Importing libraries and loading data

```
In [1]: import numpy as np
import pandas as pd
import os
import statsmodels.formula.api as smf
import warnings
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
from sklearn.ensemble import RandomForestRegressor
warnings.filterwarnings('ignore')
```

```
In [2]: click = pd.read_csv("JD_click_data.csv")
    order = pd.read_csv("JD_order_data.csv")
    sku = pd.read_csv("JD_sku_data.csv")
    user = pd.read_csv("JD_user_data.csv")
```

Data preprocessing ¶

creating a feature base on how many times a sku is clicked

```
In [3]: click_count = click.groupby('sku_ID').size().reset_index(name='clic
    click_and_count = pd.merge(click,click_count,on='sku_ID')
    print(click_and_count.shape)
    click_and_count.head()
```

(20214515, 5)

Out[3]:

	sku_ID	user_ID	request_time	channel	click_count_on_sku
0	a234e08c57	4c3d6d10c2	2018-03-01 23:57:53	wechat	624
1	a234e08c57	405246945e	2018-03-01 10:10:03	рс	624
2	a234e08c57	405246945e	2018-03-01 09:47:16	рс	624
3	a234e08c57	cb47a16a92	2018-03-01 09:39:32	рс	624
4	a234e08c57	34e76b1af1	2018-03-01 12:18:01	арр	624

creating a feature base on how many skus are in each brand id

In [4]: sku=sku.drop(columns=["attribute1","attribute2","activate_date","de
 brand_count = sku.groupby('brand_ID').size().reset_index(name='sku_
 sku_and_brand_count = pd.merge(sku,brand_count,on='brand_ID')
 print(sku_and_brand_count.shape)
 sku_and_brand_count.head()

(31868, 4)

Out [4]:

	sku_ID	type	brand_ID	sku_count_on_brand
0	a234e08c57	1	c3ab4bf4d9	4
1	9f785be866	1	c3ab4bf4d9	4
2	b6866bf66f	1	c3ab4bf4d9	4
3	0be89cc509	1	c3ab4bf4d9	4
4	6449e1fd87	1	1d8b4b4c63	26

merging click count and sku count in each brand

In [5]: click_and_sku = pd.merge(click_and_count,sku_and_brand_count,on='sk
 print(click_and_sku.shape)
 click_and_sku.head()

(20214548, 8)

Out[5]:

	sku_ID	user_ID	request_time	channel	click_count_on_sku	type	brand_ID s
(a234e08c57	4c3d6d10c2	2018-03-01 23:57:53	wechat	624	1	c3ab4bf4d9
1	a234e08c57	405246945e	2018-03-01 10:10:03	рс	624	1	c3ab4bf4d9
2	2 a234e08c57	405246945e	2018-03-01 09:47:16	рс	624	1	c3ab4bf4d9
3	a234e08c57	cb47a16a92	2018-03-01 09:39:32	рс	624	1	c3ab4bf4d9
2	a234e08c57	34e76b1af1	2018-03-01 12:18:01	арр	624	1	c3ab4bf4d9

clearing up order data and user data, then merging them together

(549989, 17) (457298, 10) (549989, 4)

Out[6]:

	user_ID	sku_ID	final_unit_price	discount
0	0abe9ef2ce	581d5b54c1	79.0	10.0
1	33a9e56257	067b673f2b	53.9	46.0
2	4ea3cf408f	623d0a582a	58.5	19.5
3	b87cb736cb	fc5289b139	35.0	26.0
4	4829223b6f	623d0a582a	53.0	25.0

```
In [7]: user = user.drop(columns=["plus"])
    order_and_user = pd.merge(order,user,on="user_ID",how='left')
    print(order_and_user.info())
    order_and_user.head()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 549989 entries, 0 to 549988
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	user_ID	 549989 non-null	object
1	sku_ID	549989 non-null	object
2	final_unit_price	549989 non-null	float64
3	discount	549989 non-null	float64
4	user_level	549989 non-null	int64
5	first_order_month	549989 non-null	object
6	gender	549989 non-null	object
7	age	549989 non-null	object
8	marital_status	549989 non-null	object
9	education	549989 non-null	int64
10	city_level	549989 non-null	int64
11	purchase_power	549989 non-null	int64
dtyp	es: float64(2), int	64(4), object(6)	
memo	ry usage: 54.5+ MB		

Out[7]:

None

	user_ID	sku_ID	final_unit_price	discount	user_level	first_order_month	gender
0	0abe9ef2ce	581d5b54c1	79.0	10.0	1	2013-06	F
1	33a9e56257	067b673f2b	53.9	46.0	1	2016-05	F
2	4ea3cf408f	623d0a582a	58.5	19.5	2	2013-02	F
3	b87cb736cb	fc5289b139	35.0	26.0	3	2014-08	F
4	4829223b6f	623d0a582a	53.0	25.0	1	2014-10	F

In [8]: print(order_and_user.info())

memory usage: 54.5+ MB

None

Int64Index: 549989 entries, 0 to 549988 Data columns (total 12 columns): Non-Null Count Column Dtype user ID object 0 549989 non-null 1 sku ID 549989 non-null object final_unit_price 2 float64 549989 non-null 3 discount float64 549989 non-null 4 user_level 549989 non-null int64 5 first_order_month 549989 non-null object 6 gender 549989 non-null object 7 age 549989 non-null object 8 marital status 549989 non-null object 9 education 549989 non-null int64 10 city_level 549989 non-null int64 11 purchase_power 549989 non-null int64 dtypes: float64(2), int64(4), object(6)

<class 'pandas.core.frame.DataFrame'>

filering out the top 5 brand based on click count

Out [9]:

	brand_ID	click_count_on_sku
1148	99d41501ff	914750382067
1158	9b0d3a5fc6	325725178406
482	43999af013	188366065478
647	5ab8ea8556	167247986280
436	3daeabd2ce	108479659167

```
In [10]: top_five_brand = sorted_click_and_sku.iloc[:5]['brand_ID']
         print(top_five_brand.shape)
         top five brand.head()
         (5,)
Out[10]: 1148
                 99d41501ff
```

1158 9b0d3a5fc6 482 43999af013 647 5ab8ea8556 436 3daeabd2ce

Name: brand_ID, dtype: object

filtering out customers who has clicked the top 5 brands

```
In [11]: brand_users = click_and_sku[click_and_sku['brand_ID'].isin(top_five)
         brand_users = brand_users.drop(brand_users[brand_users['user_ID'] =
         brand_users = brand_users.drop_duplicates('user_ID')
         print(brand users.shape)
         brand_users.head()
```

(1092105, 8)

Out[11]:

	sku_ID	user_ID	request_time	channel	click_count_on_sku	type	brand_IC
6291	acad9fed04	8f10d63196	2018-03-01 13:40:19	wechat	5298	2	9b0d3a5fc€
6292	acad9fed04	9d4b9e82d1	2018-03-01 18:51:20	wechat	5298	2	9b0d3a5fc€
6296	acad9fed04	c87110cc99	2018-03-01 21:27:46	mobile	5298	2	9b0d3a5fc€
6297	acad9fed04	06a3e9a8ca	2018-03-01 22:12:32	mobile	5298	2	9b0d3a5fc€
6300	acad9fed04	2068e97a97	2018-03-01 20:00:56	арр	5298	2	9b0d3a5fc6

```
In [12]: user ids = brand users['user ID']
         user_ids.head()
```

```
Out[12]: 6291
                  8f10d63196
         6292
                  9d4b9e82d1
         6296
                  c87110cc99
         6297
                  06a3e9a8ca
                  2068e97a97
```

6300

Name: user_ID, dtype: object

```
In [13]: top_five_brand_user = order_and_user[order_and_user['user_ID'].isin
    print(top_five_brand_user.shape)
    top_five_brand_user.head()
```

(267022, 12)

Out [13]:

	user_ID	sku_ID	final_unit_price	discount	user_level	first_order_month	gender
1	33a9e56257	067b673f2b	53.9	46.0	1	2016-05	F
4	4829223b6f	623d0a582a	53.0	25.0	1	2014-10	F
5	0b07cae293	589c2b865b	38.9	41.0	2	2015-11	F
7	d5e8910932	d829f03a28	40.9	39.0	2	2017-07	F
8	d5e8910932	5f58bfd286	37.9	42.0	2	2017-07	F

dropping cols

```
In [14]: data = top_five_brand_user
    data = data.drop(columns=["first_order_month","sku_ID"])
```

EDA

```
In [15]: import matplotlib.pyplot as plt
         import seaborn as sns
         # Chart 1: Bar chart of purchase_power distribution
         plt.figure(figsize=(8, 5))
         sns.countplot(x='purchase_power', data=data, palette='viridis')
         plt.title('Purchase Power Distribution')
         plt.xlabel('Purchase Power')
         plt.ylabel('Count')
         plt.show()
         # Chart 2: Bar chart of education distribution
         plt.figure(figsize=(8, 5))
         sns.countplot(x='education', data=data, palette='muted')
         plt.title('Education Distribution')
         plt.xlabel('Education Level')
         plt.ylabel('Count')
         plt.show()
         # Chart 3: Pie chart of marital status
         # Count the occurrences of each marital status
         marital status counts = data['marital status'] value counts()
```

```
# Plot a pie chart
plt.figure(figsize=(8, 8))
plt.pie(marital_status_counts, labels=marital_status_counts.index,
plt.title('Marital Status Distribution')
plt.show()

# Chart 4: Violin plot for the distribution of age
plt.figure(figsize=(10, 6))
sns.violinplot(x='age', y='purchase_power', data=data, palette='pas
plt.title('Violin Plot of Age vs purchase_power')
plt.xlabel('Age Group')
plt.ylabel('Purchase Power')
plt.show()
```


-i i 2 3 Education Level

Marital Status Distribution


```
In [16]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 267022 entries, 1 to 549988
         Data columns (total 10 columns):
              Column
                                Non-Null Count
                                                 Dtype
              user ID
                                267022 non-null object
          0
              final_unit_price 267022 non-null float64
          1
          2
              discount
                                267022 non-null
                                                 float64
          3
              user level
                                267022 non-null int64
          4
              gender
                                267022 non-null object
          5
              age
                                267022 non-null object
          6
                                267022 non-null object
              marital_status
          7
              education
                                267022 non-null
                                                 int64
          8
              city level
                                267022 non-null
                                                 int64
          9
                                267022 non-null
              purchase_power
                                                 int64
         dtypes: float64(2), int64(4), object(4)
```

Data Preprocessing for model

one-hot encoding

memory usage: 32.4+ MB

```
In [17]: print(sorted(pd.unique(data['gender'])))
    print(sorted(pd.unique(data['age'])))
    print(sorted(pd.unique(data['marital_status'])))
    data['gender'].replace(['F', 'M', 'U'],[2,1,0],inplace=True)
    data['age'].replace(['16-25', '26-35', '36-45', '46-55', '<=15', '>
    data['marital_status'].replace(['M', 'S', 'U'],[2,1,0],inplace=True)
    ['F', 'M', 'U']
    ['16-25', '26-35', '36-45', '46-55', '<=15', '>=56', 'U']
    ['M', 'S', 'U']

In [18]: data = pd.get_dummies(data, columns = ['user_level', 'gender', 'age)
In [19]: data['purchase_power'] = data['purchase_power'].astype('category')
```

dropping missing values

```
In [20]: any_missing = data.isnull().values.any()
print(f"{any_missing}")
```

False

In [21]: len(data)

Out[21]: 267022

In [22]: data.head()

Out[22]:

	user_ID	final_unit_price	discount	purchase_power	user_level1	user_level_0	user
1	33a9e56257	53.9	46.0	3	0	0	
4	4829223b6f	53.0	25.0	4	0	0	
5	0b07cae293	38.9	41.0	2	0	0	
7	d5e8910932	40.9	39.0	2	0	0	
8	d5e8910932	37.9	42.0	2	0	0	

5 rows × 35 columns

Data split

```
In [23]: X = data.drop(['purchase_power', 'user_ID', 'discount', 'final_unit_pr
y = data['purchase_power']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
```

In [24]: X_train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 186915 entries, 291962 to 212029
Data columns (total 31 columns):

#	Column		ll Count	Dtype
 0	 user_level1	186915	non-null	 uint8
1	user_level_0	186915		uint8
2	user_level_1	186915	non-null	uint8
3	user_level_2	186915	non-null	uint8
4	user_level_3	186915	non-null	uint8
5	user_level_4	186915	non-null	uint8
6	user_level_10	186915	non-null	uint8
7	gender_0	186915	non-null	uint8
8	gender_1	186915	non-null	uint8
9	gender_2	186915	non-null	uint8
10	age_0	186915	non-null	uint8
11	age_1	186915	non-null	uint8
12	age_2	186915	non-null	uint8
13	age_3	186915	non-null	uint8
14	age_4	186915	non-null	uint8
15	age_5	186915	non-null	uint8
16	age_6	186915	non-null	uint8
17	marital_status_0	186915	non-null	uint8
18	marital_status_1	186915	non-null	uint8
19	marital_status_2	186915	non-null	uint8
20	education1	186915	non-null	uint8
21	education_1	186915	non-null	uint8
22	education_2	186915	non-null	uint8
23	education_3	186915	non-null	uint8
24	education_4	186915	non-null	uint8
25	city_level1	186915	non-null	uint8
26	city_level_1	186915	non-null	uint8
27	city_level_2	186915	non-null	uint8
28	city_level_3	186915	non-null	uint8
29	city_level_4	186915	non-null	uint8
30	city_level_5	186915	non-null	uint8
	es: uint8(31)			
IIICIIIO	ry usage: 7.0 MB			

In [25]: X_test.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 80107 entries, 257672 to 388291
Data columns (total 31 columns):
```

pata #	Columns (total 31		ns): ull Count	Dtype
 0	user_level1	80107	non-null	uint8
1	user_level_0	80107	non-null	uint8
2	user_level_1	80107	non-null	uint8
3	user level 2	80107	non-null	uint8
4	user level 3	80107	non-null	uint8
5	user_level_3 user_level_4	80107	non-null	uint8
6	user_level_10	80107	non-null	uint8
7	gender_0	80107	non-null	uint8
8	gender_1	80107	non-null	uint8
9	gender_2	80107	non-null	uint8
10	age_0	80107	non-null	uint8
11	age_1	80107	non-null	uint8
12	age_2	80107	non-null	uint8
13	age_3	80107	non-null	uint8
14	age_4	80107	non-null	uint8
15	age_5	80107	non-null	uint8
16	age_6	80107	non-null	uint8
17	marital_status_0	80107	non-null	uint8
18	marital_status_1	80107	non-null	uint8
19	marital_status_2	80107	non-null	uint8
20	education1	80107	non-null	uint8
21	education_1	80107	non-null	uint8
22	education_2	80107	non-null	uint8
23	education_3	80107	non-null	uint8
24	education_4	80107	non-null	uint8
25	city_level1	80107	non-null	uint8
26	city_level_1	80107	non-null	uint8
27	city_level_2	80107	non-null	uint8
28	city_level_3	80107	non-null	uint8
29	city_level_4	80107	non-null	uint8
30	city_level_5	80107	non-null	uint8
dtype				
memoi	ry usage: 3.0 MB			

Model

evaulation

```
In [26]: from sklearn.metrics import precision_score, accuracy_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
```

Logistic Regression

```
In [27]: from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import classification_report, confusion_matrix

logreg = LogisticRegression(random_state=600,solver='newton-cg')
logreg.fit(X_train,y_train)

predictions = logreg.predict(X_test)

# Evaluate the model
print(classification_report(y_test, predictions))
print(confusion_matrix(y_test, predictions))
```

		precis	ion	recall	f1–score	support
	-1	0	.98	0.96	0.97	15332
	1	0	.00	0.00	0.00	1215
	2	0	.74	0.92	0.82	44382
	3	0	.51	0.28	0.36	17465
	4	0	. 58	0.01	0.01	1694
	5	0	.00	0.00	0.00	19
accu	racy				0.76	80107
macro	avg	0	. 47	0.36	0.36	80107
weighted	avg	0	.72	0.76	0.72	80107
[[14697	0	388	247	0	0]	
[1	0	1140	74	0	0]	
[52	0	41011	3316	3	0]	
[169	0	12360	4931	5	0]	
[100	0	516	1067	11	0]	
[1	0	4	14	0	0]]	

```
In [28]: y_hat_test = logreg.predict(X_test)
y_hat_test
```

Out[28]: array([2, 2, ..., 2, -1, 2])

```
In [29]: y_train
Out[29]: 291962
                   -1
         491443
                   1
         548657
                   -1
         51258
                   -1
         539320
                   3
         497715
                   2
         405316
                   4
                  -1
         182181
         274818
                   4
         212029
         Name: purchase_power, Length: 186915, dtype: category
         Categories (6, int64): [-1, 1, 2, 3, 4, 5]
```

Random Forest

```
In [31]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
    from sklearn.model_selection import KFold
    from sklearn import feature_selection
    import time
```

```
In [32]: rf = RandomForestRegressor(max_features=5, min_samples_leaf=5,
                                      n_estimators = 500, random_state=333, ve
          rf.fit(X_train, y_train)
          [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concu
          rrent workers.
          [Parallel(n jobs=1)]: Done 1 out of
                                                    1 | elapsed:
                                                                     0.1s remai
          ning:
                   0.0s
          building tree 1 of 500
          building tree 2 of 500
          building tree 3 of 500
          building tree 4 of 500
          building tree 5 of 500
          building tree 6 of 500
          building tree 7 of 500
          building tree 8 of 500
          building tree 9 of 500
          building tree 10 of 500
          building tree 11 of 500
          building tree 12 of 500
          building tree 13 of 500
         building tree 14 of 500 building tree 15 of 500
```

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.

Fitting 5 folds for each of 25 candidates, totalling 125 fits [CV] max_depth=2, max_features=1, min_samples_leaf=5, n_estimators =100, random_state=88

[CV] max_depth=2, max_features=1, min_samples_leaf=5, n_estimator
s=100, random_state=88, total= 2.7s

[CV] max_depth=2, max_features=1, min_samples_leaf=5, n_estimators =100, random_state=88

[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 2.7s remaining: 0.0s

[CV] max_depth=2, max_features=1, min_samples_leaf=5, n_estimator s=100, random_state=88, total= 2.8s

[CV] max_depth=2, max_features=1, min_samples_leaf=5, n_estimators =100, random state=88

[CV] max_depth=2, max_features=1, min_samples_leaf=5, n_estimator s=100, random_state=88, total= 2.7s

```
In [34]: print('Best parameters', rf_cv.best_params_)
```

Best parameters {'max_depth': 2, 'max_features': 11, 'min_samples_ leaf': 5, 'n_estimators': 100, 'random_state': 88}

```
In [35]: print('Cross-validated R2:', round(rf_cv.best_score_, 5))
```

Cross-validated R2: 0.79043

```
In [36]: rf_best = rf_cv.best_estimator_
         rf best.feature importances
Out[36]: array([0.00000000e+00, 0.00000000e+00, 4.12793092e-02, 3.08802177e
         -04,
                5.96952960e-04, 1.77761276e-02, 0.00000000e+00, 1.25842305e
         -01,
                4.95525712e-04, 0.00000000e+00, 5.06425820e-02, 0.00000000e
         +00,
                4.66372707e-04, 1.16091626e-04, 0.00000000e+00, 0.00000000e
         +00,
                0.00000000e+00, 4.39180542e-01, 1.74631315e-02, 9.27960501e
         -03,
                2.76824857e-01, 0.00000000e+00, 7.75907917e-04, 1.10848013e
         -02,
                4.05417133e-03, 3.81275791e-03, 0.00000000e+00, 1.39524355e
         -07,
                0.00000000e+00, 1.71091567e-08, 0.00000000e+00])
In [37]:
         imp_df = pd.DataFrame({
             'Varname': X_train.columns,
             'imp': rf_best.feature_importances_
         })
         imp_df.sort_values(by='imp', ascending=False)
```

Out [37]:

	Varname	imp
17	marital_status_0	4.391805e-01
20	education1	2.768249e-01
7	gender_0	1.258423e-01
10	age_0	5.064258e-02
2	user_level_1	4.127931e-02
5	user_level_4	1.777613e-02
18	marital_status_1	1.746313e-02
23	education_3	1.108480e-02
19	marital_status_2	9.279605e-03
24	education_4	4.054171e-03
25	city_level1	3.812758e-03
22	education_2	7.759079e-04
4	user_level_3	5.969530e-04
8	gender_1	4.955257e-04
12	age_2	4.663727e-04

3	user_level_2	3.088022e-04
13	age_3	1.160916e-04
27	city_level_2	1.395244e-07
29	city_level_4	1.710916e-08
26	city_level_1	0.000000e+00
28	city_level_3	0.000000e+00
0	user_level1	0.000000e+00
15	age_5	0.000000e+00
21	education_1	0.000000e+00
16	age_6	0.000000e+00
1	user_level_0	0.000000e+00
14	age_4	0.000000e+00
11	age_1	0.000000e+00
9	gender_2	0.000000e+00
6	user_level_10	0.000000e+00
30	city_level_5	0.000000e+00

In [38]: plt.figure(figsize=(8,7))
 plt.barh(X_train.columns, 100*rf_cv.best_estimator_.feature_importa
 plt.show()

CART

```
In [39]: from sklearn.tree import DecisionTreeClassifier
         dt = DecisionTreeClassifier(max_features='auto')
         dt.fit(X_train,y_train)
         y_pred = dt.predict(X_test)
         cm = confusion_matrix(y_test, y_pred)
         print ("Confusion Matrix : \n", cm)
         print('Precision:',precision_score(y_test, y_pred, average='weighte')
         print('Recall:',recall_score(y_test, y_pred, average='weighted'))
         Confusion Matrix:
          [[14767
                           389
                                 169
                                         7
                                               0]
                      0
               1
                        1130
                                 78
                                        0
                                              01
                      6
              82
                     20 41081
                              3182
                                       17
                                              01
                     5 12446
                                       75
                                              01
             223
                              4716
             135
                      1
                          518
                                983
                                       57
                                              0]
                                              0]]
               1
                      0
                            2
                                 15
                                        1
```

With crosss validation

Precision: 0.7184170894282075 Recall: 0.7568252462331632

```
In [40]: grid_values = {'ccp_alpha': np.linspace(0.001, 0.2, 201),# the choi
                         'min_samples_leaf': [5],
                         'min samples split': [20],
                         'max depth': [30],
                         'random state': [88]}
         dtc = DecisionTreeClassifier()
         cv = KFold(n splits=5, random state=1, shuffle=True)
         dtc_cv_acc = GridSearchCV(dtc, param_grid = grid_values, scoring =
         dtc_cv_acc.fit(X_train, y_train)
         Fitting 5 folds for each of 201 candidates, totalling 1005 fits
         [Parallel(n jobs=1)]: Using backend SequentialBackend with 1 concu
         rrent workers.
         [Parallel(n_jobs=1)]: Done 1005 out of 1005 | elapsed: 8.0min fin
         ished
Out[40]: GridSearchCV(cv=KFold(n_splits=5, random_state=1, shuffle=True),
                       estimator=DecisionTreeClassifier(),
                       param_grid={'ccp_alpha': array([0.001 , 0.001995, 0
         .00299 , 0.003985, 0.00498 , 0.005975,
                0.00697 , 0.007965 , 0.00896 , 0.009955 , 0.01095 , 0.011945 ,
                 0.01294 \ , \ 0.013935, \ 0.01493 \ , \ 0.015925, \ 0.01692 \ , \ 0.017915, 
                0.01891 , 0.019905, 0.0209 , 0.021895, 0.02289 , 0.023885,
                0.02488 , 0.025875, 0.02...
                0.16816 , 0.169155, 0.17015 , 0.171145, 0.17214 , 0.173135,
                0.17413 , 0.175125, 0.17612 , 0.177115, 0.17811 , 0.179105,
                0.1801 , 0.181095, 0.18209 , 0.183085, 0.18408 , 0.185075,
                0.18607 , 0.187065, 0.18806 , 0.189055, 0.19005 , 0.191045,
                0.19204 , 0.193035, 0.19403 , 0.195025, 0.19602 , 0.197015,
                0.19801 , 0.199005, 0.2
                                             ]),
                                   'max depth': [30], 'min samples leaf': [5
         ],
                                   'min samples split': [20], 'random state'
         : [88]},
                       scoring='accuracy', verbose=1)
```

Out[41]:

	ccp alpha	Validation Accuracy
0	0.001	0.755049
1	0.001995	0.755049
2	0.00299	0.754402
3	0.003985	0.752021
4	0.00498	0.752021
5	0.005975	0.752021
6	0.00697	0.752021
7	0.007965	0.752021
8	0.00896	0.752021
9	0.009955	0.752021
10	0.01095	0.752021
11	0.011945	0.752021
12	0.01294	0.752021
13	0.013935	0.752021
14	0.01493	0.752021
15	0.015925	0.752021
16	0.01692	0.752021
17	0.017915	0.752021
18	0.01891	0.752021
19	0.019905	0.752021

```
In [42]: plt.figure(figsize=(8, 6))
   plt.xlabel('ccp alpha', fontsize=16)
   plt.ylabel('mean validation accuracy', fontsize=16)
   plt.scatter(ccp, acc, s=2)
   plt.plot(ccp, acc, linewidth=3)
   plt.grid(True, which='both')
   plt.show()
```



```
In [43]: print('Grid best parameter ccp_alpha (max. accuracy): ', dtc_cv_acc
print('Grid best score (accuracy): ', dtc_cv_acc.best_score_)
```

Grid best parameter ccp_alpha (max. accuracy): 0.001
Grid best score (accuracy): 0.7550490864831609

Boosting

```
In [44]: from sklearn.ensemble import AdaBoostClassifier

ada = AdaBoostClassifier(n_estimators=50, learning_rate=0.1)
bt_model = ada.fit(X_train, y_train)
```

```
In [45]: y_pred1 = bt_model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred1))
```

Accuracy: 0.7466638371178549

With Cross Validation

```
In [46]: grid_values = {'learning_rate': [0.1*i for i in range(1,10)],
                        'n_estimators': [100],
                        'random state': [88]}
         tic = time.time()
         bt2 = AdaBoostClassifier()
         cv = KFold(n splits=5, random state=88, shuffle=True)
         bt2_cv = GridSearchCV(bt2, param_grid=grid_values, scoring='r2', cv
         bt2_cv.fit(X_train, y_train)
         toc = time.time()
         print('time:', round(toc-tic, 2),'s')
         Fitting 5 folds for each of 9 candidates, totalling 45 fits
         [CV] learning_rate=0.1, n_estimators=100, random_state=88 ......
         [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concu
         rrent workers.
         [CV] learning_rate=0.1, n_estimators=100, random_state=88, total=
         [CV] learning rate=0.1, n estimators=100, random state=88 ......
         [Parallel(n_jobs=1)]: Done
                                      1 out of
                                                 1 | elapsed:
                                                                 13.1s remai
         ning:
                  0.05
         [CV] learning rate=0.1, n estimators=100, random state=88, total=
         12.4s
         [CV] learning_rate=0.1, n_estimators=100, random_state=88 ......
         [CV]
               learning_rate=0.1, n_estimators=100, random_state=88, total=
         12.9s
         [CV] learning_rate=0.1, n_estimators=100, random_state=88 ......
         [CV]
               learning_rate=0.1, n_estimators=100, random_state=88, total=
         12.9s
         [CV] learning_rate=0.1, n_estimators=100, random_state=88 ......
         [CV]
               learning rate=0.1, n estimators=100, random state=88, total=
         11.5s
         [CV] learning_rate=0.2, n_estimators=100, random_state=88 ......
         [CV]
               learning_rate=0.2, n_estimators=100, random_state=88, total=
         12.0s
         [CV] learning_rate=0.2, n_estimators=100, random_state=88 ......
```

[CV] learning rate=0.2, n estimators=100, random state=88, total= 11.7s [CV] learning_rate=0.2, n_estimators=100, random_state=88 [CV] learning_rate=0.2, n_estimators=100, random_state=88, total= 11.6s [CV] learning_rate=0.2, n_estimators=100, random_state=88 [CV] learning rate=0.2, n estimators=100, random state=88, total= 12.2s [CV] learning_rate=0.2, n_estimators=100, random_state=88 [CV] learning_rate=0.2, n_estimators=100, random_state=88, total= 11.8s [CV] learning_rate=0.3000000000000004, n_estimators=100, random_s learning rate=0.30000000000000004, n estimators=100, random [CV] state=88, total= 11.9s [CV] learning_rate=0.300000000000004, n_estimators=100, random_s tate=88 [CV] learning rate=0.3000000000000004, n estimators=100, random state=88, total= 13.1s [CV] learning_rate=0.3000000000000004, n_estimators=100, random_s tate=88 learning rate=0.30000000000000004, n estimators=100, random [CV] state=88, total= 13.0s [CV] learning_rate=0.3000000000000004, n_estimators=100, random_s tate=88 [CV] learning_rate=0.3000000000000004, n_estimators=100, random_ state=88, total= 13.4s [CV] learning_rate=0.300000000000004, n_estimators=100, random_s tate=88 learning rate=0.30000000000000000, n estimators=100, random [CV] state=88, total= 11.9s [CV] learning_rate=0.4, n_estimators=100, random_state=88 [CV] learning rate=0.4, n estimators=100, random state=88, total= 11.6s [CV] learning rate=0.4, n estimators=100, random state=88 [CV] learning rate=0.4, n estimators=100, random state=88, total= 11.5s [CV] learning_rate=0.4, n_estimators=100, random_state=88 learning rate=0.4, n estimators=100, random state=88, total= [CV] 11.4s [CV] learning_rate=0.4, n_estimators=100, random_state=88

learning_rate=0.4, n_estimators=100, random_state=88, total=

[CV] learning rate=0.4, n estimators=100, random state=88

[CV]

11.4s

. . . .

- [CV] learning_rate=0.4, n_estimators=100, random_state=88, total= 11.4s
- [CV] learning_rate=0.5, n_estimators=100, random_state=88
- [CV] learning_rate=0.5, n_estimators=100, random_state=88, total= 11.6s
- [CV] learning_rate=0.5, n_estimators=100, random_state=88
- [CV] learning_rate=0.5, n_estimators=100, random_state=88, total= 11.7s
- [CV] learning_rate=0.5, n_estimators=100, random_state=88
- [CV] learning_rate=0.5, n_estimators=100, random_state=88, total= 11.4s
- [CV] learning_rate=0.5, n_estimators=100, random_state=88
- [CV] learning_rate=0.5, n_estimators=100, random_state=88, total= 11.4s
- [CV] learning_rate=0.5, n_estimators=100, random_state=88
- [CV] learning_rate=0.5, n_estimators=100, random_state=88, total= 11.4s
- [CV] learning_rate=0.600000000000001, n_estimators=100, random_st ate=88
- [CV] learning_rate=0.600000000000001, n_estimators=100, random_s
 tate=88, total= 11.4s
- [CV] learning_rate=0.600000000000001, n_estimators=100, random_st ate=88
- [CV] learning_rate=0.60000000000001, n_estimators=100, random_s tate=88, total= 11.7s
- [CV] learning_rate=0.600000000000001, n_estimators=100, random_st ate=88
- [CV] learning_rate=0.600000000000001, n_estimators=100, random_s tate=88, total= 11.3s
- [CV] learning_rate=0.600000000000001, n_estimators=100, random_st ate=88
- [CV] learning_rate=0.600000000000001, n_estimators=100, random_s tate=88, total= 11.3s
- [CV] learning_rate=0.600000000000001, n_estimators=100, random_st ate=88
- [CV] learning_rate=0.600000000000001, n_estimators=100, random_s tate=88, total= 11.3s
- [CV] learning_rate=0.700000000000001, n_estimators=100, random_st ate=88
- [CV] learning_rate=0.700000000000001, n_estimators=100, random_s tate=88, total= 11.3s
- [CV] learning_rate=0.700000000000001, n_estimators=100, random_st ate=88
- [CV] learning_rate=0.70000000000001, n_estimators=100, random_s tate=88, total= 11.5s
- [CV] learning_rate=0.700000000000001, n_estimators=100, random_st ate=88
- [CV] learning_rate=0.700000000000001, n_estimators=100, random_s

tate=88, total= 11.4s [CV] learning rate=0.70000000000001, n estimators=100, random st ate=88 [CV] learning rate=0.700000000000001, n estimators=100, random s tate=88, total= 11.3s [CV] learning rate=0.700000000000001, n estimators=100, random st ate=88 [CV] learning_rate=0.700000000000001, n_estimators=100, random_s tate=88, total= 11.3s [CV] learning rate=0.8, n estimators=100, random state=88 learning_rate=0.8, n_estimators=100, random_state=88, total= [CV] 11.3s [CV] learning_rate=0.8, n_estimators=100, random_state=88 [CV] learning_rate=0.8, n_estimators=100, random_state=88, total= 11.4s [CV] learning rate=0.8, n estimators=100, random state=88 [CV] learning_rate=0.8, n_estimators=100, random_state=88, total= 12.0s [CV] learning rate=0.8, n estimators=100, random state=88 [CV] learning_rate=0.8, n_estimators=100, random_state=88, total= 11.2s [CV] learning_rate=0.8, n_estimators=100, random_state=88 [CV] learning_rate=0.8, n_estimators=100, random_state=88, total= 11.4s [CV] learning_rate=0.9, n_estimators=100, random_state=88 learning_rate=0.9, n_estimators=100, random_state=88, total= [CV] 11.3s [CV] learning rate=0.9, n estimators=100, random state=88 [CV] learning_rate=0.9, n_estimators=100, random_state=88, total= 11.2s [CV] learning rate=0.9, n estimators=100, random state=88 learning rate=0.9, n estimators=100, random state=88, total= [CV] 11.6s [CV] learning rate=0.9, n estimators=100, random state=88 [CV] learning_rate=0.9, n_estimators=100, random_state=88, total= 11.3s [CV] learning rate=0.9, n estimators=100, random state=88 [CV] learning_rate=0.9, n_estimators=100, random_state=88, total= 11.3s [Parallel(n_jobs=1)]: Done 45 out of 45 | elapsed: 8.8min finis

time: 542.17 s

hed