TEMA 1

1	2	3	4	Nota

Apellido:

Tutor:

Nombre:

Matemática I Parcial ● 29/09/2021

Justificar Todas Las Respuestas

- 1. Sea $f: \mathbb{R} \to \mathbb{R}$ la función dada por $f(x) = e^{x^3 + 4x^2 + 5x + 2}$.
 - (a) Hallar los máximos y mínimos relativos de f y sus intervalos de crecimiento y decrecimiento.
 - (b) Hallar (si es que existen) las asíntotas horizontales, oblicuas y verticales de f.
 - (c) Calcular imf.
- 2. Hallar el valor de $a \in \mathbb{R}$ para que se cumpla la igualdad

$$\lim_{x \to 3} \frac{\tan(2x^2 - 5x - 3)}{x^2 - 3x - ax + 3a} = 7$$

- 3. Considere la función dada por $f(x) = \sqrt{9 \frac{9}{4}x^2} + \frac{3}{2}x + 3$.
 - (a) Calcular el Dominio natural de f.
 - (b) Determinar si hay máximos y mínimos absolutos. En caso de existir, hallarlos.
- 4. Sean $f(x) = 3(x-4)^3 \ln(x-4) + 2$ y $g(x) = (x-4)^3 + 1$.
 - (a) Hallar todos los $x_0 \in \mathbb{R}$ tales que la recta tangente al gráfico de f en el punto $(x_0, f(x_0))$ sea paralela a la recta tangente al gráfico del de g en el punto $(x_0, g(x_0))$.
 - (b) Hallar la recta tangente al gráfico de g en el punto (3, g(3)).

Tema 1

1	2	3	4	Calificación

APELLIDO:

Nombre:

Teórica:

Tutor/a: Marisol / Sergio / Emiliano

Matemática 1 - Semestre Primavera - Parcial (28/09/2021)

Justificar todas las respuestas

1. Sea $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \sqrt{3x - 2} - \sqrt{x + 2} & \text{si } x > 2, \\ \frac{(b+4)x - 6b + 4}{4x - 24} & \text{si } x \le 2. \end{cases}$$

- (a) Hallar, si es posible, $b \in \mathbb{R}$ de manera que f resulte continua en $x_0 = 2$.
- (b) Para el valor de b hallado, analizar la derivabilidad de f en $x_0 = 2$.

2. Sean

$$f(x) = (2x^2 - 7x + 22) \cdot e^x$$
 y $g(x) = (x^2 + 3x - 3) \cdot e^x$.

Hallar todos los $x_0 \in \mathbb{R}$ que verifican que la recta tangente a f en el punto $(x_0, f(x_0))$ y la recta tangente a g en el punto $(x_0, g(x_0))$ son paralelas.

- 3. Sea $f(x) = \ln(x-1) a\sqrt{x-1} + 2$.
 - (a) Determinar a de manera que f tenga un punto crítico en $x_0 = 2$. Para este valor de a, determinar intervalos de crecimiento y decrecimiento, y extremos relativos de f.
 - (b) Estudiar la existencia de asíntotas (verticales, horizontales, oblicuas) de f para el valor de a hallado.
 - (c) Realizar un gráfico aproximado de f.

Nota: en caso de no poder calcular a, hacer el ejercicio para el valor a=1.

4. Sea

$$f(x) = xe^{-\frac{1}{4}x^2}.$$

Consideremos los rectángulos de vértices (0,0),(x,0),(0,f(x)),(x,f(x)) con $1 \le x \le 4$. Hallar las coordenadas de los vértices para los cuáles el área del rectángulo es lo más grande posible y las de los vértices para los cuáles el área es lo más chica posible. En cada caso, hallar el área que corresponde. ¿Por qué existen tales rectángulos?

Universidad de San Andrés

Matemática I – Parcial – 29/9/2021

	1 (2p)	2 (3p)	3(2.5p)	4(2.5p)	Nota
ſ					

Apellido y nombre:	 	, 	
Tutor:	 		

Justificar todas las respuestas.

Escribir todos los razonamientos y las cuentas que conducen a las respuestas.

1. (2 puntos) Sea $f : \mathbb{R} \to \mathbb{R}$ una función derivable cuya recta tangente en $x_0 = 2$ es y = 3x - 1. Dar la ecuación de la recta tangente al gráfico de

$$g(x) = x \left[f(2x+4) \right]^2$$

en $x_0 = -1$.

2. (3 puntos) Sea $f: \mathbb{R} - \{1\} \to \mathbb{R}$ definida por:

$$f(x) = \frac{3e^{x-2}}{1-x}$$

- (a) Hallar los intervalos de crecimiento y los extremos relativos de f.
- (b) Hallar, si es que existen, las asíntotas verticales y horizontales de f.
- (c) Con los datos obtenidos, hacer un gráfico aproximado de f, e indicar si alguno de los extremos locales es absoluto.
- 3. $(2.5 \ puntos)$ Sea f la función definida por

$$f(x) = 5x + \frac{x}{x^2 + a}$$

con $a \in \mathbb{R}$. Hallar un valor de a para que f tenga un punto de inflexión en x = 6.

4. (2.5 puntos) Hallar el valor máximo del producto de dos números reales sabiendo que uno más el cubo del otro da 108.

APELLIDO Y NOMBRES:

TUTOR:	Emilia	Matías (Marcar	el que corresponda)
1	2	3	NOTA

TEMA 1 JUSTIFIQUE TODAS SUS RESPUESTAS

1. (35 puntos)

Sea
$$f(x) = \frac{a \cdot \ln(2x+7)}{x^2+1} + bx^2 + 7$$

- a) Hallar todos los $a,b \in R$ para los cuales y = -13x 14 es la ecuación de la recta tangente al gráfico de f en x = -3. (17 puntos)
- b) Para a = 5 y b = 0 hallar todas las asíntotas de f. (18 puntos)
- 2. (35 puntos)

Sea
$$f(x) = ln(x+1) + \frac{x+2}{x+1}$$
.

- a) Hallar los puntos críticos, los intervalos de crecimiento y decrecimiento y clasificar los puntos críticos de f. (10 puntos)
- b) Hallar los intervalos de curvatura positiva y negativa y los puntos de inflexión de f. (15 puntos)
- c) Probar que $ln(x+1) + \frac{x+2}{x+1} 2 \ge 0$, $\forall x > -1$. (10 puntos)
- 3. (30 puntos)

Sea $f(x) = x^2 + 1$. Hallar los puntos del gráfico de f(x, f(x)) con $x \in [0,2]$, que se encuentran a **menor** y a **mayor** distancia del punto P = (7,-1).

La fórmula para calcular la distancia entre (x_1, y_1) y (x_2, y_2) es: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$