Supervised Learning

CSC 461: Machine Learning

Fall 2021

Prof. Marco Alvarez University of Rhode Island

Supervised Learning Setup

Spam filtering

- **▶** Problem
 - ✓ automatically tagging email messages as spam (1) or ham (0)
- ▶ Input Space
 - ✓ assume every email is represented as a fixed-length vector of 10 features
- Output Space?

Components of (supervised) learning

- Input space \mathscr{X}
- Output space \mathcal{Y}
- ▶ Data instance $x \in \mathcal{X}, y \in \mathcal{Y}$ ✓ is a pair (x,y)
- → Data $\{(x_1, y_1), ..., (x_n, y_n)\} \subseteq \mathcal{X} \times \mathcal{Y}$ ✓ is a set of data instances
- Hypothesis $g: \mathcal{X} \mapsto \mathcal{Y}, g \in \mathcal{H}$

Data

► Samples (data instances) are drawn from an **unknown distribution** *P*(*X*, *Y*)

$$\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}\$$

$$(x_i, y_i) \sim P$$

MNIST Dataset

0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0
1	l	1	1	1	/	/	(1	1	1	1	1	1	/	1
2	J	2	2	2	J	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	Y	4	4	4	4	4	4	4	4	4	4	ц	4	4
5	5	5	5	5	\$	5	5	5	5	5	5	5	5	5	5
6	G	6	6	6	6	6	6	P	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	77	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
7	૧	9	9	9	9	9	9	9	ŋ	9	9	9	9	9	9

MNIST data instance

[[0. 1. 5. 11. 15. 4. 0. 0.]
[0. 8. 16. 13. 6. 2. 0. 0.]
[0. 11. 7. 0. 0. 0. 0. 0. 0.]
[0. 11. 16. 16. 11. 2. 0. 0.]
[0. 0. 4. 4. 5. 12. 3. 0.]
[0. 0. 0. 0. 0. 5. 11. 0.]
[0. 0. 1. 6. 0. 10. 11. 0.]
[0. 0. 2. 12. 16. 15. 2. 0.]

Matrix representation

Feature Vectors

0. 0. 5. 16. 7. 0. 0. 0. 0. 0. 7. 14. 2. 0. 0. 0.] [0. 1. 12. 16. 16. 16. 12. 0. 0. 9. 16. 13. 6. 8. 5. 0. 0. 8. 16. 15. 3. 0. 0. 0. 0. 7. 15. 16. 16. 2. 0. 0. 0. 0. 1. 16. 16. 3. 0. 0. 0. 0. 1. 16. 16. 6. 0. 0. 1. 16. 16. 6. 0. 0. 0. 0. 0. 11. 16. 10. 0. 0.] [0. 0. 12. 10. 0. 0. 0. 0. 0. 0. 14. 16. 16. 14. 0. 0. 0. 0. 13. 16. 15. 10. 1. 0. 0. 0. 11. 16. 16. 7. 0. 0. 0. 0. 0. 4. 7. 16. 7. 0. 0. 0. 5. 4. 12. 16. 4. 0. 0. 0. 9. 16. 16. 10. 0. 0.] 9. 11. 0. 6. 16. 1. 0. 0. 0. 8. 14. 15. 8. 0.] [0. 2. 15. 16. 15. 2. 0. 0. 0. 8. 14. 8. 14. 8. 0. 0. 0. 7. 5. 2. 16. 5. 0. 0. 0. 0. 12. 13. 0. 0. 0. 0. 8. 15. 1. 0. 0. 0. 0. 1. 15. 7. 0. 0. 0. 0. 0. 0. 4. 16. 9. 8. 8. 2. 0. 0. 2. 15. 16. 16. 16. 13. 0.]]

Supervised learning

Binary classification

$$\mathcal{Y} = \{0,1\}$$

 $\mathcal{Y} = \{-1, +1\}$

Multiclass classification $\mathcal{Y} = \{0,1,...,k-1\}$

$$\mathcal{Y} = \{0, 1, ..., k - 1\}$$

Regression

$$\mathcal{Y} = \mathbb{R}$$

Defining hypothesis spaces

- ▶ Hypotheses are functions that belong to a respective hypothesis space
 - ✓ space is defined by the machine learning technique, for example, decision trees, neural networks, support vector machines, etc.
- → How to learn?
 - ✓ define the hypothesis space \mathcal{H}
 - ✓ find the best function within this space, $h \in \mathcal{H}$
 - ✓ a **loss function** is necessary to evaluate/compare hypotheses

Loss Functions

0/1 Loss

$$L_{0/1}(h,\mathcal{D}) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}} I(h(x_i) \neq y_i)$$
indicator function

| Prediction | Target |
|------------|--------|
| 5 | 5 |
| 1 | 9 |
| 2 | 2 |
| 7 | 7 |
| 8 | 0 |
| 0 | 0 |
| 0 | 8 |
| 3 | 3 |
| 6 | 6 |
| 4 | 4 |
| | |

Squared Loss

$$L_{sq}(h,\mathcal{D}) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}} (h(x_i) - y_i)^2$$

 Prediction
 Target

 1.2
 1.4

 2.3
 2.3

 1.1
 1.2

 3.4
 4.1

 2.3
 2.5

 1.1
 1.1

 2.5
 2.6

 3.1
 3.2

 1.7
 1.8

 2.3
 2.3

positive loss and penalizes big mistakes

Absolute Loss

$$L_{abs}(h,\mathcal{D}) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathcal{D}} |h(x_i) - y_i|$$

| Prediction | Target |
|------------|--------|
| 1.2 | 1.4 |
| 2.3 | 2.3 |
| 1.1 | 1.2 |
| 3.4 | 4.1 |
| 2.3 | 2.5 |
| 1.1 | 1.1 |
| 2.5 | 2.6 |
| 3.1 | 3.2 |
| 1.7 | 1.8 |
| 2.3 | 2.3 |
| | |

What is the goal of (supervised) learning?

Finding a **hypothesis** (**classifier/regressor**) that best approximates the **target** function

For $g \in \mathcal{H}$ and $\forall (x_i, y_i) \sim P$, we want $g(x) \approx f(x)$

ML uses **search** and **optimization** (to **minimize expected loss**)

Expected Loss

$$\mathbb{E}[l(g,(x_i,y_i))]_{(x_i,y_i)\sim P}$$

We cannot calculate this term, but we can approximate it

Approximating the expected loss?

$$\mathbb{E}[l(g,(x_i,y_i))]_{(x_i,y_i)\sim P}$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} l(g, (x_i, y_i))$$

the **law of large numbers** states that the arithmetic mean of the values almost surely converges to the expected value as the number of repetitions approaches infinity

Law of large numbers

$$Pr\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n x_n = \mathbb{E}[x]\right) = 1$$

Generalization

• We can use a ML method to calculate:

$$g = \arg\min_{h \in \mathcal{H}} L(g, \mathcal{D})$$

- Problem: it may overfit the training data \mathcal{D}
- ▶ Solution: split your data in train, validation, test
 ✓ use train and validation to select the best hypothesis
 ✓ use test for final evaluation and report

Example using MNIST

https://colab.research.google.com/drive/1m_hc2sSC4fNhRRNR2q-Dfk2ji5V6ILQ? usp=sharing