MA427 Lecture 3 Basic solutions and the Simplex Method

Giacomo Zambelli

January 28, 2019

Today's lecture

- Standard equality form: basic solutions and their existence
- Carathéodory's theorem

Simplex Method

- the tableau form
- connection to duality
- pivot steps
- cycling: Bland's rule

$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$.

$$Ax = b$$

 $x \ge 0$

Assumption:
$$rk(A) = m$$
.

Definition

A set $B \subseteq \{1, ..., n\}$ is said a *basis* of A if

- ▶ |B| = m;
- ▶ the vectors A_j , $j \in B$, are linearly independent.

Example

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & -6 \\ 0 & 1 & 1 & 3 & -2 & -1 \\ 1 & 2 & 1 & 3 & -1 & -5 \end{bmatrix} x = \begin{bmatrix} 11 \\ 6 \\ 13 \end{bmatrix}.$$
$$x \ge 0$$

 $B = \{1, 2, 6\}$ is a basis.

$$A_B = \left[\begin{array}{rrr} 1 & 2 & -6 \\ 0 & 1 & -1 \\ 1 & 2 & -5 \end{array} \right].$$

 $B = \{2, 5, 6\}$ is not a basis.

$$A_B = \left[\begin{array}{rrr} 2 & 0 & -6 \\ 1 & -2 & -1 \\ 2 & -1 & -5 \end{array} \right].$$

$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$.

$$Ax = b$$

 $x \ge 0$

Assumption:
$$rk(A) = m$$
.

Definition

A set $B \subseteq \{1, ..., n\}$ is said a *basis* of A if

- ► |B| = m;
- ▶ the vectors A_j , $j \in B$, are linearly independent.

Proposition

A point $x^* \in \mathbb{R}^n$ is a basic feasible solution of $Ax = b, x \ge 0$ if and only if it is feasible and \exists a basis B such that $x_j^* = 0$ for every $j \notin B$.

Basic feasible solutions

Proposition

A point $x^* \in \mathbb{R}^n$ is a basic feasible solution of Ax = b, $x \ge 0$ if and only if it is feasible and \exists a basis B such that $x_j^* = 0$ for every $j \notin B$.

Proof.

 x^* is basic feasible to Ax = b, $x \ge 0$ if and only if there n linearly independent inequalities.

Basic feasible solutions

Proposition

A point $x^* \in \mathbb{R}^n$ is a basic feasible solution of $Ax = b, x \ge 0$ if and only if it is feasible and \exists a basis B such that $x_j^* = 0$ for every $j \notin B$.

Proof.

- x^* is basic feasible to Ax = b, $x \ge 0$ if and only if there n linearly independent inequalities.
- ▶ Ax = b already gives m linearly independent ones, therefore we need n m binding constraints $x_j \ge 0$, $j \in N$, |N| = n m.

$$R = \left(\begin{array}{c|c} A_B & A_N \\ \hline \mathbf{0} & I \end{array}\right),$$

▶ $det(R) = det(A_B)$. Consequently, x^* is a basis if and only if $det(A_B) \neq 0$, that is, the columns of A_B are lin. independent.

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & -6 \\ 0 & 1 & 1 & 3 & -2 & -1 \\ 1 & 2 & 1 & 3 & -1 & -5 \end{bmatrix} x = \begin{bmatrix} 11 \\ 6 \\ 13 \end{bmatrix}.$$
$$x \ge 0$$

 $\bar{x} = (7, 8, 0, 0, 0, 2)$ basic (feasible) solution.

- lt is feasible.
- \triangleright *B* = {1, 2, 6} is a basis
- $\bar{x}_3, \bar{x}_4, \bar{x}_5 = 0$

To see that the previous point is basic: the inequalities binding at \bar{x} .

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & | & -6 \\ 0 & 1 & 1 & 3 & -2 & | & -1 \\ 1 & 2 & 1 & 3 & -1 & | & -5 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} x = \begin{bmatrix} 11 \\ 6 \\ 13 \\ 0 \\ 0 \end{bmatrix}.$$

The above matrix has the same determinant as

$$A_B = \left[\begin{array}{rrr} 1 & 2 & -6 \\ 0 & 1 & -1 \\ 1 & 2 & -5 \end{array} \right].$$

We will need this more general notion.

Definition

A point $x^* \in \mathbb{R}^n$ is a basic solution of Ax = b, $x \ge 0$, if $Ax^* = b$ and there exists a basis B of A such that $x_i^* = 0$ for every $j \notin B$.

That is, we consider also basic solutions that are **not** feasible. This will be needed when discussing the dual simplex method.

$$Ax = b$$
$$x \ge 0$$

Lemma

Given a basis B, the point

$$\bar{x}_B = A_B^{-1}b;$$

 $\bar{x}_N = 0$

is the only one such that $A\bar{x} = b$ and $\bar{x}_j = 0 \ \forall j \notin B$.

The above is the basic solution relative to B. If \bar{x} is feasible, then B is feasible basis.

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & -6 \\ 0 & 1 & 1 & 3 & -2 & -1 \\ 1 & 2 & 1 & 3 & -1 & -5 \end{bmatrix} x = \begin{bmatrix} 11 \\ 6 \\ 13 \end{bmatrix}.$$
$$x \ge 0$$

 $B = \{1, 2, 6\}$ is a basis.

$$A_B^{-1} = \left[\begin{array}{rrr} -3 & -2 & 4 \\ -1 & 1 & 1 \\ -1 & 0 & 1 \end{array} \right].$$

 $\bar{x} = (7, 8, 0, 0, 0, 2)$ basic (feasible) solution relative to B.

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & -6 \\ 0 & 1 & 1 & 3 & -2 & -1 \\ 1 & 2 & 1 & 3 & -1 & -5 \end{bmatrix} x = \begin{bmatrix} 11 \\ 6 \\ 13 \end{bmatrix}.$$
$$x \ge 0$$

 $B = \{1, 3, 6\}$ is a basis.

$$A_B^{-1} = \begin{bmatrix} -2 & -3 & 3\\ -1/2 & 1/2 & 1/2\\ -1/2 & -1/2 & 1/2 \end{bmatrix}.$$

 $\bar{x} = (-1, 0, 4, 0, 0, -2)$ basic (infeasible) solution relative to B.

Theorem

If the LP problem

$$\max c^{\top} x$$

$$Ax = b$$

$$x \ge 0$$

has a finite optimum, there exists an optimal solution x^* which is a basic feasible solution.

Two proofs:

- Simple direct proof now.
- Consequence of the Simplex Method.

Theorem

If the LP problem

$$\begin{array}{rcl}
\max c^{\top} x \\
Ax = & b \\
x \ge & 0
\end{array}$$

has a finite optimum, there exists an optimal solution x^* which is a basic feasible solution.

Proof.

- Select an optimal solution x* with the highest number of zero components.
- For a contradiction, assume that x^* is not basic. Let $S = \{j : x_j^* > 0\}.$

Theorem

If the LP problem

$$\max c^{\top} x$$

$$Ax = b$$

$$x \ge 0$$

has a finite optimum, there exists an optimal solution x^* which is a basic feasible solution.

Proof.

- ► Select an optimal solution *x** with the *highest number of zero components*.
- For a contradiction, assume that x^* is not basic. Let $S = \{j : x_i^* > 0\}.$
- ► Thus, $\{A_j : j \in S\}$ is not linearly independent. Thus, $\exists z_j, j \in S : \sum_j A_j z_j = 0$. Let

$$d_j = \begin{cases} z_j & \text{if } j \in S \\ 0 & \text{if } j \notin S \end{cases}$$

 $ightharpoonup Ad = 0, d \neq 0, and d_j = 0 if j \notin S.$

- $ightharpoonup Ad = 0, d \neq 0, and d_j = 0 if j \notin S.$
- ▶ For every $t \in \mathbb{R}$, $A(x^* td) = b$ and $x_i^* td_j = 0$ for $j \notin S$.

- ightharpoonup $Ad = 0, d \neq 0$, and $d_i = 0$ if $j \notin S$.
- ▶ For every $t \in \mathbb{R}$, $A(x^* td) = b$ and $x_i^* td_i = 0$ for $i \notin S$.
- For a small $\varepsilon > 0$, $x^* \varepsilon d$, $x^* + \varepsilon d$ are both feasible. Thus, $c^\top d = 0$ and therefore the are both optimal.

- $ightharpoonup Ad = 0, d \neq 0, and d_i = 0 if j \notin S.$
- ▶ For every $t \in \mathbb{R}$, $A(x^* td) = b$ and $x_i^* td_j = 0$ for $j \notin S$.
- For a small $\varepsilon > 0$, $x^* \varepsilon d$, $x^* + \varepsilon d$ are both feasible. Thus, $c^\top d = 0$ and therefore the are both optimal.
- Assume $\exists i: d_i > 0$. Select $\bar{t} \geq 0$ as the largest value such that $x^* \bar{t}d$ is feasible.

- ightharpoonup $Ad = 0, d \neq 0$, and $d_i = 0$ if $j \notin S$.
- ▶ For every $t \in \mathbb{R}$, $A(x^* td) = b$ and $x_i^* td_j = 0$ for $j \notin S$.
- For a small $\varepsilon > 0$, $x^* \varepsilon d$, $x^* + \varepsilon d$ are both feasible. Thus, $c^\top d = 0$ and therefore the are both optimal.
- Assume $\exists i: d_i > 0$. Select $\bar{t} \geq 0$ as the largest value such that $x^* \bar{t}d$ is feasible.
- $x' = x^* \bar{t}d$ is also optimal and has more zero components than x^* , a contradiction.

Theorem (Carathéodory)

If a point $z \in \mathbb{R}^n$ is a convex combination of points in some set $X \subseteq \mathbb{R}^n$, then it is a convex combination of at most $\dim(X) + 1$ affinely independent points in X.

Theorem (Carathéodory)

If a point $z \in \mathbb{R}^n$ is a convex combination of points in some set $X \subseteq \mathbb{R}^n$, then it is a convex combination of at most $\dim(X) + 1$ affinely independent points in X.

Theorem (Carathéodory)

If a point $z \in \mathbb{R}^n$ is a convex combination of points in some set $X \subseteq \mathbb{R}^n$, then it is a convex combination of at most $\dim(X) + 1$ affinely independent points in X.

Proof.

- lacksquare $X = \{v^1, \dots, v^k\}$. Define $A \in \mathbb{R}^{n+1 \times k}$: $A_i = \binom{v'}{1}$.
- ▶ z is a convex combination if the following system is feasible.

$$A\lambda = z$$
$$\lambda \ge 0$$

Theorem (Carathéodory)

If a point $z \in \mathbb{R}^n$ is a convex combination of points in some set $X \subseteq \mathbb{R}^n$, then it is a convex combination of at most $\dim(X) + 1$ affinely independent points in X.

Proof.

- lacksquare $X = \{v^1, \dots, v^k\}$. Define $A \in \mathbb{R}^{n+1 \times k}$: $A_i = \binom{v'}{1}$.
- z is a convex combination if the following system is feasible.

$$A\lambda = z$$
 $\lambda \geq 0$

Select a basic feasible solution. The columns $\{A_i : \lambda_i > 0\}$ are linearly independent, and there are at most n+1 of them.

Theorem (Carathéodory)

If a point $z \in \mathbb{R}^n$ is a convex combination of points in some set $X \subseteq \mathbb{R}^n$, then it is a convex combination of at most $\dim(X) + 1$ affinely independent points in X.

Proof.

- lacksquare $X = \{v^1, \dots, v^k\}$. Define $A \in \mathbb{R}^{n+1 \times k}$: $A_i = \binom{v'}{1}$.
- z is a convex combination if the following system is feasible.

$$A\lambda = z$$

 $\lambda \ge 0$

- ▶ Select a basic feasible solution. The columns $\{A_i : \lambda_i > 0\}$ are linearly independent, and there are at most n+1 of them.
- ▶ This shows that $\{v^i : \lambda_i > 0\}$ are affinely independent.

In standard equality form

Feasible basis: $\{3,4,5\}$ Basic solution: $(0,0,6,10,4)^{\top}$

Basic solution: $(0,0,6,10,4)^{\top}$. Basis: $\{3,4,5\}$.

If we increase x_2 by $t \ge 0$ and leave $x_1 = 0$, the objective value increases by 2t.

The remaining components must become

$$x_3(t) = 6 - t$$

 $x_4(t) = 10 - 2t$
 $x_5(t) = 4 + t$

The maximum t we can choose is t = 5.

- Current solution (0, 5, 1, 0, 9). Basis: $\{2, 3, 5\}$.
- ▶ We express everything in terms of the nonbasic variables.

Basic solution: $(0,5,1,0,9)^{\top}$. Feasible basis: $\{2,3,5\}$. If we increase x_1 by $t \ge 0$ and leave $x_4 = 0$, the objective value increases by 2t.

The remaining components must become

$$x_2(t) = 5 - \frac{1}{2}t$$

 $x_3(t) = 1 - \frac{1}{2}t$
 $x_5(t) = 9 - \frac{3}{2}t$

Basic solution: $(2,4,0,0,6)^{\top}$. Feasible basis: $\{1,2,5\}$.

Basic solution: $(2,4,0,0,6)^{\top}$. Feasible basis: $\{1,2,5\}$.

...

Continue until

- either we cannot increase the objective value any further
- we find an unbounded direction.

The Simplex Method

We assume that the initial LP is in standard equality form.

$$\begin{array}{ccc}
\text{max} & c^{\top} x \\
Ax = & b \\
x \ge & 0
\end{array}$$

Assumption:
$$rk(A) = m$$
.

- ► At every iteration we maintain a basis *B*, defining a basic feasible solution.
- ▶ The LP is transformed, via row reductions, to one where
 - ➤ The objective function is expressed in terms of the nonbasic variables only,
 - each basic variable is written in terms of the nonbasic ones.
- Increasing the value of a nonbasic variable with positive coefficient in the objective function gives a solution with higher value.

Tableau form

where

$$\bar{A}_{N} = A_{B}^{-1}A_{N};$$

$$\bar{b} = A_{B}^{-1}b;$$

$$\bar{c} = c - A^{\top}A_{B}^{-1}^{\top}c_{B}; \quad (reduced costs)$$

$$\bar{z} = c_{B}^{\top}A_{B}^{-1}b.$$

Tableau with respect to B

1	0	$-ar{c}_{N}^{ op}$	Ī	
0	I	$ar{\mathcal{A}}_{\mathcal{N}}$	\bar{b}	

Example of problem in tableau form

Basis:
$$B = \{1, 2, 5\}$$
 $x_1 = \{1, 2, 5\}$
 $x_1 + 4x_3 - x_4 = 14$
 $x_1 + 2x_3 - x_4 = 2$
 $x_1 + x_2 - x_3 + x_4 = 4$
 $x_1 - 3x_3 + 2x_4 + x_5 = 6$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

			4			
0	1	0	2	-1	0	2
0	0	1	-1	1	0	4
0	0	0	2 -1 -3	2	1	6

If $B = \{B[1], \dots, B[m]\}$, we can write the problem in tableau form

- $ightharpoonup ar{c}_i$, $j=1,\ldots,n$ are said the reduced costs.
- $ightharpoonup x_{B[h]}$ is said the basic variable in row h.

If $B = \{B[1], \dots, B[m]\}$, we can write the problem in tableau form

- $ightharpoonup \bar{c}_i$, j = 1, ..., n are said the reduced costs.
- $ightharpoonup x_{B[h]}$ is said the basic variable in row h.

Let \bar{x} be the basic feasible solution relative to B.

▶ Case 1. $\bar{c}_j \leq 0$ for all $j \in N$: \bar{x} is optimal

If $B = \{B[1], \dots, B[m]\}$, we can write the problem in tableau form

- $ightharpoonup \bar{c}_i$, j = 1, ..., n are said the reduced costs.
- $ightharpoonup x_{B[h]}$ is said the basic variable in row h.

Let \bar{x} be the basic feasible solution relative to B.

▶ Case 1. $\bar{c}_j \leq 0$ for all $j \in N$: \bar{x} is optimal

We can read off a dual optimal solution certifying the optimality of \bar{x} .

Dual optimal solution

$$\bar{A}_{N} = A_{B}^{-1}A_{N};$$

$$\bar{b} = A_{B}^{-1}b;$$

$$\bar{c} = c - A^{\top}A_{B}^{-1}{}^{\top}c_{B} \leq 0; \quad (reduced\ costs)$$

$$\bar{z} = c_{B}^{\top}A_{B}^{-1}b.$$

$$\bar{x}_{j} = \begin{cases} \bar{b}_{j} & \text{if } j \in B \\ 0 & \text{if } j \in N \end{cases} \qquad \bar{y} = A_{B}^{-1}{}^{\top}c_{B}$$

Dual optimal solution

$$\bar{A}_{N} = A_{B}^{-1}A_{N};$$

$$\bar{b} = A_{B}^{-1}b;$$

$$\bar{c} = c - A^{\top}A_{B}^{-1}{}^{\top}c_{B} \leq 0; \quad (reduced\ costs)$$

$$\bar{z} = c_{B}^{\top}A_{B}^{-1}b.$$

$$\bar{x}_{j} = \begin{cases} \bar{b}_{j} & \text{if } j \in B \\ 0 & \text{if } j \in N \end{cases} \qquad \bar{y} = A_{B}^{-1}{}^{\top}c_{B}$$

 \bar{x} is a feasible primal, \bar{y} a feasible dual solution, and they satisfy complementary slackness.

If $B = \{B[1], \dots, B[m]\}$, we can write the problem in tableau form

- $ightharpoonup \bar{c}_i$, j = 1, ..., n are said the reduced costs.
- $ightharpoonup x_{B[h]}$ is said the basic variable in row h.

Let \bar{x} be the basic feasible solution relative to B.

▶ Case 1. $\bar{c}_j \leq 0$ for all $j \in N$: \bar{x} is optimal

If $B = \{B[1], \dots, B[m]\}$, we can write the problem in tableau form

- $ightharpoonup \bar{c}_i$, j = 1, ..., n are said the reduced costs.
- $ightharpoonup x_{B[h]}$ is said the basic variable in row h.

Let \bar{x} be the basic feasible solution relative to B.

- ▶ Case 1. $\bar{c}_j \leq 0$ for all $j \in N$: \bar{x} is optimal
- ▶ Case 2. There exists $k \in N$ such that $\bar{c}_k > 0$: if we increase x_k by $t \ge 0$ leaving $x_j = 0$ for all $j \in N \setminus \{k\}$, then the objective value increases by $\bar{c}_k t$.

If $B = \{B[1], \dots, B[m]\}$, we can write the problem in tableau form

- $ightharpoonup \bar{c}_i$, j = 1, ..., n are said the reduced costs.
- $ightharpoonup x_{B[h]}$ is said the basic variable in row h.

Let \bar{x} be the basic feasible solution relative to B.

- ▶ Case 1. $\bar{c}_j \leq 0$ for all $j \in N$: \bar{x} is optimal
- ► Case 2. There exists $k \in N$ such that $\bar{c}_k > 0$: if we increase x_k by $t \ge 0$ leaving $x_j = 0$ for all $j \in N \setminus \{k\}$, then the objective value increases by $\bar{c}_k t$.

What is the maximum we can increase t?

Minimum ratio rule

The largest \bar{t} such that the new solution $x(\bar{t})$ is feasible is

$$\bar{t} = \min_{i \in \{1, \dots, m\} : \bar{a}_{ik} > 0} \left\{ \frac{\bar{b}_i}{\bar{a}_{ik}} \right\}.$$

One iteration

Basis: {1, 2, 5}.

Entering variable: x₄.

Exiting variable: x_5 (since min $\{\cdot, \frac{4}{1}, \frac{6}{2}\} = 3$).

One iteration

Basis: {1, 2, 5}.

Entering variable: x4.

Exiting variable: x_5 (since min $\{\cdot, \frac{4}{1}, \frac{6}{2}\} = 3$).

Pivot.

$$z$$
 + 1.5 x_3 - 0.25 x_4 = 3
+ 0.5 x_3 - 0.25 x_4 = 2
 x_2 - 0.5 x_3 - 0.25 x_4 = 1

Feasible basis: $\{1,2\}$. Basic solution: $(2,1,0,0)^{T}$.

$$z$$
 + 1.5 x_3 - 0.25 x_4 = 3
 x_1 + 0.5 x_3 - 0.25 x_4 = 2
 x_2 - 0.5 x_3 - 0.25 x_4 = 1

Feasible basis: $\{1,2\}$. Basic solution: $(2,1,0,0)^{\top}$. If we increase x_4 by $t \ge 0$ leaving $x_3 = 0$, the objective value increases by 0.25t.

$$z$$
 + 1.5 x_3 - 0.25 x_4 = 3
 x_1 + 0.5 x_3 - 0.25 x_4 = 2
 x_2 - 0.5 x_3 - 0.25 x_4 = 1

Feasible basis: $\{1,2\}$. Basic solution: $(2,1,0,0)^{\top}$. If we increase x_4 by $t \ge 0$ leaving $x_3 = 0$, the objective value increases by 0.25t.

$$x_1(t) = 2 + 0.25t$$

 $x_2(t) = 1 + 0.25t$
 $x_3(t) = 0$
 $x_4(t) = t$

$$z$$
 + 1.5 x_3 - 0.25 x_4 = 3
+ 0.5 x_3 - 0.25 x_4 = 2
 x_2 - 0.5 x_3 - 0.25 x_4 = 1

Feasible basis: $\{1,2\}$. Basic solution: $(2,1,0,0)^{\top}$. If we increase x_4 by $t \ge 0$ leaving $x_3 = 0$, the objective value increases by 0.25t.

$$x_1(t) = 2 + 0.25t$$

 $x_2(t) = 1 + 0.25t$
 $x_3(t) = 0$
 $x_4(t) = t$

x(t) is a family of feasible solutions,

$$\lim_{t\to+\infty}c^{\top}x(t)=+\infty.$$

Input:
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, a feasible basis $B = \{B[1], \dots, B[m]\}$ for $Ax = b, x \ge 0$;

Output: An optimal solution for $\max\{c^{\top}x: Ax=b, x\geq 0\}$, or we determine that the problem is unbounded.

- 1. Compute the tableau relative to the current basis *B*;
- 2. If $\bar{c}_j \leq 0$ for all $j \in N$, then the basic feasible solution relative to B is *optimal*, STOP.
- 3. Otherwise, choose k such that $\bar{c}_k > 0$;
 - 3a. If $\bar{a}_{ik} \leq 0 \ \forall i \in \{1, \dots, m\}$, then the problem is *unbounded*, *STOP*.
 - 3b. Otherwise, choose $h \in \{1, ..., m\}$ such that

$$\bar{a}_{hk} > 0$$
 and $\bar{b}_h/\bar{a}_{hk} = \min_{i:\bar{a}_{ik}>0} \bar{b}_i/\bar{a}_{ik}$;

Set B[h] := k, return to 1. (x_k enters the basis in row h, $x_{B[h]}$ leaves the basis)

Pivots: x_k enters, x_h leaves

Z	x_1	• • •	x_h	• • •	x_m	x_{m+1}	• • •	x_k	$\cdots x_n$	
1	0		0		0			$-\bar{c}_k$		Ī
0	1		0					\bar{a}_{1k}		$ar{b}_1$
:		٠.	÷					:		:
0			1					ā _{hk}		$ar{b}_h$
:			:	٠				:		:
0			0		1			ā _{mk}		$ar{b}_m$

1	0		$\frac{\bar{c}_k}{\bar{a}_{hk}}$		0	 0	 $ar{z} + rac{ar{c}_k ar{b}_h}{ar{a}_{hk}}$
0	1		$-\frac{\bar{a}_{1k}}{\bar{a}_{hk}}$			0	$ar{b}_1 - rac{ar{a}_{1k}ar{b}_h}{ar{a}_{hk}}$
:		٠	:			:	:
0			$\frac{1}{\bar{a}_{hk}}$			1	$\frac{\bar{b}_h}{\bar{a}_{hk}}$
:			:	·		:	i
0			$-\frac{\bar{a}_{mk}}{\bar{a}_{hk}}$		1	0	$ar{b}_m - rac{ar{a}_{mk}ar{b}_h}{ar{a}_{hk}}$

Termination of the Simplex

New solution

$$x_k(\bar{t}) = \bar{t};$$

$$x_{B[i]}(\bar{t}) = \bar{b}_i - \bar{t}\bar{a}_{ik}, \quad i = 1, \dots, m;$$

$$x_j(\bar{t}) = 0, \quad j \in N \setminus \{k\}.$$

where

$$ar{t} = \min \left\{ rac{ar{b}_i}{ar{a}_{ik}} \, : \, i = 1, \ldots, m, \,\, ar{a}_{ik} > 0
ight\}.$$

Entering variable: some x_k such that $\bar{c}_k > 0$.

Exiting variable: some $x_{B[h]}$ such that $ar{a}_{hk}>0$ and $ar{t}=rac{b_h}{ar{a}_{hk}}$

Termination

$$x_k(\bar{t}) = \bar{t};$$

$$x_{B[i]}(\bar{t}) = \bar{b}_i - \bar{t}\bar{a}_{ik}, \quad i = 1, \dots, m;$$

$$x_j(\bar{t}) = 0, \quad j \in N \setminus \{k\}.$$

$$ar{t} := \min_{i \in \{1, \dots, m\} : \, ar{a}_{ik} > 0} \left\{ rac{ar{b}_i}{ar{a}_{ik}}
ight\}$$

- ▶ If $\bar{t} > 0$, the objective value increases strictly.
- If $\bar{t} = 0$, the basis changes, but the corresponding basic feasible solution remains the same.

Cycling example

Bad *tie-breaking rule:* choose the entering variable with highest reduced cost, and the exiting variable with highest column coefficient.

1	-2.3	-2.15	13.55	0.4	0	0	0
0	0.4	$0.2 \\ -1.4$	-1.4	-0.2	1	0	0
0	-7.8	-1.4	7.8	0.4	0	1	0

1	0	-1	5.5	-0.75	5.75		0
0	1	0.5	-3.5	-0.5	2.5	0	0
0	0	2.5	-19.5	-3.5	19.5	0 1	0

1	0	0	-2.3	-2.15	13.55	0.4	0
0	1 0	0	0.4	0.2	-1.4	-0.2	0
0	0	1	-7.8	-1.4	7.8	0.4	0

This is the same tableau as in the beginning, only shift by two position. Repeating other two times (i.e, after 4 other pivots), we return the original tableau.

Degeneracy

Definition

A basis B is said to be degenerate if $\bar{b}_i = 0$ for some $i \in \{1, ..., m\}$ (where $\bar{b} = A_B^{-1}b$).

Degeneracy

Definition

A basis B is said to be degenerate if $\bar{b}_i = 0$ for some $i \in \{1, ..., m\}$ (where $\bar{b} = A_B^{-1}b$).

- ▶ If all bases are non-degenerate, then the simplex method terminates regardlessly of how we choose the variables that enters or leaves.
- ▶ If there are degenerate bases, we could cycle.

Degeneracy

Definition

A basis B is said to be degenerate if $\bar{b}_i = 0$ for some $i \in \{1, ..., m\}$ (where $\bar{b} = A_B^{-1}b$).

- ▶ If all bases are non-degenerate, then the simplex method terminates regardlessly of how we choose the variables that enters or leaves.
- ▶ If there are degenerate bases, we could cycle.

To prevent cycling, we need to be careful in how we choose the entering and exiting variables.

An anti-cycling rule

Bland's rule:

- Among all variables with positive reduced cost, choose as entering variable the variable x_k such that the index k is the smallest possible.
- Let $\bar{t} = \min\{\frac{\bar{b}_i}{\bar{a}_{ik}} : \bar{a}_{ik} > 0\}$. Choose as exiting variable the variable $x_{B[h]}$ such that $\bar{a}_{hk} > 0$, $\frac{\bar{b}_h}{\bar{a}_{hk}} = \bar{t}$, and such that B[h] is smallest possible.

An anti-cycling rule

Bland's rule:

- Among all variables with positive reduced cost, choose as entering variable the variable x_k such that the index k is the smallest possible.
- Let $\bar{t} = \min\{\frac{b_i}{\bar{a}_{ik}} : \bar{a}_{ik} > 0\}$. Choose as exiting variable the variable $x_{B[h]}$ such that $\bar{a}_{hk} > 0$, $\frac{\bar{b}_h}{\bar{a}_{hk}} = \bar{t}$, and such that B[h] is smallest possible.

QUIZ: Which are the entering and exiting variables according to Bland's rule?

(A) Enter: x_2 , exit: x_4 . (B) Enter: x_2 , exit: x_5 .

(C) Enter: x_3 , exit: x_1 .

An anti-cycling rule

Bland's rule:

- Among all variables with positive reduced cost, choose as entering variable the variable x_k such that the index k is the smallest possible.
- Let $\overline{t} = \min\{\frac{\overline{b}_i}{\overline{a}_{ik}}: \overline{a}_{ik} > 0\}$. Choose as exiting variable the variable $x_{B[h]}$ such that $\overline{a}_{hk} > 0$, $\frac{\overline{b}_h}{\overline{a}_{hk}} = \overline{t}$, and such that B[h] is smallest possible.

Theorem

The simplex method with Bland's pivot rule terminates for every possible instance of an LP problem and every possible choice of starting feasible basis.