Bài 4. Công của lực điện

I. Công của lực điện

1. Đặc điểm của lực điện tác dụng lên một điện tích đặt trong điện trường đều

Một điện tích q dương (q>0) tại một điểm M trong điện trường đều nó chịu tác dụng của một lực điện $\vec{F}=q\vec{E}$ có đặc điểm:

- Lực \vec{F} không đổi có phương song với các đường sức điện.
- Chiều hướng từ bản dương sang bản âm.
- Độ lớn F = qE.

2. Công của lực điện trong một điện trường đều

- Điện tích q dương dịch chuyển theo đường thẳng MN, hợp với đường sức điện một góc α với MN = s. Khi đó d = $\overline{\text{MH}}$ = s.cos α (độ dài đại số với M và H là hình chiếu của điểm đầu và điểm cuối đường đi trên một đường sức, chọn chiều dương cho $\overline{\text{MH}}$ cùng chiều với chiều của đường sức).

- Biểu thức công của lực điện: $A_{_{MN}} = F.s.\cos\alpha = qEd$

 $Vi~d\mu$: một số trường hợp về dấu của công khi điện tích q>0 di chuyển trong điện trường:

$$+ \alpha < 90^{\circ} \Rightarrow \cos \alpha > 0 \Rightarrow A_{MN} > 0$$

$$+ \alpha > 90^{\circ} \Rightarrow \cos \alpha < 0 \Rightarrow A_{MN} < 0$$

$$+ \alpha = 90^{\circ} \Rightarrow \cos \alpha = 0 \Rightarrow A_{MN} = 0$$

- Công của lực điện trong sự di chuyển của điện tích trong điện trường đều từ M đến N là $A_{MN}=qEd$, không phụ thuộc vào hình dạng đường đi mà chỉ phụ thuộc vào vị trí điểm đầu M và điểm cuối N của đường đi.

- Chú ý:

- + Lực tĩnh điện là lực thế.
- + Trường tĩnh điện là trường thế.

II. Thế năng của một điện tích trong điện trường

1. Khái niệm về thế năng của một điện tích trong điện trường

- Thế năng của một điện tích q trong điện trường đặc trưng cho khả năng sinh công của điện trường khi đặt điện tích q tại điểm mà ta xét trong điện trường.
- Chọn mốc thế năng tại bản âm, đối với một điện tích q dương đặt tại điểm M trong điện trường đều thì công này là:

$$A = qEd = W_M$$
.

Trong đó:

- + d là khoảng cách từ điểm M đến bản âm;
- + W_M là thế năng của điện tích q tại M.
- Trong trường hợp điện tích q nằm tại điểm M trong điện trường do nhiều điện tích điểm gây ra thì có thể lấy thế năng bằng công của lực điện khi di chuyển q từ M ra vô cực.

$$W_{_{M}}=A_{_{M\infty}}$$

2. Sự phụ thuộc của thế năng W_{M} vào điện tích \boldsymbol{q}

Thế năng của điện tích tại M tỉ lệ thuận với q:

$$\boldsymbol{A}_{\boldsymbol{M}^{\infty}} = \boldsymbol{W}_{\boldsymbol{M}} = \boldsymbol{V}_{\boldsymbol{M}} \boldsymbol{q}$$

 V_M là hệ số tỉ lệ, không phụ thuộc q mà chỉ phụ thuộc vị trí điểm M trong điện trường.

3. Công của lực điện và độ giảm thế năng của điện tích trong điện trường

Khi một điện tích q di chuyển từ điểm M đến điểm N trong một điện trường thì công mà lực điện tác dụng lên điện tích đó sinh ra sẽ bằng độ giảm thế năng của điện tích q trong điện trường.

$$\boldsymbol{A}_{\scriptscriptstyle MN} = \boldsymbol{W}_{\scriptscriptstyle M} - \boldsymbol{W}_{\scriptscriptstyle N}$$