

Model Development Phase Template

Date	29 June 2024
Team ID	SWTID1720447482
Project Title	THYROID CLASSIFICATION
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

RandomForestClassifier

```
from sklearn.ensemble import RandomForestClassifier

RFclassifier = RandomForestClassifier(max_leaf_nodes=30)

RFclassifier.fit(x_train, y_train)

* RandomForestClassifier

RandomForestClassifier(max_leaf_nodes=30)
```

XGB Classifier

```
from xgboost import XGBClassifier
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y_train_encoded = le.fit_transform(y_train)
xgb = XGBClassifier()
xgb.fit(x_train, y_train_encoded)
                                   XGBClassifier
XGBClassifier(base_score=None, booster=None, callbacks=None,
               colsample_bylevel=None, colsample_bynode=None,
               colsample_bytree=None, device=None, early_stopping_rounds=None,
               enable_categorical=False, eval_metric=None, feature_types=None,
               gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None,
               max_cat_threshold=None, max_cat_to_onehot=None,
               max_delta_step=None, max_depth=None, max_leaves=None,
               min_child_weight=None, missing=nan, monotone_constraints=None,
               \verb| multi_strategy=None, n_estimators=None, n_jobs=None, \\
               num_parallel_tree=None, objective='multi:softprob', ...)
```


SVC model

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix			
Random Forest Classifier	from sklearn.ensemble import RandomForestClassifier from sklearn.aetrics import classification_report, confusion_matrix # Impo RFclassifier - RandomForestClassifier(max_leaf_nodes=30) RFclassifier.fit(x_train, y_train) y_pred = RFclassifier.predict(x_test) print(classification_report(y_test, y_pred)) print(confusion_matrix(y_test, y_pred)) # Now you can use confusion_matrix precision recall f1-score support antithyroid treatment	94.20%	print(confusion_matrix(y_test, y_pred)) [[3 0 0 0 4 0 0] [0 70 1 3 0 0 0] [0 2 83 0 0 0 0] [0 4 0 31 0 2 1] [0 0 0 0 122 0 0] [0 2 1 1 0 47 0] [0 2 2 0 0 1 66]]			
XGB Classifier	<pre>y_test_encoded = le.transform(y_test) y_pred = xgb.predict(x_test) print(classification_report(y_test_encoded, y_pred))</pre>	95.54%	print(confusion_matrix(y_test_encoded, y_pred)) [[5 0 0 0 2 0 0] [0 70 1 3 0 0 0] [0 0 83 0 0 2 0] [0 2 0 35 0 1 0] [0 0 0 0 122 0 0] [0 2 1 2 0 46 0] [0 1 2 0 0 1 67]]			

	195] y_pred = SVCclassifier.pr print(classification_repo	ort(y_test, y_p		1-score	support					
	antithyroid treatment binding protein		0.86 0.80	0.75 0.79	7 74					
	general health		0.74	0.79	7 4 85					
SVC model	hyperthyroid conditions		0.74	0.78 0.65	85 38					
	hypothyroid conditions		0.95	0.92	122	prin	<pre>print(confusion_matrix(y_test, y_pred))</pre>			
	miscellaneous		0.75	0.75	51	86.61%	[[6000100]			
	replacement therapy		0.75	0.75	71	00.0170				
	гертасешенс спетару	0.07	0.90	0.91	/1	[1	1 59 7		2 0]	
	accuracy			0.83	448	[[1 4 63 0 9 3 5] [0 6 2 22 0 7 1] [1 1 0 0116 0 4]			
	macro avg	0.79	0.80	0.79	448	[
	weighted avg		0.83	0.73	448]				
	weighted avg	0.05	0.05	0.05	440	[0 4 3		38 0]	
						[0 1 1		0 68]]	
						_				