Exercícios

Lema do bombeamento

Nomes: Lucas de Paula Martins Cauê Grassi Ribeiro da Silva

Aplique o lema do bombeamento e mostre se as seguintes linguagens são regulares ou não.

1. $L = \{aa(bbaa)^n \mid n >= 0\}$

Resolução:

Seja w = $aa(bbaa)^p$.

$$|w| = 2 + 4p >= p$$
.

Pelo lema do bombeamento, há de haver uma cadeia

w = uvz com | uv | \leq p e | v | \geq 1 tal que uv z pertence a L pra todo i \geq 0

Seja u = aa, v = bbaa e z =
$$\epsilon$$
, logo | v | = 4 >= 1 e | uv | = 6 <= p.

Fazendo o bombeamento uv²z, obtemos: aabbaabbaa, que é uma cadeia que pertence a L, para i = 3... seria análogo.

Porém, isso não prova que a linguagem é regular. O lema do bombeamento só mostra que uma linguagem não é regular quando não é possível fazer uma divisão que satisfaça as condições. No entanto, o fato de uma divisão funcionar não garante que a linguagem seja regular. Para isso, precisaríamos de uma construção formal como um autômato finito que reconhecesse L:

Portanto, a linguagem L é regular.

2.
$$L = \{ (aabb)^n c^m | n >= 1, m >= 1 \}$$

Resolução:

Seja: w = aabbc

$$|w| = 5 >= p$$

Pelo lema do bombeamento, há de haver uma cadeia

w = uvz com | uv | \leq p e | v | \geq 1 tal que uv z pertence a L pra todo i \geq 0

Seja
$$u = \varepsilon$$
, $v = aabb e z = c$, $logo | v | = 4 >= 1 e | uv | = 4 <= p$.

Fazendo o bombeamento uv^2z , obtemos: aabbaabc, que é uma cadeia que pertence a L, para i = 3... seria análogo.

Porém, isso não prova que a linguagem é regular. O lema do bombeamento só mostra que uma linguagem não é regular quando não é possível fazer uma divisão que satisfaça as condições. No entanto, o fato de uma divisão funcionar não garante que a linguagem seja regular. Para isso, precisaríamos de uma construção formal como um autômato finito que reconhecesse L:

Portanto, a linguagem L é regular.

3. $L = \{a^n b^n c^k | n, k \ge 0\}$

Resolução:

Seja w = a^pb^pc , onde | w | = 2p + 1. Como p é um número positivo, temos |w| >= p, satisfazendo a condição do lema do bombeamento.

Pelo lema do bombeamento, há de haver uma cadeia

w = uvz com | uv | \leq p e | v | \geq 1 tal que uv z pertence a L pra todo i \geq 0

Dado que $|uv| \le p$ e a primeira parte da cadeia w consiste apenas em "a"s, podemos concluir que: em qualquer divisão onde $|uv| \le p$ e |v| >= 1, certamente $v = a^t$, para algum t >= 1, e $u = a^r$, para algum r >= 0.

Então, para i = 2, temos: $uvvz = a^r a^t a^t a^{p-r-t} b^p c$. Mas r+2t+p-r-t = p+t, o que faz $a^{p+t} b^p c$ não pertencer a L, uma contradição, pois $uv^i z$ pertence a L para todo i >= 0 vale e também p+t é diferente de p.

Logo, L não é regular.

4. $L = \{0^n \ 1 \ 2^k \mid n, k \ge 2\}$

Resolução:

Seja w = 000^p 1 22, onde | w | = 2 + P + 1 + 2 = 5 + P. Como p é um número positivo, temos |w| >= p, satisfazendo a condição do lema do bombeamento.

Pelo lema do bombeamento, há de haver uma cadeia

 $w = uvz com | uv | \le p e | v | \ge 1 tal que uv z pertence a L pra todo i >= 0$

Seja u = 00, v = 0^p e z = 122, temos que | uv | = 3 <= p e | v | = 1 >= 1.

Então, para i = 2, temos: $uvvz = 000^{2p}122$. Oque faz uvvz pertencer a L.

Fazendo o bombeamento para i = 3, 4,... uv^iz ainda pertenceria a L.

Porém, isso não prova que a linguagem é regular. O lema do bombeamento só mostra que uma linguagem não é regular quando não é possível fazer uma divisão que satisfaça as condições. No entanto, o fato de uma divisão funcionar não garante que a linguagem seja regular. Para isso, precisaríamos de uma construção formal como um autômato finito que reconhecesse L:

Portanto, a linguagem L é regular.