European Patent Office Office européen des brevets

EUROPEAN PATENT SPECIFICATION (12)

- (45) Date of publication and mention of the grant of the patent: 09.04.2003 Bulletin 2003/15
- (51) Int Cl.7: **A61B 17/70**

- (21) Application number: 97106886.1
- (22) Date of filing: 25.04.1997
- (54) Spinal column retaining system

System zum Festhalten der Wirbelsäule Système de retenue rachidienne

- (84) Designated Contracting States: AT BE CH DE ES FR GB IT L! NL SE
- (30) Priority: 31.05.1996 US 655851
- (43) Date of publication of application: 03.12.1997 Bulletin 1997/49
- (73) Proprietor: DePuy AcroMed, Inc. Raynham, MA 02767-0350 (US)
- (72) Inventors:
 - Benzel, Edward C. Albuquerque, New Mexico 87122 (US)
 - · Yuan, Hansen A. Fayetteville, New York 13066 (US)

- DiNello, Alex Pala Aito, California 94303 (US)
- · Wefers, Michael H. South Euclid, Ohio 44121 (US)
- · Smith, Aaron C. Gibsonia, Pennsylvania 15044 (US)
- (74) Representative: Rottmann, Maximilian R. et al c/o Rottmann, Zimmermann + Partner AG **Glattalstrasse 37** 8052 Zürich (CH)
- (56) References cited:

EP-A-0 570 929

EP-A- 0 599 640

EP-A- 0 679 370

FR-A- 2713473

' Description

Background of the invention

Technical Field

[0001] The present invention relates to an apparatus for use in retaining vertebrae of a spinal column in a desired spatial relationship. In particular, the present invention relates to an apparatus for use in retaining cervical vertebrae of a human spinal column in a desired spatial relationship.

Description of the Prior Art

[0002] There are various known devices for retaining vertebrae of a spinal column in a desired spatial relationship. Certain of such known devices include rods connected to and extending between vertebrae and certain of such known devices include plates connected to and extending between vertebrae.

[0003] EP-A-0 570 929 discloses an implant for the spinal column for fixing the vertebrae. The implant comprises two mounting plates each having at least two screw holes and an articulate bearing member. The bearing members are interconnected by means of an elongate spindle member having a right handed thread portion and a left handed thread portion. The mounting plates comprise a corrugation on the surface facing the vertebrae. The screws for fixing the mounting plates to the vertebrae may converge at an acute angle, as viewed in the inferior direction.

[0004] EP-A-0 679 370 discloses a bone surgical fixing device. It comprises a bone plate to be fixed to be fixed to a bone and a fixing rod member, the bone plate having a receiving device for the rod member and a locking device for keeping the rod member in the receiving device. The screws for attaching the bone plate to the bone converge at an acute angle, as viewed in the inferior direction.

[0005] FR-A-2 713 473 discloses an implant device for the spinal column for fixing the vertebrae. The device comprises two laterally extending rod members, each fixed to one of two vertebrae by means of screws, and two longitudinally extending rod members interconnecting the two laterally extending rod members. The screws for attaching the laterally extending rod members to the vertebra converge at an acute angle, as viewed in the inferior direction.

Summary of the Invention

[0006] The present invention is an apparatus for retaining first and second vertebrae of a spinal column in a desired spatial relationship. The apparatus includes a longitudinal member positionable along the spinal column. A member connectable with the first vertebra has first and second fastener openings and a portion en-

gageable with the longitudinal member. A first fastener is extendable through the first fastener opening in the member to connect the member with the first vertebra. The first fastener has a first end portion for attachment to the first vertebra and has a longitudinal axis. A second fastener is extendable through the second fastener opening in the member to connect the member with the first vertebra. The second fastener has a first end portion for attachment to the first vertebra and has a longitudinal axis.

[0007] In accordance with one feature of the present invention, the longitudinal axis of the first fastener and the longitudinal axis of the second fastener converge at an acute angle as viewed in the sagittal plane when the first and second fasteners connect the member with the first vertebra. The apparatus also includes means for connecting the longitudinal member with the second vertebra.

[0008] In accordance with another feature of the present invention, the member connectable with the first vertebra has a body portion. The member also has a lip portion projecting in a first direction from the body portion of the member. The lip portion of the member is engageable with a surface of the first vertebra facing toward the second vertebra.

Brief Description of the Drawings

[0009] The foregoing and other features of the present invention will become more apparent to one skilled in the art upon reading the following description with reference to the accompanying drawings, wherein:

Fig. 1 is an elevational view of an apparatus constructed in accordance with the present invention for maintaining a desired spatial relationship between cervical vertebrae of a spinal column;

Fig. 2 is a view of the apparatus of Fig. 1, taken along the sagittal plane as indicated by line 2-2 of Fig. 1;

Fig. 3 is a sectional view taken generally along line 3-3 of Fig. 2;

Fig. 4 is a sectional view taken generally along line 4-4 of Fig. 2;

Fig. 5 is a perspective view of a first plate which forms a portion of the apparatus of Fig. 1;

Fig. 6 is another perspective view of the plate of Fig. 5;

Fig. 7 is a view similar to Fig. 5 of a second plate which forms a portion of the apparatus of Fig. 1; Fig. 8 is another perspective view of the plate of Fig. 7;

Fig. 9 is a view similar to Fig. 1 of a modified embodiment of the invention.

Fig. 10 is a perspective view of a plate which is constructed in accordance with a second embodiment of the present invention; and

Fig. 11 is an enlarged sectional view of a portion of

50

40

35

10

the plate of Fig. 10 and showing a set screw and rod associated with the plate;

Description of Preferred Embodiments

[0010] The present invention relates to an apparatus for use in retaining vertebrae of a spinal column in a desired spatial relationship. As representative of the present invention, Fig. 1 illustrates an apparatus 10 for use in retaining bone portions such as cervical vertebrae V1 and V2 of a human spinal column C in a desired spatial relationship. The spinal column C has an axis A which is a vertical axis of the human body.

[0011] The apparatus 10 includes a pair of surgically implantable rods 12 and 14 (Figs. 1 and 2). The apparatus 10 also includes first and second members or plates 30 and 32 which engage the rods 12 and 14; three fasteners 38, 40, and 42 for connecting the first plate with the first vertebra V1; and three fasteners 44, 46, and 48 for connecting the second plate with the second vertebra V2.

[0012] The first rod 12 (Fig. 1) is made of a suitable biocompatible material, such as titanium or stainless steel. The first rod 12 has an elongate cylindrical configuration and has a circular cross section taken in a plane extending perpendicular to the longitudinal central axis of the first rod. The first rod 12 has a smooth outer surface. A first end portion of the first rod 12 is formed as a cap 50. The first rod 12 also has a second end portion 52 opposite from the first end portion 50.

[0013] The second rod 14 is identical to the first rod 12. The second rod 14 has a first end portion which is formed as a cap 54. The second rod 14 also has a second end portion 56 opposite from the first end portion 54. The rods 12 and 14 are bendable to a desired configuration to conform to a desired curvature of the spinal column C. The rods 12 and 14 together have sufficient strength and rigidity to maintain the vertebrae V1 and V2 in a desired spatial relationship.

[0014] The rods 12 and 14 have a length which is sufficient to enable the rods to span at least the two vertebrae V1 and V2. The length of the rods 12 and 14 will depend upon the condition to be corrected and the number of vertebrae to be held in a desired spatial relationship relative to each other by the apparatus 10. If more than two vertebrae are to be held in a desired spatial relationship relative to each other by the apparatus 10, the rods 12 and 14 would be longer and more than two plates, such as the plates 30 and 32, may be used. [0015] The first plate 30 (Figs. 5 and 6) is made of a sultable biocompatible material, such as titanium or stainless steel. The first plate 30 includes a main body portion 60. The main body portion 60 of the first plate 30 has a planar outer side surface 62 for facing anteriorly or away from the first vertebra V1. The first plate 30 has an arcuate inner side surface 64 for facing posteriorly or toward the first vertebra V1. The inner side surface 64 of the first plate 30 may engage the anterior surface of the first vertebra V1 when the first plate is connected with the first vertebra as described below.

[0016] The main body portion 60 of the first plate 30 has a central portion 66 which extends laterally between a first side portion 68 and a second side portion 70 of the first plate. Because the inner side surface 64 of the first plate 30 has an arcuate configuration, the central portion 66 of the first plate is relatively thin (as viewed in a direction from left to right in Fig. 3) as compared to the first side portion 68 and to the second side portion 70.

[0017] The main body portion 60 of the first plate 30 also has first and second end portions 72 and 74. The first end portion 72 of the first plate 30 includes a planar first end surface 76 of the first plate 30. The second end portion 74 includes a planar second end surface 78 of the first plate 30. The second end surface 78 extends parallel to the first end surface 76.

[0018] A first rod passage 80 is formed in the first side portion 68 of the first plate 30. The first rod passage 80 is an opening which extends between the first and second end surfaces 76 and 78 of the first plate 30 in a direction parallel to the planar outer side surface 62 of the first plate. The first rod passage 80 is defined by a cylindrical surface 81 and tapered pilot surfaces 83 and 84 at opposite ends of the cylindrical surface 81. The diameter of the cylindrical surface 81 is slightly greater than the diameter of the first rod 12, so that the first rod and the first plate 30 can be relatively movable.

25

30

[0019] The second side portion 70 of the first plate 30 is a mirror image of the first side portion 68. A second rod passage 82 is formed in the second side portion 70 of the first plate 30. The second rod passage 82 is an opening which extends between the first and second end surfaces 76 and 78 of the first plate 30 in a direction parallel to the planar outer side surface 62 of the first plate. The second rod passage 82 extends parallel to the first rod passage 80. The second rod passage 82 is defined by a cylindrical surface 85 and tapered pilot surfaces 86 and 87 at opposite ends of the cylindrical surface 85. The diameter of the second rod passage 82 is the same as the diameter of the first rod passage 80. The diameter of the cylindrical surface 85 is slightly greater than the diameter of the second rod 14, so that the second rod and the first plate 30 can be relatively movable.

[0020] A circular first fastener opening 90 extends through the central portion 66 of the first plate 30. The first fastener opening 90 has an axis 92 (Fig. 2) which extends perpendicular to the plane of the outer side surface 62 of the first plate 30. The axis 92 extends in a first direction as indicated by the arrow 94, that is, from right to left as viewed in Fig. 2, when the first plate 30 is mounted on the first vertebra V1. The first direction 94 extends perpendicular to the axes of the rods 12 and 14. [0021] The first fastener opening 90 is partially defined by a larger diameter cylindrical surface 96 (Fig. 6) which extends from the outer side surface 62 of the first

plate 30 in a direction into the material of the central portion 66 of the first plate. The cylindrical surface 96 is centered on the axis 92 of the first fastener opening 90. The first fastener opening 90 is partially defined by a smaller diameter cylindrical surface 98 which extends from the inner side surface 64 of the first plate 30 in a direction into the material of the central portion 66 of the first plate to a location spaced radially inward from the surface 96. The cylindrical surface 98 is centered on the axis 92 of the first fastener opening 90.

[0022] An annular shoulder surface 100 (Figs. 2 and 6) extends radially (relative to the axis 92) between the cylindrical surfaces 96 and 98. The shoulder surface 100 and the larger diameter cylindrical surface 96 define a recess 102 in the outer side surface 62 of the first plate 30.

[0023] The main body portion 60 of the first plate 30 also includes a circular second fastener opening 110 formed at a location adjacent to, but spaced apart from, the first rod passage 80 in the first side portion 68 of the first plate. The second fastener opening 110 extends through both the second end surface 78 of the first plate 30 and the outer side surface 62 of the first plate.

[0024] The second fastener opening 110 is partially defined by a larger diameter cylindrical surface 112 (Fig. 6) which extends from the outer side surface of the first plate 30 in a direction into the material of the first side portion 68 of the first plate. The cylindrical surface 112 is centered on an axis 114 (Fig. 2) of the second fastener opening 110. The cylindrical surface 112 is spaced apart from the first rod passage 80.

[0025] The second fastener opening 110 is partially defined by a smaller diameter cylindrical surface 116 (Fig. 6) which extends from the inner side surface 64 of the first plate 30 in a direction into the material of the first side portion 68 of the first plate, to a location spaced radially inward from the surface 112. The cylindrical surface 116 is centered on the axis 114 of the second fastener opening 110.

[0026] An annular shoulder surface 118 (Figs. 3 and 6) extends radially (relative to the axis 114) between the cylindrical surfaces 112 and 116. The shoulder surface 118 and the larger diameter cylindrical surface 112 define a recess 120 in the outer side surface 62 of the first plate 30.

[0027] The axis 114 of the second fastener opening 110 extends transverse to the axis 92 of the first fastener opening 90. Specifically, the axis 114 (Fig. 3) of the second fastener opening 110 converges with the axis 92 of the first fastener opening 90 as viewed in a transverse plane at right angles to the vertical axis A, as can be seen from Fig. 3. In the illustrated embodiment, the axis 114 converges at an angle of about 10° with the axis 92 as viewed in this transverse plane.

[0028] The axis 114 of the second fastener opening 110 also converges with the axis 92 of the first fastener opening 90 as viewed in the sagittal plane, as can be seen in Fig. 2. In the illustrated embodiment, the axis

114 converges at an angle of 45° with the axis 92 as viewed in the sagittal plane. It is contemplated that the angle of convergence as viewed in the sagittal plane could be in the range of from about 30° to about 60°.

[0029] The main body portion 60 of the first plate 30 also includes a circular third fastener opening 130 formed at a location adjacent to, but spaced apart from, the second rod passage 82 in the second side portion 70 of the first plate. The third fastener opening 130 extends through both the second end surface 78 of the first plate 30 and the outer side surface 62 of the first plate. [0030] The third fastener opening 130 is partially defined by a larger diameter cylindrical surface 132 (Fig. 6) which extends from the outer side surface 62 of the first plate 30 in a direction into the material of the second side portion 70 of the first plate. The cylindrical surface 132 is centered on an axis 134 (Fig. 4) of the third fastener opening 130. The cylindrical surface 132 is spaced apart from the second rod passage 82.

10

[0031] The third fastener opening 130 is partially defined by a smaller diameter cylindrical surface 136 (Fig. 6) which extends from the inner side surface 64 of the first plate 30 in a direction into the material of the second side portion 70 of the first plate, to a location spaced radially inward from the surface 32. The cylindrical surface 136 is centered on the axis 134 of the third fastener opening 130.

[0032] An annular shoulder surface 138 (Figs. 3 and 6) extends radially (relative to the axis 134) between the cylindrical surfaces 132 and 136. The shoulder surface 138 and the larger diameter cylindrical surface 132 define a recess 140 in the outer side surface 62 of the first plate 30.

[0033] The axis 134 (Fig. 3) of the third fastener opening 130 is coplanar with and extends parallel to the axis 114 of the second fastener opening 110. The axis 134 of the third fastener opening 130 extends transverse to the axis 92 of the first fastener opening 90. Specifically, the axis 134 of the third fastener opening 130 converges with the axis 92 of the first fastener opening 90 as viewed in a transverse plane at right angles to the vertical axis A, as can be seen from Fig. 3. In the illustrated embodiment, the axis 134 converges with the axis 92 at an angle of 10° as viewed in this transverse plane.

[0034] The axis 134 of the third fastener opening 130 also converges with the axis 92 of the first fastener opening 90 as viewed in the sagittal plane, as can be seen from Fig. 2. In the illustrated embodiment, the axis 134 converges with the axis 92 at an angle of 45° as viewed in the sagittal plane. It is contemplated that this angle of convergence as viewed in the sagittal plane could be in the range of from about 30° to about 60°.

[0035] The first plate 30 includes a lip portion or lip 150 which is formed as one piece with the main body portion 60 of the first plate. The lip 150, best seen in Figs. 2 and 5, projects from the second end portion 74

of the main body portion 60 of the first plate 30. The lip

150 projects in the first direction 94 (Fig. 2) when the

first plate 30 is mounted on the first vertebra V1.

. 1

[0036] The lip 150 has a planar configuration as viewed in the first direction 94, for example, as seen in Fig. 2. The lip 150 has an arcuate configuration, as can be seen in Fig. 5, when viewed in a direction parallel to the plane of the outer side surface 62 of the first plate 30. The arcuate configuration of the lip 150 generally follows the arcuate configuration of the inner side surface 64 of the main body portion 60 of the first plate 30. The lip 150 extends continuously between the first and second side portions 68 and 70 of the first plate 30. Alternatively, the lip 150 may be discontinuous at one or more locations along the width of the plate 30.

[0037] The lip 150 has an outer end surface 152 (Fig. 2) which is formed as an extension of the second end surface 78 of the main body portion 60 of the first plate 30. An opposite inner end surface 154 (Figs. 2 and 5) of the lip 150 extends parallel to the outer end surface 152. The lip 150 also has an inner side surface 156 which extends between the inner and outer end surfaces 154 and 152 of the lip 150.

[0038] The second and third fastener openings 110 and 130 extend partially through the lip 150. The second fastener opening 110, as can be seen in Fig. 2, extends through the comer between, or intersection of, the lip 150 and the main body portion 60 of the first plate 30. The third fastener opening 130 also extends through the comer between, or intersection of, the lip 150 and the main body portion 60 of the first plate 30.

[0039] The second plate 32 (Fig. 7) is generally similar in configuration to the first plate 30 (Fig. 5). The second plate 32 (Fig. 7) is configured, however, so that the head ends of fasteners received in certain fastener openings in the second plate are engageable with the rods 12 and 14 disposed in rod passages in the second plate. This engagement can block movement of the second plate 32 relative to the rods 12 and 14, in a manner described below.

[0040] The second plate 32 includes a main body portion 160 which has a planar outer side surface 162 for facing anteriorly or away from the vertebra V2. The main body portion 160 also has an arcuate inner side surface 164 for facing posteriorly or toward the second vertebra V2. The inner side surface 164 of the second plate 32 may engage the anterior surface of the second vertebra V2 when the second plate is connected with the second vertebra as described below.

[0041] The main body portion 160 has a central portion 166 which extends laterally between a first side portion 168 and a second side portion 170 of the second plate 32. Because the inner side surface 164 of the second plate 32 has an arcuate configuration, the central portion 166 of the second plate 32 is relatively thin (as viewed in a direction from left to right in Fig. 4) as compared to the first side portion 168 and to the second side portion 170.

[0042] The main body portion 160 of the second plate 32 also has first and second end portions 172 and 174.

The first end portion 172 of the second plate 32 includes a planar first end surface 176 of the second plate. The second end portion 174 of the second plate 32 includes a planar second end surface 178 of the second plate. The second end surface 178 extends parallel to the first end surface 176.

[0043] A first rod passage 180 is formed in the first side portion 168 of the second plate 32. The first rod passage 180 is an opening which extends between the first and second end surfaces 176 and 178 in a direction parallel to the planar outer side surface 162 of the second plate 32. The first rod passage 180 is defined by a cylindrical surface 181 and tapered pilot surfaces 183 and 184 at opposite ends of the cylindrical surface 181. The diameter of the cylindrical surface 181 is slightly greater than the diameter of the first rod 12.

[0044] A second rod passage 182 is formed in the second side portion 170 of the second plate 32. The second rod passage 182 is an opening which extends between the first and second end surfaces 176 and 178 in a direction parallel to the planar outer side surface 162. of the second plate 32. The second rod passage 182 extends parallel to and has the same diameter as first rod passage 180. The second rod passage 182 is defined by a cylindrical surface 185 and tapered pilot surfaces 186 and 187 at opposite ends of the cylindrical surface 185. The diameter of the cylindrical surface 185 is slightly greater than the diameter of the second rod 14. [0045] A circular first fastener opening 190 extends through the central portion 166 of the second plate 32. The first fastener opening 190 has an axis 192 (Figs. 2 and 4) which extends perpendicular to the plane of the outer side surface 162 of the second plate 32. The axis 192 extends in the first direction 94 when the second plate 32 is mounted on the second vertebra V2.

[0046] The first fastener opening 190 is partially defined by a larger diameter cylindrical surface 196 (Fig. 8) which extends from the outer side surface 162 of the second plate 32 in a direction into the material of the central portion 166 of the second plate. The cylindrical surface 196 is centered on the axis 192 of the first fastener opening 190. The first fastener opening 190 is partially defined by a smaller diameter cylindrical surface 198 which extends from the inner side surface 164 of the second plate 32 in a direction into the material of the central portion 166 of the second plate, to a location spaced radially inward from the surface 196. The cylindrical surface 198 is centered on the axis 192 of the first fastener opening 190.

[0047] An annular shoulder surface 200 (Figs. 2 and 8) extends radially (relative to the axis 192) between the cylindrical surfaces 196 and 198. The shoulder surface 200 and the larger diameter cylindrical surface 196 define a recess 202 in the outer side surface 162 of the second plate 32.

[0048] The main body portion 160 of the second plate 32 also includes a circular second fastener opening 210 formed at a location adjacent to and intersecting the first

rod passage 180 in the first side portion 168 of the second plate. The second fastener opening 210 extends through both the second end surface 178 of the second plate 32 and the outer side surface 162 of the second plate.

[0049] The second fastener opening 210 is partially defined by a larger diameter cylindrical surface 212 (Fig. 8) which extends from the outer side surface 262 of the second plate 32 in a direction into the material of the first side portion 168 of the second plate. The cylindrical surface 212 is centered on an axis 214 (Figs. 2 and 4) of the second fastener opening 210. The cylindrical surface 212 intersects the cylindrical surface 181 which defines the first rod passage 180. Thus, the second fastener opening 210 overlaps a portion of the first rod passage 180.

[0050] The second fastener opening 210 is partially defined by a smaller diameter cylindrical surface 216 which extends from the inner side surface 264 of the second plate 32 in a direction into the material of the first side portion 168 of the second plate, to a location spaced radially inward from the surface 212. The cylindrical surface 216 is centered on the axis 214 of the second fastener opening 210.

[0051] An annular shoulder surface 218 (Figs. 4 and 8) extends radially (relative to the axis 214) between the cylindrical surfaces 212 and 216. The shoulder surface 218 and the larger diameter cylindrical surface 212 define a recess 220 in the outer side surface 262 of the second plate 32.

[0052] The axis 214 of the second fastener opening 210 extends transverse to the axis 192 of the first fastener opening 190. Specifically, the axis 214 of the second fastener opening 210 converges with the axis 192 of the first fastener opening 190 as viewed in a transverse plane at right angles to the vertical axis A, as can be seen from Fig. 4. In the illustrated embodiment, the axis 214 converges with the axis 192 at angle of about 10° as viewed in this transverse plane.

[0053] The axis 214 of the second fastener opening 210 also converges with the axis 192 of the first fastener opening 190 as viewed in the sagittal plane, as can be seen in Fig. 2. In the illustrated embodiment, the axis 214 converges with the axis 192 at an angle of 45° as viewed in the sagittal plane. It is contemplated that this angle of convergence could be in the range of from about 30° to about 60° as viewed in the sagittal plane. [0054] The main body portion 160 of the second plate 32 also includes a circular third fastener opening 230 formed at a location adjacent to and intersecting the second rod passage 182 in the second side portion 170 of the second plate. The third fastener opening 230 extends through both the second end surface 178 of the second plate 32 and the outer side surface 162 of the second plate. The distance between the third fastener opening 230 in the second plate 32 and the second fastener opening 210 in the second plate is slightly less than the distance between the third fastener opening

130 in the first plate 30 and the second fastener opening 110 in the first plate.

[0055] The third fastener opening 230 is partially defined by a larger diameter cylindrical surface 232 (Fig. 8) which extends from the outer side surface 262 of the second plate 32 in a direction into the material of the second side portion 170 of the second plate. The cylindrical surface 232 is centered on an axis 234 (Fig. 4) of the third fastener opening 230. The cylindrical surface 232 intersects the cylindrical surface 185 which defines the second rod passage 182. Thus, the third fastener opening 230 overlaps a portion of the second rod passage 182.

5

[0056] The third fastener opening 230 is partially defined by a smaller diameter cylindrical surface 236 (Fig. 8) which extends from the inner side surface 264 of the second plate 32 into the material of the second side portion 170 of the second plate to a location spaced radially inward from the surface 232. The cylindrical surface 236 is centered on the axis 234 of the third fastener opening 230.

[0057] An annular shoulder surface 238 (Figs. 4 and 8) extends radially (relative to the axis 234) between the cylindrical surfaces 232 and 236. The shoulder surface 238 and the larger diameter cylindrical surface 232 define a recess 240 in the outer side surface 162 of the second plate 32.

[0058] The axis 234 of the third fastener opening 230 is coplanar with and extends parallel to the axis 214 of the second fastener opening 210. The axis 234 of the third fastener opening 230 extends transverse to the axis 192 of the first fastener opening 190. Specifically, the axis 234 of the third fastener opening 230 converges with the axis 192 of the first fastener opening 190 as viewed in a transverse plane at right angles to the vertical axis A, as can be seen from Fig. 4. In the illustrated embodiment, the axis 234 converges with the axis 192 at an angle of about 10° as viewed in this transverse plane.

40 [0059] The axis 234 of the third fastener opening 230 also converges with the axis 192 of the first fastener opening 190 as viewed in the sagittal plane, as can be seen from Fig. 2. In the illustrated embodiment, the axis 234 converges with the axis 192 at an angle of 45°. It is contemplated that this angle of convergence as viewed in the sagittal plane could be in the range of from about 30° to about 60°.

[0060] The second plate 32 includes a lip portion or lip 250 which is formed as one piece with the main body portion 160 of the second plate. The lip 250, best seen in Figs. 4 and 7, projects from the second end portion 174 of the main body portion 160 of the second plate 32. The lip 250 projects in the first direction 94 (Fig. 2) when the second plate 32 is mounted on the second vertebre V2

[0061] The lip 250 has a planar configuration as viewed in the first direction 94, for example, as seen in Fig. 2. The lip 250, as viewed in a direction parallel to

• the plane of the outer side surface 162 of the second plate 32, has an arcuate configuration generally following the arcuate configuration of the inner side surface 164 of the main body portion 160 of the second plate 32. The lip 250 extends continuously between the first and second side portions 168 and 170 of the second plate 32. Alternatively, the lip 250 may be discontinuous at one or more locations along the width of the second plate 32.

[0062] The lip 250 has an outer end surface 252 (Fig. 2) which is formed as an extension of the second end surface 178 of the main body portion 160 of the second plate 32. An opposite inner end surface 254 (Figs. 2 and 8) of the lip 250 extends parallel to the outer end surface 252. The lip 250 also has an inner side surface 256 which extends between the inner and outer end surfaces 252 and 254 of the lip 250. The second and third fastener openings 210 and 230 extend partially through the lip 250. The second fastener opening 210, as well as the third fastener opening 230, extend through the corner between, or intersection of, the lip 250 and the main body portion 160 of the second plate 32.

[0063] The fasteners 38, 40, 42, 44, 46, and 48, which connect the first plate 30 with the first vertebra V1 and the second plate 32 with the second vertebra V2, are identical to each other. Because the fasteners 38-48 are identical, only the fastener 40 is described herein in detail.

[0064] The fastener 40 (Fig. 3) includes a sleeve 300 and an expander 310. The sleeve 300 has a hollow, elongate shank portion 302 centered on a longitudinal central axis 304 of the fastener 40. The shank portion 302 defines a cylindrical central opening 308 in the sleeve 300. A coarse external helical thread convolution 306 is formed on the outer peripheral surface of the shank portion 302 of the sleeve 300.

[0065] The shank portion 302 of the sleeve 300 is radially and axially slotted so that the shank portion is expandable radially. A series of projections (not shown) are formed on the inner surface of the sleeve 300 for engagement by the expander 310 to expand the shank portion 302 of the sleeve in a manner described below. [0066] A head end portion 314 of the sleeve 300 has a cylindrical outer side surface 316. An annular lip or rim 318 extends around the head end portion 314 of the sleeve 300 and projects radially outward from the outer side surface 316. The head end portion 314 of the sleeve 300 has a conical inner side surface 320 and a conical inner side surface 322. The conical inner side surface 322 merges with an internal thread convolution 324 formed on the sleeve 300.

[0067] The head end portion 314 of the sleeve 300 is radially and axially slotted to define four segments 326 of the head end portion. The four segments 326 are movable radially relative to each other and to the axis 304 of the fastener 40 so that the head end portion 314 of the sleeve 300 is expandable radially.

[0068] The expander 310 has a head end portion 340

and a shank portion 342. An inner end 344 of the shank portion 342 of the expander 310 is slightly larger in diameter than the cylindrical central opening 308 in the sleeve 300.

[0069] The head end portion 340 of the expander 310 has an X-shaped driver slot 346 for receiving a driving tool for rotating the expander relative to the sleeve 300. The head end portion 340 has a conical outer side surface 348 and a conical outer side surface 350. The conical outer side surface 350 on the head end portion 340 of the expander 310 has a different angle of taper than does the conical inner side surface 322 on the head end portion 314 of the sleeve 300.

[0070] The conical outer side surface 350 on the head end portion 340 of the expander 310 merges with an external thread convolution 352 formed on the expander 310. The external thread convolution 352 on the expander 310 screws into the internal thread convolution 324 on the sleeve 300.

[0071] To install the apparatus 10 on the spinal column C, the rods 12 and 14 are first assembled with the plates 30 and 32. Specifically, the first rod 12 is inserted through the first rod passage 80 in the first plate 30 and through the first rod passage 180 in the second plate 32. One of the tapered pilot surfaces 83 and 84 on the first plate 30, and one of the tapered pilot surfaces 183 and 184 on the second plate 32, guide insertion of the first rod 12. The second rod 14 is inserted through the second rod passage 82 in the first plate 30 and through the second rod passage 182 in the second plate 32. One of the tapered pilot surfaces 86 and 87 on the first plate 30, and one of the tapered pilot surfaces 186 and 187 on the second plate 32, guide insertion of the second rod 14.

[0072] The assembly of the rods 12 and 14 and the plates 30 and 32 is then positioned over the exposed anterior surface of the spinal column C. The first plate 30 (Fig. 2) is positioned adjacent to the first vertebra V1 so that the first end surface 154 on the lip 150 of the first plate engages a lower surface 360 on the first vertebra V1. The lower surface 360 on the first vertebra V1 faces toward the second vertebra V2. The second plate 32 is positioned adjacent to the second vertebra V2 so that the first end surface 254 on the lip 250 of the second plate engages an upper surface 362 on the second vertebra V2. The upper surface 362 on the second vertebra V2 faces toward the first vertebra V1.

[0073] With the first plate 30 on the first vertebra V1, and the second plate 32 on the second vertebra V2, a suitable drill guide and drill (not shown) are used to drill fastener openings in the first vertebra V1 and in the second vertebra V2.

[0074] The fasteners 38, 40 and 42 are inserted to connect the first plate 30 with the first vertebra. The insertion and securing of the fastener 40, although not necessarily performed first, will be described as exemplary.

[0075] The sleeve 300 of the fastener 40 is inserted

through the second fastener opening 110 in the first plate 30. The sleeve 300 of the fastener 40 is threaded into the drilled opening in the vertebra V1 in a known manner (not shown) to fix the sleeve in position in the vertebra V1. The unexpanded head portion 314 of the sleeve 300 is disposed in the recess 120 in the first plate 30.

[0076] The expander 310 of the fastener 40 is then inserted into the sleeve 300. The externally threaded portion 352 of the expander 310 is screwed into the internal threads 324 on the sleeve 300. When the expander 310 is fully screwed into the sleeve 300, the inner end portion 344 of the expander 310 causes the shank portion 302 of the sleeve to expand radially outward, helping to lock the sleeve in place in the vertebra V1. When the expander 310 is fully screwed into the sleeve 300, the head portion 340 of the expander 310 engages the head portion 314 of the sleeve 300. The head portion 340 of the expander 310 wedges the locking segments 326 on the sleeve 300 radially outward into engagement with the first plate 30 to rigidly lock the fastener 40 in position relative to the first plate. The head of the fastener 40 is adjacent to the lip 150.

15

20

[0077] The remaining fasteners 38 and 42 for the first plate 30 are similarly secured to the vertebra V1 and are rigidly locked to the first plate. The heads of the fasteners 38 and 42 are adjacent to the lip 150. As a result, the first plate 30 is securely connected with the first vertebra V1.

[0078] The fasteners 44, 46 and 48 are similarly used to connect the second vertebra V2 and the second plate 32. The heads of the fasteners 44, 46, and 48 are adjacent to the lip 250. As a result, the fasteners 44, 46 and 48 are rigidly locked to the plate 32 and the plate 32 is securely connected with the second vertebra V2.

[0079] As can be seen in Fig. 2, the fastener 40 (as well as the fastener 42, not shown in Fig. 2) extends at an angle (upward as viewed in Fig. 2) to the lip 150. Accordingly, when the fasteners 40 and 42 are tightened into the first vertebra V1, the fasteners tend to draw the lip 150 of the first plate 30 tightly against the surface 360 of the vertebra, that is, in an upward direction as viewed in Fig. 2. At the same time, the fasteners 40 and 42, as well as the fastener 38, tend to draw the main body portion 60 of the first plate 30 tightly against the anterior surface of the first vertebra V1, that is, in a direction to the left as viewed in Fig. 2. Accordingly, it can be seen that tightening the fasteners 38, 40 and 42 tends to draw the first plate 30 in two directions against the first vertebra V1.

[0080] The first fastener 38 has a longitudinal central axis which is coincident with the axis 92 of the first fastener opening 90 when the first fastener 38 is disposed in the first fastener opening 90 in the first plate 30. When the second fastener 40 is disposed in the second fastener opening 110 in the first plate 30, the longitudinal central axis 304 of the second fastener 40 is coincident with the axis 114 of the second fastener opening 110.

[0081] As described above, the axis 92 of the first fastener opening 90 and the axis 114 of the second fastener opening 110 converge at an acute angle as viewed in the sagittal plane (Fig. 2). Therefore, the longitudinal axis of the first fastener 38 and the longitudinal axis 304 of the second fastener 40 converge at an acute angle as viewed in the sagittal plane (Fig. 2) when the first and second fasteners 38 and 40 connect the first plate 30 with the first vertebra V1. In the illustrated embodiment, the axis of the first fastener 38 and the axis 304 of the second fastener 40 converge at an angle of about 45° as viewed in the sagittal plane. It is contemplated that this angle of convergence in the sagittal plane could be in the range of from about 30° to about 60°.

[0082] When the third fastener 42 is disposed in the third fastener opening 130 in the first plate 30, the longitudinal central axis of the third fastener 42 is coincident with the axis 134 of the third fastener opening 130. As described above, the axis 92 of the first fastener opening 90 and the axis 134 of the third fastener opening 130 converge at an acute angle as viewed in the sagittal plane (Fig. 2). Therefore, the longitudinal axis of the first fastener 38 and the longitudinal axis of the third fastener 42 converge at an acute angle as viewed in the sagittal plane (Fig. 2) when the first and third fasteners 38 and 42 connect the first plate 30 with the first vertebra V1. In the illustrated embodiment, the axis of the first fastener 38 and the axis of the third fastener 42 converge at an angle of about 45° as viewed in the sagittal plane. It is contemplated that this angle of convergence in the sagittal plane could be in the range of from about 30° to about 60°.

[0083] The second plate 32 is, in a similar manner, secured in position relative to the second vertebra V2. Tightening the fasteners 44, 46 and 48 tends to draw the second plate 32 in two directions against the second vertebra V2.

[0084] When the first fastener 44, the second fastener 46, and the third fastener 48 connect the second plate 32 with the second vertebra V2, the axis of the first fastener 44 and the axis of the second fastener 46 converge at an acute angle as viewed in the sagittal plane (Fig. 2). Also, the axis of the first fastener 44 and the axis of the third fastener 48 converge at an acute angle as viewed in the sagittal plane (Fig. 2). In the illustrated embodiment, these axes converge at an angle of about 45° as viewed in the sagittal plane. It is contemplated that this angle of convergence in the sagittal plane could be in the range of from about 30° to about 60°.

[0085] The fact that there are three screws which secure each one of the plates 30 and 32 to the spinal column C also helps to maintain proper placement of the plates. These features help the apparatus 10 maintain the vertebrae V1 and V2 in place when the cervical spine is subjected to various degrees of motion of the human head.

[0086] When the second plate 32 is being connected with the second vertebra V2, the outer fasteners 46 and

' 48 secure the second plate and the second vertebra. The fasteners 46 and 48 also serve to interlock the second plate 32 with the rods 12 and 14. This is because the locking segments 326 on the sleeves 300 of the fasteners 46 and 48 (Fig. 4) move radially outward into engagement with the rods 12 and 14, respectively, when each fastener's expander is fully screwed into the fastener's sleeve. The engagement between the fasteners 46 and 48 and the rods 12 and 14 blocks movement of the fasteners 46 and 48 relative to the rods. The radial movement of the locking segments 326 of the fasteners also causes the rods to be clamped against the cylindrical surfaces 181 and 185 which define the rod passages 180 and 182, respectively in the second plate 32. As a result, the expanded fasteners 46 and 48 block movement of the second plate relative to the rods 12 and 14. [0087] The first plate 30, in contrast, is movable relative to the rods 12 and 14, because the second and third fastener openings 110 and 130 are spaced apart from the rod passages 80 and 82. Therefore, the first plate 30 is movable relative to the second plate 32.

[0088] Accordingly, the first vertebra V1 is movable vertically downward relative to the second vertebra V2. This relative movement allows for the maintaining of a load on bone graft placed between the vertebrae V1 and V2. If the first plate 30 were not movable vertically downward relative to the second plate 32, then the distance between the vertebrae V1 and V2 would be fixed. If bone graft were placed between the vertebrae V1 and V2 and the bone graft resorbed sufficiently, the bone graft could possibly shrink out of engagement with one or both of the vertebrae V1 and V2. Allowing relative movement of the plates 30 and 32 can help to maintain a desired load on bone graft placed between the vertebrae V1 and V2 and maintains the vertebrae in contact with the bone graft to facilitate bone growth. The lips 150 and 250 on the plates 30 and 32 are, preferably, configured so that the lips do not contact bone graft placed between the vertebrae.

[0089] The caps 50 and 54 on the rods 12 and 14, respectively, limit movement of the first vertebra V1 in a direction away from the second vertebra V2. This helps to maintain a load on the bone graft and maintain the vertebrae V1 and V2 in contact with the bone graft.

[0090] It may not be necessary or desirable, in some circumstances, to use a dynamic (movable) plate such as the plate 30. In such circumstances, two locking plates identical to the plate 32 can be used in the same apparatus 10. Such a system is illustrated in Fig. 9. The upper plate 32 (Fig. 9) is fixed in position relative to the vertebra V1 and to the rods 12 and 14. The lower plate 32 (Fig. 9) is fixed in position relative to the vertebra V2 and to the rods 12 and 14. Accordingly, the apparatus 10 (Fig. 9) blocks relative movement between the vertebrae V1 and V2.

[0091] Figs. 10 and 11 illustrate a plate 30a which is constructed in accordance with a second embodiment of the present invention. The plate 30a can be substitut-

ed, in the apparatus 10, for the plate 30. The plate 30a is generally similar to the plate 30 (Figs. 5 and 6), and similar reference numerals are used to designate similar parts, with the suffix "a" added in Figs. 10 and 11 for clarity.

[0092] In the plate 30a, a pair of set screws 370 are provided for engaging the rods 12 and 14 to block movement of the plate, and thereby its associated bone portion, relative to the rods. Specifically, the outer side surface 62a of the plate 30a is recessed at 372 adjacent to the second rod passage 82a. A seat 374 extends inwardly from the recess 372 to a threaded opening 376. An inner end portion 378 of the opening 376 intersects with the second rod passage 82a. On the opposite side portion 68a of the plate 30a, a second threaded opening 380 intersects the first rod passage 80a.

10

[0093] After the plate 30a is assembled with the rods 12 and 14 and positioned adjacent to the spinal column C, fasteners such as the fasteners 38-42 are inserted through fastener openings 90a, 110a, and 130a in the plate 30a, to secure the plate to its associated bone portion. The head end portions of the fasteners for the plate 30a do not engage the rods 12 and 14, and do not clamp the rods against the plate 30a.

[0094] A set screw 370 is threaded into the opening 376. An inner end portion 382 of the set screw 370 engages the cylindrical outer surface of the second rod 14. The engagement of the set screw 370 with the second rod 14 clamps the rod against the second side portion 70a of the plate 30a. Another set screw 370 is threaded into the opening 380 to engage the first rod 12 and clamp the first rod against the first side portion 68a of the plate 30a.

[0095] As a result, the set screws 370, the rods 12 and 14, and the plate 30a are interlocked. The plate 30a is movable relative to (along the length of) the rods 12 and 14. Because the plate 30a is fixed to its associated bone portion, then the bone portion also is movable relative to the rods 12 and 14.

[0096] In the plate 30a, a portion of the lip 150a is removed at the location of the fastener openings 110a and 130a, to provide better visibility. This provides two lip segments 151 and 153 at the side portions 68a and 70a, respectively, of the plate 30a. The lip segments 151 and 153 are spaced apart on opposite sides of the longitudinal axis, or centerline, of the plate 30a. A portion of the lip 150a also is removed at the lateral center of the plate 30a, and a notch 384 is provided in the plate 30a, again to increase visibility.

50 [0097] From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications in the invention. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended 55 claims.

- 1. An apparatus (10) for retaining first and second vertebrae (V1, V2) of a spinal column in a desired spatial relationship, comprising one or two longitudinal member(s) (12; 14) positionable along the posterior surface of the spinal column, a member (30) connectable with the first vertebra (V1), said member (30) having first and second fastener openings (90, 110) and a portion (68; 70) engageable with said longitudinal member (12; 14), a first fastener (38) extendable through said first fastener opening (90) in said member (30) to connect said member (30) with the first vertebra (V1), said first fastener (38) having a first end portion for attachment to the first vertebra (V1) and having a longitudinal axis (92), a second fastener (40) extendable through said second fastener opening (110) in said member (30) to connect said member (30) with the first vertebra (V1), said second fastener (40) having a first end portion for attachment to the first vertebra (V1) and having a longitudinal axis (114), and means (32) for connecting said longitudinal member (12; 14) with the second vertebra (V2), characterized in that said longitudinal axis (92) of said first fastener (38) and said longitudinal axis (114) of said second fastener (40) converge at an acute angle as viewed in a sagittal plane when said first and second fasteners (38, 40) connect said member (30) with the first vertebra (V1), whereby said member (30) connectable with the first vertebra (V1) has a body portion (60) and a lip portion (150) projecting in a first direction from said body portion (60) of said member (30), said lip portion (150) of said member (30) being engageable with a surface of the first vertebra (V1) facing toward the second vertebra (V2).
- 2. An apparatus as set forth in claim 1, characterized in that said first and second fasteners (38, 40) have respective second end portions opposite from said first end portions, said first end portion of said first fastener (38) being spaced apart from said first end portion of said second fastener (40) by a first distance when said first and second fasteners connect said member (30) with the first vertebra (V1), said second end portion of said first fastener (38) being spaced apart from said second end portion of said second distance which is greater than said first distance when said first and second fasteners connect said member (30) with the first vertebra (V1).
- An apparatus as set forth in claim 1, characterized in that said member (30a) comprises a set screw (370) which is engageable with said longitudinal member (12; 14) to block movement of said member (30a) relative to said longitudinal member (12; 14) when said first and second fasteners (38, 40)

connect said member (30a) with the second vertebra (V2).

4. An apparatus as set forth in claim 1, characterized in that said member (30) comprises a portion of one of said first and second fasteners (38; 40) which is engageable with said longitudinal member (12; 14) to block movement of said one fastener (38; 40) and thereby of said member (30) relative to said longitudinal member (12; 14) when said first and second fasteners (38, 40) connect said member (30) with the second vertebra (V2).

5

15

40

- 5. An apparatus as set forth in claim 1, characterized in that said longitudinal axis (114) of said second fastener (40) extends at an angle in the range of from about 30 degrees to about 60 degrees as viewed in the sagittal plane relative to said longitudinal axis (92) of said first fastener (38).
- 6. An apparatus as set forth in claim 5, characterized in that said longitudinal axis (114) of said second fastener (40) extends at an angle of about 45 degrees as viewed in the sagittal plane relative to said longitudinal axis (92) of said first fastener (38).
- 7. An apparatus as set forth in claim 1, characterized in that said member (30) has a third fastener opening (130), said apparatus further comprising a third fastener (42) extendable through said third fastener opening (130) in said member (30) to connect said member (30) with the first vertebra (V1), said third fastener (42) having a first end portion for attachment to the first vertebra (V1) and having a longitudinal axis (134).
- 8. An apparatus as set forth in claim 7, characterized in that said second fastener (40) and said third fastener (42) are generally co-planar, said longitudinal axis (92) of said first fastener (38) and said longitudinal axis (134) of said third fastener (42) converging at an acute angle as viewed in a sagittal plane when said first and second and third fasteners (38, 40, 42) connect said member (30) with the first vertebra (V1).
- 9. An apparatus as set forth in claim 1, characterized in that said means for connecting said longitudinal member (12; 14) with the second vertebra (V2) comprises a second member (32) connectable with the second vertebra (V2), said second member (32) having at least two fastener openings (190; 210; 230) and a portion (168; 170) engageable with said longitudinal member (12; 14), a first additional fastener (44) extendable through a first one (190) of said at least two fastener openings in said second member (32) to connect said second member (32) with the second vertebra (V2), said first additional

- fastener (44) having a first end portion for attachment to the second vertebra (V2) and having a longitudinal axis (192), a second additional fastener (46) extendable through a second additional one (210) of said at least two fastener openings in said second member (32) to connect said second member (32) with the second vertebra (V2), said second additional fastener (46) having a first end portion for attachment to the second vertebra (V2) and having a longitudinal axis (214), said longitudinal axes (192, 214) of said first and second additional fasteners (44, 46) converging at an acute angle as viewed in a sagittal plane when said first and second additional fasteners (44, 46) connect said second member (32) with the second vertebra (V2).
- 10. An apparatus as set forth in claim 9, characterized in that said first member (30) comprises means for blocking movement of said first member (30) relative to said longitudinal member (12; 14) when said first and second fasteners (38, 40) connect said first member (30) with the first vertebra (V1), said second member (32) being movable relative to said longitudinal member (12; 14) when said first and second additional fasteners (44, 46) connect said second member (32) with the second vertebra (V2).
- 11. An apparatus as set forth in claim 1, characterized in that said body portion (60) of said member (30) has a first end portion (72) and has a second end portion (74) disposed intermediate said first end portion (72) and said second vertebra (V2), said body portion (60) including first and second fastener openings (90, 110) disposed in said second end portion (74), said lip portion (150) projecting from said second end portion (74).
- 12. An apparatus as set forth in claim 1, characterized in that said body portion (60) of said member (30) has a generally planar outer side surface (62), said lip portion (150) of said member (30) having a generally planar configuration extending in a direction transverse to the plane of said outer side surface (62) of said body portion (60) of said member (30).
- 13. An apparatus as set forth in claim 1, characterized in that said body portion (60a) of said member (30a) has first and second opposite side portions (68a, 70a), said lip portion (150a) of said member (30a) having a first segment (151) at said first side portion (68a) and having a second segment (153) at said second side portion (70a).
- 14. An apparatus as set forth in claim 13, character-ized in that said first lip segment (151) is spaced apart from said second lip segment (153) on opposite sides of a longitudinally extending axis of said member (30a).

- 15. An apparatus as set forth in claim 13, characterized in that said lip portion (150) of said member (30) extends substantially continuously along said member (30) between said first and second side portions (68, 70).
- 16. An apparatus as set forth in claim 1, characterized in that it comprises a pair of longitudinal members (12, 14) positionable along the spinal column, whereby said member (32) has first and second fastener openings (190, 210) and portions engageable with said two longitudinal members (12, 14).
- 17. An apparatus as set forth in claim 1, characterized in that said first fastener (38) and said second fastener (40) are rigidly locked to said member (30).
- 18. The apparatus as set forth in claim 1, characterized in that rotation of said first fastener (38) and said second fastener (40) causes said plate member (30) to be drawn toward said first vertebra (V1) in at least two directions.

25 Patentansprüche

10

15

20

- Vorrichtung (10) zum Festhalten erster und zweiter Wirbel (V1, V2) einer Wirbelsäule in einer gewünschten räumlichen Beziehung, welche Vorrichtung aufweist:
 - ein oder zwei längsverlaufende Glieder (12, 14), welche längs der hinteren Oberfläche der Wirbelsäule positioniert werden können;
 - ein Glied (30), welches mit dem ersten Wirbel (V1) verbunden werden kann, wobei das genannte Glied (30) erste und zweite Schraubenöffnungen (90, 110) und einen Teil (68, 70), welcher mit dem genannten längsverlaufende Glied (12, 14) in Eingriff gebracht werden kann, aufweist;
 - eine erste Schraube (38), welche sich durch die genannte erste Schraubenöffnung (90) im genannten Glied (30) erstrecken kann, um das genannte Glied (30) mit dem ersten Wirbel (V1) zu verbinden, wobei die genannte erste Schraube (38) einen ersten Endteil zur Befestigung am ersten Wirbel (V1) und eine Längsachse (92) aufweist;
 - eine zweite Schraube (40), welche sich durch die genannte zweite Schraubenöffnung (110) im genannten Glied (30) erstrecken kann, um das genannte Glied (30) mit dem ersten Wirbel (V1) zu verbinden, wobel die genannte zweite Schraube (40) einen ersten Endteil zur Befestigung am ersten Wirbel (V1) und eine Längsachse (114) aufweist; und
 - Mittel (32) zum Verbinden der genannten

längsverlaufenden Glieder (12, 14) mit dem zweiten Wirbel (V2);

dadurch gekennzeichnet, dass die genannte Längsachse (92) der genannten ersten Schraube (38) und die genannte Längsachse (114) der genannten zweiten Schraube (40), in einer Sagittal- ebene betrachtet, in einem spitzen Winkel konvergieren, wenn die erste und die zweite Schraube (38, 40) das genannte Glied (30) mit dem ersten Wirbel (V1) verbinden, wobei das genannte Glied (30). welches mit dem ersten Wirbel (V1) verbunden werden kann, einen Hauptteil (60) und einen Lippenteil (150) ausweist, welcher sich in einer ersten Richtung vom genannten Hauptteil (60) des genannten Gliedes (30) weg erstreckt, und wobei der genannte Lippenteil (150) des genannten Gliedes (30) mit einer gegen den zweiten Wirbel (V2) gerichteten Oberfläche des ersten Wirbels (V1) in Eingriff gebracht werden kann.

- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die genannten ersten und zweiten Schrauben (38, 40) zweite Endteile aufweisen, welche den genannten ersten Endteilen gegenüber liegen, wobei der genannte erste Endteil der genannten ersten Schraube (38) vom genannten ersten Endteil der genannten zweiten Schraube (40) in einem ersten Abstand angeordnet ist, wenn die genannten ersten und zweiten Schrauben das genannte Glied (30) mit dem ersten Wirbel (V1) verbinden, und der genannte zweite Endteil der genannten ersten Schraube (38) vom genannten zweiten Endteil der genannten zweiten Schraube (40) in einem zweiten Abstand angeordnet ist, welcher grösser ist als der genannte erste Abstand. wenn die genannten ersten und zweiten Schrauben das genannte Glied (30) mit dem ersten Wirbel (V1) verbinden.
- 3. Vorrichtung nach Anspruch 1, dadurch gekennzelchnet, dass das genannte Glied (30a) eine Klemmschraube (370) aufweist, welche am genannten längsverlaufenden Glied (12, 14) angreifen kann, um eine Bewegung des genannten Gliedes (30a) gegenüber dem genannten längsverlaufenden Glied (12, 14) zu blockieren, wenn die genannten ersten und zweiten Schrauben (38, 40) das genannte Glied (30a) mit dem zweiten Wirbel (V2) verbinden.
- 4. Vornchtung nach Anspruch 1, dadurch gekennzeichnet, dass das genannte Glied (30) einen Teil einer der genannten ersten und zweiten Schrauben (38, 40) umfasst, welcher an dem genannten längsverlaufenden Glied (12, 14) angreifen kann, um eine Bewegung der betreffenden Schraube (38, 40) und damit des genannten Gliedes (30) gegenüber

dem genannten längsverlaufenden Glied (12, 14) zu blockieren, wenn die genannten ersten und zwelten Schrauben (38, 40) das genannte Glied (30) mit dem zweiten Wirbel (V2) verbinden.

- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die genannte L\u00e4ngsachse (114) der genannten zweiten Schraube (40) sich, in der Sagittalebene betrachtet, unter einem Winkel im Bereich von 30 Grad bis 60 Grad gegen\u00fcber der genannten L\u00e4ngsachse (92) der genannten ersten Schraube (38) erstreckt.
- Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die genannte L\u00e4ngsachse (114) der genannten zweiten Schraube (40) sich, in der Sagittalebene betrachtet, unter einem Winkel von ungef\u00e4hr 45 Grad gegen\u00fcber der genannten L\u00e4ngsachse (92) der genannten ersten Schraube (38) erstreckt.
- 7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das genannte Glied (30) eine dritte Schraubenöffnung (130) aufweist, wobei die genannte Vorrichtung weiter eine dritte Schraube (42) aufweist, welche sich durch die genannte dritte Schraubenöffnung (130) im genannten Glied (30) hindurch erstrecken kann, um das genannte Glied (30) mit dem ersten Wirbel (V1) zu verbinden, und wobei die genannte dritte Schraube (42) einen ersten Endteil zur Verbindung mit dem ersten Wirbel (V1) und eine Längsachse (134) aufweist.
- 8. Vorrichtung nach Anspruch 7, dadurch gekennzelchnet, dass die genannte zweite Schraube (40) und die genannte dritte Schraube (42) im Grossen und Ganzen koplanar angeordnet sind, wobei die genannte Längsachse (92) der genannten ersten Schraube (38) und die genannte Längsachse (134) der genannten dritten Schraube (42), in der Sagittalebene betrachtet, unter einem spitzen Winkel konvergieren, wenn die genannten ersten, zweiten und dritten Schrauben (38, 40, 42) das genannte Glied (30) mit dem ersten Wirbel (V1) verbinden.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die genannten Mittel zum Verbinden des genannten längsverlaufenden Gliedes (12, 14) mit dem zweiten Wirbel (V2) ein zweites Glied (32), welches mit dem zweiten Wirbel (V2) verbunden werden kann, umfasst, wobei das genannte zweite Glied (32) umfasst:
 - mindestens zwei Schraubenöffnungen (190, 210, 230) und einen Teil, welcher an dem genannten längsverlaufenden Glied (12, 14) angreifen kann;
 - eine erste zusätzliche Schraube (44), welche

20

25

10

15

40

50

55

sich durch eine erste (190) der genannten mindestens zwei Schraubenöffnungen im genannten zweiten Glied (32) hindurch erstrecken kann, um das genannte zweite Glied (32) mit dem zweiten Wirbel (V2) zu verbinden, wobel die genannte erste zusätzliche Schraube (44) einen ersten Endteil zur Verbindung mit dem zweiten Wirbel (V2) und eine Längsachse (192) aufweist;

 eine zweite zusätzliche Schraube (46), welche sich durch eine zweite (210) der genannten mindestens zwei Schraubenöffnungen im genannten zweiten Glied (32) hindurch erstrekken kann, um das genannte zweite Glied (32) mit dem zweiten Wirbel (V2) zu verbinden, wobei die genannte zweite zusätzliche Schraube (46) einen ersten Endteil zur Verbindung mit dem zweiten Wirbel (V2) und eine Längsachse (214) aufweist:

wobei die genannten Längsachsen (192, 214) der genannten ersten und zweiten Schrauben (44, 46), in einer Sagittalebene betrachtet, unter einem spitzen Winkel konvergieren, wenn die genannten ersten und zweiten zusätzlichen Schrauben (44, 46) das genannte zweite Glied (32) mit dem zweiten Wirbel (V2) verbinden.

- 10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass das genannte erste Glied (30) Mittel aufweist, um eine Bewegung des genannten ersten Gliedes (30) gegenüber dem genannten längsverlaufenden Glied (12, 14) zu blockieren, wenn die genannten ersten und zweiten Schrauben (38, 40) das genannte erste Glied (30) mit dem ersten Wirbel (V1) verbinden, wobei das genannte zweite Glied gegenüber dem genannten längsverlaufenden Glied (12, 14) beweglich ist, wenn die genannten ersten und zweiten zusätzlichen Schrauben (44, 46) das genannte zweite Glied (32) mit dem zweiten Wirbel (V2) verbinden.
- 11. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der genannte Hauptteil (60) des genannten Gliedes (30) einen ersten Endteil (72) und einen zwischen dem genannten ersten Endteil (72) und dem zweiten Wirbel (V2) angeordneten zweiten Endteil (74) aufweist, wobei der genannte Hauptteil (60) erste und zweite Schraubenöffnungen (90, 110) aufweist, welche im genannten zweiten Endteil (74) angeordnet sind, wobei der genannte Lippenteil (150) vom genannten zweiten Endteil (74) vorspringt.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der genannte Hauptteil (60) des genannten Gliedes (30) eine im Grossen und Ganzen ebene äussere Seitenoberfläche (62) aufweist, wo-

bei der genannte Lippenteil (150) des genannten Gliedes (30) eine im Grossen und Ganzen ebene Gestalt aufweist, welche sich in einer Richtung quer zur Ebene der genannten äusseren Seitenoberfläche (62) des genannten Hauptteils (60) des genannten Gliedes (30) erstreckt.

- 13. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der genannte Hauptteil (60a) des genannten Gliedes (30a) erste und zweite, einander gegenüberliegende Seitenteile (68a, 70a) aufweist, wobei der genannte Lippenteil (150a) des genannten Gliedes (30a) ein erstes Segment (151) am genannten ersten Seitenteil (68a) und ein zweites Segment (153) am genannten zweiten Seitenteil (70a) aufweist.
- 14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass das genannte erste Lippensegment (151) in Abstand vom genannten zweiten Lippensegment (153) an gegenüberliegenden Seiten der Längsachse des genannten Gliedes (30a) angeordnet ist.

20

- 25 15. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass der genannte Lippenteil (150) des genannten Gliedes (30) sich im Wesentlichen kontinuierlich längs des genannten Gliedes (30) zwischen ersten und zweiten Seitenteilen (68, 70) erstreckt.
 - 16. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sie ein Paar l\u00e4ngsverlaufender Glieder (12, 14) aufweist, welche l\u00e4ngs der Wirbels\u00e4ule positioniert werden k\u00f6nnen, wobei das genannte Glied (32) erste und zweite Schrauben\u00f6fnungen (190, 210) und Teile, welche an den genannten zwei l\u00e4ngsverfaufenden Gliedern (12, 14) angreifen k\u00f6nnen, aufweist.
 - Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die genannte erste Schraube (38) und die genannte zweite Schraube (40) mit dem genannten Glied (30) fest verriegelt sind.
 - 18. Vorrichtung nach Anspruch 1, dadurch gekennzelchnet, dass die Drehung der ersten Schraube (38) und der zweiten Schraube (40) bewirkt, dass das genannte Plattenglied (30) in mindestens zwei Richtungen gegen den genannten Wirbel (V1) gezogen wird.

Revendications

50

 Appareil (10) pour retenir une première et une deuxième vertèbres (V1, V2) d'une colonne vertébrale dans une relation spatiale désirée, compre-

nant un ou deux éléments longitudinaux (12: 14) positionnables le long de la surface postérieure de la colonne vertébrale, un élément (30) connectable avec la première vertèbre (V1), le dit élément (30) ayant un premier et un deuxième trous d'attache (90, 110) et une partie (68; 70) qui peut venir en prise avec le dit élément longitudinal (12 ; 14), une première attache (38) qui peut passer dans le dit premier trou d'attache (90) du dit élément (30) de manière à connecter le dit élément (30) à la première vertèbre (V1), la dite première attache (38) ayant une première partie d'extrémité pour fixation à la première vertèbre (V1) et ayant un axe longitudinal (92), une deuxième attache (40) qui peut passer dans le dit deuxième trou d'attache (110) du dit élément (30) de manière à connecter le dit élément (30) à la première vertèbre (V1), la dite deuxième attache (30) ayant une première partie d'extrémité pour fixation à la première vertèbre (V1) et ayant un axe longitudinal (114), et des moyens (32) pour relier le dit élément longitudinal (12 ; 14) à la deuxième vertèbre (V2), caractérisé en ce que le dit axe longitudinal (92) de la dite première attache (38) et le dit axe longitudinal (114) de la dite deuxième attache (40) convergent suivant un angle aigu, vus dans un plan sagittal, lorsque les dites première et deuxième attaches (38, 40) connectent le dit élément (30) à la première vertèbre (V1), de sorte que le dit élément (30) connectable à la première vertèbre (V1) comprend un corps (60) et une lèvre (150) qui fait saillie dans une première direction à partir du dit corps (60) du dit élément (30), la dite lèvre (150) du dit élément (30) pouvant venir en prise avec une surface de la première vertèbre (V1) tournée vers la deuxième vertèbre (V2).

- 2. Appareil selon la revendication 1, caractérisé en ce que les dites première et deuxième attaches (38, 40) ont des deuxièmes parties d'extrémité respectives opposées aux dites premières parties d'extrémité, la dite première partie d'extrémité de la dite première attache (38) étant espacée de la dite première partie d'extrémité de la dite deuxième attache (40) par une première distance lorsque les dites première et deuxième attaches connectent le dit élément (30) à la première vertèbre (V1), la dite deuxième partie d'extrémité de la dite première attache (38) étant espacée de la dite deuxième partie d'extrémité de la dite deuxième attache (40) par une deuxième distance qui est plus grande que la dite première distance lorsque les dites première et deuxième attaches connectent le dit élément (30) à la première vertèbre (V1).
- Appareil selon la revendication 1, caractérisé en ce que le dit élément (30a) comprend une vis de pression (370) qui peut venir en prise avec le dit élément longitudinal (12; 14) pour bloquer le mou-

vement du dit élément (30a) par rapport au dit élément longitudinal (12;14) lorsque les dites première et deuxième attaches (38, 40) connectent le dit élément (30a) à la deuxième vertèbre (V2).

4. Appareil selon la revendication 1, caractérisé en ce que le dit élément (30) comprend une partie d'une des dites première et deuxième attaches (38; 40) qui peut venir en prise avec le dit élément longitudinal (12;14) pour empêcher le mouvement de la dite une attache (38;40) et donc du dit élément (30) par rapport au dit élément longitudinal (12;14) lorsque les dites première et deuxième attaches (38,40) connectent le dit élément (30) à la deuxième vertèbre (V2).

10

15

20

35

- 5. Appareil selon la revendication 1, caractérisé en ce que le dit axe longitudinal (114) de la dite deuxième attache (40) s'étend suivant un angle compris entre 30 degrés environ et 60 degrés environ, vu dans le plan sagittal, par rapport au dit axe longitudinal (92) de la dite première attache (38).
- 6. Appareil selon la revendication 5, caractérisé en ce que le dit axe longitudinal (114) de la dite deuxième attache (40) s'étend suivant un angle de 45 degrés environ, vu dans le plan sagittal, par rapport au dit axe longitudinal (92) de la dite première attache (38).
 - 7. Appareil selon la revendication 1, caractérisé en ce que le dit élément (30) comporte un troisième trou d'attache (130), le dit appareil comprenant en outre une troisième attache (42) qui peut s'étendre dans le dit troisième trou d'attache (130) du dit élément (30) pour connecter le dit élément (30) à la première vertèbre (V1), la dite troisième attache (42) ayant une première partie d'extrémité pour fixation à la première vertèbre (V1) et ayant un axe longitudinal (134).
- Appareil selon la revendication 7, caractérisé en ce que la dite deuxième attache (40) et la dite troisième attache (42) sont sensiblement dans un même plan, le dit axe longitudinal (92) de la dite première attache (38) et le dit axe longitudinal (134) de la dite troisième attache (42) convergeant suivant un angle aigu, vus dans un plan sagittal, lorsque les dites première et deuxième et troisième attaches (38, 40, 42) connectent le dit élément (30) à la première vertèbre (V1).
 - Appareil selon la revendication 1, caractérisé en ce que les dits moyens de connexion du dit élément longitudinal (12; 14) à la deuxième vertèbre (V2) comprennent un deuxième élément (32) connectable à la deuxième vertèbre (V2), le dit deuxième élément (32) comportant au moins deux trous d'atta-

che (190; 210; 230) et une partie (168; 170) qui peut venir en prise avec le dit élément longitudinal (12; 14), une première attache additionnelle (44) s'étendant dans un premier (190) des dits au moins deux trous d'attache dans le dit deuxième élément (32) pour connecter le dit deuxième élément (32) à la deuxième vertèbre (V2), la dite première attache additionnelle (44) ayant une première partie d'extrémité pour fixation à la deuxième vertèbre (V2) et ayant un axe longitudinal (192), une deuxième attache additionnelle (46) s'étendant dans un deuxième trou additionnel (210) des dits au moins deux trous d'attache dans le dit deuxième élément (32) pour connecter le dit deuxième élément (32) à la deuxième vertèbre (V2), la dite deuxième attache additionnelle (46) ayant une première partie d'extrémité pour fixation à la deuxième vertèbre (V2) et ayant un axe longitudinal (214), les dits axes longitudinaux (192, 214) des dites première et deuxième attaches additionnelles (44, 46) convergeant suivant un angle aigu, vus dans un plan sagittal, lorsque les dites première et deuxième attaches additionnelles (44, 46) connectent le dit deuxième élément (32) à la deuxième vertèbre (V2).

15

- 10. Appareil selon la revendication 9, caractérisé en ce que le dit premier élément (30) comprend un moyen d'empêchement d'un mouvement du dit premier élément (30) par rapport au dit élément longitudinal (12; 14) lorsque les dites première et deuxième attaches (38, 40) connectent le dit premier élément (30) à la première vertèbre (V1), te dit deuxième élément (32) étant déplaçable par rapport au dit élément longitudinal (12; 14) lorsque les dites première et deuxième attaches additionnelles (44, 46) connectent le dit deuxième élément (32) à la deuxième vertèbre (V2).
- 11. Appareil selon la revendication 1, caractérisé en ce que le dit corps (60) du dit élément (30) comprend une première partie d'extrémité (72) et une deuxième partie d'extrémité (74) disposée entre la dite première partie d'extrémité (72) et la dite deuxième vertèbre (V2), le dit corps (60) comportant un premier et un deuxième trous d'attache (90, 110) disposés dans la dite deuxième partie d'extrémité (74), la dite lèvre (150) faisant saillie à partir de la dite deuxième partie d'extrémité (74).
- 12. Appareil selon la revendication 1, caractérisé en ce que le dit corps (60) du dit élément (30) présente une surface latérale extérieure sensiblement plane (62), la dite lèvre (150) du dit élément (30) ayant une configuration sensiblement plane s'étendant dans une direction transversale au plan de la dite surface latérale extérieure (62) du dit corps (60) du dit élément (30).

- 13. Appareil selon la revendication 1, caractérisé en ce que le dit corps (60a) du dit élément (30a) comprend une première et une deuxième parties latérales opposées (68a, 70a), la dite lèvre (150a) du dit élément (30a) ayant un premier segment (151) à la dite première partie latérale (68a) et ayant un deuxième segment (153) à la dite deuxième partie latérale (70a).
- 14. Appareil selon la revendication 13, caractérisé en ce que le dit premier segment de lèvre (151) est espacé du dit deuxième segment de lèvre (153) sur les côtés opposés d'un axe longitudinal du dit élément (30a).
 - 15. Appareil selon la revendication 13, caractérisé en ce que la dite lèvre (150) du dit élément (30) s'étend de façon sensiblement continue le long du dit élément (30), entre les dites première et deuxième parties latérales (68, 70).
 - 16. Appareil selon la revendication 1, caractérisé en ce qu'il comprend deux éléments longitudinaux (12, 14) positionnables le long de la colonne vertébrale, de sorte que le dit élément (32) comporte un premier et un deuxième trous d'attache (190, 210) et des parties qui peuvent venir en prise avec les dits deux éléments longitudinaux (12, 14).
- 17. Appareil selon la revendication 1, caractérisé en ce que la dite première attache (38) et la dite deuxième attache ((40) sont rigidement bloquées avec le dit élément (30).
- 5 18. Appareil selon la revendication 1, caractérisé en ce que la rotation de la dite première attache (38) et de la dite deuxième attache (40) a pour effet que le dit élément de plaque (30) est tiré vers la dite première vertèbre (V1) dans au moins deux directions.

