Optimization and Data Science

Lecture 20: Constrained Optimization Problems: Projection and Penalty Methods

Prof. Dr. Thomas Slawig

Kiel University - CAU Kiel Dep. of Computer Science

Summer 2020

Contents

- Constrained Optimization Problems: Projection and Penalty Methods
 - Adaption of Step-size
 - Projection Methods
 - Penalty Methods

Constrained optimization problems

• General form:

$$\min_{x \in X_{ad}} f(x)$$

where the admissible or feasible set $X_{ad} \subset X$ is now a real subset of X.

- We consider $X = \mathbb{R}^n$.
- Often X_{ad} is defined by functions $g: \mathbb{R}^n \to \mathbb{R}^m, h: \mathbb{R}^n \to \mathbb{R}^p$:

$$X_{ad} := \{x \in \mathbb{R}^n : g(x) \le 0, h(x) = 0\}.$$

→ We write

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $\begin{cases} g(x) \le 0 & \text{(inequality constraints)} \\ h(x) = 0 & \text{(equality constraints)}. \end{cases}$

• An inequality constraint g_i is called **active** in x if $g_i(x) = 0$, and **inactive** if $g_i(x) < 0$.

Constrained optimization problem: Example

Rosenbrock function

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

- Unconstrained problem: mimimizer in $\mathbb{R}^2 : x^* = (1, 1)$.
- Usually different in constrained case on a subset X_{ad}.

Contents

- Constrained Optimization Problems: Projection and Penalty Methods
 - Adaption of Step-size
 - Projection Methods
 - Penalty Methods

Adaption of step-size in descent methods

Algorithm (General descent method with line search):

- **1** Choose initial guess $x_0 \in \mathbb{R}^n$.
- ② For k = 0, 1, ...:
 - **1** Choose a descent direction $d_k \in \mathbb{R}^n$.
 - ② Choose an efficient step-size $\rho_k > 0$ (e.g., with Armijo rule).
 - **3** Set $x_{k+1} = x_k + \rho_k d_k$.

until a stopping criterion is satisfied.

- Problem if d_k points outwards of X_{ad} .
- \rightsquigarrow Reduce step-size ρ in the line search.

Adaption of step-size in descent methods

Algorithm (General descent method with line search):

- **1** Choose initial guess $x_0 \in \mathbb{R}^n$.
- ② For k = 0, 1, ...:
 - **1** Choose a descent direction $d_k \in \mathbb{R}^n$.
 - 2 Choose an efficient step-size $\rho_k > 0$.
 - \rightarrow New: additionally ensure that X_{ad} is not left.
 - **3** Set $x_{k+1} = x_k + \rho_k d_k$.

until a stopping criterion is satisfied.

• Not working if x_k is already boundary point and d_k points outwards of X_{ad} .

Contents

- Constrained Optimization Problems: Projection and Penalty Methods
 - Adaption of Step-size
 - Projection Methods
 - Penalty Methods

Projection Methods

- If the search direction points out of the admissible set X_{ad}, ...
- ... and the line search gives a point which is outside of X_{ad} ,
- ... we may project the resulting point onto the admissible set.
- Here, the mapping

$$P: \mathbb{R}^n \to X_{ad}$$

is called the **projection onto** X_{ad} .

• Applying this, e.g., for the gradient method, gives the gradient projection method.

Projection Methods

- Another idea is to directly project the search direction onto the admissible set X_{ad} ...
- ... and use the projected direction as search direction.
- Applying this, e.g., for the gradient method, gives the projected gradient method.

- Both methods now also work if the current iterate x_k is on the boundary.
- A problem may occur if x_k is at the corner of X_{ad} .

→ stop.

Projection Methods: Idea

- For projection methods, we have to compute the projection.
- This is easy in the case of linear constraints, ...
- ... where the admissible set is given as:

$$X_{ad} := \{x \in \mathbb{R}^n : g(x) \le 0, h(x) = 0\}$$

with

$$h(x) := Ax - b = 0 \quad (\Leftrightarrow Ax = b)$$

 $g(x) := Cx - d < 0 \quad (\Leftrightarrow Cx < d)$

where $A \in \mathbb{R}^{p \times n}$, $b \in \mathbb{R}^p$, $C \in \mathbb{R}^{m \times n}$, $d \in \mathbb{R}^m$.

• Linear constraints always define a **convex** admissible set X_{ad} .

Convex Sets

Definition

A set $M \subset \mathbb{R}^n$ is called **convex**, if

$$x, y \in M, s \in [0, 1] \Longrightarrow y + s(x - y) = sx + (1 - s)y \in M.$$

 For two points in the set, also the complete connecting line of the two points belongs to the set.

Convex Sets

not convex

Linear constraints: Admissible set is convex

Lemma

For linear constraints, the admissible set is closed and convex.

Proof.

- X_{ad} is closed since g, h are continuous and we have " \leq " for the inequality constraints.
- Convexity: $x, y \in X_{ad}$ satisfy $Ax = b, Ay = b, Cx \le d, Cy \le d$.
- We have to show that for arbitrary $s \in [0,1]$: $sx + (1-s)y \in X_{ad}$, i.e.,

$$A(sx + (1 - s)y) = b$$
, $C(sx + (1 - s)y) \le d$.

• Since the constraints are linear, we get:

$$A(sx + (1 - s)y) = sAx + (1 - s)Ay = sb + (1 - s)b = b,$$

 $C(sx + (1 - s)y) = sCx + (1 - s)Cy \le sd + (1 - s)d = d.$

 $\bullet \Rightarrow sx + (1-s)y \in X_{ad}$ for all $s \in [0,1] \Rightarrow X_{ad}$ is convex.

Projection onto the admissible set (linear constraints)

Lemma

If $X_{ad} \subset \mathbb{R}^n$ is defined by linear constraints and not empty, then the **orthogonal projection** onto X_{ad} is well-defined and linear. It is represented by a matrix $P \in \mathbb{R}^{n \times n}$ that satisfies

$$Px := \underset{y \in X_{ad}}{\operatorname{arg\,min}} \|x - y\|_2, \quad x \in \mathbb{R}^n,$$

and

$$y - Py \perp x - Py$$
, i.e., $(y - Py)^{\top}(x - Py) = 0$ for all $y \in \mathbb{R}^n, x \in X_{ad}$.

← convex, projection well-defined

not convex, projection not defined \rightarrow

Projection for box constraints/simple bounds

• In the easiest case, we have just box constraints:

$$a \le x \le b$$
 with given $a, b \in \mathbb{R}^n$

They can be written as

$$g_i(x) = a_i - x_i$$

 $g_{n+i}(x) = x_i - b_i$ $\rbrace \leq 0, \quad i = 1, \ldots, n.$

• Then we get for the projection

$$y = Px :\Leftrightarrow y_i = \left\{ egin{array}{ll} a_i, & ext{if } x_i < a_i \\ b_i, & ext{if } x_i > b_i \\ x_i, & ext{elsewhere} \end{array}
ight\}, \quad i = 1, \ldots, n.$$

Contents

- Constrained Optimization Problems: Projection and Penalty Methods
 - Adaption of Step-size
 - Projection Methods
 - Penalty Methods

Penalty Method

- Idea: Transform the constrained problem into an unconstrained one.
- Penalize violation of constraints by addition of a penalty term to the cost function:

$$\min_{x\in\mathbb{R}^n}f(x)+c_kP(x),\quad c_k>0.$$

• Then solve the unconstrained problem, increase c_k , iterate.

Definition

A continuous function $P: \mathbb{R}^n \to \mathbb{R}$ satisfying

$$P(x) = 0$$
 for all $x \in X_{ad}$,
 $P(x) > 0$ for all $x \in \mathbb{R}^n \setminus X_{ad}$,

or equivalently

$$P(x) \ge 0$$
 for all $x \in \mathbb{R}^n$,
 $P(x) = 0 \Leftrightarrow x \in X_{ad}$,

is called **penalty function**.

Penalty Functions: Examples

• Equality constraints h(x) = 0:

$$P(x) = ||h(x)||_2^2 = \sum_{i=1}^m h_i(x)^2.$$

• Inequality constraints $g(x) \leq 0$:

$$P(x) = \sum_{i=1}^{p} (\max\{0, g_i(x)\})^2$$

Here, the square is used since the function is now differentiable at the point where $g_i(x) = 0$.

Penalty Method: Algorithm

Algorithm (Penalty Method)

- Choose initial guess $x_0 \in \mathbb{R}^n, c_0 > 0$ and accuracy $\epsilon \geq 0$.
- ② For k = 1, 2, ...:
 - (a) Starting with initial guess x_{k-1} , compute an approximative solution of

$$\min_{x\in\mathbb{R}^n}f(x)+c_kP(x)$$

with the given accuracy ϵ , i.e., find x_k such that

$$f(x_k) + c_k P(x_k) \le \min_{x \in \mathbb{R}^n} f(x) + c_k P(x) + \epsilon. \tag{1}$$

(b) Increase penalty parameter: choose $c_{k+1} > c_k$. until a stopping criterion is satisfied.

Lemma

If we solve the penalized (inner) problems exactly ($\epsilon=0$), the iterates of the penalty method satisfy

$$P(x_k) \ge P(x_{k+1}),$$

 $f(x_k) + c_k P(x_k) \le f(x_{k+1}) + c_{k+1} P(x_{k+1}),$
 $f(x_k) \le f(x_{k+1}).$

• We prove the general result for $\epsilon > 0$.

Lemma

The iterates of the penalty method satisfy

$$P(x_k) + \delta_k \ge P(x_{k+1}),$$

 $f(x_k) + c_k P(x_k) \le f(x_{k+1}) + c_{k+1} P(x_{k+1}) + \epsilon,$
 $f(x_k) \le f(x_{k+1}) + \gamma_k$

with $\delta_k, \gamma_k \geq 0$ depending on ϵ . If $\epsilon = 0$, then $\delta_k = \gamma_k = 0$.

Proof.

Step 2a of the algorithm,

$$f(x_k) + c_k P(x_k) \le \min_{x \in \mathbb{R}^n} f(x) + c_k P(x) + \epsilon,$$

gives

applied for
$$k$$
: $f(x_k) + c_k P(x_k) \le f(x_{k+1}) + c_k P(x_{k+1}) + \epsilon$, applied for $k+1$: $f(x_{k+1}) + c_{k+1} P(x_{k+1}) \le f(x_k) + c_{k+1} P(x_k) + \epsilon$.

Adding both inequalities and substracting the terms with f gives

$$f(x_{k+1}) + c_k P(x_{k+1}) + \epsilon \ge f(x_k) + c_k P(x_k),$$

$$f(x_k) + c_{k+1} P(x_k) + \epsilon \ge f(x_{k+1}) + c_{k+1} P(x_{k+1})$$

$$(c_{k+1} - c_k) P(x_k) + 2\epsilon \ge (c_{k+1} - c_k) P(x_{k+1}).$$
(2)

Dividing by $(c_{k+1}-c_k)>0$, this is the first inequality in the Lemma with $\delta_k=\frac{2\epsilon}{c_{k+1}-c_k}$.

Because of $c_{k+1} > c_k$ and (2) we get

$$f(x_{k+1}) + c_{k+1}P(x_{k+1}) + \epsilon \ge f(x_{k+1}) + c_kP(x_{k+1}) + \epsilon \ge f(x_k) + c_kP(x_k).$$

This is the second inequality of the Lemma.

Inequality (2) and the first inequality of the Lemma give

$$f(x_{k+1}) + c_k P(x_{k+1}) + \epsilon \ge f(x_k) + c_k P(x_k) \ge f(x_k) + c_k P(x_{k+1}) - c_k \delta_k.$$

This is the third inequality of the Lemma with $\gamma_k = \epsilon + c_k \delta_k$.

Ш

We can now give an upper bound for the function values in the penalty method:

Lemma

Let $x^* \in X_{ad}$ be a local minimizer of the original constrained problem. For the sequence of the iterates $(x_k)_{k \in \mathbb{N}}$ of the penalty algorithm, we then have

$$f(x^*) + \epsilon \ge f(x_k) + c_k P(x_k) \ge f(x_k)$$
 for all $k \in \mathbb{N}$.

Proof.

Let k be arbitrary. Since $x^* \in X_{ad}$, we have $P(x^*) = 0$ by definition of penalty functions. Because x_{ν} is the result of step 2a in the algorithm, it satisfies

$$f(x_k) + c_k P(x_k) \leq \min_{x \in \mathbb{R}^n} f(x) + c_k P(x) + \epsilon \leq f(x^*) + c_k P(x^*) + \epsilon.$$

This gives

$$f(x^*) + \epsilon = f(x^*) + c_k P(x^*) + \epsilon \ge f(x_k) + c_k \underbrace{P(x_k)}_{>0} \ge f(x_k). \quad \Box$$

Convergence of penalty methods

Theorem

Let f be continuous and let $x^* \in X_{ad}$ be a local solution of the constrained problem. Then every accumulation point \bar{x} of the sequence $(x_k)_k$ of iterates of the penalty method lies in X_{ad} and satisfies

$$f(\bar{x}) \le f(x^*) + \epsilon. \tag{3}$$

Thus, for $\epsilon=0$ the penalty method yields a local minimizer of the constrained problem.

Proof.

By the Lemma on page 24 we have

$$f(x_k) \le f(x_k) + c_k P(x_k) \le f(x^*) + \epsilon \quad \text{for all } k \in \mathbb{N}.$$
 (4)

Let \bar{x} be an accumulation point with $x_k \to \bar{x}$ for $k \to \infty, k \in \mathcal{K} \subset \mathbb{N}$.

Convergence of penalty methods

Passing to the limit in (4) gives, using the continuity of f:

$$f(\bar{x}) = \lim_{K \ni k \to \infty} f(x_k) \le \lim_{K \ni k \to \infty} (f(x_k) + c_k P(x_k)) \le f(x^*) + \epsilon.$$

This proves (3). It remains to show that $\bar{x} \in X_{ad}$: We had

$$\lim_{\kappa \ni k \to \infty} (f(x_k) + c_k P(x_k)) = f(\bar{x}) + \lim_{\kappa \ni k \to \infty} c_k P(x_k) \le f(x^*) + \epsilon.$$

This means

$$\lim_{K\ni k\to\infty} c_k P(x_k) \le f(x^*) + \epsilon - f(\bar{x}) < \infty.$$

Since $P(x_k) \geq 0$ for all k and $c_k \to \infty$, we get

$$\lim_{K\ni k\to\infty}P(x_k)=0.$$

Continuity of the penalty function gives $P(\bar{x}) = 0$, i.e., $\bar{x} \in X_{ad}$ by definition of penalty functions.

Advantages and disadvantages of penalty methods

- + Every algorithm for unconstrained problems can be used.
- Effort: Nested iteration: in every step we have to solve (at least approximately) an unconstrained problem.
- Recall: convergence behavior of methods for unconstrained problem depends on eigenvalues of Hessian matrix $\nabla^2 f(x)$: For the penalty cost function $f + c_k P$ we get

$$\nabla^2(f+c_kP)(x)=\nabla^2f(x)+c_k\nabla^2P(x).$$

$$ightharpoonup ext{eigenvalues of } \nabla^2 (f + c_k P)(x) \approx ext{eigenvalues of } \nabla^2 f(x) + \underbrace{c_k \cdot ext{eigenvalues of } \nabla^2 P(x)}_{ ext{grows}}.$$

- Remark: This is just a rough idea, eigenvalues can not be added this way!
- * sequence $(c_k)_k$ is increasing.
- * penalty functions are quadratic \leadsto their Hessian matrix also has positive eigenvalues.
- → bad convergence properties.

What is important

- In constrained problems, the admissible set X_{ad} is a real subset of \mathbb{R}^n .
- It is usually defined by given functions.
- We distinguish between equality and inequality constraints.
- For constrained problems, we need adapted or different algorithms.
- In a descent method, we may try to just adapt the line search to always stay in the admissible set.
- We also may project the point found in the line search onto the admissible set ...
- ... or we directly project the search direction onto the admissible set.
- For linear constraints, the admissible set is convex.
- For convex admissible sets, the projection is given by matrix that can be easily computed.
- A different idea is to use penalty methods, where the constrained problem is transferred to an unconstrained one.