Constant coefficient systems

 \vec{x} = $A\vec{x}$ (A nxn matrix) If r eigenvalues of A with eigenvector $\vec{\xi}$ then \vec{x} = $e^{rt}\vec{\xi}$ is a solution.

I.e. sps the root r of det (A-rI) = 0 has multiplicity k > 1.

(an happen that one has k linearly independent eigenvalues. Then we're OK.

Ex: $A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ here F = 3 has mult. 2 but every vector is eigenvector. But sometimes there are less.

Ex: A=(31)

$$\det(A - rI) = \begin{vmatrix} 3 - r & 1 \\ 0 & 3 - r \end{vmatrix} = (3 - r)^{2}$$

$$A - 3I = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

 $\vec{q} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is the only eigenvector, up to multiple. Get $\vec{x}^{(n)} = e^{-3t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\vec{x}^{(n)} = ?$

Suppose A non matrix, r igenalue of multiplicity 2 with just one eigenvector = (up to multiple) ~> = ert = is a solution

$$\overrightarrow{A} = A\overrightarrow{A} \longrightarrow r\overrightarrow{\xi} = A\overrightarrow{\xi}, r\overrightarrow{J} + \overrightarrow{\xi} = A\overrightarrow{J}$$

I.e., $(A-rI)\overrightarrow{\xi} = 0$
 $(A-rI)\overrightarrow{J} = \overrightarrow{\xi}$

Apply $A-rI$ to second equation get $(A-rI)^{\circ}\overrightarrow{J} = 0$

Method: Find nonzero solution to
$$(A-rI)^2 \vec{\jmath} = 0$$
 such that $(A-rI)\vec{\jmath}$ is non-zero $\vec{\jmath}^{(r)}(t) = e^{rt} \vec{\xi}$,

$$\mathcal{F}^{(2)} = e^{rt}(t + \overline{q} + \overline{g})$$

are linearly independent solutions

Example:
$$A = \begin{pmatrix} 1 & -3 \\ 3 & 7 \end{pmatrix}$$
 $\overrightarrow{x'} = A\overrightarrow{x}$

One finds $\Gamma = 4$ is eigenvalue of multiplicity

One finds r = 4 is eigenvalue of multiplicity 2.

$$A-4I=\begin{pmatrix} -3 & -3 \\ 3 & 3 \end{pmatrix}$$
 has eigenvector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$(A-4I)^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 $(A-4I)^{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Every non-zero f^{2} satisfies $(A-4I)^{2}f^{2} = 0$

Take $\eta = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (not a eigenvector)

$$\frac{2}{3} = (A - 41) \int_{0}^{3} = \begin{pmatrix} -3 & -3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \end{pmatrix}$$

$$\frac{2}{3} = e^{4t} \begin{pmatrix} -3 \\ 3 \end{pmatrix}, \quad \frac{2}{3} = e^{4t} \begin{pmatrix} 1 - 3t \\ 3 + 4 \end{pmatrix}$$

$$\frac{2}{3} = e^{4t} \begin{pmatrix} -3 \\ 3 + 4 \end{pmatrix}, \quad \frac{2}{3} = e^{4t} \begin{pmatrix} 1 - 3t \\ 3 + 4 \end{pmatrix}$$

Phase portrait

ヺ゚゠゚゙゙゙゙ヿ゙゙゙゙゙゙゙゚゚゚ゔ゚゚゚゚゚+なえ**゙゙゙゙゙゙゚ゔ゚**