \mathbb{N}, \ n \geq n_0, \ P(n) \end{array}
ight.$

Démonstration. On considère le prédicat $Q(n) = P(n_0) \land ... \land P(n)$

On a alors
$$\left\{egin{array}{l} Q(n_{ exttt{o}}) \ orall n\in\mathbb{N},\ n\geq n_{ exttt{o}},\ Q(n)
otin Q(n+1) \end{array}
ight.$$

D'où d'après le premier principe de récurrence on a $\forall n \in \mathbb{N}, \ n \geq n_0, \ P(n)$

0.2.7 Exemples

Irrationnalité de √2

Preuve 1 On suppose $\exists (p,q) \in \mathbb{N}^{*2} : \sqrt{2} = \frac{p}{q}$ avec q minimal.

On considère alors

$$rac{2q-p}{p-q} = rac{2-rac{p}{q}}{rac{p}{q}-1} = rac{\sqrt{2}(\sqrt{2}-1)}{\sqrt{2}-1} = \sqrt{2}$$

avec $p=\sqrt{2}q$ donc p<2q donc p-q<q.

Preuve 2 On suppose $\exists (p,q) \in \mathbb{N}^{*2} : \sqrt{2} = \frac{p}{q}$, soit $2q^2 = p^2$.

On a alors, d'après le théorème fondamental de l'arithmétique p^2 qui possède 2k fois 2k dans sa décomposition en facteurs premiers alors que $2q^2$ le posssède 2k'+1 fois, ce qui est impossible par unicité de la décomposition.

Preuve 3 Pour $i \in \mathbb{N}$ on considère

$$\epsilon_i = (\sqrt{2} - 1)^i$$

On a $\frac{8}{4}<\frac{9}{4}$ donc par strcite croissance de $f:x\mapsto \sqrt{x}\ \sqrt{2}<\frac{3}{2}$ donc $0<\sqrt{2}$ -1 $<\frac{1}{2}$

Donc
$$\forall i \in \mathbb{N}^* \ \epsilon_i < \frac{1}{2^i}$$

D'autre part pour tout entier i il existe des entiers a_i et b_i tels que $(\sqrt{2}-1)^i=a_i+\sqrt{2}b_i$ Si $\exists (p,q)\in \mathbb{N}^{*2}:\sqrt{2}=rac{p}{q}$ alors

$$\epsilon_i = a_i + b_i rac{p}{q} = rac{a_i q + b_i p}{q} = rac{\mathcal{A}_i}{q} \hspace{0.5cm} \mathcal{A}_i \in \mathbb{N}^*$$

Soit pour tout entier $i \epsilon_i \geq \frac{1}{a}$ d'où $\frac{1}{a} < \frac{1}{2^i}$

Infinité de l'ensemble des nombres premiers

Lemme Tout entier supérieur ou égal à 2 admet un diviseur premier Preuve : Soit n un entier supérieur à 2 notons p le plus petit de ses diviseurs. On a alors p premier car tout diviseur de p divise n.

Preuve d'Euclide S'il y avait un nombre fini de nombres premiers, leur produit additionné de 1 serait divisible par l'un d'entre eux (Lemme), qui diviserait alors la différence, 1.

Inégalité arithmético-géométrique

Lemme de Couchy Soit A un partie de \mathbb{N}^* qui contient 1 et telle que $\left\{ \begin{array}{ll} (1) \ \forall n \in \mathbb{N}^*, \ n \in A \ \Rightarrow \ 2n \in A \\ (2) \ \forall n \in \mathbb{N}^*, \ n+1 \in A \ \Rightarrow \ n \in A \end{array} \right.$ alors $A = \mathbb{N}^*$

Preuve : On veut démontrer Q(p) : $\forall n \in [2^p, 2^{p+1}] \times \mathbb{N}, n \in A$ $\Leftrightarrow \forall n \in [0, 2^p] \times \mathbb{N}, 2^{p+1} - n \in A$

 $P(k): 2^k \in A \text{ avec } P(0)$ H(0) $2^k \in A \Rightarrow 2 \times 2^k = 2^{k+1} \in A$ Si H(n) et $n+1 \le 2^p$, on a 2^{p+1} - $(n+1) \in A$ D'après le principe de récurrence on a $\forall k \in d$ 'apèrs (2) \mathbb{N} , $2^k \in A$ H(n): $n > 2^p \lor 2^{p+1} - n \in A$ avec D'après le principe de récurrence on a $\forall (p,n) \in \mathbb{N}^2, n > 2^p \vee 2^{p+1} - n \in A$

Preuve de Cauchy On considère $A=\left\{\begin{array}{ll}n\mid \forall (x_1,...,x_n)\in (\mathbb{R}^*_+)^n, \frac{x_1+...+x_n}{n}\geq \sqrt[n]{x_1...x_n}\end{array}\right\}$ avec $1\in A$ Soit le prédicat $P(n):\forall (x_1,...,x_n)\in (\mathbb{R}^*_+)^n, \frac{x_1+...+x_n}{n}\geq \sqrt[n]{x_1...x_n}$ On a $P(1) \wedge P(2)$

Supposons $n \in A$ et considérons $(x_1,...,x_n,x_1',...,x_n') \in (\mathbb{R}_+^*)^{2n}$

$$rac{x_1 + ... + x_n + x_1' + ... + x_n'}{2n} = rac{rac{x_1 + ... + x_n}{n} + rac{x_1' + ... + x_n'}{n}}{2}$$

$$\geq \sqrt{\frac{x_1+...+x_n}{n}\times \frac{x'_1+...+x'_n}{n}} \geq \sqrt[2]{\sqrt[n]{x_1...x_n}\times \sqrt[n]{x'_1...x'_n}}$$

$$=\sqrt[2n]{x_1...x_nx_1'...x_n'}$$
 Soit $extstyle P(n) \Rightarrow P(2n)$

On considère maintenant $\forall (x_1,...,x_n,x_{n+1}) \in (\mathbb{R}_+^*)^{n+1}, \frac{x_1+...+x_n+x_{n+1}}{n+1} \geq \sqrt[n]{x_1...x_nx_{n+1}}$ Soit $\forall (x_1,...,x_n) \in (\mathbb{R}_+^*)^n$ Posons $x_{n+1} = \frac{x_1+...+x_n}{n}$ on a alors avec $P = x_1 \cdot \cdot \cdot x_n$ et $A = x_{n+1}$:

$$rac{x_1 + ... + x_n + rac{x_1 + ... + x_n}{n}}{n+1} \geq \sqrt[n+1]{x_1 ... x_n x_{n+1}} \Leftrightarrow rac{(n+1)rac{x_1}{n} + ... + (n+1)rac{x_n}{n}}{n+1} \geq \sqrt[n+1]{PA}$$

$$\Leftrightarrow rac{x_1 + ... + x_n}{n} \geq \sqrt[n+1]{PA} \Leftrightarrow A \geq \sqrt[n+1]{PA}$$

 $\Rightarrow A^{n+1} \geq PA \Rightarrow A^n \geq P \Rightarrow A \geq \sqrt[n]{P} \ \ donc \ P(n+1) \Rightarrow P(n)$

Preuve : Soit $(x_1,...,x_n) \in (\mathbb{R}_+^*)^n$ $A = \frac{1}{n} \sum_{i=1}^n x_i \ \forall i \in \llbracket i,n \rrbracket$, $\ln(\frac{x_i}{A}) \leq \frac{x_i}{A} - 1$ En sommant on obtient :

$$\sum_{i=1}^n \ln(\frac{x_i}{A}) = \ln(\frac{x_1...x_n}{A^n}) \leq \sum_{i=1}^n (\frac{x_i}{A} - 1) = 0 \quad \Rightarrow x_1...x_n \leq A^n \quad \Rightarrow \quad \frac{x_1 + ... + x_n}{n} \geq \sqrt[n]{x_1...x_n}$$

Ensembles et applications

Contenu	
1.1	Opérations sur les Parties
	1.1.1 Notations
	Complémentaire
	Union
	Intersection
	Différence
	1.1.2 Propriétés
1.2	Recouvrement disjoint et Partitions
	Famille de parties disjointes de E
	Recouvrement disjoint de B
	Partition de E
1.3	Éléments applicatifs
	1.3.1 Graphe
	1.3.2 Indicatrice
	Définition
1.4	Relations binaires
	Définition
	Caractéristiques
	Relation d'ordre
	Relation d'équivalence
	Classe d'équivalence

1.1 Opérations sur les Parties

1.1.1 Notations

Complémentaire Le complémentaire de A dans E est $E \setminus A = \overline{A} = A^c$

$$E \setminus A = \{x \in E \mid x \notin A\}$$

Union L'union de deux ensembles est

$$A \cup B = \{x \in E \mid x \in A \lor x \in B\}$$

Intersection L'intersection de deux ensembles est

$$A \cap B = \{x \in E \mid x \in A \land x \in B\}$$

Différence La différence de deux ensemble est

$$A \setminus B = \{ x \in E \mid x \in A \land x \notin B \} = A \cap \overline{B}$$

1.1.2 Propriétés

Soit A et B deux parties de E

$$E \setminus (E \setminus A) \equiv A \qquad A \cup (B \cup C) \equiv (A \cup B) \cup C$$

$$A \cap (B \cap C) \equiv (A \cap B) \cap C \qquad A \cup (B \cap C) \equiv (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) \equiv (A \cap B) \cup (B \cap C) \qquad E \setminus (A \cup B) \equiv (E \setminus A) \cup (E \setminus B)$$

$$E \setminus (A \cap B) \equiv (E \setminus A) \cap (E \setminus B)$$

1.2 Recouvrement disjoint et Partitions

Soit E un ensemble et $(A_i)_{i\in I}$ une famille d'éléments de E.

Famille de parties disjointes de E (A_i) est une famille de parties disjointes de E si

$$\left\{egin{array}{l} orall (i,j) \in I^2, \ i
eq j \ \Rightarrow A_i \cap A_j = \varnothing \ orall i \in I, \ A_i \in \mathcal{P}(E) \end{array}
ight.$$

Recouvrement disjoint de B (A_i) est un recouvrement disjoint de B si

les A_i sont deux à deux disjoints et $B\subset \bigcup\limits_{i\in I}A_i=\{x\in E\mid \exists i\in I:x\in A_i\}$

Partition de E $(A_i)_{i \in I}$ est une partition de E si

$$egin{aligned} E = igcup_{i \in I} A_i & \wedge & \left\{egin{aligned} orall i \in I, A_i \in \mathbb{P}(E) \ orall i \in I, A_i
eq \varnothing \ orall (i,j) \in I^2, \ i
eq j \ \Rightarrow A_i \cap A_j = \varnothing \end{aligned}
ight. \end{aligned}$$

Propriétés : Lois de Morgan.

Soit E un ensemble,
$$(A_i)_{i \in I}$$
 une famille de parties de E Alors $\left(\bigcup_{i \in I} A_i\right)^c \equiv \bigcap_{i \in I} A_i^c$ et $\left(\bigcap_{i \in I} A_i\right)^c \equiv \bigcup_{i \in I} A_i^c$

1.3 Éléments applicatifs

1.3.1 **Graphe**

Soit un fonction $f \in \mathcal{F}(E, F)$, son graphe est :

$$\Gamma = \{(x, f(x)) \mid x \in E\} \in \mathcal{P}(E \times F)$$

1.3.2 Indicatrice

Définition On définit l'indicatrice de A dans E comme

$$\mathbb{1}_{A} \left(\begin{array}{c} E \longrightarrow \{0; 1\} \\ x \mapsto \left\{ \begin{array}{c} 1 \ si \ x \in A \\ 0 \ si \ x \in A^{c} \end{array} \right. \right)$$

Propriétés.

Soit A et B deux parties d'un ensemble E on a $A \equiv B \Leftrightarrow \mathbb{1}_A = \mathbb{1}_B$ $\mathbb{1}_{A \cap B} = \mathbb{1}_A \cdot \mathbb{1}_B$ $\forall x \in E, \ \mathbb{1}_A + \mathbb{1}_{E \setminus A} = \mathbb{1}_E = \mathbf{1}$ $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_{A \cap B}$

1.4 Relations binaires

Définition Une relation binaire sur E est la donné d'une partie Γ de $E \times E$ telle que

$$\forall (x,y) \in E^2$$
, $x \mathcal{R} y \Leftrightarrow (x,y) \in \Gamma$

 Γ est appelé graphe de la relation binaire \mathcal{R} -> $\underline{\mathrm{ex}}: \Gamma \subset \mathbb{R}^2$ $(x,y) \in \Gamma \Leftrightarrow y \leq x$

 ${f Caract\acute{e}ristiques}$ Soit ${\cal R}$ une relation binaire sur un ensemble ${\it E}$

- 1) \mathcal{R} est <u>réflexive</u> si $\forall x \in E$, $x\mathcal{R}x$
- 2) \mathcal{R} est symétrique si $\forall (x,y) \in E^2$, $x\mathcal{R}y \Leftrightarrow y\mathcal{R}x$
- 3) \mathcal{R} est antisymétrique si $\forall (x,y) \in E^2$, $x\mathcal{R}y \wedge y\mathcal{R}x \Rightarrow x=y$
- 4) \mathcal{R} est $\overline{\text{transitive si}} \ \ \forall (x,y,z) \in E^3$, $x\mathcal{R}y \wedge y\mathcal{R}z \ \Rightarrow \ x\mathcal{R}z$

Relation d'ordre Un relation binaire \mathcal{R} est une relation d'ordre si \mathcal{R} est réflexive, antisymétrique et transitive.

 $\begin{array}{l} ->\underline{\mathrm{ex}}:\forall (z,z')\in\mathbb{C}^2\\ \left(\Re(z)<\Re(z')\right)\vee\left(\Re(z)=\Re(z')\wedge\Im(z)\leq\Im(z')\right) \text{ est une relation d'ordre sur }\mathbb{C} \end{array}$

Caractère total Une relation d'ordre \mathcal{R} est dite totale si $\forall (x,y) \in E^2$, $x\mathcal{R}y \vee y\mathcal{R}x$

Relation d'équivalence Un relation binaire \mathcal{R} est une relation d'ordre si \mathcal{R} est réflexive, symétrique et transitive.

 $->\underline{\mathrm{ex}}$: Si $a\in\mathbb{R}$, $\forall (x,y)\in\mathbb{R}^2$, $x\mathcal{R}y\Leftrightarrow \exists k\in\mathbb{Z}:y-x=ka$ \mathcal{R} est appelée relation de congruence modulo a et on note $x\equiv y[a]$ Classe d'équivalence Si $x \in E$ l'ensmeble $\{y \in E \mid x\mathcal{R}y\}$ souvent noté Cl(x) est la classe d'équivalence de x

Propriété.

 \mid Si $E \neq \emptyset$, les classes d'équivalence forment une partition de E

* * *

Calculus

Contenu

2.1	Sommes et Produits	2
	Somme et Produit Téléscopique	2
	Permutations	2
	Méthode de perturbation	2
	Sommes doubles	2
2.2	Coefficients binomiaux	3
	Calculs sur les coefficients binomiaux	3
	Binôme de <u>Newton</u>	3
2.3	Valeur absolue	3
	Somme et produit	3
2.4	Trigonométrie	3
	Formules majeures	3
	Tangente	4

2.1 Sommes et Produits

On considère une famille $(a_i)_{i\in I}$ de réels.

$$\sum\limits_{i\in I}$$
 est la **somme** de ses termes $\prod\limits_{i\in I}$ est le **produit** de ses termes

Somme et Produit Téléscopique

$$\sum_{k=1}^{n-1} (a_{k+1} - a_k) = a_n - a_1$$
 $\prod k = 1^{n-1} (\frac{a_{k+1}}{a_k}) = \frac{a_n}{a_1}$

Permutations Soit σ une bijection de I sur I, $\sum_{i \in I} a_{\sigma(i)} = \sum_{i \in I} a_i$ $->\underline{\mathrm{ex}}$: $\sum_{k=1}^n a_k = \sum_{k=1}^n a_{n+1-k}$

Méthode de perturbation Soit $(a_i)_{_{i\in I}}$ on note $S_n = \sum_{k=1}^n a_k$

$$\underline{S_{n+1}} = \underline{S_n} + a_{n+1} = a_1 + \sum_{k=2}^{n+1}$$

->ex: Soit
$$S_n = \sum_{k=1}^n 2^k$$

 $S_{n+1} = S_n + 2^{n+1} = 2 + \sum_{k=2}^{n+1} 2^k = 2 + 2 \times \sum_{k=1}^n 2^k \Rightarrow S_n + 2^{n+1} = 2S_n + 2$
 $\Rightarrow S_n = 2^{n+1} - 2$

Sommes doubles Soit $(a_i)_{i \in I}$ et $(b_j)_{j \in J}$ des familles de réels

$$\sum_{\substack{(i,j)\in I\times J}}a_ib_j = \left(\sum_{i\in I}a_i\right)\left(\sum_{j\in J}b_j\right) \qquad \qquad \sum_{\substack{(i,j)\in I\times J}}a_{ij} = \sum_{i\in I}\sum_{j\in J}a_{ij} = \sum_{j\in J}\sum_{i\in I}a_{ij}$$

$$\sum_{1\leq i< j\leq n}a_ib_j = \sum_{i=1}^{n-1}a_i\sum_{j=i+1}^nb_j$$

Si (a_k) et (b_k) on la même monotonie $\sum\limits_{1 \leq j < k \leq n} (a_k - a_j)(b_k - b_j) \geq$ o

2.2 Coefficients binomiaux

$$\forall (n,p) \in \mathbb{N}^2, \quad \binom{n}{p} = \prod_{k=1}^n k = 1^p \frac{n-k+1}{k} = \begin{cases} \text{ o } si \text{ } p > n \\ \frac{n!}{k!(n-k)!} \text{ } sinon \end{cases}$$

Calculs sur les coefficients binomiaux

Relation de Pascal Si $1 \le p \le n$ alors $\binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$

Propriété de symétrie $\forall (n,p) \in \mathbb{N}^2$, $p \leq n \Rightarrow \binom{n}{p} = \binom{n}{n-p}$

Formule d'absorbtion $\forall (n,p) \in \mathbb{N}^2$, $\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}$ ou $p\binom{n}{p} = n\binom{n-1}{p-1}$

Binôme de Newton

$$orall (a,b) \in \mathbb{R}^2, \;\; orall n \in \mathbb{N} \;, \;\; (a+b)^n \;=\; \sum_{k=1}^n inom{n}{k} a^k b^{n-k}$$

2.3 Valeur absolue

On note $a^+=\max(a, \mathtt{o})$ et $a^-=\max(-a, \mathtt{o}).$ On a alors $orall a \in \mathbb{R}$, $a=a^+-a^-$ et $|a|=a^++a^-=\left\{egin{array}{l} a \ si \ a \geq \mathtt{o} \\ -a \ sinon \end{array}
ight.$

Somme et produit $\left|\prod\limits_{i=1}^n a_i\right| = \prod\limits_{i=1}^n |a_i|$ et $\left|\sum\limits_{i=1}^n a_i\right| \leq \sum\limits_{i=1}^n |a_i|$

2.4 Trigonométrie

On défini deux fonction **sin** et **cos** par la relation : $C(0; 1) = \{(\cos x, \sin x) \mid x \in \mathbb{R}\}$ ou encore $\forall x \in \mathbb{R}$, $\cos^2 x + \sin^2 x = 1$

$$\cos x = \cos a \Leftrightarrow \left\{ egin{array}{ll} x \equiv a[2\pi] \\ x \equiv -a[2\pi] \end{array}
ight. \qquad \sin x = \sin a \Leftrightarrow \left\{ egin{array}{ll} x \equiv a[2\pi] \\ x \equiv \pi - a[2\pi] \end{array}
ight.$$

Formules majeures

Addition
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$$

Duplication
$$\begin{vmatrix} \cos(2\alpha) &= 2\cos^2(\alpha) - 1 &= 1 - 2\sin^2(\alpha) \\ \sin(2\alpha) &= 2\sin\alpha\cos\alpha \end{vmatrix}$$

Dérivation
$$\begin{vmatrix} \cos' x &= -\sin x &= \cos(x + \frac{\pi}{2}) \\ \sin' x &= \cos x &= \sin(x + \frac{\pi}{2}) \end{vmatrix}$$

Tangente On définit
$$\tan x = \frac{\sin x}{\cos x}$$
 avec $\mathcal{D}_{\tan} = \mathbb{R} \setminus \{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \}$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \qquad \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\cos x = \frac{1 - \tan^2(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})} \qquad \qquad \sin x = \frac{2 \tan(\frac{x}{2})}{1 + \tan^2(\frac{x}{2})}$$

Nombres Complexes

On définit i tel que $i^2=-1$ Attention On ne peut pas écrire $i=\sqrt{-1}$

Contenu

3.1	Calcı	ul dans ${\mathbb C}$
		Puissances de i
		Identitées remarquables
3.2	Conju	ugaison et module
	3.2.1	Opération de conjugaison
		Parties réelles et imaginaires
	3.2.2	Module du complexe
	3.2.3	Inégalité triangulaire
		Propriété préliminaire
3.3	Unim	odulaires et trigonométrie
		Calculs
		Formules d'Euler
	3.3.1	Technique de l'angle moitié

3.1 Calcul dans $\mathbb C$

Puissances de
$$i$$
 $\forall p \in \mathbb{Z}$, $egin{array}{ccc} i^{4p} &=& \mathbf{1} & i^{4p+1} &=& i \ i^{4p+2} &=& -\mathbf{1} & i^{4p+3} &=& -i \end{array}$

Identitées remarquables

Si
$$z\in\mathbb{C}$$
 , $n\in\mathbb{N}$, $\sum\limits_{k=0}^{n}z^{k}=\left\{egin{array}{l} n+1 \ si \ z=1 \ rac{1-z^{n+1}}{1-z} \ sinon \end{array}
ight.$ Si $(a,b)\in\mathbb{C}^{2}$, $n\in\mathbb{N}^{*}$, $a^{n}-b^{n}=\left(a-b\right)\sum\limits_{k=0}^{n-1}a^{k}b^{n-1-k}$ Si $(a,b)\in\mathbb{C}^{2}$, $n\in\mathbb{N}^{*}$, $(a+b)^{n}=\sum\limits_{k=0}^{n}inom{n}{k}a^{k}b^{n-k}$

3.2 Conjugaison et module

3.2.1 Opération de conjugaison

On définit l'opération **involutive** de **conjugaison** : $\forall z=a+ib \in \mathbb{C} \ \varphi: a+ib \mapsto a-ib \ \text{ et } \ \varphi\circ\varphi=\mathit{Id}_{\mathbb{C}}$

Avec
$$\forall (z_1, \cdots, z_n) \in \mathbb{C}^n$$
, $\overline{\sum_{k=0}^n z_k} = \sum_{k=0}^n \overline{z_k}$ et $\overline{\prod k = o^n z_k} = \prod k = o^n \overline{z_k}$

Parties réelles et imaginaires $\forall z \in \mathbb{C}$ on a $\Re(z) = \frac{z+\overline{z}}{2}$ et $\Im(z) = \frac{z-\overline{z}}{2}$

3.2.2 Module du complexe

On définit le **module** de $z\in\mathbb{C}$ comme le **réel** positif qui vérifie $|z|^2=z\overline{z}$ On a alors l'égalité $|z|=\sqrt{a^2+b^2}$

3.2.3 Inégalité triangulaire

Propriété préliminaire On a $\forall z \in \mathbb{C}$, $\left\{ \begin{array}{l} |\Re(z)| \leq |z| \\ |\Im(z)| \leq |z| \end{array} \right.$

Inégalité Triangulaire.

 $\forall (z,z') \in \mathbb{C}^2$ on a $|z+z'| \leq |z|+|z'|$ Avec égalité dans l'inégalité si et seuleument si $\exists \lambda \in \mathbb{R}^+$ tel que $z=\lambda z'$ ou si z'=0

$$\begin{array}{ll} \textit{D\'{e}monstration.} \ \forall (z,z') \in \mathbb{C}^2 & |z+z'|^2 = |z|^2 + 2\Re(z\overline{z'}) + |z'|^2 \\ \textit{avec} \ \Re(z\overline{z'}) \leq \left|\Re(z\overline{z'})\right| \leq |zz'| = |z|\,|z'| \ \textit{d'où} \ |z+z'|^2 \leq (|z|+|z'|)^2 \end{array}$$

avec égalité si et seulement si $\Re(z\overline{z'}) = \left|\Re(z\overline{z'})\right| = \left|z\overline{z'}\right|$ soit $z\overline{z'} \in \mathbb{R}^+$

Si
$$z \neq 0$$
 alors $z\overline{z'} \in \mathbb{R}^+ \Leftrightarrow z\frac{\overline{z'}z'}{z'} \in \mathbb{R}^+ \Leftrightarrow z\frac{|z'|^2}{z'} \in \mathbb{R}^+$
 $\Leftrightarrow z = \lambda z' \text{ avec } \lambda = \frac{z}{z'} \in \mathbb{R}^+$

Seconde inégalité triangulaire.

$$orall (z,z') \in \mathbb{C}^2$$
 , $\left\{egin{array}{l} |z-z'| \geq |z|-|z'| \ |z'-z| \geq |z'|-|z| \end{array}
ight. \Rightarrow |z-z'| \geq ||z|-|z'||$

3.3 Unimodulaires et trigonométrie

Dans le plan complexe le cercle trigonométrique $\mathcal{C}(0,1)$ est l'ensemble des nombres complexes unimodulaires noté $\mathbb{U}=\{z\in\mathbb{C}\mid |z|=1\}$

$$-> \mathbb{U} = \{\cos\theta + i\sin\theta \mid \theta \in [0, 2\pi[\} = \{e^{i\theta} \mid \theta \in [0, 1\pi[\}]\}$$

Calculs $\mathbb{U}\subset\mathbb{C}^*$ est stable par produit et quotient et $\forall z\in\mathbb{U}$, $\frac{1}{z}=\overline{z}$

Formules d'Euler $\forall z \in \mathbb{U}$, $z = e^{i\theta}$ $(\theta \in \mathbb{R})$

$$\mathfrak{R}(z) = \frac{z + \overline{z}}{2} \Leftrightarrow \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 $\mathfrak{I}(z) = \frac{z - \overline{z}}{2i} \Leftrightarrow \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

3.3.1 Technique de l'angle moitié

Angle moitié 1.

$$\forall t \in \mathbb{R} \begin{array}{c} 1 + e^{it} = 2\cos(\frac{t}{2})e^{i\frac{t}{2}} \\ 1 - e^{it} = 2i\sin(-\frac{t}{2})e^{i\frac{t}{2}} \end{array} \quad \forall (p,q) \in \mathbb{R}^2 \begin{array}{c} e^{ip} + e^{iq} = 2\cos(\frac{p-q}{2})e^{i\frac{p+q}{2}} \\ e^{ip} - e^{iq} = 2i\sin(\frac{p-q}{2})e^{i\frac{p-q}{2}} \end{array}$$

Angle moitié 2.

$$\begin{array}{l} \forall (p,q) \in \mathbb{R}^2 \\ \cos p + \cos q = 2\cos\frac{p-q}{2}\cos\frac{p+q}{2} & \cos p - \cos q = -2\sin\frac{p-q}{2}\sin\frac{p+q}{2} \\ \sin p + \sin q = 2\cos\frac{p-q}{2}\sin\frac{p+q}{2} & \sin p - \sin q = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2} \end{array}$$

Fonctions

Toute les fonctions considéré sont des fonction d'une variable réelles à valeurs dans $\mathbb R$ définies sur $I\subset\mathbb R$

Contenu

4.1	Généralités sur les fonctions	18
	Ensemble de définition	18
	Représentation graphique	18
	Périodicité	19
	Fonction croissante	19
4.2	Dérivation	19
	Dérivabilité en a	19
	Dérivabilité sur I	19
	Classe \mathscr{C}^1	20
4.3	Fonctions usuelles	20
	Logarithme népérien	20
	Exponnentielle	21
	Logarithme en base a	22
	Arcsinus	22
	Arccosinus	22
	Cosinus hyperbolique - Sinus hyperbolique	23
	Tangente hyperbolique	23
4.4	Dérivation d'une fonction complexe	23
	Dérivabilité en un point	23

4.1 Généralités sur les fonctions

Ensemble de définition Si f est une fonction on défnit $\underline{D_f}$ son ensemble de définition comme la plus grande partie de $\mathbb R$ sur laquelle f est définie.

Représentation graphique Soit f un fonction la représentation graphique de f est la partie de \mathbb{R}^2 $C_f = \{(x, f(x)) \mid x \in D_f\}$

Propriété.

Soit f une fonction à valeurs réelles on a

- ullet Si f est paire alors C_f admet (ox) comme axe de symétrie
- ullet Si f est impaire alors C_f admet o comme centre de symétrie.

4.2. DÉRIVATION 19

Périodicité On dit que f est périodique s'il existe $T \in \mathbb{R}^*$ tel que $\forall x \in D_f$, $x+T \in D_f$ et f(x+T) = f(x), on dit alors que f est T-périodique.

Rq: la périodicité n'est stable ni par somme, ni par produit.

Propriétés.

Soit f et g deux fonctions on a

- 1) Si f et g admettent un parité, alors f + g et f.g admettent la même parité.
- 2) Si f et g sont T-périodiques, alors f + g et f.g sont T- périodiques.
- 3) $g \circ f$ est paire si f est paire ou si f est impaire et g est paire.
- 4) $g \circ f$ est impaire si f et g le sont.

Fonction croissante On dit que f à valeurs réelles est <u>croissante sur I</u> (resp. décroissante) si

$$\forall (a,b) \in I^2, \ a \leq b \Rightarrow f(a) \leq f(b) \ (resp. \ a \leq b \Rightarrow f(a) \geq f(b))$$

On définie de même les strictes croissance et décroissance avec des inégalités strictes.

Propriété.

f est croissante (resp. strictement) sur I si et seulement si
$$\forall (a,b) \in I^2, \ a \neq b \Rightarrow \frac{f(b)-f(a)}{b-a} \geq 0 \ (resp. > 0)$$

4.2 Dérivation

Dérivabilité en a On dit que \underline{f} est dérivable en un point \underline{a} de I qui n'est pas une extremité de I si $\tau_a(f)$ admet une limite finie en a. On note alors f'(a) cette limite.

Dérivabilité sur I On dit que \underline{f} est dérivable sur \underline{I} si f est dérivable en tout point de I. On note alors f' la fonction définie sur I qui à chaque point a associe f'(a).

Propriétés.

Si f et g sont deux fonction dérivable en a on a

- 1) $\forall \alpha \in \mathbb{R}$, $\alpha f + g$ est dérivable en a et $(\alpha f + g)'(a) = \alpha f'(a) + g'(a)$
- 2) f.g est dérivable en a et $\big(f.g\big)'(a) = f'(a).g(a) + f(a).g'(a)$
- 3) Si $g(a) \neq 0$ alors $\frac{f}{g}$ est dérivable en a et $\left(\frac{f}{g}\right)'(a) = \frac{f'(a).g(a) f(a)g'(a)}{\left(g(a)\right)^2}$

Proposition.

Si f est dérivable en a et g est dérivable en f(a)Alors $g \circ f$ est dérivable en a et $(g \circ f)'(a) = (g' \circ f)(a) \times f'(a)$

Proposition: Caractérisation des fonctions constantes.

Une fonction définie sur I à valeurs réelles ou complexes est constante \underline{si} et seulement \underline{si} elle est dérivable sur I et sa dérivée est nulle sur I

Propriété.

Si f est dérivable sur I alors f est strictement croissante sur I $\Leftrightarrow \begin{cases} f' \text{ est positive sur I} \\ \text{il n'existe pas d'intervalle ouvert } I \subset J \text{ tel que } f'|_{J} = 0 \end{cases}$

Théorème.

Soit f dérivable qur un intervalle ouvert I strictement monotone sur I alors f réalise une bijection de I sur $f_a(I) = J$ et f^{-1} est continue et dérivable sur J avec $\forall b = f(a) \in J$, $\left(f^{-1}\right)'(b) = \frac{1}{f'(a)} = \frac{1}{f'\circ f^{-1}(b)}$

Propriété.

Si f est à valeurs réelles bijectives et \mathbb{R}^2 rapporté à un repère orthonormé direct Alors C_f et $C_{f^{-1}}$ sont symétriques par rapport à la première bisectrice.

Classe \mathscr{C}^1 On dit que \underline{f} est de classe \mathscr{C}^1 sur I à valeurs dans \mathbb{R} si f est dérivable sur I et so f' est continue sur I. On dit aussi que f est continuement dérivable sur I. On note $\mathscr{C}^1(I,\mathbb{R})$ l'ensemble des fonctions de classe \mathscr{C}^1 sur I à valeurs dans \mathbb{R} .

4.3 Fonctions usuelles

Logarithme népérien La fonction ln est l'unique primitive de $\begin{pmatrix} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ x & \mapsto & \frac{1}{x} \end{pmatrix}$ avec $\ln(\mathbf{1}) = 0$.

Propriétés.

$$\mid 1 \mid \forall (a,b) \in \mathbb{R}_+^*$$
, $\ln(ab) = \ln(a) + \ln(b)$ 2) $\forall x \in \mathbb{R}_+^*$, $\ln\left(\frac{1}{x}\right) = -\ln(x)$

Théorème.

 $\mid orall x \in \mathbb{R}_+^*$, $\ln(x+1) \leq x$

Exponnentielle La fonction exp est la bijection réciproque de ln, définie sur $\mathbb R$ à valeurs dans $\mathbb R_+^*$. Elle est dérivable sur $\mathbb R$ avec $\exp' = \exp$ et $\forall (x,y) \in \mathbb R$, $\exp(x+y) = \exp(x) \times \exp(y)$

 $\forall (a,b) \in \mathbb{R}_+^* \times \mathbb{R}, \ a^b = \exp(b \times \ln(a))$

Logarithme en base a Soit $a \in \mathbb{R}_+^* \setminus \{1\}$, on appelle logarithme en base a noté $\ln_a \ln a$ fonction $\begin{pmatrix} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ x & \mapsto & \frac{\ln x}{\ln a} \end{pmatrix}$ et on note \exp_a sa bijection réciproque.

Lemme.

$$\forall \alpha \in \mathbb{R}_+^*$$
, on a

1)
$$\frac{\ln x}{x^{\alpha}} \xrightarrow[x \to +\infty]{}$$

$$\forall \alpha \in \mathbb{R}_+^*, \ on \ a \qquad \qquad 1) \ \tfrac{\ln x}{x^\alpha} \underset{x \to +\infty}{\longrightarrow} \ 0 \qquad \qquad 2) \ x^\alpha \ln x \underset{x \to 0^+}{\longrightarrow} \ 0$$

Corollaire.

$$\forall lpha \in \mathbb{R}_+^*$$
, on a $rac{x^lpha}{e^x} \underset{x o +\infty}{\longrightarrow}$ 0

Proposition.

Soit
$$x \in \mathbb{R}$$
 alors $\left(1 + \frac{x}{t}\right)^t \underset{t \to +\infty}{ o} e^x$

Proposition.

$$| \ orall x \in \mathbb{R}$$
, $e^x \geq x + 1$ avec égalité $\Leftrightarrow x = 0$

Arcsinus La restriction de sin à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ réalise un bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sur $\left[-1, 1\right]$. On appelle <u>arcsinus noté arcsin</u> cette fonction telle que $\forall (x,y) \in [-1,1] \times \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, y= $arcsin(x) \Leftrightarrow x = sin(y)$

Proposition.

La fonction arcsin est continue strictement croissante sur [-1, 1]et dérivable sur] - 1, 1[avec $\forall x \in$] - 1, 1[, $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$

Arccosinus La restriction de cos à $[0, \pi]$ réalise un bijection sur [-1, 1]. On appelle arccosinus noté arccos cette fonction telle que $\forall (x,y) \in [-1,1] \times [0,\pi], \ y = \arccos(x) \Leftrightarrow$ $x = \cos(y)$

Propriété.

$$\forall x \in [-1, 1], \ \operatorname{arccos}(x) + \operatorname{arcsin}(x) = \frac{\pi}{2}$$

Théorème - Arctangente.

tan réalise un bijection de $]-\frac{\pi}{2}$, $\frac{\pi}{2}[$ sur \mathbb{R} , on appelle $\underline{\operatorname{arctan}}$ cette fonction. arctan est dérivable sur \mathbb{R} avec $\forall x \in \mathbb{R}$, $\operatorname{arctan}'(x) = \frac{1}{1+x^2}$

Démonstration. tan est dérivable sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ donc arctan est dérivable en tout point a = tan(y)avec $\arctan'(a) = \frac{1}{\tan'(y)} = \frac{1}{1 + \tan^2(y)} = \frac{1}{1 + a^2}$

Proposition.

$$\mid \forall x \in \mathbb{R}$$
, $\operatorname{arctan}(x) + \operatorname{arctan}\left(rac{1}{x}
ight) = rac{x}{|x|} imes rac{\pi}{2}$

Cosinus hyperbolique - Sinus hyperbolique On appelle cosinus hyperbolique (resp. sinus hyperbolique) noté cosh (resp. sinh) la partie paire (resp. impaire) de exp.

$$orall x \in \mathbb{R}$$
, $\left\{ egin{array}{l} \cosh(x) = rac{e^x + e^{-x}}{2} \ \sinh(x) = rac{e^x - e^{-x}}{2} \end{array}
ight.$

Ces fonctions sont indéfiniment dérivables sur \mathbb{R} avec $\cosh' = \sinh et \sinh' = \cosh$

Lemme.

$$\forall x \in \mathbb{R}$$
, $\cosh(x) \geq 1$ avec égalité ssi $x = 0$

Proposition.

$$\forall x \in \mathbb{R}$$
, $\cosh^2(x) - \sinh^2(x) = 1$

Propriété.

Tangente hyperbolique La fonction <u>tangente hyperbolique notée tanh</u> est définie sur \mathbb{R} par tanh = $\frac{\sinh}{\cosh}$

Propriété.

tanh est impaire et indéfiniment dérivable sur $\mathbb R$ avec $orall x \in \mathbb R$, $anh'(x) = rac{1}{\cosh^2(x)} = 1 - anh^2(x)$

4.4 Dérivation d'une fonction complexe

On étudie ici des fonctions définies sur $I \subset \mathbb{R}$ à valeurs dans \mathbb{C}

Dérivabilité en un point On dit que $f:I\to\mathbb{C}$ est dérivable en $x_0\in I$ si $\frac{f(x)-f(x_0)}{x-x_0}$ possède une limite en x_0 . (Si $\forall \varepsilon>0$, $\exists \delta>0$: $\forall x\in I$, $|x-x_0|\leq \delta\Rightarrow |f(x)-f(x_0)|\leq \varepsilon$) On note alors $f'(x_0)$ cette limite.

Proposition.

 $f:I \to \mathbb{C}$ est dérivable en $x_0 \in I$ <u>si et seulement si</u> $\mathfrak{R}(f)$ et $\mathfrak{I}(f)$ sont dérivable en x_0 . On a alors $f'(x_0) = \big(\mathfrak{R}(f)\big)'(x_0) + i\big(\mathfrak{I}(f)\big)'(x_0)$

Proposition.

Les théorèmes opératoires sur la somme, le produit, et la fraction sont identique pour des fonctions à valeurs complexes (pas la composition!)

Proposition.

Si
$$\varphi$$
 est une fonction dérivable sur I de $\mathbb R$ à valeurs complexes
$$\text{Alors } \psi \begin{pmatrix} I & \longrightarrow & \mathbb C \\ t & \mapsto & \exp \left(i \varphi(t) \right) \end{pmatrix} \text{ est dérivable sur } I \text{ et }$$
 $\forall t \in I, \ \psi'(t) = i \varphi'(t) e^{i \varphi(t)}$

Primitives et équations différentielles

Contenu

5.	1	Calcul de primitives	25
		Primitive	25
		Exemples de référence	25
		Notation	26
5.	2	Équations différentielles du premier ordre	26
		Définition	26
		Méthode de variation de la constante :	27
5.	3	Équations différentielles linéaires d'ordre ${\tt 2}$ à coefficients constants	28

5.1 Calcul de primitives

Primitive Si I est un intervalle de $\mathbb R$ on dit que \underline{F} est une primitive de \underline{f} définie sur I à valeurs complexes si F est dérivable sur I et $\forall x \in I$, F'(x) = f(x)

Proposition.

Si F est une primitive de f sur I, alors pour toute primitive G de f il existe $C \in \mathbb{R}$ une constante telle que G = F + C

Proposition.

Si f est une fonction continue sur I alors f admet des primitives sur I et $\forall x_0 \in I$, $\int_{x_0}^x f(t) dt$ est l'unique primitive de f qui s'annulle en x_0 .

Exemples de référence

Soit $\lambda \in \mathbb{C}^*$; $n \in \mathbb{Z} \setminus \{-1\}$; $\alpha \in \mathbb{R} \setminus \{-1\}$; $a \in \mathbb{R}^*$ et $J \subset \{x \in \mathbb{R} \mid \cos(ax+b) \neq 0\}$

Notation On note $\int_{-\infty}^{x} f(t) dt$ une primitive de f.

Proposition: Intégration par partie.

Si
$$u$$
 et v sont deux fonctions de classe \mathscr{C}^1 sur I , $(a,b) \in I$,
$$\int_a^b u'(t)v((t)\mathrm{d}t = \big[u(t)v(t)\big]_a^b - \int_a^b u(t)v'(t)\mathrm{d}t$$

Proposition: Formule du changement de variable.

Soit φ une fonction de classe \mathscr{C}^1 sur un intervalle I de \mathbb{R} , f une fonction continue sur J avec $\varphi_d(I) \subset J$ $\forall (a,b) \in I^2 \ , \quad \int_a^b f(\varphi(t)) \times \varphi'(t) \mathrm{d}t = \int_{\varphi(a)}^{\varphi(b)} f(x) \mathrm{d}x$

Règles de Bioche : Soit f une fonction rationnelle en $\cos t$ et $\sin t$ et $\psi(t) = f(t) \mathrm{d}t$ On effectue les changements de variable suivants :

- Si ψ est invariante par $t \mapsto \pi t$ alors on pose $x = \sin t$
- Si ψ est invariante par $t\mapsto -t$ alors on pose $x=\cos t$
- ullet Si ψ est invariante par $t\mapsto t+\pi$ alors on pose x= an t

5.2 Équations différentielles du premier ordre

Définition Une équation fonctionnelle de la forme

$$y' + a(x)y = b(x)$$

Où a et b sont des fonctions réelles ou complexes définies sur un intervalle I de $\mathbb R$ s'appelle une <u>équation différentielle linéaire d'ordre 1</u> où les <u>inconnues y</u> sont des <u>fonctions dérivables sur I à valeurs dans $\mathbb R$ ou $\mathbb C$ </u>

Proposition.

Si a et b sont deux fonctions continues sur I, (E): y'+a(x)y=b(x), Alors $(E_0): y'+a(x)y=o$ est l'équation homogène associée à (E) de solution $y=C.e^{-A(x)}$ où A(x) est une primitive de a sur I et C est une constante.

Proposition.

Si a et b sont deux fonctions continues de I de $\mathbb R$ à valeur dans $\mathbb K$, φ_0 une solution particulière de (E) : y'+a(x)y=b(x) Alors toute solution de (E) est de la forme $x\mapsto \varphi_0(x)+\psi(x)$ où ψ est solution de (E_0)

On notera $\mathcal{S}_{(E)} = \varphi_0 + \mathcal{S}_{(E_0)}$

Méthode de variation de la constante : y' + a(x)y = b(x) avec a et b continues sur I à valeurs dans \mathbb{K} .

 (E_0) l'équation homogène associée à (E) admet pour solution générale $\varphi_0(x)=C.e^{-A(x)}$ avec A une primitive de asur I et C une constante de \mathbb{K} .

On cherche une solution particulière de la forme $x \overset{\psi}{\mapsto} C(x).e^{-A(x)}$ avec C dérivable sur I

$$\forall x \in I, \ \psi'(x) + a(x)\psi(x) = b(x) \Leftrightarrow$$

$$C'(x)e^{-A(x)}\underbrace{-C(x)a(x)e^{-A(x)}+C(x)a(x)e^{-A(x)}}_{=0}=b(x)$$

 $\Leftrightarrow \psi$ est solution de (E) si et seulement si $\forall x \in I, C'(x) = b(x)e^{A(x)}$

Proposition.

Sous les mêmes hypothèses et notations la solution générale de (E) est $\varphi(x) = \Big(C + \int_{-x}^{x} b(t)e^{A(t)}\mathrm{d}t\Big).e^{-A(x)}$ où A est une primitive de a sur I et C une constante de \mathbb{K}

Propriété.

Si $\alpha \in \mathbb{K}$ et P est une fonction polynômiale à coefficients dans \mathbb{K} Alors l'équation différentielle $y' + \alpha y = e^{-\alpha(x)}P(x)$ admet une solution particulière de la forme $\varphi_0 : x \mapsto e^{-\alpha(x)}Q(x)$ avec Q(x) un polynôme à coefficients dans \mathbb{K} et $\deg Q = \deg P$ si $\alpha \neq \alpha$ et $\deg Q = \deg P + 1$ sinon.

Proposition : Principe de superposition.

Si a, b_1, b_2 sont des fonctions continues sur I à valeurs dans \mathbb{K} φ_1 solution particulière de $y'+a(x)y=b_1(x)$ φ_2 solution particulière de $y'+a(x)y=b_2(x)$ Alors pour tout $(\lambda_1, \lambda_2) \in \mathbb{K}$, $\lambda_1 \varphi_1 + \lambda_2 \varphi_2$ est solution particulière de $y'+a(x)y=\lambda_1 b_1(x)+\lambda_2 b_2(x)$

Proposition: Problème de Cauchy.

 $orall (x_0,y_0)\in I imes \mathbb{K}$, le problème de Cauchy $\left\{egin{array}{l} y'+a(x)y=b(x) \ y(x_0)=y_0 \end{array}
ight.$ Admet une unique solution $arphi_0:x\mapsto \left(y_0+\int_{x_0}^x b(t)e^{\int_{x_0}^x a(s)\mathrm{d}s}\mathrm{d}t
ight)e^{-\int_{x_0}^x a(s)\mathrm{d}s}$

5.3 Équations différentielles linéaires d'ordre 2 à coefficients constants

On considère ici (E): y''+ay'+by=f(x) où a,b sont des constantes de $\mathbb K$ et f est définie et continue sur I de $\mathbb R$ à valeur dans $\mathbb K$ (E) s'appelle une <u>équation différentielle linéaire d'ordre 2 à coefficients constants dans $\mathbb K$ </u>

Proposition.

```
Si r \in \mathbb{K} alors \varphi_r : x \mapsto e^{rx} est solution de (E_0)
si et seulement si r^2 + ar + b = 0 (équation caractéristique associée à (E) (e.c.))
```

Proposition.

Avec les mêmes notations et en notant Δ le discriminant de l'équation caractéristique associée à (E)

- $\Delta >$ 0 et r_1 , r_2 les solutions de e.c. alors la solution générale de (E_0) est donnée par $x \mapsto C_1 e^{r_1(x)} + C_2 e^{r_2(x)}$
- $\Delta = 0$ et r la solution double de e.c. alors la solution générale de (E_0) est donnée par $x \mapsto (C_1 x + C_2)e^{rx}$
- Δ < 0 et $r = \rho + i\omega$ ($\omega \neq 0$) une solution de e.c. alors la solution générale de (E_0) est donnée par $x \mapsto (C_1 \cos(\omega x) + C_2 \sin(\omega x))e^{\rho x}$

Proposition.

```
Si f est une fonction continue sur I, (a,b) \in \mathbb{K}^2
Alors la solution générale de (E): y'' + ay' + by = f(x)
est la somme d'une solution particulière et de la solution générale
de l'équation homogène associée.
```

Propriété.

```
Soit P une fonction polynômiale sur I à valeurs dans \mathbb{K} et \alpha \in \mathbb{K} L'équation (E): y'' + \alpha y' + b = P(x)e^{\alpha x} admet une solution particulière de la forme x \mapsto Q(x)e^{\alpha x} avec Q une fonction polynômiale à coefficients dans \mathbb{K} et \deg Q = \deg P si \alpha n'est pas solution de e.c. \deg Q = \deg P + 1 si \alpha est racine simple de e.c. \deg Q = \deg P + 2 si \alpha est racine double de e.c.
```

Corollaire.

```
L'équation différentielle y'' + ay' + b = \cos(\omega x)e^{\alpha x} (respectivement y'' + ay' + b = \sin(\omega x)e^{\alpha x})
Admet une solution particulière de la forme x \mapsto x^k (C_1 \cos(\omega x) + C_2 \sin(\omega x))e^{\alpha x} avec (C_1, C_2) \in \mathbb{R}^2 k = 0 si \alpha + i.\omega n'est pas solution de e.c. k = 1 si \alpha + i.\omega est une racine double de e.c. k = 2 si \alpha + i.\omega est une racine simple de e.c.
```

Propriété : Principe de superposition.

Soit $(a,b) \in \mathbb{K}^2$ et (f_1,f_2) deux fonctions continues sur I à valeurs dans \mathbb{K} φ_1 une solution particulière de $y'' + ay' + by = f_1(x)$ φ_2 une solution particulière de $y'' + ay' + by = f_2(x)$ Alors pour tout $(\lambda_1,\lambda_2) \in \mathbb{K}^2$, $\lambda_1\varphi_1 + \lambda_2\varphi_2$ est solution de $y'' + ay' + by = (\lambda_1f_1(x) + \lambda_2f_2(x))$

Proposition : Problème de Cauchy.

 $Si\ (a,b)\in\mathbb{K}^2$, f une fonction continue sur I à valeurs dans \mathbb{K} , $x_0\in I$, $(y_0,y_0')\in\mathbb{K}^2$ le problème de Cauchy $\left\{ egin{array}{l} y''+ay'+by=f(x) \\ y(x_0)=y_0 \ ; \ y'(x_0)=y_0' \end{array}
ight.$ admet une unique solution.

* * *

Nombres réels et suites numériques

Contenu		
6.1	Ense	mbles de nombres réels
		Entiers naturels
		Entiers relatifs
		Nombres rationnels
		Approximation décimale propre
		Nombres décimaux
		Densité
		Borne supérieure
		Intervalle
6.2	Suite	s réelles
	6.2.1	Généralités
		Suite stationnaire
		Convergence
		Divergence
		Suites adjacentes
		Extractrice
		Suite extraite
		Convergence (cas complexe)
	6.2.2	Suites particulières
		Suite arithmétique
		Suite géométrique
		Suite arithmético-géométrique
		Suite récurrente linéaire d'ordre 2

6.1 Ensembles de nombres réels

Entiers naturels 0, 1, 2, . . . avec ≤ une relation d'ordre totale

Propriété : Principe de bon ordre.

- (i) Toute partie non vide de $\mathbb N$ admet un plus petit élément.
- (ii) Tout partie non vide et majorée de $\mathbb N$ admet un plus grand élément.

Proposition : Division euclidienne sur ${\mathbb N}.$

$$orall V(a,b) \in \mathbb{N} imes \mathbb{N}^*, \ \exists (q,r) \in \mathbb{N}^2, \ unique \ tel \ que \ a = bq + r \ avec \ \underline{0} \leqslant r \leqslant b$$

Entiers relatifs $\mathbb{Z} = \mathbb{N} \cup (-\mathbb{N}) = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

La division euclidienne reste valable sur Z

Nombres rationnels $\mathbb{Q} = \{\frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N}^*\}$ On dit que $\frac{p}{q}$ est irréductible si p et q sont sans diviseurs communs.

Propriété.

 $\mid \mathbb{Q}$ est stable par somme, différence et produit.

Proposition.

$$orall x \in \mathbb{R}^+$$
, $\exists (x_k)_{k \in \mathbb{N}} \in \mathbb{N}^\mathbb{N}$ unique telle que $\forall n \in \mathbb{N}$ on a $\sum_{k=0}^n x_k.10^{-k} \leqslant x < \sum_{k=0}^n x_k.10^{-k} + 10^{-n}$ On a de plus $(x_k)_{k \in \mathbb{N}^*} \in \llbracket 0, 9
rangle^\mathbb{N}$ non stationnaire à 9

Approximation décimale propre Soit $x \in \mathbb{R}$, avec les même notations, on appelle approximation décimale propre de x à 10⁻ⁿ près la somme $\sum_{k=0}^{n} x_k$.10^{-k}

On appelle approximation décimale propre de x la limite :

$$\lim_{n o +\infty}\sum_{k=0}^n x_k.$$
10 $^{-k}=x_{ exttt{O}}$, $x_1x_2\dots x_n\dots$

Nombres décimaux On appelle <u>nombres décimaux</u> l'ensemble des nombres réels dont l'approximation décimale propre est **stationnaire à** o. Leur ensemble est noté $\mathbb D$ avec

$$\mathbb{D} = \{ x \in \mathbb{R} \mid \exists n \in \mathbb{N} : x \times 10^n \in \mathbb{Z} \} \subset \mathbb{Q}$$

Densité On dit que $X \in \mathcal{P}(\mathbb{R})$ est <u>dense dans \mathbb{R} </u> si pour tout a < b de \mathbb{R} on a $]a,b[\cap X \neq \emptyset]$

Propriété.

 $| \mathbb{Q} \text{ et } \mathbb{R} \setminus \mathbb{Q} \text{ sont denses dans } \mathbb{R}.$

Borne supérieure Soit X un ensemble. **Sous réserve d'existence**, la borne supérieure de X, notée sup X est le plus petit éléments de l'ensemble des majorants de X.

Théorème.

Toute partie non vide et majorée de $\mathbb R$ admet une borne supérieure.

Proposition : Caractérisation de la borne supérieure.

Soit A une partie de \mathbb{R} , α est la borne supérieure de A si et seulement si $\forall x \in A, \ x \leqslant \alpha \ \text{et} \ \forall \varepsilon > 0, \ \exists x' \in A \ \text{tel que} \ x' > \alpha - \varepsilon$

Intervalle On appelle intervalle toute partie X de \mathbb{R} vérifiant

$$\forall (a,b) \in X^2 \text{ avec } a \leq b, [a,b] \subset X$$

Propriété.

$$| \forall (a,b) \in \mathbb{R}^2 \text{ avec } a \leqslant b \text{ on a } [a,b] = \{\lambda a + (1-\lambda)b \mid \lambda \in [0,1]\}$$

Propriété.

L'intersection de deux intervalles est un intervalle. Toute intersection (même infinie) d'intervalles est un intervalle.

6.2 Suites réelles

6.2.1 Généralités

Suite stationnaire Une suite réelle $(u_n)_{n\geqslant 0}$ est dite stationnaire si

$$\exists n_{ extsf{o}} \in \mathbb{N} \; : \; orall n \in \mathbb{N}$$
, $(n \geqslant n_{ extsf{o}} \Rightarrow u_n = u_{n_{ extsf{o}}})$

Propriété.

Une suite $(u_n)_{n\geqslant 0}$ est bornée si et seulement si $ig(|u_n|ig)_{n\in \mathbb{N}}$ est majorée.

Convergence Si $\ell \in \mathbb{R}$ et $(u_n)_{n \geqslant 0}$ est une suite réelle,

ullet On dit que \underline{u} converge vers \underline{l} si

$$orall arepsilon >$$
 o, $\exists n_{ exttt{o}} \in \mathbb{N}$: $orall n \in \mathbb{N}$, $(n \geqslant n_{ exttt{o}} \Rightarrow |u_n - \ell| \leqslant arepsilon)$

ullet On dit que u tend vers $+\infty$ (resp. $-\infty$) si

$$\forall A \in \mathbb{R}, \ \exists n_0 \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ (n \geqslant n_0 \Rightarrow u_n \geqslant A) \ \ (resp. \ u_n \leqslant A)$$

Divergence Une suite réelle est dite divergente si elle ne converge pas.

Propriété: Unicité de la limite.

```
\mid Si\ (u_n)_{n\geqslant 0} tend vers \ell_1 et vers \ell_2 alors \ell_1=\ell_2
```

Propriété.

Toute suite réelle convergente est bornée.

Propriété.

Le produit d'une suite bornée et d'une suite de limite nulle est une suite de limite nulle.

Propriétés.

Si $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ sont deux suites réelles convergentes dans $\mathbb R$ Alors pour tout $\lambda,\mu\in\mathbb R$, $(\lambda u_n+\mu v_n)_{n\in\mathbb N}$ et $(u_nv_n)_{n\in\mathbb N}$ convergent * avec

- $\lim(\lambda u_n + \mu v_n) = \lambda \lim u_n + \mu \lim v_n$
- $\lim(u_nv_n)=(\lim u_n)(\lim v_n)$

Propriété.

```
Si (u_n)_{n\geqslant 0} tend vers \ell\in\overline{\mathbb{R}}\setminus\{0\}
Alors (u_n)_{n\geqslant 0} est non nulle à partir d'un certain rang n_0 et (\frac{1}{u_n})_{n\geqslant n_0} converge vers \frac{1}{\ell}\in\overline{\mathbb{R}}
```

Lemme.

```
Soit (u_n)_{n\geqslant 0} une suite réelle avec u_n \mathop{
ightarrow}_n \ell alors |u_n| \mathop{
ightarrow}_n |\ell|
```

Théorème : Passage à la limite dans les inégalités larges.

à compléter

Démonstration. On peut noter que si $(u_n)_{n\geqslant 0}$ une suite réelle quelconque est à termes positif à partir d'un certain rang et si (u_n) tends vers $\ell\in\overline{\mathbb{R}}$ alors $\ell\geqslant 0$, en effet : par unicité de la limite, $\ell=|\ell|\geqslant 0$

Soit donc $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ deux suites réelles convergente respectivement vers ℓ et ℓ' avec $u_n\geqslant v_n$ à partir d'un certain rang alors

- ullet Si $m\ell=m\ell'=+\infty$ ou si $m\ell=m\ell'=-\infty$ alors $m\ell=m\ell'$ et on a le résultat
- ullet Sinon on note $w_n=u_n-v_n$ et on a ainsi $w_n\geqslant$ o à partir d'un certain rang donc vu (w_n) converge vers $\ell''=\ell-\ell'$ alors $\ell\geqslant\ell'$

Propriété.

Soit $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ deux suites réelles telles que (v_n) converge vers 0. On suppose qu'il existe $\ell\in\mathbb{R}$ tel que apcr $|u_n-\ell|\leqslant v_n$ Alors (u_n) converge vers ℓ

Si la somme et/ou le produit ne sont pas des formes indéterminée de $\overline{\mathbb{R}}$

Théorème d'encadrement.

Soit (u_n) , (v_n) , (w_n) trois suites réelles telles que apcr $v_n \leqslant u_n \leqslant w_n$. On suppose que (v_n) et (w_n) converge vers une même limite. Alors (u_n) converge vers cette limite commune.

Démonstration. On a à partir d'un certain rang o $\leqslant u_n - v_n \leqslant w_n - v_n$ et $(w_n - v_n)$ converge vers o donc d'après la propriété précédente $(u_n - v_n)$ converge vers o, or pour tout $n \in \mathbb{N}$, $u_n = (u_n - v_n) + v_n$ d'où $\lim u_n = \lim (u_n - v_n) + \lim v_n = \lim v_n$

Proposition.

Soit
$$(u_n)$$
 et (v_n) deux suites réelle, on suppose apcr $u_n \leqslant v_n$ Alors $\begin{cases} \text{Si } u_n \xrightarrow[n]{} +\infty \text{ alors } v_n \xrightarrow[n]{} +\infty \\ \text{Si } v_n \xrightarrow[n]{} -\infty \text{ alors } u_n \xrightarrow[n]{} -\infty \end{cases}$

Théorème de la limite monotone.

Toute suite croissante et majorée (resp. décroissante et minorée) converge.

Démonstration. Soit $(u_n)_{n\geqslant 0}$ une suite réelle, on note $X=\{u_n\mid n\in\mathbb{N}\}$ partie non vide et majorée de \mathbb{R} , on note donc ℓ sa borne supérieur (qui existe). On a alors par croissance de (u_n) et caractérisation de la borne supérieur $u_n\underset{n}{\to}\ell$.

Suites adjacentes Deux suites réelles $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ sont dites <u>adjacentes</u> si elles sont de monotonies contraires et si $\lim (u_n-v_n)=0$

Lemme.

Si $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ sont adjacentes avec (u_n) croissante et (v_n) décroissante. Alors $\forall (p,q)\in \mathbb{N}^2,\ u_p\leqslant v_q$

Théorème des suite adjacentes.

Deux suites adjacentes convergent vers une même limite.

Démonstration. Soit (u_n) et (v_n) deux suites adjacentes. On suppose sans perte de généralité (v_n) décroissante. D'après le lemme on a alors (u_n) croissante majorée par v_0 donc d'après le théorème de la limite monotone (u_n) converge vers $\ell \leqslant v_0$. De même (v_n) converge vers $\ell' \geqslant u_0$ puis vu $\lim (u_n - v_n) = 0$ on a $\ell = \ell'$

Extractrice On a appelle extractrice toute application $\sigma:\mathbb{N}\to\mathbb{N}$ strictement croissante.

Propriété.

 $\mid Si \ \sigma : \mathbb{N} \to \mathbb{N}$ est une extractrice alors $\forall n \in \mathbb{N}, \ \sigma(n) \geqslant n$

6.2. SUITES RÉELLES 35

Suite extraite Soit $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ deux suites réelles. On dit que $\underline{(v_n)}$ est extraite de (u_n) s'il existe $\sigma: \mathbb{N} \to \mathbb{N}$ un extractrice telle que

$$\forall n \in \mathbb{N}$$
, $v_n = u_{\sigma(n)}$

Proposition.

Si une suite possède une limite, toute ses suites extraites possèdent la même limite.

Propriété.

```
Soit (u_n)_{n\geqslant 0} une suite réelle
On suppose que (u_{2n}) et (u_{2n+1}) tendent vers une même limite \ell.
Alors (u_n) tend vers \ell
```

Théorème de Bolzano-Weierstrass.

Tout suite réelle bornée admet une suite extraite qui converge.

Démonstration. Soit $(u_n)_{n\geqslant 0}$ une suite bornée.

On considère $A = \{ p \in \mathbb{N} \mid \forall n \in \mathbb{N}, \ n \geqslant p \Rightarrow u_n < u_p \}$

On construit alors une extractrice σ telle que $(u_{\sigma(n)})$ est strictement décroissante :

• Si A est infinie, on pose $\sigma(0) = \min A$ (principe de bon ordre) puis $\forall p \in \mathbb{N}$, on pose $\sigma(p+1) = \min (A \cap]\![\sigma(p), +\infty[\![)]$

On a alors $(u_{\sigma(n)})$ strictement décroissante et minorée donc convergent d'après le théorème de la limite monotone.

• Si A est fini, on pose $\sigma(0) = \begin{cases} o \text{ si } A \text{ est vide} \\ \max A + 1 \text{ sinon} \end{cases}$

On a alors vu $\sigma(0) \notin A$, $\exists n > \sigma(0) : u_n \geqslant u_{\sigma(0)}$, ainsi on pose pour tout $p \in \mathbb{N}$, $\sigma(p+1) = \min\{n > \sigma(p) \mid u_n \geqslant u_{\sigma(p)}\}$ (qui existe vu $\sigma(p) \notin A$ $(u_{\sigma(p)})$ est donc croissante et majorée et par suite convergente.

Convergence (cas complexe) Soit $(u_n)_{n\geqslant 0}\in \mathbb{C}^{\mathbb{N}}$ on dit que $\underline{(u_n)}$ converge vers $\ell\in \mathbb{C}$ si

$$orall arepsilon >$$
 0, $\exists n_{ ext{o}} \in \mathbb{N}$: $orall n \in \mathbb{N}$, $(n \geqslant n_{ ext{o}} \Rightarrow |u_n - \ell| \leqslant arepsilon)$

Proposition.

```
Soit (u_n)_{n\geqslant 0}\in \mathbb{C}^{\mathbb{N}} une suite complexe, alors (u_n) converge ssi (\mathfrak{I}(u_n))_{n\in \mathbb{N}} et (\mathfrak{R}(u_n))_{n\in \mathbb{N}} convergent.

On a alors \left\{ \begin{array}{l} \mathfrak{R}(\lim u_n) = \lim \mathfrak{R}(u_n) \\ \mathfrak{I}(\lim u_n) = \lim \mathfrak{I}(u_n) \end{array} \right.
```

Théorème de Bolzano-Weierstrass : cas complexe.

De toute suite complexe bornée on peut extraire une suite qui converge.

Démonstration. Clair avec le théorème dans le cas réel vu $\forall z \in \mathbb{C}, \ \Re z \leqslant |z|$ et $\Im z \leqslant |z|$

Proposition : Caractérisation séquentielle de la densité.

Un partie X de $\mathbb R$ est dense dans $\mathbb R$ si et seulement si tout réel peut s'écrire comme une suite d'éléments de X.

6.2.2 Suites particulières

Suite arithmétique On dit que $\underline{(u_n)_{n\geqslant 0}}\in \mathbb{K}^{\mathbb{N}}$ est une suite arithmétique si la suite $(u_{n+1}-u_n)_{n\in\mathbb{N}}$ est une suite constante appelée <u>raison de la suite arithmétique</u>.

Propriété.

Si
$$u$$
 est une suite arithmétique de raison r on a $orall (p,q) \in \mathbb{N}^2$, $u_p = u_q + r(p-q)$

Suite géométrique On dit que $\underbrace{(u_n)_{n\geqslant 0}}\in \mathbb{K}^{\mathbb{N}}$ est une suite géométrique si u est stationnaire à o où si u est telle que $\Big(\frac{u_{n+1}}{u_n}\Big)_{n\in\mathbb{N}}$ est une suite bien définie constante appelée raison de la suite géométrique.

Propriété.

Si
$$u$$
 est une suite géométrique de raison q alors $orall (m,n) \in \mathbb{N}^2, \ u_m = u_n imes q^{m-n}$
$$\sum_{k=n}^m u_k = \left\{ \begin{array}{ll} (m-n+1) imes u_n & si \ q=1 \\ \frac{u_n-u_{m+1}}{1-q} & sinon \end{array} \right.$$

Suite arithmético-géométrique On dit que $(u_n)_{n\geqslant 0}\in \mathbb{K}^{\mathbb{N}}$ est une suite arithmético-géométrique s'il existe $a\in \mathbb{K}\setminus\{1\}$ et $b\in \mathbb{K}$ tels que $u_0\in \mathbb{K}$ et $\forall n\in \mathbb{N},\ u_{n+1}=au_n+b$

Propriété.

Soit $(u_n)_{n\geqslant 0}\in \mathbb{K}^{\mathbb{N}}$ une suite arithmético-géométrique, alors avec les mêmes notations $\forall\in\mathbb{N}$, $u_n=a^n(u_0-\frac{b}{1-a})\frac{b}{1-a}$

6.2. SUITES RÉELLES 37

Suite récurrente linéaire d'ordre 2 On dit que $(u_n)_{n\geqslant 0}\in \mathbb{K}^{\mathbb{N}}$ est récurrente linéaire d'ordre 2 si $\exists (a,b)\in \mathbb{K}^2$ tel que $\forall n\in \mathbb{N},\ u_{n+2}=au_n+bu_n$

Propriété.

Soit $(u_n)_{n\geqslant 0}\in \mathbb{K}^{\mathbb{N}}$ une suite récurrente linéaire d'ordre 2. On considère $(E): z^2=az+b$ l'équation caractéristique associée alors $\to Si \ \Delta \neq 0, \ (z_1,z_2)\in \mathbb{C}^2$ les racines distinctes de (E) alors $\exists (\lambda,\mu)\in \mathbb{C}^2$ tel que $\forall n\in \mathbb{N}, \ u_n=\lambda z_1^n+\mu z_2^n$ $\to Si \ \Delta=0, \ z_0$ la racine double de (E) alors $\exists (\lambda,\mu)\in \mathbb{C}^2$ tel que $\forall n\in \mathbb{N}, \ u_n=(\lambda n+\mu)z_0^n$

 $\underline{\mathrm{Rq}}: \mathrm{Si}\ (u_n)_{n\geqslant 0}\in \mathbb{R}^{\mathbb{N}} \ \mathrm{et}\ \Delta<\mathrm{o}\ \mathrm{alors}\ \lambda\ \mathrm{et}\ \mu\ \mathrm{sont}\ \mathrm{conjugu\'e}\ \mathrm{et}\ \mathrm{on}\ \mathrm{a}\ \mathrm{en}\ \mathrm{\acute{e}crivant}\ z_1=\rho+\imath.\omega$ $\exists (\lambda_r,\mu_r)\in \mathbb{R}^2\ \mathrm{tel}\ \mathrm{que}\ \forall n\in \mathbb{N},\ u_n=\rho^n(\lambda_r\cos(n\omega)+\mu_r\sin(n\omega))$

Chapitre 7

Fonctions d'une variable réelle

Les fonctions considérées sont définies sur un intervalle I de $\mathbb R$ non réduit à un point à valeur dans $\mathbb R$ sauf indications contraires.

Contenu

		Voisinage	38	
7.1	Limites et Continuité			
	7.1.1	Limite d'une fonction en un point	38	
		Limite d'une fonction	39	
	7.1.2	Continuité en un point	40	
		Continuité	40	
		Prolongement par continuité	40	
	7.1.3	Continuité sur un intervalle	41	
		Définition	41	
	7.1.4	Fonctions à valeurs complexes	41	
7.2	Dériv	abilité	42	
		Dérivabilité en un point	42	
		Dérivabilité sur un intervalle	42	
	7.2.1	Extremum local et point critique	43	
		Extremum local	43	
		Point critique	43	
	7.2.2	Théorèmes de Michel Rolle et des accroissements finis	43	
		Fonction Lipschitzienne	44	
	7.2.3	Fonctions de classe \mathscr{C}^k , $(k \in \mathbb{N} \cup \{+\infty\})$	44	
		Définitions	45	
7.3	Conv	rexité	46	
	7.3.1	Généralités	46	
		Fonction convexe	46	
		Fonction concave	46	
	7.3.2	Fonctions convexes dérivables et deux fois dérivables	46	

Voisinage Une propriété portant sur f définie sur I est vraie au voisinage de a si elle est vraie sur $]a + \delta$, $a - \delta[$ pour un certain $\delta > 0$ si $a \in \mathbb{R}$; sur]A, $+\infty[$ ou $]-\infty$, A[sinon.

7.1 Limites et Continuité

7.1.1 Limite d'une fonction en un point

Limite d'une fonction Soit f une fonction, f admet une limite ℓ en $a \in D_f$ notée $\lim_{x \to a} f(x) = \ell$ si :

$$\forall \varepsilon, \exists \delta < 0 : \forall x \in I, \ (|x-a| \le \delta \Rightarrow |f(x) - \ell| \le \varepsilon)$$

Propriété: Unicité de la limite.

| Si la limite de f en a existe alors elle est unique

Proposition: Continuité en un point.

Si f est définie en a et admet une limite en a alors $\lim_{x \to a} = f(a)$ On dit alors que \underline{f} est continue en a

Propriété.

Si f possède une limite finie en un point a alors f est bornée sur un voisinage de a

Propriété : Signe au voisinage de a.

Si f admet une limite finie non nulle en a alors f est du signe (strict) de cette limite sur un voisinage de a

Théorème de caractérisation séquentielle de la limite.

f admet ℓ comme limite en $a \in I$ si, et seulement si pour toute suite $(u_n)_{n \in \mathbb{N}} \in I^{\mathbb{N}}$ qui tend vers a, $f(u_n)$ tend vers ℓ .

Démonstration. Soit ℓ la limite de f en $a \in I$

 \Rightarrow Soit $\varepsilon >$ 0; soit $\delta >$ 0 vérifiant la propriété de limite. On considère $n_0 \in \mathbb{N}$ tel que $\forall n \geqslant n_0$, $|u_n - a| < \delta$ et on a ainsi

$$\forall n \in \mathbb{N}, \ n \geqslant n_0 \ \Rightarrow \ |f(u_n) - \ell| < \varepsilon$$

 $\begin{aligned} & & & & & & \\ & & & & & \\ & \forall n \in \mathbb{N}, \ \exists x_, \in I \ \mbox{tel que} \ |x_n-a| \leqslant \frac{1}{n+1} \ \mbox{et} \ |f(x_n)-\ell| > \varepsilon_0 \ \mbox{On a ainsi} \ (x_n)_{n\geqslant 0} \in I^{\mathbb{N}} \ \mbox{convergente vers} \ a \ \mbox{avec} \ (f(x_n)) \ \mbox{qui ne converge pas vers} \ \ell. \ \mbox{Les preuves pour pour les limites infinies et/ou en l'infini sont analogue}. \end{aligned}$

Proposition: opérations sur les limites.

L'opérateur "limite" est stable par somme, produit, quotient* et composition.

^{*.} Dans ce cas seulement si la limite au dénominateur est non nulle et que le quotient n'est pas une forme indéterminée de $\overline{\mathbb{R}}$

Proposition.

Soit a un point de IOn suppose que $f\leqslant g$ sur un voisinage de a, $f(x)\underset{x\to a}{\longrightarrow}\ell$ et $g(x)\underset{x\to a}{\longrightarrow}\ell'$ Alors $\ell\leqslant\ell'$

Théorème d'encadrement.

Soit f, g, h trois fonctions telles que sur un voisinage de $a \in I$ on a $h \leqslant f \leqslant g$. On suppose que h et g converge vers une même limite ℓ en a, alors f converge vers ℓ en a

Démonstration. Clair avec la définition et en considérant le plus petit δ

Théorème de la limite monotone.

Soit $(a,b) \in \mathbb{R}^2$ avec a < b et f une fonction croissante sur]a,b[. Alors f admet une limite à gauche et une limite à droite en tout point $x_0 \in]a,b[$ avec

$$\lim_{x \to x_0^-} f(x) \leqslant f(x_0) \leqslant \lim_{x \to x_0^+} f(x)$$

Si de plus f est majorée (resp. minorée) sur a, b alors elle admet une limite à gauche en b (resp. à droite en a)

Démonstration. Soit $x_0 \in]a, b[$, on considère $f_d(]a, x_0[)$ et ℓ sa borne supérieure (existe). On peut ensuite montrer que $f(x) \underset{x \to x_0^-}{\longrightarrow} \ell$ puis on fait de même avec $f_d(]x_0, b[)$

7.1.2 Continuité en un point

Continuité Soit f définie sur I à valeur réelles, on dit que \underline{f} est continue au point $\underline{a} \in \underline{I}$ si $f(x) \underset{x \to a}{\longrightarrow} f(a)$

Prolongement par continuité Si f admet une limite finie l en un point a de \mathbb{R} et si f n'est pas définie en a, on appelle <u>prolongement par continuité de f en a la fonction égale à f sur son domaine de définition et à l en a.</u>

Proposition : caractérisation séquentielle de la continuité.

f est continue en $a \in I$ si et seulement si pour toute suite $(u_n)_{n\geqslant 0} \in I^{\mathbb{N}}$ qui converge vers a, $(f(u_n))_{n\geqslant 0}$ converge vers f(a)

Propriété.

Si f et g sont deux fonction continues en un point a de I, alors f+g et fg sont continues en a. Si de plus $g(a) \neq 0$ alors $\frac{f}{g}$ est continue en a. Si h est continue en f(a) alors $h \circ f$ est continue en a

7.1.3 Continuité sur un intervalle

Définition On dit que \underline{f} est continue sur \underline{I} si elle est continue en tout point de \underline{I} . On note $\mathscr{C}^{\circ}(I,\mathbb{R})$ l'ensemble des fonctions continue sur \underline{I} à valeur dans \mathbb{R}

Théorème des valeurs intermédiaires.

Si $f \in \mathscr{C}^{0}(I, \mathbb{R})$ et $(a, b) \in I^{2}$ Alors f prend sur I toute les valeurs comprises entre f(a) et f(b).

Démonstration. On considère $\alpha = \sup\{x \in [a,b] \mid f(x) < c\}$ et on a alors par continuité de $f \neg (f(\alpha) < c \lor f(\alpha) > c) \Leftrightarrow f(\alpha) = c$

Propriété.

Soit f une fonction continue sur un segment alors f est bornée sur ce segment et f atteint ses bornes.

Corollaire.

L'image d'un segment par une fonction continue est un segment.

Proposition.

Soit f est continue sur I à valeurs réelles, on suppose f est injective sur I Alors f est strictement monotone sur I

Démonstration. Soit $(a,b) \in I^2$ avec a < b, on suppose sans perte de généralité que f(a) < f(b) alors f est strictement croissante sur [a,b], en effet :

Par l'absurde, soit $(x,y) \in]a,b[^2$ tel que a < x < y < b et f(x) > f(y) On considère alors $g \begin{pmatrix} [\mathtt{0},\mathtt{1}] & \longrightarrow & \mathbb{R} \\ t & \mapsto & f \big((ta + (\mathtt{1} - t)x) - f \big(tb + (\mathtt{1} - t)y \big) \big)$ continue sur $[\mathtt{0},\mathtt{1}]$

Vu g(0) = f(x) - f(y) > 0 et g(1) = f(a) - f(b) < 0 par le TVI g s'annule au moins une fois sur]0, 1[donc f prend deux fois la même valeur en deux points distincts de [a, b] ce qui est impossible d'où cqfd

Théorème de la bijection réciproque.

Toute fonction réelle définie et continue strictement monotone sur un intervalle admet une fonction réciproque de même monotonie sur l'intervalle image.

Démonstration. Soit f strictement croissante et continue sur I alors f réalise un bijection de I sur $J=f_d(I)$. On considère alors f^{-1}

D'après le théorème de la limite monotone f^{-1} est continue à droite et à gauche en tout point de l'intervalle ouvert et par injectivité ces limites sont égales donc f^{-1} est continue sur l'intervalle ouvert puis fermé donc strictement monotone avec les monotonie clairement identiques. \Box

7.1.4 Fonctions à valeurs complexes

 $f:I o\mathbb{C}$ et x_0 un point ou une extrémité de I. f admet une limite $\ell\in\mathbb{C}$ en x_0 si

$$orall arepsilon >$$
 0, $\exists \delta >$ 0 : $orall x \in I$, $\left(\left| x - x_0 \right| \leqslant \delta \ \Rightarrow \ \left| f(x) - \ell \right| \leqslant arepsilon
ight)$

Si $x_0 \in I$ alors $f(x_0) = \ell$ et f est continue en x_0 . On note $\ell = \lim_{x \to x} f(x)$

Théorème : caractérisation des limites par les parties réelles et imaginaires.

 $f:I \to \mathbb{C}$ admet une limite $\ell \in \mathbb{C}$ en x_0 si et seulement si $\mathfrak{R}(f)$ et $\mathfrak{I}(f)$ admettent des limites $(\ell_r,\ell_i) \in R^2$. On a alors $\ell = \ell_r + \imath \ell_i$

Démonstration. Clair vu $\forall z \in \mathbb{C}, |z| \leq |\Re(z)| + |\Im(z)|$ et $\max(|\Re(z)|, |\Im(z)|) \leq |z|$

7.2 Dérivabilité

Dérivabilité en un point f est dérivable en un point a de I si

$$au_a(f) egin{pmatrix} I \setminus \{a\} & \longrightarrow & \mathbb{R} \ x & \mapsto & rac{f(x) - f(a)}{x - a} \end{pmatrix}$$

le taux d'accroissement de f en a admet une une limite finie $\ell \in \mathbb{R}$ quand x tend vers a. On note f'(a) cette limite.

Proposition.

 \mid Si f est dérivable en α alors f est continue en α .

Propriété.

f est dérivable en a si et seulement si il existe une fonction ε définie sur un voisinage de o telle que $f(a+h)=f(a)+h\times \ell+h\varepsilon(h)$ où $\ell\in\mathbb{R}$ et $\lim \varepsilon(h)=0$. On a alors $\ell=f'(a)$

Dérivabilité sur un intervalle On dit que f est dérivable sur I si elle est dérivable en tout point de I. On note alors f' sa fonction dérivée qui à tout point a de I associe f'(a)

Propriétés.

Soit f, g deux fonction dérivables en α alors

- ullet f+g est dérivable en a et (f+g)'(a)=f'(a)+g'(a)
- ullet fg est dérivable en a et (fg)'(a)=f'(a)g(a)+f(a)g'(a)
- Si $g'(a) \neq 0$ alors $\frac{f}{g}$ est dérivable en a et $\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) f(a)g'(a)}{\left(g(a)\right)^2}$

Soit h dérivable en f(a)

Alors $h \circ f$ est dérivable en a et $(h \circ f)'(a) = f'(a) \times h'(f(a))$

7.2. DÉRIVABILITÉ 43

Proriété.

Si f est bijective de I sur J dérivable en $a \in I$ Alors f^{-1} est dérivable en f(a) = b si et seulement si $f(a) \neq 0$. On a alors $\left(f^{-1}\right)'(b) = \frac{1}{f'(a)}$

7.2.1 Extremum local et point critique

Extremum local

Maximum On dit que \underline{f} présente un maximum local en $\underline{a} \in \underline{I}$ s'il existe $\delta >$ 0 tel que

$$\forall x \in [a - \delta, a + \delta] \cap I, \ f(x) \leqslant f(a)$$

Minimum La définition est analogue

Point critique Un point critique est un zéro de la dérivée.

Propriété.

Soit a est un point intérieur à I et f dérivable en a. On suppose que f présente un extremum local en a, alors a est un point critique.

 $\underline{\mathsf{Rq}}$: Si a un point intérieur à I est un point critique et si f ne présente pas d'extremum local en a, on dit que a est un point d'inflexion de f.

7.2.2 Théorèmes de Michel Rolle et des accroissements finis

Théorème de Michel Rolle.

Soit $a, b \in \mathbb{R}$ avec a < b et f continue sur [a, b] et dérivable sur]a, b[à valeurs réelles. On suppose f(a) = f(b) Alors il existe $c \in]a, b[$ tel que f'(c) = 0

Démonstration. Si f est constante sur [a, b] c'est vrai.

Sinon l'image continue de 5a, b] par f est un segment [M, m] avec M ou m différent de f(a) = f(b) atteint en $c \in]a$, b[qui est alors un point critique de f d'où cqfd

Théorème des accroissements finis.

Soit $a, b \in \mathbb{R}$ avec a < b et f continue sur [a, b] à valeurs réelles et dérivable sur]a, b[Alors $\exists c \in]a, b[$ tel que f(b) - f(a) = f'(c)(b - a)

 $D\'{e}monstration.$ On considère $h_{a,b}$ la corde à \mathcal{C}_f joignant les points d'abscisse b et a. Soit ensuite

$$g:x\mapsto f(x)-h_{a,b}(x)=f(x)-\Big(f(a)+(x-a)rac{f(b)-f(a)}{b-a}\Big)$$

On a alors g continue sur [a,b] et dérivable sur]a,b[avec g(a)=o=g(b) soit donc d'après le théorème de Michel Rolle né à Ambert en 1652 $c\in]a,b[$ tel que g'(c)=o or $g'(c)=f'(c)-\frac{f(b)-f(a)}{b-a}$ d'où cqfd

Corollaire : Inégalité des accroissements finis.

Soit f continue sur [a,b] et dérivable sur]a,b[à valeurs dans $\mathbb R$ ou $\mathbb C$, On suppose $\exists k \in R$ tel que $\forall x \in]a,b[,|f'(x)| \leqslant k$ Alors $|f(b)-f(a)| \leqslant k|b-a|$

Fonction Lipschitzienne On dit que f est k-Lipschitzienne sur I si

$$\forall x \in]x, y[\in I^2, |f(x) - f(y)| \leqslant k|x - y|$$

On dit que f est lipschitzienne sur I s'il existe $k \in \mathbb{R}$ tel que f est k-lipschitzienne

Propriété.

 \mid Si f est lipschitzienne sur I alors f est continue sur I

Propriété.

Si f est dérivable sur I telle que $\forall x \in I$, $|f'(x)| \leq k$ Alors f est k-lipschitzienne sur I

Propriété.

Soit f dérivable sur I à valeurs réelles

- (1) f est constante sur I si et seulement si f' est identiquement nulle sur I.*
- (2) f est croissante sur I si et seulement si f' est positive sur I.
- (3) f est strictement croissante sur I si et seulement si $\int f'$ est positive sur I $\int Il$ n'existe pas $J \subset I$ contenant deux points distincts avec f' nulle sur J

Théorème de la limite de la dérivée.

Soit $a\in I$. Si f est continue sur I et dérivable sur $I\setminus\{a\}$ On suppose $f'(x)\underset{x\to a}{\longrightarrow}\ell\in\mathbb{R}$ alors f est dérivable en a et $f'(a)=\ell$

Démonstration. Pour tout $x \in I \setminus \{a\}$, il existe par le théorème des accroissements finis c_x strictement compris entre x et a tel que $f(x) - f(a) = f'(c_x) \times (x - a)$. Si x tend vers a alors par encadrement c_x tend vers a et par composition de limites $f(c_x)$ tend vers ℓ .

Ainsi
$$au_a(f)(x) \underset{x
ightarrow a}{\longrightarrow} \ell = f'(a)$$

Corollaire.

Si f est continue sur I et dérivable sur $I\setminus\{a\}$ avec $\lim_{x\to a}f'(x)=+\infty$ Alors f n'est pas dérivable en a et \mathcal{C}_f admet une tangente verticale en a

7.2.3 Fonctions de classe \mathscr{C}^k , $(k \in \mathbb{N} \cup \{+\infty\})$

st. Ceci reste vrai si f est définie sur I à valeurs complexes

7.2. DÉRIVABILITÉ 45

Définitions Une fonction f est dite de <u>classe</u> \mathscr{C}° <u>sur</u> I si elle est continue sur I. Elle est dite de <u>classe</u> \mathscr{C}^{k} <u>sur</u> I si elle est k fois dérivable sur I et si sa dérivée k-ième est continue sur I. Elle est dite de <u>classe</u> \mathscr{C}^{∞} <u>sur</u> I si elle est de classe \mathscr{C}^{k} sur I pour tout $k \in \mathbb{N}$

Propriété.

- (1) Les fonction polynômiales sont de classe \mathscr{C}^{∞} sur \mathbb{R} .
- (2) Les fonction rationnelles (quotient de fonctions polynômiales) sont de classe \mathscr{C}^{∞} sur leur ensemble de définition.
- (3) Les fonctions sin et cos sont de classe \mathscr{C}^{∞} sur \mathbb{R}
- (4) Les fonction exponentielles sont de classe \mathscr{C}^{∞} sur $\mathbb R$
- (5) Les fonction logarithme et puissances sont de classe \mathscr{C}^{∞} sur \mathbb{R}^+

Proposition.

Soit f une fonction et $(p,q) \in \mathbb{N}^2$ Alors f est de classe \mathscr{C}^{p+q} sur I si et seulement si $f^{(p)}$ est de classe \mathscr{C}^q sur IOn a alors $\left(f^{(p)}\right)^{(q)}=f^{(p+q)}$

Proposition.

Soit
$$k \in \mathbb{N}$$
. Soit $f, g \in \mathscr{C}^k(I, \mathbb{R})$
Alors $f + g \in \mathscr{C}^k(I, \mathbb{R})$ et $(f + g)^{(k)} = f^{(k)} + g^{(k)}$

Théorème : Formule de Leibniz.

Soit $n\in\mathbb{N}$; soit f et g deux fonctions de classe \mathscr{C}^n sur I Alors fg est de classe \mathscr{C}^n sur I et

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(n)} g^{(n-k)}$$

Démonstration. Clair par récurrence sur n.

Proposition : Formule de Faa Di Bruno.

Soit $n \in \mathbb{N}^*$, si f est de classe \mathscr{C}^n sur I à valeur dans un intervalle J non trivial, g est de classe \mathscr{C}^n sur J Alors $g \circ f$ est de classe \mathscr{C}^n

Corollaire.

Soit
$$n \in \mathbb{N}^*$$
, si f et g sont de classe \mathscr{C}^n sur I avec $0 \notin g_d(I)$
Alors $\frac{1}{g}$ et $\frac{f}{g}$ sont de classe \mathscr{C}^n sur I

Proposition.

Soit $n \in \mathbb{N}^*$, si f est bijective de I sur J de classe \mathscr{C}^n sur I et si f ne s'annule pas sur I alors f^{-1} est de classe \mathscr{C}^n sur J.

7.3 Convexité

7.3.1 Généralités

Fonction convexe Soit f une fonction à valeurs réelles. On dit que \underline{f} est convexe sur \underline{I} si

$$\forall (x,y) \in I^2, \ \forall \lambda \in [0,1], \ f(\lambda x + (1-\lambda)y) \leqslant \lambda f(x) + (1-\lambda - f(y))$$

Fonction concave On dit que f est concave sur I si -f est convexe sur I

Théorème : Inégalité de Jensen.

$$egin{aligned} Si \ f \ est \ convexe \ sur \ I \ alors \ orall n \in \mathbb{N}, \ n \geqslant 2 \ orall (x_1, \ldots, x_n) \in I^n, \ orall (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n_+ \ avec \ \sum_{k=1}^n \lambda_k = 1 \ f\Big(\sum_{i=1}^n \lambda_i x_i\Big) \leqslant \sum_{i=1}^n \lambda_i f(x_i) \end{aligned}$$

Démonstration. On a le résultat par récurrence en barycentrant en divisant par $\mathbf{1} - \lambda_{n+1}$ (cas $\lambda_n + \mathbf{1} = \mathbf{1}$ trivial) puis en appliquant la propriété au rang 2 (inégalité de convexité)

Propriété: Lemme des pentes.

Soit $f: I \to \mathbb{R}$ on a équivalence entre les propriétés suivantes :

- (1) f convexe sur I
- (2) $\forall (a, b, c) \in I^3 \text{ avec } a < b < c, \frac{f(b) f(a)}{b a} \leqslant \frac{f(c) f(a)}{c a} \leqslant \frac{f(c) f(b)}{c b}$
- (3) $\forall x_0 \in I$, $\tau_{x_0}(f)$ est croissant

7.3.2 Fonctions convexes dérivables et deux fois dérivables

Proposition : Caractérisation des fonctions convexes dérivables.

Soit f un fonction dérivable sur I alors f est convexe sur I si et seulement si f' est croissante sur I.

Corollaire.

 \mid Si f est convexe sur I alors C_f est située au-dessus de ses tangentes.

Proposition.

Soit f une fonction deux fois dérivable sur I alors f est convexe sur I si et seulement si f'' est positive sur I.

* * *

Chapitre 8

Arithmétique dans Z

Contenu				
8.1	Relation de divisibilité dans $\mathbb Z$			
	8.1.1	Principe de bon ordre	47	
	8.1.2	Multiples et partie $a\mathbb{Z}$	48	
		Notation	48	
		Multiple	48	
8.2	Algo	rithme de division euclidienne	48	
8.3	pgcd	et ppcm	48	
	8.3.1	Egalité de Bézout	48	
		pgcd	48	
	8.3.2	Algorithme d'Euclide	49	
		Algorithme	49	
		ppcm	49	
8.4	Entiers premiers entre eux			
		Définition	49	
		Entiers premiers entre eux dans leur ensemble	50	
8.5	Nombres premiers			
		Définition	50	
		Valuation p -adique	50	
8.6	Congruences			
		Définition	51	
		Entier inversible	51	

8.1 Relation de divisibilité dans \mathbb{Z}

8.1.1 Principe de bon ordre

Théorème : Pincipe de bon ordre dans \mathbb{N} .

 \mid Toute partie **non vide** de $\mathbb N$ aadmet un plus petit élément.

Corollaire: Propriété archimédienne.

| Soit $a, b \in \mathbb{N}^*$ il existe $n \in \mathbb{N}$ tel que $a \times n \ge b$.

8.1.2 Multiples et partie $a\mathbb{Z}$

Notation Si $a \in \mathbb{Z}$ alors on note $a\mathbb{Z} = \{ka \mid k \in \mathbb{Z}\}$ Si $(a, b) \in \mathbb{Z}^2$ alors $a\mathbb{Z} + b\mathbb{Z} = \{ka + lb \mid (k, l) \in \mathbb{Z}^2\}$.

Propriété.

Toute partie de $\mathbb Z$ stable par somme est une partie de la forme $m\mathbb Z$ avec $m\in\mathbb N$.

Multiple Soit $(a, b) \in \mathbb{Z}^2$ on dite que b est un multiple de a (ou a divise b) et on note a|b s'il existe $k \in \mathbb{Z}$: b = ka.

Propriété.

 $\mid Si(a,b) \in \mathbb{Z}^2 \text{ alors on a } a \mid b \Leftrightarrow b\mathbb{Z} \subset a\mathbb{Z}$

8.2 Algorithme de division euclidienne

Théorème.

Soit $a \in \mathbb{Z}$, $b \in \mathbb{N}^*$ alors it existe $(q, r) \in \mathbb{Z}^2$ unique tel que a = bq + r et $0 \le r < b$ On appelle q et r le quotient et le reste de la division euclidienne de a par b.

Démonstration. Unicité : claire

<u>Existence</u>: On considère $S = \{a - bk \mid k \in \mathbb{Z} \land a - bk \ge 0\}$ on a alors $S \ne \emptyset$ puis on pose $r = \min(S)$ avec r < b sinon $r - b = a - b(k_0 + 1) \ge 0$ donc $0 \le r < b$

8.3 pgcd et ppcm

8.3.1 Egalité de Bézout

Lemme.

Si a|b et b \neq 0 Alors |a| \leq |b|

pgcd Pour tout $a,b \in \mathbb{Z}^*$, le plus grand commun diviseur de a et b est l'entier naturel a vérifiant les conditions suivantes : $\begin{cases} (1) & d|a \text{ et } d|b \\ (2) & \forall c \in \mathbb{Z}, \ c|a \text{ et } c|b \Rightarrow c \leq d \end{cases}$

Propriété.

 \mid Soit $a,b\in\mathbb{Z}^*$ il existe $(u,v)\in\mathbb{Z}^2$ tel que $au+bv=a\wedge b$

Propriétés.

| Soit
$$(a,b) \in (\mathbb{Z}^*)^2$$
 et $m \in \mathbb{Z}$ Alors
-> $a \wedge (b+ma) = a \wedge b = a \wedge (-b)$
-> $ma \wedge mb = |m| (a \wedge b)$
-> $si \ d = a \wedge b, \ \frac{a}{d} \wedge \frac{b}{d} = 1$
-> $si \ g \in \mathbb{Z}^*, \ g|a \ et \ g|b \ \Rightarrow \ \frac{a}{g} \wedge \frac{b}{g} = \frac{1}{|g|} (a \wedge b)$

8.3.2 Algorithme d'Euclide

Lemme.

Soit (q,r) le quotient et le reste de la division euclidienne de $a \in \mathbb{Z}$ par $b \in \mathbb{N}^*$ Alors $a \wedge b = b \wedge r$

Démonstration. $a \wedge b = (a - bq) \wedge b = r \wedge b$

Algorithme Soit $a \in \mathbb{Z}$, $b \in \mathbb{N}^*$ On pose $r_0 = a$, $r_1 = b$ et r_2 le reste de la division euclidienne de r_0 par r_1 .

-> Si $r_n=$ o alors $a \wedge b=r_{n-1}$ sinon on considère r_{n+1} le reste de la division euclidienne de r_{n-1} par r_n avec $r_{n-1} \wedge r_n=r_{n-2} \wedge r_{n-1}=\cdots=a \wedge b$

Algorithme d'Euclide étendu

Si on souhaite obtenir les coefficients de Bézout en même temps que le pgcd, on détermine à chaque étape $(u_k, v_k) \in \mathbb{Z}^2$ tels que $r_k = au_k + bv_k$ avec

$$\left\{egin{array}{l} u_{n+1} = u_{n-1} - q_n u_n \ v_{n+1} = v_{n-1} - q_n v_n \end{array}
ight.$$

ppcm Soit $(a,b) \in (\mathbb{Z}^*)^2$ le plus petit commun multiple de a et b est l'entier naturel m vérifiant les conditions suivantes : $\begin{cases} (a) & a \mid m \text{ et } b \mid m \\ (c) & \forall c \in \mathbb{Z}, \ a \mid c \text{ et } b \mid c \Rightarrow \ m \leq c \end{cases}$

Propriété.

| Soit
$$a, b \in \mathbb{Z}^*$$
 Alors $a\mathbb{Z} \cap b\mathbb{Z} = (a \vee b)\mathbb{Z}$

Propriété.

| Soit
$$(a,b) \in (\mathbb{Z}^*)^2$$
 Alors $(a \land b)(a \lor b) = |ab|$

8.4 Entiers premiers entre eux

Définition Deux entiers $a, b \in \mathbb{Z}^*$ sont dits premiers entre eux si $a \wedge b = 1$

Proposition.

Soient $a, b \in \mathbb{Z}^*$ deux entiers alors a et b sont premiers entre eux si et seulement si il existe $(u, v) \in \mathbb{Z}^2$ tel que au + bv = 1

Lemme de Gauss.

Soient $a, b, c \in \mathbb{Z}$ on a Si c divise ab et c est premier avec a alors c divise b.

Propriété.

Soient $a_1, \ldots, a_n \in \mathbb{Z}$ on a Si $\forall i \in [1, n]$, a_i est premier avec c alors $\prod_{i=1}^n a_i$ est premier avec c

Lemme.

| Soient $a,b,c\in\mathbb{Z}^*$ Alors $(a\wedge b)\wedge c=a\wedge (b\wedge c)=a\wedge b\wedge c$

Entiers premiers entre eux dans leur ensemble Soit $(a_1,\ldots,a_n)\in (\mathbb{Z}^*)^n$ On dit que (a_1,\ldots,a_n) sont premiers entre eux dans leur ensemble si $a_1\wedge\cdots\wedge a_n=1$, Ceci équivaut à l'existence de $(u_1,\ldots,u_n)\in\mathbb{Z}^n$ tel que $\sum_{i=1}^n u_ia_i=1$

8.5 Nombres premiers

Définition On dit qu'un entier naturel p est (un nombre) premier si $p \ge 2$ et si les seuls diviseurs dans $\mathbb N$ de p sont 1 et lui-même

Un nombre qui n'est pas premier est dit composé.

Lemme.

| Tout entier $n \geq 2$ admet un diviseur premier

Corollaire.

L'ensemble des nombres premiers est inifini.

Lemme.

Si p est un nombre premier et $a \in \mathbb{N}$ Alors $a \land p = 1 \Leftrightarrow p \not\mid a$

Lemme d'Euclide.

Soit p un nombre premier et $a, b \in \mathbb{Z}$ Si p|ab alors p|a ou p|b

Théorème fondamental.

Tout nombre entier supérieur à 2 s'écrit comme produit de facteurs premiers. Cette décomposition est unique à l'ordre des facteurs près.

Démonstration. Existence : Par récurrence forte avec l'existence d'un diviseur premier

Unicité : Si
$$p = \prod_{i=1}^m p_i^{\alpha_i} = \prod_{j=1}^l q_j^{\beta_j}$$
 avec p_i, q_j premiers distincts

On pose $i_0 \in \llbracket 1, m \rrbracket$ et on a alors $p_{i_0} | \prod_{j=1}^l q_j^{\beta_j}$ donc il existe j_0 tel que $p_{i_0} | q_{j_0}^{\beta_{j_0}}$ soit $p_{i_0} = q_{j_0}$ Ainsi $\{p_1, \ldots, p_m\} = \{q_1, \ldots, q_l\}$ et m = l On suppose $p_k = q_k$ et $\alpha_k < \beta_k$ avec $k \in \llbracket 1, m \rrbracket$ alors $q_k^{\beta_k - \alpha_k} | \prod_{i=i \in \llbracket 1, m \rrbracket \setminus \{k\}} p_i^{\alpha_k}$ soit $q_k | p_i$; $q_k = p_i$ avec $k \neq i$ impossible

Valuation p-adique Soit p un nombre premier et $n \in \mathbb{N}^*$, on appelle valuation p-adique de n l'exposant de p dans la décomposition de n en produits de facteurs premiers.

8.6. CONGRUENCES 51

Lemme.

$$| \ orall (m,n) \in (\mathbb{N}^*)^2$$
 on a $m|n \Leftrightarrow orall p \in \mathbb{N}$ premier, $v_p(m) \leq v_p(n)$

Proposition.

$$egin{aligned} orall (a,b) \in (\mathbb{N}^*)^2, \ a \wedge b = \prod\limits_{p ext{ premier}} p^{\min\left(v_p(a),v_p(b)
ight)} ext{ et } a ee b = \prod\limits_{p ext{ premier}} p^{\min\left(v_p(a),v_p(b)
ight)} \end{aligned}$$

Propriété.

$$ig| \; orall (a_1,\ldots,a_n) \in \left(\mathbb{N}^*
ight)^n$$
, $orall p$ premier, $v_p\Big(\prod_{i=1}^n a_i\Big) = \sum_{i=1}^n v_p(a_i)$

8.6 Congruences

Définition Soit $n \in \mathbb{Z}$ la relation de congruence modulo n est définie par $a \equiv b[n] \Leftrightarrow n|a-b$

a est congru à b modulo n.

Propriétés.

Lemme.

| Si $p \in \mathbb{N}$ est un nombre premier et $k \in [1, p-1]$ Alors $p \mid {p \choose k}$

Petit théorème de Fermat.

Soit
$$p \in \mathbb{N}$$
 un nombre premier

Alors

1) $\forall a \in \mathbb{Z}, \ a^p \equiv a[p]$
2) Si $a \land p = 1$ alors $a^{p-1} \equiv 1[p]$

Démonstration. 1) si p=2: $\forall a \in \mathbb{Z}$, a^2 et a on la même parité d'où $a^2 \equiv a[2]$ $p \geq 3$ (impair): Par récurrence sur $a \in \mathbb{N}$ vu $(a+1)^p \equiv a^p + 1[p]$ (Lemme de Gauss)

Entier inversible On dit que $\underline{a} \in \mathbb{Z}^*$ est inversible modulo \underline{n} $(n \in \mathbb{Z}^*)$ s'il existe $\underline{a}' \in \mathbb{Z}$ tel que $\underline{a} \times \underline{a}' \equiv \underline{1}[\underline{n}]$

Propriété.

Soit $a \in \mathbb{Z}^*$ alors a est inverible <u>si et seulement si</u> $a \wedge n = 1$

* * *

Chapitre 9

Structures algébriques usuelles

Contenu					
9.1	Lois de composition interne				
		Définition			
		Partie stable			
9.2	Struc	cture de groupe			
		Groupe			
		Groupe abélien			
		Groupe produit			
		Sous-groupe			
		Morphisme de groupe			
		Image et noyau			
		Isomorphisme de groupe			
9.3	Structure d'anneau et de corps				
	9.3.1	Structure d'anneau			
		Loi distributive			
		Anneau			
		Anneau intègre			
		Sous-anneau			
		Morphisme d'anneau			
	9.3.2	Structure de corps			
		Corps			
		Sous-corps			

9.1 Lois de composition interne

Définition Une loi de composition interne sur un ensemble E est une application

$$* \ \begin{pmatrix} \mathsf{E} \times \mathsf{E} \longrightarrow \mathsf{E} \\ (x,y) \ \mapsto \ x * y \end{pmatrix}$$

```
\begin{array}{ll} \rightarrow & * \text{ est } \underline{\text{associative}} \text{ si } \forall (x,y,z) \in E^3, \ (x*y)*z = x*(y*z) \\ \rightarrow & * \text{ est } \underline{\text{commutative}} \text{ si } \forall (x,y) \in E^2, \ x*y = y*x \end{array}
```

Sous réserve d'existence, l'élément neutre et l'inverse sont uniques et on note $x'=x^{-1}$

 $[\]rightarrow$ * admet un élément neutre e si $\forall x \in E$, e * x = x * e = x

 $[\]rightarrow x \in E$ est dit <u>inversible</u> s'il existe e un élément neutre et $x' \in E : \overline{x * x'} = \overline{x' * x} = e$

 $\textbf{Exemple} \quad \times \text{ sur } \mathbb{Z} \text{ est une loi de composition interne associative et commutative de neutre } \textbf{1}.$

Les seuls éléments inversible pour X sur $\mathbb Z$ sont 1 et $-\mathtt{1}.$

Propriété.

Soit E muni d'une loi de composition interne associative *. Si x et y sont deux éléments inversibles de E Alors x * y est inversible et $(x * y)^{-1} = y^{-1} * x^{-1}$

Partie stable Soit E muni d'une loi de composition interne *. On dit que $F \in \mathcal{P}(E)$ est stable pour * si

$$\forall (x, y) \in E \times F, \ x * y \in F \ et \ y * x \in F$$

9.2 Structure de groupe

Groupe Soit un ensemble G muni d'un loi de composition interne *, on dit que (G,*) est un groupe si * est associative; $e \in G$ est un élément neutre pour * et tout élément $x \in G$ est inversible.

Groupe abélien On dit que (G, *) est un groupe abélien (ou commutatif) si (G, *) est un groupe et * est commutative sur G.

Groupe produit Soit $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes on appelle groupe produit de G_1 et G_2 l'ensemble $G_1 \times G_2$ muni de la loi * définie par

$$\forall ((x_1, y_1), (x_2, y_2)) \in G_1^2 \times G_2^2, \ (x_1, x_2) * (y_1, y_2) = (x_1 *_1 y_1, x_2 *_2 y_2)$$

Propriété.

 $|G_1 \times G_2, *)$ est un groupe.

Sous-groupe Soit (G,*) un groupe. On dit que $F \subset G$ est un sous-groupe de G si $F \neq \emptyset$; F est stable par * et $\forall x \in F$, $x^{-1} \in F$.

Propriété.

| Si F est un sous-groupe de (G,*) alors (F,*) est un groupe.

Propriété.

Soit $F \subset G$ alors F est un sous-groupe de $G \Leftrightarrow F \neq \emptyset$ et $\forall (x,y) \in F^2$, $x*y^{-1} \in F$

Morphisme de groupe Soit $(G_1, *-1)$ et $(G_2, *_2)$ deux groupe et $f: G_1 \to G_2$. On dit que f est un morphisme de groupe si

$$\forall (x, y) \in G_1^2, \ f(x *_1 y) = f(x) *_2 f(y)$$

Propriété.

Soit $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes et $f: G_1 \to G_2$ un morphisme de groupe Alors $\left\{ \begin{array}{l} \forall F_1 \subset G_1 \text{ sous-groupe de } G_1, \ f(F_1) \text{ est un sous-groupe de } G_2 \\ \forall F_2 \subset G_2 \text{ sous- groupe de } G_2, \ f^{-1}(F_2) \text{ est un sous-groupe de } G_1 \end{array} \right.$

Image et noyau Soit $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes et $f: G_1 \to G_2$ un morphisme de groupe, on défini l'image et le noyau de f et on note respectivement $Im(f) = f(G_1)$ et $Ker(f) = f^{-1}(\{e_2\})$ (Im(f) et Ker(f) sont des sous-groupes respectifs de G_2 et G_1)

Proposition.

Soit $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes et $f: G_1 \to G_2$ un morphisme de groupe Alors $\begin{cases} f \text{ est surjectif} \Leftrightarrow Im(f) = G_2 \\ f \text{ est injectif} \Leftrightarrow Ker(f) = \{e_1\} \end{cases}$

Isomorphisme de groupe Soit $f:(G_1,*_1)\to (G_2,*_2)$ un morphisme de groupe. On suppose que f est bijectif, alors $f^{-1}:(G_2,*_2)\to (G_1,*_1)$ est un morphisme de groupe bien défini.

On appelle isomorphisme un tel morphisme.

Démonstration. Soient $x',y'\in G_2$; soient $x,y\in G_1$ tels que $x=f^{-1}(x')$ et $y=f^{-1}(y')$, on a $f(x*_1y)=f(x)*_2f(y)=x'*_2y'$ donc $f^{-1}(x'*_2y')=x*_1y=f^{-1}(x')*_1f^{-1}(y')$ d'où cqfd

9.3 Structure d'anneau et de corps

9.3.1 Structure d'anneau

Loi distributive Soit E un ensemble muni de deux lois de composition interne \oplus et \otimes . On dit que \otimes est distributive par rapport à \oplus si

$$\forall (x,y,z) \in E^3, \; \left\{ egin{array}{l} x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z) \ (x \oplus y) \otimes z = (x \otimes z) \oplus (y \otimes z) \end{array}
ight.$$

Anneau Soit A un ensemble muni de deux lois de composition internes \oplus et \otimes . On dit que (A, \oplus, \otimes) est un anneau si

- (A, \oplus) est un groupe abélien
- ⊗ est associative et distributive par rapport à ⊕
- Il existe un élément neutre 1_A pour \otimes

On notera maintenant de manière équivalente \otimes , \times et . ainsi que \oplus et +

Propriété.

Soit $(A, +, \times)$ un anneau, si on note A^* l'ensemble des éléments inversible de A alors (A, \times) est un groupe.

Anneau intègre Soit (A, +, .) un anneau, on dit que (A, +, .) est intègre si

$$\forall (a,b) \in A^2$$
, $ab = 0 \Leftrightarrow a = 0$ ou $b = 0$

Sous-anneau Soit $A(+, \times)$ un anneau et $B \subset A$ alors B est un sous-anneau de A si B est un sous-groupe de A pour +, $1_A \in B$ et B est stable par \times .

Propriété.

Un sous-anneau est un anneau pour les lois induites.

Morphisme d'anneau Soit $(A_1, +_1, \times_1)$ et $(A_2, +_2, \times_2)$ deux anneaux et $f: A_1 \to A_2$, Alors f est un morphisme d'anneaux si

$$egin{aligned} f(x+_1y) &= f(x)+_2f(y) \ orall (x,y) \in \mathcal{A}_1^2, & f(x imes_1y) &= f(x) imes_2f(y) \ f(1_{A_1}) &= 1_{A_2} \end{aligned}$$

Propriétés.

Soit $(A_1, +_1, \times_1)$ et $(A_2, +_2, \times_{\cdot 2})$ deux anneaux et $f : A_1 \to A_2$ un morphisme d'anneaux $Alors \forall a \in A_1^*, f(a) \in A_2^*$ avec $(f(a))^{-1} = f(a^{-1})$

9.3.2 Structure de corps

Corps Soit K un ensemble muni de deux lois de compositions interne + et \times on dit que $(K, +, \times)$ est un corps si

- $(K, +, \times)$ est un anneau commutatif
- Tout élément de K différent de o_K est inversible $(K^* = K \setminus \{0\})$

Sous-corps Soit $(K, +, \times)$ un corps et $P \subset K$ alors P est un sous-corps si P est un sous-anneau de K, $P^* = P \setminus \{0\}$ et $\forall x \in P^*$, $x^{-1} \in P$

Propriété.

Soit $(K, +, \times)$ un corps et $P \subset K$, les trois assertions suivantes sont équivalentes :

- 1) P est un sous-corps de K
- 2) $(P, +, \times)$ est un corps
- 3) P est un sous-groupe de K pour + et $P\setminus\{0\}$ est un sous groupe de K^* pour \times

Propriété.

Soit $(K, +_1, \times_1)$ un corps et $(A, +_2, \times_2)$ un anneau Soit $f: K \to A$ un morphisme d'anneaux, alors f est injectif

* * *

Chapitre 10

Calcul matriciel et systèmes linéaires

Contenu

10.1 Opérations sur les matrices					
	Définition d'une matrice	58			
10.1.1	Somme et Produit matriciel	59			
	Somme	59			
	Combinaison linéaire	59			
	Produit	59			
10.1.2	Matrice élémentaire	59			
	Produit de matrices élémentaires	60			
10.1.3	Matrices colonnes	60			
10.1.4	Matrice transposée	60			
	Définition	60			
10.2 Opérations élémentaires					
0.3 Syste	èmes linéaires	61			
	Système homogène	62			
	Système compatible	62			
0.4 A nne	au des matrices carrées	62			
	Matrice scalaire	62			
	Matrice symétrique	62			
	Matrice antisymétrique	62			
	Matrice diagonale	63			
	Matrice triangulaire	63			
	Matrice inversible	63			

10.1 Opérations sur les matrices

Définition d'une matrice Soit $(n, p) \in (\mathbb{N}^*)^2$ Une matrice à n lignes et p colonnes est une application

$$M\left(egin{array}{cccc} \llbracket 1,n
rbracket & \llbracket 1,p
rbracket &
ightarrow &
lap{M} \ (i,j) \mapsto M_{i,j} \end{array}
ight)$$
 On note $M=\left(egin{array}{cccc} m_{1,1} & \cdots & m_{1,p} \ m_{2,1} & \ddots & dots \ \ddots & m_{i,j} & dots \ m_{n,1} & \cdots & m_{n,p} \end{array}
ight)$

10.1.1 Somme et Produit matriciel

Somme

$$orall (A,B) \in \mathcal{M}^2_{n,p}(\mathbb{K}), \ A+B=C \iff orall (i,j) \in \llbracket 1,n
rbracket \times \llbracket 1,p
rbracket, \ a_{i,j}+b_{i,j}=c_{i,j}$$

Structure.

$$| \ \forall (n,p) \in (\mathbb{N}^*)^2 \ (\mathcal{M}_{n,p}(\mathbb{K}),+)$$
 est un groupe abélien et $o_{\mathcal{M}_{n,p}(\mathbb{K})} = o_{n,p}$

Combinaison Linéaire Si
$$l \in \mathbb{N}^*$$
, $(A_i)_{i \in \llbracket 1, l \rrbracket} \in \mathcal{M}^l_{n,p}(\mathbb{K})$, $(\lambda_i)_{i \in \llbracket 1, l \rrbracket} \in \mathbb{K}^l$

$$\sum_{i=1}^l \lambda_i A_i \text{ est une combinaison Linéaire de } (A_i)_{i \in \llbracket 1, l \rrbracket}$$

Produit On peut effectuer le produit matriciel de A et B si A a autant de colonnes que B a de lignes. Soit donc $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $B \in \mathcal{M}_{p,q}(\mathbb{K})$, $C = A.B \in \mathcal{M}_{n,q}(\mathbb{K})$

$$orall (i,j) \in \llbracket \mathtt{1}, n
rangle imes \llbracket \mathtt{1}, q
rangle \hspace{0.5cm} c_{i,j} = \sum\limits_{k=1}^p a_{i,k} b_{k,j}$$

Note Le produit matriciel est bilinaire et associatif.

$$\forall (A, A') \in \mathcal{M}_{n,p}^{2}(\mathbb{K}), \ \forall B \in \mathcal{M}_{p,q}(\mathbb{K}), \ \forall (\lambda, \lambda') \in \mathbb{K}^{2} \qquad (\lambda A + \lambda' A').B = \lambda AB + \lambda' A'B$$

$$\forall (A, B, C) \in \mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,q}(\mathbb{K}) \times \mathcal{M}_{q,l}(\mathbb{K}) \qquad ((A.B).C) = (A.(B.C)$$

10.1.2 Matrice élémentaire

Les matrices élémentaires de $\mathcal{M}_{n,p}(\mathbb{K})$ sont les matrices $(E_{i,j})_{(i,j)\in[\![1,n]\!]\times[\![1,p]\!]}$ dont tout le coefficients sont nuls celui en ligne i et colonne j qui vaut 1.

$$\forall (k,l) \in \llbracket 1,n \rrbracket imes \llbracket 1,p \rrbracket \qquad E_{i,j}(k,l) = \delta_{i,k}\delta_{j,l}$$

Propriété.

Toute matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ est une combinaison linéaire de matrices élémentaires. De plus, cette décomposition est unique.

$$\begin{array}{l} \textit{D\'{e}monstration.} \ \ A = (a_{i,j}))_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]} \in \mathcal{M}_{n,p}(\mathbb{K}) \ \ \text{donc} \ \ A = \sum\limits_{i=1}^n \sum\limits_{j=1}^p a_{i,j} E_{i,j} \\ \text{et} \ \ (\sum\limits_{i=1}^n \sum\limits_{j=1}^p m_{i,j} E_{i,j})(k,l) = m_{k,l} \ \ \text{donc} \ \ \sum\limits_{i=1}^n \sum\limits_{j=1}^p a_{i,j} E_{i,j} = \sum\limits_{i=1}^n \sum\limits_{j=1}^p a_{i,j}' E_{i,j} \ \ \text{si et seulement si} \\ \forall (i,j) \in [\![1,n]\!] \times [\![1,p]\!] \ \ \text{on a} \ \ a_{i,j} = a_{i,j}' \end{array}$$

Produit de matrices élémentaires Si $(E_{i,j}^{n,p})_{(i,j)\in \llbracket 1,n\rrbracket \times \llbracket 1,p\rrbracket}$ sont les matrices élémentaires de $\mathcal{M}_{n,p}(\mathbb{K})$ et $(E_{k,l}^{p,q})_{(k,l)\in \llbracket 1,p\rrbracket \times \llbracket 1,p\rrbracket}$ celles de $\mathcal{M}_{p,q}(\mathbb{K})$.

$$E_{i,j}^{n,p} \times E_{k,l}^{p,q} = \delta_{j,k} E_{i,l}^{n,q}$$

10.1.3 Matrices colonnes

Une matrice colonne est $X \in \mathcal{M}_{n,1}(\mathbb{K})$ soit

$$X = \left(egin{array}{c} x_1 \ dots \ x_n \end{array}
ight)$$

Produit matriciel AX.

 $Si(A,X) \in \mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,1}(\mathbb{K})$ Alors AX est une combinaison linéaire des colonnes de A.

Démonstration.

$$A = (C_1 \quad \cdots \quad C_2) = \begin{pmatrix} a_{1,1} \\ & \ddots \\ & a_{n,p} \end{pmatrix}$$

$$A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (C_1 \quad \cdots \quad C_2) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = Y$$

$$\text{avec } \forall j \in \llbracket 1, n \rrbracket, \ y_j = \sum_{k=1}^p a_{j,k} x_k \ \text{donc } Y = \sum_{k=1}^p x_k C_k$$

10.1.4 Matrice transposée

Définition Le transposée de $A \in \mathcal{M}_{n,p}(\mathbb{K})$ notée A^T est la matrice $B \in \mathcal{M}_{p,n}(\mathbb{K})$ telle

$$\forall (i,j) \in \llbracket \mathtt{1}, n
rbracket imes \llbracket \mathtt{1}, p
rbracket, \ a_{i,j} = b_{j,i}$$

Calculs.

$$\begin{vmatrix} \rightarrow & \forall (A,B) \in (\mathcal{M}_{n,p}(\mathbb{K}))^2, \ \forall (\lambda,\mu) \in \mathbb{K}^2, \ (\lambda A + \mu B)^T = \lambda A^T + \mu B^T \\ \rightarrow & \forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \ \forall B \in \mathcal{M}_{p,q}(\mathbb{K}), \ (AB)^T = B^T A^T \end{vmatrix}$$

$$\begin{split} \textit{D\'{e}monstration.} \\ \rightarrow & \; \mathsf{Si} \; \begin{array}{l} A = (a_{i,j}) & A^T = (a'_{i,j}) \\ B = (b_{i,j}) & B^T = (b'_{i,j}) \end{array} \quad \forall (i,j) \in \llbracket \mathtt{1}, n \rrbracket \times \llbracket \mathtt{1}, p \rrbracket \\ & \quad (\lambda A + \mu B)^T (i,j) = (\lambda A + \mu B) (j,i) = \lambda A(j,i) + \mu B(j,i) \\ & \quad = \lambda (a'_{i,j}) + \mu (b'_{i,j}) = \lambda A^T (i,j) + \mu B^T (i,j) \end{split}$$

$$egin{aligned} egin{aligned} eta & A = (a_{i,j}), \ B = (b_{i,j}), \ C = AB = (c_{i,j}) & orall (i,j) \in \llbracket 1,n
rbracket imes 1,p
rbracket \ C^T(i,j) & = c_{j,i} = \sum_{k=1}^p a_{k,i} b_{j,k} = \sum_{k=1}^p b'_{i,k} a'_{i,j} = B^T A^T(i,j) \end{aligned}$$

10.2 Opérations élémentaires

Pour $i \neq j$ des indices de lignes ou colonnes on considère les 4 opérations élémentaires suivantes:

$$\begin{array}{ccc} L_i \leftrightarrow L_j & L_i \leftarrow L_i + L_j \\ L_i \leftarrow \lambda L_i (\lambda \neq 0) & L_i \leftarrow L_i + \lambda L_j \end{array}$$

Proposition.

Chacunes des opérations ci-dessus sur les lignes (resp. les colonnes) d'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ se traduit par la multiplication à gauche (resp. à droite) par la matrice obtenue en effectuant cette opération sur I_n (resp. I_p)

Lemme.

$$\forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \ \forall (B,C) \in \left(\mathcal{M}_{p,q}(\mathbb{K})\right)^2 \ on \ a \ A(B+C) = AB + AC$$

Systèmes linéaires 10.3

On considère le système linéaire d'inconnues $(x_1,\ldots,x_p)\in\mathbb{K}^p$ suivant :

On considere the systeme tinearie difficontides
$$(x_1,\ldots,x_p)$$
 $(S)=\left\{egin{array}{ll} a_{1,1}x_1&+\cdots&+&a_{1,p}x_p&=&b_1\\ &\vdots&&&\vdots&&\vdots\\ a_{n,1}x_1&+\cdots&+&a_{n,p}x_p&=&b_n\\ \end{array}
ight.$ En notant $A=\left(a_{i,j}
ight)_{(i,j)\in \llbracket 1,n\rrbracket \times \llbracket 1,p\rrbracket}\in \mathcal{M}_{n,p}(\mathbb{K})$; $B=\left(b_i
ight)_{i\in \llbracket 1,n\rrbracket}\in \mathcal{M}_{n,1}(\mathbb{K})$; $X=\left(x_j
ight)_{j\in \llbracket 1,p\rrbracket}\in \mathcal{M}_{p,1}(\mathbb{K})$ on a

$$\mathcal{B}=\left(b_i
ight)_{i\in\llbracket 1,n
rbracket}\in\mathcal{M}_{n,1}(\mathbb{K})$$
 ; $X=\left(x_j
ight)_{j\in\llbracket 1,p
rbracket}\in\mathcal{M}_{p,1}(\mathbb{K})$ on a

$$(S) \Leftrightarrow AX = B$$

Système homogène Le système homogène associé à (S) est :

Système compatible Un système est dit compatible s'il admet au moins une solution.

Propriété.

Si(S) s'écrit matriciellement AX = BAlors (S) est compatible si B est une combinaison linéaire des colonnes de A.

Structure le l'ensemble des solutions d'un système compatible.

Les solutions du système compatible AX = B sont les matrices $X_0 + Y$ où X_0 est une solution particulière du système et Y décrit l'ensemble des solutions du système associé.

10.4 Anneau des matrices carrées

Soit $n \in \mathbb{N}^*$, $\mathcal{M}_n(\mathbb{K})$ est l'ensemble des matrices carrée d'ordre n

Propriété.

Cet anneau n'est pas intègre. $\mathcal{M}_n(\mathbb{K}),+,.$ est un anneau non commutatif si $n\geq 2$

$$A = \lambda I_n = \begin{pmatrix} \lambda & & (\mathsf{o}) \\ & \ddots & \\ (\mathsf{o}) & & \lambda \end{pmatrix} \lambda \in \mathbb{K}$$

Matrice symétrique On appelle matrice symétrique d'ordre n toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que $A^T = A$ et on note $\mathcal{S}_n(\mathbb{K})$ l'ensemble des matrices symétriques d'ordre n

Matrice antisymétrique On appelle matrice antisymétrique d'ordre n toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que $A^T = -A$ et on note $\mathcal{A}_n(\mathbb{K})$ l'ensemble des matrices antisymétriques d'ordre n

Propriété.

 $| \forall A \in \mathcal{M}_n(\mathbb{K}), \exists (U, V) \in \mathcal{S}_n(\mathbb{K}) \times \mathcal{A}_n(\mathbb{K})$ unique tel que A = U + V

Proposition.

$$\forall (A,B) \in \mathcal{M}_n^2(\mathbb{K}) \text{ tel que } A.B = B.A \text{ Alors on a}$$

1) $\forall p \in \mathbb{N}, \ A^p - B^p = (A-B) \sum_{k=1}^{p-1} A^k B^{p-k}$
2) $\forall p \in \mathbb{N}, \ (A+B)^p = \sum_{k=0}^p \binom{p}{k} A^k B^{p-k}$

Lemme.

Les matrices scalaires commuttent avec toutes les matrices.

Matrice diagonale $A \in \mathcal{M}_n(\mathbb{K})$ est dite diagonale si $\forall (i,j) \in [1,n]^2, \ i \neq j \Rightarrow A(i,j) = 0$

Propriété.

Le produit de deux matrices diagonales d'ordre n est une matrice diagonale d'ordre n; en particulier,

$$si\ A\in\mathcal{M}_n(\mathbb{K}),\ A=\begin{pmatrix} d_1 & & (0) \\ & \ddots & \\ (0) & & d_n \end{pmatrix};\ \forall p\in\mathbb{N},\ A^p=\begin{pmatrix} d_1^p & & (0) \\ & \ddots & \\ (0) & & d_n \ p \end{pmatrix}$$

Matrice triangulaire On dit que $A \in \mathcal{M}_n(\mathbb{K})$ est triangulaire supérieure (resp. inférieure)

si $\forall (i,j) \in \llbracket \mathtt{1}, n
rbracket^2, \ i > j \Rightarrow A(i,j) = \mathtt{0} \ ig(\mathsf{resp.} \ i < j \Rightarrow A(i,j) = \mathtt{0} ig)$

On note $\mathcal{T}_n^+(\mathbb{K})$ (resp. $\mathcal{T}_n^-(\mathbb{K})$) l'ensemble des matrices triangulaires supérieures (resp. inférieures)

Propriété.

 $\forall n \in \mathbb{N}^*, \ \mathcal{T}_n^+(\mathbb{K}) \ \text{et} \ \mathcal{T}_n^-(\mathbb{K}) \ \text{sont stable par produit matriciel}.$

Matrice inversible On dit que $A \in \mathcal{M}_n(\mathbb{K})$ est inversible s'il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que $A \cdot B = B \cdot A = I_n$ et on note $\mathcal{GL}_n(\mathbb{K})$ le groupe des matrices inversibles d'ordre n.

Propriété.

$$\mid orall A \in \mathcal{M}_n(\mathbb{K}), \ A \in \mathcal{GL}_n(\mathbb{K}) \Rightarrow A^T \in \mathcal{GL}_n(\mathbb{K}) \ et \ ig(A^Tig)^{-1} = ig(A^{-1}ig)^T$$

Propriété.

Les matrices correspondantes aux opérations élémentaires sont inversibles.

$$orall n \in \mathbb{N}^*, \ orall (i,j) \in \llbracket 1,n
rangle^2 \ ; egin{array}{c} P_n(i,j) = I_n - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i} \ T_{i,j}(\lambda) = I_n + \lambda E_{i,j} \ D_n(\lambda) = I_n + (\lambda-1)E_{i,i} \end{array} \in \mathcal{GL}_n(\mathbb{K})$$

Corollaire.

Les opérations élémentaires préservent l'inversibilité.

Théorème.

Une matrice triangulaire est inversible <u>si et seulement si</u> tout ses coefficients diagonaux sont non nuls.

Démonstration. → voir Chapitre 15

Propriété.

Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
, alors $A \in \mathcal{GL}_n(\mathbb{K}) \Leftrightarrow \left(\forall X \in \mathcal{M}_{n,1}(\mathbb{K}), \ (AX = O \Rightarrow X = 0) \right)$

Corollaire.

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ diagonale est inversible <u>si et seulement si</u> ses coefficients diagonaux sont tous non nuls. Son inverse est alors la matrice diagonale des inverses des coefficients diagonnaux de A.

Propriété.

Si une matrice triangulaire supérieure (resp. inférieure) est inversible alors son inverse est une matrice triangulaire supérieure (resp. inférieure)

* * *

Chapitre 11

Polynômes et fractions rationnelles

Contenu

11.1 Anne	au des polynômes à 1 indéterminée	65
	Anneau des polynômes $(\mathbb{K}[X],+,\times)$	65
11.1.1	Degré d'un polynôme	66
	Degré de la somme et du produit	66
	Ensemble	66
	Intégrité de l'anneau $(\mathbb{K}[X],+, imes)$	66
11.1.2	Composition de polynômes	66
	Degré du polynôme composé	67
	Coefficient dominant	67
11.2 Divisi	bilité et Division Euclidienne	67
11.2.1	Divisibilité des polynômes	67
	Propriété	67
11.2.2	Polynômes associés	67
	ightarrow	67
11.2.3	Division euclidienne polynômiale	67
11.3 Fonc	tions polynômiales et racines	68
11.3.1	Fonction polynômiale associée	68
	Calculs	68
11.3.2	Racines du polynôme	68
	Nombre de racines	69
	Corollaire : Caractérisation du polynôme nul	69
11.3.3	Ordre de multiplicité	69
	$\rightarrow \dots \dots$	69
11.3.4	Méthode de Horner pour l'évaluation polynômiale	69
11.3.5	Polynôme scindé	70
11.4 Dériv	ation	70

11.1 Anneau des polynômes à 1 indéterminée

Anneau des polynômes ($\mathbb{K}[X]$, +, \times **)** Soit $\mathbb{K}^{(\mathbb{N})}$ l'ensemble des suites à valeurs dans \mathbb{K} sationnaires nulles.

$$orall u \in \mathbb{K}^{(\mathbb{N})}$$
, $\exists n_{ exttt{o}} \in \mathbb{N}$: $orall n \in \mathbb{N}$, $(n \leq n_{ exttt{o}} \Rightarrow u_n = exttt{o})$

On définit une addition et une multiplication :

$$orall n \in \mathbb{N}$$
, $(u+v)(n) = u_n + v_n$

$$orall n \in \mathbb{N}$$
 , $(uv)(n) = \sum_{k=0}^n u(k)v(n-k)$

On considère la suite X=(0,1,0,0,...) et on a alors $X^n=(0,...,0,1,0,...)$ et $X^0=1_{\mathbb{K}}=(1,0,0,...)$ On peut noter $\mathbb{K}^{(\mathbb{N})}$ comme $\mathbb{K}[X]$.

$$P = (a_0, a_1, ..., a_n, o, ...) = \sum_{k=0}^{n} a_k X^k \in K[X]$$

 $(\mathbb{K}^{(\mathbb{N})}[X], +, \times)$ est l'anneau des polynômes.

Utilisation
$$(1+X)^{n+m}=(1+X^n(1+X)^m)$$
 $\sum\limits_{l=0}^{n+m} \binom{n+m}{l} X^l = \sum\limits_{k=0}^n \binom{n}{k} X^k = \sum\limits_{j=0}^m \binom{m}{j} X^j$ Qui donne

$$\binom{n+m}{l} = \sum_{k=0}^{l} \binom{n}{k} \binom{m}{l-k}$$

11.1.1 Degré d'un polynôme

Si $P \in \mathbb{K}[X]$, $P \neq 0$ on appelle degré de P noté deg(P) ou d°(P) :

$$deg(P) = max\{n \in \mathbb{N} | a_n \neq 0\} \ \ (P = \sum_{k=0}^{+\infty} a_k X^k)$$

avec par convention le polynôme nul de degré $-\infty$.

Degré de la somme et du produit Soit $(P, Q) \in (\mathbb{K}[X])^2$

$$deg(P+Q) \leq max\{deg(P), deg(Q)\}$$

égalité si $deg(P) \neq deg(Q)$

$$deg(PQ) = deg(P) + deg(Q)$$

Ensemble Si $n \in \mathbb{N}$, $\mathbb{K}_n[X]$ est l'ensemble des polynômes de degré au plus n.

$$\mathbb{K}_n[X] = \{ P \in \mathbb{K}[X] \mid deg(P) < n \}$$

Remarque $\mathbb{K}_n[X]$ est stable par combinaison linéaire

$$\forall (\lambda, \mu) \in \mathbb{K}^2, \ \forall (P, Q) \in (\mathbb{K}_n[X])^2 \qquad \lambda P + \mu Q \in \mathbb{K}_n[X]$$

Intégrité de l'anneau ($\mathbb{K}[X], +, \times$) $\forall (P, Q) \in (\mathbb{K}[X])^2$

$$PQ = 0$$
 $\Leftrightarrow deg(PQ) = -\infty$
 $\Leftrightarrow deg(P) + deg(Q) = -\infty$
 $\Leftrightarrow deg(P) = -\infty \text{ ou } deg(Q) = -\infty$
 $\Leftrightarrow P = 0 \text{ ou } Q = 0$

11.1.2 Composition de polynômes

Si
$$(P,Q) \in (\mathbb{K}[X])^2$$
 avec $P = \sum_{k=0}^{+\infty} a_k X^k$

$$P \circ Q = \sum_{k=0}^{+\infty} a_k Q^k$$

Degré du polynôme composé Si $(P, Q) \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \mathbb{K}_0[X]$

$$deg(P \circ Q) = deg(P) \times deg(Q)$$

Coefficient dominant Si $P = \sum_{k=0}^{+\infty} a_k X^k \in \mathbb{K}[X] \setminus \{0\}$

 a_{deqP} s'appelle le coefficient dominant de P. Si il vaut 1 P est dit unitaire.

11.2 Divisibilité et Division Euclidienne

11.2.1 Divisibilité des polynômes

Si $(A, B) \in (\mathbb{K}[X])^2$

On dit que A divise B si il existe $Q \in \mathbb{K}[X]$ tel que B = AQOn note alors A|B (sinon $A \not B$)

Propriété Soit $A \in \mathbb{K}[X] \setminus \{0\}$ et $B \in \mathbb{K}[X]$ $A|B \Rightarrow \text{deg}A \leq \text{deg}B$

Preuve $A = BQ \Rightarrow \deg A = \deg B + \deg Q > \deg B$

11.2.2 Polynômes associés

 $(A, B) \in (\mathbb{K}[X])^2$ est un couple de polynômes associés si

$$A|B \quad B|A$$

 \rightarrow (A, B) est un couple de polynômes associés si et seulement si

$$\exists \lambda \in \mathbb{K} * : A = \lambda B$$

11.2.3 Division euclidienne polynômiale

Si
$$B \neq 0$$
 , $B = \sum_{k=0}^{m} b_k X^k$ avec $b_m \neq 0$

Si $A \in \mathbb{K}[X] \setminus \mathbb{K}_{m-1}[X]$ il existe $(Q_0, R_0) \in (\mathbb{K}[X])^2$: $A = BQ_0 + R_0$ et $degR_0 < degA$ (Si $A = \sum_{k=0}^{n} a_k X^k$ il suffit de considérer $Q_0 = \frac{a_n}{b_m} X^{n-m}$)

Théorème de la division euclidienne polynômiale.

Si $B \in \mathbb{K}[X] \setminus \{0\}$ alors pou tout $A \in \mathbb{K}[X]$

$$\exists (Q,R) \in (\mathbb{K}[X])^2 : \begin{vmatrix} A = BQ + R \\ degR < degB \end{vmatrix}$$

De plus Q et R sont uniques appelés quotient et reste de la division euclidienne de A par B.

Démonstration. Existence Récurence sur degA

Initialisation Si degA < degB

$$A = B \times 0 + A = BQ + R$$

Hérédité On suppose la propriété vraie pour tout polynôme de degré k < n avec n > degB. D'après la remarque préliminaire on a :

$$\exists (Q_0, R_0) \in (\mathbb{K}[X])^2 : A = BQ_0 + R_0 \quad degR_0 < degA = n$$

d'après l'hyspothèse de récurrence
$$\exists (Q_1, R_1) \in (\mathbb{K}[X])^2$$

 $R_0 = BQ_1 + R_1$ avec $degR_1 < degB$ soit

$$A = B(Q_0 + Q_1) + R_1$$

Unicité

Supposons $A = BQ_1 + R_1 = BQ_2 + R_2$ avec $degR_1$, $degR_2 < degB$ alors $B(Q_1 - Q_2) = R_1 - R_2$ donc

$$degB + deg(Q_1 - Q_2) = deg(R_1 - R_2) \leq max\{degR_1, degR_2\} < degB$$
 d'où $deg(Q_1 - Q_2) = -\infty$ soit $Q_1 = Q_2$ puis $R_1 = R_2$

11.3 Fonctions polynômiales et racines

11.3.1 Fonction polynômiale associée

À tout polynôme $P=\sum\limits_{k=0}^{n}a_{k}X^{k}\in\mathbb{K}[X]$ on peut associer la fonction polynômiale

$$\widetilde{P}\left(egin{array}{c} \mathbb{K} \longrightarrow \mathbb{K} \ x \mapsto \sum\limits_{k=0}^n a_k x^k \end{array}
ight)$$

Calculs $\forall (P,Q) \in (\mathbb{K}[X])^2 \ \forall (\lambda,\mu) \in \mathbb{K}^2$

$$\widetilde{\lambda P + \mu Q} = \lambda \widetilde{P} + \mu \widetilde{Q}$$

$$\widetilde{PQ} = \widetilde{PQ} \qquad \widetilde{P \circ Q} = \widetilde{P} \circ \widetilde{Q}$$

11.3.2 Racines du polynôme

 $a \in \mathbb{K}$ est une racine de $P \in \mathbb{K}[X]$ si

$$\widetilde{P}(a) = 0$$

On notera ensuite $\mathcal{Z}(P)$ l'ensemble des racines (ou zéros) de P.

Divisibilité par (X - a) **1.** $\forall P \in \mathbb{K}[X]$ $\forall (a_1, \dots, a_n) \in \mathbb{K}^n$ distincts

$$\{a_1, \cdots, a_n\} \subset \mathcal{Z}(P) \Leftrightarrow \prod_{i=1}^n (X-a_i)|P$$

Démonstration. Récurrence sur n : P(n)(1)

<u>Initialisation</u> (x-a)|P si et seulement si $\exists Q: P = (X-a)Q$ alors

$$\widetilde{P}(a) = \widetilde{(X-a)}(a)\widetilde{Q}(a) = 0$$

Si
$$a \in \mathcal{Z}(P)$$
 et $P = \sum\limits_{k=0}^{n} \alpha_k X^k$

$$egin{align} P &= P - P(a) = \sum_{k=0}^n lpha_k X^k - \sum_{k=0}^n lpha_k a^k = \sum_{k=0}^n lpha_k (X^k - a^k) \ &= (X - a) \sum_{k=0}^n lpha_k \sum_{l=0}^{k-1} a^{k-1-l} X^l = (X - a) Q \ \end{cases}$$

Hérédité Supposons P(n) et considérons $\{a_1, \cdots, a_n, a_{n+1}\} \in \mathbb{K}^{n+1}$ distincts Par l'hypothèse de récurrence on a

$$\exists Q \in \mathbb{K}[X] : P = (\prod_{i=1}^{n} (X - a_i))Q$$
 $a_{n+1} \in \mathcal{Z}(P) \Leftrightarrow \widetilde{P}(a_{n+1}) = 0 \Leftrightarrow (\prod_{i=1}^{n} (a_n + 1 - a_i))\widetilde{Q}(a_{n+1}) = 0$ $\Leftrightarrow a_{n+1} \in \mathcal{Z}(Q) \Leftrightarrow X - a_{n+1}|Q$

Nombre de racines Le nombres de racines d'un polynôme non nul est majoré par son degré.

dem. Par récurrence si $deg(\prod\limits_{i=1}^n (X-a_i))=n$ et $P \neq O$

$$\prod_{i=1}^n (X-a_i)|P \implies n \leq P$$

Corollaire: Caractérisation du polynôme nul Le seul polynôme admettant une infinité de racines ou n+1 racines est le polynôme nul.

appli. Soit $E = \{P \in \mathbb{K}[X] | \exists T \in \mathbb{K}^* : \forall x \in \mathbb{K}, \ \widetilde{P}(x+T) = \widetilde{P}(x) \}$, déterminons E. $\mathbb{K}_{0}[X] \subset E$

Réciproquement si $\P \in E \ T - p \text{\'e} riodique \ (T \neq 0)$ et $Q = P - \widetilde{P}(0)$ on a $T\mathbb{Z} \subset \mathcal{Z}(P)$ d'où P - P(0) = 0 donc $P = P(0) \in \mathbb{K}_0[X]$ En conclusion on a $E = \mathbb{K}_0[X]$.

11.3.3 Ordre de multiplicité

 $\forall P \in \mathbb{K}[X]$

Si $a \in \mathbb{K}$, $k \in \mathbb{N}$ et $(X - a)^n | P$ on dit que a est une racine de P d'ordre de multiplicité

Si de plus (X-a) $\not\mid P$ alors a est une racine de P d'ordre de multiplicité exactement n.

a est une racine de P d'ordre de multiplicité k si et seulement si $\exists Q \in \mathbb{K}[X]$ tel que

$$P = (X - a)^k Q$$
 et $a \notin \mathcal{Z}(P)$

11.3.4 Méthode de Horner pour l'évaluation polynômiale

Soit $\sum_{k=0}^{n} a_k X^k$ et $x_0 \in \mathbb{K}$ on veut déterminer $\widetilde{P}(x_0)$. On considère la suite $\left\{egin{array}{l} u_0=a_n \ u_{k+1}=u_kx_0+a_{n+1-k} \end{array}
ight.$

$$u_k=a_nx_0^k+\ \cdots\ +a_{n_k}$$
 et $u_n=\widetilde{P}x_0$

11.3.5 Polynôme scindé

Un polynôme $P \in \mathbb{K}[X]$ est scindé s'il peut s'écrire comme produit de polynômes de degré 1.

Formule de Viete.

Relations entre les coefficients et les racines d'un polynôme scindé
$$Soit\ P$$
 un polynôme scindé, $P = \sum_{k=0}^n a_k X^k = \lambda \prod_{k=1}^n (X - x_k)$
$$n \geq 2 \atop a_n \neq 0 \mid \Leftrightarrow \begin{cases} a_n = \lambda \\ a_{n-l} = \lambda \prod\limits_{1 \leq i_1 \leq \dots \leq i_l \leq n} \sum\limits_{r=1}^l (-x_{i_r}) \end{cases}$$

$$\Leftrightarrow \begin{cases} a_n = \lambda \\ \prod\limits_{1 \leq i_1 \leq \dots \leq i_l \leq n} \sum\limits_{r=1}^l x_{i_r} = \frac{(-1)^l a_{n-l}}{a_n} \end{cases}$$

Démonstration. Faire arbre

11.4 Dérivation

Si $P = \sum_{k=0}^{+\infty} a_k X^k \in \mathbb{K}[X]$ on appelle polynôme dérivé de P

$$P' = \sum_{k=1}^{+\infty} k a_k X^{k-1} = \sum_{k=0}^{+\infty} (k+1) a_{k+1} X^k$$

puis par récurrence avec
$$\forall n \in \mathbb{N}$$
 $P^{(n+1)} = (P^{(n)})'$ $P^{(n)} = \sum_{k=n}^{+\infty} k(k-1) \cdots (k-n+1) a_k X^{k-n} = \sum_{k=0}^{+\infty} (k+n)(k+n-1) \cdots (k+1) a_{k+n} X^k = \sum_{k=0}^{+\infty} \frac{k!}{(k-n)!} a_k X^{k-n} = \sum_{k=0}^{+\infty} \frac{(k+n)!}{k!} a_{k+n} X^k$

$$\underline{\mathbf{Calcul:}} \ \forall (P,Q) \in (\mathbb{K}[X])^2$$

$$D\'{e}monstration. \ P = \sum_{k=0}^{+\infty} a_k X^k \ Q = \sum_{k=0}^{+\infty} b_k X^k$$

$$\rightarrow (\lambda P + \mu Q)' = (\sum_{k=0}^{+\infty} (\lambda a_k + \mu b_k) X^k)' = \sum_{k=1}^{+\infty} k(\lambda a_k + \mu b_k) X^{k-1}$$

$$= \lambda (\sum_{k=1}^{+\infty} k a_k X^{k-1}) + \mu (\sum_{k=1}^{+\infty} k b_k X^{k-1}) = \lambda P' + \mu Q'$$

$$\rightarrow PQ = \sum_{k=0}^{+\infty} c_k X^k \quad c_k = \sum_{l=0}^{k} a_l b_{k-l} \quad donc \quad (PQ)' = \sum_{k=0}^{+\infty} (k+1) c_{k+1} X^k$$

$$avec \qquad P' = \sum_{k=0}^{+\infty} (k+1) a_{k+1} X^k \quad et \quad Q' = \sum_{k=0}^{+\infty} (k+1) b_{k+1} X^k$$

$$PQ' = \sum_{k=0}^{+\infty} d_k X^k \quad d_k = \sum_{l=0}^{k} a_l (k+1-l) b_{k+1-l}$$

$$P'Q = \sum_{k=0}^{+\infty} \delta_k X^k \delta_k = \sum_{l=0}^{k} (l+1) a_{l+1} b_{k-l}$$

$$d_k + \delta_k = \sum_{l=0}^{k} a_l (k+1-l) b_{k+1-l} + \sum_{l=0}^{k} (l+1) a_{l+1} b_{k-l}$$

$$= a_0 (k+1) b_{k+1} + (k+1) a_{k+1} b_0 + \sum_{l=1}^{k} a_l (k+1-l) b_{k+1-l} + \sum_{l=1}^{k} l a_l b_{k+1-l}$$

$$= (k+1) \sum_{k=1}^{k+1} a_l b_{k+1} = (k+1) c_{k+1}$$

Chapitre 12 Analyse asymptotique

Chapitre 13

Espaces vectoriels et applications linéaires

Matrices II

Contenu

14.1 Matrices et applications linéaires	73
14.1.1 Matrice d'une application linéaire dans des bases	73
Matrice représenntative d'un vecteur	73
Matrice représentative d'une famille	74
Matrice représentative d'une application linéaire	74
14.1.2 Application linéaire canoniquement associée	75
Définition	75
Noyau, image et rang	75
14.1.3 Systèmes linéaires	75
Système de Cramer	76
14.2 Changement de bases	76
Matrice de passage	76
14.3 Équivalence et similitude	77
14.3.1 Matrices équivalentes et rang	77
Équivalence	77
Matrice extraite	77
Matrice échelonnée	78
14.3.2 Matrices semblables et trace	78
Matrices semblables	78
Trace	78
Trace d'un endomorphisme	78

14.1 Matrices et applications linéaires

14.1.1 Matrice d'une application linéaire dans des bases

finie et $B=(e_1,\ldots,e_n)$ une base de E. On considère $x=\sum_{i=1}^n x_ie_i\in E$. La <u>matrice représentative de x dans la base B</u>

est la matrice colonne
$$X=\left(egin{array}{c} x_1 \ dots \ x_n \end{array}
ight)= \boxed{ extit{Mat}_B(x)}\in \mathcal{M}_n(\mathbb{K})$$

Matrice représentative d'une famille Soit E un \mathbb{K} espace vectoriel de dimension finie et $B=(e_1,\ldots,e_n)$ une base de E.

On considère (x_1, \ldots, x_p) une famille de p vecteurs de E. La matrice représentative de cette famille dans cette base est la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ notée $Mat_B(x_1, \ldots, x_p)$ dont la j^e colonne est donnée par $Mat_B(x_j)$, $\forall j \in [1, p]$

Matrice représentative d'une application linéaire Soit E et F deux \mathbb{K} espaces vectoriels de dimensions finies respectives p et n avec $e = (e_1, \ldots, e_p)$ une base de E On considère $u \in \mathcal{L}(E, F)$. La matrice représentative de u dans les bases e et e est la matrice de e matrice de

Proposition.

Si E et F sont des \mathbb{K} -ev de dimensions p et n rapportés à des bases e et f, alors ϕ $\begin{pmatrix} \mathscr{L}(\mathsf{E},\mathsf{F}) & \longrightarrow & \mathcal{M}_{n,p}(\mathbb{K}) \\ u & \mapsto & \mathsf{Mat}_{e,f}(u) \end{pmatrix}$ est un isomorphisme d'espace vectoriel.

Corollaire.

Le choix d'une base B sur E induit un iomorphisme de $\mathscr{L}(E)$ sur $\mathcal{M}_n(\mathbb{K})$: $\begin{pmatrix} \mathscr{L}(E) & \longrightarrow & \mathcal{M}_n(\mathbb{K}) \\ u & \mapsto & Mat_B(u) \end{pmatrix}$

Proposition.

Soit E, F deux \mathbb{K} -ev de dimensions p et n rapportés à des bases e et f Soit $u \in \mathcal{L}(E,F)$; $x \in E$, on considère $y = u(x) \in F$ et on note $X = Mat_e(x)$; $Y = Mat_f(y)$; $A = Mat_{e,f}(u)$ Alors Y = AX

Proposition.

```
E de dimension p et e=(e_1,\ldots,e_p) une base de E.

F de dimension q et f=(f_1,\ldots,f_q) une base de F.

G de dimension n et g=(g_1,\ldots,g_n) une base de G.

Soit u\in\mathcal{L}(E,F),\ v\in\mathcal{L}(F,G); A=Mat_{e,f}(u),\ B=Mat_{f,g}(v)

Alors C=Mat_{e,g}(v\circ u)=AB
```

Théorème.

Soit E et F deux \mathbb{K} -ev de dimension finie n rapportés à des bases e et f Soit $u \in \mathscr{L}(E,F)$ on a (u est un isomorphisme) \Leftrightarrow $(Mat_{e,f}(u)$ est inversible) Dans ce cas on a $(Mat_{e,f}(u))^{-1} = Mat_{e,f}(u^{-1})$

14.1.2 Application linéaire canoniquement associée

Définition Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ on appelle Application linéaire canoniquement associée à A l'unique application linéaire, notée u_A telle que $\boxed{\mathit{Mat}_{C(\mathbb{K}^p),C(\mathbb{K}^n)}(u_A) = A}$

Noyau, image et rang Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ on appelle

- ullet noyau de A noté Ker(A) défini par $Ker(A) = Ker(u_A)$
- ullet image de \overline{A} notée Im(A) définie par $Im(A) = Im(u_A)$
- ullet rang de A noté rg(A) défini par $rg(A)=rg(u_A)$

Propriété.

Les colonnes de A engendre Im(A) et ses lignes donnent un système d'équation de Ker(A)

Proposition.

Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
 alors $A \in \mathcal{GL}_n(\mathbb{K}) \Leftrightarrow \mathcal{K}er(A) = \{0\} \Leftrightarrow \mathbb{K}^n = Vect(C_1(A), \ldots, C_n(A)) \Leftrightarrow rg(A) = n$

Corollaire.

Une matrice triangulaire est inversible <u>si et seulement si</u> ses coefficients diagonnaux sont tous non nuls.

Démonstration. Soit $A \in \mathcal{T}^+(\mathbb{K})$

 \sqsubseteq Si les coefficients $(a_j j)_{1 \le j \le n}$ sont tous non nuls alors (C_1, \ldots, C_n) est une famille libre donc une base de \mathbb{K}^n d'où $A \in \mathcal{GL}_n\mathbb{K}$

$$\Rightarrow$$
 Par contraposée si $\exists k_0 \in \llbracket 1, n \rrbracket$ tel que $a_{k_0, k_0} = 0$ alors $\dim(Vect(C_1, \ldots, C_{k_0})) \leq k_0 - 1$ donc $\dim A \leq n - 1$ d'où $A \notin \mathcal{GL}_n(\mathbb{K})$

Propriété.

Si E est un
$$\mathbb{K}$$
-ev de dimension n rapporté à une base B Soit (x_1,\ldots,x_p) une famille de p vecteurs de E Alors $rg(x_1,\ldots,x_p)=\dim\Bigl(Vect\bigl(Mat_B(x_1),\ldots,Mat_B(x_p)\bigr)\Bigr)$ = $\dim\Bigl(Im\bigl(X_1\cdots X_p\bigr)\Bigr)=rg(u_A)$ Où $A=\bigl(X_1\ X_2\cdots X_p\bigr)\in\mathcal{M}_{n,p}(\mathbb{K})$

Propriété.

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ inversible à gauche ou à droite est inversible.

14.1.3 Systèmes linéaires

$$(S) = \left\{ egin{array}{llll} a_{1,1}x_1 & + & \cdots & + & a_{1,p}x_p & = & b_1 \ dots & & dots & dots & dots & \Leftrightarrow & A imes \left(dots \ a_{n,1}x_1 & + & \cdots & + & a_{n,p}x_p & = & b_n \end{array}
ight.
ight. \Leftrightarrow \left. A imes \left(dots \ dots \ x_p
ight) = \left(dots \ b_n
ight)$$

Résoudre le système homogène associé à (S) c'est déterminer le noyau de A Par le théorème du rang, la dimension de l'espace des solutions du système homogène est donnée par p-rg(A) $(\geq p-n)$

L'ensemble des solution de (S) à une structure de sous-espace affine de \mathbb{K}^p si il est compatible, soit si X_0 est une solution particulière

$$S = X_0 + Ker(A) \subset \mathbb{K}^p$$

Système de Cramer Si $A \in \mathcal{GL}_n(\mathbb{K})$ alors le systèle (S) est compatible et admet une unique solution $A^{-1} \times B$.

14.2 Changement de bases

Matrice de passage On appelle matrice de passage d'une base e à un base e' d'un même espace vectoriel E et on note $P_e^{e'}$ la matrice de $\mathcal{M}_n(\mathbb{K})$ représentative des vecteurs de e' dans la base e

$$egin{aligned} P_e^{e'} &= egin{pmatrix} a_{1,1} & \cdots & a_{1,n} \ dots & \ddots & \ a_{n,1} & a_{n,n} \end{pmatrix} & orall j \in \llbracket \mathtt{1}, n
rbracket, \ e'_j &= \sum_{i=1}^n a_{i,j} e_i \end{aligned}$$

Propriété.

Si $P \in \mathcal{M}_n(\mathbb{K})$ est la matrice de passage de e à e' alors P est inversible et P^{-1} est la matrice de passage de e' à e.

Propriété.

Soit E un \mathbb{K} -ev rapporté successivement à des bases e et e' On considère $x \in E$ avec $X = Mat_e(x)$; $X' = Mat_{e'}(x)$ et $P = P_e^{e'}$ Alors $X = P \times X'$

Théorème.

Soit E et F deux \mathbb{K} -ev de dimensions finies p et n rapporté successivement à des bases e, e' et f, f'. Soit $u \in \mathcal{L}(E,F)$ On note $A = Mat_{e,f}(u)$; $A' = Mat_{e',f'}(u)$ et $Q = P_f^{f'}$; $P = P_e^{e'}$ Alors $A' = Q^{-1} \times A \times P$

Démonstration. Soit
$$(x, y) \in E \times F$$
 tel que $y = u(x)$ alors on a $Y = AX \Leftrightarrow Y' = A'X'$ avec $Y = QY'$; $X = PX'$
Ainsi $Y = AX \Leftrightarrow QY' = APX' \Leftrightarrow Y' = Q^{-1}APX' \Leftrightarrow A' = Q^{-1}AP$

Corollaire.

Soit E un \mathbb{K} -ev de dimension n rapporté à deux bases e et e'Soit $u \in \mathcal{L}(E)$, on note $A = Mat_e(u)$; $A' = Mat_{e'}(u)$ et $P = P_e^{e'}$ Alors $A' = P^{-1} \times A \times P$

14.3 Équivalence et similitude

14.3.1 Matrices équivalentes et rang

Proposition.

Soit E et F deux \mathbb{K} -ev de dimensions p et n et $u \in \mathcal{L}(E, F)$ Soit $r \in [1, n]$, si rg(u) = r alors il existe un couple de base (e, f)tel que $Mat_{e,f}(u) = J_r \in \mathcal{M}_{n,p}(\mathbb{K})$

Démonstration. D'après la forme géométrique du théorème du rang u induit un isomorphisme de S sur Im(u) où S est un supplémentaire de Ker(u) Soit (e_1,\ldots,e_n) une base de E adaptée à $Ker(u) \oplus S$ avec (e_1,\ldots,e_r) base de S. On a alors $(f_1=u(e_1),\ldots,f_r=u(e_r))$ une base de S une base de S une complète en une base de S

Équivalence Deux matrice $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$ sont dites <u>équivalentes</u> si il existe $Q \in \mathcal{GL}_n(\mathbb{K})$ et $P \in \mathcal{GL}_p(\mathbb{K})$ tels que $B = Q^{-1}AP$. On note $A \sim B$

Proposition.

Une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ est de rang r si et seulement $A \sim J_r$.

Théorème.

Le rang d'une matrice est invariant par transposition.

Démonstration. Soit $A \in \mathcal{M}_n(\mathbb{K})$; ${}^t(J_r^{n,p}) = J_r^{p,n}$ On a alors $rg(A) = r \Leftrightarrow \exists (Q,P) \in \mathcal{GL}_n(\mathbb{K}) \times \mathcal{GL}_p(\mathbb{K}) : A = Q^{-1}J_r^{n,p}P$ $\Leftrightarrow {}^tA = \underbrace{{}^tP}_{\in \mathcal{GL}_p(\mathbb{K})} \times {}^t(J_r^{n,p}) \times \underbrace{{}^t(Q^{-1})}_{\in \mathcal{GL}_n(\mathbb{K})} = Q'^{-1}J_r^{p,n}P' \Leftrightarrow rg({}^tA = r)$

Matrice extraite Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ on appelle matrice extraite de A toute matrice obtenue à partir de A par suppression de lignes et/ou colonnes de A.

$$\left(egin{array}{c} A' = \left(a_{i,j}
ight)_{(i,j) \in I imes J} ext{ où } I \subset \llbracket exttt{1}, n
rbracket ext{ et } J \subset \llbracket exttt{1}, p
rbracket
ight)$$

Propriété.

| Si A' est extraite de A alors on a $rg(A') \leq rg(A)$

Proposition.

$$Si\ A\in \mathcal{M}_{n,p}(\mathbb{K})\ alors \ rg(A)=\max\{k\in\mathbb{N}\mid A'\in\mathcal{GL}_k(\mathbb{K})\ et\ A'\ extraite\ de\ A\}$$

Propriété.

Les opérations élémentaires sur les colonnes préservent l'image. Celles sur les lignes préservent le noyau.

Corollaire.

Les opérations élémentaires sur les lignes ou les colonnes de A conservent le rang de A.

Matrice échelonnée Une matrice <u>échelonnée en ligne</u> est une matrice $A = (a_{i,j})_{(i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,n \rrbracket}$ telle que si on note $l_i(A) = \min\{j \in \llbracket 1,p \rrbracket \mid a_{i,j} \neq 0\} \ \forall i \in \llbracket 1,n \rrbracket$ (par convention $\min \varnothing = +\infty$)

Alors $(l_i(A))_{1 \le i \le n}$ est une suite croissante.

14.3.2 Matrices semblables et trace

Matrices semblables Deux matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ sont dites semblables s'il existe $P \in \mathcal{GL}_n(\mathbb{K})$ telle que $B = P^{-1}AP$. Deux matrices semblables sont équivalentes.

Propriété.

Deux matrices A et B sont semblables <u>si et seulement si</u> elles représentent un même endomorphisme d'un \mathbb{K} -ev de dimension finie dans deux bases différentes.

Trace Si $A=\left(a_{i,j}\right)_{1\leq i,j\leq n}$ $\in \mathcal{M}_n(\mathbb{K})$ on appelle <u>trace de A</u> le scalaire $tr(A)=\sum_{i=1}^n a_{i,i}$.

Propriété.

$$\mid tr \in (\mathcal{M}_n(\mathbb{K}))^*$$
 avec $\forall (A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$, $tr(AB) = tr(BA)$

Théorème.

La trace est invariante par similitude.
$$\Big(\forall (A,B) \in (\mathcal{M}_n(\mathbb{K}))^2, \\ (\exists P \in \mathcal{GL}_n(\mathbb{K}) \text{ telle que } B = P^{-1}AP \Big) \Rightarrow \big(tr(B) = tr(A)\big) \Big)$$

Démonstration. Soit un tel couple
$$(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$$

Alors $tr(B) = tr(P^{-1}AP) = tr(APP^{-1}) = tr(A)$

Trace d'un endomorphisme Si u est un endomorphisme d'un \mathbb{K} -ev de dimension finie E, on appelle trace de u le scalaire $tr(u) = tr(Mat_e(u))$ où e est une base de E.

Propriété.

$$\mid tr \in (\mathscr{L}(E))^*$$
 avec $\forall (u,v) \in (\mathscr{L}(E))^2$, $tr(uv) = tr(vu)$

Proposition.

Soit E un \mathbb{K} -ev de dimension finie et p un projecteur de E Alors tr(p)=rg(p)

* * *

Groupe symétrique et déterminant

Intégration

Contenu

16.1 Continuité uniforme	80
Définition	80
16.2 Intégrations des fonctions en escalier	81
16.2.1 Subdivision d'un segment	81
Définition	81
Subdivision adaptée	81
Intégrale d'une fonction en escalier	81
16.3 Fonctions continues par morceaux	82
16.3.1 Généralités	82
Définition	82
16.3.2 Intégrale d'une fonction continue par morceaux	82
Définition	82
Valeur moyenne	83
16.4 Sommes de Riemman	83
Définition	83
Somme de Riemman associée	84
16.5 Lien entre intégrales et primitives	84
16.6 Formules de Taylor globales	84

Dans tout le chapitre, $(a,b) \in \mathbb{R}^2$ avec a < b

16.1 Continuité uniforme

Définition Soit $I \subset \mathbb{R}$ intervalle et $f: I \to \mathbb{R}$, f est dite <u>uniformément continue sur I</u> si $\forall \varepsilon > 0$, $\exists \delta > 0$ tel que $\forall (x,y) \in I^2$, $\big(|x-y| \le \delta \Rightarrow |f(x)-f(y)| \le \varepsilon$

Propriété.

```
Soit f:I	o\mathbb{R} on a
```

- 1) Si f est lipschitzienne sur I alors f est uniformément continue sur I
- 2) Si f est uniformément continue sur I alors f est continue sur I

Théorème de Heine.

Soit $(a, b) \in \mathbb{R}^2$, a < bSi f est continue sur [a, b] alors f est uniformément continue sur [a, b]. Démonstration. Par l'absurde :

On suppose $\exists \varepsilon >$ o tel que $\forall n \in \mathbb{N}^*$, $\exists (x_n,y_n) \in [a,b]^2$ tq $(|x_n-y_n| \leq \frac{1}{n}$ et $|f(x_n)-f(y_n)| > \varepsilon$

D'après le théorème de Bolzano-Weierstrass $\exists \varphi: \mathbb{N} \to \mathbb{N}$ et $\psi: \mathbb{N} \to \mathbb{N}$ extractrices tels que $x_{\varphi(n)} \xrightarrow[n]{} l \in [a,b]$ et $y_{\varphi(\psi(n))} \xrightarrow[n]{} l' \in [a,b]$ donc $\left|x_{\varphi(\psi(n))} - y_{\varphi(\psi(n))}\right| \leq \frac{1}{\varphi(\psi(n))} \leq \frac{1}{n}$ d'où l = l'

Ainsi par continuité de f on a $f(x_{\varphi(\psi(n))}) - f(y_{\varphi(\psi(n))}) \stackrel{\rightarrow}{\to} f(l) - f(l') = 0 > \varepsilon > 0$

16.2 Intégrations des fonctions en escalier

On note $\mathcal{E}f[[a,b],\mathbb{R})$ l'ensemble des fonctions en escalier de [a,b] dans \mathbb{R} .

16.2.1 Subdivision d'un segment

Définition Une subdivision de [a, b] est une suite finie strictement croissante $\sigma = (c_0 = a < c_1 < \cdots < c_n = b)$.

On note $\delta(\sigma)$ le pas de σ définit par $\delta(\sigma) = \max_{0 \le i \le n-1} (c_{i+1} - c_i)$.

On dit que σ est à pas constant si la suite $(c_i)_{0 \leq i \leq n}$ est arithmétique.

Soit σ' une subdivision de [a, b], on dit que σ' est <u>plus finie</u> que σ si tout point de σ est un point de σ' . On notera ici $\sigma \subset \sigma'$.

Subdivision adaptée Soit $f:[a,b]\to\mathbb{R}$ une fonction en escalier sur [a,b], on considère $\sigma=(c_0,\ldots,c_n)$ une subdivision de [a,b]. On dit que σ est adaptée à f si

$$orall i \in \llbracket exttt{o}, - exttt{1}
rbracket, \; \exists \lambda_i \in \mathbb{R} \; : \; f|_{
bracket_i c_{i+1}} [= \widetilde{\lambda_i}$$

Proposition.

 $\mathcal{E}([a,b],\mathbb{R})$ est stable par somme, produit et passage à la valeur absolue.

Intégrale d'une fonction en escalier Soit $f \in \mathcal{E}([a,b],\mathbb{R})$; soit $\sigma = (c_0, \ldots, c_n)$ une subdivision adaptée à f.

On appelle intégrale de f sur [a, b] le scalaire

$$\int_{[a,b]} f = \sum_{i=0}^{n-1} \lambda_i (c_{i+1} - c_i)$$

Propriétés.

Soit f et g des fonctions en escalier sur [a, b]

- 1) Si $f \ge 0$ sur [a, b] alors $\int_{a} a, b f \ge 0$
- 2) Si pour tout $x \in [a, b]$, $f(x) \ge g(x)$ alors $\int_{a} a, b f \ge \int_{a} a, b g$
- 3) $\left| \int_{[a,b]} a,b]f \right| leq \int_{[a,b]} a,b] |f| \leq (b-a) \sup_{[a,b]} |f|$

Proposition.

$$\mid$$
 Soit $f \in \mathcal{E}([a,b],\mathbb{R})$ et $c \in [a,b]$ alors $\int_{[a,b]} f = \int_{[a,c]} f|_{[a,c]} + \int_{[c,b]} f|_{[c,b]}$

16.3 Fonctions continues par morceaux

16.3.1 Généralités

Définition Soit $f:[a,b] \to \mathbb{R}$, on dit que f est continue par morceaux sur [a,b] s'il existe $\sigma=(c_0,\ldots,c_n)$ une subdivision de [a,b] telle que $\forall i\in [0,n-1]$, $f|_{]c_i,c_{i+1}[}$ est continue et prolongeable par continuité en c_i et c_{i+1} .

On note $\mathscr{C}^{\circ}_{vm}([a,b],\mathbb{R})$ l'ensemble des fonctions continues par morceaux de [a,b] dans \mathbb{R} .

Propriété.

| Si
$$f \in \mathscr{C}^0_{pm}([a,b],\mathbb{R})$$
 alors f est bornée sur $[a,b]$

Lemme.

Propriété.

 $|\mathscr{C}^{\circ}_{nm}([a,b],\mathbb{R})|$ est stable par produit, combinaison linéraire et valeur absolue.

16.3.2 Intégrale d'une fonction continue par morceaux

Définition Soit $f \in \mathscr{C}^{o}_{pm}([a, b], \mathbb{R})$

On note $\mathcal{I}^+(f) = \left\{ \int_{[a,b]} \psi \mid \psi$ en escalier sur [a,b] et $f \leq \psi
ight\}$

Alors $\inf(\mathcal{I}^+(f))$ existe, on appelle intégrale de f sur [a,b] notée $\int_{[a,b]} f$ cette valeur.

$$\mathsf{Rq}: \overline{\int_{[a,b]} f = \mathsf{inf}\big(\mathcal{I}^+(f)\big) = \mathsf{sup}\big(\mathcal{I}^-(f)\big)}$$

Propriété.

$$\left| \begin{array}{l} \textit{Soit} \ (f,g) \in \left(\mathscr{C}^{\texttt{o}}_{pm}([a,b],\mathbb{R})\right)^2 \ ; \ (\alpha,\beta \in \mathbb{R}^2 \ \textit{alors} \\ \int_{[a,b]} \alpha f + \beta g = \alpha \int_{[a,b]} f + \beta \int_{[a,b]} g \end{array} \right.$$

Théorèmes opératoires.

Soit
$$f, g \in \left(\mathscr{C}^{\circ}_{pm}([a,b],\mathbb{R})\right)^2$$
 on a

1) Si $f \geq 0$ sur $[a,b]$ alors $\int_{[a,b]} f \geq 0$

2) Si $\forall x \in [a,b], \ g(x) \geq f(x)$ alors $\int_{[a,b]} g \geq \int_{[a,b]} f$

3) $\left|\int_{[a,b]} f\right| \leq \int_{[a,b]} |f| \leq \sup_{x \in [a,b]} |f(x)|$

Démonstration. Clair d'après le lemme.

Théorème : Inégalité de Cauchy-Schwartz.

Soient
$$f,g\in\mathscr{C}^\circ_{pm}([a,b],\mathbb{R})$$
 alors $\left(\int_{[a,b]}fg
ight)^2\leq\int_{[a,b]}f^2 imes\int_{[a,b]}g^2$

Démonstration. On pose $P(\lambda) = \int_{[a,b]} (\lambda f + g)^2 = \lambda^2 \int_{[a,b]} f^2 + 2\lambda \int_{[a,b]} fg + \int_{[a,b]} g^2 \ge 0$ Si $\int_{[a,b]} f^2 = 0$ alors $2 \int_{[a,b]} fg = 0$ et l'inégalité est vrai

Sinon
$$\int_{[a,b]} f^2 > 0$$
 et $\Delta = 4 \Big(\big(\int_{[a,b]} fg \big)^2 - \int_{[a,b]} f^2 \times \int_{[a,b]} g^2 \le 0$

Valeur moyenne Soit $f \in \mathscr{C}^{o}_{pm}([a,b],\mathbb{R})$ on appelle valeur moyenne de f sur [a,b] le scalaire

$$\frac{1}{b-a}\int_{[a,b]}f$$

Proposition.

Soit f une fonction continue sur [ab] à valeur dans \mathbb{R}^+ On suppose $\int_{[a,b]} f=0$ alors f=0

Propriété.

Soit
$$f, g \in \mathscr{C}^{\circ}_{pm}([a, b], \mathbb{R})$$
 alors $\left(\int_{[a, b]} fg\right)^2 = \int_{[a, b]} f^2 \times \int_{[a, b]} g^2 \iff (f, g)$ sont liées.

Propriété.

Soit
$$f \in \mathscr{C}^0_{pm}([a,b],\mathbb{R})$$
 et $\forall u \in \mathbb{R}$ on pose $f_u \begin{pmatrix} [a+u,b+u] \longrightarrow \mathbb{R} \\ x \mapsto f(x-u) \end{pmatrix}$ alors $\int_{[a+u,b+u]} f_u = \int_{[a,b]} f$

Théorème : Relation de Chasles.

Soit f continue par morceaux sur un segment S de \mathbb{R} et $(a,b,c) \in S^3$ alors $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$

Propriété.

Soit $a \in \mathbb{R}$; $f \in \mathscr{C}_p^{\circ}m([-a,a],\mathbb{R})$, on suppose que f est paire (resp. impaire) alors $\int_{-a}^a f(x) \mathrm{d}x = 2 \int_0^a f(x) \mathrm{d}x$ (resp. $\int_{-a}^a f(x) \mathrm{d}x = 0$)

Propriété.

Soit f continue par morceaux sur $I \subset \mathbb{R}$, on suppose que f est T- périodique alors $\forall \alpha \in I$, $\int_a^{a+T} f(x) dx = cte$ (ne dépend pas de α)

16.4 Sommes de Riemman

Définition Si f est continue sur [a, b] et $\sigma = (c_0, \ldots, c_n)$ est une subdivision de [a, b], on appelle somme de Riemman associée à f sur [a, b] l'expression

$$\sum_{i=0}^{n-1} (c_{i+1}-c_i) imes f(\xi_i) \ avec \ \xi_i \in [c_i,c_{i+1}]$$

Somme de Riemman associée Soit $f \in \mathscr{C}^{\circ}_{pm}([a,b],\mathbb{R})$ et $\sigma=(c_{\circ},\ldots c_{n})$ une subdivision adaptée à f sur [a,b] on pose pour $i\in [\![0,n-1]\!]$, $\varphi_{i}=f|_{]c_{i},c_{i+1}[}$ que l'on prolonge par continuité sur $[c_i, c_{i+1}]$.

On appelle somme de Riemmann associées une somme de sommes de Riemman associées aux φ_i

Propriété.

Soit
$$f \in \mathscr{C}^{ to}_{pm}([a,b],\mathbb{R})$$
 alors $rac{b-a}{n}\sum_{k=0}^{n-1}fig(a+krac{b-a}{n}ig) \ op \ \int_a^bf(t)\mathsf{d}t$

16.5 Lien entre intégrales et primitives

Théorème fondamental du calcul intégral.

Soit f un fonction continue sur un intervalle I de \mathbb{R} et $a \in I$, Alors $F: x \mapsto \int_a^x f(t) dt$ est l'unique primitive de f qui s'annulle en a.

Démonstration. F est bien définies I, on considère alors $c \in I$; soit $x \in I \setminus \{c\}$ Il existe alors ξ_x compris entre x et c tel que $\frac{F(x)-F(c)}{x-c}=f(\xi_x) \underset{x\to c}{\longrightarrow} f(c)$ par \mathscr{C}^0 de f en cDonc F est dérivable en c et f'(c) = f(c)

Corollaire.

Pour toute primitive F de f sur I on a $\int_a^b f(t) dt = F(b) - F(a) = [F(t)]_a^b$

Corollaire.

Soit
$$f$$
 continue sur I et $a \in I$, on suppose $f \in \mathscr{C}^1(I,\mathbb{R})$ alors $\forall x \in I$, $f(x) = f(a) + \int_a^x f'(t) dt$

16.6 Formules de Taylor globales

Théorème : Formule de Taylor avec reste intégral.

$$\left| \begin{array}{l} \textit{Soit } f \in \mathscr{C}^{n+1}\big(I,\,\mathbb{R}\big), \;\; a \in I \\ \textit{Alors } \forall x \in I, \;\; f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) \mathrm{d}t \end{array} \right|$$

 $\begin{array}{l} \textit{D\'{e}monstration.} \ \ \text{Par r\'{e}currence sur } n : \\ \underline{\text{Initialisation}} : f(x) = f(a) + \int_a^x f'(t) \mathrm{d}t \ \text{d'apr\`{e}s le corollaire pr\'{e}c\'{e}dant} \\ \underline{\text{H\'{e}r\'{e}dit\'{e}}} : \ \text{On suppose la propri\'{e}t\'{e}} \ \ \text{vraie au rang } n \ \text{et on consid\`{e}re} \ f \in \mathscr{C}^{n=2}(I,\mathbb{R}). \\ \text{Comme } f \in \mathscr{C}^{n+1}(I,\mathbb{R}) \ \text{on a} \ f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) \mathrm{d}t \end{array}$

$$=\sum_{k=0}^nrac{(x-a)^k}{k!}f^{(k)}(a)+ig[-rac{(x-t)^{n+1}}{(n+1)!}f^{(n+1)}(t)ig]_a^x+\int_a^xrac{(x-t)^{n+1}}{(n+1)!}f^{(n+2)}(t)\mathrm{d}t$$

$$=\sum_{k=0}^{n+1}rac{(x-a)^k}{k!}f^{(k)}(a)+\int_a^xrac{(x-t)^{n+1}}{(n+1)!}f^{(n+2)}(t)\mathsf{d}t$$
 par IPP

Corollaire : Inégalité de Taylor-Lagrange.

Soit
$$f \in \mathscr{C}^{n+1}(I, \mathbb{R})$$
, $a \in I$ et M un majorant de $\left|f^{(n+1)}\right|$ sur I Alors $\forall x \in I$, $\left|f(x) - \sum\limits_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a)\right| \leq M \times \frac{|x-a|^{n+1}}{(n+1)!}$

Dénombrement

Contenu

17.1.1 Généralités	
Équipotence	
Ensemble fini - Cardinal	
17.1.2 Lemme des Bergers et principe des Tirroirs	
17.1.3 Calcul sur les cardinaux	
17.2 Listes et Combinaisons	
Arrangement	
Combinaison	
Formule de Vandermonde	

17.1 Cardinal d'un ensemble

17.1.1 Généralités

Équipotence On dit que deux ensembles \underline{E} et F sont équipotents s'il existe une bijection de E sur F. On note alors $E \sim F$

Ensemble fini - Cardinal Soit E un ensemble, on dit que \underline{E} est fini s'il est **vide** ou s'il existe $n \in \mathbb{N}^*$ tel que $E \sim \llbracket \mathbf{1}, n \rrbracket$

On appelle alors n le <u>cardinal de E</u> noté |E| (ou Card(E)) dont on admet l'unicité, sous réserve d'existence avec par convention $|\varnothing| = 0$

Lemme.

```
Pour tout n \in \mathbb{N}^*; soit F \subset \llbracket 1, n \rrbracket
Alors F est fini et |F| \leqslant n
```

Corollaire.

Si E et F sont des ensembles avec F fini et $E \subset F$ Alors E est fini et $|E| \leq |F|$ avec égalité si et seulement si E = F

Remarque : Définition avec l'indicatrice Soit $A \in \mathcal{P}(E)$

$$\mathbb{1}_A \ : \ \begin{pmatrix} E \longrightarrow & \{\mathtt{0},\mathtt{1}\} \\ x \mapsto & \left\{ \begin{array}{l} \mathtt{1} \ si \ x \in A \\ \mathtt{0} \ si \ x \in \mathcal{C}_E A \end{array} \right\} \ \text{ et si E est fini alors } |A| = \sum_{x \in E} \mathbb{1}_A(x)$$

Proposition.

Si E et F sont deux ensembles finis et $f: E \to F$ alors

- 1) Si f injective |f(E)| = |E| et $|E| \le |F|$
- 2) Si f surjective $|F| \leq |E|$
- 3) Si |F| = |E| alors f est injective si et seulement si f est surjective.

Propriété.

| Soit E un ensemble fini et $A \in \mathcal{P}(E)$ alors $|\mathcal{C}_E A| = |E| - |A|$

Corollaire.

| Si A et B sont finis alors $A \setminus B$ est fini et $|A \setminus B| = |A| - |B|$

Proposition.

| Si A et B sont finis alors $A \cup B$ est fini et $|A \cup B| = |A| + |B| - |A \cap B|$

17.1.2 Lemme des Bergers et principe des Tirroirs

Proposition.

| Si P est une partition de E (cf -> 1.2) alors
$$|E| = \sum_{X \in P} |X|$$

Lemme des Bergers.

$$ig| Soit\ {\sf E}$$
 , ${\sf F}$ deux ensembles finis et $f:{\sf E} o{\sf F}$ telle que $\exists {\it p}\in \mathbb{N}^*:\ orall y\in {\sf F}$, $ig| f_r^{-1}(\{y\})ig|={\it p}$ alors $ig| {\it E} ig|={\it p}\, |{\it F}|$

Démonstration.
$$\left(f_r^{-1}(\{y\})\right)_{y\in F}$$
 est une partition de E et on a alors $|E|=\sum\limits_{y\in F}\left|f_r^{-1}(\{y\})\right|=\sum\limits_{y\in F}p=p|F|$

Principe des Tirroirs de Dirichlet.

Soit E et F deux ensemble finis de cardinaux respectifs
$$n$$
 et $p \in \mathbb{N}^*$ $f: E \to F$ telle que s'il existe $k \in \mathbb{N}: n > kp$ alors $\exists y \in F: |f_r^{-1}(\{y\})| > k$

Démonstration. On suppose que
$$\forall y \in F$$
 , $\left|f_r^{-1}(\{y\})\right| \leq k$ alors d'après le Lemme des Bergers $|E| \leq kp$

17.1.3 Calcul sur les cardinaux

Proposition.

Soit E et F deux ensembles finis alors
$$\rightarrow |E \times F| = |E| \times |F|$$

Propriété.

Soit E et F deux ensemble de même cardinal n alors

- By(E, F) l'ensemble des bijections de E sur F est de cardinal n!
- $\mathcal{P}(E)$ est un ensemble fini de cardinal 2^n

Corollaire.

Le cardinal de l'ensemble des permutations d'un ensemble à n éléments es n!

17.2 Listes et Combinaisons

Arrangement On appelle arrangement de k éléments parmi n toute **application injective** de [1, k] dans [1, n] soit une **k-liste** d'éléments distincts de [1, n].

On note $A_{k,n}$ l'ensemble des arrangements de k éléments parmis n.

Propriété.

Le nombre d'arrangement de k éléments parmis n, noté A_n^k vérifie $A_n^k = |A_{k,n}| = \left\{ egin{arrange} 0 & si \ k > n \ rac{n!}{(n-k)!} & si \ 0 \leq k \leq n \end{array}
ight.$

Combinaison On appelle combinaison de k objets parmis n toute **partie** à k éléments d'un ensemble à n objets et on note $\mathcal{P}_k(E)$ l'ensemble des combinaisons à k éléments de E.

Propriété.

Le nombre de combinaisons de k éléments parmis n est ${n \choose k}$

Formule de Vandermonde

$$\overline{(\mathtt{1}+X)^n(\mathtt{1}+X)^m} = (\mathtt{1}+X)^{n+m} \;\; \Rightarrow \; {n+m \choose k} = \sum_{i+j=k} {n \choose i} {m \choose j}$$

* * *

Probabilités

On désigne par expérience aléatoire toute expérience dont le résultat est soumis au hasard.

Contenu

18.1 Univers, évènements et variables aléatoires	90
Ensemble des évènements	90
Système complet d'événements	91
Probabilité	91
Variable aléatoire	91
18.2 Espaces probabilisés finis, probabilité uniforme	91
18.2.1 Équiprobabilités	91
18.2.2 Probabilités conditionnelles	91
Définition	91
18.3 Loi d'une variable aléatoire	92
Loi de probabilité	92
18.3.1 Variable uniforme sur une ensemble fini non vide	93
Loi uniforme	93
18.3.2 Variable de Bernoulli	93
Loi de Bernoulli	93
18.3.3 Loi binomiale	93

18.1 Univers, évènements et variables aléatoires

<u>Modéliser</u> une expérience aléatoire, c'est associer à cette expérience ε trois objets mathématiques : Ω un univers fini (des possibles), $\mathscr{A} = \mathcal{P}(\Omega)$ l'ensemble des évènements associés à ε et P une probabilité.

 $(\Omega, \mathcal{P}(\Omega), P)$ est un espace probabilisé.

Ensemble des évènements On appelle ensemble des évènements associés à ε toute partie $\mathscr A$ de $\mathcal P(\Omega)$ vérifiant :

- (1) $\Omega \in \mathscr{A}$ et $\varnothing \in \mathscr{A}$
- (2) $\forall A \in \mathcal{A}, \ \overline{A} \in \mathcal{A}$
- (3) Soit I un ensemble fini ou dénombrable et $(A_i)_{i\in I}$ une famille d'évènements alors

$$\bigcup_{i \in I} A_i \in \mathscr{A} \ \ et \ \bigcap_{i \in I} A_i \in \mathscr{A}$$

Dans le cas où $|\Omega| < +\infty$ on prend $\mathscr{A} = \mathcal{P}(\Omega)$

Système complet d'événements

- (1) $\forall A, B \in \mathcal{P}(\Omega)$, A et B sont dits incompatibles si $A \cap B = \emptyset$
- (2) On appelle système complet d'événements toute famille $(A_i)_{i\in I}$ d'événements deux à deux incompatibles et dont la réunion est l'événement certain

Probabilité Si (Ω, \mathscr{A}) est un espace probabilisable, on appelle probabilité sur \mathscr{A} toute application telle que

(1)
$$\mathcal{P}(\Omega) = 1$$

(2)
$$\forall (A, B) \in \mathcal{A}^2$$
, $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$

Dans le cas fini, (Ω, \mathcal{A}, P) est un espace probabilisé fini.

Propriétés.

- (1) $P(\emptyset) = 0$ (2) $\forall A \in \mathcal{P}(\Omega), \ P(\overline{A}) = 1 - P(A)$ (3) $\forall (A, B) \in \mathcal{P}^2(\mathscr{A}), \ P(A \setminus B) = P(A) - P(A \cup B)$ (4) $\forall (A, B) \in \mathcal{P}^2(\Omega), \ A \subset B \Rightarrow P(A) \leqslant P(B)$
- (5) $\forall (A, B) \in \mathcal{P}^2(\Omega), P(A \cup B) = P(A) + P(B) P(A \cap B)$

Variable aléatoire On appelle variable aléatoire toute application définie sur Ω à valeurs dans un ensemble E. Si $E \subset \mathbb{R}$ on dit que $X : \Omega \to E$ est une variable aléatoire réelle.

Notations Si X est une variable aléatoire, on note

- Pour $A \in \mathcal{P}(E)$, $X_r^{-1}(A) = (X \in A)$
- Si $e \in E$, $X_r^{-1}(\{e\}) = (X = e)$ Si $E = \mathbb{R}$, $X_r^{-1}([a, b]) = (a \leqslant X < b)$

18.2 Espaces probabilisés finis, probabilité uniforme

18.2.1 Équiprobabilités

Si $|\Omega| < +\infty$, une hypothèse classique est de considérer une probabilité P telle que $\forall \omega \in \Omega$, $P(\omega) = \frac{1}{|\Omega|}$ C'est bien une probabilité, dite <u>équiprobabilité</u> car tout les événement réduits à une issue on la même probabilité

18.2.2 Probabilités conditionnelles

Définition Si A et B sont deux événements de (Ω, \mathcal{A}, P) de probabilités non nulles, on défini

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Propriété.

Si B est un événement de probabilité non nulle dans un espace probabilisé fini (Ω, \mathcal{A}, P)

Alors
$$\forall B \in \mathcal{P}(\Omega)$$
, $\begin{pmatrix} \mathcal{P}(\Omega) \longrightarrow \mathbb{R} \\ A \mapsto \mathcal{P}(A|B) \end{pmatrix}$

est une probabilité

Proposition \heartsuit .

Si A_1, \ldots, A_n sont des événements d'un espace probabilisé fini $(\Omega, \mathcal{P}(\Omega), P)$ alors

$$P(A_1 \cap \cdots \cap A_n) = P(A_1) \times P(A_2|A_1) \times \cdots \times P(A_n|A_1 \cap \cdots \cap A_{n-1})$$

Propriété: Formule des probabilités totales.

Si B est un événement et $(A_i)_{i \in \llbracket 1,n \rrbracket}$ est un système complets d'événements de $(\Omega, \mathcal{P}(\Omega), P)$ Alors $P(B) = \sum_{i=1}^n P(B|A_i) \times P(A_i)$

Proposition: Formule de Bayes.

Soit A un événement de $(\Omega, \mathcal{P}(\Omega), P)$ tel que $P(A) \neq 0$ Si (B_1, \ldots, B_n) est un système complet d'événements Alors $\forall i \in [\![1, n]\!], \ P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{k=1}^n P(A|B_k)P(B_k)}$

18.3 Loi d'une variable aléatoire

Loi de probabilité Si X est une variable aléatoire définie sur un espace probabilisé fini $(\Omega, \mathcal{P}(\Omega), P)$ à valeur dans E on appelle <u>loi de probabilité de la variable X</u> (ou distribution) l'application

$$P_X \begin{pmatrix} \mathcal{P}(E) \longrightarrow [0,1] \\ A \mapsto P(X \in A) \end{pmatrix}$$

Propriété.

Si X est une variable aléatoire sur un espace probabilisé fini $(\Omega, \mathcal{P}(\Omega), P)$ Alors P_X est une probabilité sur E

Notation Si X est Y sont deux variables aléatoire définies sur un même espace probabilisé fini à valeurs dans E on note $X \sim Y$ si $P_X = P_Y$

Propriété.

Soit $X : \Omega \to E$ est une variable aléatoire et $f : E \to F$ Alors $f(X) = f \circ X : \Omega \to F$ est une variable aléatoire avec $\forall B \in \mathcal{P}(F), \ P_{f(X)}(B) = P(f(X) \in B) = P(X \in f_r^{-1}(B)) = P_X(f_r^{-1}(B))$

18.3.1 Variable uniforme sur une ensemble fini non vide

Soit E un ensemble fini non vide.

Loi uniforme On dit que X variable aléatoire suit une loi uniforme sur E si

$$\begin{cases} X(\Omega) = E \\ \forall x \in E, \ P(X = x) = \frac{1}{|E|} \end{cases}$$

On écrit alors $X \sim \mathcal{U}(E)$

On prend un objet au hasard parmi |E| objets qui on tous la même probabilité d'être choisis et on note X cet objet.

18.3.2 Variable de Bernoulli

On appelle expérience de Bernoulli une expérience aléatoire à deux issues. On appelle succès l'une des issues et échec l'autre. On peut donc lui associer une variable aléatoire réelle qui prend la valeur 1 en cas de succès et la valeur 0 en cas d'échec.

Loi de Bernoulli On dit que X suit une loi de Bernoulli de paramètre $p \in [0, 1]$ si

$$\begin{cases} X(\Omega) = \{0, 1\} \\ P(X = 1) = p \end{cases}$$

On note alors $X \sim \mathcal{B}(p)$

18.3.3 Loi binomiale

Si on répète n fois une expérience de Bernoulli, la variable aléatoire associée au nombre de succès suit une loi de Bernoulli de paramètres n et p.

Espaces préhilbertiens réels

Dans ce chapitre, E est un \mathbb{R} -espace vectoriel.

Contenu

19.1 Produit scalaire)4
Définition	94
Espace euclidien	94
Produit scalaires canoniques	94
19.2 Norme associée à un produit scalaire)5
Norme	9 5
Distance	9 5
9.3 Orthogonalité	96
19.3.1 Résultats théoriques	96
Vecteur orthogonal	96
Ensemble orthogonal	96
Famille orthogonale	97
19.3.2 Procédé d'orthonormalisation de Gram-Schmidt 9	97
Construction par récurrence	97
9.4 Bases orthonormées	8
19.5 Projection orthogonale sur un sous-espace de dimension finie 9	9
Projection orthogonale	9 9
Distance à un ensemble	99

19.1 Produit scalaire

 $\begin{array}{lll} \textbf{D\'efinition} & \text{Un produit scalaire } \langle x,y \rangle \text{ est une application } \varphi : E \times E \to \mathbb{R} \text{ telle que} \\ 1) & \varphi \text{ est } \underline{\text{bilin\'eaire}} & \varphi(\lambda x + \lambda' x',y) = \lambda \varphi(x,y) + \lambda' \varphi(x',y) \\ & \varphi(x,\mu y + \mu' y') = \mu \varphi(x,y) + \mu' \varphi(x,y') \\ 2) & \varphi \text{ est } \underline{\text{sym\'etrique}} & \forall (x,y) \in E^2 \text{ , } \varphi(x,y) = \varphi(y,x) \\ 3) & \varphi \text{ est } \underline{\text{d\'efinie positif}} & \varphi(x,x) \geqslant 0 \ \land \ \varphi(x,x) = 0 \ \Leftrightarrow \ x = 0_E \end{array}$

Espace euclidien Soit $(E, \langle ., . \rangle)$ un espace préhilbertien réel, on dit que $(E, \langle ., . \rangle)$ est un espace euclidien si E est de **dimension finie**.

Produit scalaires canoniques

Sur
$$\mathbb{R}^n$$
 $\langle x,y \rangle = \left\langle \sum_{i=1}^n x_i, \sum_{i=1}^n y_i \right\rangle = \sum_{i=1}^n x_i.y_i$

Sur
$$\mathcal{M}_{np}(\mathbb{R})$$
 $\langle X, Y \rangle = \operatorname{tr}(X \times^T Y) = \sum_{i=1}^p \sum_{k=1}^n a_{ki}.b_{ki}$

$$\begin{aligned} & \textbf{Sur} \ \mathcal{C}^{\scriptscriptstyle 0}\left([a,b],\mathbb{R}\right) \quad (a < b) \qquad \langle f,g \rangle \ = \ \int_a^b f(t).g(t) \mathrm{d}t \\ & \text{On a aussi sur} \ \mathbb{R}_n[X], \quad \varphi(P,Q) \ = \ \sum_{k=0}^n P(k).Q(k) \quad \text{et} \quad \psi(P,Q) \ = \ \sum_{k=0}^n P^{(k)}(0).Q^{(k)}(0) \end{aligned}$$

19.2 Norme associée à un produit scalaire

Norme Si E est un \mathbb{R} -espace vectoriel on dit que $N:E\to\mathbb{R}^+$ est une norme si

- (1) $\forall x \in E$, $\forall \lambda \in \mathbb{R}$, $N(\lambda x) = |\lambda| . N(x)$ (2) $\forall x \in E$, $N(x) = 0 \Leftrightarrow x = 0_E$
- (3) $\forall (x,y) \in E^2$, $N(x+y) \leqslant N(x) + N(y)$

Distance Si E est un \mathbb{R} -espace vectoriel on dit que $d: E \times E \to \mathbb{R}^+$ est une distance si

- (1) $\forall (x,y) \in E^2$, d(x,y) = d(y,x)(2) $\forall (x,y) \in E^2$, $d(x,y) = 0 \Leftrightarrow x = y$
- (3) $\forall (x,y,z) \in E^3$, $d(x,z) \leqslant d(x,y) + d(y,z)$

 $\underline{\mathsf{Rq}}:\mathsf{Si}\;(E,\mathsf{N})$ est un espace normé alors $d\begin{pmatrix}E\times E\longrightarrow R\\(x,y)\mapsto N(x-y)\end{pmatrix}$ est une distance.

Théorème : Inégalité de Cauchy-Schwartz.

Soit
$$(E, \langle ., . \rangle)$$
 un espace préhilbertien réel alors $\forall (x, y) \in E^2, \ \langle x, y \rangle^2 \leqslant \langle x, x \rangle \langle y, y \rangle$
Avec égalité si et seulement si x et y sont liés (égaux à un scalaire près)

Démonstration. On pose pour tout $\lambda \in \mathbb{R}$, $P(\lambda) = \langle x + \lambda y, x + \lambda y \rangle \geqslant \in \mathbb{R}[X]$ On a alors $P(\lambda) = \lambda^2 \langle y, y \rangle + 2\lambda \langle x, y \rangle + \langle x, x \rangle$

- Si $\langle y, y \rangle = 0$ alors y = 0 et on a l'égalité.

• Sinon vu $p(\lambda) \leqslant 0$ on a $\Delta = 4(\langle x,y\rangle^2 - \langle x,x\rangle \langle y,y\rangle) \leqslant 0$ Si on a égalité alors il existe $\lambda_0 \in \mathbb{R}$ tel que $P(\lambda_0) = 0 \Rightarrow x + \lambda_0 y = 0$ Réciproquement si $x = \lambda y$ alors $\langle x,y\rangle^2 = \lambda \langle y,y\rangle \times \lambda \langle y,y\rangle = \langle \lambda y,\lambda y\rangle \langle x,x\rangle = \langle x,x\rangle \langle y,y\rangle$

Proposition.

Si $(E, \langle ., . \rangle)$ est un espace préhilbertien réel Alors $x \mapsto \sqrt{\langle x, x \rangle}$ est une norme sur E dite norme euclidienne $(\|.\|)$

Propriété.

 $\forall (x,y) \in E^2$ si N est la norme euclidienne associée à $\langle .,. \rangle$ $N(x+y) \leqslant N(x) + N(y)$ avec égalité si et seulement si il existe $\lambda \in \mathbb{R}^+$ tel que $x=\lambda y$ ou $y=\lambda x$

Propriété.

Soit $(E, \langle .,. \rangle)$ un espace préhilbertien réel et $\|.\|$ la norme euclidienne associée. On a les identités remarquables suivantes :

$$orall (x,y) \in E^2, \; \left\{ egin{array}{ll} \|x+y\|^2 &= \|x\|^2 + 2 \, \langle x,y \rangle + \|y\|^2 \ \|x-y\|^2 &= \|x\|^2 - 2 \, \langle x,y \rangle + \|y\|^2 \ \|x+y\|^2 + \|x-y\|^2 &= 2 ig(\|x\|^2 + \|y\|^2ig) \end{array}
ight.$$

On en déduit les formules de polarisation suivantes :

$$\forall (x,y) \in E^2, \; \begin{cases} \langle x,y \rangle = \frac{1}{2} (\|x+y\|^2 - \|x\|^2 - \|y\|^2) \\ \langle x,y \rangle = \frac{1}{2} (\|x\|^2 + \|y\|^2 - \|x-y\|^2) \\ \langle x,y \rangle = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2) \end{cases}$$

 $rac{\operatorname{\mathbb{R}q}}{}: \mathcal{N}: E o \mathbb{R}^+$ est une norme euclidienne sur E si et seulement si $\varphi(x,y) = rac{1}{4} ig(\mathcal{N}^2(x+Y) - \mathcal{N}^2(x-y) ig)$ est un produit scalaire.

19.3 Orthogonalité

19.3.1 Résultats théoriques

Vecteur orthogonal Si $(E, \langle ., . \rangle)$ est un espace préhilbertien réel, \underline{x} et \underline{y} sont orthogonaux si $\langle x, y \rangle = 0$. On note alors $\underline{x} \perp \underline{y}$

Ensemble orthogonal Si $(E, \langle ., . \rangle)$ est un espace préhilbertien réel et $F \in \mathcal{P}(E)$ on appelle <u>orthogonal de F</u> noté F^{\perp} l'ensemble

$$\{y \in E \mid \forall x \in F, \ y \perp x\}$$

Proposition.

 $\forall F \in \mathcal{P}(E), F^{\perp}$ est un sous-espace de E

Propriété.

Soit $(E, \langle ., . \rangle)$ un espace préhilbertien réel, (1) $\forall (F, G) \in \mathcal{P}^2(E)$, $F \subset G \Rightarrow G^{\perp} \subset F^{\perp}$ (2) $F^{\perp} = \left(\text{Vect}(F) \right)^{\perp}$ (3) $F \subset \left(F^{\perp} \right)^{\perp}$ avec égalité si et seulement si F est une sous-espace vectoriel. Famille orthogonale Soit I un ensemble, $(E, \langle ., . \rangle)$ un espace préhilbertien réel et $\left(x_{i}
ight)_{_{i\in I}}$ une famille de vecteurs de E .

On dit que $(x_i)_{i\in I}$ est orthogonale si

$$\forall (i,j) \in I^2, i \neq j \Rightarrow x_i \perp x_j$$

On dit de plus que la famille est orthonormée (ou orthonormale) si les vecteurs sont normés (ou unitaires), càd

$$orall i \in I, \; \|x_i\| = \mathbb{1} \;\;\; \Leftrightarrow \;\; orall (i,j) \in I^2, \;\; \langle x_i, x_j
angle = \delta_{i,j}$$

Proposition.

Toute famille $\left(x_i
ight)_{i\in I}$ d'un espace préhilbertien réel **orthogonale** et ne contenant pas le vecteur nul est libre. Toute famille orthonormée est libre.

Théorème de Pythagore.

Soit $(E, \langle ., . \rangle)$ un espace préhilbertien réel

(1) $x\perp y\Leftrightarrow \|x+y\|^2=\|x\|^2+\|y\|^2$ (2) $Si\left(x_i\right)_{i\in I}$ est une famille orthogonale alors

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \left(\lambda_i
ight)_{_{i\in I}} \in \mathbb{R}^{(I)}, & \|\sum_{i\in I}\lambda_i x_i\|^2 \end{aligned} = \sum_{i\in I}\lambda_i^2 \|x_i\|^2 \end{aligned}$$

Démonstration. $\forall (x,y) \in E^2$

(1)
$$x \perp y \Leftrightarrow \langle x, y \rangle = 0 \Leftrightarrow \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2) = 0 \Leftrightarrow \|x + y\|^2 = \|x\|^2 + \|y\|^2$$

(2) $\|\sum_{i \in I} \lambda_i x_i\|^2 = \langle \sum_{i \in I} \lambda_i x_i , \sum_{j \in I} \lambda_j x_j \rangle = \sum_{i \in I} \sum_{j \in I} \lambda_i \lambda_j \langle x_i, x_j \rangle = \sum_{i \in I} \lambda_i^2 \|x_i\|^2$

19.3.2 Procédé d'orthonormalisation de Gram-Schmidt

 $oxed{ ext{Objectif}}$: Transformer par un algorithme une famille $ig(e_i)ig)_{i\in\llbracket 1,n
rbracket}$ libre en une famille $(arepsilon>0)_{i\in \llbracket 1,n
rbracket}$ orthonormée de telle sorte que

$$orall k \in \llbracket exttt{1}, n
rbracket, \ F_k = extst{Vect}ig(\{e_1, \dots, e_k\}ig) = extst{Vect}ig(\{arepsilon_1, \dots, arepsilon_k\}ig) = F_k'$$

Pour tout
$$k \in \llbracket exttt{1}, n
rbracket$$
 on pose $u_k = \sum_{i=1}^{k-1} raket{arepsilon_i, e_k}{arepsilon_i}$

Construction par récurrence

Initialisation $\{e_1\}$ est libre car $e_1 \neq 0$ on pose donc $\varepsilon_1 = \frac{e_1}{\|e_1\|}$ qui convient.

Hérédité Soit $k \in \llbracket 1, n \rrbracket$ tel que $(\varepsilon_1, \dots, \varepsilon_{k-1})$ vérifie les contraintes et on considère $u_k' = e_k - u_k$. On peut vérifier que $u_k' \in \mathcal{F}_{k-1}'^{\perp}$; en effet :

$$orall l \in \llbracket \mathtt{1}, k - \mathtt{1}
rbracket, \quad \left\langle u_k', arepsilon_k
ight
angle = \left\langle e_k - \sum_{i=1}^{k-1} \left\langle arepsilon_i, e_k
ight
angle arepsilon_i \; , \; arepsilon_l
ight
angle = \left\langle e_k, arepsilon_l
ight
angle - \underbrace{\sum_{i=1}^{k-1} \left\langle arepsilon_i, e_l
ight
angle \left\langle arepsilon_i, arepsilon_l
ight
angle}_{= \left\langle arepsilon_k, e_l
ight
angle} = \mathtt{0}$$

On a par contraposée $u_k'
eq 0$ (sinon $e_k \in \mathcal{F}_{k-1}$), on peut donc considérer $\left| \varepsilon_k = \frac{u_k'}{\|u_k'\|} \right|$

Vérifions que $arepsilon_k$ convient :

On a déjà $(\varepsilon_1,\ldots,\varepsilon_k)$ est orthonormée vu $\varepsilon_k\in F_{k-1}^{\prime\perp}$. De plus $u_k'\in F_k$ d'où $\varepsilon_k\in F_k$ donc $F_k'\subset F_k$. Réciproquement $F_{k-1}'=F_{k-1}$ et $e_k\in \mathrm{Vect}(\varepsilon_1,\ldots,\varepsilon_{k-1},u_k')$ d'où $F_k\subset F_k'$

On a ainsi une famille $(\varepsilon_i)_{i\in I}$ orthonormée vérifiant les contraintes.

19.4 Bases orthonormées

Théorème.

Tout espace euclidien admet une base orthonormée.

Démonstration. Tout espace E euclidien admet une base (dimension finie) donc on peut construire avec le procédé d'orthonormalisation de Gram-Schmidt une famille orthonormée génératrice de E donc une base orthonormée de E

Théorème de la base orthonormée incomplète.

Si $(E, \langle ., . \rangle)$ est un espace euclidien de dimension n, pour tout $k \in [1, n]$, soit (e_1, \ldots, e_k) une famille orthonormée de vecteurs de E Alors cette famille peut être complétée en une base orthonormée de E.

Démonstration. Comme (e_1, \ldots, e_k) est orthonormée elle est libre, on peut donc la compléter en une base de E à laquelle on pourra appliquer le procédé d'orthonormalisation de Gramm-Schmidt pour obtenir une base orthonormée de E.

Propriété.

$$Si~(E,\langle.,.
angle)$$
 est un espace euclidien muni d'une base (e_1,\ldots,e_n) orthonormée on a
$$(1)~\forall x\in E~,~~x=\sum_{i=1}^n \left\langle x,e_i \right\rangle.e_i$$
 $(2)~\forall (x,y)\in E^2~,~~ \left\langle x,y \right\rangle = \sum_{i=1}^n \left\langle x,e_i \right\rangle \left\langle y,e_i \right\rangle$

Corollaire 1.

Corollaire 2.

Si $x\in E$, E euclidien rapporté à une base (e_1,\ldots,e_n) orthonormée $Alors \ \|x\|^2 = \sum_{i=1}^n \ \langle x_i,e_i \rangle^2$

19.5 Projection orthogonale sur un sous-espace de dimension finie

Proposition.

Si F est un sous-espace de dimension finie de $(E,\langle.,.\rangle)$ espace préhilbertien réel Alors f^{\perp} est un supplémentaire de F dans E appelé supplémentaire orthogonal de F dans E. On note $F \overset{\perp}{\oplus} F^{\perp}$

Corollaire.

Si F est un sous-espace vectoriel d'un espace $(E, \langle ., . \rangle)$ euclidien Alors $\dim F^{\perp} = \dim E - \dim F$ En particulier si H est un hyperplan de E tout vecteur **non nul** de H^{\perp} est dit vecteur normal à H

Projection orthogonale Si F est un sous-espace de dimension finie d'une espace préhilbertien réel $(E,\langle.,.\rangle)$ rapporté à une base orthonormée (e_1,\ldots,e_p) , alors $\sum_{i=1}^p \langle x,e_i\rangle e_i$ est la projection de x sur F parallèlement à F^\perp autrement appelée projection orthogonale de x sur F parfois notée $p_F^\perp(x)$

Distance à un ensemble Si F est un sous-espace de dimension finie d'un espace préhilbertien réel $(E, \langle ., . \rangle)$, pour $x \in E$, on appelle <u>distance de x à F</u> et on note d(x, F) le réel définit par

$$d(x, F) = \inf_{y \in F} \{\|x - y\|\}$$

Propriété.

Si F est rapporté à une base orthonormée
$$(e_1, \ldots, e_p)$$

Alors $d(x, F) = \|x - p_F^{\perp}(x)\| = \|p_{F^{\perp}}^{\perp}(x)\| = \|x - \sum_{i=1}^p \langle x, e_i \rangle e_i\|$

Proposition.

Si u est un vecteur non nul d'un espace euclidien $(E, \langle ., . \rangle)$ on a : $\forall x \in E, \ p_{(\text{Vect}(u))^{\perp}}^{\perp}(x) = x - \frac{\langle x, u \rangle \, u}{\|u\|^2}$ et $d(x, (\text{Vect}(u))^{\perp}) = \frac{|\langle x, u \rangle|}{\|u\|}$

Procédés sommatoires discrets

Fonctions de deux variables

Contenu				
21.1 Continuité				
21.1.1 Notion d'ouvert				
Boules				
Ouvert				
21.1.2 Fonctions de deux variables				
Définition				
Continuité				
Applications partielles				
21.2 Dérivation				
21.2.1 Dérivée partielles				
Fonction différentiable				
Dérivées partielles				
Dérivabilité selon un scalaire				
Classe $\mathscr{C}^{\scriptscriptstyle 1}$				
21.2.2 Différentielle				
Fonction négligeable				

21.1 Continuité

21.1.1 Notion d'ouvert

```
Si la norme \|.\| dérive d'un produit scalaire on a :

(1) \forall x \in \mathbb{R}^2, \|x\| \geqslant 0 = (0,0) (2) x \in \mathbb{R}^2, \|x\| = 0 \Leftrightarrow x = 0

(3) \forall x \in \mathbb{R}^2, \forall \lambda \in \mathbb{R}, \|\lambda.x\| = |\lambda| \|x\|

(4) \forall (x,y) \in (\mathbb{R}^2)^2, \|x+y\| \leqslant \|x\| + \|y\|

avec égalité si et seulement si \exists (\lambda,\mu) \in \mathbb{R}^2 \setminus \{(0,0)\} tel que \lambda x + \mu y = 0
```

Propriété.

(5) $\forall (x, y) \in (\mathbb{R}^2)^2$, $||x - y|| \geqslant ||x|| - ||y||$

$$|Si||x|| = \sqrt{x_1^2 + x_2^2} \text{ avec } x = (x_1, x_2) \in \mathbb{R}^2$$

 $|Alors||x|| \geqslant |x_1|, ||x|| \geqslant |x_2| \text{ et } ||x|| \leqslant |x_1| + |x_2|$

Boules Soit $x_0 \in \mathbb{R}^2$ et $r \in \mathbb{R}^*_+$ on appelle

ullet Boule ouvert de centre $x_{
m o}$ et de rayon R l'ensemble

$$B(x_0, r) = \{x \in \mathbb{R}^2 \mid ||x - x_0|| < r\}$$

ullet Boule fermée de centre $x_{
m o}$ et de rayon r l'ensemble

$$\overline{B(x_0,r)} = \{x \in \mathbb{R}^2 \mid \|x - x_0\| \leqslant r\}$$

Ouvert Une partie U de \mathbb{R}^2 est dit ouvert lorsque

$$\forall x \in U, \exists r > 0 : B(x, r) \subset U$$

Rq : Un partie de \mathbb{R}^2 est dite fermée si son complémentaire dans $/R^2$ est un ouvert.

Propriétés.

- (1) \varnothing et \mathbb{R}^2 sont des parties ouvertes de \mathbb{R}^2
- (2) Une union d'ouverts de \mathbb{R}^2 est un ouvert de \mathbb{R}^2
- (3) Une intersection **finie** d'ouverts de \mathbb{R}^2 est un ouvert de \mathbb{R}^2

21.1.2 Fonctions de deux variables

Définition Si U est un ouvert de \mathbb{R}^2 toute application $f:U\to\mathbb{R}$ est une fonction de deux variables réelles.

Continuité Si U est un ouvert de \mathbb{R}^2 , $f:U\to\mathbb{R}$ et $x_0\in U$ on dit que \underline{f} est continue en x_0 si

$$\forall \varepsilon > \mathtt{0}, \ \exists r > \mathtt{0} \ : \ \forall x \in \mathit{U}, \ (x \in \mathit{B}(x_\mathtt{0}, r) \Rightarrow |f(x_\mathtt{0}) - f(x)| \leqslant \varepsilon)$$

Propriété.

Toute fonction polynômiale en x et y est continue sur \mathbb{R}^2

Proposition.

Soit f et g définies sur un ouvert U de \mathbb{R}^2 à valeurs réelles Soit $x_0 \in U$, on suppose que f et g sont continues en x_0 , alors (1) $\forall (\lambda, \mu) \in \mathbb{R}^2$, $\lambda f + \mu g$ est continue en x_0 (2) Si de plus $g(x_0) \neq 0$, il existe r > 0 tel que $\forall x \in B(x_0, r)$, $g(x) \neq 0$ et $\frac{f}{g}$ est continue en x_0 21.2. DÉRIVATION 103

Applications partielles Soit $f:U\to\mathbb{R}$ et $x=(x_1,x_2)\in U$ on définit les fonctions d'une variable réelle f_1 et f_2

$$f_1(t) = f(x_1, t)$$
 et $f_2(t) = f(t, x_2)$

 $f_{ exttt{1}}$ et $f_{ exttt{2}}$ sont dites <u>applications partielles de f au point $x=(x_{ exttt{1}},x_{ exttt{2}})$ </u>

Propriété.

Si $f: U \to \mathbb{R}$ est continue en $(x_1, x_2) \in U$ Alors f_1 et f_2 sont continues respectivement en X_2 et x_1

21.2 Dérivation

21.2.1 Dérivée partielles

Fonction différentiable Soit $f: U \to \mathbb{R}$ avec U un ouvert de \mathbb{R}^2 et $x = (x_1, x_2) \in U$ On dit que f est différentiable en x par rapport à la première variable si

$$t\mapsto rac{f(x_1+t,x_2)-f(x_1,x_2)}{t}$$

admet une limite en o, notée $rac{\partial f}{\partial x_1}(x)$ sous réserve d'existence.

On considère une définition analogue en x_2

Dérivées partielles Soit $f:U\to\mathbb{R}$ avec U un ouvert de \mathbb{R}^2 , on note \mathscr{D}_f l'ensemble des points x de U tels que f soit différentiable en x selon la première variable. On définie la dérivée partielle de f selon la première variable

$$rac{\partial f}{\partial x_1}:\mathscr{D}_f o\mathbb{R}$$

qui à tout x de \mathscr{D}_f associe $rac{\partial f}{\partial x_1}(x)$

On définit de même la dérivée partielle de f selon la deuxième variable.

Si f est différentiable en x selon la première variable, on dit aussi que f admet une dérivée partielle selon la première variable.

On a de même pour la deuxième variable.

Dérivabilité selon un scalaire Si $f:U\to\mathbb{R}$, $h\in\mathbb{R}^2$ et $x\in U$ on dit que \underline{f} est dérivable en x selon h lorsque

$$\frac{f(x+th)-f(x)}{t}$$

admet une limite finie quand $t \to 0$, notée $d_{f_x}(h)$

Classe \mathscr{C}^1 On dit que $\underline{f}:U\to\mathbb{R}$ est de classe \mathscr{C}^1 sur \underline{U} si $\frac{\partial f}{\partial x_1}$ et $\frac{\partial f}{\partial x_2}$ sont définies et continues sur \underline{U}

Propriétés.

Si
$$f$$
 et g sont de classe \mathscr{C}^1 sur U ouvert de \mathbb{R}^2 alors
$$(1) \ \forall (\lambda,\mu) \in \mathbb{R}^2, \ \lambda f + \mu g \ \text{est de classe} \ \mathscr{C}^1 \ \text{sur } U \ \text{avec}$$

$$\forall x \in U, \ \frac{\partial (\lambda f + \mu g)}{\partial x_i}(x) = \lambda \frac{\partial f}{\partial x_i}(x) + \mu \frac{\partial g}{\partial x_i}(x)$$
 (2) fg est de classe \mathscr{C}^1 sur U avec
$$\forall x \in U, \ \frac{\partial (fg)}{\partial x_i}(x) = f(x) \frac{\partial g}{\partial x_i}(x) + g(x) \frac{\partial f}{\partial x_i}(x)$$
 (3) Si g ne s 'annule pas sur U alors $\frac{f}{g}$ est de classe \mathscr{C}^1 sur U avec
$$\forall x \in U, \ \frac{\partial (f/g)}{\partial x_i}(x) = \frac{\frac{\partial f}{\partial x_i}(x)g(x) - f(x)\frac{\partial g}{\partial x_i}(x)}{g^2(x)}$$

21.2.2 Différentielle

Fonction négligeable Soit $f: U \to \mathbb{R}$ avec $(0,0) \in U$ on dit que $\underline{f(h)}$ est négligeable devant ||h|| au voisinage de (0,0) si

$$\forall \varepsilon > \mathsf{o}, \ \exists \eta > \mathsf{o} \ : \ \forall h \in \mathit{U}, \ (\|h\| \leqslant \eta \Rightarrow |f(h)| \leqslant \varepsilon \|h\|)$$

On note alors $f(h) = o(\|h\|)$

Rq: Si f(h) est négligeable devant ||h|| au voisinage de (0, 0) alors $f(h) \xrightarrow[h \to (0, 0)]{} 0$ et f admet des dérivées selon tout vecteur en (0, 0) nulles.

Théorème : Développement limité à l'ordre 1 en (x_0, y_0) .

Si
$$f: U \to \mathbb{R}$$
 est de classe \mathscr{C}^1 sur U et $(x_0, y_0) \in U$
Alors pour tout $h = (h_1, h_2) \in \mathbb{R}^2$
 $f(x_0 + h_1, y_0 + h_1) = h_{0,0} f(x_0, y_0) + h_1 \frac{\partial f}{\partial x}(x_0, y_0) + h_2 \frac{\partial f}{\partial y}(x_0, y_0) + o(\|h\|)$

Démonstration. Ce résultat est admis.

Corollaire.

| Si f est de classe \mathscr{C}^1 sur U alors f est continue sur U.

Proposition.

Si
$$f: U \to R$$
 est de classe \mathscr{C}^1 sur $U, x \in U$
Alors pour tout $h = (h_1, h_2) \in \mathbb{R}^2$, f admet une dérivée en x selon h donnée par $\mathrm{d}_{f_x}(h) = h_1 \frac{\partial f}{\partial x_1}(x) + h_2 \frac{\partial f}{\partial x_2}(x)$

Table des matières - Première année

0	Intro	oduction 3 Règles d'écriture 3
	0.1	0.1.1 Quantificateurs
		0.1.1 Quantificateurs
	0.2	Modes de démonstaration
	0.2	0.2.1 Modus Ponen
		0.2.2 Contraposée
		0.2.3 Disjonction de cas
		0.2.4 Absurde
		0.2.5 Analyse Synthèse
		0.2.6 Récurrence
		0.2.7 Exemples
1	Ense	embles et applications 8
	1.1	Opérations sur les Parties
		1.1.1 Notations
		1.1.2 Propriétés
	1.2	Recouvrement disjoint et Partitions
	1.3	Éléments applicatifs
		1.3.1 Graphe
		1.3.2 Indicatrice
	1.4	Relations binaires
2	Cald	culus 12
	2.1	Sommes et Produits
	2.2	Coefficients binomiaux
	2.3	Valeur absolue
	2.4	Trigonométrie
3		nbres Complexes 15
	3.1	Calcul dans $\mathbb C$
	3.2	Conjugaison et module
		3.2.1 Opération de conjugaison
		3.2.2 Module du complexe
	2.2	3.2.3 Inégalité triangulaire
	3.3	Unimodulaires et trigonométrie
		3.3.1 Technique de l'angle moitié
4		ctions 18
	4.1	Généralités sur les fonctions
	4.2 4.3	Dérivation
		Dérivation d'une fonction complexe

5	Prim 5.1	nitives et équations différentielles Calcul de primitives	25 25						
	5.2 5.3	Équations différentielles du premier ordre	26 28						
6	Nombres réels et suites numériques 30								
	6.1	Ensembles de nombres réels	30						
	6.2	Suites réelles	32						
		6.2.1 Généralités	32						
		6.2.2 Suites particulières	36						
7	Fond	ctions d'une variable réelle	38						
	7.1	Limites et Continuité	38						
		7.1.1 Limite d'une fonction en un point	38						
		7.1.2 Continuité en un point	40						
		7.1.3 Continuité sur un intervalle	41						
		7.1.4 Fonctions à valeurs complexes	41						
	7.2	Dérivabilité	42						
		7.2.1 Extremum local et point critique	43						
		7.2.2 Théorèmes de Michel Rolle et des accroissements finis	43						
		7.2.3 Fonctions de classe \mathscr{C}^k , $(k \in \mathbb{N} \cup \{+\infty\})$	44						
	7.3	Convexité	46						
		7.3.1 Généralités	46						
		7.3.2 Fonctions convexes dérivables et deux fois dérivables	46						
8	Arith	nmétique dans Z	47						
	8.1	Relation de divisibilité dans $\mathbb Z$	47						
		8.1.1 Principe de bon ordre	47						
		8.1.2 Multiples et partie $a\mathbb{Z}$	48						
	8.2	Algorithme de division euclidienne	48						
	8.3	pgcd et ppcm	48						
		8.3.1 Egalité de Bézout	48						
		8.3.2 Algorithme d'Euclide	49						
	8.4	Entiers premiers entre eux	49						
	8.5	Nombres premiers	50						
	8.6	Congruences	51						
9	Stru	ctures algébriques usuelles	53						
	9.1	Lois de composition interne	53						
	9.2	Structure de groupe	54						
	9.3	Structure d'anneau et de corps	55						
		9.3.1 Structure d'anneau	55						
		9.3.2 Structure de corps	56						
10	Calc	aul matriciel et systèmes linéaires	58						
		Opérations sur les matrices	58						
		10.1.1 Somme et Produit matriciel	59						
		10.1.2 Matrice élémentaire	59						
		10.1.3 Matrices colonnes	60						
		10.1.4 Matrice transposée	60						
	10.2	Opérations élémentaires	61						
		Systèmes Linéaires	61						
		Anneau des matrices carrées	62						

11	Poly	nômes et fractions rationnelles	65
	_	Anneau des polynômes à 1 indéterminée	65
		11.1.1 Degré d'un polynôme	66
		11.1.2 Composition de polynômes	66
	11.2	Divisibilité et Division Euclidienne	67
		11.2.1 Divisibilité des polynômes	67
		11.2.2 Polynômes associés	67
		11.2.3 Division euclidienne polynômiale	67
	11.3	Fonctions polynômiales et racines	68
		11.3.1 Fonction polynômiale associée	68
		11.3.2 Racines du polynôme	68 69
		11.3.3 Ordre de multiplicité	69
		11.3.5 Polynôme scindé	70
	11 4	Dérivation	70
			. 0
12	Anal	yse asymptotique	71
13	Espa	ces vectoriels et applications linéaires	72
14	Matı	ices II	73
	14.1	Matrices et applications linéaires	73
		14.1.1 Matrice d'une application linéaire dans des bases	73
		14.1.2 Application linéaire canoniquement associée	75
		14.1.3 Systèmes linéaires	75
		Changement de bases	76
	14.3	Équivalence et similitude	77
		14.3.1 Matrices équivalentes et rang	77
		14.3.2 Matrices semblables et trace	78
15	Grou	pe symétrique et déterminant	79
	Intég	gration	79 80 80
	Inté g 16.1	gration Continuité uniforme	80
	Inté g 16.1	gration	80
	Intég 16.1 16.2	gration Continuité uniforme	80 80 81
	Intég 16.1 16.2	Intégration Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités	80 80 81
	Intég 16.1 16.2 16.3	Intégration Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux	80 80 81 81 82 82
	Intég 16.1 16.2 16.3	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman	80 80 81 81 82 82 82 83
	Intég 16.1 16.2 16.3 16.4 16.5	Continuité uniforme Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives	80 81 81 82 82 82 83
	Intég 16.1 16.2 16.3 16.4 16.5	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman	80 80 81 81 82 82 82 83
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales	80 81 81 82 82 83 84 84
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales	80 81 81 82 82 82 83
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales Cardinal d'un ensemble	80 80 81 81 82 82 83 84 84
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales	80 80 81 81 82 82 82 83 84 84 86
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6	Continuité uniforme Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales Cardinal d'un ensemble 17.1.1 Généralités	80 80 81 81 82 82 82 83 84 84 86 86 86
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6 Déne 17.1	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales Cardinal d'un ensemble 17.1.1 Généralités 17.1.2 Lemme des Bergers et principe des Tirroirs	80 80 81 81 82 82 82 83 84 84 86 86 86 87
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6 Déne 17.1	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales Combrement Cardinal d'un ensemble 17.1.1 Généralités 17.1.2 Lemme des Bergers et principe des Tirroirs 17.1.3 Calcul sur les cardinaux Listes et Combinaisons	80 80 81 81 82 82 82 83 84 84 86 86 86 87 88
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6 Déne 17.1	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales Cardinal d'un ensemble 17.1.1 Généralités 17.1.2 Lemme des Bergers et principe des Tirroirs 17.1.3 Calcul sur les cardinaux Listes et Combinaisons	80 80 81 81 82 82 83 84 84 86 86 86 87 88 89
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6 Déne 17.1	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales pmbrement Cardinal d'un ensemble 17.1.1 Généralités 17.1.2 Lemme des Bergers et principe des Tirroirs 17.1.3 Calcul sur les cardinaux Listes et Combinaisons abilités Univers, évènements et variables aléatoires	80 80 81 81 82 82 83 84 84 86 86 86 87 88 89
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6 Déne 17.1	Continuité uniforme Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales Cardinal d'un ensemble 17.1.1 Généralités 17.1.2 Lemme des Bergers et principe des Tirroirs 17.1.3 Calcul sur les cardinaux Listes et Combinaisons abilités Univers, évènements et variables aléatoires Espaces probabilisés finis, probabilité uniforme	80 80 81 81 82 82 83 84 84 86 86 87 88 89 90 91
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6 Déne 17.1	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales Cardinal d'un ensemble 17.1.1 Généralités 17.1.2 Lemme des Bergers et principe des Tirroirs 17.1.3 Calcul sur les cardinaux Listes et Combinaisons abilités Univers, évènements et variables aléatoires Espaces probabilisés finis, probabilité uniforme 18.2.1 Équiprobabilités	80 80 81 81 82 82 83 84 84 86 86 87 88 89 90 91 91
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6 Déne 17.1 17.2 Prot 18.1 18.2	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales Cardinal d'un ensemble 17.1.1 Généralités 17.1.2 Lemme des Bergers et principe des Tirroirs 17.1.3 Calcul sur les cardinaux Listes et Combinaisons abilités Univers, évènements et variables aléatoires Espaces probabilisés finis, probabilité uniforme 18.2.1 Équiprobabilités 18.2.2 Probabilités conditionnelles	80 80 81 81 82 82 82 83 84 84 86 86 87 88 89 90 91 91 91
16	Intég 16.1 16.2 16.3 16.4 16.5 16.6 Déne 17.1 17.2 Prot 18.1 18.2	Continuité uniforme Intégrations des fonctions en escalier 16.2.1 Subdivision d'un segment Fonctions continues par morceaux 16.3.1 Généralités 16.3.2 Intégrale d'une fonction continue par morceaux Sommes de Riemman Lien entre intégrales et primitives Formules de Taylor globales Cardinal d'un ensemble 17.1.1 Généralités 17.1.2 Lemme des Bergers et principe des Tirroirs 17.1.3 Calcul sur les cardinaux Listes et Combinaisons abilités Univers, évènements et variables aléatoires Espaces probabilisés finis, probabilité uniforme 18.2.1 Équiprobabilités	80 80 81 81 82 82 83 84 84 86 86 87 88 89 90 91 91

	18.3.3 Loi binomiale		93
19	19 Espaces préhilbertiens réels	•	94
	19.1 Produit scalaire		94
	19.2 Norme associée à un produit scalair		95
	19.3 Orthogonalité		96
			96
	·		97
	19.4 Bases orthonormées		98
	19.5 Projection orthogonale sur un sous-		99
20	20 Procédés sommatoires discrets	10	00
21	21 Fonctions de deux variables	10	01
	21.1 Continuité		01
			01
			02
	21.2 Dérivation		03
			03
	·		ია 04

Table des matières - Deuxième année

1	Suit	es et sé	ries
	1.1	Norme	
		1.1.1	Généralités
		1.1.2	Normes euclidiennes
		1.1.3	Exemple de normes
	1.2	Suites	
	1.3	Normes	s équivalentes
		1.3.1	Définition
		1.3.2	Cas de espaces de dimension fini
	1.4	Compa	raisons asymptotiques
	1.5		dans un K espace vectoriel de dimension finie
	1.6	Comple	ément sur les séries numériques
		1.6.1	Règle de <u>Dalembert</u>
		1.6.2	Séries alternées
		1.6.3	Sommation des relations de comparaisons
	1.7	Produit	de deux séries absolument convergentes
	1.8	Dualité	e série-suite
_			46
2			continuité 13
	2.1		s et fermés
		2.1.1	Intérieurs
		2.1.2	Ouverts
		2.1.3	Fermés
	0.0	2.1.4	Adhérence
	2.2	Limites	
		2.2.1	Cas général
	0.0	2.2.2	Produit fini d'espaces vectoriels normés
	2.3	Continu	
		2.3.1	Cas général
	0.4	2.3.2	Cas des applications linéaires
	2.4		réciproque et continuité
	2.5		cité
		2.5.1	Compacité dans un espace vectoriel normé quelconque 24
		2.5.2	Compacité en dimension finie
		2.5.3	Applications aux séries en dimension finie
	2.6	Connex	cité par arcs
3	Déri	vation e	et intégration 28
	3.1	Dérivée	e
	3.2		es successives
	3.3		ons convexes
	3.4	Intégra	tion sur un segment
		3.4.1	Fonctions continues par morceaux
		3.4.2	Propriétés de l'intégrale

	3.4.3 Inégalités	34
3.5	Théorème fondamental	34
3 6	Formules de Taylor	35