

Open-Minded

Machine Learning Basics

Neuroinformatics Tutorial 1

Duc Duy Pham¹

¹Intelligent Systems, Faculty of Engineering, University of Duisburg-Essen, Germany

Content

- Motivation
- When does a Machine learn?
- Machine Learning tasks
- Broad types of Machine Learning Algorithms
- How do input/output look like?
- Data partitioning

Content

- Motivation
- When does a Machine learn?
- Machine Learning tasks
- Broad types of Machine Learning Algorithms
- How do input/output look like?
- Data partitioning

Motivation

Motivation

Can be very time consuming!

May lack generalizability

May also lack generalizability

Content

- Motivation
- When does a Machine learn?
- Machine Learning tasks
- Broad types of Machine Learning Algorithms
- How do input/output look like?
- Data partitioning

Mitchell (1997):

"A computer is said to learn from experience E,

if its performance at tasks in T,

as measured by P,

improves with experience E"

- 0. Define task T
- 1. Try to solve task T with your Algorithm
- 2. Measure Algorithm performance by P
- 3. Gain experience E by doing so
- **4**. Go to 1.

Mitchell (1997):

"A computer is said to learn from experience E,

if its performance at tasks in T,

as measured by P,

improves with experience E"

- 0. Define task T
- 1. Try to solve task T with your Algorithm
- 2. Measure Algorithm performance by P
- 3. Gain experience E by doing so
- **4**. Go to 1.

Content

- Motivation
- When does a Machine learn?
- Machine Learning tasks
- Broad types of Machine Learning Algorithms
- How do input/output look like?
- Data partitioning

- Typical tasks:
 - Classification

Classification

Categorical Output!

- Typical tasks:
 - Classification
 - Regression

Interpolation

- Typical tasks:
 - Classification
 - Regression (not the same as interpolation!)
- Further tasks:
 - Transcription

Transcription

Speech to text

Image to text

Vinyals, Oriol, et al. "Show and tell: A neural image caption generator." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

- Typical tasks:
 - Classification
 - Regression (not the same as interpolation!)
- Further tasks:
 - Transcription
 - Machine Translation

Machine Translation

22

- Typical tasks:
 - Classification
 - Regression (not the same as interpolation!)
- Further tasks:
 - Transcription
 - Machine Translation
 - Anomaly Detection

Anomaly Detection

- Typical tasks:
 - Classification
 - Regression (not the same as interpolation!)
- Further tasks:
 - Transcription
 - Machine Translation
 - Anomaly Detection
 - Synthesis

A: Real

B: Fake

Real

A: Real

B: Fake

Fake

A: Real

B: Fake

Fake

A: Real

B: Fake

Fake

Real

Real

Fake

Fake

Fake

- Typical tasks:
 - Classification
 - Regression (not the same as interpolation!)
- Further tasks:
 - Transcription
 - Machine Translation
 - Anomaly Detection
 - Synthesis
 - Denoising
 - Imputation of missing values
 - Etc ...

Scope of this course

- Basic/Fundamental Machine Learning methods and algorithms
- Most tasks will be classification tasks

Mitchell (1997):

"A computer is said to learn from experience E,

if its performance at tasks in T,

as measured by P,

improves with experience E"

- 0. Define task T
- 1. Try to solve task T with your Algorithm
- 2. Measure Algorithm performance by P
- 3. Gain experience E by doing so
- **4**. Go to 1.

Content

- Motivation
- When does a Machine learn?
- Machine Learning tasks
- Broad types of Machine Learning Algorithms
- How do input/output look like?
- Data partitioning

Broad types of ML Algorithms

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Supervised Learning

- Desired output is known!
- "teacher tells us right solution "

Classification

Classification

Classification

Regression

Regression

Regression

Unsupervised Learning

- Try to find useful properties/structures in example data set
- "no teacher "

Unsupervised learning

- Learning by punishment / reward
- Feedback loop between learning system and environment
- "teacher points to right direction"

- Learning by punishment / reward
- Feedback loop between learning system and environment
- "teacher points to right direction"
- A little more complicated than illustration;)
- More details in Computer Robot Systems

Content

- Motivation
- When does a Machine learn?
- Machine Learning tasks
- Broad types of Machine Learning Algorithms
- How do input/output look like?
- Data partitioning

Mitchell (1997):

"A computer is said to learn from experience E,

if its performance at tasks in T,

as measured by P,

improves with experience E"

- 0. Define task T
- 1. Try to solve task T with your Algorithm
- 2. Measure Algorithm performance by P
- 3. Gain experience E by doing so
- **4**. Go to 1.

What does the input look like?

- Usually a vector $x \in \mathbb{R}^N$
- Either raw observation vector
- or feature vector,
 where each component may represent a specific feature

What are features?

- Salient properties of observation
- In generable measurable
- Sometimes needs to be extracted from observation

Example: Disease diagnosis

- Possible features (can be observed):
 - Oxygen partial pressure in blood
 - Carbon dioxide partial pressure
 - Heart rate
 - Etc ...

Example: Disease diagnosis

- Possible features (can be observed):
 - Oxygen partial pressure in blood
 - Carbon dioxide partial pressure
 - Heart rate
 - Etc ...

$$x = \begin{pmatrix} heart\,rate \\ blood\,pressure \\ \dots \\ nose\,length \end{pmatrix}$$

• Raw observation: image

Iris setosa

Iris versicolor

Iris virginica

• (Manually) extracted features from image:

$$x = \begin{pmatrix} sepal \ length \\ \vdots \\ petal \ width \end{pmatrix}$$

- Often samples are stored in arrays!
- Be sure you know how the data is structured!
- Example:

```
[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]

[4.7 3.2 1.3 0.2]

[4.6 3.1 1.5 0.2]

[5. 3.6 1.4 0.2]

[5.4 3.9 1.7 0.4]

[4.6 3.4 1.4 0.3]

[5. 3.4 1.5 0.2]

[4.4 2.9 1.4 0.2]

[4.9 3.1 1.5 0.1]
```


- Often samples are stored in arrays!
- Be sure you know how the data is structured!
- Example:

```
[[5.1 3.5 1.4 0.2] First sample
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]]
```


- Often samples are stored in arrays!
- Be sure you know how the data is structured!
- Example:

```
[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]

[4.7 3.2 1.3 0.2]

[4.6 3.1 1.5 0.2]

[5. 3.6 1.4 0.2]

[5.4 3.9 1.7 0.4]

[4.6 3.4 1.4 0.3]

[5. 3.4 1.5 0.2]

[4.9 3.1 1.5 0.1]
```


- Often samples are stored in arrays!
- Be sure you know how the data is structured!
- Example:

```
[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]

[4.7 3.2 1.3 0.2]

[4.6 3.1 1.5 0.2]

[5. 3.6 1.4 0.2]

[5.4 3.9 1.7 0.4]

[4.6 3.4 1.4 0.3]

[5. 3.4 1.5 0.2]

[4.4 2.9 1.4 0.2]

[4.9 3.1 1.5 0.1]]
```


- Often samples are stored in arrays!
- Be sure you know how the data is structured!
- Example:

- Often samples are stored in arrays!
- Be sure you know how the data is structured!
- Example:

```
[[5.1 3.5 1.4 0.2]
[4.9 3 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]]
```


Example: Iris classification

- Often samples are stored in arrays!
- Be sure you know how the data is structured!
- Example:

Example: Iris classification

- Often samples are stored in arrays!
- Be sure you know how the data is structured!
- Example:

Mitchell (1997):

"A computer is said to learn from experience E,

if its performance at tasks in T,

as measured by P,

improves with experience E "

- 0. Define task T
- 1. Try to solve task T with your Algorithm
- 2. Measure Algorithm performance by P
- 3. Gain experience E by doing so
- **4**. Go to 1.

• For supervised classification (categorical output):

• For supervised classification (categorical output):

• For supervised classification (categorical output)

- For supervised classification (categorical output):
- Numerical class labels!

- For supervised classification (categorical output):
- Numerical class labels!

- For supervised classification (categorical output):
- Numerical class labels!

- For supervised classification (categorical output):
- Numerical class labels!

Rather uncommon for multi-class tasks!

- For supervised classification (categorical output):
- Numerical class labels!
- More common for binary classification

- For supervised classification (categorical output):
- Numerical class labels!
- More common for binary classification

- For supervised classification (categorical output):
- Numerical class labels!
- More common for binary classification

- For supervised classification (categorical output):
- One-hot-Encoding!

- For supervised classification (categorical output):
- One-hot-Encoding!

- For supervised classification (categorical output):
- One-hot-Encoding!

Mitchell (1997):

"A computer is said to learn from experience E,

if its performance at tasks in T,

as measured by P,

improves with experience E"

- 0. Define task T
- 1. Try to solve task T with your Algorithm
- 2. Measure Algorithm performance by P
- 3. Gain experience E by doing so
- **4**. Go to 1.

Content

- Motivation
- When does a Machine learn?
- Machine Learning tasks
- Broad types of Machine Learning Algorithms
- How do input/output look like?
- Data partitioning

- Differentiate between performance measure:
 - During learning phase (training)
 -> to improve ML model
 - After learning (testing)
 - -> to estimate how good your model is on unseen data

Data partitioning

- Split your data into
 - Training data
 - -> use this data to improve model during learning phase
 - Validation data

 - -> do not use this data during learning!
 -> use it to measure model performance on unseen data
 -> use measurement for hyperparamter tuning!
 - Testing data

 - -> do not use this data during learning!
 -> use it to measure model performance on unseen data
 -> do not use measurement for hyperparamter tuning!

Summary

- Motivation
- When does a Machine learn?
- Machine Learning tasks
- Broad types of Machine Learning Algorithms
- How do input/output look like?
- Data partitioning

Outlook – Biologically inspired

- McCulloch-Pitts Cell [Tutorial]
- Perceptron [Lecture + Tutorial]
- AdaLine [Lecture + Tutorial]
- Multilayer-Perceptron (MLP) [Lecture + Tutorial]
- Convolutional Neural Networks (CNN) [Tutorial]
- Radial Basis Function-Networks (RBF-Network) [Lecture + Tutorial]

Outlook – Non-Biologically inspired

- Naive Bayes Classifier [Tutorial]
- K-Means Clustering [Lecture]
- Support Vector Machines (SVM) [Lecture + Tutorial]

Further interesting ML algorithms

- Neural Gas
- Self Organizing Maps (SOMs)
- Random Forest
- AdaBoost
- Deep Learning in general (we only shortly cover CNNs)

Relation to Al

